平成28年11月30日判決言渡 同日原本領収 裁判所書記官 平成28年(行ケ)第10057号 審決取消請求事件 口頭弁論終結日 平成28年10月12日

判決

原	告	J	Xエ	ネル	ノギ・	一株式	会 社
同訴訟代理人名	中理士	長	谷	JII		芳	樹
		城		戸		博	兒
		吉		住		和	之
		平		野		裕	之
		中		塚			岳
被	告	特	討	F	庁	長	官
同指定代	理 人	日	比	野		隆	治
		富		士		良	宏
		豊		永		茂	弘
		富		澤		武	志
		尾		崎		淳	史

主 文

- 1 原告の請求を棄却する。
- 2 訴訟費用は原告の負担とする。

事実及び理由

第1 請求

特許庁が不服 2014-15502 号事件について平成 28 年 1 月 15 日にした 審決を取り消す。

第2 事案の概要

- 1 特許庁における手続の経緯等
- (1) 原告は、平成20年12月3日、発明の名称を「潤滑油組成物」とする特許 出願をしたが(特願2008-309013号。優先日:平成19年12月5日。 請求項数5。以下「本願」という。甲1)、平成26年4月25日付けで拒絶査定 を受けた(甲3)。
- (2) 原告は、平成26年8月6日、これに対する不服の審判を請求したところ (甲4)、特許庁は、これを不服2014-15502号事件として審理し、平成27年6月3日付けで拒絶理由を通知した(以下「本件拒絶理由通知」という。甲6)。
- (3) 原告は、平成27年8月10日、特許請求の範囲を補正したものの(以下「本件補正」という。請求項数5。甲7)、特許庁は、平成28年1月15日、「本件審判の請求は、成り立たない。」との別紙審決書(写し)記載の審決(以下「本件審決」という。)をし、その謄本は、同年2月2日、原告に送達された。
- (4) 原告は、平成28年3月1日、本件審決の取消しを求めて本件訴訟を提起した。

2 特許請求の範囲の記載

本件補正後の特許請求の範囲の請求項1の記載は、次のとおりである(甲7)。 以下、本件補正後の請求項1に記載された発明を、「本願発明」という。また、そ の明細書(甲1、2、7)を、「本願明細書」という。なお、「/」は、原文の改 行部分を示す(以下同じ。)。

【請求項1】尿素アダクト値が2.5質量%以下であり且つ40℃における動粘度が25mm²/s以下、粘度指数が120以上である潤滑油基油成分を、基油全量基準で10質量%~100質量%含有する潤滑油基油と、/下記一般式(1)で表される構造単位の割合が0.5~70モル%であるポリ(メタ)アクリレート系粘度指数向上剤と、/を含有し、100℃における動粘度が4~12mm²/sであり、

粘度指数が140~300であることを特徴とする潤滑油組成物。

【化1】

[式(1)中, R^1 は水素又はメチル基を示し, R^2 は炭素数 16 以上の直鎖状又は分枝状の炭化水素基を示す。]

3 本件審決の理由の要旨

(1) 本件審決の理由は、別紙審決書(写し)記載のとおりである。要するに、以下のとおり、本願発明は、①発明の詳細な説明に記載したものであるとはいえず、その特許請求の範囲の記載が、特許法36条6項1号に規定する要件(以下「サポート要件」ということがある。)を満たしておらず、②その明細書の発明の詳細な説明の記載が、当業者がその実施をすることができる程度に明確かつ十分に記載したものであるとはいえず、同条4項1号に規定する要件(以下「実施可能要件」ということがある。)を満たしていないから、特許を受けることができないものであって、本願は拒絶すべきものである、というものである。

(2) サポート要件について

本願発明の課題は、潤滑油の40 \mathbb{C} 及び100 \mathbb{C} における動粘度及び100 \mathbb{C} におけるHTHS粘度を低減し、粘度指数を向上し、-35 \mathbb{C} におけるCCS粘度、(-40 \mathbb{C} におけるMRV粘度)を著しく改善できる潤滑油組成物を提供することである。

本願発明は、「尿素アダクト値が 2. 5 質量%以下であり且つ 40 Cにおける動 粘度が 25 mm $^2/s$ 以下、粘度指数が 120 以上である」と特定される潤滑油基油 成分を、基油全量基準で 10 質量%~ 100 質量%含有するものとされていること から(以下「質量%」を単に「%」と記載することがある。),本願明細書の実施 例1に係る潤滑油組成物と比較例2に係る潤滑油組成物とを、15%:85%の割 合で混合した基油(以下「ケースA」という。)を想定する(本願発明で特定され た潤滑油基油成分に相当するのは「基油1」のみであって,その含有量は15%と なり、本願発明で特定された潤滑油基油成分以外の潤滑油基油成分に相当するのは 「基油2」のみであって、その含有量は85%となる。)。実施例1に係る潤滑油 組成物と比較例2に係る潤滑油組成物とは、低温特性に大きな差があり、前者につ いては、高評価であり、本願発明の課題が解決される旨記載されているのに対し、 後者については、本願発明の課題を解決し得ない旨記載されていることから、当業 者は、本願明細書の実施例の記載から、ケースAが本願発明の課題を解決すると理 解することはないというべきである。また、本願発明で特定された潤滑油基油成分 に関し、実施例における含有量である70%又は100%から大きく離れた下限値 である10%の近傍において,実施例と同様の低温特性を示すであろうことについ て合理的な説明がされているとはいえず,本願発明で特定された潤滑油基油成分以 外の潤滑油基油成分に関し、この含有量が85%であって、上限値である90%の 近傍であるケースAについて、実施例と同様の低温特性を示すであろうことについ て合理的な説明がされているとはいえない。したがって,本願明細書の記載は,技 術常識を考慮しても,当業者において,ケースAが本願発明の課題を解決できるも のであると理解するとはいえない。

そうすると、本願明細書の発明の詳細な説明は、本願発明の一部については本願 発明の課題が解決できることが記載されているとしても、これを本願発明の全範囲 にまで一般化できることについては、当業者が理解できるように記載されていると することはできない。

(3) 実施可能要件について

本願発明の課題について、当業者が理解できるように記載されているものとする ことができないことは、前記(2)のケースAのとおりであり、発明の詳細な説明の記 載は、当業者が実施できるように明確かつ十分に記載されているものとすることが できない。

- 4 取消事由
- (1) 手続違背(取消事由1)
- (2) サポート要件に係る判断の誤り(取消事由2)
- (3) 実施可能要件に係る判断の誤り(取消事由3)

第3 当事者の主張

1 取消事由1 (手続違背) について

[原告の主張]

本件拒絶理由通知においては、「発明特定事項と課題の解決との関係(作用機序) が記載されておらず、実施例1及び2は限られた特性のものに限られている」こと を、サポート要件及び実施可能要件を満たしていない根拠としていた。

しかし,本件審決は,「ケースAの潤滑油組成物は所望の低温特性を示さない」 ことを,サポート要件及び実施可能要件を満たしていない根拠としている。

以上のとおり、サポート要件及び実施可能要件を満たしていないとする根拠は、本件審決と本件拒絶理由通知とでは異なっている。そして、本件拒絶理由通知に接した原告において、特に、潤滑油基油成分に相当する「基油1」の含有量が15%である「ケースA」を想定すべき事情は存しない。

したがって、「ケースAの潤滑油組成物は所望の低温特性を示さない」ことを根拠とするサポート要件及び実施可能要件違反の拒絶理由を通知することなくされた本件審決に係る手続は、特許法159条2項で準用する同法50条に違背し、原告の防御権を不当に奪ったものといえる。

〔被告の主張〕

本願発明がサポート要件及び実施可能要件違反であるとする理由について、本件 拒絶理由通知では、「実施例…を検討しても、・・・潤滑油基油成分…を基油全量基準 で100質量%及び70質量%含有…であるものに限られ、当該実施例に係る記載 に基づき、本願の各請求項に係る発明が包含し得る実施態様の全てについてまで、 上記本願発明の課題を解決できるものと認識することはできない」と記載し、特許 請求の範囲に記載された発明における潤滑油基油成分の含有量が70質量%又は1 00質量%以外の態様についてのサポート要件違反を指摘していたのを、本件審決 では、そのような特許請求の範囲に記載された発明における具体的態様として、ケ ースAを想定して判断したにすぎない。

以上のとおり、本件審決における本願を拒絶すべきものであるとする理由は、既 に本件拒絶理由通知においても指摘されていたものというべきであって、本件審判 手続には、原告が主張するような手続違背はない。

- 2 取消事由2 (サポート要件に係る判断の誤り) について [原告の主張]
- (1) 当業者が特にケースAを想定すべき事情はないこと

本件審決は、ケースAを想定した上で、本願明細書は、当業者において、技術常識を考慮したとしても、ケースAの場合について、本願発明の課題を解決できることが理解されるように記載されているとはいえない旨判断した。

しかし、本願明細書の記載に接した当業者において、本願発明の課題との関係で特にケースAを想定すべき事情は全く存在しない(本願発明は、課題を解決した潤滑油組成物に、課題を解決しない潤滑油組成物を混合することにより、課題を解決しようとするものではない。)から、当業者が、発明の詳細な説明の記載からケースAを想定し、本願発明の課題を解決できないと認識することはない。

