

중3-1 개념+유형 파워

ゴミクさは 説

실수와 그 연산 근호를 포함한 식의 계산 단원 마무리(37p~39p)

(개정 중3-1)개념+유형_파워 37쪽

- **1.** 다음 중 옳지 않은 것은?
 - (1) $\sqrt{8} \div \sqrt{4} = \sqrt{2}$
 - ② $\sqrt{15} \div (-\sqrt{5}) = -\sqrt{3}$
 - $\sqrt[3]{\frac{7}{8}} \div \left(-\sqrt{\frac{21}{2}}\right) = -\sqrt{\frac{1}{12}}$
 - $4 \frac{\sqrt{30}}{\sqrt{45}} = \frac{\sqrt{2}}{\sqrt{3}}$
 - $\bigcirc \frac{\sqrt{35}}{\sqrt{6}} \div \frac{\sqrt{7}}{\sqrt{8}} = \frac{\sqrt{10}}{\sqrt{3}}$

- **2.** 다음 중 옳지 않은 것은?
 - ① $\frac{\sqrt{40}}{\sqrt{8}} = \sqrt{5}$
 - ② $\sqrt{50} \div \sqrt{5} = \sqrt{10}$
 - $3 \sqrt{33} \div \sqrt{\frac{11}{2}} = -\sqrt{6}$
 - $4 \sqrt{\frac{2}{21}} \div \sqrt{\frac{4}{7}} = \sqrt{\frac{1}{6}}$
 - $(5) \sqrt{\frac{16}{3}} \div \left(-\sqrt{\frac{8}{3}}\right) = \sqrt{\frac{1}{2}}$

2

- **3.** $3\sqrt{2} = \sqrt{a}$ 이고 $\sqrt{48} = b\sqrt{3}$ 일 때, a-b의 값은?
 - ① 12
- 2 14
- ③ 16
- **4** 18

(5) **22**

- **4.** $3\sqrt{2} = \sqrt{a}$ 이고 $\sqrt{20} = 2\sqrt{b}$ 일 때, a-b의 값은?
 - ① 5

② 13

- ③ 15
- **(4)** 18

(5) 23

3

유리수 m, n에 대하여 $\sqrt{600} = m\sqrt{6}$, 5. $\sqrt{4800} = n\sqrt{3}$ 일 때, \sqrt{mn} 의 값을 구하는 풀이 과정을 쓰고 답을 구하시오.

3

6. $\sqrt{300}$ 은 $\sqrt{3}$ 의 x배, $\sqrt{75}$ 는 $\sqrt{3}$ 의 y배일 때, $\frac{x}{y}$ 의 값을 구하여라.

- **7.** $a = \sqrt{2}$, $b = \sqrt{3}$ 일 때, $\sqrt{108}$ 을 a, b에 관한 식으로 나타내면?
 - \bigcirc a^2b
- ② a^2b^2
- (3) a^2b^3
- $\widehat{(4)} \ a^3b^2$
- (5) a^3b^3

$$\bigcirc$$
 $\frac{1}{3}ab$

$$\bigcirc$$
 ab

$$\textcircled{4}$$
 a^2b

$$\bigcirc$$
 ab^2

5

9. $\sqrt{98}=a\sqrt{2}$, $\sqrt{192}=b\sqrt{3}$ 일 때, 유리수 $a,\ b$ 에 대하여 $\sqrt{\frac{b}{a}}$ 의 값을 구하여라.

5

10. $\sqrt{0.005} = a\sqrt{2}$, $\frac{5}{\sqrt{48}} = b\sqrt{3}$ 일 때, ab의 값을 구하는 풀이 과정을 쓰고 답을 구하시오. (단, a, b는 유리수)

6

11. 다음 식을 간단히 하여라.

(1)
$$\sqrt{2} \div \sqrt{3} \times \sqrt{6}$$

(2)
$$\sqrt{3} \div \sqrt{7} \times \sqrt{14}$$

(3)
$$6\sqrt{5} \div 5\sqrt{2} \times 10\sqrt{2}$$

6

12. $2\sqrt{5} \times \sqrt{6} \div \sqrt{3}$ 을 간단히 한 것은?

$$\bigcirc$$
 $\sqrt{10}$

②
$$2\sqrt{10}$$

③
$$2\sqrt{14}$$

$$(4) 2\sqrt{19}$$

(5)
$$2\sqrt{90}$$

7

13. 다음 중 주어진 제곱근표를 이용하여 그 값을 구할 수 없는 것은?

수	0	1	2	3	4
1.3	1.140	1.145	1.149	1.153	1.158
1.5	1.225	1.229	1.233	1.237	1.241
1.7	1.304	1.308	1.311	1.315	1.319

①
$$\sqrt{152}$$

$$2 \sqrt{0.0174}$$

③
$$\sqrt{13400}$$

$$4) \sqrt{170}$$

$$\sqrt{0.00153}$$

7

14. 다음은 제곱근표의 일부이다. 이 표를 이용하여 값을 구할 수 없는 것은?

