# Supporting information for Dynamical Correlation Effects on Photoisomerization: Ab Initio Multiple Spawning Dynamics with MS-CASPT2 for a Model *trans*-Pronated Schiff Base

Lihong Liu $^{1,\,2,\,3}$ , Jian Liu $^{1,\,3,4}$  and Todd J. Martinez $^{1,\,3,\,\dagger}$ 

- 1. Department of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, USA
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- 3. SLAC National Accelerator Laboratory, Menlo Park, California 94309, USA.
- 4. Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

This document contains geometries in Cartesian coordinates and energies (in Angstrom and Hartree, respectively), optimized using state-averaged complete active space self-consistent-field theory<sup>1-2</sup> (SA-CASSCF) and multi-reference complete active space self-consistent-field second order perturbation theory<sup>3</sup> (MS-CASPT2). State averaging is performed over the lowest three singlet states with equal weighting, the active space contains six electrons in six orbitals, and the 6-31 and 6-31G\* basis sets<sup>4-5</sup> have been used. All of the calculations are performed using Molpro2006.2,<sup>6</sup> including local modifications to calculate analytic nonadiabatic coupling vectors for MSPT2 wavefunctions. The package HDF\_free (which is based on Molpro2006.2 and FMS90) is used for the dynamic simulation. Finally, we give a brief summary of seam space nudged elastic band method (SS-NEB).<sup>7</sup>

## **Summary of Contents:**

| Tables S1-S3   | Geometries of optimized S <sub>0</sub> minima for <i>trans</i> -PSB3       |
|----------------|----------------------------------------------------------------------------|
| Tables S4-S6   | Geometries of optimized S <sub>0</sub> minima for <i>cis</i> -PSB3         |
| Tables S7-S11  | Geometries of optimized S <sub>1</sub> minima for PSB3                     |
| Tables S12-S22 | Optimized MECI(S <sub>1</sub> /S <sub>0</sub> ) geometries for PSB3        |
| Table S23      | Relative energies for PSB3 with CASSCF and MSPT2                           |
| Table S24-S25  | Detailed Topography Parameters for CI Seams in Figs 4/5                    |
| Figure S1      | $S_0/S_1/S_2$ charge distributions for <i>trans</i> -PSB3 at $S_0$ minimum |
| Figure S2      | Twist angle and BLA trace along time at different levels                   |
| Section S1     | Brief summary of SS-NEB                                                    |
|                |                                                                            |

<sup>†</sup> Author to whom correspondence should be addressed. Electronic mail:

**Table S1.** *trans*-PSB3  $S_0$  state, SA3-CASSCF(6,6)/6-31G  $E(S_0)$ = -248.16906212;  $E(S_1)$ = -247.98872740;  $E(S_2)$ = -247.96080158

| С | -6.0192702 | -0.7185904 | -0.0592481 | 8 8 4                |
|---|------------|------------|------------|----------------------|
| C | -4.6640071 | -0.7396361 | 0.0078880  | C1 144 C3 141 C5     |
| H | -6.5730076 | 0.2006016  | -0.0945302 | 1.36 C2 1.37 C4 1.30 |
| H | -6.5892532 | -1.6249176 | -0.0800091 | 8 8                  |
| H | -4.1437760 | -1.6787369 | 0.0415145  | •                    |
| C | -3.8766723 | 0.4637196  | 0.0366550  |                      |
| C | -2.5085577 | 0.4890888  | 0.1041349  |                      |
| H | -4.4128900 | 1.3972191  | 0.0022517  |                      |
| H | -1.9471799 | -0.4260184 | 0.1396261  |                      |
| C | -1.8152353 | 1.7206859  | 0.1280460  |                      |
| H | -2.3706433 | 2.6387237  | 0.0928148  |                      |
| N | -0.5231805 | 1.8349417  | 0.1910250  |                      |
| H | -0.0734009 | 2.7271963  | 0.2057473  |                      |
| H | 0.0789281  | 1.0364048  | 0.2275579  |                      |
|   |            |            |            |                      |

**Table S2.** trans-PSB3 S<sub>0</sub> state, SA3-MS-CASPT2(6,6)/6-31G  $E(S_0)$ = -248.659212029;  $E(S_1)$ = -248.505173325;  $E(S_2)$ = -248.461213538

| С | -6.0483538 | -0.7287346         | -0.0607687 |
|---|------------|--------------------|------------|
| C | -4.6768375 | -0.7604095         | 0.0073764  |
| H | -6.6013608 | 0.2110914          | -0.0959540 |
| H | -6.6407138 | -1.6406081         | -0.0824934 |
| H | -4.1501190 | <b>-1.</b> 7161053 | 0.0413955  |
| C | -3.8880122 | 0.4564575          | 0.0362771  |
| С | -2.4969358 | 0.4847292          | 0.1048613  |
| H | -4.4338968 | 1.4063407          | 0.0013577  |
| H | -1.9244671 | -0.4455431         | 0.1410750  |
| C | -1.8117133 | 1.7294880          | 0.1281360  |
| H | -2.3758782 | 2.6632237          | 0.0922391  |
| N | -0.4852844 | 1.8541456          | 0.1926488  |
| H | -0.0334313 | 2.7676254          | 0.2071861  |
| H | 0.1288584  | 1.0389814          | 0.2301368  |



**Table S3.** trans-PSB3 S<sub>0</sub> state, SA3-MS-CASPT2(6,6)/6-31G\*  $E(S_0)$ = -248.982323697;  $E(S_1)$ = -248.825737690;  $E(S_2)$ = -248.783168790

| С | -6.0198267 | -0.7048615         | -0.0595385 |
|---|------------|--------------------|------------|
| С | -4.6586598 | -0.7570852         | 0.0082853  |
| Н | -6.5525669 | 0.2418611          | -0.0938575 |
| H | -6.6227442 | -1.6063074         | -0.0818053 |
| Н | -4.1420690 | <b>-1.</b> 7137199 | 0.0418953  |
| С | -3.8768935 | 0.4467655          | 0.0368417  |
| С | -2.4949466 | 0.4714456          | 0.1050268  |
| H | -4.4173308 | 1.3940486          | 0.0021107  |
| H | -1.9191899 | -0.4518432         | 0.1412697  |
| C | -1.8315843 | 1.7097193          | 0.1273575  |
| H | -2.3980256 | 2.6381704          | 0.0914643  |
| N | -0.5218776 | 1.8477007          | 0.1909060  |
| H | -0.0813215 | 2.7667388          | 0.2049976  |
| H | 0.0988889  | 1.0380496          | 0.2285203  |
|   |            |                    |            |



