Medical Image Processing for Interventional Applications

Statistical Shape Models – Part 2

Online Course – Unit 45 Andreas Maier, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Statistical Shape Models

Shape Model Construction

Finding Correspondences

Appearance Models

Search Algorithms

Applications

Summary

Take Home Messages Further Readings

Shape Model Construction

- Extract mean shape
- Extract a number of modes of variation

→ Varies with the shape representation, **here**: PDMs with known correspondences

Alignment

- Shape is independent of translation, rotation and scaling.
- Normalization is required.

Generalized Procrustes alignment (GPA):

- Procrustes alignment: Minimize mean square distance between two shapes (1 base shape + 1 reference shape \Rightarrow 1 transformation)
- \bullet GPA: Iterate over all shapes to minimize distance to mean shape \bar{x}
- Other norms than L_2 are used (e.g., L_1, L_{∞}, \ldots).
- Tangent space is useful for improved estimation of the variation modes.
- Misalignment yields incorrect modes of variation.

Dimensionality Reduction

→ Find modes of variation

Principal component analysis (PCA):

Mean shape:

$$\bar{\boldsymbol{x}} = \frac{1}{s} \sum_{i=1}^{s} \boldsymbol{x}_i$$

Covariance matrix:

$$S = \frac{1}{s-1} \sum_{i=1}^{s} (\boldsymbol{x}_i - \bar{\boldsymbol{x}}) (\boldsymbol{x}_i - \bar{\boldsymbol{x}})^{\mathsf{T}}$$

Dimensionality Reduction

- Eigenvectors ϕ_m and eigenvalues λ_m are used to identify the *c*-modes of variations (e.g., scree test).
- SVD of the aligned landmark matrix L delivers more stable results:

$$L = ((\boldsymbol{x}_1 - \bar{\boldsymbol{x}}) \dots (\boldsymbol{x}_s - \bar{\boldsymbol{x}})).$$

- Maximum number of modes is $\max\{s-1, 3K\}$.
- Robust PCA can help with outliers.

Figure 1: Variations of a shape model

Dimensionality Reduction

• Valid shapes are now expressed as linear combinations of the mean shape and its modes ϕ_m :

$$\mathbf{x} = \mathbf{\bar{x}} + \sum_{m=1}^{c} b_m \boldsymbol{\phi}_m, \quad b_m \in [-3\lambda_m, 3\lambda_m].$$

• Independent component analysis (ICA) can also be used, but problems such as the ordering of the components arise.

Finding Correspondences: Mesh to Mesh

- Manual landmarks → high effort/infeasible
- Automatic registration

Figure 2: Mesh to mesh

Finding Correspondences: Mesh to Volume

→ Reference shape may introduce bias.

Figure 3: Mesh to volume

Finding Correspondences: Volume to Volume

Figure 4: Volume to volume

Appearance Models

Models how the mode looks in the image:

- Boundary-based features (intensity + derivatives)
- Gabor wavelets
- Distances
- SIFT, MOG
- Classifiers, boosting
- Texture information
- → Delivers a fit/goodness for every landmark

Search Algorithms

Initialization:

- User/interaction
- Histogram
- Generalized Hough transform
- Particle filter
- Bounding box detection

Search Algorithms

Active shape models:

Search strategy based on a point distribution mode

Figure 5: Scheme for active shape model

Search Algorithms

Active shape models:

Search strategy based on a point distribution mode

Active appearance models:

- Combine shape and appearance into a single model
- Use linear system to update parameters

Figure 5: Scheme for active shape model

Applications

- Segmentation
 - Organs (heart, liver, etc.)
 - Bones (vertebrae, knee, femur, etc.)
- Interpretation of shapes
 - Hippocampus
 - Schizophrenia
 - Attention deficit disorder
 - Alzheimer's disease
 - Analysis of aging
- Shape extrapolation
 - 3-D+t heart shape from 2-D+t MRI/US data
 - Complete bone shapes from sparse 3-D data
- And many more applications

Topics

Statistical Shape Models Shape Model Construction Finding Correspondences Appearance Models Search Algorithms

Summary

Applications

Take Home Messages **Further Readings**

Take Home Messages

- Concepts like GPA and PCA are used to align and analyze the shape for a given point set.
- New data is registered to the corresponding model which can be performed using mesh to mesh, mesh to volume, or volume to volume registration.
- Active shape models and active appearance models are popular concepts for statistical shape models.

Further Readings

These review papers are a good start for learning more about the methods described in this unit:

- Tobias Heimann and Hans-Peter Meinzer. "Statistical Shape Models for 3D Medical Image Segmentation: A Review". In: *Medical Image Analysis* 13.4 (Aug. 2009), pp. 543–563. DOI: 10.1016/j.media.2009.05.004
- Daniel Cremers, Mikael Rousson, and Rachid Deriche. "A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape". In: International Journal of Computer Vision 72.2 (Apr. 2007), pp. 195–215. DOI: 10.1007/s11263-006-8711-1

They also contain lots of references for further reading.