REPUBLIC OF CAMEROON

Peace – Work – Fatherland

MINISTRY OF HIGHER EDUCATION

THE UNIVERSITY OF YAOUNDE I

FACULTY OF MEDICINE AND BIOMEDICAL SCIENCES

DEPARTMENT OF PUBLIC HEALTH

RESEARCH AND DOCTORAL TRAINING CENTER IN LIFE, HEALTH AND ENVIRONMENTAL SCIENCES

RESEARCH AND DOCTORAL TRAINING UNIT IN HEALTH AND ENVIRONMENT

REPUBLIQUE DU CAMEROUN

 ${\it Paix-Travail-Patrie}$

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR

UNIVERSITE DE YAOUNDE I

FACULTE DE MEDECINE ET DES SCIENCES

BIOMEDICALES

DEPARTEMENT DE SANTE PUBLIQUE

CENTRE DE RECHERCHE ET DE FORMATION DOCTORALE EN SCIENCES DE LA VIE, SANTE ET ENVIRONNEMENT

UNITE DE RECHERCHE ET DE FORMATION DOCTORALE EN SANTE ET ENVIRONNEMENT

Public Health Department

EVALUATION OF PLASMA VIRAL-LOAD COVERAGE AND THE PREVENTION OF MOTHER-TO-CHILD TRANSMISSION OF HIV-1 AT THE YAOUNDE GYNECO-OBSTETRIC AND PEDIATRIC HOSPITAL

A thesis submitted in the Partial Fulfilment of the Requirements for the Award of the Master in Public Health

FOUEDJIO KAFACK ETIENNE VERLAIN

Matricule 22E0015

Supervisor Pr. NGUEFACK-TSAGUE Georges

Associate Professor Public Health/Biostatistics Co-supervisor (s) Pr LYONGA EMILIA ENJEMA

Associate Professor Medical Microbiology/Public Health

Dr KWEDI SYLVIE

Senior Lecturer
Public Health

Academic Year 2023/2024

TABLE OF CONTENTS

DE	DIC	ATION	v
AC	KN(OWLEDGEMENTS	vi
LIS	T O	OF ADMINISTRATIVE AND ACADEMIC	viii
STA	AFF	OF THE FACULTY OF MEDICINE AND BIOMEDICAL SCIENCES	viii
(AC	CAD	DEMIC YEAR 2023/2024)	viii
AB	STR	RACT	xxii
RE	SUM	ME	xxiii
LIS	T O	OF ABBREVIATIONS AND ACRONYMS	xxiv
LIS	T O	OF TABLES	xxvi
LIS	T O	OF FIGURESx	xvii
СН	APT	ΓER I: INTRODUCTION	28
1.	.1.	BACKGROUND	29
1.	.2.	PROBLEM STATEMENT	30
1.	.3.	JUSTIFICATION	31
1.	.4.	RESEARCH GOAL	
1.	.5.	RESEARCH QUESTIONS	31
1.	.6.	RESEARCH OBJECTIVES	32
1.	.7	RESEARCH SCOPE	32
СН	APT	TER II : LITERATURE REVIEW	36
2.	.1	OVERVIEW OF HIV INFECTION	37
	2.1.	.1 Definition and epidemiology of HIV infection	37
	2.1.	.2 Natural history of HIV infection	39
	2.1.	.3 Clinical presentation of HIV infection	40

2.1	1.4 Diagnosis of HIV infection	40
2.2	VIRAL LOAD	41
2.2	2.1 Definition and clinical significance of viral load	41
2.3	3.2 Viral load measurement	42
2.3	3.3 Viral load testing strategy	42
2.4	SPECIAL CONSIDERATION: HIV INFECTION IN PREGNANCY	43
2.4	1.1 overview	43
2.4	4.2 Follow-up of HIV pregnant women during pregnancy and PMTCT	44
2.5 C	OVERVIEW OF THE LITERATURE ON VIROLOGIC FAILURE FOLLOWIN	G
VIR	AL LOAD SUPPRESSION	46
Matern	al viral load monitoring: Coverage and clinical action at 4 Kenyan hospitals	46
HIV vii	raemia and mother-to-child transmission risk after antiretroviral therapy initiation in	
pregnar	ncy in Cape Town, South Africa	47
CHAP'	TER III: MATERIALS AND METHOD	48
•••••		48
3.1.	Study Design	49
3.2.	Study Period	49
3.3.	Study Area	49
3.4.	Study Population and Sampling	50
Sa	mple size calculation	50
3.5.	Data Collection	51
3.6.	Data Management and Analysis	52
3.7.	Ethical Considerations	52
CHAP'	TER IV: RESULTS	54
		54

4.1. ENROLMENT OF PARTICIPANTS	.55
4.2. GENERAL CHARACTERISTIC OF THE POPULATION:	.56
4.3. Evaluation and comparison of plasma viral load coverage among HIV-infected	
pregnant women during antenatal et postnatal period	.59
4.4. Adherence to the recommended timelines for conducting PCR tests in exposed	
infants at 6 weeks and 9 months;	.63
4.5. To assess and compare the rate of vertical HIV transmission among exposed	
infants at 6 weeks and 9 months of age;	.64
4.6. To identify and compare potential determinants of mother-to-child transmission	of
HIV at 6 weeks and 9 months of age	.65
4.7. Factors Associated with Mother-to-Child Transmission After Multivariate	
Analysis	.68
CHAPTER V : DISCUSSION, CONCLUSION AND RECOMMENDATIONS	.70
5.1. Discussion	.71
5.2. LIMITATIONS AND STRENGTHS	.74
5.3. CONCLUSION	.75
5.4. RECOMMENDATIONS	.77
References:	.78
APPENDIX	.83
APPENDIX ONE: INFORMATION SHEET	.84
APPENDIX 2: CONSENT FORM	.86
APPENDIX 3: ETHICAL CLEARANCE	.88
APPENDIX 4: HGOPY RESEARCH AUTHORIZATION	.89

DEDICATION

ACKNOWLEDGEMENTS

My endless gratitude goes to the following people:

- o My supervisor, Professor Nguefack-Tsague Georges for helping me choose this interesting research topic. His warm reception through the provision of articles, relentless corrections, mentorship, patience, availability and expertise in this domain helped me achieve my goal.
- My co-supervisors, Professor Lyonga Emilia and Doctor Kwedi Sylvie for always creating time for me in his tight schedule to make this work better.
- o The Dean of the Faculty of Medicine and Biomedical Sciences, Professor Meka Ngo Um Esther Juliette, for her excellent management and for providing us with a studious environment
- Doctor Tchouamo and the entire staff of the Yaounde Gyneco-Obstetric Hospitals,
 especially those of the paediatric unit and HIV care unit, for their warm reception
 and provision of data and giving me access to patient and files
- Doctor Armel Djomou and Tchouamou Mathieu, for giving time within my working time period to achieve this master till the end and the relentless support throughout this master's period
- My mentors, Doctor Fokam Joseph, Doctor Fokam Yolande, for always being there
 and guiding me in this work.
- To the entire staff of the faculty of medicine and biomedical sciences for their immense inputs into our training and their direct or indirect contributions to the achievements of this thesis.

- o The Kafack's Family: my grand-father Jean, uncles and aunts and Fouedjio's Family: uncles Ivon, Martial and aunts: Laure, Ide, Vanina and Karine, for their multiple supports and continuous assistance throughout my master training up to the accomplishment of my thesis work.
- My parents, Mr Fouedjio Guillaume and Mrs Fouedjio Marlyse for your constant emotional, financial and spiritual support.
- My second mother, Fouedjio Paulette for her support and daily words of encouragement throughout the long journey of my medical studies
- My siblings Fouedjio Michele, Fouedjio Ange, and Fouedjio Manuela, for their spiritual encouragements.
- My classmates and colleagues for guiding me through protocol presentation, data analysis and thesis presentation.
- My family friends, David, Arlette, Jorel, Branlie, Cynthia, Prudence, Eugenie,
 Telma, Rosy, Jacques. Your inputs and corrections have been very helpful in improving the quality of this work.
- To all the numerous others whose names I couldn't mention here: thanks for your contributions to this achievement.
- o And above all to God Almighty: for providing wisdom, knowledge and understanding, for his endless grace and favour, guidance and protection throughout my life, especially the time I spent during this master school period. All the glory to *Him* alone.

LIST OF ADMINISTRATIVE AND ACADEMIC STAFF OF THE FACULTY OF MEDICINE AND BIOMEDICAL SCIENCES

(**ACADEMIC YEAR 2023/2024**)

LISTE DU PERSONNEL ADMINISTRATIF ET ACADEMIQUE

1. PERSONNEL ADMINISTRATIF

Doyen : Pr NGO UM Esther Juliette épse MEKA

Vice-Doyen chargé de la programmation et du suivi des activités académiques : Pr NTSAMA ESSOMBA Claudine Mireille

Vice-Doyen chargé de la Recherche et de la Coopération : Pr ZEH Odile Fernande

Vice-Doyen chargé de la Scolarité, des Statistiques et du Suivi des Etudiants : Pr NGANOU Chris Nadège épse GNINDJIO

Chef de la Division des Affaires Académiques, de la Scolarité et de la Recherche : Dr VOUNDI VOUNDI Esther

Chef de la Division Administrative et Financière : Mme ESSONO EFFA Muriel Glawdis

Coordonnateur Général du Cycle de Spécialisation : Pr NJAMNSHI Alfred KONGNYU

Chef de Service Financier : Mme NGAMALI NGOU Mireille Albertine épse WAH

Chef de Service Adjoint Financier: Mme MANDA BANA Marie Madeleine épse ENGUENE

Chef de Service de l'Administration Générale et du Personnel : Pr SAMBA Odette NGANO ép. TCHOUAWOU

Chef de Service des Diplômes, des Programmes d'enseignement et de la Recherche : Mme ASSAKO Anne DOOBA

Chef de Service Adjoint des Diplômes, des Programmes d'enseignement et de la Recherche : Dr NGONO AKAM MARGA Vanina

Chef de Service de la Scolarité et des Statistiques : Mme BIENZA Aline

Chef de Service Adjoint de la Scolarité et des Statistiques : Mme FAGNI MBOUOMBO AMINA épse ONANA

Chef de Service du Matériel et de la Maintenance : Mme HAWA OUMAROU

Chef de Service Adjoint du Matériel et de la Maintenance: Dr MPONO EMENGUELE Pascale épse NDONGO

Bibliothécaire en Chef par intérim : Mme FROUISSOU née MAME Marie-Claire **Comptable Matières :** M. MOUMEMIE NJOUNDIYIMOUN MAZOU

2. COORDONNATEURS DES CYCLES ET RESPONSABLES DES FILIERES

Coordonnateur Filière Médecine Bucco-dentaire : Pr BENGONDO MESSANGA Charles

Coordonnateur de la Filière Pharmacie: Pr NTSAMA ESSOMBA Claudine

Coordonnateur Filière Internat : Pr ONGOLO ZOGO Pierre

Coordonnateur du Cycle de Spécialisation en Anatomie Pathologique : Pr SANDO Zacharie

Coordonnateur du Cycle de Spécialisation en Anesthésie Réanimation : Pr ZE MINKANDE

Jacqueline

Coordonnateur du Cycle de Spécialisation en Chirurgie Générale : Pr NGO NONGA

Bernadette

Coordonnateur du Cycle de Spécialisation en Gynécologie et Obstétrique : Pr DOHBIT Julius

SAMA

Coordonnateur du Cycle de Spécialisation en Médecine Interne: Pr NGANDEU Madeleine

Coordonnateur du Cycle de Spécialisation en Pédiatrie : Pr MAH Evelyn MUNGYEH

Coordonnateur du Cycle de Spécialisation en Biologie Clinique : Pr KAMGA FOUAMNO

Henri Lucien

Coordonnateur du Cycle de Spécialisation en Radiologie et Imagerie Médicale: Pr ONGOLO

ZOGO Pierre

Coordonnateur du Cycle de Spécialisation en Santé Publique : Pr TAKOUGANG Innocent

Coordonnateur de la formation Continue : Pr KASIA Jean Marie

Point focal projet : Pr NGOUPAYO Joseph

Responsable Pédagogique CESSI: Pr ANKOUANE ANDOULO Firmin

3. DIRECTEURS HONORAIRES DU CUSS

Pr MONEKOSSO Gottlieb (1969-1978)

Pr EBEN MOUSSI Emmanuel (1978-1983)

Pr NGU LIFANJI Jacob (1983-1985)

Pr CARTERET Pierre (1985-1993)

4. DOYENS HONORAIRES DE LA FMSB

Pr SOSSO Maurice Aurélien (1993-1999)

Pr NDUMBE Peter (1999-2006)

Pr TETANYE EKOE Bonaventure (2006-2012)

Pr EBANA MVOGO Côme (2012-2015)

5. PERSONNEL ENSEIGNANT

N°	NOMS ET PRENOMS	GRADE	DISCIPLINE
	DEPARTEMENT DE CHIR	URGIE E	Γ SPECIALITES
1	SOSSO Maurice Aurélien (CD)	P	Chirurgie Générale
2	DJIENTCHEU Vincent de Paul	P	Neurochirurgie
3	ESSOMBA Arthur (CD par Intérim)	P	Chirurgie Générale
4	HANDY EONE Daniel	P	Chirurgie Orthopédique
5	MOUAFO TAMBO Faustin	P	Chirurgie Pédiatrique
6	NGO NONGA Bernadette	P	Chirurgie Générale
7	NGOWE NGOWE Marcellin	P	Chirurgie Générale
8	OWONO ETOUNDI Paul	P	Anesthésie-Réanimation
9	ZE MINKANDE Jacqueline	P	Anesthésie-Réanimation
10	BAHEBECK Jean	MCA	Chirurgie Orthopédique
11	BANG GUY Aristide	MCA	Chirurgie Générale
12	BENGONO BENGONO Roddy Stéphan	MCA	Anesthésie-Réanimation
13	JEMEA Bonaventure	MCA	Anesthésie-Réanimation
14	BEYIHA Gérard	MC	Anesthésie-Réanimation
15	EYENGA Victor Claude	MC	Chirurgie/Neurochirurgie
16	FOUDA Pierre Joseph	MC	Chirurgie/Urologie
17	GUIFO Marc Leroy	MC	Chirurgie Générale
18	NGO YAMBEN Marie Ange	MC	Chirurgie Orthopédique
19	TSIAGADIGI Jean Gustave	MC	Chirurgie Orthopédique
20	AMENGLE Albert Ludovic	MA	Anesthésie-Réanimation
21	BELLO FIGUIM	MA	Neurochirurgie
22	BIWOLE BIWOLE Daniel Claude Patrick	MA	Chirurgie Générale
23	FONKOUE Loïc	MA	Chirurgie Orthopédique
24	KONA NGONDO François Stéphane	MA	Anesthésie-Réanimation
25	MBOUCHE Landry Oriole	MA	Urologie
26	MEKEME MEKEME Junior Barthelemy	MA	Urologie
27	MULUEM Olivier Kennedy	MA	Orthopédie-Traumatologie

28	NWAHA MAKON Axel Stéphane	MA	Urologie
29	SAVOM Eric Patrick	MA	Chirurgie Générale
30	AHANDA ASSIGA	CC	Chirurgie Générale
31	BIKONO ATANGANA Ernestine Renée	CC	Neurochirurgie
32	BWELE Georges	CC	Chirurgie Générale
33	EPOUPA NGALLE Frantz Guy	CC	Urologie
34	FOUDA Jean Cédrick	CC	Urologie
35	IROUME Cristella Raïssa BIFOUNA épse NTYO'O NKOUMOU	CC	Anesthésie-Réanimation
36	MOHAMADOU GUEMSE Emmanuel	CC	Chirurgie Orthopédique
37	NDIKONTAR KWINJI Raymond	CC	Anesthésie-Réanimation
38	NYANIT BOB Dorcas	CC	Chirurgie Pédiatrique
39	OUMAROU HAMAN NASSOUROU	CC	Neurochirurgie
40	ADDOME DETOME 1 1 GV 1	A C	Chirurgie Thoracique et
40	ARROYE BETOU Fabrice Stéphane	AS AS	Cardiovasculaire
41	ELA BELLA Amos Jean-Marie	AS	Chirurgie Thoracique
42	FOLA KOPONG Olivier	AS	Chirurgie
43	FOSSI KAMGA GACELLE	AS	Chirurgie Pédiatrique
44	GOUAG	AS	Anesthésie Réanimation
45	MBELE Richard II	AS	Chirurgie Thoracique
46	MFOUAPON EWANE Hervé Blaise	AS	Neurochirurgie
47	NGOUATNA DJEUMAKOU Serge Rawlings	AS	Anesthésie-Réanimation
48	NYANKOUE MEBOUINZ Ferdinand	AS	Chirurgie Orthopédique et Traumatologique
	DEPARTEMENT DE MEDECIN	E INTE	RNE ET SPECIALITES
49	SINGWE Madeleine épse NGANDEU (CD)	P	Médecine Interne/Rhumatologie
50	ANKOUANE ANDOULO	P	Médecine Interne/ Hépato-Gastro- Entérologie

