Contents

1	Chapter 1 Varieties 1 Affine Varieties	2
	1.1 Prop 1.2 (d)	2
2	References	3

1 Chapter 1 Varieties 1 Affine Varieties

1.1 Prop 1.2 (d)

According to Hilbert's Nullstellensatz, I agree we'll get $I(Z(\mathfrak{a})) \subset \sqrt{\mathfrak{a}}$. For the reverse inclusion, pick any $f \in A$ such that $f^r \in \mathfrak{a}$ where $r \in \mathbb{Z}_{>0}$. We wish to show that f(P) = 0 for any $P \in Z(\mathfrak{a})$. By definition, $f^r(P) = 0$ given $f^r \in \mathfrak{a}$. And this implies

$$f^{r}(P) = (f(P))^{r} = 0 \implies f(P) = 0$$

given the polynomial ring A is an integral domain. Therefore we get the inclusion

$$I(Z(\mathfrak{a}))\supset \sqrt{\mathfrak{a}}.$$

See Theorem 6 on Page 183, Strong Nullstellensatz, [1].

~

2 References

[1] David Cox, John Little, and Donal OShea. *Ideals, varieties, and algorithms:* an introduction to computational algebraic geometry and commutative algebra. Springer Science & Business Media, 2013.