Übungen zur Vorlesung Differentialgeometrie II

Blatt 3

Aufgabe 9. (4 Punkte)

Arbeite die Details aus Bemerkung 14.7 aus:

Bestimme, ohne Verwendung der zweiten Fundamentalform, den Riemannschen Krümmungstensor einer n-Sphäre vom Radius r>0.

Zeige, dass *n*-dimensionale Sphären vom Radius $\sqrt{r^2 - 2(n-1)t}$ für $t \in \left[0, \frac{r^2}{2(n-1)}\right)$ den Riccifluss $\frac{\partial}{\partial t}g_{ij} = -2R_{ij}$ lösen.

Hinweis: Benutze z.B. die stereographische Projektion um die Metrik der Einheitesphäre zu berechnen (vgl. DG I, Aufgabe 12).

Aufgabe 10. (4 Punkte)

Sei N eine differenzierbare Mannigfaltigkeit. N heißt orientierbar, wenn es eine Familie von Karten von N gibt, deren Definitionsbereiche N überdecken, so dass die Determinante der Jacobi-Matrix der Kartenwechsel stets positiv ist.

Sei nun $M \subset \mathbb{R}^{n+1}$ eine Untermannigfaltigkeit. Wir sagen, dass M als Hyperfläche orientierbar ist, wenn es eine stetige Normale auf M gibt, d.h. es existiert eine stetige Abbildung $\nu: M \to \mathbb{R}^{n+1}$, so dass für $p \in M$ der Vektor $\nu(p) \in (T_pM)^{\perp}$ ist und $|\nu(p)| = 1$ erfüllt.

Zeige, dass eine \mathbb{C}^2 -Untermannigfaltigkeit M genau dann als Mannigfaltigkeit orientierbar ist, wenn sie als Untermannigfaltigkeit orientierbar ist.

Aufgabe 11. (4 Punkte)

Sei M eine m-dimensionale Mannigfaltigkeit. Eine Teilmenge $N \subset M$ heißt n-dimensionale C^k -Untermannigfaltigkeit von M, wenn es zu jedem $x \in N$ eine offene Umgebung $U \subset M$ und eine Karte $\varphi : U \to \varphi(U) \subset \mathbb{R}^{m+n}$ mit

$$\varphi(U \cap N) = \varphi(U) \cap (\mathbb{R}^n \times \{0\})$$

gibt. Ein solches N besitzt einen C^k -Atlas, nämlich $A := \{(U \cap N, \varphi|_{U \cap N}) : (U, \varphi) \text{ wie oben}\}.$

(i) Sei M eine differenzierbare Mannigfaltigkeit. Definiere die Abbildung

$$\Delta: M \to M \times M, \quad x \mapsto (x, x).$$

Zeige, dass $\Delta(M)$ eine Untermannigfaltigkeit von $M \times M$ ist.

(ii) Sei $M = \{x \in \mathbb{R}^4 : x_1^2 + x_2^2 = x_3^2 + x_4^2 = 1\}$. Zeige, dass M eine Untermannigfaltigkeit des \mathbb{R}^4 ist.

Aufgabe 12. (4 Punkte)

Seien M^m und N^n differenzerbare Mannigfaltigkeiten.

Zeige, dass

$$R_{\mu\nu}^{M\times N} = \begin{pmatrix} R_{ij}^M & 0\\ 0 & R_{kl}^N \end{pmatrix}$$

 $R_{\mu\nu}^{M\times N}=\begin{pmatrix} R_{ij}^M & 0\\ 0 & R_{kl}^N \end{pmatrix}$ für $1\leq \mu,\nu\leq n+m,\,1\leq i,j\leq m$ und $1\leq k,l\leq n$ gilt.

Abgabe: Bis Donnerstag, 10.05.2018, 10.00 Uhr, in die Mappe vor Büro F 402.