

Building planetary atmospheres from magma oceans

Paolo A. Sossi

with Dan J. Bower, Antony D. Burnham, Pete Tollan, James Badro, Kaustubh Hakim, Antonio Lanzirotti, Matt Newville, Patrick Sanan, Hugh St.C. O'Neill

Planetary Atmospheres

	Venus	Earth	Mars
CO ₂ /N ₂ Initial atmosphere	?	?	?
CO ₂ /N ₂ Present atmosphere	43.3	7.8×10^{-4}	55
Total bars	92	1.013	0.0061

Classification

3°

Warm little ponds

ON THE EARLY CHEMICAL HISTORY OF THE EARTH AND THE ORIGIN OF LIFE

By HAROLD C. UREY

Institute for Nuclear Studies, University of Chicago

Communicated January 26, 1952

Miller-Urey experiment (1952)

Reducing atmosphere (CH₄-NH₃)

Spark discharge in presence of H₂O

Produced ~23 amino-acids, some necessary for life

Did such atmospheres exist?

Evolution of Earth's atmopshere

786 NATURE [NOVEMBER 29, 1924

Letters to the Editor.

[The Editor does not hold himself responsible for opinions expressed by his correspondents. Neither can he undertake to return, nor to correspond with the writers of, rejected manuscripts intended for this or any other part of NATURE. No notice is taken of anonymous communications.]

The Rarity of the Inert Gases on the Earth.

In Nature of March 15 I published a diagram in which the abundance of the different species of atoms—up to mass number 79—was plotted on a log scale against their mass numbers. I have now extended this, with a small gap, up to mass number 142, and what was fairly obvious before has become, by the inclusion of the region containing xenon, a very striking feature. This is the abnormal scarcity of the inert gases.

Aston (1924)

Fegley and Schaefer (2014)

Noble gases are depleted by orders of magnitude relative to major volatiles

Earth has a secondary (i.e., post-nebular) atmosphere

Moon-forming impact

Genda and Abe (2003)

Provides enough energy to melt entire mantle

>97% of Xe (and other noble gases) lost before ~ 100 Myr (Porcelli et al. 2001) 40 – 50 Myr considering further Xe loss in Archean (Pujol et al. 2011)

A Secondary Atmosphere

Magma Ocean stage (post Moon-forming impact)

Uncertainty as to the redox state of the early atmosphere

At equilibrium fO_2 of mantle = fO_2 of atmosphere

Oxidation state of Earth's atmosphere

$$Fe^{2+}O\left(silicate\right) + \frac{1}{4}O_2(atmosphere) = Fe^{3+}O_{1.5}(silicate)$$

At equilibrium between the magma and the atmosphere,

Fe³⁺/Fe²⁺ ratio of a magma at a **given** fO_2 depends on:

- 1) Composition
- 2) Temperature

Magma ocean-atmosphere link

$$Fe^{2+}O\left(silicate\right) + \frac{1}{4}O_2(atmosphere) = Fe^{3+}O_{1.5}(silicate)$$

Existing models relate Fe³⁺/Fe²⁺ to fO₂ for basaltic melts

Do models work for a **magma ocean peridotite** with $Fe^{3+}/Fe^{2+} = 0.037$ at 2173 K?

Aim: Calibration of the reaction for a realistic peridotite liquid composition

Why peridotite?

Most common rock on (in) the Earth

- 60 % olivine, 30 % orthopyroxene, 15 % clinopyroxene, <5 % other
 - Very high melting temperature (> 1700 °C at 1 bar)
 - Hard to quench into a glass

Experimental Set-up

Aerodynamic laser levitation furnace, IPG, Paris

 Synthetic peridotite composition (~KLB-1) ≈ Earth's mantle

SiO ₂	Al_2O_3	MgO	CaO	FeO ^(T)
46.53	4.37	38.05	2.06	8.44

- Melted by aerodynamic levitation with 125 W CO₂ laser at 1900±50
 °C for ~ 30 s
- Gas fugacities varied by changing gas mixture (O₂, Ar-CO₂-H₂)

