Mathematical Analysis. Assignment 4. Mean Value Theorems & l'Hôpital's rule

- 1. Prove that the derivative of a function f(x) = x(x-1)(x-2)(x-3)(x-4) has four distinct roots that belong to intervals (0;1), (1;2), (2;3), (3;4), the multiplicity of each root being equal to 1.
- 2. Using mean value theorems prove the inequalities¹
 - (a) $\frac{x}{x+1} < \ln(1+x) < x \text{ for } x > 0;$
 - (b) $e^x \geqslant 1 + x, x \in \mathbb{R}$.
- 3. Rolle's theorem states that if function f(x)
 - (a) is continuous on [a; b],
 - (b) is differentiable on (a; b),
 - (c) has equal values at the endpoints of the interval, that is f(a) = f(b) then there exists $c \in (a; b)$ such that f'(c) = 0.

Show that all conditions of the theorem are substantial, i.e. that the theorem does not hold if you omit at least one of them².

- 4. Find the following limits (use l'Hôpital's rule³):
 - (a) $\lim_{x \to 1} \frac{x^{100} 100x + 99}{x^{50} 50x + 49}$;
 - (b) $\lim_{x \to 0} \frac{e^{\sin x} e^x}{\sin x x};$
 - (c) $\lim_{x \to 0^+} \frac{3 + \ln x}{2 3 \ln(\sin x)}$;
 - (d) $\lim_{x\to 0} \sin x \ln(\cot x);$
 - (e) $\lim_{x \to +\infty} (\pi 2 \arctan \sqrt{x}) \sqrt{x}$;
 - (f) $\lim_{x\to 0} \left(\frac{1}{x} \frac{1}{e^x 1}\right);$
 - (g) $\lim_{x \to 1} x^{\frac{1}{x-1}}$;
 - (h) $\lim_{x \to 0} \left(\frac{(1+x)^{\frac{1}{x}}}{e} \right)^{\frac{1}{x}};$
 - (i) $\lim_{x \to \frac{\pi}{2}^-} (\tan x)^{\cos x};$
 - $(j) \lim_{x\to 0} \frac{\ln\frac{1+x}{1-x} 2x}{x \sin x};$
 - (k) $\lim_{x \to 0} \frac{(a+x)^x a^x}{x^2}$, a > 0.
 - (l) $\lim_{x \to 0} \frac{2\tan 3x 6\tan x}{3\arctan x \arctan 3x};$
 - (m) $\lim_{x\to 0^+} x^{\alpha} \ln^{\beta} \left(\frac{1}{x}\right);$
 - (n) $\lim_{x \to +\infty} x^{\alpha} a^x$, a > 0, $a \neq 1$;
 - (o) $\lim_{x \to +\infty} \left(x^{\frac{7}{8}} x^{\frac{6}{7}} \ln^2 x \right);$

¹⁽a) Apply Lagrange mean value theorem to function $f(t) = \ln(1+t)$, $t \in [0; x]$. (b) If $x \in (-1; 0)$ consider $g(t) = e^t - t$, $t \in [x; 0]$; if x > 0 consider $g(t) = e^t - t$, $t \in [0; x]$. Otherwise this inequality is obvious.

²It implies that you have to provide 3 counterexamples.

³The dreams come true...

(p)
$$\lim_{x \to 1} \left(\frac{\alpha}{1 - x^{\alpha}} - \frac{\beta}{1 - x^{\beta}} \right);$$

(q)
$$\lim_{x \to +\infty} (3x^2 + 3^x)^{\frac{1}{x}}$$
.

Answer. (a)
$$\frac{198}{49}$$
; (b) 1; (c) $-\frac{1}{3}$; (d) 0; (e) $\frac{1}{2}$; (g) e ; (h) $e^{-\frac{1}{2}}$; (i) 1; (j) 4; (k) $\frac{1}{a}$; (l) 2; (m) 0; (n) 0 if $0 < a < 1$; $+\infty$ if $a > 1$; (o) $+\infty$; (p) $\frac{\alpha - \beta}{2}$; (q) 3.

- 5. Show that l'Hôpital's rule is not applicable for the limits below and calculate them using some other methods:
 - (a) $\lim_{x \to \infty} \frac{x + \cos x}{x \cos x}$;
 - (b) $\lim_{x \to 0} \frac{x^3 \sin \frac{1}{x}}{\sin^2 x}$.

Answer. (a) 1; (b) 0.

- 6. Let us suppose that f(x) has at least three derivatives in the neighborhood of point a. Calculate the limits
 - (a) $\lim_{h\to 0} \frac{f(a+h)+f(a-h)-2f(a)}{h^2}$;
 - (b) $\lim_{h\to 0} \frac{f(a+3h)-3f(a+2h)+3f(a+h)-f(a)}{h^3}$.

Answer. (a) f''(a); (b) f'''(a).

7. Let us consider $f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0, \\ 0, & x = 0. \end{cases}$ Prove that this function is infinitely differentiable for all $x \in \mathbb{R}$. Find $f^{(k)}(0)$ as well.

Answer. $f^{(k)}(0) = 0, k \in \mathbb{N}.$

- 8. Find the following limits:
 - (a) $\lim_{x \to 1^{-}} \ln x \cdot \ln(1-x);$
 - (b) $\lim_{x\to 0^+} \frac{\ln x \cdot \ln(1+x)}{\sqrt{x}};$
 - (c) $\lim_{x \to 0} \frac{\cos x \cos 3x + x^3 \cos \frac{\pi}{x}}{x^2}$.

Answer. (a) 0; (b) 0; (c) 4.