Annahme, dass e^- in Ruhe in Bezug auf einfallendes Teilchen ist gilt bei kleiner Energie nicht mehr $\Rightarrow c_K$ Teilchen dereren mittlerer Energieverlust beim Minimum liegt heißen "Minimum Ionizing Particles" (MIP) Asymmetrieterm: Bei kleinen Massenzahlen sind Kerne mit gleicher Neutronen und Protonenzahl bevorzugt. Bei schweren Kernen mehr Neutronen wegen Coulomb Paarungsterm: Gerade Anzahl von Protonen und/oder Neutronen erhöht Gesamtenergie: $E = \sqrt{m_0^2 c^4 + p^2 c^2}$, LHC: 14×10^{12} eV Paarungsterm: Gerade Anzahl von Protonen und/oder Neutronen erhöh Stabilität des Kerns $\begin{array}{llll} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$ Elektrondrift: 1 ms \sim 5 cm, Flugstrecke relativistisches Teilchen: 1 ns $\sim 30\,\mathrm{cm}$ Schwankung Energieverlust: Gauß-verteil $P(\Delta E) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\left(\lambda+e^{-\lambda}\right)}, \ \lambda = \frac{\Delta E - \Delta E_{mp}}{\xi}, \ \xi \ \ \text{ist materialabh.} \ \ \text{Kor}$ relative Kräfte: Schwerkraft 10⁻⁴¹, schwache WW (Quarks, Leptonen wirkt auf Flavor): 10⁻⁴, EM WW: 1, starke WW (Quarks, Ghuonen, wirkt auf stante, $\Delta E_{mp}^{\sqrt{2\pi}}$ der wahrscheinlichste Wert für ΔE Farbladung): 60 Energieverlust $e^- + e^+$: Bethe-Bloch-Korrektur um Rückstoß und Spinabh. zusätzlich: Bremsstrahlung Reichweite virtuelles Teilchen: Unschärfe: $\Delta E \Delta t > \frac{\hbar}{2} \Rightarrow \Delta E \Delta t$ $mc^2\Delta t > \frac{\hbar}{2} \Rightarrow$ Reichweite $\approx c\Delta t > \frac{\hbar}{2mc}$ EM WW (Photon): $m=0 \Rightarrow$ Reichweite $=\infty$ $\left(-\frac{dE}{dx} \right)_{tot} = \left(-\frac{dE}{dx} \right)_{coll} + \left(-\frac{dE}{dx} \right)_{rad}, \left(-\frac{dE}{dx} \right)_{rad} \sim \frac{Z^2}{A} \, \frac{e^4}{m^2} \, E_0$ Kritische Energie: $\left(-\frac{dE}{dx} \right)_{coll} = \left(-\frac{dE}{dx} \right)_{rad}$ schwache WW: $m_W=80\,{\rm GeV/}{c_0}^2, m_{Z_0}=91\,{\rm GeV/}{c_0}^2\Rightarrow {\rm Reichweite}$ $0.001\,\mathrm{fm}$ starke WW: Gluonen mit Selbst-WW, Reichweite $\sim0.5\,\mathrm{fm}$ Starke Kraft: $m_{Pion} = 140 \, \text{MeV}/c_0^2 \Rightarrow \text{Reichweite} \sim 1 \, \text{fm}$ $\frac{1}{2\vartheta_0^2} d\vartheta$ mit ϑ_0 Breite de Vielfachstreuung: $P(\vartheta)d\vartheta = \frac{1}{\sqrt{2\pi} \vartheta}e$ Auflösung Objekt mit Radius R mit Impuls p: Unschärfe: $p \cdot R > 1$ Auflösung Objekt mit Radius R mit Impuls p: Unschärfe: $p \cdot R > \frac{1}{2}$ $\Delta p_{max} = 2p \Rightarrow \Delta p_{max} \cdot R > \hbar$ $E = \sqrt{m_0^2c^4 + p^2c^2}, \ P = \left(\begin{array}{c} E/c \\ \overline{p} \end{array}\right), \ E = E_0 + E_{kin}, \ E_0 = m_0c^2$ $E = \gamma m_0c^2, \ \overline{p} = \gamma m_0 \overline{v}, \ \gamma = \frac{1}{\sqrt{1-\beta^2}}, \ \beta = \frac{v}{c}$ Invariante Masse: $P^2 = \frac{E^2}{c^2} - \overline{p}^2 = m_0^2c^2$ Schwerpunktsenergie \sqrt{s} : mutzbare Energie in der Reaktion; invariant unte Lorentz-Trafo; $S = (P_1 + P_2 + ...)^2$ Stoßprozess: Summe der Viererimpuls bleibt erhalten
