Formelsammlung zu Modul 42073

Kennzahlen

Arithm. Mittel: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

p-Quantil: $x_p = \begin{cases} x_{(\lfloor np \rfloor + 1)} & \text{falls } np \notin \mathbb{N} \\ \frac{1}{2}(x_{(np)} + x_{(np+1)}) & \text{falls } np \in \mathbb{N} \end{cases}$

Stichprobenvarianz:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Median: $x_{med} = x_{0.5}$

Korrigierter Kontingenzkoeffizient nach Pearson: $K_P^* = \left(\frac{\chi^2}{\chi^2 + n}\right)^{\frac{1}{2}} \cdot \left(\frac{\min(k,l)}{\min(k,l)-1}\right)^{\frac{1}{2}}$ Empirische Korrelation: $r_{xy} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2 \sum_{i=1}^n (y_i - \bar{y})^2}}$

Auswahl von k aus n Objekten

Auswall von h aus h Objekten					
	ohne Wieder-	mit Wieder-			
	holung $(k \le n)$	holung			
ohne Reihenf.	$\binom{n}{k}$	$\binom{n+k-1}{k}$			
mit Reihenf.	$\frac{n!}{(n-k)!}$	n^k			

Wahrscheinlichkeitsrechnung

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Bedingte Wahrscheinlichkeit: $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Satz v. Bayes: $P(B_k|A) = \frac{P(B_k) \cdot P(A|B_k)}{\sum\limits_{i=1}^{m} P(B_i)P(A|B_i)}$

Zufallsvariablen und Verteilungen

Diskret		Stetig
Dichte	f(x) = P(X = x)	$f(x) \ge 0, \ \int_{-\infty}^{\infty} f(x)dx = 1$
${\bf Verteilungs funktion}$	$F(x) = P(X \le x) = \sum_{t \le x, f(t) > 0} f(t)$	$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$
E(X)	$E(X) = \sum_{x \in \Omega} x f(x)$	$E(X) = \int_{-\infty}^{\infty} x f(x) dx$
Var(X)	$\operatorname{Var}(X) = \sum_{x \in \Omega} (x - E(X))^2 f(x)$	$\operatorname{Var}(X) = \int_{-\infty}^{\infty} (x - E(X))^2 f(x) dx$

Name	Bezeichnung	f(x)	Träger Ω	E(X)	Var(X)
Diskrete Verteilu	ıngen				
Binomial	$X \sim Bin(n,p)$	$\binom{n}{x}p^x(1-p)^{n-x}$	$x \in \{0, 1, \dots, n\}$	np	np(1-p)
Hypergeometrisch	$X \sim \mathcal{H}(N, M, n)$	$\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$	$0 \le x \le M, \\ 0 \le n - x \le N - M$	$\frac{nM}{N}$	$n\frac{M}{N}(1-\frac{M}{N})\frac{N-n}{N-1}.$
diskrete Gleich	$X \sim DU(m)$	$\frac{1}{m}$	$\{1,\ldots,m\}$	$\frac{m+1}{2}$	$\frac{m^2-1}{12}$
Poisson	$X \sim Poi(\lambda)$	$\exp(-\lambda)\frac{\lambda^x}{x!}$	$x \in \mathbb{N}_0$	λ	λ
Stetige Verteilungen					
Normal	$X \sim N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$x \in \mathbb{R}$	μ	σ^2
Standardnormal	$X \sim N(0,1)$	$\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{1}{2}x^2\right)$	$x \in \mathbb{R}$	0	1
stetige Gleich	$X \sim Unif(a,b)$	$\frac{1}{b-a}$	$x \in [a, b]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential	$X \sim Exp(\lambda)$	$\lambda \exp(-\lambda x)$	$x \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Konfidenzintervalle

 $100(1-\alpha)\%$ -Konfidenzintervalle für Erwartungswert E(X)

$$X \sim N(\mu, \sigma^2) \text{ oder } n \text{ groß } (n \ge 30), \sigma \text{ bekannt} \qquad \left[\bar{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \quad \bar{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right]$$

$$X \sim N(\mu, \sigma^2), \sigma \text{ unbekannt} \qquad \left[\bar{X} - t_{n-1,1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \quad \bar{X} + t_{n-1,1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \right]$$

$$n \text{ groß } (n \ge 30), \sigma \text{ unbekannt} \qquad \left[\bar{X} - z_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \quad \bar{X} + z_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \right]$$

 $100(1-\alpha)\%$ Konfidenzintervall für Anteile p

$$X \sim Bin(1, p)$$
, n groß $(n \ge 30)$ $\left[\hat{p} - z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \quad \hat{p} + z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right]$ mit $\hat{p} = \bar{X}$

