

Stochastische Signale

1. Mengenalgebra

1.1. Mengen- und Boolsche Algebra

Kommutativ	$A\cap B=B\cap A$	$A \uplus B = B \uplus A$
Assoziativ	$(A \cap B) \cap C = A \cap (B \cap C)$	
	$(A \uplus B) \uplus C = A \uplus (B \uplus C)$	
Distributiv	$A \cap (B \uplus C) = (A \cap B) \uplus (A \cap C)$	
	$A\uplus (B\cap C)=(A\uplus$	$B) \cap (A \uplus C)$
Indempotenz	$A \cap A = A$	$A \uplus A = A$
Absorbtion	$A \cap (A \uplus B) = A$	$A \uplus (A \cap B) = A$
Neutralität	$A \cap \Omega = A$	$A \uplus \emptyset = A$
Dominant	$A \cap \emptyset = \emptyset$	$A \uplus \Omega = \Omega$
Komplement	$A \cap \overline{A} = \emptyset$	$A \uplus \overline{A} = \Omega$
	$\overline{\overline{A}} = A$	$\overline{\Omega} = \emptyset$
De Morgan	$\overline{A \cap B} = \overline{A} \uplus \overline{B}$	$\overline{A \uplus B} = \overline{A} \cap \overline{B}$

1.2. Kombinatorik

Mögliche Variationen/Kombinationen um k Elemente von maximal n Ele menten zu wählen bzw. k Elemente auf n Felder zu verteilen:

	Mit Reihenfolge	Reihenfolge egal
Mit Wiederholung Ohne Wiederholung	$\frac{n^k}{\frac{n!}{(n-k)!}}$	$\binom{n+k-1}{k} \binom{n}{k}$

Permutation von n mit jeweils k gleichen Elementen: $\frac{n!}{k_1! \cdot k_2! \cdots k_n!}$ $\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k! \cdot (n-k)!} \qquad \binom{4}{2} = 6 \qquad \binom{5}{2} = 10$

1.3. Grundbegriffe

Tupel	$(i,j) \neq (j,i)$ für $i \neq j$
Ungeordnetes Paar	$\{i,j\} = \{j,i\}$
Potenzmenge	$P(\Omega)$ ist Menge aller Teilmengen von Ω

1.4. Integralgarten

F(x)	f(x)	f'(x)
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}
$\frac{2\sqrt{ax^3}}{3}$	\sqrt{ax}	$\frac{a}{2\sqrt{ax}}$
$x \ln(ax) - x$	$\ln(ax)$	$\frac{a}{x}$
$\frac{1}{a^2}e^{ax}(ax-1)$	$x \cdot e^{ax}$	$e^{ax}(ax+1)$
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$\int \frac{\mathrm{d}t}{\sqrt{at+b}} = \frac{2\sqrt{at+b}}{a}$ $\int te^{at} \mathrm{d}t = \frac{at-1}{a^2} e^{at}$	$\int t^2 e^{at} dt$ $\int x e^{ax^2}$	$dt = \frac{(ax-1)^2 + 1}{a^3} e^{at}$ $dx = \frac{1}{2a} e^{ax^2}$

1.5. Binome, Trinome

$$(a \pm b)^2 = a^2 \pm 2ab + b^2 \qquad a^2 - b^2 = (a - b)(a + b)$$
$$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$
$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$$

2. Wahrscheinlichkeitsräume (Ω, \mathbb{F}, P)

Ein Wahrscheinlichkeitsraum (Ω, \mathbb{F}, P) besteht aus

- Ergebnismenge $\Omega = \{\omega_1, \omega_2, ...\}$: Menge aller möglichen Ergebnisse ω_i
- ullet Ereignisalgebra $\mathbb{F}=\left\{A_1,A_2,\ldots
 ight\}:$ Menge von Ereignisen $A_i \subset \Omega$
- Wahrscheinlichkeitsmaß P

2.1. Ereignisalgebra $\mathbb{F} \subseteq \mathsf{P}(\Omega)$

- $A_i \in \mathbb{F} \Rightarrow A_i^{\mathbf{C}} \in \mathbb{F}$
- $\bullet \ A_1,...,A_k \in \mathbb{F} \Rightarrow \bigcup_{i=1}^k A_i \in \mathbb{F}$

Daraus folgt:

- $\emptyset \in \mathbb{F}$
- $A_i \setminus A_i \in \mathbb{F}$
- $\bullet \ \bigcap_{i=1}^k A_i \in \mathbb{F}$ $| \, \mathbb{F} \, | = 2^{\mathsf{Anzahl}} \, \mathsf{disjunkter} \, \mathsf{Teilmengen} \, \, (\mathsf{muss} \, \mathsf{endlich} \, \mathsf{sein})$

2.1.1 σ -Algebra

Entwicklung $k \to \infty$. Unendlich viele Ergebnisse, aber jedes A_i besteht aus abzählbar vielen Ergebnissen. Besitzt mindestens 2 Ereignisse.

2.2. Wahrscheinlichkeitsmaß P

$$P(A) = \frac{|A|}{|\Omega|}$$

$$\mathsf{P}(A \cup B) = \mathsf{P}(A) + \mathsf{P}(B) - \mathsf{P}(A \cap B)$$

2.2.1 Axiome von Kolmogorow

Nichtnegativität: $P(A) > 0 \Rightarrow P : \mathbb{F} \mapsto [0, 1]$ Normiertheit:

Additivität:

 $\mathsf{P}\left(\bigcup_{i=1}^{\infty}A_{i}\right) = \sum_{i=1}^{\infty}\mathsf{P}(A_{i}),$ wenn $A_{i}\cap A_{j} = \emptyset, \, \forall i \neq j$

2.2.2 Weitere Eigenschaften

- $P(A^c) = 1 P(A)$
- $P(\emptyset) = 0$
- $P(A \backslash B) = P(A \cap B^c) = P(A) P(A \cap B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $A \subset B \Rightarrow P(A) \leq P(B)$
- $P(\bigcup_{i=1}^k A_i) \leq \sum_{i=1}^k P(A_i)$

3. Bedingte Wahrscheinlichkeit und Unabhängigkeit

3.1. Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit für A falls B bereits eingetreten ist: $P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$

3.1.1 Totale Wahrscheinlichkeit und Satz von Bayes

Es muss gelten: $\bigcup B_i = \Omega$ für $B_i \cap B_j = \emptyset$, $\forall i \neq j$

