SBML Model Report

Model name: "Bungay2006_FollicularFluid"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following three authors: Nick Juty¹, Michael Schubert² and Vijayalakshmi Chelliah³ at May twelveth 2011 at 12:59 a.m. and last time modified at May 28th 2014 at 1:25 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	54
events	0	constraints	0
reactions	45	function definitions	0
global parameters	75	unit definitions	1
rules	0	initial assignments	0

Model Notes

This model is from the article:

Modelling thrombin generation in human ovarian follicular fluid

Bungay Sharene D., Gentry Patricia A., Gentry Rodney D. <u>Bulletin of Mathematical Biology</u> Volume 68, Issue 8, 12 July 2006, Pages 2283-302 16838084,

Abstract:

¹EMBL-EBI, juty@ebi.ac.uk

²EBI, schubert@ebi.ac.uk

 $^{^3}$ EMBL-EBI, viji@ebi.ac.uk

A mathematical model is constructed to study thrombin production in human ovarian follicular fluid. The model results show that the amount of thrombin that can be produced in ovarian follicular fluid is much lower than that in blood plasma, failing to reach the level required for fibrin formation, and thereby supporting the hypothesis that in follicular fluid thrombin functions to initiate cellular activities via intracellular signalling receptors. It is also concluded that the absence of the amplification pathway to thrombin production in follicular fluid is a major factor in restricting the amount of thrombin that can be produced. Titration of the initial concentrations of the various reactants in the model lead to predictions for the amount of tissue factor and phospholipid that is required to maintain thrombin production in the follicle, as well as to the conclusion that tissue factor pathway inhibitor has little effect on the time that thrombin generation is sustained. Numerical experiments to determine the effect of factor V, which is at a much reduced level in follicular fluid compared to plasma, and thrombomodulin, illustrate the importance for further experimental work to determine values for several parameters that have yet to be reported in the literature.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name nano mole

Definition nmol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

 $\mbox{\bf Notes}\,$ Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment	Cell		3	1	litre	\checkmark	

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

Name Cell

4 Species

This model contains 54 species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
II_f	II_f	compartment	$nmol \cdot l^{-1}$		\Box
II_1	II_1	compartment	$\operatorname{nmol} \cdot 1^{-1}$		\Box
${\tt mIIa_f}$	$mIIa_f$	compartment	$nmol \cdot l^{-1}$		\Box
$mIIa_{-}l$	mIIa_l	compartment	$nmol \cdot l^{-1}$		
$\mathtt{V}_{-}\mathtt{f}$	V_f	compartment	$nmol \cdot l^{-1}$		
$V_{-}1$	V_l	compartment	$nmol \cdot l^{-1}$		
Va_f	Va_f	compartment	$n \mod \cdot 1^{-1}$		
Va_l	Va_l	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
${\tt VII_f}$	$VII_{-}f$	compartment	$\operatorname{nmol} \cdot 1^{-1}$		\Box
VII_l	VII_l	compartment	$nmol \cdot l^{-1}$		\Box
VIIa_f	VIIa_f	compartment	$nmol \cdot l^{-1}$		\Box
${\tt VIIa_l}$	VIIa_l	compartment	$nmol \cdot l^{-1}$		\Box
$X_{-}f$	X_f	compartment	$nmol \cdot l^{-1}$		\Box
X_1	X_1	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		\Box
Xa_f	$Xa_{-}f$	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
Xa_l	Xa_l	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
$\mathtt{APC_f}$	$APC_{-}f$	compartment	$nmol \cdot l^{-1}$		
APC_1	APC_1	compartment	$nmol \cdot l^{-1}$		
$PS_{-}f$	$PS_{-}f$	compartment	$nmol \cdot l^{-1}$		
PS_1	PS_1	compartment	$nmol \cdot l^{-1}$		
Vai_f	Vai_f	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
${\tt Vai_l}$	Vai_l	compartment	$nmol \cdot l^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
PC_f	PC_f	compartment	$nmol \cdot l^{-1}$		
PC_1	PC_l	compartment	$nmol \cdot l^{-1}$		
TF_1	TF_1	compartment	$nmol \cdot l^{-1}$		
TF_VIIa_l	TF_VIIa_l	compartment	$nmol \cdot l^{-1}$		
TF_VII_1	TF_VII_1	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
$TF_VIIa_X_1$	TF_VIIa_X_l	compartment	$nmol \cdot l^{-1}$		
TF_VIIa_Xa_l	TF_VIIa_Xa_l	compartment	$nmol \cdot l^{-1}$	\Box	\Box
TF_VII_Xa_l	TF_VII_Xa_l	compartment	$nmol \cdot l^{-1}$	\Box	
Xa_Va_l	Xa_Va_l	compartment	$nmol \cdot l^{-1}$	\Box	
V_Xa_l	V_Xa_l	compartment	$nmol \cdot l^{-1}$	\Box	\Box
IIa_f	IIa_f	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$	\Box	
V_IIa_l	V_IIa_l	compartment	$nmol \cdot l^{-1}$	\Box	\Box
Xa_Va_II_l	Xa_Va_II_l	compartment	$nmol \cdot l^{-1}$	\Box	\Box
Xa_Va_mIIa_l	Xa_Va_mIIa_l	compartment	$nmol \cdot l^{-1}$		
APC_PS_1	APC_PS_1	compartment	$nmol \cdot l^{-1}$		
TFPI_f	$TFPI_{-f}$	compartment	$nmol \cdot l^{-1}$		
$AT_{-}f$	AT_f	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
IIa_AT_f	IIa_AT_f	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
TFPI_Xa_l	TFPI_Xa_l	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
$TFPI_Xa_TF_VIIa_1$	TFPI_Xa_TF_VIIa_l	compartment	$nmol \cdot l^{-1}$		
APC_PS_Va_1	APC_PS_Va_1	compartment	$nmol \cdot l^{-1}$		
Xa_AT_f	Xa_AT_f	compartment	$nmol \cdot l^{-1}$		
VII_Xa_l	VII_Xa_l	compartment	$nmol \cdot l^{-1}$		
V_mIIa_l	V_mIIa_l	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
TM_l	TM_{-1}	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$	\Box	\Box
IIa_TM_l	IIa_TM_l	compartment	$nmol \cdot l^{-1}$		\Box
$IIa_TM_PC_1$	IIa_TM_PC_1	compartment	$nmol \cdot l^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi-
					tion
mIIa_AT_1	mIIa_AT_l	compartment	$nmol \cdot l^{-1}$		\Box
LIPID	LIPID	compartment	$nmol \cdot l^{-1}$		\Box
$alpha2M_1$	alpha2M_l	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		\Box
$alpha2M_IIa_l$	alpha2M_IIa_l	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		\Box
$alpha2M_Xa_1$	alpha2M_Xa_l	compartment	$nmol \cdot l^{-1}$		\Box

