### Review of Lecture 9

• Logistic regression



Likelihood measure

$$\prod_{n=1}^{N} P(y_n \mid \mathbf{x}_n) = \prod_{n=1}^{N} \theta(y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n)$$

#### Gradient descent



- Initialize  $\mathbf{w}(0)$ 

- For 
$$t=0,1,2,\cdots$$
 [to termination]

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \eta \ \nabla E_{\text{in}}(\mathbf{w}(t))$$

- Return final **w** 

## Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 10: Neural Networks





### Outline

• Stochastic gradient descent

Neural network model

Backpropagation algorithm

### Stochastic gradient descent

GD minimizes:

$$E_{\mathrm{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \underbrace{\mathbf{e}\left(\mathbf{h}(\mathbf{x}_n), y_n\right)}_{\ln\left(1 + e^{-y_n \mathbf{w}^\mathsf{T}} \mathbf{x}_n\right)} \leftarrow \text{in logistic regression}$$

by iterative steps along  $-\nabla E_{
m in}$ :

$$\Delta \mathbf{w} = - \eta \nabla E_{\text{in}}(\mathbf{w})$$

 $\nabla E_{
m in}$  is based on all examples  $(\mathbf{x}_n,y_n)$ 

"batch" GD

## The stochastic aspect

Pick one  $(\mathbf{x_n}, y_n)$  at a time. Apply GD to  $\mathbf{e}(h(\mathbf{x_n}), y_n)$ 

$$\mathbb{E}_{\mathbf{n}}\left[-\nabla \mathbf{e}\left(h(\mathbf{x}_{\mathbf{n}}), y_{\mathbf{n}}\right)\right] = \frac{1}{N} \sum_{n=1}^{N} -\nabla \mathbf{e}\left(h(\mathbf{x}_{n}), y_{n}\right)$$

$$=-\nabla E_{\mathrm{in}}$$

randomized version of GD

**stochastic** gradient descent (SGD)

### Benefits of SGD

- 1. cheaper computation
- 2. randomization
- 3. simple

#### Rule of thumb:

 $\eta = 0.1$  works



randomization helps

#### SGD in action

Remember movie ratings?

$$\mathbf{e}_{ij} = \left(r_{ij} - \sum_{k=1}^{K} u_{ik} v_{jk}\right)^2$$



©  $\mathcal{M}$  Creator: Yaser Abu-Mostafa - LFD Lecture 10

#### Outline

• Stochastic gradient descent

Neural network model

Backpropagation algorithm

## Biological inspiration

biological function  $\longrightarrow$  biological structure





# Combining perceptrons



© A Creator: Yaser Abu-Mostafa - LFD Lecture 10

## Creating layers



© A Creator: Yaser Abu-Mostafa - LFD Lecture 10

## The multilayer perceptron



3 layers "feedforward"

© AM Creator: Yaser Abu-Mostafa - LFD Lecture 10

## A powerful model



2 red flags for generalization and optimization

### The neural network



### How the network operates

$$w_{ij}^{(l)} \begin{cases} 1 \le l \le L & \text{layers} \\ 0 \le i \le d^{(l-1)} & \text{inputs} \\ 1 \le j \le d^{(l)} & \text{outputs} \end{cases}$$

$$x_j^{(l)} = \theta(s_j^{(l)}) = \theta\left(\sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} \ x_i^{(l-1)}\right)$$

if bias is used then:  $x_j^{(l)} = \theta(s_j^{(l)}) = \theta(sum(w_{ij}^{(l)}x_i^{(l-1)}+b_j))$ 

Apply 
$$\mathbf{x}$$
 to  $x_1^{(0)} \cdots x_{d^{(0)}}^{(0)} \longrightarrow x_1^{(L)} = h(\mathbf{x})$ 



$$\theta(s) = \tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

#### Outline

• Stochastic gradient descent

Neural network model

Backpropagation algorithm

## **Applying SGD**

All the weights 
$$\mathbf{w} = \{w_{ij}^{(l)}\}$$
 determine  $h(\mathbf{x})$ 

Error on example  $(\mathbf{x}_n, y_n)$  is

$$e(h(\mathbf{x}_n), y_n) = e(\mathbf{w})$$

To implement SGD, we need the gradient

$$\nabla \mathbf{e}(\mathbf{w})$$
:  $\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$  for all  $i,j,l$ 

Computing 
$$\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$$

We can evaluate  $\dfrac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$  one by one: analytically or numerically

A trick for efficient computation:

$$\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}} = \frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_j^{(l)}} \times \frac{\partial \ s_j^{(l)}}{\partial \ w_{ij}^{(l)}}$$
 if bias is used then:  $\mathbf{x_j}^{(l)} = \theta(\mathbf{s_j}^{(l)}) = \theta(\mathbf{sum}(\mathbf{w_{ij}}^{(l)}, \mathbf{x_i}^{(l-1)} + \mathbf{b_j}^{(l)})$ 

so PD e(w)/ PD b<sub>j</sub>(l) = PD e(w)/PD s<sub>j</sub>(l) x PD s<sub>j</sub>(l)/PD b<sub>j</sub>(l) = 
$$\delta_j$$
(l) x 1 =  $\delta_j$ (l) We have  $\frac{\partial s_j^{(l)}}{\partial w_{ij}^{(l)}} = x_i^{(l-1)}$  We only need:  $\frac{\partial e(\mathbf{w})}{\partial s_j^{(l)}} = \delta_j$ 



