Euklido erdvė

Paulius Drungilas

Vilniaus universitetas Matematikos ir informatikos fakultetas

2013 m. rugsėjo 27 d.

Turinys

Euklido erdvė

Koši-Švarco-Buniakovskio nelygybė

Euklido erdvė

Tegul V – tiesinė erdvė virš realiųjų skaičių kūno $\mathbb R$.

Apibrėžimas 1

Atvaizdis $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ vadinamas **skaliarine daugyba** erdvėje V, jei su visais $v, v_1, v_2 \in V, a, b \in \mathbb{R}$,

- 1. $\langle av_1 + bv_2, v \rangle = a \langle v_1, v \rangle + b \langle v_2, v \rangle$
- 2. $\langle v_1, v_2 \rangle = \langle v_2, v_1 \rangle$
- 3. $\langle v, v \rangle \geqslant 0$
- 4. $\langle v, v \rangle = 0 \Leftrightarrow v = \mathcal{O}$

Jei tiesinėje erdvėje V apibrėžta skaliarinė daugyba, tai erdvė V šios daugybos atžvilgiu vadinama **Euklido erdve**. Euklido erdvę V su skaliarine daugyba \langle,\rangle žymėsime (V,\langle,\rangle) .

Tegul $V = \mathbb{R}^n$. Apibrėžkime atvaizdį $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ taip:

$$\langle (\alpha_1, \alpha_2, \dots, \alpha_n), (\beta_1, \beta_2, \dots, \beta_n) \rangle := \sum_{j=1}^n \alpha_j \beta_j =$$

= $\alpha_1 \beta_1 + \alpha_2 \beta_2 + \dots + \alpha_n \beta_n$.

Įsitikinsime, kad taip apibrėžtas atvaizdis yra skaliarinė daugyba erdvėje \mathbb{R}^n . Šią Euklido erdvę vadinsime n-mate Euklido erdve. Tegul

$$v_1=(\alpha_1,\alpha_2,\ldots,\alpha_n),\ v_2=(\beta_1,\beta_2,\ldots,\beta_n),\ v=(\gamma_1,\gamma_2,\ldots,\gamma_n),$$
 $a,b\in\mathbb{R}.$ Tada

$$av_1 + bv_2 = (a\alpha_1 + b\beta_1, a\alpha_2 + b\beta_2, \dots, a\alpha_n + b\beta_n),$$

$$\langle av_1 + bv_2, v \rangle = \sum_{j=1}^n (a\alpha_j + b\beta_j)\gamma_j = a\sum_{j=1}^n \alpha_j\gamma_j + b\sum_{j=1}^n \beta_j\gamma_j =$$

= $a\langle v_1, v \rangle + b\langle v_2, v \rangle$.

$$\langle v_1, v_2 \rangle = \sum_{j=1}^n \alpha_j \beta_j = \sum_{j=1}^n \beta_j \alpha_j = \langle v_2, v_1 \rangle.$$

$$\langle v, v \rangle = \sum_{j=1}^n \alpha_j^2 \geqslant 0$$

$$\langle v, v \rangle = \sum_{j=1}^n \alpha_j^2 = 0 \quad \Leftrightarrow \quad v = (0, 0, \dots, 0)$$

Tegul $\mathbb{R}[t]$ – visų polinomų su realiaisiais koeficientais tiesinė erdvė. Apibrėžkime atvaizdį $\langle\cdot,\cdot\rangle:\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$ taip:

$$\langle f(t),g(t)
angle := \int_{-1}^1 f(t)g(t)\,dt,\quad f(t),g(t)\in\mathbb{R}[t].$$

Uždavinys 2

Įsitikinkite, kad taip apibrėžtas atvaizdis yra skaliarinė daugyba erdvėje $\mathbb{R}[t]$.

Tegul $\mathbb{R}[t]$. Apibrėžkime atvaizdį $\langle\cdot,\cdot\rangle:\mathbb{R}^n imes\mathbb{R}^n o\mathbb{R}$ taip:

$$\langle f(t),g(t)
angle := \int_{-\infty}^{\infty} f(t)g(t)e^{-t^2}\,dt,\quad f(t),g(t)\in\mathbb{R}[t].$$

Uždavinys 3

Įsitikinkite, kad taip apibrėžtas atvaizdis yra skaliarinė daugyba erdvėje $\mathbb{R}[t]$.

