Overview

- Likelihood principle (11 lectures)
- Bayesian inference (2 lectures)
- Decision theory (3 lectures)
- Multivariate analysis (2 lectures)
- Nonparametric inference & Monte Carlo techniques (6 lectures)

Books:

- Theory of point estimation Lehmann & Casella
- "Asymptotic Statistics" van der Vaart
- "Statistical Inference" Casella & Berger
- "Intro to Multivariate Statistical Analysis" Anderson

Introduction

<u>Goal</u>: Make inference about unknown probability distributions based on access to random samples.

Consider a real valued random variable X on a probability space Ω with distribution function

$$F(t) = \mathbb{P}(\omega \in \Omega : X(\omega) \le t) \ \forall t \in \mathbb{R}$$

When X is discrete, $F(t) = \sum_{x \le t} f(x)$, where f is the pmf of X.

When X is continuous, $F(t) = \int_{-\infty}^{t} f(s) ds$, where f is the pdf of X.

For all the results in this course, we assume either pdf or pmf exists.

Often, the distribution of X is parameterised by an unknown value θ . The goal is to infer something about θ based on (iid) samples X_1, \ldots, X_n .

Definition. A statistical model for a sample from X is any family of probability distributions $\{P_{\theta} : \theta \in \Theta\}$ for the law of X. When P_{θ} has a pmf (pdf) $f(\cdot, \theta)$, this is also written as $\{f(\cdot, \theta) : \theta \in \Theta\}$. The index set Θ is the parameter space.

Example.

- (i) $\mathcal{N}(\theta, 1)$; $\theta \in \Theta = \mathbb{R}$.
- (ii) $\mathcal{N}(\mu, \sigma^2)$, $\theta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times (0, \infty)$.
- (iii) $\operatorname{Exp}(\theta)$; $\theta \in \Theta = (0, \infty)$.

(iv)
$$\mathcal{N}(\theta, 1)$$
; $\theta \in \Theta = [-1, 1]$.

Remark: for a variable X with distribution P, the model $\{P_{\theta} : \theta \in \Theta\}$ is correctly specified if there exists $\theta \in \Theta$ such that $P = P_{\theta}$. For instance, if $X \sim \mathcal{N}(2,1)$, the model in (i) is correctly specified, but the model in (iv) is not.

In the case of a correctly specified model, we often use θ_0 to denote the "true value" of the parameter. We also say $\{X_1, \ldots, X_n\}$ are iid from a model $\{P_\theta : \theta \in \Theta\}$ in the case of a correctly specified model.

Statistical goals:

- Estimation: construct $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ such that $\hat{\theta}$ is close to θ_0 when $X_i \sim P_{\theta_0}$.
- <u>Hypothesis testing</u>: determine whether the null hypothesis $H_0: \theta = \theta_0$ or the alternative hypothesis $H_1: \theta \neq \theta_0$ is true, using a test $\psi_n = \psi(X_1, \ldots, X_n)$ such that $\psi_n = 0$ when H_0 is true and $\psi_n = 1$ when H_1 is true, with high probability.
- <u>Inference</u>: find confidence intervals (confidence sets) $C_n = C(X_1, ..., X_n)$ such that for some $0 < \alpha < 1$ we have $\mathbb{P}_{\theta}(\theta \in C_n) \ge 1 \alpha$, for all $\theta \in \Theta$, where α is the significance level.

1 The Likelihood Principle

Suppose X_1, \ldots, X_n are iid from a Poisson model $\{\text{Poi}(\theta) : \theta \geq 0\}$ with numerical values $X_i = x_i$, for all $1 \leq i \leq n$. The joint distribution of the sample is

$$f(x_1, \dots, x_n; \theta) = \mathbb{P}_{\theta}(X_1, x_1, \dots, X_n = x_n) = \prod_{i=1}^n (e^{-\theta} \frac{\theta^{x_i}}{x_i!}) = e^{-n\theta} \prod_{i=1}^n \frac{\theta^{x_i}}{x_i!} = L_n(\theta)$$

We can think of $L_n(\theta)$ as a random function from Θ to \mathbb{R} , where the randomness comes from $\{X_i\}_{i=1}^n$. This is the probability of occurence of the observed sample $(X_1 = x_1, \ldots, X_n = x_n)$, as a function of the unknown parameter θ .

