Pembuatan Predictive Model Decision Tree untuk Segmentasi Pasar Pelanggan The Body Shop

Dokumentasi Project

COMP6140 - Data Mining

Tema: The Body Shop

Jacelyn Angraini - 2201789896

 $Kenny\ ongko-2201798686$

LF01

Daftar Isi

1. Pen	ıdahuluan	1
1.1	Tujuan	1
1.2	Manfaat	1
1.2 Da	asar Teori	2
1.2.	.1 The Body Shop	2
1.2.	.2 Knowledge Discovery of Data (KDD)	3
1.2.	.3 Market Segmentation	4
1.2.	.4 Decision Tree	5
2. Me	todologi	5
2.1	Data Collection	5
2.2	Data Cleaning	10
2.3	Data Integration	14
2.4	Data Selection	15
2.5	Data Transformation	17
2.6	Data Mining	20
2.7	Evaluation and Presentation	28
3. Kes	simpulan	29
4. Ref	erensi	30

1. Pendahuluan

Pada project ini, kami melakukan segmentasi pasar (*market segmentation*) terhadap data pelanggan The Body Shop untuk menentukan ciri-ciri dari pelanggan yang menyukai kategori produk tertentu yang ditawarkan oleh The Body Shop. Untuk mendapatkan karakteristik pelanggan tersebut, maka kami perlu melakukan data mining dengan menggunakan metode klasifikasi. Klasifikasi memerlukan penggunaan algoritma *machine learning* yang mempelajari cara menetapkan label kelas ke contoh dari domain masalah. Ada beberapa algoritma popular yang digunakan untuk melakukan klasifikasi yaitu seperti *k-Nearest Neighbours* (KNN), *Decision Trees*, *Support Vector Machine* (SVM), *Naïve Bayes*, dan lainnya. Pada project ini, kami memutuskan untuk menggunakan *Decision Tree*.

1.1 Tujuan

Tujuan kami membuat project ini yaitu sebagai berikut:

- Untuk mencari tahu kategori produk yang paling disukai oleh pelanggan The Body Shop.
- Untuk mencari tahu karakteristik demografi dari pelanggan yang menyukai kategori produk tertentu dari The Body Shop

1.2 Manfaat

Manfaat yang didapat dari project kami yaitu sebagai berikut:

- Dengan mengetahui segmentasi dari pelanggan The Body Shop, informasi ini dapat memudahkan pihak marketing untuk memberikan iklan yang lebih personal atau lebih sesuai dengan selera setiap pelanggan secara individu. Dengan begitu, marketing yang dilakukan akan lebih efektif sehingga dapat meningkatkan loyalitas pelanggan dan juga menambah pendapatan perusahaan.
- Informasi yang didapat juga akan membantu pihak marketing dalam memberikan iklan personal kepada pelanggan baru berdasarkan karakteristiknya. Sehingga, meskipun pelanggan tersebut belum sering berbelanja, pihak marketing mempunyai gambaran umum terhadap preferensi dari pelanggan tersebut berdasarkan ciri-ciri demografinya.

1.2 Dasar Teori

1.2.1 The Body Shop

The Body Shop adalah perusahaan kosmetik dan kecantikan global yang mendapat inspirasi dari alam dan menghasilkan produk – produk yang bersandar pada nilai nilai etika. Pertama kali The Body Shop didirikan pada tahun 1976 oleh Dame Anita Roddick di Inggris, Saat pertama kali membuka toko, Anita hanya mampu menjual 25 jenis Produk kecantikan yang dibuat dengan tangan (hand-made), namun berkembang dengan sangat pesat hingga terdapat cabang di seluruh dunia. The Body Shop terus berkambang dari tahun ke tahun hingga pada 2006 The Body Shop di beli L'Oreal dan kini The Body Shop memiliki rangkaian produk sebanyak 1,200 macam meliputi produk kosmetik dan makeup di 2,500 toko yang tersebar di 61 negara di dunia.

The Body Shop Indonesia pertama kali membuka tokonya di Pondok Indah Mall pada tangal 12 Desember 1992 dan sampai saat ini terus memperbanyak gerainya di wilaya Indonesia. The Body Shop dalam menjalankan usahanya yang di wujudkan melalui kepedulian dan tanggung jawab terhadap perubahan social dan lingkungan. Nilai – nilai (values) The Body Shop ini akhirnya dipandang sebagai value added yang sangat signifikan dalam meningkatnakn gaya hidup konsumennya.

Produk The Body Shop di bagi menjadi beberapa category yaitu Wellbeing, Make-up, Bath and Body, Skin Care, Men's, Home Fragrance, Fragrance, Hair, Accessories, dan Gifts. Produk – produk The Body Shop ini umumnya ditujukan untuk perempuan sehingga sebagian besar konsumen The Body Shop adalah perempuan, namun ada juga rangkaian produk yang ditujukan utuk konsumen pria sehingga target konsumen tidak hanya terbatas pada kaum wanita saja. The Body Shop merupakan salah satu perusahaan kosmetik paling berpengaruh di dunia karena selalu berpegang teguh pada filosofi serta misi mereka yang salah satunya adalah berusaha untuk melakukan perubahan sosial yang lebih baik.

