J. Smart Warehouse Product Sorting

Constraint: Time Limit: 1 seconds, Memory: 64MB

Context

A logistics center needs to organize product inventory for warehouse storage. Each product belongs to **one Category**(e.g., CatA, CatB, ...) and has **a code number within that specific Category** (positive integer).

Important notes:

- Two products can have the same code number but belong to different categories, making them different products
 - (Example: "CatA 5" and "CatB 5" are two different products because they have different categories)
- Category names are **case-insensitive** when comparing (e.g., "CatA", "cata", "CATA" are all the same category)
- When outputting results, **preserve** the original case of Category names as they appear in the input

Requirements

Sort all products by:

- Category in ascending order (lexicographic comparison, case-insensitive)
- Within the same Category, sort by code number in ascending order

Constraints

- $1 \le n \le 100,000$ (number of products)
- $1 \le \text{len(category)} \le 50$ (category name length)
- $1 \le \text{code} \le 10^9 \text{ (code value)}$
- Category contains only letters (a-z, A-Z)
- All duplicate products (same category and code) are preserved in the output

Input/Output Format

Input

- First line: integer n number of products $(1 \le n \le 100,000)$
- Next **n** lines, each line contains:
 - o category: string containing only letters (a-z, A-Z), length $(1 \le len \le 50)$ Page 1 of 2

o code: positive integer $(1 \le code \le 10^9)$

Output

Print **n** lines after sorting, each line in the format:

Input	Output
n	category code
category1 code1	
category2 code2	
categoryn coden	

Example

Input	Output
7	CatA 3
CatA 10	CatA 4
CatB 2	CatA 10
CatA 4	CatB 1
CatC 5	CatB 2
CatB 2	CatB 2
CatB 1	CatC 5
CatA 3	

Explanation

- **Group by Category** (lexicographic order): CatA → CatB → CatC
- Within CatA: codes $[10, 4, 3] \rightarrow$ sorted as [3, 4, 10]
- Within CatB: codes $[2, 2, 1] \rightarrow$ sorted as [1, 2, 2]
- CatC: only has code 5