

Model Evaluation and Metrics

Jay Urbain, PhD

Topics

- Regression
 - Assessing the accuracy of model coefficients
 - RMSE Root Mean Squared Error
- Classification
 - Confusion matrix
 - ROC Curve

Review: Assessing the accuracy of model coefficients

Linear regression with residual term. Represents what we can't explain with our model.

 $Y = \beta_0 + \beta_1 X + \epsilon.$

RSS measures the amount of variability that is left unexplained after performing the regression

RSS = $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$.

TSS (Total sum of squares) measures the total variance when measuring the response y.

 $TSS = \sum (y_i - \bar{y})^2$

 R^2 amount of variance explained by our model

 $R^2 = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$

The *RSE* is an estimate of the standard deviation of ε . It is basically the average amount that the response will deviate from the true regression line.

RSE =
$$\sqrt{\frac{1}{n-2}}$$
RSS = $\sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$.

Root Mean Squared Error

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

- Used for regression problems
- Square root of the mean of the squared errors
- Easily interpretable (in the "y" units)
- "Punishes" larger errors
- Other: absolute error

Root Mean Squared Error

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

Example:

```
y_true = [100, 50, 30]
y_preds = [90, 50, 50]
RMSE = np.sqrt((10**2 + 0**2 + 20**2) / 3) = 12.88
```

Confusion Matrix: table to describe the performance of a classifier

	Predicted:	Predicted:
n=165	NO	YES
Actual:		
NO	50	10
Actual:		
YES	5	100

Example: Test for presence of disease

NO = negative test = False = 0

YES = positive test = True = 1

- How many classes are there?
- How many patients?
- How many times is disease predicted?
- How many patients actually have the disease?

Confusion Matrix: table to describe the performance of a classifier

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP) Type I Error
- False Negatives (FN) Type II Error

Accuracy:

- Overall, how often is it **correct**?
- (TP + TN) / total = 150/165 = 0.91

Misclassification Rate (Error Rate):

- Overall, how often is it wrong?
- (FP + FN) / total = 15/165 = 0.09

Confusion Matrix: table to describe the performance of a classifier

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

True Positive Rate, Sensitivity, Recall:

- When actual value is positive, how often is prediction correct?
- TPR = TP / Actual = 100/105 = 0.95
- "True Positive Rate" or "Recall"

False Positive Rate, Fall-out:

- When actual value is negative, how often is prediction wrong?
- FPR = (FP / Actual NO) = 10/60 = 0.17

Specificity, True Negative Rate:

- When actual value is negative, how often is prediction correct?
- TNR = (TN / Actual NO) = 50/60 = 0.83

Receiver operating characteristic (ROC) Curve

- The ROC curve, is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied.
- The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings.

Receiver operating characteristic (ROC) Curve

- To draw a ROC curve, only the true positive rate (TPR) and false positive rate (FPR) are needed (as functions of some classifier parameter).
- A ROC space is defined by FPR and TPR as x and y axes, respectively, which depicts relative trade-offs between true positive (benefits) and false positive (costs).
- The best possible prediction method would yield a point in the upper left corner or coordinate (0,1) of the ROC space, representing 100% sensitivity (no false negatives) and 100% specificity (no false positives).
- The (0,1) point is also called a *perfect* classification.

- The overall performance of a classifier summarized over all possible thresholds, is given by the area under the ROC curve (AUC).
- An ideal ROC curve will hug the top left corner, so the larger the AUC the better the classifier.
- A classifier performing not better than chance would have an AUC of 0.5

ROC Space

httph///pw///wwwamanaanma/mac//roc/

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

Every email is assigned a "spam" score by our classification algorithm. To actually make our predictions, we choose a numeric cutoff for classifying as spam.

An ROC Curve will help us visualize how well our classifier is doing without having to choose a cutoff!

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

ROC Curve

https://www.dataschool.io/roc-curves-and-auc-explained/

ROC Curve

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

<u>TPR</u>: When actual value is **spam**, how often is prediction **correct**?

<u>FPR</u>: When actual value is **ham**, how often is prediction **wrong**?

Cutoff	TPR (y)	FPR (x)	Cutoff	TPR (y)	FPR (x)
0			0.50		
0.05			0.65		
0.15			0.85		
0.25			1		

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

<u>TPR</u>: When actual value is **spam**, how often is prediction **correct**?

<u>FPR</u>: When actual value is **ham**, how often is prediction **wrong**?

Cutoff	TPR (y)	FPR (x)	Cutoff	TPR (y)	FPR (x)
0	1	1	0.50	0.75	0.25
0.05	1	0.75	0.65	0.5	0
0.15	1	0.5	0.85	0.25	0
0.25	1	0.25	1	0	0

Email Number	Score	True Label
5	0.99	Spam
8	0.98	Spam
2	0.97	Spam
1	0.97	Ham
7	0.96	Spam
3	0.95	Ham
4	0.94	Ham
6	0.93	Ham

Q: Would the ROC Curve (and AUC) change if the scores changed, but the ordering remained the same?

A: Not at all! The ROC Curve is only sensitive to rank ordering and does not require calibrated scores.