Data Science and Analytics DSA 6000 Final Project

Predicting Used Car Prices using Statistical Learning Methods

Dataset

- Over 370,000 used car data scraped from Ebay-Germany
- Data was scraped in March-April 2016
- Content of the dataset is in German
- It contains a total of 20 Numerical and Categorical Variables
- Response Variable is Price of the used car

Objectives

- Predict price of a Used Car
- Identify various factors driving the selling price for Vehicles
- Calculate the accuracy of the predicted price
- Identify correlation between various vehicle characteristics
- Identify the most popular car brands in German Market

Project Flow

Step 1: Data Cleaning

- Loading Dataset in R
- Removing unwanted Columns (Like Seller Type, Offer Type, Ab test) autodata\$seller<-NULL
- Removing Outliers (Like Price=0, Power>600, yearofRegistration> 2016)
 autodata<-subset(autodata, autodata\$price>200)
- German Translation to English autodata\$fuelType<-gsub("andere","others",autodata\$fuelType)
- Handling NAs
 Assigning the NAs to "others" or "unknown"
 colSums(is.na(autodata))
- Calculating Age of Car using Year of Registration

Step 2: Data Visualization (Using Tableau)

TOP BRANDS WITH TOP PRICES

- Using Tableau, we were able to determine some key observations about the data.
- We are seeing that sales volume in the German Market is dominated by 5 major brands

Next Steps:-

 Since we see that 5 brands are dominating the German Car Market, it was considered sufficient to use only these to fit our model moving forward

Data Visualization (Cont...)

- We can see relationship between Price vs Car age and Price vs Power
- We can see an inverse relation between Car Age vs Average Price and direct relation between Power vs Price

This helped us determine correlation between response and predicted variables.

Car Price Depreciation

- We can see a strong relationship between the Car Age and the Depreciation of Price
- Looking at the model, we can see that R-Squared and P-value indicate a strong relationship

Step 3: Model Building

- Installing required Packages
- Finding Correlation in the data

```
install.packages("corrplot")
library(corrplot)
au<-autodata[,c("price","Car_Age","kilometer","powerPS")]
corrplot.mixed(cor(au))</pre>
```

Reviewing Dataset

- ✓ The new dataset contains 280,081 rows and 10 variables
- √ 1 dependent variables and 9 independent variables
- ✓ No Missing Values

- Data Exploration:
- ✓ Removing fuel type other than diesel and petrol
- ✓ Removing outdated Models

Sum of Price - Model-wise for each Brand

Splitting the data into training and test dataset smp_size <- floor(0.7 * nrow(autodat)) train_ind <- sample(seq_len(nrow(autodata)), size = smp_size) train<- autodata[train_ind,] test <- autodata[-train_ind,]</p>

Building and comparing different models

Model 1:-

Model_simple<-lm(price~vehicleType+gearbox+powerPS+Kilometer+fuelType+brand+CarAge, data=train)
summary(Model_simple)

```
Residual standard error: 3950 on 113393 degrees of freedom Multiple R-squared: 0.7314, Adjusted R-squared: 0.7313 F-statistic: 1.715e+04 on 18 and 113393 DF, p-value: < 2.2e-16
```

Model 2: - Using Log Transformation

Model_log<lm(log(price)~vehicleType+gearbox+powerPS+Kilometer+fuelType+brand+CarAge, data=train)

$$\sqrt{R^2} = 0.715$$

$$\checkmark$$
 RSE = 4042.023

Test Data Predictionpred log<-exp(predict(Model log,test))

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$TSS = \sum (y_i - \bar{y})^2$$

$$R^2 = \frac{\text{TSS} - \text{RSS}}{\text{TSS}}$$

Model 3: - Using Sqrt Transformation

```
Model_Sqrt<-
Im(sqrt(price)~vehicleType+gearbox+powerPS+Kilometer+fuelType+brand+CarAge, data=train)

summary(Model_Sqrt)
pred_sqrt<-predict(Model_sqrt,train)^2
RSS<-sum((train$price-pred_sqrt)^2)
TSS<- sum((train$price-mean(train$price))^2)
RSE<- sqrt(RSS/(nrow(train)-16-1))
```

$$\sqrt{R^2} = 0.813$$

$$RSE = \sqrt{\frac{1}{n - p - 1}}RSS$$

Residual Plots

 $[\]checkmark$ Sqrt Model has a better R^2 and RSE, hence we have selected this model

No sign of Multicollinearity

install.packages("car") library(carData) library(car)
$$VIF_i = \frac{1}{1-R_i^2}$$

> vif(Model_sqrt)

