Formelsammlung FEL-3 VO

basierend auf dem Skript von Prof. Reiter

14. Dezember 2022

1. Spannungstensor

Tensor:
$$[\sigma_{ij}] = \begin{bmatrix} \sigma_{xx} & \sigma_{yx} & \sigma_{zx} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{zy} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{bmatrix}$$

Spannungsvektor: $\vec{\sigma}_n = [\sigma_{ij}] \cdot \vec{n}$ $\sigma_{ni} = \sigma_{ij} n_j$ $\vec{n} \dots$ muss Einheitsvektor sein

Normalspannung: $\sigma_{nn} = \vec{\sigma}_n \cdot \vec{n} = \{ [\sigma_{ij}] \cdot \vec{n} \} \cdot \vec{n}$

Schubspannung: $\tau = \sqrt{\sigma^2 - \sigma_n^2}$ mit $\sigma = ||\vec{\sigma}_{nn}||$ $\vec{\tau} = \sigma_n - \sigma_{nn} \cdot \vec{n} \rightarrow \tau = ||\vec{\tau}||$

Hauptnormalspannungen: $-\sigma^3 + I_1 \cdot \sigma^2 - I_2 \cdot \sigma + I_3 = 0$ (Eigenwertproblem, lösen mit Rechenknecht)

Koeffizienten (Invarianten) des Spannungstensors:

$$I_1 = \sigma_{xx} + \sigma_{yy} + \sigma_{zz} = \text{spur}[\sigma_{ij}]$$

$$I_3 = \det \left[\sigma_{ij}\right] = \sigma_1 \cdot \sigma_2 \cdot \sigma_3$$

$$I_{2} = \det \begin{vmatrix} \sigma_{xx} & \sigma_{yx} \\ \sigma_{xy} & \sigma_{yy} \end{vmatrix} + \det \begin{vmatrix} \sigma_{yy} & \sigma_{yz} \\ \sigma_{yz} & \sigma_{zz} \end{vmatrix} + \det \begin{vmatrix} \sigma_{xx} & \sigma_{zx} \\ \sigma_{xz} & \sigma_{zz} \end{vmatrix} = \sigma_{1} \cdot \sigma_{2} + \sigma_{2} \cdot \sigma_{3} + \sigma_{3} \cdot \sigma_{1}$$

Normalrichtungen zu den Hauptnormalspannungen:

 $\{[\sigma_{ij}] - \sigma_i \cdot [I]\} \cdot \vec{n}_i = \vec{0} \quad [I] \dots \text{Einheitsmatrix} \quad \sigma_i \dots \text{Einsetzten von } \sigma_1, \sigma_2 \text{ und } \sigma_3 \rightarrow \vec{n}_1, \ \vec{n}_2 \text{ und } \vec{n}_3 \rightarrow \vec{n}_4, \ \vec{n}_4 \text{ und } \vec{n}_3 \rightarrow \vec{n}_4, \ \vec{n}_4 \text{ und } \vec{n}_4 \rightarrow \vec{n}_4, \ \vec{n}_4 \text{ und } \vec{n}_4 \rightarrow \vec{n}_4, \ \vec{n}_4 \text{ und } \vec{n}_4 \rightarrow \vec{n}_4, \ \vec{n}_4 \rightarrow \vec{n}_$

Kesselformeln: $\sigma_{xx} = \frac{p_{\ddot{u}}}{2t}R$ $\sigma_{yy} = \sigma_{\varphi\varphi} = 2 \sigma_{xx}$ (ESZ) $t \dots$ Wandstärke

Krümmungsradius: (hier?) $R = \frac{E}{\sigma_F} \sqrt{\frac{1}{4} \left[3h^2 - M^{EP} \frac{12}{b\sigma_F} \right]}$

