CATALOGED BY DOGS 7 7 A AS AD NO. = =

Mechanical Properties of AM-350, Potomac A, Potomac M, and Vasco Jet-1000 Steel Alloys in the Annealed Condition

Robert G. Henning, Capt, USAF Alton W. Brisbane

TECHNICAL DOCUMENTARY REPORT NO. ASD -TDR-63-116
May 1963

911804

Directorate of Materials and Processes Aeronautical Systems Division Air Force Systems Command Wright Patterson Air Force Base, Ohio

Project 7351, Task 735106

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Armed Services Technical Information Agency, (ASTIA), Arlington Hall Station, Arlington 12, Virginia.

This report has been released to the Office of Technical Services, U.S. Department of Commerce, Washington 25, D.C., in stock quantities for sale to the general public.

Copies of this report should not be returned to the Aeronautical Systems Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

FOREWORD

This report was prepared by the Strength and Dynamics Branch. The work was initiated under Project No. 7351, "Metallic Materials," Task No. 735106, "Behavior of Metals." The work was administered under the direction of the Metals and Ceramics Laboratory, Directorate of Materials and Processes, Aeronautical Systems Division, with Captain Robert G. Henning acting as project engineer.

This report covers work performed during the period from June 1959 to June 1960.

The machining and testing of all specimens were accomplished under a routine testing contract AF 33(616) 6225, "Non-Research and Development Mechanical Properties Testing," by the Metcut Research Associates.

ABSTRACT

Mechanical properties of three hot-worked steels and one precipitation-hardening stainless steel were obtained. Properties obtained were tensile, compression, sheet single shear, bearing, and 105-degree-angle bend tests. Tests were conducted at temperatures of 80°, 400°, 600°, 800°, 1000°, and 1200°F. Stressed and non-stressed exposure tests were conducted only at 600°, 800°, and 1000°F. All properties were obtained from the longitudinal direction of the material except three tensile specimens from each material in the transverse direction, which were tested only at 80°F. Data obtained are presented graphically. Metallurgical histories and chemical analyses are also included.

This technical documentary report has been reviewed and is approved.

W. J. TRAPP

Chief, Strength and Dynamics Branch Metals and Ceramics Laboratory Directorate of Materials and Processes

TABLE OF CONTENTS

	Page
INTRODUCTION	1
TEST PREPARATION	1
Test Specimens	1
Chemical Analysis	1
Heat Treatment	2
MECHANICAL PROPERTIES MEASURED	2
TEST EQUIPMENT	3
Testing Machines	3
Extensometers and Test Fixtures	3
TEST CONDITIONS	3
TEST RESULTS	4
DISCUSSION	4
CONCLUSIONS	5

LIST OF FIGURES

Figure		Page
1.	Tensile Specimen	42
2.	Compression Specimen	43
3.	Sheet Shear Specimen	43
4.	Sheet Bearing Test, Specimen-Bearing Ratio e/D = 1.5	44
5.	Sheet Bearing Test, Specimen-Bearing Ratio e/D = 2.0	44
6.	Sheet 105-Degree-Angle Bend Test Specimen	44
7.	Specimen Layout Key for Sheets of Potomac A, Potomac M, and Vasco Jet-1000	45
8.	Specimen Layout Key for Sheet of AM-350	46
9.	Effect of Temperature on Tensile Properties of Potomac A	47
10.	Effect of Temperature on Tensile Properties of Non-Stressed Stability Specimens, Potomac A	48
11.	Effect of Temperature on Tensile Properties of Stressed Stability Specimens, Potomac A.	49
12.	Effect of Temperature on Compressive Properties of Potomac A	50
13.	Effect of Temperature on Bearing Properties of Potomac A	51
14.	Effect of Temperature on Bearing Properties of Potomac A	52
15.	Effect of Temperature on Shear Strength of Potomac A	53
16.	Effect of Temperature on Tensile Properties of Potomac M	54
17.	Effect of Temperature on Tensile Properties of Non-Stressed Stability Specimens, Potomac M	55
18.	Effect of Temperature on Tensile Properties of Stressed Stability Specimens, Potomac M	56
19.	Effect of Temperature on Compressive Properties of Potomac M	57
20.	Effect of Temperature on Bearing Properties of Potomac M	58
21.	Effect of Temperature on Bearing Properties of Potomac M	59
22.	Effect of Temperature on Shear Strength of Potomac M	60
23.	Effect of Temperature on Tensile Properties of AM-350	61
24.	Effect of Temperature on Tensile Properties of Non-Stressed Stability Specimens, AM-350	62
25.	Effect of Temperature on Tensile Properties of Stressed Stability Specimens, AM-350	63
26.	Effect of Temperature on Compressive Properties of AM-350	64
27.	Effect of Temperature on Bearing Properties of AM-350	65
28	Effect of Temperature on Rearing Properties of AM-250	66

LIST OF FIGURES (Cont'd)

Figure	;	Page
29.	Effect of Temperature on Shear Strength of AM-350	67
30.	Effect of Temperature on Tensile Properties of Vasco Jet-1000	68
31.	Effect of Temperature on Tensile Properties of Non-Stressed Stability Specimens, Vasco Jet-1000	69
32.	Effect of Temperature on Tensile Properties of Stressed Stability Specimens, Vasco Jet-1000	70
33.	Effect of Temperature on Compressive Properties of Vasco Jet-1000	71
34.	Effect of Temperature on Bearing Properties of Vasco Jet-1000	72
35.	Effect of Temperature on Bearing Properties of Vasco Jet-1000	73
36.	Effect of Temperature on Shear Strength of Vasco Jet-1000	74
37.	Effect of Exposure Time and Temperature Versus Non-Stressed Tensile Stability/Tensile Properties of Non-Exposed Potomac A	75
38.	Effect of Exposure Time and Temperature Versus Non-Stressed Stability/Tensile Properties of Non-Exposed Potomac M	76
39.	Effect of Exposure Time and Temperature Versus Non-Stressed Tensile Stability/Tensile Properties of Non-Exposed AM-350	77
40.	Effect of Exposure Time and Temperature Versus Non-Stressed Tensile Stability/Tensile Properties of Non-Exposed Vasco Jet-1000	78
41.	Effect of Exposure Time and Temperature Versus Stressed Tensile Stability/Tensile Properties on Non-Exposed Potomac A	79
42.	Effect of Exposure Time and Temperature Versus Stressed Tensile Stability/Tensile Properties of Non-Exposed Potomac M	80
43.	Effect of Exposure Time and Temperature Versus Stressed Tensile Stability/Tensile Properties of Non-Exposed AM-350	81
44.	Effect of Exposure Time and Temperature Versus Stressed Tensile Stability/Tensile Properties of Non-Exposed Vasco Jet-1000	82
4 5.	Effect of Temperature Versus the Compressive Properties/Tensile Properties of Potomac A	83
46.	Effect of Temperature Versus the Compressive Properties/Tensile Properties of Potomac M	84
47.	Effect of Temperature Versus the Compressive Properties/Tensile Properties of Potomac AM-350	85
48.	Effect of Temperature Versus the Compressive Properties/Tensile Properties of Vasco Jet-1000	86
49.	Effect of Temperature Versus the Sheet Shear Strength/Ultimate	87

LIST OF FIGURES (Cont'd)

Figure	e	Page
50.	Effect of Temperature Versus the Sheet Shear Strength/ Ultimate Tensile Strength of Potomac M	88
51.	Effect of Temperature Versus the Sheet Shear Strength/ Ultimate Tensile Strength of AM-350	89
52.	Effect of Temperature Versus the Sheet Shear Strength/ Ultimate Tensile Strength of Vasco Jet-1000	90
53.	Effect of Temperature Versus the Bearing Properties/ Tensile Properties of Potomac A, e/D = 2.0	91
54.	Effect of Temperature Versus the Bearing Properties/ Tensile Properties of Potomac M, e/D = 2.0	92
55.	Effect of Temperature Versus the Bearing Properties/ Tensile Properties of AM-350, e/D = 2.0	93
56.	Effect of Temperature Versus the Bearing Properties/ Tensile Properties of Vasco Jet-1000, e/D = 2.0	94
57.	Effect of Temperature Versus the Bearing Properties/ Tensile Properties of Potomac A, e/D = 1.5	95
58.	Effect of Temperature Versus the Bearing Properties/ Tensile Properties of Potomac M, e/D = 1.5	96
59.	Effect of Temperature Versus the Bearing Properties/ Tensile Properties of AM-350, e/D = 1.5	97
60.	Effect of Temperature Versus the Bearing Properties/ Tensile Properties of Vasco Jet-1000, e/D = 1.5	98
61.	Tensile Stress-Strain Curves of Potomac A	99
62.	Compression Stress-Strain Curves of Potomac A	99
63.	Tensile Stress-Strain Curves of Potomac M	100
64.	Compression Stress-Strain Curves of Potomac M	100
65.	Tensile Stress-Strain Curves of AM-350	101
66.	Compression Stress-Strain Curves of AM-350	101
67.	Tensile Stress-Strain Curves of Vasco Jet-1000	102
68	Compression Stress-Strain Curves of Vasco Tet-100	102

LIST OF TABLES

Table		Page
1	Chemical Analysis of Test Materials	2
2	Average Tensile Property Ratios of Steel Alloys	6
3	Average Compressive, Bearing, and Shear Property Ratios of Steel Alloys	7
4	Tensile Properties of Potomac A (non-exposed specimens)	8
5	Tensile Properties of Potomac M (non-exposed specimens)	10
6	Tensile Properties of AM-350 (non-exposed specimens)	12
7	Tensile Properties of Vasco Jet-1000 (non-exposed specimens)	14
8	Tensile Properties of Potomac A (non-stressed stability specimens)	16
9	Tensile Properties of Potomac M (non-stressed stability specimens)	17
10	Tensile Properties of AM-350 (non-stressed stability specimens)	18
11	Tensile Properties of Vasco Jet-1000 (non-stressed stability specimens)	19
12	Tensile Properties of Potomac A (stressed stability specimens)	20
13	Tensile Properties of Potomac M (stressed stability specimens)	21
14	Tensile Properties of AM-350 (stressed stability specimens)	22
15	Tensile Properties of Vasco Jet-1000 (stressed stability specimens)	23
16	Sheet Shear Properties of Potomac A	24
17	Sheet Shear Properties of Potomac M	25
18	Sheet Shear Properties of AM-350	26
19	Sheet Shear Properties of Vasco Jet-1000	27
20	Compressive Properties of Potomac A	28
21	Compressive Properties of Potomac M	29
22	Compressive Properties of AM-350	3C
23	Compressive Properties of Vasco Jet-1000	31
24	Bearing Properties of Potomac A (e/D = 1.5)	33
25	Rearing Properties of Potomac M (e/D = 1.5)	34

LIST OF TABLES (Cont'd)

Table		Page
26	Bearing Properties of AM-350 (e/D = 1.5)	35
27	Bearing Properties of Vasco Jet-1000 (e/D = 1.5)	36
28	Bearing Properties of Potomac A (e/D = 2.0)	37
29	Bearing Properties of Potomac M (e/D = 2.0)	38
30	Bearing Properties of AM-350 (e/D = 2.0)	39
31	Bearing Properties of Vasco Jet-1000 (e/D = 2.0)	40
32	Bend Tests of Sheet Material Minimum Bend Diameter over 105-degree angle	41

INTRODUCTION

Thermal environments, whether high or low, will cause changes in the mechanical properties of metals. The extent of such changes is directly proportional to the length of time exposed. This investigation involves the mechanical properties of four alloys designed for possible elevated temperature applications.

