# Sensor Principles

# A generic sensor interface



## **OPAMP Basics**

# Opamps in feedback



Gain:  $T(\omega) = \beta \cdot A_0(\omega)$ 

DC gain sets the acc. of the closed loop amplifier. Phase Margin:  $PM=180^{\circ}+\angle(T(\omega_1)|_{|T(\omega_1)|=1}$ 

Gain margin:  $GM = 20 \cdot log_{10}(\frac{1}{T(\omega_2)})|_{\angle(T(\omega_2) = -180^\circ}$ 

## **Generic Transfer function**

$$\begin{array}{l} V_x = \beta \cdot V_{\mathrm{Out}} = \beta \cdot A(\omega) \cdot (V_{\mathrm{in}} - V_x) = \\ \beta \cdot A(\omega) \cdot (V_{\mathrm{in}} - \beta \cdot V_{\mathrm{out}}) \\ A_{CL} = \frac{V_{\mathrm{out}}}{V_{\mathrm{in}}} = \frac{A(\omega)}{1 + \beta \cdot A(\omega)} \overset{A(\omega)] \gg 1}{\approx} \frac{1}{\beta} \\ \mathrm{Acc \ and \ gain} \end{array}$$

$$\epsilon = \frac{A_{CL,nom} - A_{CL}}{A_{CL,nom}}$$

$$A_{OL}(Error, A_{C}L) = A_{CL} \cdot (\frac{1}{Error} - 1)$$
  
Negative Feedback and linear operation

$$A(\omega)\gg 1 \Rightarrow$$
 virtual short at the input  $\Delta V\approx 0$   $Z_i\to\infty\Rightarrow i_{oa}\approx 0$ 

Voltage Drive  $\rightarrow$  negative feedback

Current drive  $\rightarrow$  positive feedback

A non-dominant pole located at a frequency lower than the unity gain frequency / GBW causes ringing in the time domain and peaking in the frequency domain.

## **Errors and Noise**

Limit of detection(LOD): minimum measurable input amplitude ( $SNR \approx 0$ )

Dynamic range(DR): ratio of max and min amplitude within inaccuracy levels.

Lower limit: Noise floor Upper Limit: Distortion



## Errortypes:

**Deterministic:** source loading, offset, gain error  $\rightarrow$ Removed by calibration

**Random:** thermal noise, 1/f noise  $\rightarrow$  Mitigated by circuit design to compensate

#### Quantification:

Absolute :  $\Delta x = |\hat{x} - x_0|$ Relative:  $\left| \frac{\Delta x}{x_0} \right| = \left| \frac{\hat{x} - x_0}{\hat{x}} \right|$ 

Max inaccuracy:  $\Delta x_{max} | x \in [\hat{x} - \Delta x_{max}, \hat{x} + \Delta x_{max}]$ 

## Error Propagation

 $y = f\left(x_1, x_2, \dots, x_N\right)$ 

Deterministic fluctuations of  $x_i \rightarrow \text{total error}$ :

$$\Delta y \approx \sum_{i=1}^{N} \frac{\partial f}{\partial x_i} \cdot \Delta x_i$$

Partial derivative  $\frac{\delta f}{\delta x_i}$  is called **sensitivity** 

Additive errors are best specified absolute and multiplicative errors are best specified relative

### Interference:

Unwanted coupling of external signal

Noise: random fluctuations from setup  $\rightarrow$  can be modeled as error sources

# **Combining Error sources**

#### **Output referred noise**

Effect of an error-source on the output

Input referred noise Equivalent effect of the error-source on



$$y_t = f\left(x_0
ight) + \left. rac{\mathrm{d}f}{\mathrm{d}x} \right|_{x_0} \cdot (x-x_0)$$
 Apply superposition

Find TF from ES to output for all sources

$$y: H_{y,ES} \Rightarrow y_{\text{out},\epsilon_2} = H_{y,\epsilon_2} \cdot \epsilon_2$$

#### Compute sum:

Deterministic Error:  $y_{ ext{out}}$  , tot  $=\sum_{i=1}^{N}y_{ ext{out}}$  , i

Random Error:  $y_{\text{out,tot}} = \sqrt{\sum_{i=1}^{N} y_{\text{out,i}}^2}$ 

## Lin. System noise:

Refer result back to input wit 
$$H_{y,x}: x_{\epsilon_2} = \frac{y_{\text{out},\epsilon_2}}{H_{y,x}} = H_{y,\epsilon_2} \cdot \frac{\epsilon_2}{H_{y,x}}$$

## Wiener-Khintchine-Theorem:

$$PSD = S_y(f) = |H(f)|^2 \cdot S_x(f)$$



## **Random Process**

WSS: Wide sense stationary: Mean is independent of time t and the ACF only depends on  $\tau = t_2 - t_1$ 

ACF: Power spectrum of white noise can be extracted from ACF with fourier transform

**Noise Power:** Total Noise Power is the ACF R(0)

$$S_x(f) = F \{R_x(\tau)\} = \int_{-\infty}^{\infty} R_x(\tau) \cdot e^{-j2\pi f_{\tau}} d\tau$$

$$R_x(\tau) = F^{-1} \{S_x(f)\} = \int_{-\infty}^{\infty} S_x(f) \cdot e^{+j2\pi f} df$$

