MSiA 421 – Data Mining Final Steven Lin

Problem 1

Note: after inspecting the data, I decided NOT to standardize because all the variables are genes and it makes sense they are measured in some common scale (have the same commensurate units). A quick summary of the data also reveals that the ranges for the values of the gene variables are very close.

Part a

The proportion of variance explained by first 2 PCS is 15.93% (note: the answer if scaled is 11.5%)

Part b

The scatter plot reveals that PC1 can separate apart healthy from sick people, in which low values of PC1 correspond to healthy (blue) and high values of PC1 corresponding to sick people (red). PC2 does not seem to differentiate these two groups of people (there seems to be similar variation along PC2 for both healthy and sick groups).

Part c

The dendogram shows that the two-cluster solution separates healthy from sick people (the left cluster contains all and only healthy, while the right cluster contains all and only sick people)

Compete Linkage (Euclidean metric)

Part d

The dendogram shows that the 2-cluster solution does NOT separate healthy from sick people (the left cluster contains all sick and some healthy, while the right cluster contains the rest of the healthy people)

Compete Linkage (Correlation metric)

Part e

The cross tabulation between the cluster assignment versus sick show that the two-cluster solution separates healthy from sick people (cluster1 contains all and only sick, while cluster2 contains all and only healthy people).

Part f

- i) Based on the scatterplot in part (b), the recommended variance structure is EEI.
- ii) The reason is that the two clusters seem to have equal shape and volume, with the distribution being diagonal oriented along the coordinate axes. Also note that the number of parameters grows quickly with the number of clusters and variables, so a lower-complexity model, such as EEI, is recommended when possible.
- The parameters for the size, center and dispersion of the clusters are given below. The proportion 50/50 indicates equal size (20 observations in each cluster). The means of PC1 and PC2 for cluster 1 are the negative of those for cluster 2, with the difference in cluster means being greater for PC1 compared to PC2. The covariance matrix is the same for cluster 1 and 2, with PC1 showing a smaller variance than PC2. The covariance between PC1 and PC2 is zero.

```
> fit mclust$parameter$pro
[1] 0.5 0.5
> fit_mclust$parameter$mean
            [,1]
PC1 -11.75209258 11.75209258
    0.03970815 -0.03970815
> fit mclust$parameter$variance$sigma
, , 1
          PC1
                   PC2
PC1 0.9087589 0.00000
PC2 0.0000000 35.90063
, , 2
          PC1
                   PC2
PC1 0.9087589 0.00000
PC2 0.0000000 35.90063
```

iv) The Gaussian mixture seems to separate diseased from healthy. This can be seen in the results shown below from the clustering, where the first 20 observations (healthy) were assigned to cluster 1 (blue), and the second set of 20 observations (sick) were assigned to cluster 2 (red).

```
> fit_mclust$classification
V1 V2 V3 V4 V5 V6 V7
                            V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V
21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36
                     1
                          1
                              1
                                 1
                                     1
                                          1
                                              1
                                                  1
                                                                      1
                                                                              1
   2
       2
            2
                2
                    2
                        2
                            2
                                2
                                    2
                                        2
                                            2
                                                2
                                                    2
                                                        2
                                                            2
V37 V38 V39 V40
      2
         2
```

Classification

v) If the goal is to separate diseased from healthy, PC1 is the only principal component need as it captures the variation. Running the Gaussian Mixture model with only PC1 still shows the model can perfectly separate diseased from healthy. If other characteristics are important, then other principal components can be used as they can reveal additional features of patients based on genes and contrasts between certain genes.

Problem 2

Part a

This is a list of some of the most important characteristics from the scatterplot:

- V1, V2, V4, V5 look like they have a linear relationship among each other pairwise (e.g. V1 & V2, V1 & V4, V1 & V5, V2 & V4, V2 & V5, V4 & V5)
- V3 seems to have a non-linear relationship (possibly quadratic) with each of V1,V2,V4,V5 (e.g. V3 & V1, V3 & V2, V3 & V4, V3 & V5).
- V6 does not seem to have any relationship with any other variable

Part b

Note: for all the answers here, the data was NOT scaled and NOT centered

The sum of squared errors from the estimated principal curves models is 59.81782.

Part c

The distance along the curve (arc length) between observations 1 and 2 (assume this refers to observations in the data and not points 1 and 2 in the curve) is 0.1966599.

Part d

The fraction of variance is accounted for by the first PCs is 97 %.

