Soluciones

Segundo Parcial Matemática Discreta 1 Martes 29 de noviembre de 2016.

Ejercicio de desarrollo 1 (15 puntos)

Se considera en $A \subseteq \mathbb{N} \times \mathbb{N}$ la siguiente relación: $(a,b)\mathcal{R}(c,d) \iff$ a divide a c y b \leq d

- 1. Demostrar que \mathcal{R} es una relación de orden parcial.
- 2. Si $A = \{(2,3), (2,7), (4,1), (4,9), (8,5), (8,6)\}$. Dibujar el diagrama de Hasse y determinar (en caso de existir) elementos maximales, elementos minimales, elemento máximo y elemento mínimo.
- 3. Agregar a lo sumo 3 elementos a la relación para que $\mathcal R$ sea retículo.

Solución

1. Reflexiva: a divide a a y $a \le a$, luego $(a, a)\mathcal{R}(a, a)$.

Antisimétrica: si $(a, b)\mathcal{R}(c, d)$ y $(c, d)\mathcal{R}(a, b)$ entonces a divide a c, c divide a a, $b \leq d$ y $d \leq b$, esto es, a = c y b = d.

Transitiva: si $(a, b)\mathcal{R}(c, d)$ y $(c, d)\mathcal{R}(e, f)$ entonces a divide a c y c divide a f y, por transitividad, a divide a f. Se tiene también $b \leq d \leq f$ y por lo tanto $b \leq f$. Así, $(a, b)\mathcal{R}(e, f)$.

2. Diagrama de Hasse

Elementos minimales: $\{(2,3), (4,1)\}$ Elementos maximales: $\{(4,9), (8,6)\}$ Máximo: no existe Mínimo: no existe

3. Agregamos el $(1,1),\,(4,3)$ y el (8,9)

Con estos tres elementos, \mathcal{R} es un retículo.

Ejercicio de desarrollo 2 (15 puntos)

Sean los siguientes grafos G_1 y G_2 respectivamente:

- 1. Definir el concepto de homeomorfismo.
- 2. Probar que si un grafo H_1 es euleriano y H_2 es homeomorfo a H_1 , entonces H_2 también es euleriano.
- 3. Probar que G_1 y G_2 son homeomorfos.
- 4. Probar que G_2 es euleriano

Solución

Parte a)

Ver teórico.

Parte b)

 H_1 euleriano quiere decir que los grados de todos sus vértices son pares. Por otro lado, si H_2 es homeomorfo a H_1 entonces, o bien son isomorfos, o bien son resultado de aplicarle una serie de subdivisiones elementales al mismo grafo H.

Si son isomorfos entonces los grados de los vértices de H_1 son iguales a los de H_2 , por lo tanto H_2 es euleriano.

Ahora, si existe el grafo H nombrado anteriormente, el conjunto de vértices del mismo va a estar incluido en el conjunto de vertices de H_1 y en H_2 , por lo que esos vertices tienen grado par. Ademas, por la definición de subdivisión elemental, los vertices de H_2 que no pertenecen a H tienen grado 2. Por lo tanto todos los vertices de H_2 tienen grado par, entonces H_2 también es euleriano.

Parte c)

Son homeomorfos ya que se puede encontrar un grafo H, como el de la siguiente figura, que cumple que a partir de aplicarle una serie de subdivisiones elementales obtenemos H_1 y a partir de aplicarle otra serie de subdivisiones elementales obtenemos H_2 .

Solucin parte d)

Es fácil ver que G_1 es euleriano, por lo tanto aplicando la parte b) y c) concluimos que G_2 también lo es.

Los problemas del 1 al 5 son de múltiple opción (total 30 puntos). Correcta: 6 puntos, Incorrecta: -1 punto, sin responder: 0 punto.

1. Dado el grafo G:

El polinomio cromático $P(G, \lambda)$ es:

(A)
$$[\lambda(\lambda - 1)(\lambda - 2)(\lambda - 3)(\lambda - 4)][\lambda(\lambda - 1)^3(\lambda - 2)^2(\lambda - 3)]$$

(B)
$$[\lambda(\lambda - 1)(\lambda - 2)(\lambda - 3)(\lambda - 4)] + [\lambda(\lambda - 1)^3(\lambda - 2)^2(\lambda - 4)]$$

(C)
$$[\lambda(\lambda - 1)(\lambda - 2)(\lambda - 3)(\lambda - 4)] + [\lambda(\lambda - 1)^3(\lambda - 2)^3]$$

(D)
$$[\lambda(\lambda - 1)(\lambda - 2)(\lambda - 3)(\lambda - 4)][\lambda(\lambda - 1)^3(\lambda - 2)^2(\lambda - 4)]$$

(E)
$$[\lambda(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)][\lambda(\lambda-1)^3(\lambda-2)^3]$$

Solución

La respuesta correcta es la E.

