Colles sem. 4 : Séries en probas, v.a. indépendantes

Sommes associées à une variable aléatoire discrète 1

(L'exemple-« fil rouge » est la **loi géométrique** G(p): tous les calculs sont explicites)

Distribution de probabilités discrète

La loi d'une variable aléatoire X discrète est la donnée des : $\mathbb{P}(X = n)$. $(\forall n \in X(\Omega), support de X)$ On a alors: $\forall n \in X(\Omega), \ \mathbb{P}(X=n) \ge 0 \ (positivit\'e)$

$$\sum_{n \in X(\Omega)} \mathbb{P}(X=n) = 1 \text{ (+ convergence si } X(\Omega) \text{ infini)}.$$

(on somme toujours sur un sous-ensemble de $X(\Omega)$.)

Événements X-mesurables

Pour $A \subseteq X(\Omega)$, on a: $\mathbb{P}(X \in A) = \sum_{n \in A} \mathbb{P}(X = n)$ (somme des proba. des év^{ts} élémentaires **favorables**)

► Fonction de répartition définie par : $\forall N \in S, F_X(N) = \mathbb{P}(X \leq N) = \sum_{n \leq N} \mathbb{P}(X = n)$

Si $X(\Omega) \subset \mathbb{N}$, l'expression des probabilités : $\mathbb{P}(X = n) = \mathbb{P}(X \le n) - \mathbb{P}(X \le n - 1)$.

► **Espérance** sous réserve de **convergence absolue** : $\mathbb{E}[X] = \sum_{n \in X(\Omega)} n \cdot \mathbb{P}(X = n)$

(espérance = moyenne des valeurs n de X, moyenne pondérée (= avec des coefficients) par les proba $\mathbb{P}(X = n)$.)

► **Transfert pour l'espérance** (sous réserve de cv. absolue)

rve de cv. absolue)
$$\mathbb{E}[f(X)] = \sum_{n \in X(\Omega)} f(n) \cdot \mathbb{P}(X = n),$$
notamment :
$$\mathbb{E}[X(X - 1)] = \sum_{n \in X(\Omega)} n(n - 1) \cdot \mathbb{P}(X = n).$$
r de la movenne de la loi)

▶ Variance (indicateur de dispersion autour de la moyenne de la loi)

La formule de Kœnig-Huygens (orthographe!) $Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$ $= \mathbb{E}[X(X-1)] + \mathbb{E}[X] \cdot (\mathbb{E}[X] - 1).$ et l'utile variante-« trinôme », p.ex.

Indépendance d'un couple de variables discrètes

produit des proba proba loi conjointe lois marginales ▶ **Définition** Soient *X*, *Y* deux *va* discrètes.

Alors X, Y indépendantes si $\forall x \in X(\Omega), y \in Y(\Omega)$: $\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x) \times \mathbb{P}(Y = y)$.

- ▶ Non-indépendance (souvent) recherche d'incompatibilités (ex. : $X > Y \stackrel{(?)}{\leadsto} X$, Y pas indép^{tes})
- ▶ Calcul de probabilité d'un évén^{nt} portant sur le couple.

On le situe, et on somme les probas élémentaires : $\mathbb{P}((X,Y) \in A) = \sum_{(x,y) \in A} \mathbb{P}(X=x,Y=y)$.

[X = Y]		[X	[X+Y=3]			$[\max(X,Y)=4]$					$[X \geqslant Y]$					
$Y(\Omega)$	(Ω) $X(\Omega)$		$Y(\Omega)$ $X(\Omega)$			$Y(\Omega)$ $X(\Omega)$				$Y(\Omega)$	$X(\Omega)$					
<u> </u>	1 2 3 4 5	_ ↓	1 2 3 4 5		↓	1	2	3	4	5	. ↓	1	2	3	4	5
1	0 0 0 0 0	1	0 0 0 0		1	0	0	0	0	0	1	0	0	0	0	0
2	0 0 0 0 0	2	0 0 0 0		2	0	0	0	0	0	2	0	0	0	0	0
3	0 0 0 0 0	3	0 0 0 0 0		3	0	0	0	0	0	3	0	0	0	0	0
4	0 0 0 0	4	0 0 0 0 0		4	0	0	0	0	0	4	0	0	0	0	0
5	0 0 0 0 0	5	0 0 0 0 0	_	5	0	0	0	0	0	5	0	0	0	0	0

- ▶ **Lois classiques** expression des proba. élémentaires pour *X*, *Y* de loi :
 - uniformes géométriques

Loi du min, du max indépendant

- ▶ **max** $M = \max(X, Y)$, *via* la fonction de répartition :
 - **1.** $F_M(n) = \mathbb{P}(M \le n) \stackrel{\text{max}}{=} \mathbb{P}(X \le n, Y \le n) \stackrel{\text{indép.}}{=} \mathbb{P}(X \le n) \cdot \mathbb{P}(Y \le n)$
 - **2.** Calcul de $F_M = F_X \cdot F_Y \iff \text{loi de } M : \mathbb{P}(M=n) = F_M(n) F_M(n-1).$
- ▶ min même principe, pour la foncⁿ d'antirépartition $A_X(n) = \mathbb{P}(X > n)$. (on renverse tout!)

3 Les questions de cours

1. Définition de l'indépendance de deux variables aléatoires discrètes

2. On lance deux dés à *n* faces. Quelle est la probabilité qu'ils tombent sur la même face?

3. La méthode pour trouver la loi du max indépendant.

4. Calculer la fonction de répartition de $\mathcal{G}(p)$ + calcul de l'espérance.

5. La formule de transfert pour $\mathbb{E}[X(X-1)]$ + formule de Kœnig-Huygens

