Tshwane University of Technology

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

Principles of Programming A (Extended) (PPAF05D)
Introduction to Programming 115R (TR0F05D)

Unit 5 Iteration control structures in Java Solutions to activities

Activity 1: Repeat the same calculations

```
package allstudcalcpercwithcounter;
import java.util.Scanner;
public class AllStudCalcPercWithCounter {
    public static void main(String[] args) {
        Scanner keyboard = new Scanner(System.in);
        char cAnswer;
        double rScore;
                              //The mark the student scored
        int iTestTotal; //The total marks for the test
        double rPerc;
                              //The percentage the learner obtained
        int iCounter = 0;
                            //To count the number of marks processed
        System.out.print("What is the total for the test?: ");
        iTestTotal = keyboard.nextInt();
        System.out.print("Do you want to enter a mark for a test? <Y>/<N> (a mark is out
of " + iTestTotal + ") ");
        cAnswer = Character.toUpperCase(keyboard.next().charAt(0));
        while (cAnswer == 'Y')
        { //begin while
                iCounter++;
                System.out.print("What is the score? ");
                rScore= keyboard.nextDouble();
                rPerc = Math.round(rScore / iTestTotal * 100);
                System.out.println("The percentage is : " + rPerc + "%");
                System.out.print("Do you want to enter a mark for a test? <Y>/<N> (a
mark is out of " + iTestTotal + ") ");
                cAnswer = Character.toUpperCase(keyboard.next().charAt(0));
        } //end while
        System.out.println("You are done calculating percentages.");
        System.out.println("You processed " + iCounter + " marks");
    }
```

Activity 2: Use a while loop to prevent errors

Activity 2a)

```
package couriercostwhile;
import java.util.Scanner;
```

```
import java.text.DecimalFormat;
public class CourierCostWhile {
    public static void main(String[] args) {
        Scanner keyboard = new Scanner(System.in);
        DecimalFormat formatter = new DecimalFormat("R,###.00");
        final int VAT = 15, INSURE PERC = 11;
        final double PERKG = 5.5, ROAD = 0.8, TRAIN = 0.5, AIR = 1.5;
        double rMass, rKM, rTotal, rTransp = 0;
        char cTransp, cInsure;
        //input
        System.out.print("Number of kg to transport: \t\t\t");
        rMass = keyboard.nextDouble();
        System.out.print("Number of km : \t\t\t\t");
        rKM = keyboard.nextDouble();
        System.out.print("Is transport by <R>oad, <T>rain or <A>ir \t");
        cTransp = Character.toUpperCase(keyboard.next().charAt(0));
        while (cTransp != 'R' && cTransp != 'T' && cTransp != 'A')
        {
            System.out.println("You need to enter either R, T or A");
            System.out.print("Is transport by <R>oad, <T>rain or <A>ir \t");
            cTransp = Character.toUpperCase(keyboard.next().charAt(0));
        }
        System.out.print("Insurance <Y>es or <N>o \t\t\t");
        cInsure = Character.toUpperCase(keyboard.next().charAt(0));
        while (cInsure != 'Y' && cInsure != 'N')
        {
            System.out.println("You need to enter either Y or N");
            System.out.print("Insurance <Y>es or <N>o \t\t\t");
            cInsure = Character.toUpperCase(keyboard.next().charAt(0));
        }
        //set the transport cost based on the mode of travel
        switch (cTransp)
        {
            case 'R': rTransp = ROAD; break;
            case 'T': rTransp = TRAIN; break;
            case 'A': rTransp = AIR;
        }
```

```
//calculate the cost based on the mass and the distance
    rTotal = rMass * PERKG + rTransp * rKM;
    //add insurance cost if chosen
    if (cInsure == 'Y')
    {
        rTotal = rTotal + INSURE_PERC/100.0 * rTotal;
        System.out.println("Adding insurance");
    }
    //Add VAT to the total
    rTotal = rTotal + VAT/100 * rTotal;
    //output
    System.out.println("You need to pay: \t\t\t\t\" + formatter.format(rTotal));
}
```

