	210 AA10/11 (Algebra: gruppi, anelli e campi)				APPELLO B						Roma, 23 Febbraio 201				
GNOME	mero di es SI ACCE	sercizi acco TTANO R	mpag ISPO	STE	o le r SCR	ispos ITTE	te con SU	$_{1}^{4}$ spie $_{2}^{4}$	gazioi RI FO	ni chia	are ed es	senzial	i. <i>Inser</i>	rire le ris	poste n
		FIRMA	1	2	3	4	5	6	7	8	ТОТ.				
Rispondere alle sequ	L uenti dom	ande forne	endo 1	ina o	instif	icazio	ne di	una	riga:						
Tuspondere and seq.	deliti deli		ondo (ana 8	rasur	rouzro	no di	ara .	1150.						
-		101	1			10									
a. È vero che tutt	ı ı gruppı	con 101 e	lemen	iti soi	10 C10	clici?									
							• • • • •				• • • • • • • •				
b. È vero che S_4 o	contiene d	lue sottogr	uppi (con 4	elem	enti 1	tra di	loro	non is	somoi	rfi?				
b. È vero che S_4 o	contiene d	lue sottogr	uppi	con 4	elem	enti 1	tra di	loro	non i	somo	rfi?				
b. È vero che S_4 o	contiene d	lue sottogr	uppi (con 4	elem	enti 1	tra di	loro	non is	somo	rfi?				
b. È vero che S_4 c	contiene d	lue sottogr	uppi (con 4	elem	enti 1	tra di	loro	non is	somo	rfi?				
b. È vero che S_4 c	contiene d	lue sottogr	uppi (con 4	elem	enti 1	tra di	loro	non i	somoi	rfi?				
b. È vero che S_4 c	contiene d	lue sottogr	uppi (con 4	elem	enti 1	tra di	loro	non i	somo	rfi?				
b. È vero che S_4 c	contiene d	lue sottogr	uppi (con 4	elem	enti 1	tra di	loro	non i	somo	rfi?				
b. È vero che S_4 c	contiene d	lue sottogr	uppi (con 4	elem	enti 1	tra di	loro	non i	somo	rfi?				
b. È vero che S_4 c	contiene d	lue sottogr	uppi (con 4	elem	enti 1	tra di	loro	non is	somo	rfi?				
b. È vero che S_4 c	contiene d	lue sottogr	uppi (con 4	elem	enti 1	tra di	loro	non is	somo	rfi?				
b. È vero che S_4 c	contiene d	lue sottogr	uppi (con 4	elem	nenti 1	tra di	loro	non is	somo	rfi?				
b. È vero che S_4 c.												bili?			
												bili?			
) anelli no	on commut	ativi i		tutti		lemer	iti no	on nul		o inverti				
) anelli no		ativi i		tutti		lemer	iti no	on nul		o inverti				
) anelli no	on commut	ativi i		tutti		lemer	iti no	on nul		o inverti				
) anelli no	on commut	ativi i		tutti		lemer	iti no	on nul		o inverti				
) anelli no	on commut	ativi i		tutti		lemer	iti no	on nul		o inverti				
) anelli no	on commut	ativi i		tutti		lemer	iti no	on nul		o inverti				
) anelli no	on commut	ativi i		tutti		lemer	iti no	on nul		o inverti				
) anelli no	on commut	ativi i		tutti		lemer	iti no	on nul		o inverti				
) anelli no	on commut	ativi i		tutti		lemer	iti no	on nul		o inverti				
c. È vero esistono	anelli no	on commut	ativi i				lemer	nti no	on nul		o inverti				
	anelli no	on commut	ativi i				lemer	nti no	on nul		o inverti				
c. È vero esistono	anelli no	on commut	ativi i				lemer	nti no	on nul		o inverti				

2. Dopo aver definito la nozione di sottogruppo,	, dimostrare che $\mathbf{Z}_p \times \mathbf{Z}_p$ (p prim	o) ammette esattamente $p+3$ sottogru	uppi.
3. Siano G un gruppo e H un suo sottogruppo. contiene H come sottogruppo normale.	. Dimostrare che $N_G(H) := \{g \in$	$\{G:gH=Hg\}$ è un sottogruppo di	G che

7. Sia $A = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix}, a, b \in \mathbf{Z}_4 \right\}$. Dopo aver verificato che A è un sottoanello di $M_2(\mathbf{Z}_4)$, contarne il numero di elementi, determinare il gruppo U(A) e verificare se $U(A) \cong \mathbf{Z}_2 \times \mathbf{Z}_2$.

8. Sia A un anello commutativo (unitario). Si dimostri che $J_0 := \{z \in A : z^n = 0, \text{ per qualche } n \in \mathbb{N}^+\}$ è un ideale di A. Dimostrare poi che ogni ideale primo di A contiene J_0 .