

### Université Sidi Mohammed Ben Abdellah Faculté des Sciences Dhar El Mahraz – Fès



# Intelligence artificielle

# Réseaux de Neurones Artificiels (2)



Pr. EL BOURAKADI Dounia

Email: dounia.elbourakadi@usmba.ac.ma

### Neurone artificiel

La sortie d'un neurone artificiel est égale:  $O_i = f(I_i) = f(\sum x_j w_j)$ , avec  $1 \le j \le N$ 



Il y a toutefois un poids supplémentaire appelé "coefficient du biais/seuil"  $\mathbf{w}_{\theta}$ ; supposé lié à une information  $\mathbf{x}_{\theta} = -1$  (ou  $\mathbf{x}_{\theta} = 1$ )



### Neurone artificiel

#### • Seuil des fonctions:

Le seuil de la fonction de Heaviside est en x = 0 et vaut 1.



Le seuil de la fonction sigmoïde est en x=0 et vaut 1/2.



### • Seuil du neurone artificiel:

$$in = 0 \Leftrightarrow \sum_{i=0}^{\mathbf{n}} w_i imes x_i = 0 \Leftrightarrow (\sum_{i=1}^{\mathbf{n}} w_i imes x_i) - w_0 = 0 \Leftrightarrow \sum_{i=1}^{\mathbf{n}} w_i imes x_i = w_0$$

• On atteint donc le seuil de la fonction d'activation lorsque la somme pondérée des informations d'entrée vaut le **coefficient de biais.** 

De plus: 
$$in \ge 0 \Rightarrow g(in) \ge seuil$$

### **Neurone artificiel**

• Cette équation  $in \ge 0 \Rightarrow g(in) \ge seuil$  définit un hyperplan qui sépare l'espace des informations d'entrées en deux parties.

• Les coordonnées seront alors  $(x_1, ..., x_n)$ .

• En dimension 2, un hyperplan est par conséquent une droite.



### Types des réseaux de neurones

Il existe deux grandes catégories des RN:

• Les réseaux monocouches: Perceptron monocouche



• Les réseaux multicouches: Perceptron multicouche; Multi-

Layer Perceptron (MLP)



## Perceptron monocouche

Le perceptron est le RN le plus simple qui permet une classification binaire.

Il est décrit de la manière suivante:

- •Il possède *n* informations en entrée et *p* neurones en sortie;
- •Les neurones sont généralement alignés verticalement.
- •Toutes les entrées sont directement connectées aux sorties.



### Perceptron monocouche

#### Pour la suite, on notera :

- • $\mathbf{X} = (\mathbf{x}_i)_{1 \le i \le n}$  les **n** informations d'entrée ;
- $w_{i,j}$  pour  $1 \le i \le n$  et  $1 \le j \le p$ , le poids reliant l'information  $x_i$  et le neurone j puis  $y_j$  l'activation (sortie) du j-ème neurone ;
- $\cdot w_{0,j}$  le **coefficient de biais**, également appelé **seuil**, du *j*-ème neurone ;
- •in; la donnée d'entrée (somme pondérée) du j-ème neurone.

### Pour définir notre perceptron:

- •On commence par initialisation aléatoire des poids.
- •Ensuite, on ajuste les poids selon un algorithme d'apprentissage jusqu'à la convergence du processus.
- •Deux types de perceptron:
  - 1. le perceptron à seuil
  - 2. le perceptron basé sur la descente du gradient

### Algorithme 1: Perceptron à seuil:

- 1/ Initialisation des poids (y compris le bias) à des valeurs (petites) choisies au hasard.
- 2/ Présentation d'une entrée  $X = (x_0, x_1, ..., x_n)$  de la base d'apprentissage.
- 3/ Calcul de la sortie obtenue y pour cette entrée :  $x = (w_i . x_i)$  $y = f(x) = \text{signe } (x) \text{ (si } x \ge 0 \text{ alors } y = +1 \text{ sinon alors } y = 0 \text{ )}$
- 4/ Si la sortie y du perceptron est différente de la sortie désirée  $y_d$  pour cet exemple d'entrée  $\rightarrow$  alors modification des poids:
  - $w_i(t+1) = w_i(t) + \mu.\text{Err. } x_i$  où l'erreur :  $\text{Err} = y_d y$ . et  $\mu$  est le pas de modification choisi entre 0 et 1.
- 5/ On répète de 2) à 4) jusqu'à la convergence du processus. On retient alors les derniers poids.

