Napovedovanje onesnaženosti zraka

Peter Us

5. junij 2016

Oris vsebine

- Opis problema
- Predprocesiranje podatkov
- Gamma GLM
- Hiearhična linearna regresija

Opis problema

- Napovedovanje koncentracije ozona
 - Med leti 2011 in 2015
 - 8 meteoroloških postaj
 - 2 vrsti napovedi (za trenutni dan in naslednji)
- 8772 primerov
- 114 atributov
- mankajoče vrednosti
- časovni podatki

> summary(dataset\$prava.vrednost)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 23.30 95.85 113.20 114.20 132.00 210.20 34

Predprocesiranje

Atributi z veliko mankajočimi vrednosti

> dat <- dat[, -which(colMeans(is.na(dat)) > 0.3)]

Visoko korelirani atributi

- > library(caret)
- > removeIdx <- findCorrelation(cor(dat_temp), cutoff = .90)
- > dat <- dat[, -removeIdx]</pre>

Ostane

- 7862 primerov
- 60 atributov

Predprocesiranje

Mankajoče vrednosti, skaliranje, standardizacija

- naredimo v fazi učenja / testiranje modela
- uporabimo vrednosti naučene na testni mnozici
- Primer standardizacije:
 - (učnaMnožica mean(učnaMnožica)) / sd(učnaMnožica)
 - (testnaMnožica mean(učnaMnožica)) / sd(učnaMnožica)

Evalvacija modelov

- Podatke razdelimo po letih v 5 skupin
 - Za napovedovanje podatkov nekega leta uporabimo podatke iz vseh prejšnjih let
- Učimo in napovedujemo ločeno za vsako izmed 8 postaj
 - Hrastnik, Iškrba, Koper, Krvavec, Ljubljana, Murska Sobota, Nova Gorica, Otlica
- Dve vrsti napovedi: trenutni dan in naslednji dan

Model

```
data {
  int < lower = 0> n; // number of samples
  int < lower = 0 > k; // number of attributes
  matrix[n, k] x; // samples
  vector[n] v; //target
  int < lower = 0> n_new; // number of predicting samples
  matrix[n_new, k] x_new;
parameters {
  real alpha;
  vector[k] beta;
  real <lower = 0.0001 > shape;
model {
    for(i in 1:n)
      y[i] gamma(shape, shape / exp(x[i]) * beta + alpha));
generated quantities {
  vector[n_new] y_new;
    for(i in 1:n_new)
      y_new[i] \leftarrow gamma_neg(shape, shape / exp(x_new[i]) * beta + alpha));
```