2. Verzerrungstensor

Materialgesetz: (isentrope Materiale)

$$\varepsilon_{xx} = \frac{1}{E} \left[\sigma_1 - \nu(\sigma_2 - \sigma_3) \right] + \alpha_T \cdot \Delta T$$

$$\varepsilon_{yy} = \frac{1}{E} \left[\sigma_2 - \nu(\sigma_3 - \sigma_1) \right] + \alpha_T \cdot \Delta T$$

$$\varepsilon_{zz} = \frac{1}{E} \left[\sigma_3 - \nu(\sigma_1 - \sigma_2) \right] + \alpha_T \cdot \Delta T$$

$$\gamma_{xy} = \frac{1}{G} \cdot \sigma_{xy} = \frac{2 \cdot (1 + \nu)}{E} \cdot \sigma_{xy}$$

Materialgesetz 2???
$$G = \frac{E}{2(1+\nu)}$$
 $K = \frac{E}{3(1-2\nu)}$ $\mu = \frac{E}{2(1+\nu)}$ kann nicht stimmen $\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}$ \rightarrow $\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij}$

Vergleichsspannungen

Mises:
$$\sigma_{v,M} = \sqrt{\frac{1}{2} \cdot \left[(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6 \cdot (\tau_{xy}^2 + \tau_{xz}^2 + \tau_{yz}^2) \right]}$$

Mises einfach:
$$\sigma_v = \sqrt{\sigma^2 + \zeta \tau^2}$$
 $\zeta = \left(\frac{\sigma_D}{\tau_D}\right)^2$ oder = 3 Schweißnaht: $\sigma_{vs} = \sqrt{\sigma_\perp^2 + \tau_\parallel^2 + \tau_\perp^2}$

3. Biegungen, Verzerrungen und Energien (?)

$$\text{Verzerrung eines Balkens} \quad U = \int_{x_1}^{x_2} \frac{N^2}{2 \; EA} \mathrm{d}x + \int_{x_1}^{x_2} \frac{M_b^2}{2 \; EJ_b} \mathrm{d}x + \int_{x_1}^{x_2} \frac{M_T^2}{2 \; GJ_T} \mathrm{d}x + \int_{x_1}^{x_2} \frac{Q^2}{2 \; GA_s} \mathrm{d}x + \int_{x_2}^{x_2} \frac{M_b^2}{2 \; GJ_T} \mathrm{d}x + \int_{x_1}^{x_2} \frac{Q^2}{2 \; GA_s} \mathrm{d}x + \int_{x_2}^{x_2} \frac{M_b^2}{2 \; GJ_T} \mathrm{d}x + \int_{x_2}^{x_2} \frac{Q^2}{2 \; GA_s} \mathrm{d}x + \int_{x_2}^{x_2} \frac{M_b^2}{2 \; GJ_T} \mathrm{d}x + \int_{x_2}^{x_2} \frac{Q^2}{2 \; GA_s} \mathrm{d}x + \int_{x_2}^{x_2} \frac{M_b^2}{2 \; GJ_T} \mathrm{d}x + \int_{x_2}^{x_2} \frac{Q^2}{2 \; GA_s} \mathrm{d}x + \int_{x_2}^{x_2} \frac{M_b^2}{2 \; GJ_T} \mathrm{d}x + \int_{x_2}^{x_2} \frac{Q^2}{2 \; GA_s} \mathrm{d}x + \int_{x_2}^{x_2} \frac{M_b^2}{2 \; GJ_T} \mathrm{d}x + \int_{x_2}^{x_2} \frac{Q^2}{2 \; GA_s} \mathrm{d}x + \int_{x_2}^{x_2} \frac{M_b^2}{2 \; GJ_T} \mathrm{d}x + \int_{x_2}^{x_2} \frac{Q^2}{2 \; GA_s} \mathrm{d}x + \int_{x_2}^{x_2} \frac{M_b^2}{2 \; GJ_T} \mathrm{d}x + \int_{x_2}^{x_2} \frac{Q^2}{2 \; GA_s} \mathrm{d}x + \int_{x_2}^{x_2} \frac{M_b^2}{2 \; GJ_T} \mathrm{d}x + \int_{x_2}^{x_2} \frac{Q^2}{2 \; GA_s} \mathrm{d}x + \int_{x_2}^{x_2} \frac{M_b^2}{2 \; GJ_T} \mathrm{d}x + \int_{x_2}^{x_2} \frac{Q^2}{2 \; GA_s} \mathrm{d}x + \int_{x_2}^{x_2} \frac{M_b^2}{2 \; GJ_T} \mathrm{d}x + \int_{x_2}^{x_2} \frac{Q^2}{2 \; GA_s} \mathrm{d}x + \int_{x_2}^{x_2} \frac{M_b^2}{2 \; GJ_T} \mathrm{d}x + \int_{x_2}^{x_2} \frac{Q^2}{2 \; GA_s} \mathrm{d}x + \int_{x_2}^{x_2} \frac{M_b^2}{2 \; GJ_T} \mathrm{d}x + \int_{x_2}^{x_2} \frac{Q^2}{2 \; GA_s} \mathrm{d}x + \int_{x_2}^{x_2} \frac{M_b^2}{2 \; GJ_T} \mathrm{d}x + \int_{x_2}^{x_2} \frac{Q^2}{2 \; GA_s} \mathrm{d}x + \int_{x_2}^{x_2} \frac{M_b^2}{2 \; GJ_T} \mathrm$$