The effect of exposure time at test temperature on the elevated temperature tensile, compression, sheet single shear, bearing, and 105-degree-angle bend properties of Potomac A, Potomac M, Vasco Jet-1000, and AM-350 were determined.

TEST PREPARATION

Test Specimens

The materials used in these tests were considered representative of each type of material as consumer purchased.

All specimens were machined from 0.064-in. sheet material except the Vasco Jet-1000, which was 0.050-in. sheet. The standard 2-in.-gage-length, pinhole loading type of tension specimens were used (figure 1). Compression specimens $2\frac{1}{2}$ in. x in. were used (figure 2), and their ends were machined flat and parallel to each other. Sheet single shear specimens were machined as shown in figure 3. Figure 4 shows the shape of the bearing specimens which were machined to give an $^{e}/D$ ratio of 1.5, and figure 5, shows bearing specimen which give an $^{e}/D$ of 2.0. The bend specimens were 3 in. x 1 in. as shown in figure 6.

All test specimens were cut from the parent material so that the longitudinal axis of the specimen was parallel to the direction of rolling except three tensile specimens from each material, which were taken in the transverse direction and tested at room temperature.

The specimens were taken from the parent sheet as shown on the specimen layout in figures 7 and 8.

Chemical Analysis

A chemical analysis of each material was made by the Bowser-Warner Testing Laboratories, Inc., Dayton, Ohio. The analysis is given in table 1.

Manuscript released by the authors 16 January 1963 for publication as an ASD Technical Documentary Report.

TABLE 1
CHEMICAL ANALYSIS OF TEST MATERIALS

MATERIAL	SOURCE	C	Mn	Si	<u>P</u>	S	Cr	Ni	Mo	<u>v</u>	W
AM-350	Allegheny-Ludlum	0.08	0.94	0.21	0.010	0.018	16.82	4.12	2.94	0.19	Trace
Potomac A	Allegheny-Ludlum	0.38	0.31	1.04	0.014	0.008	5.18	0.08	1.32	0.67	Trace
Potomac M	Allegheny-Ludlum	0.37	0,35	0.84	0.016	0.010	5.75	0.16	0.83	1.01	Trace
Vasco Jet-1000	Vanadium Alloys	0.36	0.38	0.88	0.013	0.010	5.48	0.05	0.89	0.61	Trace

Heat Treatment

All specimens were tested in the annealed condition.

MECHANICAL PROPERTIES MEASURED

The properties to be determined from the tensile tests were:

- 1. Ultimate tensile strength
- 2. Tensile yield strength (0.02- and 0.2-percent offset)
- 3. Elongation in 2-in. gage length
- 4. Modulus of elasticity

The properties to be determined from the compressive tests were:

- 1. Compressive yield stress (0.2-percent offset)
- 2. Modulus of elasticity
- 3. Secant modulus of 0.70 and 0.85

The properties to be determined from the bearing tests were:

- 1. Ultimate bearing strength
- 2. Bearing yield strength (2.0-percent of hole diameter)

The property to be determined from the sheet single shear tests was:

1. Ultimate shear strength

The property to be determined from the bending tests was:

1. Ratio of 105-degree-angle bending radius to thickness

TEST EQUIPMENT

Testing Machines

The tests were performed on both a Baldwin-Lima-Hamilton Model 60H hydraulic testing machine and a Southwork-Emery Universal testing machine. In addition to the 0-12,000 and 0-60,000 pound ranges which both machines have, the Baldwin-Lima-Hamilton machine has a 0-2,400 pound range and the Southwork-Emery machine a 0-1,200 pound range. Both machines are equipped with strain pacing devices and load strain recorders.

Extensometers and Test Fixtures

A Baldwin-Lima-Hamilton PSH-8MS type of tensile extensometer was used in conjunction with an autographic recorder to measure strain for the tensile and sheet bearing tests. The sheet bearing loading shackles were self-aligning and were provided with means for adjusting the fit between the shackles and the specimen. The elevated temperature fixture, a Boeing Airplane Company design built by Metcut, was used for the compression specimen. A Baldwin-Lima-Hamilton P5-3M type of extensometer was used in conjunction with the autographic recorder to measure strain. (Evaluations for modulus of elasticity were obtained with autographic recording equipment due to the availability of the equipment. It is realized that the static modulus is affected by various test conditions and mechanical errors. Dynamic values would have been more accurate.)

Elevated Temperature Furnace

A Marshall jacket type furnace having a temperature capacity of 1800°F was used for the tensile, single shear, and bearing tests. A "larger-diameter-split" type furnace was used for the compression tests. A resistance type of Metcut furnace was used for the elevated temperature bend test. Specimens that were exposed at elevated temperatures for 100 hours were placed in an air-circulating furnace.

TEST CONDITIONS

Ten specimens of each material were tested at room temperature (80°F) and three at each of the following elevated temperatures, 400°, 600°, 800°, 1000°, and 1200°F. All tests were performed after a $\frac{1}{2}$ -hr. hold at test temperature prior to testing. The maximum temperature variation along the gage length was ± 5 °F.

Individual tests consisted of tensile, stability, compression, bearing, shear, and bend tests. In the tensile and compression tests, a constant strain rate of 0.005 in./in./min. was employed until tensile or compressive yield was attained. Then beyond the yield, a controlled head travel rate of 0.05 in./min. was maintained to failure. Stressed and non-stressed exposure tests were conducted to determine stability of the specimens. One-half were exposed under stress at 1/3 yield strength of the material; the other half were exposed in an unstressed condition. Compression tests were made, in which the 0.2-percent offset yield strength modulus of elasticity and stresses to produce the 0.7-and 0.85-secant moduli were determined. Shear tests were conducted at a head travel rate of 0.05 in./min. In the bend tests, the specimen was forced around progressively smaller and smaller radii to determine the minimum bend diameter to specimen thickness ratio at which specimen failure would not occur. In these, a loading rate of less than 1 in./min. was used.

TEST RESULTS

The average and individual mechanical properties data from the tests obtained on all four materials are presented in tables 4 through 31. Averages of ultimate tensile, tensile yield, compressive yield, ultimate shear, bearing ultimate, and bearing yield property ratios are presented in tables 2 and 3. Curves showing averages of the mechanical properties versus test temperature are presented in figures 9 through 36, and ratio curves of these properties versus test temperature are presented in figures 37 through 60. Typical stress-strain curves for tension and compression tests of each material are given for each test temperature in figures 61 through 68.

DISCUSSION

Since the four materials are of different compositions and processing no attempt will be made to compare one to the other except the Potomac A and the Potomac M.

From the graphs, the tensile ultimate and yield strengths of the Potomac A, Potomac M, and Vasco Jet-1000 materials varied very little in the 400° - 800° temperature range, whereas the tensile ultimate and yield strengths of the AM-350 material varied little in the 400° - 1000° F temperature range.

The non-stressed stability tensile test, as in the non-exposed tensile tests, showed negligible changes at the 600°, 800°, and 1000°F test temperature exposures. The stability tests of the Potomac A and Potomac M (after stress) showed nearly identical tensile and yield results. There was no appreciable change in the tensile and yield strengths of the AM-350 and Vasco Jet-1000 compared to the regular tensile tests. One notable point is that the tensile strength of the AM-350 alloy decreased 45 percent from room temperature to 400°F, but its tensile yield strength decreased 50 percent between room temperature and 1200°F.

The graphs show that the compressive yield strength of the Potomac A increased at 800° and at 1000°F for the 0.2-percent offset, 0.7-secant and 0.85-secant yields, and that the Potomac M had only a slight increase at the 800°F test temperature. The AM-350 alloy also had a yield strength increase at the 800°F test temperature. The Vasco Jet-1000 alloy had an increase in yield strength at 600°F temperature.

The graphs show that the bearing properties of the Potomac alloy seemed to decrease linearly between 400° and 600° F at the ratio of $^{e}/D = 1.5$. Where $^{e}/D$ was 2.0, there was a slight increase at the 600° F test temperature. The bearing properties of the Potomac M alloy were approximately 7 to 10 percent higher than those of the Potomac A alloy. The same trend is noted for the ultimate bearing strength of the two alloys, for there is a large decrease in their ultimate strengths between room temperature and 400° F. The Vasco Jet-1000 alloy had a sharp rise in bearing yield at 600° F for both $^{e}/D$ of 1.5 and 2.0.

The data for the bend tests are given in table 32. No plot was made of this data. The ductility of the test material was such that no failures occurred. At all temperatures tested, the specimens were bent around a radius of 1/64 in. (i.e., 105-degree angle) without failure.

CONCLUSIONS

There was very little change in the properties of the non-stressed and the stressed stability specimens which were held at test temperatures for 100 hours before testing. This indicates that the prestraining had only a thermal effect on the specimens.

Of the materials tested, the mechanical properties of the AM-350 alloy were the most affected.