| -6.1682167         | 0.4316199                                                                                                               | 1.0013900  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|------------|
| -4.8300110         | 0.4575223                                                                                                               | 1.2240710  |
| -6.5770779         | 0.4147964                                                                                                               | 0.0091602  |
| -6.8683912         | 0.4261405                                                                                                               | 1.8116627  |
| -4.4771205         | 0.4731887                                                                                                               | 2.2377686  |
| -3.8848267         | 0.4643892                                                                                                               | 0.1335775  |
| -2.5132622         | 0.4897199                                                                                                               | 0.1899502  |
| <b>-4.</b> 3137719 | 0.4474700                                                                                                               | -0.8515460 |
| -1.9600519         | 0.4911726                                                                                                               | -0.7303931 |
| -1.7765244         | 0.5143264                                                                                                               | 1.3983976  |
| -2.2794970         | 0.5139269                                                                                                               | 2.3443082  |
| -0.4792096         | 0.5384294                                                                                                               | 1.4475835  |
| 0.0153155          | 0.5554829                                                                                                               | 2.3160784  |
| 0.0827915          | 0.5410102                                                                                                               | 0.6190916  |
|                    | -6.5770779 -6.8683912 -4.4771205 -3.8848267 -2.5132622 -4.3137719 -1.9600519 -1.7765244 -2.2794970 -0.4792096 0.0153155 | -4.8300110 |



**Table S5.** *cis*-PSB3 S<sub>0</sub> state, SA3-MS-CASPT2(6,6)/6-31G  $E(S_0)$ = -248.648214403;  $E(S_1)$ = -248.501656501;  $E(S_2)$ = -248.444383957

|   |                    |           |            | $\sim$ |
|---|--------------------|-----------|------------|--------|
| С | -6.1892827         | 0.4309869 | 1.0044910  | 1.39   |
| С | -4.8405782         | 0.4573800 | 1.2323606  |        |
| H | -6.6006987         | 0.4141857 | -0.0050795 |        |
| H | -6.9075135         | 0.4256286 | 1.8207048  | 1.37   |
| H | -4.4766677         | 0.4734802 | 2.2609528  |        |
| С | -3.8949384         | 0.4641574 | 0.1225517  |        |
| С | -2.5078641         | 0.4897384 | 0.1751276  |        |
| H | -4.3401542         | 0.4468485 | -0.8754075 |        |
| H | -1.9430858         | 0.4912891 | -0.7591798 |        |
| С | <b>-1.</b> 7697133 | 0.5145330 | 1.4015067  |        |
| H | -2.2827287         | 0.5141902 | 2.3630264  |        |
| N | -0.4492948         | 0.5389933 | 1.4558437  |        |
| H | 0.0497498          | 0.5562861 | 2.3423824  |        |
| H | 0.1229163          | 0.5414978 | 0.6118196  |        |
|   |                    |           |            |        |

**Table S6.** *cis*-PSB3 S<sub>0</sub> state, SA3-MS-CASPT2(6,6)/6-31G\*  $E(S_0) = -248.977519226$ ;  $E(S_1) = -248.827447712$ ;  $E(S_2) = -248.777577666$ 

| С | -6.1650511 | 0.4313949 | 0.9983582  |
|---|------------|-----------|------------|
| С | -4.8228633 | 0.4578858 | 1.2409080  |
| H | -6.5585865 | 0.4146849 | -0.0142779 |
| H | -6.8892437 | 0.4255951 | 1.8058958  |
| H | -4.4679357 | 0.4738487 | 2.2684156  |
| C | -3.8962101 | 0.4644028 | 0.1405366  |
| С | -2.5086293 | 0.4898431 | 0.1838931  |
| H | -4.3426798 | 0.4471353 | -0.8527732 |
| H | -1.9497866 | 0.4912436 | -0.7499649 |
| C | -1.7887310 | 0.5141097 | 1.3915500  |
| H | -2.2903159 | 0.5140986 | 2.3550735  |
| N | -0.4724740 | 0.5384284 | 1.4474840  |
| H | 0.0260136  | 0.5557491 | 2.3366903  |
| H | 0.0966394  | 0.5407755 | 0.5993112  |



**Table S7.** PSB3  $S_1$  minima,  $S_{1min\_CenL}$ , SA3-MS-CASPT2(6,6)/6-31G  $E(S_0)$ = -248.584107398;  $E(S_1)$ = -248.519711531;  $E(S_2)$ = -248.407421010

| С | -5.7953118         | -0.8975788 | -0.6881912 |
|---|--------------------|------------|------------|
| С | -4.7775764         | -0.7324751 | 0.3478370  |
| H | -5.5449356         | -0.7261650 | -1.7395249 |
| H | -6.8401915         | -1.0999763 | -0.4332757 |
| H | <b>-4.</b> 6823802 | -1.4545927 | 1.1687308  |
| С | -4.0012381         | 0.5522565  | 0.3301200  |
| С | -2.5974924         | 0.5829203  | 0.1039052  |
| H | <b>-4.</b> 5786028 | 1.4804557  | 0.4176624  |
| H | -2.0616836         | -0.3772406 | 0.0638187  |
| C | -1.8368607         | 1.7750539  | -0.0808974 |
| H | -2.3263582         | 2.7504886  | -0.0758246 |
| N | -0.4833142         | 1.7708711  | -0.2140599 |
| H | 0.0343107          | 2.6411376  | -0.3007828 |
| H | 0.0615652          | 0.9114271  | -0.2352388 |

