

BUNDESREPUBLIK DEUTSCHLAND

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

E604/7364

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen: 103 32 685.5

Anmeldetag: 18. Juli 2003

Anmelder/Inhaber: Bayer HealthCare AG,
51373 Leverkusen/DE

Erstanmelder: BAYER AKTIENGESELLSCHAFT,
51368 Leverkusen/DE

Bezeichnung: Vorhof-selektiv exprimierte Kaliumkanäle

IPC: A 61 K, A 61 P

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 29. April 2004
Deutsches Patent- und Markenamt
Der Präsident
im Auftrag

Agurks

Vorhof-selektiv exprimierte Kaliumkanäle

Die Erfindung betrifft die Verwendung von Kaliumkanal-Modulatoren zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen, koronaren Herzkrankheiten sowie Bluthochdruck oder einer Kombination der genannten Erkrankungen.

Die Zellen des Sinusknotens im rechten Vorhof des Herzens haben die Funktion eines physiologischen Schrittmachers, da dort in regelmäßigen Intervallen eine elektrische Erregung ihren Ursprung hat. Verantwortlich für die Erregungsleitung ist eine Membranpotentialänderung, die durch die Konzentration verschiedener Ionen auf beiden Seiten einer Zellmembran bestimmt wird (Na^+ , K^+ und Ca^{2+}). Diese Ionen passieren die Zellmembran durch ionenselektive Kanäle, die aus mehreren Untereinheiten bestehen und zusammen eine Pore bilden. Während einer Herzaktion (Systole) durchläuft die Herzmuskelzelle ein Aktionspotential, das sich aus den Phasen 0-3 zusammensetzt und an dem alle drei o. g. Typen von Ionenkanälen beteiligt sind. Die Aktion beginnt mit einer raschen Depolarisation (Phase 0), an der vor allem Na^+ -Kanäle beteiligt sind, gefolgt von einer transienten, unvollständigen Repolarisation (Phase 1) die in die lang anhaltende Plateauphase (Phase 2) übergeht und an der vor allem Ca^{2+} -Kanäle beteiligt sind. Die Phase 3 repräsentiert die Repolarisation und ist damit für die Wiederherstellung des Ruhezustandes verantwortlich. Der zur Repolarisation notwendige K^+ -Ausstrom wird durch Kaliumkanäle vermittelt. Während des gesamten Aktionspotentials ist die Membran vor einem weiteren depolarisierenden Reiz geschützt, sie ist refraktär (1).

Bei Arrhythmien kommt es entweder zu Störungen der Erregungsbildung, der Erregungsleitung oder einer Kombination aus beiden. Ursache hierfür können Ischämien, entzündliche Erkrankungen des Herzmuskels aber auch Intoxikationen oder vegetative Einflüsse sein. Substanzen und Verfahren, die die Erregungsbildung oder Weiterleitung beeinflussen, werden therapeutisch zur Behandlung von

Arrhythmien eingesetzt. Substanzen, die den repolarisierenden K⁺-Strom verzögern und dadurch Aktionspotentialdauer und Refraktärzeit verlängern, gehören zu den sog. Klasse-III-Antiarrhythmika von denen zur Zeit in Deutschland Amiodaron und Sotalol zugelassen sind (1).

5

Beide Substanzen sind allerdings keine selektiven Kaliumkanalblocker: So zeigt Sotalol neben einer Blockade verschiedener K⁺-Kanäle (z. B. HERG) auch antagonistische Eigenschaften für beta-adrenerge Rezeptoren während Amiodaron neben HERG auch den L-Typ Ca²⁺-Kanal und Na⁺-Kanäle blockiert (1), (2).

10

Ebenso wie die anderen Klassen von Antiarrhythmika besitzen auch die Klasse-III Kaliumkanalblocker ein beträchtliches pro-arrhythmisches Potential, welches auf die gleichzeitige Beeinflussung der Kaliumkanäle im Ventrikel zurückgeführt wird und den klinischen Einsatz limitiert. Insofern kommt der Identifizierung von bevorzugt im Vorhof exprimierten Kaliumkanälen als möglichen Antiarrhythmika-targets eine besondere Bedeutung zu, da hierdurch die Nebenwirkungen, die bis zu tödlichem Kammerflimmern reichen, gesenkt werden könnten (3).

15

Neben Kaliumkanalblockern wie Sotalol und Amiodaron sind auch anti-arrhythmische Wirkungen von Kaliumkanalöffnern z. B. für den ATP-abhängigen Kaliumkanal beschrieben (4).

20

In der vorliegenden Arbeit wurden mittels Affymetrix-MicroArray-Technologie Gene identifiziert, die im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden. (s. Fig. 1). Die Verifizierung der differentiellen Expression ausgewählter Gene erfolgte mittels Real-time PCR (TaqMan). Dabei zeigte sich, dass bei allen 6 untersuchten Patienten die Kaliumkanäle TWIK-1 (5), TASK-1 (6), GIRK1 (7), SK2 (8) und PCN1 (9) deutlich stärker im Vorhof als im Ventrikel exprimiert werden (s. Fig. 3).

25

30

Die vorliegende Erfindung betrifft daher die Verwendung von Modulatoren der zuvor genannten Kaliumkanäle zur Herstellung eines Arzneimittels zur Behandlung und/oder der Prophylaxe der oben genannten Krankheiten.

- 5 Kaliumkanalmodulatoren im Sinne der vorliegenden Offenbarung sind Substanzen welche die Öffnungsduer der genannten Kaliumkanäle verlängern oder verkürzen.

Modulatoren im Sinne der Erfindung sind alle Substanzen, die eine Veränderung der biologischen Aktivität der Kanäle bewirken. Besonders bevorzugte Modulatoren sind Nukleinsäuren inklusive „locked nucleic acids“, „peptide nucleic acids“ und „Spiegelmer“, Proteine inklusive Antikörper und niedermolekulare Substanzen, ganz besonders bevorzugte Modulatoren sind niedermolekulare Substanzen.

- 10 Die Erfindung betrifft die Verwendung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

- 15 Des Weiteren betrifft die Erfindung die Verwendung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 mit einem IC_{50} von $< 1 \mu M$, besonders bevorzugt von $< 100 nM$ zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

- 20 Ein weiterer Erfindungsgegenstand ist eine Methode zum Screenen von Testverbindungen zur Identifizierung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1, welche geeignet sind für die Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

Gegenstand der Erfindung ist ebenfalls eine pharmazeutische Zusammensetzung, enthaltend einen Modulator oder mehrere Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

5

Erfindungsgegenstand ist des weiteren die Verwendung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 für die Regulation der Aktivität der entsprechenden Kaliumkanäle in einem Lebewesen einschließlich des Menschen zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

10

Die Erfindung betrifft auch Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

15

Erfindungsgemäß ist ebenfalls die Verwendung von Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, zur Herstellung eines Arzneimittels zur Behandlung von Arrhythmien, koronaren Herzkrankheiten, Bluthochdruck und den Folgen der Atherosklerose. Da in Abhängigkeit von der Funktion des Genproduktes durchaus auch eine verstärkte Expression im Ventrikel bevorzugt sein kann (z. B. für den Endothelin A-Rezeptor), wird hier der Begriff differentielle Genexpression verwendet.

