Related Papers:

Neural Network Semantics / Semantic Encodings.

Classic Papers. [17]

Conditional Logic (Feedforward Net). [2], [14], [15], [8] (soundness), [9] (model-building) [Any other relevant work by the Garcez lab?]

Description Logic w. Typicality. [10], [11] [Any other relevant work by the Giordano lab?] Modal Logic w. Typicality. [13]

[Any other big trends I'm missing? See the new survey by Odense + Garcez!]

Miscellaneous. [5], [6]

Surveys. [18] [1], [20], [12], [16], [3], [21] (the first few sections are a great introduction to Neural Network Semantics)

Help with Technical Details.

Neighborhood Models. [19]

Temporal Logic Rules. [7]

Nominals (Hybrid Logic). [4]

Step 4. Write up my new definitions & proof in the Texmacs file. Again, should be a *very* straightforward extension, and the proof (proofs are just unit-tests for definitions) shouldn't take up too much room at all (1-2 pages, including defs)

1 Interpreted Neural Nets

1.1 Basic Definitions

DEFINITION 1.1. An **interpreted ANN** (Artificial Neural Network) is a pointed directed graph $\mathcal{N} = \langle N, E, W, A, O, V \rangle$, where

- N is a finite nonempty set (the set of **neurons**)
- $E \subseteq N \times N$ (the set of **excitatory neurons**)
- $W: E \to \mathbb{R}$ (the **weight** of a given connection)
- *A* is a function which maps each $n \in N$ to $A^{(n)}: \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}$ (the activation function for n, where k is the indegree of n)
- *O* is a function which maps each $n \in N$ to $O^{(n)}: \mathbb{R} \to \{0, 1\}$ (the **output function** for *n*)
- V: propositions \cup nominals $\rightarrow \mathcal{P}(N)$ is an assignment of nominals to individual neurons (the **valuation function**). If i is a nominal, we require |V(i)| = 1, i.e. a singleton.

DEFINITION 1.2. A **BFNN** (Binary Feedforward Neural Network) is an interpreted ANN $\mathcal{N} = \langle N, E, W, A, O, V \rangle$ that is

- Feed-forward: E does not contain any cycles
- **Binary**: the output of each neuron is in $\{0, 1\}$
- $O^{(n)} \circ A^{(n)}$ is **zero at zero** in the first parameter: $O^{(n)}(A^{(n)}(\vec{0}, \vec{w})) = 0$
- $O^{(n)} \circ A^{(n)}$ is **strictly monotonically increasing** in the second parameter: for all $\vec{x}, \vec{w}_1, \vec{w}_2 \in \mathbb{R}^k$, if $\vec{w}_1 < \vec{w}_2$ then $O^{(n)}(A^{(n)}(\vec{x}, \vec{w}_1)) < O^{(n)}(A^{(n)}(\vec{x}, \vec{w}_2))$. We will more often refer to the equivalent condition:

$$\vec{w}_1 \leq \vec{w}_2$$
 iff $O^{(n)}(A^{(n)}(\vec{x}, \vec{w}_1)) \leq O^{(n)}(A^{(n)}(\vec{x}, \vec{w}_2))$

DEFINITION 1.3. Given a BFNN \mathcal{N} , Set = $\mathcal{P}(N) = \{S | S \subseteq N\}$

DEFINITION 1.4. For $S \in \text{Set}$, let $\chi_S: N \to \{0, 1\}$ be given by $\chi_S = 1$ iff $n \in S$

We write W_{ij} to mean W(i,j) for $(i,j) \in E$. To keep the notation from getting really messy, I'll also define:

DEFINITION 1.5. Let $S \in \text{Set}$, $\vec{m} = m_1, \dots, m_k$ be a sequence where each $m_i \in N$, and let $n \in N$. Then:

Activates_S
$$(\vec{m}, n) = O^{(n)}(A^{(n)}((\chi_S(m_1), ..., \chi_S(m_k)); (W(m_1, n), ..., W(m_k, n))))$$

i.e. the $m_i \in S$ subsequently "activate" n.

PROPOSITION 1.6. Let $S_1, S_2 \in \text{Set}$, $\vec{m} = m_1, ..., m_k$ be a sequence where each $m_i \in N$, and let $n \in N$. Suppose that S_1 and S_2 agree on all m_i , i.e. for all $1 \le i \le k$, $m_i \in S_1$ iff $m_i \in S_2$. Then

$$Activates_{S_1}(\vec{m}, n) = Activates_{S_2}(\vec{m}, n)$$

Proof. We have:

$$\begin{aligned} \text{Activates}_{S_1}(\vec{m},n) &= O^{(n)}(A^{(n)}((\chi_{S_1}(m_1),\ldots,\chi_{S_1}(m_k));(W(m_1,n),\ldots,W(m_k,n)))) \\ &= O^{(n)}(A^{(n)}((\chi_{S_2}(m_1),\ldots,\chi_{S_2}(m_k));(W(m_1,n),\ldots,W(m_k,n)))) \\ &= \text{Activates}_{S_2}(\vec{m},n) \end{aligned}$$

1.2 Prop and Reach

DEFINITION 1.7. (Adapted from [14, Definition 3.4]) Let Prop: Set \rightarrow Set be defined recursively as follows: $n \in \text{Prop}(S)$ iff either

Base Case. $n \in S$, or

Constructor. For those $\vec{m} = m_1, \dots, m_k$ such that $(m_i, n) \in E$, Activates_{Prop(S)} $(\vec{m}, n) = 1$.

DEFINITION 1.8. Let Reach: Set \rightarrow Set be defined recursively as follows: $n \in \text{Reach}(S)$ iff either

Base Case. $n \in S$, or

Constructor. There is an $m \in \text{Reach}(S)$ such that $(m,n) \in E$.

PROPOSITION 1.9. (Alternate characteriz. of Reach) Let $n \in N$, $S \in \text{Set}$. Then $n \in \text{Reach}(S)$ iff there is a path from some $m \in S$ to n in E.

Proof. []

PROPOSITION 1.10. Let $\mathcal{N} \in \text{Net.}$ For all $S, S_1, S_2 \in \text{Set}$, $n, m \in \mathbb{N}$, Reach is

(Inclusive). $S \subseteq \text{Reach}(S)$

(**Idempotent**). Reach(S) = Reach(Reach(S))

(Acyclic). If $S_1 \subseteq \text{Reach}(S_2)$ and $S_2 \subseteq \text{Reach}(S_1)$ then $S_1 = S_2$.

(Monotonic). If $S_1 \subseteq S_2$ then Reach $(S_1) \subseteq \text{Reach}(S_2)$

Proof. We check each in turn:

(Inclusive). If $n \in S$, then $n \in \text{Reach}(S)$ by the base case of Reach.

(**Idempotent**). The (\subseteq) direction is just Inclusion. As for (\supseteq), let $n \in \text{Reach}(\text{Reach}(S))$, and proceed by induction on the outer Reach.

Base Step. $n \in \text{Reach}(S)$, and so we are done.

Inductive Step. There is an $m \in \text{Reach}(\text{Reach}(S))$ such that $(m, n) \in E$. by inductive hypothesis, $m \in \text{Reach}(S)$. And so by definition, $n \in \text{Reach}(S)$.