Lorentz-Trafo: Koordsyst. Strich bewegt sich mit Geschw. v gegenübe ungestrichenem Koordsyst. in z-Richtung $v = \left(\begin{array}{c} E/c \\ V c \end{array}\right) = \frac{e}{c} \left(\begin{array}{c} E/c \\ V c \end{array}\right)$ Gaußverteilung $\frac{z_0}{r \ln \left(\frac{r_2}{r_1}\right)}$ mit r_2 Radius Zählrohr, r_1 Radius Drahi Ionisationsnachweis: Geiger-Müller-Zählrohr E-Feld des Drahts: E(r) = -Elastische Streuung Nukleon: $Q^2 = -q^2$ $\left(\frac{d\sigma}{d\Omega}\right)_{\rm Punkt,\ Spin} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} \left[1 + 2\tau \tan^2 \frac{\vartheta}{2}\right]$ Es werden nicht die e^- gemessen, die auf den Draht kommen, sondern die langsame Induktion durch die Ionen, die sich der Röhre bewegen Cherenkov-Strahlung: Tritt auf wenn Teilchen in Materie schneller sind als Lichtgeschwindigkeit in Medium Licht wird unter Winkel $\vartheta = \arccos \frac{1}{n\beta}$ abgestrahlt \Rightarrow Winkel messen $\Rightarrow \beta, p$ $\begin{pmatrix} \frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_M \begin{bmatrix} G_E^2(Q^2) + \tau G_M^2(Q^2) \\ 1 + \tau G_M^2(Q^2) + 2\tau G_M^2(Q^2) + 2\tau G_M^2(Q^2) \end{bmatrix}$ Elektrischer Formfaktor: $G_E = F_1^2 - \frac{\kappa^2 Q^2}{4M^2} F_2^2$ Magnetischer Formfaktor: $G_M = F_1 + \kappa F_2$ O^2 messen $\Rightarrow m$ ist bestimmt Szintillator: Ionisierendes Teilchen regt Material an \Rightarrow Abregung durch Em Szintillator: Ionisierendes Teilchen regt Material an ⇒ Abregung durch Emiss ⇒ Photomultiplier anorganisch: Abklingzeit ~ ms, organisch: Abklingzeit ~ ns Wichtige Eigenschaften: hohe Umwandlungseffizierz der Energie in Licht, Emiss in richtiger Wellenlänge, hohe Zählraten. Bsp.: Na1, BGO, Plastik

WW von Photonen mit Materie: $\tau = \frac{Q^2}{4M^2c^2}$, $F_{1,2}$ Dirac-Formfaktoren, $\kappa = \frac{g-2}{2}$ $P' = \begin{pmatrix} E'/c \\ \overrightarrow{p'} \end{pmatrix}, P = \begin{pmatrix} E/c \\ \overrightarrow{p} \end{pmatrix}$ $Q \rightarrow 0$: Proton: $G_E = 1$, $G_M = 2.79$; Neutron: $G_M = -1.91$, $G_E(Q^2) = 0$ $p'_x = p_x, p'_y = p_y, p'_z = \gamma p_z - \beta \gamma \frac{E}{c}, \frac{E'}{c} = -\beta \gamma p_z + \gamma \frac{E}{c}$ $G_E^p(Q^2) \approx G^{Dipol}(Q^2) = \left(1 + \frac{Q^2}{0.71(GeV/c)^2}\right)$ kleine Energien $E_{\gamma} \geq E_{Bindung} \Rightarrow$ Photoeffekt, $\sigma_{ph} \sim \frac{Z^{4-5}}{E}$ mittlere Energien $E_{Bindung} \ll E_{\gamma} \leq 2m_ec^2 \Rightarrow$ Compto Strahlfluss: $J=n_a\cdot v_a=\frac{\dot{N}_a}{F}$ mit n_a Teilchendichte, N_a Teilchen im Strahl, F Querschnittsfläche Strahl Luminosität: $L=J\cdot N_b$ mit N_b Teilchen im Target Nukleonradius: $\langle r^2 \rangle = -6\hbar^2 \frac{dG^{Dip}}{dQ^2} \Big|_{0}$ $\Big|_{Q=0}\approx 0.66 fm^2$ $\sigma_C \sim Z(1-\varepsilon)$ für $\varepsilon \ll 1$, $\sigma_C \sim Z \frac{1+2\ln(2\varepsilon)}{\varepsilon}$ für $\varepsilon \gg 1$ mit $\varepsilon = \frac{E_{\gamma}}{m_e c^2}$ $\sigma_C \sim \omega_{\Lambda}$ $\Delta \lambda = \lambda_C (1 - \cos \varphi), E'_{\gamma} = \frac{\omega_{\gamma}}{1 + \frac{E_{\gamma}}{m_e c^2} (1 - \cos \varphi)}$ Quasielastische Streuung: Bei Streuung an Nukleonen $(\vec{P}, \vec{P'}, M)$ muss die Bindungsenergie des Nukleons auch betrachtet werden Reaktionsrate: $R = L \cdot \sigma_r$, mit σ_r Reaktionsquerschnitt: $\sigma_r = \int \frac{d\sigma}{d\Omega} d\Omega$ WK Wechselwirkung Strahlteilchen + Target: $P = \frac{\sigma_{\rm tot} N_{\rm b}}{F}, \frac{N_{\rm b}}{F} = n_{\rm b} d$ mit Dicke d des Targets und $N_{\rm b}$ der Anzahl der $\nu = E - E' = E'_N - E_N = (Mc^2 + \frac{\vec{p}'^2}{2M}) - (Mc^2 + \frac{\vec{p}^2}{2M} - S) =$ Teilchen im Target mit Fläche F $\frac{(\vec{P} + \vec{q})^2}{2M} - \frac{\vec{P}^2}{2M} + S = \frac{\vec{q}^2}{2M} + S + \frac{2|\vec{q}||\vec{P}|\cos\alpha}{2M}$ Fermis goldene Regel: $\sigma_{i \rightarrow f} = \frac{R}{L} = \frac{2\pi}{\hbar v_a} \left| \mathcal{M}_{fi} \right|^2 \cdot \rho \left(E_f \right) \cdot V$ mit Scharfe Kante bei maximaler Energie $E'_{\gamma} = E_{\gamma}$ hohe Energien $E_{\gamma} > 2m$ $\Rightarrow \nu$ verteilt sich um Mittelwert $\nu_0 = \frac{\vec{q}^2}{2M} + S$ $V = \frac{N_a}{n_a}, \ \rho\left(E_f\right) = \frac{dn\left(E_f\right)}{dE_f} = \frac{V \cdot 4\pi p^2}{v^l \cdot (2\pi\hbar)^3} \ \ \text{Dichte der Endzustär}$ $\underbrace{\mathcal{M}_{fi} = \langle \psi_f | \mathcal{H}_{WW} | \psi_i \rangle}_{-} -$ Schaire Kante bei maximizer Ehergie $E_{\gamma} = E_{\gamma}$ none Ehergies Papabildung, $\sigma_P \sim Z^2$ Detektorarten: Ortsmessung: GEM, Vieldrahtproportionall mer, Silizium-Mikrostreifen / -Pixeldetektoren Geschwinfeleitsmessung: Flugzeitdetektor, Cherenkovdetektor Geschwinfeleitsmessung: Flugzeitdetektor, Cherenkovdetektor Ehergiemessung: Kalorimeter, Halbleiterdetektor (z.B. Ge)

Elastische Streuung: Bornsche Näherung: einfallendes Teilchen sind ebene Wellen $\Psi_1 = \frac{1}{\sqrt{V}} e^{i\mathbf{p} \mathbf{x}} / \hbar$ $\Psi_2 = \frac{1}{\sqrt{V}} e^{i\mathbf{p} \mathbf{x}} / \hbar$ Breite der Verteilung: $\sigma_{\nu} = \frac{|\vec{q}|}{M} \sqrt{\frac{1}{3}} \langle \vec{p}_{Fermi}^2 \rangle$ Inelastische Streuung: Anregung des Targe Resonanzen: Lebensdauer $\Delta t = \frac{\hbar}{\Delta E} \sim 10^{-24} s$ Kosmische Strahlung: Energien bis zu 10²¹eV Primärstrahlung: 85% Protonen, 14% o-Teilchen, 1% schwere Kerne; Supern Sonnenwind Schundärstrahlung: Erzeugung von Myonen (> 95%), Protonen, Pic (Promille-Bereich) = Entdeckung Pion Zerfall $\Delta^+ \rightarrow p + \pi^0 / \Delta^+ \rightarrow n + \pi^+$ Invariante Masse der Resonanz W: $W^2c^2=P'^2=(P+q)^2$ $M^2c^2+2Pq+q^2=M^2c^2+2M\nu-Q^2$ mit $\nu=\frac{Pq}{M}$ (lorentz-invariant) Bjorken Variable: $x = \frac{Q^2}{2Pq} = \frac{Q^2}{2Mu}$; x = 1: elastische Streuung; 0 < x < 1: inelastische Streuung Wirkungsquerschnitt: $\frac{d\sigma}{d\Omega} = \frac{p'^2 V^2}{v_a v' 4\pi^2 \hbar^4} \left| \mathcal{M}_{fi} \right|^2$ Elektrostatische Beschleuniger: $E_{kin} = qU$ Tandem van der Graaff: 1-fach negativ geladenes Ion beschleunigen =The strippen \Rightarrow n-fach positives Ion beschleunigen \Rightarrow Gesamtenerg $E_{kin}=(n+1)\cdot eU$ Yukawa-Potential: $U(r)=\frac{g_0}{r}e^{-r/R}$, mit $R=\frac{\hbar c}{mc^2}$ für Austauschteilchen $\begin{array}{l} \frac{d^2\sigma}{d\Omega dE'} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}}^* \left[W_2(Q^2,\nu) + 2W_1(Q^2,\nu) \tan^2\frac{\vartheta}{2}\right] \\ F_1(x,Q^2) = Mc^2W_1(Q^2,\nu), F_2(x,Q^2) = \nu W_2(Q^2,\nu) \\ F_2(x,Q^2) = W_2(Q^2,\nu) \end{array}$ $E_{kin} = (n + 1) \cdot e \cup$ Beschleunigungsspannung MLL: $\approx 14 \text{ MV}$ $\Rightarrow \frac{d\sigma}{d\Omega} = \frac{4p'^2}{v_av'} \left(\frac{g_0g}{q^2+m^2c^2}\right)^2$ mit $\vec{q} = \vec{p} - \vec{p'}$ und Faktor g für jeden Vertex Fokussierung: gekreuzte Quadrupolmagnete, da ein Magnet nur in eine Richt fokussiert, aber in die andere defokussiert (bei Coulomb: $g = \sqrt{\alpha} \sqrt{\alpha}$) $\mathcal{M}_{fi} = -\frac{e\hbar^2}{V|\vec{q}|^2} \int \rho(\vec{x}) e^{i\mathbf{q}\mathbf{x}/\hbar} d^3x$ Callan-Gross Beziehung: $y = \frac{Pq}{Pp} = 1 - \frac{E'}{E}$ Betatron: Nur für e^- . Teilchen werden durch Magnetfeld auf Bahn gehalts Beschleunigung erfolgt durch zweites zeitlich veränderliches Magnetfeld (Induktio $F_L = qvB_H$, $v = \omega r$, $F_z = \frac{mv^2}{r}$ Im GG: $F_L = F_z \Rightarrow p = mv = rm_0v = qB_Hr$ $\frac{d^2\sigma}{dQ^2dx} = \frac{4\pi\alpha^2\hbar^2}{Q^4} \left[\left(\frac{1-y}{x} - \frac{My}{2E} \right) F_2(x, Q^2) + y^2 F_1(x, Q^2) \right]$ $\mathcal{M}_{fi} = -\frac{Ze^2\hbar^2}{V|\vec{q}|^2} \int f(\vec{x}) e^{i\mathbf{q}\mathbf{x}/\hbar} d^3x \text{ mit } \rho(\vec{x}) = Z \cdot e \cdot f(\vec{x})$ aQ^*dx Q^* $\mathbb{I}(x$ 2E $J^*2(x,Q^*) \mapsto \mathcal{I}^*F^*[x,Q^*)]$ Messung ergibt $F_2(x,Q^2)$ unabh. von $Q \Rightarrow$ punktförmige Substruktur of Nukkeonen Es gilt $2\pi F_1(x) = F_2(x) \Rightarrow$ punktförmige Konstituenten haben Spin 1/2 **Partonmodell**: Nukkeon besteht aus Partonen, Ruhemassen vernachlässigher, keine WW zwischen Partonen Elastische Streuung an einzelnem Parton mit Anteil ξ des Protonimpuls $p = \xi \cdot P$ Formfaktor: $F(|\vec{q}|) = \int f(\vec{x}) e^{i\mathbf{q}\mathbf{x}/\hbar} d^3x$ Umlaufdauer: $T = \frac{2\pi r}{v} = \frac{2\pi \gamma m_0}{qB_H}$ Frequenz: $\omega=\frac{2\pi}{T}=\frac{qB}{\gamma m_0}$, Zyklotronfrequenz: $\omega=\frac{eB}{m}$ Beschleunigung: E_B das vom zeitl. veränderl. Magnetfeld B erzeugte elektr. Fe Rutherford-Streuung: Streuung an punktförmigem $\mathcal{M}_{fi} = -\frac{Z\alpha}{V|\vec{q}|^2}$ Kernrückstoß vernachlässigt \Rightarrow kein Energieübertrag E=E'; kein Spin; $U_{ind} = \int E_B ds = E_{B,\phi} \cdot 2\pi R_0 = -\frac{d}{dt} \int B dA = -\dot{\Phi}$ $p=\xi \cdot P$ Nach Streuung: p'=p+q $\Rightarrow p'^2=(p+q)^2=p^2+2pq+q^2=p^2+2\xi Pq-Q^2$ $\Rightarrow \text{bei elast. Streuung } p'=p\Rightarrow \xi=x$ $|\vec{q}| = 2 |\vec{p}| \sin \frac{\vartheta}{2} \Rightarrow \left(\frac{d\sigma}{d\Omega}\right)_{\text{Ruth}} = \frac{Z^2 \alpha^2}{4v^2 |\vec{p}|^2 \sin^4 \frac{\vartheta}{2}}$ $\begin{array}{l} \frac{d}{dt}p=F=eE_{B,\phi}=\frac{e\dot{\Phi}}{2\pi R_0}=\frac{d}{dt}eB_Hr=eB_Hr+eB_Hr=eB_HR_0\\ \Rightarrow \text{ Haltefeld }B_H\text{ steigt proportional zum Elektronenimpuls an} \end{array}$ Mott-Steuung: Betrachtung des Spins gehorcht Helizitätserhaltung (unterdrückt Rückwärtstreuung) Photon überträgt keine Energie $(q = (0, \vec{q})) \Rightarrow x = \frac{|\vec{p}|}{|\vec{P}|}$ $R_0^2 B_H^i(R_0) = E_{B,\phi} \cdot R_0 = \frac{d}{dt} \int_0^{R_0} R \cdot B(R) dR = \frac{d}{dt} \bar{B} \cdot \frac{R_0^2}{2}$ $\left(\frac{d\sigma}{d\Omega}\right)^*_{\mathrm{Mott}} = \left(\frac{d\sigma}{d\Omega}\right)_{\mathrm{Ruth}} \left(1 - \beta^2 \sin^2 \frac{\vartheta}{2}\right)$ * bedeutet Rückstoß des Kerns vernachlässigbar $\frac{d^2\sigma}{dQ^2d\nu} = \left(\frac{d\sigma}{dQ^2}\right)_{\text{Mott}}^* \frac{F_2(x)}{\nu} \left[1 + 2\tau \tan^2\frac{\vartheta}{2}\right]$ Valenzquarks: bestimmen Quantenzahlen; See-Quarks: virtuelle $q\bar{q}$ -Paare vo Gluonen erzeugt
Strukturfunktion Partonen: $\Rightarrow B_H(r=R_0) = \frac{1}{2}\bar{B}(r=R_0)$ Stabilisierung: F_L muss mit wachsendem R schwächer abfallen als F_Z $B_H \sim R^{-n}, \, 0 < n < 1, \, n = -\frac{R}{B_{H,z}} \frac{dB_{H,z}}{dR}$ Streuung an Ladungsverteilung: $F_2(x) = x \cdot \sum_{i=u,d,s} z_i^2(q_i(x) + \bar{q_i}(x)); z_i \text{ Quarkladung}$ $q(x) = q_v(x) + q_s(x)$ für u, d; $q(x) = q_s(x)$ für s Rückstellkraft erzeugt Betatron-Schwingung: $\omega_r = \sqrt{1-n} \ \omega_0, \ \omega_z$ $E_{max} \approx 20 - 300 \text{MeV}$ Aus Symmetrie folgt: $S(x) = s_S(x) = \bar{s_S}(x) \approx u_S(x) = \bar{u_S}(x) = d_S(x) = \bar{d_S}(x)$ Zyklotron: nicht für e^- . Maximale Energie $E_{max}=\frac{p_{max}^2}{2m_0}=\frac{q^2r_{max}^2B^2}{2m_0}$ und $u(x) = u_{\mathcal{V}}(x) + u_{\mathcal{S}}(x), d(x) = d_{\mathcal{V}}(x) + d_{\mathcal{S}}(x)$ ment **Formfaktor vom Kern**: Formfaktor als Fouriertransformierte nu $\begin{array}{l} u(x) = u_{V}(x) + u_{S}(x), \ d(x) = a_{V}(x) + d_{S}(x) \\ \Rightarrow \frac{1}{x}F_{2}^{p} = \frac{1}{9}(4u_{V} + d_{V}) + \frac{4}{3}S \\ \Rightarrow \frac{1}{x}F_{2}^{n} = \frac{1}{9}(u_{V} + 4d_{V}) + \frac{4}{3}S \\ \mathrm{Da} \ \frac{F_{2}^{n}}{F_{2}^{p}} \to 1 \ \mathrm{fir} \ x \to 0 \ \mathrm{dominiert} \ S(x) \ \mathrm{fir} \ x \to 0 \end{array}$ korrekt, da Rüdstoß vernachlässigt wurde. Eigentlich gilt $E' \neq E$. Je ausgedehnter Ladungsverteilung, desto stärker fällt $F(q^2)$ mit q^2 ab. Je klein Objekt, desto langsamer fällt $F(q^2)$ mit q^2 ab (Punktladung: $F(q^2) = 1$). Betrachtung Kern als Kugel: Für relat. Teilchen Frequenz abh. von Geschw.: $\omega = \frac{qB}{\gamma m_0}$ г и гева. 1 евспен rrequenz abh. von Geschw.: $\omega = \frac{q \nu}{\gamma m_0}$ Phasenstabilität: optimaler Punkt vor Maximum des E-Felds \Rightarrow zu späte Teilchen sehen größeres Feld, werden schneller; zu langsame Teilchen sehen kleineres Feld, werden verniger beschlevnisch werden weniger beschleunigt $E_{max} \approx 1 - 100 \text{MeV}/u$ $F\left(|\vec{q}|\right) = \frac{3}{\alpha^3} (\sin \alpha - \alpha \cos \alpha),$ Extes Minimum bei $\frac{q \cdot R}{\hbar} \approx 4.5 \Rightarrow R = \frac{4.5 \hbar}{q_1 \cdot Min}$ Stewnung an Teilchen $F(|\vec{q}|) = \frac{3}{\alpha^3} (\sin \alpha - \alpha \cos \alpha) \text{ mit } \alpha = \frac{q \cdot R}{\hbar}$ $\frac{F_2^{\tilde{n}}}{F_2^{P}} \to \frac{1}{4}$ für $x \to 1 \Rightarrow$ Valenzquarks dominieren Synchrotron: Beschleunigung durch E-Feld, Halten auf Kreisbahn durch B-Feld $B(t) = \frac{p(t)}{qr}$, $\omega_{Umlauf} = \frac{2\pi}{T} = \frac{2\pi v}{S} = \frac{2\pi pc^2}{E_q S}$, mit S Länge der Sollbahr Alle Quarks zusammen tragen nur 54% des Gesamtimpulses, den Rest ma die Gluonen aus Quarkmasse: u: 4 MeV, d: 8 MeV, s: 150 MeV, c: 1.1 GeV, b: 4.2 Ge E_q Energie der Teilchen Wirkungsquerschnitt da e^- punktförmig mit Spin für $q \to 0$ (wegen der räumlichen Ausdehnung des Kerns) Annahme Teilchen in Ruhe, $P'^2 = P^2$ und $p'^2 = p^2 \Rightarrow p \cdot P = p' \cdot P' = p' \cdot (p + P - p')$ m_e vernachlässigbar, $E \approx |\vec{p}| c$ Quarkmasse: u: 4 Mar., ... 175 GeV Starke WW: Gesamtflavor ist Erhaltungsgröße $V(r) = -\frac{4}{3}\frac{\alpha_s}{3} + kr$ mit $\alpha_s \to 0$ für $r \to 0$ Potential groß bei großen Abständen \Rightarrow Confinement ... $\frac{1}{3}$ Towansung von $q\bar{q}$ mit Bhal Synchrotronstrahlung: Verluste durch Strahlung: $\Delta E_{sync} \sim \frac{E_q^4}{m^4 R} \Rightarrow \text{für}$ Synchrotronstrahlung: Verhaste durch Strahlung: $\Delta E_{sync} \sim \frac{1}{m^4 R} \Rightarrow$ für e bei gl. Energie um 10^{13} größer als bei Protonen Fokussierung durch gekreuzte Quadrupolmagnete Phasenstabilität führt zu Synchrotronfrequenz $\omega_{Betatron} > \omega_{Umlauf} >> \omega_{Synchrotron}$, Resonanz bei $\omega_{Betatron} = \omega_{Umlauf} = \omega_{Betatron} = \omega_{Umlauf} =$ Farbladung: Vergleich der Erzeugung von $q\bar{q}$ mit Bhabha-Streuung von $e^+ + R = \frac{\sigma(e^+e^- \to q\bar{q})}{(+---*)} = \sum_1^N \frac{\sum_{flavor} z_q^2 \sigma^{\mu^+} + \mu}{(++--)}$ $\Rightarrow E' = \frac{E}{1+E/Mc^2 \cdot (1-\cos \vartheta)}$, mit E' Energie gestr. eE Energie e^- vor Streuung Je größer $\frac{E}{Mc^2},$ desto mehr Rückstoß wird auf Target übertragen $\sigma(e^+e^-\to\mu\mu^*)$ $\sum_{fl} \left(\frac{4}{9} + \frac{1}{9} + \frac{1}{9}\right) = \sum_{fl} \frac{2}{3}$ für die Quarks u, d, s. Man stellt stufenförmige Funktion fest. Bei gewisser Energie können weitere Quarks erzeugt werden \Rightarrow weitere Terme in Summe über flavors. Durch Vgl mit Messung ergibt sich, dass es N=3 Farben gibt. Hadronisierung: Zwei Quarks mit Relativimpuls $p>2m_{q}c$ können unter Kernradius/Formfaktor: Entwickle $F(q^2)$ für $\frac{q\overline{R}}{\hbar} \ll 1$ Verluste durch Synchrotronstrahlung

