目 录

1.	作业要求
2.	实验原理3
	2.1 StepLR 策略 3
	2.2 ExponentialLR 策略5
	2.3 ReduceLROnPlateau策略7
3.	代码实现9
	3.1 固定学习率代码9
	3.2 StepLR 代码11
	3.3 ExponentialLR 代码
	3.4 ReduceLROnPlateau代码16
4.	实验结果19
	4.1 固定学习率结果19
	4.2 StepLR 结果
	4.3 ExponentialLR 结果
	4.4 ReduceLROnPlateau 结果22
	4.5 学习率更新策略对比24
	4.6 结论

1. 作业要求

已知网络结构如图 1 所示,网络输入/输出如表 1 所示。f(x) 为 x 的符号函数:

$$f(net) = f(w_1 \times x_1 + w_2 \times x_2 + w_3 \times 1)$$

其中,bias 取常数 1,设初始值随机取成 (0.75, 0.5, -0.6)。对于这 10 组训练参数,若训练数据经过 f(net) 网络计算后的输出与理想输出 Y 不相符,则使用如下有师学习算法对网络权值进行更新:

$$w^{t} = w^{t-1} + c(d^{t-1} - sign(w^{t-1} * x^{t-1}))x^{t-1}$$

其中c为学习率,t为迭代次数, d^{t-1} 是第t-1代的理想输出值。

本次实验,我们的目标是在固定学习率c的基础上,通过使用不同的学习率调度策略,实现学习率动态自适应调整。

训练序号	x_1	<i>x</i> ₂	Y
1	1.0	1.0	1
2	9.4	6. 4	-1
3	2.5	2. 1	1
4	8.0	7. 7	-1
5	0.5	2. 2	1
6	7.9	8. 4	-1
7	7.0	7. 0	-1
8	2.8	0.8	1
9	1. 2	3. 0	1
10	7.8	6. 1	-1

表 1. 输入/输出训练参数表

图 1. 神经网络结构示例图

2. 实验原理

2.1 StepLR策略

(1) 初始化参数

- w = [0.75; 0.5; -0.6]: 权重向量的初始值。这里包括了两个特征的权重和一个偏置项。
- c = 0.1: 初始学习率,用于在每次更新权值时决定更新步长。
- gamma = 0.9: 学习率衰减系数,每进行一次固定步数的迭代后会将学习率

乘以 gamma。

- *step_size* = 1: 学习率调整的步长,即每进行一次迭代,就会根据这个步长 更新学习率。
- *max_iterations* = 500:最大迭代次数,如果达到最大迭代次数而没有收敛, 程序将停止。
- *tolerance* = 10⁻⁹: 收敛容忍度,如果总误差小于这个阈值,则认为训练已 经收敛。

(2) 训练数据

- *data* 包含了 10 个数据点,每个数据点有 2 个特征和一个标签(1 或 -1)。
- X = [data(:, 1:2), ones(size(data, 1), 1)]:特征矩阵,其中每个数据点都加入了一个偏置项 1。
- Y = data(:,3): 目标标签向量。
- (3) 训练过程
- 每经过 $step_size$ 次迭代,学习率 c 将乘以 gamma 进行衰减,从而减小权值 更新的幅度。
- 对于每一个训练样本,计算其净输入:

$$net = w' \cdot X(i,:)$$

然后使用符号函数 sign(net) 得到预测值。

● 如果输出与实际标签一致,则认为该样本分类正确。如果输出和实际标签不一致,就会更新权值:

$$w = w + c \times error \times X(i,:)'$$

其中 error = Y(i) - output,是网络输出与实际标签之间的差异,X(i,:)'是 当前样本的特征向量,c是学习率,控制每次权值更新的幅度。

- 如果所有训练样本的误差小于给定容忍度 tolerance,则认为训练已经收敛, 终止迭代。
- (4) 流程图

图 3. StepLR 策略训练流程图

2.2 ExponentialLR策略

(1) 初始化参数

- w = [0.75; 0.5; -0.6]: 权重向量的初始值。这里包括了两个特征的权重和一个偏置项。
- $c_0 = 0.1$: 初始学习率。
- gamma = 0.9: 学习率的指数衰减因子。
- max_epochs = 500: 最大训练轮数,用来控制训练的迭代次数。
- $tolerance = 10^{-9}$: 误差容忍度,当总误差小于此值时训练停止。

