ect to model constraint $\sum_{i=1}^{k} n_i \tau_i$ =	= 0. Total number of observations $N = \frac{1}{2}$		$\frac{\alpha}{k(k-1)/2}$	Block	SSB b-1	$MSB = \frac{SS}{b-1}$		MSE SB	A	SSA	a-1	$MSA = \frac{SSA}{a-1}$	$F_A = \frac{MSA}{MSE}$
i=1	k m.	Tukey Simultaneous CI for $\mu_i - \mu_j$:	_	Error				SE	B AB	SSB SSAB	b-1 (a-1)(b-1)	$MSB = \frac{SSB}{b-1}$ $MSAB = \frac{SSAB}{(a-1)(b-1)}$	$F_B = \frac{MSB}{MSE}$ $F_{AB} = \frac{MSAB}{MSE}$
$SSTR = \sum_{i=1}^{\kappa} n_i (\bar{Y}_{i\bullet} - \bar{Y}_{\bullet\bullet})^2, SSTR$	$STO = \sum_{i=1}^{\kappa} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{\bullet \bullet})^2$	$(\bar{Y}_{i\bullet} - \bar{Y}_{j\bullet}) \pm q_{\alpha}(k, N - k) \sqrt{\frac{MSE}{2}} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)$)		SSE = (k-1)(b-1) SSTO = kb-1	$MSE = \frac{1}{(k)}$	(-1)(b-1)		Error	SSE	ab(n-1)	$MSAB = \frac{1}{(a-1)(b-1)}$ $MSE = \frac{SSE}{ab(n-1)}$	$\Gamma_{AB} = \overline{\ }_{MSE}$
i=1 k n _i 2 k	i=1 $j=1i=1$ $j=1i=1$ $j=1i=1$ $j=1$	lom Effect Model (balanced design):	г.	Total Marie S					Total	SSTO	abn-1	an(n-1)	
$SSE = \sum_{i=1}^{n} \sum_{j=1}^{n} (Y_{ij} - Y_{i\bullet})^{n} = \sum_{i=1}^{n} (Y_{ij} - Y_{i\bullet})^{n}$	$\sum_{i=1}^{k} (n_i - 1)s_i^2, \ \ s_i^2 = \frac{1}{n_i - 1} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i\bullet})^2$	$Y_{ij} = \mu + \tau_i + \epsilon_{ij}, \ \epsilon_{ij} \stackrel{\text{iid}}{\sim} N\left(0, \sigma^2\right), \ i = 1, 2, \dots, k; j =$	1,, n	xpected Mean Sc		b 5 2 -	2 . k	∇ -2 P(1404)	2 . 1	$\sum_{i} \alpha_{i}^{2}$			$\sum_{i} \sum_{i} (\alpha \beta)_{ii}^{2}$
ANOVA Table:		e $\tau_i \stackrel{iid}{\sim} N(0, \sigma_{\tau}^2)$, τ_i and ϵ_{ij} are independent. Total number of observables	vations $N =$	$\mathbf{E}[MSE] =$	σ^2 , $\mathbf{E}[MSTR] = \sigma^2$	$+\frac{1}{k-1}\sum_{i}\tau_{i}^{2}$, F	$\mathbb{E}[MSB] = \sigma^2 + k \frac{k}{b-1}$	J				• $\mathbf{E}(MSAB) = \sigma^2 +$	$n\frac{\sum_{1}\sum_{j}(s-1)}{(a-1)(b-1)}$
Source SS	•	$-\mathbf{E}(MSTR) = \sigma^2 + n\sigma_{\tau}^2$, for a balanced design	Pı	rimary hypothes	es: $H_0: \tau_1 = = \tau_k$	$= 0 \text{ vs } H_1 : \text{at lea}$	ast one $\tau_i \neq 0$.	$\mathbf{E}(MSB)$	$= \sigma^2 + an$	$i \frac{\sum_{j} \beta_{j}^{2}}{b-1}$		• $\mathbf{E}(MSE) = \sigma^2$	
		Primary hypotheses: $H_0: \sigma_{\tau}^2 = 0$ vs $H_1: \sigma_{\tau}^2 > 0$. $MSTR_{H_0}$			$F_{TR} = \frac{MSTI}{MSE}$	$\frac{R}{e} \stackrel{H_0}{\sim} F(k-1, (k-1))$	-1)(b-1)).	Test for in	teraction	$H_0: (\alpha \beta$	$0 = 0, \forall (i, i)$	vs H_1 : at least one (α)	3) ≠ 0.
	$E N-k MSE = \frac{SSE}{N-k}$ $CO N-1$	$F = \frac{MSTR}{MSE} \stackrel{H_0}{\sim} F(k-1, N-k).$	Te	est for block effe	ts $H_0: \beta_1 = = \beta_b$			2000 101 111			*		*