Part e

```
> plot(fit_pca2$x[,"PC1"],fit_pca2$x[,"PC2"],
       xlab="PC1",
      ylab="PC2")
> # Part e
                      # fitted curves for 6 dimesions
> dim(fit pcurve$s)
[1] 200
> dim(fit_pca2$rotation[,1:2]) # vectors of PC1 and PC2 from PCA
[1] 6 2
> # project curves (points <PC1,PC2> ) into subpace of the PCA
   (vectors of PC1 an d PC2 of PCA)
> proj = fit_pcurve$s %*% fit_pca2$rotation[,1:2] # projection onto PC1 and PC2
                                                   from PCA
> # order by scores (tag has index of small to largest of scores) when plotting
> lines(proj[fit pcurve$tag,],col="blue",lwd=3)
> # from : PC scores of PCA, to: projected points of principal curve into
   PCA sub space
> segments(fit_pca2$x[,"PC1"],
          fit_pca2$x[,"PC2"],
           proj[,"PC1"],
          proj[,"PC2"])
```


Just in case, here are the answers for scaled and centered: b) 233.8939, c) 0.3250526, d) 83.75% e) Same code, different graph:

Problem 3

This question was done in SAS using method = P(PCA) for the PROC FACTOR.

Part a

Using the "eigenvalue-greater-than-one" rule (Kaiser criterion), it seems that the number of factors should be 3-5 (the eigenvalue of 5 is close to 4). The scree plot shows that the elbow occurs with number of factors equal to 3. Running PCA for N=3,4 and 5 shows that factors 4 and 5 do not have any questions withe loading (absolute value) greater than 0.4 in the rotated axes using varimax. Therefore, the chosen number of factors is 3.

Eige	The FACTOR Procedure Initial Factor Method: Principal Components Prior Communality Estimates: ONE Eigenvalues of the Correlation Matrix: Total = 27 Average = 1												
Ĭ	Eigenvalue Difference Proportion Cumulative												
1	14.3878122	11.8256951	0.5329	0.5329									
2	2.5621172	1.4922098	0.0949	0.6278									
3	1.0699073	0.3211021	0.0396	0.6674									
4	0.7488053	0.0387638	0.0277	0.6951									
5	0.7100415	0.0316233	0.0263	0.7214									
6	0.6784182	0.1211723	0.0251	0.7466									
7	0.5572459	0.0384308	0.0206	0.7672									
8	0.5188151	0.0319861	0.0192	0.7864									
9	0.4868290	0.0186672	0.0180	0.8044									
10	0.4681618	0.0534180	0.0173	0.8218									

Part b

Varimax was used to check for small loadings and substantial cross-loadings (large loadings on more than one factor). The following criteria were used to purify (get rid of items that do not fall into construct domain) the measures:

- Content Validity: was ensured by having at least 3 questions per factor so that the construct domain is captured by the measure
- Discriminant Validity: the questions 54, 51, 28, 40, 53, 31 were removed sequentially since they were found to have substantial cross loadings and large cross loadings diminish discriminant validity. Question 44 was not removed because at least 3 questions are required per factor, and removing question 44 also create additional cross loadings.
- Reliability: was evaluated by looking at Cronbach's coefficient alpha. None of the variables increased alpha if removed, and alpha was ensured to be greater than 0.8 for all factors.
- Face validity: was evaluated by looking if all items in the factors made sense. Questions 35 and 48 do not seem to make sense in factor 2. Similarly, Q 47 was removed from factor 1.

Questions number assigned to each factor:

Factor 1: V29, V30, V32, V33, V34, V43, V46, V50, V52

• Factor 2: V36, V37, V38, V39, V41, V42, V44

Factor 3: V44, V45, V49

Note that there is one cross loading in question 44, but the question seems to make sense be relevant for the measuring of factor 2 and 3 (more for factor 3).

Part c

Factor 1: expression and social sharing

Factor 2: relaxation and timeout therapy

Factor 3: deep emotional effect

Part d

Factor 1: Cronbach alpha = 0.931. Deleting any variable will not cause an increase in alpha.

Factor 2: Cronbach alpha = 0.937. Deleting Q44 can cause marginal increase in alpha, but this would cause increase in cross loadings.