(2) ケースAの潤滑油組成物は本願発明の課題を解決すること

仮に、本願明細書の記載に接した当業者において、本願発明の課題との関係で特にケースAを想定すべき事情があったとしても、以下のとおり、当業者であれば、ケースAの潤滑油組成物により本願発明の課題を解決できると認識する。

ア 本願発明の課題

本願発明の課題は、「省燃費性と低温粘度に優れ、ポリーαーオレフィン系基油

やエステル系基油等の合成油や低粘度鉱油系基油を用いずとも,150℃における高温高せん断粘度を維持しながら,省燃費性と-35℃以下における低温粘度とを両立させることができ,特に潤滑油の40℃および100℃における動粘度および100℃におけるHTHS粘度を低減し,粘度指数を向上し,-35℃におけるCCS粘度を著しく改善できる潤滑油組成物を提供すること」(【0007】)である。すなわち,高温・高せん断の影響を受けた状態での潤滑油の実効粘度の確保に関する「150℃におけるHTHS粘度(高温高せん断粘度)の維持(粘度指数の向上)」と,「省燃費性(特に潤滑油の40℃及び100℃における動粘度と100℃におけるHTHS粘度の低減)」及びエンジン低温始動性に関する「-35℃以下における低温粘度(特に-35℃におけるCCS粘度)の改善」とを両立させることにある。

イ 本件審決の判断

本件審決は、ケースAの潤滑油組成物が本願発明の課題を解決できないことを論理的に帰結できていない。

すなわち、本件審決では、ケースAの潤滑油組成物により本願発明の課題が解決されるか否かを検討するのではなく、ケースAの潤滑油組成物が実施例1及び2の潤滑油組成物と同様の低温特性を示すか否かが検討されているが、これを検討したところで、本願明細書が、当業者において、ケースAの場合について、本願発明の課題を解決できることが理解されるように記載されているとはいえないとの結論には至らない。本願発明の課題は、単に所望の低温特性を有することではないから、当業者が、ケースAの低温特性のみに着目して、ケースAの場合、本願発明の課題を解決し得ないと推認することはない。

ウ 本願明細書の記載

(ア) 本願明細書の記載(【表 2 】)から,実施例 1 の潤滑油組成物の 4 0 \mathbb{C} 動 粘度, 1 0 0 \mathbb{C} 動制度, 1 0 0 \mathbb{C} HTHS粘度, 1 5 0 \mathbb{C} HTHS粘度, -3 5 \mathbb{C} CCS粘度が,それぞれ 2 9 mm²/s, 7. 5 mm²/s, 4. 5 m P a · s, 2.

6 m P a · s, 3 2 0 0 m P a · s であり、比較例 2 の潤滑油組成物のそれらが、 それぞれ 3 8 m m² / s, 7. 7 m m² / s, 5. 3 m P a · s, 2. 6 m P a · s, 8 0 0 0 m P a · s であることが分かる。

ここで、実施例1と比較例2の潤滑油組成物の40℃動粘度、100℃動粘度、100℃HTHS粘度、150℃HTHS粘度、-35℃CCS粘度を対比すると、両者は「150℃におけるHTHS粘度が同程度のものであるが」、後者に比べて、前者は、「40℃動粘度、100℃動粘度、100℃HTHS粘度およびCCS粘度が低く、低温粘度および低温粘度特性が良好であった。」ことが理解される(【0114】)。そして、この結果から、当業者は、実施例1の潤滑油組成物により本願発明の課題が解決できると認識する。

エ 被告の主張について

被告は、省燃費性と併せて考慮されるべき本願発明の課題に係る低温粘度特性 (低温特性)は、従来の潤滑油と同等のレベルではなく、それよりも著しく改善されたレベル(従来の潤滑油の特性を超えるレベル)に達しているか否かを基準に評価されるべきものであり、当業者は、ケースAの低温特性が、本願発明の課題を解決できるレベルに達しているとは認識し得ない旨主張する。しかし、そのようなこ とは、本願明細書には記載されていない。

本願明細書の記載からは,少なくとも,実施例1及び2の潤滑油組成物が本願発明の課題を解決できるか否かが,実施例1及び2の潤滑油組成物と比較例1ないし4の潤滑油組成物の150℃におけるHTHS粘度,40℃動粘度,100℃動粘度,100℃計でいることが分かる(【0114】)。したがって,仮にケースAを想定できたならば,ケースAが本願発明の課題を解決できるか否かは,ケースAの潤滑油組成物と比較例2の潤滑油組成物の150℃におけるHTHS粘度,40℃動粘度,100℃動粘度,100℃十日S粘度及びCCS粘度を対比することにより区別するのが合理的であると当業者は理解する。そして,かかる対比により,当業者は,ケースAの潤滑油組成物によっても,本願発明の課題を解決できると推論する。

(3) 小括

以上によれば、本件審決のサポート要件に係る判断は、誤りである。

[被告の主張]

(1) 本件審決におけるサポート要件の判断手法

本件審決は、特許請求の範囲に記載された発明が、当業者からみて、発明の詳細な説明の記載により当該発明の課題を解決できると認識できるものではないと判断し、その具体的な判断根拠を示すに当たって、例示すべき具体的態様として「ケースA」を挙げたにすぎない。

そして、本件審決は、本願発明が潤滑油基油成分の含有量につき「基油全量基準で10~100質量%」と規定していることを踏まえ、当該含有量の広範な数値範囲のうち、特にその下限値付近の態様に着目し、当該下限値付近の態様の一例として、ケースAを挙げたものであるが、本願明細書に接した当業者は、本願発明が上記規定を有する以上、その数値範囲に属する種々の態様を、本願発明の具体的態様として何らの困難もなく普通に想定できるといえる。

したがって、本件審決が、サポート要件を検討し、その判断根拠を示すに当たっ

て、当業者が容易に想定し得る態様の一例として「ケースA」を挙げたことに、違 法とされるべき点はない。

(2) ケースAが本願発明の課題を解決できるとは認識し得ないこと

ア 本願発明の課題

本願発明の課題が、【0007】に記載されたとおりのものであるとしても、省燃費性と併せて考慮されるべき本願発明の課題に係る低温粘度特性(低温特性)は、従来の潤滑油と同等のレベルではなく、それよりも著しく改善されたレベル(従来の潤滑油の特性を超えるレベル)に達しているか否かを基準に評価されるべきものである(【0004】、【0007】)。

イ ケースAの評価

(ア) ケースAは、低温特性が良好で本願発明の課題を解決することが示された 実施例1に係る潤滑油組成物(15%)と、低温特性が大きく劣るため本願発明の 課題を解決し得ないとされる比較例2に係る潤滑油組成物(85%)との混合物で あることから、当業者であれば、ケースAの低温特性は、その組成の大半を占める 比較例2の特性に似通ったものであると推認する。

上記推認が妥当であることは、甲9の実験結果が示すとおりである。すなわち、甲9の実験結果によれば、ケースAのCCS粘度は「7000」であり、その低温特性は、本願明細書に比較例として記載された態様と同等のレベルであることが理解される。ここで、前記アのとおり、本願発明の課題、特に、省燃費性と併せて考慮されるべき低温特性は、従来の潤滑油と同等のレベルではなく、それよりも著しく改善されたレベル(従来の潤滑油の特性を超えるレベル)に達しているか否かを基準に評価されるべきものであるところ、ケースAの低温特性は、比較例(従来の潤滑油)と同等のレベルであるといわざるを得ない。

- (イ) 以上のとおり、本願明細書の記載に接した当業者は、ケースAが本願発明の課題を解決できるレベルに達しているとは認識し得ない。
 - (3) 小括

以上によれば、本件審決のサポート要件に係る判断に誤りはない。

3 取消事由 3 (実施可能要件に係る判断の誤り) について [原告の主張]

(1) 法令解釈の誤り

本件審決は、特許法36条4項1号の「その実施をすることができる程度に明確かつ十分に、記載」を、「発明の課題を解決できることについて、当業者が理解できるように記載」と解釈している。

しかし、物の発明における発明の実施とは、その物を生産、使用等することをいうから、特許法36条4項1号の「その実施をすることができる」とは、その物を作ることができ、かつ、その物を使用できることを意味し、物の発明については、明細書にその物を生産する方法及び使用する方法についての具体的な記載が必要であるが、そのような記載がなくても、明細書及び図面の記載並びに出願当時の技術常識に基づき、当業者がその物を作ることができ、かつ、その物を使用できるのであれば、実施可能要件を満たすというべきである。

(2) ケースAは実施可能であること

仮に、本願明細書の記載に接した当業者において、実施可能性との関係で特にケースAを想定すべき事情があったとしても、当業者であれば、実施例1の潤滑油組成物と比較例2の潤滑油組成物を混合してケースAの潤滑油組成物を作ることができると認識する。また、ケースAの潤滑油組成物は、前記2 [原告の主張] (2) ウ(イ)のとおり、本願発明の課題に対応する効果を奏するものであるから(【0017】、【0114】)、当業者は、ケースAの潤滑油組成物を、そのような効果を奏するものとして使用することができる。

