Parallel N-Body simulations

Outline

- Motivation
 - Importance of N-body problems. N(N-1)/2 pairs, In general O(N2) work
- ° Goal for high performance:
 - Reduce the number of particles in the force sum
 - Trade off: reduce accuracy and increase speed?
- Straightforward approach
 - Example: Particles-in-Cells
- ° Basic Data Structures: Quad Trees and Oct Trees
- The Barnes-Hut Algorithm (BH)
 - An O(N log N) approximation algorithm for the N-Body problem
- * The Fast Multipole Method (FMM)
 - An O(N) approximate algorithm for the N-Body problem

For more information See http://www.cs.berkeley.edu/~demmel/

° Parallelizing BH, FMM and Particles-in-Cells

What is N-Body simulation?

An N-body simulation numerically approximates the evolution of a system of bodies in which each body continuously interacts with every other body.

Examples of applications:

- Astrophysics evolution of galaxy
- Vortex particle simulation of turbulence
- Molecular Dynamics
- Plasma Simulation
- Electron-Beam Lithography Device Simulation

Applications

Astrophysics and Celestial Mechanics - 1992

- Intel Delta = 1992 supercomputer, 512 Intel i860s
- 17 million particles, 600 time steps, 24 hours elapsed time
 - M. Warren and J. Salmon
 - Gordon Bell Prize at Supercomputing 1992
- 1% accuracy
- Direct method (17 Flops/particle/time step) at 5.2 Gflops would have taken 18 years, 6570 times longer

Vortex particle simulation of turbulence – 2009

- Cluster of 256 NVIDIA GeForce 8800 GPUs
- 16.8 million particles
 - T. Hamada, R. Yokota, K. Nitadori. T. Narumi, K. Yasoki et al
 - Gordon Bell Prize for Price/Performance at Supercomputing 2009

For time step from time t to t+dt do

For each particle i do

Compute the total force acting on i:

$$F(i) = F(i,1) + ... + F(i,i-1) + F(i,i+1) ... + F(i,n)$$

Compute acceleration of particle i:

$$a(i) = F(i)/Mass(i);$$

Compute new position of i at time t+dt:

$$P(i) := P(i) + 0.5*a(i)*dt*dt$$

Basic structure:

- Essential is the time-stepping
- •For "each time" evaluate force on all particles

Particle Simulation, bottlenecks

° Computational bottlenecks?

force calculation; contains a nested loop

Yes

move operation; fixed amount of work per particle

calculation of properties

Possible

For high performance, focus on bottleneck force calculation

° Types of force to distinguish (in practice) (in parallel code)

• External force Trivial

- Is independent on the other particles

• Short-range force Easy

Depends on particles within fixed range

Long-range force
 Difficult

Depends on all other particles

Particle Simulation, bottleneck

- ° f(i) = external_force + short-range_force + long-range_force
 - External_force is embarrassingly parallel and costs O(N) for all particles
 - Satellites in gravitational field of the earth.
 - Short-range_force requires interacting with one or a few neighbors, so still O(N)
 - van der Waals force, Yukawa
 - bouncing balls, problem: collision-times, quite different approach
 - Long-range_force (gravity or electrostatics) requires all-to-all interactions

-
$$f(i) = \sum_{k \neq i} f(i,k)$$
 ... $f(i,k) = force on i from k$

- $f(i,k) = c \cdot v / ||v||^3$ in 3 dimensions or
- $f(i,k) = c \cdot v /||v||^2$ in 2 dimensions
 - v = vector from particle i to particle k , c = product of masses or charges
 - ||v|| = length of v
- Obvious algorithms costs O(N²), but we can do better...
- Focus in class is on long-range force
- In computerlab parallelization exercise for short-range force

Example of challenging applications: Protein folding (IBM Blue Gene project: 1,000,000 processors)

12/7/2021 Nbody 9

Estimated computational effort (protein folding): 3 years to simulate 100 μs on a petaflop/s computer

Physical time for simulation	10 ⁻⁴ seconds	
Typical time-step size	10 ⁻¹⁵ s	
Number of MD time steps	1011	
#atoms in a typical protein and water simulation	32000	
Approximate number of interactions in force calc.	109	
Machine instructions per force calculation	1000	
Total number of machine instructions	10 ²³	

Note: Recent development AlphaFold: Using Al for scientific discovery

12/7/2021 Nbody 10

How to reduce # of particles in force sum?

