Analiza 2b

Hugo Trebše (hugo.trebse@gmail.com)

 $13.\ \mathrm{marec}\ 2025$

Kazalo

1	Fourierova vrsta	3
	Vektorska analiza 2.1 Integrali po ploskvah	5 7
Li	iteratura	9

1 Fourierova vrsta

Izrek 1.1

Če je $f: [-\pi, \pi] \to \mathbb{R}$ nezvezna v končno mnogo točkah, kjer obstajata levi in desni odvod, ter je med točkami nezveznosti odvedljiva, potem definiramo:

$$FV(f)(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right),$$

kjer je

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

FV(f)(x) konvergira $\forall x \in [-\pi, \pi]$ proti

$$\frac{f(x+)+f(x-)}{2}.$$

V krajiščih definicijskega območja prav tako velja:

$$FV(f)(\pm \pi) = \frac{f(\pi) + f(-\pi)}{2}$$

Trditev 1.2

- Će je f liha funkcija je $a_n = 0$ za vse n.
- Če je f soda funkcija je $b_n = 0$ za vse n.

Trditev 1.3: Defaktorizacijske formule

 $\sin(x) + \sin(y) = 2\sin(\frac{x+y}{2})\cos(\frac{x-y}{2})$

 $\cos(x) + \cos(y) = 2\cos(\frac{x+y}{2})\cos(\frac{x-y}{2})$

 $\cos(x) - \cos(y) = 2\sin(\frac{x+y}{2})\sin(\frac{y-x}{2})$

Trditev 1.4

Naslednji integrali so standardni pri računanju Fourierovih vrst:

•

$$\int x \cos(nx) \ dx = \frac{x \sin(nx)}{n} + \frac{\cos(nx)}{n^2} + C$$

•

$$\int x \sin(nx) dx = \frac{-x \cos(nx)}{n} + \frac{\sin(nx)}{n^2} + C$$

Dokaz. Lahko per partes, lahko pa tudi upoštevajoč $cos(nx) + i \cdot sin(nx) = e^{inx}$.

Komentar 1.5

Če imamo zadosti lepo funkcijo (zvezno, razen v končno mnogo točkah, kjer obstajata leva in desna limita, ter odvedljivo med točkami nezveznosti) $f:[0,\pi] \to \mathbb{R}$ jo lahko razširimo na $[-\pi,\pi]$ bodisi kot sodo, bodisi kot liho funkcijo. Tako dobimo za f bodisi kosinusno, bodisi sinusno Fourierovo vrsto.

Trditev 1.6

Naslednji integrali so standardni pri računanju Fourierovih vrst:

•

$$\int x^{2} \cos(nx) dx = \frac{x^{2}}{n} \sin(nx) + \frac{2x}{n^{2}} \cos(nx) - \frac{2}{n^{3}} \sin(nx) + C$$

•

$$\int x^{2} \sin(nx) dx = \frac{-x^{2}}{n} \cos(nx) + \frac{2x}{n^{2}} \sin(nx) + \frac{2}{n^{3}} \cos(nx) + C$$

Izrek 1.7: Parsevalova enakost

Naj bo prostor X Hilbertov in $\{e_i\}_{i=1}^{\infty}$ kompleten ortonormiran sistem. Tedaj za vse $x \in X$ velja:

$$||x||^2 = \sum_{i=1}^{\infty} |\langle x, e_i \rangle|^2$$

V specifičnem primeru prostora $L^2[-\pi,\pi]$ se Parsevalova enakost glasi:

$$\int_{-\pi}^{\pi} f(x)^2 = 2\pi a_0^2 + \sum_{i=1}^{\infty} (a_i^2 + b_i^2),$$

kjer je Fourierova vrsta funkcije f(x) enaka

$$FV(f)(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right)$$

2 Vektorska analiza

Pravilen pogled na skalarna ter vektorska polja ni kot funkcije treh spremenljivk nad \mathbb{R} , temveč kot funkcije, ki sprejmejo vektorje v \mathbb{R}^3 . V izbrani bazi takemu polju seveda pripada neka zvezna funkcija treh spremenljivk, a nista a priori enaka.

Definicija 2.1

Gradient polja je operator ∇ , ki ima v standardni bazi obliko $\nabla = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$. Divergenca vektorskega polja $g(\vec{r}) = g(x, y, z) = (X(\vec{r}), Y(\vec{r}), Z(\vec{r}))$ je definirana kot

$$\operatorname{div}(\vec{g}) = \vec{\nabla} \cdot \vec{g} = \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z}$$

Vektorsko polje je solenoidalno polje, če je $\operatorname{div}(\vec{g}) = \vec{0}$

Komentar 2.2

$$\mathrm{rot}(\vec{r} \times \vec{a}) = \vec{\nabla} \times (\vec{r} \times \vec{a}) \neq (\vec{\nabla} \cdot \vec{a}) \cdot \vec{r} - (\vec{\nabla} \cdot \vec{r}) \cdot \vec{a}$$

Enakost iz prvega letnika v tem primeru ne velja.

