0.1 Einstein's equations

We arrived at the Einstein's equation:

$$G_{\mu\nu} = R_{\mu\nu} - \frac{R}{2}g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

(Lesson 8 of 08/11/19) Compiled: November 8, 2019

These:

- 1. Reproduces Netown's Law at small curvature/non-relativistic source
- 2. Are covariant
- 3. Mathematically consistent:

$$\nabla_{\mu}T^{\mu\nu} = \nabla_{\mu}G^{\mu\nu} = 0$$

Recall that a free particle in flat spacetime satisfies:

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2} = 0 \Leftrightarrow \int_A^B \mathrm{d}\tau = \int_A^B \sqrt{-\eta_{\alpha\beta} \, \mathrm{d}x^{\alpha} \, \mathrm{d}x^{\beta}} \text{ is minimum}$$

We supposed that a free particle in *curved spacetime* also minimizes the proper time, thus satisfying the following, more complex, equation of motion:

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2} + \Gamma^{\mu}_{\alpha\beta} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}\tau} = 0 \Leftrightarrow \int_A^B \mathrm{d}\tau = \int \sqrt{-g_{\alpha\beta} \, \mathrm{d}x^{\alpha} \, \mathrm{d}x^{\beta}} \text{ is minimum}$$

We can rewrite this expression in terms of the 4-velocity. Recall that:

$$u^{\alpha} \equiv \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\tau}$$

Thus:

$$\frac{\mathrm{d}u^{\mu}}{\mathrm{d}\tau} + \Gamma^{\mu}_{\alpha\beta}u^{\alpha}u^{\beta} = 0$$

Also:

$$\frac{\mathrm{d} u^{\mu}}{\mathrm{d} x^{\alpha}} \underbrace{\frac{\mathrm{d} x^{\alpha}}{\mathrm{d} \tau}}_{u^{\alpha}} + \Gamma^{\mu}_{\alpha\beta} u^{\alpha} u^{\beta} = 0 \Rightarrow u^{\alpha} \left[\frac{\mathrm{d} u^{\mu}}{\mathrm{d} x^{\alpha}} + \Gamma^{\mu}_{\alpha\beta} u^{\beta} \right] = 0 \Rightarrow A^{\mu} \equiv u^{\alpha} \nabla_{\alpha} u^{\mu}$$

where A^{μ} represents the acceleration felt by the moving particle. So, a free particle, moving along a geodesic, feels no acceleration $A^{\mu} = 0$.

So, while a circular motion caused by a centripetal force (e.g. a rope) leads to a "feeling of acceleration", the same motion, only caused by gravity, does not lead to any feeling of acceleration, because it is a geodesic motion (if the speed is the right one for that trajectory).

0.1.1 Timelike geodesics

We call *timelike geodesics* the free motion of massive particles, following trajectories that *minimize the proper time*:

$$d\tau = \sqrt{-ds^2}$$
 $(ds^2 < 0 \Rightarrow time-like)$

As we demonstrated:

$$\int_{A}^{B} d\tau \text{ is minimized} \Rightarrow \frac{d^{2}x^{\alpha}}{d\tau^{2}} + \Gamma_{\beta\gamma}^{\alpha} \frac{dx^{\beta}}{d\tau} \frac{dx^{\gamma}}{d\tau} = 0$$

0.1.2 Spacelike geodesics

Equivalently, we can consider the *shortest spatial paths*, that is the ones that minimize *spatial distance*:

$$\int_A^B ds$$
 is minimum

Of course, these trajectories are not followed by free particles (they are space-like). If we repeat the same calculations we made for the timelike geodesics, we arrive at the following differential equation:

$$\frac{\mathrm{d}^2 x^{\alpha}}{\mathrm{d}s^2} + \Gamma^{\alpha}_{\beta\gamma} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}s} \frac{\mathrm{d}x^{\gamma}}{\mathrm{d}s} = 0$$

0.1.3 Null geodesics

Massless particles, like photons, move along different trajectories, that satisfy:

$$\frac{\mathrm{d}^2 x^{\alpha}}{\mathrm{d}\lambda^2} + \Gamma^{\alpha}_{\beta\gamma} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}\lambda} \frac{\mathrm{d}x^{\gamma}}{\mathrm{d}\lambda} = 0$$

(This also needs to be experimentally verified).

