OIPE

DATE: 02/06/2002 RAW SEQUENCE LISTING PATENT APPLICATION: US/10/053,291 TIME: 09:32:54

Input Set : N:\Crf3\RULE60\10053291.raw Output Set: N:\CRF3\02062002\J053291.raw

The transport of the State of the contract of the State o

```
1 <110> APPLICANT: Stuhlmann, Heidi
         Xiong, Jing-Wei
         Taubman, Mark B.
 4 <120> TITLE OF INVENTION: VASCULAR ENDOTHELIAL ZINC FINGER 1 GENE
         AND PROTEIN AND USES THEREOF
 6 <130> FILE REFERENCE: 31200
 8 <140> CURRENT APPLICATION NUMBER: 10/053,291
                                                       ENTERED
 9 <141> CURRENT FILING DATE: 2002-01-17
11 <150> PRIOR APPLICATION NUMBER: US/09/083,290A
12 <151> PRIOR FILING DATE: 1998-05-22
15 <160> NUMBER OF SEQ ID NOS: 13
16 <170> SOFTWARE: FastSEQ for Windows Version 3.0
18 <210> SEO ID NO: 1
19 <211> LENGTH: 3645
20 <212> TYPE: DNA
21 <213> ORGANISM: Mus musculus
22 <400> SEQUENCE: 1
                                                                                 60
23
         cggggggagt ggggaggagg ggggtcggcc gccgcagcca tggaggccaa ctggaccgcg
                                                                                120
24
         ttcctgttcc aggcccacga agcatcccat caccaacagc aggcagcgca gaacagcttg
25
                                                                                180
         etgecectee tgagttetge tgtggageee eetgateaga aacegttget tecaatacea
26
                                                                                240
         attactcaga aacctcaggc tgcaccagaa acattaaagg atgccattgg gattaaaaaa
27
                                                                                300
         gaaaaaccca aaacttcgtt tgtgtgcact tactgcagta aagcattcag ggacagctat
                                                                                360
28
         cacctgagge gecateagte etgecacaea gggateaagt tggtgteteg ggeaaagaaa
29
         acceccacca eggtggttee cettatetee accattgetg gggacageag cegaactteg
                                                                                420
30
         ttggtttcaa ctattgcagg catcttgtca acagtcacta catcttcctc gggcaccaac
                                                                                480
                                                                                540
31
         cccagcagca gcgctagtac cacagcaatg cctgtgcccc agtctgtcaa gaaacccagt
                                                                                600
32
         aageetgtea agaagaacea egeetgtgag atgtgtggga aggeetteeg ggatgtgtae
33
         cacctcaatc ggcacaagct ctcccattcg gacgaaaagc cctttgagtg tcctatttgt
                                                                                660
                                                                                720
34
         aatcagcgct tcaagaggaa ggaccggatg acttaccatg tgaggtctca tgaaggaggc
                                                                                780
35
         atcaccaaac cctatacttg cagtgtttgt gggaaaggct tctcaaggcc tgaccaccta
                                                                                840
36
         agctgtcatg taaaacatgt gcattcaaca gaaagaccct tcaaatgcca aacgtgcact
37
         gctgcctttg ccaccaaaga cagactacgg acacacatgg tgcgccacga aggcaaggta
                                                                                900
                                                                                960
38
         tcatgtaaca tctgtgggaa gctcttgagt gcagcatata tcaccagcca cttaaagaca
39
                                                                               1020
         catgggcaga gccaaagtat caactgtaac acgtgcaaac aaggcatcag caaaacgtgc
                                                                               1080
40
         atgagtgagg agaccagcaa tcagaagcag cagcagcagc agcagcaaca gcagcagcag
                                                                               1140
41
         caacaacaac aacatgtgac aagctggcca gggaagcagg tagagacact gagactgtgg
42
         gaagaagctg tcaaagcaag aaagaaagaa gctgccaacc tgtgccaaac ctccacggct
                                                                               1200
43
         gctacgacac cagtgactct cactactcca ttcaatataa cgtcctctgt gtcgtctggg
                                                                               1260
                                                                               1320
44
         actatgtcaa acccagtcac agtggcagct gcaatgagca tgagaagtcc agtaaatgtc
                                                                               1380
45
         tcaagtgcag ttaacataac cagcccctta gccatgacct cacctttaac actcaccacc
         ccaqtcaacc tececaceee tgtgacegee ecagtgaata tageacacee tgteaceate
                                                                               1440
46
47
         acatetecaa tgaacetgee caeteetatg acattagetg eeeeteteaa tatageaatg
                                                                               1500
```

