Électromagnétisme S06 Circulation et rotationnel d'un champ vectoriel I

Iannis Aliferis

Université Nice Sophia Antipolis

Circulation d'un champ vectoriel	2
Le long d'un chemin	. 3
Exemple champ non-conservatif	. 4
Rotationnel d'un champ vectoriel: introduction	5
Couper une surface en deux	. 6
Couper une surface en deux : les calculs	
Couper une surface en morceaux	
Rotationnel d'un champ vectoriel	9
Couper une surface en morceaux	. 10
Rotationnel	. 11
Rotationnel: un champ vectoriel	. 12
Visualisation du rotationnel	13
Vidéo de capture d'écran	. 14
Théorème du rotationnel (Stokes)	15
Couper upo surface en marcoaux	16

Circulation d'un champ vectoriel

Le long d'un chemin

▼ « Suivre » la composante tangentielle le long d'une courbe

lacktriangledown Circulation du champ $ec{A}(ec{r})$ le long de la courbe Γ :

$$\int_{\Gamma} \vec{A}(\vec{r}) \cdot \hat{t} \, dl \tag{1}$$

lacktriangledown Circulation du champ $\vec{A}(\vec{r})$ le long de la courbe fermée Γ :

$$\oint_{\Gamma} \vec{A}(\vec{r}) \cdot \hat{t} \, dl \tag{2}$$

- ▼ Circulation : un scalaire (> 0, < 0, = 0) égal à la [valeur moyenne] de $A_{\rm tan} \times$ longueur de Γ
- **▼** Pas de direction!
- ▼ Dépend du chemin choisi, sauf pour les champs conservatifs (p.ex. [circulation champ électrostatique])

3

2

www.polytech.unice.fr/~aliferis

Rotationnel d'un champ vectoriel : introduction

Couper une surface en deux...

- **▼** Surface ouverte S, entourée par courbe Γ fermée (son bord)
- lacktriangledown Partager S en S_1,S_2 , entourées par Γ_1,Γ_2
- Circulation le long de Γ = circulation le long de Γ_1' + circulation le long de Γ_2'
- $\blacktriangledown \ \Gamma_1' \ \text{ouverte} \ ; \ \Gamma_1' \cup \Gamma_c = \Gamma_1 \ \text{ferm\'ee} \ ; \ \Gamma_2' \ \text{ouverte} \ ; \ \Gamma_2' \cup \Gamma_c = \Gamma_2 \ \text{ferm\'ee}$
- lacktriangledown Deux orientations pour $\Gamma_c: \hat{m{t}}_{m{c2}} = -\hat{m{t}}_{m{c1}}$

(

5

Couper une surface en deux : les calculs

$$\begin{split} &\oint_{\Gamma_1} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}}_1 \, \mathrm{d}l = \int_{\Gamma_1'} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}}_1' \, \mathrm{d}l + \int_{\Gamma_c} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}}_{c1} \, \mathrm{d}l \\ &\oint_{\Gamma_2} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}}_2 \, \mathrm{d}l = \int_{\Gamma_2'} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}}_2' \, \mathrm{d}l + \int_{\Gamma_c} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}}_{c2} \, \mathrm{d}l \end{split}$$

Circulation le long de Γ_1+ circulation le long de $\Gamma_2=$ Circulation le long de Γ

Couper une surface en morceaux...

$$\oint_{\Gamma} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}} \, \mathrm{d}l = \oint_{\Gamma_1} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}}_1 \, \mathrm{d}l + \oint_{\Gamma_2} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}}_2 \, \mathrm{d}l$$

▼ Continuer à couper...

$$\oint_{\Gamma} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}} \, \mathrm{d}l = \sum_{i} \left(\oint_{\Gamma_{i}} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}}_{\boldsymbol{i}} \, \mathrm{d}l \right)$$

▼ [rotationnel]

8

Rotationnel d'un champ vectoriel

Couper une surface en morceaux...

