EC 607, Set 02

Edward Rubin

Prologue

Last time

Research basics, our class, and R

Today

Material: The Rubin causal model (not mine), Chapter 2 MHE.

Last time

Research basics, our class, and R

Today

Material: The Rubin causal model (not mine), Chapter 2 MHE.

Assignment₁ Make sure R and RStudio are running on your computer.

Last time

Research basics, our class, and R

Today

Material: The Rubin causal model (not mine), Chapter 2 MHE.

Assignment₁ Make sure R and RStudio are running on your computer.

Assignment₂ Take 15 minutes to quietly think about your interests.

Last time

Research basics, our class, and R

Today

Material: The Rubin causal model (not mine), Chapter 2 MHE.

Assignment₁ Make sure R and RStudio are running on your computer.

Assignment₂ Take 15 minutes to quietly think about your interests.

Assignment₃ First formal assignment.

Last time

Research basics, our class, and R

Today

Material: The Rubin causal model (not mine), Chapter 2 MHE.

Assignment₁ Make sure R and RStudio are running on your computer.

Assignment₂ Take 15 minutes to quietly think about your interests.

Assignment₃ First formal assignment.

Future

Lab: Catch up with Owen and start deepening R knowledge.

Long run: Deepen understandings/intuitions for causality and inference.

Research fundamentals

Research fundamentals

Angrist and Pischke provide four **fundamental questions for research**:

- 1. What is the **causal relationship of interest**?
- 2. How would an **ideal experiment** capture this causal effect of interest?
- 3. What is your **identification strategy**?
- 4. What is your **mode of inference**?

Research fundamentals

Angrist and Pischke provide four **fundamental questions for research**:

- 1. What is the **causal relationship of interest**?
- 2. How would an **ideal experiment** capture this causal effect of interest?
- 3. What is your **identification strategy**?
- 4. What is your **mode of inference**?

Seemingly straightforward questions can be fundamentally unanswerable.

General research recommendations

More unsolicited advice:

- Be curious.
- Ask questions.
- Attend seminars.
- Meet faculty (UO + visitors).
- Focus on learning—especially intuition.[†]
- Be kind and constructive.

[†] Learning is not always the same as getting good grades.

What's so great about experiments?

Science widely regards **experiments** as the gold standard for research.

But why? The costs can be substantial.

Costs

- slow and expensive
- heavily regulated by (risk-averse?) review boards
- can abstract away from the actual question/setting

Benefits

So the benefits need to be pretty large, right?

Example: Hospitals and health

Imagine we want to know the causal effect of hospitals on health.

Example: Hospitals and health

Imagine we want to know the **causal effect of hospitals on health**.

Research question

Within the population of poor, elderly individuals, does visiting the emergency room for primary care improve health?

Example: Hospitals and health

Imagine we want to know the **causal effect of hospitals on health**.

Research question

Within the population of poor, elderly individuals, does visiting the emergency room for primary care improve health?

Empirical exercise

- 1. Collect data on health status and hospital visits.
- 2. Summarize health status by hospital-visit group.

Example: Hospitals and health

Our empirical exercise from the 2005 National Health Inteview Survey:

Group	Sample Size	Mean Health Status	Std. Error
Hospital	7,774	3.21	0.014
No hospital	90,049	3.93	0.003

Example: Hospitals and health

Our empirical exercise from the 2005 National Health Inteview Survey:

Group	Sample Size	Mean Health Status	Std. Error
Hospital	7,774	3.21	0.014
No hospital	90,049	3.93	0.003

We get a t statistic of 58.9 when testing a difference in groups' means (0.72).

Example: Hospitals and health

Our empirical exercise from the 2005 National Health Inteview Survey:

Group	Sample Size	Mean Health Status	Std. Error
Hospital	7,774	3.21	0.014
No hospital	90,049	3.93	0.003

We get a t statistic of 58.9 when testing a difference in groups' means (0.72).

Conclusion? Hospitals make folks worse. Hospitals make sick people sicker.

Example: Hospitals and health

Our empirical exercise from the 2005 National Health Inteview Survey:

Group	Sample Size	Mean Health Status	Std. Error
Hospital	7,774	3.21	0.014
No hospital	90,049	3.93	0.003

We get a t statistic of 58.9 when testing a difference in groups' means (0.72).

Conclusion? Hospitals make folks worse. Hospitals make sick people sicker.

Alternative conclusion: Perhaps we're making a mistake in our analysis...

Example: Hospitals and health

Our empirical exercise from the 2005 National Health Inteview Survey:

Group	Sample Size	Mean Health Status	Std. Error
Hospital	7,774	3.21	0.014
No hospital	90,049	3.93	0.003

We get a t statistic of 58.9 when testing a difference in groups' means (0.72).

Conclusion? Hospitals make folks worse. Hospitals make sick people sicker.

Alternative conclusion: Perhaps we're making a mistake in our analysis... maybe sick people go to hospitals?

Potential outcomes framework

Let's develop a framework to better discuss the problem here.

Potential outcomes framework

Let's develop a framework to better discuss the problem here.

- Binary treatment variable (e.g., hospitalized): $\mathbf{D}_i = 0, 1$
- Outcome for individual i (e.g., health): Y_i

This framework has a few names...

- Neyman potential outcomes framework
- Rubin causal model
- Neyman-Rubin "potential outcome"|"causal" "framework"|"model"

Potential outcomes framework

Research question: Does D_i affect Y_i ?

Potential outcomes framework

Research question: Does D_i affect Y_i ?