Traceplot:


```
Inference for Stan model: gamma_reg_all.
1 chains, each with iter=3000; warmup=500; thin=1;
post-warmup draws per chain=2500, total post-warmup draws=2500.
              mean se_mean
                               sd
                                       2.5%
                                                  25%
                                                             50%
                                                                       75%
                                                                               97.5% n_eff Rhat
              4.80
                       0.00 0.00
                                       4.79
                                                  4.79
                                                            4.80
                                                                      4.80
                                                                                4.80
                                                                                       2500
alpha
              0.02
                       0.00 0.01
                                       0.00
                                                  0.01
                                                            0.02
                                                                                       2316
beta[1]
                                                                      0.02
                                                                                0.03
                       0.00 0.01
                                      -0.03
                                                -0.02
                                                           -0.01
                                                                                       1976
beta[2]
             -0.01
                                                                      0.00
                                                                                0.01
beta[3]
              0.03
                       0.00 0.02
                                      -0.01
                                                 0.02
                                                            0.03
                                                                      0.04
                                                                                0.06
                                                                                       1896
              0.00
                       0.00 0.01
                                      -0.02
                                                -0.01
                                                            0.00
                                                                      0.01
                                                                                0.02
                                                                                       2500
beta[4]
beta[5]
              0.00
                       0.00 0.01
                                      -0.02
                                                 -0.01
                                                            0.00
                                                                      0.00
                                                                                0.01
                                                                                       2000
beta [6]
             -0.02
                       0.00 0.01
                                      -0.04
                                                -0.03
                                                           -0.02
                                                                     -0.01
                                                                                0.00
                                                                                       2500
beta [7]
              0.02
                       0.00 0.01
                                      0.00
                                                 0.01
                                                            0.02
                                                                      0.03
                                                                                0.04
                                                                                       2500
beta[8]
             -0.04
                       0.00 0.02
                                      -0.07
                                                -0.05
                                                           -0.04
                                                                     -0.03
                                                                               -0.01
                                                                                       1948
beta[9]
              0.00
                       0.00 0.01
                                      -0.01
                                                  0.00
                                                            0.00
                                                                      0.01
                                                                                0.02
                                                                                       2500
              0.00
                       0.00 0.01
                                      -0.02
                                                 -0.01
                                                            0.00
                                                                      0.00
                                                                                0.02
                                                                                       2117
                                                                                                1
beta [10]
beta [56]
              0.00
                       0.00 0.01
                                      -0.03
                                                -0.01
                                                            0.00
                                                                      0.00
                                                                                0.02
                                                                                       2500
                                                                                                1
beta [57]
              0.00
                       0.00 0.01
                                      -0.02
                                                -0.01
                                                            0.00
                                                                      0.00
                                                                                0.01
                                                                                       2500
                       0.00 0.01
                                      -0.01
                                                 0.00
                                                            0.01
                                                                                0.02
                                                                                       2500
                                                                                                1
beta [58]
              0.00
                                                                      0.01
beta [59]
              0.00
                       0.00 0.01
                                      -0.01
                                                 0.00
                                                            0.00
                                                                      0.01
                                                                                0.02
                                                                                       2500
beta [60]
              0.00
                       0.00 0.01
                                      -0.01
                                                -0.01
                                                            0.00
                                                                      0.00
                                                                                0.01
                                                                                       2500
```

101.45

-2022.30

89.94

-2033.51

shape

lp__

0.12 5.83

0.22 6.04

85.99

-2046.54 - 2037.39 - 2033.29 - 2029.24

89.88

93.77

78.79

2500

766

1

Rezultati napovedovanja

RMSE:

```
ARSO
                      baseline Lin Reg.
                                           Gamma Reg.
Hrastnik
             245.0967
                        709.8045 313.6543
                                            311.8470
Iskrba
             386.8695
                       661.4325 321.4349
                                            311.4579
             278.9845
                        773.2572 363.7615
Koper
                                            360.3686
Krvavec
             320.8344
                       550.3603 257.5804
                                            237.2069
Ljubljana
             333.8019
                       902.5365 347.4990
                                            338.3196
MurskaSobota 224.0382
                       646.6000 288.9817
                                            730.6269
NovaGorica
             507.3541
                      1093.1313 381.1029
                                            409.1273
Otlica
             335.6851
                        783.4668 405.7707
                                            379.6134
```

Standardne napake:

	ARSO	baseline	Lin Reg.	Gamma Reg.
Hrastnik	21.79971	45.65775	27.78950	26.88194
Iskrba	36.68279	55.29940	30.48019	30.04657
Koper	23.15402	58.12643	30.61805	30.88656
Krvavec	27.77972	36.28856	21.28812	20.14176
Ljubljana	36.41336	68.29918	36.46786	33.18792
MurskaSobota	27.59880	45.95760	30.74177	462.48528
NovaGorica	48.30702	74.96148	31.25988	36.91643
Otlica	32.90305	47.48895	26.16724	25.58927
Krvavec Ljubljana MurskaSobota NovaGorica	27.77972 36.41336 27.59880 48.30702	36.28856 68.29918 45.95760 74.96148	21.28812 36.46786 30.74177 31.25988	20.14176 33.18792 462.48528 36.91643

Linearna regresija vs Gamma regresija

Residuali

Linearna regresija vs Gamma regresija

Predicted vs observed

- Smiselno je, da pri napovedovanju vrednosti za eno postajo upoštevamo tudi ostale postaje
- Predpostavimo, da so koeficienti β iz multivariatne normalne porazdelitve:
 - multivariatna normalna porazdelitev je skupna vsem postajam
 - Za postajo i: $\beta_i \sim multi_normal(\mu, \sum)$
- Parametrov skupne multivariatne normalne porazdelitve ne poznamo jih vključimo v model kot parametre.

