PHLP: Sole Persistent Homology for Link Prediction - Interpretable Feature Extraction

Junwon You, Eunwoo Heo, Jae-Hun Jung

Abstract— Link prediction (LP), inferring the connectivity 2 between nodes, is a significant research area in graph data, where a link represents essential information on relationships between nodes. Although graph neural network (GNN)-based models have achieved high performance in LP, understanding why they perform well is challenging because most comprise complex neural networks. We employ persistent homology (PH), a topological data analysis method that helps analyze the topological information of graphs, to explain the reasons for the high performance. We propose a novel method that employs PH for LP (PHLP) focusing on how the presence or absence of target links influences the overall topology. The PHLP utilizes the angle hop subgraph and new node labeling called degree double radius node labeling (Degree DRNL), distinguishing the information of graphs better than DRNL. Using only a classifier, PHLP performs similarly to state-of-the-art (SOTA) models on most benchmark datasets. Incorporating the outputs calculated using PHLP into the existing GNN-based SOTA models improves performance across all benchmark datasets. To the best of our knowledge, PHLP is the first method of applying PH to LP without GNNs. The proposed approach, employing PH while not relying on neural networks, enables the identification of crucial factors for 2 improving performance. 2

Index Terms—Graph analysis, link prediction, persistent homology, topological data analysis. 37

I. Introduction

RAPH data pervade numerous domains such as social networks, biological systems, recommendation engines, and e-commerce networks [1], [2]. The graph is well-suited for modeling complex real-world relationships. 5

Predicting missing or potential connections within a graph is 6 essential for many applications, unlocking valuable insight and 6 facilitating intelligent decision-making. The ability to predict 6 future network interactions can be applied to diverse domains, 6 including friend recommendations on social networks [3]–[5], 6 knowledge graph completion [6], [7], identification of potential 6 drug-protein interactions in bioinformatics [8], [9], prediction protein interactions [9]–[11], and optimization of supply chain logistics [12], [13], 6

The link prediction (LP) problem has been categorized into three major paradigms: heuristic methods, embedding methods, and graph neural network (GNN)-based methods, which are explored in detail in Section II. Recently, compared

Junwon You and Eunwoo Heo are co-first authors. 1

Junwon You, Eunwoo Heo, and J.-H. Jung are with the Department of Mathematics, Pohang University of Science and Technology (POSTECH), Pohang, South Korea. J.-H. Jung is also with the Graduate School of Artificial Intelligence, POSTECH, Pohang, South Korea.

Extracted feature vector

Classifier

Extracted feature vector

Classifier

Classifier

Classifier

Classifier

GNN-based Method

Proposed Method

Fig. 1. Difference between the GNN-based and proposed methods. (Left) 9
The GNN-based method extracts feature vectors through optimization (dashed 9
area), making it difficult to interpret what these vectors represent. (Right) 9
The proposed method extracts feature vectors through the designed analysis 9
process, resulting in interpretable vectors. 9

to heuristic [3], [14]–[18] and embedding methods [19]–[22], 7 GNN-based models have achieved significant score improvements in capturing intricate relationships within graphs [23]–7 [28], 7

However, GNN-based methods are comprised of neural 8 networks, making it challenging to understand the reasons 8 for their performance. To explore these reasons, we employ 8 persistent homology (PH), a mathematical tool in topological 8 data analysis (TDA) that enables the inference of topological information regarding the manifold approximating the 8 data [29], [30] by quantifying the persistence of topological 8 features across multiple scales. Various research has had 8 successful outcomes in applying PH to graph classification and 8 node classification tasks [31]–[40]. In contrast, relatively few 8 studies have explored using PH for LP. The topological loop-8 counting (TLC) GNN [27] is a notable example that uses PH. 8 The TLC-GNN injects topological information into a GNN, 8 and experiments were conducted on benchmark data where node attributes are available. 8

In this context, as illustrated in Fig. 1, we present a novel approach to LP, called PHLP, which calculates the topological information of a graph. To use the topological information of subgraphs for LP, we measure how the topological information thanges depending on the existence of the target link, as illustrated in Fig. 2. To extract topological information from various perspectives, we utilize angle hop subgraphs for each target node. Additionally, we propose new node labeling called degree double radius node labeling (Degree DRNL), which incorporates degree information for each node, using DRNL [24].

The contributions are summarized as follows: 12

• We develop an explainable LP method, PHLP, that em-

Topological features in subgraphs with and without a target link (u, v). The diagram illustrates the topological information extraction process for the subgraph \mathcal{N} , as described in Section III-D. The presence (top) or absence (bottom) of the target link changes the topological structure of the graph. Top row: When the target link is connected, three features $(C_1, C_2, \text{ and } C_3)$ are detected shown in the persistence image (PI) in the right column. The PI represents the topological features of the subgraph \mathcal{N} (Section III-E). Bottom row: When the target link is absent, only two features $(C_2 \text{ and } C_3)$ are detected as depicted 10 in the corresponding PI. 10

- art (SOTA) models. This method surpassed the SOTA performance for the Power dataset. 13
- can improve their performance. 13
- close to that of SOTA models. 13

II. RELATED WORK 14

A. Link Prediction 15

Heuristic Methods. Heuristic-based approaches to LP compute the predefined structural features within the observed nodes and edges of the graph. Classic methods, such as common neighbors [3], Adamic-Adar [3], Jaccard coefficient [14], and preferential attachment [15], rely on simple heuristics that capture certain aspects of node relationships. Zhou et al. [16] proposed a local random walk method, whereas Jeh and Widom [18] developed SimRank to quantify similarity based on the structural context. Although heuristic methods provide a preliminary understanding of LP, they are limited by their inability to capture complex relationships within graphs. Furthermore, heuristic methods are effective only when the defined heuristics align with the graph structure; therefore, challenging, 16

Embedding Methods. Embedding methods map nodes from which preserves local and global structures. Grover and 1 research on datasets without node attributes. 21 Leskovec [21] further advanced this approach with Node2Vec 17 Although PH has demonstrated success in graph and node 22 capture diverse node relationships. 17

ploys the topological information for LP through PH 13 Embedding methods are advantageous due to their applica- 18 without relying on neural networks, as illustrated in 15 bility regardless of the data characteristics using optimization. 18 Node representations capture global properties and long-range 18 We demonstrate that the proposed method, even with a 1 effects through the learning process. However, these methods 18 simple classifier such as a multilayer perceptron (MLP), 1 pften require significantly large dimensions to express basic 18 can achieve LP performance close to that of state-of-the- 1/2 heuristics, resulting in lower performance than heuristic meth-11 ods [41]. Moreover, in embedding methods, Ribeiro et al. [42] 18 explained that two nodes with similar neighborhood structures 18 We reveal that merely incorporating vectors computed by 1 may have vastly different embedded vectors, especially when 18 PHLP into existing LP models, including SOTA models, 1 they are far apart in the graph, leading to incorrect predictions. **GNN-Based Methods.** The GNN has become a pivotal ap-19 To the best of our knowledge, the proposed method using 1 proach to LP due to its ability to grasp graph-structured 19 PH without a GNN is the first to achieve performance 1 data. By effectively incorporating local and global information 19 through message passing and graph aggregation layers, GNNs 19 enhance LP performance. The model by Zhang et el. [24] 19 uses subgraphs as the primary structural units to learn and 19 predict connections, resulting in significant improvement. This 19 paradigm shift led to research focusing on refining and advanc-19 ng subgraph methods in the context of GNNs [25], [26], [28]. 19 Following this trend, Pan *et al.* [28] proposed WalkPool (WP), 19 a new pooling mechanism that uses attention to jointly encode 19 node representations and graph topology into learned topoogical features. However, despite their superior performance, 19 GNN-based methods pose a challenge in comprehending the 19 underlying mechanisms driving their predictions. Within this 19 context, we develop the PHLP, based on PH, with performance 19 comparable to GNN-based models. 19