수	0	1	2	3	4	•••
• • •		• • • •	• • • •	• • • •	• • •	•••
2.1	1.449	1.453	1.456	1.459	1.463	•••
2.2	1.483	1.487	1.490	1.493	1.497	•••
2.3	1.517	1.520	1.523	1.526	1.530	•••
2.4	1.549	1.552	1.556	1.559	1.562	•••
2.5	1.581	1.584	1.587	1.591	1.594	• • • •
• • •	• • •	• • •	• • • •	• • •	•••	•••

①
$$\sqrt{0.0251}$$

②
$$\sqrt{2.30}$$

$$\sqrt{3} \sqrt{213}$$

$$\bigcirc$$
 $\sqrt{2430}$

$$\sqrt{5}$$
 $\sqrt{22100}$

Ω

15. $a = \sqrt{17}$ 일 때, 다음 식의 값을 구하시오.

$$\sqrt{(4-a)^2} - \sqrt{(a-3)^2}$$

8

16. $a = \sqrt{7}$ 일 때, 다음 식의 값을 구하시오.

$$\sqrt{(a-1)^2} + \sqrt{(2-a)^2}$$

(개정 중3-1)개념+유형_파워 38쪽

9

- 17. 다음을 간단히 하여라.
 - (1) $\sqrt{18} \sqrt{50}$
 - (2) $\sqrt{45} \sqrt{80}$
 - (3) $\sqrt{162} \sqrt{50}$

9

18. $-\sqrt{28} + \sqrt{48} - \sqrt{63}$ 을 간단히 하여라.

10

19. $\frac{\sqrt{3}-4\sqrt{5}}{\sqrt{45}} + \frac{\sqrt{27}-2\sqrt{5}}{\sqrt{3}} = a + b\sqrt{15}$

때, 유리수 a, b에 대하여 ab의 값을 구하는 풀이 과정을 쓰고 답을 구하시오.

10

20. $\sqrt{0.5} + \frac{8}{\sqrt{32}} - \sqrt{18} = a\sqrt{2}$ 일 때, 유리수

a의 값은?

- $\bigcirc \frac{3}{2}$
- ② $\frac{9}{2}$
- ③ 0

- $(4) \frac{3}{2}$
- $\bigcirc -\frac{9}{2}$

11

21. 그림과 같이 왼쪽 밭에는 무가, 오른쪽 밭에는 배추가 심어져 있다. 전체 밭의 가로의 길이와 세로의 길이는 각각 $5\sqrt{3}$ m, $\sqrt{6}$ m이다. 왼쪽 무밭의 넓이가 $6\sqrt{2}$ m²일 때, 다음을 구하는 풀이 과정을 쓰고 답을 구하시오

- (1) 무밭의 가로의 길이의 값을 구하시오.
- (2) *x*의 값을 구하시오.
- (3) 배추밭의 둘레의 길이를 구하시오.

22. 다음 그림의 삼각형의 넓이가 $6+\sqrt{3}$ 이고, 높이가 $2\sqrt{3}$ 일 때, 밑변의 길이는?

- ① $2\sqrt{3}+1$
- ② $2\sqrt{3}-1$
- ③ $3\sqrt{3}+1$
- (4) $2\sqrt{3}+2$
- ⑤ $2\sqrt{2}+1$

12

23. 다음 세 수 a, b, c의 대소 관계가 옳은 것은?

$$a = 1 + 3\sqrt{2}$$
 $b = 2\sqrt{2} + 3$ $c = 7$

- ① $a \le b \le c$
- ② a < c < b
- ③ c < a < b
- 4 b < c < a
- (5) c < b < a

12

- **24.** 두 수의 대소 관계가 옳은 것은?
 - $\textcircled{1} \ 2\sqrt{3} \geq 3\sqrt{2}$
 - ② $2 + \sqrt{3} > 4$
 - $3 \frac{1}{2} < \sqrt{\frac{1}{2}}$
 - $4 1 \sqrt{2} < 1 \sqrt{3}$
 - (5) $3 \sqrt{2} > 1 + \sqrt{2}$

13

25. $3 \times \sqrt{2} \times \sqrt{k} \times \sqrt{10} = \sqrt{3} \times \sqrt{5} \times \sqrt{12}$ 일 때, 자연수 k의 값을 구하여라.

13

26. $\sqrt{3} \times \sqrt{4} \times \sqrt{15} \times \sqrt{x} = 30$ 일 때, 자연수 x의 값을 구하여라.

14

27. 맑은 날 해발 xm인 곳에서 사람의 눈으로 볼 수 있는 최대 거리가 $\sqrt{13.5x}$ km라고 한다. 해발 500m인 곳에서 사람의 눈으로 볼 수 있는 최대 거리는 해발 200m인 곳에서 사람의 눈으로 볼 수 있는 최대 거리의 몇 배인지 구하시오.

