Searching and characterizing compact binary coalescence signals: challenges and solutions in real data

Greg Ashton

Background and motivation

Observing runs

O₄b started on the 10th of April

We are here

Observations to date

- O1-O3 produced nearly 100 observations
- All signals arise from Compact Binary Coalescence (CBC):
 - Binary black hole collisions

- Binary neutron star collisions

- Neutron star – black holes

Stand out highlights:

- GW1050914: the first observation
- GW170817: a multimessenger BNS

Credit: LIGO-Virgo-KAGRA Collaboration / IGFAE / Thomas Dent

Compact binary mergers (CBC)

CBC triggers

- Total number of triggers in O₄ now exceeds all previous runs
- No clear binary neutron star candidates..
- No multimessenger candidates..

Gravitational-wave data analysis

- Sam Finn (1992):
 - Search: decide if the data contains a signal
 - Parameter Estimation: assume the presence of a signal and measure its parameters
- LIGO-Virgo-KAGRA:
 - Calibration, Detector Characterisation
 - Search + Parameter Estimation
 - Population studies, Tests of General Relativity,
 Cosmology, Searching for lensed pairs, ...

Challenge: more signals!

Challenge: more signals

Challenge: more signals

Time is of the essence: low-latency and high-latency analyses

- Identify and address bottlenecks
- Build faster software:
 - More efficient
 - Leverage computational parallelisation
 - Improve validation/checking
- Automate everything

Challenge: an asymmetric detector network

Challenge: an asymmetric detector network

- Virgo did not join O4a due to technical challenges
- Excellent duty cycles across LIGO-Virgo in O4b
- LIGO 3x more sensitive than Virgo
- KAGRA to join later in the run with ~10 Mpc

O₃ (arXiv:2111.03606)

O4 (gwosc.org/detector status/day/20240602/)

/AY

Challenge: an asymmetric detector network

Emma et al. (2024) study O4 sensitivities:

- For detection:
 - A third weaker IFO is not (on average) useful
- For parameter estimation:
 - A third detector is critical to improving **sky localisation**
 - When Virgo is within a factor of 6 of LIGO, it produces a significant improvement in the sky localisation
 - Though the KAGRA range is limited, it could provide a factor of a few reduction in sky area for an optimal sky location

Challenge: an asymmetric detector network

Extending the Virgo range closer to LIGO sensitivity would moderately improve intrinsic source parameter estimation

Challenge: real detectors are full of glitches

Challenge: real detector data is full of glitches

- Glitches: transient non-Gaussian noise
- One every few minutes
- Impact:
 - Reduce search sensitivity
 - Contaminate observed signals
 - Contaminate the population

Challenge: glitches

- How many LVK signals are contaminated by a glitch?
 - Glitches happen about **once per minute** (Omicron: $\rho > 6.5$)
 - Most signals last just a few seconds
 - \sim 1/15 signals should be contaminated..
- Note that the Omicron rate is saturated

Challenge: glitches

However, 20% of signals in GWTC-3 are "deglitched"

Deglitching:

- Build a model for the glitch
- Subtract it from the data
- Analyse the "cleaned" data the standard Whittle likelihood:

$$\ln \mathcal{L}(\widetilde{\boldsymbol{d}}|\boldsymbol{\theta}, M) \propto -\frac{2}{T} \sum_{j} \frac{\left|\tilde{d}_{j} - \tilde{\mu}_{j}(\boldsymbol{\theta}) - \tilde{g}_{j}(\boldsymbol{\vartheta})\right|^{2}}{P_{j}}$$

Methods: BayesWave, gwsubtract, ML non-linear

Problem: deglitching ignores glitch model uncertainty

Alternative: Implicit modelling with Gaussian processes

Recall: the Whittle likelihood approximates the full Gaussian likelihood:

$$\ln \mathcal{L}(\boldsymbol{d}|\boldsymbol{\theta}, M) = -\frac{1}{2}\boldsymbol{r}(\boldsymbol{\theta})^T \boldsymbol{\Sigma}^{-1} \boldsymbol{r}(\boldsymbol{\theta}) - \frac{1}{2}\ln((2\pi)^N |\boldsymbol{\Sigma}|)$$

Where:

 $r(\theta) = d - \mu(\theta)$ is the time-domain residual

 Σ is the noise covariance matrix

A Gaussian Process (GP) introduces a kernel with hyperparameters α to model the covariance:

$$\Sigma \to \Sigma_{mn}(\alpha) = k(t_m, t_n; \alpha)$$

Then the GP likelihood is:

$$\ln \mathcal{L}(\boldsymbol{d}|\boldsymbol{\theta},\boldsymbol{\alpha},\boldsymbol{M}) = -\frac{1}{2}\boldsymbol{r}(\boldsymbol{\theta})^{T}\boldsymbol{\Sigma}(\boldsymbol{\alpha})^{-1}\boldsymbol{r}(\boldsymbol{\theta}) - \frac{1}{2}\ln((2\pi)^{N}|\boldsymbol{\Sigma}(\boldsymbol{\alpha})|)$$

