1.3. Grupos de permutaciones

Sea X un conjunto no vacío, se llama **grupo simétrico** (S_X, \circ) al grupo formado por las aplicaciones biyectivas en X, con la operación composición de aplicaciones. En particular si $X = \{1, 2, 3, \dots, n\}$ el grupo se nota por (S_n, \circ) y se denomina **grupo de permutaciones**.

Todo elemento del grupo (S_n, \circ) recibe el nombre de **permutación**.

Sea $\sigma \in S_n$, se dice que σ es un **ciclo** de longitud r si existen $a_0, \dots, a_{r-1} \in \{1, \dots, n\}$ tales que $\sigma(a_0) = a_1, \ \sigma(a_1) = a_2, \dots, \sigma(a_{r-2}) = a_{r-1}, \ \sigma(a_{r-1}) = a_0, \ \text{y para todo } k \in \{1, \dots, n\} \text{ tal que } k \notin \{a_0, \dots, a_{r-1}\}$ se verifica que $\sigma(k) = k$. La notación de dicho ciclo es $\sigma = (a_0, a_2, \dots, a_{r-1})$.

Dos ciclos $\sigma \in S_n$ y $\tau \in S_n$ se dice que son **disjuntos** si ninguno de los elementos del conjunto $\{1, 2, ..., n\}$ aparece en la notación de ambos. Los ciclos de longitud 2 se denominan **transposiciones**.

Propiedades

Dado un ciclo $\sigma = (a_0, a_1, \dots, a_{r-1}) \in S_n$, se verifica que:

- 1. $\sigma^k(a_i) = a_{(i+k) \mod r}, \forall i \in \{0, \dots, r-1\}, k \in \mathbb{N}$
- 2. $|\sigma| = r$
- 3. $\sigma^{-1} = (a_{r-1}, \cdots, a_1, a_0)$
- 4. Si $\sigma, \tau \in S_n$ son dos ciclos disjuntos entonces $\sigma \tau = \tau \sigma$.
- 5. Si σ y τ son ciclos disjuntos, entonces $|\sigma\tau| = \text{mcm}\{|\sigma|, |\tau|\}$

Formas de expresar una permutación

- 1. Toda permutación $\sigma \in S_n$ se puede expresar como **producto de ciclos disjuntos**.
- 2. Toda permutación $\sigma \in S_n$, con $n \ge 2$, se puede expresar como **producto de transposiciones**.

Paridad de una permutación

Una **permutación** de S_n es **par** o **impar** según pueda ser expresada como el producto de un número par o de un número impar de transposiciones respectivamente.

La paridad de una permutación está bien definida

- 1. Sean τ_1, \dots, τ_r transposiciones de S_n tales que $e = \tau_1 \tau_2 \dots \tau_r$. Entonces $r \equiv 0 \mod 2$.
- 2. Si $\sigma \in S_n$ se puede expresar como producto de r transposiciones y como producto de s transposiciones entonces $r \equiv s \mod 2$.

El grupo alternado

Sean $n \ge 2$ y A_n el conjunto de todas las permutaciones pares de S_n . Entonces:

$$A_n \le S_n$$
 y $|A_n| = \frac{n!}{2}$

El grupo (A_n, \circ) se denomina **grupo alternado**.

1.3.19. Problemas

1. Escribir cada una de las siguientes permutaciones como producto de ciclos disjuntos y como producto de transposiciones:

- 2. Escribir como producto de ciclos disjuntos: a) $\sigma \tau$, b) $\sigma \tau^2$, c) $\sigma^2 \mu$, d) $\tau \sigma^{-2}$, e) $\sigma \tau \sigma^{-1}$, siendo $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$, $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$, $\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 4 & 3 & 1 & 6 \end{pmatrix} \in S_6$
- 3. a) ¿Cuál es el orden del ciclo $(1,4,5,7) \in S_8$?
 - b) ¿Cuál es el orden de $\sigma = (4,5)(2,3,7)$ y de $\tau = (1,4)(3,5,7,8)$ en S_8 ?
 - c) Expresar como producto de ciclos disjuntos y obtener el orden: $\nu_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1 \end{pmatrix}$, $\nu_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7 \end{pmatrix}$, $\nu_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 4 & 7 & 2 & 5 & 8 & 6 \end{pmatrix}$, $\nu_4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3 \end{pmatrix}$
- 4. Demostrar que A_8 contiene un elemento de orden 15
- 5. a) Sea $\beta=(1,3,5,7,9,8,6)(2,4,10)$. ¿Cuál es el menor entero positivo $n\in\mathbb{N}$ tal que $\beta^n=\beta^{-5}$
 - b) Si $\alpha = (1, 3, 5, 7, 9)(2, 4, 6)(8, 10)$ y α^m es ciclo de longitud 5 ¿qué puede decirse sobre m?
- 6. Se disponen 20 cartas numeradas en 5 filas de 4 columnas. En cada paso, se recogen las cartas en orden por filas y se vuelven a colocar empezando por la última recogida, pero por columnas. ¿Cuántas veces hay que repetir este proceso hasta que las cartas aparezcan en la posición inicial?
- 7. ¿Cuales de los siguientes son subgrupos de S_5 ? $X_a = \{(1,2,3,4,5), (1,2,4)(3,5)\},$ $X_b = \{(1), (1,2,3,4,5), (1,3,5,2,4), (1,4,2,5,3), (1,5,4,3,2)\},$ $X_c = \{(1), (1,2)(3,4,5), (1,3,5)(2,4), (1,5,3,2,4), (1,2)(4,5), (1,3,4)(2,5), (1,4,3)(2,5)\}.$
- 8. Se considera el grupo $S_3 = \{\rho_0, \rho_1 = (1, 2, 3), \rho_2 = (1, 3, 2), \mu_1 = (2, 3), \mu_2 = (1, 3), \mu_3 = (1, 2)\}$
 - a) Encontrar los subgrupos cíclicos $\langle \rho_1 \rangle$, $\langle \rho_2 \rangle$ y $\langle \mu_1 \rangle$ de S_3
 - b) Encontrar todos los subgrupos de S_3 y elaborar con ellos un diagrama de Hasse.
 - c) Encontrar las permutaciones pares y construir la tabla de A_3 .
- 9. Encontrar los tres elementos $\alpha_1, \alpha_2, \alpha_3 \in S_4$ tales que, expresados en forma de producto de ciclos disjuntos, se componen de dos ciclos de longitud 2. Comprobar que $K = \{e, \alpha_1, \alpha_2, \alpha_3\}$ es un subgrupo de S_4 describiendo su tabla. Construir su diagrama de Cayley.
- 10. Sea $\tau = (a_0, a_1, ..., a_{k-1})$ un ciclo de longitud k
 - a) Demostrar que para cualquier permutación σ , se verifica que $\sigma\tau\sigma^{-1}=(\sigma(a_0),\sigma(a_1),...,\sigma(a_{k-1}))$
 - b) Demostrar que para todo μ , ciclo de longitud k, existe σ tal que $\sigma\tau\sigma^{-1}=\mu$
- 11. Demostrar que una permutación es par si y sólo si puede expresarse como composición de 3—ciclos (no necesariamente disjuntos).