Bibliography

- Aharonov, Y. & J. Anandan, Phys. Rev. Lett. 58 (16), 1593 (1987). "Phase Change During a Cyclic Quantum Evolution". DOI: 10.1103/PhysRevLett.58.1593
- Anandan, J., Physics Letters A **133** (4-5), 171 (1988). "Non-adiabatic non-abelian geometric phase". DOI: 10.1016/0375-9601(88)91010-9
- Aspect, A., P. Grangier, & G. Roger, Phys. Rev. Lett. **47** (7), 460 (1981). "Experimental Tests of Realistic Local Theories via Bell's Theorem".
- Barenco, A., C. H. Bennett, R. Cleve, et al., Physical Review A 52 (5), 3457 (1995). "Elementary gates for quantum computation". DOI: 10.1103/physreva.52.3457 arXiv:quant-ph/9503016
- Bell, J. S., Rev. Mod. Phys. **38** (3), 447 (1966). "On the Problem of Hidden Variables in Quantum Mechanics".
- Bennett, C. H. & S. J. Wiesner, Phys. Rev. Lett. **69 (20)**, 2881 (1992). "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states".
- Bergou, J. A., U. Herzog, & M. Hillery, "Discrimination of Quantum States," in Paris & Rehacek (2004), Chap. 11, pp. 417–465. DOI: 10.1007/978-3-540-44481-7_11
- Berry, M. V., Proc. R. Soc. London A **392**, 45 (1984). "Quantal Phase Factors Accompanying Adiabatic Changes".
- Blum, K., Density Matrix Theory and Applications, Vol. 64 of Springer Series on Atomic, Optical, and Plasma Physics (Springer Berlin Heidelberg, 2012), 3rd ed., ISBN 978-3-642-20560-6.
- Born, M., Z. Phys. 37 (12), 863 (1926). "Zur Quantenmechanik der Stoßvorgänge".
- Breuer, H.-P. & F. Petruccione, *The Theory of Open Quantum Systems* (Oxford University Press, New York, 2002).
- Caves, C. M., Phys. Rev. D 23 (8), 1693 (1981). "Quantum-mechanical noise in an interferometer".

192 BIBLIOGRAPHY

Chefles, A., "Quantum States: Discrimination and Classical Information Transmission. A Review of Experimental Progress," in Paris & Rehacek (2004), Chap. 12, pp. 467–511. DOI: 10.1007/978-3-540-44481-7_12

- Chiaverini, J., Science **308** (**5724**), 997 (2005). "Implementation of the Semiclassical Quantum Fourier Transform in a Scalable System". DOI: 10.1126/science. 1110335
- Choi, M.-S., J. Phys.: Condens. Matt. **15** (**46**), 7823 (2003). "Geometric Quantum Computation in Solid-State Qubits". arXiv:quant-ph/0111019
- Deutsch, D. & R. Jozsa, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 439 (1907), 553 (1992). "Rapid Solution of Problems by Quantum Computation". DOI: 10.1098/rspa.1992.0167
- DiVincenzo, D. P., Fortschr. Phys. **48**, 771 (2000). "The Physical Implementation of Quantum Computation". DOI: 10.1002/1521-3978(200009)48:9/11<771:: AID-PROP771>3.0.CO; 2-E arXiv:quant-ph/0002077
- Dum, R., A. S. Parkins, P. Zoller, & C. W. Gardiner, Phys. Rev. A **46** (7), 4382 (1992). "Monte Carlo simulation of master equations in quantum optics for vacuum, thermal, and squeezed reservoirs".
- Einstein, A., B. Podolsky, & N. Rosen, Phys. Rev. 47, 777 (1935). "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?"
- Giovannetti, V., S. Lloyd, & L. Maccone, Physical Review Letters **96** (1), 010401 (2006). "Quantum Metrology". DOI: 10.1103/PhysRevLett.96.010401 arXiv:quant-ph/0509179
- Griffiths, R. B. & C.-S. Niu, Physical Review Letters **76** (17), 3228 (1996). "Semiclassical Fourier Transform for Quantum Computation". DOI: 10.1103/physrevlett.76.3228 arXiv:quant-ph/9511007
- Hardy, L., Phys. Rev. Lett. **68 (20)**, 2981 (1992). "Quantum Mechanics, Local Realistic Theories, and Lorentz-Invariant Realistic Theories".
- Higgins, B. L., D. W. Berry, S. D. Bartlett, H. M. Wiseman, & G. J. Pryde, Nature 450 (7168), 393 (2007). "Entanglement-free Heisenberg-limited phase estimation". DOI: 10.1038/nature06257 arXiv:0709.2996
- Horodecki, M., P. Horodecki, & R. Horodecki, Phys. Lett. A **223** (1), 1 (1996). "Separability of mixed states: necessary and sufficient conditions". DOI: 10. 1016/0375-9601(95)00930-2
- Jiang, M., S. Luo, & S. Fu, Physical Review A **87** (2) (2013). "Channel-state duality". DOI: 10.1103/physreva.87.022310

