Econ 424/Amath 540 Constant Exected Return Model

Eric Zivot

July 12, 2012

Constant Expected Return Model

$$r_{it} = \text{cc return on asset } i \text{ in month } t$$
 $i=1,\cdots,N \text{ assets; } t=1,\cdots,T \text{ months}$

Assumptions (normal distribution and covariance stationarity)

$$r_{it} \sim iid \ N(\mu_i, \ \sigma_i^2)$$
 for all i and t
 $\mu_i = E[r_{it}]$ (constant over time)
 $\sigma_i^2 = \text{var}(r_{it})$ (constant over time)
 $\sigma_{ij} = \text{cov}(r_{it}, \ r_{jt})$ (constant over time)
 $\rho_{ij} = \text{cor}(r_{it}, \ r_{jt})$ (constant over time)

Regression Model Representation (CER Model)

$$r_{it} = \mu_i + \epsilon_{it}$$
 $t = 1, \dots, T;$ $i = 1, \dots N$ $\epsilon_{it} \sim \operatorname{iid} N(0, \sigma_i^2)$ $\operatorname{cov}(\epsilon_{it}, \ \epsilon_{jt}) = \sigma_{ij}, \ \rho_{ij} = \operatorname{cor}(\epsilon_{it}, \ \epsilon_{jt})$ $\operatorname{cov}(\epsilon_{it}, \ \epsilon_{js}) = 0$ $t \neq s$, for all i, j

Interpretation

- ullet ϵ_{it} represents random news that arrives in month t
- ullet News affecting asset i may be correlated with news affecting asset j
- News is uncorrelated over time

 $\epsilon_{it} = r_{it} - \mu_i$ unexpected Actual expected news return return

No news $\epsilon_{it}=0\Longrightarrow r_{it}=\mu_i$ Good news $\epsilon_{it}>0\Longrightarrow r_{it}>\mu_i$ Bad news $\epsilon_{it}<0\Longrightarrow r_{it}<\mu_i$

CER Model Regression with Standardized News Shocks

$$r_{it} = \mu_i + \epsilon_{it}$$
 $t = 1, \cdots, T;$ $i = 1, \cdots N$
$$= \mu_i + \sigma_i \times z_{it}$$

$$z_{it} \sim \operatorname{iid} N(\mathbf{0}, \mathbf{1})$$

$$\operatorname{cov}(z_{it}, z_{jt}) = \operatorname{cor}(z_{it}, z_{jt}) = \rho_{ij}$$

$$\operatorname{cov}(z_{it}, z_{js}) = 0$$
 $t \neq s$, for all i, j

Here, $z_{it} \sim \text{iid } N(\textbf{0},\textbf{1})$ is a standardized news shock and σ_i is the volatility of "news".

Value-at-Risk in the CER Model

For an initial investment of W for one month, we have

$$VaR_{lpha}=\$W_0 imes(e^{q^r_{lpha}}-1)$$
 $q^r_{lpha}=lpha imes100\%$ quantile of r_t

Result: In the CER model with $r = \mu + \sigma \times z$ where $z \sim N(0,1)$

$$q^r_{lpha}=\mu+\sigma imes q^z_{lpha}$$
 $q^Z_{lpha}=lpha imes 100\%$ quantile of $z\sim N(0,1)$

Derivation

Let $z \sim N(0,1)$. Then, by the definition of q^z_{α} we have

$$\Pr(z \leq q_{\alpha}^{z}) = \alpha$$

$$\Rightarrow \Pr(\sigma \times z \leq \sigma \times q_{\alpha}^{Z}) = \alpha$$

$$\Rightarrow \Pr(\mu + \sigma \times z \leq \mu + \sigma \times q_{\alpha}^{Z}) = \alpha$$

$$\Rightarrow \Pr(r \leq \mu + \sigma \times q_{\alpha}^{Z}) = \alpha$$

$$\Rightarrow \mu + \sigma \times q_{\alpha}^{Z} = q_{\alpha}^{r}$$

CER Model in Matrix Notation

Define the $N \times 1$ vectors $r_t = (r_{1t}, \dots, r_{Nt})'$, $\mu = (\mu_1, \dots, \mu_N)'$, $\varepsilon_t = (\varepsilon_{1t}, \dots, \varepsilon_{Nt})'$ and the $N \times N$ symmetric covariance matrix

$$oldsymbol{\Sigma} = \left(egin{array}{cccc} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1N} \ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2N} \ dots & dots & \ddots & dots \ \sigma_{1N} & \sigma_{2N} & \cdots & \sigma_N^2 \end{array}
ight).$$

Then the CER model matrix notation is

$$\mathbf{r}_t = \mu + \varepsilon_t,$$

$$\varepsilon_t \sim GWN(\mathbf{0}, \mathbf{\Sigma}),$$

which implies that $r_t \sim iid \ N(\mu, \Sigma)$.

