

- I. Problem Statement: Portfolio Optimization
- **II.** Exploratory Data Analysis
- III. Benchmarking [PyPortfolioOpt vs Monte Carlo vs Genetic Algorithm]
- IV. Grid Search, Cross-Validation and Hyper Parameter Tuning
 - V. Optimal Portfolio ['SPY','XLF','QQQ','XLE',GDXJ]
- VI. Optimal Portfolio ['QQQ','ARKK','XLK','XLV','XBI','IBB',

 'IYR','XLRE','VNQ', 'XLF','KRE','KBE', 'XLE','XOP','ICLN']
- VII. Conclusions

I. Problem Statement: Portfolio Optimization

Objective:

- Maximize Sharpe: $S_a = \left(\frac{w^T \cdot \mu}{\sqrt{w^T \cdot \Sigma \cdot w}}\right)$
- Minimize Volatility: $\sigma_a = \sqrt{w^T \cdot \Sigma \cdot w}$
- Maximize Returns: $\mu_a = w^T \cdot \mu$

Constraints:

- Sum of weights must equal 1: $w^T \cdot I = 1$
- Weights must be between 0 and 1: $0 \le w_i \le 1$

What values of w_i would maximize (or minimize) the objective function subject to the given constraints?

- ➤ Approach 1: Efficient Frontier optimization using **PyPortfolioOpt**
- ➤ Approach 2: **Monte Carlo Simulations**
- ➤ Approach 1: Optimization using **Genetic Algorithm**

• Use ETF screeners to identify tickers with most trading volume to form the portfolio from various sectors:

https://etfdb.com/etfs/sector/

Sector	AUM Rank	+/-	Assets Under Management (\$MM)	# of ETFs
Technology	1	-	\$422,157.16	98
Healthcare	2	-	\$107,037.89	62
Real Estate	3	-	\$88,491.77	47
Financials	4	-	\$83,312.99	50
Energy	5	-	\$72,840.33	68

ticker=['QQQ','ARKK','XLK','XLV','XBI','IBB', 'IYR','XLRE','VNQ',
'XLF','KRE','KBE', 'XLE','XOP','ICLN']

 Other strategies include screening ETFs with desired historic returns and Sharpe ratio or personal investment experience.

ticker=['SPY','XLF','QQQ','XLE', 'GDXJ']

Expect less (zero) weight for underperforming tickers

ticker=['SPY','XLF','QQQ','XLE', 'GDXJ']

Expect less (zero) weight for underperforming tickers

ticker=['SPY','XLF','QQQ','XLE', 'GDXJ']

{"similar":["SPY", "XLF", "QQQ"], "dissimilar":["XLE", "GDXJ"]}

ticker=['SPY','XLF','QQQ','XLE',GDXJ]

III. Benchmarking [PyPortfolioOpt vs Monte Carlo vs Genetic Algorithm]

Simulation time: PyPortfolioOpt << Monte Carlo <<< Genetic Algorithm

III. Benchmarking [PyPortfolioOpt vs Monte Carlo vs Genetic Algorithm]

Similar portfolio composition and weights

III. Benchmarking [PyPortfolioOpt vs Monte Carlo vs Genetic Algorithm]

All portfolios better than an equally weighted portfolio!

IV. Grid Search, Cross-Validation and Hyper Parameter Tuning

Hyper Parameter(s):

- n_splits → [TimeSeriesSplit]
- $spl \rightarrow [train/test split]$
- Perform ParameterGrid search to identify n_splits and spl that will maximize the training set sharpe ratio

```
from sklearn.model_selection import ParameterGrid
param_grid = {'n_splits': np.arange(2, 25, 1, dtype=int), 'spl' : [0.7,0.8]}
resul = []
grid = ParameterGrid(param_grid)

for params in grid:
    resul.append([params,obj_GA(params['n_splits'], params['spl'])])
```

