Producto de grupos

En proceso, att. Tomás

Producto directo

Recordando que el producto cartesiano de una familia de conjuntos es generalizado como

$$\prod_{i \in I} A_i := \left\{ f: I o igcup_{i \in I} A_i \mid f(i) \in A_i, orall i \in I
ight\}$$

Es decir, sucesiones de longitud I, donde el i-ésimo término (f(i)) es un elemento del i-ésimo conjunto.

A partir de una familia $G=\{(G_i,\cdot_i)\}_{i\in I}$ de grupos, podemos definir una estructura $(\prod G,\times)$ tal que la operación es dada por

$$egin{aligned} imes : \prod G imes \prod G
ightarrow \prod G \ (f,g) \mapsto f imes g = h \end{aligned}$$

Donde

$$egin{aligned} h:I &
ightarrow igcup_{i \in I} A_i \ i &
ightarrow f(i) \cdot_i g(i) \end{aligned}$$

Básicamente, es un producto componente a componente con la operación respectiva al grupo.

Veamos que $(\prod G, \times)$ es un grupo:

- Elemento neutro: Definimos $e \in \prod G$ tal que $e(i) = e_i, \ \forall i \in I$. Así, para todo elemento $f \in \prod G$, $(f \times e)(i) = f(i) \cdot_i e(i) = f(i) \cdot_i e_i = f(i)$ por lo que $f \times e = f$, análogamente llegamos a que $e \times f = f$.
- Inversos: Sea $f\in \prod G$, podemos definir f^{-1} tal que $f^{-1}(i)=(f(i))^{-1}, \forall i\in I$. Así, se tiene que $(f\times f^{-1})(i)=f(i)\cdot_i (f(i))^{-1}=e_i$, luego $f\times f^{-1}=e$ y similarmente $f^{-1}\times f=e$.
- Asociatividad: Sean $f,g,h\in\prod G$, [(f imes g) imes h](i)=(f(i) imes g(i)) imes h(i), como G_i es un grupo, (f(i) imes g(i)) imes h(i)=f(i) imes (g(i) imes h(i)), $\forall i\in I$, por lo que (f imes g) imes h=f imes (g imes h).

Ahora, también podemos definir el siguiente automorfismo, denominado como **proyección** canónica:

$$\pi_j:\prod G o \prod G \ f\mapsto h$$

Donde

$$h(i) = egin{cases} e_i, & i
eq j \ f(i), & i = j \end{cases}$$

O visto de otra forma, $\pi_j(a_1,a_2,...,a_j,...,a_n)=(e_1,e_2,...,e_{j-1},a_j,e_{j+1},...,e_n)$.

De esto, es fácil ver que $\pi_j\left[\prod G\right]\cong G_j$.

Análogamente, podemos definir π_j' tal que si $k=\pi_j'(f)$ entonces

$$k(i) = egin{cases} f(i), & i
eq j \ e_i, & i = j \end{cases}$$

Nuevamente, veremos que $\pi_j' \left[\prod G
ight] \cong G_1 imes G_2 imes ... imes G_{j-1} imes G_{j+1} imes ... imes G_n$.

Además se tiene que $k \times h = h \times k = f$.

Por último, también se puede demostrar que $\pi_j \ [\prod G]$ y $\pi_j' \ [\prod G]$ son subgrupos normales en $\prod G$.

Ejercicios:

• Si a_i es de orden finito en G_i , ¿cúal es el orden de $(a_1,a_2,...,a_n)$ en $\prod_{i\in n}G_i$?

Solución:

Sea $m_i=|a_i|,\ \forall i\in I$, tomemos $m=m.c.m.(m_i)_{i\in n}$, usando que la multiplicación es componente a componente y la exponenciación es multiplicación recursiva, tenemos que $(a_1,a_2,...,a_n)^m=(a_1^m,a_2^m,...,a_n^m)$, como $m_i|m,\ \forall i\in n$, entonces $(a_1,a_2,...,a_n)^m=e$.

Ahora supongamos que existe m' < m tal que $(a_1,a_2,...,a_n)^{m'} = e$, con el argumento anterior sabemos que $e = (e_1,e_2,...,e_n) = (a_1^{m'},a_2^{m'},...,a_n^{m'})$, así, $a_i^{m'} = e_i$ de manera que $m_i|m', \ \forall i \in n$. Sin embargo esto contradice el hecho que m sea el mínimo común múltiplo de todos los m_i , por tanto $|(a_1,a_2,...,a_n)| = m$.

