MVP SPRINT 3 - ENGENHARIA DE DADOS ALUNO: IGOR MIRANDA EISENLOHR

Descrição

O trabalho fará todo o processo de ETL:

- 1. a busca por dados do mercado financeiro utilizando a linguagem Python.
- 2. Posteriormente, deve-se levar os dados para um ambiente Cloud (escolhido: Google Cloud);
- Realizar as transformações necessárias dos dados;
- 4. Por fim, realizar análises que gerem valor aos dados coletados.

Objetivo

O objetivo é consguir coletar os dados de um importante indice economico, como o CDI, e dados dos principais ativos presentes na bolsa brasileira. Após esse processo, temos interesse de armazenar os dados em um Data Warehouse/Data Lake (como o Google BigQuery).

Com uma tabela referente ao cadastro de ativos, outra referente a informações extras de cadastro e uma última contendo os preços históricos de 2 anos para os ativos encontrados.

A ideia é remover possíveis cadastros duplicados, assim como, preços ausentes,

Detalhamento

1. Busca pelos dados

A busca dos dados foi feita com as bibliotecas **yfinance** e **investpy** e leitura de json de url fornecida pelo banco central do brasil. A escolha dos dados teve como motivo principal a familiaridade com o tema, visto que tenho atuado em uma empresa focada no mercado financeiro.

2. Coleta

A coleta dos dados foi feita por meio de script python, buscando lista de ativos cadastrados na bolsa brasileira, informações adicionais sobre os ativos e preços históricos dos últimos 2 anos.

3. Modelagem

O banco de dados possui 2 tabelas, todas relacionadas pelo "ticker" do ativo. Exemplo: "PETR4.SA" para identificação da empresa Petrobras.

A primeira tabela armazena o cadastro dos ativos com as colunas:

Link para visualização dos dados: cadastro

Coluna	Tipo	Descrição
country	STRING	País de negociação do ticket ("brazil")
name	STRING	Nome da companhia
full_name	STRING	Nome completo da companhia
isin	STRING	Código isin (cadastro na b3)
currency	STRING	Moeda
ticker	STRING	Simbolo/Ticker da empresa na bolsa
city	STRING	Cidade de localização da empresa
state	STRING	Estado de localização da empresa
industry	STRING	Indústria de atuação da empresa
sector	STRING	Setor de atuação da empresa

A segunda tabela armazena o preço histórico dos ativos com as colunas:

Link para visualização de parte dos dados: Amostra de prices

Coluna	Tipo	Descrição
date	STRING	Data da cotação
year	INTEGER	Ano da cotação
month	INTEGER	Mês da cotação

day	INTEGER	Dia do mês da cotação
ticker	STRING	Simbolo/Ticker da empresa na bolsa
close	FLOAT	Preço de fechamento da cotação
volume	FLOAT	Volume de negociação
daily_factor	FLOAT	Variação diária do ativo em número índice (1 + variação)
month_accumulated_factor	FLOAT	Acumulado mensal da variação
year_accumulated_factor	FLOAT	Acumulado anual da variação