20

25

Ein weiterer Erfindungsgegenstand ist eine Methode zum Screenen von Testverbindungen zur Identifizierung von Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, die geeignet sind für die Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

30

Gegenstand der Erfindung ist ebenfalls eine pharmazeutische Zusammensetzung, enthaltend einen Modulator oder mehrere Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

Erfindungsgegenstand ist des weiteren die Verwendung von Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, für die Regulation der Aktivität der entsprechenden Genprodukte in einem Lebewesen einschließlich des Menschen zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

Die Erfindung betrifft auch Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

Substanzen, die eine modulierende Wirkung auf die Aktivität der genannten Kanäle haben, können mit dem unten beschriebenen Assay identifiziert werden (Screening).

Die Testung der anti-arrhythmischen Wirkung *in vivo* erfolgt mit dem unten beschriebenen Tierversuch.

Beschreibung der Figuren

Figur 1: Tabellarisch aufgelistet sind Gene, die bei allen 6 untersuchten Patienten übereinstimmend differentiell exprimiert zwischen Vorhof und Ventrikel gefunden wurden.

Figur 2: Tabellarisch aufgelistet sind die Genbank Accession-Nummern der mittels TaqMan-PCR verifizierten Gene sowie die dafür verwendeten Primer/Sonden-Sequenzen.

Figur 3: Dargestellt ist die relative mRNA-Expression der Kaliumkanäle TWIK-1, TASK-1, GIRK1 SK2 und PCN1 in humanen Herzen (linker Vorhof [schwarz] und linker Ventrikel [weiss]).

Beispiele

Beispiel 1: Identifizierung differentiell exprimierter Gene zwischen humanem Ventrikel und Vorhof

5

Kleine Stücke (ca. 0,5 g) vom linken Ventrikel bzw. vom linken Vorhof explantiert 10 Herzen wurden mit Einverständnis der Spender vom Herzzentrum Halle (Prof. Morawietz) erhalten. Die Gesamt-RNA hieraus wurde nach Homogenisierung der Gewebe mittels RNAesy-Säulen (Fa. Qiagen) gemäß der Anleitung isoliert. Die Umschreibung von jeweils 10 µg Gesamt-RNA in cDNA, deren anschließende lineare Amplifikation sowie die Hybridisierung der biotinylierten cRNA auf humanen HG-U133A Arrays erfolgte gemäß dem „Affymetrix User Guide“ unter Verwendung von Superscript-II (Fa. Gibco) und des „High Yield cRNA labeling Kits (Fa. Enzo). Der HG-U133A Array erlaubt prinzipiell die simultane mRNA-Analyse 15 von ca. 22.600 humanen Genen. Die Auswertung der Arrays erfolgte mit der Software MAS 5.0 (Fa. Affymetrix) und Gene Spring 5.0 (Fa. Silicon Genetics). In Fig. 1 sind die Gene zusammengefasst, die in allen 6 untersuchten Patienten zwischen Vorhof und Ventrikel differentiell exprimiert wurden. Angegeben ist der Quotient 20 der normierten Expression aus Vorhof und Ventrikel, und zwar jeweils als Mittelwert aus allen 6 Probanden.

20

Die mittels Array zwischen Vorhof und Ventrikel gefundene differentielle Expression der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 und PCN1 wird durch die Quantifizierung der mRNA in einer Echtzeit-Polymerasekettenreaktion verifiziert 25 (10). Hierzu wird die Gesamt-RNA wie oben beschrieben aus den humanen Myokardproben isoliert und je 1 µg davon zur Entfernung von Kontaminationen genetischer DNA mit 1 Einheit DNase I (Fa. Gibco) für 15 min bei Raumtemperatur umgesetzt. Die Inaktivierung der DNase I erfolgt durch Zugabe von 1 µl EDTA (25 mM) und nachfolgendes Erhitzen auf 65°C (10 min). Anschließend wird im selben 30 Reaktionsansatz die cDNA-Synthese gemäß der Anleitung zum „SUPERSCRIPT-II

RT cDNA synthesis kit“ (Fa. Gibco) durchgeführt und das Reaktionsvolumen mit destilliertem Wasser auf 200 µl aufgefüllt.

Für die PCR wird zu je 5 µl der verdünnten cDNA-Lösung 7,5 µl Gemisch von 5 Primer und Sonde sowie 12,5 µl TaqMan-Reaktionslösung [Universal Master Mix (Fa. Applied Biosystems)] gegeben. Die Endkonzentration der Primer ist jeweils 300 nM, die der Sonde 150 nM. Die Sequenzen der Primer sowie die Genbank Accession-Nummern der analysierten Gene sind in Fig. 2 angegeben. Die Identifizierung geeigneter Primer- und Sondensequenzen erfolgte mit dem Programm Primer Express 5.0 (Fa. Applied Biosystems), die PCR erfolgt auf einem ABI-Prism-SDS-7700-Gerät (Fa. Applied Biosystems) gemäß der Anleitung des Herstellers. Aufgezeichnet wird bei der Real-time PCR der sog. Ct-Wert, der für das betreffende Gen 10 im untersuchten Gewebe erhalten wird. Dieser entspricht dem Zyklus, in dem die Fluoreszenzintensität der freigesetzten Sonde ca. 10 Standardabweichungen über dem Hintergrundsignal liegt. Je niedriger der Ct-Wert, umso früher beginnt also die 15 Vervielfältigung, d. h. je mehr mRNA ist in der ursprünglichen Probe enthalten. Zum Ausgleich eventueller Schwankungen bei der cDNA-Synthese wird in allen untersuchten Geweben auch die Expression eines sog. „Haushaltsgenes“ analysiert. Dieses sollte in allen Geweben ungefähr gleich stark exprimiert werden. Für die Normierung 20 der Kaliumkanalexpressionen wurde für Vorhof und Ventrikel einheitlich β-Actin verwendet. Für die graphische Darstellung der relativen mRNA-Expression wird für jedes Gen und jedes Gewebe der dCt-Wert berechnet. Der dCt-Wert ist die Differenz zwischen dem Ct-Wert des untersuchten Kaliumkanals und dem Ct-Wert des Haushaltsgens im jeweiligen Gewebe. Aus diesem Wert wird nach folgender Formel die 25 relative Expression rE berechnet: $rE = 2^{(20-dCt)}$ Diese ist in Fig. 3 als dimensionslose Zahl angegeben.

Beispiel 2: Identifizierung von Kaliumkanalmodulatoren

30 Die Identifizierung von Kaliumkanalmodulatoren erfolgt in einem zellulären Assay bei dem CHO-Zellen den jeweiligen Ionenkanal rekombinant exprimieren und unter

Verwendung des potential-sensitiven Farbstoffs Dye B aus dem „FLIPR membrane potential assay kit“ (Fa. Molecular Probes). Eine Depolarisation der Zellen durch eine chemische Substanz führt zu einer vermehrten Aufnahme des Farbstoffs „Dye B“ und dadurch zu einer erhöhten intrazellulären Fluoreszenzintensität. Eine Hyperpolarisation der Zelle durch eine chemische Substanz führt dagegen zu einer Abnahme der Farbstoffkonzentration in der Zelle und damit auch zu einer Abnahme der Fluoreszenzintensität, da die Quantenausbeute von Dye B in wässriger Lösung geringer ist. Zur Messung werden konfluente Zellen verwendet, die nach Entfernen des Mediums entsprechend den Vorschriften des Kit-Herstellers (Molecular Probes) bei Raumtemperatur mit dem Farbstoff Dye B beladen werden. Die Fluoreszenzmessung erfolgt ebenfalls bei Raumtemperatur in einer Fluobox (Fa. Tecan) bei einer Anregungswellenlänge von 520 nm und einer Absorptionswellenlänge von 575 nm, wie zum Beispiel beschrieben in (11).

