

Calculate the output of the above neural network. Consider the following parameters:

$$x1 = (\langle SSID \rangle / 8964879) * 23$$

$$x2 = (\langle SSID \rangle / 8964879)*32$$

$$x3 = (\langle SSID \rangle / 8964879)*56$$

$$x4 = (\langle SSID \rangle / 8964879)*48$$

Relu – Hidden layer

Sigmoid = Output layer

Step 1: Calculate Input Values

Given:

- SID = 2353465
- x1 = (SID / 8964879) * 23
- x2 = (SID / 8964879) * 32
- x3 = (SID / 8964879) * 56
- x4 = (SID / 8964879) * 48

First, compute the value of SID / 8964879:

Now, calculate the input values:

$$x1 = 0.2625*23 \approx 6.0375$$
 $x2 = 0.2625*32 \approx 8.4$
 $x3 = 0.2625*56 \approx 14.7$
 $x4 = 0.2625*48 \approx 12.6$

Step 2: Calculate Hidden Layer 1 (H1 and H2)

We will use the perceptron formula:

 $Z = b+\sum(wi*xi)$

For H1:

zH1 = w1*x1+w3*x2+w5*x3+w7*x4

zH1 = 0.2*6.0375+0.2*8.4+0.2*14.7+0.2*12.6

zH1 = 8.3475

Apply ReLU activation:

H1 = max(0, zH1) = max(0, 8.3475) = 8.3475

For H2:

zH2 = w2*x1+w4*x2+w6*x3+w8*x4

zH2 = 0.2*6.0375+0.2*8.4+0.2*14.7+0.2*12.6

zH2 = 8.3475

Apply ReLU activation:

H2 = max(0, zH2) = max(0, 8.3475) = 8.3475

Step 3: Calculate Hidden Layer 2 (H3 and H4)

For H3:

zH3 = w9*H1+w11*H2

zH3 = 0.1*8.3475+0.1*8.3475

zH3 = 1.6695

Apply ReLU activation:

H3 = max(0, zH3) = max(0, 1.6695) = 1.6695

For H4:

zH4 = w10*H1+w12*H2

zH4 = 0.1*8.3475+0.1*8.3475

zH4 = 1.6695

Apply ReLU activation:

H4 = max(0, zH4) = max(0, 1.6695) = 1.6695

Step 4: Calculate Output Layer (O1 and O2)

For O1:

zO1 = w13*H3+w15*H4+0.5

zO1 = 0.50085 + 0.50085 + 0.5

zO1 = 1.5017

Apply Sigmoid activation:

 $01 = 1/1 + e^{(-zO1)} = 1/1 + e^{(-1.50171)} \approx 0.8176$

For O2:

zO2 = w14*H3+w16*H4+0.5

zO2 = 0.3*1.6695+0.3*1.6695+0.5

zO2 = 0.50085 + 0.50085 + 0.5

zO2 = 1.5017

Apply Sigmoid activation:

 $O2 = 1/1 + e^{\wedge}(-zO1) = 1/1 + e^{\wedge}(-1.50171) \approx 0.8176$

Final Output

The final output of the neural network is:

O1 ≈ 0.8176

O2 ≈ 0.8176

This means that the neural network, given the inputs and weights, produces outputs O1 and O2 both equal to 0.8176.