Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/000562

International filing date:

18 January 2005 (18.01.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: EP

Number:

04100211.4

Filing date:

22 January 2004 (22.01.2004)

Date of receipt at the International Bureau: 24 February 2005 (24.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

Europäisches **Patentamt**

European **Patent Office**

Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following initialement déposée de page, as originally filed. la demande de brevet

Les documents fixés à cette attestation sont initialement déposée de européen spécifiée à la page suivante.

Patent application No. Demande de brevet n° Patentanmeldung Nr.

04100211.4

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

Europäisches Patentamt European Patent Office Office européen des brevets

PCT/EP2005/000562

10.01.05

Anmeldung Nr:

Application no.: 04100211.4

Demande no:

Anmeldetag:

Date of filing: 22.01.04

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Akzo Nobel N.V. Velperweg 76 6824 BM Arnhem PAYS-BAS

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

LAWSONIA INTRACELLULARIS 101 kD SUBUNIT VACCINE

In Anspruch genommene Prioriët(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

CO7K14/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR LI Lawsonia intracellularis 101 kD subunit vaccine.

The present invention relates i.a. to nucleic acids encoding novel Lawsonia intracellularis proteins, to DNA fragments, recombinant DNA molecules and live recombinant carriers comprising these sequences, to host cells comprising such nucleic acids, DNA fragments, recombinant DNA molecules and live recombinant carriers, to proteins encoded by these nucleotide sequences and to their use for the manufacturing of vaccines, to vaccines for combating Lawsonia intracellularis infections and methods for the preparation thereof and to diagnostic tests for the detection of Lawsonia intracellularis antigens and for the detection of antibodies against Lawsonia intracellularis.

Porcine proliferative enteropathy (PPE or PE) has become an important disease of the modern pig industry world-wide. The disease affects 15% to 50% of the growing herds and up to 30% of the individual animals in established problem herds. Today annual economical losses have been estimated US\$ 5-10 in extra feed and facility time costs per affected pig. PPE is a group of chronic and acute conditions of widely differing clinical signs (death, pale and anaemic animals, watery, dark or bright red diarrhoea, depression, reduced appetite and reluctance to move, retarded growth and increased FCR). However there are two consistent features. The first, a pathological change only visible at necropsy, is a thickening of the small intestine and colon mucosa. The second is the occurrence of intracytoplasmatic small-curved bacteria in the enterocytes of the affected intestine. These bacteria have now been established as the etiological agent of PPE and have been name Lawsonia intracellularis.

25

30

10

15

20

Over the years Lawsonia intracellularis has been found to affect a large group of animals including monkeys, rabbits, ferrets, hamsters, fox, horses, and other animals as diverse as ostrich and emoe. Lawsonia intracellularis is a gram-negative, flagellated bacterium that multiplies in eukaryotic enterocytes only and no cell-free culture has been described. In order to persist and multiply in the cell Lawsonia intracellularis must penetrate dividing crypt cells. The bacterium associates with the cell membrane and quickly enters the

enterocyte via an entry vacuole. This then rapidly breaks down (within 3 hours) and the bacteria flourish and multiply freely in the cytoplasm. The mechanisms by which the bacteria cause infected cells to fail to mature, continue to undergo mitosis and form hypoplastic crypt cells is not yet understood.

5

The current understanding of Lawsonia intracellularis infection, treatment and control of the disease has been hampered by the fact that Lawsonia intracellularis can not be cultivated in cell-free media. Although there are reports of successful co-culturing Lawsonia intracellularis in rat enterocytes this has not lead to the development of inactivated vaccines for combating Lawsonia intracellularis, although there clearly is a need for such vaccines.

It is an objective of the present invention to provide a vaccine for combating Lawsonia intracellularis infection.

15

10

It was surprisingly found now, that Lawsonia intracellularis produces a novel protein that is capable of inducing protective immunity against Lawsonia intracellularis.

The novel protein will be referred to as the 101 kD protein.

The amino acid sequence of the novel protein is presented in sequence identifier SEQ ID NO: 2. The gene encoding this protein has been sequenced and its nucleic acid sequence is shown in sequence identifier SEQ ID NO: 1. The gene will also be referred to in the Examples as "gene 2008".

It is well-known in the art, that many different nucleic acid sequences can encode one and the same protein. This phenomenon is commonly known as wobble in the second and especially the third base of each triplet encoding an amino acid. This phenomenon can result in a heterology of about 30% for two nucleic acid sequences still encoding the same protein. Therefore, two nucleic acid sequences having a sequence homology of

30 about 70 % can still encode one and the same protein.

Thus, one embodiment relates to nucleic acids encoding a Lawsonia intracellularis protein and to parts of that nucleic acid that encode an immunogenic fragment of that protein, wherein those nucleic acids or parts thereof have a level of homology with the nucleic acid of which the sequence is given in SEQ ID NO: 1 of at least 90 %.

5

Preferably, the nucleic acid encoding this Lawsonia intracellularis protein or the part of said nucleic acid has at least 92 %, preferably 94 %, more preferably 95 % and even more preferably 96% homology with the nucleic acid having the sequence given in SEQ ID NO: 1. Even more preferred is a homology level of 98 % or even 100 %.

10

25

30

The level of nucleotide homology can be determined with the computer program "BLAST 2 SEQUENCES" by selecting sub-program: "BLASTN" that can be found at www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html.

A reference for this program is Tatiana A. Tatusova, Thomas L. Madden FEMS

Microbiol. Letters 174: 247-250 (1999). Parameters used are the default parameters:

Reward for a match: +1. Penalty for a mismatch: -2. Open gap: 5. Extension gap: 2. Gap

x_dropoff: 50.

Another approach for deciding if a certain nucleic acid is or is not a nucleic acid
according to the invention relates to the question if that certain nucleic acid does
hybridise under stringent conditions to nucleic acids having the nucleotide sequence as
depicted in SEQ ID NO: 1.

If a nucleic acid hybridises under stringent conditions to the nucleotide sequence as depicted in SEQ ID NO: 1, it is considered to be a nucleic acid according to the invention.

The definition of stringent conditions follows from the formula of Meinkoth and Wahl (1984. Hybridization of nucleic acids immobilized on solid supports. Anal. Biochem. 138: 267-284.)

 $Tm = [81.5^{\circ}C + 16.6(log M) + 0.41(%GC) - 0.61(%formamide) - 500/L] - 1^{\circ}C/1\%mismatch$

In this formula, M is molarity of monovalent cations; %GC is the percentage of guanosine and cytosine nucleotides in the DNA; L is the length of the hybrid in base pairs.

5

Stringent conditions are those conditions under which nucleic acids or fragments thereof still hybridise, if they have a mismatch of 10% at the most, to the nucleic acid having the sequence depicted in SEQ ID NO: 1.

- Since the present invention discloses nucleic acids encoding novel Lawsonia intracellularis proteins, it is now for the first time possible to obtain these proteins in sufficient quantities. This can e.g. be done by using expression systems to express the genes encoding the proteins.
- Therefore, in a more preferred embodiment, the invention relates to DNA fragments comprising a nucleic acid according to the invention. Such DNA fragments can e.g. be plasmids, into which a nucleic acid according to the invention is cloned. Such DNA fragments are e.g. useful for enhancing the amount of DNA for use as a primer, as described below.
- An essential requirement for the expression of the nucleic acid is an adequate promoter functionally linked to the nucleic acid, so that the nucleic acid is under the control of the promoter. It is obvious to those skilled in the art that the choice of a promoter extends to any eukaryotic, prokaryotic or viral promoter capable of directing gene transcription in cells used as host cells for protein expression.
- Therefore, an even more preferred form of this embodiment relates to a recombinant DNA molecule comprising a DNA fragment or a nucleic acid according to the invention that is placed under the control of a functionally linked promoter. This can be acomplished by means of e.g. standard molecular biology techniques. (Sambrook, J. and Russell, D.W., Molecular cloning: a laboratory manual, 2001. ISBN 0-87969-577-3).
- Functionally linked promoters are promoters that are capable of controlling the transcription of the nucleic acids to which they are linked.