Table 2 Average Tensile Property Ratios of Steel Alloys

Allov		Prope	rty Ra	Property Ratios (Longi	ongitud	tudinal)					Room	Room Temperature Tests		Exposure 1	Exposure Temperature Tests	
1											600°F Exposure	600°F Exposure 800°F Exposure 1000°F Exposure		600% Exposure	600% Exposure 800% Exposure 1000% Exposure	1000 F Exposure
Potomac A	Stabilit	y of Ul	timate	. Tensi	le Strei	ngth, St.	Stability of Ultimate Tensile Strength, Stressed/Non-Exposed	'Non-E	xposed		1.00	1.00	0.96	0.89	0,82	0.55
Potomac M	=	=	=	=	=		-	=	=		0.99	1.00	0.98	0.86	5 .0	0.63
AM-350	=	:	=	=	=	_	=	=	=		1.01	1.03	1. 13	0.57	0.57	0.52
Vasco Jet-1000	=	=	=	=	=	_	=	=	=		1.00	0.97	1.00	0.82	0. 75	0.51
Potomac A	Stabilit	Stability of 0.02% Tensile Yield	02% T	ensile		trength,	Strength, Stressed/Non-Exposed	ed/No	n-Expo	• ed	1.16	1. 26	1.02	1.00	0.81	0, 60
Potomac M	=	=	=	=	=	=	=		. =		1.16	1. 33	1.16	1.00	0.92	0.76
AM-350	=	=	=	=	=	=	=	•			1.11	1.07	0.89	0.69	0.69	0.51
Vasco Jet-1000	=	=	=	=	=	=	=	-	=		1.08	1.31	1.18	0.90	0, 80	0.59
Potomac A	Stabilit	Stability of 0, 2% Teneile Yield	2% Tei	neile Y.	ield Str	ength,	Strength, Stressed/Non-Exposed	d/Non	- Expos	eq	1.08	1.08	0.94	0.93	0, 83	0.62
Potomac M	=	=	=	=	=	=	=	-	=		1.05	1. 07	1.04	0.92	0,85	0. 72
AM-350	=	=	=	=	=	=	=	•	=		1.05	1, 05	0.88	0.68	0.68	0.54
Vasco Jet-1000	=	=	=	=	=	=	Ξ	-	=		1.02	1. 02	96.0	0.83	0, 75	0.58
Potomac A	Stabilit	Stability of Ultimate Tensile St	timate	Tensi	le Stre	rength, No	Non-Stressed/Non-Exposed	seed/h	Von-Ex	posed	1.00	0.98	1.00	0.91	0.83	0.56
Potomac M	=	=	=	=	=		=		=	=	1.01	1. 02	1.00	0.89	0.87	3
AM-350	=	=	=	=	=			=	=		1.10	1.11	1. 20	0.57	0.59	0.52
Vasco Jet-1000	:	=	=	=	-	_	-	=	=	=	96.0	0.97	0.97	0.82	0.80	0, 53
Potomac A	Stabilit	Stability of 0,02% Tensile Yield	02% T	ensile	-	trength,	Non-S	tresse	d/Non-	Strength, Non-Stressed/Non-Exposed	1.21	1. 21	1.02	1.00	8.	0.58
Potomac M	=	=	_	=	=	· <u>-</u>	=	=	=	=	1. 24	1. 28	1. 26	1,02	0.94	0.78
AM-350	=	=		=	=	=	=	=	=	=	1.11	1.11	1.07	0.67	0, 73	0.49
Vasco Jet-1000	=	=	_	£	:	=	=	=	=	=.	1.13	1. 10	0.95	0.90	0.85	5 0.0
Potomac A	Stabilit	Stability of 0, 2% Tensile Yield	2% Te:	nsile Y		Strength,	Non-Str	ressed	/Non-E	Non-Stressed/Non-Exposed	1.08	1.07	96.0	0.92	0.86	0.62
Potomac M	=	=	-	_		=	=	=	=	=	1.07	1. 10	1.05	0.92	0.86	0. 72
AM-350	=	:	=		=	=	=	=	=	=	1.07	1.07	1, 25	0.66	0.69	0.58
Vasco Jet-1000	=	=	=	-	=	=	=	=	=	=	0.98	96.0	9. 94	0.79	0.81	0.65
																•

Table 3 Average Compressive, Bearing, and Shear Property Ratios of Steel Alloys

Alloy	Property Ratio (Longitudinal)	80°F 400°F	600°F	800°F	1000°F	1200%
Dotomo o	0 24 Compressive Vield Strenoth/0 2% Tensile Yield Strength	ö	o.	29		0.36
Potomac M		1.05 0.97	0.94	0.89	0.80	0.36
AM-350		o.	o.	69		0.47
Vasco Jet-1000		ö	<u>о</u>	09		0.48
Potomac A	0.7 Compressive Secant Strength/0, 2% Tensile Yield Strength	58 0.	0		0.55	0, 33
Potomac M		97 0.	°.			0, 33
AM-350		1.00 0.66	0.59	0, 63		0, 39
Vasco Jet-1000		94 0.	ö			0.42
Potomac A	0.85 Compressive Secant Strength/0,2% Tensile Yield Strength	o.	o.	20	0.47	0,30
Potomac M		ö	o.	72	0.67	0.29
AM-350	= = = =	0.90 0.56		0.54	0.41	0,34
Vasco Jet-1000	=	o.	o.	42	0.40	0.40
Potomac A	Ultimate Shear Strength/Ultimate Tensile Strength	0.83 0.71	0,67	0.64	0.49	0.27
Potomac M) =	o	o	71	0.59	0, 33
AM-350		o.	o'	44	0.39	0, 33
Vasco Jet-1000		o.	o.	61	0.49	0, 30
Potomac A	Bearing Ultimate Strength $(^{e}/D = 2, 0)$ Tensile	1.63 1.50			1.08	0, 65
Potomac M	=		1.62	1,52	1. 23	0.70
AM-350	= = =				0.85 0.05	o. 68
Vasco Jet 1000	=				0.97	0.69
Potomac A	Bearing Yield Strength, $(^{e}/D = 1.5)/0.2\%$ Tensile Yield	1.75 1.61	1.60	1,55	1. 22	0. 72
Potomac M			ં		1. 42	0.75
AM-350			∹		1. 27	1. 12
Vasco Jet-1000			~ i		1, 33	0.94
Potomac A	Bearing $(^{e}/D = 2, 0)$ Ultimate Strength/Ultimate Tensile Strength	07	1.91	42	1, 37	0.75
Potomac M		25 2.	7	98	1.59	0.95
AM-350	=	∹	ij	1, 21	1. 14	0.83
Vasco Jet-1000	=	28 1.	-;	22	1, 33	0.82
Potomac A	Bearing Yield Strength, $(^{e}/D = 2.0)/0.2\%$ Tensile Yield	96		83	1.43	0, 75
Potomac M	= = =	22 2.	~ i	11	1. 65	0, 89
AM-350		- ;	- : (1.59	1.49	1. 10
Vasco Jet-1900		50 6.	7	40	1.07	1. 11

Table 4
Tensile Properties of Potomac A
(Non-Exposed Specimens)

	Test					Moduling of
Syecimen No.	Temp.	U.T.S. ksi	Yield Strengths (ksi)	1gths (ksi) 0.2%	Elong.	Elasticity 10 ⁶ psi
٧-١	RT	98.0	70.0	75.7	19.5	22.2
A-2	RT	97.5	52. 1	73.0	707	30.4
A-3	RT	98.5	56.5	74.5	18	26.7
٧-4	RA	97.5	66.5	71.0	20	23.9
A-5	K	97.3	67.0	72. 5	19.5	25.4
y- e	RT	97.0	64.3	70.3	19	22.6
A-7	Ħ	98.5	61.7	71.7	20	29.8
A-6	H X	98.0	64.5	74.0	20	26.1
٨-9	R	95.0	61.6	68.9	19.5	22.3
A-10	RT	97.2	61.0	71.0	18.5	25, 5
Average		97.5	62.5	72.3	19.4	25, 5
A-11*	RT	101	40.0	67.1	20	28.0
A-12*	RT	99.5	40.2	67.0	19.5	27.9
A-13*	RT	100	64.5	73.0	20.5	28.4
Average		100	48.2	69.0	20.0	28. 1
A-14	400	87.2	58. 4	68.2	16	25.7
A-15	4 00	87.7	53.4	65.3	16.5	28.7
A-16	400	86.5	43.6**	64. 2	15, 5	18.5
Average		87.1	55.9	65.9	16.0	24.3
A-17	009	86.4	61.2	68.8	13	21.9
۸-18	009	86.0	55.3	63.8	13.5	22.8
٨-19	009	86.2	58.5	65.8	14	16.2
Average		86.2	58.3	66. 1	13.5	20.3
A-20	800	83.6	53, 5	64.3	17,5	24. 1
A-21	800	81.9	47.6	59.8	18	27.2
A-22	800	80.6	49.7	60.7	18.5	22. 5
Average		82.0	50.3	61.6	18.0	24.6

* Transverse specimen.

ee Not used in average.

Table 4 (Cont'd)
Tensile Properties of Potomac A
(Non-Exposed Specimens)

Specimen	Tent.	U.T.S.	Tield Streng	ths (ksi)	Elong.	Modulus or Elasticity
·	(F)	Ksi	0.02%	0.6	R	THE OT
	1000	57.6	37.2	46.9	32	21.8
	1000	58.8	37.6	47.2	21***	19.6
	1000	56.5	35.8	45.8	30	20.8
		57.6	36.9	46.6	31	20.7
	1200	37.0	20.7	23.0	3444	
	1200	31.7	14.6	20.7	41.5	11.0
	1200	35.7	18.7	24. 2	41.5	9.0
		34.8	18.0	22.6	41.5	9.4

*** Specimen broke outside of gare length.

* Transverse specimen.

Elasticity 10⁶ psi Modulus of 30.6 28.1 26.5 31.1 31.1 30.5 27.0 27.0 28.2 28.2 31.1 31.1 32.1 31. 4 27. 7 22. 8 22. 0 22. 0 22. 7 22. 7 22. 7 22. 5 19. 0 19. 0 Elong. 16 15 19. 5 11.5 12.5 11.5 16.1 12.5 12.5 12.5 12.0 12.3 13.5 Table 5
Tensile Properties of Potomac M (Non-Exposed Specimens) (ksi) 0.2% 66.0 64.8 65.4 65.1 Yield Strengths 0.02% 48.6 56.0 57.0 59.0 54.2 63.2 63.2 70.1 52.9 61.7 52.2 55.6 55.6 50.9 51.2 95.5 96.5 98.1 98.5 96.5 96.5 97.0 97.5 98.0 88.2 86.0 86.2 84.0 84.8 82.7 84.1 Test Temp. (°F) 400 400 400 RRRRR 009 009 009 RT RT Specimen Average B-11* B-13# Average B-14 B-15 B-19 Average B-12* Average B-17 Average B-18

Table 5 (Cont' d)
Tensile Properties of Potomac M
(Non-Exposed Specimens)

	Tag					Modulus of
pecimen	Temp.	U, T. S.	Yield Strengths (gths (ksi)	Elong.	Elasticity
No.		K81	0.02%	84		
B-23	1000	61.3	38.7	49.7	13***	23.9
B-24	1000	64.4	37.8	50.5	70	20.0
B-25	1000	64.5	36.0	51.7	15.5	21.3
Average		63.4	37.5	50.6	17.8	21.7
B-26	1200	40.1	17.4	22.7	13***	10.9
B-27 (R)	1200	39.3	14. 4**	23, 3	21.0	10.1
B-28	1200	41.4	17.3	23. 5	10***	9.9
Average		40.3	17.2	22.8	21.0	10. \$
;						

