IP MPSI3 Corrigé DS07 24 mars 2023

EXERCICE 1 : Etude mécanique d'un pédalo :

(D'après banque PT 2022) $(\approx 16 pts)$

Q1. Référentiel : Terrestre supposé galiléen.

Base de projection cartésienne : Axe Oz vertical descendant.

Système: Flotteur de masse M/2, car 2 flotteurs pour porter M.

Forces: Poids: $\vec{P} = \frac{M}{2} \vec{g} = \frac{M}{2} g \vec{e}_z$.

Poussée d'Archimède: $\vec{\pi}_A = -\pi_A \vec{e}_z = -\rho V_{im} g \vec{e}_z$ Condition d'équilibre vertical: $\sum \vec{F} = \vec{0}$ Donc $\vec{P} + \vec{\pi}_A = \vec{0}$

Projetons sur l'axe vertical : On obtient donc : $\frac{M}{2}g - \rho V_{im}g = 0$

Or on pose $\alpha = \frac{V_{im}}{V}$; Alors il vient $\rho \alpha V = \frac{M}{2}$; Soit : $\alpha = \frac{M}{2 \rho V}$.

<u>AN</u>: $\alpha = \frac{200}{2 \times 1000 \times 0.5} = \frac{200}{1000} = \frac{2}{10}$; On obtient: $\alpha = 20 \%$.

Q2. On utilise la notion de bras de levier :

Moment de la force par rapport à Oz: Sens de rotation positif = sens trigonométrique car $\overrightarrow{e_z}$ est vers nous.

♣ Situation (a):

 $\left|\mathcal{M}_{\mathit{Oz}}(\overrightarrow{F_{\mathit{pied}}})\right| = \ d_1. \ \left\|\overrightarrow{F_{\mathit{pied}}}\ \right\| \ \text{en utilisant le bras de levier avec} \ d_1 = d \ (\text{ici}).$

De plus $\overrightarrow{F_{pied}}$ a tendance à faire tourner la tige dans le sens horaire, donc dans le sens négatif.

D'où :
$$\mathcal{M}_{0z}(\overrightarrow{F_{pied}}) = -d F_{pied}$$
.

♣ Situation (b) :

Même raisonnement, mais cette fois la distance bras de levier est nulle, car la force passe par l'axe de rotation.

Ainsi, :
$$\mathcal{M}_{0z}(\overrightarrow{F_{pied}}) = 0$$
.

Q3. On sait que pour un solide en rotation, $P(\overrightarrow{F_{ext}}) = \mathcal{M}_{0z}(\overrightarrow{F_{ext}})\omega$.

De plus, en moyenne, $\langle |\mathcal{M}_{Oz}(\overrightarrow{F_{pled}})| \rangle = \frac{d F_{pled}}{2}$.

Alors
$$\langle P(\overrightarrow{F_{pied}}) \rangle = \frac{d F_{pied} \omega}{2}$$

 $\underline{\mathrm{AN}}: \langle P(\overrightarrow{F_{pied}}) \rangle = \frac{0.2 \times 50 \times 10}{2}$; On obtient: $\langle P(\overrightarrow{F_{pied}}) \rangle = \mathbf{50} \ \mathbf{W}$.

EXERCICE 2 : Etude du fonctionnement de deux anémomètres mécaniques :

(D'après CCINP PC 2022)

 $(\approx 42 pts)$

I -Anémomètre à plaque :

Q1. Une force s'exprime en newtons (N) et une vitesse en m.s⁻¹ donc si $F = \mu U^2$ alors μ s'exprime en $\frac{N}{m^2 s^{-2}} = \frac{kg.m.s^{-2}}{m^2 s^{-2}}$; Donc finalement <u>l'unité SI de μ est le kg.m⁻¹</u>.

Q2. Référentiel: Terrestre supposé galiléen.

Système :{plaque + tige} .

Bilan des forces:

<u>4 actions mécaniques</u> dont on peut calculer les moments grâce à la notion de bras de levier :

Moments scalaires des forces par rapport à Δ :

Sens de rotation positif = sens trigonométrique car $\overrightarrow{e_{\Delta}}$ est vers nous.

La réaction du support : \vec{R} passe par l'axe de rotation, son moment est donc nul : $\mathcal{M}_{\Delta}(\vec{R}) = 0$.

La liaison pivot est supposée parfaite,

donc $\mathcal{M}_{\Delta}(\overrightarrow{liaison\ pivot}) = \mathbf{0}$

Le poids:

 $|\mathcal{M}_{\Delta}(\vec{P})| = d_1 \cdot ||\vec{P}|| = mg \ d_1$ en utilisant le bras de levier avec $d_1 = L \sin(\theta)$.

