Algebra I (ISIM), lista 8 (ćwiczenia 25.04.24, deklaracje do godziny 11:00).

Teoria: Układy równań liniowych. Postać macierzowa, postać funkcyjna, jednorodny układ równań, macierz główna i rozszerzona układu równań. Tw. Kroneckera-Capellego. Fundamentalny układ rozwiązań jednorodnego układu równań. Metoda Gaussa (eliminacji niewiadomych). Uzasadnienie metody bezwyznacznikowej znajdowania macierzy odwrotnej. Tw. Cramera.

Przestrzenie euklidesowe i unitarne. Iloczyn skalarny w przestrzeni euklidesowej [unitarnej].

Norma (długość) wektora w przestrzeni euklidesowej [unitarnej]. Nierówności Cauchy'ego-Schwarza i Minkowskiego. Metryka d (odległość między wektorami): warunek trójkata. Dopełnienie ortogonalne A^{\perp} . Standardowy iloczyn skalarny w \mathbb{R}^2 i \mathbb{R}^3 .

Ćwiczenia.

1. Rozwiązać następujący układ równań. Znaleźć bazę podprzestrzeni $W \subseteq \mathbb{R}^4$ będącej zbiorem rozwiązań jednorodnego układu równań związanego z (U). Przedstawić zbiór rozwiązań (U) jako warstwę W (w postaci A+W dla pewnego

(U)
$$\begin{cases} 2x_1 + x_2 + 2x_3 + x_4 = 1\\ 3x_1 - x_2 + x_3 - x_4 = \frac{1}{3}\\ x_1 + x_2 - x_3 + x_4 = \frac{1}{3} \end{cases}$$

2. Rozstrzygnąć, dla jakich wartości parametru $p \in \mathbb{R}$ podany układ równań jest sprzeczny; ma dokładnie jedno rozwiązanie; ma nieskończenie wiele rozwiązań.

(a)
$$\begin{cases} (2p+1)x + (p-3)y = p+1 \\ (p+2)x - 2y = 2p \end{cases}$$
, (b)
$$\begin{cases} x - py - z = 1 \\ 2x - y + pz = 0 \\ x + 10y - 6z = p \end{cases}$$
, (c)
$$\begin{cases} px + py + pz = p \\ x + py + pz = p \\ x + y + pz = p \end{cases}$$

3. Rozwiązać układy równań, stosując wzory Cramera lub macierze odwrotne.

Rozwiązać układy równań, stosując wzory Cramera lub macier (a)
$$\begin{cases} x + 2y = -4 \\ 3x + 4y = 3 \end{cases}$$
, (b)
$$\begin{cases} 2x + 6y - z = -7 \\ y + 3z = -1 \end{cases}$$
,
$$5x + 2y + 2z = 3$$
 (c)
$$\begin{cases} y + z + t = 4 \\ x + z + t = -1 \\ x + y + t = 2 \\ x + y + z = -2 \end{cases}$$

Zadania

W zadaniach 1-7 $X=\left(\begin{array}{c}x_1\\x_2\end{array}\right), U=\left(\begin{array}{c}u_1\\u_2\end{array}\right)\in\mathbb{R}^2$, zaś $\langle\cdot,\cdot\rangle$ oznacza standardowy iloczyn skalarny w \mathbb{R}^2 , tzn. $\langle X, U \rangle = x_1 u_1 + x_2 u_2$. W zadaniach 10-13

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, U = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \in \mathbb{R}^3, \text{ zaś } \langle \cdot, \cdot \rangle \text{ oznacza standardowy iloczyn skalarny w}$$

 $(V, \langle \cdot, \cdot \rangle)$ oznacza przestrzeń euklidesową skończonego wymiaru.

- 1. Sprawdzić, że $\langle \cdot, \cdot \rangle$ ma własności z defincji iloczynu skalarnego z wykładu.
- 2. (a) Udowodnić, że gdy $X \neq 0$ i $U \neq 0$, to

(*)
$$\langle X, U \rangle = |X| \cdot |U| \cdot \cos \alpha$$
,

gdzie α to kąt między wektorami X i U (mierzony w kierunku przeciwnym do ruchu wskazówek zegara), zaś $|X|=\sqrt{x_1^2+x_2^2}$ (wsk: zapisać X,U w postaci biegunowej, trygonometrycznej). Wniosek:

$$\cos \alpha = \frac{\langle X, U \rangle}{|X| \cdot |U|} = \frac{x_1 u_1 + x_2 u_2}{\sqrt{x_1^2 + x_2^2} \sqrt{u_1^2 + u_2^2}}$$

(Ten punkt zadania uzasadnia że definicja standardowego iloczynuu skalarnego w przestrzeni \mathbb{R}^2 zgadza się z geometryczną definicją iloczynu skalarnego na płaszczyźnie euklidesowej wyrażoną przez równość (*).)

