0.1 H22 数学選択

 $igaplus A \ (1)\mathbb{Z}[x]$ 上で 2 が \mathbb{Z} の素元であるからアイゼンシュタインの既約判定法より x^2-2 は既約である. \mathbb{Q} が \mathbb{Z} の商体であり \mathbb{Z} が UFD であることから, $\mathbb{Z}[x]$ 上の既約性と \mathbb{Q} 上の既約性が同値であることから x^2-2 は $\mathbb{Q}[x]$ 上既約である.

したがって $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$ である.

 $x^3 - 3$ も同様に既約. よって $[\mathbb{Q}(\sqrt[3]{3}), \mathbb{Q}] = 3$ である.

 $(2)x^2-2$ は $\mathbb{Q}[\sqrt[3]{3}]$ 上既約である.もし可約なら $\mathbb{Q}(\sqrt{2})\subset\mathbb{Q}(\sqrt[3]{3})$ となり \mathbb{Q} 上拡大次 2 の中間体を含むがこれは $[\mathbb{Q}(\sqrt[3]{3}):\mathbb{Q}]$ が 3 次であることに矛盾.

よって $[F:\mathbb{Q}(\sqrt[3]{3})]=2$ より $[F:\mathbb{Q}]=6$ である.

 $(3)L=\mathbb{Q}(\sqrt{2},\sqrt[3]{3},\zeta_3)$ $(\zeta_3=e^{\frac{2\pi i}{3}})$ である.これは x^3-3 の根が $\zeta_3^i\sqrt[3]{3}$ (i=0,1,2) であり $\zeta_3=\zeta_3\sqrt[3]{3}/\sqrt[3]{3}$ であることからわかる.

 $[\mathbb{Q}(\zeta_3):\mathbb{Q}]=2\,\text{\it rbs}\,\text{\it s.}\,\,L=F\cdot\mathbb{Q}(\zeta_3)\,\text{\it rbs}\,\text{\it s.}\,\,\text{\it s.t.}\,\mathbb{Q}(\zeta_3)\cap\mathbb{R}=\mathbb{Q}\,\,\text{\it s.b.}\,\,F\cap\mathbb{Q}(\zeta_3)=\mathbb{Q}\,\,\text{\it rbs}\,\text{\it s.}\,\,\text{\it s.t.}\,$ $[F:\mathbb{Q}]=12\,\text{\it rbs}\,\text{\it s.}$