Cap. 3 Vantagens da Virtualização

TECNOLOGIAS DE VIRTUALIZAÇÃO ENGENHARIA INFORMÁTICA WWW.IPLEIRIA.PT

Cap. 3 - Vantagens da Virtualização

- Utilização eficiente de Hardware
- Melhor disponibilidade
- Recuperação de desastres
- Disponibilização de recursos à VM em tempo real
- Poupança de energia
- Outras

Utilização eficiente de Hardware

- Utilizar apenas o que é necessário, nem mais, nem menos
- Utilizar apenas quando é necessário

Ajuda a evitar situações de servidores sobredimensionados

ou subdimensionados

Utilização eficiente de Hardware

- Quase todas as soluções existentes no mercado permitem reajustar os recursos manualmente (resize)
 - Resize: Processo manual em que o administrador pode aumentar ou reduzir o número de processadores, quantidade de RAM, ou a quantidade ou tamanho de discos.

Utilização eficiente de Hardware

- Alguns dos hypervisors mais avançados podem ajustar recursos automaticamente.
 O hypervisor monitoriza continuamente a máquina virtual (VM) e
 - Quando a VM se aproxima do limite de certo recurso, o hypervisor fornece recursos adicionais
 - Se a VM tem uma quantidade excessiva de recursos, o hypervisor pode ajustá-los para o nível adequado.

Exemplo 1 de ajustamento de recursos

- Dimensionamento inicial de um servidor (físico ou virtual)
- Necessário fazer estimativa de quanto processador, memória e disco o servidor vai necessitar
- Por vezes, chega-se posteriormente à conclusão que precisamos muito mais ou muito menos de um determinado recurso.

Exemplo 1 de ajustamento de recursos

- ..., e nesta altura:
 - Se o servidor é físico:
 - Acrescentar recursos é mais caro
 - Retirar recursos pode ser difícil, sendo pouco provável que se consiga recuperar o dinheiro gasto no recurso
 - Se o servidor é virtual:
 - É muito fácil acrescentar e remover recursos
 - Assim, o dimensionamento inicial do servidor não é tão importante

Exemplo 2 de ajustamento de recursos

- Alteração temporária da necessidade de recursos
- Exemplo: site de vendas on-line na altura do Natal pode experienciar
 5 a 10 vezes mais tráfego que o normal, requerendo mais recursos no servidor
 - Se o servidor é físico, é difícil aumentar os recursos temporariamente
 - Se o servidor é virtual, é fácil

Impacto do resize no SO guest

- Alguns SO mais antigos têm problemas ao alterar-se a quantidade de processadores ou RAM
- Exemplo de problemas em SO Windows mais antigos (Windows XP ou Windows Server 2003):
 - alteração uniprocessador para multiprocessador e vice-versa
 - Alteração de 2 para 4 processadores ou vice-versa não era problema
 - A partir do Windows Vista e Server 2008 deixou de ser problema

Cap. 3 - Vantagens da Virtualização

- Utilização eficiente de Hardware
- Melhor disponibilidade
- Recuperação de desastres
- Disponibilização de recursos à VM em tempo real
- Poupança de energia
- Outras

Melhor Disponibilidade

Vantagem da virtualização

- Migração em tempo real (Live migration) Processo de mover uma VM em execução para um host diferente. Exemplo:
 - Se houver algum problema num host, pode ser necessário desligá-lo mesmo que por pouco tempo
 - Em vez de desligar também as VM guests, pode-se mover essas VMs para um host diferente

Migração em tempo real

- A Migração em tempo real é portanto efetuada com a VM a correr, pelo que o impacto no utilizador deve ser mínimo ou inexistente
- É uma capacidade avançada suportada pela maioria dos hypervisors (mas não por todos)
- Complicado? Uma VM são apenas dados na memória de um computador...

