

はい、変数の説明を含めつつ、できる限り字数を減らして記述します。

小レポート②

i) 運動量輸送方程式から、圧力平衡の式を導いて下さい。

運動量輸送方程式 $ho(\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v}\cdot\nabla)\mathbf{v})=-\nabla p+\mathbf{J}\times\mathbf{B}$ (ho:密度, \mathbf{v} :速度, p:圧力, \mathbf{J} :電流密度, \mathbf{B} :磁場) において、平衡 ($\frac{\partial}{\partial t}=0,\mathbf{v}=0$) を考えると、圧力平衡の式:

$$abla p = \mathbf{J} imes \mathbf{B}$$

が得られます。これは圧力勾配とローレンツ力の釣り合いを示します。

ii) 磁束関数 ψ とポロイダル電流束関数 F について、それぞれ電磁場の変数と座標変数を用いて表現してください。またそれぞれ面積分形式で表現して下さい。

軸対称円筒座標 (R,ϕ,Z) で考えます。

1. 磁束関数 $\psi(R,Z)$:

ポロイダル磁場 (B_R,B_Z) を次式で定義します。

$$B_R = -rac{1}{R}rac{\partial \psi}{\partial Z}, \quad B_Z = rac{1}{R}rac{\partial \psi}{\partial R}$$

 $2\pi\psi$ はポロイダル磁束を表します。

面積分形式: $\psi(R,Z) = \int_0^R B_Z(r',Z)r'dr'$.

2. ポロイダル電流束関数 $F(\psi)$:

トロイダル磁場 B_ϕ を用いて $F=RB_\phi$ と定義します。

 $F=rac{\mu_0}{2\pi}I_p$ (μ_0 :真空透磁率, I_p :全ポロイダル電流)。

 $I_p = \iint_{S_n} \mathbf{J}_p \cdot d\mathbf{A}_p$ (\mathbf{J}_p :ポロイダル電流密度, S_p :ポロイダル断面積) 。

iii) 磁束関数とポロイダル電流束関数に加えて圧力の変数を用い、平衡を表すGrad-Shafranov方程式を記述し、各項の意味を述べて下さい。

Grad-Shafranov方程式:

$$\Delta^*\psi = -\mu_0 R^2 rac{dp}{d\psi} - F rac{dF}{d\psi}$$

ここで演算子 $\Delta^*=Rrac{\partial}{\partial R}\left(rac{1}{R}rac{\partial}{\partial R}
ight)+rac{\partial^2}{\partial Z^2}$ です。

各項の意味:

- ・ 左辺 $\Delta^*\psi$: トロイダル電流密度 $J_\phi(=-rac{1}{\mu_0R}\Delta^*\psi)$ に関連。ポロイダル磁場の曲率・勾配の効果。
- ・ 右辺第1項 $-\mu_0 R^2 rac{dp}{d\psi}$: 圧力勾配 $dp/d\psi$ が駆動するトロイダル電流の源。
- 右辺第2項 $-F\frac{dF}{d\psi}$: ポロイダル電流(トロイダル磁場)の勾配 $dF/d\psi$ が駆動するトロイダル電流の源。

この方程式は、磁場構造 ψ が圧力分布 $p(\psi)$ とポロイダル電流分布 $F(\psi)$ によって決定される軸対称平衡を記述します。