Monte Carlo Simulation

Use computer random number generator to create simulated values from assumed model

- Reality check on proposed model
- Create "what if?" scenarios
- Study properties of statistics computed from proposed model

Simulating Random Numbers from a Distribution

Goal: simulate random number x from pdf f(x) with CDF $F_X(x)$

- Generate $U \sim \mathsf{Uniform} \ [\mathbf{0}, \mathbf{1}]$
- Generate $X \sim F_X(x)$ using inverse CDF technique:

$$x = F_X^{-1}(u)$$

$$F_X^{-1} = \text{inverse CDF function (quantile function)}$$

$$F_X^{-1}(F_X(x)) = x$$

Example - Simulate monthly returns on Microsoft from CER Model

 Specify parameters based on sample statistics (use monthly data from June 1992 - Oct 2000)

$$\mu_i = 0.03$$
 (monthly expected return) $\sigma_i = 0.10$ (monthly SD) $r_{it} = 0.03 + arepsilon_{it}, \ t = 1, \dots, 100$ $arepsilon_{it} \sim \operatorname{iid} N(0, (0.10)^2)$

• Simulation requires generating random numbers from a normal distribution. In R use rnorm().

Monte Carlo Simulation: Multivariate Returns

Example: Simulating observations from CER model for three assets

 Specify parameters based on sample statistics (e.g., use monthly data from June 1992 - Oct 2000)

$$\mu_{SBUX} = .03, \; \mu_{MSFT} = .03, \; \mu_{SP500} = .01$$

$$\Sigma = \begin{pmatrix} .018 & .004 & .002 \\ .011 & .002 \\ .001 \end{pmatrix}$$
 $r_{it} = \mu_i + \varepsilon_{it}, \; t = 1, \dots, 100$ $\varepsilon_{it} \sim \operatorname{iid} N(0, \sigma_i^2)$ $\operatorname{cov}(\varepsilon_{it}, \varepsilon_{jt}) = \sigma_{ij}$

• Simulation requires generating random numbers from a multivariate normal distribution.

• R package mvtnorm has function mvnorm() for simulating data from a multivariate normal distribution.

The Random Walk Model

The CER model for cc returns is equivalent to the random walk (RW) model for log stock prices

$$r_t = \ln\left(\frac{P_t}{P_{t-1}}\right) = \ln P_t - \ln P_{t-1}$$
$$= \ln P_t - \ln P_{t-1}$$

which implies

$$\ln P_t = \ln P_{t-1} + r_t$$

Recursive substitution starting at t = 1 gives

$$\begin{split} \ln P_1 &= \ln P_0 + r_1 \\ \ln P_2 &= \ln P_1 + r_2 \\ &= \ln P_0 + r_1 + r_2 \\ &\vdots \\ \ln P_t &= \ln P_{t-1} + r_t \\ &= \ln P_0 + \sum_{s=1}^t r_s \end{split}$$

Interpretation: Price at t equals initial price plus accumulation of cc returns

In CER model, $r_s = \mu + \varepsilon_s$ so that

$$\ln P_t = \ln P_0 + \sum_{s=1}^t r_s$$

$$= \ln P_0 + \sum_{s=1}^t (\mu + \varepsilon_s)$$

$$= \ln P_0 + t \cdot \mu + \sum_{s=1}^t \varepsilon_s$$

Interpretation: Log price at t equals initial price $\ln P_0$, plus expected growth in prices $E[\ln P_t] = t \cdot \mu$, plus accumulation of news $\sum_{s=1}^t \varepsilon_s$.

