Definition : familles exponentielles Loi de Bronoule Loi de Definomiale Loi de Poisson Loi exponentielle Loi Normale (σ connu) Loi Normale (σ connu)

Quelques exemples de familles exponentielles

MAHAMAT ATTEÏB Adoum

Institut Polytechnique de Paris Mastère spécialisé : Big Data

01/12/2023

- 1 Definition : familles exponentielles
- 2 Loi de Bernoulli
- 3 Loi Binomiale
- 4 Loi de Poisson
- 5 Loi exponentielle
- **6** Loi Normale (σ connu)
- 7 Loi Normale (σ inconnu)

Familles exponentielles

Définition: En probabilité, une loi fait partie de la famille exponentielle si sa densité f(x) peut se réécrire sous la forme :

$$f(x) = \exp\left(\sum_{j=1}^n \eta_j(\theta) T_j(x) - B(\theta)\right) \times h(x)$$

Dans les beamers ci-dessous, on s'attele à démontrer que les lois (Bernoulli, binomiale, Poisson, exponentielle et normale) font parties de la famille exponentielle.

Definition : familles exponentielles Loi de Bernoulli Loi Binomiale Loi de Poisson Loi exponentielle Loi Normale (σ connu) Loi Normale (σ inconnu)

Loi de Bernoulli : Soit $X \sim \mathcal{B}(p)$

$$f(x) = p^{x}(1-p)^{1-x}$$

$$= \exp(\log p^{x}) \times \exp(\log(1-p)^{1-x})$$

$$= \exp(x \log p + (1-x) \log(1-p))$$

$$= \exp(x \log p + \log(1-p) - x \log(1-p))$$

$$= \exp\left(x \log \frac{p}{1-p} - \log \frac{1}{1-p}\right) \times 1$$

T(x) = x, $\eta(\theta) = \log \frac{p}{1-p}$, $B(\theta) = \log \frac{1}{1-p}$ et h(x) = 1 Donc, la loi de Bernoulli fait partie de la famille exponentielle.

on : Tamilles exponentieles Loi de Bernoulli Loi de Poisson Loi exponentielle Loi Normale (σ connu) Loi Normale (σ inconnu)

Loi Binomiale : $X \sim \mathcal{B}(n, p)$

$$f(x) = \binom{n}{x} p^{x} (1-p)^{n-x} = \binom{n}{x} \exp\left[x \log(p)\right] \exp\left[(n-x) \log(1-p)\right]$$

$$= \binom{n}{x} \exp\left[x \log(p) + n \log(1-p) - x \log(1-p)\right]$$

$$= \binom{n}{x} \exp\left[x \log\frac{p}{1-p} + n \log(1-p)\right]$$

$$= \binom{n}{x} \exp\left[x \log\frac{p}{1-p} + \log(1-p)^{n}\right]$$

$$= \binom{n}{x} \exp\left[x \log\frac{p}{1-p} - (\log 1 - \log(1-p)^{n})\right]$$

4/10

Definition: familles exponentielles Loi de Bernoulli **Loi Binomiale** Loi de Poisson Loi exponentielle Loi Normale (σ cnonu) Loi Normale (σ inconnu)

$$f(x) = \exp\left[x \log \frac{p}{1-p} - \log \frac{1}{(1-p)^n}\right] \times \binom{n}{x}$$

$$f(x) = \log \frac{p}{1-p} \quad B(\theta) = \log \frac{1}{1-p} \quad \text{et } h(x) = 0$$

T(x) = x, $\eta(\theta) = \log \frac{p}{1-p}$, $B(\theta) = \log \frac{1}{(1-p)^n}$ et $h(x) = \binom{n}{x}$ Donc. la loi binomiale appartient à la famille exponentielle. Definition : familles exponentielles Loi de Bernoulli Loi Binomiale Loi de Poisson Loi exponentielle Loi Normale (σ connu) Loi Normale (σ inconnu)

loi de Poisson : $X \sim \mathcal{P}(\lambda)$

$$f(x) = \exp(-\lambda) \frac{\lambda^{x}}{x!} = \exp(-\lambda) \cdot \frac{\exp(\log(\lambda^{x}))}{\exp(\log x!)}$$

$$= \exp(-\lambda) \cdot [\exp(x \log(\lambda)) - \log(x!)]$$

$$= \exp[-\lambda + x \log(\lambda) - \log(x!)]$$

$$= \exp[x \log(\lambda) - \lambda + \log(x!)^{-1}]$$

$$= \exp[x \log(\lambda) - \lambda] \times \exp(\log(x!)^{-1})$$

$$T(x) = x$$
, $\eta(\theta) = \log(\lambda)$, $B(\theta) = \lambda$, $h(x) = \exp(\log(x!)^{-1}) = \frac{1}{x!}$ Donc, la loi de Poisson fait partie de la famille exponentielle.