Noise power:  $P_x = \int_{-\infty}^{\infty} S_x(f) \cdot df = R_x(0)$ 

Noise voltage: 
$$V_{n,ms}^2=\int_{-\infty}^{\infty}S_{v_n}(f)\cdot df=\int_0^{\infty}S_{v_n}^+(f)\cdot df$$
 Noise current:

$$I_{n,\text{rms}}^2 = \int_{-\infty}^{\infty} S_{i_n}(f) \cdot df = \int_0^{\infty} S_{i_n}^+(f) \cdot df$$

## Noise Types

**Thermal noise:** excitation of charge carriers(white)  $\rightarrow$ mitigate lower temp. lower resistance

Shot noise: carriers randomly crossing the barrier, dependent on DC bias and white

Flicker Noise:, due to traps in semiconduct. 1/f spectral density. MOS trans at low freq.

Thermalnoise Theorem: Every closed system at temp. T has average. Energy of  $kT/2 \rightarrow S_u(f) = 2kTR($ double-sided ) math  $S_u(f) = 4kTR$ ( single-sided ) physics

# Langevin Approach kt/C noise

PSD noise voltage of 
$$V_n = S_{v_n}(f) = 4kT \cdot \Re\{Z(j2\pi f) \rightarrow \overline{V_n^2} = kT \left\lceil \frac{1}{C_\infty} - \frac{1}{C_0} \right\rceil = \frac{kT}{C}$$

$$S_{I_n} = rac{4kT}{\Re\{Z(j2\pi f)}$$
 mos irn

PSD Noise current: 
$$S_{I_n} = \frac{4kT}{\Re\{Z(j2\pi f)} \text{ MOS IRN}$$
 
$$S_{\Delta V_{\text{nG-tot}}^2} = 4kT \cdot R_{\text{nG-tot}}, \quad R_{\text{nG-tot}} = \frac{\rho}{W \cdot L \cdot f} + \frac{\gamma_{nD}}{G_m}$$
 with GateExcess Noise factor

$$:\gamma_{nD} = (n = 1.3) \cdot [0.5WI; 2/3SI]$$

## **Bipolar Trans IRN:**

$$S_{\Delta V_{nR}^2} = 4kT \cdot R_B$$

# **Noise Aanalysis**

small-signal-equivalent is valid. Total IRN:  $S_{n, \text{ out }}(f) = \sum_{k=1}^N |H_k(f)|^2 \cdot S_{nk}(f)$  N uncorrelated NS.

 $H_k(f)$  TF from NS ton output. IRN:

$$S_{V_{\mathsf{neq,IRN}}}\left(f\right) = \frac{S_{V_{\mathsf{nout}}}\left(f\right)}{|A(f)|^2} \text{ with } A(f) \text{ is TF}$$

# Sensor types

Information domain → Electrical domain Transduction: Converting a signal from the energy domain

Sensors and actuators are transducers

### Sources of error

Noise, sensitivity to unintended quantities, Noise, EMI Tandem transducers: Multiple steps to target domain. cross-sensitivity, sensitivity to undesired quantity

## Sensor classification:

#### **Active Sensors:**

Require external source of excitation

## Passive / self-generating sensors:

Generate their own electrical output signal Draws all required energy from the measurand(source loading) E: Potentiometer for angle measurements.

### Modulating sensors:

Measure desired quantity by modulating

Additional source with modulated energy. Also adds error. E: Non-contact displacement measurement (rotating disk)

### Analog vs. Digital:

Analog: time and value continuous

Digital: Discrete outputs

## **Deflection mode sensors:**

Response to an output is a deviation from the equilibrium position

#### Null mode sensors:

Sensor or instruments exert an influence the measured system opposing the effect of the measurand. Ideally the result is a 0 measurement, typically achieved by feedback. The opposing influence is then the sensor output. Slower than deflection, but more accurate.

## Resistive sensors - strain gauges

Change in geometry under mechanical stress produces associated resistance change

associate triange Volum. == const. 
$$\rightarrow$$

$$\frac{\partial V}{V_0} = \frac{L_0}{V_0} \cdot \partial A + \frac{A_0}{V_0} \cdot \partial L \wedge \frac{\partial V}{V_0} = 0 \Rightarrow \frac{\partial A}{A_0} = -\frac{\partial L}{L_0}$$

$$\rightarrow \frac{\partial R}{R_0} = \frac{\partial \rho}{\rho_0} + 2\frac{\partial L}{L_0}$$

$$\rightarrow \frac{\partial R}{R_0} = \alpha \cdot \frac{\partial L}{L_0} + 2\frac{\partial L}{L_0} = \underbrace{(\alpha + 2) \cdot \frac{\partial L}{L_0}}_{\bullet}$$

k: gauge factor

 $\alpha$  proportionality factor  $\frac{\partial \rho}{\rho_0} \propto \frac{\partial L}{L_0}$ 



## Readout resistive sensors

Use a half bridge resistive divider top element sensing resistor

$$\frac{v_{\text{out}}}{V_{\text{bigs}}} = \frac{R}{2R + \Delta R} \Leftrightarrow \frac{\Delta R}{R} = \frac{V_{\text{bias}}}{v_{\text{out}}} - 2$$

