SÓLUCION DEL EXAMEN DE MATEMÁTICA DISCRETA 2

Ejercicio 1.

- (a) De la primer ecuación obtenemos: $x \equiv 25 \pmod{49} \Rightarrow x \equiv 25 \pmod{7} \Rightarrow x \equiv 4 \pmod{7}$ y de la segunda obtenemos $x \equiv 13 \pmod{21} \Rightarrow x \equiv 13 \pmod{7} \Rightarrow x \equiv 6 \pmod{7}$ y por lo tanto el sistema no tiene solución.
- (b) La primer ecuación implica que $x \equiv 4 \pmod{7}$ y la tercera implica que $x \equiv 17 \pmod{3} \equiv 2 \pmod{3}$. Por el teorema chino del resto tenemos que la segunda ecuación es equivalente a

$$\begin{cases} x \equiv a \pmod{7} \\ x \equiv a \pmod{3} \end{cases}$$

Por lo tanto, para que el sistema tenga solución es necesario que

$$\begin{cases} a \equiv 4 \pmod{7} \\ a \equiv 2 \pmod{3} \end{cases}$$

La única solución $0 \le a \le 20$ es a = 11.

Luego, tomando a = 11 el sistema

$$\begin{cases} x \equiv 25 \pmod{49} \\ x \equiv 11 \pmod{21} \\ x \equiv 17 \pmod{27} \end{cases} \text{ es equivalente al sistema } \begin{cases} x \equiv 25 \pmod{49} \\ x \equiv 17 \pmod{27} \end{cases}$$

el cual, por el Teorema Chino del resto tiene solución, por ser mcd(49, 27) = 1.

(c) Sea x el resto de dividir 5^{44} entre 1323. Entonces $x \equiv 5^{44}$ (mód 1323). Como 1323 = $27 \cdot 49$ y 27 y 49 son coprimos, esto es equivalente a

$$\begin{cases} x \equiv 5^{44} \pmod{49} \\ x \equiv 5^{44} \pmod{27} \end{cases}$$

Como $\varphi(49)=\varphi(7^2)=7^2-7=42$ y $\varphi(27)=\varphi(3^3)=3^3-3^2=18$, y mcd(5,49)= mcd(5,27)=1, aplicando el teorema de Euler para ambas ecuaciones obtenemos que este este sistema es equivalente a

$$\left\{ \begin{array}{l} x \equiv 5^2 \pmod{49} \\ x \equiv 5^8 \pmod{27} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \equiv 25 \pmod{49} \\ x \equiv 25^4 \pmod{27} \equiv (-2)^4 \pmod{27} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \equiv 25 \pmod{49} \\ x \equiv 16 \pmod{27} \end{array} \right.$$

Las soluciones a este sistema son de la forma $x=25\cdot A\cdot 27+16\cdot B\cdot 49$, donde $27A\equiv 1\pmod{49}$ y $49B\equiv 1\pmod{27}$. Utilizando el Algoritmo de Euclides extendido obtenemos que $27\cdot 20-49\cdot 11=1$ y por lo tanto $A\equiv 20\pmod{49}$ y $B\equiv -11\pmod{27}$. Así que $x\equiv 25\cdot 20\cdot 27-16\times 11\cdot 49\pmod{1323}\equiv 13500-8624\pmod{1323}\equiv 270-8624\pmod{1323}\equiv -8354\pmod{1323}\equiv -416\pmod{1323}$. Por lo tanto (pues $0\leq x<1323$) x=907

Ejercicio 2.

- (a) Si G es un grupo finito y H es un subgrupo de G entonces |H| divide a |G|.
- (b) Sea G un grupo de orden p y sea $g \in G$ con $e \neq g$. Tomamos $H = \langle g \rangle$; entonces por el teorema de Lagrange, |H| divide a |G| = p. Pero como p es primo, las posibilidades son |H| = 1 o p; pero como $e \neq g$ se tiene que |H| > 1 así que |H| = p. Por lo tanto $G = H = \langle g \rangle$ y entonces G es cíclico.

- (c) Sea $H = G_1 \cap G_2$. Como H es un subgrupo de G_1 , |H| divide a $|G_1| = p$. Así que |H| = 1 o p. Supongamos que |H| = p, entonces $H = G_1$ y además como $H \subset G_2$, tendríamos que $G_1 \subset G_2$ y al tener los dos subgrupos el mismo orden, tendríamos que $G_1 = G_2$. Como por hipótesis $G_1 \neq G_2$ tenemos que |H| = 1 así que $H = \{e\}$
- (d) Como vimos en la parte b), si H es un subgrupo con orden p, entonces H es cíclico (y generado por un elemento de orden p). Veamos primero quienes son los elementos $g = (a, b) \in \mathbb{Z}_p \times \mathbb{Z}_p$ con orden p. Claramente p(a, b) = (pa, pb) = (0, 0) = e; así que el orden de todo elemento divide a p. Por lo tanto el único elemento que no tiene orden p es el neutro e = (0, 0).

