

8 BIT PISO SHIFT REGISTER

- HIGH SPEED: t_{PD} = 15ns (TYP.) at V_{CC} = 5V
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A=25^{\circ}C$
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 4mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- OUTPUTS DRIVE CAPABILITY 10 LSTTL LOADS
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 165

The HC165 is an high speed CMOS 8 BIT PISO SHIFT REGISTER fabricated with silicon gate C²MOS tecnology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption.

It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

This device contains eight clocked master slave RS flip-flops connected as a shift register, with auxiliary gating to provide over-riding asynchronous <u>parallel</u> entry. Parallel data entres when the shift/load input is low. The parallel data

ORDER CODES

PACKAGE	TUBE	T&R
DIP	M74HC165B1R	
SOP	M74HC165M1R	M74HC165RM13TR
TSSOP		M74HC165TTR

can change while shift/load is low, provided that the recommended set-up and hold times are observed. For clocked operation, shift/load must be high. The two clock input perform identically; one can be used as a clock inhibit by applying a high signal; to permit this operation clocking is accomplished through a 2 input nor gate.

To avoid double clocking, however, the inhibit signal should only go high while the clock is high. Otherwise the rising inhibit signal will cause the same response as rising clock edge.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

September 2000 1/12

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	S/L	Asynchronous Parallel Load Input
2	QH	Complementary Output
7	QH	Serial Output
9	CLOCK	Clock Input (LOW to HIGH edge triggered)
10	SI	Serial Data Input
11, 12, 13, 14, 3, 4, 5, 6	A to H	Parallel Data Inputs
15	CLOCK INH	Clock Inhibit
8	GND	Ground (0V)
16	V _{CC}	Positive Supply Voltage

TRUTH TABLE

		INPUTS	INTERNAL	OUTPUT					
S/L	CLOCK INH	CLOCK	SERIAL IN	A H	QA	QB	QH		
L	Х	X	X	a h	а	b	h		
Н	L		Н	Х	Н	QA _n	QG _n		
Н	L		L	Х	L	QA _n	QG _n		
Н	7	L	Н	Х	Н	QA _n	QG _n		
Н	7	L	L	Х	L	QA _n	QG _n		
Н	Х	Н	Х	Х	NO CHANGE				
Н	Н	X	Х	Х		NO CHANGE			

a.....h: The level of steady input voltage at inputs a through respectively

QAn - QGn: The level of QA - QG, respectively before the most recent transition of the clock.

LOGIC DIAGRAM

57

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
V _I	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P _D	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Rating are those value beyond which damage to the device may occour. Functional operation under these condition is not implied

(*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit	
V _{CC}	Supply Voltage		2 to 6	V
V _I	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperqture		-40 to 85	°C
	Input Rise and Fall Time	$V_{CC} = 2.0V$	0 to 1000	ns
dt/dv		$V_{CC} = 4.5V$	0 to 500	ns
		V _{CC} = 6.0V	0 to 400	ns

DC SPECIFICATION

		٦	Test Condition			Value			
Symbol	Parameter	v _{cc}		T _A = 25 °		= 25 °C -40 to		85 °C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	
V _{IH}	High Level Input Voltage	2.0		1.5			1.5		
		4.5		3.15			3.15		V
		6.0		4.2			4.2		
V_{IL}	Low Level Input Voltage	3.0				0.5		0.5	
		4.5				1.35		1.35	V
		5.5				1.8		1.8	
V_{OH}	High Level Ouput Voltage	2.0	I _O =-20 μA	1.9	2.0		1.9		
		4.5	I _O =-20 μA	4.4	4.5		4.4		
		6.0	I _O =-20 μA	5.9	6.0		5.9		V
		4.5	I _O =-4 mA	4.18	4.31		4.13		
		6.0	I _O =-5.2 mA	5.68	5.8		5.63		
V_{OL}	Low Level Output Voltage	2.0	I _O =20 μA		0.0	0.1		0.1	
		4.5	I _O =20 μA		0.0	0.1		0.1	
		6.0	I _O =20 μA		0.0	0.1		0.1	V
		4.5	I _O =4 mA		0.17	0.26		0.33	
		6.0	I _O =5.2 mA		0.18	0.26		0.33	
I _I	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1	μΑ
I _{CC}	Quiescent Supply Current	5.5	$V_I = V_{CC}$ or GND			4		40	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

