Unidade III: Fundamentos de Análise de Algoritmos

Instituto de Ciências Exatas e Informática Departamento de Ciência da Computação

Agenda

- Potência, Logaritmo, Piso e Teto, e Função
- Contagem de operações
- Aspectos da análise de algoritmos
- Função de complexidade
- Notações O, Ωe Θ

Agenda

Potência, Logaritmo, Piso e Teto, e Função

- Contagem de operações
- Aspectos da análise de algoritmos
- Função de complexidade
- Notações O, Ωe Θ

- Resolva as equações abaixo:
 - a) $2^{10} =$
 - b) lg(1024) =
 - c) lg(17) =
 - d)[g(17)]=
 - e)||g(17)||=

Resolva as equações abaixo:

a)
$$2^{10} = 1024$$

c)
$$lg(17) = 4,08746284125034$$

d)
$$[g(17)] = 5$$

e)
$$||g(17)|| = 4$$

Piso e Teto

Plote um gráfico com todas as funções abaixo:

a)
$$f(n) = n^3$$

b)
$$f(n) = n^2$$

c)
$$f(n) = nxlg(n)$$

$$d) f(n) = n$$

e)
$$f(n) = sqrt(n)$$

$$f) f(n) = Ig(n)$$

 Plote um gráfico com todas as funções abaixo: 1000000 a) $f(n) = n^3$ ___ n³ Ig(n) 750000 c) f(n) = nxig(n)sqrt(n) n x lg(n) q(n) f(n) = nf(n) 500000 f(n) = sqrt(n)250000 n

• Plote um gráfico com todas as funções abaixo: a) $f(n) = n^3$ b) $f(n) = n^2$ Ig(n) 750 sqrt(n) c) f(n) = nx lg(p)n x lg(n) d) f(n) = n(L) 500 f(n) = sqrt(n)n

Agenda

- Potência, Logaritmo, Piso e Teto, e Função
- Contagem de operações

- Aspectos da análise de algoritmos
- Função de complexidade
- Notações O, Ωe Θ

· Calcule o número de subtrações que o código abaixo realiza:

```
for (int i = 0; i < n; i++){
    if (rand() % 2 == 0){
        a--;
        b.-;
    } else {
        c.-;
    }
}
```

Calcule o número de subtrações que o código abaixo realiza:

Cenários Possíveis

 Melhor caso: menor "tempo de execução" para todas entradas possíveis de tamanho n

· Pior caso: maior "tempo de execução" para todas entradas possíveis

 Caso médio (ou esperado): média dos tempos de execução para todas as entradas possíveis (abordado em FPAA)

Contagem de Operações com Condicional

· Será o custo da condição mais ou o da lista de verdadeira ou o da falsa

```
if ( condição() ){
   lista Verdadeiro();
} else {
   listaFalso();
 Melhor caso: condição() + mínimo(listaVerdadeiro(), listaFalso())
 Pior caso: condição() + máximo(listaVerdadeiro(), listaFalso())
```

· Calcule o número de subtrações que o código abaixo realiza:

Calcule o número de subtrações que o código abaixo realiza:

Se n = 6, temos subtrações quando i vale 3, 4, 5 (6 - 3 = 3, vezes)

$$n = 7$$

$$3, 4, 5, 6 (7 - 3 = 4 \text{ vezes})$$

. . . .

$$n = 10$$

$$3, 4, 5, 6, 7, 8, 9 (10-3=7 \text{ vezes})$$

Contagem de Operações com Repetição

 Será o custo da condição mais o número de iterações multiplicado pela soma dos custos da condição e da lista a ser repetida

```
while ( condição() ){
    lista();
}

Custo: condição() + n * (lista() + condição()), onde n é o número de vezes que o laço será repetido
```

Contagem de Operações com Repetição

 Será o número n de iterações multiplicado pela soma dos custos da lista de comandos e da condição

```
do {
    lista();
} while ( condição );

Custo: n x (condição + lista()), onde n é o número de vezes que o laço será repetido
```

· Calcule o número de multiplicações que o código abaixo realiza:

```
for (int i = n; i > 0; i /= 2)
a *= 2;
```

Calcule o número de multiplicações que o código abaixo realiza:

Quando n é uma potência de 2, realizamos lg(n) + 1 multiplicações

Se n = 8, efetuamos a multiplicação quando i vale 8, 4, 2, 1

Calcule o número de multiplicações que o código abaixo realiza:

```
for (int i = n; i > 0; i /= 2)
a *= 2;
```