Migração em tempo real

- As VMs podem portanto ser copiadas de um local para outro
- As VMs são GRANDES quantidades de dados, pelo que esta cópia não é instantânea, pode demorar muito tempo, de forma proporcional:
 - ao tamanho da VM
 - à largura de banda entre os dois hosts

Migração em tempo real

- Se se trata de uma down time programado do host, é necessário antecipar a cópia da VM para outro host.
- A maioria das migrações são manuais ou programadas pelo administrador.
- Alguns hypervisors avançados suportam migração automática.

Migrações automáticas

- O hypervisor monitoriza constantemente o host, e se encontra algum problema, inicia uma migração em tempo real de todas as VMs para outro host...
- ... atempadamente, antes que o host crache...
- O tempo necessário deve ser o mínimo possível:
 - manter as VMs pequenas, utilizando apenas o tamanho necessário para o disco
 - ter o máximo possível de largura de banda entre os hosts.

Cap. 3 - Vantagens da Virtualização

- Utilização eficiente de Hardware
- Melhor disponibilidade
- Recuperação de desastres
- Disponibilização de recursos à VM em tempo real
- Poupança de energia
- Outras

Recuperação de desastres

- Vantagem da virtualização: mais opções para recuperação de desastres
- A maioria dos hypervisors oferece ferramentas que permitem guardar o estado de uma VM num determinado instante
- É possível assim posteriormente fazer regressar a VM a esse estado
- Se ocorrerem problemas depois de se guardar o estado, pode-se reverter a esse estado guardado, que se sabe funcional

- Estes pontos guardados são chamados Snapshots ou Checkpoints
- Um snapshot é portanto o estado de uma VM guardado num determinado momento ao qual se pode voltar posteriormente
- Devem utilizar-se antes de uma tarefa administrativa

- Exemplo: antes de instalar um service pack no servidor, fazer um snapshot, instalar o SP, e depois testar o servidor
 - se se encontrar algum problema no servidor, existe a opção de reverter a alteração e voltar ao estado do snapshot guardado
 - se o servidor está funcional com o SP, pode-se apagar o snapshot

- Os snapshots utilizam grandes quantidades de espaço em disco, pois são basicamente uma cópia de todo o disco virtual
- Se tivermos um disco virtual de 50GB, o snapshot poderá ocupar até 50 GB.

- Se a VM tem vários discos, e todos forem grandes, o snapshot será a soma de todos
- É possível ter-se vários snapshots de momentos diferentes
- Uma VM com 5 snapshots poderá ocupar 6 vezes o espaço da VM

Lazy write Snapshots

- Alguns hypervisors fazem Lazy write Snapshots.
- O hypervisor não copia tudo imediatamente, reservando apenas um grande espaço em disco.
- À medida que as alterações vão acontecendo na VM, as diferenças são escritas no ficheiro de snapshot.

Lazy write Snapshots

- Essas alterações podem assim ser desfeitas, através do snapshot
- Se tivermos vários snapshots no mesmo servidor,
 o hypervisor vai gravar as alterações na VM e em todos os snapshots,
 podendo causar problemas de desempenho significativos

Snapshots e backups

- Os snapshots não substituem os backups.
 Servem apenas para ajudar em problemas administrativos específicos.
- É necessário fazer os mesmos backups que se fariam num servidor físico.
- Normalmente os snapshots não são guardados muito tempo pois aumentam o espaço em disco e têm potenciais problemas de desempenho.
- São apagados pouco tempo depois de serem criados (até 24 horas ou pouco mais).

Snapshots e backups

- Outra razão para não usar snapshots como backups é que normalmente os snapshots são guardados no mesmo disco da VM.
- Se o disco avaria, perde-se a VM e o snapshot.
- Um backup deve ser sempre guardado em discos diferentes ou em Tape, de modo a que uma avaria no disco da VM não afete o backup.

