Data simulation and calculation of betas

```
library(knitr)
library(cowplot)
library(ggforce)

## Loading required package: ggplot2

library(latex2exp)
knitr::opts_chunk$set(cache = FALSE, warning = FALSE, message = FALSE, cache.lazy = FALSE)
```

Simulation data

```
set.seed(1)
K <- 10 # Nombre de groupe
nK <- 50 # Nombre d'observations par groupe
N <- K * nK # Nombre total d'observation
G <- factor(rep(1:K, each = nK))
intercept <- 2
fixefEffect <- .5</pre>
aleaEffect <- rnorm(K, sd = .5)</pre>
bias \leftarrow rnorm(N, sd = .25)
X <- rbinom(N,size=1,prob = .5)</pre>
# X_gauss <- rnorm(N,1,2)
Y_withoutAlea <- intercept + fixefEffect * X + bias</pre>
\# Y\_G \leftarrow intercept + fixefEffect * X\_gauss + aleaEffect[G] + bias
Y <- intercept + fixefEffect * X + aleaEffect[G] + bias
dfWith <- data.frame(X, Y, G)</pre>
dfWithout <- data.frame(X, Y=Y_withoutAlea, G)</pre>
H0 <- formula(Y ~ X)</pre>
H1 \leftarrow formula(Y \sim X + (1|G))
dataPlot = cbind.data.frame(X=rep(factor(X), 2), Y=c(Y, Y_withoutAlea),
                              G = factor(c(G,X), levels = 0:10),
                              Effect = factor(rep(c("gamma != 1", "gamma == 0"),
                                                    each=length(X))))
ggplot(dataPlot) +
  geom_boxplot(aes(x=X, y=Y, fill = G)) +
  scale_x_discrete(expand = c(0, 0.5)) +
  theme bw()+
```


Linear model with lm function

```
lmModel <- lm(H0,data = dfWithout)
Sigm.1 <- sqrt(((summary(lmModel)$sigma)**2)*solve(t(X) %*% X))
betaLm.1 <- lmModel$coefficients
SE.1 <- (betaLm.1[-1] - confint(lmModel)[-1,][1])/1.96

B <- ggplot(dfWithout, aes(x = X, y = Y, color = G) ) +
    geom_point() +
    geom_smooth(formula = as.formula(y ~ x), method = "lm",se = .3, aes(fill = G))+
    theme_bw()+theme(axis.title.y = element_blank())+
    annotate(geom='text', label=TeX("$\\gamma=0$"), y=3, x=.5)</pre>
cowplot::plot_grid(A, B, labels = c('',''))
```


Table 1: Linear regression estimates with lm()

	\hat{eta}	$SE(\hat{\beta})$	$\sigma(\hat{eta})$
$ \gamma \neq 0 \\ \gamma = 0 $	$0.4996 \\ 0.4925$	$0.0409 \\ 0.0229$	$0.03 \\ 0.0168$

Mixed model with lmer function

```
options(warn=-1)
# With Random Effect
lmerModel <- lme4::lmer(H1, data=dfWith)</pre>
betaLmer <- lme4::fixef(lmerModel)</pre>
SE <- sqrt(diag(as.matrix(vcov(lmerModel))))[-1]</pre>
Sigm <- sqrt(stats::var(as.vector(betaLmer %*% t(X))))</pre>
A <- ggplot(dfWith, aes(x=X, y=Y, colour=G)) +
    geom_point(size=1.5) +
    geom_line(aes(y=predict(lmerModel), group=G), size=1.3) +
      theme_bw()+theme(legend.position="none")+
  annotate(geom='text', label=TeX("$\\gamma \\neq 0$"), y=3.7, x=.5)
# Without Random Effect
lmerModel.1 <- lme4::lmer(H1, data=dfWithout)</pre>
betaLmer.1 <- lme4::fixef(lmerModel.1)</pre>
SE.1 <- sqrt(diag(as.matrix(vcov(lmerModel.1))))[-1]</pre>
Sigm.1 <- sqrt(stats::var(as.vector(betaLmer.1 %*% t(X))))</pre>
B <- ggplot(dfWithout, aes(x=X, y=Y, colour=G)) +
    geom_point(size=1.5) +
    geom_line(aes(y=predict(lmerModel.1), group=G), size=1.3) +
  theme_bw()+theme(axis.title.y = element_blank())+
  annotate(geom='text', label=TeX("$\\gamma=0$"), y=3, x=.5)
cowplot::plot_grid(A, B, labels = c('',''))
```


