MIDDLE EAST TECHNICAL UNIVERSITY

SEMESTER I EXAMINATION 2024-2025

CENG 403 – Deep Learning - Self-Attention & Transformers (Professor-Based) - ANSWERED

January 2025 TIME ALLOWED: 3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains SIX (6) questions and comprises EIGHT (8) printed pages.
- 2. Answer all questions. The marks for each question are indicated at the beginning of each question.
- 3. Answer each question beginning on a **FRESH** page of the answer book.
- 4. This IS NOT an OPEN BOOK exam.
- 5. Show all mathematical derivations clearly with proper notation.
- 6. Draw clear diagrams with proper labels where requested.
- 7. Explain the intuition behind mechanisms where asked.

Question 1. Vanilla Self-Attention Mechanism

(20 marks)

Based on Week 14a lecture content on basic self-attention.

(a) Explain the motivation behind self-attention. Why did the professor suggest moving away from sequential processing in RNNs to parallel processing? (5 marks)

Answer: Self-attention enables parallel processing of sequences, overcoming RNN's sequential bottleneck and long-term dependency issues.

Motivation for Self-Attention:

1. Sequential Processing Bottleneck in RNNs:

- RNNs process sequences step-by-step: $h_t = f(h_{t-1}, x_t)$
- Cannot proceed to time step t+1 until t is complete
- For long sequences, this creates computational bottlenecks
- Makes parallel processing impossible during training and inference

2. Long-term Dependency Problem:

- Information from early time steps must flow through many hidden states
- Gradient vanishing makes learning long-range dependencies difficult
- Important early information may be lost or diluted

3. Parallel Processing Advantage:

- Self-attention can process all positions simultaneously
- Each position directly attends to all other positions
- No sequential dependency can leverage modern parallel hardware
- Dramatically speeds up training and inference

4. Direct Information Access:

- Any position can directly access information from any other position
- No information bottleneck through intermediate hidden states
- Better modeling of long-range dependencies

- (b) Consider a sequence of 3 word embeddings E_0, E_1, E_2 . Using the vanilla self-attention approach described in the lecture, show step-by-step how to compute the updated embedding E'_0 . Include: (10 marks)
 - Similarity computation using dot product
 - Softmax normalization
 - Weighted combination

Answer: Step-by-step vanilla self-attention computation for updating E_0 .

Given: Embeddings $E_0, E_1, E_2 \in \mathbb{R}^d$

Step 1: Similarity Computation using Dot Product Compare E_0 with all embeddings (including itself):

$$s_{0,0} = E_0 \cdot E_0 = E_0^T E_0 \tag{1}$$

$$s_{0,1} = E_0 \cdot E_1 = E_0^T E_1 \tag{2}$$

$$s_{0,2} = E_0 \cdot E_2 = E_0^T E_2 \tag{3}$$

Step 2: Softmax Normalization Normalize similarity scores to get attention weights:

$$\alpha_{0,0} = \frac{\exp(s_{0,0})}{\exp(s_{0,0}) + \exp(s_{0,1}) + \exp(s_{0,2})} \tag{4}$$

$$\alpha_{0,1} = \frac{\exp(s_{0,1})}{\exp(s_{0,0}) + \exp(s_{0,1}) + \exp(s_{0,2})}$$
 (5)

$$\alpha_{0,2} = \frac{\exp(s_{0,2})}{\exp(s_{0,0}) + \exp(s_{0,1}) + \exp(s_{0,2})}$$
(6)

Note: $\alpha_{0,0} + \alpha_{0,1} + \alpha_{0,2} = 1$

Step 3: Weighted Combination Compute updated embedding as weighted sum:

$$E_0' = \alpha_{0,0} \cdot E_0 + \alpha_{0,1} \cdot E_1 + \alpha_{0,2} \cdot E_2$$

Intuition:

• Higher similarity \rightarrow higher attention weight

- E'_0 is a weighted mixture of all embeddings
- Weights determined by how relevant each embedding is to E_0
- Self-attention allows E_0 to gather information from the entire sequence
- (c) The professor mentioned that "different time steps can be processed in parallel." Explain what this means and why it's advantageous over RNN processing. (5 marks)

Answer: Parallel processing means all sequence positions can be computed simultaneously, unlike RNNs which require sequential computation.

