

Exercise Sheet 11

June 29nd 2023

Submission of the homework assignments until July 6th, 11:30 am online in TUM-moodle in groups of two. Please put the *full names* and *student IDs* of you *and* your partner on all parts of your submission. The solution will be discussed in the classes and published on moodle after some time.

Homework

Problem H 45 - Hypotheses on Blueberries

[6 pts.]

Welcome back to the pastry factory! A box of blueberries needed to bake the most delicious blueberry muffins should have a nominal weight of 100 g. From a weekly delivery of a large number of boxes the following random sample of size n = 10 was drawn:

1	2	3	4	5	6	7	8	9	10	
98 g	101 g	100 g	96 g	102 g	98 g	96 g	101 g	97 g	100 g	

- a) Define a null-hypothesis $H_{0,t}$ that is adequate for a two-sided Gaussian test of the assumption that the observed mean is the true one.
- b) Find the two-sided confidence interval of the level 95% if the true variance is known to be $\sigma^2 = 4$ (in g^2). Based on this, should one be suspicious that the true mean differs from the nominal value?
- c) Repeat this in the case of an unknown variance.
- d) Perform a t-test for the one-sided hypothesis $H_{0,o}$: " $\mu \ge 100$ " on the significance level of $\alpha = 0.05$.

Solution:

- a) The null hypothesis is simply $H_{0,t}: \mu = \mu_0$ where μ_0 is the nominal value 100 g. \checkmark Accordingly, the alternative hypothesis is $H_{1,t}: \mu \neq \mu_0$.
- b) The level of confidence is $95\% = 1 \alpha$, so $\alpha = 0.05$ or $1 \frac{\alpha}{2} = 0.975$. The sample size is n = 10 and the sample mean is $\bar{X} = 98.9$. The standard deviation is known to be $\sigma = 2$ g. A look in the table yields the required quantile of the standard normal distribution: $z_{0.975} = 1.96$. By this, we obtain the confidence interval

$$\left[98.9 - 1.96 \cdot \frac{2}{\sqrt{10}}, 98.9 + 1.96 \cdot \frac{2}{\sqrt{10}}\right] = [97.7, 100.1],$$

which contains with a probability of 95% the true mean value. The nominal value of 100 is in this interval included, so there is no reason to be suspicious. \checkmark

c) In case of unknown variance, we need the sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \approx 4.77 \implies s = 2.183$$

We again have $1 - \frac{\alpha}{2} = 0.975$ and further have n - 1 = 9 degrees of freedom. The required quantile of the t-distribution is $t_{0.975;9} = 2.262$ as found from a table. The resulting interval of confidence is

$$\left[98.9 - 2.262 \cdot \frac{2.183}{\sqrt{10}}, 98.9 + 2.262 \cdot \frac{2.183}{\sqrt{10}}\right] = [97.3, 100.5],$$

being larger than the previous one. $\checkmark\checkmark$

d) We already have the sample mean and variance. The required test value is

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{98.9 - 100}{0.690} = -1.593,$$

referring to test statistic that is t-distributed with n-1 degrees of freedom. For this one-sided test we need the quantile $t_{1-\alpha;n-1}=t_{0.95;9}=1.833$. The one-sided null-hypothesis $H_{0,o}$ will be neglected if t<-1.833, i.e. here we will keep $H_{0,o}$.

Problem H 46 - Testing a Vaccine

[6 pts.]

A new vaccine against some new virus is tested at n = 100 persons. It is speculated that each of these persons independently will be immune against that virus by the probability p. The pharma company claims that $p \ge 0.9$.

- a) Perform an appropriate hypothesis test on the significance level of 5% to determine the largest possible critical region K for the company's hypothesis.
- b) A neutral researcher is skeptical he claims that p < 0.8. Consider now the null-hypothesis of the pharma company in contrast to the researcher's assumption as alternative hypothesis. Determine the type-II error with respect to the critical region found before. Use the approximation by the standard normal distribution. Hint: The function

$$f(x) = \frac{a - bx}{\sqrt{bx(1 - x)}}, \ 0 < a < b$$

is strictly monotonously decreasing on the interval $x \in [0,1]$.