Arbeitssatz
$$W = U$$
 $W = \frac{1}{2} F w_F$

Castigliano:
$$w_f = \frac{\partial U}{\partial F_i}$$
 $w_H = \frac{\partial U}{\partial H}$

Menabrea:
$$\frac{\partial U}{\partial X_i} = 0$$

 X_i ... Auflagekraft; statisch unbestimmte, innere Kraft

Äußere/Innerlich statische Bestimmtheit:

2-dimensional:
$$N=Z+R-3$$
 K 3-dimensional: $N=Z+R-6$ K $Z...$ Zwangskräfte $R...$ Reaktionskräfte (Lagerkräfte) $K...$ Körper

Ritz: siehe S.176 im Skript
$$\vec{u} \approx \tilde{u}_{(x,y,z)} = \sum_k a_k \ \vec{\varphi}_{k(x,y,z)} \qquad \vec{\varphi}_{k(x,y,z)} \dots \text{Ritz'sche Ansatzfunktion} \qquad a_k \dots \text{Koeffizienten}$$

$$V \approx \tilde{V}_{(\tilde{u})} = \tilde{V}_{(a_k)}$$
 $\frac{\partial \tilde{V}_{(a_k)}}{\partial a_k} = 0 \to a_k$

4. Gesamtpotentiale

4.1. Beispiel 1

$$V = \pi^{(i)} + \pi^{(a)}$$

Inneres Potential
$$\pi^{(i)}$$
:

Inneres Potential
$$\pi^{(i)}$$
: $V_{Biegung} = \int_0^l EJ \ w''^2 \ dx \ (Tilde? Dach?)$

Äußeres Potential
$$\pi^{(a)}$$
:

$$V_{Kraft} = \pm \frac{1}{2} F w_{(f)}$$

Äußeres Potential $\pi^{(a)}$: $V_{Kraft}=\pm\frac{1}{2}\;F\;w_{(f)}$ Kraft und Verschiebung in verschiedene (+) und gleiche (-) Richtung

$$V_{Streckenlast} = -\int_0^l \tilde{w}_{(x)} \ q \ \mathrm{d}x$$

4.2. Beispiel 2

$$V = \pi^{(i)} + \pi^{(a)}$$

$$\begin{array}{c} I_0 \\ I_0 \\ \hline I$$

Inneres Potential
$$\pi^{(i)}$$

Inneres Potential
$$\pi^{(i)}$$
 $V_{Biegung} = \frac{1}{2} \int_0^l EJ \ w''^{\ 2} \ \mathrm{d}x$

Äußeres Potential
$$\pi^{(a)}$$

Äußeres Potential
$$\pi^{(a)}$$

$$V_{Kraft} = -Pu \approx -P \ \frac{1}{2} \int_0^l w'^{\ 2} \ \mathrm{d}x$$

Mögliche Ansatzfunktionen:

Grundsätzlich kann man jegliche Funktion verwenden, aber diese soll der Biegelinie ähneln.