1.2.2 Knowledge Discovery of Data (KDD)

Figure 1.4 Data mining as a step in the process of knowledge discovery.

Dalam proses KDD (knowledge discovery from data) ada beberapa langkah yang harus dilakukan yaitu:

1.Cleaning and integration

Data cleaning digunakan untuk menghilangkan data yang inkonsisten dan salah dari data set. Data integration dilakukan untuk menggabungkan data yang berasal dari sumber yang berbeda ke dalam satu tempat.

2. Selection and transformation

Data selection adalah tahapan dimana data yang relevan pada analysis yang akan dilakukan diambil dari database. Data transformation adalah tahapan dimana data diubah kedalam bentuk yang sesuai dengan melakukan operasi summary atau aggregate.

3.Data mining

Data mining adalah tahapan dimana algoritma digunakan untuk mengekstrak pattern yang bermakna dan berguna dari data set.

4.Evaluation and presentation

Pattern evaluation digunakan untuk mengidentifikasi pola yang mewakili pengetahuan berdasarkan ukuran yang diberikan. Knowledge presentation didefinisikan sebagai teknik yang menggunakan alat visualisasi untuk merepresentasikan hasil data mining.

1.2.3 Market Segmentation

Strategic planning bergantung pada kemampuan untuk mengumpulkan informasi mengenai keinginan pelanggan dan dapat memproses informasi itu menjadi prediksi persyaratan di masa depan. Dalam situasi di mana keinginan pelanggan besar, diperlukan metode untuk mengurangi jumlah skenario yang mungkin terjadi. Pengurangan skenario umumnya dicapai dalam bisnis melalui proses yang dikenal sebagai segmentasi pasar. Penelitian awal telah menunjukkan bahwa memperkirakan kelompok pelanggan (atau produk) lebih akurat daripada perkiraan individu agregat karena efek positif dari *error smoothing* dan *error cancelation*.

Segmentasi Pasar adalah proses mempartisi pasar ke dalam kelompok pelanggan dan prospek dengan kebutuhan dan / atau karakteristik yang sama yang cenderung menunjukkan perilaku pembelian serupa. Segmentasi pasar adalah tugas penting dalam pemasaran. Hal ini memungkinkan staf pemasaran untuk mengetahui metode pemasaran apa yang dapat mereka gunakan untuk kelompok tertentu di pasar. Mereka dapat mencampur dan mencocokkan kombinasi yang berbeda dari harga, promosi, dan tempat produk. Mereka juga menggunakan segmentasi pasar untuk mengetahui pelanggan mana yang dapat mempertahankan loyalitasnya atau pelanggan yang kemungkinan akan lebih bersedia membeli produk mereka.

Segmentasi pasar dapat membantu perusahaan untuk menentukan dan lebih memahami audiens target dan pelanggan idealnya. Segmentasi pasar menawarkan opsi iklan yang lebih tepat sasaran dan untuk menyesuaikan konten mereka untuk grup audiens yang berbeda. Segmentasi pasar memungkinkan perusahaan untuk menargetkan konten ke orang yang tepat dengan cara yang benar, daripada menargetkan seluruh audiens dengan pesan umum. Ketika pesan yang dikirim tidak dioptimalkan untuk audiens, yang terjadi adalah perusahaan tersebut akan berakhir dengan banyak biaya iklan yang terbuang sia-sia. Segmentasi pasar membantu meningkatkan kemungkinan orang berinteraksi dengan iklan atau konten yang ditawarkan, menghasilkan kampanye yang lebih efisien dan peningkatan laba atas investasi (ROI).

1.2.4 Decision Tree

Decision tree adalah salah satu cara data mining dalam memprediksi masa depan dengan membangun klasifikasi atau regresi model dalam bentuk struktur pohon (tree). Hasil akhir dari proses tersebut adalah pohon dengan node decision dan node leaf. Sebuah node v (misalnya, Cuaca/ Outlook) memiliki dua atau lebih cabang misalnya, Panas, Berawan dan Hujan.

2. Metodologi

2.1 Data Collection

Untuk melaksanakan project ini, kami membuat data dummy pelanggan yang totalnya berjumlah 260 baris. Kami membagi data yang kami buat menjadi 2 data set dimana 80,77% (210 data) dari data digunakan sebagai data training dan 19,23% (50 data) sisanya digunakan sebagai data testing. Berikut atribut yang terdapat di data dummy yang kami buat:

- CustomerID
- CustomerName
- CustomerGender
- CustomerDOB
- CustomerAddress
- CustomerNumber

- CustomerEmail
- MaritalStatus
- WebsiteActivity
- PaymentMethod
- MajorProductCategory

Atribut "MajorProductCategory" bertindak sebagai label atau hasil yang ingin kita dapat yaitu kategori favorit dari pelanggan dengan karakteristik demografi tertentu. Oleh karena atribut ini merupakan label, maka pada data set testing tidak terdapat atribut "MajorProductCategory". Ada 5 kemungkinan nilai dari label ini yaitu:

- Shower Gel
- EDT
- Body Mist
- Body Lotion
- Shampoo

Kami memilih untuk menggunakan 5 nilai ini karena merupakan kategori favorit dari pelanggan The Body Shop. The Body Shop sendiri mempunyai banyak kategori produk yang ditawarkan yaitu sekitar 98 buah menurut website resminya yaitu www.thebodyshop.co.id. Menurut kami jumlah tersebut terlalu besar dan tidak efektif untuk menggunakan semua kategori produk yang ada untuk skala project kami, sehingga kami memutuskan untuk memilih 5 kategori produk terbaik yang ada di The Body Shop.