Para um valor qualquer de n, temos $\lfloor \lg(n) \rfloor + 1$ multiplicações, logo, $O(\lg n)$, $\Omega(\lg n)$ e $\Theta(\lg n)$

Contagem de Operações com Repetição

 Quando tivermos uma estrutura de repetição em que o escopo de busca é sistematicamente dividido pela metade, temos um custo logarítmico

```
for (int i = n; i > 0; i /= 2){
    lista();
}
```

Encontre o menor valor em um array de inteiros


```
int min = array[0];

for (int i = 1; i < n; i++){
    if (min > array[i]){
        min = array[i];
    }
}
```

1º) Qual é a operação relevante?

R: Comparação entre elementos do array

2º) Quantas vezes ela será executada?

R: Se tivermos n elementos: T(n) = n - 1

• Encontre o menor valor em um array de inteiros


```
int min = array[0];

for (int i = 1; i < n; i++){
    if (min > array[i]){
        min = array[i];
    }
}
```

 3°) O nosso T(n) = n – 1 é para qual dos três casos?

Agenda

- Potência, Logaritmo, Piso e Teto, e Função
- Contagem de operações
- Aspectos da análise de algoritmos

- Função de complexidade
- Notações O, Ωe Θ

Restrição dos Algoritmos

Nossos algoritmos devem ser implementados em um computador

Restrições do computador: capacidade computacional e armazenamento

• Logo, devemos analisar a complexidade de se implementar algoritmos

Um algoritmo que leva séculos para terminar é uma opção inadequada

Problema do Caixeiro Viajante

Problema do Caixeiro Viajante

Número de combinações:

$$\frac{1}{3}$$
 $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{5}$ $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{1}$

Rascunho do algoritmo força bruta para encontrar a solução ótima do PCV

Número de cidades	Tempo de execução
5	5 s
6	5 x (5s) = 25 s
7	6 x (25s) = 150 s = 2,5 min
8	7 x (2,5 min) = 17,5 min
9	8 x (17,5 min) = 140 min = 2,34 h
10	9 x (2,34 h) = 21 h
11	10 x (21 dias) = 210 = 8,75 dias
12	11 x (8,75 dias) = 96,25 dias
13	12 x (96,25 dias) = 1155 = 3,15 anos
14	13 x (3,15 anos) = 41,02 anos
15	14 x (41,02 anos) = 5,74 séculos
16	15 x (5,74 séculos) = 8,6 milênios

Rascunho do algoritmo força bruta para encontrar a solução ótima do PCV

Número de cidades	Tempo de execução
-------------------	-------------------

Observação (1): Na verdade, a solução ótima para o PCV é duas vezes mais rápida que a apresentada, contudo, isso é "indiferente" na tendência de crescimento

9	8 x (17,5 min) = 140 min = 2,34 h	
10	9 x (2,34 h) = 21 h	

Observação (2): Se tivermos um computador 100 vezes mais rápido, isso também será "indiferente" na tendência de crescimento

15	14 x (41,02 anos) = 5,74 séculos	
16	15 x (5,74 séculos) = 8,6 milênios	

Métricas para a Análise de Complexidade

Tempo de execução

Espaço de memória ocupado

Outros...

Tipos de Análise de Complexidade

 Análise de um algoritmo particular: analisamos o custo de um algoritmo específico para um problema específico

 Análise de uma classe de algoritmos: analisamos o menor custo possível para resolver um problema específico

 Limite da família de algoritmos, nível mínimo de dificuldade para ser resolvido

Como Medir o Custo de um Algoritmo

Restrições no Modelo do Cronômetro

Hardware

Arquitetura

Sistema Operacional

Linguagem

Compilador

Como Medir o Custo de um Algoritmo

Modelo

Matemático

Modelo Matemático para Contar Operações

•Determinamos e contamos as operações relevantes. Em AEDs, quase sempre, comparações entre registros (elementos do *array*)

• O custo total de um algoritmo é igual a soma do custo de suas operações

Desconsideramos sobrecargas de gerenciamento de memória ou E/S

A menos que dito o contrário, consideramos o pior caso

Precisamos definir a função de complexidade

Agenda

- Potência, Logaritmo, Piso e Teto, e Função
- Contagem de operações
- Aspectos da análise de algoritmos
- Função de complexidade