(3) 小括

以上によれば、本件審決の実施可能要件に係る判断は、誤りである。

〔被告の主張〕

(1) 実施可能要件の判断手法

本願発明は、「潤滑油組成物」という物の発明であるから、本願発明が実施可能であるというためには、本願明細書及び図面の記載並びに本願の出願当時の技術常識に基づき、当業者が、本願発明の潤滑油組成物を作ることができ、かつ、当該潤滑油組成物を使用できる必要があるところ、特に後者の「使用できる」といえるためには、発明の詳細な説明に、当該潤滑油組成物が、少なくとも何らかの技術上の意義のある態様で使用することができること(所期する作用効果を奏すること)を裏付ける記載を要するというべきである。

そして、本願発明の潤滑油組成物が、技術上の意義のある態様で使用することができるか否か、あるいは所期する作用効果を奏するか否かは、本願発明の課題が解決できるか否かにほかならない。

したがって、本願発明の課題が解決できるか否かの検討を踏まえて、実施可能要 件違反とした本件審決の判断に誤りはない。

(2) ケースAが実施可能であるとはいえないこと

前記2 [被告の主張] (2)のとおり、ケースAによって本願発明の課題は解決できないのであるから、当業者において、ケースAの潤滑油組成物を、所期の効果を奏するものとして使用することができるとする原告の主張は、失当である。

(3) 小括

以上によれば、本件審決の実施可能要件に係る判断に誤りはない。

第4 当裁判所の判断

- 1 本願発明について
- (1) 本願発明に係る特許請求の範囲(請求項1)は、前記第2の2記載のとおりであるところ、本願明細書(甲1、2、7)の発明の詳細な説明には、おおむね、次の記載がある。

ア 技術分野

【0001】本発明は潤滑油組成物に関する。

イ 背景技術

【0002】従来,内燃機関や変速機,その他機械装置には,その作用を円滑にするために潤滑油が用いられる。特に内燃機関用潤滑油(エンジン油)は内燃機関の高性能化,高出力化,運転条件の苛酷化などに伴い,高度な性能が要求される。したがって,従来のエンジン油にはこうした要求性能を満たすため,摩耗防止剤,金属系清浄剤,無灰分散剤,酸化防止剤などの種々の添加剤が配合されている。

【0003】近時、潤滑油に求められる省燃費性能は益々高くなっており、高粘度指数基油の適用や各種摩擦調整剤の適用などが検討されている…。

ウ 発明が解決しようとする課題

【0004】しかしながら、従来の潤滑油は、省燃費性と低温粘度特性との両立という点で、未だ改善の余地がある。

【0005】一般的な省燃費化の手法として,製品の動粘度の低減や,粘度指数向上つまり基油粘度の低減と粘度指数向上剤の添加を組み合わせることによるマルチグレード化などが知られている。しかしながら,製品粘度の低減や,基油粘度の低減は厳しい潤滑条件(高温高せん断条件)における潤滑性能を低下させ,摩耗や焼き付き,疲労破壊等の不具合が発生原因となることが懸念される。そこでそれらの不具合を防止し,耐久性を維持するために,高温高せん断粘度(HTHS粘度)を維持することが必要となる。つまり,実用性能を維持しながら,さらに省燃費性を付与するためには,150℃におけるHTHS粘度を維持し,40℃および100℃の動粘度および100℃におけるHTHS粘度を低減し,粘度指数を向上することが重要となる。

【0006】一方,CCS粘度やMRV粘度などの低温性能を向上するだけであれば,40 Cおよび 100 Cの動粘度の低減や,基油粘度を低減しつつ粘度指数向上剤を添加することによるマルチグレード化などを行えばよい。しかし,製品粘度の低減や基油粘度の低減は,厳しい潤滑条件(高温高せん断条件)における潤滑性能を低下させ,摩耗や焼き付き,疲労破壊等の不具合が発生原因となることが懸念される。なお,これらの不具合はポリー α -オレフィン系基油やエステル系基油等

の合成油や低粘度鉱油系基油などの低温粘度に優れる潤滑油基油を併用すればある程度解消できる。しかし、上記合成油は高価であり、他方、低粘度鉱油系基油は一般的に粘度指数が低くNOACK蒸発量が高い。そのため、それらの潤滑油基油を配合すると、潤滑油の製造コストが増加し、あるいは、高粘度指数化及び低蒸発性を達成することが困難となる。また、これら従来の潤滑油基油を用いる場合、省燃費性の改善には限界がある。

【0007】本発明は,このような実情に鑑みてなされたものであり,省燃費性と低温粘度に優れ,ポリー α ーオレフィン系基油やエステル系基油等の合成油や低粘度鉱油系基油を用いずとも,150℃における高温高せん断粘度を維持しながら,省燃費性と-35℃以下における低温粘度とを両立させることができ,特に潤滑油の40℃および100℃における動粘度および100℃におけるHTHS粘度を低減し,粘度指数を向上し,-35℃におけるCCS粘度を著しく改善できる潤滑油組成物を提供することを目的とする。

エ 課題を解決するための手段

【0008】上記課題を解決するために、本発明は、尿素アダクト値が2.5質量%以下であり且つ40℃における動粘度が25mm²/s以下、粘度指数が120以上である潤滑油基油成分を、基油全量基準で10質量%~100質量%含有する潤滑油基油と、下記一般式(1)で表される構造単位の割合が0.5~70モル%であるポリ(メタ)アクリレート系粘度指数向上剤と、を含有し、100℃における動粘度が4~12mm²/sであり、粘度指数が140~300であることを特徴とする潤滑油組成物を提供する。

【化1】(省略)

オ発明の効果

【 $0\ 0\ 1\ 7$ 】本発明の潤滑油組成物は、省燃費性と低温粘度特性に優れており、ポリー α ーオレフィン系基油やエステル系基油等の合成油や低粘度鉱油系基油を用いずとも、 $1\ 5\ 0$ $^{\circ}$ におけるHTHS粘度を維持しながら、省燃費性と $-3\ 5$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$

下における低温粘度とを両立させることができ、特に潤滑油の40 Cおよび100 Cの動粘度と100 CにおけるHTHS粘度を低減し、-35 CにおけるCCS粘度を著しく改善することができる。

カ 発明を実施するための最良の形態

- 【0020】本発明の潤滑油組成物は、尿素アダクト値が4質量%以下であり且つ40℃における動粘度が25mm²/s以下、粘度指数が120以上である潤滑油基油成分(以下、便宜的に「本発明に係る潤滑油基油成分」という。)を、基油全量基準で10質量%~100質量%含有する潤滑油基油(以下、便宜的に「本発明に係る潤滑油基油」という。)を含有する。
- 【0021】本発明に係る潤滑油基油成分は、尿素アダクト値、40℃における動粘度及び粘度指数が上記条件を満たすものであれば、鉱油系基油、合成系基油、または両者の混合物のいずれであってもよい。
- 【0022】本発明に係る潤滑油基油成分としては、粘度ー温度特性、低温粘度特性および熱伝導性の要求を高水準で両立させることが可能であることから、ノルマルパラフィンを含有する原料油を、尿素アダクト値が4質量%以下且つ粘度指数が120以上となるように、水素化分解/水素化異性化することにより得られる鉱油系基油または合成系基油、あるいは両者の混合物が好ましい。
- 【0023】本発明に係る潤滑油基油成分の尿素アダクト値は、粘度-温度特性を損なわずに低温粘度特性を改善し、かつ高い熱伝導性を得る観点から、上述の通り4質量%以下であることが必要であり、…さらに好ましくは2.5質量%以下である。…
- 【0024】また、本発明に係る潤滑油基油成分の40℃動粘度は、25 mm²/ s以下であることが必要であり、好ましくは22 mm²/ s以下…である。…潤滑油 基油成分の40℃動粘度が25 mm²/ sを超える場合には、低温粘度特性が悪化し、また十分な省燃費性が得られないおそれがあり、…。
 - 【0025】本発明に係る潤滑油基油成分の100℃動粘度は, 6.0mm²/s

以下であることが好ましく、…。…潤滑油基油成分の100 \mathbb{C} 動粘度が6.0 mm² / s を超える場合には、低温粘度特性が悪化し、また十分な省燃費性が得られないおそれがあり、2.5 mm² / s 以下の場合は潤滑箇所での油膜形成が不十分であるため潤滑性に劣り、また潤滑油組成物の蒸発損失が大きくなるおそれがある。