B. Persistent Homology on Graph Data 20

In recent years, PH, a method of analyzing the topological 21 applying heuristic methods across all graph datasets can be defeatures of data, has been widely used to analyze graph data. 21 It has demonstrated its effectiveness in graph classification 21 tasks by analyzing the topology of graphs [31]–[38] and has 21 the graph into a low-dimensional vector space where geometric 1 been applied to node classification tasks [31], [39], [40], 21 relationships mirror the graph structure. Koren *et al.* [19] 1 However, its suitability for LP tasks has been limited, and 21 demonstrated the power of matrix factorization for collabora- presearch on applying PH for LP has progressed slowly. Yan 21 tive filtering. Perozzi et al. [20] introduced DeepWalk, using 1 et al. [27] proposed an intriguing approach by integrating PH 21 random walks to generate node sequences and employing the 1 with GNNs. While their model demonstrates the potential of 21 skip-gram model to produce embeddings. Tang et al. [22] 1 PH for capturing topological features of graph data, it relies on 21 developed large-scale information network embedding (LINE), 1 GNN structures. Additionally, the TLC-GNN requires further 21

(N2V), proposing a flexible notion of the neighborhood to 1 classification tasks, its filtration technique, tailored to analyzing the entire graph structure, might not be optimal for LP 22

Fig. 3. Overall structure of persistent homology for link prediction (PHLP) and multiangle PHLP (MA-PHLP). (a) PHLP calculates the topological information 25 based on the existence of target links in angle hop subgraphs for each target node. (b) With a classifier, MA-PHLP integrates topological information across various angles to perform LP. 25

as the role of each node in LP differs from that in graph 2.C. Filtration of the Subgraph 33 or node classification tasks. To address this challenge and 22 explicitly to LP tasks. 22

III. METHOD 23

A. Outline of the Proposed Methods 24

We propose (a) PHLP and (b) multiangle PHLP (MA-26 PHLP) as described in Fig. 3. The PHLP method analyzes the 26 topological structure of the graph, focusing on target links. 26 First, PHLP samples a (k, l)-angle hop subgraph for the given 26 target nodes (Section III-B). Then, PHLP computes persistence 26 images (PIs; Section III-E) for cases with and without the 26 target link. To calculate PIs, we introduce the node labeling 26 and define the edge-weight function (Section III-C). Through 26 PHLP, each target node is transformed into a vector comprising 26 PIs. In addition, LP is performed using the calculated vectors 26 with a classifier (Section III-F). To reflect diverse topological 26 information, we also propose MA-PHLP, which analyzes data 26 from various angles (Section III-G). 26

B. Extracting Angle Hop Subgraph 27

Given a graph G = (V, E) and two nodes $u, v \in V$, a k-hop enclosing subgraph for (u,v) is defined as $\mathcal{N}_{u,v}^k = (V',E')$ such that 28

$$V' = \{ z \in V \mid d(u, z) \le k \text{ or } d(z, v) \le k \},$$

$$E' = \{ (z, w) \in E \mid z \in V' \text{ and } w \in V' \},$$

29

where d(z, w) is the minimum number of edges in any 30 path from z to w in G. We define a (k,l)-angle hop enclosing subgraph, where the term "angle" signifies viewing the subgraph from multiple perspectives. The (k,l)-angle hop subgraph is a generalization of the k-hop subgraph. Given a graph G = (V, E) and two nodes $u, v \in V$, a (k, l)-angle hop 30 enclosing subgraph for (u, v) is defined as $\mathcal{N}_{u,v}^{(k,l)} = (V', E')$ 3(Fig. 5. Persistence images (PIs) for two node labeling methods for the graphs 36 such that 30

$$V' = \{z \in V \mid d(u, z) \le k \text{ or } d(z, v) \le l\},\ E' = \{(z, w) \in E \mid z \in V' \text{ and } w \in V'\}.$$
 31

providing flexibility to adapt to various graph characteristics. 3 any subgraph $\mathcal{N}=(V',E')$ of G and two nodes $a,b\in V'$, 37

advance research in LP, we develop a filtration method tailored 27 ployed to calculate the topology using PH. To apply the For a given subgraph, the Rips filtration [43]-[45] is em-34 Rips filtration, we define an edge-weight function using node 34 labeling that reflects the topology of the given graph. 34

(a) DRNL 36

(b) Degree DRNL 36

Fig. 4. Node labeling on graphs. (a) Node label values without considering 35 the graph structure cannot distinguish between G_1 and G_2 using DRNL. (b) Applying Degree DRNL allows G_1 and G_2 to be distinguished solely by 35 2 node label values. 35

in Fig. 4. (a) DRNL exhibits identical zero-dimensional PIs for G_1 and G_2 , (b) Degree DRNL produces distinct outcomes, effectively distinguishing between 35 the two. 36

Degree DRNL. Zhang et al. [24] introduced DRNL, which 37 Thus, the angle hop can generate subgraphs in various forms, 3 computes the distance from any node to two fixed nodes. For 37 the DRNL $\int_{\text{drnl}}^{(a,b)} 4V' \rightarrow \mathbb{N}$ based on (a,b) of G for any vertex w in V', is defined as 40

$$f_{\text{limb}}^{(a,b)}(w) = 1 + \min(d(w,a), d(w,b)) + q_w(q_w + r_w - 1),$$

where $q_w \in \mathbb{Z}$ and $r_w \in \{0,1\}$ are integers representing the quotient and remainder, respectively, such that d(w, a) + $d(w,b) = 2q_w + r_w$. We call these two nodes, a and b, center used when extracting the subgraph. 39

However, DRNL encounters limitations when the graph is transformed into node-label information. As depicted in Fig. 4a, DRNL assigns the same node labels to different graphs, resulting in identical zero-dimensional PIs (Fig. 5a, Section III-E). To incorporate the local topology of each node with the effects of DRNL, we introduced *Degree DRNL*. For a 40 given subgraph $\mathcal{N} = (V', E')$ of G and center nodes $a, b \in V'$ the Degree DRNL $f_{\text{degden}}^{(a,b)}(V') \to \mathbb{R}$ based on (a,b), for all vertex w in V', is defined as 37

$$I_{\text{degdral}}^{(a,b)}(w) = I_{\text{drnl}}^{(a,b)}(w) + \frac{M - \deg(w)}{M},$$

 $(M - \deg(w))/M$ term above assigns larger values for lower 42 degrees of w. When $M = \deg(w)$, the value of Degree 42 DRNL matches the original DRNL, ensuring that the edges 42 connected to nodes with higher degrees are assigned smaller 4. F. Predicting the Existence of the Target Link 53 values, promoting their earlier emergence in the filtration. Fig. 4b demonstrates various node labels obtained using Degree DRNL, resulting in PIs that can be distinguished from each other (Fig. 5b). 42

Edge-weight function. For a given subgraph $\mathcal{N} = (V', E')$, $f:V'\to\mathbb{N}$ denotes any node labeling function. The edgeweight function $W: E' \to \mathbb{R}$, for any edge (w, z) in E', is Δ defined as 40

$$W(w,z) = \max(f(w), f(z)) + \frac{\min(f(w), f(z))}{\max(f(w), f(z))}$$

occurrence of identical edge weights. 45

D. Persistent Homology 46

Given an edge-weighted subgraph $\mathcal{N} = (V', E', W)$, we construct a Rips filtration and compute its PH. First, we create 4 a link between two target nodes with the following probability: 55 a sequence of subgraphs $\{\mathcal{N}_{\epsilon}\}_{\epsilon\in\mathbb{R}}$, where each $\mathcal{N}_{\epsilon}=(V',E'_{\epsilon})$ and $E'_{\epsilon} = \{e \in E \mid W(e) \leq \epsilon\}$. Second, we convert each subgraph \mathcal{N}_{ϵ} into the Rips complex $K_{\epsilon} = \{ \tau \in \mathbb{X} \mid (w,z) \in \mathcal{N} \mid (w,z) \in \mathcal{N} \}$ E'_{ε} for any two vertices $w, z \in \tau$, where $\mathbb X$ is the power set filtration is obtained as $K_{\epsilon_1} \hookrightarrow K_{\epsilon_2} \hookrightarrow \cdots \hookrightarrow K_{\epsilon_m} = \mathbb{X}$ for 4-loss function as follows: 57 $\epsilon_1 \leq \epsilon_2 \leq \cdots \leq \epsilon_m$. Third, we compute the p-dimensional 47homology group $H_p(K_\epsilon)$ for each complex K_ϵ and track how these groups change as ϵ increases. The persistence diagram 47 D [45] comprises persistence pairs (b,d) representing the ϵ 4 where $BCE(\cdot,\cdot)$ represents the binary cross-entropy loss and 59 d, respectively, in the filtration. 47