 $rac{v_{
m out}}{V_{
m bias}} = rac{R}{2R + \Delta R} \Leftrightarrow rac{\Delta R}{R} = rac{V_{
m bias}}{v_{
m out}} - 2$  Full bridge to remove offset, 2 sensing elements more

remove nonlinearity by implementing differential measurements

Best use 4point full bridge, no nonlinearity



 $V_{
m diff}=v_2-v_1=rac{\Delta R}{R}\cdot V_{
m bias}$  Sensitivity S=45mV/V excitation for 1V input Accuracy  $A = \frac{v_{\mathrm{diff}}\left(\frac{\Delta R}{R}\right) - V_{\mathrm{diff},\,\mathrm{lin}}\left(\frac{\Delta R}{R}\right)}{V_{\mathrm{tran}}\left(\frac{\Delta R}{R}\right)}$ 

Deviation from the ideal bridge

# **BridgeParameters**

**Bridge resistance:** Unloaded R across the signal terminals Offset error Outputvoltage at 0 input

**Drift:** Outputchange conditioned on environmental condition

# **Differential/ Commonmode signals**

$$\begin{split} V_1 &= \frac{1}{2} \cdot \left(1 - \frac{\Delta R}{R}\right) \cdot V_{\text{bias}} \,, \quad v_2 &= \frac{1}{2} \cdot \left(1 + \frac{\Delta R}{R}\right) \cdot V_{\text{bias}} \\ \text{Differential signal: } V_{\text{diff}} &= V_2 - V_1 = \frac{\Delta R}{R} \cdot V_{\text{bias}} \end{split}$$





 $\textbf{DiffGain:}\ V_{\text{out}}\ = A_{\text{DM}}\ \cdot V_{\text{inDM}}$ CMMGain:  $V_{\text{out}} = A_{\text{CM}} \cdot v_{\text{inCM}}$ Ideally  $A_{cm}$  is 0 or  $A_{cm} \ll A_{dm}$ Commonmode rejection ratio(CMRR):

 $\text{CMRR} \triangleq \left| \frac{A_{\text{DM}}}{A_{\text{CM}}} \right| = \left| \frac{\text{d}v_{\text{out}}/\text{d}v_{\text{inDM}}}{\text{d}v_{\text{out}}/\text{d}v_{\text{inCM}}} \right|$ 

Often in dB

## Opampbase difference amplifier:



1st: 
$$A(s) = \infty$$
,  $R_2 = R_2' = \alpha \cdot R_1 = \alpha R_1'$   
 $A_{DM} = -\alpha$ ,  $A_{CM} = 0$ ,  $CMRR = \infty$   
 $2^{\text{nd}}$  assume  $A(s) = \infty$ ,  $R_2 = \alpha \cdot R_1$ ,  
 $R_2' = (\alpha + \Delta \alpha) \cdot R_1'$ ,  $R_1' = R_1 + \Delta R$ 

$$\begin{split} A_{\mathrm{DM}} &= -\left(\alpha + \frac{\Delta\alpha}{2\cdot(1+\alpha+\Delta\alpha)}\right) \\ A_{\mathrm{CM}} &= \frac{\Delta\alpha}{1+\alpha+\Delta\alpha} \\ \mathrm{CMRR} &= -\frac{1}{2} + \frac{\alpha\cdot(1+\alpha+\Delta\alpha)}{\Delta\alpha} \\ \mathrm{3d:} \ A(s) &= A_{\mathrm{DC}} / \left(1+s\cdot\frac{A_{\mathrm{DC}}}{\mathrm{GBW}}\right) \\ A_{\mathrm{DM}} &= \\ &- \left(\alpha + \frac{\Delta\alpha}{2\cdot(1+\alpha+\Delta\alpha)}\right) \cdot \frac{1}{1+\frac{1}{A_{\mathrm{DC}}} + \frac{\alpha}{A_{\mathrm{DC}}} + (1+\alpha) \cdot \frac{s}{\mathrm{GBW}}} \\ A_{\mathrm{CM}} &= \frac{\Delta\alpha}{1+\alpha+\Delta\alpha} \cdot \frac{1}{1+\frac{1}{A_{\mathrm{DC}}} + \frac{\alpha}{A_{\mathrm{DC}}} + (1+\alpha) \cdot \frac{s}{\mathrm{GBW}}} \\ \mathrm{CMRR} &= -\frac{1}{2} + \frac{\alpha\cdot(1+\alpha+\Delta\alpha)}{\Delta\alpha} \end{split}$$

# **Magnetic Field Sensors**

 $V_{\text{hall}} = G \cdot \tfrac{\mu \cdot \rho}{h} \cdot l \cdot B = G \cdot \tfrac{1}{e \cdot n \cdot h} \cdot l \cdot B = S_l \cdot l \cdot B \text{ G:}$  geometry factor

#### Error sources:

- Thermal noise
- -1/f noise

-Noise of conditioning electronics(minor)

-Offset Noise power:  $V_{noise}\sqrt{4kT\cdot R\cdot \Delta f}$ Signal power:  $V_{hall}S_I \cdot I \cdot B$ 

