

Ayudantía 13 - Grafos

22 de noviembre de 2024 Martín Atria, José Thomas Caraball, Caetano Borges

Resumen

- Grafo Un grafo G = (V, E) es un par donde V es un conjunto, cuyos elementos llamaremos vértices o nodos, y E es una relación binaria sobre V (es decir, $E \subseteq V \times V$), cuyos elementos llamaremos aristas.
- Tipos de vértices(V):
 - Vertices adyacentes Dado un grafo G = (V, E), dos vértices $x, y \in V$ son adyacentes o vecinos si $(x, y) \in E$.
 - Vertice de corte: es un vértice tal que al eliminarlo (junto con todas sus aristas incidentes) aumenta la cantidad de componentes conexas de G.
- Tipos de aristas (E)
 - Rulo: es una arista que conecta un vértice con sí mismo.
 - Arista paralela: Dos aristas son paralelas si conectan a los mismos vértices.
 - Arista de corte: es una arista tal que al eliminarla aumenta la cantidad de componentes conexas de G.
- Tipos de subgrafos: (También pueden ser grafos, pero es más común verlos como subgrafos).
 - Ciclo: es una caminata cerrada en la que no se repiten aristas.
 - Clique: es un subgrafo en el que cada vértice está conectado a todos los demás vértices del subgrafo.
- Tipos de grafos
 - Grafo no dirigido: Un grafo es no dirigido si toda arista tiene una arista paralela.

- Grafos isomorfos: Dos grafos $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ son isomorfos si existe una función biyectiva $f: V_1 \to V_2$ tal que $(x, y) \in E_1$ si y sólo si $(f(x), f(y)) \in E_2$.
- Grafo completo: es un grafo en el que todos los pares de vértices son adyacentes.
- Grafo conexo: Un grafo G se dice conexo si todo par de vértices está conectado por un camino.
- Grafo bipartito: es un grafo tal que su conjunto de vértices puede particionarse en dos conjuntos independientes
- Multigrafo G = (V, E, f): es un trío ordenado donde $f : E \to S$ es una función que asigna un par de vértices a cada arista en E.
- Grado de un vértice: El grado de v (denotado como $\delta_G(v)$) es la cantidad de aristas que inciden en v.
- Vecindad de un vértice: La vecindad de v es el conjunto de vecinos de v: $N_G(v) = \{u|(v,u) \in E\}$.
- Teoremas importantes
 - Handshaking lemma: $\sum_{v \in V} \delta_G(v) = 2|E|$.
- Tipos de ciclos:
 - Ciclo euleriano: es un ciclo que contiene a todas las aristas y vértices del grafo.
 - Ciclo hamiltoniano: es un ciclo en el grafo que contiene a todos sus vértices una única vez cada uno (excepto por el inicial y final).

1. Homomorfismos

Un homomorfismo desde $G_1 = (V_1, E_1)$ a $G_2 = (V_2, E_2)$ es una función $h: V_1 \to V_2$ tal que $\{u, v\} \in E_1 \to \{h(u), h(v)\} \in E_2$. Decimos que G_1 es homomorfis a G_2 si existe un homomorfismo desde G_1 a G_2 .

1. Se define el grafo línea de largo n como

$$L_n = (\{0, \dots, n\}, \{\{i, i+1\} \mid 0 \le i \le n-1\})$$

Demuestre que, para todo grafo G = (V, E), la línea L_n con $n \ge 2$ es homomorfo a G si y solo si $E \ne \emptyset$.

2. Se define el grafo de clique de tamaño n como

$$K_n = (\{0, \dots, n-1\}, \{\{i, j\} \mid 0 \le i, j \le n-1 \land i \ne j\})$$

Demuestre que, para todo grafo G = (V, E), el clique K_n es homomorfo a G si y solo si $\exists H \subseteq G$ tal que $H \cong K_n$, es decir, G contiene a K_n como subgrafo isomorfo.

Solución

1. Sea $\{u,v\} \in E(G)$. La función $h: V(L_n) \to V(G)$ definida por

$$h(i) = \begin{cases} u & 2 \mid i \\ v & 2 \not\mid i \end{cases}$$

Notemos que para todo nodo $i \in V(L_n)$ etiquetado con un número par se tiene que h(i) = u, y además que todos sus vecinos $j \in V(L_n)$, $\{i, j\} \in E(L_n)$ están etiquetados con números impares, por lo que para todos sus vecinos h(j) = v, y vice versa. Con ello, $\{i, j\} \in V(L_n) \to \{h(i), h(j)\} \in E(G)$, y concluímos que h es un homomorfismo.