Por fim, criou-se a tabela de metadados como um dicionário das colunas do esquema de dados.

```
bigquery.SchemaField("country", "STRING", mode="NULLABLE",
description="País de negociação do ticket ('brazil')."),
                  bigquery.SchemaField("name", "STRING", mode="NULLABLE",
description="Nome da companhia."),
             bigquery.SchemaField("full name", "STRING", mode="NULLABLE",
description="Nome completo da companhia."),
                  bigguery.SchemaField("isin", "STRING", mode="NULLABLE",
description="Código isin (cadastro na b3)."),
              bigquery.SchemaField("currency", "STRING", mode="NULLABLE",
description="Moeda."),
                bigquery.SchemaField("ticker", "STRING", mode="REQUIRED",
description="Simbolo/Ticker da empresa na bolsa."),
                  bigquery.SchemaField("city", "STRING", mode="NULLABLE",
description="Cidade de localização da empresa."),
                 bigguery.SchemaField("state", "STRING", mode="NULLABLE",
description="Estado de localização da empresa."),
              bigquery.SchemaField("industry", "STRING", mode="NULLABLE",
description="Indústria de atuação da empresa."),
                bigquery.SchemaField("sector", "STRING", mode="NULLABLE",
description="Setor de atuação da empresa."),
                  bigquery.SchemaField("date", "STRING", mode="REQUIRED",
description="Data da cotação."),
                 bigquery.SchemaField("year", "INTEGER", mode="NULLABLE",
description="Ano da cotação."),
                bigquery.SchemaField("month", "INTEGER", mode="NULLABLE",
description="Mês da cotação."),
```

```
bigquery.SchemaField("day", "INTEGER", mode="NULLABLE",
description="Dia do mês da cotação."),
                 bigquery.SchemaField("close", "FLOAT", mode="REQUIRED",
description="Preço de fechamento da cotação."),
                 bigguery.SchemaField("volume", "FLOAT", mode="NULLABLE",
description="Volume de negociação."),
                         bigguery.SchemaField("daily factor", "FLOAT64",
mode="NULLABLE", description="Variação diária do ativo em número índice (1
 variação)."),
              bigguery.SchemaField("month accumulated factor", "FLOAT64",
mode="NULLABLE", description="Acumulado mensal da variação."),
               bigguery.SchemaField("year accumulated factor", "FLOAT64",
mode="NULLABLE", description="Acumulado anual da variação.")
                                                            table
bigquery.Table(f"{self.project id}.{dataset name}.{table name}",
schema=schema) # Criacao da tabela
          table = self.client.create table(table) # Criacao da tabela no
BiqQuery
        print(f"Table {table name} created in dataset {dataset name}.") #
Mensagem de sucesso
if name == " main ":
            creator = MetadataTableCreator('bigquery-sandbox-385813',
"./sprint3-storage.json")  # Nome do projeto e credenciais
    creator.create metadata table('sprint3', "metadata") # Nome do dataset
```

⊞ me	tadata	Q CONSULTA ▼	+ 2cc	DMPARTILHAR	COPIAR	± SNAPS	НОТ	EXCLUIR	≜ EXPORTAR	▼
ESQUE	MA DETA	LHES PREVI	EW	LINHAGEM	PERFIL DE DAD	00S (QUALIDAI	DE DOS DADOS		
	country	5	STRING	NULLABLE						País de negociação do ticket ('brazil').
	name	5	STRING	NULLABLE						Nome da companhia.
	full_name	5	STRING	NULLABLE						Nome completo da companhia.
	isin	5	STRING	NULLABLE						Código isin (cadastro na b3).
	currency	5	STRING	NULLABLE						Moeda.
	ticker	5	STRING	REQUIRED						Simbolo/Ticker da empresa na bolsa.
	city	5	STRING	NULLABLE						Cidade de localização da empresa.
	state	5	STRING	NULLABLE						Estado de localização da empresa.
	industry	5	STRING	NULLABLE						Indústria de atuação da empresa.
	sector	5	STRING	NULLABLE						Setor de atuação da empresa.
	date	5	STRING	REQUIRED						Data da cotação.
	year	I	INTEGER	NULLABLE						Ano da cotação.
	month	I	INTEGER	NULLABLE						Mês da cotação.
	day	I	INTEGER	NULLABLE						Dia do mês da cotação.
	close	F	FLOAT	REQUIRED						Preço de fechamento da cotação.
	volume	F	FLOAT	NULLABLE						Volume de negociação.
	daily_factor	F	FLOAT	NULLABLE						Variação diária do ativo em número índice (1 + variação).
	month_accun	nulated_factor F	FLOAT	NULLABLE						Acumulado mensal da variação.
	year_accumu	lated_factor F	FLOAT	NULLABLE						Acumulado anual da variação.

4. Carga

A carga será feita após a transformação dos dados no ambiente Cloud do GoogleBigQuery. A carga foi realizada no fim do script Python, utilizando a biblioteca **pandas-gbq** que faz a carga de dataframes Pandas para o Google BigQuery.

