

考研数学---微积分 LATEX 笔记

作者: Gabriel Liu

时间: March 23, 2020

版本: 0.1

邮箱:: jsrglsq@outlook.com

目录

1	极限	限与连续														1				
	1.1	极限的	有关是	定义																1
	1.2	极限的	的性质											2						
		1.2.1	极限	的一	般性质															2
		1.2.2	极限的	的存	在性质															3

第一章 极限与连续

1.1 极限的有关定义

定义 1.1. 数列极限

数列 $\{a_n\}$, 若对于 $\forall \varepsilon > 0$, $\exists N > 0$, 当 n > N 时, 有

$$|a_n - A| < \varepsilon \tag{1.1}$$

则称数列 $\{a_n\}$ 的极限为 A (或:收敛于 A),记作

$$\lim_{n \to \infty} a_n = A \tag{1.2}$$

定义 1.2. 函数极限-1

函数 f(x), 若对于 $\forall \varepsilon > 0$, $\exists \delta > 0$, 当 $0 < |x - a| < \delta$ 时, 有

$$|f(x) - A| < \varepsilon \tag{1.3}$$

则称函数 f(x) 的极限为 A, 记作

$$\lim_{x \to a} f(x) = A \tag{1.4}$$

笔记

- 1. 若 $x \to a$, 则 $x \ne a$. 如: $\lim_{x \to 0} \frac{0}{x^3} = 0$;
- 2. $\lim_{x \to a} f(x)$ 与 f(a) 无关。如: $\lim_{x \to 1} \frac{x^2 1}{x 1} = \lim_{x \to 1} (x + 1) = 2$;
- 3. $x \rightarrow a$ 分为 $x \rightarrow a^+$ 和 $x \rightarrow a^-$
- 4. 我们称 $0 < |x a| < \delta$ 为 a 的去心邻域;
- 5. $\lim_{x\to a^-} \triangleq f(a-0)$ (左极限); $\lim_{x\to a^+} \triangleq f(a+0)$ (右极限)。 ★ $\lim f(x)$ 存在 $\iff f(a-0), f(a+0)$ 都存在且相等。

定义 1.3. 函数极限-2

函数 f(x), 若对于 $\forall \varepsilon > 0$, $\exists X > (<)0$, 当 x > X(<-X) 时, 有

$$|f(x) - A| < \varepsilon \tag{1.5}$$

则称函数 f(x) 的极限为 A, 记作

$$\lim_{x \to +\infty(-\infty)} f(x) = A \tag{1.6}$$

如,对于函数
$$f(x) = \arctan x$$
 有: $\lim_{x \to +\infty} f(x) = \frac{\pi}{2}$, $\lim_{x \to -\infty} f(x) = -\frac{\pi}{2}$

1.2 极限的性质 ——2—

定义 1.4. 无穷小

若 $\lim_{x\to a} \alpha(x) = 0$, 则称 $\alpha(x)$ 当 $x\to a$ 时为无穷小。

Ŷ 笔记

- 1. 0 是无穷小,但无穷小不一定为 0;
- 2. $\alpha(x)\neq 0$, $\alpha(x)$ 是否为无穷小与 x 的趋向有关; 如, $\alpha=3(x-1)^2$, 而 $\lim_{x\to 1}\alpha=0$, 则 $3(x-1)^2$ 当 $x\to 1$ 时是无穷小。
- 3. 设 $\alpha \to 0, \beta \to 0$, 有如下三种情形: (a) $\lim \frac{\beta}{\alpha} = 0$, 称 β 为 α 的高阶无穷小,记作 $\beta = o(\alpha)$; (b) $\lim \frac{\beta}{\alpha} = k(\neq \infty, 0)$, 称 β 为 α 的同阶无穷小,记作 $\beta = O(\alpha)$ (特例: $\lim \frac{\beta}{\alpha} = 1$, 则称 β 与 α 为等价无穷小,记作 $\beta \sim \alpha$)。

1.2 极限的性质

1.2.1 极限的一般性质

下面我们开始介绍极限的一般性质,并给出相关的证明。主要有:唯一性、保号性(重点)两个性质。

1. 唯一性

性质 极限存在必唯一。

证明 设 $\lim_{x\to a}f(x)=A$ 又 $\lim_{x\to a}f(x)=B$,并不妨设 A>B。我们采用反证法来完成相关的证明。

取
$$\varepsilon = \frac{A - B}{2} > 0$$
。因为 $\lim_{x \to a} f(x) = A$,所以存在 $\delta_1 > 0$,当 $0 < |x - a| < \delta_1$ 时,有 $|f(x) - A| < \frac{A - B}{2}$,也即 $\frac{A + B}{2} < f(x) < \frac{3A - B}{2}$ (*);

1.2 极限的性质 -3-

同理,由第二个极限可以得出 $\frac{3B-A}{2} < f(x) < \frac{A+B}{2} (**)$ 。从而,若我们取 $\delta = \min(\delta_1, \delta_2)$,当 $0 < |x-a| < \delta$ 时,就有 (*) 与 (**) 同时成立。但 $f(x) > \frac{A+B}{2}$ 与 $f(x) < \frac{A+B}{2}$ 显然不可能同时成立,矛盾,从而假设不成立。

同理, 我们可以得到 A < B 也不成立。故 A = B。

2. ★ 保号性

性质 设 $\lim_{x\to a}f(x)=A>(<)0$,则存在 $\delta>0$,当 $0<|x-a|<\delta$ 时,有 f(x)>(<)0。

证明 设 A>0。取 $\varepsilon=\frac{1}{2}A>0$ 。因为 $\lim_{x\to a}f(x)=A$,故存在 $\delta>0$,当 $0<|x-a|<\delta$ 时,有 $|f(x)-A|<\varepsilon=\frac{A}{2}$ 。展开可得 $\frac{A}{2}< f(x)<\frac{3}{2}A$ 。从而 f(x)>0。

例 1.1 若函数 f(x) 满足 f(1) = 0, $\lim_{x \to 1} \frac{f'(x)}{(x-1)^3} = -2$, 则 x = 1 为什么点?