Notações O, Ωe Θ

Algumas Funções de Complexidade

 Função de complexidade de tempo mede o tempo (número de execuções da operação relevante) de execução do algoritmo para um problema de tamanho n

 Função de complexidade de espaço mede a quantidade de memória necessária para executar um algoritmo de tamanho n

- Da mesma forma que calculamos o custo de um churrasco:
 - Carne: 400 gramas por pessoa (preço médio do kg R\$ 20,00 picanha, asinha, coraçãozinho ...)
 - Cerveja: 1,2 litros por pessoa (litro R\$ 3,80)
 - Refrigerante: 1 litro por pessoa (Garrafa 2 litros R\$ 3,50)

Exercício: Monte a função de complexidade (ou custo) do nosso churrasco.

- Da mesma forma que calculamos o custo de um churrasco:
 - Carne: 400 gramas por pessoa (preço médio do kg R\$ 20,00 picanha, asinha, coraçãozinho ...)
 - Cerveja: 1,2 litros por pessoa (litro R\$ 3,80)
 - Refrigerante: 1 litro por pessoa (Garrafa 2 litros R\$ 3,50)

Exercício: Monte a função de complexidade (ou custo) do nosso churrasco.

$$f(n) = n * \frac{400}{1000} * 20 + n * 1, 2 * 3, 8 + n * 1 * \frac{3, 5}{2}$$
$$= 14, 31 * n$$

- Da mesma forma que calculamos o custo de uma viagem:
 - Passagem:
 - Hotel:
 - Saídas:

Cálculo de Complexidade para Condicional

Será o custo da condição mais ou o da lista de verdadeira ou o da falsa

```
if ( condição() ){
   lista Verdadeiro();
} else {
   listaFalso();
 Melhor caso: condição() + mínimo(listaVerdadeiro(), listaFalso())
 Pior caso: condição() + máximo(listaVerdadeiro(), listaFalso())
```

Cálculo de Complexidade para Repetição

 Será o custo da condição mais o número de interações multiplicado pela soma dos custos da condição e da lista a ser repetida

```
while ( condição() ){
    lista();
}

Custo: condição() + n * (lista() + condição()), onde n é o número de vezes que o laço será repetido
```

Cálculo de Complexidade

Outros laços: sempre consideramos o limite superior

Métodos: consideramos o custo do método

 Métodos recursivos: utilizamos equações de recorrência (Vocês verão em FPAA)

Algoritmo Ótimo

· Algoritmo cujo custo é igual ao menor custo possível

Exercício Resolvido (8): Encontrar Mínimo

```
int min = array[0];

for (int i = 1; i < n; i++){
    if (min > array[i]){
        min = array[i];
    }
}
```

1º) Qual é a operação relevante?

R: Comparação entre elementos do array

2º) Quantas vezes ela será executada?

R: Se tivermos n elementos: T(n) = n - 1

 3°) O nosso T(n) = n – 1 é para qual dos três casos?

R: Para os três casos

4º) O nosso algoritmo é ótimo? Por que?

Exercício Resolvido (8): Encontrar Mínimo

```
int min = array[0];

for (int i = 1; i < n; i++){
    if (min > array[i]){
        min = array[i];
    }
}
```

1º) Qual é a operação relevante?

2º) Quantas vezes ela será executada?

R: Se tivermos n elementos: T(n) = n - 1

 3°) O nosso T(n) = n – 1 é para qual dos três casos?

R: Para os três casos

4º) O nosso algoritmo é ótimo? Por que?

R: Sim porque temos que testar todos os elementos para garantir nossa resposta

Exercício Resolvido (9): Pesquisa Sequencial

```
boolean resp = false;

for (int i = 0; i < n; i++){
    if (array[i] == x){
        resp = true;
        i = n;
    }
}</pre>
```

1º) Qual é a operação relevante?

R: Comparação entre elementos do array

2º) Quantas vezes ela será executada?

```
R: Melhor caso: f(n) = 1
Pior caso: f(n) = n
Caso médio: f(n) = (n + 1) / 2
```

3º) O nosso algoritmo é ótimo? Por que?

