

Introducción a Ciencia de la Computación Práctica Calificada 1 Pregrado 2020-I Profesor Jorge Alvarado Lab DemoTest

Indicaciones específicas:

- Esta evaluación contiene 6 páginas (incluyendo esta página) con 4 preguntas. El total de puntos son 0.
- El tiempo límite para la evaluación es 100 minutos.
- Cada pregunta deberá ser respondida en un solo archivo con el número de la pregunta y tu código de estudiante. Por ejemplo:
 - 1. p1_codigoalumno.py
 - 2. p2_codigoalumno.py
 - 3. p3_codigoalumno.py
 - 4. p4_codigoalumno.py
- Luego deberás incluir estos archivos en una carpeta con nombre pc1; para que finalmente envíes esta carpeta comprimida pc1.zip a www.gradescope.com

Competencias:

- Para los alumnos de la carrera de Ciencia de la Computación
 - Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- Para los alumnos de las carreras de Ingeniería
 - Capacidad de aplicar conocimientos de ingeniería (**nivel 2**).

1. (5 points) Elabore un programa que responda el nombre de los coronavirus que afectan a un tipo de animal. Para demostrar que usted ha aprendido el uso de las sentencias condicionales, construya un programa que devuelva el conocimiento de la siguiente tabla:

Table 1: Tabla de portadores y coronavirus

Animal	Nombre
gato	SARS-Cov
cerdo	SADS-Cov
camello	MERS-Cov
camello	HCov-229E
muercielago	SARS-Cov-2

- Su programa pregunta el nombre de una especie animal y responde con los nombres de coronavirus que afectan a ese tipo de especie animal.
- En caso no exista el animal, responderá "No existe informacion".
 - Utilice condicionales, función input y print. Ingrese los nombres siempre en minusculas.

Algunos ejemplos de diálogo de este programa serían:

Listing 1: Ejemplo 1

Ingrese un nombre de especie : perro No existe informacion

Listing 2: Ejemplo 2

Ingrese un nombre de especie : gato SARS-Cov

Listing 3: Ejemplo 3

Ingrese un nombre de especie : camello MERS-Cov HCov-229E

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts).
	quiere (3pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no hay	sentencias son correc-	las sentencias son cor-
	errores de sintáxis.	tas y no hay errores de	rectas (0pts).
	(1pts).	sintáxis. (0.5pts).	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts).

2. (5 points) Elabore un programa que calcule la siguiente sumatoria:

$$\sum_{i=1}^{n} (2i-1)$$

- Su programa solicita el valor de n, interprete la formula matemática y representela en forma algoritmica.
- Utilice bucles while o for
 - No se permite el uso de formulas en la solución

Algunos ejemplos de diálogo de este programa serían:

Listing 4: Ejemplo 1

Ingrese el valor de n: 12 144

Listing 5: Ejemplo 1

Ingrese el valor de n: 9 81

Listing 6: Ejemplo 1

Ingrese el valor de n: 1234 1533756

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts).
	quiere (3pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no hay	sentencias son correc-	las sentencias son cor-
	errores de sintáxis.	tas y no hay errores de	rectas (0pts).
	(1pts).	sintáxis. (0.5pts).	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts).

- 3. (5 points) Haga un programa que pregunte por un numero total de alumnos y por cada uno de ellos pregunte 2 notas. Luego de leer las notas, imprima el promedio de cada alumno.
 - El total de alumnos debe ser un numero entre 1 y 10, cualquier valor distinto se vuelve a preguntar.
 - Las notas deben ser entre 1 y 20, cualquier valor distinto se vuelve a preguntar.
 - El promedio se expresa con 2 digitos decimales.

Algunos ejemplos de diálogo de este programa serían:

Listing 7: Ejemplo 1

```
ingrese nota 1 de alumno 1:10
ingrese nota 2 de alumno 1:11
El promedio es: 10.5
```

Listing 8: Ejemplo 2

```
ingrese nota 1 de alumno 2:11
ingrese nota 2 de alumno 2:11
El promedio es: 11.0
```

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts).
	quiere (2pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no hay	sentencias son correc-	las sentencias son cor-
	errores de sintáxis.	tas y no hay errores de	rectas (0pts).
	(1pts).	sintáxis. (0.5pts).	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts).
Iteración	Recorre adecuada-		No recorre los elemen-
	mente los elementos		tos del string de forma
	del string (1pts)		programática y solo
			funciona en algunos
			casos. (0 pts).

- 4. (5 points) Escribir un programa que solicite un número N entero y usa dos for anidados para imprimir una tabla de NxN con * en filas y columnas solo si es que el numero i divide a j o viceversa, en caso contrario imprimir un espacio en blanco. Las variables i y j deben ser los indices de los bucles for. En la última columna se imprime el número de la fila.
 - N debe ser entero positivo. Caso contrario preguntar de nuevo

Algunos ejemplos de diálogo de este programa serían:

Listing 9: Ejemplo 1

```
N: 3
* * * 1
* * 2
* * 3
```

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts).
	quiere (3pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no hay	sentencias son correc-	las sentencias son cor-
	errores de sintáxis.	tas y no hay errores de	rectas (0pts).
	(1pts).	sintáxis. (0.5pts).	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts).