Limites e Continuidade de Funções

<u>cederj</u>

Limites (continuação)

- Limites Laterais
- · Limites infinitos
- · Limites no infinito

Continuidade

- Continuidade em um ponto
- · Continuidade em um intervalo
- Propriedades básicas das funções contínuas

Limites Laterais

Definição 2.4: Seja W um conjunto de números reais. Um número real a é denominado *ponto de acumulação à direita de W* quando todo intervalo aberto $(a, a + \delta)$ contém algum ponto x de W diferente de a.

A condição de a ser um ponto de acumulação à direta de W pode ser expressa do seguinte modo:

para cada número real $\delta > 0$, dado arbitrariamente, existe um número x > a de W tal que $0 < d(x,a) < \delta$.

Exemplo 2.10

Seja
$$W = X \cup Y$$
 no qual $X = \{x \in \mathbb{R}; 1 \le x < 2\}$ e $Y = \{3, 4\}.$

Os números de X são pontos de acumulação à direita de $W \blacksquare$

Definição 2.5: Seja f uma função real de uma variável real. Seja a um ponto de acumulação à direita do domínio de f, D(f).

Diz-se que *o limite à <u>direita</u> de f(x) quando x tende a a \in L*, e escrevemos

$$\lim_{x \to a^+} f(x) = L,$$

se para cada número real $\ arepsilon>0,\$ dado arbitrariamente, existir um número $\ \delta>0$ de modo que se tenha:

$$d(f(x), L) < \varepsilon$$
 sempre que $x \in D(f)$, $x > a$ e $0 < d(x, a) < \delta$.

Notamos que, as condições x > a e $0 < d(x,a) < \delta$ significam que x se encontra no intervalo $(a,a+\delta)$ e é diferente de a.

Geometricamente, $\lim_{x\to a^+} f(x) = L$ significa que, para $x \neq a$ podemos garantir que f(x) se encontra em qualquer pequeno intervalo aberto em torno de L, desde que x se encontre em um intervalo aberto $(a,a+\delta)$.

Definição 2.6: Seja W um conjunto de números reais. Um número real a é denominado ponto de acumulação à esquerda de W quando todo intervalo aberto $(a-\delta,a)$ contém algum ponto x de W diferente de a.

A condição de a ser um ponto de acumulação à esquerda de W pode ser expressa do seguinte modo:

para cada número real $\delta > 0$, dado arbitrariamente, existe um número x < a de W tal que $0 < d(x,a) < \delta$.

Exemplo 2.11

Seja
$$W = X \cup Y$$
 no qual $X = \{x \in \mathbb{R}; 1 \le x < 2\}$ e $Y = \{3, 4\}.$

Os números de X, com exceção de 1, e o número 2 são pontos de acumulação à esquerda de $W \blacksquare$

Definição 2.7: Seja f uma função real de uma variável real. Seja a um ponto de acumulação à esquerda do domínio de f, D(f).

Diz-se que *o limite* à <u>esquerda</u> de f(x) quando x tende a $a \in L$, e escrevemos

$$\lim_{x \to a^{-}} f(x) = L,$$

se para cada número real $\varepsilon>0$, dado arbitrariamente, existir um número $\delta>0$ de modo que se tenha:

$$d(f(x), L) < \varepsilon$$
 sempre que $x \in D(f)$, $x < a$ e $0 < d(x, a) < \delta$.

Notamos que, as condições $x < a \in 0 < d(x,a) < \delta$ significam que x se encontra no intervalo $(a - \delta, a)$ e é diferente de a.

Geometricamente, $\lim_{x\to a^-} f(x) = L$ significa que, para $x \neq a$ podemos garantir que f(x) se encontra em qualquer pequeno intervalo aberto em torno de L, desde que x se encontre em um intervalo aberto $(a-\delta,a)$.

Teorema 2.4: Seja f uma função real de uma variável real. Seja a um ponto de acumulação à direita e à esquerda do domínio de f, D(f).

