Aproximare prin metoda celor mai mici pătrate

Radu T. Trîmbiţaş

10 aprilie 2023

Fie $f \in L^2_w[a,b]$ şi $\Phi \leq L^2_w[a,b]$ de dimensiune n+1. Dorim să găsim o aproximantă $\varphi^* \in \Phi$ astfel încât $\|\varphi^* - f\|^2 \leq \|\varphi - f\|^2$, $\forall \varphi \in \Phi$. Scriem

$$\varphi^*(x) = a_0 \varphi_0(x) + \dots + a_n \varphi_n(x), \tag{1}$$

unde $\{\varphi_k|k=0,\ldots,n\}$ este o bază a lui Φ .

Coeficienții sunt soluțiile ecuațiilor normale

$$a_0(\varphi_0, \varphi_k) + a_1(\varphi_1, \varphi_k) + \dots + a_n(\varphi_n, \varphi_k) = (f, \varphi_k), \quad k = 0, \dots, n.$$
 (2)

Dacă sistemul $\{\varphi_k|k=0,\dots,n\}$ este ortogonal, coeficienții se pot obține cu ajutorul formulelor

$$a_k = \frac{(f, \varphi_k)}{(\varphi_k, \varphi_k)}, \quad k = 0, \dots, n.$$
(3)

Aproximanta poate fi continuă sau discretă, în funcție de măsura aleasă în definiția produsului scalar. În cazul continuu produsul scalar are forma

$$(g,h) = \int_{a}^{b} w(x)g(x)h(x)dx,$$

iar in cazul discret

$$(g,h) = \sum_{k=0}^{N} w_k g(x_k) h(x_k).$$

Să consideram relația de recurență pentru polinoamele ortogonale monice

$$\pi_{k+1}(x) = (x - \alpha_k)\pi_k(x) - \beta_k \pi_{k-1}(x), k = 0, 1, 2, \dots$$

$$\pi_0(x) = 1, \pi_{-1}(x) = 0,$$

unde

$$\beta_0 = \int_a^b w(x)f(x)dx = \mu_0.$$

Coeficienții din relația de recurență (2) au expresia

$$\alpha_k = \frac{(x\pi_k, \pi_k)}{(\pi_k, \pi_k)}, \beta_k = \frac{(\pi_k, \pi_k)}{(\pi_{k-1}, \pi_{k-1})}.$$

Reamintim câteva dintre polinoamele ortogonale clasice și coeficienții din relațiile lor de recurență:

Polinoamele	Notația	Pondere	interval	α_k	eta_k
Legendre	$P_n(l_n)$	1	[-1,1]	0	2 (k=0)
					$(4-k^{-2})^{-1} (k>0)$
Cebîşev #1	T_n	$(1-t^2)^{-\frac{1}{2}}$	[-1,1]	0	π (k =0)
					$\frac{1}{2}$ (k=1)
					$\frac{1}{4} (k>0)$
Cebîşev #2	$U_n(Q_n)$	$(1-t^2)^{\frac{1}{2}}$	[-1,1]	0	$\frac{1}{2}\pi \ (k=0)$
					$\frac{1}{4} (k>0)$
Jacobi	$P_n^{(\alpha,\beta)}$	$(1-t)^{\alpha}(1+t)^{\beta}$	[-1,1]		
		$\alpha > -1, \beta > -1$			
Laguerre	$L_n^{(\alpha)}$	$t^{\alpha}e^{-t} \alpha > -1$	$[0,\infty)$	$2k+\alpha+1$	$\Gamma(1+\alpha)$ $(k=0)$
					$k(k+\alpha)$ $(k>0)$
Hermite	H_n	e^{-t^2}	\mathbb{R}	0	$\sqrt{\pi} (k=0)$
					$\frac{1}{2}k \ (k>0)$

Tabela 1: Polinoame ortogonale

Observația 1 Pentru polinoamele Jacobi avem

$$\alpha_k = \frac{\beta^2 - \alpha^2}{(2k + \alpha + \beta)(2k + \alpha + \beta + 2)}$$

si

$$\beta_0 = 2^{\alpha + \beta + 1} B(\alpha + 1, \beta + 1),$$

$$\beta_k = \frac{4k(k + \alpha)(k + \alpha + \beta)(k + \beta)}{(2k + \alpha + \beta - 1)(2k + \alpha + \beta)^2 (2k + \alpha + \beta + 1)}, \quad k > 0.$$

Probleme propuse.

