Matrix Forensics

 $\begin{array}{c} A \ brief \ guide \ to \ matrix \ math \\ and \ its \ efficient \ implementation \end{array}$

RICHARD BARNES

Git Hash: 4dbc2d4db9

Compiled on: 2020/11/10 at 00:04:58

github.com/r-barnes/MatrixForensics

Contents

1	Introduction			
2	Nomenclature			
3	Basics 3.1 Fundamental Theorem of Linear Algebra 3.2 Matrix Properties 3.3 Rank 3.4 Identities 3.5 Matrix Multiplication 3.6 Time Complexities	10 10 11 		
4	Derivatives 4.1 Useful Rules for Derivatives 4.2 Gradient Notation 4.3 Derivatives of Matrices and Vectors 4.3.1 First-Order 4.4 Derivatives of vector norms 4.5 Scalar by Vector 4.6 Vector by Vector 4.7 Matrix by Scalar 4.8 Traces			
5	5.1 Non-Singular vs. Singular Matrices 5.2 Diagonal Matrix 5.3 Doubly stochastic matrix 5.4 Dyads 5.5 Hermitian Matrix 5.6 Hurwitz matrix 5.7 Idempotent Matrix 5.8 Laplacian Matrix of a Graph 5.9 Metzler matrix 5.10 Orthogonal Matrix 5.11 Permutation Matrix 5.12 Positive Definite 5.13 Positive Semi-Definite 5.13.1 Loewner order			
	5.14 Projection Matrix 5.15 Single-Entry Matrix 5.16 Singular Matrix 5.17 Symmetric Matrix 5.18 Skew-Hermitian 5.19 Toeplitz Matrix, General Form 5.20 Toeplitz Matrix, Discrete Convolution 5.21 Triangular Matrix			

CONTENTS 3

	5.22 Tridiagonal Matrix	28 29
6	Matrix Decompositions	30
U	6.1 LLT/UTU: Cholesky Decomposition	30
	6.2 LDLT	30
	6.3 PCA: Principle Components Analysis	30
		31
	6.4 QR: Orthogonal-triangular	31
		33
	6.7 Eigenvalue (Spectral) Decomposition for Symmetric Matrices	33
	6.8 Schur Complements	33
7	Transpose Properties	35
8	Determinant Properties	36
9	Trace Properties	37
10	Inverse Properties	38
		0.0
11	Pseudo-Inverse Properties 11.1 Moore-Penrose Pseudoinverse	39
12	Hadamard Identities	40
13	Eigenvalue Properties	41
	13.1 Weyl's Inequality	41
	13.2 Estimating Eigenvalues	41
	13.2.1 Gershgorin circle theorem	41
11	Norms	42
14	14.1 General Properties	42
	14.2 Matrices	42
	14.2.1 Frobenius norm	42
	14.2.2 Operator Norms	42
	14.2.3 Spectral Radius	43
	•	
	14.3 Vectors	43
	14.3.1 Identities	43
	14.3.2 Bounds	44
15	Bounds	45
10	15.1 Matrix Gain	45
	15.2 Rayleigh quotients	45
	10.2 Itayleigh quotients	40
16	Equations	46
	16.1 Linear Equations	46
	16.2 Least-Squares	46
	16.2.1 Regularized least-squares with low-rank data	46
	16.3 Minimum Norm Solutions	47
	16.4 The Sylvester Equation: $\mathbf{A}\mathbf{X} + \mathbf{X}^T\mathbf{B} = \mathbf{C}$	47
17	To dates	40
17	Updates 17.1 Removing a very from $\mathbf{A}^T \mathbf{A} \cdot (\mathbf{A}^T \mathbf{A} \cdot \mathbf{A}^T \mathbf{A} \cdot \mathbf{A}^T$	48
	17.1 Removing a row from $\mathbf{A}^T \mathbf{A} \ (\mathbf{A}^T \mathbf{A} \to \mathbf{A}_{\backslash i}^T \mathbf{A}_{\backslash i})$	48

4 CONTENTS

	17.2 $1_r^T \mathbf{A} 1_c$	
	17.3 $\mathbf{e}_i \mathbf{A} \mathbf{e}_j$	
	$17.4 \mathbf{x}^T \mathbf{A} \mathbf{x}$. 48
18	Optimization	5
	18.1 Standard Forms	. 50
	18.2 Transformations	. 5
	18.2.1 Linear-Fractional to Linear	
	18.2.2 LP as SOCP	. 5
	18.2.3 QCQP as SOCP	
	18.2.4 QP as SOCP	
	18.2.5 Sum of L2 Norms to SOCP	
	18.2.6 Minimax of L2 Norms to SOCP	
	18.2.7 Hyperbolic Constraints to SOCP	
	18.2.8 Matrix Fractional to SOCP	
	18.2.9 Fractional Objective to SOCP	
	18.2.10 Chance-Constrained LP to SOCP	
	18.2.11 Robust LP with Box Uncertainty as LP	
	18.2.12 Robust LP with Ellipsoidal Uncertainty as SOCP	
	18.2.13 Square Root as SOCP	
	18.3 Useful Problems	
	10.9 Osciul i ionicins	. 5
19	Algorithms	5
	19.1 Gram-Schmidt	5

1 Introduction

Goals: TODO

Contributing: Please contribute on Github at https://github.com/r-barnes/MatrixForensics either by opening an issue or making a pull request. If you are not comfortable with this, please send your contribution to rijard.barnes@gmail.com.

Contributors: Richard Barnes

Funding: TODO

2 Nomenclature

 \mathbf{A} Matrix. (Column) vector. \mathbf{a} Scalar. \mathbf{A}_{ij} Matrix indexed. Returns ith row and jth column. $\mathbf{A} \circ \mathbf{B}$ Hadamard (element-wise) product of matrices A and B. $\mathcal{N}(\mathbf{A})$ Nullspace of the matrix \mathbf{A} . $\mathcal{R}(\mathbf{A})$ Range of the matrix \mathbf{A} . $det(\mathbf{A})$ Determinant of the matrix A. $eig(\mathbf{A})$ Eigenvalues of the matrix A. \mathbf{A}^H Conjugate transpose of the matrix **A**. \mathbf{A}^T Transpose of the matrix \mathbf{A} . \mathbf{A}^{+} Pseudoinverse of the matrix \mathbf{A} . $\mathbf{x} \in \mathbb{R}^n$ The entries of the n-vector \mathbf{x} are all real numbers. $\mathbf{A} \in \mathbb{R}^{m,n}$ The entries of the matrix \mathbf{A} with m rows and n columns are all real numbers. $\mathbf{A} \in \mathbb{S}^n$ The matrix \mathbf{A} is symmetric and has n rows and n columns. Identity matrix with n rows and n columns. \mathbf{I}_n {0} The empty set The real numbers \mathbb{C} The complex numbers

3 Basics

3.1 Fundamental Theorem of Linear Algebra

CHAPTER 3. BASICS 9

 $\label{eq:matrix} \text{Matrix A converts n-tuples into m-tuples } \mathbb{R}^n \to \mathbb{R}^m.$ That is, linear transformation T_A is a map between rows and columns

Figure 1: Dimensions and orthogonality for any m by n matrix A of rank r.

3.2 Matrix Properties

$$\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C} \qquad \text{(left distributivity)} \qquad (1)$$

$$(\mathbf{B} + \mathbf{C})\mathbf{A} = \mathbf{B}\mathbf{A} + \mathbf{C}\mathbf{A} \qquad \text{(right distributivity)} \qquad (2)$$

$$\mathbf{A}\mathbf{B} \neq \mathbf{B}\mathbf{A} \qquad \text{(in general)} \qquad (3)$$

$$(\mathbf{A}\mathbf{B})\mathbf{C} = \mathbf{A}(\mathbf{B}\mathbf{C}) \qquad \text{(associativity)} \qquad (4)$$

3.3 Rank

If $\mathbf{A} \in \mathbb{R}^{m,n}$ and $\mathbf{B} \in \mathbb{R}^{n,r}$, then

[1]
$$\operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{B}) - n \le \operatorname{rank}(\mathbf{A}\mathbf{B}) \le \min(\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B}))$$
 Sylvester's Inequality (5)

If AB, ABC, BC are defined, then

$$[1] \qquad \qquad \operatorname{rank}(\mathbf{AB}) + \operatorname{rank}(\mathbf{BC}) \leq \operatorname{rank}(\mathbf{B}) + \operatorname{rank}(\mathbf{ABC}) \qquad \text{Frobenius's inequality} \qquad (6)$$

If $\dim(\mathbf{A}) = \dim(\mathbf{B})$, then

$$rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$$
 Subadditivity (7)

If $\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_l$ have n_1, n_2, \dots, n_l columns, so that $\mathbf{A}_1 \mathbf{A}_2 \dots \mathbf{A}_l$ is well-defined, then

[1]
$$\operatorname{rank}(\mathbf{A}_{1}\mathbf{A}_{2}\dots\mathbf{A}_{l}) \geq \sum_{i=1}^{l-1}\operatorname{rank}(\mathbf{A}_{i}\mathbf{A}_{i+1}) - \sum_{i=2}^{l-1}\operatorname{rank}(\mathbf{A}_{i}) \geq \sum_{i=1}^{l}\operatorname{rank}(\mathbf{A}_{i}) - \sum_{i=1}^{l-1}n_{i}$$
(8)

CHAPTER 3. BASICS

3.4 Identities

$$\left(\sum_{i=1}^{n} \mathbf{z}_{i}\right)^{2} = \mathbf{z}^{T} \begin{bmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{bmatrix} \mathbf{z}$$

$$(9)$$

3.5 Matrix Multiplication

For $\mathbf{A} \in \mathbb{R}^{i,j}$ and $\mathbf{B} \in \mathbb{R}^{j,k}$ and $\mathbf{C} \in \mathbb{R}^{l,k}$

$$[\mathbf{A}\mathbf{B}]_{ik} = \sum_{j} \mathbf{A}_{ij} \mathbf{B}_{jk} \tag{10}$$

$$[\mathbf{A}\mathbf{B}\mathbf{C}^T]_{il} = \sum_{j} \mathbf{A}_{ij} [\mathbf{B}\mathbf{C}^T]_{jl} = \sum_{j} \mathbf{A}_{ij} \sum_{k} \mathbf{B}_{jk} \mathbf{C}_{lk} = \sum_{j} \sum_{k} \mathbf{A}_{ij} \mathbf{B}_{jk} \mathbf{C}_{lk}$$
(11)

3.6 Time Complexities

Operation	Input	Output	${f Algorithm}$	\mathbf{Time}
Matmult	$A, B \in n \times n$	$n \times n$	Schoolbook	$O(n^3)$
			Strassen [2]	$O(n^{2.807})$
			Best	$O(n^{\omega})$
Matmult	$A \in n \times m, B \in m \times p$	$n \times p$	Schoolbook	O(nmp)
Inversion	$A \in n \times n$	$n \times n$	Gauss-Jordan elimination	$O(n^3)$
			Strassen [2]	$O(n^{2.807})$
			Best	$O(n^{\omega})$
SVD	$A \in m \times n$	$m \times m, m \times n, n \times n$		$O(mn^2)$
		$m\times r, r\times r, n\times r$		$(m \ge n)$
Determinant	$A \in n \times n$	Scalar	Laplace expansion	O(n!)
			Division-free [3]	O(n!)
			LU decomposition	$O(n^3)$
			Integer preserving [4]	$O(n^3)$
Back substitution	A triangular	n solutions	Back substitution	$O(n^2)$

A comment on ω

The lower bound on matmult time complexity is $O(n^{\omega})$, where ω is an unknown constant bounded by $2 \le \omega \le 2.373$. Algorithms achieving lower values of ω tend to be less efficient in practice for all but the largest matrices. Of the algorithm with times of less than $O(n^3)$, only the Strassen algorithm has seen serious attempts at optimized implementation. Most matmult implementations use highly optimized variants of the standard $O(n^3)$ algorithm. At this point, memory and bus speeds dominate the performance of implementations, so simple Big-O notation cannot be used to reliably compare matmult performances.

Name	Year	ω
Standard	-	3
Strassen [2]	1969	2.807
Pan [5]	1978	2.796
Bini et al. [6]	1979	2.78
Schönhage [7]	1981	2.548
Schönhage [7]	1981	2.522
Romani [8]	1982	2.517
Coppersmith and Winograd [9]	1982	2.496
Strassen [10]	1986	2.479
Coppersmith and Winograd [11]	1990	2.376
Williams [12]	2012	2.37294
Le Gall [13]	2014	2.3728639
Williams [12]	2012	2.3727

4 Derivatives

4.1 Useful Rules for Derivatives

For general **A** and **X** (no special structure):

$$\partial \mathbf{A} = 0$$
 where **A** is a constant (12)

$$\partial(c\mathbf{X}) = c\partial\mathbf{X} \tag{13}$$

$$\partial(\mathbf{X} + \mathbf{Y}) = \partial\mathbf{X} + \partial\mathbf{Y} \tag{14}$$

$$\partial(\operatorname{tr}(\mathbf{X})) = \operatorname{tr}(\partial(\mathbf{X})) \tag{15}$$

$$\partial(\mathbf{XY}) = (\partial\mathbf{X})\mathbf{Y} + \mathbf{X}(\partial\mathbf{Y}) \tag{16}$$

$$\partial(\mathbf{X} \circ \mathbf{Y}) = (\partial \mathbf{X}) \circ \mathbf{Y} + \mathbf{X} \circ (\partial \mathbf{Y}) \tag{17}$$

$$\partial(\mathbf{X}^{-1}) = -\mathbf{X}^{-1}(\partial\mathbf{X})\mathbf{X}^{-1} \tag{18}$$

$$\partial(\det(\mathbf{X})) = \operatorname{tr}(\operatorname{adj}(\mathbf{X})\partial\mathbf{X}) \tag{19}$$

$$\partial(\det(\mathbf{X})) = \det(\mathbf{X})\operatorname{tr}(\mathbf{X}^{-1}\partial\mathbf{X}) \tag{20}$$

$$\partial(\ln(\det(\mathbf{X}))) = \operatorname{tr}(\mathbf{X}^{-1}\partial\mathbf{X}) \tag{21}$$

$$\partial(\mathbf{X}^T) = (\partial\mathbf{X})^T \tag{22}$$

$$\partial(\mathbf{X}^H) = (\partial\mathbf{X})^H \tag{23}$$

4.2 Gradient Notation

For a matrix $\mathbf{A} \in \mathbb{R}^{n,m}$, the gradient is defined as:

$$\nabla_{\mathbf{A}} f(\mathbf{A}) = \begin{bmatrix} \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{11}} & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{12}} & \cdots & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{1n}} \\ \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{21}} & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{22}} & \cdots & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{m1}} & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{m2}} & \cdots & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{mn}} \end{bmatrix}$$

$$(24)$$

i.e.

$$(\nabla_{\mathbf{A}} f(\mathbf{A}))_{ij} = \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{ij}}$$
(25)

Note that the size of the gradient is always the same size as the entity to which it is taken. Also note that the gradient of a function is only defined if the function is real-valued, that is, if it returns a scalar value.

