

University of Toronto Mississauga An Introduction to Probability and Modelling STA107H5, Winter 2024

Term Test 1
Duration: 75 Minutes

-	L	L	L	L				L	I	 L	L	1	
I.ast	name	.											
	Tanic				 г	 г			ı		I		
							9						
						<u> </u>					L		
Stud	ent I	D nur	nber										
		1			 		Т	r					
				l								l	

INSTRUCTIONS and POLICIES:

- Please DO NOT rip off any page from this booklet.
- For all questions, complete solutions are required. Show your work to earn full marks and then circle the final answer where appropriate.
- You are allowed to use a non-programmable calculator.
- Simplify final answers and round to 3 decimal places where appropriate.

#18 Page 2 of 6

Question 1 (10 points). In a hospital, the probability of a patient receiving a blood pressure check is 70%,

a cholesterol level test is 60%, and both screenings during the same visit is 50%. Calculate:

a) the probability that a patient receives at least one of these screenings;

$$P(BUC) = P(B) + P(C) - P(BC)$$

$$= \frac{0.7 + 0.6 - 0.5}{0.8}$$

b) the probability that a patient receives exactly one of these screenings.

$$P(BC'UB'C) = P(BC') + P(BC)$$

$$= P(B) - P(BC) + P(C) - P(BC)$$

$$= P(B) + P(C) - 2P(BC)$$

$$= 6.7 + 0.6 - 2 \times 0.5$$

$$= 0.3$$

Venn diagrams on for visualitation purposes only.

#18 Page 3 of 6

Question 2 (10 points). Simplify the following expression using the properties of operations among events:

$$(A \cup B) (A \cup B') (A' \cup B)$$

Hint: You should justify each step of your solution by referring to at least one of the properties SP1-SP11, included within the appendix page of this exam, or any other property such as the De Morgan's Laws.

$$(AUB)(AUB')(A'UB) = \begin{bmatrix} AU(BB') \\ AU(BB') \end{bmatrix} \begin{pmatrix} A'UB \end{pmatrix} SP6 + \frac{2}{2}$$

$$= (AU\emptyset)(A'UB) SP7 + \frac{2}{2}$$

$$= A(A'UB) SP2 + \frac{1}{2}$$

$$= AA'UAB SP6 + \frac{2}{2}$$

$$= \emptyset UAB SP7 + \frac{2}{2}$$

$$= \overline{AB} \qquad SP7 + \frac{2}{2}$$

#18 Page 4 of 6

Question 3 (10 points). Let A, B, and C be three events on a sample space Ω . Use the Venn diagrams to examine whether the following relation is always true:

$$(B-A)(C-A) = BC - A.$$

LHS:

(B-A)(C-A)

.. Two shaded areas coincide, so the relation holds true (or it is an identity). (+2)

Question 4 (10 points). A consultant travels frequently between three cities: Toronto, Montreal, and Vancouver. Let T, M, and V be the events that she travels to Toronto, Montreal, and Vancouver, respectively. It is known that:

- i) the probability that she travels to Toronto is twice the probability of travelling to Montreal;
- ii) the probability of travelling to Vancouver is three times the probability of travelling to Montreal; and
- iii) the sum of the probabilities of travelling to Toronto and Montreal is 0.5.

Find the probabilities that she travels to each of these three cities; i.e., find P(T), P(M) and P(V).

$$P(T) + P(M) = 0.5 \Rightarrow +2$$

$$2P(M) + P(M) = 0.5 \Rightarrow +1$$

$$3P(M) = 0.5 \Rightarrow +1$$

$$P(M) = \frac{1}{6} \approx 0.107$$

$$P(T) = 2P(M) \Rightarrow +2$$

$$P(T) = 2 \times \frac{1}{6} = \frac{1}{3} \approx 0.333 +1$$

$$P(T) = 3P(M) \Rightarrow +2$$

$$P(T) = 3 \times \frac{1}{6} = \frac{1}{2} = 0.5 +1$$

#18 Page 6 of 6

APPENDIX

Proposition 1.1 The following properties hold true for the operations among events:

 $SP1. A \cup A = A \qquad AA = A$

 $SP2. A \cup \emptyset = A \qquad A\emptyset = \emptyset$

SP3. $A \cup \Omega = \Omega$ $A\Omega = A$

 $SP4. \ A \cup B = B \cup A \ AB = BA$

SP5. $A \cup (B \cup C) = (A \cup B) \cup C$ A(BC) = (AB)C

SP6. $A \cup (BC) = (A \cup B)(A \cup C)$ $A(B \cup C) = (AB) \cup (AC)$

SP7. $A \cup A' = \Omega$ $AA' = \emptyset$

SP8. (A')' = A

SP9. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$

SP10. If $A \subseteq B$, then $B' \subseteq A'$ and vice versa

SP11. If $A \subseteq B$, then AB = A and $A \cup B = B$.