

KANDIDAT

123

PRØVE

INFO102 0 Formelle metoder for informasjonsvitenskap

Emnekode	INFO102
Vurderingsform	Skriftlig eksamen
Starttid	14.05.2020 07:00
Sluttid	14.05.2020 09:00
Sensurfrist	
PDF opprettet	14.05.2020 09:05

Seksjon 1

Oppgave	Tittel	Oppgavetype		
i	Introduksjon	Dokument		
1	Mengdelære	Flervalg (flere svar)		
2	Relasjoner og funksjoner	Flervalg (flere svar)		
3	Utsagnslogikk	Langsvar		
4	Utsagnslogikk	Sant/usant		
5	Utsagnslogikk	Sant/usant		
6	Utsagnslogikk	Flervalg (flere svar)		
7	Utsagnslogikk	Flervalg (flere svar)		
8	Logisk ekvivalens	Langsvar		
9	Logisk konsekvens	Sant/usant		
10	Logisk konsekvens	Sant/usant		
11	Førsteordens logikk	Langsvar		

¹ Mengdelære

La $\mathbb N$ være mengden av de naturlige tallene og la:

$$A=\{3,1,4\}$$

$$B=\{2,3\}$$

$$C = \{x: x \in \mathbb{N} \text{ og } x \text{ er et oddetall}\}$$

$$D=\{x:x\in\mathbb{N}\ \mathrm{og}\ x\leq 100\}$$

$$E = \{8\}$$

Kryss av for hvilke (hvis noen) av følgende påstander som er riktige (se nederst for poeng):

Velg null eller flere alternativer

- $abla \langle 3,3
 angle \in (A imes A)\cap (B imes B)$
- arraycolored $4 \subseteq A$
- $^{\square}$ $A \cup B \subseteq C$
- ${lackbox{\hspace{-0.8ex}\rule{0.8ex}{0.8ex}}}\ \emptyset\in A\cap E$
- $abla A = D \cap A$
- $lacksquare \langle 1,3
 angle \in A imes B$
- arraycolored $4 \in A$
- $^{\square}$ $B \subseteq A$
- $^{f p}$ $B = \{3,2\}$
- $^{\square}$ $8 \in \mathbb{N} \setminus C$
- $|A \times A| = 9$
- ${}^{\blacksquare}A\cap B\subseteq C\cap D$
- $\blacksquare \ \{3\} \in \{A,B\}$
- $^{\square}$ $A \times A \subseteq A$
- $^{\blacksquare}$ $B \subseteq \{\{A\}, B\}$
- $extstyle \ \langle 3,1
 angle \in A imes B$
- ${}^{\,\triangleright} B \setminus \mathbb{N} \subseteq \emptyset$
- ${}^{ hinspace } \ \overline{A \cup B} = \overline{A} \cap \overline{B}$
- ${}^{\blacktriangledown}\emptyset\cap\{\emptyset\}=\emptyset$
- $^{\blacksquare}\ \{\emptyset\}\subseteq A\cap E$
- $^{\blacksquare}\ A\in\{\{A\},B\}$
- $B \in \{\{A\}, B\}$
- \Box D er lukket under addisjon
- $^{\square}$ $B \in A$
- $abla \emptyset \subseteq A \cap E$
- ${}^{ hinspace}$ $\{\emptyset\}\in A\cap E$
- $\ \ \square \ A\cap B=\emptyset$
- ${raket} |A \cup B| = 4$
- ${}^{\blacktriangledown} A \cup B \subseteq D$
- $^{\scriptscriptstyle{\square}}$ $5 \in B$

Maksimum 15 poeng, minimum 0 poeng. Trekk for gale kryss.

Gitt følgende induktive definisjon av mengden M:

- $0 \in M \text{ og } 1 \in M$
- Hvis $x \in M$ så er $x0 \in M$ og $x1 \in M$

Her er x0 (x1) strengen som består av strengen x etterfulgt av symbolet 0 (1).

Gitt følgende rekursive definisjon av funksjonen $f:M o \mathbb{N}$:

- f(0) = 1• f(1) = 1• f(x0) = f(x) + 1• f(x1) = f(x) + 1

La R,P,Q være binære relasjoner på M definert som følger:

- $xRy \Leftrightarrow y = 0x$
- $xPy \Leftrightarrow f(x) = f(y)$
- ullet Q er den symmetriske og transitive tillukningen av R

Kryss av for de av følgende utsagn som er sanne (hvis noen) (se under for poeng):

	Q er refleksiv
	R er bijektiv
	P er transitiv
	R er refleksiv
	R er transitiv
	P er refleksiv
	Q er irrefleksiv
Ŗ	Q er transitiv
Ŗ	Q er en ekvivalensrelasjon
	R er en ekvivalensrelasjon
	P er symmetrisk
	R er symmetrisk
	R er injektiv
Ŗ	Q er symmetrisk
	R er surjektiv
	Q er antisymmetrisk
	Q er antisymmetrisk R er irrefleksiv
	R er irrefleksiv
	R er irrefleksiv P er irrefleksiv
	R er irrefleksiv P er irrefleksiv f er injektiv
	R er irrefleksiv P er irrefleksiv f er injektiv P er antisymmetrisk
	R er irrefleksiv P er irrefleksiv f er injektiv P er antisymmetrisk P er en funksjon fra M til M

Maksimum **12 poeng**, minimum 0 poeng. Trekk for gale kryss.

³ Utsagnslogikk

Oversett hver av de følgende setningene til en formel i utsagnslogikk. Velg selv naturlige utsagnsvariable.