5 Parameters

This model contains 75 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
konII			0.004		✓
nva			100.000		\mathbf{Z}
koffII			1.000		\mathbf{Z}
konmIIa			0.050		$\overline{\mathbf{Z}}$
koffmIIa			0.475		\mathbf{Z}
konV			0.050		$\overline{\mathbf{Z}}$
koffV			0.145		$\overline{\mathbf{Z}}$
konVa			0.057		$\overline{\mathbf{Z}}$
koffVa			0.170		$\overline{\mathbf{Z}}$
konVII			0.050		$\overline{\mathbf{Z}}$
koffVII			0.660		$\overline{\mathbf{Z}}$
konVIIa			0.050		$\overline{\mathbf{Z}}$
koffVIIa			0.227		$ \overline{\mathbf{Z}} $
konX			0.010		$\overline{\mathbf{Z}}$
koffX			1.900		$ \overline{\mathbf{Z}} $
konXa			0.029		$ \overline{\mathbf{Z}} $
koffXa			3.300		\mathbf{Z}
konAPC			0.050		\mathbf{Z}
koffAPC			3.500		\square
konPS			0.050		\square
koffPS			0.200		\square
konVai			0.057		\square
koffVai			0.170		\square
konPC			0.050		
koffPC			11.500		
k1			0.500		
k2			0.005		
k3			0.005		
k4			0.005		
k8			0.100		
k9			32.500		
k10			1.500		
k11			0.050		\square
k12			44.800		
k13			15.200		$ oldsymbol{ oldsymbol{1}} $
k16			1.000		
k17			1.000		

Id	Name	SBO	Value	Unit	Constant
k21			0.100		Ø
k22			1.000		$ \overline{\mathscr{L}} $
k23			0.043		
k27			0.100		$ \overline{\mathscr{A}} $
k28			6.940		$ \overline{\mathscr{A}} $
k29			0.230		\checkmark
k33			0.100		
k34			100.000		\checkmark
k35			0.100		
k36			66.000		\checkmark
k37			13.000		
k38			15.000		
k39			0.050		\checkmark
k40			44.800		\checkmark
k41			15.200		$ \overline{\mathbf{Z}} $
k48			0.100		$ \checkmark $
k49			1.600		$\overline{\mathbf{Z}}$
k50			0.400		$\overline{\checkmark}$
k51			0.016		$\overline{\mathbf{Z}}$
k52			$3.3 \cdot 10^{-4}$		$ \overline{\mathbf{Z}} $
k53			0.010		$ \overline{\checkmark} $
k54			0.001		$\overline{\checkmark}$
k56			$2.3 \cdot 10^{-6}$		
k57			$6.83 \cdot 10^{-6}$		$\overline{\checkmark}$
k58			0.100		$\overline{\mathbf{Z}}$
k59			6.940		$\overline{\mathbf{Z}}$
k60			1.035		$\overline{\mathbf{Z}}$
k64			1.000		$ \overline{\mathscr{A}} $
k65			0.500		\checkmark
k66			0.100		
k67			6.400		$\overline{\mathbf{Z}}$
k68			3.600		$\overline{\mathbf{Z}}$
k69			$6.83 \cdot 10^{-6}$		$\overline{\checkmark}$
k70			0.100		Z
k71			0.500		\overline{Z}
k75			1.000		$\overline{\mathbf{Z}}$
k77			$2.5\cdot 10^{-6}$	i	\mathbf{Z}
k78			$1.4 \cdot 10^{-6}$		Z

6 Reactions

This model contains 45 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	LB1	Factor II lipid binding	$II_f + 100 LIPID \longrightarrow II_I$	
2	LB2	Factor mIIa lipid binding	$mIIa_f + 100 LIPID \longrightarrow mIIa_1$	
3	LB3	Factor V lipid binding	$V_{-}f + 100 LIPID \longrightarrow V_{-}1$	
4	LB4	Factor Va lipid binding	$Va_f + 100 LIPID \longrightarrow Va_1$	
5	LB5	Factor VII lipid binding	$VII_f + 100 LIPID \longrightarrow VII_1$	
6	LB6	Factor VIIa lipid binding	$VIIa_f + 100 LIPID \longrightarrow VIIa_1$	
7	LB11	Factor X lipid binding	$X_f + 100 LIPID \longrightarrow X_1$	
8	LB12	Factor Xa lipid binding	$Xa_{-}f + 100 LIPID \longrightarrow Xa_{-}1$	
9	LB13	APC lipid binding	$APC_1f + 100 LIPID \longrightarrow APC_1$	
10	LB14	PS lipid binding	$PS_f + 100 LIPID \longrightarrow PS_1$	
11	LB16	Factor Vai lipid binding	$Vai_f + 100 LIPID \longrightarrow Vai_1$	
12	LB17	PC lipid binding	$PC_1f + 100 LIPID \longrightarrow PC_1$	
13	R1	TF_VIIa binding	$VIIa_l + TF_l \longrightarrow TF_VIIa_l$	0000177
14	R2	TF_VII binding	$VII_1 + TF_1 \longrightarrow TF_VII_1$	0000177
15	R4	X_TF_VIIa complex formation	$X_1 + TF_VIIa_1 \longrightarrow TF_VIIa_X_1$	0000526
16	R4b	Factor X activation	$TF_VIIa_X_1 \longrightarrow TF_VIIa_Xa_1$	0000170
17	R4c	Factor Xa release	$TF_VIIa_Xa_1 \longrightarrow Xa_1 + TF_VIIa_1$	0000180
18	R5	Xa_TF_VII binding	$Xa_l + TF_VII_l \longrightarrow TF_VII_Xa_l$	0000177
19	R5b	TF_VII activation	$TF_VII_Xa_1 \longrightarrow Xa_1 + TF_VIIa_1$	0000170
20	R7	Va_Xa binding	$Va_1 + Xa_1 \longrightarrow Xa_Va_1$	0000177
21	R9	V_Xa binding	$Xa_1 + V_1 \longrightarrow V_Xa_1$	0000177
22	R9b	Factor V activation	$V_Xa_1 \longrightarrow Xa_1 + Va_1$	0000170
23	R11		$IIa_f + V_1 \longrightarrow V_IIa_1$	0000177

10	No	Id	Name	Reaction Equation	SBO
	24	R11b		$V_IIa_I \longrightarrow IIa_f + Va_I$	0000180
	25	R13		$II_1 + Xa_Va_1 \longrightarrow Xa_Va_II_1$	0000177
	26	R14		$mIIa_l + Xa_Va_l \longrightarrow Xa_Va_mIIa_l$	0000177
	27	R15		$Xa_Va_II_1 \longrightarrow Xa_Va_mIIa_1$	0000170
	28	R15b		$Xa_Va_mIIa_1 \longrightarrow IIa_f + Xa_Va_1 + 100 LIPID$	0000180
	29	R16		$Xa_1 + VII_1 \longrightarrow VII_Xa_1$	0000177
	30	R16b		$VII_Xa_1 \longrightarrow Xa_1 + VIIa_1$	0000180
	31	R19		$Va_1 + APC_PS_1 \longrightarrow APC_PS_Va_1$	0000177
	32	R19b		$APC_PS_Va_1 \longrightarrow Vai_1 + APC_PS_1$	0000180
	33	R20		$Xa_f + TFPI_f \longrightarrow TFPI_Xa_l$	0000177
Produced by SBML2l ^{ET} EX	34	R21		$TF_VIIa_1 + TFPI_Xa_1 \longrightarrow TFPI_Xa_TF_VIIa_1$	0000177
duc	35	R23		$AT_f + Xa_f \longrightarrow Xa_AT_f$	0000177
ed	36	R24		$AT_f + IIa_f \longrightarrow IIa_AT_f$	0000177
by	37	R25		$mIIa_l + V_l \longrightarrow V_mIIa_l$	0000177
<u>88</u>	38	R25b		$V_mIIa_1 \longrightarrow mIIa_1 + Va_1$	0000180
<u>≦</u>	39	R27		$TM_l + IIa_f \longrightarrow IIa_TM_l$	0000177
Ä	40	R28		$PC \perp I + IIa \perp TM \perp IIa \perp TM \perp PC \perp I$	0000177
×	41	R28b		$IIa_TM_PC_1 \longrightarrow APC_1 + IIa_TM_1$	0000180
	42	R29		$AT_f + mIIa_f \longrightarrow mIIa_AT_l$	0000177
	43	R30		$PS_1 + APC_1 \longrightarrow APC_PS_1$	0000177
	44	R33	R33	$alpha2M_l + IIa_f \longrightarrow alpha2M_IIa_l$	0000177
	45	R34	R34	$alpha2M_l + Xa_f \longrightarrow alpha2M_Xa_l$	0000177