aggeetgtag aaagtatgee tttettgeee caagetttge etaegteace geettggtaa

1560

48

RAW SEQUENCE LISTING

PATENT APPLICATION: US/10/053,291

DATE: 02/06/2002 TIME: 09:32:54

```
1620
         acagtattat aagtcaaaat tgggttaaag taaatattta ccagcaactt aaccttagtt
49
         gattaaagca aaaagcagac tatgaaattg ggaggtttta ttatgttagt taataagagt
                                                                                1680
50
                                                                                1740
         gtagtagete caattttget ggggttgtte aaagtagggt atatgtgtaa ettateactg
51
                                                                                1800
         gaccacttta gtttactcag aaaccccttt agctgacacc attgcttaaa caggatagta
52
                                                                                1860
         gctggcaaga cgaaatgcca gaattaaaac caatcataaa acccatttca aaataaaaaa
53
                                                                                1920
         gcattatttg ttttattat tatttttaat acaacagaat cattttattg taaacactag
54
         cagagttett ecetetgtae aaggtggaeg gttttaaeet ggageteaag eceaeagaet
                                                                                1980
55
         gagagctagt gtagcattgt ctgtggtttt gctcgtatga gtgaacagag gcattgtcat
                                                                                2040
56
                                                                                2100
         aataaaatgc atttcagaga atatgcattt tacctttggg aatatgttaa tttcaggcag
57
                                                                                2160
         cattecetat gggaaaggtg ataccagete tgatatgeaa ageatatgat aatttateat
58
         tctaacttca acatataata gggattgtga cctgatattt ggagatgtaa atattgctca
                                                                                2220
59
                                                                                2280
         qcatattaat ccctgatgga atatagcatt gtagttgact ttttaaaaaa aaaaaaacaa
60
         aaaaaaaaaa aaggaattcc gagagctgtc actgcctttg aatgctatcc ctgggatagg
                                                                                2340
61
         ggtggcttca gaacccagga agtggccaag gggcacagac tctgctggag gcctgagccg
                                                                                2400
62
                                                                                2460
         ggggttccat aggagactga caggagacat tttgccttag gccacaaaaa gaagaaggct
63
         accccactta cagatgcaga ccatgtgggg ctccggagaa ctgcttgtag catggtttct
                                                                                2520
64
                                                                                2580
         agtgttggca gcagatggta ctactgagca tgtctacaga cccagtcgta gagtgtgtac
65
         tgtggggatt tccggaggtt ccatctcgga gacctttgtg cagcgtgtat accagcctta
                                                                                2640
66
                                                                                2700
         cctcaccact tgcgacggac acagagcctg cagcacctac cgaaccatct accggactgc
67