** Value not used in average

		ON)	(Non-Exposed Specimens)	imens)		
	Test	1				Modulus of
Specimen No.	Temp.	U.T.S. ksi	Yield Strengths 0.02%	gths (ksi) 0.2%	Elong.	Elasticity 106 pei
	1					
7-0	RT	154	48.7	62.5	44.5	22. 2
C-7	RT	149	‡ .5	56.0	46	15.6
C-3	Ħ	150	4.5	₹09	4.5	
10	R T	155	41.5	57.5	‡ .5	28.0
C-5	HX	155	4.0	58.0	47	21.7
9-0	HA	155	43.0	58.5	\$	28. 1
C-7	FX	162	45.0	60.0	43	26.6
3- 0	X	168	45.0	59. 5	46	32.2
Q-9	H	164	50.0	0.09	4.8	27.9
C-10	RT	165	42.5	58.0	94	33, 3
Average		158	44.9	59.0	45.4	26.2
C-11*	RT	150	4.0	61.5	39	27.4
C-12*	RT	152	47.0	62.5	7	24.2
¥1-0	RT	156	46.5	64. 0	41.5	24. 4
Average		153	45.8	62.7	4 0.8	25.3
C-14	4 00	91.0	32.0	41.7	38	22.7
C-15	4 00	91, 5	35.6	43.2	36	15.9
C-16	400	93.5	33, 8	41.3	38. 5	18.6
Average		92.0	33.8	42.1	37.5	18.9
C-14	009	90.8	31.8	38.9	38	22.2
C-18	009	40.4	32.4	40.2	35. 5	21, 5
C-19	009	91.0	30.2	38.9	36.5	24.0
Average		90.7	31.5	39, 3	36.7	22.6
2	800	88.7	29.3	33, 5	36.5	21.2
C-21	800	88.3	24.6	36.9	37	18.6
C-12	800	89.7	28.0	37.1	4	19.6
Average		88.9	27.3	35.8	37.8	19.8

Table 6 (Cont'd)
Tensile Properties of AM-350
(Non-Exposed Specimens)

	Test					Modulus at
Specimen No.	Temp. $\binom{\circ F}{F}$	U, T. S. ksi	Yield Strengths	igths (ksi) 0.2%	Elong.	Elasticity 106 psi
C-23	1000	81.2	26.5	32, 4	32, 5	19,1
C-24	1000	83.5	27.6	32.6	28 ##	14.8
C-25	1000	81.7	24.3	32.7	29, 5	21.7
verage		82.1	26.1	32.6	31.0	18, 5
C-26	1200	61.1	23.0	29.9	19 **	11,8
C-27	1200	57.5	22.4	28.8	36	10.9
G-28	1200	58.2	20.2	28.8	34 **	12,7
verage		58.9	21.9	29.2	36.0	11.8

** Specimen failed outside of gage length, elongation data not used in averages.

Table 7

Tensile Properties of Vasco Jet-1000
(Non-Exposed Specimens)

			(strammade passdyr-more	(smarries)		
	Test			•		Modulus of
Specimen	Temp.	U. T. S.	Yield Stren	gths (ksi)	Elong.	Elasticity
No.	(^o F)	ksi	0.02%	0.2%	%	10° psi
D- 1	RT	90.0	38.6	54.6	20.5	27.3
D-2 (R)	RT	98.0	43.0	54.0	18.5	27.1
D-3	RT	88.0	42.8	55, 5	21	23.0
D-5	RT	87.7	43.5	53, 5	19	27.6
D-5	RT	88.0	41.2	52.7	18	29.1
D-6	RT	87.9	39.8	50.4	19	28.8
D-7	RT	87.9	34.2	48.6	18	24.2
D-8	RT	91.2	34.5	51.7	18.5	18, 5
D-9	RT	91.2	43,3	52.1	17.5	26.8
D-10	RT	90.9	34,2	50.8	18	34.2
Average		90.1	39.3	52, 4	18.8	26.7
D-11**	RT	91.6	49.3	54, 2	20.5	30.5
D-12**	RT	91.5	42.8	50.9	20.5	23.6
D-13**	RT	98.7	*6.09	40.89	18, 5	23.9
Average		93.9	46.1	52, 6	19.8	26.0
D-14	400	75.7	29.4	41.1	14	28.9
D-15	400	80.0	34.7	44.8	16	19.3
D-16	400	78.2	35, 1	43.2	15.5	23.3
Average		78.0	33, 1	43.2	15.2	23.8
D-17	009	74.7	33.0	42.1	15.5	19.7
D-18	009	72.0	32.4	43.8	15.0	14.5
D-19	900	72.7	35.6	42.3	12, 5	16.0
Average		73.1	34.4	42.9	14.3	16.7
D-20	800	70.0	29.4	37.8	15.5	29.2
D-21	800	67.7	36.6	41.8	17.5	46.2
D-22	800	70.7	31.4	41.8	17.5	28.3
Average		69.5	32.5	40.5	16.8	28.8

Not used in average ## Transverse specimen

Table 7 (Cont'd)
Tensile Properties of Vasco Jet-1000
(Non-Exposed Specimens)

Modulus of Elasticity 10 ⁶ psi	15.7	27.6	21.6	8.4	7.2	6.9	; ,	7.5
Elong.	21, 5***	29. 5***	23.0	13, 5***	26, 5***	14.5***	35, 0	35.0
gths (ksi)	32.7	31.6	32, 2	22, 3	20.4	23.3	•	22.0
Yield Strengths	24.8	21.0	23.7	17.4	16.4	17.4	1	17.1
U.T.S. ksi	47.8	48.3	47.4	29.8	28.9	32.2	28.2	29.8
Test Temp.	1000	1000		1200	1200	1200	1200	
Specimen No.	D-23 D-24	D-25	Average	D-26	7 7- 0	D-28	D-28 (R)	Average

*** Specimen broke outside of gage length, elongation data not included in average - Data not obtained

Table 8
Tensile Properties of Potomac A
(Non-Stressed Stability Specimens)

	Exposure	Test					Modulus of
Spec.	Temp.	Temp.	U, T. S.	Tield Strengths	(ksi)	Elong.	Elasticity 106 psi
A-29	900	RT	99.5	82.0	84.7	17	28.5
A-30	009	RT	93.4	69.0	72.5	17.5	25.7
A-31	009	RT	98.0	74.9	77.1	20	27.9
Average			97.0	75.3	78.1	18.2	27.4
A-32	009	009	89.4	65.5	8.69	16.5	29.1
A-33	009	009	88.0	8 .09	63.5	15	28.7
A-34	009	009	87.7	59.3	65.7	16	30.1
Average			88. 4	61.9	66.3	15.8	29.3
A-35	800	RT	99. 1	81.4	83.0	18.5	28.7
A-36	800	RT	88.0	69.7	72.2	19.5	26.5
A-37	800	RT	97.4	74.1	77.3	19.5	29.9
Average			94.8	75.1	77.5	19.2	28.4
A-38	800	800	82.0	55.3	64.2	17	23.6
A-39	800	800	80.8	48.6	59.5	19	25.9
A-40	800	800	80.8	52.9	61.6	18.5	25.1
Average			81.2	52.3	61.8	18.2	24.9
A-41	1000	RT	98.0	61.3	71.0	20	35.5
A-42	1000	RT	96.5	65.2	68.8	20	28.3
A-43	1000	RT	96.0	63.8	61.9	17.5	35.2
Average			96.8	63.2	69.2	19.2	33.0
¥-4	1000	1000	55.0	38.7	46.5	26	21.9
A-45	1000	1000	54. 1	38.0	46.7	32. 5	22.4
A-46	1000	1000	53.3	32. 1	43.3	27.5	19.3
Average			54. 1	36.3	45.5	28.7	21.2

Table 9
Tensile Properties of Potomac M
(Non-Stressed Stability Specimens)

Modulus of Elasticity 10 ⁶ psi	32.5	32.9	29.5	31.6	25.9	27.5	21,3	24.9	28.8	28.1	29.5	28.8	20.5	22.3	21.7	21.5	31.4	29.8	34.7	32.0	23.4	20.6	21.7	21.9
Elong.	11.5	16	12.5	13.3	12, 5	11.5	10.5	11.5	13.5	12.5	13	13	12	12.5	11.0	11.8	13.5	12	13.5	13.0	19.5	16	18.5	18.0
ths (ksi)	75.2	76.6	78.7	76.8	65.5	65.8	9 .99	9,99	76.8	81.0	78.4	78.7	61.3	61.3	63.2	61.9	77.5	75.0	74.7	75.7	52.0	54.5	51.0	52.5
Yield Strengths (0.02%	70.6	65.1	65.2	67.0	56.2	54.0	53.5	54.6	66.7	68, 5	70.5	68.6	52.3	48.3	51.1	50.6	74.0	64.2	64.7	67.6	42.1	46.5	38.8	42.5
U, T. S. ksi	97.0	100	101	99.3	85.7	87.5	87.8	87.0	97.5	102	99. 5	99.7	85, 4	85.0	83.6	84.7	98.5	97.0	97.0	97.5	62, 3	64.9	60.9	62.7
Test Temp.	RT	RT	RT		009	009	909		RT	RT	RT		800	800	800		RT	RT	RT		1000	1000	1000	
Exposure Temp.	009	009	009		009	009	009		800	800	800		800	800	800		1000	1000	1000		1000	1000	1000	
Spec. No.	B-29	B-30	B-31	Average	B-32	B-33	B-34	Average	B-35	B-36	B-37	Average	B-38	B-39	B-40 (R)	Average	B-41	B-42	B-43	Average	B-44	B-45	B-46	Average

Tensile Properties of AM-350 (Non-Stressed Stability Specimens)

Spec.	Exposure Temp.	Test Temp.	U, T.S. ksi	Yield Strengths (ksi)	ths (ksi)	Elong.	Modulus of Elasticity 10 ⁶ psi
C-29	009	RT	178	49.7	62.5	38.5	24.0
C-30	009	RT	165	48.9	62.4	44.5	23.7
C-31	009	RT	178	51.0	62.8	40	33, 5
Average			174	49.9	62.6	41.0	27.1
G-32	009	009	90.9	32.4	40.4	35, 5	14.2*
C-33	009	900	91.2	30.2	38.8	37	16.9
C-34	009	009	92.5	27.5	38.8	38, 5	25.6
Average			91.5	30.0	39.3	37.0	25.6
C-35	800	RT	177	47.5	62.6	42	36.4
C-36	800	RT	173	49.8	63.5	39, 5	31,3
C-37	800	RT	177	52.8	63.8	42.5	28.5
Average			176	50.0	63.3	41.3	32.1
C-38	800	800	91.3	31.0	40.3	36	13.9*
C-39	800	800	92.7	33.6	41.6	34	23.5
C-40	800	800	94.2	33.6	40.7	35	24.6
Average			92.7	32.7	40.9	35.0	24.0
C-41	1000	RT	194	51.1	71.5	16.5	17.4
C-42	1000	RT	183**	54.0	7.67	18	24.5
C-43	1000	RT	193	4074	70.2	19	30.9
Average			190	48.5	73.8	17.8	24.3
C-44 (R)	1000	1000	81.2	19.9	31.7	25.5	20.7
C-45 (R)		1000	82.8	24.5	35.5	25.0	25.7
C-46		1000	94.5*	40.9*	61.4*	12,5*	21.6
Average			82.0	22.2	33.6	25.2	22,7

