Identification and comparison of somatic antigen structures of symbiotic and pathogenic bacteria from Morganellaceae family

Students:

Anna Churkina, Anna Rybina

Supervisors:

Polina Kuchur, Aleksey Komissarov Applied Genomics Laboratory, SCAMT Institute, ITMO University

Background

Somatic O-antigen:

- a repetitive glycan polymer contained within an lipopolysaccharides (LPS);
- important virulence factor;
- its diversity provides bacteria with selective advantage in their specific niche and serves as a basis for serotyping schemes for many Gram-negative bacteria, including Morganellaceae;

Aim and objectives

Aim:

• to identify and compare candidate O-antigen operons in bacteria of the Morganellaceae family with different levels of virulence

Objectives:

- to find genes of O-antigen biosynthesis in the *Providencia* and *Xenorhabdus* species analyzing the literature;
- to analyze the quality of all *Providencia* assemblies available at NCBI (204 assemblies) and select the best one for each species;
- to create and test the pipeline for identifying, visualizing O-antigen operons;
- to compare candidate O-antigen operons in selected Providencia and Xenorhabdus species;

Materials and methods

Objects of study

Taxonomy

Phylum:

Proteobacteria

Class:

Gammaproteobacteria

Order: Family:

Enterobacterales **Morganellaceae**

Genus:

Providencia (mainly, opportunistic pathogens)

Xenorhabdus (mainly, symbioints)

Pipeline

Assembly quality evaluation - QUAST

Annotation - PROKKA, PGAP

Search for genes of O-antigen biosynthesis - custom scripts (python, bash)

Identify and validate operon boundaries - Operon-Mapper and BPROM, FindTerm, respectively

Refine annotation of unknown genes - BLAST, ORFfinder

Visualize O-antigen operons - custom python scripts based on *Dna Features Viewer* python library

Results. Quality of *Providencia* assemblies selected for analysis

Out of 204 *Providencia* assemblies currently available at NCBI, we selected only 7 complete genomes and 2 genomes of contig/scaffold assembly level that demonstrated the best quality. In total, we analyzed 6 distinct *Providencia*

species. Assembly ID	Organism Name	Total sequence length	# contigs	N50	L50
GCF_001874625.1	Providencia rettgeri strain RB151	4889093	2	4780676	1
GCF_010669105.1	Providencia stuartii strain MF1	4528609	2	4525926	1
GCF_000259175.1	Providencia stuartii MRSN 2154	4402109	1	4402109	1
GCA_016618195.1	Providencia vermicola strain LLDRA6	4342370	1	4342370	1
GCF_013702185.1	Providencia alcalifaciens strain 1701003	4033976	1	4033976	1
GCF_900455075.1	Providencia rustigianii strain NCTC11802	3969308	3	3926179	1
GCF_900635875.1	Providencia rustigianii strain NCTC6933	3913850	1	3913850	1
GCF_014652175.1	Providencia thailandensis KCTC 23281	4342585	39	484316	3
GCA_013702025.1	Providencia rettgeri strain 2055	4674814	1	4674814	1

Results. Genes of O-antigen biosynthesis defined from the literature for searching O-antigen operons in *Providencia* and *Xenorhabdus* species

Gene name	Product
galE	UDP-galactose 4-epimerase
gne	SDR family oxidoreductase
ugd	UDP-glucose 6-dehydrogenase
wpaC	Acetyltransferase
qdtA	dTDP-6-deoxy-3,4-keto-hexulose isomerase
qdtB	Aminotransferase
rmlA	glucose-1-phosphate thymidylyltransferase
qdtf	N-formyltransferase
wecA	Undecaprenyl-phosphate alpha-N-acetylglucosaminyl 1-phosphate transferase
wpaB	Glycosyltransferase
wpaA	Glycosyltransferase

Gene name	Product
WZX	Lipid III flippase
wza	Polysaccharide export protein
срхА	envelope stress sensor histidine kinase
yibK	tRNA (cytidine(34)-2'-O)-methyltransferase
WZC	Tyrosine-protein kinase wzc
wzb	Protein-tyrosine-phosphatase