- 2. \blacksquare \to : Se tiene que existe un homomorfismo h de K_n a G. Sea $R(h) = \{v \in V(H) \mid \exists v' \in K_n \text{ tal que } h(v') = v\}$, es decir, R es el conjunto de todos los nodos de G que son imagen del homomorfismo h. Como $|K_n| = n$ y h es función, por definición de función se tiene que $|R| \leq n$. Demostraremos en primer lugar que |R| = n. Supongamos, por contradicción, que R < n. Por principio del palomar, esto significa que $\exists i, j \in V(K_n)$ tal que h(i) = h(j). Sin embargo, como trabajamos con grafos simples, G no tiene loops, por lo que no existe una arista entre h(i) y h(j). Esto es una contradicción, ya que h es un homomorfismo, por lo que necesariamente $|R| < n \land |R| \geq n$, con lo que |R| = n. Como h es un homomorfismo desde K_n , necesariamente todos los pares de nodos de su rango están unidos por aristas. Como su rango tiene cardinalidad n y todos sus nodos están unidos entre si, concluímos que h es un homomorfismo de K_n a G.
 - \leftarrow : Si $\exists H \subseteq G$ tal que $H \cong K_n$, denotando $V(H) = \{0, \dots, n-1\}$, entonces

la función $h:V(k_n)\to V(G)$ definida por

$$h(v) = v$$

es realmente la identidad $h': K_n \to K_n$ pero con codominio expandido, por lo que es trivialmente un homomorfismo.

2. Ciclos

Sea G un grafo con un ciclo C, tal que existen dos nodos distintos que forman parte del ciclo C entre los cuales existe un camino P de largo k (no necesariamente contenido en C).

Demuestre que G tiene un ciclo de largo al menos \sqrt{k} .

Solución

Sea v_1, \ldots, v_t la secuencia de nodos de P que también están en C. Hay dos posibilidades:

- 1. $t \ge \sqrt{k}$: como todos los nodos están en C, el tamaño de C es inmediatamente $\ge \sqrt{k}$ y la demostración está completa.
- 2. $t < \sqrt{k}$: Proposición: para algún i tal que $1 \le i \le t$ se tiene que entre v_i y v_{i+1} en P existen al menos \sqrt{k} nodos. Demostraremos esto por contradicción. Supongamos que para todo i, entre v_i y v_{i+1} en P hay un número menor a \sqrt{k} nodos. Si sumamos los largos de todos estos fragmentos deberíamos obtener el largo total del camino, k. Sin embargo, obtenemos un número k0 v como k1 resultado es k2, lo que es una contradicción. Luego, la proposición es correcta.

Con esto en consideración, el camino de largo $\geq \sqrt{k}$ entre v_i y v_{i+1} que es parte de P, unido al camino entre v_i y v_{i+1} que forma parte del ciclo C (hay dos tales caminos, se puede tomar cualquiera), forma un ciclo de largo al menos \sqrt{k} , que es lo que se quería demostrar.

3. Ciclos eulerianos

Sea M_n un tablero de ajedrez de $n \times n$ celdas. Considere una pieza especial que puede moverse tanto como un rey o como un caballo. Determine y demuestre para todo valor de n si existe un ciclo euleriano para esta pieza en M_n .

Solución

Con $n=1, M_n=(\{v\},\varnothing)$ por lo que contiene el ciclo Euleriano trivial.

Recordemos que un grafo tiene un ciclo Euleriano si y solo si es conexo y todos sus nodos tienen grado par.

Con n=2, notemos que todo nodo de M_n tiene 3 aristas, por lo que por teorema M_2 no tiene un ciclo Euleriano.

Con $n \geq 3$, todas las "esquinas" tienen exactamente 5 aristas: 3 que las unen con los vecinos inmediatos del tablero de ajedrez, y otras dos correspondientes a los dos saltos de caballo posibles desde las esquinas. Con ello, por teorema M_n con $n \geq 3$ no puede tener un ciclo Euleriano.