<mark>अध्याय-2</mark> गति Motion

1. गति किसे कहते हैं? ये कितने प्रकार के होते हैं? परिभाषित करें? उत्तर-जब किसी वस्तु पर बल आरोपित करने से वस्तु के स्थान में परिवर्तन होता है। उसे गति कहते हैं।

गति के प्रकार निम्नलिखित है:-

- रैखिक गति (Linear Motion)-: ऐसी गति जो एक सरल रेखा में होती है। उसे रैखिक गति कहते हैं।: – जैसे बंदूक से छोड़ी गई गोली।
- 2. यादृच्छिक गति (Random Motion)-: ऐसी गति जो एक निश्चित पथ पर दिशा बदलती रहती है। उसे यादृच्छिक गति कहते हैं। जैसे-मक्खी की गति।
- 3. वृत्तीय गति (Circular Motion)-: ऐसी गति जिसमें वस्तु एक वृत्त के पथ को बार-बार दुहराती है, उसे वृत्तीय गति कहते हैं। जैसे-पृथ्वी की गति।
- 4. दोलनी गति (Oscillatory Motion)-: ऐसी गति जिसमें वस्तु एक निश्चित बिंदु के आगे-पीछे या ऊपर-नीचे दोलन करती है। उसे दोलनी गति कहते हैं। जैसे-झूले की गति।
- 5. आवर्त गति (Periodic Motion) -: ऐसी गति जिसमें वस्तु गति के समय को निश्चित अंतरालों पर दुहराती है। उसे आवर्त्त गति कहते हैं। जैसे -: सिलाई मशीन की सुई की गति।
- 2. वेग किसे कहते हैं? इसका S.I मात्रक लिखें? उत्तर-किसी निश्चित दिशा में प्रति एकांक समय में तय की गई दूरी को वेग कहते हैं।

वेग = $\frac{\overline{q}(1)}{\overline{q}} = \frac{m}{Sec}$

इसका S.I मात्रक मीटर प्रतिसेकेण्ड (m/s) होता है।

- 3. रैखिक वेग कितने प्रकार के होते हैं? परिभाषित करें? उत्तर-रैखिक वेग दो प्रकार की होते है:-
 - (1) समरूप वेग (Uniform Velocity)-: यदि निश्चित दिशा में

कोई वस्तु बराबर-बराबर दूरी तय करती है, तो उसे समरूप वेग कहते हैं।

- (2) असमरूप वेग-: यदि निश्चित दिशा में कोई वस्तु बराबर बराबर दूरी तय नहीं करती तो उसे असमरूप वेग कहते हैं।
- 4. औसत वेग (Average Velocity) किसे कहते है?

उत्तर-यदि निश्चित दिशा से कोई वस्तु भिन्न-भिन्न समय में भिन्न-भिन्न दूरी तय करती है, तो कुल दूरी में कुल समय से भाग देने पर जो शेषफल प्राप्त होती है। उसे वस्तु का औसत वेग कहते हैं।

5. विस्थापन (Displacement) किसे कहते है? इसका 3.1 मात्रक लिखें। उत्तर – किसी गतिशील वस्तु का निश्चित दिशा में स्थान परिवर्त्तन उसका विस्थापन कहलाता है।

अथवा

वस्तु की प्रारंभिक एवं अंतिम स्थिति के बीच की न्यूनतम दूरी को विस्थापन कहते हैं।

इसे प्रायः 's' या 'd' से सूचित किया जाता है।

इसका S.I मात्रक मीटर तथा C.G.S मात्रक सेंटीमीटर होता है। विस्थापन एक सदिश राशि है।

6. दूरी (Distance) किसे कहते हैं? इसका S.I मात्रक लिखें?

उत्तर – किसी वस्तु द्वारा तय किये गये रास्ते की वास्तविक लंबाई को उस वस्तु द्वारा तय की गई दूरी कहलाती है। अर्थात् दूरी समय के साथ स्थान परिवर्त्तन है।

इसे 's' से सूचित किया जाता है। इसका S.I मात्रक मीटर तथा C.G.S मात्रक सेंटीमीटर होता है। यह एक अदिश राशि है।

7. दूरी और विस्थापन में अंतर स्पष्ट करें।

उत्तर - दूरी तथा विस्थापन में निम्नलिखित अंतर हैं: -

	S.No.	दूरी	विस्थापन
1			वस्तु के प्रारंभिक एवं अंतिम स्थिति के बीच
		की लंबाई को दूरी कहते हैं।	की न्यूनतम दूरी को विस्थापन कहते हैं।
	II	यह एक अदिश राशि है।	यह एक सदिश राशि है।

