

Frekvencijska karakteristika sustava

# Signali i sustavi

Profesor Branko Jeren

23. svibanj 2007.



Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom Prijenosna

funkcija
Frekvencijska
karakteristika
vremenski
diskretnih

# Odziv diskretnog sustava na pobudu eksponencijalom $Uz^n$

- pokazano je kako je  $y(t) = H(s)Ue^{st}$ , odziv linearnog vremenski stalnog kontinuiranog sustava na pobudu svevremenskom eksponencijalom  $u(t) = Ue^{st}$ ,
- razmotrimo odziv diskretnog sustava na svevremensku eksponencijalu

$$u(n) = Uz^n, \quad n \in C$$
jelobrojni,  $z \in K$ ompleksni

odziv mirnog sustava određujemo konvolucijom pa je

$$y(n) = h(n) * u(n) = h(n) * Uz^{n} = U \sum_{m=-\infty}^{\infty} h(m)z^{n-m} =$$

$$= Uz^{n} \underbrace{\sum_{m=-\infty}^{\infty} h(m)z^{-m}}_{H(z)} = H(z)Uz^{n}$$



Profesor Branko Jeren

Frekvencijski karakteristiki sustava

Odziv diskretnog sustava na pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih sustava

# Odziv diskretnog sustava na pobudu eksponencijalom

• prema tome, odziv mirnog, linearnog, vremenski diskretnog sustava, na svevremensku eksponencijalu  $Uz^n$ , je

$$y(n) = H(z)Uz^n$$

gdje je

$$H(z) = \sum_{m=-\infty}^{\infty} h(m)z^{-m}$$

- za konkretnu kompleksnu frekvenciju pobude z, dakle kompleksni broj, H(z) je također, u općem slučaju, kompleksan broj pa vrijedi
- za pobudu kompleksnom eksponencijalom odziv je istog oblika i rezultat je množenja pobude s konstantom
- kompleksnu eksponencijalu nazivamo karakterističnom ili vlastitom funkcijom sustava



Profesor Branko Jeren

Odziv diskretnog sustava na pobudu eksponencijalom

# Odziv diskretnog sustava na pobudu eksponencijalom $U(e^{j\omega})^n$

razmatra se slučaj odziva linearnog vremenski stalnog diskretnog sustava na svevremensku eksponencijalu frekvencije  $z = e^{j\omega}$ . dakle.

$$u(n) = Uz^{n} = U(e^{j\omega})^{n}$$

$$y(n) = h(n) * u(n) = h(n) * U(e^{j\omega})^{n} =$$

$$= U\sum_{m=-\infty}^{\infty} h(m)e^{j\omega(n-m)} =$$

$$= Ue^{j\omega n} \sum_{m=-\infty}^{\infty} h(m)e^{-j\omega m} = H(e^{j\omega})Ue^{j\omega n}$$

$$H(e^{j\omega})$$

• za  $\omega \in Realni$ ,  $H(e^{j\omega})$  je kompleksna funkcija i naziva se frekvencijska karakteristika diskretnog sustava

$$H(e^{j\omega}) = \sum_{m=-\infty}^{\infty} h(m) e^{-j\omega m}$$



Profesor Branko Jeren

Frekvencijsk karakteristik sustava

Odziv diskretnog sustava na pobudu eksponencijalom

eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih sustava

# Frekvencijska karakteristika diskretnog sustava

• očigledno je kako vrijedi veza frekvencijske karakteristike diskretnog sustava,  $H(e^{j\omega})$ , i prijenosne funkcije H(z)

$$H(e^{j\omega}) = H(z)|_{z=e^{j\omega}}$$

• za realni impulsni odziv h(n) vrijedi

$$H(e^{j\omega}) = \underbrace{\sum_{m=-\infty}^{\infty} h(m)\cos(\omega m)}_{Re[H(e^{j\omega})]} - j\underbrace{\sum_{m=-\infty}^{\infty} h(m)\sin(\omega m)}_{-Im[H(e^{j\omega})]}$$

$$H(e^{j\omega}) = Re[H(e^{j\omega})] + jIm[H(e^{j\omega})]$$

- očigledno je kako je
  - $Re[H(e^{j\omega})]$  parna funkcija od  $\omega$  a
  - $Im[H(e^{j\omega})]$  neparna funkcija od  $\omega$



Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu

eksponencijalom Prijenosna

funkcija Frekvencijsl karakteristil

karakteristik vremenski diskretnih

# Frekvencijska karakteristika diskretnog sustava

ullet kako je  $H(e^{j\omega})$  kompleksna funkcija vrijedi

$$H(e^{j\omega}) = Re[H(e^{j\omega})] + jIm[H(e^{j\omega})] = |H(e^{j\omega})|e^{j\angle H(e^{j\omega})}$$

pri čemu je amplitudna frekvencijska karakteristika,

$$|H(e^{j\omega})| = \sqrt{(Re[H(e^{j\omega})])^2 + (Im[H(e^{j\omega})])^2},$$

a fazna frekvencijska karakteristika,

$$\angle H(e^{j\omega}) = \arctan\left(\frac{Im[H(e^{j\omega})]}{Re[H(e^{j\omega})]}\right)$$

- iz parnosti  $Re[H(e^{j\omega})]$  i neparnosti  $Im[H(e^{j\omega})]$ , slijedi kako je
  - $|H(e^{j\omega})|$  parna funkcija od  $\omega$  i
  - $\angle \dot{H}(e^{j\dot{\omega}})$  neparna funkcija od  $\omega$



Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

Prijenosna

Frekvencijski karakteristiki vremenski diskretnih

# Frekvencijska karakteristika diskretnog sustava

- iz parnosti i neparnosti realnog i imaginarnog dijela frekvencijske karakteristike slijedi  $H(e^{-j\omega}) = H^*(e^{j\omega})$
- iz

$$H(e^{j\omega}) = Re[H(e^{j\omega})] + jIm[H(e^{j\omega})]$$

i

$$H(e^{-j\omega}) = Re[H(e^{-j\omega})] + jIm[H(e^{-j\omega})]$$

uz parni  $Re[H(e^{j\omega})]$  i neparni  $Im[H(e^{j\omega})]$  slijedi

$$H(e^{-j\omega}) = Re[H(e^{j\omega})] - jIm[H(e^{j\omega})] = H^*(e^{j\omega})$$



školska godina 2006/2007 Cjelina 16

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

eksponencijalo Prijenosna

Frekvencijska karakteristika vremenski diskretnih

# Periodičnost frekvencijske karakteristike diskretnog sustava

• frekvencijska karakteristika diskretnog sustava je periodična s periodom  $2\pi$ 

$$H(e^{j(\omega+2\pi k)}) = \sum_{m=-\infty}^{\infty} h(m)e^{-j(\omega+2\pi k)m} =$$

$$= \sum_{m=-\infty}^{\infty} h(m)e^{-j\omega m} \underbrace{e^{-j2\pi km}}_{1} = H(e^{j\omega})$$



Profesor Branko Jeren

Frekvencijsk karakteristik sustava

Odziv diskretnog sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih

# Odziv diskretnog sustava na realnu sinusoidu

• pokazano je kako je za pobudu  $u(n)=Uz^n=U(e^{j\omega})^n, U\in Realni,$  odziv linearnog diskretnog sustava

$$y(n) = Yz^n = (H(z)Uz^n)_{z=e^{j\omega}} = H(e^{j\omega})Ue^{j\omega n}$$

• odziv na pobudu  $u(n)=Uz^n=U(e^{-j\omega})^n, U\in Realni,$  je

$$y(n) = Yz^n = (H(z)Uz^n)_{z=e^{-j\omega}} = H(e^{-j\omega})e^{-j\omega n}$$

• iz ovoga zaključujemo o odzivu na svevremensku pobudu  $u(n) = U\cos(\omega n) = 0.5 Ue^{j\omega n} + 0.5 Ue^{-j\omega n}$ 

