Mathematik III - Wintersemester 14/15

16. Februar 2015

Inhaltsverzeichnis

1	Alge	braische Strukturen mit einer Verknüpfung	5								
	1.1	Definition: Verknüpfung	5								
	1.2	Beispiel	5								
	1.3	Definition: Halbgruppe	5								
	1.4	Bemerkung	5								
	1.5	Beispiel	6								
	1.6	Definition: kommutative Halbgruppe	6								
	1.7	Beispiel	6								
	1.8	Definition: Unterhalbgruppe	7								
	1.9	Beispiel	7								
	1.10	Lemma: Eins eindeutig	7								
		Definition: Monoid	7								
		Beispiele	7								
		Definition: Untermonoid	8								
		Lemma: Inverses eindeutig	8								
		Definition: Gruppe, Inverse, Ordnung	8								
		Bemerkung	8								
		Beispiele	8								
		Beispiele	9								
		Satz: Gleichungen lösen in Gruppen	10								
		Beispiel	10								
		Definition: Untergruppe	10								
		Beispiele	11								
		Satz und Definition: Rechtsnebenklassen	11								
		Beispiel	12								
		Lemma: Mächtigkeit von Untergruppen	12								
		Theorem: Satz von Lagrange	12								
		Definition: Potenzen	13								
		Satz: Potenzgesetze	13								
			13								
		Satz und Definition: Ordnung, zyklische Gruppe	14								
		Beispiel									
		Korollar	15								
	1.32	Beweis	15								
2	Algebraische Strukturen mit 2 Verknüpfungen: Ringe und Körper 15										
-	2.1	Definition: Ring	15								
	2.2	Beispiel	16								
	2.3	Satz: Rechnen mit Ringen	16								
	2.4	Bemerkung	16								
	2.5		17								
	2.6	Definition: Körper	17								
		Beispiele	17								
	2.7	Satz: Rechnen im Körper, Nullteilerfreiheit									
	2.8	Definition: Homomorphismus, Isomorphismus	17								
	2.9	Beispiel	18								
		Satz: Chinesischer Restsatz	18								
	2.11	Beispiel	18								

	2.12	Bemerkung	19
		Korollar: Phi-Funktion berechnen	19
	2.14	Definition: Polynom	19
		Beispiel	20
		Satz und Definition: Polynomring	20
		Bemerkung	21
		Beispiel	21
		Definition: Grad eines Polynoms	21
		Satz	21
		Korollar	22
		Definition	22
		Definition	22
		Definition (Division mit Rest)	22
		Beispiel	
		Korollar	23
		Definition	24
		Bemerkung	24
		Satz (von Bezout)	
		Satz	25
		Satz	25
		Beispiel	25
		Definition	
		Beispiel	25
		Abschlussbemerkung	
		-	
3	Der	Körper der ℂ der Komplexen Zahlen	26
	3.1	Definition	26
	3.2	Beispiel	26
	3.3	Bemerkung: komplexe Zahlenebene	27
	3.4	Satz (Eigenschaften)	27
	3.5	Bemerkung	27
	3.6	D 1 1 1' 4	20
	2.0	Polarkoordinaten	28
	3.7	Beispiel	28 28
	3.7	Beispiel	28
	3.7 3.8 3.9	Beispiel	28 28
	3.7 3.8 3.9 3.10	Beispiel	28 28 28
4	3.7 3.8 3.9 3.10 3.11	Beispiel	28 28 28 29 29
4	3.7 3.8 3.9 3.10 3.11 Wied	Beispiel	28 28 28 29 29
4	3.7 3.8 3.9 3.10 3.11 Wiec 4.1	Beispiel	28 28 28 29 29 29
4	3.7 3.8 3.9 3.10 3.11 Wied	Beispiel	28 28 28 29 29
4 5	3.7 3.8 3.9 3.10 3.11 Wied 4.1 4.2	Beispiel	28 28 28 29 29 29
-	3.7 3.8 3.9 3.10 3.11 Wied 4.1 4.2	Beispiel	28 28 29 29 29 29 30
-	3.7 3.8 3.9 3.10 3.11 Wied 4.1 4.2	Beispiel	28 28 28 29 29 29 30 30
-	3.7 3.8 3.9 3.10 3.11 Wied 4.1 4.2 Line 5.1	Beispiel Definition/Schreibweise Bemerkung Beispiele Bemerkung Beispiele Bemerkung derholung und Erweiterung der linearen Algebra aus Mathe II Beispiel Definition are Abbildungen Definition	28 28 29 29 29 30 30 30
-	3.7 3.8 3.9 3.10 3.11 Wiec 4.1 4.2 Line 5.1 5.2	Beispiel	28 28 29 29 29 30 30 31

	5.6	Definition										33
	5.7	Definition/Satz										33
	5.8	Beispiel										33
	5.9	Satz										34
		Beispiel										35
		Satz (Dimensionsformel)										35
		Korollar										36
		Zusammenhang lin. Abb. und hom. LGS, Matrizen, Rang										36
6	Mati	rizen und lineare Abbildungen										37
	6.1	Definition										37
	6.2	Beispiel										38
	6.3	Satz										39
	6.4	Beispiel										39
	6.5	Bemerkung / Korollar zu 6.3										41
	6.6	Satz (Eigenschaften der Darstellungsmatrix)										41
	6.7	Satz:										41
	6.8	Satz:										42
	6.9	Berechnung von Inversen										42
		Definition/Satz:										42
		Satz: Koordinaten umrechnen										43
		Beispiel										43
		Satz: Darstellungsmatrizen umrechnen										44
		Korollar										44
												44
	0.13	Beispiel	•	•	•	•	•		•	•	•	44
7	Dete	Determinanten 44									44	
	7.1	Definition										44
	7.2	Definition: Determinante, rekursive Def										45
	7.3	Beispiel										45
	7.4	Entwicklungssatz von Laplace										46
	7.5	Beispiel										46
	7.6	Bemerkung										46
	7.7	Satz (Eigenschaften der Determinanten)										47
	7.8	Bemerkung / Beispiel										47
	7.9	Satz (Charakterisietung invertierbarer Matrizen über det)										47
		Bemerkung										48
	7.10	Demerkung	•	•	•	•	•		•	•	•	40
8	Eige	nwerte und Eigenvektoren										48
	8.1	Definition (Eigenwert)										48
	8.2	Satz										48
	8.3	Definition										49
	8.4	Beispiel										49
	8.5	Anwendungen										50
	8.6	Bemerkung										51
	8.7	Definition: diagonalisierbar										51
	8.8	Satz: Spektralsatz										51
	8.9	Bemerkung zu 8.8 (ii)										52
	0.7	Demorkung Zu 0.0 (II)	•	•	٠	•	•		•	•	•	52

9	Norr	n- und Skalarprodukt	52
	9.1	Definition: Norm	52
	9.2	Eigenschaften	52
	9.3	Definition: Skalarprodukt	52
	9.4	Eigenschaften des Skalarprodukts	52
	9.5	Definition: Standardskalarprodukt, euklidischer Vektorraum, euklidische Norm	
		& Abstand	53
	9.6	Beispiel	54
10	Orth	ogonalsysteme	54
	10.1	Definition: orthogonal, Orthogonalsystem, Orthonormalsystem, Orthonor-	
		malbasis	54
	10.2	Bemerkung	54
	10.3	Satz: Orthogonalisierungsverfahren von Gram-Schmidt	55
	10.4	Beispiel	55
	10.5	Definition: orthogonale Matrix	56
	10.6	Beispiel	56
	10.7	Satz: Eigenschaften von orthogonalen Matrizen	56
11	Meh	rdimensionale Analysis	57
	11.13	Beispiel	57
	11.22	2 Definition: (total)differenzierbar, affin-linear	58
	11.23	BDefinition: Richtungsableitung	58
	11.24	4Bemerkung	58
	11.25	5Satz	58
	11.26	Beispiel	59
	11.27	Bemerkung	59
12	Taylo	orpolynome und Taylorreihe	59
	12.1	Definition	59
		Beispiel	60
		Motivation	60
	12.4	Definition: Taylorpolynom	61
	12.5	Satz: Formel von Taylor mit Lagrange-Restglied	61
		Bemerkung	61
		Beispiel	62

1 Algebraische Strukturen mit einer Verknüpfung HALBGRUPPEN, MONOIDE, GRUPPEN

1.1 Definition

Sei $X \neq \emptyset$ eine Menge.

Eine *Verknüpfung* oder (abstrakte) Multiplikation auf X ist eine Abbildung

$$\bullet: \quad X \times X \to X$$
$$(a,b) \mapsto a \bullet b$$

 $a \bullet b$ heißt *Produkt* von a und b, muss aber mit der üblichen Multiplikation von Zahlen (ab) nichts zu tun haben.

Beschreibung bei endlichen Mengen oft durch Multiplikationstafeln.

1.2 Beispiel

a)
$$X = \{a,b\}$$

$$\begin{array}{c|cccc}
\bullet & a & b \\
\hline
a & b & b \\
b & a & a
\end{array}$$

$$(a \bullet a) \bullet a = b \bullet a = a$$

$$a \bullet (a \bullet a) = a \bullet b = b \longrightarrow \text{nicht assoziativ}$$

b)
$$X = \mathbb{Z}^- (= \{0, -1, -2, \dots\})$$

Die normale Multiplikation ist auf \mathbb{Z}^- keine Verknüpfung! (zum Beispiel ist $(-2) \cdot (-3) = 6 \notin \mathbb{Z}^-$) Aber auf $X = \mathbb{N}, X = \mathbb{Z}$ oder $X = \{1\}, X = \{0, 1\}$

1.3 Definition

Sei $H \neq \emptyset$ eine Menge mit Verknüpfung.

 (H, \bullet) heißt *Halbgruppe*, falls gilt:

$$\forall a, b, c \in H : (a \bullet b) \bullet c = a \bullet (b \bullet c)$$
 (Assoziativgesetz (AG))

1.4 Bemerkung

AG sagt aus: bei endlichen Produkten ist die Klammerung irrelevant, z.B.

$$(a \cdot b) \cdot (c \cdot d) = ((a \cdot b) \cdot c) \cdot d = (a \cdot (b \cdot c)) \cdot d$$
 (usw.)

Deshalb werden Klammern meistens weggelassen.

Die Reihenfolge der Elemente ist i.A. relevant!

1.5 Beispiel

a) $(\mathbb{N}, \bullet), (\mathbb{Z}, \bullet), (\mathbb{Q}, \bullet), (\mathbb{R}, \bullet)$ i sind Halbgruppen.

Ebenso $(\mathbb{N},+),(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+)$ ²

- b) $(\mathbb{Q}\setminus\{0\},:)$ 3 ist *keine* Halbgruppe, denn z.B. (12:6):2=1 12:(6:2)=4
- c) vgl. Vorlesung Theoretische Informatik

 $A \neq \emptyset$ endliche Menge ("Alphabet")

$$A^+ = \bigcup_{n \in N} A^n$$
 = Menge aller endlichen Wörter über A (z.B. $A = \{a, b\}$, dann ist z.B. $\underbrace{(a, a, b)}_{aab} \in A^3$)

Verknüpfung: Konkatenation (Hintereinanderschreiben)

z.B. $aab \bullet abab = aababab$

 $A^* = A^+ \cup \{\lambda\}$ λ (oder ϵ) ist das leere Wort

Es gilt: $\lambda \cdot w = w \cdot \lambda = w \ \forall w \in A^*$

 $(A^+, \bullet), (A^*, \bullet)$ Worthalbgruppe über A

- d) $M \neq \emptyset$ Menge, Abb(M, M): Menge aller Abbildungen $M \to M$ mit \circ (Komposition) ist Halbgruppe.
- e) (WICHTIG)

$$n \in \mathbb{N}, \mathbb{Z}_n = \{0, 1, \dots, n-1\}$$

Verknüpfung: $\theta : a \oplus b := (a + b) \mod n$ $0 : a \oplus b := (a \cdot b) \mod n$

 $(\mathbb{Z}_n, \oplus), (\mathbb{Z}_n, \odot)$ sind Halbgruppen.

1.6 Definition

Eine Halbgruppe (H, \bullet) heißt *kommutativ*, falls gilt:

$$\forall a, b \in H : a \cdot b = b \cdot a$$

(Kommutativgesetz, KG)

1.7 Beispiel

Beispiele 1.5 a), e) sind kommutative Halbgruppen. (hallo \neq ollah, ab \neq ba, Worthalbgruppe nicht kommutativ)

¹ • normale Multiplikation

²⁺ normale Addition

^{3:} normale Division

1.8 Definition

Sei (H, \bullet) Halbgruppe, $\emptyset \neq U \subseteq H$

U heißt *Unterhalbgruppe* von *H*, falls $u \cdot v \in U \ \forall u, v \in U \ \text{gilt.}$

 (U, \odot) ist dann selbst Halbgruppe.

1.9 Beispiel

 $(\mathbb{Z},+)$ Halbgruppe

G = Menge aller gerade ganzen Zahlen $\subseteq \mathbb{Z}$

(G,+) ist Unterhalbgruppe von $(\mathbb{Z},+)$

U =Menge aller ungerade Zahlen $\subseteq \mathbb{Z}$

(U,+) ist <u>keine</u> Unterhalbgruppe!

1.10 Lemma

Eindeutigkeit des neutralen Elements:

Sei (H, \bullet) Halbgruppe, $e_1, e_2 \in H$ mit $(*)e_1 \cdot x = x \cdot e_1 = x$ und $(**)e_2 \cdot x = x \cdot e_2 = x \ \forall x \in H$ Dann ist $e_1 = e_2$

Beweis.
$$e_1 \stackrel{(**)}{=} e_1 \cdot e_2 \stackrel{(*)}{=} e_2$$

1.11 Definition

Eine Halbgruppe (H, \bullet) heißt *Monoid*, falls $e \in H$ existiert mit $e \cdot x = x \cdot e = x \ \forall x \in H$ e heißt *neutrales Element* / Einselement / Eins in H.

Schreibweise: (H, \bullet, e)

Für additive Verknüpfung oft 0 für *e* (Nullelement) multiplikative 1

Nach 1.10 ist das neutrale Element eindeutig!

1.12 Beispiele

- a) (\mathbb{N}, \bullet) Monoid mit e = 1 $(\mathbb{N}, +)$ kein Monoid $(\mathbb{N}_0, +)$ Monoid mit e = 0 $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +)$ Monoide mit e = 0 $(\mathbb{Z}, \bullet), (\mathbb{N}_0, \bullet), (\mathbb{Q}, \bullet), (\mathbb{R}, \bullet)$ Monoide mit e = 1
- b) $(Abb(M, M), \circ)$ Monoid, e = id
- c) (\mathbb{Z}_n, \oplus) Monoid, e = 0 (\mathbb{Z}_n, \odot) Monoid, e = 1
- d) (A^*, \bullet) Monoid, $e = \lambda$ (hallo $\lambda = \lambda$ hallo = hallo)

1.13 Definition

Sei (M, \bullet, e) Monoid. Eine Teilmenge $\emptyset \neq U \subseteq M$ heißt *Untermonoid* von M, falls U mit \bullet selbst ein Monoid mit neutralem Element e ist (also $e \in U$)

1.14 Lemma

Eindeutigkeit des inversen Elements:

Sei (H, \bullet, e) Monoid und es gebe zu jedem Element $h \in H$ Elemente $x, y \in H$ mit $h \cdot x \stackrel{(*)}{=} e \stackrel{(**)}{=} y \cdot h$.

Dann ist x = y

Beweis.
$$y = y \cdot e \stackrel{(*)}{=} y \cdot (h \cdot x) \stackrel{(AG)}{=} (y \cdot h) \cdot x \stackrel{(**)}{=} e \cdot x = x$$

1.15 Definition

(i) (H, \bullet, e) Monoid, $h \in H$

Falls ein $x \in H$ existiert mit hx = xh = e, so nennt man h invertierbar und x das Inverse zu h, bez. h^{-1} (bei additiven Verknüpfungen oft auch -h)

Nach 1.14 ist h^{-1} eindeutig bestimmt!

Es gilt: e ist immer invertierbar, $e^{-1} = e$

- (ii) Ein Monoid (G, \bullet, e) heißt *Gruppe*, falls jedes Element in G invertierbar ist.
- (iii) Für eine endliche Gruppe G heißt die Anzahl der Elemente in G die Ordnung von G, |G|

1.16 Bemerkung

 (H, \bullet, e) Monoid.

Sei G die Menge aller invertierbaren Elemente von H, dann ist (G, \bullet, e) eine Gruppe.

Es gilt: e invertierbar ($e^{-1} = e$)

und falls g invertierbar, dann ist auch g^{-1} invertierbar: $(g^{-1})^{-1} = g$

falls g, h invertierbar, dann auch $g \cdot h$: $(g \cdot h)^{-1} = h^{-1} \cdot g^{-1}$

1.17 Beispiele

- a) $(\mathbb{N}_0, +, 0)$ ist keine Gruppe aber $(\mathbb{Z}, +, 0), (\mathbb{Q}, +, 0), (\mathbb{R}, +, 0)$ sind Gruppen.
- b) $(\mathbb{Z}, \bullet, 1)$ ist keine Gruppe. Die Menge der invertierbaren Elemente ist $\{1, -1\}$, diese bilden eine Gruppe.
- c) $(\mathbb{Q}, \bullet, 1)$ ist keine Gruppe, aber $(\mathbb{Q}\setminus\{0\}, \bullet, 1), (\mathbb{R}\setminus\{0\}, \bullet, 1)$ sind Gruppen.
- d) A^* ist keine Gruppe, nur λ ist invertierbar.

1.18 Beispiele

- a) $(\mathbb{Z}_n, \oplus, 0)$ ist Gruppe (was ist das Inverse zu $x \in \mathbb{Z}_n$? Siehe PÜ1, A9)
- b) Sei $n \ge 2$. $(Z_n, \odot, 1)$ ist Monoid aber keine Gruppe.