Nucleotide sugar biosynthesis genes Glycosyl transferases and O-unit formation O-antigen processing genes Housekeeping genes flanking the O-antigen cluster in Providencia alcalifaciens O40 (Ovchinnikova et al. 2012)

Results. Identified genes fall into two categories: one from conserved and other

from variable 0-antigen operons						
Assembly / Organism Name	Genes from the conserved operon	Genes from variable operon(s)				
GCA_000259175 / Providencia stuartii MRSN 2154	wecA, wzzE, wecB, wecC, wecD, wecE, wecF, wecG, rffG, rffH, wzxE, wzyE	galE, rfaQ, ugd, wzc, wzb, mshA, rfbM				
GCA_001874625 / Providencia rettgeri strain RB151	wecA, wzzE, wecB, wecC, wecD, wecE, wecF, wecG, rffG, rffH, wzxE, wzyE	galE, rfaQ, ugd, rfaP, rfaG, wzb, wzc, rfbA, rfbB, wcaG, wza, waaO, wcaA				
GCA_013702025 / Providencia rettgeri strain 2055	wecA, wzzE, wecB, wecC, wecD, wecE, wecF, wecG, rffG, rffH, wzxE, wzyE	galE, rfaQ, ugd, wzb, wzc, mshA, wbgU, rfbM, gmm, gmd, glmM, arnC, fcl				
GCA_010669105 / Providencia stuartii strain MF1	wecA, wzzE, wecB, wecC, wecD, wecE, wecF, wecG, rffG, rffH, wzxE, wzyE	galE, rfaQ, ugd, rfaP, rfaG, wzb, wzc, mshA, gspA, wbpB, wbpD, wbpE				
GCA_013702185 / Providencia alcalifaciens strain 1701003	wecA, wzzE, wecB, wecC, wecD, wecE, wecF, wecG, rffG, rffH, wzxE, wzyE	galE, rfaQ, ugd, wzb, wzc, rfbA, wcaG				
GCA_014652175 /	wecA, wzzE, wecB, wecC, wecD, wecE, wecF, wecG, rffG, rffH, wzxE, wzyE	galE, rfaQ, ugd, rfaP, rfaG, wzc, wzb, mshA, gspA				

Providencia thailandensis KCTC 23281

Providencia vermicola strain LLDRA6

Providencia rustigianii strain NCTC11802

Providencia rustigianii strain NCTC6933

GCA_014295015 / Xenorhabdus nematophila

GCF_000973125 / Xenorhabdus bovienii CS03

GCA_016618195 /

GCA 900455075 /

GCA 900635875/

wecA, wzzE, wecB, wecC, wecD, wecE, wecF, wecG, rffG, rffH, wzxE, wzyE

wecA, wzzE, wecB, wecC, wecD, wecE, wecF, wecG, rffG, rffH, wzxE, wzyE

wecA, wzzE, wecB, wecC, wecD, wecE, wecF, wecG, rffG, rffH, wzxE, wzyE

wecA, wzzE, wecB, wecC, wecD, wecE, wecF, wecG, rffG, rffH, wzxE, wzyE

wecA, wzzE, wecB, wecC, wecD, wecE, wecF, wecG, rffG, rffH, wzxE, wzyE

galE, rfaQ, ugd, rfaP, rfaG, wzb, wzc, rmlA (rfbA),

rfbB, rfbD, rfbC, wza, waaO

galE, rfaQ, ugd, rfaP, rfaG

galE, rfaQ, ugd, rfaP, rfaG, mshA

galE, rfaQ, rfaP, rfaG, mshA, wbgU

galE, rfaQ, rfaP, rfaG, wbgU, rfaD, rfaF, rfaC

Results. Gene order and genetic content in the conserved O-antigen operon is maintained across all *Providencia* bacteria used in the study

Results. Conserved O-antigen operon in *Providencia*: gene and operon length differ slightly across analyzed organisms

Length (bp) of the conserved O-antigen operon and its genes from the *Providencia* species used in the study.