Beispiel 3: Testung der *in vivo* Wirkung von Kaliumkanalmodulatoren

Der Einfluss der Kaliumkanalmodulatoren auf die Herzfrequenz wird an narkotisierten Ratten untersucht. Hierzu werden männliche Wistaratten (250-300g) mit 10mg/kg Thiobutabarital i. p. (Inactin, Byk Gulden) narkotisiert und anschließend getötet. Nach Thoraxeröffnung wird das Herz freigelegt, der rechte Vorhof isoliert und unter einer 1g-Vorspannung in einer 30°C warmen Krebs-Henseleit-Lösung (in einem 10 ml Organbad) aufbewahrt. Diese Lösung wird mit Carbogen (95% O₂, 5% CO₂) bei pH 7.2-7.4 begast. Die Vorhöfe schlagen spontan und nach Aufzeichnung einer Kontrollperiode (Parameter: Frequenz) werden die Testsubstanzen in einer Dosisreihe appliziert. Pro Dosis wird die Veränderung der Frequenz im Vergleich zu Placebo-behandelten Kontrollen ausgewertet.

Beispiel 4: Kaliumkanalmodulator-Formulierungen

Die Kaliumkanalmodulatoren können in bekannter Weise in die üblichen Formulierungen überführt werden, wie Tabletten, Dragees, Pillen, Granulate, Aerosole, Si-

rupe, Emulsionen, Suspensionen und Lösungen, unter Verwendung inerter, nicht toxischer, pharmazeutisch geeigneter Trägerstoffe oder Lösungsmittel. Hierbei soll die therapeutisch wirksame Verbindung jeweils in einer Konzentration von 0,5 bis 90 Gew.-% der Gesamtmischung vorhanden sein, d.h. in Mengen, die ausreichend sind, um den angegebenen Dosierungsspielraum zu erreichen.

Die Formulierungen werden beispielsweise hergestellt durch Strecken der Wirkstoffe mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgiermitteln und/oder Dispergiermitteln, wobei z.B. im Fall der Benutzung von Wasser als Verdünnungsmittel gegebenenfalls organische Lösungsmittel als Hilfs-lösungsmittel verwendet werden können.

Die Applikation erfolgt in üblicher Weise, vorzugsweise oral, transdermal, intravenös oder parenteral, insbesondere oral oder intravenös. Sie kann aber auch durch Inhalation über Mund oder Nase, beispielsweise mit Hilfe eines Sprays erfolgen, oder topisch über die Haut.

Im Allgemeinen hat es sich als vorteilhaft erwiesen, Mengen von etwas 0,001 bis 10 mg/kg, bei oraler Anwendung vorzugsweise etwa 0,005 bis 3 mg/kg Körpergewicht zur Erzielen wirksamer Ergebnisse zu verabreichen.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit vom Körpergewicht bzw. der Art des Applikationsweges, vom individuellen Verhalten gegenüber dem Medikament, der Art von dessen Formulierung und dem Zeitpunkt bzw. Intervall, zu welchen die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

Literatur

1. Forth, Henschler, Rummel; Allgemeine und spezielle Pharmakologie und Toxikologie; Urban & Fischer Verlag München, 8. Auflage 2001, 429-433
2. Numaguchi H. et al., Probing the interaction between inactivation gating and Dd-solatol block of HERG, Circ. Res. 11 (2000) 1012-1018.
- 5 3. Nattel, S. et al., Evolution, mechanisms, and classification of antiarrhythmic drugs: focus on class III actions, Am. J. Cardiol. 84 (1999) 11R-19R.
4. Workmann, A. J. et al., A K(ATP) channel opener inhibited myocardial reperfusion action potential shortening and arrhythmias.
5. Lesage, F. et al., TWIK-1, a ubiquitous human weakly inward rectifying K⁺ channel with a novel structure, EMBO J. 15 (1996) 1004-1011.
- 10 6. Duprat, F. et al., TASK, a human background K⁺ channel to sense external pH variations near physiological pH, EMBO J. 16 (1997) 5464-5471.
7. Stoffel, M. et al., Human G-protein-coupled inwardly rectifying potassium channel (GIRK1) gene (KCNJ3): localization to chromosome 2 and identification of a simple tandem repeat polymorphism, Genomics 21 (1994) 15 254-256.
8. Desai, R. et al., Ca²⁺-activated K⁺ channels in human leukemic Jurkat T cells. Molecular cloning, biochemical and functional characterization, J. Biol. Chem. 275 (2000) 39954-39963.
- 20 9. Tamkun M. et al., Molecular cloning and characterization of two voltage-gated K⁺ channel cDNAs from human ventricle, FASEB J. 5 (1991) 331-337.
10. Heid C. et al., Real time quantitative PCR, Genome Res. 6 (1996) 986-9954.
11. EP906572(B1)

Patentansprüche

1. Verwendung von Modulatoren oder eines Modulators der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.
2. Eine Methode zum Screenen von Testverbindungen zur Identifizierung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1, welche geeignet sind für die Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.
3. Eine pharmazeutische Zusammensetzung, enthaltend einen Modulator oder mehrere Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.
4. Modulator der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.
5. Verwendung von Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, zur Herstellung eines Arzneimittels zur Behandlung von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten, oder Bluthochdruck.

Verwendung von Kaliumkanalmodulatoren zur Behandlung von Arrhythmien

Z u s a m m e n f a s s u n g

Die Erfindung betrifft die Verwendung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1 SK2 und PCN1 zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten, sowie Bluthochdruck.

Fig. 1

Gen	x-fach stärker im Vorhof MW n = 6	Genbank-Acc. No.
sarcolipin	9,6	NM_003063
myosin, light polypeptide 4, alkali; atrial, embryonic	9,2	M36172
A kinase (PRKA) anchor protein 3	8,7	NM_006422
potassium channel, subfamily K, member 1 (TWIK-1)	6,7	U90065
up-regulated by BCG-CWS	5,6	AB040120
myosin, heavy polypeptide 6, cardiac muscle, alpha (cardiomyopathy, hypertrophic 1)	5,3	D00943
titin immunoglobulin domain protein (myotilin)	5,2	NM_006790
signal transducer and activator of transcription 4	4,9	NM_003151
nuclear receptor subfamily 2, group F, member 1 (COUP-TF 1)	4,2	AI951185
NADP-dependent retinol dehydrogenase/reductase	4,2	NM_005771
natriuretic peptide precursor B	4,2	NM_002521
desmocollin 1	4,1	NM_004948
potassium voltage-gated channel, shaker-related subfamily, member 5 (KCNA5)	4,0	NM_002234
secreted frizzled-related protein 1	4,0	NM_003012
phospholipase A2, group II A (platelets, synovial fluid)	3,8	NM_000300
keratin 18	3,7	NM_000224
dickkopf homolog 3 (Xenopus laevis)	3,7	NM_013253
natriuretic peptide precursor A	3,5	M30262
guanine nucleotide binding protein (G protein), beta 5	3,4	NM_006578

Gen	x-fach stärker im Vorhof MW n = 6	Genbank-Acc. No.
potassium channel, subfamily K, member 3 (TASK-1)	3,3	NM_002246
H factor 1 (complement)	3,1	X04697
up-regulated by BCG-CWS	3,0	NM_022154
phosphodiesterase 8B	3,0	AK023913
cartilage oligomeric matrix protein (pseudoachondroplasia, epiphyseal dysplasia 1, multiple)	2,9	NM_000095
complement component 3	2,7	NM_000064
sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican)	2,7	AF231124
phospholipase C, beta 1 (phosphoinositide-specific)	2,7	AL049593
actin, alpha 2, smooth muscle, aorta	2,7	NM_001613
chromosome 1 open reading frame 15	2,6	AF288395
corin	2,6	NM_006587
myosin light chain 2a	2,5	NM_021223
transmembrane 6 superfamily member 1	2,4	NM_023003
FK506 binding protein 11, 19 kDa	2,4	NM_016594
visinin-like 1	2,4	NM_003385
angiotensin II receptor, type 1	2,4	NM_004835
H factor (complement)-like 2	2,3	X56210
NY-REN-58 antigen	2,3	NM_016122
similar to neuralin 1	2,2	AL049176
Duffy blood group	2,1	NM_002036
transgelin	2,0	NM_003186
potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2	2,0	NM_021614