D'où : $\mathcal{M}_{\Delta}(\overrightarrow{P}) = -mgL \sin(\theta)$

 $lap{4}$ La force aérodynamique \vec{F} :

 $|\mathcal{M}_{\Delta}(\vec{F})| = d_2 \cdot ||\vec{F}|| = \mu U^2 d_2$ en utilisant le bras de levier avec $d_2 = L \cos(\theta)$.

De plus le poids \vec{P} a tendance à faire tourner la tige dans le sens trigonométrique, donc dans le sens positif.

D'où : $\mathcal{M}_{\Delta}(\vec{F}) = \mu U^2 L \cos(\theta)$

Q3. Condition d'équilibre : $\sum \mathcal{M}_{\Delta}(\overrightarrow{F_{ext}}) = \mathbf{0}$

D'où :
$$\mu U^2 L \cos(\theta_{eq}) - mgL \sin(\theta_{eq}) = 0$$
 ; Ou encore : $U^2 = \frac{mg \sin(\theta_{eq})}{\mu \cos(\theta_{eq})}$; Ainsi $U = \sqrt{\frac{mg}{\mu} \tan(\theta_{eq})}$

$$\underline{AN}: U = \sqrt{\frac{0.03 \times 9.81}{0.01}} \tan(8^\circ) = \sqrt{3 \times 9.81 \times \tan(8)}; \quad \text{On obtient}: \underline{U} \approx 2 \text{ m.s}^{-1}.$$

II - Anémomètre à coupelles :

Q4. On nous donne : $\overrightarrow{F_N} = \frac{1}{2} \rho_{air} \mathcal{A} C_N U^2 \overrightarrow{u_N}$ et $\|\overrightarrow{F_N} (-\beta)\| = \|\overrightarrow{F_N} (\beta)\|$.

- Les vecteurs $\overrightarrow{u_N}$ et $\overrightarrow{u_T}$ ont été schématisés ci-dessous sur chaque coupelle comme demandé.
- Pour les deux coupelles du bas, on est à $\beta = \pm 45^{\circ}$.

D'après le graphe du document 2, C_N est alors <u>positif et élevé</u>, donc la <u>force $\overline{F_{Nh}}$ est importante et vers la droite</u> (selon $+\overline{u_N}$).

- Pour les 2 coupelles du haut, on est à $\beta = \pm 135^{\circ}$.

D'après le graphe du document 2, $\underline{C_N}$ est alors négatif et faible, donc la force $\overline{F_{Nh}}$ est faible, mais toujours vers la droite, (selon $-\overrightarrow{u_N}$) ce qui est naturel compte tenu du sens de l'écoulement.

Q5. Les deux forces agissant dans le sens d'une augmentation de β sont plus importantes que celles en sens inverse.

Les bras de levier étant équivalents, le moment global est donc positif par rapport à l'axe de rotation, donc d'après le théorème du moment cinétique : $J_{\Delta} \frac{d\omega}{dt} = J_{\Delta} \ddot{\beta} = \sum M_{\Delta} \left(\overrightarrow{F_{ext}} \right)$

L'anémomètre va tourner dans le sens direct ou trigonométrique.

Q6. Le moment de la force $\overrightarrow{F_T}$ est nul par rapport à l'axe de rotation, car <u>sa droite d'action coupe l'axe</u> de rotation, le **bras de levier est donc nul**.

Q7. On appelle <u>couple</u>, un système de forces dont la <u>résultante est nulle</u> (somme vectorielle), mais dont le <u>moment résultant des forces par rapport à un axe est non nul</u>. Ici, <u>ce n'est pas le cas</u>: les différentes forces poussent vers la droite sur le schéma, donc <u>la résultante est non nulle</u>.

Cependant, elles sont compensées par la liaison pivot qui retient la structure, donc cet effet est sans importance

Q8. Il existe sans doute des frottements solides dans la liaison pivot qui n'est pas parfaite.

EXERCICE 3: Particule soumise à un champ électrostatique radial : $(\approx 40 \text{ pts})$

Q1. La particule est soumise à la force électrique $|\vec{F}| = q |\vec{E}| = -q E_0 \left(\frac{r_0}{r}\right)^n |\vec{u}_r|$. Schéma ci-contre. La force est attractive, la particule est attirée par le point O.

