Wireless Routing Protocols

What is a MANET

- Mobile nodes, wireless links
- Infrastructure-less: by the nodes, ...
- Multi-hop routing: ..., and for the nodes
- Minimal administration: no hassles

What's unique about a MANET?

- Moving nodes → ever changing topology
- Wireless links
 - → various and volatile link quality
- Pervasive (cheap) devices
 - → Power constraints
- Security
 - Confidentiality, other attacks

Challenges in MANET Routing

- Need dynamic routing
 - Frequent topological changes possible.
 - Very different from dynamic routing in the Internet.
 - OPotential of network partitions.
- Routing overhead must be kept minimal
 - Wireless → low bandwidth
 - Mobile → low power
 - Minimize # of routing control messages
 - O Minimize routing state at each node

Other Challenges

- Auto configuration issues
 - Address assignment
 - Service discovery
- Security issues
 - Ease of denial-of-service attack
 - Misbehaving nodes difficult to identify
 - Nodes can be easily compromised
- New Applications/services
 - Location based: Distribute some information to all nodes in a geographic area (geocast).
 - Content based: Query all sensors that sensed something particular in the past hour.

Routing Protocols

- Reactive (On-demand) protocols
 - O Discover routes when needed
 - Source-initiated route discovery
- Proactive protocols
 - Traditional distributed shortest-path protocols
 - Based on periodic updates. High routing overhead
- Tradeoff
 - O State maintenance traffic vs. route discovery traffic
 - Route via maintained route vs. delay for route discovery

Reactive Routing

- Key Goal: Reduction in routing overhead
 - Useful when number of traffic sessions is much lower than the number of nodes.
- No routing structure created a priori. Let the structure emerge in response to a need
- Two key methods for route discovery
 - Source routing
 - backward learning (similar to intra-AS routing)
- Introduces delay

Reactive (on-demand) routing:

Routing only when needed

Advantages:

- eliminate periodic updates
- adaptive to network dynamics

Disadvantages:

- high flood-search overhead with
 - mobility, distributed traffic
- high route acquisition latency

Reactive Routing - Source initiated

- Source floods the network with a route request packet when a route is required to a destination
 - Flood is propagated outwards from the source
 - Pure flooding = every node transmits the request only once
- Destination replies to request
 - Reply uses reversed path of route request
 - sets up the forward path
- Two key protocols: DSR and AODV

Dynamic Source Routing (DSR)

- Cooperative nodes
- Relatively small network diameter (5-10 hops)
- Detectable packet error
- Unidirectional or bidirectional link

Route Discovery: at source A

Route Discovery: At an intermediate node

DSR - Route Discovery

- Route Reply message containing path information is sent back to the source either by
 - Othe destination, or
 - intermediate nodes that have a route to the destination
 - Reverse the order of the route record, and include it in Route Reply.
 - Unicast, source routing
- Each node maintains a Route Cache which records routes it has learned and overheard over time

Route Maintenance

- Route maintenance performed only while route is in use
- Error detection:
 - Monitors the validity of existing routes by passively listening to data packets transmitted at neighboring nodes
 - Lower level acknowledgements
- When problem detected, send Route Error packet to original sender to perform new route discovery
 - Host detects the error and the host it was attempting;
 - Route Error is sent back to the sender the packet original src

A Summary of DSR

- Entirely on-demand, potentially zero control message overhead
- Trivially loop-free with source routing
- Conceptually supports unidirectional links as well as bidirectional links
- High packet delays/jitters associated with on-demand routing
- Space overhead in packets and route caches
- Promiscuous mode operations consume excessive amount of power