Knowledge Representationa Why is Knowledge Representation important?

a. wii	y is knowledge Representation important:
b. Ho	w does it affect computation?
c. Wh	at are 3 types of Knowledge Representation systems/languages discussed in class?
d. Wh	at are their advantages/disadvantages?
e. Ma	tch the keyword with the letter of its definition below:
1.	Frame problem:
	Ramification problem:
	Qualification problem:
	Fluent:
5.	Atemporal predicate:
6.	Situation calculus:
7.	Ontology:
	Subclass:
9	Inheritance:

Definitions:

- A. A rigorous and exhaustive organization of some knowledge domain that is usually hierarchical and contains all the relevant entities and their relations
- B. A form of inference that determines if an object is a member of a class, and all members of the class share some property, then the object will have that property
- C. Handling secondary (implicit) effects of actions
- D. Predicates that never change over time
- E. Graphical network representation of knowledge
- F. Approach to modeling actions in logic for use in problem solving and planning
- G. Predicates that change over time
- H. Representing all things that stay the same from one situation to the next
- I. A subdivision of a set or class.

10. Semantic network:

J. Defining the circumstances under which an action is guaranteed to work

Planning

Given these actions and predicates for the block world domain, answer the questions below.

a. Describe the start state given in the diagram below using the given predicates above:

b. The goal state is $On(A,B)^{\wedge}On(B,C)$. Draw the block world diagram for the goal state.

c. Draw the partial order plan for solving this block world problem:
d. In what order will a partial order planner choose the actions to add to the plan? (You may label your drawing above with the order in which the actions were added to the plan)
"2 jugs problem" as planning problem
You have a well, and two water jugs of size 3 gallons and 5 gallons. The goal is to get 4 gallons in one of the jugs. In doing so, you are allowed to:
Fill up either jug completely Empty either jug completely.
Pour water from one jug to the other, until the poured jug is empty, or the other jug is full.
Specify
a. The initial state
b. The operators. For each operator, give the preconditions and effects.
c. what is the correct plan?

Logical Reasoning

- a. Circle the sentence that is the CNF form of this sentence A \Leftrightarrow (B \vee E)
 - 1) $(\neg A \lor B \lor E) \land (B \lor A) \land (E \lor A)$
 - 2) $(\neg A \lor B \lor E) \land (\neg B \lor A) \land (\neg E \lor A)$
 - 3) $(\neg A \land B \land E) \lor (\neg B \land A) \lor (\neg E \land A)$
 - 4) $(B \lor A) \land (E \lor A)$
 - 5) $(B \wedge A) \wedge (E \wedge A)$
- b. To unify α : <(x, +(y, x)), and β : <(10, +(a, b)), circle the most general unifier θ that makes α and β identical:
 - 1) $\theta = \{x/a, y/b\}$
 - 2) $\theta = \{x/10, y/a, b/10\}$
 - 3) $\theta = \{x/10, y/b, a/10\}$
 - 4) $\theta = \{x/a, y/b, b/10\}$
 - 5) $\theta = \{x/10, y/a, a/b\}$
- c. Translate each sentence to first order logic, using predicate Smart(x), At(x,USC), Loves(x,y):
 - 1) Everyone at USC is smart
 - 2) Someone at USC is smart
 - 3) There is someone who loves everyone
 - 4) Everyone is loved by someone

d. Given the Prolog program (where tw	weety is a c	onstant, X a v	variable, a	and NO	T is
Prolog's standard form of negation):					

bird(tweety).
fly(X): bird(X), NOT ostrich(X).

Is the fact that tweety flies inferred? Why or why not?

e. What is the most general unifier of [a, [a], [A, b]] and [c, [d], [a, B]], where a, b, c and d are variables and A and B are constants? You need not show your work, just the answer.