Expected Mean Square:	O N-1	Covariance:				$\stackrel{H_0}{\sim} F(b-1,(k-1))$				F_{AB} =	$=\frac{1}{MSE} \approx F$	((a-1)(b-1), ab(n-	1))
	1 <u>k</u>	$COV(Y_{ij}, Y_{i'j'}) = \begin{cases} \sigma_{\tau}^2, & \text{if } i = i', \ j \neq j \\ \sigma_{\tau}^2 + \sigma^2, & \text{if } i = i', \ j = j \end{cases}$	' '					If there is	no signifi	cant inter	raction effects, t	test for main effects	
$\mathbf{E}(MSE) = \sigma$	σ^2 , $E(MSTR) = \sigma^2 + \frac{1}{k-1} \sum_{i=1}^{k} n_i \tau_i^2$.	$(\sigma_{\tau}^{-} + \sigma^{-}, \text{ if } i = i, j = j)$ Coefficient of Correlation Between Responses from the Same Fact	or Level:	I for the i th treat	ment mean: $\bar{Y}_{i\bullet} \pm t_{\alpha}$	$_{s/2}\left([k-1][b-1] \right)$	$\cdot \sqrt{\frac{MSE}{b}}$	- Test	for factor	A effect,		= 1,, a vs H_1 : at leas	
Primary hypotheses: $H_0: \tau_1 = \cdots = \tau_k = 0$ vs $H_1:$ at least one $\tau_i \neq 0$.		•			I for $\mu_i - \mu_j$ (treatment means): $\bar{Y}_{i\bullet} - \bar{Y}_{j\bullet} \pm t_{\alpha/2} ([k-1][b-1]) \sqrt{\frac{2MSE}{\hbar}}$				$F_A = rac{MSA}{MSE} \stackrel{H_0}{\sim} F((a-1,ab(n-1)))$				
$F = \frac{MSTR}{MSE} \stackrel{H_9}{\sim} F(k-1,N-k).$, ,				— Test for factor B effect, $H_0: \beta_j = 0, j = 1,,b$ vs $H_1:$ at least one $\beta_j \neq 0$.				
		$\hat{\sigma}^2 = MSE, \hat{\sigma}_{\tau}^2 = \frac{MSTR - MSE}{2}.$ Tukey			ukey Simultaneous CI for $\mu_i - \mu_j$: $\bar{Y}_{i\bullet} - \bar{Y}_{j\bullet} \pm q_{\alpha}(k, [k-1][b-1]) \sqrt{\frac{MSE}{b}}$				$F_B = rac{MSB}{MSE} rac{H_0}{MSE} F((b-1, ab(n-1)))$				
CI for μ_i : $\bar{Y}_{i\bullet} \pm t_{\alpha/2}(N-k) \cdot \sqrt{\frac{MSE}{n}}$		n			Factorial Design (2-way ANOVA with Fixed Effects)								
4 702		$100(1-\alpha)\%$ CI for μ : $\tilde{Y}_{\bullet\bullet} \pm t_{\alpha/2}(k-1)\sqrt{\frac{MSTR}{N}}$ Statis			atistical model				$-100(1-\alpha)\%$ CI for $\mu_{i\bullet}: \bar{Y}_{i\bullet} \pm t_{\alpha/2} [(n-1)ab] \sqrt{\frac{MSE}{bn}}$				
CI for $\mu_i - \mu_j$:	$\pm t_{\alpha/2}(N-k) \cdot \sqrt{MSE\left(\frac{1}{n_i} + \frac{1}{n_i}\right)}$	mized Complete Block Design (RCBD):		Y	$a_{ijk} = \mu + \alpha_i + \alpha_i$	β_j + $(\alpha\beta)_{ij}$ +	$\epsilon_{ijk}, \epsilon_{ijk} \stackrel{\text{iid}}{\sim} N \left(0, \sigma^2\right)$	- Bonfe	erroni Sim	nultaneou	us CI for $\mu_{i\bullet} - \mu$	$u_{i'\bullet}$: $(\bar{Y}_{i\bullet\bullet} - \bar{Y}_{i'\bullet\bullet}) \pm t_{\frac{\alpha}{2m}}$	$[(n-1)ab]\sqrt{\frac{2MSE}{bn}}$