- 【0026】本発明に係る潤滑油基油成分の粘度指数は、低温から高温まで優れた粘度特性が得られるよう、また低粘度であっても蒸発しにくいためには、その値は120以上であることが必要であり、好ましくは125以上、…である。…
- 【0028】本発明に係る潤滑油基油成分の製造には、ノルマルパラフィンを含有する原料油を用いることができる。原料油は、鉱物油又は合成油のいずれであってもよく、あるいはこれらの2種以上の混合物であってもよい。…
- 【0033】上記の原料油について、得られる被処理物の尿素アダクト値が4質量%以下且つ粘度指数が100以上となるように、水素化分解/水素化異性化を行う工程を経ることによって、本発明に係る潤滑油基油成分を得ることができる。…
- 【0049】本発明に係る潤滑油基油成分の含有割合は、本発明に係る潤滑油基油の全量を基準として、 $10\sim100$ 質量%であり、好ましくは $30\sim98$ 質量%、より好ましくは $50\sim95$ 質量%、さらに好ましくは $70\sim93$ 質量%、最も好ましくは $80\sim95$ 質量%である。当該含有割合が10質量%未満の場合には、必要とする低温粘度、省燃費性能が得られないおそれがある。
- 【0050】本発明に係る潤滑油基油は、本発明に係る潤滑油基油成分のみで構成されていてもよいが、本発明に係る潤滑油基油成分以外の鉱油系基油、合成系基油又はこれらから選ばれる2種以上の潤滑油の任意混合物をさらに含有してもよい。ただし、本発明に係る潤滑油基油成分と他の潤滑油基油成分とを併用する場合、他の潤滑油基油成分の割合は、本発明に係る潤滑油基油の全量を基準として、90質量%以下とすることが必要である。
- 【0051】本発明に係る潤滑油基油成分と併用される他の潤滑油基油成分としては、特に制限されないが、鉱油系基油としては、例えば100℃における動粘度

が $1 \sim 100 \, \mathrm{mm}^2 / \mathrm{s}$ の溶剤精製鉱油、水素化分解鉱油、水素化精製鉱油、溶剤脱るう基油などが挙げられる。

【0054】また、本発明の潤滑油組成物に含まれるポリ(メタ)アクリレート系粘度指数向上剤は、下記一般式(1)で表される(メタ)アクリレート構造単位の1種または2種以上を、0.5~70モル%含有するもの(以下、便宜的に「本発明に係る粘度指数向上剤」という。)である。本願発明において用いる(A)ポリ(メタ)アクリレート系粘度指数向上剤としては、非分散型あるいは分散型のいずれであっても良いが、分散型であることがより好ましい。

【化2】(省略)

【0075】本発明に係る粘度指数向上剤の含有量は、組成物全量基準で、好ましくは0.1~50質量%、より好ましくは0.5~40質量%、更に好ましくは1~30質量%、特に好ましくは5~20質量%である。粘度指数向上剤の含有量が0.1質量%より少なくなると、粘度指数向上効果や製品粘度の低減効果が小さくなることから、省燃費性の向上が図れなくなるおそれがある。また、50質量%よりも多くなると、製品コストが大幅に上昇すると共に、基油粘度を低下させる必要が出てくることから、厳しい潤滑条件(高温高せん断条件)における潤滑性能を低下させ、摩耗や焼き付き、疲労破壊等の不具合が発生原因となることが懸念される。

【0104】本発明の潤滑油組成物の100℃における動粘度は、 $4\sim12\,\mathrm{mm}^2$ /sであることが必要であり、…特に好ましくは $6\sim8\,\mathrm{mm}^2$ /sである。100℃における動粘度が $4\,\mathrm{mm}^2$ /s未満の場合には、潤滑性不足を来たすおそれがあり、 $12\,\mathrm{mm}^2$ /sを超える場合には必要な低温粘度および十分な省燃費性能が得られないおそれがある。

【0105】本発明の潤滑油組成物の40℃における動粘度は、 $4\sim50\,\mathrm{mm}^2/\mathrm{s}$ であることが好ましく、…特に好ましくは27 $\sim32\,\mathrm{mm}^2/\mathrm{s}$ である。40℃における動粘度が $4\,\mathrm{mm}^2/\mathrm{s}$ 未満の場合には、潤滑性不足を来たすおそれがあり、5

 $0 \text{ mm}^2 / \text{s}$ を超える場合には必要な低温粘度および十分な省燃費性能が得られないおそれがある。

【0106】本発明の潤滑油組成物の粘度指数は、140~300の範囲であることが必要であり、…特に好ましくは220以上である。本発明の潤滑油組成物の粘度指数が140未満の場合には、HTHS粘度を維持しながら、省燃費性を向上させることが困難となるおそれがあり、さらに−35℃における低温粘度を低減させることが困難となるおそれがある。また、本発明の潤滑油組成物の粘度指数が300以上の場合には、低温流動性が悪化し、更に添加剤の溶解性やシール材料との適合性が不足することによる不具合が発生するおそれがある。

【0107】本発明の潤滑油組成物の100℃におけるHTHS粘度は、3.0~5.5 mm²/s であることが好ましく、…最も好ましくは4.3~4.7 mm²/s である。…100℃における動粘度が3.0 mm²/s 未満の場合には、潤滑性不足を来たすおそれがあり、5.5 mm²/s を超える場合には必要な低温粘度および十分な省燃費性能が得られないおそれがある。

【0108】本発明の潤滑油組成物の150℃におけるHTHS粘度は,2.0~3.5 mm²/s であることが好ましく,…特に好ましくは2.5~2.7 mm²/s である。…150℃における動粘度が2.0 mm²/s 未満の場合には,潤滑性不足を来たすおそれがあり,3.5 mm²/s を超える場合には必要な低温粘度および十分な省燃費性能が得られないおそれがある。

キ実施例

【0110】(実施例1~2, 比較例1~4)実施例1~2及び比較例1~4においては、それぞれ以下に示す基油を用いて表2に示す組成を有する潤滑油組成物を調製した。基油O-1, O-2の性状を表1に示す。

(基油)

O-1 (基油1):n-パラフィン含有油を水素化分解/水素化異性化した鉱油

〇-2 (基油2):水素化分解基油

(添加剤)

- A-1 (粘度指数向上剤1):分散型ポリメタアクリレート(メチルメタクリレート及びジメチルアミノエチルメタクリレートを合計して70モル%,一般式(2)中の R^2 が炭素数16のアルキル基であるメタクリレート,一般式(2)中の R^2 が炭素数18のアルキル基であるメタクリレート及び一般式(2)中の R^2 が炭素数20のアルキル基であるメタクリレートを合計して20モル%,並びに,一般式(2)中の R^2 が炭素数22の分岐鎖状アルキル基であるメタクリレートを10モル%,を重合させて得られる共重合体。MW=400,000,Mw/Mn=2.2,PSSI=20, $Mw/PSSI比=2\times10^4$)
- A-2 (粘度指数向上剤 2) : 非分散型ポリメタクリレート(メチルメタアクリレートと、一般式(3)中の R^4 が炭素数 1 2のアルキル基であるメタアクリレートと、一般式(3)中の R^4 が炭素数 1 3のアルキル基であるメタアクリレートと、一般式(3)中の R^4 が炭素数 1 4のアルキル基であるメタアクリレートと、一般式(3)中の R^4 が炭素数 1 5のアルキル基であるメタアクリレートとを重合させて得られる共重合体。Mw=80、000、Mw/Mn=2. 7、PSSI=5、Mw/PSSI比=2×10⁴)
- A-3 (粘度指数向上剤3):分散型ポリメタクリレート(メチルメタアクリレートと、一般式(3)中の R^4 が炭素数12のアルキル基であるメタアクリレートと、一般式(3)中の R^4 が炭素数13のアルキル基であるメタアクリレートと、一般式(3)中の R^4 が炭素数14のアルキル基であるメタアクリレートと、一般式(3)中の R^4 が炭素数15のアルキル基であるメタアクリレートおよびジメチルアミノエチルメタクリレートとを重合させて得られる共重合体。Mw=300,000, Mw/Mn=4.0,PSSI=40,Mw/PSSI比=7500)
 - B-1 (無灰系摩擦調整剤1): グリセリンモノオレエート
 - B-2 (無灰系摩擦調整剤2):オレイルウレア
 - C-1 (その他の添加剤):添加剤パッケージ(金属清浄剤,無灰分散剤,酸化

防止剤, 摩耗防止剤, 流動点降下剤, 消泡剤等を含む)。

【0111】【表1】(別紙本願明細書図表目録のとおり)

- 【0112】 [潤滑油組成物の評価] 実施例 $1\sim2$ 及び比較例 $1\sim4$ の各潤滑油組成物について,40 \mathbb{C} 又は100 \mathbb{C} における動粘度,粘度指数,40 \mathbb{C} 又は10 \mathbb{C} \mathbb{C} におけるHTHS粘度,並びに-35 \mathbb{C} におけるCCS粘度を測定した。各物性値の測定は以下の評価方法により行った。得られた結果を表1 に示す。
 - (1) 動粘度:ASTM D-445
 - (2) HTHS粘度: ASTM D4683
 - (3) CCS粘度: ASTM D5293

【0113】【表2】(別紙本願明細書図表目録のとおり)

- 【0114】★表2に示したように、実施例1~2及び比較例1~4の潤滑油組成物は150℃におけるHTHS粘度が同程度のものであるが、比較例1~4の潤滑油組成物に比べて、実施例1~2の潤滑油組成物は、40℃動粘度、100℃動粘度、100℃計工日の大力では100℃に大力であるが、低温粘度および粘度温度特性が良好であった。この結果から、本発明の潤滑油組成物が、省燃費性と低温粘度に優れ、ポリーαーオレフィン系基油やエステル系基油等の合成油や低粘度鉱油系基油を用いずとも、150℃における高温高せん断粘度を維持しながら、省燃費性と一35℃以下における低温粘度とを両立させることができ、特に潤滑油の40℃および100℃における動粘度を低減し、粘度指数を向上し、一35℃におけるCCS粘度を著しく改善できる潤滑油組成物であることがわかる。
- (2) 前記(1)の記載によれば、本願明細書には、本願発明に関し、以下の点が開示されているものと認められる。