### **Convergence?**

On peut terminer l'algorithme si le processus converge:

- 1. On fixe un nombre maximum d'itérations.
- 2. On fixe une erreur minimale à atteindre.
- 3. Plus aucune correction effectuée en passant toutes les données.
- 4. L'erreur globale ne diminue plus.
- 5. Les poids sont stables.

On peut construire des perceptrons capables de réaliser les fonctions logiques : ET / OU. Cependant:

- Le perceptron est incapable de distinguer les patrons non linéairement séparables.
- Exemple: le OU Exclusif (XOR): Données non linéairement séparables!



### Exercice 1: Perceptron qui calcule le ET logique

| X1 | X2 | Y |
|----|----|---|
| 0  | 0  | 0 |
| 0  | 1  | 0 |
| 1  | 0  | 0 |
| 1  | 1  | 1 |

Données

Initialisation aléatoire des poids :  $w_0 = 0.1$ ;  $w_1 = 0.2$ ;  $w_2 = 0.05$ 

On suppose  $x_0 = 1$  et  $\mu = 0,1$ 

$$0.1 + 0.2 x_1 + 0.05 x_2 = 0 \Leftrightarrow x_2 = -4.0 x_1 - 2.0$$







Valeur observée de Y et prédiction ne matchent pas, une correction des coefficients sera effectuée.

| X1 | X2 | Y |
|----|----|---|
| 0  | 0  | 0 |
| 0  | 1  | 0 |
| 1  | 0  | 0 |
| 1  | 1  | 1 |

#### Appliquer le modèle





#### Màj des poids

$$\begin{cases} \Delta a_0 = 0.1 \times (-1) \times 1 = -0.1 \\ \Delta a_1 = 0.1 \times (-1) \times 0 = 0 \\ \Delta a_2 = 0.1 \times (-1) \times 0 = 0 \end{cases}$$

Nouvelle frontière :



Signal nul (x1 =  $0, x_2 = 0)$ , seule la constante ao est corrigée.

Données





Appliquer le modèle

$$0.0 \times 1 + 0.2 \times 1 + 0.05 \times 0 = 0.2$$

$$\Rightarrow \hat{y} = 1$$

Màj des poids

$$\begin{cases} \Delta a_0 = 0.1 \times (-1) \times 1 = -0.1 \\ \Delta a_1 = 0.1 \times (-1) \times 1 = -0.1 \\ \Delta a_2 = 0.1 \times (-1) \times 0 = 0 \end{cases}$$

| -0.1+0 | $0.1x_1 -$ | +0.05x |
|--------|------------|--------|

Nouvelle frontière :

$$-0.1+0.1x_1+0.05x_2=0 \Leftrightarrow x_2=-2.0x_1+2.0$$



X1 **X2** Y

Données



Màj des poids

$$\begin{cases} \Delta a_0 = 0.1 \times (0) \times 1 = 0 \\ \Delta a_1 = 0.1 \times (0) \times 0 = 0 \\ \Delta a_2 = 0.1 \times (0) \times 1 = 0 \end{cases}$$

Pas de correction ici ? Pourquoi ? Voir aussi la position du point par rapport à la frontière dans le plan!

#### Frontière inchangée :

$$-0.1+0.1x_1+0.05x_2=0 \Leftrightarrow x_2=-2.0x_1+2.0$$





Représentation dans le plan

### Exercice 2: Perceptron qui calcule le OU logique

Appliquer l'algorithme du perceptron à seuil sur les données suivantes:

| $X_{I}$ | $X_2$ | $Y_d$ |
|---------|-------|-------|
| 0       | 0     | 0     |
| 0       | 1     | 1     |
| 1       | 0     | 1     |
| 1       | 1     | 1     |

#### On suppose:

- l'initialisation des poids:  $w_0=0$ ;  $w_1=1$ ;  $w_2=-1$ ;
- le taux d'apprentissage 1;
- y = f(x) = 1 si x > 0 ; 0 sinon ;
- *X*<sub>0</sub>=1

