Fondamentaux du machine learning

Module 3

Objectifs

Objectifs

- adopter un workflow cohérent de data science
- comprendre les écueils à éviter (biais statistiques)
- acquérir les bonnes pratiques

Un projet de data science c'est :

1. définir la question à laquelle on veut répondre

- 1. définir la question à laquelle on veut répondre
- 2. obtenir des données

- 1. définir la question à laquelle on veut répondre
- 2. obtenir des données
- 3. préparer les données

- 1. définir la question à laquelle on veut répondre
- 2. obtenir des données
- 3. préparer les données
- 4. explorer les données

- 1. définir la question à laquelle on veut répondre
- 2. obtenir des données
- 3. préparer les données
- 4. explorer les données
- 5. entraîner un modèle

- 1. définir la question à laquelle on veut répondre
- 2. obtenir des données
- 3. préparer les données
- 4. explorer les données
- 5. entraîner un modèle
- 6. communiquer les résultats

- 1. définir la question à laquelle on veut répondre
- 2. obtenir des données
- 3. préparer les données
- 4. explorer les données
- 5. entraîner un modèle
- 6. communiquer les résultats
- 7. rendre son analyse reproductible

- 1. définir la question à laquelle on veut répondre
- 2. obtenir des données
- 3. préparer les données
- 4. explorer les données
- 5. entraîner un modèle
- 6. communiquer les résultats
- 7. rendre son analyse reproductible
- 3 et 4 se font souvent en même temps. Pas linéaire, retours en arrière fréquents.

- 1. définir la question à laquelle on veut répondre
- 2. obtenir des données
- 3. préparer les données
- 4. explorer les données
- 5. entraîner un modèle
- 6. communiquer les résultats
- 7. rendre son analyse reproductible

En partant d'un problème business ou scientifique réel :

• métrique pour quantifier le problème

En partant d'un problème business ou scientifique réel :

- métrique pour quantifier le problème
- pas de métrique → problème mal posé. Pourquoi?

En partant d'un problème business ou scientifique réel :

- métrique pour quantifier le problème
- pas de métrique → problème mal posé. Pourquoi?
- métriques intrinsèque et extrinsèque si possible

Obtention des données

Obtention des données

- 1. définir la question à laquelle on veut répondre
- 2. obtenir des données
- 3. préparer les données
- 4. explorer les données
- 5. entraîner un modèle
- 6. évaluer et communiquer les résultats
- 7. rendre son analyse reproductible

Types d'étude

- observationnelle
- expérimentale

Différence?

 ${\sf Datascience} \to {\sf \acute{e}tudes} \ {\sf souvent} \ {\sf observationnelles}.$

Risques importants de :

 variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")

 ${\sf Datascience} \to {\sf \acute{e}tudes} \ {\sf souvent} \ {\sf observationnelles}.$

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques

 ${\sf Datascience} \to {\sf \acute{e}tudes} \ {\sf souvent} \ {\sf observationnelles}.$

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection

 ${\sf Datascience} \to {\sf \acute{e}tudes} \ {\sf souvent} \ {\sf observationnelles}.$

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection
 - mesure

Datascience \rightarrow études souvent observationnelles.

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection
 - mesure
 - attrition

Datascience \rightarrow études souvent observationnelles.

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection
 - mesure
 - attrition
 - · ..

 ${\sf Datascience} \to {\sf \acute{e}tudes} \ {\sf souvent} \ {\sf observationnelles}.$

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection
 - mesure
 - attrition
 - ...
- trouver de fausses variables explicatives

Datascience \rightarrow études souvent observationnelles.

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection
 - mesure
 - attrition
 - · ...
- trouver de fausses variables explicatives

 ${\sf Datascience} \to {\sf \acute{e}tudes} \ {\sf souvent} \ {\sf observationnelles}.$

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection
 - mesure
 - attrition
 - ...
- trouver de fausses variables explicatives
- \rightarrow Le garder en tête pendant toute l'étude.