5. Análise

Análises que gostaria de fazer:

- Qual estado possui maior número de empresas listadas?
- Quais setores apresentam maior número de empresas listadas?
- Quais indústrias apresentam maior número de empresas listadas?
- Qual ação apresentou maior variação no ano de 2022?
- Qual ação apresentou maior rentabilidade no ano de 2022?
- Qual ação apresentou menor rentabilidade no ano de 2022?
- Quais ações apresentaram maior volume de negociações?
- Quais ações apresentaram menor volume de negociações?

Entrega

A entrega do trabalho está no meu github, no seguinte repositório: https://github.com/lgorEisenlohr/sprint3-engenharia-dados

Autoavaliação

Acredito ter cumprido os requisitos do trabalho, realizando todo o processo de ETL de dados para um ambiente cloud. Consegui extrair dados de diversas fontes de dados, conseguindo a parte de cadastros e de historico de preços de ações e CDI. Consegui fazer o upload de todos os arquivos necessários para o Google Cloud Storage, que permitiria a utilização do Data Fusion para um ETL *no-code*. Porém, para criação de colunas com cálculos um pouco mais complexos e algumas outras transformações que seriam mais fáceis utilizando linguagem de programação, permaneci na utilização do Python para transformação dos dados e para realizar a parte de carregamento no Google BigQuery.

Acredito ter apresentado boas análises utilizando SQL e gráficos com python. Porém, é possível realizar algumas melhoras na base de dados, para trazer eventos corporativos de split, inplit e dividendos, que alteram os valores das cotações das ações.

Código

Importando bibliotecas importantes

```
# Description: Script para coleta, transformacao e carregamento de dados
# Author: Igor Miranda Eisenlohr

# Importacao das bibliotecas
import pandas as pd
import pandas_gbq
import numpy as np
import investpy
import yfinance as yf
import os
from google.cloud import storage
from google.oauth2 import service_account
```

INICIANDO PROCESSO DE EXTRAÇÃO (E)

Extração do CDI por *ison* disponibilizado pelo BCB

```
def get_cdi(self):
```

Extração dos ativos cadastrados na bolsa:

Extração de informações adicionais dos ativos da bolsa

Extração dos preços históricos das ações encontradas de 2022 pra frente

```
def get_stocks_historic(self, tickers):
    historicos_list = [] # Lista vazia para armazenar os dados
    for ticker in tickers: # Loop para coletar os dados de cada
ticker
    historico = yf.download(ticker, start="2022-01-03") # Coleta
dos dados
    historico['Ticker'] = ticker # Adicao da coluna Ticker
    historicos_list.append(historico) # Adicao do dataframe na
lista
    historicos_df = pd.concat(historicos_list) # Transformacao da
lista em dataframe
    historicos_df.reset_index(inplace=True) # Reset do index
    historicos_df.rename(columns=str.lower, inplace=True) # Renomeacao
das colunas
    return historicos_df[['date', 'ticker','close', 'volume']] #
Retorno do dataframe
```

Carregando os dataframes gerados no Google Storage

sprin	t3-storage						
Local		Classe de armazena	mento Ace	sso público	Proteção		
us (vária	as regiões nos Estados Unidos)	Standard	Não	público	Nenhum		
OBJETO	OS CONFIGURAÇÃO	PERMISSÕES	PROTEÇÃO	CICLO [DE VIDA	OBSERVABILIDADE	R
	los > sprint3-storage						
	R UPLOAD DE ARQUIVOS CAI	RREGAR PASTA C	eriar Pasta ojetos e pastas	TRANSFER	IR DADOS ▼	GERENCIAR RETENÇ	ÕES
Filtrar ap	· · · · · · · · · · · · · · · · · · ·			TRANSFER	IR DADOS ▼	GERENCIAR RETENÇ	
Filtrar ap	penas pelo prefixo do nome ▼	〒 Filtro Filtrar ob	ojetos e pastas	Criado 🛭	IR DADOS ▼ 2023 11:32:16	·	
Filtrar ap	penas pelo prefixo do nome ▼	〒 Filtro Filtrar ob	ojetos e pastas Tipo	Criado ?		Classe de armazenam	
Filtrar ap	penas pelo prefixo do nome ▼ Nome df_get_cdi.csv	₹ Filtro Filtrar ob Tamanho 10,3 KB	ojetos e pastas Tipo text/csv	Criado ? 1 de out. de : 1 de out. de :	2023 11:32:16	Classe de armazenam Standard	

