Gradient Boosting

-> Regression

Dataset

Decision				(u-û)		^
Exp	Degree	Salary	ŝ	R ₁	Re	ÿ
2	BS	SOK	75	-95	<i>- e</i> 3	72.7
			7	-5	-3	74.7
3	MS	7015	73			
5	MS	804	75	5	3	_
6	PhD	10615	75	(y,y) -25 -5 5	So	-
	***	75K	•		•	1

Steps:

1) Create a base model

75 L> Average of output variable

- @ Compute regiduals and errors
- 3 Construction a decision tree considering input xi and output Ri

4) Repeat Step 2 and 3

$$F(x) = h_0(x) + \varphi_1(h_1(x)) + \varphi_2(h_2(x)) + \cdots$$

 $\varphi_1 = \text{learning rate}$

Predicted output 75+0 (DT,) = 75+(0.1)(-23) = 75-2.3 = 72.7