Linear Discriminant Functions

Discriminant functions

- This seems an indirect way!
- Density estimation is a much more general problem than finding a classifier.
- Vapnik says, "find the classifier directly, instead of solving a big intermediate problem".

Discriminant Functions

- Form of the discriminant function is assumed and its parameters are found using the training set.
- If the discriminant function is a linear combination of the feature values, then it is called a *linear discriminant* function.
- Linear discriminant functions are also called Perceptrons or Single layer Perceptrons.

Perceptron: some historical remarks ...

- Its inventor is Frank Rosenblatt (1958), a psychologist.
- It is one of the early artificial neural network models.

Perceptron: some historical remarks ...

- Rosenblatt gave an algorithm which can be implemented with a machine.
- He gave a convergence theorem to establish certain important properties of his method.
- It raised lot of interest among many researchers.

Perceptron: some historical remarks ...

- Minsky and Papert (1969) proved various theorems about single layer perceptrons, some of which indicated their limited pattern-classification and function approximation capabilities. For example, they proved that it can not implement Exclusive OR logical function.
- Many people blamed Misky and Papert that, their work actually dampened research in neural networks.
- Multi-layer perceptron can overcome many shortcomings of the perceptron.
- An algorithm called error backpropagation is found to train the multi-layer perceptron around 1986 which can be seen as a second birth of artificial neural networks.

Perceptron: a linear discriminant function

- Consider a two class problem, $\Omega = \{\omega_1, \omega_2\}$ A pattern $X = (x_1, \dots, x_d)^t$
- The discriminant function $g(X) = w_1x_1 + \cdots + w_dx_d + w_0 = W^tX + w_0$
- g(X) = 0 defines a hyperplane in the feature space.
- Classification rule:

$$g(X)>0 \Rightarrow \operatorname{class} \operatorname{is} \omega_1$$
 $g(X)<0 \Rightarrow \operatorname{class} \operatorname{is} \omega_2$ $g(X)=0 \Rightarrow \operatorname{class} \operatorname{is} \operatorname{decided} \operatorname{arbitrarily}$

Linear Discriminant Function

• r = g(X)/||W|| is the perpendicular distance of a point X with the hyperplane.

General Discriminant Functions

- Linear : $g(X) = w_0 + \sum w_i x_i$
- Quadratic: $g(X) = w_0 + \sum w_i x_i + \sum \sum w_{ij} x_i x_j$
- Generalized: $g(X) = \sum_{i=1}^{\hat{d}} a_i y_i(X)$ where $y_i(X)$ is an arbitrary function of X.
 - If we create \hat{d} features in such a way that the i^{th} feature is $y_i(X)$ then in the new \hat{d} dimensional space, g(X) is indeed linear.
 - We call the new space as the Y-Space.
 - Multi-layer Perceptrons and Support Vector Machines (SVMs) tries to find a linear discriminat in an appropriate Y-Space which is a non-linear function in the X-Space.

Augmented Feature Space

- ▶ X-Space: $X = (x_1, \dots, x_d)^t$, $W = (w_1, \dots, w_d)^t$ and $g(X) = w_0 + W \cdot X$
 - g(X) = 0 may not pass through the origin.
- extstyle extstyle Y-Space: $Y=(1,x_1,\ldots,x_d)^t$, $a=(w_0,w_1,\ldots,w_d)^t$ and $\hat{g}(Y)=a\cdot Y$
 - $\hat{g}(Y) = 0$ passes through the origin.
 - That is, $\hat{g}(Y) = 0$ is in homogeneous form.
 - This Y-Space is called as augmented space and Y is called as augmented vector of X.
- It is easy to work with the augmented space.
- We want to find the vector a which is called separating vector or more generally solution vector. It need not be unique.

Two category case

Augmented feature space is used.

$$g(Y) = a^t Y = \begin{cases} > 0 & \text{for } Y \in \omega_1 \\ < 0 & \text{for } Y \in \omega_2 \\ = 0 & \text{we do not consider this.} \end{cases}$$

- Normalization
 - For all $Y_i \in \omega_2$ replace Y_i by $-Y_i$
 - Then $a^t Y > 0$ for all patterns irrespective of their class.
- If a linear discriminant functin can correctly classify the given dataset, then the dataset is called *linearly* separable.