Suma directa externa

Definición. Soporte de f:

Sea $f \in \prod G$, definimos el **soporte de** f como el subconjunto de I donde f(i) no sea el neutro, esto es:

$$I_f:=\{i\in I: f(i)
eq e_i\}$$

Definición. Producto directo débil (externo):

Sea $G = \{G_i\}_{i \in I}$ una familia de grupos, definimos el **producto directo débil (externo)** como:

$$\prod^w G := \{f \in \prod G : |I_f| \in \mathbb{N}\}$$

Esto es, los elementos $(a_1,a_2,...)$ con un número finito de componentes no neutras. Naturalmente si I es finito entonces el producto directo débil coincide con el producto directo. Si G_i es abeliano para todo $i \in I$, el producto directo debil se denomina **suma directa externa** y se denota con $\sum G$. La operación del producto directo debil (externo) será denotado por \circledast y por \oplus para suma directa externa.

Teorema:

Sea $N=\{N_i\}_{i\in I}$ una familia de subgrupos normales en G tales que

1.
$$G=\langle \bigcup N
angle$$
 .

2.
$$N_j \cap N_k = \{e\}$$
 para todos $j,k \in I$ con $j
eq k$.

Entonces $G\cong\prod^w N$.

Demostración:

Sea $f\in \prod^w N$, sabemos que I_f es finito y podemos definir $\prod_{i\in I_f} f(i)$ como un elemento de G, por otro lado, por la segunda condición sabemos que si $j\neq k$, $a_ka_j=a_ja_k$ para todos $a_j\in N_j,\ a_k\in N_j$. Así planteamos

$$arphi:\prod^w N o G \ f\mapsto \prod_{i\in I_f}f(i)$$

Veamos que φ es un homomorfismo: Sean $h,j\in\prod^w N$, $\varphi(h\circledast j)=\prod_{i\in I_0}(h\circledast j)(i)$ donde $I_0=\{i\in I:h(i)\cdot j(i)\neq e\}$ que sabemos es subconjunto de $I_h\cup I_j$, como I_h e I_j son finitos, $|I_0|\leq |I_h|+|I_j|$, así tenemos una productoria finita y por tanto

$$egin{aligned} arphi(h \circledast j) &= (h \circledast j)(i_0) \cdot (h \circledast j)(i_1) \cdot ... \cdot (h \circledast j)(i_n) \ &= h(i_0) \cdot j(i_0) \cdot h(i_1) \cdot j(i_1) \cdot ... \cdot h(i_n) \cdot j(i_n) \ &= h(i_0) \cdot h(i_1) \cdot ... \cdot h(i_n) \cdot j(i_0) \cdot j(i_1) \cdot ... \cdot j(i_n) \ &= \prod_{i \in I_0} h(i) \cdot \prod_{i \in I_0} j(i) \ &= \prod_{i \in I_h \cup I_j} h(i) \cdot \prod_{i \in I_h \cup I_j} j(i) \ &= \varphi(h) \cdot arphi(j) \end{aligned}$$

Ahora veamos que φ es un monomorfismo usando que $\ker \varphi = \{f_e\}$ donde f_e es el neutro de $\prod^w N$: La segunda contenencia se tiene inmediata, por esto nos centramos en $\ker \varphi \subseteq \{f_e\}$. Sea $k \in \ker \varphi$, sabemos que $\prod_{i \in I_k} k(i) = e$, esto es $k(i_0) \cdot k(i_1) \cdot \ldots \cdot k(i_m) = e$. Suponga que $k \neq f_e$, luego $k(o) \neq e$ para algún $o \in I_k$, luego $k(o) \in N_o$ y por tanto, $[k(o)]^{-1} \in \prod_{i \in I_k - \{o\}} f(i)$ sin embargo $[k(o)]^{-1} \in N_o$, lo que contradice que sean grupos disyuntos salvo la identidad. Concluimos que k(i) = e, $\forall i \in I_k$, luego $k = f_e$ y por tanto $\ker \varphi \subseteq \{e_f\}$. Así φ es inyectiva.

Por último, veamos que φ es un epimorfismo: Sea $g\in G$, por la primera condición sabemos que $g=q_1q_2...q_n$ para $q_l\in N_l$ con $l\in L\subseteq I$. Luego, definimos $x:I\to\bigcup N$ tal que

$$x(i) = egin{cases} e, & i
otin L \ q_i, & i \in L \end{cases}$$

Dado que g es generado por un número finito de elementos, I_x es finito y por tanto $x\in\prod^w N$ y $\varphi(x)=g$. Concluimos de esto que φ es sobreyectiva, que con lo mostrado anteriormente demuestra que φ es un isomorfismo y por tanto $G\cong\prod^w N$.

