Module 5 Unit 4 Radiation Sensors

Dr. Suren Patwardhan

Types of Radiation

- lonizing
 Alpha, beta, gamma, X-rays, deep UV
- Non-ionizing
 UV-A, visible, IR, microwaves, radio waves
- Other
- Neutrons, cosmic rays, neutrinos, high magnetic field
- particle/photon Energy < 13 eV*
- Unit: sievert (Sv) the effect of ionizing radiation that is equivalent to depositing radiation dose of 1 joule in 1 kg of biological mass (tissues)
- (SAR Specific Absorption rate is measured in W/kg)

Typical Dose Levels of Ionizing Radiation

Items	Radiation dose (μSv)	
Stipulated limit per person	2/hr	
Single fatal dose	10 ⁷	
Single dose causing cancer	10 ⁶	
CT scan	Max 40000 per run	
Chest X-ray	70 per shot (0.1 sec)	
Dental X-ray	20 per shot (0.1 sec)	
Natural background radiation	0.1/hr	
Chernobyl debris (today)	100	
Fukushima (on the accident day)	400000	
Hiroshima (back calculated)	10 ⁸ single shot	

^{*}Over a prolonged exposure and averaged over 5 SOMAIYA VIDYAVIHAR UNIVERSITY K J Somaiya College of Engineer

Radiation Hazards

- Risks from ionizing radiation (non-fatal dose level)
- Nausea, general weakness, skin diseases, cancer, gastrointestinal issues, fertility, weakening of bones and muscles
- Risks from non-ionizing radiation
- Nausea, vomiting, eye irritation, restlessness, numbness, psychosomatic diseases

Radiation Detectors

- Gas detectors
 - Ionization chamber
 - Proportional counter
 - Geiger-Muller counter
- Scintillation detectors
 - Solid phosphors
 - Inorganic
 - Plastics/Organic
 - Liquid
 - Gases
- Solid state detectors
 - Intrinsic semiconductors
 - Photodiodes (p-i-n)
 - SDD (FET)
- CCD

Geiger-Muller Counter

- Used for:
 - α , β and γ radiation
- Basic components:
 - quartz tube (sensor) with metallic lining inside
 - Counter (electronics)
- Working principle: electric discharge due to ionization of gas
 - Mixture of Argon and Ethyl alcohol (90:10) @ 0.01 atm pressure
 - Ethyl alcohol vapours is active component
- Main disadvantage:
 - Dead time
 - Background radiation

Geiger-Muller Counter

Scintillation Counter

- Used for:
 - α , β , γ radiation and X-rays
- Basic components:
 - Phosphor (Scintillator)
 - solid, liquid or gaseous state
 - Photomultiplier tube
 - Counter (electronics)
- Working principles:
 - Luminescence
 - Photoelectric effect
 - Photon multiplication

Common Scintillators Used

State	Examples	Application
Solid	ZnS	α particles
	Anthracene ($C_{14}H_{10}$), Stilbene ($C_{14}H_{12}$)	β particles
	Nal, Csl	γ radiation, X-rays
Liqui d	Butyl PBD*, Naphthalene, p-Terphenyl (solvent: toluene)	β particles
Gas	Xenon	γ radiation

Scintillators Tube

Photocathode: bialikali e.g. CsKSb

Photomultiplier Tube - Electrodes

Dynode: Beryllium copper oxide

Photodiodes

- Used for:
 - UV, visible and IR radiation
- Basic components:
 - P-N junction diode
 - Biasing and amplifier circuits
- Working principles:
 - Zero bias (photovoltaic mode)
 - Solar cell
 - Reverse bias (photoconductive mode)
 - PN Photodiode
 - PIN Photodiode
 - Avalanche Photodiode
 - Schottky Photodiode

P-I-N Photodiodes

$$I_{total} = I_0 (e^{qV_A/nkT} - 1) - I_{photo}$$

Pyranometer

- Used for:
 - Solar radiation
- Basic components:
 - Thermopile
 - Environmental shield
 - electronics
- Working principles:
 - Thermo-emf
 - Cr-Al

Reference: Teledyne Imaging