How to find a?

- We should find a solution to the set of linear inequalities $a^t Y_i > 0$ for all i.
- A easy way is to define a criterion function J(a) that is minimized if a is a solution vector.
- Directly solving $\nabla J(a) = 0$ may not be always possible.
- An iterative method for finding a solution is to apply gradient descent (Hill climbing) methods.
- Gradient descent procedures are popular in many engineering applications.

Gradient Descent Procedures

- Basic gradient descent is very simple.
- We call the a in i th iteration as a(i).
- We start with some arbitrarily chosen weight vector a(1) and compute the gradient vector $\nabla J(a(1))$.
- The next value a(2) is obtained by moving some distance from a(1) in the direction of steepest descent, i.e., along the negative of the gradient.

Gradient Descent Procedures

• In general a(k+1) is obtained from a(k) by the equation

$$a(k+1) = a(k) - \eta(k)\nabla J(a(k))$$

where $\eta(k)$ is the learning rate that sets the step size. $\eta(k)$ depends on k.

- The procedure may be terminated if $|\eta(k)\nabla J(a(k))| < \theta$ for some small θ .
- Step size $\eta(k)$ should be carefully chosen.
 - If $\eta(k)$ is too small then the convengence process will be needlessly slow. That is, number of iterations will be large.
 - On the otherhand, if $\eta(k)$ is too large, the correction process will overshoot and can even diverge.

How to find the step size?

- Let us write a(k) as a_k .
- Then, $a_{k+1} = a_k \eta_k \nabla J(a_k)$.
- We like to get a principled method for finding the learning rate.

Taylor series

- $f(x + \delta x) = f(x) + f'(x)\delta x + (1/2!)f''(x)\delta x^2 + \cdots$
- A good approximation (in most cases) of $f(x + \delta x)$ is $f(x) + f'(x)\delta x + (1/2!)f''(x)\delta x^2$. This is called as second order approximation.
- Similarly for multidimensional case, approximately $f(X + \delta X)$ is

$$f(X) + (\nabla f(X))^t \delta X + \frac{1}{2!} \delta X^t \mathbf{H} \delta X$$

where **H** is *Hessian Matrix*, $d \times d$ matrix for which the i, j th entry is $\partial^2 f / \partial x_i \partial x_j$.

Taylor series for the criterion

$$J(a_{k+1}) = J(a_k) + (\nabla J(a_k))^t (a_{k+1} - a_k) +$$

$$\frac{1}{2!}(a_{k+1} - a_k)^t \mathbf{H}(a_{k+1} - a_k)$$

- $a_{k+1} = a_k \eta_k \nabla J(a_k)$ $a_{k+1} a_k = -\eta_k \nabla J(a_k)$
- So,

$$J(a_{k+1}) = J(a_k) + \underbrace{(-\eta_k ||\nabla J(a_k)||^2) + \frac{1}{2!} \eta_k^2 \nabla J(a_k)^t \mathbf{H} \nabla J(a_k)}_{P}$$

• P should be minimized to get $J(a_{k+1})$ as low as possible.

Optimal learning rate

$$P = (-\eta_k ||\nabla J(a_k)||^2) + \frac{1}{2!} \eta_k^2 |\nabla J(a_k)|^t \mathbf{H} \nabla J(a_k)$$

By doing

$$\frac{dP}{d\eta_k} = -||\nabla J(a_k)||^2 + \eta_k \nabla J(a_k)^t \mathbf{H} \nabla J(a_k) = 0$$

We get

$$\eta_k = \frac{||\nabla J(a_k)||^2}{\nabla J(a_k)^t \mathbf{H} \nabla J(a_k)}$$

Newton's Descent

- This is yet another unconstrained optimization method
- a_{k+1} is so chosen to minimize the second order expansion of J(a).
 - This is in contrast with the gradient descent method where only upto the first order is considered.
- Let a_s denotes the solution vector, i.e., $J(a_s)$ is minimum.