GVIF	Df	$GVIF^{(1/(2*Df))}$
1.992173	7	1.050462
1.458229	1	1.207571
2.157146	1	1.468723
1.556937	1	1.247773
1.602396	1	1.265858
1.716394	4	1.069860
1.954894	1	1.398175
	1.992173 1.458229 2.157146 1.556937 1.602396 1.716394	1.992173 7 1.458229 1 2.157146 1 1.556937 1 1.602396 1 1.716394 4

Summary of the SQRT Model

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       1.414e+02 3.670e-01 385.179 < 2e-16 ***
vehicleTypeconvertible 6.896e+00 2.708e-01
                                             25.465 < 2e-16 ***
                      -4.761e+00 2.787e-01 -17.086 < 2e-16 ***
vehicleTypecoupe
vehicleTypekombi
                      -1.332e+01 2.015e-01 -66.075 < 2e-16
vehicleTypelimousine
                      -9.758e+00 1.979e-01 -49.318 < 2e-16 ***
vehicleTypeothers
                      -1.232e+01 4.659e-01 -26.446 < 2e-16
vehicleTypesmall_Car
                      -1.007e+01 2.231e-01 -45.141 < 2e-16 ***
vehicleTypesuv
                       3.050e+00 3.575e-01
                                              8.529 < 2e-16 ***
gearboxmanual
                      -3.274e+00 1.298e-01 -25.214 < 2e-16 ***
                       2.159e-01 1.173e-03 184.026 < 2e-16 ***
powerPS
kilometer
                      -2.352e-04 1.627e-06 -144.516 < 2e-16 ***
fuelTypepetrol
                      -5.854e+00 1.244e-01 -47.076 < 2e-16 ***
                                            -7.810 5.77e-15 ***
brandbmw
                      -1.315e+00 1.684e-01
                      -3.583e+00 1.807e-01 -19.826 < 2e-16 ***
brandmercedes_benz
                      -1.471e+01 1.876e-01 -78.413 < 2e-16 ***
brandopel
brandvolkswagen
                      -3.404e+00 1.615e-01 -21.079 < 2e-16 ***
                      -3.840e+00 1.227e-02 -312.917 < 2e-16 ***
Car_Age
```

```
Regression Equation-sqrt((price) = 141.2 + 6.618*vehicleTypeconvertible -4.833*vehicleTypecoupe -13.5*vehicleTypekombi - 9.743*vehicleTypelimousine -12.05*vehicleTypeothers -10.18*vehicleTypesmall_Car +2.88*vehicleTypesuv - 3.262*gearboxmanual + 0.2177*powerPS -0.0002356*kilometer -5.838*fuelTypepetrol -1.418*brandbmw - 3.464*brandmercedes_benz -14.82*brandopel -3.443*brandvolkswagen -3.832*Car_Age
```

pred_sqrt_test<(predict(Model_sqrt,test)^2)</pre>

price	Vehicle Type	gearbox	powerPS	kilometer	fuelType	brand	Car_Age
9300	kombi	manual	143	150000	diesel	audi	8

```
141.2 - 13.5 * vehicle Typekombi - 3.262 * gear box manual + 0.2177 * power PS - 0.0002356 * kilometer - 5.838 * fuel Typepetrol + 1.418 * brandbmw - 3.464 * brandmercedes_benz - 14.82 * brandopel - 3.443 * brandvolkswagen - 3.832 * 8 = 141.2 - 13.5 - 3.262 + 0.2177 * 143 - 0.0002356 * 150000 - 0 + 0 + 0 + 0 + 0 - 3.832 * 8
```

= 89.5731

✓ Actual Prediction- $(89.5731)^2 = 8023.34$ EURO

Results

Comparing Predicted versus Actual Price for both Training and Test Data

Training Data

Results

Sno	brand	Actual_price	Predicted_Price
1	bmw	1,800	2,706
2	volkswagen	3,799	3,665
3	volkswagen	750	767
4	volkswagen	3,950	3,704
5	mercedes_benz	2,990	2,525
6	bmw	29,799	27,448
7	opel	3,330	3,056
8	mercedes_benz	5,500	5,745
9	audi	23,990	22,141

Conclusions

- SQRT model gives the best fit for the dataset
- Volkswagen, BMW, Audi, Mercedes Benz and Opel are most popular brands in the German Market
- Vehicle Type, Gearbox, Power PS, Kilometers driven, Brand, Car Age,
 Brand are significant variables in the predicting the price of a Used Car
- An \mathbb{R}^2 of 0.81 and RSE of 3273.87 is achieved using our prediction model

Questions!