The idea of the likelihood principle is to find θ which maximises $L_n(\theta)$, or equivalently $l_n(\theta) = \overline{\log L_n(\theta)}$. In the example, we have

$$l_n(\theta) = -n\theta + \log(\theta) \sum_{i=1}^n x_i - \sum_{i=1}^n \log(x_i!)$$

Setting $l'_n(\theta) = 0$ gives

$$-n + \frac{1}{\theta} \sum_{i=1}^{n} x_i = 0$$

and the solution is $\hat{\theta}_{\text{mle}} = \frac{1}{n} \sum_{i=1}^{n} x_i$, which is the sample mean. One can also check that $l_n''(\theta) < 0$ for all $\theta > 0$. When all X_i 's are 0, one can check that maximising $l_n(\theta)$ is equivalent to maximising $-n\theta$, so $\hat{\theta}_{\text{mle}} = 0$ in this case.

Maximum likelihood estimator

Suppose $\{f(\cdot,\theta):\theta\in\Theta\}$ is a statistical model of pdfs/pmfs for the distribution of a random variable X, and X_1,\ldots,X_n are iid copies of X.

Define the likelihood function

$$L_n(\theta) = \prod_{i=1}^n f(x_i, \theta)$$

the log likelihood function

$$l_n(\theta) = \log L_n(\theta) = \sum_{i=1}^n \log f(x_i, \theta)$$

and the normalised log likelihood function

$$\bar{l}_n(\theta) = \frac{1}{n}l_n(\theta) = \frac{1}{n}\sum_{i=1}\log f(x_i, \theta)$$

Definition. The maximum likelihood estimator is any element $\hat{\theta} = \hat{\theta}_{\text{mle}} = \hat{\theta}_{\text{mle}}(X_1, \dots, X_n) \in \Theta$ for which $L_n(\hat{\theta}) = \max_{\theta \in \Theta} L_n(\theta)$.

Remark: the definition of MLE can be generalised to non-iid data, provided a joint pdf/pmf of (X_1, \ldots, X_n) can be specified.

Example.

- (i) For $X_i \sim \text{Poi}(\theta)$, $\theta \ge 0$, we calculated $\hat{\theta}_{\text{mle}} = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}_n$.
- (ii) For $X_i \sim \mathcal{N}(\mu, \sigma^2)$, $\theta = (\mu, \sigma^2) \in \mathbb{R} \times (0, \infty)$, we have $\hat{\mu}_{\text{mle}} = \bar{X}_n$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X}_n)^2$ (see Example sheet).
- (iii) In the Gaussian linear model $Y = X\theta + \varepsilon$, with a known $X \in \mathbb{R}^{n \times p}$, unknown $\theta \in \mathbb{R}^p$, and $\varepsilon \sim \mathcal{N}(0, I_n)$, the observations (Y_1, \ldots, Y_n) are not iid, but a joint distribution $f(Y_1, \ldots, Y_n; \theta)$ can still be specified. The MLE is the least squares estimator (see Example sheet).

Definition. For $\Theta \subseteq \mathbb{R}^p$ and l_n differentiable at θ , the score function S_n is

$$S_n(\theta) = \begin{pmatrix} \frac{\partial}{\partial \theta_1} l_n(\theta) \\ \vdots \\ \frac{\partial}{\partial \theta_p} l_n(\theta) \end{pmatrix}$$

Solving for a root of $S_n(\theta)$ is a common heuristic for maximising $l_n(\theta)$. In many cases, it is a necessary and sufficient condition.

Note: derivatives are taken with respect to θ , <u>not</u> the x_i 's.