Tegul C[0,1] – visų tolydžių intervale [0,1] funkcijų $f:[0,1]\to\mathbb{R}$ tiesinė erdvė. Apibrėžkime atvaizdį $\langle\cdot,\cdot\rangle:C[0,1]\times C[0,1]\to\mathbb{R}$ taip:

$$\langle f(t),g(t)
angle := \int_0^1 f(t)g(t)\,dt,\quad f(t),g(t)\in C[0,1].$$

Uždavinys 4

Įsitikinkite, kad taip apibrėžtas atvaizdis yra skaliarinė daugyba erdvėje C[0,1].

Tegul $M_n(\mathbb{R})$ – visų $n \times n$ matricų su realiaisiais koeficientais tiesinė erdvė. Apibrėžkime atvaizdį $\langle \cdot, \cdot \rangle : M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to \mathbb{R}$ taip:

$$\langle A, B \rangle := \mathsf{Tr}(AB^t), \quad A, B \in M_n(\mathbb{R}),$$

čia Tr(A) – matricos $A=\left(a_{ij}\right)$ pėdsakas, t. y.

$$Tr(A) = a_{11} + a_{22} + \cdots + a_{nn}.$$

Uždavinys 5

Įsitikinkite, kad taip apibrėžtas atvaizdis yra skaliarinė daugyba erdvėje $M_n(\mathbb{R})$.

Baigtinės dimensijos Euklido erdvės

Teiginys 6

Kiekvienoje baigtinės dimensijos tiesinėje erdvėje V virš realiųjų skaičių kūno galima apibrėžti skaliarinę daugybą.

Teiginys 7

Tegul (V, \langle, \rangle) – Euklido erdvė, o \mathcal{O} – erdvės V nulinis vektorius. Tuomet kiekvienam $v \in V$, $\langle v, \mathcal{O} \rangle = 0$.

Irodymas.

Iš lygybės

$$\langle v, \mathcal{O} \rangle = \langle v, \mathcal{O} + \mathcal{O} \rangle = \langle v, \mathcal{O} \rangle + \langle v, \mathcal{O} \rangle$$

gauname $\langle v, \mathcal{O} \rangle = 0$.

Koši-Švarco-Buniakovskio nelygybė

Teorema 8 (Koši-Švarco-Buniakovskio nelygybė)

Tegul (V, \langle, \rangle) – Euklido erdvė. Bet kuriems $u, v \in V$,

$$\langle u, v \rangle^2 \leqslant \langle u, u \rangle \langle v, v \rangle.$$
 (1)

Be to, lygybė $\langle u, v \rangle^2 = \langle u, u \rangle \langle v, v \rangle$ galioja tada ir tik tada, kai vektoriai u ir v yra tiesiškai priklausomi.

Įrodymas

Nagrinėkime vektorius $u, v \in V$. Tuomet bet kuriam $t \in \mathbb{R}$,

$$\langle tu + v, tu + v \rangle = t^2 \langle u, u \rangle + 2t \langle u, v \rangle + \langle v, v \rangle \geqslant 0.$$
 (2)

Aišku, kad $\langle u,u\rangle=0 \Leftrightarrow u=\mathcal{O}$. Jei $u=\mathcal{O}$, tai (1) nelygybė virsta tapatybe 0=0; vektoriai $u=\mathcal{O}$ ir v yra tiesiškai priklausomi.

Koši-Švarco-Buniakovskio nelygybė

Tegul $\langle u,u\rangle \neq 0$. Reiškinys $t^2\langle u,u\rangle + 2t\langle u,v\rangle + \langle v,v\rangle$ kintamojo t atžvilgiu yra kvadratinis trinaris, kurio visos reikšmės yra neneigiami skaičiai (žr. (2)), todėl šio trinario diskriminantas $\langle u,v\rangle^2 - \langle u,u\rangle\langle v,v\rangle \leqslant 0$, t. y.

$$\langle u, v \rangle^2 \leqslant \langle u, u \rangle \langle v, v \rangle.$$

Kvadratinis trinaris $t^2\langle u,u\rangle+2t\langle u,v\rangle+\langle v,v\rangle$ turi realią šaknį $t_0\in\mathbb{R}$ tada ir tik tada, kai jo diskriminantas lygus nuliui, t. y. $\langle u,v\rangle^2=\langle u,u\rangle\langle v,v\rangle$. Iš čia ir iš (2) išplaukia, kad

$$\langle u, v \rangle^2 = \langle u, u \rangle \langle v, v \rangle \Leftrightarrow \exists t_0 \in \mathbb{R} : \langle t_0 u + v, t_0 u + v \rangle = 0 \Leftrightarrow \\ \Leftrightarrow \exists t_0 \in \mathbb{R} : t_0 u + v = \mathcal{O} \Leftrightarrow u \text{ ir } v \text{ tiesiškai priklausomi}$$

