What is the definition of Perfect security?

Definition 5.1: A cryptosystem has perfect security if for all $x \in \mathcal{P}$ and $y \in \mathcal{C}$, it holds that P[x|y] = P[x].

TLDR: Information about the ciphertext gives you *no* information about the plaintext.

What are the requirements in order to acheive Perfect Security?

Theorem - $|\mathcal{K}| \ge |\mathcal{C}| \ge |\mathcal{P}|$: If you have perfect security then $|\mathcal{K}| \ge |\mathcal{C}| \ge |\mathcal{P}|$. **TLDR:** If you have perfect security your key can not be shorter than your ciphertext, which cannot be shorter than your plaintext.

What is Entropy?

Definition 5.6: Let X be a random variable that takes values $x_1, ..., x_n$ with probabilities $p_1, ..., p_n$. Then the entropy of X, written H(X), is defined to be:

$$H(X) = \sum_{i=1}^{n} p_i \log_2(1/p_i)$$

TLDR: If an event A occurs with probability p and you are told that A occurred, then you have learned $\log_2(1/p)$ bits of information. **TLDR:** The entropy H(X) can be described as:

- How many bits we need to send on average to communicate the value of X.
- The amount of uncertainty you have about X before you are told what the value is.

What are the bounds for Entropy?

Theorem 5.7: For a random variable X taking n possible values, it holds that $0 \le H(X) \le \log_2(n)$. Furthermore, H(X) = 0 iff one value X has probability 1 (and the others 0). $H(X) = log_2(n)$ iff it is uniformly distributed, i.e., all probabilities are 1/n.

TLDR: If the entropy of X is 0 there is no uncertainty, meaning that we know the value of X. If the entropy of X is 1 then the uncertainty of X is highest meaning that all possible values of X have the same probability.

What is the definition for Conditional Entropy?

Definition 5.9: Given the above definition of $H(X \mid Y = y_j)$, we define the conditional entropy of X given Y to be:

$$H(X \mid Y) = \sum_{j} P[Y = y_j] H(X \mid Y = y_j)$$

For deterministic cryptosystems, what is the entropy of the key given the ciphertext $(H(K \mid C))$?

Theorem 5.11: For any cryptosystem with deterministic encryption function, it holds that:

$$H(K \mid C) = H(K) + H(P) - H(C)$$

TLDR: Answers how much uncertainty remains about the key given the ciphertext

What is Redundancy in a language

Definition - Redundancy: Given a language L and a plaintext space \mathcal{P} , the redundancy of the language is the amount of superflous information is contained, on avarage in the language L.

$$R_L = \frac{\log(|\mathcal{P}|) - H_L}{\log(|\mathcal{P}|)} = 1 - \frac{H_L}{\log(|\mathcal{P}|)}$$

 H_L is a measure of the number of bits of information each letter contains in the language L, on average. For English, we have that H_L is (very approximately) 1.25 bits per letter.

$$H_L = \lim_{n \to \infty} H(P_n)/n$$

TLDR: A language contains redundancy, which is how much duplicate information there is on avarage in the language.

Example: The following sentance displays redundancy in english:

"cn y rd th fllwng sntnc, vn f t s wrttn wtht vcls?"

What is the definition for Spurious Keys?

Definition - Spurious Keys: If an adversary has a ciphertext y that he wants to decrypt, he can try all keys and see if y decrypts to meaningful english. If y decrypts to meaningful english under the wrong key, then that key is said to be a spurious key.

TLDR: A spurious key is a key that *seems* to be the correct key for a ciphertext but is not.

What is the formula for the number of Spurious Keys?

Definition - Number of Spurious Keys: The average number of spurious keys, taken over all choices of ciphertexts of length n:

$$sp_n = \sum_{\boldsymbol{y} \in \mathcal{C}^n} P[y]|K(\boldsymbol{y})| - 1 = \sum_{\boldsymbol{y} \in \mathcal{C}^n} P[y]|K(\boldsymbol{y})| - 1$$

Given a ciphertext y, we use K(y) to denote the set of keys that are possible given this ciphertext. More precisely, a key K is in this set if decryption of y under K yields a plaintext that could occur with non-zero probability:

$$K(\mathbf{y}) = \{ K \in \mathcal{K} \mid P[D_K(\mathbf{y} > 0)] \}$$

TLDR: This formula for sp_n describes the average number of spurious keys of a ciphertext y of length n.

What is the definition for Unicity Distance?

Definition 5.12: The unicity distance n_0 of a cryptosystem is the minimal length of plaintexts such that $sp_{n_0} = 0$, if such a value exists, and ∞ otherwise. **TLDR:** The unicity distance tells you how many times you can encrypt something where multiple keys seem to be valid keys.

For a deterministic cryptosystem, what is the bound for the Unicity Distance?

Theorem 5.13: Assume we have a cryptosystem with deterministic encryption function, where the plaintext and ciphertext alphabets have the same size $(|\mathcal{C}| = |\mathcal{P}|)$, and where keys are uniformly chosen from \mathcal{K} . Assume we use the system to encrypt sequences of letters from language L. Then

$$n_0 \ge \frac{\log(|\mathcal{K}|)}{R_L \log(|\mathcal{P}|)}$$

TLDR: If we reuse keys, our unconditional security will always be gone, once we encrypt enough plaintext under the same key. The only exception is the case where $R_L = 0$ which leads to n_0 being ∞ . Which makes sense, if every sequence of characters is a plaintext that can occur, the adversary can never exclude a key.