PHYS 225 Fundamentals of Physics: Mechanics

Prof. Meng (Stephanie) Shen Fall 2024

Lecture 23: Potential energy and conservation of energy

Learning goals for today

- Conservative forces and potential energy
- Conservation of mechanical energy
- Conservation of total energy

Chapter 8.1: Conservative forces and potential energy

Recap: 1. Conservative forces

• **Definition of a conservative force**: If the work done by a force only depends on the initial and final positions, then it is a conservative force.

The force is conservative. Any choice of path between the points gives the same amount of work.

And a round trip gives a total work of zero.

I. Open loops:
$$W_{a \rightarrow b,1} = W_{a \rightarrow b,2}$$

II. Closed loop:
$$W_{a\rightarrow b,1}+W_{b\rightarrow a,2}=0$$

2. Potential energy

- Potential energy: Energy of position, U
 - The measure of capability for a conservative force to do work.
- of work dome by

 = conservative • Changes in potential energy: $\Delta U = U_f - U_i = -W_{cons}$

i.e., The change of potential energy is the negative of work done by a conservative force.

Potential energy of the weight

• Example 1: Gravitational force near earth surface, weight

Work from
$$y_0$$
 to y :

Final $W = -mg(y - y_0)$

Antial energy

Potential energy

change from
$$y_0$$
 to y :
$$\Delta U = -W = mg(y - y_0)$$

If
$$U(\mathcal{J}=0)=0$$
, then $U(\mathcal{J})=M\mathcal{J}\mathcal{J}$

© 2010 Pearson Education. Inc.

Clicker question 4

$$\Delta U = -W_{CONS} = Mg \left(\mathcal{Y}_f - \mathcal{Y}_{\lambda} \right)$$

$$= Mg \left(\mathcal{Y}_f - \mathcal{Y}_{\lambda} \right)$$

• A climber works on a vertical wall. He/she climbs from \vec{r}_2 to \vec{r}_1 . The length of the path is l=10m. Besides, $\vec{r}_1-\vec{r}_2=(2\hat{\imath}+5\hat{\jmath})$ m. The mass of the climber is 65kg. What is the change of the potential energy, ΔU , from \vec{r}_2 to \vec{r}_1 ?

1274J

-6370J

3185 J

-3185J

Potential energy of the spring force

• Example 2: Spring force

Work from x_i to x_f : $W_s = \frac{k}{2}(x_i^2 - x_f^2)$

Potential energy difference from x_i to $\Delta U = -W_{s} = \frac{k}{2}(x_f^2 - x_i^2)$ x_f :

Calculating conservative force from potential energy

Calculating potential energy from a conservative force:

$$U = -W_{cons} = -\int_{\vec{r}_i}^{\vec{r}_f} \vec{F}_{cons} \cdot d\vec{r}$$

Calculating a <u>conservative</u> force from potential energy:

$$\vec{F}_{cons} = -\nabla U = -\frac{\partial U}{\partial x}\hat{\imath} - \frac{\partial U}{\partial y}\hat{\jmath} - \frac{\partial U}{\partial z}\hat{k}$$
Gradient

Clicker question 5

 Which of the following forces can be directly calculated from a potential energy?

Demo

Checkpoint: Two types of mechanical energy

• Potential energy:
$$4U = -W_{Cons}$$

Chapter 8.2. Conservation of energy

3. Conservation of mechanical energy

• When only conservative forces do work on the system, then the mechanical energy, K+U, is conserved:

That is,
$$K_i + U_i = K_f + U_f$$

Clicker question 6

•Three objects having the same mass begin at rest at the same height, and all move down the same vertical distance H. One falls straight down, one slides down a *frictionless* inclined plane, and one swings on the end of a string.

Case study 1: Pendulum

Clicker question 7

• Where is the potential energy the smallest?

Example 1: Pendulum

Given: M, L, Di, Vo, At=0 Gon(; 1)+

 A pendulum is formed by attaching a ball of mass 1 kg to a 1 m long string of negligible mass. The other end of the string is fixed to the ceiling. The ball is pulled to an angle $\theta=25^{\circ}$ from vertical down direction and released from rest. Neglect the air friction. What is the speed of the

ball at the lowest point?

Stepli Conservation of much. E Uit Ki = Uft Kf Step 2: For, 8, U(A) = mg L (1-1040) $mgL(|-cos O_i) = \frac{1}{2}mU_f^2$ Seep 3: Uf = 129L (1-1050i) $=\sqrt{2\times9.8m5^{-2}\times1m(1-6.525^{\circ})}$ ~ 1.36 ms

Demo

https://phet.colorado.edu/sims/html/energy-skate-park/latest/energy-skate-park_all.html .

Case study 2: Roller coaster

Clicker question 8

• A cart moves freely along a *frictionless* roller coaster track. The cart's speed at A is $v_A=5.00$ m/s, $h_A=5.00m$, and $h_C=8.00m$.

To find out if the cart reaches point C, What principles and equations to use?

1D Kinematic equations

B Conservation of energy

Example 2: Roller coaster

Given: VA, hA, g Goal: hmax = hc

• A cart moves freely along a *frictionless* roller coaster track. The cart's speed at A is $v_A = 5.00$ m/s, $h_A = 5.00m$, and $h_C = 8.00m$. Does the cart reach C?

Case study 3: Spring

Example 3

Given: M, Vi, Xi, k
Goal: Xf when Vf=0

• A 1.0 kg box is moving with an initial speed of 1.0 m s⁻¹ towards a relaxed spring on a frictionless table. The spring constant is 1.0 N m⁻¹. What is the magnitude of the spring compression when the box is stopped?

Seeple
$$M_j + K_j = M_j + K_j$$

$$0 + \frac{1}{2}mV_j^2 = \frac{1}{2}kX_j^2 + 0$$

$$5+2p^2 : X_j = \sqrt{\frac{mV_j^2}{k}}$$

$$= \sqrt{\frac{1}{2}k}\frac{(ms')^2}{(so N \cdot m')}$$

$$= | M|$$

Conservation of total energy in general

- When there is work by friction, inelastic deformation, chemical reaction, etc.
 - Then the mechanical energy is not conserved
- However, energy can't be created or destroyed, so...
 - The *total* energy is conserved i.e., $E = K + U_{pot} + U_{thermal} + \cdots = const$
 - But energy can be converted between different forms

https://youtu.be/ZvgJ7mVxeg0

Homework 8

Due in a week

Pre-lecture 9.1.1

• Please complete Pre-lecture in Module 9.1.1 before the next lecture.