- ° Simple approach
 - Ignore particles that are enough far away

° Subscribe particles to cells, regions of space

- Particles in one region interact only with particles in nearby regions
 - This makes a O(N) method. Particles in far away cells need not even be considered
 - Inaccurate or even incorrect for long-range forces like gravity.
 - Useful for short-range forces like Lennard-Jones in molecular dynamics.
 - Cell size related to range of interaction

Reducing the number of particles in the force sum

- All later divide and conquer algorithms use same intuition
- ° Consider computing force on earth due to all celestial bodies
 - Look at night sky, # terms in force sum ≥ number of visible stars
 - One "star" is really the Andromeda galaxy, which contains billions of real stars
 - Seems like a lot more work than we thought ...
- OK to approximate all stars in Andromeda by a single point at its Center of Mass (CM) with the same total mass
 - D = size of box containing Andromeda , r = distance of CM to Earth
 - Require that D/r be "small enough"

Old idea: Newton approximated earth and falling apple by Centres of Mass

Using points at CM recursively

- $^{\circ}$ From Andromeda's point of view, Milky Way is also a point mass
- Within Andromeda, picture repeats itself
 - As long as D1/r1 is small enough, stars inside smaller box can be replaced by their CM to compute the force on Vulcan
 - Boxes nest in boxes recursively

Replacing Clusters by their Centers of Mass Recursively

12/7/2021

- ° Data structure to subdivide the plane
 - Nodes can contain coordinates of center of box, side length
 - Eventually also coordinates of CM, total mass, etc.
- ° In a complete quad tree, each non-leaf node has 4 children

A Complete Quadtree with 4 Levels

° Similar Data Structure to subdivide 3-d space

2 Levels of an Octree

Using Quad Trees and Oct Trees

° All these algorithms begin by constructing a tree to hold all the particles

- Interesting cases have non-uniformly distributed particles
 - In a complete tree most nodes would be empty, a waste of space and time

° An Adaptive Quad- or Oct-tree only subdivides space where particles are located

Example of an Adaptive Quad Tree

Adaptive quadtree where no square contains more than 1 particle $\,$

Child nodes enumerated counterclockwise from SW corner, empty ones are excluded

Adaptive Tree Building Algorithm

Tree building

- Insert particles one by one at the root
- •Let the tree grow: Move particles from the root to an empty leave in the top of the tree, creating new leaves (nodes) if necessary
- •Remove empty leaves. All child-leaves of a node are created if only one of them is needed

More details follow

Adaptive Quad Tree Algorithm (Oct Tree analogous)

```
Procedure QuadTreeBuild
 QuadTree = {emtpy}
  for i = 1 to N
                                 ... loop over all N particles
                                ... insert particle i in QuadTree
     Quad Tree Insert(j, root)
  endfor
   ... At this point, each leaf of Quad Tree will have 0 or 1 particles
      There will be 0 particles when some sibling has 1
  Traverse the QuadTree eliminating empty leaves ... via, say Breadth First Search
Procedure Quad_Tree_Insert(j, n) ... Try to insert particle j at node n in Quad Tree
  if n is an internal node
                                  ... n has 4 children
    determine which child c of node n contains particle i
    Quad Tree Insert(j, c)
                                               Easy change for q > 1 particles/leaf
 else if n contains 1 particle ... n is a leaf
    add n's 4 children to the Quad Tree
    move the particle already in n into the child containing it
    let c be the child of n containing i
    Quad Tree Insert(j, c)
  else
                               ... n empty
    store particle i in node n
```

° end

```
°Cost ≤ N * maximum cost of a Quad_Tree_Insert = O(N * maximum depth of QuadTree)
```

Output Output Ou

```
depth of QuadTree = O(log N),
so Cost = O( N log N)
```

° Arbitrary distribution:

```
depth of Quad Tree = O(b) = O(# bits in particle coordinates), so Cost = O(b N)
```

Note: depth of QuadTree b ≥ 1 + ⁴log N

- ° "A Hierarchical O(n log n) force calculation algorithm",
 - J. Barnes and P. Hut, Nature, v. 324 (1986), and many later papers
- ° Good for low accuracy calculations: Typically

RMS error =
$$(\Sigma_k \parallel \text{approx } f(k) - \text{true } f(k) \parallel^2 / \parallel \text{true } f(k) \parallel^2 / N)^{1/2}$$

~ 1%

(other measures better if some true force $f(k) \sim 0$)

 $^{\circ}$ Accuracy can easily improved, by changing a single parameter $\theta,$ but the cost increases as well

Barnes-Hut Algorithm

° High Level description:

