

Introduction to Deep Learning - part2

Taewook Ko

SCONE Lab.

• Neural Network Structure

- Neuron / Node
- Layers
 - Input, Hidden, Output
- Parameters
 - Weights
 - Bias

2022-03-23

• Forward Propagation

- $-Input = X \in \mathbb{R}^{1 \times m}$
 - *m* feature vector input
- $-H^1 = f(XW^1 + b^1) \in \mathbb{R}^{1 \times r}$
 - $W^1 \in \mathbb{R}^{m \times r}, b^1 \in \mathbb{R}^{1 \times r}$
- $-H^2 = f(H^1W^2 + b^2) \in \mathbb{R}^{1 \times k}$
 - $W^2 \in \mathbb{R}^{r \times k}$, $b^2 \in \mathbb{R}^{1 \times k}$
- $Output = f(H^2W^O + b^O) \in \mathbb{R}^1 x_m \underline{\hspace{1cm}}$
 - $W^0 \in \mathbb{R}^{k \times n}, b^0 \in \mathbb{R}^{1 \times n}$
- $f(\cdot)$: Activation function
 - Sigmoid, Softmax, Tanh, ReLU and so on

• Back Propagation

- Initialization
 - Sampling $\theta \sim N(0, \sigma)$
- Loss functions
 - $L(\hat{y}, y)$
 - MSE, Cross Entropy
- Parameter Gradient
 - With Chain rule
- Update Rule
 - SGD, RMSProp, Adam

• Pseudo Code

Algorithm 1 Neural Network Train

```
Define a model, M
Initialize parameters, M_{\theta}
for Epochs do
for mini\ batches do
\hat{y} = M_{\theta}(x)
Loss = \mathcal{L}(\hat{y}, y)
\theta \leftarrow \theta - \alpha \times \frac{\partial Loss}{\partial \theta}
end for
end for
```

S_{eoul} N_{ational} U_{niversity} 2022-03-23

Contents

- Data preparation
 - Data split
 - Data normalization
- Under- and Over-fitting
 - Underfitting
 - Overfitting
- Regularization
 - L1 and L2
 - Dropout
- Exercise with MNIST

• Dataset

- Deep learning is known to require a lot of data
- Data is a set of instances
- Instance
 - Tuple of (Input, Label)

 $S_{\text{eoul}} \, N_{\text{ational}} \, U_{\text{niversity}}$ 2022-03-23

• Dataset

- Expect the model learns hidden patterns of input
 - Some patterns which dog images commonly have
 - The model maps input to the output
 - Want the output similar to label
- Not only input, but also label is required
 - Label is the right answer, also called ground-truth
 - Usually manually set the labels
 - Requires a lot of labor
 - Hurdles for applying the NN to real-world problems
 - But it is them most easiest way
 - Because we know the right answer
 - Call it supervised learning method

2022-03-23

• Split dataset

- Train Dataset
 - Dataset for train the model
- Validation Dataset
 - Dataset for check whether the training is going well
- Test Dataset
 - Dataset for check the performance of the model
- Split ratio
 - No theoretically best ratio
 - Train: Valid: Test = 80:10:10
 - Train: Valid: Test = 60:20:20

• Split dataset

- Purpose of the train and validation set
 - Train model
 - Learn hidden patterns of input
 - Learn how to map input to label
- Purpose of the test set
 - Instances never seen during train/valid
 - If the model learn hidden patterns from train/valid input properly
 - The model can find the patterns with the new instances (test-set)
 - Check the performance of the trained model

Normalization

- Data features have different scale
- Parameters related with large scale feature are huge or tiny
- Gradients will be dominated by some parameters
 - Training is not properly done for all features
- Re-scaling data features
- Examples.
 - Prediction batting average of a baseball player
 - Input of four features
 - [Age, Service Time, Height, Salary]
 - Age: $20\sim50$ years old
 - Service Time : 0~20 years
 - Height: 160~200 cm
 - Salary: Hundreds of millions ₩

12

Data preparation

Normalization

- For a simple neural network
 - Input = [Age, Service Time, Height, Salary]

•
$$y_0 = w_0^2 f(x_A w_A^1 + x_T w_T^1 + x_H w_H^1 + x_S w_S^1)$$

- $\frac{\partial y}{\partial w_T} = \frac{\partial y}{\partial w_0^2} \times \dots \times \frac{\partial In_1}{\partial w_T^1}$
- $\frac{\partial y}{\partial w_S} = \frac{\partial y}{\partial w_S^2} \times \dots \times \frac{\partial In_1}{\partial w_D^1}$

•
$$In_1 = x_0 w_A^1 + x_1 w_T^1 + x_2 w_H^1 + x_3 w_S^1$$

- $\frac{\partial In_1}{\partial w_S^1} >>> \frac{\partial In_1}{\partial w_A^1}, \frac{\partial In_1}{\partial w_T^1}, \frac{\partial In_1}{\partial w_H^1}$