                                                                                2760
         ctategeegt agecetgggg tgacteege aaggeetege tatgettget geeetggttg
68
                                                                                2820
         gaagaggacc agtgggctcc ctggggcttg tggagcagca atatgccagc ctccatgtgg
69
         gaatggaggg agttcatccg cccaggacac tgccgctgcc ctgtggatgg cagggagata
                                                                                2880
70
         cttgccagac agatgttgat gaatgcagta caggagaggc cagttgtccc cagcgctgtg
                                                                                2940
73
         tcaatactgt gggaagttac tggtgccagg gatgggaggg acaaagccca tctgcagatg
                                                                                3000
72
                                                                                3060
         ggaccccctg cctgtctaag gaggggccct cccctttccc cccaaacccc acagcaggag
73
                                                                                3120
         tggacagcat ggcgagagag gaggtgtaca ggctgcaggc tcgggttgat gtgctagaac
74
                                                                                3180
         agaaactgca gttggtgctg gccccactgc acagcctggc ctctcggtcc acagagcatg
75
                                                                                3240
         qqctacaaqa teetqqcaqe etgetqqtqt cettettqqa qqaacatetq qqqtcctqtq
76
         agtoccacaa gacaccacto cacccacaga gagcotaggg gacccatggg gtggacacca
                                                                                3300
77
         gggctgggtg gatggaactt cttctgggat gggcagattt gcaagtttac acctttttc
                                                                                3360
78
         ctctcctgcc ctaggctcct gcaaaaaaga tctgtgataa cctctcacca ccaggctgga
                                                                                3420
79
                                                                                3480
         taqaqcaqta tccaqatccc ttgtagccag agttcaggga cgctgtctgg tggtgcctat
80
                                                                                3540
         gagcagaagc cetgceteat tgtccctctt tettaggagg tteetaggae ttgggtatgg
81
         ggagtggggt cttgtgtgac tcttcagtgg ggctccctgt ctaagtggta aggtggggat
                                                                                3600
82
                                                                                3645
         tgtctccatc tttgtcataa taaagctgag acttgaaaaa aaaaa
8.3
85 <210> SEO ID NO: 2
86 <211> LENGTH: 506
87 <212> TYPE: PRT
88 <213> ORGANISM: Mus musculus
89 <400> SEQUENCE: 2
         Met Glu Ala Asn Trp Thr Ala Phe Leu Phe Gln Ala His Glu Ala Ser
90
91
                                              10
         His His Gln Gln Gln Ala Ala Gln Asn Ser Leu Leu Pro Leu Leu Ser
92
93
         Ser Ala Val Glu Pro Pro Asp Gln Lys Pro Leu Leu Pro Ile Pro Ile
94
95
         Thr Gln Lys Pro Gln Ala Ala Pro Glu Thr Leu Lys Asp Ala Ile Gly
96
97
                                  55
         Ile Lys Lys Glu Lys Pro Lys Thr Ser Phe Val Cys Thr Tyr Cys Ser
98
```