14

28. 맑은 날 해발 xm인 곳에서 사람의 눈으로 볼 수 있는 최대 거리가 $\sqrt{11.2x}$ km라고 한다. 해발 500m인 곳에서 사람의 눈으로 볼 수 있는 최대 거리는 해발 320m인 곳에서 사람의 눈으로 볼 수 있는 최대 거리의 몇 배인지 구하시오.

15

29. 다음 도형의 부피를 구하여라.

15

30. 다음 그림과 같이 밑면의 반지름의 길이가 $3\sqrt{6} \text{ cm}$ 인 원뿔의 부피가 $72\sqrt{2}\pi \text{ cm}^3$ 일 때, 이 워뿔의 높이는?

- $2 \frac{4\sqrt{2}}{3}$ cm
- (3) $4\sqrt{2}$ cm
- $4 \sqrt{3} \text{ cm}$
- (5) $8\sqrt{3}$ cm

16

31. $\sqrt{7} = a$, $\sqrt{70} = b$ = a, $\sqrt{0.7} = a$, b = a관한 식으로 나타내면?

- ② $\frac{1}{10}b$
- $3 \frac{1}{100}a$ $4 \frac{1}{100}b$
- $\bigcirc \frac{1}{1000}b$

32. $\sqrt{5.3} = a$. $\sqrt{53} = b$ 라고 할 때. 다음을 a. b에 관한 식으로 나타내어라.

- (1) $\sqrt{5300}$
- (2) $\sqrt{530} + \sqrt{0.053}$

(개정 중3-1)개념+유형_파워 39쪽

17

33. \sqrt{a} 의 정수 부분을 f(a), 소수 부분을 q(a)로 나타내기로 한다. 예를 들면. $\sqrt{7}$ 은 $2 < \sqrt{7} < 3$ 이므로 f(7) = 2, $g(7) = \sqrt{7} - 2$ 이다. 이때, $f(\sqrt{121}) - g(\sqrt{64}) \times \sqrt{2}$ 의 값을 구하여라.

17

34. 다음 물음에 답하여라.

- (1) $\frac{x+y}{2x-y}$ = 6일 때, $\sqrt{\frac{3x+y}{3x-y}}$ 에 가장 가까운 정수를 구하여라. (단, $\sqrt{3} = 1.732$)
- (2) 자연수 n에 대하여 \sqrt{n} 의 소수 부분을 f(n)이라 할 때, f(27) - f(48)의 값을 구하 여라.

18

35. x > 0, y > 0, xy = 8일 때, $x\sqrt{\frac{2y}{x}} - \frac{1}{x}\sqrt{\frac{50x}{y}} + \frac{1}{y}\sqrt{\frac{18y}{x}}$ 의 값을 구하여라.

36. a>0. b>0이고. ab=2일 때.

$$\sqrt{6ab}-a\sqrt{rac{b}{6a}}+rac{\sqrt{6b}}{b\sqrt{a}}$$
의 값을 구하면?

- $3 \frac{4\sqrt{3}}{5}$
- $\underbrace{2\sqrt{3}}_{3}$
- $\bigcirc \frac{8\sqrt{3}}{2}$

19

37. 유리수 a에 대해서 다음 식을 간단히 하였을 때, 그 값이 유리수가 되었다면 그 때, a의 값은?

$$\sqrt{24} - \sqrt{\frac{8}{3}} + a \left(\frac{\sqrt{18} - \sqrt{3}}{\sqrt{2}} \right) - 3$$

- ① $-\frac{8}{3}$

- $3 \frac{3}{4}$
- $4)\frac{3}{2}$

19

 $\frac{a}{\sqrt{3}}(\sqrt{18}-\sqrt{27})+\sqrt{6}\left(\frac{2\sqrt{3}}{\sqrt{2}}-1\right)$ 38.

유리수가 되도록 하는 유리수 a의 값은?

- $\widehat{1}$ 2

③ 1

4 2

⑤ 3

39. 다음 그림은 수직선 위에 한 변의 길이가 1인 정사각형 ABCD를 그린 것이다. $\overline{BD} = \overline{BP}$, $\overline{AC} = \overline{AQ}$ 일 때, 다음 중 옳은 것을 모두 고르면? (정답 2개)

- ① $P(5-\sqrt{2})$ ② $Q(6+\sqrt{2})$
- $\overline{AQ} = \sqrt{2}$
- $\bigcirc \overline{PQ} = 2\sqrt{2}$

40. 다음 그림은 수직선 위에 한 변의 길이가 1인 정사각형 ABCD를 그린 것이다. $\overline{BD} = \overline{BP}$, $\overline{AC} = \overline{AQ}$ 일 때, 다음 중 옳지 않은 것은?

- ① $P(10-\sqrt{2})$
- ② Q $(9+\sqrt{2})$
- \bigcirc $\overline{AQ} = \sqrt{2}$
- $(4) \overline{PA} = \sqrt{2} 1$
- (5) $\overline{PQ} = \sqrt{2} + 1$

41. 다음 그림과 같은 정사각형에서 □AOBC, □A₁BB₁C₁, □A₂B₁B₂C₂는 모두 정사각형이다. □A₁BB₁C₁의 넓이는 □A₂B₁B₂C₂의 넓이의 2배, □AOBC의 넓이는 □A₁BB₁C₁의 2배라 한다. □AOBC의 넓이가 5일 때, □A₂B₁B₂C₂의 한 변의 길이는?

