Date: 25.09.2022

Name: Monisha PS

Roll no: 2k19ece048

Assignment-2 Data Visualization and Preprocessing

1) Download the dataset from the source <u>link</u>

About the dataset: This dataset is all about churn modelling of a credit company. It has the details about the end user who are using credit card and also it has some variables to depicit the churn of the customer.

- RowNumber Serial number of the rows
- · CustomerId Unique identification of customer
- Surname Name of the customer
- CreditScore Cipil score of the customer
- Geography Location of the bank
- · Gender Sex of the customer
- Age Age of the customer
- **Tenure** Repayment period for the credit amount
- Balance Current balance in thier creidt card
- NumOfProducts Products owned by the customer from the company
- HasCrCard Has credit card or not (0 no , 1 yes)
- IsactiveMember Is a active member or not List item
- EstimatedSalary Salary of the customer
- Exited Churn of the customer

```
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

2) Loading the dataset

```
df = pd.read_csv("Churn_Modelling.csv")
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ва
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	838
2	3	15619304	Onio	502	France	Female	42	8	1596
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	1255

3) Performing Visualizations

Univariate Analysis

<matplotlib.axes._subplots.AxesSubplot at 0x7fc976a55210>

geo = df['Geography'].value_counts()
geo.plot(kind="pie",figsize=(8,6))

<matplotlib.axes._subplots.AxesSubplot at 0x7fc97696e110>

sns.countplot(df['Gender'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fc9769e2dd0>

sns.distplot(df['Age'],hist=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7fc97692be90>

plt.figure(figsize=(8,6))
sns.countplot(df['Tenure'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fc9767ab590>

product = df['NumOfProducts'].value_counts()
product.plot(kind="pie",figsize=(8,6))

<matplotlib.axes._subplots.AxesSubplot at 0x7fc9767abf50>

cr = df['HasCrCard'].value_counts()
cr.plot(kind="pie",figsize=(8,6))

<matplotlib.axes._subplots.AxesSubplot at 0x7fc97671b3d0>

plt.figure(figsize=(7,4))
sns.countplot(df['IsActiveMember'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fc976746d90>

sns.distplot(df['EstimatedSalary'],hist=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7fc976642510>

plt.figure(figsize=(7,4))
sns.countplot(df['Exited'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fc97691ae50>

Inference:

- 1. The data has 11 numerical variables and 3 categorical variables.
- 2. It has 10000 rows and 14 columns
- 3. The normalized credit score is around 700, More than 500 people have credit score greater than 800.
- 4. France occupies 50% of customers, where as Germany and Spain shared equal.
- 5. Dataset is dominated by Male Customers.
- 6. Median age is around 40 to 45.
- 7. Highest number of customer has thier tenure period for 2 years.
- 8. Credit company has maximum customers, who uses single product.
- 9. Most of the customer has credit card.

- 10. More than 40% of the population is not an active member.
- 11. The Churn is less compared to the satisfaction. Dataset is imbalanced.

Bi-Variate Analysis

sns.barplot(x='Gender',y='CreditScore',hue='Geography',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fc97674d0d0>

sns.violinplot(x='Geography',y='Balance',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fc976558550>

sns.violinplot(x='Geography',y='EstimatedSalary',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fc97647be50>

sns.violinplot(x='Gender',y='Balance',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fc9763f41d0>

sns.barplot(x='Exited',y='CreditScore',hue='Gender',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fc976403e90>

sns.barplot(x='Exited',y='CreditScore',hue='Geography',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fc9763d1090>

sns.barplot(x='IsActiveMember',y='EstimatedSalary',hue='Gender',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fc97626f4d0>

sns.barplot(x='Exited',y='Tenure',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fc9761f6d10>

Inference:

- 1. Credit score for Male is higher in Spain.
- 2. Average bank salary lies in the range of 100k to 150k.
- 3. Estimated salary is normalized and same for all country.
- 4. Credit score for churn is low.
- 5. Churn in Germany is higher compared to other countries.
- 6. Exited people tenure period is around 6 years.