### **Exercice 2:**

| étape | $w_0$ | $\overline{w}_1$ | $w_2$ | Entrée | $\Sigma_0^2 w_i x_i$ | 0 | c | $w_0$      | $w_I$    | $w_2$      |
|-------|-------|------------------|-------|--------|----------------------|---|---|------------|----------|------------|
| init  |       |                  |       |        |                      |   |   | 0          | 1        | -1         |
| 1     | 0     | 1                | -1    | 100    | 0                    | 0 | 0 | 0+0x1      | 1+0x0    | -1+0x0     |
| 2     | 0     | 1                | -1    | 101    | -1                   | 0 | 1 | 0+1x1      | 1+1x 0   | -1+1x1     |
| 3     | 1     | 1                | 0     | 110    | 2                    | 1 | 1 | 1          | 1        | 0          |
| 4     | 1     | 1                | 0     | 111    | 2                    | 1 | 1 | 1          | 1        | 0          |
| 5     | 1     | 1                | 0     | 100    | 1                    | 1 | 0 | 1+(-1)x1   | 1+(-1)x0 | 0+(-1)x0   |
| 6     | 0     | 1                | 0     | 101    | 0                    | 0 | 1 | 0+1x1      | 1+1x0    | 0+1x1      |
| 7     | 1     | 1                | 1     | 110    | 2                    | 1 | 1 | 1          | 1        | 1          |
| 8     | 1     | 1                | 1     | 111    | 3                    | 1 | 1 | 1          | 1        | 1          |
| 9     | 1     | 1                | 1     | 100    | 1                    | 1 | 0 | 1 + (-1)x1 | 1+(-1)x0 | 1 + (-1)x0 |
| 10    | 0     | 1                | 1     | 101    | 1                    | 1 | 1 | 0          | 1        | 1          |

Aucune entrée ne modifie le perceptron à partir de cette étape. Vous pouvez aisément vérifier que ce perceptron calcule le OU logique sur les entrées  $x_1$  et  $x_2$ .

Exercice 3: Apprentissage d'un ensemble linéairement séparable

| $X_{I}$ | $X_2$ | $Y_d$ |
|---------|-------|-------|
| 0       | 2     | 1     |
| 2       | 0     | 0     |
| 1       | 1     | 1     |
| 3       | 0,5   | 0     |
| 1       | 2,5   | 1     |

#### On suppose:

- l'initialisation des poids:  $w_0 = 0$ ;  $w_1 = 0$ ;  $w_2 = 0$ , et taux d'apprentissage 1;
- y = f(x) = 1 si x > 0 ; 0 sinon ;
- $X_0 = 1$

Quelle est la fonction obtenue par ce perceptron? Dessinez la droite frontière et montrer qu'elle sépare correctement les deux classes définies par cette fonction.

Exercice 3: Apprentissage d'un ensemble linéairement séparable

| étape | $w_0$ | $w_I$ | $w_2$ | Entrée    | $\sum_{0}^{2} w_{i} x_{i}$ | 0 | c | $w_0$ | $\overline{w}_I$ | $w_2$          |
|-------|-------|-------|-------|-----------|----------------------------|---|---|-------|------------------|----------------|
| init  |       |       |       |           |                            |   |   | 0     | 0                | $ \boxed{0 } $ |
| 1     | 0     | 0     | 0     | (1,0,2)   | 0                          | 0 | 1 | 1     | 0                | 2              |
| 2     | 1     | 0     | 2     | (1,2,0)   | 1                          | 1 | 0 | 0     | -2               | 2              |
| 3     | 0     | -2    | 2     | (1,1,1)   | 0                          | 0 | 1 | 1     | -1               | 3              |
| 4     | 1     | -1    | 3     | (1,3,0.5) | -0.5                       | 0 | 0 | 1     | -1               | 3              |
| 5     | 1     | -1    | 3     | (1,1,2.5) | 7.5                        | 1 | 1 | 1     | -1               | 3              |