Activity 2 b)

```
package cashier;
import java.util.Scanner;
import java.text.DecimalFormat;
public class Cashier {
    public static void main(String[] args) {
        Scanner keyboard = new Scanner(System.in);
        DecimalFormat formatter = new DecimalFormat("R,##0.00");
        double rSpent, rAmtDue, rChange, rPaid;
        final double VAT = 0.15;
        System.out.print("Amount for all items the customer bought: R");
        rSpent = keyboard.nextDouble();
        rAmtDue = rSpent + rSpent * VAT;
        System.out.println("Customer should pay " + formatter.format(rAmtDue));
        System.out.print("Amount customer handed to cashier: R");
        rPaid = keyboard.nextDouble();
        while (rPaid < rAmtDue)</pre>
        {
            System.out.println("It is not enough money - enter the amount again.");
            System.out.print("Amount customer handed to cashier: R");
            rPaid = keyboard.nextDouble();
        }
```

Activity 3: While loop terminologies

Write down the term for each of the following descriptions:

a.	The variable(s) used in the condition of a loop to determine whether the statements in the body of the loop should be executed.	Loop control variable
b.	The statements that will be executed when the loop continuation condition is true.	Body of the loop.
C.	A loop that will not terminate because the loop continuation condition never becomes false.	Infinite loop.
d.	The principle that should be applied to ensure that a while loop will execute and terminate correctly.	Initialize Test Change (ITC)
е.	The combination of characters you need to press while running a program where a loop cannot terminate.	<ctrl> <z></z></ctrl>

Activity 4: Flow chart for guessing game

Activity 5: Small games

Activity 5a)

```
package rolldicesum7;
import java.util.Random;
public class RollDiceSum7 {
    public static void main(String[] args) {
        Random rand = new Random();
        int iDie1, iDie2, iSum, iCount = 1;
        System.out.println ("Here I start rolling.");
        iDie1 = rand.nextInt(6) + 1;
        iDie2 = rand.nextInt(6) + 1;
        iSum = iDie1 + iDie2;
        while (iSum != 7)
        {
            System.out.println (iDie1 + " + " + iDie2 + " = " + iSum);
            iDie1 = rand.nextInt(6) + 1;
            iDie2 = rand.nextInt(6) + 1;
            iCount ++;
            iSum = iDie1 + iDie2;
        }
        System.out.println (iDie1 + " + " + iDie2 + " = " + iSum);
        System.out.println ("All done - I had to roll the dice " + iCount + " times.");
    }
```

Actitivy 5b)

```
package rolldicedouble6;
import java.util.Random;
public class RollDiceDouble6 {
    public static void main(String[] args) {
        Random rand = new Random();
        int iDie1, iDie2, iCountThrows = 0;
        System.out.println ("Here I start rolling.");
        iDie1 = rand.nextInt(6) + 1;
        iDie2 = rand.nextInt(6) + 1;
        while ((iDie1!=6) || (iDie2!=6))
        {
            iCountThrows ++;
            System.out.println ("I threw " + iDie1 + " and " + iDie2);
            iDie1 = rand.nextInt(6) + 1; //nextInt() method can generate 6 different
numbers - a number between 0 and 5 - therefore you need to add 1
            iDie2 = rand.nextInt(6) + 1;
        iCountThrows ++; //To count the last time the dice were rolled and both were
sixes
        System.out.println ("The last throw was " + iDie1 + " and " + iDie2);
        System.out.println ("I had to roll the dice " + iCountThrows + " times to get
two sixes.");
    }
}
```

Activity 6: Repeat the same calculations a set number of times

Activity 6a)

```
package calctsa;
import java.util.Scanner;
public class CalcTSA {
    public static void main(String[] args) {
        Scanner keyboard = new Scanner(System.in);
        int iNumSurfaces, iCounter = 0;
        double rTSA = 0, rWidth, rLength, rArea;
        System.out.print("How many rectangle surfaces does the object have?: ");
        iNumSurfaces = keyboard.nextInt();
        while (iCounter < iNumSurfaces)</pre>
        {
                iCounter++;
                System.out.print("Enter length of rectangle " + iCounter + ": ");
                rLength = keyboard.nextDouble();
                System.out.print("Enter width of rectangle " + iCounter + ": ");
                rWidth = keyboard.nextDouble();
                rArea = rLength * rWidth;
                rTSA += rArea;
        }
        System.out.println("Total surface area is: " + rTSA);
    }
```