The price level at time t is

$$P_t = P_0 \exp\left(t \cdot \mu + \sum_{s=1}^t \varepsilon_s\right) = P_0 \exp\left(t \cdot \mu\right) \exp\left(\sum_{s=1}^t \varepsilon_s\right)$$

 $\exp(t \cdot \mu) = \text{expected growth in price}$

$$\exp\left(\sum_{s=1}^{t} \varepsilon_s\right) = \text{unexpected growth in price}$$

Estimating Parameters of CER model

Parameters of CER Model

$$egin{aligned} \mu_i &= E[r_{it}] \ \sigma_i^2 &= \mathsf{var}(r_{it}) \ \sigma_{ij} &= \mathsf{cov}(r_{it}, r_{jt}) \
ho_{ij} &= \mathsf{cor}(r_{it}, r_{jt}) \end{aligned}$$

are not known with certainty

First Econometric Task

• Estimate μ_i , σ_i^2 , σ_{ij} , ρ_{ij} using observed sample of historical monthly returns

Estimators and Estimates

Definition: An estimator is a rule or algorithm for computing an *ex ante* estimate of a parameter based on a random sample.

Example: Sample mean as estimator of $E[r_{it}] = \mu_i$

$$\{r_{i1},\ldots,r_{iT}\}=$$
 covariance stationary time series
$$= \text{ collection of random variables}$$

$$\hat{\mu}_i = \frac{1}{T}\sum_{t=1}^T r_{it} = \text{ sample mean}$$

$$= \text{ random variable}$$

Definition: An estimate of a parameter is simply the *ex post* value of an estimator based on observed data

Example: Sample mean from an observed sample

$$\{r_{i1}=.02, r_{i2}=.01, r_{i3}=-.01, \ldots, r_{iT}=.03\}=$$
 observed sample $\hat{\mu}_i=rac{1}{T}(.02+.01-.01+\cdots+.03)$ = number = 0.01 (say)

Estimators of CER Model Parameters: Plug-in Principle

Plug-in principle: Estimate model parameters using appropriate sample statistics

$$\mu_{i} = E[r_{it}] : \hat{\mu}_{i} = \frac{1}{T} \sum_{t=1}^{T} r_{it}$$

$$\sigma_{i}^{2} = E[(r_{it} - \mu_{i})^{2}] : \hat{\sigma}_{i}^{2} = \frac{1}{T - 1} \sum_{t=1}^{T} (r_{it} - \hat{\mu}_{i})^{2}$$

$$\sigma_{i} = \sqrt{\sigma_{i}^{2}} : \hat{\sigma}_{i} = \sqrt{\hat{\sigma}_{i}^{2}}$$

$$\sigma_{ij} = E[(r_{it} - \mu_{i})(r_{jt} - \mu_{j})] : \hat{\sigma}_{ij} = \frac{1}{T - 1} \sum_{t=1}^{T} (r_{it} - \hat{\mu}_{i})(r_{jt} - \hat{\mu}_{j})$$

$$\rho_{ij} = \frac{\sigma_{ij}}{\sigma_{i}\sigma_{j}} : \hat{\rho}_{ij} = \frac{\hat{\sigma}_{ij}}{\hat{\sigma}_{i} \cdot \hat{\sigma}_{j}}$$

Properties of Estimators

 $\theta = \text{parameter to be estimated}$

 $\hat{\theta} = \text{estimator of } \theta \text{ from random sample}$

- ullet $\hat{ heta}$ is a random variable its value depends on realized values of random sample
- ullet $f(\hat{ heta}) = \mathsf{pdf}$ of $\hat{ heta}$ depends on pdf of random variables in random sample
- ullet Properties of $\hat{ heta}$ can be derived analytically (using probability theory) or by using Monte Carlo simulation

Estimation Error

$$error(\hat{\theta}, \theta) = \hat{\theta} - \theta$$

Bias

$$\begin{aligned} \operatorname{bias}(\hat{\theta}, \theta) &= E\left[error(\hat{\theta}, \theta)\right] = E\left[\hat{\theta}\right] - \theta \\ \hat{\theta} \text{ is unbiased if } E[\hat{\theta}] &= \theta \Rightarrow \operatorname{bias}(\hat{\theta}, \theta) = 0 \end{aligned}$$

Remark: An unbiased estimator is "on average" correct, where "on average" means over many hypothetical samples. It most surely will not be exactly correct for the sample at hand!

