Exercícios da Unidade III: Fundamentos de Análise de Algoritmos Nome: Bárbara Maria Sampaio Portes

- Exercício Resolvido (1)
 - a) 210 = 1024
 - b) lg(1024) = 10
 - c) $\lg(17) = 4,08746284125034$
 - d) (teto) lg(17) = 5
 - e) (piso) $\lg(17) = 4$
- Exercício Resolvido (2)

Plote um gráfico com todas as funções abaixo:

- a) $f(n) = n^3$
- b) $f(n) = n^2$
- c) f(n) = n*lg(n)
- d) f(n) = n
- e) f(n) = sqrt(n)
- f) f(n) = Ig(n)

- Exercício Resolvido (3)
 - Melhor caso: f(n) = n, logo, O(n), $\Omega(n) \in \Theta(n)$

Pior caso: f(n) = 2n, logo, O(n), $\Omega(n) \in \Theta(n)$

- Exercício Resolvido (4)
 - n 3 subtrações
 - Logo, O(n), Ω (n) e Θ (n)
- Exercício Resolvido (5)

```
Para um valor qualquer de n,
   temos lg(n) + 1 multiplicações,
   logo, O(\lg n), \Omega(\lg n) e \Theta(\lg n)

    Exercício Resolvido (6)

   class Log {
   public static void main (String[] args) {
   int[] n = \{4,5,6,7,8,9,10,11,12,13,14,15,16,17,31,32,33,63,64,65\};
   int cont;
     for(int k = 0; k < n.length; k++){
     System.out.print("n[n = " + n[k] + "] => ");
     cont = 0:
         for(int i = n[k]; i > 0; i /= 2){
         System.out.print(" " + i);
         cont++;
      System.out.print(" (" + cont + " vezes)");
   System.out.print("\n");

    Exercício Resolvido (7)

   int min = array[0];
     for (int i = 1; i < n; i++){
       if (min > array[i]){
       min = array[i];
       }

    Exercício Resolvido (8)

   1º) Qual é a operação relevante?
   R: Comparação entre elementos do array
   2º) Quantas vezes ela será executada?
   R: Se tivermos n elementos: T(n) = n - 1
   3^{\circ}) O nosso T(n) = n – 1 é para qual dos três
   casos?
   R: Para os três casos
   4°) O nosso algoritmo é ótimo? Por que?
   R: Sim porque temos que testar
   todos os elementos para garantir
   nossa resposta
```

```
Exercício Resolvido (9) boolean resp = false; for (int i = 0; i < n; i++){ if (array[i] == x){ resp = true; i = n; } }</li>
```

• Exercício (1)

```
public static int minimo(int array[]) {
    int n = array.length;
    int min = array[0];
    for (int i = 1; i < n; i++) {
        if (min > array[i]) {
            min = array[i];
    return min;
public static int maximo(int array[]) {
    int n = array.length;
    int max = array[0];
    for (int i = 1; i < n; i++) {
        if (max < array[i]) {</pre>
            max = array[i];
        }
    return max;
```

- Exercício (2)
 Feito.
- Exercício Resolvido (10)
 O aluno deve escolher a primeira opção, pois a pesquisa sequencial tem custo Θ(n). A segunda opção tem custo Θ(n * lg n) para ordenar mais Θ(lg n) para a pesquisa binária

Exercício Resolvido (11)

a) 3n2 + 5n + 1 é O(n): falsa

b) 3n2 + 5n + 1 é O(n2): verdadeira

c) 3n2 + 5n + 1 é O(n3): verdadeira

d) $3n2 + 5n + 1 \in \Omega(n)$: verdadeira

e) $3n2 + 5n + 1 \in \Omega(n2)$: verdadeira

f) $3n2 + 5n + 1 \in \Omega(n3)$: falsa

g) $3n2 + 5n + 1 \in \Theta(n)$: falsa

h) $3n2 + 5n + 1 \in \Theta(n2)$: verdadeira

i) $3n2 + 5n + 1 \in \Theta(n3)$: falsa

• Exercício (3)

	O(1)	O(lg n)	O(n)	O(n.lg(n))	O(n²)	O(n³)	O(n ⁵)	O(n ²⁰)
f(n) = Ig(n)	F	V	V	V	V	V	V	V
$f(n) = n \cdot lg(n)$	F	F	F	V	V	V	V	V
f(n) = 5n + 1	F	F	V	V	V	V	V	V
$f(n) = 7n^5 - 3n^2$	F	F	F	F	F	F	V	V
$f(n) = 99n^3 - 1000n^2$	F	F	ш	F	F	V	V	V
$f(n) = n^5 - 99999n^4$	F	F	F	F	F	F	V	V

• Exercício (4)

	Ω(1)	Ω(lg n)	Ω(n)	$\Omega(n.lg(n))$	$\Omega(n^2)$	$\Omega(n^3)$	Ω(n ⁵)	Ω(n ²⁰)
f(n) = Ig(n)	F	V	F	F	F	F	F	F
$f(n) = n \cdot lg(n)$	F	F	F	V	F	F	F	F
f(n) = 5n + 1	F	F	V	F	F	F	F	F
$f(n) = 7n^5 - 3n^2$	F	F	F	F	F	F	V	F
f(n) = 99n ³ - 1000n ²	F	F	F	F	F	V	F	F
$f(n) = n^5 - 99999n^4$	F	F	F	F	F	F	V	F

