Hands-on training session 3

Hui-Walter models with more than two diagnostic tests

Matt Denwood Giles Innocent Sonja Hartnack 2020-02-17

Introduction

Overview

Date/time:

- 20th February 2020
- **1**4.00 15.30

Teachers:

- Matt Denwood (presenter)
- Giles Innocent
- Sonja Hartnack

Recap

Important points from sessions 1 and 2 $\,$

Session 3a: Hui-Walter models for multiple tests with conditional

indepdendence

What exactly is our latent class?

What do we mean by "conditionally independent?"

Example: three antibody tests

The latent status is actually 'producing antibodies' not 'diseased'

We're actually pulling **something** out of a hat, and deciding to call it a rabbit

Model specification

If doing this manually, take **extreme** care with multinomial tabulation

Or use autohuiwalter!

 This will also deal gracefully with missing data in one or more test results

Simulating data

Simulating data using an arbitrary number of independent tests is quite straightforward.

```
# Parameter values to simulate:
    N < -200
    se1 <- 0.8
    se2 < -0.9
    se3 <- 0.95
    sp1 < -0.95
6
    sp2 < -0.99
    sp3 < -0.95
8
9
    Populations <- 2
10
    prevalence \leftarrow c(0.25, 0.75)
11
    Group <- rep(1:Populations, each=N)</pre>
12
13
    # Ensure replicable data:
14
    set.seed(2017-11-21)
15
16
    # Complete the two letent state (which is small compading most)
```

Exercise

Simulate data from 3 tests and analyse using the autohuiwalter function

Do the estimates of Se/Sp correspond to the simulation parameters?

Optional Exercise

Make some data missing for one or more tests and re-generate the model

Can you see what has changed in the code?

Session 3b: Hui-Walter models for

multiple tests with conditional

depdendence

Branching of processes leading to test results

Example: two antibody tests and one antigen test

Or three antibody tests where one has a different target to the other two

Model specification

12

```
# Probability of observing ELISA1- ELISA2- WesternBlot-
            → from a true positive::
            se_{prob}[1,p] \leftarrow prev[p] * ((1-se[1])*(1-se[2])*(1-se[3])

→ +covse12 +covse13 +covse23)

            # Probability of observing ELISA1- ELISA2- WesternBlot-
3
            sp_prob[1,p] \leftarrow (1-prev[p]) * (sp[1]*sp[2]*sp[3] +covsp12
4

→ +covsp13 +covsp23)

5
            # Probability of observing ELISA1+ ELISA2- WesternBlot-
6
            → from a true positive::
            se_{prob}[2,p] \leftarrow prev[p] * (se[1]*(1-se[2])*(1-se[3])
7
    \rightarrow -covse12 -covse13 +covse23)
            # Probability of observing ELISA1+ ELISA2- WesternBlot-
8
             → from a true negative::
            sp_{prob}[2,p] \leftarrow (1-prev[p]) * ((1-sp[1])*sp[2]*sp[3]
9

→ -covsp12 -covsp13 +covsp23)

10
11
```

Simulating data

It helps to consider the data simulation as a biological process.

```
# Parameter values to simulate:
2 N <- 200
    se1 <- 0.8
    se2 < -0.9
    se3 <- 0.95
    sp1 < -0.95
6
7
    sp2 < -0.99
8
    sp3 < -0.95
9
    Populations <- 2
10
    prevalence \leftarrow c(0.25, 0.75)
11
    Group <- rep(1:Populations, each=N)</pre>
12
13
    # Ensure replicable data:
14
    set.seed(2017-11-21)
15
16
    # We will assume test 1 is dependent of the others, but tests
17

→ 283
```

Verifying simulation results

```
library('tidyverse')
  ## - Attaching packages ----- tidyverse 1.3.0 -
  ## v ggplot2 3.2.1 v purrr 0.3.3
2 ## v tibble 2.1.3 v dplyr 0.8.3
3 ## v tidyr 1.0.2 v stringr 1.4.0
4 ## v readr 1.3.1 v forcats 0.4.0
  ## - Conflicts ----- tidyverse_conflicts() -
  ## x tidyr::extract() masks runjags::extract()
  ## x dplyr::filter() masks stats::filter()
   ## x dplyr::lag() masks stats::lag()
1
   ## Parameters
2
3
   # True prevalence:
  prev <- 0.2
4
5
   # Probability of antibody response conditional on disease
```

Generating the model

Extreme care needed

Use autohuiwalter with argument covon=TRUE

```
source('autohuiwalter.R')
   auto_huiwalter(ind3tests, 'ind3tests.bug', covon=TRUE)
   ## The model and data have been written to ind3tests.bug in the
   ## You should check and alter priors before running the model
   ## Auto-generated Hui-Walter model created by script version 0.1
   \rightarrow on 2020-02-17
   model{
3
4
       ## Observation layer:
5
6
       # Complete observations (N=400):
       for(p in 1:Populations){
                                                                     13
           Tally RRR[1.8 n] ~ dmulti(prob RRR[1.8 n] N RRR[n])
```

Exercise

Simulate data with a dependence between 2 tests

Model assuming conditional independence biases the estimates

Model with conditional depdendence has bigger CI but unbiased

Session 3c: Model selection

Motivation

[Planning for this session to be a general discussion between all instructors and students, as I am not entirely sure what to recommend in terms of model selection - except that I dislike DIC!!!]

Background to DIC

[Some theory slides stolen from ABME course: ABME_Model selection.pptx]

DIC works fine for hierarchical normal models but not others

Other methods

Bayes factors work well if you can count them

WAIC works better for a wide range of models

- * An approximation to LOO with general applicability
- * Could be useful if using the GLM version (untested!)

Models tend to be sensitive to priors

Simulating data and testing that your model recovers the parameters is a good idea

Calculating DIC

Add dic and ped to the monitors in runjags

But don't trust the results

Also bear in mind you can't parallelise

Calculating WAIC

Currently a pain

```
## This is an example of extracting WAIC from runjags/jags
    → objects
    # Matt Denwood, 2019-11-11
2
    # Note that this will all get much easier with the release of
    → JAGS 5 and the next verison of runjags!!
4
5
    ## A function to return the WAIC
6
    # Also returns the effective number of parameters (p_waic), elpd
    → and lpd as described by:
    #
7
    → www.stat.columbia.edu/~qelman/research/unpublished/waic stan.pdf
    # Note: mean_lik is the log of the (exponentiated)
8
        l.i.kel.i.h.oods
                var log lik is the variance of the log likelihoods
9
                these need separate monitors in JAGS
10
    get_waic <- function(mean_lik, var_log_lik){</pre>
11
12
        stopifnot(length(mean_lik)==length(var_log_lik))
13
```

19

Future Updates

Model criticism will get better in JAGS 5, and the next update of runjags

Installing development version of runjags:

Put on drat server and supply code here

WAIC is also calculable from Stan models (easily?)

Discussion and free practical time

What would be useful to add to the autohuiwalter function?

- Modify so it allows Se/Sp priors to be defined as matrices?
- And correlations on/off as matrices?