Project intégration de données

Yaroslav Konyshev Formation ECAM Data Scientist 2018-2019

Fiche de lancement de projet

Projet	
Titre du Projet	Analyse des demandes de crédit pour 2010-2018 années pour Home Credit Bank en Chine
Chef de Projet	Yaroslav Konyshev

Identification		
Type de Projet	Recherche	
Programme de rattachement	No	
N°référence	1	
Projet antérieur	No	

Client, maitre d'ouvrage			
Désignation	Home Credit Bank China		
Adresse	Futian CBD 518048 Shenzhen, China		
Représentant du client	HOME CREDIT A.S. Nové sady 996 / 25 602 00 Brno Czech Republic		
Correspondant interne	No		

Cadre contractuel					
Mode de consultation		l'analyse initiale			
Origine du financement		Futian CBD 518048 Shenzhen, China			
Type de contrat		Contrat unique			
Montant	4 000 euro		Date de début	26.11.2018	
Date de signature	25.11.2018		Date de fin	03.12.2018	

Objectif du projet

Concevoir un modèle de données, créer la base de données, importer les données, faire l'analyse initial des données

Planification

Principales phases du projet, tâches et jalons (Work Packages and Milestones)

Phase 1, Creation base de données:

- Télécharger les données
- Importer tous les données dans la base de données
- Extrait les données pour le projet (faire transformation)
- Supprimer des données supplémentaires
- Ajouter des contraintes et des indices

Phase 2, Analyse des demandes de crédit:

Création de requêtes SQL

Phase 3, Présentation des résultats

Organisation	
Service/Département pilote	ECAM Strasbourg
Chef de Service/Département pilote	Yaroslav Konyshev
Co-réalisateurs internes	No
Co-réalisateurs externes	No
Moyens spécifiques liés au projet	No
Comité de pilotage interne	Groupe d'étudiants de formation
Comité de pilotage externe	Home Credit Bank China
Aval du projet	Signature:

Liste des Livrables

- Scripts pour creation base de données
- Structure de la base de données
- Base de données
- Scripts pour l'analyse

Liste des Tâches

Tâches	Charges	Ressources	Dépendances	Coût
Télécharger les données	1 jour	1 développeur	site http://kaggle.com/	500 euro
Importer tous les données dans la base de données	3 jour	1 développeur	RDBMS Environnement, Télécharger les données	1500 euro
Extrait les données pour le projet	1 jour	1 développeur	RDBMS Environnement, Importer tous les données dans la base de données	500 euro
Supprimer des données supplémentaires	0.5 jour	1 développeur	RDBMS Environnement, Extrait les données pour le projet	250 euro
Ajouter des contraintes et des indices	0.5 jour	1 développeur	RDBMS Environnement, Supprimer des données supplémentaires	250 euro
Création de requêtes SQL pour l'analyse	1 jour	1 développeur	RDBMS Environnement, Ajouter des contraintes et des indices	500 euro
Présentation des résultats	1 jour	1 développeur	Création de requêtes SQL pour l'analyse	500 euro
Prix Total				4 000 euro

Tableau de bord

Charge total du projet: **8** j/h Durée totale du projet: **8** jours

Coût de ressources:

1 j/h d'eveloppment = 250 Euro

1 jour RDBMS environment = **10** Euro

Coût total du projet: 2080 Euro

Bilan de Fin de Projet

Trop de temps a été consacré à la correction. Le projet a été lancé sans une compréhension claire des besoins du client.

Le projet est réalisable en 3 jours aux conditions suivantes:

- forte compréhension des besoins du client
- structure claire du projet avec définition des tables et architecture
- données propres
- utilisation ETL pour le téléchargement de données

Schéma d'Architecture Logique

ETL

- lire la première ligne des fichiers, divisée par des virgules et créer des tables avec colonnes du type texte
- lire les données des fichiers csv et remplir les tableaux

Transformation finale de la base de données BI

- Ajouter des index et des contraintes

Extrait les données pour le projet

 Scripts SQL pour la création de tables finales basées sur les données brutes .