Qualité

Souvent, meilleures données > meilleurs modèles

 \rightarrow À garder en tête pendant toute l'étude, en particulier durant l'entraı̂nement de modèles

Préparation des données

Préparation des données

- 1. définir la question à laquelle on veut répondre
- 2. obtenir des données
- 3. préparer les données
- 4. explorer les données
- 5. entraîner un modèle
- 6. évaluer et communiquer les résultats
- 7. rendre son analyse reproductible

Préparation des données

- valeurs manquantes
- préprocessing (texte, image)
- standardisation
- transformation

Préparation des données — valeurs manquantes

Gênant pour certains modèles. Plusieurs options :

supprimer les enregistrements

Préparation des données — valeurs manquantes

Gênant pour certains modèles. Plusieurs options :

- supprimer les enregistrements
- remplacer par une valeur (imputation) :

Préparation des données — valeurs manquantes

Gênant pour certains modèles. Plusieurs options :

- supprimer les enregistrements
- remplacer par une valeur (imputation) :
 - constante

Préparation des données — valeurs manquantes

Gênant pour certains modèles. Plusieurs options :

- supprimer les enregistrements
- remplacer par une valeur (imputation) :
 - constante
 - moyenne de la colonne

Préparation des données — valeurs manquantes

Gênant pour certains modèles. Plusieurs options :

- supprimer les enregistrements
- remplacer par une valeur (imputation) :
 - constante
 - moyenne de la colonne
 - prédiction d'un autre modèle

Préparation des données — préprocessing

- tokenizer, POS-tagger le texte (https://spacy.io/)
- utiliser un réseau de neurones préentraîné sur les images (https://keras.io/applications/)
- appliquer une transformée de fourier sur le son
- •

Préparation des données — standardisation

Beaucoup de modèles travaillent mieux avec des données normales et sont plus efficaces autour de $\left[-5,5\right]$:

- centrer sur la moyenne puis diviser par l'écart-type
- transformation de Box-Cox en cas d'asymétrie
- transformations spécifiques en fonction de la distribution

Préparation des données — transformation

Quand un modèle n'accepte pas de données catégorielles :

- label encoding si ordinal
- one-hot encoding sinon

Préparation des données — label encoding

Si les données sont ordinales :

Ordinal:

Label encoding:

Température	
Froid	
Froid	
Tiède	
Chaud	
Tiède	
	•

_	
	Température
	1
	1
	2
	3
	2

Préparation des données — one-hot encoding

Remplacer une feature par n features avec n le nombre de catégories.

Catégoriel :

Couleur	_
Rouge	
Rouge	
Jaune	
Vert	
Jaune	

One-hot:

Rouge	Jaune	Vert
1	0	0
1	0	0
0	1	0
0	0	1
0	1	0

- 1. définir la question à laquelle on veut répondre
- 2. obtenir des données
- 3. nettoyer les données
- 4. explorer les données
- 5. entraîner un modèle
- 6. évaluer et communiquer les résultats
- 7. rendre son analyse reproductible

But:

 se rendre compte des prétraitements à effectuer (Box-Cox, imputations, etc)

But:

- se rendre compte des prétraitements à effectuer (Box-Cox, imputations, etc)
- comprendre la variable de sortie : distribution, équilibre des classes, features les plus corrélées, ...

But:

- se rendre compte des prétraitements à effectuer (Box-Cox, imputations, etc)
- comprendre la variable de sortie : distribution, équilibre des classes, features les plus corrélées, ...
- détecter les corrélations

But:

- se rendre compte des prétraitements à effectuer (Box-Cox, imputations, etc)
- comprendre la variable de sortie : distribution, équilibre des classes, features les plus corrélées, ...
- détecter les corrélations
- appréhender la complexité nécessaire du modèle

But:

- se rendre compte des prétraitements à effectuer (Box-Cox, imputations, etc)
- comprendre la variable de sortie : distribution, équilibre des classes, features les plus corrélées, ...
- détecter les corrélations
- appréhender la complexité nécessaire du modèle

Attention : garder des données de côté (test set) et ne pas les regarder. Sinon biais statistique énorme.

Outils

Plusieurs outils sont disponibles pour explorer des données. On utilise principalement des plots pour :

- se renseigner sur une distribution
- se renseigner sur la corrélation de deux distributions
- visualiser des corrélations linéaires

Les outils suivants sont sauf mention contraire présents dans seaborn.