(Acyclic). Suppose $S_1 \subseteq \text{Reach}(S_2)$ and $S_2 \subseteq \text{Reach}(S_1)$. We will show $S_1 \subseteq S_2$ (the other direction is similar). Todo

(Monotonic). Let $n \in \text{Reach}(S_1)$. We proceed by induction on $\text{Reach}(S_1)$.

Base Step. $n \in S_1$. So $n \in S_2 \subseteq \text{Reach}(S_2)$.

Inductive Step. There is an $m \in \text{Reach}(S_1)$ such that $(m, n) \in E$. By inductive hypothesis, $m \in \text{Reach}(S_2)$. And so by definition, $n \in \text{Reach}(S_2)$.

PROPOSITION 1.11. (Adapted from [14, Remark 4]) Let $\mathcal{N} \in \text{Net}$. For all $S, S_1, S_2 \in \text{Set}$, Prop is

(Inclusive). $S \subseteq Prop(S)$

(**Idempotent**). Prop(S) = Prop(Prop(S))

(Contained in Reach). $Prop(S) \subseteq Reach(S)$

Proof. We check each in turn:

(Inclusive). Similar to the proof of Inclusion for Reach.

(**Idempotent**). The (\subseteq) direction is just Inclusion. As for (\supseteq), let $n \in \text{Prop}(\text{Prop}(S))$, and proceed by induction on Prop(Prop(S)).

Base Step. $n \in Prop(S)$, and so we are done.

Inductive Step. For those $\vec{m} = m_1, \dots, m_k$ such that $(m_i, n) \in E$,

$$\mathsf{Activates}_{\mathsf{Prop}(\mathsf{Prop}(S))}(\vec{m}, n) = 1$$

By inductive hypothesis, $m_i \in \text{Prop}(\text{Prop}(S))$ iff $m_i \in \text{Prop}(S)$. By Proposition 1.6, Activates_{Prop}(S)(\vec{m} , n) = 1, and so $n \in \text{Prop}(S)$.

(Contained in Reach). Let $n \in Prop(S)$, and proceed by induction on Prop.

Base Step. $n \in S$. So $n \in \text{Reach}(S)$.

Inductive Step. For those $\vec{m} = m_1, \dots, m_k$ such that $(m_i, n) \in E$,

$$\mathsf{Activates}_{\mathsf{Prop}(S)}(\vec{m},n) = 1$$

Since $O \circ A$ is zero at zero, we have $m_i \in \text{Prop}(S)$ for *some* $m = m_i$. By inductive hypothesis, $m \in \text{Reach}(S)$. And since $(m, n) \in E$, by definition of Reach, $n \in \text{Reach}(S)$.

PROPOSITION 1.12. The Cumulative and Loop properties from [14] [The KLM Cumulative & Loop properties, actually], i.e.

(Cumulative). If $S_1 \subseteq S_2 \subseteq \text{Prop}(S_1)$ then $\text{Prop}(S_1) \subseteq \text{Prop}(S_2)$

(Loop). If $S_1 \subseteq \text{Prop}(S_0), \dots, S_n \subseteq \text{Prop}(S_{n-1})$ and $S_0 \subseteq \text{Prop}(S_n)$,

then $Prop(S_i) = Prop(S_j)$ for all $i, j \in \{0, ..., n\}$

follow from the properties of Prop and Reach above.

Proof. [Todo – note that (Cumulative) actually follows from (Loop). Use acyclic property of Reach to get (Loop)] □

1.3 Neural Network Semantics

DEFINITION 1.13. Formulas of our language \mathcal{L} are given by

$$\varphi ::= p | \neg \varphi | \varphi \wedge \varphi | \mathbf{K} \varphi | \mathbf{T} \varphi$$

where p is any propositional variable, and i is any nominal (denoting a neuron). Material implication $\varphi \to \psi$ is defined as $\neg \varphi \lor \psi$. We define $\bot, \lor, \leftrightarrow, \Leftrightarrow$, and the dual operators $\langle \mathbf{K} \rangle, \langle \mathbf{T} \rangle$ in the usual way.

DEFINITION 1.14. Let $\mathcal{N} \in \text{Net}$. The semantics $[\cdot]: \mathcal{L} \to \text{Set}$ for \mathcal{L} are defined recursively as follows:

DEFINITION 1.15. (**Truth at a neuron**) $\mathcal{N}, n \Vdash \varphi$ iff $n \in \llbracket \varphi \rrbracket_{\mathcal{N}}$.

DEFINITION 1.16. (**Truth in a net**) $\mathcal{N} \models \varphi$ iff $\mathcal{N}, n \models \varphi$ for all $n \in \mathbb{N}$.

DEFINITION 1.17. (**Entailment**) $\Gamma \models_{\text{BFNN}} \varphi$ if for all BFNNs \mathcal{N} for all neurons $n \in \mathbb{N}$, if $\mathcal{N}, n \models \Gamma$ then $\mathcal{N}, n \models \varphi$.

2 Neighborhood Models

2.1 Basic Definitions

DEFINITION 2.1. [19, Definition 1.9] A **neighborhood frame** is a pair $\mathcal{F} = \langle W, f \rangle$, where W is a non-empty set of **worlds** and $f: W \to \mathcal{P}(\mathcal{P}(W))$ is a **neighborhood function**. A **multi-frame** may have more than one neighborhood function, but to keep things simple I won't distinguish between frames and multi-frames.

DEFINITION 2.2. [19, Section 1.1] Let $\mathcal{F} = \langle W, f \rangle$ be a neighborhood frame, and let $w \in W$. The set $\bigcap_{X \in f(w)} X$ is called the **core of** f(w), abbreviated $\cap f(w)$.

DEFINITION 2.3. [19, Definition 1.4] Let $\mathcal{F} = \langle W, f \rangle$ be a frame. \mathcal{F} is a **proper filter** iff:

- f is **closed under finite intersections**: for all $w \in W$, if $X_1, ..., X_n \in f(w)$ then their intersection $\bigcap_{i=1}^k X_i \in f(w)$
- f is closed under supersets: for all $w \in W$, if $X \in f(w)$ and $X \subseteq Y \subseteq W$, then $Y \in f(w)$
- f contains the unit: iff $W \in f(w)$

PROPOSITION 2.4. [19, Corollary 1.1] If $\mathcal{F} = \langle W, f \rangle$ is a filter, and W is finite, then \mathcal{F} contains its core.

Proof. [Todo]

PROPOSITION 2.5. [19, [Which?]] If $\mathcal{F} = \langle W, f \rangle$ is a proper filter, then for all $w \in W$, $Y^{\complement} \in f(w)$ iff $Y \notin f(w)$.

Proof. (\rightarrow) Suppose for contradiction that $Y^{\complement} \in f(w)$ and $Y \in f(w)$. Since \mathcal{F} is closed under intersection, $Y^{\complement} \cap Y = \emptyset \in f(w)$, which contradicts the fact that \mathcal{F} is proper.

(←) Suppose for contradiction that $Y \not\in f(w)$, yet $Y^{\complement} \not\in f(w)$. Since \mathcal{F} is closed under intersection, $\cap f(w) \in f(w)$. Moreover, since \mathcal{F} is closed under superset we must have $\cap f(w) \not\subseteq Y$ and $\cap f(w) \not\subseteq Y^{\complement}$. But this means $\cap f(w) \not\subseteq Y \cap Y^{\complement} = \emptyset$, i.e. there is some $x \in \cap f(w)$ such that $x \in \emptyset$. This contradicts the definition of the empty set.