Linearbeschleuniger: Röhren mit Wechselspannung, feldfrei innerhalb de $F(q^2) = \iint r^2 f(r) \left(1 - \frac{1}{2} \left(\frac{qr}{\hbar}\right)^2 \cos^2 \vartheta + ...\right) dr d\Omega$ Houren Länge n-te Röhre: $l_n=v\frac{T_H F}{2}=\frac{\pi v}{\omega_{HF}}=\sqrt{n\frac{2e}{m}U_0}\frac{\pi}{\omega_{HF}}$ relativistischer Grenzfall: Länge konstant Elektronen Linac: Wanderwelle in Hohlleiter mit $v_{Welle}=v_{Elektron}$ Mittlerer quadratischer Radius: $\langle r^2 \rangle = 4\pi \int_0^{\infty} r^4 f(r) dr$ $\langle r^2 \rangle = -6\hbar^2 \frac{dF(q^2)}{dq^2} \bigg|_{q=0}$ Abgabe von Energie Quarkpaare $q\bar{q}$ aus dem Vakuum erzeugen. Wird nur ein Teil der Energie vernwedet \Rightarrow Jet-Produktion Ien der Energie vernweiert \Rightarrow Jet-Produktion Symmetrie: Noether-Theorem: Aus einer Invarianz der Bewegungsgleichur folgt Erhaltungsgröße Translationsinvarianz \Rightarrow Impulserhaltung Zeitliche Translationsinvarianz \Rightarrow Energieerhaltung Rotation im Raum \Rightarrow Drehimpulserhaltung Spiegelung: $\vec{x} \to -\vec{x} \Rightarrow$ Paritätserhaltung Parität in Kugelkoordinaten: $\vartheta \to \pi - \vartheta, \varphi \to \pi + \varphi$ Massenspektrometer: Kombination von E- und B-Feld $\vec{F}_B = ze\vec{v} \times \vec{B}, \ \vec{F}_E = ze\vec{E}$ $E_{max} \approx 100 \text{ keV} - 50 \text{ GeV}$ Collider, Fixed-Target: Maximale Schwerpunktsenergie bei Kollision in Gegensatz zu fixed Target, $\sqrt{S} = E_1 + E_2$; LHC: pp-Colider: 7 TeV + 7 TeV Bei Fixed-Target müssen erzeugte Teilchen noch durch Targetmaterial propagierer \Rightarrow evtl. Streuung, Absorption
Fixed-Target haben höhere Luminositäten da Targetdichte größer Einfacherer mechanischer Aufbau bei Fixed-Target \Rightarrow günstiger Für zylindrisches E-Feld: $E = \frac{Mv^2}{r_E} \Rightarrow \frac{M}{ze} = \frac{B^2 r_E^2}{Er_E}$ Kern Daten: Bindungsenergie/Nukleon ≈ 8 MeV Radius: $R = 1.21 \, \text{fm} \cdot A^{1/3}$ $\Rightarrow P_{Bahn} = (-1)^l$, mit l Drehimpulsquantenzahl Bethe-Bloch-Formel: $-\frac{dE}{dx} = 4\pi N_0 \frac{Z}{A} \frac{z^2 e^4}{m_e v^2} \left[\ln \left(\frac{2m_e v^2}{I} \right) - \ln \left(1 - \beta^2 \right) - \beta^2 - \frac{c_K}{Z} \right]$ Heating A=1.21 in A=1.21 Parität: $\vec{r} \to -\vec{r} \Rightarrow \vec{p} \to -\vec{p}, \vec{E} \to -\vec{E}, \vec{A} \to -\vec{A}$ $\vec{L}, \vec{\sigma}, \vec{B}$ invariant Polare Vektoren haben EW -1, axiale Vekt. EW +1 $\begin{bmatrix} a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(Z-A/2)^2}{A} + \frac{\delta}{A^{1/2}} \end{bmatrix}$ Volumenterm: $\sim V \sim R^3 \sim A$, kurzreichweitige Kernkraft, WW in | Folare Vektoren haben EW -1, axiale Vekt. EW +1 Zeitumkehr: $t \to -t \Rightarrow \vec{p} \to -\vec{p}, \vec{L} \to -\vec{L}, \vec{\sigma} \to -\vec{\sigma}, \Psi(\vec{x},t) = e^i(\mathbf{px} - E^i) \to \Psi^*$ Ladungskonjugation: $c \, |q\rangle = |\vec{q}\rangle$, $c \, |\vec{q}\rangle = |g\rangle$ Nur Teilhen mit Ladung q = 0 können Eigenzustände sein $c \, |\gamma\rangle = -|\gamma\rangle$ da $c\vec{E} = -\vec{E}$ und $c\vec{B} = -\vec{B}$ G-Parität: Ladungskonjugation + Rotation im Isospin-Raum $G = (-1)L^+S^+I$ CPT-Theorem: Physik ist invariant unter Anwendung von CPT (Austausch mit z Ladung einfallendes Teilchen, Z Ladung