51	ASHUNTANTANG Gloria Enow	P	Médecine Interne/Néphrologie
52	BISSEK Anne Cécile	P	Médecine Interne/Dermatologie
53	KAZE FOLEFACK François	P	Médecine Interne/Néphrologie
54	KUATE TEGUEU Calixte	P	Médecine Interne/Neurologie
55	KOUOTOU Emmanuel Armand	P	Médecine Interne/Dermatologie
56	MBANYA Jean Claude	P	Médecine Interne/Endocrinologie
57	NDOM Paul	P	Médecine Interne/Oncologie
58	NJAMNSHI Alfred KONGNYU	P	Médecine Interne/Neurologie
59	NJOYA OUDOU	P	Médecine Interne/Gastroentérologie
60	SOBNGWI Eugène	P	Médecine Interne/Endocrinologie
61	PEFURA YONE Eric Walter	P	Médecine Interne/Pneumologie
62	BOOMBHI Jérôme	MCA	Médecine Interne/Cardiologie
63	FOUDA MENYE Hermine Danielle	MCA	Médecine Interne/Néphrologie
64	HAMADOU BA	MCA	Médecine Interne/Cardiologie
65	MENANGA Alain Patrick	MCA	Médecine Interne/Cardiologie
66	NGANOU Chris Nadège	MCA	Médecine Interne/Cardiologie
67	KOWO Mathurin Pierre	MC	Médecine Interne/ Hépato-Gastro-
07	KOWO Mathurin Fierre	MC	Entérologie
68	KUATE née MFEUKEU KWA Liliane	MC	Médecine Interne/Cardiologie
00	Claudine	MC	Wedeeme meme/Cardiologic
69	NDONGO AMOUGOU Sylvie	MC	Médecine Interne/Cardiologie
70	ESSON MAPOKO Berthe Sabine épse	MA	Médecine Interne/Oncologie
/0	PAAMBOG	IVIZI	Médicale
71	ETOA NDZIE épse ETOGA Martine	MA	Médecine Interne/Endocrinologie
/ 1	Claude	IVIZI	Wiedeelile Interne/Endoermologie
72	MAÏMOUNA MAHAMAT	MA	Médecine Interne/Néphrologie
73	MASSONGO MASSONGO	MA	Médecine Interne/Pneumologie
74	MBONDA CHIMI Paul-Cédric	MA	Médecine Interne/Neurologie
75	NDJITOYAP NDAM Antonin Wilson	MA	Médecine Interne/Gastroentérologie
76	NDOBO épse KOE Juliette Valérie Danielle	MA	Médecine Interne/Cardiologie

77	NGAH KOMO Elisabeth	MA	Médecine Interne/Pneumologie
78	NGARKA Léonard	MA	Médecine Interne/Neurologie
79	NKORO OMBEDE Grâce Anita	MA	Médecine Interne/Dermatologue
80	NTSAMA ESSOMBA Marie Josiane épse EBODE	MA	Médecine Interne/Gériatrie
81	OWONO NGABEDE Amalia Ariane	MA	Médecine Interne/Cardiologie Interventionnelle
82	ATENGUENA OBALEMBA Etienne	CC	Médecine Interne/Cancérologie Médicale
83	DEHAYEM YEFOU Mesmin	CC	Médecine Interne/Endocrinologie
84	FOJO TALONGONG Baudelaire	CC	Médecine Interne/Rhumatologie
85	KAMGA OLEN Jean Pierre Olivier	CC	Médecine Interne/Psychiatrie
86	MENDANE MEKOBE Francine épse EKOBENA	CC	Médecine Interne/Endocrinologie
87	MINTOM MEDJO Pierre Didier	CC	Médecine Interne/Cardiologie
88	NTONE ENYIME Félicien	CC	Médecine Interne/Psychiatrie
89	NZANA Victorine Bandolo épse FORKWA MBAH	СС	Médecine Interne/Néphrologie
90	ANABA MELINGUI Victor Yves	AS	Médecine Interne/Rhumatologie
91	EBENE MANON Guillaume	AS	Médecine Interne/Cardiologie
92	ELIMBY NGANDE Lionel Patrick Joël	AS	Médecine Interne/Néphrologie
93	KUABAN Alain	AS	Médecine Interne/Pneumologie
94	NKECK Jan René	AS	Médecine Interne
95	NSOUNFON ABDOU WOUOLIYOU	AS	Médecine Interne/Pneumologie
96	NTYO'O NKOUMOU Arnaud Laurel	AS	Médecine Interne/Pneumologie
97	TCHOUANKEU KOUNGA Fabiola	AS	Médecine Interne/Psychiatrie
	DEPARTEMENT D'IMAGERIE	MEDICA	LE ET RADIOLOGIE
98	ZEH Odile Fernande (CD)	P	Radiologie/Imagerie Médicale
99	GUEGANG GOUJOU. Emilienne	P	Imagerie Médicale/Neuroradiologie
100	MOIFO Boniface	P	Radiologie/Imagerie Médicale

101	ONGOLO ZOGO Pierre	MCA	Radiologie/Imagerie Médicale
102	SAMBA Odette NGANO	MC	Biophysique/Physique Médicale
103	MBEDE Maggy épse ENDEGUE MANGA	MA	Radiologie/Imagerie Médicale
104	MEKA'H MAPENYA Ruth-Rosine	CC	Radiothérapie
105	NWATSOCK Joseph Francis	CC	Radiologie/Imagerie Médicale
103	NWATSOCK Joseph Plancis		Médecine Nucléaire
106	SEME ENGOUMOU Ambroise Merci	CC	Radiologie/Imagerie Médicale
107	ABO'O MELOM Adèle Tatiana	AS	Radiologie et Imagerie Médicale
	DEPARTEMENT DE GYNEO	COLOGII	E-OBSTETRIQUE
108	NGO UM Esther Juliette épse MEKA	MCA	Cymágologia Obstátnicus
108	(CD)	WICA	Gynécologie-Obstétrique
109	FOUMANE Pascal	P	Gynécologie-Obstétrique
110	KASIA Jean Marie	P	Gynécologie-Obstétrique
111	KEMFANG NGOWA Jean Dupont	P	Gynécologie-Obstétrique
112	MBOUDOU Émile	P	Gynécologie-Obstétrique
113	MBU ENOW Robinson	P	Gynécologie-Obstétrique
114	NKWABONG Elie	P	Gynécologie-Obstétrique
115	TEBEU Pierre Marie	P	Gynécologie-Obstétrique
116	BELINGA Etienne	MCA	Gynécologie-Obstétrique
117	ESSIBEN Félix	MCA	Gynécologie-Obstétrique
118	FOUEDJIO Jeanne Hortence	MCA	Gynécologie-Obstétrique
119	NOA NDOUA Claude Cyrille	MCA	Gynécologie-Obstétrique
120	DOHBIT Julius SAMA	MC	Gynécologie-Obstétrique
121	MVE KOH Valère Salomon	MC	Gynécologie-Obstétrique
122	EBONG Cliford EBONTANE	MA	Gynécologie-Obstétrique
123	MBOUA BATOUM Véronique Sophie	MA	Gynécologie-Obstétrique
124	MENDOUA Michèle Florence épse	MA	Gynécologie-Obstétrique
124	NKODO	IVIA	Gynecologie-Obstetrique
125	METOGO NTSAMA Junie Annick	MA	Gynécologie-Obstétrique
126	NSAHLAI Christiane JIVIR FOMU	MA	Gynécologie-Obstétrique

127	NYADA Serge Robert	MA	Gynécologie-Obstétrique
128	TOMPEEN Isidore	CC	Gynécologie-Obstétrique
129	MPONO EMENGUELE Pascale épse NDONGO	AS	Gynécologie-Obstétrique
130	NGONO AKAM Marga Vanina	AS	Gynécologie-Obstétrique
	DEPARTEMENT D'OPHTALMOLOGI	E, D'OR	L ET DE STOMATOLOGIE
131	DJOMOU François (CD)	P	ORL
132	ÉPÉE Émilienne épse ONGUENE	P	Ophtalmologie
133	KAGMENI Gilles	P	Ophtalmologie
134	NDJOLO Alexis	P	ORL
135	NJOCK Richard	P	ORL
136	OMGBWA EBALE André	P	Ophtalmologie
137	BILLONG Yannick	MCA	Ophtalmologie
138	DOHVOMA Andin Viola	MCA	Ophtalmologie
139	EBANA MVOGO Stève Robert	MCA	Ophtalmologie
140	KOKI Godefroy	MCA	Ophtalmologie
141	MINDJA EKO David	MC	ORL/Chirurgie Maxillo-Faciale
142	NGABA Olive	MC	ORL
143	AKONO ZOUA épse ETEME Marie Evodie	MA	Ophtalmologie
144	ANDJOCK NKOUO Yves Christian	MA	ORL
145	ATANGA Léonel Christophe	MA	ORL-Chirurgie Cervico-Faciale
146	MEVA'A BIOUELE Roger Christian	MA	ORL-Chirurgie Cervico-Faciale
147	MOSSUS Yannick	MA	ORL-Chirurgie Cervico-Faciale
148	MVILONGO TSIMI épse BENGONO Caroline	MA	Ophtalmologie
149	NANFACK NGOUNE Chantal	MA	Ophtalmologie
150	NGO NYEKI Adèle-Rose épse MOUAHA- BELL	MA	ORL-Chirurgie Cervico-Faciale
151	NOMO Arlette Francine	MA	Ophtalmologie
152	ASMAOU BOUBA Dalil	CC	ORL

153	BOLA SIAFA Antoine	CC	ORL
	DEPARTEMENT	DE PED	IATRIE
154	ONGOTSOYI Angèle épse PONDY (CD)	P	Pédiatrie
155	KOKI NDOMBO Paul	P	Pédiatre
156	ABENA OBAMA Marie Thérèse	P	Pédiatrie
157	CHIABI Andreas	P	Pédiatrie
158	CHELO David	P	Pédiatrie
159	MAH Evelyn	P	Pédiatrie
160	NGUEFACK Séraphin	P	Pédiatrie
161	NGUEFACK épse DONGMO Félicitée	P	Pédiatrie
162	NGO UM KINJEL Suzanne épse SAP	MCA	Pédiatrie
163	KALLA Ginette Claude épse MBOPI KEOU	MC	Pédiatrie
164	MBASSI AWA Hubert Désiré	MC	Pédiatrie
165	NOUBI Nelly épse KAMGAING MOTING	MC	Pédiatrie
166	EPEE épse NGOUE Jeannette	MA	Pédiatrie
167	KAGO TAGUE Daniel Armand	MA	Pédiatrie
168	MEGUIEZE Claude-Audrey	MA	Pédiatrie
169	MEKONE NKWELE Isabelle	MA	Pédiatre
170	TONY NENGOM Jocelyn	MA	Pédiatrie
D	EPARTEMENT DE MICROBIOLOGIE, 1	PARASI'	FOLOGIE, HEMATOLOGIE ET
	MALADIES IN	FECTIE	USES
171	MBOPI KEOU François-Xavier (CD)	P	Bactériologie/Virologie
172	ADIOGO Dieudonné	P	Microbiologie/Virologie
173	GONSU née KAMGA Hortense	P	Bactériologie
174	MBANYA Dora	P	Hématologie
175	OKOMO ASSOUMOU Marie Claire	P	Bactériologie/Virologie
176	TAYOU TAGNY Claude	P	Microbiologie/Hématologie
177	CHETCHA CHEMEGNI Bernard	MC	Microbiologie/Hématologie
178	LYONGA Emilia ENJEMA	MC	Microbiologie médicale

179	TOUKAM Michel	MC	Microbiologie médicale
180	NGANDO Laure épse MOUDOUTE	MA	Parasitologie médicale
181	BEYALA Frédérique	CC	Maladies Infectieuses
182	BOUM II YAP	CC	Microbiologie médicale
183	ESSOMBA Réné Ghislain	CC	Immunologie
184	MEDI SIKE Christiane Ingrid	CC	Maladies infectieuses
185	NGOGANG Marie Paule	CC	Biologie Clinique
186	NDOUMBA NKENGUE Annick épse MINTYA	CC	Hématologie
187	VOUNDI VOUNDI Esther	CC	Virologie médicale
188	ANGANDJI TIPANE Prisca épse ELLA	AS	Biologie Clinique/Hématologie
189	Georges MONDINDE IKOMEY	AS	Immunologie
190	MBOUYAP Pretty Rosereine	AS	Virologie
	DEPARTEMENT DE	SANTE 1	PUBLIQUE
191	KAMGNO Joseph (CD)	P	Santé Publique/Epidémiologie
192	ESSI Marie José	P	Santé Publique/Anthropologie
172	LSSI Walle Jose	1	Médicale
193	TAKOUGANG Innocent	P	Santé Publique
19/	BEDIANG Georges Wylfred	MCA	Informatique Médicale/Santé
174	BEDIANG Georges wymed	MCA	Publique
195	BILLONG Serges Clotaire	MC	Santé Publique
196	NGUEFACK TSAGUE	MC	Santé Publique/Biostatistiques
197	EYEBE EYEBE Serge Bertrand	CC	Santé Publique/Epidémiologie
198	KEMBE ASSAH Félix	CC	Epidémiologie
199	KWEDI JIPPE Anne Sylvie	CC	Epidémiologie
200	MBA MAADJHOU Berjauline Camille	CC	Santé Publique/Epidémiologie
	· ·		Nutritionnelle
201	MOSSUS Tatiana née ETOUNOU AKONO	CC	Expert en Promotion de la Santé
202	NJOUMEMI ZAKARIAOU	CC	Santé Publique/Economie de la Santé

	NACTOR OF VIEWDONOME C	1	
203	NKENGFACK NEMBONGWE Germaine	CC	Nutrition
	Sylvie		
204	ONDOUA MBENGONO Laura Julienne	CC	Psychologie Clinique
205	ABBA-KABIR Haamit-Mahamat	AS	Economie de la Santé
206	AMANI ADIDJA	AS	Santé Publique
207	ESSO ENDALLE Lovet Linda Augustine	AS	Santé Publique
207	Julia	AS	Same I donque
	DEPARTEMENT DES SCIEN	CES M	ORPHOLOGIQUES-
	ANATOMIE PA	THOLO	GIQUE
208	MENDIMI NKODO Joseph (CD)	MC	Anatomie Pathologie
209	SANDO Zacharie	P	Anatomie Pathologie
210	BISSOU MAHOP Josué	MC	Médecine de Sport
211	KABEYENE OKONO Angèle Clarisse	MC	Histologie/Embryologie
212	AKABA Désiré	MC	Anatomie Humaine
213	NSEME ETOUCKEY Georges Eric	MC	Médecine Légale
214	NGONGANG Gilbert Frank Olivier	MA	Médecine Légale
215	MENDOUGA MENYE Coralie Reine	CC Anatomopathologie	Anatomonathologie
213	Bertine épse KOUOTOU		7 matomopathologic
216	ESSAME Eric Fabrice	AS	Anatomopathologie
	DEPARTEMENT	DE BIO	CHIMIE
217	NDONGO EMBOLA épse TORIMIRO	P	Biologie Moléculaire
217	Judith (CD)	1	Biologie Moleculaire
218	PIEME Constant Anatole	P	Biochimie
219	AMA MOOR Vicky Joceline	P	Biologie Clinique/Biochimie
220	EUSTACE BONGHAN BERINYUY	CC	Biochimie
221	GUEWO FOKENG Magellan	CC	Biochimie
222	MBONO SAMBA ELOUMBA Esther	AS	Biochimie
	Astrid		Diocininic
	DEPARTEMENT D	E PHYS	SIOLOGIE
223	ETOUNDI NGOA Laurent Serges (CD)	P	Physiologie
		_1	