Solution:

a) Denote by X the number of immune persons. It is clear from the instruction that X is binomially distributed with parameters n = 100 and p. We perform an approximate binomial test with the null hypothesis $H_0: p \geq p_0$ where $p_0 = 0.9$. The test statistic is given as

$$Z = \frac{X - np_0}{\sqrt{np_0(1 - p_0)}} = \frac{X - 100 \cdot 0.9}{\sqrt{100 \cdot 0.9 \cdot 0.1}} = \frac{X - 90}{\sqrt{9}} = \frac{X - 90}{3}.\checkmark$$

On the significance level of α we will neglect the null hypothesis if $Z < z_{\alpha}$, being equivalent to $X < 3 \cdot z_{\alpha} + 90$ in this exercise. The α -quantile with $\alpha = 0.05$ might not be tabulated but by the identity $\Phi(-x) = 1 - \Phi(x)$ we can use that $z_{1-\alpha} = -z_{\alpha}$. So, we obtain $z_{0.05} = -z_{0.95}$, and get from the table $z_{0.05} = -z_{0.95} = -1.65$. By this, the testing statistic will be in the region of rejection K if $X < 90 - 3 \cdot 1.65 = 85.05$ holds. The greatest possible critical region / region of rejection thus is $K = \{0, \dots, 85\}$.

b) The type-II error means that H_0 is false while $H_1: p < p_1 = 0.8$ - the hypothesis of the neutral researcher - is true, but the test statistic is not in the region of rejection of H_0 . So, we consider

$$\sup_{p < p_1} Pr_p(X \notin K) = \sup_{p < p_1} Pr_p(X \ge k + 1). \checkmark$$

Following the hint, we approximate by the standard normal distribution. From a theorem of the lecture we know that

$$Z' = \frac{X - np}{\sqrt{np(1-p)}}$$

can be assumed to be normally distributed. By this, we find

$$Pr_p(X \ge k+1) = Pr_p(Z' \cdot \sqrt{np(1-p)} + np \ge k+1)$$

$$= Pr_p\left(Z' \ge \frac{k+1-np}{\sqrt{np(1-p)}}\right)$$

$$= 1 - Pr_p\left(Z' < \frac{k+1-np}{\sqrt{np(1-p)}}\right)$$

$$\approx 1 - \Phi\left(\frac{k+1-np}{\sqrt{np(1-p)}}\right). \checkmark$$

The cumulative normal distribution Φ is strictly monotonously increasing. We further use the hint with a=k+1, b=n and x=p to see that the argument of Φ is strictly monotonously decreasing with respect to p. \checkmark

$$\sup_{p < p_1} Pr_p(X \ge k + 1) = 1 - \inf_{p < p_1} \Phi\left(\frac{k + 1 - np}{\sqrt{np(1 - p)}}\right) = 1 - \Phi\left(\frac{k + 1 - np_1}{\sqrt{np_1(1 - p_1)}}\right)$$

$$= 1 - \Phi\left(\frac{85 + 1 - 80}{\sqrt{16}}\right) = 1 - \Phi\left(\frac{6}{4}\right) = 1 - \Phi\left(1.5\right) = 1 - 0.933 = 0.067. \checkmark$$

Problem H 47 - Helping an Economy Student

[4 pts.]

Laura, an economy student, hypothesizes that a certain advertisement for a mobile dating app is more attractive to women than to men. The advertisement was rated on some continuous scale by a sample of $N_1 = 8$ women and $N_2 = 10$ men. This yielded the sample

means $\hat{\mu}_1 = 7$ and $\hat{\mu}_2 = 5.5$ as well as the sample variances $s_1^2 = 1$ and $s_2^2 = 1.7$. Using the confidence level $\alpha = 0.01$, provide Laura a test for whether the female mean is greater than the male mean. Assume two normal distributions with $\sigma_1^2 = \sigma_2^2 = \sigma$.