Então existe $\lim_{x\to a} f(x) = L$ se, e somente se, existem e são iguais a L os limites laterais $\lim_{x\to a^-} f(x)$ e $\lim_{x\to a^+} f(x)$.

Para cada caso vamos determinar os limites à esquerda e à direita de f(x) quando x tende a a e, posteriormente, determinaremos, caso exista, o limite f(x) quando x tende a a utilizando o Teorema 2.4.

(a)
$$a = 3$$
 e $f(x) = \begin{cases} 2x + 1 & \text{se } x < 3 \\ 10 - x & \text{se } x \ge 3 \end{cases}$.

Conseqüência do Teorema a f $\Rightarrow \lim_{x \to 3} f(x) = 7$ Conseqüência do Teorema 2.3

ceder

(b)
$$a = 2 e f(x) = \begin{cases} |x-2| & \text{se } x \neq 2 \\ 1 & \text{se } x = 2 \end{cases}$$

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} |x - 2|$$

$$= \left| \lim_{x \to 2} (x - 2) \right| \quad \text{(Teorema 2.1 prop. 7)} \Rightarrow \lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} f(x) = 0$$

$$= |0| = 0 \quad \text{(Teorema 2.3)}$$
Consequência do Teorema 2.3

cederi

(c)
$$a = 1$$
 e $f(x) = \begin{cases} 3 - x^3 & \text{se } x \le 1 \\ 1 + x^2 & \text{se } x > 1 \end{cases}$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \left(3 - x^{2} \right)$$

$$= 3 - 1^{2} = 2 \quad \text{(conseqüencia doTeorema 2.3),}$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \left(1 + x^{2} \right)$$

$$= 1 + 1^{2} = 2 \quad \text{(conseqüencia doTeorema 2.3),}$$

$$\Rightarrow \lim_{x\to 1} f(x) = 2.$$

cederi

Limites infinitos

Definição 2.8: Seja f uma função real de uma variável real. Seja a um ponto de acumulação do domínio de f, D(f).

Diz-se que o *limite de f(x) quando* x *tende a a* é mais infinito, e escrevemos

$$\lim_{x \to a} f(x) = +\infty,$$

se para todo número real M>0 dado, existir um número $\delta>0$, de modo que se tenha:

$$f(x) > M$$
 sempre que $x \in D(f)$ e $0 < d(x, a) < \delta$.

Definição 2.9: Seja f uma função real de uma variável real. Seja a um ponto de acumulação do domínio de f, D(f).

Diz-se que o *limite de f(x) quando x tende a a* é menos infinito, e escrevemos

$$\lim_{x \to a} f(x) = -\infty,$$

se para todo número real M>0 dado, existir um número $\delta>0$, de modo que se tenha:

$$f(x) < -M$$
 sempre que $x \in D(f)$ e $0 < d(x, a) < \delta$.

Teorema 2.5: Sejam f e g duas funções reais de uma variável real.

Suponha que $\lim_{x\to a} f(x) = L$ e $\lim_{x\to a} g(x) = M$.

Se
$$L \neq 0$$
 e $M = 0$, então $\lim_{x \to a} \left| \frac{f(x)}{g(x)} \right| = +\infty$.

Teorema 2.6:

$$\lim_{x\to 0^+}\frac{1}{x}=+\infty\quad \text{e}\quad \lim_{x\to 0^-}\frac{1}{x}=-\infty$$

Como

$$\lim_{x \to 3} (2x^2 + 5x + 1) = 2(3)^2 + 5(3) + 1 = 34 \text{ (Teorem a 2.3) e}$$

$$\lim_{x \to 3} (x^2 - x - 6) = (3)^2 - 3 - 6 = 0 \text{ (Teorema 2.3)},$$

logo

$$\lim_{x \to 3} \left| \frac{2x^2 + 5x + 1}{x^2 - x - 6} \right| = +\infty \text{ (Teorema 2.5)}.$$

No exemplo anterior concluímos que

$$\lim_{x \to 3} \left| \frac{2x^2 + 5x + 1}{x^2 - x - 6} \right| = +\infty.$$

Vamos agora estudar o sinal de $\frac{2x^2+5x+1}{x^2-x-6}$ quanto $x \to 3^+$,

ou seja, quando x tende a 3 pela direta (assumindo valores maiores que 3). Notamos que:

$$2x^2 + 5x + 1 > 0$$
 para todo $x > 3$ e

$$x^2 - x - 6 = (x - 3)(x + 2) > 0$$
 para todo $x > 3$.