Outils — count plot

https://www.eni-service.fr/

Outils — dist plot

https://www.eni-service.fr/

Outils — qq plot

Attention, pas seaborn mais statsmodel ou scipy.stats.

Outils — bar plot

Outils — scatter plot

Outils — violin plot

Outils — pair plot

https://www.eni-service.fr/

Outils — correlation matrix

Bonne baseline pour explorer un dataset :

analyser la(es) variable(s) de sortie (countplot/distplot)

Bonne baseline pour explorer un dataset :

- analyser la(es) variable(s) de sortie (countplot/distplot)
- trouver les corrélations linéaires les plus fortes

Bonne baseline pour explorer un dataset :

- analyser la(es) variable(s) de sortie (countplot/distplot)
- trouver les corrélations linéaires les plus fortes
- analyser les variables correspondantes

Bonne baseline pour explorer un dataset :

- analyser la(es) variable(s) de sortie (countplot/distplot)
- trouver les corrélations linéaires les plus fortes
- analyser les variables correspondantes
- regarder s'il y a des outliers évidents dans ces variables

Entrainement d'un modèle

Entrainement d'un modèle

- 1. définir la question à laquelle on veut répondre
- 2. obtenir des données
- 3. nettoyer les données
- 4. explorer les données
- 5. entraîner un modèle
- 6. évaluer et communiquer les résultats
- 7. rendre son analyse reproductible

Types d'entrainement

supervisé

Types d'entrainement

- supervisé
- non-supervisé

Types d'entrainement

- supervisé
- non-supervisé
- par renforcement

Étant donné des exemples d'entrainement (x_i, y_i) , trouver un modèle h:

• but : étant donné x_i , output $h(x_i) = \hat{y}_i$ proche de y_i

Étant donné des exemples d'entrainement (x_i, y_i) , trouver un modèle h:

- but : étant donné x_i , output $h(x_i) = \hat{y}_i$ proche de y_i
- moyen : définition d'une perte (loss) $L(\hat{y_i}, y_i)$

Étant donné des exemples d'entrainement (x_i, y_i) , trouver un modèle h:

- but : étant donné x_i , output $h(x_i) = \hat{y}_i$ proche de y_i
- moyen : définition d'une perte (loss) L(ŷ_i, y_i) quelle fonction pourrait-on prendre en régression?

Étant donné des exemples d'entrainement (x_i, y_i) , trouver un modèle h:

- but : étant donné x_i , output $h(x_i) = \hat{y}_i$ proche de y_i
- moyen: définition d'une perte (loss) $L(\hat{y}_i, y_i)$ quelle fonction pourrait-on prendre en régression? par exemple, $L(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$

Entrainement supervisé d'un modèle — procédé

Étant donné des exemples d'entrainement (x_i, y_i) , trouver un modèle h:

- but : étant donné x_i , output $h(x_i) = \hat{y}_i$ proche de y_i
- moyen : définition d'une perte (loss) $L(\hat{y}_i, y_i)$ quelle fonction pourrait-on prendre en régression? par exemple, $L(\hat{y}_i, y_i) = (\hat{y}_i y_i)^2$ puis minimisation

Entrainement supervisé d'un modèle — overfit

Problème : trop minimiser la perte n'est pas bon !

Entrainement supervisé d'un modèle — learning curve

ightarrow Minimiser la perte sur un ensemble de validation

Entrainement supervisé d'un modèle — data split

Il nous faut donc :

- ensemble d'entrainement
- ensemble de validation pour mesurer la généralisation
- ensemble de test (pour éviter le biais statistique)
- \rightarrow Split 60/20/20 habituel.

Entrainement supervisé d'un modèle — cross-validation

Pour « perdre » moins de données et mieux tester la généralisation, cross-validation :

Ici, 4-fold cross-validation.