Q2. Pour montrer que le mouvement est plan, on applique le théorème du moment cinétique en O à la

particule:
$$\frac{d\overrightarrow{L_0}}{dt} = \overrightarrow{\mathcal{M}_0}(\overrightarrow{F}) = \overrightarrow{OM} \wedge \overrightarrow{F} = r \overrightarrow{u_r} \wedge (-E_0 \left(\frac{r_0}{r}\right)^n \overrightarrow{u_r}) = \overrightarrow{\mathbf{0}};$$

On en déduit que $\overrightarrow{L_0}$ est constant, tel que : $\overrightarrow{L_0} = \overrightarrow{L_0}(t=0) = \overrightarrow{OM_0} \land m \overrightarrow{v_0}$;

A t = 0, $\overrightarrow{OM_0}$ et $\overrightarrow{v_0}$ sont dans le plan π (O, $\overrightarrow{u_x}$; $\overrightarrow{u_y}$), donc $\overrightarrow{L_0} = L_0 \overrightarrow{u_z}$

$$\underline{\text{Calculons }\overrightarrow{OM}.\overrightarrow{L_O}:} \quad \overrightarrow{OM}.\overrightarrow{L_O} = \overrightarrow{OM}.\left(\overrightarrow{OM} \land m \overrightarrow{v}\right) = 0 ;$$

$$\overrightarrow{DM}$$

Donc $\overrightarrow{OM} \perp \overrightarrow{L_O}$ à chaque instant.

Donc à tout moment, $\overrightarrow{OM} \perp \overrightarrow{u_z}$: Le <u>mouvement est plan dans le plan π ($\overrightarrow{O}, \overrightarrow{u_z}; \overrightarrow{u_y}$)</u>.

- **Q3.** Coordonnées polaires :
- **Q4.** Il faut exprimer le moment cinétique :

$$\overrightarrow{OM} = r \overrightarrow{u_r} \text{ et } \overrightarrow{v_M} = \frac{d \overrightarrow{OM}}{dt} = \dot{r} \overrightarrow{u_r} + r \dot{\theta} \overrightarrow{u_\theta}.$$

Alors:
$$\overrightarrow{L_0} = \overrightarrow{OM} \wedge m \overrightarrow{v_M} = r \overrightarrow{u_r} \wedge m (\dot{r} \overrightarrow{u_r} + r \dot{\theta} \overrightarrow{u_{\theta}});$$

Ainsi: $\overrightarrow{L_0} = m r^2 \dot{\theta} \overrightarrow{k} = mC \overrightarrow{k} = \overrightarrow{cste}$
Par identification: $C = r^2 \dot{\theta} : Constante des Aires$.

Ainsi :
$$\overrightarrow{L_0} = m r^2 \dot{\theta} \vec{k} = mC \vec{k} = \overrightarrow{cste}$$

On se place dans le cas où n = 2 et v_0 quelconque :

Q5.
$$dE_P = -\delta W(\vec{F}) = -\vec{F} \cdot d\overrightarrow{OM} = -F \overrightarrow{u_r} \cdot (dr \overrightarrow{u_r} + r d\theta \overrightarrow{u_\theta}) = -F dr$$
;

Ainsi:
$$dE_P = qE_0 \left(\frac{r_0}{r}\right)^2 dr$$
; Et: $E_P(r) = -qE_0 \frac{r_0^2}{r} + cste$;

Et si on considère que l'énergie potentielle est nulle lorsque $r \to \infty$, alors $E_P(r) = -qE_0 \frac{r_0^2}{r}$;

 \blacksquare Pour obtenir $E_{Peff}(r)$, il faut exprimer la vitesse en coordonnées polaires et éliminer $\dot{\theta}$ grâce à la constante

des aires. On obtient donc : $E_{\underline{m}} = \frac{1}{2} m(\dot{r}^2 + r^2 \dot{\theta}^2) - qE_0 \frac{r_0^2}{r} = \frac{1}{2} m\dot{r}^2 + \frac{1}{2} m\frac{c^2}{r^2} - qE_0 \frac{r_0^2}{r}$;

- On isole $\frac{1}{2} m \dot{r}^2$ et on obtient : $E_{Peff}(r) = \frac{1}{2} m \frac{c^2}{r^2} q E_0 \frac{r_0^2}{r}$;
- **Q6.** Il faut tracer <u>l'allure de $E_{Peff}(r)$ </u>:
- $\lim_{r \to 0} E_{Peff} = +\infty \text{ et } \lim_{r \to +\infty} E_{Peff} = 0;$ $\lim_{r \to 0} \frac{d_{E_{Peff}}}{dr} = -m \frac{c^2}{r^3} + q E_0 \frac{r_0^2}{r^2};$

$$E_{P \, eff}(r)$$
 est min pour r_m tel que $\frac{d \, E_{P \, eff}}{dr} = 0$, de pour $r_m = \frac{m \, c^2}{q E_0 \, r_0^2} > 0$ et $E_{P \, eff}(r_m) = -\frac{q^2 r_0^2 \, E_0^2}{2mC^2} < 0$.

