

χ^2 Test of Independence - II

Dr. A. Ramesh

DEPARTMENT OF MANAGEMENT STUDIES

Agenda

- Using python to test the independence of variables
- Understanding goodness of fit test for Poisson

Example

Record of 50 students studying in ABN School is taken at random, the first
 10 entries are like this:

res_num	aa	pe	sm	ae	r	g	С
1	99	19	1	2	0	0	1
2	46	12	0	0	0	0	0
3	57	15	1	1	0	0	0
4	94	18	2	2	1	1	1
5	82	13	2	1	1	1	1
6	59	12	0	0	2	0	0
7	61	12	1	2	0	0	0
8	29	9	0	0	1	1	0
9	36	13	1	1	0	0	0
10	91	16	2	2	1	1	0

Example

Here:

- res_num = registration no.
- aa= academic ability
- pe = parent education
- sm = student motivation
- r = religion
- g = gender


```
In [1]: import pandas as pd
       import numpy as np
In [2]: acad = pd.read_csv('AcademicAbilityData.csv')
In [3]: acad
Out[3]:
          res_num aa pe sm ae r g c
               1 99 19 1 2 0 0 1
               2 46 12 0 0 0 0 0
               3 57 15 1 1 0 0 0
                      2 2 1 1 1
               5 82 13 2 1 1 1 1
               6 59 12 0 0 2 0 0
               7 61 12 1 2 0 0 0
               8 29 9 0 0 1 1 0
               9 36 13 1 1 0 0 0
              10 91 16 2 2 1 1 0
              11 55 10 0 0 1 0 0
              12 58 11 0 1 0 0 0
       11
```


Hypothesis

Test the hypothesis that "gender and student motivation" are independent

Observed values

Gender	S			
	0	1	2	Row Sum
	(Disagree)	(Not decided)	(Agree)	
0 (Male)	10	13	6	
1(Female)	4	9	8	21
Column Sum	14		14	50

Expected frequency (contingency table)

Gender	Student motivation			
	0	1	2	
0	29*14/50= 8.12	12.76	8.12	
1	5.88	9.24	5.88	

Frequency Table

Gender	Student motivation			
	0	1	2	
0	f _o = 10	f _o = 13	f _o = 6	
	$f_e = 8.12$	$f_e = 12.76$	$f_e = 8.12$	
1	$f_0 = 4$ $f_e = 5.88$	$f_0 = 9$ $f_e = 9.24$	$f_0 = 8$ $f_e = 5.88$	
	$f_{e} = 5.88$	$f_e = 9.24$	$f_{e} = 5.88$	

Chi sq. calculation

$$\chi^2 = \sum \sum \frac{\left(f_o - f_e\right)^2}{f_e}$$

$$= 0.435 + 0.005 + 0.554 + 0.601 + 0.006 + 0.764$$


```
## Perform chi2 test to check independence
In [11]:
        from scipy.stats import chi2_contingency
In [14]:
        chi2, p,dof,tbl= chi2_contingency(obs)
In [15]:
        chi2
Out[15]
        2.3649585225939904
                                                        <= 5'1. = 0.07
In [16]:
Out[16]:
        0.3065178579178871
In [17]: dof
Out[17]: 2
                                               (2-1)(3-1)=2
```



```
In [11]:
        ## Perform chi2 test to check independence
        from scipy.stats import chi2_contingency
In [14]: chi2, p,dof,tbl= chi2_contingency(obs)
In [15]: chi2
Out[15]: 2.3649585225939904
In [16]: p
Out[16]: 0.3065178579178871
                                           Degrees of
In [17]:
        dof
                                           freedom =
Out[17]:
                                           (2-1)*(3-1)
```


χ^2 Goodness of Fit Test

χ^2 Goodness-of-Fit Test

• The χ^2 goodness-of-fit test compares *expected* (theoretical) frequencies of categories from a population distribution to the observed (actual) frequencies from a distribution to determine whether there is a difference between what was expected and what was observed

χ² Goodness-of-Fit Test

$$\chi^2 = \sum \frac{\left(f_o - f_e\right)^2}{f_e}$$

$$df = k - 1 - p$$

where: f = frequency of observed values

f = frequency of expected values

k = number of categories

p = number of parameters estimated from the sample data

1. Set up the null and alternative hypotheses.

 H_0 : Population has a Poisson probability distribution

 H_a : Population does not have a Poisson distribution

- 2. Select a random sample and
 - Record the observed frequency f_i for each value of the Poisson random variable.
 - Compute the mean number of occurrences μ .
- 3. Compute the expected frequency of occurrences e_i for each value of the Poisson random variable.

