

DG-08155-001_v05 | November 2017

Hardware Design Guide

DOCUMENT CHANGE HISTORY

DG-08155-001_v05

Version	Date	Description of Change
01	July 25, 2016	Initial Release
02	November 16, 2016	 Updated figures throughout this design guide Updated Table 3-1 and Table 4-1 Updated EEPROM (Section 6.1) Updated camera connector section (Section 6.3)
03	April 14, 2017	 General text fixes Updated Figure 2-1 Updated Figure 2-4 Updated power sources in Table 4-1
04	November 15, 2017	Added EEPROM structure table (Table 6-1)
05	November 28, 2017	Added Jetson TX2Updated Figure 2-2, Figure 2-3, and Figure 9-2

TABLE OF CONTENTS

Chapter 1.	Introduction	1
1.1 Refer	ences	1
1.2 Abbre	eviations and Definitions	2
Chapter 2.	Jetson Camera Module	3
2.1 Syste	m Setup	3
2.2 Came	era Interposer Module	4
2.2.1	Single Camera Case	4
2.2.2	Multiple Camera Case	6
2.3 Came	era Sensor Module	7
Chapter 3.	Jetson Camera Connector Pinout Table	8
Chapter 4.	Power	11
Chapter 5.	I2C Address	12
Chapter 6.	Components	13
6.1 EEPR	OM	13
6.2 I2C M	IUX	14
6.3 Jetso	n Camera Connector	14
Chapter 7.	Optional	15
7.1 I2C G	PIO Expander	15
7.2 Clock	Buffer and XTAL	15
Chapter 8.	Mechanical	16
Chapter 9.	Example	18

LIST OF FIGURES

Figure 2-1. Jetson TX1/TX2 Developer Kit	4
Figure 2-2. Single Camera Case Block Diagram	5
Figure 2-3. Multiple Camera Case Block Diagram	6
Figure 2-4. Camera Sensor Module Block Diagram	7
Figure 6-1. Jetson Camera Connector	14
Figure 8-1.Recommended Interposer Module Outline	
Figure 8-2. Mechanical Limits of Interposer Module Outline	
Figure 9-1.I-PEX 30-pin Connector	19
Figure 9-2. Example Block Diagram	

LIST OF TABLES

Table 1-	1. Abbreviations and Definitions	. 2
Table 3-	1. Jetson Camera Connector (2 x 60) Pinout Table	. 8
Table 4-	1. Power Sources	11
Table 5-	1. I2C Address	12
Table 6-	1. EEPROM Structure	13

Chapter 1. INTRODUCTION

This design guide contains recommendations and guidelines for engineers to follow to create a product that is optimized to achieve the best performance from the common interfaces supported by the NVIDIA® Jetson™ TX1/TX2 Developer Kit carrier board.

1.1 REFERENCES

Refer to the following documents or models for more information. Use the latest revision of all documents at all times.

- ▶ Jetson TX1/TX2 Developer Kit Carrier Board Specification
- ▶ Jetson TX1 OEM Product Design Guide
- ▶ Jetson TX2 OEM Product Design Guide

ABBREVIATIONS AND DEFINITIONS 1.2

Table 1-1 lists abbreviations that may be used throughout this design guide and their definitions.

Table 1-1. Abbreviations and Definitions

Abbreviation	Definition	
ADDR	Address	
AF	Auto Focus	
B2B	Board-to-Board	
CSI	MIPI spec. Camera Serial Interface	
EEPROM	Electrically Erasable Programmable Read Only Memory	
GPIO General Purpose Input/Output		
FM	Fast Mode of I2C (400 KHz)	
I2C Inter IC		
I2S Inter-IC Sound		
MUX	Multiplexer	
LDO Low Dropout (voltage regulator)		
XTAL Crystal Oscillator		
SPI	Serial Peripheral Interface	
UART Universal Asynchronous Receiver Transmitter		

Chapter 2. JETSON CAMERA MODULE

This design guide is to be used when designing a camera module for use with the Jetson TX1/TX2 Developer Kit carrier board.

