5강. 보조정보를 이용한 추정

◈ 담당교수 : 이기재 교수

■ 주요용어

용어	해설
주변수(study	표본조사를 통해 각 조사단위로부터 직접적으로 알아내고자
variable)	하는 관심변수
보조변수(auxiliary	주변수 이외 조사단위에 관한 정보로 일반적으로 주변수와 연
variable)	관성이 높은 변수일 경우 유용성이 높음
비추정(ratio	표본 조사단위로부터 주변수 외에 보조변수의 값도 얻을 수 있
estimation)	을 때 주변수와 보조변수의 비(比)를 이용하는 추정방법
상대효율(relative	두 가지 서로 다른 추정량들의 효율을 비교하기 위해 사용되는
efficiency : RE)	측도로 서로 다른 추정량의 분산 비(比)를 뜻함
회귀추정	드 버스 …이 …기이이 지서 하게시오 하저워서 그런도 충져라이
(regression	두 변수 x와 y사이의 직선 관계식을 가정하여 구하는 추정량으
estimation)	로 회귀분석에서 두 변수 사이의 회귀식을 구하는 것과 유사함

■ 실습하기

- 교재 96쪽 아파트 매매가격 변동비 추정
 - * 비추정에 대한 추정값, 표준오차, 신뢰구간 작성
- 교재 105쪽 심화문제 1-3번
 - * 비추정에 의한 모총계 추정, 표준오차, 신뢰구간 작성

■ 연습문제

1. n개 표본에서의 각 단위들의 주변수 뿐만 아니라 보조변수 값도 함께 구하여 추정에 활용하는 방법으로 비추정법과 회귀추정법이 있다.

주변수와 보조변수가 원점을 지나는 직선관계를 지닐 경우 ()이 적절한 반면, 원점을 지나지 않는 직선관계일 경우에는 ()이 적절하다.

정답 및 해설: 비추정, 회귀추정

정답 및 해설:

$$r = \sum_{i = 1}^n y_i / \sum_{i = 1}^n x_i = \overline{y} \, / \, \overline{x} \; \cdot \; \; \widehat{V}(r) = \frac{N - n}{N} \, \frac{1}{n} \, \frac{1}{\mu_x^2} \, \frac{\sum_{i = 1}^n (y_i - r x_i)^2}{n - 1}$$

- 3. 어느 표본조사에서 보조변수 와 주변수 에 대한 산점도를 그려보니 원점을 지나지 않는 직선관계이고, 두 변수 사이의 상관계수는 -0.85인 것으로 나타났다. 이 경우에 가장 효율적인 추정법으로 생각되는 것은?
 - ① 표본평균을 이용한 추정법
 - ② 비추정법
 - ③ 회귀추정법
 - ④ 총계 추정법

정답 : ③

해설 : 보조변수 x와 주변수 y사이에 선형관계를 가정할 수 있지만 원점을 지나지는 않는 경우에 효율적인 추정법은 회귀추정법이다. 주어진 문제에서 두 변수는 원점을 지나지 않고, 상관계수가 -0.85이므로 직선관계가 뚜렷하다고 할 수 있다. 비추정법은 두 변수 사이의 산점도를 그렸을 때 원점을 통과하는 선형관계를 가정할 수 있을 때 효율적이다.

- 4. 단순임의표본에 대하여 보조변수 x와 주변수 y를 조사해서, 비추정량을 이용하여 모평균과 모총계를 추정하고자 한다. 여기서, r_x 과 μ_x 는 각각 보조변수 x에 대한 모집단 총계와 평균으로 사전에 알려져 있다. 다음 중 옳지 않은 것은?
 - ① 모평균에 대한 비추정량은 $\hat{\mu}_{u} = \mu_{u} \frac{\bar{\nu}_{u}}{a}$ 이다.

③ x와 y의 산점도가 원점을 통과하지 않는 직선 관계일 때는 회귀추정량을 이용한다.

x와 y의 상관계수가 0 근처의 값이면 비추정량이 표본평균에 비해서 효과적이다.

정답 : ④

해설 : 비추정량이 표본평균에 비해서 효과적인 경우는 와 의 상관계수가 1/2보다 큰 경우이다.