Providencia Assembly	wecA	wzzE	wecB	wecC	wecD	wecE	wecF	wecG	rffG	rffH	wzxE	wzyE	Whole operon
Providencia stuartii MRSN 2154	1047	1059	1131	1263	741	1131	1083	738	1068	882	1251	1356	12828
Providencia rettgeri strain RB151	1086	1059	1131	1263	741	1131	1083	753	1068	882	1251	1356	12878
Providencia rettgeri strain 2055	1086	1059	1131	1264	741	1131	1083	753	1068	882	1251	1356	12882
Providencia stuartii strain MF1	1089	1059	1131	1263	741	1131	1083	738	1068	882	1251	1356	12882
Providencia alcalifaciens strain 1701003	1068	1059	1131	1263	741	1131	1083	738	1074	882	1251	1356	12880
Providencia thailandensis KCTC 23281	1089	1059	1131	1263	741	1131	1083	738	1068	882	1251	1356	12888
Providencia vermicola strain LLDRA6	1086	1059	1131	1263	741	1131	1083	738	1068	882	1251	1356	12895
Providencia rustigianii strain NCTC11802	1086	1059	1131	1263	741	1131	1083	738	1068	882	1251	1368	12891
Providencia rustigianii strain NCTC6933	1086	1059	1133	1264	741	1131	1083	738	1068	882	1251	1368	12894

wzzE, wecD, wecE, wecF, rffH, and wzxE genes from conserved O-antigen operon have the same length for each of the studied species (marked green), while the rest genes are of varying length.

To test if a negative selection is preserving each gene from the conserved operon, we would compare the abundance of non-synonymous and synonymous substitutions in a gene using the Z-test of neutral evolution.

Results. Genes from the conserved O-antigen operon might be under negative selection which preserves encoded amino acid sequences from spread of mutations

Codon-based Test of Neutrality for analysis averaging over all sequence pairs.

Gene	P-value	Z-test statistics of Neutral Evolution, Z(dN-dS)	Selection
wecA	0.00	-8.95	negative
wzzE	0.00	-9.25	negative
wecB	0.00	-9.35	negative
wecC	0.00	-10.32	negative
rffG	0.00	-10.47	negative
rffH	0.00	-6.84	negative
wecD	0.00	-6.47	negative
wecE	0.00	-9.71	negative
wzxE	0.00	-10.59	negative
wecF	0.00	-10.18	negative
wzyE	0.00	-5.88	negative
wecG	0.00	-6.83	negative

- Z(dN-dS)
- Nei-Gojobori (Jukes-Cantor) model
- 1000 bootstraps

Results. Almost all *Providencia* used in the study have *galETKMR* operon (except for *Providencia alcalifaciens* strain 1701003) with the same genetic order and gene content

Providencia stuartii MRSN 2154

Providencia stuartii strain MF1

Providencia vermicola strain LLDRA6

Providencia thailandensis KCTC 23281

Results. Gene sequences from the *galETKMR* operon are preserved from non-synonymous mutations being under negative selection

Codon-based Test of Neutrality for analysis averaging over all sequence pairs.

Gene	P-value	Z-test statistics of Neutral Evolution, Z(dN-dS)	Selection
galE	0.00	-8.15	negative
galT	0.00	-6.20	negative
galK	0.00	-6.33	negative
galM	0.00	-8.22	negative
galR	0.00	-7.53	negative

- Nei-Gojobori (Jukes-Cantor) model
- 1000 bootstraps

Results. Variable operons in all studied species mainly contained genes encoding glycosyltransferase and O-antigen processing proteins

The Providencia bacteria studied in the project have a similar lifestyle, they are opportunistic microorganisms, while their O-antigen operons differ significantly in structure.

