

Mathematical Statistics and Data Analysis

Lecture 9: Hypothesis Testing

Lyu Ni

DaSE@ECNU (Ini@dase.ecnu.edu.cn)

December 2, 2019

Outlines

1 Hypothesis Testing

Reading Material

Textbook:

• Rice: Chapter 9;

• Mao: Chapter 7.1, 7.2, 7.3, 7.4, 6.6;

Example: The Lady Tasting Tea

- Lady Ottoline claimed that she was able to point out that the server had poured milk first or tea first. This means she could distinguish
 - TM: Tea first and then Milk;
 - MT: Milk first and then Tea.
- There is a hypothesis:

H: This lady was not able to distinguish TM and MT.

- The experiment was designed as follows:
 - Prepared 8 cups: 4 cups for TM and 4 cups for MT;
- Result: Lady Ottoline identified 8 out of 8 correctly.
- What can you conclude from this experiment?

Example: The Lady Tasting Tea (Con'd)

- Fisher's Idea:
 - Suppose the hypothesis is correct. The probability that Lady Ottoline correctly identified 8 out of 8 is

$$\binom{8}{4}^{-1} = \frac{1}{70} \approx 0.014$$

which is a small probability.

- A small probability event is considered to an event that cannot be actually occurred in an experiment.
- However, this small probability event occurred.
- This means the hypothesis is not correct and we need to reject the hypothesis.
- Therefore, Lady Ottoline was deemed to be able to distinguish TM and MT.

Example: Normal Distribution

- A plant casts a type of alloy.
- The alloy intensity is thought to be distributed as $N(\theta, 16)$, where θ is required to be not less than 110 Pa.
- To guarantee the alloy quality, the plant needs to examine whether the manufacturing process goes wrong, that is, the intensity of the alloy is less than 110 Pa.
- The plant randomly selects 25 pieces of alloy and measures their intensity: x_1, x_2, \dots, x_{25} .
- The sample mean is $\bar{x} = 108.2$ Pa.
- Problem: Does the manufacturing process go wrong?

Example: Normal Distribution (Con'd)

Let's analyze this problem as follows:

- It is a (statistical) hypothesis testing problem.
 - For example, we are interested in the proposition whether the alloy intensity is less than 110 Pa?
 - It is not a parameter estimation problem.
 - We need to make a decision, that is, the answer is "Yes" or "No".
- Define the hypothesis.
 - For example, the involved parameter spaces are, respectively,

$$\Theta_0 = \{\theta : \theta \ge 110\}, \quad \Theta_1 = \{\theta : \theta < 110\}.$$

• If the hypothesis is correct, $\theta \in \Theta_0$; otherwise, $\theta \in \Theta_1$.

Example: Normal Distribution (Con'd)

Let's analyze this problem as follows:

- It is a (statistical) hypothesis testing problem.
 - For example, we are interested in the proposition whether the alloy intensity is less than 110 Pa?
 - It is not a parameter estimation problem.
 - We need to make a decision, that is, the answer is "Yes" or "No".
- Define the hypothesis.
 - For example, the involved parameter spaces are, respectively,

$$\Theta_0 = \{\theta : \theta \ge 110\}, \quad \Theta_1 = \{\theta : \theta < 110\}.$$

• If the hypothesis is correct, $\theta \in \Theta_0$; otherwise, $\theta \in \Theta_1$.

Example: Normal Distribution (Con'd)

- Conduct a test via a statistic.
 - For example, $x_1, x_2, \cdots, x_{25} \stackrel{\text{iid}}{\sim} N(\theta, 16)$ and $\bar{x} = 108.2$;
 - The sample mean \bar{x} is a reasonable statistic since \bar{x} is a complete and sufficient statistic for θ .
 - It is known that $\bar{x} \sim N(\theta, 16/25)$.
 - If \bar{x} is smaller, θ is thought to be smaller, and thus we are more likely to reject the null hypothesis: $H_0: \theta \geq 110$.
 - Our decision is to reject H_0 if $\bar{x} \leq c$, where c is a constant.
 - Since the sample is random, the decision may be wrong.
 - We would like to minimize the probability that we reject H_0 when H_0 is true.