Parallel Processing in Self-Attention:

What it means:

- All updated embeddings E'_0, E'_1, E'_2 can be computed simultaneously
- No dependency between computations for different positions
- Each position's computation is independent of others' completion

Implementation:

- Use matrix operations for entire sequence at once
- Compute all similarity scores in parallel: $S = EE^T$
- Apply softmax to all rows simultaneously
- Compute all weighted combinations in parallel

Advantages over RNN Processing:

1. Speed:

- RNN: O(T) sequential steps for sequence length T
- Self-attention: O(1) parallel steps
- Massive speedup on modern GPUs with many cores

2. Hardware Utilization:

• RNNs underutilize parallel hardware (GPUs)

- Self-attention fully exploits matrix multiplication units
- Better memory bandwidth utilization

3. Training Efficiency:

- Can process entire batches of sequences in parallel
- Faster convergence due to better gradient flow
- More stable training dynamics

Question 2. Query-Key-Value Self-Attention (25 marks) Based on the professor's explanation of extending vanilla self-attention.

- (a) The professor introduced Query, Key, and Value functions as "parametric functions" to increase network capacity. Explain the intuition behind each of these three components: (8 marks)
 - What does the Query represent conceptually?
 - What does the Key represent conceptually?
 - What does the Value represent conceptually?

Answer: Query-Key-Value mechanism provides learnable projections that enable more expressive attention computations than raw embeddings.

Query (Q) - "What am I looking for?"

- Represents the information need of the current position
- A learned transformation of the embedding: $Q_i = W_Q E_i$
- Encodes what kind of information position i wants to gather
- Example: In "The cat sat on the mat", query for "sat" might look for subject and object information

Key (K) - "What do I have to offer?"

- Represents the content/information available at each position
- A learned transformation: $K_j = W_K E_j$
- Encodes what type of information position j can provide
- Used to compute similarity with gueries
- Example: Key for "cat" might represent subject-related information

Value (V) - "What information do I actually provide?"

- Represents the actual information content to be aggregated
- A learned transformation: $V_i = W_V E_i$
- The information that gets mixed based on attention weights
- Can be different from the key representation

• Example: Value for "cat" might contain semantic features about the animal

Why Separate Q, K, V?

- Allows different aspects of embeddings for matching vs. content
- Increases model expressivity compared to using raw embeddings
- Enables learning what to look for vs. what to provide
- Provides more flexible attention patterns
- (b) Given word embeddings E_0 and E_1 , and weight matrices W_Q , W_K , and W_V , write the mathematical equations for computing: (8 marks)
 - Query vectors: $Q_0 =?, Q_1 =?$
 - Key vectors: $K_0 = ?, K_1 = ?$
 - Value vectors: $V_0 =?, V_1 =?$

Answer: Linear transformations applied to embeddings using learned weight matrices.

Query Vectors:

$$Q_0 = W_Q E_0 \tag{7}$$

$$Q_1 = W_Q E_1 \tag{8}$$

Key Vectors:

$$K_0 = W_K E_0 \tag{9}$$

$$K_1 = W_K E_1 \tag{10}$$

Value Vectors:

$$V_0 = W_V E_0 \tag{11}$$

$$V_1 = W_V E_1 \tag{12}$$

Matrix Dimensions:

• $E_i \in \mathbb{R}^{d_{model}}$ (embedding dimension)

- $W_Q, W_K, W_V \in \mathbb{R}^{d_k \times d_{model}}$ (projection matrices)
- $Q_i, K_i, V_i \in \mathbb{R}^{d_k}$ (projected vectors)
- Typically $d_k = d_{model}$ for single-head attention

Key Points:

- Same weight matrices used for all positions (parameter sharing)
- Different projections allow specialization of representations
- Learnable parameters optimize during training
- (c) The professor mentioned "we use the same weight for each word." Explain what this means and why it's important for the self-attention mechanism. (4 marks)

Answer: Parameter sharing means the same W_Q , W_K , W_V matrices are applied to all sequence positions, enabling position-invariant learning.

What "Same Weight" Means:

- Single set of weight matrices W_Q , W_K , W_V for entire sequence
- No position-specific parameters
- All embeddings transformed using identical linear layers

Why This is Important:

1. Generalization:

- Model learns general transformation functions
- Works for sequences of any length
- No overfitting to specific positions

2. Parameter Efficiency:

- $O(d^2)$ parameters instead of $O(T \cdot d^2)$ for sequence length T
- Scales well to long sequences
- Fewer parameters to learn

3. Position Invariance:

• Same word gets same Q, K, V regardless of position

- Attention patterns emerge from content, not position
- Positional information added separately via positional encoding
- (d) Derive the complete scaled dot-product attention formula as presented in the lecture, including the scaling factor $\frac{1}{\sqrt{d}}$. Explain why this scaling is necessary. (5 marks)

Answer: Scaled dot-product attention with normalization to prevent saturation in softmax function.