Gen	x-fach stärker im Vorhof MW n = 6	Genbank-Acc. No.
endothelin receptor type A	2,0	NM_001957
spermidine/spermine N1-acetyltransferase	2,0	NM_002970
transmembrane 4 superfamily member 2	2,0	NM_004615
B-cell translocation gene 1, anti-proliferative	2,0	NM_001731
phospholipase A2, group V	1,9	AL158172
fibulin 1	1,9	Z95331
spermidine/spermine N1-acetyltransferase	1,9	M55580
peptidylglycine alpha-amidating monooxygenase	1,9	BF038548
spermidine/spermine N1-acetyltransferase	1,9	BE971383
hephaestin	1,9	NM_014799
Ras-related associated with diabetes	1,9	NM_004165
growth hormone receptor	1,8	NM_000163
peptidylglycine alpha-amidating monooxygenase	1,8	NM_000919
WNT1 inducible signaling pathway protein 2	1,8	NM_003881
melanophilin	1,8	NM_024101
B-cell translocation gene 1, anti-proliferative	1,8	AL535380
adipose specific 2	1,8	NM_006829
reticulon 4	1,8	AF333336
protein kinase, AMP-activated, gamma 2 non-catalytic subunit	1,8	NM_016203
proteolipid protein 2 (colonic epithelium-enriched)	1,8	NM_002668
CD44 antigen (homing function and Indian blood group system)	1,8	BE903880
T-box 5	1,8	NM_000192
actinin, alpha 1	1,7	AI082078
D123 gene product	1,7	NM_006023
Ris	1,7	NM_016563

Gen	x-fach stärker im Vorhof MW n = 6	Genbank-Acc. No.
complement component 1, r subcomponent	1,7	ALS73058
peroxiredoxin 1	1,7	L19184
S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, murine placental homolog)	1,6	NM_002961
annexin A4	1,6	NM_001153
phospholipase A2, group V	1,6	NM_000929
tubulin, beta polypeptide	1,6	NM_001069
prostaglandin I2 (prostacyclin) synthase	1,6	NM_000961
Homo sapiens clone 24416 mRNA sequence	1,6	AV712602
complement component 7	1,6	NM_000587
epidermal growth factor receptor pathway substrate 8	1,6	NM_004447
aldo-keto reductase family 1, member C2 (dihydrodiol dehydrogenase 2; bile acid binding protein; 3-alpha hydroxysteroid dehydrogenase, type III)	1,6	M33376
C1q and tumor necrosis factor related protein 1	1,6	NM_030968
reticulon 4	1,5	AB015639
CD47 antigen (Rh-related antigen, integrin- associated signal transducer)	1,5	BG230614
hypothetical protein FLJ10097	1,5	AL523320
peptidylglycine alpha-amidating monooxygenase	1,5	AI022882
glutathione peroxidase 3 (plasma)	1,5	AW149846
catenin (cadherin-associated protein), alpha-like 1	1,5	NM_003798
DKFZP586A0522 protein	1,5	NM_014033
integrin associated protein mRNA	1,5	Z25521
homolog of yeast long chain polyunsaturated fatty	1,5	AL136939

Gen	x-fach stärker im Vorhof MW n = 6	Genbank-Acc. No.
acid elongation enzyme 2		
reticulon 4	1,5	AF320999
annexin A1	1,5	NM_000700
HIV-1 TAR RNA binding protein (TARBP-b)	1,5	L22453
DEK oncogene (DNA binding)	1,5	NM_003472
CCAAT/enhancer binding protein (C/EBP), delta	1,5	NM_005195
aldo-keto reductase family 1, member A1 (aldehyde reductase)	1,5	NM_006066
KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 2	1,4	NM_006854
tropomyosin 1 (alpha)	1,4	Z24727
hydroxysteroid (17-beta) dehydrogenase 12	1,4	NM_016142
tissue inhibitor of metalloproteinase 3 (Sorsby fundus dystrophy, pseudoinflammatory)	1,4	NM_000362
ADP-ribosylation factor-like 5	1,4	NM_012097
nucleosome assembly protein 1-like 1	1,4	NM_004537
peptidylprolyl isomerase B (cyclophilin B)	1,4	NM_000942
delta-like 1 homolog (Drosophila)	0,1	U15979
myosin, light polypeptide 3, alkali; ventricular, skeletal, slow	0,1	NM_000258
HSKM-B protein	0,1	AF070592
ankyrin repeat domain 2 (stretch responsive muscle)	0,2	NM_020349
KIAA1733 protein	0,2	AW054711
four and a half LIM domains 2	0,2	NM_001450
carboxypeptidase, vitellogenin-like	0,3	NM_031311

Gen	x-fach stärker im Vorhof MW n =6	Genbank-Acc. No.
protein tyrosine phosphatase, non-receptor type 3	0,3	NM_002829
myosin, light polypeptide 2, regulatory, cardiac, slow	0,3	AF020768
gamma-aminobutyric acid (GABA) A receptor, alpha 4	0,3	NM_000809
dihydropyrimidinase-like 4	0,3	NM_006426
hypothetical protein FLJ20156	0,4	NM_017691
hypothetical protein FLJ14054	0,4	NM_024563
potassium inwardly-rectifying channel, subfamily J, member 2	0,4	AF153820
hypothetical protein FLJ32389	0,4	AL551046
ribosomal protein L3-like	0,4	NM_005061
NDRG family member 4	0,4	AV724216
hairy/enhancer-of-split related with YRPW motif 2	0,4	NM_012259
Homo sapiens, clone MGC:8772 IMAGE:3862861, mRNA, complete cds	0,4	BG332462
isocitrate dehydrogenase 2 (NADP+), mitochondrial	0,4	U52144
likely ortholog of mouse limb-bud and heart gene	0,5	NM_030915
hypothetical protein FLJ21901	0,5	NM_024622
phospholipase C-like 1	0,5	NM_006226
lipoprotein lipase	0,5	NM_000237
LRP16 protein	0,5	NM_014067
phosphofructokinase, muscle	0,5	U24183
LIM domain binding 3	0,5	AA211481
protein kinase (cAMP-dependent, catalytic) inhibitor alpha	0,6	NM_006823
potassium inwardly-rectifying channel, subfamily J,	0,6	BF514158

Gen	x-fach stärker im Vorhof MW n =6	Genbank-Acc. No.
member 8		
H2B histone family, member Q	0,6	NM_003528
NS1-binding protein	0,6	AF205218
acetyl-Coenzyme A acetyltransferase 1 (acetoacetyl Coenzyme A thiolase)	0,6	NM_000019
hyaluronoglucosaminidase 1	0,6	AF173154
potassium inwardly-rectifying channel, subfamily J, member 4	0,6	NM_004981
ras-like protein TC10	0,6	BF348067
crystallin, mu	0,6	NM_001888
ubiquitin specific protease 13 (isopeptidase T-3)	0,6	NM_003940
ras-like protein TC10	0,7	BF348067
actin, alpha 1, skeletal muscle.	0,7	NM_001100
L-3-hydroxyacyl-Coenzyme A dehydrogenase, short chain	0,7	AF001903
heat shock 27kDa protein family, member 7 (cardiovascular)	0,7	NM_014424

