Stephen Baek

Fitting Neural Networks on Physics Data

Neural networks are data hungry (deep networks, especially)

Fitting Neural Networks on Physics Data

- Neural networks are data hungry (deep networks, especially)
- In scientific applications, however, large data sets are **not always available**. For instance:
 - A complex fluid simulation (complex boundary conditions, fast flow speed, etc.) can take days on a supercomputer.
 - A material experiment may take hours to produce a specimen, configure experiment parameters, and perform an experiment.
 - → These are just for one training sample!

Fitting Neural Networks on Physics Data

- Furthermore, in physics applications, we are not interested in simply just an input-output mapping. The input-output relationships must comply with e.g.:
 - Governing laws (e.g., conservation of mass, momentum, energy, etc.)
 - Initial/boundary conditions
 - Other constraints

- Idea—Fit a neural network to the solution function of governing differential equations with the residuals of differential equations as loss functions:
 - For example: harmonic oscillator

$$m\ddot{x} + c\dot{x} + kx = 0$$

with initial conditions:

$$x(0) = x_0$$

$$\dot{x}(0) = v_0$$

• Model x(t) as a neural network $x_{\theta}(t)$:

• Model x(t) as a neural network $x_{\theta}(t)$:

• Model x(t) as a neural network $x_{\theta}(t)$:

Derivatives

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

Derivatives

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

Numerical Derivatives

• Can you numerically compute the derivatives in the rigorous sense? Why?

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

- No. Because computers cannot represent the infinitesimally small quantity h.
- Even if we use high enough numerical precision, all sorts of cancellation/round-off errors may occur (not to mention the issues of computational efficiency)

Numerical Derivatives

• A numerical approximate:

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

$$\cong \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Forward and Backward Differences

- Depending on how you view it,
 - Forward difference:

$$\frac{dy}{dx} \cong \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

• Backward difference:

$$\frac{dy}{dx} \cong \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

Central Difference

Compute the mean of forward and backward differences:

$$\frac{1}{2} \left(\frac{dy}{dx} + \frac{dy}{dx} \right) = \frac{1}{2} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{f(x) - f(x - \Delta x)}{\Delta x} \right)$$

$$= \frac{1}{2} \left(\frac{f(x + \Delta x) - f(x) + f(x) - f(x - \Delta x)}{\Delta x} \right)$$

$$= \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x}$$

$$\Leftrightarrow \frac{f\left(x + \frac{\Delta x}{2}\right) - f\left(x - \frac{\Delta x}{2}\right)}{\Delta x} \rightarrow \text{Central difference}$$

Finite Difference Methods

Forward Difference

$$\frac{dy}{dx} \cong \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Backward Difference

$$\frac{dy}{dx} \cong \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

Central Difference

$$\frac{dy}{dx} \cong \frac{f\left(x + \frac{\Delta x}{2}\right) - f\left(x - \frac{\Delta x}{2}\right)}{\Delta x}$$

Limitations?

- Truncation vs Rounding Error
- " Δx " can never be actually "zero"
 - Large Δx : Approximation error
 - Small Δx : Numerical error
 - The numerator terms $(f(x + \Delta x))$ and f(z) denominator Δx is tiny
 - What happens to the insignificant mantissa bits

What about n-Dimensions?

• How many times do you need to evaluate function f() for a multivariate case (i.e. $x \in \mathbb{R}^n$ for n > 1)?

 \rightarrow Requires O(n) evaluations

Recap: Backpropagation

Recap: Backpropagation

Example

$$f(w,x) = \frac{1}{1 + e^{-(w_1x_1 + w_2x_2 + b)}}$$

Validate!