解 因为 $\lim_{x\to 1} \frac{f'(x)}{(x-1)^3} = -2 < 0$,故根据保号性,存在 $\delta > 0$,当 $0 < |x-a| < \delta$ 时,有 $\frac{f'(x)}{(x-1)^3} < 0$ 。于是,当 $x \in (1-\delta,1)$ 时,f'(x) > 0;当 $x \in (1,1+\delta)$ 时,f'(x) < 0。故 x = 1 为极大值点。

1.2.2 极限的存在性质

下面介绍几个判定极限存在的性质。

性质

1. 数列型

如果
$$a_n \leq b_n \leq c_n$$
 且 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = A$,则 $\lim_{n \to \infty} b_n = A$ 。

2. 函数型

如果
$$f(x) \leq g(x) \leq h(x)$$
 且 $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = A$,则 $\lim_{x \to a} g(x) = A$ 。

型一例题:n 项和求极限

例 1.2 求极限:
$$\lim_{n \to \infty} (\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}})$$
 解 以上是非齐次的情形,采取夹逼定理。于是令 $b_n = \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}}$ 容易得到: $\frac{n}{\sqrt{n^2+n}} \le b_n \le \frac{n}{\sqrt{n^2+1}}$, 因为 $\lim_{n \to \infty} \frac{n}{\sqrt{n^2+n}} = \lim_{n \to \infty} \frac{1}{\sqrt{\frac{1}{n^2}+1}} = 1$ 且 $\lim_{n \to \infty} \frac{n}{\sqrt{n^2+1}} = \lim_{n \to \infty} \frac{1}{\sqrt{\frac{1}{n^2}+1}} = 1$

1.2 极限的性质

$$1$$
, 故得到 $\lim_{n\to\infty} b_n = 1$

例 1.3 求极限
$$\lim_{n\to\infty} \left(\frac{1}{n^2+1} + \frac{1}{n^2+2} + \dots + \frac{n}{n^2+n}\right)$$
。
$$\mathbf{F} \diamondsuit b_n = \frac{1}{n^2+1} + \frac{1}{n^2+2} + \dots + \frac{n}{n^2+n}, \text{ 从而} \frac{1}{2} = \frac{n(n+1)}{2(n^2+n)} \le b_n \le \frac{n(n+1)}{2(n^2+1)}$$
则 $\lim_{n\to\infty} \pounds = \lim_{n\to\infty} \pi = \frac{1}{2}$ 。 故所求极限为 $\frac{1}{2}$ 。

例 1.4 求极限 $\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}\right)$ 。

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right) = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n+i}$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{n}{n+i}$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+\frac{i}{n}}$$

$$= \int_{0}^{1} \frac{1}{1+x} dx = \ln(x+1) \Big|_{0}^{1} = \ln 2$$

例 1.5 求极限 $\lim_{n\to\infty} \left(\frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \cdots + \frac{n}{n^2+n^2}\right)$ 。

$$\lim_{n \to \infty} \left(\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + n^2} \right) = \lim_{n \to \infty} \sum_{i=1}^n \frac{n}{n^2 + i^2}$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \frac{n^2}{n^2 + i^2}$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \frac{1}{1 + \frac{i^2}{n^2}}$$

$$= \int_0^1 \frac{1}{1 + x^2} dx = \arctan x \Big|_0^1 = \frac{\pi}{4}$$

笔记对于n个数相加,分子或分母不齐次的情况,用夹逼定理;

对于分子、分母齐次且分母多一次的情况, 用定积分定义。

我们还有另一个著名的判定数列极限存在性的定理, 也即如下性质:

性质单调有界数列必有极限。

这个性质可以分为两类来讨论,一为单调递增有上界,二为单调递减有下界。

型二例题:极限存在性证明

例 1.6 己知, $a_1 = \sqrt{2}, a_2 = \sqrt{2 + \sqrt{2}}, a_3 = \sqrt{2 + \sqrt{2 + \sqrt{2}}}, \cdots$ 证明 $\lim_{n\to\infty}a_n$ 存在,并求之。 解 显然, $\{a_n\}$ 单调递增,现在我们证明 $a_n\leq 2$,采用数学归纳法:

1.2 极限的性质 **-5-**

首先, $a_1 = \sqrt{2} < 2$ 。假设 $a_k \le 2$,则 $a_{k+1} = \sqrt{2 + a_k} \le \sqrt{2 + 2} = 2$ 。因此

得 A = 2 或 A = -1。由于 $a_n > a_1 = \sqrt{2}$,故 A = -1 舍去。从而极限为 2。