(b) – Udowodnić, że

$$\sin \alpha = \frac{\det(X, U)}{|X| \cdot |U|} = \frac{x_1 u_2 - x_2 u_1}{\sqrt{x_1^2 + x_2^2} \sqrt{u_1^2 + u_2^2}}$$

(c) Załóżmy, że układ (X,U) jest bazą \mathbb{R}^2 . Gdy $\alpha \in (0,\pi)$, mówimy, że baza (X,U) jest dodatnio zorientowana. Gdy $\alpha \in (\pi,2\pi)$, mówimy, że baza (X,U) jest ujemnie zorientowana.

Udowodnić, że baza (X, U) jest dodatnio zorientowana \iff $\det(X, U) > 0$.

(d)
– Podać przykład wektora X ortogonalnego do wektora U (tzn. takiego, że
 $\alpha = \frac{\pi}{2}$ lub $\frac{3}{2}\pi$).

(To zdanie uzasadnia definicję standardowego iloczynu skalarnego w \mathbb{R}^2 .)

- 3. (prawo cosinusów) Udowodnić, że $d(X,U)^2 = |X-U|^2 = |X|^2 + |U|^2 2|X||U|\cos\alpha.$
- 4. (a) Wyprowadzić wzór na rzut prostopadły $P_U(X)$ wektora X na prostą wzdłuż U (gdy $U \neq 0$)(wskazówka: $P_U(X) = tU$ dla pewnego $t \in \mathbb{R}$, wyznaczyć t).
 - (b) Sprawdzić, że $P_U : \mathbb{R}^2 \to \mathbb{R}^2$ jest liniowe. Wyznaczyć macierz P_U w bazie standardowej oraz bazę złożoną z wektorów własnych P_U .
- 5. Równanie ax+by=0 (gdzie $(a,b)\neq (0,0)$) definiuje prostą L na płaszczyźnie \mathbb{R}^2 przechodzącą przez 0. Zatem $L<\mathbb{R}^2$. Niech $A=\begin{pmatrix} a \\ b \end{pmatrix}\in\mathbb{R}^2$.

- (a) Zauważyć, że wektor A jest prostopadły (ortogonalny) do prostej L.
- (b) Wyprowadzić wzór na odległość punktu X od prostej L.
- 6. Równoległobok generowany przez X, U to zbiór $\Pi = \{t_1X + t_2U : 0 \le t_1, t_2 \le 1\}.$
 - (i) Wyprowadzić wzór na pole Π (wsk: skorzystać z tego, że pole równoległoboku to iloczyn dlugości podstawy i wysokości).
 - (ii) Sprawdzić, że pole Π to |det(X, U)|.
- 7. (a) Wyprowadzić wzór na $S_U(X)$, odbicie symetryczne (symetrię osiową) punktu X względem prostej wzdłuż wektora U (gdy $U \neq 0$).
 - (b) Sprawdzić, że $S_U: \mathbb{R}^2 \to \mathbb{R}^2$ jest liniowe. Wyznaczyć macierz S_U w bazie standardowej. Porównać z macierzą P_U .
 - (c) Zidentyfikować geometrycznie złożenie $S_U \circ S_X$.
- 8. Wyliczyć A^{-1} dla odwracalnej $A \in M_{2\times 2}(\mathbb{R}^2)$.
- 9. Sprawdzić, że iloczyn skalarny w \mathbb{R}^3 ma własności z definicji iloczynu skalarnego z wykładu.
- 10. Sprawdzić, że $|X| = \sqrt{\langle X, X \rangle}$.
- 11. To zadanie ma uzasadnić poprawność definicji standardowego iloczynu skalarnego w przestrzeni $\mathbb{R}^n, n \geqslant 3$.

Zacznijmy od tego, że tenże iloczyn skalarny prowadzi do poprawnej definicji dlugości wektora i odległosci punktów w przestrzeni \mathbb{R}^n (milcząco zakładamy tu, że osie standardowego układu współrzędnych w \mathbb{R}^n sa parami ortogonalne oraz na płaszczyźnie zachodzi prawo Pitagorasa.) Używając pojęć długości wektora i odlegości punktów możemy zdefiniować pojęcie ortogonalnosci pary wektorów. Niech $X, U \in \mathbb{R}^n$ będą liniowo niezależne. Rozpinają one płaszczyznę $\Pi = Lin(X, U)$. Używając pojęć ortogonalności i długości wektorów w Π (dziedziczonych z \mathbb{R}^n), możemy określić w Π prostokątny układ współrzędnych o wersorach długości 1. Tym samym możemy utożsamić Π z płaszczyzną \mathbb{R}^2 ze standardowym iloczynem skalarnym i zdefiniować kąt α między wektorami X i U jako kąt miedzy nimi na płaszczyźnie Π traktowanej jak \mathbb{R}^2 , patrz zad. 2.