6.1 Reaction LB1

This is an irreversible reaction of two reactants forming one product.

Name Factor II lipid binding

Reaction equation

$$II_{-}f + 100 LIPID \longrightarrow II_{-}1$$
 (1)

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
$II_{-}f$	II_f	
LIPID	LIPID	

Product

Table 7: Properties of each product.

Id	Name	SBO
$II_{-}1$	II_1	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}\left(\text{compartment}\right) \cdot \left(\frac{\text{konII} \cdot [\text{II_f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffII} \cdot [\text{II_I}]\right) \tag{2}$$

6.2 Reaction LB2

This is an irreversible reaction of two reactants forming one product.

Name Factor mIIa lipid binding

Reaction equation

$$mIIa_f + 100LIPID \longrightarrow mIIa_1$$
 (3)

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
mIIa_f		
LIPID	LIPID	

Product

Table 9: Properties of each product.

Id	Name	SBO
mIIa_l	mIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}\left(\text{compartment}\right) \cdot \left(\frac{\text{konmIIa} \cdot [\text{mIIa_f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffmIIa} \cdot [\text{mIIa_l}]\right) \tag{4}$$

6.3 Reaction LB3

This is an irreversible reaction of two reactants forming one product.

Name Factor V lipid binding

Reaction equation

$$V_{\perp}f + 100 LIPID \longrightarrow V_{\perp}$$
 (5)

Reactants

Table 10: Properties of each reactant.

Id	Name	SBO
$V_{-}f$	V_f	
LIPID	LIPID	

Product

Table 11: Properties of each product.

Derived unit contains undeclared units

$$v_{3} = vol\left(compartment\right) \cdot \left(\frac{konV \cdot [V_f] \cdot [LIPID]}{nva} - koffV \cdot [V_l]\right) \tag{6}$$

6.4 Reaction LB4

This is an irreversible reaction of two reactants forming one product.

Name Factor Va lipid binding

Reaction equation

$$Va_{-}f + 100 LIPID \longrightarrow Va_{-}l$$
 (7)

Reactants

Table 12: Properties of each reactant.

Id	Name	SBO
Va_f	Va_f	
LIPID	LIPID	

Product

Table 13: Properties of each product.

Id	Name	SBO
Va_l	Va_l	

Kinetic Law

$$v_{4} = \text{vol}\left(\text{compartment}\right) \cdot \left(\frac{\text{konVa} \cdot [\text{Va_f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffVa} \cdot [\text{Va_l}]\right)$$
(8)

6.5 Reaction LB5

This is an irreversible reaction of two reactants forming one product.

Name Factor VII lipid binding

Reaction equation

$$VII_{-}f + 100LIPID \longrightarrow VII_{-}1$$
 (9)

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
VII_f	VII_f	
LIPID	LIPID	

Product

Table 15: Properties of each product.

Id	Name	SBO
VII_1	VII_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{5} = vol\left(compartment\right) \cdot \left(\frac{konVII \cdot [VII_f] \cdot [LIPID]}{nva} - koffVII \cdot [VII_I]\right)$$
(10)

6.6 Reaction LB6

This is an irreversible reaction of two reactants forming one product.

Name Factor VIIa lipid binding

Reaction equation

$$VIIa_f + 100LIPID \longrightarrow VIIa_1$$
 (11)

Reactants

Table 16: Properties of each reactant.

Id	Name	SBO
VIIa_f	VIIa_f	
LIPID	LIPID	

Product

Table 17: Properties of each product.

Id	Name	SBO
VIIa_l	VIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}\left(\text{compartment}\right) \cdot \left(\frac{\text{konVIIa} \cdot [\text{VIIa_f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffVIIa} \cdot [\text{VIIa_l}]\right)$$
(12)

6.7 Reaction LB11

This is an irreversible reaction of two reactants forming one product.

Name Factor X lipid binding

Reaction equation

$$X_f + 100LIPID \longrightarrow X_J$$
 (13)

Reactants

Table 18: Properties of each reactant.

Id	Name	SBO
$X_{-}f$	X_f	
LIPID	LIPID	

Product

Table 19: Properties of each product.

Id	Name	SBO
X_1	X_1	

Derived unit contains undeclared units

$$v_7 = vol\left(compartment\right) \cdot \left(\frac{konX \cdot [X_f] \cdot [LIPID]}{nva} - koffX \cdot [X_l]\right) \tag{14}$$

6.8 Reaction LB12

This is an irreversible reaction of two reactants forming one product.

Name Factor Xa lipid binding

Reaction equation

$$Xa_f + 100LIPID \longrightarrow Xa_1$$
 (15)

Reactants

Table 20: Properties of each reactant.

Id	Name	SBO
$Xa_{-}f$	$Xa_{-}f$	
LIPID	LIPID	

Product

Table 21: Properties of each product.

Id	Name	SBO
Xa_l	Xa_l	

Kinetic Law

$$\nu_8 = \frac{konXa \cdot [Xa_f] \cdot [LIPID]}{nva} - koffXa \cdot [Xa_l]$$
 (16)

6.9 Reaction LB13

This is an irreversible reaction of two reactants forming one product.

Name APC lipid binding

Reaction equation

$$APC_{-}f + 100LIPID \longrightarrow APC_{-}l$$
 (17)

Reactants

Table 22: Properties of each reactant.

Id	Name	SBO
APC_f	APC_f	
LIPID	LIPID	

Product

Table 23: Properties of each product.

Id	Name	SBO
APC_1	APC_1	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = vol (compartment) \cdot \left(\frac{konAPC \cdot [APC_f] \cdot [LIPID]}{nva} - koffAPC \cdot [APC_l] \right)$$
 (18)

6.10 Reaction LB14

This is an irreversible reaction of two reactants forming one product.

Name PS lipid binding

Reaction equation

$$PS_{-}f + 100LIPID \longrightarrow PS_{-}I$$
 (19)

Reactants

Table 24: Properties of each reactant.

