

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{11} - u^{10} + 6u^9 - 5u^8 + 12u^7 - 8u^6 + 8u^5 - 3u^4 + u^3 + u^2 + 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 11 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{11} - u^{10} + 6u^9 - 5u^8 + 12u^7 - 8u^6 + 8u^5 - 3u^4 + u^3 + u^2 + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{7} - 4u^{5} - 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{10} + 5u^{8} + 8u^{6} + 3u^{4} - u^{2} + 1 \\ u^{10} - u^{9} + 5u^{8} - 4u^{7} + 8u^{6} - 5u^{5} + 3u^{4} - 2u^{3} - u^{2} - u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{6} - 3u^{4} - 2u^{2} + 1 \\ -u^{8} - 4u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{6} - 3u^{4} - 2u^{2} + 1 \\ -u^{8} - 4u^{6} - 4u^{4} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{10} + 4u^9 - 24u^8 + 16u^7 - 44u^6 + 16u^5 - 20u^4 - 4u^3 + 4u^2 - 4u - 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_5 \ c_6, c_7$	$u^{11} - u^{10} + 8u^9 - 7u^8 + 22u^7 - 16u^6 + 24u^5 - 13u^4 + 9u^3 - 3u^2 + 1$
<i>c</i> ₃	$u^{11} - u^{10} + 4u^9 - u^8 + 18u^7 - 2u^6 + 26u^5 - 3u^4 + 23u^3 - u^2 + 4u + 5$
c_4, c_8, c_9	$u^{11} + u^{10} + 6u^9 + 5u^8 + 12u^7 + 8u^6 + 8u^5 + 3u^4 + u^3 - u^2 + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_7	$y^{11} + 15y^{10} + \dots + 6y - 1$
c_3	$y^{11} + 7y^{10} + \dots + 26y - 25$
c_4, c_8, c_9	$y^{11} + 11y^{10} + \dots + 6y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.691368 + 0.499908I	11.24540 - 2.30219I	-3.67978 + 2.86330I
u = 0.691368 - 0.499908I	11.24540 + 2.30219I	-3.67978 - 2.86330I
u = 0.081634 + 1.321480I	3.47017 - 1.62554I	-5.42199 + 3.91435I
u = 0.081634 - 1.321480I	3.47017 + 1.62554I	-5.42199 - 3.91435I
u = -0.525209 + 0.369457I	2.02228 + 1.65848I	-4.54419 - 4.72916I
u = -0.525209 - 0.369457I	2.02228 - 1.65848I	-4.54419 + 4.72916I
u = -0.18554 + 1.42716I	7.76699 + 4.26374I	-1.04971 - 4.02329I
u = -0.18554 - 1.42716I	7.76699 - 4.26374I	-1.04971 + 4.02329I
u = 0.23988 + 1.50376I	17.7594 - 5.6984I	-0.45524 + 2.83577I
u = 0.23988 - 1.50376I	17.7594 + 5.6984I	-0.45524 - 2.83577I
u = 0.395736	-0.636835	-15.6980

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5 c_6, c_7	$u^{11} - u^{10} + 8u^9 - 7u^8 + 22u^7 - 16u^6 + 24u^5 - 13u^4 + 9u^3 - 3u^2 + 1$
c_3	$u^{11} - u^{10} + 4u^9 - u^8 + 18u^7 - 2u^6 + 26u^5 - 3u^4 + 23u^3 - u^2 + 4u + 5$
c_4, c_8, c_9	$u^{11} + u^{10} + 6u^9 + 5u^8 + 12u^7 + 8u^6 + 8u^5 + 3u^4 + u^3 - u^2 + 2u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_7$	$y^{11} + 15y^{10} + \dots + 6y - 1$
c_3	$y^{11} + 7y^{10} + \dots + 26y - 25$
c_4, c_8, c_9	$y^{11} + 11y^{10} + \dots + 6y - 1$