+Como um surto pode se+ transformar em uma epidemia?

Como e por que uma doença se espalha?

Contágio por gotículas

Queda livre de uma gotícula

Equações da queda livre:

$$x(t) = x_i + v_{ix}.t$$
 $v_x(t) = v_{ix}$

$$egin{aligned} y\left(t
ight) &= y_i + v_{iy}.\,t + rac{g.\,t^2}{2} \ v_y\left(t
ight) &= v_{iy} + g.\,t \end{aligned}$$

Aplicando algumas condições iniciais

$$y_i = 1,7m$$
 \longrightarrow

Média da altura de uma pessoa

$$x_i = 0$$

Posição inicial no eixo horizontal

$$v_{iy} = 0$$
 \longrightarrow

Velocidade inicial da direção vertical

$$v1_{ix}=1,5\frac{m}{c}$$
 \longrightarrow

Estimativa da velocidade que a partícula sai da boca quando **falamos**

$$v2_{ix}=5,0\frac{m}{\varsigma}$$
 \longrightarrow

Estimativa da velocidade que a partícula sai da boca quando **espirramos**

$$g=-9,8\frac{m}{s^2}$$

Aceleração da gravidade

Encontramos os seguintes resultados

$$t(1.7m) = 0.59s$$

$$x_{v1} = 0.88m$$

$$x_{v2}=2.95m$$

Como se propaga o contágio e como podemos caracterizar o aumento no número de infectados?

Crescimento exponencial

inc.	(dias)	$=3^{dias}$
------	--------	-------------

dias	Incidência
0	1
1	3
2	9
3	27
4	81

Como verificar se um gráfico qualquer tem comportamento exponencial?

Como usar o logaritmo para verificar se uma função é exponencial

$$egin{align} y\left(x
ight) &= 3^{x} \ log_{e} \left(y\left(x
ight)
ight) &= log_{e} \left(3^{x}
ight) \ log_{e} \left(y\left(x
ight)
ight) &= x.\, log_{e} \left(3
ight) \ ln \left(y\left(x
ight)
ight) &= x.\, ln \left(3
ight) \ ln \left(y\left(x
ight)
ight) &= ln \left(3
ight) .\, x \ \end{pmatrix}$$

$$ln(y) = x. ln(3)$$

Definindo:

$$z = ln(y)$$

$$a = ln(3)$$

$$b=0$$

Obtemos:

$$z=a.x+b$$

Equação de uma reta

Crescimento exponencial na escala logaritmica

$$ln(y) = ln(3).x$$

dia	log(novos infectados)
1	0,000
2	1,099
3	2,197
4	4,296

Como podemos obter esse comportamento através de um modelo físico?

Modelo SIR 4 -3 novos infectados 0 -5 dia

Modelo SIR

Na próxima aula veremos como funciona este modelo