CS156 (Introduction to AI), Spring 2021

<u>Assignment_3</u>

Roster Name: GURSIMRAN SINGH

Preferred Name (if different): SIMRAN

Student ID: 015212210

Email address: gursimransingh@sjsu.edu

References and sources

https://towardsdatascience.com/how-to-read-csv-file-using-pandas-ab1f5e7e7b58 https://pandas.pydata.org/docs/getting_started/intro_tutorials/03_subset_data.html

List all your references and sources here. This includes all sites/discussion boards/blogs/posts/etc. where you grabbed some code examples.

Solution

Load libraries and set random number generator seed

Code the solution

```
import pandas as pd
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
```

Out[35]: **Trust** Economy **Happiness** Health (Life Dystopia (GDP per Family Freedom (Government Generosity **Score Expectancy**) Residual Capita) Corruption) 0 7.587 1.39651 1.34951 0.94143 0.66557 0.41978 0.29678 2.51738 7.561 1 1.30232 1.40223 0.94784 0.62877 0.14145 0.43630 2.70201 2 7.527 1.32548 1.36058 0.87464 0.64938 0.48357 0.34139 2.49204 3 7.522 1.45900 1.33095 0.88521 0.66973 0.36503 0.34699 2.46531 7.427 0.90563 0.32957 0.45811 1.32629 1.32261 0.63297 2.45176

```
In [36]: df.describe()
```

Out[36]:

	Happiness Score	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	Trust (Government Corruption)	Generosity	Dystop Residu
count	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.0000(
mean	5.375734	0.846137	0.991046	0.630259	0.428615	0.143422	0.237296	2.09897
std	1.145010	0.403121	0.272369	0.247078	0.150693	0.120034	0.126685	0.55355
min	2.839000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.32858
25%	4.526000	0.545808	0.856823	0.439185	0.328330	0.061675	0.150553	1.75941
50%	5.232500	0.910245	1.029510	0.696705	0.435515	0.107220	0.216130	2.09541
75%	6.243750	1.158448	1.214405	0.811013	0.549092	0.180255	0.309883	2.46241
max	7.587000	1.690420	1.402230	1.025250	0.669730	0.551910	0.795880	3.60214

```
plt.figure(figsize=(30,20))
In [37]:
        for i, columns in enumerate(df.columns):
            plt.subplot(5, 3, i+1)
            x = df[columns]
            y = df['Happiness Score']
            plt.scatter(x, y, color='yellow')
            #plt.plot(x, y, '.', color="forestgreen",)
            plt.xlabel(columns)
            plt.ylabel('Happiness Score')
            import seaborn as sns
In [38]:
         features = df[['Economy (GDP per Capita)','Family','Freedom','Health (Life Expectancy)'
         sns.set(rc={'figure.figsize': (8.5,8.5)})
         sns.heatmap(features.corr().round(2), square=True, cmap='BrBG', annot=True)
```

Out[38]: <AxesSubplot:>


```
X_train,X_test,Y_train,Y_test = train_test_split(df[['Economy (GDP per Capita)','Family
In [39]:
In [40]:
          X_train.shape , X_test.shape
Out[40]: ((126, 7), (32, 7))
In [41]:
          from sklearn import linear_model
          model= linear_model.LinearRegression().fit(X_train, Y_train)
In [42]:
          pred_values=model.predict(X_test)
In [43]:
          from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
In [44]:
          mean_squared_error(pred_values,Y_test)
Out[44]: 9.863758664525458e-08
In [45]:
          r2_score(pred_values,Y_test)
```

Out[45]:	0.999999035244795
In []:	
In []:	