Act 6 b)

```
package subtractquiz;
import java.util.Scanner;
public class SubtractQuiz {
    public static void main(String[] args) {
        Scanner keyboard = new Scanner(System.in);
        int iFirstVal, iSecValue, iCorrectAnsw, iUserAnsw, iTotalCorrect = 0, iCountQ =
0;
        final int NUMQ = 4;
        while (iCountQ < NUMQ)
            iCountQ++;
            iFirstVal = (int) (Math.random() * 10);
            iSecValue = (int) (Math.random() * 10);
            iCorrectAnsw = iFirstVal - iSecValue;
            System.out.println("This is question number " + iCountQ);
            System.out.print("What is " + iFirstVal + " - " + iSecValue + "? ");
            iUserAnsw = keyboard.nextInt();
            if (iUserAnsw == iCorrectAnsw)
            {
                iTotalCorrect++;
                System.out.println("Correct!");
            else System.out.println("No! " + iFirstVal + " - " + iSecValue + " = " +
iCorrectAnsw);
        }
        System.out.print("You had " + iTotalCorrect + " correct answers.");
    }
}
```

Activity 7: Sentinel controlled repetitions

```
package weightloss;
import java.util.Scanner;
public class WeightLoss {
    public static void main(String[] args) {
        Scanner keyboard = new Scanner(System.in);
        int iCountMembers = 0, iTotNumGain = 0, iTotNumLost = 0, iSame;
        double rStartWeight, rEndWeight, rDiff;
        String sName;
        System.out.print("Enter name (zzz to stop): ");
        sName = keyboard.nextLine();
        while (!sName.equalsIgnoreCase("zzz"))
            iCountMembers++;
            System.out.print("\nStart weight for " + sName + ": ");
            rStartWeight = keyboard.nextDouble();
            System.out.print("End weight for " + sName + ": ");
            rEndWeight = keyboard.nextDouble();
            keyboard.nextLine(); //clear keyboard buffer
            rDiff = rEndWeight - rStartWeight;
            if (rDiff == 0)
            { //lost no weight
                System.out.println(sName + ", you lost no weight.");
            }
            else
                if (rDiff < 0)
                { //lost weight
                    System.out.println(sName + ", you lost " + Math.abs(rDiff) + "
kg.");
                    iTotNumLost++;
                }
                else
                { //gained weight
                    System.out.println(sName + ", you gained " + rDiff + " kg.");
                    iTotNumGain++;
                }
            System.out.print("Enter name (zzz to stop): ");
            sName = keyboard.nextLine();
```

```
} //while
    iSame = iCountMembers - iTotNumLost - iTotNumGain;
    System.out.println(iTotNumLost + " lost weight.");
    System.out.println(iTotNumGain + " gained weight.");
    System.out.println(iSame + " stayed the same.");
}
```

Activity 8: Calculate cumulative values

Act 8 a)

```
package calcaverage;
import java.util.Scanner;
public class CalcAverage {
    public static void main(String[] args) {
        Scanner keyboard = new Scanner(System.in);
        int iNumLearners, iCounter = 0, iAvg;
        double rTotal = 0, rPerc;
        System.out.print("How many learners? ");
        iNumLearners = keyboard.nextInt();
        while (iCounter < iNumLearners)</pre>
        {
            iCounter ++;
            System.out.print("Enter percentage for learner " + iCounter + ": ");
            rPerc = keyboard.nextDouble();
            rTotal += rPerc;
        }
        iAvg = (int) Math.round(rTotal / iNumLearners);
        System.out.println("Average is " + iAvg + "%");
    }
```

Act 8 b)