Resolution:  $B_{\min} \hat{\wedge} \frac{V_{\text{noise}}}{V_{\text{hall}}/B} = \frac{\sqrt{4kT \cdot R \cdot \Delta f}}{S_l \cdot I}$ 

With  $S_I=\frac{\mu\cdot\rho}{\hbar\cdot e\cdot n}\cdot \overset{\text{r}_{nail}}{G}$  At B=0 Hall plate can be modeled as wheatstone bridge, non-uniform stress causes intrinsic offset(5 to 30mT)

Cancel intrinsic offset by coupling 90° turned sensors, current and sense ports are swapped

Idea: Hall voltage is in phase and gradient caused offsets are than 180° out of phase

## Spinning current method:

Sense and current ports are switched every clock cycle Idea: A DC component equal to the offset and a frequency component proportional to the hall voltage is produced

### (Fourier Expansion of a square wave)

By modulating the information to the clock frequency noise and offset are greatly mitigated.

Multiplying by 1 and -1 to demodulate back to low frequency. Low pass stage to remove signal around the 2nd harmonic This allow to see the base noise floor of the sensor not 1/f noise

In the conventional implementation 2 bias currents are used in the low power configuration the bias form the plate is reused for the amplifier.



# **Temperature Sensors**

Seebeck effect: Convert temp. gradient to electromotive force  $F(T) = \int_{T_{stand}}^{T} (S_{+}(T') - S_{-}(T')) dT' \rightarrow E_{emf} = F(T_{sense} - F(T_{ref})$  Temperature stable

 $V_{\text{REF}}(T) = V_{\text{CTAT}}(T) + K \cdot V_{\text{PTAT}}(T)$ PTAT: Proportional to absolute temperature CTAT: Complementary to absolute temperature Scale one slope and add the function for a temp, constant reference

This can be built with a diode or a BJT with a shorted base and collector

Butt current is also temperature dependent so use diff pair. Bandgap reference:





$$\begin{array}{l} V_{\rm PTAT} = \Delta V_{\rm EB} = V_{\rm EB1} - V_{\rm EB2} \approx \\ \frac{kT}{q} \cdot \ln \left[ \frac{I_q \cdot I_S' \cdot A_{E2}}{I_S' \cdot A_{E1} \cdot I_q} \right] = \frac{kT}{q} \cdot \ln \left[ \frac{A_{E2}}{A_{E1}} \right] \\ \text{Scale currents or diodes to make equal bias} \end{array}$$

$$V_{\text{EB}} = \underbrace{E_g/q}_{V_G} - \underbrace{\frac{kT}{q}}_{U_T} \cdot \ln\left(\frac{I_s'}{I_D}\right) =$$

$$V_G - U_T \cdot \ln\left(\frac{K_1 \cdot T^{\gamma}}{I_D}\right)$$
$$V_G \approx V_{G0K} - a \cdot T$$

 $V_G = V_{EB2} = V_{CTAT}$  With  $I_S' > I_D$  but also temperature dependent  $\rightarrow$  curved CTAT.

Combine CTAT and PTAT: Series:

$$\begin{split} V_{\text{REF}} &= I_{\text{PTAT}} \cdot R_2 + V_{\text{CTAT}} = \frac{R_2}{R_1} \cdot V_{\text{PTAT}} + V_{\text{CTAT}} \\ \text{Parallel: } V_{\text{REF}} &= (I_{\text{PTAT}} + I_{\text{CTAT}}) \cdot R_3 = \\ R_1 &= R_2 &= R_3 \end{split}$$
 $\frac{R_3}{R_1} \cdot V_{\text{PTAT}} + \frac{R_3}{R_2} \cdot V_{\text{CTAT}}$ 

# Capa. Sensor Readout



1 linear:  $\Delta C = C - C_0 = \varepsilon \cdot \frac{W}{h} \cdot \Delta x$ 2 non-linear:  $\Delta C = \frac{\varepsilon \cdot A}{h} \cdot \frac{\Delta z/h}{1+\Delta zh} \approx \frac{\varepsilon \cdot A}{h^2} \cdot \Delta z$ 3 reduced non-linear with diff readout:  $\Delta C = \varepsilon \cdot \frac{A}{h} \cdot \left(\frac{2 \cdot \Delta z / h}{1 - [\Delta z / h]^2}\right) = \frac{2 \cdot \varepsilon \cdot A}{h^2} \cdot \Delta z$ 

OpenLoop readout:

ChargeAmp:
$$V_{\text{out}} = \frac{C_{\text{sense}}}{C_{\text{FB}}} \cdot V_{\text{ex}}$$

$$\begin{aligned} & \text{OpenLoop readout:} \\ & \text{ChargeAmp:} V_{\text{out}} = \frac{C_{\text{sense}}}{C_{\text{FB}}} \cdot V_{\text{ex}} \\ & \text{ChargeAmpNonideal:} \frac{V_{\text{out}}}{V_{\text{in}}} = -\frac{j\omega \cdot R_{\text{FB}}C_{\text{in}}}{\left(1 + \frac{j\omega}{G\text{BW}}\right) \cdot \left(1 + \frac{j\omega}{\omega_{\text{FB}}}\right)} \end{aligned}$$