E. Persistence Image 48

We convert the persistence diagram into a PI [46]. For a 49 given persistence diagram D, consider a linear transform L: 49 1), 38 $\mathbb{R}^2 \to \mathbb{R}^2$ defined by L(x,y) = (x,y-x). The image set of D under this transformation is denoted as L(D). For each 49 grount (b,d') in L(D), a weight function $\phi_{(b,d')}: \mathbb{R}^2 \to \mathbb{R}$ is 49 defined that assigns a weight to each point in the persistence 49 nodes. These center nodes do not need to be the target nodes 3 diagram. A common choice for $\phi_{(b,d')}$ is the Gaussian function 49 centered at (b, d'). The nonnegative function is defined as h: 49 $\mathbb{R}^2 \to \mathbb{R}$, as $h(x,y) = 1/\log(1+|y|)$. The function h is zero 49 along the horizontal x-axis, and is continuous and piecewise 49 differentiable, satisfying the conditions presented in [46]. The 49 persistence surface $ho_D:\mathbb{R}^2 o\mathbb{R}$ is defined as 49

$$\rho_D(z) = \sum_{\substack{(b,d') \in L(D)}} \frac{h(b,d')\phi_{(b,d')}(z)}{49}$$

The continuous surface ρ_D is discretized into a finitedimensional representation over a predefined grid. This grid 51 consists of n cells, each corresponding to a specific region 51 in the plane. The PI is defined as an array of values $I(\rho_D)_p$ 51 for each cell p. Each $I(\rho_D)_p$ in this array is computed by 51 where M denotes the maximum degree of nodes in N. The 4 integrating the persistence surface ρ_D over the area of cell p: 51

$$I(\rho_D)_p = \iint_{D} \rho_D \, dy \, dx.$$
 52

For the given target nodes (u, v), we sample the (k, l)-angle 54 hop subgraph $\mathcal{N}_{u,v}^{(k,l)}$, denoted as \mathcal{N}^- (Section III-B), assuming 54 that the target link does not exist during this process. On this 54 subgraph, we extract topological features by calculating PH 54 and its vectorization (i.e., the PI, as described in Sections III-D 54 and III-E). The vectorization is calculated for each dimension 54 and concatenated. If $k \neq l$, for symmetry, we repeat the same 54 process with the (l, k)-angle hop subgraph once and consider 54 the average of the two vectors, denoting this vector as x^- To observe the difference in topological features, we consider 54 The min/max term in the definition of W refines values 4/a subgraph N+ obtained by connecting the target link to 54 further, enhancing the discriminative power by reducing the $4N^-$. For this graph, x^+ denotes the vector obtained using 54 this method. 54

To predict the existence of the target link with the vectors 55 x^- and x^+ , we employ an MLP classifier $\Phi: \mathbb{R}^{2(d+1)n^2} \to \mathbb{R}$ 55 where n represents the resolution of the PI, and d denotes the 55 4 maximal dimension of PH. The model predicts the existence of 55

$$z_{uv} = \sigma(\Phi(x)),$$
 56

where x is the concatenation of x^- and x^+ , and σ is the 57 activation function. For the training dataset $\mathcal{X} \subseteq V \times V$, 57 of V'. In K_{ϵ} , a simplex τ is formed when the vertices in 4 comprising positive and negative links corresponding to the 57 r are pairwise connected by edges in \mathcal{N}_{ϵ} . Then, the Rips 4 elements of E and $(V \times V) \setminus E$, respectively, we define the 57

$$\sum_{(u,v)\in\mathcal{X}} BCE(z_{uv}, y_{uv}),$$
58

values at which a homological feature appears b and disappears 4^*y_{uv} denotes the label of the target link (u,v), which is 0 for 59 negative links or 1 for positive links. 59

G. Multiangle PHLP 60

The MA-PHLP maximizes the advantages of PHLP by 6 examining data from various angles through the extraction of 6 subgraphs based on a hyperparameter, the maximum hop (max hop, denoted as H). The types of angles are elements of all $k \leq H, k > 0$. If we define the prediction probability of a 6 PHLP for each type of angle hop as z_i for i = 1, 2, ..., N, then MA-PHLP predicts the likelihood of the link existence 61 with the following probability: 61

where $\alpha = (\alpha_1, ..., \alpha_N) \in \mathbb{R}^N$ is a trainable parameter. We 63 apply the softmax function to the parameter lpha to ensure that 63 the sum of all elements equals 1. Moreover, MA-PHLP is 63 trained using the binary cross-entropy loss. 63

H. Hybrid Method 64

The proposed approach easily integrates with existing subgraph methods. Subgraph methods treat the LP task as a binary classification problem comprising two components: a feature extractor F and classifier P. Vectors with PH information calculated using the proposed methods are incorporated through concatenation before the classifier. The detailed process of the hybrid method is outlined as follows: 65

- 1) **Subgraph Extraction:** For the given graph G and target nodes (u, v), k-hop subgraph $\mathcal{N}_{u,v}^k$ is extracted.
- 2) Feature Extraction: Existing methods extract features $Z = F(\mathcal{N}_{n,v}^k)$ from the subgraph.
- 3) **Persistent Image Calculation:** The methods described in Sections III-C, III-D, and III-E are applied to \mathcal{N}_{i}^{k} where I denotes the PI vector. An MLP $\Phi: \mathbb{R}^m
 ightarrow$ \mathbb{R}^n transforms the PI into a format similar to Z. For the hybrid method of MA-PHLP, $\mathcal{N}_{u,v}^k$ is replaced with multiangle subgraphs, concatenating their PI vectors.
- 4) Classification: Next, $\alpha_1 Z$ and $\alpha_2 \Phi(I)$ are concatenated, where α_1 and α_2 are trainable parameters. The softmax function is applied to the parameter $\alpha = (\alpha_1, \alpha_2)$, ensuring that the sum of elements equals 1, denoted by J. This concatenated vector is classified using the existing method's classifier, P(J). 66

IV. EXPERIMENTS 67

experiments were also conducted using only zero-dimensional homology (MA-PHLP (dim0)). We used the area under the 6 curve (AUC) [47] as an evaluation metric. We repeated all experiments 10 times and reported the mean and standard deviation of the AUC values. 68

A. Experimental Settings 69

pared the proposed model with five heuristic methods, four 7 ts effectiveness in capturing link patterns. 77 embedding-based methods, and two GNN-based models. The 7 Results of Hybrid Methods. Simply concatenating the Pl 78

heuristic methods include the Adamic-Adar (AA) [3], Katz 70 index (Katz) [48], PageRank (PR) [49], Weisfeiler-Lehman 70 graph kernel (WLK) [50], and Weisfeiler-Lehman neural 70 machine (WLNM) [51]. For the embedding-based methods, 70 we applied N2V [21], spectral clustering (SPC) [52], matrix 70 factorization (MF) [19], and LINE [22]. Moreover, SEAL [24] 70 and WP [28] represent the GNN-based methods. 70 **Datasets.** In line with previous studies [24] and [28], we eval-71

