	Name → Mond Namir Student 3d → 200 21595 Section → F University Roll → 2016 855 Roll No → 14
	DESIGN AND ANALYSIS OF ALGORITHM
	TUTO RIAL-Q1.
Ows+1	Asymptotic Notation: > asymptotic notations we the mathematical notations used to
	describe the complexity (runing time of an algorithm
Ü	Big-O: > Big o notation specifically describes worst ease scenario. It supresents the light upper
	bound running time complexity of an algorithm.
	f(n) ≤ C·g(n). + n>no
	C70
	&x:> O(1), O(n), O(nlogn).
	tor (i=0; i <n; i++)<="" th=""></n;>
	Sum = Sum + i:
	The time complexity of above Example is O(n).
(<i>ii</i>)	Omega (1):- omega Notation specifically desembe best case scenario. It suprusents the tight lower bound running time of an algorithm
	tight lower bound running time of an algorithm
	f(n) > c.g(n) + n>n0
	C>0

П

Date
Example: 12(1), 12(logn).
Grample: 2200, 2200 just
Void Search (int Size) {
int Element i;
if (& size == 1) {
Print+ ("tound"),
 return;
3.
tor (i=0; i < Bize; i++)
i i
if (arr Ci) = element) q
 Printf ("found");
 netu och;
3
 \$
Print+ ("No+ tound")
3.
 The Best Complexity of above Example is - 12 (1).

(iii)	Theta(a):- This Notation describes both tight upper
	bound and light lower bound of an
	algorithm. In real scenario the algorithm not
	algorithm. In real scenario the algorithm not always run on best and worst Cares the avg running lies between best and worst and can be suprisent
	lies between best and world and can be expresent
	by 'a' Notation.
-	
	$C, g(n) \leq f(n) \leq C_2 g(n)$. $\forall n \geq \max(n, sh_2)$
	C170 and C270
Que. 10:-	for the function n-1R and Cn what is the asymptotic
	Relationship b/w these Function?
	assume that k>=1 of C>1 are constants find out
	the value of c. and no. of which substienship held?
	Los given nk and ch
	sous given nk and ch Relationship between nk and ch is. nk = 0 ((h)) nk < 0 ((h))
	$nk = O(C^n)$
	nk < a (ch)
	+ n>, no Constant a>0
	$f(c) ho = 1 C = 2$ $1^{k} \leq \alpha^{2}$
	1× L a2
	=> no=1 and C=2

Date :	Page :
Topic :	
,	

Qus + 2	for (i=1 ton)
	ξ i= i+2}
	i+1,2,2,2,2,4
	$2^{K} = n$
	take log both side. log 2 K = logn
	()2
	K log2 = logn
	()2
	K=O(logn).
D1113+3	T(n) = 3T(n-1) n>0, otherwise 1.
	T(n) = 3T(n-1) — (1)
	T(n-1) = 3T(n-2)
	form equ (1):>
	T(n) = 3[3T(n-2)]
	$= 3^2 T (n-2) - (2)$
	T(n-2) = 3T(n-3)
	from equ (2):>
·	$T(n) = 3^{2}[3T(n-3)]$
-	$= 3^3 r(n-3)$
	:
,	$T(n) = 3^{k}T(n-k), -3$
	n-K=0
	η=K

STUDENT TYLE

		Date:			
	form equ (3) \$>				
	T(n) = 34(n-n)	7			
	$= 3^{K_T}(0)$				
	7(0) = 1.				
	7(n) = 3 ^K				
_					
_	$T(n) = O(3^h)$	<).			
Quis:-8-	T(n) = 2T(n-1) -	1			
	(1) T(p))	1		1 (2)
	(1) T(n-1)	(1) T(p	-1)		2 (21)
(1)	(1)	(1)	(1)		4 (2)
	T(n-2) (1) T(n-2)	(±) _{T(n-2)}	(1) _{7 (n-2)}		4-(22)
(1) /		(1) (1)	1) (4)	W	
7(n-2	T(n-3) T(n-3) T(A	3) T(D-3)	TLn-3)	8(23)
	101130 1011-3010	11 3) 10 3) 10	3) ((/)		1
7 <u>(n-</u> k)	90 21 29 93	. , 2 K			: (2 ^K)
	T(n)=T(n-K) >	* 2K			(2)
	96.44				
	n-1<= n=1<				
	7(n)= T(0				
	7(n) = ((a^n)			
	STUDENT STYLE		\$	Signature	

