UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS CURITIBA

ALLAN PATRICK
BRUNO MABA
TOMÁS ABRIL

RELATÓRIO

Desenvolvimento de um Sistema de Controle Fuzzy para o desvio de obstáculos para um robô móvel autônomo simulado no ambiente V-REP

CURITIBA 2017

ALLAN PATRICK BRUNO WANDREY TOMÁS ABRIL

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Desenvolvimento de um Sistema de Controle Fuzzy para o desvio de obstáculos para um robô móvel autônomo simulado no ambiente V-REP

Sumário

1	INTRODUÇÃO	5
1.1	Fundamentação teórica	5
1.2	Ambiente de simulação V-REP	5
2	DESENVOLVIMENTO	
2.1	Definindo Váriaveis linguísticas	
3	COMBINAÇÃO DE REGRAS FUZZY	7
3.1	Defuzzificação	8
4	CÓDIGO	ç
5	CONCLUSÃO	ç
	REFERÊNCIAS	11

1 Introdução

O presente relatório tem com objtivo detalhar funcionamento e a implementação de um sistema fuzzy e aplicado ao ambiente de simulacao V-REP. Além proporcionar uma ampla discusão sobre o metodos utilizados para obtenção dos melhores resultados. Conforme será apresentado a seguir.

A seguir apresenta-se uma preve fundamentação teórica sobre lógica Fuzzy e o desenvolvimento da implementação fuzzy para controle em um ambiente simulado.

1.1 Fundamentação teórica

Lógica Fuzzy conhecida também por lógica difusa surgiu com Lofti A. Zadeh, Berkeley (1965), que desenvolveram a teoria de conjuntos fuzzy. Tradicionalmente, uma proposição lógica tem dois extremos: ou é completamente verdadeiro ou é completamente falso Entretanto, na lógica Fuzzy, uma premissa varia em grau de verdade de 0 a 1, o que leva a ser parcialmente verdadeira ou parcialmente falsa. As premissas entao passam por regras que sao ativadas de acordo com o valor de pertinencia das variaveis.

1.2 Ambiente de simulação V-REP

V-REP(Virtual Robot Experimentation Plataform) é um ambiente de simulação de robôs, onde os atuadores e sensores podem ser acessados por api's em diversa linguages dentre eles C/C++ que utilizamos para o desenvolvimento. O robô que programos foi o KJunior o qual foi nos fonecido código fonte pelo professor.

2 Desenvolvimento

As seções a seguir irão detalhar os passos aplicados no sistema de controle fuzzy no robô kjunior. Definindo váriaveis linguísticas

2.1 Definindo Váriaveis linguísticas

- MP = Muito Perto
- P = Perto

Figura 1 – Regras velocidades motores

• M = Medio

Figura 2 – Regras velocidades motores

- RT Rápido Trás
- MT Médio Trás
- DT Devagar Trás
- DF Devagar Frente
- MF Médio Frente
- RF Rápido Frente

3 Combinação de regras Fuzzy

Definido as variavés linguísticas foi realizado combinações possível para os dois motores do robô especificando quais ações devem ser tomadas para determinadas entradas. A seguir apresenta-se as duas tabelas com multiplas combinasções de regras tanto para motor esquerdo quanto para o motor direito e suas respectivas ações.

SE	\mathbf{SF}	SR	MD
M	M	M	RF
M	M	Р	MF
M	M	MP	RF
M	Р	M	DF
M	Р	Р	MF
M	Р	MP	RF
M	MP	M	RF
M	MP	Р	RF
M	MP	MP	RF
Р	M	M	MF
Р	M	Р	RF
Р	M	MP	MF
Р	Р	M	DT
Р	Р	Р	MF
Р	Р	MP	MF
Р	MP	M	MT
Р	MP	Р	DF
Р	MP	MP	DF
MP	M	M	DT
MP	M	Р	DF
MP	M	MP	DT
MP	Р	M	MT
MP	Р	Р	MF
MP	Р	MP	DT
MP	MP	M	DT
MP	MP	Р	DT
MP	MP	MP	DF

Tabela 1 – Tabela de regras para motor direito

- SE Sensor Esquerdo
- SF Sensor Frontal
- SR Sensor Direito

- MD Motor Direito
- ME Motor Esquerdo

SE	\mathbf{SF}	\mathbf{SR}	ME
М	М	М	RF
M	M	Р	DF
M	M	MP	DT
M	Р	Μ	DT
M	Р	Р	DT
M	Р	MP	MT
M	MP	Μ	MT
M	MP	Р	MT
Μ	MP	MP	DT
	M	Μ	RF
Р	M	Р	MT
P P P P	M	MP	DT
Р	Р	Μ	RF
Р	Р	Р	MT
Р	Р	MP	DT
Р	MP	Μ	RF
P P	MP	Р	RT
Р	MP	MP	RT
MP	M	Μ	MF
MP	M	Р	MF
MP	M	MP	DT
MP	Р	Μ	DF
MP	Р	Р	DF
MP	Р	MP	DT
MP	MP	M	DF
MP	MP	Р	DF
MP	MP	MP	DT

Tabela 2 – Tabela de regras para motor esquerdo

3.1 Defuzzificação

O sistema funciona analisando as distâncias medidas pelos sensores e associando valores as variaveis linguisticas por uma funcao de fuzzyficaç $ilde{a}o$. A distância lida por um sensor é dada em um valor entre 2000 e 0. Este valor é trabalhado em uma função de fuzzyficaç $ilde{a}o$. Este float entre 1 e 0 ativa regras de acordo com seu valor. Existem diversas regras, como explicitado anteriormente. Os valores de saída das regras sao defuzzificados de acordo com o grafico da figura 2 atraves do calculo da centroide da area dos valores maximos, que entao transmite um valor de 10 a -10 aos motores.

4 Código

O código pode ser acessado em https://github.com/tomasabril/vrep-fuzzy.

5 Conclusão

O projeto foi concluido satisfatoriamente, onde conseguimos implementar um sistema fuzzy na prática, pois o robô consegue desviar de todos osbstáculos com boa margem de segurança ao risco de bater na parade, apresentando ainda movimentos suaves na realização de curvas demostrando-se um controle muito eficaz nas tomadas de decições para desvios de osbstáculos.

Os conhecimentos adquiridos em sala de aula foram revistos e aprofundados. O desenvolvimento na plataforma VREP foi relativamente trabalhoso, visto que houveram diversas dificuldades em apropriar o sistema de base, onde utilizamos um sistema codificado dentro do arquivo principal do robô ate que o sistema fornecido fosse apropriado.

Referências