

Regression

Le Song

Machine Learning CSE/ISYE 6740, Fall 2019

ImageNet

Image classification with 1.3M color images and 1000 classes Need large scale nonparametric methods

Logistic regression is a neuron

Assume that the posterior distribution p(y = 1|x) take a particular form

$$p(y = 1|x, w) = \frac{1}{1 + \exp(-w^{T}x)}$$

• Logistic function (or sigmoid function) $\sigma(u) = \frac{1}{1 + \exp(-u)}$

$$\bullet \frac{\partial \sigma(u)}{\partial u} = \sigma(u) (1 - \sigma(u))$$

Maximum likelihood learning

$$l(w) := \log \prod_{i=1}^{m} P(y^{i}|x^{i}, w)$$
$$= \sum_{i} (y^{i} - 1) w^{\mathsf{T}} x^{i} - \log(1 + \exp(-w^{\mathsf{T}} x^{i}))$$

Gradient

$$\frac{\partial l(w)}{\partial w} = \sum_{i} (y^{i} - 1) x^{i} + \frac{\exp(-w^{\mathsf{T}} x^{i}) x^{i}}{1 + \exp(-w^{\mathsf{T}} x)}$$

Setting it to 0 does not lead to closed form solution

Other nonlinear neurons

- Use different nonlinear transformations Y = f(u)
- Before that, perform
 weighted combination of

inputs $u = w^{T}x$

Learning with square loss

Find w, such that the conditional probability of the labels are close to the actual labels (may be values other than 0 or 1)

$$\min_{w} l(w) := \sum_{i}^{n} (y^{i} - P(y = 1 | x^{i}, w))^{2} = \sum_{i}^{n} (y^{i} - \sigma(w^{T}x^{i}))^{2}$$

- Not a convex objective function
- Use gradient decent to find a local optimum

The gradient of l(w)

$$l(w) := \sum_{i}^{n} (y^{i} - P(y = 1 | x^{i}, w))^{2} = \sum_{i}^{n} (y^{i} - \sigma(w^{T}x^{i}))^{2}$$

- Let $u^i = w^{\mathsf{T}} x^i$
- For sigmoid function: $\frac{\partial \sigma(u)}{\partial u} = \sigma(u) (1 \sigma(u))$
- Gradient

$$\frac{\partial l(w)}{\partial w} = \sum_{i} 2(y^{i} - \sigma(u^{i})) \sigma(u^{i}) (1 - \sigma(u^{i})) x^{i}$$

Regression

Classification v.s. Regression

Classification: discrete label

Machine learning for apartment hunting

- Suppose you are to move to Atlanta
- And you want to find the **most** reasonably priced apartment satisfying your needs:

square-ft., # of bedroom, distance to campus ...

Living area (ft²)	# bedroom	Rent (\$)
230	1	600
506	2	1000
433	2	1100
109	1	500
150	1	?
270	1.5	?

f(square-ft., # bedroom, distance) = rent

The problem of regression

- Features (input):
 - Living area, distance to campus, # bedroom ...
 - Denote as a vector $x = (x_1, x_2, ..., x_n)^T$
- Real-valued label (output):
 - Rent
 - Denoted as y
- Training set:
 - $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$
- Testing set:
 - $(x^{(m+1)},?),(x^{(m+2)},?),...,(x^{(m+M)},?)$

Linear Regression Model

Assume y is a linear function of x plus noise ϵ

$$y = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n + \epsilon$$

- ϵ is a random variable with $\mathbb{E}\epsilon = 0$ and $\mathrm{E}\epsilon^2 = \sigma^2 < \infty$
- ϵ is independent of x
- Using the notation

augmented with an additional dimension

$$\theta \leftarrow \begin{bmatrix} \theta_0 \\ \vdots \\ \theta_n \end{bmatrix} \quad \text{and} \quad x \leftarrow \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

The linear model can be written as

$$y = x^{\mathsf{T}}\theta + \epsilon$$

Least mean square method

$$y = x^{\mathsf{T}}\theta + \epsilon$$

- Given m data points $\mathcal{D} = \{(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})\}$, how to estimate θ ?
- \blacksquare Find θ which minimizes the mean square error

$$\min_{\theta} L(\theta) := \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} - x^{(i)^{\mathsf{T}}} \theta)^2$$

