[21]: [21]:	Preprocessing Feature extraction and normalization. Applications: Transforming input data such as text for use with machine learning algorithms. #Importing required packages. import pandas as pd import seaborn as sns import matplotlib.pyplot as plt #Loading dataset wine = pd.read_csv('winequality-red.csv', sep=';') wine.head() fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality
	fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality 0 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5 1 7.8 0.88 0.00 2.6 0.098 25.0 67.0 0.9968 3.20 0.68 9.8 5 2 7.8 0.76 0.04 2.3 0.092 15.0 54.0 0.9970 3.26 0.65 9.8 5 3 11.2 0.28 0.56 1.9 0.075 17.0 60.0 0.9980 3.16 0.58 9.8 6 4 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5 #Information about the data columns wine.info() **Class 'pandas.core.frame.DataFrame'> RangeIndex: 1599 entries, 0 to 1598 Data columns (total 12 columns): # Column Non-Null Count Dtype
[23]:	0 fixed acidity 1599 non-null float64 1 volatile acidity 1599 non-null float64 2 citric acid 1599 non-null float64 3 residual sugar 1599 non-null float64 4 chlorides 1599 non-null float64 5 free sulfur dioxide 1599 non-null float64 6 total sulfur dioxide 1599 non-null float64 7 density 1599 non-null float64 8 pH 1599 non-null float64 9 sulphates 1599 non-null float64 10 alcohol 1599 non-null float64 11 quality 1599 non-null float64 11 quality 1599 non-null int64 #checking to see if there's any null variables
[23]:	<pre>wine.isnull().sum() fixed acidity</pre>
[24]: [25]: [25]:	<pre>#Preprocessing Data bins=(2,6.5,8) group_names=['Bad','Good'] wine['quality']=pd.cut(wine['quality'],bins=bins,labels=group_names) wine['quality'].unique() ['Bad', 'Good'] Categories (2, object): ['Bad' < 'Good'] ##Now lets assign a labels to our quality variable We use sklearn from sklearn.preprocessing import LabelEncoder label_quality = LabelEncoder()</pre>
[28]: [30]:	<pre>wine['quality'] = label_quality.fit_transform(wine['quality']) #Bad becomes 0 and good becomes 1 wine.head(10) fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality 0 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 0 1 7.8 0.88 0.00 2.6 0.098 25.0 67.0 0.9968 3.20 0.68 9.8 0 2 7.8 0.76 0.04 2.3 0.092 15.0 54.0 0.9970 3.26 0.65 9.8 0 3 11.2 0.28 0.56 1.9 0.075 17.0 60.0 0.9980 3.16 0.58 9.8 0 4 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 0</pre>
[31]: [31]: [36]:	5
[36]:	C:\Users\Sikandar Hayat\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From versi 12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretati warnings.warn(<axessubplot:xlabel='quality', ylabel="count"> 1400 - 1200 - 1000 - 1</axessubplot:xlabel='quality',>
[34]: [35]:	#Now seperate the dataset as response variable and feature variabes X = wine.drop('quality', axis = 1) y = wine['quality'] #Train and Test splitting of data from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42) #Applying Standard scaling to get optimized result from sklearn.preprocessing import StandardScaler sc = StandardScaler()
[38]: [48]:	<pre>X_train = sc.fit_transform(X_train) X_test = sc.fit_transform(X_test) LogisticRegression # import the class from sklearn.linear_model import LogisticRegression # instantiate the model (using the default parameters) model = LogisticRegression() # fit the model with data model.fit(X_train,y_train)</pre> ##
[48]: [64]:	<pre># model.score(X_test,y_test) 0.875 #Prediction y_pred=model.predict(X_test) len(y_pred) print(y_pred[200:210]) print(y_test[200:210]) [0 0 0 0 1 0 0 0 0 0] 727</pre>
