1. Introduzione ai Sistemi Operativi

1.1 Definizione e Scopi

- Il Sistema Operativo (SO) è un software che agisce come intermediario tra l'utente e l'hardware
- Fornisce un'astrazione dell'hardware (macchina virtuale)
- Gestisce le risorse del sistema in modo efficiente
- Offre servizi per i programmi applicativi

1.2 Funzioni Principali

1. Gestione dei Processi

- Creazione e terminazione
- Scheduling e dispatching
- Sincronizzazione e comunicazione
- Gestione dei deadlock

2. Gestione della Memoria

- Allocazione e deallocazione
- Memoria virtuale
- Protezione

3. Gestione del File System

- Organizzazione dei file
- Accesso e protezione
- Backup e recovery

4. Gestione delle Periferiche I/O

- Driver dei dispositivi
- Buffering
- Spooling

2. Processi e Stati

2.1 Definizione di Processo

- Un processo è un programma in esecuzione
- Include:
 - · Codice eseguibile (text section)
 - Dati (data section)
 - Stack
 - Heap

- Program counter
- Registri
- Risorse di sistema

2.2 Stati di un Processo

1. New (Nuovo)

- Processo appena creato
- Risorse non ancora allocate

2. Ready (Pronto)

- Processo in attesa del processore
- Tutte le risorse necessarie sono allocate
- In coda di ready

3. Running (In Esecuzione)

- Processo attualmente in esecuzione sulla CPU
- Un solo processo per CPU può essere in questo stato

4. Waiting/Blocked (In Attesa)

- Processo in attesa di un evento o risorsa
- Non può proseguire fino al verificarsi dell'evento

5. Terminated (Terminato)

- Processo che ha completato l'esecuzione
- Risorse liberate

2.3 Transizioni di Stato

- New → Ready: il sistema è pronto ad eseguire il processo
- Ready → Running: lo scheduler seleziona il processo
- Running → Ready: interruzione per time slice esaurito
- Running → Waiting: richiesta I/O o attesa evento
- Waiting → Ready: evento completato
- Running → Terminated: processo completato

3. Politiche di Scheduling

3.1 FCFS (First Come First Served)

- Il primo processo che arriva è il primo ad essere servito
- Semplice da implementare
- Non preemptive (non interrompibile)
- Può causare "effetto convoglio" (processi brevi aspettano dietro processi lunghi)

3.2 SJF (Shortest Job First)

- Esegue prima i processi più brevi
- Ottimo per minimizzare il tempo medio di attesa
- Difficile da implementare (come sapere la durata?)
- Non preemptive

3.3 Round Robin

- Ogni processo ottiene un quanto di tempo (time slice)
- Preemptive: al termine del quanto, il processo torna in coda
- Equo ma overhead per context switch
- Prestazioni dipendono dalla scelta del quanto

3.4 Priorità

- Ad ogni processo viene assegnata una priorità
- Possibile starvation dei processi a bassa priorità
- Soluzione: aging (aumentare la priorità col tempo di attesa)

4. Gestione della Memoria

4.1 Concetti Base

- Indirizzamento:
 - Fisico (reale posizione in memoria)
 - Logico (visto dal processo)
- Protection: impedire accessi non autorizzati
- Sharing: permettere accesso condiviso sicuro

4.2 Tecniche di Base

1. Partizioni Fisse

- Memoria divisa in blocchi di dimensione fissa
- Semplice ma frammentazione interna

2. Partizioni Dinamiche

- Allocazione su richiesta
- Frammentazione esterna
- Necessità di compattazione