**Table S8.** PSB3  $S_1$  minima,  $S_{1min\_CenL}$ , SA3-MS-CASPT2(6,6)/6-31G\*  $E(S_0)$ = -248.900991047;  $E(S_1)$ = -248.846742028;  $E(S_2)$ = -248.724991910

| С | -5.7082028 | -0.8791328 | -0.6929537 |
|---|------------|------------|------------|
| С | -4.7736516 | -0.7075832 | 0.3989937  |
| H | -5.3876024 | -0.6914809 | -1.7177422 |
| H | -6.7695850 | -1.0487327 | -0.5051512 |
| H | -4.7029368 | -1.4411523 | 1.2080763  |
| С | -4.0205794 | 0.5433499  | 0.3605115  |
| С | -2.6245047 | 0.5848623  | 0.1099269  |
| H | -4.5823206 | 1.4788433  | 0.4316992  |
| H | -2.0980609 | -0.3728414 | 0.0370337  |
| С | -1.8681103 | 1.7608428  | -0.0577283 |
| H | -2.3388217 | 2.7415149  | -0.0114289 |
| N | -0.5377840 | 1.7378183  | -0.2516741 |
| H | -0.0078350 | 2.6002723  | -0.3395668 |
| H | -0.0100763 | 0.8700019  | -0.3057173 |



**Table S9.** PSB3  $S_1$  minima,  $S_{1min\_Cen}$ , SA3-CASSCF(6,6)/6-31G  $E(S_0)$ = -248.07466091;  $E(S_1)$ = -248.05548533;  $E(S_2)$ = -247.94967633

| С | -5.9683172         | -0.8170926         | 0.1587440  |
|---|--------------------|--------------------|------------|
| С | -4.6206511         | -0.7989651         | 0.4175494  |
| H | -6.5065419         | 0.0771922          | -0.0919678 |
| H | -6.5335654         | <b>-1.</b> 7266919 | 0.1993194  |
| H | <b>-4.</b> 0961545 | -1.6996155         | 0.6648920  |
| С | -3.9175804         | 0.4117208          | 0.3737761  |
| С | -2.4973737         | 0.5425187          | 0.6098950  |
| H | -4.4900096         | 1.2891157          | 0.1071402  |
| H | -1.8820182         | 0.4446500          | -0.2704262 |
| С | -1.9511824         | 0.8043168          | 1.8219394  |
| H | -2.5824684         | 0.9144472          | 2.6826157  |
| N | -0.6338300         | 0.9472079          | 2.0815276  |
| H | -0.3146481         | 1.1397811          | 2.9980481  |
| H | 0.0549975          | 0.8786039          | 1.3719293  |



**Table S10.** PSB3  $S_1$  minima,  $S_{1min\_CN}$ , SA3-CASSCF(6,6)/6-31G  $E(S_0)$ = -248.05702406;  $E(S_1)$ = -248.04530311;  $E(S_2)$ = -247.94422315

| С | -6.0428051         | -0.8524165 | -0.1053429 |
|---|--------------------|------------|------------|
| С | -4.6811225         | -0.7452428 | 0.0435135  |
| H | -6.6596385         | 0.0071667  | -0.2855657 |
| H | -6.5347886         | -1.8014804 | -0.0463563 |
| H | <b>-4.</b> 1125685 | -1.6414732 | 0.2217976  |
| С | -3.9747240         | 0.4803695  | -0.0248182 |
| С | -2.5672867         | 0.5621904  | 0.1321967  |
| H | -4.5258332         | 1.3858961  | -0.2026619 |
| H | -2.0289352         | -0.3526330 | 0.3100649  |
| С | -1.8751319         | 1.7381431  | 0.0686079  |
| H | -2.2925668         | 2.7116125  | -0.1019328 |
| N | -0.4477625         | 1.7561541  | 0.2361073  |
| H | -0.0222180         | 1.8877572  | 1.1411691  |
| H | 0.1789576          | 1.6777673  | -0.5504102 |
|   |                    |            |            |



**Table S11.** PSB3  $S_1$  minima,  $S_{1min\_Ter}$ , SA3-CASSCF(6,6)/6-31G  $E(S_0)$ = -248.06994659;  $E(S_1)$ = -248.00329540;  $E(S_2)$ = -247.96251308

| С | -6.0783807         | -0.7508888 | -0.0669780 |
|---|--------------------|------------|------------|
| С | -4.6740550         | -0.6473391 | 0.0829874  |
| H | -6.6208752         | -0.1818002 | -0.8065891 |
| H | -6.6653202         | -1.4623695 | 0.4938144  |
| H | <b>-4.</b> 1816747 | -1.3505029 | -0.5926574 |
| С | -3.9515680         | 0.1552977  | 0.8981738  |
| С | -2.5167458         | 0.1757815  | 0.9674425  |
| H | -4.4762055         | 0.8336654  | 1.5483216  |
| H | -1.9618776         | -0.4887468 | 0.3320328  |
| С | -1.8644863         | 1.0138306  | 1.8151650  |
| H | -2.4294249         | 1.6740795  | 2.4460657  |
| N | -0.5243608         | 1.1149636  | 1.9606630  |
| H | -0.1270610         | 1.7529233  | 2.6027997  |
| Н | 0.1034495          | 0.5586760  | 1.4344663  |



**Table S12.** PSB3 MECI( $S_1/S_0$ ), MECI<sub>Cen</sub>, SA3-CASSCF(6,6)/6-31G E( $S_0$ )= -248.06368383; E( $S_1$ )= -248.06368042 ; E( $S_2$ )= -247.93594718

| С | -5.9308358 | -0.7534527 | -0.2256255 |  |
|---|------------|------------|------------|--|
| C | -4.5797885 | -0.5728905 | -0.2809921 |  |
| H | -6.5475958 | -0.2579574 | 0.5002206  |  |
| H | -6.4333116 | -1.4024588 | -0.9160321 |  |
| H | -3.9754358 | -1.0719608 | -1.0081494 |  |
| C | -3.9663501 | 0.3040226  | 0.6270435  |  |
| C | -2.5045770 | 0.5601850  | 0.6806167  |  |
| H | -4.6184607 | 0.7734804  | 1.3519217  |  |
| H | -1.9974260 | -0.1255279 | 1.3372023  |  |
| C | -1.8915222 | 1.5369478  | 0.0354533  |  |
| H | -2.4491126 | 2.2080226  | -0.5915074 |  |
| N | -0.5534665 | 1.8191849  | 0.0613070  |  |
| H | -0.1836469 | 2.5740732  | -0.4556856 |  |
| H | 0.0754099  | 1.2877775  | 0.6088739  |  |
|   |            |            |            |  |