For at det skal bli enklere å skrive kan du godt bruke følgende symboler:

- \bullet v for \vee
- & for ∧
- ~eller for ¬
- ullet -> for igodot
- a) Det regner og jeg er våt, eller det er sol.
- b) Hvis du er gjerrig og kjedelig, så er du akademisk.
- c) Hvis det er lørdag så blir det pizza eller taco.
- d) Det hverken regner eller snør.
- e) Enten har du ikke lest nok eller så har du lest feil.
- f) Det er nødvendig å bestå obligatoriske aktiviteter for å bestå kurset.
- g) Med mindre det er sol er du våt.
- h) Det er forelesning hvis det er mandag.

Maksimum 12 poeng, minimum 0 poeng.

Skriv ditt svar her...

- a. ((R ^ V) v S)
- b. $((G ^ K) \rightarrow A)$
- c. (L \rightarrow (P ν T)).
- d. ¬(R ^ S)
- e. (¬LN v LF)
- $f.\:((B\to O)\to K)$
- g. (V v S).
- h. $(M \rightarrow F)$.

4 Utsagnslogikk

Dersom sannhetsverdien til A er 0 (usann) og sannhetsverdien til B er 1 (sann), hva er sannhetsverdien til $\neg(A \to (B \to \neg A))$?

Velg ett alternativ:

2 poeng for riktig svar, -2 poeng for galt svar, 0 poeng for ubesvart.

⁵ Utsagnslogikk

Dersom sannhetsverdien til A er 1 (sann), sannhetsverdien til B er 0 (usann) og sannhetsverdien til C er 1 (sann), hva er sannhetsverdien til $\neg(\neg A \land \neg(B \to \neg C))$?

Velg ett alternativ:

2 poeng for riktig svar, -2 poeng for galt svar, 0 poeng for ubesvart.

⁶ Utsagnslogikk

Kryss av for (null eller flere) riktig(e) svar. Formelen ((P o Q) o Q) er:

Velg ett eller flere alternativer

- Gyldig (tautologi)
- Falsifiserbar
- Oppfyllbar
- Kontradiktorisk

Maksimum 2 poeng, minimum 0 poeng. Trekk for gale kryss.

⁷ Utsagnslogikk

Kryss av for (null eller flere) riktige svar. Formelen $((\lnot P
ightarrow Q) \land \lnot (P \lor Q))$ er:

Velg ett eller flere alternativer

- Gyldig (tautologi)
- Kontradiktorisk
- Oppfyllbar
- Falsifiserbar

Maksimum 2 poeng, minimum 0 poeng. Trekk for gale kryss.

8 Logisk ekvivalens

Se på følgende utsagnslogiske formler:

$$egin{aligned} F &=
egin{aligned}
egin{aligned}$$

Er F og G logisk ekvivalente? Hvis svaret er nei må du vise et moteksempel i form av en tilordning av sannhetsverdier.

Skriv ditt svar her...

Р	Q	¬Р	¬Q	(¬P ^ ¬Q)	¬(¬P ^ ¬Q)	(P→Q)	(¬P ^ Q)	$((P \rightarrow Q) \rightarrow (\neg P \land Q)$
1	1	0	0	0	1	1	0	0
1	0	0	1	0	1	0	0	1
0	1	1	0	0	1	1	1	1
0	0	1	2	1	0	1	0	0

F og G er ikke logisk ekvivalente, og dette kan vi se på rad 1, hvor F er true og G er false, og fordi de har ulike sannhetsverdier er de ikke logisk ekvivalente.

F	G
1	0
1	1
1	1
0	0

Maksimum 4 poeng, minimum 0 poeng.

9 Logisk konsekvens

Se på følgende utsagnslogiske formler:

$$F = \neg P$$

$$G=(P o Q)$$

Er G en logisk konsekvens av F?

Velg ett alternativ:

Nei

4 poeng for riktig svar, -4 poeng for galt svar, 0 poeng for ubesvart.

Logisk konsekvens

Se på følgende utsagnslogiske formler:

$$F=(K o P)$$

$$G = (\neg P \wedge Q)$$

$$H = \neg (\neg K o \neg Q)$$

Er H en logisk konsekvens av F og G?

Velg et alternativ

Ja

Nei

4 poeng for riktig svar, -4 poeng for galt svar, 0 poeng for ubesvart.

¹¹ Førsteordens logikk

Oversett hver av de følgende setningene til en formel i førsteordens logikk. Velg selv naturlig signatur (det er ikke nødvendig å skrive ned signaturen eksplisitt).

Du kan bruke samme symboler som i utsagnslogikk-oppgaven, i tillegg til

- E for ∃
- \bullet A for \forall
- a) Alle studenter er uredde.
- b) Det finnes en snill svenske.
- c) Alle smarte studenter er nervøse.
- d) Ingen dumme studenter er nervøse.
- e) Alle er ikke snille studenter.
- f) Ikke alle politikere er ærlige.
- g) Det finnes ingen kannibaler.
- h) Ingen studenter er rike.
- i) Enten er alle dumme eller så er alle geniale.
- j) Hvis ingen er onde så er alle glade.

Skriv ditt svar her...

```
a. \forall x (S(x) \rightarrow U(x)).

b. \exists x (Svenske(x) \land Snill(x)).

c. \forall x ((Smarte(x) \land Studenter(x)) \rightarrow Nervøse(x)).

d. \exists x ((D(x) \land S(x)) \rightarrow N(x)).

e. \forall x (\neg Snille(x) \land Studenter(x)).

f. \neg \forall x (P(x) \rightarrow \cancel{E}(x)).

g. \neg \exists x K(x)

h. \neg \exists x (S(x) \rightarrow R(x)).

i. \forall x (D(x) \lor G(x)).

j. \neg \exists x \forall y (O(x) \rightarrow G(y)).
```

Maksimum 12 poeng, minimum 0 poeng.