Wann ist ein Element aus Z_n invertierbar bezüglich \odot ?

$$z \in \mathbb{Z}_n$$
 invertierbar $\Leftrightarrow \exists x \in \mathbb{Z}_n : z \odot x = 1$
 $\Leftrightarrow \exists x \in \mathbb{Z} : (z \cdot x) \bmod n = 1$
 $\Leftrightarrow \exists x, q \in \mathbb{Z} : z \cdot x = q \cdot n + 1$
 $\Leftrightarrow \exists x, q \in \mathbb{Z} : z \cdot x + (-q \cdot n) = 1$

$$\overset{\text{Mathe I}}{\Leftrightarrow} \gcd(z, n) = 1$$

also sind nur zu *n* teilerfremde Elemente invertierbar!

(vgl. $(Z_6,0,1)$: 0,2,3,4 nicht invertierbar, 1,5 invertierbar)

Bezeichnung:

$$Z_n^* = \{ z \in \mathbb{Z}_n \mid ggT(z, n) = 1 \}$$

ist Gruppe bezüglich \odot (vgl. Bemerkung ??) mit Ordnung $|Z_n^*| = \varphi(n)$ ("phi von n", Eulersche φ -Funktion) = Anzahl aller $z \in \mathbb{N}$, die teilerfremd zu n sind und $1 \le z \le n$.

$$\varphi(3) = 2, \varphi(4) = 2, \varphi(7) = 6$$

Wie berechnet man das Inverse von $z \in \mathbb{Z}_n^*$?

Mathe I, Erweiterter Euklidischer Algorithmus (WHK, S. 80/81) liefert zu z und n (ggT(z,n) = 1) Zahlen s,t \in \mathbb{Z} mit

$$z \cdot s + n \cdot t = 1$$

$$\Rightarrow (z \cdot s) \mod n = 1$$

$$\Rightarrow (z^{-1}) = s \mod n$$

Beispiel:

$$n = 8$$
: (\mathbb{Z}_8, \odot), $z = 5$ ist invertierbar, $ggT(8,5) = 1$

EEA:
$$5 \cdot (-3) + 8 \cdot 2 = 1 \Rightarrow z^{-1} = -3 \mod 8 \Rightarrow z^{-1} = 5$$

c) Abb(M, M): invertierbare Elemente sind genau die *bijektiven* Abbildungen auf M, Bij(M) (Mathe I)

Speziell: $M = \{1, 2, ..., n\}$, dann heißt Bij(M) die symmetrische Gruppe von Grad n, S_n

 $|S_n| = n!$, Elemente heißen Permutationen.

Bsp: n = 2

$$S_2 = \left\{ \underbrace{\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}$$

n = 3

$$S_{3} = \left\{ \underbrace{\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}}_{id}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}$$

$$\pi = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \varrho = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \in S_3$$

$$\pi \circ \varrho = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \ \varrho \circ \pi = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \text{ (nicht kommutativ!)}$$

$$\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \pi, \ \varrho^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

1.19 Satz (Gleichungen lösen in Gruppen)

Sei G Gruppe, $a, b \in G$

- (i) Es gibt genau ein $x \in G$ mit ax = b (nämlich $x = a^{-1}b$)
- (ii) Es gibt genau ein $y \in G$ mit ya = b (nämlich $y = ba^{-1}$)
- (iii) Ist ax = bx für ein $x \in G$, dann gilt a = b (Kürzungsregel) ya = yb

(i) • $x = a^{-1}$ ist Lösung (prüfe ax = b): Beweis. $a \cdot \underbrace{a^{-1}b}_{x} \stackrel{\text{AG}}{=} (a \cdot a^{-1}) \cdot b = e \cdot b = b$

- Es gibt genau eine Lösung: Es gelte ax = b $\Rightarrow x = ex = (a^{-1}a)x \stackrel{\text{AG}}{=} a^{-1}(ax) = a^{-1}b$
- (ii) analog
- (iii) Multipliziere von rechts mit x^{-1} links

Beispiel 1.20

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ x = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \text{- Was ist } x?$$

$$a \cdot x = b \Leftrightarrow x = a^{-1} \cdot b$$

$$x = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}^{-1} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

1.21 Definition

 (G, \cdot) Gruppe, $\emptyset \neq U \subseteq G$ Teilmenge.

U heißt Untergruppe von $G(U \leq G)$, falls U bzgl. · selbst eine Gruppe ist.

Insbesondere gilt dann: $\forall u, v \in U$ ist $u \cdot v \in U$. e von G ist auch neutrales Element in U. (*) Inversen in U sind die gleichen wie in G.

(*) Angenommen e ist neutrales Element in G, aber f neutrales Element in U, f^{-1} Inverses von f in G.

Dann ist
$$f^{-1} \cdot f = f \cdot f^{-1} = e$$
 und $f \cdot f = f$.
 $\Rightarrow f = e \cdot f = (f^{-1} \cdot f) \cdot f = f^{-1} \cdot (f \cdot f) = f^{-1} \cdot f = e$

1.22 Beispiele

- a) $(\mathbb{Z},+) \leq (\mathbb{Q},+) \leq (\mathbb{R},+)$
- b) $(\{-1,1\},\cdot) \leqslant (\mathbb{Q}\setminus\{0\},\cdot) \leqslant (\mathbb{R}\setminus\{0\},\cdot)$
- c) (e,\cdot) ist Untergruppe jeder beliebigen Gruppe mit Verknüpfung \cdot und neutralem Element e.

d)
$$\pi = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \in S_3, \, \pi^{-1} = \pi, \pi^{-1} \circ \pi = id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

 $\Rightarrow (\pi, id) \leq S_3$

1.23 Satz und Definition

G Gruppe, $U \leq G$

(i) Durch $x \sim y \Leftrightarrow x \cdot y^{-1} \in U$ $x + (-y) \in U$ (bei additiver Verknüpfung) wird auf G eine Äquivalenzrelation definiert

Beweis

~ ist reflexiv:
$$x \sim x$$
 gilt $\forall x \in G$, denn $x \cdot x^{-1} = e \in U$ √
~ ist symmetrisch: $x \sim y \Rightarrow y \sim x$
Sei $x \sim y$, also $x \cdot y^{-1} \in U$ (zzg.: $y \sim x$, also $y \cdot x^{-1} \in U$)
dann ist $y \cdot x^{-1} = (x \cdot y^{-1})^{-1} \in U$, da auch $x \cdot y^{-1} \in U$.
~ ist transitiv: $x \sim y, y \sim z \Rightarrow x \sim z$
Sei $x \sim y$, also $x \cdot y^{-1} \in U$ und $y \sim z$, also $y \cdot z^{-1} \in U$ (zzg.: $x \sim z$, d.h. $x \cdot z^{-1} \in U$)
 $x \cdot z^{-1} = xez^{-1} = x(y^{-1}y)z^{-1} = \underbrace{(x \cdot y^{-1})}_{\in U} \cdot \underbrace{(y \cdot z^{-1})}_{\in U} \in U$, also $x \sim z$.

(ii) Für $x \in G$ ist $Ux = \{u \cdot x \mid u \in U\}$ die Äquivalenzklasse von x bzgl. \sim und heißt *Rechtsnebenklasse* von U in G.

Also (Eigenschaften von Äquivalenzklassen siehe Mathe I):

- (a) $Ux = Uy \Leftrightarrow x \sim y$, also $x \cdot y^{-1} \in U$
- (b) $x, y \in G$, dann ist entweder Ux = Uy oder $Ux \cap Uy = \emptyset$

Beweis

(a) Sei
$$x \sim y \Rightarrow y \sim x \Rightarrow y \cdot x^{-1} \in U \Rightarrow y = y(x^{-1} \cdot x) = \underbrace{(y \cdot x^{-1})}_{\in U} x \in Ux$$

(b) Sei $y \in Ux$, dann zeige: $x \sim y$ $y \in Ux \Rightarrow y = u \cdot x$ für ein $u \in U$ $\Rightarrow x \cdot y^{-1} = x \cdot (ux)^{-1} = x \cdot x^{-1} \cdot u^{-1} = u^{-1} \in U$ Es wurde gezeigt, dass $x \sim y$ gilt.

1.24 Beispiel

$$G = (\mathbb{Z}, +), 3\mathbb{Z} = \{\dots, -3, 0, 3, 6, \dots\}$$

$$U = (3\mathbb{Z}, +) \leq G \text{ (ÜA, Blatt 2)}$$
Inverses zu y in $(\mathbb{Z}, +)$ ist $-y$.
$$x \sim y \Leftrightarrow x \cdot y^{-1} \in U$$

$$\text{bzw.: } x - y \in U$$

$$x = 0 : U + 0 = \{u + 0 \mid u \in U\} = \{\dots, -3, 0, 3, 6, \dots\} = U = 3\mathbb{Z}$$

$$x = 1 : U + 1 = \{u + 1 \mid u \in U\} = \{\dots, -2, 1, 4, 7, 10, \dots\} = 3\mathbb{Z} + 1$$

$$x = 2 : U + 2 = \{u + 2 \mid u \in U\} = \{\dots, -1, 2, 5, 8, 11, \dots\} = 3\mathbb{Z} + 2$$

$$x = 3 : U + 3 = U + 0 = 0$$

1.25 Lemma

G Gruppe, U endliche Untergruppe von G, $x \in G$ Dann ist |U| = |Ux|

Beweis

Abb
$$\varphi: U \rightarrow Ux$$

$$u \mapsto ux$$

ist surjektiv und injektiv (falls $u_1x = u_2x$, dann ist $u_1 = u_2$ (Satz 1.19 (iii), Kürzungsregel))

Also ist φ bijektiv, also U, Ux gleich mächtig.

1.26 Theorem (Satz von Lagrange)

G endliche Gruppe, $U \leq G$

Dann gilt |U| ist Teiler von |G| und $q = \frac{|G|}{|U|}$ ist die Anzahl der Rechtsnebenklassen von U in G

Beweis

Seien Ux_1, \dots, Ux_q die q verschiedenen Rechtsnebenklassen von U in G

Mathe I & 1.23 \Rightarrow $G = \bigcup_{i=1}^{q} Ux_i$ (disjunkte Vereinigung der Äquivalenzklassen)

$$\Rightarrow |G| = \sum_{i=1}^{q} \underbrace{|Ux_i|}_{|U|} \stackrel{1.25}{=} q \cdot |U|$$

1.27 Definition

 (G, \bullet, e) Gruppe, $a \in G$

Definiere
$$a^0 := e$$

$$a^1 := a$$

$$a^m := a^{m-1} \cdot a \text{ für } m \in \mathbb{N}$$

$$a^m := (a^{-m})^{-1} \text{ für } m \in \mathbb{Z}^-$$

(Potenzen von a)

Bei additiver Schreibweise: $0 \cdot a = e$ $1 \cdot a = a$ $m \cdot a = \begin{cases} (m-1) \cdot a + a & \text{für } m \in \mathbb{N} \\ (-m) \cdot (-a) & \text{für } m \in \mathbb{Z}^- \end{cases}$

1.28 Satz

G, a wie oben

(i)
$$(a^{-1})^m = (a^m)^{-1} = a^{-m} \quad \forall m \in \mathbb{Z}$$

(ii)
$$a^m \cdot a^n = a^{m+n} \quad \forall m, n \in \mathbb{Z}$$

(iii)
$$(a^m)^n = a^{m \cdot n} \quad \forall m, n \in \mathbb{Z}$$

Beweis

(i)
$$m \in \mathbb{N} : (a^{-1})^m \cdot a^m = \underbrace{a^{-1} \cdot a^{-1} \cdot \dots \cdot a^{-1}}_{m \text{ mal}} \cdot \underbrace{a \cdot \dots \cdot a \cdot a}_{m \text{ mal}} = e$$

$$\Rightarrow (a^{-1})^m = (a^m)^{-1} \text{ (Inverses von } a^m)$$

$$\text{nach Definition ist } a^{-m} = (a^{-1})^m$$

$$\Rightarrow \text{ (i) gilt } \forall m \in \mathbb{N}$$

$$m = 0 : e = e = e \checkmark$$

$$m \in \mathbb{Z}^- : \text{dann ist } -m \in \mathbb{N}$$

Wende den bewiesenen Teil an auf a^{-1} statt a und -m statt m, Behauptung folgt.

(ii), (iii) per Induktion und mit (i)

1.29 Satz und Definition

G endliche Gruppe, $g \in G$

- (i) Es existiert eine kleinste natürliche Zahl n mit $g^n = e$, diese heißt die Ordnung o(g) von G
- (ii) Die Menge $\{g^0=e,g^1=g,g^2,\ldots,g^{n-1}\}$ ist eine Untergruppe von G, die von g erzeugte zyklische Gruppe < g>

Es gilt
$$o(g) = |\langle g \rangle| = n$$
 teilt $|G|$

(iii)
$$g^{|G|} = e$$

Bemerkung: Eine endliche Gruppe heißt *zyklisch*, falls sie von einem Element erzeugt werden kann.

Beweis

- (i) G endlich $\Rightarrow \exists i, j \in \mathbb{N}, i > j$ mit $g^i = g^j$ (Schubfachschluss -Editor)

 Dann ist $g^{i-j} \stackrel{1.28i}{=} g^i \cdot g^{-j} \stackrel{1.28}{=} \underbrace{g^i}_{=g^j} \cdot (g^j)^{-1} = e$
- (ii) Das Produkt zweier Elemente aus < g > liegt wieder in < g > Neutrales Element ist $g^0 = e$ Inverses Element zu g^i ist $(g^i)^{-1} = g^{n-i}$ $\Rightarrow < g > \leqslant G$
- (iii) Satz von Lagrange (1.26): $n = o(g) = |\langle g \rangle| \mid |G|$ Also ist $|G| = n \cdot k$ für ein $k \in \mathbb{N}$ $g^{|G|} = g^{n \cdot k} = (g^n)^k = e^k = e$

1.30 Beispiel

$$(\mathbb{Z}_3\setminus\{0\},\odot,1)$$

$$g = 1$$
: $\langle 1 \rangle = \{g^0 = 1^0 = 1\}$, $o(1) = 1$

$$g = 2$$
: $\langle 2 \rangle = \{g^0 = 1, g^1 = 2\}$, $o(2) = 2$

$$(\mathbb{Z}_5 \setminus \{0\}, \odot, 1)$$

$$g = 2$$
: $\langle 2 \rangle = \{2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 = 3\}$, $o(2) = 4$

1.31 Korollar

(i) Satz von Euler

Sei
$$n \in \mathbb{N}, a \in \mathbb{Z}, ggT(a, n) = 1$$

Dann ist
$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

(ii) Kleiner Satz von Fermat

Ist p eine Primzahl, $a \in \mathbb{Z}, p \nmid a$, dann gilt

$$a^{p-1} \equiv 1 \pmod{p}$$

1.32 Beweis

a) Wir können annehmen, dass $1 \le a < n$ (denn $a^{\varphi(n)} \mod n = (a \mod n)^{\varphi(n)}$) wegen ggT(a,n) = 1 ist $a \in \mathbb{Z}_n^*$, das ist eine endliche Gruppe.

$$\begin{array}{l} 1.29(iii) \\ \Rightarrow a^{|\mathbb{Z}_n^*|} = 1 (= e) \\ \Rightarrow a^{\varphi(n)} \equiv 1 (\bmod n) \\ \end{array} \qquad \begin{array}{l} a \odot a \odot \dots \\ a \cdot a \cdot \dots \end{array}$$

b) Folgt aus (i) $(n = p, \varphi(p) = -1)$

2 Algebraische Strukturen mit 2 Verknüpfungen: Ringe und Körper

2.1 Definition

Sei $R \neq \emptyset$ eine Menge mit zwei Verknüpfungen + und •.

- (i) Wir nennen $(R, +, \cdot)$ einen Ring, falls gilt:
 - (a) (R,+) ist eine abelsche Gruppe (Eselsbrücke: KAIN) Das neutrale Element bezeichnen wir hier mit 0, das zu $a \in \mathbb{R}$ Inverse mit -a (schreibe auch a - b für a + (-b)).
 - (b) (R, \cdot) ist eine Halbgruppe.
 - (c) Es gelten die Distributivgesetze:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c) = ab + ac$$

 $(a+b) \cdot c = (a \cdot c) + (b \cdot c) = ac + bc$ $\forall a,b,c \in R$

- (ii) Ein Ring $(R, +, \cdot)$ heißt kommutativ falls · ebenfalls kommutativ ist, also falls $\forall a, b \in \mathbb{R} : a \cdot b = b \cdot a$
- (iii) Ein Ring $(R, +, \cdot)$ heißt *Ring mit Eins*, falls (R, \cdot) ein Monoid ist mit neutralen Element $1 \neq 0 \ (\forall a \in R : a \cdot 1 = 1 \cdot a = a)$.
- (iv) Ist $(R, +, \cdot)$ Ring mit Eins, dann heißen die bezüglich \cdot invertierbaren Elemente *Einheiten*. Das zu a bezügliche \cdot invertierbare Element bezeichnen wir mit a^{-1} . $R^* :=$ Menge der Einheiten in R.

2.2 Beispiel

- a) $(\mathbb{Z}, +, \cdot)$ ist kommutativer Ring mit Eins (1) $\mathbb{Z}^* = \{1, -1\}, (\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot)$ ebenso $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}, \mathbb{R}^* = \mathbb{R} \setminus \{0\}.$
- b) $(2\mathbb{Z}, +, \cdot)$ ist ein kommutativer Ring ohne Eins
- c) trivialer Ring ($\{0\}, +, \cdot$) ohne Eins
- d) $n \in \mathbb{N}, n \ge 2, (\mathbb{Z}_n, \oplus, \odot)$ kommutativer Ring mit Eins
- e) $(\mathbb{R}^n, \underbrace{+, \cdot}_{\text{Komponentenweise}})$; allgemein: R_1, \dots, R_n Ringe, dann $R_1, \times \dots \times R_n$ Ring.
- f) $M_n(\mathbb{R})$ Menge aller $n \times n$ -Matrizen über \mathbb{R} , mit Matrixaddition und -multiplikation ist Ring mit Eins $(=E_n)$, nicht kommutativ für $n \ge 2$.

