Matrix theory - Assignment 10

Shreeprasad Bhat AI20MTECH14011

Abstract—This document illustrates applications of Rank-Nullity Theorem

Download latex-tikz from

https://github.com/shreeprasadbhat/matrix-theory/blob/master/assignment10/

1 Problem

Let **A** be an $m \times n$ matrix with entries in F and let T be the linear transformation from $F^{n \times 1}$ into $F^{m \times l}$ defined by $T(\mathbf{X}) = \mathbf{A}\mathbf{X}$. Show that

- 1) if m < n it may happen that T is onto without being non-singular
- 2) if m > n we may have T non-singular but not onto.

2 Definitions

A linear transformation $T(\mathbf{X}) : \mathbb{V} \to \mathbb{V}$ is said to be *singular* if \exists some $\mathbf{X} \in \mathbb{V}$ s.t

$$T(\mathbf{X}) = \mathbf{0} \text{ and } \mathbf{X} \neq \mathbf{0} \tag{2.0.1}$$

i.e
$$Nullity(T) \neq 0$$
 (2.0.2)

A linear transformation $T(\mathbf{X}) : \mathbb{V} \to \mathbb{V}$ is said to be *non-singular* if \exists some $\mathbf{X} \in \mathbb{V}$ s.t

$$T(\mathbf{X}) = \mathbf{0} \implies \mathbf{X} = \mathbf{0} \tag{2.0.3}$$

i.e
$$Nullity(T) = 0$$
 (2.0.4)

A linear transformation $T(\mathbf{X}) : \mathbb{R}^n \to \mathbb{R}^m$ is said to be *onto* if for every $\mathbf{b} \in \mathbb{R}^m$, $T(\mathbf{X}) = \mathbf{b}$ has at least one solution $\mathbf{X} \in \mathbb{R}^n$

i.e
$$Rank(T) = m \&$$
 (2.0.5)

$$Rank(T) \le n$$
 (2.0.6)

3 Solution

1

Let A be an $m \times n$ matrix with entries in F and let T be the linear transformation from $F^{n\times 1}$ into $F^{m\times l}$ defined by $T(\mathbf{X}) = \mathbf{A}\mathbf{X}$	
m < n	m > n
$\implies rank(\mathbf{A}) < n$	$\implies rank(\mathbf{A}) > n$
Hence $T(\mathbf{X})$ can be onto.	If $T(\mathbf{X}) = 0$, $\mathbf{A}\mathbf{X} = 0 \implies \mathbf{X} = 0$ Hence $T(\mathbf{X})$ may be a non-singular. $\implies Nullity(\mathbf{A}) = 0$
From Rank-Nullity Theorem,	But Rank-Nullity Theorem is not satisfied,
$Rank(\mathbf{A}) + Nullity(\mathbf{A}) = n$	$\therefore Rank(\mathbf{A}) + Nullity(\mathbf{A}) > n.$
$\implies Nullity(\mathbf{A}) \neq 0$	$\implies T(\mathbf{X})$ do not span $F^{m \times 1}$.
$T(\mathbf{X})$ is a singular.	$\therefore T$ not onto.