Devoir Maison n°1.

Exercice 1 : Dans le Périgord, un producteur cultive, ramasse et conditionne de 0 à 45 kg de truffes noires par semaine.

On désigne par x le nombre de kilogrammes de truffes traitées chaque semaine et par f(x) le coût unitaire de revient, en euro. Chaque kilogramme de truffes conditionné est vendu 450ε .

On admet dans la suite du problème que la fonction f est définie sur [0;45] par $f(x)=x^2-60x+975$.

- 1. Justifier que le coût de production total, noté C(x) pour x kg de truffes, est $C(x)=x^3-60\,x^2+975\,x$.
- 2. Justifier que le bénéfice total, noté B(x) pour x kg de truffes, est $B(x) = -x^3 + 60x^2 525x$.
- 3. Déterminer la fonction dérivée B' de la fonction B, définie sur l'intervalle [0;45].
- 4. Étudier les variations de la fonction B sur l'intervalle [0;45].
- 5. Pour quelle quantité de truffes le bénéfice du producteur est-il maximal ? Quel est alors ce bénéfice maximal ?

Exercice 2 : Soit la suite (u_n) définie sur \mathbb{N}^* par $u_1 = \frac{1}{3}$ et $u_{n+1} = \frac{n+1}{3n}u_n$ pour tout $n \ge 1$.

- 1. Calculer u_2 , u_3 et u_4 .
- 2. On pose $v_n = \frac{u_n}{n}$ pour tout entier $n \ge 1$.

Montrer que (v_n) est une suite géométrique de raison $\frac{1}{3}$ dont vous déterminerez le premier terme.

- 3. Montrer que $u_n = n \left(\frac{1}{3}\right)^n$ pour tout entier $n \ge 1$.
- 4. Montrer que $u_{n+1} u_n = \left(\frac{1}{3}\right)^{n+1} (1-2n)$ pour tout entier $n \ge 1$.

En déduire le sens de variation de la suite (u_n) .

5. Soit la fonction python suivante.

- a. Que renvoie l'instruction borne(10**(-3))?
- b. Expliquer l'utilité de la fonction borne()?
- c. Vers quelle grandeur semble tendre la suite (u_n) lorsque n tend vers $+\infty$?