

FICHA DE TRABALHO N.º 3 - MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL

"Conhece a Matemática e dominarás o Mundo." Galileu Galilei

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. Considere a condição a(x): $\sqrt{10-x} = \sqrt{10} - \sqrt{x}$

Qual das seguintes proposições é falsa?

$$lackbox{A}$$
 $a(0) \Leftrightarrow a(10)$

$$B \quad a(5) \Rightarrow a(0)$$

C
$$a(5) \wedge a(10)$$

2. Considere as seguintes proposições:

•
$$p: \frac{4}{\sqrt{7} - \sqrt{3}} = \sqrt{10}$$

•
$$q: \sqrt[3]{6} \times \sqrt{3} = \sqrt[6]{4 \times 3^5}$$

•
$$r: \frac{\sqrt[6]{\sqrt{\frac{1}{8}}}}{\sqrt[4]{32}} = \frac{\sqrt[4]{2}}{8}$$

Qual das seguintes proposições é verdadeira?

B
$$p \wedge r \Leftrightarrow q$$

$$\mathbf{D} \quad p \lor \sim q \Longrightarrow \sim r$$

3. Sejam
$$A = \sqrt[9]{\frac{1}{8}} - 8$$
, $B = \sqrt[3]{4}$ e $C = 4^{\frac{1}{6}}$. Então $\frac{A}{B} - C$ é igual a:

A
$$\frac{1}{2} - 5\sqrt[3]{2}$$

B
$$\frac{1}{2} - 3\sqrt[3]{2}$$

$$c 2-5\sqrt[3]{2}$$

D
$$2-3\sqrt[3]{2}$$

- **4.** Qual é a solução da equação $\sqrt{\sqrt[3]{64}} x + 16^{0.125} x = 1$?
- $\mathbf{C} \frac{\sqrt[4]{2}}{\sqrt{2}}$
- **5.** Sejam $x = \sqrt{a + \sqrt{a}}$ e $y = \sqrt{a \sqrt{a}}$, com a > 1. A expressão $x^4 y^4$ é equivalente a:
 - **A** $2\sqrt{a^5}$
- **B** $4\sqrt{a^3}$
- \mathbf{C} $4\sqrt{a^5}$

- 6. Seja a um número real positivo.
- O valor da expressão $\sqrt[6]{24} \times 2^{\frac{1}{2}} + \sqrt[3]{\sqrt{3}} \sqrt[6]{\frac{12a^3}{\sqrt{16a^6}}}$ é igual a:
 - **A** $2\sqrt[3]{3}$

- $\times a^{\frac{1}{15}}$ é solução da equação $x^5 2 = 0$. 7. Sejam a e b dois números reais positivos tal que
- Qual é o valor de b?

8. Na figura está representada a circunferência centrada em O, de perímetro 2 m, dividida em três sectores circulares de igual amplitude. Na mesma figura, a sombreado, está representado o triângulo $\left[OAB\right]$.

Qual é, em m^2 , o valor da área do triângulo OAB?

GRUPO II - ITENS DE RESPOSTA ABERTA

9. Sem usar calculadora, escreva as seguintes fracções com denominador racional e simplifique-as o mais possível.

9.1.
$$\frac{3}{\sqrt{5}}$$

9.2.
$$\sqrt{\frac{5}{8}}$$

9.3.
$$\frac{\sqrt[4]{4}}{\sqrt[3]{18}}$$

9.4.
$$\frac{18}{\sqrt{7}-2}$$

9.5.
$$\frac{\sqrt[4]{3}}{\sqrt{18} + \sqrt{8}}$$

9.6.
$$\frac{\sqrt{2}}{\sqrt[4]{2}-1}$$

9.7.
$$\frac{a}{\sqrt{a}-a}$$
, $a \in \mathbb{R}^+ \setminus \{1\}$

9.8.
$$\frac{\sqrt{3a} + \sqrt{a}}{\sqrt{3a} + \sqrt{a}}$$
, $a > 0$

*9.9.
$$\frac{2\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{6}+\sqrt{2}}$$
 (apresente o resultado na forma $\left(a+\sqrt{b}\right)\left(-a+\sqrt{c}\right)$, com $a,b,c\in\mathbb{N}$)

