

Prospects of constraining on the polarizations of gravitational waves from binary black holes using space- and ground-based detectors

Jie Wu(吴洁)

2025.04.20

Based on: Phys. Rev. D 110, 084057 (2024). arXiv:2407.13590.

Phys. Rev. D 108, 124047 (2023). arXiv:2307.05568.

Outline

1 Background & motivation

2 GW waveform & detector

3 Constraints on parameters

4 Summary & outlook

Background & motivation

Test GR

B.S. Sathyaprakash & B.F. Schutz 2009

Background & motivation

Polarizations of GW

C. M. Will 2014

General Relativity allows **two** (tensor) polarizations. General metric theories allow **six** polarizations.

A. Nishizawa et al. 2009

1

Background & motivation

Related studies

1 ppE framework

N. Yunes & F. Pretorius, *PRD* **80**, 122003 (2009)

N. Cornish et al., *PRD* **84**, 062003 (2011)

K. Chatziioannou et al., *PRD* **86**, 022004 (2012)

S. Tahura & K. Yagi, *PRD* **98**, 084042 (2018)

.

Pulsar timing-arrays

N. Yunes & X. Siemens, *LRR* **16**, 9 (2013)

L. O'Beirne et al., *PRD* **99**, 124039 (2019)

.

3 Ground-based detectors

T. Narikawa & H. Tagoshi, *PTEP* **2016**, 093E02 (2016)

R. Nair et al., *PTEP* **2016**, 053E01 (2016)

H. Takeda et al., *PRD* **100**, 042001 (2019)

.

4 Space-based detectors

C. Huwyler et al., *PRD* **91**, 024037 (2015)

C. Liu et al., *PRD* **102**, 124050 (2020)

G. Wang & W.-B. Han, *PRD* **103**, 064021 (2021)

N. Xie et al., PRD 106, 124017 (2022)

.

Background & motivation

• Our work

GW source → Waveform → Detectors → Results

GW waveform

The extended **ppE framework** is utilized to construct a **model-independent** test for GR.

K. Chatziioannou et al. 2012

D. Hansen et al. 2015

$$\begin{split} h(t) &= \sum_{A} F^{A} h_{A}(t), & \frac{\mathrm{d}\omega}{\mathrm{d}t} = \alpha_{D} \eta^{2/5} \frac{G\mathcal{M}}{c^{3}} \omega^{3} + \alpha_{Q} \left(\frac{G\mathcal{M}}{c^{3}}\right)^{5/3} \omega^{11/3}, \\ h_{+} &= \mathcal{A}_{T} (1 + \cos^{2}t) / 2 \cos(2\Phi + 2\Phi_{0}), \\ h_{\times} &= \mathcal{A}_{T} \cos t \sin(2\Phi + 2\Phi_{0}), & \mathcal{A}_{T} &= \frac{4}{D_{L}} \left(\frac{G\mathcal{M}}{c^{2}}\right)^{5/3} \left(\frac{\omega}{c}\right)^{2/3}, \\ h_{X} &= \mathcal{A}_{V} \cos t \cos(\Phi + \Phi_{0}), & \mathcal{A}_{V} &= \frac{\alpha_{V}}{D_{L}} \left(\frac{G\mathcal{M}}{c^{2}}\right)^{4/3} \left(\frac{\omega}{c}\right)^{1/3}, \\ h_{Y} &= \mathcal{A}_{V} \sin(\Phi + \Phi_{0}), & \mathcal{A}_{B} &= \frac{\alpha_{B}}{D_{L}} \left(\frac{G\mathcal{M}}{c^{2}}\right)^{4/3} \left(\frac{\omega}{c}\right)^{1/3}, \\ h_{B} &= \mathcal{A}_{B} \sin t \cos(\Phi + \Phi_{0}), & \mathcal{A}_{L} &= \frac{\alpha_{L}}{D_{L}} \left(\frac{G\mathcal{M}}{c^{2}}\right)^{4/3} \left(\frac{\omega}{c}\right)^{1/3}, \\ h_{L} &= \mathcal{A}_{L} \sin t \cos(\Phi + \Phi_{0}), & \mathcal{A}_{L} &= \frac{\alpha_{L}}{D_{L}} \left(\frac{G\mathcal{M}}{c^{2}}\right)^{4/3} \left(\frac{\omega}{c}\right)^{1/3}, \\ \end{pmatrix} \quad \text{am} \end{split}$$

frequency α_Q, α_D $\alpha_V, \alpha_B, \alpha_L$ amplitude $\mathsf{ppE} \ \mathsf{parameters}$

. . .

