Proof of the last Proposition.

Look at $p(G) \leq GL_n(\overline{\Omega_p})$. It is a compact Hausdorff topological group \Rightarrow Baire's Lemma holds for P(G).

(Baire's Lemma: a countable union of nowhere dense closed subspaces of X is nowhere dense in X.

Nowhere dense; it does not contain any open set of X)

 $GL_n(\overline{Q}_p) = \bigcup_{E/Op} GL_n(E)$ cambable union of closed subsets. (VneIN: there are only finitely many E/Opst. LE:OpJ=h)

Write $p(G) = \bigcup_{E \mid Qp} (GL_n(E) \cap p(G))$. Either there exists $E \mid Qp$ finite such finite

that GLn(E) n g(G) has finite index in g(G)

=> We can choose FIE finite such that $g(G) \subseteq GL_n(F)$ (finite index -)

Or for every E/Q_p finite, $GL_n(E) \cap g(G)$ has infinite index in g(G) = 7 $GL_n(E) \cap g(G)$ is nowhere dense in g(G) (Basis of open subgroups in compact spaces are of finite index)

Now P(G) is a countable union of nowhere dense sets \Rightarrow Contradicts Benive's Lemma.

Lemma. If $p:G \to GL_n(K)$ is a continuous representation with coefficients in K/Qp finite, then there exists a continuous representation $p':G \to GL_n(U_K)$ such that if $L:GL_n(U_K) \to GL_n(K)$ is the inclusion $p \cong L \circ g'$ toguivalent

Proof. Recall: an O_K -lattice in K^n is a free O_K -module L of rank in such that $L \otimes_{O_K} K \cong K^n$.

Choosing a basis for K^h we obtain a continuous action of G on K^h via g. Let L be any lattice in K^h . For $g \in GL_n(K)$ let $g(L) := \{g(x) \mid x \in L\}$

Exercise: g(L) is a lattice, and Stab (L) = {ge GLn(K) | g(L) = L} EX
is on open subgroup of GLn(K).

Look at $p^{-1}(Stab(L)) \subseteq G$ $\subseteq G$ compact $p^{-1}(Stab(L))$ has finite index in G.

08

Choose a set {gai -, gm} of representatives for \$\frac{G}{p^{-1}}(Stab(L)).

Then define $L':=\sum_{i=1}^{m} g(g_i)(L)$. We check that the lattice L' is G-stable.

(G-stable: 9(g) L' = L' VgeG)

Choose on Ox-basis for the lattice L', then the action of G on L' gives

a (continuous) representation p': 6 -> GLn (OK)

By construction Log1 ~ 9

Start with p:G-GLn(K) continuous representation.

Then by the Lemma we can choose a conjugate of g with values in GLn (OK).

Then we can reduce modulo the maximal ideal mk = Dk and we obtain a

"residual" representation $\overline{g}: G \to GL_n\left(\frac{\partial \kappa}{m_K}\right)$ attached to g.

Def. If Gacts on a finite free module M. Choose a filhrahion M7Mn7-7fo]

in G-stable A-modules such that Mi/Mi-1 is an irreducible A[G]-module.

(A: Sield)

(Does not admit any G-stable submodule)

Then the semi-simplification of M ist the A[G]-module & Mi-1.

Example: If $g(g) = \begin{pmatrix} \chi_{\lambda}(g) & \delta(g) \\ 0 & \chi_{\lambda}(g) \end{pmatrix}$ $\rightarrow \overline{g}^{55}(g) = \begin{pmatrix} \chi_{\lambda}(g) & 0 \\ 0 & \chi_{\lambda}(g) \end{pmatrix}$

X, X2: Character of g

Remark: the representation & alfached to g is well-defined up to equivalence.

Idea: fix \overline{g} : $G \longrightarrow GLn(\overline{F}_{pm})$ and look at g: $G \longrightarrow GLn(O_K)$ (with $O_K/m_K = \overline{F}_{pm}$) such that g mod $m_K = \overline{g}$.

Example of p-adic Galois representation. ("p-adic cyclotomic character")

(p prime, nelNz1)

χ_n: G_Q → Gal (Q(5pn)/Q) ≃ (Z/pnz) × (= GL, (Z/pnz))

This representations are compatible with the maps $(\frac{2}{pmz})^x \rightarrow (\frac{2}{pmz})^x$ for $m \ge n$. $\chi_m \mod p^n = \chi_n$.