224	ASSOMO NDEMBA Peguy Brice	MC	Physiologie			
225	TSALA Emery David	MC	Physiologie			
226	AZABJI KENFACK Marcel	CC	Physiologie			
227	DZUDIE TAMDJA Anastase	CC	Physiologie			
228	EBELL'A DALLE Ernest Remy Hervé	CC	Physiologie humaine			
DEPARTEMENT DE PHARMACOLOGIE ET DE MEDECINE TRADITIONNELLE						
229	NGONO MBALLA Rose ABONDO (CD)	MC	Pharmaco-thérapeutique africaine			
230	NDIKUM Valentine	CC	Pharmacologie			
231	ONDOUA NGUELE Marc Olivier	AS	Pharmacologie			
DEPARTEMENT DE CHIRURGIE BUCCALE, MAXILLO-FACIALE ET						
PARODONTOLOGIE						
232	BENGONDO MESSANGA Charles (CD)	P	Stomatologie			
233	EDOUMA BOHIMBO Jacques Gérard	MA	Stomatologie et Chirurgie			
234	LOWE NANTCHOUANG Jacqueline	CC	Odontologie Pédiatrique			
234	Michèle épse ABISSEGUE					
235	MBEDE NGA MVONDO Rose	CC	Médecine bucco-dentaire			
236	MENGONG épse MONEBOULOU	СС	Odontologie pédiatrique			
230	Hortense					
237	NDJOH NDJOH Jules Julien	CC	Parodontologie/Implantologie			
238	NOKAM TAGUEMNE Marie Elvire	CC	Médecine dentaire			
239	BITHA BEYIDI Thècle Rose Claire	AS	Chirurgie Maxillo Faciale			
240	GAMGNE GUIADEM Catherine M	AS	Chirurgie dentaire			
241	KWEDI Karl Guy Grégoire	AS	Chirurgie bucco-dentaire			
242	NIBEYE Yannick Carine Brice	AS	Bactériologie			
243	NKOLO TOLO Francis Daniel	AS	Chirurgie bucco-dentaire			
	DEPARTEMENT DE PHARMACOGNOS	SIE ET C	HIMIE PHARMACEUTIQUE			
244	NTSAMA ESSOMBA Claudine (CD)	P	Pharmacognosie /Chimie			
244			pharmaceutique			
245	NGAMENI Bathélémy	P	Phytochimie/ Chimie organique			
246	NGOUPAYO Joseph	P	Phytochimie/Pharmacognosie			
		1	ı			

247 248	GUEDJE Nicole Marie BAYAGA Hervé Narcisse	MC AS	Ethnopharmacologie/Biologie végétale Pharmacie					
DEPARTEMENT DE PHARMACOTOXICOLOGIE ET PHARMACOCINETIQUE								
249	ZINGUE Stéphane (CD)	MC	Physiologie et Pharmacologie					
250	FOKUNANG Charles	P	Biologie Moléculaire					
251	MPONDO MPONDO Emmanuel	P	Pharmacie					
252	TEMBE Estella épse FOKUNANG	MC	Pharmacologie Clinique					
253	ANGO Yves Patrick	AS	Chimie des substances naturelles					
254	NENE AHIDJO épse NJITUNG TEM	AS	Neuropharmacologie					
	DEPARTEMENT DE PHARMACIE GALENIQUE ET LEGISLATION							
PHARMACEUTIQUE								
255	NNANGA NGA (CD)	P	Pharmacie Galénique					
256	MBOLE Jeanne Mauricette épse MVONDO MENDIM	СС	Management de la qualité, Contrôle qualité des produits de santé et des aliments					
257	NYANGONO NDONGO Martin	CC	Pharmacie					
258	SOPPO LOBE Charlotte Vanessa	CC	Contrôle qualité médicaments					
259	ABA'A Marthe Dereine	AS	Analyse du Médicament					
260	FOUMANE MANIEPI NGOUOPIHO Jacqueline Saurelle	AS	Pharmacologie					
261	MINYEM NGOMBI Aude Périne épse AFUH	AS	Réglementation Pharmaceutique					

P= Professeur

MCA= Maître de Conférences Agrégé

MC= Maître de Conférences

MA= Maître Assistant

CC = Chargé de Cours

AS = Assistant

ABSTRACT

Background: Prevention of mother-to-child transmission (PMTCT) of HIV is crucial in sub-Saharan Africa, where challenges such as inadequate plasma viral load (PVL) monitoring persist. This study evaluates PVL coverage and PMTCT outcomes at a reference hospital in Yaoundé, Cameroon.

Methods: We conducted a cross-sectional, hospital-based survey, with both retrospective and prospective components, from February 1th, 2024, to July 31th, 2024, at the Yaoundé Gynaeco-obstetric and paediatric Hospital. The study included HIV-infected pregnant women who delivered at the hospital or attended antenatal and early infant diagnostic appointments. Data collection included a review of medical records and interviews using a structured questionnaire. Key outcomes included PVL monitoring coverage and rate of HIV transmission at 6 weeks and at 9 months. Data analysis was performed using SPSS version 23, with statistical significance set at p < 0.05, utilizing both bivariate and multivariate analyses.

Results: We included 235 participants in our study which consisted of women aged 21-40 years, predominantly single and unemployed, with a majority having secondary school education. We noticed a notable disparity in PVL monitoring coverage, with 59.1% during antenatal care compared to 28.9% postnatally. Adherence to PCR testing timelines was high, with 94.7% of tests conducted within the 6–8-week window and 75.6% at 9 months. The vertical HIV transmission rates were 5.3% at 6 weeks and 8.9% at 9 months, indicating a need for enhanced preventive measures. Key determinant of transmission included adherence to antiretroviral therapy (aPR=17.56; CI: 1.80-169.44; p=0.014).

Conclusion: Our study highlights significant gaps in postnatal PVL monitoring and the need for improved adherence to testing schedules. Although vertical transmission rates are relatively low, the observed increase over time underscores the necessity for ongoing vigilance and refinement of PMTCT strategies. Our finding supports the continued emphasis on ART adherence in reducing HIV transmission.

Keywords: HIV, Plasma Viral Load Coverage, Mother-to-Child Transmission, PMTCT, Cameroon

RESUME

Contexte: La prévention de la transmission du VIH de la mère à l'enfant (PTME) est cruciale en Afrique subsaharienne, où des défis tels que le suivi inadéquat de la charge virale plasmatique (CVP) persiste. Cette étude évalue la couverture de la CVP et les résultats de la PTME dans un hôpital de référence à Yaoundé, au Cameroun.

Méthodologie : Nous avons mené une étude transversale avec des composantes rétrospectives et prospectives, du 1er février 2024 au 31 juillet 2024, à l'Hôpital Gynéco obstétrique et pédiatrique de Yaoundé. L'étude a inclus des femmes enceintes vivant avec le VIH qui ont accouché à l'hôpital ou qui ont assisté aux rendez-vous de soins prénataux et de diagnostic précoce des nourrissons. La collecte des données a inclus une révision des dossiers médicaux et des entretiens à l'aide d'un questionnaire structuré. Les principaux résultats comprenaient la couverture du suivi de la CVP et le taux de transmission du VIH à 6 semaines et à 9 mois. L'analyse des données a été réalisée à l'aide du logiciel SPSS version 23, avec une signification statistique fixée à p < 0,05, en utilisant à la fois des analyses bivariées et multivariées.

Résultats : Nous avons inclus 235 participantes dans notre étude, principalement des femmes âgées de 21 à 40 ans, majoritairement célibataires et au chômage, avec une majorité ayant un niveau d'éducation secondaire. Nous avons constaté une disparité notable dans la couverture du suivi de la CVP avec 59,1% de couverture pendant la période prénatale contre 28,9% en postnatale. L'adhésion aux délais de test PCR était élevée, avec 94,7 % des tests réalisés dans la fenêtre de 6 à 8 semaines et 75,6 % à 9 mois. Les taux de transmission verticale du VIH étaient de 5,3 % à 6 semaines et de 8,9 % à 9 mois, indiquant un besoin de mesures préventives renforcées. Le principal déterminant de la transmission était l'adhésion à la thérapie antirétrovirale (aPR=17,56 ; IC : 1,80-169,44 ; p=0,014).

Conclusion: Notre étude met en évidence des lacunes significatives dans le suivi postnatal de la CVP et la nécessité d'améliorer l'adhésion aux programmes de tests. Bien que les taux de transmission verticale soient relativement faibles, l'augmentation observée au fil du temps souligne la nécessité d'une vigilance continue et d'un raffinement des stratégies de PTME. Nos résultats soutiennent l'accent continu mis sur l'adhésion à la thérapie antirétrovirale pour réduire la transmission du VIH.

Mots-clés : VIH, Couverture de la Charge Virale Plasmatique, Transmission de la Mère à l'Enfant, PTME, Cameroun

LIST OF ABBREVIATIONS AND ACRONYMS

Abbreviation Meaning

AIDS: Acquired Immuno-deficiency syndrome

ANC: Antenatal care

ART: Antiretrovirals therapy

CAMPHIA: Cameroon Population-based HIV Impact Assessment

cART: combined Antiretroviral therapy

EGPAF: Elizabeth Glaser Paediatric AIDS Foundation.

EID: Early infant diagnosis

EPP: Estimation and Project Package

FMBSIRB: Faculty of Medicine and Biomedical sciences Institutional Review Board

HAART: Highly active antiretroviral therapy

HIV: Human Immunodeficiency Virus

IDPs: Internally Displaced Persons

MTCT: Mother-to-child Transmission

LMIC: Low- and Middle-Income Countries

NGO: Non-Governmental Organization

PMTCT: Prevention Mother-to-child transmission

Abbreviations Meaning

PCR: Polymerase Chain Reaction

PLWHIV: People living with HIV

PVL: Plasma viral load

ROM: Rupture of membranes

RNA: Ribonucleic Acid

SDGs: Sustainable Development Goals

UN: United Nation

UNAIDS: United Nations Programme on HIV/AIDS

YGOPH: Yaoundé Gynaeco-Obstetric and paediatric Hospital

WHO: World Health Organization

LIST OF TABLES

Table 1: Monitoring of HIV during Pregnancy (report of workshop done in 2019, East	st region
Cameroon)	45
Table 2:Summary of the different studies conducted on viral load monitoring and Pr	evention
mother-to-child-transmission with their results	46
Table 3: Sociodemographic characteristic of the population	56
Table 4: Medical and obstetric characteristics	57
Table 5: Characteristic of labor, delivery and newborns	58
Table 6: Plasma viral load coverage and characteristics	60
Table 7:Potential factors associated with PVL testing during ANCErreur! Signet no	n défini.
Table 8: Predictors factors associated with PVL testing during antenatal care	61
Table 9: Predictors factors of Plasma viral load testing at post-natal period	62
Table 10: Adherence to timeline PCR testing	63
Table 11: Early Diagnosis Infant Result	64
Table 12: Mode of delivery according to PVL	64
Table 13: Bivariate analysis of potential factors associated with MTCT at 6 weeks	65
Table 14: Bivariate analysis of potential factors associated with MTCT at 9 months	67
Table 15: Predictors factors of MTCT of HIV at 6 weeks	68
Table 16: Predictors factors of MTCT of HIV at 9 months	69

LIST OF FIGURES

Figure I: Conceptual framework	33
Figure II: Adult HIV prevalence	37
Figure III: Prevalence of HIV infection by region	38
Figure IV: Diagram consort of participants	55

CHAPTER I: INTRODUCTION

1.1. BACKGROUND

In spite of global progress in maternal and child health, HIV/AIDS remains a significant threat to pregnant women, with higher prevalence reported among target populations in sub-Saharan Africa (SSA)[1,2]. This disproportionate burden on women has led to a substantial number of HIV-exposed children in SSA, resulting in high rates of new HIV infections and HIV-related illness and death[3]. Similarly, pregnant women in Cameroon are disproportionately affected by HIV, with a national prevalence of 4.26% [CI 95%: 3.79–4.79], compared to 2.7% in the general population. Notably, in some regions of Cameroon, the proportion of HIV-infected women of reproductive age is 3.5 times higher than that of men, reflecting their increased vulnerability to infection. This disparity suggests a significant risk of HIV transmission to newborns in the absence of targeted maternal and child healthcare interventions[4].

The Prevention of Mother-To-Child Transmission (PMTCT) program remains a priority for ensuring HIV-infected pregnant women and their babies are protected from the virus, aiming to produce a generation of HIV-free infants while keeping mothers alive. Strategies to reduce mother-to-child transmission (MTCT) include the use of antiretroviral drugs, mode of delivery based on viral load (VL) in the antepartum period, and breast milk substitutes[5]. These interventions are crucial in addressing the high burden of HIV vertical transmission in SSA, which has a cumulative in utero, intrapartum, and postpartum MTCT rate of 25-35%[3]. Maternal VL is the most predictive factor for perinatal HIV transmission, with higher VLs correlating with a greater risk of transmission[6]. The goal of antiretroviral therapy (ART) in the PMTCT framework is to suppress maternal VL to reduce the risk of transmitting HIV to the infant during pregnancy, delivery, and breastfeeding[7]. Since plasma VL levels are a primary driver of HIV-1 MTCT, the World Health Organization (WHO) has recommended routine VL testing for pregnant women living with HIV since 2016[8]. The ultimate objective is to achieve and sustain maternal viral suppression before delivery and throughout breastfeeding[9].

In Cameroon, routine VL testing has been endorsed as the reference marker for treatment monitoring and for eliminating MTCT, following WHO recommendations. However, considering the financial, logistical, and operational challenges of expanding VL testing in SSA countries[9–12], it is crucial to closely monitor the scale-up of VL testing within the PMTCT cascade in Cameroon. This monitoring is important for

identifying implementation bottlenecks and proposing evidence-based measures to optimize PMTCT performance. Despite these efforts, there is limited knowledge about current VL monitoring practices in accordance with Cameroon and WHO PMTCT guidelines and the impact of VL monitoring on maternal and fetal outcomes in the Cameroonian context[13]. Although a recent study in the Littoral region of Cameroon revealed suboptimal PVL coverage[14], making it the one of the main studies to assess VL in the Littoral region of Cameroon thus far. There are few data on PVL coverage and its impact to the PMTCT of HIV-1 in the centre regional of Cameroon.

This is our main focus of this study entitled "Evaluation of viral load coverage and the Prevention of Mother-To-Child Transmission at the Yaoundé gynaeco-obstetric and paediatric Hospital"

1.2. PROBLEM STATEMENT

PMTCT is a major concern amongst HIV-infected pregnant women. Over the world, strategies have been developed to reduce mother-to-child transmission as combined antiretroviral therapy, the mode of delivery related to viral load in the antepartum period, breast milk substitutes are some of the measures taken to promote the prevention of mother-to-child transmission of HIV (PMTCT)[5].

The goal of antiretroviral therapy (ART) is to suppress maternal viral load (VL) to substantially lower the risk of transmitting the virus to their infant during pregnancy and breastfeeding[7]. However, in several Sub-Saharan African PMTCT study populations, the proportions of pregnant women with unsuppressed VL range from 6.1–15.4%, with 9.4–22% experiencing postpartum episodes of virologic rebound.[15]

Since plasma viral load level is one of the key elements of mother-to-child transmission, we were concerned to assess how plasma viral load is monitored from ANC up to 9 months postpartum; to understand mother to child transmission of HIV and compare it at 6 weeks and 9 months.

1.3. JUSTIFICATION

Cameroon adopted new strategies to manage HIV-infected pregnant women better; a new guideline has been made which focus on maternal plasma viral load testing during pregnancy and in the postpartum period[13]. These strategies have been well implemented in developed countries compared to Sub-Saharan Africa (SSA). This gap in the implementation is undoubtedly due to the low socioeconomic index in SSA; patients cannot pay for their treatment and related laboratory investigations[16]. Thanks to the Cameroon government, which made free HIV-related care since January 2020. Cameroon could now apply some recommendations in PMTCT already done in developed countries. Since then, there are few real-world data on viral load coverage among HIV-infected pregnant women to tackle the risk factors of mother-to-child transmission in our context. This study will provide reliable information on mother-to-child transmission of HIV.

