The Impacts of Long-Term Management

Strategies on Forest Health

Lessons from the Sierra Nevada

Olivia Hemond

February 28th, 2025

Data from: Stephens et al. 2023

Wildfire suppression practices have created overgrown, overcrowded forests

This ineffective management has increased forest vulnerability in the Sierra Nevada

To reduce vulnerabilities, we can choose between **different types** of active forest management

But how do these strategies **compare?**Can they meet **multiple** management goals?

Researchers tested the different management strategies over 18 years

Control

Prescribed fire and mechanical thinning both preserve high amounts of forest carbon

Carbon Stocks in Mg/ha Before and After a Simulated Fire

Control plots risk losing the greatest amount of carbon from wildfires

Data from Stephens et al. 2023.

Mechanical thinning is most cost effective

The best management strategy depends on forest managers' **goals** and **budget**

Expensive but effectively reduces fire risk

Profitable but higher fire risk

Overall most effective but barely profitable

Cheap but overall least effective

Increased **funding** and **action** are essential to protect the forests of the Sierra Nevada

