Análise de Sistemas de Armazenamento Distribuído para Nuvens Computacionais OpenStack

Renato Tanaka Maurício A. Pillon

Sumário

- Introdução
 - Motivação
 - Problemática
- Objetivo
- Fundamentação Teórica
 - Trabalhos Relacionados
- Proposta
- Considerações Finais
- Cronograma

Introdução

- Nuvens Computacionais provisionam seus recursos de acordo com seu modelo de serviço implementado.
- De acordo com o NIST, modelos de serviço são laaS,
 PaaS e SaaS. [1]
- Cloud Operating Systems (COS) administram recursos de nuvem e os virtualizam para maior elasticidade. [2]
- OpenStack é uma COS laaS de código aberto.

Introdução - Motivação

- O desempenho de armazenamento persistente em nuvens possui grande relevância, pois impacta diretamente em aplicações de usuários finais.
- Com a expansão de áreas como Big Data, o desempenho de armazenamento em larga escala se torna de grande relevância. [3]
- Devido a sua larga escala, pequenas otimizações em arquiteturas de nuvem resultam em grandes benefícios.

Introdução - Problemática

- Armazenamento persistente de Máquinas Virtuais (MVs) é realizado por diferentes provedores deste serviço.
- Qual o contexto ótimo de cada provedor de armazenamento?
- Como determinar o melhor provedor, no quesito de desempenho?

Objetivo

- Realizar análise qualitativa e quantitativa de provedores de serviço de armazenamento em bloco da plataforma OpenStack.
- Realização de testes de estresse (benchmarks) com diferentes provedores de serviço, avaliando:
 - Escalabilidade
 - Contexto de Uso.
 - Desempenho.

- OpenStack possui característica modular.
 - Cada módulo administra um recurso ou funcionalidade da arquitetura de nuvem [5].
- Armazenamento na plataforma é realizado por três módulos distintos, cada um com uma representação diferente dos dados.
 - Bloco;
 - Arquivos;
 - Objetos;

Figura 1: Representação dos diversos serviços do OpenStack

Fonte: Retirado de [5]

- Cada tipo de armazenamento é gerenciado por um módulo diferente:
 - Bloco → Cinder
 - Objeto → Swift
 - Arquivo → Manila
- O módulo Cinder gerencia o armazenamento em bloco através da instanciação de volumes de armazenamento.
- Estes volumes realizam a comunicação entre soluções de provedores de armazenamento em bloco (backends) e o OpenStack.
- MVs de usuários finais interagem com volumes.

Figura 2: Ilustração de tipos de armazenamento de dados.

Fonte: Retirado de [6]

- Cada tipo de armazenamento possui uma aplicação e contexto de uso.[5]
- Armazenamento em bloco é utilizado para prover armazenamento persistente em Máquinas Virtuais (MVs).
- Máquinas virtuais são gerenciadas pelo módulo Nova, e armazenamento em bloco é administrado pelo Cinder.

Figura 3: Exemplo de requisição de criação de volume.

Fonte: Adaptado de [7]

Figura 4: Ilustração de interação entre volume Cinder e MV no Nova

Fonte: Adaptado de [7]

Trabalhos Relacionados

Tabela 1: Trabalhos relacionados

Autores	Sistemas de Armazenamento	Ferramentas de <i>Benchmark</i>
Acquaviva, L. et al., 2018 [8]	HDFS, Ceph, GlusterFS, XtremeFS	Ganglia, Inotify
Gudu; Hardt; Streit, 2014 [9]	Ceph	Netcat, IPERF, DD, OSD Tell, RADOS Bench, fio
WANG et al., 2013 [10]	Ceph	RADOS bench
Zhang;Gaddam;Chronopo- ulos., 2015 [11]	Ceph	Bonnie ++, DD, Rados Bench, OSD Tell, IPERF and Netcat

- Realizar a aplicação de testes de desempenho (benchmarks) em diferentes backends do sistema de armazenamento em bloco Cinder.
- Após a aplicação dos testes, efetuar uma análise qualitativa e quantitativa das soluções de diferentes provedores do serviço de armazenamento em bloco.
- Determinar os contextos ótimos de aplicação às soluções analisadas, bem como definir a solução com melhor desempenho.

Figura 5: Representação visual do contexto de aplicação do presente trabalho.