Id	Name	SBO
PS_f	PS_f	
LIPID	LIPID	

Product

Table 25: Properties of each product.

Id	Name	SBO
PS_1	PS_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = vol\left(compartment\right) \cdot \left(\frac{konPS \cdot [PS_f] \cdot [LIPID]}{nva} - koffPS \cdot [PS_l]\right)$$
(20)

6.11 Reaction LB16

This is an irreversible reaction of two reactants forming one product.

Name Factor Vai lipid binding

Reaction equation

$$Vai_f + 100 LIPID \longrightarrow Vai_1$$
 (21)

Reactants

Table 26: Properties of each reactant.

Id	Name	SBO
Vai_f	Vai_f	
LIPID	LIPID	

Product

Table 27: Properties of each product.

Id	Name	SBO
Vai_l	Vai_l	

Derived unit contains undeclared units

$$v_{11} = \text{vol}\left(\text{compartment}\right) \cdot \left(\frac{\text{konVai} \cdot [\text{Vai_f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffVai} \cdot [\text{Vai_l}]\right)$$
(22)

6.12 Reaction LB17

This is an irreversible reaction of two reactants forming one product.

Name PC lipid binding

Reaction equation

$$PC_1f + 100LIPID \longrightarrow PC_1$$
 (23)

Reactants

Table 28: Properties of each reactant.

Id	Name	SBO
$PC_{-}f$	PC_f	
LIPID	LIPID	

Product

Table 29: Properties of each product.

Id	Name	SBO
PC_1	PC_1	

Kinetic Law

$$v_{12} = \text{vol}\left(\text{compartment}\right) \cdot \left(\frac{\text{konPC} \cdot [\text{PC_f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffPC} \cdot [\text{PC_I}]\right)$$
(24)

6.13 Reaction R1

This is an irreversible reaction of two reactants forming one product.

Name TF_VIIa binding

SBO:0000177 non-covalent binding

Reaction equation

$$VIIa_1 + TF_1 \longrightarrow TF_VIIa_1$$
 (25)

Reactants

Table 30: Properties of each reactant.

Id	Name	SBO
VIIa_l	VIIa_l	
TF_1	TF_l	

Product

Table 31: Properties of each product.

Id	Name	SBO
TF_VIIa_l	TF_VIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol} \left(\text{compartment} \right) \cdot \left(\text{k1} \cdot [\text{TF} \bot] \cdot [\text{VIIa} \bot] - \text{k2} \cdot [\text{TF} _\text{VIIa} \bot] \right)$$
 (26)

6.14 Reaction R2

This is an irreversible reaction of two reactants forming one product.

Name TF_VII binding

SBO:0000177 non-covalent binding

Reaction equation

$$VII_1 + TF_1 \longrightarrow TF_VII_1 \tag{27}$$

Reactants

Table 32: Properties of each reactant.

Id	Name	SBO
VII_1	VII_l	
TF_l	TF_1	

Product

Table 33: Properties of each product.

Id	Name	SBO
TF_VII_1	TF_VII_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k3} \cdot [\text{TF_l}] \cdot [\text{VII_l}] - \text{k4} \cdot [\text{TF_VII_l}]\right) \tag{28}$$

6.15 Reaction R4

This is an irreversible reaction of two reactants forming one product.

Name X_TF_VIIa complex formation

SBO:0000526 protein complex formation

Reaction equation

$$X_{-}l + TF_{-}VIIa_{-}l \longrightarrow TF_{-}VIIa_{-}X_{-}l$$
 (29)

Reactants

Table 34: Properties of each reactant.

Id	Name	SBO
X_1	$X \perp 1$	
$TF_{-}VIIa_{-}l$	TF_VIIa_1	

Product

Table 35: Properties of each product.

Tuble 33. Troperties of each producti		
Id	Name	SBO
TF_VIIa_X_l	TF_VIIa_X_l	

Derived unit contains undeclared units

$$v_{15} = \text{vol} \left(\text{compartment} \right) \cdot \left(\text{k8} \cdot [\text{TF_VIIa_l}] \cdot [\text{X_l}] - \text{k9} \cdot [\text{TF_VIIa_X_l}] \right)$$
 (30)

6.16 Reaction R4b

This is an irreversible reaction of one reactant forming one product.

Name Factor X activation

SBO:0000170 stimulation

Reaction equation

$$TF_{-}VIIa_{-}X_{-}1 \longrightarrow TF_{-}VIIa_{-}Xa_{-}1$$
 (31)

Reactant

Table 36: Properties of each reactant.

Id	Name	SBO
TF_VIIa_X_l	TF_VIIa_X_l	

Product

Table 37: Properties of each product.

Id	Name	SBO
TF_VIIa_Xa_l	TF_VIIa_Xa_l	

Kinetic Law

$$v_{16} = \text{vol}(\text{compartment}) \cdot \text{k10} \cdot [\text{TF_VIIa_X_l}]$$
 (32)

6.17 Reaction R4c

This is an irreversible reaction of one reactant forming two products.

Name Factor Xa release

SBO:0000180 dissociation

Reaction equation

$$TF_{-}VIIa_{-}Xa_{-}I \longrightarrow Xa_{-}I + TF_{-}VIIa_{-}I$$
 (33)

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
TF_VIIa_Xa_l	TF_VIIa_Xa_l	

Products

Table 39: Properties of each product.

Id	Name	SBO
Xa_l	Xa_l	
$TF_{-}VIIa_{-}l$	$TF_{-}VIIa_{-}l$	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol} (\text{compartment}) \cdot \text{k75} \cdot [\text{TF_VIIa_Xa_l}]$$
 (34)

6.18 Reaction R5

This is an irreversible reaction of two reactants forming one product.

Name Xa_TF_VII binding

SBO:0000177 non-covalent binding

Reaction equation

$$Xa_1 + TF_VII_1 \longrightarrow TF_VII_Xa_1$$
 (35)

Reactants

Table 40: Properties of each reactant.

Id	Name	SBO
Xa_l	Xa_l	
TF_VII_1	TF_VII_1	

Product

Table 41: Properties of each product.

Id	Name	SBO
TF_VII_Xa_l	TF_VII_Xa_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k11} \cdot \left[\text{TF-VII_l}\right] \cdot \left[\text{Xa_l}\right] - \text{k12} \cdot \left[\text{TF-VII_Xa_l}\right]\right) \tag{36}$$

6.19 Reaction R5b

This is an irreversible reaction of one reactant forming two products.

Name TF_VII activation

SBO:0000170 stimulation

Reaction equation

$$TF_VII_Xa_1 \longrightarrow Xa_1 + TF_VIIa_1$$
 (37)

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
TF_VII_Xa_l	TF_VII_Xa_l	

Products

Table 43: Properties of each product.

Id	Name	SBO
Xa_l	Xa_l	
$TF_{-}VIIa_{-}l$	TF_VIIa_1	

Derived unit contains undeclared units

$$v_{19} = \text{vol} (\text{compartment}) \cdot \text{k13} \cdot [\text{TF_VII_Xa_l}]$$
 (38)

6.20 Reaction R7

This is an irreversible reaction of two reactants forming one product.

