Numerical Optimisation Constraint optimisation: Penalty and augmented Lagrangian methods

Marta M. Betcke

m.betcke@ucl.ac.uk

Department of Computer Science, Centre for Medical Image Computing, Centre for Inverse Problems University College London

Lecture 14 (based on Nocedal, Wright)

Lagrangian: primal problem

Constraint optimisation problem (general nonlinear)

$$\min_{x\in\mathcal{D}\subset\mathbb{R}^n} f(x)$$
 (COP) subject to $f_i(x)\leq 0, \quad i=1,\ldots,m,$ $h_i(x)=0, \quad i=1,\ldots,p$

Possibly conflicting goals: minimise the function and satisfy the constraints.

Idea: Minimise a merit function $Q(x; \mu)$ with a parameter vector μ . Some minimisers of $Q(x; \mu)$ approach those of f subject to the constraints as μ approach some set \mathcal{M} .

Benefit: reformulation as an unconstraint problem.

Quadratic penalty

Consider a problem with equality constraints

$$\min_{x\in\mathcal{D}\subset\mathbb{R}^n} \quad f(x)$$
 (COP:E) subject to $h_i(x)=0, \quad i=1,\ldots,p.$

The merit function (quadratic penalty function)

$$Q(x; \mu) := f(x) + \frac{\mu}{2} \sum_{i=1}^{p} h_i^2(x),$$
 (Q)

where $\mu > 0$ is the *penalty parameter*.

Framework: For a sequence $\{\mu_k\}$: $\mu_k \to \infty$ as $k \to \infty$ increasingly penalising the constraint compute the (approximate, $\|\nabla_x Q(x_k; \mu_k)\| \le \tau_k$, $\tau_k \to 0$) sequence $\{x_k\} \to x^*$ of minimisers x_k of $Q(x; \mu_k)$.

Convergence for the quadratic penalty

Let $\{x_k\}$ be the sequence of approximate minimisers of $Q(x; \mu_k)$, such that $\|\nabla_x Q(x_k; \mu_k)\| \le \tau_k$, x^* be the limit point of $\{x_k\}$ as the sequences of the penalty parameters $\mu_k \to \infty$ and tolerances, $\tau_k \to 0$.

- If a limit point x^* is infeasible, it is a stationary point of $||h(x)||^2$.
- If a limit point x^* is feasible and the constraint gradients $\nabla h_i(x^*)$ are linearly independent, then x^* is a KKT point for (COP:E), and we have that

$$\lim_{k\to\infty}\mu_k h_i(x_k)=\nu_i^*,\quad i=1,\ldots,p,$$

where ν^{\star} is the Lagrange multiplier vector that satisfies the KKT conditions for (COP:E).

Proof:

$$\nabla_{x}Q(x_{k};\mu_{k}) = \nabla f(x_{k}) + \sum_{i=1}^{p} \mu_{k}h_{i}(x_{k})\nabla h_{i}(x_{k}) \qquad (dQ)$$

From the convergence criterium $\|\nabla_x Q(x_k; \mu_k)\| \le \tau_k$ (using the inequality $\|a\| - \|b\| \le \|a + b\|$) we obtain

$$\left\|\sum_{i=1}^p h_i(x_k) \nabla h_i(x_k)\right\| \leq \frac{1}{\mu_k} \left(\tau_k + \|\nabla f(x_k)\|\right).$$

As $k \to \infty$: $\tau_k \to 0$, $\|\nabla f(x_k)\| \to \|\nabla f(x^*)\|$ and $\mu_k \to \infty$ thus the limit of the sequence on the l.h.s. is

$$\sum_{i=1}^p h_i(x^*) \nabla h_i(x^*) = 0.$$

- i) If $\exists i \in \{1, ..., p\} : h_i(x^*) \neq 0$ then $\nabla h_i(x^*)$ are linearly dependent which implies that x^* is a stationary point of $||h(x)||^2$.
- ii) If $\nabla h_i(x^*)$, $i=1,\ldots,p$ are linearly independent, $h_i(x^*)=0, i=1,\ldots,p$ and x^* is primarily feasible i.e. satisfies the second KKT condition. It remains to show that the "dual feasibility" (the first KKT condition) is satisfied.