<u>Discussion</u>: $E_m \ge E_{Peff}$ à chaque instant car $\frac{1}{2} m\dot{r}^2 \ge 0$

 $\frac{1}{4}$ 1^{er} cas : $E_{\text{m}} = E_{1}$: Alors $r \geq r_{1}$: Etat de diffusion. La trajectoire est une branche d'hyperbole.

- $\frac{1}{2^{\text{ème}} \text{ cas}} : \underline{E_m} = 0$: Alors $r \geq r'_1$: Etat de diffusion. La trajectoire est une branche de parabole.
- $\frac{3}{2}$ $\frac{3}$

La trajectoire est <u>circulaire</u> de centre O et de rayon $r_0 = r_m = \frac{m C^2}{a E_0 r_0^2}$

 $4 - 4^{\text{ème}} \cos : E_m = E_2 < 0 : Alors \mathbf{r_{min}} \le \mathbf{r} \le \mathbf{r_{max}} : \mathbf{Etat \ li\acute{e}}$. La trajectoire est une $\mathbf{ellipse}$ dont O est un foyer.

EXERCICE 4 : Le pH sanguin :

(D'après Centrale PSI 2009) (≈33 pts)

Q1. DP:

Q2. D'après le DP, à pH = 7,40, [CO₃ ²-] est négligeable.

On sait que $[H_2CO_3]_{eq} + [HCO_3]_{eq} = C_0$

D'autre part :
$$pH = pK_A + \log \frac{[A^-]_{eq}}{[HA]_{eq}}$$
; Soit : $pH = pK_{A1} + \log \frac{[HCO_3^-]_{eq}}{[H_2CO_3]_{eq}}$;

D'où :
$$\log \frac{[HCO_3^-]_{eq}}{[H_2CO_3]_{eq}} = pH - pK_{A1}$$
; En substituant, il vient : $\log \frac{[HCO_3^-]_{eq}}{c_0 - [HCO_3^-]_{eq}} = pH - pK_{A1}$.

Ainsi :
$$\frac{[HCO_3^-]_{eq}}{c_0 - [HCO_3^-]_{eq}} = 10^{pH - pK_{A1}}$$
; Puis $[HCO_3^-]_{eq} = (C_0 - [HCO_3^-]_{eq})10^{pH - pK_{A1}}$; $[HCO_3^-]_{eq} \{1 + 10^{(pH - pK_{A1})}\} = C_0 10^{(pH - pK_{A1})}$ et enfin : $[HCO_3^-]_{eq} = \frac{C_0 10^{(pH - pK_{A1})}}{1 + 10^{(pH - pK_{A1})}}$

$$[HCO_3^-]_{eq} \left\{ 1 + 10^{(pH-pK_{A1})} \right\} = C_0 \ 10^{(pH-pK_{A1})} \text{ et enfin : } [HCO_3^-]_{eq} = \frac{C_0 \ 10^{(pH-pK_{A1})}}{1 + 10^{(pH-pK_{A1})}}$$

$$\underline{\text{AN}} : [HCO_3^-]_{eq} = \frac{0,028 \times 10^{(7,4-6,1)}}{1+10^{(7,4-6,1)}}; \text{ On trouve} : [\underline{HCO_3^-}]_{eq} = \mathbf{0}, \mathbf{0267} \text{ mol.L}^{-1} = \mathbf{2},\mathbf{67.10}^{-2} \text{ mol.L}^{-1}.$$

$$\text{Et } [\underline{H_2CO_3}]_{eq} = C_0 - [\underline{HCO_3^-}]_{eq}; \underline{\text{AN}} : [H_2CO_3]_{eq} = 0,028 - 0,0267;$$

Et
$$[H_2CO_3]_{eq} = C_0 - [HCO_3^-]_{eq}$$
; AN: $[H_2CO_3]_{eq} = 0.028 - 0.0267$

On trouve : $[H_2CO_3]_{ea} = 1,34.10^{-3} \text{ mol.L}^{-1}$

Q3.a. D'après le DP, à pH = 7,4, c'est $[HCO_3^-]_{eq}$ est l'espèce majoritaire.