Hypothesentests

Nullhypothese	Alternativhypothese	Teststatistik	Ablehnungsbereich	
(approximativer) Gaußtest $(X \sim N(\mu, \sigma^2) \text{ oder } n \geq 30, \sigma \text{ bekannt})$				
$\mu = \mu_0$	$\mu \neq \mu_0$	_	$ z > z_{1-\frac{\alpha}{2}}$	
$\mu \ge \mu_0$	$\mu < \mu_0$	$Z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$	$z < -z_{1-\alpha}$	
$\mu \le \mu_0$	$\mu > \mu_0$	·	$z > z_{1-\alpha}$	
t-Test auf Lage $(X \sim \Lambda)$	$(\mu, \sigma^2), \sigma \text{ unbekannt})$			
$\mu = \mu_0$	$\mu \neq \mu_0$	_	$ t > t_{n-1,1-\frac{\alpha}{2}}$	
$\mu \ge \mu_0$	$\mu < \mu_0$	$T = \frac{X - \mu_0}{\frac{S}{\sqrt{n}}}$	$t < -t_{n-1,1-\alpha}$	
$\mu \leq \mu_0$	$\mu > \mu_0$	·	$t > t_{n-1,1-\alpha}$	
Approximativer Gauß	test $(n \ge 30, \sigma \text{ unbekannt}, 1$	$E(X) = \mu$		
$\mu = \mu_0$	$\mu \neq \mu_0$	_	$ z > z_{1-\frac{\alpha}{2}}$	
$\mu \ge \mu_0$	$\mu < \mu_0$	$Z = \frac{\bar{X} - \mu_0}{\frac{S}{\sqrt{n}}}$	$z < -z_{1-\alpha}$	
$\mu \leq \mu_0$	$\mu > \mu_0$		$z > z_{1-\alpha}$	
t-Test auf Lagedifferenz $(X \sim N(\mu_X, \sigma_X^2), Y \sim N(\mu_Y, \sigma_Y^2), \sigma_X, \sigma_Y \text{ unbekannt})$				
$\mu_X - \mu_Y = \delta_0$	$\mu_X - \mu_Y \neq \delta_0$		$ t > t_{k,1-\frac{\alpha}{2}}$	
$\mu_X - \mu_Y \ge \delta_0$	$\mu_X - \mu_Y < \delta_0$	$T = \frac{\overline{X} - \overline{Y} - \delta_0}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}}$	$t < -t_{k,1-\alpha}$	
$\mu_X - \mu_Y \le \delta_0$	$\mu_x - \mu_Y > \delta_0$, '	$t > t_{k,1-\alpha}$	
$\text{mit } k = \left\lfloor \left(\frac{S_X^2}{n} + \frac{S_Y^2}{m} \right)^2 \middle/ \left(\frac{1}{n-1} \left(\frac{S_X^2}{n} \right)^2 + \frac{1}{m-1} \left(\frac{S_Y^2}{m} \right)^2 \right) \right\rfloor$				

Approximativer Binomialtest $(X \sim Bin(1, p), n \ge 30)$

$p = p_0$	$p \neq p_0$		$ z > z_{1-\frac{\alpha}{2}}$
$p \ge p_0$	$p < p_0$	$Z = \frac{\bar{X} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{1 - p_0}}}$	$z < -z_{1-\alpha}$
$p \le p_0$	$p > p_0$	V n	$z > z_{1-\alpha}$

Chi-Quadrat-Unabhängigkeitstest (X und Y kategorial, $\tilde{h}_{ij} > 5$)

Merkmale X und Y sind	Merkmale X und Y sind	$\chi^{2} = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{(h_{ij} - \tilde{h}_{ij})^{2}}{\tilde{h}_{ij}}$	$\chi^2 > \chi^2_{1-\alpha,(k-1)(l-1)}$
stochastisch unabhängig	stochastisch abhängig	$\tilde{h}_{ij} = \frac{h_{i \bullet} \cdot h_{\bullet j}}{n}$	

Regression

Regressionsmodell:	$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$	$\epsilon_i \sim N(0, \sigma^2) i = 1, \dots, n$
Schätzer:	$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum_{i=1}^n x_i y_i - n\bar{x} \bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}$	$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$
	$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2} \hat{\sigma}_{\hat{\beta}_1} = \sqrt{\frac{\hat{\sigma}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$	$\hat{\sigma}_{\widehat{\beta}_0} = \sqrt{\widehat{\sigma}^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right)}$
Angepasste Regressi	onsgrade: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$	$(\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i)$
Bestimmtheitsmaß:	$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$	Residuen: $e_i = y_i - \hat{y}_i$

Nullhypothese	Alternativhypothese	Teststatistik	Ablehnungsbereich
$\beta_1 = \beta_{1,0}$	$\beta_1 \neq \beta_{1,0}$		$ t > t_{n-2,1-\alpha/2}$
$\beta_1 \ge \beta_{1,0}$	$\beta_1 < \beta_{1,0}$	$T = \frac{\widehat{\beta}_1 - \beta_{1,0}}{\widehat{\sigma}_{\widehat{\beta}_1}}$	$t < -t_{n-2,1-\alpha}$
$\beta_1 \le \beta_{1,0}$	$\beta_1 > \beta_{1,0}$	P1	$t > t_{n-2,1-\alpha}$

$$100(1-\alpha)\%$$
-Konfidenzintervall für Prognose: $\widehat{Y}_0 = \widehat{\beta}_0 + \widehat{\beta}_1 x_0$

$$100(1-\alpha)\% \textbf{-Konfidenzintervall für Prognose: } \widehat{Y}_0 = \widehat{\beta}_0 + \widehat{\beta}_1 x_0 \\ \left[\widehat{Y}_0 - t_{n-2,1-\alpha/2} \sqrt{\widehat{\sigma}^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}\right)} \right., \\ \widehat{Y}_0 + t_{n-2,1-\alpha/2} \sqrt{\widehat{\sigma}^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}\right)} \right]$$