Fig. 2:

Gen	Genbank Accession Nummer.	Sequenz Primer 1 5'-3'	Sequenz Primer 2 5'-3'	Sequenz Sonde/"Probe" 5'-3'
TWIK-1	NM_002245 SEQ ID NO:1	tgaagaaggacaagg acgagga SEQ ID NO:2	gcctggctgtgatcga gga SEQ ID NO:3	caggtgcacatcatag agcatgaccaa SEQ ID NO:4
TASK-1	AF065163 SEQ ID NO:5	acgtctacgcggaggt gct SEQ ID NO:6	tctcgccgctttgtac c SEQ ID NO:7	cactccagtccatgt gctcggtcct SEQ ID NO:8
GIRK1	NM_002239. SEQ ID NO:9	gttccacgcaacatttg aag SEQ ID NO:10	gggacgacatgagaa gcatt SEQ ID NO:11	cccaccccaaccttaca gtgtaaaa SEQ ID NO:12
SK2	AF239613 SEQ ID NO:13	tgcacagccctggtgg tag SEQ ID NO:14	tccatcatgaaatttg cacg SEQ ID NO:15	tggcaaggaagctag aacttaccaaagcag a SEQ ID NO:16
PCN1	NM_002234 SEQ ID NO:17	caggaaacccattctc tagcat SEQ ID NO:18	tgtccccgtagcccac agt SEQ ID NO:19	acgccttctggggc agtggc SEQ ID NO:20
beta-Aktin	NM_001101 SEQ ID NO:21	tccacccatccagcagat gtg SEQ ID NO:22	ctagaagcattgcgggt ggac SEQ ID NO:23	atcagcaagcaggag tatgacgagtccg SEQ ID NO:24

- 9/11 -

Fig. 3

- 10/11 -

Fig. 3, Fortsetzung

Fig. 3, Fortsetzung

SEQUENCE LISTING

<110> Bayer AG, BHC

<120> Vorhof-selektiv exprimierte Kaliumkanäle

<130> Le A 36 823

<160> 24

<170> PatentIn version 3.1

<210> 1

<211> 1901

<212> DNA

<213> Homo sapiens

<400> 1

gggcaggaag acggcgctgc ccggaggagc ggggcgggcg ggcgcgcggg ggagcggcg	60
- gcgggcggga gccaggcccg ggccggggcg gggcggcg ggccagaaga ggcggcg	120
cgcgctccgg cgggtctgcg gcgttggct tggctttggc ttggcggcg gcggtggaga	180
agatgtgcgca gtccctggcc ggcagtcgt gcgtgcgcct ggtggagcgg caccgcgtgg	240
cctggtgctt cggcttcctg gtgctggct acttgtctta cctggcttc ggccgcgtgg	300
ttttcttcctc ggtggagctg ccctatgagg acctgtcg ccaggagctg cgcaagctga	360
agcgacgctt cttggaggag cacgagtgcc tgtctgagca gcagctggag cagttcctgg	420
gccccgtgct ggaggccagc aactacggcg tgcgtgtgt cagcaacgcc tcgggcaact	480
ggaactggga ctccacctcc ggcgtttct tcgcccagcac cgtgtctcc accacaggtt	540
atggccacac cgtgcccttg tcagatggag gtaaggcctt ctgcattcata tactccgtca	600
ttggcattcc ctccaccctc ctgttccctga cggctgtggt ccagcgcata accgtgcacg	660
tcacccgcag gccccgtcata tacttccaca tccgctgggg cttctccaag caggtggtgg	720
ccatcgatcca tgccgtgtc cttgggtttg tcactgtgtc ctgcttcttc ttcatcccgg	780
ccgctgtctt ctcaatgtcg gaggatgact ggaacttcctt ggaatccctt tattttgtt	840
ttatccctt gagcaccatt ggcctgggg attatgtgcc tgggaaggc tacaatcaa	900
aattcagaga gctctataag attggatca cgtgttaccc tctacttggc cttattgcca	960
tgttggtagt tctggaaacc ttctgtgaac tccatgagct gaaaaaattc agaaaaatgt	1020
tctatgtgaa gaaggacaag gacgaggatc aggtgcacat catagagcat gaccaactgt	1080

- 2 -

ccttcctc gatcacagac caggcagctg gcatgaaaga ggaccagaag caaaaatgagc	1140
cttttgtggc cacccagtca tctgcctgcg tggatggccc tgcaaaccat tgagcgtagg	1200
atttggca ttatgctaga gcaccagggt cagggtgcaa ggaagaggct taagtatgtt	1260
cattttatc agaatgcaaa agcgaaaatt atgtcacttt aagaaatagc tactgttgc	1320
aatgtcttat taaaaaacaa caaaaaaaga cacatggAAC aaagaagctg tgaccccagc	1380
aggatgtcta atatgtgagg aaatgagatg tccacctaaa attcatatgt gacaaaatta	1440
tctcgacctt acataggagg agaatacttg aagcagtatg ctgctgtggt tagaaggcaga	1500
ttttatactt ttaactggaa actttgggt ttgcatttag atcatttagc tgatggctaa	1560
atagcaaaat ttatatttag aagcaaaaaa aaaaagcata gagatgtgtt ttataaatag	1620
gtttatgtgt actgggttgc atgtacccac cccaaatgtat tattttggaa gaatctaagt	1680
caaactcact atttataatg cataggtaac catataactat gtacatataa agtataaata	1740
tgttatatt ctgtacatat ggttttagtc accagatcct agttagttc tgaaactaag	1800
actatagata ttttgggttct tttgatttct ctttatacta aagaatccag agttgctaca	1860
ataaaaataag gggaaaataata aacttgagag tgaataacca t	1901

<210> 2
<211> 22
<212> DNA
<213> artificial sequence

<220>
<223> primer 1

<400> 2

tgaagaagga caaggacgag ga

22

<210> 3
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> primer 2

<400> 3

gcctggtctg tgatcgagga

20

<210> 4
<211> 27
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 4

caggtgcaca tcatacagca tgaccaa

27

<210> 5
<211> 2590
<212> DNA
<213> Homo sapiens

<400> 5

tgcctgcgc ggagagcggc gagcgcagcc atgccccagg ccgcctccgg ggcagcagca	60
gcggcggccg gggccgatgc gcgggcccggg ggcgcgggg ggccggcggc ggcccgccgg	120
ggacgatgaa gcccagaac gtgcgcacgc tggcgctcat cgtgtgcacc ttcacctacc	180
tgctggtggg cgccgcggtc ttgcacgcgc tggagtcgga gcccggctg atcgagcggc	240
agccggctgga gctgcggcag caggagctgc gggcgcgcta caacccatcagc cagggcggct	300
acgaggagct ggagcgcgtc gtgcgcgc tcaagccgca caaggccggc gtgcagtggc	360
gcttcgcgg ctccattctac ttgcgcattca ccgtcatcac caccatcggc tacgggcac	420
cggcacccag cacggatggc ggcaagggtgt tctgcattttt ctacgcgtgc ctgggcattcc	480
cgtcatcgct cgtcatgttc cagagcctgg gcgagcgcata caacacccatgt gtgaggta	540
tgctgcaccg cgccaagaag gggctggca tgcggcgcgc cgacgtgtcc atggccaaca	600
tggtgctcat cggcttc tgcgtgcattca gcacgcgtgc catcgccgc gccccttct	660
cccaactacga gcactggacc ttcttccagg cctactacta ctgcattcatc accctcacca	720
ccatcggttt cggcgactac gtggcgctgc agaaggacca ggcctgcag acgcagccgc	780
agtacgtggc cttcagcttc gtctacatcc ttacgggcct cacggtcata ggcgccttcc	840
tcaacccgtt ggtgctgcgc ttcatgacca tgaacgcgcga ggacgagaag cgcgcacgc	900
agcaccgcgc gctgctcactcg cgcaacgggc aggccggccgg cggcggaggg ggtggcagcg	960
cgcacactac ggacaccgc tcatccacgg cggcagcggg cggcggccgc ttccgcac	1020
tctacgcggaa ggtgctgcac ttccagtc tgcgtgcgtt cctgtggta aagagccgc	1080

