Capitolul al IV-lea Reprezentări interne

IV.1. INTRODUCERE

- Reprezentările interne elementare constituie un element al **arhitecturii** oricărui calculator
 - Resursă accesibilă direct programatorilor
- Structurile de date mai complicate se definesc pornind de la reprezentările interne elementare

Reprezentări elementare

- Date numerice
 - Anumite submulţimi finite ale mulţimilor numerelor întregi, respectiv raţionale
- Date "alfa-numerice" / logice
 - Caractere; valori de tip boolean
- Instrucțiuni
 - În limbaj maşină
 - Singurele reprezentări interne elementare nestandardizate
 - Şi, evident, neportabile

Importanța studiului reprezentărilor

- Eficiența și siguranța (fiabilitatea) reprezentărilor interne
- Numerice:

$$r(n_1) op r(n_2) ?=? r(n_1 op n_2)$$

- Erori inevitabile și efectul lor
 - Mulțimi de cardinalități diferite

$$\rightarrow$$
 R \cap [a,b] şi Q_m \cap [a,b])

- Aproximări, depășiri
- Tratarea cazurilor de excepţie

IV.2. CODURI DETECTOARE ŞI CODURI CORECTOARE DE ERORI

Detectarea de erori

• Fiabilitatea transmisiei și prelucrării reprezentărilor de date

Moduri de detectare/corectare

- Paritate: bit suplimentar
 - detecţie
 - paritate (im)pară: număr (im)par de 1
- Cod Hamming
 - corecție
 - 4 biţi de informaţie, 3 biţi de paritate
 - detectarea/corecția mai multor erori simultan

Exemplu: "paritate impară"

• Emiţător:

- are de trimis valoarea (110)₂
- generează bitul de "paritate impară" P=1
- trimite $(1101)_2$

• Receptor:

- primeşte $(1101)_2$
- verifică imparitatea numărului de 1 din şir
- dacă nu detectează erori, elimină bitul de paritate, pentru a obține valoarea transmisă: (110)₂

IV.3. CODIFICĂRI ALFANUMERICE

Codificări alfanumerice

- Reprezentări binare ale datelor alfanumerice
 - Alfabetice, numerice, simbolurile pentru operatori, separatori etc.

Coduri alfanumerice

- ASCII
 - American Standards Committee for Information Interchange code
 - Un caracter se reprezintă pe 7 biţi plus un bit de paritate
- EBCDIC (8 biţi)
 - Extended Binary Coded Decimal Interchange Code
 Extinde codul binar pentru cifre zecimale
- ISO 8859-1 (Latin-1)
 - 8 biţi
 - Include şi, spre exemplu, litere cu accent
 - $\hat{E} = CA_{(16)}$
- Supraîncărcare a șirurilor de biți
 - Unicode
 - caractere non-latine
 - UCS
 - Universal Character Set

Codul ASCII - exemple

- $1000001 \rightarrow A$
- $1000010 \to B$
- •
- $1011010 \rightarrow Z$
- $1100001 \rightarrow a$
- 1100010 → b
- •
- $1111010 \rightarrow z$
- Ordine lexicografică → comparatorul binar
 - pentru 7 biţi bitul de paritate se ignoră

IV.4. REPREZENTAREA INTERNĂ A NUMERELOR

IV.4.1. SCRIEREA POZIŢIONALĂ

Scrierea pozițională

- Este tot o reprezentare!
 - 72018 nu este un număr, ci reprezentarea unui număr
- Inventată de arabi/indieni
 - Scrierea romană nu permite algoritmi eficienți de calcul
- Factor implicit atașat fiecărei poziții din reprezentare
- Esențială în arhitectura calculatoarelor
 - Exemplu: sumatorul serial din sumatoare complete

Baze de numerație

- Orice număr natural d>1
 - Cu un singur simbol nu se pot folosi factori impliciți, ci juxtapunere + numărare
- Mulţimea cifrelor în baza d: {0,1,...,d-1}
- Calculatorul lucrează în baza d=2
 - Estimări analitice și probabiliste: bazele în care se pot face cel mai rapid calcule sunt 2 și 3
 - Tehnic: 2 cifre cel mai ușor de realizat
 - Teoretic: baza 2 se poate "scufunda" în logica booleană
 - ca simboli şi ca operaţii

Limite

Dacă s-ar reprezenta numerele în baza 2 fără semn (pozitive), atunci:

- Numărul maxim reprezentabil pe un octet ar fi $255 = 2^8-1$
- Numărul maxim reprezentabil pe doi octeți ar fi $65535 = 2^{16}-1$
- Numărul maxim reprezentabil pe patru octeți ar fi $4294967295 = 2^{32}-1$

