```
In [1]: import scanpy as sc
import pandas as pd
from sccoda.util import cell_composition_data as dat
from sccoda.util import comp_ana as mod
from sccoda.util import data_visualization as viz
import matplotlib.pyplot as plt
import numpy as np
```

2025-05-08 12:19:07.566052: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN OPTS=0`.

2025-05-08 12:19:07.567807: I tensorflow/tsl/cuda/cudart_stub.cc:28] Co uld not find cuda drivers on your machine, GPU will not be used. 2025-05-08 12:19:07.606680: I tensorflow/tsl/cuda/cudart_stub.cc:28] Co uld not find cuda drivers on your machine, GPU will not be used. 2025-05-08 12:19:07.607548: I tensorflow/core/platform/cpu_feature_guar d.cc:182] This TensorFlow binary is optimized to use available CPU inst ructions in performance-critical operations.

To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flag s.

2025-05-08 12:19:09.533438: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT

```
In [2]: #read in adata file from analysis.ipynb
adata = sc.read("refs/adata.h5ad")
```

/projectnb/bf528/students/npetruni/.conda/envs/sccoda_env/lib/python3. 8/site-packages/anndata/_core/anndata.py:1838: UserWarning: Observation names are not unique. To make them unique, call `.obs_names_make_unique `. utils.warn_names_duplicates("obs")

```
In [3]: #create cell counts matrix
    counts_df = (
        adata.obs
        .groupby(['sample', 'manual_labels'])
        .size()
        .unstack(fill_value=0)
)

# Optional: View summary
    counts_df
```

[3]:	manual_labels	Endothelial cells	Epithelial cells	Erythroids	Fibroblasts	ILC	Macrophag ₍
	sample						
	Case1_YF	123	6731	2	674	429	578
	Case1_ZY	2047	4741	1	512	69	15
	Case2_ZC	0	433	4509	1	2	
	Case2_YF	176	179	9	5261	3112	129
	Case2_ZY	2752	474	1	2330	100	184
	Case3_YF	3207	61	0	4117	565	{
	Case3_ZY	2022	47	0	2671	866	7
	Case4_ZY	804	8	0	662	0	

```
In [4]: #create covariate df
        covariates_df = pd.DataFrame({
             'sample': [
                 'Case1_YF', 'Case1_ZY', 'Case2_ZC', 'Case2_YF',
                 'Case2_ZY', 'Case3_YF', 'Case3_ZY', 'Case4_ZY'
            ],
             'tissue type': [
                 'PDAC', 'Metastasis', 'Normal', 'PDAC',
                 'Metastasis', 'PDAC', 'Metastasis', 'Metastasis'
        }).set_index('sample')
In [5]: #reorders and filters the rows in counts_df to match exactly the sampl
        counts_df = counts_df.loc[covariates_df.index]
        #add pseudo count of 1 to prevent issues
        counts_df += 1
In [6]: #convert to scCODA object
        counts_df = counts_df.merge(covariates_df, left_index=True, right_inde
        data_all = dat.from_pandas(counts_df, covariate_columns=['tissue_type'
        print(data_all)
       AnnData object with n_{obs} \times n_{vars} = 8 \times 11
           obs: 'tissue type'
In [7]: viz.boxplots(data_all, feature_name="tissue_type")
        plt.show()
```

Out

/projectnb/bf528/students/npetruni/.conda/envs/sccoda_env/lib/python3.
8/site-packages/sccoda/util/data_visualization.py:335: UserWarning: Fix
edFormatter should only be used together with FixedLocator
 ax.set_xticklabels(cell_types, rotation=90)

In [8]: #run scCODA
model = mod.CompositionalAnalysis(data_all, formula="tissue_type", ref
sim_results = model.sample_hmc()

2025-05-08 12:19:38.836612: I tensorflow/compiler/xla/service/service.c c:168] XLA service 0x14c1c0009230 initialized for platform Host (this d oes not guarantee that XLA will be used). Devices:

2025-05-08 12:19:38.836663: I tensorflow/compiler/xla/service/service.c c:176] StreamExecutor device (0): Host, Default Version

0%| | 0/20000 [00:00<?, ?it/s]2025-05-08 12:19:38.885590: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:255] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY ` to enable.