1.4. RESEARCH GOAL

We aimed to contribute in reducing mother to child transmission of HIV.

1.5. RESEARCH QUESTIONS

- 1- How does the coverage of plasma viral load monitoring of HIV-infected pregnant women during the antenatal and postnatal periods impact the management and outcomes of HIV treatment in these women?
- **2-** What is the level of adherence to recommended timelines for conducting PCR tests in exposed infants at 6 weeks and 9 months, and how does adherence affect the accuracy of HIV diagnosis?
- **3-** What are the differences in the rate of vertical HIV transmission among exposed infants at 6 weeks versus 9 months of age, and what factors contribute to these differences?
- **4-** What are the key determinants of mother-to-child transmission of HIV at 6 weeks and 9 months of age, and how do these determinants vary between different populations or regions?

1.6. RESEARCH OBJECTIVES

General Objective

To evaluate viral load coverage and the Prevention of Mother-To-Child Transmission of HIV-1 in one facility in Yaoundé.

Specific Objectives

- 1- Evaluate and compare the plasma viral load monitoring coverage for HIVinfected pregnant women during both the antenatal and postnatal periods;
- 2- Determine adherence to the recommended timelines for conducting PCR tests in exposed infants at 6 weeks and 9 months;
- 3- Assess and compare the rate of vertical HIV transmission among exposed infants at 6 weeks and 9 months of age;
- 4- Identify and compare potential determinants of mother-to-child transmission of HIV at 6 weeks and 9 months of age.

1.7 RESEARCH SCOPE

At the end of this study, we will strengthen the implementation strategy for managing HIV among pregnant women to reduce mother-to-child transmission of HIV-1. Additionally, this study will support the promotion of implementation research within our context to address public health challenges more effectively. This research is more aligned with implementation science than with traditional scientific research, as it focuses on evaluating a real-world intervention in our specific context.

1.8 CONCEPTUAL FRAMEWORK

During pregnancy and in the postpartum period, HIV-infected pregnant women should monitor their viral load for an adequate approach to reduce mother-to-child transmission.

To assess factors associated with early infant diagnosis (EID) of HIV status, and all potential factors should be taken in consideration.

Figure I: Conceptual framework

The visual conceptual framework graphically represents the interconnected elements of the study on maternal viral load and the prevention of mother-to-child HIV transmission. It links the overall objective of the study to its four specific objectives: monitoring maternal viral load before and after delivery, ensuring timely blood sample collection for PCR testing, measuring the prevalence of HIV transmission at 6 weeks and 9 months, and identifying risk factors for transmission. The model highlights the independent variables (such as antiretroviral treatment, comorbidities, and mode of delivery), the processes for monitoring viral load, as well as the key time points for assessing HIV transmission to the child.

1.9 DEFINITIONS OF TERMS

ANC (by WHO): The care provided by skilled healthcare professionals to pregnant

women and adolescent girls to ensure the best health conditions

for both mother and baby during pregnancy.

Complete files: Files with at least 80% of information about plasma viral load

assessment, mode of delivery and communication on the exposed

child (at least information on plasma viral load assessment during

pregnancy, information on labour and mode of delivery)

Dependent variables: The variable being tested and measured in an experiment and

"dependent" on the independent variable.

Independent variables: The experimenter manipulates or changes and is assumed to

affect the dependant variable directly.

Incomplete files: Files with less than 80% of information of information needed.

Exposed foetus or infant: Foetus or infant born from an HIV positive Woman.

Good maternal adherence: No missing or missing taking cART < 1 week a month during

pregnancy.

High-risk MTCT: HIV pregnant women with high viral load (greater than

1000copies/mL) and never did plasma viral load testing.

HIV infection: Considered as a positive HIV serology test and/or intake of

antiretroviral drugs.

Low-risk MTCT: HIV pregnant women with low viral load (less than

1000copies/mL)

Option B+: Approach of life-long ART for all HIV-infected pregnant

women, regardless of CD4 count.

PLV Coverage: Proportion of plasma viral load realised compared to the national

guidelines of plasma viral load monitoring among HIV-infected

pregnant women.

PMTCT: Strategies developed to tackle mother-to-child transmission.

Poor maternal adherence: Missing taking $cART \ge one$ week a month during pregnancy.

Vertical transmission: transmission from mother-to-child during pregnancy or

breastfeeding

Viral load: Amount of HIV RNA copies per millilitre of blood

Viral load Assessment: Routine evaluation of viral load testing every trimester during

pregnancy or antenatal period.

Viral load Suppression: Viral load value less than 1000 copies/ml

Viral load undetectable: Viral load value less than 50 copies/ml

CHAPTER II: LITERATURE REVIEW

2.1 OVERVIEW OF HIV INFECTION

2.1.1 Definition and epidemiology of HIV infection

HIV infection refers to the viral replication of retroviruses HIV-1 or HIV-2 within the T CD4+ lymphocytes cells of the immune system, which definitely leads to their destruction and gradually to a state of immune-suppression[17,18]. If left untreated the condition leads to a state of acquired immune-deficiency syndrome, where infected individuals are prone to opportunistic infections and malignancies[19,20].

HIV is the etiologic agent of HIV infection and the Acquired Immunodeficiency Syndrome (AIDS) [21,22]. AIDS is the most advanced stage of HIV infection defined by the development of certain cancers, infections, or other severe long-term clinical manifestations [20,22]. First identified in 1981, HIV/AIDS remains a major public health challenge and global pandemic [22,23]. Fortunately, with increasing access to effective HIV prevention, diagnosis, treatment and care, HIV infection has become a manageable chronic health condition, enabling people living with HIV to lead long and healthy lives[24]. Worldwide, the number of people living with HIV was estimated at 38.0 million (31.6 million–44.5 million) in 2019, 26 million (25.1 million-26.2 million) people were accessing antiretroviral therapy as the end of June 2020, around 1.7 million (1.2 million–2.2 million) people became newly infected and 690 000 (500 000–970 000) people died from AIDS-related illnesses in 2019. Of all people living with HIV, 81% (68–95%) knew their status, 67% (54–79%) were accessing treatment and 59% (49–69%) were virally suppressed in 2019, reflecting failure to achieve the UNAIDS 90-90-90 target[24–26].

Figure II: Adult HIV prevalence [24]

Sub-Saharan Africa carries a disproportionate burden of HIV, accounting for more than 70% of the global burden of infection[27]. The WHO African Region is the most affected region with 25.7 million people living with HIV in 2019 [28,29]. This region also accounts for almost two-thirds of the global total of new HIV infections [30]. The increasing HIV infections is thought to be due to slowing public health response to HIV[31].

According to UNAIDS, in Cameroon, the prevalence of HIV was estimated at 3.1% at the end of 2019, representing about 510 000 infected individuals. There was a total number of 17 000 new infections in 2019, among which 9000 where females aged 15 years and above, representing more than half of all new infections[32].

This prevalence continues to drop over the time. In 2020, overall adult HIV prevalence continues to decrease, moving from 5.4% in 2004 (DHS, 2004) to 4.3% in 2011 (DHS, 2011), 3.4% in 2017 (CAMPHIA, 2017) and recently 2.7% in 2018 (DHS, 2018). Prevalence among women is nearly twice that of men (3.4% vs. 1.9%, DHS 2018)[16], with 53% ART coverage (*DHIS2 National Data*)[33]. and that of pregnant women is estimated at 5.7%[34].

The economic capital, Douala, and the political capital, Yaounde, have a 2.4% prevalence, with 3.2% among women and 1.5% among men. Others cities combined have an overall HIV prevalence of 3.4% with 4.3% among women and 2.3% among men.[16] In Littoral region, the prevalence HIV is 3.9% among women and 1.1% among men[16].

Figure III: Prevalence of HIV infection by region [16]

According to WHO, HIV is the first cause of death in Cameroon and accounts for 13% of the nation's total deaths [35]. Considering the "90-90-90" targets in Cameroon, 74% of PLWHIV know their status, with 91.3% being on treatment and 80% being virally suppressed [36,37].

Mode of transmission of HIV

HIV transmission is the spread of HIV from person to person. HIV transmission is only possible through contact with HIV-infected body fluids [38]. These body fluids include: blood, semen, pre-seminal fluid, vaginal fluids, rectal fluids, and breast milk [38]. There is no evidence that HIV is transmitted by casual contact or that the virus can be spread by insects, such as by a mosquito bite [21]. Risk factors include the following [39,40].

- Unprotected sexual intercourse, especially receptive anal intercourse
- Multiple of sexual partners
- Prior or current sexually transmitted diseases (STDs) [41]: Gonorrhea, chlamydia, syphilis, and herpes genitalis infection.
- Sharing of intravenous drug
- Receipt of blood products
- Mucosal contact with infected blood or needle-stick injuries
- Maternal HIV infection (for newborns, infants, and children)

Factors that may decrease the risk include condom use, male circumcision, antiretroviral treatment, and pre-exposure prophylaxis [41].

2.1.2 Natural history of HIV infection

Clinical HIV infection undergoes 3 distinct phases: acute seroconversion, asymptomatic infection, and AIDS [42].

Acute seroconversion:

In humans, rapid occurrence of plasma viremia with widespread dissemination of the virus is observed 4-11 days after mucosal entrance of the virus [42]. During this phase, the infection is established and a proviral reservoir is created [43]. At this point, the viral load is typically very high, and the CD4⁺ T-cell count drops precipitously [42].

Seroconversion may take a few weeks, up to several months. Symptoms during this time may include fever, flu-like illness, lymphadenopathy, arthralgia, myalgia, headache, gastrointestinal symptoms, oral ulcer, weight loss, and rash [42]. However, some patients might have no symptom at all during this stage [44].

Asymptomatic (latent) stage:

At this stage in the infection, persons infected with HIV exhibit few or no signs or symptoms for a few years to a decade or more. Viral replication is ongoing during this time, [45] and the immune response against the virus is effective and vigorous [42]. In some patients, persistent generalized lymphadenopathy is an outward sign of infection. During this time, the viral load, if untreated, tends to persist at a relatively steady state, but the CD4⁺ T-cell count steadily declines [42].

Symptomatic (AIDS) stage:

When the immune system is damaged enough that significant opportunistic infections begin to develop, the person is considered to have AIDS [42]. One or more of the indicators that characterize AIDS include opportunistic infections, malignancy, wasting syndrome, or CD4 <200 (or <15%) [46].

2.1.3 Clinical presentation of HIV infection

History

The history should be carefully taken to elicit possible exposures to the HIV [42]. The patient may present with signs and symptoms of any of the stages of HIV infection. AIDS manifests as recurrent, severe, and occasionally life-threatening infections and/or opportunistic malignancies. The signs and symptoms are those of the presenting illness, meaning that HIV infection should be suspected as an underlying illness when unusual infections present in apparently healthy individuals [42].

Physical Examination

No physical findings are specific to HIV infection. The physical findings are those of the presenting infection or illness [42].

2.1.4 Diagnosis of HIV infection

The diagnosis of HIV depends on the demonstration of antibodies to HIV and/ or the direct detection of HIV or one of its components [21]. Antibodies to HIV generally

appear in the circulation 3–12 weeks following infection [21]. HIV testing should be voluntary and the right to decline testing should be recognized[47].

Serological tests used include:

- Antibody test that detects HIV IgM and/or IgG antibodies in blood or oral fluids.
- Antigen/antibody combination tests detects both HIV p24 antigen as well as HIV IgM and IgG antibodies. P24 can be detected as early as 14days after exposure [48,49].
- Nucleic acid tests (NATs) detect HIV ribonucleic acid (RNA). HIV RNA can be detected as early as 5 to 10 days after exposure to HIV [49].

Fourth generation tests: detects both HIV-1 and HIV-2 antibodies together with p24 antigens, was recommended by CDC as standard of care test for the diagnosis of HIV in a clinical setting [48]. It is sensitive in early infection and sensitivity/specificity approaches 100% for chronic infection [34].

In the nonclinical setting, enzyme-linked immunosorbent assay (ELISA) antibody test which is a third-generation antibody test is performed as a rapid test. Results are presented within 20 minutes [48]. It has a sensitivity >99.5% [34] but needs to be confirmed with a serum western blot.

• Confirmatory test: Western blot. It detects antibodies to at least two different HIV protein bands. Specificity >99.9%.

2.2 VIRAL LOAD

2.2.1 Definition and clinical significance of viral load

Viral load is the number of copies of viral RNA per ml of blood [50]. It is the best measure of the level of progression of HIV infection [50]. Viral load is recommended as the preferred monitoring approach to diagnose and confirm treatment failure [51]. More viruses will lead to faster destruction of CD4 cells (immunological failure) and more severe immunosuppression (clinical failure) [50]. Therefore, viral load is used as an indicator of the:

- Response to HAART
- Risk of clinical progression of the disease
- Risk of sexual and/or mother-to-child transmission of the virus

Viral load values can be classified into three categories [52]

- Undetectable viral load: VL <50 RNA copies/ml, reflecting control of viral replication; the ultimate goal of antiretroviral therapy and the ideal condition for long-term prevention of resistance;
- Viral suppression or suppressed viral load: VL <1000 RNA copies/ml. With viral load suppression, the CD4 count increases, the patient's clinical state improves, the risk of transmission of HIV and disease progression is low.
- High viral load: VL >1000 copies/ml, reflecting either non-adherence/interruption of therapy (especially for viremia ≥6 Log RNA copies/ml) or proven failure of the current treatment (after confirmation of this viral load on a consecutive sample after a 3-month interval).

Viral load testing gives a measure of understanding, control, and motivation to adhere to treatment [51]. In most patients, viral load should be less than 1000 copies per ml after six months of ART [53].

2.3.2 Viral load measurement

VL is done using an advanced laboratory method (RNA-PCR) on a blood sample [50].

VL can be done from:

- Blood (plasma): Transport in a cooler box to the lab within 24 hours.
- Dried blood spot (DBS): Transport in a plastic bag with a desiccant at ambient temperature, sample viable for 3 months or more [50].

Dried blood spot specimens using venous or capillary whole blood can be used to determine the HIV viral load using a treatment failure threshold of 1,000 copies/ml. While plasma specimens are preferred, dried blood spot specimens can be used in settings where logistical, infrastructural, or operational barriers prevent routine viral load monitoring using plasma specimens [51].

2.3.3 Viral load testing strategy

Routine viral load testing is a more sensitive and earlier indicator of treatment failure. Routine viral load testing should be done at 6 and 12 months of initiating ART and then every 12 months thereafter to detect treatment failure proactively [54].

WHO now recommends routine VL testing as the preferred method to detect ART failure rather than immunological and clinical monitoring. Aside from the routine viral

load testing schedule, viral load testing should be used whenever there is clinical or immunologic suspicion of treatment failure [54].

2.4 SPECIAL CONSIDERATION: HIV INFECTION IN PREGNANCY.

2.4.1 overview

A disproportionate burden has been placed on women and children who in many settings continue to experience high rates of new HIV infections and HIV-related illness and death[3]. 85% (36-100%) of pregnant women living with HIV had access to antiretroviral medicines to prevent transmission of HIV to their children[25].

Most children living with HIV acquired the infection through mother-to-child transmission (MTCT), which can occur during pregnancy, labour, and delivery or breastfeeding[3]. The risk of MTCT can be reduced to under 2% by interventions that include antiretroviral prophylaxis given to women during pregnancy and labour and to the infant in the first weeks of life, obstetrical interventions including elective caesarean delivery (before the onset of labour and rupture of membranes), and complete avoidance of breastfeeding[3]. With these interventions, new HIV infections in children are becoming increasingly rare in many parts of the world, particularly in high-income countries[3].

Start Free Stay Free AIDS Free embraced the goals adopted by UN member states in the 2016 Political Declaration on Ending AIDS. It committed to the dual elimination of mother-to-child transmission of both HIV and congenital syphilis (syphilis can result in miscarriage, stillbirth, neonatal infections and death). As PMTCT was not 100% effective, elimination of HIV was defined as reducing the final HIV transmission rate to 5% or less among breastfeeding women and to 2% or less among non-breastfeeding women by 2020[55].

The delivery rate of HIV-positive women in health facilities varied between 50% and 52.6% between 2015 and 2016, thus suggesting poor access for the mother-child couple to the peri- and the post-natal package of interventions[56].