* Data not included in average ** Failed out of gage length

18

Table 11
Tensile Properties of Vasco Jet-1000
(Non-Stressed Stability Specimens)

	Exposure	Test					Modulus o
Spec.	Temp.	Temp.	U, T, S.	Yield Stre	Yield Strengths (ksi)	Elong.	Elasticity
No.	(H)	(F)	KS1	0.02%	0.2%	2	10 ps1
D-29	009	RT	85, 5	47.5	50.3	17	29.8
D-30	009	RT	88.0	40.5	53.1	18	22.8
D-31	009	RT	90.5	45.1	50.4	20	30.4
Average			88.0	44.4	51.3	18.3	27.7
D-32	009	009	74.9	34, 3	41.2	13	24.0
D-33	009	009	72.4	35, 8	42.8	15.5	25.7
D-34	009	009	75.9	36.3	38.6	18, 5	25.6
Average			74.4	35, 5	40.9	15.7	25. 1
D-35	800	RT	89.4	45.3	52, 3	19	25.5
D-36	800	RT	86.0	45.6	49.0	17.5	21.2
D-37	800	R.''	87.0	39.7	49.9	18	27.9
Average			87.5	43.5	50.4	18.2	24.9
D-38	800	800	71.4	32.7	40.0	12, 5	19.1
D-39	800	800	72.5	34.6	43.4	18	23.7
D-40	800	800	72.2	32.8	41.6	14	21.7
Average			72.0	33.0	41.6	14.8	21.5
D-41	1000	RT	87.5	34.4	48.6	21	25.7
D-42	1000	RT	86.2	38.8	45.5	20.5	27.0
D-43	1000	RT	88. 2	(a)	52. 1	19	25.9
Average			87.3	36.6	48.7	20.2	26.2
D-44	1000	1000	46.8	24.3	32.4	25	16.0
D-45	1000	1000	48.4	24.6	33.0	56	18.6
D-46	1000	1000	49.7	25.6	37.8	17.5	19.2
Average			48.3	24.8	33.9	22.8	17.9

(a) Yield not obtained because of recorder pen malfunction

Table 12
Tensile Properties of Potomac A (Stressed Stability Specimens)

			Elone.	Ė					Modulus of
Mo.	Prestraining Temp. (°F)	Conditions Stress (psi)	During Prestressing	Temp.	U, T. S. ksi	Yield Strengths (ksi)	gths (ksi) 0.2%	Elong.	Elasticity 106 psi
A47	900	22,000	0	RT	99. 5	74.5	80.5	18	32.3
A48	009	22,000	0	RT	98.0	70.0	76.5	19	27.4
449	009	22,000	0	RT	94.0	72.2	77.5	21	29.1
Averag					97.2	72.2	78.2	19.3	29.6
A50	009	22,000	0	009	86.0	61.8	72. 1	12.5	29.5
A51	009	22,000	0	009	87.3	65.3	65.8	13.5	31.7
A52	009	22, 000	0	009	86.2	59.2	63.4	11.5	28.1
Averag					86.5	62.1	67.1	12.5	29.7
A53		20, 400	0	RT	96.3	80.7	79.3	18	28.1
A54		20,400	0	RT	97.5	76.0	76.1	19	30.9
A55	800	20, 400	0	RT	97.5	77.2	77.5	20	28.1
Average					97.1	78.0	77.6	19	29.6
A56		20, 400	0	800	79.8	52.0	6.09	16	23.2
A57	800	20,400	0	800	7.67	48.0	57.2	15	22.0
A58	800	20, 400	0	800	81.2	50.3	63.3	16.5	20.8
Average					80.2	50.1	60.5	15.8	22.0
A59		15, 500	0	RT	90.3	65.8	68.0	19	25.6
V 60	1000	15, 500	0.5	RT	96.0	58.0	69.0	23.5	27.7
A61	1000	15, 500	0.5	RT	94.3	64.0	68. ♣	22.5	27.9
Average					93.5	62.6	68.5	21.7	27.1
V95		15, 500	0	1000	54.6	37.4	46.7	30	14.2
A63	1000	15, 500	1.0	1000	51.0	35.8	43.7	35.5	10.5*
A64	1000	15, 500	0.5	1000	52.8	36.5	4 .0	32	13.1
Average	•				52.8	36.6	44.8	32.4	13.6

* Not used in average.

Table 13
Tensile Properties of Potomac M (Stressed Stability Specimens)

Modulus of Elasticity 106 psi	30.5	34.2	32.0	32.2	24.7	38.9*	27.8	26.3	28.2	27.7	30.2	28.7	21.6	23.9	21.7	22.4	34.4	29.6	35. 1	33.0	17.7	18. 1	15.6	17.1
Elong.	16	. 15, 5	14.5	15.3	12.5	11	10.5	11.3	15	15	15.5	15.2	11	11.5	11	11.2	16, 5	16.5	15	16.0	22	17.5	18.5	19.3
Yield Strengths (ksi)	75.0	77.3	76.0	76.1	65.6	64.5	67.5	62.9	77.8	76.5	78.0	77.4	61.6	59.4	61.0	60.7	72.4	73.5	78.8	74.9	51.7	54.2	51.7	52. 5
Yield Strer	62.0	0.99	62.4	63.5	50.0	55.7	55.8	53.8	76.0	72.5	68.8	72.4	48.4	49.7	52.0	50.0	65.4	59.5	64.8	63.2	41.3	41.8	39.6	40.9
U.T.S. ksi	94.0	99.4	98.5	97.3	84.5	84.5	84.0	84.3	97.5	98.5	99.0	98.3	82.5	81.3	81.7	81.8	94.2	96.0	98.0	96. 1	61.6	62.8	8.09	61.7
Test Temp.	RT	RT	RT		009	009	009		RT	RT	RT		800	800	800		RT	RT	RT		1000	1000	1000	
% Elong. During Prestressing	0.5	0.5	0.5		1.0	0.5	1.0		0	0	0		0	0.5	0		1.0	0.5	0		0	0.5	1.0	
~:	21,800	21,800	21,800		21,800	21,800	21,800		20, 500	20, 500	20, 500		20, 500	20, 500	20, 500		16,900	16, 900	16,900		16,900	16,900	16, 900	
Prestraining Conditions Temp. (009	009	009		009	009	009		800	800	800		800	800	800		1000	1000	1000		1000	1000	1000	
Spec. No.	B-47	B-48	B-49	Average	B -50	B -51	B-52	Average	B-53	B-54	B-55	Average	B-56	B-57	B-58	Average	B-59	B-60	B-61	Average	B-62	B-6 3	B-64	Average

* Not used in average.

Table 14
Tensile Properties of AM-350
(Stressed Stability Specimens)

Spec.	Prestrainin Temp. (PF)	Prestraining Conditions Temp. (PP) Stress (nsi)	% Elong. During	Test Temp.	U.T.S. ksi	Yield Strengths (ksi)	gthe (ksi)	Elong.	Modulus of Elasticity
		72.7	•			2	X	2	
C-47	009	13, 100	0	RT	162	50.7	64.5	4 5	28.6
C-48	009	13, 100	0.5	RT	160	50.0	61.3	43.5	50.6 *
C-49	009	13, 100	1.0	RT	158	48.6	8 .09	45	24.3
Average					160	49.8	62.2	43.5	26.5
C-50	009	13, 100	0	009	90.5	30.8	40.3	36.5	25.9
C-51	009	13, 100	0	009	91.7	31.4	41.4	37	16.1*
C-52	900	13, 100	0	009	92.0	29.6	39.7	37.5	25.3
Average					91.4	30.6	40.5	37	25.6
C-53	800	11,950	0	RT	163	46.5	59.8	44	31.2
C-54	800	11,950	0,5	RT	164	48.3	62.3	47	29.2
C-55	800	11,950	0	RT	163	48.3	62.8	46.5	29.0
Average					163	47.7	61.6	45.8	29.8
C-56	800	11,950	0	800	90.0	33.9	40.3	36.5	25.0
C-57	800	11,950	0	800	91.0	34.8	42.3	36.5	25.0
C-58	800	11,950	0	800	90.9	24.3	37.8	37	20.9
Average					90.6	31.0	40.1	36.7	23.6
C-59	1000	10,850	0	RT	171	51.7	60.5	34	
09-D	1000	10,850	0	RT	183	31.9	45.7	18	20.9
C-61	1000	10,850	1.0	RT	182	36.9	49.3	17	21.8
Average					179	40.2	51.8	19.7	21.4
C-62	1000	10,850	0	1000	81.2	21.4	30.7	27	28.0
C-63	1000	10,850	0	1000	81.8	24.8	34.4	28.5	23.0
C-64	1000	10,850	0	1000	83.5	21.5	31.4	27.5	26.0
Average					82.2	22.6	32. 2	27.7	25.7

* Data not included in average

Table 15
Tensile Properties of Vasco Jet-1000
(Stressed Stability Specimens)

Modulus of Elasticity 10 ⁶ psi	18.6*	28.7	32.2	30.4	21.4	23.0	23.2	22. 5	28.8	26.0	30, 9	28.6	9.2*	20.6	19.2	19.9	30.2	23.9*	26.5	28.4	10.3	15, 3	12.0	12. 5
Elong.	18.5	18.5	17	18	14	16.5	13.5	14.7	21.5	19.5	21	20.7	13.0	14.5	13, 5	13.7	20.5	22.5	17	20.0	23.5	31.5	25	26.6
field Strengths (ksi)	52.6	53.5	53.8	53.4	41.5	45.2	43.3	43.3	52.5	52.9	53.9	53.1	36.9	41.3	38.4	38.9	51.4	47.7	•	49.8	25.9	29.4	35.2	30.4
Yield Stre	42.8	39.1	44.5	42.1	32, 3	35.7	37.0	35.0	50.7	51.2	51.3	51.1	28.6	33.9	29.5	30.7	48.2	44.6	(a)	46.4	17.3	24.1	28, 1	23, 2
U, Ţ. S. ksi	90.3	87,4	92.0	89.9	73.0	75.4	74.0	74.1	86.6	86.5	88.3	87.1	64.6	68.7	70,5	62.6	88.0	89.0	93.0	0.06	44.8	45.6	49.2	46.5
Test Temp. $\binom{OF}{F}$	RT	RT	RT		009	009	009		RT	RT	RT		800	800	800		RT	$_{ m RT}$	RT		1000	1000	1000	
% Elong. During Prestressing	0	0.5	1.0		1.0	0.5	0		0	0	0		0,5	0	0		1, 5	0	0,5		0.5	1.0	0	
Prestraining Conditions Temp. (F) Stress (psi)	14,300	14,300	14, 300		14, 300	14,300	14, 300		13, 500	13, 500	13, 500		13, 500	13, 500	13, 500		10,750	10,750	10,750		10.750	10,750	10,750	
Prestrainin Temp. (^o F)	009	009	009		009	009	009		800	800	800			800			1000	1000	1000	ļ	1000		1000	
Spec.	D-47	D-48	D-49	Average	D-50	D-51	D-52	Average	D-53	D-54	D-55	Average	D-56 (R)	D-57	D-58	Average	D-59	D-60	D-61	Average	D-62 (R)	D-63	D-64	Average

