RECURSION

- 1. When a function calls itself
- 2. A base case is necessary to establish as it is the point at which the recursion knows to 'go back up' the chain.

GRAPHS

- 1. A network of nodes
- 2. Different from a tree in that a tree goes 'one way' (parent to child). Graphs can go 'to and from'.
- 3. Example graph: Linkedin network

Data Structure	Index	Search	Add-R	Add-L	Pop-L	Pop-R
Python List (Array)	0(1)	0(n)	0(1)	0(n)	0(n)	0(1)
Linked List	0(n)	0(n)	0(1)	0(1)	0(1)	0(n)
Doubly-Linked List	0(n)	0(n)	0(1)	0(1)	0(1)	0(1)
Queue (as Array)	X	X	0(1)	X	0(n)	X
Queue (as LL or DLL)	X	X	0(1)	X	0(1)	X
Stack (as Array, LL, or DLL)	X	X	0(1)	X	X	0(1)
Deque (as DLL)	X	X	0(1)	0(1)	0(1)	0(1)

Data Structure	Get	Add	Delete	Iterate	Memory
Dictionary (Hash Map)	0(1)	0(1)	0(1)	0(n)	medium
Set (Hash Map)	0(1)	0(1)	0(1)	0(n)	medium
Binary Search Tree	O(log n)	O(log n)	O(log n)	0(n)	low
Tree	0(n)	0(n)	0(n)	0(n)	low

Bubble Sort

At every iteration the highest value bubbles to the top

Merge Sort

Take two sorted lists and merge them together. If the lists aren't pre-sorted, use merge sort to sort them.

Quick Sort

Randomly select a pivot. Compare all items in a list to the pivot, put in left bucket if lower, right if higher. Insert the pivot in the middle.