Correction d'exercices de TD

Langages et expressions rationnels

Exercice 2:

Pour chacune des expressions rationnelles suivantes, donnez une expression rationnelle représentant son complémentaire :

•
$$(a+b)^*b$$

Correction: $(a+b)^*b$ est le langage décrivant tous les mots de l'alphabet $\{a,b\}$ se terminant par la lettre b. Son complémentaire est donc l'ensemble des mots qui ne se terminent pas par la lettre b, c'est à dire soit le mot vide, soit les mots se terminant par la lettre a.

$$complementaire((a+b)^*b) = \epsilon + (a+b)^*.a$$

•
$$((a+b)(a+b))^*$$

Correction: $((a+b)(a+b))^*$ est le langage décrivant tous les mots de l'alphabet $\{a,b\}$ dont le nombre de lettres est pair. Ce langage contient de plus le mot vide. Son complémentaire est donc l'ensemble des mots qui contiennent un nombre impair de lettres.

$$complementaire \Big(\big((a+b).(a+b) \big)^* \Big) = \big((a+b).(a+b) \big)^+$$

•
$$(a+b)^*a(a+b)^*$$

Correction: $(a+b)^*a(a+b)^*$ est le langage décrivant tous les mots de l'alphabet $\{a,b\}$ contenant au moins une fois la lettre a. Son complémentaire est donc l'ensemble des mots qui ne contiennent pas la lettre a, c'est à dire soit le mot vide, soit les mots ne contenant que la lettre b.

$$complementaire((a+b)^*a(a+b)^*) = \epsilon + b^*$$

On sait que $\epsilon \in b^*$. Ce langage peut donc être simplifié en :

$$complementaire((a+b)^*a(a+b)^*) = b^*$$

•
$$(a+b)^*aa(a+b)^*$$

Correction: $(a+b)^*a(a+b)^*$ est le langage décrivant tous les mots de l'alphabet $\{a,b\}$ contenant au moins une fois deux lettres a qui se suivent. Son complémentaire est donc l'ensemble des mots dans lesquels deux lettres a ne se suivent pas, c'est à dire soit le mot vide, soit les mots d'une lettre, soit les mots contenant uniquement la lettre b, ou enfin les mots dans lesquels chaque occurrence de la lettre a est séparée par au moins une fois la lettre b.

complementaire
$$((a+b)^*aa(a+b)^*) = \epsilon + a + b^* + (a.b^+)^* + (b^+.a)^* + (a.b^+)^*.a + (b^+a)^*.b^+$$

Une forme équivalente plus concise de ce langage est :

$$complementaire((a+b)^*aa(a+b)^*) = ((a+\epsilon).b)^*(a+\epsilon)$$

Exercice 3:

Soit X un alphabet. On considère trois langages L_1 , L_2 , L_3 sur l'alphabet X.

Question 3.1 . Est-ce que, si $L_1.L_2 = L_1.L_3$, alors $L_2 = L_3$?

Correction: La réponse est non. Posons $X = \{a\}, L_1 = a^*, L_2 = a$ et $L_3 = (a + aa)$.

Nous allons montrer que $L_1.L_2 = L_1.L_3$.

• $L_1.L_3 \subseteq L_1.L_2$:

Soit $u \in L_1.L_3$.

Par définition, on sait qu'il existe $u_1 \in L_1$ et $u_3 \in L_3$ tels que $u = u_1.u_3$. On sait que $L_3 = a + aa$, donc que $u_3 = a$ ou $u_3 = aa$.

- Cas 1: $u_3 = a$ Dans ce cas, on a $u_3 \in L_2$, et donc $u_1.u_3 \in L_1.L_2$;
- <u>Cas 2: $u_3 = aa$ Dans ce cas, on a $u = u_1.aa = (u_1.a).a$. Posons $u_1' = u_1.a$ et $u_3' = a$. On a donc $u = u_1.u_3 = u_1'.u_3'$ On sait que si $u_1 \in L_1$, alors $u_1.a \in L_1$, et donc $u_1' \in L_1$. On sait de plus que $a \in L_2$, et donc que $u_3' \in L_2$. On a donc $u = u_1'.u_3' \in L_1.L_2$;</u>

Donc $L_1.L_3 \subseteq L_1.L_2$.

• $L_1.L_2 \subseteq L_1.L_3$:

Soit $u \in L_1.L_2$.