- $\bigcirc \frac{\sqrt{2}}{2}$
- $3\sqrt{5}$
- $4) 2\sqrt{2}$
- ⑤ $2\sqrt{5}$

21

42. 한 변의 길이가 2m, 3m인 정사각형의 창문이 아래 그림과 같이 나란히 붙어있다. 이것을 처음과 넓이가 같은 정사각형 한 개의 창문으로 바꾸려고 한다. 새로 만드는 창문의 한 변의 길이로 옳은 것은?

- ① $\sqrt{11}$
- ② $\sqrt{13}$
- ③ $\sqrt{21}$
- (4) $\sqrt{23}$
- (5) $\sqrt{31}$

43. 다음 도형은 넓이가 각각 6, 8, 24, 32인 정사각형을 한 정사각형의 대각선의 교점에 다른 정사각형의 한 꼭짓점을 맞추고 겹치는 부분이 정사각형이 되도록 차례로 이어 붙여 만든 것이다. 이 도형의 둘레의 길이를 구하시오.

22

44. 다음 도형은 넓이가 각각 5, 7, 20, 28인 정사각형을 한 정사각형의 대각선의 교점에 다른 정사각형이 한 꼭짓점을 맞추고 겹치는 부분이 정사각형이 되도록 차례로 이어 붙여 만든 것이다. 이 도형의 둘레의 길이를 구하시오.

45. 다음 그림과 같이 넓이가 7인 정사각형 ABCD가 직선 *l* 위에 있다. 정사각형 ABCD를 직선 *l*을 따라 오른쪽으로 한 바퀴 굴렸을 때, 점 B가 움직인 거리를 구하시오.

23

46. 다음 그림과 같이 넓이가 8인 정사각형 ABCD가 직선 *l* 위에 있다. 정사각형 ABCD를 직선 *l*을 따라 오른쪽으로 한 바퀴 굴렸을 때, 점 B가 움직인 거리를 구하시오.

1. (정답) ⑤

(해설)

$$(5) \ \frac{\sqrt{35}}{\sqrt{6}} \div \frac{\sqrt{7}}{\sqrt{8}} = \frac{\sqrt{35}}{\sqrt{6}} \times \frac{\sqrt{8}}{\sqrt{7}} = \frac{2\sqrt{5}}{\sqrt{3}}$$

2. (정답) ⑤

(해설)

$$\boxed{5} - \sqrt{\frac{16}{3}} \div \left(-\sqrt{\frac{8}{3}}\right) = \sqrt{2}$$

3. (정답) ②

(해설)

$$3\sqrt{2} = \sqrt{18}$$
 $\therefore a = 18$
 $\sqrt{48} = 4\sqrt{3}$ $\therefore b = 4$
따라서, $a - b = 18 - 4 = 14$

4. (정답) ②

(해설)

$$3\sqrt{2} = \sqrt{9 \times 2} = \sqrt{18} = \sqrt{a}$$

$$\therefore a = 18$$

$$\sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5} = 2\sqrt{b}$$

$$\therefore b = 5$$

 $\therefore a - b = 18 - 5 = 13$

5. (정답) 20

(해설)

$$\sqrt{600} = \sqrt{6 \times 10^2} = 10 \sqrt{6}$$
 $\therefore m = 10$ $\cdots \text{①}$

$$\sqrt{4800} = \sqrt{2^4 \times 3 \times 10^2}$$

$$= 2^2 \times 10 \times \sqrt{3} = 40 \sqrt{3}$$

 $\therefore n = 40 \cdots 2$

$$\therefore \sqrt{mn} = \sqrt{10 \times 40} = \sqrt{400} = 20 \quad \cdots \text{ }$$

단계	채점 기준	배점
1	<i>m</i> 의 값 구하기	40%
2	n의 값 구하기	40%
3	\sqrt{mn} 의 값 구하기	20%

6. (정답) 2

(해설)

$$\sqrt{300} = \sqrt{10^2 \times 3} = 10\sqrt{3}$$
이므로 $x = 10$
 $\sqrt{75} = \sqrt{5^2 \times 3} = 5\sqrt{3}$ 이므로 $y = 5$
 $\therefore \frac{x}{y} = 2$

7. (정답) ③

(해설)

$$\sqrt{108} = \sqrt{2^2 \times 3^3} = (\sqrt{2})^2 \times (\sqrt{3})^3 = a^2 b^3$$