In Cameroon, the Littoral region has the lowest rate of health coverage of PMTCT with 71.1%[56]. The final vertical transmission rate including breastfeeding in Cameroon was 14.3%[32] whereas the estimated risk of transmission with breastfeeding up to 6 months is 25-35%[3]. This reduction is probably due to OPTION B+ adopted in august

2014 which promoted the systematic use of ART in any case of newly diagnosed HIV pregnant women.

For known HIV mothers, they should receive antiretroviral therapy during pregnancy according to currently accepted guidelines for adults. Plasma HIV ribonucleic acid (RNA) levels in pregnant women should be monitored at the initial prenatal visit, 2–4 weeks after initiating (or changing) cART drug regimens; monthly until RNA levels are undetectable; and then at least every 3 months during pregnancy[57]. Across sub-Saharan Africa, prevention of mother-to-child transmission services are encountering increasing numbers of women already established on antiretroviral therapy (ART) when entering antenatal care. However, there are few data examining ART adherence and HIV viral load in this group.[58]

2.4.2 Follow-up of HIV pregnant women during pregnancy and PMTCT

Women with HIV must be carefully monitored all through pregnancy on the effects of infections as well as the effects of cART. Those who are newly diagnosed with HIV do not require any additional baseline investigations compared with nonpregnant women living with HIV other than those routinely performed in the general antenatal clinic.[59] It will, however, be essential to have monthly assessments of viral loads to monitor the progress and efficacy of management. In women who commence cART in pregnancy, an HIV viral load should be performed 2–4 weeks after initiating treatment, and later at least once every trimester, and at 36 weeks and at delivery.[5]

In Sub-saharan Africa, intensified viral load monitoring for pregnant and breastfeeding women has been proposed to help address concerns around antiretroviral therapy (ART) adherence, viraemia and transmission risk, but there have been no systematic evaluations of existing policies.[60] HIV viral load (VL) monitoring is a central tool to evaluate ART effectiveness and transmission risk. There is a global movement to expand VL monitoring following recent recommendations from the World Health Organization (WHO), but there has been little research into VL monitoring in pregnant women.[61]

In 2019, a worshop in the East region of Cameroon offered by National aids control committee and partner George Town university sensitized healthcare givers concerned with HIV care on changes in HIV management guidelines but these importants points in new guidelines in no way replaces the actual guidelines. A summary of this worshop related to PMTCT is shown is the table below.

Table 1: Monitoring of HIV during Pregnancy (report of workshop done in 2019, East region Cameroon)

	1st ANC	After	ART in	itiation	Postpa	Postpartum				Every Year
Appointment		M1	M3	M6	W6	Every 3-6 months if patient stable	M12	M18	M24	
Clinical exam	X	X	X	X	X	X	X	X	X	X
Hepatitis B screening					X					
ART and CTX Distribution	X	X	X	X	X	X	X	X	X	X
Evaluation and reinforcement of drug compliance	X	X	X	X	X	X	X	X	X	X
VL testing	X*		X**	X**	X**	X**	X**	X**	X**	X**
Serum creatinine	X	X		X			X		X	X
Transaminases		X					X		X	X
Blood sugar level	X						X		X	X
Hemoglobin level	X				X		X		X	X

ANC= antenatal visit; ART= Antiretroviral therapy; CTX= cotrimoxazole; M=month; VL=viral load; W= week;

NB: HIV pregnant women not followed and newly diagnosed at first antenatal visit at 28 weeks of gestation, initiate on ART and should do viral load testing a month before delivery (W32-W36) and other one between W4-W6 postpartum

VL testing one month before delivery determines whether Nevirapine should be giving to new born for 6 weeks (if VL suppressed) or 12 weeks (if VL not suppressed)

^{*:} Exclusively for HIV pregnant women on ART before pregnancy

^{**:} For pregnant women and breastfeeding women diagnosed and initiated on ART during pregnancy

2.5 OVERVIEW OF THE LITERATURE ON VIROLOGIC FAILURE FOLLOWING VIRAL LOAD SUPPRESSION

Table II below gives a summary of the different studies conducted on viral load monitoring and Prevention mother-to-child-transmission with their results.

Table 2:summary of the different studies conducted on viral load monitoring and Prevention mother-to-child-transmission with their results

AUTHOR/ YEAR OF PUBLICATIO N/ COUNTRY	TITLE	METHOD/ SAMPLE SIZE (n)	RESULTS / CONCLUSION
Kafack et al. 2021 Cameroon	Evaluate Plasma Viral- Load Coverage and the Prevention of Mother- To-Child Transmission of HIV-1 in the Littoral region	Hospital based N= 135	VL-coverage remains suboptimal (below 90%) among ANC attendees, and women at high-risk of MTCT mainly have vaginal delivery. Viral suppression rate remains below the target (below 90%) for accelerating the elimination of MTCT. HIV-MTCT persists, and might be driven essentially by poor VL monitoring. Thus, achieving an optimal PMTCT performance requires a thorough compliance to virologic assessment during ANC.
Sandbulte et al. 2020 Kenya	monitoring: Coverage and clinical	Retrospective cohort n=424	VL testing was documented for 305 (72%) women and repeat VL testing was documented for 79 (19%). Only 115 women (27%) received a guideline-adherent baseline VL test and 27 (6%) received a guideline-adherent baseline and repeat VL test sequence. Clinical action for unsuppressed VL results was even lower: 11 of 38 (29%) unsuppressed baseline results and 2 of 14 (14%) unsuppressed repeat results triggered clinical action.
Lesosky et al. 2017/South Africa	Optimal timing of viral load monitoring during pregnancy to predict viraemia at delivery in HIV-infected women initiating ART in South Africa: a simulation study	Retrospective cohort	Strategies to measure VL relative to gestational age may be more useful than strategies relative to duration on ART, in women initiating ART during pregnancy, supporting better integration of maternal and HIV health services.

Myer et al /2016/South Africa	HIV viraemia and mother-to-child transmission risk after antiretroviral therapy initiation in pregnancy in Cape Town, South Africa	Prospective cohort n=620	High rates of Viral Suppression at delivery and low rates of MTCT can be achieved in a routine care setting in sub-Saharan Africa, indicating the effectiveness of currently recommended ART regimens.
Thompson et al/2015/USA	Mode of Delivery among HIV-Infected Pregnant Women in Philadelphia, 2005- 2013	cohort	Only half of deliveries for women with an unknown VL or VL >1,000 copies/ml occurred via Scheduled Caesarean. Delivery prior to 38 weeks, particularly among minority women, resulted in a missed opportunity to receive a scheduled Caesarean
Brittain et al/ 2018/South Africa	Determinants of suboptimal adherence and elevated HIV viral load in pregnant women already on antiretroviral therapy when entering antenatal care in Cape Town, South Africa	Cross-sectional study n= 482	Our findings highlight specific beliefs and concerns about ART use during pregnancy that should be addressed in counselling messaging. adherence and viral load monitoring as part of pregnancy planning for women on ART may be important to achieve safer conception and promote healthy pregnancies
<u>Lesosky</u> et al /2020/ South Africa	Comparison of guidelines for HIV viral load monitoring among pregnant and breastfeeding women in sub-Saharan Africa	An individual Monte Carlo simulation	Coverage of VL monitoring in pregnancy and breastfeeding varied markedly, with between 14-100% of women monitored antenatally and 38-98% monitored during breastfeeding

CHAPTER III: MATERIALS AND METHOD

Study Design

The study was a cross-sectional hospital-based survey with both retrospective and prospective components. It aimed to evaluate plasma viral-load coverage and the prevention of mother-to-child transmission of HIV-1.

Study Period

The study was conducted from January 1, 2022, to June 30, 2024. The study duration, which includes the period for analysis and reporting, was from February 2024 to July 2024.

Study Area

The study was carried out at Yaoundé Gynaeco-Obstetric and Paediatric Hospital, selected for its extensive HIV care and focus on preventing mother-to-child HIV transmission. This hospital, a result of Sino-Cameroonian cooperation, was inaugurated on March 28, 2002, and started operations the following day. It offers a wide range of services, including Gynaecology/Obstetrics, Paediatrics, Paediatric Surgery, Anaesthesia, Ophthalmology, ENT, Emergency Care, Pathology, Radiology, Acupuncture, and Physiotherapy.

The Gynaecology-Obstetrics Department is organized into four main sections: maternity, inpatient rooms, outpatient offices, and the operating theatre. It features fourteen inpatient rooms with 36 beds, an archive room, a nurse's room, a specialized consultation room with a secretariat, a treatment room, a storeroom, and four doctors' offices. Outpatient services are managed by a senior nurse and include gynaecology and obstetrics consultations. The department's staff of 48 includes gynaecologists, obstetricians, midwives, and support personnel, and it is also involved in training medical students and gynaecology-obstetrics residents.

The department's activities are scheduled as follows: outpatient consultations are available on weekdays; scheduled surgeries occur from Monday to Thursday; daily rounds are conducted for hospitalized patients; and family planning, cancer screening, and HIV testing are performed daily on weekdays. The HIV care unit comprises more than 20 healthcare providers, recruited by both the Cameroonian government and non-

governmental organisation. Within this unit, plasma viral load and PCR tests are collected and analysed at the hospital.

Study Population and Sampling

3.4.1. Target Population

The study targeted HIV-infected pregnant women who delivered from January 2022 to June 2024 and attended antenatal care (ANC) and HIV appointments at the selected study hospitals.

3.4.2. Sampling Technique and Sample Size Calculation

Sampling Technique:

A combination of consecutive non-probabilistic and convenience sampling methods was employed.

Sample Size Calculation:

Consecutive non-probabilistic sampling will be used.

Sample size calculation

Exhaustive inclusion of participants who meet inclusion criteria.

Estimated sample size using:

$$n = \frac{(Z\alpha/2 + Z\beta)2 * (p1(1-p1) + p2(1-p2))}{(p1-p2)^2}$$

Therefore

$$n = 209 HIV pregnant women$$

Where:

- $Z_{\alpha/2}$ is the critical value of the Normal distribution at $\alpha/2$ (at 95% CI, α is 0.05 and the critical value is 1.96),
- Z_{β} is the critical value of the Normal distribution at β (for a power of 80%, β is 0.2 and the critical value is 0.84)
- and p_{1= 94%} and p_{2= 99%} are the expected sample proportions of the plasma viral load during pregnancy and out of pregnancy in the centre region

Minimum sample size: 209 HIV-infected pregnant women.

Therefore, the minimum sample size was 209 HIV-infected pregnant women, but to ensure robustness, we aimed for 235 participants.

3.4.3. Inclusion and exclusion criteria:

a- Inclusion criteria

The study included two groups of HIV-infected mothers: retrospectively, those followed at the study site for HIV from January 2022 to June 2024, and prospectively, those who were followed for HIV at the hospital site and either came for early infant diagnostic (EID) results or delivered at the hospital site during the study duration.

b- Exclusion criteria

- Incomplete files
- Non-consenting patient
- HIV-infected women without available EID result

Enrolment of Study Participants:

At the study site, written informed consent was obtained from every eligible HIV-positive mother whose child had undergone at least one polymerase chain reaction (PCR) for early HIV diagnosis. After consent, participants were interviewed using a structured questionnaire, and their medical records were reviewed.

Data Collection

3.5.1. Data Collection Procedure:

Data collection was facility-based and occurred over a period of six months. The study included:

- Retrospective Component (24 months): Review of medical records for HIV-infected pregnant women who delivered between January 2022 and December 2023. This review was conducted at the paediatric ward for exposed infants information and at the maternity ward and HIV care unit for HIV-infected mothers.
- **Prospective Component** (6 months): Data Collection from HIV-infected mother who delivered in the hospital or came for routine PCR testing at 6 weeks or 9 months postpartum from January 2024 to June 2024.

3.5.2. Data Collection Sheet:

The data collection sheet included:

Outcomes: maternal viral load (VL) measurements and early infant diagnosis result.

• Potential factors associated with HIV MTCT: Mode of delivery, Feeding, Obstetric care information, options and adherence to antiretroviral therapy (ART)...

Data Management and Analysis

3.6.1. Data Management:

To ensure confidentiality, data were coded and entered into a secure, password-protected database. Data were collected using Microsoft Excel 2016 and analyzed with SPSS version 23.

3.6.2. Data Analysis:

• Statistical Analysis: Frequencies and percentages were computed for categorical variables. Means and standard deviations were calculated for continuous variables. Chi-square or Fisher's exact tests were used to compare categorical variables. Bivariate analysis and multivariate models were used to identify factors associated with VL coverage and HIV MTCT, with a significance level set at p-value < 0.05.

Ethical Considerations

Ethical Approval:

Ethical clearance was obtained from the Institutional Review Board of the Faculty of Medicine and Biomedical Sciences, University of Yaoundé. Administrative authorizations were secured from hospital directors.

Informed Consent:

Informed consent was obtained from all participants. Confidentiality was maintained through the use of unique identifiers and secure data storage. Participants were free to withdraw from the study at any time without any repercussions.

Respect for Autonomy:

Participants were provided with consent forms and given a detailed explanation of the study. They had the right to withdraw at any stage.

Confidentiality:

Participant confidentiality was ensured by using coded identifiers, storing paper records securely, and using encrypted databases for electronic data.

Beneficence:

Participants had access to medical advice and care during the study, and the results aimed to improve HIV care practices and patient management.

Non-maleficence:

No risks were posed to participants during the study.

Justice:

All participants were treated equitably and fairly throughout the study.

CHAPTER IV: RESULTS

ENROLMENT OF PARTICIPANTS

During the study period, a total of 514 participants were approached at the Yaoundé Gynaeco-Obstetric and paediatric Hospital. Out of these, 235 participants were successfully recruited and consented to participate in the study. Specifically, 235 participants were selected for the study after excluding those who either did not provide consent or did not meet the inclusion criteria. Among those approached, 2 participants (0.4%) did not consent to the study and were excluded. Additionally, 277 participants (53.9%) were not included for various reasons: 207 (40.3%) lacked basic information on HIV follow-up, and 70 (13.6%) were followed but early infant Diagnosis (EID) were unavailable at six weeks. Therefore, 235 participants were ultimately included for

Figure IV: Diagram consort of participants

4.2 GENERAL CHARACTERISTIC OF THE POPULATION:

4.2.1. Sociodemographic characteristics

As shown in the **table 3**, the majority of mothers are aged between 21 and 40 years. Most mothers are single and unemployed, with a significant proportion practicing Christianity. Most of the population delivers at health facilities, particularly the Yaoundé Gynaeco-Obstetric Hospital, and has secondary education, with fewer mothers having primary or tertiary education.

Table 3: Sociodemographic characteristic of the population

Variables	Category	Total (N=235)
Age group	Me	ean: 30.13 ±5.66 years old
	< 21 years	3 (1.3%)
	[21-30]	114 (48.5%)
	[31-40]	115 (48.9%)
	[41 and above]	3 (1.3%)
Marital status		
	Single	147 (62.6%)
	Married	88 (37.4%)
Mother's Occupation		
	Employed	92 (39.1%)
	Housewife	73 (31.1%)
	Unemployed	70 (29.8%)
Religion		
	Christianity	219 (93.2%)
	Islam	16 (6.8%)
Place of Delivery		
	YGOPH	200 (85.1%)
	Out of-YGOPH	35 (14.9%)
Level of Education		
	Primary	14 (6.0%)
	Secondary	195 (83.0%)
	Tertiary	26 (11.1%)

4.2.2. Medical and Obstetrics Information

The following **table 4** provides an overview of maternal HIV management and antenatal care characteristics among 235 participants. It highlights that the majority of women were diagnosed with HIV before pregnancy and primarily used the TELE regimen for ART. Most participants regularly took ART during pregnancy and had more than four ANC visits, with care mainly provided by general practitioners and gynaecologists. The table also details parity distribution, initiation timing of ANC, and gravidity status.