-
$$x_S >>> x_A, x_T, x_H$$

Gradients will be dominated by some parameters

Training will focused on some features

$$X_A$$
 W_A^1 X_T W_T^1 X_H W_H^1 X_S W_S^1 W_S^1 X_S W_S^1 X_S W_S^1 X_S X_S

Normalization

- Min-Max normalization
 - $x_{norm} = \frac{x Min}{Max Min}$
 - Max, Min: maximum and minimum feature values
 - Convert maximum value to 1 and minimum value to 0
- Z-score normalization

•
$$x_{norm} = \frac{x - \mu}{\sigma}$$

• μ , σ : mean and standard deviation of feature values

[1] Stanford cs231n lecture note

Under- and Over-fitting

- During training process,
 - Parameters are updated and decision boundary are changing
- Overfitting and Underfitting
 - Underfitting: Not trained properly, with high bias
 - Overfitting: Too much train, with high variance

[2] Andrew Ng, Coursera Machin Learning

Under- and Over-fitting

- Effect of parameter size
 - Each neuron contributes on a non-linear transformation
 - For a large size model
 - Means large number of layers or hidden neurons
 - Has more non-linear transformation process
 - Make the decision boundary more flexible
 - Adjusting model size is one of the solution to over- and underfitting
 - For underfitting issue
 - Need the boundary more flexible
 - For overfitting issue
 - Need the boundary make flatter

Under- and Over-fitting

• Early Stopping

- Validation shows whether the train goes well
- If boundary line goes too much flexible
 - The model starts overfitting
 - Validation loss will goes up

17

Under- and Over-fitting

- What does too much flexible mean?
- What is good compromise boundary line?
 - As training runs,
 - The boundary line changes and goes flexible
 - At some point,
 - The boundary line too much fit to the train dataset
 - They overly flexed to fit the train dataset
 - If the flexibility is also good for validation or test dataset
 - In other words, both train loss and valid loss goes down
 - It is not overfitting, it is under training for general data
 - But the flexibility is only good for train dataset
 - In other words, train loss goes down but valid loss goes up
 - It is overfitting, it is under training only for train data not for general
 - They learn 'noise data' of train dataset // Stop training

 $S_{\text{eoul}} \, N_{\text{ational}} \, U_{\text{niversity}}$ 2022-03-23

18

Underfitting

- Decision boundary is too flat
 - Make the boundary flexible
 - Increase training epoch
 - Increase the parameter size (model size)
 - The number of layers or hidden size

Overfitting

• Decision curve is to flexible

- Make the boundary flat
 - Reduce training epoch or apply early stop
 - Reduce the parameter size

• L1 and L2

- Add penalty on loss function when parameter value is high
- Loss = $L(\hat{y} y) + \lambda |\theta|$
 - L₁ regularization
 - $\theta = \sum |parameters|$
 - L₂ regularization
 - $\theta = \sum |parameters|^2$
 - λ : regularize weight
 - $-0 < \lambda < 1$
- Avoid having high parameter values
 - Reduce the flexibility of decision boundary
 - Can avoid overfitting problem without reducing model size

• Dropout

- Randomly drops (inactivates) nodes for an iteration
 - Drop node
 - The weights related the dropped nodes are not contributes to forward/back propagation
 - No parameter updates
 - Prevent overly train on specific features
 - Learn on overall features

(a) Standard Neural Net

(b) After applying dropout.

[4]Srivastava, N., Hinton, G., 2014. JMLR

• Goal of regularization

- Make the model utilizes as many parameters as possible
- L1 and L2
 - Instead having high values for some parameters
 - Let multiple small valued parameters to replace a single large parameter
 - Avoid training on specific features
 - Avoid decision boundary too flexible
- Dropout
 - Training is easy to focus on some specific features and parameters
 - Randomly drop some nodes, force to learn on different features for different iteration
 - Let sparse learning
 - In the beginning of the training, dropout may be detrimental
 - But it is helpful after some training has progressed.

- Another reason why ReLU is good
 - ReLU
 - $R(x) = \max(0, x)$
 - R'(x) = 0 or 1
 - ReLU for negative input is 0
 - 0 output, no parameter update
 - Makes some neurons die
 - Called 'Dying ReLU problem'
 - Similar effect of Dropout
 - Sparse learning
 - ReLU
 - Reduce gradient vanishing issue
 - Easy to compute gradients
 - Give sparsity on dense hidden layer

23

S_{eoul} N_{ational} U_{niversity} 2022-03-23

- Data processing
- Neural network modeling
- Training and testing

• MNIST Dataset

- Handwritten digits dataset
 - 60,000 images for train
 - 10,000 images for test
 - 28x28 image
- Images are labeled

[5] http://yann.lecun.com/exdb/mnist/

• Design input and output

- Input image is 28x28
- But NN takes 1 − D vector as input
 - $Input = X \in \mathbb{R}^{1 \times m}$
 - Make the images flatten
 - $-28 \times 28 \rightarrow 1 \times 784$
 - Our input layer size should be
 - 1 × 784
 - 784 featured vector input

• Design input and output

- Output
 - Goal: Predict the number
 - Ten possible outputs $0 \sim 9$
 - There are two possible output shape
 - One hot vector shape
 - shape of 1×10
 - Each elements values indicates probability
 - A scalar shape
 - Shape of 1
 - The output directly shows the number
 - Which output shape will be better?

