P9120 - Statistical Learning and Data Mining

Lecture 11 - Reinforcement Learning III

Min Qian

Department of Biostatistics, Columbia University

November 14th, 2024

Outline

- 1 MDP planning problem
 - Policy evaluation
 - Policy improvement
 - Policy iteration
 - Value iteration
- 2 MDP learning problem
 - TD(0) for policy evaluation
 - Q-learning for estimating optimal policy

MDP Recap

$$S_0, A_0, R_0, \ldots, S_t, A_t, R_t, \ldots$$

• Markovian and stationary:

system dynamics:
$$p(s', r|s, a) = \Pr(S_{t+1} = s', R_t = r|S_t = s, A_t = a)$$

state-transition: $p(s'|s, a) \triangleq \Pr(S_{t+1} = s'|S_t = s, A_t = a)$
exp. rewards for (s, a, s') : $r(s, a, s') \triangleq E(R_t|S_t = s, A_t = a, S_{t+1} = s')$
expected rewards for (s, a) : $r(s, a) \triangleq E(R_t|S_t = s, A_t = a)$

- Return (cumulative rewards) $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k}$.
- Policy Deterministic policy $\pi(s): \mathcal{S} \to \mathcal{A}$; Stochastic policy: $\pi(a|s): \mathcal{S} \times \mathcal{A} \to [0,1]$;
- (state-)value function of π : $V_{\pi}(s) = E_{\pi}(G_t|S_t = s)$
- Optimal policy $\pi^*(s) = \arg \max_{\pi} V_{\pi}(s)$. There always exists a deterministic optimal policy for an MDP.

Recycling Robot Example

• What's $V_{\pi}(s)$ of a given policy π ? $\pi(\text{high}) = \text{search}$ $\pi(\text{low}) = \text{wait}$

Bellman Equation for Value Function $V_{\pi}(s)$

Note that $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k} = R_t + \gamma G_{t+1}$.

$$V_{\pi}(s) \triangleq E_{\pi}[G_{t}|S_{t} = s] = E_{\pi}[R_{t} + \gamma G_{t+1}|S_{t} = s]$$

$$= E_{\pi}[R_{t} + \gamma E_{\pi}(G_{t+1}|S_{t+1}, S_{t} = s)|S_{t} = s]$$

$$= E_{\pi}[R_{t} + \gamma V_{\pi}(S_{t+1})|S_{t} = s].$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s', r|s, a)[r + \gamma V_{\pi}(s')]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} p(s'|s, a) \left[r(s, a, s') + \gamma V_{\pi}(s')\right]$$

$$= \sum_{a} \pi(a|s) \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a)V_{\pi}(s')\right]$$

 $V_{\pi}(s)$ is the unique solution to a system of linear equations!

Recycling Robot Example

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} p(s'|s, a) \Big[r(s, a, s') + \gamma V_{\pi}(s') \Big]$$

s	a	s'	p(s' s,a)	r(s, a, s')
high	search	high	α	$r_{\mathtt{search}}$
high	search	low	$1-\alpha$	$r_{\mathtt{search}}$
low	search	high	$1-\beta$	-3
low	search	low	β	$r_{\mathtt{search}}$
high	wait	high	1	$r_{\mathtt{Wait}}$
high	wait	low	0	-
low	wait	high	0	-
low	wait	low	1	$r_{\mathtt{Wait}}$
low	recharge	high	1	0
low	recharge	low	0	-

What is $V_{\pi}(s)$ for policy $\pi(\text{high}) = \text{search}, \pi(\text{low}) = \text{wait}$?

Gridworld Example

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \Big[r(s,a) + \gamma \sum_{s'} p(s'|s,a) V_{\pi}(s') \Big]$$

State space: 25 cells. Action space: \leftarrow , \rightarrow , \uparrow , \downarrow

Dynamics of MDP (reward dist. and transition prob.)

