Clicker Questions

Solve y'= xy with the initial value y(0)= }. defined when x2-160=7-4<x<4 U1)-3-te-U1)-3e-U-2/3) furcation diagram for y'=y2-

Draw the biturcation diagram for y'=y'-a.

The equilibria are y*=±ta.

Write the guess for y"+3y42y=te-6, *Art+Az)e-t=(A1t2+A2t)e-t Find the gain function of y"-2y45y.

Guess y = C(y)e wt

Geilwt(-w²2iw+5)=e int

G= tw-2iw(5-w²+2iw)

= 5-w²+2iw

= (5-w²+4iw²

(5-w²+4iw² 2/1/15: compute the Wronstian of y=tet and yz

I text ext == e

The state of y=tet and yz

I text ext == e

The state of y=tet and yz 2/9/15: $X = [1 \] X + [2 \]$ using varietion of parameters, $Y = [1 \] X + [2 \]$ $Y = [1 \] Y = [2 \]$ $[2 \] Z = [2 \]$ $[2 \] Z = [2 \]$ 2/9/15:

 $u_{1}(t) = \frac{|a|}{|a|t|} \frac{|e^{t}|}{|c^{t}|} = \frac{|e^{t}|}{|c^{t}|} \frac{|e^{t}|}{|c^{t}|} = \frac{|e^{t}|}{|e^{t}|} \frac{|e^{t}|}{|c^{t}|} = \frac{|e^{t}|}{|e^{t}|} \frac{|e^{t}|}{|e^{t}|} = \frac{|e^{t}|}{|e^{t}|} \frac{|$ 2/11/15: Find the general solution of t2y 42ty-2y=3t,
y=Gt2+Gt+tInt,
complementary particular Find L(sin(at))= Se-st sin(at) dt, Use L(e at)===, s>a and sin(at)=e tat_e-tat_ =====, s>=tia O 13/15: Solve $\sum_{n=1}^{\infty} c_n \left(\frac{n\pi^2}{L^2} + 1\right) sin\left(\frac{n\pi^2}{L}\right) = \sum_{n=1}^{\infty} a_n sin\left(\frac{n\pi^2}{L}\right) = for c_n$. $c_n = \frac{a_n}{L^2} + 1 = \frac{L^2}{L^2} + 1 = \frac{L}{L} - n\pi L + n\pi L$ Find 2{y"|{t})},
sf{y}-y"(0)
= siY(s)-sy(0)-y"(0) 1434/+24=et, y(0=1, y'(0)=-1. Decompose 5-5-6. Decompose (5+45-1 5+1 5+2+5-3 (D)

552-125+77 3/4/12: En a d Day (2104/19/42) Decompose Decompose (225+10)(5+1). 552-125+22=(A5+B)(5+1)+C(52-25+10) 501 72=B+10C 5=-1:39=13C 2/70/15: =7B=-8 25-8 5-25+10 + 3 5-10 + 3 5-10 + 3 5-10 + 3 ⇒(=3 Decompose 7524 5-1+ (5-1)2+ 1(5-1)2(5+2). 13/15: Write the guess for the method of undetermined coefficients for 4/424/424 1/44/44v=te-2t $\vec{V} = e^{-2t} \leftarrow repeated$ $\vec{W} = e^{-2t} \leftarrow repeated$ $\vec{V} = e^{-2t} + Be^{-2t}$ $\vec{A} = e^{-2t} + Be^{-2t}$ (B) the Laplace Hansform of flt) = {fl, klsz.

fit-1, t=>2 (t) 0<157 (2) 2<153 (0) 7>3 f=f(+7)-f(+2)=2-(++2)=-t f=f,(+3)-f(+3)=-2 (f(fo)+2(u,f,)+f(u3f2))/(1-e4s) ==+e-2s(-2)+e-3s(-2)