(2) 训练数据

- data 包含了 10 个数据点,每个数据点有 2 个特征和一个标签(1 或 -1)。
- *X* = [data(:, 1:2), ones(size(data, 1), 1)]: 特征矩阵, 其中每个数据点都

加入了一个偏置项1。

- *Y* = *data*(:, 3): 目标标签向量。
- (3) 训练过程
- 在每一轮训练中,学习率c根据指数衰减公式进行更新:

$$c = c_0 \times \gamma^{epoch-1}$$

并记录每轮的学习率变化。

● 对每个数据点, 计算其净输入:

$$net = w' \times X(i,:)'$$

然后通过符号函数 sign(net) 得到预测值。

● 计算模型预测输出与真实标签之间的误差:

$$error = Y(i) - output$$

如果误差不为零,说明预测错了,需要更新权重。 总误差是所有数据点误差的绝对值和:

$$total_error = total_error + abs(error)$$

● 如果误差 error 不为零,则根据梯度下降公式更新权重:

$$w = w + c \times error \times X(i,:)'$$

其中c是当前的学习率。

● 每次迭代后,使用当前的权重计算所有数据点的预测,并与真实标签对比, 计算分类准确率:

$$accuracy = sum(predictions == Y) / length(Y)$$

- 如果总误差 *total_error* 小于设定的容忍度 *tolerance* ,则认为模型已经收敛,训练提前结束。
- 输出最终的权重值。
- (4) 流程图

图 4. ExponentialLR策略训练流程图

2.3 ReduceLROnPlateau策略

(1) 初始化参数

- w = [0.75; 0.5; -0.6]: 初始化感知机的权重,包括偏置项。
- $c_0 = 0.1$: 初始学习率,用于权重更新。
- *max_epochs* = 500: 最大训练轮数,表示最多进行 500 次迭代。
- $tolerance = 10^{-9}$: 训练误差的容忍度,用于判断训练是否收敛。

(2) 训练数据

将数据集分为训练集和验证集:

- *train_ratio* = 0.8: 训练集占比 80%。
- *num_samples*:数据集的样本数量(10个数据点)。
- num_train:训练集的样本数量,按 train_ratio 计算。
- train_indices 和 val_indices: 通过 randperm 函数随机选择训练集和验证集的样本索引。

提取训练集和验证集的输入和输出,加入偏置项(即每个输入样本都增加一个值为1的维度)。

(3) 训练过程

- 每次训练开始时,检查验证集的准确率。如果验证准确率连续3轮没有提高,则学习率减少为当前学习率的一半,并确保最小学习率不低于*min_lr*。
- 对于每一个训练样本, 计算净输入:

$$net = w' \times X_{train(i,:)'}$$

然后通过符号函数 sign(net) 得到模型输出(预测值)。

● 计算误差:

$$error = Y_train(i) - output$$

● 如果误差不为零(即分类错误),根据感知机规则更新权重:

$$w = w + c \times error \times X_train(i,:)'$$

其中,c是当前学习率。

● 在每一轮训练后,使用验证集进行前向传播,并计算验证准确率:

$$predictions_val = sign(X_val \times w)$$

计算验证集准确率:

 $accuracy_val = sum(predictions_val == Y_val) / length(Y_val)$

- 如果当前验证集准确率高于历史最佳准确率,则更新 best_accuracy, 并重置 counter (用于记录连续未提升的轮数)。如果准确率没有提升, counter + 1。
- 如果训练误差小于预定的容忍度(total_train_error < tolerance),则认为训练收敛,提前终止训练。

