桥梁大作业报告

组长: 贺琪

组员: 陈煜 刘畅武 杨昊光 朱子霖

2016年12月25日

目录

0.1	总述 .		 . !	5
	0.1.1	项目描述	 	5
	0.1.2	Abaqus结果	 . 8	8
0.2	桥梁功	力能实现方案	 . !	9
	0.2.1	前处理	 . !	9
	0.2.2	SPR	 . 9	9
	0.2.3	后处理	 . 9	9
	0.2.4	8H	 . 9	9
	0.2.5	Beam	 . 9	9
	0.2.6	Shell	 . 9	9
	0.2.7	半带宽优化	 . !	9
	0.2.8	稀疏存储求解器	 . !	9
0.3	其他单	9元	 . !	9
	0.3.1	3T	 . 9	9
	0.3.2	4Q	 . 9	9
	0.3.3	6T	 . 9	9
	0.3.4	8Q	 . !	9
	0.3.5	9Q	 . !	9
	0.3.6	4T	 . !	9
	0.3.7	铁木辛柯梁	 . !	9
	0.3.8	Plate	 . !	9
	0.3.9	无限单元	 . !	9
	0.3.10	超级单元	 . !	9
	0.3.11	过渡单元	 . !	9
0.4	高级功	力能	 . 9	9

4		目录
	0.4.1	弹塑性杆分析
	0.4.2	模态分析 9
	0.4.3	动力学响应分析 9

0.1 总述 5

0.1 总述

0.1.1 项目描述

桥模型由桥墩(pier),桥面(floor),支撑梁(support beam),河堤(river bank)和钢缆(cables)五部分组成,其中桥墩和河堤用实体单元建模,桥面用板单元建模,支撑梁用梁单元建模,钢缆用杆单元建模,如图1 所示。

桥墩:

桥墩在XZ方向为左右对称梯形,如图2所示,梯形高200,上底为20,下底40,在y方向上厚度为10。桥面位于距桥墩底50处。两个桥墩顶面内侧中点为所有钢缆的与桥墩的连接点。(参照图1)

采用实体单元建模

材料 : Concrete

弹性模量 : 25e9

泊松比 : 0.3

密度 : 2320

6 目录

桥面:

桥面位于z=0的平面内,如图3所示,为长方形,长为500,宽为20,厚度为1。在桥面上下边对称地布置钢缆连接点,每个钢缆连接点相距50,共计2×2×5=20个钢缆连接点。每根钢缆另一端连接桥墩顶面内侧中点。(参照图1)

采用板单元建模

材料: Concrete弹性模量: 25e9泊松比: 0.3密度: 2320

河堤:

河堤为50×50×20的立方体,如图1所示,变长为20的一边与桥面相较接,另外在距离底面20处与支撑梁相铰接。(铰接指对应结点平动自由度相同,转动自由度自由)

0.1 总述 7

采用实体单元建模。

材料: Granite弹性模量: 60e9泊松比: 0.27密度: 2770

支撑梁:

支撑梁共有两组,分别位于桥面两侧下方,其结构左右对称,如图4所示。支撑梁上部每个结点与桥面相铰接,两组共计2×9=18个结点。两端结点与河堤相铰接,共计2×2=4个结点。

采用梁单元建模,梁截面为正方形筒,边长为2,厚度为0.1。

材料 : Aluminum

弹性模量: 70e9泊松比: 0.346密度: 2710

钢缆:

连接桥面与桥墩,共计2×2×5=20根。每根截面积为0.25。 采用杆单元建模

材料: Steel弹性模量: 117e9泊松比: 0.266密度: 7860

8 目录

0.1.2 Abaqus结果

0.2 桥梁功能实现方案

- 0.2.1 前处理
- 0.2.2 SPR
- 0.2.3 后处理
- 0.2.4 8H
- 0.2.5 Beam
- 0.2.6 Shell
- 0.2.7 半带宽优化
- 0.2.8 稀疏存储求解器

0.3 其他单元

- 0.3.1 3T
- 0.3.2 4Q
- 0.3.3 6T
- 0.3.4 8Q
- 0.3.5 9Q
- 0.3.6 4T
- 0.3.7 铁木辛柯梁
- 0.3.8 Plate
- 0.3.9 无限单元
- 0.3.10 超级单元
- 0.3.11 过渡单元

0.4 高级功能

- 0.4.1 弹塑性杆分析
- 0.4.2 模态分析
- 0.4.3 动力学响应分析