경로 제어 / 트래픽 제어

[1] 경로 제어

데이터 패킷이 컴퓨터 A에서 컴퓨터 B로 전달되려면 네트워크 1, 3, 5를 통과해야 할까요? 아니면 네트워크 2, 4를 통과해야 할까요? 패킷은 네트워크 2, 4를 통하면 더 짧은 경로를 이용하지만, 네트워크 1, 3, 5가 2, 4보다 패킷을 전달하는 데 더 빠를 수 있습니다. 네트워크 라우터에서는 지속해서 이런 종류의 선택을 하게 됩니다.

[2] 경로 제어 프로토콜

[표 5-1] 거리벡터와 링크상태 방식의 장단점 비교

거리벡터 알고리즘	링크상태 알고리즘
이웃한 라우터의 시각에서 네트워크를 인식	네트워크 전체를 인식
라우터와 라우터 간의 거리를 더하여 계산	다른 라우터까지의 최단경로 계산
주기적으로 경신 데이터를 교환(컨버전스 시간의 증가)	이벤트 기반의 경신 신호 교환(빠른 컨버전스 시간)
이웃한 라우터와 라우팅 테이블 교환	링크상태 정보만을 교환

[3] 트래픽 제어

[4] 흐름 제어 정지-대기

슬라이딩 윈도우

[5] 폭주 제어