Constraint Programming for Constrained Clustering

C. Vrain

LIFO - Université d'Orléans - France

FCA4AI 2016

Data Mining from the point of view of search

Two families of problems

- Enumeration: pattern mining
 - Enumerating frequent itemsets
 - Enumerating closed frequent itemsets
 - **..**.
 - Extended to more complex data structures: sequences, graphs, . . .
- Optimization:
 - Supervised Classification
 - Clustering: unsupervised learning, only modeled by the optimization criterion
 - → Exact methods / Approximated methods
 - → Global optimum / local optimum

Constrained Data Mining

Introduction of constraints

- To reduce the number of patterns and to find more interesting patterns (enumeration problems)
- To better fit the needs of the user, only modeled in the optimization criterion (optimization problems)
- → Different kinds of constraints
- → Needs to adapt classic algorithms to handle these constraints

A new research domain: Declarative Frameworks for Data Mining

Declarative framework for Data Mining

- Frequent itemset mining
 - First work of (L. de Raedt & al, KDD 08) on frequent itemset mining in Constraint Programming (CP)
 - ► Extension to k-pattern-set mining (Khiari & al. CP 2010, Guns & al., 2010) → Application to conceptual clustering
 - ▶ A global constraint for closed itemset mining (Lazaar & al. CP 2016)

Clustering

- Conceptual clustering in an Integer LP framework (Mueller & al., 2010).
- Constrained distance-based clustering
 - ★ in SAT (2 classes) (Davidson & al, 2010)
 - in CP (k classes k bounded) in CP (Dao, Duong & Vrain, ECML/PKDD 2013, CP 2014, AIJ 2015)
 - ★ in an Integer LP framework (Babaki et al., 2014)
- Sequence mining: (Kemmar & al., CP 2015), (Négrevergne & al., CPAIOR 2015), (Aoga & al. ECML/PKDD 2016), (Gelser & al. IJCAI 2016)

Outline

- Constraint Programming
- Pattern mining in CP
- Distance Based Clustering
 - Constrained Clustering
 - Distance-based constrained clustering in CP: How-to? (Dao, Duong, Vrain)
- 4 Interest of declarativity (Dao, Duong, Vrain)
 - Flexibility
 - Finding a global optimum
 - Embedding in other algorithms
 - Integration in a more general framework
- Conclusion

Outline

- Constraint Programming
- Pattern mining in CP
- Distance Based Clustering
 - Constrained Clustering
 - Distance-based constrained clustering in CP: How-to? (Dao, Duong, Vrain)
- Interest of declarativity (Dao, Duong, Vrain)
 - Flexibility
 - Finding a global optimum
 - Embedding in other algorithms
 - Integration in a more general framework
- Conclusion

Constraint Programming (CP)

- Declarative Modeling of the problem by specifying variables and constraints
- Search for solutions by constraint propagation and branching

For optimization

branch-and-bound strategy for optimizing a criterion
 Once a solution is found → add constraints to forbid less good solutions

Let Δ a solution found, *obj* the objective to minimize and *OBJ* the variable capturing it.

- ▶ computation of $obj(\Delta)$
- ▶ addition of the constraint $OBJ < D(\Delta)$

An example in CP

$$SEND + MOST = MONEY$$

Find all the assignments of digits to letters such that

- \rightarrow CSP: constraint satisfaction problem
 - Find an assignment of digits to letters such that
 - ▶ SEND + MOST = MONEY
 - MONEY is maximal
- → COP: constraint optimization problem

Modeling in CP

$$SEND + MOST = MONEY$$

- Variables $S, E, N, D, M, O, T, Y \in \{0, ..., 9\}$
- Variable V capturing the value of the objective function
- Constraints:
 - \triangleright $S \neq 0$, $M \neq 0$
 - ightharpoonup alldifferent(S, E, N, D, M, O, T, Y)
 - A linear constraint

$$(1000 \times S + 100 \times E + 10 \times N + D) + (1000 \times M + 100 \times 0 + 10 \times S + T)$$
= $10000 \times M + 1000 \times 0 + 100 \times N + 10 \times E + Y$

- $V = 10000 \times M + 1000 \times 0 + 100 \times N + 10 \times E + Y$
- Objective function: maximize V

Solvers

- CP solvers: iteration of
 - Constraint propagation: removing inconsistent values from the variable domains

$$\begin{array}{l} D_S = \{9\} \\ D_E = \{2,3,4,5,6,7\} \\ D_M = \{1\} \\ D_O = \{0\} \\ D_N = \{3,4,5,6,7,8\} \\ D_D = D_T = D_Y = \{2,3,4,5,6,7,8\} \end{array}$$

Branching: creation of branches in the search tree

Binary tree:
$$E=2$$
 and $E\neq 2$

$$\rightarrow D_E=\{2\} \quad \text{and} \quad D_E=\{3,4,5,6,7\}$$

In case of optimization, add a new constraint each time a solution is found

Influence of search strategies

S, T, Y, N, D, E, M, O

- stable state
- intermediary solution
- failure state
- best solution

Global Constraints

Global constraints

Constraints embedding a set of constraints

 \Rightarrow more powerful filtering algorithms

Pairwise distinct values

- Elementary Constraints: $S \neq E, S \neq N, E \neq N, ...$
 - $S \in \{1,2,3\}, E \in \{1,2\}, N \in \{1,2\}$
 - $\Rightarrow S \in \{1,2,3\}, E \in \{1,2\}, N \in \{1,2\}$
- A global constraint: alldifferent(S, E, N, D, M, O, T, Y)
 - $S \in \{1,2,3\}, E \in \{1,2\}, N \in \{1,2\}$
 - $\Rightarrow S = 3, E \in \{1, 2\}, N \in \{1, 2\}$

