Definizione di Trasformata unilatera Zeta $\mathcal Z$

$$\mathcal{Z}\left\{f(k)\right\} \doteq \sum\nolimits_{k=0}^{\infty} f(k) \ z^{-k} = F(z) \,, \quad z \in \mathbf{C}; \qquad \begin{array}{c} f(k) & \xrightarrow{\mathcal{Z}} & F(z) \\ \mathbf{Z} \rightarrow \mathbf{R} & \xrightarrow{\mathcal{Z}^{-1}} & \mathbf{C} \rightarrow \mathbf{C} \end{array}$$

Proprietà fondamentali della Trasformata unilatera

Proprietà	Tempo k	Frequenza z
Linearità	$k_1 f_1(k) + k_2 f_2(k)$	$k_1F_1(z) + k_2F_2(z)$
Traslazione a sinistra	f(k+1)	$zF(z) - z \cdot f(k=0)$
Traslazione a destra di n passi	f(k-n)	$z^{-n} \cdot F(z)$
Somma	$\sum_{l=0}^{k} f(l)$	$\frac{z}{z-1} \cdot F(z)$
Convoluzione	$f(k) * g(k) = \sum_{l=0}^{k} f(l) g(k-l)$	$F(z) \cdot G(z)$
Teorema del valore iniziale	f(k=0)	$\lim F(z)$
Teorema del valore finale	$f(k \to \infty)$	$\lim_{z \to 1} (z - 1) \cdot F(z)$

Tabella delle principali Trasformate unilatere Zeta

impulso	unitario
gradino	unitario

polinomio fattoriale di grado l

esponenziale associato al polo semplice p di F(z)polinomio fattoriale * esponenziale associato al polo multiplo p di F(z)

ncipan Trasiormate umatere Zeta		
$f(k), k \ge 0$	$F(z), z \in \mathbf{C}$	
$\delta(k)$	1	
arepsilon(k)	$\frac{z}{z-1}$	
$\begin{pmatrix} k \\ l \end{pmatrix} \doteq \frac{k(k-1)\cdots(k-l+1)}{l!}, \ l > 0$	$\frac{z}{(z-1)^{l+1}}$	
$p^k,\ p\in {f C}$	$\frac{z}{z-p}$	
$\begin{pmatrix} k \\ l \end{pmatrix} p^{k-l}, \ p \in \mathbf{C}, \ l > 0$	$\frac{z}{\left(z-p\right)^{l+1}}$	
$\sin(k\theta), \ \theta \in \mathbf{R}$	$\frac{z\sin\theta}{z^2 - 2z\cos\theta + 1}$	
$\cos(k\theta), \ \theta \in \mathbf{R}$	$\frac{z\left(z-\cos\theta\right)}{z^2-2z\cos\theta+1}$	
$A^k, A \in \mathbf{R}^{n \times n}$	$z \cdot (zI_n - A)^{-1}$	

potenza di matrice

Decomposizione in fratti semplici di funzioni razionali fratte

Caso #1:
$$F(z) = \frac{N(z)}{D(z)}$$
, con $N(0) = b_0 = 0$

$$F(z) = \frac{N(z)}{D(z)} = \frac{b_m z^m + b_{m-1} z^{m-1} + \ldots + b_1 z}{a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0} = z \cdot \frac{N(z)}{a_n z} \cdot \left[\frac{D(z)}{a_n} \right]^{-1} =$$

$$= z \cdot \frac{N'(z)}{D'(z)} = z \cdot \frac{N'(z)}{z^n + a'_{n-1} z^{n-1} + \ldots + a'_1 z + a'_0} = z \cdot \frac{N'(z)}{\prod_{i=1}^n (z - p_i)} = z \cdot \frac{N'(z)}{\prod_{i=1}^n (z - p_i)^{\mu_i}} = \sum_{i=1}^{n'} \sum_{j=1}^{\mu_i} \underbrace{R_{ij} \frac{z}{(z - p_i)^j}}_{\text{fratto semplice}}$$

