Ex 1 Produit d'espaces vectoriels : soient E et F deux \mathbb{K} -espaces vectoriels. On

$$\forall \left(\left(x,y \right), \left(x',y' \right) \right) \in \left(E \times F \right)^2, \ \forall \lambda \in \mathbb{K}, \quad \left\{ \begin{array}{l} \left(x,y \right) + \left(x'y' \right) = \left(x + x',y + y' \right) \\ \lambda \left(x,y \right) = \left(\lambda x,\lambda y \right) \end{array} \right.$$

Montrer que ces lois définissent une structure de \mathbb{K} -espace vectoriel sur $E \times F$ (dite structure produit).

Ex 2 Soient F et G des sous-espaces vectoriels d'un \mathbb{K} -espace E.

Montrer $F \cup G$ est un sous-espace vectoriel que si et seulement si $F \subset G$ ou $G \subset F$.

- Ex 3 Les ensembles suivants sont-ils des espaces vectoriels?
 - a) Ensemble E_1 des fonctions bornées sur \mathbb{R} , E_2 des fonctions vérifiant : $\forall x \in \mathbb{R}$, f(x+1) = f(x) + 1.
 - b) Ensemble E_3 des polynômes unitaires, E_4 des polynômes divisibles par X^2+1 .
 - c) L'ensemble E_5 des suites complexes convergentes, E_6 des suites géométriques réelles, et E_7 des suites géométriques de raison 2.
 - d) Ensemble E_8 des suites réelles $u=(u_n)_{n\in\mathbb{N}}$ vérifiant la relation de récurrence : $\forall n\in\mathbb{N},\ u_{n+2}=5u_{n+1}-2u_n$.

$$\textbf{Ex 4} \ \ \text{Soient} \ F = \left\{ (x,y,z,t) \in \mathbb{R}^4 \ / \ 2x - y + t - 3z = 0 \right\} \ \text{et} \ G = \left\{ (x,y,z,t) \in \mathbb{R}^4 \ / \ \left\{ \begin{array}{l} x + y - t = 0 \\ 2x - y + z - t = 0 \end{array} \right. \right\}$$
 Vérifier que F et G sont des sous-espaces vectoriels de \mathbb{R}^4 , donner la dimension et une base de chacun.

Ex 5 Soit
$$E = \mathcal{M}_3(\mathbb{R})$$
 et $F = \left\{ \begin{pmatrix} a+b & -b+c & 3b-c \\ 2b & a+2b-c & b+2c \\ -3b & -2b & a-b+2c \end{pmatrix}, \ (a,b,c) \in \mathbb{R}^3 \right\}.$

Montrer que F est un sous-espace vectoriel de E. Déte

Ex 6 Soient $E = \mathbb{C}^4$, et $a \in \mathbb{C}$. On pose

$$X_{1} = \begin{pmatrix} 1 \\ a \\ a^{2} \\ a^{3} \end{pmatrix} \; ; \; X_{2} = \begin{pmatrix} a \\ a^{2} \\ a^{3} \\ 1 \end{pmatrix} \; ; \; X_{3} = \begin{pmatrix} a^{2} \\ a^{3} \\ 1 \\ a \end{pmatrix} \; ; \; X_{4} = \begin{pmatrix} a^{3} \\ 1 \\ a \\ a^{2} \end{pmatrix}$$

- a) On suppose $a^4 \neq 1$. Montrer que Vect $(X_1, X_2, X_3, X_4) =$
- b) Qu'en est-il lorsque $a^4 = 1$?

Ex 7 Soit $E = \mathbb{R}_3[X]$. On considère la famille $\mathcal{B} = (P_1, P_2, P_3, P_4)$ définie par

$$P_1 = (X-2)(X-3)(X-4)$$
 $P_2 = (X-1)(X-3)(X-4)$
 $P_3 = (X-1)(X-2)(X-4)$ $P_4 = (X-1)(X-2)(X-3)$

Montrer que \mathcal{B} est libre.

Ex 8 Base de Lagrange. Soient
$$n \in \mathbb{N}$$
, a_0, \ldots, a_n des réels distincts, et $E = \mathbb{R}_n \left[X \right]$. On pose pour $p \in \llbracket [0,n \rrbracket] : L_p = \frac{\prod\limits_{k \neq p} (X - a_k)}{\prod\limits_{k \neq p} (a_p - a_k)}$. Montrer que $\mathcal{B} = (L_0, \ldots, L_n)$ est une famille libre, puis que

c'est une base de E. Exprimer un polynôme $P \in E$ dans \mathcal{B} .

Ex 9 On pose
$$f_0: x \to 1$$
, $f_1: x \mapsto \cos x$, $f_2: x \mapsto \cos^2 x$, $f_3: x \mapsto \cos^3 x$, $g_2: x \mapsto \cos 2x$, $g_3: x \mapsto \cos 3x$. Montrer que dans $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ on a: $\operatorname{Vect}(f_0, f_1, f_2, f_3) = \operatorname{Vect}(f_0, f_1, g_2, g_3)$.

Ex 10 Soit $E = C^0(\mathbb{R})$, et a_1, \ldots, a_n des réels distincts $(n \ge 2)$. Les familles suivantes sont elles libres dans E?

a)
$$(f_1, \ldots, f_n)$$
, avec $f_i : x \mapsto e^{a_i x}$

b)
$$(q_1, \ldots, q_n)$$
, avec $q_i : x \mapsto e^{x+a_i}$

c)
$$(\varphi_1, \ldots, \varphi_n)$$
, avec $\varphi_i : x \mapsto \cos(x + a_i)$

d)
$$(h_1, \ldots, h_n)$$
, avec $h_i : x \mapsto |x - a_i|$

Ex 11 Soient $a_1 < \ldots < a_p$ des réels positifs. Pour $a \in \mathbb{R}_+$, on note u(a) la suite de terme général a^n Montrer que $(u(a_1), \ldots, u(a_p))$ est libre dans $\mathbb{R}^{\mathbb{N}}$.

PCSI 1 Thiers 2019/2020

- **Ex 12** a) T l'ensemble des matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que $\operatorname{tr} M = 0 = m_{11} + m_{22} + m_{33}$. (ensemble des matrices "de trace nulle"). Montrer que T est un hyperplan de $\mathcal{M}_3(\mathbb{R})$. Quelle est sa dimension?
 - b) Généraliser à $\mathcal{M}_n(\mathbb{R})$.
- Ex 13 a) Déterminer une base des espaces S_3 , A_3 des matrices carrées réelles d'ordre 3 symétriques et antisymétriques, et en déduire leur dimension. Retrouver le fait qu'ils sont supplémentaires.
 - b) Généraliser ce raisonnement à S_n , A_n , $n \in \mathbb{N}$.
- **Ex 14** Soit F_T l'ensemble des fonctions T-périodiques sur \mathbb{R} . Montrer que F_T est un \mathbb{R} -espace vectoriel. Identifier l'ensemble $F_4 \cap F_6$. Montrer que $F_4 + F_6 \subset F_{12}$.
- **Ex 15** Soient $E = \mathbb{R}^3$, $F = \{(x, y, z) \in \mathbb{R}^3 \ / \ x + y + 2z = 0\}$, $G = \mathbb{R}X_0$, avec $X_0 = (1, -1, 1)$. Montrer que $E = F \oplus G$ et donner pour tout X de E une expression des composantes de X sur F et G
- $\textbf{Ex 16} \ \, \text{Même question avec } E = \mathbb{R}^4, \, F = \left\{ X = \left(\begin{array}{c} x \\ y \\ z \\ t \end{array} \right) \in E \, / \, \left\{ \begin{array}{c} x + y + z + t = 0 \\ x y + 2z 2t = 0 \end{array} \right\} \, \text{et } G = \, \text{Vect} \left(X_1, X_2 \right), \, \text{avec } X_1 = (1, 1, 1, 1) \, \text{et } X_2 = (1, 1, 1, -1) \, .$
- Ex 17 Soit $E = \mathcal{M}_3(\mathbb{R})$, F l'ensemble des matrices scalaires $(\lambda I_3, \ \lambda \in \mathbb{R})$ et G l'ensemble des matrices de trace nulle. Montrer que F et G sont deux sous-espaces vectoriels supplémentaires.
- **Ex 18** Soient $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$ et $E = \mathbb{R}_n[X]$.
 - a) Soit $F = \{P \in E \mid P(a) = 0\}$. Montrer que F est un s.e.v de E, et en déterminer la dimension, une base. Déterminer un supplémentaire de F dans E.
 - b) Même question avec $G = \{ P \in E / P(a) = P'(a) = 0 \}$
- **Ex 19** Soit $P \in \mathbb{K}[X]$ un polynôme de degré $n \geqslant 0$. Déterminer un supplémentaire dans $\mathbb{K}[X]$ de $F = \{PQ, Q \in \mathbb{K}[X]\}$
- Ex 20 Soient $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, \mathcal{P} l'ensemble des fonctions paires, \mathcal{I} l'ensemble des fonctions impaires. Montrer que \mathcal{P} et \mathcal{I} sont deux sous-espaces vectoriels supplémentaires de E et interpréter. Décomposer exp et $f: x \mapsto x^4 - 2x^3 - x - 3$ sur \mathcal{P} et \mathcal{I} .
- **Ex 21** Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, $F = \{f \in E \mid f(1) = f(2) = 0\}$, et G l'ensemble des fonctions affines. Montrer que F et G sont deux sous-espaces vectoriels supplémentaires.
- **Ex 22** Montrer que $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont deux sous-espaces vectoriels supplémentaires de $\mathcal{M}_n(\mathbb{K})$.
- **Ex 23** Soient F, G, H trois sous-espaces vectoriels d'un \mathbb{K} -espace E vérifiant $F \cap H \subset G, H \subset F + G$ et $G \subset H$. Montrer que G = H.
- **Ex 24** Soient F, G, H, K des sous-espaces vectoriels d'un \mathbb{K} -espace E vérifiant $E = F \oplus G = H \oplus K$ On suppose que $F \subset H$ et $G \subset K$. Montrer que F = H et G = K.
- **Ex 25** Soit F, G deux sous-espaces vectoriels d'un \mathbb{K} -espace E vérifiant E = F + GSi G' est un supplémentaire de $F \cap G$ dans G, montrer que $E = F \oplus G'$.
- **Ex 26** Soit $E = \mathbb{R}^4$. Soient $a_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$, $a_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 3 \end{pmatrix}$, $a_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $a_4 = \begin{pmatrix} -1 \\ 0 \\ -1 \\ 2 \end{pmatrix}$, $a_5 = \begin{pmatrix} 2 \\ 3 \\ 0 \\ 1 \end{pmatrix}$.

On pose $F = \text{Vect}(a_1, a_2, a_3)$ et $G = \text{Vect}(a_4, a_5)$. Calculer les dimensions de $F, G, F \cap G, F + G$.

- Ex 27 Soient E un \mathbb{K} -espace vectoriel de dimension n, et F, G deux sous-espaces de E tels que : $\dim F + \dim G > n$. Montrer que $F \cap G \neq \{0_E\}$.
- **Ex 28** a) Soit E un \mathbb{K} -espace vectoriel de dimension n et H, K deux hyperplans. Calculer la dimension de $H \cap K$.
 - b) Plus généralement, si F est un sous-espace de dimension p, calculer $\dim (H \cap F)$.