			Cronbach C	`cofficient /	Maha
			Variables		Alpha
			Raw		7139
			Standardize		86963
		Cronbac	ch Coefficient	Alpha with I	Delete
	Raw Var	iables	Standardized	l Variables	
Deleted Variable	Correlation with Total	Alpha	Correlation with Total	Alpha	Labe
V36	0.832323	0.923959	0.831635	0.923735	l feel
V37	0.806884	0.926378	0.806648	0.926051	lose
V39	0.827407	0.924371	0.826930	0.924173	Liste
V38	0.843449	0.922841	0.843001	0.922675	I ofte
V41	0.847201	0.922688	0.847131	0.922289	I feel
V42	0.767433	0.929906	0.767205	0.929871	Whe
V44	0.640817	0.940694	0.640926	0.940961	Musi

Factor 3: Cronbach alpha = 0.80. Deleting Q44 can cause marginal increase in alpha, but this would cause increase in cross loadings.

			Cronbach	Coefficient	Alpha
			Variables		Alpha
			Raw	0.8	308232
			Standardiz	ed 0.8	314108
		Cronba	ach Coefficient	t Alpha with	Deleted Variable
	Raw Var	iables	Standardized	l Variables	
Deleted Variable	Correlation with Total	Alpha	Correlation with Total	Alpha	Label
V44	0.702585	0.698489	0.707560	0.700479	Music sometimes touches me deep down.
	0.704322	0.687632	0.713449	0.694249	songs send shivers up my spine/goose bum
V45	0.101022				

Part e
Varimax rotated loadings of final set of items:

		Factor1	Factor2	Factor3
V43	my role keep friends informed about new music	0.80793		
V46	like discuss music on social media sites	0.80648		
V33	wear t-shirts name of my favorite musicians.	0.80215		
V34	I often Like musicians on Facebook.	0.79656		
V32	give advice/rec to my friends about songs.	0.78038		
V30	play songs with others so they understand me	0.68380		
V29	I like others to know which music I listen to.	0.65018		
V50	Being fan of bands like belonging to a club.	0.64571		
V52	knowledge of music makes me interesting	0.62251		
V38	I often unwind/relax by listening to music		0.82572	
V41	I feel less stress after listening to music.		0.81018	
V39	Listening to music is an escape.		0.80635	
V36	I feel energized after listening to music.		0.76806	
V42	When I listen to music I am worry-free.		0.75352	
V37	lose myself in pleasure of listening to music.		0.72401	
V45	songs send shivers up my spine/goose bumps.			0.76873
V49	sometimes cry after listening to certain songs.			0.74690
V44	Music sometimes touches me deep down.		0.47495	0.72953

Eigenvalues:

Eige	nvalues of the	Correlation Ma	atrix: Total = 1	8 Average = 1
	Eigenvalue	Difference	Proportion	Cumulative
1	9.84127408	7.77599688	0.5467	0.5467
2	2.06527720	1.10538420	0.1147	0.6615
3	0.95989300	0.34355860	0.0533	0.7148
4	0.61633440	0.09249789	0.0342	0.7490
5	0.52383651	0.04296844	0.0291	0.7781
6	0.48086808	0.04530530	0.0267	0.8049
7	0.43556278	0.05615083	0.0242	0.8291
8	0.37941194	0.01975173	0.0211	0.8501
9	0.35966021	0.02799678	0.0200	0.8701
10	0.33166343	0.02406842	0.0184	0.8885
11	0.30759501	0.02483517	0.0171	0.9056
12	0.28275984	0.00123323	0.0157	0.9213
13	0.28152661	0.02147163	0.0156	0.9370
14	0.26005498	0.01608457	0.0144	0.9514
15	0.24397041	0.01680335	0.0136	0.9650
16	0.22716706	0.01488187	0.0126	0.9776
17	0.21228519	0.02142590	0.0118	0.9894
18	0.19085929		0.0108	1.0000

Variance E	Variance Explained by Each Factor									
Factor1	Factor2	Factor3								
9.8412741	2.0652772	0.9598930								

Part f
Estimate scores for factors (promax):

The FACTOR Procedure Rotation Method: Promax (power = 3)

	Target Matrix for Procrustean Trans			
		Factor1	Factor2	Factor3
V43	my role keep friends informed about new music	0.94766		
V46	like discuss music on social media sites	0.98358		
V33	wear t-shirts name of my favorite musicians.	0.96724		
V34	I often Like musicians on Facebook.	1.00000		
V32	give advice/rec to my friends about songs.	0.83332		
V30	play songs with others so they understand me	0.67565		
V29	I like others to know which music I listen to.	0.57551		
V50	Being fan of bands like belonging to a club.	0.66095		
V52	knowledge of music makes me interesting	0.56801		
V38	I often unwind/relax by listening to music		1.00000	
V41	I feel less stress after listening to music.		0.95915	
V39	Listening to music is an escape.		0.97539	
V36	I feel energized after listening to music.		0.86280	
V42	When I listen to music I am worry-free.		0.88885	
V37	lose myself in pleasure of listening to music.		0.77784	
V45	songs send shivers up my spine/goose bumps.			0.96858
V49	sometimes cry after listening to certain songs.			1.00000
V44	Music sometimes touches me deep down.			0.79768