INICIANDO PARTE DE TRANSFORMAÇÃO (T)

Por possuir maior dominio com a linguagem python, além de fornecer uma infinidade de funções de transforamação de dados do que o Data Fusion, optou-se por manter o ETL com o próprio script. Então, apesar de ter os arquivos .csv necessários no Google Storage, vamos continuar o processo de transformação com python e posteriormente realizar o Load para o bigquery pelo script. Realizando assim, todo o processo de ETL necessário para extrair, transformar e carregar dados do mercado financeiro.

```
def transform(self, cdi_file, stocks_file, stocks_info_file,
stocks_historic_file):
    print("TRANSFORMING DATA...")
    cdi_df = pd.read_csv(cdi_file)
    cadastro_df = pd.read_csv(stocks_file)
    info_df = pd.read_csv(stocks_info_file)
    historic_df = pd.read_csv(stocks_historic_file)

    duplicate_symbols =
cadastro_df[cadastro_df.duplicated(subset='ticker', keep=False)] #
Verificacao de duplicatas
    if not duplicate_symbols.empty: # Caso existam duplicatas
```

```
print(f'Duplicatas encontradas no cadastro:
{duplicate symbols["ticker"].tolist()}') # Printa os tickers duplicados
       cadastro cleaned df = cadastro df.drop duplicates(subset='ticker',
keep='first') # Remocao das duplicatas
       cadastro df = pd.merge(cadastro cleaned df, info df, on='ticker',
how='left') # Merge dos dataframes de cadastro e informações
       cadastro df cleaned =
cadastro df.drop(columns='country y').rename(columns={'country x':
       cdi df['date'] =
pd.to datetime(cdi df['date']).dt.strftime('%Y-%m-%d')
       prices df = pd.concat([historic df, cdi df], ignore index=True) #
       duplicate rows = prices df[prices df.duplicated(subset=['date',
'ticker'], keep=False)]
       if not duplicate rows.empty:
           print(f'Duplicatas encontradas na tabela de preços:
{duplicate rows[["date", "ticker"]].to dict(orient="records")}') # Printa
as duplicatas
       prices df cleaned = prices df.drop duplicates(subset=['date',
'ticker'], keep='first') # Remocao das duplicatas
       prices df cleaned = prices df cleaned.sort values(by=['ticker',
'date'], ascending=True)  # Ordenacao do dataframe
prices df cleaned.groupby('ticker')['close'].shift(1) # Criacao da coluna
Prev Close
       prices df cleaned['daily factor'] = (prices df cleaned['close'] /
Daily Factor
       prices df cleaned['date'] =
pd.to datetime(prices df cleaned['date'])  # Conversao da coluna Date para
       prices df cleaned['year'] = prices df cleaned['date'].dt.year #
```

```
prices df cleaned['month'] = prices df cleaned['date'].dt.month #
       prices df cleaned['day'] = prices df cleaned['date'].dt.day #
        is not cdi = prices df cleaned['ticker'] != 'CDI' # Filtro para
       prices df cleaned.loc[is not cdi, 'daily variation'] =
prices df cleaned.loc[is not cdi].groupby('ticker')['close'].transform(lam
bda x: x / x.shift(1) - 1) # Calculando a variacao diaria
       prices df cleaned['month accumulated variation'] =
prices df cleaned.groupby(['ticker', 'year',
'month']) ['daily variation'].transform(lambda x: (x + 1).cumprod() - 1) *
100 # Calculando a variação acumulada mensal
        prices df cleaned['year accumulated variation'] =
prices df cleaned.groupby(['ticker',
'year'])['daily variation'].transform(lambda x: (x + 1).cumprod() - 1) *
100 # Calculando a variação acumulada anual
       prices df cleaned['date'] = prices df cleaned['date'].astype(str)
       print("DATA TRANSFORMED!")
        return cadastro df cleaned, prices df cleaned
```