**Table S13.** PSB3 MECI( $S_1/S_0$ ), MECI<sub>Cen</sub>, SA3-MS-CASPT2(6,6)/6-31G E( $S_0$ )= -248.568534227; E( $S_1$ )= -248.568519529; E( $S_2$ )= -248.443990302

| С | -6.2017318         | 1.3030090  | 0.7044865  |
|---|--------------------|------------|------------|
| С | <b>-4.</b> 7990738 | 1.2677862  | 0.8065648  |
| H | -6.7375750         | 0.6614653  | 0.0076054  |
| H | -6.7918382         | 1.9778734  | 1.3159934  |
| H | <b>-4.</b> 3331735 | 1.9510542  | 1.5234105  |
| С | -3.9601737         | 0.4199990  | 0.0594525  |
| С | -2.4861023         | 0.4525999  | 0.1583692  |
| H | -4.3652206         | -0.2453684 | -0.7105010 |
| H | -1.8859341         | 1.1317047  | -0.4632746 |
| С | -1.7601999         | -0.4123705 | 1.0527726  |
| H | -2.2927394         | -1.1085124 | 1.6996609  |
| N | -0.4360803         | -0.3873279 | 1.1232681  |
| H | 0.0812187          | -0.9967794 | 1.7602697  |
| Н | 0.1240926          | 0.2439689  | 0.5436891  |



**Table S14.** PSB3 MECI( $S_1/S_0$ ), MECI<sub>Cen</sub>, SA3-MS-CASPT2(6,6)/6-31G\*  $E(S_0)$ = -248.886166854;  $E(S_1)$ = -248.886162595;  $E(S_2)$ = -248.762916078

| С | -6.1740640 | 1.3194131  | 0.6940317  |  |
|---|------------|------------|------------|--|
| С | -4.7840222 | 1.2440841  | 0.8037816  |  |
| H | -6.7185281 | 0.6974427  | -0.0072733 |  |
| H | -6.7428956 | 2.0003056  | 1.3123605  |  |
| H | -4.3097311 | 1.9095379  | 1.5265665  |  |
| С | -3.9687421 | 0.3760170  | 0.0852248  |  |
| С | -2.5106692 | 0.4338684  | 0.1700952  |  |
| H | -4.3523158 | -0.2524634 | -0.7212988 |  |
| H | -1.9038195 | 1.1155284  | -0.4365974 |  |
| С | -1.7700471 | -0.4244107 | 1.0560275  |  |
| H | -2.2801878 | -1.1381995 | 1.6967220  |  |
| N | -0.4679749 | -0.3597006 | 1.1172563  |  |
| H | 0.0734225  | -0.9581200 | 1.7469314  |  |
| H | 0.0650436  | 0.2957988  | 0.5379394  |  |
|   |            |            |            |  |

**Table S15.** PSB3 MECI( $S_1/S_0$ ), MECI<sub>BP</sub>, SA3-CASSCF(6,6)/6-31G E( $S_0$ )= -248.04499946; E( $S_1$ )= -248.04496487; E( $S_2$ )= -247.92928735

| -5.9374459         | -0.7865377                                                                                                                                             | -0.1627175                                                                                                                                                                                                                                |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>-4.</b> 6160739 | -0.5090833                                                                                                                                             | -0.3739797                                                                                                                                                                                                                                |
| -6.4879212         | -0.3560892                                                                                                                                             | 0.6525023                                                                                                                                                                                                                                 |
| -6.4769047         | -1.4545324                                                                                                                                             | -0.8053310                                                                                                                                                                                                                                |
| -4.0780353         | -0.9308228                                                                                                                                             | -1.1961115                                                                                                                                                                                                                                |
| -3.9414856         | 0.2956889                                                                                                                                              | 0.5546342                                                                                                                                                                                                                                 |
| -2.5260936         | 0.5452026                                                                                                                                              | 0.5316316                                                                                                                                                                                                                                 |
| <b>-4.</b> 5381705 | 0.6705212                                                                                                                                              | 1.3744069                                                                                                                                                                                                                                 |
| -1.9956360         | -0.1691280                                                                                                                                             | 1.1464587                                                                                                                                                                                                                                 |
| -1.8926004         | 1.5974295                                                                                                                                              | 0.0123731                                                                                                                                                                                                                                 |
| -2.4506118         | 2.3375985                                                                                                                                              | -0.5355591                                                                                                                                                                                                                                |
| -0.5591643         | 1.9076070                                                                                                                                              | 0.1818501                                                                                                                                                                                                                                 |
| -0.0244224         | 2.1827073                                                                                                                                              | -0.5998392                                                                                                                                                                                                                                |
| -0.0515597         | 1.5412592                                                                                                                                              | 0.9442978                                                                                                                                                                                                                                 |
| 0.0010077          | 1.0112072                                                                                                                                              | 0.0112070                                                                                                                                                                                                                                 |
|                    | -6.4879212<br>-6.4769047<br>-4.0780353<br>-3.9414856<br>-2.5260936<br>-4.5381705<br>-1.9956360<br>-1.8926004<br>-2.4506118<br>-0.5591643<br>-0.0244224 | -4.6160739-0.5090833-6.4879212-0.3560892-6.4769047-1.4545324-4.0780353-0.9308228-3.94148560.2956889-2.52609360.5452026-4.53817050.6705212-1.9956360-0.1691280-1.89260041.5974295-2.45061182.3375985-0.55916431.9076070-0.02442242.1827073 |

**Table S16.** PSB3 MECI( $S_1/S_0$ ), MECI<sub>CN</sub>, SA3-CASSCF(6,6)/6-31G E( $S_0$ )= -248.04293341; E( $S_1$ )= -248.04292951; E( $S_2$ )= -247.94135899

| C | -6.0501979 | -0.8957287 | -0.1034359 |
|---|------------|------------|------------|
| C | -4.6882344 | -0.7266700 | 0.0381160  |
| H | -6.7042026 | -0.0642446 | -0.2835391 |
| H | -6.4983765 | -1.8655578 | -0.0376984 |
| H | -4.0904511 | -1.6054797 | 0.2173617  |
| С | -4.0145920 | 0.5149350  | -0.0341563 |
| C | -2.5964555 | 0.6176405  | 0.1223579  |
| H | -4.5781142 | 1.4115687  | -0.2115743 |
| H | -2.0627468 | -0.3026150 | 0.2991462  |
| С | -1.9015115 | 1.7822897  | 0.0620924  |
| H | -2.2180944 | 2.7901676  | -0.0995824 |
| N | -0.4164562 | 1.7266523  | 0.2458441  |
| H | 0.0153379  | 1.8198051  | 1.1599323  |
| H | 0.2176749  | 1.6110475  | -0.5384950 |



**Table S17.** PSB3 MECI( $S_1/S_0$ ), MECI<sub>CN</sub>, SA3-MS-CASPT2(6,6)/6-31G  $E(S_0)$ = -248.521729381;  $E(S_1)$ = -248.521723580;  $E(S_2)$ = -248.465958313

| С | -5.8565787 | -0.8909517 | -0.4530764 |
|---|------------|------------|------------|
| С | -4.6332557 | -0.7558471 | 0.1504180  |
| H | -6.2978709 | -0.0905607 | -1.0480960 |
| H | -6.4370024 | -1.8063664 | -0.3651591 |
| H | -4.2251825 | -1.5715878 | 0.7513605  |
| С | -3.8402252 | 0.4572561  | 0.0284562  |
| С | -2.6457518 | 0.6476640  | 0.7002589  |
| H | -4.2400328 | 1.2629935  | -0.5956185 |
| H | -2.2226374 | -0.1596152 | 1.3103535  |
| С | -1.8664716 | 1.9032362  | 0.6098424  |
| H | -2.1548900 | 2.9027380  | 0.9322602  |
| N | -0.6687539 | 1.7274018  | -0.1902620 |
| H | 0.1915819  | 1.3425438  | 0.2162527  |
| H | -0.6893546 | 1.8449069  | -1.2106212 |



**Table S18.** PSB3 MECI( $S_1/S_0$ ), MECI<sub>CN</sub>, SA3-MS-CASPT2(6,6)/6-31G\*  $E(S_0)$ = -248.842452213;  $E(S_1)$ = -248.842428925;  $E(S_2)$ = -248.781827882

| C | -5.7816282         | -0.8735991         | -0.4766806 |
|---|--------------------|--------------------|------------|
| C | -4.5745161         | -0.7319605         | 0.1444457  |
| H | -6.2188437         | -0.0689377         | -1.0613607 |
| H | -6.3459209         | <b>-1.</b> 7975611 | -0.4105786 |
| H | <b>-4.</b> 1630135 | <b>-1.</b> 5463251 | 0.7378622  |
| C | -3.8267412         | 0.4858736          | 0.0476167  |
| C | -2.6495669         | 0.6899018          | 0.7426217  |
| H | -4.2302524         | 1.2905457          | -0.5673102 |
| H | -2.2356256         | -0.1210764         | 1.3498401  |
| C | -1.8728293         | 1.9208860          | 0.6329111  |
| H | -2.1485941         | 2.9185481          | 0.9688253  |
| N | -0.7395164         | 1.7295289          | -0.1965309 |
| H | 0.0485595          | 1.1688337          | 0.1406895  |
| H | -0.8479367         | 1.7491535          | -1.2159821 |
|   |                    |                    |            |



**Table S19.** PSB3 MECI( $S_1/S_0$ ), MECI<sub>Ter</sub>, SA3-CASSCF(6,6)/6-31G E( $S_0$ )= -247.99555591; E( $S_1$ )= -247.99552900; E( $S_2$ )= -247.885170030

| С | -6.0414254         | -0.8434804 | -0.1566651 |
|---|--------------------|------------|------------|
| С | -4.8223362         | -0.4366207 | 0.2857368  |
| H | -6.4860946         | -0.4199958 | -1.0435055 |
| H | -6.5299462         | -1.7089433 | 0.2626976  |
| H | -4.5067949         | -1.2522495 | -0.5086122 |
| С | -3.9812652         | 0.2855024  | 1.0264975  |
| С | -2.5480765         | 0.2308412  | 1.0205360  |
| H | <b>-4.</b> 4583112 | 0.9807139  | 1.6965015  |
| H | -2.0554596         | -0.4563124 | 0.3593642  |
| С | -1.8197519         | 1.0359404  | 1.8388286  |
| H | -2.3259337         | 1.7186086  | 2.4951015  |
| N | -0.4756059         | 1.0759145  | 1.9231188  |
| H | -0.0209364         | 1.6937472  | 2.5475789  |
| Н | 0.1033516          | 0.4939042  | 1.3685292  |



**Table S20.** PSB3 MECI( $S_1/S_0$ ), MECI<sub>Ter</sub>, SA3-MS-CASPT2(6,6)/6-31G E( $S_0$ )= -248.523119656; E( $S_1$ )= -248.523113625; E( $S_2$ )= -248.419930148

| С | -6.1062362         | -0.8369169 | -0.1573931 |
|---|--------------------|------------|------------|
| С | -4.8166891         | -0.4655673 | 0.2417741  |
| H | -6.5781817         | -0.4022794 | -1.0491394 |
| H | -6.6114819         | -1.7105494 | 0.2766190  |
| H | -4.4604597         | -1.2772078 | -0.5394009 |
| С | -3.9662131         | 0.2710590  | 1.0109074  |
| С | -2.5325330         | 0.2215771  | 1.0105311  |
| H | <b>-4.</b> 4570673 | 0.9707561  | 1.6948927  |
| H | -2.0168189         | -0.4709942 | 0.3407180  |
| С | -1.8071572         | 1.0482788  | 1.8547568  |
| H | -2.3308734         | 1.7387115  | 2.5189411  |
| N | -0.4465126         | 1.0916457  | 1.9463505  |
| H | 0.0158872          | 1.7223658  | 2.5884879  |
| H | 0.1457489          | 0.4966914  | 1.3776632  |