Case ii):

Intuition:

As $k \to \infty$, $Q(x^k)$ should approach the Lagrangian

$$\mathcal{L}(x^*; \nu^*) = f(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*).$$
 (L)

and $\nabla_x Q(x^k)$ its derivative i.e. the "dual feasibility" condition

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*; \nu^*) = \nabla f(\mathbf{x}^*) + \sum_{i=1}^{p} \nu_i^* \nabla h_i(\mathbf{x}^*). \tag{dL}$$

Rearranging (dQ) and denoting $A(x)^{\mathrm{T}} := \nabla h_i(x_k), i = 1, \dots, p$ and $\nu^k := \mu_k h(x_k)$ we obtain

$$A(x_k)^{\mathrm{T}}\nu^k = -\nabla f(x_k) + \nabla_x Q(x_k; \mu_k), \quad \|\nabla_x Q(x_k; \mu_k)\| \le \tau_k.$$

For large enough k the matrix $A(x_k)$ has full row rank and hence the above overdetermined system has the unique solution

$$\nu^k = \left(A(x_k)A(x_k)^{\mathrm{T}}\right)^{-1}A(x_k)[-\nabla f(x_k) + \nabla_x Q(x_k; \mu_k)].$$

Taking the limit as $k \to \infty$

$$\lim_{k \to \infty} \nu^k = \nu^* = -\left(A(x^*)A(x^*)^{\mathrm{T}}\right)^{-1}A(x^*)\nabla f(x^*)$$

and the same in (dQ) yields the "dual feasibility" condition

$$\nabla f(x^*) + A(x^*)^{\mathrm{T}} \nu^* = 0.$$

Hence, x^* is the KKT point with unique Lagrange multiplier ν^* .

Example

$$\begin{aligned} & & & \text{min} & & x_1 + x_2 \\ & & \text{subject to} & & x_1^2 + x_2^2 - 2 = 0. \end{aligned}$$

Solution: $(-1,-1)^T$.

Quadratic penalty function: $Q(x; \mu) = x_1 + x_2 + \frac{\mu}{2}(x_1^2 + x_2^2 - 2)^2$.

Problems

For equality constraints, $Q(x; \mu)$ is smooth and can be solved with methods for unconstraint optimisation.

- Hessian ill-conditioning (see next slide) poses convergence problems for methods like CG or quasi Newton and affects Newton method's numerical accuracy (which however can be remedied by reformulation).
- For larger μ the quadratic model underlying most solvers is a poor approximation to $Q(x; \mu)$.
- Example:

$$\begin{aligned} & \text{min} & & -5x_1^2 + x_2^2 \\ & \text{subject to} & & x_1 = 1. \end{aligned}$$

has a solution $(1,0)^{\mathrm{T}}.$ The quadratic penalty function

$$Q(x; \mu) = -5x_1^2 + x_2^2 + \frac{\mu}{2}(x_1 - 1)^2$$

is unbounded for $\mu <$ 10. The iterates would diverge. Unfortunately, a common problem.

III-conditioning of Hessian

Newton step: $\nabla^2_{xx}Q(x;\mu_k)p_n = -\nabla_xQ(x;\mu_k)$

$$\nabla^2_{xx}Q(x;\mu_k) = \nabla^2 f(x) + \sum_{i=1}^p \underbrace{\mu_k h_i(x)}_{\approx \nu_i^*} \nabla^2 h_i(x) + \mu_k \underbrace{\nabla h(x)}_{=:A(x)^{\mathrm{T}}} \nabla h(x)^{\mathrm{T}}.$$

If x is sufficiently close to the minimiser of $Q(\cdot; \mu_k)$

$$\nabla_{xx}^2 Q(x; \mu_k) \approx \nabla_{xx}^2 \mathcal{L}(x; \nu^*) + \mu_k A(x)^{\mathrm{T}} A(x).$$

As $\mu_k \to \infty$ the Hessian is dominated by the second term (with eigenvalues 0 and $\mathcal{O}(\mu_k)$) and hence increasingly ill-conditioned.

Alternative formulation avoids ill-conditioning, $\zeta = \mu_k A(x) p_n$

$$\begin{bmatrix} \nabla^2 f(x) + \sum_{i=1}^p \mu_k h_i(x) \nabla^2 h_i(x) & A(x)^{\mathrm{T}} \\ A(x) & \mu_k^{-1} I \end{bmatrix} \begin{bmatrix} p_n \\ \zeta \end{bmatrix} = \begin{bmatrix} -\nabla_x Q(x; \mu_k) \\ 0 \end{bmatrix}.$$

Still, if $\mu_k h_i(x)$ is not a good enough approximation to ν^* , inadequate quadratic model yields inadequate search direction p_n .