- 1) Build the QuadTree using QuadTreeBuild ... already described, cost = O(N log N) or O(b N)
- 2) For each node, a sub-square in the QuadTree, Compute the CM and total mass (TM) of all the particles it contains ... "post order traversal" of QuadTree, cost = O(N log N) or O(b N)
- 3) For each particle, traverse the QuadTree to compute the force on it, using the CM and TM of "distant" sub-squares
 - ... core of algorithm
 - ... cost depends on accuracy desired but still O(N log N) or O(bN)

Total cost: still O(N log N) or O(bN)

 \rightarrow Achieved order reduction per time step: O(N²) to O(N logN)

Step 2 of BH: Compute CM and total mass of each node

```
... Compute CM = Center of Mass and TM = Total Mass
... of all the particles in each node of the QuadTree
(TM, CM) = Compute Mass(root)
function (TM, CM) = Compute Mass(n) ... compute the CM and TM of node n
   if n contains 1 particle
      ... the TM and CM are identical to the particle's mass and location
      store (TM, CM) at n
      return (TM, CM)
   else
           ... "post order traversal": process all children before their parent
      for all children c(j) of n \dots j = 1,2,3,4
         (TM(j), CM(j)) = Compute Mass(c(j))
      endfor
      TM = TM(1) + TM(2) + TM(3) + TM(4)
          ... the total mass is the sum of the children's masses
      CM = (TM(1)*CM(1) + TM(2)*CM(2) + TM(3)*CM(3) + TM(4)*CM(4)) / TM
          ... the CM is the mass-weighted sum of the children's centers of mass
      store (TM, CM) at n
      return (TM, CM)
    end if
```

24

Step 3 of BH: compute force on each particle

- Outside the node (=square), approximate force on particles outside the node due to particles inside node by using the node's CM and TM
 - This will be accurate enough if the node if "far away enough" from the particle
- ° For each particle, use as few nodes as possible to compute force, subject to an accuracy constraint
- Need criterion to decide if node is far enough from particle
 - D = side length of node
 - r = distance from particle to CM of node
 - θ = user supplied error tolerance (usually < 1)
 - Use CM and TM to approximate force of node (and thus all particles within it) on particle if $D/r < \theta$

26

Force on a particle due to a node

- ° Suppose a node n, with CM and TM, and a particle k,
 - Let (x_k, y_k, z_k) be coordinates of k, m its mass
 - Let (x_{CM}, y_{CM}, z_{CM}) be coordinates of CM (node n)
 - Let TM be the total mass of node n
 - $r = ((x_k x_{CM})^2 + (y_k y_{CM})^2 + (z_k z_{CM})^2)^{1/2}$
 - G is gravitational constant
- $^{\circ}$ Assume that D / r < θ :

Force on $k \sim G * m * TM * \{x_{CM} - x_k, y_{CM} - y_k, z_{CM} - z_k\} / r^3$

° If D / $r \ge \theta$ calculate force on k for all children of n

Step 3 of BH: force calculation

```
... for each particle, traverse the QuadTree to compute the force on it
for k = 1 to N
  f(k) = TreeForce(k, root)
            ... compute force on particle k due to all particles inside root (except k)
endfor
function f = TreeForce(k, n)
  ... compute force on particle k due to all particles inside node n (except k)
  f = 0
  if n contains one particle (not k) ... evaluate directly
    f = force computed using standard formula between two particles
  else
     r = distance from particle k to CM of particles in n
     D = size of n
     if D/r < \theta ... ok to approximate by CM and TM
        compute f using formula from last slide
                 ... need to look inside node
     else
        for all children c of n
           f = f + TreeForce (k, c)
        end for
     end if
  end if
```


Step 3 of BH: Analysis

° Correctness: recursive accumulation of force from each subtree

 Each particle is accounted for exactly once, whether it is in a leaf or other node

° Complexity analysis

- Cost of TreeForce(k, root) = O(depth in QuadTree of leaf containing k)
- "Proof"; Example: Assume θ = 1
 - For each undivided node, see fig.,
 (except one containing k), D/r < 1 < θ
 - There are only 3 nodes to consider at each level of the QuadTree, see fig.
 - There is O(1) work per node
 - Cost = O(level of k)
- Total cost = $O(\Sigma_k \text{ level of } k) = O(N \log N)$
 - Strongly depends on θ

Sample Barnes-Hut Force calculation For particle in lower right corner Assuming theta > 1

Barnes-Hut: Summary

- Total cost = $O(\Sigma_k \text{ level of } k) = O(N \log N)$. Strongly depends on θ
- If θ becomes 0, total cost is $O(N^2)$, since all nodes have to be considered for any k
- If θ <1, in each level a limited number of nodes, independent of N, needs to be considered.

