Parameters	Parameters	Type	Expected as
	network load	Dynamic	Minimized
Network conditions	network coverage	Static	Fixed
Network conditions	network connection time	Dynamic	Minimized
	available bandwidth	Dynamic	Minimized
	throughput	Dynamic	Minimized
	delay	Dynamic	Minimized
Application requirements	jitter	Dynamic	Minimized
	PLR	Dynamic	Minimized
	energy consumption	Dynamic	Minimized
Hear professiones	budget	Static	Fixed
User preferences	cost	Static	Fixed
	design		
Mobile equipment	energy	Dynamic	Fixed
Mobile equipment	mobility	Dynamic	Fixed

Table 1: Network selection inputs and classification of parameters [1]

Application layer	Network layer	Sensing layer
Service time	Bandwidth	Energy consumption
Service availability	Packet loss	Sleep management
Service cost	Jitter	Life time management
Service reliability	Delay	Coverage
	Availability	Sensing area
		Information accuracy
		Data accuracy
		Sensing time accuracy
		Spatial accuracy
		Reduce data redundancy
		Data packaging
		Sampling rate
		Bit rate error

Table 2: QoS parameters [2] [3]

Network selection Service selection Gateway selection

Input:

Method: Ranking machine learning Output: Ranked list of gateway

New York (NY)

Maximize	Minimize
(T) Throughput	(RT) Response Time
(F) Fairness	(LT) Latency
(R) Reliability	(J) Jitter
(IA) Information Accuracy	(TF) Traffic
(Cov) Coverage of IoT	(AWT) Average Waiting Time
(NL) Network Life	(D) Delay
(RU))Resource Utilization	(L) Load
	(EC) Energy Consumption
	(BP) Blocking Probability
	(CCI) Co-channel Interference
	(SC) Service Cost
	(ST) Service Time

Table 3: Objectives of IoT resource scheduling

Figure 1: LoraWan Parameters.

Plan de controle	Plan de gestion	Plan de doonées
Controle d'admission	Controle et supervision de QoS	Controle du trafic
Réservation de ressources	Gestion de contrats	Façonnage du trafic
Routage	QoS mapping	Controle de congestion
Signalisation	Politique de QoS	Classification de paquets
		Marquage de paquets
		Ordonnancements des paquets
		Gestion de files d'attente

Table 4: An example table.

Length	FCF	DSN	DST PAN			
Destination address						
Source address						

802.15.5 Header

15

Ι	О	S	D	Hop Limit			
	Source address						
	Destination address						

(a) Sensors diversity.

(b) Data diversity.

Figure 2: Sensors & data diversity.

Figure 3: Communication diversity.

Figure 4: Filtres [4].

- [7] Many studies have identified SDN as a potential solution to the WSN challenges, as well as a model for heterogeneous integration.
- [7] This shortfall can be resolved by using the SDN approach.
- [8] SDN also enhances better control of heterogeneous network infrastructures.
- [8] Anadiotis et al. define a SDN operating system for IoT that integrates SDN based WSN (SDN-WISE). This experiment shows how heterogeneity between different kinds of SDN networks can be achieved.
- [8] In cellular networks, OpenRoads presents an approach of introducing SDN based heterogeneity in wireless networks for operators.
- [9] There has been a plethora of (industrial) studies synergising SDN in IoT. The major

Figure 5: classification [4].

Figure 6: LPWAN connectivity.

Figure 7: Interoperability.

Figure 8: Key barriers in adopting the Industrial Internet¹.

Figure 9: wsn-IoT.

Naïve modes	Instantaneous Hist. average
	Clustering
	Rarely used
	Traffic Models
	Time Series
	Linear regression
Parametric models	ARIMA
	Kalman filtering
	ATHENA
	SETAR
	Gaussian Maximum Likelihood
	k-Nearest Neighbor
	Locally Weighted Regression
N D (11	Fuzzy Logic
Non-Parametric models	Bayes Network
	Neural Network
	Include temporal/spatial patterns
	1 · · · · · · · · · · · · · · · · · · ·

Table 5: Taxonomy of prediction models [6]

characteristics of IoT are low latency, wireless access, mobility and heterogeneity.

[9] Thus a bottom-up approach application of SDN to the realisation of heterogeneous

IoT is suggested.

- [9] Perhaps a more complete IoT architecture is proposed, where the authors apply SDN principles in IoT heterogeneous networks.
- [10] it provides the SDWSN with a proper model of network management, especially considering the potential of heterogeneity in SDWSN.
- $[10] \ \ We conjecture that the SDN paradigm is a good candidate to solve the {\color{red}heterogeneity}$

in IoT. Management architecture	Management feature	Controller configura-	Traffic Con-	Configuration and monitoring	Scapability and	Communica- tion
		tion	trol		localization	management
[11] Sensor	SDN support	Distributed	in/out-	✓	✓	✓
Open Flow	protocol		band			
[12] SDWN	Duty sycling,	Centralized	in-	✓		
	aggregation, routing		band			
[13] SDN-WISE	Programming	Distributed	in-		✓	
	simplicity and		band			
	aggregation					
[degante_smart_	20HAAciency in resource	Distributed	in-		✓	
Smart	allocation		band			
SDCSN	Network reliability	Distributed	in-		✓	
	and QoS		band			
TinySDN	In-band-traffic	Distributed	in-		✓	
	control		band			
Virtual Overlay	Network flexibility	Distributed	in-		✓	
			band			
Context based	Network scalability	Distributed	in-		✓	
	and performance		band			
CRLB	Node localization	Centralized	in-			
			band			
Multi-hope	Traffic and energy	Centralized	in-			✓
	control		band			
Tiny-SDN	Network task	-	in-			
	measurement		band			

Table 6: SDN-based network and topology management architectures. [9]

Application	CoAP, MQTT			
Transport		UDP/TC	P	
Network	IPv6 RPL		IPv4/IPv6	
	6LowPan	RFC	C 2464	RFC 5072
MAC	IEEE 802.15.4	IEEE 802.11 (Wi-Fi)	IEEE 802.3 (Ethernet)	2G, 3G, LTE
	2.4GHz, 915, 868MHz	2.4, 5GHz		
	DSS, FSK, OFDM	CSMA/CA	UTP, FO	

Table 7: An example table.