(4) 流程图

图 5. ReduceLROnPlateau 策略训练流程图

3. 代码实现

3.1 固定学习率代码

- 1. % 初始化参数
- 2. w = [0.75; 0.5; -0.6]; % 权值初始化
- 3. c = 0.2; % 固定学习率
- 4. max_epochs = 50; % 最大训练轮数
- 5. tolerance = 1e-9; % 收敛容忍度
- 6.
- 7. %数据

```
data = [1.0, 1.0, 1;
8.
9.
            9.4, 6.4, -1;
            2.5, 2.1, 1;
10.
11.
            8.0, 7.7, -1;
12.
            0.5, 2.2, 1;
13.
            7.9, 8.4, -1;
14.
            7.0, 7.0, -1;
15.
            2.8, 0.8, 1;
            1.2, 3.0, 1;
16.
17.
            7.8, 6.1, -1]; % 训练数据
18.
19.
     % 提取输入和输出
20.
     X = [data(:, 1:2), ones(size(data, 1), 1)]; % 加入偏置项
     Y = data(:, 3);
21.
22.
23.
     % 记录准确率历史
24.
     accuracy_history = [];
25.
26.
    % 训练循环
27.
    for epoch = 1:max_epochs
28.
        % 初始化误差
29.
        total_error = 0;
30.
31.
        for i = 1:size(X, 1)
32.
            % 前向传播
            net = w' * X(i,:)'; % 计算净输入
33.
34.
            output = sign(net); % 计算输出,使用符号函数
35.
36.
            % 计算误差
37.
            error = Y(i) - output;
38.
            total_error = total_error + abs(error);
39.
            % 更新权值
40.
41.
            if error ~= 0
42.
                w = w + c * error * X(i, :)'; % 使用固定学习率更新权值
43.
            end
44.
        end
45.
46.
        % 计算分类准确率
        predictions = sign(X * w);
47.
48.
         accuracy = sum(predictions == Y) / length(Y);
49.
         accuracy_history = [accuracy_history, accuracy];
50.
51.
        % 检查是否收敛
```

```
52.
         if total_error < tolerance</pre>
            fprintf('Training converged after %d epochs.\n', epoch);
53.
54.
            break;
55.
         end
56.
     end
57.
58.
     % 最终权值
59.
     fprintf('Final weights: %.4f, %.4f, %.4f\n', w(1), w(2), w(3));
60.
61.
     % 绘制准确率变化
62.
    figure;
63.
     plot(1:length(accuracy_history), accuracy_history, 'r-', 'LineWidth',
     2);
64.
    xlabel('Epoch');
65.
    ylabel('Accuracy');
66.
    title('Accuracy vs. Epoch');
67.
     grid on;
3.2 StepLR代码
     % 初始化参数
```

```
1.
2.
     w = [0.75; 0.5; -0.6]; % 权值初始化
3.
     c = 0.1; % 初始学习率
4.
     gamma = 0.9; % 学习率缩小倍数
5.
     step_size = 1; % 学习率调整步长
6.
     max_iterations = 500; % 最大迭代次数
7.
     tolerance = 1e-9; % 收敛容忍度
8.
     data = [1.0, 1.0, 1;
9.
            9.4, 6.4, -1;
            2.5, 2.1, 1;
10.
            8.0, 7.7, -1;
11.
12.
            0.5, 2.2, 1;
13.
            7.9, 8.4, -1;
14.
            7.0, 7.0, -1;
            2.8, 0.8, 1;
15.
16.
            1.2, 3.0, 1;
17.
            7.8, 6.1, -1]; % 训练数据
18.
19.
    % 提取输入和输出
20.
     X = [data(:, 1:2), ones(size(data, 1), 1)]; % 加入偏置项
21.
    Y = data(:, 3);
22.
23.
    % 初始化记录变量
```

```
24.