Data not included in average
(a) Yield not obtained because of recorder malfunction

	Table 16 Sheet Shear Properties of Potomac A	
Specimen No.	Temperature $\binom{OF}{F}$	Ult. Shear Strength (ksi)
A-65	RT	79. 4
A-66	RT	81.3
A-67	RT	81.2
A-68	RT	80.4
A-69	RT	79.5
A-70	RT	80.8
A-71	RT	84.2
A-72	RT	81.0
A-73	RT	80.4
A-74	RT	81.6
Average		81.0
A-75	400	71.4
A-76	400	69.3
A-77	400	67.7
Average		69. 5
A-78	009	63.7
A-79	009	65.2
A-80	909	65.8
Average		65.0
A-81	800	61.3
A-82	800	63.2
A-83	800	9.09
Average		61.7
A-84	1000	49.0
A-85	1000	45.8
A-86	1000	49.3
Average		48.0
A-87	1200	24.5
A-000	1200	28.1
A-89	1200	26.9
Average		26.5

Table 17 Sheet Shear Properties of Potomac M

Sh	Sheet Shear Properties of Potomac M	
Specimen No.	Temperature	Ult. Shear Strength (ksi)
B-65	RI	91.3
B-66	RT	90.7
B-67	RT	89.7
B-68	RT	87.2
B-69	RT	88.7
B-70	RT	91.3
B-71	RT	91.4
B-72	RT	88.9
B-73	RT	92. 3
B-74	RT	89.8
Average		90.1
B-75	400	75.0
B-76	400	76.3
B-77	400	76.7
Average		76.0
B-78	009	73.9
B-79	009	72.2
B-80	909	75.7
Average		73.9
B-81	800	69.2
B-82	800	68.1
B-83	800	71.5
Average		69. 6
B-84	1000	58.8
B- 85	1000	57.4
B-8 6	1000	58.0
Average		58. 1
B-87	1200	32.3
B-88	1200	31.5
B-89	1200	31.8
Average		31.9

	Table 18 Sheet Shear Properties of AM-350	
Specimen No.	Temperature (F)	Ult. Shear Strength (ksi)
C-65	RT	149
C-66	RT	145
C-67	RT	149
G-68	RT	151
C-69	RT	149
C-70	RT	146
G-71	RT	151
C-72	RT	147
C-73	RT	147
C-74	RT	145
Average		148
C-75	400	78. 1
C-76	400	80.2
C-77	400	77.2
Average		78.5
C-78	009	70.3
C-79	009	72.2
C-80	909	72.2
Average		71.6
C-81	800	68.3
C-82	800	68.2
C-83	800	8.69
Average		68.8
C-84	1000	61.3
C-85	1000	62.2
C-86	1000	62.7
Average		62.1
C-87	1200	50.8
C-88	1200	53.1
C-89	1200	51.2
Average		51.7

She	Table 19 Sheet Shear Properties of Vasco Jet-1000	:t-1000
Specimen No.	Temperature	Ult. Shear Strength (ksi)
D-65	RT	17.0
D-66	RT	76.6
D-67	RT	77.2
D-68	RT	78.3
D-69	RT	77.6
D-70	RT	74.8
D-71	RT	75.7
D-72	RT	79.9
D-73	RT	78.7
D-74	RT	77.8
Average		77.4
D-75	400	64.2
D-76	400	63.7
D-77	400	65.8
Average		64. 6
D-78	009	60.2
D-79	009	61.6
D-80	009	61.2
Average		61.0
D-81	800	54.8
D-82	800	55.2
D-83	800	56.3
Average		55. 4
D-84	1000	43.3
D-8 5	1000	4.7
D-86	1000	42.7
Average		43.6
D-87	1200	24.5
D-88	1200	25.7
D-89	1200	31.1
Average		27.1

Table 20 Compressive Properties of Potomac A

			operates of Forolliac a	G 2	
	E	41.00 AC C		4 i i i i i i i i i i i i i i i i i i i	Modulus of
No.	(F)	ksi	ksi	ksi ksi	106 pei
₩-90	RT	51.5	34, 5	25.3	27.7
A-91	RT	54.6	44. 3	39, 9	28.9
A-92	RT	54.9	43.7	32.9	26.4
Α-93	RT	47.5	29.0	23.1	29.1
46-V	RT	55.9	42.8	32.9	27.4
A-95	RT	54.8	40.3	32. 1	30.0
96-V	RT	67.4	58.3	42.6	36, 3
A-97	RT	64. 4	45.5	33, 3	30.0
A-98	RT	61.8	44.8	32.2	26.8
A-99	T.K	59.1	34.5	31.1	38.9*
Average		57.2	41.8	32.5	29.6
A-100	400	45.2	32.7	28.9	29.4
A-101	400	43.4	27.0	20.9	26.8
A-102	400	57.7	49.5	37.6	25.8
Average		48.8	36.4	29. 1	27.3
A-103	009	46.0	33.4	27.4	28.9
A-104	009	50.3	37.1	30.0	26.6 *
A-105	009	55.8	39.6	31.1	32.8
Average		50.7	36.7	29.5	30.9
A-106	800	45.0	33.8	29.4	32.7*
A-107(R)	800	48.5	41.5	38.6	28.2
A-108(R)	800	51.2	43.7	41.1	26.3
Average		48,2	39.7	36.4	27.2
A-109	1000	47.6	42.7	38.0	22.3
A-110	1000	47.0	39. 1	33.0	24.6
A-111	1000	47.3	39.6	32.0	26.7
Average		47.3	40.5	34.3	24.5
A-112	1200	23.0	22.8	20,8	4.6
A-113	1200	25.7	22.7	18.4	12.2
A-114	1200	28.4	27.8	26.2	9.3
Average		25.7	24.4	21.8	10.3

* Not used in average.

Table 21 Compressive Properties of Potomac M

Modulus of Elasticity 10⁶ psi .85 Secant 51.9 56.3 55.3 50.2 52.6 52.6 32.2 33.0 33.4 27.3 32.5 31.9 34.8 31.4 29.7 32.0 23.8 25.2 22.0 23.7 kai Table 22 Compressive Properties of AM-350 .7 Secant ksi 36.8 28.5 29.5 26.2 28.1 40.3 34.8 35.2 0.2% Yield 64.7 63.3 63.8 66.3 66.3 64.3 63.8 63.8 63.0 63.0 7.2 41.9 42.0 39.7 39.2 39.2 39.2 40.9 34.8 35.7 34.1 34.9 63.2 Temperature (°F) RT RT RT RT RT 400 400 400 009 800 800 800 1000 1000 1000 1200 1200 1200 Specimen No. C-90
C-91
C-92
C-93
C-94
C-95
C-96
C-97
C-98
C-98
C-100
C-101
C-103
C-104
C-106
C-107
C-107 Average C-109 C-110 C-111 Average C-112 Average C-113

* Not used in average

Table 23

	O	Lable 23 Compressive Properties of Vasco Jet-1000	table 23 erties of Vasco Jet	1000	
					Modulus of
Specimen	Temperature	0.2% Yield	.7 Secant	. 85 Secant	Elasticity
No.	(~F)	ķsi	ksi	ksi	106 psi
.D-90	RT	48.4	44.6	41.7	31.3
D-91	RT	49.2	43.6	38.3	26.6
D-92	RT	41.5*	32.9*	25.5*	29.8
D-93	RŢ	49.3	43.7	37.9	29. 5
D-94	RT	52.2	46.7	39.9	29.8
D-95	RT	57.7	52.2	46.7	34.9***
D-96	RT	61.2	53, 4	41.8	30.9
D-97	RT	62.6	56.7	44.5	30.2
D-98	RT	58.1	52.7	46.4	35, 8***
D-99	RT	58.7	54.7	49.3	30, 9***
Average		55.0	48.6	43.0	29.9
D-100	400	33.7	29.8	26.6	27.8
D-101	400	35.6	29.2	23.8	29.7***
D-102	400	46.4*	44.6*	38.9*	30.0
Average		34.6	29.5	25.2	29.2
D-103	009	36.8	32.1	27.1	24.4
D-104	009	**	**	**	*
D-105	009	37.7	31.7	30, 3	28.5
Average		37.3	31.9	28.7	26.4
D-106	800	32,3	25.3	22, 1	28.7
D-107	800	28.3	21.9	13.8	24.7
D-108	800	34.0	28.5	26.4	24.7***
Average		31.5	25, 2	22.5	26.0
D-109	1000	30, 4	23.4	21.9	\$5.7*
D-110	1000	29.9	23.8	20.4	24.0
D-111	1000	28.2	22.6	20, 1	20, 5***
Average		29.5	23.3	20.8	22.3
D-112	1200	24.1	22. 1	. 20.8	15.2
D-113	1200	27.5	26.3	24.8	13.5
D-114	1200	22, 5	19.2	17.7	17.5***
Average		24.7	22. 5	21.1	15.4

*** Faces ground smooth * Not used in average ** Recorder malfunction

CODE FOR SYMBOLS AND TERMS USED IN TABLES 24-31

Bearing Tests

Failure

Location - as shown in sketches the specimen failed in one of three ways:

Compression Tests

0.7 Secant

That stress which gives a secant modulus equal to 0.7 of the elastic modulus 0.85 Secant

That stress which gives a secant modulus equal to 0.85 of the elastic modulus

Table 24
Bearing Properties of Potomac A e/D = 1.5

Bearing Tield Strength (ksi)	129	120	118	127	124	122	113*	132	129	130	1.26	121	115	113	116	148	110	118	115	112	110	114	112	86.5	\$6; \$	92.3	8.8	53.2	52.7	50.1	52.0
Bearing Ultimate Strength (ksi)	162	157	155	159	155	155	155	191	160	162	158	146	147	145	146	145	145	141	747	133	132	132	132	164.	162.	109	105	63.3	60.9	64.3	62.8
Failure Location	(4)	€	3	€	3	(4)	(<u>)</u>	3	.	(c)		(a)	3	(၁)		(a)	(3)	(a)		(F)	(1)	((a)	.	(a)		(T)	.	(a)	
Temperature (°F)	RT	RT	RT	RT	RT	RT	RT	RT	RT	RT		400	400	400		009	009	009		800	800	800		1000	1000	1000		1,200	1200	1200	
Specimen No.	A-115	A-116	A-117	A-118	A-119	A-120	A-121	A-122	A-123	A-124	Average	A-125	A-126	A-127	Average	A-128 (R)	A-129 (R)	A-130	Average	A-131	A-132	A-133	Average	A-134 (R)	A-135 (R)	A-136	Average	A-137	A-138	A-139	Average