des Kerns, $\frac{N_0}{A}$ Zahl der Kerne/Einheitsvolumen, I effekt. Ionisationspotential, c_K Korrekturfaktor für Bindung in K-Schale Volumentenin $\sim V \sim R \sim \Lambda$, kulzieanweitige Reinklatt, WW in eine mit nächstern Nachbarn Oberflächenterm: $\sim R^2 \sim A^{2/3}$, Nukleonen an Oberfläche haben Nachbarn Unabh. von Masse Teilchen, bei $\beta\gamma$ klein $\sim \frac{1}{\beta^2}$, bei großen Energien $\sim \ln \beta^2 \gamma^2$ Minimum bei $\beta\gamma \approx 3$ Abschirmungseffekte bei großer Energie: Polarisierung der Atome entlang des Wegs des Teilchens, wichtiger bei dichten Materialien $\Rightarrow \delta$ Anstieg erklärt sich dadurch, dass Feldlinien enger werden. Coulomb-Term: $E_{Coul} \sim \frac{Z^2}{R} \sim \frac{Z^2}{A^{1/3}}$

Atomdurchmesser: 10^{-10} m Kerndurchmesser: 10^{-14} m Durchmesser Nukleon 10^{-15} m

Teilchen \rightarrow Antiteilchen \Rightarrow Inversion des Orts \Rightarrow Inversion der Zeit)

Figenschaften Hadronen: Nach außen farbneutral (R+B+G = Weiß)

Wellenfunktion: $\Psi = \varphi_{color}\Psi_{flav}\phi_{Spin}\Psi_{Ort}$ gehorcht Bose Symm. für Mesonen ($q\bar{q}$) und Fermi Symm. für Baryonen (qqq)

Baryonen: Gesamtwellenftk antisymmetrisch, Ort+Spin+Flavour symmetrisch

z.B.: $S = \frac{3}{2} \Rightarrow |\uparrow\uparrow\uparrow\rangle$ und $L = 0 \Rightarrow$ Spin und Ort unter Vertausch symmetrisch.

z.B.: $S = \frac{3}{2} \Rightarrow |\uparrow\uparrow\uparrow\rangle \text{ und } L = 0 \Rightarrow \text{Spin und Ort unter Vertausch symmetrisch}$ $\Rightarrow \text{Flavour symmetrisch}; \text{ Existenz von } |\Delta^{++}\rangle = |uuu\rangle \text{ ist Hinweis auf Farbladung wegen Pauli-Verbot}$ $\text{Isospin: } I_Z = \frac{1}{2} \left((n_u - n_{\bar{u}}) - (n_d - n_{\bar{d}}) \right)$ Strangeness: s-Quark hat Quantenzahl S = -1 Y = B + S = Baryonenzahl + Strangeness $\text{Quarkes: } \overleftarrow{\text{Ubersicht}}$ Checkliste: Ladung, Impuls, Masse, Spin, Baryonenzahl, Leptonenzahl, Leptonenzahl, ...

familienzahl,		
Reaktion	?	WW/verletzte Erhaltungsgröße
$e^+ + e \rightarrow \gamma$	x	Impuls/4-Imp./En.+Imp.
$e^+ + e \rightarrow \gamma + \gamma$	\vee	em. WW / em.+schwach
$e^++e \rightarrow e^++e+\gamma$	\checkmark	em. WW / em.+schwach
$\overline{\nu}_{\mu} + \tau \rightarrow \mu + \overline{\nu}_{\tau}$	x	Leptonfamilienzahl
$K\rightarrow\pi+\pi+\pi+\pi^{+}+\pi^{+}$	x	Energieerhaltung/Masse
$Z^0 \rightarrow \mu_T \overline{\nu}_T$	√	schwache WW
$\pi+Pb \rightarrow Pb+\pi + \gamma$		em./em.+stark/em.+schw.
$\pi^{+} + \pi \rightarrow n + \pi^{0}$	x	Baryonenzahl/L/"Spin"
$\Lambda^0 \rightarrow p + \pi^-$	\vee	schwache WW/schwach+stark
$\bar{p} + n \rightarrow \pi + \pi^{+} + \pi$	\vee	starke WW
$\mu^- \rightarrow e^- + \gamma$	x	Leptonfamilienzahl
$n \rightarrow \pi^{+}\pi^{-}$	x	Baryonenzahl
$\rho(770) \rightarrow \pi^{+}\pi^{-}$	\checkmark	starke WW
$K^0 \to \pi^- + \pi^+$	√	schwach (+stark)
$K^+ + n \rightarrow \Lambda^0 + \pi^+$	x	$\Delta S=2$
$H^0 \to \mu^+ \mu^- + \mu^+ \mu^-$	V	schwache WW
	- :::	:::