     learning_rate_history = []; % 记录学习率变化
25.
     accuracy_history = []; % 记录正确率变化
26.
27.
     % 迭代过程
28.
     for iter = 1:max_iterations
29.
         % 动态调整学习率
30.
         if mod(iter, step size) == 0
31.
            c = c * gamma;
32.
         end
33.
         learning_rate_history = [learning_rate_history, c];
34.
35.
         % 初始化当前误差
36.
         total_error = 0;
37.
         correct_classifications = 0; % 正确分类样本数
38.
         for i = 1:size(X, 1)
39.
40.
            % 前向传播
41.
            net = w' * X(i, :)'; % 计算净输入
42.
            output = sign(net); % 计算输出,使用符号函数
43.
44.
            % 检查分类是否正确
45.
            if output == Y(i)
                correct classifications = correct classifications + 1;
46.
47.
            end
48.
            % 计算当前误差
49.
50.
            error = Y(i) - output;
            total_error = total_error + abs(error);
51.
52.
53.
            % 权值更新
54.
            if error ~= 0
                w = w + c * error * X(i, :)';
55.
56.
            end
57.
         end
58.
59.
         % 记录正确率
60.
         accuracy = correct_classifications / size(X, 1);
61.
         accuracy_history = [accuracy_history, accuracy];
62.
         % 检查误差是否在容忍度范围内
63.
64.
         if total_error < tolerance</pre>
65.
            fprintf('Training converged after %d iterations.\n', iter);
66.
            break;
67.
         end
```

```
68.
     end
69.
70.
     %输出最终权值
71.
     fprintf('Final weights: %.4f, %.4f, %.4f\n', w(1), w(2), w(3));
72.
73.
     % 绘制学习率变化情况
74.
     figure;
75.
    subplot(2, 1, 1);
     plot(1:length(learning rate history), learning rate history, 'b-',
76.
     'LineWidth', 2);
77.
     xlabel('Iteration');
78.
     ylabel('Learning Rate');
79.
     title('Learning Rate vs. Iteration');
80.
     grid on;
81.
82.
     % 绘制正确率变化情况
83.
     subplot(2, 1, 2);
84.
     plot(1:length(accuracy_history), accuracy_history, 'r-', 'LineWidth',
     2);
85.
     xlabel('Iteration');
86.
     ylabel('Accuracy');
     title('Accuracy vs. Iteration');
87.
88.
     grid on;
89.
90.
91.
     % 绘制分类图
92.
    figure;
93.
     hold on;
94.
95.
     % 绘制数据点
     gscatter(data(:, 1), data(:, 2), Y, 'rb', 'o', 8);
96.
97.
98. %绘制决策边界
    % 计算边界: w1*x1 + w2*x2 + b = 0 => x2 = -(w1/w2)*x1 - (b/w2)
99.
100. x1 = linspace(min(data(:, 1)), max(data(:, 1)), 100);
101. x^2 = -(w(1)/w(2)) * x^1 - (w(3)/w(2));
102.
103. plot(x1, x2, 'k--', 'LineWidth', 2); % 绘制决策边界
104. xlabel('Feature 1');
105. ylabel('Feature 2');
106. title('Final Classification with Decision Boundary');
107. legend('Class 1', 'Class -1', 'Decision Boundary');
108. grid on;
109. hold off;
```

