ICT for Health Linear regression

Monica Visintin

Politecnico di Torino

2016/17

1/30

- Regression
 - Regression definition and techniques
- Linear regression
 - Definition of the problem
 - Some solutions of the problem
 - Training and testing
- Laboratory experience # 1
 - Prepare the data
 - Perform regression

- Regression
 - Regression definition and techniques
- Linear regression
 - Definition of the problem
 - Some solutions of the problem
 - Training and testing
- Laboratory experience # 1
 - Prepare the data
 - Perform regression

What is regression?

- To "regress" means to "go back"
- From the observed values y(n), $n=1,\ldots,N$, we go back to the variable $\mathbf{x}(n)$ (dimension F), that can be used later to explain or predict y(n), n>N, using $\mathbf{x}(n)$, n>N.
- $\mathbf{x}(n)$ is the independent variable, y(n) is the dependent variable, but we don't know the relation that links $\mathbf{x}(n)$ and y(n); $\mathbf{x}(n)$ is also called **regressor**, or **predictor** or **explanatory variable**; y(n) is also called **regressand**, **response variable**, **measured variable**
- "When we regress Y on X, we use the values of variable X to predict those of Y"

Regression techniques [1]

- In **linear regression** we assume that $y(n) = [\mathbf{x}(n)]^T \mathbf{w} + \nu(n)$ where $\mathbf{x}(n) = [x_1(n), \dots, x_F(n)]^T$ is the vector of the regressors (independent variables), $\mathbf{w} = [w_1, \dots, w_F]$ is the set of weights to be found, and ν is a measurement error; each of the following techniques generates a different value of \mathbf{w} , starting from N observations, i.e. the column vector $\mathbf{y} = [y(1), \dots, y(N)]^T$ and the matrix \mathbf{X} whose n-th row is the vector $[\mathbf{x}(n)]^T = [x_1(n), \dots, x_F(n)]$:
 - Least-squares estimation: minimization of $\|\mathbf{y} \mathbf{X}\mathbf{w}\|^2$ gives $\mathbf{w} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$ (this lecture)
 - 2 Least-squares estimation with regularization (ridge regression): minimization of $\|\mathbf{y} \mathbf{X}\mathbf{w}\|^2 + \lambda \|\mathbf{w}\|^2$ (we avoid that $\|\mathbf{w}\|$ gets to infinity if the problem is ill posed) gives $\mathbf{w} = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$
 - **1** Lasso regression: minimize $\|\mathbf{y} \mathbf{X}\mathbf{w}\|^2$ subject to $\sum_i \|w_i\| < t$
 - Maximum likelihood regression
 - Bayesian linear regression
 - Principal Component Regression (PCR) (next lecture)

Regression techniques [2]

• Nonlinear regression: $\mathbf{y}=f(\mathbf{w},\mathbf{x})$ where $f(\cdot)$ is a nonlinear function, which depends on the specific problem (for example, $y(n)=w_1\exp(-w_2x(n))$ where w_1 and w_2 are the unknown parameters

- Regression
 - Regression definition and techniques
- Linear regression
 - Definition of the problem
 - Some solutions of the problem
 - Training and testing
- Laboratory experience # 1
 - Prepare the data
 - Perform regression

Definition of the problem [1]

• (1-dimensional problem) We have a set of values u(n), $n=1,\ldots,N$, and we know that the observed/measured value y(n) is related to u(n) through the equation

$$y(n) = af(u(n)) + \nu(n) = ax(n) + \nu(n)$$

where a is an unknown coefficient, $\nu(n)$ is the measuring error, x(n)=f(u(n)) is a known function of u(n). Unfortunately noise $\nu(n)$ affects the measure y(n), otherwise a single measurement would be sufficient to know the exact value of a.

Thus, we have a known column vector $\mathbf{x} \in \mathbb{R}^{N \times 1}$, a known column vector $\mathbf{y} \in \mathbb{R}^{N \times 1}$ and

$$\mathbf{y} = a\mathbf{x} + \boldsymbol{\nu}$$

where $\mathbf{\nu} \in \mathbb{R}^{N \times 1}$ identifies noise, and a is a real unknown constant.