ア 本願発明は、潤滑油組成物に関する(【0001】)。

内燃機関用潤滑油(エンジン油)は、内燃機関の高性能化、高出力化、運転条件の苛酷化などに伴い、高度な性能が要求されるところ、近時、潤滑油に求められる省燃費性能も益々高くなっている(【0002】、【0003】)。

一般的な省燃費化の手法として、製品の動粘度の低減や、基油粘度の低減と粘度 指数向上剤の添加を組み合わせることによるマルチグレード化などが知られている が、製品粘度の低減や、基油粘度の低減は、厳しい潤滑条件における潤滑性能を低 下させ、摩耗や焼き付き、疲労破壊等の不具合の発生原因となることが懸念される。 そこで、実用性能(150℃HTHS粘度)を維持しながら、さらに省燃費性を向 上すること (40℃動粘度, 100℃動粘度, 100℃HTHS粘度の低減) が重 要となる(【0005】)。また、ССS粘度やMRV粘度などの低温性能を向上 するだけであれば、40 ℃及び100 ℃の動粘度の低減や、基油粘度を低減しつつ 粘度指数向上剤を添加することによるマルチグレード化などを行えばよいが、製品 粘度の低減や基油粘度の低減は、厳しい潤滑条件における潤滑性能を低下させ、摩 耗や焼き付き、疲労破壊等の不具合の発生原因となることが懸念される。これらの 不具合は、ポリーαーオレフィン系基油やエステル系基油等の合成油や低粘度鉱油 系基油などを併用すればある程度解消できるが、それらの潤滑油基油を配合すると、 潤滑油の製造コストが増加し,あるいは,高粘度指数化及び低蒸発性を達成するこ とが困難となる(【0006】)。以上のとおり、従来の潤滑油は、実用性能(1 50℃HTHS粘度)を維持しながら、さらに省燃費性(40℃動粘度、100℃ 動粘度、100℃HTHS粘度の低減)と低温粘度特性(CCS粘度やMRV粘度 の低減)とを両立するという点で、いまだ改善の余地があった(【0004】)。

イ 本願発明は、前記アの事情に鑑みて、省燃費性と低温粘度に優れ、ポリー α ーオレフィン系基油やエステル系基油等の合成油や低粘度鉱油系基油を用いずとも、150 Cにおける高温高せん断粘度を維持しながら、省燃費性と-35 C以下における低温粘度とを両立させることができ、特に潤滑油の40 C及び100 Cにおける動粘度並びに100 CにおけるHTHS粘度を低減し、粘度指数を向上し、-35 CにおけるCCS粘度を著しく改善できる潤滑油組成物を提供することを目的とし(【0007】)、かかる課題の解決手段として、特許請求の範囲の請求項1に記載の構成を採用したものである(【0008】、【0020】、【0049】、

[0054]).

ウ 本願発明の潤滑油組成物は、省燃費性と低温粘度特性に優れており、ポリー α -オレフィン系基油やエステル系基油等の合成油や低粘度鉱油系基油を用いずとも、150 CにおけるHTHS粘度を維持しながら、省燃費性と-35 C以下における低温粘度とを両立させることができ、特に潤滑油の40 C及び100 Cの動粘度と100 CにおけるHTHS粘度を低減し、-35 CにおけるCCS粘度を著しく改善することができるという効果を奏する(【0017】、【0104】~【0108】)。

- 2 取消事由1 (手続違背) について
- (1) 原告は、サポート要件及び実施可能要件を満たしていないとする根拠が、本件審決と本件拒絶理由通知とでは異なっているところ、本件拒絶理由通知に接した原告において、特に、潤滑油基油成分に相当する「基油1」の含有量が15%である「ケースA」を想定すべき事情は存しないから、「ケースAの潤滑油組成物は所望の低温特性を示さない」ことを根拠とするサポート要件及び実施可能要件違反の拒絶理由を通知することなくなされた本件審決に係る手続は、特許法159条2項で準用する同法50条に違背する旨主張する。
 - (2) 証拠(甲6,8)によれば,以下の事実が認められる。

ア 特許庁は、原告に対し、平成27年6月3日付け拒絶理由通知書(甲6)により、本願について拒絶をすべき理由として、請求項1ないし5に係る特許請求の範囲の記載が、特許法36条6項1号に規定する要件を満たしていないこと、請求項1ないし5に係る発明について、発明の詳細な説明の記載が、同条4項1号に規定する要件を満たしていないこと等を通知した(本件拒絶理由通知)。

上記通知書には、特許法36条6項1号及び同条4項1号に規定する要件を満たしていない点として、①本願明細書の発明の詳細な説明の記載を検討しても、本願発明の発明特定事項の「尿素アダクト値が4質量%以下であり且つ40℃における動粘度が25mm²/s以下、粘度指数が120以上である潤滑油基油成分を、基油

全量基準で10質量%~100質量%含有する潤滑油基油と下記一般式(1)で表される構造単位の割合が0. $5\sim70$ モル%であるポリ(メタ)アクリレート系粘度指数向上剤と、を含有し、100℃における動粘度が $4\sim12\,\mathrm{mm}^2/\mathrm{s}$ であり、粘度指数が140~300である」ことと課題の解決(【0007】)との関係(作用機序)が記載されておらず、②実施例に係る記載を検討しても、潤滑油基油成分O-1を基油全量基準で100質量%及び70質量%含有し、粘度指数向上剤としての「A-1」を潤滑油組成物全体で12質量%及び11. 4質量%含み、100℃における動粘度が7. $5\,\mathrm{mm}^2/\mathrm{s}$ であり、粘度指数が244及び229であるものに限られ、当該実施例に係る記載に基づき、本願の各請求項に係る発明が包含し得る実施態様の全てについてまで、本願発明の課題を解決できるものと認識することはできないことが記載されている。

イ 原告は、特許庁に対し、平成27年8月10日、本件拒絶理由通知に対する 意見書(甲8)を提出した。

上記意見書には、本件補正後の特許請求の範囲の記載及び発明の詳細な説明の記載は特許法36条6項1号及び同条4項1号に規定する各要件を満たしているとして、前記アの拒絶理由に対し、①本願明細書には、「尿素アダクト値が4質量%以下(または2.5質量%)であり且つ40℃における動粘度が25mm²/s以下、粘度指数が120以上である潤滑油基油成分を、基油全量基準で10質量%~100質量%含有する潤滑油基油と、下記一般式(1)で表される構造単位の割合が0.5~70モル%であるポリ(メタ)アクリレート系粘度指数向上剤と、を含有し、100℃における動粘度が4~12mm²/sであり、粘度指数が140~300である潤滑油組成物」が、本願発明の課題(【0007】)に対応する効果を奏するものであることが記載されており(【0017】、【0110】~【0114】等)、潤滑油基油の尿素アダクト値についての記載(【0010】、【0023】等)、40℃における動粘度についての記載(【0024】、【0026】)、本願発明に係る潤滑油基油成分の含有割合についての記載(【0049】)、ポリ

(メタ) アクリレート系粘度指数向上剤についての記載(【0054】~【0075】),100℃における動粘度についての記載(【0104】),粘度指数についての記載(【0106】)から,当業者であれば,本願発明の発明特定事項と課題の解決との関係(作用機序)を容易に理解することができ,②サポート要件の判断にあたって,実施例以外にさらに具体例の記載を求められるべき理由はなく,また,本願発明に係る潤滑油基油成分のうち実施例以外のものを使用できると認識できない事情もないこと,③本願明細書には,「尿素アダクト値が4質量%以下であり且つ40℃における動粘度が25mm²/s以下,粘度指数が120以上である潤滑油基油成分を,基油全量基準で10質量%~100質量%含有する潤滑油基油と下記一般式(1)で表される構造単位の割合が0.5~70モル%であるポリ(メタ)アクリレート系粘度指数向上剤と,を含有し,100℃における動粘度が4~12mm²/sであり,粘度指数が140~300である」ことと課題の解決との関係を,具体例の開示がなくても当業者に理解できる程度の記載がある上,かかる技術事項と課題解決との関係を裏付ける実施例も開示されているのであるから,サポート要件を満たしていること等が記載されている。

(3) 本件審決は、サポート要件及び実施可能要件について、前記第2の3(2)及び(3)のとおり判断したものであるところ、その理由は、要するに、本願発明に包含される具体的な潤滑油組成物である実施例1(15質量%)と比較例2(85質量%)との混合物である「ケースA」を想定し、当該「ケースA」について本願発明の課題を解決できることを当業者において理解することはできないから、本願発明の課題が解決できることを本願発明の全範囲にまで一般化できず、本願発明はサポート要件及び実施可能要件を満たさないというものである。