period 7=6

3/4/15: For a <0, b>0, \$8 tt gtt) dt=?
= lim \$\frac{\(\text{st} - \text{glt} \) dt = \(\text{lim} \) \(\text{glt} \) dt = \(\text{lim} \) \(\text{glt} \) \) What is 2843 where y'try=olt-c)? (str) Y(s)=e'sc Y(s)= str, y(t)=e'r(t-c) uclt) Find f(s+1)(s+4). (s+1)(s+4) = F(s)G(s)Let F(s) = s+1, G(s) = s+4 $f(t) = e^{-t}$, g(t) = cos2t f(s+1)(s+4) = f(s)G(s) f(s+1)(s+4) = f(s)G(s)G(s) f(s+13/6/151 Solve $\Phi(t) + \int_{sintt-y}^{t} \Phi(t) dy = cost$. Let $Z(\Phi(t)) = \overline{\Phi}(s)$. $\overline{\Phi}(s) + \overline{\zeta}_{+1}^{2}(\overline{\Phi}(s)) = \overline{\zeta}_{+1}^{2}$. $\overline{\Phi}(s) = \overline{\zeta}_{+1}^{2}/(\overline{\zeta}_{+1}^{2}) = \overline{\zeta}_{+2}^{2}$. $\Phi(t) = L'(\overline{\zeta}_{+2}^{2}) = cosJZ(t)$ Given $X(t) = \begin{bmatrix} t+1 & te^{2t} \\ e^t & e^{2t} \end{bmatrix}$, find e^{At} $\chi^{-1}(t) = \frac{1}{(t+1)e^{2t} - te^{3t}} \begin{bmatrix} -e^t & t+1 \end{bmatrix}$ 3/9/15: eAt = X(t) X-1(0) = [t+1 text] -[1 0] - [t+1-text text] Given A=[0 2], find eAt, |A-XI|=[-1-1-1]=(1-1)(2-1)=0 3/11/15: Find p(t)=ent for A=[5-3] Using a Laplace transform.

SI-A=[5-1]-[5-1]=[5-1]+[5-1]+[5-1]-[5-1] =[5-1]-[5-1]+[5the transfer function for AU-1 Unity What is the clability of (a, V)-[3] 12 to 12 12 12 14 - 2 and 14 - 2 - 14 - 16 16 17 18 where A-[4-2]. 3/23/15: $\vec{X}_{0} = [-1]$ $\int_{0}^{1} \frac{1}{5} \left[-\frac{2t}{4} e^{-3t} + 20t e^{-2t} \right]$ $\begin{array}{l} \overrightarrow{X}' = \begin{bmatrix} 4-2 \end{bmatrix} \overrightarrow{X} + \begin{bmatrix} 5e^{2t} \\ 0 \end{bmatrix}, \ \overrightarrow{X}_0 = \begin{bmatrix} -1 \end{bmatrix}, \\ t)\overrightarrow{X}_0 + \underbrace{\int \underbrace{I}(t-t)g(t)dt} \\ \underbrace{I - 3e^{2t} - 2e^{-3t}} \end{bmatrix} + \underbrace{\int \underbrace{\int 4e^{2tt-t} \underbrace{D_{te} - s(t-t)}_{e^{-s(t-t)}} e^{-2tt-t} \underbrace{I - 3e^{-2t-t}}_{e^{-s(t-t)}} e^{-2tt-t}}_{e^{-2t-t}} + \underbrace{\int \underbrace{\int 4e^{2tt-t} \underbrace{D_{te} - s(t-t)}_{e^{-s(t-t)}} e^{-2tt-t}}_{e^{-2t-t}} e^{-2tt-t}}_{e^{-2t-t}} = \underbrace{\int \underbrace{\int 4e^{2tt-t} \underbrace{D_{te} - s(t-t)}_{e^{-s(t-t)}} e^{-2tt-t}}_{e^{-s(t-t)}} e^{-2tt-t}}_{e^{-s(t-t)}} = \underbrace{\int \frac{1}{2e^{-2t-t}} e^{-2tt-t}}_{e^{-s(t-t)}} e^{-2tt-t} \underbrace{\int \frac{1}{2e^{-2t-t}} e^{-2tt-t}}_{e^{-s(t-t)}} e^{-2tt-t} \underbrace{\int \frac{1}{2e^{-2t-t}} e^{-2tt-t}}_{e^{-s(t-t)}} e^{-2tt-t} \underbrace{\int \frac{1}{2e^{-2t-t}} e^{-2tt-t}}_{e^{-s(t-t)}} e^{-2tt-t}}_{e^{-s(t-t)}} e^{-2tt-t} \underbrace{\int \frac{1}{2e^{-2t-t}} e^{-2t-t}}_{e^{-s(t-t)}} e^{-2tt-t} \underbrace{\int \frac{1}{2e^{-2t-t}} e^{-2t-t}}_{e^{-s(t-t)}} e^{-2t-t}}_{e^{-s(t-t)}} e^{-2t-t} \underbrace{\int \frac{1}{2e^{-2t-t}} e^{-2t-t}}_{e^{-s(t-t)}} e^{-2t-t} \underbrace{\int \frac{1}{2e^{-2t-t}} e^{-2t-t}}_{e^{-s(t-t)}} e^{-2t-t}}_{e^{-s(t-t)}} e^{-2t-t} \underbrace{\int \frac{1}{2e^{-2t-t}} e^{-2t-t}}_{e^{-s(t-t)}} e^{-2t-t}}_{e^{-s(t-t)}} e^{-2t-t}}_{e^{-s(t-t)}} e^{-2t-t}$