	V (el with fixed treatment and block factors:			$Y_{ijk} = \mu + \underbrace{\alpha_i}_{\text{Exctor }A} + \underbrace{\beta_j}_{\text{Exctor }B} + \underbrace{(\alpha\beta)_{ij}}_{\text{Interaction}} + \epsilon_{ijk} \stackrel{\text{iid}}{\sim} N\left(0,\sigma^2\right)$				- Tukey Simultaneous CI for $\mu_{i\bullet} - \mu_{i'\bullet}$: $(\bar{Y}_{i\bullet\bullet} - \bar{Y}_{i'\bullet\bullet}) \pm q_{\alpha} [b, (n-1)ab] \sqrt{\frac{MSE}{bm}}$				
Fisher's Least Significant Differe	9	$Y_{ij} = \mu + \underbrace{\tau_i}_{\text{effect}} + \underbrace{\beta_j}_{\text{block}} + \epsilon_{ij}, i = 1, 2, \dots, k; j = 1, 2, \dots, b$ where			ere $i=1,\ldots,a$ $j=1,\ldots,b$ $k=1,\ldots,n,$ and subject to constraints				If interaction effects present, compare within-group treatment means				
$(\bar{Y}_{iullet} - \bar{Y}$	$\bar{Y}_{j\bullet}$) $\pm t_{\alpha/2}(N - k) \cdot \sqrt{\frac{2 \cdot MSE}{n}}$				$\sum_{i=1}^{a} \alpha_{i} = 0, \sum_{j=1}^{b} \beta_{j} = 0, \sum_{i} (\alpha \beta)_{ij} = 0, \ \forall j, \sum_{j} (\alpha \beta)_{ij} = 0, \ \forall i.$				If interaction effects present, compare within-group treatment means $H_0: \mu_{i1} - \mu_{ij} = 0, \forall j = 2,, b$ versus $H_1:$ at least one $\mu_{i1} - \mu_{ij} \neq 0$				
	1 "	Model assumption:	Vitation I am	1-4 ,-1 ,-1				$H_0: \mu_{i1} - \mu_{ij} = 0, \forall j = 2,, 0$ versus $H_1:$ at least $\text{One} \mu_{i1} - \mu_{ij} \neq 0$					
Model (Hierarchical $a \times b \times n$ design	n)	$Y_{ijk} = \mu + \underbrace{\alpha_i}_{\text{Factor } A} + \underbrace{\beta_j}_{\text{Factor } B} + \underbrace{(\alpha\beta)_{ij}}_{\text{Interaction}} +$	ϵ_{ijk}	Statistical m		$Y_i = \beta_0 + \beta_1 x_i + \epsilon$	$\epsilon_i, i = 1,, n$						
Y_{ijk} :	$= \mu_{\bullet \bullet} + \alpha_i + \beta_{j(i)} + \epsilon_{k(i,j)}$	where $i = 1,, a$ $j = 1,, b$ $k = 1,, n$, and		where $\epsilon_i \stackrel{iid}{\sim} I$	$I(0, \sigma^2)$.				- 100($1 - \alpha)\%$	C.I. for β_1 :	$\hat{\beta}_1 \pm t_{\alpha/2}(n-2) \cdot SE(\hat{\beta}_1)$).
with constraints and assumptions		where $i=1,\ldots,\alpha$ $j=1,\ldots,\delta$ $k=1,\ldots,n$, and $\sum \alpha_i = 0, \;\; \beta_j \stackrel{iid}{\sim} N\left(0,\sigma_\beta^2\right), \;\; \sum \left(\alpha\beta\right)_{ij} = 0, \;\; \epsilon_{ij}.$	iid N (o -2)	1). Least Sq	uare Estimation of Co	oefficients β_0, β_1							,
_	$\beta_{j(i)} \stackrel{\text{iid}}{\sim} N\left(0, \sigma_{\beta}^{2}\right), \epsilon_{ijk} \stackrel{\text{iid}}{\sim} N\left(0, \sigma^{2}\right)$	$\sum_{i} \alpha_{i} = 0, \beta_{j} \sim N(0, \sigma_{\beta}), \sum_{i} (\alpha \beta)_{ij} = 0, \epsilon_{ij}$	$_{k}\sim N\left(0,\sigma \right)$	• Least S	square objective funct	tion:					$\hat{\beta}_0 \sim N \left(\beta_0, \sigma^2 \right)$	$\left[\frac{1}{n} + \frac{1}{s_{xx}}\right]$	