ここで、上記「ケースA」は、組成物全量中に粘度指数向上剤や、その他の添加剤を含むことを踏まえて計算すると、本発明に係る潤滑油基油成分に相当する「基油1」を基油全量基準で約14%含有する潤滑油基油と、本発明に係る粘度指数向上剤とを含有し、100%における動粘度が $4\sim12\,\mathrm{mm}^2/\mathrm{s}$ であり、粘度指数が

140~300である潤滑油組成物であると認められるから、拒絶理由通知書(甲 6) に記載されていた「実施例に係る記載を検討しても、潤滑油基油成分〇-1を 基油全量基準で100質量%及び70質量%含有し、粘度指数向上剤としての「A -1 を潤滑油組成物全体で12質量%及び11.4質量%含み、100℃におけ る動粘度が $7.5 \text{ mm}^2 / \text{ s}$ であり、粘度指数が 244 及び 229 であるものに限ら れ、当該実施例に係る記載に基づき、本願の各請求項に係る発明が包含し得る実施 態様の全てについてまで、本願発明の課題を解決できるものと認識することはでき ない」との点(前記(2)ア②)における「本願の各請求項に係る発明が包含し得る実 施態様」の具体例に該当するということができる。そして、本件審決は、「本願明 細書の【0049】及び【0050】には、本発明に係る潤滑油基油成分の含有割 合が10質量%未満となる場合について言及されているものの、例えば、全ての実 施例における含有量である70質量%又は100質量%から大きく離れた下限値で ある10質量%の近傍において,例えば,実施例1及び2と同様な低温特性を示す であろうことについて,首肯し得る合理的な説明がされていないこと」をも踏まえ, 「ケースA」について本願発明の課題を解決できることを当業者において理解する ことはできないと判断するものである。

そうすると、本件審決におけるサポート要件及び実施可能要件違反に係る判断の理由は、拒絶理由通知書(甲6)に記載されていた内容(前記(2)ア②)と異なるものとはいえず、本件審決が本件拒絶理由通知と異なる理由について判断したものということはできない。

そして、拒絶理由通知書には、上記内容(前記(2)ア②)が記載されていたところ、これは、本発明の潤滑油基油成分の含有割合の点において、本発明に係る潤滑油基油成分を基油全量基準で70質量%又は100質量%含有する本願明細書に記載された実施例とは大きく異なり、その割合が特許請求の範囲に記載された「基油全量基準で10質量%~100質量%」という数値範囲の下限値に、より近いような潤滑油組成物についても、本願発明の課題を解決できるものと認識することはできな

い旨を指摘するものであるということができるから、本発明の潤滑油基油成分の含有割合が基油全量基準で10質量%という下限値に、より近いような潤滑油組成物についても、本願発明の課題を解決できるとする根拠について、反論する機会があったというべきである。なお、この点は、原告において、具体的に「ケースA」を想定し、又は想定すべきであったか否かにかかわらない。

- (4) 以上によれば、本件審決に係る手続に、特許法159条2項で準用する同法 50条の違反があったということはできない。よって、取消事由1は、理由がない。
 - 3 取消事由2 (サポート要件に係る判断の誤り) について
- (1) 特許請求の範囲の記載がサポート要件に適合するか否かは、特許請求の範囲の記載と発明の詳細な説明の記載とを対比し、特許請求の範囲に記載された発明が、発明の詳細な説明に記載された発明で、発明の詳細な説明の記載により当業者が当該発明の課題を解決できると認識できる範囲のものであるか否か、また、発明の詳細な説明に記載や示唆がなくとも当業者が出願時の技術常識に照らし当該発明の課題を解決できると認識できる範囲のものであるか否かを検討して判断すべきものと解される。

(2) 特許請求の範囲の記載

本願発明の特許請求の範囲の記載は、前記第2の2記載のとおりである。すなわち、本願発明は、潤滑油基油と粘度指数向上剤を含み、「100℃における動粘度が4~12mm²/sであり、粘度指数が140~300である」潤滑油組成物であって、一般式(1)で表される構造単位の割合が0.5~70モル%であるポリ(メタ)アクリレート系粘度指数向上剤と、当該潤滑油基油は、「尿素アダクト値が2.5質量%以下であり且つ40℃における動粘度が25mm²/s以下、粘度指数が120以上である潤滑油基油成分」(本発明に係る潤滑油基油成分)を、「基油全量基準で10質量%~100質量%」含有することが特定されたものである。

(3) 発明の詳細な説明の記載

ア 本願明細書の発明の詳細な説明には、前記1(2)のとおり、本願発明は、従来

の潤滑油が、実用性能(150℃HTHS粘度)を維持しながら、さらに省燃費性 (40℃動粘度,100℃動粘度,100℃HTHS粘度の低減)と低温粘度特性 (CCS粘度やMRV粘度の低減)とを両立するという点で、いまだ改善の余地が あったという事情に鑑みて、省燃費性と低温粘度に優れ、ポリーαーオレフィン系 基油やエステル系基油等の合成油や低粘度鉱油系基油を用いずとも、150℃にお ける高温高せん断粘度を維持しながら、省燃費性と-35℃以下における低温粘度 とを両立させることができ、特に潤滑油の40℃及び100℃における動粘度並び に100℃におけるHTHS粘度を低減し、粘度指数を向上し、-35℃における CCS粘度を著しく改善できる潤滑油組成物を提供することを目的とし、特許請求 の範囲の請求項1に記載の構成を採用することにより、省燃費性と低温粘度特性に 優れており,ポリーαーオレフィン系基油やエステル系基油等の合成油や低粘度鉱 油系基油を用いずとも、150℃におけるHTHS粘度を維持しながら、省燃費性 と-35 ℃以下における低温粘度とを両立させることができ、特に潤滑油の40 ℃ 及び100 Cの動粘度と100 CにおけるHTHS粘度を低減し,-35 Cにおけ るCCS粘度を著しく改善することができるという効果を奏するものであることが 記載されている。

イ また、【0021】ないし【0024】及び【0026】には、「本発明に係る潤滑油基油成分」の尿素アダクト値、40℃動粘度及び粘度指数は、本願発明に係る潤滑油組成物の低温粘度特性、省燃費性、粘度ー温度特性などと密接な関係があることが記載されていることから、「本発明に係る潤滑油基油成分」と「その他の潤滑油基油成分」を混合した「潤滑油基油」全体の尿素アダクト値、40℃動粘度及び粘度指数などの物性値も、同様に、本願発明に係る潤滑油組成物の低温粘度特性、省燃費性、粘度ー温度特性などの物性と密接な関係があることが理解できる。

ウ 前記アによれば、本願発明の課題に関連する潤滑油組成物の物性は、150 ℃HTHS粘度、40 ℃動粘度、100 ℃動粘度、100 ℃ 動粘度、100 ℃ 動料度、100 ℃ 助料度、100 ℃ 为 100 ℃ 助料度、100 ℃ 为 100 ℃ 为 1000 № 1000 → 10000 → 10000 → 10000 → 10000 → 10000 → 10000 → 10000 → 10000 → 10000 → 10000 → 10000 → 10000 → 100000 → 100000 → 100000 → 1000

℃CCS粘度及び粘度指数であるところ、本願明細書には、150℃HTHS粘度が2.6となるように調製した実施例1及び2並びに比較例1ないし4の各潤滑油組成物について、40℃動粘度(mm^2/s)、100℃動粘度(mm^2/s)、粘度指数、100℃HTHS粘度($mPa \cdot s$)、150℃HTHS粘度($mPa \cdot s$)、150℃HTHS粘度($mPa \cdot s$)、150℃HTHS粘度($mPa \cdot s$)。

そして、【0114】には、実施例1及び2は、比較例1ないし4に比べて、40℃動粘度、100℃動粘度、100℃HTHS粘度及びCCS粘度が低く、低温粘度及び粘度温度特性が良好であったこと、実施例1及び2の上記評価結果に基づき、本願発明の潤滑油組成物が、省燃費性と低温粘度に優れ、ポリー α ーオレフィン系基油やエステル系基油等の合成油や低粘度鉱油系基油を用いずとも、150℃における高温高せん断粘度を維持しながら、省燃費性と-35℃以下における低温粘度とを両立させることができ、特に潤滑油の40℃及び100℃における動粘度を低減し、粘度指数を向上し、-35℃におけるCCS粘度を著しく改善できる潤滑油組成物であることが分かることが記載されているから、上記記載から、実施例1及び2は、本願発明の課題を解決できるものであるのに対し、比較例1ないし4は、本願発明の課題を解決できないものであることが理解できる。

エ また、実施例と比較例は全て、潤滑油としての実用性能を表す150 CHT HS粘度が「2.6」となるように調製されたものである(【表2】)。そこで、実施例1及び2と比較例 $1\sim4$ において、150 CHTHS粘度以外の物性値をみると、①本願明細書には、潤滑油組成物の40 C動粘度は、 $4\sim50$ mm²/sであることが好ましく、特に好ましくは $27\sim32$ mm²/sであることが記載されているところ(【0105】)、40 C動粘度は、実施例1及び2では「 $29\sim30$ 」の範囲に、比較例1ないし4では「 $33\sim41$ 」の範囲にあり、②本願明細書には、潤滑油組成物の100 C動粘度は、 $4\sim12$ mm²/sであることが必要であり、特に好ましくは、 $6\sim8$ mm²/sであることが記載されているところ(【010