Data set Training dan Testing (260 data)

Meta Data dari Data set Training dan Testing:

Name 💙	∙	Missing
CustomerAddress	Polynominal	0
CustomerDOB	Date	2
CustomerEmail	Polynominal	0
CustomerGender	Polynominal	5
CustomerName	Polynominal	0
CustomerNumber	Polynominal	0
✓ MajorProductCategory	Polynominal	0

Data set Training (210 data)

Data set Testing (50 data)

2.2 Data Cleaning

Sebelum data dapat diproses, data harus dibersihkan terlebih dahulu untuk memastikan informasi yang dihasilkan akurat. Pada data set dummy yang kita buat terdapat beberapa data "kotor" yang dapat mempengaruhi akurasi model yang dibuat, oleh karena itu kita harus mengatasi data-data tersebut terlebih dahulu. Berikut merupakan tahapan yang kami lakukan untuk mengatasi data-data kotor atau tidak valid yang terdapat di data set kami yaitu:

- Menghapus data yang tidak lengkap

Gambar di bawah ini menunjukkan adanya record data yang tidak lengkap. Oleh karena itu, kita perlu melakukan filtering agar data tersebut tidak termasuk dalam analisa kita.

Untuk melakukan filtering maka dapat digunakan operator "filter examples" di RapidMiner dengan parameter yaitu "no missing attributes".

Berikut adalah perbandingan data sebelum dan sesudah dilakukan filtering:

Sebelum filtering

Row No.	Custome	CustomerNa	CustomerGe	CustomerD	CustomerAd	CustomerNu	CustomerE	MaritalStatus	1
99	C0099	Victoria Iriana	Female	Mar 2, 1984	Jln. Sudiarto	0838-555-588	victoriairianar	Married	
100	C0100	Raisa Laksita	Female	Jun 3, 1976	Dk. Nanas N	0856-555-091	raisalaksita	Married	1
101	C0101	Dina Nurdiyanti	Female	Dec 23, 2002	Ds. Thamrin	0816-555-565	dinanurdiyant	Married	
102	C0102	Warsa Saputra	?	Jan 5, 1995	Ds. Sukajadi	0811 3843 1	warsara@gm	Single	1
103	C0103	Warji Prayoga	Male	Jan 3, 1920	Gg. Kyai Ged	0811 3843 1	warjioga@g	Single	1
104	C0104	Makuta Bahu	?	Aug 1, 2002	Jr. Dipatiukur	0811 3843 1	makutmo@g	Single	3
105	C0105	Lurhur Lulut	?	Feb 12, 1989	Kpg. Banal N	0816 7756 2	lurhomm@g	Married	
106	C0106	Ifa Palastri	Female	Mar 9, 1919	Ki. Suniaraja	0816 7756 2	ifapaltri@gm	Married	
107	C0107	Diana Pudjia	?	Jun 9, 1989	Jr. Sampang	0816 7756 2	dianti@gmail	Married	1
108	C0108	Daru Kanda	Male	?	Psr. Madiun	0816 7756 2	darukom@g	Married	9
109	C0109	Sarah Hasan	?	Oct 7, 1985	Ds. Samanh	0816 7756 2	sarapd@gm	Married	3
110	C0110	Ajiono Galih	Male	?	Jln. Cut Nyak	0816 7756 2	ajionota@gm	Married	
111	C0111	Ridwan Irawa	Male	Jan 2, 1974	Psr. Sadang	0878-555-804	ridwanirwan	Single	

ExampleSet (210 examples, 0 special attributes, 11 regular attributes)