2.3 Satz (Rechnen mit Ringen)

Sei $(R, +, \cdot)$ ein Ring, $a, b, c \in R$. Dann gilt:

(i)
$$a \cdot 0 = 0 \cdot a = 0$$

(ii)
$$(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$$

(iii)
$$(-a) \cdot (-b) = a \cdot b$$

Beweis

- (i) $a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$ addiere $-(a \cdot 0)$ (Inverses von $a \cdot 0$) auf beiden Seiten, erhalte $0 = a \cdot 0$ Analog $0 \cdot a = 0$
- (ii) $(-a) \cdot b + a \cdot b = (-a + a) \cdot b = 0 \cdot b \stackrel{(i)}{=} 0$ also ist $(-a \cdot b)$ Inverses zu $a \cdot b$, also $= -(a \cdot b)$. Analog $a \cdot (-b) = -(a \cdot b)$
- (iii) $(-a) \cdot (-b) = -(a \cdot (-b)) = -(-(a \cdot b)) = a \cdot b$

2.4 Bemerkung

- a) In jedem Ring mit Eins sind 1 und -1 Einheiten (denn $(-1) \cdot (-1) = 1$, siehe 2.3(iii)) Es kann mehr geben (z.B. in \mathbb{Z}_5 usw.). Es kann auch -1 = 1 gelten (z.B. in $(\mathbb{Z}_2, \oplus, \odot)$)
- b) 0 kann nach 2.3(i) nie Einheit sein (da $1 \neq 0$)

c) In einem kommutativen Ring R gilt der Binomialsatz,

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i} \quad (n \in \mathbb{N}, a, b \in R)$$

2.5 Definition

Ein kommutativer Ring $(K, +, \cdot)$ heißt *Körper*, wenn jedes Element $0 \neq x \in K$ eine Einheit ist, also wenn

$$K^* = K \setminus \{0\}$$

2.6 Beispiele

a) $(\mathbb{Q},+,\cdot),(\mathbb{R},+,\cdot)$ sind Körper. $(\mathbb{Z},+,\cdot)$ ist kein Körper.

b) vgl. Beispiel 1.18 b)

$$\mathbb{Z}_n^* = \{ z \in \mathbb{Z}_n \mid ggT(z, n) = 1 \}$$

ist Gruppe bezüglich ⊙

 \Rightarrow ($\mathbb{Z}_n, \oplus, \odot$) ist genau dann ein Körper, wenn n eine Primzahl ist.

2.7 Satz (Rechnen im Körper, Nullteilerfreiheit)

Sei $(K, +, \cdot)$ ein Körper, $a, b \in K$

Dann gilt

$$a \cdot b = 0 \Leftrightarrow a = 0 \text{ oder } b = 0$$

Gegenbeispiel: $(\mathbb{Z}_6, \oplus, \odot)$ ist kein Körper. Hier gilt $2 \odot 3 = 0$, aber weder 2 = 0, noch 3 = 0

Beweis

"\(\sim \)": klar: $0 \cdot b = 0$ oder $a \cdot 0 = 0$ (Satz 2.3 (i), Rechergeln für Ringe)

" \Rightarrow ": Sei $a \cdot b = 0$. Angenommen $a \neq 0$ (d.h. a hat Inverses)

Dann ist
$$b = 1 \cdot b = (a^{-1} \cdot a) \cdot b$$

$$= a^{-1} \cdot (a \cdot b)$$

$$= a^{-1} \cdot 0$$

$$\stackrel{2 \cdot 3(i)}{=} 0$$

2.8 Definition

Seien $(R, +, \cdot)$ und $(\tilde{R}, \boxplus, \boxdot)$ Ringe.

(i) $\varphi: R \to \tilde{R}$ heißt (Ring-)*Homomorphismus*, falls gilt:

$$\varphi(\underbrace{x+y}_{\in R}) = \underbrace{\varphi(x)}_{\in \widehat{R}} \boxplus \underbrace{\varphi(y)}_{\in \widehat{R}} \quad \text{und} \quad \varphi(x\cdot y) = \varphi(x) \boxdot \varphi(y) \quad \forall x,y \in R$$

2.9 Beispiel

$$\varphi(\mathbb{Z},+,\cdot)\to(\mathbb{Z}_n,\oplus,\odot)$$

 $x \mapsto x \mod n$ ist Ringhomomorphismus (kein Isomorphismus), da φ nicht injektiv ist, z.B. $n = 5 : \varphi(1) = \varphi(6) = \varphi(11) \dots$

2.10 Satz (Chinesischer Restsatz)

Seien $m_1, \ldots, m_n \in \mathbb{N}$ paarweise teilerfremd, $M := m_1 \cdot \ldots \cdot m_n, \ a_1, \ldots, a_n \in \mathbb{Z}$

Dann existiert ein x, $0 \le x < M$ mit

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
...
 $x \equiv a_n \pmod{m_n}$

Beweis

Für jedes $i \in \{1, ..., n\}$ sind die Zahlen m_i und $M_i := \frac{M}{m_i}$ teilerfremd.

$$\Rightarrow$$
 EEA liefert s_i und $t_i \in \mathbb{Z}$ mit $t_i \cdot m_i + s_i \cdot M_i = 1$

Setze $e_i := s_i \cdot M_i$, dann gilt:

$$e_i \equiv 1 \pmod{m_i}$$

 $e_i \equiv 0 \pmod{m_j} \ (j \neq i)$

Die Zahl $x := \sum_{i=1}^{n} a_i e_i \pmod{M}$ ist dann die Lösung der simultanen Kongruenz.

2.11 Beispiel

a) Finde
$$0 \le x < 60 \text{ mit } x \equiv \begin{cases} 2 \pmod{3} \\ 3 \pmod{4} \\ 2 \pmod{5} \end{cases}$$

$$M = 3 \cdot 4 \cdot 5 = 60$$

$$M_1 = \frac{60}{3} = 20$$
 $7 \cdot 3 + (-1) \cdot 20 = 1$ $\Rightarrow e_1 = -20$
 $M_2 = \frac{60}{4} = 15$ $4 \cdot 4 + (-1) \cdot 15 = 1$ $\Rightarrow e_2 = -15$
 $M_3 = \frac{60}{5} = 12$ $5 \cdot 5 + (-2) \cdot 12 = 1$ $\Rightarrow e_3 = -24$

$$x = (2 \cdot (-20) + 3 \cdot (-15) + 2 \cdot (-24)) \mod 60 = 47$$

- b) Was ist $2^{1000} \mod \underbrace{1155}_{3.5.7.11}$
 - (a) Berechne $2^{1000} \mod 3, 5, 7, 11$

(b) Suche
$$0 \le x < 1155 \text{ mit } x \equiv \begin{cases} 1 & (\text{ mod } 3) \\ 1 & (\text{ mod } 5) \\ 2 & (\text{ mod } 7) \\ 1 & (\text{ mod } 11) \end{cases}$$

Der chinesische Restsatz liefert x = 331

2.12 Bemerkung

Man kann auch zeigen, dass die Lösung x aus Satz 2.10 eindeutig ist:

Durch
$$\psi$$
: $\mathbb{Z}_M \to Z_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_n}$
 $x \mapsto (x \mod m_1, \dots, x \mod m_n)$

wird ein Ringisomophismus definiert:

 ψ ist surjektiv (zu jedem n-Tupel aus $\mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_n}$ gibt es eine Lösung x, siehe Restsatz) und es gilt:

$$\underbrace{|\mathbb{Z}_{M}|}_{M} = \underbrace{|\mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{n}}|}_{m_{1} \cdot \cdots \cdot m_{n} = M}$$

also ist ψ bijektiv, also auch injektiv, also ist Lösung x eindeutig.

2.13 Korollar

$$M = m_1 \cdot \dots \cdot m_n$$
, m_i paarweise teilerfremd.
Dann ist $\varphi(M) = \varphi(m_1) \cdot \dots \cdot \varphi(m_n)$, insbesondere:
 $n = p_1^{a_1} \cdot \dots \cdot p_k^{a_k}$ (p_i Primzahlen, $a_1 > 0$, $p_i \neq p_j$ für $i \neq j$)

Beweis

Nach 2.12 ist
$$\mathbb{Z}_M \cong \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_n}$$
 mittels ψ
 $\Rightarrow x$ Einheit $\Leftrightarrow \psi(x) = (x \mod m_1, \dots, x \mod m_n)$ Einheit $\Leftrightarrow x \mod m_i$ Einheit $\forall i = 1 \dots n$
 $\Rightarrow \varphi(M) = \varphi(m_1) \cdot \cdots \cdot \varphi(m_n)$
 $\varphi(p^a) = p^a - p^{a-1} = p^{a-1}(p-1)$
Überlegen

2.14 Definition

Sei K Körper mit Nullelement 0 und Einselement 1:

- (i) Ein *Polynom über K* ist Ausdruck $f = a_0 x^0 + a_1 x^1 + \dots + a_n x^n$, $n \in \mathbb{N}_0, a_i \in K$. a_i heißen *Koeffizienten* des Polynoms.
 - (a) Ist $a_i = 0$, so kann man $0 \cdot x^i$ bei der Beschreibung weglassen.
 - (b) Statt $a_0 x^0$ schreibt auch a_0
 - (c) Sind alle $a_i = 0$, so schreibt man f = 0, das Nullpolynom.

- (d) Ist $a_i = 1$, so schreibt man x^i statt $1 \cdot x^i$
- (e) Die Reihenfolge der $a_i x^i$ kann verändert werden, ohne dass das Polynom sich verändert $(x^4 + 2x^3 + 3 = 2x^3 + 3 + x^4)$
- (ii) Zwei Polynome f und g sind gleich, wenn (f = 0 und g = 0) oder ($f = a_0 + a_1x^1 + \cdots + a_nx^n$, $g = b_0 + b_1x^1 + \cdots + b_mx^m$, $a_n \neq 0$, $b_m \neq 0$ und n = m, $a_i = b_i$ für $i = 0, \dots, n$) gilt.
- (iii) Die Menge aller Polynome über K bezeichnet man als K[x]

2.15 Beispiel

a)
$$\underbrace{f}_{f(x)} = 3x^2 + \frac{1}{2}x - 1 \in \mathbb{Q}[x] \land f \in \mathbb{R}[x]$$

b)
$$g = x^3 + x^2 + 1 \in \mathbb{Z}_2[x]$$

Wir wollen in K[x] wie in einem Ring rechnen können. Wir brauchen dazu + und · für Polynome.

2.16 Satz und Definition

K Körper, dann wird K[x] zu einem kommutativen Ring mit Eins durch folgende Verknüpfungen:

$$f = \sum_{i=0}^{n} a_i x^i, \quad g = \sum_{j=0}^{m} b_j x^j,$$

dann

$$f + g = \underbrace{\sum_{i=0}^{\max(m,n)} (a_i + b_i) x^i}_{x^3 + 3x + 3}$$

$$f \cdot g = \sum_{i=0}^{n+m} c_i x^i$$

$$\operatorname{mit} c_i = a_0 b_i + a_1 b_{i-1} + \dots + a_i b_0 = \sum_{j=0}^i a_j b_{i-j}$$
 (Faltungsprodukt)

(setze a_i mit i > n bzw. b_j mit j > m gleich 0)

- Einselement: f = 1 $(a_0 = 1, a_i = 0 \text{ für } j \ge 1)$
- Nullelement: f = 0

K[x] heißt der *Polynomring* in einer Variablen über K. Beweis: Ringeigenschaften nachrechnen.

2.17 Bemerkung

Die +-Zeichen in der Beschreibung der Polynome entsprechen der Ring-Addition der *Monome* $a_0, a_1, a_2, a_2, \dots, a_n, a_n$

2.18 Beispiel

- a) in $\mathbb{Q}[x]$, $\mathbb{R}[x]$ Addition, Multiplikation klar
- b) in $\mathbb{Z}_3[x]$: $f = 2x^3 + 2x + 1$, $g = 2x^3 + x$ $f + g = x^3 + 1$ $f \cdot g = (2x^3 + 2x + 1)(2x^3 + x)$ $= x^6 + 2x^4 + x^4 + 2x^2 + 2x^3 + x$ $= x^6 + 2x^3 + 2x^2 + x$
- c) in $\mathbb{Z}_2[x]$: $f = x^2 + 1$, g = x + 1 $f + g = x^2 + x$ f + f = 0 $g \cdot g = x^2 + 1$

2.19 Definition

Sei $0 \neq f \in K[x]$

$$f = a_0 + a_1 x + \dots + a_n x^n \text{ mit } a_n \neq 0$$

Dann heißt n der Grad von f Grad(f)

 $Grad(0) := -\infty$

Grad(f) = 0 für konstante Polynome $\neq 0$

2.20 Satz

K Körper, $f, g \in K[x]$

Dann ist $Grad(f \cdot g) = Grad(f) + Grad(g)$

(Konvention: $-\infty + (-\infty) = -\infty + n = -\infty$)

Beweis

Stimmt für f = 0 oder g = 0

$$f = a_0 + a_1 x^1 + \ldots + a_n x^n \qquad \text{mit} \quad a_n \neq 0$$

$$g = b_0 + b_1 x^1 + \ldots + b_m x^m \qquad \text{mit} \quad b_m \neq 0$$

$$f \cdot g = (\ldots) \cdot (\ldots) = \ldots + \underbrace{(a_n b_n)}_{\neq 0,} \cdot x^{n+m}$$
(siehe Satz 2.7 Nullteilerfreiheit in Körpern)

Höhere Potenzen mit Koeffizienten ≠ 0 gibt es nicht

$$\Rightarrow \operatorname{Grad}(f \cdot g) = n + m$$

2.21 Korollar

K Körper, dann $K[x]^* = \{ f \in K[x] \mid \operatorname{Grad}(f) = 0 \},$

d.h. nur die konstanten Polynome $\neq 0$ sind in K[x] bezüglich · invertierbar.

$$\underbrace{f}_{\text{Grad }n} \cdot \underbrace{f^{-1}}_{\text{m\u00e4sstein Grad }-n \text{ haben}} = \underbrace{1}_{\text{Grad }0} \leftarrow \text{geht nicht}$$

2.22 Definition

Sei $b \in K$

$$\varphi_b:K[x]\to K,\, f:=\sum\limits_{i=0}^n a_ix^i\mapsto f(b):=\sum\limits_{i=0}^n a_ib^i$$

ist ein surjektiver Ringhomomorphismus, der sogenannte *Auswertungshomomorphismus* an der Stelle *b*.

(setze b für x ein)

2.23 Definition

K Körper, $f,g \in K[x]$

 $f \text{ teilt } g, f|g, \text{ falls ein } q \in K[x] \text{ existiert mit } g = q \cdot f$

(Nach 2.20 ist dann $Grad(f) \leq Grad(g)$, falls $g \neq 0$)

2.24 Definition (Division mit Rest)

K Körper, $0 \neq f \in K[x]$, $g \in K[x]$

Dann existieren eindeutig bestimmte Polynome $q, r \in K[x]$ mit $g = q \cdot f + r$ und Grad(r) < Grad(f).

Bezeichnung:

$$r =: g \mod f$$

 $q =: g \operatorname{div} f$

Beweis

Vgl. Mathe I für Z, siehe z.B. WHK Satz 4.69

2.25 **Beispiel**

a)

$$g = x^4 + 2x^3 - x + 2 \quad \in \mathbb{Q}[x]$$
$$f = 3x^2 - 1 \quad \in \mathbb{Q}[x]$$

Rechne:

Rechne:

$$\left(\begin{array}{ccc}
x^4 + 2x^3 & -x & +2
\end{array}\right) : \left(3x^2 - 1\right) = \frac{1}{3}x^2 + \frac{2}{3}x + \frac{1}{9} + \frac{-\frac{1}{3}x + \frac{19}{9}}{3x^2 - 1}$$

$$\frac{-x^4 & +\frac{1}{3}x^2}{2x^3 + \frac{1}{3}x^2 - x} \\
 & -2x^3 & +\frac{2}{3}x
\end{array}$$

$$\frac{\frac{1}{3}x^2 - \frac{1}{3}x}{-\frac{1}{3}x^2 + \frac{19}{9}}$$

b) $g = x^4 + x^2 + 1$ $f = x^2 + x \in \mathbb{Z}_2[x]$

Rechne:

$$(x^4 + x^2 + 1) : x^2 + x = \underbrace{x^2 + x}_q$$

2.26 Korollar

K Körper, $a \in K$

 $f \in K[x]$ ist genau dann durch (x - a) teilbar, wenn f(a) = 0 ist (d.h. a ist Nullstelle von f).

Beweis

sei f durch (x - a) teilbar, d.h.

$$f = q \cdot (x - a) \Rightarrow f(a) = q(a) \cdot (\underbrace{a - a}_{0}) = 0 \quad q \in K$$

Division mit Rest: f = q(x - a) + r, wobei $Grad(r) < \underbrace{Grad(x - a)}_{1}$

 \Rightarrow r ist konstantes Polynom (Grad 0) oder Nullpolynom (Grad $(-\infty)$) also $r \in K$

$$0 = f(a) = g(a) \cdot 0 + r \Rightarrow r = 0$$

2.27 Definition

K Körper

- (i) Ein Polynom dessen höchster von 0 verschiedener Koeffizient gleich 1 ist, heißt normiert.
- (ii) $g, h \in K[x]$, nicht beide 0

 $f \in K[x]$ heißt *größter gemeinsamer Teiler* von g und h (f = ggT(g,h)), falls f normiertes Polynom von maximalem Grad ist, das g und h teilt.

(iii) $g, h \in K[x] \setminus \{0\}$ beide nicht 0

 $f \in K[x]$ heißt *kleinstes gemeinsames Vielfaches* von g und h (f = kgV(g,h)), falls f normiertes Polynom von kleinstem Grad ist, das von g und h geteilt wird.

2.28 Bemerkung

a) $f = \sum_{i=0}^{n} a_i x^i, a_n \neq 0$, dann ist $a_n^{-1} f = x^n + \dots$ normiertes Polynom.

(z.B.:
$$f = 3x^2 + x + 7 \in \mathbb{R}[x]$$
)

dann $\frac{1}{3}f = x^2 + \frac{x}{3} + \frac{7}{3}$ normiert.

In
$$\mathbb{Z}_{11}[x]$$
: $4 f = x^2 + 4x_6$ normiert.

Inverses von 3, denn $3 \cdot 4 = 12 \equiv 1 \pmod{11}$

b) kgV(g,h) existiert und ist eindeutig:

sei
$$f_1 = \text{kgV}(g,h)$$
, $f_2 = \text{kgV}(g,h)$
 $\Rightarrow g, h|f_1, \quad g, h|f_2$
 $\Rightarrow g, h|(f_1 - f_2)$

c) ggT(g,h) existiert. Beweis Eindeutigkeit wie in \mathbb{Z} (Mathe I), folgt aus.

