

# HEXFET® Power MOSFET

| V <sub>DSS</sub>                                 | 25   | ٧  |
|--------------------------------------------------|------|----|
| $R_{DS(on)}$ max $(@V_{GS} = 10V)$               | 0.95 | mΩ |
| $(@V_{GS} = 4.5V)$                               | 1.25 |    |
| Qg (typical)                                     | 46.0 | nC |
| I <sub>D</sub> (@T <sub>C (Bottom)</sub> = 25°C) | 100⑦ | A  |





## **Applications**

- Synchronous Rectifier MOSFET for Sync Buck Converters
- Secondary Synchronous Rectifier MOSFET for isolated DC-DC converters
- Active ORing and Hot Swap
- Battery Operated DC Motor Inverters

#### **Features**

| Low $R_{DSon}$ (<0.95 m $\Omega$ )                |               |
|---------------------------------------------------|---------------|
| Low Thermal Resistance to PCB (<0.8°C/W)          |               |
| Low Profile (<0.9 mm)                             | results in    |
| Industry-Standard Pinout                          | $\Rightarrow$ |
| Compatible with Existing Surface Mount Techniques |               |
| RoHS Compliant, Halogen-Free                      |               |
| MSL1, Industrial Qualification                    |               |

#### **Benefits**

|   | 201101110                         |
|---|-----------------------------------|
|   | Lower Conduction Losses           |
|   | Enable better thermal dissipation |
| n | Increased Power Density           |
|   | Multi-Vendor Compatibility        |
|   | Easier Manufacturing              |
|   | Environmentally Friendlier        |
|   | Increased Reliability             |
|   |                                   |

| Base part number | Package Type    | Standard Pack |          | Orderable Part Number |
|------------------|-----------------|---------------|----------|-----------------------|
|                  |                 | Form          | Quantity |                       |
| IRFH4201PbF      | PQFN 5mm x 6 mm | Tape and Reel | 4000     | IRFH4201TRPbF         |

# **Absolute Maximum Ratings**

|                                                 | Parameter                                                                           | Max.          | Units |
|-------------------------------------------------|-------------------------------------------------------------------------------------|---------------|-------|
| $V_{GS}$                                        | Gate-to-Source Voltage                                                              | ± 20          | V     |
| I <sub>D</sub> @ T <sub>A</sub> = 25°C          | Continuous Drain Current, V <sub>GS</sub> @ 10V                                     | 49            | А     |
| I <sub>D</sub> @ T <sub>C(Bottom)</sub> = 25°C  | Continuous Drain Current, V <sub>GS</sub> @ 10V                                     | <b>326</b> ©⑦ |       |
| I <sub>D</sub> @ T <sub>C(Bottom)</sub> = 100°C | Continuous Drain Current, V <sub>GS</sub> @ 10V                                     | 206©⑦         |       |
| $I_D @ T_{C(Bottom)} = 25^{\circ}C$             | Continuous Drain Current, V <sub>GS</sub> @ 10V (Source Bonding Technology Limited) | 100⑦          |       |
| I <sub>DM</sub>                                 | Pulsed Drain Current ①                                                              | 400           |       |
| P <sub>D</sub> @T <sub>A</sub> = 25°C           | Power Dissipation ®                                                                 | 3.5           | W     |
| P <sub>D</sub> @T <sub>C(Bottom)</sub> = 25°C   | Power Dissipation                                                                   | 156           |       |
|                                                 | Linear Derating Factor                                                              | 0.028         | W/°C  |
| $T_J$                                           | Operating Junction and                                                              | -55 to + 150  | °C    |
| T <sub>STG</sub>                                | Storage Temperature Range                                                           |               |       |