Items to be checked:

- ▶ Power distribution and usage
- ► I2C addressing
- ▶ EEPROM selection and control
- ▶ Pinout table
- ► Mechanical (connector and board outline)

2.1 SYSTEM SETUP

- ▶ Jetson TX1/TX2 Developer Kit
- ► Camera Interposer Module (supports 1 to 6 cameras)
- ► Camera Sensor Module(s)

Figure 2-1. Jetson TX1/TX2 Developer Kit

2.2 CAMERA INTERPOSER MODULE

2.2.1 Single Camera Case

When using a single camera sensor, the camera interposer module will be a simple passthrough to the camera sensor module, with no EEPROM or I2C MUX on the interposer.

Figure 2-2. Single Camera Case Block Diagram

Multiple Camera Case 2.2.2

When multiple camera sensors are used (up to 6), a camera interposer module with EEPROM and I2C MUX is required to support the camera sensors.

Figure 2-3. Multiple Camera Case Block Diagram

CAMERA SENSOR MODULE 2.3

Figure 2-4 is the block diagram for a camera sensor module when there are multiple camera sensors.

Figure 2-4. Camera Sensor Module Block Diagram

Chapter 3. JETSON CAMERA CONNECTOR PINOUT TABLE

This chapter contains the pinout table which provides the camera's connector pins listing and description.

Table 3-1. Jetson Camera Connector (2 x 60) Pinout Table

Pin	Description	Volt	Direction for Sensor	Signal Name	Signal Name	Direction for Sensor	Volt	Description	Pin
1	CSI	1.2V	Output	CSI_A_D0_P	CSI_B_D0_P	Output	1.2V	CSI Controller B	2
3	Controller A Lane 0	1.2V	Output	CSI_A_DO_N	CSI_B_DO_N	Output	1.2V	Lane 0	4
5			-	GND	GND	-			6
7	CSI	1.2V	Output	CSI_A_CLK_P	CSI_B_CLK_P	Output	1.2V	CSI Controller B	8
9	Controller A Clock	1.2V	Output	CSI_A_CLK_N	CSI_B_CLK_N	Output	1.2V	Clock	10
11			-	GND	GND	-			12
13	CSI	1.2V	Output	CSI_A_D1_P	CSI_B_D1_P	Output	1.2V	CSI Controller B	14
15	Controller A Lane 1	1.2V	Output	CSI_A_D1_N	CSI_B_D1_N	Output	1.2V	Lane 1	16
17			-	GND	GND	-			18
19	CSI	1.2V	Output	CSI_C_D0_P	CSI_D_D0_P	Output	1.2V	CSI Controller D	20
21	Controller C Lane 0	1.2V	Output	CSI_C_D0_N	CSI_D_D0_N	Output	1.2V	Lane 0	22
23			-	GND	GND	-			24
25	CSI	1.2V	Output	CSI_C_CLK_P	CSI_D_CLK_P	Output	1.2V	CSI Controller D	26
27	Controller C Clock	1.2V	Output	CSI_C_CLK_N	CSI_D_CLK_N	Output	1.2V	Clock	28
29			-	GND	GND	-			30
31	CSI	1.2V	Output	CSI_C_D1_P	CSI_D_D1_P	Output	1.2V	CSI Controller D	32
33	Controller C Lane 1	1.2V	Output	CSI_C_D1_N	CSI_D_D1_N	Output	1.2V	Lane 1	34

