Performance Analysis

Prof. Ki-Hoon Lee
School of Computer and Information Engineering
Kwangwoon University

Performance Analysis

- A priori estimates of performance
- Space complexity: the amount of memory that a program needs to run to completion
- Time complexity: the amount of computer time that a program needs to run to completion

Space Complexity

- The space needed by a program is seen to be the sum of the following components:
 - A fixed part that is independent of the characteristics (e.g., number, size) of the inputs and outputs
 - Example: space for the code, constants, etc.
 - A variable part whose size is dependent on the particular problem instance being solved
 - Example: space for variables depending on instance characteristics, recursion stack space
- $S(P) = c + S_p$ (instance characteristics)

Space Complexity (cont.)

- When analyzing the space complexity of a program, we shall concentrate solely on estimating S_p (instance characteristics)
- Instance characteristics: quantities related to the number and magnitude of the inputs to and outputs from the program

Space Complexity (cont.)

```
float Sum(float *a, const int n)
{
    float s = 0;
    for(int i = 0; i < n; i++)
        s += a[i];
    return s;
}</pre>
```

- The program instances are characterized by *n*, the number of elements to be summed
- The space needed by the function is independent of n and $S_{Sum}(n) = 0$

Space Complexity (cont.)

```
float Rsum(float *a, const int n)
{
    if(n <= 0) return 0;
    else return(Rsum(a, n-1) + a[n-1]);
}</pre>
```

- Each call to *Rsum* requires at least 4 words (*a*, *n*, the returned value, and the return address)
- The depth of recursion: n + 1
- The recursion stack space: 4(n + 1)

Time Complexity

• The time, T(P), taken by a program P is the sum of the compile time and the run (or execution) time

• We shall concern ourselves with just the run time t_p of a program

Time Complexity (cont.)

- Program step: a segment of a program that has an execution time that is independent of the instance characteristics
- The number of steps
 - Expressions and assignment statements: 1
 - Iteration statements (e.g., for, while)
 - We shall consider the step counts only for the control part of these statements.
 - Example: while(<the control part>) { ... }

— ...

Time Complexity (cont.)

행 번호	s/e	빈도	<u></u> 단계 수
1	0	1	0
2	1	1	1
3	1	n + 1	n + 1
4	1	n	n
5	1	1	1
6	0	1	0
<u> </u>	총단	<u></u> 계 수	2n + 3

- s/e: the number of steps per execution of a statement
- The frequency of line 3 is n + 1 not n because i has to be incremented to n

Time Complexity (cont.)

- The best-case step count
 - The minimum number of steps that can be executed for the given parameters.
- The worst-case step count: maximum
- The average-case step count: average
- Example: find an element in an array of size *n*
 - best: 1
 - worst: *n*
 - average: n/2

Asymptotic Notation

• Determining the exact step count is difficult and not very worthwhile

• We introduce some terminology that will enable us to make meaningful (but inexact) statements about the time and space complexities of a program

Big "oh"

- Definition: f(n) = O(g(n)) iff there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$.
 - read as "f of n is big oh of g of n"
 - iff: if and only if

Big "oh" (cont.)

•
$$3n + 2 = O(n)$$

$$(c=4, n_0=2)$$

•
$$3n + 3 = O(n)$$

$$(c=4, n_0=3)$$

•
$$100n + 6 = O(n)$$

$$(c=101, n_0=10)$$

•
$$10n^2 + 4n + 2 = O(n^2)$$

$$(c=11, n_0=5)$$

•
$$1000n^2 + 100n - 6 = O(n^2)$$
 (c=1001, n₀=100)

$$(c=1001, n_0=100)$$

•
$$6*2^n + n^2 = O(2^n)$$

$$(c=7, n_0=4)$$

•
$$3n + 3 = O(n^2)$$

$$(c=3, n_0=2)$$

•
$$10n^2 + 4n + 2 = O(n^4)$$

$$(c = 10, n_0 = 2)$$

•
$$3n + 2 \neq O(1)$$

•
$$10n^2 + 4n + 2 \neq O(n)$$

Big "oh" (cont.)

- O(1)
- O(*log* n)
- O(n)
- O(n *log* n)
- $O(n^2)$
- $O(n^3)$
- $O(2^n)$
- O(n!)

$\log n$	n	$n \log n$	n^2	n^3	2^n
0	1	0	1	1	2
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4096	65,536
5	32	160	1024	32,768	4,294,967,296