Complete Scaled Dot-Product Attention Formula:

For updating position *i*:

Attention
$$(Q_i, K, V) = \sum_{j=1}^{n} \alpha_{ij} V_j$$
 (13)

Where attention weights are:

$$\alpha_{ij} = \frac{\exp\left(\frac{Q_i \cdot K_j}{\sqrt{d_k}}\right)}{\sum_{k=1}^n \exp\left(\frac{Q_i \cdot K_k}{\sqrt{d_k}}\right)}$$
(14)

Matrix Form:

$$Attention(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

Why Scaling by $\frac{1}{\sqrt{d_k}}$ is Necessary:

- 1. Dot Product Magnitude Growth:
 - For random vectors $q, k \in \mathbb{R}^{d_k}$, $\mathbb{E}[q \cdot k] = 0$
 - But $Var[q \cdot k] = d_k$ (assuming unit variance elements)
 - Standard deviation grows as $\sqrt{d_k}$
 - Large d_k leads to very large dot products

2. Softmax Saturation:

• Large dot products push softmax into saturation regions

- Gradients become very small (vanishing gradient)
- Attention becomes too peaked (one-hot like)
- Training becomes unstable

3. Scaling Effect:

- Dividing by $\sqrt{d_k}$ normalizes variance back to 1
- Keeps dot products in reasonable range
- Maintains useful gradients for learning
- Allows softer, more distributed attention patterns

Question 3. Multi-Head Attention

(20 marks)

Based on the professor's explanation of multiple attention heads.

(a) The professor stated: "with one scaled dot product attention we are looking at just one potential interpretation of a word." Explain why multiple attention heads are needed and what they accomplish. (6 marks)

Answer: Multiple attention heads capture different types of relationships and interpretations simultaneously, enabling richer representation learning.

Limitations of Single Attention Head:

- Single attention pattern per position
- One interpretation/relationship at a time
- Limited capacity to capture diverse linguistic phenomena
- May miss important secondary relationships

Why Multiple Heads are Needed:

1. Multiple Relationships:

- Words participate in different types of relationships simultaneously
- Example: "bank" could relate to "river" (location) and "money" (finance)
- Each head can specialize in different relationship types

2. Different Linguistic Patterns:

- Syntactic relationships (subject-verb, modifier-noun)
- Semantic relationships (synonymy, co-occurrence)
- Long-range vs. short-range dependencies
- Different levels of abstraction

3. Representation Richness:

- Ensemble of attention patterns
- More robust feature extraction
- Better disambiguation of ambiguous words

Improved model capacity without excessive parameters

What Multiple Heads Accomplish:

- Parallel processing of different interpretations
- Specialization of attention patterns
- More expressive final representations
- Better handling of complex linguistic phenomena
- (b) Describe the multi-head attention process as explained in the lecture: (10 marks)
 - How are the h different heads created?
 - Why are projections to "lower dimensional spaces" used?
 - How are the outputs combined?

Answer: Multi-head attention creates h parallel attention mechanisms with lower-dimensional projections, then concatenates and projects the results.

Creating h Different Heads:

1. Separate Projection Matrices: For each head $i \in \{1, 2, ..., h\}$:

$$Q^{(i)} = XW_Q^{(i)} (15)$$

$$K^{(i)} = XW_K^{(i)} (16)$$

$$V^{(i)} = XW_V^{(i)} (17)$$

2. Independent Attention Computation:

$$\text{head}_i = \text{Attention}(Q^{(i)}, K^{(i)}, V^{(i)}) = \text{softmax}\left(\frac{Q^{(i)}K^{(i)T}}{\sqrt{d_k}}\right)V^{(i)}$$

Lower Dimensional Projections:

Why Lower Dimensions?

- Original dimension: d_{model} (e.g., 512)
- Head dimension: $d_k = d_v = \frac{d_{model}}{h}$ (e.g., 64 for h = 8)

- Reduces computational cost per head
- Controls total parameter count

Parameter Efficiency:

- Total parameters: $h \times 3 \times d_{model} \times d_k = 3 \times d_{model}^2$
- Same as single large head with dimension d_{model}
- But provides h different attention patterns

Combining Outputs:

1. Concatenation:

$$MultiHead(Q, K, V) = Concat(head_1, head_2, ..., head_h)W_O$$

2. Final Projection:

- Concatenated output: dimension $h \times d_k = d_{model}$
- Output projection: $W_O \in \mathbb{R}^{d_{model} \times d_{model}}$
- Mixes information from different heads
- Returns to original embedding dimension

Complete Process:

- (a) Project embeddings to h sets of Q, K, V (lower dim)
- (b) Compute h attention patterns in parallel
- (c) Concatenate all head outputs
- (d) Apply final linear projection
- (e) Result: enriched representations with multiple perspectives
- (c) The professor showed an attention visualization where the word "it" attends to relevant words. Explain how this demonstrates the disambiguation capability of attention mechanisms. (4 marks)

Answer: Attention visualizations show how ambiguous words like "it" learn to focus on contextually relevant words, resolving ambiguity through learned attention patterns.