2.29 Satz (von Bezout)

K Körper, $g, h \in K[x]$, nicht beide 0.

Dann existieren $s, t \in K[x]$, sodass

$$f = s \cdot g + t \cdot h$$

ein ggT von g und h ist.

(Beweis: EEA in K[x], später)

2.30 Satz

Euklidischer Algorithmus in $K[x] \rightarrow$ siehe "Blatt"

2.31 Satz

EEA in $K[x] \rightarrow$ siehe "Blatt"

2.32 Beispiel

$$g = x^4 + x^3 + 2x^2 + 1, h = x^3 + 2x^2 + 2 \in \mathbb{Z}_3[x]$$
... TBD ...

2.33 Definition

k Körper. Ein Polynom $p \in K[x]$, Grad $(p) \ge 1$ (d.h. $p \ne 0$, p nicht konst., also keine Einheit) heißt *irreduzibel*, falls gilt:

Ist $p = f \cdot g$ $(f, g \in K[x])$, so ist Grad(f) = 0 oder Grad(g) = 0 (d.h. f oder g ist konst. Polynom).

Bemerkung: $p = a \cdot a^{-1} \cdot p$ für $a \in K \setminus \{0\}$ geht immer.

2.34 Beispiel

- a) ax + b ($a \ne 0$) ist irreduzibel in K[x] für jeden Körper K
- b) $x^2 2 \in \mathbb{Q}[x]$ ist irreduzibel: angenommen nicht, dann $(x^2 - 2) = (ax + b)(cx + d)$ mit $a, b, c \in \mathbb{Q} \land a, c \neq 0$ (ax + b) hat Nullstelle $-\frac{b}{a}$, also müsste auch $(x^2 - 2)$ Nullstelle $-\frac{b}{a}$ $(\in \mathbb{Q})$ haben. Nullstellen von $(x^2 - 2)$ sind aber nur $\sqrt{2}$ und $-\sqrt{2}$, beide nicht in \mathbb{Q} !
- c) $x^2 2 \in \mathbb{R}[x]$ ist nicht irreduzibel. $x^2 - 2 = \underbrace{(x + \sqrt{2})}_{\in \mathbb{R}[x]} \cdot \underbrace{(x - \sqrt{2})}_{\in \mathbb{R}[x]}$
- d) $x^2 + 1 \in \mathbb{R}[x]$ ist irreduzibel
- e) $x^2 + 1 \in \mathbb{Z}_5[x]$ ist nicht irreduzibel: $(x^2 + 1) = (x + 2) \cdot (x + 3) = (x^2 + 3x + 2x + 1) = (x^2 + 1)$ $2 \Rightarrow (x^2 + 1)$ ist teilbar durch (x - 2) = (x + 3)

2.35 Abschlussbemerkung

a) Irreduzibel Polynome in K[x] entsprechen den Primzahlen in \mathbb{Z} . Man kann zeigen: $f = \sum_{i=0}^n a_i x^i \in K[x], \ a_n \neq 0, n \geq 1.$ Dann existieren eindeutig bestimmte irreduzibel Polynome p_1, \ldots, p_e und natürlichen Zahlen $m_1, \ldots, m_e \in \mathbb{N}$ mit $f = a_n \cdot p_1^{m_1} \cdot \ldots \cdot p_e^{m_e}$

b) Gegeben: Primzahl p, dann gibt es Körper mit p Elementen: $(\mathbb{Z}_p, \oplus, \odot)$

Man kann zeigen: zu jeder Primzahlpotenz p^a gibt es Körper mit p^a Elementen, diesen konstruiert man über irreduzible Polynome in $\mathbb{Z}_p[x]$.

3 Der Körper der C der Komplexen Zahlen

3.1 Definition

Eine komplexe Zahl $\mathbb Z$ ist von der Form $z=x+i\cdot y$ mit $x,y\in\mathbb R$ und einer "Zahl" i mit $i^2=-1$ ("imaginäre Einheit"). x heißt Realteil von $z,x=\operatorname{Re} z$ y heißt Imaginärteil, $y=\operatorname{In} z$.

Die Menge aller komplexen Zahlen bezeichnen wie mit \mathbb{C} und definieren auf \mathbb{C} Addtition und Multiplikatio wie folgt:

Für
$$z = x + iy$$
 und $w = a + ib$ ist
 $z + w := (x + a) + i(y + b),$
 $z - w := (x - a) + i(y - b)$ und
 $z \cdot w := (xa - yb) + i(xb + ya).$

Erläuterung zur Multiplikation: $((x + iy)(a + ib) = xa + xib + iya + i^2yb = (xa - yb) + i(xb + ya)$.

Mit diesen Verknüpfungen ist C ein Körper:

- a) AG, kG, DG: nachrechnen
- b) $0 = 0 + i \cdot 0$
- c) additiv Inverses: -z = -x iy
- d) $1 = 1 + i \cdot 0$

e) multiplikativ Inverses:
$$z^{-1} = \frac{1}{z} = \frac{1}{x+iy} = \frac{1}{x+iy} \cdot \frac{x-iy}{x-iy} = \frac{x-iy}{x^2+y^2} = \underbrace{\frac{x}{x^2+y^2}}_{\in \mathbb{R}} + i \cdot \underbrace{\frac{-y}{x^2+y^2}}_{\in \mathbb{R}}$$

Man nennt für z = x + iy die Zahl $\overline{z} = x - iy$ die zu z konjugiert komplexe Zahl und $|z| := \sqrt{x^2 + y^2}$ den Betrag von z.

3.2 Beispiel

a)
$$z = 2 + 3i$$
 mit $Re(z) = 2$ und $Im(z) = 3$.
 $\overline{z} = 2 - 3i, |z| = \sqrt{2^2 + 3^2} = \sqrt{13}$
 $z \cdot \overline{z} = (2 + 3i) \cdot (2 - 3i)$
 $= 4 - 6i + 6i - 9i^2 = 4 + 9 = 13$

b)
$$w = 1 + i = 1 + 1 \cdot i$$
: Re(w) = 1, Im(w) = 1, $\overline{w} = 1 - i$, $|w| = \sqrt{1^2 + 1^2} = \sqrt{2}$

c) Selbst nachrechnen: $u = 7 = 7 + 0 \cdot i$, v = 5i = 0 + 5i

d)
$$u + w + z = 7 + (1+i) + (2+3i) = 10 + 4i$$

 $u \cdot w = 7 \cdot (1+i) = 7 + 7i$
 $\frac{w}{z} = \frac{1+i}{2+3i} = \frac{(1+i)\cdot(2-3i)}{4+9} = \frac{2-3i+2i=3i^2}{13} = \frac{5-i}{13} = \frac{5}{13} - \frac{1}{13}i$

3.3 Bemerkung: komplexe Zahlenebene

Man kann \mathbb{C} veranschaulichen in der "Gaußschen Zahlenebene": Betrachte z = x + iy als Punkt (x|y) in \mathbb{R}^2 :

3.4 Satz (Eigenschaften)

a)
$$\begin{array}{ccc} \overline{w+z} &= \overline{w} + \overline{z} \\ \overline{w\cdot z} &= \overline{w} \cdot \overline{z} \\ \overline{\frac{w}{z}} &= \overline{\frac{w}{\overline{z}}} & (z \neq 0) \\ \overline{z} &= z \end{array} \right\} \mathbb{C} \to \mathbb{C}, z \mapsto \overline{z} \text{ ist K\"{o}rperisomorphismus}$$

b)
$$Re(z) = \frac{z+\overline{z}}{2}, Im(z) = \frac{z-\overline{z}}{2i}$$

c)
$$|z| \ge 0$$
, $|z| = 0$ nur für $z = 0$

d)
$$|z| = |\overline{z}| = \sqrt{z \cdot \overline{z}}$$

e)
$$|w \cdot z| = |w| \cdot |z|$$

f)
$$|w + z| \le |w| + |z|$$
 (Dreiecksungleichung)
 $|w + z| \ge ||w| - |z||$

Beweis

z.B.: d) sei
$$z = x + iy$$
 $x, y \in \mathbb{R}$

$$\Rightarrow \overline{z} = x - iy, \quad |z| = \sqrt{x^2 + y^2}$$

$$|\overline{z}| = \dots$$

3.5 Bemerkung

- a) In $\mathbb C$ existiert $\sqrt{-1}:\pm i$, d.h. $x^2+1=0$ ist lösbar in $\mathbb C$, das Polynom x^2+1 ist nicht irreduzibel in $\mathbb C[x]:x^2+1=(x+i)(x-i)$
- b) Mann kann jede quadratische Gleichung $ax^2 + bx + c$ $(a,b,c \in \mathbb{R})$ in \mathbb{C} lösen: $x_{1|2} = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ Jedes $b^2 4ac < 0$ ist, schreibe: $\frac{-b \pm \sqrt{4ac b^2 \cdot i}}{2a}$
- c) Es gilt sogar: Fundamentalsatz der Algebra: Jedes Polynom $f \in \mathbb{C}[x]$ vom Grad $n \ge 1$ hat genau n Nullstellen in \mathbb{C} .

3.6 Polarkoordinaten

Eine andere Möglichkeit, komplexe Zahlen zu beschreiben:

Angabe von Winkel (φ) und Abstand r zum Nullpunkt.

Zu jedem $z \in \mathbb{C}$ gibt es ein eindeutig bestimmtes $r \le 0$ und ein $\varphi \in \mathbb{R}$ mit $z = r(\cos \varphi + i \cdot \sin \varphi)$ (Polarkoordinatendarstellung von z) und zwar ist $r = |z| = \sqrt{x^2 + x^2}$ für z = x + iy, $\frac{x}{r} = \cos \varphi$, $\frac{y}{r} = \sin \varphi$:

$$z = x + iy$$

= $r \cdot \cos \varphi + i \cdot r \cdot \sin \varphi$
= $r \cdot (\cos \varphi + i \cdot \sin \varphi)$

Aus den Additionstheoremen für sin, cos folgt (PÜ6):

$$z_1 \cdot z_2 = |z_1| \cdot |z_2| \cdot (\cos(\varphi_1 + \varphi_2) + i \cdot \sin(\varphi_1 + \varphi_2))$$

$$z^2 = |z|^2 \cdot (\cos(2\varphi) + i \cdot \sin(2\varphi))$$

$$\pm \sqrt{z} = \sqrt{|z|} \cdot (\cos(\frac{\varphi}{2}) + i \cdot \cos(\frac{\varphi}{2}))$$

3.7 Beispiel

a)
$$z_1 = 1$$
, $r_1 = 1$, $\varphi_1 = 0 \Rightarrow z_1 = 1 \cdot (\cos 0 + i \cdot \sin 0)$

b)
$$z_2 = i$$
, $r_2 = 1$, $\varphi_2 = \frac{\pi}{2} \Rightarrow z_2 = 1 \cdot (\cos \frac{\pi}{2} + i \cdot \sin \frac{\pi}{2})$

c)
$$z_3 = 1 + i$$
, $r_2 = \sqrt{2}$, $\varphi_2 = \frac{\pi}{4} \Rightarrow z_3 = \sqrt{2} \cdot (\cos \frac{\pi}{4} + i \cdot \sin \frac{\pi}{4})$

3.8 Definition/Schreibweise

$$e^{i\varphi} := \cos \varphi + i \cdot \sin \varphi$$
$$z = \underbrace{r}_{\text{Betrag}} \cdot e^{i\varphi}$$

3.9 Bemerkung

Statt Defintion 3.8:

Man kann auch die Definition von Folgen, Konvergenz, Grenzwert von \mathbb{R} auf \mathbb{C} übertragen, alles aus Mathe II (Analysis!), u.a. auch Potenzreihen, insbesondere die Exponentialfunktion definieren.

Für alle $z \in \mathbb{C}$ konvergiert $\sum_{k=0}^{\infty} \frac{z^k}{k!} := \exp(z), e^z$

Mit den Methoden aus Mathe II - "2. Teil" kann man dann zeigen, dass

$$e^{i}t = \cos t + i \cdot \sin t \ \forall t \in \mathbb{R}$$
 (Eulersche Formel)

$$z_1 \cdot z_2 = (r_1 \cdot r_2) \cdot (\cos(\varphi_1 + \varphi_2) + i \cdot \sin(\varphi_1 + \varphi_2)) = \underline{(r_1 \cdot r_2) \cdot e^{i(\varphi_1 + \varphi_2)}}$$

3.10 Beispiele

a)
$$1 \cdot e^{i \cdot 0} = 1$$

b)
$$e^{i\pi} = -1$$
 (und: $e^{i\pi} + 1 = 0$ ①)

c)
$$2 \cdot e^{2\pi} = 2$$

d) ...

3.11 Bemerkung

 \mathbb{C} hat alle algrebraischen und analystischen Eigenschaften wie \mathbb{R} (oder besser), außer:

Es gibt auf $\mathbb C$ keine vollständige Ordnung \leq , die mit + und \cdot verträglich ist, d.h. für die gelten würde:

$$a \le b, c \le d \Rightarrow a + c \le b + d$$

 $a \le b, r \ge 0 \Rightarrow ra \le rb$

4 Wiederholung und Erweiterung der linearen Algebra aus Mathe II

4.1 Beispiel

a)
$$K = \mathbb{Z}, V_1 = \mathbb{Z}_2^2 = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : x_1, x_2 \in \mathbb{Z}_2 \right\}$$

$$V_1 \text{ hat 4 Elemente: } \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$O = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \text{d.h. } -\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\forall v \in V : 0 \cdot v = O = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ und } 1 \cdot v = v$$

b)
$$K = \mathbb{Z}_5, V_2 = \mathbb{Z}_5^3 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \right\}$$

$$v = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, w = \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix} \in \mathbb{Z}_5^3$$

$$-v = \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix}, -w = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, v + w \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$1 \cdot w = w, 2 \cdot w = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}, 3 \cdot w = \cdots$$

$$|V| = 5 \cdot 5 \cdot 5 = 125$$

c)
$$U = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in V_1 : x_1 \oplus x_2 = 0 \right\}$$
 ist UR von V_1

•
$$U = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \neq \emptyset$$

• Sei
$$u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \in U$$
, d.h. $u_1 \oplus u_2 = 0$

$$\Rightarrow \text{für } \lambda \cdot u = \begin{pmatrix} \lambda u_1 \\ \lambda u_2 \end{pmatrix} \text{ gilt } \lambda u_1 \oplus \lambda u_2 = \lambda \cdot \underbrace{(u_1 \oplus u_2)}_0 = 0$$

d) \mathbb{Z}_3^3 :

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 l.a.; $\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$ l.u.; $\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ sind l.a.

e) Kanonische Basis von V_2 (Bsp. b)):

$$B_1 = \underbrace{\left\{e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\right\}}_{\text{geordnete Basis}}, \dim V_2 = 3$$

z.B.:
$$\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \alpha \cdot e_1 + \beta \cdot e_2 + \gamma \cdot e_3$$
 mit $\alpha = 2$, $\beta = 3$, $\gamma = 1$ und α , β , γ sind die

kartesischen Koordinaten.

Eine andere (geordnete) Basis, z.B.:

$$B_2 = \left\{ \begin{pmatrix} 2\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\}$$

Zeige Vektoren sind linear unabhängig:

$$\alpha \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + \beta \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \gamma \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = O$$

$$\Rightarrow \cdots \Rightarrow \cdots \Rightarrow \alpha = \beta = \gamma = 0$$

Koordinaten von $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ in B_2 ?

Stelle LGS auf und löse es ...

4.2 Definition

 $A \in M_{n,n}(K)$ heißt invertierbar, falls $\exists A^{-1} \in M_{n,n}(K)$ mit $A^{-1} \cdot A = A \cdot A^{-1} = E_n$

5 Lineare Abbildungen

5.1 Definition

Seien V, W K-Vektorräume.

a) $\varphi: V \to W$ heißt *lineare* Abbildung (VR-Homomorphismus), falls:

- $\forall v_1, v_2 \in V : \varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2)$ (Additivität)
- $\forall v \in V, \forall \lambda \in K : \varphi(\lambda \cdot v) = \lambda \cdot \varphi(v)$ (Homogenität)
- b) Ist die lineare Abbildung $\varphi: V \to W$ bijektiv, so heißt φ *Isomorphismus*, V und W heißen dann *isomorph*, $V \cong W$.

5.2 Bemerkung

 $\varphi: V \to W$ ist eine lineare Abbildung:

- a) $\varphi(O) = O$
- b) $\varphi\left(\sum_{i=1}^{n} \lambda_i v_i\right) = \sum_{i=1}^{n} \lambda_i \varphi(v_i)$

5.3 Beispiel

a) Nullabbildung:

$$\varphi: V \to W, v \mapsto O$$

- b) $\varphi: V \to V, v \mapsto \lambda v$ für jedes festes $\lambda \in K$ ist lineare Abbildung ($\lambda = 1: \varphi = \mathrm{id}_V$)
- c) $\varphi : \mathbb{R}^3 \to \mathbb{R}^3, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ x_2 \\ z_3 \end{pmatrix}$ ist eine lineare Abbildung (Spiegelung an x_1, x_2 -Ebene)
- d) $\varphi: \mathbb{R}^2 \to R^2, \left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} (x_1)^2 \\ x_2 \end{pmatrix} \right)$ ist nicht linear

$$v = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \lambda = 3$$
:

$$\varphi(3v) = \varphi\left(\begin{pmatrix} 3 \\ 6 \end{pmatrix}\right) = \begin{pmatrix} 9 \\ 6 \end{pmatrix} \neq \begin{pmatrix} 3 \\ 9 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 3 \cdot \varphi\left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}\right) = 3 \cdot \varphi(v)$$

5.4 Satz

 $A \in M_{m,n}(K)$

Dann ist $\varphi: K^n \to K^m, x \mapsto Ax$

eine lineare Abbildung

Beweis

folgt aus Rechenregeln für Matrizen:

$$\varphi(x + y) = A(x + y) = Ax + Ay$$
$$= \varphi(x) + \varphi(y)$$

$$\varphi(\lambda \cdot x) = A(\lambda x) = \lambda Ax$$

= $\lambda \varphi(x)$

Alle bisherigen Beispiele waren von dieser Form!