- \rightarrow Potenz
funktionen: z.B. $\varphi_{(x)}=x~(l-x)$
- \rightarrow Trigonometrische Funktionen: z.B. $\varphi_{(x)} = \sin\left(\frac{x}{l}\pi\right)$

A. Euler-Knickfälle

Abbildung 4.9. Kritische Knicklängen l_k für "Standard-Randbedingungen"

B. aus MEL2VO

B.1. Trägheitsmomente

y y	$I_{y} = \frac{bh^{3}}{12}$ $I_{z} = \frac{hb^{3}}{12}$ $W_{y} = \frac{bh^{2}}{6}$ $W_{z} = \frac{hb^{2}}{6}$		$I_{y} = I_{z} = \frac{a^{4}}{12}$ $W_{y} = W_{z} = \frac{a^{3}}{6}$ $I_{y} = I_{z} = \frac{a^{4}}{12}$ $W_{y} = W_{z} = \frac{\sqrt{12}}{12} a^{3} = 0.118 a^{3}$
y	$I_{y} = I_{z} = \frac{5\sqrt{3}}{16} R^{4} = 0.5413 R^{4}$ $W_{y} = \frac{5}{8} R^{3} = 0.625 R^{3}$ $W_{z} = \frac{5\sqrt{3}}{16} R^{3} = 0.5413 R^{3}$	\overline{y} \overline{y} \overline{y} \overline{y}	$I_{y} = I_{z} = (1+2\sqrt{2}) \cdot \frac{R^{4}}{6} = 0.638 R^{4}$ $W_{y} = W_{z} = 0.6906 R^{3}$ $I_{y} = I_{z} = (1+2\sqrt{2}) \cdot \frac{R^{4}}{6} = 0.638 R^{4}$ $W_{y} = W_{z} = 0.638 R^{3}$
9	$I_{Y} = \frac{bh^{3}}{36}$ $I_{2} = \frac{hb^{3}}{48}$ $W_{Y} = \frac{bh^{2}}{24} \text{ für } e = \frac{2}{3}h$ $W_{Z} = \frac{hb^{2}}{24}$	b ₂	$I_{y} = \frac{h^{3}}{36} \frac{b_{1}^{2} + 4b_{1}b_{2} + b_{2}^{2}}{b_{1} + b_{2}}$ $W_{y} = \frac{h^{2}}{12} \frac{b_{1}^{2} + 4b_{1}b_{2} + b_{2}^{2}}{2b_{1} + b_{2}}$ $\text{für } e = \frac{h}{3} \frac{2b_{1} + b_{2}}{b_{1} + b_{2}}$
y Z	$I_y = I_z = \frac{\pi d^4}{64}$ $W_y = W_2 = \frac{\pi d^3}{32}$	\$ J	$I_{y} = I_{z} = \frac{\pi \left(D^{L} - d^{L}\right)}{6L}$ $W_{y} = W_{z} = \frac{\pi \left(D^{L} - d^{L}\right)}{32D}$ bei geringer Wanddicke $\left(\frac{S}{d_{m}}\right)^{2} \ll 1$: $I_{y} = I_{z} = \frac{\pi d_{m}^{3} S}{8}, W_{y} = W_{z} = \frac{\pi d_{m}^{2} S}{L}$
2 y y y	$I_{y} = \frac{\pi a^{3}b}{\frac{4}{4}}$ $I_{z} = \frac{\pi b^{3}a}{\frac{4}{4}}$ $W_{y} = \frac{\pi a^{2}b}{\frac{4}{4}}$ $W_{z} = \frac{\pi b^{2}a}{\frac{4}{4}}$	5 b1 5 5 5 7 Y	$I_{y} = \frac{\pi}{4} (a_{1}^{3}b_{1} - a_{2}^{2}b_{2})$ $W_{y} = \frac{\pi(a_{1}^{3}b_{1} - a_{2}^{2}b_{2})}{4a_{1}}$ bei geringer Wanddicke: $I_{y} = \frac{\pi a_{1}^{2}(a_{1}+3b)s}{4}, W_{y} = \frac{\pi a_{2}(a_{2}+3b)s}{4}$
y	$I_{y} = \left(\frac{\pi}{8} - \frac{8}{9\pi}\right) r^{4} = 0.1098 r^{4}$ $W_{y} = I_{y} / e = 0.1908 r^{3}$ $\text{für } e = \left(1 - \frac{4}{3\pi}\right) r = 0.5756 r$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$I_{y} = 0.1098(R^{4}-r^{4}) - 0.283R^{2}r^{2}\frac{R-r}{R+r}$ $W_{y1,2} = I_{y}/e_{1,2}$ für $e_{1} = \frac{4}{3\pi} \frac{R^{2}+Rr+r^{2}}{R+r}$ bzw. $e_{2} = R - e_{1}$

