CÔNG TY TNHH MTV KHOA HỌC CÔNG NGHỆ HOÀN VŨ

HƯỚNG DẪN CÔNG VIỆC PHÂN TÍCH

Mã số: HD.TN.258 Lần ban hành: 01

Ngày ban hành: 15/06/2018

Trang: 1/7

XÁC ĐỊNH HÀM LƯỢNG ĐƯỜNG BẰNG SẮC KÝ KHÍ GHÉP KHỐI PHỔ (GC/MS)

Nhân viên biên soạn	Nhân viên xem xét	Nhân viên phê duyệt
TỪ HIẾU HẬU	DIỆP THỊ HỒNG TƯƠI	TRẦN THÁI VŨ

THEO DÕI SỬA ĐỔI TÀI LIỆU

S	Vị trí	Nội dung sửa đổi	Ngày sửa đổi

A. TỔNG QUAN

I. Phạm vi áp dụng.

- Phương pháp này được áp dụng để xác định hàm lượng đường (< 10%) trong thực phẩm. Giới hạn phát hiện của phương pháp với nền mẫu mật ong là 0.5 g/100g và với các nền mẫu còn lại là 0.05 g/100g.</p>

II.	Tài	liêu thar	n khảo.

Food Chemistry
 642: Gas
 mass spectrometric
 of tri- and
 in honey

S T T	Chắt phân tích (sugar)
1	Inositol
2	Sorbitol
3	Glycerol
4	Sacharose
5	Lactose
6	Glucose
7	Fructose
8	Maltose

120 (2010) 637– chromatographic– characterization tetrasaccharides

III. Nguyên tắc.

Mẫu được pha loãng với DI. Sau đó được tạo dẫn xuất trimethylsilyl (TMS)
 và phân tích trên GC/MS.

VI. Thông tin an toàn phòng thí nghiệm.

- Tuân thủ các nguyên tắc hoạt động trong phòng thí nghiệm.
- Báo cáo tất cả các vấn đề gây tổn thương tới con người và các sự cố gây đổ vỡ hóa chất.
- Dung môi hữu cơ được thu hồi vào trong thùng chứa có dán nhãn dung môi thải.

B. PHÂN TÍCH

- I. Thiết bị và dụng cụ phân tích.
 - 1. Thiết bị cơ bản.
 - Cân phân tích, độ chính xác 0.1mg
 - Bình định mức 10 ml, 50 ml
 - Máy ly tâm cho ống 50ml

- Micropipet các loại 20 μL, 200 μL, 1000 μL.
- Pipet thủy tinh
- Bếp đun

2. Thiết bị phân tích

Hệ thống sắc ký khí ghép khối phổ GC/MS 5973 hoặc tương đương.

II. Hoá chất và chất chuẩn.

- 1. Hoá chất.
 - Nước cất khử ion (nước DI)
 - Isooctan của Fisher hoặc tương đương
 - Tác chất Hexamethyldisiloxane (HMDS), Trifluoroacetic acid (TFA) và hydroxylamin của Merck hoặc tương đương.
 - Ethanol 99%

2. Chất chuẩn.

a. Chuẩn gốc:

- Inositol; Sorbitol; Glycerol; Sacharose; Lactose; Glucose; Fructose và maltose của Sigma hoặc tương đương.
- Bảo quản và lưu trữ: Chuẩn được lưu trữ theo đúng nhiệt độ khuyến cáo của nhà sản xuất.

b. Dung dịch chuẩn gốc

- Dung dịch chuẩn gốc 20000 μg/mL: Cân chính xác khoảng 200 mg chất chuẩn vào các bình định mức 10 mL, hoà tan và định mức đến vạch bằng nước cất DI.
- Lưu ý đến độ tinh khiết của chất chuẩn. Khi đó nồng độ chất chuẩn trong dung dịch được tính được theo công thức sau:

$$C(mg/L) = \frac{m(mg)x \, 1000}{V(ml)} xP$$

Trong đó:

• C là nồng độ chất chuẩn có trong dung dịch (μg/mL).

- m là khối lượng cân của chất chuẩn (mg).
- V là thể tính định mức (mL).
- P: Độ tinh khiết của chất chuẩn (%).
- Bảo quản và lưu trữ: dung dịch chuẩn gốc sau khi chuẩn bị được lưu trữ trong các ống thủy tinh, dán nhãn, bảo quản ở nhiệt độ mát (4 8°C), sử dụng trong thời gian 1 năm.
- Chuẩn hỗn hợp làm việc (1000 μg/mL): Từ các dung dịch chuẩn gốc trên (20000 μg/mL) tương ứng lấy 0.5 mL mỗi chất cho vào bình định mức 10 mL, định mức đến vạch với nước cất DI.
- Bảo quản và lưu trữ: chuẩn làm việc được lưu trữ trong ống thủy tinh, dán nhãn, bảo quản ở nhiệt độ mát (4-8°C), sử dụng trong thời gian 6 tháng.
- Pha dãy chuẩn làm việc:
 - + Định tính: Nếu mẫu thường không phát hiện chỉ cần pha điểm chuẩn định tính $1.0~\mu\text{g/mL}$.

