

Thermodynamics The Ideal Gas Equation

Lana Sheridan

De Anza College

April 20, 2018

Last time

• thermal expansion

Overview

- the ideal gas equation
- moles and molecules
- applying the ideal gas equation

Ideal Gases

An ideal gas is a gas

- at low pressure
- at a temperature much higher than its condensation point
- at a low density

Ideal Gas Equation

The equation of state for an ideal gas:

PV = nRT

where

- *P* is pressure
- V is volume
- *n* is the number of moles (amount of gas)
- $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ is the universal gas constant
- T is temperature measured in Kelvin

The LHS and RHS of this equation both have units of Joules (energy).

Moles?

¹Photo from http://thelazybfarm.com.

Moles?

1 mole or 1 mol. of a substance is $N_A = 6.022 \times 10^{23}$ molecules of that substance. (N_A is Avogadro's number.)

¹Photo from http://thelazybfarm.com.

Moles

Why is this even a unit?

Moles

Why is this even a unit?

Not such a long time ago scientists really did not have any idea of how much mass an individual molecule would have, or how many molecules would be present in a cubic meter of gas. Even the existence of atoms and molecules was controversial.

1 mole was a macroscopic unit they could work with.

1 mole of a substance is the amount that has the same number of molecules as there are atoms in 12 grams of a pure Carbon-12 sample. (That is $N_A=6.022\times 10^{23}$.)

Some History of Atoms and Molecules

Many ancient Indian, Greek, and Roman philosophers argued for a basic unit of matter: the atom.

Later thinkers in the Middle East were influenced by Greek and Indian ideas.

In Europe, philosophers were exposed to Greek and Roman ideas, with Aristotle (who thought matter was instead continous) very popular for a long time.

Some History of Atoms and Molecules

Many ancient Indian, Greek, and Roman philosophers argued for a basic unit of matter: the atom.

Later thinkers in the Middle East were influenced by Greek and Indian ideas.

In Europe, philosophers were exposed to Greek and Roman ideas, with Aristotle (who thought matter was instead continous) very popular for a long time.

Nevertheless, ideas about "corpuscles" (small particles) were important for Newton and his contemporaries.

A chemist, Robert Boyle (1627-1692) speculated that if atoms / corpuscles made up matter, that would resolve many problems arising in chemistry.

He proved correct.

Understanding from Chemical Reactions

John Dalton, a physicist and chemist in $\sim\!\!1803$ started trying to understand the patterns of chemical reactions.

Electrolysis can dissociate water

water
$$\longrightarrow$$
 oxygen + hydrogen

and always the same proportions are produced: twice as much hydrogen as oxygen (by volume, at equal pressure, temperature).

This lead him to suppose that

- matter was composed of atoms
- chemical substances that could not be dissociated were elements
- chemical substances that could be dissociated were formed from combinations of atoms

Understanding from Chemical Reactions

Rules of Dalton's theory¹:

- Elements are made of extremely small particles called atoms.
- Atoms of a given element are identical in size, mass, and other properties; atoms of different elements differ in size, mass, and other properties.
- Atoms cannot be subdivided, created, or destroyed.
- Atoms of different elements combine in simple whole-number ratios to form chemical compounds.
- In chemical reactions, atoms are combined, separated, or rearranged.

Understanding from Chemical Reactions

¹Images from Dalton, "A New System of Chemical Philosophy" (1808) and Wikimedia.

Additional Evidence for atoms: Brownian Motion

In 1827 Robert Brown, a botanist, observed pollen grains suspended in water through a microscope.

He expected to see them suspended at rest, but did not.

Instead the grains of pollen seemed to jump and wiggle about for no discernible reason.

Additional Evidence for atoms: Brownian Motion

In 1827 Robert Brown, a botanist, observed pollen grains suspended in water through a microscope.

He expected to see them suspended at rest, but did not.

Instead the grains of pollen seemed to jump and wiggle about for no discernible reason.

He wondered if it was something peculiar that pollen did so he tried again with dust and soot – and saw the same thing!

This motion is called **Brownian Motion**.

Brownian Motion

Brownian motion remained a mystery until 1905.

Einstein, building on tools he had just developed in his doctoral thesis, developed a theory describing Brownian motion.

It is the result of fast-moving water molecules (too small to see) colliding with the pollen molecules, and jostling them.