Solution:

We need to test the null-hypothesis $H_0: \mu_1 > \mu_2$ against the alternative hypothesis $H_1: \mu_1 \leq \mu_2$, referring to the true mean values μ_1 and μ_2 . In the case of unknown but equal variances we need the test statistic

$$T = \frac{\hat{\mu}_1 - \hat{\mu}_2}{\sqrt{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}} \sqrt{\frac{N_1 + N_2 - 2}{\frac{1}{N_1} + \frac{1}{N_2}}}. \checkmark$$

Using the values given in the instruction, we get

$$T = \frac{7 - 5.5}{\sqrt{7 \cdot 1 + 9 \cdot 1.7}} \sqrt{\frac{16}{\frac{1}{8} + \frac{1}{10}}} = \frac{1.5}{\sqrt{22.3}} \sqrt{\frac{640}{9}} = \frac{1.5}{0.5600} \approx 2.679.$$

The table of the t-distribution yields that $t_{1-\alpha;N} = t_{.99;16} = 2.583$ where we used $\alpha = 0.01$ and $N = N_1 + N_2 - 2 = 16$, the degrees of freedom. \checkmark The null hypothesis will be rejected if $T < t_{1-\alpha;N}$. As we have 2.679 > 2.583, the samples do not give rise to reject the null-hypothesis - the data supports Laura's hypothesis. \checkmark

Problem H 48 - A Dice to Determine Exam Grades

[5 pts.]

Linsen buys a biased dice at the toy store. The vendor assures that the dice falls on the number "one" with the probability of $\frac{1}{3}$ while all other numbers occur with the same probability. In order to check whether this is true or wrong, Linsen throws the dice for n=100 times and observes the following frequencies:

Number	1	2	3	4	5	6	
Frequency	30	15	18	14	10	13	

Should Linsen believe the vendor's claim on a significance level of 0.01? Perform an appropriate hypothesis test.

Hint: You may approximate $\chi^2_{k,\alpha}$, i.e. the α quantile of the χ^2 distribution with k degrees of freedom, by

$$k \cdot \left(1 - \frac{2}{9k} + z_{\alpha} \cdot \sqrt{\frac{2}{9k}}\right)^{3}$$

where z_{α} denotes the α -quantile of the standard normal distribution.

Solution:

The total number of throws 30 + 15 + 18 + 14 + 10 + 13 indeed is equal to n = 100. Denote by X_j the discrete random variable for the number on the dice of the jth throw $(1 \le j \le n)$. The vendor claims that the probability for a "1" is $p_1 = 1/3$ while any other number $i \in \{2, ... 6\}$ occurs by the same probability, namely $p_i = (1 - (1/3))/5 = 2/15$. We perform a χ^2 goodness-of-fit test to the null-hypothesis

$$H_0: Pr(X=i) = p_i \text{ for } i \in \{1, \dots 6\}, \checkmark$$

where X is just the result in some throw. For $1 \le i \le 6$, let h_i be the frequency of the respective number i on the dice. The test statistic T is defined as

$$T = \sum_{i=1}^{6} \frac{(h_i - n \cdot p_i)^2}{n \cdot p_i}. \checkmark$$

Using the reported values we calculate

$$T = \frac{(30 - 100/3)^2}{100/3} + \frac{(15 - 200/15)^2}{200/15} + \frac{(18 - 200/15)^2}{200/15}$$

$$+ \frac{(14 - 200/15)^2}{200/15} + \frac{(10 - 200/15)^2}{200/15} + \frac{(13 - 200/15)^2}{200/15}$$

$$= \frac{1}{3} + \frac{5}{24} + \frac{49}{30} + \frac{1}{30} + \frac{5}{6} + \frac{1}{120}$$

$$= \frac{366}{120} = \frac{61}{20} = 3.05. \checkmark$$

If this value is larger than $\chi^2_{M-1;1-\alpha} = \chi^2_{6-1;1-0.01} = \chi^2_{5;0.99}$ (M-1=5 being the number of degrees of freedom in the case of a dice with 6 sides), Linsen should reject the null-hypothesis. \checkmark We use the approximation of the hint and find

$$\chi_{5;0.99} \approx 5 \cdot \left(1 - \frac{2}{9 \cdot 5} + z_{0.99} \cdot \sqrt{\frac{2}{9 \cdot 5}}\right)^3 \approx 5 \cdot \left(1 - \frac{2}{45} + 2.33 \cdot \sqrt{\frac{2}{45}}\right)^3 \approx 15.1.$$

Since 3.05 < 15.1, Linsen cannot reject the claim of the vendor based on her sample. \checkmark