Notes ① through ⑦ are on page 8



# Static @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                                | Parameter                                           | Min. | Тур. | Max. | Units | Conditions                              |
|--------------------------------|-----------------------------------------------------|------|------|------|-------|-----------------------------------------|
| $BV_{DSS}$                     | Drain-to-Source Breakdown Voltage                   | 25   |      |      | V     | $V_{GS} = 0V, I_{D} = 250\mu A$         |
| $\Delta BV_{DSS}/\Delta T_{J}$ | Breakdown Voltage Temp. Coefficient                 |      | 20   |      | mV/°C | Reference to 25°C, I <sub>D</sub> = 1mA |
| R <sub>DS(on)</sub>            | Static Drain-to-Source On-Resistance                |      | 0.70 | 0.95 | mΩ    | $V_{GS} = 10V, I_D = 50A$ ③             |
|                                |                                                     |      | 0.97 | 1.25 |       | $V_{GS} = 4.5V, I_D = 50A$ ③            |
| $V_{GS(th)}$                   | Gate Threshold Voltage                              | 1.1  | 1.6  | 2.1  | V     | $V_{DS} = V_{GS}$ , $I_D = 150\mu A$    |
| $\Delta V_{GS(th)}$            | Gate Threshold Voltage Coefficient                  |      | -5.9 |      | mV/°C |                                         |
| I <sub>DSS</sub>               | Drain-to-Source Leakage Current                     |      |      | 1.0  | μA    | $V_{DS} = 20V, V_{GS} = 0V$             |
| $I_{GSS}$                      | Gate-to-Source Forward Leakage                      |      |      | 100  | nA    | $V_{GS} = 20V$                          |
|                                | Gate-to-Source Reverse Leakage                      |      |      | -100 |       | $V_{GS} = -20V$                         |
| gfs                            | Forward Transconductance                            | 175  |      |      | S     | $V_{DS} = 13V, I_D = 50A$               |
| $Q_g$                          | Total Gate Charge                                   |      | 94.0 |      | nC    | $V_{GS} = 10V, V_{DS} = 13V, I_D = 50A$ |
| $Q_g$                          | Total Gate Charge                                   |      | 46.0 | 69.0 |       |                                         |
| $Q_{gs1}$                      | Pre-Vth Gate-to-Source Charge                       |      | 11.0 |      |       | V <sub>DS</sub> = 13V                   |
| $Q_{gs2}$                      | Post-Vth Gate-to-Source Charge                      |      | 6.4  |      | nC    | $V_{GS} = 4.5V$                         |
| $Q_{gd}$                       | Gate-to-Drain Charge                                |      | 16.0 |      |       | $I_D = 50A$                             |
| $Q_{godr}$                     | Gate Charge Overdrive                               |      | 12.6 |      |       |                                         |
| $Q_{sw}$                       | Switch Charge (Q <sub>gs2</sub> + Q <sub>gd</sub> ) |      | 22.4 |      |       |                                         |
| Q <sub>oss</sub>               | Output Charge                                       |      | 46.0 |      | nC    | $V_{DS} = 16V$ , $V_{GS} = 0V$          |
| $R_G$                          | Gate Resistance                                     |      | 0.9  | 2.7  | Ω     |                                         |
| t <sub>d(on)</sub>             | Turn-On Delay Time                                  |      | 20   |      |       | $V_{DD} = 13V, V_{GS} = 4.5V$           |
| t <sub>r</sub>                 | Rise Time                                           |      | 43   |      | ns    | $I_D = 50A$                             |
| $t_{d(off)}$                   | Turn-Off Delay Time                                 |      | 24   |      |       | $R_G=1.8\Omega$                         |
| t <sub>f</sub>                 | Fall Time                                           |      | 19   |      |       |                                         |
| C <sub>iss</sub>               | Input Capacitance                                   |      | 6100 |      |       | $V_{GS} = 0V$                           |
| C <sub>oss</sub>               | Output Capacitance                                  |      | 1700 |      | pF    | $V_{DS} = 13V$                          |
| C <sub>rss</sub>               | Reverse Transfer Capacitance                        |      | 450  |      |       | f = 1.0 MHz                             |

# **Avalanche Characteristics**

|                 | Parameter                       | Тур.        | Max. |
|-----------------|---------------------------------|-------------|------|
| E <sub>AS</sub> | Single Pulse Avalanche Energy ② | <del></del> | 478  |
| $I_{AR}$        | Avalanche Current ①             | <u></u>     | 50   |