 $\begin{array}{ll} \text{Totale Wahrscheinlichkeit:} & \mathsf{P}(A) = \sum\limits_{i \in I} \mathsf{P}(A|B_i) \, \mathsf{P}(B_i) \\ \\ \text{Satz von Bayes:} & \mathsf{P}(B_k|A) = \sum\limits_{i \in I} \underbrace{\mathsf{P}(A|B_k) \, \mathsf{P}(B_k)}_{i \in I} \, \mathsf{P}(A|B_i) \, \mathsf{P}(B_i) \end{array}$

3.1.2 Multiplikationssatz

$$P(A \cap B) = P(A|B) P(B) = P(B|A) P(A)$$

Beliebig viele Ereignisse:

$$\begin{array}{l} \operatorname{P}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{k}\right) \\ = \operatorname{P}\left(A_{\pi(1)}\right)\operatorname{P}\left(A_{\pi(2)}|A_{\pi(1)}\right)\operatorname{P}\left(A_{\pi(3)}|A_{\pi(2)} \cap A_{\pi(1)}\right) \times \end{array}$$

$$\cdots \times \mathsf{P}\left(A_{\pi(k)}|A_{\pi(k-1)}\cap \cdots \cap A_{\pi(1)}\right)$$

3.2. Stochastische Unabhängigkeit

Ereignise A und B sind unabhängig falls:

 $P(A \cap B) = P(A) P(B)$ $\Rightarrow P(B|A) = P(B)$

Allgemein

$$\operatorname{P}\left(\bigcap_{i\in J}A_{i}\right)=\prod_{i\in J}\operatorname{P}\left(A_{i}\right) \text{ mit Indexmenge }I \text{ und }\emptyset\neq J\subseteq I$$

4. Zufallsvariablen

4.1. Definition

 $X: \Omega \mapsto \Omega'$ ist Zufallsvariable, wenn für jedes Ereignis $A' \in \mathbb{F}'$ im Bildraum ein Ereignis A im Urbildraum $\mathbb F$ existiert, sodass $\{\omega \in \Omega | X(\omega) \in A'\} \in \mathbb{F}$

4.2. Unabhängigkeit von Zufallsvariablen

Zufallsvariablen X_1,\cdots,X_n sind stochastisch unabhängig, wenn für jedes $\vec{x}=[x_1,\cdots,x_n]^{\top}\in\mathbb{R}^n$ gilt:

$$\left| \mathsf{P}(\{\mathsf{X}_1 \leq x_1, \cdots, \mathsf{X}_n \leq x_n\}) = \prod_{i=1}^n \mathsf{P}(\{\mathsf{X}_i \leq x_i\}) \right|$$

$$\begin{split} F_{X_1, \cdots, X_n}(x_1, \cdots, x_n) &= \prod_{i=1}^n F_{X_i}(x_i) \\ p_{X_1, \cdots, X_n}(x_1, \cdots, x_n) &= \prod_{i=1}^n p_{X_i}(x_i) \\ f_{X_1, \cdots, X_n}(x_1, \cdots, x_n) &= \prod_{i=1}^n f_{X_i}(x_i) \end{split}$$

4.3. Bedingte Zufallsvariablen

Bedingte Wahrscheinlichkeit für Zufallsvariablen:

5. Wahrscheinlichkeitsverteilungen

5.0.1 Definition

$$\mathsf{P}_{X}(A') = \mathsf{P}(\{\omega \in \Omega | \, X(\omega) \in A'\}) = \mathsf{P}(\{X \in A'\}) \quad \forall A' \in \mathbb{F}'$$

5.0.2 Kumulative Verteilungsfunktion (KVF bzw. CDF)

$$F_X(x) = P(\{X \le x\})$$

Eigenschaften

- F_X(x) ist monoton wachsend
- $F_X(x) > 0$

$$\begin{array}{l} \bullet \;\; F_{X}(x) \; \text{ist rechtsseitig stetig:} \\ \forall h>0: \lim_{h\to 0} F_{X}(x+h) = F_{X}(x) \quad \forall x \in \mathbb{R} \end{array}$$

- $\lim_{x \to -\infty} F_X(x) = 0$; $\lim_{x \to \infty} F_X(x) = 1$
- $P(\{a < X \le b\}) = F_X(b) F_X(a)$
- $P(\{X > c\}) = 1 F_X(c)$
- 5.0.3 Verteilung diskreter Zufallsvariablen

Bezeichnung	Abk.	Zusammenhang
Wahrscheinlichkeitsmassenfkt. Kumulative Verteilungsfkt.	pmf cdf	$p_X(x) = P(\lbrace X = x \rbrace)$ $F_X(x) = \sum_{\xi \in \Omega' : \xi \le x} p_X(\xi)$

5.0.4 Verteilung stetiger Zufallsvariablen

Bezeichnung	Abk.	Zusammenhang
Wahrscheinlichkeitsdichtefkt.	pdf	$f_{X}(x) = \frac{\mathrm{d}F_{X}(x)}{\mathrm{d}x}$
Kumulative Verteilungsfkt.	cdf	$F_X(x) = \int_{-\infty}^x f_X(\xi) \mathrm{d}\xi$

Berechnung von $f_{\mathbf{X}}(x)$:

$$f_X(x) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{x}^{x+\epsilon} f_X(\xi) d\xi = \lim_{\epsilon \to 0} \frac{1}{\epsilon} P(x \le X \le x + \epsilon)$$

Normiertheit $\sum p(x) + \int_{\mathbb{R}} f_X(x) dx \stackrel{!}{=} 1$

5.1. Mehrdimensionale Verteilungen

5.1.1 Mehrdimensionale Zufallsvariable:

$$\vec{X} = [X_1, \cdots, X_n]^T$$
 mit X_i Zufallsvariablen

5.1.2 Gemeinsame kumulative Verteilungsfunktion:

$$\begin{split} F_{X_1,\cdots,X_n}\left(x_1,\cdots,x_n\right) &= \boxed{F_{\vec{X}}(\vec{x}) = \mathsf{P}(\{\vec{X} \leq \vec{x}\})} = \\ \mathsf{P}(\{X_1 \leq x_1,\cdots,X_n \leq x_n\}) \end{split}$$