Table 2: Mixed Model estimates with lmer()

	\hat{eta}	$SE(\hat{\beta})$	$\sigma(\hat{eta})$
$\gamma \neq 0$	0.4867	0.0228	0.8356
$\gamma = 0$	0.4902	0.0227	0.8078

OLS

```
OLS <- function(Y, X){
  modelmat <- model.matrix(~.,cbind.data.frame(X=X))
  indexes_X <- which(substring(colnames(modelmat), 1, 1) == "X")
  modX_OLS <- modelmat[, c(1, indexes_X), drop = FALSE]
  Y <- as.numeric(Y)
  betaOLS <- solve(crossprod(modX_OLS))%*%(t(modX_OLS)%*%Y)
  k <- ncol(modX_OLS)
  n <- nrow(modX_OLS)

residuals <- as.matrix(Y - (betaOLS[1, , drop=FALSE]) - X * betaOLS[indexes_X, , drop=FALSE])

RSS <- as.numeric(t(residuals)%*%residuals)</pre>
```

```
Sigma2 <- as.numeric(RSS/(n-k))
Vb <- Sigma2*solve(t(X)%*% X)
Sigm <- sqrt(Vb)

OLSCOV <- 1/(n-k) * as.numeric(t(residuals)%*%residuals) * solve(t(modX_OLS)%*%modX_OLS)
SE <- sqrt(diag(OLSCOV))[-1]

return(list('betaOLS'=betaOLS[indexes_X, ,drop=FALSE], 'SE'=SE,'Sigm'=Sigm))
}
options(warn=-1)

# With Random Effect
res <- OLS(dfWith$Y,X)

# Without Random Effect
res.1 <- OLS(dfWithout$Y,X)</pre>
```

Table 3: OLS estimates

	\hat{eta}	$SE(\hat{\beta})$	$\sigma(\hat{eta})$
$\gamma \neq 0$	0.4996	0.0408	0.8356
$\gamma = 0$	0.4925	0.0228	0.8078

Monte Carlo

Simulating a mixed model

The following represents a simulate a random intercepts model obtenaid 500 Monte-Carlo replicates. The method follows the following simulation framework from gaussian distributions with or without the presence of random effects:

$$Y = \beta_0 + \beta X + \gamma G + \epsilon \tag{1}$$

with $\beta_0 = 2$, $\beta \in \{0.5, 2, 5, 10\}$ the fixed effect of $X \sim \mathcal{B}\binom{n}{0.5}$ with n = 500 the number total of samples, $\epsilon \sim \mathcal{N}(0, 0.25)$ the bias associated, the random effect of group $\gamma \sim \mathcal{N}(0, \sigma_{\gamma})$ if simulated with random effect with $\sigma_{\gamma} \in \{0.5, 5, 10, 20\}$) and $\gamma = 0$ if not random effect and the group $G \in \{1, \ldots, K\}$ with K = 10.

```
for (sdUnit in sds) {
      aleaEffect <- rnorm(K, sd = sdUnit)</pre>
      resOLS.1 <- matrix(0, sims, 3)
      resOLS.2 <- matrix(0, sims, 3)
      resMM <- matrix(0, sims, 3)</pre>
      for(i in 1:sims){
        options(warn=-1)
        bias \leftarrow rnorm(n, sd = .25)
        Y_with <- intercept + fixefEffect * X + aleaEffect[G] + bias
        Y_without <- intercept + fixefEffect * X + bias</pre>
        modOLS.1 <- OLS(Y with,X)</pre>
        modOLS.2 <- OLS(Y_without,X)</pre>
        resOLS.1[i,] <- c(modOLS.1$betaOLS, modOLS.1$SE, modOLS.1$Sigm)
        resOLS.2[i,] <- c(modOLS.2$betaOLS, modOLS.2$SE, modOLS.2$Sigm)
        lmerModel.1 <- try({ lme4::lmer(Y_with ~ X + (1|G), REML = TRUE)}, silent = T)</pre>
        beta <- lme4::fixef(lmerModel.1)[-1]</pre>
        SE_b <- sqrt(diag(as.matrix(vcov(lmerModel.1))))[-1]</pre>
        Sigm <- sqrt(stats::var(as.vector(beta %*% t(X))))</pre>
        resMM[i,] <- c(beta, SE_b,Sigm)</pre>
        estimateAll[k,] <- c(fixefEffect, modOLS.1$betaOLS,modOLS.2$betaOLS,beta,</pre>
                           modOLS.1$SE,modOLS.2$SE,SE b,
                           modOLS.1$Sigm,modOLS.2$Sigm,Sigm,sdUnit,i)
        k \leftarrow k+1
      M <- apply(resOLS.1, 2, mean)</pre>
      S <- apply(resOLS.1, 2, sd)
      H_{ols.1} \leftarrow matrix(c(M[1], S[1], M[2], S[2], M[3], S[3]), ncol = 2, byrow = TRUE)
      M <- apply(resOLS.2, 2, mean)</pre>
      S <- apply(resOLS.2, 2, sd)
      H_{ols.2} \leftarrow matrix(c(M[1], S[1], M[2], S[2], M[3], S[3]), ncol = 2, byrow = TRUE)
      M <- apply(resMM, 2, mean)</pre>
      S <- apply(resMM, 2, sd)
      H_m < -matrix(c(M[1], S[1], M[2], S[2], M[3], S[3]), ncol = 2, byrow = TRUE)
      dimnames(H_ols.1) <- dimnames(H_mm) <-</pre>
        dimnames(H_ols.2) <- list( c('Beta', 'Standard Error', 'Sigm'), c('mean', 'se'))
      resAllOLS.1[[as.character(pasteO(fixefEffect,"_",sdUnit))]] <- H_ols.1</pre>
      resAllOLS.2[[as.character(pasteO(fixefEffect,"_",sdUnit))]] <- H_ols.2</pre>
      resAllMM.1[[as.character(pasteO(fixefEffect,"_",sdUnit))]] <- H_mm</pre>
  }
estimateAll <- as.data.frame(estimateAll)</pre>
colnames(estimateAll) = c('fixefEffect','betaOLS.1','betaOLS.2','betaMM',
```

```
'seOLS.1', 'seOLS.2', 'seMM', 'sigmOLS.1',
                           'sigmOLS.2','sigmMM','sdUnit','simId')
 return (list('resAllOLS'=resAllOLS.1, 'resAllMM'=resAllMM.1,
               'resAllOLSWithoutAleaEffect'=resAllOLS.2, "estimateAll"=estimateAll))
}
resSim <- simOLS(sims = 500)</pre>
dataPLOT <- cbind.data.frame(betaEs = c(resSim$estimateAll[[2]],resSim$estimateAll[[3]],</pre>
                                       resSim$estimateAll[[4]]),
                            betas = factor(rep(resSim$estimateAll[[1]],3)),
                            Sigm = factor(rep(resSim$estimateAll[[11]],3)),
                            Method = as.factor(rep(c('OLS.1','OLS.2','MM'),
                                                   each=length(resSim$estimateAll[[1]]))))
dataPLOT$Bias = rep(resSim$estimateAll[[1]],3)-dataPLOT$betaEs
dataPLOT$betas \leftarrow gsub(0.5, "beta == 0.5",
          gsub(2, "beta == 2",
          gsub(10, "beta == 10",dataPLOT$betas)))
dataPLOT[dataPLOT$betas==5,'betas']="beta == 5"
dataPLOT$betas = factor(dataPLOT$betas, levels = c("beta == 0.5", "beta == 2",
                                                 "beta == 5", "beta == 10"))
dataPLOT$Sigm <- gsub(0.5, "gamma == 0.5",</pre>
          gsub(10, "gamma == 10",
          gsub(20, "gamma == 20",dataPLOT$Sigm)))
dataPLOT[dataPLOT$Sigm==5, 'Sigm']="gamma == 5"
dataPLOT$Sigm = factor(dataPLOT$Sigm, levels = c("gamma == 0.5", "gamma == 5",
                                               "gamma == 10", "gamma == 20"))
ggplot(dataPLOT, aes(Method,betaEs))+
geom_boxplot(position="dodge",aes(fill=Sigm))+
facet_wrap(~betas, scales = "free_y",labeller = label_parsed,ncol = 4)+
 ylab(TeX("$\\hat{\\beta}$"))+
 TeX("$mm_{\\gamma\\neq 0}$")))+
 scale_fill_discrete(name=TeX("$values\\ of\\ \\gamma$"),
                        labels=c(TeX("$\\gamma=.5$"),TeX("$\\gamma=5$"),
                           TeX("$\\gamma=10$"),TeX("$\\gamma=20$")))
```