Tegul $(\mathbb{R}^n, \langle, \rangle)$ – Euklido erdvė, kurioje skaliarinė daugyba apibrėžta lygybe

$$\langle (\alpha_1, \alpha_2, \ldots, \alpha_n), (\beta_1, \beta_2, \ldots, \beta_n) \rangle = \sum_{j=1}^n \alpha_j \beta_j.$$

Remiantis Koši-Švarco-Buniakovskio nelygybe, su visais $(\alpha_1, \alpha_2, \dots, \alpha_n), (\beta_1, \beta_2, \dots, \beta_n) \in \mathbb{R}^n$ teisinga nelygybė

$$\left(\sum_{j=1}^n \alpha_j \beta_j\right)^2 \leqslant \left(\sum_{j=1}^n \alpha_j^2\right) \left(\sum_{j=1}^n \beta_j^2\right).$$

Be to, lygybė galioja tada ir tik tada, kai vektoriai $(\alpha_1, \alpha_2, \dots, \alpha_n)$ ir $(\beta_1, \beta_2, \dots, \beta_n)$ yra tiesiškai priklausomi, t. y., kai

$$\frac{\alpha_1}{\beta_1} = \frac{\alpha_2}{\beta_2} = \dots = \frac{\alpha_n}{\beta_n}.$$

Tegul $(\mathbb{R}[t], \langle, \rangle)$ – Euklido erdvė, kurioje skaliarinė daugyba apibrėžta lygybe

$$\langle f(t),g(t)
angle = \int_{-1}^1 f(t)g(t)\,dt,\quad f(t),g(t)\in\mathbb{R}[t].$$

Remiantis Koši-Švarco-Buniakovskio nelygybe, su visais $f(t),g(t)\in\mathbb{R}[t]$ teisinga nelygybė

$$\left(\int_{-1}^1 f(t)g(t)\,dt\right)^2 \leqslant \left(\int_{-1}^1 f(t)^2\,dt\right)\left(\int_{-1}^1 g(t)^2\,dt\right).$$

Be to, lygybė galioja tada ir tik tada, kai vektoriai f(t) ir g(t) yra tiesiškai priklausomi, t. y., kai egzistuoja toks $c \in \mathbb{R}$, kad f(t) = cg(t) arba g(t) = cf(t) (funkcijų lygybės).

Tegul $(\mathbb{R}[t], \langle, \rangle)$ – Euklido erdvė, kurioje skaliarinė daugyba apibrėžta lygybe

$$\langle f(t), g(t) \rangle = \int_{-\infty}^{\infty} f(t)g(t)e^{-t^2}dt, \quad f(t), g(t) \in \mathbb{R}[t].$$

Remiantis Koši-Švarco-Buniakovskio nelygybe, su visais $f(t), g(t) \in \mathbb{R}[t]$ teisinga nelygybė

$$\left(\int_{-\infty}^{\infty} f(t)g(t)e^{-t^2} dt\right)^2 \leqslant \left(\int_{-\infty}^{\infty} f(t)^2 e^{-t^2} dt\right) \left(\int_{-\infty}^{\infty} g(t)^2 e^{-t^2} dt\right).$$

Be to, lygybė galioja tada ir tik tada, kai vektoriai f(t) ir g(t) yra tiesiškai priklausomi, t. y., kai egzistuoja toks $c \in \mathbb{R}$, kad f(t) = cg(t) arba g(t) = cf(t) (funkcijų lygybės).

Tegul $(M_n(\mathbb{R}), \langle, \rangle)$ – Euklido erdvė, kurioje skaliarinė daugyba apibrėžta lygybe

$$\langle A, B \rangle = \operatorname{Tr}(AB^t), \quad A, B \in M_n(\mathbb{R}).$$

Remiantis Koši-Švarco-Buniakovskio nelygybe, su visais $A,B\in M_n(\mathbb{R})$ teisinga nelygybė

$$(\operatorname{Tr}(AB^t))^2 \leqslant \operatorname{Tr}(AA^t) \cdot \operatorname{Tr}(BB^t).$$

Be to, lygybė galioja tada ir tik tada, kai vektoriai A ir B yra tiesiškai priklausomi, t. y., kai egzistuoja toks $c \in \mathbb{R}$, kad A = cB arba B = cA.