Con este resultado en mente, presentamos la siguiente definición:

Suma directa interna

Sea $N=\{N_i\}_{i\in I}$ una familia de subgrupos normales de G tales que $G=\langle\bigcup_{i\in I}N_i\rangle$ y para todo $k\in I$, $N_k\cap\langle\bigcup_{i\in I-\{k\}}N_i\rangle=\{e\}$ (los subgrupos son disyuntos dos a dos

exceptuando el neutro). Entonces se dice que G tiene un **producto directo interno débil (** PDID) para la familia N. Si G es abeliano se dirá que tiene una **suma directa interna**.

Teorema:

Sea $N=\{N_i\}_{i\in I}$ una familia de subgrupos normales de G. G tiene un producto directo interno débil por N si y solo si todo elemento $g\in G$ puede verse como producto único de $a_{i_0}\cdot a_{i_1}\cdot \ldots \cdot a_{i_n}$ donde $e\neq a_{i_k}\in N_{i_k},\ \forall k\leq n$

Demostración:

- (\Rightarrow) : Sea $g\in G$, por el teorema anterior, como $\prod^w N\cong G$, entonces existe un isomorfismo φ tal que $\varphi^{-1}(g)\in\prod^w N$, además como φ es biyectiva sólo existe un f tal que $\varphi(f)=g$, así, $g=f(0)\cdot f(1)\cdot\ldots\cdot f(n)$ por la definición de PDID.
- (\Leftarrow): Dado que todo elemento puede expresarse como producto de elementos de los subgrupos normales, se tiene (1.). Ahora veamos que para $i,j\in I$, si $i\neq j$ entonces $N_i\cap N_j=\{e\}$: Supongamos que $N_i\cap N_j\neq \{e\}$, luego existe $a\in N_i\cap N_j$ y como ambos son subgrupos, $a^{-1}\in N_i\cap N_j$, sea $x=b_0\cdot b_1\cdot\ldots\cdot b_i\cdot\ldots\cdot b_j\cdot\ldots\cdot b_n$, se puede ver que no importa si $b_i=a$ y $b_j=a^{-1}$ o si $b_i=a^{-1}$ y $b_j=a$ pues suponemos que conmutan con el resto de los elementos de la productoria, luego contradice qeu exista una única representación de los elemento de G. Por tanto concluimos que $N_i\cap N_j=\{e\}$ y por tanto se tiene (2). Por el teorema anterior G tiene un PDID por N.

Nota. Distinción entre producto interno y externo:

En general, si hablamos de PDID en $\prod_{i\in I}^w N_i$ se sobreentiende que $N_i \unlhd G, \ \forall i\in I$ para algún G. Mientras que si hablamos de PDED , no necesariamente N_i y N_j estén relacionados directamente.

Producto semidirecto

Motivación:

Supongamos que tenemos dos grupos G_1 y G_2 , ya vimos anteriormente que podemos definir un grupo por medio del producto directo $G_1 \times G_2$, sin embargo puede que queramos una relación más estrecha entre ambos grupos, esto lo podemos lograr por medio de acciones de grupo, particularmente vamos a buscar una acción φ

$$arphi:G_2 o\operatorname{Aut}(G_1)\ x\mapsto arphi_x$$

Donde φ_x es un automorfismo de G_1 , es decir, que $\varphi_x(ab)=\varphi_x(a)\varphi_x(b)$ donde $a,b\in G_1$, además, pedimos que cumpla que para todos $x,y\in G_2$ y $a,b\in G_1$, $\varphi_{e_2}(a)=a$ y $\varphi_{xy}(a)=\varphi_x(\varphi_y(a))$. Así, a partir de una acción φ se define al siguiente operación binaria para $G_1\times G_2$, sean $a_1,b_1\in G_1$ y $a_2,b_2\in G_2$,

$$(a_1,a_2)(b_1,b_2)=(a_1arphi_{a_2}(b_1),a_2b_2)$$

De esta forma, cuando dispongamos de una acción φ y queramos referenciar este producto, denotaremos la estructura algebraica como $G_1 \rtimes G_2$ o incluso, dado que la operación depende de la acción, se puede usar $G_1 \rtimes_{\varphi} G_2$.

