

باسمه تعالى

دانشگاه صنعتی شریف

۲۵۷۴۲ گروه ۱ - سیگنالها و سیستمها - بهار ۱۴۰۰-۰

تمرین سری اوّل

موعد تحویل: یک شنبه ۲۹ اسفند، ساعت ۲۳:۵۵

\* توجه: تحویل تمامی تمارین الزامی است. همچنین تحویل تمارین به صورت گروهی بوده و تحویل تنها یکی از اعضای گروه کافی است.

#### ١ خواص سيستمها

شش خاصیت «خطّی بُودن»، «تغییرناپذیری با زمان»، «بیحافظگی»، «وارونپذیری»، «علیّت»، و «پایداری» را برای هر یک از سیستمهای زیر تحقیق کنید. (لازم است برای هر ویژگی از هر سیگنال، استدلال مختصری ارائه دهید.)

• 
$$y(t) = \begin{cases} x(t) + x(t-1) & x(2t) \ge 0\\ 0 & x(2t) < 0 \end{cases}$$

$$y(t) = x(-2|t|)$$

• 
$$y(t) = \frac{\sin(x(t) + 2t)}{x(t-1)}$$

• 
$$y(t) = x(-2|t|)$$
  
•  $y[n] = n \cos \frac{n\pi}{5} x[n]$ 

• 
$$y[n] = \begin{cases} x[n-1] & n \ge 1 \\ 0 & n = 0 \\ x[n] & n \le -1 \end{cases}$$

• 
$$y[n] = \begin{cases} x[n/2] & n \text{ even} \\ 0 & n \text{ odd} \end{cases}$$

• 
$$y(t) = \int_{-t}^{t} e^{\tau} x(-\tau^2) d\tau$$

$$\bullet \ y[n] = \sum_{k=n-n_0}^{n+n_0} x[k]$$

• 
$$y[n] = \frac{n^3 x[n]}{n^2 - 10}$$

 $\mathbf{Y}$  رابطه وروی و خروجی سیستمها چهار زوج ورودی خروجی برای سیستم گسسته S در شکل ۱ مشخص شده اند.

(1) 
$$\frac{1}{0} \frac{1}{2} \frac{1}{0} \frac{1}{2} \frac{1}{0} \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{0} \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5} \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5} \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{2} \frac{1}{3} \frac{1}{4}$$

شکل ۱

سیگنالها و سیستمها

- ۱. آیا سیستم S می تواند تغییرناپذیر با زمان باشد؟ توضیح دهید.
  - ۲. آیا سیستم S می تواند خطی باشد؟ توضیح دهید.
- ۳. فرض کنید (۲) و (۳) زوج های ورودی\_خروجی سیستم  $S_7$  باشند و این سیستم LTI باشد؛ پاسخ ضربه سیستم  $S_7$  را بیابید.

۴. فرض کنید (۱) زوج ورودی\_خروجی سیستم  $S_7$  باشد و این سیستم نیز LTI باشد؛ خروجی سیستم  $S_7$  به ورودی شکل ۲ را بیابید.



شکل ۲

# ٣ كانولوشن گسسته

یک سیستم TI دارای پاسخ ضربه ای مطابق شکل ۳ می باشد. همچنین ورودی x[n] داده شده به سیستم مطابق شکل ۴ می باشد.



شکل ۳



شکل ۴

- ۱. با استفاده از کانولوشن گسسته پاسخ سیستم به ورودی x[n] را یافته و رسم کنید.
- ۲. تابع خودهمبستگی  $c_{xx}[n] = x[n] * x[-n]$  به صورت x[n] \* x[n] تعریف می شود. خروجی بدست آمده در قسمت اول را برحسب x[n] \* x[n] بنویسید.
  - ۳. خروجی سیستم را در حالتیکه x[n] = u[n+1] باشد، یافته و رسم کنید.

تمرین سری اوّل

۴ سیگنالهای توان و انرژی

یک سیگنال (پیوسته یا گسسته) با انرژی و توان $E_\infty$  و و برا در نظر بگیرید. این سیگنال را یک «سیگنال انرژی» گوییم، هرگاه

$$E_{\infty} < \infty$$

همچنین این سیگنال را یک «سیگنال توان» گوییم، هرگاه

$$\circ < P_{\infty} < \infty$$

- ١. شرط اينكه سيگنال نه سيگنال انرژي و نه سيگنال توان باشد را بيان كنبد.
- د. نشان دهید سیگنال آن را بدست آورید.  $x_1(t) = Ae^{j(\Upsilon\pi f_\circ t + \theta)}$  یک سیگنال توان بوده و توان آن را بدست آورید.
  - ۳. نشان دهید سیگنال u(t) = u(t) یک سیگنال توان بوده و توان آن را بدست آورید.
    - ۴. نشان دهند سنگنال

$$x_{\mathsf{r}}(t) = \begin{cases} kt^{-\frac{1}{\mathsf{r}}} & t > 0 \\ 0 & t \le 0 \end{cases}$$

سیگنال نه انرژی و نه توان است.

- ۵. نوع سیگنال های زیر را با ذکر دلیل مشخص کنید.
- $x_4(t) = A\cos 2\pi f_1 t + B\cos 2\pi f_2 t$
- $x_5(t) = e^{-t} \cos t$
- $x_6(t) = sgn(t)$

### ۵ خواص کانولوشن

درستی یا نادرستی هر یک از گزاره های زیر را نشان دهید.

