CSE 512-HW4: Machine Learning Report and README

Name: AJAY GOPAL KRISHNA SBU ID: 112688765

1 Programming

1.1 Results

The below results was obtained when clustering using k=2 and using euclidean distance metric. The results for 3 executions is shown

Run-1	Y = 0	Y=1	% of Positive Diagnosis	
Cluster-0	122	2	1.61	
Cluster-1	90	355	79.775	

Run-2	Y = 0	Y = 1	% of Positive Diagnosis
Cluster-0	90	355	79.775
Cluster-1	122	2	1.61

Run-3	Y = 0	Y = 1	% of Positive Diagnosis
Cluster-0	92	355	79.418
Cluster-1	120	2	1.639

From the above results we can clearly see that, clustering is not prefect based on diagnosis. We are able to find Y = 0 and Y = 1 values in both the clusters.

But majority of the points with Y = 1 i.e data points with positive diagnosis are falling into a single cluster (% positive diagnosis in the other cluster is small around 1.6%) and we see that this cluster has false positives as well (Y = 0 is divided among both the clusters).

The centroid values using euclidean distance for single run with k=2 are

Centroid-0: [1.96183065e+01, 2.18419355e+01, 1.29708871e+02, 1.21193629e+03, 1.00311290e-01]Centroid-1: [1.25972112e+01, 1.85784494e+01, 8.14527640e+01, 4.99666966e+02, 9.52593258e-02]

2 README

kmeans.py supports the below parameters:

Option	Description	Default-Value
-h, -help	show this help message and exit	
-d, -dataset	$path_to_dataset$	Breast_cancer_data.csv
-k, -kcluster	K-Clusters	2
-distance	Distance Function used. euclidean/manhattan	euclidean
-e, -epsilon Epsilon for Change in Centroids		0.0001

To run the k-means algorithm with k=2 and euclidean distance execute python kmeans.py -d path_to_data -k 2 -distance euclidean

Note not specifying the "--distance" option will default to Euclidean distance

To run the k-means algorithm with k=2 and manhattan distance execute python kmeans.py -d path_to_data -k 2 -distance manhattan