Tutorial 3

Machine Learning and Big Data for Economics and Finance

List of activities

- I. Complete the list of exercises in this tutorial.
- II. Complete Section 3.6 Lab: Linear Regression. Section 3.6.6 to 3.6.7.

Exercise 1. Consider the following sample of the three random variables X_1 , X_2 and Y:

Obs.	X_1	X_2	Y
1	1	2	o
2	1	3	o
3	-3	1	o
4	2	2	\mathbf{x}
5	3	2	\mathbf{x}
6	4	1	\mathbf{x}
7	4	3	\mathbf{x}

Assignment Project Exam Help In the next space, compute the distance between each point and $x_0 = (1, 1)$.

2. Predict Y given $X_1 = 1$ and $X_2 = 1$ using K-nearest neighbor classification for K = 1https://powcoder.com

Exercise 2. Load the data included in the file MC1.csv. The file contains a sample of size Exercise 2. Load the data x. n=1000 from a random variable X. The data generating process for any random variable X: $Y=\beta_0+\beta_1X+\varepsilon$

where $\beta_0 = -1$, $\beta_1 = 5.1$ and $\varepsilon \sim N(0, 1)$.

- 1. Generate a sample of size n from Y.
- 2. Assuming you don't know the parameters behind the data generating process, compute the least squares estimates for $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\sigma}$ (the standard deviation of the error term).
- 3. Generate 100 different samples of size n of Y and for each compute $\hat{\beta}_{0,m}$, $\hat{\beta}_{1,m}$ and $\hat{\sigma}_m$ where $\hat{\beta}_{0,m}$ is the estimate of β_0 in sample m for m = 1, ..., 100.
- 4. Using the values $\hat{\beta}_{0,m}$, $\hat{\beta}_{1,m}$ and $\hat{\sigma}_m$, compute
 - a. The sample averages of each of $\hat{\beta}_{0,m}$, $\hat{\beta}_{1,m}$ and $\hat{\sigma}_m$.
 - b. The sample variance of $\hat{\beta}_{0,m}$.
 - c. The sample variance of $\hat{\beta}_{1,m}$.
 - d. The sample covariance of $\hat{\beta}_{0,m}$ and $\hat{\beta}_{1,m}$.
- 5. Plot $\hat{\beta}_{0,m}$, $\hat{\beta}_{1,m}$ and $\hat{\sigma}_m$ and discuss.
- 6. Compare the results of the small simulation exercise with the formula $Var(\hat{\beta}) =$ $\sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}$.