Verilog Size Checking

The statement $\Gamma \mid n \vdash e : \tau, X$ mean:

In the variable context Γ and the size context n, the size of the expression e is the value of the variable τ , with X the size-tagged set of equivalence classes of size variables.

So we have:

- $\Gamma: \mathcal{O} \to \mathbb{N}$ a mapping from operand to their size, with \mathcal{O} the set of operands,
- $n \in \mathbb{N} \cup \{*\}$ a size context (with * for the empty one),
- $e \in \mathcal{E}$, with \mathcal{E} the set of expressions,
- $\tau \in \mathcal{V}$, with \mathcal{V} the set of size variable,
- X=(S,f) with $S\in 2^{\mathcal{V}}$ the set of equivalence classes and $f:S\to\mathbb{N}$ a size valuation for each equivalence class.

We use the following notations:

•

$$\bowtie : \left\{ \begin{array}{ccc} \mathbb{N} \times (\mathbb{N} \cup \{*\}) & \to & \mathbb{N} \\ (m,*) & \mapsto & m \\ (m,n) & \mapsto & \max(m,n) \end{array} \right.$$

- $\Delta_X: \mathcal{V} \to \mathbb{N}$ the function that given a size variable x returns its size in the environment X = (S, f). We have $\Delta_X(x) = f([x]_S)$ with $[x]_S$ the equivalence class of x in S.
- $\{v \coloneqq s\}$: the declaration of a *fresh* size variable v. This adds a new equivalence class $\{v\}$ in X with the size mapping $\{v\} \mapsto s$.
- $X/\alpha \sim \beta$ the operation that combines two classes. For the newly created class, the valuation function gives the maximum of the previous classes.

Base case

$$\frac{\Gamma(x) = m}{\Gamma \mid n \vdash x : v, \{v \coloneqq m \bowtie n\}}$$

Operators

 $\frac{\Gamma \mid * \vdash a : \alpha, \text{ A} \quad \Gamma \mid * \vdash e_1 : \varepsilon_1, \text{ E}_1 \quad \dots \quad \Gamma \mid * \vdash e_n : \varepsilon_n, \text{ E}_n}{\Gamma \mid n \vdash a \text{ inside } \{e_1, \dots, e_n\} : v, \text{ A} \sqcup \text{E}_1 \sqcup \dots \sqcup \text{E}_n \sqcup \{v \coloneqq 1 \bowtie n\} / \alpha \sim \varepsilon_1, \dots, \alpha \sim \varepsilon_n}$