Table 4: Medical and obstetric characteristics

Variables	Category	Total (N=235)
HIV diagnose before pregnanc	y	
	No	22 (9.4%)
	Yes	213 (90.6%)
Which Regimen		
	None	2 (0.9%)
	DLT	74 (31.5%)
	TELE	159 (67.7%)
Regularly Taking ART During	g Pregnancy	
	No	24 (10.2%)
	Yes	211 (89.8%)
Parity		
	Primiparous	116 (49.4%)
	Multiparous	113 (48.1%)
	Grand Multiparous	6 (2.6%)
Initiation of ANC		
	1st Trimester	60 (25.5%)
	2nd Trimester	110 (46.8%)
	3rd Trimester	65 (27.7%)
Obstetric Caregiver		
	General Practitioner	97 (41.3%)
	Midwives	13 (5.5%)
	Gynaecologist	125 (53.2%)
ANC Visits		
	No more than 4	231 (98.3%)
	More than 4	4 (1.7%)
Gravidity		
	Primigravida	27 (11.5%)
	Multigravida	177 (75.3%)
	Grand Multigravida	31 (13.2%)

Most women did not experience membrane rupture or prolonged labor, and the majority delivered at or beyond 37 weeks of gestation. Vaginal deliveries were more common than cesarean sections. Newborns were predominantly of average birth weight, with a majority being female. Regarding infant nutrition in the first six months, most were breastfed, while a smaller proportion received artificial or mixed feeding (**Table 5**)

Table 5: Characteristic of labor, delivery and newborns

Variables	Category	Total (N=235)
Rupture of Membrane		
	No	191 (81.3%)
	Yes	44 (18.7%)
Prolonged Labor		
	No	180 (76.6%)
	Yes	54 (23.0%)
Gestational Age at Labor		
	< 37 weeks	58 (24.7%)
	≥ 37 weeks	177 (75.3%)
Mode of Delivery		
	C-section	37 (15.7%)
	Vaginal delivery	198 (84.3%)
Child Sex		
	Female	135 (57.4%)
	Male	100 (42.6%)
Birth Weight of Child	Mean: 3101.3±563.0g	
	< 2500	9 (3.8%)
	[2500-4000]	210 (89.4%)
	> 4000	16 (6.8%)
Nutrition Mode During First 6 Months		
	Artificial	81 (34.5%)
	Maternal	138 (58.7%)
	Mixed	16 (6.8%)

4.3 Evaluation and comparison of plasma viral load coverage among HIV-1 infected pregnant women during antenatal et postnatal period

a. Plasma viral load coverage

During the antenatal care (ANC) period, PVL testing was relatively frequent, with 59.1% of mothers undergoing at least one test and 42.6% having two or more tests. Results showed that most women had a viral load of less than 1000 copies/ml (56.6%), while only a small percentage had higher viral loads (2.6%). In the third trimester, 84.9% of tests were conducted, indicating focused monitoring during this crucial period.

In contrast, post-natal PVL testing was notably less frequent, with only 28.9% of mothers being tested. The average number of post-natal tests was much lower (0.31 \pm 0.52). All post-natal testing occurred within HGOPY, with no testing done outside. This shift reflects a significant reduction in testing frequency and coverage after delivery, highlighting a possible gap in ongoing care compared to the more rigorous ANC period. (**Table 6**).

Table 6: Plasma viral load coverage and characteristics

Variables	Category	Total (N=235)
PVL testing during ANC		
	No	96 (40.9%)
	Yes	139 (59.1%)
PVL testing during post-natal period (n=45)		
	No	32(71.1%)
	Yes	13(28.9%)
Numbers of PVL testing done during ANC	Mean:	1.42±1.09
	0	96 (40.9%)
	1	26 (12.7%)
	2	87 (42.6%)
	3	30 (14.7%)
Numbers of PVL done during post-natal period (n=45)	Mean: (0.31±0.52
	0	32(71.1%)
	1	12(26.7%)
	2	1(2.2%)
Plasma viral load level in the 3 rd trimester		
	< 1000 copies/ml	133 (56.6%)
	>= 1000 copies/ml	6 (2.6%)
	Unknown value	96 (40.9%)
Plasma viral load level in the $3^{\rm rd}$ trimester according to result		
	< 50 copies/ml	128 (54.5%)
	[50-1000[copies/ml	5 (2.1%)
	>= 1000 copies/ml	6 (2.6%)
	Unknown value	96 (40.9%)
Numbers of plasma viral load testing in the $3^{\rm rd}$ trimester		
	3rd Trimester	118 (84.9%)
	Others	21 (15.1%)

b. Factors associated with PVL testing at 6 weeks and 9 months

The analysis reveals that at 6 weeks, the place of delivery is a significant factor influencing PVL testing, with mothers delivering at HGOPY having significantly higher odds of PVL testing (PR = 25.92, p = 0.002) compared to those delivering at non-HGOPY facilities. In contrast, the occupation of the mother, employment status, regular ART use, and timing of ANC initiation do not significantly affect the likelihood of PVL testing, as indicated by p-values greater than 0.05 (**Table 7**).

Table 7: Predictors factors associated with PVL testing during antenatal care

Variable	В	PR	aPR	95% C.I.	P-value
Occupation of the mother					
Housewife/Employed	-0.765	0.35	0.465	0.222 - 1.975	0.434
Unemployed/Employed	0.262	0.46	1.300	0.614 - 2.751	0.493
Place of Delivery					
HGOPY/Non-HGOPY	1.493	3.38	25.92	3.42 - 195.95	0.002
Regularly Taking ART Duri	ng Pregnancy				
No/Yes	-1.208	1.67	0.299	0.118 - 1.758	0.112
ANC Initiation					
1st trimester/3rd trimester	1.003	0.72	2.726	0.210 - 6.143	0.160
2 nd trimester/3rd trimester	0.417	1.03	1.517	0.771 - 2.985	0.228

Comparing the predictors of plasma viral load (PVL) testing during antenatal care (ANC) and post-natal periods reveals key differences and similarities. During ANC, the place of delivery at HGOPY is a significant predictor of PVL testing, with a notable aPR of 25.92 and a p-value of 0.002, indicating a strong association. In contrast, during the post-natal period, while the place of delivery also shows an exceptionally high proportional ratio, the exact significance is unclear. Other factors, such as the

mother's occupation and regular ART use, do not show significant effects in either period (Table 8).

Table 8: Predictors factors of Plasma viral load testing at post-natal period

Independent Variable	Sub-variables	Is PVL done during ANC - No	Is PVL done during ANC – Yes	PR	aPR	95% CI	p- value
Age group	≤30 years	16	8	1.00	1.00		
	[31 and older]	16	5	0.39	0.39	[0.27, 0.57]	0.823
Marital status	Single	22	6	1.00	1.00		
	Married	10	7	0.66	0.66	[0.43, 1.01]	0.795
Mother's Occupation	Employed	17	0	1.00	1.00		
	Housewife	4	7	2, 39	2,14	[0.00- [1.00
	Unemployed	11	6	2.39	2.44	[0.00- [1.00
Place of Delivery	YGOH	16	13	2,2 ^E 9	4,0 ^E 9	[0.00- [
	Out of YGOH	16	0	1.00	1.00		
Known LAV+	No	4	0	1.00	1.00		
	Yes	28	13	2,1 ^{E10}	2,1 ^{E10}	[0.00- [1.00
Which regimen	DLT	20	10	0.62	0.62	[0.46, 0.84]	0.309
	TELE	12	3	1.00	1.00	[0.45, 2.22]	
Regularly taking ART during pregnancy	No	9	9	1.67	1.67	[0.85, 3.28]	0.234
	Yes	12	3	0.62	0.62	[0.48, 0.81]	
ANC Initiation	1st trimester	8	5	1.00	1.00	[0.50, 2.00]	0.160
	2nd trimester	10	6	1.51	1.51	[0.77, 2.99]	
	3rd trimester	12	5	2.72	2.72	[1.21, 6.14]	

4.4 Adherence to the recommended timelines for conducting PCR tests in exposed infants at 6 weeks and 9 months;

The **table 9** reveals that for **PCR 1**, the majority of tests (94.7%) were conducted within the recommended 6–8-week timeframe, indicating strong adherence to the scheduled testing period. However, 5.3% of tests were performed outside this optimal window, suggesting some deviations. In **PCR 2**, 75.6% of tests were conducted at the ideal 9-month mark, demonstrating a good level of compliance, while 24.4% occurred outside this timeframe, reflecting a significant deviation. Overall, while the adherence to recommended testing schedules is generally high, both categories show a notable percentage of tests performed outside the ideal periods, highlighting areas for potential improvement in adherence to testing guidelines.

Table 9: Adherence to timeline PCR testing

Type of PCR Performed	Frequency	Percentage
PCR 1		
6-8 weeks	180	94.7%
Out of timeline	10	5.3%
Total	190	100.0%
PCR 2		
9 months	34	75.6%
Out of timeline	11	24.4%
Total	45	100.0%

4.5 To assess and compare the rate of vertical HIV transmission among exposed infants at 6 weeks and 9 months of age;

At 6 weeks, only 5.3% of the infants tested positive for HIV. However, by 9 months, this positivity rate increased slightly to 8.9%. Overall, when combining results from both tests, the total positivity rate is 6.4%, with 93.6% of tests showing negative results. This suggests that while the majority of infants tested negative at both 6 weeks and 9 months, there is a small proportion of cases where HIV either persisted or was newly acquired over time (**Table 10**).

Additionally, the data on the mode of delivery and plasma viral load (PVL) levels indicates that infants with high PVL levels (≥ 1000 copies/ml) or unknown values were more likely to be delivered by caesarean section. In contrast, vaginal deliveries were more common among infants with low-risk PVL levels (< 1000 copies/ml). These delivery practices align with strategies to effectively manage the risk of HIV transmission during childbirth (**Table 11**).

Table 10: Early Diagnosis Infant Result

Variables		6 weeks (%)	9 months (%)	Total (%)	P-value
Result of PCR	Negative	180 (94.7)	41 (91.1)	221(93.6)	0.26
	Positive	10 (5.3)	4 (8.9)	14(6.4)	
Total		190 (100.0)	45 (100.0)	235 (100.0)	

Table 11: Mode of delivery according to PVL

PVL value	Mode of Delivery	Frequency	Percentage
< 1000 copies/ml (Low Risk MTCT)	C-section	14	10.5%
	Vaginal delivery	119	89.5%
	Total	133	100.0%
>= 1000 copies/ml (High Risk MTCT)	C-section	3	50.0%
	Vaginal delivery	3	50.0%
	Total	6	100.0%
Unknown value (High Risk MTCT)	C-section	20	20.8%
	Vaginal delivery	76	79.2%
	Total	96	100.0%
	Total	235	100.0%

4.6 To identify and compare potential determinants of mother-to-child transmission of HIV at 6 weeks and 9 months of age

Following bivariate analysis, comparing the determinants of mother-to-child HIV transmission at 6 weeks (PCR 1) and 9 months (PCR 2) reveals consistent findings in several areas. Nevirapine prophylaxis and regular ART during pregnancy are strongly associated with reduced transmission rates in both PCR 1 and PCR 2. The mode of nutrition also shows a significant impact, with breastfeeding associated with lower transmission. Variables such as HAART regimen and rupture of membranes demonstrate varying effects between the two time points, with some factors like prolonged labour showing significant associations in PCR 1 but not in PCR 2. Overall, adherence to prophylaxis and ART remains crucial across time points, while other determinants' influence may shift as the child grows (**Table 12 & 13**).

Table 12: Bivariate analysis of potential factors associated with MTCT at 6 weeks

Proportions (PCR 1)						
Variable	Sous-variables	N= 190		PR	95% CI	p-value
		Negative (%)	Positive (%)			
Age group	=< 30 years	87(93.5)	6 (6.5)	0.49	0.05-4.080	0.51
	> 30 years	93(95.9)	4(4.1)	1		
Nevirapine prophylaxis	No	1(12.5)	7(87.5)	53.08	13,727-205,278	<0.001
	Yes	179(98.4)	3(1.6)	1		
Mode de nutrition	Formula Feeding	55(93.2)	4(6.8)	,136	0,034-0,542	0.005
	Breastfeeding	121(98.3)	2(1.7)	,033	0,006-0,178	<0.001
	Both	4(50.0)	4 (50.0)	1		
HAART Regimen	DLT	109 (95.6)	6(4.9)	5.45	1.30-22.82	0.020
	TELE	71 (94.7)	4(5.3)	1		
Patient on Treatment	No	1(50.0)	1 (50.0)	23.50	4.99-110.63	<0.001

Table 12 (Continuous): Bivariate analysis of potential factors associated with MTCT at 6 weeks

Proportions (PCR 1)							
Variable	Sous-variables	N= 190		PR	95% CI	p-value	
		Negative (%)	Positive (%)				
	N/		0(4.2)	1			
	Yes	178(94.7)	9(4.2)	1			
Regularly taking	No	11(55.5)	9(44.5)	76.50	9.62-603.81	<0.001	
ART during pregnancy	Yes	169(99.4)	1(0.6)	1			
Rupture of membrane	No	155(98.1)	3(1.7)	1			
	Yes	25(78.1)	7(22.9)	0.87	0.02-0.33	<0.001	
Prolonged Labour	No	144(97.3)	4(2.7)	0.18	0.05-0.67	0.010	
	Yes	36(90.0)	6(10.0)	1			
PVL Testing	No	71(88.8)	9(11.2)	23.88	3.02-188.52	0.003	
	Yes	109(99.1)	1(0.9)	1			
Weight of the child	l <2500g	2(40.0)	3(60.0)	8.40	0.87-80.75	0.065	
	2500-4000	165(96.5)	6(3.5)	0.49	0.05-4.080	0.51	
	+4000g	13(92.8)	1(7.8)	1			

Table 13: Bivariate analysis of potential factors associated with MTCT at 9 months

Variable Independent	Sous-variables	N= 45		PR	95%CI	p-value (PCR 2)
	=	Negative	Positive	=		,
Age group	=< 30 years	22(91.7)	2(8.3)	0.96	0.87-80.75	0.496
	> 30 years	19(90.5)	2(9.5)	1		
Nevirapine	No	2(40.0)	3(60.0)	1.90	1.87-80.75	0.000
prophylaxis	Yes	39(97.5)	1(2.5)	1		
Mode de nutrition	Formula Feeding	0(0.0)	0(0.0)	< 0.0001	0.000-	0.447
	Breastfeeding	4(80.0)	1(20.0)	1.000	0.80-80.75	
	Both	37(92.5)	3(7.5)	1		
Known HIV	No	4(100.0)	0(0)	< 0.0001	0.000-	0.570
	Yes	37 (90.2)	4(9.2)	1		
HAART	DLT	29(96.7)	1(3.3)	2.87	1.47-40.75	0.179
Regimen	TELE	12(80.0)	3(20.0)			
Patient on	No	41(91.1)	4(8.9)	< 0.0001	0.00-	-
Treatment	Yes	4(100.0)	0(0.0)	1		
Regularly taking ART during	No	0(0.0)	4(100.0)	<0.0001	< 0.0001	0.001
pregnancy	Yes	41(100.0)	0(0.0)	1		
PVL Testing	No	28(87.5)	4(12.5)	< 0.0001	0.00-	0.034
TVL Testing	Yes	13(100.0)	0(0.0)	1		
	<1000copies/ml	26(100.0)	0(0.0)	< 0.0001	0.00-	0.026
PVL value	≥1000copies/ml	0(0.0)	0(0.0)	1.00	0.00-	
	Unknown value	15(78.9)	4(21.1)	1		

Factors Associated with Mother-to-Child Transmission After Multivariate Analysis

The analysis of HIV transmission predictors shows that at 6 weeks, not regularly taking ART during pregnancy is a major risk factor for MTCT, with a significant increase in risk (aPR = 17.49; p=0.014). Nevirapine prophylaxis is also a key factor, but it was not statistically significant. By 9 months, the effects of Nevirapine prophylaxis and regular ART adherence are no longer significant. The HAART regimen, mode of nutrition, and rupture of membranes do not significantly impact MTCT risk at either time point. This suggests that early and consistent ART adherence is crucial for reducing MTCT in the early postnatal period (**Table 14 & 15**).

