The r Unit Vector

1 The r Unit Vector

One approach to finding the electric force between two charges is to use $F = k|q_1q_2|/r^2$ to find the magnitude and a diagram and trigonometry to write $\vec{\mathbf{F}}$ in the form $\vec{\mathbf{F}} = F_x \hat{\boldsymbol{\imath}} + F_y \hat{\boldsymbol{\jmath}}$.

An alternative approach is to use an equation for electric force using a unit vector $\hat{\mathbf{r}}$:

$$ec{\mathbf{F}}_{q_1 \; ext{on} \; q_2} = k q_1 q_2 rac{\hat{\mathbf{r}}_{12}}{r^2}$$

where $\hat{\mathbf{r}}_{12}$ is the unit vector that points from the position of q_1 to the position of q_2 , and r is the distance between q_1 and q_2 .

To find $\hat{\mathbf{r}}_{12}$,

- 1. draw a vector, $\vec{\mathbf{r}}_{12}$, from q_1 to q_2 ;
- 2. Write $\vec{\mathbf{r}}_{12}$ in the form $\vec{\mathbf{r}}_{12} = r_x \hat{\imath} + r_y \hat{\jmath}$ using the diagram; then

3.
$$\hat{\mathbf{r}}_{12} = \vec{\mathbf{r}}_{12}/r$$
, where $r = \sqrt{r_x^2 + r_y^2}$.

The equation for electric field using a unit vector $\hat{\mathbf{r}}$ is

$$ec{\mathbf{E}}_{\mathrm{due\,to}\,q}=kqrac{\hat{\mathbf{r}}}{r^2}$$

where $\hat{\mathbf{r}}$ is the unit vector that points from the position of q to the point in space where we want to know $\vec{\mathbf{E}}$, and r is the distance between q and that point.

To find $\hat{\mathbf{r}}$,

- 1. draw a vector, $\vec{\mathbf{r}}$, from q to the point in space where you want to know $\vec{\mathbf{E}}$;
- 2. Write $\vec{\mathbf{r}}$ in the form $\vec{\mathbf{r}} = r_x \hat{\boldsymbol{\imath}} + r_y \hat{\boldsymbol{\jmath}}$ using the diagram; then

3.
$$\hat{\mathbf{r}} = \vec{\mathbf{r}}/r$$
, where $r = \sqrt{r_x^2 + r_y^2}$.

Note that in the equations for \vec{F} and \vec{E} , we do not need to take the absolute value of the charges.

2 Example I

Charge q_1 is at (x,y)=(-a,-a) and charge q_2 is at (a,a). Find

- 1. $\hat{\mathbf{r}}_{12}$
- 2. $\vec{\mathbf{F}}_{q_1 \text{ on } q_2}$
- 3. $F_{q_1 \text{ on } q_2}$

Solution

$$ec{m{r}}_{12} = r \cos(45^\circ) \hat{m{\imath}} + r \sin(45^\circ) \hat{m{\jmath}}, \, \hat{m{r}}_{12} = rac{ec{m{r}}}{r} = \cos(45^\circ) \hat{m{\imath}} + \sin(45^\circ) \hat{m{\jmath}}$$

Note that the magnitude of
$$\hat{\mathbf{r}}_{12}=1$$
: $|\hat{\mathbf{r}}_{12}|=\sqrt{\cos^2(45^\circ)+\sin^2(45^\circ)}=1$

The sides of the right triangle have length 2a, so the hypotenuse $r = \sqrt{8}a$. Substitution gives

$$ec{f F}_{q_1 \,\, {
m on} \,\, q_2} = k q_1 q_2 rac{\hat{f r}_{12}}{r^2} = rac{k q_1 q_2}{8a^2} (\cos 45^{\circ} \hat{m \imath} + \sin 45^{\circ} \hat{m \jmath}) = rac{k q_1 q_2}{8a^2} \left[rac{1}{\sqrt{2}} \hat{m \imath} + rac{1}{\sqrt{2}} \hat{m \jmath}
ight]$$

Check: if q_1 and q_2 are both positive or both negative, the force on q_2 is upwards and to the right, as expected.