- 1. Să se gasească aproximanta discretă prin metoda celor mai mici pătrate pentru ponderea w(x)=1 și baza $1, x, x^2, \ldots, x^n$.
- 2. Un asteroid ce orbitează în jurul Soarelui a putut fi observat timp de câteva zile înainte să dispară. Iată 10 observații

				,	
$x_{1:5}$	-1.024940	-0.949898	-0.866114	-0.773392	-0.671372
$x_{6:10}$	-0.559524	-0.437067	-0.302909	-0.159493	-0.007464
$y_{1:5}$	-0.389269	-0.322894	-0.265256	-0.216557	-0.177152
$y_{6:10}$	-0.147582	-0.128618	-0.121353	-0.127348	-0.148895

Se dorește calcularea traiectoriei pe baza acestor observații pentru a putea prevedea situația când orbita va fi din nou vizibilă. Se presupune un model elipsoidal pentru orbită

$$x^2 = ay^2 + bxy + cx + dy + e.$$

El ne conduce la un sistem supradeterminat, care trebuie rezolvat în sensul celor mai mici pătrate pentru a determina parametrii a, b, c, d, e. Realizați o estimare a erorii și un test de încredere în model. Faceți același lucru pentru modelul parabolic

$$x^2 = ay + e.$$

Care este mai probabil?

3. La măsurarea unui segment de drum, presupunem că am efectuat 5 măsurători

$$AD = 89m, AC = 67m, BD = 53m, AB = 35m \text{ si } CD = 20m,$$

Să se determine lungimile segmentelor $x_1 = AB$, $x_2 = BC$ şi $x_3 = CD$.

4. Datele următoare dau populația SUA (în milioane) determinată la recensăminte de US Census, între anii 1900 și 2010. Dorim să modelăm populația și să o estimăm pentru anii 1975 și 2015.

An	Populația	An	Populația
1900	75.995	1970	203.210
1910	91.972	1980	226.510
1920	105.710	1990	249.630
1930	123.200	2000	281.420
1940	131.670	2010	308.790
1950	150.700	2020	350.686
1960	179.320		

Modelati populația printr-un model polinomial de gradul 3

$$y = c_0 + c_1 t + c_2 t^2 + c_3 t^3,$$

și printr-un model exponențial

$$y = Ke^{\lambda t}$$
.

Probleme suplimentare

1. Să se gasească aproximanta discretă prin metoda celor mai mici pătrate pentru ponderea w(x)=1 și baza formată din polinoamele Cebîşev de speța I. Produsul scalar are forma

$$(g,h) = \sum_{k=1}^{n+1} g(\xi_k) h(\xi_k),$$

unde $\xi_k,\ k=1,\ldots,n+1$ sunt rădăcinile polinomului Cebîşev de speţa I $T_{n+1}.$

2. Se dă un polinom prin coeficienții săi relativ la o bază ortogonală $\{\pi_j\}$:

$$p(t) = \sum_{i=0}^{n} c_i \pi_i(t).$$

Să se dea o metodă de evaluare analoagă schemei lui Horner. (*Indicație*: se va folosi relația de recurență și coeficienții ei.)

3. Să se determine aproximanta continua pe [-1,1], cu ponderea $w(t) = \frac{1}{\sqrt{1-t^2}}$ și baza formată din polinoamele Cebîşev de speța I, care aproximează o funcție dată cu o erore ε dată.