Due: June 22nd

- 1. (a) For a differentiable $g : \mathbb{R} \to \mathbb{R}$, prove that if g has only one critical point, a local minimum at $a \in \mathbb{R}$, then g has a global minimum at a.
 - (b) The previous part is not true in several variables. Consider $f(x,y) = e^{3x} + y^3 3ye^x + 1$.
 - i. Prove that (0,1) is a local minimum. HINT: express f(x,y) in terms of $a=e^x-1$ and b=y-1.
 - ii. Show that (0,1) is the only critical point.
 - iii. Is (0,1) a global minimum?
 - (c) Can you explain (briefly) what goes wrong in trying to extend your proof of part (a) to the function in part (b)?