

Algorithm Efficiency

1

Contents

- A review on algorithm
- Analysis and Big-O notation
- Algorithm efficiency

J

What is Algorithm?

- An algorithm is
 - a strictly defined **finite** sequence of **well-defined** steps (statements, often called instructions or commands)
 - that provides the solution to a problem.

fit@hcmus | DSA | 2024

Algorithm

Give some examples of algorithms.

fit@hcmus | DSA | 2024

An Example

- O Input: No
- O Output: what do you think about the output?
- O Step 1. Assign sum = 0. Assign i = 0.
- O Step 2.
 - Assign i = i + 1
 - Assign sum = sum + i
- O Step 3. Compare i with 10
 - if i < 10, back to step 2.
 - otherwise, if $i \ge 10$, go to step 4.
- O Step 4. return sum

fit@hcmus | DSA | 2024

5

Characteristics of Algorithms

Finiteness

For any input, the algorithm must terminate after a finite number of steps.

Correctness

Always correct. Give the same result for different run time.

Definiteness

All steps of the algorithm must be precisely defined.

Effectiveness

It must be possible to perform each step of the algorithm correctly and in a finite amount of time.

fit@hcmus | DSA | 2024

7

Algorithm Efficiency

- The two factors of Algorithm Efficiency are:
 - **Time Factor**: Time is measured by counting the number of key operations.
 - **Space Factor**: Space is measured by counting the maximum memory space required by the algorithm.

fit@hcmus | DSA | 2024

9

Measuring Efficiency of Algorithms

- Can we compare two algorithms (in time factor) like this?
 - Implement those algorithms (into programs)
 - Calculate the execution time of those programs
 - Compare those two values of time measurement.

Is it fair in this measuring process?

fit@hcmus | DSA | 2024

Measuring Efficiency of Algorithms

- Difficulties with comparing programs instead of algorithms
 - · How are the algorithms coded?
 - What computer should you use?
 - What data should the programs use?

fit@hcmus | DSA | 2024

11

Measuring Efficiency of Algorithms

- Comparison of algorithms should focus on significant differences in efficiency
- Employ mathematical techniques that analyze algorithms independently of specific implementations, computers, or data.

Execution Time of Algorithm

- Time complexity is measured by counting the **primitive operations** for the computation that the algorithm needs to perform.
 - Comparisons
 - Assignments
- Derive an algorithm's time requirement as a function of the problem size
 - Algorithm A requires $n^2/5$ time unit to solve a problem of size n.
 - Algorithm B requires 5 x n time unit to solve a problem of size n.

fit@hcmus | DSA | 2024

13

Execution Time of Algorithm

Traversal of linked nodes – example:

- Assignment: a time units.
- Comparison: c time units.
- Write: w time units.
- Displaying data in linked chain of n nodes requires time proportional to n

Execution Time of Algorithm

Nested loops

```
for (i = 1 through n)

for (j = 1 through i)

for (k = 1 through 5)

Task T
```

Task T requires t time units.

fit@hcmus | DSA | 2024

15

fit@hcmus

15

Previous Example

- o Step 1. Assign sum = 0. Assign i = 0.
- O Step 2.
 - Assign i = i + 1
 - Assign sum = sum + i
- o Step 3. Compare i with 10
 - if i < 10, back to step 2.
 - otherwise, if $i \ge 10$, go to step 4.
- o Step 4. Return sum

How many

- Assignments?
- Comparisons?

Another Example

- o Step 1. Assign sum = 0. Assign i = 0.
- O Step 2.
 - Assign i = i + 1
 - Assign sum = sum + i
- o Step 3. Compare i with n
 - if i < n, back to step 2.
 - otherwise, if $i \ge n$, go to step 4.
- O Step 4. Return sum

How many

- Assignments?
- Comparisons?

fit@hcmus | DSA | 2024

17

Algorithm Growth Rates

- Measure algorithm's time requirement as a function of problem size
- Compare algorithm efficiencies for large problems
- Look only at significant differences.