• Exercício (5)

	Θ(1)	⊖ (lg n)	Θ (n)	Θ(n.lg(n))	Θ (n²)	Θ (n³)	Θ (n ⁵)	Θ(n ²⁰)
f(n) = Ig(n)	V	V	F	F	F	F	F	F
$f(n) = n \cdot lg(n)$	V	V	V	V	F	F	F	F
f(n) = 5n + 1	V	V	V	F	F	F	F	F
$f(n) = 7n^5 - 3n^2$	V	V	V	V	V	V	V	F
$f(n) = 99n^3 - 1000n^2$	V	V	V	V	V	V	F	F
$f(n) = n^5 - 99999n^4$	V	V	V	V	V	V	V	F

- Exercício Resolvido (12)
 Neste caso, executamos o Seleção n vezes: n x Θ(n2) = Θ(n3)
- Exercício Resolvido (13)
 Neste caso, temos duas etapas e o custo total será a soma das mesmas, logo: Θ(n.lg n) + Θ(lg n) = Θ(n.lg n)
- Exercício Resolvido (14) $a)h(n) + g(n) f(n) \Rightarrow [99n8] + [n.lg(n)] [3n2-5n-9] \Rightarrow O(n8), \ \Omega(n8) e \Theta(n8)$ $b)\Theta(h(n)) + \Theta(g(n)) \Theta(f(n)) \Rightarrow \Theta(n8) + \Theta(n.lg(n)) \Theta(n2) \Rightarrow O(n8), \ \Omega(n8) e \Theta(n8)$ $c)f(n) \times g(n) \Rightarrow \Theta(n2) \times \Theta(n.lg(n)) \Rightarrow O(n3.lg(n)), \ \Omega(n3.lg(n)) e \Theta(n3.lg(n))$ $d)g(n) \times l(n) + h(n) \Rightarrow \Theta(n.lg(n)) \times \Theta(n.lg2(n)) + \Theta(n8) \Rightarrow O(n8), \ \Omega(n8) e \Theta(n8)$ $e)f(n) \times g(n) \times l(n) \Rightarrow \Theta(n2) \times \Theta(n.lg(n)) \times \Theta(n.lg2(n)) \Rightarrow O(n4.lg3(n)), \ \Omega(n4.lg3(n)) e \Theta(n4.lg3(n))$ $f) \Theta(\Theta(\Theta(\Theta(f(n))))) \Rightarrow O(n2), \ \Omega(n2) e \Theta(n2)$
- Exercício Resolvido (15)
- Exercício (6)
- Exercício (7)
- Exercício (8) Em anexo.

• Exercício Resolvido (16)

função de complexidade

MOV CMP
PIOR
$$f(n) = 2 + (n-2)$$
 $f(n) = 1 + 2(n-2)$
MELHOR $f(n) = 2 + \frac{(n-2) \times 0}{n}$ $f(n) = 1 + (n-2)$

complexidade

PIOR
$$O(n), \Omega(n) \in \Theta(n)$$
 $O(n), \Omega(n) \in \Theta(n)$ $O(n), \Omega(n) \in \Theta(n)$ $O(n), \Omega(n) \in \Theta(n)$

• Exercício Resolvido (17)

PIOR -
$$f(n) = n + 2$$
 / $O(n)$, $\Omega(n) \in \Theta(n)$
MELHOR - $f(n) = n + 1$ / $O(n)$, $\Omega(n) \in \Theta(n)$

- Exercício Resolvido (18)
 f(n) = (2n + 1)n O(n2), Ω(n2) e Θ(n2)
- Exercício Resolvido (19)

$$f(n) = (lg(n) + 1) * n = n * lg(n) + n / O(n \times lg(n)), \Omega(n \times lg(n)) e \Theta(n \times lg(n))$$

- Exercício (9)
- Exercício (10)
- Exercício Resolvido (20)

	Constante	Linear	Polinomial	Exponencial
3n		/		
1	/			
(3/2)n		/		
2n ³			/	
2 ⁿ				/
3n ²			/	
1000	/			
(3/2) ⁿ				/

Exercício Resolvido (21)

$$f6(n) = 1$$

$$f2(n) = n$$

$$f1(n) = n^2$$

$$f5(n) = n^3$$

$$f4(n) = (3/2)^n$$

$$f3(n) = 2^n$$

• Exercício Resolvido (22)

$$f6(n) = 64$$

$$f3(n) = log8(n)$$

$$f2(n) = Ig(n)$$

$$f9(n) = 4n$$

$$f1(n) = n.log6(n)$$

$$f5(n) = n.lg(n)$$

$$f4(n) = 8n^2$$

$$f7(n) = 6n^3$$

$$f8(n) = 8^2n$$

Exercício Resolvido (23)

• Exercício (11)