**Table S21.** PSB3 MECI( $S_1/S_0$ ), MECI<sub>Ter</sub>, SA3-MS-CASPT2(6,6)/6-31G\*  $E(S_0)$ = -248.851051190;  $E(S_1)$ = -248.850489075;  $E(S_2)$ = -248.747610470

| С | -6.0741616 | -0.8328939         | -0.1501115 |
|---|------------|--------------------|------------|
| С | -4.7921734 | -0.4203467         | 0.1947553  |
| H | -6.5742026 | -0.4621276         | -1.0541529 |
| H | -6.5450630 | <b>-1.</b> 6934932 | 0.3467278  |
| H | -4.4192834 | -1.2798499         | -0.4878973 |
| С | -3.9589639 | 0.3026561          | 0.9834956  |
| С | -2.5438128 | 0.2313091          | 0.9970494  |
| H | -4.4489646 | 1.0174548          | 1.6420223  |
| H | -2.0322336 | -0.4625198         | 0.3352372  |
| С | -1.8257733 | 1.0412326          | 1.8495128  |
| H | -2.3457200 | 1.7322508          | 2.5076967  |
| N | -0.4873621 | 1.0669793          | 1.9554709  |
| H | -0.0244646 | 1.6842326          | 2.6096703  |
| H | 0.1035927  | 0.4726861          | 1.3862312  |



**Table S22.** PSB3 MECI( $S_1/S_0$ ), MECI<sub>CenR</sub>, SA3-CASSCF(6,6)/6-31G E( $S_0$ )= -248.01073766; E( $S_1$ )= -248.01072922; E( $S_2$ )= -247.91423427

| С | -5.8660014 | -0.7202977 | 0.5423698  |
|---|------------|------------|------------|
| С | -4.6130607 | -0.6185937 | -0.0485497 |
| H | -6.2618762 | 0.0664177  | 1.1546463  |
| H | -6.4735318 | -1.5915063 | 0.4050046  |
| H | -4.2566064 | -1.4306441 | -0.6550406 |
| С | -3.8014966 | 0.5054177  | 0.1207133  |
| С | -2.5485963 | 0.6082310  | -0.4972044 |
| H | -4.1460547 | 1.3182091  | 0.7330672  |
| H | -2.2186365 | -0.2275911 | -1.0936354 |
| С | -1.6207198 | 1.7447037  | -0.3162129 |
| H | -1.8621002 | 2.7065206  | -0.7263358 |
| N | -0.8116489 | 1.5892769  | 0.8309859  |
| H | -0.8965375 | 2.2523503  | 1.5669505  |
| H | 0.1093008  | 1.2336921  | 0.7042954  |



Table S23. Energies (kcal/mol) of equilibrium geometries of PSB3 using SA3-CASSCF(6,6)/6-31G and SA3-MS-CASPT2(6,6)/6-31G with varying numbers of uncorrelated (core) occupied orbitals. The zero of energy is defined by the S<sub>0</sub> trans minimum.

| Core          | MECI <sub>Cen</sub> | MECI <sub>Ter</sub> | $MECI_{CN}$ | S <sub>0</sub> -trans     |
|---------------|---------------------|---------------------|-------------|---------------------------|
| Orbitals      |                     |                     |             |                           |
| 6 (default)   | 56.9                | 85.4                | 86.3        | $0.0/96.7^{a}/124.2^{b}$  |
| 13            | 57.3                | 91.4                | 95.2        | $0.0/101.2^{a}/127.2^{b}$ |
| 14            | 55.7                | 93.3                | 93.7        | $0.0/102.1^{a}/127.9^{b}$ |
| 15            | 57.8                | 92.1                | 93.1        | $0.0/103.7^{a}/128.6^{b}$ |
| <b>CASSCF</b> | 66.1                | 108.9               | <b>79.1</b> | $0.0/113.2^{a}/130.7^{b}$ |

<sup>&</sup>lt;sup>a</sup>Vertical excitation energy of 1<sup>st</sup> excited state relative to  $S_{\theta}$ -trans. <sup>b</sup>Vertical excitation energy of 2<sup>nd</sup> excited state relative to  $S_{\theta}$ -trans.

**Table S24.** Intersection topography characterization for CI seam beads connecting  $MECI_{Cen}$  and  $MECI_{CN}$  at the SA3-CASSCF(6,6)/6-31G level.

