Versuch 29

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: June 30, 2024)

I. BESTIMMUNG VON WECHSELSTROMWIDERSTÄNDE DURCH MESSUNG MIT DEM OSZILLOGRAPH

A. Allgemeines

Die Phasendifferenz ist definiert durch

$$\Delta \varphi = 2\pi \frac{\Delta t}{T}$$

Am häufigsten brauchen wir die Phasendifferenz in Einheiten von π , also wir berechnen stattdessen

$$\frac{\Delta\varphi}{\pi} = \frac{2\Delta t}{T}$$

Dies kann ausgedrückt werden durch die Frequenz

$$\frac{\Delta\varphi}{\pi} = 2(\Delta t)f$$

und der Fehler ist nach Gauß

$$\Delta\left(\frac{\Delta\varphi}{\pi}\right) = 2\sqrt{f^2[\Delta(\Delta t)]^2 + (\Delta t)^2(\Delta f)^2}$$

Wenn wir einen Mittelwert aus unterschiedliche Werte bilden, werden wir einen gewichteten Mittelwert verwenden

$$\bar{x} = \frac{\sum \frac{x_i}{\sigma_i^2}}{\sum \frac{1}{\sigma_i^2}}$$

und

$$\Delta \bar{x} = \frac{1}{\sqrt{\sum \frac{1}{\sigma_i^2}}}$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

B. Ohmscher Widerstand

Es ist

$$R = \frac{U_{pp,CHII}}{U_{pp,CHI}} R_{vor}$$

und daher nach Gauß

$$\Delta R = R \sqrt{\left(\frac{\Delta U_{pp,CHI}}{U_{pp,CHI}}\right)^2 + \left(\frac{\Delta U_{pp,CHII}}{U_{pp,CHII}}\right)^2 + \left(\frac{\Delta R_{vor}}{R_{vor}}\right)^2}$$

Der Vorwiderstand ist nach Produktbeschreibung

$$R_{vor} = (6, 85 \pm 0, 17) \text{ k}\Omega$$

f (Hz)	$100, 0 \pm 1, 1$	1000 ± 11
$U_{pp,CHI}$	$(14,00 \pm 0,40) \text{ V}$	$(14,00\pm 0,40) \text{ V}$
$U_{pp,CHII}$	$(3,70\pm0,10) \text{ V}$	$(3,70 \pm 0,10) \text{ V}$
$R(\Omega)$	$(1,810\pm0,084) \text{ ks}$	$\Omega (1,810 \pm 0,084) \text{ k}\Omega$
Abstand zwischen Maxima	$(0 \pm 50) \; \mu s$	$(0 \pm 50) \; \mu s$
Phasendifferenzen	$(0,000\pm0,010)\pi$	$(0,00\pm 0,10)\pi$

Dann bilden wir den Mittelwert

$$R = (1,810 \pm 0,059) \text{ k}\Omega$$

Die Phasendifferenz ist

$$\Delta\varphi = (0,000 \pm 0,010)\pi$$

C. Kondensator

Der Vorwiderstand ist

$$R = (226, 4 \pm 3, 9) \Omega$$

f (Hz)	$100, 0 \pm 1, 1$	$500, 0 \pm 3, 9$	1000 ± 11	5000 ± 39	10000 ± 110
$U_{pp,CHI}$ (V)	$1,160 \pm 0,040$	$4,00 \pm 0,10$	$4,80 \pm 0,20$	$4,40 \pm 0,20$	$5,20 \pm 0,20$
$\overline{U_{pp,CHII}}$ (V)	$19,0 \pm 1,0$	$12,40 \pm 0,40$	$7,60 \pm 0,20$	$1,70 \pm 0,10$	$0,820 \pm 0,040$
$R(\Omega)$	3710 ± 240	702 ± 31	358 ± 19	$87,5 \pm 6,7$	$35,7 \pm 2,3$
Abstand zwis	-2500 ± 200	500 ± 50	260 ± 20	$50,0 \pm 5,0$	$25,0 \pm 2,0$
chen Maxima	A				
(μs)					

Phasen differenz0, 500 \pm 0, 040 $\,$ 0, 500 \pm 0, 050 $\,$ 0, 520 \pm 0, 040 $\,$ 0, 500 \pm 0, 050 $\,$ 0, 500 \pm 0, 040 $\,$ / $\,$ π