Periodic Table

Group I	Group II		Transition elements										Group IV	Group V	Group VI	Group VII	Group 0	,
H 1																H 1	He	2
1.007 9																1.007 9	4.002 6	
1s																1s1	1s2	
Li 3	Be	4										B 5	C 6	N 7	O 8	F 9	Ne	10
6.941	9.0122		Symbol Ca 20 Atomic number											14.007	15.999	18.998	20.180	
2s1	2s ²		Atomic mass† 40.078										2p ²	2p3	2p4	2p5	2p ⁶	
Na 11	Mg 1	2	4s ² Electron configuration											P 15	S 16	Cl 17	Ar	18
22.990	24.305		26.982 28.086 30.974												32.066	35.453	39.948	
3s1	$3s^2$											3p1	$3p^2$	$3p^3$	3p4		3p ⁶	
K 19	Ca 2	0 Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br 35	Kr	36
39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.41	69.723	72.64	74.922	78.96	79.904	83.80	
4s1	4s ²	3d14s2	3d ² 4s ²	3d ³ 4s ²	3d ⁵ 4s ¹	3d54s2	3d ⁶ 4s ²	3d ⁷ 4s ²		3d ¹⁰ 4s ¹	3d104s2	4p1	4p ²	4p ³			4p ⁶	
Rb 37	Sr 3	8 Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45	Pd 46	Ag 47	Cd 48	In 49	Sn 50	Sb 51	Te 52	I 53	Xe	54
85.468	87.62	88.906	91.224	92.906	95.94	(0.0)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29	
5s1	5s ²	4d15s2	4d ² 5s ²	4d ⁴ 5s ¹	4d ⁵ 5s ¹		4d ⁷ 5s ¹	4d 5s1			4d105s2	5p1	5p ²	5p ³			5p ⁶	
Cs 55	Ba 5	6 57-71*	Hf 72	Ta 73	W 74	Re 75	Os 76	Ir 77	Pt 78	Au 79	Hg 80	Tl 81	Pb 82	Bi 83	Po 84	At 85	Rn	86
132.91	137.33		178.49	180.95	183.84		190.23	192.2	195.08		200.59	204.38	207.2	208.98	(209)	(210)	(222)	
6 <i>s</i> ¹	6s ²		5d26s2		5d46s2		5d*6s2	5d76s2			5d106s2	6p1	6p ²	6p3			6p ⁶	
	Ra 8	8 89-103**		Db 105				Mt 109			Cn 112		FI 114		Lv 116		118	311
(223)	(226)		(261)	(262)	(266)	(264)	(277)	(268)	(271)	(272)	(285)	(284)	(289)	(288)	(293)	(294)	(294)	
7s1	7s ²		6d ² 7s ²	6d ³ 7s ²														
					n		n			6.1	TTT	- ·		In	lm			-
*Lanthanide series							Sm 62										71	
			138.91	140.12			(145)				158.93		164.93	167.26	168.93	173.04	174.97	
**Actinide series		5d16s2		4f36s2		4156s2	4166s2	4f76s2		4f85d16s2	4f 106s2	4f116s2	4f126s2	41136s2		41145d16		
Acumue series			Th 90		1	- E	Pu 94		Cm 96	Bk 97	Cf 98		Fm 100	Md 101			103	
		(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)		
			6d ¹ 7s ²	6d ² 7s ²	5f ² 6d ¹ 7s ²	5f ³ 6d ¹ 7s ²	5f 6d 7s2	51"78"	5f ⁷ 7s ²	5f ⁷ 6d ¹ 7s ²	5f ⁸ 6d ¹ 7s ²	51"7s2	5f117s2	5f 12 7s2	5f ¹³ 7s ²	5f147s2	5f146d17	SE

¹Serway & Jewett, Appendix C.

Periodic Table

The atomic number is the number of protons in the nucleus of an atom for that element.

The atomic mass number is average mass of all isotopes of an element weighted by abundance in nature.

(Isotopes of an element have different numbers of neutrons.)

Back to Moles

Now that we know the make up of various molecules in terms of their constituent atoms, we can determine the mass of each molecule.

We can then work out how many moles are in a certain mass of a substance, m.

$$n=\frac{m}{M}$$

where M is the *molar mass*, or mass of 1 mole of the substance.

Back to Moles

Now that we know the make up of various molecules in terms of their constituent atoms, we can determine the mass of each molecule.

We can then work out how many moles are in a certain mass of a substance, m.

$$n=\frac{m}{M}$$

where M is the *molar mass*, or mass of 1 mole of the substance.

For example, water is H_2O . Hydrogen has atomic mass 1, Oxygen has atomic mass 8.

$$1 + 1 + 16 = 18$$
 amu

Moles

$$n=\frac{m}{M}$$

where M is the *molar mass*, or mass of 1 mole of the substance.

Moles

$$n=\frac{m}{M}$$

where M is the *molar mass*, or mass of 1 mole of the substance.

For example, water is H_2O . Hydrogen has atomic mass 1, Oxygen has atomic mass 16.

$$1 + 1 + 16 = 18 \text{ amu}$$

The molar mass of water is 18 g/mol.