$\sum_{i} \alpha_{i} = 0, \ \mu$	$\rho_{j(i)} \sim N(0, \sigma_{\beta}), \ \epsilon_{ijk} \sim N(0, \sigma_{\beta})$	$(\alpha \beta)_{ij} \stackrel{\text{iid}}{\sim} N\left(0, \frac{a-1}{a} \sigma_{\alpha \beta}^2\right), \text{ COV} ((\alpha \beta)_{ij}, (\alpha \beta)_{i'j})$	$=-\frac{1}{2}\sigma_{\alpha\beta}^{2}, \forall i \neq$	i'		$Q(\beta_0, \beta_1) = \sum_{n=0}^{n}$	(Y. 2 2 1 ²		Matrix Fo	orm $Y = 1$	$X\beta + \epsilon$, where		(-)
and $\beta_{j(i)}$ and $\epsilon_{k(i,j)}$ are independent.		In addition, assume $\{\beta_j\}$, $\{(\alpha\beta)_{ij}\}$, $\{\epsilon_{ijk}\}$ are mutually independent				$Q(\beta_0, \beta_1) = \sum_{i=1}$	$(Y_i - \beta_0 - \beta_1 x_i)$				$X = \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$	$\begin{pmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \end{pmatrix}^T$, $\beta =$	$\begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$
ANOVA Table		ANOVA Table			• Least Square Estimates:				and the least square estimator $\hat{\beta} \sim N\left(\beta, \sigma^2 \left(X'X\right)^{-1}\right)$.				
Source SS d	if MS F	Source SS df MS	F	_	$(\hat{\beta}_0, \hat{\beta}_1) =$	= arg min O(β ₀ , β ₁	$\Rightarrow \frac{\partial Q}{\partial \beta_0} = 0, \frac{\partial Q}{\partial \beta_0}$	= 0.	Analysis of	f Variance	(ANOVA)		
	-1 $MSA = \frac{SSA}{a-1}$ $F_A = \frac{MSA}{MSR(A)}$	A SSA $a-1$ MSA = $\frac{SSA}{a-1}$	$F_A = \frac{MSA}{MSAE}$		((01)(21)	β_0,β_1	$\partial \beta_0$, $\partial \beta_1$		Primary l	Hypothese	es $H_0 : \beta_1 = 0$ vs	$H_1: \beta_1 \neq 0.$	
	$-1) MSB(A) = \frac{SSB(A)}{a(b-1)} F_{B(A)} = \frac{MSB(A)}{MSE}$	B SSB $b-1$ $MSB = \frac{SSB}{b-1}$	$F_B = \frac{MSB}{MSE}$		$=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \left(y_{i}-\bar{y}\right) $	\bar{y}), $s_{xx} = \sum_{i=1}^{n} (x_i - x_i)$	$-\bar{x}$) ² , then		Decompos	sition of S	Sum Squares SS	TO = SSR + SSE	
Error SSE ab(n	$(1-1)$ $MSE = \frac{SSE}{ab(n-1)}$	AB $\left SSAB \right (a-1)(b-1) \left MSAB = \frac{SSAB}{(a-1)(b-1)} \right $	$F_{AB} = \frac{MSA}{MS}$	AB E	1=1	t=1			- SST	$O = \sum_{i=1}^{n} ($	$(Y_i - \overline{Y})^2$		
Total SSTO abn	1-1	Error SSE $ab(n-1)$ $MSE = \frac{SSE}{ab(n-1)}$		_	\hat{eta}_1	$=\frac{s_{xy}}{s_{xx}}=\frac{\sum (x_i - x_j)}{\sum (x_i - x_j)}$	$\frac{-\bar{x})(y_i - \bar{y})}{(x_i - \bar{x})^2} = \sum_i c_i Y_i$		_ SSE	$S = \sum_{i=1}^{n} (i$	$(\bar{V} = \bar{V})^2 = \hat{\beta}^2$. Under H_0 : $β_1 = 0$, $\frac{S}{2}$	SR ~ 2(1)
		Total $SSTO$ $abn-1$		_		$= \bar{y} - \hat{\beta}_1 \bar{x} = \sum_{n=1}^{n}$	(/ 1			i=1	,		σ^2 Λ (-).
II		Hypotheses and Distributions of F			ρ_0	$= y - \rho_1 x = \sum_{i=1}^{n}$, K _i I _i			i=1	$Y_i - \hat{Y}_i$) ² , $\frac{S}{2}$	$\frac{\partial L}{\partial z^2} \sim \chi^2(n-2)$	
