Исчисления K_m , $S4_m$, $S5_m$: корректность и полнота

Мини-курс «Эпистемическая логика: исчисления и модели»

Виталий Долгоруков, Елена Попова

Международная лаборатория логики, лингвистики и формальной философии НИУ ВШЭ

Летняя школа «Логика и формальная философия» Факультет свободных искусств и наук сентябрь 2022

Исчисления

Исчисление K_m

Аксиомные схемы:

- Тавтологии КЛВ
- $K_i(\varphi \to \psi) \to (K_i\varphi \to K_i\psi)$

Правила вывода:

$$\frac{\varphi \qquad \varphi \rightarrow \psi}{\psi}$$
 MF

$$\frac{\varphi}{K_i\varphi}$$
 G

Расширения K_m

$S4_m$

 K_m , к которому добавили следующие аксиомные схемы:

- $K_i \varphi \to \varphi$
- $K_i \varphi \to K_i K_i \varphi$

$S5_m$

 $S4_{m}$, к которому добавили:

• $\varphi \to K_i \hat{K}_i \varphi$

или $S5_m - K_m$, к которому добавили:

- $K_i \varphi \to \varphi$
- $\neg K_i \varphi \rightarrow K_i \neg K_i$

Вывод

Определение

Выводом ($\vdash_L \varphi$) в исчислении L будем называть последовательность формул $\varphi_1, \dots, \varphi_n = \varphi$, в которой каждая формула φ_i ($1 \le i \le n$) является подстановочным случаем аксиомной схемы или получена из предыдущих формул по одному из правил вывода.

Пример

$$\vdash K_i(p \land q) \rightarrow K_ip$$

- $1.\;(p\wedge q) o p$ тавтология
- 2. $K_i((p \wedge q) o p)$ из 1 по G
- 3. $K_i((p \land q) \to p) \to (K_i(p \land q) \to K_ip)$ акс. K
- 4. $K_i(p \wedge q) \rightarrow K_i p \mathsf{MP}$ 3,4

Пример

$$\vdash K_i(p \land q) \rightarrow K_ip$$

- $1.\;(p\wedge q) o p$ тавтология
- 2. $K_i((p \land q) \rightarrow p)$ из 1 по G
- 3. $K_i((p \land q) \rightarrow p) \rightarrow (K_i(p \land q) \rightarrow K_ip)$ akc. K
- 4. $K_i(p \wedge q) \rightarrow K_i p MP 3,4$

Упражнение

Докажите, что

$$\frac{(\varphi_1 \wedge \cdots \wedge \varphi_n) \to \psi}{(K_i \varphi_1 \wedge \cdots \wedge K_i \varphi_n) \to K_i \psi}$$

Вывод из гипотез (локальный)

Определение

Будем говорить, что φ (локально) выводится из множества гипотез Γ в исчислении L ($\Gamma \vdash_L \varphi$), если найдутся $\varphi_1, \ldots, \varphi_n \in \Gamma$ т.ч. $\vdash_L (\varphi_1 \land \cdots \land \varphi_n) \to \varphi$

Примеры:

- p ⊬ □p
- $\Box p, \Box q \vdash \Box (p \land q)$

Полнота и корректность

- $L \in \{K_m, S5_m, S4_m, \dots\}$
- $C \in \{Ref, Eq, Pre, \dots\}$
- (сильная) корректность $\Gamma \vdash_L \varphi \Rightarrow \Gamma \models_C \varphi$
- (сильная) полнота $\Gamma \models_C \varphi \Rightarrow \Gamma \vdash_L \varphi$

Сборка доказательства

Корректность: упражнение.

$$X \not\vdash_L \varphi \Rightarrow X, \neg \varphi \not\vdash_L \bot \Rightarrow (X \cup \{\neg \varphi\}) \subseteq X' \Rightarrow M^c, X' \models X \text{ in } M^c, X' \models \neg \varphi \Rightarrow (M^c \in C \Rightarrow X \not\models_C \varphi)$$

Макимальность и непротиворечивость

Определение. Пусть $L \in \{K, S4, S5, \dots\}$. Множество формул X будем называть L-непротиворечивым, если: $X \not\vdash_L \bot$.

Определение. Пусть $L \in \{K, S4, S5, \dots\}$. Множество формул X будем называть максимальным L-непротиворечивым множеством, если X – непротиворечиво и для любой формулы φ : $\varphi \in X$ или $\neg \varphi \in X$.

Свойства м. L-н.м.

