

Program Code: J620-002-4:2020

Program Name: FRONT-END SOFTWARE

DEVELOPMENT

Title: Webscrapping and Data Visualization

Name: Phua Yan Han

IC Number: 050824070059

Date: 5/7/23

Introduction: learning webscraping

Conclusion: learn how to do webscraping

Mini Project 2

Webscraping and Data Visualization

Dataset: https://www.worldometers.info/coronavirus/countries-where-coronavirus-has-spread/ https://www.worldometers.info/coronavirus/countries-where-coronavirus-has-spread/)

In this project, you are encouraged to use Worldometers to extract the number of COVID cases and then you will do data analysis and create some visualizations.

1. Import required libraries and write code to do webscraping

```
In [2]: import time
    from selenium import webdriver
    from bs4 import BeautifulSoup
    import time
    import pandas as pd
    driver = webdriver.Chrome('C:\\Users\Asus\Documents\ChromeDriver\chromedriver\c
```

2. After running above code you are able to extract the data from the website, now we will be creating a pandas data frame for further analysis.

	country	Number of cases	Deaths	Continment
0	Cyprus	988	19.0	Asia
1	Barbados	97	7.0	North America
2	Yemen	967	257.0	Asia
3	Cabo Verde	944	8.0	Africa
4	Georgia	911	14.0	Asia
209	Congo	1087	37.0	Africa
210	State of Palestine	1078	3.0	Asia
211	Niger	1046	67.0	Africa
212	Jordan	1042	9.0	Asia
213	Saint Pierre & Miquelon	1	0.0	North America

214 rows × 4 columns

	Country	Cases	Deaths	Region
0	United States	107,331,578	1,168,278	North America
1	India	44,994,407	531,910	Asia
2	France	40,138,560	167,642	Europe
3	Germany	38,428,685	174,352	Europe
4	Brazil	37,682,660	704,159	South America
	• • •			•••
225	Niue	820	0	Australia/Oceania
226	Holy See	29	0	Europe
227	Tokelau	23	0	Australia/Oceania
228	Western Sahara	10	1	Africa
229	MS Zaandam	9	2	

[230 rows x 4 columns]

3. Data Type

```
In [3]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 230 entries, 0 to 229
        Data columns (total 4 columns):
             Column
                      Non-Null Count Dtype
         0
             Country
                      230 non-null
                                       object
         1
             Cases
                      230 non-null
                                       object
         2
             Deaths
                      230 non-null
                                       object
         3
             Region
                      230 non-null
                                       object
        dtypes: object(4)
        memory usage: 7.3+ KB
```

4. Creating a new column Death_rate

Hint: Death rate = 100*(Death/Number of cases)

```
In [4]: calculation = []
    death=[]
    cases=[]
    for index, row in df.iterrows():
        # Access row data using row[column_name]
        death.append((int(row['Deaths'].replace(",", ""))))
        cases.append(int(row['Cases'].replace(",", "")))
        calculation.append((int(row['Deaths'].replace(",", "")))/int(row['Cases'].redf["DeathRate"]=calculation
        df["Cases"]=cases
        df["Deaths"]=death
        df = df[df['Region'] != '']
        df
```

Out[4]:

	Country	Cases	Deaths	Region	DeathRate
0	United States	107331578	1168278	North America	1.088476
1	India	44994407	531910	Asia	1.182169
2	France	40138560	167642	Europe	0.417658
3	Germany	38428685	174352	Europe	0.453703
4	Brazil	37682660	704159	South America	1.868655
224	Montserrat	1403	8	North America	0.570207
225	Niue	820	0	Australia/Oceania	0.000000
226	Holy See	29	0	Europe	0.000000
227	Tokelau	23	0	Australia/Oceania	0.000000
228	Western Sahara	10	1	Africa	10.000000

229 rows × 5 columns

5. Data Visualization - Pairplot

In [7]: df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 229 entries, 0 to 228
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Country	229 non-null	object
1	Cases	229 non-null	object
2	Deaths	229 non-null	object
3	Region	229 non-null	object
4	DeathRate	229 non-null	float64

dtypes: float64(1), object(4)
memory usage: 10.7+ KB

```
In [10]: import seaborn as sns
sns.pairplot(df, hue = 'Region')
```