TABLE I STATISTICS OF THE DATASETS 70

Dataset	#Nodes	#Edges	Avg. node deg.	Density
USAir	332	2126	12.81	3.86e-2
NS	1589	2742	3.45	2.17e-3
PB	1222	16714	27.36	2.24e-2
Yeast	2375	11693	9.85	4.15e-3
C.ele	297	2148	14.46	4.87e-2
Power	4941	6594	2.67	5.40e-4
Router	5022	6258	2.49	4.96e-4
E.coli	1805	15660	16.24	9.61e-3

uate the performance of our MA-PHLP on the eight datasets in 73 Table I without node attributes: USAir [53], NS [54], PB [55], Yeast [56], C. elegans (C. ele) [57], Power [57], Router [58], 73 and E. coli [59]. The detailed statistics for each dataset are 73 summarized in Table I. 73 Implementation Details. All edges in the datasets were split 74

into training, validation, and testing datasets with proportions 74 of 0.85, 0.05, and 0.1, respectively, ensuring a fair comparison 74 with previous studies. The max hop M was set to 3 for most 74 datasets (Table II). However, for the E. coli dataset, it was 74 reduced to 2 when employing one-dimensional homology due 74 to memory constraints. Conversely, for the Power dataset, the 74 max hop was set to 7 because it does not demand heavy 74 memory and computation time. The sigmoid function was 74 employed for the activation function of the PHLP classifier. 74 Tables III and IV present the results of the hybrid methods 74 using SEAL [24] and WP [28], respectively. For these exper-74 iments, a two-layer MLP was used for the MLP Φ in Step 74 B of Section III-H. We set the k-hops following the original 74 methods, SEAL and WP, and the max hops M of MA-PHLP 74 were set as the k, except for the Power dataset. For the Power 74 dataset, we set the k-hop to 1-hop and max hop M to 7,74 respectively, which is discussed in detail in Section IV-D. 74

B. Results 76

This section evaluates the performance of MA-PHLP. The 68 Results of MA-PHLP. Table II presents the AUC scores 77 for each model on the benchmark datasets. Bold marks the 77 pest results, and underline indicates the second-best results. 77 The results of AA, Katz, WLK, WLNM, N2V, SPC, MF, 77 LINE, and SEAL are copied from SEAL [24] for comparison. 77 The MA-PHLP demonstrates high performance across most 77 datasets, achieving competitive scores. The proposed model 77 outperforms several baselines, falling between the SEAL and 77 WP models in terms of the AUC score. Notably, for the Power 77 Baselines. To evaluate the effectiveness of PHLP, we com- 7 dataset, MA-PHLP achieves the highest AUC score, indicating 77

TABLE II LINK PREDICTION PERFORMANCE MEASURED BY THE AUC ON BENCHMARK DATASETS (90% OBSERVED LINKS) 75

Dataset	USAir	NS	PB	Yeast	C. ele	Power	Router	E. coli
AA	95.06 ± 1.03	94.45 ± 0.93	92.36 ± 0.34	89.43 ± 0.62	86.95 ± 1.40	58.79 ± 0.88	56.43 ± 0.51	95.36 ± 0.34
Katz	92.88 ± 1.42	94.85 ± 1.10	92.92 ± 0.35	92.24 ± 0.61	86.34 ± 1.89	65.39 ± 1.59	38.62 ± 1.35	93.50 ± 0.44
PR	94.67 ± 1.08	94.89 ± 1.08	93.54 ± 0.41	92.76 ± 0.55	90.32 ± 1.49	66.00 ± 1.59	38.76 ± 1.39	95.57 ± 0.44
WLK	96.63 ± 0.73	98.57 ± 0.51	93.83 ± 0.59	95.86 ± 0.54	89.72 ± 1.67	82.41 ± 3.43	87.42 ± 2.08	96.94 ± 0.29
WLNM	95.95 ± 1.10	98.61 ± 0.49	93.49 ± 0.47	95.62 ± 0.52	86.18 ± 1.72	84.76 ± 0.98	94.41 ± 0.88	97.21 ± 0.27
N2V	91.44 ± 1.78	91.52 ± 1.28	85.79 ± 0.78	93.67 ± 0.46	84.11 ± 1.27	76.22 ± 0.92	65.46 ± 0.86	90.82 ± 1.49
SPC	74.22 ± 3.11	89.94 ± 2.39	83.96 ± 0.86	93.25 ± 0.40	51.90 ± 2.57	91.78 ± 0.61	68.79 ± 2.42	94.92 ± 0.32
MF	94.08 ± 0.80	74.55 ± 4.34	94.30 ± 0.53	90.28 ± 0.69	85.90 ± 1.74	50.63 ± 1.10	78.03 ± 1.63	93.76 ± 0.56
LINE	81.47 ± 10.71	80.63 ± 1.90	76.95 ± 2.76	87.45 ± 3.33	69.21 ± 3.14	55.63 ± 1.47	67.15 ± 2.10	82.38 ± 2.19
SEAL	97.10 ± 0.87	98.25 ± 0.61	95.07 ± 0.39	97.60 ± 0.33	89.54 ± 1.23	86.21 ± 2.89	95.07 ± 1.63	97.57 ± 0.30
WP	98.20 ± 0.57	99.12 ± 0.45	95.42 ± 0.25	98.21 ± 0.17	93.30 ± 0.91	92.11 ± 0.76	97.15 ± 0.29	98.54 ± 0.19
MA-PHLP	97.10 ± 0.69	98.88 ± 0.45	95.10 ± 0.26	97.98 ± 0.22	90.33 ± 1.16	93.05 ± 0.45	96.30 ± 0.43	97.64 ± 0.20
MA-PHLP (dim0)	97.10 ± 0.73	98.78 ± 0.65	95.06 ± 0.28	97.98 ± 0.23	89.88 ± 1.22	93.37 ± 0.41	96.37 ± 0.43	97.72 ± 0.17

81

TABLE III AUC SCORES FOR SEAL WITH AND WITHOUT TDA FEATURES

Dataset	SEAL	MA-PHLP + SEAL	
USAir	97.10 ± 0.87	97.41 ± 0.62	_
NS	98.25 ± 0.61	98.97 ± 0.30	
PB	95.07 ± 0.39	95.14 ± 0.39	
Yeast	97.60 ± 0.33	97.93 ± 0.18	
C.ele	89.54 ± 1.23	89.61 ± 1.12	
Power	86.21 ± 2.89	95.53 ± 0.33	
Router	95.07 ± 1.63	96.15 ± 1.26	
E.coli	97.57 ± 0.30	97.93 ± 0.34	7

TABLE V 144°C SCORES FOR MA-PHLP (DIM0) BY NODE LABELING 79

Dataset	DRNL	Degree DRNL	
USAir	96.73 ± 0.64	97.10 ± 0.73	
NS	98.35 ± 0.58	98.78 ± 0.65	
PB	94.49 ± 0.27	95.06 ± 0.28	
Yeast	97.42 ± 0.27	97.98 ± 0.23	
C.ele	88.97 ± 1.37	89.88 ± 1.22	
Power	88.51 ± 0.81	$\boldsymbol{92.77 \pm 0.47}$	
Router	96.21 ± 0.53	96.37 ± 0.43	
E.coli	97.15 ± 0.18	97.72 ± 0.17 85	79

vector calculated using PHLP with the final output of the 8 AUC scores when used with Degree DRNL than with DRNL. calculated using PHLP can serve as additional inputs. 80

> TABLE IV AUC SCORES FOR WALKPOOL (WP) WITH AND WITHOUT TDA FEATURES 80

			_
Dataset	WP	MA-PHLP + WP	
USAir	98.20 ± 0.57	98.27 ± 0.53	Г
NS	99.12 ± 0.45	99.24 ± 0.32	
PB	95.42 ± 0.25	95.58 ± 0.32	
Yeast	98.21 ± 0.17	98.25 ± 0.18	
C.ele	93.30 ± 0.91	93.32 ± 0.71	
Power	92.11 ± 0.76	96.09 ± 0.38	
Router	97.15 ± 0.29	97.18 ± 0.24	
E.coli	98.54 ± 0.19	98.57 ± 0.20	8