Application protocol	DDS	CoAP	AMQP	MQTT	MQTT-SN	XMPP	HTTP
Service discovery	mDNS			DNS-SD			
Network layer	RPL						
Link layer	IEEE 802.15.4						
Physical layer		EPCglob	al	IEEE	802.15.4	Z-W	/ave

	LiteOS	Nano-RK	MANTIS	Contiki
Architecture	Monolithic	Layered	Modular	Modular
Scheduling Memory	Round Robin	Monotonic harmonized	Priority classes	Interrupts execute w.r.t.
Network	File	Socket abstraction	At Kernel COMM layer	uIP, Rime
Virtualization and Completion	Synchronization primitives	Serialized access semaphores	Semaphores	Serialized, Access
Multi threading	✓	✓	X	✓
Dynamic protection	✓	X	✓	✓
Memory Stack	✓	X	X	X

Table 9: Common operating systems used in IoT environment [14]

1 | Application

Smart systems in smart cities [15]

- Smart Mobility
- Smart semaphores controle
- Smart Red Swarm
- Smart panels
- Smart bus scheduling
- Smart EV management
- Smart surface parking
- Smart signs
- Smart energy systems
- Smart lighting
- Smart water jet systems
- Smart residuals gathering
- Smart building construction
- Smart tourism
- Smart QRinfo
- Smart monitoring
- Sienavohasekeytion
 - * MADM
 - * Ranking methods
 - * Ranking & weighted methods
 - * Game theory
 - * Users vs users
 - * Users vs networks
 - * Networks vs network
 - * Fuzzy logic
 - * as a score method
 - * another theory
 - * Utility function
 - * 1

Application protocol	Rest- Full	Trans- port	Publish/Sub- scribe	Request/Re- sponse	Security	QoS	Header size (Byte)
COAP	✓	UDP	✓	✓	DTLS	✓	4
MQTT	Х	TCP	✓	X	SSL	✓	2
MQTT-SN	X	TCP	✓	X	SSL	✓	2
XMPP	Х	TCP	✓	✓	SSL	Х	-
AMQP	Х	TCP	✓	X	SSL	✓	8
DDS	Х	UDP	✓	X	SSL	✓	-
		TCP			DTLS		
HTTP	/	TCP	X	/	SSL	Х	-

Table 1.1: Application protocols comparison

Callenges-Applications	Gids	EHealth	Transportations	Cities	Building
Ressources cinstraints	+	+++	-	++	+
Mobility	+	++	+++	+++	-
Heterogeneity	++	++	++	+++	+
Scalability	+++	++	+++	+++	++
QoS cinstraints	++	++	+++	+++	+++
Data management	++	+	+++	+++	++
Lack of standardization	++	++	++	++	+++
Amount of attacks	+	+	+++	+++	+++
Safety	++	++	+++	++	+++

Table 1.2: Main IoT challenges[16]

	* 2								
Paper	* 2 Architec-	Avail-	Relia-	Mo-	Perfor-	Manage-	Scala-	Interoper-	Secu-
	ture	ability	bility	bility	mance	ment	bility	ability	rity
IoT-A									
IoT@Work									
EBBITS									
BETaas									
CALIPSO									
VITAL									
SENSAI									
RERUM									
RELEYonIT									
IoT6									
OpenIoT									
Apec IoV									
Smart									
Santander									
OMA Device									
OMA-DM									
LWM2M									
NETCONF									
Light									
Kura									
MASH									
IoT-iCore									
PROBE-IT									
OpenIoT									
LinkSmart									
IETF									
SOLACE									
BUTLER									
Codo									
SVELETE									

Table 1.3: An example table.

COAP	XMPP	MQTT
		✓
✓		
	✓	
✓	✓	
		√
		√
		✓
	COAP	COAP XMPP

Table 1.4: IoT cloud platforms and their characteristics

Use cases		
Health Monitoring		
Water Distribution		
Electricity Distribution		
Smart Buildings		
Intelligent Transportation		
Surveillance		
Environmental Monitoring		

Table 1.5: Use cases [17]

Application	Rest-	Trans-	Publish/Sub-	Request/Re-	Security	QoS	Header size
protocol	Full	port	scribe	sponse			(Byte)
COAP	✓	UDP	✓	✓	DTLS	✓	4
MQTT	Х	TCP	✓	X	SSL	✓	2
MQTT-SN	X	TCP	✓	X	SSL	✓	2
XMPP	Х	TCP	✓	✓	SSL	X	-
AMQP	Х	TCP	✓	X	SSL	✓	8
DDS	X	UDP	✓	X	SSL	✓	-
		TCP			DTLS		
HTTP	✓	TCP	X	✓	SSL	X	-

Table 1.6: Application protocols comparison

2 | Network

Routing protocol	Control Cost	Link Cost	Node Cost
OSPF/IS-IS	X	✓	X
OLSRv2	?	✓	✓
RIP	✓	?	X
DSR	✓	X	X
RPL	✓	✓	✓

Table 2.1: Routing protocols comparison [_rpl2_]

- Routing over low-power and lossy links (ROLL)
- Support minimal routing requirements.
 - * like multipoint-to-point, point-to-multipoint and point-to-point.
- A Destination Oriented Directed Acyclic Graph (DODAG)
 - * Directed acyclic graph with a single root.
 - * Each node is aware of ts parents
 - * but not about related children
- RPL uses four types of control messages
 - * DODAG Information Object (DIO)
 - * Destination Advertisement Object (DAO)
 - * DODAG Information Solicitation (DIS)
 - * DAO Acknowledgment (DAO-ACk)
- Standard topologies to form IEEE 802.15.4e networks are

Star contains at least one FFD and some RFDs

Mesh contains a PAN coordinator and other nodes communicate with each other Cluster consists of a PAN coordinator, a cluster head and normal nodes.

