

 $\lambda \cdot \lambda = (\lambda x_1, \lambda x_1, \lambda x_2)$ λx1+2λx2+3λx3=2(x1+2x2+3x3)=0 Therefore it is a subset of 1=3 (b) This subset doesn't contain o Because where, x, x, x, = (0,00), x, +2x, +3x, =0 +4 So je is not a subspace of F3 a comment of the second of the (L) let 7 = (1,1,0), Y = (0,1,1) they we both in the get because X, X2 X2 =D But x+4 2 (1, 5, +) then x, X; X; = 2 70 So it is not closed under addition Therefore it is not subspace of F5 (d) It contains 0 = (0,0,0) because 0 = 5 x0 Then let x = (x, x, x, xs), y = (Yu, Yv, Ys) 90 7, = 573 and Y, = 5 y 3 x+y= (x,+y,x,+y, x,+y) 50 1, + Y, = I x3 + I y3 = I (x + y) then xty is in the set

ine
Let $\chi = (x_1, \chi_1, \chi_2)$, then we can get $\chi_1 = I \times \chi_2$
$\lambda \in \mathcal{F}$ $\lambda \times = (\lambda \lambda_1, \lambda \lambda_2, \lambda_3)$
$\lambda \chi_1 = \lambda (J \chi_3) = J(\lambda \chi_3)$
50 it is in the sex
Therefore it is the subspace of F3
3. Am
The example get U= 3(X, X2): X1, X2 & Z)
Let x, y 6. U x = (x, x, x, y = (y, x)
$x+y=(x_1+y_1,x_2+y_2)$
7, + y and xx+ /2 are integers, because x, x, x, x, x,
EZ
ϵ_{Z}
-X = (-X, -Xr) & U, because x, xr & Z, then
$-X = (-X_1, -X_2) \in U$, because X , $X_2 \in \mathbb{Z}$, then $-X_1, -X_2 \in \mathbb{Z}$
But U is not closed under scalar multiplication.
$-X = (-X_1, -X_2) \in U$, because X , $X_2 \in \mathbb{Z}$, then $-X_1, -X_2 \in \mathbb{Z}$ But U is not closed under scalar multiplication. Let $X = (X_1, X_2) \in U$, $X = 1$
First U is not dosed under scalar multiplication. Let $X = (X, Xu) \in U$, because X , $Xx \in Z$, then $X \times (X, Xu) \in U$, $X = X$ $X \times (X, Xu) \in U$, $X = X$ $X \times (X, Xu) \in U$, because $X \times Xu$ are not
But U is not closed under scalar multiplication Let $x = (x, x_u) \in U$, because $\frac{1}{2}x$, $\frac{1}{2}x$, are not integers.
First U is not dosed under scalar multiplication. Let $X = (X, Xu) \in U$, because X , $Xx \in Z$, then $X \times (X, Xu) \in U$, $X = X$ $X \times (X, Xu) \in U$, $X = X$ $X \times (X, Xu) \in U$, because $X \times Xu$ are not

4. Ans: Since Vs, Vz, V3 and V4 spans V, we know there are a, ar, as, ag EF such that a, v, + a, V, + a, V, + a, V4=VE V We need find b, b, bs, bs, ba such thert: b, V, + (b2-b1) V2+ (b3-b2) V3+ (b4-b5)V4=V So b, = a, &br-b, = ai, bz-br = ar, bq-b3 = Gq b1 = 9, b2 = a1+a2, b3 = a, tarta; b4 = a, tartax + a3+a4 Therefore V & Span (VI, V2, V2, V4) Therefore, the list (V, -V2, V2-V3, V4-V4, V4), spans V J. (a) for linear #dependent, there are nontrivial solutions for allti) + bll-i) =0 where a, beR, But We get (atb) + (a-b) i = 0 donly when a=b=0. It is triple solution. So the list (It's, 1-is) is linearly independent. (b) Let $7, y \in C$ x(hi) + y(1-i) =0 There are nontrivial solutions for this for example x = -112 i. So the list (1tiste) is linearly dependent over C

Date			
6, Ans:		10 10 10	1=== 84.
O Exsitence: By definition of a cV #	nittion W to	esst we and	can know
	a = a, +0	2	
o Uniqueness: Let	AGV. a, G	W, arewr	, and suppos
Lot L	1,6 W, br6	lu supe	ora 1 +h
	$a_1 + a_2 = b_1 + a_2$		
2- 500 01400 700	a, -b, = b.	any I be	6 - 5
water the same and	u, and W.		
	g definition	4	
110 (X.1) - (X50 - A)			<u> </u>
7. La, Since	7, = 37, 00 X		
First, we can if			
It can be cr	,0,0,, (0,	150) and (0,0,1)
Then the basis of			•
10,2,7,1,9) and	(0,0,0,0,1	, ,,,	
	, , , , , , , , , , , , , , , , , , , ,	, , ,	

	-
(b) (1,0,0,0,0)	_
(3,1,0,0,0)	_
(0,0,7,1,0)	_
[0,0,1,0,0]	_
(0,0,0,0)	
C) W= span ((1,0,0,0,0),(0,0,1,0,0))	-
8. Am:	
If x and Y are nector space over sum a set of	•
scalars, then the set of all function from X to T	4
form a vector space.	
Let L, MG. L7 (x, Y) scalour a	•
We need to prove (al+M)(x) = al(x) + M(x) in [Tex
For X, XV C-X, and scalar y	
: LaL+M, Cyn, XV)	ü
= alyx, + my-x, to al xx + mxx	
= Y(al+M)x,+ (al+M) x	
Therefore, (al + M) 6 LT [X, Y], LT [X, Y] is a	
vector space.	