Pin	Description	Volt	Direction for Sensor	Signal Name	Signal Name	Direction for Sensor	Volt	Description	Pin
35			-	GND	GND	-			36
37	CSI 1.2V Output CSI_E_D0_P		CSI_E_D0_P	CSI_F_D0_P Output 1.2V		CSI Controller F	38		
39	Controller E Lane 0	1.2V	Output	CSI_E_DO_N	CSI_F_DO_N	Output	1.2V	Lane 0	40
41			-	GND	GND	-			42
43	CSI	1.2V	Output	CSI_E_CLK_P	CSI_F_CLK_P	Output	1.2V	CSI Controller F	44
45	Controller E Clock	1.2V	Output	CSI_E_CLK_N	CSI_F_CLK_N	Output	1.2V	Clock	46
47			-	GND	GND	-			48
49	CSI	1.2V	Output	CSI_E_D1_P	CSI_F_D1_P	Output	1.2V	CSI Controller F	50
51	Controller E Lane 1	1.2V	Output	CSI_E_D1_N	CSI_F_D1_N	Output	1.2V	Lane 1	52
53			-	GND	GND	-			54
55 57			-	RSVD_DVDD	RSVD_DVDD	-			56 58
59	Camera UART present		Output	UART_PSNT_L	NC				60
61	Camera UART	1.8V	Input	CAM_UART_TXD	SPI_SCK	Input	1.8V	SPI clock	62
63	Camera UART RXD	1.8V	Output	CAM_UART_RXD	SPI_MISO	Output	1.8V	SPI MISO	64
65	Camera UART CTS	1.8V	Output	CAM_UART_CTS	SPI_CS	Input	1.8V	SPI Chip Select	66
67	Camera UART RTS	1.8V	Input	CAM_UART_RTS	SPI_MOSI	Input	1.8V	SPI MOSI	68
69			-	GND	GND	-			70
71	DMIC input clock	1.8V	Input	DMIC_IN_CLK	I2S_CLK	Input	1.8V	I2S clock	72
73	DMIC input data	1.8V	Input	DMIC_IN_DAT	I2S_LRCLK	Input	1.8V	I2S frame	74
75	Camera I2C clock	1.8V	Input	CAM_I2C_SCL	I2S_SDIN	Output	1.8V	I2S data input	76
77	Camera I2C data	1.8V	Bidirectional	CAM_I2C_DAT	I2S_SDOUT	Input	1.8V	I2S data output	78
79			-	GND	GND	-			80
81		Davis a la sest	AVIDD CAM	AVDD_CAM	Power Input	2.8V	AVDD camera power	82	
83		2.80	Power input	AVDD_CAM	VDD_3V3_SLP	Power Input	3.3V	DVDD sleep power	84
85	Camera AF power down	1.8V	Input	CAM_AF_PWDN	CAM_VSYNC	Input	1.8V	Camera VSYNC	86
87	Power	1.8V	Input	I2C_PM_CLK	CAM1_MCLK	Input	1.8V	Camera1 clock	88

Pin	Description	Volt	Direction for Sensor	Signal Name	Signal Name	Direction for Sensor	Volt	Description	Pin
	manage I2C							input	
89	Power manage I2C	1.8V	Bidirectional	I2C_PM_DAT	CAM1_PWDN	Input	1.8V	Camera1 power down	90
91	Camera0 clock input	1.8V	Input	CAMO_MCLK	CAM1_RST_L	Input	1.8V	Camera1 reset	92
93	Camera0 power down	1.8V	Input	CAMO_PWDN	-	-	-	RSVD	94
95	Camera0 reset	1.8V	Input	CAMO_RST_L	-	-	-	RSVD	96
97	Camera flash enable	1.8V	Input	FLASH_EN	-	-	-	RSVD	98
99			-	GND	GND	-			100
101	DVDD camera power	1.2V	Power Input	DVDD_1V2	DVDD_CAM_1V8	Power Input	1.8V	DVDD IO camera power	102
103	Flash inhibit	1.8V	Input	FLASH_INHIBIT	TORCH_EN	Input	1.8V	Torch enable	104
105	General Purpose I2C	1.8V	Input	I2C_GP_CLK	FLASH_STROBE	Input	1.8V	Flash strobe input	106
107	General Purpose I2C	1.8V	Bidirectional	I2C_GP_DAT	VDD_3V3_SLP	Power Input	3.3V	DVDD sleep power	108
109	5.0V system power	5.0V	Power Input	VDD_5V0	VDD_3V3_3LP	Power Input	3.3V		110
111	-	-	-	RSVD_IR_READY	MOTION_INT_L	Output	1.8V	Motion/Gyro interrupt	112
113	-	-	-	RSVD_IR_TRIG	RSVD_IR_EN	-			114
115			-	GND	GND	-			116
117	Camera FSIN interrupt		Output	CAM_FSIN_INT	VDD_5V0	Power Input	5.0V	5.0V system power	118
119	system enable input	1.8V	Input	VDD_SYS_EN	VDD_3V0	Tower input	3.00		120

Chapter 4. POWER

Power sources from the Jetson connector are listed in Table 4-1.