5.1.3 Diskrete Zufallsvariablen:

 $p_{X_1,\cdots,X_n}(x_1,\cdots,x_n)=\mathsf{P}(\{\vec{X}=\vec{x}\})$ (joint probability mass function)

5.1.4 Stetige Zufallsvariablen:

$$\begin{split} F_{X_1,\neg,X_n}(x_1,\neg,x_n) &= \int\limits_{-\infty}^{x_1} \int\limits_{-\infty}^{x_n} f_{X_1,\neg,X_n}(\xi_1,\cdots,\xi_n) \,\mathrm{d}\xi_n \cdots \mathrm{d}\xi_1 \\ \int\limits_{-\infty}^{-\infty} \int\limits_{-\infty}^{-\infty} f_{X_1,\neg,X_n}(x_1,\cdots,x_n) \,\mathrm{d}\xi_n \cdots \mathrm{d}\xi_n \\ f_{X_1,\neg,X_n}(x_1,\cdots,x_n) &= \frac{\partial^n F_{\overline{\chi}}(x_1,\neg,x_n)}{\partial x_1 - \partial x_n} \\ \text{(joint probability density function)} \end{split} \qquad f_{X,Y} = f_{Y,X} \end{split}$$

5.1.5 Marginalisierung

Prinzip: Lasse alle vernachlässigbaren ZV gegen unendlich gehen.
$$F_{X_1,\cdots,X_m}(x_1,\cdots,x_m)=F_{X_1,\cdots,X_n}(x_1,\cdots,x_m,\infty,\cdots,\infty)$$

Randverteilung: Spezialfall der Marginalisierung um aus der mehrdimensionalen KVF die KVF für eine ZV zu erhalten. $F_{X_1}(x_1) = F_{X_1,\dots,X_n}(x_1,\infty,\dots,\infty)$

Randverteilung der Wahrscheinlichkeitsmasse (PMF) (für diskrete ZV) $p_{X_1}(x_1) = \sum_{x_2, \dots, x_n} p_{X_1, \dots, X_n}(x_1, \dots, x_n)$

Randverteilung der Wahrscheinlichkeitsdichte (WDF) (für stetige ZV)

$$f_{X_1}(x_1) = \int\limits_{-\infty}^{\infty} \cdots \int\limits_{-\infty}^{\infty} f_{X_1,\cdots,X_n}(x_1,\cdots,x_n) \,\mathrm{d}x_n \cdot \mathrm{d}x_2$$

6. Funktionen von Zufallsvariablen

 $\begin{array}{l} \mathbf{X}:\Omega\rightarrow\Omega'=\mathbb{R} \text{ und jetzt } g:\Omega'\rightarrow\Omega''=\mathbb{R} \\ \mathbf{P}(A''')=\mathbf{P}(\mathbf{Y}\in A'')=\mathbf{P}(\left\{X\in\Omega'\mid g(\mathbf{X})\in A''\right\}=\mathbf{P}(\left\{\omega\in\mathbf{Y}\mid g(\mathbf{X})\in\mathbf{Y}\mid g(\mathbf{X})\in\mathbf{Y}\right\}) \end{array}$ $\Omega \mid g(X(\omega)) \in A''$

6.1. Transformation von Zufallsvariablen

Berechnung von $f_Y(y)$ aus $f_X(x)$

g(x) streng monoton & differenzierbar:

$$\begin{aligned} &f_{Y}(y) = f_{X}\left(g^{-1}(y)\right) \left[\left| \frac{\mathrm{d}g(x)}{\mathrm{d}x} \right|_{x=g^{-1}(y)} \right]^{-1} \\ &g(x) \text{ nur differenzierbar:} \end{aligned}$$

$$f_Y(y) = \sum_{i=1}^{N} f_X(x_i) \left[\left| \frac{\mathrm{d}g(x)}{\mathrm{d}x} \right|_{x=x_i} \right]^{-1} \text{ mit } i \in \{1, \dots, N\}$$

6.1.1 Beispiel: lineare Funktion $Y=aX+b \Leftrightarrow g(x)=ax+b \text{ mit } a\in \mathbb{R}\backslash 0,\ b\in \mathbb{R}$:

$$\Rightarrow f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

$$F_{Y}(y) = \begin{cases} F_{X}\left(\frac{y-b}{a}\right) & a > 0\\ 1 - F_{X}\left(\frac{y-b}{a}\right) & a < 0 \end{cases}$$

6.2. Summe unabhängiger Zufallsvariablen

Z = X + Y mit X und Y unabhängig.

$$\Rightarrow f_{Z=X+Y}(z) = (f_X * f_Y)(z) = \int_{-\infty}^{\infty} f_X(z-y) f_Y dy$$

7. Stochastische Standardmodelle

7.1. Begriffe

Gedächtnislos

Eine Zufallsvariable X ist gedächtnislos, falls:

 $P(\{X > a + b)\}|\{X > a\}) = P(\{X > b\}),$ a, b > 0

7.2. Gleichverteilung

7.2.1 Diskret

$$=\frac{1}{|\Omega|}, \quad x \in \{1, \dots, |\Omega|\}$$

 $p_X(x)=rac{1}{|\Omega|},\quad x\in\{1,\dots,|\Omega|\}$ Beispiele: Wurf einer fairen Münze, Lottozahlen

7.2.2 Stetig $(a, b : -\infty < a < b < \infty)$

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{sonst} \end{cases} \qquad F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & x \in [a,b] \\ 1 & x > b \end{cases}$$

$$\mathsf{E}[X] = \frac{a+b}{2} \qquad \mathsf{Var}[X] = \frac{(b-a)^2}{12} \qquad \varphi_X(s) = \frac{e^{j\omega b} - e^{j\omega b}}{j\omega(b-a)}$$
 Erwartungswert

Beispiele: Winkel beim Flaschendrehen, Phase einer empf. Sinusschwingung

7.3. Bernoulliverteilung ($p \in [0, 1]$) Wahrscheinlichkeitsmasse

2 Ereignisse: Erfolg und Misserfolg

p: Wahrscheinlichkeit

$$Y_X(k) = \begin{cases} p, & k = 1\\ 1 - p & k = 0\\ 0 & \text{sonst} \end{cases}$$
 $F_X(k) = \begin{cases} 0, & k < 0\\ 1 - p & 0 \le k < 1\\ 1 & k \ge 1 \end{cases}$

$$\mathsf{E}[X] = p$$
 $\mathsf{Var}[X] = p(1-p)$ $G_X(z) = pz + 1 - p$ Erwartungswert $G_X(z) = pz + 1 - p$ Wahrscheinlichkeitserz. Funktio