Table 25
Bearing Properties of Potomac M e/D = 1.5

Specimen	Temperature	Failure	Bearing Ultimate	Bearing Yield
No.	(4)	Location	Strength (KS1)	Strength (K81)
B- 115	яT	3	165	129
B-116	RT	(o)	166	131
B-117	RT	ં	163	129
B-118	RT	(1)	160	127
B -119	RT	.	163	129
B-120	RT	<u> </u>	162	131
B-121	RT	€	164	130
B-122	北韓	.	163	135
B -123	RT	<u>(i)</u>	167	137
B-124	RT	(c)	167	135
Average			164	131
B-125 (R)	400	(a)	155	1.32%
B-126	400	3	157	123
B-127	400	(2)	160	129
Average			157	128
B-128	009	(a)	160	126
B-129	009	.	157	125
B-130	009	(a)	159	•
Average			159	125
B-131	800	(a)	148	136*
B -132	800	(e)	146	124
B-133	800	(2)	152	123
Average			149	124
B-134	1000	(æ)	117	98. 1
B- 135	1000	(a)	119	101
B-136	1000	(a)	126	107
Average			121	102
B-137	1200	(e)	70.8	52.7
B-138	1200	<u>e</u>	65.8	56.7
B-139	1200	(e)	70.3	51.3
Average			69.0	53.6

Table 26
Bearing Properties of AM-350 e/D = 1.5

Bearing Yield Strength (ksi)	102	111	110	111	109	108		108	111	108	109	81.8	79.3	83.8	81.6	83.8	81.4	79.2	81.5	7.8.7	87.8	81.3	80.9	72.7	•	16.7	74.7		64.2	67.6	
Bearing Ultimate Strength (ksi)	252	267	261	249	262	266	271	273	272	270	264	156	156	156	156	149	147	149	148	146	154	145	148	135	133	134	134	104	107	112	44
Failure Location	(3)	.	3	3	3	3	.	.	3	((a)	3	3		(a)	3	•		(T)	.	•		(3)	•	•		(e)	(a)	(a)	
Temperature	RI	RT	RT	RT	RT	RT	RT	RT	RT	RT		400	400	400		009	009	009		800	800	800		1000	1000	1000		1200	1200	1200	
Specimen No.	C-115	C-116	C-117	C-118	C-119	C-120	C-121	C-122	C-123	C-124	Average	C-125	C-126	C-127	Average	C-128	C-129	C-130	Average	C-131	C-132	C-133	Average	C-134	C-135	C-136	Average	C-137 (R)	C-138	C-139	A

Table 27
Bearing Properties of Vasco Jet-1000 e/D = 1.5

Specimen	Temperature	Failure	Bearing Ultimate	Bearing Yield
No.	(°F)	Location	Strength (ksi)	Strength (ksi)
D-115	RT	(2)	151	113
D-116	RT	(લ	145	98.3
D-117	RT	æ	143	100
D-118	RT	(e)	139	•
D-119	RT	(a)	144	103
D-120	RT	(c)	145	96.5
D-121	RT	(a)	148	102
D-122	RT	(၁)	150	103
D-123	RT	E	153	113
D-124	RT	(a)	155	113
Average			147	105
D-125	400	(c)	129	94.7
D-126	400	(a)	130	93.2
D-127	400	(a)	137	102
Average			132	9.96
D-128 (R)	009	(a)	121	1
D-129	009	(a)	135	107
D-130	009	(a)	126	107
Average			128	107
D-131	800	(a)	114	89.2
D-132	800	(a)	114	92.7
D-133 (R)	800	(a)	112	
Average			113	6.06
D-134	1000	(a)	88.7	70.2
D-135	1000	(a)	89.6	68.6
D-136 (R)	1000	(a)	82.0	•
Average			8,98	4.69
D-137 (R)	1200	(a)	57.8	
D-138	1200	(a)	61.4	46.1
D-139	1200	(a)	68.2	51.8
Average			62, 5	49.0

- Data not obtained

Table 28
Bearing Properties of Potomac A e/D = 2.0

No. A-140 A-142 A-143 A-144	RATINATE RAT	Location (a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Bearing Ultimate Strength (ksi) 202 203 199 202 202	Bearing Tield, Strength (kei), 140 144 140 142
			200 200 201 202	136 139 145
	400 400 400	333	203 201 188 181 184 184	145 134 128 130
	009	(4)	1 055 1 055 1 055 1 055	135 133 134
	800 800 800	323	178 173 172 174	131
	1000 100 0 1000	હે હે હે	133	103
	1200 1200 1200	333	72.6 77.6 69.9 73.4	53.6

Table 29

Bearing Properties of Potomac M e/D = 2.0

Specimen No.	Temperature (^O F)	Failure	Bearing Ultimate Strength (ksi)	Bearing Yield, Strength (ksi)
37.	F p	3	930	141
B-141	t E	e	222	161
B-142	T K	<u> </u>	218	•
B-143	H. H.	:	213	157
B-144	RT	2	223	166
B-145	RT	€	225	•
B-146	H	<u> </u>	226	159
B-147	RA	(4)	227	191
B-148	RT	(3)	217	164
B-149	RT	3	223	149
Average			221	160
B -150	400	(a)	204	141
B- 151	400	<u>a</u>	198	138
B-152	400	(<u>a</u>)	207	149
Average			203	141
B-153	009	(<u>a</u>)	196	154
B-154	009	3	192	141
B-155 (R)	009	I	200	158
Average			194	1.52
B-156	800	(a)	196	149
B-157	800	3	193	153
B- 158	800	(a)	193	153
Average			194	152
B-159 (R)	1000	(8)	157	149
B-160 (R)	1000	•	198	125
B-161 (R)	1000	(•)	193	1 * 4
Average			156	119
791-E	1200	(0)	89.5	63.7
B-163	1200	(3)	94.2	99.99
B-164	1200	(a)	94.7	62.3
Average			92.8	64.1

Table 30
Bearing Properties of AM-350
e/D = 2.0

Bearing Tiejd, Strength (ksi)	125	135	135	138	139	134	121	132	134	23.1	134	171*	T.	148	141	100	98.2	92.8	97.0	98.0	93.6	\$.	7.7		7.68	87.2	88. 5	68.8	60.7	•	2.
Bearing Ultimate Strength (ksi)	339	386*	355	354	359	355	352	348	349	341	350	221	261	144	208	208	195	196	200	\$1	188	161	191	186	178	179	181	126	133	135	191
Failure	3	3 :	3	②	છ	3	3	3	2	(c)		(4)	Ē	(e)		(1)	3	(E)		(4)	3	3		(9)	3	(E)		(B)	3	(a)	
Temperature $\binom{a}{F}$	RT.	H I	H.W.	RT	RT	HA	RH	RA	RT	ят		400	400	400		009	009	009		808	800	800		1000	1000	1000		1200	1200	1200	
Specimen No.	C-140	C-141	C-147	C-143	C-14	C-145	C-146	C-147	C-148	C-149	Average	C-150	C-151 (R)	C-152 (R)	Average	C-153	C-154	C-155	Average	C-156	C-157	C-158	Average	C-159	C-160	C-161	Average	C-162	C-163	C-14	Average

* Not used in average

Table 31

Bearing Properties of Vasco Jet-1000 e/D = 2.0

Specimen No.	Temperature (F)	Failure Location	Bearing Ultimate Strength (ksi)	Bearing Yield Strength (ksi)
\$1-d	KI	a) ;	192	117
D-141	RT	<u>e</u>	211	136
D-142	RT	(a)	213	137
D-143	RT	(၁)	213	131
D-14	RT	<u>(</u> 9)	215	134
D-145	RT	္	505	128
D-146	RT	<u> </u>	219	147
D-147	RT	(a)	192	120
D-148	RT	(a)	187	115
D-149	RT	(a)	197	134
Average			205	130
D-150	400	(a)	164	97.0
D-151	400	(9	161	108
D-152 (R)	400	(a)	175	115
Average			167	107
D-153	009	(a)	153	107
D-154	009	(၁)	169	130
D-155 (R)	009	(p)	164	110
Average			162	116
D-156	800	(a)	154	105
D-157	800	(a)	169	107
D-158 (R)	800	(a)	150	•
Average			158	106
D-159	1000	(a)	126	91.2
D-160	1.000	(a)	111	79.2
D-161	1000	(a)	124	94.0
Average			120	88.1
D-162	1200	(a)	75.6	57.0
D-163	1200	(a)	83.2	59.3
D-164 (R)	1200	(a)	64.3	1
Average			74.4	58.2

Table 31

Bearing Properties of Vasco Jet-1000

e/D = 2.0

		e/D = 2.0		
Specimen No.	Temperature	Failure	Bearing Ultimate	Bearing Yield
	121	Location	otrength (K81)	Strength (ksi)
D-140	RT	(a)	192	117
D-141	RT	e	211	136
D-142	RT	(a)	213	137
D-143	RT	(၁)	213	131
D-144	RT	(<u>q</u>)	215	134
D-145	RT	ဍ	505	128
D-146	RT	<u>a</u>	219	147
D-147	RT	(e)	192	120
D-148	RT	(a)	187	115
D-149	RT	(a)	197	134
Average			205	130
D-150	400	(a)	164	97.0
D-151	400	<u>a</u>	161	108
D-152 (R)	400	(a)	175	115
Average			167	107
D-153	009	(a)	153	107
D-154	009	(၁)	169	130
D-155 (R)	009	(p)	164	110
Average			162	116
D-156	0.08	(a)	154	105
D-157	800	(g)	169	107
D-158 (R)	800	(a)	150	•
Average			158	106
D-159	1000	(a)	126	91. 2
D-160	1.000	(a)	111	79.2
D-161	1000	(a)	124	94.0
Average			120	88.1
D-162	1200	(g)	75.6	57.0
D-163	1200	(g)	83.2	59.3
D-164 (R)	1200	(a)	64.3	r
Average		:	74.4	58.2

ASD-TDR-63-116

Table 32
Bend Tests of Sheet Material
Minimum Bend Diameter Over 105-Degree Angle

(Test Ter	nperature: RT)	(Test Temp	perature: 400°F)
Material	Longitudinal	Material	Longitudinal
Potomac A	.5 T	Potomac A	.5 T
Potomac M	.5 T	Potomac M	.5 T
AM-350	.5 T	AM-350	.5 Т
Vasco Jet-1000	.75 T	Vasco Jet-1000	.75 T