De plus, CH₃CHOHCOOH et HCO₃ ont des **DP disjoints**; Donc réaction selon la règle du gamma.

Ou faire la réaction entre l'acide le plus fort et la base la plus forte.

 $CH_3CHOHCOOH + HCO_3^- = CH_3CHOHCOO^- + H_2CO_3^-$

$$K_{eq} = \frac{[CH_{3}CHOHCOO^{-}]_{eq}[H_{2}CO_{3}]_{eq}}{[CH_{3}CHOHCOOH]_{eq}[HCO_{3}^{-}]_{eq}} = \frac{[CH_{3}CHOHCOO^{-}]_{eq}[H_{3}O^{+}]_{eq}}{[CH_{3}CHOHCOOH]_{eq}} \times \frac{[H_{2}CO_{3}]_{eq}}{[HCO_{3}^{-}]_{eq}[H_{3}O^{+}]_{eq}}$$
Ainsi $K_{eq} = \frac{K_{A3}}{K_{A1}} = 10^{pK_{A1}-pK_{A3}}$; $\underline{AN} : K_{eq} = 10^{6,1-3,9}$;
On trouve : $\underline{K_{eq} = 10^{2,2}}$; La réaction n'est ni totale, ni négligeable.

O3.b. Tableau d'avancement :

$$[CH_3CHOHCOOH]_0 = \frac{n}{V}; AN : [CH_3CHOHCOOH]_0 = \frac{3.10^{-4}}{0.1} = 3.10^{-3} \text{ mol.L}^{-1} = C_3.$$

	СН3СНОНСООН	+ HCO ₃ =	CH ₃ CHOHCOO	+ H ₂ CO ₃
EI	\mathcal{C}_3	C_1		C_2
EE	$C_3 - x$	$C_1 - x$	x	$C_2 + x$

Alors
$$K_{eq} = \frac{[CH_3CHOHCOO^-]_{eq}[H_2CO_3]_{eq}}{[CH_3CHOHCOOH]_{eq}[HCO_3^-]_{eq}} = \frac{x(C_2+x)}{(C_3-x)(C_1-x)}$$
; Soit : $K_{eq}(C_3-x)(C_1-x) = x(C_2+x)$; Ou encore : $x^2(1-K_{eq}) + x(C_2+K_{eq}C_1+K_{eq}C_3) - K_{eq}C_1C_3 = 0$

Ou encore:
$$x^2(1-K_{eq}) + x(C_2 + K_{eq}C_1 + K_{eq}C_3) - K_{eq}C_1C_3 = 0$$

Résolution du polynôme du 2^{nd} degré : On trouve $\Delta \approx 14,433$;

 $x_1 \approx 0.027 > C_3$ donc impossible ou $x_2 \approx 2.98.10^{-3}$ mol.L⁻¹. Ainsi : $[CH_3CHOHCOO^-]_{eq} = x = 2.98.10^{-3}$ mol.L⁻¹. $[H_2CO_3]_{eq} = C_2 + x = 4.38.10^{-3}$ mol.L⁻¹. $[CH_3CHOHCOOH]_{eq} = C_3 - x = 2.00.10^{-5}$ mol.L⁻¹. $[HCO_3^-]_{eq} = C_1 - x = 2.40.10^{-2}$ mol.L⁻¹. $PH = pK_{A1} + \log \frac{[HCO_3^-]_{eq}}{[H_2CO_3]_{eq}}$; Ainsi pH= 6,1 + $\log \frac{2.40.10^{-2}}{4.38.10^{-3}}$; On trouve $PH \approx 6.8$.

Find
$$pH = pK_{A1} + \log \frac{[HCO_3^-]_{eq}}{[H_2CO_3]_{eq}}$$
; Ainsi pH= 6,1 + $\log \frac{2,40.10^{-2}}{4,38.10^{-3}}$; On trouve $pH \approx 6.8$

Le sang est donc légèrement plus acide qu'en temps normal.

Q3.c. La respiration permet l'expiration de CO₂ et donc de H₂CO₃, ce qui permet au pH de ne pas diminuer malgré la production d'acide lactique.

PROBLEME: Etude du mouvement d'un satellite de télédétection terrestre :

(D'après ATS 2014)

 $(\approx 80 pts)$

I – Préliminaires :

Q1. On a:
$$\overrightarrow{OM} = r \overrightarrow{u_r}$$
 et $\overrightarrow{v_M} = \frac{d \overrightarrow{OM}}{dt} = \dot{r} \overrightarrow{u_r} + r \dot{\theta} \overrightarrow{u_{\theta}}$

Q2. On sait que
$$\overrightarrow{F(r)} = -\overrightarrow{grad}(\mathbf{Ep}) = -\frac{d \operatorname{Ep}(r)}{dr} \overrightarrow{u_r}$$
.