Par définition, on sait qu'il existe $u_1 \in L_1$ et $u_2 \in L_2$ tels que $u = u_1.u_2$. On sait que $L_2 = a$, et par conséquent que $u_2 = a$. Comme $L_3 = a + aa$, on a $u_2 \in L_3$. Donc $L_1.L_2 \subseteq L_1.L_3$.

On a donc bien $L_1.L_2 = L_1.L_3$, mais pourtant $L_2 \neq L_3$

Question 3.2 . Est-ce que $L_1^* = L_2^*$ alors $L_1 = L_2$?

Correction: La réponse est non. Posons $X = \{a\}$, $L_1 = a$ et $L_2 = a + aa$. Nous allons montrer que $L_1^* = L_2^*$.

- $\underline{L_1^* \subseteq L_2^*}$: Soit $u \in L_2^*$.
 - <u>Cas 1: $u = \epsilon$ </u> On sait que $\epsilon \in L_2^*$, donc $u \in L_2^*$;
 - $Cas\ 2: u \neq \epsilon$ Par définition, on sait qu'il existe $k \in \mathbb{N}$ et $(u_i)_{i \in \llbracket 1, k \rrbracket} \in L_1^k$ tels que $u = u_1.u_2.u_3...u_k$.

Pour tout $i \in \llbracket 1, k \rrbracket$, on a $u_i \in L_1$. Comme $L_1 = a$, on sait que $u_i = a$. Or $L_2 = (a + aa)$, donc $u_i \in L_2$. On a donc $\forall i \in \llbracket 1, k \rrbracket$, $u_i \in L_2$, et $u = u_1.u_2.u_3...u_k$. Par conséquent, $u \in L_2^*$;

• $L_2^* \subseteq L_1^*$: On sait que a^* est l'ensemble des mots pouvant être exprimés avec l'alphabet X. Comme L_2 exprime des mots composés avec cet alphabet, on a obligatoirement $L_2^* \subseteq a^*$. Par conséquent, $L_2^* \subseteq L_1^*$;

On a donc bien $L_1^* = L_2^*$, mais pourtant $L_1 \neq L_2$.

Question 3.3 . Est-ce que $(L_1 \cup L_2).L_3 = L_1.L_3 \cup L_2.L_3$?

Correction: La réponse est oui. Prouvons la double inclusion.

• $\frac{(L_1 \cup L_2).L_3 \subseteq L_1.L_3 \cup L_2.L_3}{\text{Soit } u \in (L_1 \cup L_2).L_3}$:

Par définition, on sait qu'il existe $v\in (L_1\cup L_2)$ et $w\in L_3$ tels que u=v.w. Par définition du langage $L_1\cup L_2$, on sait que $v\in L_1$ ou $v\in L_2$

- Cas 1: $v ∈ L_1$ On a alors $v.w ∈ L_1.L_3$, et donc $v.w ∈ L_1.L_3 ∪ L_2.L_3$;
- Cas 2: $v \in L_2$ On a alors $v.w \in L_2.L_3$, et donc $v.w \in L_1.L_3 \cup L_2.L_3$;

On a donc $u \in L_1.L_3 \cup L_2.L_3$, et donc $(L_1 \cup L_2).L_3 \subseteq L_1.L_3 \cup L_2.L_3$;

• $\frac{L_1.L_3 \cup L_2.L_3 \subseteq (L_1 \cup L_2).L_3}{\text{Soit } u \in L_1.L_3 \cup L_2.L_3}$:

Par définition du langage $L_1.L_3 \cup L_2.L_3$, on sait que $u \in L_1.L_3$, ou $u \in L_1.L_2$

- <u>Cas 1: $u \in L_1.L_3$ </u> On sait alors qu'il existe $v \in L_1$ et $w \in L_3$ tels que u = v.w. On sait que $v \in L_1$, alors $v \in L_1 \cup L_2$. On a donc $v \in L_1 \cup L_2$. On a donc $v \in L_1 \cup L_2$.
- Cas 2: $u \in L_2.L_3$ On sait alors qu'il existe $v \in L_2$ et $w \in L_3$ tels que u = v.w. On sait que $v \in L_2$, alors $v \in L_3$ alors $v \in L_3$. On a donc $v \in L_3$ on a donc $v \in L_3$ on a donc $v \in L_3$.