Beispiele: Einmaliger Wurf einer (unfairen) Münze

7.4. Binomialverteilung ($p \in [0, 1], n \in \mathbb{N}$)

Folgen von Bernoulli-Experimenten

p: Wahrscheinlichkeit

n: Anzahl der Bernoulli-Experimente

Wahrscheinlichkeitsmasse
$$p_X(k) = B_{n,p}(k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & k \in \{0,\dots,n\} \\ 0 & \text{sonst} \end{cases}$$
mit $\binom{n}{k} = \frac{n!}{n!}$

Charakteristische Funktion

 $\varphi_X(s) = (1 - p + pe^s)^n$

Beispiele: Anzahl der Übertragungsfehler in einem Datenblock endlicher Länge, Wiederholtes Werfen einer Münze

7.5. Poisson-Verteilung ($\lambda > 0$)

Asymptotischer Grenzfall der Binomialverteilung $n \to \infty, p \to 0, np \to \lambda$ $p_X(k) = \lim_{n \to \infty} B_{n, \underline{\lambda}}(k)$

WMF/PMF:

$$G_X(s) = e^{\lambda(s-1)}$$

Wahrscheinlichkeitserz. Funktion

λ = 1

 λ = 4 λ = 10

Charakteristische Funktion $\varphi_X(s) = \exp(\lambda(e^s - 1))$

Beispiele: Zahl der Phänomene in einem Zeitintervall, Google-Anfragen in einer Stunde, Schadensmeldungen an Versicherungen in einem Monat

7.6. Geometrische Verteilung ($p \in [0, 1]$)

Erster Erfolg eines Bernoulli-Experiments beim k-ten Versuch, Gedächtnislos

$$\frac{GX(z) - \frac{1}{1 - z + pz}}{1 - z + pz}$$
Wahrscheinlichkeitserz. Funktion

Charakteristische Funktion

Erwartungswert

$$\varphi_X(s) = \frac{pe^{-1}}{1 - (1 - p)e^{1s}}$$

Beispiele: diskrete Dauer bis ein technisches Gerät zum ersten Mal ausfällt Anzahl der Würfe bis man eine "6" würfelt

7.7. Exponential verteilung ($\lambda > 0$)

Wie geometrische Verteilung für stetige Zufallsvariablen ("Lebensdauer") Gedächtnislos

Beispiele: Lebensdauer von el. Bauteilen, Zeitdauer zwischen zwei Anrufen in einem Call-Center

Varianz

$$\mathsf{E}(\mathsf{X}) = \mu$$
 Erwartungswert

$$Var(X) = \sigma^2$$
 $Varianz$

Schreibweise $X \sim \mathcal{N}(\mu, \sigma^2)$

Beispiele: Rauschen, Ort eines Teilchens relativ zu seiner Anfangsposition bei brownscher Molekularbewegung, abgefahrene Sachen, die man nicht genauer bestimmen will oder kann

7.8.1 Standartnormalverteilung

ist der Spezialfall $X \sim \mathcal{N}(0,1)$

$$\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
 Es gilt außerdem:

•
$$Y \sim \mathcal{N}(\mu, \sigma^2) \Rightarrow X = \frac{1}{\sigma}(Y - \mu) \sim \mathcal{N}(0, 1)$$

• $X \sim \mathcal{N}(0, 1) \Rightarrow Y = \sigma X + \mu \sim \mathcal{N}(\mu, \sigma^2)$

8. Erwartungswert

8.1. Definition

Gibt den mittleren Wert einer Zufallsvariablen an

8.2. diskrete (reelle) Zufallsvariablen

$$\mathsf{E}[X] = \sum_{x \in \Omega'} x \, \mathsf{P}(\{X = x\}) = \sum_{x \in \Omega'} x p_x(x)$$

 $\overline{\operatorname{für} X : \Omega \to \Omega' \subset \mathbb{R}}$

Für Funktionen von Zufallsvariablen:

$$\mathsf{E}[Y] = E[g(X)] = \sum_{x \in \Omega'} g(x) p_X(x)$$

 $\mathsf{mit}\; X:\Omega\to\Omega'\subset\mathbb{R}\;\mathsf{und}\; g:\mathbb{R}\to\mathbb{R}$

8.3. stetige Zufallsvariablen

$$\mathsf{E}[X] = \int\limits_{\mathbb{R}} x \cdot f_X(x) \, \mathrm{d}x$$
 für $X: \Omega o \mathbb{R}$

Für Funktionen von Zufallsvariablen:

$$\mathsf{E}[Y] = E[g(X)] = \int\limits_{\mathbb{R}} g(x) f_X(x) \, \mathrm{d}x$$

 $\mathsf{mit}\; X:\Omega\to\mathbb{R}\;\mathsf{und}\; q:\mathbb{R}\to\mathbb{R}$

8.4. Eigenschaften des Erwartungswerts

Linearität: Monotonie

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

$$X < Y \Rightarrow E[X] < E[Y]$$

Beweis mit der Definition und der Linearität des Integrals bzw. der Summe.

Falls X und Y stochastisch unabhängig: E[X Y] = E[X] E[Y]

Achtung: Umkehrung nicht möglich. Stoch. Unabhängig

Unkorrelliertheit

Spezialfall für $X: \Omega \to \mathbb{R}_+$:

$$E[X] = \int_{0}^{\infty} P(X > t) dt$$
 (stetig)

$$\mathsf{E}[X] = \sum\limits_{k=0}^{\infty} \mathsf{P}(X>k)$$
 (diskret)