Alguns pontos realizados na transformação de dados:

- Remoção de cadastros duplicados
- Junção do dataframe com o cadastro de ativos e informações extras (JOIN)
- União entre preços do CDI e preços de stocks (UNION ALL)
- Extração de Ano, mês e dia do atributo de data
- Cálculo da variação dos ativos de maneira diária
- Cálculo da rentabilidade mensal dos ativos
- Cálculo da rentabilidade anual dos ativos.

INICIANDO PARTE DE CARREGAMENTO (L)

```
def load(self, cadastro_info_df, prices_df, dataset_name,
cadastro_table_name, prices_table_name):
```

```
print("LOADING DATA...")
       credentials =
service account.Credentials.from service account file(
       cadastro schema = [
           bigquery.SchemaField("country", "STRING", mode="NULLABLE"
           bigguery.SchemaField("name", "STRING", mode="NULLABLE"
                                                                        ),
           bigquery.SchemaField("full name", "STRING", mode="NULLABLE"),
           bigguery.SchemaField("isin", "STRING", mode="NULLABLE"
                                                                        ),
           bigquery.SchemaField("currency", "STRING", mode="NULLABLE"
           bigguery.SchemaField("ticker", "STRING", mode="REQUIRED"
                                                                        ),
           bigguery.SchemaField("city", "STRING", mode="NULLABLE"
                                                                        ),
                                                                        ),
           bigquery.SchemaField("industry", "STRING", mode="NULLABLE"
                                                                       ),
           bigquery.SchemaField("sector", "STRING", mode="NULLABLE"
       cadastro schema dicts = [{'name': field.name, 'type':
field.field type, 'mode': field.mode} for field in cadastro schema]
       pandas gbq.to gbq(
           cadastro info df,
            f"{dataset name}.{cadastro table name}",
            project id='bigguery-sandbox-385813',
            if exists='replace',
           table schema=cadastro schema dicts,
           credentials=credentials
       prices schema = [
           bigquery.SchemaField("date", "STRING", mode="REQUIRED"),
           bigguery.SchemaField("year", "INTEGER", mode="NULLABLE"),
           bigquery.SchemaField("month", "INTEGER", mode="NULLABLE"),
            bigguery.SchemaField("day", "INTEGER", mode="NULLABLE"),
            bigquery.SchemaField("ticker", "STRING", mode="REQUIRED"),
```

```
bigquery.SchemaField("close", "FLOAT", mode="REQUIRED"),
            bigquery.SchemaField("volume", "FLOAT", mode="NULLABLE"),
            bigquery.SchemaField("daily factor", "FLOAT64",
mode="NULLABLE"),
            bigquery.SchemaField("month accumulated factor", "FLOAT64",
mode="NULLABLE"),
            bigquery.SchemaField("year accumulated factor", "FLOAT64",
mode="NULLABLE")
       prices schema dicts = [{'name': field.name, 'type':
field.field type, 'mode': field.mode} for field in prices schema]
       pandas gbq.to gbq(
            f"{dataset name}.{prices table name}",
            project id='bigquery-sandbox-385813',
            table schema=prices schema dicts,
            credentials=credentials
```

Gerando 2 tabelas (cadastro e prices) para o dataset (sprint3)

☆	:
	:
☆	:
☆	:
☆	:

