Image recognition by knowledge transfer using deep convolutional neural network

Identifying car makes, models and years.

By Muayyad Alsadi Supervisor: Prof. Arafat Awajan Co-Supervisor: Dr. Rawan Ghnemat

The problem

Typing on mobile is very inconvenient annoying compared to just snap a photo

Make: Kia

Model: Cerato

Year: 2009

The flow

- User shoots the item to be sold with his mobile phone
- The application identifies main object in the picture
- Ex. "Car > Honda > Civic > 2006-2012"
- User can adjust auto filled fields ex. Year 2006-2012 into 2008

Deep Convolutional Neural Network

- ConvNets inspired by how visual cortex is assumed to work.
- Pass input image as matrix to multiple trainable convolutional filters of fixed size (kernel size like 5x5)
- Very expensive to train
 - Millions of weights
 - Billions of multiplication-accumulations

Generic or Domain-specific

- Domain specific requires images to be
 - Centered
 - Segmented
 - Same orientation
- Examples:
 - Face recognition
 - Fingerprint scanner

Why Not Domain-Specific

- Different types of items
- Same item different angles
- Different environments (light, background)
- opened/closed
- turned on/off

232049b843d76e148 5e8fe75.jpg.jpg

407051f186ee83137 edefec1.jpg.jpg

bmw.jpg

cooker.jpg

md.jpg

mobile.jpg

old.jpg

panasonic.jpg

sony-z2.jpg

toyota-camry.jpg

washing-machine.jpg

watch.jpg

Simple CNN: LeNet

Figure 3.3: ZFNet design

Source: (Zeiler & Fergus, 2014)

More complex CNN: ZFNet

Different CNNs and their cost and accuracy

Table 3.7: Comparing all versions of Inception

Model Name	layers	weights	mults	Top-1 accuracy	Top-5 accuracy
Inception v1	22	6.6M	1,498M	69.8	89.6
Inception v2	42	11 M	1,934M	73.9	91.8
Inception v3	53	27M	5,719M	78.0	93.9
Inception v4	81	46M	13,882M	80.2	95.2
Inception ResNet V2	130	59M	14,882M	80.4	95.3

Constraints

- Limited Budget and Resources
 - Train on commodity hardware for short period of time
 - No expensive specialized hardware (GPUs)
- Expandable model
 - Ability to add more classes

Re-using Off the shelf models

- Models for ImageNet 1K-class task
- Submitted to Large Scale Visual Recognition Challenge (ILSVRC)
- Trained on multiple high-end specialized GPUs
- Trained for many weeks or more than a month
- Publically available

Knowledge Transfer

- Re-use off-the-shelf state-of-the-art model (any model for ImagetNet 1K task)
- Transfer knowledge from that model into our task
- One need to address:
 - O What to transfer?
 - O How?
 - When and why it would work?

Why Knowledge Transfer work

- Several papers showed that:
 - First layers activate primitive shapes
 - Deeper layers activates higher level more composite shapes
- Primitive shapes and intermediate filters can be reused to activate other tasks, only decision making layers are to be customized.

First layers activates primitive shapes and textures (Zeiler & Fergus, 2014)

Intermediate layers

Deeper layers

How?

fine-tuning

- Taking a trained model
- replace last last layer (model head) with random layer
- Train last layer only

How?

fine-tuning

- Taking a trained model
- replace last last layer (model head) with random layer
- Train last layer only, keep previous layers frozen.

Not enough? Add extra layers or unfreeze more layer and train them

Noisy Dataset

- Use previously uploaded photos on OpenSooq.com
- User-Generated Content is noisy
- Some images are:
 - registration papers
 - inspection papers
 - Does not show any car identity

Proposed Procedures

- Use Inception V1 trained on Imagenet 1K as source model (donor)
- Use fine-tuning knowledge transfer to train a model to clear dataset
 - Car sides
 - Craft weights for non-cars
- Start by most common car models
- Adaptive batch size to increase speed
- Expand classes by injecting confusion and oversampling of confusion

Results for 229 car models

- Top 1 accuracy: 81.17%
- Top 2 accuracy: 88.20%
- Top 3 accuracy: 90.94%
- Top 5 accuracy: 93.67%
- Precision: 80.89%
- Recall: 79.70%
- F1-Score: 80.29%

Recorded Demo

Live Demo

Thank you