Cap. 3 - Vantagens da Virtualização

- Utilização eficiente de Hardware
- Melhor disponibilidade
- Recuperação de desastres
- Disponibilização de recursos à VM em tempo real
- Poupança de energia
- Outras

Disponibilização de recursos à VM em tempo real

- Just-in-time delivery of resources
- A maioria dos hypervisors monitorizam constantemente a utilização de recursos de todos os guests, e ajustam essa utilização à medida do necessário.

Processador

- Normalmente o número de processadores não muda frequentemente.
- O administrador pode fazê-lo manualmente, mas não é habitual, nem o hypervisor o costuma fazer.
- Alguns hypervisors podem alterar a velocidade do processador de forma automática.
- À medida que um determinado guest precise, o hypervisor pode oferecer a essa VM processadores cada vez mais rápidos, fornecendo assim à VM mais potência de processamento, à medida das necessidades.

Memória

- A maioria dos hypervisors suportam um sistema de atribuição de uma quantidade variável de memória.
- Define-se assim um valor mínimo e um valor máximo.
- A VM é normalmente iniciada com o valor mínimo de RAM,
 e à medida que precisa de mais memória, o hypervisor aloca mais.

Memória - ballooning

- Mas quando se trata de retirar memória à máquina, os hypervisors são menos agressivos, aguardando que comece a faltar memória no host, e só então retirar memória a algumas VMs que não a precisem.
- Ballooning: quando um hypervisor retira memória de alguns guests.

Cap. 3 - Vantagens da Virtualização

- Utilização eficiente de Hardware
- Melhor disponibilidade
- Recuperação de desastres
- Disponibilização de recursos à VM em tempo real
- Poupança de energia
- Outras

- A virtualização pode poupar energia, o que pode ser um grande benefício
- Bom para o ambiente, e redução de custos
- Poupar energia pode permitir fazer crescer data centers.
 Pequenos data centers estão limitados pela quantidade de energia que têm disponível.

- Mesmo tendo espaço físico para acrescentar mais servidores, por vezes não têm potência elétrica suficiente para o fazer.
- Reduzindo o consumo dos servidores, pode-se ter mais servidores no data center.
- Virtualização normalmente significa comprar menos hardware, e isso significa menor consumo de energia.

Exemplo: sendo necessários 20 servidores, pode-se:

 b) Comprar apenas um servidor mais potente e correr 20 VMs nesse único servidor. Apenas uma fonte, uma motherboard, um disco. Mesmo sendo este servidor mais potente, consome muito menos energia que os outros 20 menos potentes.

- Os hypervisors que automaticamente aceleram ou desaceleram os processadores, estão também a poupar energia
- Alguns hypervisors monitorizam o consumo de energia de cada VM, permitindo definir limites à quantidade de energia utilizada pela VM num determinado período de tempo

Cap. 3 - Vantagens da Virtualização

- Utilização eficiente de Hardware
- Melhor disponibilidade
- Recuperação de desastres
- Disponibilização de recursos à VM em tempo real
- Poupança de energia
- Outras

Instalações de software facilitadas

 Os produtores de software podem usar VMs para oferecer configurações de software completas.

 A instalação de alguns pacotes de software e serviços pode ser uma tarefa complexa e monótona.

Estas instalações podem ser preparadas numa
 VM e disponibilizadas como uma appliance

Correr vários SOs simultaneamente

- Com VMs pode-se correr mais que um Sistema Operativo de cada vez.
- Pode-se por exemplo correr numa VM um SO software escrito para outro SO, sem ter que se reiniciar o host.