- The IEEE 802.15.4e standard supports 2 types of network nodes
 - FFD Full function device: serve as a coordinator
 - * It is responsible for creation, control and maintenance of the net
 - * It store a routing table in their memory and implement a full MAC

RFD Reduced function devices: simple nodes with restricted resources

* They can only communicate with a coordinator

Preamble	PHIDARY arellion	RICERC to EMSHED BO	p olidg yR	FPort	Payload	MIC	CRC
----------	------------------	---------------------	-------------------	-------	---------	-----	-----

Routing protocol	Control Cost	Link Cost	Node Cost
OSPF/IS-IS	X	✓	X
OLSRv2	?	✓	✓
RIP	✓	?	X
DSR	✓	X	X
RPL	1	✓	✓

Table 2.2: Routing protocols comparison [_rpl2_]

3 | MAC

Minimize	Maximize

Table 3.1

SF		07	08	09	10	11	12	07	08	09	10	11	12	07	08	09	10	11	12
	BW			12	25					25	50					50	00		
07		X								X								X	
80			Х								X								X
09 10	125			X								X							
10	123				Х								X						
11						Х													
12							X												
07								X								Х			
80									Х								Х		
09	250	X								Х								X	
10	230		Х								X								X
11				X								X							
12					х								X						
07														X					
80															X				
09	500							X								х			
10	300								Х								X		
11		X								Х								X	
12			X								X								X

Table 3.2: uyuyuy

0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	3 24 25 26 27 28 29 30 31)			
	Args					
FRM Payload (encrypted) CID						
FPort FRM Payload (encrypted)						
FOpts: 0120						
1 2 3 4 FOptsLen	FCnt	FOpts: 0120				
	Dev Addr					
	MIC					
	MAC Payload		Phy			
MType RFU Ma-	MAC Payload		J			

Figure 1: LoRaWAN frame format.[18]

- DevAddr: the short address of the device
- FPort: a multiplexing port field
 - * 0: the payload contains only MAC commands
- FOptsLen:
- FCnt: frame counter
- MIC is a cryptographic message integrity code
 - * computed over the fields MHDR, FHDR, FPort and the encrypted FRMPayload.
- MType is the message type (uplink or a downlink)
 - * whether or not it is a confirmed message (reqst ack)
- Major is the LoRaWAN version; currently, only a value of zero is valid
- ADR and ADRAckReq control the data rate adaptation mechanism by the network server
- ACK acknowledges the last received frame
- FPending indicates that the network server has additional data to send
- FOptsLen is the length of the FOpts field in bytes
- FOpts is used to piggyback MAC commands on a data message
- CID is the MAC command identifier
- Args are the optional arguments of the commands
- FRMPayload is the payload, which is encrypted using AES with a key length of 128 bits

DILS Characteristics	6LoWPAN	LoRaWAN	SigFox	NB-IoT
Standar body		LoRa Alliance		3GPP
TX power				
Modulation		CSS	BPSK	QSPSK
Frequency (MHz)	902-929	902-928	902	
riequency (Miriz)	868-868.6	863-870 and 434	868	
	0016 for 2400	80 for 915	25	
Channels	0010 for 915	10 for 868 and 780		
	0001 for 868.3			
	0005 for 2400	0.125 and 0.50 for 915	0.0001-0.0012	
Bandwidth [MHz]	0002 for 915	0.125 and 0.25 for 868 and 780		
	0600 for 868.3			
	0250 for 2400	0.00098-0.0219 for 915	0.1-0.6	
Data rate (kbps)	0040 for 915	0.250-0.05 for 868 and 780		
	0020 for 868.3			
	QPSK for 2400	LoRa for 915	BPSK and GFSK	
Modulation	BPSK for 915	LoRa and GFSK for 868 and 780		
	BPSK for 868.3			
	-085 for 2400	-137	-137	
Coding (dBm)	-092 for 915			
	-092 for 868.3			
Coding	Direct	CSS	Ultra	
Coverage	10-100 m	5-15 km	10-50 km	
Battery lifetime	1-2 years	<10 years	<10 years	
Standard Body	IETF			
Security	ACL			
Uplink			100bps, 12 bytes/msg	
Downlink			8 bytes/msg	
Scalability				
Proprietary			✓	
Cost		High		

Table 3.3: LPWan Characteristics [19]

LoRa has three configurable parameters:

- Bandwidth (BW)
- Carrier Frequency (CF)
- Coding Rate (CR)
- Spreading Factor (SF)

	SIGFOX	LORAWAN	INGENU	TELENSA
Modulation	UNB DBPSK(UL), GFSK(DL)	CSS	RPMA-DSSS(UL), CDMA(DL)	UNB 2-FSK
Band	S UB -GH Z	S UB -GH Z ISM:EU	ISM 2.4GHz	S UB -GH Z bands including
Danu	ISM:EU		15M 2.4GHZ	ISM:EU (868MHz), US
		(433MHz 868MHz), US		
	(868MHz),	(915MHz), Asia (430MHz)		(915MHz), Asia (430MHz)
	US(902MHz)			
Data rate	100 bps(UL), 600	0.3-37.5 kbps (L O Ra), 50	78kbps (UL), 19.5	62.5 bps(UL), 500 bps(DL)
	bps(DL)	kbps (FSK)	kbps(DL)	
Range	10 km (URBAN),	5 km(URBAN), 15 km (15 km (URBAN)	1 km (URBAN)
	50 km (RURAL)	RURAL)		
Num. of	360 channels	10 in EU, 64+8(UL) and 8(40 1MHz channels,	multiple channels
channels,		DL) in US plus multiple SFs	up to 1200signals	
orthogonal			per channel	
signals				
Link symmetry	X	✓	X	×
Forward error	X	✓	✓	✓
correction				
MAC	unslotted A LOHA	unslotted A LOHA	CDMA-like	
Topology	star	star, stars	star,tree	star
Adaptive Data	X	✓	✓	X
Rate				
Payload length	12B(UL), 8B(DL	up to 250B (depends on SF	10KB	
)	and region)		
Handover	end devices do	end devices do not join a		
	not join a single	single base station		
	base station			
Encryption	not supported	AES 128b	16B hash, AES 256b	