0.2 Solution of the Geodesic Equation

Example 1 (Geodesics on 2D Euclidean Plane):

Obviously, the geodesics on the 2D plane are just *straight lines*. We will prove it in a more complex (and instructive) manner, that is by using *polar coordinates* (why not?).

Recall that a spacelike geodesic is the trajectory that minimizes the length to go from a point A to a point B.

In polar coordinate $x^{\mu} = (r, \theta)$ the Euclidean metric is:

$$ds^2 = dr^2 + r^2 d\theta^2 \Rightarrow g_{\mu\nu} = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix} \qquad g^{\mu\nu} = \begin{pmatrix} 1 & 0 \\ 0 & r^{-2} \end{pmatrix}$$

The Christoffel symbol is defined as:

$$\Gamma^{\alpha}_{\beta\gamma} = \frac{1}{2}g^{\alpha\lambda}(g_{\lambda\gamma,\beta} + g_{\beta\lambda,\gamma} - g_{\beta\gamma,\lambda})$$

For the r-coordinate:

$$\begin{split} \Gamma^r_{\beta\gamma} &= \frac{1}{2}(g_{\rho\gamma,\beta} + g_{\beta\gamma,\gamma} - g_{\beta\gamma,r}) = \frac{1}{2}(-2r) = -r \\ \Gamma^\theta_{\beta\gamma} &= \frac{1}{2}(g_{\theta\gamma,\beta} + g_{\beta\theta,\gamma} - g_{\beta\gamma,\theta}) = \frac{1}{r} \end{split}$$

The only non-zero symbols are:

$$\Gamma_{\theta\theta}^r = -r$$
 $\Gamma_{r\theta}^\theta = \Gamma_{\theta r}^\theta = \frac{1}{r}$

Inserting in the geodesics equation:

$$\frac{\mathrm{d}^2 x^{\alpha}}{\mathrm{d}s^2} + \Gamma^{\alpha}_{\beta\gamma} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}s} \frac{\mathrm{d}x^{\gamma}}{\mathrm{d}s} = 0$$

leads to:

$$\frac{\mathrm{d}^2 r}{\mathrm{d}s^2} - r \left(\frac{\mathrm{d}\theta}{\mathrm{d}s}\right)^2 = 0$$
$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}s^2} + \frac{2}{r} \frac{\mathrm{d}r}{\mathrm{d}s} \frac{\mathrm{d}\theta}{\mathrm{d}s} = 0$$

To know the solution I need to know the coordinates $x^1, x^2, x^3 \dots$ of all points in the curve, as functions of the distance s from A: $x^1(s), x^2(s), \dots$ So we need to know N functions (one per dimension). Also 2N initial conditions are needed (this is a second order differential equation).

When solving a differential equation it is useful to find *first integrals*, that is quantities that are constant along the geodesic. First, note that we can rewrite the second equation as:

$$\frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}s}\left(r^2\frac{\mathrm{d}\theta}{\mathrm{d}s}\right) = 0 \Rightarrow \frac{1}{r^2}\left(2r\frac{\mathrm{d}r}{\mathrm{d}s}\frac{\mathrm{d}\theta}{\mathrm{d}s} + r^2\frac{\mathrm{d}^2\theta}{\mathrm{d}s^2}\right) = \frac{2}{r}\frac{\mathrm{d}r}{\mathrm{d}s}\frac{\mathrm{d}\theta}{\mathrm{d}s} + \frac{\mathrm{d}^2\theta}{\mathrm{d}s^2} = 0$$

(In the general case, try with r^{α} for a generic constant α).

Then, we can solve this as a first order differential equation (much simpler):

$$r^2 \frac{\mathrm{d}\theta}{\mathrm{d}s} = A = \text{constant} \Rightarrow \frac{\mathrm{d}\theta}{\mathrm{d}s} = \frac{A}{r^2}$$

By using the definition of ds:

$$ds^2 + dr^2 + r^2 d\theta^2$$

we can derive another relation:

$$\mathrm{d}s^2 = \mathrm{d}r^2 + r^2 \frac{A^2}{r^4} \, \mathrm{d}s^2 \Rightarrow \mathrm{d}s^2 \left(1 - \frac{A^2}{r^2} \right) = \mathrm{d}r^2 \Rightarrow \frac{\mathrm{d}r}{\mathrm{d}s} = \sqrt{1 - \frac{A}{r^2}}$$

where we omitted the \pm as they will lead the same result at the end in this case. So, we obtained another first order differential equation.