Information geometry

Recall that if X is a random variable with distribution P_{θ} on some space $\mathcal{X} \subseteq \mathbb{R}^d$, and $g: \mathcal{X} \to \mathbb{R}$ is a function, then

$$E_{\theta}[g(X)] = \int_{\mathcal{X}} g(x) dP_g(x) = \int_{\mathcal{X}} g(x) f(x, \theta) dx$$

if X has a pdf $f(x,\theta)$, and

$$\mathbb{E}_{\theta}[g(X)] = \sum_{x \in \mathcal{X}} g(x) f(x, \theta)$$

if X has a pmf $f(x, \theta)$

Theorem 1.1. Consider a model $\{f(\cdot,\theta):\theta\in\Theta\}$, where $f(\cdot,\theta)$ is a pdf/pmf and $f(x,\theta)>0$ for all x,θ . Also suppose the model is correctly specified, with θ_0 equal to the true parameter, and $\mathbb{E}_{\theta_0}[|\log(f(X,\theta))|] < \infty$ for all $\theta \in \Theta$. Then the function defined by $l(\theta) = \mathbb{E}_{\theta_0}[\log(f(X,\theta))]$ is maximised at θ_0 .

Proof. Consider the case when X has a pdf (discrete case is analogous). For all $\theta \in \Theta$, we have

$$l(\theta) - l(\theta_0) = \mathbb{E}_{\theta_0}[\log(f(X, \theta))] - \mathbb{E}_{\theta_0}[\log(f(X, \theta_0))]$$
$$= \mathbb{E}_{\theta_0}\left[\log\left(\frac{f(X, \theta)}{f(X, \theta_0)}\right)\right]$$

<u>Jensen's inequality</u>: $\mathbb{E}[\varphi(Z)] \leq \varphi(\mathbb{E}[Z])$ for any random variable Z and concave function φ .

Since log is concave,

$$l(\theta) - l(\theta_0) \le \log \left(\mathbb{E}_{\theta_0} \left[\frac{f(X, \theta)}{f(X, \theta_0)} \right] \right)$$
$$= \log \left(\int_{\mathcal{X}} \frac{f(x, \theta)}{f(x, \theta_0)} f(x, \theta_0) dx \right) = \log 1 = 0$$
 (*)

Remark: under the assumption of "strict identifiability of the model parameterisation", i.e,

$$f(\cdot, \theta) = f(\cdot, \theta') \iff \theta = \theta'$$

the inequality (*) is strict, since equality occurs in Jensen only when φ is linear or Z is constant.

Remark: the quantity $l(\theta_0) - l(\theta)$ computed above can be written as

$$\mathrm{KL}(P_{\theta_0}, P_{\theta}) = \int_{\mathcal{X}} f(x, \theta_0) \log \left(\frac{f(x, \theta_0)}{f(x, \theta)} \right) \mathrm{d}x$$

and is the Kullback-Leibler divergence in information theory. It is a "distance" between distributions. Maximising $l(\theta)$ is equivalent to minimising KL.

Fisher information

We consider the gradient and Hessian of the likelihood function.

Theorem 1.2. For a parametric model $\{f(\cdot,\theta):\theta\in\Theta\}$, "regular enough" so integration and differentiation can be interchanged, we have $\mathbb{E}_{\theta}[\nabla_{\theta}\log(f(X,\theta))] = 0$ for all $\theta \in \operatorname{interior}(\Theta)$.

Proof. We write the expectation

$$\mathbb{E}_{\theta}[\nabla_{\theta} \log(f(X, \theta))] = \int_{\mathcal{X}} (\nabla_{\theta} \log f(x, \theta)) f(x, \theta) dx$$
$$= \int_{\mathcal{X}} \frac{\nabla_{\theta} f(x, \theta)}{f(x, \theta)} f(x, \theta) dx$$
$$= \nabla_{\theta} \left(\int_{X} f(x, \theta) dx \right) = \nabla_{\theta}(1) = 0$$

Remark: in particular, when $\theta_0 \in \operatorname{interior}(\Theta)$, then $\mathbb{E}_{\theta_0}[\nabla_{\theta} \log(f(X, \theta))] = 0$.