BIBLIOGRAPHY 193

Kitaev, A. Y., Electronic Colloquium on Computational Complexity 3, 3 (1996). "Quantum measurements and the Abelian Stabilizer Problem". arXiv:quant-ph/9511026

- Kitaev, A. Y., Russian Mathematical Surveys **52 (6)**, 1191 (1997). "Quantum computations: algorithms and error correction".
- Lang, S., Introduction to Linear Algebra, Undergraduate Texts in Mathematics (Springer New York, New York, 1986), 2nd ed., ISBN 9781461210702. DOI: 10.1007/978-1-4612-1070-2
- Lang, S., *Linear Algebra* (Springer, Berlin, 1987), 3rd ed., ISBN 978-1-4757-1949-9. DOI: 10.1007/978-1-4757-1949-9
- Loss, D. & D. P. DiVincenzo, Phys. Rev. A 57 (1), 120 (1998). "Quantum comutation with quantum dots".
- Lundeen, J. S., B. Sutherland, A. Patel, C. Stewart, & C. Bamber, Nature 474 (7350), 188 (2011). "Direct measurement of the quantum wavefunction". DOI: 10.1038/nature10120
- Nakazato, H., Y. Hida, K. Yuasa, B. Militello, A. Napoli, & A. Messina, Physical Review A **74** (6), 062113 (2006). "Solution of the Lindblad equation in the Kraus representation". DOI: 10.1103/physreva.74.062113 arXiv:quant-ph/0606193
- Nielsen, M. & I. L. Chuang, Quantum computation and quantum information (Cambridge University Press, New York, 2011), 10th anniversary ed., ISBN 978-1107002173.
- Paris, M. & J. Rehacek, eds., Quantum State Estimation, Vol. 649 of Lecture Notes in Physics (Springer Berlin Heidelberg, Berlin, 2004), ISBN 9783540444817. DOI: 10.1007/b98673
- Peres, A., Phys. Rev. Lett. **77** (8), 1413 (1996). "Separability Criterion for Density Matrices". DOI: 10.1103/PhysRevLett.77.1413 arXiv:quant-ph/9604005
- Plenio, M. B. & P. L. Knight, Rev. Mod. Phys. **70** (1), 101 (1998). "The quantum-jump approach to dissipative dynamics in quantum optics".
- Raussendorf, R. & H. J. Briegel, Phys. Rev. Lett. **86** (22), 5188 (2001). "A One-Way Quantum Computer".
- Raussendorf, R., D. Browne, & H. Briegel, Journal of Modern Optics **49** (8), 1299 (2002). "The one-way quantum computer—a non-network model of quantum computation". DOI: 10.1080/09500340110107487 arXiv:quant-ph/0108118

194 BIBLIOGRAPHY

Sjöqvist, E., D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, & K. Singh, New Journal of Physics 14 (10), 103035 (2012). "Non-adiabatic holonomic quantum computation". DOI: 10.1088/1367-2630/14/10/103035 arXiv:1107.5127

- Smolin, J. A. & D. P. DiVincenzo, Phys. Rev. A **53** (4), 2855 (1996). "Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate". DOI: 10.1103/PhysRevA.53.2855
- Størmer, E., *Positive Linear Maps of Operator Algebras* (Springer, Berlin, 2013), ISBN 9783642343698. DOI: 10.1007/978-3-642-34369-8
- Vallone, G. & D. Dequal, Physical Review Letters 116 (4), 040502 (2016). "Strong Measurements Give a Better Direct Measurement of the Quantum Wave Function". DOI: 10.1103/physrevlett.116.040502 arXiv:1504.06551
- Wilczek, F. & A. Zee, Phys. Rev. Lett. **52** (**24**), 2111 (1984). "Appearance of Gauge Structure in Simple Dynamical Systems". DOI: 10.1103/PhysRevLett.52.2111
- Zanardi, P. & M. Rasetti, Phys. Lett. A **264 (2-3)**, 94 (1999). "Holonomic quantum computation". DOI: 10.1016/S0375-9601(99)00803-8 arXiv:quant-ph/9904011
- Zurek, W. H., Phys. Today 44 (10), 36 (1991). "Decoherence and the transition from quantum to classical".
- Zurek, W. H., Los Alamos Science **27**, 2 (2002). "Decoherence and the Transition from Quantum to Classical: Revisited".