[introduction rotationnel]

$$\oint_{\Gamma} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}} \, \mathrm{d}l = \oint_{\Gamma_1} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}}_1 \, \mathrm{d}l + \oint_{\Gamma_2} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}}_2 \, \mathrm{d}l$$

▼ Continuer à couper...

$$\oint_{\Gamma} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}} \, \mathrm{d}l = \sum_{i} \left(\oint_{\Gamma_{i}} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}}_{\boldsymbol{i}} \, \mathrm{d}l \right)$$

- ▼ ...jusqu'où?
- ▼ Courbe fermée élémentaire autour d'une surface élémentaire *plane*

10

9

Rotationnel

▼ Quelle est la circulation le long d'une courbe fermée élémentaire?

$$\lim_{\mathsf{longueur}} \oint_{\Gamma} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}} \, \mathrm{d}l = 0 \quad ! \, ! \, ! \, !$$

- Rotationnel $\triangleq \frac{\text{circulation courbe élémentaire fermée}}{\text{aire surface plane entourée}}$
- lacktriangle Faire intervenir le vecteur $\hat{m{n}}$ de la surface

lacktriangledown Sens du parcours $\hat{t}\leftrightarrow$ sens de la normale \hat{n} (règle de la main droite)

$$\hat{\boldsymbol{n}} \cdot \overrightarrow{\mathsf{rot}} \, \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \triangleq \lim_{\Delta S \to 0} \frac{1}{\Delta S} \oint_{\Gamma} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}} \, \mathrm{d}l$$
 (3)

 $ightharpoonup \overrightarrow{rot} \vec{A}$: un champ *vectoriel*! (norme + sens)

11

Rotationnel: un champ vectoriel

- ightharpoonup À chaque point \vec{r} de l'espace, $\hat{n} \cdot \overrightarrow{\operatorname{rot}} \vec{A}$:
 - lacktriangle la composante de $\overrightarrow{\operatorname{rot}}\, ec{A}$ selon \hat{n}
 - lackbox \propto à la circulation de $ec{A}(ec{r})$ autour de ce point
 - lacktriangle circulation sur le bord de la surface élémentaire associée à \hat{n}
- $lacktriangledown\ \max{(\hat{m{n}}\cdot\overrightarrow{m{rot}}\,m{ec{A}})} = \|\overrightarrow{m{rot}}\,m{ec{A}}\|$ quand $\hat{m{n}}$ parallèle à $\overrightarrow{m{rot}}\,m{ec{A}}$
- lacktriangle À chaque point \vec{r} de l'espace, $\overrightarrow{\operatorname{rot}} \, \vec{A}$:
 - ightharpoonup montre la direction de la normale \hat{n} de la surface sur le bord de laquelle la circulation est maximale
 - $lackbox \| \overrightarrow{\operatorname{rot}} \, ec{A} \| \propto$ circulation maximale autour de $ec{r}$
 - ightharpoonup [circulation] = valeur moyenne de $A_{\mathrm{tan}} imes$ périmètre
 - lacktriangle sens circulation \leftrightarrow sens rotationnel : règle de la main droite
- ▼ Si le champ « tourne » ($\|\overrightarrow{rot} \overrightarrow{A}\| \neq 0$), il fait des tourbillons autour du vecteur du rotationnel (règle de la main droite)
- lacktriangle La surface dont $\hat{n} \parallel \overrightarrow{\operatorname{rot}} \vec{A}$ contient un tourbillon du champ
- ▼ [Visualisation du rotationnel] : un moulin immergé dans le champ

Visualisation du rotationnel

13

Vidéo de capture d'écran

▼ Applet de l'Université de Harvard http://www.math.harvard.edu/~knill/pitf/2dcurldiv.html

14

15

Théorème du rotationnel (Stokes)

Couper une surface en morceaux...

[rotationnel]

$$\oint_{\Gamma} \vec{A}(\vec{r}) \cdot \hat{t} \, dl = \oint_{\Gamma_{1}} \vec{A}(\vec{r}) \cdot \hat{t}_{1} \, dl + \oint_{\Gamma_{2}} \vec{A}(\vec{r}) \cdot \hat{t}_{2} \, dl$$

$$= \sum_{i} \left(\oint_{\Gamma_{i}} \vec{A}(\vec{r}) \cdot \hat{t}_{i} \, dl \right)^{\Gamma_{i} \to 0} \int_{S} \vec{rot} \, \vec{A}(\vec{r}) \cdot \hat{n} \, dS$$

$$\oint_{\Gamma} \vec{A}(\vec{r}) \cdot \hat{t} \, dl = \int_{S} \vec{rot} \, \vec{A}(\vec{r}) \cdot \hat{n} \, dS$$
(4)

- lacktriangle Surface ouverte S associée à la courbe fermée Γ , son bord
- \mathbf{v} \hat{t} et \hat{n} liés par la règle de la main droite
- lacktriangle À chaque Γ correspond une infinité de S associées
- ▼ Théorème du rotationnel (ou de Stokes)

16