 $S_{t+1} = S_t$, $R_t = -1$ if A_t would take the agent off the grid

 $S_{t+1} = A'$, $R_t = +10$ if $S_t = A$ regardless of A_t $S_{t+1} = B'$, $R_t = +5$ if $S_t = B$ regardless of A_t

 $S_{t+1} = S_t$, $R_t = 10$ if $S_t = B$ regardless of R_t $S_{t+1} = S_t + one$ cell in the direction of A_t , $R_t = 0$, o.w.

Question: What is the value function of a random policy (i.e., $\pi(a|s) = 1/4$ for all (s, a) pairs) with discount rate $\gamma = 0.9$?

Planning: Policy Evaluation

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s) arbitrarily, for $s \in S$, and V(terminal) to 0

Loop:

$$\begin{array}{c} \Delta \leftarrow 0 \\ \text{Loop for each } s \in \mathbb{S} \text{:} \\ v \leftarrow V(s) \end{array}$$

$$V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

Policy Improvement: Value Functions

• (state-)Value function

$$V_{\pi}(s) \triangleq E_{\pi}(G_0|S_0 = s) = E_{\pi}(G_t|S_t = s).$$

i.e., expected return if start in state s and then follow policy π .

• Action-value function (also called Q-function):

$$Q_{\pi}(s, a) \triangleq E_{\pi}(G_t | S_t = s, A_t = a).$$

expected return if start in s, take action a (once), then follow π .

• V_{π} can be computed from Q_{π} :

$$V_{\pi}(s) = E_{\pi}[Q_{\pi}(S_t, A_t)|S_t = s] = \sum_{a} \pi(a|s)Q_{\pi}(s, a).$$

• Bellman Equation for $Q_{\pi}(s, a)$

$$Q_{\pi}(s, a) = E_{\pi} [R_t + \gamma Q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

Policy Improvement Theorem

Let π and π' be a pair of policies such that, for all $s \in \mathcal{S}$,

$$Q_{\pi}(s, \pi'(s)) \geq V_{\pi}(s)$$
 if π' is a deterministic policy,

or
$$\sum_{a} \pi'(a|s)Q_{\pi}(s,a) \geq V_{\pi}(s)$$
 if π' is a stochastic policy.

Then $V_{\pi'}(s) \geq V_{\pi}(s)$ for all $s \in \mathcal{S}$.

Proof.

Note that
$$Q_{\pi}(s, \pi'(s)) = E[R_t + \gamma V_{\pi}(S_{t+1}) | S_t = s, A_t = \pi'(s)]$$

$$\begin{aligned} V_{\pi}(s) \leq & E_{\pi'}[R_t + \gamma V_{\pi}(S_{t+1})|S_t = s] \\ \leq & E_{\pi'}[R_t + \gamma E_{\pi'}[R_{t+1} + \gamma V_{\pi}(S_{t+2})|S_{t+1}]|S_t = s] \\ = & E_{\pi'}[R_t + \gamma R_{t+1} + \gamma^2 V_{\pi}(S_{t+2})|S_t = s] \\ \leq & E_{\pi'}[R_t + \gamma R_{t+1} + \gamma^2 E_{\pi'}[R_{t+2} + \gamma V_{\pi}(S_{t+3})|S_{t+2}]|S_t = s] \\ \leq & E_{\pi'}[R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \dots |S_t = s] = V_{\pi'}(s) \end{aligned}$$

Planning: Policy Improvement

For a given policy π :

• Compute Q_{π} from V_{π} :

$$Q_{\pi}(s, a) = E_{\pi} [R_t + \gamma G_{t+1} | S_t = s, A_t = a]$$

$$= E_{\pi} [R_t + \gamma V_{\pi}(S_{t+1}) | S_t = s, A_t = a]$$

$$= \sum_{s', r} p(s', r | s, a) [r + \gamma V_{\pi}(s')]$$

$$= r(s, a) + \gamma \sum_{s'} p(s' | s, a) V_{\pi}(s')$$

2 Improve π by the greedy policy $\pi'(s) = \arg \max_a Q_{\pi}(s, a)$. Since

$$Q_{\pi}(s, \pi'(s)) = \max_{a} Q_{\pi}(s, a) \ge Q_{\pi}(s, \pi(s)) = V_{\pi}(s),$$

we have $V_{\pi'}(s) \geq V_{\pi}(s)$ for all s.