Definition of the problem [2]

• (1-dimensional problem with a variation) We assume that

$$y(n) = ax(n) + b + \nu(n) \implies y(n) = ax(n) + b1(n) + \nu(n)$$

$$y(n) = [x(n), 1(n)] \begin{bmatrix} a \\ b \end{bmatrix} + \nu(n), \quad n = 1, \dots, N$$

$$\mathbf{y} = [\mathbf{x}, \mathbf{1}] \begin{bmatrix} a \\ b \end{bmatrix} + \boldsymbol{\nu} = \mathbf{X}\mathbf{a} + \boldsymbol{\nu}$$

Actually we have a two-dimensional problem: the two unknowns (a and b) are stored in vector \mathbf{a} , and matrix \mathbf{X} has a first column equal to \mathbf{x} , and a second column of N ones.

Definition of the problem [3]

• (M-dimensional problem) More in general, we assume that

$$y(n) = a_1 f_1(u(n)) + a_2 f_2(u(n)) + \dots + a_M f_M(u(n)) + \nu(n)$$

and we perform N measurements, by feeding the system with u(n) and observing the corresponding y(n); we want to estimate $\mathbf{a}=[a_1,a_2,\ldots,a_M]^T$ (we go back to the previous case by setting M=1). By defining the matrix \mathbf{X} with M columns and N rows, such that $\mathbf{X}(n,k)=f_k(u(n))=x_k(n)$, we can write

$$y = Xa + \nu$$

As an example, we have $\mathbf{X}(n,k) = [u(n)]^{k-1}$ if we assume that

$$y(n) = a_1 + a_2 u(n) + a_3 [u(n)]^2 + \dots + a_M [u(n)]^{M-1} + \nu(n)$$

A pictorial view

Model:

$$y(n) = a_1 f_1(u(n)) + a_2 f_2(u(n)) + a_3 f_3(u(n)) + \dots + a_M f_M(u(n)) + \nu(n)$$

	Ex. 1	Ex. 2	Ex. 3
$f_1(x)$	1	$\sin(2\pi x)$	g(x)
$f_2(x)$	x	$\cos(2\pi x)$	g(x-1)
$f_3(x)$	x^2	$\sin(4\pi x)$	g(x-2)
$f_4(x)$	x^3	$\cos(4\pi x)$	g(x-3)
$f_5(x)$	x^4	$\sin(6\pi x)$	g(x-4)
:	:	:	:
-	•	•	•

 $g(x) = \exp(-|x|)$ or something else.

Comment

In our previous discussion, the model is given. In real life, the main problem is that of finding the correct functions $f_k(u)$ for the specific system we are analyzing. However we concentrate on the solution of the problem of finding ${\bf a}$, assuming that the correct model has been devised.

Therefore, in the equation

$$y = Xa + \nu$$

matrix \mathbf{X} is given, \mathbf{y} is measured, \mathbf{a} has to be estimated. In particular, in the laboratory experience, $\mathbf{X} \in \mathbb{R}^{N \times F}$ stores the F features, which can be thought of as F functions of u(n),

$$n=1,\ldots,N.$$

Regression

- Regression
 - Regression definition and techniques
- Linear regression
 - Definition of the problem
 - Some solutions of the problem
 - Training and testing
- Laboratory experience # 1
 - Prepare the data
 - Perform regression

First solution (MSE)

MSE: Minimum Square Error

We find a that minimizes the square error

$$e(\mathbf{a}) = \|\mathbf{y} - \mathbf{X}\mathbf{a}\|^2$$

 $(e(\mathbf{a})$ is a scalar, \mathbf{y} is a column vector with N elements, \mathbf{a} is the unknown column vector with M elements, \mathbf{X} is a matrix with N rows and M columns).