Scrierea pozițională

• Baza d, $d \in N^* - \{1\}$:

pentru
$$a_i \in \{0,1,...,d-1\}, i=-m,...,n-1$$

$$\pm (a_{n-1}a_{n-2}....a_1a_0,a_{-1}....a_{-m})_{(d)} =$$

$$\pm \sum_{i=-m}^{n-1} (a_i \times d^i)_{(10)}$$

- a_i = valoarea celei de-a i+1^a cifre de la stânga virgulei
 » i=0..n-1
- a_{-j} = valoarea celei de-a j^a cifre de la dreapta virgulei (j>0) » j=1..m
- di este factorul implicit pentru poziția i
 - Se ridică la puterea i
 - d⁺¹ pentru partea întreagă
 - d⁻¹ pentru partea fracționară

Baza d \rightarrow baza 10

- Formula de mai sus este şi formula trecerii din baza d în baza 10
- Partea întreagă de n-1 cifre
- Partea fracționară de m cifre

Un exemplu

• FA2,B₍₁₆₎=
$$15\times16^{2}+10\times16^{1}+2\times16^{0}+11\times16^{-1}$$

$$=3840+60+2+11/16=$$

$$4002,6875_{(10)}$$

Baza $10 \rightarrow baza d$

• $813,65_{(10)} = 1100101101,10(1001)_{(2)}$

Aproximarea reprezentării

- Dacă numărul are mai multe cifre la partea fracţionară decât admite codificarea, atunci există o aproximare
 - de cel mult 2^{-k}, dacă m=k
 - dacă există la partea întreagă mai multe cifre decât se pot reprezenta, atunci se produce depăşire

Conversii între baze care sunt puteri ale același număr

•
$$d_1 = 8 = 2^3$$
; $d_2 = 16 = 2^4$
• $703,102_{(8)} =$
= $111\ 000\ 011$, $001\ 000\ 010_{(2)} =$
= $0001\ 1100\ 0011$, $0010\ 0001\ 0000_{(2)} =$
= $1C3,21_{(16)}$

IV.4.2. REPREZENTĂRILE BCD ŞI ÎN EXCES

- Coduri poziționale
 - Sisteme de numerație bazate pe scrierea pozițională
 - de exemplu, codul BCD
- Coduri non-poziționale
 - De exemplu, codul Excess-k
 - \gg k=3 etc.
 - \Rightarrow in general, $k=2^{p}-1$
- Pentru aplicații tip business, numerele se pot reprezenta ca șiruri de cifre în baza 10, fiecare cifră fiind reprezentată pe 4 biți
 - BCD, Excess

Codurile BCD și Excess-3

 Zecimal 	BCD	Excess-3
O	0000	0011
1	0001	0100
2	0010	0101
•••	•••	• • •
7	0111	1010
8	1000	1011
9	1001	1100

• $1413_{(10)} = 0001\ 0100\ 0001\ 0011_{(BCD)}$

Adunarea BCD

$$5 = 0101 +$$
 $3 = 0011$
 $8 = 1000$
 $13(10) = 1101$
 $8(10) = 1000 = 8_{(BCD)}$
 $413_{(BCD)} = 0001 0011$

 Problemele apar atunci când suma cifrelor depăşeşte 9

Adunarea BCD

Soluţie: se adună 6 (0110) atunci când suma depăşeşte 9.

Temă: De ce?

$$5 = 0101 +$$
 $9 = 1001 +$
 $8 = 1000$
 $7 = 0111$
 1101
 $16_{(10)} = 10000$
 $(2) \neq 16_{(BCD)}$
 $6 = 0110 +$
 $10011 = 13_{(BCD)}$
 $10110 = 16_{(BCD)}$

Sumator BCD

Se adună 0110 la sumă dacă ea depăşeşte 1001 (11XX sau 1X1X)

IV.4.3.

Reprezentarea numerelor întregi:

aritmetica în virgulă fixă

- Omogenitate
 - Nu se reprezintă semne speciale ("+", "-", ",",")
- Semnul este dat de un bit
 - nu de codificarea pe mai mulți biți a unui caracter special (+ sau -)
 - 0 pentru plus
 - 1 pentru minus
 - excepție: reprezentarea "cu exces"
- Pentru virgulă se știe poziția
 - dar nu se reprezintă caracterul
 - aceeași poziție a virgulei pentru toate numerele: **virgulă fixă** ("aritmetică întreagă")
 - poziție diferită de la număr la număr: **virgulă mobilă** ("aritmetică flotantă")
- Esenţial pentru portabilitate: standardizarea aritmeticii (atât întreagă, cât şi flotantă)
 - În toate implementările
 - » Funcțiile elementare definite și calculate la fel
 - » Cazurile de excepție tratate la fel