9. Varianz und Kovarianz

9.1. Varianz

ist ein Maß für die Stärke der Abweichung vom Erwartungswert

$$Var[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$$

9.1.1 Standard Abweichung

 $\sigma = \sqrt{\operatorname{Var}[X]}$

9.2. Kovarianz

$$Cov[X, Y] = E[(X - E[X])(Y - E[Y])] = Cov[Y, X]$$

andere Darstellungen:

$$Cov[X, Y] = E[X Y] - E[X] E[Y] = Cov[Y, X]$$

9.3. Spezialfälle

Kovarianz mit sich selbst:

$$Var[X] = Cov[X, X]$$

aus den Definitionsgleichungen:

$$\begin{array}{lll} \mathsf{Cov}[\alpha\,X+\beta,\gamma\,Y+\delta] = \alpha\gamma\,\mathsf{Cov}[X,Y] \\ \mathsf{Cov}[X+U,Y+W] &= \mathsf{Cov}[X,Y] + \mathsf{Cov}[X,W] + \mathsf{Cov}[U,Y] + \\ \mathsf{Cov}[U,W] \end{array}$$

wegen der Linearität des Erwartungswerts:

 $Var[\alpha X + \beta] = \alpha^2 Var[X]$

für die Summe von Zufallsvariablen:

$$\operatorname{Var}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \operatorname{Var}[X_i] + \sum_{i=1}^{n} \sum_{j \neq i} \operatorname{Cov}[X_i, X_j]$$

9.4. Unkorreliertheit

wenn gilt:

$$\mathsf{Cov}[X,Y] = 0 \Leftrightarrow \mathsf{E}[X\,Y] = \mathsf{E}[X]\,\mathsf{E}[Y]$$

Stoch. Unabhängig ⇒ Unkorrelliertheit

wenn ZV normalverteilt (sonst nicht!): Unkorreliertheit ⇒ stoch. Unabhängigkeit

bei paarweisen unkorrellierten Zufallsvariablen:

$$Var[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} Var[X_i]$$

9.5. Orthogonalität

$$\mathsf{E}[X \; Y] = 0$$

9.6. Korrelationskoeffizient

$$\rho_{X,Y} = \frac{\operatorname{Cov}[X,Y]}{\sqrt{\operatorname{Var}[X]}\sqrt{\operatorname{Var}[Y]}} = \frac{c_{X,Y}}{\sigma_X\sigma_Y} \text{ mit } \rho_{X,Y} \in [-1,1]$$

Korrelationskoeffizient von X und Y

$$\text{Es gilt:} \begin{cases} \text{negativ korreliert} & \rho_{X,Y} \in [-1,0) \\ \text{unkorreliert} & \rho_{X,Y} = 0 \\ \text{positiv korreliert} & \rho_{X,Y} \in (0,1] \end{cases}$$

10. Erzeugende und charakter. Funktionen

10.1. Wahrscheinlichkeitserzeugende Funktion

$$G_X(z) = \mathsf{E}[z^X] = \sum_{k=0}^{\infty} p_X(k)z^k, \quad |z| \le 1$$

Anwendungen

$$\begin{split} p_X(n) &= \mathsf{P}(\left\{X = n\right\}) = \frac{1}{n!} [\frac{\mathrm{d}^n}{\mathrm{d}z^n} G_X(z)]_{z=0}, \quad \forall n \in \mathbb{N}_0 \\ & \mathsf{E}[X] = [\frac{\mathrm{d}}{\mathrm{d}z} G_X(z)]_{z=1} \end{split}$$

$$E[X^2] - E[X] = \left[\frac{d^2}{dz^2}G_X(z)\right]_{z=1}$$

$$\mathsf{Var}[\mathsf{X}] = [\frac{\mathrm{d}^2}{\mathrm{d}z^2} G_\mathsf{X}(z)]_{z=1} - \mathsf{E}[\mathsf{X}]^2 + \mathsf{E}[\mathsf{X}]$$

Für $X_i:\Omega\to\mathbb{N}_0$, $i\in\{1,\ldots,n\}$ stochastisch unabhängige, diskrete, nichtnegative ZV und $Z=\sum_{i=1}^nX_i$

$$G_{Z}(z) = \prod_{i=1}^{n} G_{X_{i}}(z)$$

10.2. Charakteristische Funktion

Erwartungswert:

$$\mathsf{E}[\mathsf{X}^n] = \frac{1}{\mathbf{1}^n} \left[\frac{\mathrm{d}^n}{\mathrm{d}\omega^n} \varphi_\mathsf{X}(\omega) \right]_{\omega = 0}$$

Summe von ZV: $Z = \sum_{i=1}^{n} X_i$

$$Z = \sum_{i=1}^n X_i \quad \Rightarrow \quad \varphi_Z(\omega) = \prod_{i=1}^n \varphi_{X_i}(\omega)$$

10.3. Der zentrale Grenzwertsatz

Definition: Seien X_i , $i \in {1, ..., n}$, stochastisch unabhängige und identisch verteilte reelle Zufallsvariablen und gelte $E[{\it X}_i] = \mu < \infty$ und $Var[X_i] = \sigma^2 < \infty$. Dann konvergiert die Verteilung der standardi-

$$Z_n = \sum_{i=1}^n \frac{(X_- \mu)}{\sigma \sqrt{n}}$$

 $Z_n=\sum_{i=1}^n\frac{(X_-\;\mu)}{\sigma\sqrt{n}}$ d.h $E[Z_n]=0$ und $Var[Z_n]=1$, für $n\to\infty$ gegen die Standartnormalverteilung.

Es gilt also:

$$\lim_{n\to\infty} \mathsf{P}(\mathsf{Z}_n \leq z) = \Phi(z)$$

11. Reelle Zufallsfolgen

Eine reelle Zufallsfolge ist ganz einfach eine Folge reeller Zufallsvariablen

$$S_n: \Omega_n \times \Omega_{n-1} \times \cdots \times \Omega_1 \to \mathbb{R}$$

$$\begin{array}{l} \overline{S}_n = (S_n, S_{n-1}, \dots, S_1) : \Omega^{(n)} \to \mathbb{R}^n \\ \overline{\omega}_n \mapsto \overline{s}_n(\overline{\omega}_n) = (s_n(\overline{\omega}_n), s_{n-1}(\overline{\omega}_n), \dots, s_1(\overline{\omega}_n)), \quad n \in \mathbb{N} \\ \text{Erklärung: Die Abfolge der Realisierungen von S_1 bis S_n (also der Pfad von $S) und somit auch jedes einzelne S_k kann als Ergebnis des Ereignisses $\overline{\omega}_n$ angesehen werden. \\ \end{array}$$

11.1. Verteilungen und Momente

Erwartungswert $\mu_X(n) = E[X_n]$

Varianzfolge $\sigma_{\mathbf{Y}}^{2}(n) = Var[X_{n}] = E[X_{n}^{2}] - E[X_{n}]^{2}$