3.3 ExponentialLR 代码

```
1.
     % 初始化参数
2.
     w = [0.75; 0.5; -0.6]; % 权值初始化
     c0 = 0.1; % 初始学习率
3.
4.
     gamma = 0.9; % 指数衰减因子
5.
     max epochs = 500; % 最大训练轮数
6.
     tolerance = 1e-9; % 收敛容忍度
7.
     %数据
8.
9.
     data = [1.0, 1.0, 1;
            9.4, 6.4, -1;
10.
11.
            2.5, 2.1, 1;
12.
            8.0, 7.7, -1;
            0.5, 2.2, 1;
13.
14.
            7.9, 8.4, -1;
15.
            7.0, 7.0, -1;
            2.8, 0.8, 1;
16.
17.
            1.2, 3.0, 1;
18.
            7.8, 6.1, -1]; % 训练数据
19.
20.
     % 提取输入和输出
     X = [data(:, 1:2), ones(size(data, 1), 1)]; % 加入偏置项
21.
22.
     Y = data(:, 3);
23.
24.
     % 记录学习率和误差历史
25.
     learning rate history = [];
26.
    accuracy_history = [];
27.
28.
    % 训练循环
29.
    for epoch = 1:max_epochs
30.
        % 更新学习率 (指数衰减)
31.
        c = c0 * gamma^(epoch - 1);
32.
        learning rate history = [learning rate history, c]; % 记录学习率
33.
        % 初始化误差
34.
35.
        total_error = 0;
36.
37.
        for i = 1:size(X, 1)
38.
            % 前向传播
            net = w' * X(i, :)'; % 计算净输入
39.
            output = sign(net); % 计算输出,使用符号函数
40.
41.
```

```
42.
            % 计算误差
            error = Y(i) - output;
43.
44.
            total_error = total_error + abs(error);
45.
46.
            % 更新权值
47.
            if error ~= 0
48.
                w = w + c * error * X(i, :)'; % 学习率调整后的权值更新
49.
            end
50.
         end
51.
52.
         % 计算分类准确率
53.
         predictions = sign(X * w);
54.
         accuracy = sum(predictions == Y) / length(Y);
55.
         accuracy_history = [accuracy_history, accuracy];
56.
57.
         % 检查是否收敛
58.
         if total_error < tolerance</pre>
59.
            fprintf('Training converged after %d epochs.\n', epoch);
60.
            break;
61.
         end
62.
     end
63.
64.
     % 最终权值
65.
     fprintf('Final weights: %.4f, %.4f, %.4f\n', w(1), w(2), w(3));
66.
67.
     % 绘制学习率和准确率变化
68.
     figure;
69.
70.
     % 学习率变化图
71.
     subplot(2, 1, 1);
72.
     plot(1:length(learning_rate_history), learning_rate_history, 'b-',
     'LineWidth', 2);
     xlabel('Epoch');
73.
74.
     ylabel('Learning Rate');
75.
     title('Learning Rate vs. Epoch');
76.
     grid on;
77.
78.
     %准确率变化图
79.
     subplot(2, 1, 2);
     plot(1:length(accuracy_history), accuracy_history, 'r-', 'LineWidth',
80.
     2);
81.
    xlabel('Epoch');
82.
     ylabel('Accuracy');
     title('Accuracy vs. Epoch');
83.
```

```
84. grid on;
85.
    % 绘制分类图
    figure;
86.
87.
    hold on;
88.
89.
    % 绘制数据点
90.
     gscatter(data(:, 1), data(:, 2), Y, 'rb', 'o', 8);
91.
92. % 绘制决策边界
93. % 计算边界: w1*x1 + w2*x2 + b = 0 \Rightarrow x2 = -(w1/w2)*x1 - (b/w2)
    x1 = linspace(min(data(:, 1)), max(data(:, 1)), 100);
95.
    x2 = -(w(1)/w(2)) * x1 - (w(3)/w(2));
96.
97. plot(x1, x2, 'k--', 'LineWidth', 2); % 绘制决策边界
98. xlabel('Feature 1');
99. ylabel('Feature 2');
100. title('Final Classification with Decision Boundary');
101. legend('Class 1', 'Class -1', 'Decision Boundary');
102. grid on;
103. hold off;
3.4 ReduceLROnPlateau代码
     % 初始化参数
1.
     w = [0.75; 0.5; -0.6]; % 权值初始化
     c0 = 0.1; % 初始学习率
```

```
2.
3.
4.
    max epochs = 500; % 最大训练轮数
5.
    tolerance = 1e-9; % 收敛容忍度
6.
7.
     % 划分训练集和验证集(这里简单按比例划分,可根据实际调整)
8.
    data = [1.0, 1.0, 1;
9.
            9.4, 6.4, -1;
10.
            2.5, 2.1, 1;
11.
            8.0, 7.7, -1;
           0.5, 2.2, 1;
12.
13.
           7.9, 8.4, -1;
14.
           7.0, 7.0, -1;
15.
           2.8, 0.8, 1;
16.
           1.2, 3.0, 1;
17.
            7.8, 6.1, -1]; % 训练数据
18.
19. train ratio = 0.8; % 训练集占比
20.
    num_samples = size(data, 1);
```

```
21.