Table 14: Predictors factors of MTCT of HIV at 6 weeks

Variable	Sous-variables	PR	a PR	95% CI	p-value
Novinanina	No	53.08	5.51	0.06-467.36	0.45
Nevirapine prophylaxis	Yes	1	1		
	Formula Feeding	0.136	2.50	0,23-27.06	0.44
Mode of nutrition	Breastfeeding	0.033	1.10	0.12-9.52	0.92
	Both	1	1	0.12-9.32	0.92
HAART Regimen	DLT	5.45	0.96	0.14-6.64	0.97
	TELE	1	1		
Regularly taking	No	76.50	17.49	1.80-169.44	0.014
ART during	Yes	1	1		
Rupture of membrane	No	0.87	1.17	0.02-68.34	0.93
	Yes	1	1.17	0.02-06.34	0.93
	1 es	1	1		

Table 15: Predictors factors of MTCT of HIV at 9 months

Variable	Sous-variables	PR	a PR	95% CI	p-value
Nevirapine prophylaxis	No	1.90	9.3E14	0.00-	1.000
	Yes	1	1		
HAART Regimen	DLT	1.002	1.00	0.09-11.20	1.000
	TELE	1	1		
Regularly taking ART during pregnancy	No	1.001	1.07E14	0.000-0.000	-
	Yes	1	1		
Rupture of membrane	No	1.0	1.002	0.000-	1.000
	Yes	1	1		

CHAPTER V: DISCUSSION

Discussion

Preventing mother-to-child transmission (PMTCT) of HIV is a critical focus of global healthcare policies and a key component of the UNAIDS 95-95-95 targets for 2030. Cameroon did not meet the UNAIDS 90-90-90 targets for 2020, prompting the government to develop new strategies aimed at achieving the 2030 goals. As part of these new strategies, a revised guideline for managing pregnant women living with HIV has been implemented. Additionally, since January 2020, all HIV-related care has been provided free of charge to improve access and outcomes for affected individuals[16].

The goal of this study was to advance the reduction of mother-to-child transmission of HIV by comprehensively evaluating several critical aspects of HIV management. The study aimed to assess and compare plasma viral load monitoring coverage for HIV-infected pregnant women during both the antenatal and postnatal periods. Additionally, it sought to determine adherence to recommended timelines for conducting PCR tests in exposed infants at 6 weeks and 9 months, and to compare the rates of vertical HIV transmission among these infants at the specified ages. Furthermore, the study aimed to identify and compare potential determinants of mother-to-child transmission of HIV at 6 weeks and 9 months. By thoroughly understanding these elements, including viral load monitoring practices, early infant diagnosis outcomes and associated factors, the study intends to inform and refine strategies to effectively minimize HIV transmission from mother to child.

5.1.1. Sociodemographic Factors

The maternal population at Yaoundé Gynaeco-Obstetric Hospital is predominantly young, single, and unemployed. Most mothers were between 21 and 40 years old, a common reproductive age range. The majority have secondary school education, while tertiary school education is less prevalent. Majority of the women were diagnosed with HIV prior to pregnancy, with the majority adhering to ART throughout pregnancy. We also found that many women began ANC in the second trimester.

5.1.2. Evaluation and Comparison of Plasma Viral Load (PVL) Monitoring Coverage

Our study reveals a notable difference in the coverage of PVL monitoring between the antenatal and postnatal periods. While 59.1% of mothers received PVL testing during pregnancy, postnatal testing coverage was markedly lower at 28.9%, primarily concentrated at the Yaoundé Gynaeco-Obstetric Hospital (HGOPY). This decline indicates a gap in postnatal care that could affect HIV management in the postpartum period. This finding resonates with the observations of Kafack *et al.*, who reported suboptimal VL coverage among antenatal care (ANC) attendees in Cameroon, though our rates are somewhat higher[14]. Similarly, Sandbulte *et al.* highlighted significant deficiencies in VL monitoring and follow-up in Kenyan hospitals, where only a fraction of women received guideline-adherent testing[9]. This comparison underscores a broader challenge in maintaining comprehensive PVL monitoring throughout both antenatal and postnatal periods.

5.1.3. Adherence to Recommended Timelines for PCR Tests

In terms of PCR testing for exposed infants, our study shows high adherence to recommended timelines, with 94.7% of tests performed within the 6-8 week window and 75.6% at the 9-month mark. Despite this, there is room for improvement, as some tests fell outside the ideal timeframes. This aligns with the findings of Lesosky *et al.*, who emphasized the importance of timely VL monitoring relative to gestational age to optimize maternal and infant health [61]. Our results reinforce the need for consistent adherence to testing schedules to ensure early and accurate diagnosis, which is crucial for initiating timely treatment.

5.1.4. Rate of Vertical HIV Transmission

The vertical HIV transmission rate observed in our study—5.3% at 6 weeks and 8.9% at 9 months—suggests that while preventive measures are largely effective, there is a slight increase in transmission over time. This observation is consistent with Myer *et al.*, who found that high rates of viral suppression and low rates of mother-to-child transmission (MTCT) are achievable with effective antiretroviral therapy (ART) in a routine care setting [62]. The increase in transmission rate in our study highlights the

need for ongoing vigilance and potential enhancements in preventive strategies to further reduce transmission.

5.1.5. Determinants of Mother-to-Child Transmission of HIV

Our study identifies shows that at 6 weeks, not regularly taking ART during pregnancy is a major risk factor for MTCT, with a significant increase in risk (aPR = 17.49; p=0.014). Nevirapine prophylaxis is also a key factor, but it was not statistically significant. By 9 months, the effects of Nevirapine prophylaxis and regular ART adherence are no longer significant. The HAART regimen, mode of nutrition, and rupture of membranes do not significantly impact MTCT risk at either time point. This suggests that early and consistent ART adherence is crucial for reducing MTCT in the early postnatal period. This finding aligns with Brittain *et al.*, who highlighted the impact of ART adherence and specific beliefs about treatment during pregnancy on transmission rates [58]. Though Kafack *et al.* did not find any associated factors of MTCT of HIV[14], it is well known that the protective effect of exclusive breastfeeding or formula feeding and the importance of adherence to preventive measures underscore the need for continued education and support to further reduce transmission rates [60].

5.1.6. Factors Influencing PVL Testing.

Our results indicate that the place of delivery significantly impacts PVL testing rates, with higher testing likelihood at HGOPY. This finding is consistent with Lesosky *et al.*, who reported variability in VL monitoring coverage based on geographic and facility factors [60]. Addressing these disparities is crucial for improving overall testing coverage and further reducing transmission rates. The variability in coverage highlights the need for more equitable distribution of resources and services to ensure comprehensive care for all patients.

LIMITATIONS AND STRENGTHS

5.2.1. Limitations

The study's focus on a single reference hospital limits its ability to capture data from women who gave birth outside this facility, such as those delivering at home or at other healthcare centres. This restriction limits the study's scope in evaluating community-based vertical HIV transmission and its implications for broader PMTCT programs at the public health level.

Data collection was constrained by incomplete records, as over 60% of the participant files were excluded due to missing information. This highlights the need for improved data recording practices to ensure comprehensive tracking of PMTCT processes and outcomes. Additionally, the study's brief duration limited our ability to track HIV status and outcomes of exposed infants beyond the immediate postnatal period, underscoring the need for longer follow-up to fully assess the effectiveness of PMTCT interventions.

5.2.2. Strengths

This pilot study conducted at a specialized reference hospital provides valuable insights into the effectiveness of PMTCT strategies within a focused setting. The findings offer a foundation for future research, including larger multicentre or national studies, to further explore and refine PMTCT approaches.

The study delivers strong evidence on early-phase HIV vertical transmission within this specialized hospital, demonstrating the effectiveness of current PMTCT practices and highlighting areas for improvement. The detailed sociodemographic and medical data, including adherence to ART and PVL testing, offers a nuanced understanding of factors influencing MTCT in this context.

CONCLUSION

Specific objective 1's Conclusion (Plasma Viral Load Monitoring Coverage):

This study revealed a significant disparity in plasma viral load (PVL) monitoring coverage, with 59.1% of pregnant women receiving testing during the antenatal period compared to only 28.9% during the postnatal period. This gap underscores the need for enhanced postnatal care protocols to ensure ongoing HIV management and minimize the risk of transmission after delivery.

Specific objective 2's Conclusion (Adherence to PCR Testing Timelines): Adherence to the recommended timelines for PCR testing in exposed infants was found to be generally high, with 94.7% of tests conducted within the 6-8 week window and 75.6% at 9 months. However, the presence of tests outside the ideal timeframes highlights opportunities for improvement in adherence practices to optimize early diagnosis and treatment initiation for infants.

Specific objective 3's Conclusion (Rate of Vertical HIV Transmission): The observed vertical HIV transmission rates of 5.3% at 6 weeks and 8.9% at 9 months suggest effective preventive measures, although the increase over time indicates a need for ongoing vigilance and potential enhancements in interventions. Continuous monitoring and refinement of prevention strategies are critical for further reducing transmission rates.

Specific objective 4's Conclusion (Determinants of MTCT of HIV-1): The study identified inconsistent adherence to antiretroviral therapy (ART) during pregnancy as a major risk factor for mother-to-child transmission (MTCT) at 6 weeks. While the significance of nevirapine prophylaxis diminished by 9 months, the findings emphasize the critical importance of early and consistent ART adherence to minimize MTCT risk, as well as the need for ongoing education and support for mothers.

Overall Conclusion:

This study highlights the crucial role of comprehensive strategies in preventing mother-to-child transmission (PMTCT) of HIV in Cameroon. While significant advancements have been made in access to HIV-related care and monitoring guidelines, notable gaps remain, particularly in postnatal plasma viral load monitoring and adherence to PCR testing timelines. The observed vertical transmission rates, although relatively low, emphasize the necessity for continued vigilance and targeted interventions to further reduce these rates. Key determinants, such as adherence to antiretroviral therapy, underline the importance of consistent healthcare support and education for mothers. Addressing these challenges is essential for achieving the UNAIDS 2030 targets and enhancing PMTCT practices to ensure better health outcomes for both mothers and their infants.

RECOMMENDATIONS

To the Ministry of Public Health:

- Promote the updated guidelines for managing HIV-infected pregnant women,
 emphasizing the need for quarterly PVL testing during pregnancy.
- Enhance support for PVL testing infrastructure at specialized PMTCT centers to ensure timely and accurate viral load monitoring.

To Obstetric Caregivers:

- Adhere to the new management guidelines for HIV-infected pregnant women, focusing on regular PVL monitoring and ART adherence.
- Identify and manage high-risk pregnancies with unknown or elevated PVL levels proactively, including consideration of cesarean sections to reduce transmission risk.
- Improve ANC practices, ensuring timely initiation and sufficient frequency of visits to monitor and manage maternal and infant health effectively.

To Pregnant Women Living with HIV:

- Follow the standard care and monitoring guidelines established in the PMTCT program, including regular ART adherence.
- Ensure optimal infant feeding practices and adhere to recommendations for protective breastfeeding as part of the PMTCT cascade care.

To the Research Community:

- Investigate the rate of HIV vertical transmission throughout the entire PMTCT cascade, from pregnancy through to 18 months of infant age.
- Expand research to include additional specialized centres or a national perspective to enhance the effectiveness and performance of PMTCT programs across various settings.

References:

- [1] Yah CS, Tambo E. Why is mother to child transmission (MTCT) of HIV a continual threat to new-borns in sub-Saharan Africa (SSA). J Infect Public Health 2019;12:213–23. https://doi.org/10.1016/j.jiph.2018.10.008.
- [2] Rasmussen DN, Vieira N, Hønge BL, da Silva Té D, Jespersen S, Bjerregaard-Andersen M, et al. HIV-1 and HIV-2 prevalence, risk factors and birth outcomes among pregnant women in Bissau, Guinea-Bissau: a retrospective cross-sectional hospital study. Sci Rep 2020;10:12174. https://doi.org/10.1038/s41598-020-68806-5.
- [3] Cameroon ministry of public health. National Guideline on HIV care. Cameroon. 2019.
- [4] Ministère de la santé publique du Cameroun. Rapport annuelle 2019 des activités de lutte contre le VIH, le SIDA et les IST. 2020.
- [5] Gilleece DY, Tariq DS, Bamford DA, Bhagani DS, Byrne DL, Clarke DE, et al. British HIV Association guidelines for the management of HIV in pregnancy and postpartum 2018. HIV Med 2019;20 Suppl 3:s2–85. https://doi.org/10.1111/hiv.12720.
- [6] Rimawi BH, Haddad L, Badell ML, Chakraborty R. Management of HIV Infection during Pregnancy in the United States: Updated Evidence-Based Recommendations and Future Potential Practices. Infect Dis Obstet Gynecol 2016;2016. https://doi.org/10.1155/2016/7594306.
- [7] Myer L, Phillips TK, McIntyre JA, Hsiao N-Y, Petro G, Zerbe A, et al. HIV viraemia and mother-to-child transmission risk after antiretroviral therapy initiation in pregnancy in Cape Town, South Africa. HIV Med 2017;18:80–8. https://doi.org/10.1111/hiv.12397.
- [8] WHO. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing Hiv Infection: Recommendations for a Public Health Approach. 2016.
- [9] Sandbulte M, Brown M, Wexler C, Maloba M, Gautney B, Goggin K, et al. Maternal viral load monitoring: Coverage and clinical action at 4 Kenyan hospitals. PLOS ONE 2020;15:e0232358. https://doi.org/10.1371/journal.pone.0232358.

- [10] Rutstein SE, Golin CE, Wheeler SB, Kamwendo D, Hosseinipour MC, Weinberger M, et al. On the front line of HIV virological monitoring: barriers and facilitators from a provider perspective in resource-limited settings. AIDS Care 2016;28:1–10. https://doi.org/10.1080/09540121.2015.1058896.
- [11] Roberts T, Cohn J, Bonner K, Hargreaves S. Scale-up of Routine Viral Load Testing in Resource-Poor Settings: Current and Future Implementation Challenges. Clin Infect Dis Off Publ Infect Dis Soc Am 2016;62:1043–8. https://doi.org/10.1093/cid/ciw001.
- [12] Lecher S, Ellenberger D, Kim AA, Fonjungo PN, Agolory S, Borget MY, et al. Scale-up of HIV Viral Load Monitoring--Seven Sub-Saharan African Countries. MMWR Morb Mortal Wkly Rep 2015;64:1287–90. https://doi.org/10.15585/mmwr.mm6446a3.
- [13] Ministère de la santé publique du Cameroun. Directives nationales de prise en charge du VIH. Cameroun. 2021.
- [14] Kafack EVF, Fokam J, Nana TN, Saniotis A, Halle-Ekane GE. Evaluation of plasma viral-load monitoring and the prevention of mother-to-child transmission of HIV-1 in three health facilities of the Littoral region of Cameroon. PloS One 2022;17:e0277271. https://doi.org/10.1371/journal.pone.0277271.
- [15] Chetty T, Newell M-L, Thorne C, Coutsoudis A. Viraemia before, during and after pregnancy in HIV-infected women on antiretroviral therapy in rural KwaZulu-Natal, South Africa, 2010-2015. Trop Med Int Health TM IH 2018;23:79–91. https://doi.org/10.1111/tmi.13001.
- [16] PEPFAR. Cameroon Country Operational Plan. Cameroon. May 10, 2019.
- [17] Human Immunodeficiency Virus (HIV) Infection Infectious Diseases. MSD Man Prof Ed n.d. https://www.msdmanuals.com/professional/infectious-diseases/human-immunodeficiency-virus-hiv/human-immunodeficiency-virus-hiv-infection (accessed January 10, 2021).
- [18] Jameson JL, editor. Harrison's principles of internal medicine. Twentieth edition. New York: McGraw-Hill Education; 2018.
- [19] Bowen LN, Smith B, Reich D, Quezado M, Nath A. HIV-associated opportunistic CNS infections: pathophysiology, diagnosis and treatment. Nat Rev Neurol 2016;12:662.