Autokorrelation $r_X(k, l) = E[X_k X_l]$

Autokovarianz $c_X(k, l) = Cov[X_k, X_l] = r_X(k, l) - \mu_X(k)\mu_X(l)$

11.2. Random Walk

 $n \in \mathbb{N}$ Schritte mit 2 möglichen Bewegungsrichtungen $X \in \{+\delta, -\delta\}$

$$S_n = \sum_{i=1}^n X_i$$
 P $\{\{X_i = +\delta\}\} = p$ P $\{\{X_i = -\delta\}\} = 1 - p$ Symmetrisch $\Leftrightarrow p = \frac{1}{2}, \ \mu_{\mathsf{S}}(n) = 0$

$$\begin{aligned} E[S] &= \mu_{\mathsf{S}}(n) = n(2p-1)\delta \\ Var[S] &= \sigma_{\mathsf{S}}^2(n) = 4np(1-p)\delta^2 \end{aligned} \qquad E[X_i] &= (2p-1)\delta \\ Var[X_i] &= 4p(1-p)\delta^2 \end{aligned}$$

11.3. Stationarität

Eine Zufallsfolge ist stationär, wenn um ein beliebiges k ($k \in \mathbb{N}$) zueinander verschobene Zufallsvektoren die selbe Verteilung besitzen. Im weiteren Sinne stationär (W.S.S.), wenn:

$$\begin{split} \mu_X(i) &= \mu_X(i+k) \\ r_X(i_1,i_2) &= r_X(i_1+k,i_2+k) = r_X(i_1-i_2) \end{split}$$

stationär ⇒ WSS (aber nicht anders herum!)

11.4. Markow-Ungleichung

$$\mathsf{P}(\{|X| \ge a\}) \le \frac{\mathsf{E}[|X|]}{a}$$

11.5. Tschebyschow-Ungleichung

$$\left| \mathsf{P}(\left\{ |\mathsf{X} - \mathsf{E}[\mathsf{X}]| \geq a \right\}) \leq \frac{\mathsf{Var}[\mathsf{X}]}{a^2} \right|$$

11.6. Das schwache Gesetz der großen Zahlen

Sei $(X_i : i \in \mathbb{N})$ eine Folge reeller, paarweise unkorrelierter Zufallsvaria blen mit beschränkter Varianz:

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \mathsf{E}[X_i]) \to 0$$

Für stochastisch unabhängige und identisch verteilte Folgenelemente $\operatorname{mit} \, E[\mathbf{X}_i] = E[X] \, \operatorname{und} \, \widetilde{Var}[\mathbf{X}_i] = Var[X] < \infty \, \operatorname{gilt:}$

$$\frac{1}{n} \sum_{i=1}^{n} (X_i) \to \mathsf{E}[X_i]$$

12. Markowketten (bedingte Unabhängigkeit: Abschnitt 14)

12.1. Markowketten

12.1.1 Allgemein

Eine Zufallsfolge $(X_n : n \in \mathbb{N})$ heißt Markowkette, falls $\forall n_i \in \mathbb{N}$, $i \in 1, \ldots k \text{ mit } n_1 < \cdots < n_k \text{ gilt:}$

 $(X_{n_1}, X_{n_2}, \dots X_{n_{k-2}}) \to X_{n_{k-1}} \to X_{n_k}$

⇒ Die Verteilung eines Folgeelements hängt nur vom direkten Vorgänger

$$\begin{split} & p_{X_{n_k} \mid X_{n_{k-1}}, X_{n_{k-2}}, \dots, X_{n_1}}(x_{n_k} \mid x_{n_{k-1}}, x_{n_{k-2}}, \dots, x_{n_1}) \\ & = p_{X_{n_k} \mid X_{n_{k-1}}}(x_{n_k} \mid x_{n_{k-1}}) \end{split}$$

$$\begin{split} &f_{\mathsf{X}_{n_k} \mid \mathsf{X}_{n_{k-1}}, \mathsf{X}_{n_{k-2}}, \dots, \mathsf{X}_{n_1}}(x_{n_k} | x_{n_{k-1}}, x_{n_{k-2}}, \dots, x_{n_1}) \\ &= f_{\mathsf{X}_{n_k} \mid \mathsf{X}_{n_{k-1}}}(x_{n_k} | x_{n_{k-1}}) \end{split}$$

12.1.2 Zustandsübergang

Zustandsübergangswahrscheinlichkeit:

$$p_{X_n\mid X_{n-1}}(x_n|x_{n-1})$$

$$p_{X_1,...,X_n}(x_1,...,x_n) = p_{X_1}(x_1) \prod_{i=2}^n p_{X_i \mid X_{i-1}}(x_i | x_{i-1})$$

Zustandsübergangsdicht:

$$f_{X_n \mid X_{n-1}}(x_n | x_{n-1})$$

$$f_{X_1,...,X_n}(x_1,...,x_n) = f_{X_1}(x_1) \prod_{i=2}^n f_{X_i \mid X_{i-1}}(x_i | x_{i-1})$$

Eine Markowkette heißt homogen, wenn die Übergangswahrscheinlichkeit unabhängig vom Index ist

$$\begin{split} p_{\mathsf{X}_{n+1} \mid \mathsf{X}_{n}}(x_{n+1} | x_{n}) &= p_{\mathsf{X}_{n+1+k} \mid \mathsf{X}_{n+k}}(x_{n+1} | x_{n}) \\ f_{\mathsf{X}_{n+1} \mid \mathsf{X}_{n}}(x_{n+1} | x_{n}) &= f_{\mathsf{X}_{n+1+k} \mid \mathsf{X}_{n+k}}(x_{n+1} | x_{n}) \end{split}$$

12.1.3 Chapman-Kologorow Gleichung

2-Schritt-Übergangswahrscheinlichkeit:

$$\begin{array}{l} p_{X_{n+2} \mid X_n}(x_{n+2} \mid x_n) = \\ \sum_{\xi \in \mathbb{X}} p_{X_{n+2} \mid X_{n+1}}(x_{n+2} \mid \xi) p_{X_{n+1} \mid X_n}(\xi \mid x_n) \end{array}$$

m+I-Schritt-Übergangswahrscheinlichkeit:

$$p_{X_{n+m+l}\mid X_n}(x_{n+m+l}|x_n) =$$

$$\sum_{\xi\in\mathbb{X}} p_{\mathsf{X}_n+m+l} + p_{\mathsf{X}_n+m} (x_{n+m} + l \mid x_{n+m}) p_{\mathsf{X}_n+m} + p_{\mathsf{X}_n+m} (x_{n+m} \mid x_n) p_{\mathsf{X}_n+m} = 0$$

