МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Информационные технологии и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №4 по курсу «Программирование графических процессоров»

Работа с матрицами. Метод Гаусса.

Выполнил: А. О. Дубинин

Группа: 8О-407Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

Условие

Цель работы:

Использование объединения запросов к глобальной памяти. Реализация метода Гаусса с выбором главного элемента по столбцу. Ознакомление с библиотекой алгоритмов для параллельных расчетов Thrust.

Вариант 6. Нахождение ранга матрицы.

Программное и аппаратное обеспечение

GeForce 940MX

Compute capability:	5.0
Dedicated video memory:	4096 MB
shared memory per block:	49152 bytes
constant memory:	65536 bytes
Total number of registers available per block:	65536
Maximum number of threads per multiprocessor:	2048
Maximum number of threads per block:	1024
(3) Multiprocessors, (128) CUDA Cores/MP:	384 CUDA Cores

Intel(R) Core (TM) i5-7200U CPU @ 2.50GHz

Architecture:	x86_64
Byte Order:	Little Endian
CPU(s):	4
Thread(s) per core:	2
Core(s) per socket:	2
CPU MHz: CPU max MHz: CPU min MHz:	713.848 3100,0000 400,0000
L1d cache: L1i cache: L2 cache: L3 cache:	64 KiB 64 KiB 512 KiB 3 MiB

RAM	8GiB SODIMM DDR4 Synchronous Unbuffered (Unregistered) 2400
	MHz (0,4 ns)

SSD(SPCC_M.2_SSD)	223,6G

OS: Ubuntu 20.04 focal IDE: jetbrains clion

compiler: nvcc

Метод решения

Необходимо было реализовать метод Гаусса с выбором главного элемента для моей задачи. Данные мы будем хранить так, чтобы последовательные массивы были столбцы, чтобы можно было искать главный элемент быстро с помощью thrust. На каждой итераций с помощью библиотеки thrust я выбирал максимальный элемент и проверял является ли он нулем, и если нет, то это наш ведущий элемент. Если этот элемент существует, то это ступенька, а значит +1 к рангу матрицы. Далее я менял строки местами на гпу, чтобы можно было продолжать легко искать максимальный элемент в последовательно лежащей памяти с помощью thrust. Потом, я пере вычислил так же на гпу значения строк, которые мы обнулили.

Описание программы

Интересная часть программы заключалась в использовании библиотеки thrust.

```
// get column begin
data_ptr = device_pointer_cast(d_A + j * n);
// get max ptr in column
mx_ptr = thrust::max_element(data_ptr + i, data_ptr + n, comp);

mx = fabs(*mx_ptr);
// get max idx
mx_idx = mx_ptr - data_ptr;
```

В пересчете значений стоило вычислять нужную формулу, чтобы точно совпадали результаты с чекером.

Результаты

Сравним результаты с сри.

	CPU	GPU
1500x1500	5230.2 ms	2123.9 ms
2000x2000	9920.31 ms	2492.11 ms

Из результатов видно, что использование GPU совместно с библиотекой thrust существенно ускоряет вычисление на матрицах.

Вывод

Данная ЛР была сложна, особенно из индексов матриц, потому что хранение столбцов происходит построчно и запутаться в вычислениях не составляет труда. Так же было главное правильно реализовать формулу, без предварительных вычислений.