Exercício Resolvido (9): Pesquisa Sequencial

```
boolean resp = false;

for (int i = 0; i < n; i++){
    if (array[i] == x){
        resp = true;
        i = n;
    }
}</pre>
```

- 1º) Qual é a operação relevante?
 - R: Comparação entre elementos do array
- 2º) Quantas vezes ela será executada?

```
R: Melhor caso: f(n) = 1
Pior caso: f(n) = n
Caso médio: f(n) = (n + 1) / 2
```

3º) O nosso algoritmo é ótimo? Por que?

R: Sim porque temos que testar todos os elementos para garantir nossa resposta

• Encontre o maior e menor valores em um *array* de inteiros e, em seguida, encontre a função de complexidade de tempo para sua solução

Problema: encontrar o valores minimo e máximo em um vetor

```
public static void minmax1(int []vet, out int min, out int max){
 int i;
 min = vet[0];
 max = vet[0];
 for(i=1; i<vet.Length; i++){</pre>
    if(vet[i] < min){
      min = vet[i];
    }
    if(vet[i] > max){
      max = vet[i];
    }
```

melhor caso: f(n) = 2(n-1)pior caso: f(n) = 2(n-1)caso médio: f(n) = 2(n-1)

Se vet[i] < min, então não precisamos checar se vet[i] > max

```
public static void minmax2(int []vet, out int min, out int max){
 int i;
 min = vet[0];
 max = vet[0];
 for(i=1; i<vet.Length; i++){</pre>
    if(vet[i] < min){</pre>
      min = vet[i];
    }
    else if(vet[i] > max){
      max = vet[i];
```

melhor caso: (decrescente) f(n) = n-1 pior caso: (crescente) f(n) = 2(n-1) caso médio: (aleatório) f(n) > 3(n-1)/2

• Dá pra melhorar?

•

Comparar elementos par-a-par Custo: n/2 comparações

• Dá pra melhorar?

- Comparar elementos par-a-par
 - Custo: n/2 comparações
- Elementos vermelhos são maiores que os azuis
- Encontrar o máximo entre os elementos vermelhos
 - Custo: n/2 comparações
- Encontrar o mínimo entre os elementos azuis
 - Custo: n/2 comparações

Algoritmo Ótimo

```
using System;
class Program{
  public static void minmax3(int []vet, out int min, out int max){
    int i, a, v;
    min = Int32.MaxValue;
    max = Int32.MinValue;
    for(i=0; i<vet.Length-1; i+=2){
      if(vet[i] < vet[i+1]){
        a = i; v = i+1;
      }else{
        a = i+1; v = i;
      if(vet[a] < min){</pre>
        min = vet[a];
     if(vet[v] > max){
        max = vet[v];
```

```
melhor caso:

f(n) = 3n/2

pior caso:

f(n) = 3n/2

caso médio:

f(n) = 3n/2
```

Análise

Algoritmo	f(n)		
	Melhor caso	Pior caso	Caso médio
MinMax1	2(n-1)	2(n-1)	2(n-1)
MinMax2	n-1	2(n-1)	> 3(n-1)/2
MinMax3	3n/2	3n/2	3n/2

• Um aluno deve procurar um valor em um *array* de números reais. Ele tem duas alternativas. Primeiro, executar uma pesquisa sequencial. Segundo, ordenar o *array* e, em seguida, aplicar uma pesquisa binária. O que fazer?

• Um aluno deve procurar um valor em um *array* de números reais. Ele tem duas alternativas. Primeiro, executar uma pesquisa sequencial. Segundo, ordenar o *array* e, em seguida, aplicar uma pesquisa binária. O que fazer?

O aluno deve escolher a primeira opção, pois a pesquisa sequencial tem custo $\Theta(n)$. A segunda opção tem custo (n * lg n) para ordenar mais $\Theta(lg n)$ para a pesquisa binária

- Potência, Logaritmo, Piso e Teto, e Função
- Contagem de operações
- Aspectos da análise de algoritmos
- Função de complexidade
- Notações O, Ω e Θ

Noção sobre as Notações *O*, *Ω* e *Θ*

Regras gerais

Definições

Operações

Regras Gerais das Notações *O*, *Ω* e *Θ*

Consideramos apenas a maior potência

Ignoramos os coeficientes

Diferença entre as Notações *O*, *Ω* e *Θ*

· O é o limite superior

 $\cdot \Omega$ é o limite inferior

• 0 é o limite justo

Diferença entre as Notações *O*, *Ω* e *Θ*

• O é o limite superior, logo, se um algoritmo é O(f(n)), ele também será O(g(n)) para toda função g(n) tal que "g(n) é maior que f(n)"