 $N(z),\,D(z)$: polinomi in $z,\,$ di grado m ed n rispettivamente ($m\leq n$

n: numero di radici di D(z) e D'(z) = numero di poli di F(z)

n': numero di radici distinte di D(z) e D'(z) = numero di poli non coincidenti di F(z)

$$p_i: i\text{-esima radice di }D(z) \text{ e }D'(z) = i\text{-esimo polo di }F(z); \quad \mu_i: \text{molteplicit\`a dell'i-esimo polo di }F(z)$$

$$R_{ij}: j\text{-esimo residuo associato a }p_i \text{ mediante il fratto } \frac{R_{ij}}{(z-p_i)^j}: R_{ij} = \lim_{z \to p_i} \frac{1}{(\mu_i-j)!} \frac{\partial^{\mu_i-j}}{\partial z^{\mu_i-j}} \left[(z-p_i)^{\mu_i} \frac{N'(z)}{D'(z)} \right], \ 1 \le j \le \mu_i;$$

se p_i è un polo semplice $(\mu_i = 1)$, allora ha associato soltanto il fratto semplice $\frac{R_i z}{z - p_i}$, con $R_i = \lim_{z \to p_i} (z - p_i) \frac{N'(z)}{D'(z)}$

Caso #2:
$$F(z) = \frac{N(z)}{D(z)}$$
, con $N(0) = b_0 \neq 0$, $m < n$

Caso #2:
$$F(z) = \frac{N(z)}{D(z)}$$
, con $N(0) = b_0 \neq 0$, $m < n$

$$F(z) = \frac{N(z)}{D(z)} = \frac{b_m z^m + b_{m-1} z^{m-1} + \dots + b_1 z + b_0}{a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0} = \frac{N(z)}{a_n} \cdot \left[\frac{D(z)}{a_n} \right]^{-1} = \frac{N'(z)}{D'(z)} = \frac{N'(z)}{z^n + a'_{n-1} z^{n-1} + \dots + a'_1 z + a'_0} = \frac{N'(z)}{\prod_{i=1}^n (z - p_i)} = \frac{N'(z)}{\prod_{i=1}^n (z - p_i)^{\mu_i}} = \frac{1}{z} \cdot \sum_{i=1}^{n'} \sum_{j=1}^{\mu_i} R_{ij} \frac{z}{(z - p_i)^j}$$

Antitrasformata unilatera Zeta di funzioni razionali fratte

Caso #1:
$$F(z) = \frac{N(z)}{D(z)}$$
, con $N(0) = b_0 = 0 \implies \mathcal{Z}^{-1}\{F(z)\} = \mathcal{Z}^{-1}\left\{\sum_{i=1}^{n'}\sum_{j=1}^{\mu_i}\frac{R_{ij}\ z}{(z-p_i)^j}\right\} = \sum_{i=1}^{n'}\sum_{j=1}^{\mu_i}R_{ij}\ \binom{k}{j-1}\ p_i^{k-j+1}\ \varepsilon(k)$

Caso #2:
$$F(z) = \frac{N(z)}{D(z)}$$
, con $N(0) = b_0 \neq 0 \implies \mathcal{Z}^{-1}\{F(z)\} = \mathcal{Z}^{-1}\left\{\frac{1}{z} \cdot \sum_{i=1}^{n'} \sum_{j=1}^{\mu_i} \frac{R_{ij} z}{(z-p_i)^j}\right\} = \sum_{i=1}^{n'} \sum_{j=1}^{\mu_i} R_{ij} \binom{k-1}{j-1} p_i^{k-j} \varepsilon(k-1)$

Se
$$F(z)$$
 ha un polo complesso p_i con molteplicità μ_i , allora $F(z)$ presenta anche il polo complesso $p_l = p_i^*$ con molteplicità $\mu_l = \mu_i$. In tal caso, è opportuno antitrasformare a coppie i fratti semplici di $F(z)$ associati a $p_i = p_l$, poiché $R_{lj} = R_{ij}^*$ e quindi:
$$\mathcal{Z}^{-1} \left\{ \frac{R_{ij} z}{(z - p_i)^j} + \frac{R_{lj} z}{(z - p_l)^j} \right\} = \mathcal{Z}^{-1} \left\{ \frac{R_{ij} z}{(z - p_i)^j} + \frac{R_{ij}^* z}{(z - p_i^*)^j} \right\} = 2 |R_{ij}| \begin{pmatrix} k \\ j-1 \end{pmatrix} |p_i|^{k-j+1} \cos((k-j+1) \angle p_i + \angle R_{ij}) \varepsilon(k)$$
 con $\angle p_i = \arctan\left(\frac{\Im m(p_i)}{\Re e(p_i)}\right)$, $\angle R_{ij} = \arctan\left(\frac{\Im m(R_{ij})}{\Re e(R_{ij})}\right)$