Precision

$$mse(\hat{\theta}, \theta) = E\left[error(\hat{\theta}, \theta)\right] = E\left[\left(\hat{\theta} - \theta\right)^2\right]$$

$$= bias(\hat{\theta}, \theta)^2 + var(\hat{\theta})$$

$$var(\hat{\theta}) = E\left[\left(\hat{\theta} - E[\hat{\theta}]\right)^2\right]$$

Remark: If $bias(\hat{\theta}, \theta) \approx 0$ then precision is typically measured by the *standard* error of $\hat{\theta}$ defined by

$$\begin{split} \mathsf{SE}(\hat{\theta}) &= \text{ standard error of } \hat{\theta} \\ &= \sqrt{\mathsf{var}(\hat{\theta})} = \sqrt{E[(\hat{\theta} - E[\hat{\theta}])^2]} \\ &= \sigma_{\hat{\theta}} \end{split}$$

Bias of CER Model Estimates

• $\hat{\mu}_i, \hat{\sigma}_i^2$ and $\hat{\sigma}_{ij}$ are unbiased estimators:

$$E\left[\hat{\mu}_i\right] = \mu_i \Rightarrow \mathsf{bias}(\hat{\mu}_i, \mu_i) = 0$$
 $E\left[\hat{\sigma}_i^2\right] = \sigma_i^2 \Rightarrow \mathsf{bias}(\hat{\sigma}_i^2, \sigma_i^2) = 0$
 $E\left[\hat{\sigma}_{ij}\right] = \sigma_{ij} \Rightarrow \mathsf{bias}(\hat{\sigma}_{ij}, \sigma_{ij}) = 0$

ullet $\hat{\sigma}_i$ and $\hat{
ho}_{ij}$ are biased estimators

$$E[\hat{\sigma}_i] \neq \sigma_i \Rightarrow \mathsf{bias}(\hat{\sigma}_i, \sigma_i) \neq 0$$

 $E[\hat{\rho}_{ij}] \neq \rho_{ij} \Rightarrow \mathsf{bias}(\hat{\rho}_{ij}, \rho_{ij}) \neq 0$

but bias is very small except for very small samples and disappears as sample size T gets large.

Remarks

- "On average" being correct doesn't mean the estimate is any good for your sample!
- The value of $SE(\hat{\theta})$ will tell you how far from θ the estimate $\hat{\theta}$ typically will be.
- Good estimators $\hat{\theta}$ have small bias and small $SE(\hat{\theta})$

Proof that $E\left[\hat{\mu}_i\right] = \mu_i$

Recall,

$$\hat{\mu}_i = \frac{1}{T} \sum_{t=1}^{T} r_{it}$$

$$r_{it} = \mu_i + \epsilon_{it}, \ \epsilon_{it} \sim \text{iid } N(0, \sigma^2)$$

Now

$$E[r_{it}] = \mu_i + E[\epsilon_{it}] = \mu_i$$

since $E[\epsilon_{it}] = \mathbf{0}$.

Therefore,

$$E[\hat{\mu}_i] = \frac{1}{T} \sum_{t=1}^{T} E[r_{it}]$$
$$= \frac{1}{T} \sum_{t=1}^{T} \mu_i$$
$$= \frac{1}{T} T \mu_i = \mu_i$$

Standard Error formulas for $\hat{\mu}_i,~\hat{\sigma}_i,~\hat{\sigma}_{ij},~$ and $\hat{
ho}_{ij}$

$$egin{aligned} & \mathsf{SE}(\hat{\mu}_i) = rac{\sigma_i}{\sqrt{T}} \ & \mathsf{SE}(\hat{\sigma}_i^2) pprox rac{\sigma_i^2}{\sqrt{T/2}} = rac{\sqrt{2}\sigma_i^2}{\sqrt{T}} \ & \mathsf{SE}(\hat{\sigma}_i) pprox rac{\sigma_i}{\sqrt{2T}} \ & \mathsf{SE}(\hat{\sigma}_{ij}) : \ & \mathsf{no \ easy \ formula!} \ & \mathsf{SE}(\hat{
ho}_{ij}) pprox rac{(1-
ho_{ij}^2)}{\sqrt{T}} \end{aligned}$$

Note: " \approx " denotes "approximately equal to", where approximation error \longrightarrow 0 as $T\longrightarrow\infty$ for normally distributed data.