Logo

$$\lim_{x \to 3^{+}} \frac{2x^{2} + 5x + 1}{x^{2} - x - 6} = +\infty. \quad \blacksquare$$

No Exemplo 2.13 concluímos que

$$\lim_{x \to 3} \left| \frac{2x^2 + 5x + 1}{x^2 - x - 6} \right| = +\infty.$$

Vamos agora estudar o sinal de $\frac{2x^2+5x+1}{x^2-x-6}$ quanto $x \to 3^-$,

ou seja, quando x tende a 3 pela esquerda (assumindo valores menores que 3). Notamos que:

$$2x^2 + 5x + 1 > 0$$
 para todo $-0, 21 < x$ e

$$x^2 - x - 6 = (x - 3)(x + 2) < 0$$
 para todo $-2 < x < 3$.

Logo

$$\lim_{x \to 3^{-}} \frac{2x^2 + 5x + 1}{x^2 - x - 6} = -\infty. \quad \blacksquare$$

Definição 2.10: Seja f uma função real de uma variável real. Seja a um ponto de acumulação, à direita e/ou à esquerda, do domínio de f.

A linha reta vertical x = a é chamada de assintota vertical do gráfico de f se pelo menos uma das seguintes condições for verificada:

$$i) \quad \lim_{x \to a^+} f(x) = +\infty,$$

ii)
$$\lim_{x\to a^-} f(x) = +\infty$$
,

$$\lim_{x \to a^+} f(x) = -\infty,$$

$$\mathsf{iv}) \lim_{x \to a^{-}} f(x) = -\infty.$$

Limites no infinito

Definição 2.11: Seja f uma função real de uma variável real e suponha que o domínio de f, D(f), é ilimitado superiormente.

Diz-se que o limite de f(x) quando x tende a mais infinito é L, e escrevemos

$$\lim_{x\to+\infty}f(x)=L,$$

se para cada número real $\varepsilon>0$, dado arbitrariamente, existir um número N>0 de modo que se tenha:

$$d(f(x), L) < \varepsilon$$
 sempre que $x \in D(f)$, $x > N$.

Definição 2.12: Seja f uma função real de uma variável real e suponha que o domínio de f, D(f), é ilimitado inferiormente.

Diz-se que o limite de f(x) quando x tende a menos infinito é L, e escrevemos

$$\lim_{x \to -\infty} f(x) = L,$$

se para cada número real $\varepsilon > 0$, dado arbitrariamente, existir um número N > 0 de modo que se tenha:

$$d(f(x), L) < \varepsilon$$
 sempre que $x \in D(f)$, $x < -N$.

Teorema 2.7: Sejam $f \in \mathcal{G}$ duas funções reais de um variável real.

Suponha que $\lim_{x \to \pm \infty} f(x) = L$ e $\lim_{x \to \pm \infty} g(x) = M$, então:

1)
$$\lim_{x \to \pm \infty} \left[f(x) + g(x) \right] = \lim_{x \to \pm \infty} f(x) + \lim_{x \to \pm \infty} g(x) = L + M \mathbf{e}$$

$$\lim_{x \to \pm \infty} \left[f(x) - g(x) \right] = \lim_{x \to \pm \infty} f(x) - \lim_{x \to \pm \infty} g(x) = L - M;$$

2)
$$\lim_{x \to +\infty} \left[cf(x) \right] = c \lim_{x \to +\infty} f(x) = cL$$
 (c é uma constante qualquer);