4.3 **Derivatives of Matrices and Vectors**

First-Order 4.3.1

In the following, J is the Single-Entry Matrix (section 5.15).

$$\frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a} \tag{26}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{b}^T \tag{27}$$

$$\frac{\partial \mathbf{x}^{T} \mathbf{a}}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^{T} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{X} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{X}^{T} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{b} \mathbf{a}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{X}^{T} \mathbf{b}}{\partial \mathbf{X}} = \frac{\partial \mathbf{a}^{T} \mathbf{X}^{T} \mathbf{a}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{a}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{X} \mathbf{a}}{\partial \mathbf{X}} = \frac{\partial \mathbf{a}^{T} \mathbf{X}^{T} \mathbf{a}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{a}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{X} \mathbf{a}}{\partial \mathbf{X}} = \frac{\partial \mathbf{a}^{T} \mathbf{X}^{T} \mathbf{a}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{a}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{a}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{a}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{a}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{a}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{a}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{A} \mathbf{b}}{\partial \mathbf{A} \mathbf{b}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X} \mathbf{a}}{\partial \mathbf{X}} = \frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{a}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{a}^T$$
 (29)

$$\frac{\partial \mathbf{X}}{\partial \mathbf{X}_{ij}} = \mathbf{J}^{ij} \tag{30}$$

Derivatives of vector norms 4.4

$$\frac{\partial}{\partial \mathbf{x}} \|\mathbf{x} - \mathbf{a}\|_2 = \frac{\mathbf{x} - \mathbf{a}}{\|\mathbf{x} - \mathbf{a}\|_2} \tag{31}$$

$$\frac{\partial \mathbf{x}}{\partial \mathbf{x}} \frac{\mathbf{x} - \mathbf{a}}{\|\mathbf{x} - \mathbf{a}\|_{2}} = \frac{\mathbf{I}}{\|\mathbf{x} - \mathbf{a}\|_{2}} - \frac{(\mathbf{x} - \mathbf{a})(\mathbf{x} - \mathbf{a})^{T}}{\|\mathbf{x} - \mathbf{a}\|_{2}^{3}}$$
(32)

$$\frac{\partial \|\mathbf{x}\|_{2}^{2}}{\partial \mathbf{x}} = \frac{\partial \|\mathbf{x}^{T}\mathbf{x}\|_{2}}{\partial \mathbf{x}} = 2\mathbf{x}$$
(33)

4.5 Scalar by Vector

Qualifier	Expression	Numerator layout	Denominator layout
	$\frac{\partial a}{\partial x}$	0^T	0
	$rac{\partial au(\mathbf{x})}{\partial \mathbf{x}}$	$a\frac{\partial u}{\partial \mathbf{x}}$	Same
	$\frac{\partial u(\mathbf{x}) + v(\mathbf{x})}{\partial \mathbf{x}}$	$\frac{\partial u}{\partial \mathbf{x}} + \frac{\partial v}{\partial \mathbf{x}}$	Same
	$\frac{\partial u(\mathbf{x})v(\mathbf{x})}{\partial \mathbf{x}}$	$u\frac{\partial v}{\partial \mathbf{x}} + v\frac{\partial u}{\partial \mathbf{x}}$	Same
	$\frac{\partial g(u(\mathbf{x}))}{\partial \mathbf{x}}$	$rac{\partial g(u)}{\partial u} rac{\partial u}{\partial \mathbf{x}}$	Same
	$rac{\partial f(g(u(\mathbf{x})))}{\partial \mathbf{x}}$	$\frac{\partial f(g)}{\partial g} \frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial \mathbf{x}}$	Same
	$rac{\partial \mathbf{u}(\mathbf{x})^T \mathbf{v}(\mathbf{x})}{\partial \mathbf{x}}$	$\mathbf{u}^T rac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}^T rac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$rac{\partial \mathbf{u}}{\partial \mathbf{x}}\mathbf{v} + rac{\partial \mathbf{v}}{\partial \mathbf{x}}\mathbf{u}$
	$\frac{\partial \mathbf{u}(\mathbf{x})^T \mathbf{A} \mathbf{v}(\mathbf{x})}{\partial \mathbf{x}}$	$\mathbf{u}^T \mathbf{A} rac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}^T \mathbf{A}^T rac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$rac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{A} \mathbf{v} + rac{\partial \mathbf{v}}{\partial \mathbf{x}} \mathbf{A}^T \mathbf{u}$
	$\frac{\partial^2 f}{\partial \mathbf{x} \partial \mathbf{x}^T}$		\mathbf{H} , the Hessian matrix
	$\frac{\partial \mathbf{a} \cdot \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x} \cdot \mathbf{a}}{\partial \mathbf{x}}$	\mathbf{a}^T	a
	$rac{\partial \mathbf{b}^T \mathbf{A} \mathbf{x}}{\partial \mathbf{x}}$	$\mathbf{b}^T \mathbf{A}$	$\mathbf{A}^T\mathbf{b}$
	$\frac{\partial \mathbf{x}^T \mathbf{A} \mathbf{x}}{\partial \mathbf{x}}$	$\mathbf{x}^T(\mathbf{A} + \mathbf{A}^T)$	$(\mathbf{A} + \mathbf{A}^T)\mathbf{x}$
\mathbf{A} symmetric	$\frac{\partial \mathbf{x}^T \mathbf{A} \mathbf{x}}{\partial \mathbf{x}}$	$2\mathbf{x}^T\mathbf{A}$	$2\mathbf{A}\mathbf{x}$
	$\frac{\partial \mathbf{x}^T \mathbf{A} \mathbf{x}}{\partial \mathbf{x}}$	$\mathbf{A} + \mathbf{A}^T$	Same
\mathbf{A} symmetric	$\frac{\partial \mathbf{x}^T \mathbf{A} \mathbf{x}}{\partial \mathbf{x}}$	\mathbf{A}	Same
	$\frac{\partial \mathbf{x}^T \mathbf{x}}{\partial \mathbf{x}}$	$2\mathbf{x}^T$	$2\mathbf{x}$
	$rac{\partial \mathbf{a}^T \mathbf{u}(\mathbf{x})}{\partial \mathbf{x}}$	$\mathbf{a}^T rac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$rac{\partial \mathbf{u}}{\partial \mathbf{x}}\mathbf{a}$
	$\frac{\partial \mathbf{a}^T \mathbf{x} \mathbf{x}^T \mathbf{b}}{\partial \mathbf{x}}$	$\mathbf{x}^T(\mathbf{a}\mathbf{b}^T+\mathbf{b}\mathbf{a}^T)$	$(\mathbf{a}\mathbf{b}^T + \mathbf{b}\mathbf{a}^T)\mathbf{x}$
	$\frac{\partial (\mathbf{A}\mathbf{x} + \mathbf{b})^T \mathbf{C} (\mathbf{D}\mathbf{x} + \mathbf{e})}{\partial \mathbf{x}}$	$ (\mathbf{D}\mathbf{x} + \mathbf{e})^T \mathbf{C}^T \mathbf{A} + (\mathbf{A}\mathbf{x} + \mathbf{b})^T \mathbf{C} \mathbf{D} $	
	$\frac{\partial \ \mathbf{x} - \mathbf{a}\ }{\partial \mathbf{x}}$	$\frac{(\mathbf{x} - \mathbf{a})^T}{\ \mathbf{x} - \mathbf{a}\ }$	$\frac{\mathbf{x} - \mathbf{a}}{\ \mathbf{x} - \mathbf{a}\ }$
	-		

4.6 Vector by Vector

Qualifier	Expression	Numerator layout	Denominator layout
	$\frac{\partial \mathbf{a}}{\partial \mathbf{x}}$	0	Same
	$\frac{\partial \mathbf{x}}{\partial \mathbf{x}}$	I	Same
	$\frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}}$	A	\mathbf{A}^T
	$\frac{\partial \mathbf{x}^T \mathbf{A}}{\partial \mathbf{x}}$	\mathbf{A}^T	A
	$\frac{\partial a\mathbf{u}(\mathbf{x})}{\partial \mathbf{x}}$	$a\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	Same
	$\frac{\partial a(\mathbf{x})\mathbf{u}(\mathbf{x})}{\partial \mathbf{x}}$	$a\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{u}\frac{\partial a}{\partial \mathbf{x}}$	$a\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial a}{\partial \mathbf{x}} \mathbf{u}^T$
	$\frac{\partial \mathbf{A}\mathbf{u}(\mathbf{x})}{\partial \mathbf{x}}$	$\mathbf{A} rac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$rac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{A}^T$
	$\frac{\partial (\mathbf{u}(\mathbf{x}) + \mathbf{v}(\mathbf{x}))}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$	Same
	$\frac{\partial \mathbf{g}(\mathbf{u}(\mathbf{x}))}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}}$
	$\frac{\partial \mathbf{f}(\mathbf{g}(\mathbf{u}(\mathbf{x})))}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}(\mathbf{u})} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}}$

4.7 Matrix by Scalar

Qualifier Expression Numerator layout
$$\frac{\partial a\mathbf{U}(x)}{\partial x} \qquad a\frac{\partial \mathbf{U}}{\partial x}$$

$$\frac{\partial \mathbf{A}\mathbf{U}(x)\mathbf{B}}{\partial x} \qquad \mathbf{A}\frac{\partial \mathbf{U}}{\partial x}\mathbf{B}$$

$$\frac{\partial (\mathbf{U}(x)+\mathbf{V}(x))}{\partial x} \qquad \frac{\partial \mathbf{U}}{\partial x} + \frac{\partial \mathbf{V}}{\partial x}$$

$$\frac{\partial (\mathbf{U}(x)\mathbf{V}(x))}{\partial x} \qquad \mathbf{U}\frac{\partial \mathbf{V}}{\partial x} + \frac{\partial \mathbf{U}}{\partial x}\mathbf{V}$$

$$\frac{\partial (\mathbf{U}(x)\otimes\mathbf{V}(x))}{\partial x} \qquad \mathbf{U}\otimes\frac{\partial \mathbf{V}}{\partial x} + \frac{\partial \mathbf{U}}{\partial x}\otimes\mathbf{V}$$

$$\frac{\partial (\mathbf{U}(x)\circ\mathbf{V}(x))}{\partial x} \qquad \mathbf{U}\otimes\frac{\partial \mathbf{V}}{\partial x} + \frac{\partial \mathbf{U}}{\partial x}\otimes\mathbf{V}$$

$$\frac{\partial (\mathbf{U}(x)\circ\mathbf{V}(x))}{\partial x} \qquad \mathbf{U}\circ\frac{\partial \mathbf{V}}{\partial x} + \frac{\partial \mathbf{U}}{\partial x}\circ\mathbf{V}$$

$$-\mathbf{U}^{-1}\frac{\partial \mathbf{U}}{\partial x}\mathbf{U}^{-1}$$

$$\frac{\partial^{2}\mathbf{U}^{-1}}{\partial x\partial y} \qquad \mathbf{U}^{-1}\left(\frac{\partial \mathbf{U}}{\partial x}\mathbf{U}^{-1}\frac{\partial \mathbf{U}}{\partial y} - \frac{\partial^{2}\mathbf{U}}{\partial x\partial y} + \frac{\partial \mathbf{U}}{\partial y}\mathbf{U}^{-1}\frac{\partial \mathbf{U}}{\partial x}\right)\mathbf{U}^{-1}$$

$$\frac{\partial e^{x\mathbf{A}}}{\partial x} \qquad \mathbf{A}e^{x\mathbf{A}} = e^{x\mathbf{A}}\mathbf{A}$$

4.8 Traces

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{X}) = \mathbf{I} \tag{34}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{X}\mathbf{A}) = \mathbf{A}^T \tag{35}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{A}\mathbf{X}) = \mathbf{A}^T \tag{36}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{A} \mathbf{X} \mathbf{B}) = \mathbf{A}^T \mathbf{B}^T \tag{37}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{A} \mathbf{X}^T \mathbf{B}) = \mathbf{B} \mathbf{A} \tag{38}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{X}^T \mathbf{A}) = \mathbf{A} \tag{39}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{A} \mathbf{X}^T) = \mathbf{A} \tag{40}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{A} \otimes \mathbf{X}) = \operatorname{tr}(\mathbf{A})\mathbf{I}$$
(41)

For traces with many instances of X we can apply an analogue of the product rule. For example:

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{A} \mathbf{X} \mathbf{B} \mathbf{X} \mathbf{C}^{T}) = \frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{A} \mathbf{X} \mathbf{D}) + \frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{E} \mathbf{X} \mathbf{C}^{T}) = \mathbf{A}^{T} \mathbf{D}^{T} + \mathbf{E}^{T} \mathbf{C}$$
(42)

where $\mathbf{D} = \mathbf{B} \mathbf{X} \mathbf{C}^T$ and $\mathbf{E} = \mathbf{A} \mathbf{X} \mathbf{B}$.

