Formale Sprachen und Automaten Prof. Dr. Uwe Nestmann - 23. Juni 2020

Schriftlicher Test

Studierendenidentifikation:

NACHNAME	
VORNAME	
Matrikelnummer	
STUDIENGANG	□ Informatik Bachelor, □

Aufgabenübersicht:

AUFGABE	SEITE	Punkte	Themenbereich
1	3	19	MODELLE REGULÄRER SPRACHEN
2	4	16	Untermengen-Konstruktion
3	5	22	MINIMIERUNG EINES DFA
4	6	17	Grenzen Regulärer Sprachen
5	7	11	Modelle Kontextfreier Sprachen I
6	8	15	Modelle Kontextfreier Sprachen II

Zwei Punkte in diesem Test entsprechen einem Portfoliopunkt.

Korrektur:

AUFGABE	1	2	3	4	5	6	\sum
PUNKTE	19	16	22	17	11	15	100
ERREICHT							
Korrektor							
EINSICHT							

Aufgabe 1: Modelle Regulärer Sprachen

(19 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b\}$, die reguläre Sprache $A_1 \triangleq \{b^m a, b^m b a^l, b^l a^m b \mid m \in \mathbb{N} \land l \in \mathbb{N}^+ \}$, die reguläre Grammatik $G_2 \triangleq (\{ S, T, U \}, \Sigma, P_2, S) \text{ und der DFA } M_3 \triangleq (\{ q_0, q_1, q_2, q_3 \}, \Sigma, \delta_3, q_0, \{ q_0 \}) \text{ mit: }$

a. (**, 4 Punkte) Gib einen NFA M_1 mit $L(M_1) = A_1$ an.

b. (**, 4 Punkte) *Gib* eine Typ-3 Grammatik G_1 mit $L(G_1) = A_1$ an.

c. (**, 3.5 Punkte) Gib die Ableitung des Wortes aababa in G_2 an.

d. (***, 3 Punkte) $Gib L(G_2)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

e. (**, 2.5 Punkte) Gib die Ableitung des Wortes bbaa in M_3 an.

f. (***, 2 Punkte) $Gib L(M_3)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 2: Untermengen-Konstruktion

(16 Punkte)

Gegeben sei der NFA $M \triangleq (\{\ q_0,\ q_1,\ q_2,\ q_3,\ q_4,\ q_5\ \},\ \Sigma,\ \Delta,\ \{\ q_0,\ q_3\ \},\ \{\ q_5\ \})$ mit $\Sigma = \{ a, b \} \text{ und } \Delta$:

a. (**, 13 Punkte) Konstruiere nur mit Hilfe der Untermengen-Konstruktion den DFA M'zum NFA *M*. *Gib* die bei der Untermengen-Konstruktion entstehende (optimierte) Tabelle sowie das Tupel des entstehenden Automaten M' an.

Hinweis: Es ist nicht nötig die Übergangsfunktion δ' von M' (graphisch) anzugeben.

b. (***, 3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 3: Minimierung eines DFA

(22 Punkte)

Gegeben sei der DFA $M \triangleq (Q, \Sigma, \delta, q_5, \{q_3\})$ mit $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$, $\Sigma = \{a, b\}$ und δ :

- a. (**, 1 Punkt) Gib an: Welche Zustände sind nicht erreichbar?
- b. (**, 9 Punkte) *Gib an:* Fülle die folgende Tabelle entsprechend des Table-Filling-Algorithmus zum Minimieren von DFAs mit Kreuzen (x) und Kreisen (o) aus. *Hinweis: Bitte streiche zunächst alle Zeilen und Spalten für nicht erreichbare Zustände, falls es solche Zustände in M gibt. Die zweite Tabelle ist ein Ersatz für Verschreiber.*

c. (**, 4 Punkte) Die Minimierung unterteilt Q in Äquivalenzklassen. Gib alle Äquivalenzklassen an, die sich aus der Tabelle ergeben.

Hinweis: Die Namen der Klassen in der Form $[\dots]$ genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[\dots] = \{\dots\}$, angegeben werden.

- d. (**, 5 Punkte) Gib den minimierten DFA M' an.
- e. (***, 3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Matrikelnummer:	Name:
	i vante:

Aufgabe 4: Grenzen Regulärer Sprachen

(17 Punkte)

Gegeben sei das Alphabet $\Sigma \triangleq \{a, b, c\}.$

a. (***, 11 Punkte) Beweise nur mit Hilfe des Pumping Lemmas, dass die Sprache $A_1 \triangleq \left\{ \ a^j b^k c^l a^m \mid k, l, m \in \mathbb{N} \land j \in \left\{ \ 0, \ 1 \ \right\} \land k \ \mathrm{mod} \ 2 \neq j \land k > m \ \right\}$ nicht regulär ist.

b. (***, 6 Punkte) Gib alle Myhill-Nerode Äquivalenzklassen für die Sprache $A_2 \triangleq \{ \ xb^n \mid x \in \{ \ a, \ c \ \}^* \land n \in \mathbb{N} \land |x|_c = 2n \ \}$ an.

Hinweis: Die Namen der Klassen in der Form $[\dots]$ genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[\dots] = \dots$, angegeben werden.

Aufgabe 5: Modelle Kontextfreier Sprachen I

(11 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{\ a,\ b,\ c\ \}$ und die kontextfreie Sprache

$$A \triangleq \left\{ a^{2n} (bc)^m x \mid n, m \in \mathbb{N}^+ \land x \in \{ c, b \}^* \land |x| = n \right\}$$

a. (**, 5 Punkte) Gib eine Typ-2 Grammatik G mit L(G)=A an.

b. (**, 6 Punkte) Gib einen PDA M mit $L_{End}(M) = L_{Kel}(M) = A$ an.

Aufgabe 6: Modelle Kontextfreier Sprachen II

(15 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b, c\}$ und der PDA $M \triangleq (\{q_0, q_1, q_2, q_3\}, \Sigma, \{\Box, +, \bullet\}, \Box, \Delta, q_2, \{q_3\})$ mit Δ :

a. (*, 2.5 Punkte) Gib eine Ableitung von abcc in M an, die zeigt, dass $abcc \in L_{End}(M)$.

b. (***, 2 Punkte) $Gib \ L_{End}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

c. (*, 3,5 Punkte) Gib eine Ableitung von ababcc in M an, die zeigt, dass $ababcc \in L_{Kel}(M)$.

d. (***, 3 Punkte) $Gib \ L_{Kel}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

e. (**, 4 Punkte) Beweise nur mit Hilfe von Abschlusseigenschaften, dass die Sprache $A \triangleq \{ \ a^{n+1}b^n \mid n \in \mathbb{N} \ \}$ nicht regulär ist.

Hinweis: Es darf ohne Beweis benutzt werden, dass L(e) für einen regulären Ausdruck e regulär und $B \triangleq \{ a^n b^{n+1} \mid n \in \mathbb{N} \}$ nicht regulär aber kontextfrei ist. Sprachen L(e) für reguläre Ausdrücke e sowie Operationen auf Mengen müssen nicht berechnet oder umgeformt werden.

Matrikelnummer:	Name:	
Auf dieser Seite löse ic	n einen Teil der Aufgabe <u> </u> :	
Teilaufgabe:		

Matrikelnummer: _	Name:	
Auf dieser Seite lös	se ich einen Teil der Aufgabe — :	
	se ich enten der Aufgabe	
Teilaufgabe:		