3)
$$\lim_{x \to \pm \infty} \left[f(x)g(x) \right] = \left[\lim_{x \to \pm \infty} f(x) \right] \left[\lim_{x \to \pm \infty} g(x) \right] = LM;$$

4) se
$$M \neq 0$$
, então $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to \pm \infty} f(x)}{\lim_{x \to \pm \infty} g(x)} = \frac{L}{M}$;

5)
$$\lim_{x \to \pm \infty} [f(x)]^n = \lim_{x \to \pm \infty} f(x)^n = L^n$$
 (*n* é um inteiro positivo qualquer);

Continuação do Teorema 2.7

- 6) se L>0 e n é um inteiro positivo ou se $L\leq 0$ e n é um número ímpar (positivo), então $\lim_{x\to\pm\infty} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to\pm\infty} f(x)} = \sqrt[n]{L};$
- 7) $\lim_{x \to \pm \infty} |f(x)| = \left| \lim_{x \to \pm \infty} f(x) \right| = |L|.$

Teorema 2.8:

2)
$$\lim_{x \to +\infty} \left(\frac{1}{x}\right)^n = \lim_{x \to +\infty} \frac{1}{x^n} = 0$$
, n é um inteiro positivo qualquer, e

$$\lim_{x\to\infty}\left(\frac{1}{x}\right)^n=\lim_{x\to\infty}\frac{1}{x^n}=0;$$

3) $\lim_{x \to +\infty} x^n = +\infty$, *n* é um inteiro positivo qualquer, e

$$\lim_{x \to -\infty} x^n = \begin{cases} +\infty \text{ se } n \text{ \'e um n\'umero par,} \\ -\infty \text{ se } n \text{ \'e um n\'umero \'impar;} \end{cases}$$

4) se $a \neq 0$ e n é um inteiro positivo qualquer,

então
$$\lim_{x \to +\infty} \left(a_o + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n \right) = a_n \lim_{x \to +\infty} x^n$$
 e

$$\lim_{x \to -\infty} \left(a_{o} + a_{1}x + a_{2}x^{2} + \dots + a_{n-1}x^{n-1} + a_{n}x^{n} \right) = a_{n} \lim_{x \to -\infty} x^{n}.$$

OBS: Ao trabalharmos com limites no infinito de *funções racionais ou* de quocientes de funções é bastante útil dividirmos o numerador e o denominador pela variável independente elevada à maior potência que apareça na fração.

Vamos utilizar esta técnica para calcular os limites dos próximos exemplos.

Notamos que para todo
$$x \neq 0$$
: $\frac{5x^2}{2x^2 - 3} = \frac{\frac{5x^2}{x^2}}{\frac{2x^2 - 3}{x^2}} = \frac{5}{2 - \frac{3}{x^2}}$.

Portanto,
$$\lim_{x \to +\infty} \frac{5x^2}{2x^2 - 3} = \lim_{x \to +\infty} \frac{5}{2 - \frac{3}{x^2}}$$
.

Por outro lado,

Exemplo 2.17

$$\lim_{x \to +\infty} 5 = 5$$
 e $\lim_{x \to +\infty} 2 = 2$ (Teorema 2.8, prop. 1),

$$\lim_{x\to+\infty}\frac{5x^2}{2x^2-3}=?$$

$$\lim_{x \to +\infty} \frac{5x^2}{2x^2 - 3} = ? \quad \lim_{x \to +\infty} \frac{1}{x^2} = 0 \quad \text{(Teorema 2.8, prop. 2),}$$

logo,

$$\lim_{x \to +\infty} \frac{3}{x^2} = 3 \lim_{x \to +\infty} \frac{1}{x^2} = 3(0) = 0 \text{ (Teorema 2.7, prop. 2),}$$

$$\lim_{x \to +\infty} \left(2 - \frac{3}{x^2} \right) = \lim_{x \to +\infty} 2 - \lim_{x \to +\infty} \frac{3}{x^2} = 2 - 0 = 2 \quad \text{(Teorema 2.7, prop.1)}$$

que implica que,
$$\lim_{x \to +\infty} \frac{5}{2 - \frac{3}{x^2}} = \frac{\lim_{x \to +\infty} 5}{\lim_{x \to +\infty} \left(2 - \frac{3}{x^2}\right)} = \frac{5}{2}$$
 (Teorema 2.7, prop. 4).