*9.10.
$$\frac{1}{\sqrt{3-\sqrt{8}}}$$
 (apresente o resultado na forma $a+b\sqrt{c}$, som $a,b,c\in\mathbb{N}$)

10. Simplifique usando as propriedades dos radicais e/ou as propriedades das potências de expoentes racional.

10.1.
$$8^{\frac{1}{2}} + 3\sqrt{128} - 2^{\frac{5}{2}}$$

(apresente) resultado na forma $a\sqrt[n]{b}$, com $a\in\mathbb{Z}$ e $b,n\in\mathbb{N}$)

10.2.
$$\frac{\sqrt[3]{9}}{\sqrt{6}} \times 2^{\frac{1}{2}}$$
 (apresente o le ultado na forma de potência de base natural)

10.3.
$$\sqrt[3]{108} + \left(\frac{1}{4}\right)^{\frac{1}{6}} + \sqrt[6]{2} \times \left(\left(\frac{1}{2}\right)^{-\frac{3}{2}}\right)^{\frac{1}{3}}$$
 (apresente o resultado na forma $a\sqrt[n]{b}$, com $a \in \mathbb{Z}$ e $b, n \in \mathbb{N}$)

10.4.
$$\frac{\sqrt[8]{128} \times 16^{-\frac{1}{8}} \times \sqrt[4]{2}}{\sqrt{\sqrt[6]{2}}}$$
 (apresente o resultado na forma $a\sqrt[n]{b}$, com $a \in \mathbb{Z}$ e $b, n \in \mathbb{N}$)

10.5.
$$\frac{6\sqrt[5]{5} - \sqrt[10]{25}}{\sqrt[3]{5} \times \sqrt[5]{5}}$$
 (apresente o resultado na forma de potência de base natural)

*10.6.
$$(\sqrt[3]{3} - 3)^2 + (1 - \sqrt{3})^2 + (4 - \sqrt{2})(4 + \sqrt{2}) + \sqrt[3]{4\sqrt{3}} \times \sqrt[3]{6}$$

11. Sejam x e y dois números reais positivos. Mostre que:

11.1.
$$\frac{2}{x^{-\frac{1}{8}}} - \sqrt{\sqrt{6561x}} = -\sqrt[8]{x}$$

11.2.
$$\frac{\sqrt{x\sqrt{y^2}}}{y\sqrt[3]{y^2}} \times x^{\frac{2}{3}} = \frac{x}{y} \sqrt[6]{\frac{x}{y}}$$

11.3.
$$x = 2y \Rightarrow \frac{\sqrt{xy}}{\sqrt{x} - \sqrt{y}} = (2 + \sqrt{2})\sqrt{y}$$

*11.4.
$$\frac{\sqrt[8]{x^3 y^7} \times x^{-\frac{1}{4}} \times (xy)^{\frac{2}{3}}}{\sqrt[24]{xy}} = \sqrt[4]{x^3 y^6}$$

11.5.
$$0 \le x < y \Rightarrow x^3 < y^3$$

11.6.
$$\sqrt{x + y + \sqrt{4xy}} = \sqrt{x} + \sqrt{y}$$

12. Sejam a e b dois números reais positivos. Usando as propriedades do radicais e a definição de potência de expoente racional, mostre que:

12.1.
$$\frac{a^{\frac{2}{3}} \times a^{-\frac{3}{5}} \times \left(a^{\frac{1}{3}}\right)^{\frac{2}{5}}}{a^{-\frac{1}{3}}} = a^{\frac{8}{15}}$$

18.2.
$$\frac{\left(a^{\frac{3}{4}}\right)^{\frac{5}{6}}}{b^{\frac{2}{3}}} = \left(\frac{a}{b}\right)^{\frac{5}{8}} \times b^{-\frac{1}{24}}$$

*12.3.
$$m-p=n \Rightarrow a^{\frac{m}{p}} \times a^{\frac{n}{m}} \div \left(a^{\frac{m}{p}}\right)^{\frac{n}{m}} = a^{\frac{m+n}{m}}, m,n,p \in \mathbb{N}$$

12.4.
$$3a = 8b \Rightarrow \frac{b^{2,1}}{a^{2,1}} = (0,375)^{2,1}$$

13. Sejam a e b dois números reais positivos tais que a é a raiz cúbica de b.

Considere a expressão $A = b^{-\frac{5}{6}} \times \frac{a^{\frac{2}{3}} \times \sqrt[3]{a}}{\sqrt{a^2 b}}$

- **13.1.** Mostre que $A = a^{-4}$.
- **13.2.** Determine $a \in b$ de modo que A = 16.