8. (정답) ③

$$\sqrt{270} = \sqrt{3^2 \times 5 \times 6} = 3\sqrt{5}\sqrt{6} = 3ab$$

9. (정답)
$$\frac{2\sqrt{14}}{7}$$

$$\sqrt{98} = \sqrt{7^2 \times 2} = 7\sqrt{2}$$
이 프로 $a = 7$
 $\sqrt{192} = \sqrt{8^2 \times 3} = 8\sqrt{3}$ 이 프로 $b = 8$

$$\therefore \sqrt{\frac{b}{a}} = \sqrt{\frac{8}{7}} = \frac{2\sqrt{2}}{\sqrt{7}} = \frac{2\sqrt{14}}{7}$$

10. (정답)
$$\frac{1}{48}$$
(해설)
$$\sqrt{0.005} = \frac{\sqrt{2}}{20} \Rightarrow a = \frac{1}{20} \quad \cdots ①$$

$$\frac{5}{\sqrt{48}} = \frac{5}{12} \sqrt{3} \quad \Rightarrow b = \frac{5}{12} \quad \cdots ②$$

 $\therefore ab = \frac{1}{48} \cdots 3$

11. (정답) (1) 2 (2) √6 (3)
$$12\sqrt{5}$$
 (해설)

(1) (주어진 식)=
$$\sqrt{2} \times \frac{1}{\sqrt{3}} \times \sqrt{6}$$
$$= \sqrt{2 \times \frac{1}{3} \times 6} = 2$$

(2) (주어진 식)=
$$\sqrt{3} \times \frac{1}{\sqrt{7}} \times \sqrt{14}$$
$$= \sqrt{3 \times \frac{1}{7} \times 14} = \sqrt{6}$$

(3) (주어진 식)=
$$6\sqrt{5} \times \frac{1}{5\sqrt{2}} \times 10\sqrt{2}$$
$$= 6 \times \frac{1}{5} \times 10 \times \sqrt{5 \times \frac{1}{2} \times 2}$$
$$= 12\sqrt{5}$$

(해설)

$$2\sqrt{5} \times \sqrt{6} \div \sqrt{3} = 2\sqrt{5} \times \sqrt{2} = 2\sqrt{10}$$

①
$$\sqrt{152} = \sqrt{1.52 \times 100} = 10\sqrt{1.52}$$

= $10 \times 1.233 = 12.33$

②
$$\sqrt{0.0174} = \sqrt{1.74 \times \frac{1}{100}} = \frac{\sqrt{1.74}}{10}$$

$$= \frac{1.319}{10} = 0.1319$$

③
$$\sqrt{13400} = \sqrt{1.34 \times 10000} = 100 \sqrt{1.34}$$

= $100 \times 1.158 = 115.8$

$$4$$
 $\sqrt{170} = \sqrt{1.7 \times 100} = 10\sqrt{1.7}$
= $10 \times 1.304 = 13.04$

14. (정답) ④

(해설)

①
$$\sqrt{0.0251} = \frac{\sqrt{2.51}}{10} = 0.1584$$

②
$$\sqrt{2.30} = 1.517$$

$$\sqrt{213} = 10\sqrt{2.13} = 14.59$$

$$\sqrt{22100} = 100\sqrt{2.21} = 148.7$$

(해설)

$$4-a=4-\sqrt{17}<0$$
이므로 $\sqrt{(4-\sqrt{17})^2}=\sqrt{17}-4$ $a-3=\sqrt{17}-3>0$ 이므로 $\sqrt{(\sqrt{17}-3)^2}=\sqrt{17}-3$ \therefore (주어진 식)= $\sqrt{17}-4-(\sqrt{17}-3)$

16. (정답)
$$2\sqrt{7}-3$$

(해설)

$$a-1=\sqrt{7}-1>0$$
이므로 $\sqrt{(\sqrt{7}-1)^2}=\sqrt{7}-1$ $2-a=2-\sqrt{7}<0$ 이므로 $\sqrt{(2-\sqrt{7})^2}=\sqrt{7}-2$ \therefore (주어진 식)= $\sqrt{7}-1+(\sqrt{7}-2)$

 $=2\sqrt{7}-3$

17. (정답) (1)
$$-2\sqrt{2}$$
 (2) $-\sqrt{5}$ (3) $4\sqrt{2}$

(해설)

(1) (주어진 식)=
$$3\sqrt{2}-5\sqrt{2}=-2\sqrt{2}$$

(2) (주어진 식)=
$$3\sqrt{5}-4\sqrt{5}=-\sqrt{5}$$

(3) (주어진 식)=
$$9\sqrt{2}-5\sqrt{2}=4\sqrt{2}$$

18. (정답)
$$4\sqrt{3}-5\sqrt{7}$$

(해설)

 $a\sqrt{b}$ 꼴로 나타낸 후 근호 안의 수가 같은 것끼리 모 아서 계산한다.

$$-\sqrt{28} + \sqrt{48} - \sqrt{63} = -2\sqrt{7} + 4\sqrt{3} - 3\sqrt{7}$$
$$= 4\sqrt{3} - 5\sqrt{7}$$

