

Post-Quantum Stateful Hash-Based Signature Scheme for Improving Bluetooth Security

Andres Colon, Ian Lieu, Peter Anthony, Arron Lu

Advisor: Professor Mohamed El-Hadedy
Assistant Professor, ECE-department, College of Engineering
California State Polytechnic University, Pomona
Team: Post-Quantum on-Chip

RECONFIGURABLE INTERNET OF THINGS

Motivation

- Quantum Computers
- Post-Quantum
- Quantum Cryptography
- Hash-Based Signatures
- Shor's Algorithm
- Bluetooth Public-Key Exchange
- IoT/Low-Power Devices

Post-Quantum

Mosca's Inequality Theorem:

If X + Y > Z, then security is broken

- X: shelf life of existing security standards
- Y: time to migrate from current crypto standards to a quantum-safe environment
- Z: time for a large-scale quantum computer to be built

Post-Quantum Signatures

[2] Teik Guan Tan, Jianying Zhou, A survey of Digital Signing in the post Quantum Era (Singapore University of Technology and Design, Singapore)

LMS: Leighton-Micali Signatures

Hash

- SHA-1
- SHA-2 256/512
- SHA-3 (SHAKE)
- Lightweight Hash (LWC: Lightweight Cryptography)
 - GAGE Hash Function

Gage Security Range Greater Than: 2¹¹² or 2¹²⁸ Low-End IoT Device Security Range: 2⁸⁰ – 2⁹⁶

Percentage of Time Spent on Hashing

	HSS	$\mathtt{XMSS}^{MT}\mathtt{SIMPLE}$
key gen	92%	85%
sign	92%	85%
verify	94%	85%

[3] Campos, Kohlstadt, Reith, Stottinger, "LMS vs XMSS: Comparison of Stateful Hash-Based Signature Schemes on ARM Cortex-M4"

Bluetooth

[4] "NIST Special Publication 800-121 Revision 2, Guide to Bluetooth Security"

RECOIDT

Our Goal

- IoT Communication with Post-Quantum Security
- Hash-Based Signature Scheme Acceleration

- PYNQ-Z1 SoC
- ESP-WROOM-32 (ESP32) Pmod

Test Results: LMS

Implementation	Function	Run Time
Desktop (SHA-256)	Key Generation	5 minutes
	Signing	< 1 second
	Verifying	< 1 second
PYNQ-Z1 (SHA-256)	Key Generation	3 hours
	Signing	1 minute
	Verifying	< 1 second
Desktop (SHA-3)	Key Generation	7 minutes
	Signing	3 seconds
	Verifying	< 1 second

LMS Functions

```
ubuntu@arm:~/hash-sigs$ ./demo
Usage:
    ./demo genkey [keyname]
    ./demo genkey [keyname] [parameter set]
    ./demo sign [keyname] [files to sign]
    ./demo verify [keyname] [files to verify]
    ./demo advance [keyname] [amount of advance]
```


Future Works

LMS

- Replace Open-SSL SHA-256 in software with a SHA-256 hardware core
- Develop a lightweight hash compatible with LMS

Bluetooth

- Implement a fully functioning Btstack onto bluetooth device
- Replace authentication model, AES to LMS

References

- Dr. Michele Mosca "Cybersecurity in a quantum world: will we be ready?"
- 2. Teik Guan Tan, Jianying Zhou, "A survey of Digital Signing in the post Quantum Era" (Singapore University of Technology and Design, Singapore)
- 3. Campos, Kohlstadt, Reith, Stottinger, "LMS vs XMSS: Comparison of Stateful Hash-Based Signature Schemes on ARM Cortex-M4"
- 4. "NIST Special Publication 800-121 Revision 2, Guide to Bluetooth Security"

Acknowledgement

This research was supported in part by:

- Xilinx Inc.
- Center for Cognitive Computing Systems Research (C³SR)
- US Air Force Research Laboratory, Academy Center for Cyberspace

Arron Lu

Peter Anthony
I NGIVADONG

Andres Colon

RECOIOT RECONFIGURABLE INTERNET OF THINGS

Questions?

Ian Lieu

Arron Lu

Prof. M. El-Hadedy http://www.recoiot.com/

Andres Colon

Peter Anthony