Ainsi:
$$F(r) = -\frac{d \operatorname{Ep}(r)}{dr} = -\frac{d\left(-m g_0 \frac{R_T^2}{r}\right)}{dr} = -m g_0 \frac{R_T^2}{r^2}$$
; D'où $\overrightarrow{F} = -m g_0 \frac{R_T^2}{r^2} \overrightarrow{u_r}$;

C'est donc une force attractive, car selon $(-\overrightarrow{u_r})$.

Q3.
$$\overrightarrow{L_0}$$
 est le vecteur moment cinétique du point M par rapport à O.
 $\overrightarrow{L_0} = \overrightarrow{OM} \land m \overrightarrow{v_M} = r \overrightarrow{u_r} \land m (\dot{r} \overrightarrow{u_r} + r \dot{\theta} \overrightarrow{u_{\theta}})$; Ainsi : $\overrightarrow{L_0} = m r^2 \dot{\theta} \overrightarrow{k}$;

Référentiel géocentrique considéré comme galiléen.

Seule force \vec{F} ; Son moment par rapport à O: $|\vec{M}_{0}(\vec{F}) = \vec{OM} \land \vec{F} = \vec{0}|$, car vecteurs colinéaires.

Théorème du moment cinétique par rapport à O fixe : $\frac{d\vec{L_0}}{dt} = \overrightarrow{\mathcal{M}_0}(\vec{F}) = \overrightarrow{0}$; Soit $|\overrightarrow{L_0} = \overrightarrow{cst}|$;

II - Mise en orbite circulaire du satellite :

Q4. Trajectoire circulaire de rayon
$$r$$
, donc $\dot{r} = 0$; Alors $\overrightarrow{v_M} = r\dot{\theta} \overrightarrow{u_\theta}$; Ou encore : $\overrightarrow{v_M} = v\overrightarrow{u_\theta}$. Et $\overrightarrow{a_M} = \frac{d\overrightarrow{v_M}}{dt} = \frac{dv}{dt}\overrightarrow{u_\theta} - v\dot{\theta}\overrightarrow{u_r}$; Ou encore : $\overrightarrow{a_M} = -\frac{v^2}{r}\overrightarrow{u_r} + \dot{v}\overrightarrow{u_\theta}$. On retrouve l'expression de l'accélération dans la base de Frenet.

Q5. Seule force
$$\overrightarrow{F} = -m \ g_0 \ \frac{R_T^2}{r^2} \ \overrightarrow{u_r}$$
; PFD: $\overrightarrow{F} = m \overrightarrow{a_M}$; Ainsi: $m \left(-\frac{v^2}{r} \ \overrightarrow{u_r} + \dot{v} \ \overrightarrow{u_\theta} \right) = -m \ g_0 \ \frac{R_T^2}{r^2} \ \overrightarrow{u_r}$; En projetant sur les 2 axes, il vient: $\boxed{\dot{v} = \mathbf{0}}$; Ainsi: $\boxed{v = cste}$: Le mouvement est donc uniforme.

$$\frac{v^2}{r} = g_0 \frac{R_T^2}{r^2}$$
; Soit: $v^2 = g_0 \frac{R_T^2}{r}$;

Q6.
$$E_C = \frac{1}{2} m v^2$$
; Ainsi : $E_C = \frac{m g_0 R_T^2}{2r}$;

$$E_m = E_C + E_P = \frac{m g_0 R_T^2}{2r} - m g_0 \frac{R_T^2}{r}; \text{ Ainsi : } E_m = -\frac{m g_0 R_T^2}{2r} = -E_C; E_m < 0 \text{ normal car } \underline{\mathbf{c'est un \'etat li\'e}}.$$

$$E_m(r_h) = -\frac{4.10^3 \times 10 \times (6,4.10^6)^2}{2 \times 40.10^6}$$
; On trouve : $E_m(r_h) \approx -2.10^{10}$ J.

III - Étude énergétique du satellite :

Q7. Le système n'est soumis qu'à une force conservative, donc son
$$E_m$$
 est constante

Q7. Le système n'est soumis qu'à une force conservative, donc son
$$\underline{E_m}$$
 est constante.
De plus, dans le cas d'une trajectoire quelconque, on $a: \overrightarrow{v_M} = \dot{r} \ \overrightarrow{u_r} + r\dot{\theta} \ \overrightarrow{u_\theta}$; Donc : $v_M^2 = \dot{r}^2 + r^2 \dot{\theta}^2$.