DEFINITION 2.6. Let $\mathcal{F} = \langle W, f, g \rangle$ be a frame. \mathcal{F} is a **preferential filter** iff:

- W is finite
- $\langle W, f \rangle$ forms a proper filter, and g contains the unit
- f is acyclic: for all $u_1, \ldots, u_n \in W$, if $u_1 \in \cap f(u_2), \ldots, u_{n-1} \in \cap f(u_n), u_n \in \cap f(u_1)$ then all $u_i = u_i$.
- f,g are **reflexive**: for all $w \in W$, $w \in \cap f(w)$ (similarly for g)
- f,g are transitive: for all $w \in W$, if $X \in f(w)$ then $\{u \mid X \in f(u)\} \in f(w)$ (similarly for g)
- g contains f: for all $w \in W$, if $X \in f(w)$ then $X \in g(w)$.

PROPOSITION 2.7. Let $\mathcal{F} = \langle W, f \rangle$ be a frame. Suppose f is reflexive, transitive, and **asymmetric**, i.e. $u_1 \in \cap f(u_2)$ and $u_2 \in \cap f(u_1)$ implies $u_1 = u_2$. Then f is acyclic.

Proof. Let $u_1, \ldots, u_n \in W$, and suppose $u_1 \in \cap f(u_2), \ldots, u_{n-1} \in \cap f(u_n), u_n \in \cap f(u_1)$. WLOG we will show that $u_1 = u_n$. [Todo]

2.2 Neighborhood Semantics

DEFINITION 2.8. [19, Definition 1.11] Let $\mathcal{F} = \langle W, f, g \rangle$ be a neighborhood frame. A **neighborhood model** based on \mathcal{F} is $\mathcal{M} = \langle W, f, g, V \rangle$, where $V : \mathcal{L} \to \mathcal{P}(W)$ is a valuation function.

DEFINITION 2.9. [19, Definition 1.12] Let $\mathcal{M} = \langle W, f, g, V \rangle$ be a model based on $\mathcal{F} = \langle W, f, g \rangle$ The (neighborhood) semantics for \mathcal{L} are defined recursively as follows:

$$\begin{array}{lll} \mathcal{M}, w \Vdash p & \text{iff} & w \in V(p) \\ \mathcal{M}, w \Vdash \neg \varphi & \text{iff} & \mathcal{M}, w \not\models \varphi \\ \mathcal{M}, w \Vdash \varphi \land \psi & \text{iff} & \mathcal{M}, w \Vdash \varphi \text{ and } \mathcal{M}, w \Vdash \psi \\ \mathcal{M}, w \Vdash \mathbf{K}\varphi & \text{iff} & \{u \mid \mathcal{M}, u \Vdash \varphi\} \in f(w) \\ \mathcal{M}, w \Vdash \mathbf{T}\varphi & \text{iff} & \{u \mid \mathcal{M}, u \Vdash \varphi\} \in g(w) \end{array}$$

In neighborhood semantics, the operators \mathbf{K} , and \mathbf{T} are more natural to interpret. But when we gave our neural semantics, we instead interpreted the *duals* $\langle \mathbf{K} \rangle$, and $\langle \mathbf{T} \rangle$. Since we need to relate the two, I'll write the explicit neighborhood semantics for the duals here:

$$\mathcal{M}, w \Vdash \langle \mathbf{K} \rangle \varphi \quad \text{iff} \quad \{u \mid \mathcal{M}, u \not \models \varphi\} \not \in f(w)$$

$$\mathcal{M}, w \Vdash \langle \mathbf{T} \rangle \varphi \quad \text{iff} \quad \{u \mid \mathcal{M}, u \not \models \varphi\} \not \in g(w)$$

DEFINITION 2.10. [19, Definition 1.13] (**Truth in a model**) $\mathcal{M} \models \varphi$ iff $\mathcal{M}, w \Vdash \varphi$ for all $w \in W$.

DEFINITION 2.11. [19, Definition 2.32] (**Entailment**) Let F be a collection of neighborhood frames. $\Gamma \models_F \varphi$ if for all models \mathcal{M} based on a frame $\mathcal{F} \in F$ and for all worlds $w \in W$, if $\mathcal{M}, w \models \Gamma$ then $\mathcal{M}, w \models \varphi$.

Note. This is the *local* consequence relation in modal logic.

3 From Nets to Frames

This is the easy ("soundness") direction!

DEFINITION 3.1. Given a BFNN \mathcal{N} , its **simulation frame** $\mathcal{F}^{\bullet} = \langle W, f, g \rangle$ is given by:

- W = N
- $f(w) = \{S \subseteq W \mid w \notin \text{Reach}(S^{\mathbb{C}})\}$
- $g(w) = \{S \subseteq W \mid w \notin \text{Prop}(S^{\mathbb{C}})\}$

Moreover, the **simulation model** $\mathcal{M}^{\bullet} = \langle W, f, g, V \rangle$ based on \mathcal{F}^{\bullet} has:

- $V_{\mathcal{M}} \cdot (p) = V_{\mathcal{N}}(p)$;
- $V_{\mathcal{M}} \cdot (i) = V_{\mathcal{N}}(i)$

THEOREM 3.2. Let \mathcal{N} be a BFNN, and let \mathcal{M}^{\bullet} be the simulation model based on \mathcal{F}^{\bullet} . Then for all $w \in W$,

$$\mathcal{M}^{\bullet}, w \Vdash \varphi$$
 iff $\mathcal{N}, w \Vdash \varphi$

Proof. By induction on φ . The propositional, $\neg \varphi$, and $\varphi \wedge \psi$ cases are trivial.

 $\langle \mathbf{K} \rangle \boldsymbol{\varphi}$ case:

```
\mathcal{M}^{\bullet}, w \Vdash \langle \mathbf{K} \rangle \varphi \quad \text{iff} \quad \{u \mid \mathcal{M}^{\bullet}, w \not \models \varphi\} \notin f(w) \quad \text{(by definition)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin f(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \llbracket \varphi \rrbracket^{\mathbb{C}} \notin f(w) \quad \text{(by choice of } f) \\ \quad \text{iff} \quad w \in \text{Reach}(\llbracket (\varphi^{\mathbb{C}})^{\mathbb{C}} \rrbracket) \quad \text{(by choice of } f) \\ \quad \text{iff} \quad w \in \mathbb{R} \text{each}(\llbracket \varphi \rrbracket) \quad \text{(by definition)} \\ \quad \text{iff} \quad \mathcal{N}, w \Vdash \langle \mathbf{K} \rangle \varphi \quad \text{(by definition)} \\ \quad \text{(by definition)} \quad \text{(by definitio
```

 $\langle T \rangle \varphi$ case:

```
\mathcal{M}^{\bullet}, w \Vdash \langle \mathbf{T} \rangle \varphi \quad \text{iff} \quad \{u \mid \mathcal{M}^{\bullet}, w \not\models \varphi\} \notin g(w) \quad \text{(by definition)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \llbracket \varphi \rrbracket^{\mathbb{C}} \notin g(w) \quad \text{(by choice of } g) \\ \quad \text{iff} \quad w \in \text{Prop}(\llbracket (\varphi^{\mathbb{C}})^{\mathbb{C}} \rrbracket) \quad \text{(by choice of } g) \\ \quad \text{iff} \quad w \in \llbracket \langle \mathbf{T} \rangle \varphi \rrbracket \quad \text{(by definition)} \\ \quad \text{iff} \quad \mathcal{N}, w \Vdash \langle \mathbf{T} \rangle \varphi \quad \text{(by definition)}
```

COROLLARY 3.3. $\mathcal{M}^{\bullet} \models \varphi$ iff $\mathcal{N} \models \varphi$.