Ω é o limite inferior, logo, se um algoritmo é Ω(f(n)), ele também será Ω
 (g(n)) para toda função g(n) tal que "g(n) é menor que f(n)"

Θ é o limite justo, logo, g(n) é O(f(n)) and Ω(f(n)) se e somente se g(n) é Θ
 (f(n))

- Responda se as afirmações são verdadeiras ou falsas:
 - a) $3n^2 + 5n + 1 \notin O(n)$:
 - b) $3n^2 + 5n + 1 \neq O(n^2)$:
 - c) $3n^2 + 5n + 1 \neq O(n^3)$:
 - d) $3n^2 + 5n + 1 \in \Omega(n)$:
 - e) $3n^2 + 5n + 1 \in \Omega(n^2)$:
 - f) $3n^2 + 5n + 1 \in \Omega(n^3)$:
 - g) $3n^2 + 5n + 1 \in \Theta(n)$:
 - h) $3n^2 + 5n + 1 \in \Theta(n^2)$:
 - i) $3n^2 + 5n + 1 \in \Theta(n^3)$:

- Responda se as afirmações são verdadeiras ou falsas:
 - a) $3n^2 + 5n + 1 \notin O(n)$:
 - b) $3n^2 + 5n + 1 \in O(n^2)$: verdadeira
 - c) $3n^2 + 5n + 1 \text{ é O}(n^3)$:
 - d) $3n^2 + 5n + 1 \in \Omega(n)$:
 - e) $3n^2 + 5n + 1 \in \Omega(n^2)$: verdadeira
 - f) $3n^2 + 5n + 1 \in \Omega(n^3)$:
 - g) $3n^2 + 5n + 1 \in \Theta(n)$:
 - h) $3n^2 + 5n + 1 \in \Theta(n^2)$: verdadeira
 - i) $3n^2 + 5n + 1 \in \Theta(n^3)$:

- Responda se as afirmações são verdadeiras ou falsas:
 - a) $3n^2 + 5n + 1 \notin O(n)$:
 - b) $3n^2 + 5n + 1 \text{ é O}(n^2)$: verdadeira
 - c) $3n^2 + 5n + 1 \in O(n^3)$: verdadeira
 - d) $3n^2 + 5n + 1 \in \Omega(n)$: verdadeira
 - e) $3n^2 + 5n + 1 \in \Omega(n^2)$: verdadeira
 - f) $3n^2 + 5n + 1 \in \Omega(n^3)$:
 - g) $3n^2 + 5n + 1 \in \Theta(n)$:
 - h) $3n^2 + 5n + 1 \in \Theta(n^2)$: verdadeira
 - i) $3n^2 + 5n + 1 \in \Theta(n^3)$:

- Responda se as afirmações são verdadeiras ou falsas:
 - a) $3n^2 + 5n + 1 \in O(n)$: falsa
 - b) $3n^2 + 5n + 1 \text{ é O}(n^2)$: verdadeira
 - c) $3n^2 + 5n + 1 \text{ é O}(n^3)$: verdadeira
 - d) $3n^2 + 5n + 1 \in \Omega(n)$: verdadeira
 - e) $3n^2 + 5n + 1 \in \Omega(n^2)$: verdadeira
 - f) $3n^2 + 5n + 1 \in \Omega(n^3)$: falsa
 - g) $3n^2 + 5n + 1 \in \Theta(n)$:
 - h) $3n^2 + 5n + 1 \in \Theta(n^2)$: verdadeira
 - i) $3n^2 + 5n + 1 \in \Theta(n^3)$:

- Responda se as afirmações são verdadeiras ou falsas:
 - a) $3n^2 + 5n + 1 \notin O(n)$: falsa
 - b) $3n^2 + 5n + 1 \text{ é O}(n^2)$: verdadeira
 - c) $3n^2 + 5n + 1 \text{ é O}(n^3)$: verdadeira
 - d) $3n^2 + 5n + 1 \in \Omega(n)$: verdadeira
 - e) $3n^2 + 5n + 1 \in \Omega(n^2)$: verdadeira
 - f) $3n^2 + 5n + 1 \in \Omega(n^3)$: falsa
 - g) $3n^2 + 5n + 1 \in \Theta(n)$: falsa
 - h) $3n^2 + 5n + 1 \in \Theta(n^2)$: verdadeira
 - i) $3n^2 + 5n + 1 \in \Theta(n^3)$: falsa