Correlation matrix:

In	Inter-Factor Correlations									
Factor1 Factor2 Factor3										
Factor1	1.00000	0.55991	0.41550							
Factor2	0.55991	1.00000	0.58477							
Factor3	0.41550	0.58477	1.00000							

Part g

Using varimax: All factors are significant predictors of consumption (time1) since p-values < 0.05. Factor 1 is the most predictive, followed by factor 2 and 3. However, the R2 is very low.

	De	pende		М	REG Pr odel: Mo able: tim	DDE	L1	lay	music				
		Numl	ber o	f O	bservat	ions	s Read	12	78				
Number of Observations Used 1278													
			Α	ına	lysis of	Var	iance						
Model			3		10683	35	561.0699	5	111.89	<.0001			
Error		13	274		40548		31.8269						
Correcte	d Tota	al 1	277		51231								
	Root	MSE			5.641	54	R-Squ	are	0.2085				
	Depe	ndent	Mea	n	n 5.8388		1 Adj R-Sq		0.2067				
	Coeff	Var			96.621	41							
			Р	ara	meter E	stir	nates						
Variable	Lab	el	DF		Paramet Estima		Stand Er	ard ror	t Value	Pr > t			
Intercept	Inte	rcept	1	T	5.838	81	0.157	781	37.00	<.0001			
Factor1			1		2.366	02	0.157	787	14.99	<.0001			
Factor2			1	T	1.459	34	0.157	787	9.24	<.0001			
Factor3			1		0.798	84	0.157	787	5.06	<.0001			

Using promax: Factors 1 and 2 are significant predictors of consumption (time1) since p-values <0.05. Factor 1 is the most predictive, followed by factor 2. Factor 3 is not a significant predictor of consumption since p-value > 0.05. However, the R2 is very low.

Part h

PROC CALIS using the promax factors was run giving the same results as before. Factors 1 and 2 are significant predictors of consumption (time1) since p-values <0.05. Factor 1 is the most predictive, followed by factor 2. Factor 3 is not a significant predictor of consumption since p-value > 0.05.

If a CFA/SEM model with PROC CALIS instead of the regression in the previous part is used with the original input dataset, the results change. Bentler's CFI > .9 indicates that the fit is acceptable. The coefficients of the predictors change. Factor 1 remains the most important predictor, followed by Factor 2 and 3. However, Factor 2 now is insignificant at 0.05 level (borderline significant at 0.10 level). Factor 3 remains insignificant.

Covariance Str	The CALIS Procedure ucture Analysis: Maximum Likelihood E	etimation
	Fit Summary	
Modeling Info	Number of Observations	1278
	Number of Variables	19
	Number of Moments	190
	Number of Parameters	43
	Number of Active Constraints	
	Baseline Model Function Value	14.2349
	Baseline Model Chi-Square	18178.0063
	Baseline Model Chi-Square DF	17
	Pr > Baseline Model Chi-Square	<.000
Absolute Index	Fit Function	0.9622
	Chl-Square	1228.770
	Chl-Square DF	147
	Pr > Chi-Square	<.000
	Z-Test of Wilson & Hilferty	26.5167
	Hoelter Critical N	184
	Root Mean Square Residual (RMR)	0.1060
	Standardized RMR (SRMR)	0.0548
	Goodness of Fit Index (GFI)	0.896
Parsimony Index	Adjusted GFI (AGFI)	0.8657
-	Parsimonious GFI	0.770
	RMSEA Estimate	0.0759
	RMSEA Lower 90% Confidence Limit	0.0720
	RMSEA Upper 90% Confidence Limit	0.0799
	Probability of Close Fit	<.000
	ECVI Estimate	1.0308
	ECVI Lower 90% Confidence Limit	0.9454
	ECVI Upper 90% Confidence Limit	1.1219
	Akalke Information Criterion	1314.770
	Bozdogan CAIC	1579.3518
	Schwarz Bayesian Criterion	1536.3518
	McDonald Centrality	0.6549
Incremental Index	Bentler Comparative Fit Index	0.9399
	Bentler-Bonett NFI	0.9324
	Bentler-Bonett Non-normed Index	0.930
	Bollen Normed Index Rho1	0.9214
	Bollen Non-normed Index Delta2	0.9400
	James et al. Parsimonious NFI	0.8018