Sample Barnes – Hut Force calculation For particle in lower right corner Assuming theta > 1

Challenge: Parallelization of BH

Alternative approaches

- Barnes-Hut: Composite nodes contain only "first order" information about constituents
 - Total mass and the Centre-of-mass
 - Higher order information may be maintained as well
- ° Greengard and Rokhlin used multipole information, of the mass- or charge distribution in a clever way: Fast Multipole method
 - Use of trees and the divide-and-conquer idea the same way as in Barnes-Hut

Fast Multiple Method (FMM)

° "A fast algorithm for particle simulation", L. Greengard and V. Rokhlin, J. Comp. Phys. V. 73, 1987, many later papers

Differences from Barnes-Hut

- FMM computes the *potential* at every point, not just the force
- FMM uses more information in each box than the CM and TM, so it is both more accurate and more expensive
- In compensation, FMM accesses a fixed set of boxes at every level, independent of D/r
- BH uses fixed information (CM and TM) in every box, but # boxes increases with accuracy.
- FMM uses a fixed # boxes, but the amount of information per box increase with accuracy.

Parallelizing Hierarchical N-Body codes

- ° Barnes-Hut, FMM and related algorithms have similar computational structure:
 - 1) Build the QuadTree
 - 2) Traverse QuadTree from leaves to root and build outer expansions (just (TM,CM) for Barnes-Hut)
 - 3) Traverse QuadTree from root to leaves and build any inner expansions
 - 4) Traverse QuadTree to accumulate forces for each particle
- OuadTree changes dynamically when the particles move, so the tree has to be rebuilt (or adjusted) every time step.
- But: No doubly nested loop over all particles anywhere in the algorithm
- ° All 4 phases have to be parallelized efficiently.

Parallelizing Hierachical N-Body codes

° General idea: Domain decomposition

- Assign regions of space to each processor
- Regions may have different size or shape, to get a good load balance
 - Each region will have about N/p particles
- Each processor will store part of QuadTree containing all particles (=leaves) in its region, and their ancestors in QuadTree
 - Root of tree and some generations stored by all processors, nodes may also be shared
- Each processor will also store adjoining parts of QuadTree needed to compute forces for particles it owns
 - Subset of QuadTree needed by a processor called the Locally Essential Tree (LET)
- Given the LET, all force accumulations (step 4)) are done in parallel, without communication

Coarse grained parallelism

 Each domain solves its own N-body problem, but somehow has to take into account the effect of all the other particles as well; like the ghost-points in the Poisson problem. Here those particles generate some "background" potential (in FMM)

Parallelizing Tree building

- Observe of the complete tree. It scales no longer with #processors, since the tree building has the same time complexity as other 3 phases in the computation.
- Oomain decomposition: Assign regions of space to each processor. But how?

Load balancing

° Generic problem:

Assign P groups of particles to P processes, such that these processes can evaluate the forces on its particles as fast as possible

° Complications:

- Particles move, and groups may change dynamically
- Cost of regrouping may be considerable
- Optimal strategy depends on architecture as well. Performance analysis is required

° Exploit the idea of locality. But how?

Load Balancing Scheme 1

- ° Orthogonal Recursive Bisection (ORB) of space
 - Warren and Salmon, Supercomputing 92
- ° Recursively split region along axes into regions containing equal numbers of particles
 - Particles are grouped in rectangular regions; may be very elongated
 - No relation with tree

Orthogonal Recursive Bisection

Partitioning for 16 procs:

Load Balancing Scheme 2

° Idea: Partition QuadTree instead of space

- Estimate work for each node, call total work W
- Arrange nodes of QuadTree in some linear order (lots of choices)
- Assign contiguous groups of nodes with work W/p to processors

° Method called: Costzones or Hashed Tree

- J.P. Singh, PhD thesis, Stanford, 1993
- Warren and Salmon, Supercomputing 93

Load Balancing Scheme 2

- ° Make sure that neighboring leaves in the tree are also neighboring in space
 - Which of the 4 children of a node is "first" depends on the position of the node
 - Orientation changes: clockwise / counter-clockwise