Codificări în virgulă fixă

- $d = 2 \rightarrow a_i \in B = \{0,1\}$
- Obiectiv: eficiența calculului
- Codificare / decodificare facilă (omogenitate)
- Algoritmi eficienți
 - În particular, un singur algoritm pentru adunare și scădere
- Codificările în virgulă fixă se fac pe n+m biţi
 - $m \ge 0$; m=0 numere întregi
 - $n \ge 1$; n = 1 numere subunitare
- Codificări în virgulă fixă
 - Cantitate şi semn
 - Complement față de 1
 - » în general, față de cifra maximă
 - Complement față de 2
 - » în general, față de bază

Codificări redundante

- Reprezentarea numerelor pozitive coincide la cele trei codificări.
- O codificare se numeşte *redundantă* dacă există numere care au două reprezentări diferite.
- În codificările în virgulă fixă folosite, singurul număr ce poate avea două reprezentări este 0.

IV.4.4.

- A+S
- $Val_{A+S}^{n,m} (a_{n-1}a_{n-2}...a_1a_0a_{-1}...a_m) =$

$$\begin{cases} a_{n-2} \times 2^{n-2} + \ldots + a_{-m} \times 2^{-m}, & \text{dacă } a_{n-1} = 0 \\ \\ - (a_{n-2} \times 2^{n-2} + \ldots + a_{-m} \times 2^{-m}), & \text{dacă } a_{n-1} = 1 \end{cases}$$

- Coincide cu scrierea în baza 2
 - dar semnul este un bit și virgula implicită

- Pe n+m biţi există 2^{n+m} reprezentări diferite (şiruri diferite de biţi)
- Ele corespund la 2^{n+m} -1 numere diferite
 - Redundantă, căci $0 = \text{val}_{A+S}^{n,m} (00...0) = \text{val}_{A+S}^{n,m} (10...0)$
- Cel mai mic număr reprezentabil este $\min_{A+S} {n,m} = \operatorname{val}_{A+S} {n,m} (11...1) = -(2^{n-1}-2^{-m})$
- Cel mai mare număr reprezentabil este $\operatorname{Max}_{A+S}{}^{n,m} = \operatorname{val}_{A+S}{}^{n,m} \left(01\dots 1\right) = 2^{n-1} 2^{-m}$
- Intervalul pe care se află numerele reprezentabile este [- (2ⁿ⁻¹-2^{-m}); + (2ⁿ⁻¹-2^{-m})]

- Numerele reprezentabile **exact** sunt cele începând cu min = $-(2^{n-1}-2^{-m})$, cu pasul 2^{-m}
- Celelalte numere din interval se reprezintă aproximativ, cu eroare de cel mult 2^{-m}
- Precizia reprezentării este 2^{-m}
 - pentru numere întregi, precizia este 1
- Pentru n+m fixat
 - creșterea magnitudinii duce la aproximare mai slabă
 - precizie mai bună duce la magnitudine scăzută

Exemple

- $Val_{A+S}^{8,0}(00110011) = 51$ $00110011 \rightarrow +(2^0 + 2^1 + 2^4 + 2^5) = 51$
- $Val_{A+S}^{6,2}(00110011) = 12,75 = 51:2^2$ $00110011 \rightarrow +(2^{-2}+2^{-1}+2^2+2^3) = 12,75$
- $Val_{A+S}^{4,4}(00110011) = 3,1875 = 51:2^4$ $00110011 \rightarrow +(2^{-4}+2^{-3}+2^0+2^1) = 3,1875$

Exemple

- $Val_{A+S}^{8,0} (10110011) = -51$ $10110011 \rightarrow -(2^0 + 2^1 + 2^4 + 2^5) = -51$
- $\min_{A+S} {}^{8,0} = \operatorname{val}_{A+S} {}^{8,0} (1111111111) = -(2^7-2^0) = -(128-1) = -127$
- $\max_{A+S} {}^{8,0} = \operatorname{val}_{A+S} {}^{8,0}(011111111) = 2^7 2^0 = 128 1 = 127$
- $[-127; 127] \rightarrow 255$ numere, din 1 în 1
- $Val_{A+S}^{4,4} (10110011) = -3,1875$ $10110011 \rightarrow -(2^{-4} + 2^{-3} + 2^0 + 2^1) = -3,1875$
- $\max_{A+S} {}^{4,4} = \operatorname{val}_{A+S} {}^{4,4}(011111111) = 2^3 2^{-4} = 8 0,0625 = 7,9375$
- $[-7,9375; 7,9375] \rightarrow 255$ numere din 0,0625 în 0,0625