5 | Matrix Rogue Gallery

5.1 Non-Singular vs. Singular Matrices

For $\mathbf{A} \in \mathbb{R}^{n,n}$ (initially drawn from [14, p. 574]):

Non-Singular

A is invertible

The columns are independent The rows are independent

 $det(\mathbf{A}) \neq 0$

 $\mathbf{A}\mathbf{x} = 0$ has one solution: $\mathbf{x} = 0$

 $\mathbf{A}\mathbf{x} = \mathbf{b}$ has one solution: $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$

 \mathbf{A} has n nonzero pivots

A has full rank r = n

The reduced row echelon form is $\mathbf{R} = \mathbf{I}$

The column space is all of \mathbb{R}^n

The row space is all of \mathbb{R}^n

All eigenvalues are nonzero $\mathbf{A}^T \mathbf{A}$ is symmetric positive definite

A has n positive singular values

Singular

A is not invertible

The columns are dependent

The rows are dependent

 $\det(\mathbf{A}) = 0$

 $\mathbf{A}\mathbf{x} = 0$ has infinitely many solutions

 $\mathbf{A}\mathbf{x} = \mathbf{b}$ has either no or infinitely many solutions

A has r < n pivots

A has rank r < n

R has at least one zero row

The column space has dimension r < n

The row space has dimension r < n

Zero is an eigenvalue of A

 $\mathbf{A}^T \mathbf{A}$ is only semidefinite

A has r < n singular values

5.2 Diagonal Matrix

$$A = \operatorname{diag}(a_1, \dots, a_n) = \begin{bmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{bmatrix}$$

$$\tag{43}$$

Square matrix. Entries above diagonal are equal to entries below diagonal.

Number of "free entries": $\frac{n(n+1)}{2}$.

Special Properties

$$eig(A) = a_1, \dots, a_n \tag{44}$$

$$\det(A) = \prod_{i} a_i \tag{45}$$

$$A^{-1} = \begin{bmatrix} \frac{1}{a_1} & & \\ & \ddots & \\ & & \frac{1}{a_n} \end{bmatrix}$$

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_i a_i \mathbf{x}_i^2 \tag{46}$$

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_i a_i \mathbf{x}_i^2 \tag{47}$$

Doubly stochastic matrix 5.3

A square matrix of nonnegative real numbers whose rows and columns each sum to 1.

Dyads 5.4

 $\mathbf{A} \in \mathbb{R}^{m,n}$ is a dyad if it can be written as

$$\mathbf{A} = \mathbf{u}\mathbf{v}^T \quad \mathbf{u} \in \mathbb{R}^m, \mathbf{v} \in \mathbb{R}^n \tag{48}$$

Special Properties

- \bullet The columns of **A** are copies of **u** scaled by the values of **v**.
- The rows of **A** are copies of \mathbf{u}^T scaled by the values of \mathbf{v} .
- If **A** is a dyad, it acts on a vector **x** as $\mathbf{A}\mathbf{x} = (\mathbf{u}\mathbf{v}^T)\mathbf{x} = (\mathbf{v}^T\mathbf{u})\mathbf{x}$.
- $\mathbf{A}\mathbf{x} = c\mathbf{u}$ (**A** scales **x** and points it along **u**).
- $\bullet \ \mathbf{A}_{ij} = \mathbf{u}_i \mathbf{v}_j.$
- If $\mathbf{u}, \mathbf{v} \neq 0$, then rank $(\mathbf{A}) = 1$.
- If m = n, **A** has one eigenvalue $\lambda = \mathbf{v}^T \mathbf{u}$ and eigenvector \mathbf{u} .
- A dyad can always be written in a normalized form $c\tilde{\mathbf{u}}\tilde{\mathbf{v}}^T$.

5.5 Hermitian Matrix

 $\mathbf{H} \in \mathbb{C}^{m,n}$ is Hermitian iff

$$\mathbf{H} = \mathbf{H}^H \tag{49}$$

where \mathbf{H}^H is the conjugate transpose of \mathbf{H} .

For $\mathbf{H} \in \mathbb{R}^{m,n}$, Hermitian and symmetric matrices are equivalent.

 $\det(\mathbf{H}) \in \mathbb{R}$

 $eig(\mathbf{H}) \in \mathbb{R}$

Special Properties

$$\mathbf{H}_{ii} \in \mathbb{R}$$
 (50)
 $\mathbf{H}\mathbf{H}^H = \mathbf{H}^H \mathbf{H}$ (51)
 $\mathbf{x}^H \mathbf{H} \mathbf{x} \in \mathbb{R} \ \forall \mathbf{x} \in \mathbb{C}$ (52)
 $\mathbf{H}_1 + \mathbf{H}_2 = \text{Hermitian}$ (53)
 $\mathbf{H}^{-1} = \text{Hermitian}$ (54)
 $\mathbf{A} + \mathbf{A}^H = \text{Hermitian}$ (55)
 $\mathbf{A} - \mathbf{A}^H = \text{Skew-Hermitian}$ (56)
 $\mathbf{A} \mathbf{B} = \text{Hermitian iff } \mathbf{A} \mathbf{B} = \mathbf{B} \mathbf{A}$ (57)

5.6 Hurwitz matrix

TODO

5.7 Idempotent Matrix

A matrix A is idempotent iff

$$\mathbf{A}\mathbf{A} = \mathbf{A} \tag{60}$$

(58)

(59)

Special Properties

$$\mathbf{A}^n = A \ \forall n$$
 (61)

$$\mathbf{I} - \mathbf{A} \text{ is idempotent}$$
 (62)

$$\mathbf{A}^H \text{ is idempotent}$$
 (63)

$$\mathbf{I} - \mathbf{A}^H \text{ is idempotent}$$
 (64)

$$\operatorname{rank}(\mathbf{A}) = \operatorname{tr}(\mathbf{A})$$
 (65)

$$\mathbf{A}(I - \mathbf{A}) = 0$$
 (66)

$$\mathbf{A}^+ = \mathbf{A}$$
 (67)

$$f(s\mathbf{I} + t\mathbf{A}) = (\mathbf{I} - \mathbf{A})f(s) + \mathbf{A}f(s + t)$$
 (68)

$$\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} \implies \mathbf{A}\mathbf{B} \text{ is idempotent}$$
 (69)

$$\operatorname{eig}(\mathbf{A})_i \in \{0, 1\}$$
 (70)

$$\mathbf{A} \text{ is always diagonalizable}$$
 (71)

$\mathbf{A} - \mathbf{I}$ may not be idempotent.

5.8 Laplacian Matrix of a Graph

Let **L** be the Laplacian matrix of a graph G with neither multiple edges nor loops defined by (V, E, w) where V is the set of vertices, E the set of edges, and w is a weight function. Is is also the case that L = D - A where D is the degree matrix and A is the adjaceny matrix. In the case of directed graphs either the indegree or outdegree might be used.

The elements of \mathbf{L} are given by

$$\mathbf{L}_{i,j} = \begin{cases} \deg(v_i) & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and } v_i \text{ is adjacent to } v_j \\ 0 & \text{otherwise} \end{cases}$$
 (72)

If G is weighted, the elements of its Laplacian \mathbf{L} are given by

$$\mathbf{L}_{i,j} = \begin{cases} \sum_{j,j \neq i} w(i,j) & \text{if } i = j \\ -w(i,j) & \text{if } i \neq j \text{ and } v_i \text{ is adjacent to } v_j \text{ with weight } w(i,j) \\ 0 & \text{otherwise} \end{cases}$$
 (73)

For an undirected graph G and its Laplacian L:

- L is symmetric
- L ≻ 0
- ullet The row sum and column sums of ${f L}$ are both zero.
- L is singular
- The number of connected components in G is the dimension of $\mathcal{N}(L)$ and the algebraic multiplicity of the 0 eigenvalue.
- \bullet The smallest non-zero eigenvalue of L is called the spectral gap.
- The second smallest eigenvalue of \mathbf{L} (could be zero) is the algebraic connectivity (Fiedler value) of G and approximates the sparest cut of G.
- For a graph with multiple connected components, L is a block diagonal matrix.
- Using preconditioners, the linear equaitons of any Laplacian matrix $\mathbf{L} \in \mathbb{R}^{n,n}$ can be solved to accuracy ϵ in time $O((\operatorname{nnz}(\mathbf{L}) + n \log n (\log \log n)^2) \log \epsilon^{-1})$. The best balance between preconditioners and solving linear equations yields an algorithm of complexity $O(\operatorname{nnz}(\mathbf{L}) \log^c n \log \epsilon^{-1})$. [15]

$$\mathbf{x}^{T}\mathbf{L}\mathbf{x} = \sum_{(u,v)\in E} w(u,v) \left(\mathbf{x}(u) - \mathbf{x}(v)\right)^{2} \quad \mathbf{x} \in \mathbb{R}^{V}$$
(74)

Equation 74 provides a measure of the "smoothness" of \mathbf{x} over the edges of G. The more \mathbf{x} jumps over an edge, the larger the quadratic form becomes.

5.9 Metzler matrix

TODO

5.10 Orthogonal Matrix

(Not much visible structure)

$$U = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
 (75)

A matrix **U** is orthogonal iff:

$$\mathbf{U}^T \mathbf{U} = \mathbf{U} \mathbf{U}^T = I \tag{76}$$

Square matrix. The columns form an orthonormal basis of \mathbb{R}^n .

Special Properties

- ullet The eigenvalues of ${f U}$ are placed on the unit circle.
- The eigenvectors of **U** are unitary (have length one).
- \mathbf{U}^{-1} is orthogonal.
- The product of two orthogonal matrices is itself orthogonal.

$$\mathbf{U}^T = \mathbf{U}^{-1} \tag{77}$$

$$\mathbf{U}^{-T} = \mathbf{U} \tag{78}$$

$$\mathbf{U}^T \mathbf{U} = \mathbf{I} \tag{79}$$

$$\mathbf{U}\mathbf{U}^T = \mathbf{I} \tag{80}$$

$$\det(\mathbf{U}) = \pm 1 \tag{81}$$

Orthogonal matrices preserve the lengths and angles of the vectors they operator on. The converse is true: any matrix which preserves lengths and angles is orthogonal.

$$\|\mathbf{U}\mathbf{x}\|_{2}^{2} = (\mathbf{U}\mathbf{x})^{T}(\mathbf{U}\mathbf{x}) = \mathbf{x}^{T}\mathbf{U}^{T}\mathbf{U}\mathbf{x} = \mathbf{x}^{T}\mathbf{x} = \|\mathbf{x}\|_{2}^{2} \quad \forall \mathbf{x}$$
(82)

$$\|\mathbf{U}\mathbf{A}\mathbf{V}\|_{F} = \|\mathbf{A}\|_{F} \quad \forall \mathbf{A}, \mathbf{U}, \mathbf{V} \text{ with } \mathbf{U}, \mathbf{V} \text{ orthogonal}$$
 (83)

5.11 Permutation Matrix

TODO

5.12 Positive Definite

 $\mathbf{P} \in \mathbb{S}^n$ is positive definite (denoted $\mathbf{P} \succ 0$) if any of the following are true:

- $\mathbf{x}^T \mathbf{P} \mathbf{x} > 0, \forall \mathbf{x} \in \mathbb{R}^n$.
- $eig(\mathbf{P}) > 0$
- There exists a unique matrix $\mathbf{U} \in \mathbb{R}^{n,n}$, such that $\mathbf{A} = \mathbf{U}\mathbf{U}^T$ (Cholesky Decomposition).

Special Properties

- ${\bf P}^{-1} \succ 0$
- $c\mathbf{P} \succ 0$
- $\mathbf{A}_{ii} \in \mathbb{R}$
- $\mathbf{A}_{ii} > 0$
- $\operatorname{tr}(\mathbf{P}) \geq 0$.
- $det(\mathbf{P}) > 0$
- The eigenvalues of \mathbf{P}^{-1} are the inverses of the eigenvalues of \mathbf{P} .
- For $\mathbf{P} \in \mathbb{R}^{m,n}$, $\mathbf{P}^T \mathbf{P} \succ 0 \iff \mathbf{P}$ is full-column rank $(\operatorname{rank}(\mathbf{P}) = n)$
- For $\mathbf{P} \in \mathbb{R}^{m,n}$, $\mathbf{P}\mathbf{P}^T \succ 0 \iff \mathbf{P}$ is full-row rank $(\operatorname{rank}(\mathbf{P}) = m)$

Ellipsoids

 $\mathbf{P} \succ 0$ defines a full-dimensional, bounded ellipsoid defined by the set

$$\mathcal{E} = \{ \mathbf{x} \in \mathbb{R}^n : (\mathbf{x} - \mathbf{z})^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{z}) \le \beta \}$$
(84)

The eigenvectors of \mathbf{P} define the directions of the semi-axes of the ellipsoid; the lengths of these axes are given by $\sqrt{\beta\lambda_i}$ where λ_i are the eigenvalues of \mathbf{P} . The ellipsoid is centered at \mathbf{z} . Since $\mathbf{P} \succ 0 \implies \mathbf{P}^{-1} \succ 0$, the Cholesky decomposition says that $\mathbf{P}^{-1} = \mathbf{A}^T \mathbf{A}$; therefore, an equivalent definition of the ellipsoid is $\mathcal{E} = {\mathbf{x} \in \mathbb{R}^n : ||\mathbf{A}\mathbf{x}||_2 \le 1}$.

5.13 Positive Semi-Definite

A is positive semi-definite (denoted $\mathbf{A} \succeq 0$) if any of the following are true:

- $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0, \forall \mathbf{x} \in \mathbb{R}^n$.
- $eig(\mathbf{A}) \geq 0$
- There exists a non-unique matrix $\mathbf{U} \in \mathbb{R}^{n,n}$, such that $\mathbf{A} = \mathbf{U}\mathbf{U}^T$ (Cholesky Decomposition).