- (a) Udowodnić, że $|X-U|^2=|X|^2+|U|^2-2|X||U|\cos\alpha.$
- (b) Udowodnić, że $\langle X, U \rangle = |X||U|\cos\alpha$.

(Punkt (b) uzasadnia definicję standardowego iloczynu skalarnego w \mathbb{R}^n dla $n\geqslant 3.)$

- 12. Zrobić zadanie 4 w przypadku $\mathbb{R}^3.$
- 13. Niech $A = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3, \ A \neq 0$. Równanie ax + by + cz = 0 określa płaszczyznę

 Π w \mathbb{R}^3 , przechodzącą przez 0, więc podprzestrzeń liniową \mathbb{R}^3 . Niech $P_{\Pi}(X)$ oznacza rzut prostopadły wektora X na płaszczyznę Π .

- (a) Wyprowadzić wzór na $P_{\Pi}(X)$. (wsk: $X P_{\Pi}(X)$ jest ortogonalny do Π , zatem jest rzutem na prostą wzdłuż A).
- (b)– Sprawdzić, że $P_{\Pi}: \mathbb{R}^3 \to \mathbb{R}^3$ jest liniowe.
- (c) Wyprowadzić wzór na odległość punktu X od płaszczyzny $\Pi.$
- (d) Wyprowadzić wzór na odbicie $S_{\Pi}(X)$ punktu X względem płaszczyzny Π .
- (e) Sprawdzić, że S_{Π} jest liniowe.
- 14. Niech $v \in V$, $X \subseteq V$. Dowieść, że jeśli $v \perp X$, to $v \perp Lin(X)$.
- 15. W przestrzeni $\mathbb{R}_2[X]$ z iloczynem skalarnym $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$ znaleźć kosinus kąta między wektorami f(X) = X + 1 i g(X) = X 1.
- 16. Udowodnić, że jeśli $A \subseteq B \subseteq V$, to $B^{\perp} \subseteq A^{\perp}$ i $A \subseteq (A^{\perp})^{\perp}$.
- 17. W przestrzeni C[0,1] funkcji ciągłych na odcinku [0,1] z iloczynem skalarnym $\langle f,g\rangle=\int_0^1 f(x)g(x)dx$ wyznaczyć dopełnienie ortogonalne podprzestrzeni $\{f\in C[0,1]:f(0)=0\}.$
- 18. W przestrzeni euklidesowej \mathbb{E}^4 wyznaczyć dopełnienie ortogonalne podprzestrzeni $Lin\begin{pmatrix} 1\\0\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}$: podać równanie parametryczne i bazę.
- 19. Udowodnić, że jeśli wektory $v_1, \ldots, v_n \in V$ są niezerowe i parami ortogonalne, to są liniowo niezależne.
- 20. Niech $l^2 = \{(a_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \sum_{n=0}^{\infty} a_n^2 < \infty \}$. Udowodnić, że l^2 jest zamknięty na dodawanie wektorów w przestrzeni $\mathbb{R}^{\mathbb{N}}$ oraz dla dowolnych $(a_n), (b_n) \in l^2$, szereg $\sum_n a_n b_n$ jest zbieżny. (Zatem: l^2 jest podprzestrzenią przestrzeni liniowej $\mathbb{R}^{\mathbb{N}} = \prod_{n \in \mathbb{N}} \mathbb{R}$ i wzór $\langle (a_n), (b_n) \rangle = \sum_n a_n b_n$ definiuje iloczyn skalarny w l^2 .)
- 21. * Udowodnić nierówność Cauchy'ego-Schwarza w przestrzeni unitarnej $(W, \langle \cdot, \cdot \rangle)$. (wsk: dla $v, w \in V$ mamy teraz $\langle v, w \rangle \in \mathbb{C}$, co utrudnia przeprowadzenie dowodu jak w przypadku euklidesowym. Pokazać, że dla dowodu, że $|\langle v, w \rangle| \leq ||v|| \cdot ||w||$ możemy jednak założyć, że $\langle v, w \rangle \in \mathbb{R}$).