

Année universitaire 2019 - 2020

DM : Thermodynamique

Groupes: CIR1 - CNB1

Date: Mercredi 6 mai 2020 de 10h à 12h.

Avertissement:

- La note prendra en compte la qualité de la rédaction et la présentation de la copie.

Exercice 1

Une pompe à chaleur fonctionne suivant un cycle de Carnot effectué par un fluide qui reçoit effectivement du travail et échange de la chaleur avec deux sources. Ce cycle est constitué par deux <u>transformations adiabatiques et deux transformations isothermes toutes quatre réversibles.</u>

La pompe à chaleur fonctionne avec de l'air et sert à chauffer la carlingue d'un avion volant à haute altitude. La source froide est constituée par l'air extérieur à la pression P_1 et à la température $T_1 = 248$ k. La source chaude est l'air de la carlingue à la pression P_2 et à la température $T_2 = 293$ K.

L'air est assimilé à <u>un gaz parfait</u> (**R/M** = \mathbf{r} = 287JKg⁻¹.K⁻¹ et γ = 1,4). On désigne par V_A et V_D ($V_A > V_D$) les volumes de l'air aux extrémités A et D de l'isotherme T_1 et par V_B et V_C ($V_B > V_C$) les volumes aux extrémités B et C de l'isotherme T_2 .

- 1- Faire un schéma de l'installation en indiquant le sens d'échange d'énergie. Expliquer brièvement le principe du fonctionnement de cette machine.
- 2- Représenter le cycle effectué par le fluide de la pompe dans un diagramme (P, V) puis dans un diagramme entropique (T, S).
- 3- D'après le premier principe ΔU et le bilan entropique ΔS , déterminer en fonction du travail reçu W_t , de T_1 et de T_2 les chaleurs Q_1 et Q_2 reçues par la pompe de la part des sources aux températures T_1 et T_2 . En déduire leurs signes.
- 4- Exprimer en fonction de V_A , V_B , V_C , V_D , T_1 et T_2 , les travaux (W_{AB} , W_{BC} , W_{CD} , W_{DA}) reçus par 1 kg d'air de la pompe lors des quatre transformations constituant le cycle.
- 5- Le travail total peut s'écrire sous la forme:

$$W_t = -\frac{mR}{M} \left[T_2 \ln \left(\frac{V_C}{V_R} \right) + T_1 \ln \left(\frac{V_A}{V_D} \right) \right]$$

En utilisant les formules de Laplace pour les transformations adiabatiques, On obtient :

$$V_D = V_C (\frac{T_2}{T_1})^{\frac{1}{\gamma - 1}}$$

 $V_B = V_A (\frac{T_1}{T_2})^{\frac{1}{\gamma - 1}}$

Calculer VD, VB et le travail Wt.

On donne $V_A = 2,37 \text{ m}^3 \text{ et } V_c = 0,84 \text{ m}^3 \text{ et m} = 1 \text{ kg}.$

- 6- Calculer à l'aide des données précédentes, la quantité de chaleur fournie par la source froide Q₁ et la quantité de chaleur reçue par la carlingue Q₂. Conclure.
- 7- Calculer numériquement le COP (COefficient de Performance) de cette pompe à chaleur.

Exercice 2

La turbine à gaz est un <u>moteur</u> thermique réalisant les différentes phases de son cycle <u>thermodynamique</u> dans une succession d'organes traversés par un fluide moteur gazeux en écoulement continu. C'est une différence fondamentale par rapport aux moteurs à pistons qui réalisent une succession temporelle des phases dans un même organe (généralement un cylindre).

Dans sa forme la plus simple, la turbine à gaz fonctionne selon le cycle dit de <u>Joule</u> comprenant successivement et schématiquement:

- une compression adiabatique qui consomme de l'énergie mécanique,
- un chauffage isobare comme pour un moteur Diesel,
- une <u>détente adiabatique</u> jusqu'à la pression ambiante qui produit de l'énergie mécanique,
- un refroidissement isobare.

Le but de ce problème est d'étudier le fonctionnement d'un moteur de type turbine à gaz à combustion interne.

Pour cette machine thermique, un gaz, que l'on <u>supposera parfait</u> décrit, en circuit fermé, les évolutions suivantes:

- Le gaz, pris dans l'état 1: pression P_1 et de température T_1 , traverse un compresseur dans lequel il subit une évolution <u>adiabatique réversible</u> jusqu'à l'état 2 (sa température est alors, T_2 et sa pression P_2).
- Il se trouve, ensuite, en contact avec une source chaude où il se réchauffe de façon isobare, jusqu'à la température T₃; il est dans l'état **3**.
- Le gaz pénètre, ensuite, dans la turbine où il se détend de manière <u>adiabatique</u> <u>réversible</u> jusqu'à la pression P₄. En fin de détente sa température est T₄; il est dans l'état 4
- Il achève, enfin, de se refroidir d'une façon isobare au contact d'une source froide pour se retrouver dans l'état 1.
- Tracer l'allure du cycle de cette machine dans un diagramme de Clapeyron (V, P) en indiquant son sens de rotation.
- **2.** Donner la relation entre P_2 et P_3 .
- **3.** Aide: Lors d'une évolution adiabatique réversible, un gaz parfait suit la loi de Laplace $PV^{\gamma} = Cte$ où $\gamma = \frac{c_p}{c_v}$ est le rapport des capacités thermiques molaires, à pression et volume constants.
 - Ce rapport est supposé être indépendant de la température.
 - a) Réécrire cette loi en fonction des variables T, P et le rapport γ .

- **b)** En déduire les expressions des températures T_2 et T_4 en fonction de P_1 , P_2 , T_1 , T_3 et γ .
- **4.** Préciser, pour une mole de gaz, les expressions des quantités de chaleur $Q_c = Q_{23}$ et $Q_F = Q_{41}$ échangées respectivement avec la source chaude et la source froide.

5.

- a) Donner l'expression mathématique du Premier Principe de la thermodynamique
- **b)** En utilisant le Premier Principe, donner l'expression du travail global W fourni à cette mole de gaz, <u>pendant un cycle</u>, en fonction de Cp et des températures T₁, T₂, T₃ et T₄.
- **6.** Le rapport $\tau = \frac{P_2}{P_1}$ est généralement imposé par les limites de résistance mécanique du compresseur.
 - a) Le rendement de ce moteur est représenté par le rapport $\eta_{th} = \frac{-W}{O_c}$

Montrer que le rendement théorique s'écrit $\eta_{th} = 1 - \tau^{\frac{1-\gamma}{\gamma}}.$

- **b)** Avec lequel des trois gaz (argon, air, dioxyde de carbone) obtiendra-t-on le meilleur rendement? Justifier à l'aide des valeurs données en fin d'énoncé.
- c) Applications numériques

Calculer les valeurs des températures T_2 , T_4 et celle de η_{th} pour:

 $\gamma = 1,67$; $\tau = 4,0$; $P_1 = 1,0.10^5 \, Pa$; $T_1 = 300 \, K$; $T_3 = 900 \, K$

Gaz	Argon	Air	Dioxyde de carbone
γ	1,67	1,4	1,31