Sucesiones y convergencia - Definiciones y ejemplos básicos

Análisis Matemático 1 Prof. J. Rivera Noriega

ITAM

Primavera de 2020

Sucesiones en \mathbb{R}^p

Una sucesión en \mathbb{R}^p es una función de \mathbb{N} a \mathbb{R}^p . Escribimos (x_n) para denotar a dicha función. También podemos escribir $X=(x_n)$ para abreviar algo la notación. El rango de la función se denota por $\{x_n\}$.

- Podemos escribir $x_n=2n$ para denotar a la sucesión con rango $\{2,4,6,\dots\}$
- Similarmente $x_n = (-1)^n$ es la sucesión cuyo rango es $\{-1,1\}$.
- La suma de las sucesiones $X = (x_n)$ y $Y = (y_n)$ se define como $X + Y = (x_n + y_n)$ y la resta es $X Y = (x_n y_n)$
- El producto interior de dos sucesiones en \mathbb{R}^p es la sucesión en \mathbb{R} dada por $X \cdot Y = (x_n \cdot y_n)$
- Dadas $A = (a_n)$ sucesión en \mathbb{R} y $X = (x_n)$ sucesión en \mathbb{R}^p se define la sucesión producto $AX = (a_n x_n)$
- El producto de la sucesión $X=(x_n)$ por el escalar $K\in\mathbb{R}$ se define como la sucesión $KX=(Kx_n)$

Convergencia de sucesiones

Una sucesión $X=(x_n)$ en \mathbb{R}^p converge a $x\in\mathbb{R}^p$ si para toda vecindad V de x existe $N\in\mathbb{N}$ tal que n>N implica $x_n\in V$.

En este caso se dice que x es límite de la sucesión (x_n) y se escribe

$$x = \lim_{n \to \infty} x_n, \quad x_n \to x$$

Iniciemos observando que cuando una sucesión es convergente, el límite es único.

Supongamos que x y x' son límites de la sucesión (x_n) , y tomemos $\epsilon > 0$.

Sabemos que existen $N_1, N_2 \in \mathbb{N}$ tales que

$$||x_j - x|| < \epsilon/2$$
 si $j > N_1$
 $||x_k - x'|| < \epsilon/2$ si $k > N_2$

Tomando $N = \max\{N_1, N_2\}$ y n > N se tendrá

$$0 \le ||x - x'|| \le ||x - x_n|| + ||x_n - x'|| < \epsilon$$
 y por tanto $x = x'$.

Propiedades de sucesiones convergentes

Se dice que una sucesión (x_n) es acotada si existe M > 0 tal que $||x_n|| \le M$ para toda $n \in \mathbb{N}$.

• Una sucesión convergente es acotada.

Suponiendo que $x_n \to x$, si $\epsilon = 1$ existe $N \in \mathbb{N}$ tal que n > N implica $||x_n - x|| < 1$ Así, si n > N se tiene $||x_n|| \le ||x_n - x|| + ||x|| < 1 + ||x||$.

Eleigiendo $M = \max \{ \|x_1\|, \dots, \|x_N\|, 1 + \|x\| \}$ se tendrá $\|x_n\| \le M$ para toda $n \in \mathbb{N}$.

Para cada término de la sucesión (x_n) en \mathbb{R}^p denotamos a sus coordenadas como $x_n = (x_{1n}, x_{2n}, \dots, x_{pn})$.

• $x_n \to x$ si y sólo si $(x_{1n}) \to x_1, \ldots, (x_{pn}) \to x_p$

Una dirección es fácil: $|x_{jn} - x_j| \le ||x_n - x|| < \epsilon$

La otra también: $||x_n - x||^2 = \sum_{j=1}^p |x_{jn} - x_j|^2$, basta tomar $|x_{jn} - x_j| < \epsilon/\sqrt{p}$.

- $\lim_{n \to \infty} \frac{1}{n} = 0$ Aquí podemos usar la propiedad Arquimediana...
 - Dada $\epsilon > 0$ existe $N \in \mathbb{N}$ tal que $\frac{1}{N} < \epsilon$, o sea que si n > N entonces $|1/n 0| = 1/n \le 1/N < \epsilon$.
- Si (x_n) es una sucesión en \mathbb{R}^p y se tienen $x \in \mathbb{R}^p$, c > 0, y una sucesión de números positivos (a_n) cumpliendo $a_n \to 0$, y tales que

$$||x_n - x|| \le Ca_n$$
 para n suficientemente grande

entonces $x_n \to x$.

Si $\epsilon > 0$ es dada, entonces existe $M \in \mathbb{N}$ tal que para m > M se tiene $a_m = |a_m - 0| < \epsilon/C$.

Por tanto

$$||x_m - x|| \le Ca_m < \epsilon$$

• $\lim \frac{1}{1+na} = 0, \quad a > 0$

$$\left| \frac{1}{1+na} - 0 \right| = \frac{1}{1+na} < \frac{1}{na} = \frac{1}{a} \frac{1}{n}$$

• Si 0 < b < 1 entonces lím $b^n = 0$

Escribimos $b = \frac{1}{1+a}$ para cierta a > 0. Recordamos ahora la desigualdad de Bernoulli: $(1+a)^n \ge 1 + na$. Entonces

$$|b^n - 0| = b^n = \frac{1}{(1+a)^n} \le \frac{1}{1+na} < \frac{1}{a}\frac{1}{n}$$

• Si c > 0 entonces lím $c^{1/n} = 1$

Separamos la prueba en dos casos

• Si c > 1, escribimos $c^{1/n} = 1 + d_n$ para ciertos números $d_n > 0$

Por designaldad de Bernoulli $c=(1+d_n)^n\geq 1+nd_n$ y por tanto $d_n\leq \frac{c-1}{n}$.

En conclusión:

$$\left|c^{1/n}-1\right|=c^{1/n}-1=d_n\leq \frac{c-1}{n}$$

• Si 0 < c < 1 escribimos $c^{1/n} = \frac{1}{1+h_n}$ para ciertos números $h_n > 0$. Por la desigualdad de Bernoulli:

$$c = \frac{1}{(1+h_n)^n} \le \frac{1}{1+nh_n} < \frac{1}{nh_n}$$

De aquí que $0 < h_n < \frac{1}{nc}$, y por tanto

$$\left|1-c^{1/n}\right|=1-c^{1/n}=\frac{h_n}{1+h_n}< h_n<\frac{1}{nc}$$

• $\lim n^{1/n} = 1$.

En esta ocasión se escribe $n^{1/n} = 1 + k_n$ para cierta $k_n > 0$. Por el teorema del binomio

$$n = (1 + k_n)^n = 1 + nk_n + \frac{n(n-1)}{2}k_n^2 + \cdots > \frac{n(n-1)}{2}k_n^2$$

De aquí que $k_n^2 < \frac{2}{n-1}$. Entonces

$$0 < n^{1/n} - 1 = k_n < \sqrt{\frac{2}{n-1}} < \epsilon$$

siempre que $\frac{1}{n-1} < \frac{\epsilon^2}{2}$