$$b = 0.20$$

$$\frac{\partial}{\partial x} \left\{ \frac{1}{x} \right\} = -\frac{1}{x^2}$$
$$\frac{\partial}{\partial x} e^x = e^x$$

$$\frac{\partial f}{\partial w_1} = \frac{\partial}{\partial w_1} \left\{ \frac{1}{1 + e^{-(w_1 x_1 + w_2 x_2 + b)}} \right\}
= -\frac{1}{\left(1 + e^{-(w_1 x_1 + w_2 x_2 + b)}\right)^2} \frac{\partial}{\partial w_1} \left\{ 1 + e^{-(w_1 x_1 + w_2 x_2 + b)} \right\}
= -\frac{1}{\left(1 + e^{-(w_1 x_1 + w_2 x_2 + b)}\right)^2} e^{-(w_1 x_1 + w_2 x_2 + b)} \frac{\partial}{\partial w_1} \left\{ -(w_1 x_1 + w_2 x_2 + b) \right\}
= \frac{x_1}{\left(1 + e^{-(w_1 x_1 + w_2 x_2 + b)}\right)^2} e^{-(w_1 x_1 + w_2 x_2 + b)}
= \frac{-1}{\left(1 + e^{-(-2 + 6 - 3)}\right)^2} e^{-(-2 + 6 - 3)} = -0.1966$$

$$\frac{\partial}{\partial w_{1}} \left\{ \frac{1}{1 + e^{-(w_{1}x_{1} + w_{2}x_{2} + b)}} \right\} \qquad \frac{\partial}{\partial x_{1}} = \frac{w_{1}}{\left(1 + e^{-(w_{1}x_{1} + w_{2}x_{2} + b)}\right)^{2}} e^{-(w_{1}x_{1} + w_{2}x_{2} + b)} = \frac{2}{(1 + e^{-1})^{2}} e^{-1} = 0.3932$$

$$= -\frac{1}{\left(1 + e^{-(w_{1}x_{1} + w_{2}x_{2} + b)}\right)^{2}} e^{-(w_{1}x_{1} + w_{2}x_{2} + b)} \frac{\partial}{\partial w_{1}} \left\{ -(w_{1}x_{1} + w_{2}x_{2} + b) \right\} \qquad \frac{\partial f}{\partial w_{2}} = \frac{x_{2}}{\left(1 + e^{-(w_{1}x_{1} + w_{2}x_{2} + b)}\right)^{2}} e^{-(w_{1}x_{1} + w_{2}x_{2} + b)} = \frac{-2}{(1 + e^{-1})^{2}} e^{-1} = -0.3932$$

$$= \frac{1}{\left(1 + e^{-(w_{1}x_{1} + w_{2}x_{2} + b)}\right)^{2}} e^{-(w_{1}x_{1} + w_{2}x_{2} + b)} \frac{\partial}{\partial w_{1}} \left\{ -(w_{1}x_{1} + w_{2}x_{2} + b) \right\} \qquad \frac{\partial f}{\partial x_{2}} = \frac{w_{2}}{\left(1 + e^{-(w_{1}x_{1} + w_{2}x_{2} + b)}\right)^{2}} e^{-(w_{1}x_{1} + w_{2}x_{2} + b)} = \frac{-3}{(1 + e^{-1})^{2}} e^{-1} = -0.5898$$

$$= \frac{x_{1}}{\left(1 + e^{-(w_{1}x_{1} + w_{2}x_{2} + b)}\right)^{2}} e^{-(w_{1}x_{1} + w_{2}x_{2} + b)} = \frac{1}{(1 + e^{-1})^{2}} e^{-1} = 0.1966$$

$$\frac{\partial f}{\partial w_{2}} = \frac{1}{\left(1 + e^{-(w_{1}x_{1} + w_{2}x_{2} + b)}\right)^{2}} e^{-(w_{1}x_{1} + w_{2}x_{2} + b)} = \frac{-1}{(1 + e^{-1})^{2}} e^{-1} = 0.1966$$

Can we do better?

- What are the problems of backpropagation?
 - You always need to keep intermediate data in the memory during the forward pass in case it will be used in the backpropagation.
 - Only limited to the first order derivatives. (e.g. gradient of gradient?)

- Autodiff is not finite differences.
 - Finite differences are expensive
 - At least two forward passes for each derivative.
 - Prone to numerical error
- Autodiff is efficient.
 - Linear computing cost.
- Autodiff is accurate and numerically stable.

- Autodiff is not symbolic differentiation
 - No complex and redundant expressions
 - The goal of autodiff is not a formula, but a procedure for computing derivatives.

For vector-valued functions?

• Jacobian!

$$J = \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

For vector-valued functions?

• Jacobian!

$$J = \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

• Chain rule in Jacobian?