*14. Sejam x e y dois números inteiros positivos. Considere a expressão $A = \frac{2\sqrt[n]{xy}}{\sqrt{\sqrt[n]{x^n}}} \times \frac{1}{x^n \sqrt[6]{y}}, n \in \mathbb{N}$.

- **14.1.** Determine *n* de modo que $A = \frac{2}{x^7 \sqrt[3]{x}}$.
- **14.2.** Considere que y = 1. Determine x e n de modo que $A = \frac{1}{2}$.

- **15.** Sejam x e y dois números primos. Considere a expressão $E = \frac{\sqrt[3]{\sqrt{xy^2}}}{\sqrt{xy^3} \times \sqrt[6]{y}}$.
 - **15.1.** Usando as propriedades dos radicais, mostre que $E = \frac{1}{y\sqrt[3]{xy}}$
 - *15.2. Determine o valores de x e y tais que $E = \frac{\sqrt[3]{36}}{18}$

16. Seja
$$a = \frac{4\sqrt{5\sqrt{2}} - \sqrt{\sqrt{5}} \times \sqrt[4]{10}}{\sqrt{\sqrt{162}}}$$
.

- **16.1.** Mostre que $a = \sqrt{5}$.
- **16.2.** Mostre que a e -a são soluções da equação $2x^3 + x^2 10x 5 = 0$
- **16.3**. Mostre que 1-a e 1+a são soluções da equação $x^4-12x^2+16=0$.

17. Sejam
$$a = \frac{1}{\sqrt{3} - \sqrt{2}}$$
 e $b = \frac{1}{\sqrt{3} + \sqrt{2}}$.

- **17.1.** Determine, com denominador racional, $\frac{a}{h}$.
- **17.2.** Determine, com denominador racional, $(a+b)^2$.
- 17.3. Verifique que $\frac{a}{b}$ é raiz do polinómio $p(x) = x^3 5x^2 2\sqrt{6}x^2$.
- **18.** Considere a condição $a(x) = \frac{\sqrt{8x^2}}{\sqrt{6} + \sqrt{2}}$.
 - **18.1** Mostre que a proposição $\forall x \in \mathbb{R}^+, \ a(x) = x(\sqrt{3} 1)$ é verdadeira.
 - **18.2.** Mostre que a proposição $\forall x \in \mathbb{R}, \ a(x) = x(\sqrt{3} 1)$ é falsa.
 - **18.3.** Determine o valor de $x \in \mathbb{R}^+$ tal que a(x) = 2. (apresente o resultado com denominador racional)

19. Considere as proposições p, q e r tais que:

$$p: \frac{\sqrt{8} \times 2^{-\frac{1}{3}}}{\sqrt[6]{32} \times \sqrt[3]{2^{-5}}} \in \mathbb{N}, \qquad q: \ \forall x, y \in \mathbb{R}^+, \frac{\sqrt[4]{x^2 y}}{\sqrt{x^3 \sqrt{y^3}}} = \frac{\sqrt{y}}{xy} \qquad e \qquad r: \ \forall x \in \mathbb{R}, \sqrt{x^2} = x$$

- **19.1.** Mostre que a proposição r é falsa.
- 19.2. Indique o valor lógico das seguintes proposições:

a)
$$p \Rightarrow \sim (\sim r \land q)$$

b)
$$(q \Rightarrow r) \Rightarrow p$$

- *19.3. Escreva na forma $\,a+b\,\sqrt{c}\,$, com $\,a,b,c\in\mathbb{Z}\,$ a expressão $\,\sqrt{49-12\sqrt{5}}\,$
- **20.** Na figura está representado o rectângulo [ABCD] tal que $\overline{AC} = x^2$ e $\overline{BC} = \frac{7x}{2}$, com x > 4.

