Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	6
1.2 Описание выходных данных	6
2 МЕТОД РЕШЕНИЯ	7
3 ОПИСАНИЕ АЛГОРИТМОВ	9
3.1 Алгоритм конструктора класса triangle	9
3.2 Алгоритм метода result класса triangle	9
3.3 Алгоритм функции operator+	10
3.4 Алгоритм функции operator	11
3.5 Алгоритм функции main	12
3.6 Алгоритм метода geta класса triangle	13
3.7 Алгоритм метода getb класса triangle	13
3.8 Алгоритм метода getc класса triangle	14
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	15
5 КОД ПРОГРАММЫ	20
5.1 Файл main.cpp	20
5.2 Файл triangle.cpp	20
5.3 Файл triangle.h	22
6 ТЕСТИРОВАНИЕ	23
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОИНИКОВ	24

1 ПОСТАНОВКА ЗАДАЧИ

Перегрузка арифметических операций.

Перезагрузка операции для объекта треугольник.

У треугольника есть стороны a, b, c и они принимают только натуральные значения. Определяем операцию сложения и вычитания для треугольников.

- + сложить значения сторон, если допустимо.
- вычесть значения сторон, если допустимо.

Складываются и вычитаются соответствующие стороны треугольников. Т.е. a1 + a2, b1 + b2, c1 + c2. Если после выполнения операции получается недопустимый треугольник, то результатом операции берется первый аргумент.

Написать программу, которая выполняет операции над треугольниками.

В основной программе реализовать алгоритм:

- 1. Ввод количества треугольников n.
- 2. В цикле для каждого треугольника вводятся исходные длины сторон. Далее создается объект, в конструктор которого передаются значения длин сторон. Каждый объект треугольника получает свой номер от 1 до п.
- 3. В цикле, последовательно, построчно вводится «номер первого треугольника» «символ арифметической операции + или -» «номер второго треугольника»
- 4. После каждого ввода выполняется операция, результат присваивается первому аргументу (объекту треугольника).
- 5. Цикл завершается по завершению данных.
- 6. Выводится результат последней операции.

Гарантируется:

• Количество треугольников больше или равно 2;

• Значения исходных длин сторон треугольников задаются корректно.

Реализовать перегрузку арифметических операции «+» и «-» для объектов треугольника посредством самостоятельных не дружественных функций.

1.1 Описание входных данных

Первая строка содержит значение количества треугольников n:

«Натуральное значение»

Далее п строк содержат

«Натуральное значение» «Натуральное значение»

Начиная с n + 2 строки:

«Натуральное значение» «Знак операции» «Натуральное значение»

1.2 Описание выходных данных

а = «Натуральное значение»; b = «Натуральное значение»; c = «Натуральное значение».

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- функция main для основная функция программы;
- функция operator+ для оператор сложения;
- функция operator- для оператор вычитания;
- сіп объект стандартного потока ввода с клавиатуры;
- cout объект стандартного потока вывода на экран;
- if .. else условный оператор;
- for оператор со счётчиком;
- while оператор цикла с предусловием;
- push_back для вставки нового объекта "треугольник" в конец вектора "треугольники".

Класс triangle:

- свойства/поля:
 - о поле значение стороны а треугольника:
 - наименование а;
 - тип int;
 - модификатор доступа private;
 - о поле значение стороны b треугольника:
 - наименование b;
 - тип int;
 - модификатор доступа private;
 - о поле значение стороны с треугольника:
 - наименование c;
 - тип int;
 - модификатор доступа private;

• функционал:

- о метод triangle параметризированный конструктор;
- о метод result выводит значения полей объекта на экран;
- о метод geta получение значения поля а объекта;
- о метод getb получение значения поля b объекта;
- о метод getc получение значения поля с объекта.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса triangle

Функционал: параметризированный конструктор.

Параметры: int a, int b, int c.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса triangle

N₂	Предикат	Действия	No
			перехода
1		присваивание полю данного объекта а значение параметра а	2
2		присваивание полю данного объекта b значение параметра b	3
3		присваивание полю данного объекта с значение параметра с	Ø

3.2 Алгоритм метода result класса triangle

Функционал: выводит значения полей объекта на экран.