VoltAmp:  $v_{ ext{out}} = A_v \cdot \frac{C_{ ext{sense}}}{C_{ ext{sense}} + C_{ ext{ref}}} V_{ ext{ex}}$ TransImpAmp:  $v_{\text{out}} = s \cdot R_{\text{FB}} C_{\text{sense}} \cdot v_{ex}$ 



 $V_{Sense}$  not grounded sensitive to leakage currents Bias resistor provides well defined DC-point.  $R_{Bias}$  needs to be large because of the highpass forming, corner frequency needs to be low enough compared to excitation

Periodic reset can also be used where  $V_{n+} = V_{n-} = 0$ Correlated double sampling can also be used:



## **Bootstrapping: VoltAmp**



 $C_{s1} = C_{s0} + \Delta C/2C_{s2} = C_{s0} - \Delta C/2$ ,  $v_{out}$ becomes sensitive to parasitic capacitance Can be bootstrapped out with voltage buffer driving  $V_{shield}$  $v_{
m out} = rac{\Delta C}{2C_{
m s0} + C_{
m p1} + (C_{p2})} \cdot A_v \cdot v_{
m in}$ 

Gain of output is reduced

 $C_{p2}$  gets removed by  $V_{shied}$ 

Can also use TIA, the virtual ground helps with the parasitic capacitance, this also works in the charge amplifier

DiffReadoutChargeAmp:



Error will propagate to output directly Accuracy more important for small  $\Delta C$ Mismatch or drift will introduce errors Sinewave can be created with center-tapped transformer or active balun

Rectangular witch switched excitation schemes

DiffReadoutChargeAmp:

• Assuming ideal opamps 
$$(A_{\mathrm{op}} \mapsto \infty)$$

The part of the circuit highlighted in red is a simple inverting amplifier with input voltage  $v_{
m outn}$  and output

 $\Rightarrow v_{x2} = v_{x1}, \quad v_{x3} = 0$ 

- The part of the circuit highlighted in blue is a simple non-inverting amplifier with input voltage  $v_{x1}$  and with its reference potential pulled to
- The part of the circuit highlighted in green is a voltage divider between  $v_{\rm in}$  and  $v_{\rm outp}$



$$V_{\text{outp}} = V_{\text{in}} = -V_{\text{outn}}$$

# **Differential Capa sensing:**

$$\Delta v_{x,\,\mathrm{amp}} \, pprox - rac{\Delta x}{x_0} \cdot V_{\mathrm{ex}}$$

## Resonant readout:



# **Differential Measurements**

- Inherent rejection to common-mode interference ans noise
- · Wider Signal swing for a given supply voltage
- Minimum effect of even order distortion including DC offset
- Can lead to improved sensor linearity

But respond to some degree to common mode signal

$$\begin{split} & \mathsf{CMMR:} \triangleq 20 \cdot \log \left( \left| \frac{A_{\mathrm{DM}}}{A_{\mathrm{CM-to-DM}}} \right| \right) = \\ & 20 \cdot \log \left( \frac{2G_{\mathrm{mav}} \cdot r_{\mathrm{out}}}{\Delta R_L / R_{\mathrm{Lav}} + \Delta G_{\mathrm{m}} / G_{\mathrm{mav}}} \right] \end{split}$$

$$\begin{array}{l} \text{PSRR:} \\ \triangleq 20 \cdot \log \left( \left| \frac{A_{\text{DM}}}{A_{\text{vDD}}} \right| \right) = 20 \cdot \log \left( \left| \frac{A_{\text{DM}}}{\Delta V_{\text{out}}/\Delta V \text{DD}} \right| \right) \end{array}$$

Process variation causes mismatch between resistors and current source is not ideal

Input referred offset is the voltage needed to get zero volts differential output

IRO: 
$$\Delta V_G = V_{\rm OS} = -\frac{I_{\rm Dav}}{G_{\rm mav}} \cdot \left(\frac{\Delta R_{\rm L}}{R_{\rm Lav}} + \frac{\Delta \beta}{\beta_{\rm av}}\right) - \Delta V_{\rm TO}$$
 OffsetVoltage: 10mV **MOS** ; 1mV **BJT**, 120  $\mu$ , trimmed BJT  $CMRR \cdot V_{os} \approx G_{mav} \cdot r_{out} \cdot V_{OV}$ ,  $V_{OV} = \frac{I_{DAV}}{G_{mav}}$ 

$$PSRR_{vDD} \cong \frac{G_{\text{mav}} R_{\text{Lav}}}{\left(g_{\text{outM1},2} \cdot \left(\frac{g_{\text{out}}}{G_{\text{mav}}} \cdot \Delta R_{\text{L}} - 2 \cdot R_{\text{Lav}} \cdot \frac{\Delta G_{\text{m}}}{G_{\text{mav}}}\right)\right)}$$

$$G_{\text{mav}} \cdot R_{\text{Lav}} / g_{\text{out}} \cdot \left( \Delta R_{\text{L}} + R_{\text{Lav}} \cdot \frac{\Delta G_{\text{m}}}{G_{\text{mav}}} \right)$$