Policy Iteration for Computing Optimal Policy π^*

- Initialization: arbitrary policy $\pi_0(s)$.
- ② For t = 0, 1, 2, ..., repeat
 - Policy evaluation: Initialize $V_{\pi_t}^{(0)}(s)$ for $s \in \mathcal{S}$. For $j = 0, 1, 2, \ldots$,

$$V_{\pi_t}^{(j+1)}(s) \leftarrow \sum_{s' \in \mathcal{S}} p(s'|s, \pi_t(s)) \left[r(s, \pi_t(s)) + \gamma V_{\pi_t}^{(j)}(s') \right] \text{ for each } s \in \mathcal{S}$$

until convergence. The converged value is denote as $V_{\pi_t}(s)$.

② If $\pi_t(s) = \arg \max_a \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_{\pi_t}(s') \right]$ for $\forall s \in \mathcal{S}$, stop and output $\pi^* = \pi_t$ and $V^* = V_{\pi_t}$. Otherwise, policy Improvement:

$$\pi_{t+1}(s) \leftarrow \arg\max_{a} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_{\pi_t}(s') \right].$$

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi^*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$; $V(terminal) \doteq 0$

2. Policy Evaluation

Loop:

$$\begin{array}{l} \Delta \leftarrow 0 \\ \text{Loop for each } s \in \mathbb{S}: \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{s',r} p(s',r \, | \, s,\pi(s)) \big[r + \gamma V(s') \big] \\ \Delta \leftarrow \max(\Delta, |v - V(s)|) \end{array}$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement policy-stable $\leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \mathop{\arg\max}_{a} \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx V^*$ and $\pi \approx \pi^*$; else go to 2

Bellman Equation for Value (Gridworld Example)

Optimal Value Functions

- Optimal Policy $\pi^*(s) = \arg \max_{\pi} V_{\pi}(s)$.
- Optimal value function

$$V^*(s) \triangleq \max_{\pi} V_{\pi}(s) = V_{\pi^*}(s).$$

• Optimal action-value function (or optimal Q-function)

$$\begin{aligned} Q^*(s, a) &\triangleq \max_{\pi} Q_{\pi}(s, a) \\ &= \max_{\pi} E[R_t + \gamma V_{\pi}(S_{t+1}) | S_t = s, A_t = a] \\ &= E[R_t + \gamma V_{\pi^*}(S_{t+1}) | S_t = s, A_t = a] \\ &= Q_{\pi^*}(s, a) \end{aligned}$$

Bellman Optimality Equations

$$V^{*}(s) = E_{\pi^{*}}[R_{t} + \gamma V_{\pi^{*}}(S_{t+1})|S_{t} = s]$$

$$= Q_{\pi^{*}}(s, \pi^{*}(s)) = \max_{a} Q_{\pi^{*}}(s, a)$$

$$= \max_{a} E[R_{t} + \gamma V^{*}(S_{t+1})|S_{t} = s, A_{t} = a]$$

$$= \max_{a} \sum_{s'} p(s'|s, a)[r(s, a) + \gamma V^{*}(s')]$$
(1)

and
$$Q^*(s, a) = E[R_t + \gamma V^*(S_{t+1})|S_t = s, A_t = a]$$

$$= E[R_t + \gamma \max_a Q^*(S_{t+1}, a)|S_t = s, A_t = a]$$

$$= \sum_{s'} p(s'|s, a)[r(s, a) + \gamma \max_a Q^*(s', a)]$$

From (1), $\pi^*(s) = \arg \max_a Q^*(s, a)$.