| Bead | C=C <sub>cen</sub> | C=N       | Energy     | $s^x$ | $s^{\nu}$ | $\Delta_{gh}$ | $d_{gh}$ | $S_X$ | $S_{\mathcal{Y}}$ |
|------|--------------------|-----------|------------|-------|-----------|---------------|----------|-------|-------------------|
|      | twist              | twist     | (kcal/mol) |       |           |               |          |       |                   |
|      | (degrees)          | (degrees) |            |       |           |               |          |       |                   |
| 1    | 90.1               | 0.4       | 66.1       | -0.43 | -1.65     | 0.32          | 0.13     | -0.04 | -0.12             |
| 2    | 90.2               | 4.1       | 66.2       | 0.70  | 1.48      | 0.45          | 0.13     | 0.08  | 0.10              |
| 3    | 90.2               | 7.7       | 66.3       | 0.59  | 1.48      | 0.40          | 0.13     | 0.06  | 0.10              |
| 4    | 90.1               | 10.9      | 66.5       | -0.01 | -1.56     | 0.29          | 0.13     | 0.00  | -0.12             |
| 5    | 90.0               | 12.7      | 66.6       | -0.57 | 1.37      | 0.42          | 0.13     | -0.06 | 0.10              |
| 6    | 89.9               | 15.1      | 66.9       | 0.71  | 0.72      | 0.75          | 0.15     | 0.10  | 0.04              |
| 7    | 89.9               | 18.7      | 67.3       | -0.68 | -0.59     | 0.69          | 0.14     | -0.09 | -0.03             |
| 8    | 90.1               | 22.5      | 68.0       | -0.51 | 0.22      | 0.80          | 0.16     | -0.08 | 0.01              |
| 9    | 90.3               | 26.4      | 69.6       | -0.27 | 0.06      | 0.80          | 0.16     | -0.04 | 0.00              |
| 10   | 90.9               | 29.2      | 77.1       | -1.07 | -0.07     | 0.66          | 0.11     | -0.11 | 0.00              |
| 11   | 91.3               | 35.9      | 78.0       | -0.57 | -1.25     | 0.33          | 0.11     | -0.05 | -0.08             |
| 12   | 91.2               | 37.5      | 79.1       | -0.01 | -1.82     | 0.44          | 0.10     | 0.00  | -0.10             |
| 14   | 91.0               | 40.1      | 79.0       | -0.70 | 0.97      | 0.73          | 0.12     | -0.08 | 0.04              |
| 15   | 91.1               | 41.8      | 80.0       | 0.77  | -0.15     | 0.69          | 0.11     | 0.08  | -0.01             |
| 16   | 91.3               | 44.6      | 81.1       | 0.61  | -0.20     | 0.81          | 0.11     | 0.06  | -0.01             |
| 17   | 91.6               | 47.6      | 83.0       | -0.38 | 0.58      | 0.68          | 0.11     | -0.04 | 0.03              |
| 18   | 91.9               | 51.3      | 85.9       | -0.15 | -0.47     | 0.56          | 0.11     | -0.01 | -0.02             |
| 19   | 92.2               | 55.7      | 90.5       | 0.27  | 0.24      | 0.41          | 0.10     | 0.02  | 0.01              |
| 20   | 92.0               | 60.5      | 96.9       | -0.02 | -1.18     | 0.74          | 0.12     | 0.00  | -0.05             |
| 21   | 90.8               | 65.2      | 104.8      | 0.09  | -2.11     | 0.75          | 0.12     | 0.01  | -0.09             |
| 22   | 88.4               | 69.9      | 112.8      | 1.49  | 0.24      | 0.49          | 0.10     | 0.13  | 0.01              |
| 23   | 85.2               | 74.3      | 119.5      | 0.47  | -3.21     | 0.59          | 0.10     | 0.04  | -0.15             |
| 24   | 82.0               | 78.4      | 124.3      | 1.42  | -2.43     | 0.61          | 0.10     | 0.13  | -0.11             |
| 25   | 78.9               | 82.2      | 127.9      | -1.54 | -2.70     | 0.44          | 0.09     | -0.12 | -0.13             |
| 26   | 76.0               | 85.9      | 130.1      | 1.79  | -2.61     | 0.45          | 0.10     | 0.14  | -0.13             |
| 27   | 72.7               | 88.6      | 131.3      | -2.04 | -2.55     | 0.07          | 0.09     | -0.14 | -0.16             |
| 28   | 69.5               | 89.1      | 132.6      | -2.00 | -2.56     | -0.25         | 0.09     | -0.11 | -0.19             |
| 29   | 66.3               | 89.2      | 133.9      | -1.61 | 2.96      | -0.16         | 0.09     | -0.10 | 0.21              |
| 30   | 62.9               | 89.2      | 135.2      | 1.77  | -1.11     | 0.90          | 0.14     | 0.24  | -0.04             |
| 31   | 59.4               | 89.3      | 136.6      | 2.60  | -2.22     | 0.52          | 0.10     | 0.23  | -0.11             |
| 32   | 55.7               | 89.4      | 138.0      | -1.78 | -3.14     | -0.35         | 0.10     | -0.10 | -0.26             |
| 33   | 51.7               | 89.6      | 139.4      | -2.06 | -1.82     | 0.89          | 0.14     | -0.29 | -0.06             |
| 34   | 47.7               | 90.0      | 141.3      | -1.59 | 3.66      | -0.38         | 0.10     | -0.09 | 0.31              |
| 39   | 36.4               | 91.4      | 83.8       | 0.57  | 0.90      | 0.36          | 0.10     | 0.05  | 0.05              |
| 40   | 32.5               | 91.2      | 82.9       | 0.68  | -0.39     | 0.78          | 0.13     | 0.08  | -0.02             |
| 41   | 28.2               | 91.1      | 82.1       | -0.71 | -0.60     | 0.77          | 0.13     | -0.08 | -0.03             |
| 42   | 24.7               | 91.0      | 81.5       | 0.82  | 0.19      | 0.71          | 0.12     | 0.09  | 0.01              |
| 43   | 21.5               | 90.9      | 81.0       | 0.68  | 1.26      | 0.46          | 0.11     | 0.06  | 0.07              |
| 44   | 18.6               | 90.8      | 80.6       | 0.83  | 0.88      | 0.59          | 0.11     | 0.08  | 0.05              |
| 45   | 15.8               | 90.7      | 80.2       | 0.74  | 1.21      | 0.52          | 0.11     | 0.07  | 0.06              |
| 46   | 13.1               | 90.6      | 79.9       | 0.42  | 1.58      | 0.46          | 0.11     | 0.04  | 0.09              |
| 47   | 10.4               | 90.5      | 79.6       | 0.27  | 1.67      | 0.46          | 0.11     | 0.03  | 0.09              |
| 48   | 7.8                | 90.3      | 79.4       | 0.14  | 1.73      | 0.46          | 0.11     | 0.01  | 0.10              |
| 49   | 5.3                | 90.2      | 79.3       | 0.10  | 1.75      | 0.47          | 0.11     | 0.01  | 0.10              |
| 50   | 2.7                | 90.0      | 79.1       | -0.06 | -1.76     | 0.47          | 0.11     | -0.01 | -0.10             |
| 51   | 0.0                | 90.0      | 79.1       | -0.85 | -0.64     | 0.68          | 0.12     | -0.09 | -0.03             |

**Table S25.** Intersection topography characterization for CI seam beads connecting  $MECI_{Ter}$  and  $MECI_{Cen}$  at the SA3-MS-CASPT2(6,6)/6-31G level with 14 core orbitals.

| Beads | C=C <sub>Ter</sub><br>twist<br>(degrees) | C=C <sub>Cen</sub> twist (degrees) | Energy (kcal/mol) | s <sup>x</sup> | s.v   | $arDelta_{gh}$ | $d_{gh}$ | $S_X$ | $S_{y}$ |
|-------|------------------------------------------|------------------------------------|-------------------|----------------|-------|----------------|----------|-------|---------|
|       | (degrees)                                | (degrees)                          |                   |                |       |                |          |       |         |
| 1     | 0.3                                      | 90.1                               | 55.7              | 0.01           | 0.01  | 0.41           | 0.12     | 0.00  | 0.00    |
| 2     | 2.6                                      | 89.3                               | 56.6              | 0.04           | 0.04  | 0.54           | 0.13     | 0.00  | 0.00    |
| 3     | 14.3                                     | 89.2                               | 60.3              | 0.06           | 0.27  | 0.63           | 0.13     | 0.01  | 0.02    |
| 4     | 33.1                                     | 88.7                               | 71.2              | 0.22           | 0.39  | 0.45           | 0.12     | 0.02  | 0.02    |
| 5     | 55.6                                     | 84.9                               | 93.4              | -1.03          | 0.65  | 0.30           | 0.13     | -0.10 | 0.05    |
| 6     | 77.6                                     | 70.2                               | 110.0             | -0.95          | -1.26 | -0.86          | 0.12     | -0.03 | -0.14   |
| 7     | 91.5                                     | 54.3                               | 103.9             | 0.18           | -1.00 | 0.69           | 0.26     | 0.04  | -0.10   |
| 8     | 91.0                                     | 33.9                               | 99.0              | 0.18           | 0.97  | 0.59           | 0.21     | 0.03  | 0.09    |
| 9     | 91.1                                     | 22.8                               | 96.3              | -0.03          | 1.07  | 0.61           | 0.21     | -0.01 | 0.10    |
| 10    | 90.8                                     | 11.9                               | 94.5              | 0.52           | -0.25 | 0.59           | 0.21     | 0.10  | -0.02   |
| 11    | 90.1                                     | 0.2                                | 93.6              | -0.53          | -0.05 | 0.60           | 0.21     | -0.10 | 0.00    |

