REPLACEMENT CLAIMS

L ⁽	1	26.	A method for operating a MEMS device having a flap that
	2		is movable with respect to a base, the method comprising:
	3		applying a pre-bias force to the flap to move the flap at
	4		least partially out of contact with an underlying base.

- The method of claim 26, wherein the force produces a 27. biasing torque on the flap to reduce stiction and improve reliability.
- The method of claim 26, wherein the force produces a 28. 9 increase switch flap to the biasing torque on 10 reliability. 11
- The method of claim 26 wherein the force is applied by a 29. 12 biasing element chosen from the group consisting of a 13 carrying coils, flap torsion current magnet, 14 materials, gap-closing electrodes, magnetic springs, 15 materials, bearing loaded elements, stress spring 16 piezoelectric elements and thermal bimorph actuators. 17
 - The method of claim 26 wherein the force produces a 30. biasing torque on the flap.
 - The method of claim 30 wherein the biasing torque tends 31. to counteract another torque exerted on the flap.
 - A microelectromechanical apparatus comprising: 32. 1
 - a base: 2

5

6

7 8

C

1

1

2

- a flap having a portion coupled to the base so that the 3 flap is movable out of the plane of the base from a first 4 angular orientation to a second angular orientation; 5 wherein the base has an opening that receives the flap 6 when the flap is in the second angular orientation, the opening having one or more sidewalls, wherein at least 8
- one of the sidewalls contacts a portion of the flap such 9
- an orientation substantially that the flap assumes 10

REPLACEMENT CLAIMS

	11		parallel to that of the sidewall when the flap is in the
2	12		second angular orientation;
	13		a sidewall electrode disposed in one or more of the
	14		sidewalls and
	15		means for applying a pre-bias force to the flap to move
	16		the flap at least partially out of contact with an
	17		underlying base.
	1	33.	The apparatus of claim 32 wherein the means for applying
	2		a force applies a fixed force to the flap.
	1	34.	The apparatus of claim 32 wherein the means for applying
	2		a force is a biasing element chosen from the group
	3		consisting of flap torsion springs, magnetic materials,
	4		current carrying coils, gap-closing electrodes, spring
37-20-11 	5		loaded elements, stress bearing materials, piezoelectric
	6		elements and thermal bimorph actuators.

- The apparatus of claim 32 wherein the means for applying 35. a force produces a biasing torque on the flap.
- The apparatus of claim 35 wherein the biasing torque 36. tends to counteract another torque exerted on the flap.
- 37. The apparatus of claims 32 where the base is made from a substrate portion of an SOI (silicon-on-insulator) wafer and the flap is defined from a device layer portion of the SOI wafer.

2

3

4

1