Параметры: нет.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода result класса triangle

N₂	Предикат	Действия	
			перехода
1		вывод на экран "a = ", значение поля а данного объекта, "; b = ",	Ø
		начение поля b данного объекта, "; c = " значение поля с данного	
		объекта и '.'	

3.3 Алгоритм функции operator+

Функционал: оператор сложения.

Параметры: triangle& t1, triangle& t2.

Возвращаемое значение: triangle.

Алгоритм функции представлен в таблице 3.

Таблица 3 – Алгоритм функции operator+

No	Предикат	Действия	No Henevous
1		инициализация целочисленных переменных а1, а2,	перехода 2
		b1, b2, c1, c2	
2	присваивание переменной а1 результат метод		3
		geta объекта t1, присваивание переменной b1	
		результат метода getb объекта t1, присваивание	
		переменной c1 результат метода getc объекта t1	
3		присваивание переменной а2 результат метода	4
		geta объекта t2, присваивание переменной b2	
		результат метода getb объекта t2, присваивание	
		переменной c2 результат метода getc объекта t2	
4		инициализация переменной at типа int значением	
		результата суммы переменных а1 и а2	
5		инициализация переменной bt типа int значением	6
		результата суммы переменных b1 и b2	
6		инициализация переменной ct типа int значением	7
		результата суммы переменных с1 и с2	
7	at + bt > ct && at + ct > bt &&	возврат объекта, созданного с помощью	Ø
	bt + ct > at	параметризированного конструктора с	
		аргументами at, bt и ct	
		возврат указателя на объект t1	Ø

3.4 Алгоритм функции operator-

Функционал: оператор вычитания.

Параметры: triangle& t1, triangle& t2.

Возвращаемое значение: triangle.

Алгоритм функции представлен в таблице 4.

Таблица 4 – Алгоритм функции operator-

Nº	Предикат	Действия	№ перехода
1		инициализация целочисленных переменных а1 и	2
		a2 значениями результатов методов geta объектов	
		t1 и t2 соответственно	
2		инициализация переменной at типа int значенеим	3
		результата разности переменных а1 и а2	
3	at > 0	инициализация целочисленных переменных b1 и	4
		b2 значениями результатов методов geta объектов	
		t1 и t2 соответственно	
			9
4		инициализация переменной bt типа int значением	5
		результата разности переменных b1 и b2	
5	bt > 0	инициализация целочисленных переменных с1 и	
		c2 значениями результатов методов geta объектов	
		t1 и t2 соответственно	
			9
6		инициализация переменной ct типа int значением	7
		результата разности переменных с1 и с2	
7	ct > 0		8
			9
8	at + bt > ct && at + ct > bt &&	возврат объекта, созданного с помощью	Ø
	bt + ct > at	параметризированного конструктора с	

No	Предикат	Действия	No
			перехода
		аргументами at, bt и ct	
			9
9		возврат указателя на объект t1	Ø

3.5 Алгоритм функции main

Функционал: основная функция программы.

Параметры: нет.

Возвращаемое значение: int - код ошибки.

Алгоритм функции представлен в таблице 5.

Таблица 5 – Алгоритм функции таіп

N₂	Предикат	Действия	N₂
			перехода
1		инициализация переменной n типа int	2
2		ввод значения переменной п с клавиатуры	3
3		создание вектора triangles с данными класса	4
		triangle	
4		инициализация переменной і типа int значением 0	5
5	i < n	инициализация переменных a, b и c типа int	6
			8
6		ввод значений переменных a, b и c c клавиатуры	7
7		j++	5
8		инициализация переменных triangle1, triangle2	9
		типа int и переменной action типа char	
9	cin >> triangle1 >> action >>		10
	triangle2		
		вызов метода result() объекта вектора triangles с	11
		индексом triangle1 - 1	
10	action == '+'	вычисление суммы объекта вектора triangles с	9

No	Предикат	Действия	No
			перехода
		индексом triangle1 - 1 и объекта вектора triangles с	
		индексом triangle2 - 1	
	вычисление разности объекта вектора triangles с		9
		индексом triangle1 - 1 и объекта вектора triangles с	
		индексом triangle2 - 1	
11		возврат значения 0	Ø

3.6 Алгоритм метода geta класса triangle

Функционал: получение значения поля а объекта.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 6.