Operații A+S

- Algoritmi de complexitate relativ mare
 - Adunare / scădere
 - Stabilirea semnului rezultatului (comparație lexicografică)
 - Implementarea algoritmilor uzuali de adunare / scădere manuală
 - Incluzând "împrumuturi" etc.
 - Înmulţirea / împărţirea analog celor manuale

- Complement față de 1: C₁
- $Val_{C1}^{n,m} (a_{n-1}a_{n-2}...a_1a_0a_{-1}...a_{-m}) =$ $\begin{cases}
 a_{n-2} \times 2^{n-2} + ... + a_{-m} \times 2^{-m}, & \text{dacă } a_{n-1} = 0 \\
 (a_{n-2} \times 2^{n-2} + ... + a_{-m} \times 2^{-m}) (2^{n-1} 2^{-m}), & \text{dacă } a_{n-1} = 1
 \end{cases}$
- Temă: negativ pentru $a_{n-1}=1$
 - Deci a_{n-1} reprezintă semnul

- Cele 2^{n+m} reprezentări diferite (șiruri diferite de biți) corespund la 2^{n+m}-1 numere diferite
 - Redundantă: 0 poate fi reprezentat și ca număr negativ
- Cel mai mic număr reprezentabil este $\min_{C_1}^{n,m} = \operatorname{val}_{C_1}^{n,m} (10...0) = -(2^{n-1} 2^{-m})$
- Cel mai mare număr reprezentabil este $\operatorname{Max}_{C1}^{n,m} = \operatorname{val}_{C1}^{n,m} (01...1) = 2^{n-1} 2^{-m}$
- Intervalul pe care se află numerele reprezentabile este deci [-(2ⁿ⁻¹-2^{-m}); + (2ⁿ⁻¹-2^{-m})]

•
$$Val_{C1}^{8,0} (00110011) = 51$$

 $00110011 \rightarrow +(2^0 + 2^1 + 2^4 + 2^5) = 51$

•
$$Val_{C1}^{6,2}$$
 (00110011) = 12,75 = 51 : 2²
00110011 \rightarrow + (2⁻² + 2⁻¹ + 2² + 2³) = 12,75

•
$$Val_{C1}^{4,4} (00110011) = 3,1875 = 51 : 2^4$$

 $00110011 \rightarrow + (2^{-4} + 2^{-3} + 2^0 + 2^1) = 3,1875$

- $Val_{C1}^{8,0} (10110011) = -76$
- 10110011 \rightarrow $(2^0 + 2^1 + 2^4 + 2^5) (2^7 2^0) = 51 127 = -76$
- $\min_{C_1} {}^{8,0} = \operatorname{val}_{C_1} {}^{8,0} (10000000) = 0 (2^7 2^0) = 0 127 = -127$
- $\max_{C_1} {}^{8,0} = \text{val}_{C_1} {}^{8,0}(011111111) = 2^7 2^0 = 128 1 = 127$
- $[-127; 127] \rightarrow 255$ numere, din 1 în 1.
- $Val_{C1}^{4,4} (10110011) = -4,75 = -76:2^4$

$$10110011 \rightarrow (2^{-4} + 2^{-3} + 2^{0} + 2^{1}) - (2^{3}-2^{-4}) = 3,1875 - 7,9375 = -4,75$$

- $\min_{C_1}^{4,4} = \text{val}_{C_1}^{4,4}(10000000) = 0 (2^3 2^{-4}) = -7,9375 = -127 : 2^4$
- $\max_{C1} {}^{4,4} = \text{val}_{C1} {}^{4,4}(011111111) = 2^3 2^{-4} = 8 0,0625 = 7,9375 = 127:2^4$
- $[-7,9375; 7,9375] \rightarrow 255$ numere din 0,0625 în 0,0625

C₁ - complementare

- Dată reprezentarea lui q, se poate afla automat reprezentarea lui –q?
 - Dacă da, atunci scăderea p-q devine adunare, după generarea automată a reprezentării lui -q: p - q = p + (-q)
- Reprezentarea lui –q: complementul față de 1 al reprezentării lui q
- Exemplu: $q = -76 = Val_{C1}^{8,0} (10110011)$ $q = 76 = Val_{C1}^{8,0} (01001100) = 64 + 8 + 4$
- Din cauza redundanței și a adunării preciziei (în sumă algebrică, de două ori), algoritmii de calcul în C_1 sunt mai puțin eficienți decât cei în C_2
- De aceea, reprezentarea cvasi-general utilizată este C₂