Out[10]: <seaborn.axisgrid.PairGrid at 0x22a57e34550>

6. Data Visualization - barplot

<matplotlib.axes._subplots.AxesSubplot at 0x247da3f8b48>

2500000

```
In [14]: import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(20,20))
ax.bar(df.Country[:10], df.Cases[:10])

ax.set_xlabel('Country')
ax.set_ylabel('Number of Cases')

plt.show()
```


7. Data Visualization - regplot

<matplotlib.axes._subplots.AxesSubplot at 0x247da3f5bc8>


```
In [24]: plt.figure(figsize = (15, 10))
sns.regplot(x = df['Deaths'], y = df['Cases'], data = df)
```

Out[24]: <Axes: xlabel='Deaths', ylabel='Cases'>

8. Data Visualization - scatterplot

<matplotlib.axes._subplots.AxesSubplot at 0x247da544748>

```
120000 - Continment
North America
South America
Europe
Asia
Africa
Australia/Oceania

60000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 - 40000 -
```

Out[25]: <Axes: xlabel='Deaths', ylabel='Cases'>

9. Data Visualization - boxplot

matplotlib.axes._subplots.AxesSubplot at 0x247da618a88>

```
120000 - Continment
North America
South America
Europe
Asia
```

```
Out[30]: <Axes: xlabel='Country', ylabel='Deaths'>
```


10. Write code to show the table as below

	Continment	Number of cases	Deaths	Death_rate
4	Europe	2336525	188171.0	8.053455
5	North America	2775029	156229.0	5.629815
6	South America	1817322	72629.0	3.996485
1	Africa	318792	8374.0	2.626791
2	Asia	1959358	49431.0	2.522816
3	Australia/Oceania	9115	124.0	1.360395

In [36]: groupedData=df.groupby(['Region'])['Cases','Deaths','DeathRate'].sum()
groupedData

C:\Users\Asus\AppData\Local\Temp\ipykernel_24324\671437134.py:1: FutureWarnin g: Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use a list instead.

groupedData=df.groupby(['Region'])['Cases','Deaths','DeathRate'].sum()

Out[36]:

	Cases	Deaths	DeathRate
Region			
Africa	12830615	258804	110.769851
Asia	218283918	1547796	68.717365
Australia/Oceania	14538582	29206	6.586907
Europe	249684134	2067034	43.892580
North America	127002143	1637367	41.856031
South America	68831885	1357665	24.933194

11. Data Visualization - barplot with death rate

<matplotlib.axes._subplots.AxesSubplot at 0x247da7bdb48>

12. Create texttable

Hint: import texttable as tt

table = tt.Texttable() table.add_rows([(None, None, None, None)] + data) # Add an empty row at the beginning for the headers

4	L	L	L
Country	Number of cases		Continent
Cyprus	988	19	Asia
Barbados	97	7	North America
Yemen	967	257	Asia
Cabo Verde	944	8	Africa
Georgia	911	14	Asia
Burkina Faso	907	53	Africa
MS Zaandam	9	2	
Papua New Guinea	9	0	Australia/Oceania
			Г

```
In [7]:
    import texttable as tt
    data = df.head(10)
    table = tt.Texttable()
    cases = df['Cases']
    deaths = df['Deaths']
    region = df['Region']
    country = df['Country']
    rows = [['Country', 'Number of Cases', 'Deaths', 'Region']]
    for x in range(10):
        rows.append([country[x], cases[x], deaths[x], region[x]])

    table.add_rows(rows)
    print(table.draw())
```

+		+	+
Country	Number of Cases	Deaths	Region
United States	1.073e+08	1168278	North America
India	44994407	531910	Asia
France	40138560	167642	Europe
Germany	38428685	174352	Europe
Brazil	37682660	704159	South America
Japan (+Diamond Princess)	33804284	74707	Asia
South Korea	32256154	35071	Asia
Italy	25897801	190868	Europe
United Kingdom	24636637	227524	Europe
Russia	22963688	399649	Europe