Quantifying relationships among populations: Simple tests

Andrea Manica

Outline

- Using F statistics (measure of drift) to compare populations
- Relationships among populations on a simple tree
- Admixture

Relationships among populations

Proximity in PCA

Clustering algorithms (Garrett's lectures)

f_2 as a measure of distance

$$f_2(A,B) = E[(p_A-p_B)^2]$$

= $E[(p_A-p_B) (p_A-p_B)]$

f_2 as a measure of distance

$$f_2(A,B) = E[(p_A-p_B)^2]$$

= $E[(p_A-p_B) (p_A-p_B)]$

Outgroup f_3 to define similarity

$$f_2(A,B) = E[(p_A-p_B)^2]$$

 $f_3(C; A,B) = E[(p_C-p_A) [(p_C-p_B)] =$
 $= \frac{1}{2} [f_2(C,A) + f_2(C,B) - f_2(A,B)]$

Outgroup f_3 to define similarity

$$f_2(A,B) = E[(p_A-p_B)^2]$$

 $f_3(C; A,B) = E[(p_C-p_A) [(p_C-p_B)] =$
 $= \frac{1}{2} [f_2(C,A) + f_2(C,B) - f_2(A,B)]$

Shared drift for A and B from C

Overlap of paths C->A and C->B

Outgroup f_3 to define similarity

Admixture f_3 if topology is not a simple tree

$$f_2(C,A) = E[(p_C-p_A)^2] = E[(p_C-p_A) (p_C-p_A)]$$

Admixture f_3 if topology is not a simple tree

$$f_2(C,A) = E[(p_C-p_A)^2] = E[(p_C-p_A) (p_C-p_A)]$$

$$F_{2}(C,A) = a + c + \alpha^{2}d + \beta^{2}(e+g+f)$$

$$C \rightarrow A$$

$$A$$

$$C \rightarrow B$$

$$A$$

$$C \rightarrow B$$

$$C \rightarrow A$$

$$C \rightarrow A$$

$$A$$

$$C \rightarrow B$$

$$A$$

$$C \rightarrow B$$

$$C \rightarrow A$$

$$C \rightarrow B$$

$$A$$

$$C \rightarrow B$$

$$C \rightarrow$$

Tip: *f* statistics can be seen as overlap of paths from one sample to the other in the quadratic term

Admixture f_3 if topology is not a simple tree

$$f_3(C; A,B) = E[(p_C-p_A) [(p_C-p_B)] =$$

 $F_3(C;A,B) = c + \alpha^2 d + \beta^2 e - \alpha \beta (g+f)$

Negative f_3 is a sign of admixture But note that a positive f_3 does not prove absence of admixture (e.g. large c, drift to C)

Admixture f_3

f_4 for a simple tree

$$f_4(A,B; C,D) = E[(p_A-p_B) [(p_C-p_D)] =$$

f_4 for a simple tree

$$f_4(A,B; C,D) = E[(p_A-p_B) (p_C-p_D)]$$

Expect f_4 to be zero if the two pairs form clades with respect to each other

D-statistics (ABBA-BABA)

$$f_4 = \frac{\#ABBA - \#BABA}{\#sites}$$

$$D = \frac{\#ABBA - \#BABA}{\#ABBA + \#BABA}$$

 $D(O,P_1; P_2,P_3)$ D = 0 true phylogeny

D < 0 gene flow $P_1 \& P_2$

D > 0 gene flow $P_1 \& P_3$

f_4 if topology is not a simple tree

$$F_{4}(A,E;D,C) = -\alpha g$$

$$F_{4}(A,E;D,C) = \frac{F_{4}(A,E;D,C)}{F_{4}(A,E;D,B)} = \frac{-\alpha g}{-g} = \alpha$$

$$A \quad B \quad C \quad D \quad E \quad A \quad B \quad C \quad D \quad E$$

$$\alpha(-g) \qquad \beta(0)$$

A & E set the background, B & D are the sources

Testing significance of relationships

We can test significant by block jackknifing (usually using 5cM)

Estimate f_x and its standard error, and then compute a standardized Z

|Z| > 2 or 3 considered significant (but note that the critical value has been changing... not always for the right reasons)

Be careful that you are not comparing apples and oranges (SNPs from the same panel)

Ascertainment and f stats

Blue: 1240k SNP panel

Yellow: 390k SNP panel (subset of 1240k)

Ascertainment and f stats

Summary

- Using F statistics (measure of drift) to compare populations
- Relationships among populations on a simple tree
- Admixture

Practical

- Use Admixtools to compute different F stats and interpret them
- Human dataset with modern and ancient
- Commands and questions in

Manica_practical1.pdf