ECE 210/211 Spring 2022

University of Illinois

Alvarez, Mironenko, Mironov, Schmitz

Analog Signal Processing

Thursday, March 24, 8:45-10pm

Exam II

Last Name:	
First Name:	
UIN:	netID:

instructions:

- Clearly PRINT your name in CAPITAL LETTERS.
- Clearly write your UIN and netID.
- This is a closed book and closed notes exam.
- Calculators are not allowed.
- To get credit, you must SHOW ALL your work and/or reasoning. Answers without any work or reasoning may receive no credit.
- To get full credit, simplify your answers.
- Write your final answers in the spaces provided or points may be deducted.
- All answers should INCLUDE UNITS whenever appropriate.
- The exam is printed double-sided.

1. (25 pts) Consider the LTI circuit below with voltage $v_s(t) = \cos(2t) + \sin(2t)$ V.

(a) [5 pts] Obtain the corresponding phasor circuit.

(b) [10 pts] If it is known that C = 1F and that the current i(t) is in phase with the voltage $v_s(t)$, determine the value of R.

 $R = \underline{\hspace{1cm}}$

Recall that $v_s(t) = \cos(2t) + \sin(2t) \text{ V}.$

(c) [10 pts] If $C = \frac{1}{4}$ F, and R = 2 Ω , determine the average absorbed power in each one of the elements in the circuit.

 $P_{2\Omega} = P_{\frac{1}{4}F} = P_{\frac{1}{2}H} = P_{v_s} = P_{v_s}$

2. (25 pts) Consider the circuit shown below. The switch is closed at time t=0. The capacitor in the circuit has an initial voltage of $v(0^-)=\frac{3}{2}\,V$. The input $f(t)=2\sin(\frac{1}{2}t)\,V$.

(a) [8 pts] Find the ODE of the circuit for the capacitor voltage v(t), valid for t > 0.

ODE ·

(b) [12 pts] Find the particular $v_p(t)$ and homogeneous $v_h(t)$ solutions to the ODE.

$$(t) =$$

$$v_h(t) =$$

(c)	[5 pts] capacit	Identify tor $v(t) =$	the transi $v_{tr}(t) + i$	ent and $v_{ss}(t), t > 0$	steady · 0.	state	signals	that	comprise	the	voltage	of	the
			=										

- 3. (25 pts) The three parts of this problem are not related.
 - (a) [6 pts] Find the frequency response, $H(\omega)$, of the circuit shown below.

$$H(\omega) =$$

(b) [11 pts] The signal $x(t)=2+\cos(2t)+2\sin(5t)$ was sent through a system having the frequency response $H(\omega)=\frac{1}{3+3j\omega}$. Find the output signal y(t) and express in terms of real-valued functions.

(c)	[8	pts	A	linear	system	with	input	f(t)	and	output	y(t)	is	described	by t	he	ODE
\ /	L	ı ,			v		1	9 (/		1	0 ()			•		

$$\frac{d^2y}{dt^2} + 2y = f$$

Find the frequency response of the system $H(\omega)$ and the output signal y(t) if the input signal f(t) = 4V.

$$H(\omega) =$$

$$y(t) = 1$$

4. (25 pts) Consider the periodic function f(t) given below:

Determine:

(a) [6 pts] Period T, fundamental frequency ω_0 , and exponential Fourier series coefficient F_0 .

$$T = \underline{\qquad} \qquad \omega_0 = \underline{\qquad} \qquad F_0 = \underline{\qquad}$$

(b) [10 pts] Exponential Fourier series of f(t). Simplify as much as you can.

(c) [5 pts] Let f(t) be the input to an ideal low-pass filter with magnitude response $|H(\omega)|$ and phase response $\angle H(\omega)$ given below. Determine the steady-state output y(t).

$$y(t) =$$

(d) [4 pts] Express y(t) in terms of real-valued functions.