Our usual trick: set $\frac{\partial L(\theta)}{\partial \theta} = 0$ and find the solution θ

Matrix version

Using the notation:

$$X = \begin{bmatrix} | & | & | \\ x^{(1)} & \dots & x^{(m)} \\ | & | & | \end{bmatrix}$$
 and $Y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix}$

- \bullet each $x^{(i)}$ is a feature vector
- \bullet X is a $n \times m$ matrix
- \bullet Y is a $m \times 1$ vector
- The mean square error is

$$L(\theta) = \frac{1}{m} ||X^{\mathsf{T}}\theta - Y||^2$$

The minimizer satisfies

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{m}XY + \frac{2}{m}XX^{\mathsf{T}}\theta = 0 \iff XX^{\mathsf{T}}\theta = XY$$

Analytical Solution

• When XX^T is invertible, the solution is unique

$$\widehat{\theta} = (XX^{\mathsf{T}})^{-1}XY$$

If d > m, not invertible

The analytical solution is unbiased:

$$\hat{\theta} = (XX^{\top})^{-1}XY$$

$$= (XX^{\top})^{-1}X(X^{\top}\theta^* + \epsilon)$$

$$= \theta^* + (XX^{\top})^{-1}X\epsilon$$

$$\Rightarrow \mathbb{E}[\widehat{\theta}] = \theta^* + (XX^{\mathsf{T}})^{-1}X\mathbb{E}[\epsilon] = \theta^*$$

Computation Cost

The matrix inversion in $\hat{\theta} = (XX^{T})^{-1}XY$ can be very expensive to compute.

- Matrix Multiplication XX^{T} : $O(mn^2)$
- Matrix Inversion $(XX^{\mathsf{T}})^{-1}$: $O(n^3)$
- Overall computational cost: $O(mn^2)$, given $m \gg n$

Gradient Descent

$$\widehat{\theta}^{t+1} \leftarrow \widehat{\theta}^t - \alpha_t \frac{\partial L(\widehat{\theta}^t)}{\partial \widehat{\theta}^t}$$

• Step size $\alpha_t > 0$. (fixed or line search)

- For LMS, $\frac{\partial L(\widehat{\theta}^t)}{\partial \widehat{\theta}^t} = -\frac{2}{m} XY + \frac{2}{m} XX^{\mathsf{T}} \widehat{\theta}^t$.
- Computation cost:
 - Matrix Vector Multiplication $X^{\mathsf{T}} \hat{\theta}^t$: O(mn)
 - Matrix Vector Multiplication $X(X^{\top}\widehat{\theta}^t)$ and XY: O(mn)
 - Overall computational cost per iteration: O(mn)
 - Better than $O(mn^2)$, but it may runs many iterations?

Stochastic Gradient Descent

What if n is also too large?

$$L(\theta) := \frac{1}{m} \sum_{i=1}^{m} l_i(\theta)$$

- For Least Mean Square, $l_i(\theta) := (y^{(i)} x^{(i)}^T \theta)^2$.
- Stochastic gradient descent: use one data point each time
 - Randomly sample i from 1, ..., m with equal probability
 - Perform a gradient step $\hat{\theta}^{t+1} \leftarrow \hat{\theta}^t \beta_t \frac{\partial l_i(\hat{\theta}^t)}{\partial \hat{\theta}^t}$
 - For Least Mean Square, $\frac{\partial l_i(\widehat{\theta}^t)}{\partial \widehat{\theta}^t} = \left(y^{(i)} \widehat{\theta}^{t} x^{(i)}\right) x^{(i)}$

Stochastic Gradient Descent

A recap:

Stochastic gradient update rule

$$\hat{\theta}^{t+1} \leftarrow \hat{\theta}^t - \beta_t \frac{\partial l_i(\hat{\theta}^t)}{\partial \hat{\theta}^t}$$

- Pros: on-line, low per-step cost
- Cons: coordinate, maybe slow-converging
- Gradient descent

$$\hat{\theta}^{t+1} \leftarrow \hat{\theta}^t - \alpha_t \frac{\partial L(\hat{\theta}^t)}{\partial \hat{\theta}^t}$$

- Pros: fast-converging, easy to implement
- Cons: need to read all data
- Solve normal equations

$$(XX^{\mathsf{T}})\hat{\theta} = XY$$

Pros: a single-shot algorithm! Easiest to implement.

