Linear Algebra (MA2.101), Spring 2024, IIIT Hyderabad

Quiz 1

Total Marks: 15

Answer any three questions out of five. Each question carries 5 marks.

1. Let

For which values of $Y = (y_1, y_2, y_3, y_4)^T$ do the system of equation AX = Y has a solution and under what conditions do the systems AX = Y don't have any solution? Use row-reduced echelon form of A to justify your answer. [5 marks]

2. Prove the following:

- (a) Suppose $a \in \mathbb{F}$ and $\vec{v} \in V$, where V is a vector space defined over \mathbb{F} . If $a\vec{v} = \vec{0}$, then prove that either a = 0 or $\vec{v} = \vec{0}$. [2 marks]
- (b) For every $\vec{v} \in \mathbf{V}$, $-(-\vec{v}) = \vec{v}$. [1 marks]
- (c) Every element in a vector space has a unique additive inverse. [1 marks]
- (d) A vector space has a unique additive identity. [1 marks]
- 3. If $b \in \mathbb{F}$, then the set $\{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 : x_3 = 5x_4 + b\}$ is a subspace of \mathbb{F}^4 if and only if b = 0. [5 marks]
- 4. Using elementary row operations, prove that A, where

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

is invertible if and only if $ad - bc \neq 0$. [5 marks]