Таблица 6 – Алгоритм метода geta класса triangle

No	Предикат	Действия	N₂
			перехода
1		возврат значения поля а объекта	Ø

3.7 Алгоритм метода getb класса triangle

Функционал: получение значения поля b объекта.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 7.

Таблица 7 – Алгоритм метода getb класса triangle

No	Предикат	Действия	No
			перехода
1		возврат значения поля b объекта	Ø

3.8 Алгоритм метода getc класса triangle

Функционал: получение значения поля с объекта.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 8.

Таблица 8 – Алгоритм метода getc класса triangle

No	Предикат	Действия	No
			перехода
1		возврат значения поля с объекта	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-5.

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

Рисунок 5 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include <vector>
#include "triangle.h"
int main()
  int n;
  std::cin >> n;
  std::vector <triangle> triangles;
  for (int i = 0; i < n; ++i)
  {
     int a, b, c;
     std::cin >> a >> b >> c;
     triangles.push_back(triangle(a, b, c));
  int triangle1, triangle2; char action;
  while (std::cin >> triangle1 >> action >> triangle2)
     if (action == '+') triangles[triangle1 - 1] = triangles[triangle1 - 1]
+ triangles[triangle2 - 1];
          triangles[triangle1 - 1] = triangles[triangle1
     else
triangles[triangle2 - 1];
  triangles[triangle1 - 1].result();
  return(0);
}
```

5.2 Файл triangle.cpp

Листинг 2 – triangle.cpp

```
#include "triangle.h"
```

```
#include <iostream>
triangle::triangle(int a, int b, int c)
  this -> a = a;
  this -> b = b;
  this -> c = c;
void triangle::result()
{ std::cout << "a = " << a << "; b = " << b << "; c = " << c << '.'; }
int triangle::geta()
{ return a; }
int triangle::getb()
{ return b; }
int triangle::getc()
{ return c; }
triangle operator+(triangle& t1, triangle& t2)
  int a1, a2, b1, b2, c1, c2;
  a1 = t1.geta(); b1 = t1.getb(); c1 = t1.getc();
  a2 = t2.geta(); b2 = t2.getb(); c2 = t2.getc();
  int at = a1 + a2;
  int bt = b1 + b2;
  int ct = c1 + c2;
  if (at + bt > ct && at + ct > bt && bt + ct > at)
     return triangle(at, bt, ct);
  else return t1;
triangle operator-(triangle& t1, triangle& t2)
  int a1 = t1.geta(), a2 = t2.geta();
  int at = a1 - a2;
  if (at > 0)
     int b1 = t1.getb(), b2 = t2.getb();
     int bt = b1 - b2;
     if (bt > 0)
        int c1 = t1.getc(), c2 = t2.getc();
        int ct = c1 - c2;
        if (ct > 0)
           if (at + bt > ct && at + ct > bt && bt + ct > at)
              return triangle(at, bt, ct);
     }
  }
  return t1;
}
```

5.3 Файл triangle.h

Листинг 3 – triangle.h

```
#ifndef __TRIANGLE__H

#define __TRIANGLE__H

class triangle
{
  private:
    int a, b, c;
  public:
    triangle(int a, int b, int c);
    void result();
    int geta();
    int getb();
    int getc();
};

triangle operator+(triangle& t1, triangle& t2);
triangle operator-(triangle& t1, triangle& t2);
#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 9.

Таблица 9 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
4 2 3 4 10 11 12 6 3 7 12 31 40 2 - 3 1 + 2	a = 6; b = 11; c = 9.	a = 6; b = 11; c = 9.
3 10 11 12 23 33 43 10 20 30 1 - 3 2 + 1	a = 33; b = 44; c = 55.	a = 33; b = 44; c = 55.
2 12 15 19 3 4 5 1 - 2 2 - 1	a = 3; b = 4; c = 5.	a = 3; b = 4; c = 5.
2 12 13 14 3 4 5 1 + 2	a = 15; b = 17; c = 19.	a = 15; b = 17; c = 19.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).