Such a promoter can be a Lawsonia promoter e.g. the promoter involved in in vivo expression of the gene encoding the 101 kD protein, provided that that promoter is functional in the cell used for expression. It can also be a heterologous promoter. When the host cells are bacteria, useful expression control sequences which may be used include the Trp promoter and operator (Goeddel, et al., Nucl. Acids Res., 8, 4057, 1980); 5 the lac promoter and operator (Chang, et al., Nature, 275, 615, 1978); the outer membrane protein promoter (Nakamura, K. and Inouge, M., EMBO J., 1, 771-775, 1982); the bacteriophage lambda promoters and operators (Remaut, E. et al., Nucl. Acids Res., 11, 4677-4688, 1983); the α -amylase (B. subtilis) promoter and operator, termination sequences and other expression enhancement and control sequences 10 compatible with the selected host cell. When the host cell is yeast, useful expression control sequences include, e.g., a-mating factor. For insect cells the polyhedrin or p10 promoters of baculoviruses can be used (Smith, G.E. et al., Mol. Cell. Biol. 3, 2156-65, 1983). When the host cell is of mammalian origin illustrative useful expression control sequences include the SV-40 15 promoter (Berman, P.W. et al., Science, 222, 524-527, 1983) or the metallothionein

Bacterial, yeast, fungal, insect and mammalian cell expression systems are very frequently used systems. Such systems are well-known in the art and generally available, e.g. commercially through Invitrogen (www.invitrogen.com), Novagen (www.merckbiosciences.de) or Clontech Laboratories, Inc. 4030 Fabian Way, Palo Alto, California 94303-4607, USA. Next to these expression systems, parasite-based expression systems are very attractive expression systems. Such systems are e.g. described in the French Patent Application with Publication number 2 714 074, and in US NTIS Publication No US 08/043109 (Hoffman, S. and Rogers, W.: Public. Date 1 December 1993).

promoter (Brinster, R.L., Nature, 296, 39-42, 1982) or a heat shock promoter (Voellmy et

al., Proc. Natl. Acad. Sci. USA, 82, 4949-53, 1985).

A still even more preferred form of this embodiment of the invention relates to Live Recombinant Carriers (LRCs) comprising a nucleic acid encoding the 101 kD protein or an immunogenic fragment thereof according to the invention, a DNA fragment according to the invention or a recombinant DNA molecule according to the invention. Such carriers are e.g. bacteria and viruses. These LRCs are micro-organisms or viruses in which additional genetic information, in this case a nucleic acid encoding the 101 kD protein or an immunogenic fragment thereof according to the invention has been cloned. Animals infected with such LRCs will produce an immunogenic response not only against the immunogens of the carrier, but also against the immunogenic parts of the protein(s) for which the genetic code is additionally cloned into the LRC, e.g. the 101 kD protein.

As an example of bacterial LRCs, attenuated Salmonella strains known in the art can attractively be used.

Live recombinant carrier parasites have i.a. been described by Vermeulen, A. N. (Int. Journ. Parasitol. 28: 1121-1130 (1998))

Also, LRC viruses may be used as a way of transporting the nucleic acid into a target cell. Live recombinant carrier viruses are also called vector viruses. Viruses often used as vectors are Vaccinia viruses (Panicali et al; Proc. Natl. Acad. Sci. USA, 79: 4927 (1982), Herpesviruses (E.P.A. 0473210A2), and Retroviruses (Valerio, D. et al; in Baum, S.J., Dicke, K.A., Lotzova, E. and Pluznik, D.H. (Eds.), Experimental Haematology today - 1988. Springer Verlag, New York: pp. 92-99 (1989)).

20

15

5

The technique of *in vivo* homologous recombination, well-known in the art, can be used to introduce a recombinant nucleic acid into the genome of a bacterium, parasite or virus of choice, capable of inducing expression of the inserted nucleic acid according to the invention in the host animal.

25

30

Finally another form of this embodiment of the invention relates to a host cell comprising a nucleic acid encoding a protein according to the invention, a DNA fragment comprising such a nucleic acid or a recombinant DNA molecule comprising such a nucleic acid under the control of a functionally linked promoter. This form also relates to a host cell containing a live recombinant carrier containing a nucleic acid molecule encoding a 101 kD protein or a fragment thereof according to the invention.

A host cell may be a cell of bacterial origin, e.g. Escherichia coli, Bacillus subtilis and Lactobacillus species, in combination with bacteria-based plasmids as pBR322, or bacterial expression vectors as pGEX, or with bacteriophages. The host cell may also be of eukaryotic origin, e.g. yeast-cells in combination with yeast-specific vector molecules, or higher eukaryotic cells like insect cells (Luckow et al; Bio-technology 6: 47-55 (1988)) in combination with vectors or recombinant baculoviruses, plant cells in combination with e.g. Ti-plasmid based vectors or plant viral vectors (Barton, K.A. et al; Cell 32: 1033 (1983), mammalian cells like Hela cells, Chinese Hamster Ovary cells (CHO) or Crandell Feline Kidney-cells, also with appropriate vectors or recombinant viruses.

Another embodiment of the invention relates to the novel proteins and to immunogenic fragments thereof according to the invention.

15 The concept of immunogenic fragments will be defined below.

One form of this embodiment relates i.a. to Lawsonia intracellularis proteins that have an amino acid sequence that is at least 90 % homologous to the amino acid sequence as depicted in SEQ ID NO: 2 and to immunogenic fragments of said protein.

20

In a preferred form, the embodiment relates to such Lawsonia intracellularis proteins that have a sequence homology of at least 92 %, preferably 94 %, more preferably 96 % homology to the amino acid sequence as depicted in SEQ ID NO: 2 and to immunogenic fragments of such proteins.

Even more preferred is a homology level of 98 % or even 100 %.

The level of protein homology can be determined with the computer program "BLAST 2 SEQUENCES" by selecting sub-program: "BLASTP", that can be found at www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html.

A reference for this program is Tatiana A. Tatusova, Thomas L. Madden FEMS Microbiol. Letters 174: 247-250 (1999). Matrix used: "blosum62". Parameters used are the default parameters:

Open gap: 11. Extension gap: 1. Gap x_dropoff: 50.

5

10

15

20

It will be understood that, for the particular proteins embraced herein, natural variations can exist between individual Lawsonia intracellularis strains. These variations may be demonstrated by (an) amino acid difference(s) in the overall sequence or by deletions, substitutions, insertions, inversions or additions of (an) amino acid(s) in said sequence. Amino acid substitutions which do not essentially alter biological and immunological activities, have been described, e.g. by Neurath et al in "The Proteins" Academic Press New York (1979). Amino acid replacements between related amino acids or replacements which have occurred frequently in evolution are, inter alia, Ser/Ala, Ser/Gly, Asp/Gly, Asp/Asn, Ile/Val (see Dayhof, M.D., Atlas of protein sequence and structure, Nat. Biomed. Res. Found., Washington D.C., 1978, vol. 5, suppl. 3). Other amino acid substitutions include Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Thr/Phe, Ala/Pro, Lys/Arg, Leu/Ile, Leu/Val and Ala/Glu. Based on this information, Lipman and Pearson developed a method for rapid and sensitive protein comparison (Science, 227, 1435-1441, 1985) and determining the functional similarity between homologous proteins. Such amino acid substitutions of the exemplary embodiments of this invention, as well as variations having deletions and/or insertions are within the scope of the invention as long as the resulting proteins retain their immune reactivity. This explains why Lawsonia intracellularis proteins according to the invention, when isolated from different field isolates, may have homology levels of about 90 %, while still representing the same protein with the same immunological characteristics. Those variations in the amino acid sequence of a certain protein according to the invention that still provide a protein capable of inducing an immune response against infection with Lawsonia intracellularis or at least against the clinical manifestations of the infection are considered as "not essentially influencing the immunogenicity".