Planning: Value Iteration

- Find optimal value function using an iterative process based on bellman optimality equation.
- 2 Derive the optimal policy from the optimal value function

Value Iteration, for estimating $\pi \approx \pi^*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in \mathbb{S}^+$, arbitrarily except that V(terminal) = 0

```
Loop:
```

until $\Delta < \theta$

$$\begin{array}{l} | \quad \Delta \leftarrow 0 \\ | \quad \text{Loop for each } s \in \mathbb{S} \text{:} \\ | \quad v \leftarrow V(s) \\ | \quad V(s) \leftarrow \max_a \sum_{s',r} p(s',r \,|\, s,a) \big[r + \gamma V(s') \big] \\ | \quad \Delta \leftarrow \max(\Delta,|v-V(s)|) \end{array}$$

Output a deterministic policy, $\pi \approx \pi^*$, such that

$$\pi(s) = \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

The Learning Problem

- The environment dynamic is unknown, but data are available.
- How to learn $V_{\pi}(\cdot)$, i.e., the value function for a given policy π ?
 - Prediction problem

• How to learn the optimal policy π^* ?

- Control problem

Bellman Equations:

$$V_{\pi}(S_t) = E_{\pi} \left[R_t + \gamma V_{\pi}(S_{t+1}) \middle| S_t \right]$$

$$Q^*(S_t, A_t) = E \left[R_t + \gamma \max_{a} Q^*(S_{t+1}, a) \middle| S_t, A_t \right].$$

Basic Optimization

Data (Y_1, \ldots, Y_n) with $Y_i = \mu + \epsilon_i$ and $E\epsilon_i = 0$ for $i = 1, \ldots, n$.

How to estimate μ ?

- Analytically: $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \arg\min_{\mu} \frac{1}{2} \sum_{i=1}^{n} (Y_i \mu)^2$.
- Gradient descent: $\hat{\mu}^{new} \leftarrow \hat{\mu}^{old} + \alpha \sum_{i=1}^{n} (Y_i \hat{\mu}^{old}).$
- Stochastic gradient descent: update using one data point at a time $\hat{\mu}^{new} \leftarrow \hat{\mu}^{old} + \alpha (Y_i \hat{\mu}^{old})$.

Bellman Equation: $V_{\pi}(S_t) = E_{\pi} [R_t + \gamma V_{\pi}(S_{t+1}) | S_t]$

Generate data based on policy π :

$$R_t + \gamma V_{\pi}(S_{t+1}) = V_{\pi}(S_t) + \epsilon_t$$
, where $E(\epsilon_t|S_t) = 0$.

TD(0) for Prediction (i.e., Policy Evaluation)

Given $S_t \to \text{choose } A_t = \pi(S_t) \to \text{observe } (S_{t+1}, R_t)$, update

$$\widehat{V}_{\pi}^{new}(S_t) \leftarrow \widehat{V}_{\pi}^{old}(S_t) + \alpha [R_t + \gamma V_{\pi}(S_{t+1}) - \widehat{V}_{\pi}^{old}(S_t)].$$

Replace $R_t + \gamma V_{\pi}(S_{t+1})$ by $R_t + \gamma \widehat{V}_{\pi}^{old}(S_{t+1})$.

Tabular TD(0) for estimating v_{π}

Input: the policy π to be evaluated

Algorithm parameter: step size $\alpha \in (0,1]$

Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

 $A \leftarrow$ action given by π for S

Take action A, observe R, S'

$$V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]$$

 $S \leftarrow S'$

until S is terminal

Q-Learning (Watkins, 1989)

Bellman Equation for optimal Q-function

$$Q^{*}(S_{t}, A_{t}) = E[R_{t} + \gamma \max_{a} Q^{*}(S_{t+1}, a) | S_{t}, A_{t}]$$

implies that $R_t + \gamma \max_a Q^*(S_{t+1}, a) = Q^*(S_t, A_t) + \epsilon$, $E(\epsilon|S_t, A_t) = 0$.

- Off-policy: learn optimal policy while data collected from any policy.
- Useful if you cannot control the policy for data generation. (very useful in health application).
- Can reuse data generated from old policies.