Veamos que esta estrucutra define un grupo:

- Asociatividad: Sean $(a_1,a_2),(b_1,b_2),(c_1,c_2)\in G_1
times G_2$,

$$egin{aligned} [(a_1,a_2)(b_1,b_2)](c_1,c_2) &= (a_1arphi_{a_2}(b_1),a_2b_2)(c_1,c_2) \ &= (a_1arphi_{a_2}(b_1)arphi_{a_2b_2}(c_1),a_2b_2c_2) \ &= (a_1arphi_{a_2}(b_1)arphi_{a_2}(arphi_{b_2}(c_1)),a_2b_2c_2) \ &= (a_1arphi_{a_2}(b_1arphi_{b_2}(c_1)),a_2b_2c_2) \ &= (a_1,a_2)[(b_1arphi_{b_2}(c_1),b_2c_2)] \ &= (a_1,a_2)[(b_1,b_2)(c_1,c_2)] \end{aligned}$$

ullet Elemento neutro: Existe (e_1,e_2) tal que para todo $(a,b)\in G_1
times G_2$

$$(a,b)(e_1,e_2)=(aarphi_b(e_1),be_2)=(ae_1,b)=(a,b)$$

• **Elemento inverso:** Para todo $(a,b)\in G_1
times G_2$, podemos definir $(arphi_{b^{-1}}(a^{-1}),b^{-1})$ tal que

$$egin{aligned} (a,b)(arphi_{b^{-1}}(a^{-1}),b^{-1}) &= (aarphi_b(arphi_{b^{-1}}(a^{-1})),bb^{-1}) \ &= (aarphi_{bb^{-1}}(a^{-1}),e_2) \ &= (aarphi_{e_2}(a^{-1}),e_2) \ &= (aa^{-1},bb^{-1}) \ &= (e_1,e_2) \end{aligned}$$

Teorema Fundamental de grupos abelianos finitamente generados:

$$\mathbb{Z}_{p_1^{\mathbb{k}_1}} imes \mathbb{Z}_{p_2^{\mathbb{k}_2}} imes ... imes \mathbb{Z}_{p_n^{\mathbb{k}_n}} imes \mathbb{Z} imes ... imes \mathbb{Z}$$

Donde p_i son números primos no necesariamente distintos y $k_i \in \mathbb{N}$ para todo $1 \leq i \leq n$.

Este producto es único salvo presentación.

Esto es,

$$G\cong\prod_{i=1}^n\mathbb{Z}_{p_i}^{\Bbbk_i} imes\mathbb{Z}^m$$

Donde n y m son únicos.

Propiedad universal del Producto:

Sean $G=\{G_i\}_{i\in I}G_i$ una familia de grupos, $\prod G$ el producto usual y $\pi=\{\pi_j:\prod G\to G_j\}_{j\in I}$ las proyecciones canónicas. Entonces,

1. Para cada grupo H con homomorfismos $\{p_j: H \to G_j\}_{j \in I}$, existe un único homomorfismo $\alpha: H \to \prod G$ tal que $\pi_j \alpha = p_j$ para todo $j \in I$.

Esto nos dice que si un grupo H tiene homomorfismos hacia cada grupo de la familia G, entonces existe un homomorfismo α hacia $\prod G$ caracterizado por sus p_j .

2. Si otro grupo K que tenga $\pi'=\{\pi':K\to G_j\}_{j\in I}$ y también tenga la propiedad (1), es isomorfo a $\prod G$.

Es decir, que K cumple varias de las propiedades de $\prod G$, y esas propiedades son suficientes para garantizar que K y $\prod G$ son isomorfos.

Demostración:

1. Básicamente queremos definir un α tal que el siguiente diagrama sea conmutativo:

Así, que definimos

$$lpha:K o\prod G \ x\mapsto y$$

Donde $y(i)=p_i(x)$ para todo $i\in I$. Así, usando que el producto es componente a componente y que todos los conjuntos son grupos, tenemos que α es un homomorfismo. Por la construcción misma, $\pi_j\alpha=p_j$ y es fácil ver la unicidad.

2. Tenemos los siguientes diagramas:

- (1) lo tenemos pues es un caso particular de la primera propiedad.
- \circ (2) se tiene así mismo pues K es un grupo con homomorfismos hacia cada grupo de G entonces tenemos garantizada la existencia y unicidad de α .
- 。 (3) y (4) son análogos a (1) y (2) respectivamente.

Así, sabemos que $\pi_j'eta=\pi_j$ y $\pi_jlpha=\pi_j'$ por lo que tenemos que

$$\pi'_{j}(\beta\alpha) = (\pi'_{j}\beta)\alpha$$
$$= \pi_{j}\alpha$$
$$= \pi'_{j}$$

y análogamente $\pi_j(\alpha\beta)=\pi_j$. Así, $\beta\alpha$ es una función de K en K tal que $\pi'_j(\beta\alpha)=\pi'_j$, sin embargo por el diagrama (3) sabemos que sólo existe una única función que cumple

eso y es la identidad, por tanto $\beta\alpha=I_K$ y análogamente $\alpha\beta=I_{\prod G}$, por tanto se sabe que α y β son biyecciones y como también son homomorfismos concluimos que $\prod G\cong K$.