

CD4069, CD4069-SMD Inverter Circuits

General Description

The CD4069UB consists of six inverter circuits and is manufactured using complementary MOS (CMOS) to achieve wide power supply operating range, low power consumption, high noise immunity, and symmetric controlled rise and fall times.

This device is intended for all general purpose inverter applications where the special characteristics of the MM74C901, MM74C907, and CD4049A Hex Inverter/Buffers are not required. In those applications requiring larger noise immunity the MM74C14 or MM74C914 Hex Schmitt Trigger is suggested.

All inputs are protected from damage due to static discharge by diode clamps to $\rm V_{DD}$ and $\rm V_{SS}.$

Features

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} typ.
- Low power TTL compatibility: Fan out of 2 driving 74L
- or 1 driving 74LS
- Equivalent to MM74C04

Ordering Code:

Order Number	Package Number	Package Description
CD4069UBCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4069UBCSJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4069UBCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix "X" to the ordering code.

Connection Diagram

Schematic Diagram

CD4069UBC

Absolute Maximum Ratings(Note 1)

(Note 2)

Storage Temperature Range (T_S)

Power Dissipation (P_D)

DC Supply Voltage (V_{DD})

Input Voltage (V_{IN})

Dual-In-Line Small Outline

Lead Temperature (T_L)

260°C (Soldering, 10 seconds)

Recommended Operating Conditions (Note 2)

-0.5V to +18 V_{DC} DC Supply Voltage (V_{DD})

3V to $15V_{DC}$

 $-0.5 \mbox{V}$ to $\mbox{V}_{\mbox{DD}}$ +0.5 $\mbox{V}_{\mbox{DC}}$ $\,$ Input Voltage ($\mbox{V}_{\mbox{IN}}$)

0V to V_{DD} V_{DC}

 -65°C to $+150^{\circ}\text{C}$ Operating Temperature Range (T_A) $-55^{\circ}C$ to $+125^{\circ}C$

> Note 1: "Absolute Maximum Ratings" are those values beyond which the 700 mW safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recom-500 mW mended Operating Conditions" and Electrical Characteristics table provide

conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 3)

0	B	Conditions	-55	-55°C		+25°C			+125°C	
Symbol	Parameter		Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$,		0.25			0.25		7.5	
		$V_{IN} = V_{DD}$ or V_{SS}								
		$V_{DD} = 10V$		0.5			0.5		15	
		$V_{IN} = V_{DD}$ or V_{SS}								μΑ
		$V_{DD} = 15V$,		1.0			1.0		30	
		$V_{IN} = V_{DD}$ or V_{SS}								
V _{OL}	LOW Level Output Voltage	I _O < 1 μA								
		$V_{DD} = 5V$		0.05		0	0.05		0.05	
		$V_{DD} = 10V$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level Output Voltage	I _O < 1 μA								-
		$V_{DD} = 5V$	4.95		4.95	5		4.95		
		$V_{DD} = 10V$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
V _{IL}	LOW Level Input Voltage	I _O < 1 μA								
		$V_{DD} = 5V, V_{O} = 4.5V$		1.0			1.0		1.0	
		$V_{DD} = 10V, V_{O} = 9V$		2.0			2.0		2.0	V
		$V_{DD} = 15V, V_{O} = 13.5V$		3.0			3.0		3.0	
V _{IH}	HIGH Level Input Voltage	I _O < 1 μA								
		$V_{DD} = 5V, \ V_{O} = 0.5V$	4.0		4.0			4.0		
		$V_{DD} = 10V, V_{O} = 1V$	8.0		8.0			8.0		V
		$V_{DD} = 15V, V_{O} = 1.5V$	12.0		12.0			12.0		
I _{OL}	LOW Level Output Current	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	(Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH}	HIGH Level Output Current	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		
	(Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	μА
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.1		1.0	μΛ

Note 3: V_{SS} = 0V unless otherwise specified.

Note 4: I_{OH} and I_{OL} are tested one output at a time.

AC Electrical Characteristics (Note 5)

 $T_A = 25^{\circ}C,~C_L = 50~pF,~R_L = 200~k\Omega,~t_r$ and $t_f \le 20~ns$, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} or t _{PLH}	Propagation Delay Time from	$V_{DD} = 5V$		50	90	
	Input to Output	$V_{DD} = 10V$		30	60	ns
		$V_{DD} = 15V$		25	50	
t _{THL} or t _{TLH}	Transition Time	$V_{DD} = 5V$		80	150	
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	
C _{IN}	Average Input Capacitance	Any Gate		6	15	pF
C _{PD}	Power Dissipation Capacitance	Any Gate (Note 6)		12		pF

Note 5: AC Parameters are guaranteed by DC correlated testing.

Note 6: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation, see Family Characteristics application note—

AC Test Circuits and Switching Time Waveforms

Typical Performance Characteristics

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A