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y_1} \frac{\partial y_1}{\partial x} + \dots + \frac{\partial f}{\partial y_d} \frac{\partial y_d}{\partial x} = \sum_k \frac{\partial f}{\partial y_k} \frac{\partial y_k}{\partial x}$$

$$\mathbf{f'} = \begin{bmatrix} \frac{\partial f}{\partial y_1} & \cdots & \frac{\partial f}{\partial y_d} \end{bmatrix}^T \mathbf{y'}$$

For vector-valued functions?

• Jacobian!

$$J = \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Chain rule in Jacobian?

$$\frac{\partial f_{i}}{\partial x_{j}} = \frac{\partial f_{i}}{\partial y_{1}} \frac{\partial y_{1}}{\partial x_{j}} + \dots + \frac{\partial f_{i}}{\partial y_{d}} \frac{\partial y_{d}}{\partial x_{j}} = \sum_{k} \frac{\partial f_{i}}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{j}}$$
$$\mathbf{f'} = \mathbf{J}^{T} \mathbf{y'}$$

Vector-Jacobian Products

- Does that mean that we need to compute Jacobian for each node?
 - No. We never explicitly construct the Jacobian.
 - Instead, it is simpler and more efficient to compute VJP directly.

Vector-Jacobian Products

• Consider a primitive operation (aka a simple scalar-valued function that can be used as a building block to construct more complicated vector valued functions) \rightarrow e.g. f = np.exp(g(x))

• Jacobian:

See the inefficiency here?
$$J = \frac{\partial f}{\partial g} = \begin{bmatrix} e^{g_1} & 0 \\ 0 & e^{g_n} \end{bmatrix}$$

Vector-Jacobian Products

• Instead, VJP:

$$J = \frac{\partial f}{\partial g} = \begin{bmatrix} e^{g_1} & 0 \\ & \ddots & \\ 0 & e^{g_n} \end{bmatrix}$$

$$f' = J^T g' = \begin{bmatrix} e^{g_1} & 0 \\ 0 & \ddots & \\ 0 & e^{g_n} \end{bmatrix} \begin{bmatrix} g'_1 \\ \vdots \\ g'_n \end{bmatrix} = [g'_1 e^{g_1} & \cdots & g'_n e^{g_n}]$$

Autodiff in Python – Autograd

• https://github.com/HIPS/autograd or 'pip install autograd'

```
Very sneaky! Look and feel like NumPy functions, but secretly build the computation graph.
>>> import autograd.numpy as np  # Thinly-wrapped numpy
>>> from autograd import grad  # The only autograd function you may ever need
>>>
>>> def tanh(x):  # Define a function
...  y = np.exp(-2.0 * x)
...  return (1.0 - y) / (1.0 + y)
...
>>> grad_tanh = grad(tanh)  # Obtain its gradient function
>>> grad_tanh(1.0)  # Evaluate the gradient at x = 1.0
0.41997434161402603
>>> (tanh(1.0001) - tanh(0.9999)) / 0.0002 # Compare to finite differences
0.41997434264973155
```

Or in PyTorch...

• Coding time! See '03_autograd.ipynb'

Comparison

- Numerical differentiation
 - Tool to check the correctness of implementation
- Backpropagation
 - Easy to understand and implement
 - Bad for memory use and schedule optimization
- Automatic differentiation
 - Generate gradient computation to entire computation graph
 - Better for system optimization

Back to PINN...

More Formal Problem Setup

• Nonlinear PDEs with parameter λ :

$$u_t + \mathcal{N}[u; \lambda] = 0, x \in \Omega \subset \mathbb{R}^D, t \in [0, T] \subset \mathbb{R}$$

where...

- u(t,x): the solution function
- $u_t \coloneqq \frac{\partial u}{\partial t}$: the time-derivative
- $\mathcal{N}[u;\lambda]$: a nonlinear operator parameterized by λ
- Ω : physical domain with boundary $\partial\Omega$

Example: Linear convection-diffusion equation

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} - v \frac{\partial^2 u}{\partial x^2} = 0$$

where $\mathcal{N}[u;\lambda] = cu_x - vu_{xx}$ and $\lambda = (c,v) > 0$ (convection and diffusion coefficients)

More Formal Problem Setup

$$u_t + \mathcal{N}[u; \lambda] = 0, x \in \Omega \subset \mathbb{R}^D, t \in [0, T] \subset \mathbb{R}$$

Raissi et al. (2018):

Data driven solutions of PDEs:

"Given λ , what is u(t,x)?"