Alors:
$$E_m = E_C + E_P = \frac{1}{2} m v_M^2 - m g_0 \frac{R_T^2}{r} = \frac{1}{2} m (\dot{r}^2 + r^2 \dot{\theta}^2) - m g_0 \frac{R_T^2}{r}$$

Ou encore :
$$E_m = \frac{1}{2} m \dot{r}^2 + \frac{1}{2} m r^2 \dot{\theta}^2 - m g_0 \frac{R_T^2}{r}$$
;

De plus, on a vu au 3) que :
$$L_0 = \|\overrightarrow{L_0}\| = m r^2 |\dot{\theta}|$$
; Donc : $\dot{\theta}^2 = \frac{L_0^2}{m^2 r^4}$ et $m r^2 \dot{\theta}^2 = \frac{L_0^2}{m r^2}$.

De plus, on a vu au 3) que :
$$L_0 = \|\overrightarrow{L_0}\| = m r^2 |\dot{\theta}|$$
; Donc : $\dot{\theta}^2 = \frac{L_0^2}{m^2 r^4}$ et $m r^2 \dot{\theta}^2 = \frac{L_0^2}{m r^2}$.
Ainsi $E_m = \frac{1}{2} m \dot{r}^2 + \frac{L_0^2}{2mr^2} - g_0 m \frac{R_T^2}{r}$. Alors $E_m = \frac{1}{2} m \dot{r}^2 + E_{P,eff}(r)$ avec $E_{P,eff}(r) = \frac{L_0^2}{2mr^2} - g_0 m \frac{R_T^2}{r}$

Q8. On a :
$$E_m = \frac{1}{2} m \dot{r}^2 + E_{P,eff}(r)$$
 avec $\frac{1}{2} m \dot{r}^2 \ge 0$.

Donc à chaque instant, on doit avoir : $E_m \ge E_{P,eff}(r)$;

Q8 (suite)

- 4 Pour la trajectoire elliptique, il faut un domaine de variation de r qui soit borné, donc il faut un état lié, $E_{m2} \ge E_{P,eff}(r)$ impose $r_{min} \le r \le r_{max}$;
- 4 Pour la trajectoire hyperbolique, il faut un domaine de variation de r qui soit non borné, donc il faut un <u>état de diffusion</u>, $E_{m1} \ge E_{P,eff}(r)$ impose $r \ge r'_{min}$;
- ♣ Pour la trajectoire circulaire, il faut que **r soit constant**, donc qu'il ne puisse prendre qu'une seule valeur. $E_{min} \ge E_{P,eff}(r)$ impose r =cste.

IV - Mise en orbite haute du satellite :

Q9. En A ou en P, $\overrightarrow{OA} \perp \overrightarrow{v_A}$, donc la composante en $\overrightarrow{u_r}$ est nulle, ainsi $\dot{r} = 0$;

Ou encore, en ces points, r est max donc $\dot{r} = 0$;

D'autre part, d'après les propriétés de l'ellipse, on a : $r_h + r_h = 2a$;

Q10. D'après la question Q7),

on sait que
$$E_{m't} = \frac{1}{2} m \dot{r}^2 + \frac{L_0^2}{2mr^2} - g_0 m \frac{R_T^2}{r}$$
;

Or en A et en P,
$$\dot{r}=0$$
, donc en ces points $E_{m,t}=0+\frac{L_0^2}{2mr^2}-g_0m\frac{R_T^2}{r}$;

Or en A et en P,
$$\dot{r} = 0$$
, donc en ces points $E_{m,t} = 0 + \frac{L_0^2}{2mr^2} - g_0 m \frac{R_T^2}{r}$;
D'où : $r^2 E_{m,t} = \frac{L_0^2}{2m} - g_0 m r R_T^2$; Ou encore $rac{: r^2 + \frac{g_0 m r R_T^2}{E_{m,t}} - \frac{L_0^2}{2m E_{m,t}} = 0}$;
Par identification, il vient : $\alpha = \frac{g_0 m R_T^2}{E_{m,t}}$ et $\beta = -\frac{L_0^2}{2m E_{m,t}}$;

Par identification, il vient :
$$\alpha = \frac{g_0 m R_T^2}{E_{mt}}$$
 et $\beta = -\frac{L_0^2}{2mE_{mt}}$;

Pour trouver l'expression de $E_{m,t}$, il faut résoudre le polynôme du second degré trouvé précédemment.