[67]:	1473
[74]: [74]: [75]:	<pre>#Confusion matrix for the Logistic Regression cnf_matrix=confusion_matrix(y_test, y_pred) cnf_matrix array([[268, 5], [35, 12]], dtype=int64) class_names=[0,1] # name of classes fig, ax = plt.subplots() tick_marks = np.arange(len(class_names)) plt.xticks(tick_marks, class_names) plt.yticks(tick_marks, class_names) #Confusion matrix for the Logistic Regression cnf_matrix array([268, 5], [35, 12]], dtype=int64)</pre>
75]:	ax.xaxis.set_label_position("top") plt.tight_layout() plt.title('Confusion matrix', y=1.1) plt.ylabel('Actual label') plt.xlabel('Predicted label') Text(0.5, 257.44, 'Predicted label') Confusion matrix Predicted label - 250 - 268 5 - 200 - 150
[71]: [71]:	from sklearn.metrics import accuracy_score cm = accuracy_score(y_test,y_pred) 0.875
[76]: [90]:	<pre>print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) print("Precision:",metrics.precision_score(y_test, y_pred)) print("Recall:",metrics.recall_score(y_test, y_pred)) Accuracy: 0.875 Precision: 0.7058823529411765 Recall: 0.2553191489361702 Neural Network from sklearn.neural_network import MLPClassifier Model = MLPClassifier(hidden_layer_sizes=(100,200,400,500), max_iter=1000) #Train Neural Network Model fit(X train.y train)</pre>
[91]: [92]: [92]:	McClassifier(hidden_layer_sizes=(100, 200, 400, 500), max_iter=1000) Model.score(X_test,y_test) 0.903125 #Prediction y_pred=Model.predict(X_test) len(y_pred) print(y_pred[200:210]) print(y_test[200:210]) [0 0 0 0 1 0 0 0 0 1] 727 0 614 0
[94]:	614
[95]: [95]:	<pre>class_names=[0,1] # name of classes fig, ax = plt.subplots() tick_marks = np.arange(len(class_names)) plt.xticks(tick_marks, class_names) plt.yticks(tick_marks, class_names) # create heatmap sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu" ,fmt='g') ax.xaxis.set_label_position("top") plt.tight_layout() plt.title('Confusion matrix', y=1.1) plt.ylabel('Actual label') plt.xlabel('Predicted label') Text(0.5, 257.44, 'Predicted label') Confusion matrix Predicted label</pre>
	- 250 - 261 12 - 200 - 150 - 100 - 50
[127 [128 [129 [129	<pre>Model_2 = MLPClassifier(hidden_layer_sizes=(100,150,200,500), max_iter=1000,activation='logistic',batch_size=32)# default='relu' Model_2.fit(X_train,y_train) MLPClassifier(activation='logistic', batch_size=32, hidden_layer_sizes=(100, 150, 200, 500), max_iter=1000) Model_2.score(X_test,y_test) 0.86875</pre>
[]:	# class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100,),
[131	<pre>ynew = Model_2.predict(xnew) if(ynew): print("Wine is Good") else: print('Wine is bad') Wine is bad Save and Load Machine Learning Models in Python with scikit-learn import pickle # save the model to disk filename = 'Wine_Neural_network.sav' pickle.dump(Model_2, open(filename, 'wb'))</pre>
[134	<pre># some time later # load the model from disk loaded_model = pickle.load(open(filename, 'rb')) result = loaded_model.score(X_test, y_test) print(result) 0.86875 Xnew = [[7.3, 0.65, 0.00, 1.2, 0.065, 15.0, 21.0, 0.9946, 3.39, 0.47, 10.0]] Xnew=sc.transform(Xnew) ynew = loaded_model.predict(Xnew) if(ynew): print("Wine is Good") else: print('Wine is bad')</pre>
	wine is bad ynew array([0]) What is Feature Scaling? Feature Scaling is a method to scale numeric feature in the same scale or range (like:-1 to 1, 0 to 1). This last step involved in Data Preprocessing and before ML Model training. It is also called data normalization We apply feature scaling om independent variable.