S.No.	दूरी	विस्थापन
Ш	तय की गई दूरी हमेशा धनात्मक होती है।	विस्थान धनात्मक, ऋणात्मक या शून्य हो सकता है।
IV	तय की गई दूरी या तो विस्थापन के समान	तय किया गया विस्थापन तय की दूरी के समान या उस
	या विस्थापन से बड़ा होता है।	दूरी से कम होती है।

भौतिक राशि क्या है? इसे कितने वर्गो में बाँटा गया है? परिभाषित करें? उत्तर-वैसी राशि जिसे मापा जा सकें। उसे भौतिक राशि कहते हैं। जैसे-लंबाई, वेग, शक्ति, ऊर्जा इत्यादि।

इसे दो वर्गी में बाँटा गया है: -

- A. अदिश राशि (Scalar Quantity)-:जिस राशि को व्यक्त करने के लिए केवल परिमाण की आवश्यकता पड़ती है। उसे अदिश राशि कहते हैं। जैसे-दूरी, ताप, द्रव्यमान, क्षेत्रफल, कार्य, ऊर्जी, शक्ति, आयतन, घनत्व इत्यादि।
- B. सिंदश राशि (Vector Quantity)-:जिस राशि को व्यक्त करने के लिए परिमाण तथा दिशा दोनों की आवश्यकता पड़ती है। उसे सदिश राशि कहते हैं। इसे \overrightarrow{A} से सूचित किया जाता है। जैसे – विस्थापन, वेग, त्वरण, बल, संवेग, आवेग, भार इत्यादि।

पटना रेलवे स्टेशन से तारामंडल 2, km उत्तर में है। संख्या - 2, मात्रक - km और दिशा - उत्तर

यहाँ 2 Km परिमाण को बतलाता है, जबकि उत्तर दिशा को दर्शाता है। सदिश तथा अदिश में अंतर स्पष्ट करें?

उत्तर-सदिश तथा अदिश में निम्नलिखित अंतर है:-

S.No.	सदिश	े अदिश
	इसमें परिमाण तथा दिशा दोनों होता है।	इसमें केवल परिमाण होता है।
П	यह सिंदा योग के नियम का	यह बीजीय नियम का पालन करता है।
	पालन करता है।	
Ш	सदिश राशि को व्यक्त करने के लिए	इसे व्यक्त करने के लिए किसी विशेष
	किसी विशेष निरूपण की आवश्यकता	निरूपण की आवश्यकता नहीं होती।
	होती हैं। इसे 🕂 से सूचित किया	
	जाता है।	
IV	सदिश हमेशा धनात्मक होते हैं।	अदिश हमेशा धनात्मक नहीं होते है।

10. 8 m/s के वेग को पश्चिम दिशा में सिदश विधि से निरूपित करें? उत्तर – 1 cm = 1m/s N

11. पूर्व क्या पश्चिम दिशाओं में 5 m/s के केंग को सदिश विधि से निरूपित करें?

यहाँ OA पूर्व की ओर तथा OB पश्चिम की ओर वेग को निरूपित करता है।
12. एक कार का विस्थापन 60 Km, 45° पूर्व से उत्तर है। इसका ग्राफीय चित्रण करे?

N

13. सदिशों के योग से आप क्या समझते है?

उत्तरः – \vec{B} को \vec{A} से जोड़ने के लिए को के तीर सीरे को मिलाकर रखा जाता है। तब एक ऐसा सिदश्र दिवींचा जाता है। यदि सिदशों का योग कहलाता है।

14. चाल (Speed) किसे कहते हैं? इसका S.I मात्रक लिखें? उत्तर-किसी वस्तु द्वारा ईकाई समय में तय की दूरी को चाल कहते हैं।

इसका S.I मात्रक मीटर प्रतिसेकेण्ड (m/s) होता है। इसका **CGS** मात्रक सेंटीमीटर /सेकेण्ड होता है। यह एक अदिश राशि है।

15. चाल एवं वेग में अंतर स्पष्ट करें?

