

Công nghệ phần mềm Tiến trình phần mềm

Giảng viên: **TS. Nguyễn Mạnh Hùng** Học viện Công nghệ Bưu chính Viễn thông (PTIT)

Nội dung tham khảo từ

Stephen R. Schach. *Object-Oriented and Classical Software Engineering*. Seventh Edition, WCB/McGraw-Hill, 2007

Requirement workflow (1)

Mục đích:

- Xác định rõ cái mà khách hàng cần
- Không phải cái khách hàng muốn

Requirement workflow (2)

Phương pháp:

- Xác định rõ hiểu lĩnh vực ứng dụng của phần mềm:
 - Làm rõ các khái niệm chuyên ngành trong lĩnh vực tương ứng
- Xây dựng mô hình nghiệp vụ của khách hàng:
 - Làm việc với chuyên gia nghiệp vụ
 - Sử dụng công cụ UML
 - Đánh giá tính khả thi: kĩ thuật, chi phí...

Requirement workflow (3)

Kết quả cần đạt được:

- Thời hạn giao sản phẩm (deadline)
- Độ tin cậy (realiablity)
- Chi phí (cost)
- Ngoài ra còn phải thống nhất một số yêu cầu khác: portability, respond time, parallel running

Analysis workflow (1)

Mục tiêu:

 Phân tích, phân rã và mịn hóa yêu cầu của khách hàng

→ Tại sao không làm việc này ngay trong pha requirement?

Analysis workflow (2)

Vấn đề ngôn ngữ:

- Tài liệu phải thống nhất được cả hai bên khách hàng và đội phát triển
- Khách hàng chỉ hiểu ngôn ngữ tự nhiên: ngôn ngữ không chính xác
- Đội phát triển chỉ làm việc được trên ngôn ngữ kĩ thuật: chính xác và khoa học
- → Tạo ra hai loại tài liệu đặc tả: bằng ngông ngữ tự nhiên và bằng ngôn ngữ kĩ thuật

Analysis workflow (3)

→ Tại sao việc làm tài liệu đặc tả lại quan trọng đến vậy?

- Trả lời: ...

Analysis workflow (4)

Kết quả cần đạt được:

 Tài liệu đặc tả đúng yêu cầu của khách hàng

Yêu cầu về tài liệu không được:

- Mâu thuẫn
- Có khái niệm và định lượng mờ
- Không đầy đủ

Analysis workflow (5)

Kết quả cần đạt được:

 Bản kế hoạch (tạm thời) về quản lí dự án phần mềm

Yêu cầu về bản kế hoạch:

- Ước lượng chi phí
- Ước lượng thời gian
- Các điểm mốc quan trọng (milestone)
- Các sản phẩm phải có sau mỗi điểm mốc

Design workflow (1)

Mục đích:

 Mịn hóa và mô hình hóa kết quả pha phân tích cho đến khi có thể code được từng modul trên một ngôn ngữ lập trình tương ứng

Design workflow (2)

Các vấn đề xem xét:

- Chọn ngôn ngữ lập trình
- Tính sử dụng lại (reusebility)
- Tính thiết kế mở (open-design)
- Tính khả chuyển (portability)

Design workflow (3)

Phương pháp:

- Trích các lớp
- Xác định quan hệ giữa các lớp (thiết kế kiến trúc)
- Thiết kế các thuộc tính và phương thức (method) cho mỗi lớp (thiết kế chi tiết)

Design workflow (4)

Kết quả cần đạt được:

 Bản mẫu các lớp, thuộc tính và phương thức + thuật toán xử lí trong các phương thức để có thể cài đặt được ngay

Implementation workflow (1)

Mục tiêu:

Cài đặt hệ thống theo kết quả pha thiết kế

Implementation workflow (2)

Phương pháp:

- Cài đặt theo class, modul
- Tích hợp các class, modul

Test workflow (1)

Nội dung test các sản phẩm đầu ra của từng pha:

- Yêu cầu: test tài liệu
- Phân tích: test tài liệu, kế hoạch và ước lượng
- Thiết kế: test tài liệu
- Cài đặt: unit test, integrated test, product test, acceptance test. Đối với phần mềm COTS thì test phản alpha và beta.

Unified Process (1)

Mỗi pha tương ứng một bước trong chu kì tăng trưởng (increasement):

Unified Process (2)

Các pha phát triển:

- Inception: Đánh giá
- Elaboration: Thiết lập
- Construction: Xây dựng
- Transition: Chuyển tiếp

Unified Process (3)

Mỗi bước thực hiện tương ứng với:

- 1 trong 5 workflows
- 1 trong 4 pha

Quan hệ:

- Workflow tương ứng với cách nhìn kĩ thuật
- Pha tương ứng cách nhìn nghiệp vụ

→ Tại sao mỗi bước phải có hai cách nhìn khác nhau?