 Com o seu hardware virtual, uma VM pode correr SOs antigos que já não são suportados pelo host

VMware vSphere ESXi Snapshots

TECNOLOGIAS DE VIRTUALIZAÇÃO ENGENHARIA INFORMÁTICA WWW.IPLEIRIA.PT

VMware - Ficheiros da VM

- vmname.vmx VM configuration file
- vmname.vmxf Additional VM configuration files
- vmname.vmdk Virtual disk characteristics
- vmname-flat.vmdk VM data disk
- vmname.nvram ou nvram VM BIOS or EFI configuration

VMware - Ficheiros da VM

- vmname.vmsd VM snapshots
- vmname.vmsn VM snapshot data file
- vmname.vswp VM swap file
- vmname.vmss VM suspend file
- vmware.log Current VM log file
- vmware-#.log (# = número) Old VM log files

VMware - Snapshots

- Os snapshots preservam o estado e dados de uma VM no momento em que é efetuado.
- Quando se faz um snapshot, a VM não é afetada. É copiada e guardada uma imagem da VM num determinado estado.

VMware - Snapshots

- Podem criar-se múltiplos snapshots de uma VM para criar pontos de restauro múltiplos num processo linear.
- Os snapshots operam numa VM única. Várias VMs, vários snapshots.

VMware – Snapshots - utilizações

- Útil quando se pretende reverter repetidamente para a mesma VM, mas não se quer criar múltiplas VMs
- Útil para preservar baselines antes de fazer alterações a uma VM

VMware – Snapshots - utilizações

- Útil como solução de curto prazo para testar software com potenciais efeitos incertos ou indesejáveis. Ex:
 - processo linear iterativo de instalação de update packages
 - processo de branching para instalação de versões diferentes de um programa; o snapshots assegura que cada instalação começa de uma baseline idêntica

VMware – Snapshot Manager

- Operações disponíveis no Snapshot Manager
 - criar snapshots
 - restaurar qualquer snapshots na hierarquia de snapshots
 - apagar snapshots
 - •
- Cada ramo numa árvore de snapshots pode ter até 32 snapshots

VMware – Snapshots - informação

- Informação preservada pelo snapshot:
 - VM settings: a pasta da VM, incluindo discos adicionados ou alterados depois do snapshot
 - O power state: powered on, powered off ou suspensa
 - Estado de todos os discos da VM
 - Opcionalmente, o estado (conteúdo) da memória da VM

- A hierarquia de snapshots é uma árvore com um ou mais ramos
- Os snapshots têm relacionamento pai filho:
 - cada filho tem apenas um pai
 - cada pai pode ter um (processo linear) ou mais filhos

- Pode reverter-se para o snapshot corrente ou para qualquer pai ou filho na árvore
- Cada vez que se restaura um snapshot e se faz um novo, é criado um snapshot filho ou ramo.

- O primeiro snapshot criado é o snapshot pai base
- É criado um ficheiro delta para cada disco ligado à VM e (opcionalmente) um ficheiro de memória
- Quando se restaura um snapshot, esse snapshot passa a ser o pai do estado corrente "You Are Here"

- Quando é criado um snapshot filho, os ficheiros delta são relativos ao estado atual da VM "You Are Here"
- Cada ficheiro delta do snapshot filho adiciona com cada snapshot filho prévio na hierarquia até chegar ao pai.
- Manipular individualmente ficheiros de discos ou configurações de filhos podem comprometer toda a árvore de snapshots e levar a perca de dados

- Quando se faz um snapshot, as escritas do SO guest são redirecionadas para o ficheiro delta, deixando intacto o ficheiro .vmdk base
- Os discos delta representam a diferença do estado atual do disco virtual e o estado que existia no momento em que foi feito o snapshot

- Com mais que um snapshot, os discos delta representam a diferença entre snapshots
- Os discos delta podem expandir-se rapidamente e atingir o tamanho do disco virtual inteiro (se o SO guest escrever em todos os blocos do disco virtual)

- Capturar o estado da memória da VM permite reverter para um estado ligado (turned on) de VM
- Com um snapshot sem memória só se pode reverter para um estado de VM desligado.
- Os snapshots com memória demoram mais tempo a criar, em função do tamanho da memória da VM

VMware – Snapshots Algumas limitações

- Os snapshots não suportam alguns tipos de discos (raw, RDM, ...)
- Os snapshots são úteis como soluções de curto prazo e não são apropriadas para backups de longo prazo de VMs. Se se perderem os ficheiros da VM, os ficheiros do snapshot também se perdem.

