02. COURS

Variables aléatoires

On considère une expérience aléatoire. On note Ω l'univers fini associé, c'est-à-dire l'ensemble de tous les résultats possibles pour cette expérience.

Variable aléatoire discrète

Une variable aléatoire discrète sur Ω est une fonction X de Ω dans $\mathbb R$. Ainsi à tout résultat possible de l'expérience aléatoire, on associe un nombre.

EXEMPLE

Considérons l'expérience aléatoire suivante : une urne contient 10 boules numérotées de 1 à 10. Si on tire une boule pair, on gagne 1 euro. Si on tire le 5 on gagne 10 euros. Dans les autres cas on perd 5 euros.

On peut définir une variable aléatoire X associée au gain algébrique (ie. positif quand on gagne, négatif quand on perd). X est une fonction de $\Omega=\{1,2,3,4,5,6,7,8,9,10\}$ dans $\mathbb R$:

$$X(1) = -5$$
 $X(2) = 1$
 $X(3) = -5$ $X(4) = 1$
 $X(5) = 10$ $X(6) = 1$
 $X(7) = -5$ $X(8) = 1$
 $X(9) = -5$ $X(10) = 1$

Au final, les valeurs que peut prendre X sont : $\{-5; 1; 10\}$.

LOI DE PROBABILITÉ

Supposons que la variable aléatoire X prenne les valeurs $\{x_1, x_2, \ldots, x_n\}$. Définir **la loi de probabilité de** X, c'est donner, pour tous les x_i , $P(X = x_i)$.

EXEMPLE

« Dans l'exemple précédent, donner la loi de probabilité de X. »

Réponse :

$$P(X = -5) = \frac{4}{10} = \frac{2}{5}$$

$$P(X = 1) = \frac{5}{10} = \frac{1}{2}$$

$$P(X = 10) = \frac{1}{10}$$

Que l'on peut résumer dans le tableau :

	-5	1	10
Probabilité	$\frac{2}{5}$	$\frac{1}{2}$	$\frac{1}{10}$

Remarque

On peut aussi s'intéresser à des probabilités d'inégalités. Au lieu d'étudier $P(X=\ldots)$ on peut s'intéresser à $P(X\geq\ldots)$, $P(X\leq\ldots)$, etc.

EXEMPLE

« Dans l'exemple précédent calculer $P(X \le 1)$, $P(X \ge 0)$, P(X > 1). »

Réponse :

$$P(X \le 1) = P(X = -5) + P(X = 1) = \frac{2}{5} + \frac{1}{2} = \frac{9}{10}$$

$$P(X \ge 0) = P(X = 1) + P(X = 10) = \frac{1}{2} + \frac{1}{10} = \frac{6}{10}$$

$$P(X > 1) = P(X = 10) = \frac{1}{10}$$

ESPÉRANCE

On considère la variable aléatoire définie sur l'univers Ω et dont la loi de probabilité est donnée par :

Valeur prise par ${\cal X}$	x_1	x_2	 x_n
Probabilité	p_1	p_2	 p_n

ESPÉRANCE

L'espérance mathématique de X est le réel $E\left(X\right)$ défini par :

$$E(X) = \sum_{i=1}^{n} x_i p_i = x_1 p_1 + x_2 p_2 + \ldots + x_n p_n$$

Propriété

L'espérance est analogue à la **moyenne** statistique. C'est la valeur que l'on peut « espérer » obtenir en répétant un grand nombre de fois l'expérience aléatoire.