- $x[n]*h[n]=\circ$  برای  $x[n]*h[n]=\circ$  و  $x[n]*h[n]=\circ$  برای  $x[n]*h[n]=\circ$  ، آنگاه خواهیم داشت:  $x[n]*h[n]=\circ$  برای  $x[n]*h[n]=\circ$  $n < N_1 + N_7$ برای
  - y[n-1]=x[n-1]\*h[n-1]: . اگر y[n]=x[n]\*h[n] ، آنگاه خواهیم داشت
    - y(-t) = x(-t) \* h(-t) : اگر y(t) = x(t) \* h(t) . آنگاه خواهیم داشت.
- $.t > T_1 + T_2$

# ۶ سیگنالهای تناوبی

تناوبی بودن یا نبودن هر یک از سیگنالهای زیر را مشخّص کنید. همچنین، دوره تناوب پایهی سیگنالهای تناوبی را نیز

- $x(t) = odd\{\sin(\mathbf{r}\pi t)u(t)\} \bullet$
- $x[n] = e^{\frac{j\pi n}{\sqrt{\gamma}}} \bullet$  $x[n] = \cos(\frac{n}{\Lambda} - \pi) \bullet$  $x[n] = e^{j\pi(n-1\circ)/\Upsilon} + \cos(\frac{n\pi}{\Upsilon}) \bullet$

### ۷ خواص سیستمهای LTI

برای هر یک از سیستمهای LTI با پاسخ ضربهی داده شده، علّی بودن/نبودن و پایدار بودن/نبودن را بررسی کنید.

سیگنالها و سیستمها

1. 
$$h_1[n] = n(\frac{1}{3})^n u[n-1]$$

2. 
$$h_2[n] = (-\frac{1}{2})^n u[n] + (1.01)^n u[n-1]$$

3. 
$$h_3[n] = \cos(\pi n)u[n]$$

4. 
$$h_4(t) = te^{-t}u(t)$$

z محاسبهی تبدیل  $\lambda$ 

تبدیل z هر یک از سیگنالهای زیر را بیابید و ناحیه ی همگرایی آن را مشخّص کنید.

1. 
$$x_1[n] = a^n u[n] + b^n u[n] + c^n u[-n-1]$$
 ,  $|a| < |b| < |c|$ 

2. 
$$x_2[n] = n^2 a^n u[n]$$

3. 
$$x_3[n] = \sum_{k=-\infty}^{\infty} \delta[n-4k]$$

4. 
$$x_4[n] = \alpha^{|n|}$$
 ,  $|\alpha| < 1$ 

5. 
$$x_5[n] = (1+n)\left(\frac{1}{3}\right)^n u[n-3]$$

6. 
$$x_6[n] = \begin{cases} n+1 & 0 \le n \le N-1 \\ 2N-n-1 & N \le n \le 2(N-1) \\ 0 & \text{otherwise} \end{cases}$$

z محاسبه ی وارون تبدیل ۹

وارون تبدیل zهای داده شده را بیابید. (سعی کنید تا حدّ امکان از خواصّ تبدیل z بهره ببرید.)

1. 
$$X_1(z) = \frac{1+z^{-1}}{(1-\frac{1}{2}z^{-1})(1+\frac{1}{4}z^{-1})}, \quad x_1[n] \text{ is a casual sequence}$$

2. 
$$X_2(z) = \frac{3}{z - \frac{1}{4} - \frac{1}{8}z^{-1}}, \quad x_2[n] \text{ is stable}$$

3. 
$$X_3(z) = \frac{z^7 - 2}{1 - z^{-7}}, \quad |z| > 1$$

4. 
$$X_4(z) = \frac{z^3 - 2z}{z - 2}$$
,  $x_4[n]$  is a left-sided sequence

5. 
$$X_5(z) = e^{z^{-1}}$$

6. 
$$X_6(z) = \log(1 - 2z), \quad |z| < \frac{1}{2}$$

راهنمایی: از سری توانی

$$\log(1-x) = -\sum_{m=1}^{\infty} \frac{x^m}{m}, \quad |x| < 1$$

و رابطه مشتق گیری استفاده کنید.

سیگنالها و سیستمها

z صفرها و قطبهای تبدیل  $\sim$ 

دیاگرام صفر\_قطب تبدیلz سیگنال علّی x[n] مطابق شکل ۵می باشد.اگر داشته باشیم y[n]=x[-n+r] ، نمودار صفر\_قطب Y(z) را رسم کنید.



۱۱ کاهش فرکانس نمونهبرداری سیستمی با رابطهی ورودی\_خروجی زیر را در نظر بگیرید:

$$y[n] = x[Mn]$$

چنین سیستمی از میان هر M نمونه ی ورودی، تنها یکی را نگه می دارد. چنین سیستمی اصطلاحاً «کاهش دهنده ی فرکانس نمونه برداری» نامیده می شود. اگر تبدیل z ورودی X(z) باشد، تبدیل z خروجی، Y(z) را بر حسب X(z) بیابید. آیا می توان برای این سیستم یک تابع تبدیل X(z) معرّفی کرد؟

راهنمایی: سیگنال زیر را در نظر بگیرید:

$$w_M[n] = \frac{1}{M} \sum_{k=\circ}^{M-1} e^{j \mathbf{Y} \pi k n/M}$$