ENEE 303 Recitation 08

Instructor: Dr. Agisilaos Iliadis

TA: Chang-Mu Han

04/03/2020

Week Notes

- Transistor amplifiers
 - Review for MOSFET and BJT
- Voltage transfer characteristics
- Small signal voltage gain
- Small signal operation and models
- 3 example problems

Week Notes

- To build a voltage amplifier with the transistor, MOSFET or BJT
- To obtain a linear amplifier from the nonlinear transistors
- To model the transistor operation so that we can analyze and design transistor amplifiers

Basic principles

Recall the current equations for MOSFET and BJT

Figure 7.1 Operating (a) an NMOS transistor and (b) an *npn* transistor in the active mode. Note that $v_{GS} = V_m + v_{OV}$ and $v_{DS} \ge v_{OV}$; thus $v_{GD} \le V_m$, which ensures channel pinch-off at the drain end. Similarly, $v_{BE} \simeq 0.7$ V, and $v_{CE} \ge 0.3$ V results in $v_{BC} \le 0.4$ V, which is sufficient to keep the CBJ from conducting.

Voltage transfer characteristics

 To use transistor to build a voltage amplifier, we need a load resistance

Voltage transfer characteristics

Linear amp by biasing MOSFET to operate in the active region and by keeping the input signal small

$$V_{GS}\big|_{B} = V_{t} + \frac{\sqrt{2k_{n}R_{D}V_{DD} + 1} - 1}{k_{n}R_{D}}$$

$$v_{DS} = V_{DD} - i_D R_D$$

Small signal voltage gain

MOSFET case

$$v_{DS} = V_{DD} - \frac{1}{2} k_n R_D (v_{GS} - V_t)^2$$

$$A_{v} = \frac{dv_{DS}}{dv_{GS}} \bigg|_{v_{GS} = V_{GS}} = -k_{n} V_{OV} R_{D}$$

$$I_D = \frac{1}{2} k_n V_{OV}^2$$

$$A_v = -\frac{I_D R_D}{V_{OV}/2} = -\frac{V_{DD} - V_{DS}}{V_{OV}/2}$$

$$|A_{v\max}| = \frac{V_{DD} - V_{DS}|_{B}}{V_{OV}|_{B}/2} = \frac{V_{DD} - V_{OV}|_{B}}{V_{OV}|_{B}/2}$$

Small signal voltage gain

• BJT case

$$v_{CE} = V_{CC} - I_C R_C = V_{CC} - I_S e^{\frac{v_{BE}}{V_T}} R_C$$

$$A_v = \frac{dv_{CE}}{dv_{BE}} \Big|_{v_{BE} = V_{BE}} = -\left(\frac{I_C}{V_T}\right) R_C$$

$$A_v = -\frac{V_{CC} - V_{CE}}{V_T}$$

$$|A_{v\text{max}}| = \frac{V_{CC} - 0.3}{V_T}$$

Small signal models

MOSFET

Small-Signal, Equivalent-Circuit Models

Small signal condition: $v_{gs} \ll 2(V_{GS} - V_t)$

$$g_m \equiv \frac{\partial i_D}{\partial v_{GS}} \bigg|_{v_{GS} = V_{GS}} = k_n (V_{GS} - V_t)$$

$$A_v \equiv \frac{v_{ds}}{v_{gs}} = -g_m R_L$$

BJT

Hybrid- π Model

 $(g_m v_\pi)$ Version

T Model

 $(g_m v_\pi)$ Version

(αi) Version

$$v_{be} \ll V_T$$

$$g_{m} = \left. \frac{\partial i_{C}}{\partial v_{BE}} \right|_{i_{C} = I_{C}} = \frac{I_{C}}{V_{T}} \qquad r_{\pi} = \frac{I_{C}}{V_{T}}$$

$$A_v \equiv \frac{v_{ce}}{v_{be}} = -g_m R_0$$

Example Problem 1

- Consider a BJT amplifier circuit having $I_s=10^{-15}~A$, a collector resistance $R_C=6.8~k\Omega$, and a power supply $V_{CC}=10~V$.
 - (a) what is I_C and V_{BE} when $V_{CE}=3.2~V$?
 - (b) what is voltage gain A_V ?
 - (c) keeping $I_{\mathcal{C}}$ unchanged, find $R_{\mathcal{C}}$ that results in a voltage gain of -320 V/V
 - (d) What is the largest negative signal swing allowed at the output? Assuming $v_{CE} \geq 0.3~V$
 - (e) what is the corresponding v_{BE} ?

