Bayesovská klasifikace

- Bayesův vztah pro výpočet podmíněné pravděpodobnosti
 - \sim pravděpodobnost, že platí hypotéza $\emph{\textbf{H}}$, pokud pozorujeme $\emph{\textbf{E}}$

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

- P(H) apriorní pravděpodobnost hypotézy H
- *P(H|E)* aposteriorní (podmíněná) pravděpodobnost
- P(E) pravděpodobnost pozorování E

Bayesovská klasifikace (2)

- ightarrow nejpravděpodobnější hypotéza H_{MAP}
 - ~ největší aposteriorní pravděpodobnost

$$H_{MAP} = H_J$$
; $P(H_J \mid E) = \max_t \frac{P(E \mid H_t) P(H_t)}{P(E)}$

 \rightarrow zanedbat jmenovatele: $P(E) = \sum_{t} P(E | H_t) P(H_t)$

$$H_{MAP} = H_J \Leftrightarrow P(E \mid H_J) P(H_J) = \max_t (P(E \mid H_t) P(H_t))$$

Bayesovská klasifikace (3)

Příklad:

- Poskytnout úvěr klientovi s vysokým příjmem?
 - P(PUJCIT) = 0.667
 - P(NEPUJCIT) = 0.333
 - $P(VYS_PRIJEM|PUJCIT) = 0.91$
 - $P(VYS_PRIJEM|NEPUJCIT) = 0.12$
 - P(NIZ PRIJEM|PUJCIT) = 0.09
 - $P(NIZ_PRIJEM|NEPUJCIT) = 0.88$
 - $P(VYS_PRIJEM|PUJCIT) P(PUJCIT) = 0.607$
 - P(VYS PRIJEM|NEPUJCIT) P(NEPUJCIT) = 0.040
 - $\rightarrow H_{MAP} = PUJCIT$

Naivní Bayesovský klasifikátor

Předpoklad:

- jednotlivá pozorování $E_1, ..., E_K$ jsou podmíněně nezávislá při platnosti hypotézy H
- tento předpoklad bývá v reálných úlohách jen málokdy splněn → proto označení "naivní"
- \rightarrow výpočet aposteriorní pravděpodobnosti hypotézy při platnosti všech $E_1, ..., E_K$

$$P(H | E_1,...,E_K) = \frac{P(E_1,...,E_K | H)P(H)}{P(E_1,...,E_K)}$$

Naivní Bayesovský klasifikátor (2)

 \rightarrow výpočet aposteriorní pravděpodobnosti hypotézy při platnosti všech $E_1, ..., E_k$ jako

$$P(H | E_1, ..., E_K) = \frac{P(H)}{P(E_1, ..., E_K)} \prod_{k=1}^K P(E_k | H)$$

 \rightarrow při klasifikaci pomocí naivního Bayesovského klasifikatoru budeme hledat hypotézu s největší aposteriorní pravděpodobností H_{MAP}

$$H_{MAP} = H_J \iff P(H_J) \prod_{k=1}^K P(E_k \mid H_J) = \max_t \left(P(H_t) \prod_{k=1}^K P(E_k \mid H_t) \right)$$

Naivní Bayesovský klasifikátor (3)

- $P(H_t) = P(t\check{r}idy_t) =$ $= Po\check{c}et_vzor\mathring{u}_z_t / Po\check{c}et_v\check{s}ech_vzor\mathring{u}$
- $P(E_k|H_t) = P(vzor\mathring{u}_z_t \check{t}idy_t vyhovujicich_E_k = \frac{Po\check{c}et_vzor\mathring{u}_z_t splňujicich_E_k}{Po\check{c}et_vzor\mathring{u}_z_t t}$

Naivní Bayesovský klasifikátor (4)

- + možnost klasifikovat i neúplně popsané vzory
- nulová aposteriorní pravděpodobnost $P(E_k|H_t)$ při chybějících vzorech v trénovací množině (pro E_k)

evtl. podhodnocení $P(E_k|H_t)$ při nízké vzájemné četnosti E_k a H_t

Bayesovská síť - příklady

Příklad: trénovací data pro Bayesovský klasifikátor

			•	•	
KLIENT	Marise	KONTO	POHLAVI	NEZAMESTNANY	UVER
KI	VYSORY	VYSOKE	ZENA	NE	ANO
k2	VYSOKY	VYSOKE	MUE	NE	ANO
K3	Nizky'	NIZKÉ	MUL	NE	NE
24	NIZEY	VYSOKÉ	ZENA	ANO	ANO
K 5	<i>nieky</i>	VYSOKE'	MUE	ANO	ANO
KG.	NIZKY	NIZKE	ZENA	ANO	NE
4.7	vysoký	NIZKE	MUZ	NE	ANO
KR	VYSOKÝ	NIEKE	ZENA	ANO	ANO
49	NIZEY	STEEDNI	MUE	ANO	NE
£10	vysoky	STREDNÍ	ZENA	NE	AND
K11	NIZKY	STEEDNÍ	ZENA	ANO	NE
K 12	NIZKY	STREDNÍ	MUE	NE	AND

Bayesovská síť - příklady (2)

Příklad (pokračování):

Apriorní pravděpodobnost různých hodnot cílového atributu ÚVĚR:

```
P(UVER (ANO)) = 4/12 = 0,667

P(UVER (NE)) = 4/12 = 0,333

P(KONTO (STREDNÍ) I ÚVER (ANO)) = 2/1 = 0,25

P(KONTO (STREDNÍ) I ÚVER (NE)) = 2/4 = 0,5

P(NEZAMESTNANÝ (NE) I ÚVER (ANO)) = 5/1 = 0,625

P(NEZAMESTNANÝ (NE) I ÚVER (NE)) = 1/4 = 0,25
```

Bayesovská síť - příklady (3)

Příklad (pokračování):

→ Pro uchazeče o úvěr, který má středně vysoký
 zůstatek na kontě a není nezaměstnaný, spočítáme:

```
P(UVER (ANO)) P(LONTO (STREDNÍ) IUVER (ANO)).

. P(NERAMESTNANÝ (NE) IÚVER (ANO)) = 0, 1042

P(ÚVER (NE)) P(LONTO (STREDNÍ) I ÚVER (NE)).

. P(NERAMESTNANÝ (NE) I ÚVER (NE)) = 0,0416
```

→ Uchazeč bude zařazen do třídy ÚVĚR (ANO)