To calculate $|\vec{\mathbf{F}}|$, we can use $|\vec{\mathbf{F}}|=F=\sqrt{F_x^2+F_y^2}$ and plug in $F_x=k\frac{q_1q_2}{8a^2}\frac{1}{\sqrt{2}}$ and $E_y=k\frac{q_1q_2}{8a^2}\frac{1}{\sqrt{2}}$ and use $\sqrt{c^2}=|c|$ (where c is a real number) to show that $F=k|q_1q_2|/8a^2$. There is an easier way. Taking the magnitude of both sides of

$$ec{\mathbf{F}}=kq_2q_1rac{\hat{\mathbf{r}}}{r^2}$$
 gives $|ec{\mathbf{F}}|=F=k|q_1q_2|rac{|\hat{\mathbf{r}}|}{r^2}$

The magnitude of a unit vector is 1, so $F=k|q_1q_2|rac{1}{r^2}=k|q_1q_2|rac{1}{8a^2}.$

3 Problem I

Charge q_1 is at (x,y)=(-a,a) and charge q_2 is at (a,0). Find

- 1. $\hat{\mathbf{r}}_{12}$
- 2. $\vec{\mathbf{F}}_{q_1 \text{ on } q_2}$
- $3. F_{q_1 \text{ on } q_2}$

4 Example II

If q_1 is at (x, y) = (-a, -a), find

- 1. **r**
- 2. $\vec{\mathbf{E}}_{\text{at }(a,a) \text{ due to } q_1}$
- 3. $E_{\text{at }(a,a) \text{ due to } q_1}$

Solution

The calculation of $\hat{\mathbf{r}}$ is the same as that shown in the diagram Example I (except we do not need subscripts for the $\vec{\mathbf{E}}$ formula).

Substitution gives

$$ec{f E}_{{
m at}\,(a,a)\,{
m due}\,{
m to}\,q_1} = kq_1rac{\hat{f r}}{r^2} = kq_1rac{1}{8a^2}(\cos 45^{\circ}\hat{m \imath} + \sin 45^{\circ}\hat{m j}) = rac{kq_1}{8a^2}\left[rac{1}{\sqrt{2}}\hat{m \imath} + rac{1}{\sqrt{2}}\hat{m j}
ight]$$

(Notice the relationship between the answers to this problem and the answers to Example I.)

Check: If a positive charge was placed at (x, y) = (a, a), it would tend to move up and to the right, which is consistent with the signs on the components of the electric field found above.

To calculate $|\vec{\mathbf{E}}|$, we can use

$$|ec{\mathbf{E}}| = E = \sqrt{E_x^2 + E_y^2}$$

and plug in $E_x=k\frac{q_1}{8a^2}\frac{1}{\sqrt{2}}$ and $E_y=k\frac{q_1}{8a^2}\frac{1}{\sqrt{2}}$ and use $\sqrt{c^2}=|c|$ (where c is a real number) to show that $E=k|q_1|/8a^2$. There is an easier way. Taking the magnitude of both sides of

$$ec{\mathbf{E}} = kq_1rac{\hat{\mathbf{r}}}{r^2} \quad ext{ gives } \quad |ec{\mathbf{E}}| = k|q_1|rac{|\hat{\mathbf{r}}|}{r^2}.$$

The magnitude of a unit vector is 1, so

$$|ec{\mathbf{E}}| = k|q_1|rac{1}{r^2} = rac{k|q_1|}{8a^2}.$$

5 Problem II

If q_1 is at (x,y)=(-a,a), find

1. **r**̂

2. $\vec{\mathbf{E}}_{\text{at }(a,0) \text{ due to } q_1}$

3. $E_{{
m at}\;(a,0)\;{
m due\;to}\;q_1}$

6 Additional Problems

6.1 Computing $\hat{\mathbf{r}}$ for $\vec{\mathbf{F}}$ formula

If q_1 is at (x,y)=(-a,2a) and q_2 is at (x,y)=(a,0), find

- 1. $\hat{\mathbf{r}}_{12}$
- 2. $\hat{\mathbf{r}}_{21}$
- 3. *r*

6.2 Computing $\hat{\mathbf{r}}$ for $\vec{\mathbf{E}}$ formula

If q_1 is at (x,y)=(a,0) and the point where we want to compute $\vec{\mathbf{E}}$ is at (x,y)=(-a,2a), find

- 1. **r**
- 2. **r**̂
- 3. *r*

6.3 Problem I Follow-up

For the charge configuration given in Problem I, find

- 1. $\hat{\mathbf{r}}_{21}$
- 2. $\vec{\mathbf{F}}_{q_2 \text{ on } q_1}$
- 3. $F_{q_2 \text{ on } q_1}$