- 5. 단순임의표본을 추출하여 보조변수 x와 주변수 y를 조사하고, 회귀추정량을 이용하여 모평균과 모총계를 추정하고자 한다. 다음의 설명 중 적절하지 않은 것은?
 - ① 모평균에 대한 회귀추정량은 $\hat{\mu}_{vL} = \overline{y} + b \left(\mu_x \overline{x} \right)$ 이다.
 - ② 회귀추정량 $\hat{\mu}_{uL}$ 의 분산은 $\hat{V}(\hat{\mu}_{uL}) = \frac{N-n}{N} \frac{MSE}{n}$ 이다. 단, MSE: 회귀분석의 평균제곱오차이다.
 - ③ 모총계에 대한 $\hat{\tau}_{ul} = \tau_{e} \cdot b$ 회귀추정량은이다.
 - ④ 보조변수 x와 주변수y의 상관계수의 절대값이 1에 가까울 때 표본평균에 비해 효율적이다.

정답 : ③

$$\hat{\tau}_{vL} = N \cdot \hat{\mu}_{vL} = N \cdot \left[\ \overline{y} + b \left(\mu_x - \overline{x} \right) \ \right]$$

해설 : 총계에 대한 회귀추정량은 이다.

■ 정리하기

1. n개 표본에서의 각 단위들의 주변수 y_1 는 y_2 는 \cdots 는 y_n 뿐만 아니라 보조변수 x_1 는 x_2 는 \cdots 는 x_n 값도 함께 구하여 추정다

활용하는 방법으로 **비추정법과 회귀추정법**이 있다.

2. 주변수 ψ 와 보조변수 ψ 의 비인 $R=rac{\mu_{\psi}}{\mu_{\psi}}$ 의 추정량과 r과 그 분산의 추정량은 다음과 같다. ,

$$r = \frac{\sum\limits_{1}^{5} y_{i}}{\sum\limits_{1}^{5} x_{i}} = \frac{\overline{y}}{\overline{x}}, \; \hat{V}(r) = \frac{N - n}{N} \frac{1}{n} \frac{1}{\mu^{2}} \frac{\sum\limits_{1}^{5} (y_{i} - r x_{i})^{2}}{n - 1}$$

한편, 분산 추정식을 다르게 표현하면 일반적인 통계 소프트웨어를 이용하여 다음과 같이 간편하게 계산 할 수다.

$$\hat{V}(r) = \frac{N-n}{N} \frac{1}{n} \frac{1}{\mu^2} (s_y^2 + r^2 s_x^2 - 2r \hat{\rho} s_x s_y)$$

여기서, $\hat{\rho}$ 은 \mathbb{Z} 와 \mathbb{Z} 의 표본상관계수로 $\hat{\rho} = \frac{s_{\mathbb{Z}\mathbb{Z}}}{s_{\mathbb{Z}}s_{\mathbb{Z}}}$ 이다.

3. 비추정량을 이용하여 모총계를 추정하는 경우 추정량과 분산의 추정량은 다음 식과 같다

$$\hat{\tau_y} = r \cdot \tau_z = \frac{\sum_{i=1}^{r} y_i}{\sum_{i=1}^{r} x_i}$$

$$\hat{V}(\hat{\tau_y}) = \hat{V}(r \cdot \tau_x) = \tau_x^2 \, \hat{V}(r) = N^2 \star \frac{N-n}{N} \frac{1}{n} \frac{\sum_{i=1}^{n} (y_i - rx_i)^2}{n-1}$$

4. 주변수와 보조변수가 원점을 지나는 직선관계를 지닐 경우 비추정이 적절한 반면, 원점을 지나지 않는 직선관계일 경우는

회귀추정이 적절하다. 모평균에 대한 회귀추정량과 분산추정량은 다음과 같다

$$\widehat{\widehat{V}(\widehat{\mu_{\mathcal{U}}}} = \overline{y} + b(\mu_{z} - \overline{x})$$

$$\widehat{\widehat{V}(\widehat{\mu_{\mathcal{U}}}}) = \frac{N-n}{N} \frac{1}{n} \frac{1}{n-2} \left[\sum_{i=1}^{n} (y_{i} - \overline{y})^{2} - b^{2} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \right] = \frac{N-n}{N} \frac{MSE}{n}$$

$$\text{QIM } b = \frac{\sum\limits_{i=1}^{n}(x_i-\overline{x})(y_i-\overline{y})}{\sum\limits_{i=1}^{n}(x_i-\overline{x})^2} \text{OICH}.$$

5. 추정량 E_1 의 E_2 에 대한 상대효율은 $RE\left(\frac{E_1}{E_2}\right) = \frac{V(E_2)}{V(E_1)}$ 로 정의되며, 이 값이 1보다 클수록, E_1 이 E_2 에 비해

더 효율적인 추정량이라고 한다.

■ 참고문헌

- 이계오, 박진우, 이기재, 표본조사론, 한국방송통대학교출판부, 2013. 제1장
- 통계청 홈페이지 : http://www.nso.go.kr