When a protein is used for e.g. vaccination purposes or for raising antibodies, it is however not necessary to use the whole protein. It is also possible to use a fragment of that protein that is capable, as such or coupled to a carrier such as e.g. KLH, of inducing an immune response against that protein, a so-called immunogenic fragment. An "immunogenic fragment" is understood to be a fragment of the full-length protein that 5 still has retained its capability to induce an immune response in the host, i.e. comprises a B- or T-cell epitope. At this moment, a variety of techniques is available to easily identify DNA fragments encoding antigenic fragments (determinants). The method described by Geysen et al (Patent Application WO 84/03564, Patent Application WO 86/06487, US Patent NR. 4,833,092, Proc. Natl Acad. Sci. 81: 3998-4002 (1984), J. Imm. Meth. 102, 10 259-274 (1987), the so-called PEPSCAN method is an easy to perform, quick and wellestablished method for the detection of epitopes; the immunologically important regions of the protein. The method is used world-wide and as such well-known to man skilled in the art. This (empirical) method is especially suitable for the detection of B-cell epitopes. Also, given the sequence of the gene encoding any protein, computer algorithms are able 15 to designate specific protein fragments as the immunologically important epitopes on the basis of their sequential and/or structural agreement with epitopes that are now known. The determination of these regions is based on a combination of the hydrophilicity criteria according to Hopp and Woods (Proc. Natl. Acad. Sci. 78: 38248-3828 (1981)), and the secondary structure aspects according to Chou and Fasman (Advances in 20 Enzymology 47: 45-148 (1987) and US Patent 4,554,101). T-cell epitopes can likewise be predicted from the sequence by computer with the aid of Berzofsky's amphiphilicity criterion (Science 235, 1059-1062 (1987) and US Patent application NTIS US 07/005,885). A condensed overview is found in: Shan Lu on common principles: Tibtech 9: 238-242 (1991), Good et al on Malaria epitopes; Science 235: 1059-1062 (1987), Lu 25 for a review; Vaccine 10: 3-7 (1992), Berzowsky for HIV-epitopes; The FASEB Journal 5:2412-2418 (1991).

Therefore, one form of still another embodiment of the invention relates to vaccines capable of protecting pigs against Lawsonia intracellularis infection, that comprise a

protein or an immunogenic fragment thereo: above together with a pharmaceutically acce

Still another embodiment of the present involves invention for use in a vaccine.

Still another embodiment relates to the use $\mathfrak c$ manufacturing of a vaccine for combating L

- One way of making a vaccine according to the proteins or immunogenic fragments ther obtained through mucosal scrapings taken fi however a very time-consuming way of mal
- It is therefore much more convenient to use encoding the proteins or immunogenic fragrescent. The nucleic acid of the gene encoder present invention.
- Such vaccines based upon the expression pr admixing a protein according to the inventic according to the invention with a pharmacer
- Alternatively, a vaccine according to the inv
 carriers as described above, capable of expn
 or immunogenic fragments thereof accordin
 upon a Salmonella carrier or a viral carrier i
 respiratory epithelium have the advantage o
 the natural way of infection of Lawsonia int
 is an advantage since only low amounts of t
 immunisation.

Vaccines described above all contribute to active vaccination, i.e. the host's immune system is triggered by a protein according to the invention or an immunogenic fragment thereof, to make antibodies against these proteins.

- Alternatively, such antibodies can be raised in e.g. rabbits or can be obtained from antibody-producing cell lines as described below. Such antibodies can then be administered to the host animal. This method of vaccination, passive vaccination, is the vaccination of choice when an animal is already infected, and there is no time to allow the natural immune response to be triggered. It is also the preferred method for
- vaccinating immune-compromised animals. Administered antibodies against Lawsonia intracellularis can in these cases bind directly to the bacteria. This has the advantage that it immediately decreases or stops Lawsonia intracellularis growth.

Therefore, one other form of this embodiment of the invention relates to vaccines comprising antibodies against the 101 kD *Lawsonia intracellularis* protein according to the invention.

15

25

Vaccines can also be based upon host cells as described above, that comprise the proteins or immunogenic fragments thereof according to the invention.

An alternative and efficient way of vaccination is direct vaccination with DNA encoding the relevant antigen. Direct vaccination with DNA encoding proteins has been successful for many different proteins. (As reviewed in e.g. Donnelly et al., The Immunologist 2: 20-26 (1993)).

This way of vaccination is very attractive for the vaccination of pigs against Lawsonia intracellularis infection.

Therefore, still other forms of this embodiment of the invention relate to vaccines comprising nucleic acids encoding a protein according to the invention or immunogenic fragments thereof according to the invention, and to vaccines comprising DNA fragments that comprise such nucleic acids.

30 Still other forms of this embodiment relate to vaccines comprising recombinant DNA molecules according to the invention.

DNA vaccines can easily be administered through intradermal application e.g. using a needle-less injector. This way of administration delivers the DNA directly into the cells of the animal to be vaccinated. Amounts of DNA in the microgram range between 1 and $100~\mu g$ provide very good results.

5

In a further embodiment, the vaccine according to the present invention additionally comprises one or more antigens derived from other pig pathogenic organisms and viruses, or genetic information encoding such antigens.

Such organisms and viruses are preferably selected from the group of Pseudorabies virus,

Porcine influenza virus, Porcine parvo virus, Transmissible gastro-enteritis virus,

Rotavirus, Escherichia coli, Erysipelothrix rhusiopathiae, Bordetella bronchiseptica,

Salmonella cholerasuis, Haemophilus parasuis, Pasteurella multocida, Streptococcus

suis, Mycoplasma hyopneumoniae, Brachyspira hyodysenteriae and Actinobacillus

15

pleuropneumoniae.

All vaccines according to the present invention comprise a pharmaceutically acceptable carrier. A pharmaceutically acceptable carrier can be e.g. sterile water or a sterile physiological salt solution. In a more complex form the carrier can e.g. be a buffer.

20 1

Methods for the preparation of a vaccine comprise the admixing of a protein according to the invention, or an immunogenic fragment thereof, and a pharmaceutically acceptable carrier.

Vaccines according to the present invention may in a preferred presentation also contain
an adjuvant. Adjuvants in general comprise substances that boost the immune response of
the host in a non-specific manner. A number of different adjuvants are known in the art.
Examples of adjuvants are Freunds Complete and Incomplete adjuvant, vitamin E, nonionic block polymers, muramyldipeptides, Quill A(R), mineral oil e.g. Bayol(R) or
Markol(R), vegetable oil, and Carbopol(R) (a homopolymer), or Diluvac(R) Forte.

The vaccine may also comprise a so-called "vehicle". A vehicle is a compound to which

The vaccine may also comprise a so-called "vehicle". A vehicle is a compound to which the polypeptide adheres, without being covalently bound to it. Often used vehicle

compounds are e.g. aluminium hydroxide, -phosphate or -oxide, silica, Kaolin, and Bentonite.

A special form of such a vehicle, in which the antigen is partially embedded in the vehicle, is the so-called ISCOM (EP 109.942, EP 180.564, EP 242.380)

In addition, the vaccine may comprise one or more suitable surface-active compounds or emulsifiers, e.g. Span or Tween.