2025-05-08 12:19:39.352290: I ./tensorflow/compiler/jit/device_compile r.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.

100%| 20000, 130.45it/s]

MCMC sampling finished. (194.383 sec)

Acceptance rate: 63.2%

```
In [9]: #view results
summary_df = sim_results.summary()
```

summary_df

Compositional Analysis summary:

Data: 8 samples, 11 cell types

Reference index: 3
Formula: tissue_type

Intercepts:

	Final Parameter	Expected Sample
Cell Type		
Endothelial cells	0.343	1992.435473
Epithelial cells	-0.562	806.023602
Erythroids	-1.917	207.911607
Fibroblasts	0.479	2282.697246
ILC	-0.779	648.792553
Macrophages	-0.309	1038.064318
Microglia	-1.929	205.431578
Monocytes	-1.925	206.254950
Plasma cells	-0.412	936.465822
T cells	0.194	1716.620867
Unknown	-1.546	301.301982

Effects:

		Final Parameter	Expected Samp
<pre>le \ Covariate tissue_type[T.Normal]</pre>	Cell Type Endothelial cells	0.000000	4.3136
37	Epithelial cells	5.956606	674.1131
68	Erythroids	9.659506	7053.6286
07	Fibroblasts	0.000000	4.9421
55	ILC	0.000000	1.4046
40	Macrophages Microglia	7.975856	2.2474 1294.1998
33	Monocytes	4.881416	58.8627
34	Plasma cells	6.419230	1243.9188
79 35	T cells	0.000000	3.7165
28	Unknown	0.000000	0.6523
<pre>tissue_type[T.PDAC] 73</pre>	Endothelial cells	0.000000	1992.4354
	Epithelial cells	0.000000	806.0236

23			
02	Erythroids	0.000000	207.9116
07	Fibroblasts	0.00000	2282.6972
46			
53	ILC	0.000000	648.7925
	Macrophages	0.000000	1038.0643
18	Microglia	0.000000	205.4315
78	Monocytes	0.000000	206.2549
50	Plasma cells		
22		0.000000	936.4658
67	T cells	0.000000	1716.6208
82	Unknown	0.000000	301.3019
02		log2-fold change	
<pre>Covariate tissue_type[T.Normal] tissue_type[T.PDAC]</pre>	Epithelial cells Erythroids Fibroblasts ILC Macrophages Microglia Monocytes Plasma cells T cells Unknown Endothelial cells Epithelial cells	-8.851397 -0.257831 5.084323 -8.851397 -8.851397 -8.851397 2.655331 -1.809002 0.409594 -8.851397 -8.851397 0.000000 0.0000000	
	Erythroids Fibroblasts ILC Macrophages Microglia Monocytes Plasma cells T cells Unknown	0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000	

In [10]: viz.stacked_barplot(data_all, feature_name="samples")
 plt.show()


```
In [11]: # Relative abundance vs dispersion
viz.rel_abundance_dispersion_plot(data=data_all, abundant_threshold=0.

# Jitter text labels
ax = plt.gca()
for text in ax.texts:
    x, y = text.get_position()
    text.set_position((x + np.random.uniform(-0.03, 0.03), y + np.rand
plt.show()
```


Discussion

As an additional analysis, I applied scCODA, a Bayesian compositional model, to identify shifts in cell type proportions across PDAC, metastatic, and normal tissues. By choosing fibroblasts as a stable reference cell type, I was able to model relative changes while accounting for the compositional nature of single-cell data. My results show a depletion of epithelial cells and erythroids in PDAC compared to normal tissue, and an expansion of endothelial cells and T cells in metastatic samples. These shifts are consistent with literature showing epithelial plasticity and immune infiltration during tumor progression (Dongre & Weinberg, 2019). This analysis highlights cell types that may play a role in tumor development and dissemination, offering targets for future mechanistic studies or therapeutic intervention.