# **Computer Programming**

Dr. Asif Uddin Khan

### **Subject and Teacher**

- Subject Name: Computer Programming
- Subject Code: CS 1093
- Teacher: Dr. Asif Uddin Khan, PhD
- Teaching Assistant(TA): Ms. Shreyashree Mishra
- Teaching Assistant(TA): Mrs. Manorama Choudhury

### **Text Book**

- 1. Programming in ANSI C (8th Edition) by E. Balagurusamy
- 2. Y. Kanetker, Let Us C, 16th Edition, BPB Publications, 2018.

#### Reference Book

- The C Programming Language by Brian
   Kernighan and Dennis Ritchie (Second Edition)
- B. Gottfried, Schaum's Outline of Programming with C, 3rdEdition, McGraw-Hill, 2017

# What is a computer?

#### It is an electronic device

- Receives input data
- Stores data
- Processes data as per user instructions
- Provides output in desired format

Characteristics of Computer: Speed, Accuracy, Reliability,

Versatility, Storage Capacity.

**Limitations :** Computers have no intelligence, Regular electric

supply is necessary







Laptop



**Smart Phone** 

#### Business

- Payroll calculations
- Budgeting
- Sales analysis
- Financial forecasting
- Managing employee database
- Maintenance of stocks, etc

#### Banking

- Payroll calculations
- Budgeting
- Sales analysis
- Financial forecasting
- Managing employee database
- Maintenance of stocks, etc





#### Insurance

- Payroll Procedure to continue with policies
- Starting date of the policies
- Next due installment of a policy
- Maturity date
- Interests due
- Survival benefits
- Bonus

#### > Education

- Keep students' records
- Computer based learning
- Admission process
- Placement centre





#### Health care

- Diagnostic system
- Patient monitoring system
- Hospital administration
- Pharma information system

#### Engineering design

- Structural engineering
- Architectural engineering
- Industrial engineering





#### Military

- Missile Control
- Military Communication
- Military Operation and Planning
- Smart Weapons

#### Communication and social media

- Email
- Facebook
- Twitter
- Video conferencing
- whatsapp





#### Government services

- Budgets
- Sales tax department
- Income tax department
- Computation of male/female ratio
- Computerization of voters lists
- Computerization of PAN card
- Weather forecasting



# Generation of computers

| Gen<br># | Technology                                 | Operating<br>System | Year of<br>Introduction | Specific Computers                                     |
|----------|--------------------------------------------|---------------------|-------------------------|--------------------------------------------------------|
| 1        | Vacuum Tube                                | None                | 1945                    | Mark1                                                  |
| 2        | Transistor                                 | None                | 1956                    | IBM 1401, ICL 1901, B5000,<br>MINSK-2                  |
| 3        | SSI and MSI (circuit based)                | Yes                 | 1964                    | IBM S/360/370, UNIVAC 1100,<br>HP 2100A, HP 9810       |
| 4        | LSI and VLSI<br>(micro processor<br>based) | Yes                 | 1971                    | ICL 2900, HP 9845A, VAX<br>11/780, ALTAIR 8800, IBM PC |
| 5        | Hardware<br>Abstraction<br>Layer(HAL)      | Yes                 | Present and beyond      |                                                        |

# FIVE generations of computers



### **Components of Computer System**



Fig-1: Block Diagram of a Computer System

### **Components of Computer System**

- **Input Unit** Devices like keyboard and mouse that are used to input data and instructions to the computer are called input unit.
- **Output Unit** Devices like printer and visual display unit that are used to provide information to the user in desired format are called output unit.
- Control Unit As the name suggests, this unit controls all the functions of the computer. All devices or parts of computer interact through the control unit.
- Arithmetic Logic Unit This is the brain of the computer where all arithmetic operations and logical operations take place.
- Registers
  - High speed storage devices
  - ➤ Serves some special purpose , like IR instruction register holds current instructions being executed
- Memory All input data, and instructions are stored in the memory.
   Memory is of two types primary memory and secondary memory.

# **Arithmetic and Logical Operations**

- Arithmetic operations addition, subtraction, differentials, square root, etc.
- Logical operations comparison operations like greater than, less than, equal to, opposite, etc.

