BSP Project Description: OrbitCalc - A simplified version of the solar system

Thursday 5th October, 2023 - 13:11

Henrik Klasen

University of Luxembourg
Email: henrik.klasen.001@student.uni.lu

This report has been produced under the supervision of:

Gabriel Garcia

University of Luxembourg Email: gabriel.garcia@uni.lu

Abstract—With scientific endeavours becoming more cost intensive, there is a need to plan specific missions into minor details. For having the means to plan such missions, for example to the edge of the solar system, to the depth of the oceans and onto the surface of other celestial bodies, there has to be a computational model, which virtually has any property, any side factor and any physical property of the environment the mission planners expect to encounter. The development of one such computational model with a potential use case in space exploration is the topic of this Bachelor Semester Project. (100 words)

1. Main required competencies (44/100-200 words)

Describe in these sections the main scientific and technical competencies that is required to be known by you before starting the project. Do not describe in details this knowledge but only abstractly. All the content of this section shall not be used, even partially, in the deliverable sections. It is important not to include in this section all the knowledge you have been obliged to acquire in order to produce the deliverable. It should only state the knowledge the student possessed before starting the project and that was mandatory to possess to be capable to produce the deliverables. It explicitly defines the technical and scientific pre-condition for the project. It is also useful to avoid project failures due to over or under complex subjects.

1.1. Scientific main required competencies (44 words)

Before starting the Bachelor Semester Project, the student had some experience in orbital mechanics, which includes the basics of (gravitational) force vectors.

Next to that, the student had some experience in constructing

mathematical and physical models with certain simplifications for computational ease.

1.2. Technical main required competencies

2. A computational model for a solar system simulation (0/800 words)

The description of what will be presented in the scientific deliverables section of the final report. This section must present and be based on a state of the art of the topics addressed by the scientific part of the project.

3. Implementation of a virtual solar system (0/800 words)

The description of what will be presented in the technical deliverables section of the final report. This section must present and be based on a state of the art of the topics addressed by the technical aspects of the project.

4. Plagiarism statement

I declare that I am aware of the following facts:

- As a student at the University of Luxembourg I must respect the rules of intellectual honesty, in particular not to resort to plagiarism, fraud or any other method that is illegal or contrary to scientific integrity.
- My report will be checked for plagiarism and if the plagiarism check is positive, an internal procedure will be started by my tutor. I am advised to request a pre-check by my tutor to avoid any issue.
- As declared in the assessment procedure of the University of Luxembourg, plagiarism is committed whenever the source of information used in an assignment, research report, paper or otherwise

published/circulated piece of work is not properly acknowledged. In other words, plagiarism is the passing off as one's own the words, ideas or work of another person, without attribution to the author. The omission of such proper acknowledgement amounts to claiming authorship for the work of another person. Plagiarism is committed regardless of the language of the original work used. Plagiarism can be deliberate or accidental. Instances of plagiarism include, but are not limited to:

- Not putting quotation marks around a quote from another person's work
- Pretending to paraphrase while in fact quoting
- 3) Citing incorrectly or incompletely
- 4) Failing to cite the source of a quoted or paraphrased work
- Copying/reproducing sections of another person's work without acknowledging the source
- 6) Paraphrasing another person's work without acknowledging the source
- Having another person write/author a work for oneself and submitting/publishing it (with permission, with or without compensation) in one's own name ('ghost-writing')
- 8) Using another person's unpublished work without attribution and permission ('stealing')
- Presenting a piece of work as one's own that contains a high proportion of quoted/copied or paraphrased text (images, graphs, etc.), even if adequately referenced

Auto- or self-plagiarism, that is the reproduction of (portions of a) text previously written by the author without citing that text, i.e. passing previously authored text as new, may be regarded as fraud if deemed sufficiently severe.

References

- [BiCS(2021)] BiCS Bachelor Semester Project Report Template. https://github.com/nicolasguelfi/lu.uni.course.bics.global University of Luxembourg, BiCS - Bachelor in Computer Science (2021).
- [BiCS(2021)] Bachelor in Computer Science: BiCS Semester Projects Reference Document. Technical report, University of Luxembourg (2021)
- [Armstrong and Green(2017)] J Scott Armstrong and Kesten C Green. Guidelines for science: Evidence and checklists. *Scholarly Commons*, pages 1–24, 2017. https://repository.upenn.edu/marketing_papers/181/

5. Appendix

All images and additional material go there.

5.1. Source Code

The following environment shows the correct and mandatory way to insert your code.

Listing 1: Caption example.

```
import numpy as np
2
    def incmatrix(genl1,genl2):
3
        m = len(genl1)
        n = len(genl2)
        M = None #to become the incidence matrix
        VT = np.zeros((n*m,1), int) #dummy variable
        #compute the bitwise xor matrix
        M1 = bitxormatrix(genl1)
10
        M2 = np.triu(bitxormatrix(genl2),1)
11
12
        for i in range(m-1):
13
            for j in range(i+1, m):
14
                 [r,c] = np.where(M2 == M1[i,j])
15
                 for k in range(len(r)):
                     VT[(i)*n + r[k]] = 1;
                     VT[(i)*n + c[k]] = 1;

VT[(j)*n + r[k]] = 1;
                     VT[(j)*n + c[k]] = 1;
20
21
                     if M is None:
22
                          M = np.copy(VT)
23
                     else:
24
                          M = np.concatenate((M, VT), 1)
25
                     VT = np.zeros((n*m,1), int)
27
28
        return M
29
```