∆IW-1.5		∆IW+5
reduced	fO_2	oxidised

Determine Fe³⁺/Fe^(T) in glasses

XANES

X-Ray Absorption Near-Edge Structure

- Fe K-edge at beamline 13 IDE, APS, Chicago
 - 10 µm focused beam
 - Pre-edge peaks were fit by a Gaussian and a Lorentzian peak
 - Position of pre-edge centroid and
 0.8 edge energy used to determine
 Fe³⁺/ ∑Fe

XANES

- Calibrated by Fe³⁺/∑Fe measured in MORB glasses using Mössbauer
 - Peridotite glasses have same dependence as MORB glasses
- Uncertainty ~±0.015 relative on Fe³⁺/∑Fe

Fe³⁺/Fe²⁺ in peridotites

Phase	Mode (%) Fe³+/∑Fe		FeO (wt. %)
Olivine	55	< 0.01	10
Orthopyroxene	25	0.04-0.06	6-7
Clinopyroxene	18	0.12-0.22	2.3-3.5
Spinel	2	0.15-0.25	~7-12

- Measurement of Fe³⁺/Fe²⁺ in individual mantle minerals by Mössbauer spectroscopy (Canil et al., 1994; Canil and O'Neill, 1996)
 - Whole rock Fe³⁺/Fe²⁺ reconstructed by mass balance
 - Global array of peridotites (orogenic, continental xenolith, cratonic)

Fe³⁺/Fe²⁺ in peridotites

Canil et al., 1994; Canil and O'Neill, 1996

- Fe³⁺/Fe²⁺ correlated inversely with MgO (& other indices of melt depletion)
- Fe³⁺ is more incompatible than
 Fe²⁺ during partial melting
 - At MgO content of the primitive mantle (36.77 wt. %), $Fe^{3+}/\Sigma Fe = 0.037 \pm 0.005$

Oxygen fugacity of the magma ocean

$$Fe^{2+}O(sil) + \frac{1}{4}O_2(atm) = Fe^{3+}O_{1.5}(sil)$$

- Presume present-day bulk silicate
 Earth (BSE) = magma ocean
 - Fe³⁺/ \sum Fe of **0.037±0.005** in peridotite \rightarrow $fO_2 = \Delta IW+0.5\pm0.7$ for molten peridotite
- Fixes CO₂/CO and H₂O/H₂ ratios in atmosphere

Composition of the early Earth's atmosphere

To solve for speciation in an H-C-N-O atmosphere requires **3 constraints**

- 1) $fO_2 = \Delta IW + 0.5$ Given by Fe³⁺/Fe²⁺
- 2) H/C
- 3) H/N

Computed by

- i) Bulk Silicate Earth abundances
- ii) Solubility laws in peridotite

Steam atmospheres?

Early Earth is assumed to have a **steam (H₂O-rich)** atmosphere

No studies on realistic silicate mantle **compositions** and **temperatures** relevant to magma oceans

Determination of solubility

Aim: Quantify H solubility in peridotite melt

Mole fraction dissolved

Measured by FTIR of quenched glasses

$$X = \alpha P^{\beta}$$

Partial pressure in atmosphere

Calculated using thermodynamic data for gases

Solubility of water in peridotite melt

At constant T and P, can define the value of α and β

Solubility of water in peridotite melt

$$X = \alpha P^{\beta}$$

$$\alpha = 524\pm16 \text{ ppm/bar}^{0.5}$$

$$\beta = 0.47\pm0.02$$

General law for the solubility of H₂O in mantle-like compositions

Swiss Federal Institute of Technology Zurich

Solubility of major volatiles in silicate melt

Solubility of $H_2O \sim 100 \times \text{greater than that of } CO_2^*$

Mass Balance

Mass fraction in atmosphere
$$M_{planet}X_v = p_v \frac{4\pi r^2}{g} + M_{melt}X_v$$

Mass fraction in mantle

* Solubilities of CO and H2 are negligible

Cooling of early Earth's atmosphere

Atmospheric speciation calculated during closed-system cooling

~ 70 bar CO_2 , ~ 2 bar N_2 ; CO_2/N_2 ~ 35

Equilibrium and fractional crystallisation

Atmosphere

Velocity of RF >> Velocity of SF \rightarrow Equilibrium crystallisation System freezes at $\phi = 0.3$