단계	채점 기준	배점
1	좌변을 계산하여 간단히 하기	40%
2	a, b의 값 구하기	각 20%
3	ab의 값 구하기	20%

20. (정답) ④

(해설)

$$\sqrt{0.5} + \frac{8}{\sqrt{32}} - \sqrt{18} = \frac{1}{\sqrt{2}} + \frac{8}{4\sqrt{2}} - 3\sqrt{2}$$

$$= \frac{\sqrt{2}}{2} + \sqrt{2} - 3\sqrt{2} = -\frac{3\sqrt{2}}{2}$$

$$\therefore a = -\frac{3}{2}$$

21. (정답) (1)
$$2\sqrt{3}$$
 m (2) $3\sqrt{3}$ (3) $(6\sqrt{3}+2\sqrt{6})$

m

(해설)

(1) 무밭의 세로의 길이는 $\sqrt{6}$ m이므로 (무밥의 가로의 길이)

$$= 6\sqrt{2} \div \sqrt{6} = 6\sqrt{2} \times \frac{1}{\sqrt{6}}$$
$$= \frac{6}{\sqrt{3}} = 2\sqrt{3} \text{ (m)} \cdots \text{ (1)}$$

(2) (배추밭의 가로의 길이)

=
$$(\text{전체 밭의 가로 길이})-(\text{무밭의 가로 길이})$$

= $5\sqrt{3}-2\sqrt{3}=3\sqrt{3}$ (m)

$$\therefore x = 3\sqrt{3} \cdots (2)$$

(3) (배추밭의 둘레의 길이)

$$= 2(3\sqrt{3} + \sqrt{6}) = 6\sqrt{3} + 2\sqrt{6}$$
 (m) ...(3)

단계	채점 기준	배점
1	무밭의 가로의 길이 구하	40.07-
	기	40%
2	x의 값 구하기	40%
3	배추밭의 둘레의 길이 구	20.07
	하기	20%

22. (정답) ①

(해설)

밑변의 길이를 x라고 하면

$$\triangle ABC = \frac{1}{2} \times X \times 2\sqrt{3} = 6 + \sqrt{3}$$

$$\therefore \quad x = \frac{6 + \sqrt{3}}{\sqrt{3}} = 2\sqrt{3} + 1$$

23. (정답) ①

(해설)

24. (정답) ③

(해설)

화설)
①
$$2\sqrt{3} - 3\sqrt{2} = \sqrt{12} - \sqrt{18} < 0$$
 $\therefore 2\sqrt{3} < 3\sqrt{2}$
② $2 + \sqrt{3} - 4 = \sqrt{3} - 2 < 0$
 $\therefore 2 + \sqrt{3} < 4$
③ $\frac{1}{2} - \sqrt{\frac{1}{2}} = \sqrt{\frac{1}{4}} - \sqrt{\frac{1}{2}} < 0$
 $\therefore \frac{1}{2} < \sqrt{\frac{1}{2}}$
④ $(1 - \sqrt{2}) - (1 - \sqrt{3}) = 1 - \sqrt{2} - 1 + \sqrt{3}$
 $= -\sqrt{2} + \sqrt{3} > 0$

25. (정답)
$$k=1$$

(해설)

$$3 imes \sqrt{2} imes \sqrt{k} imes \sqrt{10} = \sqrt{9} imes \sqrt{2} imes \sqrt{k} imes \sqrt{10}$$

$$= \sqrt{9 imes 2 imes k imes 10}$$

$$= \sqrt{180k}$$

$$\sqrt{3} imes \sqrt{5} imes \sqrt{12} = \sqrt{3 imes 5 imes 12} = \sqrt{180}$$
따라서 $\sqrt{180k} = \sqrt{180}$ 이므로 $k = 1$

26. (정답)
$$x=5$$
 (해설)
$$\sqrt{3} \times \sqrt{4} \times \sqrt{15} \times \sqrt{x} = 30$$
에서
$$\sqrt{180x} = \sqrt{900} \quad \therefore x=5$$

27. (정답)
$$\frac{\sqrt{10}}{2}$$
배

(해설)

해발 $500 \mathrm{mO}$ 곳에서 볼 수 있는 최대 거리는 $\sqrt{13.5 \times 500} = \sqrt{6750} = 15 \sqrt{30} \, (\mathrm{km})$ 해발 $200 \mathrm{mO}$ 곳에서 볼 수 있는 최대 거리는 $\sqrt{13.5 \times 200} = \sqrt{2700} = 30 \sqrt{3} \, (\mathrm{km})$ 따라서 해발 $500 \mathrm{mO}$ 곳에서 볼 수 있는 최대 거리는 해발 $200 \mathrm{mO}$ 곳에서 볼 수 있는 최대 거리의 $15 \sqrt{30} \div 30 \sqrt{3} = \frac{\sqrt{10}}{2} \, (\mathrm{th})$ 이다.