Often, the vaccine is mixed with stabilisers, e.g. to protect degradation-prone polypeptides from being degraded, to enhance the shelf-life of the vaccine, or to improve freeze-drying efficiency. Useful stabilisers are i.a. SPGA (Bovarnik et al; J. Bacteriology 59: 509 (1950)), carbohydrates e.g. sorbitol, mannitol, trehalose, starch, sucrose, dextran

or glucose, proteins such as albumin or casein or degradation products thereof, and buffers, such as alkali metal phosphates.

10

15

25

30

In addition, the vaccine may be suspended in a physiologically acceptable diluent. It goes without saying, that other ways of adjuvating, adding vehicle compounds or diluents, emulsifying or stabilising a polypeptide are also embodied in the present invention.

Vaccines according to the invention can very suitably be administered in amounts ranging between 1 and 100 micrograms, although smaller doses can in principle be used.

A dose exceeding 100 micrograms will, although immunologically very suitable, be less attractive for commercial reasons.

Vaccines based upon live attenuated recombinant carriers, such as the LRC-viruses and bacteria described above can be administered in much lower doses, because they multiply themselves during the infection. Therefore, very suitable amounts would range between 10^3 and 10^9 CFU/PFU for respectively bacteria and viruses.

Many ways of administration can be applied. Oral application is a very attractive way of administration, because the infection is an infection of the digestive tract. A preferred way of oral administration is the packaging of the vaccine in capsules, known and frequently used in the art, that only disintegrate after they have passed the highly acidic

environment of the stomach. Also, the vaccine could be mixed with compounds known in the art for temporarily enhancing the pH of the stomach.

Systemic application is also suitable, e.g. by intramuscular application of the vaccine. If this route is followed, standard procedures known in the art for systemic application are well-suited.

From a point of view of protection against disease, a quick and correct diagnosis of Lawsonia intracellularis infection is important.

5

15

20

25

30

Therefore it is another objective of this invention to provide diagnostic tools suitable for the detection of Lawsonia intracellularis infection.

A diagnostic test for the detection of Lawsonia intracellularis antibodies in sera can be e.g. a simple standard sandwich-ELISA-test in which 101 kD protein or antigenic fragments thereof according to the invention are coated to the wall of the wells of an ELISA-plate. A method for the detection of such antibodies is e.g. incubation of 101 kD protein or antigenic fragments thereof with serum from mammals to be tested, followed by e.g. incubation with a labelled antibody against the relevant mammalian antibody. A colour reaction can then reveal the presence or absence of antibodies against Lawsonia intracellularis. Another example of a diagnostic test system is e.g. the incubation of a Western blot comprising the 101 kD protein or an antigenic fragment thereof according to the invention, with serum of mammals to be tested, followed by analysis of the blot.

Thus, another embodiment of the present invention relates to diagnostic tests for the detection of antibodies against *Lawsonia intracellularis*. Such tests comprise a protein or a fragment thereof according to the invention.

A diagnostic test based upon the detection of antigenic material of the specific 101 kD protein of Lawsonia intracellularis antigens and therefore suitable for the detection of Lawsonia intracellularis infection can e.g. also be a standard ELISA test. In one example of such a test the walls of the wells of an ELISA plate are coated with antibodies directed against the 101 kD protein. After incubation with the material to be tested, labelled anti-

Lawsonia intracellularis antibodies are added to the wells. A colour reaction then reveals the presence of antigenic material from Lawsonia intracellularis.

Therefore, still another embodiment of the present invention relates to diagnostic tests for the detection of antigenic material of *Lawsonia intracellularis*. Such tests comprise antibodies against a protein or a fragment thereof according to the invention.

5

10

15

Nature, 256, 495-497, 1975).

The polypeptides or immunogenic fragments thereof according to the invention expressed as characterised above can be used to produce antibodies, which may be polyclonal, monospecific or monoclonal (or derivatives thereof). If polyclonal antibodies are desired, techniques for producing and processing polyclonal sera are well-known in the art (e.g. Mayer and Walter, eds. *Immunochemical Methods in Cell and Molecular Biology*, Academic Press, London, 1987).

Monoclonal antibodies, reactive against the polypeptide according to the invention (or variants or fragments thereof) according to the present invention, can be prepared by immunising inbred mice by techniques also known in the art (Kohler and Milstein,

Methods for large-scale production of antibodies according to the invention are also known in the art. Such methods rely on the cloning of (fragments of) the genetic information encoding the protein according to the invention in a filamentous phage for 20 phage display. Such techniques are described i.a. at the "Antibody Engineering Page" under "filamentous phage display" at http://aximtl.imt.unimarburg.de/~rek/aepphage.html., and in review papers by Cortese, R. et al., (1994) in Trends Biotechn. 12: 262-267., by Clackson, T. & Wells, J.A. (1994) in Trends Biotechn. 12: 173-183, by Marks, J.D. et al., (1992) in J. Biol. Chem. 267: 16007-16010, by 25 Winter, G. et al., (1994) in Annu. Rev. Immunol. 12: 433-455, and by Little, M. et al., (1994) Biotechn. Adv. 12: 539-555. The phages are subsequently used to screen camelid expression libraries expressing camelid heavy chain antibodies. (Muyldermans, S. and Lauwereys, M., Journ. Molec. Recogn. 12: 131-140 (1999) and Ghahroudi, M.A. et al., FEBS Letters 414: 512-526 (1997)). Cells from the library that express the desired 30

antibodies can be replicated and subsequently be used for large scale expression of antibodies.

Examples

Example 1:

Isolation of Lawsonia intracellularis from infected porcine ilea.

- L. intracellularis infected ilea, confirmed by histopathology and acid-fast Ziehl-Neelsen or Whartin-Starry staining, were collected from pigs died with PE, and stored at -80°C. After thawing L. intracellularis bacteria were isolated from mucosal scrapings taken from the infected intestinal wall. The ileal scrapings were homogenized repeatedly in PBS in an omnimizer to release the intracellular bacteria as described by Lawson et al. (Vet.
 Microbiol. 10: 303-323 (1985)). Supernatant obtained after low-speed centrifugation to remove cell debris was filtered through 5.0, 3.0, 1.2, and 0.8 μm filters (Millipore). The filtrate was subsequently centrifuged at 8000 g for 30 min, giving a small pellet of L. intracellularis bacteria. These bacteria were further purified using a Percoll gradient. The identity of the purified bacteria was assessed by PCR (Jones et al., J. Clin. Microbiol. 31:
- 2611-2615 (1993)) whereas purity of the isolated bacteria (>95%) was assessed by phase contrast microscopy to reveal any contaminating bacteria or gut debris present.

Bacterial strains and plasmids

- L. intracellularis cells were isolated from infected ileal material as described above.
- E. coli strain TOP10F' and the TOPO TA cloning kit, containing plasmid pCR2.1 TOPO TA were purchased from Invitrogen (Groningen, the Netherlands). Stocks of all bacterial strains, containing 30% glycerol, were stored at -70°C.

Luria Bertani broth (LB) and LB plates were prepared according to standard procedures. When needed plasmids were transformed to *E. coli* TOP10F' competent cells by heat shock. *E. coli* cells were made competent using standard methods.

DNA isolation

25

30

In order to obtain highly purified *L. intracellularis* chromosomal DNA, DNA was prepared from bacterial cells using a Biorad chromosomal DNA isolation kit (Biorad, Veenendaal, the Netherlands) according to manufacturers instructions. Plasmid DNA and

linear DNA was isolated using Qiagen products according to the protocols provided by the manufacturer.

