

Comparing Like with Like

- Compare two data sets, x and y, to assess if they are "similar"
- Simple: plot y against x
- Can be very misleading: "suggestive"
- Example: plot predicted values (y) versus observed values (x)
 - The line is the identity line y=x

Comparing Like with Like

- Two comparisons: Which set of (x, y) values is more similar?
- The two data sets are the same!
 - Just that x and y are swapped
- So why is the visual perception so different?

Comparing Like with Like

- Same axis ranges
- One unit corresponds to the same number of pixels on both axes
 - The graphs are square
 - Consequence: the identity line has a 45 degree slope
- Avoids visual bias

A picture is worth a thousand tables. Slide 3

Change From Baseline

- Change from baseline = change from 100% or 1
- To avoid misleading visual perception, consider
 - a graph symmetric around "no change"
 - Addition of a supportive line of no change