Special Properties

- For $\mathbf{A} \in \mathbb{R}^{m,n}$, $\mathbf{A}^T \mathbf{A} \succeq 0$
- For $\mathbf{A} \in \mathbb{R}^{m,n}$, $\mathbf{A}\mathbf{A}^T \succeq 0$
- $\operatorname{diag}(\mathbf{A})_i \geq 0$
- $\sum_{ij} \mathbf{A}_{ij} \geq 0$
- $\operatorname{tr}(\mathbf{A}) \geq 0$
- For $\mathbf{A}, \mathbf{B} \succeq 0$, $\operatorname{tr}(\mathbf{AB}) \geq 0$
- For $\mathbf{A}, \mathbf{B} \succeq 0$, $\operatorname{tr}(\mathbf{AB}) = 0 \iff \mathbf{AB} = 0$
- The positive semi-definite matrices \mathbb{S}^n_+ form a convex cone. For any two PSD matrices $\mathbf{A}, \mathbf{B} \in \mathbb{S}^n_+$ and some $\alpha \in [0, 1]$:

$$\mathbf{x}^{T}(\alpha \mathbf{A} + (1 - \alpha)\mathbf{B})\mathbf{x} = \alpha \mathbf{x}^{T} \mathbf{A} \mathbf{x} + (1 - \alpha)\mathbf{x}^{T} \mathbf{B} \mathbf{x} > 0 \quad \forall \mathbf{x}$$
 (85)

$$\alpha \mathbf{A} + (1 - \alpha) \mathbf{B} \in \mathbb{S}_{+}^{n} \tag{86}$$

- For $\mathbf{A} \in \mathbb{S}^n_+$ and $\alpha \geq 0$, $\alpha \mathbf{A} \succeq 0$, so \mathbb{S}^n_+ is a cone.
- $\mathbf{A} \succeq 0$ if and only if there is a PSD matrix $\mathbf{S}^{1/2}$ such that $\mathbf{S}^{1/2}\mathbf{S}^{1/2} = \mathbf{A}$. This \mathbf{S} is unique.

5.13.1 Loewner order

If $\mathbf{A} - \mathbf{B} \succeq 0$, then we say $\mathbf{A} \succeq \mathbf{B}$. A sufficient condition for this is that $\lambda_n(\mathbf{A}) \geq \lambda_1(\mathbf{B})$.

5.14 Projection Matrix

A square matrix ${f P}$ is a projection matrix that projects onto a vector space ${\cal S}$ iff

$$\mathbf{P}$$
 is idempotent (87)

$$\mathbf{P}\mathbf{x} \in \mathcal{S} \ \forall \mathbf{x} \tag{88}$$

$$\mathbf{Pz} = \mathbf{z} \ \forall \mathbf{z} \in \mathcal{S} \tag{89}$$

5.15 Single-Entry Matrix

$$\mathbf{J}^{2,3} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \tag{90}$$

The single-entry matrix $\mathbf{J}^{iJ} \in \mathbb{R}^{n,n}$ is defined as the matrix which is zero everywhere except for the entry (i,j), which is 1.

Singular Matrix 5.16

A square matrix that is not invertible.

 $\mathbf{A} \in \mathbb{R}^{n,n}$ is singular iff $\det \mathbf{A} = 0$ iff $\mathcal{N}(A) \neq \{0\}$.

Symmetric Matrix 5.17

 $\mathbf{A} \in \mathbb{S}^n$ is a symmetric matrix if $\mathbf{A} = \mathbf{A}^T$ (entries above diagonal are equal to entries below diagonal).

$$\begin{bmatrix} a & b & c & d & e & f \\ b & g & l & m & o & p \\ c & l & h & n & q & r \\ d & m & n & i & s & t \\ e & o & q & s & j & u \\ f & p & r & t & u & k \end{bmatrix}$$

$$(91)$$

Special Properties

$$\mathbf{A} = \mathbf{A}^T \tag{92}$$

$$\mathbf{A} = \mathbf{A}^T \tag{92}$$

$$\operatorname{eig}(A) \in \mathbb{R}^n \tag{93}$$

Number of "free entries" =
$$\frac{n(n+1)}{2}$$
 (94)

If **A** is real, it can be decomposed into $\mathbf{A} = \mathbf{Q}^T \mathbf{D} \mathbf{Q}$ where **Q** is a real orthogonal matrix (the columns of which are eigenvectors of **A**) and **D** is real and diagonal containing the eigenvalues of **A**.

For a real, symmetric matrix with non-negative eignevalues, the eigenvalues and singular values coincide.

5.18 **Skew-Hermitian**

A matrix $\mathbf{H} \in \mathbb{C}^{m,n}$ is Skew-Hermitian iff

$$\mathbf{H} = -\mathbf{H}^H \tag{95}$$

5.19 Toeplitz Matrix, General Form

Constant values on descending diagonals.

$$\begin{bmatrix} a_{0} & a_{-1} & a_{-2} & \dots & a_{-(n-1)} \\ a_{1} & a_{0} & a_{-1} & \ddots & \vdots \\ a_{2} & a_{1} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2} \\ \vdots & & \ddots & a_{1} & a_{0} & a_{-1} \\ a_{n-1} & \dots & \dots & a_{2} & a_{1} & a_{0} \end{bmatrix}$$

$$(96)$$

5.20 Toeplitz Matrix, Discrete Convolution

Constant values on main and subdiagonals.

$$\begin{bmatrix}
h_{m} & 0 & 0 & \dots & 0 & 0 \\
\vdots & h_{m} & 0 & \dots & 0 & 0 \\
h_{1} & \vdots & h_{m} & \dots & 0 & 0 \\
0 & h_{1} & \ddots & \ddots & 0 & 0 \\
0 & 0 & h_{1} & \ddots & h_{m} & 0 \\
0 & 0 & 0 & \ddots & \vdots & h_{m} \\
0 & 0 & 0 & \dots & h_{1} & \vdots \\
0 & 0 & 0 & \dots & 0 & h_{1}
\end{bmatrix}$$
(97)

5.21 Triangular Matrix

$$\begin{bmatrix} a & b & c & d & e & f \\ g & h & i & j & k \\ & l & m & n & o \\ & & p & q & r \\ & & & s & t \\ & & & & u \end{bmatrix} \begin{bmatrix} a & & & & \\ b & g & & & \\ c & h & l & & \\ d & i & m & p & & \\ e & j & n & q & s \\ f & k & o & r & t & u \end{bmatrix}$$
(98)

Square matrices in which all elements either above or below the main diagonal are zero. An upper (left) and a lower (right) triangular matrix are shown above.

For an upper triangular matrix $A_{ij} = 0$ whenever i > j; for a lower triangular matrix $A_{ij} = 0$ whenever i < j.

Special Properties

$$eig(A) = diag(A) \tag{99}$$

$$\det(A) = \prod_{i} \operatorname{diag}(A)_{i} \tag{100}$$

The product of two upper (lower) triangular matrices is still upper (lower) triangular.

The inverse of a nonsingular upper (lower) triangular matrix is still upper (lower) triangular.

5.22 Tridiagonal Matrix

$$\begin{bmatrix} b_1 & c_1 & & & & & \\ a_2 & b_2 & c_2 & & & & \\ & a_3 & b_3 & c_3 & & & \\ & & a_4 & b_4 & \ddots & & \\ & & & \ddots & \ddots & c_{n-1} \\ & & & & a_n & b_n \end{bmatrix}$$
(101)

A tridiagonal matrix has values on its main diagonal as well as the diagonals abutting the main, with zeros elsewhere.

A system of n unknowns which can be written as

$$a_i x_{i-1} + b_i x_i + c_i x_{i+1} = d_i (102)$$

$$a_1 = 0 \tag{103}$$

$$c_n = 0 (104)$$

can be rewritten as

$$\begin{bmatrix} b_1 & c_1 & & & & & \\ a_2 & b_2 & c_2 & & & & \\ & a_3 & b_3 & c_3 & & & \\ & & a_4 & b_4 & \ddots & & \\ & & & \ddots & \ddots & c_{n-1} \\ & & & & a_n & b_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_n \end{bmatrix}$$

$$(105)$$

This system can be solved in O(n) time using the tridiagonal matrix algorithm (aka the Thomas Algorithm). The algorithm is not unconditionally stable; however, it is stable when the matrix is diagonally dominant or symmetric positive definite. A matrix is diagonally dominant if for every row of the matrix the agnitude of the diagonal entry is greater than or equal to the sum of the magnitudes of all the other non-diagonal entries in that row $(|a_{ii}| \geq \sum_{j \neq i} |a_{ij}| \forall i)$. If uncondonitional stability is grequired, Gaussian elimination with partial pivoting is an alternative, if slower, solution method. See [16, Theorem 9.12] for full stability details.

A modified system can be solved for situations involving periodic boundary conditions, e.g.:

$$a_1 x_n + b_1 x_1 + c_1 x_2 = d_1 (106)$$

$$a_i x_{i-1} + b_i x_i + c_i x_{i+1} = d_i \quad \forall i = 2, \dots, n-1$$
 (107)

$$a_n x_{n-1} + b_n x_n + c_n x_1 = d_n (108)$$

Modified algorithms are also available for block tridiagonal matrices [17, §3.8]. See [18, §5.5] for a discussion of parallel solvers.

5.23 Vandermonde Matrix

$$V = \begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^{n-1} \\ 1 & \alpha_3 & \alpha_3^2 & \dots & \alpha_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_m & \alpha_m^2 & \dots & \alpha_m^{n-1} \end{bmatrix}$$
(109)

Alternatively,

$$V_{i,j} = \alpha_i^{j-1} \tag{110}$$

Uses

Polynomial interpolation of data.

Special Properties

•
$$\det(V) = \prod_{1 \le i < j \le n} (x_j - x_i)$$

6 Matrix Decompositions

6.1 LLT/UTU: Cholesky Decomposition

If A is symmetric, positive definite, square, then

$$\mathbf{A} = \mathbf{U}^T \mathbf{U} = \mathbf{L} \mathbf{L}^T \tag{111}$$

where \mathbf{U} is a unique upper triangular matrix and \mathbf{L} is a unique lower-triangular matrix.

6.2 LDLT

If **A** is a non-singular symmetric definite square matrix, then

$$\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^T = \mathbf{L}^T\mathbf{D}\mathbf{L} \tag{112}$$

where **L** is a unit lower triangular matrix and **D** is a diagonal matrix. If $\mathbf{A} \succ 0$, then $\mathbf{D}_{ii} > 0$.

6.3 PCA: Principle Components Analysis

Find normalized directions in data space such that the variance of the projections of the centered data points is maximal. For centered data $\tilde{\mathbf{X}}$, the mean-square variation of data along a vector \mathbf{x} is $\mathbf{x}^T \tilde{\mathbf{X}} \tilde{\mathbf{X}}^T \mathbf{x}$.

$$\max_{\mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\|_2 = 1} \mathbf{x}^T \tilde{\mathbf{X}} \tilde{\mathbf{X}}^T \mathbf{x}$$
(113)

Taking an SVD of $\tilde{\mathbf{X}}\tilde{\mathbf{X}}^T$ gives $H = \mathbf{U}_r\mathbf{D}^2\mathbf{U}^T$, which is maximized by taking $\mathbf{x} = \mathbf{u}_1$. By repeatedly removing the first principal components and recalculating, all the principal axes can be found.

6.4 QR: Orthogonal-triangular

For $\mathbf{A} \in \mathbb{R}^{n,n}$, $\mathbf{A} = \mathbf{Q}\mathbf{R}$ where \mathbf{Q} is orthogonal and \mathbf{R} is an upper triangular matrix. If \mathbf{A} is non-singular, then \mathbf{Q} and \mathbf{R} are uniquely defined if $\operatorname{diag}(\mathbf{R})$ are imposed to be positive.

Algorithms

Gram-Schmidt.

6.5 SVD: Singular Value Decomposition

Any matrix $\mathbf{A} \in \mathbb{R}^{m,n}$ can be written as

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T = \sum_{i=1}^r \sigma_i u_i v_i^T \tag{114}$$

where

$$U = \text{eigenvectors of } \mathbf{A}\mathbf{A}^T$$
 $\mathbb{R}^{m,m}$ (115)

$$D = \operatorname{diag}(\sigma_i) = \sqrt{\operatorname{diag}(\operatorname{eig}(\mathbf{A}\mathbf{A}^T))} \qquad \mathbb{R}^{n,m}$$
(116)

$$V = \text{eigenvectors of } \mathbf{A}^T \mathbf{A}$$
 $\mathbb{R}^{n,n}$ (117)

Let σ_i be the non-zero singular values for i = 1, ..., r where r is the rank of \mathbf{A} ; $\sigma_1 \geq ... \geq \sigma_r$.

We also have that

$$\mathbf{A}\mathbf{v}_i = \sigma_i \mathbf{u}_i \tag{118}$$

$$\mathbf{A}^T \mathbf{u}_i = \sigma_i \mathbf{v}_i \tag{119}$$

$$\mathbf{U}^T \mathbf{U} = \mathbf{I} \tag{120}$$

$$\mathbf{V}^T \mathbf{V} = \mathbf{I} \tag{121}$$

D can be written in an expanded form:

$$\tilde{\mathbf{D}} = \begin{bmatrix} \mathbf{D} & 0_{r,n-r} \\ 0_{m-r,r} & 0_{m-r,n-r} \end{bmatrix}$$
 (122)

The final n-r columns of **V** give an orthonormal basis spanning $\mathcal{N}(\mathbf{A})$. An orthonormal basis spanning the range of **A** is given by the first r columns of **U**.

$$\|\mathbf{A}\|_F^2 = \text{Frobenius norm} = \text{tr}(\mathbf{A}^T \mathbf{A}) = \sum_{i=1}^r \sigma_i^2$$
 (123)

$$\|\mathbf{A}\|_2^2 = \sigma_1^2 \tag{124}$$

$$\|\mathbf{A}\|_{*} = \text{nuclear norm} = \sum_{i=1}^{r} \sigma_{i}$$
 (125)

The **condition number** κ of an invertible matrix $\mathbf{A} \in \mathbb{R}^{n,n}$ is the ratio of the largest and smallest singular value. Matrices with large condition numbers are closer to being singular and more sensitive to changes.

$$\kappa(\mathbf{A}) = \frac{\sigma_1}{\sigma_n} = \|A\|_2 \cdot \|A^{-1}\|_2 \tag{126}$$

Low-Rank Approximation

Approximating $\mathbf{A} \in \mathbb{R}^{m,n}$ by a matrix \mathbf{A}_k of rank k > 0 can be formulated as the optimization probem

$$\min_{\mathbf{A}_k \in \mathbb{R}^{m,n}} \|\mathbf{A} - \mathbf{A}_k\|_F^2 : \operatorname{rank} \mathbf{A}_k = k, 1 \le k \le \operatorname{rank}(\mathbf{A})$$
(127)

The optimal solution of this problem is given by

$$\mathbf{A}_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T \tag{128}$$

where

$$\frac{\|\mathbf{A}_{k}\|_{F}^{2}}{\|\mathbf{A}\|_{F}^{2}} = \frac{\sigma_{1}^{2} + \ldots + \sigma_{k}^{2}}{\sigma_{1}^{2} + \ldots + \sigma_{r}^{2}}$$
(129)

$$1 - \frac{\|\mathbf{A}_k\|_F^2}{\|\mathbf{A}\|_F^2} = \frac{\sigma_{k+1}^2 + \dots + \sigma_r^2}{\sigma_1^2 + \dots + \sigma_r^2}$$
(130)

is the fraction of the total variance in **A** explained by the approximation \mathbf{A}_k .