## Modulation

Synonyms: Coherent detection, synchronous demodulation, lock-in amplification, chopping

All modulation techniques, square wave is called chopping Leads to better low freg. specification, smaller 1/f, bigger CMRR and PSRR

Trimming: Measuring static error offset and gain and adjusting the value of a component to reduce the error to 0 Low complexity, no bandwith limit, but regs. measure equipment

Also regs. memory element

## Dyn. offset cancel:

usually no measure eq. but more complex circuits, reduce bandwidth

## AutoZeroina:

periodically measure offset and substract from input(time domain)

## Chopping:

Modulate signal above 1/f noise(freg. domain)

#### Chopper Amps



implemented with polarity reversing switch

## Time-Domain-Chopping:



Complete suppression of 1/f noise if  $f_{chop} > 1/f$  corner freg., but up-modulated offset must be filtered out. loss of bandwidth and residual chopper ripple. Charge Injection Injected charge splits half-half

$$\begin{array}{l} \text{Charge: } Q = W \cdot L \cdot C_{\text{ox}} \cdot \left[ V_{\varphi} - V_{\text{in}} - V_{\text{T0}} \left( \sqrt{V_{\text{in}}} \right) \right] \\ \text{Linear w.r.t to } W \cdot L \text{ non-linear w.r.t. } V_{in} \ V_{\text{out}} = V_{\text{in}} \left( 1 + \frac{W \cdot L \cdot C_{ox}}{2C_L} \right) \\ - \underbrace{\frac{W \cdot L \cdot C_{ox}}{2C_L}}_{\text{gain error}} \cdot \underbrace{\left[ V_{\varphi} - V_{T0} \left( \sqrt{V_{\text{in}}} \right) \right]}_{\text{offset \& dostortion}}$$

#### Clock feedthrough

Overlap capacitance of trans.:  $C_{OV}$ 

$$V_{\text{out}} = \frac{C_{\text{ov}}}{C_{\text{out}} + C_{\text{c}}} \cdot V_{\text{c}}$$

 $\Delta V_{\rm Out} = \frac{C_{\rm Ov}}{C_{\rm Ov} + C_L} \cdot V_{\varphi}$  Asymmetric clock duty cycle causes demodulation signal to have DC component which feeds through

# Bandwidth gain acc

Limited applifier Bandwidth causes output signal to not be perfectly square, therefore less gain

### AutoZeroing, LF Noise Reduce

Sampling unwanted signal during  $\Phi_1$ , storing, and subtracting during  $\Phi_2$ , input is disconnected during  $\Phi_1$ 



Error stored on  $C_{AZ}$  will slowly leak away,  $C_{AZ}$  as large as possible

#### Mitigate Charge Inject.

- -Use min size switch
- Diff Sampling: Const offset and nonlin, is reduced
- -Comp Switch: NMOS and PMOS in parallel cancel opposite charge packets, can only occur for one  $V_{in}$ , clock feedtrough can't be cancelled perfet because of different overlap capacitance.
- -Dummy Switch: Add a dummy switch of half size to such up injection of M1, but equal charging splitting rarely holds, but clock feedtrough is also mitigated
- **-BottomplateSampling:** Disconnect  $C_{AZ}$ 's bottomplate from ground slightly before M1,  $C_{az}$  bottom plate is then floating when M1 is opened and no charge can be injected. Requires additional clock.



No ripples, like chopping, offset of a few  $\mu V$  can be reached, main problems switching spikes, leakage currents and finite gain

## Correlated Double Sampling (CDS):

Special case of AZ

$$\begin{aligned} & \text{Phase 1 (calib): } V_1 = V(t_1) = A \cdot (0 + VOS) \\ & \text{Phase 2 (measure): } V_2 = V(t_2) = A \cdot (V_{in} + V_{OS}) \\ & \Rightarrow (V_2 - V_1) = A \cdot V_{in} \end{aligned}$$

#### 3 signal method:



Find:  $V_{in}$ , A,  $V_{OS}$ 

Phase 1: 
$$V_1 = A \cdot (V_{\mathsf{in}} + V_{\mathsf{OS}})$$

Phase 2:  $V_2 = A \cdot (V_{\mathsf{ref}} + V_{\mathsf{OS}})$ Phase 1:  $V_3 = A \cdot V_{0S}$ 

Acc. is limited by ADC resolution DEM:

Switch nomically identical components with a clock

Acc. is limited by mismatch of switch resistance Significantly reduces average error

2 Resistors in parallel:  $\begin{array}{c} R_1 = R + \Delta R \\ R_2 = R - \Delta R \end{array} \rightarrow$ 

$$Gain_{\mathrm{av}} = \frac{\left(1 + \frac{R + \Delta R}{R - \Delta R}\right) + \left(1 + \frac{R - \Delta R}{R + \Delta R}\right)}{\mathsf{like}} = 2$$
 LPF needed like chopping, can be easily combined

Reduces bandwidth and need more components

# Coheren Detection

synonyms: coherent detection, synchronous demodulation, lock-in amplification, chopping

Like chopping but sinewave instead of rect. Good for: - low-bandwidth quasi static signals with high noise

- if high dynamic range is req.
- Mems, Infrared, magnetic sensors, strain gauges.