28. (정답)
$$\frac{5}{4}$$
배

해발 500m인 곳에서 볼 수 있는 최대 거리는 $\sqrt{11.2\times500}=\sqrt{5600}=20\,\sqrt{14}\,(\mathrm{km})$ 해발 320m인 곳에서 볼 수 있는 최대 거리는 $\sqrt{11.2\times320}=\sqrt{3584}=16\,\sqrt{14}\,(\mathrm{km})$ 따라서 해발 500m인 곳에서 볼 수 있는 최대 거리는 해발 320m인 곳에서 볼 수 있는 최대 거리의 $20\,\sqrt{14}\div16\,\sqrt{14}=\frac{5}{4}(\mathrm{th})$ 이다.

29. (정답)
$$24\sqrt{3}\pi$$

(해설)

(원뿔의 부피)=
$$\frac{1}{3} \times \pi \times (3\sqrt{2})^2 \times 4\sqrt{3}$$

= $\frac{1}{3} \times \pi \times 18 \times 4\sqrt{3}$
= $24\sqrt{3}\pi$

30. (정답) ③

(해설)

원뿔의 높이를 x cm 라 하면 $(원뿔의 부피) = \frac{1}{3} \times \pi \times (3\sqrt{6})^2 \times x = 18x\pi$ 즉, $18x\pi = 72\sqrt{2}\pi$ 이므로 $x = 4\sqrt{2}$ 따라서 이 원뿔의 높이는 $4\sqrt{2}$ cm 이다.

31. (정답) ②

(해설)

$$\sqrt{0.7} = \sqrt{\frac{7}{10}} = \sqrt{\frac{70}{100}} = \frac{\sqrt{70}}{\sqrt{100}} = \frac{\sqrt{70}}{10}$$
$$= \frac{b}{10} = \frac{1}{10}b$$

32. (정답) (1) 10b (2) $\frac{101}{10}a$

(해설)

(1)
$$\sqrt{5300} = \sqrt{100 \times 53} = 10\sqrt{53} = 10b$$

(2) $\sqrt{530} = \sqrt{100 \times 5 \cdot 3} = 10\sqrt{5 \cdot 3} = 10a$
 $\sqrt{0.053} = \sqrt{\frac{5 \cdot 3}{100}} = \frac{\sqrt{5 \cdot 3}}{10} = \frac{a}{10}$
이므로
 $\sqrt{530} + \sqrt{0.053} = 10a + \frac{a}{10} = \frac{101}{10}a$

33. (정답) $2\sqrt{2}-1$

$$f(\sqrt{121}) - g(\sqrt{64}) \times \sqrt{2} = f(11) - g(8) \times \sqrt{2}$$
에서 $3 < \sqrt{11} < 4, 2 < \sqrt{8} < 3$ 이므로 $f(11) = 3, g(8) = \sqrt{8} - 2 = 2\sqrt{2} - 2$ $\therefore f(11) - g(8) \times \sqrt{2} = 3 - (2\sqrt{2} - 2) \times \sqrt{2}$ $= 3 - (4 - 2\sqrt{2})$ $= 2\sqrt{2} - 1$

34. (정답) (1) 2 (2)
$$1-\sqrt{3}$$

(1)
$$\frac{x+y}{2x-y} = 6$$
에서 $x+y = 12x - 6y$

$$7y = 11x \qquad \therefore y = \frac{11}{7}x$$

$$\therefore \sqrt{\frac{3x+y}{3x-y}}$$

$$= \sqrt{\frac{3x + \frac{11}{7}x}{3x - \frac{11}{7}x}} = \sqrt{\frac{\frac{32}{7}x}{\frac{10}{7}x}} = \sqrt{3.2}$$

 $1 < \sqrt{3.2} < 2$ 이고 $\sqrt{3} = 1.732$ 이므로 $\sqrt{3.2}$ 어가장 가까운 정수는 2이다.

(2) $5 < \sqrt{27} < 6$ 이므로 $\sqrt{27}$ 의 정수 부분은 5이고 소수 부분은 $\sqrt{27} - 5$ 이다.

$$\therefore f(27) = \sqrt{27} - 5 = 3\sqrt{3} - 5$$

 $6 < \sqrt{48} < 7$ 이므로 $\sqrt{48}$ 의 정수 부분은 6이고 소수 부분은 $\sqrt{48} - 6$ 이다.

$$f(48) = \sqrt{48 - 6} = 4\sqrt{3} - 6$$

$$\therefore f(27) - f(48) = 3\sqrt{3} - 5 - (4\sqrt{3} - 6)$$
$$= 1 - \sqrt{3}$$