- Nettoyage les tables supplémentaires

lines	columns
4255	6
4	2
1 670 214	10
28	2
356 255	4
	4255 4 1 670 214 28

Résultats

MLD

MPD

```
CREATE TABLE calendar (
      "date" date NOT NULL,
      "year" int2 NULL,
      "month" int2 NULL,
      week_of_year int2 NULL,
      weekday int2 NULL,
      day of month int2 NULL,
      CONSTRAINT calendar pkey null
)
CREATE TABLE client (
      id client int4 NOT NULL,
      birthday timestamptz NULL,
      gender text NULL,
      education_type text NULL,
      CONSTRAINT client pkey null
)
CREATE TABLE credit_types (
      id type int2 NOT NULL,
      nom de type text NULL,
      CONSTRAINT credit types pkey null
)
CREATE TABLE achat_types (
      id type int2 NOT NULL,
      nom_de_type text NULL,
      CONSTRAINT achat types pkey null
)
CREATE TABLE demande de credit (
      id_demande int4 NOT NULL,
      id client int4 NULL,
      date_de_demande date NULL,
      type de credit int2 NULL,
      type de achat int2 NULL,
      prix de achat float4 NULL,
      montant demande float4 NULL,
      montant_credit float4 NULL,
      type_accompagne text NULL,
      status text NULL,
      CONSTRAINT demande de credit pkey null,
      CONSTRAINT fk_date_de_demande null,
      CONSTRAINT fk_id_client null,
      CONSTRAINT fk type de achat null,
      CONSTRAINT fk type de credit null
)
```

Requêtes SQL

gender	count	med_of_prix	min demande	max demande	avg (demande - credit)	% of approved	% of refused
F	1131886	113 211.00	.00	6 905 160	-21 389.81	62.00 %	17.18 %
М	538273	101 434.50	.00	4 455 000	-19 808.61	62.23 %	17.87 %
XNA	55	180 000.00	.00	1 269 000	-16 301.47	41.82 %	45.45 %

```
2.
WITH age_range AS (
        SELECT a.id_demande,
                 CASE
                         WHEN a.age_when_demande > 0 AND a.age_when_demande < 25 THEN '0-25'</pre>
                         WHEN a.age_when_demande >= 25 AND a.age_when_demande < 40 THEN '25-40'
                         WHEN a.age_when_demande >= 40 AND a.age_when_demande < 65 THEN '40-65'
                         WHEN a.age_when_demande >= 65 THEN '65+'
                 END AS RANGE
        FROM
                 SELECT
                         d.id demande,
                         EXTRACT (YEAR FROM age(d.date de demande,
                                                                     c.birthday))::SMALLINT AS age when demande
                 FROM
                         demande de credit d
                 LEFT JOIN client c ON d.id_client = c.id_client )a
SELECT a.range AS "age when demande range",
        to_char(SUM(CASE WHEN d.type_accompagne = 'Family' THEN 1 ELSE 0 END)::FLOAT / COUNT(a.id_demande)* 100,'99.99 %') "% of family",
        to_char(SUM(CASE WHEN d.type_accompagne = 'Group of people' THEN 1 ELSE 0 END)::FLOAT
                                   / COUNT(a.id demande)* 100,'99.99 %') "% of group",
        to_char(SUM(CASE WHEN d.type_accompagne = 'Unaccompanied' THEN 1 ELSE 0 END)::FLOAT / COUNT(a.id_demande)* 100,'99.99 %') "% of unaccompanied",
        to_char(SUM(CASE WHEN d.type_accompagne = 'Children' THEN 1 ELSE 0 END)::FLOAT
                                  / COUNT(a.id_demande)* 100,'99.99 %') "%of children",
        to_char(SUM(CASE WHEN d.type_accompagne = 'Spouse, partner' THEN 1 ELSE 0 END)::FLOAT / COUNT(a.id_demande)* 100,'99.99 %') "% of spouse"
        age_range a
INNER JOIN demande de credit d ON d.id demande = a.id demande
GROUP BY a.range
ORDER BY a range;
```

