Para a 2ª. Etapa do trabalho, faça:

a) Obtenha os estimadores de eta_0 e eta_1 a partir do **Método dos Mínimos Quadrados**, cujo objetivo é encontrar a reta que passa mais próxima ao mesmo tempo de todos os pontos. Neste caso, encontre os estimadores \hat{eta}_0 e \hat{eta}_1 que minimizam a soma dos erros ao quadrado dada por:

$$\sum_{i=1}^{n} \varepsilon_i^{2} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^{2}.$$

Ciência dos Dados

Projeto 3 - Etapo Z

A) Obter fo e fl a partir des Mínimos (Avaderdos,
$$\hat{\beta}_0$$
 e $\hat{\beta}_1$
 $\tilde{\Sigma}$ $E_i^2 = \tilde{\Sigma} (Y_i - \hat{\gamma}_i)^2$

R:

 $Y = \hat{\beta}_0 + \hat{\beta}_1 Z + (E - existion) + \hat{\delta}_0 Z = (1, 2, ..., n)$

Le Conticientes de regressas

Le $\tilde{\Sigma}$ $\tilde{G}^2 - \tilde{\Sigma}$ $(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2 \longrightarrow \frac{\partial L}{\partial \beta_0} | \hat{\beta}_0, \hat{\beta}_1 = -2 \tilde{\Sigma} (Y_i - \hat{\beta}_0 - \hat{\beta}_{1N}) = 0$

Simble $\hat{\beta}_0 = \tilde{\chi}_1 + \hat{\beta}_1 \tilde{\Sigma}_2 = \tilde{\Sigma}_1 \times \tilde{\chi}_1 = 0$

Re gol vendo as equações, temos:

 $\hat{\beta}_0 = \tilde{\gamma} - \hat{\beta}_1 \tilde{X}$
 $\hat{\beta}_1 = \tilde{\Sigma}_1 = \tilde{\Sigma}_1 = \tilde{\Sigma}_1 \times \tilde{\Sigma}_2 = \tilde{\Sigma}_1 \times \tilde{\Sigma}_1 = \tilde{\Sigma}_1 \times \tilde{\Sigma}_2 = \tilde{\Sigma}_1 \times \tilde{\Sigma}_2 = \tilde{\Sigma}_1 \times \tilde{\Sigma}_1 = \tilde{\Sigma}_1$