$$y(n) = 0.5UH(e^{j\omega})e^{j\omega n} + 0.5UH(e^{-j\omega})e^{-j\omega n}$$



Frekvencijska karakteristika sustava Odziv diskretnog

sustava na pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih sustava

# Odziv diskretnog sustava na realnu sinusoidu

$$y(n) = 0.5UH(e^{j\omega})e^{j\omega n} + 0.5UH(e^{-j\omega})e^{-j\omega n}$$

pišemo kao

$$y(n) = 0.5UH(e^{j\omega})e^{j\omega n} + (0.5UH(e^{j\omega})e^{j\omega n})^*$$

odnosno

$$y(n) = 2Re(0.5UH(e^{j\omega})e^{j\omega n}) = Re(|H(e^{j\omega})|Ue^{j\angle H(e^{j\omega})}e^{j\omega n})$$

i finalno

$$y(n) = |H(e^{j\omega})|U\cos\left(\omega n + \angle H(e^{j\omega})\right), \quad -\infty < n < \infty$$

• zaključujemo kako je problem određivanja odziva sustava, u vremenskoj domeni, transformiran u frekvencijsku domenu i svodi se na određivanje vrijednosti  $H(e^{j\omega})$ 



Frekvencijska karakteristika sustava Odziv diskretnog

sustava na pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih sustava

# Operatorski zapis jednadžbe diferencija

 linearni, vremenski stalni, diskretan sustav N-tog reda, opisan je jednadžbom diferencija

$$y(n) + a_1 y(n-1) + \ldots + a_{N-1} y(n-N+1) + a_N y(n-N) =$$
  
=  $b_0 u(n) + b_1 u(n-1) + \ldots + b_{N-1} u(n-N+1) + b_N u(n-N)$ 

jednadžbu zapisujemo pomoću operatora pomaka definiranog kao

za 
$$n \in C$$
jelobrojni  $E^{-1}w(n) = w(n-1)$  — pomak za jedan korak  $E^{-K}w(n) = w(n-K)$  — pomak za  $K$  koraka 
$$\underbrace{[1+a_1E^{-1}+\ldots+a_{N-1}E^{-N+1}+a_NE^{-N}]}_{A(E)}y(n) = \underbrace{[b_0+b_1E^{-1}+\ldots+b_{N-1}E^{-N+1}+b_NE^{-N}]}_{A(E)}u(n)$$

B(E)



Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih sustava

# Operatorski zapis jednadžbe diferencija

 dakle, skraćeni, operatorski zapis jednadžbe diferencija zapisujemo kao

$$A(E)y(n) = B(E)u(n)$$

gdje su A(E) i B(E) složeni operatori

$$A(E) = 1 + a_1 E^{-1} + \ldots + a_{N-1} E^{-N+1} + a_N E^{-N}$$
  

$$B(E) = b_0 + b_1 E^{-1} + \ldots + b_{N-1} E^{-N+1} + b_N E^{-N}$$

odnosno

$$y(n) = \left(\frac{B(E)}{A(E)}\right)u(n) \Rightarrow y(n) = H(E)u(n)$$

• složeni operator H(E) pridružuje vremenskoj funkciji y(n) funkciju u(n) i predstavlja formalni, operatorski, zapis polazne jednadžbe diferencija



Profesor Branko Jeren

Frekvencijska karakteristika sustava Odziv diskretnog

sustava na pobudu eksponencijalom Prijenosna funkcija Frekvencijska

Frekvencijski karakteristiki vremenski diskretnih sustava

# Odziv sustava na pobudu eksponencijalom

 sustav pobuđujemo svevremenskom kompleksnom eksponencijalom

$$n \in C$$
jelobrojni,  $z \in K$ ompleksni  $u(n) = Uz^n$ 

U – kompleksna amplituda pobude, z – neka konkretna kompleksna frekvencija

- budući da pobuda starta u  $-\infty$ , za stabilni su sustav početni uvjeti, koji su eventualno postojali u  $-\infty$ , istitrali, nema prijelaznog odziva, i totalno je rješenje jednako partikularnom rješenju jednadžbe diferencija
- totalni odziv je zato

