Яндекс. Тренировки по алгоритмам июнь 2021, занятие 8

J. Родословная: подсчет уровней

Ограничение времени	1 секунда
Ограничение памяти	64Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

В генеалогическом древе у каждого человека, кроме родоначальника, есть ровно один родитель. Каждом элементу дерева сопоставляется целое неотрицательное число, называемое высотой. У родоначальника высота равна 0, у любого другого элемента высота на 1 больше, чем у его родителя. Вам дано генеалогическое древо, определите высоту всех его элементов.

Формат ввода

Программа получает на вход число элементов в генеалогическом древе N. Далее следует N-I строка, задающие родителя для каждого элемента древа, кроме родоначальника. Каждая строка имеет вид имя_потомка имя_родителя.

Формат вывода

Программа должна вывести список всех элементов древа в лексикографическом порядке. После вывода имени каждого элемента необходимо вывести его высоту.

Пример 1

Ввод	Вывод
9	Alexander_I 4
Alexei Peter_I	Alexei 1
Anna Peter_I	Anna 1
Elizabeth Peter_I	Elizabeth 1
Peter_II Alexei	Nicholaus_I 4
Peter_III Anna	Paul_I 3
Paul_I Peter_III	Peter_I 0
Alexander_I Paul_I	Peter_II 2
Nicholaus_I Paul_I	Peter_III 2

Пример 2

Ввод	Вывод
10	AQHFYP 3
AQHFYP MKFXCLZBT	AYKOTYQ 2
AYKOTYQ QIUKGHWCDC	IWCGKHMFM 1
IWCGKHMFM WPLHJL	MJVAURUDN 2
MJVAURUDN QIUKGHWCDC	MKFXCLZBT 2
MKFXCLZBT IWCGKHMFM	PUTRIPYHNQ 2

Ввод	Вывод
PUTRIPYHNQ UQNGAXNP	QIUKGHWCDC 1
QIUKGHWCDC WPLHJL	UQNGAXNP 1
UQNGAXNP WPLHJL	WPLHJL 0
YURTPJNR QIUKGHWCDC	YURTPJNR 2

Пример 3

Ввод	Вывод
10	BFNRMLH 3
BFNRMLH CSZMPFXBZ	CSZMPFXBZ 2
CSZMPFXBZ IHWBQDJ	FMVQTU 9
FMVQTU FUXATQUGIG	FUXATQUGIG 8
FUXATQUGIG IRVAVMQKN	GNVIZ 6
GNVIZ IQGIGUJZ	IHWBQDJ 1
IHWBQDJ LACXYFQHSQ	IQGIGUJZ 5
IQGIGUJZ JMUPNYRQD	IRVAVMQKN 7
IRVAVMQKN GNVIZ	JMUPNYRQD 4
JMUPNYRQD BFNRMLH	LACXYFQHSQ 0

Примечания

Эта задача имеет решение сложности O(n), но вам достаточно написать решение сложности $O(n^2)$ (не считая сложности обращения к элементам словаря). Пример ниже соответствует приведенному древу рода Романовых.

Язык Руthon 3.12.1

Набрать здесь Отправить файл

```
1 import sys
2 from collections import defaultdict
      # считываем данные
N = int(input().strip())
  4
5
     N = Int(Input().Strip())
sys.setrecursionlimit(100000)
tree = defaultdict() # генеалогическое древо ребенок:[родитель]
people = set() # множество людей в генеалогическом древе
heights_desc = defaultdict(int) # словарь высот элементов древа
10
             in range(N - 1):
Child, parent = input().split()
people.add(child)
people.add(parent)
tree[child] = parent
11
12
14
15
16
      def height_of_descendant(human):
18
19
             Функция подсчета высоты элемента древа
              :param human: текущий человек
:return: высоту в древе текущего элемента
20
21
22
             # если человека нет в генеалогическом древе потомка, сохраняем в heights_desc высоту 0, возвращаем 0 if human not in tree: heights_desc[human] = 0 return 0
23
24
25
26
27
28
             total_height = 0 # общая высота текущего элемента
# проходим по родителям в древе
parent = tree[human]
29
30
             # если для ребенка еще не посчитано число потомков, рекурсивно вызываем count_of_descendants()
# сохраняем ответ в словарь count_desc

if parent not in heights_desc:
    height = height_of_descendant(parent)
31
32
33
              heights_desc[parent] = height
# иначе получаем значение из словаря
34
35
             else:
hoight - hoights doss[namont]
36
37
38
```

Отправить

Предыдущая