

SCHOOL OF ADVANCED TECHNOLOGY

ICT - Applications & Programming
Computer Engineering Technology – Computing Science

Numerical Computing – CST8233

Term: Fall 2024

Assignment #1: CSV Files and Series

Objectives

In this assignment, you will be challenged to complete three tasks, involving

- Reading, modifying and saving CSV (Comma-Separated Value) files, and
- Performing calculations involving series.

Grades:

7% of your final course mark

Deadline

October 10th, 2024 before 11:59 PM.

Tasks

Task 1: CSV Files (12 marks)

CSV files are commonly encountered. They store data in a "plain-text" format, often, but not always, using commas to separate values.

You have been given a file named "assignment1.csv", which contains a variety of data about cereals. To earn marks, you must write a script that does the following:

- (3 marks) Read the "assignment1.csv" file and
 - Save it as a dataframe named "CerealsDF"
 - Display the structure of "CerealsDF" using str() function and examine the variables and their classes
 - Display the first ten rows of "CerealsDF"
- (3 marks) The second line in "CerealsDF" represents the data type of each column.
 - Delete this line from the dataframe
 - o Print the number of rows and columns in the data frame
 - Add a new column named "totalcarbo" that shows the total of both carbo and sugars columns
- (3 marks) The "type" column shows the type, i.e., hot or cold, of the cereal and "mfr" column shows the manufacturer of the cereal.
 - o Find how many cereals are hot. Use subset() function
 - Find how many unique manufacturers are mentioned in the dataframe. Use unique() function
 - Extract all cereals that are manufactured by Kellogg's ("K"). Call this dataframe as "cereals K" and print it

- (3 marks) To examine the total value of each type, we need to look at the values of two or more columns.
 - Extract all cereals that have less than or equal 90 calories AND have more than 2 units of fat
 - Save this subset as a CSV file on your desk. Use wirte.csv() function

Task II: Vectors, Functions, Series (12 marks)

You are given the following discrete data that represent the following function:

$$f(x) = \cos 0.5x \times e^{0.1x}$$

X	π	6.678	3π	12.961	5π	19.244	7π
f(x)	0	-1.921	0	3.584	0	-6.718	0

- Write an R function that implement the Interpolation formula shown in the class. Call this function MyIntCal().
- What is degree of the interpolating function?
- You should have seven Lagrange polynomials, L1, L2, ..., L7. Create a 4x2 figure and plot each of these polynomials in one subfigure. Add the final interpolating function in the last subfigure. Save this figure as MyIntFig.pdf
- Use the built in function poly.calc() to find the interpolating function and call it pf_x.
- Find the value of f(15) using MyIntCal() and pf_x.
- Find the value of f(24) using MyIntCal() and pf_x.