Hypothesis Testing		- Test for Interactions			Note that				- SSE ⊥L SSR 1 (Basic) ANOVA Table				
 Test for Factor A Main Effects: 		H_0 : $\sigma_{\alpha\beta}^2 = 0$ versus H_1 : σ_{α}^2		c	$=\frac{x_i - \bar{x}}{s_{rr}}, \sum c_i$	$i = 0,$ $\sum c_i X_i$	$c_i = 1,$ $\sum c_i^2 = s_{xx}^{-1},$	$k_i = \frac{1}{n} - \bar{x}c_i$.			able	16	110
H_0 : $\alpha_i = 0$, $\forall i$	i versus H_1 : at least one $\alpha_i \neq 0$	$F_{AB} = \frac{MSAB}{MSE} \sim F((a-1)(b-1), ab(n-1))$			4 4 4				Source SS df MS F				
Test Statistic: $F = \frac{MSA}{MSB(A)} \stackrel{H_0}{\sim} F(a-1, a(b-1))$		 When there is no significant interaction effects, test for main effects 			• Properties of the residuals: $\sum \hat{\epsilon}_i = 0, \qquad \sum \hat{\epsilon}_i x_i = 0, \qquad \sum \hat{Y}_i \hat{\epsilon}_i = 0, \qquad \sum \hat{\epsilon}_i \left(\hat{Y}_i - \bar{Y} \right) :$				Regression $\left SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 \right 1$ $MSR = \frac{SSR}{1}$ $F = \frac{MSR}{MSE}$				
 Testing for Variability of the Ef 	ffects of Factor B:	* Test for Factor A :			$\sum_{i} \hat{\epsilon}_{i} = 0,$ $\sum_{i} \hat{\epsilon}_{i} = 0$	$\sum_{i} \hat{\epsilon}_{i} x_{i} = 0,$ \sum_{i}	$\sum_{i} \hat{Y}_{i} \hat{\epsilon}_{i} = 0, \qquad \sum_{i} \hat{\epsilon}_{i} \left(\hat{Y}_{i} \right)$	$(\bar{Y}_i - \bar{Y}) = 0.$		Error	$SSE = \sum_{i=1}^{n} ($	$\left(Y_i - \hat{Y}_i\right)^2 \mid n - 2 \mid MS$	$E = \frac{SSE}{n-2}$
$U = \sigma^2$	$H_1: \sigma_s^2 > 0$ versus $H_1: \sigma_s^2 > 0$	H_0 : $\alpha_i = 0$, $\forall i$ versus H_1 : at less		2). Sampling	Distribution of Leas	st Square Estimate	ors		-		1=1 n		
- ,	- P	$F_A = \frac{MSA}{MSAB} \sim F((a-1), (a-1))$	(b-1)		ng Distribution of $\hat{\beta}_1$				_	Total	$SST = \sum_{i=1}^{n} ($	$(Y_i - \bar{Y})^2$ $n-1$	
Test Statistic: $F = \frac{MSB(A)}{MSE} \stackrel{H_0}{\sim} F$	F(a(b-1),ab(n-1))	* Test for Factor B :		-	-	2			Under H_0	$\beta_1 = 0$,		MSR	
V · D · ·		$H_0\colon \sigma_{eta}^2=0 \qquad versus \qquad H_1\colon G$	$r_{\beta}^2 > 0$		Then σ^2 is known, $\hat{\beta}_1$					1		$r = \frac{MSR}{MSE} \sim F(1, n-2)$	
Variance Estimate $\hat{\sigma}_s^2$	$\frac{2}{B} = \frac{MSB(A) - MSE}{D}$	$F_B = \frac{MSB}{MSE} \sim F((b-1), ab(n$	- 1))	- V	Then σ^2 is unknown, t	then $\frac{\beta_1 - \beta_1}{SE(\hat{\beta})} \sim t$	$(n-2)$, $\mathbf{SE}(\hat{\beta}_1) =$	/******			$C = \{F > F_\alpha(1, e^2s_{xx}, E(MSE)\}$		
- μ	n n	141.51E		² known, No		SE [P1]		unknown and			1-22/		
	σ^2 known, Normal Dist.	· · ·	$= \mu_0$ z	$=\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}$	and n small, No		$\mu = \mu_0$ $z \approx$	$\approx \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$	aug				