cederi

Notamos que, para todo $x \neq 0$:

Exemplo 2.18

$$\lim_{x \to +\infty} \frac{5x}{\sqrt[3]{7x^3 + 3}} = ?$$

$$\frac{5x}{\sqrt[3]{7x^3+3}} = \frac{\frac{5x}{x}}{\frac{1}{x}\sqrt[3]{7x^3+3}} = \frac{5}{\sqrt[3]{\frac{1}{x^3}(7x^3+3)}} = \frac{5}{\sqrt[3]{7+\frac{3}{x^3}}}.$$

e, portanto,

$$\lim_{x \to +\infty} \frac{5x}{\sqrt[3]{7x^3 + 3}} = \lim_{x \to +\infty} \frac{5}{\sqrt[3]{7 + \frac{3}{x^3}}}.$$

Entretanto, como:

$$\lim_{x \to +\infty} 5 = 5 \text{ e } \lim_{x \to +\infty} 7 = 7 \text{ (Teorema 2.8, prop.1)} e$$

$$\lim_{x \to +\infty} \frac{1}{x^3} = 0 \quad \text{(Teorema 2.8, prop. 2)},$$

logo,

$$\lim_{x \to +\infty} \frac{3}{x^3} = 3 \lim_{x \to +\infty} \frac{1}{x^3} = 3(0) = 0 \text{ (Teorema 2.7, prop. 2),}$$

$$\lim_{x \to +\infty} \left(7 + \frac{3}{x^3} \right) = \lim_{x \to +\infty} 7 - \lim_{x \to +\infty} \frac{3}{x^3} = 7 - 0 = 7 \quad \text{(Teorema 2.7, prop. 1)}$$

cederi

temos que:

$$\lim_{x \to +\infty} \sqrt[3]{7 + \frac{3}{x^3}} = \sqrt[3]{\lim_{x \to +\infty} \left(7 + \frac{3}{x^3}\right)} = \sqrt[3]{7} \text{ (Teorema 2.7, prop. 6)}.$$

Logo,

$$\lim_{x \to +\infty} \frac{5}{\sqrt[3]{7 + \frac{3}{x^3}}} = \frac{\lim_{x \to +\infty} 5}{\lim_{x \to +\infty} \sqrt[3]{7 + \frac{3}{x^3}}} = \frac{5}{\sqrt[3]{7}} \text{ (Teorema 2.7, prop. 4).}$$

Definição 2.13: Seja f uma função real de uma variável real.

A linha reta horizontal y = b é chamada de assíntota horizontal do gráfico de f se pelo menos uma das seguintes condições for verificada:

- $\mathbf{i)} \quad \lim_{x \to +\infty} f(x) = b,$
- ii) $\lim_{x \to -\infty} f(x) = b$.

Parte 2

Continuidade de Funções

cederj

Continuidade em um Ponto

Definição 2.14: Seja f uma função real de uma variável real. Seja a um ponto de acumulação do domínio de f, D(f).

Diz-se que a função f é contínua em um número a se, e somente se, as seguintes condições forem verificadas :

- i) $a \in D(f)$,
- ii) $\lim_{x \to a} f(x)$ existe (é igual a um número),
- iii) $\lim_{x \to a} f(x) = f(a)$.

OBS: Se qualquer uma das condições da Definição 2.12 não é verificada, dizemos que f é descontínua em a.