Definition. For a parameter space $\Theta \subseteq \mathbb{R}^p$, the Fisher information matrix is defined by

$$I(\theta) = \mathbb{E}_{\theta} \left[\left(\nabla_{\theta} \log f(X, \theta) \right) \left(\nabla_{\theta} \log f(X, \theta) \right)^{T} \right], \ \forall \theta \in \text{interior}(\Theta)$$

in other words,

$$I_{ij}(\theta) = \mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta_i} \log f(X, \theta) \frac{\partial}{\partial \theta_j} \log f(X, \theta) \right]$$

Remark: in 1 dimension, we have

$$I(\theta) = \mathbb{E}_{\theta} \left[\left(\frac{\mathrm{d}}{\mathrm{d}\theta} \log f(X, \theta) \right)^2 \right] = \mathrm{Var}_{\theta} \left[\frac{\mathrm{d}}{\mathrm{d}\theta} \log f(X, \theta) \right]$$

Page 5

Thus I_{θ_0} describes random variations of $S_n(\theta_0)$ about its mean. This in turn will help quantify the precision of $\hat{\theta}$, a zero of $S_n(\hat{\theta}) = 0$, about θ_0 .

Theorem 1.3. Under the same regularity assumptions as the previous theorem

$$I(\theta) = -\mathbb{E}_{\theta} \left[\nabla_{\theta}^2 \log(f(X, \theta)) \right], \ \forall \theta \in \operatorname{interior}(\Theta)$$

i.e,

$$I_{ij}(\theta) = -\mathbb{E}_{\theta} \left[\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(X, \theta) \right]$$

Proof. We write

$$\nabla_{\theta}^{2} \log f(X, \theta) = \nabla_{\theta} \left(\frac{\nabla_{\theta} f(X, \theta)}{f(X, \theta)} \right) = \frac{\nabla_{\theta}^{2} f(X, \theta)}{f(X, \theta)} - \frac{\nabla_{\theta} f(X, \theta) \nabla_{\theta} f(X, \theta)^{T}}{f(X, \theta)^{2}}$$

note that

$$\mathbb{E}\left[\frac{\nabla_{\theta}^{2} f(X, \theta)}{f(X, \theta)}\right] = \int_{\mathcal{X}} \nabla_{\theta}^{2} f(X, \theta) dx = \nabla_{\theta}^{2} \int_{\mathcal{X}} f(X, \theta) dx = 0$$

Therefore

$$-\mathbb{E}_{\theta} \left[\nabla_{\theta}^{2} \log f(X, \theta) \right] = \mathbb{E}_{\theta} \left[\frac{\nabla_{\theta} f(X, \theta) \nabla_{\theta} f(X, \theta)^{T}}{f^{2}(X, \theta)} \right]$$

$$= \mathbb{E} \left[\frac{\nabla_{\theta} f(X, \theta)}{f(X, \theta)} \left(\frac{\nabla_{\theta} f(X, \theta)}{f(X, \theta)} \right)^{T} \right]$$

$$= \mathbb{E}_{\theta} \left[(\nabla_{\theta} \log f(X, \theta)) (\nabla_{\theta} \log f(X, \theta))^{T} \right]$$

$$= I(\theta)$$

Remark: continuing the previous remark, in 1 dimension

$$\operatorname{Var}_{\theta} \left[\frac{\mathrm{d}}{\mathrm{d}\theta} \log f(X, \theta) \right] = I(\theta) = -\mathbb{E}_{\theta} \left[\frac{\mathrm{d}^2}{\mathrm{d}\theta^2} \log f(X, \theta) \right]$$

this relates the variance of the score function and the curvature of l, both of which are relevant to describing the quality of the MLE $\hat{\theta}$ as an approximation to θ_0 .