(Test Temperature: 600 F)	(Test Temperature: 800°F)

Material	Longitudinal	Material	Longitudinal
Potomac A	.5 T	Potomac A	.5 T
Potomac M	.5 T	Potomac M	.5 T
AM-350	.5 T	AM-350	.5 T
Vasco Jet-1000	.75 T	Vasco Jet-1000	.75 T

(Test Temperature: 1000°F) (Test Temperature: 1200°F)

Material	Longitudinal	Material	Longitudinal
Potomac A	.5 T	Potomac A	.5 T
Potomac M	.5 T	Potomac M	.5 T
AM-350	.5 T	AM-350	.5 T
Vasco Jet-1000	.75 T	Vasco Jet-1000	.75 T

T = Thickness of Sheet

For Potomac A, Potomac M, AM-350, nominal .063 inch thick

For Vasco Jet-1000, nominal .042 inch thick

Longitudinal specimens

Figure 1. Tensile Specimen

Figure 2. Compression Specimen

Figure 3. Sheet Shear Specimen

Figure 4. Sheet Bearing Test, Specimen-Bearing Ratio e/D = 1.5

Figure 5. Sheet Bearing Test, Specimen-Bearing Ratio e/D - 2.0

Figure 6. Sheet 105-Degree-Angle Bend Test Specimen

ASD-TDR-63-116

TYPE OF SPECIMEN	ROOM TEMPERATURE	ELEVATED TEMPERATURE
TENSILE	A I	ВІ
SHEAR	A 2	B 2
COMPRESSION	А 3	8 3
BEARING, e/D = 1.5	A 4	B 4
BEARING, e/D = 2.0	A 5	B 5
STRESSED STABILITY	A 6	В 6
BEND	A 7	В 7
NON-STRESSED STABILITY	A 8	8 8
EXTRA BLANKS	×	×

Figure 7. Specimen Layout Key for Sheets of Potomac A, Potomac M, and Vasco Jet-

TYPE OF SPECIMEN	ROOM TEMPERATURE	ELEVATED TEMPERATURE
TENSILE	AI	ВІ
SHEAR	A 2	B 2
COMPRESSION	A 3	В 3
BEARING, e/D = 1.5	A 4	B 4
BEARING, e/D = 2.0	A 5	B 5
STRESSED STABILITY	A 6	B 6
BEND	A 7	В 7
NON - STRESSED STABILITY	7 A 8	B 8
EXTRA BLANKS	×	×

Figure 8. Specimen Layout Key for Sheet of AM-350

Figure 9. Effect of Temperature on Tensile Properties of Potomac A

Figure 10. Effect of Temperature on Tensile, Properties of Non-Stressed Stability Specimens, Potomac A

Figure 11. Effect of Temperature on Tensile Properties of Stressed Stability Specimens, Potomac A

Figure 12. Effect of Temperature on Compressive Properties of Potomac A

Figure 13. Effect of Temperature on Bearing Properties of Potomac A

Figure 14. Effect of Temperature on Bearing Properties of Potomac A

Figure 15. Effect of Temperature on Shear Strength of Potomac A

Figure 16. Effect of Temperature on Tensile Properties of Potomac M

Figure 17. Effect of Temperature on Tensile Properties of Non-Stressed Stability Specimens, Potomac M

Figure 18. Effect of Temperature on Tensile Properties of Stressed Stability Specimens, Potomac M

Figure 19. Effect of Temperature on Compressive Properties of Potomac M

Figure 20. Effect of Temperature on Bearing Properties of Potomac M

Figure 21. Effect of Temperature on Bearing Properties of Potomac \boldsymbol{M}

Figure 22. Effect of Temperature on Shear Strength of Potomac M

Figure 23. Effect of Temperature on Tensile Properties of AM-350

Figure 24. Effect of Temperature on Tensile Properties of Non-Stressed Stability Specimens, AM-350

Figure 25. Effect of Temperature on Tensile Properties of Stressed Stability Specimens, AM-350

Figure 26. Effect of Temperature on Compressive Properties of AM-350

Figure 27. Effect of Temperature on Bearing Properties of AM-350

Figure 28. Effect of Temperature on Bearing Properties of AM-350

Figure 29. Effect of Temperature on Shear Strength of AM-350

Figure 30. Effect of Temperature on Tensile Properties of Vasco Jet-1000

Figure 31. Effect of Temperature on Tensile Properties of Non-Stressed Stability Specimens, Vasco Jet-1000

Figure 32. Effect of Temperature on Tensile Properties of Stressed Stability Specimens, Vasco Jet-1000

Figure 33. Effect of Temperature on Compressive Properties of Vasco Jet-1000

Figure 34. Effect of Temperature on Bearing Properties of Vasco Jet-1000

Figure 35. Effect of Temperature on Bearing Properties of Vasco Jet-1000

Figure 36. Effect of Temperature on Shear Strength of Vasco Jet-1000

Figure 37. Effect of Exposure Time and Temperature Versus Non-Stressed Tensile Stability/Tensile Properties of Non-Exposed Potomac A

Figure 38. Effect of Exposure Time and Temperature Versus Non-Stressed Tensile Stability/Tensile Properties of Non-Exposed Potomac M

Figure 39. Effect of Exposure Time and Temperature Versus Non-Stressed Tensile Stability/Tensile Properties of Non-Exposed AM-350

Figure 40. Effect of Exposure Time and Temperature Versus Non-Stressed Tensile Stability/Tensile Properties of Non-Exposed Vasco Jet-1000

Figure 41. Effect of Exposure Time and Temperature Versus Stressed Tensile Stability/Tensile Properties of Non-Exposed Potomac A

Figure 42. Effect of Exposure Time and Temperature Versus Stressed Tensile Stability/Tensile Properties of Non-Exposed Potomac M

Figure 43. Effect of Exposure Time and Temperature Versus Stressed Tensile Stability/Tensile Properties of Non-Exposed AM-350

Figure 44. Effect of Exposure Time and Temperature Versus Stressed Tensile Stability/Tensile Properties of Non-Exposed Vasco Jet-1000

Figure 45. Effect of Temperature Versus the Compressive Properties/Tensile Properties of Potomac A

Figure 46. Effect of Temperature Versus the Compressive Properties/Tensile Properties of Potomac M

Figure 47. Effect of Temperature Versus the Compressive Properties/Tensile Properties of AM-350

Figure 48. Effect of Temperature Versus the Compressive Properties/Tensile Properties of Vasco Jet-1000

Figure 49. Effect of Temperature Versus the Sheet Shear Strength/Ultimate Tensile Strength of Potomac A

Figure 50. Effect of Temperature Versus the Sheet Shear Strength/Ultimate Tensile Strength of Potomac M

Figure 51. Effect of Temperature Versus the Sheet Shear Strength/Ultimate Tensile Strength of AM-350

Figure 52. Effect of Temperature Versus the Sheet Shear Strength/Ultimate Tensile Strength of Vasco Jet-1000

Figure 53. Effect of Temperature Versus the Bearing Properties/Tensile Properties of Potomac A, e/D = 2.0

Figure 54. Effect of Temperature Versus the Bearing Properties/Tensile Properties of Potomac M, e/D = 2.0

Figure 55. Effect of Temperature Versus the Bearing Properties/Tensile Properties of AM=350, e/D = 2.0

5

Figure 56. Effect of Temperature Versus the Bearing Properties/Tensile Properties of Vasco Jet-1000, e/D = 2.0

Figure 57. Effect of Temperature Versus the Bearing Properties/Tensile Properties of Potomac A, e/D = 1.5

Figure 58. Effect of Temperature Versus the Bearing Properties/Tensile Properties of Potomac M, e/D = 1.5

Figure 59. Effect of Temperature Versus the Bearing Properties/Tensile Properties of AM=350, e/D = 1.5

Figure 60. Effect of Temperature Versus the Bearing Properties/Tensile Properties of Vasco Jet-1000, e/D = 1.5

Figure 61. Tensile Stress-Strain Curves of Potomac A

Figure 62. Compression Stress-Strain Curves of Potomac A

Figure 63. Tensile Stress-Strain Curves of Potomac M

Figure 64. Compression Stress-Strain Curves of Potomac M

Figure 65. Tensile Stress-Strain Curves of AM-350

Figure 66. Compression Stress-Strain Curves of AM-350

Figure 67. Tensile Stress-Strain Curves of Vasco Jet-1000

Figure 68. Compression Stress-Strain Curves of Vasco Jet-1000

1. Steel Alloys I. AFSC Proj 7351,	Teak 735106 II. Henning, Robert G., Capt, USAF, and Brisbene, Alton W. III. Aval fr OTS IV. In ASTIA collection			
Aeronautical Systems Division, Dir/Weteriels & Processes, Metals & Ceramics Lab, Wright-	RPT NO. ASD-TDR-63-116. WECHANICAL PROPERTIES OF AM-350, POTOWAC A, FOTOWAC A, AND VESCO JET-1000 STEEL ALLOYS IN THE ANNIALED CONDITION. Final report, Ney 63, 102p., incline. and tables. Unclassified Report	Mechanical properties of three hot-worked steels and one precipitation-hardening stainless steel were obtained. Properties obtained were tensile, compression, sheet single shear, bearing, and 105-degree-angle bend tests.	Tests were conducted at temperatures of 80°, 400°, 600°, 800°, 1000°, and 1200°F. Stressed and non-stressed exposure tests were conducted only at 600°, 800°, and 1000°F. All properties were obtained from the longitudinal direction of the material except three tensile specimens from each material in the transverse direction, which were tested only at 80°F. Data obtained are presented graphically. Metallurgical histories sno chemical analyses are also included.	
1. Steel Alloys I. AFSC Proj 7351,	Track (75100 II. Henning, Robert G., Capt, USAF, and Brisbane, Alton W. III. Aval fr OTS IV. In ASTIA collection			
Aeronautical Systems Division, Dir/Weterials & Processes, Metals & Ceramics Lab, Wright-	RPT NO. ASD-TDR-63-116. MECHANICAL PROPERTIES OF AM-350, POTONAC A, FOTOWAC M, AND VASCO JET-1000 STEEL ALLOYS IN THE ANNEALED CONDITION. Final report, May 63, 102p., inclilus. and tables. Unclassified Report	Wechanical properties of three hot-worked steels and one precipitation-hardening stain-less steel were obtained. Properties obtained were tensile, compression, sheet single shear, bearing, and 105-degree-engle bend tests.	Tests were conducted at temperatures of 80°, 400°, 600°, 800°, 1000°, and 1200°F. Stressed and non-stressed exposure tests were conducted only at 600°, 800°, and 1000°F. All properties were obtained from the longitudinal direction of the meterial except three tensile specimens from each material in the transverse direction, which were tested only at 80°F. Data obtained are presented graphically. Metallurgical histories sno chemical analyses are also included.	