

Introduzione alla programmazione

Michele Tomaiuolo Ingegneria dell'Informazione, UniPR

Esercizi 2019

Esercitazione 1 (09-23)

1.1 Hello, user!

- · Compilare ed eseguire il programma "Hello world"
- · In una versione successiva del programma...
- · Chiedere il nome all'utente e aggiungere tale nome al messaggio di saluto
- Se il nome dell'utente è "admin", mostrare inoltre il messaggio speciale "At your command"

1.2 Sfera

- Chiedere all'utente il raggio di una sfera e la sua densità (in Kg/m³)
- · Calcolare e visualizzare la superficie, il volume e il peso della sfera

Definire le variabili necessarie (nomi in minuscolo)

Nel modulo math è definita la costante pi

Name of the solid	Figure	Volume	Laterial/Curved Surface Area	l Total Surface Area
Cuboid	b h	lbh	2lh + 2bh or 2h(l+b)	2lh+2bh+ <mark>2lb</mark> or 2(lh+bh+lb)
Cube	aaa	a³	$4a^2$	4a²+ <mark>2</mark> a² or 6a²
Right circular cylinder	h	$\pi r^2 h$	2πrh	$2\pi rh + 2\pi r^2$ or $2\pi r(h+r)$
Right circular cone	h	$\frac{1}{3}\pi r^2 h$	πrl	$\pi r l + \pi r^2$ or $\pi r (l+r)$
Sphere	r/	$\frac{4}{3}\pi r^3$	$4\pi r^2$	$4\pi { m r}^2$
Hemisphere	r	$\frac{2}{3}\pi r^3$	$2\pi r^2$	$2\pi r^2 + \pi r^2$ or $3\pi r^2$

1.3 Anni bisestili

- · Chiedere all'utente di inserire un anno
- · Dire se è bisestile oppure no
- · Ripetere tutto ciclicamente, finchè l'utente non inserisce il valore 0

Un anno è bisestile se il suo numero è divisibile per 4, con l'eccezione degli anni secolari (quelli divisibili per 100) che non sono divisibili per 400

1.4 Rettangoli con ombra

- · Chiedere all'utente un numero n
- · Disegnare **n** rettangoli
 - Ciascuno con posizione, dimensione e colore casuale
 - Ciascuno con un ombra grigia spostata a destra ed in basso di 5 pixel

Fare in modo che i rettangoli e le ombre siano tutti all'interno nel canvas

1.5 Sequenza di quadrati

- · Chiedere all'utente un numero n
- Su un canvas 500x500, disegnare **n** quadrati
 - Quadrati con lato decrescente
 - Tutti allineati in alto e a sinistra
- · Far variare il colore dei quadrati
 - Dal nero del quadrato più grande
 - Fino al verde del quadrato più piccolo

Determinare automaticamente le variazioni migliori per lato e colore, prima di iniziare il ciclo

1.6 Carattere Unicode

- · Chiedere all'utente un numero
- · Visualizzare il simbolo Unicode corrispondente
- · Ripetere le operazioni in un ciclo, finchè l'utente non inserisce il valore 0

Usare la funzione **chr** per convertire un codice nel simbolo corrispondente

1.7 Tabella ASCII

- · Visualizzare la tabella dei codici ASCII
- · Un carattere per ogni riga
 - All'inizio della riga: il carattere
 - Di fianco: il codice ASCII
- · Limitare l'intervallo tra 32 a 126 (due costanti)

Non c'è input dell'utente

1.8 Media dei dispari

- · Leggere, attraverso un ciclo, una sequenza di numeri naturali
- · La sequenza termina quando l'utente inserisce un valore negativo
- · Calcolare il valore medio, considerando solo i valori dispari tra quelli inseriti

1.9 Passeggiata casuale

- · Chidere all'utente un numero n
- A partire dalla posizione x = 0, y = 0
- · Compiere **n** passi, ciascuno in una direzione casuale
 - Estrarre un numero casuale r tra 0 e 3
 - Se r == 0, sottrarre 1 alla y attuale (alto)
 - Se r == 1, sommare 1 alla x attuale (destra)
 - Se r == 2, sommare 1 alla y attuale (basso)
 - Se r == 3, sottrarre 1 alla x attuale (sinistra)
- Al termine comunicare le coordinate finali e la distanza raggiunta dall'origine, calcolata come abs(x) + abs(y)