ASSIGNMENT 1

JONAS TREPIAKAS

Exercise 0.1 (1). Proof. (i) We claim that (x^2+1) is a radical, prime and maximal ideal in $\mathbb{R}[x]$. This can be seen by noting that $\mathbb{R}[x]/(x^2+1)\cong\mathbb{C}$ which is a field. Hence (x^2+1) is maximal. Suppose $f^n\in(x^2+1)$. Since x^2+1 is irreducible and $x^2+1\mid f^n$, we must have $x^2+1\mid f$, hence $f\in(x^2+1)$, so $\sqrt{(x^2+1)}=(x^2+1)$. Over $\mathbb{C}[x]$, we claim that (x^2+1) is neither prime nor maximal, but still radical. It is not prime as $x^2+1=(x+i)(x-i)$ and hence also not maximal since $(x^2+1)\subset(x+i)\neq\mathbb{C}[x]$, where inequality follows from (x+i) only having polynomials of degree ≥ 1 .

Now suppose $f^n \in (x^2 + 1)$. Then $x + i, x - i \mid f^n$, hence both must divide f as they are irreducible, so $x^2 + 1 \mid f$. Thus $f \in (x^2 + 1)$, so $\sqrt{(x^2 + 1)} = (x^2 + 1)$ over $\mathbb{C}[x]$ as well.

- (ii) Since $(x^2 + 1)$ is a prime ideal in $\mathbb{R}[x]$ by the previous exercise, we find by Eisenstein's criterion that $y^2 + x^2 + 1$ is irreducible in $\mathbb{R}[x][y] =: \mathbb{R}[x, y]$.
- (iii) Let $C = \{ f \in C(\mathbb{R}^2, \mathbb{R}) \mid \forall x \in \mathbb{R} : f(x,0) = 0 \} \subset C(\mathbb{R}^2, \mathbb{R})$. We claim that C is radical, but neither prime nor maximal. To see that it is radical, suppose $g^n \in C$, so $g(x,0) \cdot \ldots \cdot g(x,0) = g^n(x,0) = 0$.

Since \mathbb{R} is an integral domain, this forces g(x,0)=0, so $g\in C$. Thus $\sqrt{C}=C$. Now let $h(x)=\mathbb{1}_{\geq 0}(x)x$ and $k(x)=\mathbb{1}_{\leq 0}(x)x$. Then $h,k\notin C$, but $hk\in C$. Therefore, C is not prime. Since $C\left(\mathbb{R}^2,\mathbb{R}\right)$ is a commutative ring and maximal ideals are prime over a commutative ring, we thus also conclude that C is not maximal.

- (iv) The ideal (5) in $\mathbb{Z}[i]$ is not prime, hence not maximal as $\mathbb{Z}[i]$ is commutative. It is not prime because 5 = (2+i)(2-i). For the radical part, if $a+bi \in \sqrt{(5)}$, then $(2+i)(2-i) \mid (a+bi)^n$, so $2+i \mid a+bi$ and $2-i \mid a+bi$ since each is irreducible, hence $5 \mid a+bi$, so $\sqrt{(5)} = (5)$.
- (v) We claim that $(n) \subset \mathbb{Z}$ is prime and maximal whenever n is a prime and not otherwise. If n is not prime, then writing n = ab for a, b > 1, we have (n) = (a)(b), so (n) is not prime, hence not maximal as \mathbb{Z} is commutative so all maximal ideals are prime ideals. If instead n is a prime, n = p, then (p) is both maximal and prime since \mathbb{Z}/p is a field.

Suppose now $m \in \sqrt{(n)}$. Then $m^k \in (n)$, so $m^k = nq$ for some $q \in \mathbb{Z}$. Suppose n is squarefree. Let $p \mid n$. Then $p \mid m^k$ and thus $p \mid m$, so $n \mid m$, hence $m \in (n)$.

Conversely, if n is not squarefree, then letting $n = p^k q$ for some k > 1, we have $p^{k-1}q \in \sqrt{(n)}$ while $p^{k-1}q \notin (n)$, so (n) is not radical.

Exercise 0.2 (2). Let $n \in \mathbb{N}$. We denote the set of orthogonal matrices on \mathbb{R}^n by

$$O\left(\mathbb{R}^{n}\right) = \left\{ A \in \mathbb{R}^{n \times n} \mid A^{T} A = I_{n} \right\}$$

Write $R = \mathbb{R}[x_{ij} \mid i, j = 1, ..., n]$ for the polynomial ring in variables $X = (x_{ij})_{i,j=1,...,n}$.