Mean μ	σ^2 unknown, Normal Dist.		$= \mu_0 \qquad t$	$x - \mu_0$.	and n small, No $f = n - 1$	ormal dist.	$\mu_1 - \mu_2 = 0$ $z = 0$	$\frac{\frac{\bar{x} - \mu_0}{s/\sqrt{n}}}{\text{and } \sigma_2^2 \text{ known}}$ $= \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{s}}$	a , Nor	mal di	st.		
	σ^2 unknown, large n	$\bar{X} \pm z_{\alpha/2} \sqrt{\frac{s^2}{n}}$	σ	$\frac{2}{1}$ and σ_2^2 un	cnown and n_1 ,	n ₂ "large"		$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$ fferences are N					
	σ_1^2 and σ_2^2 known , Normal dist.,	$(n_1 n_2 \dots n_n)$	$\mu_2 = 0$ z	$\approx \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2^2}}}$	-		paired data $t =$		r = n -				
Mean Difference between Independent Populations	σ_1^2 and σ_2^2 unknown , large n	$(\bar{X}_1 - \bar{X}_2) \pm z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	σ	$\sigma_1^2 = \sigma_2^2$ unkn	own, Normal D			$\neq \sigma_2$; both ur		n, n_1, n_2	2 "small"		
$\mu_1-\mu_2$	$\sigma_1^2 = \sigma_2^2$ unknown , Normal Dist.	$(\bar{X}_1 - \bar{X}_2) \pm t_{\alpha/2}(n_1 + n_2 - 2)\sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})}$ where $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ $\mu_1 - \mu_2 - \mu_3$	$\mu_2 = 0$ t	$=\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{1 - 1}}$	$\frac{1}{n_2}$, $df = n_1 - \frac{1}{n_2}$	$+ n_2 - 2$		ormal Distribu elch's t-test	tions				
Paired Difference μ_D	Paired data, Normal Dist.	$D \pm t_{\alpha/2}(n-1)\sqrt{\frac{s_D^2}{n}}$	s_s^2										
Proportion p	np > 5	$\tilde{p}(1-\tilde{p})$	N	ormal Appr			No	ormal Approxi	mation	ı			
Proportion Difference	Independent samples			= y/n $= x - np$				$=rac{y_1+y_2}{n_1+n_2} = rac{ar{p}_1-ar{p}_1-ar{p}_1}{ar{p}_1-ar{p}_1}$	\hat{p}_2				
$p_1 - p_2$	$n_1p_1 > 5, n_2p_2 > 5,$	$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$		$\approx \sqrt{np_0(1 - np_0(1 - \sqrt{np_0(1 - \sqrt{np_0(1 - \sqrt{np_0(1 - \sqrt{np_0(1 - \sqrt{np_0(1 - np_0(1 - np_0(1 - np_0)})}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\overline{p_0} = \sqrt{\frac{p_0(1-p_0)}{n}}$		2 5	$\approx \sqrt{\hat{p}(1-\hat{p})}$		<u>-</u>)			
Variance σ ²	Normal distribution Independent Normal	$\left(\frac{(n-1)s^2}{\chi_{n/2}^2(n-1)}, \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2(n-1)}\right) = \sigma_1^2$	2 In	formal Distri idependent S									
Variance Difference $\frac{\sigma_1^2}{\sigma_2^2}$	Distributions	$\left(\frac{s_1^2/s_2^2}{F_{\alpha/2}(n_1-1,n_2-1)},\frac{s_1^2/s_2^2}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right)$		$f = s_1^2/s_2^2 f = n_1 - 1$ a	ad $n_2 - 1$								