GPBilby

- Ashton et al. (2022): extension of the Bilby Bayesian inference library
- Uses the <u>celerite</u> GP package (<u>Foreman-Mackay 2017</u>)
- Construct kernels from mixture-model of simple harmonic oscillators
- Pre-whiten the data to avoid modelling the coloured noise

Validation of GPBilby

Simulated signals contaminated by glitches

WL: no de-glitching

• BW+WL with de-glitching

• GP: joint analysis

GW200129: glitch contamination

- GW200129: First claimed event with evidence for GR precession (<u>Hannam et al. 2022</u>) and measurement of large recoil kick (<u>Varma et al. 2022</u>)
- Event is glitch-contaminated, <u>Payne et al 2022</u> conclude the evidence is dependent on the glitch model
- Looking directly at the glitch model <u>Davis et al. (2022):</u>

There is a "wiggle" in the inspiral...

GW200129: reanalysis

- Re-analyse the raw strain data with GPBilby
- Perform two analyses:
 - No-CUT: use the full data span
 - CUT: remove all data from 0.5s onwards (i.e. the visual glitch)
- Main takeaway: evidence of precession is robust to glitch treatment and choice of data
- Note: see also (arXiv:2311.09921) on improved non-linear glitch models from auxillary channels

GW200129: confirmation

2 - Liter of Strain - 1 - Liter of Strain -

Time - 1264316116.433214 [s]

The CUT analysis finds no glitch power and we do not observe any excess noise model in the inspiral

Challenge: glitches

A-priori probability of contamination ($\approx 1/15$) is mismatched with actual number of glitch-contaminated signals in GWTC-3 ($\approx 1/5$)

Either:

- Glitch-mitigation is overly conservative
- There are many sub-threshold glitches

Challenge: glitches

Apply population-style analysis to observe the "population" of glitches (rate and properties)

- Using the "antiglitch" model (<u>Bondarescu et al.</u> 2023) to capture the salient features of a broad range of glitches
- Analyse 1 day of data so far
- We find that:
 - The rate of sub-threshold glitches can be a factor of 4 larger than the Omicron trigger rate
 - Glitch amplitude scales inversely
 - Frequency has distinct "modes"

Conclusion on glitches

- More needs to be done to:
 - Understand and mitigate glitches
 - Analyse glitch-contaminated signals

Search pipelines:

Ewing et al (2023)

Search pipelines:

Context and decision procedure — needed to interpret the candidate significance

Loudest candidate:

- FAR: 1/10 years
- p_{astro}: 90%

Search pipelines don't agree:

- Different underlying assumptions
- Different models of the noise
- Intrinsic uncertainty on the significance

Non-experts often **do not** understand the differences between pipelines

Per-Pipeline Event Information						
		♦ Pipeline				
G488676	CBC	CWB	BBH	1401177186.465	1.105e-06	
G488669	CBC	MBTA	AllSky	1401177186.456	1.417e-08	
G488673	CBC	gstlal	AllSky	1401177186.463	3.744e-12	

Using Conformal Prediction to calibrate search pipelines

Conformal prediction

Use Conformal Prediction (CP) to estimate uncertainty for search pipelines

- CP: A technique developed in Machine Learning settings to augment a pointprediction with a prediction interval
- For example, take an image classifier:

Conformal prediction

AIM: Use Conformal Prediction (CP) to estimate uncertainty for search pipelines

 CP: A technique developed in Machine Learning settings to augment a pointprediction with a prediction interval

 α is the user-defined error rate For example, take an image classifier: **Conformal Prediction** Black-box Machine =[Squirrel, tree, fox] Learning classification algorithm is the "prediction set"

What is a guarantee?

For some test data X, if it is **exchangeable** with the calibration data (of size n):

$$1 - \alpha \le P(\hat{Y} \in \Gamma^{\alpha}) \le 1 - \alpha + \frac{1}{n+1}$$

Where \hat{Y} is the true label

If n is sufficiently large

$$P(\hat{Y} \in \Gamma^{\alpha}) \sim 1 - \alpha$$

How does CP work?

- We have images that come from *K* classes
- Determine an acceptable error rate α
- Define a conformity score

$$f(X) \in [0,1]^K$$

- Classification data $(X_1, Y_1) \dots (X_n, Y_n)$ where X is the data and Y the true class
- Iterate through classification data and calculate scores:

$$s_i = 1 - f(X_i)_{Y_i}$$

- Define \hat{q} as (essentially) the $1-\alpha$ quantile of s_i
- Finally for new data X, construct the prediction set:

$$\Gamma^{\alpha} = \{y : A(X)_y \ge 1 - \hat{q}\}$$


```
# 1: get conformal scores. n = calib_Y.shape[0]
cal_smx = model(calib_X).softmax(dim=1).numpy()
cal_scores = 1-cal_smx[np.arange(n),cal_labels]
# 2: get adjusted quantile
q_level = np.ceil((n+1)*(1-alpha))/n
qhat = np.quantile(cal_scores, q_level, method='higher')
val_smx = model(val_X).softmax(dim=1).numpy()
prediction_sets = val_smx >= (1-qhat) # 3: form prediction sets
```

In human terms

Ask the algorithm, "is this a fox squirrel"?