	Why Feature Scaling? The Scale of raw feature is different according to its units. Machine learning algorithms can not understand feature units,understand only number Ex: if hight 140cm and 8.2feet Types Of Scaler Min Max Scaler, Standard Scaler, Max Abs Scaler etc What is Normalization? Normalization rescale the feature in fixed range b/w 0 and 1. Normalization also calles as Min-Max Scalling. If data doesn't follow normal distribution(Gussian Distribution).
[148 [151	Standardization Vs Normalization ? There is no any thumb rule to use Standardization or Normalization for Special MI algo. But mostly Standaridization use clustring analysis, Princpal Component Analysis(PCA). Normalization prefer for image processing because pixel intensity b/w 0 to 255, neural network algorith require in scale 0-1, K-Nearest Neighbors. import pandas as pd import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler df=sns.load_dataset('titanic') df.head()
[151 [155	survived pclass sex age sibsp parch fare embarked class who adult_male deck embark_town alive alone 0 0 3 male 22.0 1 0 7.2500 S Third man True NaN Southampton no False 1 1 1 female 38.0 1 0 71.2833 C First woman False C Cherbourg yes False 2 1 3 female 26.0 0 0 7.9250 S Third woman False C Southampton yes False 4 0 3 male 35.0 1 0 53.1000 S Third man True NaN Southampton no True 4 0 3 male 35.0 0 0 8.0500 S Third <
[157 [157	1
[158 [159 [162	<pre>df3=df2.fillna(df2.mean()) X=df3.drop('survived', axis=1) Y=df3['survived'] #Train and Test splitting of data from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2, random_state = 42) # Standard Scaler sc=StandardScaler() sc.fit(X_train)</pre>
[163 [164 [165 [165 [169	sc.mean_ array([2.33005618, 29.53822538, 0.37921348]) sc.scale_ array([0.82400502, 12.98541943, 0.79111317]) X_train.describe() pclass age parch
[176	count 712.000000 712.000000 712.000000 mean 2.330056 29.538225 0.379213 std 0.824584 12.994548 0.791669 min 1.000000 0.420000 0.000000 25% 2.000000 22.000000 0.000000 50% 3.000000 29.699118 0.000000 75% 3.000000 35.000000 0.000000 max 3.000000 80.000000 6.000000 X_train_sc=sc.transform(X_train) X_test_sc=sc.transform(X_test)
[177 [177	<pre>X_train_sc array([[-1.61413602, 1.22920747, -0.47934164],</pre>
[179 [180	pclass age parch 0 0.813034 0.012390 0.784700 1 -0.400551 0.112570 -0.479342 2 0.813034 -0.734533 -0.479342 3 -0.400551 -1.812666 0.784700 4 0.813034 -1.196590 -0.479342 X_train_sc.describe().round(2) pclass age parch count 179.00 179.00 mean -0.13 0.06 0.01
[182	mean -0.13 0.06 0.01 std 1.06 1.00 1.09 min -1.61 -2.21 -0.48 25% -1.61 -0.58 -0.48 50% 0.81 0.50 -0.48 max 0.81 3.19 5.84 # Min Max Scaler () mmc.fit(X_train) MinMaxScaler()
[182 [183 [184 [184	<pre>X_train_mmc=mmc.transform(X_train) X_test_mmc=mmc.transform(X_test) X_train_mmc array([[0.</pre>
[186	<pre>X_test_mmc=X_train_sc=pd.DataFrame(X_test_mmc,columns=['pclass','age','parch']) X_train_sc.describe().round(2) pclass</pre>
[187 [187	75% 1.00 0.45 0.00 max 1.00 0.89 0.83 sns.pairplot(X_train) <seaborn.axisgrid.pairgrid 0x1eaf64c6910="" at=""> 30 25 10 10 10 10 10 10 10 10 10 10 10 10 10</seaborn.axisgrid.pairgrid>
	10
	0.0 0.8 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	E 0.4
[188 [188 [189	0.00 0.25 0.50 0.75 100 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 parch sns.pairplot(X_train_mmc) <seaborn.axisgrid.pairgrid 0x1eaf100f3d0="" at=""> 10</seaborn.axisgrid.pairgrid>
[188	0.2