• Data driven discovery of PDEs: "Find λ that best describes observations $u(t^{(i)}, x^{(i)})|_{i=1,\cdots,N}$ "

Data-Driven Solutions

- Let $u_{\theta}(t,x)$ be a neural network with network parameters θ that approximates the unknown PDE solution $u(t,x) \approx u_{\theta}(t,x)$.
- Given:
 - Observations : $t^{(i)}$; $x^{(i)}$; $u^{(i)} = u(t^{(i)}, x^{(i)})$ for $i = 1, ..., N_u$ (i.e., data collected from either physical or numerical experiments)
 - Governing equation: $u_t + \mathcal{N}[u; \lambda] = 0, x \in \Omega \subset \mathbb{R}^D, t \in [0, T] \subset \mathbb{R}$ with some known parameters λ .
- Objective: train the neural network $u_{ heta}$ with the following objectives

$$\mathcal{L} = \mathcal{L}_u + \mathcal{L}_f$$

- "Data loss" (mean-square error): $\mathcal{L}_u = \frac{1}{N_u} \sum_{i=1}^{N_u} \left\| u^{(i)} u_\theta(t^{(i)}, x^{(i)}) \right\|^2$
- "Physics loss" (PDE residual): $\mathcal{L}_f = \frac{1}{N_f} \sum_{i=1}^{N_f} \left\| f\left(t_f^{(i)}, x_f^{(i)}\right) \right\|^2$ where $f(u; t, x) = u_t + \mathcal{N}[u; \lambda]$

More on the Physics-Informed Loss

• "Physics loss" (PDE residual):

$$\mathcal{L}_{f} = \frac{1}{N_{f}} \sum_{i=1}^{N_{f}} \left\| f\left(t_{f}^{(i)}, x_{f}^{(i)}\right) \right\|^{2}$$

where $f(u; t, x) = u_t + \mathcal{N}[u; \lambda]$.

- $\{t_f^{(i)}, x_f^{(i)}\}_{i=1}^{N_f}$ are called "collocation points" that are usually sampled from...
 - $(t_f, x_f) \sim \mathcal{U}([0, T] \times \Omega)$: uniform distribution in space-time (for now).
 - $(t_f, x_f) \sim P(t, x)$: some fancier sampling method (we'll see in the later slides).

Data-Driven Solutions: Example – Heat Eqn.

- Heat Equation:
 - Describes the diffusion of heat through a given region.
- 1D heat diffusion process:

$$\frac{\partial u}{\partial t} = \lambda u_{xx}$$

- ... where u(t,x) is the temperature at time t and location $x \in \Omega \subset \mathbb{R}$ in the physical domain Ω , and λ is a positive coefficient representing the thermal diffusivity of the medium.
- Our goal: Find u, given λ and the initial condition $u_0\coloneqq u(0,x)$

• Consider $u(0,x) = \sin(\pi x)$

• Analytical solution for this IVP is known as $u(t,x) = e^{-\lambda \pi^2 t} \sin(\pi x)$:

1D Heat Diffusion: Temperature Evolution

- ... of course, we will "pretend" we don't know the solution yet.
- Design of the neural network $u_{\theta}(t,x)$:

```
class Backbone(nn.Module):
   def __init__(self, dtype=torch.float32):
       super(). init ()
       self.fc1 = nn.Linear(2, 32, dtype=dtype) # input dim = 2 (t,x)
       self.fc2 = nn.Linear(32, 32, dtype=dtype) # hidden dims = 32, 32, 32
       self.fc3 = nn.Linear(32, 32, dtype=dtype) #
       self.out = nn.Linear(32, 1, dtype=dtype) # output dim = 1 (u)
       self.dtype = dtype
   def forward(self, x):
       x = self.fc1(x)
       x = nn.SiLU()(x)
       x = self.fc2(x)
       x = nn.SiLU()(x)
       x = self.fc3(x)
       x = nn.SiLU()(x)
       return self.out(x)
```