agaagctgca gtactccatc cccatgatca tcccggggc cctctccacg tccgacacgt	1140
gcgtggagca gagccactcg tcgccccggag gggggggcccg ctacagcgac acggccctcgc	1200
gacgctgcct gtgcagcggg ggcacacgct ccgcacatcg ctccgtgtcc acgggtctgc	1260
acagcctgtc cacctccgc ggcctcatga agcgcaggag ctccgtgtga ctgccccgag	1320
ggacctggag cacctggggg cgccggcggg ggaccctgc tgggaggcca ggagactgcc	1380
cctgctgcct tctgcccagt gggaccccgc acaacatccc tcaccaatct ccccccagcac	1440
cccccacatctcc gactgtgcct gcttgcacca gccggcagga ggccgggctc tgaggacccc	1500
tggggccccc atcggagccc tgcaaattcc gagaaatgtg aaacttggtg gggtcaggga	1560
ggaaaggcag aagctggag cttcccttcc ctttggaaaat ctaagaagct cccagtcctc	1620
agagaccctg ctggtaccac accccacctt cggaggggac ttcatgttcc gtgtacgttt	1680
gcacatcttat ttataccctt gtcctgttagt gtctcccacc ttcccttggt tccaaaagcc	1740
agggtgtcta tgtccaagtc accccacttc agccccactc cccttcctca tccccagctg	1800
tgtctcccaa cttcccttcg ttttttttgc catggctttg cagttatgga gaaagtggaa	1860
acccacgact ccctaaagct ggccccaga aagcaggaca gaaagaagga gggacaggca	1920
ggcagcagga gggcgagct gggagggcagg aggcagcggc ctgtcagtct gcagaatgg	1980
cgcactggag gttcaagctt actggcctcc agccacattc tcatacgagg taggacttca	2040
gccttccaga cactgcccattt agaatctgga acagaagact tcagactcac cataattgt	2100
gataattacc cactcttaaa tttgtcgagt gatTTTtagc ctctggaaaac tctatgtgg	2160
ccactgattc ctttgagtct cacaaaaccc tacttaggtc atcagggcag gagttctcac	2220
tcccatTTTA cagatgagaa tactgaggcc tggacaggtg aagtgaccag agagaaaaag	2280
gcaaagggtt gggggctggg tgcagtggct cacacctgtt ttcccaacac ttttggaggc	2340
tgaggTTGGA ggattgcttg agcccaggaa ttcgagacca gcctaggtga catagtgaga	2400
ccccatctctt acaaaaaaata aaaaattaac caggtgtggt ggcacgtgcc tgggagtccc	2460
agcgacttgg gaggctgagg tgggaggatt ttggagcct gggaggtcga ggctgttagtg	2520
agccctgatt gcaccactgt actccagcct gggtgacagg gcaagaccct gtctaaaaaa	2580
aaaaaaaaaa	2590

<210> 6
 <211> 19
 <212> DNA
 <213> artificial sequence

- 5 -

<220>
<223> primer 1

<400> 6

acgtctacgc ggaggtgct

19

<210> 7
<211> 18
<212> DNA
<213> artificial sequence

<220>
<223> primer 2

<400> 7

tctcgccgtc cttgttacc

18

<210> 8
<211> 26
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 8

cacttccagt ccatgtgctc gtgect

26

<210> 9
<211> 2890
<212> DNA
<213> Homo sapiens

<400> 9

ctccgtccca ggggagaagg agagggcgct gcagggggca gagaccgcag ctacctgccg 60
ggtgcgcccc ccacccagga gcgcgcgtt cgcccccttt cctccccgc cccccacctcc 120
ttattggtgc tagtttgcag cgcccagctc ctgcgccttc gtttcgcgtt tgaatctggc 180
tcgcccccttc gtattatgtc tgcaactccga agggaaatttg gggacgatta tcaggttagtg 240
accacatcgt ccagcggctc gggcttgcag cccccaggggc caggccagga ccctcagcag 300

cagcttgtgc ccaagaagaa	360
cgccacggca acctgggcag	420
gtggaccta agtggcgctg	480
cttttcatgg cgtccatgtg	540
cacgtcggta actacacgcc	600
ttcttcatcg agacggaggc	660
cccgagggca tcatcctctt	720
ctcateggct gcatgttcat	780
ttcagcgagc acgcggtgat	840
ggcaacctgc gcaacagcca	900
cggcagacac ctgaggggtga	960
agtacagggg cagatcaact	1020
gccaaggcc ccttttatga	1080
gtcgtcatcc tagaaggcat	1140
tatactgaag atgaagttct	1200
ggattcttta aagttgatta	1260
tacagtgtga aagagcagga	1320
ataactaaca gcaaagaaaag	1380
actacaaaac taccatctaa	1440
ctcttgagga tgagttctac	1500
aaacttcaac gaataagttc	1560
accaagatgt tatctgatcc	1620
aagatggctg gaggagcagc	1680
aactctgatc gcttcacata	1740
taatagtcca atatttggcg	1800
ctcccagttc tacaagcata	1860
aaagcaacag ttacggaggg	1920
catcaagcat gcaataatgt	1980
gcatatttat attgtatatt	2040
tctccctgac atttctaaca	2100
ataaaaactaa atatatgtct	2160
gtgtgtgt gtgtatgtat	
acacacatatacatatata	

- 7 -

atacacatac atacacatac atacatacat acatatatat ctgataaaat tgtgatgtt	2220
tgttcaaagt tgtagttctt gtgcattttt actttttagt agtaggaagg ctactggcat	2280
taattattaa taccaaataat tttagcctta aatttttgc attttaaaat ctgatttaat	2340
gtttctgct gtttaaggc ttggaggct ttcatttttgc ttttatatga gagaatcaca	2400
caagtttgc ctatctatgg ccctgaaaaa atataaccat tacatgttta aattgttaaat	2460
tttagagcat accagtactc agtatacgat tgaacatttc ttatgatttt taaaagttgc	2520
tagtactggg gagaaataat tggtgattaa tttgagaatt attccttcc tagactaatt	2580
aaaatctgga aatctgtttt gtatatgatc taatacacaag atgagctctg aacaaacact	2640
gaatcatgtt aatagacagt agccaagttt tattgaatat atcagaatct gtgtgaagtt	2700
acacaattaa ttgtccctgt ttcaaaactga gtaaatttggaa aacattttct ttcttttct	2760
ggaaattttg tccattttaa aaaccaatca ttttaagaag acatgacaat gcaatgaaac	2820
agatgataaa tatttatgtt taaaatatgtt atgtctaatt gagtctcttt ttattctgt	2880
tttcttgc	2890

