Artificial Intelligence

Binary Classifiers for Multiclass Classification Problems

BỞI HCMUT-CNCP

Pham Viet Cuong
Dept. Control Engineering & Automation, FEEE
Ho Chi Minh City University of Technology

- Classification: A predictive modeling problem that involves assigning a class label to an example
- ✓ Binary classification: Classification tasks with two classes.
- ✓ Multi-class classification: Classification tasks with more than two classes.
- ✓ Binary classifiers:
 - Support Vector Machines
 - Perceptron T
 - Logistic Regression

TÀI LIỆU SƯU TẬP

BŐI HCMUT-CNCP

- ✓ Multi-class classifications problems:
 - * Handwritten digit (0, 1, . . ., 9)
 - Image classification ILSVRC2012 // c_s
 - *****

- ✓ Binary classifiers for multi-class classifications problems:
 - One-vs-One
 - One-vs-Rest (One-vs-All)
 - Hierachical
 - Binary coding

- ✓ One-vs-Rest:
 - Split a multi-class classification into one binary classification problem per class
 - A binary classifier is trained on each binary classification problem
 - Predictions are made using the most confident model
 - **Example**
 - Three class: sun, moon, stars UU TÂP
 - Three binary classification problem
 - Binary Classification Problem 1: sun vs [moon, star]
 - Binary Classification Problem 2: moon vs [sun, star]
 - Binary Classification Problem 3: star vs [sun, moon]

- Each model predicts a class membership probability (probability-like score)
- ✓ Class index with largest score (argmax) is used to predict a class
- ✓ Common used for Logistic Regression, Perceptron
- ✓ Cons:
 - Requires one model for each class (issue for large datasets, slow models, or very large numbers of classes)
 - Scale of confidence values may differ between binary classifiers
 - Unbalanced distributions between the sets of positives and negatives

- ✓ One-vs-One:
 - Split a multi-class classification into one binary classification problem per each pair of classes
 - Fit a binary classifier on each binary classification problem
 - **Example:**
 - Three class: sun, moon, star
 - Three binary classification problem P
 - Binary Classification Problem 1: sun vs moon
 - Binary Classification Problem 2: sun vs star
 - Binary Classification Problem 3: moon vs star

- ✓ Each data point: classified according to a majority vote
- ✓ If each model predicts a class membership probability: class index with largest sum score (argmax) is predicted the class label
- ✓ Cons:
 - Number of binary models: C*(C-1)/2, C: # classes
 - More models than the one-vs-rest
 - Requires one model for each pair of class (issue for large datasets, slow models, or very large numbers of classes)
 - Suffers from ambiguities (some regions of input space may receive the same number of votes)

- Hierarchical classification:
 - Divide the output space i.e. into a tree
 - Each parent node is divided into multiple child nodes until each child node represents one class
 - **Example**

- ✓ Binary coding:
 - Encode class label by binary numbers
 - # binary classifiers = $\lceil \log_2(C) \rceil$ (C: # classes) $\lceil x \rceil$ = ceil(x): smallest integer greater than or equal to x
 - Least binary classifiers required
 - What if a bit incorrectly determinded?
 - What if # classes not a power of 2? TAP

BŐI HCMUT-CNCP

✓ Linearly separable data:

Artificial Neural Networks

- References
 - https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/
 - https://en.wikipedia.org/wiki/Artificial_neural_network