Continuidade em um Intervalo

1) Se f for contínua em todos os pontos de um intervalo aberto (a,b), então dizemos que f é contínua em (a,b). Esta definição se aplica também a intervalos abertos infinitos da forma:

$$(a,+\infty),(-\infty,b),(-\infty,+\infty).$$

- 2) Se f é contínua em $(-\infty, +\infty)$ dizemos que f é contínua em toda parte.
- 3) Diz-se que f é contínua em um intervalo fechado [a,b] quando
 - i) f é continua em (a,b) e
 - ii) $\lim_{x \to a^+} f(x) = f(a)$ e $\lim_{x \to b^-} f(x) = f(b)$.

Exemplo 2.21 (ver Exemplo 2.7)

Verifique se a função
$$f(y) = \sqrt[3]{\frac{y^2 + 5y + 3}{y^2 - 1}}$$
 é contínua em 3.

Solução:

O domínio natural de f é: $D(f) = \{y \in \mathbb{R}, y \neq \pm 1\}$.

Logo, $3 \in D(f)$ e

$$f(3) = \sqrt[3]{\frac{3^2 + 5(3) + 3}{3^2 - 1}} = \sqrt[3]{\frac{27}{8}} = \frac{3}{2}.$$

Por outro lado, no Exemplo 2.7 concluímos que

$$\lim_{y\to 3} f(y) = \frac{3}{2}.$$

Portanto, f é contínua em 3.

Exemplo 2.22 (ver o Exemplo 2.12)

Nos casos a seguir vamos verificar se a função f é contínua em a.

a)
$$a = 3$$
 e $f(x) = \begin{cases} 2x + 1 & \text{se } x < 3 \\ 10 - x & \text{se } x \ge 3 \end{cases}$.

O domínio natural de f, D(f), é \mathbb{R} e, portanto, $3 \in D(f)$. Além disso,

$$f(3) = 10 - 3 = 7.$$

No Exemplo 2.12 verificamos que:

$$\lim_{x\to 3} f(x) = 7.$$

Portanto, f é contínua em 3.

Verificar que f é contínua em toda parte!

b b)
$$a = 2$$
 e $f(x) = \begin{cases} |x-2| & \text{se } x \neq 2 \\ 1 & \text{se } x = 2 \end{cases}$.

O domínio natural de f, D(f), é \mathbb{R} e, portanto, $2 \in D(f)$. Além disso,

$$f(2) = 1$$
.

No Exemplo 2.12, item b, verificamos que:

$$\lim_{x\to 2} f(x) = 0.$$

Portanto, f é descontínua em 2.

Verificar que f é contínua nos intervalos: $(-\infty,2)$ e $(2,+\infty)$.

Propriedades Básicas de Funções Contínuas

Teorema 2.9: Sejam $f \in g$ duas funções reais de um variável real cujos domínios tem uma interseção não-vazia W. Se $f \in g$ são contínuas em um ponto a de W, então:

- 1) f + g, f g e fg são também contínuas em a;
- 2) se $g(a) \neq 0$, então f/g é contínua em a.

Teorema 2.10: Sejam $f \in \mathcal{G}$ duas funções reais de um variável real e suponha que o conjunto W, constituído pelos números que pertencem a interseção da imagem de \mathcal{G} com o domínio de f, não é vazio. Se $f \in \mathcal{G}$ são contínuas em um ponto a de W, então $f \circ \mathcal{G}$ é contínua em a.

Teorema 2.11: Seja f uma função real de um variável real e seja a um ponto do domínio de f.

- 1) Se f é uma função polinomial então f é contínua em a.
- 2) Se f é uma função racional então f é contínua em a.

Teorema 2.12 – Teorema do Valor Intermediário:

Seja f uma função contínua no intervalo fechado [a,b] e suponha que f(a) < f(b) (ou que f(a) > f(b)). Se y é um número arbitrário do intervalo aberto (f(a), f(b)) (ou (f(b), f(a))), então existe pelo menos um número x do intervalo (a,b) tal que y = f(x).

Resumo

Limites

- · Limites laterais, infinitos e no infinito
- · Continuidade de funções