<210> 10
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> primer 1

<400> 10
gttccacgca acatttgaag 20

<210> 11
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> primer 2

<400> 11
gggacgacat gagaaggcatt 20

<210> 12
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 12

cccacccccac cttacagtgt gaaa

24

<210> 13
<211> 2510
<212> DNA
<213> Homo sapiens

<400> 13

cgccggcagc agcccatgcc tccggtgcaa cagctgcgccc	60
tcctccggtg ccccgccggc	
ggggggccggga gataaactgt ccctgtgtgt cccgacacctcc	120
tcgccccggcg ggccttcccg	
gaccgcacc tcctcgccgc tgtcgggctc gtctgtgtgt tgctgtcgcg	180
gtctgtcgcg	
ccggggcagc cagctcaatg tgagcgagct gacgcgtcc agccatgcca	240
gtgcgtcccg	
gcagcagtac ggcaggcagt ccgcgcagca gtcggcggtcc	300
gcgtcccgat accaccaggc	
ccacagcctg cagcccccccg ccagccccac gggcagcctc	360
ggcagtcgtcc cgccgcgtcc	
cccgtctcg caccaccacc accacccgca cccggcgcac	420
caccaggcacc accagccccca	
ggcgcgcgcg gagagcaacc ctttacccga aatagccatg	480
agcagctgca ggtacaacgg	
ggcggtcatg cggccgctca gcaacttgag cgcgtcccg	540
cggaacctcc acgagatgga	
ctcagaggcg cagccccctgc agcccccccg	600
gtctgtcgga ggaggtggcg ggcgtccctc	
cccggtctgca gacgctgccc ccgcgcgcgtcc	660
tgtttcgatcc tcagcccccg agatcggtgt	
gtctaagccc gagcacaaca actccaacaa cctggcgctc	720
tatggAACCG gcggcggagg	
cagcaacttggaa ggaggcggcg	780
gcccgtggagg gagcgggcac ggcagcagca gtggcaccaa	
gtccagcaaa aagaaaaacc agaacatcg	840
ctacaagctg ggccacccggc ggcgtccgtt	
cgaaaagcgc aagcggctca ggcgtccgtt	900
gcgttgcgtt gcatcggtgt	
catggtcatc gagaccgagc tgctgtgggg	960
cgccctacgac aaggcgtcg	
tgtatttcgtt agctctgaaa	1020
tgctctccac gatcatctcg ctgcgtctga tcatcggtgt	
ccacgcccagg gaaatacagt tgctcatggt ggacaatgga	1080
gcagatgact ggagaatagc	
catgacttat gagcgtatcc tcttcatctg cttggaaata	1140
ctgggtgtgtg ctattcatcc	

- 9 -

catacctggg aattatacat tcacatggac ggcccccgtt gccttcct atgccccatc 1200
 cacaaccacc gctgatgtgg atattatttt atctataccca atgttcttaa gactctatct 1260
 gattgccaga gtcatgcctt tacatagcaa acttttcaact gatgcctcct ctagaagcat 1320
 tggagcactt aataagataa acttcaatac acgttttgtt atgaagactt taatgactat 1380
 atgcccagga actgtactct tggtttttag tatctcatta tggataattg ccgcattggac 1440
 tgtccgagct tgtgaaaggt accatgatca acaggatgtt actagcaact tccttggagc 1500
 gatgtggttg atatcaataa cttttctctc cattggttat ggtgacatgg tacctaacac 1560
 atactgtgga aaaggagctt gcttacttac tggaaattatg ggtgctggtt gcacagccct 1620
 ggtggtagct gtagtggcaa ggaagctaga acttaccaaa gcagaaaaac acgtgcacaa 1680
 tttcatgatg gatactcagc tgactaaaag agtaaaaaat gcagctgcca atgtactcag 1740
 ggaaacatgg ctaatttaca aaaatacaaa gctagtgaaa aagatagatc atgcaaaaagt 1800
 aagaaaaacat caacgaaaat tcctgcaagc tattcatcaa ttaagaagtg taaaaatgga 1860
 gcagaggaaa ctgaatgacc aagcaaacac tttggtggac ttggcaaaga cccagaacat 1920
 catgtatgat atgatttctg actttaaacga aaggagtgaa gacttcgaga agaggattgt 1980
 tacccctggaa acaaaactag agactttgat tggtagcattc cacgcctcc ctgggctcat 2040
 aagccagacc atcaggcagc agcagagaga tttcatttag gctcagatgg agagctacga 2100
 caagcacgtc acttacaatg ctgagcggtc ccggtcctcg tccaggaggc ggccgtcctc 2160
 ttccacagca ccaccaactt catcagagag tagctagaag agaataagtt aaccacaaaa 2220
 taagactttt tgccatcata tggtaaatat tttagctttt attgtaaagc ccctatggtt 2280
 ctaatcagcg ttatccgggt tctgatgtca gaatcctggg aacctgaaca ctaagttta 2340
 ggccaaaatg agtgaaaact cttttttttt ctttcagatg cacagggaaat gcaccttatta 2400
 ttgctatata gattgttcct cctgtatattt cactaacttt ttattcatgc acttcaaaca 2460
 aactttacta ctacattata tgatataaa taaaaaaaaagt taatttcgga 2510

<210> 14
 <211> 19
 <212> DNA
 <213> artificial sequence

<220>
 <223> primer 1

<400> 14

- 10 -

tgcacagccc tggtggttag

19

<210> 15
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> primer 2

<400> 15

tccatcatga aatttgtcac g

21

<210> 16
<211> 31
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 16

tggcaaggaa gctagaactt accaaagcag a

31

<210> 17.
<211> 2865
<212> DNA
<213> Homo sapiens

<400> 17

ttttcggctg cttggtaacg ggctgccaga agagagagag gcagagagca gggcagcggc	60
ttcttgcgtc cagggccaag cgaggggatc gcccagcata ccccaagctct ccccaagagag	120
ggccggcccg accgctggag cggagcctga cggcaggcgc cggcggagcg tgagttaggg	180
gcgcgggagc cggtcagctg gggcgcagca tgccctctgc tcccgccca tggagatcgc	240
cctgggtcccc ctggagaacg gcggtccat gaccgtcaga ggaggcgatg aggccccggc	300
aggctcgggc caggccacag ggggagagct ccagtgtccc cggacggctg ggtcagcga	360
tggggcccaag gagccggcgc caaaggggcg cggcgcgcag agagacgcgg actcgggagt	420
gcggcccttg cctccgcgtc cggacccggg agtgcggccc ttgcctccgc tgccagagga	480

