

Legate & cuNumeric

Mission: Accessible Accelerated Computing

Accelerated computing with no pain of complex distributed programming

Generate a random positive semi-definite matrix

A = scipy.sparse.random(n, n, format="csr")

A = 0.5 * (A + A.T) + n * scipy.sparse.eye(n)

Estimate the maximum eigenvalue of A

x = numpy.random.rand(A.shape[0])

for _ in range(iters):

x = A @ x

x /= numpy.linalg.norm(x)

result = numpy.dot(x.T, A @ x)

Grace Hopper Superchip

GPU

DGX

DGX Cloud DGX SuperPOD

Challenges for Library Developers

Problem domains with accelerated computing needs

Enter Legate

Common scalable runtime software stack for NVIDIA hardware

Legate's Secret Sauce

Extract Implicit Parallelism for Effortless Scaling

- Libraries are free of explicit synchronization and data movement, making them composable with each other
- Runtime weaves tasks from multiple libraries into a single execution with all available parallelism extracted
- Runtime inserts minimum required data movement and synchronization

Legate's Secret Sauce

Unified Data Abstraction for Composability

Composability challenge: cunumeric.nonzero

- Must return indices of non-zero entries in C order
- Wants inputs partitioned on only the first dimension

These inputs can be reused

These inputs need repartitioning

Input possibly produced by another library

- What kinds of partitions does it use?
- How do I convert between them?
- Can I do it without blocking?

Legate's solution:

- Libraries implement domain-specific containers on top of Legate stores
 - Global views to the data
 - Partition information maintained by the runtime

- Libraries specify partitioning constraints on tasks
 - Runtime infers if existing partition can be reused
 - Runtime builds data exchange graph, executes asynchronously

Out-of-the-Box Scaling for End-Users

cuNumeric: Good weak scaling across different classes of programs

A decade of research* on the Legate runtime enables scalable implicit parallelism

Benchmarks with nearest neighbor communication

Benchmarks with logarithmic communication complexity

^{* &}lt;u>Visibility Algorithms for Dynamic Dependence Analysis and Distributed Coherence</u>, PPOPP 2023 <u>Scaling Implicit Parallelism via Dynamic Control Replication</u>, PPOPP 2021 <u>Legion: Expressing Locality and Independence with Logical Regions</u>, SC 2012

Out-of-the-Box Scaling for End-Users

TorchSWE: Porting an existing simulation to cuNumeric

- GPU accelerated solver for shallow water equations
- Original CuPy+MPI code is ported to cuNumeric by removing the MPI code
- cuNumeric allows domain scientists with no MPI knowledge to attain the simulation resolution (~20B points) historically restricted to only a few scientific groups

Topography (below) and water level (above)

Weak scaling performance (40M grid points / GPU)

Productive Development of Scalable, Composable Libraries

Legate Sparse: a SciPy-Sparse Implementation in Legate

- ~35% of the APIs for 4 sparse matrix formats (CSR, CSC, COO, DIA) in 3 months
 - Data-dependent partition support played a key role in rapid development

```
# Create a banded diagonal matrix in CSR format
A = legate.sparse.diags(
   [1] * nnz_per_row,
   [x - (nnz_per_row // 2) for x in range(nnz_per_row)],
   shape=(n, n),
   format="csr",
)
# Create a dense vector
x = cunumeric.ones((n,))
# Perform SpMV
y = A.dot(x)
```

SpMV in Legate Sparse + cuNumeric

Legate Sparse can accept cuNumeric arrays

Comparable performance with PETSc, a state-of-the-art MPI implementation

CSR matrix partitioned by row

9

Join Us On Our Journey!

- Legate is a framework for developing scalable, composable software that end-users can "just use" with no expertise in distributed systems
- Please reach out to us on legate@nvidia.com if you
 - Have applications to scale and would like to take advantage of Legate's ecosystem of libraries
 - · Work on libraries that you want to make scalable and portable for distributed hardware
- Legate libraries can be found at https://github.com/nv-legate/
- Learn more:
 - Accelerating Python Applications with cuNumeric and Legate
 - cuNumeric and Legate web page