Table 3.4: [20]

Standard	802.15.4k	802.15.4g	Weightless- W	Weightless-N	Weightless- P	DASH 7 Alliance
Modula- tion	DSSS, FSK	MR-[FSK, OFDMA, OQPSK]	16-QAM, BPSK, QPSK, DBPSK	UNB DBPSK	GMSK, offset-QPSK	GFSK
Band	ISM S UB -GH Z, 2.4GHz	ISM S UB -GH Z, 2.4GHz	TV white spaces 470-790MHz	ISM S UB -GH Z EU (868MHz), US (915MHz)	S UB -GH Z ISM or licensed	UB -GH Z 433MHz, 868MHz, 915MHz
Data rate	1.5 bps-128 kbps	4.8 kbps-800 kbps	1 kbps-10 Mbps	30 kbps-100 kbps	bps-100kbps	9.6,55.6,166.7 kbps
Range	5 km (URBAN)	up to several kms	5 km (URBAN)	3 km (URBAN)	2 km (URBAN)	0-5 km (URBAN)
MAC	CSMA/CA, CSMA/CA or A LOHA with PCA	CSMA/CA	TDMA/FDMA	slotted A LOHA	TDMA/FDMA	CSMA/CA
Topology	star	tar, mesh, peer-to- peer	star	star	star	tree, star
Payload length	2047B	2047B	>10B	20B	>10B	256B
Encryption	AES 128b	AES 128b	AES 128b	AES 128b	AES 128/256b	AES 128b
Forward error correction	V	/	1	×	1	✓

Table 3.5: [20]

[21] Nous avons vu en effet plus haut quil a été démontré que la méthode CSMA est plus efficace pour le traitement des faibles trafics, tandis que TDMA est nettement plus

Feature	Wi-Fi	802.11p	UMTS	LTE	LTE-A
Channel width	20	10	5	1.4, 3, 5, 10,	<100
MHz				15, 20	
Frequency	2.4,5.2	5.86-5.92	0.7-2.6	0.7-2.69	0.45-4.99
band(s) GHz					
Bit rate Mb/s	6-54	327	2	<300	<1000
Range km	<0.1	<1	<10	<30	<30
Capacity	Medium	Medium	X	✓	✓
Coverage	Intermittent	Intermittent	Ubiquitous	Ubiquitous	Ubiquitous
Mobility	×	Medium	✓	<350	<350
support km/h					
QoS support	EDCA Enhanced	EDCA Enhanced	QoS classes and	QCI and	QCI and
	Distributed Channel	Distributed Channel	bearer selection	bearer	bearer
	Access	Access		selection	selection
Broadcast/mul-	Native broadcast	Native broadcast	Through MBMS	Through	Through
ticast				eMBMS	eMBMS
support					
V2I support	✓	✓	✓	√	✓
V2V support	Native (ad hoc)	Native (ad hoc)	Х	X	Through
					D2D
Market	✓	X	✓	✓	✓
penetration					
Data rate	<640 kbps	250 kbps	106424 kbps	✓	✓

Table 3.6: An example table.

Phy protocol	IEEE 802.15.4	BLE	EPCglobal	Z-Wave	LTE-M	ZigBee
Standard Body		IEEE				IEEE 802.15.4, ZigBee
		802.15.1				Alliance
Radio band	868/915/2400	2400	860-960	868/908/2400	700-900	
(MHz)						
MAC address	TDMA,	TDMA	ALOHA	CSMA/CA	OFDMA	
	CSMA/CA					
Data rate (bps)	20/40/250 K	1024K	varies	40K	1G (up), 500M	
			5-640K		(down)	
Throughput				9.6, 40,		
				200kbps		
Scalability ???	65K nodes	5917	-	232 nodes	-	
		slaves				
Range	10-20m	10-100m				
Addressing	8 16bit	16bit				

Table 3.7: IoT cloud platforms and their characteristics [14]

	802.15.4	802.15.4e	802.15.4g	802.15.4f
Frequency	2.4Ghz (DSSS + oQPSK)	2.4Ghz (DSSS + oQPSK,	2.4Ghz (DSSS + oQPSK,	2.4Ghz (DSSS +
		CSS+DQPSK)	CSS+DQPSK)	oQPSK,CSS+DQPSK)
	868Mhz (DSSS + BPSK)			
	915Mhz (DSSS + BPSK)			
				3~10Ghz (BPM+BPSK)
Data rate	Upto 250kbps	Upto 800kbps	Up to 800kbps	
Differences	-	Time sync and channel	Phy Enhancements	Mac and Phy Enhancements
		hopping		-
Frame Size	127 bytes	N/A	Up to 2047 bytes	N/A
Range	1 75+ m	1 75+ m	Upto 1km	N/A
Goals	General Low-power	Industrial segments	Smart utilities	Active RFID
	Sensing/Actuating			
Products	Many	Few	Connode (6LoWPAN)	LeanTegra PowerMote

Table 3.8: IEEE 802.15.4 standards [sarwar_iot_]

appropriée pour supporter les trafics intensesj.

$$T_s = \frac{2^{SF}}{BW_{[Hz]}} \tag{3.1}$$

$$DR_{[bps]} = SF * \frac{BW_{[Hz]}}{2^{SF}} * CR$$
(3.2)

SF	Sensitivity[dBm]	Data Rate[kb/s]	
6	-118	9.38	
7	-123		
8	-126		
9	-129		
10	-132		
11	-134.5		
12	-137		

Table 3.9: hghg

$$n_s = 8 + max([\frac{8PL - 4SF + 8 + CRC + H}{4 * (SF - DE)}] * \frac{4}{CR})$$
 (3.3)