		1	Test Condition			Value			
Symbol	Parameter	v _{cc}		Т	A = 25 °	,C	-40 to 85 °C		Unit
		(V)	Min.	Тур.	Max.	Min.	Max.		
t _{TLH} t _{THL}	Output Transition Time	2.0			30	75		95	
		4.5			8	15		19	ns
		6.0			7	13		16	
t _{PLH} t _{PHL}	Propagation Delay Time	2.0			55	150		190	
	(CK - QH, QH)	4.5			18	30		38	ns
		6.0			15	26		33	
t _{PLH} t _{PHL}	Propagation Delay Time	2.0			65	165		205	
	(S/L - QH, QH)	4.5			21	33		41	ns
		6.0			18	28		35	
t _{PLH} t _{PHL}	Propagation Delay Time	2.0			55	135		170	
	(H - QH, QH)	4.5			17	27		34	ns
		6.0			14	23		29	
f _{MAX}		2.0		7.4	15		6.0		
	Frequency	4.5		37	60		30		MHz
		6.0		44	71		35		
t _{(W)H} t _{(W)L}	Minimum Pulse Width	2.0			24	75		95	
	(CK)	4.5			6	15		19	ns
		6.0			5	13		16	
t _{(W)L}	Minimum Pulse Width	2.0			32	75		95	
	(S/L)	4.5			8	15		19	ns
		6.0			7	13		16	
t _s	Minimum Set-up Time	2.0			24	75		95	
	(PI <u>-</u> S/L) (SI - CK)	4.5			6	15		19	ns
	(S/L - CK)	6.0			5	13		16	
t _h	Minimum Set-up Time	2.0				0		0	
	(S/L - PI) (CK - SI) (CK - S/L)	4.5				0		0	ns
		6.0				0		0	
t _{REM}	Minimum Removal Time	2.0			20	75		95	
	(CK - CKINH)	4.5			5	15		19	ns
		6.0			4	13		16	

CAPACITANCE CHARACTERISTICS

		1	Test Condition		Value						
Symbol	nbol Parameter					T,	_A = 25 °	C	-40 to	85 °C	Unit
		(V)	v)	Min.	Тур.	Max.	Min.	Max.			
C _{IN}	Input Capacitance	5.0			5		10		pF		
C _{PD}	Power Dissipation Capacitance (note 1)	5.0			55				pF		

¹⁾ C_{PD} is defined as the value of the IC's internal equivylent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average current cqn be obtqined by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}$

TIMING CHART

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_T = Z_{OUT} of pulse generator (typically 50 Ω)

57

WAVEFORM 1: SERIAL MODE PROPAGATION DELAY (f=1MHz; 50% duty cycle)

WAVEFORM 2: PARALLEL MODE PROPAGATION DELAY (f=1MHz; 50% duty cycle)

WAVEFORM 3: PARALLEL MODE PROPAGATION DELAY (f=1MHz; 50% duty cycle)

WAVEFORM 4: PARALLEL MODE PROPAGATION DELAY (f=1MHz; 50% duty cycle)

WAVEFORM 5: PARALLEL MODE PROPAGATION DELAY (f=1MHz; 50% duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
Е		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
ı			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

SO-16 MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45 ((typ.)		
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8 (n	nax.)		

TSSOP16 MECHANICAL DATA

DIM.		mm		inch				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α			1.1			0.433		
A1	0.05	0.10	0.15	0.002	0.004	0.006		
A2	0.85	0.9	0.95	0.335	0.354	0.374		
b	0.19		0.30	0.0075		0.0118		
С	0.09		0.20	0.0035		0.0079		
D	4.9	5	5.1	0.193	0.197	0.201		
Е	6.25	6.4	6.5	0.246	0.252	0.256		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
К	0°	4°	8°	0°	4°	8°		
L	0.50	0.60	0.70	0.020	0.024	0.028		

577

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

