

EA614 - Análise de Sinais

 $1^{\underline{\mathrm{o}}}$ Semestre de 2007 – $3^{\underline{\mathrm{a}}}$ Prova – Prof. Renato Lopes

Questão 1 (1.0 PONTO):

Determine o coeficiente c_3 da série exponencial de Fourier do sinal periódico discreto dado por

$$x[n] = \sum_{k=-\infty}^{\infty} p[n+5k], \quad p[n] = \delta[n+1] + 2\delta[n] - \delta[n-1]$$

Questão 2 (1.0 PONTO):

Seja x[n] um sinal real e ímpar com período N=7 e com coeficientes de Fourier

$$c_{15} = j$$
, $c_{16} = 2j$, $c_{17} = 3j$.

Determine $c_0, c_{-1}, c_{-2} \in c_{-3}$.

Questão 3 (1.0 PONTO):

Sejam x[n] e y[n] sinais com período N=4 e com coeficientes de Fourier a_k e b_k , respectivamente, onde $b_k=1$ para todo k e

$$a_0 = a_3 = 1$$
 e $a_1 = a_2 = 2$

Determine os coeficientes da série de Fourier de g[n] = x[n]y[n].

Questão 4 (1.0 PONTO):

Seja x[n] um sinal com período N, onde N é um número par. Suponha que

$$x[n] = -x \left[n + \frac{N}{2} \right].$$

Mostre que $a_k = 0$ para todo k par.

Questão 5 (1.0 PONTO):

Determine a transformada de Fourier de

$$x(t) = \frac{2}{1 + t^2}.$$

Sugestão: use dualidade.

Questão 6 (1.0 PONTO):

Considere um sistema com resposta em freqüência

$$H(w) = \frac{1}{3 + jw}$$

Para uma determinada entrada x(t), observamos que a saída do sistema é $y(t) = \exp(-3t)u(t)$. Determine x(t).

Questão 7 (1.0 PONTO):

Calcule x(t) dado que

$$X(w) = \frac{e^{j10w}}{2 - jw}.$$

Questão 8 (1.0 PONTO):

Considere o sinal $x(t) = 2 \operatorname{Sa}(5t)$, sendo $\operatorname{Sa}(t) = \operatorname{sen}(t)/t$. Determine as integrais:

a)
$$\int_{-\infty}^{\infty} x(t) dt$$
 b) $\int_{-\infty}^{\infty} |x(t)|^2 dt$

Sugestão: use transformada de Fourier

Questão 9 (1.0 Ponto):

Determine o sinal x[n] cuja transformada de Fourier dada por

$$X(e^{jw}) = (1 - e^{-jw})e^{-jw}.$$

Questão 10 (1.0 PONTO):

Determine a transformada de Fourier de

$$x[n] = a^n \cos(w_0 n + \phi).$$