General constraint problem

For general constraint problems including equality and inequality constraints, the quadratic penalty function can be defined as

$$Q(x; \mu) := f(x) + \frac{\mu}{2} \sum_{i=1}^{p} h_i^2(x) + \frac{\mu}{2} \sum_{i=1}^{m} ([f_i(x)]^+)^2,$$

where $[y]^+ := \max\{y, 0\}$

Note: Q may be less smooth than the objective and constraint functions e.g. $f_1(x) = x_1 \ge 0$, then $\max\{y,0\}^2$ has discontinuous second derivate and so does Q.

Practical penalty methods

- μ_k can be chosen adaptively based on the difficulty of minimising the penalty function in each iteration i.e. when minimising $Q(x;\mu_k)$ is expensive, choose μ_{k+1} moderately larger than μ_k e.g. $\mu_{k+1}=1.5\mu_k$, when minimising $Q(x;\mu_k)$ is cheap, choose μ_{k+1} larger e.g. $\mu_{k+1}=10\mu_k$.
- There is no guarantee that $\|\nabla_x Q(x; \mu_k)\| \leq \tau_k$ will be satisfied. Practical implementations need safe guards to increase μ (and possibly restore the initial point) when constraint violation is not decreasing fast enough or when the iterates appear diverging.
- Choice of initial point e.g. warm start $x_{k+1}^s = x_k$ can improve performance of Newton.

Nonsmooth penalty functions

Some penalty functions are exact i.e. for certain choices of penalty parameters a single minimisation w.r.t. x yields the exact minimiser of f. Only nonsmooth penalty functions can be exact.

An example is ℓ_1 penalty

$$Q_1(x;\mu) := f(x) + \mu \sum_{i=1}^p |h_i(x)| + \mu \sum_{i=1}^m [f_i(x)]^+,$$

where $[y]^+ := \max\{y, 0\}$.

Framework: Adaptively estimate the threshold value μ (in the same manner as for quadratic penalty checking the feasibility $h(x_k) \leq \tau$ for a set tolerance τ). Once the threshold value μ is reached the Q_1 penalty is exact (in the sense of the next slide).

Exactness of non-smooth penalty functions

minimiser of (COP) \Rightarrow minimiser of Q_1 :

Let x^* be a strict local minimiser of (COP), which satisfies the 1st order necessary conditions with Lagrange multipliers ν^*, λ^* . Then x^* is a local minimiser of $Q_1(x;\mu)$ for all $\mu>\mu^*=\|(\nu^*,\lambda^*)^{\mathrm{T}}\|_{\infty}$. If moreover, the 2nd order sufficient conditions hold at $\mu>\mu^*$, then x^* is a strict local minimiser of $Q_1(x;\mu)$.

stationary point of $Q_1 \Rightarrow \mathsf{KKT}$ point of (COP) or infeasible stationary point:

Let \hat{x} be a stationary point of the penalty function $Q_1(x;\mu)$ for all $\mu>\hat{\mu}>0$. Then, if \hat{x} is feasible for (COP), it satisfies KKT conditions. If \hat{x} is not feasible for (COP), it is an infeasible stationary point.

1d example of general constraints (threshold μ^*)

with solution $x^* = 1$.

$$Q_1(x;\mu) = x + \mu[1-x]^+ = \begin{cases} x & x \ge 1\\ x + \mu(1-x) & x < 1 \end{cases}$$

Figure: Fig. 17.3 from Nocedal, Wright: (left) $\mu > 1$, x^* minimises Q_1 , (right) $\mu < 1$, Q_1 is unbounded.

Example revisited

min
$$x_1 + x_2$$

subject to $x_1^2 + x_2^2 - 2 = 0$.

Solution: $(-1, -1)^T$.

$$\ell_1$$
 penalty function: $Q_1(x; \mu) = x_1 + x_2 + \mu |x_1^2 + x_2^2 - 2|$.

Figure: Minimiser of $Q_1(x; \mu)$ coincides with x^* for all $\mu = |\nu^*| > 1/2$

Augmented Lagrangian

Reduces ill-conditioning by introducing explicit Lagrange multiplier estimates into the function to be minimised.

Can preserve smoothness. Can be implemented using standard unconstrained (or bound constrained) optimization.

Motivation: The minimisers x_k of $Q(x; \mu_k)$ do not quite satisfy the feasibility condition $h_i(x) = 0$

$$h_i(x_k) \approx \nu^*/\mu_k, \quad i=1,\ldots,p.$$

Obviously, in the limit $\mu_k \to \infty$, $h_i(x) \to 0$ but can we avoid this systematic perturbation for moderate values of μ_k ?