Range and Nullspace

$$\mathcal{N}(\mathbf{A}) = \mathcal{R}(\mathbf{V}_{nr}) \tag{131}$$

$$\mathcal{N}(\mathbf{A})^{\perp} \equiv \mathcal{R}(\mathbf{A}^T) = \mathcal{R}(\mathbf{V}_r) \tag{132}$$

$$\mathcal{R}(\mathbf{A}) = \mathcal{R}(\mathbf{U}_r) \tag{133}$$

$$\mathcal{R}(\mathbf{A})^{\perp} \equiv \mathcal{N}(\mathbf{A}^T) = \mathcal{R}(\mathbf{U}_{nr}) \tag{134}$$

where V_r is the first r columns of V and $V_n r$ are the last [r+1,n] columns; similarly for U.

Projectors

The projection of \mathbf{x} onto $\mathcal{N}(\mathbf{A})$ is $(\mathbf{V}_{nr}\mathbf{V}_{nr}^T)\mathbf{x}$. Since $\mathbf{I}_n = \mathbf{V}_r\mathbf{V}_r^T + \mathbf{V}_{nr}\mathbf{V}_{nr}^T$, $(\mathbf{I}_n - \mathbf{V}_r\mathbf{V}_r^T)\mathbf{x}$ also works. The projection of \mathbf{x} onto $\mathcal{R}(\mathbf{A})$ is $(\mathbf{U}_r\mathbf{U}_r^T)\mathbf{x}$.

If $\mathbf{A} \in \mathbb{R}^{m,n}$ is full row rank $(\mathbf{A}\mathbf{A}^T \succ 0)$, then the minimum distance to an affine set $\{x : \mathbf{A}\mathbf{x} = \mathbf{b}\}, \mathbf{b} \in \mathbb{R}^m$ is given by $\mathbf{x}^* = \mathbf{A}^T(\mathbf{A}\mathbf{A}^T)^{-1}\mathbf{b}$.

If $\mathbf{A} \in \mathbb{R}^{m,n}$ is full column rank $(\mathbf{A}^T \mathbf{A} \succ 0)$, then the minimum distance to an affine set $\{x : \mathbf{A}\mathbf{x} = \mathbf{b}\}, \mathbf{b} \in \mathbb{R}^m$ is given by $\mathbf{x}^* = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$.

Computational Notes

A numerical rank can be estimated for the matrix as the largest k such that $\sigma_k > \epsilon \sigma_1$ for $\epsilon \geq 0$.

6.6 Eigenvalue Decomposition for Diagonalizable Matrices

For a square, diagonalizable matrix $\mathbf{A} \in \mathbb{R}^{n,n}$

$$\mathbf{A} = U\Lambda U^{-1} \tag{135}$$

where $U \in \mathbb{C}^{n,n}$ is an invertible matrix whose columns are the eigenvectors of **A** and Λ is a diagonal matrix containing the eigenvalues $\lambda_1, \ldots, \lambda_n$ of **A** in the diagonal.

The columns $\mathbf{u}_1, \dots, \mathbf{u}_n$ satisfy

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i \quad i = 1, \dots, n \tag{136}$$

6.7 Eigenvalue (Spectral) Decomposition for Symmetric Matrices

A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n,n}$ can be factored as

$$\mathbf{A} = U\Lambda U^T = \sum_{i}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i^T \tag{137}$$

where $U \in \mathbb{R}^{n,n}$ is an orthogonal matrix whose columns \mathbf{u}_i are the eigenvectors of \mathbf{A} and Λ is a diagonal matrix containing the eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$ of \mathbf{A} in the diagonal. These eigenvalues are always real. The eigenvectors can always be chosen to be real and to form an orthonormal basis.

The columns $\mathbf{u}_1, \ldots, \mathbf{u}_n$ satisfy

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i \quad i = 1, \dots, n \tag{138}$$

6.8 Schur Complements

For $\mathbf{A} \in \mathbb{S}^n$, $\mathbf{B} \in \mathbb{S}^n$, $\mathbf{X} \in \mathbb{R}^{n,m}$ with $\mathbf{B} \succ 0$ and the block matrix

$$\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{B} \end{bmatrix} \tag{139}$$

and the Schur complement of A in M

$$S = \mathbf{A} - \mathbf{X}\mathbf{B}^{-1}\mathbf{X}^{T} \tag{140}$$

Then

$$\mathbf{M} \succeq 0 \iff S \succeq 0 \tag{141}$$

$$\mathbf{M} \succ 0 \iff S \succ 0 \tag{142}$$

7 | Transpose Properties

$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T \tag{143}$$

$$(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T \tag{144}$$

$$(\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1} \tag{145}$$

8 Determinant Properties

Geometrically, if a unit volume is acted on by \mathbf{A} , then $|\det(\mathbf{A})|$ indicates the volume after the transformation.

$$\det(I_n) = 1 \tag{146}$$

$$\det(\mathbf{A}^T) = \det(\mathbf{A}) \tag{147}$$

$$\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})} = \det(\mathbf{A})^{-1}$$
(148)

$$\det(\mathbf{AB}) = \det(\mathbf{BA}) \tag{149}$$

$$\det(\mathbf{AB}) = \det(\mathbf{A}) \det(\mathbf{B}) \qquad \mathbf{A}, \mathbf{B} \in \mathbb{R}^{n,n}$$
 (150)

$$\det(c\mathbf{A}) = c^n \det(\mathbf{A}) \qquad \mathbf{A} \in \mathbb{R}^{n,n}$$
(151)

$$\det(\mathbf{A}) = \prod \operatorname{eig}(\mathbf{A}) \tag{152}$$

For $\mathbf{A} \in \mathbb{R}^{m,n}, \mathbf{B} \in \mathbb{R}^{n,m}$

[19]
$$\det(\mathbf{I}_m + \mathbf{A}\mathbf{B}) = \det(\mathbf{I}_n + \mathbf{B}\mathbf{A})$$
 Sylvester's determinant identity (153)

9 Trace Properties

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \mathbf{A}_{ii} \qquad \mathbf{A} \in \mathbb{R}^{n,n}$$
 (154)

$$tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B}) \tag{155}$$

$$tr(c\mathbf{A}) = c tr(\mathbf{A}) \tag{156}$$

$$tr(\mathbf{A}) = tr(\mathbf{A}^T) \tag{157}$$

$$\operatorname{tr}(\mathbf{A}^{T}\mathbf{B}) = \sum_{i,j} \mathbf{A}_{ij} \mathbf{B}_{ij}$$

$$\operatorname{tr}(\mathbf{A}^{T}\mathbf{B}) = \sum_{i,j} (\mathbf{A} \circ \mathbf{B})_{ij}$$
(158)

$$tr(\mathbf{A}^T \mathbf{B}) = \sum_{i,j} (\mathbf{A} \circ \mathbf{B})_{ij}$$
(159)

For A, B, C, D of compatible dimensions,

$$tr(\mathbf{A}^T \mathbf{B}) = tr(\mathbf{A} \mathbf{B}^T) = tr(\mathbf{B}^T \mathbf{A}) = tr(\mathbf{B} \mathbf{A}^T)$$
(160)

$$tr(\mathbf{ABCD}) = tr(\mathbf{BCDA}) = tr(\mathbf{CDAB}) = tr(\mathbf{DABC})$$
(161)

(Invariant under cyclic permutations)

10 | Inverse Properties

The inverse of $\mathbf{A} \in \mathbb{C}^{n,n}$ is denoted \mathbf{A}^{-1} and defined such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n \tag{162}$$

where \mathbf{I}_n is the $n \times n$ identity matrix. \mathbf{A} is nonsingular if \mathbf{A}^{-1} exists; otherwise, \mathbf{A} is singular.

If individual inverses exist

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1} \tag{163}$$

more generally

$$(\mathbf{A}_1 \mathbf{A}_2 \dots \mathbf{A}_n)^{-1} = \mathbf{A}_n^{-1} \dots \mathbf{A}_2^{-1} \mathbf{A}_1^{-1}$$
 (164)

$$(\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1} \tag{165}$$

11 | Pseudo-Inverse Properties

For $\mathbf{A} \in \mathbb{R}^{m,n}$, a pseudoinverse satisfies:

$$\mathbf{A}\mathbf{A}^{+}\mathbf{A} = \mathbf{A} \tag{166}$$

$$\mathbf{A}^+ \mathbf{A} \mathbf{A}^+ = \mathbf{A}^+ \tag{167}$$

$$(\mathbf{A}\mathbf{A}^+)^T = \mathbf{A}\mathbf{A}^+ \tag{168}$$

$$(\mathbf{A}^+\mathbf{A})^T = \mathbf{A}^+\mathbf{A} \tag{169}$$

11.1 Moore-Penrose Pseudoinverse

$$\mathbf{A}^{+} = \mathbf{V}\mathbf{D}^{-1}\mathbf{U}^{T} \tag{170}$$

where the foregoing comes from a singular-value decomposition and $\mathbf{D}^{-1} = \operatorname{diag}(\frac{1}{\sigma_1}, \dots, \frac{1}{\sigma_r})$

Special Properties

- $\mathbf{A}^+ = \mathbf{A}^{-1}$ if $\mathbf{A} \in \mathbb{R}^{n,n}$ and \mathbf{A} is square and nonsingular.
- $\mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$, if $\mathbf{A} \in \mathbb{R}^{m,n}$ is full column rank $(r = n \le m)$. \mathbf{A}^+ is a left inverse of \mathbf{A} , so $\mathbf{A}^+ \mathbf{A} = \mathbf{V}_r \mathbf{V}_r^T = \mathbf{V} \mathbf{V}^T = \mathbf{I}_n$.
- $\mathbf{A}^+ = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1}$, if $\mathbf{A} \in \mathbb{R}^{m,n}$ is full row rank $(r = m \le n)$. \mathbf{A}^+ is a right inverse of \mathbf{A} , so $\mathbf{A} \mathbf{A}^+ = \mathbf{U}_r \mathbf{U}_r^T = \mathbf{U} \mathbf{U}^T = \mathbf{I}_m$.

12 | Hadamard Identities

$$(\mathbf{A} \circ \mathbf{B})_{ij} = A_{ij}B_{ij} \ \forall i, j$$

$$(171)$$

$$\mathbf{A} \circ \mathbf{B} = \mathbf{B} \circ \mathbf{A}$$

$$(172)$$

$$\mathbf{A} \circ (\mathbf{B} \circ \mathbf{C}) = (\mathbf{A} \circ \mathbf{B}) \circ \mathbf{C}$$

$$[20]$$

$$\mathbf{A} \circ (\mathbf{B} + \mathbf{C}) = \mathbf{A} \circ \mathbf{B} + \mathbf{A} \circ \mathbf{C}$$

$$(174)$$

$$[20]$$

$$a(\mathbf{A} \circ \mathbf{B}) = (a\mathbf{A}) \circ \mathbf{B} = \mathbf{A} \circ (a\mathbf{B})$$

$$(\mathbf{A}^T \circ \mathbf{B}^T) = (\mathbf{A} \circ \mathbf{B})^T$$

$$(\mathbf{A}^T \circ \mathbf{B}^T) = (\mathbf{A} \circ \mathbf{B})^T$$

$$(\mathbf{A}^T \circ \mathbf{B}^T) = (\mathbf{A} \circ \mathbf{B})^T$$

$$(\mathbf{X}^T \mathbf{A} \mathbf{X}) = \sum_{i,j} ((\mathbf{x} \mathbf{x}^T) \circ \mathbf{A})$$

$$(178)$$

$$\mathbf{x}^T (\mathbf{A} \circ \mathbf{B}) \mathbf{y} = \operatorname{tr}((\operatorname{diag}(\mathbf{x}) \mathbf{A})^T \mathbf{B} \operatorname{diag}(\mathbf{y})) \quad \mathbf{A}, \mathbf{B} \in \mathbb{R}^{m,n}$$

$$\operatorname{tr}(\mathbf{A}^T \mathbf{B}) = \mathbf{1}^T (\mathbf{A} \circ \mathbf{B}) \mathbf{1}$$

$$= \sum_{i,j} \mathbf{A}_{ij} \mathbf{B}_{ij}$$

$$(181)$$

13 | Eigenvalue Properties

 $\lambda \in \mathbb{C}$ is an eigenvalue of $\mathbf{A} \in \mathbb{R}^{n,n}$ and $u \in \mathbb{C}^n$ is a corresponding eigenvector if $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$ and $\mathbf{u} \neq 0$. Equivalently, $(\lambda \mathbf{I}_n - \mathbf{A})\mathbf{u} = 0$ and $\mathbf{u} \neq 0$. Eigenvalues satisfy the equation $\det(\lambda \mathbf{I}_n - \mathbf{A}) = 0$.

Any matrix $\mathbf{A} \in \mathbb{R}^{n,n}$ has n eigenvalues, though some may be repeated. λ_1 is the largest eigenvalue and λ_n the smallest.