Trditev 2.3: Lagrangeva identiteta

Naj sta \vec{a} ter \vec{b} vektorja v \mathbb{R}^3 . Tedaj velja

$$|\vec{a}|^2 \cdot |\vec{b}|^2 - |\vec{a} \cdot \vec{b}|^2 = |\vec{a} \times \vec{b}|^2$$

Definicija 2.4

Vektorsko polje \vec{f} je potencialno, če obstaja skalarno polje u, da velja

$$\vec{f} = \operatorname{grad}(u).$$

Polje u imenujemo potencial vektorskega polja \vec{f} .

Primer 2.5

- Pokaži, da je $\vec{f} = (2x\cos(y) y^2\sin(x), 2y\cos(x) x^2\sin(y), 4)$ potencialno polje ter določi njegov potencial.
- Določi $a,b \in \mathbb{R}$, da bo $\vec{f} = (2 \cdot (axzy^4 y), 2 \cdot (bx^2zy^3 x), 3x^2y^4$ potencialno polje.

Rešitev. • Ker je $u_z = 4$ velja $u(x, y, z) = c_3(x, y) + 4z$. Z integriranjem analogno izpeljemo

$$u = x^2 \cos(y) + y^2 \cos(x) + c_1(y, z)$$

ter

$$u = y^2 \cos(x) + x^2 \cos(y) + c_2(x, z).$$

Vemo, da je potencial do konstante natančno določen. Asist. dr. Gregor Cigler poda naslednji nasvet za to kako uganemo potencial: "Vzamemo vsoto unije členov, ki se pojavijo pri posamezni integraciji."Če sledimo tej mordrosti uganemo:

$$u(x, y, z) = x^2 \cos(y) + y^2 \cos(x) + 4z + c,$$

kjer je $c \in \mathbb{R}$.

 $rot(\vec{f}) = (12y^3x^2 - 2bx^2y^3, 2axy^4 - 6xy^4, 4bxzy^3 - 2 - 8axzy^3 + 2).$

Opazimo, da je b=6 ter a=3. Določimo še potencial:

$$u_x = 2(3xzy^4 - y) \implies u = 2\left(\frac{3x^2zy^4}{2} - xy\right) + c_1(y, z)$$

$$u_y = 2(6x^2zy^3 - x) \implies u = 2\left(\frac{6x^2zy^4 - xy}{4} - xy\right) + c_2(x, z)$$

$$u_z = 3x^3y_4 \implies u = 3x^2y^4z + c_3(x, y)$$

Tako uganemo $u = 3x^2y^4z - 2xy + c$

Izrek 2.6

Naj bo $\vec{f}:D\to R^3$ funkcija razreda C^1 ter Dodprta podmnožica $R^3,$ ki je zvezdasto območje. Tedaj velja:

$$\vec{f}$$
 je potencialno polje \iff $rot(\vec{f}) = \vec{0}$.

Implikacija iz leve v desno velja v vsakem primeru.

Primer 2.7

Naj sta $a, b \in \mathbb{R}^3$. Pokaži, da je

$$\operatorname{grad}\left(\frac{\vec{a}\cdot\vec{r}}{\vec{b}\cdot\vec{r}}\right) = \frac{\vec{r}\times(\vec{a}\times\vec{b})}{(\vec{b}\cdot\vec{r})^2}$$

Rešitev. Preden začnemo se pokrižamo, nato pa gremo bash.

2.1 Integrali po ploskvah

Primer 2.8

Izračunaj površino torusa s polmeroma 0 < a < R.

Rešitev. Plašč torusa parametriziramo kot

$$x = (R + a \cdot \cos(\theta))\cos(\varphi) \wedge y = (R + a \cdot \cos(\theta))\sin(\varphi) \wedge z = a\sin(\theta),$$

kjer $\varphi \in [0, 2\pi)$ ter $\theta \in [0, 2\pi)$. Tako je $\vec{r}(\varphi, \theta) = (x(\varphi, \theta), y(\varphi, \theta), z(\varphi, \theta))$ parametrizacija torusa.