SS df

Treatment $SSTR \quad k-1$

 $(\bar{Y}_{i\bullet} - \bar{Y}_{j\bullet}) \pm t_{\alpha s/2}(N - k)\sqrt{MSE\left(\frac{1}{n_i} + \frac{1}{n_i}\right)}, \quad \alpha^* = \frac{\alpha}{k(k - 1)/2}$

MS $MSTR = \frac{SSTR}{k-1}$

 $F_{TR} = \frac{MSTR}{MSE}$

 $Y_{ij} = \mu + \tau_i + \epsilon_{ij}, \quad \epsilon_{ij} \stackrel{\text{iid}}{\sim} \mathsf{N}\left(0,\,\sigma^2\right), \quad i = 1,2,\dots,k; \\ j = 1,\dots,n_i \quad \text{Bonferroni Simultaneous CI for } \{(\mu_i - \mu_j),\,\forall (i,j)\} : \text{ and } i = 1,\dots,n_i \text{ and } i = 1,\dots,n_$

SSA $MSA = \frac{SSA}{a-1}$ $F_A = \frac{MSA}{MSE}$ $F_B = \frac{MSB}{MSE}$ $\frac{SSAB}{(a-1)(b-1)}$ $F_{AB} = \frac{MSAB}{MSE}$

Model (Hierarchical $a \times b \times n$ design)

 $Y_{ijk} = \mu_{\bullet \bullet} + \alpha_i + \beta_{j(i)} + \epsilon_{k(i,j)}$

with constraints and assumptions

$$\sum_{i} \alpha_{i} = 0, \sum_{j} \beta_{j(i)} = 0, \forall i, \epsilon_{ijk} \stackrel{\mathsf{iid}}{\sim} \mathsf{N}\left(0, \sigma^{2}\right)$$

