Les vecteurs: l'essentiel de la seconde!

- I. Vecteurs du plan.
 - a. Caractérisation d'un vecteur.

Un vecteur est caractérisé par sa direction, son sens et sa longueur. Pour deux points distincts A et B, le vecteur \overline{AB} est caractérisé par:

- sa direction, celle de la droite (AB),
- son sens: celui de A vers B,
- sa longueur: celle du segment [AB].

A est l'origine et B l'extrémité du vecteur \overrightarrow{AB} .

<u>Définition</u>: La longueur AB s'appelle la norme du vecteur \overline{AB} . On la note $\|\overline{AB}\|$.

On peut également noter un vecteur avec une seule lettre: \vec{u} , \vec{v} , La norme de \vec{u} se note $||\vec{u}||$.

b. Opposé d'un vecteur.

Définition: Deux vecteurs de même direction, de même longueur mais de sens contraire sont dits opposés.

On note - \vec{u} l'opposé du vecteur \vec{u} .

Le vecteur opposé à \overrightarrow{AB} est \overrightarrow{BA} , ainsi $\overrightarrow{BA} = -\overrightarrow{AB}$.

c. Le vecteur nul.

Définition: Le vecteur de norme nulle est appelé le vecteur nul, il est noté $\vec{0}$.

Remarque: Si $\overline{AB} = \vec{0}$, alors les points A et B sont confondus.

- II. Propriétés.
 - a. Egalité de deux vecteurs.

Deux vecteurs sont dit égaux s'ils ont même direction, même sens et même longueur.

Propriété: Soient A, B, C et D quatre points du plan. $\overline{AB} = \overline{DC}$ si et seulement si ABCD est un parallélogramme.

<u>Conséquence</u>: Si $\overline{AB} = \overline{DC}$, alors $\overline{AD} = \overline{BC}$. Il existe une infinité de vecteurs égaux au vecteur \overline{AB} .

b. Somme de deux vecteurs.

Relation de Chasles: Soient A, B et C trois points du plan, $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Propriété: Soit A, B, C et D quatre points distincts, ABCD est un parallélogramme si et seulement si $\overline{AD} = \overline{AB} + \overline{AC}$.

III. Multiplication d'un vecteur par un nombre réel.

a. Définition.

Soit \vec{u} un vecteur non nul et k un réel non nul.

Le produit du vecteur \vec{u} par le réel k est le vecteur \vec{w} , noté $k\vec{u}$ tel que:

- \vec{w} a la même direction que \vec{u} .
- \vec{w} a le même sens que \vec{u} si k > 0, \vec{w} a le sens opposé à celui de \vec{u} si k < 0
- la norme de \vec{w} est égale à $|k| ||\vec{u}||$.

De plus, si $\vec{u} = \vec{0}$ ou k = 0, alors $k \vec{u} = \vec{0}$.

b. Propriétés.

Pour tous vecteurs \vec{u} et \vec{v} , et pour tous nombres réels k et k', on a:

- $k(\vec{u}+\vec{v})=k\vec{u}+k\vec{v}$
- $(k+k')\vec{u} = k\vec{u} + k'\vec{u}$
- $k \vec{u} = \vec{0}$ si et seulement si k = 0 ou $\vec{u} = \vec{0}$.

c. Colinéarité de deux vecteurs.

Définition: On dit que deux vecteurs non nuls \vec{u} et \vec{v} sont colinéaires s'il existe un réel k tel que $\vec{u} = k\vec{v}$.

Le vecteur $\vec{0}$ est colinéaire avec tous les vecteurs du plan.

Remarques:

- Le vecteur nul est colinéaire à tout vecteur \vec{u} car $\vec{0} = 0\vec{u}$.
- Deux vecteurs non nuls sont colinéaires si et seulement si ils ont même direction.

IV. Applications.

a. Droites paralléles.

Propriété: Soient A, B, C, D des points du plan.

Les droites (AB) et (CD) sont paralléles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

b. Alignement de points.

Propriété: Soient A, B et C trois points distincts du plan.

A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

c. Milieu d'un segment.

Propriété: Soient A, B et I trois points distincts.

- I est le milieu du segment [AB] si et seulement si $\overrightarrow{AI} = \overrightarrow{IB}$.
- I est le milieu du segment [AB] si et seulement si $\overrightarrow{AB} = 2\overrightarrow{AI}$.