We can take $\lim_{n \to \infty} \chi_n : G_Q \to \lim_{n \to \infty} Gal(Q(Spn)/Q) = \lim_{n \to \infty} (\frac{Z}{pnZ})^x = Zp^x$ Write $Q(Sp\infty) = \bigcup_{n \ge 1} Q(Spn)$

We call χ_{cyc} the p-adic cyclotomic character. χ_{cyc} factors through $G_{Q,p^{\infty}} \longrightarrow \mathbb{Z}_p^{\times}$. It also factors through $G_{Q} \longrightarrow \mathbb{Z}_p^{\times}$.

Theorem: (Kronecker-Weber) The product of all cyclotomic characters gives an isomerphism $G_Q \xrightarrow{\sim} \Pi Z_p^{\times}$

Look at "deformation functors". =: hR

\mathcal{E} category, $\mathcal{R} \in \mathcal{L}$, then $\mathcal{H}om_{\mathcal{E}}(\mathcal{R}, \cdot)$: $\mathcal{L} \longrightarrow \mathcal{S}et$ is the functor $\mathcal{L} \mapsto \mathcal{H}om_{\mathcal{E}}(\mathcal{R}, A)$, $\mathcal{L} \mapsto \mathcal{L} \mapsto$

We will work with some categories of robys.

Fix a field k. We denote by Ck the category whose objects are Artimian, local rifys with residue field k and morphisms are local viry morphisms, that induce the identity on k.

Examples. * $k = \mathbb{F}_p$, then $\mathbb{Z}_{p^n \mathbb{Z}} \in \mathbb{Z}_{\mathbb{F}_p} \quad \forall n \in \mathbb{N}_{>0}$.

* $\exists \text{ unique degree } n \text{ univariative extension of } \mathbb{Q}_p$, we will denote it by \mathbb{Q}_p^n . We write \mathbb{Z}_{p^n} for its valuation ving, then $\mathbb{Z}_p^n/_p \mathbb{Z}_{p^n} = \mathbb{F}_p^n$ $\forall m \in \mathbb{N}_{>0}$: $\mathbb{Z}_{p^n}/_p \mathbb{Z}_p^n \in \mathbb{F}_p^n$ $\mathbb{Z}_{p^n}/_p \mathbb{Z}_p^n \longrightarrow \mathbb{Z}_p^n/_p \mathbb{Z}_p^n = \mathbb{F}_p^n$ $\mathbb{Z}_{p^n}/_p \mathbb{Z}_n \longrightarrow \mathbb{Z}_p^n/_p \mathbb{Z}_n$ This is not a morphism in $\mathbb{Z}_{\mathbb{F}_p^n}$

Zph/mZpn -> Zph/mZpn This is not a morphism in Efform

X modulo pm -> Frobp(x) modulo pm

Let Ek be the category whose objects are complete local Noetherian ritys with residue field k, morphisms are local roly merphisms that induce the identity on k.

Example. $Z_{pn} \in \widehat{C}_{pn}$ | An object of C_{k} is also an object in \widehat{C}_{k} (same for morphisms)

DEFORMATION FUNCTORS

Let G be a profinite group, he a finite field. Fix a continuous representation $P: G \longrightarrow GL_n(k)$.

Def. For $A \in \mathcal{C}_k$, a deformation (of \overline{p} to A) is a continuous representation $P: G \longrightarrow GL_n(A)$ such that p modulo $m_A = \overline{p}$.

We say that $9_a:9_2:G \longrightarrow GL_n(A)$ are strictly equivalent iff. $\exists Meker(GL_n(A) \rightarrow GL_n(k))$ such that $M^{-1}P_AM = P_2$.

Remark: if $A \stackrel{f}{\longrightarrow} B$ is a morphism in \mathcal{C}_k and $g_1, g_2: G \longrightarrow GLn(A)$ are strictly equivalent representations, then $g_1, g_2: G \longrightarrow GLn(B)$ are strictly equivalent.

We define Dp: Ek - set as the functor

* $D_{\overline{g}}(A) := \left\{ \frac{\text{deformations of }}{\overline{g} \text{ to } A} \right\}$ strict equivalence

* Dp(f) maps a deformation p: G->GLn(A) to the class of fop
f: A-> B maphism in Ek

(We obtain a functor Ck - Set by restricting Dg to Ck)

Goal: show that D_g is "pro-represented" by some $R \in \widehat{\mathcal{E}}_K$, in the sense that $D_{\overline{g}} \cong \operatorname{Hom}_{\widehat{\mathcal{E}}_K}(R, \cdot)$