521 M7280 – SATELLITE GEODESY SPRING SEMESTER 2014

Lab No. 7

handed out	Wednesday, April 23, 2014	
due	Wednesday, April 30, 2014, 09:20	Name:

Satellite Orbit in 3-D Space (II) Creating your own SP3 files

- 1. From a GPS satellite almanac (satellite ID = your date of birth) that is given to you, please write a Matlab program which computes the satellite's orbit every 5 min for a 48-hour period.
 - a. List your results in both an initial frame and ECEF Cartesian frame with 7 columns (time, Xin, Yin, Zin, x, y, z).
 - b. Plot the satellite's position in two 3-D maps (one for inertial and the other for ECEF Cartesian).
 - c. What are the six Keplerian elements you use to compute the orbit?
 - d. What are the period and mean motion of your satellite?
- 2. Convert your ECEF Cartesian coordinates into the ECEF spherical frame.
 - a. List the results in a table with 4 columns (time, longitude, latitude, height).
 - b. Plot in a 2-D map for the longitude, latitude, and height values as functions of time.
- 3. Discuss your results.

Note: GPS almanac files (in the YUMA format) can be found through the following link: http://www.navcen.uscg.gov/?pageName=gpsAlmanacs

Use for
$$GM = 398600.4418 (km^3/s^2)$$
, $\omega_e^* = 7292115.8553 \times 10^{-11} (rad/s)$, $\omega_e = 7292115 \times 10^{-11} (rad/s)$, and $R = 6371.000000 (km)$.

Your (individual) final report should contain (use A4 papers):

- this page as the cover sheet
- source code(s) and outputs; do not forget to add your name and lots of comment cards to the source listing (%)
- input and output files from program [input/output values used and calculated], if any
- plots, including captions on axes, title, your name, LB#/HM#, course title, date (if any)
- derivation and description of formulas used, accompanied by figures where applicable
- evidence of computational accuracy
- discussion of results