EXAMEN SUPLETORIO INTELIGENCIA DE NEGOCIOS

FECHA: 3 agosto 2022

Hora: 9H:00

Duración: 1H:50

Profesor: MSc. Fernando Garrido S.

Email: jfgarridos@utn.edu.ec

Modalidad: Presencial (Laboratorio 5)

Herramientas a utilizar: Power BI – Word – Excel – Python – Adobe

NOMBRE ESTUDIANTE:

AULA VIRTUAL:

- Crear un archivo PDF (**ApellidoNombre-Resolución.pdf**) con las imágenes de lo desarrollado por cada cuestionario/pregunta.
- Subir al Aula Virtual un archivo empaquetado **ApellidoNombre.zip** conteniendo: ApellidoNombre.ipynb ApellidoNombre.pbix ApellidoNombre-Resolución.pdf

EJERCICIO 1: Manipulación de Datos y Diseño de un Tablero en Power BI (5 PTOS)

Imagine que es un analista de negocios y desea que esa información ayude a las personas que se están jubilando. Desee identificar qué áreas de un país son los lugares más habitables para las personas jubiladas. Nos conectaremos a una fuente de datos web de EE. UU. para ayudar a responder estas preguntas.

Cargar datos desde el URL: <u>The Best And Worst States For Retirement 2021: All 50 States, Ranked | Bankrate</u>

Best States to Retire

State	Overall rank	Overall score	Affordability rank (40%)	Wellness rank (20%)	Culture rank (15%)	Weather rank (15%)	Crime rank (10%)
Georgia	1	17.25	3	32	41	4	29
Florida	2	17.45	14	24	15	14	27
Tennessee	3	18.85	1	42	29	8	45
Missouri	4	20	3	34	34	18	42
Wyoming	5	21.95	17	28	10	49	7
Arizona	6	22.05	16	27	40	1	41
Ohio	7	22.85	19	31	32	15	20
Indiana	8	22.95	7	41	45	20	22
Kentucky	9	23.25	14	46	47	2	11
North Carolina	10	23.4	11	37	27	29	32
West Virginia	11	23.45	21	47	24	3	16
South Dakota	13	23.5	18	30	13	41	22

Utilizar la tabla "Best States to Retire", como muestra la figura:

Transformar los datos (como cambiar un tipo de datos o eliminar columnas).

Crear una medida

• Se desea crear el Dashboard como se muestra en la figura.

EJERCICIO 2: Transformar datos en Python (5 PTOS)

Indicaciones:

1) Trabajar con el archivo **test_ETL.csv**.

2) Crear un notebook ipynb.

3) Para comenzar este análisis exploratorio, primero importe bibliotecas para cargar data set y para graficar los datos.

4) Echemos un vistazo rápido a cómo se ven los datos.

In [7]:]: df1.head(5)									
Out[7]:		TOTAL_SESSIONS	TOTAL_GAME_TIME	ASSESSMENT_SESSION_COUNT	INSTALLATION_ID	TITLE	TIMESTAMP	TYPE	WORLD	GA
	0	26	378218	1	00abaee7	Cart Balancer (Assessment)	2019-09- 11T18:56:34.661Z	Assessment	CRYSTALCAVES	
	1	72	4864094	4	01242218	Air Show	2019-09- 22T22:17:05.724Z	Game	TREETOPCITY	
	2	61	2056732	3	01242218	Bird Measurer (Assessment)	2019-09- 22T22:28:22.446Z	Assessment	TREETOPCITY	
	3	14	92624	1	01242218	Cart Balancer (Assessment)	2019-09- 22T21:39:06.838Z	Assessment	CRYSTALCAVES	
	4	36	587169	2	01242218	Cauldron Filler (Assessment)	2019-09- 22T21:23:26.033Z	Assessment	MAGMAPEAK	
	4									-

5) Encontrar Gráficos de distribución (histograma/gráfico de barras) de columnas muestreadas:

Para los histogramas se tomo 25 filas iniciales