3.1 Lora modules

Ref	Module	Frequency MHz	Tx power	Rx power	Sensitivity	Channels	Distance
[22]	Semtech SX1272	863-870 (EU) 902-928 (US)	14 dBm	dBm	-134 dBm	8 13	22+ km
[22]	rn2483						
[22]	rn2903						
[22]	rak811						
[22]	Semtech sx1276						
[22]	rfm95						
[22]	CMWX1ZZABZ-078						
[22]	LoPy4						
[22]	mDot						
[22]	xDot						
[22]	Laird RM192						
[22]	Laird RM186						
[22]	CMWX1ZZABZ-078						
[22]	Also Laird RM1xx						
[22]	iMST iM88x/iM98x						
[22]	Mic SAM RN34/35						
[22]	Semtech SX1278						

Table 3.10

4 | Introduction

4.1 Introduction

- 4.1.1 Context & motivation
- 4.1.2 Methodology and contributions
- 4.1.3 Organization of the thesis

5 | State of the art [23]

5.1 Introduction

5.2 IoT Hardware and software platforms

5.2.1 Software platform: Operating systems

os	Architecture	Multi	Scheduling	Dynamic	Memory	Network	Virtualization
		threading		Memory	protection	Stack	and Completion
Contiki/Contiki-ng	Modular	✓	Interrupts	✓	Х	uIP	Serialized
			execute w.r.t.			Rime	Access
MANTIS	Modular	X	Priority	✓	X	At Kernel	Semaphores.
			classes			COMM layer	
Nano-RK	Layered	✓	Monotonic	X	Х	Socket	Serialized access
			harmonized			abstraction	semaphores
LiteOS	Monolithic	✓	Round Robin	✓	✓	File	Synchronization
							primitives

Table 5.1: Common operating systems used in IoT environment [14]

Contiki

RIOT

TinyOS

freeRTOS

5.2.2 Hardware platform

OpenMote

MSB430-H

Zolertia

5.2.3 Communication protocol

IEEE 802.15.4

6LoWPAN

ZigBee

Bluetooth LE LoaraWAN SEMTECH ALIANCE Class-A Uplink Downlink Confirmed data Note: Class-B Downlink Confirmed data Requirements Device Gateway

Class-C

Downlink

Confirmed data

5.2.4 Application protocol

CoAP

- Constrained Application Protocol
- The IETF Constrained RESTful Environments
- CoAP is bound to UDP
- CoAP can be divided into two sub-layers
 - * messaging sub-layer
 - * request/response sub-layer
 - a) Confirmable.
 - b) Non-confirmable.
 - c) Piggybacked responses.
 - d) Separate response
- CoAP, as in HTTP, uses methods such as:

* GET, PUT, POST and DELETE to

 $\underset{0\ 1}{*}\ \underset{2}{*}\ \underset{3}{Achieve,}\ \underset{0}{Create,}\ \underset{10}{Retrieve,}\ \underset{17}{Update}\ \underset{19}{and}\ \underset{10}{Delete}\ \underset{25\ 26\ 27\ 28\ 29\ 30\ 31}{Delete}$

* Ex: the GET method can be used by a server to inquire the clients temperature

Ver	T	TKL	Code	Message ID])		
Token							
Options				CoAP Header			
11111111 Payload		Payload					
			•				

Ver: is the version of CoAPT: is the type of Transaction

TKL: Token length

Code: represents the request method (1-10) or response code (40-255).

* Ex: the code for GET, POST, PUT, and DELETE is 1, 2, 3, and 4, respectively.

Message ID: is a unique identifier for matching the response.

Token: Optional response matching token.

MQTT

Message Queue Telemetry Transport

Andy Stanford-Clark of IBM and Arlen Nipper of Arcom

* Standardized in 2013 at OASIS

- MQTT uses the publish/subscribe pattern to provide transition flexibility and simplicity of implementation
- MQTT is built on top of the TCP protocol
- MQTT delivers messages through three levels of QoS
- Specifications
 - * MQTT v3.1 and MQTT-SN (MQTT-S or V1.2)
 - * MQTT v3.1 adds broker support for indexing topic names
- The publisher acts as a generator of interesting data.

Message Type	UDP	QoS Level	Retain)
Remaining length				
Variable length header			CoAP Head	
Variable length message payload				
				_

Message type: CONNECT (1), CONNACK (2), PUBLISH (3), SUBSCRIBE (8) and so on

DUP flag: indicates that the massage is duplicated

QoS Level: identify the three levels of QoS for delivery assurance of Publish messages

Retain field: retain the last received Publish message and submit it to new subscribers as a first

message

XMPP

- Extensible Messaging and Presence Protocol
- Developed by the Jabber open source community

- An IETF instant messaging standard used for:
 - * multi-party chatting, voice and telepresence
- Connects a client to a server using a XML stanzas
- An XML stanza is divided into 3 components:
 - * message: fills the subject and body fields
 - * presence: notifies customers of status updates
 - * iq (info/query): pairs message senders and receivers
- Message stanzas identify:
 - * the source (from) and destination (to) addresses
 - * types, and IDs of XMPP entities

AMQP

- Advanced Message Queuing Protocol
- Communications are handled by two main components
 - * exchanges: route the messages to appropriate queues.
 - * message queues: Messages can be stored in message queues and then be sent to receivers
- It also supports the publish/subscribe communications.
- It defines a layer of messaging on top of its transport layer.
- AMQP defines two types of messages
 - * bare massages: supplied by the sender
 - * annotated messages: seen at the receiver
- The header in this format conveys the delivery parameters:
 - * durability, priority, time to live, first acquirer & delivery count.
- AMOP frame format

Size the frame size.

DOFF the position of the body inside the frame.

Type the format and purpose of the frame.

- * Ex: 0x00 show that the frame is an AMQP frame
- * Ex: 0x01 represents a SASL frame.

