

Hacking into the NLP and ML behind Chatbots

Shubhi Saxena Product Manager, Yellow messenger

Why are enterprises talking about chatbots?

- No friction
- Instant answers
- Always available
- Automated Actions
- Natural conversations
- Personalised experiences
- Bots don't forget or judge!

Let's meet some real bots!

(Live Showcase)

How do chatbots work?

Ambiguity makes NLP hard: "Crash blossoms"

Violinist Linked to JAL Crash Blossoms
Teacher Strikes Idle Kids
Red Tape Holds Up New Bridges
Hospitals Are Sued by 7 Foot Doctors
Juvenile Court to Try Shooting Defendant
Local High School Dropouts Cut in Half

Dan Jurafsky

Why else is natural language understanding difficult?

non-standard English

Great job @justinbieber! Were SOO PROUD of what youve accomplished! U taught us 2 #neversaynever & you yourself should never give up either♥

segmentation issues

the New York-New Haven Railroad the New York-New Haven Railroad

idioms

dark horse get cold feet lose face throw in the towel

neologisms

unfriend Retweet bromance

world knowledge

Mary and Sue are sisters. Mary and Sue are mothers.

tricky entity names

Where is A Bug's Life playing ...

Let It Be was recorded ...

... a mutation on the for gene ...

But that's what makes it fun!

Present State of Language Technology

import nltk sentence = "Awesome to be at Pyladies!" token = nltk.word_tokenize(sentence) nltk.pos_tag(token)

mostly solved

making good progress

still really hard

you want a ticket?

Basic Text Processing

- Tokenisation language issues, proper noun issues, abbreviations, periods, symbols, OOV words, etc.
- Normalisation & stemming (e.g. U.S., US, U.S.A. —> usa; case folding)
- Lemmatisation (the boy's cars are different colors → the boy car be different color)
- Stemming (e.g. automate(s), automatic, automaton all reduced to automat.

Sentence segmentation (difficult in speech-to-text processing)

Intro to n-Grams

Dan Jurafsky

Probabilistic Language Modeling

 Goal: compute the probability of a sentence or sequence of words:

$$P(W) = P(w_1, w_2, w_3, w_4, w_5...w_n)$$

Related task: probability of an upcoming word:

$$P(w_5|w_1,w_2,w_3,w_4)$$

A model that computes either of these:

```
P(W) or P(w_n|w_1,w_2...w_{n-1}) is called a language model.
```

Better: the grammar But language model or LM is standard

Word embeddings

- Word embeddings are distributed representations of text in an n-dimensional space (to bridge the gap between human understanding and machines).
- One-hot encoding: vector the size of label array not efficient
- Word2vec takes as its input a large corpus of text and produces a vector space, typically of several hundred dimensions
- Each unique word in the corpus is assigned a corresponding vector in the space.
- Word vectors are positioned in the vector space such that words that share common contexts
 in the corpus are located in close proximity to one another in the space.
- Other models: Glove (co-occurence), fastText (character level representation)

NLU in chatbots: Intent Classification

- What is an intent
- What are word embeddings
- What is a classifier
- What are classification features
- Drawbacks of this approach
- Alternative Train word embeddings from scratch using domain-specific data (supervised embeddings)
- How to choose?
- Challenges similar intents, multiple intents, skewed data, OOV words

Parts of Speech Tagging

- Eight parts of speech taught in English but more can be used for practical purposes in NLP
- Use-Cases: NER, IE, TTS pronunciation, input to a parser
- Useful features -
 - Knowledge of neighbouring words
 - Word probabilities
 - Word structure (prefix, suffix, capitalisation, symbols, periods, wird shapes, etc.)

Information Extraction(IE)

- Goals of Information Extraction-
 - Organise information so that it can be consumed by people
 - Convert information into a precise semantic format on which computer algorithms can run inferences.
- Simple task Extract clear, factual information from documents
- Example Mail clients automatically detect dates and offer to schedule meeting/block calendar
- Difficult Word meaning Disambiguation and combining different sources of related data to derive inferences

NLU: Named Entity Recognition (NER)

- Sub-task of IE Identify and classify 'entities' in texts
- What are entities? How can we use them in chatbots?
- Rule-based: Facebook's duckling (demo) ordinal, duration, date, etc.
- Pre-trained models: SpaCy (Try <u>here</u>) person, organisation, place, etc.
- Custom entity detection (annotation)
- Challenges fuzzy entities, extracting addresses, and mapping of extracted entities

Sequencing using Conditional Markov Models

Now let us look at this again!

Further Reading

- Stanford's Intro to NLP course by Dan Jurafsky <u>link</u>
- Spacy crash course <u>link</u>
- We could not discuss Text Classification Google's Crash course <u>link</u>
- Metablog by Pratik Bhavsar (if you want to go Ninja) <u>link</u>

yellowmessenger
We are Hiring!

Shubhi Saxena shubhi@yellowmessenger.com