L. O'Beirne et al. 2019; C. Liu et al. 2020

GW waveform Comparison of GR and ppE frameworks

The **current** observations of GW events are **transient**

LIGO & Virgo 2023

Quadrupole

Tensor

Dipole

Vector, Scalar

Assumption

• GW detector

Space

- LISA
- Taiji p/c/m
- TianQin I/II

- P. Amaro-Seoane et al. 2017
- G. Wang et al. 2021
- S.-J. Huang et al. 2020

Ground

- LIGO
- Virgo
- **KAGRA**
- · ET

- J. Aasi et al. 2015
- F. Acernese et al. 2015
- K. Somiya et al. 2012
- M. Punturo et al. 2010

On networks

R.-G. Cai et al. 2023; J. Wu & J. Li 2023

• GW source

Multiband observation of BBHs

Data analysis

14 parameters

$$\boldsymbol{\xi} = \{t_c, m_1, m_2, D_L, \iota, \Phi_0, \phi_e, \theta_e, \\ \psi, \alpha_Q, \alpha_D, \alpha_V, \alpha_B, \alpha_L\},$$

MBHB

$$(a|b) = 4\operatorname{Re}\left[\int_0^\infty \frac{\tilde{a}^*(f)\tilde{b}(f)}{S_n(f)}\mathrm{d}f\right],$$

$$\rho^2 = (h|h), \quad \Gamma_{ij} = \left(\frac{\partial h}{\partial \xi_i} \middle| \frac{\partial h}{\partial \xi_j}\right),$$

$$\Delta \xi_i = \sqrt{\Sigma_{ii}}$$
.

 $f_{
m ISCO} = rac{c^3}{6\sqrt{6}\pi GM}$. 90 days (space) 10 min (ground)

 $0.1~\mathrm{Hz}$

1 year (space)

SNR and **uncertainty**

cut-off frequency and duration

M. Vallisneri 2008; C. Liu et al. 2020

Constraints on parameters

Results with ppE parameters

Space

- Taiji>LISA>TianQin
- TianQin $\Delta \alpha_{V,B,L}, \Delta \Omega$ (configuration)
- $\Delta \alpha_{V,B,L}, \Delta \Omega$ better than ground
- LISA+TJm is the best

Ground

- ET>LIGO>KAGRA>Virgo
- Scalar mode degeneracy
- ET>LVK (except localization)
- LVK+ET improve localization

Constraints on parameters

Distance & multiband observation

TABLE II. Proportional coefficient $\mathcal K$ corresponding to different ppE parameters. We use logarithmic $log(\mathcal K)$ to represent the results in the table.

Detector	$M[M_{\odot}]$	$\Delta \alpha_Q$	$\Delta lpha_D$	$\Delta \alpha_V$	$\Delta lpha_B(lpha_L)$
LISA	105	-9.05	-12.63	-6.55	-4.86
	10^{6}	-8.76	-12.89	-6.46	-4.39
	10^{7}	-9.50	-14.17	-6.64	-2.42
TaiJi	10^{5}	-9.35	-12.94	-6.83	-5.05
	10^{6}	-8.94	-13.11	-6.57	-4.71
	10^{7}	-9.78	-14.46	-6.85	-2.68
TianQin	10^{5}	-8.95	-12.58	-6.30	-3.12
	10^{6}	-8.47	-12.73	-6.03	-1.72
	10^{7}	-9.28	-13.99	-5.97	-0.25
LIGO	3	-5.74	-9.54	-3.49	4.10
	20	-6.25	-10.67	-4.02	3.57
	100	-6.35	-10.38	-3.98	3.54
Virgo	3	-5.41	-9.26	-1.27	6.25
	20	-5.96	-10.38	-1.24	5.75
	100	-6.03	-10.04	-0.96	5.35
KAGRA	3	-5.28	-9.14	-0.92	5.76
	20	-5.94	-10.40	-1.01	4.61
	100	-5.73	-9.77	-0.58	3.97
ET	3	-6.77	-10.45	-4.68	3.24
	20	-7.20	-11.62	-5.13	2.79
	100	-7.54	-11.64	-5.32	2.46

$$\Delta \xi(D_L) = \mathcal{K}D_L + \Delta \xi(0),$$

Distance

- K: Space < ground
- Ground degeneracy

Multiband

- Resolve degeneracy
- improves outcomes (except ET)

Summary & outlook

Summary

Space

- Taiji has the most stringent constraints
- LISA+TJm performs best

Ground

- Scalar mode degeneracy
- ET surpasses 2-gen detector combinations

Multiband

Effectively mitigate degeneracy

Outlook

Future

- Longer-duration GW signals
- Non light speed propagation
- Time-delay interferometry
- More general BBHs
- Existing GW events
- Multimessenger observations

Our findings underscore the potential of future GW missions through precise measurements of polarizations.

Jie Wu(吴洁) 2025.04.20