Table 4-1. Power Sources

Net Name	Specification	Note
VDD_5V0	5.0V	This is 'always on' power and to be used as the source of 'always on 1.8V' for EEPROM and I2C MUX, so it is not recommended to use it as a power source requiring power sequence
VDD_3V3_SLP	3.3V, 4A (maximum)	3.3V system power
AVDD_CAM	2.8V, 3A (maximum)	2.8V analog power
DVDD_CAM_1V8	1.8V, 2A (maximum)	1.8V digital IO power
DVDD_1V2	1.2V, 300mA (maximum)	1.2V digital circuit power

Proper power sequence is required in order not to damage the Jetson TX1/TX2 module.

- ▶ All camera powers except 1.8V for EEPROM should be 'Off' by default
- ▶ Powers should be controlled by Jetson TX1/TX2

Chapter 5. I2C ADDRESS

This chapter provides the I2C address description for the camera interposer module and camera sensor module.

Table 5-1. I2C Address

Jetson TX1/TX2	Camera Interposer Module		Each Camera Sensor Module		
	EEPROM, AT24C02D	7′h54	EEPROM, AT24C02D	7'h57	
CAM_I2C	I2CMUX, TCA9546A	7′h70	*Flash driver IC (optional)		
	*I2C GPIO Expander (optional)		*Auto focus driver (optional)		

Chapter 6. **COMPONENTS**

6.1 **EEPROM**

- ► Camera interposer module EEPROM power rail should be 'ON' by default
- ▶ The EEPROM in all camera sensor modules can have the same I2C address
- ▶ Features:
 - 2-Kbit (256 × 8)
 - I2C-compatible up to 400 KHz (FM) at 1.8V
 - AT24C02D from Atmel is recommended
- ▶ The EEPROMs allow Jetson to dynamically detect the interposer board and the camera module(s) connected to it, and to load the corresponding device tree files
- ▶ The mentioned recommendation and configuration for EEPROM is required when multiple camera sensors are used, but is not required for a single camera module

Table 6-1. **EEPROM Structure**

EEPROM Byte Absolute Address	Description	Data	Comments
Byte - 0	Version - Major	0x00	Major Version of BoardID Contents (Integer) - increments on backwards-incompatible changes
Byte - 1	Version - Minor	0x02	Minor Version of BoardID Contents (Integer) - increments on backwards-compatible changes within Major Version
Byte - 2 thru 19	RESERVED	0xFF	
Byte - 20 Thru 49	Product Part Number		Asset Tracker for Customer board design: Byte-20 = 0xCC, Bytes 21-49: Customer assigned unique string with zero-termination. Eg: Company Name/Stock Ticker

			followed by design/rev. This field should contain characters A-Z, a-z, 0-9 and dash ONLY (Eg: NVDA-12345)		
Byte - 50 Thru 88	RESERVED	0xFF			
User Data Section					
Byte - 89	Comerciatorness	0x70	I2C MUX-1 7-bit Address		
Byte - 90	Camera Interposer Board I2C MUX-1		I2C MUX Type (Refer to table below in this tab for Type Code Vs Part# Mapping)		
Byte - 91 thru 254	RESERVED	0xFF			
Byte - 255	CRC		CRC-8 Computed for Bytes 0 thru 254.		
I2C MUX Type Code Vs Part# Mapping					
MUX Type Code	Part#		Description		
1	TCA9548A		8 Channel I2C MUX		