THEOREM 3.4. \mathcal{F}^{\bullet} is a preferential filter.

Proof. We show each in turn:

W is finite. This holds because our BFNN is finite.

- *f* is closed under finite intersection. Suppose $X_1,...,X_n \in f(w)$. By definition of $f, w \notin \bigcup_i \operatorname{Reach}(X_i^{\complement})$ for all i. Since Reach is monotonic, [Make this a lemma!] we have $\bigcup_i \operatorname{Reach}(X_i^{\complement}) = \operatorname{Reach}(\bigcup_i X_i^{\complement}) = \operatorname{Reach}((\bigcap_i X_i)^{\complement})$. So $w \notin \operatorname{Reach}((\bigcap_i X_i)^{\complement})$. But this means that $\bigcap_i X_i \in f(w)$.
- f is closed under superset. Suppose $X \in f(w), X \subseteq Y$. By definition of f, $w \notin \text{Reach}(X^{\complement})$. Note that $Y^{\complement} \subseteq X^{\complement}$, and so by monotonicity of Reach we have $w \notin \text{Reach}(Y^{\complement})$. But this means $Y \in f(w)$, so we are done.
- **f** contains the unit. Note that for all $w \in W$, $w \notin \text{Reach}(\emptyset) = \text{Reach}(W^{\complement})$. So $W \in f(w)$.
- **g contains the unit.** Same as the proof for f, except that we use the fact that for all $w, w \notin \text{Prop}(\emptyset)$
- *f* is acyclic. Suppose $u_1, \ldots, u_n \in W$, with $u_1 \in \cap f(u_2), \ldots, u_{n-1} \in \cap f(u_n), u_n \in \cap f(u_1)$. That is, each $u_i \in \bigcap_{X \in f(u_{i+1})} X$. By choice of f, each $u_i \in \bigcap_{u_{i+1} \notin \text{Reach}(X^{\complement})} X$. Substituting X^{\complement} for X we get $u_i \in \bigcap_{u_{i+1} \notin \text{Reach}(X)} X^{\complement}$. In other words, $u_1 \in \text{Reach}^{-1}(u_2), \ldots, u_{n-1} \in \text{Reach}^{-1}(n), u_n \in \text{Reach}^{-1}(u_1)$. [Update!] By Proposition?, each $u_i = u_i$.
- *f* is reflexive. We want to show that $w \in \cap f(w)$. Well, suppose $X \in f(w)$, i.e. $w \notin \text{Reach}(X^{\complement})$ (by definition of f). Since for all $S, S \subseteq \text{Reach}(S)$, we have $w \notin X^{\complement}$. But this means $w \in X$, and we are done.
- **g is reflexive.** Same as the proof for f, except we use the fact that for all S, $S \subseteq \text{Prop}(S)$.
- f is transitive. Suppose $X \in f(w)$, i.e. $w \notin \text{Reach}(X^{\complement})$. Well,

```
\begin{aligned} \operatorname{Reach}(X^{\complement}) &= \operatorname{Reach}(\operatorname{Reach}(X^{\complement})) & \text{(by Idempotence of Reach)} \\ &= \operatorname{Reach}(\{u|u \in \operatorname{Reach}(X^{\complement})\}) \\ &= \operatorname{Reach}(\{u|u \notin \operatorname{Reach}(X^{\complement})\}^{\complement}) \\ &= \operatorname{Reach}(\{u|X \in f(u)\}^{\complement}) & \text{(by definition of } f) \end{aligned}
```

So by definition of f, $\{u|X \in f(u)\} \in f(w)$.

- g is transitive. Same as the proof for f, except we use the fact that Prop is idempotent.
- **g contains** f. Suppose $X \in f(w)$, i.e. $w \notin \text{Reach}(X^{\complement})$. Since for all S, $\text{Prop}(S) \subseteq \text{Reach}(S)$, we have $w \notin \text{Prop}(X^{\complement})$. And so $X \in g(w)$, and we are done.

4 From Frames to Nets

This is the harder ("completeness") direction!

DEFINITION 4.1. Suppose we have net \mathcal{N} and node $n \in \mathbb{N}$ with incoming nodes $m_1, \dots, m_k, (m_i, n) \in E$. Let hash: $\mathcal{P}(\{m_1, \dots, m_k\}) \times \mathbb{N}^k \to \mathbb{N}$ be defined by

$$\mathsf{hash}(S, \vec{w}) = \prod_{m_i \in S} w_i$$

PROPOSITION 4.2. hash $(S, \overrightarrow{W}(m_i, n)): \mathcal{P}(\{m_1, \dots, m_k\}) \to P_k$, where

$$P_k = \{n \in \mathbb{N} \mid n \text{ is the product of some subset of primes } \{p_1, \dots, p_k\}\}$$

is bijective (and so has a well-defined inverse hash⁻¹).

DEFINITION 4.3. Let \mathcal{M} be a model based on preferential filter $\mathcal{F} = \langle W, f, g \rangle$. Its **simulation net** $\mathcal{N}^{\bullet} = \langle N, E, W, A, O, V \rangle$ is the BFNN given by:

- N = W
- $(u, v) \in E \text{ iff } u \in \cap f(v)$

Now let m_1, \ldots, m_k list those nodes such that $(m_i, n) \in E$.

- $W(m_i, n) = p_i$, the *i*th prime number.
- $A^{(n)}(\vec{x}, \vec{w}) = \text{hash}(\{m_i | x_i = 1\}, \vec{w})$
- $O^{(w)}(x) = 1$ iff $(hash^{-1}(x)[0])^{c} \notin g(n)$
- $V_{\mathcal{N}} \cdot (p) = V_{\mathcal{M}}(p)$

LEMMA 4.4. Let $\vec{m} = m_1, \dots, m_k$ be those nodes such that $(m_i, n) \in E$. Then

Activates_S
$$(\vec{m}, n) = 1$$
 iff $\{m_i | m_i \in S\}^{C} \notin g(n)$

Proof. Activates_S(\vec{m} , n) = 1 iff:

$$\begin{split} O^{(n)}(A^{(n)}((\chi_S(m_1),\ldots,\chi_S(m_k));(W(m_1,n),\ldots,W(m_k,n)))) &= 1\\ \text{iff} &\quad \mathsf{hash}^{-1}(\mathsf{hash}(\{m_i|m_i\!\in\!S\};(W(m_1,n),\ldots,W(m_k,n)))[0])^\complement \not\in g(n)\\ \text{iff} &\quad \{m_i|m_i\!\in\!S\}^\complement \not\in g(n) \end{split}$$

CLAIM 4.5. \mathcal{N}^{\bullet} is a BFNN.