Remarks

- Large SE → imprecise estimate; Small SE → precise estimate
- Precision increases with sample size: $SE \longrightarrow 0$ as $T \longrightarrow \infty$
- ullet $\hat{\sigma}_i$ is generally a more precise estimate than $\hat{\mu}_i$ or $\hat{
 ho}_{ij}$
- SE formulas for $\hat{\sigma}_i$ and $\hat{\rho}_{ij}$ are approximations based on the Central Limit Theorem. Monte Carlo simulation and bootstrapping can be used to get better approximations
- SE formulas depend on unknown values of parameters ⇒ formulas are not practically useful

• Practically useful formulas replace unknown values with estimated values:

$$\begin{split} \widehat{\mathsf{SE}}(\hat{\mu}_i) &= \frac{\hat{\sigma}_i}{\sqrt{T}}, \ \hat{\sigma}_i \ \mathsf{replaces} \ \sigma_i \\ \widehat{\mathsf{SE}}(\hat{\sigma}_i^2) &\approx \frac{\hat{\sigma}_i^2}{\sqrt{T/2}}, \ \hat{\sigma}_i^2 \ \mathsf{replaces} \ \sigma_i^2 \\ \widehat{\mathsf{SE}}(\hat{\sigma}_i) &\approx \frac{\hat{\sigma}_i}{\sqrt{2T}}, \ \hat{\sigma}_i \ \mathsf{replaces} \ \sigma_i \\ \widehat{\mathsf{SE}}(\hat{\rho}_{ij}) &\approx \frac{(1-\hat{\rho}_{ij}^2)}{\sqrt{T}}, \ \hat{\rho}_{ij} \ \mathsf{replaces} \ \rho_{ij} \end{split}$$

Deriving $SE(\hat{\mu}_i)$

$$\begin{aligned} \text{var}(\hat{\mu}_i) &= \text{var}\left(\frac{1}{T}\sum_{t=1}^T r_{it}\right) \\ &= \frac{1}{T^2}\sum_{t=1}^T \text{var}(r_{it}) \text{ (since } r_{it} \text{ are independent)} \\ &= \frac{1}{T^2}\sum_{t=1}^T \sigma_i^2 = \frac{\sigma_i^2}{T} \text{ (since } \text{var}(r_{it}) = \sigma^2) \\ \text{SE}(\hat{\mu}_i) &= \sqrt{\text{var}(\hat{\mu}_i)} = \frac{\sigma_i}{\sqrt{T}} \end{aligned}$$

Consistency

Definition: An estimator $\hat{\theta}$ is consistent for θ (converges in probability to θ) if for any $\varepsilon>0$

$$\lim_{T o \infty} \Pr(|\hat{ heta} - heta| > arepsilon) = 0$$

Intuitively, as we get enough data then $\hat{\theta}$ will eventually equal θ .

Remark: Consistency is an asymptotic property - it holds when we have an infinitely large sample (i.e, in *asymptopia*). In the real world we only have a finite amount of data!

Result: An estimator $\hat{\theta}$ is consistent for θ if

• bias
$$(\hat{\theta}, \theta) = 0$$
 as $T \to \infty$

•
$$SE(\hat{\theta}) = 0$$
 as $T \to \infty$

Result: In the CER model, the estimators $\hat{\mu}_i$, $\hat{\sigma}_i^2$, $\hat{\sigma}_i$, $\hat{\sigma}_{ij}$, and $\hat{\rho}_{ij}$ are consistent.