12.1.4 Markowketten im endlichen Zustandsraum

$$\vec{p}_n \triangleq \begin{bmatrix} p_{X_n}(x_1) \\ p_{X_n}(x_2) \\ \vdots \\ p_{X_n}(x_N) \end{bmatrix} \in [0, 1]^N \text{ mit } [\vec{p}_n]_i = p_{X_n}(x_i)$$

$$\begin{bmatrix} p_{11} & \cdots & p_{1N} \end{bmatrix}$$

$$\ddot{\mathbf{U}} \mathbf{bergangsmatrix:} \ \boldsymbol{\Pi} = \begin{bmatrix} p_{11} & \cdots & p_{1N} \\ \vdots & \ddots & \\ p_{N1} & & p_{NN} \end{bmatrix} \in [0,1]^{N \times N}$$

Übergangswahrscheinlichkeit: $p_{ij} = p_{X_{n+1} \mid X_n}(\xi_i, \xi_j)$ Spaltensumme muss immer 1 ergeben!

$$\vec{p}_{n+1} = \Pi \vec{p}_n \quad n \in \mathbb{N}$$

$$\vec{p}_{n+m} = \Pi^m \vec{p}_n \quad n, m \in \mathbb{N}$$

Eine Verteilung heißt stationär, wenn gilt:

$$\vec{p}_{\infty} = \Pi \vec{p}_{\infty}$$

13. Reelle Zufallsprozesse

13.1. Ensemble und Musterfunktion

- Ein Zufallsprozess kann als Ensemble einer nicht abzählbaren Menge von Zufallsvariablen X_t mit $t \in \mathbb{R}$ interpretiert werden.
- Ein Zufallsprozess kann als Schar von Musterfunktionen $X_t(\omega): \mathbb{R} \to \mathbb{R}$, mit $X(\omega)$ als deterministische Funktion von t, mit einem gegebenen Ereignis $\omega \in \Omega$ interpretiert werden.

13.2. Verteilungen und Momente

Zeitlich. Kontinuierlich veränderliche Zufallsvariable X+

Erwartungswertfunktion:

 $\mu_X(t) = E[X_t]$

Autokorrelationsfunktion:

 $r_X(s,t) = E[X_s X_t]$

$$c_{X}(s,t) = \operatorname{Cov}(X_{s},X_{t}) = r_{X}(s,t) - \mu_{X}(s)\mu_{X}(t)$$

Hinweis: Bei Integration über r_X immer darauf achten, dass s-t>0. Bei Bedarf Integral aufteilen und Grenzen anpassen.

13.3. Stationarität

Ein Zufallsprozess ist stationär, wenn um ein beliebiges s ($s \in \mathbb{R}$) zueinander verschobene Zufallsvektoren die selbe Verteilung besitzen.

$$F_{X_{t_1},...,X_{t_n}}(x_1,...x_n) = F_{X_{t_1+s},...,X_{t_n+s}}(x_1,...x_n)$$

Im weiteren Sinne stationär (W.S.S.), wenn:

$$\mu_X(t) = \mu_X(t+s)$$
 \wedge $r_X(t_1, t_2) = r_X(t_1 + s, t_2 + s)$

Daraus folgt mit $s = t + \tau$

$$r_X(s,t) = \mathsf{E}[X_s\,X_t] = \mathsf{E}[X_{t+\tau}\,X_t] = r_X(s-t) = r_X(\tau)$$

Im weiteren Sinne zyklisch stationär, wenn:

$$\mu_X(t) = \mu_X(t+T)$$
 \wedge $r_X(t_1, t_2) = r_X(t_1 + T, t_2 + T)$

stationär ⇒ WSS ⇒ im weiteren Sinne zyklisch stationär (aber nicht anders herum!)

13.4. Mehrere Zufallsvariablen auf dem selben Wahrscheinlichkeitsraum

Kreuzkorrelationsfunktion:

$$r_{X,Y}(s,t) = \mathsf{E}[X_s \; Y_t] = r_{Y,X}(t,s)$$
 Kreuzkovarianzfunktion:

$$c_{X,Y}(s,t) = r_{X,Y}(s,t) - \mu_X(s)\mu_Y(t) = c_{Y,X}(t,s)$$

13.4.1 Gemeinsame Stationarität

Zwei Zufallsprozesse auf demselben Wahrscheinlichkeitsraum sind gemeinsam stationär, wenn die einzelnen ZPs jeweils selbst stationär sind und ihre gemeinsamen Verteilungen verschiebungsinvariant sind.

13.4.2 Gemeinsam im weiteren Sinne stationär

Voraussetzung: Xt und Yt sind gemeinsam WSS wenn,

 X_t und Y_t einzelnd WSS und

 $r_{X,Y}(t_1, t_2) = r_{X,Y}(t_1 + s, t_2 + s)$

gemeinsam stationär ⇒ gemeinsam WSS (aber nicht umgekehrt!)

Daraus folgt mit $s = t + \tau$

$$\begin{vmatrix} r_X(s,t) = \mathsf{E}[X_{t+\tau} \, X_t] = r_X(\tau) = r_X(-\tau) & r_X(\tau) \le r_X(0) \\ r_{X,Y}(\tau) = \mathsf{E}[X_{t+\tau} \, Y_t] = \mathsf{E}[Y_t \, X_{t+\tau}] = r_{Y,X}(-\tau) \end{vmatrix}$$

13.4.3 Stochastische Unkorreliertheit

 $c_{X,Y}(s,t) = 0 \Leftrightarrow r_{X,Y}(s,t) = \mu(s)\mu(t), \quad \forall s,t \in \mathbb{R}$

