Simplification of the Genetic Code: Restricted Diversity of Genetically Encoded Amino Acids. K Amikura^{1,2}, A Kawahara-Kobayashi², and D. Kiga^{1,2}, ¹Department of computational intelligence and systems science, Interdisciplinary graduate school of science and engineering, Tokyo Institute of Technology, ²Earth-Life Science Institute, Tokyo Institute of Technology. ffiliation (4259 Nagatsuta-cho, Midori-ku, YOKOHAMA, Japan, 226-8503. kiga@dis.titech.ac.jp).

At earlier stages in the evolution of the universal genetic code, fewer than 20 amino acids were considered to be used. Although this notion is supported by a wide range of data, the actual existence and function of the genetic codes with a limited set of canonical amino acids have not been addressed experimentally, in contrast to the successful development of the expanded Recently, we constructed artificial genetic codes involving a reduced alphabet [1]. In one of the codes, a tRNA(Ala) variant with the Trp anticodon reassigns alanine to an unassigned UGG codon in the Escherichia coli S30 cell-free translation system lacking tryptophan. We confirmed that the efficiency and accuracy of protein synthesis by this Trp-lacking code were comparable to those by the universal genetic code, by an amino acid composition analysis, GFP fluorescence measurements and the crystal structure determination. We also showed that another code, in which UGU/UGC codons are assigned to Ser, synthesizes an active enzyme.

This method will provide not only new insights into primordial genetic codes, but also an essential protein engineering tool for the assessment of the early stages of protein evolution. To create a protein with improved activity relative to that of the wild-type, random mutagenesis by an error-prone polymerase chain reaction is widely used in a directed evolution process involving multiple rounds of mutagenesis and selection. For a simplified protein containing less than 20 amino acid species, however, efficient evolution with the random mutation strategy has been prevented by the reappearance of codons, generated by mutation, for the specific amino acids to be excluded. In this work, we showed that the simplified code completely excludes the specific amino acid from the genetic code. Therefore, even if the codon for the specific amino acid in the universal code appears in the sequence through a mutation, the amino acid to be excluded is not incorporated within the protein. As a result, the simplified codes will allow us to efficiently search the sequence space of simplified proteins.

In this presentation, we will show the generality of our method for the simplification, by constructing other types of further simplified codes including a 16-aminoacid code.

UUC Phe	UCU UCC	UAU UAC Tyr	UGU Cys	Two
UUA UUG Leu	UCA Ser	UAA Stop	UGA Stop	Ir
	UCG	UAG Stop	UGG S	/
CUU	CCU	CAU	CGU	
CUC	CCC	CAC His	CGC	_ •
cua Leu	CCA Pro	CAA	CGA Arg	g A
CUG	CCG	CAG Gln	CGG	Ald
AUU	ACU	AAU	AGU	
AUC IIe	ACC	AAC Asn	AGC Ser	
AUA	ACA Thr	AAA ,	AGA	
AUG Met	ACG	AAG Lys	AGG Arg	
GUU GUC GUA Val	GCU	GAU A	GGU	
	GCC	GAC Asp	GGC	
	GCA Ala	GAA	GGA Gly	
GUG	GCG	GAG Glu	GGG	

Reference: [1] Kawahara-Kobayashi A, et al. *Nucleic Acids Res.* 2012. 40(20):10576-84. (featured article, top 5% of papers)