The square error can be rewritten as

$$e(\mathbf{a}) = [\mathbf{y} - \mathbf{X}\mathbf{a}]^T [\mathbf{y} - \mathbf{X}\mathbf{a}]$$
$$= \mathbf{y}^T \mathbf{y} - \mathbf{a}^T \mathbf{X}^T \mathbf{y} - \mathbf{y}^T \mathbf{X}\mathbf{a} + \mathbf{a}^T \mathbf{X}^T \mathbf{X}\mathbf{a}$$

We say that $e(\mathbf{a})$ is a quadratic form of \mathbf{a} . In a one dimensional space (i.e. M=1), e(a) is a quadratic function (convex up) corresponding to a parabola; in a two dimensional space (i.e. M=2), $e(\mathbf{a})$ corresponds to a bowl. Whatever is $M, e(\mathbf{a})$ has just one minimum value; we must find $\hat{\mathbf{a}}$ that corresponds to this minimum.

First solution (MSE)

To find the minimum is thus sufficient to find the value $\hat{\bf a}$ for which the gradient of $e({\bf a})$ vanishes:

$$\nabla e(\mathbf{a}) = -2\mathbf{X}^T\mathbf{y} + 2\mathbf{X}^T\mathbf{X}\mathbf{a} = \mathbf{0}$$

We get the solution

MSE

$$\hat{\mathbf{a}} = [\mathbf{X}^T \mathbf{X}]^{-1} \mathbf{X}^T \mathbf{y}$$

Note that $[\mathbf{X}^T\mathbf{X}]^{-1}\mathbf{X}^T$ is the so-called **pseudo-inverse** of the rectangular matrix \mathbf{X} .

Then $\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{a}}$ and

$$\begin{split} e(\hat{\mathbf{a}}) &= \mathbf{y}^T \mathbf{y} - \hat{\mathbf{a}}^T \mathbf{X}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} \hat{\mathbf{a}} + \hat{\mathbf{a}}^T \mathbf{X}^T \mathbf{X} \hat{\mathbf{a}} \\ &= \mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} [\mathbf{X}^T \mathbf{X}]^{-1} \mathbf{X}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} [\mathbf{X}^T \mathbf{X}]^{-1} \mathbf{X}^T \mathbf{y} + \\ &+ \mathbf{y}^T \mathbf{X} [\mathbf{X}^T \mathbf{X}]^{-1} \mathbf{X}^T \mathbf{X} [\mathbf{X}^T \mathbf{X}]^{-1} \mathbf{X}^T \mathbf{y} \\ &= \mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} [\mathbf{X}^T \mathbf{X}]^{-1} \mathbf{X}^T \mathbf{y} \end{split}$$

Regression

Second solution (iterative, gradient algorithm)

The MSE solution requires that a matrix is inverted, which might be too complex is some cases (for example image processing). Then the following iterative solution can be used:

Gradient algorithm

- ① Start with an initial guess of $\hat{\mathbf{a}}$, which can be just a vector of M random variables. Let $\hat{\mathbf{a}}(0)$ be this initial guess. Set i=0.
- Evaluate the gradient

$$\nabla e(\hat{\mathbf{a}}(i)) = -2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X} \hat{\mathbf{a}}(i)$$

Update the guess:

$$\hat{\mathbf{a}}(i+1) = \hat{\mathbf{a}}(i) - \gamma \nabla e(\hat{\mathbf{a}}(i))$$

where $\gamma > 0$ is the so-called learning coefficient

Increase i by 1 and go back to step 2, until a stopping rule is satisfied

A couple of details

- \bullet The **correct value of** γ depends on the specific function to be minimized:
 - if γ is too large, then a sort of hysterical behavior arises in the algorithm (we jump around the optimum value but we never reach it, because the jumps are too large)
 - \bullet if γ is too small, then it takes a lot of time to reach the optimum value.
- An example of stopping rule is $\|\hat{\mathbf{a}}(i+1) \hat{\mathbf{a}}(i)\| < \epsilon$.