Analysis and Big O Notation

fit@hcmus | DSA | 2024

Big O Notation

- Definition:
 - Algorithm A is order f (n)
 - Denoted O(f(n))
 - If constants **k** and **n**₀ exist
 - Such that A requires no more than k × f (n) time units to solve a problem of size n ≥ n₀.

fit@hcmus | DSA | 2024

21

Example

- An algorithm requires $n^2 3 \times n + 10$ (time units). What is the order of algorithm?
 - Hint: Find the values k va n_0 .

Another Example

• How about the order of an algorithm requiring $(n+1) \times (a+c) + n \times w$ time units?

Another Example

o Another algorithm requires $n^2 + 3 \times n + 2$ time units. What is the order of this algorithm?

fit@hcmus | DSA | 2024

25

Common Growth-Rate Functions

- o f(n) =
 - 1: Constant
 - log₂n: Logarithmic
 - n: Linear
 - n × log₂n: Linearithmic
 - n²: Quadratic
 - n³: Cubic
 - 2ⁿ: Exponential

Common Growth-Rate Functions

Order of growth of some common functions

$$O(1) < O(\log_2 n) < O(n) < O(n \times \log_2 n) < O(n^2) < O(n^3) < O(2^n)$$

fit@hcmus | DSA | 2024

27

Common Growth-Rate Functions

A comparison of growth-rate functions in tabular form

				χ		
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
log ₂ n	3	6	9	13	16	19
n	10	10 ²	10 ³	104	105	10 ⁶
n × log₂n	30	664	9,965	105	10 ⁶	10 ⁷
n²	10 ²	104	10 ⁶	10 ⁸	1010	1012
n^3	10³	10 ⁶	10 ⁹	1012	1015	10 ¹⁸
2 ⁿ	10³	1030	1030	1 103,01	0 1030,	103 10301,030

fit@hcmus | DSA | 2024

● •28

Common Growth-Rate Functions

A comparison of growth-rate functions in graphical form

fit@hcmus | DSA | 2024

29

fit@hcmus

Properties of Growth-Rate Functions

- Ignore low-order terms
- o Ignore a multiplicative constant in the high-order term
- O(f(n)) + O(g(n)) = O(f(n) + g(n))

Some Useful Results

- Constant Multiplication:
 - If f(n) is O(g(n)) then c.f(n) is O(g(n)), where c is a constant.
- Polynomial Function:
 - $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ is $O(x^n)$.

fit@hcmus | DSA | 2024

31

Some Useful Results

- Summation Function:
 - If f₁(n) is O(g₁(n)) and f₂(n) is O(g₂(n))
 - Then $f_1(n) + f_2(n)$ is O(max($g_1(n), g_2(n)$))
- Multiplication Function:
 - If f₁(n) is O(g₁(n)) and f₂(n) is O(g₂(n))
 - Then f₁(n) x f₂(n) is O(g₁(n) x g₂(n))

Quiz

Are these functions of order O(x)?

- a) f(x) = 10
- b) f(x) = 3x + 7
- c) $f(x) = 2x^2 + 2$

fit@hcmus | DSA | 2024

33

33

Quiz

What are the order of the following functions?

- $f(n) = (2 + n)(3 + \log_2 n)$
- $f(n) = 11 \log_2 n + \frac{n}{2} 3542$
- f(n) = n(3 + n) 7n
- $f(n) = \log_2(n^2) + n$

Quiz

- O What are the order of the following functions?
 - $f(n) = 3^n + n^5$
 - $f(n) = 5n^3 + 100n^2 + 200$
 - $f(n) = n \log n + 500n$
 - $f(n) = \sqrt{n} + \log n$
 - $f(n) = n! + 2^n$

fit@hcmus | DSA | 2024

35

35

Notes

(1) fit@hcmus

- O Use like this:
 - f(x) is O(g(x)), or
 - f(x) is of order g(x), or
 - f(x) has order g(x)

Algorithm Efficiency

Best case scenario

Worst case scenario

Average case scenario

An Algorithm to Analyze

- O Input:
- Output:
- O **Step 1.** Set the first integer the temporary maximum value (temp max).
- O Step 2. Compare the current value with the temp max.
 - If it is greater than, assign the current value to temp_max.
- O Step 3. If there is other integer in the list, move to next value. Back to step 2.
- O Step 4. If there is no more integer in the list, stop.
- O Step 5. return temp max (the maximum value of the list).