Scanned with CamScanner

Date : Po	ge :	
Topic :		

Qus > 5	int [=1,S=1;	
	while (SK=n) {	
	(°++',	
	S=S+i;	
	Print+("#");	
	7	
	S (Value of S):>	
	1, 3, 6, 10,	n
	(1) (1+2) (1+2+3) (1+2+3+4) (1+	2+3++K)
	Termination Condition.	
	$(1+2+3+-\cdots+K)=h$	
	K(K+1) = n	
	2	
	$K^2 + K = 2n$	
	K ² = n	
	K= \15	
	$T(n) = O(\sqrt{n}).$	
Quus+6.	void Function (int n) {	
	int i court=0;	
	for (= 1; in (= n · 1++)	
	Grant++;	
	}.	
	1, 2, 3, K ²	
	K2=n (terminate the broggro	Olm)
	$i+1,2,3,$, k^2 $k^2=n \text{(Herminate the broggs}$ $k=\sqrt{n} \qquad \qquad K^2>n$	
	STUDENT 1(h) = D(-Th)	Signature

Scanned with CamScanner

	Page	
Date	- rage	
Topic:		

Jus + 7 Void fun (int n) {	
int i, j. K, court =0;	
20 h. 1 1x t D 1 1 t t 2 3	
for (1= n/g: 12=1) { /00/2 for (j=1: j<=n; j=j+2:) { /00/2	
Flux (K=1; KZ=n; K= KZ=)	
Cont + +;	
}	
J.	
100P1:>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
K>n (terminate pro).	
K= n	
T(n) = O(h)	
for lops and loops we know time complexity	•
t(n) = logn.	
0	
total time complexity.	
T(n) = n x logn + logn	
$T(n) = 0 \left(n \log_n^2 \right)$	

STUDENT TYLE

Date : Page :	The second second
Topic :	

Que+8 fun (int 1) 5	
1°F(U==D)	
Jedwin:	
far (i=1 to n)	
fur (j=1 to n)	
), ("#") this d	
fun (n-3)	
}.	
$7(n) = (n-3) + O(n^2)$	
$= T(n-3) + h^2 -$	<u></u>
T(n-3) = T(n-6) + (h-3)	3)2
From equ (D:)
T(n) = T(n-6) + (n-6)	$-3)^{2}+ h^{2}$
7(h-6) = T(n-9) + (h-6)	<u>S)</u> ²
T (h) -C	()3 () ()3 ()
T(h) = T(h-q) + (h	$\frac{-6}{(1-3)} + \frac{1}{12}$
$\frac{1(n) = T(n-3K) + 1}{n}$	(n-(3K+3))+[n-(3K-6)]2+n2
n-3K=0	
n=3K	
$K = \frac{n}{3}$ $\tau(n) = \tau(n-n) + 1$	2,22
= T(0) + N(n+1)	6
TUDENT	<u> </u>
STUDENT TYLE	Signature

Scanned with CamScanner

Date .	Page
Topic	

Our+g.	Void Fun (int n) 5
	For (i=1 to n)
	FUR (j=1; j <=n; j=j+i)
	Pouint+(" *")!
	}
	$i=01, j \rightarrow 1, 2, 3, 4, \dots, n$
	i=2, 1 + 1,3,5,7,
	$i=3, j \rightarrow 1, 4, 7, 19,, n/3$
	, , ,
	$l = h, l \rightarrow l$
	$7(n) = n + \frac{n}{2} + \frac{n}{3} + \frac{n}{4} + \cdots + \frac{n}{n}$
	$= n \left(\frac{1+\frac{h_1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{h}{h}}{3} \right)$
	Jogn.
	$T(n) = n \log n$
	T(n) = 0 (lugn)

STUDENT TYLE