5.3

a) A = 0 = Nullmatrix

b)
$$A = \begin{pmatrix} \lambda & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda \end{pmatrix} = \lambda \cdot E_n$$

c)
$$A = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}$$

Es gilt (\rightarrow später):

alle lineare Abbildungen $K^n \to K^m$ sind von der Form in 5.4

5.5 Satz

 $\varphi: V \to W$ lineare Abbildung

- (i) $U \subseteq V$ UR von V $\Rightarrow \varphi(U) \subseteq W$ UR von W und $\varphi(V)$ (Bild von V) ist UR von W
- (ii) falls $\dim(U)$ endlich : $\dim(\varphi(U)) \leq \dim(U)$

Beweis

- (i) $U \subseteq V$ Unterraum, d.h. für $u, v \in U$ ist $\lambda u + \mu v \in U$ $\varphi(U) = \{\varphi(u) | u \in U\} \text{ ist auch UR:}$ für $\varphi(u), \varphi(v) = \varphi(\lambda u + \mu v) \in \varphi(U)$ außerdem ist $\varphi(U) \neq \emptyset$, da $\varphi(O) = O$
- (ii) v_1, \dots, v_k Basis von U $\Rightarrow \varphi(u_1), \dots, \varphi(u_k)$ ist Erzeugendensystem von $\varphi(U)$ \Rightarrow enthält Basis (Mathe II) \Rightarrow Behauptung

5.6 Definition

 $\varphi: V \to W$ lineare Abbildung, V endlich dimensional Dann heißt die dim $(\varphi(V))$ der Rang von φ , $\operatorname{rg}(\varphi)$.

5.7 Definition/Satz

 $\varphi: V \to W$ lineare Abbildung

- (i) $\ker(\varphi) := \{ v \in V \mid \varphi(v) = O \}$ (alle Vektoren die von φ auf O abgebildet werden) heißt der Kern von φ und ist ein UR von V.
- (ii) φ : injektiv $\Leftrightarrow \ker(\varphi) = \{O\}$

Beweis

- (i) $ker(\varphi)$ ist UR:
 - $\ker(\varphi) \neq \emptyset$, da $\varphi(O) = O$
 - seien $u, v \in \ker(\varphi)$, d.h. $\varphi(u) = O, \varphi(v) = O$, seien $\lambda, \mu \in K$ $\Rightarrow \lambda u + \mu v \in \ker(\varphi), \text{ dann:}$ $\varphi(\lambda u + \mu v) = \lambda \cdot \underbrace{\varphi(u)}_{O} + \mu \cdot \underbrace{\varphi(v)}_{O} = O$
- (ii) " \Rightarrow " $\varphi(O) = O$, wegen Injektivität kann kein weiteres Element auf O abgebildet werden. " \Leftarrow "

Angenommen es gibt $v_1, v_2 \in V$ mit $\varphi(v_1) = \varphi(v_2)$, dann ist $O = \varphi(v_1) - \varphi(v_2)$ = $\varphi(v_1 - v_2)$ (lineare Abbildung!)

 $\Rightarrow v_1 - v_2 = O$ (nur *O* wird auf *O* abgebildet)

 $\Rightarrow v_1 = v_2$

 $\Rightarrow \varphi$ injektiv

5.8 Beispiel

$$\varphi: \mathbb{R}^3 \to \mathbb{R}^3, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \to \begin{pmatrix} x_1 \\ 2x_1 \\ x_1 + x_2 + 2x_3 \end{pmatrix}$$
 ist lineare Abbildung

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 1 & 2 \end{pmatrix}$$

$$U = \langle e_2, e_3 \rangle$$
, $\dim(U) = 2$

$$\varphi(U)$$
, $dim(\varphi(U))$, $ker(\varphi)$?

$$\varphi(U) = \langle \varphi(e_2), \varphi(e_3) \rangle = \langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} \rangle = \langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle = x_3$$
-Achse

$$\varphi(e_2) = \varphi\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \varphi(e_3) = \varphi\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

$$\dim(\varphi(U)) = 1$$

5.9 Satz

V, W K-VR, $\dim(V) = n$

 $\{v_1,\ldots,v_n\}$ Basis von V

 w_1, \ldots, w_n Vektoren aus W (nicht notwendig verschieden)

Dann 3! lineare Abbildung

$$\varphi: V \to W \text{ mit } \varphi(v_i) = w_i \ (i = 1, ..., n)$$

und zwar:

$$\varphi: V \to W \\ v = \sum_{i=1}^{n} \lambda_i v_i \mapsto \sum_{i=i}^{n} \lambda_i w_i$$

D.h.: wenn man weiß, wie die Basisvektoren abgebildet werden, dann kennt man die lineare Abbildung vollständig.

Beweis

Für φ aus * gilt:

- φ ist linear
- $\varphi(v_i) = w_i$ $\varphi(v_1) = \varphi(1 \cdot v_1 + 0 \cdot v_2 + \dots + 0 \cdot v_n) = 1 \cdot w_1 + 0 \cdot w_2 + \dots + 0 \cdot w_n = 1 \cdot w_1 = w_1 \text{ usw.}$
- φ ist eindeutig.

Angenommen
$$\exists \psi : V \to W$$
 lin. Abb. $\min \psi(v_i) = w_i \ \forall i = 1...n$
Dann ist $\psi(\sum_{i=1}^n \lambda_i v_i) = \sum_{i=1}^n \lambda_i (\psi(v_i)) = \sum_{i=1}^n \lambda_i w_i = \varphi(\sum_{i=1}^n \lambda_i v_i)$

5.10 Beispiel

 $V=\mathbb{R}^2, \varphi$ Drehung um Winkel α $(0\leq \alpha<2\pi)$ um Nullpunkt gegen den Uhrzeigersinn. φ ist lin. Abb.:

$$\varphi(\alpha_1 + \alpha_2) = \varphi(\alpha_1) + \varphi(\alpha_2)$$

$$\varphi(\lambda \alpha) = \lambda \varphi(\alpha)$$

$$\varphi : e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$$
$$e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}$$

allg. Vektor
$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\varphi: x \mapsto x_1 \cdot \varphi(e_1) + x_2 \cdot \varphi(e_2)$$

$$= x_1 \cdot \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} + x_2 \cdot \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}$$

$$= \begin{pmatrix} x_1 \cdot \cos \alpha - x_2 \cdot \sin \alpha \\ x_1 \cdot \sin \alpha + x_2 \cdot \cos \alpha \end{pmatrix}$$

$$= A \cdot x$$

$$mit A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

5.11 Satz (Dimensionsformel)

V endl. dim. *K*-VR, $\varphi: V \to W$ lin. Abb.

Dann gilt:

$$\dim(V) = \dim(\ker(\varphi)) + \underbrace{\operatorname{rg}(\varphi)}_{\dim(\varphi(V))}$$

Beweis

Sei $u_1,...,u_k$ Basis von $ker(\varphi)$

Ergänze zu Basis $u_1,...,u_n$ von V (Mathe 2, Basisergänzungssatz)

Setze
$$U := \langle u_{k+1}, ..., u_n \rangle$$

Dann ist $ker(\varphi) \cap U = \{O\},\$

d.h. kein Element außer O liegt in U,

also hat die Abb. $\varphi|_U$ den

$$\ker(\varphi|_U) = \{O\},\$$

ist damit nach Satz 5.7 (ii) injektiv.

Deshalb ist $dim(U) = dim(\varphi(U))$.

Außerdem ist $\varphi(U) = \varphi(V)$

$$\Rightarrow \dim(V) = \dim(\ker(\varphi)) + \underbrace{\dim(U)}$$

 $\dim(\varphi(U)) = \mathring{\dim(\varphi(V))} = \operatorname{rg}(\varphi)$

5.12 Korollar

V, W endlich. dim. K-VR mit dim $V = \dim W$, $\varphi : V \to W$ lin. Abb.

Dann sind folgende Aussagen äquivalent:

- (i) φ ist surjektiv
- (ii) φ ist injektiv
- (iii) φ ist bijektiv

Beweis

 $\dim V = \dim W = n$

Nach 5.11 gilt:

$$n = \dim(\ker(\varphi)) + \operatorname{rg}(\varphi)$$

Also:
$$\underline{rg(\varphi) = n} \Leftrightarrow \underline{\dim(\ker(\varphi))} = 0$$

 $\varphi \text{ surjektiv } \varphi \text{ injektiv (Satz 5.7)}$
 $\Rightarrow \text{Beh.}$

5.13 Zusammenhang lin. Abb. und hom. LGS, Matrizen, Rang

- homogenes LGS: $A \in M_{m,n}(K)$ gesucht: Menge aller $x \in K^n$ mit Ax = O
- lin. Abb. dazu:

$$\varphi: K^n \to K^m, x \mapsto Ax$$

Dann ist der Lösungsraum des homogenen LGS = $ker(\varphi)$

Dimensionsformel:

$$\underline{\dim(\ker(\varphi))} = \underline{\dim(K^n)} - \underbrace{rg(\varphi)}_{\dim(\operatorname{L\"{o}Sungsraum LGS})} - \underbrace{\operatorname{dim}(K^n)}_{n}$$

$$\varphi(K^n) = \langle \varphi(e_1), \cdots, \varphi(e_n) \rangle_K$$
$$= \langle Ae_1, \cdots, Ae_n \rangle$$

 $(Ae_i \text{ ist gerade die i-te Spalte } S_i \text{ von A})$

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

Also

 $rg(\varphi) = dim(\langle s_1, \dots, s_n \rangle_K) = Maximale Anzahl linear unabhängiger Spalten von A.$

Also: dim(Lösungsraum) = n- Spaltenrang von A Mathe II: dim(Lösungsraum) = n- Zeilenrang von A \Rightarrow für beliebige $A \in M_{m,n}(K)$ gilt:

Zeilenrang von
$$A$$
 = Spaltenrang von A = Zeilenrang von A

 \Rightarrow für beliebigen $A \in M_{m,n}(K)$ gilt: = Rang von A = $\operatorname{rg}(\varphi)$ mit φ wie oben

6 Matrizen und lineare Abbildungen

6.1 Definition

Seien V, W endlich dimensionale VR mit geordneter Basis

$$\mathcal{B} = (v_1, \cdots, v_n) \text{ von } V$$

und

$$C = (w_1, \cdots, w_m) \text{ von } W$$

Sei

 $\varphi: V \to W$ lineare Abbildung

Stelle die Bilder
$$\underbrace{\varphi(v_1)}_{\in W}, \dots, \underbrace{\varphi(v_n)}_{\in W}$$
 bzgl. Basis C dar:

$$\varphi(v_1) = a_{11} \cdot w_1 + \dots + a_{m1} w_m$$

$$\vdots$$

$$\varphi(v_n) = a_{1n} \cdot w_1 + \dots + a_{mn} w_m$$

Dann heißt die $m \times n$ Matrix

$$A_{\varphi}^{\mathcal{B},C} := \begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots & \vdots \\ a_{m1} \cdots a_{mn} \end{pmatrix}$$
(Spalte *i* enthält Koordinaten von $\varphi(v_i)$ bzgl. *C*)

die Darstellungsmatrix von φ bzgl. der Basen $\mathcal B$ und C (Schreibweise für den Fall $\mathcal B=C$, dann auch $A_\varphi^{\mathcal B}$)

Bemerkung: φ durch $A_{\varphi}^{\mathcal{B},\,C}$ eindeutig bestimmt, vgl. 5.7

6.2 Beispiel

a)

$$V = W = \mathbb{R}^2, \quad \mathcal{B} = \mathbf{C} = (e_1, e_2) = \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right)$$

$$\varphi: V \to V, \quad v \mapsto 2v$$

$$A_{\omega}^{\mathcal{B},C} = A_{\omega}^{\mathcal{B}} = ?$$

$$\varphi\left(\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}2\\0\end{pmatrix} = 2\begin{pmatrix}1\\0\end{pmatrix} + 2\begin{pmatrix}0\\1\end{pmatrix} \\
\varphi\left(\begin{pmatrix}0\\1\end{pmatrix}\right) = \begin{pmatrix}0\\0\end{pmatrix} = 2\begin{pmatrix}0\\1\end{pmatrix} = 2\begin{pmatrix}0\\0\end{pmatrix} + 2\begin{pmatrix}0\\1\end{pmatrix}$$

$$A_{\varphi}^{\mathcal{B}} = \begin{pmatrix}2&0\\0&2\end{pmatrix}$$

andere Basis $\mathcal{D} = \left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix} \right) \quad A_{\varphi}^{\mathcal{B}, \mathcal{D}}$

$$\varphi\left(\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}2\\0\end{pmatrix} = \underline{2}\begin{pmatrix}1\\2\end{pmatrix} - \underline{2}\begin{pmatrix}0\\2\end{pmatrix} \\ \varphi\left(\begin{pmatrix}0\\1\end{pmatrix}\right) = \begin{pmatrix}0\\2\end{pmatrix} = \underline{0}\begin{pmatrix}1\\2\end{pmatrix} + \underline{1}\begin{pmatrix}0\\2\end{pmatrix} \\ A_{\varphi}^{\mathcal{B},\mathcal{D}} = \begin{pmatrix}2&0\\-2&1\end{pmatrix}$$

b) V = W mit dim V = n, \mathcal{B} bel. Basis, $\varphi = id_V$, dann ist:

$$A_{\omega}^{\mathcal{B}} = E_n$$

c) $V = W = \mathbb{R}^2$, $\mathcal{B} = C = (e_1, e_2)$

 φ Drehung um Nullpunkt um α gegen Uhrzeigersinn

$$\Rightarrow A_{\varphi}^{\mathcal{B}} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Vgl. Beispiel 5.10

d) $V = W = \mathbb{R}^2$, $\mathcal{B} = (e_1, e_2)$

 φ : Spiegelung an der $\underbrace{\langle e_1 \rangle}_{x_1 - \text{Achse}}$, d.h. φ : $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}$ $A_{\varphi}^{\mathcal{B}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

andere Basis $\mathcal{B}' = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right)$

$$A_{\varphi}^{\mathcal{B},\mathcal{B}'}=?$$

$$\varphi\left(\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}1\\0\end{pmatrix} = a_{11}\begin{pmatrix}1\\1\end{pmatrix} + a_{21}\begin{pmatrix}1\\-1\end{pmatrix}$$
$$\varphi\left(\begin{pmatrix}0\\1\end{pmatrix}\right) = \begin{pmatrix}0\\-1\end{pmatrix} = a_{12}\begin{pmatrix}1\\1\end{pmatrix} + a_{22}\begin{pmatrix}1\\-1\end{pmatrix}$$

⇒ LGS, ausrechnen, erhalte:

$$A_{\varphi}^{\mathcal{B},\mathcal{B}'} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

e) andersherum:

$$V = W = \mathbb{R}, \quad \mathcal{B} = (e_1, e_2)$$

$$A_{\varphi}^{\mathcal{B}} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\text{Was ist } \varphi\left(\begin{pmatrix} 7 \\ -5 \end{pmatrix}\right)$$

$$\varphi\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\varphi\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right) = \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \varphi\left(7\begin{pmatrix} 1 \\ 0 \end{pmatrix} - 5\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right) = 7\varphi\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) - 5\varphi\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right) = 7\begin{pmatrix} 1 \\ 5 \end{pmatrix} + (-5)\begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$

Gegeben:

Koordinaten eines Punktes bzgl. Basis \mathcal{B} (z.B. Roboterkoordinaten), Abbildung φ

Gegeben:

Koordinaten dieses Punktes bzgl. Basis C (Weltkoordinatensystem) \to später Koordinaten des mit φ abgebildeten Punktes bzgl. $C \to \text{jetzt}$

6.3 Satz

 $V, W, \mathcal{B}, C, \varphi$ wie in 6.1

Sei $v \in V, K_B(v)$ sei Koordinatenvektor von v bzgl. \mathcal{B} (enthält Koordinaten von v bzgl. \mathcal{B}) Dann lässt sich der Koordinatenvektor von $\varphi(b)$ bzgl. C berechnen als

$$K_C(\varphi(V)) = A_{\varphi}^{\mathcal{B},C} \cdot K_{\mathcal{B}}(v)$$

Beweis: nacher

6.4 Beispiel

$$\dim(V) = 3 \quad \mathcal{B} = (v_1, v_2, v_3) \quad \varphi : V \to W$$

$$\dim(W) = 2 \quad C = (w_1, w_2)$$

mit

$$A_{\varphi}^{\mathcal{B},C} \left(\begin{array}{cc} 1 & 1 & -2 \\ 2 & 0 & 3 \end{array} \right)$$

 $v = \underline{5} \cdot v_1 - \underline{2} \cdot v_2 + \underline{4} \cdot v_3$, d.h. Koordinaten von v bzgl. \mathcal{B} sind 5, -2, 4

$$K_{\mathcal{B}} = \begin{pmatrix} 5 \\ -2 \\ 4 \end{pmatrix}$$

Was sind Koordinaten von $\varphi(v)$ in Basis C?

$$K_C = \begin{pmatrix} 1 & 1 & -2 \\ 2 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ -2 \\ 4 \end{pmatrix} = \begin{pmatrix} -5 \\ 22 \end{pmatrix}$$

d.h.
$$\varphi(v) = -5 \cdot w_1 + 22 \cdot w_2$$

Beweis

$$A_{\varphi}^{\mathcal{B},C} = \begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots \\ a_{m1} \cdots a_{mn} \end{pmatrix}, \quad v = \sum_{i=0}^{n} \lambda_{i} v_{i}, \quad K_{\mathcal{B}}(v) = \begin{pmatrix} \lambda_{1} \\ \vdots \\ \lambda_{n} \end{pmatrix}$$

$$A_{\varphi}^{\mathcal{B},C} \cdot K_{\mathcal{B}}(v) = \begin{pmatrix} \sum_{i=1}^{n} a_{1i} \lambda_{i} \\ \vdots \\ \sum_{i=1}^{n} a_{mi} \lambda_{i} \end{pmatrix}$$

$$\varphi(v) = \varphi\left(\sum \cdots\right)$$

$$= \sum_{i=1}^{n} \lambda_{i} \underbrace{\varphi(v_{i})}_{\sum_{k=1}^{m} a_{ki} w_{k}}$$

$$= \sum_{k=1}^{m} \left(\sum_{i=1}^{n} \lambda_{i} a_{ki}\right) \cdot w_{k}$$

Koordinaten von $\varphi(v)$ bzgl. C

$$K_{\varphi}(\varphi(v)) = \begin{pmatrix} \sum_{i=1}^{n} \lambda_{i} a_{1i} \\ \vdots \\ \sum_{i=1}^{n} \lambda_{i} a_{mi} \end{pmatrix}$$