Physics-informed Loss

```
input, output = ground truth
prediction = model(input)
data loss = torch.mean((output-prediction)**2)
colloc pred = model(colloc)
deriv = torch.autograd.grad(
    colloc pred, colloc, torch.ones_like(colloc pred),
    retain_graph=True, create graph=True)[0]
dt = deriv[:,0]
dx = deriv[:,1]
deriv2 = torch.autograd.grad(dx, colloc, torch.ones like(dx), create graph=True)[0]
ddx = deriv2[:,1]
physics_loss = torch.mean((dt-alpha*ddx)**2)
loss = data_loss + physics_loss
loss.backward()
optimizer.step()
```

- Data sampling
 - Initial condition
 - $u(0,x) = \sin(\pi x)$

- Collocation points
 - Mesh grid with 12 grid points in each of the *t* and *x* directions

Training

Data-Driven Discovery: Example – NS Eqn.

- Navier-Stokes Equations:
 - Describe the physics of many fluid phenomena, such as water flow around an object, vehicle aerodynamics, ocean currents, weather, etc.
- N-S equation for 2D Incompressible Flows: $\rho\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla p + \mu \nabla^2 \mathbf{u}$
 - ... or, equivalently:

$$\rho(u_t + uu_x + vu_y) = -p_x + \mu(u_{xx} + u_{yy})
\rho(v_t + uv_x + vv_y) = -p_y + \mu(v_{xx} + v_{yy})$$

- where u(t,x,y) and v(t,x,y) denotes the x- and y-component of the evolving velocity field, p(t,x,y) denotes the evolving pressure field, ρ is the fluid density, and μ is viscosity.
- Conservation of mass: $u_x + v_y = 0$

Navier-Stokes Equations (cont'd)

• Approach: Set fluid density ho and viscosity μ as learnable parameters, alongside other model parameters.

Correct PDE	$u_t + (uu_x + vu_y) = -p_x + 0.01(u_{xx} + u_{yy})$ $v_t + (uv_x + vv_y) = -p_y + 0.01(v_{xx} + v_{yy})$
Identified PDE (clean data)	$u_t + 0.999(uu_x + vu_y) = -p_x + 0.01047(u_{xx} + u_{yy})$ $v_t + 0.999(uv_x + vv_y) = -p_y + 0.01047(v_{xx} + v_{yy})$
Identified PDE (1% noise)	$u_t + 0.998(uu_x + vu_y) = -p_x + 0.01057(u_{xx} + u_{yy})$ $v_t + 0.998(uv_x + vv_y) = -p_y + 0.01057(v_{xx} + v_{yy})$

Summary So Far

• PINN: adds the physical constraints as soft penalty terms in the training loss.

Pros:

- Enforcing physical constraints to NN predictions (to some extent)
- Easy to implement.

Challenges/Opportunities for PINN

- 1D Advection Equation: $\frac{\partial u}{\partial t} + \beta \frac{\partial u}{\partial x} = 0$, $x \in \Omega \subset \mathbb{R}$, $t \in [0, T]$
 - Initial condition: $u(0,x) = \sin(x)$
 - Periodic BC: $u(t,0) = u(t,2\pi)$

$$\begin{split} \mathcal{L} &= \frac{1}{N_f} \sum_{(t_f, x_f)} \|u_t + \beta u_x\|^2 & \text{PDE Residual} \\ &+ \frac{1}{N_i} \sum_{x_i} \|u(0, x) - \sin(x)\|^2 & \text{Initial Condition} \\ &+ \frac{1}{N_b} \sum_{t_b} \|u(t, 2\pi) - u(t, 0)\|^2 & \text{Boundary Condition} \end{split}$$

PINN on Advection

- 1D Advection Equation: $\frac{\partial u}{\partial t} + \beta \frac{\partial u}{\partial x} = 0$, $x \in \Omega \subset \mathbb{R}$, $t \in [0, T]$
 - Initial condition: $u(0,x) = \sin(x)$
 - Periodic BC: $u(t,0) = u(t,2\pi)$

Krishnapriyan et al. (2021). Characterizing possible failure modes in physics-informed neural networks. NeurIPS.