Example: Normal Distribution (Con'd)

- Conduct a test via a statistic.
 - Under H_0 , the probability that we reject H_0 is

$$P(\bar{x} \le c | \theta \ge 110) = P\left(\frac{\bar{x} - \theta}{\sqrt{16/25}} \le \frac{c - \theta}{\sqrt{16/25}} \middle| \theta \ge 110\right)$$
$$= \Phi(1.25 * (c - \theta) | \theta \ge 110)$$
$$\le \Phi(1.25 * (c - 110))$$

- Let $\Phi(1.25*(c-110)) = 0.05$. Then, we obtain $c = \Phi^{-1}(0.05)*0.8 + 110 \approx 108.684$.
- Make a conclusion: we will reject H_0 since $\bar{x}=108.2 < 108.684$.

Remark

- this is a parametric hypothesis testing if the parameters are involved in the hypotheses.
- otherwise it is a nonparametric hypothesis testing.
 - For example, we would like to test a hypothesis that the population is a normal distribution.

Basic Step 1: Construct hypotheses

Suppose that there is a parametric distribution $\{F(x,\theta), \theta \in \Theta\}$ and the sample is x_1, x_2, \cdots, x_n , where Θ is a parameter space.

- Suppose that $\Theta_0 \in \Theta$ and $\Theta_0 \neq \emptyset$. The **null hypothesis** is defined as a proposition $H_0 : \theta \in \Theta_0$.
- Suppose that $\Theta_1 \in \Theta$ and $\Theta_1 \cap \Theta_0 = \emptyset$.
 - The most common choice: $\Theta_1 = \Theta \Theta_0$.

The alternative hypothesis is defined as a proposition $H_1: \theta \in \Theta_1$.

Thus, we are interested in a pair of hypotheses that

$$H_0: \theta \in \Theta_0 \quad \text{vs} \quad H_1: \theta \in \Theta_1$$

Basic Step 1: Construct hypotheses (Con'd)

- Simple & Composite:
 - If $\Theta_0 = \{\theta : \theta = \theta_0\}$, a null hypothesis is called a **simple** null hypothesis; otherwise, a null hypothesis is called a **composite** null hypothesis.
 - The simple null hypothesis could be written as

$$H_0: \theta = \theta_0$$

- Two-sided & One-sided: When $H_0: \theta = \theta_0$,
 - H_0 vs $H_1': \theta \neq \theta_0$ is called **two-sided** hypothesis.
 - H_0 vs H_1'' : $\theta < \theta_0$ and H_0 vs H_1''' : $\theta > \theta_0$ are called **one-sided** hypothesis.

Basic Step 2: Find a test statistic and give a rejection region

- Given the sample $x = (x_1, x_2, \dots, x_n)$, the possible outcomes of a test:
 - Reject the null hypothesis H₀;
 - Fail to reject the null hypothesis H₀;
- The sample space is divided into two disjoint parts:
 - The **rejection region** W: Reject H_0 if the sample

$$\boldsymbol{x} = (x_1, x_2, \cdots, x_n) \in W;$$

• The acceptance region \overline{W} : Fail to reject H_0 if

$$\boldsymbol{x}=(x_1,x_2,\cdots,x_n)\in\overline{W};$$

Find a test statistic and give a rejection region.

Basic Step 3: Choose a significance level

Since the sample is random, we may make a right or wrong decision. Two types of error are defined as follows:

- Type I error: $x \in W$ when $\theta \in \Theta_0$;
- Type II error: $x \in \overline{W}$ when $\theta \in \Theta_1$;

We give two notations for the probabilities:

- The probability of type I error: $\alpha = P\{x \in W | H_0\}$;
- The probability of type II error: $\beta = P\{x \in \overline{W}|H_1\}$;

Basic Step 3: Choose a significance level (Con'd)

Definition

Suppose that there is a testing problem

$$H_0: \theta \in \Theta_0$$
 vs $H_1: \theta \in \Theta_1$

and the rejection region is W. The **power function** is defined as the probability that $x \in W$, that is,

$$g(\theta) = P_{\theta}(\boldsymbol{x} \in W), \theta \in \Theta = \Theta_0 \cup \Theta_1.$$

Thus, the power function is defined on the parameter space Θ :

- $g(\theta) = \alpha = \alpha(\theta), \theta \in \Theta_0$;
- $g(\theta) = 1 \beta = 1 \beta(\theta), \theta \in \Theta_1$;

Basic Step 3: Choose a significance level (Con'd) Obviously, α and β is a function of θ , that is

$$\begin{cases} \alpha(\theta) = g(\theta), & \theta \in \Theta_0, \\ \beta(\theta) = 1 - g(\theta), & \theta \in \Theta_1. \end{cases}$$