Overfitting

If $y=Xa+\nu$ has some large values of noise/error, it is possible that the error \hat{a} takes very large values. Then, it might be convenient to solve the new problem

$$\min_{\mathbf{a}} \|\mathbf{y} - \mathbf{X}\mathbf{a}\|^2 + \mu \|\mathbf{a}\|^2$$

where μ has to be set conveniently (trial and error).

Third solution (iterative, steepest descent algorithm)

A faster convergence can be obtained with the steepest descent algorithm, which finds the "optimum" value of γ at each step.

The steepest descent algorithm

- ① Start from an initial guess $\hat{\mathbf{a}}(0)$, set i=0
- 2 Evaluate the gradient and the Hessian matrix at point $\hat{\mathbf{a}}(i)$,

$$\nabla e(\hat{\mathbf{a}}(i)) = -2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X} \hat{\mathbf{a}}(i)$$

$$\mathbf{H}(\hat{\mathbf{a}}(i)) = 4\mathbf{X}^T\mathbf{X}$$

Find the new point as

$$\hat{\mathbf{a}}(i+1) = \hat{\mathbf{a}}(i) - \frac{\|\nabla e(\hat{\mathbf{a}}(i))\|^2}{\nabla e(\hat{\mathbf{a}}(i))^T \mathbf{H}(\hat{\mathbf{a}}(i)) \nabla e(\hat{\mathbf{a}}(i))} \nabla e(\hat{\mathbf{a}}(i))$$

 \bullet set i := i + 1, go back to step 2, unless a stop condition is met

A variation: the stochastic gradient algorithm

- **1** Start with an initial guess $\hat{\mathbf{a}}(0)$; set n=1
- 2 Define the error at the *n*-th epoch:

$$e(\hat{\mathbf{a}}(n), n) = \|y(n) - \mathbf{x}(n)\mathbf{a}\|^2$$

where $\hat{\mathbf{a}}(n)$ is the estimation of the unknown vector \mathbf{a} at the n-th epoch, and $\mathbf{x}(n)$ is the n-th row of matrix \mathbf{X}

3 Evaluate the gradient of $e(\hat{\mathbf{a}}(n), n)$:

$$\nabla e(\hat{\mathbf{a}}(n), n) = -2y(n)\mathbf{x}(n) + 2[\mathbf{x}(n)]^T \mathbf{x}(n)\mathbf{a}$$

Update the estimate as

$$\hat{\mathbf{a}}(n+1) = \hat{\mathbf{a}}(n) - \gamma \nabla e(\hat{\mathbf{a}}(n), n)$$

lacksquare Set n:=n+1; if n>N, set n=1; go back to step 2 unless a stopping rule is satisfied.

With respect to the gradient algorithm, we consider one epoch at a time, instead of all the epochs together. Intermediate solutions are possible in which, for example, having N=1000, you take 10 epochs at a time (a mini-batch).

- Regression
 - Regression definition and techniques
- Linear regression
 - Definition of the problem
 - Some solutions of the problem
 - Training and testing
- Laboratory experience # 1
 - Prepare the data
 - Perform regression

Training

- In general we have a set of N cases, and we divide them into two subsets: the cases $n=1,\ldots,N_{tr}$ are used for training the machine, the cases $n=N_{tr}+1,\ldots,N$ are used to test the machine
- ullet Of course, if N_{tr} is too small, the machine is not correctly trained; if N_{tr} is too large, the results obtained during the testing phase are not significant from a statistical point of view; a compromise must be found
- In our specific case, matrix \mathbf{X} used to find $\hat{\mathbf{a}}$ has N_{tr} rows and M columns; then $\hat{y}(n) = \mathbf{x}(n)\hat{\mathbf{a}}$ for $n = N_{tr} + 1, \dots, N$ is the estimate of y(n) and the prediction error is $e(n) = y(n) \hat{y}(n)$.