Example problem 1 continued

(a)
$$V_{CC} - I_C R_C = V_{CE}$$

$$I_C = 1 mA$$

$$I_C = 1 mA$$

$$I_C = I_S e^{\frac{V_{BE}}{V_T}} \qquad V_{BE} = 690 \ mV$$

$$V_{BE} = 690 \ mV$$

(c) To keep
$$I_C$$
 unchanged and $A_V = -\frac{I_C R_C}{V_T}$

$$R_C = -\frac{A_V V_T}{I_C} = 8.28 \ k\Omega$$

 $A_V = -\frac{I_C R_C}{V_T} = -272 \ V/V$

(d)
$$V_{CE} = V_{CC} - I_C R_C = 1.72 V$$

Since $v_{CE} \ge 0.3 \ V$, the largest allowable negative signal is $1.72 - 0.3 = 1.42 \ V$

$$1.72 - 0.3 = 1.42 V$$

(e)
$$A_V = -320 \, V/V$$

$$v_{BE} = \frac{v_{CE}}{A_V} = 4.4 \ mV$$

Example problem 2

Design the circuit of Fig. 5.52(e) to operate at a dc drain current of 0.5 mA and $V_D = +2$ V. Let V_T = 1 V, $k_n'W/L$ = 1 mA/V², λ = 0, $V_{DD} = V_{SS} = 5$ V. Use standard 5% resistor values (see Appendix G), and give the resulting values of I_D , V_D , and V_S .

$$I_D = \frac{1}{2} (k'_n W/L) V_{OV}^2$$
 $V_{OV} = V_{GS} - V_t = 1 V$

$$V_G - V_S = V_{OV} + V_t$$

$$V_S = -2 V$$

$$V_D = \frac{V_S - V_{SS}}{R_S} \qquad R_S = 6 \text{ ks}$$

$$I_D = \frac{V_S - V_{SS}}{R_S} \qquad R_S = 6 \ k\Omega$$

$$I_D = \frac{V_{DD} - V_D}{R_D} \qquad R_D = 6 \ k\Omega$$

Because of the standard resistor, there only exists $R=6.2 k\Omega$

Example problem 2 continued

If we choose $R_S = R_D = 6.2k\Omega$

$$V_{GS} = V_G - V_S = -V_S = V_{SS} - I_D R_S$$

$$I_D = \frac{1}{2} (k'_n W/L) (V_{GS} - V_t)^2 = \frac{1}{2} (V_{SS} - I_D R_S - V_t)^2$$

$$R_S^2 I_D^2 - (2 + R_S (V_{SS} - V_t)) I_D + (V_{SS} - V_t)^2 = 0$$

 $I_D = 0.49 \, mA \, \text{or} \, 0.86 \, mA$

$$V_s > 0$$

$$V_{\rm s} = -1.96 \, V_{\rm s}$$

$$V_D = 1.96 V$$

Example problem 3

Consider the amplifier circuit of Fig. 7.15(a) without the load resistance R_L and with channel-length modulation neglected. Let $V_{DD} = 5 \text{ V}$, $V_t = 0.7 \text{ V}$, and $k_n = 1 \text{ mA/V}^2$. Find V_{OV} , I_D , R_D , and R_G to obtain a voltage gain of -25 V/V and an input resistance of $0.5 \text{ M} \Omega$. What is the maximum allowable input signal, \hat{v}_i ?

We want $A_{v}=-25\,V/V$ and $R_{in}=0.5\,M\Omega$ By KVL

$$R_{in} = \frac{v_i}{i_i} = \frac{v_i}{v_i - v_o} R_G = \frac{R_G}{26}$$
 $R_G = 26R_{in} = 13 M\Omega$

Example problem 3 continued

$$A_v = -g_m R_D$$
, we have $g_m R_D = 25 = k_n V_{OV} R_D$ $I_D R_D = \frac{1}{2} k_n V_{OV}^2 R_D = \frac{1}{2} g_m V_{OV} R_D = 12.5 V_{OV}$ $V_{OV} = V_{DD} - I_D R_D - V_t = 5 - 12.5 V_{OV} - 0.7$

$$V_{OV} = 0.319 V$$

$$g_m = k_n V_{OV} = 319 \,\mu A/V$$

$$R_D = 78.5 k\Omega$$

To obtain max allowable input signal, we need to keep the MOSFET in saturation. In other words,

$$v_{DS} \ge v_{GS} - V_t$$

For the equality condition, $v_{DS}=v_{GS}-V_t$ $V_{DS}-|A_v|\widehat{v_i}=V_{GS}+\widehat{v_i}-V_t$

$$\widehat{v}_i = \frac{V_t}{|A_v| + 1} = \frac{0.7V}{26} = 26.9 \ mV$$

Table J.1 Standard Resistance Values 1% Resistor Values ($k\Omega$) 5% Resistor Values ($k\Omega$) 100-174 178-309 316-549 562-976