Multi-Variate Analysis

```
gp1 = df.groupby('Gender')['Geography'].value_counts()
gp1.plot(kind='pie',figsize=(10,8))
print(gp1)
```

Gender	Geography	
Female	France	2261
	Germany	1193
	Spain	1089
Male	France	2753
	Spain	1388
	Germany	1316

Name: Geography, dtype: int64


```
gp2 = df.groupby('Gender')['Age'].mean()
print(gp2)

Gender
Female 39.238389
```

Male 38.658237 Name: Age, dtype: float64

gp3 = df.groupby(['Gender','Geography'])['Tenure'].mean()
print(gp3)

Gender Geography
Female France 4.950022
Germany 4.965633

```
Spain 5.000000
Male France 5.049401
Germany 5.050152
Spain 5.057637
```

Name: Tenure, dtype: float64

gp4 = df.groupby(['HasCrCard','IsActiveMember'])['Geography'].value_counts()
gp4.plot(kind="bar",figsize=(8,5))
print(gp4)

HasCrCard	IsActiveMember	Geography	
0	0	France	706
		Spain	352
		Germany	343
	1	France	765
		Spain	404
		Germany	375
1	0	France	1717
		Germany	918
		Spain	813
	1	France	1826
		Spain	908
		Germany	873

Name: Geography, dtype: int64

gp5 = df.groupby(['Gender','HasCrCard','IsActiveMember'])['EstimatedSalary'].mean()
gp5.plot(kind="line",figsize=(8,6))
print(gp5)

Gender	HasCrCard	IsActiveMember	
Female	0	0	102006.080352
		1	102648.996944
	1	0	101208.014567
		1	98510.152300
Male	0	0	99756.431151
		1	99873.931251
	1	0	100353.378996
		1	98914.378703

Name: EstimatedSalary, dtype: float64

gp6 = df.groupby(['Gender','IsActiveMember'])['Exited'].value_counts()
gp6.plot(kind='bar',figsize=(8,6))
print(gp6)

```
Gender IsActiveMember Exited
     Female 0
                                       1534
                             1
                                        725
             1
                             0
                                       1870
                             1
                                        414
     Male
             0
                             0
                                       2013
gp7 = df.groupby('Exited')['Balance','EstimatedSalary'].mean()
print(gp7)
                  Balance EstimatedSalary
     Exited
             72745.296779
                              99738.391772
     0
     1
             91108.539337
                             101465.677531
      2000 -
                                                                    gp8 = df.groupby(['Geography','Exited'])['Gender'].value_counts()
gp8.plot(kind='bar',figsize=(10,8))
print (gp8)
```

Geography	Exited	Gender	
France	0	Male	2403
		Female	1801
	1	Female	460
		Male	350
Germany	0	Male	950
		Female	745
	1	Female	448
		Mala	266

Inference:

- 1. Germany has more female customers compared to male customers.
- 2. Average age of Male is 38, whereas average age of Female is 39.
- 3. Tenure period for both male and female is high in Spain.
- 4. It is observed that, those who have credit card are very active member in the company.
- 5. The estimated salary for a person who is not having credit card is high when compared to those having them.
- 6. Churn for inactive member is high compared to active member.
- 7. Those who churn has thier estimated salary very low.
- 8. France has the more churn rate.

- 4) Performing descriptive statistics on dataset

df.describe().T

	count	mean	std	min	25%	
RowNumber	10000.0	5.000500e+03	2886.895680	1.00	2500.75	5.000500
CustomerId	10000.0	1.569094e+07	71936.186123	15565701.00	15628528.25	1.569074
CreditScore	10000.0	6.505288e+02	96.653299	350.00	584.00	6.520000
Age	10000.0	3.892180e+01	10.487806	18.00	32.00	3.700000
Tenure	10000.0	5.012800e+00	2.892174	0.00	3.00	5.000000
Balance	10000.0	7.648589e+04	62397.405202	0.00	0.00	9.719854
NumOfProducts	10000.0	1.530200e+00	0.581654	1.00	1.00	1.000000
HasCrCard	10000.0	7.055000e-01	0.455840	0.00	0.00	1.000000
IsActiveMember	10000.0	5.151000e-01	0.499797	0.00	0.00	1.000000
EstimatedSalary	10000.0	1.000902e+05	57510.492818	11.58	51002.11	1.00193§
Exited	10000.0	2.037000e-01	0.402769	0.00	0.00	0.000000

