

Relations

1 Why

We want to relate elements of two sets.

2 Definition

A **relation** between two non-empty sets A and B is a subset of $A \times B$. A relation on a single set C is a subset of $C \times C$.

2.1 Notation

We denote relations with upper case capital latin letters because they are sets. Let R be a relation on A and B. We denote that $(a,b) \in R$ by aRb, read aloud as "a in relation R to b."

Often, instead of latin letters we use other symbols; these symbols suggest the nature of the relation. For example, \sim , =, <, \leq , \prec , and \preceq .

3 Properties

Let R be a relation on a non-empty set A. R is **reflexive** if $(a,a) \in R$ for all $a \in A$. R is **transitive** if $(a,b) \in R \land (b,c) \in R \implies (a,c) \in R$ for all $a,b,c \in A$. R is **symmetric** if $(a,b) \in R \implies (b,a) \in R$ for all $a,b \in A$. R is **anti-symmetric** if $(a,b) \in R \implies (b,a) \notin R$ for all $a,b \in A$.