fit@hcmus | DSA | 2024

39

Another Algorithm to Analyze

- o Input:
- Output:
- O Step 1. Assign $\mathbf{i} = 0$
- O Step 2. While i < n and $x \neq a_i$, increase i by 1. while (i < n and $x \neq a_i$) i = i + 1
- o Step 3.
 - If **i** < **n**, return **i**.
 - Otherwise (i >= n), return -1 to tell that \boldsymbol{x} does not exist in list \boldsymbol{a} .

Another Algorithm to Analyze

- Use comparisons for counting.
- O Worst case:
 - When it occurs?
 - How many operations?
- Best case:
 - · When it occurs?
 - How many operations?

fit@hcmus | DSA | 2024

41

Another Algorithm to Analyze

- Use comparisons for counting.
- Average case:
 - If x is found at position i^{th} , the number of comparisons is 2i + 1.
 - The average number of comparisons is: $\frac{3+5+7+...+(2n+1)}{n} = \frac{2(1+2+3+...+n)+n}{n} = \frac{2\frac{n(n+1)}{2}+n}{n} = n+2$

Analysis of Algorithms

- Decide **n** the input size
- Identify the algorithm's basic operation (as a rule, it is in the innermost loop)
- Check whether the number of times the basic operation is executed depends only on n
 - If it depends on some additional property, specify the worstcase for Big-Oh
- Set up a sum expressing the number of times the algorithm's basic operation is executed.
- Find a closed-form formula for the count and establish its order of growth

fit@hcmus | DSA | 2024

----43

43

Analysis of Algorithms

■ Example: Check whether all the elements in a given array of n elements are distinct.

```
UniqueElements(A[0..n - 1])

//Determines whether all the elements in a given array are distinct

//Input: An array A[0..n - 1]

//Output: Returns "true" if all the elements in A are distinct

// and "false" otherwise

for i ← 0 to n - 2 do

for j ← i + 1 to n - 1 do

if A[i] = A[j]

return false

return true
```


Analysis of Algorithms

■ Worst-case:

$$\begin{split} C_{worst}(n) &= \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1] = \sum_{i=0}^{n-2} (n-1-i) \\ &= \sum_{i=0}^{n-2} (n-1) - \sum_{i=0}^{n-2} i = (n-1) \sum_{i=0}^{n-2} 1 - \frac{(n-2)(n-1)}{2} \\ &= (n-1)^2 - \frac{(n-2)(n-1)}{2} = \frac{(n-1)n}{2} \approx \frac{1}{2}n^2 \end{split}$$

fit@hcmus | DSA | 2024

45

Keeping Your Perspective

- o If problem size always small, ignore an algorithm's efficiency
- Weigh trade-offs between algorithm's time and memory requirements
- Compare algorithms for both style and efficiency

Exercises

fit@hcmus | DSA | 2024

51

Exercise

Propose an algorithm to calculate the value of S defined below. What order does the algorithm have?

$$S = 1 + \frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n!}$$

O How many comparisons, assignments are there in the following code fragment with the size n?

```
sum = 0;
for (i = 0; i < n; i++)
{
   std::cin >> x;
   sum = sum + x;
}
```


Exercise

How many assignments are there in the following code fragment with the size *n*?

fit@hcmus | DSA | 2024

______53

53

Exercise

 Give the order of growth (as a function of N) of the running time of the following code fragment:

```
int sum = 0;
for (int n = N; n > 0; n /= 2)
  for (int i = 0; i < n; i++)
    sum++;</pre>
```


Exercise

 Give the order of growth (as a function of N) of the running time of the following code fragment:

```
int sum = 0;
for (int i = 1; i < N; i *= 2)
   for (int j = 0; j < i; j++)
      sum++;
```

fit@hcmus | DSA | 2024

55

Exercise

o Give the order of growth (as a function of N) of the running time of the following code fragment:

```
int sum = 0;
for (int i = 1; i < N; i *= 2)
   for (int j = 0; j < N; j++)
      sum++;
```