Similarly, we attempted to hybridize PHLP with the current 82 SOTA model, WP. As presented in Table IV, a slight increase 82 in AUC scores is observed for all datasets. The Power dataset 82 demonstrates significant improvement. 82

C. Ablation Study 83

Effects of Degree DRNL. To assess the proposed Degree 84 DRNL regarding the influence of incorporating degree in-84 formation on model performance, we conducted experiments 84 using DRNL and Degree DRNL and compared the results. We 8. Angles of PHLP. Table VI presents the performance of 88

SEAL model increases AUC scores for all datasets, as listed 86 The substantial improvement observed in the Power dataset is in Table III. This outcome suggests that when the SEAL 80 hoteworthy, where Degree DRNL yields an increase of over 86 model lacks topological information for inference, the vectors 8 points in the AUC score. These experiments demonstrate the importance of incorporating degree information into node 86 labeling, revealing its efficacy in enhancing the performance 86 of MA-PHLP. 86

TABLE VI AUC scores for MA-PHLP (DIM0) WITH VARIOUS (k,l)-ANGLE HOPS 144

Dataset	(1,0)		(1,1)	
USAir	$96.15 \pm 0.$	83	95.87 ± 0.83	Г
NS	$98.28 \pm 0.$	55	98.66 ± 0.66	1
PB	$93.95 \pm 0.$	34	94.46 ± 0.36	ı
Yeast	$95.52 \pm 0.$	32	97.31 ± 0.20	ı
C.ele	$86.18 \pm 2.$	12	87.57 ± 1.20	ı
Power	$73.39 \pm 0.$	99	$\textbf{77.83} \pm \textbf{1.44}$	ı
Router	$92.09 \pm 0.$	57	93.25 ± 0.47	ı
E.coli	$96.94 \pm 0.$	24	96.95 ± 0.28	
Dataset	(2,0)	(2,1)	(2,2)	Γ
USAir	96.69 ± 0.92	96.74 ± 0.84	96.85 ± 0.83	3
NS	98.72 ± 0.51	98.59 ± 0.65	98.56 ± 0.47	1
PB	94.78 ± 0.30	94.73 ± 0.30	94.82 ± 0.24	4
Yeast	97.71 ± 0.18	97.66 ± 0.27	97.58 ± 0.28	:
C.ele	88.86 ± 1.48	89.16 ± 1.31	89.08 ± 1.07	1
Power	80.27 ± 1.07	83.90 ± 1.29	86.12 ± 0.86	3
Router	95.65 ± 0.44	95.71 ± 0.39	94.51 ± 0.69	
E.coli	97.26 ± 0.16	97.29 ± 0.24	97.41 ± 0.21	1 8

used MA-PHLP (dim0) for the experiments. Table V presents 8 PHLP (dim 0) concerning various (k,l)-angle hop subgraphs. 88 the AUC scores of MA-PHLP (dim0) with DRNL and Degree 8 Section III-B proposed angle hop subgraphs as an alternative 88 DRNL. Across all datasets, MA-PHLP (dim0) yields higher get to traditional k-hop subgraphs to capture information from 88 datasets. 88

posed method extracts superior topological information com- 8 for optimal hyperparameters. 94 pared to the conventional TLC-GNN approach, we conducted 89 the same experiments. The TLC-GNN was constructed by 89 augmenting the graph convolutional network (GCN) model with PI information. We replaced the PI component of the 89 TLC-GNN model with the PI vector produced by MA-PHLP, resulting in the MA-PHLP-GNN. The zero-dimensional PH was employed in this study for fair comparison because TLC-GNN used only zero-dimensional PH. Additionally, we conducted experiments where the PH vectors were replaced with zero vectors, denoted as GCN. Table VII presents the experimental results. 89

TABLE VII COMPARISON OF AUC SCORES WITH TLC-GNN 89

Dataset	GCN	TLC-GNN	MA-PHLP-GNN
Cora CiteSeer	92.20 ± 0.83 86.52 ± 1.29	93.16 ± 0.56 87.38 ± 0.97	93.14 ± 0.93 92.08 ± 0.53
PubMed	96.63 ± 0.15	96.30 ± 0.25	98.07 ± 0.07

following widely used benchmark datasets with node attributes: Cora [60], CiteSeer [61], and PubMed [62]. The 9 in Table V. 100 MA-PHLP-GNN outperformed the TLC-GNN significantly on 91 the CiteSeer and PubMed datasets while achieving similar 9 B. Analysis of the Power Dataset 101 performance on the Cora dataset. The TLC-GNN does not 9 exhibit performance improvement for the PubMed dataset despite adding topological information. However, the proposed MA-PHLP-GNN demonstrates substantial performance enhancement. Although the proposed model is developed for datasets without node attributes, it exhibits effective performance on datasets with node attributes through hybridization with the existing methods: SEAL+PHLP, WP+PHLP, and MA-PHLP-GNN. These experiments verify the versatility and o effectiveness of this approach across diverse datasets. 91

D. The hops and max hops of the hybrid methods 92

binations of these parameters. Given that the hybrid methods of these parameters. Given that the hybrid methods e.g., MA-PHLP + SEAL and MA-PHLP + WP) exhibited 94 To address this problem, we applied Degree DRNL, which 104 the highest performance improvement on the Power dataset, 94 incorporates degree information. The points in Fig. 7 are 104

various perspectives. Moreover, MA-PHLP is proposed to 8 we conducted experiments on the Power dataset. Table VIII 94 aggregate information from multiple angles. To investigate 8 presents the AUC scores for varying hop (SEAL or WP) and 94 performance when extracting information from specific angles, 8 max hop (MA-PHLP). For each target node, while the SEAL 94 we conducted experiments using PHLP at different angles. We sand WP extract a k-hop subgraph, the MA-PHLP calculates 94used only zero-dimensional PIs for the experiments. Overall, 8 the PIs based on a subgraph with max hop M. When the 94 the results demonstrate that the performance is favorable for 8 parameter M is 1 or 2, the AUC scores are not robust to 94cases corresponding to the k-hop subgraph (where k and $l_{\rm R}/k$, showing large variations; however, when M is 3, although 94 are the same). However, some datasets perform better when sMA-PHLP + SEAL still exhibits variations up to 2, MA-PHLP od k and l differ, highlighting the importance of varying angles 8+ WP shows only minor variations. As M exceeds 3, the AUC 94 to achieve the best performance. Therefore, using MA-PHLP 8 scores of MA-PHLP + SEAL and MA-PHLP + WP are robust 94 is recommended to maximize performance consistently across 8 to k, exhibiting little sensitivity (maximum 0.84) to variations. 94 This suggests that setting both the hop and the max hop to 94 Comparison with TLC-GNN. To demonstrate that the pro-

V. ANALYSIS 95

8A. Analysis of the PHLP 98

Figs. 6 and 7 visualize concatenated PIs to illustrate how go MA-PHLP (dim0) extracts topological features for LP. We let $\mathcal{Z}\subseteq\mathbb{R}^{2 imes k imes r^2}$ be a set of vectors calculated by MA-PHLP, where k is the number of angles, and r denotes the PI 99 resolution. For $(z_1, z_2) \in \mathcal{Z}, z_1 \in \mathbb{R}^{k \times r^2}$ is the concatenation 99 of PIs for all angles with a target link, and $z_2 \in \mathbb{R}^{k \times r^2}$ the concatenation for cases without a target link. We consider on a function $h: \mathbb{R}^{k \times r^2} \to \mathbb{R}$ defined as $h(\vec{v}_1, ..., \vec{v}_k) =$ $\| \mathbf{v}_i \|_{\mathbf{v}} \| \mathbf{v}_i \|_{1}$, where $\vec{v}_i \in \mathbb{R}^{r^2}$ are PIs, and $\| \cdot \|_{1}$ denotes the L_1 -norm. For visualization, we transform \mathcal{Z} into points in \mathbb{R}^2 using the function G, defined as $G(z_1, \overline{z_2}) = (h(z_1), h(\overline{z_2}))$ for each $(z_1, z_2) \in \mathcal{Z}$.

