DLD Lecture 2 Number System

Week 2

Engr. M Kariz Kamal

Introduction

- A set of values used to represent different quantities
 - For example, a number student can be used to represent the number of students in the class
- Digital computer represent all kinds of data and information in binary numbers
 - Includes audio, graphics, video, text and numbers
- Total number of digits used in the number system is called its base or radix

Number Systems

- Decimal Number System
- Binary Number System
- Octal Number System
- Hexadecimal Number System
 - Decimal number system is used in general
 - Computers used binary number system
 - Octal and hexadecimal number system are also used in computer systems

Number Systems

Number System	Base	Symbol
Binary	Base 2	В
Octal	Base 8	O
Decimal	Base 10	D
Hexadecimal	Base 16	Н

Table of Number Systems

DECIMAL	BINARY	HEXADECIMAL	OCTAL
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
11	1011	В	13
12	1100	С	14
13	1101	D	15
14	1110	E,	16
15	1111	F	17

Conversion Among Bases

• The possibilities:

Quick Example

Decimal to Binary

Decimal to Binary

- Technique
 - Divide by two, keep track of the remainder
 - First remainder is bit 0 (LSB, least-significant bit)
 - Second remainder is bit 1
 - Etc.

$$125_{10} = ?_{2}$$

$$2 | 125_{2} | 1$$

Binary to Decimal

Binary to Decimal

Technique

- Multiply each bit by 2^n , where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

$$1 \times 2^{0} = 1
1 \times 2^{1} = 2
0 \times 2^{2} = 0
1 \times 2^{3} = 8
0 \times 2^{4} = 0
1 \times 2^{5} = 32$$

$$43_{10}$$

Decimal to Octal

Decimal to Octal

- Technique
 - Divide by 8
 - Keep track of the remainder

$$1234_{10} = ?_8$$

Octal to Decimal

Binary

Hexadecimal

Octal to Decimal

- Technique
 - Multiply each bit by 8^n , where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 448$
 468_{10}

Decimal to Hexadecimal

Decimal to Hexadecimal

- Technique
 - Divide by 16
 - Keep track of the remainder

$$1234_{10} = ?_{16}$$

Hexadecimal to Decimal

Hexadecimal to Decimal

- Technique
 - Multiply each bit \longrightarrow by 16^n , where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

ABC₁₆ =>
$$C \times 16^{0} = 12 \times 1 = 12$$

B x 16¹ = 11 x 16 = 176
A x 16² = 10 x 256 = 2560

Octal to Binary

Octal to Binary

- Technique
 - Convert each octal digit to a 3-bit equivalent binary representation

$$705_8 = ?_2$$

$$705_8 = 111000101_2$$

Binary to Octal

Binary to Octal

- Technique
 - Group bits in threes, starting on right
 - Convert to octal digits

$$1011010111_2 = ?_8$$

Hexadecimal to Binary

Hexadecimal to Binary

- Technique
 - Convert each hexadecimal digit to a 4-bit equivalent binary representation

$$10AF_{16} = ?_2$$

$$10AF_{16} = 0001000010101111_2$$

Binary to Hexadecimal

Binary to Hexadecimal

- Technique
 - Group bits in fours, starting on right
 - Convert to hexadecimal digits

$$1010111011_2 = ?_{16}$$

Octal to Hexadecimal

Octal to Hexadecimal

Octal to Hexadecimal

- Technique
 - · Use binary as an intermediary

$$1076_8 = ?_{16}$$

Hexadecimal to Octal

Hexadecimal to Octal

- Technique
 - Use binary as an intermediary

$$1F0C_{16} = ?_{8}$$