$$\vec{r}_{\varphi} = ((R + a\cos(\theta))\sin(\varphi), (R + a\cos(\theta)\cos(\varphi), 0)$$

$$\vec{r}_{\theta} = (-a\sin(\theta)\cos(\varphi), -a\sin(\theta)\sin(\varphi), a\cos(\theta))$$

$$E = \vec{r}_{\varphi} \cdot \vec{r}_{\varphi} = (R + a\cos(\theta))^{2}$$

$$G = \vec{r}_{\theta} \cdot \vec{r}_{\theta} = a^{2}$$

$$F = 0$$

Vrednost F=0 smo uganili, saj je $\vec{r}_u \cdot \vec{r}_v = \iff \vec{r}_u \perp \vec{r}_v$. To se zgodi natanko tedaj, ko so koordinatne krivulje pravokotne (koordinatna krivulja je pot, ki jo oriše ena koordinata pri fiksni drugi koordinati v parametrizaciji). Pri torusu sta koordinatni krivulji krog z radijem R v xy ravnini ter krog z radijem a, ki opiše obseg torusa. Sledja sta pravokotna. Dobimo

$$P(S) = \int_{S} dS = \int_{D} a \cdot (R + a\cos(\theta))d\theta d\varphi = \int_{0}^{2\pi} \int_{0}^{2\pi} a \cdot (R + a\cos(\theta))d\theta d\varphi = 2\pi a \cdot 2\pi R$$

Zelo pomenljiv rezultat.

Komentar 2.9

Imamo parametrizacijo, ki iz "lepega" podprostora $D \subseteq \mathbb{R}^2$ slika v naš ciljni objekt v \mathbb{R}^3 . Od parametrizacije zahtevamo injektivnost ter regularnost (odvodi so nevzporedni):

$$\vec{r}_u \times \vec{r}_v \neq \vec{0} \quad \forall (u, v) \in D$$

Trditev 2.10: Površina ploskve

$$P(S) = \int_{S} dS = \int_{D} |\vec{r}_{u} \times \vec{r}_{v}| \ du \ dv = \int_{D} \sqrt{EG - F^{2}} \ du \ dv,$$

kjer je
$$E=\left|\vec{r}_u\right|^2=\vec{r}_u\cdot\vec{r}_u,\,G=\left|\vec{r}_v\right|^2=\vec{r}_v\cdot\vec{r}_v$$
 ter $F=\vec{r}_u\cdot\vec{r}_v$

Primer 2.11

Na enotski sferi je dana krivulja K z enačbo

$$\varphi = \tan(\theta),$$

kjer sta ϕ ter θ sferična kota. Določi dolžino krivulje K.

Rešitev. Dopusten interval za θ je $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$, kjer krajišči, kot množici z mero 0, ignoriramo. θ je tukaj zemljepisna višina, φ pa zemljepisna širina.

$$\vec{r}(\varphi,\theta) = (\cos(\varphi)\cos(\theta), \sin(\varphi)\cos(\theta), \sin(\theta))$$

$$\vec{r}_{\varphi} = (-\sin(\varphi)\cos(\theta), \cos(\varphi)\cos(\theta), 0)$$

$$\vec{r}_{\theta} = (-\cos(\varphi)\sin(\theta), -\sin(\varphi)\sin(\theta), 0)$$

$$E = \vec{r}_{\varphi} \cdot \vec{r}_{\varphi} = \cos(\theta)^{2}$$

$$F = 0G = \vec{r}_{\theta} \cdot \vec{r}_{\theta} = 1,$$

kjer smo F = 0 določili iz pravokotnosti poldnevnikov ter vzporednikov.

$$d\varphi = \frac{1}{\cos(\theta)^2} d\theta.$$

Tako velja

$$\ell(K) = 2 \cdot \int_0^{\frac{\pi}{2}} \sqrt{\cos(\theta)^2 (\frac{1}{\cos(\theta)^2} d\theta^2)^2 + 1(d\theta)^2} = 2 \cdot \int_0^{\frac{\pi}{2}} \frac{\sqrt{1 + \cos(\theta)^2}}{\cos \theta} d\theta$$

Konvergenco slednjega obravnavamo upoštevajoč

$$\cos(x) = \sin(\frac{\pi}{2} - x)$$
 ter $\lim_{x \to 0} \frac{\sin(x)}{x} = 1$

. Dobimo, da integral ne obstaja.

Komentar 2.12

Naj bo $D\subseteq\mathbb{R}^2$ ter $\vec{r}(u,v)$ parametrizacija. Naj bo $\gamma(t)=\{(u(t),v(t))\mid t\in[t_1,t_2]\}$ krivulja v definicijskem območju \vec{r} . Tedaj je

$$\ell(K) = \int_{t_1}^{t_2} \left| \frac{d}{dt} (\vec{r}(u(t), v(t))) \right| dt = \int_{t_1}^{t_2} \sqrt{E \, du^2 + 2F \, du \, dv + G \, dv^2} dt,$$

kjer je $du = \frac{\partial u}{\partial t}dt$ ter $dv = \frac{\partial v}{\partial t}dt$ ter

$$d^2s = E du^2 + F du dv + G dv^2$$

Literatura

[1] asist. prof. dr. Gregor Cigler. Vaje iz Analize 2b. 2025.