age range when demande	% of family	% of group	% of unaccompanied	%of children	% of spouse
0-25	15.14 %	0.33 %	30.44 %	0.24 %	6.30 %
25-40	13.43 %	0.15 %	28.87 %	1.58 %	5.15 %
40-65	12.12 %	0.10 %	31.74 %	2.36 %	2.95 %
65+	6.59 %	0.05 %	27.51 %	0.61 %	0.90 %

```
WITH age_range AS (
         SELECT a.id_demande,
                            WHEN a.age_when_demande > 0 AND a.age_when_demande < 25 THEN '0-25'</pre>
                            WHEN a.age_when_demande >= 25 AND a.age_when_demande < 40 THEN '25-40'
                            WHEN a.age_when_demande >= 40 AND a.age_when_demande < 65 THEN '40-65'
                            WHEN a.age_when_demande >= 65 THEN '65+'
                  END AS RANGE
         FROM
                  SELECT
                            d.id_demande,
                            EXTRACT(YEAR FROM age(d.date_de_demande,c.birthday))::SMALLINT AS
age_when_demande
                  FROM
                            demande de credit d
                  LEFT JOIN client c ON d.id_client = c.id_client )a
SELECT
         a_t.nom_de_type as "Type de achat", 
 SUM(CASE\ WHEN\ a_r.range='0-25'\ THEN\ 1\ ELSE\ 0\ END) "0-25", 
 SUM(CASE\ WHEN\ a_r.range='25-40'\ THEN\ 1\ ELSE\ 0\ END) "25-40",
         SUM(CASE WHEN a_r.range = '40-65' THEN 1 ELSE 0 END) "40-65", SUM(CASE WHEN a_r.range = '65+' THEN 1 ELSE 0 END) "65+", COUNT(d.id_demande) "Total"
FROM
         age_range a_r
         INNER JOIN demande de credit d ON d.id demande = a r.id demande
         INNER JOIN achat_types a_t ON a_t.id_type = d.type_de_achat
GROUP BY a_t.nom_de_type
ORDER BY "Total" DESC;
```

Type de achat	0-25	25-40	40-65	65+	Total
XNA	31014	333139	570422	16234	950809
Mobile	33757	110730	79746	475	224708
Consumer Electronics	9102	47547	64007	920	121576
Computers	15091	50036	40179	463	105769
Audio/Video	11128	44771	43017	525	99441
Furniture	3083	20340	29718	515	53656
Photo / Cinema Equipment	3933	12898	8146	44	25021
Construction Materials	847	8179	15611	358	24995
Clothing and Accessories	1702	9739	11872	241	23554
Auto Accessories	994	3859	2499	29	7381
Jewelry	718	2771	2733	68	6290
Homewares	211	1354	3333	125	5023
Medical Supplies	38	819	2889	97	3843
Vehicles	310	1519	1521	20	3370
Sport and Leisure	296	1426	1239	20	2981
Gardening	95	968	1578	27	2668
Other	256	1063	1235	0	2554
Office Appliances	358	1142	821	12	2333
Tourism	136	856	662	5	1659
Medicine	44	448	1027	31	1550

Direct Sales	3	65	353	25	446
Fitness	18	115	76	0	209
Additional Service	5	42	80	1	128
Education	30	45	32	0	107
Weapon	13	37	27	0	77
Insurance	14	26	24	0	64
House Construction	0	1	0	0	1
Animals	0	1	0	0	1

```
4.
SELECT
```

count
0
0
73 110
99 028
81 955
98 374
126 900
203 421
357 152
585 369
44 905
0
0

weekday	count
1	232911
2	238120
3	260319
4	242139
5	231880
6	232088
7	232757