+ Định lượng:

Nồng độ dãy chuẩn (mg/	1	2	5	1	2	5
kg)	1	2	5	10	20	50
Thể tích dung dịch						
chuẩn trung gian 1 %						
(mL)				0.01	0.02	0.05
Thể tích dung dịch						
chuẩn trung gian 0.1%	0.01	0.02	0.05			
(mL)	0.01	0.02	0.05			
Thể tích dung dịch nội						
chuẩn Sucralose 0.1%				(0.02	
mL						
Thể tích định mức					10	
Isoctane (mL)					10	

III. Kiểm soát QA/QC.

 a. Mẫu Blank matrix: Mẫu blank không phát hiện chất phân tích hoặc phát hiện ở nồng độ nhỏ hơn LOD

b. Mẫu thêm chuẩn (QC)

- Phân tích 01 mẫu thêm chuẩn với nồng độ thêm là 500 μg/ml sau khi phân tích 20 mẫu hoặc một mẻ mẫu. Mẫu thêm chuẩn được thực hiện cùng lúc với lô mẫu phân tích.
- Tính toán độ thu hồi theo phương trình

$$R(\%) = \frac{Cs - C}{S} X 100$$

Trong đó:

- R = Đô thu hồi
- C_s = Nồng độ mẫu thêm chuẩn
- C= Nồng độ của mẫu nền
- S= Nồng độ của chất phân tích thêm vào mẫu

IV. Xử lý mẫu.

- Cân 5g mẫu cho vào ống ly tâm 50 mL, thêm vào 25 mL nước cất. Lắc đều mẫu 2 phút. Ly tâm 3000 rpm trong 3 phút.
- Mẫu QC: Spike 250 uL chuẩn Sugar hỗn hợp 1 g/100g. Thực hiện phân tích như mẫu thật.
- Rút 100 uL dung dịch mẫu chuyển vào ống thủy tinh 10ml. Thêm 475 uL hydroxylamine 2.5%. Lắc đều mẫu. Đun mẫu ở 70-75°C trong 30 phút.
- Để mẫu nguội về nhiệt độ phòng. Thêm 475 uL HMDS và 50 uL TFA. Lắc
 đều mẫu. Tiếp tục đun mẫu ở 45-50°C trong 30 phút.
- Để mẫu nguội về nhiệt độ phòng, pha loãng mẫu với 9ml Isooctan. Lọc mẫu vào vial và phân tích trên GC/MS

V. Phân tích

1. Điều kiện GC:

- Cột: DB-5: 30 m x 0.25 mm. 0.25 μm.

- Tốc độ dòng: 0.5 mL/phút.
- Nhiệt độ Inlet: 260 °C; detector: 280 °C; chế độ tiêm không chia dòng.
- Chương trình nhiệt:
 - Solvent delay: 3.5 phút

Tốc độ tăng nhiệt (°C/phút)	Nhiệt độ (°C)	Thời gian giữ (phút)
	160	4
15	260	0
20	300	2

2. Điều kiện MS:

3.

- Nguồn ion hóa: EI, nhiệt độ 3000 °C

- Chế độ: Sim

S	Chất	ion		
T	phân	định	ion địn	h
T	tích	lượng	tính	
	Imanital	205	21 31	⁴³ Trình tự
4	Inositol	305	20 32	
2	Sorbitol	319	5 0	21 của quá 7
			20 21	trình tiêm
3	Glycerol	147	\$ 8	mẫu trên
			36 43	illau treli
4	Sacharose	361	2 7	thiết bị
			20 21	4 5
5	Lactose	361	4 7	1 phân tích.
			32 20	
6	Glucose	319	0 5	— Dung môi
			21 42	Dung mor
7	Fructose	307	7 2	trắng →
			36 20	21
8	Maltose	361	2 4	7 Các chuẩn

có nồng độ từ

thấp tới cao \rightarrow Dung môi trắng \rightarrow Mẫu cần kiểm nghiệm \rightarrow Mẫu thêm chuẩn \rightarrow Chuẩn kiểm tra.

C. TÍNH TOÁN KẾT QUẢ.

1. Công thức tính toán:

Xây dựng đường chuẩn biểu thị mối quan hệ giữa diện tích và nồng độ chuẩn. $\Big/ C_0 \times V_{axtract} \Big|$

 $C = \left(\frac{C_0 \times V_{extract}}{m} \times f\right)$

- C: nồng độ chất phân tích trong mẫu, µg/mL
- C_0 : nồng độ chất phân tích trong dịch chiết tính trên đường chuẩn, $\mu g/mL$
- V_{extract}: Thể tích dịch chiết
- f: hệ số pha loãng
- m: khối lượng cân (g) hoặc thể tích mẫu (mL)

2. KIỂM SOÁT DỮ LIỆU QA/QC

- Đồ thị tuyến tính ít nhất 5 điểm chuẩn với $R^2 \ge 0.99$
- Độ thu hồi: giá trị từ XNGTSD của phương pháp.
- Tỷ số ion:

Cường độ tương đối	Sai số cho phép	
(so với ion định lượng)	của GC-EI-MS	
> 50 %	± 10 %	
20 – 50 %	± 15 %	
10 – 20 %	± 20 %	
< 10 %	± 50 %	

- Độ lệch của thời gian lưu không quá 0.5%
- Độ lệch của dung dịch chuẩn kiểm tra không quá 15%
- Biểu đồ kiểm soát xu hướng diễn biến kết quả phân tích (Control chart).
- Thực hiện kiểm soát xu hướng diễn biến kết quả phân tích (control chart) ở mức thêm chuẩn 0.1g/100g sau mỗi lô mẫu phân tích.

D. BÁO CÁO KẾT QUẢ.

- Kết quả phân tích được báo cáo theo biểu mẫu: BM.15.04a, BM.15.06