PCR amplification

- PCR amplification was performed using a Geneamp 9700 PCR system (Applied Biosystems, California, USA). The PCR was performed with the Expand High Fidelity PCR System (Roche Diagnostics GmbH, Mannheim, Germany). The PCR mixture contained 52 U/ml Expand High Fidelity Enzyme Mix, Expand HF buffer with 2.5 mM MgCl₂, 16 mM dNTPs (Promega, Wisconsin, USA), 20 pmoles of primers and 15 ng chromosomal DNA of *L. intracellularis* as template.
 - For standard applications (i.e. colony PCR) the PCR mixture contained 20 U/ml Supertaq and Supertaq buffer (HT Biotechnology Ltd, Cambridge, UK), containing 8 mM dNTPs (Promega, Wisconsin, USA), 10 pmoles of primers and 15 ng template.

15 In vitro transcription and translation

- In vitro transcription and translation was performed using the Rapid Translation System from Roche Applied Science (Mannheim, FRG) according the manufacturer's protocol. Summarizing, first the knowledge based sequence-optimization tool ProteoExpert RTS E. coli HY was used to design high yield variants of the original gene. This program optimizes the DNA template for the translation step by suggesting mutations in the DNA sequence. Only silent mutations were allowed, leading to identical amino-acid sequences on the protein level. However, changes of up to 8 nucleotides within the first 6 codons
- were proposed by the ProteoExpert service to give better expression results.

 Ten sense and a universal antisense primers, containing a 5' overlapping region of 20 nucleotides and 15-38 additional gene-specific nucleotides, were used in 10 different PCR reactions to amplify these variants with purified *L. intracellularis* chromosomal DNA as template. The obtained amplicons were purified from gel and used for the generation of linear expression constructs for cell-free protein expression using the RTS E. coli Linear Template Generation Set, His-tag, to introduce the necessary T7 regulatory
- 30 elements.

20

Again the obtained amplicons were purified from gel, and after quantification, the appropriate amount of DNA was used for protein expression analysis in a 50-µl RTS 100 E. coli HY reaction mixture. Expression was analysed using Western blotting with an anti polyhistidine monoclonal antibody.

The construct that gave the highest protein yields was ligated to pCR2.1 TOPO TA vector using the TOPO TA cloning kit. The obtained plasmid was used for medium scale protein production using the RTS 500 E. coli HY kit. The samples were analyzed by SDS page and by Western blot.

The DNA sequence of the expression vector was confirmed using an ABI 310 automated sequencer (Applied Biosystems, California, USA).

Polyacrylamide gel electrophoresis and western blotting

SDS-PAGE was performed using 4-12% Bis-Tris gels from the NuPAGE electrophoresis system (Novex, San Diego, USA). Western blotting was performed using semi dry blotting procedures. Western blots were developed using chicken and pig anti-Lawsonia polyclonal serum that was raised against a whole cell preparation in a water:oil=45:55-emulsion. The sera were pre-adsorbed using an equal volume crude cell extracts from BL21star(DE3) containing vector pLysSrare at 4°C for 4 hours.

20

25

30

10

15

Results

Cloning of L. intracellularis gene 2008

Sequence analysis of gene 2008 had revealed that the gene encoded a putative N-terminal signal sequence and a C-terminal beta-barrel structure. Both structures are known to be very hydrophobic. Because the RTS system has been found unsuitable for the expression of proteins that contain large hydrophobic regions it was decided to amplify gene 2008 from base 37 to 1958. Expression of this gene fragment resulted in a protein of 63 kD. For the evaluation of the ProteoExpert suggestions, linear DNA templates were generated via PCR using the RTS Linear Template Generation Set. The primers used in these experiments also introduced a His₆-tag at the C-terminus for detection and purification.

The PCR-generated templates were examined for their expression performance using RTS 100 E. coli HY Kit. The suggested DNA sequence that gave the highest yields was constructed using primers 2008A6 and 2008B (Table 1) in the first PCR.

The linear expression construct was ligated to pCR2.1 TOPO TA vector and the resulting vector was transformed to *E. coli* TOP10F and incubated o/n at 37°C. Putative transformants were checked for the right plasmid, using colony PCR. The plasmid inserts, of colony PCR positive transformants, were checked by nucleotide sequence analysis. One of the clones that contained a sequence as expected on basis of the cloning strategy was chosen and designated pTOPO2008.

10

5

Table 1. Sequence of the degenerated primers used for the amplification of gene 2008.

Primer	Sequence
2000	CTTTAAGAAGGAGATATACCATGGCAGATGTAT TTTTCGAAGGCAGAACCGAAAC
2008B	TGATGAGGAACCCCCCCCATTAACATACCAAATAGAT

Expression of L. intracellularis gene 2008 using RTS technology

Plasmid pTOPO2008 was purified from E. coli TOP10F and the appropriate amount of DNA was added to an RTS500 vial. After incubation conform the protocol of the manufacturer, a sample was taken for analysis using SDS-PAGE gel electrophoresis (Fig. 1A). A clear protein band of approximately 63 kDa was observed in sample that had been taken after 30 hours of induction (Fig. 1A, lane 3) in comparison with the control sample (Fig. 1A, lane 2).

The same samples were also analysed by western blot using both pig- and chickenantiserum. A strong reaction with the 63 kD protein was observed using both the polyclonal pig (Fig 1B, lane 3) and chicken serum (Fig 1C, lane 3).

Concusion: the 63 kD fragment of the protein according to the invention can efficiently be expressed. Moreover, the 63 kD protein fragment is strongly and equally well recognised by both chicken- and pig-antiserum against Lawsonia intracellularis cells.

The 101 kD protein according to the invention and the 63 kD protein fragment thereof are important vaccine components for the protection of pigs against *Lawsonia intracellularis* infection.

Legend to the figure.

Fig. 1. Analysis of the expression of Lawsonia intracellularis gene 2008 using RTS500 technology by SDS-PAGE (A) and Western blotting with polyclonal pig serum (B). Lane 1, molecular weight marker; lane 2, control; lane 3, pET2008

Arrows indicate the location of the expression product.

Claims

- 1) Nucleic acid encoding a 101 kD Lawsonia intracellularis protein or a part of said nucleic acid that encodes an immunogenic fragment of said protein, said nucleic acid or said part thereof having at least 90 %, preferably 92 %, more preferably 94 %, even more preferably 96% homology with a nucleic acid having a sequence as depicted in SEQ ID NO: 1
- 2) DNA fragment comprising a nucleic acid according to claim 1.

5

. 10

- 3) Recombinant DNA molecule comprising a nucleic acid according to claim 1 or a DNA fragment according to claim 2, under the control of a functionally linked promoter.
- 4) Live recombinant carrier comprising a nucleic acid according to claim 1, a DNA fragment according to claim 2 or a recombinant DNA molecule according to claim 3.
- 15 5) Host cell comprising a nucleic acid according to claim 1, a DNA fragment according to claim 2, a recombinant DNA molecule according to claim 3 or a live recombinant carrier according to claim 4.
 - 6) A 101 kD Lawsonia intracellularis protein, said protein comprising an amino acid sequence that is at least 90 %, preferably 92 %, more preferably 94 %, even more preferably 96 % homologous to the amino acid sequence as depicted in SEQ ID NO: 2, or an immunogenic fragment of said protein.
 - 7) Lawsonia intracellularis protein according to claim 6 for use in a vaccine.
 - 8) Use of a Lawsonia intracellularis protein according to claim 6 for the manufacturing of a vaccine for combating Lawsonia intracellularis infections.
- 9) Vaccine for combating Lawsonia intracellularis infections, characterised in that it comprises a nucleic acid according to claim 1, a DNA fragment according to claim 2, a recombinant DNA molecule according to claim 3, a live recombinant carrier according to claim 4, a host cell according to claim 5 or a protein according to claim 6, and a pharmaceutically acceptable carrier.
- 30 10) Vaccine according to claim 9, characterised in that it comprises an adjuvant.

