LM-115 Suites et intégrales, MIME, deuxième semestre 2010-2011 Université Pierre et Marie Curie

Chapitre 1 : Introduction au langage mathématique, théorie des ensembles.

Un peu de logique.

Exercice 1

- 1. Soient P et Q deux propositions. Ecrire la négation des propositions suivantes : P et Q, P ou Q, $P \Rightarrow Q$, $P \Leftrightarrow Q$, $P \Rightarrow (Q \text{ et } R)$.
- 2. Montrer la proposition suivante :

$$(1=2) \Rightarrow (3=4)$$

Exercice 2

Soient $A,\,B,\,C$ trois propositions. Montrer grâce à une table de vérité la proposition :

$$A \text{ et } (B \text{ ou } C) \iff (A \text{ et } B) \text{ ou } (A \text{ et } C).$$

Résoudre le système suivant, pour x réel :

$$\begin{cases} (x-1)(x-2) = 0\\ x(2x+1) = 0 \end{cases}$$

Exercice 3

Considérons l'énoncé suivant : "on ne peut voter sans être majeur".

- 1. L'énoncer avec le signe ⇒, puis écrire sa contraposée.
- 2. Les raisonnements suivants sont-ils corrects?
 - a) Paul a voté, donc Paul est majeur.
 - b) Pierre n'a pas voté, donc Pierre n'est pas majeur.
 - c) Carole est majeure, donc Carole a voté.

Exercice 4 Conditions nécessaires, conditions suffisantes

- 1. Soit x un nombre réel. Donner une condition suffisante, mais non nécessaire, pour avoir $x^2 \ge 1$. Donner une condition nécessaire, mais non suffisante, pour avoir $x^2 \ge 1$.
- 2. Que penser de la phrase : "Pour qu'une fonction soit continue, il faut qu'elle soit dérivable"?

Quantificateurs.

Exercice 5

Ecrire les négations des phrases suivantes :

- 1. Dans toutes les écuries, il y a au moins un cheval noir.
- 2. Dans toutes les écuries, il y a exactement un cheval noir.

3. Dans toutes les écuries, tous les chevaux sont noirs.

Exercice 6

On considère la proposition suivante

$$P(x,y): x \text{ est la fille de } y.$$

Traduire en termes mathématiques les phrases suivantes :

- 1. Toute femme a une mère.
- 2. Il existe une femme qui est la mère de toutes les autres femmes.
- 3. Toute femme est fille de toute femme.
- 4. Toute femme a au moins deux filles.

Exercice 7

Parmi les propositions suivantes, dire lesquelles sont vraies; on écrira la négation des propositions fausses.

- 1. $\forall x \in \mathbb{R}, x^2 > x$.
- 2. $\forall x \in \mathbb{R}, (x^2 = -1) \Rightarrow (x^2 = 7).$
- 3. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^2 = x$.
- 4. $\forall x \in \mathbb{R}, (\exists y \in \mathbb{R}, y^2 = x) \Rightarrow x \ge 0.$
- 5. $\exists m \in \mathbb{N}$, $non(m \neq 1 \text{ ou } m \neq 4)$.
- 6. $\forall z \in \mathbb{C}, (z = \bar{z}) \Leftrightarrow (z \in \mathbb{R}).$

Exercice 8

1. On considère la proposition

$$P_1: \forall n \in \mathbb{N}, \exists M \in \mathbb{N}, n \leq M$$

Retranscrire P_1 en bon français, et dire si P_1 est vraie ou fausse.

2. Même chose avec

$$P_2: \exists M \in \mathbb{N}, \, \forall n \in \mathbb{N}, \, n \leq M$$

Conclusion?

Exercice 9

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombre réels. Traduire à l'aide de quantificateurs les phrases suivantes : $(u_n)_{n\in\mathbb{N}}$ est majorée, $(u_n)_{n\in\mathbb{N}}$ est bornée, $(u_n)_{n\in\mathbb{N}}$ ne s'annule jamais, $(u_n)_{n\in\mathbb{N}}$ est positive à partir d'un certain rang, $(u_n)_{n\in\mathbb{N}}$ n'est pas la suite nulle.