4. Compute the value of the test statistic

$$\chi^{2} = \sum_{i=1}^{k} \frac{(f_{i} - e_{i})^{2}}{e_{i}}$$

where:

 f_i = observed frequency for category i

 e_i = expected frequency for category i

k = number of categories

5. Rejection rule:

p-value approach: Reject H_0 if *p*-value $\leq \alpha$

Critical value approach: Reject H_0 if $\chi^2 \ge \chi_\alpha^2$

where α is the significance level and there are k-2 degrees of freedom

$$K-1-P$$

Example: Parking Garage

In studying the need for an additional entrance to a city parking garage, a consultant has recommended an analysis, that approach is applicable only in situations where the number of cars entering during a specified time period follows a Poisson distribution.

A random sample of 100 one- minute time intervals resulted in the customer arrivals listed below. A statistical test must be conducted to see if the assumption of a Poisson distribution is reasonable.

Hypotheses

 H_0 : Number of cars entering the garage during a one-minute interval is Poisson distributed

*H*_a: Number of cars entering the garage during a one-minute interval is <u>not</u> Poisson distributed


```
In [1]: import scipy
        from scipy.stats import chi2
        from scipy.stats import poisson
In [2]: import pandas as pd
        import numpy as np
In [3]: data = pd.read_excel('P_distribution.xlsx')
        data
Out[3]:
            Arrivals Frequency
                         10
                         14
                         20
                         12
                          12
                          6
         12
```


Estimate of Poisson Probability Function

Total Arrivals =
$$0(0) + 1(1) + 2(4) + ... + 12(1) = 600$$

Estimate of $\mu = 600/100 = 6$

Total Time Periods = 100

Hence,

$$= \frac{-u}{x}$$

$$f(x) = \frac{6^x e^{-6}}{x!}$$

• Expected Frequencies

<u>x</u>	f(x)	nf(x)	χ	f(x)	nf(x)
0	.0025	.25	7	.1377	13.77
1	.0149	1.49	8	.1033	10.33
2	.0446	4.46	9	.0688	6.88
3	.0892	8.92	10	.0413	4.137
4	.1339	<u>13.3</u> 9	11	.0225	2.25
5	.1606	16.06	12+	0201	2.01
6	.1606	16.06	Total	1.0000	100.00


```
In [4]: Observed Freq = data['Frequency']
In [5]: total arrival = 600
        total time period = 100
        mu = total arrival/total time period
In [6]: Expected Freq = []
        for i in range(len(Observed Freq)):
            E Freq = 100*poisson.pmf(i, mu)
             Expected Freq.append(E Freq)
In [7]: Expected Freq
Out[7]: [0.24787521766663584,
         1.4872513059998145,
         4.461753917999444,
         8.923507835998894,
         13.385261753998332,
         16.062314104797995,
         16.06231410479801,
         13.767697804112569,
         10.32577335308442,
         6.883848902056284,
         4.130309341233764,
         2.2528960043093247,
         1.1264480021546681]
```



```
In [8]: Expected Freq round off = [round(elem, 2) for elem in Expected Freq]
         Expected_Freq_round_off
Out[8]: [0.25,
          1.49,
          4.46,
          8.92,
          13.39,
          16.06,
          16.06,
          13.77,
          10.33,
          6.88,
          4.13,
          2.25,
          1.13]
In [9]: df = pd.DataFrame(list(zip(Observed Freq, Expected Freq round off)), columns = ['Observed Frequency', 'Expected Frequency'])
Out[9]:
             Observed Frequency Expected Frequency
          0
                           0
                                           0.25
                                           1.49
                                           4.46
          3
                           10
                                           8.92
                           14
                                          13.39
          5
                           20
                                          16.06
                                          16.06
                           12
                                          13.77
                                          10.33
                                           6.88
                                           4.13
                                           2.25
                                           1.13
```


Observed and Expected Frequencies

i	f_{i}	e_i	f_i - e_i
0 or 1 or 2	_5	6.20	-1.20
3	10	8.92	1.08
4	14	13.39	0.61
5	20	16.06	3.94
6	12	16.06	-4.06
7	12	13.77	-1.77
8	9	10.33	-1.33
9	8	6.88	1.12
10 or more	10	8.39	1.61

Rejection Rule

With
$$\alpha = .05$$
 and $k - p - 1 = 9 - 1 - 1 = 7$ d.f.
(where $k =$ number of categories and $p =$ number of population parameters estimated),
$$\chi_{.05}^2 = 14.067$$

Reject H_0 if p-value $\leq .05$ or $\chi^2 \geq 14.067$.

Test Statistic

$$\chi^2 = \frac{(-1.20)^2}{6.20} + \frac{(1.08)^2}{8.92} + \dots + \frac{(1.61)^2}{8.39} = 3.268$$


```
In [4]: from scipy.stats import chi2
    chi2.ppf(0.95,7)

Out[4]: 14.067140449340167
```


$$\chi^2_{Cal} = 3.268 < 14.067$$
, do not reject H_o.

Thank You