## Behaves like bandpass but isn't one



## Amplitude Synchron. detection:

$$\begin{split} u_{\text{oM}} &= G_{\text{Amp}} \cdot G_{\text{mult}} \cdot \left[ \hat{u}_i \cdot \sin \left( \omega_i t \right) \cdot \hat{u}_r \sin \left( \omega_r t \right) \right] \\ u_{\text{oM}} &= G_{\text{Amp}} \cdot G_{\text{mult}} \cdot \frac{\hat{u}_i \hat{u}_r}{2} \cdot \left[ 1 - \cos \left( 2 \omega_i t \right) \right] \\ &\stackrel{LP}{\Rightarrow} u_{\text{oF}} &= G_{\text{LPF}} \cdot G_{\text{Amp}} \cdot G_{\text{mult}} \cdot \frac{\hat{u}_i \hat{u}_r}{2} \text{ for } \omega_r = \omega_i \end{split}$$

 $u_{oM} =$ 

$$G_{ ext{Amp}} \cdot G_{ ext{mult}} \cdot [\hat{u}_i \cdot \sin{(\omega_i t + \varphi)} \cdot \hat{u}_r \cdot \sin{(\omega_r t)}]$$
 $u_{ ext{oF}} = G_{ ext{LPF}} \cdot G_{ ext{Amp}} \cdot G_{ ext{mult}} \cdot \frac{\hat{u}_i \hat{u}_r}{2} \cdot \cos(\varphi)$ 
Phase sensitive coherent detector

LOD for  $10nV/\sqrt{Hz}$  white noise and  $f_{LPF}=1Hz$  $\rightarrow \frac{10nV}{\sqrt{Hz}} \cdot \sqrt{1Hz} = 10nV$ 

# 2 phase lock-in amp:



$$\begin{split} A_0 &= \\ u_{\text{oF},I} &= G_{\text{amp}} \cdot G_{\text{mult}} \cdot G_{\text{LPF}} \cdot \frac{\hat{u}_i \cdot \hat{u}_r}{2} \cdot \cos(\varphi) \\ u_{\text{oF},Q} &= G_{\text{amp}} \cdot G_{\text{mult}} \cdot G_{\text{LPF}} \cdot \frac{\hat{u}_i \cdot \hat{u}_r}{2} \cdot \sin(\varphi) \\ \Delta\varphi &= \begin{cases} \hat{u}_i &= \frac{1}{G_{\text{amp}} \cdot G_{\text{mult}} \cdot G_{\text{LPF}}} \cdot \sqrt{u_{\text{of},I}^2 + u_{\text{of},Q}^2} \\ \varphi &= \tan^{-1} \left(\frac{u_{\text{of},Q}}{u_{\text{of},I}}\right) \end{split}$$

# **DACs**

Prerequisite for sampling is the Nyquist theorem to be able to perfectly reconstruct a band-limited signal.

$$f_s \ge f_N = 2 \cdot f_b$$

$$J_S \geq J_N = 2 \cdot J_S$$
  
Sample and hold:



Sample: S is closed  $V_{out} = V_{in}$ Hold: S is open C holds  $V_{out}$  $I_{C1}$  with small  $Z_1$  for fast charge of C  $I_{C2}$  with $Z_{in}$  for slow discharge of C S with small  $R_{on}$ 

## **Characeristics:**

Aperture time: time for switch to open Droop: discharge of capacitor

Acquisition time: time to switch and charge capacitor

Switching transients: voltage buffer ringing

# Design C:

Large for small droop, small for fast charge Charge depends on  $R_{on}$  and  $Z_{out}$  or  $I_{out,max}$  of  $IC_1$ Large enough for sufficient small  $\frac{kT}{C}$ 

## **Static Errors**





Gain Error:  $V_{\text{gain,error}} = V_{\text{MSB avg}} - V_{\text{MSB ideal}}$ **Offset:**  $V_{0s} = V(000)$ 

Does not affect linearity, easy to compensate

## Diff nonlin (DNL):

Measure of nonuniformity, quantifies for each of the k binary input combinations the deviation of each step from the ideal stepsize of one LSB

$$\begin{array}{l} {\rm DNL}(k) = \frac{V(k) - V(k-1) - V_{\rm LSB}}{V_{\rm LSB}} = \frac{\Delta V(k)}{V_{\rm LSB}} \ \mbox{If DNL} \\ {\rm smaller \ than \ -1 \ the \ output \ is \ smaller \ than \ the \ previous \ and} \\ {\rm it's \ non-monotonic} \end{array}$$

Monotonicity is critical for feedback: turns negative feedback into positive feedback

Occurs most often when switching the MSB Intefral nonlin (INL): Deviation of the output val from the  $INL(k) = rac{V(k) - V_{\mathsf{ideal}}(k)}{V_{\mathsf{LSB}}}$ 

## **Dynamic Errors**

**Jitter:** Max jitter  $(\Delta t)$  for error below one lsb:

$$\Delta t < \frac{\dot{V}_{\rm LSB}}{\pi f_{\rm MAX} V_{\rm FS}} \approx \frac{1}{2^N \pi f_{\rm MAX}}$$

#### Glitches:

Turn on and turn off time not precisely synchronized. In the moment of switching one bit to another the value can briefly be both or none of the bits.