Q-Learning (off-policy Control)

For any given (S_t, A_t, R_t, S_{t+1}) :

$$\widehat{Q}^{new}(S_t, A_t) \leftarrow \widehat{Q}^{old}(S_t, A_t) + \alpha \big[R_t + \gamma \max_{a} Q^*(S_{t+1}, a) - \widehat{Q}^{old}(S_t, A_t) \big]$$

Replace $R_t + \gamma \max_a Q^*(S_{t+1}, a)$ by $R_t + \gamma \max_a \widehat{Q}^{old}(S_{t+1}, a)$.

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi^*
```

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$

Initialize
$$Q(s, a)$$
, for all $s \in S^+, a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S,A) \leftarrow Q(S,A) + \alpha \big[R + \gamma \max_a Q(S',a) - Q(S,A)\big]$$

$$S \leftarrow S'$$

until S is terminal

Q-learning with Continuous State Space

- Bellman Equation $Q^*(S_t, A_t) = E[R_t + \gamma \max_a Q^*(S_{t+1}, a) | S_t, A_t].$
- Approximate $Q^*(s, a)$ by $Q(s, a, ; \theta)$, and estimate θ by minimizing

$$\sum_{t} [R_{t} + \gamma \max_{a} Q(S_{t+1}, a; \theta) - Q(S_{t}, A_{t}, \theta)]^{2}.$$

• Stochastic gradient descent (viewing $Q(S_{t+1}, a; \theta)$ as a fixed target)

$$\widehat{\theta}^{new} \leftarrow \theta + \alpha \left[R_t + \gamma \max_{a} Q(S_{t+1}, a; \theta) - Q(S_t, A_t; \theta) \right] \frac{dQ(S_t, A_t; \theta)}{d\theta} \Big|_{\theta = \widehat{\theta}^{old}}.$$

	Q-learning
	Converges to q^*
	(Watkins and Dayan, 1992)
Tabular	(Tsitsiklis, 1994)
	Can diverge
Linear	(Wiering, 2004; Baird, 1995)
Non-Linear	Can Diverge

Deep Q-Network (DQN)

Data tuples $\{(S_t, A_t, R_t, S_{t+1}), t = 0, 1, 2, \ldots\}$

Usually store 10,000 most recent (S_t, A_t, R_t, S_{t+1}) in replay memory \mathcal{D}

- Initialize Q(s, a) (say, Q(s, a) = 0 for all (s, a)).
- ② Randomly sample a mini-batch of tuples (S_t, A_t, R_t, S_{t+1}) from \mathcal{D} and train the Q-function using neural network:

$$\binom{S_t}{A_t} \longrightarrow \bigvee_{l=1}^{\infty} \longrightarrow \cdots \longrightarrow \bigvee_{l=1}^{\infty} \longrightarrow Y_t \triangleq \begin{cases} R_t & \text{if } S_{t+1} \text{ is terminal} \\ R_t + \gamma \max_{a} Q(S_{t+1}, a) & \text{else} \end{cases}$$

RL Mobile Health Applications

IntelliCare for Depression and Anxiety

The hub app:

- Recommend apps weekly
- Track app usage.
- Manage other apps and push notifications.

• What app(s) to recommend so as to maximize app usage?

Worry Knot

▶ app usage of current week

Roost Me

MoveMe

- cumulative app usages over several weeks.
- When to send out push notification so the users will respond?

Social Force

Reminders

- Final project proposal due at 9pm on December 2nd
 - ► Topic
 - ▶ The method you will investigate
 - Simulation, or real data analysis (what's the data set), or theoretical derivation of a novel method.
- Hw #3 is due at 9pm on November 16th
- In class group paper presentation (next week Nov 21st):
 - ▶ U-Net: Convolutional Networks for Biomedical Image Segmentation Team member: Manye Dong, Jiatong Li, Yiming Li, Wenxin Tian, Yuntian Xu, Shihang Zeng
 - ▶ Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance.
 Team members: Ruoying Deng, Ruijie He, Ekaterina Hofrenning, Jessie Li, Authur Starodynov, Yueyi Xu