

Algoritmos e Linguagem de Programação de Computadores II

Ricardo José Cabeça de Souza www.ricardojcsouza.com.br ricardo.souza@ifpa.edu.br

SUMÁRIO

www.ricardojcsouza.com.br ricardo.souza@ifpa.edu.br

- Resolução de Problemas
- Pseudo-Linguagem
 - Identificadores
 - Expressões
 - Operadores Aritméticos
 - Operadores Lógicos
 - Comandos Básicos

OBJETIVOS

- Como resolver problemas
- Definir a pseudo-linguagem para escrita dos Algoritmos

EXEMPLO

- Problema:
 - Somar dois números
- DEFINIÇÃO DO PROBLEMA
 - Somar dois números quaisquer
 - Está claro?
 - Alguma dúvida?

- ANÁLISE DO PROBLEMA
 - ENTRADA

Figura 1.9 - Representação da(s) Entrada(s)

ENTRADA(S)

A
B

- ANÁLISE DO PROBLEMA
 - COMO RESOLVER?

Figura 1.10 – Representação da Operação

 $\mathbf{A} + \mathbf{B}$

- ANÁLISE DO PROBLEMA
 - COMO RESOLVER?

Figura 1.11 – Resultado da Operação

COMO?

 $R \leftarrow A + B$

- ANÁLISE DO PROBLEMA
 - SAÍDA

Figura 1.12 – Representação da Saída

SAÍDA R

- Seqüência de operações para Somar 2 números:
 - a) Entrar com o primeiro valor (A);
 - b) Entrar com o segundo valor (B);
 - c) Realizar a operação matemática:
 - $R \leftarrow A + B$
 - d) Apresentar o resultado da operação (R).

- Forma padronizada de realizar a escrita dos algoritmos
- Padrão de escrita para representar as ações a serem executadas nos nossos algoritmos

Identificadores

- Nome usado para designar uma entidade em um algoritmo ou programa
- Qualquer objeto utilizado para representar um elemento no algoritmo

Nomeação de Identificadores

- começar por caractere alfabético (letra)
- podemos utilizar caracteres alfabéticos (letras) e números em sua composição
- defina nomes significativos
- Não utilizar caracteres especiais
- Não utilizar espaços em branco
- Não utilizar palavras reservadas na linguagem de programação

Nomeação de Identificadores

Figura 1.13 – Nomeação de Identificadores

- Definição de Tipos para os Identificadores
 - Constante
 - Variável
- Definição de Tipos de Dados possíveis para armazenamento em Identificadores (variável ou constante)
 - Inteiro
 - Real
 - Caractere
 - Lógico

 Declaração de Identificadores (variável ou constante)

Figura 1.16 – Declaração de Identificadores

Expressões

 É uma combinação de variáveis, constantes e operadores, e que uma vez avaliada, resulta em um valor

- Operadores Aritméticos
 - são utilizados para realização de cálculos matemáticos

Operadores Aritméticos

Tabela 1 – Operadores Aritméticos

Operador	Operação	Exemplo de Expressões
: +	Soma	5+3 → 8
<u>.≅</u> 8	Subtração	8 - 2 → 6
*	Multiplicação	9 * 2 → 18
1	Divisão real	5/2 → 2.5
<u>div</u>	Divisão inteira	 5 div 2 → 2 Observação: Neste caso, se faz a divisão até não ser mais possível realizá-la sem a utilização de recursos adicionais, apresentando como resultado o quociente.

Operadores Aritméticos

Operador	Operação	Exemplo de Expressões
mod	Resto da divisão inteira	$5 \mod 2 \rightarrow 1$
* *	Potenciação (Exponenciação)	4 ** 2 → 16 Observação: Conforme a regra matemática: a¹ = a a⁰ = 1 a¹ = 1/a a⁻¹ = 1/a a⁻¹ = 1/a a⁻¹ = 1/a a⁻¹ = 1/an

Operadores Aritméticos

RAIZ()	RAIZ() Raiz quadrada	$RAIZ(25) \rightarrow 5$
		Observação:
		Somente é possível calcular a
		raiz quadrada de um número
		não negativo.

- Prioridade dos operadores
 - Ordem de execução das operações a ser seguida
 - Acompanha a regra matemática
 - Executando inicialmente as operações entre parênteses e funções pré-definidas

- Expressões Lógicas
 - Aquela cujo resultado é um valor lógico (.verdadeiro. ou .falso.)

Expressões Lógicas

Tabela 2 – Operadores Relacionais e Lógicos

Relações		
Operador	Operação	Exemplo de Expressões
	Igual a	$6 = 5 \rightarrow .$ falso. $9 = 9 \rightarrow .$ verdadeiro.
<>	Diferente de	6 <> 5 → .verdadeiro. 9 <> 9 → .falso.
>	Maior que	6 > 5 → .verdadeiro. 9 > 9 → .falso.
<	Menor que	$6 < 5 \rightarrow$.falso. $9 < 9 \rightarrow$.falso.
>=	Maior ou igual a	6 >= 5 → .verdadeiro. 9 >= 9 → .verdadeiro.
<=	Menor ou igual a	6 <= 5 → .falso. 9 <= 9 → .verdadeiro.