### Memory unit

- ➤ It is used to **store data and instructions**. Computer memory is the storage space in the computer, where data is to be processed and instructions required for processing are stored.
- The memory is divided into large number of small parts called cells. Each location or cell has a unique address,

### **Computer Memory**



- ✓ Primary memory can be accessed directly by the CPU and is volatile.
- ✓ Secondary memory is not directly accessible by the CPU and is non-volatile
  - •RAM: Random Access Memory
  - •ROM: Read Only Memory
  - •PROM: Programmable ROM
  - •EPROM: Erasable Programmable ROM
  - Electrically Erasable Programmable ROM

## Main Memory



### **Memory Units**

| S.No. | Unit & Description                                                                          |
|-------|---------------------------------------------------------------------------------------------|
| 1     | Kilobyte (KB)<br>1 KB = $1024$ Bytes = $2^{10}$ Bytes = $10^3$ Bytes                        |
| 2     | Megabyte (MB)<br>1 MB = $1024 \text{ KB} = 2^{10} \text{ KB} = 10^6 \text{ Bytes}$          |
| 3     | <b>GigaByte (GB)</b> 1 GB = $1024$ MB = $2^{10}$ MB = $10^{9}$ Bytes                        |
| 4     | TeraByte (TB)<br>1 TB = $1024 \text{ GB} = 2^{10} \text{ GB} = 10^{12} \text{Bytes}$        |
| 5     | PetaByte (PB)<br>1 PB = $1024 \text{ TB} = 2^{10} \text{ TB} = 10^{15} \text{Bytes}$        |
| 6     | ExaByte (EB)<br>$1 \text{ PB} = 1024 \text{ PB} = 2^{10} \text{ PB} = 10^{18} \text{Bytes}$ |
| 7     | YottaByte (YB) 1 PB = 1024 EB = 2 <sup>10</sup> EB = 10 <sup>21</sup> Bytes                 |

• Bit (Binary Digit): 0 and 1

• **Nibble:** 4 bits

• Byte: 8 bits

## Computer hardware and Software

- Computer Hardware: Any physical device used in your computer
- Instruction: Command to perform a task
- Program: Set of Instructions to perform some specific task
- Software: Set of instructions or programs used to operate computers and execute specific tasks
- Programming: Process of writing a set of instructions that tell a computer how to perform a task.

# **Software Types**



- System software: It provides a platform for other softwares
- Used by the computer system to operate on hardware

Example: OS, Device Driver

Application software:
 Used by users to perform some specific task

Example: Word, excel and PowerPoint

# **Operating System(OS)**

- It is a system software that acts as an intermediary between a user of a computer and the computer hardware.
- Operating system goals:
  - Execute user programs and make solving user problems easier.
  - Make the computer system convenient to use.
- Use the computer hardware in an efficient manner.

#### Example:

- Windows XP/7/10
- Linux(Ubuntu/Fedora/Redhat)

### Compiler

 Software that translates program written in a high-level language (e.g.,C, C++, Java) into machine-language which is understood by a computer's CPU

**Example:** C compiler, C++ compiler, java Compiler

### Interpreter

- **Interpreter** translates just one statement of the program at a time into machine code.
- Compiler scans the entire program and translates the whole of it into machine code at once.

#### **Assembler**

Converts instructions written in assembly language into machine language

#### Editor

- Software used to edit text in a computer
- Example: notepad, notepad++

#### **Editor and IDE**

IDE — that's an integrated development environment, it is the piece of software that acts as text editor, debugger and compiler all in one.

#### Example:

Eclipse

**NetBeans** 

CodeLite

Bloodshed Dev-C++

Code::Blocks

C-Free

### Algorithm

 Algorithm is an ordered set of well defined instructions to perform some specific task in finite time.



# **Algorithm**

- It is a <u>finite</u> <u>step-by-step</u> list of <u>well defined</u> <u>instructions</u> to solve a particular problem.
- It takes some value or some set of values as its input and produces some value or some set of values as its output.

### Important features of an algorithm

| Finiteness: An algorithm must terminate after a finite or                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| fixed number of steps.                                                                                                                      |
| <b>Well Define:</b> Each step should be clearly and correctly defined i.e. the actions to be carried out should be specified unambiguously. |
| <b>Effectiveness:</b> All operations used in the algorithm are basic and can be performed exactly in a fixed duration of time.              |
| Input: An algorithm has one or more input.                                                                                                  |
| Output: It produces one more output.                                                                                                        |

# Different ways of stating algorithm

- >Step form: statements to follow in steps
- ➤ Pseudo Code: English form with restricted vocabs
- > Flowchart

**Flowchart** is graphically oriented representation with sequence, decision, repetition actions

# Simple Algorithm: in steps

Step 1: Start

Step 2: Create a variable to receive the user's email address

Step 3: Clear the variable in case it's not empty

Step 4: Ask the user for an email address

Step 5: Store the response in the variable

Step 6: Check the stored response to see if it is a valid email address

Step 7: Not valid? Go back to Step 3.

Step 8: End

# Simple Algorithm: pseudo-code

```
if student grade is greater than or equel to 90
  print A
else
   if student grade is greater than or equel to 80
     print |B|
  else
      if student grade is greater than or equel to 70
        print [C]
     else
         if student grade is greater than or equel to 60
            print |D|
```

Note: All statements showing "dependency" are to be indented.