Augmented Lagrangian:

$$\mathcal{L}_A(x,\nu;\mu) := f(x) + \sum_{i=1}^p \nu_i h_i(x) + \frac{\mu}{2} \sum_{i=1}^p h_i^2(x).$$

Update of Lagrange multiplier estimate

Optimality condition for the unconstraint minimiser of $\mathcal{L}_A(x, \nu^k; \mu_k)$

$$0 \approx \nabla_{\mathbf{x}} \mathcal{L}_{A}(\mathbf{x}_{k}, \mathbf{v}^{k}; \mu_{k}) = \nabla f(\mathbf{x}_{k}) + \sum_{i=1}^{p} [\nu_{i}^{k} + \mu_{k} h_{i}(\mathbf{x}_{k})] \nabla h_{i}(\mathbf{x}_{k}).$$

Optimality condition for the Lagrangian of (COP:E)

$$0 \approx \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}_k, \mathbf{v}^*) = \nabla f(\mathbf{x}_k) + \sum_{i=1}^p \nu_i^* \nabla h_i(\mathbf{x}_k).$$

Comparison yields (an update scheme for ν):

$$\nu_i^{\star} \approx \nu_i^k + \mu_k h_i(x_k), \quad i = 1, \ldots, p$$

as from $h_i(x_k) = \frac{1}{\mu_k} (\nu_i^* - \nu_i^k)$, $i = 1, \dots p$ we see that if ν^k is close to ν^* the infeasibility goes to 0 faster than $1/\mu_k$.

Example revisited

min
$$x_1 + x_2$$

subject to $x_1^2 + x_2^2 - 2 = 0$.

Solution: $(-1,-1)^T$.

Augmented Lagrangian:

$$\mathcal{L}(x,\nu;\mu) = x_1 + x_2 + \nu(x_1^2 + x_2^2 - 2) + \frac{\mu}{2}(x_1^2 + x_2^2 - 2)^2.$$

Figure: $\nu = 0.4$

Convergence

Let x^* be a local minimiser of (COP:E) at which the constraint gradients are linearly independent and which satisfies the 2nd order sufficient conditions with Lagrange multipliers ν^* . Then for all $\mu \geq \bar{\mu} > 0$, x^* is a strict local minimiser of $\mathcal{L}_A(x, \nu^*; \mu)$. Furthermore, there exist $\delta, \epsilon, M > 0$ such that for all ν^k, μ_k satisfying

$$\|\nu^k - \nu^*\| \le \mu_k \delta, \quad \mu_k \ge \bar{\mu},$$

• the problem min $\mathcal{L}_A(x, \nu^k; \mu_k)$, subject to $||x - x^*|| \le \epsilon$, has a unique solution x_k and it holds

$$||x_k - x^*|| \le M||\nu^k - \nu^*||/\mu_k$$

it holds

$$\|\nu^{k+1} - \nu^*\| \le M\|\nu^k - \nu^*\|/\mu_k,$$

where $\nu^{k+1} = \nu^k + \mu_k h(x_k)$.

• the matrix $\nabla^2_{xx} \mathcal{L}_A(x_k, \nu^k; \mu_k)$ is positive definite and the constraint gradients $\nabla h_i(x_k), i = 1, \dots, p$ are linearly independent.

Practical Augmented Lagrangian methods

 Bound constraint formulation: convert inequality constraints into equality constraints using slack variables

$$f_i(x)-s_i=0, \quad s_i\leq 0, \quad i\in\{1,\ldots m\}.$$

Bound constraints are not transformed. Solve by projected gradient algorithm

$$x_{k+1} = P(x_k - \nabla_x \mathcal{L}_A(x, \nu; \mu)|_{x_k}; I, u) = 0,$$

where $P(\cdot; I, u)$ projects on the box [I, u].

See Algorithm 17.4 in Nocedal Wright for an implementation.

• Linearly constraint formulation: transform into equality constraint problem with linearised constraints

$$\min F_k(x)$$
, subject to $f_i(x_k) + \nabla f_i^{\mathrm{T}}(x_k)(x - x_k) = 0$, $l \leq x \leq u$.

At each iteration k, choose F_k as

$$F_k(x) = f(x) + \sum_{i=1}^{m} \nu_i^k \bar{f}_i^k(x),$$

explicitly including the higher order constraint violations

$$\bar{f}_i^k(x) = f_i(x) - f_i(x_k) - \nabla f_i(x_k)^{\mathrm{T}}(x - x_k).$$

Preferred choice (larger convergence radius in practise)

$$F_k(x) = f(x) + \sum_{i=1}^m \nu_i^k \bar{f}_i^k(x) + \frac{\mu}{2} \sum_{i=1}^m (\bar{f}_i^k(x))^2$$

• Unconstraint formulation: essentially extension of augmented Lagrangian to inequality constraints (proximal term instead of quadratic penalty).