Bemerkung / Korollar zu 6.3

Der Koordinatenvektor kann als Bild der "Koordinatenabbildung"

$$K_B:V\to K^n$$

$$v = \sum_{i=0}^{n} \lambda v_i \mapsto \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

aufgefasst werden, dann erhalte folgende Übersicht

$$V \xrightarrow{\varphi} W$$

(dim V=n, Basis B) $\downarrow K_B \qquad \downarrow K_C$ (dim W=m, Basis C)

 K^n Multiplikation mit $A_{\varphi}^{B,C} K_m(*)$

(*): $\underbrace{K_C \varphi(v)}_{(*)} = A_{\varphi}^{B,C} K_B(v)$ Damit folgt:

jede lin. Abb $K^n \to K^m$ (K Körper) ist von der Form $\varphi(x) = Ax$ für ein $A \in M_{m,n}(K)$

$$K^n$$
 Multiplikation mit $A_{\varphi}^{B,C}$ $K_m(*)$

(*):
$$K_C \varphi(v) = A_{\varphi}^{B,C} K_B(v)$$
 Damit folgt:

jede lin. Abb $K^n \to K^m$ (K Körper) ist von der Form $\varphi(x) = Ax$ für ein $A \in M_{m,n}(K)$

Beweis:

Benutze kanonische Basis von K^n bzw. K^m . Dann stimmen Elemente von K^n bzw. K^m mit ihren Koodrdinatenvektoren bzgl. Basis überein, Beh. folgt aus 6.3

Satz (Eigenschaften der Darstellungsmatrix)

U, V, W VR mit Basen B, C, D

$$\varphi_1, \varphi_2, \varphi: U \to V, \Psi: V \to W$$

a)
$$A_{\varphi_1 + \varphi_2}^{B,C} = A_{\varphi_1}^{B,C} + A_{\varphi_2}^{B,C}$$

b)
$$A_{\lambda\varphi}^{B,C} = \lambda \cdot A_{\varphi}^{B,C} \ (\lambda \in K)$$

c)
$$A_{\Psi_0\varphi}^{B,D} = A_{\Psi}^{C,D} \cdot A_{\varphi}^{B,C}$$

(D.h.: Der Hintereinanderausführung von lin. Abb. entspricht das Matrixprodukt der Darstellungsmatrizen)

Beweis:

Übungsaufgabe

Folgerung:

Satz: **6.7**

V ein K-VR, dim(V)=n, Basis B

$$\varphi: V \to V$$
 lin. Abb. mit A_{φ}^{B}

Dann gilt:

 φ invertierbar (bij.) $\Rightarrow A_{\varphi}^{B}$ invertierbar und $A_{\varphi^{-1}}^{B}$ ist dann = $(A_{\varphi}^{B})^{-1}$

Beweis:

"⇒" Sei
$$\varphi$$
 invertierbar, d.h. $\exists \varphi^{-1}$
Dann ist $A_{\varphi}^{B} \cdot A_{\varphi^{-1}}^{B} = A_{\varphi \circ \varphi^{-1}}^{B} = A_{id}^{B} = E_{n}$
analog $A_{\varphi^{-1}}^{B} = A_{\varphi}^{B}$

"\(\infty\)" Sei A_{φ}^{B} invertierbar, d.h. $\exists Y$ mit $A_{\varphi}^{B} \cdot Y = Y \cdot A_{\varphi}^{B} = E_{n}$ Dann ist Y Abbildungsmatrix für eine eindeutig bestimmte lineare Abbildung $\Psi: V \to V, \ Y = A_{\Psi}^{B}$ $\stackrel{(6.6)}{\Rightarrow} A_{\varphi \circ \Psi}^{B} = A_{\varphi}^{B} \cdot A_{\Psi}^{B} = E_{n}$ d.h. $\varphi \circ \Psi = \Psi \circ \varphi = idv \Rightarrow \varphi$ ist bij. (invertierbar.)

Fragen: wann ist eine Matrix (lineare Abbildung) invertierbar? Wie berechnet man inverse?

6.8 Satz:

$$A \in M_{n,n}(K)$$

Dann gilt: A ist invertierbar $\Leftrightarrow \underbrace{\operatorname{rg}(A) = n}_{\text{d.h. alle Zeilen/Spalten sind l.u.}}$

Beweis:

Betrachte
$$\varphi: K^n \to K^n \text{ mit } \varphi(x) = Ax$$

Dann ist $A = A^B_{\varphi}$ (B Basis von K^n)
A invertierbar $\stackrel{(6.7)}{\Leftrightarrow} \varphi$ invertierbar (bij.)
A invertierbar $\stackrel{(5.12)}{\Leftrightarrow} \varphi$ surjektiv
A invertierbar $\stackrel{(5.13)}{\Leftrightarrow} rg(\varphi) = n$
A invertierbar $\stackrel{(5.13)}{\Leftrightarrow} rg(A) = n$

6.9 Berechnung von Inversen

$$\rightarrow$$
 Blatt (Gauß) + Bsp.

Gesehen: Darstellungsmatrix hängt von der Wahl der Basen ab. Wie ändert sie sich, wenn man Basen ändert? Dieser Vorgang wird als Basistransformation bezeichnet.

Dazu:

6.10 Definition/Satz:

Sei V ein VR,
$$B = (v_1, \dots, v_n)$$
 und $B' = (v'_1, \dots, v'_n)$ Basis von V Schreiben v'_i als LK der Basisvektoren von B $(i = 1 \dots n)$, also

$$v_1' = s_{11}v_1 + \dots + s_{n1}v_n$$
 $v_n' = s_{1n}v_1 + \dots + s_{nn}v_n$

Dann heißt $S_{B,B'} = \begin{pmatrix} s_{11} & s_{12} & \dots & s_{1n} \\ \vdots & \vdots & \dots & \vdots \\ s_{n1} & s_{n2} & \dots & s_{nn} \end{pmatrix}$ Basiswechselmatrix

Ihre Spalten sind die Koordinatenvektoren der Basisvektoren von Analog:

Ihre Spalten sind die Koordinatenvektoren der Basisvektoren von B' bzgl. B

Stelle v_k als LK der Basisvektoren von B' das $(v_k = \sum_{l=1}^n t_{lk} v_l')$

erhalte so $S_{B',B}(=(t_{lk})_{l,k=1...n})$

Es gilt $(S_{B,B'})^{-1} = (S_{B',B})$

(nachrechnen: $S_{B,B'} \cdot S_{B',B} = E_n$)

Satz: Koordinaten umrechnen

V mit B, B' wie in 6.10, $v \in V$

Dann ist $K_{B'} \cdot (v) = S_{B',B} \cdot K_B(v)$

Beweis:

$$v = \sum_{k=1}^{n} \lambda_k \cdot \underbrace{v_k}_{\sum_{l=1}^{n} t_{lk} v'_{l}}, \text{ also } K_B(v) = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

$$\text{also } V = \sum_{l=1}^{n} \underbrace{\left(\sum_{k=1}^{n} \lambda_k t_{lk}\right)}_{\text{neue Koordinaten (bzgl. B')}} \cdot \underbrace{v'_{l}}_{\in B'}$$

6.12 Beispiel

$$V = \mathbb{R}^{2}, B = (e_{1}, e_{2}), B' = \left(v_{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, v_{2} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}\right)$$

$$S_{B,B'} = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}, v_{1} = 1 \cdot e_{1} + 1 \cdot e_{2}, v_{2} = 1 \cdot e_{1} - 2 \cdot e_{2}$$

$$S_{B',B} = (S_{B,B'})^{-1} = (\dots \text{ Gauß } \dots) = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix}$$

$$i = \begin{pmatrix} 3 \\ 6 \end{pmatrix} K_{B}(u) = \begin{pmatrix} 3 \\ 6 \end{pmatrix} (u = 3 \cdot e_{1} + 6 \cdot 3_{2})$$
Koordinaten von u in Basis B'?
$$K_{B'}(u) = S_{B',B} \cdot K_{B}(u) = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 6 \end{pmatrix} = \frac{4}{-1}$$
(also ist $u = 4 \cdot v_{1} - 1 \cdot v_{2}$)

Mit der Basiswechselmatrix kann man auch Darstellungsmatrizen umrechnen:

6.13 Satz: Darstellungsmatrizen umrechnen

 $\varphi: V \to W$ lin. Abb. B, B' Basen von V, C, C' Basen von W $\Rightarrow A_{\omega}^{B',C'} = S_{C',C} A_{\omega}^{B,C} S_{B,B'}$

Beweis:

Sei $v \in V$ nach 6.3: $A_{\varphi}^{B',C'} \cdot K_{B'}(v) = K_{C'}(\varphi(v))$ Koordinatenwechsel nach C (6.11): $= S_{C',C} \cdot K_{\varphi}(v)$) 6.3: $= S_{C',C} \cdot A_{\varphi}^{B,C} \cdot K_{B}(v)$ Koordinatenwechsel nach B' (6.11): $S_{C',C} \cdot A_{\varphi}^{B,C} \cdot s_{B,B'} \cdot K_{B'}(v)$

6.14 Korollar

 $\varphi: V \to V$ lin. Abb. B, B' Basen von V. $S:=S_{B,B'}$ $\Rightarrow A_{\varphi}^{B'} = S^{-1}A_{\varphi}^{B}S$

6.15 Beispiel

V, B, B' wie in 6.12

 φ : Spiegelung an der x_1 -Achse

$$\Rightarrow A_{\varphi}^{B} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$A_{\varphi}^{B'} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{4}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$$

7 Determinanten

7.1 Definition

 $A \in M_n(K) \ i, j \in \{1, ..., n\}$

 $A_{ij} \in M_{n-1}(K)$ sei die Matrix, die man aus A durch Streichen der i-ten Zeile und der j-ten Spalte erhält.

z.B.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 $A_{11} = \begin{pmatrix} 5 & 6 \\ 8 & 9 \end{pmatrix}$ $A_{32} = \begin{pmatrix} 1 & 3 \\ 4 & 6 \end{pmatrix}$

7.2 Definition: Determinante, rekursive Def.

$$A \in M_n(K)$$

$$n = 1$$
 $A = (a)$, dann $det(A) := a$

n > 1

$$det(A) := \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \cdot \det(A_{1j})$$

$$= a_{11} \cdot \det(A_{11} - a_{12} \cdot \det(A_{12})$$

$$+ a_{13} \cdot \det(A_{13} - a_{14} \cdot \det(A_{14})$$

$$+ \dots - \dots$$

$$\dots + / - a_{1n} \cdot \det(A_{1n})$$

det(A) heißt **Determinante** von A

(Formel heißt auch "Entwicklung nach der 1. Zeile" → später)

7.3 Beispiel

a)
$$\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

b)
$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = a_{11} \cdot (a_{22} \cdot a_{33} - a_{23} \cdot a_{32} - a_{12} \cdot (a_{21} \cdot a_{33} - a_{23} \cdot a_{31}) + a_{13} \cdot (a_{21} \cdot a_{32} - a_{22} \cdot a_{31}) = \dots$$

Regel von Sarrus:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{pmatrix}$$
 Diagonalen von links oben nach rechts unten addieren,

Diagonalen von rechts oben nach links unten subtrahieren

- c) für $n \times n$ -Matrix erhalte n! Summanden (nicht schön! n = 5: 120, n = 10: 3.6 Mio)
- d) Ist A eine obere oder untere Dreiecksmatrix ist, so lässt sich det(A) einfach berechnen:

$$A = \begin{pmatrix} a_{11} & & & & \\ a_{21} & a_{22} & & & \\ & \ddots & \ddots & \ddots & \\ a_{n1} & \dots & \dots & \dots & a_{nn} \end{pmatrix}, \det(A) = a_{11} \cdot a_{22} \cdot \dots \cdot a_{nn}$$

klar für n = 1: A = (a)

$$n > 1$$
: $\det(A) = a_{11} \cdot \det(B) - \underbrace{a_{12}\det()}_{0} + \underbrace{\dots}_{0}$, B: A ohne erste Spalte und erste

Zeile

Beweis durch Induktion

e) damit klar: $det(E_n) = 1$

7.4 Entwicklungssatz von Laplace

 $A \in M_n(K)$

a) Entwicklung nach der i-ten Zeile: für $i \in \{1, ..., n\}$ gilt:

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$

b) Entwicklung nach der j-ten Spalte:

für $i \in \{1, ..., n\}$ gilt:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$

$$(-1)^{i+j} \rightsquigarrow \begin{pmatrix} + - + - + \dots \\ - + - + \dots \\ + - + \dots \end{pmatrix}$$

7.5 Beispiel

$$A = \begin{pmatrix} 2 & 1 & 1 \\ -1 & 0 & 3 \\ 2 & 0 & 4 \end{pmatrix} \in M_3(\mathbb{R})$$

Mit Definition 7.2 (Entwicklung nach der 1. Zeile):

$$\det(A) = 2 \cdot \det\begin{pmatrix} 0 & 3 \\ 0 & 4 \end{pmatrix} - 1 \cdot \det\begin{pmatrix} -1 & 3 \\ 2 & 4 \end{pmatrix} + 1 \cdot \det\begin{pmatrix} -1 & 0 \\ 2 & 0 \end{pmatrix} = 2 \cdot 0 - 1 \cdot (-10) + 1 \cdot 0 = 10$$

oder: Entwicklung nach der 3. Zeile:

$$\det(A) = 2 \cdot \begin{pmatrix} 1 & 1 \\ 0 & 3 \end{pmatrix} - 0 \cdot \det(\dots) + 4 \cdot \det\begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} = 2 \cdot 3 - 0 + 4 \cdot 1 = 10$$

oder (besser): Entwicklung nach der 2. Spalte:

$$\det(A) = -1 \cdot \det\begin{pmatrix} -1 & 3 \\ 2 & 4 \end{pmatrix} + 0 \cdot \det(\dots) - 0 \cdot \det(\dots) = -1 \cdot (-10) = 10$$

Also: Es ist geschickt, nach einer Spalte oder Zeile zu entwickeln, in der viele Nullen stehen.

Falls es wenig Nullen gibt: Zuerst Gauß anwenden (Auchtung: det. ändert sich dabei eventuell!)

7.6 Bemerkung

Aus 7.4 folgt $det(A) = det(A^T)$

7.7 Satz (Eigenschaften der Determinanten)

 $A, B \in M_n(K), s_1, \dots, s_n$ Spalten von $A, s'_i \in K^n, \lambda \in K$

(D1)
$$\det(s_1, \dots, \underbrace{s_i + s_i'}_{i}, \dots, s_n) = \det(s_1, \dots, s_i, \dots, s_n) + \det(s_1, \dots, s_i', \dots, s_n)$$

(D2) Beim Vertauschen zweier Spalten von A ändert sich das Vorzeichen von det(A)

(D3)
$$\det(s_1, \dots, \underbrace{\lambda \cdot s_i}_{i}, \dots, s_n) = \lambda \cdot \det(s_1, \dots, s_i, \dots, s_n)$$

(Beweis D1-D3 folgt aus 7.2 & 7.4)

(D4)
$$\det(\lambda \cdot A) = \det(\lambda s_1, \dots, \lambda s_n) \stackrel{(D3)}{=} \lambda^n \cdot \det(A)$$

- (D5) Ist eine Spalte von A gleich O, so ist det(A) = 0
- (D6) Besitzt A zwei identische Spalten, so ist det(A) = 0(Vertausche identische Spalten, erhalte Matrix A' = A. Nach (D2): det(A) = -det(A') = -det(A). Dies ist nur möglich, falls det(A) = 0 (oder in Körper mit 1 + 1 = 0. Hier anders beweisen!))

(D7)
$$\det(s_1, \dots, \underbrace{s_i + \lambda s_j}_{i}, \dots, s_n) = \det(A) \quad (i \neq j)$$

mit D1, D3, D6

(D8)
$$det(A \cdot B) = det(A) \cdot det(B)$$

Analog mit Zeilen statt Spalten!

Vorsicht: Im Allgemeinen ist $det(A + B) \neq det(A) + det(B)$

7.8 Bemerkung / Beispiel

Also: Erzeuge mit Gaußelimination viele Nulleinträge (! D2, D3: det ändert sich)

D7: det bleibt, entwickele nach guter Zeile / Spalte, oder bringe Matrix auf obere/untere △-Form

z.B.
$$\det\begin{pmatrix} 0 & 1 & 2 \\ -2 & 0 & 3 \\ 2 & -2 & 3 \end{pmatrix}^{z_1 \leftrightarrow z_2} - \det\begin{pmatrix} -2 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & -2 & 3 \end{pmatrix}^{III = 2 \cdot II + III} - \det\begin{pmatrix} -2 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 7 \end{pmatrix} = -(-2) \cdot 1 \cdot 7 = 14$$

7.9 Satz (Charakterisietung invertierbarer Matrizen über det)

 $A \in M_n(K)$ ist invertierbar $\Leftrightarrow \det(A) \neq 0$

In diesem Fall gilt:

$$\det(A^{-1}) = (\det(A))^{-1}$$

Beweis

"\Rightarrow": Sei A invertierbar, d.h.
$$\exists A^{-1} \text{ mit } A \cdot A^{-1} = A^{-1} \cdot A = E_n$$

$$\Rightarrow \underbrace{\det(A \cdot A^{-1})}_{(D8): \det(A) \cdot \det(A^{-1})} = \det(E_n) = 1$$

$$\Rightarrow \det(A) \neq 0 \text{ und } \det(A^{-1}) = (\det(A))^{-1}$$

"

E": Sei *A* nicht invertierbar.

$$\Rightarrow \operatorname{rg}(A) < n$$

 $\stackrel{6.8}{\Rightarrow}$ Spalten von A sind l.a.

d.h. $\exists i \text{ mit } s_i = \sum_{k=1 k \neq i}^n \lambda_k s_k \ (s_i \text{ als LK der anderen Spalten})$

$$\det(A) \stackrel{(D7)}{=} \det(s_1, \dots, s_i - \sum \lambda_k s_k, \dots, s_n)$$

=
$$\det(s_1, \dots, O, \dots, s_n) \stackrel{(D5)}{=} 0$$

7.10 Bemerkung

Berechnung von A^{-1} mittels 6.9 (Gauß mit $(A \mid E_n)$) oder auch mittels det, vgl. Übungsblatt 10, A1

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) \Rightarrow A^{-1} = \frac{1}{\det A} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

8 Eigenwerte und Eigenvektoren

8.1 Definition

Sei $A \in M_n(K)$.