Velocity of RF ~ Velocity of SF → Fractional crystallisation System can outgas below φ = 0.3

Solomatov and Stevenson (1993)

Equilibrium and fractional crystallisation

Velocity of RF ∼ Velocity of SF → **Fractional** crystallisation

H₂O

Gas speciation with crystallisation

$$fO_2 = \Delta IW + 0.5$$

- ~95% H is dissolved at F = 30%
- Only outgassed if fractional crystallisation proceeds
- Minimum estimate because neglects:
 - Trapped melt
 - Storage in minerals
 - Mantle overturn

Magma ocean-generated atmospheres under neutral or oxidising conditions are C-rich

Prevalence of steam atmospheres

Monte-Carlo simulations of Earth-like planets at 2173 K

$$\{H/C \in \mathbb{R} \mid 1 < H/C < 10 \}$$

 $\{N_{Ocean} \in \mathbb{R} \mid 1 < N_{Ocean} < 10 \}$
 $\{\Delta IW \in \mathbb{R} \mid -4 < \Delta IW < 4 \}$

- Steam atmospheres (XH₂O > 0.5) do not form
- Reduced atmospheres are large
- CO₂-H₂ atmospheres are excluded

Continual H₂O degassing

How atmosphere composition changes with H₂O outgassing

Planetary atmospheres

	Venus	Earth	Mars
CO ₂ /N ₂ Initial atmosphere	?	~40	?
CO ₂ /N ₂ Present atmosphere	43.3	7.8 × 10 ⁻⁴	55
Total bars	92	1.013	0.0061

Comparative planetology

Earth is bracketed heliocentrically by planets with CO₂:N₂ atmospheres in ratio ~97:3

Physical controls

Earth receives ½ as much solar irradiance as Venus

But twice as much as Mars

Earth is similar in size to Venus but much larger than Mars

Atmospheric escape

Loss is most efficient for:

- 1. Lighter masses (e.g., H, He)
 - 2. Smaller bodies (low $v_{\rm esc}$)
- 3. Hotter atmospheres (high T_{exobase})

Earth retains H₂O(I) on its surface over geological timescales

Why H₂O counts – the Urey Reaction

$$CaSiO_3 + CO_2 = CaCO_3 + SiO_2$$

Sleep et al. 2001

Reaction catalysed by the dissolution of CO₂ in water (Urey, 1952)

Global crustal recycling process on Earth helped C burial

Effective mechanism for drawing down atmospheric CO₂ levels

May occur over 100 Myr

Swiss Federal Institute of Technology Zurich

Development of life?

CO₂-N₂ atmospheres inefficient in synthesising aminoacids (glycine only; Schlesinger and Miller 1983)

AAs produced in presence of pH-buffered H₂O at ~7 with CaCO₃ (Cleaves et al. 2008)

Yields are halved compared with reducing atmospheres

Warm, little ponds?

Conclusions

- Calibrated dependence of Fe²⁺/Fe³⁺ and H₂O solubility on fO₂ in peridotite liquids
- For oxidising conditions, water is highly soluble and is stored in interiors, leaving behind a CO₂-rich atmosphere
- Steam atmospheres are rare unless significant outgassing occurs
- Earth magma ocean fO₂ = IW+0.5±0.5 → neutral, Venus-like atmosphere, CO₂-N₂ (97:3)
- Large mass and distance from Sun minimised H-loss on Earth compared to Venus and Mars
- Atmosphere underwent significant CO₂ draw-down post magma-ocean on Earth

In-situ gas determination

- Direct analysis of the gas phase by Fourier-Transform Infra-Red
- Controlled atmosphere, temperature, and total pressure
 - Container-less CO₂

 laser-heating of
 samples > 2000 °C
 - Controlled sample geometry and gas flow regime

Hydrogen loss rates

Jeans Escape ($\lambda >> 1$)

 $T_{exobase} = 550 \text{ K}$

Wordsworth & Pierrehumbert (2013)

 $T_{exobase} = 273 \text{ K}$

Zhang et al. (1993)

$$\lambda = 11$$

 $T_{exobase} = 1400 \text{ K}$