We are interested in the trajectory, not in a parametrization, so we search $r(\theta)$ or $\theta(r)$:

$$\frac{\mathrm{d}\theta}{\mathrm{d}r} = \frac{\mathrm{d}\theta/\mathrm{d}s}{\mathrm{d}r/\mathrm{d}s} = \frac{A/r^2}{\sqrt{1-A^2r^{-2}}} \Rightarrow \mathrm{d}\theta = \frac{A}{r^2} \left(1 - \frac{A^2}{r^2}\right)^{-1/2} \mathrm{d}r$$

Then we integrate:

$$\theta - \theta_0 = \int_{\theta_0}^{\theta} d\theta \int_{r_0}^{r} \frac{A}{r^2} \left(1 - \frac{A^2}{r^2} \right)^{-1/2} dr$$

With the change of variables $\xi = A/r$, $-Ar^{-2} dr = d\xi$ we arrive at:

$$\theta - \theta_0 = -\int \frac{\mathrm{d}\xi}{\sqrt{1-\xi^2}} = \arccos(\xi) = \arccos\left(\frac{A}{r}\right)$$

To see that these are indeed straight lines, we write:

 $r\cos(\theta - \theta_0) = A \Rightarrow r\cos\theta\cos\theta_0 + r\sin\theta\sin\theta_0 = A \Rightarrow x\cos\theta_0 + y\sin\theta_0 = A$ and by solving it:

$$y = -\underbrace{\frac{\cos \theta_0}{\sin \theta_0}}_{\alpha} x + \underbrace{\frac{A}{\sin \theta_0}}_{\beta} = \alpha x + \beta$$

0.3 Euler-Lagrange Equations

If we compute the proper time interval between two points:

$$\tau_{AB} = \int_{A}^{B} d\tau = \int \sqrt{-g_{\alpha\beta} dx^{\alpha} dx^{\beta}} = \int d\sigma \sqrt{-g_{\alpha\beta}(x) \frac{dx^{\alpha}}{d\sigma}} \frac{dx^{\beta}}{d\sigma} \equiv \int d\sigma L \left[x^{\alpha}, \frac{dx^{\alpha}}{d\sigma} \right]$$

where L is called a **Lagrangian**.

Now, we minimize τ_{AB} :

$$0 = \delta \tau = \int d\sigma \left[\frac{\partial L}{\partial x^{\alpha}} \delta x^{\alpha} + \frac{\partial L}{\partial \left(\frac{dx^{\alpha}}{d\sigma} \right)} \frac{d\delta x^{\alpha}}{d\sigma} \right] =$$

$$= \int d\sigma \left[\frac{\partial L}{\partial x^{\alpha}} - \frac{d}{d\sigma} \left(\frac{\partial L}{\partial \left(\frac{dx^{\alpha}}{d\sigma} \right)} \right) \right] \delta x^{\alpha}(\sigma) = 0$$

This holds for *every possible variation*, meaning that also the integrand must vanish:

$$\frac{\partial L}{\partial x^{\alpha}} - \frac{\mathrm{d}}{\mathrm{d}\sigma} \left(\frac{\partial L}{\partial \left(\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\sigma} \right)} \right) = 0$$

These are the **Euler-Lagrange equations**, with:

$$L\left[x^{\alpha}, \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\sigma}\right] \equiv \sqrt{-g_{\alpha\beta}(x)\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\sigma}\frac{\mathrm{d}x^{\beta}}{\mathrm{d}\sigma}}$$

0.4 Killing vectors

For every *symmetry of the metric* (i.e. the metric does not depend on a certain coordinate) there is a *conserved quantity* (a constant of motion). We will now show why.

