

Московский Государственный Университет имени М.В.Ломоносова Факультет вычислительной математики и кибернетики Кафедра алгоритмических языков

Отчет о выполнении задания практикума

Вариант «Система управления инвестиционным портфелем»

Лебедев Андрей Алексеевич Группа 424

Содержание

1	Постановка задачи	3
2	Диаграмма классов	6
3	Текстовые спецификации основных классов	g
4	Диаграмма объектов	10
5	Инструментальные средства	11
6	Файловая структура	12
7	Пользовательский интерфейс	13

1 Постановка задачи

Уточнение постановки задачи

- Разработать программную систему, осуществляющую имитационное моделирование процесса или явления и визуализирующую этот процесс или явление.
- Использовать для создания системы один из объектноориентированных языков программирования (в данном случае Python).
- Провести с помощью разработанной системы исследование поведения моделируемого процесса, задавая для этого различные значения параметров, от которых зависит этот процесс.

Основные требования к системе

- Система должна быть спроектирована на основе методологии объектно-ориентированного программирования, т.е. должна быть представлена в виде совокупности взаимодействующих друг с другом объектов, причём каждый объект является экземпляром определённого класса, а классы образуют иерархию. В ходе объектно-ориентированного проектирования необходимо определить и зафиксировать логическую структуру (классы и объекты) и файловую (модульную) структуру системы.
- Система должна предоставлять удобный и понятный пользовательский интерфейс, предусматривающий проведение экспериментов по моделированию и отображение необходимой информации.
- Для проведения экспериментов по моделированию перед началом каждого эксперимента пользователь должен иметь возможность устанавливать нужные значения параметров, от которых зависит этот процесс или явление. Такие параметры называются параметрами моделирования, в их числе шаг моделирования, т.е. отрезок времени, измеряемый в тех или иных единицах времени (секундах, минутах, днях и пр.), и/или число шагов моделирования.
- Поскольку в большинстве вариантов задания моделируемый процесс или явление зависит от нескольких неопределённых факторов, следует моделировать такие факторы статистически— на основе одного

из законов вероятностного распределения (равномерного, нормального и др.).

Вариант: Система управления инвестиционным портфелем

- Разрабатываемая система реализует экономическую игру, участник которой менеджер, управляющий работой инвестиционного фонда. Фонд осуществляет различные вложения собранных денежных средств с целью получения прибыли. Возможны вложения в:
 - срочные депозиты банков (валютные и рублёвые);
 - драгоценные металлы (золотые слитки и др.);
 - государственные облигации;
 - акции предприятий.

Все эти виды вложений различаются доходностью и риском (обычно доход пропорционален риску).

- В начале игры устанавливается общий капитал фонда (например, 560 тыс. у.е.), и определяется его портфель какая часть капитала куда будет вложена. В портфеле не обязательно присутствуют все виды вложений; допускается несколько вложений одного типа.
- Также в начале игры задаётся внешняя конъюнктура: известны доступные виды вложений и их условия (процент по депозиту, цена акций и т.п.).
- Игра моделирует работу фонда в течение M месяцев ($12 \le M \le 30$). Шаг моделирования один месяц. В конце каждого месяца выполняются следующие действия:
 - 1. Расчёт доходности по всем элементам портфеля, определение прибыли и процента доходности.
 - 2. Выплата налога на прибыль фонда (например, 17% от суммы прибыли).
 - 3. Учёт новых поступивших денежных средств (например, от продажи паёв).
 - 4. Учёт расходов (например, возврат паёв держателями).

- 5. Реструктуризация портфеля с учётом изменённого капитала и новой внешней конъюнктуры.
- Операции (1) и (2) выполняются автоматически, операция (5) игроком, а (3) и (4) могут выполняться как автоматически, так и вручную. Прибыль фонда влияет на количество вложений в него: при высокой доходности приток капитала, при отрицательной отток.
- Доходность по вкладам и облигациям известна заранее, доходность по акциям и металлам зависит от внешней конъюнктуры, которая моделируется случайным образом по законам распределения.
- Цель моделирования выявление стратегий и структуры портфеля, позволяющих устойчиво увеличивать капитал фонда.
- Параметры, задаваемые пользователем: число месяцев M, исходный капитал, начальная структура портфеля, налоговая ставка, параметры волатильности рыночной конъюнктуры.
- На каждом шаге игроку доступны текущие данные по фонду: суммарный капитал, доходность по каждому активу, обновлённые условия внешней среды. По окончании игры отображается статистика за весь период (например, динамика капитала, структура доходов).

2 Диаграмма классов

В данном разделе представлены три диаграммы, отражающие архитектуру разработанной системы. Каждая из них отображает логически обособленную часть модели, что позволяет сделать представление более наглядным.

2.1 Архитектура игровой модели

На данной диаграмме показано взаимодействие основных компонентов симуляции: игровых объектов (Game, Player, Fund, Portfolio) и структуры инвестиций. Отражена связь между решениями игрока (PlayerPurchase, Purchase) и реальными инвестициями, входящими в портфель.