4】),100℃動粘度は,実施例1及び2では「7.5」であり,比較例1ないし4では「7.7~8.9」の範囲にあり,③本願明細書には,潤滑油組成物の粘度指数は,140~300の範囲であることが必要であり,特に好ましくは220以上であることが記載されているところ(【0106】),粘度指数は,実施例1及び2では「229~244」の範囲に,比較例1ないし4では「177~216」の範囲にあり,④本願明細書には,潤滑油組成物の100℃におけるHTHS粘度は,3.0~5.5mPa・sであることが好ましく,最も好ましくは4.3~4.7mPa・sであることが記載されているところ(【0107】),100℃HTHS粘度は,実施例1及び2では「4.5~4.6」の範囲に,比較例1ないし4では「4.8~5.3」の範囲にあり,⑤-35℃CCS粘度は,実施例1及び2では「3200~3400」の範囲に,比較例1及び2では「6700~8000」の範囲にあり,これらの物性値において,実施例1及び2の数値の方が,比較例1ないし4の数値よりも優れていることが分かる。

そうすると、前記ウのとおり、実施例1及び2は、本願発明の課題を解決できるものであるのに対し、比較例1ないし4は、本願発明の課題を解決できないものであるところ、本願発明の課題を解決することができるというためには、150 $^{\circ}$ THS粘度が2.6となるように潤滑油組成物を調製した場合に、40 $^{\circ}$ 動粘度、100 $^{\circ}$ 動粘度、 $^{\circ}$ 100 $^{\circ}$ 動粘度、 $^{\circ}$ 100 $^{\circ}$ 動粘度、 $^{\circ}$ 100 $^{\circ}$ 動粘度、 $^{\circ}$ 100 $^{\circ}$ 助粘度、 $^{\circ}$ 100 $^{\circ}$ 助料度、 $^{\circ}$ 100 $^{\circ}$ 为制度、 $^{\circ}$ 为制度、

オ さらに、【表 2 】をみると、実施例 1 及び 2 並びに比較例 1 ないし 4 は、いずれも「100℃動粘度が $4\sim12\,\mathrm{mm}^2/\mathrm{s}$ 、粘度指数が $140\sim300$ 」という本願発明の発明特定事項を満たすものであるが、前記ウのとおり、実施例 1 及び 2 は、本願発明の課題を解決できるものであるのに対し、比較例 1 ないし 4 は、本願発明の課題を解決できないものであるとされていることから、実施例 1 及び 2 と比較例 1 ないし 4 の各潤滑油組成物の物性の違いは、含有する「潤滑油基油」の物性

及び粘度指数向上剤の違いによるものであることが理解できる。

ここで、実施例と比較例のうち「本発明に係る粘度指数向上剤」に相当する「粘度指数向上剤1」を用いた実施例1及び2と比較例1に着目すると、【表2】によれば、本願発明の特許請求の範囲に含まれる実施例1及び2の「潤滑油基油」は、「本発明に係る潤滑油基油成分」である基油1を100質量%含有する潤滑油基油(実施例1)、又は基油1を70質量%と比較例1で用いた基油2を30質量%含有する潤滑油基油(実施例2)であることから、「潤滑油基油」が「本発明に係る潤滑油基油成分」を70~100重量%含むものについて、「本発明に係る潤滑油基油成分」と同じかそれに近い物性を有し、本願発明の課題を解決できることを理解することができる。

(4) 本願発明の課題を解決できると認識できる範囲

前記(3)によれば、本願明細書の記載に接した当業者は、「本発明に係る潤滑油基油成分」を70質量% ~ 100 質量%程度多量に含む、「本発明に係る潤滑油基油成分」と同じかそれに近い物性の「潤滑油基油」を使用し、一般式(1)で表される構造単位の割合が $0.5\sim 70$ モル%であるポリ(メタ) アクリレート系粘度指数向上剤(「本発明に係る粘度指数向上剤」)を添加して、100 Cにおける動粘度が $4\sim 12$ mm²/s、粘度指数が $140\sim 300$ とした潤滑油組成物は、本願発明の課題を解決できるものと認識できる。

他方、本願発明は、「本発明に係る潤滑油基油成分と併用される他の潤滑油基油成分としては、特に制限されない」ものであるところ(【0051】)、一般に、複数の潤滑油基油成分を混合して潤滑油基油とする場合、少量の潤滑油基油成分の物性から、潤滑油基油全体の物性を予測することは困難であるという技術常識に照らすと、本願明細書の【0049】や【0050】の記載から、直ちに当業者において、「本発明に係る潤滑油基油成分」の基油全量基準の含有割合が少なく、特許請求の範囲に記載された「基油全量基準で10質量%~100質量%」という数値範囲の下限値により近いような「潤滑油基油」であっても、その含有割合が70質

量%~100質量%程度と多い「潤滑油基油」と、本願発明の課題との関連において同等な物性を有すると認識することができるということはできない。しかるに、本願明細書には、この点について、合理的な説明は何ら記載されていない。

(5) 本願発明のサポート要件適合性

本願発明は、前記(2)のとおり、「本発明に係る潤滑油基油成分」を、「基油全量基準で10質量%~100質量%」含有することが特定されたものであるが、前記(4)のとおり、当業者において、本願明細書の発明の詳細な説明の記載から、「本発明に係る潤滑油基油成分」の基油全量基準の含有割合が少なく、特許請求の範囲に記載された「基油全量基準で10質量%~100質量%」という数値範囲の下限値により近いような「潤滑油基油」であっても、本願発明の課題を解決できると認識するということはできない。

また、「本発明に係る潤滑油基油成分」の基油全量基準の含有割合が少なく、特許請求の範囲に記載された「基油全量基準で10質量%~100質量%」という数値範囲の下限値により近いような「潤滑油基油」であっても、本願発明の課題を解決できることを示す、本願の出願当時の技術常識の存在を認めるに足りる証拠はない。

したがって、本願発明の特許請求の範囲は、本願明細書の発明の詳細な説明の記載により、当業者が本願発明の課題を解決できると認識できる範囲内のものということはできず、サポート要件を充足しないといわざるを得ない。

(6) 原告の主張について

ア 原告は、本件審決が、「ケースA」を想定し、当該「ケースA」について本願発明の課題を解決できることを当業者において理解することはできないから、本願発明の課題が解決できることを本願発明の全範囲にまで一般化できず、本願発明はサポート要件を満たさない旨判断したことに関し、本願明細書の記載に接した当業者において、本願発明の課題との関係で特に「ケースA」を想定すべき事情は全く存在しないから、当業者が、「ケースA」を想定し、本願発明の課題を解決でき

ないと認識することはないし、そもそも、想定した「実施例の組成物と比較例の組成物の混合物」が実施例の組成物よりも特性に劣るならば、特許出願はサポート要件を満たしていないとする判断手法では、組成物の発明に係る特許出願はおおむね拒絶されることになり、特許法の目的に反する旨主張する。

「ケースA」は、本件審決が、本願発明について、特に潤滑油基油について着目した上で、本願明細書の実施例1に係る潤滑油組成物と比較例2に係る潤滑油組成物とを、15%:85%の割合で混合した基油を想定したものであるところ、本願明細書に記載された実施例1及び2並びに比較例1ないし4は、いずれも、基油1及び2並びに添加剤を用いて調製された潤滑油組成物であって(【0110】)、潤滑油組成物を用いて調製されたものではないにもかかわらず、本願明細書に接した当業者において、本願明細書に記載された実施例等の調製方法とは異なり、潤滑油組成物である実施例1及び比較例2を混合した潤滑油組成物や、そこに含有される潤滑油基油を普通に想定するとは考え難い。したがって、「ケースA」の潤滑油組成物が本願発明の発明特定事項を備えるものであるとしても、本件審決が、本願発明のサポート要件適合性を判断するについて、上記のように、本願明細書に接した当業者が普通に想定するとは考え難い「ケースA」を想定し、これについて発明の課題を解決できるか否かを検討した点は、不適切であるといわざるを得ない。

しかし、特許請求の範囲の記載がサポート要件に適合するというためには、特許請求の範囲に記載された発明が、発明の詳細な説明の記載及び出願時の技術常識に照らし、当業者が当該発明の課題を解決できると認識できる範囲のものでなければならない。本願発明は、特許請求の範囲において、「本発明に係る潤滑油基油成分」の含有割合が「基油全量基準で10質量%~100質量%」であることを特定するものである以上、当該数値の範囲において、本願発明の課題を解決できることを当業者が認識することができなければ、本願発明はサポート要件に適合しないということになるところ、当業者において、本願明細書の発明の詳細な説明の記載から、「本発明に係る潤滑油基油成分」の基油全量基準の含有割合が少なく、上記数