Das Plot von ${\cal R}_L$ in Abhängigkeit von fist

D. Induktivität

Der Vorwiderstand ist

$$R = (14, 80 \pm 0, 54) \Omega$$

Der Spulwiderstand ist

$$R_{Sp} = (2, 40 \pm 0, 34) \Omega$$

Wir berechnen den Scheinwiderstand analog wie vorher. Ferner brauchen wir

$$R_L = \sqrt{R_z^2 - R_{Sp}^2}$$

Dessen Fehler ist gegeben durch

$$\Delta R_L = \sqrt{\frac{R_z^2}{R_z^2 - R_{sp}^2} (\Delta R_z)^2 + \frac{R_{Sp}^2}{R_z^2 - R_{sp}^2} (\Delta R_{Sp})^2}$$

f (Hz)	$100, 0 \pm 1, 1$	$500, 0 \pm 3, 9$	1000 ± 11	5000 ± 39	10000 ± 110
$U_{pp,CHI}$ (V)	$0,460 \pm 0,020$	$0,450 \pm 0,020$	$0,440 \pm 0,020$	$0,400 \pm 0,010$	$0,310 \pm 0,010$
$\overline{U_{pp,CHII}}$ (V)	$0,200 \pm 0,010$	$0,920 \pm 0,040$	$1,80 \pm 0,10$	$8,40 \pm 0,40$	$13,02 \pm 0,40$
$R_z (\Omega)$	$6,43 \pm 0,49$	$30, 3 \pm 2, 2$	$60, 5 \pm 4, 9$	$311, \pm 20,$	$622, \pm 36,$
$R_L(\Omega)$	$5,97 \pm 0,54$	$30, 2 \pm 2, 2$	$60, 5 \pm 4, 9$	$311, \pm 20,$	$622, \pm 36,$
Abstand zwis-	2800 ± 200	475 ± 50	260 ± 20	$50,0 \pm 5,0$	$24,0 \pm 2,0$
chen Maxima					
$(\mu \mathrm{s})$					
Phasendifferen	$120,560 \pm 0,040$	$0,475 \pm 0,050$	$0,520 \pm 0,040$	$0,500 \pm 0,050$	$0,480 \pm 0,040$

Das Plot von ${\cal R}_L$ in Abhängigkeit von fist

Zur Bestimmung vom Induktivität verwenden wir

$$L = \frac{R_L}{2\pi f}$$

$$\Delta L = L\sqrt{\left(\frac{\Delta R}{R}\right)^2 + \left(\frac{\Delta f}{f}\right)^2}$$

Jetzt die Induktivität mit Eisenkern. Die Messwerte mit Fehler sind

$$U_{PP,CHI} = (0, 380 \pm 0, 020) \text{ V}$$

 $U_{PP,CHII} = (10, 40 \pm 0, 40) \text{ V}$

und analog ist

$$f = (1000 \pm 11) \text{ Hz}$$

 $R_z = (405 \pm 30) \Omega$
 $R_L = (405 \pm 30) \Omega$
 $L = (0,0644 \pm 0,0049) \text{ H}$

Wenn das Eisenkern geschlossen ist, sind die Messwerte

$$U_{PP,CHI} = (0, 220 \pm 0, 020) \text{ V}$$

$$U_{PP,CHII} = (12, 80 \pm 0, 40) \text{ V}$$

und die berechnete Werte

$$f = (1000 \pm 11) \text{ Hz}$$
 $R_z = (861 \pm 88) \Omega$ $R_L = (861 \pm 88) \Omega$ $L = (0, 137 \pm 0, 014) \text{ H}$

II. INDUKTION

A. Sinusförmiger Strom

f (Hz)	$100, 0 \pm 1, 1$	$300, 0 \pm 2, 5$	1000 ± 11	3000 ± 25	10000 ± 110
$U_{pp,R}$ (V)	$0,440 \pm 0,020$	$0,440 \pm 0,020$	$0,440 \pm 0,020$	$0,440 \pm 0,020$	$0,310 \pm 0,010$
$U_{pp,ind}$ (V)	0,0420 ±	± 0,1120 ±	$0,400 \pm 0,020$	$1,200 \pm 0,040$	$3,00 \pm 0,10$
	0,0020	0,0040			
$\frac{U_{pp,ind}}{U_{pp,R}}$	0,0955 ±	$0,255 \pm 0,015$	$0,909 \pm 0,061$	$2,73 \pm 0,15$	$9,68 \pm 0,45$
	0,0063				