We plot distributions of points separately for positive and 100 negative links, considering both DRNL and Degree DRNL. 100 The distributions of the NS and Yeast datasets between positive 100 and negative links display significant differences, supporting 100 The TLC-GNN is employed when the given data includes 9 the highest performance in Table V. In contrast, the distribunode attributes. Hence, we conducted experiments using the other tions for the C. ele and Power datasets are the most similar 100 9 when using Degree DRNL, correlating with the lowest scores 100

In most LP models, including the SOTA models SEAL and 102 WP, the Power dataset tends to have the lowest AUC scores 102 among the datasets. In Table II, the Power dataset is at the 102 pottom in terms of scores across models (e.g., WLK, WLNM, 102 MF, LINE, SEAL, and WP). However, the proposed model 102 achieves the highest AUC scores on the Power dataset among 102 baseline models, prompting an analysis of the reasons for this 102 performance. 102 In Fig. 7, for DRNL, the Power dataset exhibits horizontal 103

lines, indicating that the values $h(z_2)$ have a limited range of 103 outcomes for vectors z_2 in cases without the target link; thus, 103 the set of values $h(z_2)$ with the same value should be spread 103 Determining the hyperparameters such as "hop" and "max 9 but. This observation implies that, for numerous subgraphs 103 hop" is crucial for the performance of the hybrid method. We 94the calculation of PIs yields similar outcomes despite the 103 conducted experiments to explore the effects of different com- 9 differences in their topological structures, posing a challenge 103

Fig. 6. Visualization of vectors calculated using MA-PHLP (dim0). For each dataset, the first and second columns depict the projections of persistence images (PIs) when double radius node labeling (DRNL) is applied for node labeling, and the third and fourth columns represent the values obtained when Degree DRNL is applied. The first and third columns plot the values produced from positive edges (i.e., target nodes labeled 1), and the second and fourth columns plot the values produced from negative edges (i.e., target nodes labeled 0). 95

TABLE VIII AUC scores on the power dataset varying k-hop and max hop M of the hybrid methods 93

	MA-PHLP (with max hop M)						
M	1	2	3	4	5	6	7
k	l	not robust to k			robus	t to k 87	
9 1	86.66 ± 0.56	90.22 ± 0.79	92.63 ± 0.54	94.50 ± 0.41	95.12 ± 0.40	95.46 ± 0.38	95.53 ± 0.33
1 542 542	91.40 ± 0.88	90.20 ± 0.80	92.50 ± 0.59	94.39 ± 0.39	95.00 ± 0.46	95.31 ± 0.40	95.39 ± 0.36
₩	93.21 ± 0.64	92.79 ± 0.60	92.57 ± 0.58	94.22 ± 0.43	94.86 ± 0.42	95.21 ± 0.45	95.19 ± 0.44
§ 4	94.51 ± 0.58	94.23 ± 0.34	94.21 ± 0.41	94.31 ± 0.40	94.80 ± 0.37	95.10 ± 0.33	95.27 ± 0.36
SEAL [M] I Hop]	94.73 ± 0.56	94.45 ± 0.44	94.61 ± 0.51	94.80 ± 0.53	94.91 ± 0.54	95.13 ± 0.51	95.19 ± 0.46
因 496	94.58 ± 0.94	94.81 ± 0.32	94.87 ± 0.42	95.06 ± 0.50	95.11 ± 0.46	95.25 ± 0.45	95.25 ± 0.46
7	93.97 ± 0.73	94.22 ± 0.35	94.43 ± 0.44	94.78 ± 0.45	94.92 ± 0.39	94.99 ± 0.52	94.98 ± 0.39
k	not rob	ust to k			robust to k 8	7	
<u>ධ</u> 1	87.53 ± 0.73	91.48 ± 0.64	93.55 ± 0.48	94.84 ± 0.43	95.53 ± 0.46	95.88 ± 0.31	96.09 ± 0.38
의 6 72	92.51 ± 0.58	91.59 ± 0.77	93.49 ± 0.58	94.83 ± 0.53	95.56 ± 0.59	95.88 ± 0.38	96.06 ± 0.45
[] 9 ₃	94.04 ± 0.46	93.07 ± 0.67	93.61 ± 0.52	94.86 ± 0.54	95.61 ± 0.60	95.86 ± 0.40	96.00 ± 0.52
2 4	93.55 ± 0.71	92.61 ± 0.76	93.68 ± 0.55	94.85 ± 0.55	95.59 ± 0.58	95.87 ± 0.38	96.03 ± 0.45
1 2 3 4 5 6 6 7 6	93.40 ± 0.70	92.64 ± 0.69	93.66 ± 0.53	94.84 ± 0.54	95.55 ± 0.59	95.85 ± 0.39	96.04 ± 0.52
6 6	93.34 ± 0.75	92.66 ± 0.72	93.64 ± 0.55	94.91 ± 0.57	95.55 ± 0.58	95.85 ± 0.44	95.98 ± 0.55
7	93.30 ± 0.73	92.61 ± 0.69	93.65 ± 0.56	94.87 ± 0.56	95.56 ± 0.58	95.90 ± 0.39	96.01 ± 0.52

Fig. 7. Visualization of vectors calculated using MA-PHLP (dim0). 96

score increase, as listed in Table V. 104

The performance of heuristic methods, such as AA, Katz, and PR, tend to be similar to random guessing on datasets with low density, particularly in the cases of the Power and Router 105

distributed without horizontal lines, leading to the highest 10 datasets. Embedding methods also display low performance. 105 In contrast, the GNN-based methods demonstrate improved 105

performance using subgraphs and the network learning ability. 105 However, the performance for the Power dataset is signifi-

1 Cantly lower than that for the Router dataset. 105

TABLE IX VERAGE NUMBER OF NODES IN SUBGRAPHS FOR THE POWER AND ROUTER DATASETS

79 0

	Power		Router		
	positive	negative	positive	negative	
1-hop	8.03	9.12	5.11	6.72	
2-hop	22.26	24.85	29.21	13.94	
3-hop	43.11	49.50	120.35	55.22	
4-hop	71.72	82.16	411.87	176.34	
5-hop	99.28	116.75	740.80	411.35	
6-hop	136.23	158.27	1272.42	852.13	
7-hop	182.22	210.35	1835.46	1498.58	

demonstrate that the proposed PHLP method achieves competitive performance across benchmark datasets, even SOTA performance, especially on the Power dataset. Additionally, 11 when integrated with existing GNN-based methods, PHLP 111 improves performance across all datasets. By analyzing the topological information of the given graphs, PHLP addresses the limitations of GNN-based methods and enhances overall performance. As demonstrated, PHLP provides explainable algorithms without relying on complex deep learning techniques, providing insight into the factors that significantly influence 111 performance for the LP problem of graph data. 111

REFERENCES 111

To bridge this gap, we analyzed subgraphs with node labeling. The number of nodes within the selected subgraphs 10 1 Z. Zhang, P. Cui, and W. Zhu, "Deep learning on graphs: A survey," between positive and negative links was significantly different on the Router dataset but not the Power dataset (Table IX). 10 2 This difference is attributed to the presence of the hub nodes in 107 the Router dataset, which are connected to numerous nodes. 10 31 Thus, the subgraphs corresponding to positive links tend to 10 have more nodes than those corresponding to negative links. 107 4 L.