gctgccacgg cctcgacggc cgccctcccga ggacgaggag gaagaaggcg atccccggct	540
gggcacggtg gaggaccagg ctctggcac ggcgtccctg caccaccage gcgtccacat	600
caacatctcc gggctgcgct ttgagacgca gctgggcacc ctggcgcagt tccccaacac	660
actcctgggg gaccccgcca agcgctgcg ctacttcgac cccctgagga acgagtaactt	720
cttcgaccgc aaccggccca gcttcgacgg tatcctctac tactaccagt ccgggggccc	780
cctgcggagg ccggtaaacg tctccctgga cgtgttcgcg gacgagatac gcttctacca	840
gctggggac gaggccatgg agcgcttccg cgaggatgag ggcttcatta aagaagagga	900
gaagccccctg ccccgcaacg agttccagcg ccaggtgtgg cttatctcg agtataccga	960
gagctctggg tccgcgcggg ccatgcctat cgtctcggtc ttggttatcc tcatactccat	1020
catcacccctc tgcttggaga ccctgcctga gttcagggat gaacgtgagc tgctccgcca	1080
ccctccggcg cccccaccagc ctcccgccgc cgccccctggg gccaaacggca gccccgtcat	1140
ggccccggccc tctggcccta cggtggcacc gtcctgccc aggaccctgg ccgacccttt	1200
cttcatcgta gagaccacgt gtcgtcatctg gttcaccttc gagctgctcg tgcgttttt	1260
cgccctgcggcc agcaaggcag gtttctcccg gaacatcatg aacatcatcg atgtggtggc	1320
catcttcccc tacttcatca ccctggcac cgaactggca gagcagcagc caggggggtgg	1380
aggaggcggc cagaatgggc agcaggccat gtccctggcc atcctccgag tcataccgcct	1440
ggtccgggtg ttccgcatct tcaagctctc ccgcccactcc aaggggctgc agatcctggg	1500
caagaccttg caggcctcca tgagggagct ggggctgctc atcttcttcc tcttcatcg	1560
ggtcatcctc ttctccagt ccgtctactt cgcagaggct gacaaccagg gaaccattt	1620
ctctagcatc cctgacgcct tctgggtggc agtggtcacc atgaccactg tggctacgg	1680
ggacatgagg cccatcaactg ttggggcaa gatcgtgggc tgcgtgtgt ccatacgccgg	1740
ggtcctcacc attgccctgc ctgtgcccgt catcgctctcc aacttcaact acttctacca	1800
ccgggaaacg gatcacgagg agccggcagt ccttaaggaa gagcagggca ctcagagcca	1860
ggggccgggg ctggacagag gagtccagcg gaaggtcagc gggagcaggg gatccttctg	1920
caaggctggg gggaccctgg agaatgcaga cagtgcggc agggcagct gccccctaga	1980
gaagtgtAAC gtcAaggCCA agagcaacgt ggacttgcgg aggtcccttt atgcctctg	2040
cctggacacc agccggaaaa cagatttgt aaaggagatt caggcagact ggtggcagtg	2100
gagtagggaa tgggaggctt gtcgtacatg gatatctaca ttataccgca gagtatttga	2160
agtacacactg taacctcagt ctaccctct ctttcactc ctttcctccc tccctcgatc	2220
cccccatttt ctctatttctt tccatgacac ccaagggtcg cctatTTTA aaaagtacca	2280
cattccatga cgcaggagct gtggaaatgg tgagcgctgt gagatggatg tattttagc	2340

- 12 -

cagtctcccta tacccagcag agggataacc caaacaaaaa tgactctaaa tagcccagat	2400
cccaagagat tatgttaactc ctccatccat gtgttccaa tttgctttac atatgattgt	2460
atttgtgtat agggaaaat attatttta tgcctggtaa gtggctttt gtactgtagt	2520
tcagatagag atatttggg tatatttca agatacatgt tgtatttatg gaagaaaagag	2580
ttgtcctgat gttttctgt gttacttata ttagagtcag agatcttggt atgggctgtt	2640
ctgtttcccg tgtctccaag cctctgtctt ttctggatg tggtattggt gctttgtgtc	2700
tagggcagag tatgttcttg aagaaaggca aatctgactt tttctgtgcg ccttaaaca	2760
ttcttgtaac tttcttcaaa aagcattta atgatattgg aggaatactt ctgataattt	2820
attgtcttta ttttatccc aggaaataaa aggttacctt gttga	2865

<210> 18
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> primer 1

<400> 18

cagggAACCC atttctctag cat

23

<210> 19
<211> 19
<212> DNA
<213> artificial sequence

<220>
<223> primer 2

<400> 19

tgtcccccgt a gccccacagt

19

<210> 20
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 20

acgccttctg gtggggcagtg gtc

23

<210> 21
<211> 1793
<212> DNA
<213> Homo sapiens

<400> 21

cgcgtccgcc ccgcgagcac agagcctcgat ctttgcgcgtt ccgcgcgcgc tccacaccccg 60
ccgcccagctc accatggatg atgatatcgat cgccgtcgat gtcgacaacg gtcggcat 120
gtgcaaggcc ggcttcgccc ggcacgtatgc ccccccggcc gtcttccctt ccatcggtgg 180
gcccgcagg caccaggcg tgatgggtgg catgggtcag aaggattccct atgtgggcga 240
cgaggcccag agcaagagag gcatacctcac cctgaagtac cccatcgagc acggcatcg 300
caccaactgg gacgacatgg agaaaatctg gcaccacacc ttctacaatg agctgcgtgt 360
ggctcccgag gagcaccggc tgctgtgcac cgaggccccctt ctgaacccca aggccaaccg 420
cgagaagatg acccagatca tgtttgagac cttcaacacc ccagccatgt acgttgctat 480
ccaggctgtg ctatccctgt acgcctctgg ccgttaccact ggcacatcgta tggactccgg 540

- 14 -

tgacggggtc acccacactg tgcccatcta cgaggggtat gcccctcccc atgccatcct	600
gcgtctggac ctggctggcc gggacctgac tgactacctc atgaagatcc tcaccgagcg	660
cggctacagc ttcaccacca cggccgagcg ggaaatcgtg cgtgacattt aggagaagct	720
gtgctacgtc gccctggact tcgagcaaga gatggccacg gctgcttcca gctcctccct	780
ggagaagagc tacgagctgc ctgacggcca ggtcatcacc attggcaatg agcggttccg	840
ctgcccgttag gcactcttcc agccttcctt cctggcatg gagtcctgtg gcatccacga	900
aactaccttc aactccatca tgaagtgtga cgtggacatc cgcaaagacc tgtacgccaa	960
cacagtgtc tctggcggca ccaccatgta ccctggcatt gcccacagga tgcagaagga	1020
gatcaactgccc ctggcacccca gcacaatgaa gatcaagatc attgctcctc ctgagcgcaa	1080
gtactccgtg tggatcggcg gtcacatcct ggcctcgctg tccacattcc agcagatgtg	1140
gatcagcaag caggagtatg acgagtcggg cccctccatc gtccaccgca aatgcttcta	1200
ggccgactat gacttagttg cgttacaccc tttcttgaca aaacctaact tgcgcgaaaa	1260
acaagatgag attggcatgg ctttatttgt tttttttgtt ttgttttggtt tttttttttt	1320
tttttgctt gactcaggat ttaaaaactg gaacggtgaa ggtgacagca gtcgggttggaa	1380
gcgagcatcc cccaaaggcc acaatgtggc cgaggactt gattgcacat tttttttttt	1440
ttaatagtca ttccaaatat gagatgcatt gttacaggaa gtccttgcc atcctaaaag	1500
ccaccccaact tctctctaaag gagaatggcc cagtcctctc ccaagtccac acagggggagg	1560
tgatagcatt gtttcgtgt aaattatgtat atgcaaaatt ttttaatct tcgccttaat	1620
acttttttat tttgttttat tttgaatgtat gagccttcgt gccccccctt cccctttttt	1680
gtcccccaac ttgagatgtat tgaaggctt tggctccctt gggagtggtt ggaggcagcc	1740
agggttacc tgtacactgtat cttgagacca gttgaataaa agtgcacacc tta	1793

<210> 22
 <211> 20
 <212> DNA
 <213> artificial sequence

<220>
 <223> primer 1

<400> 22

tccacattcc agcagatgtg

- 15 -

<210> 23
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> primer 2

<400> 23

ctagaagcat ttgcggtgga c

21

<210> 24
<211> 28
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 24

atcagcaagc aggagtatga cgagtccg

28

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.