1. Find the maximum likelihood estimates of the 2×1 mean vector $\boldsymbol{\mu}$ and the 2×2 covariance matrix $\boldsymbol{\Sigma}$ based on the random sample

$$\mathbf{X} = \begin{bmatrix} 3 & 6 \\ 4 & 4 \\ 5 & 7 \\ 4 & 7 \end{bmatrix}$$

from a bivariate normal population.

2. Using the data

$$\mathbf{X} = \begin{bmatrix} 2 & 12 \\ 8 & 9 \\ 6 & 9 \\ 8 & 10 \end{bmatrix}$$

- (a) Evaluate T^2 , for testing $H_0: \mu' = [7, 11]$, using the data
- (b) Specify the distribution of T^2 for the situation in (a).
- (c) Using (a) and (b), test H_0 at the $\alpha = .05$ level. What conclusion do you reach?
- (d) Determine Λ
- (e) Using the Wilk's Lambda (d), calculate T^2
- 3. Harry Roberts, a naturalist for the Alaska Fish and Game department, studies grizzly bears with the goal of maintaining a healthy population. Measurements on n=61 bears provided the following summary statistics:

Variable	Weight(kg)	Body length(cm)		Neck	Girth	Head lengt	th Head	width
Sample								
mean \bar{x}	95.52	164.38		55.69	93.39	17.98	31.13	
Covariance matrix $\mathbf{S} =$		3266.46	1343.97		1175.5		238.37	
		1343.97	721.91	324.25			117.73	
		731.54	324.25	179.28	281.1	7 39.15	56.80	
		1175.50	537.35	281.17	474.9	8 63.73	94.85	
		162.68	80.17	39.15	63.7	3 9.95	13.88	
		238.37	117.73	56.80	94.8	5 13.88	21.26	

- (a) Obtain the large sample 95% simultaneous confidence intervals for the six population mean body measurements.
- (b) Obtain the large sample 95% confidence ellipse for mean weight and mean girth.
- (c) Obtain the 95% Bonferroni confidence intervals for the six means in Part a.
- (d) Refer to Part b. Construct the 95% Bonferroni confidence rectangle for the mean weight and mean girth using m=6. Compare this rectangle with the confidence ellipse in Part b.