If λ is an eigenvalue of \mathbf{A} , λ^2 is an eigenvalue of \mathbf{A}^2 .

$$\operatorname{eig}(\mathbf{A}\mathbf{A}^T) = \operatorname{eig}(\mathbf{A}^T\mathbf{A}) \tag{182}$$

(Note that the number of entries in $\mathbf{A}\mathbf{A}^T$ and $\mathbf{A}^T\mathbf{A}$ may differ significantly leading to different compute times.)

$$\operatorname{eig}(\mathbf{A}^T \mathbf{A}) \ge 0 \tag{183}$$

$$\lambda_{\min}(\mathbf{A}) \le \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \le \lambda_{\max}(\mathbf{A}) \quad \mathbf{x} \ne 0$$
 (184)

13.1 Weyl's Inequality

If $\mathbf{M}, \mathbf{H}, \mathbf{P} \in \mathbb{R}^{n,n}$ are Hermitian matrices and $\mathbf{M} = \mathbf{H} + \mathbf{P}$ (\mathbf{H} is perturbed by \mathbf{P}) and \mathbf{M} has eigenvalues $\mu_1 \geq \cdots \geq \mu_n$, \mathbf{H} has eigenvalues $\nu_1 \geq \cdots \geq \nu_n$, and \mathbf{P} has eigenvalues $\rho_1 \geq \cdots \geq \rho_n$, then

$$\nu_i + \rho_n \le \mu_i \le \nu_i + \rho_1 \ \forall i \tag{185}$$

If $j + k - n \ge i \ge r + s - 1$, then

$$\nu_j + \rho_k \le \mu_i \le \nu_r + \rho_s \tag{186}$$

If $\mathbf{P} \succeq 0$, then $\mu_i > \nu_i \ \forall i$.

13.2 Estimating Eigenvalues

13.2.1 Gershgorin circle theorem

For $\mathbf{A} \in \mathbb{C}^{n,n}$ with entries a_{ij} let $R_i = \sum_{j \neq i} |a_{ij}|$ be the sum of the absolute values of the non-diagonal entries of the *i*-th row. Let $D(a_{ii}, R_i) \subseteq \mathbb{C}$ be a closed disc (a circle containing its boundary) centered at a_{ii} with radius R_i . This is the Gershgorin disc.

Every eigenvalue of **A** lies within at least one of the $D(a_{ii}, R_i)$. Further, if the union of k such discs is disjoint from the union of the other n-k discs then the former union contains exactly k and the latter n-k of the eigenvalues of **A**.

14 Norms

14.1 General Properties

Matrix norms satisfy some properties:

$$f(\mathbf{A}) \ge 0 \tag{187}$$

$$f(\mathbf{A}) = 0 \iff \mathbf{A} = 0 \tag{188}$$

$$f(c\mathbf{A}) = |c|f(\mathbf{A}) \tag{189}$$

$$f(\mathbf{A} + \mathbf{B}) \le f(\mathbf{A}) + f(\mathbf{B}) \tag{190}$$

Many popular norms also satisfy "sub-multiplicativity": $f(\mathbf{AB}) \leq f(\mathbf{A})f(\mathbf{B})$.

14.2 Matrices

14.2.1 Frobenius norm

$$\|\mathbf{A}\|_F = \sqrt{\operatorname{tr}\mathbf{A}\mathbf{A}^H} \tag{191}$$

$$= \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |\mathbf{A}_{ij}|^2}$$
 (192)

$$=\sqrt{\sum_{i=1}^{m} \operatorname{eig}(A^{H}A)_{i}}$$
(193)

Special Properties

$$\|\mathbf{A}\mathbf{x}\|_{2} \leq \|\mathbf{A}\|_{F} \|\mathbf{x}\|_{2} \quad \mathbf{x} \in \mathbb{R}^{n} \tag{194}$$

$$\|\mathbf{A}\mathbf{B}\|_{F} \le \|\mathbf{A}\|_{F} \|\mathbf{B}\|_{F} \tag{195}$$

$$\left\| \mathbf{C} - \mathbf{x} \mathbf{x}^T \right\|_F^2 = \left\| \mathbf{C} \right\|_F^2 + \left\| \mathbf{x} \right\|_2^4 - 2 \mathbf{x}^T \mathbf{C} \mathbf{x}$$
 (196)

14.2.2 Operator Norms

For $p=1,2,\infty$ or other values, an operator norm indicates the maximum input-output gain of the matrix.

$$\|\mathbf{A}\|_{p} = \max_{\|\mathbf{u}\|_{p} = 1} \|\mathbf{A}\mathbf{u}\|_{p} \tag{197}$$

$$\|\mathbf{A}\|_1 = \max_{\|\mathbf{u}\|_1 = 1} \|\mathbf{A}\mathbf{u}\|_1 \tag{198}$$

$$= \max_{j=1,\dots,n} \sum_{i=1}^{m} |\mathbf{A}_{ij}| \tag{199}$$

CHAPTER 14. NORMS 43

$$\|\mathbf{A}\|_{\infty} = \max_{\|\mathbf{u}\|_{\infty} = 1} \|\mathbf{A}\mathbf{u}\|_{\infty} \tag{201}$$

$$= \max_{j=1,\dots,m} \sum_{i=1}^{n} |\mathbf{A}_{ij}| \tag{202}$$

$$= Largest absolute row sum (203)$$

$$\|\mathbf{A}\|_2$$
 = "spectral norm" (204)

$$= \max_{\|\mathbf{u}\|_{\infty} = 1} \|\mathbf{A}\mathbf{u}\|_{2} \tag{205}$$

$$= \max_{\|\mathbf{u}\|_{2}=1} \|\mathbf{A}\mathbf{u}\|_{2}$$

$$= \sqrt{\max(\operatorname{eig}(\mathbf{A}^{T}\mathbf{A}))}$$
(205)

= Square root of largest eigenvalue of
$$\mathbf{A}^T \mathbf{A}$$
 (207)

Special Properties

$$\|\mathbf{A}\mathbf{u}\|_{p} \le \|\mathbf{A}\|_{p} \|\mathbf{u}\|_{p} \tag{208}$$

$$\|\mathbf{A}\mathbf{B}\|_{p} \le \|\mathbf{A}\|_{p} \|\mathbf{B}\|_{p} \tag{209}$$

14.2.3 Spectral Radius

Not a proper norm.

$$\rho(\mathbf{A}) = \operatorname{spectral\ radius}(\mathbf{A}) = \max_{i=1,\dots,n} |\operatorname{eig}(\mathbf{A})_i|$$
 (210)

Special Properties

$$\rho(\mathbf{A}) \le \|\mathbf{A}\|_{p} \tag{211}$$

$$\rho(\mathbf{A}) \le \min(\|\mathbf{A}\|_1, \|\mathbf{A}\|_{\infty}) \tag{212}$$

14.3 Vectors

$$\|\mathbf{x}\|_1 = \sum_i |\mathbf{x}_i|$$
 L1-norm (213)

$$\|\mathbf{x}\|_p = \left(\sum_{i} |\mathbf{x}_i|^p\right)^{1/p}$$
 P-norm (214)

$$\|\mathbf{x}\|_{\infty} = \max_{i} |\mathbf{x}_{i}|$$
 L ∞ -norm, L-infinity norm (215)

Identities 14.3.1

$$2\|\mathbf{u}\|_{2}^{2} + 2\|\mathbf{v}\|_{2}^{2} = \|\mathbf{u} + \mathbf{v}\|_{2}^{2} + \|\mathbf{u} - \mathbf{v}\|_{2}^{2}$$
 Polarization Identity (216)

$$\langle \mathbf{x}, \mathbf{y} \rangle = \frac{1}{4} \left(\|\mathbf{x} + \mathbf{y}\|_{2}^{2} - \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \right) \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{V}$$
 Polarization Identity (217)

$$||u||_{2}^{2} + ||v||_{2}^{2} = \left\| \begin{bmatrix} u \\ v \end{bmatrix} \right\|_{2}^{2} \tag{218}$$

14.3.2 Bounds

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_2 ||\mathbf{y}||_2$$
 Cauchy-Schwartz Inequality (219)

$$|\mathbf{x}^T \mathbf{y}| \le \sum_{k=1}^n |\mathbf{x}_k \mathbf{y}_k| \le ||\mathbf{x}||_p ||\mathbf{x}||_q \quad \forall p, q \ge 1 : 1/p + 1/q = 1$$
 Hölder Inequality (220)

For $\mathbf{x} \in \mathbb{R}^n$

$$\frac{1}{\sqrt{n}} \|\mathbf{x}\|_{2} \leq \|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{2} \leq \|\mathbf{x}\|_{1} \leq \sqrt{\operatorname{card}(\mathbf{x})} \|\mathbf{x}\|_{2} \leq \sqrt{n} \|\mathbf{x}\|_{2} \leq n \|\mathbf{x}\|_{\infty}$$
(221)

For any $0 we have that <math>\|\mathbf{x}\|_q \le \|\mathbf{x}\|_p$.

Bounds 15

15.1 Matrix Gain

$$\lambda_{\min}(\mathbf{A}^T \mathbf{A}) \le \frac{\|\mathbf{A}\mathbf{x}\|_2^2}{\|\mathbf{x}\|_2^2} \le \lambda_{\max}(\mathbf{A}^T \mathbf{A})$$
(222)

$$\max_{\mathbf{x} \neq 0} \frac{\|\mathbf{A}\mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}} = \|\mathbf{A}\|_{2} = \sqrt{\lambda_{\max}(\mathbf{A}^{T}\mathbf{A})} \implies \mathbf{x} = u_{1}$$
(223)

$$\min_{\mathbf{x} \neq 0} \frac{\|\mathbf{A}\mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}} = \sqrt{\lambda_{\min}(\mathbf{A}^{T}\mathbf{A})} \implies \mathbf{x} = u_{n}$$
(224)

Rayleigh quotients 15.2

The Rayleigh quotient of $\mathbf{A} \in \mathbb{S}^n$ is given by

$$\frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \quad \mathbf{x} \neq 0 \tag{225}$$

$$\lambda_{\min}(\mathbf{A}) \le \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \le \lambda_{\max}(\mathbf{A}) \ \mathbf{x} \ne 0$$
 (226)

$$\lambda_{\max}(A) = \max_{\mathbf{x}:\|\mathbf{x}\|_2 = 1} \mathbf{x}^T \mathbf{A} \mathbf{x} = u_1$$

$$\lambda_{\min}(A) = \min_{\mathbf{x}:\|\mathbf{x}\|_2 = 1} \mathbf{x}^T \mathbf{A} \mathbf{x} = u_n$$
(227)

$$\lambda_{\min}(A) = \min_{\mathbf{x}: |\mathbf{x}||_2 = 1} \mathbf{x}^T \mathbf{A} \mathbf{x} = u_n$$
 (228)

where u_1 and u_n are the eigenvectors associated with λ_{\max} and λ_{\min} , respectively.

16 | Equations

16.1 Linear Equations

The linear equation $\mathbf{A}\mathbf{x} = \mathbf{y}$ with $\mathbf{A} \in \mathbb{R}^{m,n}$ admits a solution iff $\operatorname{rank}([\mathbf{A}\mathbf{y}]) = \operatorname{rank}(\mathbf{A})$. If this is satisfied, the set of all solutions is an affine set $\mathcal{S} = \{\mathbf{x} = \bar{\mathbf{x}} + z : z \in \mathcal{N}(\mathbf{A})\}$ where $\bar{\mathbf{x}}$ is any vector such that $\mathbf{A}\bar{\mathbf{x}} = \mathbf{y}$. The solution is unique if $\mathcal{N}(\mathbf{A}) = \{0\}$.

 $\mathbf{A}\mathbf{x} = \mathbf{y}$ is overdetermined if it is tall/skinny (m > n); that is, if there are more equations than unknowns. If $\mathrm{rank}(\mathbf{A}) = n$ then $\dim \mathcal{N}(\mathbf{A}) = 0$, so there is either no solution or one solution. Overdetermined systems often have no solution $(\mathbf{y} \notin \mathcal{R}(\mathbf{A}))$, so an approximate solution is necessary. See section 16.2.

 $\mathbf{A}\mathbf{x} = \mathbf{y}$ is underdetermined if it is short/wide (n > m); that is, if has more unknowns than equations. If $\operatorname{rank}(\mathbf{A}) = m$ then $\mathcal{R}(\mathbf{A}) = \mathbb{R}^m$, so $\dim \mathcal{N}(\mathbf{A}) = n - m > 0$, so the set of solutions is infinite. Therefore, finding a single solution that optimizes some quantity is of interest.

 $\mathbf{A}\mathbf{x} = \mathbf{y}$ is square if n = m. If \mathbf{A} is invertible, then the equations have the unique solution $\mathbf{x} = \mathbf{A}^{-1}\mathbf{y}$. See section 16.3.

16.2 Least-Squares

For an overdetermined system we wish to find:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 \tag{229}$$

Since $\mathbf{A}\mathbf{x} \in \mathcal{R}(\mathbf{A})$, we need a point $\tilde{\mathbf{y}} = \mathbf{A}\mathbf{x}^* \in \mathcal{R}(\mathbf{A})$ closest to \mathbf{y} . This point lies in the nullspace of \mathbf{A}^T , so we have $\mathbf{A}^T(\mathbf{y} - \mathbf{A}\mathbf{x}^*) = 0$. There is always a solution to this problem and, if rank $(\mathbf{A}) = n$, it is unique [22, p. 161]

$$\mathbf{x}^* = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y} \tag{230}$$

16.2.1 Regularized least-squares with low-rank data

For $\mathbf{A} \in \mathbb{R}^{m,n}$, $\mathbf{y} \in \mathbb{R}^m$, $\lambda \geq 0$, the regularized least-squares problem

$$\operatorname{argmin}_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{2}^{2}$$
 (231)

has a closed form solution

$$\mathbf{x} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{y} \tag{232}$$

However, if **A** has a rank $r \ll \min(n, m)$ and a known low-rank decomposition $\mathbf{A} = \mathbf{L}\mathbf{R}^T$ with $\mathbf{L} \in \mathbb{R}^{m,r}$ and $\mathbf{R} \in \mathbb{R}^{n,r}$, then we can rewrite Equation 232 as

$$\mathbf{x} = (\mathbf{R}^T \mathbf{R} \mathbf{L}^T \mathbf{L} + \lambda \mathbf{I})^{-1} \mathbf{L}^T \mathbf{y}$$
 (233)

This decreases the time complexity from $O(mn^2 + n^{\omega})$ to $O(nr^2 + mr^2)$.