PINN on Advection

Potential Solution: Curriculum Training

"start by training the PINN on lower β (easier for the PINN to learn) and then gradually move to training the PINN on higher β ."

(b) Regular	training	PINN	solution
	for $\beta =$	30	

(c) Curriculum training PINN solution for $\beta = 30$

		Regular PINN	Curriculum training
$\beta = 20$	Relative error	7.50×10^{-1}	$9.84 imes 10^{-3}$
	Absolute error	4.32×10^{-1}	$5.42 imes10^{-3}$
$\beta = 30$	Relative error	8.97×10^{-1}	$2.02 imes10^{-2}$
	Absolute error	5.42×10^{-1}	$1.10 imes10^{-2}$
$\beta = 40$	Relative error	9.61×10^{-1}	$5.33 imes10^{-2}$
	Absolute error	5.82×10^{-1}	2.69×10^{-2}

Challenges/Opportunities for PINN

- 1D Reaction-Diffusion Equation: $\frac{\partial u}{\partial t} \nu \frac{\partial^2 u}{\partial x^2} \rho u (1-u) = 0$, $x \in \Omega$, $t \in [0,T]$
 - Initial condition: $u(0,x) = \exp\left(-\frac{(x-\pi)^2}{2(\pi/4)^2}\right)$
 - Periodic BC: $u(t,0) = u(t,2\pi)$

(a) Exact solution for $\rho = 5$, $\nu = 5$

(b) PINN solution for $\rho = 5$, $\nu = 5$

0.6

0.4

0.2

PINN on Sharp Features

Potential Solution: Sequence-to-Sequence Training

"Predict(ing) the entire space-time at once (...) can be more difficult to learn." Instead, "predict(ing) the solution at the next time step" may be better.

		Entire state space	$\Delta t = 0.05$	$\Delta t = 0.1$
$\nu = 2, \rho = 5$	Relative error	5.07×10^{-1}	2.04×10^{-2}	1.18×10^{-2}
	Absolute error	2.70×10^{-1}	1.06×10^{-2}	6.41×10^{-3}
$\nu = 3, \rho = 5$	Relative error	7.98×10^{-1}	1.92×10^{-2}	$1.56 imes 10^{-2}$
·	Absolute error	4.79×10^{-1}	1.01×10^{-2}	8.17×10^{-3}
$\nu = 4, \rho = 5$	Relative error	8.84×10^{-1}	2.37×10^{-2}	$1.59 imes 10^{-2}$
	Absolute error	5.74×10^{-1}	1.15×10^{-2}	$8.01 imes 10^{-3}$
$\nu = 5, \rho = 5$	Relative error	9.35×10^{-1}	$2.36 imes 10^{-2}$	2.39×10^{-2}
	Absolute error	6.46×10^{-1}	1.09×10^{-2}	1.15×10^{-2}
$\nu = 6, \rho = 5$	Relative error	9.60×10^{-1}	2.81×10^{-2}	10^{-2}
	Absolute error	6.84×10^{-1}	1.17×10^{-2}	1.28×10^{-2}

Optimization Challenges

Change in the loss landscape caused by additional loss terms

Optimization Challenges

• Change in the loss landscape caused by additional loss terms

$$lpha=0.01$$
 $lpha=0.01$ lp

Burgers, Boundary Value (I=0.01), Err=2.98E-03

 $log(|\lambda_{min}|/|\lambda_{max}|)$

Optimization Challenges

Adding PDE loss makes it harder to optimize

Figure E.1: Loss landscapes when varying the λ parameter in \mathcal{F} , for the 1D convection equation in §3.1. In this example, $\beta = 30$, which is a point at which the error is high. The loss landscape becomes more complex as λ is increased, i.e., as the regularization term grows. However, error stays consistently high (although it decreases a little as λ is increased).

Choice of Collocation Points

- Sampling bias in physics loss can be detrimental
- Potential solution: adaptive sampling (but at the cost of solving another optimization problem on the fly)

Low-Frequency Bias

• Neural nets (not just PINN) are inherently biased toward low-frequency patterns, because high-frequency patterns are viewed as "noise".