On a donc $u \in (L_1 \cup L_2).L_3$, et donc $L_1.L_3 \cup L_2.L_3 \subseteq (L_1 \cup L_2).L_3$;

On a donc bien la double inclusion : $(L_1 \cup L_2).L_3 = L_1.L_3 \cup L_2.L_3$

Question 3.4 . Est-ce que $(L_1 \cap L_2).L_3 = L_1.L_3 \cap L_2.L_3$?

Correction: La réponse est non. Posons $X = \{a\}$, $L_1 = a + aaa$, $L_2 = aa + aaa$ et $L_3 = a + aa$ Montrons que $L_1.L_3 \cap L_2.L_3 \not\subset (L_1 \cap L_2).L_3$ Soit u = aaa.

- Montrons que $u \in L_1.L_3 \cap L_2.L_3$.
 - En posant v = a et w = aa, on a $v \in L_1$, $w \in L_3$ et u = v.w. On sait donc que $u \in L_1.L_3$;
 - En posant v = aa et w = a, on a $v \in L_2$, $w \in L_3$ et u = v.w. On sait donc que $u \in L_2.L_3$;

Par conséquent, on a $u \in L_1.L_3 \cap L_2.L_3$.

• Procédons par raisonnement par l'absurde pour montrer que $u \not\in (L_1 \cap L_2).L_3$. Supposons que $u \in (L_1 \cap L_2).L_3$. Par définition, nous savons qu'il existe $v \in (L_1 \cap L_2)$ et $w \in L_3$ tels que u = v.w On a $L_1 \cap L_2 = aaa$, donc v = aaa. L'unique valeur de w pour laquelle on aurait $u \in (L_1 \cap L_2).L_3$ est $w = \epsilon$. Or, $\epsilon \not\in L_3$. Par conséquent, l'hypothèse émise est fausse : $u \not\in (L_1 \cap L_2).L_3$.

On a prouvé qu'il existait un mot u tel que $u \in L_1.L_3 \cap L_2.L_3$ et $u \not\in (L_1 \cap L_2).L_3$ Par conséquent, on a $L_1.L_3 \cap L_2.L_3 \not\subset (L_1 \cap L_2).L_3$, et donc $L_1.L_3 \cap L_2.L_3 \neq (L_1 \cap L_2).L_3$.

Question 3.5. Est-ce que $(L_1 \cup L_2)^* = L_1^* \cup L_2^*$? **Correction:** La réponse est non. Posons $X = \{a,b\}$, $L_1 = a$ et $L_2 = b$ Montrons que $(L_1 \cup L_2)^* \not\subset L_1^* \cup L_2^*$ Soit u = abab.

- Montrons que $u \in (L_1 \cup L_2)^*$ Par définition, on a $(L_1 \cup L_2)^* = (a+b)^*$ Par conséquent, $(L_1 \cup L_2)^*$ est le langage exprimant tous les mots de l'alphabet X. On a donc obligatoirement $u \in (L_1 \cup L_2)^*$;
- Procédons par raisonnement par l'absurde pour montrer que $u \not\in L_1^* \cup L_2^*$ Supposons que $u \in L_1^* \cup L_2^*$. Par définition, nous savons que $u \in L_1^*$ ou $u \in L_2^*$
 - $Cas\ 1: u \in L_1^*$ Par définition, on sait que L_1^* représente l'ensemble des mots de l'alphabet $\{a\}$. Puisque le mot u contient la lettre b qui ne figure pas dans cet alphabet, on sait que $u \notin L_1^*$;
 - $Cas\ 2: u \in L_2^*$ Par définition, on sait que L_2^* représente l'ensemble des mots de l'alphabet $\overline{\{b\}}$. Puisque le mot u contient la lettre a qui ne figure pas dans cet alphabet, on sait que $u \notin L_2^*$.

On a donc $u \notin L_1^*$ et $u \notin L_2^*$. Par conséquent, l'hypothèse émise est fausse : $u \notin L_1^* \cup L_2^*$.

On a prouvé qu'il existait un mot u tel que $u \in (L_1 \cup L_2)^*$ et $u \notin L_1^* \cup L_2^*$ Par conséquent, on a $(L_1 \cup L_2)^* \not\subset L_1^* \cup L_2^*$, et donc $(L_1 \cup L_2)^* \neq L_1^* \cup L_2^*$.