o Sesudah filtering

pen in	Turbo Prep	Auto Model				Filter (203 / 2	203 examples):	all	
Row No.	Custome	CustomerNa	CustomerGe	CustomerD	CustomerAd	CustomerNu	CustomerE	Marital Status	١
96	C0096	Kartika Malik	Female	Aug 8, 1993	Jln. Sam Rat	0838-555-498	kartikamalika	Married	:
97	C0097	Zahra Ami Us	Female	Aug 15, 1970	Jr. Laswi No	0813-555-163	zahraamiusa	Married	:
98	C0098	Ghaliyati Pudj	Female	Aug 23, 1975	Ki. Siliwangi	0819-555-693	ghaliyatipudji	Married	
99	C0099	Victoria Iriana	Female	Mar 2, 1984	Jln. Sudiarto	0838-555-588	victoriairianar	Married	
100	C0100	Raisa Laksita	Female	Jun 3, 1976	Dk. Nanas N	0856-555-091	raisalaksita	Married	
101	C0101	Dina Nurdiyanti	Female	Dec 23, 2002	Ds. Thamrin	0816-555-565	dinanurdiyant	Married	
102	C0103	Warji Prayoga	Male	Jan 3, 1920	Gg. Kyai Ged	0811 3843 1	warjioga@g	Single	
103	C0106	Ifa Palastri	Female	Mar 9, 1919	Ki. Suniaraja	0816 7756 2	ifapaltri@gm	Married	
104	C0111	Ridwan Irawa	Male	Jan 2, 1974	Psr. Sadang	0878-555-804	ridwanirwan	Single	
105	C0112	Cakrabirawa	Male	May 3, 1974	Psr. K.H. Mas	0896-555-174	cakrabirawa	Single	
106	C0113	Halima Pad	Male	Apr 11, 1975	Psr. Cikapay	0838-555-396	halima09@g	Single	
107	C0114	Rahayu Wula	Male	Feb 11, 1974	Jr. Zamrud N	0838-555-173	Rahayuwulan	Single	
108	C0115	Cinta Gina Fa	Male	Dec 4, 1975	Dk. Dago No	0838-555-319	cintaGF@gm	Single	

- Menghapus data yang berulang

Pada gambar data set training dibawah ini terdapat data pelanggan yang berulang yaitu pada baris 57 dan 58.

Untuk mengatasi hal ini kita dapat menggunakan operator "remove duplicates" dan menggunakan parameter sebagai berikut:

Setelah dijalankan, maka akan menghasilkan data set yang tidak memiliki data berulang.

- Menghapus data yang tidak akurat

Kami juga perlu menghapus data-data yang tidak akurat seperti umur yang terkesan tidak masuk akal. Oleh karena itu, kami membatasi umur yang ada yaitu tidak lebih dari 75 tahun.

Row No.	Custome	CustomerNa	CustomerGe	CustomerD	MaritalStatus	PaymentMet	MajorProdu	CustomerAge
96	C0097	Zahra Ami Us	Female	Aug 15, 1970	Married	Bank Transfer	Body Lotion	50
97	C0098	Ghaliyati Pudj	Female	Aug 23, 1975	Married	Credit	Shower Gel	45
98	C0099	Victoria Iriana	Female	Mar 2, 1984	Married	Bank Transfer	Shower Gel	36
99	C0100	Raisa Laksita	Female	Jun 3, 1976	Married	Internet Paym	Shower Gel	44
100	C0101	Dina Nurdiyanti	Female	Dec 23, 2002	Married	Credit	Body Mist	17
101	C0103	Warji Prayoga	Male	Jan 3, 1920	Single	Virtual Account	Body Lotion	100
102	C0106	Ifa Palastri	Female	Mar 9, 1919	Married	Credit	Shower Gel	101
103	C0111	Ridwan Irawa	Male	Jan 2, 1974	Single	Internet Paym	Body Lotion	46
104	C0112	Cakrabirawa	Male	May 3, 1974	Single	Credit	Body Lotion	46
105	C0113	Halima Pad	Male	Apr 11, 1975	Single	Virtual Account	Body Lotion	45
106	C0114	Rahavu Wula	Male	Feb 11 1974	Single	Bank Transfer	Body Lotion	46

Untuk mengatasi hal ini, kita dapat menggunakan operator "generate attribute" untuk menghasilkan atribut yang menghitung umur pelanggan. Kemudian, kita menggunakan operator "filter example" untuk melakukan filtering sehingga data yang termasuk hanya data pelanggan yang berumur kurang dari atau sama dengan 75 tahun.

2.3 Data Integration

Proses data integration adalah tahapan dimana kami harus menggabungkan dua atau lebih data dari beberapa sumber database yang berbeda kedalam suatu penyimpanan data warehouse, tujuannya agar tidak adanya duplikasi data dan mensederhanakan proses menganalisa pengambilan keputusan. Berhubung data set kami hanya terdiri dari data csv, maka kami melakukan import data di RapidMiner dan memasukan data set Training, Testing, dan

gabungan dari keduanya (All) untuk keperluan evaluasi model. Kemudian, data-data tersebut kami masukin ke dalam sebuah repository local.

2.4 Data Selection

Pada tahapan ini, data yang relevan untuk dianalisa akan diambil dari data set. Menurut kami, data yang relevan untuk membuat predictive model yang memprediksi produk favorit pelanggan yaitu CustomerID, CustomerGender, CustomerDOB, MaritalStatus, dan MajorProductCategory (bagi data set training). Atribut lain seperti CustomerName, CustomerAddress, CustomerPhone, dan CustomerEmail tidak perlu digunakan karena nilai yang ada pasti berbeda-beda diantara setiap pelanggan sehingga tidak membantu proses klasifikasi. Selain itu, attribute WebsiteActivity dan PaymentMethod juga tidak kami masukin karena menurut kami atribut tersebut kurang mempengaruhi preferensi produk favorit pelanggan.

