SESA3029 Aerothermodynamics

Lecture 2.4 Expansion waves

Expansion waves

- Must be isentropic (i.e. Mach waves)
- Finite pressure changes are produced by a series (a 'fan') of small changes

• Convex corners in supersonic flow give

tan

expansion fans

Sin M = 1 Sin M = 1 MZ

The expansion fan turns the flow gradually

Turning a flow by a small angle dθ

$$V\cos\mu = (V + dV)\cos(\mu + d\theta)$$

Expand out

$$V\cos\mu = (V + dV)[\cos\mu\cos d\theta - \sin\mu\sin d\theta]$$

Let $d\theta \rightarrow 0$ and remove products of small quantities

$$0 = dV \cos \mu - Vd\theta \sin \mu$$

$$\frac{\mathrm{d}V}{V} = \mathrm{d}\theta \tan \mu = \frac{\mathrm{d}\theta}{\sqrt{M^2 - 1}}$$

V=Ma, so
$$dV = Mda + adM$$

$$\frac{\mathrm{d}V}{V} = \frac{\mathrm{d}a}{a} + \frac{\mathrm{d}M}{M} \quad \text{and hence} \quad \frac{\mathrm{d}\theta}{\sqrt{M^2 - 1}} = \frac{\mathrm{d}a}{a} + \frac{\mathrm{d}M}{M} \tag{1}$$

1 \leq wall anyle approx $d\theta$

$$\frac{\mathrm{d}\theta}{\sqrt{M^2 - 1}} = \frac{\mathrm{d}a}{a} + \frac{\mathrm{d}M}{M} \tag{1}$$

We know (adiabatic flow)
$$\frac{a_0^2}{a^2} = 1 + \frac{\gamma - 1}{2} M^2$$
or
$$\int \frac{da}{dM} = -\frac{1}{2} (\gamma - 1) M a_0 \left[1 + \frac{\gamma - 1}{2} M^2 \right]^{-\frac{3}{2}}$$

$$= -\frac{1}{2} (\gamma - 1) M a \left[1 + \frac{\gamma - 1}{2} M^2 \right]^{-\frac{1}{2}}$$

Rewrite as
$$\frac{\mathrm{d}a}{a} = -\frac{\gamma - 1}{2} M \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-1} \mathrm{d}M \qquad (2)$$

$$\frac{d\theta}{\sqrt{M^2 - 1}} = \frac{da}{a} + \frac{dM}{M} \quad (1) \qquad \frac{da}{a} = -\frac{\gamma - 1}{2} M \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-1} dM \quad (2)$$

Substitute (2) into (1) and rearrange

$$\frac{d\theta}{\sqrt{M^2 - 1}} = \left[1 - \frac{\gamma - 1}{2}M^2\left(1 + \frac{\gamma - 1}{2}M^2\right)^{-1}\right] \frac{dM}{M}$$

$$= \left[1 + \frac{\gamma - 1}{2}M^2\right]^{-1} \frac{\mathrm{d}M}{M}$$

(Take over common denominator and cancel terms)

$$d\theta = \frac{\sqrt{M^2 - 1}}{1 + \frac{\gamma - 1}{2}M^2} \frac{dM}{M}$$
 (3)

Define a standard integral

Exact solution (tabulated on IFT) - the Prandtl-Meyer function

$$\nu(M) = \sqrt{\frac{\gamma+1}{\gamma-1}} \tan^{-1} \sqrt{\frac{\gamma-1}{\gamma+1} (M^2 - 1)} - \tan^{-1} \sqrt{M^2 - 1}$$

Isentropic-flow table ($\gamma = 1.4$):								
М	p/p_0	ρ/ρ_0	T/T_0	ν (deg.)	A/A*			
1.0000	0.5283	0.6339	0.8333	0.0000	1.0000			
1.0200	0.5160	0.6234	0.8278	0.1257	1.0003			
1.0400	0.5039	0.6129	0.8222	0.3510	1.0013			
1.0600	0.4919	0.6024	0.8165	0.6367	1.0029			
1.0800	0.4800	0.5920	0.8108	0.9680	1.0051			

Return to
$$d\theta = \frac{\sqrt{M^2 - 1}}{1 + \frac{\gamma - 1}{2}M^2} \frac{dM}{M}$$
 (3)

Integrate from $\theta=0$ $M=M'_1$ to $\theta=\theta'$ $M=M'_2$

Giving
$$\theta' = v(M_2') - v(M_1')$$

Drop primes for convenience

$$\theta = \nu(M_2) - \nu(M_1)$$

Fundamental equation for expansion fans $(\theta=turning\ angle\ and\ v=Prandtl-Meyer\ function)$

Example: A Mach 3 flow is turned by 13° over a convex corner. Find:

- (a) the Mach number after the corner,
- (b) the percentage pressure drop, and
- (c) the included angle of the P-M expansion fan.

$$\theta = \nu(M_2) - \nu(M_1)$$

Isentropic-flow table ($\gamma = 1.4$):								
M	p/p_0	ρ/ρ_0	T/T_0	ν (deg.)	A/A*			
3.0000	0.0272	0.0762	0.3571	49.7573	4.2346			
3.0200	0.0264	0.0746	0.3541	50.1417	4.3160			
3.0400	0.0256	0.0730	0.3511	50.5231	4.3989			
3.0600	0.0249	0.0715	0.3481	50.9016	4.4835			
3.0800	0.0242	0.0700	0.3452	51.2771	4.5696			
					+13 deg			
3.7000	0.0099	0.0370	0.2675	61.5953	8.1691			
3.7200	0.0096	0.0363	0.2654	61.8893	8.3202			
3.7400	0.0094	0.0356	0.2633	62.1812	8.4739			
3.7600	0.0091	0.0349	0.2613	62.4709	8.6302			
3.7800	0.0089	0.0342	0.2592	62.7584	8.7891			
3.8000	0.0086	0.0335	0.2572	63.0438	8.9506			
3.8200	0.0084	0.0329	0.2552	63.3271	9.1148			
3.8400	0.0082	0.0323	0.2532	63.6083	9.2817			
3.8600	0.0080	0.0316	0.2513	63.8874	9.4513			
3.8800	0.0077	0.0310	0.2493	64.1645	9.6237			

Example: A Mach 3 flow is turned by 13° over a convex corner. Find:

- (a) the Mach number after the corner,
- (b) the percentage pressure drop, and
- (c) the included angle of the P-M expansion fan.
- (a) From IFT $v(M_1)=49.76^{\circ}$ hence $v(M_2)=v(M_1)+\theta=49.76^{\circ}+13^{\circ}=62.76^{\circ}$ Hence from IFT $M_2=3.78$
- (b) Also from IFT $p_1/p_0=0.0272$ and $p_2/p_0=0.0089$ Percentage pressure drop $\frac{p_1-p_2}{p_1}\cdot 100 = \left(1-\frac{p_2/p_0}{p_1/p_0}\right).100 = 67.3\%$

(c)
$$\mu_1 = \sin^{-1}(1/M_1) = 19.5^{\circ}$$
 $\mu_2 = \sin^{-1}(1/M_2) = 15.3^{\circ}$ Included angle of PM fan = $\mu_1 + \theta - \mu_2 = 17.2^{\circ}$