Using costzones to layout a quadtree on 4 processors

Leaves are color coded by processor color

Implementing Costzones

Problem: Partitioning of QuadTree implies that the tree already exists

° But the tree building phase is a computational bottleneck

Not practical to first compute QuadTree, in order to compute Costzones, to then determine how to best build QuadTree in parallel

Implementing Costzones

° Random Sampling

- All processors own some particles,
- All processors send a small random sample of their particles to Processor 1
- Processor 1
 - builds small Quadtree serially,
 - determines its Costzones, and
 - broadcasts them to all processors
- Other processors build the part of Quadtree they are assigned by these Costzones

- All processors know all Costzones
- ° This is needed later to compute LET's

Locally Essential Trees (LETs)

- ° Warren and Salmon, 1992; Liu and Bhatt, 1994
- ° Definition:
 - A LET of a process is that part of the Tree that is necessary to compute the force on the particles that are owned by that process.

- ° Information about nodes near the root of the tree is present in all processes
- ° Information about nodes near some leaves of the tree that are all owned by a single process is needed in one or a few processes

Computing Locally Essential Trees (LETs)

- ° Warren and Salmon, 1992; Liu and Bhatt, 1994
- ° Every processor needs a subset of the whole QuadTree, called the LET, to compute the force on all particles it owns
- ° Shared Memory
 - Receiver driven protocol
 - Each processor reads part of QuadTree it needs from shared memory on demand, keeps it in cache
 - Drawback: cache memory appears to need to grow proportionally to P to remain scalable
- ° Distributed Memory
 - Sender driven protocol
 - Each processor decides which other processors need parts of its local subset of the Quadtree, and sends these subsets

Locally Essential Trees in Distributed Memory

° Barnes-Hut

Which nodes are needed?

- Let j and k be processes, n a node on process j
- Let D(n) be the side length of n
- Let r_k(n) be the shortest distance from n to any point owned by k
- If either
 - (1) $D(n)/r_k(n) < \theta$ and $D(parent(n))/r_k(parent(n)) \ge \theta$, or
 - (2) $D(n)/r_k(n) \ge \theta$

then node n is part of k's LET, and so process j should send n to k

- Condition (1) means (TM,CM) of n can be used on process k, but this is not true of any ancestor
- Condition (2) means that we need the ancestors of type (1) nodes too

Performance Results - 1

° 512 Proc Intel Delta

- Warren and Salmon, Supercomputing 92
- 8.8 10⁶ particles, uniformly distributed
- .1% to 1% RMS error

-	Decomposing domain	7 s
-	Building the OctTree	7 s
-	Tree Traversal	33 s
-	Communication during traversal	6 s
-	Force evaluation	54 s
-	Load imbalance	7 s

Total 114 seconds = 5.8 Gflops

Rises to 160 secs as particle distribution becomes non-uniform

Performance Results - 2

° Cray T3E

- Blackstone, 1999
- 10-4 RMS error
- General 80% efficient on up to 32 processors
- Example: 50K particles, both uniform and non-uniform
 - preliminary results; lots of tuning parameters to set

	Uniform		Non-uniform	
	1 proc	4 procs	1 proc	4 procs
Tree size	2745	2745	5729	5729
MaxDepth	4	4	10	10
Time(secs)	172.4	38.9	14.7	2.4
Speedup		4.4		6.1
Speedup vs O(n ²)		>50		>500

[°] Future work - portable, efficient code including all useful variants
Nbody

12/7/2021

Some recent Barnes-Hut parallel implementations

References	Hardware specifications	Programming platform	No. of particles simulated	Hardware-level performance evaluation
Zhang et al. [12]	IBM Power5 cluster with 118 nodes (16 cores and 64 GB memory for each node)	UPC	2 M	Х
Zhang et al. [18]	x86 Linux Infiniband cluster. Each node has two hex-core Intel Xeon 5650 CPUs running at 2.67 GHz	UPC, C++	1–4 M	X
Dinan et al. [19]	887-node IBM 1350 Cluster	UPC, MPI	150,000	Χ
Hamada et al. [20]	GPU cluster using 128 NVIDIA GeForce 8800GTS GPUs	C++, OpenMP	562 M	Х
Javed et al. [6]	StarBug cluster consisting of 8 dual Intel Xeon 2.8 GHz processors with 2 GB RAM	C, Java	12,000	Χ
Winkel et al. [14]	288 K cores of IBM Blue Gene/P system JUGENE	Fortran, C	2 billion	Χ

Source: Badri Munier, et al., On the parallelization and performance analysis of Barnes–Hut algorithm using Java parallel platforms, Spring-Nature Applied Sciences, 2020