A Book of Abstract Algebra (2nd Edition)

Chapter 32, Problem 4EE

Bookmark

Show all steps: (

ON

Problem

List all the subgroups of $Gal(K : \mathbb{Q})$, with their fixfields. Exhibit the Galois correspondence.

Step-by-step solution

Step 1 of 3

The objective is to list all the subgroups of $Gal(\mathbb{Q}(\omega);\mathbb{Q})$ where ω is the primitive seventh root of unity with their fix fields and exhibit the Galois correspondence.

Comment

Step 2 of 3

The Galois group $Gal(\mathbb{Q}(\omega):\mathbb{Q}) = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6\}$, where $\sigma_j(\omega) = \omega^j$ for j = 1, 2, 3, 4, 5, 6. Clearly $\alpha = \omega + \omega^2 + \omega^4$ is left fixed by $\{\sigma_1, \sigma_2, \sigma_4\}$.

Now,
$$\alpha^2 = \omega^2 + \omega^4 + \omega + 2\omega^3 + 2\omega^6 + 2\omega^5$$
 and $\alpha = \omega + \omega^2 + \omega^4$.

Thus,
$$\alpha^2 + \alpha = 2(\omega^6 + \omega^5 + \omega^4 + \omega^3 + \omega^2 + \omega + 1)$$
.

Because ω is a zero of $\Phi_7(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$, $\alpha^2 + \alpha + 2 = 0$.

The zeros of
$$x^2 + x + 2$$
 are $\left(-1 \pm i\sqrt{7}\right)/2$ and so $\mathbb{Q}(\alpha) = \mathbb{Q}(i\sqrt{7})$.

Working in an analogous way for the subgroup $\{\sigma_1,\sigma_6\}$, $\beta=\omega+\omega^6$ is left fixed by this subgroup.

Now,
$$\beta^3 = (\omega + \omega^6)^3 = \omega^3 + 3\omega + 3\omega^6 + \omega^4$$
, $\beta = (\omega + \omega^6)^2 = \omega^2 + 2 + \omega^5$ and $\beta = \omega + \omega^6$.

Because ω is a zero of $\Phi_7(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$, $\beta^3 + \beta^2 - 2\beta - 1 = 0$.

Comment				
		Step 3 of	3	
The Galois Corre	spondence may b	pe represented a	s follows:	
Comment				