- 11) Vaccine according to claim 9 or 10, characterised in that it comprises an additional antigen derived from a virus or micro-organism pathogenic to pigs or genetic information encoding said antigen.
- 12) Vaccine according to claim 11, characterised in that said virus or micro-organism pathogenic to pigs is selected from the group of Pseudorabies virus, Porcine influenza virus, Porcine parvo virus, Transmissible gastro-enteritis virus, Rotavirus, Escherichia coli, Erysipelothrix rhusiopathiae, Bordetella bronchiseptica, Salmonella cholerasuis, Haemophilus parasuis, Pasteurella multocida, Streptococcus suis, Mycoplasma hyopneumoniae, Brachyspira hyodysenteriae and Actinobacillus pleuropneumoniae.
- 13) Vaccine for combating Lawsonia intracellularis infections, characterised in that it comprises antibodies against a protein according to claim 6.
- 14) Method for the preparation of a vaccine according to claim 9-13, said method comprising the admixing of a nucleic acid according to claim 1, a DNA fragment according to claim 2, a recombinant DNA molecule according to claim 3, a live recombinant carrier according to claim 4, a host cell according to claim 5, a protein according to claim 6, or antibodies against a protein according to claim 6, and a pharmaceutically acceptable carrier.
- 15) Diagnostic test for the detection of antibodies against Lawsonia intracellularis, characterised in that said test comprises a protein or a fragment thereof as defined in claim 6.
- 16) Diagnostic test for the detection of antigenic material of Lawsonia intracellularis, characterised in that said test comprises antibodies against a protein or a fragment thereof as defined in claim 6.

25

20

5

10

Abstract

The present invention relates i.a. to nucleic acids encoding novel Lawsonia intracellularis proteins. It furthermore relates to DNA fragments, recombinant DNA molecules and live recombinant carriers comprising these sequences. Also it relates to host cells comprising such nucleic acids, DNA fragments, recombinant DNA molecules and live recombinant carriers. Moreover, the invention relates to proteins encoded by these nucleotide sequences and to their use for the manufacturing of vaccines. The invention also relates to vaccines for combating Lawsonia intracellularis infections and methods for the preparation thereof.

Finally the invention relates to diagnostic tests for the detection of Lawsonia intracellularis antigens and of antibodies against Lawsonia intracellularis.

Figure 1.

SEQUENCE LISTING

	<110> AKZO Nobel N.V.	
	<120> Lawsonia intracellularis 101 kD subunit vaccine	
	<130> 2004.010	
	<160> 2	
	<170> PatentIn version 3.2	•
.•	<210> 1 <211> 2848 <212> DNA <213> Lawsonia intracellularis	
	<220> <221> CDS <222> (29)(2848)	
	<pre><400> 1 accttaacta aaaaataaaa agaatatt atg tat aat ata att aat aa</pre>	52
	caa atc ata aaa att tta tta ttt tcc tta tgt gtt ttc ttt ttt aca Gln Ile Ile Lys Ile Leu Leu Phe Ser Leu Cys Val Phe Phe Phe Thr 10 15 20	100
	ctt aca gaa aaa caa aaa att tat gct gca gac gtc ttt ttt gag ggc Leu Thr Glu Lys Gln Lys Ile Tyr Ala Ala Asp Val Phe Phe Glu Gly 25 30 35 40	148
	aga acc gaa acc tta atc aat gta aac aaa cca ttt gat tct ttt ttt Arg Thr Glu Thr Leu Ile Asn Val Asn Lys Pro Phe Asp Ser Phe Phe 45 50 55	196
	gga ggt tet gae tet aca ata gga ace ett gaa aca gga eet act aat Gly Gly Ser Asp Ser Thr Ile Gly Thr Leu Glu Thr Gly Pro Thr Asn 60 65 70	244
• .	ctt acc ttc aca aca gta gga gcc ttc cgc aat tct gtt ttc aga att Leu Thr Phe Thr Thr Val Gly Ala Phe Arg Asn Ser Val Phe Arg Ile 75 80 85	292
,	att ggt ggt ggt agg tct agt ttt aac aac cca aat aca gtt aaa ggc Ile Gly Gly Arg Ser Ser Phe Asn Asn Pro Asn Thr Val Lys Gly 90 95 100	340
	aat gtt act cta act gtt tat aat act gat gta gaa aga ata att ggt Asn Val Thr Leu Thr Val Tyr Asn Thr Asp Val Glu Arg Ile Ile Gly 105 110 115	388
	gca ggt atc agc aat aga gga ctt gta acc gtt act ggc tca gta aat Ala Gly Ile Ser Asn Arg Gly Leu Val Thr Val Thr Gly Ser Val Asn 125 130 135	436
	atg aag cta gaa aat gtt tct gtt act aga gga att tat ggt ggt gtc Met Lys Leu Glu Asn Val Ser Val Thr Arg Gly Ile Tyr Gly Gly Val 140 145 150	484
	tat act caa aat gga cat gta cta ggc tct atc aac atg cat ttg aaa Tyr Thr Gln Asn Gly His Val Leu Gly Ser Ile Asn Met His Leu Lys 155 160 165	532
	aac gtc caa act cca cta tta ata ggt tct gga gta agc aat gga cct	580

														•		
Asn	Val 170	Gln	Thr	Pro	Leu	Leu 175	Ile	Gly	Ser	Gly	Val 180	Ser	Asn	Gly	Pro	
aat Asn 185	cgt Arg	att Ile	act Thr	gta Val	aat Asn 190	gga Gly	gac Asp	ata Ile	aac Asn	att Ile 195	gat Asp	gtt Val	gaa Glu	gac Asp	tct Ser 200	628
agg Arg	att Ile	caa Gln	tat Tyr	gta Val 205	aac Asn	att Ile	aca Thr	gga Gly	gaa Glu 210	gta Val	gat Asp	gca Ala	GJÀ	ata Ile 215	aaa [.] Lys	676
gga Gly	aat Asn	gct Ala	act Thr 220	cta Leu	act Thr	gta Val	aaa Lys	aaa Lys 225	tct Ser	act Thr	gtt Val	gag Glu	ctt Leu 230	ata Ile	aac Asn	724
tct Ser	ggt Gly	aga Arg 235	ggt Gly	aat Asn	atc Ile	tta Leu	ggt Gly 240	aat Asn	ctc Leu	aaa Lys	ata Ile	tct Ser 245	ata Ile	gca Ala	gat Asp	772
tca Ser	aat Asn 250	ata Ile	agg Arg	Gly	tta Leu	tca Ser 255	cca Pro	gta Val	gac Asp	ttt Phe	ggt Gly 260	Ser	tca Ser	gta Val	tat Tyr	820
ggg Gly 265	gac Asp	aca Thr	tct Ser	ata Ile	aat Asn 270	gta Val	att Ile	aat Asn	tct Ser	cag Gln 275	att	aat Asn	gat Asp	att Ile	act Thr 280	868
ctt .Lėu	ata Ile	cca Pro	agg Arg	gct Ala 285	ggt Gly	gga Gly	atg Met	ctt Leu	gta Val 290	GТĀ	cct Pro	gtt Val	acc Thr	cta Leu 295	Asp	916
atc Ile	aca Thr	agc Ser	agt Ser 300	Thr	ata Ile	caa Gln	aat Asn	ata Ile 305	Gln	tgt Cys	Gly	cct Pro	gtc Val 310	ser	caa Gln	964
aat Asn	aat Asn	caa Gln 315	Lev	aac Asn	aca	cta Leu	aat Asn 320	Val	act	gtt Val	aat Asn	act Thr 325	ser	aac Asn	att	1012
act Thr	aac Asn 330	Leu	aac Asn	ctt Leu	ggt Gly	agt Ser 335	Val	gaa Glu	ggt	. cat His	aca Thr 340	: тте	tca Ser	act Thr	aca Thr	1060
gca Ala 345	Thr	gtt Val	act Thr	gat Asp	agt Ser 350	Asn	att Ile	act Thr	aac Asn	ctt Leu 355	a Ast	gto Val	. gga	acc Thr	Phe 360	1108
aat Asr	gga Gly	ctt Lev	gga Gly	gta Val 365	Thr	gag Glu	aat Asr	geo Ala	tct Ser 370	: Val	a ato	c att	; aat e Asr	agt Ser 375	ggc Gly	1156
aat Asr	att lle	act Thi	aac Asr 380	ı Lei	aat 1 Asr	gto Val	gga Gly	a act 7 Thi 385	Asr	gta Na	a ata l Ile	a gct e Ala	gea Ala 390	я Атс	aca Thr	1204
act Thi	att	aat Asr 39!	n Sei	c to c Sei	t gcç c Ala	g aco a Thi	2 ata 110 400	e His	c gad s Asi	gga Gly	a ct [.]	t ati u Ile 40:	S ATS	a aad a Asi	c ctt	1252
acc Th:	c tta c Lei 410	ı Gl	c tca y Se:	a caa r Gl	a ggt n Gly	t aat y Asi 41!	3 Gl	t cgi	t act	t ate	g at t Il 42	e AT	t aca	a gca r Ala	a aat a Asn	1300
gt Va: 42	l Ası	t gg n Gl	t gga y Gl	a ac y Th	t att	e Gl	a tta y Le	a tta u Le	a ac u Th	t ate r Me 43	£ GI	t tc. y Se.	a ga r Gl	a aa u As:	c ttc n Phe 440	1348
at	acc	a gg	c ac	a ag	a cc	a at	t ac	t ga	a tt	a gc	a at	a ct	a aa	c at	g tct	1396