DDS

- Data Distribution Service
- Developed by Object Management Group (OMG)
- Supports 23 QoS policies:
 - * like security, urgency, priority, durability, reliability, etc
- Relies on a broker-less architecture
 - * uses multicasting to bring excellent Quality of Service
 - * real-time constraints
- DDS architecture defines two layers:

DLRL Data-Local Reconstruction Layer

* serves as the interface to the DCPS functionalities

DCPS Data-Centric Publish/Subscribe

- * delivering the information to the subscribers
- 5 entities are involved with the data flow in the DCPS layer:
 - * Publisher:disseminates data
 - * DataWriter: used by app to interact with the publisher
 - * Subscriber: receives published data and delivers them to app

- * DataReader: employed by Subscriber to access received data
- * Topic: relate DataWriters to DataReaders
- No need for manual reconfiguration or extra administration
- It is able to run without infrastructure
- It is able to continue working if failure happens.
- It inquires names by sending an IP multicast message to all the nodes in the local domain
 - * Clients asks devices that have the given name to reply back
 - * the target machine receives its name and multicasts its IP @
 - * Devices update their cache with the given name and IP @

mDNS

- Requires zero configuration aids to connect machine
- It uses mDNS to send DNS packets to specific multicast addresses through UDP
- There are two main steps to process Service Discovery:
 - * finding host names of required services such as printers
 - * pairing IP addresses with their host names using mDNS
- Advantages
 - * IoT needs an architecture without dependency on a configuration mechanism
 - * smart devices can join the platform or leave it without affecting the behavior of the whole system
- Drawbacks
 - * Need for caching DNS entries
- 5.2.5 Summary and discussion
- 5.3 IoT applications
- **5.3.1** Transportation and logistics
- 5.3.2 Healthcare
- 5.3.3 Smart environnement
- 5.3.4 personal and social
- 5.3.5 Futuristic
- 5.3.6 Summary and discussion
- 5.3.7 Summary and discussion

Figure 1: 802.15.4 use cases [sarwar_iot_].

5.4 IoT security

5.4.1 Summary and discussion

5.5 Conclusion

6 | Aghiles [23]

6.1 Introduction & problem stat	ement
---------------------------------	-------

- 6.1.1 Background
- 6.1.2 Purpose (Goal)
- 6.1.3 Limitations
- **6.1.4** Method

6.2 Background

6.2.1 Requirements

Hardware

Operating system

Communication protocol

- 6.2.2 Hardware
- **6.2.3** Operating system
- **6.2.4** Communication protocol
- **6.2.5** Workspace and tools

6.3 Prototype

- **6.3.1** Drivers and firmware
- **6.3.2** CoAP server

Testing

Final prototype

6.4 Evaluation

6.4.1 Range

- **6.4.2** Response time
- **6.4.3** Connection speed
- **6.4.4** Power consumption
- 6.5 Discussion
- **6.5.1** The prototype

Results

Range

Response time

Connection speed

Power consumption

- **6.5.2** Project execution
- 6.6 Conclusion

7 | SDN: Sentilo [24]

7.1 Introduction &	problem statement
--------------------	-------------------

- 7.1.1 Background
- 7.1.2 Purpose (Goal)
- 7.1.3 Limitations
- **7.1.4** Method

7.2 Background

- 7.2.1 Requirements
- 7.2.2 Hardware: Zolertia Z1 Motes

Peripherals ports

North Port

East Port

South Port

West Port

Internal sensors

Temperature Sensor

Accelerometer

External Sensors

Analog sensors

Precision Light Sensor

Force Sensor

Relay actuator				
Distance sensor				
7.2.3 Operating systems				
Main aspects Contiki size				
Contiki Hardware				
Kernel structure				
7.2.4 Communication protocol				
Composition				
Physical and MAC Layer (IEEE 802.15.4)				
Physical Layer				
Definitions				
Topologies				
RIME				
6LowPAN				
Characteristics				
Encapsulation Header format				
Fragment Header				
Mesh addressing header				
Header compression (RFC4944)				
Header compression Improved (draft-hui-6lowpan-hc-01)				
RPL				
7.2.5 Application protocol				
COAP (COnstrained Application Protocol)				
Overview				
Coap Methods				

Coap Transactions

Coap Messages

7.2.6 Workspace ant tools

7.3 Sentilo

7.3.1 Definitions

7.3.2 Sentilo Architecture

PubSub Server

Web Catalog Application

Extensions (Agents)

7.3.3 Sentilo structure

7.3.4 Sentilo API

7.4 Evaluation

7.4.1 Environment description

Sensor Network

Border Router

Nodes

Network connector

Application workflow

Sensor registration

Sensor data publish

7.5 Discussion

7.5.1 The prototype

Results

Range

Response time

Connection speed

Power consumption

- 7.5.2 Project execution
- 7.6 Conclusion
- 7.6.1 Future lines of work

8 | MEC: Chapter 4

Contents

3.1	Lora modules
8.1	Introduction & problem statement
8.1.1	Background
8.1.2	Purpose (Goal)
8.1.3	Limitations
8.1.4	Method
8.2	Background
8.2.1	Selection of technology
Requi	rements
Hardw	vare
Opera	ting system
Comm	nunication protocol
Hardw	rare
Opera	ting system
Comm	nunication protocol
Works	pace and tools
8.3	Prototype
8.3.1	Drivers and firmware
8.3.2	CoAP server

Testing

Final prototype

8.4 Evaluation

- 8.4.1 Environment description
- **8.4.2** Results exploitation
- **8.4.3** Range
- 8.4.4 Response time
- **8.4.5** Connection speed
- **8.4.6** Power consumption
- 8.5 Discussion
- 8.5.1 The prototype

Results

Range

Response time

Connection speed

Power consumption

- 8.5.2 Project execution
- 8.6 Conclusion

9 | Conclusion

Contents

4.1	Introduction	18
4.1.1	Context & motivation	18
4.1.2	Methodology and contributions	18
4.1.3	Organization of the thesis	18