# **Implementation**

### Resistorstring:



Simple voltage divider, inherently monotonic, amount of resistors proportional  $2^N$  , Area  $A \propto W_R \cdot L_R \cdot 2^N$ 

# Binary weighted resisitve voltage divider

Inverting summing amplifier



For each bit i:  $V_{\text{out} \ ,i} = d_i \cdot \frac{R}{2^{i+1}R} = d_i \cdot \frac{1}{2^{i+1}}, \quad i = 0,..,N-1, d_i \in \{0,1\}$  $V_{\mathrm{out}} = \sum_{i=0}^{N-1} V_{\mathrm{out,i}} = V_{\mathrm{ref}} \, \sum_{i=0}^{N-1} d_i \cdot \frac{1}{2^{i+1}}, \quad d_i \in$ 

## Binary weighted current sources:

 $\begin{array}{l} V_{\text{out}} = I_{\text{out}}\,R = R \sum_{i=0}^{N-1} \left(b_i I_0\right) = \\ R I_0 \sum_{i=0}^{N-1} b_i \text{ with } b_i \in \left\{0, 2^i\right\} \end{array}$ 



Binary DACS: few number of components, large ratios of resistors, currents and switches, monotonicity not guaranteed, not linear, bas acc, need precise matching, prone to glitches, large portion switches.

### Thermometer wighted:

Current steering DAC, reduced glitches, monotonic,  $2^N$ sources, binary to thermometer decoder needed

| D | $b_1$ | $b_2$ | $t_2$ | $t_1$ | $t_0$ |
|---|-------|-------|-------|-------|-------|
| 0 | 0     | 0     | 0     | 0     | 0     |
| 1 | 0     | 1     | 0     | 0     | 1     |
| 2 | 1     | 0     | 0     | 1     | 1     |
| 3 | 1     | 1     | 1     | 1     | 1     |
|   |       |       |       |       |       |

Same topology as binary weighted but sources are not weighted just  $I_0$ 

### R2R-Ladder:



Branch current: 
$$I = -\frac{V_{\text{ref}}}{2R + (2R \| 2R)} = -\frac{V_{\text{ref}}}{3R}$$
  $V_{\text{out}\,,i} = -d_i \frac{I}{2^{i+1}} \cdot 3R = V_{\text{ref}} \cdot d_i \cdot \frac{1}{2^{i+1}}$   $V_{\text{out}} = \sum_{i=0}^{N-1} V_{\text{out},i} = V_{\text{ref}} \cdot \sum_{i=0}^{N-1} d_i \cdot \frac{1}{2^{i+1}}$  Inverse R2R-Ladder:



$$V_{\text{out,i}} = -d_i \cdot \frac{V_{\text{ref}}/(2R)}{2^i} \cdot R = V_{\text{ref}} \cdot d_i \cdot \frac{1}{2^{i+1}}$$
 
$$V_{\text{out}} = \sum_{i=0}^{N-1} V_{\text{out,i}} = V_{\text{ref}} \cdot \sum_{i=0}^{N-1} d_i \cdot \frac{1}{2^{i+1}}$$
 Bin weighted Cap. volt divider:

$$\begin{array}{ll} V_{\text{out,i}} = d_i \cdot \frac{C_0/2^{i+1}}{C_0} \cdot V_{\text{ref}} \,, & d_i \in \{0,1\}, i = 0.., N-1 \\ V_{\text{out}} = \sum_{i=0}^{N-1} V_{\text{out},i} = \\ V_{\text{ref}} \sum_{i=0}^{N-1} d_i \cdot \frac{1}{2^{i+1}} V_{\text{out},i} & \text{where } d_i \in \{0,1\} \text{ Capas} \end{array}$$

are weighted in the denominator, but otherwise topology



Realization with less capas:



Switch between lsb and msb group reset and load

$$\begin{split} V_{out} &= \alpha_{right} \cdot V_{ref} \\ \alpha_{\text{right}} &= \sum_{i=1}^{N_{\text{right}}} d_{\text{i,right}} \text{ with } d_{\text{i,right}} \in \left\{0, 2^{-i}\right\} \\ V_{out} &= \frac{\alpha_{\text{left}} V_{\text{ref}}}{16} \end{split}$$

 $\alpha_{\mathrm{left}} = \sum_{i=1}^{N} d_{\mathrm{i,left}} \quad \text{ with } \quad d_{\mathrm{i,left}} \in \left\{0, 2^{-i}\right\}$  **PWM DAC:** 



## Segmented DAC:



Course DAC(MSBs) feeds fine DAC (LSBs), matching needs to be instead  $2^10$  for 10 bit only  $2\cdot 2^5$ 

#### Current steering DAC with dvn calib:



Each source supposed to have  $I_{ref}$ , Assume one only has

Calib phase:  $V_{GS1}$  settles so that  $Q_1$  draws  $0.1I_{Ref}$ Operat. Phase:  $Q_1$  calibs. so that  $I_{d1} = I_{ref}$