# **Diode Characteristics**

|                 | Parameter                 | Min. | Тур. | Max. | Units | Conditions                                          |
|-----------------|---------------------------|------|------|------|-------|-----------------------------------------------------|
| Is              | Continuous Source Current |      |      | 100⑦ | Α     | MOSFET symbol                                       |
|                 | (Body Diode)              |      |      |      |       | showing the                                         |
| I <sub>SM</sub> | Pulsed Source Current     |      |      | 400  |       | integral reverse                                    |
|                 | (Body Diode) ①            |      |      |      |       | p-n junction diode.                                 |
| $V_{SD}$        | Diode Forward Voltage     |      |      | 1.0  | V     | $T_J = 25^{\circ}C$ , $I_S = 50A$ , $V_{GS} = 0V$ ③ |
| t <sub>rr</sub> | Reverse Recovery Time     |      | 31   | 47   | ns    | $T_J = 25$ °C, $I_F = 50$ A, $V_{DD} = 13$ V        |
| $Q_{rr}$        | Reverse Recovery Charge   |      | 84   | 126  | nC    | di/dt = 400A/µs ③                                   |

# **Thermal Resistance**

|                          | Parameter             | Тур. | Max. | Units |
|--------------------------|-----------------------|------|------|-------|
| $R_{\theta JC}$ (Bottom) | Junction-to-Case ④    |      | 0.8  |       |
| R <sub>θJC</sub> (Top)   | Junction-to-Case ④    |      | 18   | °C/W  |
| $R_{\theta JA}$          | Junction-to-Ambient © |      | 36   |       |
| R <sub>θJA</sub> (<10s)  | Junction-to-Ambient © |      | 22   |       |

www.irf.com





Fig 1. Typical Output Characteristics



Fig 3. Typical Transfer Characteristics



Fig 5. Typical Capacitance vs. Drain-to-Source Voltage



Fig 2. Typical Output Characteristics



Fig 4. Normalized On-Resistance vs. Temperature



Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage





Fig 7. Typical Source-Drain Diode Forward Voltage



Fig 9. Maximum Drain Current vs. Case Temperature



Fig 8. Maximum Safe Operating Area



Fig 10. Drain-to-Source Breakdown Voltage



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case







Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current



Fig 14. Typical Avalanche Current vs. Pulsewidth

www.irf.com © 2013 International Rectifier May 20, 2013





Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs



Fig 16a. Unclamped Inductive Test Circuit



Fig 17a. Switching Time Test Circuit



Fig 18. Gate Charge Test Circuit



Fig 16b. Unclamped Inductive Waveforms



Fig 17b. Switching Time Waveforms



Fig 19. Gate Charge Waveform

<sup>\*\*</sup> Reverse Polarity for P-Channel



# PQFN 5x6 Outline "B" Package Details



For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: <a href="http://www.irf.com/technical-info/appnotes/an-1136.pdf">http://www.irf.com/technical-info/appnotes/an-1136.pdf</a>
For more information on package inspection techniques, please refer to application note AN-1154: <a href="http://www.irf.com/technical-info/appnotes/an-1154.pdf">http://www.irf.com/technical-info/appnotes/an-1154.pdf</a>

### PQFN 5x6 Outline "B" Part Marking



Note: For the most current drawing please refer to IR website at <a href="http://www.irf.com/package/">http://www.irf.com/package/</a>



### PQFN 5x6 Outline "B" Tape and Reel



Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

### Qualification Information<sup>†</sup>

| Qualification Level        | Industrial (per JEDEC JESD47F <sup>††</sup> guidelines) |                                              |  |
|----------------------------|---------------------------------------------------------|----------------------------------------------|--|
| Moisture Sensitivity Level | PQFN 5mm x 6mm                                          | MSL1<br>(per JEDEC J-STD-020D <sup>††)</sup> |  |
| RoHS Compliant             | Yes                                                     |                                              |  |

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release.

#### Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting  $T_J = 25^{\circ}C$ , L = 0.38mH,  $R_G = 50\Omega$ ,  $I_{AS} = 50A$ .
- ③ Pulse width  $\leq 400\mu s$ ; duty cycle  $\leq 2\%$ .
- ④ R<sub>θ</sub> is measured at T<sub>J</sub> of approximately 90°C.
- When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: http://www.irf.com/technical-info/appnotes/an-994.pdf
- © Calculated continuous current based on maximum allowable junction temperature.
- ② Current is limited to 100A by source bonding technology.

#### **Revision History**

| Date       | Comments                                                                        |
|------------|---------------------------------------------------------------------------------|
|            | Updated package 3D drawing, on page 1.                                          |
| 05/17/2013 | Added Continuous Drain Current limited by source bonding technology, on page 1. |
|            | Divided note 6 into note 6 & 7, on page 8.                                      |
| 01/15/2013 | Release of final data sheet.                                                    |



IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/