โต้วาที

Time limit: 6 sec

Memory limit: 256 MB

ณ โรงเรียนแห่งหนึ่ง ที่มีชื่อย่อว่า สสวท. (ส่งเสริม การใช้วาที่แห่งชาติ) ได้มีการจัดการแข่งขันโต้วาทีระหว่างนักเรียนใน โรงเรียนขึ้นเป็นประจำทุกปี โดยการโต้วาทีนั้นจะแบ่งคนออกเป็นสองกลุ่ม แล้วให้คนสองกลุ่มถกกันถึงประเด็นต่าง ๆ คนกลุ่มแรก จะส่งเสริม หรือเห็นด้วยกับประเด็นดังกล่าว คนกลุ่มหลังจะต้องออกความเห็นขัดแย้งกับกลุ่มที่หนึ่ง

เนื่องจากที่นี่เป็นโรงเรียนส่งเสริมการใช้ภาษาอยู่แล้ว และพึ่งประกาศคะแนนมิดเทอมมา ดังนั้นเราจึงสามารถจัดลำดับ นักเรียน ตามความสามารถในการใช้ภาษาได้ โดยนักเรียน N คนสามารถจัดลำดับคะแนนได้ตั้งแต่ 1 ถึง N โดยลำดับที่ 1 คือ นักเรียนที่ใช้ปากได้เก่งที่สุด

ในการเลือกคนมาโต้วาที เราไม่อยากให้นักเรียนเลือกกันเอง ดังนั้นจึงมีวิธีการเลือกโดยจับนักเรียนทั้ง N คนมายืนเรียง เป็นแถวตอนเรียงเดี่ยว จากนั้นอาจารย์ผู้ดูแลกิจกรรมจะเลือกนักเรียนออกมาสองคน โดยคนแรกจะอยู่ข้างหน้าคนที่สอง และคนที่ จะต้องมาแข่งโต้วาทีคือนักเรียนทุกคนที่ยืนอยู่ระหว่างนักเรียนทั้งสองคนที่ถูกเลือก โดยรวมสองคนนั้นด้วย เนื่องจากการแข่ง โต้วาทีจะไม่สนุกถ้าจำนวนคนทั้งสองฝ่ายไม่เท่ากัน ดังนั้นจำนวนนักเรียนที่ถูกเลือกออกมาจะเป็นจำนวนคู่เสมอ

โดยปกติ เราอาจจะอยากให้สองฝ่ายมีความสามารถใกล้เคียงกัน เราจะได้เห็นการโต้วาทีที่มีสาระ และน่าตื่นเต้น แต่ สำหรับโรงเรียนสสวท. ที่พึ่งผ่านการสอบมิดเทอมมา การได้เห็นคนเก่งย่ำยีคนที่กระจอกกว่าให้ความเร้าใจมากกว่า ดังนั้นเราจะ แบ่งกลุ่มโต้วาทีโดย นักเรียนทุกคนในกลุ่มแรก จะมีคะแนนที่ดีกว่านักเรียนทุกคนในกลุ่มที่สองเสมอ

สมมุติว่า เราเลือกนักเรียนออกมา K คนซึ่งเมื่อนำมาเรียงตามลำดับคะแนนจากคนที่ได้ลำดับดี ไปคนที่ได้ลำดับแย่ เรา สามารถเขียนลำดับของนักเรียนได้เป็น

$$X = [x_1 \le x_2 \le \cdots \le x_k]$$

เราสามารถนิยามความสะใจของการโต้วาที่ได้โดยสมการต่อไปนี้

$$Z(X) = \sum_{i=1+\frac{K}{2}}^{K} x_i - \sum_{i=1}^{\frac{K}{2}} x_i$$

สำหรับการเลือกนักเรียนแต่ละแบบ จงหาความสะใจของการโต้วาที เพื่อทางโรงเรียนจะได้เลือกนักเรียนให้สะใจที่สุด

Input

บรรทัดแรกมีจำนวนเต็มสามจำนวน N, Q และ E แทนจำนวนนักเรียน จำนวนวิธีการเลือกนักเรียนที่ต้องการหาความสะใจ และ encode flag (ซึ่งจะอธิบายต่อไป)

บรรทัดที่ 2 มีจำนวนเต็ม N ตัว $\mathbf{n_1},\,\mathbf{n_2},\,...,\,\mathbf{n_N}$ แทนลำดับคะแนนของนักเรียนในแถวตอนเรียงหนึ่ง โดย $1 \leq \mathbf{n_i} \leq \mathbf{N}$

อีก Q บรรทัด

บรรทัดที่ $\mathbf{i}+2$ มีจำนวนเต็ม $\mathbf{A_i}$, $\mathbf{B_i}$ แทนลำดับในแถวของนักเรียนคนแรก และนักเรียนคนที่สอง แทนวิธีการเลือกนักเรียนที่ \mathbf{i} โดย $1 \leq \mathbf{A_i} \leq \mathbf{B_i} \leq \mathbf{N}$ และ $\mathbf{B_i} - \mathbf{A_i}$ เป็นเลขคี่เสมอ

ถ้า E=1 และ i>1 แล้ว จำนวนเต็ม A_i , B_i จะถูกแทนที่ด้วย A_i xor Z_{i-1} , B_i xor Z_{i-1} (ดูตัวอย่างประกอบ

Output

มี Q บรรทัด

บรรทัดที่ \mathbf{i} ให้ตอบค่า $\mathbf{Z}_{\mathbf{i}}$ แทนค่าความสะใจของการเลือกนักเรียนแบบที่ \mathbf{i}

Sample

10 3 0	8
1 7 2 4 8 6 5 9 3 10	9
1 4	25
2 5	
1 10	
10 3 1	8
1 7 2 4 8 6 5 9 3 10	9
1 4	25
10 13	
8 3	

ปัญหาย่อย

- 1. 1 ≤ N ≤ 10,000, 1 ≤ Q ≤ 10,000, E = 0 คิดเป็น 20% ของคะแนนทั้งหมด
- 2. 1 ≤ N ≤ 70,000, 1 ≤ Q ≤ 70,000, E = 0 คิดเป็น 50% ของคะแนนทั้งหมด
- 3. $1 \le N \le 70,000, 1 \le Q \le 70,000, E = 1$ คิดเป็น 30% ของคะแนนทั้งหมด