- **20.1.** Mostre que $\overline{AB} = \frac{x\sqrt{4x^2-49}}{2}$.
- **20.2.** Sabendo que $x \frac{7}{2}$ e $x + \frac{7}{2}$ são quadrados perfeitos, determine a área do rectângulo.
- **21.** Na figura estão representados os triângulos $\begin{bmatrix} ABC \end{bmatrix}$, $\begin{bmatrix} ADC \end{bmatrix}$ e $\begin{bmatrix} BCD \end{bmatrix}$, rectângulos, respectivamente, em C,D e D. Tal como a figura sugere, o ponto D pertence ao lado $\begin{bmatrix} AB \end{bmatrix}$, $\overline{DB} = \sqrt[3]{2}$, $\overline{CD} = \sqrt[6]{32}$ e $\overline{AC} > \overline{BC}$.

Mostre que $\overline{BC} = \sqrt[6]{108}$ e determine a área do triângulo $\begin{bmatrix} ABC \end{bmatrix}$.

*22. Na figura está representado o cubo $\begin{bmatrix} ABCDEFGH \end{bmatrix}$. Os pontos P e Q pertencem, respectivamente, às arestas $\begin{bmatrix} EH \end{bmatrix}$ e $\begin{bmatrix} GH \end{bmatrix}$.

- **22.1.** Suponha que que $\overline{AB} = 5$ e que $\overline{EP} = \overline{GQ} = 2$. Qual é a área do trapézio [APQC]?
- 22.2. Suponha que o cubo está inscrito numa esfera com volume igual a 36.
 - a) Determine área total do cubo.
 - b) Determine o volume do cubo.
- *23. Na figura está representado o prisma quadrangular [ABCDEFGH]

Sabe-se que $\overline{AB} = \sqrt[5]{a}$, $\overline{BF} = 2\overline{AB}$, com a > 0, e que P é o ponto médio do segmento de recta [BF].

- **23.1.** Mostre que a área do triângulo [EBG] é dada, em função de a, por $\frac{3\sqrt[5]{a^2}}{2}$.
- **23.2.** Mostre que a altura do triângulo [EPG] é dada, em função de a, por $\frac{\sqrt{6}}{2} \times \sqrt[5]{a}$.
- **23.2.** Determine, em função de a, a altura da pirâmide [EPGF] em relação ao vértice F. (apresente o resultado com um único radical)

SOLUCIONÁRIO

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

2. D

3. A

5. B

6. D 7. C

GRUPO II - ITENS DE RESPOSTA ABERTA

9.1.
$$\frac{3\sqrt{5}}{5}$$

9.2.
$$\frac{\sqrt{10}}{4}$$

9.3.
$$\frac{\sqrt[6]{18}}{3}$$

9.4.
$$12+6\sqrt{7}$$

9.5.
$$\frac{\sqrt[4]{12}}{10}$$

9.6.
$$2+\sqrt{2}+\sqrt[4]{8}+\sqrt[4]{32}$$
 9.7. $\frac{\sqrt{a}+a}{1-a}$

9.7.
$$\frac{\sqrt{a} + a}{1 + a}$$

9.8.
$$2+\sqrt{3}$$

9.9.
$$(1+\sqrt{2})(-1+\sqrt{3})$$
 9.10. $1+\sqrt{2}$

9.10.
$$1+\sqrt{2}$$

9.10.
$$1+\sqrt{2}$$

10.1.
$$22\sqrt{2}$$
 10.2. $3^{\frac{1}{6}}$

10.3.
$$\frac{9\sqrt[3]{2}}{2}$$

10.5.
$$5^{\frac{4}{5}}$$

10.6.
$$\sqrt[3]{9} - 6\sqrt[3]{3} + 27$$

13.2.
$$a = \frac{1}{2}$$
 e $b = \frac{1}{8}$

14.1.
$$n = 6$$

14.2.
$$x = n = 2$$

15.2.
$$x = 2$$
 e $y = 3$

17.1.
$$5+2\sqrt{6}$$

18.3.
$$x = 1 + \sqrt{3}$$

19.3.
$$3\sqrt{5}-2$$

20.1.
$$A_{[ABCD]} = \frac{13125}{2}$$

21.
$$A_{[ABC]} = 3\sqrt[6]{2}$$

22.1.
$$12\sqrt{6}$$

22.2. a)
$$A_{\text{total}} = \frac{72}{\sqrt{3}}$$

22.2. a)
$$A_{\text{total}} = \frac{72}{\sqrt[3]{\pi^2}}$$
 22.2. b) $V_{\text{cubo}} = \frac{24\sqrt{3}}{\pi}$