S_{eoul} N_{ational} U_{niversity} 2022-03-23

27

Exercise

• Design input and output

- Let's say if a model is confusing whether a image is '3' or '9'
 - If the output is one hot vector shape
 - The output will be

0	0.01	0.02	0.45	0	0	0.02	0	0	0.50
---	------	------	------	---	---	------	---	---	------

- And the model predicts it as '9' (highest probability)
- It may wrong, but the model will reduce the loss by update rule
- If the label is '3' then increase probability of '3' and reduce '9'
- The model will make right prediction '3' in the next iteration
- However if the output is scalar shape
 - The output will be
 - (3+9)/2 = 6
 - And the model predicts it as '6'
 - Even the update rule works properly
 - The model will make prediction '6' again
 - Still confusing between '3' and '9'

• Design hidden layers

- First hidden layer with r neurons
 - Parameters for the first layer
 - $W^1 \in \mathbb{R}^{784 \times r}$, $b^1 \in \mathbb{R}^{1 \times r}$
- Second hidden layer with *k* neurons
 - Parameters for the second layer
 - $-W^2 \in \mathbb{R}^{r \times k}, b^2 \in \mathbb{R}^{1 \times k}$
- Output Parameters
 - $W^0 \in \mathbb{R}^{k \times 10}$, $b^o \in \mathbb{R}^{1 \times 10}$

 $S_{\text{eoul}} \, N_{\text{ational}} \, U_{\text{niversity}}$ 2022-03-23 28

• Design hidden layers

- For the three layer NN
 - The number of parameters

$$- (784 \times r + r) + (r \times k + k) + (k \times 10 + 10)$$

- When r, k = 512, 512
 - 670k parameters
- When r, k = 512, 256
 - 530k parameters
- When r, k = 256, 128
 - 240k parameters
- There is no right answer
 - For the # of layers or # of hidden size
 - Smoothly increase layers and nodes
 - Depends on the dataset size, over- under- fitting issue, data complexity, model structure, and other model components

Loss

Exercise

• Model overview

flatten

 1×784

image

0	0	0	0
128	128	128	0
128	128	0	0
64	64	128	0
0	0	0	0

Grayscale image data

 28×28

2022-03-23

30

Label

 1×10

Loss

Exercise

• Model overview

- From raw-data to output

image

0	0	0	0
0	128	128	128
0	128	64	0
64	64	128	0
0	32	32	0

flatten

Grayscale image data 28×28

2022-03-23

 1×784

31

Label

 1×10

• Model overview

- Mini-batch learning

2022-03-23

Seoul National University 32

• Implementation examples

- Split dataset
 - Train/Validation/Test = 50,000/10,000/10,000
 - Spare 10k samples for validation from train data
- Hidden layers and neuron size
 - Three layer and r, k = 512, 256
- Data normalization
 - Min-Max normalizer
- Batch-size
 - 64
- Parameter Initialization
 - Xavier initialization
- Activation function
 - ReLU for hidden layer, Softmax for output layer

• Implementation examples

- Loss function
 - Cross-entropy + L1 regularization
 - With $\lambda = 0.001$
- Dropout
 - With 10% drop rate
- Update Rule
 - ADAM Optimizer
- Learning rate
 - $\alpha = 0.01$
- Number of epochs
 - Early stop
 - If there is no validation loss reduction during ten iterations

• MNIST prediction with MLP

Model	# of Layers	# of Hidden Size	Loss function	Accuracy
1	2	300	MSE	95.3%
2	2	100	MSE	95.5%
3	3	300, 100	MSE	96.95%
4	3	500, 150	MSE	97.05%
5	2	800	Cross Entropy	98.4%
6	3	500, 300	Cross Entropy + L1	98.47%
7	6	2500, 2000, 1500, 1000, 500	Cross Entropy + L1	99.65%

Reference

- [1] http://cs231n.stanford.edu/
- [2] https://www.coursera.org/learn/machine-learning
- [3] Ng, Andrew Y. "Feature selection, L 1 vs. L 2 regularization, and rotational invariance." *Proceedings of the twenty-first international conference on Machine learning*. 2004.
- [4] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." *The journal of machine learning research* 15.1 (2014): 1929-1958.
- [5] http://yann.lecun.com/exdb/mnist/

S_{eoul} N_{ational} U_{niversity} 2022-03-23