			_	_			_													
	Ile	Pro	Gly	Thr	Arg 445	Pro	Ile	Thr	Glu	Leu 450	Ala	Ile	Leu	Asn	Met 455	Ser				
					Glu			_				_			tca Ser		1444	•		
							_	-			_				aat Asn		1492			
		-					_				=		_	_	aca Thr		1540		·	
						_	Pro			-	_		_		tta Leu		1588			
	_				_				•				_	-	tta Leu 535		1636			
						_	-						-		aga Arg		1684		·	
								_		_					cct Pro		1732			
				-											tta Leu		1780			
						_	_	-				=			tct Ser		1828			
•						-			_						ggt Gly 615		1876			
	Ile	Trp	Ser	Asp 620	Leu	Glu	Phe	Asp	Pro 625	Thr	Thr	Ser	Ile	Trp 630	tat Tyr	Val	1924			•
	Asn	Asn	11e 635	Gln	Ala	Ser	Gln	Asp 640	Phe	Tyr	Ser	Phe	Ser 645	·Ile	gct Ala	Arg	1972	-		
	Glu	Thr 650	Thr	Asn	Trp	Leu	Arg 655	Gln	Gln	His	Ile	Trp 660	Thr	Leu	caa Gln	Asn	2020			٠
	Arg 665	Ser	Ser	Lys	Leu	Leu 670	Asp	Asn	Glu	His	Tyr 675	Gly	Leu	Trp		Asn -680	2068			
	Val	Gln	Gly	Gly	His 685	Glu	Ser	Leu	Asp	Thr 690	Ser	Ile	Gly	Ser	aaa Lys 695	Ala	2116			
	Lys	Met	Pro	Trp 700	Ile	Met	Ala	Thr	Ala 705	Gly	Tyr	Asp	Tyr	Leu 710	caa Gln	Gln	2164			
	cta	cca	agg	tta	gat	atg	aaa	gcc	ctt	tat	ggt	ctt	gct	ttt	ggt	gct	2212			

Leu	Pro	Arg 715	Leu .	Asp	Met :	rys)	Ala :	Leu '	Tyr (Gly :	Leu	Ala 725	Phe	Gly	Ala	
tct Ser	aaa Lys 730	ggt Gly	aaa Lys	agt Ser	Lys '	tgg f Trp : 735	tc t Ser	agc Ser	gtc (Val /	ASN	tct Ser 740	aca Thr	aaa Lys	aat Asn	gat Asp	2260
gct Ala 745	Glu	cta Leu	ggt Gly	atg Met	gtt Val 750	agt (Ser (ggt Gly	tat Tyr	var	ggt Gly 755	ctt Leu	atc Ile	cat His	aac Asn	aaa Lys 760	2308
act Thr	ggg	ctc Leu	tat Tyr	agt Ser 765	aca Thr	ttg Leu	acc Thr	tta Leu	caa Gln 770	ctt Leu	gcg Ala	tct Ser	agt Ser	aaa Lys 775	tta Leu	2356
cat	act Thr	aat Asn	tct Ser 780	aca Thr	Gly	ttc Phe	tat Tyr	aga Arg 785	aat Asn	ttt Phe	aaa Lys	tgg Trp	aca Thr 790	gaa Glu	aça Thr	2404
act Thr	cca Pro	aca Thr 795	gaa Glu	gca Ala	ctt Leu	gaa Glu	ctt Leu 800	gga Gly	tgg Trp	aaa Lys	tac Tyr	act Thr 805	ttc Phe	aac Asn	aac Asn	2452
ggt Gly	: att	Lys	atg Met	aat Asn	cct Pro	cgt Arg 815	gga Gly	caa Gln	ctt Leu	att Ile	ttt Phe 820	GIU	caa Gln	aca Thr	tct Ser	2500
aaa Lys 82!	s His	cat His	ttt Phe	gat Asp	tta Leu 830	gga Gly	att Ile	caa Gln	aat Asn	gat Asp 835	пЪs	gct Ala	ata Ile	tta Leu	gat Asp 840	2548
		c Glr	, tta Leu	ata Ile 845	Thr	agt Ser	tct Ser	ctt Leu	ggt Gly 850	176	aco Thi	gtt Val	gaa Glu	tat Tyr 855	aag Lys	2596
ct: Le	a cca u Pra	a gti o Val	acc 1 Thm 860	Thr	cct Pro	att Ile	aat Asr	ctt Leu 865	і туг	gct Ala	gg ¹	t att y Ile	gaa Glu 870		g ata g Ile	2644
aa Ly	a gg s Gl	t car y Gl	n Sei	gga Gly	a aac y Asr	ttt Phe	gca : Ala : 880	3 TT6	agt Ser	tco Sei	c ca r Gl	g ago n Sei 88!		caa a Gla	a atg n Met	2692
aa Ly	g tt s Ph 89	е Lу	g cat s His	t gad s As	c aat p Asi	gat Asp 895	y Trn.	a agt r Sei	t gta r Val	a gt L Va	t ag 1 Ar 90	9	a aca	a atar	a ggt e Gly	2740
Th			a tta e Le	a tt	g ggg u Gl; 91	A GTI	a ca J Hi	t tt s Ph	t aad e Asi	t at n Il 91	Q 11-	c tg s Cy	t ga s As	t at p Il	a ttt e Phe 920	2788
		it aa sp Ly	a gg s Gl	a aa y As 92	n As	t aaa p Lya	a gg s Gl	c at y Il	t gg e Gl 93	y Gr	g ca y Gl	a gc in Al	a gg a Gl	a tt y Ph 93	t aca e Thr 5	2836
		aa tt ys Ph	t ta	a								,				2848