RAW SEQUENCE LISTING DATE: 02/06/2002 PATENT APPLICATION: US/10/053,291 TIME: 09:32:54

99	65		70				75							80		
100	Lvs	Ala	Phe	Arq	Asp	Ser	Tyr	His	Leu	Arq	Arq	His	Gln	Ser	Cys	His
101	1-				85		-			90	-				95	
102	Thr	Glv	Tle	Lvs	Leu	Val	Ser	Ara	Ala	Lvs	Lvs	Thr	Pro	Thr	Thr	Val
103		1		100					105	-	-			110		,
104	Val	Pro	Len		Ser	Thr	Tle	Ala		Asp	Ser	Ser	Arg	Thr	Ser	Leu
105	141	110	115	120	501			120	1				125			
106	Va1	Ser		Tle	Ala	Gly	Tle		Ser	Thr	Va.l	Thr		Ser	Ser	Ser
107	, ui	130	7 111	140		0-1	135	200				140				
108	Gly		λen	Dro	Ser	Ser		Δla	Ser	Thr	Thr		Met	Pro	۷al	Pro
109	145	7117	поп	110	501	150	501	1124	501		155		-100			160
110		Sar	Val	Lare	Tare	Pro	Ser	LVS	Pro	Val		Lvs	Asn	His	Ala	
111	GIII	Ser	*uı	шуз	165	110	501	1,5		170	2,5	110			175	-1-
112	Glu	Mot	Cve	Glv		Ala	Dhe	Ara	Asn		Ψvr	His	Leu	Asn		His
. 113	Giu	rict	CYS	180	2,5	1114	1110	*** 9	185		-1-		~~~	190		
114	T.v.c	Τ.Δ11	Sar		Sar	Asp	Glu	T.v.c		Phe	Glu	Cvs	Pro			Asn
115	БүЗ	пси	195	11,125	בטע	msp	014	200	110	1110	014		205		0,70	
116	Gln	Ara		Tare	Δτσ	Lys	Δen		Met	Thr	Tvr	His	_	Ara	Ser	His
117	GIII	210	1110	цуо	111.9	ц, 5	215	**** 9	1100		-1-	220	,	5		
118	Glu		Gly	Tla	Thr	Lys		ጥህዮ	Thr	Cvs	Ser		Cvs	Glv	īvs	Glv
119	225	O-1	011	110	1111	230	110	-1-		U 10	235		01	1	-1-	240
120		Car	Δra	Dro	Δen	His	T.611	Ser	Cvs	His		Lvs	His	Va l	His	
121	FIIC	Jer	nrg	110	245	1110	ДСС	001	O _I B	250	, 4.	210		,	255	
122	Thr	Glu	Ara	Dro		Lys	Cvs	Gln	Thr		Thr	Ala	Ala	Phe		Thr
123	1111	Jiu	mrg	260	1 110	212	O _I D	V-1.	265	0,0				270		
124	T.vre	Δen	Ara		Ara	Thr	His	Met		Ara	His	Glu	Glv		Val	Ser
125	27.5	P	275	200				280		9			285	-1 -		
126	Cve	Δsn		Cvc	Glv	Lys	Len		Ser	Δla	Ala	Tvr		Thr	Ser	His
127	0,15	290		015		- 110	295					300				
128	T.en		Thr	His	Glv	Gln		Gln	Ser	Tle	Asn	Cvs	Asn	Thr	Cys	Lvs
129	305				1	310					315	- 4			•	320
130		Glv	Tle	Ser	Lvs	Thr	Cvs	Met	Ser	Glu		Thr	Ser	Asn	Gln	Lys
131	02.12	011			325		-1-	•		330					335	-
132	Gln	Gln	Gln	Gln		Gln	Gln	Gln	Gln	Gln	Gln	Gln	Gln	Gln	Gln	His
133				340					345					350		
134	Val	Thr	Ser		Pro	Gly	Lvs	Gln	Val	Glu	Thr	Leu	Arg	Leu	Trp	Glu
135			355			_	•	360					365		_	
136	Glu	Ala		Lys	Ala	Arg	Lys	Lys	Glu	Ala	Ala	Asn	Leu	Cys	Gln	Thr
137		370		•			375	-				380		-		
138	ser	Thr	Ala	Ala	Thr	Thr	Pro	Val	Thr	Leu	Thr	Thr	Pro	Phe	Asn	Ile
139	385					390					395					400
140		Ser	Ser	Val	ser	Ser	Gly	Thr	Met	Ser	Asn	Pro	Val	Thr	Val	Ala
141					405		_			410					415	
142	Ala	Ala	Met	Ser	Met	Arg	Ser	Pro	Val	Asn	Va1	Ser	Ser	Ala	Val	Asn
143				420		_			425					430		
144	. Ile	Thr	Ser	Pro	Leu	Ala	Met	Thr	Ser	Pro	Leu	Thr	Leu	Thr	Thr	Pro
145			435					440					445			
146	Val	Asn	Leu	Pro	Thr	Pro	Val	Thr	Ala	Pro	Val	Asn	Ile	Ala	His	Pro
147		450					455					460				