Without uncertainty:

A binary answer "yes/no"

With uncertainty:

- Yes, that is the only thing it could be!
- Maybe, but it also looks like a gray fox, a bucket, and a rain barrel
- (Not pictured): No, this doesn't look like a fox squirrel at all

fox squirrel

fox gray bucket, rain barrel on the squirrel, fox, bucket, barrel on the squirrel on the squire of t

marmot, squirrel, mink, weasel, beaver, polecat 0.30 0.22 0.18 0.16 0.03 0.01

Calibrating search algorithms with conformal prediction

- Ashton et al. (2024) consider application of CP to binary search classification
 - Provides uncertainty estimate to single-pipeline predictions
 - Conformal prediction is self-calibrating
 - Can be applied to any classification algorithm with needing to understand internal details
 - Provides a framework to combine multiple pipelines together improving overall sensitivity

Checking everything works

- Coverage: the fraction of events for which the true label is in the prediction set
- Validate performance on a test set
- For standard algorithm, conditional labels are not guaranteed
- Need Mondrian Conformal Prediction (increases calibration error due to smaller *n*):

Application to Gravity Spy

True label (\widehat{y})	Gravity Spy prediction	CP prediction set
Blip	Blip	[Blip]
Koi Fish	Koi Fish	[Blip, Koi Fish]
Tomte	Koi Fish	[Blip, Koi Fish, Tomte]

Figure 1: Reference glitch plots, left to right: 'Blip', 'Koi_Fish', 'Tomte'. From Gravity Spy (Zevin et al, 2017)

Application to gravitational-waves: MDC

Using Mock Data Challenge (MDC) data and the FAR as the conformity score $f(X) \rightarrow f(FAR)$

Application to gravitational-waves: MDC

The **confidence** is used to assess significance

Definition 1 The confidence is the value of α such that the size of Γ^{α} changes from 1 to 2 (i.e. the point where we go from the single to the double label).

Definition 2 The conditional confidence in label y is the minimum value of α such that $y \in \Gamma^{\alpha}$.

Definition 3 The not-noise confidence is the minimum $1 - \alpha$ such that the noise label is not included in Γ^{α} .

Future potential for CP

- Enables automatic-calibration of the FAR
- Can regulate differences between pipelines
- Future potential to combine pipelines

$$f(FAR) \rightarrow f(FAR_A, FAR_B, ...)$$

- Currently we apply a simple combination algorithm
- Enables leveraging pipeline strengths to improve overall performance
- Provides opportunity to model and infer pipeline behaviour

Thank you for listening!

Can you include glitches in your population?

- Choose a threshold that includes glitches
- Model the glitches
- Heinzel et al. (2023)

Likelihood for standard hierarchical population inference $\frac{N_{\text{events}}}{\int d\theta \mathcal{L}(d_i|\theta) p_A(\theta|\Lambda)}$

$$\mathcal{L}(\{d_i\}|\Lambda) \propto \prod_{i=1}^{N_{\text{events}}} \frac{\int d\theta \mathcal{L}(d_i|\theta) p_A(\theta|\Lambda)}{\alpha(\Lambda)}$$

Likelihood for glitch-robust hierarchical population inference

$$\prod_{i=1}^{N_{\text{events}}} \frac{\eta \int d\theta \mathcal{L}(d_i|\theta) p_A(\theta|\Lambda_A) + (1-\eta) \int d\psi \mathcal{L}(d_i|\psi) p_G(\psi|\Lambda_G)}{\eta \alpha_A(\Lambda_A) + (1-\eta) \alpha_G(\Lambda_G)},$$

(0)

Developing a glitch model

- Initial study uses the blip population from Ashton et al. (2022) 전 Characterized four glitch classes by their astrophysical population imprint
- Blip glitches:
 - Chirp mass of ~ 25
 - Bimodal mass ratio's, $q \sim 0.1$ and 0.3

Glitch-robust population modelling

- Verify performance by contaminating the GWTC-3 catalogue with known blip glitches
- Can extract population properties, e.g. the number of GWs in the catalogue.
- Robust inference even when contaminated

Glitch-robust population modelling

- Still in development:
 - More complete glitch population models needed
 - Improved glitch modelling (i.e., using physical glitch models)
- Will enable population studies to dig down into the noise and extract features
- Quietest signals are at the largest redshift