B.2. Biegelinien

	Belastungsfall	Gleichung der Biegelinie	Durchbiegung	Neigungswinkel
8		$w(x) = \frac{ql^4}{24EI_y} \left[3 - 4\frac{x}{l} + \left(\frac{x}{l}\right)^4 \right]$	$f = \frac{ql^{L}}{8EI_{y}}$	$\alpha = \frac{ql^3}{6EI_y}$
g		$w(x) = \frac{q_2 l^4}{120 E I_y} \left[4 - 5 \frac{x}{l} + \left(\frac{x}{l} \right)^5 \right]$	$f = \frac{q_2 l^4}{30 E I_y}$	$\alpha = \frac{q_2 l^3}{24 E l_y}$
10		$w(x) = \frac{q_1 t^4}{120EI_y} \left[11 - 15 \frac{x}{t} + 5 \left(\frac{x}{t} \right)^4 - \left(\frac{x}{t} \right)^5 \right]$	$f = \frac{11}{120} \frac{q_i l^4}{E l_y}$	$\alpha = \frac{q_1 l^3}{8EI_y}$
11	$\begin{array}{c c} x & -\psi(x) & f_m & \alpha_{\xi_0} \\ \hline & x & & & \\ & & & & \\ & & & & \\ & & & &$	$0 = x = l:$ $w(x) = -\frac{Fal^2}{6EI_y} \left[\frac{x}{l} - \left(\frac{x}{l} \right)^3 \right]$ $0 = \overline{x} = a:$ $w(\overline{x}) = \frac{Fa^3}{6EI_y} \left[2 \frac{l}{a} \frac{\overline{x}}{a} + 3 \left(\frac{\overline{x}}{a} \right)^2 - \left(\frac{\overline{x}}{a} \right)^3 \right]$	$f = \frac{Ea^{2}(l+a)}{3EI_{Y}}$ $f_{m} = \frac{Fal^{2}}{9\sqrt{3}EI_{Y}} \text{ in } x_{m} = \frac{l}{\sqrt{3}}$	$\alpha = \frac{Fa(2l+3a)}{6El_y}$ $\alpha_A = \frac{Fal}{6El_y}$ $\alpha_B = \frac{Fal}{3El_y}$
12	$\alpha_{A} - w(x) \int_{a}^{b} \alpha_{B} dx$	$\begin{aligned} 0 &= x \leq l; \\ w(x) &= -\frac{q a^2 l^2}{12 \mathcal{E} I_y} \left[\frac{x}{l} - \left(\frac{x}{l} \right)^3 \right] \\ 0 &= \bar{x} \leq a; \\ w(\bar{x}) &= \frac{q a^4}{24 \mathcal{E} I_y} \left[4 \frac{1}{a} \frac{\bar{x}}{a} + 6 \left(\frac{\bar{x}}{a} \right)^2 + 4 \left(\frac{\bar{x}}{a} \right)^3 + \left(\frac{\bar{x}}{a} \right)^3 \right] \end{aligned}$	$f = \frac{qa^{3}(4l+3a)}{2kEl_{y}}$ $f_{m} = \frac{qa^{2}l^{2}}{18\sqrt{3}El_{y}} \text{ in } x_{m} = \frac{l}{\sqrt{3}}$	$\alpha = \frac{qa^{2}(l+a)}{6EI_{y}}$ $\alpha_{A} = \frac{qa^{2}l}{12EI_{y}}$ $\alpha_{B} = \frac{qa^{2}l}{6EI_{y}}$