RAW SEQUENCE LISTING DATE: 02/06/2002 PATENT APPLICATION: US/10/053,291 TIME: 09:32:54

148 149		Val Thr Ile		ro Met Asn 1	Leu Pro Thr 475	Pro Met Thr	Leu Ala 480	
150						Ser Met Pro		
151		ALG ITO DO	485	id nee mig	490		495	
152		Pro Gln Ala		hr Ser Pro 1				
153		110 0111 1111	500		505			
	<210>	SEQ ID NO:						
		LENGTH: 23						
		TYPE: DNA						
			Homo sapien	S				
		SEQUENCE:	3					
160		agcqggggga	gtggggagga	ggggggtcgg	ccgccgcagc	catggaggcc	aactggaccg	60
161		cgttcctgtt	ccaggcccat	gaagetteee	atcaccaaca	gcaggcagca	cagaacagct	120
162		tgctgcccct	cctgagctct	gccgtggagc	cccctgatca	gaaaccattg	cttccaatac	180
163		caataactca	gaaacctcag	ggtgcaccag	aaacattaaa	ggatgccatt	gggattaaaa	240
164	•	aagaaaaacc	caaaacttca	tttgtgtgca	cttactgcag	taaagctttc	agggacagct	300
165		atcacctgag	gegeeaegaa	tcctgccaca	cagggatcaa	gttggtgtcc	cggccaaaga	360
166		aaacccccac	cacggtggtt	ccccttatct	ctaccatcgc	tggggacagc	agccgaactt	420
167		cgttggtctc	gaccattgca	ggcatcttgt	caacagtcac	tacatcttcc	tcgggcacca	480
168		accccagtag	cagtgccagc	accacageta	tgccagtgac	ccagtctgtc	aagaaaccca	540
169		gtaagcctgt	caagaagaac	catgcttgtg	agatgtgtgg	gaaggeette	cgagatgtgt	600
170		accatctcaa	tcgacacaag	ctctcccatt	cagatgagaa	accetttgag	tgtcctattt	660
171		gtaatcagcg	cttcaagagg	aaggaccgga	tgacttacca	tgtgaggtct	catgaaggag	720
172		gcatcaccaa	accctatact	tgcagtgttt	gtgggaaagg	cttctcaagg	cctgaccact	780
173		taagctgtca	tgtaaaacat	gtccattcaa	cagaaagacc	cttcaaatgc	caaacgtgca	840
174						ggtgcgccat		900 960
175		tatcatgtaa	catctgtggg	aagctcctga	gtgcagcata	catcaccagc	cacttaaaga	1020
176		ctcatgggca	gagccaaagt	atcaactgta	atacatgtaa	acaaggcatc	agtadaddat	1020
177		gcatgagtga	agagaccagt	aaccaaaagc	agcagcagca	gcagcagcag	ctatagaaaa	1140
178		aacaacaaca	tgtgacaagc	tggccaggga	agcaagtaga	aacactcaga	cugugggaag	1200
179		aagctgttaa	agcaaggaag	aaagaagccg	etateagete	ccaaacctcc	totgagagta	1260
180		cgacacctgt	gacteteact	actccattca	tanagatana	ctctgtgtcg aagtccagta	aatatttaaa	1320
181		tgtcaaaccc	agicacagiy	geagetyeaa	tagagaataa	tgtaactata	accagtccat	1380
182		gigcagicaa	cataaccayc	ccaatgaaca	cagggcatce	cctccccacc	cccatcacta	1440
183 184		catecatyae	tataggaga	cotatcacca	tracatric	aatgaatcta	cccacaccta	1500
185		taagattaga	ogcocctctc	aatatagcaa	tgagacctgt	agagagcatg	cetttettae	1560
186						ataaaatcaa		1620
187		aaantaaata	tttaccarca	acttaacttt	tagttgatta	aagcaaaaag	taaaccatga	1680
188		aattaggaga	ttttattaca	ttagttaata	agagtgtggt	agcattttc	tecaatttqq	1740
189		ctaggattat	tcaaagtagg	atatatatat	aacttatcac	tggaccactt	tagtttaatc	1800
190		agaaatteet	tttagctgac	aacattgctt	aaacaggata	gtagttggca	agatgaaatg	1860
191		ccagaattaa	aaccaatcat	aagtagaacc	cacttcaaaa	taaaaaaaca	gcattactat	1920
192		ttctaatccc	aaggaatcac	tttattqtaa	acactageag	aactcttctc	cctatacaag	1980
193		gtggatggct	gattttaacc	tgaaatttta	aatccacaga	ttgagagcta	gtgtagaatt	2040
194		gtctgtgttt	attgttttta	tgagtaaata	catgcattgt	cataataaaa	tgcatttcag	2100
195		agaatatgca	ttttaccttt	gggaatatgt	taatttcagg	cagcattccc	tatgggaaag	2160
196		gtgataccag	ctctgatatg	caaagcatat	gataatttat	cattctaact	tcaacgtata	2220
197		atagggattg	tgacctgata	tttggagatg	taaatattgc	tcagcatatt	aatcccgatg	2280