Proof. Clearly \mathcal{N}^{\bullet} is a binary ANN. We check the rest of the conditions:

- \mathcal{N}^{\bullet} is feed-forward. Suppose for contradiction that E contains a cycle, i.e. distinct $u_1, \ldots, u_n \in \mathbb{N}$ such that $u_1 E u_2, \ldots, u_{n-1} E u_n, u_n E u_1$. Then we have $u_1 \in \cap f(u_2), \ldots, u_{n-1} \in \cap f(u_{n-1}), u_n \in \cap f(u_1)$, which contradicts the fact that f is acyclic.
- $O^{(n)} \circ A^{(n)}$ is zero at zero. Suppose for contradiction that $O^{(v)}(A^{(v)}(\vec{0}, \vec{w})) = 1$. Then $(\mathsf{hash}^{-1}(\mathsf{hash}(\emptyset)))^{\mathbb{C}} = \emptyset^{\mathbb{C}} = W \notin g(v)$, which contradicts the fact that f contains the unit.
- $O^{(n)} \circ A^{(n)}$ is monotonically increasing. Let \vec{w}_1, \vec{w}_2 be such that hash is well-defined (i.e. are vectors of prime numbers), and suppose $\vec{w}_1 < \vec{w}_2$. If $O^{(v)}(A^{(v)}(\vec{x}, \vec{w}_1)) = 1$, then $(\mathsf{hash}^{-1}(\mathsf{hash}(\vec{x}, \vec{w}_1))[0])^c \notin g(v)$. But this just means $\{m_i | x_i = 1\}^c \notin g(v)$. And so $(\mathsf{hash}^{-1}(\mathsf{hash}(\vec{x}, \vec{w}_2))[0])^c \notin g(v)$. But then $O^{(n)}(A^{(n)}(\vec{x}, \vec{w}_2)) = 1$.

The main point here is just that $\vec{w_1}$ and $\vec{w_2}$ are just indexing the set in question, and their actual values don't affect the final output (we don't need the $\vec{w_1} < \vec{w_2}$ hypothesis!). The real work happens within g(v).

LEMMA 4.6. Reach_N•(S) = { $n | S^{C} \notin f(n)$ }

Proof. For the (\supseteq) direction, let $n \in N$ be such that $S^{\complement} \notin f(n)$. By Proposition 2.5 and the fact that $\langle W, f \rangle$ forms a proper filter, $S \in f(n)$. By the definition of core, $\cap f(n) \subseteq S$. f is reflexive, which means in particular that $n \in \cap f(n) \subseteq S$. By the base case of Reach, we have $n \in \text{Reach}_{\mathcal{N}^{\bullet}}(S)$.

Now for the (\subseteq) direction. Suppose $n \in \text{Reach}(S)$, and proceed by induction on Reach.

Base step. $n \in S$. Suppose for contradiction that $S^{\mathbb{C}} \in f(n)$. By definition of core, $\cap f(n) \subseteq S^{\mathbb{C}}$. But since \mathcal{F} is reflexive, $n \in \cap f(n)$. So $n \in S^{\mathbb{C}}$, which contradicts $n \in S$.

Inductive step. There is $m \in \text{Reach}_{\mathcal{N}^{\bullet}}(S)$ such that $(m,n) \in E$ (and so $m \in \cap f(n)$). By inductive hypothesis, $S^{\mathbb{C}} \notin f(m)$. Now suppose for contradiction that $S^{\mathbb{C}} \in f(n)$. Since f is transitive, $\{t | S^{\mathbb{C}} \in f(t)\} \in f(n)$. By definition of core, $\cap f(n) \subseteq \{t | S^{\mathbb{C}} \in f(t)\}$. Since $m \in \cap f(n)$, $S^{\mathbb{C}} \in f(m)$. But this contradicts $S^{\mathbb{C}} \notin f(m)$! □

LEMMA 4.7. Prop_{\mathcal{N}} \cdot $(S) = \{n | S^{\mathbb{C}} \notin g(n)\}$

Proof. For the (\supseteq) direction, let $n \in \mathbb{N}$, suppose $S^{\mathbb{C}} \notin g(n)$. Since g contains $f, S^{\mathbb{C}} \notin f(n)$. By Proposition 2.5 and the fact that $\langle W, f \rangle$ forms a proper filter, $S \in f(n)$. By the definition of core, $\cap f(n) \subseteq S$. f is reflexive, which means in particular that $n \in \cap f(n) \subseteq S$. By the base case of Prop, $n \in \text{Prop}_{\mathbb{N}} \cdot (S)$.

As for the (\subseteq) direction, suppose $n \in \text{Prop}_{\mathcal{N}}(S)$, and proceed by induction on Prop.

Base step. $n \in S$. Suppose for contradiction that $S^{\mathbb{C}} \in g(n)$. Since \mathcal{G} is reflexive, $n \in \cap g(n)$. By definition of core, we have $\cap g(n) \subseteq S^{\mathbb{C}}$. But then $n \in \cap g(n) \subseteq S^{\mathbb{C}}$, i.e. $n \in S^{\mathbb{C}}$, which contradicts $n \in S$.

Inductive step. Let $\vec{m} = m_1, \dots, m_k$ list those nodes such that $(u_i, v) \in E$. We have

Activates<sub>Prop
$$N^{\bullet}(S)$$</sub> $(\vec{m}, n) = 1$

By Lemma 4.4, this means that $\{m_i | m_i \in \text{Prop}_{\mathcal{N}^{\bullet}}(S)\}^{\complement} \notin g(n)$. But by our inductive hypothesis, $\{m_i | m_i \in \text{Prop}_{\mathcal{N}^{\bullet}}(S)\} = \{m_i | S^{\complement} \notin g(n)\}$. For convenience, let T be this latter set, i.e. $T = \{m_i | S^{\complement} \notin g(n)\}$. So we have $T^{\complement} \notin g(n)$.

We would like to show that $S^{\mathbb{C}} \notin g(n)$. Suppose for contradiction that $S^{\mathbb{C}} \in g(n)$. Notice that, by definition of T, $T^{\mathbb{C}} = \{u_i | S^{\mathbb{C}} \in g(u_i)\}$. Since $S^{\mathbb{C}} \in g(v)$ and \mathcal{G} is transitive, $T^{\mathbb{C}} \in g(v)$, which contradicts $T^{\mathbb{C}} \notin g(v)$.

THEOREM 4.8. Let \mathcal{M} be a model based on a preferential filter \mathcal{F} , and let \mathcal{N}^{\bullet} be the corresponding simulation net. We have, for all $w \in W$,

$$\mathcal{M}, w \Vdash \varphi$$
 iff $\mathcal{N}^{\bullet}, w \Vdash \varphi$

 $\mathcal{M}, w \not\models \langle \mathbf{K} \rangle \varphi$ iff $\{u \mid \mathcal{M}, w \not\models \varphi\} \notin f(w)$ (by definition)

Proof. By induction on φ . Again, the propositional, $\neg \varphi$, and $\varphi \wedge \psi$ cases are trivial.