Por lo tanto hay $p^2 - 1$ elementos de orden p en $\mathbb{Z}_p \times Z_p$. Cada uno de estos elementos, genera un subgrupo de $\mathbb{Z}_p \times Z_p$ con orden p, pero hay repeticiones. Cada uno de estos subgrupos es generado por todos sus elementos $g \neq (0,0)$; es decir, cada uno de estos subgrupos tiene p-1 posibles generadores.

Por lo tanto, la cantidad de subgrupos de orden p es $\frac{p^2-1}{p-1}=p+1.$

Ejercicio 3. Sean p y q dos primos distintos y n = pq.

- (a) $\varphi(p) = \sharp \{a \in \mathbb{N} : 1 \le a \le p \text{ y } \operatorname{mcd}(a, p) = 1\} = (\operatorname{por ser } p \text{ primo}) = \sharp \{a \in \mathbb{N} : 1 \le a \le p \text{ y } p \nmid a\} = \sharp \{1, 2, \cdots, p 1\} = p 1.$ $\varphi(n) = \sharp \{a \in \mathbb{N} : 1 \le a \le n \text{ y } \operatorname{mcd}(a, n) = 1\} = (\operatorname{por ser } n = pq \text{ con } p \text{ y } q \text{ coprimos})$ $= \sharp \{a \in \mathbb{N} : 1 \le a \le n, \operatorname{mcd}(a, p) = 1 \text{ y } \operatorname{mcd}(a, q) = 1\} = (\operatorname{por ser } p \text{ y } q \text{ primos})$ $= \sharp \{a \in \mathbb{N} : 1 \le a \le n, p \nmid a \text{ y } q \nmid a\} = \sharp (\{1, 2, \cdots, n\} \setminus \{a \in \{1, \cdots, n\} : p \mid a \text{ o } q \mid b\}) =$ $\sharp \{1, 2, \cdots, n\} \sharp \{p, 2p, \cdots, qp\} \sharp \{q, 2q, \cdots, (p-1)q\} = n q (p-1) = pq q (p-1) =$ (p-1)q (p-1) = (p-1)(q-1)
- (b) Si p = 13 y q = 53, $\sharp\{e : (689, e) \text{ es una clave válida}\} = \sharp\{e \in \{1, \dots, \varphi(n)\} : \operatorname{mcd}(e, \varphi(n)) = 1\}$ y como $\varphi(n) = \varphi(13 \times 53) = 12 \times 52 = 624 \text{ esto es}$ $\sharp\{e \in \{1, \dots, 624\} : \operatorname{mcd}(e, 624) = 1\} = \varphi(624) = \varphi(2^4 \times 3 \times 13) = (2^4 2^3)2(12) = 8 \times 2 \times 12 = 192.$
- (c) Como $\varphi(13) = 12$, para ver que 2 es raíz primitiva módulo 13, hay que ver que el orden de 2 en U(13) es 12. Como por Fermat tenemos que $2^{12} \equiv 1 \pmod{13}$, tenemos que el orden de 2 debe dividir a 12. Así que el orden es 12 si y solo si $2^a \not\equiv 1 \pmod{13}$, para todo a divisor propio de 12. En realidad basta con ver esto para a = 6 y a = 4. Y tenemos que $2^4 = 16 \equiv 3 \pmod{13}$ y $2^6 = 2^4 2^2 \equiv 3 \times 4 \pmod{13} \equiv 12 \pmod{13}$.

De forma análoga, para ver que 2 es raíz primitiva módulo 53, basta con ver que $2^a \not\equiv 1$ (mód 53), para todo a divisor propio de 52. Y como $52 = 4 \times 13$, basta con ver que esto vale para a = 4 y a = 26. Tenemos que $2^4 \equiv 16 \pmod{53}$; además $2^6 = 16 \times 4 = 64 \equiv 11 \pmod{53}$, $2^{12} \equiv 121 \pmod{53} \equiv 15 \pmod{53}$ y $2^{24} \equiv 225 \pmod{53} \equiv 13 \pmod{53}$. Por lo tanto $2^{26} \equiv 13 \times 4 \pmod{53} \equiv 52 \pmod{53}$.

(d) Si $E(4) \equiv 105 \pmod{689}$ entonces $4^e \equiv 105 \pmod{689}$; y por el Teo.Chino del Resto, esto equivale a

$$\begin{cases} 4^e \equiv 105 \pmod{13} \\ 4^e \equiv 105 \pmod{53} \end{cases} \Leftrightarrow \begin{cases} 2^{2e} \equiv 1 \pmod{13} \\ 2^{2e} \equiv -1 \pmod{53} \end{cases}$$

Y como 2 es raíz primitiva módulo 13 y 53, esto es equivalente a que

$$\left\{ \begin{array}{l} 2e \equiv 0 \pmod{12} \\ 2e \equiv 26 \pmod{52} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} e \equiv 0 \pmod{6} \\ e \equiv 13 \pmod{26} \end{array} \right.$$

Y como la primer ecuación implica que $e \equiv 0 \pmod{2}$ y la segunda implica que $e \equiv 13 \pmod{2} \equiv 1 \pmod{2}$, no existe ningún e.