For each individual i, there are two **potential outcomes** (w/ binary D_i)

Potential outcomes framework

Research question: Does D_i affect Y_i ?

For each individual i, there are two **potential outcomes** (w/ binary D_i)

1. \mathbf{Y}_{1i} if $\mathbf{D}_i=1$ i's health outcome if she went to the hospital

Potential outcomes framework

Research question: Does D_i affect Y_i ?

For each individual i, there are two **potential outcomes** (w/ binary D_i)

- 1. \mathbf{Y}_{1i} if $\mathbf{D}_i = 1$ i's health outcome if she went to the hospital
- 2. \mathbf{Y}_{0i} if $\mathbf{D}_i = \mathbf{0}$ i's health outcome if she did not go to the hospital

Potential outcomes framework

Research question: Does D_i affect Y_i ?

For each individual i, there are two **potential outcomes** (w/ binary D_i)

- 1. \mathbf{Y}_{1i} if $\mathbf{D}_i = 1$ i's health outcome if she went to the hospital
- 2. \mathbf{Y}_{0i} if $\mathbf{D}_i = \mathbf{0}$ i's health outcome if she did not go to the hospital

The difference between these two outcomes gives us the **causal effect of hospital treatment**, *i.e.*,

$$\tau_i = \mathbf{Y}_{1i} - \mathbf{Y}_{0i}$$

#problems

This simple equation

$$\tau_i = \mathbf{Y}_{1i} - \mathbf{Y}_{0i}$$

leads us to the fundamental problem of causal inference.

#problems

This simple equation

$$\tau_i = \mathbf{Y}_{1i} - \mathbf{Y}_{0i}$$

leads us to the fundamental problem of causal inference.

We can never simultaneously observe Y_{1i} and Y_{0i} .

#problems

This simple equation

$$\tau_i = \mathbf{Y}_{1i} - \mathbf{Y}_{0i}$$

leads us to the fundamental problem of causal inference.

We can never simultaneously observe Y_{1i} and Y_{0i} .

Most of applied econometrics focuses on addressing this simple problem.

#problems

This simple equation

$$\tau_i = \mathbf{Y}_{1i} - \mathbf{Y}_{0i}$$

leads us to the fundamental problem of causal inference.

We can never simultaneously observe Y_{1i} and Y_{0i} .

Most of applied econometrics focuses on addressing this simple problem.

Accordingly, our methods try to address the related question

For each \mathbf{Y}_{1i} , what is a (reasonably) good counterfactual?

Solutions?

Problem We cannot directly calculate $\tau_i = Y_{1i} - Y_{0i}$.

Solutions?

Problem We cannot directly calculate $\tau_i = \mathbf{Y}_{1i} - \mathbf{Y}_{0i}$.

Proposed solution

Compare outcomes for people who visited the hospital $(Y_{1i} \mid D_i = 1)$ to outcomes for people who did not visit the hospital $(Y_{0j} \mid D_j = 0)$.

Solutions?

Problem We cannot directly calculate $\tau_i = Y_{1i} - Y_{0i}$.

Proposed solution

Compare outcomes for people who visited the hospital $(Y_{1i} \mid D_i = 1)$ to outcomes for people who did not visit the hospital $(Y_{0j} \mid D_j = 0)$.

$$E[\mathbf{Y}_i \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_i \mid \mathbf{D}_i = 0]$$

which gives us the observed difference in health outcomes.

Solutions?

Problem We cannot directly calculate $\tau_i = \mathbf{Y}_{1i} - \mathbf{Y}_{0i}$.

Proposed solution

Compare outcomes for people who visited the hospital $(Y_{1i} \mid D_i = 1)$ to outcomes for people who did not visit the hospital $(Y_{0j} \mid D_j = 0)$.

$$E[\mathbf{Y}_i \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_i \mid \mathbf{D}_i = 0]$$

which gives us the observed difference in health outcomes.

Q This comparison will return *an* answer, but is it *the* answer we want?

Selection

Q What does $E[Y_i \mid D_i = 1] - E[Y_i \mid D_i = 0]$ actually tell us?

Selection

Q What does $E[Y_i \mid D_i = 1] - E[Y_i \mid D_i = 0]$ actually tell us?

A First notice that we can write i's outcome Y_i as

$$\mathbf{Y}_i = \mathbf{Y}_{0i} + \mathbf{D}_i \underbrace{\left(\mathbf{Y}_{1i} - \mathbf{Y}_{0i}\right)}_{\tau_i}$$

Selection

Q What does $E[Y_i \mid D_i = 1] - E[Y_i \mid D_i = 0]$ actually tell us?

A First notice that we can write i's outcome Y_i as

$$\mathbf{Y}_i = \mathbf{Y}_{0i} + \mathbf{D}_i \underbrace{\left(\mathbf{Y}_{1i} - \mathbf{Y}_{0i}\right)}_{\tau_i}$$

$$E[Y_i \mid D_i = 1] - E[Y_i \mid D_i = 0]$$

Selection

Q What does $E[Y_i \mid D_i = 1] - E[Y_i \mid D_i = 0]$ actually tell us?

A First notice that we can write i's outcome Y_i as

$$\mathbf{Y}_i = \mathbf{Y}_{0i} + \mathbf{D}_i \underbrace{\left(\mathbf{Y}_{1i} - \mathbf{Y}_{0i}\right)}_{\tau_i}$$

$$E[\mathbf{Y}_i \mid \mathbf{D}_i = \mathbf{1}] - E[\mathbf{Y}_i \mid \mathbf{D}_i = \mathbf{0}]$$

$$= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = \mathbf{1}] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = \mathbf{0}]$$

Selection

Q What does $E[Y_i \mid D_i = 1] - E[Y_i \mid D_i = 0]$ actually tell us?