### Simple Algorithm: flow chart

#### **Flow chart**



#### **Algorithm**

Step 1: READ M1,M2,M3,M4

SET GRADE =

(M1+M2+M3+M4)/4

IF GRADE <50 then

PRINT "FAIL"

PRINT "PASS"

# Algorithm for Addition of two numbers 10 and 20

- Step-1: Set NUM1=10 and NUM2=20
- Step-2: Set NUM3=NUM1+NUM2
- Step-3: Print NUM3
- Step-4: Exit

# Algorithm for Addition of two numbers taking from User

- Step-1: Read NUM1
- Step-2: Read NUM2
- Step-3: Set NUM3=NUM1+NUM2
- Step-4: Print NUM3
- Step-5: Exit

# Algorithm to find out the sum and product of any two numbers taking from User

- Step1: READ NUM1 and NUM2
- Step2: SET SUM = NUM1 + NUM2
- Step3: SET PRODUCT = NUM1 \* NUM2
- Step4: PRINT SUM, PRODUCT
- Step5: EXIT

# Algorithm to find out largest between two numbers taking from user

- Step1: READ NUM1 and NUM2
- Step2: IF NUM1 > NUM2 then

PRINT: NUM1 is largest

**ELSE** 

PRINT: NUM2 is largest

Step3: EXIT

# Algorithm to find out largest between three numbers

- Step1: READ NUM1, NUM2, NUM3
- Step2: SET LARGEST = NUM1
- Step3: IF NUM2 > LARGEST then

LARGEST = NUM2

Step4: IF NUM3 > LARGEST then

LARGEST = NUM3

- Step5: PRINT LARGEST
- Dtep6: EXIT

# Algorithm to test whether an inputted number is positive or negative or equals to zero

- Step1: READ NUM
- Step2: IF NUM == 0 then

PRINT: Inputted number is zero

ELSE IF NUM > 0 then

PRINT: Inputted number is positive

**ELSE** 

PRINT: Inputted number is negative

Step3: EXIT

# Algorithm to find out the factorial of any number

- Step1: READ NUM
- Step2: SET FACT = 1
- Step3: SET I = 1
- Step4: Repeat steps 5 and 6 while I <= NUM</li>
- Step5: FACT = FACT \* I
- Step6: I = I + 1
- Step7: PRINT FACT
- Step8: EXIT

#### **Assignment-1**

- Write an algorithm for following task
- Take basic salary, DA%, HRA% as input from user
- Then give output based on following conditions
- high income group if gross salary is greater than or equal to 80000
- medium income group if gross salary between greater than 60000 and less than 80000
- Lower Income group if gross salary less than 60000
- Gross=BA+DA+HRA

### **Assignment-2**

 Write an algorithm for displaying even and odd numbers from 1 to 100.

#### **Flow Chart**

- Flow chart is a graphical representation of an algorithm.
- It shows logic of an algorithm
- Represents sequence of operations
- It shows control flow from one action to the next
- Used to analyze, design, document and manage a program.

## Flowchart Symbols



## Example of algorithm and flow chart for adding two inputted numbers and printing

#### **Algorithm**

- Step-1: Read NUM1
- Step-2: Read NUM2
- Step-3: Set NUM3=NUM1+NUM2
- Step-4: Print NUM3
- Step-5: Exit



### **Example-2: Algorithm & Flow Chart**

**Question:** Write an algorithm and design a flow chart for the following problem.

#### **Pseudocode**

- Input a set of marks in 4 subjects.
- Calculate their average by summing and dividing by 4.
- if average is below 50
   Print "FAIL"
   else

Print "PASS"

#### Example-2

#### **Flow chart**



#### **Algorithm**

Step 1: READ M1,M2,M3,M4

SET GRADE =

(M1+M2+M3+M4)/4

IF GRADE <50 then

PRINT "FAIL"

**ELSE** 

PRINT "PASS"

## **Assignment Questions**

- 1. Write algorithm and flow chart for Addition of two numbers 10 and 20
- 2. Write algorithm and flow chart to find out the sum and product of any two numbers taking from user
- 3. Write algorithm and flow chart to find out the factorial of any number
- 4. Write an algorithm and a flow chart for checking an inputted number even or odd
- 5. Write an algorithm and a flow chart for displaying even and odd numbers from 1 to 100.

#### **Assignment Questions**

6. Write an algorithm and draw a flowchart that will read the two sides of a rectangle and calculate its area.

#### Question-7

- Write an algorithm and a flow chart for following task
- Take basic salary, DA%, HRA% as input from user
- Then give output based on following conditions
- high income group if gross salary is greater than or equal to 80000
- medium income group if gross salary between greater than 60000 and less than 80000
- Lower Income group if gross salary less than 60000

#### Reference

- 1. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). *Introduction to algorithms*. MIT press.
- 2. Internet sources

#### References

- Silberschatz, A., Galvin, P.B. and Gagne, G.,
   2013. Operating system concepts essentials.
   Wiley Publishing.
- Internet Source