Table 4: OLS and Mixed Model estimates with 500 Monte-Carlo replicates

				$\Sigma=0.5$		$\Sigma=5$		$\Sigma=10$		$\Sigma=20$	
β	Model	γ	Estimate	μ	SE	μ	SE	μ	SE	μ	SE
eta=0.5	OLS	• - - 0	$\hat{oldsymbol{eta}}$	0.469	0.0221	0.0432	0.021	-0.7455	0.0221	1.7612	0.023
$\rho = 0.5$	OLS	$\gamma \neq 0$	$\stackrel{ ho}{SE(\hat{eta})}$	0.409	0.0221	0.0432 0.511	9×10^{-4}	0.9147	0.0221	1.6608	0.023
			$\sigma(\hat{eta})$	0.0362	7×10^{-4}	0.362	7×10^{-4}	0.6481	7×10^{-4}	1.1767	7×10^{-4}
				0.000	,	0.00_	,	0.0.0.			,
		$\gamma = 0$	$\hat{oldsymbol{eta}}$.	0.4991	0.0221	0.5018	0.021	0.5003	0.0221	0.5016	0.023
			$SE(\hat{eta})$	0.0224	7×10^{-4}	0.0223	7×10^{-4}	0.0223	7×10^{-4}	0.0224	7×10^{-4}
			$\sigma(\hat{eta})$	0.0159	5×10^{-4}	0.0158	5×10^{-4}	0.0158	5×10^{-4}	0.0159	5×10^{-4}
	MM	$\gamma \neq 0$	$\hat{oldsymbol{eta}}$	0.499	0.0224	0.5018	0.0213	0.5002	0.0224	0.5017	0.023
	11111	170	$SE(\hat{eta})$	0.0225	7×10^{-4}	0.0225	7×10^{-4}	0.0225	7×10^{-4}	0.0225	7×10^{-4}
			$\sigma(\hat{eta})$	0.2497	0.0112	0.2512	0.0106	0.2503	0.0112	0.2511	0.0115
				0.2101	0.0112	0.2012	0.0100	0.2000	0.0112	0.2011	0.0110
$\beta = 2$	OLS	$\gamma \neq 0$	\hat{eta} ,	2.0201	0.0221	1.8366	0.0227	3.332	0.0224	1.9012	0.0228
			$SE(\hat{eta})$	0.0404	0.001	0.5625	0.001	0.7208	0.0011	0.9151	0.001
			$\sigma(\hat{eta})$	0.0286	7×10^{-4}	0.3985	7×10^{-4}	0.5107	8×10^{-4}	0.6483	7×10^{-4}
		$\gamma = 0$	$\hat{oldsymbol{eta}}$	2.0012	0.0221	2.0014	0.0227	1.9996	0.0224	1.9979	0.0228
		7 — 0	$SE(\hat{eta})$	0.0224	7×10^{-4}	0.0224	7×10^{-4}	0.0224	7×10^{-4}	0.0223	7×10^{-4}
			$\sigma(\hat{eta})$	0.0159	5×10^{-4}	0.0159	5×10^{-4}	0.0158	5×10^{-4}	0.0158	5×10^{-4}
				0.0100	0 / 10	0.0100	0 / 10	0.0100	0 / 10	0.0100	0 // 10
	MM	$\gamma \neq 0$	$\hat{oldsymbol{eta}}$	2.0014	0.0223	2.0015	0.0229	1.9997	0.0225	1.9979	0.0228
