MATH3201 lecture 17 Gaussian Quadrature: I dea is evaluates the weighted sum of function values at specifical points (Legendre reets) within integral domain. $\int_{\alpha}^{b} f(x) dx \simeq \sum_{i=1}^{n} C_{i} f(x_{i})$ $C_{i} = \text{weights}$ Vi & Legendre rosts n, : number of evaluation points. This is achieved by replacy the ittegrand with a polynomial that interpolates the Bogg legendre reets. One-point Gaussian Quadrature formula. $\int_{0}^{\infty} f(x) dx \approx C_{1} f(x_{1}) \qquad \qquad x_{1} \text{ in } [a,b]$ The calculate C_1 and X_1 : I have 2 chaices to change (C_1, X_1) .

Thus, I can interpolate a first-order polynomial. $\int_{a}^{b} f(x) = a_{0} + a_{1} \chi$ $\int_{a}^{b} f(x) dx \approx \int_{a}^{b} \left(a_{0} + a_{1} \chi\right) dx = \left[a_{0} \chi + a_{1} \frac{\chi^{2}}{2}\right]_{a}^{b} = \left[a_{2} \left(b - a\right) + a_{1} \frac{b^{2} - a^{2}}{2}\right]$ $\int_{a}^{b} f(x) dx = c_{1} f(x_{1}) = c_{1} \left[a_{0} a + a_{1} x_{1} \right] = a_{2} c_{1} + c_{1} a_{1} x_{1}$ (2) $(1),(2) \longrightarrow C_1 = b-a$ $C_1 \chi_1 = \frac{b^2 - a^2}{2} \longrightarrow (b-a)\chi_1 = \frac{(b-a)(b+a)}{2} \longrightarrow \chi_1 = \frac{a+b}{2}$ $\int_{a}^{b} f(x) dx \approx c_{1} f(x_{1}) = (b-a) f(\frac{a+b}{2})$ wight
rect

Two-point Gauss Quadrature rule: $\int_{-\infty}^{\infty} f(x) dx = e_1 f(x_1) + c_2 f(x_2).$ we use a 3-order interpolating polynomia). to appreximate the integral. f(x) = a = + a, x + a 2 x 2 + a 3 x 3 $\int_{a}^{b} f(x) dx = \int_{a}^{b} (a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3}) dx = a_{e}(b-a) + a_{1}(\frac{b^{2}-a^{2}}{2}) + a_{2}(\frac{b^{3}-a^{3}}{3}) +$ ag (b - a) Jb f(x) dx= 2 f(x,1+c2 f(x2) = a o (5,+c2) +a (6,x,+c2x2) + + a2 (4x1+c2x2) + a3 (c1x1+c2x2) $(1)(2) \rightarrow 1c_{1}+c_{2}=b-a$ $(2)(2) \rightarrow 1c_{1}+c_{2}=b-a$ $(3)(2) \rightarrow 1c_{1}+c_{2}=b-a$ $(4)(2) \rightarrow 1c_{1}+c_{2}=b-a$ - Solutions: $c_1 = \frac{b-a}{2}$ $C_2 = \frac{b-a}{2}$ $Y_1 = \frac{b-a}{2} \left(-\frac{1}{\sqrt{2}} \right) + \frac{b+a}{2}$

 $X_2 = \frac{b-a}{2} \left(\frac{1}{\sqrt{3}} \right) + \frac{b+a}{2}$

n-point Gauss Quadrature rule:

General Farm is defined for from -1 to 1:

$$\int_{1}^{1} f(x) dx \simeq \sum_{i=1}^{n} e_{i} f(x_{i})$$

$$n=2 \rightarrow \begin{cases} x_1 = C_2 = 1 \\ x_2 = (-1/3) + 0 = -1/3 \\ x_2 = 1/3 \end{cases}$$

Converting integration limits:

To approximate an integral on a general interval (a,b) using Gauss

Quadrature rule, first us need to transfer [a, b) back to [-1,1].

$$\int_{a}^{b} f(x) dx \qquad \int_{i=1}^{n} g(t) dt \approx \sum_{i=1}^{n} c_{i} g(t_{i})$$

Linear transformatilen:

$$X = mt + C$$
 transfers interval expand/antract to left/right

lower-limit of citegral! $\alpha = m(-1) + C$ $\rightarrow m = \frac{b-\alpha}{2}$, $C = \frac{b+\alpha}{2}$ upper " $n = \frac{b-\alpha}{2}$, $C = \frac{b+\alpha}{2}$

$$X = \left(\frac{b-a}{2}\right)t + \frac{b+a}{2} \longrightarrow \int_{a}^{b} f(x) dx = \int_{a}^{b} f\left(\frac{b-a}{2}\right)t + \frac{b+a}{2}\left(\frac{b-a}{2}\right)dt$$

$$= \frac{b-a}{2}\left(\frac{b-a}{2}\right)dt$$

$$=\frac{b-a}{2}\int_{-1}^{1}f\left(\frac{b-a}{2}t+\frac{b+a}{2}\right)dt$$

B) Approximate the integral using 2-point Gauss Quadrature rule. Legendre rests are:
$$x_1 = -0.577$$
 and $x_2 = 0.577$ Weights are $c_1 = c_2 = 1$.

Solution: A)
$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2}t + \frac{b+a}{2}\right) dt \qquad (*)$$

$$\int_{0.1}^{1.3} 5 \times e^{-2x} dx = \frac{1.3 - 0.1}{2} \int_{-1}^{1} f\left(\frac{1.3 - 0.1}{2}t + \frac{1.3 + 0.1}{2}\right) dt$$

$$= 0.6 \int_{-1}^{1} f\left(0.6t + 0.7\right) dt$$

B)
$$\int_{1}^{1} f(x) dx \approx c_{1} f(x_{1}) + c_{2} f(x_{2})$$

$$\int_{0.1}^{1.3} 5xe^{-2x} dx = 0.0 \int_{-1}^{1} f(0.6t + 0.7) dt =$$

$$= 0.6 \left[c_1 f\left(0.6(-0.577) + 0.7\right) + c_2 f\left(0.6(0.577) + 0.7\right) \right]$$

$$= 0.6 \left[f\left(0.354\right) + f\left(1.046\right) \right]$$

$$= 0.6 \left[5(0.354) e^{-2 \times 0.354} + 5(1.046) e^{-2 \times 1.046} \right] \approx 0.9101$$

Overview?	(5)
Finite différence methods:	
ODES. PDES. Diffusion/heat eq. Wave eq. Laplace eq.	
Interpolations - Lagrange polynomial - Newton's divided difference polynomial - Runge's phenomenen. - chebysher's idea. - Spline rhterpolation	
Extrapolation: Richardson method.	
Integratilen: Newton's-Cate methods: Trapezoid rule Simpsion's rule Romberg vale. (extended)	used apolati
Quadratures; 1 Adaptive; dividing intervals. Gaussian: weights and roots.	