Ein Skalar $\lambda \in K$ heißt *Eigenwert* von A, wenn es einen Vektor $O \neq x \in K^n$ gibt ("nichttrivial", d.h. $\neq 0$) mit

$$A \cdot x = \lambda x$$

Jedes solche x heißt dann ein zu λ gehöriger Eigenvektor von A und $Eig(\lambda) = Eig_A(\lambda) = \{x \in K^n | Ax = \lambda\}$ (alle zu λ gehör. EV & der Nullvektor O) der λ zugeordnete Eigenraum.

8.2 Satz

 $\lambda \in K$ ist Eigenwert von $A \in A \in M_n(K) \Leftrightarrow \det(A - \lambda \cdot E_n) = O$, und die zu λ gehörigen Eigenvektoren sind genau die nichttrivialen Lösungen des LGS. $[A - \lambda \cdot E_n]x = O$, also $\operatorname{Eig}_A(\lambda = \ker(A - \lambda \cdot E_n)$.

Beweis

$$Ax = \lambda x \Leftrightarrow Ax = \lambda \cdot E_n \cdot x \Leftrightarrow (A - \lambda E_n)x = O$$

Also: λ Eigenwert von $A \Leftrightarrow (A - \lambda \cdot E_n)x = O$ hat noch andere Lösungen als

$$x = O$$

$$\Leftrightarrow \operatorname{rg}(A - \lambda \cdot E_n) < n$$
Mathe III
$$\Leftrightarrow (A - \lambda \cdot E_n) \text{ nicht invertierbar}$$

$$6.8$$

$$\Leftrightarrow \det(A - \lambda \cdot E_n) = 0$$
7.9

x Eigenvektor $\Leftrightarrow x \neq O$ und $(A - \lambda \cdot E_n)x = O$

Definition 8.3

Für $A \in M_n(K)$ heißt $p_a(\lambda) := det(A - \lambda \cdot E_n)$ das *charakteristische Polynom* von A.

8.4 Beispiel

$$A = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} \in M_2(\mathbb{R}$$

Eigenwerte, Eigenvektoren, Eig(A), $p_A(\lambda)$?

$$A - \lambda \cdot E_2 = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} - \lambda \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 - \lambda & 1 \\ -2 & 4 - \lambda \end{pmatrix}$$

•
$$p_A(\lambda) = \det\begin{pmatrix} 1 - \lambda & 1 \\ -2 & 4 - \lambda \end{pmatrix} = (1 - \lambda)(4 - \lambda) - (1 \cdot (-2)) = \lambda^2 - 5\lambda + 6 = (\lambda - 2)(\lambda - 3)$$

• Eigenwerte von A:

$$\lambda \in W \text{ von A} \stackrel{8.2}{\Leftrightarrow} p_A(\lambda) = 0 \Leftrightarrow \lambda = 2 \text{ oder } \lambda = 3$$

 $\Rightarrow \lambda_1 = 2, \lambda_2 = 3 \text{ Eigenwerte von A}$

• Eigenvektoren von A:

x ist EV von A zum EW $\lambda_1 \Leftrightarrow x \neq O$ und $(A - \lambda_1 E_2)x = O$

also
$$\begin{pmatrix} 1-2 & 1 \\ -2 & 4-2 \end{pmatrix} x = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} -1 & 1 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 1 & | & 0 \\ -2 & 2 & | & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} -1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$$

$$-x1 + x2 = 0 (x_2 \text{ ist freie Variable})$$

$$-x1 + x2 = 0$$
 (x_2 ist freie Variable)

(oder wähle z.B. $x_2 = 1 \Rightarrow x_1 = 1$, also ist $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Lösung, restliche Lösungen sind $<\begin{pmatrix}1\\1\end{pmatrix}>_{\mathbb{R}}$

$$\operatorname{Eig}_{A}(\lambda_{1}) = \operatorname{Ker} \begin{pmatrix} -1 & 1 \\ -2 & 2 \end{pmatrix} = < \begin{pmatrix} 1 \\ 1 \end{pmatrix} >$$

$$x \text{ ist EV von A zum EW } \lambda_{2} \Leftrightarrow x_{\neq} 0 \text{ und } \begin{pmatrix} -2 & 1 \\ -2 & 1 \end{pmatrix} x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\operatorname{Eig}_{A}(\lambda_{2}) = \operatorname{Ker} \begin{pmatrix} -2 & 1 \\ -2 & 1 \end{pmatrix} = < \begin{pmatrix} 1 \\ 2 \end{pmatrix} >$$

$$zu \text{ Lösung von homogenen LGS: siehe Blatt im Moodle}$$

8.5 Anwendungen

a) Matrixpotenzen

Berechne
$$A^{2015} = \underbrace{A \cdot A \cdot \dots \cdot A}_{2015 \text{ mal}}$$
 für $A = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$ aus Bsp. 8.4

Definiere $S := \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ EV zu λ_1 , $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ EV zu λ_2
 $S^{-1} \stackrel{7.10}{=} \frac{1}{\det S} \cdot \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$

dann ist $A = S \cdot \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \cdot S^{-1}$, D=Diagonalmatrix (stimmt, nachrechnen!)

$$\Rightarrow A^{2015} = (SDS^{-1})^{2015} = (SD \stackrel{}{S^{-1}}) \cdot (SDS^{-1}) \cdot (SDS^{-1}) \cdot (SDS^{-1})$$

$$= S \cdot D^{2015} \cdot S^{-1}$$

$$= S \cdot \begin{pmatrix} 2^{2015} & 0 \\ 0 & 3^{2015} \end{pmatrix} S^{-1}$$

Mit lin. Abb./Darstellungsmatr. ausgedrückt:

$$\varphi: \mathbb{R}^2 \to \mathbb{R}^2 \text{ mit } A = A_{\varphi}^{\mathcal{B}} = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}, \mathcal{B} \text{ kanon. Basis}$$

Bezügl. Basis
$$\mathcal{B}' = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 hat Darstellungsmatrix Diagonalgestalt $A_{\varphi}^{\mathcal{B}'} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$

Bem.: nicht jede Darstellungsmatrix lässt sich auf Diagonalgestalt bringen, z.B. $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in M_2(\mathbb{R})$, Drehung um 90°

 $\det(A - \lambda E_2) = \det\begin{pmatrix} -\lambda & -1 \\ 1 & -\lambda \end{pmatrix} = \lambda^2 + 1$, keine nullstellen in \mathbb{R} , also keine reelen Eigenwerte!

- b) Physik: Schwingungen, Eigenfrequenz, Tacoma Narrows Bridge
 - Googles PageRank-Algorithmus
 - Eigenfaces / Zähne ... :

Bemerkung

Für
$$A \in M_n(K)$$
 ist $p_A(\lambda) = \det(A - \lambda E_n) = \det\begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} - \lambda & \dots & \dots \\ \dots & \dots & \dots & \dots \\ a_{n1} & \dots & \dots & a_{nm} - \lambda \end{pmatrix}$

ein Polynom vom Grad n (folgt aus Def. der Det

Nullstellen von $p_A(\lambda)$ sind $\in W$ von A

 $\Rightarrow K = \mathbb{R} : \leq n$ Eigenwerte

 $K \in \mathbb{C}$: genau n Eigenwerte (nicht notwendig verschieden)

Definition: diagonalisierbar 8.7

- a) Eine Matrix $A \in M_n(K)$ heißt **diagonalisierbar**, wenn eine invertierbare Matrix $S \in M_n(K)$ existiert, so dass $A = SDS^{-1}$ gilt, wobei $D = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & \lambda_n \end{pmatrix}$ Diagonalmatrix ist. (die λ_i sind dann gerade die Eigenwerte von A, siehe 8 (Bem.: Dann gilt auch $D = S^{-1}AS$)
- b) für lin. Abb: Eine lin. Abb. $\varphi: V \to V$ heißt **diagonalisierbar**, falls V eine Basis \mathcal{B} aus Eigenvektoren (zur zugehörigen Darstellungsmatrix) besitzt, d.h. $A_{\varphi}^{\mathcal{B}}$ ist Diagonalmatrix.

Ist jede Matrix diagonalisierbar?

8.8 Satz: Spektralsatz

- a) $A \in M_n(K)$ ist diagonalisierbar \Leftrightarrow Es gibt l.u. Eigenvektoren von A
- b) Besitzt A n verschiedene Eigenwerte, so ist A diagonalisierbar.

Beweis:

$$S^{-1}AS = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & \lambda_n \end{pmatrix} \Leftrightarrow AS = S \cdot \begin{pmatrix} \lambda_1 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & \lambda_n \end{pmatrix}$$

Sei $S = (s_1, \dots, s_n)$ (s=Spalten) Für die i-te Spalte s_i von S gilt dann $A_{si} = \lambda_i \cdot s_i$ ($i = 1, \dots, s_n$)

Also ist s_i Eigenvektor zum EW λ_i von A

S ist invertierbar \Leftrightarrow Spalten s_1, \ldots, s_n l.u. (Satz 6.8)

b) zeige per Induktion, dass die zugehörigen Eigenvektoren linear unabhängig sind, Behauptung folgt dann aus (i)

8.9 Bemerkung zu 8.8 (ii)

Es gib auch diagonalisierbare Matrizen, die nicht n verschiedene Eigenwerte haben! $z.B.\ E_n$ ist bereits in Diagonalform

$$E_{n} = \begin{pmatrix} 1 & \dots & 0 \\ 0 & \dots & 0 \\ 0 & \dots & 1 \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & 1 \end{pmatrix}}_{S} \underbrace{\begin{pmatrix} 1 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & 1 \end{pmatrix}}_{D} \underbrace{\begin{pmatrix} 1 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & 1 \end{pmatrix}}_{S^{-1}}$$

aber alle n Ew sind 1 (mit lin. Abb. ausgedrückt: id_v ist diagonalisierbar, $A^B_{id_v}$ hat n gleiche EW)

9 Norm- und Skalarprodukt

In diesem Kapitel betrachten wir nur ℝ-VR

9.1 Definition: Norm

Für
$$v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$$
 heißt $||v|| := (\sum_{i=1}^n v_i^2)^{\frac{1}{2}}$ die **Norm** oder **Länge**

9.2 Eigenschaften

a)
$$||v|| \ge 0 \ \forall v \in \mathbb{R}^n$$

 $||v|| = 0 \Leftrightarrow v = O$

b)
$$||\lambda v|| = |\lambda| \cdot ||v|| \, \forall \lambda \in \mathbb{R}, \forall v \in \mathbb{R}^n$$

c)
$$||v + w|| \le ||v|| + ||w|| \forall v, w \in \mathbb{R}^n$$

9.3 Definition: Skalarprodukt

Sind $v, w \in \mathbb{R}^3$ Vektoren, die einen Winkel α einschließen, so heißt

$$(v|w) := ||v|| \cdot ||w|| \cdot \cos \alpha$$

das Skalarprodukt von v mit w.

anschaulich: (v|w) = Flächeninhalt des von v und w erzeugten Projektionsrechtecks.

9.4 Eigenschaften des Skalarprodukts

seien $u, v, w \in \mathbb{R}^3, \lambda \in \mathbb{R}$

- a) $(v|w) \in R$ (d.h. ist Skalar, daher der Name)
- b) (v|w) = (w|v) (denn: $(v|w) = ||v|| \cdot ||w|| \cdot \cos \alpha = ||w|| \cdot ||v|| \cdot \cos \alpha = (w|v)$)

- c) $(\lambda \cdot v|w) = (v|\lambda \cdot w) = \lambda \cdot (v|w)$ $(\text{denn } \lambda = 0\sqrt{\lambda})$ $\lambda > 0: (\lambda v|w) = ||\lambda \cdot v|| \cdot ||w|| \cdot \cos \alpha = \lambda \cdot ||v|| \cdot ||w|| \cos \alpha = \lambda(v|w)$ $\lambda < 0: \text{Winkel zw. } \lambda v \text{ und } w \text{ ist } \pi - \alpha \implies (\lambda v|w) = ||\lambda \cdot v|| \cdot ||w|| \cdot \cos(\pi - \alpha) = -\lambda \cdot ||v|| \cdot ||w|| \cdot (-\cos \alpha) = \lambda \cdot (v|w)$
- d) (u + v|w) = (u|w) + (v|w) (z.B. grafisch klarmachen) wegen (ii) gilt (iii)&(iv) auch im 2. Argument
- e) $(v|v) = ||v||^2$ (denn: $\alpha = 0 : ||v|| \cdot ||v|| \cdot 1$)

zur Berechnung:

 e_1, e_2, e_3 kanon. Basisvektoren in \mathbb{R}^3

 $(e_i|e_i) = 1$, $(e_i|e_j) = 1 \forall i \neq j$ (denn $\alpha = \frac{\pi}{2}$, Vektoren stehen senkrecht zueinander)

$$v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \ w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \in \mathbb{R}^3$$

 $\Rightarrow (v|w) = (v_1e_1 + v_2e_2 + v_3 \cdot e_3|w_1e_1 + w_2e_2 + w_3e_3) \stackrel{(ii),(iii)}{=} v_1w_1(e_1|e_1) + v_1w_2(e_1|e_2) + v_1w_3(e_1|e_3) + \cdots = v_1w_1 + v_2w_2 + v_3w_3$ allgemein:

9.5 Definition: Standardskalarprodukt, euklidischer Vektorraum, euklidische Norm & Abstand

a) für
$$v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$
, $w = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} \in \mathbb{R}^3$

heißt

$$(v|w) := \sum_{j=1}^{n} v_j w_j = v^T w$$

das Standardskalarprodukt von v mit w

b) für beliebigen $\mathbb{R} - VRV$:

Eine Abb $(\cdot|\cdot): V \times V \to \mathbb{R}$ $(v,w) \to (v,w)$ heißt **Skalarprodukt** auf V, falls $(\cdot|\cdot)$ Eigenschaften aus 9.4 erfüllt.

V heißt dann euklidischer Vektorraum.

c) für $v, w \in V$, V eukl. VR, so heißt

$$||v|| := +\sqrt{(v|v)}$$

die (euklidische) Norm von v,

$$d(v, w) = ||v - w||$$

der (euklid) Abstand von v und w

9.6 Beispiel

a)
$$v = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, w = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix} \in \mathbb{R}^3$$

$$(v|w) = v^T w = -1 \cdot 2 + 2 \cdot 2 + 1 \cdot 4 = 6$$

$$||v|| = +\sqrt{(v|v)} = \sqrt{(-1)^2 + 2^2 + 1^2} = +\sqrt{6}$$

$$d(v,w) = ||v - w|| = ||\begin{pmatrix} -1 - 2 \\ 2 - 2 \\ 1 - 4 \end{pmatrix}|| = \sqrt{(-3)^2 + 0^2 + (-3)^2} = \sqrt{18}$$
Winkel zwischen v und w:
$$(v|w) = ||v|| \cdot ||w|| \cdot \cos \alpha \Leftrightarrow \cos \frac{(v|w)}{||v|| \cdot ||w||} = \frac{6}{\sqrt{6}\sqrt{24}} = \frac{1}{2}$$

$$\Rightarrow \alpha = \frac{\pi}{3}$$

10 Orthogonalsysteme

10.1 Definition: orthogonal, Orthogonalsystem, Orthonormalsystem, Orthonormalbasis

V euklid. VR

- a) $v, w \in V$ heißen **orthogonal** (senkrecht), $v \perp w$, fallso (v|w) = 0 gilt. (d.h. v = O oder w = O oder winkel zw. v und w ist $\frac{\pi}{2}$) (O ist \perp zu allen Vektoren)
- b) $M \subseteq V$ heißt **Orthogonalsystem** (OGS), falls $(v|w) = 0 \ \forall v, w \in M, \ v \neq w$, gilt. (gilt zusätzlich $||v|| = 1 \ \forall v \in M$, so heißt M **Orthonormalsystem** (ONS))
- c) Ist V endlich dimensional, so heißt M **Orthogonalbasis** (ONB von V, falls M ONS und Basis von V ist.

10.2 Bemerkung

Jedes ONS ist l.u.:

$$v_1, \dots, v_k$$
 ONS, $\lambda_1 v_1 + \dots + \lambda_k v_k = O$ dann ist $0 = (v_1 | \underbrace{\lambda_1 v_2 + \dots + \lambda_k v_k})$

$$= \lambda_1 \underbrace{(v_1 | v_1)}_0 + \lambda_2 \underbrace{(v_1 | v_2)}_0 + \dots + \lambda_k (v_1 | v_k)$$

$$= \lambda_1$$

$$\Rightarrow \lambda_1 = 0$$
analog für $\lambda_2, \dots, \lambda_k$, alle $= 0$

$$\Rightarrow v_1, \dots, v_k \text{ l.u.}$$

Man kann zu jedem Unterraum eines euklidischschen VR eine ONB berechnen.

Geg.:
$$v_1 \dots v_k \in V$$

Ges.:
$$w_1, ..., w_k \in V$$
 (ONS) mit $< v_1, ..., v_k > = < w_1, ..., w_k >$

Idee: starte mit 1. Vektor, $w_1 = v_1$

Baue w_2 aus w_1 und v_2 :

 $w_2 = v_2 + \lambda w_1$ mit λ so, dass $w_2 \perp w_1$.

 w_1, w_2 bilden dann OGS, $\frac{w_1}{||w_1||}$, $\frac{w_2}{||w_2||}$ bilden dann ONS.