 $\langle \mathbf{K} \rangle \boldsymbol{\varphi}$ case:

```
iff \{u | u \notin \llbracket \varphi \rrbracket_{\mathcal{N}} \} \notin f(w) (Inductive Hypothesis)
                                                                              iff \|\boldsymbol{\varphi}\|_{\mathcal{N}}^{\mathbb{C}} \notin g(w)
                                                                              iff w \in \text{Reach}_{\mathcal{N}} \cdot (\llbracket \varphi \rrbracket)
                                                                                                                                               (by Lemma 4.6)
                                                                             iff w \in [\![\langle \mathbf{K} \rangle \varphi ]\!]_{\mathcal{N}}.
                                                                                                                                               (by definition)
                                                                             iff \mathcal{N}^{\bullet}, w \Vdash \langle \mathbf{K} \rangle \varphi
                                                                                                                                               (by definition)
\langle T \rangle \varphi case:
                                         \mathcal{M}, w \Vdash \langle \mathbf{T} \rangle \varphi iff \{u \mid \mathcal{M}, u \not\models \varphi\} \notin g(w) (by definition)
                                                                             iff \{u | u \notin \llbracket \varphi \rrbracket_{\mathcal{N}}\} \notin g(w) (Inductive Hypothesis)
                                                                             iff \|\varphi\|_{\mathcal{N}}^{\mathbb{C}} \neq g(w)
                                                                             iff w \in \mathsf{Prop}_{\mathcal{N}} \cdot (\llbracket \varphi \rrbracket)
                                                                                                                                              (by Lemma 4.7)
                                                                             iff w \in [\![\langle \mathbf{T} \rangle \varphi]\!]_{\mathcal{N}}.
                                                                                                                                              (by definition)
                                                                              iff \mathcal{N}^{\bullet}, w \Vdash \langle \mathbf{T} \rangle \varphi
                                                                                                                                              (by definition)
```

COROLLARY 4.9. $\mathcal{M} \models \varphi$ iff $\mathcal{N}^{\bullet} \models \varphi$.

_

5 Completeness

5.1 The Base Modal Logic

DEFINITION 5.1. Our logic L is the smallest set of formulas in $\mathcal L$ containing the axioms

```
(K). \mathbf{K}(\varphi \rightarrow \psi) \rightarrow (\mathbf{K}\varphi \rightarrow \mathbf{K}\psi)

(\mathbf{T}_{\mathbf{K}}). \mathbf{K}\varphi \rightarrow \varphi

(\mathbf{4}_{\mathbf{K}}). \mathbf{K}\varphi \rightarrow \mathbf{K}\mathbf{K}\varphi

(\mathbf{Grz}). \mathbf{K}(\mathbf{K}(\varphi \rightarrow \mathbf{K}\varphi) \rightarrow \varphi) \rightarrow \varphi

(\mathbf{T}_{\mathbf{T}}). \mathbf{T}\varphi \rightarrow \varphi

(\mathbf{4}_{\mathbf{T}}). \mathbf{T}\varphi \rightarrow \mathbf{T}\mathbf{T}\varphi

(\mathbf{K}-\mathbf{T}). \mathbf{K}\varphi \rightarrow \mathbf{T}\varphi
```

that is closed under:

(Necessitation). If $\varphi \in L$ then $\Box \varphi \in L$ for $\Box \in \{K, T\}$

DEFINITION 5.2. [19, Definition 2.30] (**Deduction for L**) $\vdash \varphi$ iff either φ is an axiom, or φ follows from some previously obtained formula by one of the inference rules. If $\Gamma \subseteq \mathcal{L}$ is a set of formulas, $\Gamma \vdash \varphi$ whenever there are finitely many $\psi_1, \ldots, \psi_k \in \Gamma$ such that $\vdash \psi_1 \land \ldots \land \psi_k \to \varphi$.

DEFINITION 5.3. [19, Definition 2.36] Γ is **consistent** iff $\Gamma \not\vdash \bot$. Γ is **maximally consistent** if Γ is consistent and for all $\varphi \in \mathcal{L}$ either $\varphi \in \Gamma$ or $\varphi \notin \Gamma$.

LEMMA 5.4. [19, Lemma 2.19] ("Lindenbaum's Lemma") We can extend any set Γ to a maximally consistent set $\Delta \supseteq \Gamma$.

DEFINITION 5.5. [19, Definition 2.36] (**Proof Set**) $|\varphi|_L = \{\Delta | \Delta \text{ is maximally consistent and } \varphi \in \Delta \}$

PROPOSITION 5.6. Let Δ be maximally consistent, and let $\Box \in \{K, T\}$. We have $\Box \varphi \in \Delta$ iff

 $\forall \Sigma$ maximally consistent, if $\forall \psi, \Box \psi \in \Delta$ implies $\psi \in \Sigma$, then $\varphi \in \Sigma$

Proof. The (\rightarrow) direction is straightforward. As for the (\leftarrow) direction, suppose contrapositively that $\Box \varphi \notin \Delta$, and let $\Sigma = \{\psi \mid \Box \psi \in \Delta\}$ [why is Σ maximally consistent?]. Then by construction, for all $\psi \Box \psi \in \Delta$ implies $\psi \in \Sigma$, but $\varphi \notin \Sigma$ (since $\Box \varphi \notin \Delta$).

5.2 Soundness

THEOREM 5.7. (**Soundness**) If $\Gamma \vdash \varphi$ then $\Gamma \models_{BFNN} \varphi$

Proof. Suppose $\Gamma \vdash \varphi$, and let $\mathcal{N}, n \models \Gamma$ We just need to check that each of the axioms and rules of inference are sound, from which we can conclude that $\mathcal{N}, n \models \varphi$. We can do this either by the semantics of BFNNs, or instead by checking them in an equivalent preferential frame $\mathcal{M}^{\bullet} = \langle W, f, g, V \rangle$:

To show soundness of:	Use:	Alternative:
(K)	Monotonicity of Reach	$\langle W, f \rangle$ forms a filter
$(T_{\mathbf{K}})$	Inclusion of Reach	Reflexivity of f
$(4_{\mathbf{K}})$	Idempotence of Reach	Transitivity of f
(Grz)	Proposition ?[Check! – and update, since the def changed]	f is acyclic [Check!]
(T_T)	Inclusion of Prop	Reflexivity of g
$(4_{\mathbf{T}})$	Idempotence of Prop	Transitivity of g
(T-K)	Reach contains Prop	g contains f
(Necessitation)	$\forall w, w \notin \text{Reach}(\emptyset), \text{Prop}(\emptyset)$	f, g contain the unit

5.3 Model Building

Given a set $\Gamma \subseteq \mathcal{L}$, I will show that we can build a net \mathcal{N} that models Γ . Since preferential filters are equivalent to BFNNs (over \mathcal{L}), I will focus instead on building a preferential filter \mathcal{F} . This is the same strategy taken by [14], who constructs KLM cumulative-ordered models in order to build a neural net.

The following are the standard canonical construction and facts for neighborhood models (see Eric Pacuit's book). Adapting these to our logic of K, K^{\downarrow}, T is a straightforward exercise in modal logic.

