21/22(一) 浙江工业大学高等数学期中考试试卷

学院:	班级:	姓名:	学号:	
任课教师: 题	号 一 二	三四	五总分]
一、填空题(每	小题4分)			
1. 己知 lim _{x→+∞} ($\sqrt{(x+p)(x+q)} - x)$	=1, $p+q=$:o	
2. 曲线 y = f	$f(x)$ 与 $y = \sin x$ 在原	点相切, $f(x)$ ≥	0 ,则 $\lim_{n\to\infty}\sqrt{nf\left(\frac{2}{n}\right)}$	
3. 设 $y = e^{-\sin\theta}$	· ² x ,则 y'=	0	•	
4. 设 y = f(s	$\operatorname{in} 2x$),其中 f 二阶	可导,则 $\frac{d^2y}{d^2y}$ =		0
5. 函数 <i>f</i> (<i>x</i>)	在可导点 x_0 处有增量	ил		
-	=。 -2x-y=3 在点(-1	1,0)处的切线方积	星是	o
二、选择题(每	小题 4 分)			
(A) 高阶	寸, sin <i>x</i> — tan <i>x</i> 是 <i>z</i> ì 无穷小; 无穷小;	(B) 同阶无穷小		5小;
	$ E x = x_0 $ 处附近四阶段 $ f(x) E x = x_0 $ 有($f''(x_0) = f''(x_0) = f''$	$'(x_0)=0,$
	f(x) 在 x = x ₀ 有 (值; (B) 极小值;		(D) 无极值-	也无拐点.
	(x) 在区间[1,+∞) 内二		f(1) = f'(1) = 0	0,当 $x > 1$ 时
f''(x) < 0 , g(x)	$x) = \frac{f(x)}{x}, \text{ME } (1, -1)$	+∞)内()	ı	
(A) 存在	点 ξ ,使 $g(\xi) = 0$;) 单调减少;			

4. 设
$$f(x) = \frac{x}{3-x}$$
, 则曲线 $y = f(x)$ ()

- (A) 只有水平渐近线:
- (B) 只有垂直渐近线;
- (C) 既有水平又有垂直渐近线; (D) 没有水平和垂直渐近线.
- 5. 设 f(x) 在 x = a 的某个邻域内有定义,则 f(x) 在 x = a 处可导的一个充分条 件是()

 - (A) $\lim_{h\to +\infty} h[f(a+\frac{1}{h})-f(a)]$ 存在; (B) $\lim_{h\to 0} \frac{f(a+2h)-f(a+h)}{h}$ 存在;
 - (C) $\lim_{h\to 0} \frac{f(a+h)-f(a-h)}{2h}$ 存在; (D) $\lim_{h\to 0} \frac{f(a)-f(a-h)}{h}$ 存在.
- 三、试解下列各题(每小题7分)

1.
$$x \lim_{x\to 0} \frac{e^{-x^2} - \cos x}{x^2}$$

2. 设
$$\begin{cases} x = \ln(1+t^2) \\ y = t - \arctan t \end{cases}$$
, 求: $\frac{dy}{dx}$; $\frac{d^2y}{dx^2}$

3. 设 f(x) 在 x = a 的邻域内有连续的二阶导数,且 $f'(a) \neq 0$,

4.	证明不等式:	$2 x \arctan x \ge \ln(1+x^2)$

5. 求曲线 xy = 1 在第一象限内的切线方程,并使该切线在两个坐标轴上的截距之和最小。

四、(5分)设函数 f(x) 在[0,1] 上连续可导,且 f'(x) 单调减少, f(0) = 0,证明: 当 $a,b,a+b \in [0,1]$ 时恒有 $f(a+b) \leq f(a) + f(b)$ 。

五、试解下列各题(每小题8分)

1. 求函数 $f(x) = \frac{x-2}{\ln|x-1|}$ 的间断点,并指出间断点的类型。

2. 讨论方程 $e^x - ax = 0$ 的实根个数。