Disambiguation Through Attention:

1. The Ambiguity Problem:

- "It" is a pronoun that can refer to different entities
- Without context, "it" has no specific meaning
- Traditional embeddings give fixed representation regardless of context

2. How Attention Resolves Ambiguity:

- Attention weights show where "it" is "looking"
- High attention to relevant nouns indicates referent resolution
- Different contexts lead to different attention patterns
- Example: "The animal crossed the street. It was scared." \rightarrow high attention to "animal"

3. What the Visualization Demonstrates:

- Network learns meaningful semantic relationships
- Attention isn't random it follows linguistic principles
- Different attention heads may capture different relationships
- Model discovers syntax and semantics without explicit supervision

4. Broader Implications:

- Contextual representations emerge naturally
- Same word gets different representations in different contexts
- Attention serves as interpretable mechanism for understanding model behavior
- Validates that model learns linguistically meaningful patterns

Question 4. Transformer Architecture

(25 marks)

Based on the professor's detailed explanation of transformer blocks.

(a) The professor noted that self-attention "loses position information." Explain this problem and describe the positional encoding solution using trigonometric functions. (8 marks)

Answer: Self-attention is permutation invariant, losing word order information. Positional encoding adds position-specific signals to embeddings.

Position Information Loss Problem:

1. Permutation Invariance:

- Self-attention computes attention weights based on content similarity
- Same words in different orders produce identical representations
- Example: "cat chased dog" vs "dog chased cat" would get same embeddings
- Critical word order information is lost

2. Why Position Matters:

- Word order determines meaning in most languages
- Syntax depends on positional relationships
- Different positions may have different linguistic roles
- Temporal sequence is crucial for language understanding

Positional Encoding Solution:

1. Basic Idea:

- Add position-specific vectors to word embeddings
- Each position gets unique positional encoding
- Combined embedding: input = word embedding+positional encoding

2. Trigonometric Functions:

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right)$$

$$PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{model}}}\right)$$

Where:

- pos = position in sequence (0, 1, 2, ...)
- $i = \text{dimension index } (0, 1, 2, ..., d_{model}/2 1)$
- Even dimensions use sine, odd dimensions use cosine

3. Properties of Trigonometric Encoding:

- Different frequencies for different dimensions
- Deterministic (no learnable parameters)
- Bounded values: [-1, 1]
- Can extrapolate to longer sequences than seen in training
- Enables learning of relative position relationships
- (b) Draw and label a complete transformer encoder block as described in the lecture, including: (12 marks)
 - Multi-head self-attention
 - Skip connections (residual connections)
 - Layer normalization
 - Feed-forward network
 - All input/output flows

Answer: Complete transformer encoder block with multi-head attention, residual connections, and layer normalization.

Component Descriptions:

1. Multi-Head Self-Attention:

- Processes input embeddings with multiple attention heads
- Captures different types of relationships
- Output has same dimension as input

2. Residual Connections (Skip Connections):

- Direct path from input to addition point
- Helps gradient flow during backpropagation
- Enables training of deeper networks
- Formula: output = sublayer(input) + input

3. Layer Normalization:

- Normalizes features across embedding dimension
- Stabilizes training dynamics
- Applied after residual addition

• Formula: LayerNorm $(x) = \gamma \frac{x-\mu}{\sigma} + \beta$

4. Feed-Forward Network:

- Two linear transformations with ReLU activation
- Applied position-wise (same network for each position)
- Increases then decreases dimensionality
- $FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$

Information Flow:

- (a) Input embeddings + positional encoding
- (b) Multi-head self-attention
- (c) Add residual connection + layer normalization
- (d) Feed-forward network
- (e) Add residual connection + layer normalization
- (f) Output embeddings (ready for next layer)
- (c) Explain the purpose of skip connections and layer normalization in the transformer architecture as discussed in the lecture. (5 marks)

Answer: Skip connections enable gradient flow and layer normalization stabilizes training, together enabling deep transformer architectures.

Skip Connections (Residual Connections):

Purpose:

- Provide direct gradient flow path
- Enable identity mapping when needed
- Facilitate training of deep networks
- Prevent degradation problem

How They Work:

- output = F(input) + input
- Sublayer learns residual function F
- Easier to learn modifications than complete transformations

• Gradient flows directly through skip path

Layer Normalization:

Purpose:

- Stabilize training dynamics
- Reduce internal covariate shift
- Enable higher learning rates
- Improve convergence speed

How It Works:

- Normalizes across feature dimension for each position
- Zero mean, unit variance for each embedding
- Learnable scale (γ) and shift (β) parameters
- Applied after residual addition

Combined Benefits:

- Enables training of 12+ layer transformers
- Stable gradients throughout the network
- Faster convergence and better final performance
- Robust to hyperparameter choices

END OF PAPER