$$y(n) = y_p(n) = Yz^n$$



2006/2007

Odziv diskretnog sustava na pobudu eksponencijalom

# Odziv sustava na pobudu eksponencijalom

 kompleksnu amplitudu odziva Y određujemo iz polazne jednadžbe metodom neodređenih koeficijenata pa. uvrštenjem u polaznu jednadžbu, slijedi

$$\underbrace{(1 + a_1 z^{-1} + \ldots + a_{N-1} z^{-N+1} + a_N z^{-N})}_{A(z)} Y z^n = \underbrace{(b_0 + b_1 z^{-1} + \ldots + b_{N-1} z^{-N+1} + b_N z^{-N})}_{B(z)} U z^n$$

kompleksna je amplituda odziva Y

$$Y = \underbrace{\frac{b_0 + b_1 z^{-1} + \ldots + b_{N-1} z^{-N+1} + b_N z^{-N}}{1 + a_1 z^{-1} + \ldots + a_{N-1} z^{-N+1} + a_N z^{-N}}_{H(z)} U = H(z)U$$

 amplituda partikularnog rješenja Y određena je amplitudom pobude, svojstvima sustava, te konkretnom <ロ > ← □ > ← □ > ← □ > ← □ = ・ つ へ ○ kompleksnom frekvencijom z



Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

### Prijenosna funkcija

Frekvencijski karakteristiki vremenski diskretnih

# Prijenosna funkcija

• H(z) je veličina koja određuje odnos kompleksne amplitude prisilnog odziva  $Yz^n$  i kompleksne amplitude pobude  $Uz^n$ 

$$H(z) = \frac{b_0 + b_1 z^{-1} + \ldots + b_{N-1} z^{-N+1} + b_N z^{-N}}{1 + a_1 z^{-1} + \ldots + a_{N-1} z^{-N+1} + a_N z^{-N}} = \frac{Y}{U}$$

 za konkretnu frekvenciju z, H(z) ima značenje faktora kojim treba množiti kompleksnu amplitudu ulaza da se dobije amplituda izlaza

$$Y = H(z)U$$

• H(z) možemo formalno zapisati iz složenog operatora H(E), zamjenom operatora  $E^{-1}$  s kompleksnom frekvencijom  $z^{-1}$ 



Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

### Prijenosna funkcija

karakteristik vremenski diskretnih sustava

# Prijenosna funkcija

• H(z), za  $z \in Kompleksni$ , nazivamo prijenosna funkcija ili transfer funkcija diskretnog sustava i možemo je definirati kao

$$n \in Cjelobrojni, z \in Kompleksni$$
  
 $H(z) = \frac{izlazni \ signal}{ulazni \ signal} \Big|_{u(n) = Uz^n} = \frac{Yz^n}{Uz^n} = \frac{Y}{U}$ 

• prijenosna ili transfer funkcija sustava H(z) racionalna je funkcija koju možemo prikazati kao

$$H(z) = \frac{b_0 + b_1 z^{-1} + \ldots + b_n z^{-N}}{1 + a_1 z^{-1} + \ldots + a_N z^{-N}} = \frac{\sum_{j=0}^{N} b_j z^{-j}}{1 + \sum_{j=1}^{N} a_j z^{-j}}$$

odnosno

$$H(z) = \frac{b_0 z^N + b_1 z^{N-1} + \ldots + b_N}{z^N + a_1 z^{N-1} + \ldots + a_N} = \frac{\sum_{j=0}^{N} b_j z^{N-j}}{z^N + \sum_{j=1}^{N} a_j z^{N-j}}$$



Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

### Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih

# Prijenosna funkcija

 prijenosnu funkciju možemo pisati uz pomoć produkta korijenih faktora:

$$H(z) = \frac{\sum_{j=0}^{N} b_j z^{-j}}{1 + \sum_{j=1}^{N} a_j z^{-j}} = b_0 \frac{\prod_{j=1}^{N} (1 - z_j z^{-1})}{\prod_{j=1}^{N} (1 - p_j z^{-1})}$$

odnosno u obliku

$$H(z) = \frac{\sum_{j=0}^{N} b_j z^{N-j}}{z^n + \sum_{j=1}^{N} a_j z^{N-j}} = b_0 \frac{\prod_{j=1}^{N} (z - z_j)}{\prod_{j=1}^{N} (z - p_j)}$$