Row No.	Custome	CustomerNa	CustomerGe	CustomerD	Marital Status	PaymentMet	MajorProdu	CustomerAge
1	C0001	Bagus Suwar	Male	Jan 26, 1974	Single	Internet Paym	Body Lotion	46
2	C0002	Darman Wac	Male	Sep 6, 1983	Single	Credit	Shampoo	37
3	C0003	Limar Jaga	Male	Jan 30, 1977	Single	Bank Transfer	Shampoo	43
4	C0004	Harjo Balam	Male	May 13, 1982	Single	Credit	Shampoo	38
5	C0005	Praba_Harja	Male	Jan 2, 1975	Single	Bank Transfer	Shampoo	45
6	C0006	Arta Jailani S	Male	Oct 24, 1987	Single	Internet Paym	Shampoo	33
7	C0007	Enteng Maria	Male	Nov 20, 1999	Single	Credit	Shower Gel	21
8	C0008	Dr.Hendri Su	Male	Sep 17, 1992	Single	Bank Transfer	Shower Gel	28
9	C0009	Bagiya Gunarto	Male	Aug 9, 1982	Single	Virtual Account	Shampoo	38
10	C0010	Dadi Putra	Male	Dec 4, 1978	Single	Credit	Shampoo	42
11	C0011	Purwa Zulkar	Male	Nov 11, 1990	Single	Bank Transfer	Shampoo	30
12	C0012	Tugiman Sito	Male	May 8, 2004	Single	Virtual Account	EDT	16
13	C0013	Lamar Narpati	Male	Feb 6, 1989	Married	Bank Transfer	Shampoo	31
14	C0014	Daliman Uta	Male	Jun 1, 1980	Married	Internet Paym	Shampoo	40
15	C0015	Kusuma Wart	Male	Jul 7, 1984	Married	Internet Paym	Shampoo	36

Dari data di atas kita dapat melihat bahwa data yang ada sudah bersih namun tidak setiap atribut data yang ada pada table tersebut kita perlukan untuk melakukan analisa, maka dari itu kita perlu melakukan tahap data selection sehingga menghasilkan data set seperti gambar di bawah ini.

- Data set Training setelah melalui data selection:

Row No.	Custome	CustomerGe	CustomerD	MaritalStatus	MajorProdu
1	C0001	Male	Jan 26, 1974	Single	Body Lotion
2	C0002	Male	Sep 6, 1983	Single	Shampoo
3	C0003	Male	Jan 30, 1977	Single	Shampoo
4	C0004	Male	May 13, 1982	Single	Shampoo
5	C0005	Male	Jan 2, 1975	Single	Shampoo
6	C0006	Male	Oct 24, 1987	Single	Shampoo
7	C0007	Male	Nov 20, 1999	Single	Shower Gel
8	C0008	Male	Sep 17, 1992	Single	Shower Gel
9	C0009	Male	Aug 9, 1982	Single	Shampoo
10	C0010	Male	Dec 4, 1978	Single	Shampoo
11	C0011	Male	Nov 11, 1990	Single	Shampoo
12	C0012	Male	May 8, 2004	Single	EDT
13	C0013	Male	Feb 6, 1989	Married	Shampoo
14	C0014	Male	.lun 1 1980	Married	Shampoo

ExampleSet (202 examples, 1 special attribute, 4 regular attributes)

2.5 Data Transformation

Setelah dilakukan data selection, maka data set kami sekarang terdiri dari atribut-atribut yang relevan terhadap analisa yang akan kami lakukan. Pada tahap data transformation, kami perlu mengubah nilai dari beberapa atribut yang ada ke dalam bentuk yang lebih sesuai untuk di analisa. Selain itu, kami juga melakukan filtering terhadap data set untuk menghasilkan data set dengan kriteria tertentu. Transformasi data yang kami lakukan yaitu:

- Membuat sebuah kolom baru yaitu CustomerAge yang didapat dari CustomerDOB.
- Mengganti nilai dari CustomerAge menjadi range dari umur yang ada di data set sehingga beragam nilai yang ada dikelompokkan dan dimasukkan kedalam atribut baru yaitu CustomerAgeGroup. Berikut range umur yang terdapat di data set:
 - o <=20
 - 0 21-30
 - 0 31-45
 - 0 46-50
 - o 50+

Berikut adalah perhitungan yang digunakan untuk mengelompokkan usia pelanggan dengan operator "Generate Attributes":

Memilih kolom atribut yang akan digunakan dengan menggunakan operator "Select Attributes". Kolom atribut yang dipilih yaitu CustomerID, CustomerAgeGroup, CustomerGender, MajorProductCategory (untuk data training), dan MaritalStatus.

- Menetapkan atribut "MajorProductCategory" sebagai label.

Berikut adalah penampakan data setelah melalui proses data transformation.