Results. Structural organization of candidate 0-antigen operons is similar between Xenorhabdus nematophila and Xenorhabdus bovienii CS03 despite the difference in lifestyle

4 operons

Xenorhabdus boyienii CS03 - mutualist of Nematode Steinernema nematodes and non-pathogen of insects

4 operons

Xenorhabdus nematophila and Xenorhabdus bovienii CS03 despite the difference in lifestyle

Xenorhabdus nematophila

Xenorhabdus bovienii CS03

The studied species of Xenorhabdus are characterized by different lifestyles:

- Xenorhabdus nematophila is mutualist of Nematode Steinernema carpocapsae and pathogen of insects
- Xenorhabdus bovienii CS03 mutualist of Nematode Steinernema nematodes and non-pathogen of insects

Conclusion

- As a result of the literature analysis, we found the following O-antigen operon genes reported for *Providencia* sp.: 8
 genes of nucleotide sugar biosynthesis, three genes involved in glycosyl transferring, and O-unit formation, two
 O-antigen processing genes, and four housekeeping genes flanking the O-antigen cluster.
- Out of 204 Providencia assemblies currently available at NCBI, we selected only seven complete genomes and two
 genomes of contig/scaffold assembly level that demonstrated the best quality. In total, we analyzed six distinct
 Providencia species.
- We have designed a unique pipeline for identifying candidate O-antigen operons. The key features of our pipeline are: employing several genome annotation tools, additional prediction and validation of operon boundaries, and manual curation and annotation of unknown genes. Our pipeline allowed us to detect 23 and 12 genes in variable and conserved candidate O-antigen operons, respectively. Among these genes, only seven (galE, wxz, wzc, wza, ugd, rmlA, and wecA) were previously described as O-antigen ones in Providencia and Xenorhabdus species.
- Both *Providencia* and *Xenorhabdus* species have O-antigen conserved operon involved in the nucleotide (UDP- or dTDP-) sugar biosynthesis (wecB, wecC, rffG, rfbA, rffC, rffA), glucosyl to lipid transfer (wecA, wecF, wecG), and O-antigen processing (wzzE, wzxE, wzyE).
- We did not observe a correlation between lifestyle and O-antigen operon organization as we initially expected.
 Although Providencia bacteria used in the study share similar virulence levels being opportunistic pathogens, their O-antigen operon significantly varies by structure. Despite different relationship towards insects (pathogenic or non-pathogenic ones), Xenorhabdus exhibit high similarity in O-antigen organization.

References

- 1. Bisch, Gaëlle, Sylvie Pagès, John G. McMullen 2nd, S. Patricia Stock, Bernard Duvic, Alain Givaudan, and Sophie Gaudriault. 2015. "Xenorhabdus Bovienii CS03, the Bacterial Symbiont of the Entomopathogenic Nematode Steinernema Weiseri, Is a Non-Virulent Strain against Lepidopteran Insects." *Journal of Invertebrate Pathology* 124 (January): 15–22.
- Herbert, Erin E., and Heidi Goodrich-Blair. 2007. "Friend and Foe: The Two Faces of Xenorhabdus Nematophila." Nature Reviews. Microbiology 5 (8): 634–46.
- 3. Ovchinnikova, Olga G., Bin Liu, Dan Guo, Nina A. Kocharova, Magdalena Bialczak-Kokot, Alexander S. Shashkov, Lu Feng, Antoni Rozalski, Lei Wang, and Yuriy A. Knirel. 2012. "Structural, Serological, and Genetic Characterization of the O-Antigen of Providencia Alcalifaciens O40." FEMS Immunology and Medical Microbiology 66 (3): 382–92.
- 4. Samuel, Gabrielle, and Peter Reeves. 2003. "Biosynthesis of O-Antigens: Genes and Pathways Involved in Nucleotide Sugar Precursor Synthesis and O-Antigen Assembly." Carbohydrate Research 338 (23): 2503–19.
- 5. Wang, Lei, Quan Wang, and Peter R. Reeves. 2010. "The Variation of O Antigens in Gram-Negative Bacteria." Sub-Cellular Biochemistry 53: 123–52.
- 6. **GitHub** https://github.com/rybinaanya/0-antigens