Definition : familles exponentielles Loi de Bernoulli Loi Binomiale Loi de Poisson Loi exponentielle Loi Normale (σ connu) Loi Normale (σ inconnu)

Loi exponentielle : $X \sim \mathcal{E}(\lambda)$

$$f_{\theta}(x) = \lambda \exp(-\lambda x)$$

$$= \exp(\log(\lambda)) \exp(-\lambda x)$$

$$= \exp[\log(\lambda) - \lambda x]$$

$$= \exp[-\lambda x - (-\log \lambda)] \times 1$$

avec T(x) = x, $\eta(\theta) = -\lambda$, $B(\theta) = -\log \lambda$ et h(x) = 1Donc, la loi exponentielle fait partie de la famille exponentielle.

Loi Normale (σ connu) : $X \sim \mathcal{N}(\mu, \sigma^2)$

$$\begin{split} f_{\theta}(x) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \\ &= \exp\left(\log\frac{1}{\sqrt{2\pi\sigma^2}}\right) \cdot \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \\ &= \exp\left(-\log\sqrt{2\pi\sigma^2}\right) \cdot \exp\left(-\frac{x^2 - 2\mu x + \mu^2}{2\sigma^2}\right) \\ &= \exp\left(-\log\sqrt{2\pi\sigma^2} - \frac{x^2}{2\sigma^2} + \frac{\mu x}{\sigma^2} - \frac{\mu^2}{2\sigma^2}\right) \\ &= \exp\left(\frac{\mu x}{\sigma^2} - \frac{\mu^2}{2\sigma^2} - \log\sqrt{2\pi\sigma^2} - \frac{x^2}{2\sigma^2}\right) \end{split}$$

Definition : familles exponentielles Loi de Bernoulli Loi Binomiale Loi de Poisson Loi exponentielle Loi Normale (σ connu) Loi Normale (σ inconnu)

$$= \exp\left(\frac{\mu}{\sigma^2}x - \frac{\mu^2}{2\sigma^2} + \log(\exp(-\frac{x^2}{2\sigma^2})) - \log\sqrt{2\pi\sigma^2}\right)$$

$$= \exp\left(\frac{\mu}{\sigma^2}x - \frac{\mu^2}{2\sigma^2} + \log\frac{\exp(-\frac{x^2}{2\sigma^2})}{\sqrt{2\pi\sigma^2}}\right)$$

$$= \exp\left(\frac{\mu}{\sigma^2}x - \frac{\mu^2}{2\sigma^2}\right) \times \frac{\exp(-\frac{x^2}{2\sigma^2})}{\sqrt{2\pi\sigma^2}}$$

avec T(x)=x, $\eta(\theta)=\frac{\mu}{\sigma^2}$, $B(\theta)=\frac{\mu^2}{2\sigma^2}$ et $h(x)=\frac{\exp(-\frac{x^2}{2\sigma^2})}{\sqrt{2\pi\sigma^2}}$ Donc, la loi normale (avec σ connu) fait partie de la famille exponentielle.

finition : familles exponentielles Loi de Bernoulli Loi Binomiale Loi de Poisson Loi exponentielle Loi Normale (σ connu) Loi Normale (σ inconnu)

Loi Normale (σ inconnu) : $X \sim \mathcal{N}(\mu, \sigma^2)$

$$\begin{split} f_{\theta}(X = x) &= \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right) \\ &= \exp\left(\log\frac{1}{\sqrt{2\pi\sigma^2}}\right) \cdot \exp\left(-\frac{x^2 - 2\mu x + \mu^2}{2\sigma^2}\right) \\ &= \exp\left(\frac{\mu}{\sigma^2} x - \frac{1}{2\sigma^2} x^2 - \left(\log(\sigma\sqrt{2\pi}) + \frac{\mu^2}{2\sigma^2}\right)\right) \times 1 \end{split}$$

$$T_1(x) = x$$
, $\eta_1(\theta) = \frac{\mu}{\sigma^2}$, $T_2(x) = -x^2$, $\eta_2(\theta) = \frac{1}{2\sigma^2}$, $B(\theta) = \log(\sigma\sqrt{2\pi}) + \frac{\mu^2}{2\sigma^2}$, et $h(x) = 1$

Donc, la loi normale (avec σ inconnu) fait partie de la famille exponentielle.