$$J(a) = J(a_s) + (\nabla J(a_s))^t (a - a_s) + \frac{1}{2}(a - a_s)^t \mathbf{H}(a - a_s)$$

But
$$\nabla J(a_s) = 0$$

So, $J(a) = J(a_s) + \frac{1}{2}(a - a_s)^t \mathbf{H}(a - a_s)$

Newton's Descent

- $J(a) = J(a_s) + \frac{1}{2}(a a_s)^t \mathbf{H}(a a_s)$ So, $\nabla J(a) = 0 + \mathbf{H}(a a_s)$ So we get, $a_s = a \mathbf{H}^{-1} \nabla J(a)$ That is, $a_{k+1} = a_k \mathbf{H}^{-1} \nabla J(a)$
- The corrections in the gradient descent are in the negative direction of the gradient.
- But in Newton's method the direction of correction can be in any direction, depending upon the Hessian Matrix.

Newton's Descent

- Newton's method can give greater improvement per step than simple gradient descent method.
- If the objective is quadratic, then Newton's method can find the solution in a single step.
- Biggest drawback of this method is that it requires finding inverse of the Hessian, which is computationally a demanding step.

Perceptron: Gradient descent

Perceptron criterion:

$$J_p(a) = \sum_{Y \in \mathcal{Y}} -a^t Y$$

where \mathcal{Y} is the set of misclassified patterns by the discriminant defined by a.

$$\nabla J_p(a) = \sum_{Y \in \mathcal{Y}} -Y$$

• Hence the update rule is, $a_{k+1} = a_k + \eta_k \sum_{Y \in \mathcal{Y}_k} Y$ where \mathcal{Y}_k is the set of misclassified patterns by a_k .

Batch Perceptron

$$a_{k+1} = a_k + \eta_k \sum_{Y \in \mathcal{Y}_k} Y$$

where \mathcal{Y}_k is the set of misclassified patterns by a_k .

- Normally, η_k is taken as 1. This is called *fixed increment* rule.
- For linearly separable datasets, it is proved that the learning converges to a solution.

Perceptron: Single Sample Correction

- This is a variant of the Batch Perceptron.
- Start with a arbitrary a_0 .
- Whenever a pattern Y is misclassified, i.e., $a_k^t Y < 0$ then $a_{k+1} = a_k + Y$.
- The above step needs to be done repeatedly (training set needs to be scanned again and again) until all the training patterns are correctly classified.
- These kind of learning procedures are called error correcting procedures because a is updated only when error occurs.

Perceptron: Single Sample Correction

- It is easy to see geometrically what is happening.
- If Y is misclassified by a_k then $a_k^t Y < 0$.
- $\bullet a_{k+1} = a_k + Y \Rightarrow a_{k+1}^t Y = a_k^t Y + ||Y||^2.$
- Hence, the correction is to move the weight vector in a good direction.

Perceptron Convergence

- Theorem 5.1 (Page 230): If the training samples are linearly separable, then the single sample correction method finds a solution in a finite number of steps.
- Let \hat{a} be a solution, then $\hat{a}^t Y_i > 0$ for all i.
- Let

$$eta^2 = extstyle{max}_i ||Y_i||^2,$$
 $\gamma = extstyle{min}_i [\hat{a}^t Y_i],$ $lpha = rac{eta^2}{\gamma},$

Perceptron Convergence

Then the proof is to show that, after every correction,

$$||a_{k+1} - \alpha \hat{a}||^2 \le ||a_k - \alpha \hat{a}||^2 - \beta^2$$

An upperbound on the number of corrections is

$$\frac{||a_1 - \alpha \hat{a}||^2}{\beta^2}$$

Read the text from page 230 to page 232.

Improvements to Perceptron

- There are many improvements to the Perceptron.
- Some extensions are to find the best possible solution among various solutions. Instead of saying $a^tY_i > 0$, to allow a margin b, i.e., to say that $a^tY_i > b$ for all Y_i in the training set.
- Some extensions are towards finding a good linear discriminant even when the dataset is non-separable. For example, The Widrow-Hoff or Least Mean Square(LMS) procedure is one of such kind.
- Linear Support Vector Machines can also be seen as an improvement over the Perceptron.