 $z_1, z_2, \dots, z_N$  su nule prijenosne funkcije  $p_1, p_2, \dots, p_N$  su polovi<sup>1</sup> prijenosne funkcije

<sup>&</sup>lt;sup>1</sup>dolazi od engleske riječi tent-pole



Frekvencijska karakteristika sustava

odziv diskretnog sustava na pobudu eksponencijalom

### Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih

# Prijenosna funkcija

prijenosnu funkciju možemo pisati kao produkt i kvocijent vektora

$$H(z) = b_0 \frac{|z - z_1| e^{j\angle(z - z_1)} |z - z_2| e^{j\angle(z - z_2)} \cdots |z - z_N| e^{j\angle(z - z_N)}}{|z - p_1| e^{j\angle(z - p_1)} |z - p_2| e^{j\angle(z - p_2)} \cdots |z - p_N| e^{j\angle(z - p_N)}}$$

ullet prijenosnu funkciju H(z) možemo pisati i kao

$$H(z) = |H(z)|e^{j\angle H(z)}$$

pri čemu su

$$|H(z)| = |b_0| \frac{|z - z_1||z - z_2| \cdots |z - z_N|}{|z - p_1||z - p_2| \cdots |z - p_N|}$$

$$\angle H(z) = \angle (b_0) + [\angle (z - z_1) + \angle (z - z_2) + \dots + \angle (z - z_N)] -$$

$$- [(\angle (z - p_1) + \angle (z - p_2) + \dots + \angle (z - p_N)]$$



Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu

### Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih sustava

# Prijenosna funkcija diskretnog sustava – primjer

 za, prije razmatrani, diskretni sustav, opisan jednadžbom diferencija,

$$y(n) - 0.8\sqrt{2}y(n-1) + 0.64y(n-2) = u(n)$$

prijenosnu funkciju možemo formalno pisati zamjenjujući operator  $E^{-1}$  sa  $z^{-1}$ , pa slijedi

$$H(z) = \frac{1}{1 - 0.8\sqrt{2}z^{-1} + 0.64z^{-2}} = \frac{z^2}{z^2 - 0.8\sqrt{2}z + 0.64}$$



Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu

#### Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih

### Prisilni odziv sustava

• totalni je odziv vremenski diskretnog sustava, na pobudu  $u(n) = cos(\omega n) \cdot \mu(n)$ , dan kao<sup>2</sup>

$$y(n) = \sum_{j=1}^{N} c_i q_i^n + y_p(n)$$

• pri čemu je prisilni odziv, uz danu pobudu,

$$y_p(n) = |H(e^{j\omega})| \cos\left(\omega n + \angle H(e^{j\omega})\right), \qquad n \ge 0$$

<sup>&</sup>lt;sup>2</sup>ovdje su pretpostavljene jednostruke karakteristične frekvencije



Profesor Branko Jeren

Frekvencijska karakteristika sustava

sustava na pobudu eksponencijalom

### Prijenosna funkcija

Frekvencijski karakteristiki vremenski diskretnih sustava

# Prisilni odziv diskretnog sustava – primjer

prije razmatrani diskretni sustav, opisan jednadžbom diferencija,

$$y(n) - 0.8\sqrt{2}y(n-1) + 0.64y(n-2) = u(n)$$

sustav je pobuđen s

$$u(n) = -0.2\cos(\frac{\pi}{8}n) \cdot \mu(n)$$

- za ovaj sustav određujemo, prisilni odziv, prijenosnu funkciju i frekvencijsku karakteristiku
- prisilni odziv, na pobudu  $u(n) = Ucos(\omega_0 n)$  je, kako je prije pokazano,

$$y_p(n) = |H(e^{j\omega_0})|U\cos\left(\omega_0 n + \angle H(e^{j\omega_0})\right)$$



Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponenciialom

### Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih

# Prisilni odziv diskretnog sustava – primjer

iz jednadžbe diferencija,

$$y(n) - 0.8\sqrt{2}y(n-1) + 0.64y(n-2) = u(n)$$

odnosno

$$(1 - 0.8\sqrt{2}E^{-1} + 0.64E^{-2})y(n) = u(n)$$

prije je već izvedena prijenosna funkcija

$$H(z) = \frac{1}{1 - 0.8\sqrt{2}z^{-1} + 0.64z^{-2}}$$

a frekvencijsku karakteristiku izračunavamo za  $z=e^{j\omega}$ 

$$H(e^{j\omega}) = \frac{1}{1 - 0.8\sqrt{2}e^{-j\omega} + 0.64e^{-j2\omega}}$$



Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

### Prijenosna funkcija

Frekvencijski karakteristiki vremenski diskretnih sustava

# Prisilni odziv diskretnog sustava – primjer

• za konkretnu frekvenciju pobude  $\omega_0=\frac{\pi}{8}$  omjer kompleksne amplitude odziva i pobude je

$$H(e^{j\omega_0}) = H(e^{j\frac{\pi}{8}}) = \frac{1}{1 - 0.8\sqrt{2}e^{-j\frac{\pi}{8}} + 0.64e^{-j2\frac{\pi}{8}}}$$

$$H(e^{j\frac{\pi}{8}}) = 2.4495 + j0.1178 = 2.4524e^{j0.0481}$$

pa je partikularno rješenje

$$y_p(n) = |H(e^{j\omega_0})|U\cos\left(\omega_0 n + \angle H(e^{j\omega_0})\right) =$$

$$= 2.4524(-0.2)\cos\left(\frac{\pi}{8}n + 0.0481\right) =$$

$$= -0.49048\cos\left(\frac{\pi}{8}n + 0.0481\right) \qquad n \ge 0$$



Profesor Branko Jeren

Frekvencijska karakteristika sustava

odziv diskretnog sustava na pobudu eksponencijalom

### Prijenosna funkcija

Frekvencijski karakteristiki vremenski diskretnih sustava

# Prisilni odziv diskretnog sustava – primjer

 prije je određen prisilni odziv diskretnog sustava, zadanog jednadžbom diferencija,

$$y(n) - 0.8\sqrt{2}y(n-1) + 0.64y(n-2) = u(n),$$

na pobudu 
$$u(n) = -0.2cos(\frac{\pi}{8}n) \cdot \mu(n)$$

- pokazano je kako je partikularno rješenje jednadžbe diferencija jednako prisilnom odzivu sustava
- ovdje će biti ponovljen postupak određivanja partikularnog rješenja u vremenskoj domeni, kako bi su ukazalo na jednostavnost netom prikazanog postupka određivanja partikularnog rješenja u frekvencijskoj domeni



Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

### Prijenosna funkcija

Frekvencijski karakteristiki vremenski diskretnih

# Prisilni odziv diskretnog sustava – primjer

• kako je pobuda  $u(n) = -0.2cos(\frac{\pi}{8}n) \cdot \mu(n)$  partikularno rješenje je oblika

$$y_p(n) = K_1 cos(\frac{\pi}{8}n) + K_2 sin(\frac{\pi}{8}n)$$

- koeficijente  $K_1$  i  $K_2$  određujemo metodom neodređenog koeficijenta
- uvrštenjem  $y_p(n)$  u polaznu jednadžbu slijedi

$$y_p(n) - 0.8\sqrt{2}y_p(n-1) + 0.64y_p(n-2) = -0.2cos(\frac{\pi}{8}n);$$
 $K_1cos(\frac{\pi}{8}n) + K_2sin(\frac{\pi}{8}n) - 0.8\sqrt{2}K_1cos[\frac{\pi}{8}(n-1)] -$ 

$$K_1 cos(\frac{\pi}{8}n) + K_2 sin(\frac{\pi}{8}n) - 0.8\sqrt{2}K_1 cos[\frac{\pi}{8}(n-1)] - 0.8\sqrt{2}K_2 sin[\frac{\pi}{8}(n-1)] + 0.64K_1 cos[\frac{\pi}{8}(n-2)] + 0.64K_2 sin[\frac{\pi}{8}(n-2)] = -0.2 cos(\frac{\pi}{8}n)$$



Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

### Prijenosna funkcija

Frekvencijski karakteristiki vremenski diskretnih

# Prisilni odziv diskretnog sustava – primjer

primjenom trigonometrijskih transformacija slijedi

$$\begin{split} &K_{1}cos(\frac{\pi}{8}n) + K_{2}sin(\frac{\pi}{8}n) - \\ &-0.8\sqrt{2}K_{1}[cos(\frac{\pi}{8}n)cos(\frac{\pi}{8}) + sin(\frac{\pi}{8}n)sin(\frac{\pi}{8})] - \\ &-0.8\sqrt{2}K_{2}[sin(\frac{\pi}{8}n)cos(\frac{\pi}{8}) - cos(\frac{\pi}{8}n)sin(\frac{\pi}{8})] + \\ &+0.64K_{1}[cos(\frac{\pi}{8}n)cos(\frac{\pi}{4}) + sin(\frac{\pi}{8}n)sin(\frac{\pi}{4})] + \\ &+0.64K_{2}[sin(\frac{\pi}{8}n)cos(\frac{\pi}{4}) - cos(\frac{\pi}{8}n)sin(\frac{\pi}{4})] = -0.2cos(\frac{\pi}{8}n) \end{split}$$

razvrstavanjem slijedi

$$\begin{split} \{ & [1 - 0.8\sqrt{2}cos(\frac{\pi}{8}) + 0.64cos(\frac{\pi}{4})]K_1 + \\ & + [0.8\sqrt{2}sin(\frac{\pi}{8}) - 0.64sin(\frac{\pi}{4})]K_2 \} cos(\frac{\pi}{8}n) + \\ \{ - & [0.8\sqrt{2}sin(\frac{\pi}{8}) - 0.64sin(\frac{\pi}{4})]K_1 + \\ & + [1 - 0.8\sqrt{2}cos(\frac{\pi}{8}) + 0.64cos(\frac{\pi}{4})]K_2 \} sin(\frac{\pi}{8}n) = -0.2cos(\frac{\pi}{8}n) \end{split}$$



Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

### Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih sustava

# Prisilni odziv diskretnog sustava – primjer

usporedbom lijeve i desne strane pišemo

$$\begin{split} [1 - 0.8\sqrt{2}cos(\frac{\pi}{8}) + 0.64cos(\frac{\pi}{4})]K_1 + \\ + [0.8\sqrt{2}sin(\frac{\pi}{8}) - 0.64sin(\frac{\pi}{4})]K_2 = -0.2 \\ - [0.8\sqrt{2}sin(\frac{\pi}{8}) - 0.64sin(\frac{\pi}{4})]K_1 + \\ + [1 - 0.8\sqrt{2}cos(\frac{\pi}{8}) + 0.64cos(\frac{\pi}{4})]K_2 = 0 \end{split}$$

ullet rješenjem ovih jednadžbi izračunavamo  $K_1$  i  $K_2$ 

$$K_1 = -0.4899, \qquad K_2 = 0.0236$$

• pa je partikularno rješenje

$$y_p(n) = -0.4899\cos(\frac{\pi}{8}n) + 0.0236\sin(\frac{\pi}{8}n) =$$
  
= -0.49048 $\cos(\frac{\pi}{8}n + 0.0481)$ 



Profesor Branko Jeren

Frekvencijska karakteristika sustava

sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski diskretnih sustava

# Frekvencijska karakteristika diskretnog sustava – primjer

• iz izračunatih H(z)

$$H(z) = \frac{1}{1 - 0.8\sqrt{2}z^{-1} + 0.64z^{-2}} = \frac{z^2}{z^2 - 0.8\sqrt{2}z + 0.64}$$