RAW SEQUENCE LISTING DATE: 02/06/2002 PATENT APPLICATION: US/10/053,291 TIME: 09:32:54

198 200	<210>	-	tata ID 1	-	_	agtt	ga c	tttt	t									230	06
	<211>																		
		TYPE: PRT																	
		ORGANISM: Homo sapiens																	
	<400>					•													
205					Asn	Trp	Thr	Ala	Phe	Leu	Phe	Gln	Ala	His	Glu	Ala	Ser		
206		1				5					10					15			
207		His	His	Gln	Gln	Gln	Ala	Ala	Gln	Asn	Ser	Leu	Leu	Pro	Leu	Leu	Ser		
208					20					25					30				
209		Ser	Ala	Val	Glu	Pro	Pro	Asp	Gln	Lys	Pro	Leu	Leu	Pro	Ile	Pro	Ile		
210				35					40					45					
211		Thr	Gln	Lys	Pro	Gln	Gly	Ala	Pro	Glu	Thr	Leu	Lys	Asp	Ala	Ile	Gly		
212			50					55					60						
213			Lys	Lys	Glu	Lys		Lys	Thr	Ser	Phe		Cys	Thr	Tyr	Cys			
214		65		_			70					75					80		
215		Lys	Ala	Phe	Arg		Ser	Tyr	His	Leu		Arg	His	Glu	Ser		His		
216				_ •	_	85	-	_	_	_	90	_	_1	_		95			
217		Thr	GTĀ	He		Leu	Val	Ser	Arg		Lys	Lys	Thr	Pro		Thr	Val		
218		7 2 - 7	D	.	100		m\	-1.		105	*		a	3	110	a	T		
219		vaı	Pro		TTE	ser	Thr	тте	Ala	GIY	Asp	ser	ser		Tur	ser	Leu		
220		371	Com	115	т1.	×1 -	<i>a</i> 1	τ1.	120	Con	mh m	Wa 1	mbx	125	Com	Cor	Cox		
221 222		vaı	130	THI	TTG	Ата	GIY	135	Leu	261	TIIT	vai	140	TIIT	ser	ser	ser		
223		C1m		λan	Dro	Car	Car		Ala	Sor	Фhr	Thr		Mot	Dro	V = 1	ጥኮኮ		
224		145	1111	HSII	FIU	Ser	150	261	нта	SET	1 111	155	дта	MEL	FIU	VOI	160		
225			Ser	Va 1	Lvs	T.vs		Ser	Lys	Pro	Val		Lvs	Asn	His	Δla			
226		01	001	,	2,0	165	110	002	<u> </u>	110	170	2,5	2,0			175	010		
227		Glu	Met.	Cvs	Glv		Ala	Phe	Arg	Asp		Tvr	His	Leu	Asn		His		
228				1	180	4		_	• •	185		-			190	•			
229		Lys	Leu	Ser	His	Ser	Asp	Glu	Lys	Pro	Phe	Glu	Cys	Pro	Ile	Cys	Asn		
230		_		195			_		200				-	205		-		•	
231		Gln	Arg	Phe	Lys	Arg	Lys	Asp	Arg	Met	Thr	Tyr	His	Va1	Arg	Ser	His		
232			210					215					220						
233		Glu	Gly	Gly	Ile	Thr	Lys	Pro	Tyr	Thr	Cys	Ser	Val	\mathtt{Cys}	Gly	Lys	Gly		
234		225					230					235					240		
235		Phe	Ser	Arg	Pro		His	Leu	Ser	Cys	His	Val	Lys	His	Val	His	Ser		
236						245					250					255			
237		Thr	Glu	Arg		Phe	Lys	Cys	Gln		Cys	Thr	Ala	Ala		Ala	Thr		
238		_	_	_	260	_	~1	'		265	_		~1	a 1	270		a .		
239		Lys	Asp		Leu	Arg	Thr	Hls	Met	Val	Arg	His	GIu		Lys	Val	ser		
240		C	7	275	0	C1 ···	T	T	280	O	21-	7.7.0	Merm	285	mh m	G	113.0		
241 242		Cys	290	тте	Cys	стХ	гÃ2	295	Leu	Ser	Ата	Ата	300	ire	TILL	Ser	HIS		
242		Lou		whr	uic	Clv	C1n		Cln	Car	Tla	λcn		λan	ጥኮሎ	Cvc	Tuc		
243		305	ыys	1111	птэ	GTĀ	310	261	Gln	261	116	315	CYS	HSII	TIIT	CYS	320		
245			Glv	Tle	Ser	T.ve		Cvs	Met	Ser	Glu		Thr	Ser	Asn	Gln			
246		2411	1		JUL	325	* ***	010		JU1	330		,	201		335	_1 5		
247		Gln	Gln	Gln	Gln		Gln	Gln	Gln	Gln				Gln	His		Thr		

VERIFICATION SUMMARY

DATE: 02/06/2002 TIME: 09:32:55

PATENT APPLICATION: US/10/053,291