Méthodes de raisonnement.

Exercice 10

- 1. Montrer que pour tout entier n, si n^2 est pair, alors n est pair.
- 2. Montrer par l'absurde que $\sqrt{2}$ est irrationnel.
- 3. (Plus difficile) Montrer que $\sqrt{3}$ est irrationnel. Montrer que pour tout nombre premier p, \sqrt{p} est irrationnel.

Exercice 11

On considère 7 réels $x_1, ..., x_7$ tels que

$$\sum_{i=1}^{7} x_i = 0$$

Montrer qu'il existe un i tel que $x_i \leq 0$.

Exercice 12

- 1. Soit a un nombre réel tel que pour tout $\epsilon > 0$, on ait $|a| \le \epsilon$. Montrer que a = 0.
- 2. Soient a et b deux réels tels que pour tout $\epsilon>0,$ on ait $a\leq b+\epsilon.$ Montrer que $a\leq b.$

Exercice 13

- 1. Pour n entier naturel, comparer 2^n et n!.
- 2. Montrer par récurrence que pour tout $n \ge 1$ on a

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Exercice 14

Soit $f: \mathbb{R} \to \mathbb{R}$ une application. Donner la négation des propositions suivantes :

- 1. f est croissante.
- $2. \ \forall x \ge 0, \ f(x) \ge 0.$
- 3. f est croissante et positive.
- 4. Il existe x réel tel que $f(x) \ge 1$ ou $f(x) \le -1$.

Opérations sur les ensembles.

Exercice 15

Soient E et F deux ensembles. Tous les sous-ensembles de $E \times F$ sont-ils de la forme $A \times B$, avec $A \subset E$ et $B \subset F$?

Exercice 16

Montrer les formules suivantes, où A, B, C sont des sous-ensembles d'un ensemble E.

- 1. $(A \cup B)^c = A^c \cap B^c$.
- $2. (A \cap B)^c = A^c \cup B^c.$
- 3. $A \cap B = A \iff A \subset B$.
- $4. \ A \cup B = B \Longleftrightarrow A \subset B.$
- 5. $A \cup (B A) = A \cup B$.
- 6. $(A B) C = A (B \cup C)$.

Applications.

Exercice 17

Soit $f: E \to F$ une application entre deux ensembles E et F. Soient A et B deux sous-ensembles de E. Les propositions suivantes sont-elles toujours vraies? On justifiera.

- 1. $f(A \cup B) = f(A) \cup f(B)$
- 2. $f(A \cap B) = f(A) \cap f(B)$

Exercice 18

Soient E, F et G trois ensembles; soient $f: E \to F$ et $g: F \to G$ deux applications. Montrer

- 1. Si $g \circ f$ est injective, alors f est injective.
- 2. Si $g \circ f$ est surjective, alors g est surjective.

Exercice 19

Montrer que la composée de deux applications injectives est injective. Même chose avec la surjectivité.

Exercice 20

- 1. Soit $g: \mathbb{Z} \times \mathbb{N}^* \to \mathbb{Q}$ l'application définie par $f(m,n) = \frac{m}{n}$. Est-elle injective? surjective? bijective?
- 2. Même question avec $g: \mathbb{Z} \times \mathbb{N}^* \to \mathbb{Q}$ définie par $f(m,n) = m + \frac{1}{n+1}$.

Exercice 21

On définir $f: \mathbb{N}^2 \to \mathbb{R}$ par $f(a,b) = a + b\sqrt{2}$. Montrer que f est injective mais pas surjective.

Exercice 22

Construire une bijection de $\mathbb Z$ dans $\mathbb N.$ On construira si possible la bijection réciproque.

Exercice 23

On définir $f: \mathbb{N}^2 \to \mathbb{R}$ par $f(a,b) = a + b\sqrt{2}$. Montrer que f est injective mais pas surjective.