Geometric Interpretation of LMS

The predictions on the training data are:

$$\hat{y} = X^{\mathsf{T}}\theta = X^{\mathsf{T}}(XX^{\mathsf{T}})^{-1}Xy$$

lacksquare Look at residual $\hat{y}-y$

$$\hat{y} - y = (X^{\mathsf{T}}(XX^{\mathsf{T}})^{-1}X^{\mathsf{T}} - I)y$$

$$X(\hat{y} - y) = X(X^{\mathsf{T}}(XX^{\mathsf{T}})^{-1}X^{\mathsf{T}} - I)y = 0$$

 \hat{y} is the orthogonal projection of y into the space spanned by the columns of X

Probabilistic Interpretation of LMS

Assume y is a linear in x plus noise ϵ

$$y = \theta^{\mathsf{T}} x + \epsilon$$

• Assume ϵ follows a Gaussian $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$p(y^{(i)}|x^{(i)};\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\left(y^{(i)} - \theta^{\mathsf{T}}x^{(i)}\right)^2}{2\sigma^2}\right)$$

By independence assumption, likelihood is

$$L(\theta)$$

$$= \prod_{i=1}^{m} p(y^{(i)}|x^{(i)};\theta) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^{m} \exp\left(-\frac{\sum_{i=1}^{m} (y^{(i)} - \theta^{\mathsf{T}}x^{(i)})^{2}}{2\sigma^{2}}\right)$$

Probabilistic Interpretation of LMS, cont.

The log-likelihood is:

$$\log L(\theta) = m \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^2} \sum_{i=1}^{m} (y^{(i)} - \theta^{\mathsf{T}} x^{(i)})^2$$

Do you recognize the last term?

LMS:
$$\frac{1}{m} \sum_{i}^{m} (y^{(i)} - \theta^{\mathsf{T}} x^{(i)})^2$$

Thus under independence assumption and Gaussian noise

Nonlinear regression

Want to fit a polynomial regression model

$$y = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_n x^n + \epsilon$$

• Let
$$\tilde{x} = (1, x, x^2, \dots, x^n)^T$$
 and $\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_n)^T$

Given m data points, find θ that minimizes the mean square error

$$\hat{\theta} = argmin_{\theta} L(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y^i - \theta^{\mathsf{T}} \tilde{x}^i)^2$$

Our usual trick: set gradient to 0 and find parameter

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{m} \sum_{i=1}^{m} (y^i - \theta^T \tilde{x}^i) \tilde{x}^i = 0$$

$$\Leftrightarrow -\frac{2}{m} \sum_{i=1}^{m} y^i \tilde{x}^i + \frac{2}{m} \sum_{i=1}^{m} \tilde{x}^i \tilde{x}^{i^T} \theta = 0$$

• Define $\tilde{X} = (\tilde{x}^{(1)}, \tilde{x}^{(2)}, ... \tilde{x}^{(m)}), y = (y^{(1)}, y^{(2)}, ..., y^{(m)})^{\top}$, gradient becomes

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{m}\tilde{X}y + \frac{2}{m}\tilde{X}\tilde{X}^{\mathsf{T}}\theta = 0$$
$$\Rightarrow \hat{\theta} = (\tilde{X}\tilde{X}^{\mathsf{T}})^{-1}\tilde{X}y$$

- Note that $\tilde{x} = (1, x, x^2, ..., x^n)^T$
- If we choose a different maximal degree n for the polynomial, the solution will be different.

Increasing the maximal degree

Increasing the maximal degree

Increasing the maximal degree

Which one is better?

- Can we increase the maximal polynomial degree to very large, such that the curve passes through all training points?
- The optimization does not prevent us from doing that