Suppose now $X = (X_1, ..., X_n)$ is a vector of iid copies of a random variable. Let $I(\theta) = \mathbb{E}_{\theta}[(\nabla_{\theta} \log f(X_{i_1}, \theta))(\nabla_{\theta} \log f(X_{i_1}, \theta))^T]$ be the Fisher information of one copy of the random variable, and let

$$I_n(\theta) = \mathbb{E}_{\theta} \left[(\nabla_{\theta} \log f(X_1, \dots, X_n, \theta)) (\nabla_{\theta} \log f(X_1, \dots, X_n, \theta))^T \right]$$

denotes the Fisher information of the random vector X.

Theorem 1.4. In the setting described above, the Fisher information "tensorizes"

$$I_n(\theta) = nI(\theta)$$

Proof. By independence, $f(X_1, \ldots, X_n, \theta) = \prod_{i=1}^n f(X_i, \theta)$. Then $\log f(X_1, \ldots, X_n, \theta) = \sum_{i=1}^n \log f(X_i, \theta)$. We write

$$I_n(\theta) = \mathbb{E}_{\theta} \left[(\nabla_{\theta} \log f(X_1, \dots, X_n, \theta)) (\nabla_{\theta} \log f(X_1, \dots, X_n, \theta))^T \right]$$
$$= \mathbb{E}_{\theta} \left[\left(\sum_{i=1}^n \nabla_{\theta} \log f(X_i, \theta) \right) \left(\sum_{i=1}^n \nabla_{\theta} \log f(X_i, \theta) \right)^T \right]$$

Recall that $\mathbb{E}_{\theta} [\nabla_{\theta} \log f(X_i, \theta)] = 0$. Thus, by independence, all but the "diagonal" terms of the product remain, so

$$I_n(\theta) = \sum_{i=1}^n \mathbb{E}_{\theta} \left[(\nabla_{\theta} \log f(X_i, \theta)) (\nabla_{\theta} \log f(X_i, \theta))^T \right] = nI(\theta)$$

Cramer-Rao bound

Theorem 1.5 (Cramer-Rao bound). Let $\{f(\cdot,\theta):\theta\in\Theta\}$ be a "regular" statistical model with $\Theta\subseteq\mathbb{R}$. Let $\tilde{\theta}=\tilde{\theta}(X_1,\ldots,X_n)$ be an unbiased estimator of θ based on n iid observations from the model. For all $\theta\in$ interior (θ) , we have

$$\operatorname{Var}_{\theta}(\tilde{\theta}) = \mathbb{E}_{\theta}\left[(\tilde{\theta} - \theta)^2\right] \ge \frac{1}{nI(\theta)}$$

Proof. Recall the Cauchy-Schwarz inequality:

$$(\mathbb{E}[YZ])^2 \le \mathbb{E}[Y]^2 \mathbb{E}[Z]^2$$

for random variables Y, Z. In particular, we will take $Y = \tilde{\theta} - \theta$ and $Z = \frac{d}{d\theta} \log f(X_1, \dots, X_n, \theta)$.

Note that $\mathbb{E}_{\theta}[Y^2] = \mathbb{E}_{\theta}\left[(\tilde{\theta} - \theta)^2\right]$. Also, by the previous theorem,

$$\mathbb{E}_{\theta}[Z^2] = I_n(\theta) = nI_n(\theta)$$

Furthermore,

Furthermore,
$$\mathbb{E}_{\theta}[YZ] = \mathbb{E}_{\theta} \left[\tilde{\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \log f(X_1, \dots, X_n, \theta) \right] - \theta \underbrace{\mathbb{E}_{\theta} \left[\frac{\mathrm{d}}{\mathrm{d}\theta} \log f(X_1, \dots, X_n, \theta) \right]}_{=0}$$

$$= \int_{\mathcal{X}} \tilde{\theta}(X_1, \dots, X_n) \frac{\frac{\mathrm{d}}{\mathrm{d}\theta} f(X_1, \dots, X_n, \theta)}{f(X_1, \dots, X_n, \theta)} f(X_1, \dots, X_n) \mathrm{d}x_1 \dots \mathrm{d}x_n$$

$$= \frac{\mathrm{d}}{\mathrm{d}\theta} \int_{\mathcal{X}} \tilde{\theta}(X_1, \dots, X_n) f(X_1, \dots, X_n, \theta) \mathrm{d}x_1 \dots \mathrm{d}x_n = \frac{\mathrm{d}}{\mathrm{d}\theta} \mathbb{E}_{\theta}[\tilde{\theta}] = 1$$
and the result follows from Cauchy-Schwarz.