VMware – Snapshots Algumas limitações

- Não são suportados snapshots de VMs com discos independentes, ligadas ou suspensas. VMs com discos independentes têm que ser desligadas para fazer o snapshot.
- Os snapshots podem afetar o desempenho da VM, dependendo de:
 - há quanto tempo o snapshot ou a sua árvore existe
 - profundidade da árvore
 - quanto a VM mudou desde que se tirou o snapshot
 - pode também atrasar o tempo necessário para o arranque da VM

VMware – Gestão dos Snapshots

- O Snapshot Manager permite gerir todos os snapshots
- Opção Revert to Current Snapshot, ou selecionar snapshot e fazer o revert
- Um novo snapshot cria um ramo a partir desse ponto

VMware – Gestão dos Snapshots

- Pode apagar-se um snapshot em qualquer ponto da árvore (não apaga o ramo, apenas o nó), ou apagar todos
- Apagar um snapshots envolve conciliar os dados existentes no disco do snapshot no disco do pai

VMware – Fazer Snapshots

- Há um potencial de problemas quando:
 - estão a ocorrer acessos intensos ao storage e/ou
 - há aplicações a comunicar com outros computadores (ex.: se fizermos um snapshot a meio de um download...)

VMware – Fazer Snapshots

- Opção "Quiesce guest file system
 - Só disponível para VMs ligadas e com as VMware Tools instaladas
 - A operação de quiesce assegura um estado consistente dos sistemas de ficheiros do guest

localhost.localdomain VMware ESXi, 6.5.0, 4564106 Evaluation (60 days remaining)			
Getting Started Summary	Virtual Machines Resource	ce Allocation Performance Config	uration
Name	State	VMware Tools Running Status	Prov
pfsense	Powered On	Notrunning	8,61
ubuntu1	Powered On	Running	14,0
ubuntu2	Powered Off	Notrunning	12,9
── ubuntu3	Powered Off	Notrunning	13,4

Citrix Hypervisor

VMware – Snapshots Discos independentes

 Pode colocar-se um disco virtual no modo independente para o excluir de qualquer snapshot da sua VM

• É preciso desligar a VM e apagar os snapshots da VM antes de alterar o modo

do disco

VMware – Snapshots Discos independentes

- Independent Persistent: comportamento convencional. Dados são escritos de forma permanente no disco.
- Independent Nonpersistent:
 - Alterações ao disco são descartadas quando a VM é desligada ou reiniciada
 - A VM é reiniciada sempre com o disco no mesmo estado
 - Alterações ao disco são escritas e lidas de um ficheiro log "redo", que é apagado quando a VM é desligada

VMware – Snapshots Discos independentes

- Ao reverter para um snapshot, os discos acrescentados depois (independentes ou não), são removidos.
- Apagar um snapshot pode envolver acessos intensivos a disco, o que pode afetar o desempenho da VM durante a consolidação.

VMware – Consolidar Snapshots

- A presença de discos delta redundantes pode afetar o desempenho da VM.
- A consolidação combina e remove os discos redundantes melhorando desempenho e poupando espaço de storage
- Pode ser útil quando há alguma falha ao apagar snapshots
- Verificar coluna "Needs Consolidation" na tabela de VMs (oculta por omissão)

VMware – Consolidar Snapshots

- Selecionar VM, Snapshots > Consolidate
- Se a tarefa falhar, procurar no log de eventos possíveis causas, como falta de espaço em disco

Referências

- Cursos da Academia VMware
- Virtualization Essential Training, Martin Guidry, Lynda.com
- Virtualization Essentials, Matthew Portnoy, Sybex, Wiley
- Site VMware: www.vmware.com
- Vmware vSphere Virtualization Fundamentals Live Lessons, Pearson, VMware press