6.2 **I2C MUX**

- ▶ I2C MUX must be used to isolate all camera sensor modules
- ► Features:
 - 4-Channel outputs
 - I2C-compatible up to 400 KHz (FM) at 1.8V
 - TCA9548PWR from TI is recommended

JETSON CAMERA CONNECTOR 6.3

B2B connector on Jetson TX1/TX2: Samtec's QSH-060-01-H-D-A-K-TR

Figure 6-1. Jetson Camera Connector

Mating terminal connector to be used:

▶ For recommended board outline: QTH-060-01-F(H)-D-A-x

For extended board outline which overhangs the display module: QTH-060-04-F(H)-D-A-x

Chapter 7. **OPTIONAL**

7.1 **12C GPIO EXPANDER**

- ▶ An I2C GPIO expander can be used to expand control signals for camera sensor module(s)
- ▶ Features:
 - 8-bit bi-directional GPIO expansion
 - I2C-compatible up to 400 KHz (FM) at 1.8V

7.2 **CLOCK BUFFER AND XTAL**

- ▶ There are two clock outputs from Jetson TX1/TX2: MCLK0, and MCLK1
- ▶ It is recommended to use the clocks from Jetson, but a clock buffer can be used to drive multiple clocks from single source
- ▶ XTAL can be used if dynamic frequency switching from AP is not needed for the sensor

Chapter 8. **MECHANICAL**

Recommended outline for interposer module.

Figure 8-1. Recommended Interposer Module Outline

These mechanical limits will ensure fit on Jetson TX1/TX2 Developer Kit carrier board.

Figure 8-2. Mechanical Limits of Interposer Module Outline

Note: Minimum mating height should be over 16 mm when overhangs display module.

Chapter 9. **EXAMPLE**

- ▶ Example setup with up to 3 cameras with 4 CSI lane cameras
- ▶ Three cables with plug are also needed to connect interposer module to sensor modules
- ► Each connector needs to accommodate the following signals
 - Powers:
 - -VDD 3V3 SLP
 - -AVDD_CAM
 - -DVDD_CAM_1V8
 - -DVDD_1V2
 - CSI_CLK and CSI_DAT: 1 × 4 lanes or 2 × 2 lanes
 - MCLK or clock from local XTAL on interposer module
 - CAM_I2C (CLK, DAT)
 - CAM_RST
 - CAM_PWDN
 - FLASH_EN (*optional)
 - Other control signals as needed
- ► Ex) I-PEX connector
 - Ex. 20525-030-02C

Figure 9-1 is an example connector between the camera sensor module and the camera interposer module.

Figure 9-1. I-PEX 30-pin Connector

Figure 9-2. Example Block Diagram

Notice

The information provided in this specification is believed to be accurate and reliable as of the date provided. However, NVIDIA Corporation ("NVIDIA") does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This publication supersedes and replaces all other specifications for the product that may have been previously supplied.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and other changes to this specification, at any time and/or to discontinue any product or service without notice. Customer should obtain the latest relevant specification before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer. NVIDIA hereby expressly objects to applying any customer general terms and conditions with regard to the purchase of the NVIDIA product referenced in this specification.

Unless specifically agreed in writing by NVIDIA, NVIDIA products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer's own risk.

NVIDIA makes no representation or warranty that products based on these specifications will be suitable for any specified use without further testing or modification. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer's sole responsibility to ensure the product is suitable and fit for the application planned by customer and to do the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer's product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this specification. NVIDIA does not accept any liability related to any default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this specification, or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this specification. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA. Reproduction of information in this specification is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all associated conditions, limitations, and notices.

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the NVIDIA terms and conditions of sale for the product.

ARM

ARM, AMBA and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are trademarks of ARM Limited. All other brands or product names are the property of their respective holders. "ARM" is used to represent ARM Holdings plc; its operating company ARM Limited; and the regional subsidiaries ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France SAS; ARM Consulting (Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM Sweden AB.

Trademarks

NVIDIA, the NVIDIA logo, and Jetson are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2016, 2017 NVIDIA Corporation. All rights reserved.