A First notice that we can write i's outcome Y_i as

$$\mathbf{Y}_i = \mathbf{Y}_{0i} + \mathbf{D}_i \underbrace{\left(\mathbf{Y}_{1i} - \mathbf{Y}_{0i}\right)}_{\tau_i}$$

$$egin{aligned} E[\mathbf{Y}_i \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_i \mid \mathbf{D}_i = 0] \ &= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 0] \ &= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] + E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 0] \end{aligned}$$

Selection

Q What does $E[Y_i \mid D_i = 1] - E[Y_i \mid D_i = 0]$ actually tell us?

A First notice that we can write i's outcome Y_i as

$$\mathbf{Y}_i = \mathbf{Y}_{0i} + \mathbf{D}_i \underbrace{\left(\mathbf{Y}_{1i} - \mathbf{Y}_{0i}\right)}_{\mathbf{T}_i}$$

$$\begin{split} E[\mathbf{Y}_i \mid \mathbf{D}_i &= 1] - E[\mathbf{Y}_i \mid \mathbf{D}_i = 0] \\ &= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 0] \\ &= \underbrace{E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1]}_{\text{Average treatment effect on the treated } \mathbf{\Theta} \\ \end{split}$$

Selection

Q What does $E[Y_i \mid D_i = 1] - E[Y_i \mid D_i = 0]$ actually tell us?

A First notice that we can write i's outcome Y_i as

$$\mathbf{Y}_i = \mathbf{Y}_{0i} + \mathbf{D}_i \underbrace{(\mathbf{Y}_{1i} - \mathbf{Y}_{0i})}_{\tau_i}$$

$$\begin{split} E[\mathbf{Y}_i \mid \mathbf{D}_i &= 1] - E[\mathbf{Y}_i \mid \mathbf{D}_i = 0] \\ &= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 0] \\ &= \underbrace{E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1]}_{\text{Average treatment effect on the treated } \underbrace{} + \underbrace{E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 0]}_{\text{Selection bias } \underbrace{} } \end{split}$$

Selection

The **first term** is *good variation*—essentially the answer that we want.

$$E[\mathrm{Y}_{1i} \mid \mathrm{D}_i = 1] - E[\mathrm{Y}_{0i} \mid \mathrm{D}_i = 1]$$

Selection

The **first term** is *good variation*—essentially the answer that we want.

$$egin{aligned} E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \ &= E[\mathbf{Y}_{1i} - \mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \end{aligned}$$

Selection

The **first term** is *good variation*—essentially the answer that we want.

$$egin{aligned} E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \ &= E[\mathbf{Y}_{1i} - \mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \ &= E[oldsymbol{ au}_i \mid \mathbf{D}_i = 1] \end{aligned}$$

Selection

The **first term** is *good variation*—essentially the answer that we want.

$$egin{aligned} E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \ &= E[\mathbf{Y}_{1i} - \mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \ &= E[oldsymbol{ au}_i \mid \mathbf{D}_i = 1] \end{aligned}$$

The average causal effect of hospitalization for hospitalized individuals.

Selection

The **first term** is *good variation*—essentially the answer that we want.

$$egin{aligned} E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \ &= E[\mathbf{Y}_{1i} - \mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \ &= E[au_i \mid \mathbf{D}_i = 1] \end{aligned}$$

The average causal effect of hospitalization for hospitalized individuals.

The **second term** is bad variation—preventing us from knowing the answer.

$$E[Y_{0i} \mid D_i = 1] - E[Y_{0i} \mid D_i = 0]$$

Selection

The **first term** is *good variation*—essentially the answer that we want.

$$egin{aligned} E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \ &= E[\mathbf{Y}_{1i} - \mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \ &= E[au_i \mid \mathbf{D}_i = 1] \end{aligned}$$

The average causal effect of hospitalization for hospitalized individuals.

The **second term** is bad variation—preventing us from knowing the answer.

$$E[Y_{0i} \mid D_i = 1] - E[Y_{0i} \mid D_i = 0]$$

The difference in the average untreated outcome between the treatment and control groups.

Selection

The **first term** is *good variation*—essentially the answer that we want.

$$egin{aligned} E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \ &= E[\mathbf{Y}_{1i} - \mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \ &= E[au_i \mid \mathbf{D}_i = 1] \end{aligned}$$

The average causal effect of hospitalization for hospitalized individuals.

The **second term** is bad variation—preventing us from knowing the answer.

$$E[Y_{0i} \mid D_i = 1] - E[Y_{0i} \mid D_i = 0]$$

The difference in the average untreated outcome between the treatment and control groups.

Selection bias The extent to which the "control group" provides a bad counterfactual for the treated individuals.

Selection

Angrist and Pischke (MHE, p. 15),

The goal of most empirical economic research is to overcome selection bias, and therefore to say something about the causal effect of a variable like \mathbf{D}_i .

Selection

Angrist and Pischke (MHE, p. 15),

The goal of most empirical economic research is to overcome selection bias, and therefore to say something about the causal effect of a variable like D_i .

Q So how do experiments—the gold standard of empirical economic (and scientific) research—accomplish this goal and overcome selection bias?

Back to experiments

Q How do experiments overcome selection bias?

Back to experiments

Q How do experiments overcome selection bias?

A Experiments break the link between potential outcomes and treatment.

In other words: Randomly assigning D_i makes D_i independent of which outcome we observe (meaning Y_{1i} or Y_{0i}).

Back to experiments

Q How do experiments overcome selection bias?

A Experiments break the link between potential outcomes and treatment.

In other words: Randomly assigning D_i makes D_i independent of which outcome we observe (meaning Y_{1i} or Y_{0i}).

$$E[Y_i \mid D_i = 1] - E[Y_i \mid D_i = 0]$$

Back to experiments

Q How do experiments overcome selection bias?

A Experiments break the link between potential outcomes and treatment.

In other words: Randomly assigning D_i makes D_i independent of which outcome we observe (meaning Y_{1i} or Y_{0i}).

$$E[\mathbf{Y}_i \mid \mathbf{D}_i = \mathbf{1}] - E[\mathbf{Y}_i \mid \mathbf{D}_i = \mathbf{0}]$$

$$= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = \mathbf{1}] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = \mathbf{0}]$$

Back to experiments

Q How do experiments overcome selection bias?

A Experiments break the link between potential outcomes and treatment.

In other words: Randomly assigning D_i makes D_i independent of which outcome we observe (meaning Y_{1i} or Y_{0i}).

$$egin{aligned} E[\mathbf{Y}_i \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_i \mid \mathbf{D}_i = 0] \ &= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 0] \ &= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \end{aligned}$$

Back to experiments

Q How do experiments overcome selection bias?

A Experiments break the link between potential outcomes and treatment.

In other words: Randomly assigning D_i makes D_i independent of which outcome we observe (meaning Y_{1i} or Y_{0i}).

$$egin{aligned} E[\mathbf{Y}_i \mid \mathbf{D}_i = \mathbf{1}] - E[\mathbf{Y}_i \mid \mathbf{D}_i = 0] \ &= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = \mathbf{1}] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 0] \ &= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = \mathbf{1}] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = \mathbf{1}] \end{aligned} \qquad ext{from random assignment of } \mathbf{D}_i$$

Back to experiments

Q How do experiments overcome selection bias?

A Experiments break the link between potential outcomes and treatment.

In other words: Randomly assigning D_i makes D_i independent of which outcome we observe (meaning Y_{1i} or Y_{0i}).

$$egin{aligned} E[\mathbf{Y}_i \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_i \mid \mathbf{D}_i = 0] \ &= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 0] \ &= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \end{aligned} \qquad ext{from random assignment of } \mathbf{D}_i \ &= E[\mathbf{Y}_{1i} - \mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \end{aligned}$$

Back to experiments

Q How do experiments overcome selection bias?

A Experiments break the link between potential outcomes and treatment.

In other words: Randomly assigning D_i makes D_i independent of which outcome we observe (meaning Y_{1i} or Y_{0i}).

$$\begin{split} E[\mathbf{Y}_i \mid \mathbf{D}_i &= 1] - E[\mathbf{Y}_i \mid \mathbf{D}_i = 0] \\ &= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 0] \\ &= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \quad \text{from random assignment of } \mathbf{D}_i \\ &= E[\mathbf{Y}_{1i} - \mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \\ &= E[\tau_i \mid \mathbf{D}_i = 1] \end{split}$$

Back to experiments

Q How do experiments overcome selection bias?

A Experiments break the link between potential outcomes and treatment.

In other words: Randomly assigning D_i makes D_i independent of which outcome we observe (meaning Y_{1i} or Y_{0i}).

$$\begin{split} E[\mathbf{Y}_i \mid \mathbf{D}_i &= 1] - E[\mathbf{Y}_i \mid \mathbf{D}_i = 0] \\ &= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 0] \\ &= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \quad \text{from random assignment of } \mathbf{D}_i \\ &= E[\mathbf{Y}_{1i} - \mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \\ &= E[\tau_i \mid \mathbf{D}_i = 1] \\ &= E[\tau_i] \end{split}$$

Back to experiments

Q How do experiments overcome selection bias?

A Experiments break the link between potential outcomes and treatment.

In other words: Randomly assigning D_i makes D_i independent of which outcome we observe (meaning Y_{1i} or Y_{0i}).

$$\begin{split} E[\mathbf{Y}_i \mid \mathbf{D}_i &= 1] - E[\mathbf{Y}_i \mid \mathbf{D}_i = 0] \\ &= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 0] \\ &= E[\mathbf{Y}_{1i} \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \quad \text{from random assignment of } \mathbf{D}_i \\ &= E[\mathbf{Y}_{1i} - \mathbf{Y}_{0i} \mid \mathbf{D}_i = 1] \\ &= E[\tau_i \mid \mathbf{D}_i = 1] \\ &= E[\tau_i] \quad \text{Random assignment of } \mathbf{D}_i \text{ breaks selection bias.} \end{split}$$

Randomly assigned treatment

The key to avoiding selection bias: random assignment of treatment

Randomly assigned treatment

The key to avoiding selection bias: **random assignment of treatment** (or as-good-as random assignment, e.g., natural experiments).

Randomly assigned treatment

The key to avoiding selection bias: **random assignment of treatment** (or as-good-as random assignment, e.g., natural experiments).

Random assignment of treatment gives us

$$E[Y_{0i} \mid D_i = 0] = E[Y_{0i} \mid D_i = 1]$$

meaning the control group's mean now provides a good counterfactual for the treatment group's mean.

Randomly assigned treatment

The key to avoiding selection bias: **random assignment of treatment** (or as-good-as random assignment, e.g., natural experiments).

Random assignment of treatment gives us

$$E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 0] = E[\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1]$$

meaning the control group's mean now provides a good counterfactual for the treatment group's mean.

