Persistent Roles in Online Social Networks ECML-PKDD 2016, M. Revelle, C. Domeniconi, and A. Johri

Contents

- 1 Introduction
- 2 Methodology
- 3 Results
- 4 Conclusion

Introduction

Roles

Roles are a method us to analyse networks

- Graph similarity
- Network modelling
- Visualization

Problem of Roles

- Roles are network-specific giving it limited comparative options with other networks with another set of roles
- In dynamic networks it is possible for roles to change or disappear over time

The Goal of the Article

The purpose of this paper is to present a novel method that uses features based on interaction patterns and structural positions of a users to:

- Find roles independent of dataset
- Find roles that persists over time

This method should utilize the latent factors to identify the feature structure of the roles.

Methodology

The Approach

The Data

Datasets:

- Facebook Wall posts from one user to another
- Scratch Comments on uploaded programming projects

Snapshots

The datasets are split into a total of 26 snapshots:

- 7 from Facebook
- 19 from Scratch

Social Network Graph

$$D = (N, E)$$

Snapshot

$$S_t = (N_t, E_t)$$

Feature Selection

- · In-degree
- Out-degree
- Weighted in-degree
- Weighted out-degree

Feature Selection

Reciprocity is the rate a user is replayed.

Feature Selection

The *new activity count* feature is the number of new outgoing edges based on the difference of snapshot S_t and S_{t-1}

New Activity Count

$$c = \mathsf{Out}\text{-}\mathsf{degree}_t - \mathsf{Out}\text{-}\mathsf{degree}_{t-1}$$

The feature *social strategy* is the ratio of new outgoing edges over all outgoing edges

Social Strategy

$$\mathsf{S} = rac{\mathsf{New Activity Count}}{\mathsf{Out-degree}}$$

Feature Selection The value of the feat

The value of the feature *betweenness centrality* is the product of the number of shortest paths passing through a vertex

Feature Selection The feature PageRan

The feature *PageRank* measures centrality based on ingoing edges and their influence

PageRank $pr(g) = 1 - d + d(\frac{pr(b)}{2} + \frac{pr(e)}{4} + \frac{pr(f)}{1} + \frac{pr(i)}{4} + \frac{pr(j)}{1})$

Feature Selection Transitivity measures

Transitivity measures is the local clustering coefficient which gives the probability of a vertexes neighbours being connected

troduction Methodology Results Conclusion

Selected Features

Summary of the features

- In-degree
- Out-degree
- Weighted in-degree
- Weighted out-degree
- Reciprocity
- New activity count
- Social strategy
- Betweenness centrality
- PageRang
- Transitivity

Features omitted from the walk-though

- · Weighted PageRank
- · Weighted transitivity

Feature Extraction

The result of feature extraction is a features × users feature matrix

The features in the matrix is normalized by the use of feature scaling so that all values is within the interval of 1 and 0

Role Discovery

Roles are discovered by decomposing the feature matrix using NMF. This gives us:

- Basis matrix U, containing the feature characteristic for the roles
- Coefficient matrix V, containing role membership weights for each user

Selection of L

0.08

0.06

0.04

0.02

0

Root Mean Squired Error
$$RMSE = \sqrt{\frac{1}{|X|} \sum_{(u,f) \in X} (X_{u,f} - X'_{u,f})^2}$$

Snapshot 1

Snapshot 4

- Snapshot 7

10

12

Figure: Facebook

0.06 - Snapshot 1 - Snapshot 10 - Snapshot 19 - Snapshot 19 - Snapshot 19

6

Figure: Scratch

rigare. racebook

12

10

troduction Methodology Results Conclusion

Tracing Roles

Cosine Similarity $sim(A_i, B_i) = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$

Cosine similarity returns a value between -1 and 1

- -1 means that the vectors are opposites
- 1 means they are exactly the same

The article sets a threshold on 0.75 that roles from S_t and S_{t+1} must have similarity measure above

Figure: *U*_t

Figure: U_{t+1}

Results

The Persistent Roles

Role	Feature Characteristics
Popular	In-degree, Betweenness, PageRank
Friendly	Out-degree
Reciprocated	Reciprocity
Explorer	Social Strategy
Community Member	Transitivity
Active Community Member	Weighted transitivity

Feature Representation of the Roles

Interaction Preferences

roduction Methodology **Results** Conclusion

Evidence of Roles Dependence on Network Structure

Conclusion

Conclusion

This paper presents a feature-based methodology which identify six different roles that are:

- Persistent throughout the timespan of the datasets
- Independently derived from different datasets

Shortcomings

- The authors does not argue for their selection of features or give a reference to an article that does.
- I would have appreciated some more examples or are more detailed description of some of their approaches.
- The distribution of snapshots are not consistent.