2014-2015 学年第二学期《线性代数》课内考试卷(A卷)

授课班号 年级专业 机电学院 学号 姓名

题号	_	 三	四	五.	总分	审核
题分						
得分						

<u>得分 | 评阅人 | 一、填空</u> (共 30 分, 每空格 5 分)

2、设
$$A$$
 是 4×3 矩阵,且 A 的秩 $R(A) = 2$ 且 $B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$,则 $R(AB) =$ ______

- 3、与向量(1,-2)正交的一个单位向量为______.
- 4、设A是n阶方阵, A^* 是A的伴随矩阵,已知|A|=5,则 AA^* 的特征值
- 5、设 4 元非齐次线性方程组 Ax = b 的两个解为 $\xi_1, \xi_2, (\xi_1 \neq \xi_2)$, A 的秩为 3,则

6、设
$$A = \begin{pmatrix} 1 & -2 & -4 \\ -2 & 4 & -2 \\ -4 & -2 & 1 \end{pmatrix}$$
相似于对角阵 $\begin{pmatrix} 5 & & \\ & \alpha & \\ & & -4 \end{pmatrix}$,则 $\alpha = \underline{\qquad \qquad }$

得分	评阅人

Ax = b 的通解 $\xi =$

二**、计算题**(共 24 分,每小题 6 分)

2、若三阶方阵A的伴随矩阵为 A^* ,已知|A|=2,求 $|(3A)^{-1}-2A|$

3、设3阶矩阵
$$X$$
满足等式 $AX = B + 2X$,其中 $A = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 2 \\ 2 & 0 & 2 \end{pmatrix}$,求矩阵 X 。

4、已知
$$AP = PB$$
,其中 $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, $P = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$, 求 A^5 。

得分	评阅人

____**三、求解题**(共 36 分,每小题 12 分) ____

1、设 $\alpha_1 = (0,4,2)$, $\alpha_2 = (1,1,0)$, $\alpha_3 = (-2,4,3)$, $\alpha_4 = (-1,1,1)$,求该向量组的秩和一个极大无关组,并把其余向量用极大无关组线性表示。

2、 λ 取何值时,线性方程组 $\begin{cases} 2x_1 + \lambda x_2 - x_3 = 1 \\ \lambda x_1 - x_2 + x_3 = 2 \end{cases}$ 无解,有唯一解或有无穷多解?当 $4x_1 + 5x_2 - 5x_3 = -1$ 有无穷多解时,求通解。

3、设
$$A = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
,求正交阵 T,使 $T^{-1}AT$ 为对角阵。

得分	评阅人

四、证明题(共10分,每小题5分)

1. 设向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ (m>1) 线性无关,且 $\beta=\alpha_1+\alpha_2+\cdots+\alpha_m$,证明:向量组 $\beta-\alpha_1,\beta-\alpha_2,\cdots,\beta-\alpha_m$ 也线性无关。

2. 设 $A^2 = A, A \neq E$, 证明|A| = 0