<210> 2

<211> 939

<212> PRT <213> Lawsonia intracellularis

<400> 2

Met Tyr Asn Ile Ile Asn Lys His Gln Ile Ile Lys Ile Leu Leu Phe

1 5 10 15

Ser Leu Cys Val Phe Phe Phe Thr Leu Thr Glu Lys Gln Lys Ile Tyr 20 25 30

Ala Ala Asp Val Phe Phe Glu Gly Arg Thr Glu Thr Leu Ile Asn Val 35 40 45

Asn Lys Pro Phe Asp Ser Phe Phe Gly Gly Ser Asp Ser Thr Ile Gly 50 55 60

Thr Leu Glu Thr Gly Pro Thr Asn Leu Thr Phe Thr Thr Val Gly Ala 65 70 75 80

Phe Arg Asn Ser Val Phe Arg Ile Ile Gly Gly Gly Arg Ser Ser Phe 85 90 95

Asn Asn Pro Asn Thr Val Lys Gly Asn Val Thr Leu Thr Val Tyr Asn 100 105 110

Thr Asp Val Glu Arg Ile Ile Gly Ala Gly Ile Ser Asn Arg Gly Leu 115 120 125

Val Thr Val Thr Gly Ser Val Asn Met Lys Leu Glu Asn Val Ser Val 130 135 140

Thr Arg Gly Ile Tyr Gly Gly Val Tyr Thr Gln Asn Gly His Val Leu 145 150 155 160

Gly Ser Ile Asn Met His Leu Lys Asn Val Gln Thr Pro Leu Leu Ile 165 170 175

Gly Ser Gly Val Ser Asn Gly Pro Asn Arg Ile Thr Val Asn Gly Asp 180 185 190

Ile Asn Ile Asp Val Glu Asp Ser Arg Ile Gln Tyr Val Asn Ile Thr 195 200 205

Gly Glu Val Asp Ala Gly Ile Lys Gly Asn Ala Thr Leu Thr Val Lys 210 215 220

Lys Ser Thr Val Glu Leu Ile Asn Ser Gly Arg Gly Asn Ile Leu Gly 235 230 240

Asn Leu Lys Ile Ser Ile Ala Asp Ser Asn Ile Arg Gly Leu Ser Pro 245 250 255

Val Asp Phe Gly Ser Ser Val Tyr Gly Asp Thr Ser Ile Asn Val Ile 260 265 270

Asn Ser Gln Ile Asn Asp Ile Thr Leu Ile Pro Arg Ala Gly Gly Met

275 280 285

Leu Val Gly Pro Val Thr Leu Asp Ile Thr Ser Ser Thr Ile Gln Asn 290 295 300

- Ile Gln Cys Gly Pro Val Ser Gln Asn Asn Gln Leu Asn Thr Leu Asn 305 310 315
- Val Thr Val Asn Thr Ser Asn Ile Thr Asn Leu Asn Leu Gly Ser Val 325
- Glu Gly His Thr Ile Ser Thr Thr Ala Thr Val Thr Asp Ser Asn Ile 340 345 350
- Thr Asn Leu Asn Val Gly Thr Phe Asn Gly Leu Gly Val Thr Glu Asn 355
- Ala Ser Val Ile Ile Asn Ser Gly Asn Ile Thr Asn Leu Asn Val Gly 370 375
- Thr Asn Val Ile Ala Ala Ala Thr Thr Ile Asn Ser Ser Ala Thr Ile 385 390 395
- His Asp Gly Leu Ile Ala Asn Leu Thr Leu Gly Ser Gln Gly Asn Gly 405 410 415
- Arg Thr Met Ile Ala Thr Ala Asn Val Asn Gly Gly Thr Ile Gly Leu 420 425 430
- Leu Thr Met Gly Ser Glu Asn Phe Ile Pro Gly Thr Arg Pro Ile Thr 435
- Glu Leu Ala Ile Leu Asn Met Ser Gly Gly Leu Ile Glu Arg Ile Ile 450 455 460
- Val Gly Asn Ala Asn Ser Ser Thr Ile Asn Phe Thr Pro Gly Lys Arg 465 470 475
- Ser Ile Val Lys Thr Ile Asn Gly Pro Glu Leu Pro Tyr Leu Val Asn 495
- Ile Gln Lys Gly Ala Met Thr Gln Trp Gly Thr Lys Asn Met Pro Phe 500 500
- Leu Leu Asp Thr Arg Asn Leu Ile Leu Ser Gly Thr Leu Ile Thr Ser 515 520 525
- Asn Ile Gln Leu Ala Asp Leu Ser Ile Thr Asn Leu Phe Val Ala Asn 530 535 540
- Gly Gly Thr Leu Val Pro Arg Lys Leu Ile Pro Gly Asn Gln Pro Val

545 550 555 ... 560

Ile Gln Phe Leu Gly Gly Pro Gln Ser Leu Leu Val Ile His Gln Pro 565 570 575

Leu Lys Val Asn Leu Ser Leu Ser Pro Lys Leu Ile Gly Ser Ser Met 580 585 590

Val Pro Leu Ala Phe Val Ser Gln Ser Phe Ser Ser Pro Asp Leu Phe 595 600 605

Val Lys Gln Thr Arg Ser Gly Leu Ile Trp Ser Asp Leu Glu Phe Asp 610 620

Pro Thr Thr Ser Ile Trp Tyr Val Asn Asn Ile Gln Ala Ser Gln Asp 625 630 635 640

Phe Tyr Ser Phe Ser Ile Ala Arg Glu Thr Thr Asn Trp Leu Arg Gln 645 655

Gln His Ile Trp Thr Leu Gln Asn Arg Ser Ser Lys Leu Leu Asp Asn 660 670

Glu His Tyr Gly Leu Trp Ile Asn Val Gln Gly Gly His Glu Ser Leu 675 685

Asp Thr Ser Ile Gly Ser Lys Ala Lys Met Pro Trp Ile Met Ala Thr 690 695 700

Ala Gly Tyr Asp Tyr Leu Gln Gln Leu Pro Arg Leu Asp Met Lys Ala 705 710 715

Leu Tyr Gly Leu Ala Phe Gly Ala Ser Lys Gly Lys Ser Lys Trp Ser
725 730 735

Ser Val Asn Ser Thr Lys Asn Asp Ala Glu Leu Gly Met Val Ser Gly 740 745 750

Tyr Val Gly Leu Ile His Asn Lys Thr Gly Leu Tyr Ser Thr Leu Thr 755 760 765

Leu Gln Leu Ala Ser Ser Lys Leu His Thr Asn Ser Thr Gly Phe Tyr 770 775 780

Arg Asn Phe Lys Trp Thr Glu Thr Thr Pro Thr Glu Ala Leu Glu Leu 785 790 795 800

Gly Trp Lys Tyr Thr Phe Asn Asn Gly Ile Lys Met Asn Pro Arg Gly 805 810 815

Gln Leu Ile Phe Glu Gln Thr Ser Lys His His Phe Asp Leu Gly Ile

820 825 830

Gln Asn Asp Lys Ala Ile Leu Asp Lys Ser Gln Leu Ile Thr Ser Ser 845

Leu Gly Ile Thr Val Glu Tyr Lys Leu Pro Val Thr Thr Pro Ile Asn 850 855

Leu Tyr Ala Gly Ile Glu Arg Ile Lys Gly Gln Ser Gly Asn Phe Ala 865 870 875

Ile Ser Ser Gln Ser Leu Gln Met Lys Phe Lys His Asp Asn Asp Thr 885 890 895

Ser Val Val Arg Ala Thr Ile Gly Thr Asn Ile Leu Leu Gly Glu His
900 905 910

Phe Asn Ile His Cys Asp Ile Phe Gly Asp Lys Gly Asn Asp Lys Gly 915

Ile Gly Gly Gln Ala Gly Phe Thr Tyr Lys Phe 930 935