     num_train = floor(num_samples * train_ratio);
22.
     train indices = randperm(num samples, num train);
     val_indices = setdiff(1:num_samples, train_indices);
23.
24.
25.
     data_train = data(train_indices, :);
26.
    data_val = data(val_indices, :);
27.
    % 提取训练集输入和输出,并加入偏置项
28.
29.
    X train = [data train(:, 1:2), ones(size(data train, 1), 1)];
30.
    Y_train = data_train(:, 3);
31.
32.
    % 提取验证集输入和输出,并加入偏置项
33.
    X_val = [data_val(:, 1:2), ones(size(data_val, 1), 1)];
34.
    Y val = data val(:, 3);
35.
36.
    % 设置 ReduceLROnPlateau 相关参数
37.
    patience = 3; % 当验证准确率不再提升,等待多少轮后降低学习率
38.
    factor = 0.5; % 学习率降低因子
39.
    min lr = 1e-6; % 最小学习率, 防止学习率降得过低
40.
     best_accuracy = 0; % 初始最佳验证准确率设为 0
41.
    counter = 0; % 计数器,用于记录验证准确率未提升的轮数
42.
43.
    % 记录学习率和误差历史
44.
    learning_rate_history = [];
45.
     accuracy_history = [];
46.
47.
    % 训练循环
48.
    for epoch = 1:max epochs
49.
        % 更新学习率(基于 ReduceLROnPlateau 策略)
50.
        if counter >= patience
51.
           c0 = max(c0 * factor, min_lr); % 降低学习率,确保不低于最小学习率
52.
           counter = 0;
53.
        end
54.
        c = c0; % 当前学习率
55.
        learning_rate_history = [learning_rate_history, c]; % 记录学习率
56.
57.
        % 初始化训练误差和验证误差
58.
        total_train_error = 0;
59.
        total_val_error = 0;
60.
61.
        % 训练集前向传播与权值更新
62.
        for i = 1:size(X_train, 1)
63.
           % 前向传播
64.
           net = w' * X_train(i, :)'; % 计算净输入
```

```
output = sign(net); % 计算输出, 使用符号函数
65.
66.
67.
            % 计算误差
68.
            error = Y train(i) - output;
69.
            total_train_error = total_train_error + abs(error);
70.
71.
            % 更新权值
72.
            if error ~= 0
73.
               w = w + c * error * X_train(i, :)'; % 学习率调整后的权值更新
74.
            end
75.
        end
76.
77.
        %验证集前向传播,计算验证准确率
78.
         predictions val = sign(X val * w);
79.
        accuracy_val = sum(predictions_val == Y_val) / length(Y_val);
80.
         accuracy_history = [accuracy_history, accuracy_val];
81.
82.
        % 根据验证准确率更新最佳准确率与计数器
83.
        if accuracy_val > best_accuracy
84.
            best_accuracy = accuracy_val;
85.
            counter = 0;
86.
        else
87.
            counter = counter + 1;
88.
        end
89.
90.
        % 检查是否收敛(这里简单根据训练误差判断,可优化)
91.
        if total_train_error < tolerance</pre>
92.
            fprintf('Training converged after %d epochs.\n', epoch);
93.
            break;
94.
        end
95.
    end
96.
97.
     % 最终权值
98.
     fprintf('Final weights: %.4f, %.4f, %.4f\n', w(1), w(2), w(3));
99.
100. % 绘制学习率和准确率变化
101. figure;
102.
103. % 学习率变化图
104. subplot(2, 1, 1);
105. plot(1:length(learning_rate_history), learning_rate_history, 'b-',
     'LineWidth', 2);
106. xlabel('Epoch');
107. ylabel('Learning Rate');
```

```
108. title('Learning Rate vs. Epoch');
109. grid on;
110.
111. % 准确率变化图
112. subplot(2, 1, 2);
113. plot(1:length(accuracy_history), accuracy_history, 'r-', 'LineWidth',
114. xlabel('Epoch');
115. ylabel('Accuracy');
116. title('Accuracy vs. Epoch');
117. grid on;
118.
119. % 绘制分类图
120. figure;
121. hold on;
122.
123. % 绘制数据点
124. gscatter(data(:, 1), data(:, 2), data(:, 3), 'rb', 'o', 8);
125.
126. % 绘制决策边界
127. % 计算边界: w1*x1 + w2*x2 + b = 0 \Rightarrow x2 = -(w1/w2)*x1 - (b/w2)
128. x1 = linspace(min(data(:, 1)), max(data(:, 1)), 100);
129. x2 = -(w(1)/w(2)) * x1 - (w(3)/w(2));
130.
131. plot(x1, x2, 'k--', 'LineWidth', 2); % 绘制决策边界
132. xlabel('Feature 1');
133. ylabel('Feature 2');
134. title('Final Classification with Decision Boundary');
135. legend('Class 1', 'Class -1', 'Decision Boundary');
136. grid on;
137. hold off;
```