Expressões Lógicas

Lógicos		
Operador	Operação	Exemplo de Expressões
<u>e</u>	Conjunção	$6 = 5 \underline{e} 9 \le 9 \implies .falso.$
ou	Disjunção	$6 = 5 \text{ ou } 9 \le 9 \implies \text{.verdadeiro.}$
<u>não</u>	Negação	$não(9 \le 9)$ → .falso. não(6 = 5) → .verdadeiro.

Resultado de Operações Lógicas

Tabela 3 – Resultado de Operações Lógicas

Proposição 1	Operador	Proposição 2	Resultado
V	<u>e</u>	V	V
V	<u>e</u>	F	F
F	<u>e</u>	V	F
F	<u>e</u>	F	F
V	<u>ou</u>	V	V
V	<u>ou</u>	F	V
F	<u>ou</u>	V	V
F	<u>ou</u>	F	F
Oper	ador	Proposição	Resultado
<u>nã</u>	<u>o</u>	V	F
<u>nã</u>	<u>o</u>	F	V

- Comando de Atribuição
 - se deseja armazenar certo conteúdo em uma variável para posterior manipulação

Figura 1.17 – Comando de Atribuição

ricardo.souza@ifpa.edu.br

COMANDOS BÁSICOS

Comando de Atribuição

```
<u>inteiro</u>: A;
real: B;
<u>caractere</u>: LETRA;
caractere: NOME[60];
<u>lógico</u>: TESTE;
A \leftarrow 5:
B← 3.6;
LETRA \leftarrow 'm';
NOME ← "Governo Federal";
```


Comando de Entrada

 são usados para representar a entrada de dados com o uso dos dispositivos de entrada do computador

Figura 1.18 – Comando de Entrada

Comando de Entrada

<u>inteiro</u>: A;

caractere: NOME[60];

<u>ler</u>(A);

ler(NOME);

Comando de Saída

 é utilizado para mostrar o resultado das operações executadas pelo computador, apresentando, conforme definido pelo usuário, a resposta esperada

Comando de Saída

Figura 1.19 – Comando de Saída

Saída com identificador

Algoritmo	Unidade de Saída
inteiro: A; A ← 5; imprimir(A);	5

Saída com expressão

Algoritmo	Unidade de Saída	
inteiro: A,B; A ← 5; B ← 3; imprimir(A+B);	8	

Saída com "texto"

Unidade de Saída
Digite um numero: Boa Noite!

Saída com "texto" seguido de expressão

Algoritmo	Unidade de Saída
inteiro: A,B; A←7; B←9; imprimir("Soma=",A+B);	Soma=16

Saída com "texto" seguido de identificador

Algoritmo	Unidade de Saída
inteiro: A,B,RESPOSTA; A←7; B←9; RESPOSTA ← A + B; imprimir("Soma entre",A, "e", B, "e igual a ",RESPOSTA);	Soma entre 7 e 9 e igual a 16

Referências

- TANENBAUM, Aaron M. Langsam, Yedidyah, Augenstein, Moshe J. **Estruturas de dados usando** C. São Paulo : MAKRON *Books,* 1995.
- VELOSO, Paulo. et. al. **Estrutura de dados**. Rio de Janeiro: Campus, 1986.
- MORAES, Celso Roberto. Estrutura de dados e algoritmos. 2. ed. São Paulo: Futura, 2003.
- CELES, W. Rangel, J. L. Curso de Estrutura de Dados. PUC-Rio, 2002.
- W. Celes, R. Cerqueira, J.L. Rangel. Introdução a Estruturas de Dados com técnicas de programação em C. Rio de Janeiro: Campus, 2004.
- SCHILDT, Herbert. C Completo e total. São Paulo: MAKRON BOOKS, 1997.
- LOUDON, Kyle. Dominando algoritmos com C. São Paulo: CIENCIA MODERNA COMPUTAÇÃO, 2000.
- JAMSA, Kris. **Programando em C/C++: a bíblia**. São Paulo: Makron Books, 2000.
- LOPES, Anita. Introdução a programação: 500 algoritmos resolvidos. Rio de Janeiro: Campus, 2002.
- GIMARÃES, Ângelo de Moura. LAGES, Newton Alberto de Castilho. Algoritmos e estruturas de dados. Rio de Janeiro: Campus, 1985.
- LAUREANO, Marcos. **Programando em C para Linux, Unix e Windows**. Rio de Janeiro: BRASPORT LIVROS, 2005.
- MEDINA, Marco. FERTIG, Cristina. **Algoritmos e programação**: **teoria e prática**. São Paulo: NOVATEC INFORMATICA, 2005.
- ARAÚJO, Everton Coimbra de. Algoritmos: fundamentos e prática. 2. ed. Ampl. e atual. Florianópolis: VisualBooks, 2005.
- FEOFILOFF, Paulo. **Projeto de Algoritmos em C**. Disponível em http://www.ime.usp.br/~pf/algoritmos/aulas/lista.html acesso em 12/07/2011.
- HOLANDA, Aurélio Buarque. Dicionário Aurélio Eletrônico Século XX. Versão 3.0 Novembro, 1999.