Inception phase (1)

Mục tiêu:

 Xác định xem phần mềm làm ra có kinh tế và khả thi hay không

Inception phase (2)

Thực hiện:

- Tìm hiểu lĩnh vực chuyên môn
- Xây dựng mô hình nghiệp vụ
- Nêu rõ giới hạn của sản phẩm
- Bắt đầu xây dựng phân tích kinh doanh

Inception phase (3)

Phân tích kinh doanh:

- Giá phát triển có mang tính kinh tế?
- Bao lâu sẽ quay vòng vốn?
- Nếu từ bỏ dự án thì chi phí hết bao nhiêu?
- Nếu sản phẩm dạng COTS, có cần có chiến dịch tiếp thị sản phẩm?
- Sản phẩm có thể giao đúng hẹn không?
- Thiệt hại gì nếu giao sản phẩm cho khách hàng trễ hẹn?

Inception phase (4)

Phân tích rủi ro khi phát triển phần mềm:

- Liệu team có đủ kinh nghiệm cần thiết?
- Có cần phần cứng mới cho sản phẩm?
- Nếu có, thì thiệt hại gì nếu người ta giao phần cứng trễ hẹn?
- Trong trường hợp đó, có nên đặt hàng một nhà cung cấp phần cứng khác để dự phòng không?
- Có cần công cụ hỗ trợ nào không?
- Nếu có, liệu chúng có sẵn hay không, hay có cần toàn bộ chức năng của nó hay không?

Elaboration phase (1)

Mục tiêu:

- Min hóa các kết quả sau pha inception và requirement
- Phân tích rủi ro theo mức độ nghiêm trọng
- Mịn hóa bản phân tích kinh doanh có trong pha inception
- Xem xét lại SPMP

Elaboration phase (2)

Phương pháp:

 Sử dụng các kĩ thuật và phương pháp trong pha inception và requirement

Construction phase (1)

Mục tiêu:

 Xây dựng phiên bản đầu tiên hoạt động được của sản phẩm

Construction phase (2)

Phương pháp:

- Cài đặt
- Kiểm thử
- Làm tài liệu

Transition phase (1)

Muc tiêu:

- Đảm bảo tất cả các yêu cầu của khách hàng đã được thực hiện một cách đúng đắn
- Các lỗi đã được sửa
- Các tài liệu hướng dẫn sử dụng đã hoàn chỉnh

Capability maturity model - CMM

- Không phải một mô hình vòng đời phát triển phần mềm
- Một bộ các tiêu chuẩn đánh giá chiến lược hoàn thiện tiến trình phần mềm: SW-CMM
- Các tài liệu hướng dẫn sử dụng đã hoàn chỉnh

SW - CMM

- Ra đời năm 1986 bởi SEI
- Hoàn thiện tiến trình phần mềm
- Hoàn thiện quản lí tiến trình, hoàn thiện kĩ thuật
- Có 5 levels

Mức khởi đầu (initial):

- Các tiến trình phần mềm là không dự đoán được
- Việc quản lí chỉ bao gồm việc xử lí các rủi ro gặp phải
- → Tất cả các cty đều đạt chuẩn level 1

Mức có khả năng lặp lại (repeatable):

- Các quyết định quản lí dựa vào các dự án tương tự trước đó
- Có phương pháp đo các tiêu chí
- Kết quả dự án này có thể được dùng để ước lượng chi phí và thời gian cho các dự án tiếp theo
- Khi có lỗi xảy ra, việc khắc phục lỗi được thực hiện ngay

Mức có được định nghĩa (defined):

- Có tài liệu kĩ thuật và quản lí
- Liên tục có cố gắng để nâng cao chất lượng sản phẩm
- Việc xem xét lại luôn được thực hiện để đảm bảo chất lượng sản phẩm

Mức có được quản lí (managed):

- Chất lượng và quy trình sản xuất luôn được giám sát
- Việc điều chỉnh chất lượng sản phẩm theo kết quả thống kê cũng được thực hiện

Mức có tối ưu hóa (optimize):

- Không ngừng cải thiện: chất lượng sản phẩm theo thống kê và điều khiển quy trình phát triển
- Ghi nhận phản hồi và kinh nghiệm có được sau mỗi sản phẩn để cải tiến các sản phẩm tiếp theo

Questions?