(1) Show that $O(\mathbb{R}^n)$ is the zero set $\mathbb{V}(I)$ of the ideal $I = (\{f_{ij} \mid i, j = 1, \dots, n\})$ of R where

$$f_{i,j} = \sum_{k=1}^{n} x_{ki} x_{kj}$$
 for $i \neq j$ and $f_{ii} = \sum_{k=1}^{n} x_{ki}^{2} - 1$.

(2) Show that $O(\mathbb{R}^n)$ is also the real zero set of the ideal J=(g,h) generated by the polynomials $g=\det(X)^2-1$ and $h=\sum_{i,j=1}^n x_{ij}^2-n$.

Proof. (a) We know that $A = (\alpha_{ij}) \in O(\mathbb{R}^n)$ if and only if $A^T A = I$. Taking entries of either side of this equality, we get that A is orthogonal if and only if both of the following conditions hold:

$$0 = (A^{T}A)_{ij} = \sum_{k=1}^{n} (A^{T})_{ik} A_{kj} = \sum_{k=1}^{n} \alpha_{ki} \alpha_{kj}$$
$$1 = (A^{T}A)_{ii} = \sum_{k=1}^{n} \alpha_{ki}^{2}.$$

That is, $A \in O(\mathbb{R}^n)$ if and only if $A \in \mathbb{V}(I)$ where we identify $R \cong M_n(\mathbb{R})$ by $\sum \alpha_{ij} x_{ij} \mapsto (\alpha_{ij})$.

(b) Firstly, suppose $A \in O(\mathbb{R}^n)$. Then $A^T A = I$. Therefore, $\det(A)^2 - 1 = \det(A^T) \det(A) - 1 = \det(A^T A) - 1 = \det(I) - 1 = 0$, so g(A) = 0. And now

$$n = \text{tr}(I) = \text{tr}(A^T A) = \sum_{k=1}^{n} (A^T A)_{kk} = \sum_{k,r=1}^{n} \alpha_{rk}^2$$

hence also h(A) = 0. Therefore $O(\mathbb{R}^n) \subset \mathbb{V}(J)$.

Conversely, suppose $A = (\alpha_{ij}) \in \mathbb{V}(J)$. Firstly, note that since

$$x^{T} A^{T} A x = (Ax)^{T} A x = ||Ax||^{2} \ge 0,$$

the matrix A^TA is positive semi-definite, hence all its eigenvalues are non-negative real numbers. In particular, $\sqrt[n]{\prod_{i=1}^n \lambda_i}$ is well-defined where $\lambda_1, \ldots, \lambda_m$ are the eigenvalues of A^TA listed with repetition, and we can apply the AMGM inequality. Recall that the AMGM inequality tells us that

$$\frac{\sum_{i} \lambda_{i}}{n} \geq \sqrt[n]{\prod_{i} \lambda_{i}}$$

with equality if and only if all the λ_i are equal. But by Jordan normal form, $\operatorname{tr}(A^T A) = \sum_i \lambda_i$, and $\operatorname{det}(A^T A) = \prod_i \lambda_i$, so we obtain

$$\operatorname{tr}(A^T A) \ge n \det (A^T A)$$

with equality if and only if all eigenvalues are equal. But since $A \in \mathbb{V}(J)$, we have g(A) = 0, so $\det(A^T A) = \det(A)^2 = 1$. Likewise,

$$\operatorname{tr}(A^{T}A) = \sum_{k=1}^{n} (A^{T}A)_{kk} = \sum_{k,r=1}^{n} \alpha_{rk}^{2} = h(A) + n = n$$

Thus we get

$$n = \operatorname{tr}(A^T A) \ge n \det(A^T A) = n$$

so we conclude that, since we have equality between the two sides, all eigenvalues of A^TA must be equal. Now since A^TA is self-adjoint, it is in particular diagonable, hence it has precisely n eigenvalues counted with multiplicity. Therefore, it has one eigenvalue with multiplicity n. Letting wlog λ denote this eigenvalue, we get

$$n\lambda = \operatorname{tr}(A^T A) = n$$

so $\lambda=1$ since \mathbb{R} is an integral domain. To see that this forces A^TA to be I, we note that since A^TA is diagonable, we can find some invertible linear map $P\in \mathrm{GL}_n\left(\mathbb{R}\right)$ such that $PA^TAP^{-1}=I$, implying $A^TA=I$. Thus A is orthogonal, so $A\in O\left(\mathbb{R}^n\right)$. This gives the inclusion $\mathbb{V}(J)\subset O\left(\mathbb{R}^n\right)$.