Метод простейших итераций.

Альтернативой прямым методам решения СЛАУ являются итерационные методы, основанные на многократном уточнении x^0 , заданного приближенного решения системы $A \cdot x = b$. Верхним индексом в скобках здесь и далее по тексту обозначается номер итерации (совокупности повторяющихся действий). Реализация простейшего итерационного метода — метода простых итераций — состоит в выполнении следующих процедур.

- 1. Исходная задача $A \cdot x = b$ преобразуется к равносильному виду: $x = \alpha \cdot x + \beta$, где α квадратная матрица порядка n; β столбец. Это преобразование может быть выполнено различными путями, но для обеспечения сходимости итераций нужно добиться выполнения условия $\|\alpha\| < 1$.
- 2. Столбец β принимается в качестве начального приближения $x^0 = \beta$ и далее многократно выполняются действия по уточнению решения, согласно рекуррентному соотношению $x^{(k+1)} = \alpha \cdot x^{(k)} + \beta$, k = 0,1,2,...

или в развернутом виде
$$\begin{cases} x_1^{(k+1)} = a_{11}x_1^{(k)} + \ a_{12}x_2^{(k)} + \dots + \ a_{1n}x_n^{(k)} + \ \beta_1 \\ x_2^{(k+1)} = a_{21}x_1^{(k)} + \ a_{22}x_2^{(k)} + \dots + \ a_{2n}x_n^{(k)} + \ \beta_2 \\ \dots \\ x_n^{(k+1)} = a_{n1}x_1^{(k)} + \ a_{n2}x_2^{(k)} + \dots + \ a_{nn}x_n^{(k)} + \ \beta_n \end{cases}$$

3. Итерации прерываются при выполнении условия (где $\varepsilon > 0$ — заданная точность, которую необходимо достигнуть при решении задачи) $\|x^{(k+1)} - x^{(k)}\| < \varepsilon$.

Теорема о достаточном условии сходимости метода простых итераций. Метод простых итераций, реализующийся в процессе последовательных приближений, сходится к единственному решению исходной системы Ax = b при любом начальном приближении x^0 со скоростью не медленнее геометрической прогрессии, если какая-либо норма матрицы α меньше единицы, т.е. $\|\alpha\| < 1$

Теорема о необходимом и достаточном условии сходимости метода простых итераций. Для сходимости метода простых итераций при любых x^0 и β необходимо и достаточно, чтобы собственные значения матрицы α были по модулю меньше единицы, т.е. || $\lambda_i(\alpha)$ || < 1, i=1,...,n.

Принцип сжимающих отображений

Пусть R- метрическое пространство. Отображение A пространства R в себя называется сжимающим отображением, или, короче, сжатием, если существует такое число $\alpha < 1$ что для любых двух точек $x,y \in R$ выполняется неравенство: $\rho(Ax,Ay) \leq \alpha \rho(x,y)$ Всякое сжимающее отображение непрерывно. Действительно, если $x_n \to x$, то в силу неравенства и $Ax_n \to Ax$ Точка x называется неподвижной точкой отображения A, если Ax = x. Иначе говоря,неподвижные точки – решения уравнения Ax = x.

Всякое сжимающее отображение, определенное в полном метрическом пространстве R, имеет одну и только одну неподвижную точку. Принцип сжимающих отображений можно применять к доказательству существования и единственности решений для уравнений различных типов (дифференциальных, интегральных, алгебраических, трансцендентных, СЛАУ). Помимо доказательства существования и единственности решения уравнения Ax = x, принцип сжимающих отображений дает и фактический метод приближенного нахождения этого решения (метод последовательных приближений).