Linha	table ▼	count ▼
1	cadastro	749

Resultado da análise de dados

Estados com mais empresas listadas no mercado financeiro

```
SELECT
state,
COUNT(ticker) as count
FROM sprint3.cadastro
WHERE state IS NOT NULL
GROUP BY state
ORDER BY count DESC
LIMIT 5
```

state ▼	count -
SP	187
RJ	43
MG	30
RS	29
NY	19

Setores e indústrias com mais empresas listadas

```
SELECT
  sector,
  industry,
  COUNT(ticker) as count
```

```
FROM sprint3.cadastro
GROUP BY sector, industry
ORDER BY count DESC
LIMIT 5
```

Linha	sector ▼	industry -	count ▼
1	Financial Services	Banks-Regional	31
2	Utilities	Utilities—Regulated Electric	22
3	Real Estate	REIT-Diversified	15
4	Basic Materials	Steel	14
5	Utilities	Utilities-Renewable	13

Analise de rentabilidade das ações com maior média de negociações

Variação do CDI em 2022

Quantos ativos superaram o cdi ao final do ano de 2022

```
SELECT 'superior ao CDI' condition, count(ticker) as count FROM sprint3.prices
where date = '2022-12-29' and year_accumulated_variation > (SELECT
year_accumulated_variation
   FROM sprint3.prices p
   LEFT JOIN sprint3.cadastro c ON p.ticker = c.ticker
   WHERE year = 2022 and p.ticker = 'CDI'
   ORDER BY date DESC
   limit 1 )
```

condition ▼	count ▼	
superior ao CDI	87	

Maiores variações diárias

```
SELECT date, p.ticker, close, prev_close, daily_variation
FROM sprint3.prices p
LEFT JOIN sprint3.cadastro c ON p.ticker = c.ticker
ORDER BY daily_variation DESC
LIMIT 5
```

date ▼	ticker ▼	close ▼	prev_close ▼	daily_variation ▼
2023-01-02	PDGR3.SA	12.0	0.119999997317	99.00000223517
2022-06-14	HF0F11.SA	7129.0	71.38999938964	98.85992521291
2022-06-14	TMOS34.SA	5427.0	54.45000076293	98.66942009106
2022-10-05	PRSN11B.SA	3.0	0.860000014305	2.488372034998
2023-04-24	CTNM3.SA	12.01000022888	4.010000228881	1.995012354957

Nitidamente, é possível perceber que a diferença entre o close e o prev_close apresenta uma discrepância muito grande. Teria que verificar se são casos de split ou inplit de ações (situações nas quais uma ação que custa 100 reais vira 10 ações de 10 reais ou a situação inversa). Seria necessário buscar essas informações que alteram bruscamente as cotações das ações mas que não alteram o valor final.

Menores variações diárias

```
SELECT date, p.ticker, close, prev_close, daily_variation
FROM sprint3.prices p
LEFT JOIN sprint3.cadastro c ON p.ticker = c.ticker
ORDER BY daily_variation ASC
```

date ▼	ticker ▼	close ▼	prev_close ▼	daily_variation ▼
2022-06-15	HF0F11.SA	71.20999908447	7129.0	-0.99001122189
2022-06-15	TMOS34.SA	54.27000045776	5427.0	-0.98999999991
2022-11-17	TRVC34.SA	26.25	420.0	-0.9375
2023-09-20	CPTS11B.SA	10.28081226348	102.8081207275	-0.89999999814
2023-08-31	BRPR3.SA	360.0	1911.0	-0.81161695447

Me parece o mesmo caso do tópico acima, porém a situação inversa.

Média de volume de negociações por setor e indústria

```
SELECT
  sector, industry, AVG(volume) as avg_volume
FROM sprint3.prices p
LEFT JOIN sprint3.cadastro c ON p.ticker = c.ticker
GROUP BY sector, industry
ORDER BY avg_volume DESC
LIMIT 5
```

sector ▼	industry ▼	avg_volume ▼
Financial Services	Financial Data & Stock Exchan	42713615.29680
Financial Services	Insurance-Life	33972247.43085
Consumer Cyclical	Specialty Retail	29810734.25947
Energy	Oil & Gas Integrated	22479433.16152
Basic Materials	Other Industrial Metals & Mining	14659295.77142