Hiper-apriorne porazdelitve:

Za postajo i: $\beta_i \sim multi_normal(\mu, \sum)$

- $\mu \sim 0$
- $\sum = diag_matrix(\tau) * \Omega * diag_matrix(\tau)$
 - Kjer je au scale vector in Ω korelacijska matrika
 - Lažje razumevanje pomena paremetrov in postavlanje primernih apriornih porazdelitev
 - Priporočljive: $\tau_k \sim \textit{Cauchy}(0, 2.5)$ in $\Omega \sim \textit{LKJcorr}(\nu); \nu \geq 1$ Pod pogojem, da so vhodni podatki standardizirani

```
data {
  int < lower = 0> sts; // number of stations
  int < lower = 0> n; // number of samples
  int < lower = 0 > k: // number of attributes
  matrix[n, k] x; // samples
  vector[n] y; // targets
  int idx[n]; // station indexes of samples
  vector[k] zeros:
parameters {
  corr_matrix[k] Omega; // prior correlation
  vector<lower=0>[k] tau; // prior scale
  vector[k] betas[sts]; // ind. coeffs
  vector[sts] alpha; // intercept
  real <lower=0> sigma;
model {
  tau ~ cauchy(0, 2.5);
  Omega ~ lkj_corr(1);
  betas ~ multi_normal(beta_mus. guad_form_diag(Omega. tau));
  for (i in 1:n){
   y[i] " normal(x[i] * betas[idx[i]] + alpha[idx[i]], sigma);
```

```
data {
  int < lower = 0> sts; // number of stations
  int < lower = 0> n; // number of samples
  int < lower = 0 > k; // number of attributes
  matrix[n, k] x: // samples
  vector[n] y; // targets
  int idx[n]; // station indexes of samples
  vector[k] zeros:
                                                              Velja:
                                                             \Omega = L_{\Omega} * L_{\Omega}^{T}
parameters {
  cholesky_factor_corr[k]L_Omega; // prior correlation
  vector<lower=0>[k] tau; // prior scale
  vector[k] betas[sts]; // ind. coeffs
  vector[sts] alpha: // intercept
  real < lower=0> sigma;
                                                              diag_pre_multiply(a, b) =
                                                              diag_matrix(a) * b
model {
  tau ~ cauchv(0. 2.5):
  L\_Omega \sim lkj\_corr\_cholesky(2);
  betas ~ multi_normal_cholesky(zeros, diag_pre_multiply(tau, L_Omega));
  for (i in 1:n){
    y[i] \sim normal(x[i] * betas[idx[i]] + alpha[idx[i]], sigma);
```