Exercício (3)

· Preencha verdadeiro ou falso na tabela abaixo:

	O(1)	O(lg n)	O(n)	O(n.lg(n))	O(n²)	O(n ³)	O(n ⁵)	O(n ²⁰)
f(n) = lg(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

Exercício (4)

· Preencha verdadeiro ou falso na tabela abaixo:

	Ω(1)	Ω(lg n)	Ω(n)	Ω(n.lg(n))	$\Omega(n^2)$	$\Omega(n^3)$	Ω(n ⁵)	$\Omega(n^{20})$
f(n) = lg(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

Exercício (5)

· Preencha verdadeiro ou falso na tabela abaixo:

	Θ(1)	Θ(lg n)	Θ (n)	Θ(n.lg(n))	Θ(n²)	Θ(n³)	Θ (n⁵)	Θ(n ²⁰)
f(n) = lg(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

Notação O

- A notação O é utilizada para descrever a tendência de uma função
- Ela é muito utilizada em computação para classificar algoritmos de acordo com a taxa de crescimento de suas funções

Dominação Assintótica

Uma função f(n) domina assintoticamente outra função g(n) se existem duas constantes positivas c e m tais que, para n >= m, temos |g(n)| <= c x |f(n)|

Ou seja, para números grandes cf(n)será sempre maior que g(n), para alguma constante c

Notação O para dominação Assintótica

Quando uma função g(n) = O(f(n)), dizemos que:

```
g(n) é O de f(n) \rightarrow g(n) é da ordem de no máximo f(n) f(n) domina g(n) assintoticamente
```

Ex: Quando dizemos que o tempo de execução T(n) de um programa é $O(n^2)$, significa que existem constantes $c \in m$ tais que, para valores de $c \in m$, $c \in m$, $c \in m$.

A notação é importante para comparar algoritmos pois não estamos interessados em funções exatas de custo mas sim, do comportamento da função

Exemplo 1

Dadas as funções:

$$g(n) = (n+1)^2$$

$$f(n)=n^2$$

As duas funções se dominam assintoticamente pois:

$$g(n) = O(f(n))$$
 pois $g(n) \le 4f(n)$ para $n > 1$

$$f(n) = O(g(n))$$
 pois $f(n) \le g(n)$

Exemplo 2

Dadas as funções:

$$g(n) = (n+1)^2$$

$$f(n)=n^3$$

A segunda função domina a primeira

$$g(n) = O(f(n))$$
 pois $g(n) \le cf(n)$ para um c coerente e a partir de $n > 1$

Porém a primeira não domina a segunda:

Pois $f(n) \le cg(n)$ seria uma afirmação falsa para qualquer c e a partir de qualquer n

Limites Fortes

$$g(n) = 3n^3 + 2n^2 + n \in O(n^3)$$

Pois
$$g(n) \le 6n^3$$
 para $n \ge 0$

É claro que também podemos dizer que g(n) = O(n), porém esta seria uma afirmação fraca;

Para analisar comportamentos de algoritmos, estamos interessados em afirmações fortes

- 1) f(n) = O(f(n))
- 2) c x O(f(n)) = O(f(n))
- 3) O(f(n)) + O(f(n)) = O(f(n))
- 4) O(O(f(n))) = O(f(n))
- 5) O(f(n)) + O(g(n)) = O(máximo(f(n),g(n)))
- 6) $O(f(n)) \times O(g(n)) = O(f(n) \times g(n))$
- 7) $f(n) \times O(g(n)) = O(f(n) \times g(n))$
- *) As mesmas propriedades são aplicadas para Ω e Θ

$$f(n) = O(f(n))$$

 Uma função sempre se domina pois basta a multiplicar por uma constante para que seja maior que ela mesmo

$$c \times O(f(n)) = O(f(n))$$

 O mesmo vale para esta função O(f(n)) multiplicada por uma constante, pois basta multiplicarmos f(n) por uma constante ainda maior para que seja dominada

$$O(f(n)) + O(f(n)) = O(f(n))$$

 A soma de duas funções dominadas por f(n) é ainda dominada por f(n) pois esta diferença pode ainda ser compensada por uma constante

$$O(O(f(n))) = O(f(n))$$

 Se uma função é dominada por uma função dominada por f(n), a primeira função é também dominada por f(n)

$$O(f(n)) + O(g(n)) = O(máximo(f(n),g(n)))$$

 A soma de duas funções será dominada pela maior função que as domina

$$O(f(n)) \times O(g(n)) = O(f(n) \times g(n))$$
$$f(n) \times O(g(n)) = O(f(n) \times g(n))$$