In other words, there is no selection bias, i.e.,

Selection bias
$$= E[Y_{0i} \mid D_i = 1] - E[Y_{0i} \mid D_i = 0] = 0$$

Randomly assigned treatment

Additional benefit of randomization:

The average treatment effect is now representative of the population average, rather than the treatment-group average.

Randomly assigned treatment

Additional benefit of randomization:

The average treatment effect is now representative of the population average, rather than the treatment-group average.

$$E[au_i \mid \mathbf{D}_i = 1] = E[au_i \mid \mathbf{D}_i = 0] = E[au_i]$$

Example: Training programs

Governments subsidize training programs to assist disadvantaged workers.

Example: Training programs

Governments subsidize training programs to assist disadvantaged workers.

Q Do these programs have the desired effects (i.e., increase wages)?

Example: Training programs

Governments subsidize training programs to assist disadvantaged workers.

Q Do these programs have the desired effects (i.e., increase wages)?

A Observational studies—comparing wage data from participants and non-participants—often find that people who complete these programs actually make lower wages.

Example: Training programs

Governments subsidize training programs to assist disadvantaged workers.

Q Do these programs have the desired effects (*i.e.*, increase wages)?

A Observational studies—comparing wage data from participants and non-participants—often find that people who complete these programs actually make lower wages.

Challenges Participants self select. **+** Programs target lower-wage workers.

Example: Training programs

How do we formalize these concerns in our framework?

Example: Training programs

How do we formalize these concerns in our framework?

Observational program evaluations

$$E[\mathrm{Wage}_i \mid \mathrm{Program}_i = 1] - E[\mathrm{Wage}_i \mid \mathrm{Program}_i = 0] =$$

$$\underbrace{E[\mathrm{Wage}_{1i} \mid \mathrm{Program}_i = 1] - E[\mathrm{Wage}_{0i} \mid \mathrm{Program}_i = 1]}_{\mathrm{Average \ causal \ effect \ of \ training \ program \ on \ wages \ for \ participants, \ i.e., \ ar{ au}_1} = \underbrace{E[\mathrm{Wage}_{0i} \mid \mathrm{Program}_i = 1] - E[\mathrm{Wage}_{0i} \mid \mathrm{Program}_i = 0]}_{\mathrm{Selection \ bias}}$$

Example: Training programs

How do we formalize these concerns in our framework?

Observational program evaluations

$$E[\mathrm{Wage}_i \mid \mathrm{Program}_i = 1] - E[\mathrm{Wage}_i \mid \mathrm{Program}_i = 0] =$$
 $E[\mathrm{Wage}_{1i} \mid \mathrm{Program}_i = 1] - E[\mathrm{Wage}_{0i} \mid \mathrm{Program}_i = 1] +$
Average causal effect of training program on wages for participants, $i.e., \bar{ au}_1$
 $E[\mathrm{Wage}_{0i} \mid \mathrm{Program}_i = 1] - E[\mathrm{Wage}_{0i} \mid \mathrm{Program}_i = 0]$
Selection bias

If the program attracts/selects individuals who, on average, have lower wages without the program (sort of the point of the program), then we have negative selection bias.

Example: Training programs

```
\begin{split} E[\text{Wage}_i \mid & \text{Program}_i = 1] - E[\text{Wage}_i \mid \text{Program}_i = 0] = \\ & E[\text{Wage}_{1i} \mid \text{Program}_i = 1] - E[\text{Wage}_{0i} \mid \text{Program}_i = 1] + \\ & E[\text{Wage}_{0i} \mid \text{Program}_i = 1] - E[\text{Wage}_{0i} \mid \text{Program}_i = 0] \end{split}
```

So even if the program, on average, has an positive wage effect (in the participant group), i.e., $\bar{\tau}_1 > 0$, we will detect a lower effect due to the negative selection bias.

Example: Training programs

```
\begin{split} E[\text{Wage}_i \mid \text{Program}_i = 1] - E[\text{Wage}_i \mid \text{Program}_i = 0] = \\ E[\text{Wage}_{1i} \mid \text{Program}_i = 1] - E[\text{Wage}_{0i} \mid \text{Program}_i = 1] + \\ E[\text{Wage}_{0i} \mid \text{Program}_i = 1] - E[\text{Wage}_{0i} \mid \text{Program}_i = 0] \end{split}
```

So even if the program, on average, has an positive wage effect (in the participant group), i.e., $\bar{\tau}_1 > 0$, we will detect a lower effect due to the negative selection bias.

If the bias is sufficiently large (relative to the treatment effect), our estimate will even get the sign of the effect wrong.

Example: Training programs

```
\begin{split} E[\text{Wage}_i \mid & \text{Program}_i = 1] - E[\text{Wage}_i \mid \text{Program}_i = 0] = \\ & E[\text{Wage}_{1i} \mid \text{Program}_i = 1] - E[\text{Wage}_{0i} \mid \text{Program}_i = 1] + \\ & E[\text{Wage}_{0i} \mid \text{Program}_i = 1] - E[\text{Wage}_{0i} \mid \text{Program}_i = 0] \end{split}
```

So even if the program, on average, has an positive wage effect (in the participant group), i.e., $\bar{\tau}_1 > 0$, we will detect a lower effect due to the negative selection bias.

If the bias is sufficiently large (relative to the treatment effect), our estimate will even get the sign of the effect wrong.

Related While observational studies typically found negative program effects, several experiments found positive program effects.

Example: The STAR experiment

The Tennessee STAR experiment is a famous/popular example of an experiment that allows us to answer an important social/policy question.

Research question Do classroom resources affect student performance?