9.1 Conclusion

9.2 Perspectives

10 | Publications

Conten	ats	
5.1	Introduction	21
5.2	IoT Hardware and software platforms	21
5.2.1	Software platform: Operating systems	21
5.2.1.1	Contiki	22
5.2.1.2	RIOT	22
5.2.1.3	TinyOS	22
5.2.1.4	freeRTOS	22
5.2.2	Hardware platform	23
5.2.2.1	OpenMote	23
5.2.2.2	MSB430-H	23
5.2.2.3	Zolertia	23
5.2.3	Communication protocol	24
5.2.3.1	IEEE 802.15.4	24
	1) 6LoWPAN	24
	2) ZigBee	24
5.2.3.2	Bluetooth LE	24
5.2.3.3	LoaraWAN	25
	1) SEMTECH	25
	2) ALIANCE	25
	3) Class-A	25
	4) Class-B	25
	5) Class-C	26
5.2.4	Application protocol	26
5.2.4.1	CoAP	26
5.2.4.2	MQTT	27
5.2.4.3	XMPP	27
5.2.4.4	AMQP	27
5.2.4.5	DDS	28
5.2.4.6	mDNS	28
5.2.5	Summary and discussion	29
5.3	IoT applications	20

5.3.1	Transportation and logistics	29
5.3.2	Healthcare	29
5.3.3	Smart environnement	29
5.3.4	personal and social	29
5.3.5	Futuristic	29
5.3.6	Summary and discussion	29
5.3.7	Summary and discussion	29
5.4	IoT security	30
5.4.1	Summary and discussion	30
5.5	Conclusion	30

10.1 List of publications

A | Appendix A

Conten	its	
6.1	Introduction & problem statement	32
6.1.1	Background	32
6.1.2	Purpose (Goal)	32
6.1.3	Limitations	33
6.1.4	Method	33
6.2	Background	33
6.2.1	Requirements	34
6.2.1.1	Hardware	34
6.2.1.2	Operating system	34
6.2.1.3	Communication protocol	34
6.2.2	Hardware	34
6.2.3	Operating system	35
6.2.4	Communication protocol	35
6.2.5	Workspace and tools	35
6.3	Prototype	36
6.3.1	Drivers and firmware	36
6.3.2	CoAP server	36
6.3.2.1	Testing	37
6.3.2.2	Final prototype	37
6.4	Evaluation	38
6.4.1	Range	38
6.4.2	Response time	38
6.4.3	Connection speed	39
6.4.4	Power consumption	40
6.5	Discussion	41
6.5.1	The prototype	42
6.5.1.1	Results	42
	1) Range	42
	2) Response time	43
	3) Connection speed	43
	4) Power consumption	43

6.5.2	Project execution	44
6.6	Conclusion	44
A.1	Introduction & problem statement	
A.2	Background	
A.3	Approach	
A.4	Performance evaluation	
A.4.1	Environment description	
A.4.2	Results exploitation	
A.5	Conclusion	

B | Appendix B

7.1	Introduction & problem statement	47
7.1.1	Background	47
7.1.2	Purpose (Goal)	47
7.1.3	Limitations	47
7.1.4	Method	48
7.2	Background	48
7.2.1	Requirements	48
7.2.2	Hardware: Zolertia Z1 Motes	48
7.2.2.1	Peripherals ports	48
	1) North Port	48
	2) East Port	48
	3) South Port	48
	4) West Port	48
7.2.2.2	Internal sensors	48
	1) Temperature Sensor	48
	2) Accelerometer	48
7.2.2.3	External Sensors	49
	1) Analog sensors	49
7.2.2.4	Relay actuator	49
7.2.2.5	Distance sensor	49
7.2.3	Operating systems	50
7.2.3.1	Main aspects	50
7.2.3.2	Contiki size	50
7.2.3.3	Contiki Hardware	50
7.2.3.4	Kernel structure	50
7.2.4	Communication protocol	50
7.2.4.1	Composition	51
7.2.4.2	Physical and MAC Layer (IEEE 802.15.4)	51
	1) Physical Layer	51
	2) Definitions	51

7.2.4.3	RIME	52
7.2.4.4	6LowPAN	52
	1) Characteristics	52
	2) Encapsulation Header format	53
	3) Fragment Header	53
	4) Mesh addressing header	53
	5) Header compression (RFC4944)	53
	6) Header compression Improved (draft-hui-6lowpan-hc-01)	54
7.2.4.5	RPL	55
7.2.5	Application protocol	56
7.2.5.1	COAP (COnstrained Application Protocol)	56
	1) Overview	56
	2) Coap Methods	56
	3) Coap Transactions	57
	4) Coap Messages	57
7.2.6	Workspace ant tools	57
7.3	Sentilo	57
7.3.1	Definitions	57
7.3.2	Sentilo Architecture	57
7.3.2.1	PubSub Server	58
7.3.2.2	Web Catalog Application	58
7.3.2.3	Extensions (Agents)	58
7.3.3	Sentilo structure	59
7.3.4	Sentilo API	59
7.4	Evaluation	59
7.4.1	Environment description	60
7.4.1.1	Sensor Network	60
	1) Border Router	60
	2) Nodes	60
7.4.1.2	Network connector	60
	1) Application workflow	60
	2) Sensor registration	61
	3) Sensor data publish	61
7.5	Discussion	61
7.5.1	The prototype	61
7.5.1.1	Results	61
	1) Range	61
	2) Response time	61
	3) Connection speed	61
	4) Power consumption	61

		-Degree Centrality		correlation with privacy score
2018	[25]	-Closeness Centralityjhjhjhjhjhjh	Estimation	Closeness have a high degree of nbnbnbnbnbnbnb
Year		Factors	Computation Model	Results interpretation
7.6.1		Future lines of work		62
7.6	C	Conclusion		61
7.5.2	2	Project execution		61

Table B.1: An example table.