- Data Training

Row No.	Custome	MajorProdu	CustomerGe	MaritalStatus	CustomerAg
1	C0001	Body Lotion	Male	Single	[46-50]
2	C0002	Shampoo	Male	Single	[31-45]
3	C0003	Shampoo	Male	Single	[31-45]
4	C0004	Shampoo	Male	Single	[31-45]
5	C0005	Shampoo	Male	Single	[31-45]
6	C0006	Shampoo	Male	Single	[31-45]
7	C0007	Shower Gel	Male	Single	[21-30]
8	C0008	Shower Gel	Male	Single	[21-30]
9	C0009	Shampoo	Male	Single	[31-45]
10	C0010	Shampoo	Male	Single	[31-45]
11	C0011	Shampoo	Male	Single	[21-30]
12	C0012	EDT	Male	Single	[<=20]
13	C0013	Shampoo	Male	Married	[31-45]
14	C0014	Shampoo	Male	Married	[31-45]

ExampleSet (200 examples, 2 special attributes, 3 regular attributes)

- Data Testing

Row No.	CustomerID	CustomerGe	MaritalStatus	CustomerAg
1	C0211	Female	Single	[46-50]
2	C0212	Male	Single	[46-50]
3	C0213	Male	Single	[46-50]
4	C0214	Male	Single	[46-50]
5	C0215	Male	Single	[46-50]
6	C0216	Male	Single	[31-45]
7	C0217	Female	Single	[31-45]
8	C0218	Male	Single	[31-45]
9	C0219	Male	Single	[31-45]
10	C0220	Female	Single	[31-45]
11	C0221	Female	Single	[31-45]
12	C0222	Male	Single	[31-45]
13	C0223	Male	Married	[31-45]
14	C0224	Female	Married	[31-45]

ExampleSet (50 examples, 1 special attribute, 3 regular attributes)

2.6 Data Mining

- Pembuatan Predictive Model

Kami memutuskan untuk membuat sebuah predictive model dalam bentuk decision tree. Decision tree ini akan membagi data set pelanggan yang ada dan mencari atribut yang paling menentukan produk favorit dari pelanggan dengan karakteristik tertentu. Kami menggunakan parameter sebagai berikut:

Kriteria yang kami gunakan dalam pembuatan model ini adalah information gain. Information gain adalah sebuah metrik yang digunakan untuk mengukur kualitas dari pembagian data. Untuk menghitung information gain, maka kita terlebih dahulu harus menghitung information entropy yaitu berapa besar varians yang ada dalam data tersebut atau keberagaman dari suatu data. Entropy merupakan sebuah ukuran ketidakpastian yang terkait dengan variable. Semakin besar entropy maka semakin besar ketidakpastian yang ada. Rumus dari perhitungan entropy adalah sebagai berikut:

$$H(Y) = -\sum_{i=1}^{m} p_i log(p_i)$$
, where $P(Y = y_i)$

Untuk menghitung information gain atau informasi tambahan yang di dapat maka kita perlu mencari informasi yang diperlukan untuk melakukan klasifikasi dengan rumus sebagai berikut:

$$Info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$$

Setelah mendapat entropy dan informasi yang dibutuhkan untuk melakukan klasifikasi, barulah kita dapat menghitung informasi yang kita dapat dengan rumus sebagai berikut:

$$Gain(A) = Info(D) - Info_A(D)$$

Parameter lain yang kami gunakan dalam pembuatan model yaitu pruning dan prepruning. Pruning artinya beberapa cabang dapat digantikan dengan leaf tergantung pada confidence parameter yang ditetapkan yaitu 0.1. Kami juga menggunakan parameter prepruning yang menentukan kriteria berhenti pembagian selain maximal depth yaitu minimal gain, minimal leaf size, minimal size for split, dan number of prepruning alternatives.

- Hasil Model Decision Tree

Setelah kami berhasil membuat model dari decision tree, kami menggunakan operator "Apply Model" untuk mengaplikasikan model tersebut ke data set testing yang sudah kami buat. Setelah diaplikasikan ke model, nilai label prediksi yang dihasilkan akan muncul.

Berikut adalah hasil dari prediksi yang dilakukan model decision tree yang kami buat berdasarkan data set training:

Row No.	CustomerID	prediction(M	confidence(confidence(confidence(confidence(confidence(confidence(CustomerGe
1	C0211	Body Lotion	0.850	0	0	0	0	0.150	Female
2	C0212	Body Lotion	0.850	0	0	0	0	0.150	Male
3	C0213	Body Lotion	0.850	0	0	0	0	0.150	Male
4	C0214	Body Lotion	0.850	0	0	0	0	0.150	Male
5	C0215	Body Lotion	0.850	0	0	0	0	0.150	Male
6	C0216	Shampoo	0.087	0.489	0.391	0.033	0	0	Male
7	C0217	Shower Gel	0.111	0.044	0.778	0.067	0	0	Female
8	C0218	Shampoo	0.087	0.489	0.391	0.033	0	0	Male
9	C0219	Shampoo	0.087	0.489	0.391	0.033	0	0	Male
10	C0220	Shower Gel	0.111	0.044	0.778	0.067	0	0	Female
11	C0221	Shower Gel	0.111	0.044	0.778	0.067	0	0	Female
12	C0222	Shampoo	0.087	0.489	0.391	0.033	0	0	Male
13	C0223	Shampoo	0.087	0.489	0.391	0.033	0	0	Male
<				III					>

ExampleSet (50 examples, 8 special attributes, 3 regular attributes)

Agar lebih mudah untuk melihat informasi yang dihasilkan, maka kami menggunakan operator "Select Attribute" untuk melakukan selection terhadap kolom atribut yang kami inginkan.