13.4.4 Orthogonalität

$$r_{X,Y}(s,t) = 0, \quad \forall s, t \in \mathbb{R}$$

13.5. Wiener-Prozess ($\sigma > 0$)

Als Basis benutzen wir den Random Walk, Durch Multiplikation mit einer Heaviside-Funktion wird der Random Walk zeitkontinuierlich:

$$\mathsf{S}_n = \sum_{i=1}^n \mathsf{X}_i \qquad \Rightarrow \qquad \mathsf{S}_t = \sum_{i=1}^n \mathsf{X}_i \, u(t-iT) \qquad T > 0$$

Für n $\rightarrow \infty$ und T $\rightarrow 0$, mit Schrittweite $\delta = \sqrt{\sigma^2 T}$ folgt der

$$f_{W_t}\left(w
ight) = rac{1}{\sqrt{2\pi\sigma^2t}} \exp\left(-rac{w^2}{2\sigma^2t}
ight)$$

Eigenschaften

Varianz

- Kein Zählprozess!
- $P(\{W_0 = 0\}) = 1$
- hat unabhängige Inkremente $\rightarrow r_{xy}(s,t) = 0$
- $W_t \sim \mathcal{N}(0, \sigma^2 t), \forall 0 < t$
- W_t − W_s ~ N(0, σ²(t − s)), ∀0 < s < t
- W_t (ω) ist eine stetige Musterfunktion mit Wahrscheinlichkeit 1

Erwartungswertfunktion.

 $\mu_W(t) = 0$ $\sigma_W^2(t) = \sigma^2 t$

Autokorrelationsfunktion Autokovarianzfunktion

$rw(s,t) = \sigma^2 min\{s,t\}$ $c_W(s,t) = \sigma^2 min\{s,t\}$

13.6. Poisson-Prozess ($N_t:\in\mathbb{R}_+$)

Beim Poisson-Prozess wird der Zeitpunkt der Sprünge durch ZV modelliert, nicht die Amplitude,

$$\begin{split} N_t &= \sum_{i=1}^\infty u(t-T_i), \quad T_i = \sum_{j=1}^i X_j \\ X_j &\text{ ist exponentiell verteilt, } T_i &\text{ ist Gamma-verteilt} \end{split}$$

$$\begin{split} f_{T_t}(t) &= \frac{\lambda^i}{(i-1)!} t^{i-1} e^{-\lambda t}, \quad t \geq 0 \\ \mathbb{P}\left(\{N_t = n\}\right) &= \frac{(\lambda t)^n}{n!} e^{-(\lambda t)}, \quad \forall n \in \mathbb{N}, t \in \mathbb{R}_+ \end{split}$$

Eigenschaften

- ist ein Zählprozess
- ist Gedächtnislos
- hat unabhängige Inkremente
- \bullet N_t N_s ist Poisson-verteilt mit Parameter ($\lambda(t-s)$ für alle 0 < s < t
- hat eine Rate λ

Varianz

· Zeitintervalle zwischen den Inkremetierungen sind unabhängig und identisch exponentialverteilt mit Parameter λ

Erwartungswertfunktion

 $\mu_N(t) = \lambda t$

 $\sigma_N^2(t) = \lambda t$

Autokorrelationsfunktion Autokovarianzfunktion

 $r_N(s,t) = \lambda \min\{s,t\} + \lambda^2 st$ $c_N(s,t) = \lambda \min\{s,t\}$

14. Bedingte Unabhängigkeit

14.1. Bedingte Unabhängigkeit

A und C heißen bedingt unabhängig gegeben B, wenn gilt: $P(A \cap C|B) = P(A|B) P(C|B)$ bzw.

 $P(A|B \cap C) = P(A|B)$

Dann gilt: $p_{Z \mid Y,X}(y|y,x) = p_{Z \mid Y}(z|y)$

 $f_{Z \mid Y,X}(z|y,x) = f_{Z \mid Y}(z|y)$ X, Z sind bedingt unabhängig gegeben Y, kurz: $X \to Y \to Z$

15. Zufallsprozesse(ZP) und lineare Systeme

15.1. Allgemeines

Im Zeitbereich:

$$\mathbf{w}(t) = (h*v)(t) = \int_{-\infty}^{\infty} h(t-\tau)v(\tau) \, d\tau$$

W(f) = H(f)V(f)

Ausgang Eingang h(s,t) Impulsantwort

Falls Zufallsprozesse WSS:

Erwartungswert:
$$\mu_{W} = \mu_{V} \int_{-\infty}^{\infty} h(t) dt$$

 $\textit{Kreuzkorrelationsfkt: } r_{\mathsf{W},\mathsf{V}}(\overset{\frown}{\tau}) = \mathsf{E}[\mathsf{W}_s\mathsf{V}_t] = (h*r_{\mathsf{V}})(\tau)$

Autokorrelationsfkt:
$$r_{\rm W} = {\sf E}[{\sf W}_s {\sf W}_t] = (\tilde{h}*h*r_{\sf V})(\tau)$$
 mit $\tilde{h}(\tau) = h(-\tau)$

15.2. Leistungsdichtespektrum (LDS)

Auf Frequenz bezogene Signalleistung für infitisimales Frequenzband.

$$S_{Y}(f) = |H(f)|^{2} S_{X}(f)$$

$$S_{Y,X}(f) = H(f)S_{X}(f)$$

$$S_{X,Y}(f) = H^{*}(f)S_{X}(f)$$

$$\begin{split} &(\prod_{i=1}^n H_i^*(f))S_X(f)\\ &S_{Y,\mathsf{B}}(f) = (\prod_{i=1}^n H_i(f))(\prod_{j=1}^m G_j(f))^*S_{X,\mathsf{A}}(f) \end{split}$$

$$S_X(f) = S_X^*(f) & S_{X,Y}(f) = S_{Y,X}^*(f), \quad \forall f \in \mathbb{R}$$

$$S_X(f) = S_X(-f), \quad \forall f \in \mathbb{R}$$

$$\int_{-\infty}^{\infty} S_X(f) \, \mathrm{d}f = r_X(0) = \mathsf{Var}[X] + \mathsf{E}[X]^2 = \sigma_X^2 + \mu_X^2$$

$$S_X(f) \ge 0, \quad \forall f \in \mathbb{R}$$

Momenterzeugende Funktion, Multivariate Normalverteilung, Multivariate reelle Zufallsvariablen und Komplexe Zufallsvariablen waren im WS 2015/16 nicht prüfungsrelevant und werden hier deshalb nicht behandelt. P.S. Stochastik O dich