Fonte: Elaborado pelo Autor

- Ferramentas a serem utilizadas:
 - Bonnie++;
 - Rally;
- Cenários:
 - Replicação tripla do armazenamento;
 - Qualidade de Serviço;
 - Expansão e diminuição da arquitetura;
 - Número de MVs instanciadas;

Tabela 2: Descrição das métricas a serem avaliadas nos benchmarks.

Métrica	Unidade de Medida	Descrição
Tempo de Criação	Segundos	Tempo decorrido na operação de criação de volume.
Tempo de Anexação	Segundos	Tempo decorrido na operação de anexação de volume a uma MV.
Tempo de Destruição	Segundos	Tempo decorrido operação de destruição de volume.
Leitura	Operações / Segundos (IOPS)	Quantidade de operações por segundo durante leitura.
Escrita	Operações / Segundos (IOPS)	Quantidade de operações por segundo durante escrita.
Latência	Milissegundos	Tempo decorrido entre tempo de requisição ao <i>kernel</i> e conclusão da operação.

Considerações

- Desempenho de serviço de armazenamento em bloco no OpenStack possui grande importância em aplicações de usuários finais.
- Análise a ser realizada possui complexidade considerável, devido a fatores e parâmetros sensíveis que podem vir a comprometer a integridade dos testes.
- Após a aplicação dos testes, é esperado que seja possível determinar o melhor contexto para os backends analisados.

Cronograma

						20	19	ı																20	20)							
Etapas	Ag	osto	S	etem	bro	Out	ubro		Nov	emb	oro	D	ezer	mbr	О	Ja	neiro)	Fe	/erei	го	Ма	rço	Al	bril		ı	Mai	0	Jui	nho	Ju	llho
1																																	
2																																	
3																																	
4																																	
5																																	
6																																	
7																																	
8																																	

- 1 Revisão bibliográfica, fundamentação teórica sobre nuvens, sistemas de armazenamento e OpenStack.
- 2 Definição da proposta e ferramentas a serem utilizadas.
- 3 Escrita do TCC 1
- 4 Instalação e configuração do ambiente de testes.

- 5 Aplicação dos testes.
- 6 Geração de gráficos baseados nos resultados dos testes.
- 7 Realização da análise quantitativa e qualitativa.
- 8 Escrita do TCC 2.

Perguntas?

<renato.tanaka@edu.udesc.br>

http://www.labp2d.joinville.udesc.br

Referências

- . [1] MELL, Peter et al. The NIST definition of cloud computing. 2011.
- [2] CHEN, Zuo-Ning et al. Evolution of cloud operating system: from technology to ecosystem. **Journal of Computer Science and Technology**, v. 32, n. 2, p. 224-241, 2017.
- [3] HASHEM, Ibrahim Abaker Targio et al. The rise of "big data" on cloud computing: Review and open research issues. **Information systems**, v. 47, p. 98-115, 2015.
- [4] OPENSTACK. What is OpenStack? 2019. Disponível em:https://www.openstack.org-/software/
- [5] OPENSTACK. Storage concepts. OpenStack, 2018. Disponível em: https://docs.openstack-.org/arch-design/design-storage/design-storage-concepts.html
- [6]CANONICAL.What are the different types of storage: block, object and file?Canonical,2015. Disponível em: https://ubuntu.com/blog/what-are-the-different-types-of-storage-block-object-and-file

Referências

- [7] NETAPP.OpenStack Deployment and Operations Guide. NetApp, 2017. Disponível em:https://netapp.github.io/openstack-deploy-ops-guide/ocata/content/ch_cinder.html
- [8] ACQUAVIVA, Luca et al. Cloud Distributed File Systems: A Benchmark of HDFS, Ceph, GlusterFS, and XtremeFS. In: **2018 IEEE Global Communications Conference** (GLOBECOM). IEEE, 2018. p. 1-6.
- [9] GUDU, Diana; HARDT, Marcus; STREIT, Achim. Evaluating the performance and scalability of the ceph distributed storage system. In: **2014 IEEE International Conference on Big Data (Big Data)**. IEEE, 2014. p. 177-182.
- [10] WANG, Feiyi et al. Performance and scalability evaluation of the ceph parallel file system. In: **Proceedings of the 8th Parallel Data Storage Workshop**. ACM, 2013. p. 14-19.
- [11] ZHANG, X.; GADDAM, S.; CHRONOPOULOS, A. T. Ceph distributed file system benchmarks on an openstack cloud. In: **2015 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM)**. IEEE, 2015. p. 113-120.