LEMMA 5.8. [19, Lemma 2.12 & Definition 2.37] We can build a **canonical** neighborhood model for **L**, i.e. a model $\mathcal{M}^C = \langle W^C, f^C, g^C, V^C \rangle$ such that:

- $W^C = \{ \Delta | \Delta \text{ is maximally consistent} \}$
- For each $\Delta \in W^C$ and each $\varphi \in \mathcal{L}$, $|\varphi|_{\mathbf{L}} \in f^C(\Delta)$ iff $\mathbf{K} \varphi \in \Delta$
- For each $\Delta \in W^C$ and each $\varphi \in \mathcal{L}$, $|\varphi|_L \in g^C(\Delta)$ iff $\mathbf{T}\varphi \in \Delta$
- $V^C(p) = |p|_{\mathbf{L}}$

Note. This is where the Necessitation rules come into play — we need them in order to guarantee that we can actually build this model!

LEMMA 5.9. [19, Lemma 2.13] (**Truth Lemma**) We have, for canonical model \mathcal{M}^C ,

$$\{\Delta \mid \mathcal{M}^C, \Delta \Vdash \varphi\} = |\varphi|_{\mathbf{L}}$$

Proof. By induction on φ . The propositional, and boolean cases are straightforward. **K** case.

$$\mathcal{M}^{C}, \Delta \Vdash \mathbf{K} \varphi \qquad \text{iff} \qquad \{u | \mathcal{M}^{C}, \Sigma \Vdash \varphi\} \in f^{C}(\Delta) \quad \text{(by definition)} \\ \text{iff} \qquad |\varphi|_{\mathbf{L}} \in f^{C}(\Delta) \qquad \text{(by IH)} \\ \text{iff} \qquad \mathbf{K} \varphi \in \Delta \qquad \qquad \text{(since } \mathcal{M}^{C} \text{ is canonical)} \\ \text{iff} \qquad \Delta \in |\mathbf{K} \varphi|_{\mathbf{L}} \qquad \text{(by definition)} \\ \mathcal{M}^{C}, \Delta \Vdash \mathbf{T} \varphi \qquad \text{iff} \qquad \{u | \mathcal{M}^{C}, \Sigma \Vdash \varphi\} \in g^{C}(\Delta) \quad \text{(by definition)} \\ \text{iff} \qquad |\varphi|_{\mathbf{L}} \in g^{C}(\Delta) \qquad \qquad \text{(by IH)} \\ \text{iff} \qquad \mathbf{T} \varphi \in \Delta \qquad \qquad \text{(since } \mathcal{M}^{C} \text{ is canonical)} \\ \text{iff} \qquad \Delta \in |\mathbf{T} \varphi|_{\mathbf{L}} \qquad \qquad \text{(by definition)} \\ \end{cases}$$

THEOREM 5.10. [State that our logic has the finite model property]

Proof. [Prove it by the usual filtration construction — the fact that the filtration is closed under \cap , \subseteq , reflexive, and transitive are all shown in Pacuit's book. So I just need to show that the same is true of the acyclic & skeleton properties.]

PROPOSITION 5.11. If \mathcal{M} is finite and satisfies the Truth Lemma, then \mathcal{M} is a preferential filter.

Proof. W^C is finite by assumption. Since **L** contains all instances of (**K**), (**T**), (**4**), (**T**), (**4**) it follows that f^C is a reflexive, transitive, proper filter, and g^C is reflexive and transitive (this is another classical result, see Pacuit's book). The only things left to show are that f^C is acyclic and f^C is the skeleton of g^C .

 W^C is finite. Holds by assumption.

 f^C is closed under finite intersection. It's enough to show that f^C is closed under binary intersections. L contains all instances of (K), from which we can derive all instances of:

(C)
$$\mathbf{K}\varphi \wedge \mathbf{K}\psi \rightarrow \mathbf{K}(\varphi \wedge \psi)$$

Suppose $|\varphi|_{\mathbf{L}}, |\psi|_{\mathbf{L}} \in f^{C}(\Delta)$. By definition of f^{C} , $\mathbf{K}\varphi \in \Delta$ and $\mathbf{K}\psi \in \Delta$. So $\mathbf{K}\varphi \wedge \mathbf{K}\psi \in \Delta$. Applying **(C)**, $\mathbf{K}(\varphi \wedge \psi) \in \Delta$. So $|\varphi \wedge \psi|_{\mathbf{L}} = |\varphi|_{\mathbf{L}} \cap |\psi|_{\mathbf{L}} \in \Delta$.

 f^{C} is closed under superset. L contains all instances of (K) and the necessitation rule, from which we can derive:

(RM) If
$$\varphi \to \psi \in \mathbf{L}$$
 then $\mathbf{K}\varphi \to \mathbf{K}\psi \in \mathbf{L}$

Suppose $|\varphi|_{\mathbf{L}} \in f^{C}(\Delta)$, and $|\varphi|_{\mathbf{L}} \subseteq |\psi|_{\mathbf{L}}$. The former fact gives us $\mathbf{K}\varphi \in \Delta$. The latter gives us, for all maximally consistent Δ , if $\varphi \in \Delta$ then $\psi \in \Delta$, i.e. $\varphi \to \psi \in \mathbf{L}$ [Is this correct? Probably not; we need to close the canonical model under superset]. By (**RM**), we have $\mathbf{K}\psi \in \Delta$, i.e. $|\psi|_{\mathbf{L}} \in f^{C}(\Delta)$.

 f^{C} contains the unit. L is closed under necessitation for K, from which we can derive:

(N) KT

That is, $\mathbf{K} \top \in \Delta$ for all maximally consistent Δ . So $|\top|_{\mathbf{L}} \in f^{C}(\Delta)$, i.e. $W^{C} \in f^{C}(\Delta)$.

- f^C is reflexive. First, let $\Delta \in W^C$, and suppose $|\varphi|_{\mathbf{L}} \in f^C(\Delta)$. By definition of f^C , $\mathbf{K}\varphi \in \Delta$. By $(\mathbf{T}_{\mathbf{K}})$, $\varphi \in \Delta$. Since φ was chosen arbitrarily, we have for all φ , if $|\varphi|_{\mathbf{L}} \in f^C(\Delta)$ then $\varphi \in \Delta$. In other words, $\Delta \in \bigcap_{|\varphi|_{\mathbf{L}} \in f^C(\Delta)} |\varphi|_{\mathbf{L}} = \cap f^C(\Delta)$.
- f^C is transitive. Suppose $|\varphi|_L \in f^C(\Delta)$. By definition of f^C , $\mathbf{K}\varphi \in \Delta$. By the $(\mathbf{4}_{\mathbf{K}})$ axiom, $\mathbf{K}\mathbf{K}\varphi \in \Delta$. But this means that $|\mathbf{K}\varphi|_L \in f^C(\Delta)$. By definition of proof set, we have $\{\Sigma | \mathbf{K}\varphi \in \Sigma\} \in f^C(\Delta)$. That is, $\{\Sigma | |\varphi|_L \in f^C(\Sigma)\} \in f^C(\Delta)$, and we are done.
- f^C is acyclic. [Update! no more nominals, acyclic rule has changed to Grz!] Since f^C is reflexive and transitive, by Proposition 2.7 it's enough to show that f^C is asymmetric. Suppose $\Delta_1 \in \cap f^C(\Delta_2)$ and $\Delta_2 \in \cap f^C(\Delta_1)$. By definition of core, $\Delta_1 \in \bigcap_{|\varphi|_L \in f^C(\Delta_2)} |\varphi|_L$ and $\Delta_2 \in \bigcap_{|\varphi|_L \in f^C(\Delta_1)} |\varphi|_L$, i.e. we have both of the following:
 - 1. $\forall \varphi$, if $\mathbf{K}\varphi \in \Delta_2$ then $\varphi \in \Delta_1$
 - 2. $\forall \varphi$, if $\mathbf{K}\varphi \in \Delta_1$ then $\varphi \in \Delta_2$

We want to show that $\Delta_1 = \Delta_2$. I'll show the (\subseteq) direction (the other direction is similar). Suppose for contradiction that $\varphi \in \Delta_1$, but $\varphi \notin \Delta_2$ (i.e. $\neg \varphi \in \Delta_2$).