35. (정답) 3

(해설)

$$x\sqrt{\frac{2y}{x}} - \frac{1}{x}\sqrt{\frac{50x}{y}} + \frac{1}{y}\sqrt{\frac{18y}{x}}$$

$$= \sqrt{x^2 \times \frac{2y}{x}} - \sqrt{\frac{1}{x^2} \times \frac{50x}{y}} + \sqrt{\frac{1}{y^2} \times \frac{18y}{x}}$$

$$= \sqrt{2xy} - \sqrt{\frac{50}{xy}} + \sqrt{\frac{18}{xy}}$$

$$= \sqrt{16} - \sqrt{\frac{25}{4}} + \sqrt{\frac{9}{4}}$$

$$= 4 - \frac{5}{2} + \frac{3}{2}$$

$$= 3$$

36. (정답) ⑤

(해설)

$$\sqrt{6ab} - \sqrt{\frac{ab}{6}} + \sqrt{\frac{6}{ab}}$$

$$= \sqrt{6 \times 2} - \sqrt{\frac{2}{6}} + \sqrt{\frac{6}{2}}$$

$$= 2\sqrt{3} - \frac{\sqrt{3}}{3} + \sqrt{3} = \frac{8\sqrt{3}}{3}$$

37. (정답) ⑤

(해설)

$$\sqrt{24} - \sqrt{\frac{8}{3}} + a \left(\frac{\sqrt{18} - \sqrt{3}}{\sqrt{2}} \right) - 3$$

$$= 2\sqrt{6} - \frac{2\sqrt{6}}{3} + 3a - \frac{\sqrt{6}}{2}a - 3$$

$$= (3a - 3) + \left(2 - \frac{2}{3} - \frac{1}{2}a\right)\sqrt{6}$$
이 유리수이므로
$$2 - \frac{2}{3} - \frac{1}{2}a = 0 \quad \therefore a = \frac{8}{3}$$

(주어진 식)=
$$a\sqrt{6}-3a+6-\sqrt{6}$$

= $(-3a+6)+(a-1)\sqrt{6}$
이 식이 유리수가 되려면
 $a-1=0$ $\therefore a=1$

39. (정답) ③. ④

(해설)

- ① $P(6-\sqrt{2})$
- ② Q $(5+\sqrt{2})$
- \bigcirc $\boxed{PQ} = 2\sqrt{2} 1$

40. (정답) ⑤

(해설)

⑤
$$\overline{PQ} = 9 + \sqrt{2} - (10 - \sqrt{2}) = 2\sqrt{2} - 1$$

41. (정답) ②

(해설)

- $\square A_2B_1B_2C_2$ 의 한 변의 길이를 x라 하면
- $\square A_2B_1B_2C_2$ 의 넓이는 x^2 이므로
- \square AOBC의 넓이는 $x^2 \times 2 \times 2 = 4x^2$

이때
$$4x^2 = 5$$
이므로 $x^2 = \frac{5}{4}$

$$\therefore x = \sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{\sqrt{4}} = \frac{\sqrt{5}}{2}$$

42. (정답) ②

(해설)

구하고자 하는 창문의 한 변의 길이를 x라 하면 $2^2 + 3^2 = x^2$ $x^2 = 13$

$$\therefore x = \sqrt{13} \ (x > 0)$$

43. (정답) $20\sqrt{2}+6\sqrt{6}$ (해설)

(주어진 도형의 둘레의 길이)

- =(처음 네 정사각형의 둘레의 길이)
 - -(겹치는 부분인 세 정사각형의 둘레의 길이)

$$=4\times(\sqrt{6}+2\sqrt{2}+2\sqrt{6}+4\sqrt{2})$$

$$-4 imes \left(\frac{\sqrt{6}}{2} + \sqrt{2} + \sqrt{6} \right)$$

$$=4\times(6\sqrt{2}+3\sqrt{6})-4\times(\sqrt{2}+\frac{3\sqrt{6}}{2})$$

$$=20\sqrt{2}+6\sqrt{6}$$

44. (정답) $6\sqrt{5} + 10\sqrt{7}$ (해설)

(주어진 도형의 둘레의 길이)

- =(처음 네 정사각형의 둘레의 길이)
 - -(겹치는 부분인 세 정사각형의 둘레의 길이)

$$=4\times(\sqrt{5}+\sqrt{7}+2\sqrt{5}+2\sqrt{7})$$

$$-4 \times \left(\frac{\sqrt{5}}{2} + \frac{\sqrt{7}}{2} + \sqrt{5}\right)$$

$$= 4 \times \left(3\sqrt{5} + 3\sqrt{7}\,\right) - 4 \times \left(\frac{3\sqrt{5}}{2} + \frac{\sqrt{7}}{2}\right)$$

$$=6\sqrt{5}+10\sqrt{7}$$

45. (정답)
$$\left(\sqrt{7} + \frac{\sqrt{14}}{2}\right)\pi$$

점 B가 움직인 거리는

$$\begin{split} &\frac{1}{4} \times 2\pi \times \sqrt{7} + \frac{1}{4} \times 2\pi \times \sqrt{14} + \frac{1}{4} \times 2\pi \times \sqrt{7} \\ &= \left(\sqrt{7} + \frac{\sqrt{14}}{2}\right) \pi \end{split}$$

46. (정답)
$$(2+2\sqrt{2})\pi$$

(해설)

점 B가 움직인 거리는

$$\begin{aligned} &\frac{1}{4} \times 2\pi \times 2\sqrt{2} + \frac{1}{4} \times 2\pi \times 4 + \frac{1}{4} \times 2\pi \times 2\sqrt{2} \\ &= (2 + 2\sqrt{2})\pi \end{aligned}$$