- močno povečano število parametrov
 - število $\beta = k * st$
 - korelacijska matrika dimenzije: $\Omega=rac{k^2}{2}$ (simetrična)
- Zato prilagoditve v evalvaciji:
 - Izbermo 15 atributov
 - Za vsako izmed postaj napovedujemo samo za leto 2015
 - Učimo na podatkih vseh postaj pred letom 2015

```
Inference for Stan model: hiearhical_reg.
1 chains, each with iter=6000; warmup=500; thin=1;
post-warmup draws per chain=5500, total post-warmup draws=5500.
                                         2.5%
                                                     25%
                                                                n_eff Rhat
               mean se_mean
                                 sd
L_Omega [1,1]
               1.00
                        0.00
                               0.00
                                         1.00
                                                    1.00
                                                                5500
                                                                      NaN
L_Omega [1,2]
               0.00
                        0.00
                              0.00
                                         0.00
                                                    0.00
                                                                5500
                                                                      NaN
L_Omega [1,3]
               0.00
                        0.00
                               0.00
                                         0.00
                                                    0.00
                                                                5500
                                                                      NaN
L_Omega[15,14]0.06
                        0.00
                               0.22
                                         -0.39
                                                    -0.09
                                                                4058
                               0.14
                                         0.18
                                                    0.35
                                                                1063
L_Omega [15, 15] 0.45
                        0.00
                                                                        1
                               0.80
                                         1.08
                                                    1.69
                                                                3107
tau[1]
               2.24
                        0.01
                                                                        1
tau [15]
               1.05
                        0.02
                               0.65
                                         0.14
                                                    0.56
                                                                757
                                                                        1
                                          0.97
                                                     2.13
                                                                3625
                                                                        1
betas [1,1]
               2.76
                        0.02
                               0.93
betas [8,15]
               -0.44
                         0.02
                               0.80
                                          -2.31
                                                     -0.86
                                                                2399
                                                                        1
              106.39
                         0.03
                               1.32
                                         103.81
                                                    105.52
                                                                2336
alpha[1]
                                                                        1
alpha[2]
               110.47
                          0.02
                                1.18
                                         108.13
                                                    109.67
                                                                3037
                                                                        1
alpha[3]
              120.61
                          0.02
                                1.27
                                         118.12
                                                    119.76
                                                                3703
                                                                        1
                                2.62
alpha[4]
              115.98
                          0.06
                                         110.87
                                                    114.20
                                                                2100
                                                                        1
                                                                        1
alpha[5]
               106.39
                          0.01
                                 1.05
                                         104.33
                                                    105.70
                                                                5500
              109.02
                          0.02
                                1.14
                                         106.73
                                                    108.24
                                                                5500
                                                                        1
alpha[6]
alpha[7]
               119.45
                      0.04
                                1.19
                                         117.17
                                                    118.66
                                                                870
                                                                        1
                        0.02 1.22
                                         112.41
                                                    113.98
                                                                3831
                                                                        1
alpha[8]
               114.82
sigma
               19.27
                         0.00
                               0.23
                                         18.83
                                                    19.12
                                                                5500
                                                                        1
           -12518.34
                         0.31 \ 11.67 \ -12541.99 \ -12525.89
                                                                1416
                                                                        1
lp__
```


Rezultati

Rezultati napovedovanja

RMSE:

```
ARSO baseline Gamma GLM Hiearhical reg
Hrastnik
             240.8624 784.0064
                                  474.2788
                                                 505.6522
Iskrba
             321.6947 659.4305
                                  481.9896
                                                 418.4417
Koper
             271.8148
                      1098.592
                                  721.1761
                                                 675.9680
Krvavec
             368.4219 636.1638
                                  423.5086
                                                 356.7094
Ljubljana
             231.1643 897.0012
                                  572.3642
                                                 491.9442
MurskaSobota 244.7838 625.1524
                                  418.7605
                                                 495.1632
NovaGorica
             804.4294 1132.483
                                 887.8743
                                                 603.4293
Otlica
             378.3348 702.5894
                                  460.1057
                                                 459.1148
```

Standardne napake:

Hrastnik Iskrba Koper Krvavec Ljubljana MurskaSobota NovaGorica	36.10290 49.14359 37.78400 50.31421	85.56374 104.09695 128.68644 72.02047 127.52598 97.80810	55.01289 87.90603 98.91060 54.93803 8 85.29842 74.63881	Hiearhical reg 54.40281 68.92420 89.61301 47.89539 71.29617 74.27205 67.81641
Nova Gorica	112.53522		. 101.33297	67.81641
Otlica	64.52910		50.14827	49.71800

Rezultati

Možno nadalnje delo:

- Razširitev hiearhičnega modela
 - Dodati apriorne hiper-porazdelitve na α parameter
 - Iskanje najbolj primernih apriornih porazdelitev
- Temeljita analiza aposteriornih vrednosti modelov
 - ullet npr. Ω in au pri hiearhičnem modelu (medsebojni vpliv atributov)
- Obširnejša analiza in preprocesiranje atributov
- Uporaba nelinearnih modelov