Distribution of CER Model Estimators

 $\theta = \text{parameter to be estimated}$

 $\hat{\theta} = \text{estimator of } \theta \text{ from random sample}$

KEY POINTS

- \bullet $\hat{\theta}$ is a random variable its value depends on realized values of random sample
- ullet $f(\hat{ heta})=$ pdf of $\hat{ heta}$ depends on pdf of random variables in random sample
- ullet Properties of $\hat{ heta}$ can be derived analytically (using probability theory) or by using Monte Carlo simulation

Example: Distribution of $\hat{\mu}$ in CER Model

$$\hat{\mu}_i = \frac{1}{T} \sum_{t=1}^{T} r_{it}, \ r_{it} = \mu_i + \epsilon_{it}, \ \epsilon_{it} \sim \text{iid } N(\mathbf{0}, \sigma_i^2)$$

Result:

 $\hat{\mu}_i$ is $\frac{1}{T}$ times the sum of T normally distributed random variables $\Rightarrow \hat{\mu}_i$ is also normally distributed with

$$E[\hat{\mu}_i] = \mu_i, \text{ var}(\hat{\mu}_i) = \frac{\sigma_i^2}{T}$$

That is,

$$\hat{\mu}_i \sim N\left(\mu_i, \frac{\sigma_i^2}{T}\right)$$
 $f(\hat{u}_i) = (2\pi\sigma_i^2/T)^{-1/2} \exp\left\{-\frac{1}{2\sigma_i^2/T}(\hat{\mu}_i - \mu_i)^2\right\}$

Distribution of $\hat{\sigma}_i$, $\hat{\sigma}_{ij}$, and $\hat{\rho}_{ij}$

Result: The exact distributions (for finite sample size T) of $\hat{\sigma}_i$, $\hat{\sigma}_{ij}$, and $\hat{\rho}_{ij}$ are not normal.

However, as the sample size T gets large the exact distributions of $\hat{\sigma}_i$, $\hat{\sigma}_{ij}$, and $\hat{\rho}_{ij}$ get closer and closer to the normal distribution. This is the due to the famous *Central Limit Theorem*.

Central Limit Theorem (CLT)

Let X_1, \ldots, X_T be a iid random variables with $E[X_t] = \mu$ and $var(X_t) = \sigma^2$. Then

$$\frac{ar{X} - \mu}{\mathsf{SE}(ar{X})} = \frac{ar{X} - \mu}{\sigma / \sqrt{T}} = \sqrt{T} \left(\frac{ar{X} - \mu}{\sigma} \right) \sim N(\mathbf{0}, \mathbf{1}) \text{ as } T \to \infty$$

Equivalently,

$$ar{X} \sim N\left(\mu, \mathrm{SE}(ar{X})^2\right) \sim N\left(\mu, \frac{\sigma^2}{T}\right)$$
 for large enough T

We say that \bar{X} is asymptotically normally distributed with mean μ and variance $SE(\bar{X})^2$.

Definition: An estimator $\hat{\theta}$ is asymptotically normally distributed if

$$\hat{\theta} \sim N(\theta, \text{SE}(\hat{\theta})^2)$$
 for large enough T

Result: An implication of the CLT is that the estimators $\hat{\mu}_i$, $\hat{\sigma}_i^2$, $\hat{\sigma}_i$, $\hat{\sigma}_{ij}$, and $\hat{\rho}_{ij}$ are asymptotically normally distributed under the CER model.

Confidence Intervals

 $\hat{\theta} = \text{estimate of } \theta$ = best guess for unknown value of θ

Idea: A confidence interval for θ is an interval estimate of θ that covers θ with a stated probability

Intuition: think of a confidence interval like a "horse shoe". For a given sample, there is stated probability that the confidence interval (horse shoe thrown at θ) will cover θ .

Result: Let $\hat{\theta}$ be an asymptotically normal estimator for θ . Then

ullet An approximate 95% confidence interval for heta is an interval estimate of the form

$$\begin{bmatrix}
\hat{\theta} - 2 \cdot \widehat{\mathsf{SE}} \left(\hat{\theta} \right), \ \hat{\theta} + 2 \cdot \widehat{\mathsf{SE}} \left(\hat{\theta} \right) \end{bmatrix}$$

$$\hat{\theta} \pm 2 \cdot \widehat{\mathsf{SE}} \left(\hat{\theta} \right)$$

that covers θ with probability approximately equal to 0.95. That is

$$\Pr\left\{\hat{\theta} - 2 \cdot \widehat{\mathsf{SE}}\left(\hat{\theta}\right) \leq \theta \leq \hat{\theta} + 2 \cdot \widehat{\mathsf{SE}}\left(\hat{\theta}\right)\right\} \approx 0.95$$

ullet An approximate 99% confidence interval for heta is an interval estimate of the form

$$\begin{bmatrix}
\hat{\theta} - 3 \cdot \widehat{\mathsf{SE}} \left(\hat{\theta} \right), \ \hat{\theta} + 3 \cdot \widehat{\mathsf{SE}} \left(\hat{\theta} \right) \end{bmatrix}$$

$$\hat{\theta} \pm 3 \cdot \widehat{\mathsf{SE}} \left(\hat{\theta} \right)$$

that covers θ with probability approximately equal to 0.99.