Example: The STAR experiment

The Tennessee STAR experiment is a famous/popular example of an experiment that allows us to answer an important social/policy question.

Research question Do classroom resources affect student performance?

- Statewide(-ish) in Tennessee for the 1985–1986 kindergarten cohort
- Ran for 4 years with ~11,600 children. Cost ~\$12 million.

Example: The STAR experiment

The Tennessee STAR experiment is a famous/popular example of an experiment that allows us to answer an important social/policy question.

Research question Do classroom resources affect student performance?

- Statewide(-ish) in Tennessee for the 1985–1986 kindergarten cohort
- Ran for 4 years with ~11,600 children. Cost ~\$12 million.

Treatments

- 1. Small classes (13–17 students)
- 2. Regular classes (22–35 students)
- 3. Regular classes (22–35 students) plus full-time teacher's aide

Example: The STAR experiment

First question Did the randomization balance participants' characteristics across the treatment groups?

Example: The STAR experiment

First question Did the randomization balance participants' characteristics across the treatment groups?

Ideally, we would have pre-experiment data on outcome variable.

Unfortunately, we only have a few demographic attributes.

Table 2.2.1, MHE

	Tı			
Variable	Small	Regular	Regular + Aide	P-value
Free lunch	0.47	0.48	0.50	0.09
White/Asian	0.68	0.67	0.66	0.26
Age in 1985	5.44	5.43	5.42	0.32
Attrition rate	0.49	0.52	0.53	0.02
K. class size	15.10	22.40	22.80	0.00
K. test percentile	54.70	48.90	50.00	0.00

Table 2.2.1, MHE

	Tr			
Variable	Small	P-value		
Free lunch	0.47	0.48	0.50	0.09
White/Asian	0.68	0.67	0.66	0.26
Age in 1985	5.44	5.43	5.42	0.32
Attrition rate	0.49	0.52	0.53	0.02
K. class size	15.10	22.40	22.80	0.00
K. test percentile	54.70	48.90	50.00	0.00

Demographics appear balanced across the three treatment groups.

Table 2.2.1, MHE

	Ti			
Variable	Small	Regular	Regular + Aide	P-value
Free lunch	0.47	0.48	0.50	0.09
White/Asian	0.68	0.67	0.66	0.26
Age in 1985	5.44	5.43	5.42	0.32
Attrition rate	0.49	0.52	0.53	0.02
K. class size	15.10	22.40	22.80	0.00
K. test percentile	54.70	48.90	50.00	0.00

The three groups differ significantly on attrition rate.

Table 2.2.1, MHE

	Tı	Treatment: Class Size				
Variable	Small	Regular	Regular + Aide	P-value		
Free lunch	0.47	0.48	0.50	0.09		
White/Asian	0.68	0.67	0.66	0.26		
Age in 1985	5.44	5.43	5.42	0.32		
Attrition rate	0.49	0.52	0.53	0.02		
K. class size	15.10	22.40	22.80	0.00		
K. test percentile	54.70	48.90	50.00	0.00		

The randomization generated variation in the treatment.

Table 2.2.1, MHE

	Tı			
Variable	Small	Regular	Regular + Aide	P-value
Free lunch	0.47	0.48	0.50	0.09
White/Asian	0.68	0.67	0.66	0.26
Age in 1985	5.44	5.43	5.42	0.32
Attrition rate	0.49	0.52	0.53	0.02
K. class size	15.10	22.40	22.80	0.00
K. test percentile	54.70	48.90	50.00	0.00

The small-class treatment significantly increased test scores.

The STAR experiment

The previous table estimated/compared the treatment effects using simple differences in means.

We can make the same comparisons using regressions.

Specifically, we regress our outcome (test percentile) on dummy variables (binary indicator variables) for each treatment group.

Example of our three treatment dummies.

i	y_i	Trt_{1i}	Trt_{2i}	Trt_{3i}
1	y_1	1	0	0
2	y_2	1	0	0
•	•	•	•	•
ℓ	y_ℓ	1	0	0
$\ell+1$	$y_{\ell-1}$	0	1	0
•	•	•	•	•
p	y_p	0	1	0
p+1	y_{p+1}	0	0	1
•	•	•	•	•
N	y_N	0	0	1

Regression analysis

Assume for the moment that the treatment effect is constant^{\dagger}, *i.e.*,

$$\mathbf{Y}_{1i} - \mathbf{Y}_{0i} = \boldsymbol{\rho} \quad \forall i$$

Regression analysis

Assume for the moment that the treatment effect is constant^{\dagger}, i.e.,

$$\mathbf{Y}_{1i} - \mathbf{Y}_{0i} = \boldsymbol{\rho} \quad \forall i$$

then we can rewrite

$$\mathbf{Y}_i = \mathbf{Y}_{0i} + \mathbf{D}_i \left(\mathbf{Y}_{1i} - \mathbf{Y}_{0i} \right)$$

Regression analysis

Assume for the moment that the treatment effect is constant[†], i.e.,

$$\mathbf{Y}_{1i} - \mathbf{Y}_{0i} = \boldsymbol{\rho} \quad \forall i$$

then we can rewrite

$$\mathbf{Y}_i = \mathbf{Y}_{0i} + \mathbf{D}_i \left(\mathbf{Y}_{1i} - \mathbf{Y}_{0i} \right)$$

as

$$\mathbf{Y}_i = \underbrace{lpha}_{=E[\mathbf{Y}_{0i}]} + \mathbf{D}_i \underbrace{oldsymbol{
ho}}_{\mathbf{Y}_{1i}-\mathbf{Y}_{0i}} + \underbrace{\eta_i}_{\mathbf{Y}_{0i}-E[\mathbf{Y}_{0i}]}$$

