Assignment -15.

let consider a sample dataset have one input (X_i^a) and one output (Y_i^a) and number of samples 4. Develop a simple linear regression model using RMS prop optimizer.

Sample (1)	X;a	y a
1 1 1	0.2	3.4
2	0.4	3.8
3	0.6	4.2
4	0.8	4.6

Do manual calculations for 2 iterations with first two samples.

Step 1:
$$[x,y]$$
, $\eta = 0.1$, epochs = 2, $m = 1$, $c = -1$, $g = 0.9$, $E_m = E_c = 0$, $E = 10^8$

Step 4:
$$g_m = -(3.4 - (1)(0.2) + 1)(0.2) = -0.84$$

 $g_c = -(3.4 - (1)(0.2) + 1) = -4.2$

Step 5:
$$E_{m} = 8E_{m} + (1-8)(g_{m})^{2}$$

 $E_{m} = (0.9)(0) + (1-0.9)(+0.86)^{2}$
 $E_{m} = 0.07$

$$E_c = (0.9)(0) + (1-0.9)(-4.2)^2$$

 $E_c = 1.764$

Step 6:
$$\Delta M = \frac{-0.1}{\sqrt{0.07 + 10^8}} \times (-0.84)$$
 $\Delta m = 0.31$
 $\Delta C = \frac{-0.1}{\sqrt{1.764 + 10^8}} \times (-4.2)$
 $\Delta C = 0.31$

Step 7: $m = m + \Delta m = 1 + 0.31 = 1.31$
 $C = C + \Delta C = -1 + 0.31 = -0.69$

Step 8: sample = sample +1 = 1+1 = 2

If (sample > ns) goto step 10

else goto step 4

Step 4: $g_m = -(3.8 - (1.31)(0.4) + 0.69)(0.4)$
 $g_m = -1.58$
 $g_c = -(3.8 - (1.31)(0.4) + 0.69)$
 $g_c = -3.9$

Step 5: $E_m = (0.9)(0.07) + (0.1)(-1.5)^2$
 $E_m = 0.28$
 $E_c = (0.9)(1.76) + (0.1)(-3.9)^2$
 $E_c = 3.105$

Step 6: $\Delta M = \frac{-0.1}{\sqrt{0.28 + 10^8}} \times (-1.58)$
 $\Delta M = 0.29$
 $\Delta C = \frac{-0.1}{\sqrt{3.1 + 10^8}} \times (-3.9)$
 $\Delta C = 0.22$

Step 7:
$$M = M + \Delta M = 1.31 + 0.28 = 1.59$$
 $C = C + \Delta C = -0.69 + 0.22 = -0.47$

Step 8: sample = sample +1 = 2+1 = 3

Step 9: "If (sample > n3)
 $2 > 2$ True
goto step 10.

Step 10: "Iten = Iten + 1 = 1+1 = 2

Step 11: "If (iten > epochs)
goto step 12
else
step 3

Step 3: sample = 1.

Step 4: $g_{m} = -(3.4 - (1.59)(0.2) + 0.47)(0.2)$
 $g_{m} = -0.7$
 $g_{m} = -0.7$

Step 5: $E_{m} = (0.9)(0.28) + (0.1)(-0.7)^{2}$
 $E_{m} = 0.3$
 $E_{c} = (0.9)(3.1) + (0.1)(-3.5)^{2}$
 $E_{c} = 4.0$

Step 6: $\Delta M = \frac{-0.1}{\sqrt{0.3 + 10}8} \times (-0.7)$
 $\Delta C = \frac{-0.1}{\sqrt{4.0 + 10}8} \times (-3.5)$
 $\Delta C = 0.17$

Step 4:
$$m = m + \Delta m = 1.59 + 0.12 = 1.71$$
 $c = c + \Delta c = -0.47 + 0.17 = -0.3$

Step 8: $c = c + \Delta c = -0.47 + 0.17 = -0.3$

Step 8: $c = c + \Delta c = -0.47 + 0.17 = -0.3$

Step 9: $c = c + \Delta c = -0.3$

Step 9: $c = c + \Delta c = -0.3$

Step 4: $c = c + \Delta c = -0.3$

Step 4: $c = c + \Delta c = -0.3$

Step 5: $c = c + \Delta c = -0.3$
 $c = c + \Delta c = -0.14$

Step 8: $c = c + \Delta c = -0.14$

Step 8: $c = c + \Delta c = -0.14$

Step 8: $c = c + \Delta c = -0.14$

Step 8: $c = c + \Delta c = -0.14$

Step 9: "if (sample > ns)
3 > 2 v goto step 10
else
goto step 4

Step10: iter=iter+1=2+1=3

Step 11: if (item > epoche)
3 > 2 goto step 12

Step 12: m = 1.91C = -0.14