Quiz 8 - Graph Algorithms - 2

Due Mar 1 at 11:59pm

Points 10

Questions 8

Available until Mar 2 at 11:59pm

Time Limit None

Allowed Attempts 2

Instructions

Instructions

This quiz will test your understanding of the material covered so far this week (MLOs).

This is an online quiz. There will be no time limit to the quiz. You can attempt the quiz twice and the best of the scores will be retained. This is open notes and open internet quiz but refrain from discussing with anybody during the exam.

Note that this test cannot be taken past the due date for any credit.

This quiz is worth 10 points.

You can view the correct answers here after the due date.

Take the Quiz Again

mpt History

	Attempt	Time	Score
LATEST	Attempt 1	8 minutes	10 out of 10

(!) Answers will be shown after your last attempt

Score for this attempt: 10 out of 10

Submitted Mar 1 at 10:58am This attempt took 8 minutes.

Question 1	1 / 1 pts

Mark True/False: A spanning tree of a graph should contain all the e of the graph.	dges
O True	
False	

Question 2	1 / 1 pts
Mark True/False: A graph can have many spanning trees.	
True	
○ False	

•

Consider the graph M with 3 vertices. Its adjacency matrix is shown below.

M = [[0, 1, 1], [1, 0, 1], [1, 1, 0]]

This graph has ____ number of spanning trees.

2

Question 3

- 0 1
- **4**
- 3

1 / 1 pts

graph: /_\

- 1./_
- 2. _\
- 3. ∧

Question 4 1 / 1 pts

In the following graph which of the edges are part of the minimum spanning tree?

- (a-d)(d-c)(d-b)(d-e)
- (a-c)(c-d)(d-b)(d-e)
- (c-a)(a-d)(d-c)(d-b)(d-e)
- (c-a)(a-d)(d-b)(d-e)

The following pseudocode is for which of the algorithms?

def mystery(G):
 s <- pick a source vertex from V

for v in V:
 dist[v] = infinity
 prev[v] = Empty

#initalize source
dist[v] = 0
prev[v] = s

#update neighbouring nodes of s
for node in s.neighbours</pre>

```
dist[v] = w(s,node)
prev[v] = s

while(len(visited)<len(V)):
    CurrentNode = unvisited vertex v with smallest dist[v]
    MST.add((prevNode, CurrentNode))
    for node in CurrentNode.neighbours:
        dist[node] = min(w(CurrentNode, node), dist[node])
        if dist[node] updated: prev[node] = CurrentNode
        visited.add(CurrentNode)
    return MST

        Krushal's Algorithm

        Prim's Algorithm

        Dijkstra</pre>
```

Question 7	1 / 1 pts
Prim's and Kruskal's algorithms to find the MST follows which algorithm paradigms?	of the
Brute Force	
O Dynamic Programming	
Greedy Approach	
Divide and Conquer	

✓ It can be implemented using a heap	
It is a greedy algorithm	

Quiz Score: 10 out of 10