Name Va_Xa binding

SBO:0000177 non-covalent binding

Reaction equation

$$Va_{-}1 + Xa_{-}1 \longrightarrow Xa_{-}Va_{-}1 \tag{39}$$

Reactants

Table 44: Properties of each reactant.

Id	Name	SBO
Va_l	Va_l	
$\mathtt{Xa_l}$	Xa_{-1}	

Product

Table 45: Properties of each product.

Id	Name	SBO
Xa_Va_l	Xa_Va_l	

Kinetic Law

$$v_{20} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k16} \cdot \left[\text{Xa_l}\right] \cdot \left[\text{Va_l}\right] - \text{k17} \cdot \left[\text{Xa_Va_l}\right]\right) \tag{40}$$

6.21 Reaction R9

This is an irreversible reaction of two reactants forming one product.

Name V_Xa binding

SBO:0000177 non-covalent binding

Reaction equation

$$Xa_1 + V_1 \longrightarrow V_Xa_1$$
 (41)

Reactants

Table 46: Properties of each reactant.

Id	Name	SBO
Xa_l	Xa_l	
$V_{-}1$	V_{-1}	

Product

Table 47: Properties of each product.

Id	Name	SBO
V_Xa_l	V_Xa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k21} \cdot \left[\text{V} \bot\right] \cdot \left[\text{Xa} \bot\right] - \text{k22} \cdot \left[\text{V} \bot \text{Xa} \bot\right]\right) \tag{42}$$

6.22 Reaction R9b

This is an irreversible reaction of one reactant forming two products.

Name Factor V activation

SBO:0000170 stimulation

Reaction equation

$$V_Xa_1 \longrightarrow Xa_1 + Va_1 \tag{43}$$

Reactant

Table 48: Properties of each reactant.

Id	Name	SBO
V_Xa_l	V_Xa_l	

Products

Table 49: Properties of each product.

Id	Name	SBO
Xa_l	Xa_l	
$Va_{-}l$	Va_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{vol} (\text{compartment}) \cdot \text{k23} \cdot [\text{V}_{\text{Xa}}]$$
 (44)

6.23 Reaction R11

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$IIa_f + V_I \longrightarrow V_IIa_I$$
 (45)

Reactants

Table 50: Properties of each reactant.

Id	Name	SBO
IIa_f	IIa_f	
$V_{-}l$	V_1	

Product

Table 51: Properties of each product.

Id	Name	SBO
V_IIa_l	V_IIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol} \left(\text{compartment} \right) \cdot \left(\text{k27} \cdot [\text{V} \bot] \cdot [\text{IIa} \bot f] - \text{k28} \cdot [\text{V} \bot \text{IIa} \bot f] \right) \tag{46}$$

6.24 Reaction R11b

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

$$V_{IIa_{I}} \longrightarrow IIa_{f} + Va_{I}$$
 (47)

Reactant

Table 52: Properties of each reactant.

Id	Name	SBO
V_IIa_l	V_IIa_l	

Products

Table 53: Properties of each product.

Id	Name	SBO
IIa_f	IIa_f	
${\tt Va_l}$	Va_1	

Kinetic Law

$$v_{24} = \text{vol} (\text{compartment}) \cdot \text{k29} \cdot [\text{V_IIa_I}]$$
 (48)

6.25 Reaction R13

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$II_I + Xa_Va_I \longrightarrow Xa_Va_II_I$$
 (49)

Reactants

Table 54: Properties of each reactant.

Id	Name	SBO
II_1	II_1	
Xa_Va_1	Xa_Va_1	

Product

Table 55: Properties of each product.

Id	Name	SBO
Xa_Va_II_l	Xa_Va_II_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{vol}(\text{compartment}) \cdot (\text{k33} \cdot [\text{Xa_Va_l}] \cdot [\text{II_l}] - \text{k34} \cdot [\text{Xa_Va_II_l}])$$
 (50)

6.26 Reaction R14

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$mIIa_l + Xa_Va_l \longrightarrow Xa_Va_mIIa_l$$
 (51)

Reactants

Table 56: Properties of each reactant.

Id	Name	SBO
mIIa_l	mIIa_l	
Xa_Va_1	Xa_Va_l	

Product

Table 57: Properties of each product.

Id	Name	SBO
Xa_Va_mIIa_l	Xa_Va_mIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{vol} \left(\text{compartment} \right) \cdot \left(\text{k35} \cdot \left[\text{Xa_Va_I} \right] \cdot \left[\text{mIIa_I} \right] - \text{k36} \cdot \left[\text{Xa_Va_mIIa_I} \right] \right)$$
 (52)

6.27 Reaction R15

This is an irreversible reaction of one reactant forming one product.

SBO:0000170 stimulation

Reaction equation

$$Xa_Va_II_I \longrightarrow Xa_Va_mIIa_I$$
 (53)

Reactant

Table 58: Properties of each reactant.

Id	Name	SBO
Xa_Va_II_l	Xa_Va_II_1	

Product

Table 59: Properties of each product.

Id	Name	SBO
Xa_Va_mIIa_l	Xa_Va_mIIa_l	

Id Name SBO

Derived unit contains undeclared units

$$v_{27} = \text{vol} (\text{compartment}) \cdot \text{k37} \cdot [\text{Xa_Va_II_I}]$$
 (54)

6.28 Reaction R15b

This is an irreversible reaction of one reactant forming three products.

SBO:0000180 dissociation

Reaction equation

$$Xa_Va_mIIa_1 \longrightarrow IIa_f + Xa_Va_1 + 100LIPID$$
 (55)

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
Xa_Va_mIIa_l	Xa_Va_mIIa_l	

Products

Table 61: Properties of each product.

Id	Name	SBO
$IIa_{-}f$	IIa_f	
Xa_Va_1	$Xa_{-}Va_{-}l$	
LIPID	LIPID	

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = \text{vol} (\text{compartment}) \cdot \text{k38} \cdot [\text{Xa_Va_mIIa_l}]$$
 (56)

6.29 Reaction R16

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$Xa_1 + VII_1 \longrightarrow VII_Xa_1$$
 (57)

Reactants

Table 62: Properties of each reactant.

Id	Name	SBO
Xa_l	Xa_l	
$\mathtt{VII}_{-}\mathtt{l}$	VII_1	

Product

Table 63: Properties of each product.

Id	Name	SBO
VII_Xa_l	VII_Xa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k39} \cdot \left[\text{VII_l}\right] \cdot \left[\text{Xa_l}\right] - \text{k40} \cdot \left[\text{VII_Xa_l}\right]\right) \tag{58}$$

6.30 Reaction R16b

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

$$VII_Xa_I \longrightarrow Xa_I + VIIa_I$$
 (59)

Reactant

Table 64: Properties of each reactant.

Id	Name	SBO
VII_Xa_l	VII_Xa_l	

Products

Table 65: Properties of each product.

Id	Name	SBO
Xa_l	Xa_l	
${\tt VIIa_l}$	VIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = \text{vol} (\text{compartment}) \cdot \text{k41} \cdot [\text{VII}_\text{Xa_I}]$$
 (60)

6.31 Reaction R19

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$Va_1 + APC_PS_1 \longrightarrow APC_PS_Va_1$$
 (61)

Reactants

Table 66: Properties of each reactant.

