Очистка данных для тренировки моделей машинного перевода

Обработка параллельных корпусов

Параллельные корпуса

- Нет проблемы сбора данных
- ❖ Большие объемы (годы работы), 60-150k пар
- Накапливается мусор
- Невозможно чистить вручную

Идея

- Существующие инструменты не дают гибкости либо не рассчитаны на большие объемы данных
 - Только полные дубликаты
 - Недостаточно опций
- Возможность дальнейшего масштабирования для решения более сложных задач:
 - Более глубокая очистка данных для NMT
 - Извлечение терминологии
 - Составление двуязычных глоссариев

Нейронный машинный перевод

Обучение на параллельном корпусе Quality over quantity

Задача

Очистка данных

- **1.** Удаление дубликатов, в том числе неполных:
 - Различия в датах
 - Номера телефонов в разных форматах
 - Наличие разных ссылок
 - Разные значения полей
 - Лишние символы (пробелы, мягкие переносы)

Очистка данных

2. Удаление мусора:

- Сегменты, состоящие из символов или цифр
- Чрезмерно длинные предложения
- Сегменты на языке, отличном от целевого

Очистка данных

3. Устранение ошибок ввода:

- Опечатки в исходном тексте, которые приводят к появлению дубликата
- Опечатки в переводе

Очистка данных

4. Анонимизация:

- Имена (NER)
- Номера телефонов
- Адреса электронной почты
- Другая идентифицирующая информация

Очистка данных

5. Устранение несоответствий:

• Несоответствия в параллельных корпусах (поиск коллокаций и кандидатов на их перевод)

Этапы

1. Анализ исходных параллельных корпусов

Формат ТМХ — по сути XML.

```
<tu creationdate="20161221T125309Z" creationid="SONY-S\Svetlana"</pre>
changedate="20161221T130023Z" changeid="SONY-S\Svetlana" lastusagedate="
20161221T130023Z">
      type="x-Context">8141944612297908607, 1598969519634319716 
 rop type="x-ContextContent">FPGA-based, specifically: | | Ha базе
 FPGA, a именно: | </prop>
 prop type="x-0rigin">TM</prop>
 confirmationLevel">Translated
 <tuv xml:lang="en-US">
   <seg>x86/i64-based processor, specifically:</seg>
 </tuv>
 <tuv xml:lang="ru-RU">
   <seg>Ha базе процессора x86/i64, а именно:</seg>
 </tuv>
</tu>
```

Этапы

2. Общий подход к решению задачи

- Регулярные выражения для поиска данных
- Предварительная обработка:
 - ✓ Нижний регистр
 - ✓ Пунктуация (отдельная пунктуация в числовых данных)
 - Удаление незначащего текста в начале и конце строк
 - ✓ Замена незначащих для сравнения данных на символы
- Сравнение > построение индекса (словарь), множество

Этапы

3. Взаимодействие с пользователем

- Создание трех файлов:
 - > Файл с отфильтрованной памятью
 - Файл с удаленными сегментами
 - Файл отчета
- Вывод прогресса для пользователя в консоль
- Запуск пользователем скрипта в терминале с указанием пути к файлу и параметров

Этапы

4. Разработка

- Функциональный метод
 - ✓ Регулярные выражения на максималках
 - ✓ Функция для предварительной обработки текста
 - ✓ Функция для замены незначащего текста

Код можно посмотреть тут

• Объектно-ориентированный метод

4. Разработка (с куратором)

4. Разработка (с куратором)

Сложности

Основные сложности

- 1. Комплексная архитектура, много связей
- 2. Продумывание и обработка всевозможных исключений
- 3. Запись в XML
- 4. Запись в HTML
- 5. Отладка в ООП
 - Специальный параметр отладки
 - Запись особого тега в файл для проверки

Следующий этап

Что дальше?

- Расширение интерфейса (опции критериев удаления)
- 2. Удаление дубликатов с опечатками (расстояние 1 символ)
- 3. Поиск опечаток в переводе
- 4. Извлечение терминологии
- 5. Составление двуязычных глоссариев...

Изученные материалы

Классный учебник по Python

• Справочник по языку Python3

Работа с XML-файлами в Python

• Создание и сборка ХМL-документов

Регулярные выражения

• Регулярные выражения - от простого к сложному

Интерфейс командной строки (аргументы для скрипта)

• Модуль argparse

Вывод информации в терминал

• Объекты stdin, stdout, stderr модуля sys в Python