	\(\frac{\frac{1}{2}\fr
3/27/15:	In V, what type of point is $x \neq y \neq \frac{1}{2}$? Saddle @ (the eigenvitues of $f(\frac{1}{2}, \frac{1}{2})$ are positive and negative)
	What type of point is x=0, y=1? Stuble node A) (the eigenvalues of J(0,1) are both 1)
3/30/15:	In $\{x'=x x- (z-x)-yx \text{ what is the stability of } (x,y)=(0,0)? \text{ Assume } a>0.$ $\{y'=yx-ay\}$ $\{y(0,0)=\{-2,0\}\}$ $\lambda_1=-2 \text{ and } \lambda_2=-a, \text{ so } (0,0) \text{ is stable.}$
	What is the stability of $(x,y)=(2,0)$? $J(2,0)=\begin{bmatrix} -2 & -2 & 1 \\ 0 & 2-q \end{bmatrix} \lambda_1=-2 \text{ and } \lambda_2=2-a, so stable if any and saddle if any any and saddle if any any any any any any any any any any$
4/1/15:	Sketch the nullclines and phase plane for {\(\frac{1}{2} - \times \tay + \times^2 \\ \times \tay - \
4/3/15:	What is the conserved quantity in the system $y=x-x^2$, $x'=y$? $x'=y$ $x'=y$ $x'=x-x^2$ $x'=x^2+x^4$ $x'=x^2+x^4=z$ $x'=x^2+x^4=z$
	When is $4x = y - x^2$, $4y = x + q(x, y)$ conservative? $4x = y - x^2$ $4y = -x + q(x, y)$ $9 - 2x + 0 + q_y(x, y) = 0$ $\Rightarrow q(x, y) = 2xy$
4/6/15:	Compute r' for $X'=x-1-x(x^2+5y^2)$, $y'=x+y-y(x^2+y^2)$, $y'=x+y-y(x^2$

4/8/15: Excused absence
1/12/16: Cl + la fa will lie - mt who Conthe Once 1/10 01
4/13/15: Sketch the nullclines and arrows for the oregonator (x, y>0). V-hyllclines: X-hull clines:
$X = 0, Y = 1 + X^2$ $Y = (a - x)(1 + x^2)$
X X X X X X X X X X X X X X X X X X X
A DCAR CLUB II I I I I I I I I I I I I I I I I I
4/15/15: Sketch the phase plane for { x=y y=x(x-1)(x-3)+cy, c>0.
DY-0
Classify all equilibria,
3x+8x+3 c
T(0,0)=[0] has fr=c, def=-3 so (0,0) is a saddle.
JUD-[-2 c] has tr=g det=2 so (1,0) is an unstable hade orspiral.
J(20)= [] has tr-c, det 6 so (20) is a soddle.
4/17/15: In the Turing instability system = Zulu-Zv+1)+1, 32, 34=3v(u-v)+1, 32 with 0=0=0, the equilibria (with u, 1/>0) are (u*, v*)=(0,0) and (u*, v*)=(1, 1). What is the stability of (1, 1)? tr(I(1, 1))=-1<0 det(I(1, 1))=(-0 (-1)^2-4(6)<0
What is the stability of (1, 1)?
+r(JU, 1))=-1<0' det(J(), 1))=6>0 (-1)=4(6)<0
Stable spiral