			$SE(\hat{eta})$	0.0226	7×10^{-4}	0.0225	7×10^{-4}	0.0225	7×10^{-4}	0.0225	7×10^{-4}
			$\sigma(\hat{eta})$	1.0017	0.0112	1.0017	0.0115	1.0008	0.0113	0.9999	0.0114
eta=5	OLS	$\gamma \neq 0$	\hat{eta}	5.0345	0.0226	5.4794	0.0217	3.9153	0.0218	6.5439	0.0221
$\rho = 0$	OLD	1 7 0	$SE(\hat{eta})$	0.0545	0.0220	0.576	0.001	1.0475	0.0210	0.9433	0.0221
			$\sigma(\hat{eta})$	0.0366	7×10^{-4}	0.4081	7×10^{-4}	0.7422	7×10^{-4}	0.6923	7×10^{-4}
				0.0000	,	0.2002	,	*****		0.00=0	,
		$\gamma = 0$	$\hat{oldsymbol{eta}}$	4.9995	0.0226	5.0011	0.0217	4.9994	0.0218	4.9995	0.0221
			$SE(\hat{eta})$	0.0224	7×10^{-4}	0.0224	7×10^{-4}	0.0223	7×10^{-4}	0.0224	7×10^{-4}
MM			$\sigma(\hat{eta})$	0.0159	5×10^{-4}	0.0159	5×10^{-4}	0.0158	5×10^{-4}	0.0158	5×10^{-4}
	MM	$\gamma \neq 0$	$\hat{oldsymbol{eta}}$	4.9998	0.0227	5.0012	0.0219	4.9994	0.022	4.9997	0.0221
	11111	170	$SE(\hat{eta})$	0.0226	7×10^{-4}	0.0225	7×10^{-4}	0.0225	7×10^{-4}	0.0225	7×10^{-4}
			$\sigma(\hat{eta})$	2.5024	0.0114	2.5031	0.0109	2.5022	0.011	2.5023	0.0111
-											
$\beta = 10$	OLS	$\gamma \neq 0$	\hat{eta}	10.006	0.023	9.9696	0.0223	11.661	0.0213	10.1606	0.0219
			$SE(\hat{eta})$	0.0468	0.001	0.282	0.001	0.9186	0.001	1.5969	0.001
			$\sigma(\hat{eta})$	0.0332	7×10^{-4}	0.1998	7×10^{-4}	0.6509	7×10^{-4}	1.1314	7×10^{-4}
		$\gamma = 0$	$\hat{oldsymbol{eta}}$	9.9987	0.023	10.0011	0.0223	9.9994	0.0213	10.0011	0.0219
		•	$SE(\hat{eta})$	0.0224	7×10^{-4}	0.0223	7×10^{-4}	0.0224	7×10^{-4}	0.0224	7×10^{-4}
			$\sigma(\hat{eta})$	0.0159	5×10^{-4}	0.0158	5×10^{-4}	0.0159	5×10^{-4}	0.0158	5×10^{-4}
	101		â	0.0000	0.0001	10.001	0.0004	0.0004	0.0017	10.0010	0.0000
	MM	$\gamma \neq 0$	\hat{eta}	9.9986	0.0234	10.001	0.0224	9.9994	0.0215	10.0012	0.0222
			$SE(\hat{\beta})$	0.0225	8×10^{-4}	0.0225	7×10^{-4}	0.0225	7×10^{-4}	0.0225	7×10^{-4}
			$\sigma(\hat{eta})$	5.0043	0.0117	5.0055	0.0112	5.0047	0.0108	5.0056	0.0111