

Artificial Intelligence

Session 5: Probability & Bayes' Nets

School of Computing and Engineering University of West London, UK

Dr Massoud Zolgharni

Probability

Uncertainty

Assume the following action: Leave for the airport 90 minutes before my flight departures using the **A25**.

Will that action get me there on time?

Problems while deciding to take the action or not:

- partial observability (road state, other drivers' plans, etc.)
- noisy sensors (traffic reports)
- uncertainty in action outcomes (flat tire, etc.)
- immense complexity of modelling and predicting traffic

Hence a purely logical approach (without assumption of probabilities) either risks **falsehood**: "A25 will get me there on time"

Or leads to conclusions that are too weak for decision making:

"A25 will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters

- R in {true, false} (often write as {+r, -r})
- T in {hot, cold}
- D in $[0, \infty)$
- L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

- Associate a probability with each value
 - Temperature:

Weather:

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

P(W)

Probability Distributions

Unobserved random variables have distributions

D	1	T	7	1
1	ĺ	1		J

Т	Р
hot	0.5
cold	0.5

	-
W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Shorthand notation:

$$P(hot) = P(T = hot),$$

 $P(cold) = P(T = cold),$
 $P(rain) = P(W = rain),$

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$P(W = rain) = 0.1$$

• Must have: $\forall x \ P(X=x) \ge 0$ and $\sum_x P(X=x) = 1$

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, ... X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

• Must obey:
$$P(x_1, x_2, \dots x_n) \ge 0$$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

P	T	7	\overline{W})
	/	,	* *	/

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P	(Z	$\Gamma_{_{.}}$)

Т	Р
hot	0.5
cold	0.5

P(W)

W	Р
sun	0.6
rain	0.4

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny? 0.4
 - Probability that it's hot?
 0.5
 - Probability that it's hot OR sunny? 0.7

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional Probabilities

P(a|b) means: Probability for a "given" that b already happened

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Probabilistic Inference

- Probabilistic inference: compute a desired probability from a set of other known probabilities
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Product Rule

$$P(y)P(x|y) = P(x,y)$$

P(T|W)

Т	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

P(T,W)

Τ	W	Р
wet	sun	
dry	sun	
wet	rain	
dry	rain	

P(W)

W	Р
sun	0.8
rain	0.2

Independence

Two variables are independent if:

$$P(x,y) = P(x) P(y)$$

- their joint probability distribution factors into a product of two simpler distributions (there is no interaction between variables)
- Independence is a simplifying modeling assumption
 - What could we assume for {Coin Toss} or {Weather, Traffic, Cavity, Toothache}?

Factoring large joint distribution into smaller ones

$P(X_1)$		_P(
Н	0.5	Н
Т	0.5	Т

_	$P(X_2)$	
	Н	0.5
	Т	0.5

Coin flips are independent

Н	0.5
Т	0.5

Factoring large joint distribution into smaller ones

 $P(\text{Toothache, Cavity, Weather, Traffic}) = P(\text{Toothache, Cavity}) \times P(\text{Weather, Traffic})$

Independence

Two variables are independent if:

$$P(x,y) = P(x) P(y)$$

- their joint distribution factors into a product of two simpler distributions (there is no interaction between variables)
- Independence is a simplifying modeling assumption
 - What could we assume for {Coin Toss} or {Weather, Traffic, Cavity, Toothache}?
 - Another form (learning something about y, does not change my belief about x):

$$P(x|y) = P(x)$$

• Or:
$$P(y|x) = P(y)$$

P(Toothache, Cavity, Catch)

- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have pain:
 - P(catch | toothache, cavity) = P(catch | cavity)
- Catch is conditionally independent of Toothache given Cavity:
 - Once I know about cavity, knowing about pain does not change (add) anything
- X is conditionally independent of Y given Z if and only if:

$$P(x/z,y) = P(x/z)$$

or, equivalently, if and only if

$$P(x,y/z) = P(x/z) P(y/z)$$

- What about this domain:
 - Fire
 - Smoke
 - Alarm

$$P(x/z,y) = P(x/z)$$

 $P(alarm \mid smoke, fire) = P(alarm \mid smoke)$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

$$P(x/z,y) = P(x/z)$$

 $P(traffic \mid umbrella, rain) = P(traffic \mid rain)$

Bayes' Rule

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
- In the running for most important AI equation!

Example: building diagnostic probability from causal probability

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

Example:

M: meningitis, S: stiff neck

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)}$$

Bayes' Nets

Bayes' Nets: Big Picture

- Drawbacks with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time

- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions

Example Bayes' Net: Insurance

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables

Example: Coin Flips

N independent coin flips

 No interactions between variables: absolute independence

Example: Traffic

Variables:

R: It rains

■ T: There is traffic

Model 1: independence

Model 2: rain causes traffic

Why is an agent using model 2 better?

Example: Traffic II

Let's build a causal graphical model!

Variables

■ T: Traffic

R: It rains

L: Low pressure

■ D: Roof drips

■ W: Wimbledon

C: Cavity

Example: Alarm Network

Variables

■ B: Burglary

■ A: Alarm goes off

M: Mary calls

J: John calls

■ E: Earthquake!

Recommended reading

Stuart Russell, Peter Norvig: *Artificial Intelligence A Modern Approach*

Chapter 13

ANY Questions?