→ 5) Handle the Missing values

```
df.isnull().sum()
    RowNumber
    CustomerId
    Surname
    CreditScore
                    0
    Geography
                     0
    Gender
                     0
    Age
    Tenure
    Balance
    NumOfProducts
                   0
    HasCrCard
    IsActiveMember
                     0
    EstimatedSalary
                     0
    dtype: int64
```

There is no missing value in dataset

6) Finding the outliers and replacing it

```
def replace_outliers(df, field_name):
    Q1 = np.percentile(df[field_name],25,interpolation='midpoint')
    Q3 = np.percentile(df[field_name],75,interpolation='midpoint')
    IQR = Q3-Q1
    maxi = Q3+1.5*IQR
    mini = Q1-1.5*IQR
    df[field_name]=df[field_name].mask(df[field_name]>maxi,maxi)
    df[field_name]=df[field_name].mask(df[field_name]<mini,mini)

plt.title("Before removing outliers")
sns.boxplot(df['CreditScore'])
plt.show()
plt.title("After removing outliers")
replace_outliers(df, 'CreditScore')
sns.boxplot(df['CreditScore'])
plt.show()</pre>
```

Before removing outliers

After removing outliers


```
plt.title("Before removing outliers")
sns.boxplot(df['Age'])
plt.show()
plt.title("After removing outliers")
replace_outliers(df, 'Age')
sns.boxplot(df['Age'])
plt.show()
```


<matplotlib.axes._subplots.AxesSubplot at 0x7fc95ba3cf50>

sns.boxplot(df['EstimatedSalary'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fc95b94a790>

The Outliers from Age and Credit Score columns are removed.

- 7) Check for categorical column and perform encoding

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

```
df['Gender'] = le.fit_transform(df['Gender'])
df['Geography'] = le.fit_transform(df['Geography'])
```

df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ва
0	1	15634602	Hargrave	619.0	0	0	42.0	2	
1	2	15647311	Hill	608.0	2	0	41.0	1	838
2	3	15619304	Onio	502.0	0	0	42.0	8	1590
3	4	15701354	Boni	699.0	0	0	39.0	1	
4	5	15737888	Mitchell	850.0	2	0	43.0	2	125

Only two columns Gender and Geography is label encoded.

Removing unwanted columns and checking for feature importance

```
df = df.drop(['RowNumber','CustomerId','Surname'],axis=1)
df.head()
```

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	619.0	0	0	42.0	2	0.00	1	1
1	608.0	2	0	41.0	1	83807.86	1	0
2	502.0	0	0	42.0	8	159660.80	3	1
3	699.0	0	0	39.0	1	0.00	2	0
4	850.0	2	0	43.0	2	125510.82	1	1

```
plt.figure(figsize=(20,10))
df_lt = df.corr(method = "pearson")
df_lt1 = df_lt.where(np.tril(np.ones(df_lt.shape)).astype(np.bool))
sns.heatmap(df_lt1,annot=True,cmap="coolwarm")
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fc95b0fefd0>

- 1. The Removed columns are nothing to do with model building.
- 2. Feature importance also checked using pearson correlation.

CreditScore Geography Gender Δge Tenure Ralance NumOfProducts HasCrCard IsΔi

8) Splitting the data into dependent and independent variables

9) Scaling the independent variables

```
from sklearn.preprocessing import StandardScaler
se = StandardScaler()

data['CreditScore'] = se.fit_transform(pd.DataFrame(data['CreditScore']))
data['Age'] = se.fit_transform(pd.DataFrame(data['Age']))
```

```
data['Balance'] = se.fit_transform(pd.DataFrame(data['Balance']))
data['EstimatedSalary'] = se.fit_transform(pd.DataFrame(data['EstimatedSalary']))
data.head()
```

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrC
0	-0.326878	0	0	0.342615	2	-1.225848	1	
1	-0.440804	2	0	0.240011	1	0.117350	1	
2	-1.538636	0	0	0.342615	8	1.333053	3	
3	0.501675	0	0	0.034803	1	-1.225848	2	
4	2.065569	2	0	0.445219	2	0.785728	1	

▼ 10) Splitting the data into training and testing

Conclusion: The model is scaled using StandarScaler method. The train and test split ratio is 15:5. As it is a classification problem, basic algorithms can be used to build ML models