M8 - 11.1 - Blue Marbles out of Bag Notes Visually

You have 3 blue marbles and 2 red marbles in a bag, total 5 marbles.

You randomly take a marble out of the bag. What is the probability that it will be a blue marble?

$$\frac{3 blue \ marbles}{5 \ total \ marbles} = 60\%$$

You now take a blue marble out of the bag.

What is now the probability that your next drawn marble will be blue?

$$\frac{2 \text{ blue marbles}}{4 \text{ total marbles}} = 50\%$$

M8 - 11.1 - Taking Red Marbles out of Bag Notes Visually

You have 3 blue marbles and 2 red marbles in a bag, total 5 marbles.

You randomly take a marble out of the bag. What is the probability that it will be a red marble?

$$\frac{2 \ red \ marbles}{5 \ total \ marbles} = 40\%$$

You now take a blue marble out of the bag.

What is now the probability that your next drawn marble will be red?

$$\frac{2 \, red \, marbles}{4 \, total \, marbles} = 50\%$$

M8 - 11.1 - Independent Events Notes

$$Probability = \frac{number\ of\ favorable\ outcomes}{total\ outcomes}$$

Example: Flipping a coin.

The probability of flipping a head.

$$P(H) = \frac{1}{2} \underbrace{\begin{array}{c} \longleftarrow & 1 \ head \\ \ge & \longrightarrow \\ \end{array}} 2 \ possible \ outcomes$$

Example: Probability of flipping two heads in a row

What is the probability of flipping two heads in a row?

$$P(H, H) = P(H) \times P(H) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

Method 2: Table

Method 3: Tree

What is the probability of 1 head and 1 tail (in any order)?

$$P(H, T \text{ or } T, H) = P(H, T) + P(T, H)$$

= $\frac{1}{4} + \frac{1}{4}$
= $\frac{1}{2}$

M8 - 11.1 - Independent Events Notes

Example: Rolling a die

The probability of rolling a 6 with a die.

$$P(6) = \frac{1}{6} \underbrace{-1 \, six}_{6 \, total \, numbers}$$

Example: Rolling two dice.

What is the probability of rolling two 6's?

Method 1:
$$P(6,6) = P(6) \times P(6) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$

Method 2:

	1	2	3	4	5	6
1	(<mark>1</mark> ,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(<mark>2</mark> ,1)	(<mark>2</mark> ,2)	(<mark>2</mark> ,3)	(<mark>2</mark> ,4)	(2,5)	(<mark>2</mark> ,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(<mark>4</mark> ,1)	(4,2)	(4 ,3)	(4 ,4)	(4 ,5)	(4,6)
5	(5,1)	(<mark>5</mark> ,2)	(5 ,3)	(<mark>5</mark> ,4)	(<mark>5</mark> ,5)	(<mark>5</mark> ,6)
6	(<mark>6</mark> ,1)	(<mark>6</mark> ,2)	(<mark>6</mark> ,3)	(<mark>6</mark> ,4)	(6,5)	(<mark>6</mark> ,6)

Method 3:

M8 - 11.1 - Independent Events Notes

Example: Rolling a die and flipping a coin.

Method 1: $P(T,4) = P(T) \times P(4) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$

Method 2:

	1	2	3	4	5	6
Н	H,1	H,2	H,3	H,4	H,5	H,6
Т	T,1	T,2	T,3	T,4	T,5	T,6
					K	D/T 4

 $P(T,4)=\frac{1}{12}$

Method 3:

M8 - 11.1 - Mean, Median, Mode Notes

Median: Middle number

$$Mean = \frac{0+1+1+2+2+3+3+3+4+4+10}{11}$$

$$Mean = \frac{33}{11}$$

$$Mean = 3$$

M8 - 11.1 - Probability Odds Notes

$$P(x) = \frac{\text{Desired outcomes}}{\text{Total outcomes}}$$
 "Probability of x"

What is the probability of drawing an ace from a standard deck?

$$P(Ace) = \frac{4}{52} \frac{4}{52} = 4 \text{ aces}$$

Odds:

Odds in Favor: Odds Against

4:48

 $Odds \ Against = Total - Odds \ in \ favour$

M8 - 11.1 - Probability Rules Notes

Sample Space: List of all possible outcomes.

Event	Sample Space		
For a coin toss	heads, tails		
Sample space of rolling a six-sided die?	1, 2, 3, 4, 5, 6		

Probability Notation

Sample Space: The set of all possible outcomes. For a coin toss, the sample space is $S = \{H, T\}$.

P(E) is the probability of event E taking place.

Probabilities can be expressed as decimals or fractions between 0 and 1 or as percentages between 0 and 100.

- 1. The probability of an event is between 0 and 1. (i.e. $0 \le P(E) \le 1$). The probability can never be less than 0% or greater than 100%.
- 2. If an event can't happen it has a probability of 0 (i.e. P(E) = 0). The probability of rolling a 7 on a standard six-sided die has a probability of 0.
- 3. If an event will happen with certainty, it has a probability of 1 (i.e. P(E) = 1). The probability of getting a head or a tail when flipping a coin is 1.
- 4. If the probability of an event occurring is P(E), then the probability that it doesn't occur is P(not E) = 1 P(E). For example, the probability of not rolling a 6 is:

$$P(not 6) = 1 - P(6) = 1 - \left(\frac{1}{6}\right) = \frac{5}{6}$$

5. The sum of probabilities of all outcomes in the sample space must sum to 1. When rolling a dice the sample space is $S = \{1,2,3,4,5,6\}$ and the sum of probabilities of all possible outcomes is

$$P(1,2,3,4,5 \text{ or } 6) = P(1) + P(2) + P(3) + P(4) + P(5) + P(6)$$

$$=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{6}{6}=1$$

M8 - 11.1 - Dependent Events Notes

Example: Choosing marbles from a bag of 3 red and 3 blue marbles.

What is the probability of choosing two blue marbles in a row without replacement?

Probability of choosing a blue marble on the first draw.

$$P(blue_1) = \frac{3 \ blue}{6 \ total} = \frac{1}{2}$$

Assuming we chose a blue marble on the first draw, there will only be 2 blue marbles remaining. Therefore the probability of choosing a blue marble on the second draw is.

$$P(blue_2) = \frac{2 \ blue}{5 \ total} = \frac{2}{5}$$

To calculate the total probability of choosing two blue marbles in a row, we multiply the probabilities of the dependent events.

$$P(blue, blue) = P(blue_1) \times P(blue_2) = \frac{1}{2} \times \frac{2}{5} = \frac{2}{10} = \frac{1}{5}$$

Note: The probability of choosing two blue marbles with replacement is $\frac{1}{4}$.

Using a tree:

There are 6 leaves that correspond to the event described in the question.

Each leaf has a probability of
$$\frac{1}{30}$$

Each leaf has a probability of
$$\frac{1}{30}$$

Therefore, $P(blue, blue) = \frac{1}{30} + \frac{1}{30} + \frac{1}{30} + \frac{1}{30} + \frac{1}{30} + \frac{1}{30} = \frac{6}{30} = \frac{1}{5}$

M8 - 11.1 - Complementary Events Notes

Flipping a coin

Event: Heads **Complement**: Tails

The complement of Heads is everything not Heads → Tails

Rolling a die

Event: Rolling a 4 **Complement**: Rolling a 1, 2, 3, 5, 6

The complement of rolling a 4 is rolling everything not a $4 \rightarrow 1$, 2, 3, 5, 6

Notation:

If the event heads is: H The complement of H is: \sim H If the event tails is: T The complement of T is: \sim T