

Figure 12.4: The top figure shows the construction of the blue  $u'_2$  as perpendicular to the orthogonal projection of  $e_2$  onto  $u_1$ , while the bottom figure shows the construction of the green  $u'_3$  as normal to the plane determined by  $u_1$  and  $u_2$ .

It should also be said that the Gram–Schmidt orthonormalization procedure that we have presented is not very stable numerically, and instead, one should use the *modified Gram–Schmidt method*. To compute  $u'_{k+1}$ , instead of projecting  $e_{k+1}$  onto  $u_1, \ldots, u_k$  in a single step, it is better to perform k projections. We compute  $u_1^{k+1}, u_2^{k+1}, \ldots, u_k^{k+1}$  as follows:

$$u_1^{k+1} = e_{k+1} - (e_{k+1} \cdot u_1) u_1,$$
  

$$u_{i+1}^{k+1} = u_i^{k+1} - (u_i^{k+1} \cdot u_{i+1}) u_{i+1},$$

where  $1 \le i \le k-1$ . It is easily shown that  $u'_{k+1} = u_k^{k+1}$ .

**Example 12.10.** Let us apply the modified Gram-Schmidt method to the  $(e_1, e_2, e_3)$  basis of Example 12.9. The only change is the computation of  $u'_3$ . For the modified Gram-Schmidt procedure, we first calculate

$$u_1^3 = e_3 - (e_3 \cdot u_1)u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - 2/3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 1/3 \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$$

Then

$$u_2^3 = u_1^3 - (u_1^3 \cdot u_2)u_2 = 1/3 \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} + 1/6 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = 1/2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix},$$