Row No.	CustomerID	prediction(MajorProductCategory)	CustomerGender	CustomerAgeGroup
1	C0211	Body Lotion	Female	[46-50]
2	C0212	Body Lotion	Male	[46-50]
3	C0213	Body Lotion	Male	[46-50]
4	C0214	Body Lotion	Male	[46-50]
5	C0215	Body Lotion	Male	[46-50]
6	C0216	Shampoo	Male	[31-45]
7	C0217	Shower Gel	Female	[31-45]
8	C0218	Shampoo	Male	[31-45]
9	C0219	Shampoo	Male	[31-45]
10	C0220	Shower Gel	Female	[31-45]
11	C0221	Shower Gel	Female	[31-45]
12	C0222	Shampoo	Male	[31-45]
13	C0223	Shampoo	Male	[31-45]
14	C0224	Shower Gel	Female	[31-45]

ExampleSet (50 examples, 2 special attributes, 2 regular attributes)

Berikut adalah hasil akhir predictive model decision tree yang telah kami buat:

Bar yang ada di bawah setiap label menunjukan distribusi dari label tersebut di data set.

Gambar diatas menunjukkan distribusi label EDT pada CustomerAgeGroup "[21-30]" dengan nilai CustomerGender yaitu "Female". Jumlah distribusi label EDT yaitu 26 buah dari 32 buah label pada karakteristik pelanggan tersebut, sedangkan "Ratio of total: 16.00%" merupakan rasio jumlah label tersebut dibandingkan dengan jumlah keseluruhan label yang ada di data set.

Ratio of total =
$$\frac{32}{200} \times 100\% = 16\%$$

- Evaluasi Model

Setelah membuat predictive model, langkah yang kami lakukan selanjutnya yaitu menghitung performance dari model yang kami buat. Untuk melakukan evaluasi model ini, kami menggunakan metode cross-validation. K-fold cross-validation adalah prosedur

resampling yang digunakan untuk mengevaluasi performa dari model machine learning yang mempunyai sampel data terbatas. Kami memilih menggunakan metode ini karena cukup mudah untuk diimplementasikan namun memberikan hasil yang mengandung nilai bias yang lebih rendah disbanding dengan metode lain. Berikut adalah proses yang kami lakukan di RapidMiner:

Untuk melaksanakan cross validation di RapidMiner, kami menggunakan operator "Cross Validation". Data set yang kami gunakan untuk evaluasi adalah data set gabungan dari training dan testing. Oleh karena data training kami mengandung data-data kotor, maka kami harus melakukan data cleaning, selection, dan transformation terlebih dahulu sebelum diaplikasikan cross validation.

Di dalam operator cross validation data set yang kami sambungkan akan dibagi menjadi 2 bagian yaitu training dan testing. Untuk data training, kami menggunakan decision tree untuk menghasilkan predictive model dengan parameter yang sama dengan pembuatan model sebelumnya pada data set training. Untuk data testing perlu digunakan operator "Apply Model" untuk mengaplikasikan predictive model tersebut ke data testing dan kemudian diukur performance nya menggunakan operator "Performance (classification)" karena model yang kita buat termasuk dalam algoritma klasifikasi.

Parameter yang terdapat di sebelah kanan adalah parameter yang diterapkan pada cross validation tersebut. Disini kita menentukan jumlah k adalah 10, artinya data kami akan terbagi menjadi 10 group data. Sampling type adalah metode yang harus kami gunakan untuk membuat subset dari data yang kami sediakan, disini sampling type kami tetapkan ke automatic yang artinya sampling type yang kami pakai adalah stratified sampling. Stratified sampling adalah metode sampling yang membuat subset secara random dan memastikan bahwa distribusi label di setiap subset jumlahnya sama, sehingga menghindari satu subset terdiri sepenuhnya dari 1 label karena hal tersebut dapat menyebabkan kesalahan dalam menghitung performance dari sebuah model.

Untuk mengukur performance dari model kami, kami menggunakan kriteria "Accuracy" yang akan menghasilkan akurasi dari predictive model yang telah kami buat. Saat dijalankan, maka akan dihasilkan sebuah confusion matrix dan juga accuracy dari model kami yaitu 85.60%.

- Perhitungan Confusion Matrix

accuracy: 85.60% +/- 6.59% (micro average: 85.60%)

	true Body Lotion	true Shampoo	true Shower Gel	true EDT	true Body Mist	true Hand Cre	class precision
pred. Body Lot	25	0	0	0	0	2	92.59%
pred. Shampoo	4	56	1	0	0	0	91.80%
pred. Shower	5	6	78	3	0	1	83.87%
pred. EDT	0	0	4	43	4	1	82.69%
pred. Body Mist	0	0	0	5	12	0	70.59%
pred. Hand Cr	0	0	0	0	0	0	0.00%
class recall	73.53%	90.32%	93.98%	84.31%	75.00%	0.00%	

o Precision

$$Precision = \frac{Tp}{Tp + Fp}$$

Precision Body Lotion =
$$\frac{25}{25+2}$$
 = 0.9259 X 100% = 92.59%

Precision Shower
$$Gel = \frac{78}{78 + 15} = 0.8387 \text{ X } 100\% = 83.87\%$$

