Question 1. Quelle sont les coordonnées de la première composante principale des données décrites sur la figure 1?

FIGURE 1 – 11 individus représentés par 2 variables x_1 et x_2 .

- \square (1,1)
- $\Box \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
- \Box (1,0)
- \Box $(\sqrt{2},0)$

Question 2. Parmi les affirmations ci-dessous, lesquelles sont vraies? On considère un jeu de données $X \in \mathbb{R}^{n \times p}$ de n individus en p dimensions.

- ☐ La réduction de dimension relève de l'apprentissage supervisé.
- ☐ La réduction de dimension relève de l'apprentissage non-supervisé.
- ☐ La réduction de dimension facilite la visualisation des données.
- \square L'analyse en composantes principales de X permet de créer jusqu'à n nouvelles dimensions.
- \square Les nouvelles variables créées par une analyse en composantes principales sont des combinaisons linéaires des p variables.
- \square L'analyse en composantes principales de X s'obtient par une décomposition spectrale de X.
- ☐ La sélection de variables consiste à conserver uniquement les variables dont la variance est la plus faible.

Solution

Question 1. La direction de plus grande variation des données est la diagonale d'équation $x_1 = x_2$. Ainsi, la première composante principale est le vecteur directeur de la diagonale, de norme 1, soit donc $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

Question 2.

_	La réduction de dimension peut relever de l'apprentissage supervisé (par exemple, l'élimination des variables indépendantes de l'étiquette requièrent évidemment une étiquette) ou de l'apprentissage non-supervisé (par exemple, l'ACP). Elle est cependant souvent plutôt classée dans l'apprentissage non-supervisé car il s'agit d'analyse exploratoire des données et non pas d'analyse prédictive, ce qui peut prêter à confusion.
V	La réduction de dimension facilite la visualisation des données.
	L'analyse en composantes principales de X permet de créer jusqu'à n nouvelles dimensions. FAUX, elle permet de créer jusqu'à p nouvelles dimensions.
V	Les nouvelles variables créées par une analyse en composantes principales sont des combinaisons linéaires des p variables.
	L'analyse en composantes principales de X s'obtient par une décomposition spectrale de X . FAUX, il s'agit de la décomposition spectrale de $X^{\top}X$.
	La sélection de variables consiste à conserver uniquement les variables dont la variance est la plus faible.
	FAUX, une des techniques de sélection de variables consiste à éliminer les variables dont la variance est la plus faible.