## $\delta$ for the final layer

$$oldsymbol{\delta_j^{(l)}} = rac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_j^{(l)}}$$

For the final layer l=L and j=1:

$$\boldsymbol{\delta}_1^{(L)} = \frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_1^{(L)}}$$

$$e(\mathbf{w}) = (x_1^{(L)} - y_n)^2$$

$$x_1^{(L)} = \theta(s_1^{(L)})$$

$$\theta'(s) = 1 - \theta^2(s)$$
 for the tanh  $\delta^{(L)}_{1}=2^*(x^{(L)}_{1}-y_n)^*(1-x^{(L)}_{1})^2$ 

$$\delta^{(L)}_1 = 2^*(\theta(S^{(L)}_1) - y_n)^*(1 - \theta^2(S^{(L)}_1))$$

### Back propagation of $\delta$

$$\begin{split} \boldsymbol{\delta_i^{(l-1)}} &= \frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_i^{(l-1)}} = \sum_{j=1}^{d^{(l)}} \frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_j^{(l)}} \times \frac{\partial \ s_j^{(l)}}{\partial \ s_i^{(l-1)}} \cdot \frac{\operatorname{chain rule for partial}}{\operatorname{derivatives}} \\ &= \sum_{j=1}^{d^{(l)}} \frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_j^{(l)}} \times \frac{\partial \ s_j^{(l)}}{\partial \ x_i^{(l-1)}} \times \frac{\partial \ x_i^{(l-1)}}{\partial \ s_i^{(l-1)}} \\ &= \sum_{j=1}^{d^{(l)}} \frac{\delta_j^{(l)}}{\partial \ s_j^{(l)}} \times w_{ij}^{(l)} \times \frac{\partial \ x_i^{(l-1)}}{\partial \ s_i^{(l-1)}} \\ &= \sum_{j=1}^{d^{(l)}} \frac{\delta_j^{(l)}}{\partial \ s_j^{(l)}} \times w_{ij}^{(l)} \times \frac{\partial \ s_j^{(l)}}{\partial \ s_i^{(l-1)}} \\ &\delta_i^{(l-1)} = (1 - (x_i^{(l-1)})^2) \sum_{j=1}^{d^{(l)}} w_{ij}^{(l)} \frac{\delta_j^{(l)}}{\partial \ s_j^{(l)}} \end{split}$$



The overall error is: 
$$\nabla E = \left(\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_n}\right)$$

Since we want to reduce the error by changing the weights in every iteration.

Hence, 
$$\Delta w_{ij} \propto -\frac{\partial E}{\partial w_{ij}}$$

Also refer to slide 21/24 of Logistic regression lecture.

$$\Delta w_{ij} = -\eta \frac{\partial E(w)}{\partial w_{ij}}$$
 where,

$$\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}} = \frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_{j}^{(l)}} \times \frac{\partial \ s_{j}^{(l)}}{\partial \ w_{ij}^{(l)}} \quad ; \quad \frac{\partial \ s_{j}^{(l)}}{\partial \ w_{ij}^{(l)}} = x_{i}^{(l-1)} \quad \text{and} \quad \frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_{j}^{(l)}} = \quad \boldsymbol{\delta_{j}^{(l)}}$$

$$\therefore \Delta w_{ij}^{(l)} = -\eta \delta_j^{(l)} x_i^{(l-1)} = w_{ij}^{(l)}(t+1) - w_{ij}^{(l)}(t)$$

$$\dot{x} \cdot w_{ij}^{(l)}(t+1) - w_{ij}^{(l)}(t) = - \eta \delta_j^{(l)} x_i^{(l-1)}$$
 or

$$w_{ij}^{(l)}(t+1) = w_{ij}^{(l)}(t) - \eta \delta_j^{(l)} x_i^{(l-1)}$$

## Backpropagation algorithm

- Initialize all weights  $w_{ij}^{(l)}$  at random
- 2: for  $t = 0, 1, 2, \dots$  do
- Pick  $n \in \{1, 2, \cdots, N\}$
- Forward: Compute all  $x_j^{(l)}$
- Backward: Compute all  $\delta_j^{(l)}$ 5.5: update bias:  $\mathbf{B}_j^{(l)} \leftarrow \mathbf{B}_j^{(l)} \eta^* 1^* \delta_j^{(l)}$ Update the weights:  $w_{ij}^{(l)} \leftarrow w_{ij}^{(l)} \eta \ x_i^{(l-1)} \delta_j^{(l)}$
- Iterate to the next step until it is time to stop
- Return the final weights  $w_{i\,i}^{(l)}$



## Final remark: hidden layers

learned nonlinear transform

interpretation?