The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation

						Lin	near Ed	quation	15						
time1	=	2.4034	(**)	f1	+	0.5747	(ns)	f2	+	0.1694	(ns)	f3	+	1.0000	e19
V29	=	0.9502	(**)	f1	+	1.0000		e1							
V30	=	1.0423	(**)	f1	+	1.0000		e2							
V32	=	1.1022	(**)	f1	+	1.0000		e3							
V33	=	1.0403	(**)	f1	+	1.0000		e4							
V34	=	1.0671	(**)	f1	+	1.0000		e5							
V43	=	1.0175	(**)	f1	+	1.0000		ев							
V46	=	1.0622	(**)	f1	+	1.0000		e7							
V50	=	0.8882	(**)	f1	+	1.0000		e8							
V52	=	0.8907	(**)	f1	+	1.0000		e9							
V36	=	0.9841	(**)	f2	+	1.0000		e10							
V37	=	1.0247	(**)	f2	+	1.0000		e11							
V38	=	1.0198	(**)	f2	+	1.0000		e12							
V39	=	0.9935	(**)	f2	+	1.0000		e13							
V41	=	0.9781	(**)	f2	+	1.0000		e14							
V42	=	0.9335	(**)	f2	+	1.0000		e15							
V44	=	0.9401	(**)	f3	+	1.0000		e16							
V45	=	0.9777	(**)	f3	+	1.0000		e17							
V49	=	0.8537	(**)	f3	+	1.0000		e18							

		Effects in	Linear Equa	ations		
Variable	Predictor	Parameter	Estimate	Standard Error	t Value	Pr > t
time1	f1	b1	2.40337	0.25000	9.6135	<.0001
time1	f2	b2	0.57471	0.35192	1.6331	0.1025
time1	f3	b3	0.16936	0.30594	0.5536	0.5799
V29	f1	p1	0.95024	0.02917	32.5747	<.0001
V30	f1	p2	1.04227	0.03180	32.7778	<.0001
V32	f1	р3	1.10224	0.02986	36.9166	<.0001
V33	f1	p4	1.04027	0.03149	33.0365	<.0001
V34	f1	p5	1.06710	0.03378	31.5893	<.0001
V43	f1	рβ	1.01754	0.03022	33.6760	<.0001
V46	f1	p7	1.06220	0.03212	33.0663	<.000
V50	f1	p8	0.88820	0.03117	28.4976	<.000
V52	f1	p9	0.89072	0.02891	30.8065	<.000
V36	f2	p10	0.98415	0.02567	38.3389	<.000
V37	f2	p11	1.02466	0.02785	36.7887	<.000
V38	f2	p12	1.01978	0.02593	39.3265	<.000
V39	f2	p13	0.99354	0.02600	38.2194	<.000
V41	f2	p14	0.97812	0.02513	38.9195	<.000
V42	f2	p15	0.93354	0.02708	34.4690	<.000
V44	f3	p16	0.94014	0.02655	35.4045	<.000
V45	f3	p17	0.97767	0.02915	33.5369	<.000
V49	f3	p18	0.85368	0.03460	24.6763	<.000

Code for extra credit:

```
proc calis data=SL.music;
lineqs
        time1 = b1 f1 + b2 f2 + b3 f3 + e19,
        V29 = p1 f1 + e1,
        V30 = p2 f1 + e2,
        V32 = p3 f1 + e3,
        V33 = p4 f1 + e4
       V34 = p5 f1 + e5,
        V43 = p6 f1 + e6,
        V46 = p7 f1 + e7,
        V50 = p8 f1 + e8,
        V52 = p9 f1 + e9,
        V36 = p10 f2 + e10,
        V37 = p11 f2 + e11,
        V38 = p12 f2 + e12,
        V39 = p13 f2 + e13,
        V41 = p14 f2 + e14,
        V42 = p15 f2 + e15,
        V44 = p16 f3 + e16,
        V45 = p17 f3 + e17,
        V49 = p18 f3 + e18;
std
        e1-e19 = vare1-vare19,
       f1 =1,
       f2 =1,
       f3 =1;
cov
       f1 f2= covf1f2,
        f1 f3 = covf1f3,
        f2 f3 = covf2f3;
var
        time1
        V29 V30 V32 V33 V34 V43 V46 V50 V52
                        V36 V37 V38 V39 V41 V42
                        V44 V45 V49
run;
```