Remarks

- 99% confidence intervals are wider than 95% confidence intervals
- For a given confidence level the width of a confidence interval depends on the size of $\widehat{SE}(\hat{\theta})$

In the CER model, 95% Confidence Intervals for μ_i , σ_i , and ρ_{ij} are:

$$egin{align} \hat{\mu}_i \pm 2 \cdot rac{\hat{\sigma}_i}{\sqrt{T}} \ \hat{\sigma}_i \pm 2 \cdot rac{\hat{\sigma}_i}{\sqrt{2T}} \ \hat{
ho}_{ij} \pm 2 \cdot rac{(1-\hat{
ho}_{ij}^2)}{\sqrt{T}} \ \end{gathered}$$

Using Monte Carlo Simulation to Evaluate Bias, Standard Error and Confidence Interval Coverage

- Create many simulated samples from CER model
- Compute parameter estimates for each simulated sample
- Compute mean and sd of estimates over simulated samples
- Compute 95% confidence interval for each sample
- Count number of intervals that cover true parameter

Value-at-Risk in the CER Model

In the CER model

$$r_{it} \sim iid \ N(\mu_i, \sigma_i^2) \Rightarrow r_{it} = \mu_i + \sigma_i \times z_{it}, \ z_{it} \sim iid \ N(0, 1)$$

The $\alpha \cdot 100\%$ quantile q_{α}^{r} may be expressed as

$$q_{\alpha}^{r} = \mu_{i} + \sigma_{i} \times q_{\alpha}^{Z}$$

 $q_{\alpha}^{Z} = \text{standard Normal quantile}$

Estimating Quantiles from CER Model

$$\hat{q}^r_{lpha}=\hat{\mu}_i+\hat{\sigma}_iq^Z_{lpha}$$
 $q^Z_{lpha}=$ standard Normal quantile

Estimating Value-at-Risk from CER Model

$$egin{aligned} \widehat{\mathsf{VaR}}_{lpha} &= (\exp(\hat{q}^r_{lpha}) - 1) \cdot W_0 \\ \hat{q}^r_{lpha} &= \hat{\mu}_i + \hat{\sigma}_i q^Z_{lpha} \\ W_0 &= \mathsf{initial investment in \$} \end{aligned}$$

Example:
$$r_t \sim N(0.02, (0.10)^2)$$
 and $W_0 = \$10,000$
$$q_{.05}^Z = -1.645$$

$$q_{.05} = 0.02 + (0.10)(-1.645) = -0.1445$$

$$\widehat{\text{VaR}}_\alpha = (\exp(-0.1145) - 1) \cdot 10,000 = -1,345$$

Computing Standard Errors for VaR

• We can compute $SE(\hat{q}^r_{\alpha})$ using

$$ext{var}(\hat{q}_{\alpha}^r) = ext{var}(\hat{\mu}_i) + \left(q_{\alpha}^Z\right)^2 ext{var}(\hat{\sigma}_i) + 2 ext{cov}(\hat{\mu}_i, \hat{\sigma}_i)$$

$$= ext{var}(\hat{\mu}_i) + \left(q_{\alpha}^Z\right)^2 ext{var}(\hat{\sigma}_i), \text{ since } ext{cov}(\hat{\mu}_i, \hat{\sigma}_i) = 0$$

Then

$$\mathsf{SE}(\hat{q}^r_lpha) = \sqrt{\mathsf{var}(\hat{\mu}_i) + \left(q^Z_lpha
ight)^2 \mathsf{var}(\hat{\sigma}_i)}$$

• However, computing $SE(\widehat{VaR}_{\alpha})$ is not straightforward since

$$\mathsf{var}\left(\widehat{\mathsf{VaR}}_lpha
ight) = \mathsf{var}\left((\mathsf{exp}(\widehat{q}^r_lpha) - 1) \cdot W_0
ight)$$