Yakeen NEET 2.0 2026

Motion in a Straight Line

Assignment-02 By: M.R. Sir

Physics by M.R Sir

- 1. A horse rider covers half the distance with 5 m/s speed. The remaining part of the distance was travelled with speed 10 m/s for half the time and with speed 15 m/s for other half of the time. The mean speed of the rider averaged over the whole time of motion is x/7 m/s. The value of x is .
 - (1) 250
- (2) 125
- (3) 50
- (4) 5
- 2. An object moves with speed v_1 , v_2 and v_3 along a line segment AB, BC and CD respectively as shown in figure. Where AB = BC and AD = 3 AB, then average speed of the object will be:

- $\frac{v_1v_2v_3}{3(v_1v_2+v_2v_3+v_3v_1)}$

- 3. Find distance, displacement, average speed and velocity in 10 sec

- (1) 20m, -10m, 3 m/s, -1 m/s
- (2) 30m, 10m, 3 m/s, -1 m/s
- (3) 20m, -10m, 1 m/s, -1 m/s
- (4) 30m, -10m, 3 m/s, -1 m/s

- 4. A car travels a distance of 'x' with speed v_1 and then same distance 'x' with speed v_2 in the same direction. The average speed of the car is:
- (3) $\frac{2x}{v_1 + v_2}$ (4) $\frac{2v_1v_2}{v_1 + v_2}$
- A vehicle travels 4 km with speed of 3 km/h and another 4 km with speed of 5 km/h, then its average speed is:
 - (1) 4.25 km/h
 - (2) 3.50 km/h
 - (3) 4.00 km/h
 - (4) 3.75 km/h
- 6. Find average velocity and average speed from:

- (i) $t_1 = 2s$ to $t_2 = 8s$
- (1) -2.5 m/s
- (2) 2.5 m/s
- (3) -1.5 m/s
- (4) -5.0 m/s
- (ii) $t_1 = 4s \text{ to } t_2 = 8s$
- (1) 3.75 m/s
- (2) 1.25 m/s
- (3) 2.5 m/s
- (4) 4.5 m/s
- (iii) In 4 sec
- (1) 1.25 m/s
- (2) 2.5 m/s
- (3) 3.75 m/s
- (4) 5.0 m/s
- (iv) In 8 sec
- (1) 2.5 m/s
- (2) 4.0 m/s
- (3) 3.125 m/s
- (4) 1.25 m/s

- 7. The distance travelled by an object in time t is given by $s = (2.5)t^2$. The instantaneous speed of the object at t = 5 s will be:
 - (1) 12.5 ms^{-1}
- (2) 62.5 ms^{-1}
- (3) 5 ms^{-1}
- $(4) 25 \text{ ms}^{-1}$
- 8. The position of a particle related to time is given by $x = (5t^2 4t + 5)$ m. The magnitude of velocity of the particle at t = 2s will be:
 - (1) 10 ms^{-1}
- (2) 14 ms⁻¹
- $(3) 16 \text{ ms}^{-1}$
- (4) 06 ms^{-1}
- **9.** Find average velocity and speed in 4 sec.

- (1) $\frac{5}{4}$ m/s, $\frac{15}{4}$ m/s (2) $\frac{5}{4}$ m/s, $\frac{10}{4}$ m/s
- (3) $\frac{10}{4}$ m/s, $\frac{10}{4}$ m/s (4) $-\frac{5}{4}$ m/s, $\frac{15}{4}$ m/s
- 10. The distance travelled by a particle is related to time t as $x = 4t^2$. The velocity of the particle at t = 5s is.
 - (1) 40 ms^{-1}
- (2) 25 ms^{-1}
- $(3) 20 \text{ ms}^{-1}$
- (4) 8 ms⁻¹
- 11. A car covers AB distance with first one-third at velocity v_1 , ms⁻¹, second one-third at v_2 , ms⁻¹ and last one-third at v_3 , ms⁻¹. If $v_3 = 3v_1$, $v_2 = 2v_1$ and $v_1 = 11$ ms⁻¹ then the average velocity of the car is ms⁻¹.

