Native Language Identification

Sophia Davis

LING 550 Final Project sophia.davis 3@mail.mcgill.ca

November 30, 2016

Native Language Identification

NLI, or guessing a speaker's mother tongue based on a sample of his written or spoken English, is already a fairly well-studied topic. Applications include:

- ▶ Tailored education: changing ESL instruction to correct errors made by speakers with different mother tongues.
- ▶ Linguistic knowledge: better understanding of the processes of transfer and language acquisition.
- ▶ Forensic linguistics: using NLI to uncover the identity of anonymous threats.

Previous Work in NLI

- ▶ Moshe Koppel 2005: NLI pioneer; focus on function words, character n-grams, spelling errors. Used linear Support Vector Machine to distinguish among 5 languages with ~80% accuracy.
- ▶ NLI Shared Task 2013: 29 teams used various methods and models. Among methods: word and character n-grams, syntactic features. Best performing team able to identify correct language out of 11 ~83% of the time.

The Data

Data were taken from the essay section of the Test of English as a Foreign Language, a standard benchmark of English proficiency.

- ▶ 12,100 essays of roughly 400 words each written by non-native English speakers of varying proficiencies
- ➤ Speakers' Native Languages include: Arabic, Chinese, French, German, Hindi, Italian, Japanese, Korean, Spanish, Telugu, and Turkish.
- ► Each group was represented equally in the training and test sets (1,100 essays from each group).

Minimum and Ideal Outcomes

- Any working model, however bad, would have to have over 1/11 = 9.09% accuracy.
- ▶ ETS Native Language identification Challenge: teams' accuracy ranged from 30% to 83%. Most teams achieved accuracy of 75-80%.
- ▶ My minimum goal was to perform better than the worst team in the challenge (over 30%). My ideal outcome was the 83% achieved by the top performer.

Steps to a Working Model

- ► Consider which features will be the most predictive.
- Extract features from the training set.
- ► Train a model on those features, use it to predict native language of essays in validation (and eventually testing) set.

Features

Character bigrams

▶ To reduce featureset, only included a-z as well as common characters !?'., . Used in nearly all models in ETS open challenge.

Word Unigrams

Only used words that occurred over five times across training set. Idea from existing work, including ETS challenge.

My idea: Levenstein deltas (Not currently implemented.)

- Systematically represent misspellings. More telling than individual misspellings.
- e.g. for the misspelling "ingineer" for "engineer" levenstein delta would be "-i+e" to say "replaced i for e"

Implementation

Scikit.learn: Implementation of Machine Learning techniques

- Python
- "Plug and chug" formulas make training easy. Hardest is prepossessing data, converting to array
- ▶ Used or Attempted: Linear SVC, Bagging Classifier, Random Forest, Decision Trees, SVM
- ▶ I won't demonstrate because the time it takes to run is longer than my presentation, and it isn't very exciting.

Success Rate

- ▶ Character bigrams with linear SVC: roughly 50% cross validation on training data. Same model with word unigrams: 65%. With both features: also 65%.
- ► Same data with more complex SVM: fail, took far too long to run.
- ► Experimentation with bagging raised accuracy to 69%
- ▶ Random forest (like decision trees with correction for overfitting): roughly 55% accuracy
- ► Code available at https://github.com/Sophia-Davis/nli

Potential Avenues of Improvement

Avenues to improve model performance

- ► Levenstein deltas/ other features....n-grams, syntactic features
- ▶ Look into which languages in particular are being misidentified, research which mistakes those speakers in particular make in order to correct them.

Questions?