Mathestützkurs für MB Übung: Trigonometrie

Fachschaft Maschinenbau Wintersemester 2021/2022

Sinus: $\sin \alpha = \frac{\text{Gegenkathete}}{\text{Hypothenuse}}$

Kosinus: $\cos \alpha = \frac{\text{Ankathete}}{\text{Hypothenuse}}$

Tangens: $\tan \alpha = \frac{\text{Gegenkathete}}{\text{Ankathete}}$

Trigonometrischer Pythagoras: $\sin^2(\alpha) + \cos^2(\alpha) = 1$

 $\sin(\alpha\pm\beta)=\sin(\alpha)\cdot\cos(\beta)\pm\cos(\alpha)\cdot\sin(\beta)$ Additions theoreme:

 $\cos(\alpha \pm \beta) = \cos(\alpha) \cdot \cos(\beta) \mp \sin(\alpha) \cdot \sin(\beta)$

Doppelte Winkel: $\cos(2\alpha)=\cos^2\alpha-\sin^2\alpha=1-2\sin^2\alpha=2\cos^2\alpha-1$

 $\sin(2\alpha) = 2\sin\alpha\cos\alpha$

 $\sin\left(\frac{\pi}{2} + x\right) = \cos(x)\sin(\pi + x) = -\sin(x)$ Reduktions formeln:

 $\cos\left(\frac{\pi}{2} + x\right) = -\sin(x)\cos(\pi + x) = -\cos(x)$

 $\alpha + 360^{\circ}$ für alle α ; $\mathbf{x} + 2\pi$ für alle \mathbf{x}

 $\frac{\pi}{4}$

0

Symmetrie: $\begin{aligned} \sin(x) &= -\sin(-x) & \cos(x) &= -\cos(x) \\ \text{Punktsymmetrisch} & \text{Achsensymmetrisch} \end{aligned}$

 $\frac{x}{2\pi} = \frac{\alpha^{\circ}}{360^{\circ}}$

Exakte Winkel:

Winkelperioden:

Bogenmaß ↔ Winkelmaß:

Es gilt: $\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ $\sin(\alpha) \quad 0 \quad \frac{1}{2} \quad \frac{1}{\sqrt{2}} \quad \frac{\sqrt{3}}{2} \quad 1$ $\cos(\alpha) \quad 1 \quad \frac{\sqrt{3}}{2} \quad \frac{1}{\sqrt{2}} \quad 0$

Aufgabe 1:

Rechne folgende Winkelmaße um:

$$x_a = \frac{5\pi}{6}$$

$$x_b = \frac{2\pi}{3}$$

$$Gradma\$ \to Bogenma\$$$

$$\alpha_a = 270^{\circ}$$

$$\alpha_b = -20^{\circ}$$

Aufgabe 2:

Vereinfache:

a)
$$\cos (60^{\circ} + \alpha) + \sin (30^{\circ} + \alpha)$$

b)
$$\cos (45^{\circ} + \alpha) + \cos (\alpha - 45^{\circ})$$

c)
$$\frac{1-\cos^2(2\alpha)}{2\sin(\alpha)}$$

Aufgabe 3:

Finde die allgemeinen Formeln für den Umfang $U(r,\alpha)$ und die Fläche $F(r, \alpha)$ Kreisabschnittes A, mit α im Bogenmaß.

Hinweis:

Umfang eines Kreises: $U=2\pi r$ Flächeninhalt eines Kreises: $F = \pi r^2$

Gegeben: r, α

Aufgabe 4:

Rechts dargestellt ist eine Prinzipsskizze eines Kurbeltriebs. Die rotatorische Bewegung wird durch eine Kurbelwelle mit der Exzentrität r und der Schubstange mit der Länge l in eine translatorische Bewegung überführt. Beschreibe die allgemeine Lage des Schubgelenks A in Abhängigkeit von r, l und α . (Gesucht ist die x-Koordinate des Schubgelenks A im gegebenen Koordinatensystem.)

Kontrollergebnisse

Aufgabe 1:
$$x_a \triangleq 150^\circ$$
, $x_b \triangleq 120^\circ$, $\alpha_a \triangleq \frac{3}{2}\pi$, $\alpha_b \triangleq \frac{17}{9}\pi$

Aufgabe 2: a)
$$\cos(\alpha)$$
, b) $\sqrt{2}\cos\alpha$, c) $\sin(2\alpha)\cdot\cos\alpha$

Aufgabe 3:
$$U(r,\alpha) = r\left(\alpha + 2\sin\frac{\alpha}{2}\right), A = \frac{r^2}{2}(\alpha - \sin(\alpha))$$

Aufgabe 3:
$$U(r,\alpha)=r\left(\alpha+2\sin\frac{\alpha}{2}\right),\,A=\frac{r^2}{2}(\alpha-\sin(\alpha))$$
 Aufgabe 4: $x=r\cdot\cos\alpha+l\cdot\cos\left(\arcsin\left(\frac{r\cdot\sin\alpha}{l}\right)\right)=\sqrt{r^2-r^2\sin^2\alpha}+\sqrt{l^2-r^2\sin^2\alpha}$