Regression analysis

$$Y_i = \alpha + D_i \rho + \eta_i$$

Regression analysis

$$Y_i = \alpha + D_i \rho + \eta_i$$

$$E[\mathbf{Y}_i \mid \mathbf{D}_i = \mathbf{1}] =$$

Regression analysis

$$Y_i = \alpha + D_i \rho + \eta_i$$

$$E[\mathbf{Y}_i \mid \mathbf{D}_i = \mathbf{1}] = E[\alpha + \mathbf{\rho} + \eta_i \mid \mathbf{D}_i = \mathbf{1}]$$

Regression analysis

$$Y_i = \alpha + D_i \rho + \eta_i$$

$$E[Y_i \mid \mathbf{D}_i = 1] = E[\alpha + \frac{\rho}{\rho} + \eta_i \mid \mathbf{D}_i = 1] = \alpha + \frac{\rho}{\rho} + E[\eta_i \mid \mathbf{D}_i = 1]$$

Regression analysis

$$Y_i = \alpha + D_i \rho + \eta_i$$

$$E[Y_i \mid D_i = 1] = E[\alpha + \rho + \eta_i \mid D_i = 1] = \alpha + \rho + E[\eta_i \mid D_i = 1]$$

$$E[Y_i \mid D_i = 0]$$

Regression analysis

$$Y_i = \alpha + D_i \rho + \eta_i$$

$$E[Y_i \mid \mathbf{D}_i = 1] = E[\alpha + \frac{\rho}{\rho} + \eta_i \mid \mathbf{D}_i = 1] = \alpha + \frac{\rho}{\rho} + E[\eta_i \mid \mathbf{D}_i = 1]$$

$$E[Y_i \mid D_i = 0] = E[\alpha + \eta_i \mid D_i = 0]$$

Regression analysis

$$Y_i = \alpha + D_i \rho + \eta_i$$

$$E[Y_i \mid D_i = 1] = E[\alpha + \rho + \eta_i \mid D_i = 1] = \alpha + \rho + E[\eta_i \mid D_i = 1]$$

$$E[\mathrm{Y}_i \mid \mathrm{D}_i = 0] = E[lpha + \eta_i \mid \mathrm{D}_i = 0] = lpha + E[\eta_i \mid \mathrm{D}_i = 0]$$

Regression analysis

$$\mathbf{Y}_i = \alpha + \mathbf{D}_i \mathbf{\rho} + \eta_i$$

Now write out the conditional expectation of Y_i for both levels of D_i

$$E[Y_i \mid D_i = 1] = E[\alpha + \rho + \eta_i \mid D_i = 1] = \alpha + \rho + E[\eta_i \mid D_i = 1]$$

$$E[\mathrm{Y}_i \mid \mathrm{D}_i = 0] = E[lpha + \eta_i \mid \mathrm{D}_i = 0] = lpha + E[\eta_i \mid \mathrm{D}_i = 0]$$

Take the difference...

$$E[Y_i \mid D_i = 1] - E[Y_i \mid D_i = 0]$$

Regression analysis

$$\mathbf{Y}_i = \alpha + \mathbf{D}_i \mathbf{\rho} + \eta_i$$

Now write out the conditional expectation of Y_i for both levels of D_i

$$E[\mathbf{Y}_i \mid \mathbf{D}_i = \mathbf{1}] = E[\alpha + \mathbf{\rho} + \eta_i \mid \mathbf{D}_i = \mathbf{1}] = \alpha + \mathbf{\rho} + E[\eta_i \mid \mathbf{D}_i = \mathbf{1}]$$

$$E[\mathrm{Y}_i \mid \mathrm{D}_i = 0] = E[lpha + \eta_i \mid \mathrm{D}_i = 0] = lpha + E[\eta_i \mid \mathrm{D}_i = 0]$$

Take the difference...

$$E[\mathbf{Y}_i \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_i \mid \mathbf{D}_i = 0]$$

$$= \rho + \underbrace{E[\eta_i | \mathbf{D}_i = 1] - E[\eta_i \mid \mathbf{D}_i = 0]}_{\text{Selection bias}}$$

Regression analysis

$$E[\mathrm{Y}_i \mid \mathrm{D}_i = 1] - E[\mathrm{Y}_i \mid \mathrm{D}_i = 0] = \textcolor{red}{
ho} + E[\eta_i \mid \mathrm{D}_i = 1] - E[\eta_i \mid \mathrm{D}_i = 0]$$

Again, our estimate of the **treatment effect** (ρ) is only going to be as good as our ability to shut down the **selection bias**.

Selection bias in regression model:
$$E[\eta_i | \mathbf{D}_i = \mathbf{1}] - E[\eta_i | \mathbf{D}_i = 0]$$

Selection bias here should remind you a lot of

Regression analysis

$$E[\mathrm{Y}_i \mid \mathrm{D}_i = 1] - E[\mathrm{Y}_i \mid \mathrm{D}_i = 0] = \textcolor{red}{
ho} + E[\eta_i \mid \mathrm{D}_i = 1] - E[\eta_i \mid \mathrm{D}_i = 0]$$

Again, our estimate of the **treatment effect** (ρ) is only going to be as good as our ability to shut down the **selection bias**.

Selection bias in regression model:
$$E[\eta_i | \mathbf{D}_i = \mathbf{1}] - E[\eta_i | \mathbf{D}_i = 0]$$

Selection bias here should remind you a lot of omitted-variable bias.

There is something in our disturbance η_i that is affecting Y_i and is also correlated with D_i .