TABLE X COMPARISON OF MODELS BY MAX HOP SETTINGS ON THE POWER AND ROUTER DATASETS

Model MA-PHLP MA-PHLP WP MA-PHLP + WP Center random target random 1-hop 78.05 ± 1.20 85.66 ± 0.86 80.24 ± 0.95 87.53 ± 0.73 2-hop 86.34 ± 1.04 90.52 ± 0.73 89.40 ± 1.00 91.59 ± 0.77 3-hop 89.65 ± 0.64 91.90 ± 0.58 93.61 ± 0.52 92.11 ± 0.77 4-hop 91.38 ± 0.53 92.67 ± 0.55 91.67 ± 0.80 94.85 ± 0.55 5-hop 92.27 ± 0.40 93.06 ± 0.44 91.39 ± 0.78 95.55 ± 0.59 6-hop 7-hop 93.16 ± 0.49 $\mathbf{93.37} \pm \mathbf{0.41}$ 92.77 ± 0.47 91.55 ± 0.83 95.85 ± 0.44 93.06 ± 0.43 91.50 ± 0.89 96.01 ± 0.52 1-hop 93.12 ± 0.45 93.40 ± 0.46 94.48 ± 0.36 94.83 ± 0.41 2-hop 95.96 ± 0.40 95.70 ± 0.45 97.15 ± 0.27 97.22 ± 0.23 3-hop 96.38 ± 0.41 96.11 ± 0.43 97.28 ± 0.24 97.42 ± 0.27 OOM1 4-hop 96.45 ± 0.40 96.22 ± 0.43 OOM 5-hop $\mathbf{96.46} \pm \mathbf{0.42}$ $\mathbf{96.24} \pm \mathbf{0.48}$ OOM OOM OOM 6-hop 96.44 ± 0.45 OOM 7-hop 96.43 ± 0.45 96.19 ± 0.49 OOM OOM

However, the Power dataset does not have hub nodes, and the number of nodes in the subgraph of positive links remains small. We randomly changed the center nodes (a,b)for node labeling $\int_{\text{degdral}}^{(a,b)} |ing|$ reasing the performance, as listed in Table X. This outcome highlights that setting target nodes as the center nodes may not effectively analyze the topological structure in the case of small graphs. Furthermore, the performance for the Power dataset continues to increase with increasing hops (Table X), achieving an AUC score of 95.87, 109 which is significantly better than that of 92.11 for WP. 109

VI. CONCLUSION 110

This paper proposes PHLP, an explainable method that applies PH to analyze the topological structure of graphs to overcome the limitations of GNN-based methods for LP. By employing the proposed methods, such as angle hop subgraphs and Degree DRNL, PHLP improves the analysis of the topological structure of graphs. The experimental results

IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 1, pp. 249–270, 2020. 112 Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, "A comprehensive survey on graph neural networks," *IEEE transactions on* 113

neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020. 113 L. A. Adamic and E. Adar, "Friends and neighbors on the web," Social 114

networks, vol. 25, no. 3, pp. 211-230, 2003. 114 L. Yao, L. Wang, L. Pan, and K. Yao, "Link prediction based on common-neighbors for dynamic social network," *Procedia Computer* Science, vol. 83, pp. 82–89, 2016. 115

[5] M. Fire, L. Tenenboim, O. Lesser, R. Puzis, L. Rokach, and Y. Elovici. "Link prediction in social networks using computationally efficient 116 topological features," in 2011 IEEE third international conference on privacy, security, risk and trust and 2011 IEEE third international 116 conference on social computing. IEEE, 2011, pp. 73–80. 116

S. M. Kazemi and D. Poole, "Simple embedding for link prediction in knowledge graphs," Advances in neural information processing systems, vol. 31, 2018. 11

M. Nayyeri, G. M. Cil, S. Vahdati, F. Osborne, A. Kravchenko, S. Angioni, A. Salatino, D. R. Recupero, E. Motta, and J. Lehmann, "Link prediction of weighted triples for knowledge graph completion within the scholarly domain," *Ieee Access*, vol. 9, pp. 116 002–116 014, 2021. 118 [8] Z. Stanfield, M. Coşkun, and M. Koyutürk, "Drug response prediction 119

as a link prediction problem," Scientific reports, vol. 7, no. 1, p. 40321, 119 2017. 11

E. Nasiri, K. Berahmand, M. Rostami, and M. Dabiri, "A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding," Computers in Biology and Medicine, vol. 137, p. 120 108 104772, 2021. 120

[10] C. Lei and J. Ruan, "A novel link prediction algorithm for reconstructing protein–protein interaction networks by topological similarity," *Bioinfor*matics, vol. 29, no. 3, pp. 355–364, 2013. 12

1(191) I. A. Kovács, K. Luck, K. Spirohn, Y. Wang, C 109 W. Bian, D.-K. Kim, N. Kishore, T. Hao et al., "Network-based prediction of protein interactions," Nature communications, vol. 10, 122

109 no. 1, p. 1240, 2019. **12** 1([92] N. Brockmann, E. Elson Kosasih, and A. Brintrup, "Supply chain link

prediction on uncertain knowledge graph," ACM SIGKDD Explorations 109 Newsletter, vol. 24, no. 2, pp. 124–130, 2022.

A. Brintrup, P. Wichmann, P. Woodall, D. McFarlane, E. Nicks, and 124 109 W. Krechel, "Predicting hidden links in supply networks," Complexity, 124

vol. 2018, pp. 1–12, 2018. † 24 L. Lü and T. Zhou, "Link prediction in complex networks: A survey," Physica A: statistical mechanics and its applications, vol. 390, no. 6, 125 pp. 1150–1170, 2011. **125**

A.-L. Barabási and R. Albert, "Emergence of scaling in random net- 126 works," science, vol. 286, no. 5439, pp. 509–512, 1999. 126

T. Zhou, L. Lü, and Y.-C. Zhang, "Predicting missing links via local information," The European Physical Journal B, vol. 71, pp. 623–630, 127 2009.

S. Brin and L. Page, "Reprint of: The anatomy of a large-scale 128 hypertextual web search engine," Computer networks, vol. 56, no. 18, 128

pp. 3825–3833, 2012. 128
G. Jeh and J. Widom, "Simrank: a measure of structural-context [18] similarity," in Proceedings of the eighth ACM SIGKDD international 129 conference on Knowledge discovery and data mining, 2002, pp. 538-129 543. 1**2**9