16.3 Minimum Norm Solutions

For undertermined systems in which $\mathbf{A} \in \mathbb{R}^{m,n}$ with m < n. We wish to find

$$\min_{\mathbf{x}: \mathbf{A}\mathbf{x} = \mathbf{y}} \|\mathbf{x}\|_2 \tag{234}$$

The solution \mathbf{x}^* must be orthogonal to $\mathcal{N}(\mathbf{A})$, so $\mathbf{x}^* \in \mathcal{R}(\mathbf{A}^T)$, so $\mathbf{x}^* = \mathbf{A}^T c$ for some c. Substituting into $\mathbf{A}\mathbf{x} = \mathbf{y}$ gives $\mathbf{A}\mathbf{A}^T c = \mathbf{y}$, therefore [22, p. 162]:

$$\mathbf{x}^* = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1} \mathbf{y} \tag{235}$$

16.4 The Sylvester Equation: $AX + X^TB = C$

The equation

$$\mathbf{AX} + \mathbf{X}^T \mathbf{B} = \mathbf{C} \tag{236}$$

is called a T-Sylvester equation, or *-Sylvester equation in the complex case. It can be solved using methods from, e.g.: De Terán and Dopico [23], De Terán et al. [24], Dopico et al. [25].

17 Updates

17.1 Removing a row from $\mathbf{A}^T \mathbf{A} \ (\mathbf{A}^T \mathbf{A} \to \mathbf{A}_{\backslash i}^T \mathbf{A}_{\backslash i})$

Plain English: Matrix times its transpose after eliminating row i from the matrix

Inputs: $\mathbf{A} \in \mathbb{R}^{k,m}, \mathbf{u} \in \mathbb{R}^m, \mathbf{v} \in \mathbb{R}^n$ and i, the row to remove from \mathbf{A}

Reduces to: $\mathbf{C} \in \mathbb{R}^{k,l}$

Algorithm:

$$\mathbf{A}_{\backslash i}^T \mathbf{A}_{\backslash i} = \mathbf{A}^T \mathbf{A} - \mathbf{A}_{*i} \mathbf{A}_{*i}^T \tag{237}$$

Similarly:

$$\mathbf{A}_{\backslash i}^T y_{\backslash i} = \mathbf{A}^T y - \mathbf{A}_{*i} y_i^T \tag{238}$$

17.2 $\mathbf{1}_{r}^{T}\mathbf{A}\mathbf{1}_{c}$

Plain English: The sum of the elements of the matrix.

Reduces to: Scalar

Notation: For $\mathbf{A} \in \mathbb{R}^{r \times c}$, $\mathbf{1}_r$ is in $\mathbb{R}^{r \times 1}$ and $\mathbf{1}_c$ is in $\mathbb{R}^{c \times 1}$.

Algorithm: Traverse all the element of the matrix in order keeping track of the sum. For applications where accuracy is important and the matrices have a large dynamic range, Kahan summation or a similar technique should be used.

Update Algorithm: If an entry changes, subtract its old value from the sum and add its new value to the sum.

17.3 $\mathbf{e}_i \mathbf{A} \mathbf{e}_j$

Plain English: Extract element A_{ij} from the matrix

Reduces to: Scalar Notation: TODO Algorithm: TODO

Update Algorithm: TODO

17.4 $\mathbf{x}^T \mathbf{A} \mathbf{x}$

Plain English: TODO

Reduces to: Scalar

Notation: A must be in $\mathbb{R}^{i \times i}$. \mathbf{x} is in $\mathbb{R}^{i \times 1}$.

Algorithm: TODO

Update Algorithm: We make use of the identity $(\mathbf{x}^T \mathbf{A} \mathbf{x}) = \sum_{i,j} ((\mathbf{x} \mathbf{x}^T) \circ \mathbf{A})$. If an entry $\mathbf{A}_{i,j}$ in the matrix changes subtract its old value $\mathbf{x}_i \mathbf{x}_j \mathbf{A}_{ij}$ and add the new value $\mathbf{x}_i \mathbf{x}_j \mathbf{A}'_{ij}$. If an entry \mathbf{x}_i changes TODO.

18 Optimization

18.1 Standard Forms

Least Squares

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 \tag{239}$$

LASSO

$$\min_{\mathbf{b} \in \mathbb{R}^n} \left(\frac{1}{N} \|\mathbf{y} - \mathbf{X}\mathbf{b}\|_2^2 + \lambda \|\mathbf{b}\|_1 \right)$$
 (240)

LP: Linear program

$$\begin{array}{ll}
\text{minimize} & \mathbf{c}^T \mathbf{x} \\
\end{array} \tag{241a}$$

subject to
$$\mathbf{A}_{eq}\mathbf{x} = \mathbf{b}_{eq}$$
, (241b)

$$\mathbf{A}\mathbf{x} \le \mathbf{b} \tag{241c}$$

Linear Fractional Program

$$\begin{array}{ll}
\text{maximize} & \mathbf{c}^T \mathbf{x} + a \\
\mathbf{d}^T \mathbf{x} + b
\end{array} \tag{242a}$$

subject to
$$\mathbf{A}\mathbf{x} \le \mathbf{b}$$
 (242b)

Additional constraints must ensure $\mathbf{d}^T\mathbf{x} + b$ has the same sign throughout the entire feasible region.

QCQP: Quadratic Constrainted Quadratic Programs

$$\underset{\mathbf{x}}{\text{minimize}} \quad \mathbf{x}^T \mathbf{H}_0 \mathbf{x} + 2\mathbf{c}_0^T \mathbf{x} + \mathbf{d}_0 \tag{243a}$$

subject to
$$\mathbf{x}^T \mathbf{H}_i \mathbf{x} + 2\mathbf{c}_i^T \mathbf{x} + \mathbf{d}_i \le 0 \quad i \in \mathcal{I},$$
 (243b)

$$\mathbf{x}^T \mathbf{H}_i \mathbf{x} + 2\mathbf{c}_i^T \mathbf{x} + \mathbf{d}_i = 0 \quad j \in \mathcal{E}$$
 (243c)

If $\mathbf{H}_i \succeq 0 \ \forall i$, then the program is convex. In general, QCQPs are NP-Hard.

QP: Quadratic Program

$$\underset{\mathbf{X}}{\text{minimize}} \quad \frac{1}{2}\mathbf{x}^T \mathbf{H}_0 \mathbf{x} + \mathbf{c}_0^T \mathbf{x}$$
 (244a)

subject to
$$\mathbf{A}_{eq}\mathbf{x} = \mathbf{b}_{eq}$$
, (244b)

$$\mathbf{A}\mathbf{x} \le \mathbf{b} \tag{244c}$$

If $\mathbf{H}_0 \succ 0$, then the program is convex.

If only equality constraints are present, then the solution is the linear system:

$$\begin{bmatrix} \mathbf{H}_0 & \mathbf{A}^T \\ \mathbf{A} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \lambda \end{bmatrix} = \begin{bmatrix} -\mathbf{c}_0 \\ \mathbf{b} \end{bmatrix}$$
 (245)

where λ is a set of Lagrange multipliers.

For $\mathbf{H}_0 \succ 0$, the ellipsoid method solves the problem in polynomial time. [26] If, \mathbf{H}_0 is indefinite, then the problem is NP-hard [27], even if \mathbf{H}_0 has only one negative eigenvalue [28].

SOCP: Second Order Cone Program (Standard Form)

$$\min_{\mathbf{x}} \mathbf{c}^T \mathbf{x} \tag{246}$$

s.t.
$$\|\mathbf{A}_i \mathbf{x} + \mathbf{b}_i\|_2 \le \mathbf{c}_i^T \mathbf{x} + \mathbf{d}_i, \quad i = 1, \dots, m$$
 (247)

SOCP: Second Order Cone Program (Conic Standard Form)

$$\min_{\mathbf{x}} \ \mathbf{c}^T \mathbf{x} \tag{248}$$

s.t.
$$(\mathbf{A}_i \mathbf{x} + \mathbf{b}_i, \mathbf{c}_i^T \mathbf{x} + \mathbf{d}_i) \in \mathcal{K}_{m_i} \quad i = 1, \dots, m$$
 (249)

18.2 **Transformations**

18.2.1 Linear-Fractional to Linear

We transform a Linear-Fractional Program

$$\begin{array}{ll}
\text{maximize} & \mathbf{c}^T \mathbf{x} + a \\
\mathbf{d}^T \mathbf{x} + b
\end{array} \tag{250a}$$

subject to
$$\mathbf{A}\mathbf{x} \le \mathbf{b}$$
 (250b)

where $\mathbf{d}^T \mathbf{x} + b$ has the same sign throughout the entire feasible region to a linear program using the Charnes-Cooper transformation [29] by defining

$$\mathbf{y} = \frac{1}{\mathbf{d}^T \mathbf{x} + b} \cdot \mathbf{x} \tag{251}$$

$$t = \frac{1}{\mathbf{d}^T \mathbf{x} + b} \tag{252}$$

to form the equivalent program

subject to
$$\mathbf{A}\mathbf{y} \leq \mathbf{b}t$$
, (253b)

$$\mathbf{d}^T \mathbf{y} + bt = 1, (253c)$$

$$t \ge 0 \tag{253d}$$

We then have $\mathbf{x}^* = \frac{1}{t}\mathbf{y}$.

18.2.2 LP as SOCP

The linear program

$$\begin{array}{ll}
\text{minimize} & \mathbf{c}^T \mathbf{x} \\
\end{array} \tag{254a}$$

subject to
$$\mathbf{A}\mathbf{x} \le \mathbf{b}$$
 (254b)

becomes can be cast as an SOCP:

$$\begin{array}{ll}
\text{minimize} & \mathbf{c}^T \mathbf{x} \\
\end{array} \tag{255a}$$

subject to
$$\|\mathbf{C}_i \mathbf{x} + \mathbf{d}_i\|_2 \le \mathbf{b}_i - \mathbf{a}_i^T \mathbf{x} \forall i$$
 (255b)

where $\mathbf{C}_i = 0, d_i = 0 \ \forall i$.

18.2.3 QCQP as SOCP

The quadratic constrainted quadratic program

$$\underset{\mathbf{x}}{\text{minimize}} \quad \mathbf{x}^T \mathbf{Q}_0 \mathbf{x} + \mathbf{a}_0^T \mathbf{x} \tag{256a}$$

subject to
$$\mathbf{x}^T \mathbf{Q}_i \mathbf{x} + \mathbf{a}_i^T \mathbf{x} \le b_i \quad i = 1, \dots, m$$
 (256b)

with $\mathbf{Q}_i = \mathbf{Q}_i^T \succeq 0$, $i = 0, \dots, m$ can be cast as an SOCP:

$$\begin{array}{ll}
\text{minimize} & \mathbf{a}_0^T \mathbf{x} + t \\
\mathbf{x} \cdot t
\end{array} \tag{257a}$$

subject to
$$\left\| \begin{bmatrix} 2\mathbf{Q}_0^{1/2}\mathbf{x} \\ t-1 \end{bmatrix} \right\|_2 \le t+1,$$
 (257b)

$$\left\| \begin{bmatrix} 2\mathbf{Q}_i^{1/2} \mathbf{x} \\ b_i - \mathbf{a}_i^T \mathbf{x} - 1 \end{bmatrix} \right\|_2 \le b_i - \mathbf{a}_i^T \mathbf{x} + 1 \quad i = 1, \dots, m$$
 (257c)

18.2.4 QP as SOCP

The quadratic program

$$\underset{\mathbf{X}}{\text{minimize}} \quad \frac{1}{2}\mathbf{x}^{T}\mathbf{Q}\mathbf{x} + \mathbf{c}^{T}\mathbf{x} \tag{258a}$$

subject to
$$\mathbf{a}_i^T \mathbf{x} \leq \mathbf{b}_i$$
 (258b)

with $\mathbf{Q} = \mathbf{Q}^T \succeq 0$ can be cast as an SOCP:

$$\begin{array}{ll}
\text{minimize} & \mathbf{c}^T \mathbf{x} + y \\
\mathbf{x}, \mathbf{y}
\end{array} \tag{259a}$$

subject to
$$\left\| \begin{bmatrix} 2\mathbf{Q}^{1/2}\mathbf{x} \\ y - 1 \end{bmatrix} \right\|_2 \le y + 1,$$
 (259b)

$$\mathbf{a}_i^T \mathbf{x} \le \mathbf{b}_i \quad \forall i \tag{259c}$$

18.2.5 Sum of L2 Norms to SOCP

$$\underset{\mathbf{X}}{\text{minimize}} \qquad \sum_{i=1}^{p} \|\mathbf{A}_{i}\mathbf{x} - \mathbf{b}_{i}\|_{2} \tag{260a}$$

becomes

$$\underset{\mathbf{x}, y}{\text{minimize}} \quad \sum_{i=1}^{p} y_i \tag{261a}$$

subject to
$$\|\mathbf{A}_i \mathbf{x} - \mathbf{b}_i\|_2 \le y_i$$
 $i = 1, \dots, p$ (261b)

18.2.6 Minimax of L2 Norms to SOCP

$$\underset{\mathbf{X}}{\text{minimize}} \quad \max_{i=1,\dots,p} \|\mathbf{A}_i \mathbf{x} - \mathbf{b}_i\|_2 \tag{262a}$$

becomes

$$\begin{array}{ccc}
\text{minimize} & y \\
\mathbf{x}, y
\end{array} \tag{263a}$$

subject to
$$\|\mathbf{A}_i \mathbf{x} - \mathbf{b}_i\|_2 \le y$$
 $i = 1, \dots, p$ (263b)

18.2.7 Hyperbolic Constraints to SOCP

For scalar w, a constraint of the form

$$w^2 \le xy, \quad x \ge 0, \quad y \ge 0$$
 (264)

can be transformed into the SOCP constraint

$$\left\| \begin{bmatrix} 2w \\ x - y \end{bmatrix} \right\|_{2} \le x + y \tag{265}$$