 $w_1 \perp w_2 \Leftrightarrow (w_1|v_2 + \lambda w_1) = 0$
 $\Leftrightarrow (w_1|v_2) + \lambda \underbrace{(w_1|w_1)}_{||w_1||^2} = 0$
 $\Leftrightarrow \lambda = \frac{-(w_1|v_2)}{||w_1||^2}$

10.3 Satz: Orthogonalisierungsverfahren von Gram-Schmidt

$$\begin{split} & \text{geg.: } v_1, \dots, v_k \in V \\ & \text{def.: } w_1, \dots, w_k \in V \text{ wie folgt:} \\ & w_1 = v_1 \\ & w_{r+1} := v_{r+1} + \sum_{i=1}^r \lambda_i^{(r+1)} w_i \\ & \text{mit } \lambda_i^{(r+1)} := \frac{-(w_i|v_{r+1}|}{||w_i||^2} \text{ falls } w_i \neq 0 \\ & \text{und } y_1, y_2 \in V \text{ als } y_r := \frac{w_r}{||w_r||} \text{ (falls } w_r \neq O) \end{split}$$

Dann gilt:

- a) Bricht die Iteration nach k Schritten nicht ab (d.h. $w_i \neq 0$ für $i = 1 \dots k$), so bilden w_1, \dots, w_k ein OGS und y_1, \dots, y_k ein ONS mit $\langle v_1, \dots, v_k \rangle = \langle w_1, \dots, w_k \rangle = \langle y_1, \dots, y_k \rangle$
- b) Bricht die Iteration nach r Schritten ab (d.h. $w_r = O$), so gilt: v_1, \ldots, v_{r-1} sind l.u., v_1, \ldots, v_r l.a.

10.4 Beispiel

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} \in \mathbb{R}^3$$

gesucht:

- a) ONB für die Ebene $\langle v_1, v_2 \rangle$
- b) Vektor v_3 , der diese ONB zu einer ONB von \mathbb{R}^3 ergänzt.

Lösung:

a)
$$w_1 = v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

 $r = 1, w_{r+1} = w_2$
 $w_2 = v_2 + \sum_{i=1}^{1} \lambda_i^{(2)} = v_2 + \lambda_1^{(2)} w_1$
 $\text{mit } \lambda_1^{(2)} = \frac{-(w_1|v_2)}{||w_1||^2}$

$$(w_1|v_2) = 1 \cdot 1 + 1 \cdot 3 + 0 \cdot 2 = 4$$

$$||w_1||^2 = 1^2 + 1^2 = 2$$

$$\Rightarrow w_2 = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} - \frac{4}{2} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$$

$$\Rightarrow OGB \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \right\}$$

$$\Rightarrow ONB \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \right\}$$

b) Vektor, der $\{w_1, w_2\}$ zu Basis ergänzt, ist z.B.

$$v_{3} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
(denn z.B. so zeigen: $\det \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 0 & 2 & 0 \end{pmatrix} = 1 \cdot \det \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} = 1 \cdot 2 \neq 0 \Rightarrow w_{1}, w_{2}, w_{3} \text{ l.u.}$

$$w_{2} = v_{3} - \frac{(w_{1}|v_{3})}{||w_{1}||^{2}} \cdot w_{1} - \frac{(w_{2}|v_{3})}{||w_{2}||^{2}} \cdot w_{2} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \frac{1}{2} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \frac{1}{6} \cdot \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \end{pmatrix},$$

$$||w_{3}|| = \sqrt{\frac{1}{3}}$$

$$y_{3} = \sqrt{3} \begin{pmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \end{pmatrix}$$

10.5 Definition: orthogonale Matrix

Eine Matrix $A \in M_n(\mathbb{R})$ heißt orthogonal, falls ihre Spektralvektoren eine ONB des \mathbb{R}^n bilden.

10.6 Beispiel

$$\mathbb{R}^{2}:$$

$$A = \underbrace{\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}}_{s_{1}} \quad (\alpha \in \mathbb{R}) \text{ ist orthogonal}$$

$$(s_{1}|s_{2}) = \cos \alpha \cdot (-\sin \alpha) + \sin \alpha \cdot \cos \alpha = 0$$

$$||s_{1}|| = ||s_{2}|| \sqrt{\cos^{2} \alpha + \sin^{2} \alpha} = 1$$

10.7 Satz: Eigenschaften von orthogonalen Matrizen

Sei $A \in M_n(\mathbb{R})$ orthogonal

- a) $A^T A = E_n$
- b) A invertierbar, $A^{-1} = A^T$
- c) ||Av|| = ||v|| (zugehörige Abb. ist "Längentreu")
- d) $|\det A| = 1$

Beweis:

- a) $s_1, ..., s_n$ Spalten von A bilden ONB $\Rightarrow (s_i|s_j) = \begin{cases} 1 & \text{für } i = j \\ 0 & \text{für } i \neq j \end{cases}$ $\Rightarrow A^T A = E_n$
- b) folgt aus (i)
- c) $||Av||^2 = (Av|Av) = (Av)^T \cdot Av = v^T A^T Av \stackrel{(i)}{=} v^T E_n v = v^T v = (v|v) = ||v||^2$
- d) $1 = \det E_n \stackrel{(i)}{=} \det(A^T A) = \det(A^T) \cdot \det(A) = \det(A) \cdot \det(A) = (\det(A))^2$

11 Mehrdimensionale Analysis

Siehe Blatt im Moodle (11.1 bis 11.12)

11.13 Beispiel

a)
$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $f(x,y) = e^x + y^2$
 $\underbrace{f'(x,y)}_{\text{Jacobimatrix}} = \left(\frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial y}(x,y)\right) = \left(e^x - 2y\right)$
 $\nabla f(x,y) = \begin{pmatrix} e^x \\ 2y \end{pmatrix}$

b)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x, y, z) = \begin{pmatrix} x + y \\ x \cdot y \cdot z \end{pmatrix}$
 $f'(x, y, z) = \begin{pmatrix} 1 & 1 & 0 \\ yz & xz & xy \end{pmatrix}$
 $f'(2, 0, 1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \end{pmatrix}$

Siehe Blatt im Moodle (11.14 bis 11.21)

11.22 Definition: (total)differenzierbar, affin-linear

 $D \subseteq \mathbb{R}^n$ offen, $a \in D$

 $f:D\to\mathbb{R}^m$ heißt (total)differenzierbar in a wenn f in a partiell differenzierbar ist und geschrieben werden kann als $f(x) = f(a) + f'(a)(x - a) + \epsilon(x)$ mit $\epsilon : D \to \mathbb{R}^m$ mit $\lim_{x \to a} \frac{||\epsilon(x)||}{||x-a||} = 0 \text{ (d.h. } \epsilon \text{ wird klein nahe a)}$ (n = m = 1, erhalte Definition der Differenzierbarkeit aus Mathe II)

Anschaulich:

f kann in der nähe von a durch die **affin-lineare** Abbildung $x \mapsto \underbrace{f(a) + f'(a)(x - a)}_{\text{konst.}}$ Matrix

linear

beschrieben werden

11.23 Definition: Richtungsableitung

$$D \subseteq \mathbb{R}^n$$
 offen, $f: D \to \mathbb{R}, \ a \in D$
 $v \in \mathbb{R}^n$ mit $||v|| = 1$

f heißt in a differenzierbar in Richtung v wenn $\lim_{h\to 0} \frac{f(a+hv)-f(a)}{h}$ ex. Der Grenzwert heißt dann Richtungsabtleitung von f in Richtung v im Punkt a.

Bez.: $\frac{\partial f}{\partial y}(a)$

11.24 Bemerkung

$$\frac{\partial f}{\partial x_{j}} \text{ ist die Richtungsableitung von f in Richtung } e_{j} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} (1 \text{ an Stelle j})$$

11.25 Satz

sei $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ (total)differenzeirbar in $a\in D$

Dann ex. in a alle Richtungsableitungen und für alle $v \in \mathbb{R}^n$ mit ||v|| = 1 gilt:

$$\frac{\partial f}{\partial v}(a) = f'(a) \cdot v$$

Die Richtungsableitug stellt den Anstieg von f an der Stelle a in Richtung v dar.

Beweis:

$$\begin{array}{l} \text{f differenzierbar, d.h. } f(x) = f(a) + f'(a) \cdot (x-a) + \epsilon(x) \\ \stackrel{x=a+h \cdot v}{\Rightarrow} f(a+h \cdot v) = f(a) + f \cdot (a) \cdot (a+h \cdot v-a) + \epsilon(a+h \cdot v) \\ \stackrel{h \neq 0}{\Rightarrow} \frac{f(a+hv-f(a))}{h} = \frac{f'(a) \cdot (hv)}{h} + \frac{\epsilon(a+hv)}{h} \\ \frac{\partial f}{\partial v} = \lim_{h \to 0} \frac{f(a+hv)-f(a)}{h} = f'(a) \cdot v \end{array}$$

11.26 Beispiel

a) Anstieg von
$$f(x,y) = x^2 + y^2$$
 im Punkt $a = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ in Richtung $v = \begin{pmatrix} \sin \alpha \\ \cos \alpha \end{pmatrix}$ $(||v|| = 1)$
$$\frac{\partial f}{\partial v}(1,1) = f'(1,1) \cdot \begin{pmatrix} \sin \alpha \\ \cos \alpha \end{pmatrix} = \begin{pmatrix} 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} \sin \alpha \\ \cos \alpha \end{pmatrix} = 2 \cdot \sin \alpha + 2 \cdot \cos \alpha$$

b)
$$f(x,y) = 2x^2 + y^2$$
, $a = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{3}{4} \end{pmatrix}$ Punkt auf "Gebirge" **gesucht:** Richtung $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$, in der die Tangente an den Graph von f die Steigung $\frac{3}{\sqrt{2}}$ hat. $\frac{\partial f}{\partial v} \left(\frac{1}{2}, \frac{1}{2} \right) = f' \left(\frac{1}{2}, \frac{1}{2} \right) = \left(2 - 1 \right) \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 2v_1 + v_2 \stackrel{!}{=} \frac{3}{\sqrt{2}}$ und $||v|| = 1$, d.h. $v_1^2 + v_2^2 = 1$ Gleichungssystem lösen... ergibt $v = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ und $v = \begin{pmatrix} \frac{7}{5\sqrt{2}} \\ \frac{1}{5\sqrt{2}} \end{pmatrix}$

11.27 Bemerkung

Es gilt: $\frac{\partial f}{\partial v}(a) = f'(a) \cdot v = (\nabla f)^T \cdot v = ||\nabla f(a)|| \cdot ||v|| \cdot \cos \alpha$, α : Winkel zw. ∇f und $v \Rightarrow$ Richtungsableitung: $\frac{\partial f}{\partial v}(a)$ ist am größten, wenn $\cos \alpha = 1$, also $\alpha = 0$ ist, d.h. wenn der Richtungsvektor v in Richtung des Gradienten zeigt.

Der Gradient zeigt also immer in die Richtung des steilsten Anstiegs der Funktion.

Jetzt wieder 1-dimensionale Analysis:

12 Taylorpolynome und Taylorreihe

12.1 Definition

 $I \subseteq \mathbb{R}$ Intervall, $x_0 \in I$, $f: I \to \mathbb{R}$

a)
$$f^{(0)} := f$$

 $f^{(1)} = f'$, falls f diffbar auf I
 \vdots
 $f^{(n)} = (f^{(n-1)})'$, falls $f^{(n-1)}$ diffbar auf I
(f **n-mal differenzierbar**, $f^{(n)}$ **n-te Ableitung**

b) f heißt unendlich oft differenzierbar, falls f n-mal diffbar $\forall n \in \mathbb{N}$. (Bez. auch $f^{(1)} = f', f^{(2)} = f'', \dots$)

12.2 Beispiel

a)
$$f(x) = x^2 \infty$$
 oft diffbar
 $f'(x) = 2x$, $f''(x) = 2$, $f^{(n)} = 0 \forall n \ge 3$

b)
$$f(x) = e^x$$

 $f^{(n)}(x) = e^x \forall n \in \mathbb{N}_0$

c)
$$f(x) = \begin{cases} \frac{1}{2}x^2 & x \ge n \\ -\frac{1}{2}x^2 & x < 0 \end{cases}$$
$$f'(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases} = |x|, \text{ nicht diffbar in } x = 0$$

d)
$$f: \mathbb{R}^+ \to \mathbb{R}^+$$
, $f(x) = x^{\alpha}$ $(\alpha \in \mathbb{R})$
 $f'(x) = \alpha \cdot x^{\alpha - 1}$
 $f^{(n)} = \alpha \cdot (\alpha - 1) \cdot \dots \cdot (\alpha - n + 1) \cdot x^{\alpha - n} = n! \underbrace{\begin{pmatrix} \alpha \\ n \end{pmatrix}}_{\text{biron}} \cdot x^{\alpha - n} \ \forall n \in \mathbb{N}_0$

12.3 Motivation

Polynome sind besonders einfach zu handhaben.

Wir wollen komplizierte Funktionen möglichst gut mittels Polynome beschreiben / annähern.

Damit zwei Funktionen "ähnlich" sind, sollten nicht nur ihre Funktionswerte in einigen Punkten übereinstimmen, sondern möglichst auch ihre Ableitung in diesen Punkten.

```
gegeben: Funktion f: I \to \mathbb{R}, x_o \in I gesucht: Polynom T_n(x) vom Grad n, das f gut annähert, insbesondere an der Stelle x_0. Wie muss T_n aussehen?
```

für
$$n = 0$$
: (Grad 0, d.h. $T_0(x)$ ist Gerade)
 $T_0(x) = f(x_0)$ (dann wenigstens Übereinstimmung in x_0):
 $T_0(x_0) f(x_0)$

für
$$n = 1$$
: $T_1(x) = f(x_0) + f'(x_0) \cdot (x - x_0)$ Polynome vom Grad 1 $\sqrt{T_1(x_0)} = f(x_0) + f'(x_0)$ (Übereinstimmung in x_o) $\sqrt{T'_1(x)} = f'(x_0)$
 $\Rightarrow T'_1(x_0) = f'(x_0)$ (Übereinstimmung der 1. Ableitung in x_0)

für
$$n = 2$$
: $t_2(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + \frac{1}{2} \cdot f''(x_0) \cdot (x - x_0)^2$ Polynom vom Grad $2 \sqrt{T_2(x_0)} = f(x_0) + 0 + 0$ (Übereinstimmung in x_0) $\sqrt{T'_2(x)} = f'(x_0) + 2 \cdot \frac{1}{2} \cdot f * (x_0) \cdot (x - x_0)^1 = f'(x_0) + f''(x_0)(x - x_0)$ $T''_2(x) = f''(x_0)$ $T''_2(x_0) = f'(x_0)$ $T''_2(x_0) = f''(x_0)$ $T''_2(x_0)$ T''_2

12.4 Definition: Taylorpolynom

 $F: I \to \mathbb{R}$ n-mal differenzierbar auf I, $x_0 \in I$

Dann heißt

$$T_n(x) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

das **n-te Taylorplynome von f**, entwickelt um den Punkt $x_0 \in I$.

oben für n = 0, 1, 2 gesehen:

Für
$$T_n(x)$$
 gilt: $T_n(x_n) = f(x_n)$ und $T_n^{(k)}(x_0) = f^{(k)}(x_0)$ für $k = 1 ... n$

 $T_n(x)$ nähert also f an. Wie gut?

Satz: Formel von Taylor mit Lagrange-Restglied

 $f: I \to \mathbb{R}$ (n-1)-mal differenzierbar auf I, $x_0 \in I$

Sei
$$R_n(x) := f(x) - T_n(x)$$

der Fehler zwischen f un dem n-ten Taylorpolynom von f entwickelt um den Punkt x₀. ("Restglied")

Dann gibt es zu jedem $x \in I$ eine Stelle ξ zwischen x_0 und x, so dass

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{n+1} \cdot (x - x_0)^{n+1}$$

(Merkregel: (n+1)-ter Term von $t_{n+1}(x)$ mit ξ statt x_0) also ist f darstellbar durch das n-te Taylorpolynom mittels

$$f(x) = \underbrace{\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k}_{\text{Polynom vom Grad n}} + \underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!}}_{R_n(x)} (x - x_0)^{n+1}$$

(Taylorentwicklung von f an der Stelle X_0)

Beweis:

$$Sei g(x) = (x - x_1^{n+1})$$

Es gilt $R_n^{(k)}(x_0) = 0$ und $g^{(k)}(x_0) = 0$ $\forall k = 0 \dots n$ $\frac{R(x)}{g(x)} = \frac{R(x) - R(x_0)}{g(x) - g(x_0)} \stackrel{*}{=} \frac{R'(\xi_1)}{g'(\xi_1)}$ für ein ξ_1 zwischen x und x_0 (*: 2. Mittelwertsatz aus Mathe II) $= \frac{R'(\xi_1) - R'(x_0)}{g'(\xi_1) - g'(x_0)} \stackrel{*}{=} \frac{R''(\xi_2)}{g''(\xi_2)}$ für ein ξ_2 zw. ξ_1 und x_0 $= \dots = \frac{R^{(n+1)}(\xi_{n+1})}{g^{(n+1)}(\xi_{n+1})} = \frac{f^{(n+1)}(\xi_{n+1})}{(n+1)!}$ für ein ξ_{n+1} zwischen ξ_n und x_0 setze $\xi = \xi_{n+1}$, Behauptung folgt

Bemerkung 12.6

- a) Der Satz besagt:
 - f(x) kann bis auf $R_n(x)$ als Polynom n-ten Grades dargestellt werden. Je größer n, desto besser sollte diese Annäherung sein. Insbesondere ist interessant: gilt $R_n(x) \to 0$ für $n \to \infty$?
- b) Es gibt auch andere Darstellungen des Restglieds, z.B: mit Integral.

12.7 **Beispiel**

a)
$$f(x) = e, x_0 = 0$$

 $f^{(k)} = e^x \ \forall k \in \mathbb{N}_0$
 $f^{(k)}(x_0) = e^0 = 1$
 $\Rightarrow T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} (x - 0)^k = \sum_{k=0}^n \frac{1}{k!} x^k$
 $\Rightarrow \underbrace{e^x} f(x) = \underbrace{\sum_{k=0}^n \frac{x^k}{k!}}_{T_n(x)} + \underbrace{\frac{e^\xi}{(n+1)!} \cdot x^{n+1}}_{R_n(x)} (\xi \text{ zwischen 0 und x})$
 $e^\xi \text{ ist beschränkt durch } e^0 \text{ oder } e^x, \frac{x^{n+1}}{(n+1)!} \to 0 \text{ für } n \to \infty$
Also:

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \ \forall x \in \mathbb{R}$$