Id	Name	SBO
Va_l	Va_1	
APC_PS_1	APC_PS_1	

Product

Table 67: Properties of each product.

Id	Name	SBO
APC_PS_Va_1	APC_PS_Va_1	

Kinetic Law

$$v_{31} = \text{vol} (\text{compartment}) \cdot (\text{k48} \cdot [\text{APC_PS_l}] \cdot [\text{Va_l}] - \text{k49} \cdot [\text{APC_PS_Va_l}])$$
 (62)

6.32 Reaction R19b

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

$$APC_PS_Va_1 \longrightarrow Vai_1 + APC_PS_1$$
 (63)

Reactant

Table 68: Properties of each reactant.

Id	Name	SBO
APC_PS_Va_1	APC_PS_Va_1	

Products

Table 69: Properties of each product.

Id	Name	SBO
Vai_l	Vai_l	
APC_PS_1	APC_PS_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = \text{vol}(\text{compartment}) \cdot \text{k50} \cdot [\text{APC_PS_Va_l}]$$
 (64)

6.33 Reaction R20

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$Xa_f + TFPI_f \longrightarrow TFPI_Xa_1$$
 (65)

Reactants

Table 70: Properties of each reactant.

Id	Name	SBO
Xa_f	Xa_f	
$TFPI_f$	TFPI_f	

Product

Table 71: Properties of each product.

Id	Name	SBO
TFPI_Xa_l	TFPI_Xa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \text{vol} \left(\text{compartment} \right) \cdot \left(\text{k51} \cdot [\text{TFPI}_\text{f}] \cdot [\text{Xa}_\text{f}] - \text{k52} \cdot [\text{TFPI}_\text{Xa}_\text{l}] \right)$$
 (66)

6.34 Reaction R21

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$TF_VIIa_1 + TFPI_Xa_1 \longrightarrow TFPI_Xa_TF_VIIa_1$$
 (67)

Reactants

Table 72: Properties of each reactant.

Id	Name	SBO
TF_VIIa_l	TF_VIIa_l	
TFPI_Xa_1	TFPI_Xa_l	

Product

Table 73: Properties of each product.

Id	Name	SBO
TFPI_Xa_TF_VIIa_1	TFPI_Xa_TF_VIIa_l	

Derived unit contains undeclared units

$$v_{34} = \text{vol} (\text{compartment}) \cdot (\text{k53} \cdot [\text{TFPI_Xa_I}] \cdot [\text{TF_VIIa_I}] - \text{k54} \cdot [\text{TFPI_Xa_TF_VIIa_I}])$$
 (68)

6.35 Reaction R23

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$AT_f + Xa_f \longrightarrow Xa_AT_f$$
 (69)

Reactants

Table 74: Properties of each reactant.

Id	Name	SBO
AT_f	AT_f	
$Xa_{-}f$	$Xa_{-}f$	

Product

Table 75: Properties of each product.

Id	Name	SBO
Xa_AT_f	Xa_AT_f	

Kinetic Law

$$v_{35} = \text{vol} (\text{compartment}) \cdot \text{k56} \cdot [\text{Xa_f}] \cdot [\text{AT_f}]$$
 (70)

6.36 Reaction R24

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$AT_f + IIa_f \longrightarrow IIa_AT_f$$
 (71)

Reactants

Table 76: Properties of each reactant.

Id	Name	SBO
$AT_{-}f$	AT_f	
IIa_f	IIa_f	

Product

Table 77: Properties of each product.

Id	Name	SBO
${\tt IIa_AT_f}$	IIa_AT_f	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{vol} (\text{compartment}) \cdot \text{k57} \cdot [\text{IIa_f}] \cdot [\text{AT_f}]$$
 (72)

6.37 Reaction R25

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$mIIa_1 + V_1 \longrightarrow V_mIIa_1 \tag{73}$$

Reactants

Table 78: Properties of each reactant.

Id	Name	SBO
mIIa_l V_l	mIIa_l V_l	

Product

Table 79: Properties of each product.

Id	Name	SBO
V_mIIa_l	V_mIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = \text{vol} \left(\text{compartment} \right) \cdot \left(\text{k58} \cdot [\text{V}_\text{I}] \cdot [\text{mIIa}_\text{I}] - \text{k59} \cdot [\text{V}_\text{mIIa}_\text{I}] \right)$$
 (74)

6.38 Reaction R25b

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

$$V_{m}IIa_{l} \longrightarrow mIIa_{l} + Va_{l}$$
 (75)

Reactant

Table 80: Properties of each reactant.

Id	Name	SBO
V_mIIa_l	V_mIIa_l	

Products

Table 81: Properties of each product.

Id	Name	SBO
mIIa_l	mIIa_l	

Id	Name	SBO
Va_l	Va_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = \text{vol} (\text{compartment}) \cdot \text{k60} \cdot [\text{V}_{\text{mIIa}}]$$
 (76)

6.39 Reaction R27

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$TM_{-}l + IIa_{-}f \longrightarrow IIa_{-}TM_{-}l$$
 (77)

Reactants

Table 82: Properties of each reactant.

Id	Name	SBO
TM_1	TM_{-1}	
$IIa_{-}f$	IIa_f	

Product

Table 83: Properties of each product.

Id	Name	SBO
IIa_TM_l	IIa_TM_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{vol} \left(\text{compartment} \right) \cdot \left(\text{k64} \cdot \left[\text{IIa_f} \right] \cdot \left[\text{TM_I} \right] - \text{k65} \cdot \left[\text{IIa_TM_I} \right] \right)$$
 (78)

6.40 Reaction R28

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$PC_{-}l + IIa_{-}TM_{-}l \longrightarrow IIa_{-}TM_{-}PC_{-}l$$
 (79)

Reactants

Table 84: Properties of each reactant.

Id	Name	SBO
PC_1	PC_1	
IIa_TM_1	IIa_TM_1	

Product

Table 85: Properties of each product.

Id	Name	SBO
IIa_TM_PC_l	IIa_TM_PC_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k66} \cdot \left[\text{IIa_TM_I}\right] \cdot \left[\text{PC_I}\right] - \text{k67} \cdot \left[\text{IIa_TM_PC_I}\right]\right) \tag{80}$$

6.41 Reaction R28b

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

$$IIa_TM_PC_I \longrightarrow APC_I + IIa_TM_I$$
 (81)

Reactant

Table 86: Properties of each reactant.

Id	Name	SBO
IIa_TM_PC_1	IIa_TM_PC_l	

Products

Table 87: Properties of each product.

Id	Name	SBO
APC_1	APC_1	
IIa_TM_1	IIa_TM_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{41} = \text{vol}\left(\text{compartment}\right) \cdot \text{k68} \cdot \left[\text{IIa_TM_PC_l}\right]$$
 (82)

6.42 Reaction R29

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$AT_f + mIIa_f \longrightarrow mIIa_AT_1$$
 (83)

Reactants

Table 88: Properties of each reactant.

Id	Name	SBO
AT_f	AT_f	
${\tt mIIa_f}$	mIIa_f	

Product

Table 89: Properties of each product.