Index

ancillary qubit, 76	elementary qunatum logic gates, 38
Bell measurement, 85	Elements, 9
bit flip, 40	entangled state, 13, 15, 50
bitwise AND, 74	Euclid of Alexandria, 9
Bloch sphere, 18, 19	Euler rotation, 47
Bloch vector, 18	Euler angles, 47
bra-ket notation, 38	flux quantization, 89
bright state, 105	Fredkin gate, 78, 79
Choi isomorphism, 185	graph state, see also cluster state
Choi matrix, 179, see also Choi operator	Gray code, 62, 73
Choi operator, 184	Gray code sequence, 73
closed system, 10	
cluster state, 86	Hadamard gate, 42, 86, 100
CNOT, 48, 79	Hadamard matrix, 42
controlled-NOT gate, 48	Heisenberg exchange interaction, 99
multi-qubit controlled-NOT, 75	Hermitian operator, 181
CNOT gate, 54, 100, 106	Hilbert space, 10, 90
complementarity principle, 9	
completely positive supermap, 181, 182	inertial force, 95
control qubit, 49	inertial frame, 94
controlled- U gate, 48	initialization, 91
multi-qubit controlled- U gate, 62,	irreversible population loss, 145
72	Ising exchange ineraction, 101
cyclic evolution, 104, 106	Ising exchange interaction, 100, 101
CZ, 52	T 1
controlled-Z gate, 52	Josephson inductance, 89
CZ gate, 100, 101, 111	kinetic inductance, 89
damping operator, 145, 149	Kraus elements, 182
dark state, 105	orthogonal Kraus elements, 182
density matrix, 15	Kraus maps, see also Kraus elements
density matrix, 15 density operator, 15, 173	Kraus operator-sum representation, see
DiVincenzo criteria, 90	also Kraus representation
DIVINCENZO CITUELIA, 90	Kraus operators, see also Kraus elements
effective Hamiltonian, 145	Kraus representation, 182
,	- '

196 INDEX

Larmor precession, 93	quantum jump approach, 145, 149
Lindblad equation, 149	quantum jump operator, see also Lind-
Lindblad operator, 145	blad operator
logical basis, 11	quantum logic gate, 48, 89
	quantum logic gate operation, 37
Markov approximation, 144	quantum master equation, 149
maximally entangled, 87	quantum non-demolition measurement,
measurement, 37, 91	109
measurement-based quantum computa-	quantum oracle, 118
tion, 106	quantum state, 10
mixed state, 15	quantum statistical mechanics, 180
	quantum teleportation, 15, 51
Newton's laws of motion, 9	qubit, 37, 90
non-Hermitian Hamiltonian, 145	quantum bit, 37
normal operator, 167	
and was quantum appropriation and also	Rabi oscillation, 95
one-way quantum computation, see also	Rabi frequency, 95
measurement-based quantum com	Freduced density matrix, 87
putation	resonance, 95
operation time, 93	rorating-wave approximation, 98
operator-sum representation, 180, 181	rotating frame, 94
path ordering, 104	Hamiltonian in the rotating frame,
Pauli gates, see also Pauli operators	95
Pauli operator, 111	time-evolution operator in the rotat-
Pauli operators, 38, 86, 91	ing frame, 95
Pauli X, 38	rotation, 46
Pauli Y, 40	rotation operator, 93
,	1.11
Pauli Z, 39 phase flip, 40	scalable system, 90
	Schmidt decomposition, 13
phase gate, 86	Schmidt rank, 22
planar exchange interaction, see also XY	separable state, 13
exchange interaction	spectral decomposition, 168
positive operator, 168, 181	spin-boson model, 109
postulates of quantum mechanics, 9	state vector, 10
quantum entanglement, 15	statistical ensemble, 15
quantum circuit model	statistical mixture, 173
quantum circuit diagram, 37	super-mapping, see also supermap
quantum computer, 89	supermap, 179, 181
quantum computer, 89 quantum computer architecture, 89	superoperator, 173, 179
quantum efficiency, 91	SWAP, 54, 79
quantum entency, 91 quantum entanglement, 51	SWAP gate, 54, 99, 100, 111
	$\sqrt{\text{SWAP gate}}, 56, 100, 111$
quantum entangler circuit, 50 quantum information theory, 180	target cubit 40
quantum miormation theory, 100	target qubit, 49

INDEX 197

```
tensor-product basis, 13
tensor-product space, 13
time ordering, 104
Toffoli gate, 77, 79
trace Hermitian product, 177
trace product, see also trace Hermitian
        product
two-leve unitary transformation, 81
two-level unitary transformation, 65, 67,
    two-level unitary matrix, 71, 72
unitary group, 38
unitary matrix, 38
universal quantum computation, 38, 65,
    universal set of quantum gate oper-
        ations, 91
universal set of classical logic gates, 80
universal set of quantum logic gates, 80
vector space of linear maps, 176
vector space of linear operators, 19
wave-particle duality, 9
XY exchange interaction, 100
```