- [20] Tan IL, Smith BR, von Geldern G, Mateen FJ, McArthur JC. HIV-associated opportunistic infections of the CNS. Lancet Neurol 2012;11:605–17.
- [21] Harrison's Principles of Internal Medicine, 20e | AccessMedicine | McGraw-Hill Medical n.d. https://accessmedicine.mhmedical.com/book.aspx?bookID=2129.
- [22] Palmisano L, Vella S. A brief history of antiretroviral therapy of HIV infection: success and challenges. Ann Ist Super Sanita 2011;47:44–8. https://doi.org/10.4415/ANN_11_01_10.
- [23] UNAIDS. Global HIV & AIDS statistics 2019 fact sheet. 2019. https://www.unaids.org/en/resources/fact-sheet.
- [24] WHO. HIV/AIDS Factsheet. https://www.who.int/news-room/fact-sheets/detail/hiv-aids.
- [25] UNAIDS. Global HIV & AIDS statistics- 2020 fact sheet. 2020. https://www.unaids.org/en/resources/fact-sheet.
- [26] De Cock KM, Jaffe HW, Curran JW. The evolving epidemiology of HIV/AIDS. AIDS Lond Engl 2012;26:1205–13. https://doi.org/10.1097/QAD.0b013e328354622a.
- [27] Kharsany ABM, Karim QA. HIV Infection and AIDS in Sub-Saharan Africa: Current Status, Challenges and Opportunities. Open AIDS J 2016;10:34–48. https://doi.org/10.2174/1874613601610010034.
- [28] UNAIDS. Factsheet World AIDS Day 2020. USA. 2020.
- [29] Govere SM, Chimbari MJ. The evolution and adoption of World Health Organization policy guidelines on antiretroviral therapy initiation in sub-Saharan Africa: A scoping review. South Afr J HIV Med 2020;21. https://doi.org/10.4102/sajhivmed.v21i1.1103.
- [30] WHO. Latest HIV estimates and updates on HIV policies uptake. November 2020.
- [31] WHO. Why the HIV epidemic is not over. https://www.who.int/news-room/spotlight/why-the-hiv-epidemic-is-not-over.
- [32] UNAIDS. Fact sheet HIV Cameroon. 2021. https://www.unaids.org/fr/regionscountries/countries/cameroon.
- [33] PEPFAR. Cameroon COP Strategic Directional Summary. Cameroon. 2019.

- [34] Ministry of Public Health. Cameroon National AIDS Control Program Annual Report 2016 | GHDx. http://ghdx.healthdata.org/record/cameroon-national-aids-control-program-annual-report-2016.
- [35] World Atlas. The 10 Leading Causes of Death In Cameroon. https://www.worldatlas.com/articles/the-10-leading-causes-of-death-in-cameroon.html.
- [36] WHO. HIV Country Profiles. 2024. https://cfs.hivci.org/country-factsheet.html.
- [37] UNAIDS. World Heart Day report 2023. Cameroon. https://www.unaids.org/en/regionscountries/countries/cameroon (accessed April 28, 2021).
- [38] FDA. Approved HIV Medicines | NIH. https://hivinfo.nih.gov/understanding-hiv/fact-sheets/fda-approved-hiv-medicines (accessed April 28, 2021).
- [39] US Department of Health & Human services. How is HIV Transmitted?CSH gov. Date last updated: June 24, 2019. https://www.hiv.gov/hiv-basics/overview/about-hiv-and-aids/how-is-hiv-transmitted.
- [40] US Department of Health & Human services. Who Is at Risk for HIV? CSH gov. Date last updated: May 27, 2020. https://www.hiv.gov/hiv-basics/overview/about-hiv-and-aids/who-is-at-risk-for-hiv
- [41] CDC. HIV Risk Behaviors | HIV Risk and Prevention Estimates | HIV Risk and Prevention | HIV/AIDS | CDC 2019. https://www.cdc.gov/hiv/risk/estimates/riskbehaviors.html.
- [42] Medscape. HIV Infection and AIDS: Practice Essentials, Background, Pathophysiology. 2020.
- [43] Medscape. The challenge of viral reservoirs in HIV-1 infection. https://reference.medscape.com/medline/abstract/11818490.
- [44] CDC. About HIV/AIDS | HIV Basics | HIV/AIDS | CDC 2021. https://www.cdc.gov/hiv/basics/whatishiv.html.
- [45] Medscape. Quantitation of human immunodeficiency virus type 1 in the blood of infected persons. n.d. https://reference.medscape.com/medline/abstract/2586564.
- [46] Medscape.1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. https://reference.medscape.com/medline/abstract/1361652.
- [47] WHO. HIV/AIDS Factsheet 2022. https://www.who.int/news-room/fact-sheets/detail/hiv-aids.
- [48] Huynh K, Kahwaji CI. HIV Testing. StatPearls, Treasure Island (FL): StatPearls Publishing; 2021.
- [49] Centers for Disease Control and Prevention (U.S.), Bernard M. B, Association of Public Health Laboratorie, S. Michele O, Laura G. W, Berry B, et al. Laboratory testing for the diagnosis of HIV infection: updated recommendations. Centers for Disease Control and Prevention; 2014. https://doi.org/10.15620/cdc.23447.
- [50] UNAIDS. Malawi Antiretroviral Therapy protocol.2020.

- [51] WHO. What's new in treatment monitoring: viral load and CD4 testing. 2017. http://www.who.int/hiv/pub/arv/treatment-monitoring-info-2017/en/
- [52] Ministère de la santé publique du Cameroun. Directives Nationales sur la Prise en charge du VIH. Cameroun. Juillet 2019.
- [53] Tsibris M Kaplan, Meier émontrent, Quinn. Module 1. Principes relatifs à la surveillance de la charge virale ppt télécharger n.d. https://slideplayer.fr/slide/12134031/.
- [54] Ministry of Public Health of Cameroon. National Comprehensive HIV Care Guideline. 2018.
- [55] UNAIDS. Start Free Stay Free AIDS Free progress report. 2017.
- [56] Ministère santé publique du Cameroun. Rapport de progrès PTME N°12. Cameroun. 2017.
- [57] ACOG Committee opinion. Labor and delivery management of women with HIV infection. USA. HIV Expert group. Vol 132, NO. 3, September 2018.
- [58] Brittain K, Remien RH, Mellins CA, Phillips TK, Zerbe A, Abrams EJ, et al. Determinants of suboptimal adherence and elevated HIV viral load in pregnant women already on antiretroviral therapy when entering antenatal care in Cape Town, South Africa. AIDS Care 2018;30:1517–23. https://doi.org/10.1080/09540121.2018.1503637.
- [59] Chilaka VN, Konje JC. HIV in pregnancy An update. Eur J Obstet Gynecol Reprod Biol 2021;256:484–91. https://doi.org/10.1016/j.ejogrb.2020.11.034.
- [60] Lesosky M, Raboud JM, Glass T, Brummel SS, Ciaranello AL, Currier JS, et al. Comparison of guidelines for HIV viral load monitoring among pregnant and breastfeeding women in sub-Saharan Africa. AIDS Lond Engl 2020;34:311–5. https://doi.org/10.1097/QAD.0000000000002400.
- [61] Lesosky M, Glass T, Mukonda E, Hsiao N, Abrams EJ, Myer L. Optimal timing of viral load monitoring during pregnancy to predict viraemia at delivery in HIV-infected women initiating ART in South Africa: a simulation study. J Int AIDS Soc 2017;20. https://doi.org/10.1002/jia2.25000.
- [62] Myer L, Phillips TK, McIntyre JA, Hsiao N-Y, Petro G, Zerbe A, et al. HIV viraemia and mother-to-child transmission risk after antiretroviral therapy initiation in pregnancy in Cape Town, South Africa. HIV Med 2017;18:80–8. https://doi.org/10.1111/hiv.12397.

APPENDIX

APPENDIX ONE: INFORMATION SHEET

Section	Question	Responses
I. SOCIODEMOGRAPHIC INFORMATION		
1. Age		
2. Marital Status	1. Married 2. Divorced 3. Single 4. Widow	
3. Occupation	1. Unemployed 2. Employed 3. Housewife 4. Other:	
4. Religion	1. Catholic 2. Muslim 3. Animist 4. Other:	
5. Level of Education	0. None 1. Primary 2. Secondary 3. Tertiary	
II. OBSTETRIC AND SOCIAL INFORMATION		
6. Gravidity		
7. Parity		
III. ANC INFORMATION		
14. Number of ANC Visits		
16. Where?	0. FOSA 1. Hors FOSA	
17. Gestational Age at First ANC Contact		
18. Healthcare provider	O. Gynecologist/Resident General practitioner Midwife Nurse	
V. LABORATORY INVESTIGATIONS		
23. Postive HIV Status	0. Before pregnancy 1. During pregnancy	
24. Is she on ART?	0. No 1. Yes	
25. Which ART Regimen?		
26. Last Viral Load Done During ANC		
27. Number of Viral Loads Done During ANC		
VI. MEDICATIONS		

Section	Question	Responses
28. Regularly Attends ART During Pregnancy	0. No 1. Yes	
29. If No, Has She Missed More Than 1 Month of Therapy?	0. No 1. Yes	
VII. PREGNANCY OUTCOMES		
32. Mode of Delivery	Vaginal Delivery C-section	
33. Gestational Age at Delivery		
34. Type of Labor	1. Spontaneous 2. Induced 3. Augmented	
35. Any Complications During Labor or Delivery?	0. No 1. Yes	
36. Rupture of Membranes	 Spontaneous Artificial 	
37. Weight of the Baby		
38. Mode of Nutrition During First 6 Months	1. Breastfeeding 2. Artificial 3. Mixed	
39. Mode of Nutrition From 6 Months	 Breastfeeding Artificial Mixed 	
40. PCR Test Results at 6 Weeks	 Positive Negative Indeterminate Not Done 	
40. Age of the child at PCR collection at 6 weeks		
32. PCR Test Result at 9months	1. Positive 2. Negative 3. Indeterminate 4. Not Done	
40. Age of the child at PCR collection at 9 months		
41. Other PCR Test	1. Positive 2. Negative 3. Indeterminate 4. Not Done	

APPENDIX 2: CONSENT FORM

INFORMATION SHEET

Title of Study: Etienne Fouedjio

Introduction

My name is FOUEDJIO KAFACK ETIENNE VERLAIN. I am a MPH student at the Faculty of Medicine and Pharmaceutical Sciences, University of Yaounde I and I am

the main investigator of this study.

Dear Madam,

Invitation into the study

We kindly ask you to participate in this study, which we will describe. The study seeks

to evaluate plasma viral load coverage is during antenatal care (ANC); to describe the

mode of delivery of HIV mother and evaluate adherence with relevant recommendation

and to appreciate the foetal HIV status. This would be done under the supervision of

Pr. NGUEFACK-TSAGUE Georges, Associate Professor in Public

Health/Biostatistics, Pr LYONGA EMILIA ENJEMA, Senior lecturer in Medical

Microbiology and **Dr KWEDI SYLVIE**, Senior Lecturer in Public Health.

Voluntary Participation

We will like to emphasize that this study is strictly voluntary. You are free to decide to

participate. If you decide not to participate in the study, it will not affect the policy you

made for your patient in your hospital.

Study Procedures

If you decide to allow your hospital to participate in this study, you will be asked to

allow us to collect from HIV care unit and ANC records office.

Risks: The Data will not be exposed to ANY risks as a result of their participation in

the study.

Benefits: There will be no financial or material compensation for Data with room given

for any clarifications.

Confidentiality: Data are assured that their privacy will be respected as identification

will be done with codes rather than names during the study. Under no circumstances

will the raw information be divulged to third parties.

Autonomy: Hospital administration reserve the right to withdraw from the study at any time, should they deem it necessary, without penalty or prejudice.

The research and this consent form have been approved by the ethical review board of the Faculty of Medicine and Pharmaceutical Sciences, University of YAOUNDE, which ensures that research involving humans follows national regulations. Any new information that develops during the project will be provided to you, if the information might affect your willingness to continue participation in the project. Questions regarding this project can be answered by contacting:

1. FOUEDJIO Kafack Etienne Verlain (697496699), Faculty of Medicine and Pharmaceutical Sciences, University of Yaounde I.

CONSENT FORM.	
I	
having understood the study, after having the	he data information sheet well
explained to me, having been given the opportunity to	ask questions, do hereby agree
my hospital to participate in this study.	
Date/signature of hospital's Administrator	Date/signature of investigator

APPENDIX 3: ETHICAL CLEARANCE

UNIVERSITÉ DE YAOUNDÉ I

FACULTÉ DE MÉDECINE ET DES SCIENCES BIOMÉDICALES

COMITÉ INSTITUTIONNEL D'ÉTHIQUE DE LA RECHERCHE

Tel/fax: 22 31-05-86 22 311224 Email: decanatfmsb@hotmail.com

Bot No al 1 2 Any my for of

de university of yaounde i

FACULTY OF MEDICINE AND BIOMEDICAL SCIENCES

INSTITUTIONAL ETHICAL REVIEW BOARD

CLAIRANCE ÉTHIQUE

1 2 MAI 2023

Le comité institutionnel d'éthique de la RECHERCHE (CIER) de la FMSB a examiné

La demande de la clairance éthique soumise par :

M.Mme : FOUEDJIO KAFACK Etienne Verlain

Matricule: 22E0015

Travaillant sous la direction de :

Pr Nguefack Tsague Georges

Pr Lyonga Emilia Enjema

Dr Kwedi Jippe Anne Sylvie

Concernant le projet de recherche intitulé :

Evaluation of plasma viral-load coverage and the prevention of mother-to- child transmission of HIV-1 in three facilities

in Yaounde, Cameroon

Les principales observations sont les suivantes

Evaluation scientifique	
Evaluation de la convenance institutionnelle/valeur sociale	
Equilibre des risques et des bénéfices	
Respect du consentement libre et éclairé	
Respect de la vie privée et des renseignements personnels (confidentialité) :	
Respect de la justice dans le choix des sujets	77
Respect des personnes vulnérables :	
Réduction des inconvénients/optimalisation des avantages	
Gestion des compensations financières des sujets	
Gestion des conflits d'intérêt impliquant le chercheur	

Pour toutes ces raisons, le CIER émet un avis favorable sous réserve des modifications recommandées dans la grille d'évaluation scientifique.

L'équipe de recherche est responsable du respect du protocole approuvé et ne devra pas y apporter d'amendement sans avis favorable du CIER. Elle devra collaborer avec le CIER lorsque nécessaire, pour le suivi de la mise en œuvre dudit protocole. La clairance éthique peut être retirée en cas de non - respect de la réglementation ou des recommandations sus évoquées. En foi de quoi la présente clairance éthique est délivrée pour servir et valoir ce que de droit

LE PRESIDENT DU COMITE ETHIQUE

APPENDIX 4: HGOPY RESEARCH AUTHORIZATION

REPUBLIQUE DU CAMEROUN Pais-Travail-Patrie

MINISTERE DE LA SANTE PUBLIQUE

HOPITAL GYNECO-OBSTETRIQUE ET PEDIATRIQUE DE YAOUNDE

HUMILITE - INTEGRITE - VERITE - SERVICE

REPUBLIC OF CAMEROON Peace-Work-Fatherland

MINISTRY OF PUBLIC HEALTH

YAOUNDE GYNAECO-OBSTETRIC AND PEDIATRIC HOSPITAL

HUMILITY - INTEGRITY - TRUTH - SERVICE

COMITE INSTITUTIONNEL D'ETHIQUE DE LA RECHERCHE POUR LA SANTE HUMAINE (CIERSH)

Arrêté nº 0977 du MINSANTE du 18 avril 2012 portant création et organisation des Comités d'Ethiques de la Recherche pour la santé Humaines. (CERSH).

AUTORISATION N° 635/CIERSH/DM/2024 CLAIRANCE ETHIQUE

Le Comité Institutionnel d'Ethique de la Recherche pour la Santé Humaine (CIERSH) a examiné le 21 février 2024, la demande d'autorisation et le Protocole de recherche intitulé « evaluation of plasma viral-load coverage and the prevention of mother – to- child transmission of HIV-1 in three facilities in Yaounde, Cameroon » soumis par l'étudiant Dr FOUEDJIO KAFACK ETIENNE VERLAIN.

Le sujet est digne d'intérêt. Les objectifs sont bien définis. La procédure de recherche proposée ne comporte aucune méthode invasive préjudiciable aux participants. Le formulaire de consentement éclairé est présent et la confidentialité des données est préservée. Pour les raisons qui précèdent, le CIERSH de HGOPY donne son accord pour la mise en œuvre de la présente recherche.

Dr FOUEDJIO KAFACK ETIENNE VERLAIN devra se conformer au règlement en vigueur à HGOPY et déposer obligatoirement une copie de ses travaux à la Direction Médicale de ladite formation sanitaire.

Yaoundé, le 2 a FEW 2021

LE PRESIDENT

Prof MBU Robinson Directeur Général

N° 1827 ; Rue 1564 ; Ngousso ; Yaoundé Sine BP : 4362 Tél. : 242 05 92 94 / 222 21 24 33 / 222 21 24 31 Fax : 222 21 24 30

E-mail: hgopy@hotmail.com / hgopy@hgopy.cm