Revisit example: Normal Distribution The rejection region is defined as $W=\{\bar{x}\leq c\}$. The power function is

$$g(\theta) = P_{\theta}(\bar{x} \le c) = P\left(\frac{\bar{x} - \theta}{4/5} \le \frac{c - \theta}{4/5}\right)$$
$$= \Phi\left(\frac{c - \theta}{4/5}\right).$$

Revisit example: Normal Distribution (Con'd) The power function is decreasing in θ shown as follows:

Revisit example: Normal Distribution (Con'd)

The probability of Type I error and Type II error are defined as follows:

$$\alpha(\theta) = \Phi\left(\frac{c-\theta}{4/5}\right), \theta \in \Theta_0$$

$$\beta(\theta) = 1 - \Phi\left(\frac{c-\theta}{4/5}\right), \theta \in \Theta_1$$

Remark

- $\alpha \downarrow \Rightarrow c \downarrow \Rightarrow \beta \uparrow$;
- $\beta \downarrow \Rightarrow c \uparrow \Rightarrow \alpha \uparrow$
- There is a tradeoff between α and β .

Definition

Consider a testing problem

$$H_0: \theta \in \Theta_0 \quad \text{vs} \quad H_1: \theta \in \Theta_1.$$

If a test satisfies

$$g(\theta) \le \alpha$$

for every $\theta \in \Theta_0$, then the test is said to be a significance test of (significance) level α

Thumb rule

- $\alpha=0.05$ is the most common choice;
- Sometimes, $\alpha=0.1$ or $\alpha=0.01$ is also useful.

Basic step 4: Give a rejection region

After the significance level α is determined, we can give a rejection region W for the test. For example,

• Given a significance level α , for $\theta > 110$,

$$g(\theta) = \Phi\left(\frac{5(c-\theta)}{4}\right) \le \alpha.$$

- $q(\theta)$ is a decreasing function of θ .
- Just let $q(110) = \alpha$, that is,

$$\Phi\left(\frac{5(c-110)}{4}\right) = \alpha$$

• The rejection region is $W = \{\bar{x} \le 110 + 0.8 * \Phi^{-1}(\alpha)\}.$

Basic step 5: Make a decision

After the rejection region ${\cal W}$ is determined, we can make a decision. For example,

- When $\bar{x} \le 110 + 0.8 * \Phi^{-1}(\alpha)$, we reject H_0 ;
- When $\bar{x} > 110 + 0.8 * \Phi^{-1}(\alpha)$, we fail to reject H_0 .

Summary

Find a significance test in following steps:

- Construct a statistical hypothesis H_0 vs H_1 ;
- Find an appropriate test statistic T(x) of which the distribution is known under H_0 :
- Given a significance level α , derive the rejection region W;
- Calculate T(x) from the sample $x = (x_1, \dots, x_n)$ and make a decision by judging whether $T(x) \in W$.

p value

By determining different significance levels, we may make different conclusion:

Significance level α	Rejection Region W	Conclusion
$\alpha = 0.1$	$\bar{x} < 108.975$	Reject H_0
$\alpha = 0.05$	$\bar{x} \leq 108.684$	Reject H_0
$\alpha = 0.025$	$\bar{x} \le 108.432$	Reject H_0
$\alpha = 0.01$	$\bar{x} \le 108.139$	Not reject H_0
$\alpha = 0.005$	$\bar{x} \le 107.939$	Not reject H_0

- If $\alpha = 0.05$ is chosen, H_0 could be rejected;
- If $\alpha = 0.01$ is chosen, H_0 could not be rejected.

p value

From a different perspective, when $\theta = 110$, the test statistic

$$u = \frac{\bar{x} - \theta}{4/5} \sim N(0, 1).$$

It is calculated that $u_0 = \theta + 0.8 * \Phi^{-1}(\alpha) = -2.25$ from the sample if the significance level $\alpha = 0.05$. The probability is

$$P(u < u_0) = P(u < -2.25) = \Phi(-2.25) \approx 0.0122$$

- When $\alpha \geq 0.0122$ and $u_{\alpha} \geq -2.25$, H_0 could be rejected since the rejection region is $W = \{u \leq u_{\alpha}\}$;
- When $\alpha < 0.0122$ and $u_{\alpha} < -2.25$, H_0 could be not rejected since the rejection region is $W = \{u \leq u_{\alpha}\}$;

Definition

p value is defined as the probability under the null hypothesis of a result as or more extreme than that actually observed.

- If $\alpha \geq p$, then reject H_0 at the significance level α ;
- If α < p, then do not reject H₀ at the significance level α.