First, if a metric is x-independent, we define the Killing vector $\xi^{\alpha} = (0, 1, 0, 0)$, i.e. a vector that goes in the direction where the metric does not change:

$$\frac{\partial g_{\alpha\beta}}{\partial x^1} = 0$$

Therefore, also L does not depend on that coordinate:

$$\frac{\partial L}{\partial x^1} = 0$$

And so, substituting in the Euler-Lagrange equations:

$$\frac{\partial \mathcal{L}}{\partial x^{1}} - \frac{\mathrm{d}}{\mathrm{d}\sigma} \left(\frac{\partial L}{\partial \left(\frac{\partial x^{1}}{\partial \sigma} \right)} \right) = 0$$

and so:

$$\frac{\partial L}{\partial \left(\frac{\partial x^1}{\partial \sigma}\right)} = \text{constant}$$

Explicitly:

$$constant = \frac{\partial L}{\partial \left(\frac{dx^{1}}{d\sigma}\right)} = \frac{1}{2\sqrt{\cdots}} \left[-g_{\mu\nu} \underbrace{\frac{\partial \left(\frac{dx^{\mu}}{d\sigma}\right)}{\partial \left(\frac{dx^{\alpha}}{d\sigma}\right)}}_{\delta_{\alpha}^{\mu}} \frac{dx^{\nu}}{d\sigma} - g_{\mu\nu} \underbrace{\frac{dx^{\mu}}{d\sigma}}_{d\sigma} \underbrace{\frac{\partial \left(\frac{dx^{\nu}}{d\sigma}\right)}{\partial \left(\frac{dx^{\alpha}}{d\sigma}\right)}}_{\delta_{\alpha}^{\nu}} \right] \Big|_{\alpha=1} = \frac{1}{2L} \left[-g_{\alpha\nu} \frac{dx^{\nu}}{d\sigma} - g_{\mu\alpha} \frac{dx^{\mu}}{d\sigma} \right] \Big|_{\alpha=1} = \frac{-2g_{\alpha\beta} \frac{dx^{\beta}}{d\sigma}}{2L} \Big|_{\alpha=1} = \frac{-2g_{1\beta} \frac{dx^{\beta}}{d\sigma}}{2L}$$

where L comes from the derivative of the square root, and in (a) we renamed $\nu \to \mu$ and then used the symmetry $g_{\alpha\mu} = g_{\mu\alpha}$ to collect the metric. Recall that:

$$\frac{1}{L}\frac{\mathrm{d}}{\mathrm{d}\sigma} = \frac{\mathrm{d}}{\mathrm{d}\tau}$$

and so:

$$=-g_{1\beta}\underbrace{\frac{\mathrm{d}x^{\beta}}{\mathrm{d}\tau}}_{u^{\beta}}=-\underbrace{\xi^{\alpha}}^{(0,1,0,0)}g_{\alpha\beta}u^{\beta}=-\boldsymbol{\xi}\cdot\boldsymbol{u}$$

So, if $g_{\mu\nu}$ does not epend on the direction ξ^{α} , the quantity:

$$\boldsymbol{\xi} \cdot \boldsymbol{u} = \text{constant}$$

that is, $\boldsymbol{\xi} \cdot \boldsymbol{p} = \text{constnat}$, where $p^{\mu} = mu^{\mu}$ is the 4-momentum.

Example 2 (Conserved quantity in polar coordinates):

Consider the Euclidean 2D metric in polar coordinates:

$$g_{\mu\nu} = \left(\begin{array}{cc} 1 & 0 \\ 0 & r^2 \end{array}\right)$$

Note that this metric does not depend on θ , so $\xi = (0,1)$ is a Killing vector (choosing the (r, θ) basis). Then:

$$\boldsymbol{u} = \left(\frac{\mathrm{d}r}{\mathrm{d}s}, \frac{\mathrm{d}\theta}{\mathrm{d}s}\right)$$

and, as demonstrated, $\boldsymbol{\xi} \cdot \boldsymbol{u}$ is constant, that is:

$$\xi^{\alpha}g_{\alpha\beta}u^{\beta} = \xi^{\theta}g_{\theta\beta}u^{\beta} = g_{\theta\theta}u^{\theta} = r^2\frac{\mathrm{d}\theta}{\mathrm{d}s}$$

which is the same result implied by the second geodesic equation:

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}s^2} + \frac{2}{r} \frac{\mathrm{d}r}{\mathrm{d}s} \frac{\mathrm{d}\theta}{\mathrm{d}s} = 0 \Rightarrow r^2 \frac{\mathrm{d}\theta}{\mathrm{d}s} = \text{constant}$$

Note that the choice of coordinates for writing the metric will make some Killing vector easier to see. In fact, the independence of the metric on a coordinate is just a sufficient condition to find a Killing vector (a necessary one involves Lie derivatives, and we will not examine it in this course)