ANOVA Table

A SSA $a-1$ $MSA = \frac{SSA}{a-1}$ B(A) $SSB(A)$ $a(b-1)$ $MSB(A) =$	
B(A) $SSB(A)$ $a(b-1)$ $MSB(A) =$	
-() () u(o 1) mob(m) -	$\frac{SSB(A)}{a(b-1)}$ $F_{B(A)} = \frac{MSB(A)}{MSE}$
Error SSE $ab(n-1)$ $MSE = \frac{SS}{ab(n)}$	(E) (-1)
Total SSTO abn - 1	

Hypothesis Testing and Estimation

- Test for Factor ${\cal A}$ Main Effects:

 H_0 : $\alpha_i = 0$, $\forall i$ versus H_1 : at least one $\alpha_i \neq 0$

Test Statistic: $F = \frac{MSA}{MSB(A)} \stackrel{H_0}{\sim} F(a-1, ab(n-1))$

- Testing for Variability of the Effects of Factor $B\colon$

 $H_0: \beta_{j(i)} = 0, \forall (i, j)$ versus $H_1:$ at least one $\beta_{j(i)} \neq 0$

Test Statistic: $F = \frac{MSB(A)}{MSE} \stackrel{H_0}{\sim} F(a(b-1), ab(n-1))$

− 100(1 − α)% CI for $µ_{i\bullet}$ are given by $\bar{Y}_{i\bullet\bullet} \pm t_{\alpha/2}(ab(n-1))\sqrt{\frac{MSE}{bn}}$

- 100(1 - $\alpha)\%$ CI for μ_{ij} are

 $\bar{Y}_{ij\bullet} \pm t_{\alpha/2} \left[ab(n-1) \right] \sqrt{\frac{MSE}{n}}$

tical model with \boldsymbol{p} explanatory variables:

 $Y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} + \epsilon_i$, i = 1, 2, ..., n where $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

ANOVA Table:

 $SSR = \sum_{i} (\hat{y}_{i} - \bar{y})^{2}$ $MSR = \frac{\overline{SSR}}{-}$

n - p - 1 $SSE = \sum_{i} (y_i - \hat{y}_i)^2$ $MSE = \frac{SSE}{2}$ Total n-1 $SST = \sum_{i} (y_i - \bar{y})^2$

Note that $\frac{SSE}{\sigma^2} \sim \chi^2(n-1-p)$. Under $H_0: \beta_1... = \beta_p = 0$, $\frac{SSR}{\sigma^2} \sim \chi^2(p)$.

Expected Mean Square

 $\mathbf{E}(MSE) = \mathbf{E}\left(\frac{SSE}{n-p-1}\right) = \sigma^2, \ \mathbf{E}(MSR) = \sigma^2 + \frac{1}{p}\sum_{i=1}^{p} \left[\beta_j^2\sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2\right]$

Primary hypotheses: $H_0: \beta_1 = \cdots = \beta_p = 0$ vs $H_1:$ at least one $\beta_j \neq 0$. $F = \frac{MSR}{MSE} \stackrel{H_0}{\sim} F(p, n - p - 1).$

with critical region $C = \{F > F_{\alpha}(p, n - p - 1)\}$

Partial test for individual coefficient $H_0: \beta_i = 0$ vs $H_1: \beta_i \neq 0$

 $= \frac{MSR}{MSE} \text{ where critical region } C = \{|t| > t_{a/2}(n - p - 1)\}$ C.I. for the j^{th} partial coefficient β_j :

 $\hat{\beta}_{i} \pm t_{\alpha/2}(n - p - 1) \cdot SE(\hat{\beta}_{i})$

Coefficient of Determination:

 $R^{2} = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO},$

the percentage of variation in the response explained by the regression model.

 $R_{adj}^2 = 1 - \frac{SSE/(n-1-p)}{SSTO/(n-1)}, \label{eq:Radj}$

the proportionate reduction of variation due to the regression.