Id	Name	SBO
mIIa_AT_l	mIIa_AT_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{42} = \text{vol} (\text{compartment}) \cdot \text{k69} \cdot [\text{mIIa_f}] \cdot [\text{AT_f}]$$
 (84)

6.43 Reaction R30

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$PS_1 + APC_1 \longrightarrow APC_PS_1$$
 (85)

Reactants

Table 90: Properties of each reactant.

Id	Name	SBO
PS_1	PS_1	
APC_1	APC_1	

Product

Table 91: Properties of each product.

Id	Name	SBO
APC_PS_1	APC_PS_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{43} = \text{vol} \left(\text{compartment} \right) \cdot \left(\text{k70} \cdot [\text{APC_I}] \cdot [\text{PS_I}] - \text{k71} \cdot [\text{APC_PS_I}] \right)$$
 (86)

6.44 Reaction R33

This is an irreversible reaction of two reactants forming one product.

Name R33

SBO:0000177 non-covalent binding

Reaction equation

$$alpha2M_l + IIa_f \longrightarrow alpha2M_IIa_l$$
 (87)

Reactants

Table 92: Properties of each reactant.

Id	Name	SBO
alpha2M_l IIa_f	alpha2M_l IIa_f	

Product

Table 93: Properties of each product.

Id	Name	SBO
alpha2M_IIa_l	alpha2M_IIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{44} = \text{vol} (\text{compartment}) \cdot \text{k77} \cdot [\text{alpha2M_l}] \cdot [\text{IIa_f}]$$
 (88)

6.45 Reaction R34

This is an irreversible reaction of two reactants forming one product.

Name R34

SBO:0000177 non-covalent binding

Reaction equation

$$alpha2M_l + Xa_f \longrightarrow alpha2M_Xa_l \tag{89}$$

Reactants

Table 94: Properties of each reactant.

Id	Name	SBO
alpha2M_l Xa_f	alpha2M_l Xa_f	

Product

Table 95: Properties of each product.

racie 32. Freperites of each producti		
Id	Name	SBO
alpha2M_Xa_l	alpha2M_Xa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = \text{vol} (\text{compartment}) \cdot \text{k78} \cdot [\text{alpha2M_l}] \cdot [\text{Xa_f}]$$
 (90)

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

7.1 Species II_f

Name II_f

Initial concentration $1174.5 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB1).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{II}_{-} f = -v_1 \tag{91}$$

7.2 Species II_1

Name II_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R13 and as a product in LB1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{II} = v_1 - v_{25} \tag{92}$$

7.3 Species mIIa_f

Name mIIa_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in LB2, R29).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{mIIa.f} = -|v_2| - |v_{42}| \tag{93}$$

7.4 Species mIIa_1

Name mIIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R14, R25 and as a product in LB2, R25b).

$$\frac{d}{dt}mIIa_I = |v_2| + |v_{38}| - |v_{26}| - |v_{37}| \tag{94}$$

7.5 Species V_f

Name $V_{-}f$

Initial concentration $1.75 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{V}_{-}\mathbf{f} = -v_{3} \tag{95}$$

7.6 Species V_1

Name $V \perp$

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in R9, R11, R25 and as a product in LB3).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{V} \cdot \mathbf{l} = |v_3| - |v_{21}| - |v_{23}| - |v_{37}| \tag{96}$$

7.7 Species Va_f

Name Va_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB4).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Va.f} = -v_4 \tag{97}$$

7.8 Species Va_1

Name Va_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R7, R19 and as a product in LB4, R9b, R11b, R25b).

$$\frac{\mathrm{d}}{\mathrm{d}t} Va_{\perp} l = |v_4| + |v_{22}| + |v_{24}| + |v_{38}| - |v_{20}| - |v_{31}|$$
(98)

7.9 Species VII_f

Name VII_f

Initial concentration $7.6 \text{ } nmol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VII}_{\mathbf{f}} = -v_{5} \tag{99}$$

7.10 Species VII_1

Name VII_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R2, R16 and as a product in LB5).

$$\frac{d}{dt}VII_{\perp}I = |v_5| - |v_{14}| - |v_{29}| \tag{100}$$

7.11 Species VIIa_f

Name VIIa_f

Initial concentration $0.1 \text{ nmol} \cdot 1^{-1}$

This species takes part in one reaction (as a reactant in LB6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VIIa}_{-}\mathrm{f} = -v_{6} \tag{101}$$

7.12 Species VIIa_1

Name VIIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R1 and as a product in LB6, R16b).

$$\frac{d}{dt}VIIa_{-}l = |v_6| + |v_{30}| - |v_{13}|$$
 (102)

7.13 Species X_f

Name X_f

Initial concentration 142.85 nmol·l⁻¹

This species takes part in one reaction (as a reactant in LB11).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{X}_{-}\mathbf{f} = -v_7 \tag{103}$$

7.14 Species X_1

Name X1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R4 and as a product in LB11).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{X} \cdot \mathbf{l} = |v_7| - |v_{15}| \tag{104}$$

7.15 Species Xa_f

Name Xa_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in LB12, R20, R23, R34).

$$\frac{d}{dt}Xa_{-}f = -v_{8} - v_{33} - v_{35} - v_{45}$$
 (105)

7.16 Species Xa_1

Name Xa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in nine reactions (as a reactant in R5, R7, R9, R16 and as a product in LB12, R4c, R5b, R9b, R16b).

$$\frac{d}{dt}Xa_{\perp}l = |v_8| + |v_{17}| + |v_{19}| + |v_{22}| + |v_{30}| - |v_{18}| - |v_{20}| - |v_{21}| - |v_{29}|$$
(106)

7.17 Species APC_f

Name APC_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB13).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{APC}_{\cdot}\mathbf{f} = -v_{9} \tag{107}$$

7.18 Species APC_1

Name APC_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R30 and as a product in LB13, R28b).

$$\frac{d}{dt}APC.1 = v_9 + |v_{41}| - |v_{43}| \tag{108}$$

7.19 Species PS_f

Name PS_f

Initial concentration $116 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB14).

$$\frac{\mathrm{d}}{\mathrm{d}t} PS_{\cdot} f = -v_{10} \tag{109}$$

7.20 Species PS_1

Name PS_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R30 and as a product in LB14).

$$\frac{d}{dt}PS_{-1} = v_{10} - v_{43} \tag{110}$$

7.21 Species Vai_f

Name Vai_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB16).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Vai}_{\cdot} \mathbf{f} = -v_{11} \tag{111}$$

7.22 Species Vai_1

Name Vai_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a product in LB16, R19b).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Vai} \, \mathbf{l} = |v_{11}| + |v_{32}| \tag{112}$$

7.23 Species PC_f

Name PC_f

Initial concentration 66 nmol·1⁻¹

This species takes part in one reaction (as a reactant in LB17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PC}_{-}\mathrm{f} = -v_{12} \tag{113}$$

7.24 Species PC_1

Name PC_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R28 and as a product in LB17).

$$\frac{d}{dt}PC = v_{12} - v_{40} \tag{114}$$

7.25 Species TF_1

Name TF_1

Initial concentration $0.0182 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R1, R2).

