Homework: Function operations (these are calculator-intensive problems)

1a. The following diagram shows the graph of a function f , with domain $-2\leqslant x\leqslant 4$.

The points (-2, 0) and (4, 7) lie on the graph of f.

Write down the range of f.

[1 mark]

1b. Write down f(2);

[1 mark]

 ${f 1c.}$ Write down $f^{-1}(2)$.

[1 mark]

1d. On the grid, sketch the graph of f^{-1} .

[3 marks]

Name:

$$_{ extbf{2a. Let}}f(x)=rac{6x^2-4}{\mathrm{e}^x}$$
 , for $0\leqslant x\leqslant 7$.

Find the x-intercept of the graph of f.

[2 marks]

2b. The graph of f has a maximum at the point A. Write down the coordinates of A.

[2 marks]

2c. On the following grid, sketch the graph of f.

[3 marks]

3. Let $f(x)=6-\ln(x^2+2)$, for $x\in\mathbb{R}$. The graph of f passes through the point $(p,\ 4)$, where p>0 .

Find the value of p.

[2 marks]

 $_{ extsf{4a. Let}}f(x)=5x_{ extsf{ and }}g(x)=x^2+1_{ extsf{, for }}x\in\mathbb{R}_{ extsf{.}}$

 $_{ ext{Find}} f^{-1}(x)$

[2 marks]

4b. Find $(f \circ g)(7)$.

[3 marks]

5a. Consider the graph of $f(x)=rac{{
m e}^x}{5x-10}+3$, for x
eq 2 .

Find the y-intercept.

[2 marks]

5b. Find the equation of the vertical asymptote.

[2 marks]

5c. Find the minimum value of f(x) for x>2.

[2 marks]

6a. The following diagram shows the graph of a function y=f(x) , for $-6\leqslant x\leqslant -2$.

The points (-6, 6) and (-2, 6) lie on the graph of f. There is a minimum point at (-4, 0).

Write down the range of f.

[2 marks]

6b. Let g(x) = f(x-5).

On the grid above, sketch the graph of g.

[2 marks]

6c. Write down the domain of g.

[2 marks]

Name:

7a. Let
$$f(x)=x^2-1$$
 and $g(x)=x^2-2$, for $x\in\mathbb{R}$.
Show that $(f\circ g)(x)=x^4-4x^2+3$.

[2 marks]

7b. On the following grid, sketch the graph of $(f\circ g)(x)$, for $0\leqslant x\leqslant 2.25$.

[3 marks]

7c. The equation $(f \circ g)(x) = k$ has exactly two solutions, for $0 \leqslant x \leqslant 2.25$. Find the possible values of k.

8a. Let
$$f(x) = x^2 - 4x + 5$$
.

Find the equation of the axis of symmetry of the graph of f.

[2 marks]

- **8b.** The function can also be expressed in the form $f(x)=(x-h)^2+k$
 - (i) Write down the value of h.
 - (ii) Find the value of k.

[4 marks]

9a. Let
$$f(x)=x^2+2x+1$$
 and $g(x)=x-5$, for $x\in\mathbb{R}$. Find $f(8)$.

[2 marks]

9b. Find
$$(g \circ f)(x)$$

[2 marks]

9c. Solve
$$(g \circ f)(x) = 0$$
.

[3 marks]