Remark: if $\tilde{\theta}$ is not unbiased, the same proof shows that

$$\operatorname{Var}_{\theta}(\tilde{\theta}) \geq \frac{\left(\frac{\mathrm{d}}{\mathrm{d}\theta} \mathbb{E}_{\theta}[\tilde{\theta}]\right)^{2}}{nI(\theta)}$$

The Cramer-Rao bound is about a variance of an estimate, hence is univariate in nature. Here is one multivariate generalisation. Suppose $\Theta \subseteq \mathbb{R}^p$ and $\Phi : \Theta \to \mathbb{R}$ is differentiable. Suppose $\tilde{\Phi}$ is an unbiased estimator of $\Phi(\theta)$ based on iid observations (X_1, \ldots, X_n) from a model $\{f(\cdot, \theta) : \theta \in \Theta\}$.

Theorem 1.6. For all $\theta \in \operatorname{interior}(\Theta)$, we have

$$\operatorname{Var}_{\theta}(\tilde{\Phi}) \geq \frac{1}{n} \nabla_{\theta} \Phi(\theta)^{T} \left(I^{-1}(\theta) \right) \nabla_{\theta} \Phi(\theta)$$

Proof. Omitted. Can be derived using Cauchy-Schwarz.

Example. Suppose $\Phi(\theta) = \alpha^T \theta$. Then $\nabla_{\theta} \Phi(\theta) = \alpha$ so the lower bound is

$$\operatorname{Var}_{\theta}(\tilde{\Phi}) \geq \frac{1}{n} \alpha^T I^{-1}(\theta) \alpha$$

In the example sheet, we will consider the special case of $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim \mathcal{N}(\theta, \Sigma)$ where $\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \in \mathbb{R}^2$ and $\Sigma \in \mathbb{R}^{2 \times 2}$ is a known matrix. Let the sample size be n=1.

<u>Case 1</u>: consider estimating θ_1 when θ_2 is known. This is a one-dimensional estimation problem, and we denote the Fisher information $I_1(\theta)$.

<u>Case 2</u>: consider estimating θ_1 when θ_2 is unknown. We can take $\Phi(\theta) = \theta_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \theta$ in the theorem above to obtain a lower bound

$$I_{\Phi}(\theta) = \nabla_{\theta} \Phi(\theta)^{T} I(\theta)^{-1} \nabla_{\theta} \Phi(\theta)$$

of the variance of an unbiased estimator.

We will show that $I_1(\theta)^{-1} < I_{\Phi}(\theta)$, unless X_1 and X_2 are independent (i.e unless Σ is diagonal).

Asymptotic theory of the MLE

Cramer-Rao is concerned with unbiased estimators, but not all estimators, even MLE's are unbiased.

On the other hand, a reasonable property to expect is asymptotic unbiasedness: $\mathbb{E}_{\theta}[\tilde{\theta}_n] \to \theta$ as $n \to \infty$, when $\tilde{\theta}_n$ is computed from n iid samples from P_{θ} .

A stronger but related concept is *consistency*: $\tilde{\theta}_n \to \theta$ as $n \to \infty$ (where convergence is defined in a precise way to be discussed later).

For consistent estimators, a reasonable optimality criterion is asymptotic efficiency: $n \operatorname{Var}_{\theta}(\tilde{\theta}_n) \to I(\theta)^{-1}$ as $n \to \infty$, when $\tilde{\theta}_n$ is computed from n iid samples from P_{θ} (and p = 1).