Step	Instruction	rTotal	iNumLearners	iCounter	rPerc	iAvg	Outcome of logical expression	Output
1.	initialize	0						
2.	initialize			0				
3.	output/display							How many learners?
4.	input / enter		3					
5.	while evaluation						true	
6.	calculation			1				
7.	output / display							Enter percentage for learner 1
8.	input / enter				45.8			
9.	calculation	45.8						
10.	while evaluation						true	
11.	calculation			2				
12.	output / display							Enter percentage for learner 2
13.	input / enter				66.5			
14.	calculation	112.3						
15.	while evaluation						true	
16.	calculation			3				
17.	output / display							Enter percentage for learner 3
18.	input / enter				87.4			

19.	calculation	199.7				
20.	while evaluation				False	
21.	calculation			67		
22.	output / display					Average is 67%

Activity 9: Find the lowest value

```
package findlowest;
import java.util.Scanner;
public class FindLowest {
    public static void main(String[] args) {
        Scanner keyboard = new Scanner(System.in);
        double rLowest = 100;
        double rPerc;
        System.out.print("Enter the student mark. (Enter a number that is larger than 100 to indicate all marks have been
entered): ");
        rPerc = keyboard.nextDouble();
        while (rPerc <= 100)
        { //begin while
            if (rPerc < rLowest)</pre>
                rLowest = rPerc;
            System.out.print("Enter the student mark. (Enter a number that is more than 100 to indicate all marks have
been entered): ");
            rPerc = keyboard.nextDouble();
        } //end while
        System.out.println("The Lowest percentage is: " + rLowest);
```

Activity 10: Display the name with the lowest mark

```
package lowestandname;
import java.util.Scanner;
public class LowestAndName {
    public static void main(String[] args) {
        Scanner keyboard = new Scanner(System.in);
        double rLowest = 100;
        double rPerc;
        String sStudent = "";
        System.out.print("Enter the student mark. (Enter a number that is greater than 100 to indicate all marks have
been entered): ");
        rPerc = keyboard.nextDouble();
        while (rPerc <= 100)
        { //begin while
            keyboard.nextLine(); //clear the buffer since an integer was entered previously
            System.out.print("Enter the name of the student who scored " + rPerc + ": ");
            String sName = keyboard.nextLine();
            System.out.println();
            if (rPerc < rLowest)</pre>
                rLowest = rPerc;
                sStudent = sName.toUpperCase();
            System.out.print("Enter the student mark. (Enter a number that is more than 100 to indicate all marks have
```

Activity 11: Improve Pizza toppings program

```
package menupizzatopimproved;
import java.util.Scanner;
import java.text.DecimalFormat;
public class MenuPizzaTopImproved {
    public static void main(String[] args) {
        Scanner keyboard = new Scanner(System.in);
       DecimalFormat formatter = new DecimalFormat ("R,##0.00");
        double rTotal = 0;  //The total amount the customer should pay
        int iOption;
                       //The menu option the user chooses
        int iCountMush = 0;
        int iCountHam = 0;
        int iCountCheese = 0;
       final double MUSHROOM = 8.50;
        final double HAM = 16.00;
        final double CHEESE = 6.50;
        System.out.println("\nChoose an option. \n1. Mushroom\t" + formatter.format(MUSHROOM) +
```

```
"\n2. Ham\t\t" + formatter.format(HAM) + "\n3. Cheese\t" + formatter.format(CHEESE) +
                   "\n0. STOP ");
iOption = keyboard.nextInt();
while (iOption != 0)
    switch (iOption)
        case 1: rTotal = rTotal + MUSHROOM; iCountMush++; break;
        case 2: rTotal = rTotal + HAM; iCountHam++; break;
        case 3: rTotal = rTotal + CHEESE; iCountCheese++;
    } //end switch
    System.out.println("Your total so far is: " + formatter.format(rTotal));
    System.out.println("\nChoose an option. \n1. Mushroom\t " + formatter.format(MUSHROOM) +
                       "\n2. Ham\t\t " + formatter.format(HAM) + "\n3. Cheese\t " + formatter.format(CHEESE) +
                       "\n0. STOP ");
    iOption = keyboard.nextInt();
} //end while
System.out.println("You ordered " + iCountMush + " mushroom topping(s)");
System.out.println("You ordered " + iCountHam + " ham topping(s)");
System.out.println("You ordered " + iCountCheese + " cheese topping(s)");
System.out.println("You should pay " + formatter.format(rTotal));
```