$$\frac{d}{dt}TF_{-}l = -v_{13} - v_{14} \tag{115}$$

7.26 Species TF_VIIa_1

Name TF_VIIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R4, R21 and as a product in R1, R4c, R5b).

$$\frac{d}{dt}TF_{-}VIIa_{-}l = v_{13} + v_{17} + v_{19} - v_{15} - v_{34}$$
 (116)

7.27 Species TF_VII_1

Name TF_VII_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R5 and as a product in R2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TF}_{-}\mathrm{VII}_{-}\mathrm{I} = \boxed{v_{14} - v_{18}} \tag{117}$$

7.28 Species TF_VIIa_X_1

Name TF_VIIa_X_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R4b and as a product in R4).

$$\frac{d}{dt}TF_{-}VIIa_{-}X_{-}1 = v_{15} - v_{16}$$
 (118)

7.29 Species TF_VIIa_Xa_1

Name TF_VIIa_Xa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R4c and as a product in R4b).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TF_{-}VIIa_{-}Xa_{-}l} = v_{16} - v_{17} \tag{119}$$

7.30 Species TF_VII_Xa_1

Name TF_VII_Xa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R5b and as a product in R5).

$$\frac{d}{dt}TF_{-}VII_{-}Xa_{-}l = v_{18} - v_{19}$$
 (120)

7.31 Species Xa_Va_1

Name Xa_Va_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R13, R14 and as a product in R7, R15b).

$$\frac{d}{dt}Xa_{-}Va_{-}l = v_{20} + v_{28} - v_{25} - v_{26}$$
(121)

7.32 Species V_Xa_1

Name V_Xa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R9b and as a product in R9).

$$\frac{d}{dt}V_{-}Xa_{-}l = |v_{21}| - |v_{22}|$$
 (122)

7.33 Species IIa_f

Name IIa_f

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in R11, R24, R27, R33 and as a product in R11b, R15b).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{IIa.f} = v_{24} + v_{28} - v_{23} - v_{36} - v_{39} - v_{44} \tag{123}$$

7.34 Species V_IIa_1

Name V_IIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R11b and as a product in R11).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{V} \cdot \mathbf{IIa} \cdot \mathbf{l} = |v_{23}| - |v_{24}| \tag{124}$$

7.35 Species Xa_Va_II_1

Name Xa_Va_II_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R15 and as a product in R13).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Xa_Va_II_l} = |v_{25}| - |v_{27}| \tag{125}$$

7.36 Species Xa_Va_mIIa_1

Name Xa_Va_mIIa_l

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in R15b and as a product in R14, R15).

$$\frac{d}{dt}Xa_{Va_{m}IIa_{l}} = v_{26} + v_{27} - v_{28}$$
 (126)

7.37 Species APC_PS_1

Name APC_PS_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R19 and as a product in R19b, R30).

$$\frac{d}{dt}APC_PS_1 = |v_{32}| + |v_{43}| - |v_{31}|$$
 (127)

7.38 Species TFPI_f

Name TFPI_f

Initial concentration $12.3 \text{ nmol} \cdot 1^{-1}$

This species takes part in one reaction (as a reactant in R20).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TFPLf} = -v_{33} \tag{128}$$

7.39 Species AT_f

Name AT_f

Initial concentration $4721 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R23, R24, R29).

$$\frac{d}{dt}AT_{-}f = -|v_{35}| - |v_{36}| - |v_{42}|$$
 (129)

7.40 Species IIa_AT_f

Name IIa_AT_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in R24).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IIa}_{-}\mathrm{AT}_{-}\mathrm{f} = v_{36} \tag{130}$$

7.41 Species TFPI_Xa_1

Name TFPI_Xa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R21 and as a product in R20).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TFPLXal} = v_{33} - v_{34} \tag{131}$$

7.42 Species TFPI_Xa_TF_VIIa_1

Name TFPI_Xa_TF_VIIa_l

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in R21).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TFPI}_{\mathrm{X}a}\mathrm{TF}_{\mathrm{V}\mathrm{II}a}\mathrm{l} = v_{34} \tag{132}$$

7.43 Species APC_PS_Va_1

Name APC_PS_Va_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R19b and as a product in R19).

$$\frac{d}{dt}APC_PS_Va_1 = v_{31} - v_{32}$$
 (133)

7.44 Species Xa_AT_f

Name Xa_AT_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in R23).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Xa_AT_f} = v_{35} \tag{134}$$

7.45 Species VII_Xa_1

Name VII_Xa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R16b and as a product in R16).

$$\frac{d}{dt}VII_Xa_1 = v_{29} - v_{30} \tag{135}$$

7.46 Species V_mIIa_1

Name V_mIIa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R25b and as a product in R25).

$$\frac{d}{dt}V_{m}IIa_{l} = |v_{37}| - |v_{38}| \tag{136}$$

7.47 Species TM_1

Name TM_1

Initial concentration $1 \text{ nmol} \cdot 1^{-1}$

This species takes part in one reaction (as a reactant in R27).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TM}.\mathrm{I} = -v_{39} \tag{137}$$

7.48 Species IIa_TM_1

Name IIa_TM_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R28 and as a product in R27, R28b).

$$\frac{d}{dt}IIa_TM_1 = |v_{39}| + |v_{41}| - |v_{40}|$$
(138)

7.49 Species IIa_TM_PC_1

Name IIa_TM_PC_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R28b and as a product in R28).

$$\frac{d}{dt}IIa_TM_PC_l = |v_{40}| - |v_{41}|$$
 (139)

7.50 Species mIIa_AT_1

Name mIIa_AT_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in R29).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{mIIa_AT_1} = v_{42} \tag{140}$$

7.51 Species LIPID

Name LIPID

Initial concentration 170000 nmol·l⁻¹

This species takes part in 13 reactions (as a reactant in LB1, LB2, LB3, LB4, LB5, LB6, LB11, LB12, LB13, LB14, LB16, LB17 and as a product in R15b).

$$\frac{d}{dt}LIPID = 100 v_{28} - 100 v_1 - 100 v_2 - 100 v_3 - 100 v_4 - 100 v_5 - 100 v_6 - 100 v_7 - 100 v_8 - 100 v_9 - 100 v_{10} - 100 v_{11} - 100 v_{12}$$
(141)

7.52 Species alpha2M_1

Name alpha2M_1

Initial concentration $364 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R33, R34).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{alpha}2\mathrm{M}_{\perp}l = -v_{44} - v_{45} \tag{142}$$

7.53 Species alpha2M_IIa_1

Name alpha2M_IIa_l

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in R33).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{alpha2M_IIa_l} = v_{44} \tag{143}$$

7.54 Species alpha2M_Xa_1

Name alpha2M_Xa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in one reaction (as a product in R34).

$$\frac{d}{dt}alpha2M_Xa_1 = v_{45}$$
 (144)

A Glossary of Systems Biology Ontology Terms

SBO:0000170 stimulation: Positive modulation of the execution of a process

SBO:0000177 non-covalent binding: Interaction between several biochemical entities that results in the formation of a non-covalent comple

SBO:0000180 dissociation: Transformation of a non-covalent complex that results in the formation of several independent biochemical entitie

SBO:0000526 protein complex formation: The process by which two or more proteins interact non-covalently to form a protein complex (SBO:0000297)

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany