

Numerical study of the effect of secondary electron emission on the dynamics of electron clouds in gyrotron guns

S. Guinchard¹, G. Le Bars²

¹ Ecole Polytechnique Fédérale de Lausanne (EPFL), Physics Section (SPH), CH-1015 Lausanne, Switzerland

December 2, 2022

² Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland

EPFL IIEE - implementation

- Recall: electronic yield $\gamma(E) = \Lambda_{exp} * \frac{dE_{ions}}{dx}$
- Ion Induced Electrons have been modeled using a Poisson Law

•
$$P(x = k) = e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\gamma(E_i)} \frac{\gamma(E_i)^k}{k!}$$

Module tests EPFL

- Vertical slice of He ions impinging on stainless steel electrode
 - Potential bias: $\Delta \phi = 20kV$
 - Electrode radial positions: $r_a = 10^{-3} m$, $r_b = 10^{-2} m$
 - Acquired energy: $E \propto \Delta \phi \log(r/r_a)/\log(r_b/r_a)$

Figure: Particles number as function of time

EPFL Module tests

- Horizontal slice of He ions impinging on stainless steel electrode
 - Potential bias: $\Delta \phi = 20kV$
 - Electrode radial positions: $r_a = 10^{-3} m$, $r_b = 10^{-2} m$
 - Acquired energy: $E \propto \Delta \phi \log(r/r_a)/\log(r_b/r_a)$
 - Yield prediction: Slice 1: $\gamma = 0.96$, Slice 2: $\gamma = 1.33$
 - Obtained yield: Slice 1: 967 e^- for 1000 lost ions
 - Slice 2: 1325 for 1000 ions : Relative error $\propto 1e 3$

Figure: Particles number as function of time

EPFL Module tests - TREX extrude geometry

- Rectangle of incident ions at peak of cloud density
 - 5000 incident ions
 - Zero initial energy
 - End of simulation: +570 electrons remaining
 - ullet \sim 10% of incident ions number

Figure: Particles number as function of time

EPFL Module tests - TREX extrude geometry

- Rectangle of incident ions around whole cloud
 - 5000 incident ions
 - Zero initial energy
 - ullet End of simulation: \sim 700 electrons remaining
 - ho \sim 14% of incident ions number

Figure: Particles number as function of time