El grafo cuenta con dos componentes conexas, una de ellas es K_5 y a la otra la llamaremos C_1 .

$$P(G,\lambda) = P(K_5,\lambda).P(C_1,\lambda)$$

$$P(K_5,\lambda) = \lambda(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)$$

Para calcular $P(C_1, \lambda)$ aplicaremos:

$$P(C_1, \lambda) = P(C_{1e}^+, \lambda) + P(C_{1e}^{++}, \lambda) \text{ con } e = \{0, 3\}$$

$$C_{1e}^{+}: \lambda(\lambda-1)^{3}(\lambda-2)^{2}(\lambda-3)$$

$$P(C_{1e}^+, \lambda) = \lambda(\lambda - 1)(\lambda - 2)(\lambda - 3)(\lambda - 1)^2(\lambda - 2) =$$

 $C_{1e}^{++}: \qquad \qquad P(C_{1e}^{++},\lambda) = \lambda(\lambda-1)(\lambda-2)(\lambda-1)^2(\lambda-2) = \lambda(\lambda-1)^3(\lambda-2)^2$

Factorizando y multiplicando por $P(K_5, \lambda)$ llegamos a la respuesta E.

- **2.** Sea A= $\{101, 1077, 2, 305, 800, 11, 2805, 1001, 708, 6540, 611, 44000\}$ y \mathcal{R} una relación definida sobre A tal que x \mathcal{R} y si la suma de los dígitos de x es igual a la suma de los dígitos de y. Entonces:
- (A) \mathcal{R} es de equivalencia y hay 4 clases de equivalencia.
- (B) \mathcal{R} es un orden parcial pero no total.
- (C) \mathcal{R} es de equivalencia y hay 3 clases de equivalencia.
- (D) \mathcal{R} es un orden y la cadena más larga es de largo 4.
- (E) \mathcal{R} es un orden y la anticadena más larga es de largo 3.

Solución

La respuesta correcta es la C

Es fácil ver que \mathcal{R} es una relación de equivalencia ya que cumple que es reflexiva, simétrica y transitiva y que no es una relación de orden, ya que no es antisimétrica. Todos los elementos de A cumplen que sus dígitos suman 2, 8 o 15, por lo que podemos concluir que hay 3 clases de equivalencia.

3. La menor cantidad de aristas que se debe agregar a cualquier árbol, que tenga al menos un camino simple de longitud 5, para que deje de ser plano es:

(A) $_{3}$ (B) $_{4}$ (C) $_{5}$ (D) $_{6}$

Solución

La respuesta correcta es la B

Tomando el subgrafo P_6 del árbol (existe este subgrafo dado que el árbol posee un camino simple de longitud 5) es fácil observar que es bipartito. Luego agregamos aristas para formar un grafo isomorfo a $K_{3,3}$, la cantidad de aristas a agregar es: 4, por lo tanto utilizando el teorema de Kuratowski el grafo no es plano. Observemos que al agregar 3 aristas es imposible que el grafo no sea plano, dado que se necesitan 4 aristas para alcanzar la cantidad de aristas de $K_{3,3}$ y poder utilizar el teorema de Kuratowski.

4. Se consideran los grafos G_1 , G_2 y G_3 Respectivamente. Indicar cuál de las siguentes afirmaciones es correcta:

(A) G_1 y G_2 son isomorfos y G_3 tiene un ciclo Hamiltoniano.

(B) G_2 y G_3 son isomorfos y G_1 se puede colorear con 3 colores.

(C) G_1 y G_3 son isomorfos y G_1 se puede colorear con 4 colores.

(D) G_2 y G_3 son isomorfos y G_1 no se puede colorear con 3 colores.

(E) G_1 y G_2 son isomorfos y G_3 se puede colorear con 3 colores.

Solución

La respuesta correcta es la B.

Observemos que G_1 y G_2 no son isomorfos, dado que en G_2 un vértice tiene grado 5 y en G_1 no existen vértices con grado 5. Por el mismo motivo G_1 y G_3 no son isomorfos, ya que G_3 tiene un vértice de grado 5. Veamos Ahora que G_1 se puede colorear con 3 colores: si coloreamos los vértices del grafo comenzando por el vértice más arrba del triángulo exterior y recorriendo los vértices restantes del triángulo en sentido horario de rojo, verd y azul respectivamente, y luego coloreamos de la misma forma el triángulo interior pero comenzando con los colores verde, azul y rojo, aueda una coloración del grafo G_1 .

5. En el siguiente grafo de n+1 vértices (asumir n par), el vértice 1 está unido por una arista con cada vértice par.

Halle la cantidad de ciclos (tamaño \geq 3) en el grafo.

- (A) $\frac{n}{2}(\frac{n}{2}-1)+1$ (B) $\frac{n}{2}(\frac{n}{2}-2)+1$ (C) $n(\frac{n}{2}-1)+1$ (D) $n(\frac{n}{2}-2)+1$

- (E) $n(\frac{n}{2}) + 1$

Solución

La respuesta correcta es la A.

A cada arista interior (con un extremo el vértice 1), le podemos asociar uno y solo un ciclo de longitud 2k con $k=2,\ldots,\frac{n}{2}$, recorrido en sentido horario y que empiece en el vértice 1.

Por ejemplo, a la arista $\{1,2\}$ le asociamos el ciclo de longitud 4 (1-2-3-4-1) y el ciclo de longitud 6 (1-2-3-4-5-6-1), este último es distinto al ciclo de longitud 6 (1-2-3-4-5-6-1) asociado a la arista $\{1,4\}$

De esta manera vemos que para cada $k=2,\ldots,\frac{n}{2}$ hay $\frac{n}{2}$ ciclos distintos de longitud 2k. También debemos contar el ciclo externo (2-3-4- \cdots - (n+1) - 2).

Luego, en total hay $\frac{n}{2}(\frac{n}{2}-1)+1$ ciclos distintos.