# Charge distribution



**Figure S1.** Charge distributions of *trans*-PSB3 ( $S_0$  minimum) in different electronic states at the SA3-CAS(6,6)/6-31G and MS-SA3-CASPT2(6,6)/6-31G levels. Charges on hydrogens are summed into heavy atoms. Terminal C=C group consists of C1 and C2, central C=C group consists of C3 and C4, and C=N group consists of C5 and N (numbering follows Figure 1 in the main text).

**Figure S2.** Time evolution of twist angles and bond length alternation from AIMS-CASSCF and AIMS-MSPT2 dynamics. Averages are calculated over all TBFs which twist around the C=N or terminal C=C bond for AIMS-CASSCF and AIMS-MSPT2, respectively. Note that in both cases, these are the minor channels (23% and 9% of the initial conditions for CASSCF/MSPT2, respectively). For both CASSCF and MSPT2 dynamics, the dominant outcome is torsion about the central C=C bond.



### Section S1. Brief summary of seam space nudged elastic band (SS-NEB) method

We first define the energy difference gradient vector  ${\bf g}$  and the non-adiabatic derivative coupling vector  ${\bf h}$  as

$$\mathbf{g}_{IJ} = \frac{\partial E_I}{\partial \mathbf{R}} - \frac{\partial E_J}{\partial \mathbf{R}}$$

$$\mathbf{h}_{IJ} = \left( E_J - E_I \right) \left\langle \boldsymbol{\psi}_I \middle| \frac{\partial}{\partial \mathbf{R}} \middle| \boldsymbol{\psi}_J \right\rangle$$

Here, I and J label the degenerate adiabatic electronic states. For the beads of the seam path, they should satisfy the two conditions

$$\mathbf{g}_{II} \cdot \delta \mathbf{R} = 0$$

$$\mathbf{h}_{u} \cdot \delta \mathbf{R} = 0$$

where  $\delta \mathbf{R}$  is an infinitesimal geometry displacement away from the CI.

The total force that we minimize on the *i*th bead with the SS-NEB method is

$$\mathbf{f}_{i}(\mathbf{R}_{i}) = \mathbf{f}_{i,\parallel\tau}^{spring}(\mathbf{R}_{i}) + \mathbf{f}_{i,\perp g,h,\tau'}(\mathbf{R}_{i}) + \mathbf{f}_{i,\parallel g,h}^{Egap}(\mathbf{R}_{i})$$

Here  $\tau$ ' is the tangent direction within the CI seam for the *i*th molecular configuration (bead):

$$\tau' = \hat{\mathbf{P}}_{\perp g,h} \tau$$

where  $\tau$  represents the tangent direction of the path at the *i*th point and  $\hat{\mathbf{P}}_{\perp g,h}$  is the projection operator:

$$\hat{\mathbf{P}}_{\perp g,h} \equiv \hat{I} - \mathbf{g}\mathbf{g}^T - \mathbf{h}\mathbf{h}^T$$

 $\mathbf{f}_{i,\parallel\tau}^{spring}$  is the harmonic spring force within the CI seam and  $\mathbf{f}_{i,\perp g,h,\tau'}$  is the component of the averaged potential energy surface gradient that is perpendicular to  $\mathbf{g}$ ,  $\mathbf{h}$ , and  $\tau'$ :

$$\mathbf{f}_{i,\parallel\tau}^{spring} = \hat{\mathbf{P}}_{\perp g,h} \mathbf{F}_{i,\parallel\tau}^{spring}$$

$$\mathbf{f}_{i,\perp g,h,\tau'} = \frac{1}{2} \nabla_{\perp g,h,\tau'} \left( E_J + E_I \right)$$

and

$$\mathbf{f}_{i,\parallel g,h}^{Egap} = 2(E_J - E_I)\mathbf{g}$$

#### Reference

- 1. Werner, H.-J.; Knowles, P. J., A Second-Order Multiconfiguration SCF Procedure with Optimum Convergence. *J. Chem. Phys.* **1985**, *82*, 5053-5063.
- 2. Knowles, P. J.; Werner, H.-J., An Efficient Second-Order MCSCF Method for Long Configuration Expansions. *Chem. Phys. Lett.* **1985**, *115*, 259-267.
- 3. Finley, J.; Malmqvist, P.-A.; Roos, B. O.; Serrano-Andres, L., The Multi-State CASPT2 Method. *Chem. Phys. Lett.* **1998**, *288*, 299-306.
- 4. Hehre, W. J.; Ditchfield, R.; Pople, J. A., Self-Consistent Molecular Orbital Methods. Xii. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. *J. Chem. Phys.* **1972**, *56*, 2257-2261.
- 5. Frisch, M. J.; Pople, J. A.; Binkley, J. S., Self-Consistent Molecular Orbital Methods. 25. Supplementary Functions for Gaussian Basis Sets. *J. Chem. Phys.* **1984**, *80*, 3265-3269.
- 6. Werner, H.-J.; Knowles, P. J.; Lindh, R.; Manby, F.; Schuetz, M. Molpro, V2006.2.
- 7. Mori, T.; Martinez, T. J., Exploring the Conical Intersection Seam: The Seam Space Nudged Elastic Band Method. *J. Chem. Theo. Comp.* **2013**, *9*, 1155-1163.