Precision Shampoo =
$$\frac{56}{56+5}$$
 = 0.9180 X 100% = 91.80%

Precision EDT =
$$\frac{43}{43+9}$$
 = 0.8269 X 100% = 82.69%

Precision Body Mist =
$$\frac{12}{12+5}$$
 = 0.7059 X 100% = 70.59%

$$Precision\ HandCream = \frac{0}{0+2} = 0\ X\ 100\% = 0\%$$

o Recall

$$Recall = \frac{Tp}{Tp + Fn}$$

Recall Body lotion =
$$\frac{25}{25+9}$$
 = 0.7353 X 100% = 73.53%

Recall Shampoo =
$$\frac{56}{56+6}$$
 = 0.9032 X 100% = 90.32%
Recall Shower Gel = $\frac{78}{78+5}$ = 0.9398 X 100% = 93.98%
Recall EDT = $\frac{43}{43+8}$ = 0.8431 X 100% = 84.31%
Recall Body Mist = $\frac{12}{12+4}$ = 0.75 X 100% = 75.00%
Recall Hand Cream = $\frac{0}{0+0}$ = 0 X 100% = 0%

Accuracy

$$Accuracy = \frac{Tp + Tn}{All}$$

$$Accuracy = \frac{214}{250} = 0.856 \times 100\% = 85.60\%$$

2.7 Evaluation and Presentation

Dari predictive model yang telah kami buat dengan menggunakan decision tree dengan metric information gain, didapat hasil bahwa atribut yang memberikan information gain terbesar adalah CustomerAgeGroup sehingga atribut tersebut menjadi parent node atau root. Setelah itu, untuk masing-masing cabang akan dicari atribut yang menghasilkan information gain terbanyak dan membagi data.

Berikut hasil yang kita dapat:

- Untuk CustomerAgeGroup dengan rentang usia 21-30 tahun, atribut yang menjadi pembagi adalah CustomerGender.
 - Jika CustomerGender adalah "Female" maka kemungkinan besar kategori produk favoritnya adalah "EDT".
 - Jika CustomerGender adalah "Male" maka kemungkinan besar kategori produk favoritnya adalah "Shower Gel".

- Untuk CustomerAgeGroup dengan rentang usia 31-45 tahun, atribut yang menjadi pembagi adalah CustomerGender.
 - Jika CustomerGender adalah "Female" maka kemungkinan besar kategori produk favoritnya adalah "Shower Gel".
 - Jika CustomerGender adalah "Male" maka kemungkinan besar kategori produk favoritnya adalah "Shampoo".
- Untuk CustomerAgeGroup dengan rentang usia 46-50, semua data yang ada menghasilkan 1 label yaitu "Body Lotion". Hal ini berarti kemungkinan besar preferensi dari pelanggan yang berusia 46-50 adalah "Body Lotion".
- Untuk CustomerAgeGroup dengan rentang usia kurang dari atau sama dengan 20 tahun, atribut yang menjadi pembagi adalah CustomerGender.
 - Jika CustomerGender adalah "Female" maka kemungkinan besar kategori produk favoritnya adalah "Body Mist".
 - Jika CustomerGender adalah "Male" maka kemungkinan besar kategori produk favoritnya adalah "EDT".

3. Kesimpulan

Project yang kami buat memanfaatkan data pelanggan dari perusahaan The Body Shop untuk mencari tahu kategori produk dari pelanggan. Hal ini dapat dicapai dengan melakukan segmentasi pasar dengan menghasilkan predictive model yang menggunakan algoritma decision tree. Decision tree adalah sebuah algoritma yang digunakan untuk melakukan klasifikasi data di *machine learning*. Dari model yang telah kami buat, kami mendapat kesimpulan bahwa pembagi utama data set pelanggan di The Body Shop adalah CustomerAgeGroup atau usia pelanggan. Setelah itu, pembagi lainnya adalah CustomerGender atau jenis kelamin dari pelanggan.

Hasil dari predictive model ini dapat memberi prediksi kategori produk dari pelanggan dengan akurasi sebesar 85.60% berdasarkan metode resampling menggunakan crossvalidation. Adanya data ini dapat membantu perusahaan The Body Shop untuk melakukan targeted marketing kepada pelanggan nya dan juga menambahkan ketertarikan pelanggan baru karena kita dapat memberi rekomendasi produk yang sesuai dengan preferensinya. Hal ini

tentu akan berdampak baik bagi perusahaan karena kemungkinan besar loyalitas pelanggan lama dan baru akan bertambah sehingga menambah pendapatan perusahaan.

4. Referensi

Han, J., Kamber, M., & Pei, J. (2011). *Data Mining: Concepts and Techniques* (3rd ed.). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

https://towards datascience.com/comparative-study-on-classic-machine-learning-algorithms-24 f9 ff 6 ab 222

 $https://www.researchgate.net/publication/316312766_Market_segmentation_through_data_mining_A_method_to_extract_behaviors_from_a_noisy_data_set$