Activity 12: Use menus

Act 12 a)

```
package hoteldiscount;
import java.util.Scanner;
import java.text.DecimalFormat;
public class HotelDiscount {
    public static void main(String[] args) {
        Scanner keyboard = new Scanner(System.in);
        DecimalFormat formatter = new DecimalFormat ("R,##0.00");
        double rDiscount = 0;  //The total discount received
        int iNumber, iCount = 0;
        final double ZIP = 0.10; //discount received per activity
        final double HORSERIDING = 0.125;
        final double SITESEEING = 0.00;
        final double SPEEDBOAT = 0.10;
        System.out.print("\nHow much is your original hotel bill: R");
        double rBill = keyboard.nextDouble();
        System.out.print("\nHow many activities did you do?: ");
        iNumber = keyboard.nextInt();
        while (iCount < iNumber)</pre>
            iCount++;
            System.out.println("\nActivities\tDiscount \n1. Zip-lining\t10%\n2. Horse riding\t12.5% \n3. Site seeing\t0%
\n4. SpeedBoat\t10% ");
            System.out.print("Pick your activity No " + iCount + " < options 1 to 4>: ");
            int iOption = keyboard.nextInt();
            switch (iOption)
```

```
{
    case 1: rDiscount = rDiscount + ZIP * rBill; break;
    case 2: rDiscount = rDiscount + HORSERIDING * rBill; break;
    case 3: rDiscount = rDiscount + SITESEEING * rBill; break;
    case 4: rDiscount = rDiscount + SPEEDBOAT * rBill; break;
} //end switch

System.out.println("So far, your discount is: " + formatter.format(rDiscount));
} //end while

System.out.println("\nYour total discount is: " + formatter.format(rDiscount));
rBill = rBill - rDiscount;
System.out.println("After discount, your bill will be " + formatter.format(rBill));
}
```

Act 12 b)

```
package hoteldiscountmodified;
import java.util.Scanner;
import java.text.DecimalFormat;
public class HotelDiscountModified {
    public static void main(String[] args) {
        Scanner keyboard = new Scanner(System.in);
        DecimalFormat formatter = new DecimalFormat ("R,##0.00");
        double rDiscount = 0;
                                //The total discount received
        int iNumber, iCount = 0, iOption;
        final double zip = 0.10; //discount received per activity
        final double horseRiding = 0.125;
        final double siteSeeing = 0.00;
        final double speedBoat = 0.10;
        System.out.print("\nHow much is your original hotel bill: R");
        double rBill=keyboard.nextDouble();
        System.out.print("\nHow many activities did you do?: ");
        iNumber = keyboard.nextInt();
        while (iNumber < 0 || iNumber > 4)
       { //begin while
            System.out.print("You should only enter an integer from 0 to 4 \nPlease re-enter the number of activities you
did: ");
            iNumber = keyboard.nextInt();
        } //end while
        System.out.println("\nActivities\tDiscount \n\n1. Zip-lining\t10%\n2. Horse riding\t12.5% \n3. Site seeing\t0%
\n4. SpeedBoat\t10% ");
```

```
while (iCount < iNumber)</pre>
            iCount++;
            System.out.print("Pick your activity No " + iCount + " < options 1 to 4>: ");
            iOption = keyboard.nextInt();
           while (iOption < 0 || iOption > 4)
           { //begin while
                System.out.print("You should only enter an integer from 0 to 4 \nPlease re-enter your activity number:
");
                iOption = keyboard.nextInt();
            } //end while
            switch (iOption)
                case 1: rDiscount = rDiscount + zip * rBill; break;
                case 2: rDiscount = rDiscount + horseRiding * rBill; break;
                case 3: rDiscount = rDiscount + siteSeeing * rBill; break;
                case 4: rDiscount = rDiscount + speedBoat * rBill; break;
            } //end switch
           System.out.println("So far, your discount is: " + formatter.format(rDiscount));
       } //end while
        System.out.println("\nYour total discount is: " + formatter.format(rDiscount));
        rBill = rBill - rDiscount;
        System.out.println("After discount, your bill will be " + formatter.format(rBill));
    }
```