On a
$$r^2 + \alpha r + \beta = 0$$
; $\Delta = \alpha^2 - 4\beta$; $r_{h,b} = -\frac{\alpha}{2} \pm \frac{\sqrt{\Delta}}{2}$; Ainsi $r_h + r_b = 2a = -\alpha$; D'où: $2a = -\frac{g_0 m R_T^2}{E_{m,t}}$ et $E_{m,t} = -\frac{m g_0 R_T^2}{2a}$; CQFT.

D'où :
$$2a = -\frac{g_0 m R_T^2}{E_{m,t}}$$
 et $E_{m,t} = -\frac{m g_0 R_T^2}{2a}$; CQFT.

- **Q11.** Au début du transfert, le satellite est en $r_b = 8000$ km sur l'ellipse de transfert. Par lecture graphique, on obtient $\underline{E_m}$, ellipse \approx - 35 GJ (courbe du milieu).
- **Q12.** De même, on lit pour l'orbite basse, on lit : $\underline{E_{m,b}} \approx$ 100 GJ (courbe du bas). Et pour l'orbite haute : $E_{m,h} \approx -20 \text{ GJ}$ (courbe du haut).

Rq: On retrouve les ordres de grandeurs de la question 7.

Q13. En P, le satellite passe de l'orbite circulaire basse : $(E_{m,b} \approx -100 \text{ GJ})$ à l'ellipse de transfert $(E_{m, ellipse} \approx -35 \text{ GJ})$, il faut donc lui fournir $\Delta E_{mP} = 65 \text{ GJ}$.

Grâce aux dimensions des grandeurs fournies, on en déduit $m_C = \frac{65.10^9}{50.10^6} = \frac{65000}{50}$; Soit : $\underline{m_C} = 1300 \text{ kg}$.

Q14. Les ergols utilisés dans la fusée Ariane sont l'oxygène et l'hydrogène liquide.

L'orbite géostationnaire est l'orbite circulaire dans le plan équatorial située à 36 000 km d'altitude. Sa particularité est d'avoir une période de rotation synchrone avec la terre, soit 24h. Le satellite apparait alors immobile pour l'observateur terrestre.

V- Chute du satellite :

Q15. L'énoncé nous donne la solution des questions **Q5**) et **Q6**) pour v^2 et E_m .

Sur l'orbite circulaire, on a démontré à la question Q5) que le mouvement était uniforme.

Alors
$$v = \frac{dist}{temps} = \frac{2\pi r}{T}$$
 (pour un tour); Soit : $v^2 = \frac{4\pi^2 r^2}{T^2} = g_0 \frac{R_T^2}{r}$, d'après l'énoncé.

Donc: $\frac{T^2}{r^3} = \frac{4\pi^2}{a_0 R_r^2}$; On retrouve la <u>3^{ème} loi de Kepler</u>.

Q16. Théorème de la puissance mécanique : Pour un système non conservatif (ce qui est le cas ici), car il y a des frottements, $\overrightarrow{dE_m} = P(\overrightarrow{f_{nc}}) = \overrightarrow{f_{nc}} \cdot \overrightarrow{v}$; Ainsi ici, $\frac{dE_m}{dt} = -k v^2 = -k g_0 \frac{R_T^2}{r}$;

Or d'après l'énoncé, $E_m(t) = -\frac{m g_0 R_T^2}{2r(t)}$; Donc $\frac{d E_m}{dt} = \frac{m g_0 R_T^2}{2r^2(t)} \times \dot{r}$

Ainsi : $\frac{m g_0 R_T^2}{2r^2(t)} \times \dot{r} = -k g_0 \frac{R_T^2}{r}$; D'où : $\dot{r} + \frac{2k}{m} r(t) = 0$; Par identification, on a $\tau = \frac{m}{2k}$; Unité de τ : $[\tau] = \frac{kg}{[k]} = \frac{kg}{N.s.m^{-1}} = \frac{kg}{kg.m.s^{-2}.s.m^{-1}} = s$; τ est bien homogène à un temps.

Q17. Solution de l'équation différentielle linéaire du 1^{er} ordre, à coefficients constants : $r(t) = A e^{-t/\tau}$;

Or CI: A t = 0, $r(0) = r_0 = A$; Donc: $r(t) = r_0 e^{-t/\tau}$;

Remarque : En toute rigueur, $r > R_T$ car le satellite ne peut pas pénétrer dans la terre. De plus, la valeur de k n'est pas constante : k(r).

En effet, le frottement atmosphérique dépend de la densité de l'air donc de l'altitude.