IV. Grid Search, Cross-Validation and Hyper Parameter Tuning

{'n splits': 2, 'spl': 0.7} -1.221261 {'n splits': 2, 'spl': 0.8} -1.027832 {'n_splits': 3, 'spl': 0.7} -1.202281 {'n_splits': 3, 'spl': 0.8} -1.037451 {'n_splits': 4, 'spl': 0.7} -1.212207 {'n splits': 4, 'spl': 0.8} -1.034402 {'n_splits': 5, 'spl': 0.7} -1.225038 {'n_splits': 5, 'spl': 0.8} -1.037191 {'n splits': 6, 'spl': 0.7} -1.219758 {'n_splits': 6, 'spl': 0.8} -1.040970 10 {'n_splits': 7, 'spl': 0.7} -1.218063 {'n_splits': 7, 'spl': 0.8} -1.040620 11 {'n_splits': 8, 'spl': 0.7} -1.219144 12 13 {'n splits': 8, 'spl': 0.8} -1.038371 {'n_splits': 9, 'spl': 0.7} -1.215605 14

{'n splits': 9, 'spl': 0.8} -1.039671

15

Identifying the best Hyper-Parameters

IV. Grid Search, Cross-Validation and Hyper Parameter Tuning

Cross-Validation using a simple Time Series Split

V. Optimal Portfolio ['SPY','XLF','QQQ','XLE',GDXJ]

Optimization results in zero weights to underperforming assets (similar to Lasso)

V. Optimal Portfolio ['SPY','XLF','QQQ','XLE',GDXJ]: Performance

Weighted portfolio outperforms an equally weighted portfolio

V. Optimal Portfolio ['SPY','XLF','QQQ','XLE',GDXJ]: Performance

Visualizing the performance of the portfolios

V. Optimal Portfolio ['SPY','XLF','QQQ','XLE',GDXJ]: Performance

Visualizing the performance of the portfolios

VI. Optimal Portfolio

ticker=['QQQ','ARKK','XLK','XLV','XBI','IBB', 'IYR','XLRE','VNQ',

'XLF','KRE','KBE', 'XLE','XOP','ICLN']

0 1 2 {'n_splits': 3, 'spl': 0.7} -1.352684

Cross-Validation using a simple Time Series Split

VI. Optimal Portfolio: Composition

ticker=['QQQ','ARKK','XLK','XLV','XBI','IBB', 'IYR','XLRE','VNQ',

'XLF','KRE','KBE', 'XLE','XOP','ICLN']

2 {'n_splits': 3, 'spl': 0.7} -1.352684

Optimization results in zero weights to underperforming assets (similar to Lasso)

VI. Optimal Portfolio: Performance

ticker=['QQQ','ARKK','XLK','XLV','XBI','IBB', 'IYR','XLRE','VNQ',

'XLF','KRE','KBE', 'XLE','XOP','ICLN']

Weighted portfolio outperforms an equally weighted portfolio

VI. Optimal Portfolio: Performance

ticker=['QQQ','ARKK','XLK','XLV','XBI','IBB', 'IYR','XLRE','VNQ',

'XLF','KRE','KBE', 'XLE','XOP','ICLN']

Visualizing the performance of the portfolios

VI. Optimal Portfolio: Performance

ticker=['QQQ','ARKK','XLK','XLV','XBI','IBB', 'IYR','XLRE','VNQ',

'XLF','KRE','KBE', 'XLE','XOP','ICLN']

Visualizing the performance of the portfolios

VII. Conclusions

- All techniques (PyPortfolioOpt vs Monte Carlo vs Genetic Algorithm)
 converge towards optimal portfolios on the Efficient Frontier plot.
- However, Genetic Algorithm was time expensive compared to Monte Carlo and PyPortfolioOpt techniques.
- Grid Search, Cross-Validation and Hyper Parameter Tuning helped unravel
 the best hyperparameters that maximize the train sharpe ratio.
- Similar to feature selection in Lasso-Regression, resulting portfolios from
 PyPortfolioOpt assign zero weights to underperforming assets.
- Weighted portfolio outperformed an equally weighted portfolio in the cases examined.