OOM denotes "out of GPU memory". 111

	_		
[19] Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques fo	_	[(1(1()	Edelsbrunner, Letscher, and Zomorodian, "Topological persistence and 156
recommender systems," Computer, vol. 42, no. 8, pp. 30–37, 2009.	<u>3</u> 0		simplification," Discrete & computational geometry, vol. 28, pp. 511-
[20] B. Perozzi, R. Al-Rfou, and S. Skiena, "Deepwalk: Online learning	-	31	533, 2002, 156
of social representations," in <i>Proceedings of the 20th ACM SIGKDI</i>	1	[46]	H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, 157
international conference on Knowledge discovery and data mining	1	31	S. Chepushtanova, E. Hanson, F. Motta, and L. Ziegelmeier, "Persistence 157
2014, pp. 701–710. 131			images: A stable vector representation of persistent homology," <i>Journal</i> 157
[21] A. Grover and J. Leskovec, "node2vec: Scalable feature learning fo	d 1	32	of Machine Learning Research, vol. 18, 2017. 157
networks," in Proceedings of the 22nd ACM SIGKDD international	ıl 1	<u>[47]</u>	A. P. Bradley, "The use of the area under the roc curve in the evaluation 158
conference on Knowledge discovery and data mining, 2016, pp. 855-	31	32	of machine learning algorithms," <i>Pattern recognition</i> , vol. 30, no. 7, pp. 158
864. 132	7		1145–1159, 1997. 158
[22] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, "Line	11	[48]	L. Katz, "A new status index derived from sociometric analysis," 159
Large-scale information network embedding," in <i>Proceedings of the 24th</i>	-	33	Psychometrika, vol. 18, no. 1, pp. 39–43, 1953. 159
international conference on world wide web, 2015, pp. 1067–1077.		V-	S. Brin and L. Page, "The anatomy of a large-scale hypertextual web 160
			search engine," Computer networks and ISDN systems, vol. 30, no. 1-7, 160
[23] T. N. Kipf and M. Welling, "Variational graph auto-encoders," arXi	И	J 4	pp. 107–117, 1998, 160
preprint arXiv:1611.07308, 2016. 134	٠.	[50]	N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, 161
[24] M. Zhang and Y. Chen, "Link prediction based on graph neural net		7	and K. M. Borgwardt, "Weisfeiler-lehman graph kernels." Journal of 161
works," Advances in neural information processing systems, vol. 31	41	17	Machine Learning Research, vol. 12, no. 9, 2011. 161
2018. 117		[51]	M. Zhang and Y. Chen, "Weisfeiler-lehman neural machine for link 162
[25] S. Yun, S. Kim, J. Lee, J. Kang, and H. J. Kim, "Neo-gnns: Neighbor	년1	[51]	prediction," in <i>Proceedings of the 23rd ACM SIGKDD international</i> 162
hood overlap-aware graph neural networks for link prediction," Advance	<i>s</i> 1	36	conference on knowledge discovery and data mining, 2017, pp. 575–
in Neural Information Processing Systems, vol. 34, pp. 13683-13694	<u>L</u> 1	3 6	583. 162
2021. 136			
[26] C. Mavromatis and G. Karypis, "Graph infoclust: Leveraging cluster	1	[52]	L. Tang and H. Liu, "Leveraging social media networks for classification." Pata Mining and Knowledge Discovery, vol. 23, pp. 447, 478
level node information for unsupervised graph representation learning,		3 7	tion," Data Mining and Knowledge Discovery, vol. 23, pp. 447–478,
arXiv preprint arXiv:2009.06946, 2020. 137	٦,		2011. 161
[27] Z. Yan, T. Ma, L. Gao, Z. Tang, and C. Chen, "Link prediction with	h 1		V. Batagelj and A. Mrvar, "Pajek datasets," http://vlado.fmf.uni-lj.si/pub/
persistent homology: An interactive view," in <i>International conference</i>	7 3		hetworks/data/, 2006. 164
on machine learning. PMLR, 2021, pp. 11659–11669. 138	۱ ا	[94]	M. E. Newman, "Finding community structure in networks using the
	1	20	eigenvectors of matrices," <i>Physical review E</i> , vol. 74, no. 3, p. 036104, 165
[28] L. Pan, C. Shi, and I. Dokmanić, "Neural link prediction with wall pooling," arXiv preprint arXiv:2110.04375, 2021. 139	N		2006. 165
	٠,		R. Ackland <i>et al.</i> , "Mapping the us political blogosphere: Are con-
[29] S. Huber, "Persistent homology in data science," in <i>Data Science</i>	-	40	servative bloggers more prominent?" in <i>BlogTalk Downunder</i> 2005 166
Analytics and Applications: Proceedings of the 3rd International Date	a 1	40	Conference, Sydney. BlogTalk Downunder 2005 Conference, Sydney, 166
Science Conference-iDSC2020. Springer, 2021, pp. 81–88. 140			2005. 166
[30] T. K. Dey and Y. Wang, Computational topology for data analysis	ì.	[56]	C. Von Mering, R. Krause, B. Snel, M. Cornell, S. G. Oliver, S. Fields, 167
Cambridge University Press, 2022. 141			and P. Bork, "Comparative assessment of large-scale data sets of protein-
[31] M. Horn, E. De Brouwer, M. Moor, Y. Moreau, B. Rieck, and	d 1	42	protein interactions," <i>Nature</i> , vol. 417, no. 6887, pp. 399–403, 2002. 167
K. Borgwardt, "Topological graph neural networks," arXiv preprin	1	4 [5 7]	D. J. Watts and S. H. Strogatz, "Collective dynamics of 'small-168
arXiv:2102.07835, 2021. 142	7		world'networks," <i>nature</i> , vol. 393, no. 6684, pp. 440–442, 1998. 169
[32] X. Ye, F. Sun, and S. Xiang, "Treph: A plug-in topological layer fo	d 1	[5 8]	N. Spring, R. Mahajan, and D. Wetherall, "Measuring isp topologies 169
graph neural networks," <i>Entropy</i> , vol. 25, no. 2, p. 331, 2023. 143	- '		with rocketfuel," ACM SIGCOMM Computer Communication Review, 169
[33] M. Carrière, F. Chazal, Y. Ike, T. Lacombe, M. Royer, and Y. Umeda	1	44	vol. 32, no. 4, pp. 133–145, 2002. 169
"Perslay: A neural network layer for persistence diagrams and new	-		M. Zhang, Z. Cui, S. Jiang, and Y. Chen, "Beyond link prediction: 170
graph topological signatures," in <i>International Conference on Artificia</i>			Predicting hyperlinks in adjacency space," in <i>Proceedings of the AAAI</i> 170
Intelligence and Statistics. PMLR, 2020, pp. 2786–2796, 144	1	44	Conference on Artificial Intelligence, vol. 32, no. 1, 2018. 170
[34] F. M. Taiwo, U. Islambekov, and C. G. Akcora, "Explaining the power	- A	[60]	A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, "Automating 171
	-	10	the construction of internet portals with machine learning," <i>Information</i> 171
of topological data analysis in graph machine learning," arXiv preprin	4 1	45	Retrieval, vol. 3, pp. 127–163, 2000. 171
arXiv:2401.04250, 2024. 145		Γ 6 11	C. L. Giles, K. D. Bollacker, and S. Lawrence, "Citeseer: An automatic 172
[35] T. Wen, E. Chen, and Y. Chen, "Tensor-view topological graph neural	4 1	46.1	citation indexing system," in <i>Proceedings of the third ACM conference</i> 172
network," arXiv preprint arXiv:2401.12007, 2024. 146	_		on Digital libraries, 1998, pp. 89–98. 172
[36] J. Immonen, A. Souza, and V. Garg, "Going beyond persistent homolog	y 1	17 [62]	G. Namata, B. London, L. Getoor, B. Huang, and U. Edu, "Query-driven 173
using persistent homology," Advances in Neural Information Processing	g 1	[62]	betwee curveying for collective classification, in 10th intermediate
Systems, vol. 36, 2024. 147			active surveying for collective classification," in 10th international
[37] C. Ying, X. Zhao, and T. Yu, "Boosting graph pooling with persisten	1	48	workshop on mining and learning with graphs, vol. 8, 2012, p. 1. 173
homology," arXiv preprint arXiv:2402.16346, 2024. 148		-	
[38] Q. Zhao and Y. Wang, "Learning metrics for persistence-based sum	- 1	49	
maries and applications for graph classification," Advances in Neura			
Information Processing Systems, vol. 32, 2019. 149	٦'	10	
[39] Y. Chen, B. Coskunuzer, and Y. Gel, "Topological relational learning	0 1	50	
on graphs," Advances in neural information processing systems, vol. 34			
pp. 27 029–27 042, 2021. 150	9 1	JU	
		EA	
[40] Q. Zhao, Z. Ye, C. Chen, and Y. Wang, "Persistence enhanced graph			
neural network," in International Conference on Artificial Intelligence	4 1	DT.	
and Statistics. PMLR, 2020, pp. 2896–2906, 151	7		
[41] M. Nickel, X. Jiang, and V. Tresp, "Reducing the rank in relational			
factorization models by including observable patterns," Advances in	<u>n</u> 1	52	
Neural Information Processing Systems, vol. 27, 2014. 152			
[42] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, "struc2vec: Learning	g 1	53	
node representations from structural identity," in <i>Proceedings of the 23rd</i>			
ACM SIGKDD international conference on knowledge discovery and	d 1	53	
data mining, 2017, pp. 385–394. 153			
[43] L. Vietoris, "Über den höheren zusammenhang kompakter räume und	d 1	54	
eine klasse von zusammenhangstreuen abbildungen," Mathematisch			
Annalen, vol. 97, no. 1, pp. 454–472, 1927. 154	٦.	٠.	
[44] M. Gromov, "Hyperbolic groups," in <i>Essays in group theory</i> . Springer	1	35	
1987 nn 75–263 155	2	JJ	

1987, pp. 75–263. 155