- . **Утверждение.** Пусть X м.L-н.м., тогда
 - 1. $\neg \varphi \in X \Leftrightarrow \varphi \notin X$
 - 2. $\varphi \land \psi \in X \Leftrightarrow (\varphi \in X \text{ in } \psi \in X)$
 - 3. $\varphi \lor \psi \in X \Leftrightarrow (\varphi \in X \text{ или } \psi \in X)$
 - 4. $\varphi \to \psi \in X \Leftrightarrow (\varphi \in X \Rightarrow \psi \in X)$
 - 5. $\varphi \in X \Leftrightarrow X \vdash_{L} \varphi$
 - 6. ⊥ *∉ X*

Каноническая модель

Определение. Канонической моделью будем называть следующую структуру $M^c = (W^c, (R_i^c)_{i \in Ag}, V^c)$, где

- $W^c := \{X \subset \mathcal{EL} \mid X$ максимальное L-непротиворечивое множество $\}$
- $XR_i^c Y \Leftrightarrow \forall \varphi \in \mathcal{EL}(K_i \varphi \in X \Rightarrow \varphi \in Y)$
- $V^c(p) := \{X \in W^c \mid p \in X\}$, r.e. $M^c, X \models p \Leftrightarrow p \in X$

Лемма Линденбаума

Лемма. Пусть X – непротиворечивое множество формул, тогда найдется X' т.ч. $X \in \subseteq X'$ и X' - м.L-н.м. формул.

Занумеруем множество всех формул языка $\mathcal{EL} = \{\varphi_1, \varphi_2, \dots\}$ Рассмотрим следующее множество:

- $X_1 = X$
- $X_{n+1}=egin{cases} X_n\cup\{arphi_{n+1}\},\$ если $X_n\cup\{arphi_{n+1}\}\$ непротиворечиво $X_n\cup\{\lnotarphi_{n+1}\},\$ иначе
- $X' = \bigcup_{i=0}^{\infty} X_i$

Допустим, что и $X_n \cup \{\varphi_{n+1}\}$, и $X_n \cup \{\neg \varphi_{n+1}\}$ – противоречивы. Тогда, $X_n \vdash \neg \varphi_{n+1}$ и $X_n \vdash \varphi_{n+1}$. То есть, X_n – противоречиво.

Лемма об истинности

Лемма

Пусть
$$X \in W^c$$
, $\varphi' \in \mathcal{EL}$, тогда $\varphi' \in X \Leftrightarrow M^c, X \models \varphi'$

Докажем индукцией по построению φ' .

База индукции
$$arphi' = p$$
 $p \in X \Leftrightarrow M^c, X \models p$ (по опр.)

Шаг индукции Рассмотрим случаи
$$\varphi'=\neg \varphi$$
, $\varphi'=\varphi \wedge \psi$, $\varphi'=K_i \varphi$ $\neg \varphi$, $\varphi \wedge \psi$ – упражнение

Случай $K_i \varphi \Rightarrow$

1
$$K_i \varphi \in X$$
 $\rhd M^c, X \models K_i \varphi \Leftrightarrow \rhd \forall Y (XR_i^c Y \Rightarrow M^c, Y \models \varphi)$
2 $\boxed{Y} XR_i^c Y$ $\rhd M^c, Y \models \varphi$
3 $\varphi \in Y$ 1,2
4 $M^c, Y \models \varphi$ 3 no ΠM
5 $\forall Y (XR_i^c Y \Rightarrow M^c, Y \models \varphi)$ 2-4
6 $M^c, X \models K_i \varphi$ 4 no onp.

Случай $K_i \varphi \Leftarrow$

Случай $K_i \varphi \Leftarrow$

3 , 1		
11		из 10
12	«⊥»	9, 11
13	<i>y</i> ₀ ⊬ ⊥	из 2-12
14	$y_0\subseteq Y\in W^c$	по л. Линденбаума из 13
15	$XR_i^c Y$	из 2
16	$\neg \varphi \in Y$	из 2
17	$\varphi otin \mathbf{Y}$	из 16
18	$\mathit{M}^{c}, \mathit{Y} \not\models arphi$	из 17 по ПИ
19	$\exists Y (XR_i^c Y \wedge M^c, Y \not\models$	arphi) из 15, 18
20	M^c $X \not\models K_i \varphi$	из 19

Классы моделей

Утверждения.

- 1. Если L = KT, то R^c рефлексивно
- 2. Если L = K4, то R^c транзитивно
- 3. Если L = KB, то R^c симметрично