उत्तर:-चाल एवं वेग में निम्नलिखित अंतर है:-

S.N.	चाल	वेग
1	चाल ईकाई समय में चली गई दूरी है।	वेग बताई गई दिशा में ईकाई समय में चली गई दूरी है।
2	चाल एक अदिश राशि है।	वेग एक सदिश राशि है।
3	चाल सदैव धनात्मक होता है।	वेग धनात्मक तथा ऋणात्मक दोनों हो सकता है।
4	चाल में परिवर्त्तन से सिर्फ उसके	वेग में परिवर्त्तन से उसके दिशा एवं परिमाण दोनों में
	परिमाण में परिवर्त्तन से संभव है।	परिवर्त्तन संभव है।

16. त्वरण (Acceleration) किसे कहते हैं इसका S.I मात्रक लिखें।

उत्तर-किसी वस्तु के वेग में परिवर्त्तन की दर को त्वरण कहते हैं। इसे 'a' से सूचित करते हैं।

इसका S.I मात्रक मीटर प्रति सेकेण्ड प्रति सेकेण्ड (m/s²) होता है। यह एक सिंदश राशि है।

त्वरण =
$$\frac{\dot{a}_1}{\dot{a}_1} = a = \frac{\dot{v} - \dot{u}}{\dot{t}}$$
 $\dot{u} = \dot{u}$ $\dot{u} = \dot{u}$

17. गति के समीकरण को लिखों 🎘

उत्तर – गति के तीन समीकरण है:

i.
$$v = u + at$$
 $u = yiरिभिक वेग a = त्वरण ii. $s = ut + at^2$ $v = yiि म at$ $t = समय$ iii. $v^2 = u^2 + 2as$ $s = ct$$

18. ग्राफीय विधि से सिद्ध करें कि v = u + at

उत्तर-समय को x अक्ष पर तथा वेग को y अक्ष पर रखकर समय तथा वेग के बीच ग्राफ खींचा जाता है। माना कि कोई पिण्ड U वेग से चलना शुरू करता है। t समय के बाद उसका अंतिम वेग v हो जाता है। जहाँ वस्तु का

त्वरण (a) प्राप्त होता है।

$$\triangle$$
 ABC में,
$$tan \theta = \frac{AC}{BC}$$

$$a = \frac{AC - CD}{BC}$$

$$a = \frac{V - U}{BC}$$

t = समय

$$at = v - u$$

$$u + at = v$$

$$v = u + at$$

19. ग्राफीय विधि से सिद्ध करें कि $v^2 = u^2 + 2as$ (विस्थापन समीकरण) **У**ТЕ

उत्तर-t समय में तय की गई दूरी

(S) = समलम्ब OBAD का क्षेत्रफल

$$S \equiv \frac{1}{2}X(OB+AD)XOD$$

हम जानते हैं कि $a = \frac{V - U}{t}$

$$S = \frac{1}{2}x(u+v)xt-----(i)$$

or
$$t = \frac{v - u}{a}$$
 ----(ii)

समी० (i) में समी० (ii) से t का मान रखने पर,

$$S = \frac{1}{2}x(u+v)xt$$

$$S = \frac{1}{2}x(v+u)x^{v-u}$$

$$S = \frac{1}{2} \times \frac{(v^2 \cdot u^2)}{a}$$

$$2as = v^2 - u^2$$

$$v^2 = u^2 + 2as$$
 Proved

20. ग्राफीय विधि से सिद्ध करें कि $S = ut + \frac{1}{2} at^2$ जहाँ u, a एवं tसामान्य अर्थ रखते हों।

अथवा, एक समान त्वरण के साथ सरल रेखा में गति के लिए रूरी, चाल एवं समय में संबंध-स्थापित करें?

उत्तर-समय को x अक्ष पर तथा वेग को y अक्ष पर रखकर समय तथा वेग के बीच ग्राफ खींचा जाता है। जहाँ पिण्ड का त्वरण a प्राप्त होता है।

△ ABC में,

$$\tan \theta = \frac{AC}{BC}$$

$$a = \frac{AC}{t}$$

AC = at

अतः t समय में तय की गई दूरी

S = आयत OBCD का क्षेत्रफल + \triangle ABC का क्षेत्रफल

$$S = (OB \times OD) + \frac{1}{2}X BC \times AC$$

$$s = u \times t + \frac{1}{2} \times t \times at$$

$$s = ut + \frac{1}{2} at^2$$

21. गणितीय विधि से सिद्ध करें कि उत्तर-s = औसत वेग x समय

माना कि वस्तु का प्रारंभिक वेग u तथा अंतिम वेग v है।

$$S = \frac{(u+v)}{2} \times t$$

$$s = \frac{(u + u + at)}{2} \times t$$

$$s = \frac{(2u + at)}{2} \times t$$

$$s = \frac{(2u + at)}{2} x t$$

$$s = \frac{(2ut + at^2)}{2}$$

$$s = \frac{(2ut + at^{2})}{2}$$

$$s = \frac{2ut}{2} + \frac{1}{2} x at^{2}$$

$$s = ut + \frac{1}{2} at^2$$