Aucune entrée ne modifie le perceptron à partir de cette étape car ce perceptron classifie correctement tous les exemples de la base d'apprentissage. Le perceptron de sortie associe la classe 1 aux couples  $(X_1, X_2)$  tels que  $X_2 > X_1/3 - 1/3$ 

#### **Exercice 4:**

Appliquer l'algorithme du perceptron à seuil sur les données d'apprentissage suivantes:

| $X_I$ | $X_2$ | $Y_d$ |
|-------|-------|-------|
| 2     | 0     | 1     |
| 0     | 3     | 0     |
| 3     | 0     | 0     |
| 1     | 1     | 1     |

On suppose l'initialisation des poids:  $w_0 = 0.5$ ;  $w_1 = w_2 = 0$ , et le taux d'apprentissage 0.1.

C'est le perceptron qui utilise la fonction sigmoïde comme fonction d'activation.

Cette fonction possède plusieurs propriétés qui la rendent intéressante comme fonction d'activation:

- Elle n'est pas polynomiale;
- Elle est monotone, continue et dérivable partout;
- Elle renvoie des valeurs dans l'intervalle [0, 1];
- On peut aussi calculer sa dérivée en un point de façon très efficace à partir de sa valeur en ce point. Ceci réduit le temps calcul nécessaire à l'apprentissage d'un réseau de neurones: g'(x) = g(x)(1-g(x)).

- L'idée qui sous-tend le perceptron à sigmoïde consiste à ajuster les poids du réseau pour **minimiser la mesure de l'erreur** sur l'ensemble d'apprentissage.
- Pour un seul exemple d'apprentissage avec un vecteur entrée **x** et une sortie vraie **y**, la mesure « classique » de l'erreur est l'**erreur quadratique** qui s'écrit comme suit:

$$E = \frac{1}{2}Err^2 = \frac{1}{2}(y - g_w(x))^2$$
,

• On peut utiliser **la descente de gradient** pour réduire l'erreur quadratique en calculant la dérivée partielle de *E* par rapport à chaque **poids**. On a :

$$\frac{\partial E}{\partial W_{i}} = Err \times \frac{\partial Err}{\partial W_{i}}$$

**Remarque**: **si**  $f = u^n$  **donc**  $f' = (n u^{n-1}) . u' = n . u^{n-1} . u'$ 

• <u>Démonstration:</u>

$$\frac{\partial E}{\partial W_{j}} = Err \times \frac{\partial Err}{\partial W_{j}}$$

$$= Err \times \frac{\partial}{\partial W_{j}} \left( y - g_{W}(x) \right)$$

$$= Err \times \frac{\partial}{\partial W_{j}} \left( y - g \left( \sum_{j=0}^{n} W_{j} x_{j} \right) \right)$$

$$= -Err \times g' \left( \sum_{j=0}^{n} W_{j} x_{j} \right) \times x_{j}$$

$$= -Err \times g'(in) \times x_{j}$$

**Remarque**: Si f(x)=g(ax) donc f'(x)=a.g'(ax)

• Lorsqu'on veut réduire *E*, on actualise les poids comme suit :

$$W_{j} = W_{j} - \alpha \frac{\partial E}{\partial W_{j}}$$

$$W_{j} = W_{j} + \alpha \times Err \times g'(in) \times x_{j}$$

# Algorithme 2: Perceptron à sigmoide basé sur la descente du gradient:

- 1/ Initialisation des poids (y compris le bias) à des valeurs (petites) choisies au hasard.
- 2/ Présentation d'une entrée  $X = (x_0, x_1, ..., x_n)$  de la base d'apprentissage.
- 3/ Calcul de la sortie obtenue y pour cette entrée :  $x = (w_i . x_i)$  $y = g(x) : \frac{1}{1 + e^{-x}}$
- 4/ Calculer l'erreur par:  $\mathbf{Err} = y_d y = y_d g(x)$ Modifier les poids par:  $w_i(\mathbf{t}+1) = w_i(\mathbf{t}) + \alpha \cdot \mathbf{Err} \cdot g'(\mathbf{x}) \cdot x_i$ et  $\alpha$  est le pas de modification choisi entre 0 et 1.
- 5/ On répète jusqu'à la convergence du processus. On retient alors les derniers poids.