Regression analysis

$$E[\mathrm{Y}_i \mid \mathrm{D}_i = 1] - E[\mathrm{Y}_i \mid \mathrm{D}_i = 0] = \textcolor{red}{
ho} + E[\eta_i \mid \mathrm{D}_i = 1] - E[\eta_i \mid \mathrm{D}_i = 0]$$

Again, our estimate of the **treatment effect** (ρ) is only going to be as good as our ability to shut down the **selection bias**.

Selection bias in regression model:
$$E[\eta_i | \mathbf{D}_i = \mathbf{1}] - E[\eta_i | \mathbf{D}_i = 0]$$

Selection bias here should remind you a lot of omitted-variable bias.

There is something in our disturbance η_i that is affecting Y_i and is also correlated with D_i .

In other metrics-y words: Our treatment D_i is endogenous.

Solutions and covariates

Selection bias in regression model: $E[\eta_i | \mathbf{D}_i = \mathbf{1}] - E[\eta_i | \mathbf{D}_i = 0]$

Solutions and covariates

Selection bias in regression model: $E[\eta_i|\mathbf{D}_i=1]-E[\eta_i|\mathbf{D}_i=0]$

As before, if we randomly assign D_i , then selection bias disappears.

Solutions and covariates

Selection bias in regression model: $E[\eta_i|\mathbf{D}_i=1]-E[\eta_i|\mathbf{D}_i=0]$

As before, if we randomly assign D_i , then selection bias disappears.

Another potential route to identification is to condition on covariates in the hopes that they "take care of" the relationship between D_i and whatever is in our disturbance η_i .

Solutions and covariates

Selection bias in regression model: $E[\eta_i|\mathbf{D}_i=1]-E[\eta_i|\mathbf{D}_i=0]$

As before, if we randomly assign D_i , then selection bias disappears.

Another potential route to identification is to condition on covariates in the hopes that they "take care of" the relationship between D_i and whatever is in our disturbance η_i .

Without very clear reasons explaining how you know you've controlled for the "bad variation", clean and convincing identification on this path is going to be challenging.

Covariates

That said, covariates can help with two things:

- 1. Even experiments may need **conditioning/controls**: The STAR experiment was random within school—not across schools.
- 2. Covariates can soak up unexplained variation—increasing precision.

Covariates

That said, covariates can help with two things:

- 1. Even experiments may need **conditioning/controls**: The STAR experiment was random *within school*—not across schools.
- 2. Covariates can soak up unexplained variation—increasing precision.

Now that we've seen regression can analyze experiments, let's estimate the STAR example...

Table 2.2.2, MHE

Explanatory variable	1	2	3
Small class	4.82	5.37	5.36
	(2.19)	(1.26)	(1.21)
Regular + aide	0.12	0.29	0.53
	(2.23)	(1.13)	(1.09)
White/Asian			8.35
			(1.35)
Female			4.48
			(0.63)
Free lunch			-13.15
			(0.77)
School F.E.	F	Т	Т

The omitted level is Regular.

Table 2.2.2, MHE

Explanatory variable	1	2	3
Small class	4.82	5.37	5.36
	(2.19)	(1.26)	(1.21)
Regular + aide	0.12	0.29	0.53
	(2.23)	(1.13)	(1.09)
White/Asian			8.35
			(1.35)
Female			4.48
			(0.63)
Free lunch			-13.15
			(0.77)
School F.E.	F	Т	Т

Results without other controls are very similar to the difference in means.

Table 2.2.2, MHE

Explanatory variable	1	2	3
Small class	4.82	5.37	5.36
	(2.19)	(1.26)	(1.21)
Regular + aide	0.12	0.29	0.53
	(2.23)	(1.13)	(1.09)
White/Asian			8.35
			(1.35)
Female			4.48
			(0.63)
Free lunch			-13.15
			(0.77)
School F.E.	F	Т	Т

School FEs enforce the experiment's design and increase precision.

Table 2.2.2, MHE

Explanatory variable	1	2	3
Small class	4.82	5.37	5.36
	(2.19)	(1.26)	(1.21)
Regular + aide	0.12	0.29	0.53
	(2.23)	(1.13)	(1.09)
White/Asian			8.35
			(1.35)
Female			4.48
			(0.63)
Free lunch			-13.15
			(0.77)
School F.E.	F	Т	T

Additional controls slightly increase precision.

Summary

The potential-outcomes framework

- clarifies our need for "clean" variation;
- elucidates our identifying assumptions;
- illustrates why experiments are "the gold standard".

Summary

The potential-outcomes framework

- clarifies our need for "clean" variation;
- elucidates our identifying assumptions;
- illustrates why experiments are "the gold standard".

However, **experiments** are not a panacea.

- Experiments still make **assumptions** (more on this later).
- We can violate these assumptions (also more later).
- Conditional random assignment requires conditioning.

Summary

The potential-outcomes framework

- clarifies our need for "clean" variation;
- elucidates our identifying assumptions;
- illustrates why experiments are "the gold standard".

However, **experiments** are not a panacea.

- Experiments still make **assumptions** (more on this later).
- We can violate these **assumptions** (also more later).
- Conditional random assignment requires conditioning.

Bonus: Covariates also help soak up unexplained variation.

Table of contents

Admin

- 1. Schedule
- 2. Review

Experimental ideal

- 1. Neyman/Rubin framework
- 2. Selection
- 3. Experiments
- 4. Example: Training programs
- 5. Example: STAR experiment
 - Mean differences
 - Dummy variables
 - Regression analysis
 - Covariates