MATH 232 Section 3.1 pre-lecture comments

Lecture Outline

Today we will define matrix multiplication and consider different geometric ways to understand it.

Make sure you review the dot product and recall the algebra of vectors.

New terminology

- 1. square matrix
- 2. matrix product
- 3. linearity properties
- 4. transpose

An $m \times n$ **matrix** is a rectangular array of numbers with m rows and n columns.

or, more compactly

$$A = [a_{ij}]_{m \times n}$$
 or $A = [a_{ij}]$ [a_{ij}] sism

A matrix with one row (m = 1) is a **row vector**

$$[a_{11} \ a_{12} \ \dots \ a_{1n}]$$

whereas a matrix with one column (n = 1) is a **column vector**

$$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$$

A **square** matrix has m = n.

We can think of a matrix as an ordered stack of rows

$$\vec{r}_{1} \begin{bmatrix} 1 & 3 & 4 \\ \frac{1}{2} & -2 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} -\mathbf{r}_{1} & -\mathbf{r}_{2} & -\mathbf{r}_{2} & -\mathbf{r}_{3} \\ -\mathbf{r}_{2} & -\mathbf{r}_{3} & -\mathbf{r}_{4} \end{bmatrix}$$

$$\vec{r}_{1} = \begin{bmatrix} 1 & 3 & 4 \\ 3 & 4 \end{bmatrix}$$

$$\vec{r}_{2} = \begin{bmatrix} \frac{1}{2} & -2 & 0 \end{bmatrix}$$

We can also think of a matrix as an ordered collection of columns

$$\begin{bmatrix} c_1 & c_2 & c_3 \\ c_1 & 3 & c_2 \\ c_2 & -2 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} c_1 & c_2 & \dots & c_n \\ c_1 & c_2 & \dots & c_n \\ c_1 & c_2 & \dots & c_n \end{bmatrix}$$

$$\vec{c}_1 = \begin{bmatrix} c_1 & c_2 & \dots & c_n \\ c_2 & c_2 & \dots & c_n \\ c_3 & c_4 & \dots & c_n \end{bmatrix}$$

Definition If matrices A and B have the same size and c is a scalar then

Addition
$$(A + B)_{ij} = (A)_{ij} + (B)_{ij}$$

Subtraction $(A - B)_{ij} = (A)_{ij} - (B)_{ij}$
Scalar multiplication $(cA)_{ij} = c(A)_{ij}$

If they **do not** have the same size A + B and A - B are *undefined*.

Example. Given matrices

$$A = \begin{bmatrix} 2 & 0 \\ 7 & -5 \\ 4 & 3 \end{bmatrix}, B = \begin{bmatrix} 4 & -3 & 0 \\ 1 & 5 & -1 \end{bmatrix}, C = \begin{bmatrix} 6 & 3 \\ 4 & 5 \\ 9 & 8 \end{bmatrix}$$

Evaluate A + B, A + C, C - A, and (-2)B

At B is undefined

At C =
$$\begin{bmatrix} 8 & 3 \\ 11 & 0 \\ 13 & 11 \end{bmatrix}$$

C-A= $\begin{bmatrix} 4 & 3 \\ -3 & 10 \\ 5 & 5 \end{bmatrix}$

$$(-2)B = \begin{bmatrix} -8 & 6 & 0 \\ -2 & -10 & 2 \end{bmatrix}$$

The product Ax Suppose A is an $m \times n$ matrix and x is an $n \times 1$ column vector. The product Ax is defined as

$$Ax = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} a_{11} x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1(1) + \delta(2) + (1)(3) \\ 2(1) + (1)(2) + \delta(3) \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$$
2×3

3×1

2×1

Remarks: The result of multiplication is $m \times 1$ column vector. The product is only defined when the number of columns of A is the same as the number of rows of \mathbf{x} .

There are two geometric ways to think about matrix multiplication.

