# Clasificación y determinación de Redshift de espectros astrofísicos mediante Redes Neronales Convolucionales

Jairo Andres Saavedra Alfonso Física Astroandes CoCo 2019: Cosmología en Colombia Universidad de los Andes 2019





## Introducción

 La exploración activa de espectros astrofisicos require de presición para determinar clasificación espectral y determinación de Redshift del objeto observado.



Figura 1: Porcion del mapa 3D de estructura a gran escala de SDSS



Figura 2: Porcion del mapa de Galaxias de SDSS

## Introducción

 Metodos estandar automatizados REDMOSTER Software (eBOSS).



Clasificación a ojo por expertos.

## Motivación

 Automatización del proceso de clasificación espectral para futuros Surveys (DESI).



- Medir el efecto de la materia oscura en la expansion del universo.
- 11 millones de espectros de galaxias y QSO

## Motivación

- Automatización del proceso de clasificación espectral para futuros Surveys (DESI).
- Caracterización de espectros de cuasares para estudios cosmologicos.

## Motivación

- Automatización del proceso de clasificación espectral para futuros Surveys (DESI).
- Caracterización de espectros de cuasares para estudios cosmologicos.
- Predicción de Redshit de cuasares a partir de su espectros.

## Objetivo

Evaluar diferentes estructuras de Redes Neuronales Convolucionales (RNC) para:

# Objetivo

Evaluar diferentes estructuras de Redes Neuronales Convolucionales (RNC) para:

 Clasificación espectral (Estrellas, Galaxias y QSO).

# Objetivo

Evaluar diferentes estructuras de Redes Neuronales Convolucionales (RNC) para:

- Clasificación espectral (Estrellas, Galaxias y QSO).
- Determinar Redshift de los objetos observados (Regresión).

#### **Datos**

- SDSS Data Release 12
- Baryon Oscillations Spectroscopic Survey (BOSS)
- Estrellas → 207905 espectros
- Galaxias → 20699 espectros
- Cuásares → 270534 espectros
- Cuásares BAL → 29652 espectros

#### **Datos**



Figura 4: Espetro de (A) Estrellas, (B) Galaxias, (C) QSO y (D) QSO-BAL

# RNC 1.0 Clasificación Espectral



Figura 5: Primera estructura tentativa de RNC para 80/20 de Entreno/Test

# RNC 2.0 Clasificación Espectral



Figura 6: Segunda estructura tentativa de RNC para 80/20 de Entreno/Test

#### Entrenamiento

- SDSS Data Release 12
- 10000 Espectros
- 80/20 Entrenamiento/Testeo.
- 10 epocas.
- 1000 espectros por época.

# Matriz de confusión Clasificación Espectral RNC 1.0



Figura 7: Matriz de confusión Entrenamiento

Figura 8: Matriz de confusión Testeo

# Matriz de confusión Clasificación Espectral RNC 2.0



Figura 9: Matriz de confusión Entrenamiento Figura 10: Matriz de confusión Testeo

## Conclusiones

- Es posible realizar una clasificación espectral mediante la implementacion de Redes Neuronales Convolucionales.
- Las capas convolucionales mejoran los resultados para clasificación multi-clase de imagenes 1-dimensión (Espectros).