

Definition

### **Definition**

**Sherman** (1932) has introduced the concept of unit hydrograph.

Unit hydrograph is a <u>direct runoff hydrograph</u> resulting from <u>unit</u> (1cm) rainfall excess, occurring <u>uniformly</u> over the <u>entire</u> catchment at a <u>constant</u> rate for a period of <u>D-h.</u>



- Definition
- Characteristics

### **Characteristics**

A D-h Unit Hydrograph has the following characteristics:

- Unit hydrograph is a direct runoff hydrograph. It has no base flow contribution.
- Unit hydrograph is a lumped response of the catchment to a unit rainfall excess of D-h duration.
- Area under the UH curve = 1cm x A km<sup>2</sup>
- Intensity of the excess rainfall = 1/D cm/h
- The UH has a steeper rising limb and a flatter falling limb.



- Definition
- Characteristics
- Assumptions

### **Assumptions**

Two basic assumptions are involved in the UH theory.

### **Time Invariance**

DRH for a given ER in a catchment is always the same, irrespective of the time of occurrence of the precipitation. It means, shape of the UH will be the same at the beginning, in the middle or at the end of the monsoon.

### **Linear Response**

Direct runoff is linearly proportional to the excess rainfall. It implies, if 1cm excess rainfall produces  $2.5\text{m}^3/\text{s}$  runoff, the 3cm excess rainfall will produce  $3 \times 2.5 = 7.5\text{m}^3/\text{s}$  runoff.

This assumption also enables the principle of superposition to be used. If two or more excess rainfall occur successively, their effects (i.e., resulting DRH) can be estimated independently. These DRH can then be added together maintaining proper time lag, to get the combined DRH.

- Definition
- Characteristics
- Assumptions
- Example 1

# **Example 1**

Ordinates of a 6-h UH for a catchment are given below. Calculate the ordinates of a DRH due a rainfall excess of 4.5cm occurring in 6-h on this catchment.

| Time | 6-h UH Ordinates |
|------|------------------|
| (h)  | $(m^3/s)$        |
| 0    | 0                |
| 6    | 15               |
| 12   | 45               |
| 18   | 89               |
| 24   | 127              |
| 30   | 119              |
| 36   | 95               |
| 42   | 72               |
| 48   | 53               |
| 54   | 37               |
| 60   | 25               |
| 66   | 15               |
| 72   | 7                |
| 78   | 0                |



- Definition
- Characteristics
- Assumptions
- Example 1
- Solution

# **Solution**

Multiply all the ordinates of the 6-h UH by 4.5, to get the ordinates of the resulting DRH due to 4.5cm ER.

| Time | 6-h UH    | DRH due to |
|------|-----------|------------|
|      | Ordinates | 4.5cm ER   |
| (h)  | $(m^3/s)$ | $(m^3/s)$  |
| 0    | 0         | 0          |
| 6    | 15        | 67.5       |
| 12   | 45        | 202.5      |
| 18   | 89        | 400.5      |
| 24   | 127       | 571.5      |
| 30   | 119       | 535.5      |
| 36   | 95        | 427.5      |
| 42   | 72        | 324        |
| 48   | 53        | 238.5      |
| 54   | 37        | 166.5      |
| 60   | 25        | 112.5      |
| 66   | 15        | 67.5       |
| 72   | 7         | 31.5       |
| 78   | 0         | 0          |
| 72   | 7         | 31.5       |



- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2

# **Example 2**

Ordinates of a 6-h UH for a catchment are given below. Calculate the ordinates of a DRH due a rainfall excess of 2cm occurring during first 6-h and a rainfall excess of 3.5cm occurring in the next 6-h over this catchment.

| Time | 6-h UH Ordinates |
|------|------------------|
| (h)  | $(m^3/s)$        |
| 0    | 0                |
| 6    | 15               |
| 12   | 45               |
| 18   | 89               |
| 24   | 127              |
| 30   | 119              |
| 36   | 95               |
| 42   | 72               |
| 48   | 53               |
| 54   | 37               |
| 60   | 25               |
| 66   | 15               |
| 72   | 7                |
| 78   | 0                |



- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution

# **Solution**

| Time | 6-h UH              | DRH                  | due to                 | Total               |
|------|---------------------|----------------------|------------------------|---------------------|
|      | Ordinates           | 2 cm ER              | 3.5 cm ER              | DRH                 |
| (h)  | (m <sup>3</sup> /s) | (m <sup>3</sup> /s)  | (m³/s)                 | (m <sup>3</sup> /s) |
|      |                     |                      | lag = 6h               |                     |
| (1)  | (2)                 | $(3) = (2) \times 2$ | $(4) = (2) \times 3.5$ | (3) + (4)           |
| 0    | 0                   | 0                    |                        | 0.0                 |
| 6    | 15                  | 30                   | 0.0                    | 30.0                |
| 12   | 45                  | 90                   | 52.5                   | 142.5               |
| 18   | 89                  | 178                  | 157.5                  | 335.5               |
| 24   | 127                 | 254                  | 311.5                  | 565.5               |
| 30   | 119                 | 238                  | 444.5                  | 682.5               |
| 36   | 95                  | 190                  | 416.5                  | 606.5               |
| 42   | 72                  | 144                  | 332.5                  | 476.5               |
| 48   | 53                  | 106                  | 252.0                  | 358.0               |
| 54   | 37                  | 74                   | 185.5                  | 259.5               |
| 60   | 25                  | 50                   | 129.5                  | 179.5               |
| 66   | 15                  | 30                   | 87.5                   | 117.5               |
| 72   | 7                   | 14                   | 52.5                   | 66.5                |
| 78   | 0                   | 0                    | 24.5                   | 24.5                |
| 84   | 0                   |                      | 0.0                    | 0.0                 |

- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution

### **Solution**

- Draw 6-h UH
- Multiply all ordinates of 6-h UH by 2. Draw the DRH due to 2cm ER.
- Multiply all ordinates of 6-h UH by 3.5. Draw the DRH due to 3.5cm ER starting from 6-h (i.e., lag = 6h), because 3.5cm ER starts at 6-h.
- Add ordinates of the two DRH to get the combined DRH.



- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH

### **Derivation of UH**

A D-h UH for a catchment is to developed from observed rainfall and corresponding flood hydrograph at the catchment outlet.

- Select D
- Select a number of isolated storms of duration 10% ± of D.
- Select corresponding flood hydrographs at the catchment outlet.
- For each of these flood hydrographs, separate base flow and get DRHs.
- For each of these DRH.
  - calculate area under the DRH
  - divide the area by the catchment area to get ER
  - divide the ordinates by ER to make it unit hydrograph
- Draw all UH thus derived on a graph paper.
- Calculate average T<sub>B</sub>, T<sub>P</sub> and Q<sub>P</sub>. Draw the average DRH graph.
- Calculate the area under this average graph.
- Divide the area by the catchment area to get ER.
- Divide the ordinates of the average graph by ER to get D-h UH.



- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH



- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH
- UH from Compound Storm

# **UH from Compound Storm**





| Time | UH                 | DR    | H Due to | ER rair | nfall | Total DRH           |   | Observed<br>DRH     |
|------|--------------------|-------|----------|---------|-------|---------------------|---|---------------------|
| (h)  | ordinate<br>(m³/s) | x1 cm | x2 cm    | x3 cm   | x4 cm | (m <sup>3</sup> /s) |   | (m <sup>3</sup> /s) |
| 0    | 0                  | 0     |          |         |       | 0                   | = | 0                   |
| D    | y1                 | x1y1  | 0        |         |       | x1y1                | = | Q1                  |
| 2D   | y2                 | x1y2  | x2y1     | 0       |       | x1y2+x2y1           | = | Q2                  |
| 3D   | у3                 | x1y3  | x2y2     | x3y1    | 0     | x1y3+x2y2+x3y1      | = | Q3                  |
| 4D   | y4                 | x1y4  | x2y3     | x3y2    | x4y1  | x1y4+x2y3+x3y2+x4y1 | = | Q4                  |
| 5D   | у5                 | x1y5  | x2y4     | хЗуЗ    | x4y2  | x1y5+x2y4+x3y3+x4y2 | Ш | Q5                  |
| 6D   | y6                 | x1y6  | x2y5     | x3y4    | x4y3  | x1y6+x2y5+x3y4+x4y3 | Ш | Q6                  |
| 7D   | 0                  | 0     | x2y6     | x3y5    | x4y4  | x2y6+x3y5+x4y4      | = | Q7                  |
| 8D   |                    |       | 0        | x3y6    | x4y5  | x3y6+x4y5           | = | Q8                  |
| 9D   |                    |       |          | 0       | x4y6  | x4y6                | = | Q9                  |
| 10D  |                    |       |          |         | 0     | 0                   | = | 0                   |

- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH
- UH from Compound Storm

### **UH from Compound Storm**

$$x1y1 = Q1$$

$$x1y2+x2y1 = Q2$$

$$x1y3 + x2y2 + x3y1 = Q3$$

$$\rightarrow$$
 y1 = Q1/x1

$$\rightarrow y2 = (Q2 - x2y1)/x1$$

$$\rightarrow$$
 y3 = (Q3 - x2y2 - x3y1)/x1

$$x1y6 + x2y5 + x3y4 + x4y3 = Q6$$
  $\rightarrow$   $y6 = (Q6 - x2y5 - x3y4 - x2y5)/x1$ 



- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- · Derivation of UH
- · UH from Compound Storm
- · UH of Different Durations

### **UH of Different Durations**

For determining flood hydrograph using UH, the type of UH to be used depends on the time interval of the hyetograph. If the hyetograph is having 2-h time interval, then a 2-h UH is to be used. If the time interval is 4-h, then a 4-h UH is to be used. Any other UH <u>cannot</u> be used.

As the development of the UH from observed data is an involved task, usually only one UH is made available for a catchment. Any other UH is to be derived from this UH. That is, if a 2-h UH is available and a 3-h UH or 4-h UH is needed, then these are to be derived from the 2-h UH.

Two different types of tasks are involved while developing a T-h UH from a D-h UH

- T is an integer multiple of D (i.e., T = 1D, 2D, 3D etc.)
- T is a fractional multiple of D (i.e., T = 0.5D, 1.25D, 1.5D etc.)

Method of Superposition can be used for the integer case, whereas

S-curve Technique can be used for both the cases.

- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH
- UH from Compound Storm
- UH of Different Durations
- Method of Superposition

# **Method of Superposition**

A 6-h UH for a catchment is given below. Derive a 12-h UH.

| Time  | 6-h UH    | 6-h UH        | 12-h DRH  | 12-h UH     |
|-------|-----------|---------------|-----------|-------------|
|       | Ordinates | Lagged by 6-h | due to    |             |
|       |           |               | 1+1 cm ER |             |
| (h)   | (m3/s)    | (m3/s)        | (m3/s)    | (m3/s)      |
| col 1 | col 2     | col 3         | col 4     | col 4/(1+1) |
| 0     | 0         |               | 0         | 0.0         |
| 6     | 15        | 0             | 15        | 7.5         |
| 12    | 45        | 15            | 60        | 30.0        |
| 18    | 89        | 45            | 134       | 67.0        |
| 24    | 127       | 89            | 216       | 108.0       |
| 30    | 119       | 127           | 246       | 123.0       |
| 36    | 95        | 119           | 214       | 107.0       |
| 42    | 72        | 95            | 167       | 83.5        |
| 48    | 53        | 72            | 125       | 62.5        |
| 54    | 37        | 53            | 90        | 45.0        |
| 60    | 25        | 37            | 62        | 31.0        |
| 66    | 15        | 25            | 40        | 20.0        |
| 72    | 7         | 15            | 22        | 11.0        |
| 78    | 0         | 7             | 7         | 3.5         |
| 84    |           | 0             | 0         | 0.0         |

- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH
- UH from Compound Storm
- UH of Different Durations
- Method of Superposition

# **Method of Superposition**



- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH
- UH from Compound Storm
- UH of Different Durations
- Method of Superposition
- S-curve

### **S-curve**

If a rainfall of intensity 1/D cm/h occurs continuously over a catchment the resulting DRH at the catchment outlet is known as S-curve or S-hydrograph.



- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH
- UH from Compound Storm
- UH of Different Durations
- Method of Superposition
- S-curve

### **S-curve**

If a rainfall of intensity 1/D cm/h occurs continuously over a catchment the resulting DRH at the catchment outlet is known as S-curve or S-hydrograph.

| Time | D-h UH              | D-h UH | D-h UH  | D-h UH  | D-h UH  | D-h UH  |   | S-curve             |  |
|------|---------------------|--------|---------|---------|---------|---------|---|---------------------|--|
|      |                     | Lagged | Lagged  | Lagged  | Lagged  | Lagged  |   | ordinates           |  |
| (h)  | (m <sup>3</sup> /s) | by D-h | by 2D-h | by 3D-h | by 4D-h | by 4D-h |   | (m <sup>3</sup> /s) |  |
| 0    | 0                   |        |         |         |         |         | С | 0                   |  |
| D    | y1                  | 0      |         |         |         |         | 0 | y1                  |  |
| 2D   | y2                  | y1     | 0       |         |         |         | n | y1+y2               |  |
| 3D   | у3                  | y2     | y1      | 0       |         |         |   | y1+y2+y3            |  |
| 4D   | у4                  | у3     | y2      | y1      | 0       |         | t | y1+y2+y3+y4         |  |
| 5D   | у5                  | y4     | у3      | y2      | y1      | 0       | i | y1+y2+y3+y4+y5      |  |
| 6D   | 0                   | y5     | y4      | у3      | y2      | y1      | n | y1+y2+y3+y4+y5      |  |
| 7D   |                     | 0      | у5      | y4      | у3      | y2      |   | y1+y2+y3+y4+y5      |  |
| 8D   |                     |        | 0       | у5      | у4      | у3      | u | y1+y2+y3+y4+y5      |  |
|      |                     |        |         | 0       | у5      | у4      | е | y1+y2+y3+y4+y5      |  |

- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH
- UH from Compound Storm
- UH of Different Durations
- Method of Superposition
- S-curve

# **S-curve**



- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH
- UH from Compound Storm
- UH of Different Durations
- Method of Superposition
- S-curve

# **S-curve**

A 6-h UH for a catchment is given below. Derive a 12-h UH using S-curve.

| Time  | 6-h UH              | S-Curve             | S-curve             | S1 - S2   | 12-h UH             |
|-------|---------------------|---------------------|---------------------|-----------|---------------------|
|       | Ordinates           | Ordinates           | lagged by 12-h      |           | Ordinates           |
|       |                     | S1                  | S2                  |           | (S1-S2)/2           |
| (h)   | (m <sup>3</sup> /s) | (m <sup>3</sup> /s) | (m <sup>3</sup> /s) | $(m^3/s)$ | (m <sup>3</sup> /s) |
| col 1 | col 2               | col 3               | col 4               | col 5     | col 6               |
| 0     | 0                   | 0                   |                     | 0         | 0.0                 |
| 6     | 15 🚣                | 15                  |                     | 15        | 7.5                 |
| 12    | 454                 | 60                  | 0                   | 60        | 30.0                |
| 18    | 89 ᄯ                | 149                 | 15                  | 134       | 67.0                |
| 24    | 127                 | 276                 | 60                  | 216       | 108.0               |
| 30    | 119                 | 395                 | 149                 | 246       | 123.0               |
| 36    | 95                  | 490                 | 276                 | 214       | 107.0               |
| 42    | 72                  | 562                 | 395                 | 167       | 83.5                |
| 48    | 53                  | 615                 | 490                 | 125       | 62.5                |
| 54    | 37                  | 652                 | 562                 | 90        | 45.0                |
| 60    | 25                  | 677                 | 615                 | 62        | 31.0                |
| 66    | 15                  | 692                 | 652                 | 40        | 20.0                |
| 72    | 7                   | 699                 | 677                 | 22        | 11.0                |
| 78    | 0                   | 699                 | 692                 | 7         | 3.5                 |
| 84    |                     | 699                 | 699                 | 0         | 0.0                 |

- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH
- UH from Compound Storm
- UH of Different Durations
- Method of Superposition
- S-curve

# **S-curve**

A 6-h UH for a catchment is given below. Derive a 3-h UH using S-curve.

| Time | 6-h UH |
|------|--------|
| (h)  | (m3/s) |
| 0    | 0      |
| 6    | 25     |
| 12   | 85     |
| 18   | 145    |
| 24   | 155    |
| 30   | 137    |
| 36   | 111    |
| 42   | 89     |
| 48   | 70     |
| 54   | 53     |
| 60   | 36     |
| 66   | 21     |
| 72   | 8      |
| 78   | 0      |



- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH
- UH from Compound Storm
- UH of Different Durations
- Method of Superposition
- S-curve

# **S-curve**

Get ordinates at 3-h interval from the graph (or interpolate).



- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH
- UH from Compound Storm
- UH of Different Durations
- Method of Superposition
- S-curve

# **S-curve**

| Time  | 6-h UH   | 6-h S-Curve  | 6-h S-curve | S1-S2 | 3-h UH     |
|-------|----------|--------------|-------------|-------|------------|
| (h)   | (m3/s)   | (m3/s)       | 3-h lagged  | 01-02 | m3/s       |
| (11)  | (1113/3) | S1           | S2          |       | col 5 x 2  |
| col 1 | col 2    | col 3        | col 4       | col 5 |            |
| col 1 | 0        | √0           | COI 4       | 0     | col 6<br>0 |
| 0     | 9        | 9            | 0           | 9     |            |
| 3     | . /      |              | 0           |       | 18         |
| 6     | 25       | 25           | 9           | 16    | 32         |
| 9     | 51       | 60           | 25          | 35    | 70         |
| 12    | 85       | 110          | 60          | 50    | 100        |
| 15    | 120      | <b>→</b> 180 | 110         | 70    | 140        |
| 18    | 145      | 255          | 180         | 75    | 150        |
| 21    | 153      | 333          | 255         | 78    | 156        |
| 24    | 155      | 410          | 333         | 77    | 154        |
| 27    | 149      | 482          | 410         | 72    | 144        |
| 30    | 137      | 547          | 482         | 65    | 130        |
| 33    | 124      | 606          | 547         | 59    | 118        |
| 36    | 111      | 658          | 606         | 52    | 104        |
| 39    | 100      | 706          | 658         | 48    | 96         |
| 42    | 89       | 747          | 706         | 41    | 82         |
| 45    | 79       | 785          | 747         | 38    | 76         |
| 48    | 70       | 817          | 785         | 32    | 64         |
| 51    | 61       | 846          | 817         | 29    | 58         |
| 54    | 53       | 870          | 846         | 24    | 48         |
| 57    | 44       | 890          | 870         | 20    | 40         |
| 60    | 36       | 906          | 890         | 16    | 32         |
| 63    | 28       | 918          | 906         | 12    | 24         |
| 66    | 21       | 927          | 918         | 9     | 18         |
| 69    | 14       | 932          | 927         | 5     | 10         |
| 72    | 8        | 935          | 932         | 3     | 6          |
| 75    | 3        | 935          | 935         | 0     | 0          |
| 78    | 0        | 935          | 935         | 0     | 0          |

- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH
- UH from Compound Storm
- UH of Different Durations
- Method of Superposition
- S-curve

# **S-curve**



- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH
- UH from Compound Storm
- UH of Different Durations
- Method of Superposition
- S-curve

# **S-curve**

The ordinates of a 12-h UH are given below, compute the ordinates of a 6-h UH.

| Time | UH Ordinate |
|------|-------------|
| (h)  | (m3/s)      |
| 0    | 0           |
| 6    | 9           |
| 12   | 37          |
| 18   | 75          |
| 24   | 111         |
| 30   | 136         |
| 36   | 150         |
| 42   | 153         |
| 48   | 146         |
| 54   | 130         |
| 60   | 114         |
| 66   | 99          |
| 72   | 84          |
| 78   | 71          |
| 84   | 58          |
| 90   | 46          |
| 96   | 35          |
| 102  | 25          |
| 108  | 17          |
| 114  | 12          |
| 120  | 8           |
| 126  | 6           |
| 132  | 3           |
| 138  | 1           |
| 144  | 0           |



- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH
- UH from Compound Storm
- UH of Different Durations
- Method of Superposition
- S-curve

# **S-curve**

| Time   | UH Ordinate         | 12-h S-Curve        | 12-h S-Curve | S1-S2               | 6-h UH              |
|--------|---------------------|---------------------|--------------|---------------------|---------------------|
| (h)    | (m <sup>3</sup> /s) | (m <sup>3</sup> /s) | 6-h lagged   | (m <sup>3</sup> /s) | (m <sup>3</sup> /s) |
|        |                     | (S1)                | (S2)         |                     | Col. 5 x 2          |
| Col. 1 | Col. 2              | Col. 3              | Col. 4       | Col. 5              | Col. 6              |
| 0      | 0                   | 0                   |              | 0                   | 0                   |
| 6      | 9                   | 9                   | 0            | 9                   | 18                  |
| 12     | 37                  | 37                  | 9            | 28                  | 56                  |
| 18     | 75                  | 84                  | 37           | 47                  | 94                  |
| 24     | 111                 | 148                 | 84           | 64                  | 128                 |
| 30     | 136                 | 220                 | 148          | 72                  | 144                 |
| 36     | 150                 | 298                 | 220          | 78                  | 156                 |
| 42     | 153                 | 373                 | 298          | 75                  | 150                 |
| 48     | 146                 | 444                 | 373          | 71                  | 142                 |
| 54     | 130                 | 503                 | 444          | 59                  | 118                 |
| 60     | 114                 | 558                 | 503          | 55                  | 110                 |
| 66     | 99                  | 602                 | 558          | 44                  | 88                  |
| 72     | 84                  | 642                 | 602          | 40                  | 80                  |
| 78     | 71                  | 673                 | 642          | 31                  | 62                  |
| 84     | 58                  | 700                 | 673          | 27                  | 54                  |
| 90     | 46                  | 719                 | 700          | 19                  | 38                  |
| 96     | 35                  | 735                 | 719          | 16                  | 32                  |
| 102    | 25                  | 744                 | 735          | 9                   | 18                  |
| 108    | 17                  | 752                 | 744          | 8                   | 16                  |
| 114    | 12                  | 756                 | 752          | 4                   | 8                   |
| 120    | 8                   | 760                 | 756          | 4                   | 8                   |
| 126    | 6                   | 762                 | 760          | 2                   | 4                   |
| 132    | 3                   | 763                 | 762          | 1                   | 2                   |
| 138    | 1                   | 763                 | 763          | 0                   | 0                   |
| 144    | 0                   | 763                 | 763          |                     |                     |

- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- Derivation of UH
- UH from Compound Storm
- UH of Different Durations
- Method of Superposition
- S-curve

### **S-curve**

A 6-h UH of a catchment is triangular in shape with a base width of 66h and a peak ordinate of 30 m3/s. Calculate the equilibrium discharge of an S-curve derived from this 6-h UH.



- Definition
- Characteristics
- Assumptions
- Example 1
- Solution
- Example 2
- Solution
- · Derivation of UH
- UH from Compound Storm
- · UH of Different Durations
- Method of Superposition
- S-curve

### **S-curve**

By definition, S-curve is the hydrograph resulted from a <u>continuous</u> rainfall excess of intensity (1/D) cm/h, occurring uniformly over the catchment area, A km<sup>2</sup>.

So,

Equilibrium discharge for S-curve = Qs =  $(1/D) \times A \times (1/100) \times (1/3600) \times 10^6 \text{ m}^3/\text{s}$ =  $2.778 \text{ A/D m}^3/\text{s}$ 

Now,

Catchment area,

A = area under the UH / 1 cm

Area under UH =  $0.5 \times 66 \times 30 \text{ m}^3/\text{s-h}$ =  $3564000 \text{ m}^2$ 

Then,  $A = 3564000 / 0.01 = 356.4 \text{ km}^2$ 



So, equilibrium discharge, Qs =  $2.778 \times 356.4 / 6 = 165 \text{ m}^3/\text{s}$