- (1) 11 m/s
- (2) 18 m/s
- (3) 13 m/s
- (4) 12 m/s

12. Ball is released from A on smooth horizontal hemi sphere of radius *R* then find distance and displacement from A to B

- (1) $\frac{\pi R}{2}$, $R\sqrt{2}$
- (2) R, R
- (3) πR , 2R
- (4) πR , R
- **13.** The position co-ordinates of a particle moving in a 3-D coordinates system is given by

 $x = a \sin \omega t$; $y = a \sin \omega t$ and $z = a \omega t$

The speed of the particle is:

- (1) $\sqrt{2}a\omega$
- (2) $a\omega$
- (3) $\sqrt{3}a\omega$
- (4) $2a\omega$
- 14. The position-time graphs for two students A and B returning from the school to their homes are shown in figure:

- (A) A lives closer to the school
- (B) B lives closer to the school
- (C) A takes lesser time to reach home
- (D) A travels faster than B
- (E) B travels faster than A
- (1) (A) and (E) only
- (2) (B) and (E) only
- (3) (A), (C) and (E) only
- (4) (A), (C) and (D) only

15. Ball is projected then find displacement from A to B.

- (1) $6\hat{i} + 8\hat{j}$
- (3) $6\hat{i} 8\hat{j}$
- **16.** A particle moving in a straight line covers half the distance with speed v_0 . The other half of the distance is covered in two equal time intervals with speed v_1 and v_2 , respectively. The average speed of the particle during this motion is
 - (1) $\frac{v_0(v_1+v_2)}{v_0+v_1+v_2}$ (2) $\frac{2v_0(v_1+v_2)}{v_0+v_1+v_2}$
 - (3) $\frac{2v_0(v_1+v_2)}{2v_0+v_1+v_2}$ (4) $\frac{v_0(v_1+v_2)}{2v_0+v_1+v_2}$
- 17. Which of the following option is correct:
 - (1) Velocity of object increasing and acceleration may decreasing.
 - (2) Velocity of object decreasing and acceleration may increasing.
 - (3) Acceleration may be non-zero when velocity of object is zero.
 - (4) All of these.
- Statement-I: If acceleration of 18. particle is increasing, it's velocity must increases.

Statement-II: The rate of change of speed with respect to time will provide us Net acceleration.

- (1) Both statements false
- (2) Both statements true
- (3) Statement-I is false and Statement-II is true
- (4) Statement-I is true and Statement-II is false

Object is projected from pole and reach at ground as shown in figure, then find displacement:

- (1) $6\hat{i} 6\hat{j}$ m (2) $-6\hat{i} 6\hat{j}$ m
- (3) $6\hat{i} + 6\hat{j}$ m (4) $6\sqrt{2}$ m
- 20. Object is moving such that its velocity and acceleration is in opposite direction then
 - (1) Speed may constant.
 - (2) Speed may increasing.
 - (3) Speed must be decreasing.
 - (4) Speed may be increasing or decreasing.
- An object is moving with constant velocity then 21. which of the following option is correct
 - (1) Acceleration may be increasing.
 - (2) Acceleration is zero.
 - (3) Acceleration is decreasing.
 - (4) Acceleration is non-zero.
- 22. A graph between x-y coordinates is given for a particle moving in x-y plane from point A to point B. Which of the following option is CORRECT:

- (1) This graph represents path of the particle.
- (2) Particle does not change it's direction during the motion.
- (3) Average velocity from A to B is zero.
- (4) Particle travels in a straight line.

23. A particle moved along the *x*-axis according to the graph shown in Figure. Choose the incorrect options.

- (1) The particle did not move in straight line from t = 0s to t = 5s.
- (2) The magnitude of displacement of particle from t = 0s to t = 5s is 2 m
- (3) The average speed of particle from t = 0s to t = 5s is 0.8 m/s.
- (4) The speed of particle is zero somewhere between t = 3s to t = 4s.
- **24.** Velocity (in m/s) of a particle moving in a straight line is given by $V = (t^2 2t + 1)$:

List-I		List-II	
(P)	Velocity (in m/s) of particle at $t = 3$ sec is	(I)	1
(Q)	Acceleration (in m/s ²) of particle at $t = 2$ is	(II)	2
(R)	Time when particle is at rest is (in second)	(III)	3
(S)	Magnitude of average acceleration of particle in first one second is (in m/s ²)	(IV)	4

- (1) P-III; Q-II; R-IV; S-I
- (2) P-IV; Q-III; R-II; S-I
- (3) P-IV; Q-II; R-I; S-I
- (4) P-I; Q-IV; R-III; S-II
- **25.** In the figure is shown the position of a particle moving on the *x*-axis as a function of time. Then

- (1) the particle has come to rest for 6 times.
- (2) the velocity remains positive for t = 0 to t = 6s
- (3) the average velocity for the total period shown is negative
- (4) Both (1) and (3)

26. Figure shows the position of a particle moving along *x*-axis as a function of time:

- (1) The particle has come to rest 5 times
- (2) The particle has come to rest 4 times
- (3) The particle has come to rest 3 times
- (4) The particle has come to rest 2 times
- 27. In which of the graphs the particle moving on straight line is speeding up?

- (1) II, III, IV
- (2) II, IV
- (3) II, III
- (4) Only II