For vector **w**, a constraint of the form

$$\mathbf{w}^T \mathbf{w} = \|\mathbf{w}\|_2^2 \le xy, \quad x \ge 0, \quad y \ge 0 \tag{266}$$

can be transformed into the SOCP constraint

$$\left\| \begin{bmatrix} 2\mathbf{w} \\ x - y \end{bmatrix} \right\|_{2} \le x + y \tag{267} \quad [30, 31]$$

Note that this implies that

$$x^{-1} \le y \iff \left\| \begin{bmatrix} 2 \\ x - y \end{bmatrix} \right\|_{2} \le x + y \tag{268}$$

18.2.8 Matrix Fractional to SOCP

The problem

minimize
$$(\mathbf{F}\mathbf{x} + \mathbf{g})^T (\mathbf{P}_0 + \mathbf{x}_1 \mathbf{P} + \dots + \mathbf{x}_p \mathbf{P}_P)^{-1} (\mathbf{F}\mathbf{x} + \mathbf{g})$$
 (269a)

subject to
$$\mathbf{P}_0 + \mathbf{x}_1 \mathbf{P} + \ldots + \mathbf{x}_p \mathbf{P}_P > 0,$$
 (269b)

$$\mathbf{x} \ge 0 \tag{269c}$$

where $\mathbf{P}_i = \mathbf{P}_i^T \in \mathbb{R}^{n,n}$, $\mathbf{F} \in \mathbb{R}^{n,p}$, $\mathbf{g} \in \mathbb{R}^n$, and $\mathbf{x} \in \mathbb{R}^p$ can be transformed into the SOCP where $t_i \in \mathbb{R}, \mathbf{y}_i \in \mathbb{R}^n$:

$$\begin{array}{ll}
\text{minimize} & t_0 + \ldots + t_p \\
\mathbf{x} \cdot t
\end{array} \tag{270a}$$

subject to
$$\mathbf{P}_0^{1/2}\mathbf{y}_0 + \ldots + \mathbf{P}_p^{1/2}\mathbf{y}_p = \mathbf{F}\mathbf{x} + \mathbf{g},$$
 (270b) [30]

$$\left\| \begin{bmatrix} 2\mathbf{y}_0 \\ t_0 - 1 \end{bmatrix} \right\|_2 \le t_0 + 1,\tag{270c}$$

$$\left\| \begin{bmatrix} 2\mathbf{y}_i \\ t_i - x_i \end{bmatrix} \right\|_2 \le t_i + x_i \quad i = 1, \dots, p$$
 (270d)

18.2.9 Fractional Objective to SOCP

Convert

$$\underset{\mathbf{X}}{\text{minimize}} \quad \frac{f(x)^2}{g(x)} \tag{271a}$$

subject to
$$g(x) > 0$$
 (271b)

to

subject to
$$f(x)^2 \le tg(y)$$
, (272b)

$$g(y) > 0, (272c)$$

$$t \ge 0 \tag{272d}$$

and apply Equation 267.

18.2.10 Chance-Constrained LP to SOCP

The problem

$$\begin{array}{ll}
\text{minimize} & \mathbf{c}^T \mathbf{x} \\
\end{array} \tag{273a}$$

subject to
$$\operatorname{Prob}\{\mathbf{a}_i^T\mathbf{x} \leq \mathbf{b}_i\} \geq p_i \ i = 1, \dots, m$$
 (273b)

where $p_i > 0.5$ and all \mathbf{a}_i are independent normal random vectors with expected values $\bar{\mathbf{a}}_i$ and covariance matrices $\Sigma_i \succ 0$, can be transformed into the SOCP:

$$\underset{\mathbf{X}}{\text{minimize}} \quad \mathbf{c}^T \mathbf{x} \tag{274a}$$

subject to
$$\bar{\mathbf{a}}_i^T \mathbf{x} \le b_i - \Phi^{-1}(p_i) \left\| \Sigma_i^{1/2} \mathbf{x} \right\|_2$$
 $i = 1, \dots, m$ (274b)

where $\Phi^{-1}(p)$ is the inverse cumulative probability distribution of a standard normal variable.

18.2.11 Robust LP with Box Uncertainty as LP

The problem

$$\underset{\mathbf{x}}{\text{minimize}} \quad \mathbf{c}^T \mathbf{x} \tag{275a}$$

subject to
$$\mathbf{a}_{i}^{T}\mathbf{x} \leq b_{i} \quad \forall \mathbf{a}_{i} \in \{\hat{\mathbf{a}}_{i} + \rho_{i}\mathbf{u} : \|\mathbf{u}\|_{\infty} \leq 1\} \quad i = 1, \dots, m$$
 (275b)

is equivalent to

$$\begin{array}{ll}
\text{minimize} & \mathbf{c}^T \mathbf{x} \\
\end{array} \tag{276a}$$

subject to
$$\hat{\mathbf{a}}_i^T \mathbf{x} + \rho_i ||\mathbf{x}||_1 \le b_i \quad i = 1, \dots, m$$
 (276b)

which is equivalent to:

$$\begin{array}{ll}
\text{minimize} & \mathbf{c}^T \mathbf{x} \\
\end{array} \tag{277a}$$

subject to
$$\hat{\mathbf{a}}_i^T \mathbf{x} + \rho_i \sum_{j=1}^n \mathbf{u}_j \le b_i$$
 $i = 1, \dots, m,$ (277b)

$$-\mathbf{u}_{i} \le \mathbf{x}_{i} \le \mathbf{u}_{i} \quad j = 1, \dots, n \tag{277c}$$

18.2.12 Robust LP with Ellipsoidal Uncertainty as SOCP

The problem

$$\begin{array}{ll}
\text{minimize} & \mathbf{c}^T \mathbf{x} \\
\end{array} \tag{278a}$$

subject to
$$\mathbf{a}_i^T \mathbf{x} \le b_i \quad \forall \mathbf{a}_i \in \{\hat{\mathbf{a}}_i + \mathbf{R}_i \mathbf{u} : \|\mathbf{u}\|_2 \le 1\} \quad i = 1, \dots, m$$
 (278b)

is equivalent to

$$\begin{array}{ll}
\text{minimize} & \mathbf{c}^T \mathbf{x} \\
\end{array} \tag{279a}$$

subject to
$$\hat{\mathbf{a}}_{i}^{T}\mathbf{x} + \left\|\mathbf{R}_{i}^{T}\mathbf{x}\right\|_{2} \leq b_{i} \quad i = 1, \dots, m$$
 (279b)

18.2.13 Square Root as SOCP

$$\sqrt{x} \ge t \iff x \ge t^2 \iff \begin{vmatrix} 1-x \\ 2t \end{vmatrix}_2 \le 1+x$$
 (280)

The problem

$$\begin{array}{ll}
\text{minimize} & \mathbf{c}^T \mathbf{x} \\
\end{array} \tag{281a}$$

subject to
$$\mathbf{a}_{i}^{T}\mathbf{x} \leq b_{i} \quad \forall \mathbf{a}_{i} \in \{\hat{\mathbf{a}}_{i} + \mathbf{R}_{i}\mathbf{u} : \|\mathbf{u}\|_{2} \leq 1\} \quad i = 1, \dots, m$$
 (281b)

is equivalent to

$$\begin{array}{ll}
\text{minimize} & \mathbf{c}^T \mathbf{x} \\
\end{array} \tag{282a}$$

subject to
$$\hat{\mathbf{a}}_{i}^{T}\mathbf{x} + \left\|\mathbf{R}_{i}^{T}\mathbf{x}\right\|_{2} \leq b_{i} \quad i = 1, \dots, m$$
 (282b)

Useful Problems 18.3

$$average(\mathbf{v}) = \min_{x \in \mathbb{R}} \|\mathbf{v} - x\mathbf{1}\|_{2}^{2}$$

$$median(\mathbf{v}) = \min_{x \in \mathbb{R}} \|\mathbf{v} - x\mathbf{1}\|_{1}$$
(283)

$$\operatorname{median}(\mathbf{v}) = \min_{x \in \mathbb{R}} \|\mathbf{v} - x\mathbf{1}\|_{1} \tag{284}$$

19 | Algorithms

19.1 Gram-Schmidt

TODO

Bibliography

- [1] Néstor Thome. Inequalities and equalities for l=2 (Sylvester), l=3 (Frobenius), and l¿3 matrices. Aequationes mathematicae, 90(5):951–960, 2016.
- [2] Volker Strassen. Gaussian elimination is not optimal. *Numerische mathematik*, 13(4):354–356, 1969.
- [3] Günter Rote. Division-free algorithms for the determinant and the pfaffian: algebraic and combinatorial approaches. In *Computational discrete mathematics*, pages 119–135. Springer, 2001.
- [4] Erwin H. Bareiss. Sylvester's identity and multistep integer-preserving gaussian elimination. Mathematics of Computation, 22(103):565-578, 1968. ISSN 00255718, 10886842. doi: 10.2307/2004533. URL http://www.jstor.org/stable/2004533.
- [5] V Ya Pan. Strassen's algorithm is not optimal trilinear technique of aggregating, uniting and canceling for constructing fast algorithms for matrix operations. In *Foundations of Computer Science*, 1978., 19th Annual Symposium on, pages 166–176. IEEE, 1978. doi: 10.1109/SFCS. 1978.34.
- [6] DARIO ANDREA Bini, Milvio Capovani, Francesco Romani, and Grazia Lotti. $o(n^{2.7799})$ complexity for n by n approximate matrix multiplication. *Information processing letters*, 8(5): 234–235, 1979.
- [7] Arnold Schönhage. Partial and total matrix multiplication. SIAM Journal on Computing, 10 (3):434–455, 1981.
- [8] Francesco Romani. Some properties of disjoint sums of tensors related to matrix multiplication. SIAM Journal on Computing, 11(2):263–267, 1982.
- [9] Don Coppersmith and Shmuel Winograd. On the asymptotic complexity of matrix multiplication. SIAM Journal on Computing, 11(3):472–492, 1982.
- [10] Volker Strassen. The asymptotic spectrum of tensors and the exponent of matrix multiplication. In Foundations of Computer Science, 1986., 27th Annual Symposium on, pages 49–54. IEEE, 1986.
- [11] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9(3):251 280, 1990. ISSN 0747-7171. doi: 10.1016/S0747-7171(08)80013-2. URL http://www.sciencedirect.com/science/article/pii/S0747717108800132. Computational algebraic complexity editorial.
- [12] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC '12, pages 887–898, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1245-5. doi: 10.1145/ 2213977.2214056. URL http://doi.acm.org/10.1145/2213977.2214056.
- [13] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC '14, pages 296–303, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2501-1. doi: 10.1145/2608628.2608664. URL http://doi.acm.org/10.1145/2608628.2608664.
- [14] Gilbert Strang. Introduction to Linear Algebra. 2016.

58 BIBLIOGRAPHY

[15] Daniel A. Spielman. Algorithms, graph theory, and linear equations in Laplacian matrices. In *Proceedings of the International Congress of Mathematicians*, volume 4, pages 2698–2722, 2010. URL http://www.cs.yale.edu/homes/spielman/PAPERS/icm10post.pdf.

- [16] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, second edition, 2002. ISBN 978-0-89871-802-7.
- [17] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. *Numerical Mathematics*. Springer, 2007. ISBN 978-3-540-34658-6.
- [18] E. Gallopoulos, B. Philippe, and A.H. Sameh. *Parallelism in Matrix Computations*. Springer, 2016. ISBN 978-94-017-7188-7.
- [19] James Joseph Sylvester. Xxxvii. on the relation between the minor determinants of linearly equivalent quadratic functions. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 1(4):295–305, 1851.
- [20] Elizabeth Million. The hadamard product. http://buzzard.ups.edu/courses/2007spring/ projects/million-paper.pdf, 2007.
- [21] Thomas P Minka. Old and new matrix algebra useful for statistics. https://tminka.github.io/papers/matrix/minka-matrix.pdf, 2000.
- [22] Giuseppe C Calafiore and Laurent El Ghaoui. Optimization models. Cambridge University Press, 2014. ISBN 978-1-107-05087-7.
- [23] Fernando De Terán and Froilan Dopico. Consistency and efficient solution of the sylvester equation for*-congruence. The Electronic Journal of Linear Algebra, 22, 2011.
- [24] Fernando De Terán, Bruno Iannazzo, Federico Poloni, and Leonardo Robol. Nonsingular systems of generalized sylvester equations: An algorithmic approach. Numerical Linear Algebra with Applications, 26(5):e2261, 2019. doi: https://doi.org/10.1002/nla.2261. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2261. e2261 nla.2261.
- [25] Froilán Dopico, Javier González, Daniel Kressner, and Valeria Simoncini. Projection methods for large-scale t-sylvester equations. *Mathematics of Computation*, 85(301):2427–2455, 2016.
- [26] Mikhail K Kozlov, Sergei P Tarasov, and Leonid G Khachiyan. The polynomial solvability of convex quadratic programming. USSR Computational Mathematics and Mathematical Physics, 20(5):223–228, 1980.
- [27] S. Sahni. Computationally related problems. SIAM Journal on Computing, 3(4):262–279, 1974.
 doi: 10.1137/0203021. URL https://doi.org/10.1137/0203021.
- [28] Panos M. Pardalos and Stephen A. Vavasis. Quadratic programming with one negative eigenvalue is np-hard. *Journal of Global Optimization*, 1(1):15–22, Mar 1991. ISSN 1573-2916. doi: 10.1007/BF00120662. URL https://doi.org/10.1007/BF00120662.
- [29] A. Charnes and W. W. Cooper. Programming with linear fractional functionals. Nava. Research Logistics Quarterly, 9(3-4):181-186, 1962. doi: 10.1002/nav.3800090303. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800090303.
- [30] Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. Applications of second-order cone programming. *Linear algebra and its applications*, 284(1-3):193–228, 1998.
- [31] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical Programming, 95(1):3-51, Jan 2003. ISSN 1436-4646. doi: 10.1007/s10107-002-0339-5. URL https://doi. org/10.1007/s10107-002-0339-5.

Index

 $L\infty$ -norm, 43 L1-norm, 43

P-norm, 43