 A multiplicação de duas funções será dominada pela multiplicação das funções que as dominavam

Exercício Resolvido (12)

Sabendo que o Algoritmo de Seleção faz $\Theta(n^2)$ comparações entre registros, quantas dessas comparações temos no código abaixo? Justifique

Exercício Resolvido (12)

Sabendo que o Algoritmo de Seleção faz $\Theta(n^2)$ comparações entre registros, quantas dessas comparações temos no código abaixo? Justifique

Neste caso, executamos o Seleção n vezes: $n \times \Theta(n^2) = \Theta(n^3)$

Exercício Resolvido (13)

Sabendo que o limite inferior da ordenação é Θ (n.lg n) e que o custo da pesquisa binária é Θ (lg n), qual é a ordem de complexidade de uma solução em que ordenamos um *array* e efetuamos uma pesquisa binária. Justifique sua resposta

Exercício Resolvido (13)

Sabendo que o limite inferior da ordenação é Θ (n.lg n) e que o custo da pesquisa binária é Θ (lg n), qual é a ordem de complexidade de uma solução em que ordenamos um *array* e efetuamos uma pesquisa binária. Justifique sua resposta

Neste caso, temos duas etapas e o custo total será a soma das mesmas, logo: $\Theta(n.\lg n) + \Theta(\lg n) = \Theta(n.\lg n)$

Classe de Algoritmos

- Constante: O(1)
- Logarítmico: O(lg n)
- Linear: O(n)
- Linear-logarítmico: O(n lg n)
- Quadrático: O(n²)
- Cúbico: O(n³)
- Exponencial: O(cⁿ)
- Fatorial: O(n!)

Algoritmos Polinomiais

Um algoritmo é polinomial se é O(n^p) para algum inteiro p

Problemas com algoritmos polinomiais são considerados tratáveis

 Problemas para os quais não há algoritmos polinomiais são considerados intratáveis

Exercício Resolvido (19)

 Apresente a função e a complexidade para o número de subtrações para o pior e melhor caso

```
for (i = 0; i < n; i++) {
    for (j = 1; j <= n; j *= 2) {
        b--;
    }
}</pre>
```

Exercício Resolvido (19)

 Apresente a função e a complexidade para o número de subtrações para o pior e melhor caso

TODOS

função

f(n) = (lg(n) + 1) * n = n * lg(n) + n

complexidade

O(n $x \lg(n)$), $\Omega(n x \lg(n)) \in \Theta(n x \lg(n))$

Exercício Resolvido (21)

• Classifique as funções $f_1(n) = n^2$, $f_2(n) = n$, $f_3(n) = 2^n$, $f_4(n) = (3/2)^n$, $f_5(n) = n^3$ e $f_6(n) = 1$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

Exercício Resolvido (21)

• Classifique as funções $f_1(n) = n^2$, $f_2(n) = n$, $f_3(n) = 2^n$, $f_4(n) = (3/2)^n$, $f_5(n) = n^3$ e $f_6(n) = 1$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

$$f_6(n) = 1$$

$$f_2(n) = n$$

$$f_1(n) = n^2$$

$$f_5(n) = n^3$$

$$f_4(n) = (3/2)^n$$

$$f_3(n) = 2^n$$

Exercício Resolvido (23)

• Faça a correspondência entre cada função f(n) com sua g(n) equivalente, em termos de Θ . Essa correspondência acontece quando $f(n) = \Theta(g(n))$ (Khan Academy, adaptado)

f(n)	g(n)		
n + 30	n ⁴		
n ² + 2n - 10	3n - 1		
n³ . 3n	lg(2n)		
lg(n)	n ² + 3n		

Exercício Resolvido (23)

Faça a correspondência entre cada função f(n) com sua g(n) equivalente,
 em termos de Θ. Essa correspondência acontece quando f(n) = Θ(g(n))
 (Khan Academy, adaptado)