Рис. 1: Диаграмма классов: архитектура игровой модели

2.2 Рыночная среда и внешняя конъюнктура

В данной диаграмме представлено, как формируется и обновляется рыночная информация в процессе моделирования. Схема охватывает классы конфигурации (MarketConfig, Config), структуру рыночных данных и механизм обновления внешней конъюнктуры (ExternalConj, ExternalConjData).

Рис. 2: Диаграмма классов: рыночная среда и внешняя конъюнктура

2.3 Графический интерфейс пользователя

Диаграмма иллюстрирует архитектуру пользовательского интерфейса. Показано, как главное окно (*PlayWindow*) управляет вкладками, отображающими состояние портфеля и меню покупки, а также как интерфейс взаимодействует с бизнес-логикой (*Fund*, Market, ExternalConj).

Рис. 3: Диаграмма классов: структура интерфейса пользователя

3 Текстовые спецификации основных классов

Ниже представлены фрагменты конструкторов ключевых классов, реализующих основную игровую логику.

Листинг 1: Класс Game

```
class Game:
1
      def __init__(self , max_months: int , fund: Fund, external_conj:
2
      ExternalConj, player: Player) -> None:
           self.current\_month = 1
           self.max months = max months
           self.fund = fund
           self.external conj = external conj
           self.player = player
           self.statistics = []
                              Листинг 2: Класс Fund
  class Fund:
      def __init__(self, capital: float, tax_rate: float, portfolio: Portfolio)
2
           self.capital = capital
3
           self.tax\_rate = tax\_rate
           self.portfolio = portfolio
5
           self.monthly\_profit = 0.0
6
                              Листинг 3: Класс Player
  class Player:
      def __init__(self , player_name: str) -> None:
2
           self.player name = player name
                            Листинг 4: Класс Portfolio
  class Portfolio:
      def __init__(self) -> None:
2
           self.investments = [] # Cnucoκ οδσεκποε Investment
                             Листинг 5: Класс Market
  class Market:
      def __init__(self , config_path: str):
2
           self.config = self.load market config(config path)
           self.stocks = self.config.stocks
4
           self.banks = self.config.banks
5
           self.metals = self.config.metals
           self.bonds = self.config.bonds
```

4 Диаграмма объектов

Рис. 4: Пример взаимодействия объектов в процессе моделирования

5 Инструментальные средства

• Язык программирования: Python 3.12

• GUI-библиотека: PyQt5

• Доп. библиотеки: matplotlib, pydantic, yaml, random

• IDE: VS Code

• Система контроля версий: Git

6 Файловая структура

- main.py точка входа в программу.
- core/ реализация логики фонда, игрока, игры, моделей.
- \bullet investments/ классы для всех типов инвестиций.
- \bullet trading_market/ управление рынком и доступными активами.
- \bullet configs/ YAML-файлы с настройками рынка и волатильности.
- \bullet gui/ интерфейс пользователя: окна, графики, вкладки.

7 Пользовательский интерфейс

Разработанная система обладает графическим пользовательским интерфейсом, реализованным с использованием библиотеки PyQt5. Интерфейс разделён на три основных окна: окно настройки игры, окно с меню покупки и вкладкой визуализации портфеля.

7.1 Окно настройки игры

На стартовом экране пользователь задаёт ключевые параметры игры: стартовый капитал, налоговую ставку, длительность, а также формирует начальный инвестиционный портфель, распределяя средства между активами.

Рис. 5: Интерфейс: окно настройки игры

7.2 Меню управления портфелем

После запуска игры открывается главное окно управления инвестициями. Пользователь может перейти на вкладку Mеню noкуnкu, где доступно

изменение структуры портфеля: покупка или продажа активов по текущим рыночным условиям.

Рис. 6: Интерфейс: меню для реализации инвестиций

7.3 Вкладка «Портфель и графики»

На отдельной вкладке отображается текущее состояние инвестиционного портфеля, а также графики изменения стоимости портфеля и рыночных условий. Это позволяет пользователю отслеживать динамику доходности и корректировать стратегию.

Рис. 7: Интерфейс: графическая визуализация портфеля и рыночных данных

7.4 Панель управления симуляцией

В верхней части главного окна располагается панель с кнопками управления ходом моделирования:

- Следующий месяц выполняет симуляцию следующего временного шага и обновляет состояние портфеля и графиков.
- До конца запускает симуляцию всех оставшихся месяцев.
- **Новая игра** возвращает пользователя в окно начальной настройки и позволяет запустить симуляцию с новыми параметрами.
- Выход завершает работу приложения.

Эти кнопки доступны независимо от выбранной вкладки и обеспечивают удобное управление процессом моделирования.

7.5 Финальная статистика

По завершении симуляции пользователь может перейти на вкладку Финальная статистика, где доступна подробная таблица с результатами моделирования. Статистика может быть представлена в двух режимах: сводка по активам и помесячно. Таблица содержит данные по каждому активу: его доходность, стоимость и изменения за каждый месяц.

Рис. 8: Интерфейс: финальная статистика по результатам моделирования