Ax as dot products We can also view the product Ax as a column vector composed of dot products of row vectors of A and x:

$$A\mathbf{x} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} \vec{r}_1 & \vec{x} \\ \vec{r}_2 & \vec{x} \end{bmatrix}$$

Ax as linear combination We can also view the product Ax as a linear combination of column vectors of A:

$$A\mathbf{x} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{22} \\ \vdots \\ a_{m1} \end{bmatrix} \times_1 + \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} \times_2 + \dots + \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} \times_1$$

= x, c, +x2 c, + ... +xn cn

Example
$$\begin{bmatrix} 5 & 0 & 2 \\ -1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 10 \end{bmatrix} = \begin{bmatrix} 15 + 0 + 20 \\ -3 - 8 + 10 \end{bmatrix} = \begin{bmatrix} 35 \\ -1 \end{bmatrix}$$

$$= \begin{bmatrix} 5 \\ -1 \end{bmatrix} \cdot 3 + \begin{bmatrix} 0 \\ 4 \end{bmatrix} (-2) + \begin{bmatrix} 2 \\ 1 \end{bmatrix} (10) = \begin{bmatrix} 35 \\ -1 \end{bmatrix}$$

The product *AB* Given an $m \times n$ matrix *A* and a $n \times p$ matrix *B* the $m \times p$ matrix AB is defined as

$$AB = \begin{bmatrix} | & | & | \\ A\mathbf{c}_1(B) & A\mathbf{c}_2(B) & \dots & A\mathbf{c}_p(B) \end{bmatrix}$$

where $\mathbf{c}_1(B)$, $\mathbf{c}_2(B)$, ..., $\mathbf{c}_p(B)$ are the columns of B.

Example
$$\begin{bmatrix}
1 & 0 & -1 & -1 & 0 \\
2 & -1 & 0 & -1 & 3 \\
2 \times 3 & 1 & -4 & 2 \times 2
\end{bmatrix} = \begin{bmatrix} -2 & 4 \\
-1 & -3 \\
2 \times 2
\end{bmatrix}$$
The second of the second se

Entry $(AB)_{ii}$ The entry in row i and columns j of the product AB is the dot product of the *i*th row of A and the *j*th partial B; that is: Column $\vec{\mathbf{r}}_{i}(A) \cdot \vec{\mathbf{c}}_{i}(B).$

Example.
$$\begin{bmatrix}
4 & 0 & 5 \\
3 & -2 & 8
\end{bmatrix}
\begin{bmatrix}
1 & 10 & -2 & 0 \\
0 & 6 & 1 & 5 \\
2 & 2 & -7 & 9
\end{bmatrix} = \begin{bmatrix}
* * * * * * \\
* * * -64 * *
\end{bmatrix}$$

$$3(-2) + (2)(1) + 8(-7) = -64$$

Definition: Transpose If A is an $m \times n$ matrix, then the **transpose** of A, denoted as A^T , is the $n \times m$ matrix created by making the rows of A into columns. We can write this as $(A^T)_{ij} = (A)_{ji}$.

Example. Suppose
$$A = \begin{bmatrix} -3 & 2 & 1 \\ 0 & 2 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 8 & 7 & 1 \end{bmatrix}$. Find A^T , B^T and $B = \begin{bmatrix} 8 & 7 & 1 \end{bmatrix}$.

$$A^{T} = \begin{bmatrix} -3 & 0 \\ 2 & 2 \\ 1 & 4 \end{bmatrix}$$
3*2

$$B^{T} = \begin{bmatrix} 8 \\ 7 \\ 1 \end{bmatrix} \qquad (B^{T})^{T} = \begin{bmatrix} 8 & 7 & 1 \end{bmatrix}$$

$$3 \times 1$$

Which of the following products are defined?

Vertical?

AB
$$A^TB$$
 AB^T BA B^TA BA^T

Evaluate those products that are defined.

H AB is defined then
$$(AB)^T = B^TA^T$$