- Regression
 - Regression definition and techniques
- Linear regression
 - Definition of the problem
 - Some solutions of the problem
- Laboratory experience # 1
 - Prepare the data
 - Perform regression

Prepare the data [1]

- Download from https://archive.ics.uci.edu/ml/datasets/ Parkinsons+Telemonitoring the Data Folder and Data Set Description. In particular, download files parkinsons_updrs.data and parkinsons_updrs.names from https://archive.ics.uci.edu/ml/ machine-learning-databases/parkinsons/telemonitoring/
- File parkinsons_updrs.data stores F columns and N_T rows; the columns are separated by commas.
- Open Matlab and click on "Import Data"

Prepare the data [2]

- Select parkinsons_updrs.data by changing "Files of type" from the default value to "All files"
- You'll see 22 columns (the first line shows the content of each column).
- Select "Numeric Matrix" on the left and "Import Selection" on the right

 In the Matlab Command Window, write save('updrs.mat', 'parkinsonsupdrs'); so that later, in the Matlab script, you can simply write load('updrs.mat') to work on matrix updrs.

Prepare the data [3]

- For each patient (identified by an integer in the first column), the interesting features are stored in columns from 5 to 22
- Column 4 stores the time (in days) at which the measurements were taken during the study, which lasted 6 months
- In each measurement day, the physician analyzed the patient and gave him/her two grades in the Unified Parkinson's Disease Rating Scale (UPDRS):
 - the total UPDRS value (column 6)
 - the motor UPDRS (column 5)

these two measurements are expensive and we would like to just estimate them using the other features.

Columns from 7 to 22 store these other features. Each feature
was actually measured 5-6 times during each measurement day,
and the files stores each of these 5-6 values (not the average).

Prepare the data [4]

- For each patient, time goes from approximately 0 to approximately 180 days 5-6 times in subsequent blocks of data; since total and motor UPDRS values were measured just once in the day, these values are just copied in each of the 5-6 blocks, whereas each block stores a different value for each of the other features.
- Prepare a new matrix in which column 4 goes just once from 0 to 180 for each patient, and the values stored in columns from 7 to 22 are the means of the values stored in the 5-6 blocks of the original file. You should get a new matrix data with 990 rows (instead of the 5876 present in parkinsons_updrs.data).

- Regression
 - Regression definition and techniques
- Linear regression
 - Definition of the problem
 - Some solutions of the problem
 - Training and testing
- Laboratory experience # 1
 - Prepare the data
 - Perform regression

Perform regression [1]

- Consider only the data related to the first 36 patients (leave patients from 37 to 42 for the testing phase of the learning machine), and store these data into a new matrix data_train.
 Define the matrix data_test with the data of patients from 37 to 42.
- It is convenient to normalize the data, so that each feature has mean zero and variance 1; therefore find
 m_data_train=mean(data_train,1); and
 v_data_train=var(data_train,1); then generate the
 normalized data data_train_norm and check that the normalized
 features have zero mean and unit variance.
- Generate data_test_norm using the values m_data_train and v_data_train measured at the previous point

Perform regression [2]

- Define F0 as the feature that we want to estimate from the other features; then y_train=data_train_norm(:,F0); and X_train=data_train_norm; X_train(:,F0)=[]; similarly define y_test=data_test_norm(:,F0); and X_test=data_test_norm; X_test(:,F0)=[];
- start with F0=7 (once the script works with F0=7, then you'll use F0=5)
- Perform regression using
 - MSE,
 - the gradient algorithm,
 - the steepest descent algorithm

and predicting feature F0 from the other features. In the last two cases, start with a random vector $\hat{\mathbf{a}}(0)$, but generate it after the command $\mathtt{rng}(\text{default})$, so that each time you run your script you get the same random vector.

Perform regression [3]

- Generate the following plots:
 - yhat_train versus y_train and yhat_train_L versus y_train
 - yhat_test versus y_test and yhat_test_L versus y_test
 - the histograms of y_train-yhat_train (50 bins)
 - the histograms of y_test-yhat_test (50 bins)
 - the values of w
- Write the report:
 - use the publish function of the Matlab editor to automatically generate a first pdf file that contains the Matlab script together with the obtained figures (for F0=7 and F0=5) (this is automatic),
 - write another pdf file with your comments, referring to the figures of the Matlab report.