i 
$$H(e^{j\omega})$$

$$H(e^{j\omega}) = \frac{1}{1 - 0.8\sqrt{2}e^{-j\omega} + 0.64e^{-j2\omega}} = \frac{e^{j2\omega}}{e^{j2\omega} - 0.8\sqrt{2}e^{j\omega} + 0.64e^{-j2\omega}}$$

možemo crtati, kao i u slučaju kontinuiranih sustava, plohe koje prikazuju |H(z)| i  $\angle H(z)$ , odnosno krivulje,  $|H(e^{j\omega})|$  i  $\angle H(e^{j\omega})$ 



Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski diskretnih sustava

# Frekvencijska karakteristika diskretnog sustava – primjer









Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnoj sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski diskretnih sustava

# Frekvencijska karakteristika diskretnog sustava – primjer

frekvencijska karakteristika se može odrediti grafički iz

$$H(z) = b_0 \frac{\prod_{j=1}^{N} (z - z_j)}{\prod_{j=1}^{N} (z - p_j)},$$

praćenjem |H(z)| i  $\angle H(z)$  na jediničnoj kružnici, dakle, za  $z=e^{j\omega}$ 

$$|H(e^{j\omega})| = |b_0| \frac{\prod_{j=1}^N |(e^{j\omega} - z_j)|}{\prod_{j=1}^N |(e^{j\omega} - p_j)|},$$

$$\angle H(e^{j\omega}) = \angle (b_0) + \sum_{j=1}^N \angle \Big(e^{j\omega} - z_j\Big) - \sum_{j=1}^N \angle \Big(e^{j\omega} - p_j\Big)$$

 svaki korijeni faktor prijenosne funkcije daje svoj individualni doprinos modulu (multiplikativno) i fazi (aditivno)



Frekvencijska karakteristika

Odziv diskretnog sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski diskretnih sustava

# Frekvencijska karakteristika diskretnog sustava – primjer

• svaki od članova  $(e^{j\omega}-z_j)$  ili  $(e^{j\omega}-p_j)$  možemo prikazati kao vektore u kompleksnoj ravnini



 napomena: višestruke nule ili višestruke polove označujemo oznakama o, odnosno x, i uz njih upisujemo arapski broj koji označuje red njihove višestrukosti



Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski diskretnih sustava

# Frekvencijska karakteristika diskretnog sustava – primjer

$$H(z) = \frac{z^2}{(z - p_1)(z - p_2)}$$

$$H(e^{j\omega}) = rac{e^{j2\omega}}{(e^{j\omega} - 0.8e^{jrac{\pi}{4}})(e^{j\omega} - 0.8e^{-jrac{\pi}{4}})}$$

za konkretnu frekvenciju

$$z=e^{j\omega_0}$$
 ,

i za 
$$l_1 = l_2 = 1$$
,

$$|H(e^{j\omega_0})| = \frac{I_1I_2}{d_1d_2} = \frac{1}{d_1d_2}$$

$$\angle H(e^{j\omega_0}) = \varphi_1 + \varphi_2 - \psi_1 - \psi_2$$





Frekvencijska karakteristika sustava

sustava na pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih sustava

# Frekvencijska karakteristika diskretnog sustava – primjer

- slijede primjeri koji ukazuju kako položaj polova i nula određuje frekvencijsku karakteristiku
- položaj polova i nula određen je sustavnim postupcima za projektiranje sustava
- prikazani su primjeri četri tipa tzv. Butterworth-ovih filtara:
  - niskopropusni (NP)
  - visokopropusni (VP)
  - pojasna brana (PB)
  - pojasno propusni (PP)



Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski diskretnih sustava

# Frekvencijska karakteristika diskretnog sustava – primjer





Frekvencijsk karakteristik

Odziv diskretnog sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski diskretnih sustava

# Frekvencijska karakteristika diskretnog sustava – primjer

 slijedi primjer koji pokazuje kako mali pomak polova ima izravni utjecaj na frekvencijsku karakteristiku ⇒ potrebni sustavni postupci projektiranja

