STA 674

Regression Analysis And Design Of Experiments

Fitting Simple Linear Regression Models – Lecture 4

Fitting Simple Linear Regression Models

- Last time: finally got to the LS estimates of b_0 , b_1 , and s_e^2 .
- Before we get to the useful (interval) estimates of these, we need to do a cursory review of sampling distributions.

Fitting Simple Linear Regression Models

Sampling distribution – what?

- Fact: If we repeat an experiment then we will get different estimates of the parameters because the errors will be different.
- For example:
 - If each of us repeated Hooker's (boiling temperature versus pressure) experiment then we'd all get slightly different estimates of b_0 and b_1 .
- Definition: The **sampling distribution** of a parameter estimate is the distribution of the values we would get from collecting many, many data sets and computing estimates for each

Fitting Simple Linear Regression Models

Sampling distribution – smaller example

- The original US temperature data contain 56 cities.
- The 10 that I chose formed one possible sample. There are over 3 billion possible samples of 10 cities that I could have chose.
- What would the results have been if I had chosen a different sample of 10 cities?

Average Jan. Temp. vs Latitude

US Temperature Data

Average Jan. Temp. vs Latitude

US Temperature Data

US Temperature Data: Variation in LS estimates for 1000 samples of 10 cities

Histogram of b₀ from Repeated Samples

Histogram of b₁ from Repeated Samples

Fitting Simple Linear Regression Models

Least squares estimation - sampling distributions of the LS estimates

The assumptions of the regression model:

$$y_i = \beta_0 + \beta_1 x_i + e_i$$

Are that:

- 1. the expected value of the $e_1, e_2, ..., e_n$ is 0.
- 2. the variance of the $e_1, e_2, ..., e_n$ is σ_e^2
- 3. $e_1, e_2, ..., e_n$ are normally distributed
- 4. $e_1, e_2, ..., e_n$ are independent

IF these assumptions are satisfied THEN ...

Fitting Simple Linear Regression Models

Least squares estimation – sampling distributions of the LS estimates

The assumptions of the regression model:

$$y_i = \beta_0 + \beta_1 x_i + e_i$$

Are that:

1. the expected value of the $e_1, e_2, ..., e_n$ is 0.

2. the variance of the $e_1, e_2, ..., e_n$ is σ_e^2

3. $e_1, e_2, ..., e_n$ are normally distributed

4. $e_1, e_2, ..., e_n$ are independent

IF these assumptions are satisfied THEN ...

$$b_0 \sim \text{Normal}\left(\beta_0, \sigma_e^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{(n-1)s_x^2}\right)\right)$$

$$b_1 \sim \text{Normal}\left(\beta_1, \frac{\sigma_e^2}{(n-1)s_x^2}\right)$$