Bibliography

Others

- [1] Fayssal Bendaoud, Marwen Abdennebi, and Fedoua Didi. "Network Selection in Wireless Heterogeneous Networks: A Survey". In: *Journal of Telecommunications and Information Technology* 4 (Jan. 2019). 00000, pp. 64–74 (p. 1).
- [2] Atefeh Meshinchi. " QOS-Aware and Status-Aware Adaptive Resource Allocation Framework in SDN-Based IOT Middleware ". 00000. masters. École Polytechnique de Montréal, May 2018 (p. 1).
- [3] Abishi Chowdhury and Shital A. Raut. " A Survey Study on Internet of Things Resource Management". In: *Journal of Network and Computer Applications* 120 (Oct. 15, 2018). 00002, pp. 42–60 (p. 1).
- [4] Pierre Merdrignac. "Système Coopératif de Perception et de Communication Pour La Protection Des Usagers Vulnérables ". In: (2015). 00003, p. 253 (p. 3, 4).
- [5] Industrial Internet of Things. *Executive Summary*. 01455. URL: http://wef.ch/1Ce8qay (visited on 04/17/2019).
- [6] Short Term Traffic Prediction Models. 00000. 2007 (p. 5).
- [7] Zhijing Qin et al. " A Software Defined Networking Architecture for the Internet-of-Things". In: 2014 IEEE Network Operations and Management Symposium (NOMS). NOMS 2014 2014 IEEE/IFIP Network Operations and Management Symposium. 00258. Krakow, Poland: May 2014, pp. 1–9 (p. 3).
- [8] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke. "A Survey on Software-Defined Wireless Sensor Networks: Challenges and Design Requirements". In: *IEEE Access* 5 (2017). 00135, pp. 1872–1899 (p. 3).
- [9] Musa Ndiaye, Gerhard Hancke, and Adnan Abu-Mahfouz. "Software Defined Networking for Improved Wireless Sensor Network Management: A Survey". In: 17.5 (May 4, 2017). 00053, p. 1031 (p. 3, 5, 6).
- [10] Samaresh Bera, Sudip Misra, and Athanasios V. Vasilakos. "Software-Defined Networking for Internet of Things: A Survey". In: *IEEE Internet of Things Journal* 4.6 (Dec. 2017). 00057, pp. 1994–2008 (p. 6).
- [11] Tie Luo, Hwee-Pink Tan, and Tony Q. S. Quek. "Sensor OpenFlow: Enabling Software-Defined Wireless Sensor Networks". In: *IEEE Communications Letters* 16.11 (Nov. 2012). 00341, pp. 1896–1899 (p. 6).
- [12] Salvatore Costanzo et al. "Software Defined Wireless Networks (SDWN): Unbridling SDNs ". In: (2012). 00181, p. 25 (p. 6).
- [13] Laura Galluccio et al. " SDN-WISE: Design, Prototyping and Experimentation of a State-ful SDN Solution for WIreless SEnsor Networks ". In: 2015 IEEE Conference on Computer Communications (INFOCOM). IEEE INFOCOM 2015 IEEE Conference on Computer Communications. 00173. Kowloon, Hong Kong: Apr. 2015, pp. 513–521 (p. 6).

- [14] Ala Al-Fuqaha et al. " Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications ". In: *IEEE Communications Surveys & Tutorials* 17.4 (24–2015). 02482, pp. 2347–2376 (p. 7, 18, 23).
- [15] Enrique Alba. " Intelligent Systems for Smart Cities ". In: *Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion GECCO '16 Companion*. The 2016. 00004. Denver, Colorado, USA: ACM Press, 2016, pp. 823–839 (p. 9).
- [16] Djamel Eddine Kouicem, Abdelmadjid Bouabdallah, and Hicham Lakhlef. " Internet of Things Security: A Top-down Survey ". In: *Computer Networks* 141 (Aug. 4, 2018). 00029, pp. 199–221 (p. 10).
- [17] Gerhard Hancke, Bruno Silva, and Gerhard Hancke Jr. "The Role of Advanced Sensing in Smart Cities". In: 13.1 (Dec. 27, 2012). 00318, pp. 393–425 (p. 11).
- [18] Aloßs Augustin et al. " A Study of LoRa: Long Range & Low Power Networks for the Internet of Things ". In: 16.9 (Sept. 9, 2016). 00000, p. 1466 (p. 15).
- [19] H. A. A. Al-Kashoash and Andrew H. Kemp. "Comparison of 6LoWPAN and LPWAN for the Internet of Things". In: *Australian Journal of Electrical and Electronics Engineering* 13.4 (Oct. 2016). 00010, pp. 268–274 (p. 16).
- [20] Usman Raza, Parag Kulkarni, and Mahesh Sooriyabandara. "Low Power Wide Area Networks: An Overview". In: *IEEE Communications Surveys & Tutorials* 19.2 (22–2017). 00000, pp. 855–873 (p. 17).
- [21] Évaluation et Amélioration Des Plates-Formes Logicielles Pour Réseaux de Capteurs sans-Fil, Pour Optimiser La Qualité de Service et l'énergie. 00000. URL: http://docnum.univlorraine.fr/public/DDOC_T_2016_0051_ROUSSEL.pdf (visited on 04/17/2019) (p. 17).
- [22] *Waspmote Lora* 868mhz 915mhz Sx1272. 00000 (p. 19).
- [23] Johan Bregell. " Hardware and Software Platform for Internet of Things ". In: *Master of Science Thesis in Embedded Electronic System Design* (2015). 00002 (p. 23, 29).
- [24] Contiki Applications for Z1 Motes for 6LowPAN. 00000. 2016. URL: https://upcommons.upc.edu/bitstream/handle/2117/82767/Master%20Thesis.pdf?sequence=1&isAllowed=y (visited on 01/14/2019) (p. 31).
- [25] Pascal Thubert, Maria Rita Palattella, and Thomas Engel. "6TiSCH Centralized Scheduling: When SDN Meet IoT". In: 2015 IEEE Conference on Standards for Communications and Networking (CSCN). 2015 IEEE Conference on Standards for Communications and Networking (CSCN). 00033. Tokyo, Japan: Oct. 2015, pp. 42–47 (p. 45).