A balloon contains 6.00 g of helium.

How many moles is that?

A balloon contains 6.00 g of helium.

How many moles is that?

He: 4.00 amu

A balloon contains 6.00 g of helium.

How many moles is that?

He:
$$4.00 \text{ amu} \Rightarrow M = 4.00 \text{ g/mol}$$

$$n = \frac{m}{M} = 1.50 \text{ mol}$$

Ideal Gas Equation

The equation of state for an ideal gas:

$$PV = nRT$$

Can also be written:

$$PV = Nk_BT$$

where

- P is pressure
- V is volume
- N is the number of molecules
- $k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$ is Boltzmann's constant
- T is temperature

Quick Quiz 19.6² On a winter day, you turn on your furnace and the temperature of the air inside your home increases. Assume your home has the normal amount of leakage between inside air and outside air. Is the number of moles of air in your room at the higher temperature

- (A) larger than before,
- (B) smaller than before, or
- (C) the same as before?

²Serway & Jewett, pg 579.

Quick Quiz 19.6² On a winter day, you turn on your furnace and the temperature of the air inside your home increases. Assume your home has the normal amount of leakage between inside air and outside air. Is the number of moles of air in your room at the higher temperature

- (A) larger than before,
- (B) smaller than before, or ←
- (C) the same as before?

²Serway & Jewett, pg 579.

Ideal Gas Equation and the Gas Thermometer

In a constant-volume gas thermometer, the pressure varies linearly with the temperature: a consequence of the ideal gas equation!

$$P = \left(\frac{nR}{V}\right)T$$

A cylinder is closed by a piston connected to a spring of constant 2.00×10^3 N/m. With the spring relaxed, the cylinder is filled with 5.00 L of gas at a pressure of 1.00 atm and a temperature of 20.0° C.

(a) If the piston has a cross-sectional area of 0.0100 m^2 and negligible mass, how high will it rise when the temperature is raised to 250°C ?

¹Serway & Jewett, page 588.

(a) Find h.

$$PV = nRT$$

We have enough info to know the number of moles, n, or we can work around that because the amount of gas does not change as it is heated.

$$\frac{P_f V_f}{T_f} = \frac{P_i V_i}{T_i}$$

Also,
$$P_f A = kh + P_0 A$$

and $P_i = P_0$ and $V_f = V_i + Ah$.

(a) Find *h*.

$$PV = nRT$$

We have enough info to know the number of moles, n, or we can work around that because the amount of gas does not change as it is heated.

$$\frac{P_f V_f}{T_f} = \frac{P_i V_i}{T_i}$$

Also, $P_f A = kh + P_0 A$ and $P_i = P_0$ and $V_f = V_i + Ah$.

$$P_f V_f = P_i V_i \frac{T_f}{T_i}$$

$$\left(\frac{kh}{A} + P_0\right) (V_i + Ah) = P_0 V_i \frac{T_f}{T_i}$$

$$kh^2 + \left(\frac{kV_i}{A} + AP_0\right) \frac{h}{A} + P_0 V_i \left(1 - \frac{T_f}{T_i}\right) = 0$$

(a) Find h.

Solving quadratic:

$$kh^{2} + \left(\frac{kV_{i}}{A} + AP_{0}\right)h + P_{0}V_{i}\left(1 - \frac{T_{f}}{T_{i}}\right) = 0$$

Remember: $T_f = 250 + 273$ K, $T_i = 20 + 273$ K

(a) Find h.

Solving quadratic:

$$kh^{2} + \left(\frac{kV_{i}}{A} + AP_{0}\right)h + P_{0}V_{i}\left(1 - \frac{T_{f}}{T_{i}}\right) = 0$$

Remember: $T_f = 250 + 273$ K, $T_i = 20 + 273$ K

positive solution:

$$h = 0.169 \text{ m}$$

A cylinder is closed by a piston connected to a spring of constant 2.00×10^3 N/m. With the spring relaxed, the cylinder is filled with 5.00 L of gas at a pressure of 1.00 atm and a temperature of 20.0° C.

(b) What is the pressure of the gas at 250° C?

¹Serway & Jewett, page 588.

(b) Find P_f .

We already have the expression we need:

$$P_f = kh/A + P_0$$

(b) Find P_f .

We already have the expression we need:

$$P_f = kh/A + P_0$$

$$P_f = 1.35 \times 10^5 \; \text{Pa}$$

Summary

- thermal expansion
- atoms
- the ideal gas equation

(Uncollected) Homework

Serway & Jewett:

• Ch 19, onward from page 581. OQs: 3, 9; CQs: 3, 10; Probs: 27, 29, 37, 39, 44, 45, 69, 77