Always Adopt Self-Supervised Learning

Making Real AI - Series

(Shaka) Shih-Chia Chen

Founder/CEO www.libgirl.com

Thesis

Instead of applying classical task-specific machine learning paradigm,

we should (almost) alway use some universal pre-trained model trained from self-supervised learning and do fine-tuning.

Moreover, we only need a lifelong data stream rather than i.i.d. data points.

Yoshua Bengio said: <u>don't shuffle the data, it will destroy contextual information.</u>
Any set of data points implies data points can be shuffled.

Problem of Applying Classical Machine Learning Paradigm to Build One Single Task-General Model.

Resupplying context into data as more dimensions requires model redesign and complete retraining

Gender	Age	Overall survival (months)
М	47	8
М	69	
F	73	2
F	39	
F	55	12
М	63	
М	73	12
М	73	14
М	75	32

Overall survival (months)	Smoking	Age	Gender
8	6	47	М
	0	69	М
2	0	73	F
	0	39	F
12	0	55	F
	60	63	М
12	9	73	М
14	8	73	М
32	30	75	М

Gender	Age	Smoking	Pathology	Stage	Overall survival (months)
М	47	6	Ad-Sq	II	8
М	69	0	Ad	IV	
F	73	0	Ad	IV	2
F	39	0	NSCLC	IV	
F	55	0	Ad	III	12
М	63	60	sq	I	
М	73	9	Ad	IV	12
М	73	8	Ad	IV	14
М	75	30	sq	I	32

No context

More context

Even more context

An example of resupplying context into a lifelong data stream

Let a formal language sequence $S[t], t \in \mathbb{N}$

Given that

- 1. We encoded a data point X into S from S[k] to S[k+m]
- 2. with some originally known context of X as CX_0 encoded into S to from

$$S[(k-g)-c_0]$$
 to $S[(k-g)-1]$

3. with some encoding delimiter between CX_0 and Xencoded into S from

$$S[k-g]$$
 to $S[k-1]$

4. and then we have already trained a language model until S[k+m].

An example of resupplying context into a lifelong data stream

Now if we

- 1. supply updated contextual information of X as CX_1 encoded into S from S[l] to $S[l+c_1], l>k+m$
- 2. and resupply the encoding delimiter and X into S from $S[(l+c_1)+1]$ to $S[(l+c_1)+g+m]$, which should be fuzzily equal to S[k-g] to S[k+m]
- 3. and then fine-tune the language model

Conceptually, this self-supervised trained and fine-tuned model can learn the the originally missing but updated contextual information CX_1 of X.

Paradigm Shift

- 1. Because researchers will produce better self-supervised lifelong data stream learning algorithms and better universal pre-trained models.
- 2. All classical machine learning problems can be encoded into such universal pre-training and fine-tuning paradigm.
- **3.** Universal pre-training and fine-tuning paradigm is more adaptive to data drift, task specification change, and missing context.

=> We should (almost) always adopt universal pre-training and fine-tuning paradigm.

Goodbye, Classical Machine Learning Paradigm.

Hi, the Domination of Self-Supervised Learning with Fined-Tuning.

Appendix

About Reinforcement Learning

Reinforcement Learning is a special case of such paradigm.

The problem of a pure reinforcement learning algorithm is that

- 1. We can't provide data for an agent to imitate, which much reduces training efficiency. Some works (Hester et al., 2017) proposed reinforcement learning from demonstration to accelerate the learning process.
- Difficult to define the reward function across different tasks.// need reference

References

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D., Quan, J., Sendonaris, A., Dulac-Arnold, G., Osband, I., Agapiou, J., Leibo, J. Z., & Gruslys, A. (2017). Deep Q-learning from Demonstrations. *ArXiv:1704.03732* [Cs]. https://arxiv.org/abs/1704.03732