値範囲の下限値により近いような「潤滑油基油」であっても、本願発明の課題を解決できると認識するということができないことは、前記(5)のとおりである。

そして、「ケースA」は、本発明の潤滑油基油成分に相当する「基油1」を基油全量基準で約14%含有する潤滑油基油と、「本発明に係る粘度指数向上剤」とを含有し、100℃における動粘度が4~12mm²/sであり、粘度指数が140~300である潤滑油組成物であると認められるところ、本件審決は、「本願明細書の【0049】及び【0050】には、本発明に係る潤滑油基油成分の含有割合が10質量%未満となる場合について言及されているものの、例えば、全ての実施例における含有量である70質量%又は100質量%から大きく離れた下限値である10質量%の近傍において、例えば、実施例1及び2と同様な低温特性を示すであろうことについて、首肯し得る合理的な説明がされていないこと」をも踏まえ、「ケースA」について本願発明の課題を解決できることを当業者において理解することはできないと判断するものであって、上記は、本願発明における「本発明に係る潤滑油基油成分」の含有割合が「基油全量基準で10質量%」という数値範囲の下限値に、より近いような「潤滑油基油」であっても、本願発明の課題を解決できることを当業者において認識することができないことを述べるものと解することができる。

以上によれば、本件審決が「ケースA」を想定し、これについて発明の課題を解決できるか否かを検討した点は不適切であるといわざるを得ないが、これを理由に、直ちに本件審決に取り消すべき違法があるということはできない。

イ 原告は、本件審決では、ケースAの潤滑油組成物により本願発明の課題が解決されるか否かを検討するのではなく、ケースAの潤滑油組成物が実施例1及び2の潤滑油組成物と同様の低温特性を示すか否かが検討されているが、これを検討したところで、本願明細書が、当業者において、ケースAの場合について、本願発明の課題を解決できることが理解されるように記載されているとはいえないとの結論には至らない旨主張する。

前記アのとおり、本件審決が「ケースA」を想定し、これについて発明の課題を解決できるか否かを検討した点は、不適切であるといわざるを得ないが、これを理由に、直ちに本件審決に取り消すべき違法があるということはできない。

また、本願明細書の記載によれば、前記(3) エのとおり、本願発明の課題を解決できるというためには、150 CHTHS粘度が 2.6 となるように潤滑油組成物を調製した場合に、40 C動粘度、100 C動粘度、100 CHTHS粘度,-35 CCCS粘度及び粘度指数の数値を総合的に検討した結果、比較例 1 ないし4で代表される従来の技術水準を超えて、実施例 1 及び 2 と同程度に優れたものとなることが必要である。したがって、「本発明に係る潤滑油基油成分」の基油全量基準の含有割合が少なく、特許請求の範囲に記載された数値範囲の下限値により近いような「潤滑油基油」であっても、本願発明の課題を解決できると認識できるか否かを、実施例 1 及び 2 の潤滑油組成物との比較において検討することが誤りであるとはいえない。そして、審決書に「例えば、実施例 1 ~ 2 と同様な低温特性を示されるであろうことについて、当業者が首肯しうる合理的な説明がなされているものとすることができない。」(18 頁 6 ~ 8 行)とあるように、本件審決は、本願発明の課題に関連する物性の一つの例として実施例と比較例の差が最も顕著である低温特性(-35 CCCS粘度)に言及したものであって、低温特性のみを検討対象としたものであるとは解されない。

ウ 原告は,ケースAの潤滑油組成物は,実施例1の潤滑油組成物と比較例2の潤滑油組成物を混合したものであり,「40 ℃動粘度,100 ℃動粘度,100 ℃ HTHS粘度およびCCS粘度が低く,低温粘度および低温粘度特性が良好」な実施例1の潤滑油組成物を混合したケースAの潤滑油組成物と,それを混合しない比較例2の潤滑油組成物は,「150 ℃におけるHTHS粘度が同程度のものであるが」,後者に比べて,前者は,「40 ℃動粘度,100 ℃動粘度,100 ℃ HTH S粘度およびCCS粘度が低く,低温粘度および低温粘度特性が良好」なものであり,当業者は,ケースAの潤滑油組成物によっても本願発明の課題を解決できると

推論するし、その推論が正しいことは、甲9によって裏付けられる旨主張する。

しかし、原告の上記主張は、比較例2と比べて、少しでも本願発明の課題に関連 する物性が改善したものは全て、本願発明の課題を解決できることを前提とするも のと解されるが、前記(3)エのとおり、本願発明の課題を解決できるというためには、 150℃HTHS粘度が2.6となるように潤滑油組成物を調製した場合に,40 ℃動粘度, 100℃動粘度, 100℃HTHS粘度, -35℃CCS粘度及び粘度指数の数値を総合的に検討した結果、比較例1ないし4で代表される従来の技術水 準を超えて,実施例1及び2と同程度に優れたものとなることが必要であるから, 原告の上記主張は、本願明細書の記載に基づかないものであって、その前提を欠く。 さらに、甲9に記載されたケースAの物性値(別紙甲9対比表参照)を,前記(3) エの記載に基づき、実施例1及び2の物性値と比較すると、ケースAの物性値は、 ①100 \mathbb{C} 動粘度については同程度であるものの、②40 \mathbb{C} 動粘度、100 \mathbb{C} HT HS粘度及び粘度指数については、実施例1及び2の数値よりも劣り、3-35℃ CCS粘度については、実施例1及び2の数値よりも顕著に劣っているということ ができる。また、ケースAの物性値を、比較例1ないし4と比較すると、ケースA の物性値は、比較例2ないし4より全体としておおむね優れているが、比較例1と 比較すると、100℃動粘度は同等であるが、40℃動粘度、粘度指数、100℃ HTHS粘度及びCCS粘度 (-35%) はケースAの方が劣っており、全体とし て比較例1より劣っているということができる。したがって,ケースAの物性を総 合的に検討すると、比較例1ないし4で代表される従来の技術水準を超えて、実施 例1及び2と同程度に優れたものとなっているとは認められない。

(7) 小括

以上のとおり、本件審決におけるサポート要件に係る判断は、結論において誤り はない。よって、取消事由2は、理由がない。

4 結論

以上によれば、原告の本訴請求は、取消事由3について判断するまでもなく、理

由がないから、これを棄却することとして、主文のとおり判決する。 知的財産高等裁判所第4部

裁判長裁判官	髙	部	真 規	子
裁判官	柵	木	澄	子
裁判官	片	瀬		亮

(別紙)

本願明細書図表目録

【表1】

			0-1	0-2	
尿素アダクト値		質量%	1.3	4.6	
密度	(15°C)	g/cm³	0.820	0.8388	
動粘度	(40°C)	mm²/s	15.8	18.72	
	(100°C)	mm ² /s	3.854	4.092	
粘度	指数		141	120	
流動	点	°C	-22.5	-22.5	
アニリ	ン点	°C	118.5	111.6	
ヨウき	素価		0.06	0.79	
硫黄	分	massppm	<1	2	
窒素	分	massppm	<3	< 3	
NOACK 蒸発量			7.5	16.1	
クロマト分 別	mass %	飽和分	99.6	95.1	
		芳香族分	0.2	4.7	
		樹脂分	0.1	0.2	
		回収率	99.9	100	
飽和分基準の	パラフィン分	mass%	87.1	50.6	
飽和分基準の	のナフテン分	mass%	12.9	49.4	
蒸留性状		IBP ℃	363.0	324.6	
		10%	396.0	383.4	
		50%	432.0	420.1	
		90%	459.0	457.8	
		FBP	489.0	494.7	

【表2】

基油	基油全量基準		実施例1	実施例2	比較例1	比較例2	比較例3	比較例4
0-1	基油1	質量%	100	70	0	0	0	100
0-2	基油2	質量%	0	30	100	100	100	0
添加剤	組成物全量基準							
A-1	粘度指数向上剤1	質量%	12	11.4	10.7			
A-2	粘度指数向上剤2	質量%				5.3		
A-3	粘度指数向上剤3	質量%					4.8	5.6
B-1	無灰系摩擦調整剤1	質量%	1	1	1	1	1	1
B-2	無灰系摩擦調整剤2	質量%	0.3	0.3	0.3	0.3	0.3	0.3
C-1	その他添加剤	質量%	12	12	12	12	12	12
評価結果								
動粘度	40°C	mm ² /s	29	30	33	38	41	39
	100°C	mm ² /s	7.5	7.5	7.7	7.7	8.8	8.9
粘度指数			244	229	214	177	202	216
HTHS粘度	100°C	mPa·s	4.5	4.6	4.8	5.3	5.3	5.0
	150°C	mPa·s	2.6	2.6	2.6	2.6	2.6	2.6
CCS粘度	−35°C	mPa·s	3200	3400	6700	8000	_	-

(別紙)

甲9対比表

	比較例1	ケースA	比較例2	比較例3	比較例4
動粘度 (40℃)	3 3	3 6	3 8	4 1	3 9
mm^2/s					
動粘度(100℃)	7. 7	7. 7	7. 7	8. 8	8. 9
m m ² / s					
粘度指数	2 1 4	188	177	202	2 1 6
HTHS粘度(100℃)	4. 8	5. 1	5. 3	5. 3	5. 0
mPa·s					
HTHS粘度(150℃)	2. 6	2. 6	2. 6	2. 6	2. 6
mPa·s					
CCS粘度 (-35℃)	6700	7000	8000		_
mPa·s					