4. 实验结果

4.1 固定学习率结果

图 6. 固定学习率的准确性变化曲线

Training converged after 6 epochs. Final weights: -0.6900, -0.2600, 3.8000

图 7. 固定学习率的最终权值

4.2 StepLR结果

Figure 2 × 文件(F) 编辑(E) 查看(V) 插入(I) 工具(T) 桌面(D) 窗口(W) 帮助(H) Final Classification with Decision Boundary Class 1 30 Class -1 Decision Boundary 20 10 8 0 - Feature 2 -20 -30 -40 -50 -60

图 8. StepLR 的学习率与准确率的变化曲线

图 9. StepLR 产生的决策边界

Feature 1

10

Training converged after 8 iterations. Final weights: -0.3373, -0.0354, 1.2960

图 10. StepLR 的最终权值

4.3 ExponentialLR 结果

0

图 11. ExponentialLR 的学习率与准确率的变化曲线

图 12. ExponentialLR 产生的决策边界

Training converged after 6 epochs. Final weights: -0.3703, -0.0782, 1.1997

图 13. ExponentialLR 最终权值

4.4 ReduceLROnPlateau 结果

图 14. ReduceLROnPlateau 的学习率与准确率的变化曲线

图 15. ReduceLROnPlateau 产生的决策边界

Training converged after 7 epochs. Final weights: -0.2300, 0.0400, 1.2000

图 16. ReduceLROnPlateau 的最终权值

4.5 学习率更新策略对比

	固定学习率	StepLR	ExponentialLR	ReduceLROnPlateau
复杂性	低	中	中	一
稳定性	高 (在合适的 学习率下)	中	中	高 (智能调整)
自适应性	低	中	高	最高
超参数	1个 (学习率)	2 个 (步长、衰减 系数)	1个 (衰减因子)	3 个 (耐心度、降低因子、 最小学习率)
计算成本	低	中	中	高
适用场景	简单任务	中等复杂任务	复杂任务	各种复杂任务

4.6 结论

在选择学习率调整策略时,需要根据具体任务、数据分布、模型结构以及计 算资源等因素进行综合考虑。

固定学习率策略简单稳定,但难以选择最佳学习率; StepLR 和 ExponentialLR 策略具有一定的灵活性, 但需要仔细调整超参数; ReduceLROnPlateau 策略智能调整学习率,适用性广,但计算成本较高且需要设置多个超参数。

因此,在实际应用中,可以根据具体需求选择合适的策略进行训练。