Étant donné des exemples x_i , trouver un modèle h:

• but moins défini qu'en supervisé :

- but moins défini qu'en supervisé :
 - clustering : $h(x_i) = \hat{y}_i = \text{cluster de } x_i$

- but moins défini qu'en supervisé :
 - clustering : $h(x_i) = \hat{y}_i = \text{cluster de } x_i$
 - détection d'anomalies : $y_i = 1$ si anomalie, 0 sinon

- but moins défini qu'en supervisé :
 - clustering : $h(x_i) = \hat{y}_i = \text{cluster de } x_i$
 - détection d'anomalies : $y_i = 1$ si anomalie, 0 sinon
 - recommandations : y_i = liste d'items $x_{k\neq i}$

- but moins défini qu'en supervisé :
 - clustering : $h(x_i) = \hat{y}_i = \text{cluster de } x_i$
 - détection d'anomalies : $y_i = 1$ si anomalie, 0 sinon
 - recommandations : y_i = liste d'items $x_{k\neq i}$
 - réduction de dimensionnalité : $y_i = x_i$ projeté dans moins de features

- but moins défini qu'en supervisé :
 - clustering : $h(x_i) = \hat{y}_i = \text{cluster de } x_i$
 - détection d'anomalies : $y_i = 1$ si anomalie, 0 sinon
 - recommandations : y_i = liste d'items $x_{k\neq i}$
 - réduction de dimensionnalité : $y_i = x_i$ projeté dans moins de features
- on définit quand même une perte (loss)

Étant donné des exemples x_i , trouver un modèle h:

- but moins défini qu'en supervisé :
 - clustering : $h(x_i) = \hat{y}_i = \text{cluster de } x_i$
 - détection d'anomalies : $y_i = 1$ si anomalie, 0 sinon
 - recommandations : y_i = liste d'items $x_{k\neq i}$
 - réduction de dimensionnalité : $y_i = x_i$ projeté dans moins de features
- on définit quand même une perte (loss)

par exemple, densité intra- et inter-clusters en clustering

- but moins défini qu'en supervisé :
 - clustering : $h(x_i) = \hat{y}_i = \text{cluster de } x_i$
 - détection d'anomalies : $y_i = 1$ si anomalie, 0 sinon
 - recommandations : y_i = liste d'items $x_{k\neq i}$
 - réduction de dimensionnalité : $y_i = x_i$ projeté dans moins de features
- on définit quand même une perte (loss)
 par exemple, densité intra- et inter-clusters en clustering
 - puis minimisation

Évaluation des résultats

Évaluation des résultats

- 1. définir la question à laquelle on veut répondre
- 2. obtenir des données
- 3. nettoyer les données
- 4. explorer les données
- 5. entraîner un modèle
- 6. évaluer et communiquer les résultats
- 7. rendre son analyse reproductible

<u>Évaluation</u> — outils — matrice de confusion

Évaluation — outils — précision, rappel

En classification:

Précision

vrais positifs

vrais positifs + faux positifs

Rappel

vrais positifs

vrais positifs + faux négatifs

F-mesure moyenne harmonique entre précision et rappel (aussi appelée F1 score)

Outils — courbe ROC

Outils — courbe ROC

Reproductibilité

Reproductibilité

- 1. définir la question à laquelle on veut répondre
- 2. obtenir des données
- 3. nettoyer les données
- 4. explorer les données
- 5. entraîner un modèle
- 6. évaluer et communiquer les résultats
- 7. rendre son analyse reproductible

Reproductibilité

- extrêmement importante pour compléter les analyses après les retours business
- ensemble de bonnes pratiques

• garder une trace exacte du préprocessing

- garder une trace exacte du préprocessing
- de préférence utiliser des notebooks

- garder une trace exacte du préprocessing
- de préférence utiliser des notebooks
- faire attention au random (utiliser des seeds)

- garder une trace exacte du préprocessing
- de préférence utiliser des notebooks
- faire attention au random (utiliser des seeds)
- définir les datasets utilisés, dates comprises

- garder une trace exacte du préprocessing
- de préférence utiliser des notebooks
- faire attention au random (utiliser des seeds)
- définir les datasets utilisés, dates comprises
- garder une trace de l'environnement

Conclusion

Conclusion

- attention au biais statistique
- poser une question sur laquelle on peut mesurer le progrès
- acquérir des données les moins biaisées possible
- explorer et nettoyer les données en tandem
- fit un modèle avec une perte adaptée
- construire des résultats significatifs
- rester reproductible