Since Δ_1 is named, some $i \in \Delta_1$. By (Antisym), $\mathbf{K}(\langle \mathbf{K} \rangle i \to i) \in \Delta_1$. By (2), $\langle \mathbf{K} \rangle i \to i \in \Delta_2$. Rewriting, we get $\neg i \to \mathbf{K} \neg i \in \Delta_2$. [What next?]

 g^C contains the unit. Similar to the proof for f^C , but apply necessitation for **T** instead of **K**.

 g^C is reflexive. Similar to the proof for f^C , but apply (T_T) instead of (T_K) .

 g^C is transitive. Similar to the proof for f^C , but apply $(\mathbf{4}_T)$ instead of $(\mathbf{4}_K)$.

 g^C contains f^C . Suppose $|\varphi|_L \in f^C(\Delta)$. By definition of f^C , $K\varphi \in \Delta$. By the (K-T) axiom, $T\varphi \in \Delta$. And so $|\varphi|_L \in f^C(\Delta)$.

THEOREM 5.12. (**Model Building**) Given any consistent $\Gamma \subseteq \mathcal{L}$, we can construct a BFNN \mathcal{N} and neuron $n \in \mathbb{N}$ such that $\mathcal{N}, n \models \Gamma$.

Proof. Extend Γ to maximally consistent Δ using Lemma 5.4. Let $\mathcal{M}^{\mathcal{C}}$ be a canonical model for \mathbf{L} guaranteed by Lemma 5.8. By the Truth Lemma (Lemma 5.9), $\mathcal{M}^{\mathcal{C}}$, $\Delta \models \Delta$. So in particular, $\mathcal{M}^{\mathcal{C}}$, $\Delta \models \Gamma$.

By the Finite Model Property (Lemma 5.10), we can construct a finite model \mathcal{M}' satisfying exactly the same formulas at all worlds. By Proposition 5.11, \mathcal{M}' is a preferential filter.

From here, we can build our net \mathcal{N}^{\bullet} as before, satisfying exactly the same formulas as \mathcal{M} at all neurons (by Theorem 4.8). And so \mathcal{N}^{\bullet} , $\Delta \models \Gamma$.

THEOREM 5.13. (Completeness) For all consistent $\Gamma \subseteq \mathcal{L}$, if $\Gamma \models_{BFNN} \varphi$ then $\Gamma \vdash \varphi$

Proof. Suppose contrapositively that $\Gamma \not\models \varphi$. This means that $\Gamma \cup \{\neg \varphi\}$ is consistent, i.e. by Theorem 5.12 we can build a BFNN \mathcal{N} and neuron n such that $\mathcal{N}, n \models \Gamma \cup \{\neg \varphi\}$. In particular, $\mathcal{N}, n \not\models \varphi$. But then we must have $\Gamma \not\models \varphi$.

TODO:

- Double-check properties for canonical model & completeness
- Do filtration/finite model property
- Get bound on the size of the finite model.
- Think about complexity of decidability of the logic (but only if it seems easy)
- Copy-paste flipping \land , \lor , \neg considerations
- Write up fuzzy network considerations (in a crisp (non-fuzzy) language) fuzzy nets satisfy *exactly* the same crisp formulas as binary nets
- Make drawings in Tikz
- Make corrections Saul gave
- Close the canonical model under superset
- Put the page number/theorem number for each result
- Rename the axioms to something more readable $((\mathbf{T}_{\mathbf{T}})$ is confusing as hell)

References

- [1] Sebastian Bader and Pascal Hitzler. Dimensions of neural-symbolic integration-a structured survey. *ArXiv preprint* cs/0511042, 2005.
- [2] Christian Balkenius and Peter Gärdenfors. Nonmonotonic Inferences in Neural Networks. In KR, pages 32–39. 1991.
- [3] Vaishak Belle. Logic Meets Learning: From Aristotle to Neural Networks. In *Neuro-Symbolic Artificial Intelligence: The State of the Art*, pages 78–102. IOS Press, 2021.
- [4] Patrick Blackburn, Maarten De Rijke, and Yde Venema. *Modal logic: graph. Darst*, volume 53. Cambridge University Press, 2001.
- [5] Reinhard Blutner. Nonmonotonic inferences and neural networks. In *Information, Interaction and Agency*, pages 203–234. Springer, 2004.
- [6] Antony Browne and Ron Sun. Connectionist inference models. *Neural Networks*, 14(10):1331–1355, 2001.
- [7] Dov M Gabbay, Ian Hodkinson, and Mark A Reynolds. Temporal logic: mathematical foundations and computational aspects. 1994.
- [8] Artur S d'Avila Garcez, Krysia Broda, and Dov M Gabbay. Symbolic knowledge extraction from trained neural networks: a sound approach. *Artificial Intelligence*, 125(1-2):155–207, 2001.
- [9] Artur S d'Avila Garcez, Luis C Lamb, and Dov M Gabbay. Neural-symbolic cognitive reasoning. Springer Science Business Media, 2008.
- [10] Laura Giordano, Valentina Gliozzi, and Daniele Theseider Dupré. From common sense reasoning to neural network models through multiple preferences: An overview. *CoRR*, abs/2107.04870, 2021.
- [11] Laura Giordano, Valentina Gliozzi, and Daniele Theseider DuprÉ. A conditional, a fuzzy and a probabilistic interpretation of self-organizing maps. *Journal of Logic and Computation*, 32(2):178–205, 2022.
- [12] The Third AI Summer, AAAI Robert S. Engelmore Memorial Award Lecture. AAAI, 2020.
- [13] Caleb Kisby, Saúl Blanco, and Lawrence Moss. The logic of hebbian learning. In *The International FLAIRS Conference Proceedings*, volume 35. 2022.
- [14] Hannes Leitgeb. Nonmonotonic reasoning by inhibition nets. *Artificial Intelligence*, 128(1-2):161–201, 2001.
- [15] Hannes Leitgeb. Nonmonotonic reasoning by inhibition nets II. *International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems*, 11(supp02):105–135, 2003.
- [16] Hannes Leitgeb. Neural Network Models of Conditionals. In *Introduction to Formal Philosophy*, pages 147–176. Springer, 2018.
- [17] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. *The bulletin of mathematical biophysics*, 5(4):115–133, 1943.
- [18] Simon Odense and Artur d'Avila Garcez. A semantic framework for neural-symbolic computing. *ArXiv preprint arXiv:2212.12050*, 2022.
- [19] Eric Pacuit. *Neighborhood semantics for modal logic*. Springer, 2017.
- [20] Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, and Pascal Hitzler. Neuro-symbolic artificial intelligence: current trends. *ArXiv preprint arXiv:2105.05330*, 2021.