Outline

- Constraint Programming
- Pattern mining in CP
- Distance Based Clustering
 - Constrained Clustering
 - Distance-based constrained clustering in CP: How-to? (Dao, Duong, Vrain)
- Interest of declarativity (Dao, Duong, Vrain)
 - Flexibility
 - Finding a global optimum
 - Embedding in other algorithms
 - Integration in a more general framework
- Conclusion

Pattern Mining

 \mathcal{O} : a set of n objects described by m boolean properties (\mathcal{I}) \mathcal{D} : a data matrix

	а	b	c
01	1	1	0
02	1	1	1
<i>o</i> ₃	0	1	1
04	0	1	1
<i>0</i> 5	0	1	1

- pattern: an itemset p_1, \ldots, p_j , closed when all objects satisfying p_1, \ldots, p_j have only these objects in common.
- concept: (a set of objects, an itemset) such that these objects, and only them, satisfy the set of items.

$$({o_2}, {a, b, c}), ({o_1, o_2}, {a, b}), ({o_2, o_3, o_4, o_5}, {b, c})$$

Itemset mining in CP (de Raedt & al. 2008)

- Inputs: $(\mathcal{O}, \mathcal{I}, \mathcal{D})$: $\forall o \in \mathcal{O}, p \in \mathcal{I}, D_{oa} \in \{0, 1\}$
- A concept π is defined by:
 - a set of objects
 - $\rightarrow n$ boolean variables T_i : true when data i belongs to the concept
 - a set of properties
 - \rightarrow *m* boolean variables I_j : true when property j is satisfied in the concept

Itemset mining in CP (de Raedt & al. 2008)

• Frequent itemset π

Extension constraint (*coverage*) T = I' + Frequency constraint

$$\begin{array}{l} \forall o \in \mathcal{O} \quad T_o = 1 \ \leftrightarrow \sum_{p \in \mathcal{I}} I_p \times (1 - D_{op}) = 0 \\ \sum_{o \in \mathcal{O}} T_o \ge \theta \\ \forall p \in \mathcal{I} \quad I_p = 1 \ \to \sum_{o \in \mathcal{O}} I_p \times D_{op} \ge \theta \end{array}$$

• Closed itemset π

Intension constraint (*closed*) I = T'

$$\forall p \in \mathcal{I} \quad I_p = 1 \leftrightarrow \sum_{o \in \mathcal{O}} T_o(1 - D_{op}) = 0$$

 Other constraints for specifying maximal itemset mining, maximum total cost constraint, emerging patterns . . .

$$size_pattern(\pi) \ge \theta$$
, $tile(\pi) \le \theta$

$$\begin{array}{l} \sum_{p \in \mathcal{I}} I_p \geq \theta \\ (\sum_{p \in \mathcal{I}} I_p) \times (\sum_{o \in \mathcal{O}} T_o) \leq \theta \end{array}$$

k-pattern mining in CP (Guns & al.)

- Search for k patterns $\Pi = (\pi_1, \dots, \pi_k)$ (thus defining k concepts) that satisfy a set of constraints
- Application to k-term DNF Learning $(\mathcal{O}^+,\mathcal{O}^-)$, k-tiling, conceptual clustering, . . .

Conceptual clustering

- $\forall \pi_i$, covers (π_i)
- $\forall \pi_i$, $closed(\pi_i)$
- $cover(\Pi) = coverage(\pi_1) \cup ... \cup coverage(\pi_k) = \mathcal{O}$
- $\forall \pi_i, \forall \pi_j \text{ with } i \neq j, \text{ overlap}(\pi_i, \pi_j) = 0$

maximizing

- $min(freq(\pi_1), \ldots, freq(\pi_k))$ or
- $max(freq(\pi_1), \dots, freq(\pi_k)) min(freq(\pi_1), \dots, freq(\pi_k))$

Outline

- Constraint Programming
- Pattern mining in CP
- Distance Based Clustering
 - Constrained Clustering
 - Distance-based constrained clustering in CP: How-to? (Dao, Duong, Vrain)
- Interest of declarativity (Dao, Duong, Vrain)
 - Flexibility
 - Finding a global optimum
 - Embedding in other algorithms
 - Integration in a more general framework
- Conclusion

Outline

- Constraint Programming
- Pattern mining in CP
- Oistance Based Clustering
 - Constrained Clustering
 - Distance-based constrained clustering in CP: How-to? (Dao, Duong, Vrain)
- Interest of declarativity (Dao, Duong, Vrain)
 - Flexibility
 - Finding a global optimum
 - Embedding in other algorithms
 - Integration in a more general framework
- Conclusion

Clustering

Given n objects $\{o_1, \ldots, o_n\}$, find a partition of these objects into k classes so that objects in a class are similar and/or objects of different classes are dissimilar.

Three approaches

- Distance-based clustering: a dissimilarity measure between pairs of points
- Conceptual clustering
- Correlation clustering: a similarity between pairs of points

Distance-based Clustering

A classic example: k-means

Minimize the within-cluster sum of squares (WCSS) where if m_c denotes the center of the cluster C_c ,

$$\textit{WCSS}(\Delta) = \sum_{c \in [1,k]} \sum_{o_i \in C_c} d(o_i, m_c)^2$$

equivalent in an euclidean space to minimize

$$WCSS(\Delta) = 1/2 \sum_{c \in [1,k]} \frac{1}{|C_c|} \sum_{o_i, o_j \in C_c} d(o_i, o_j)^2.$$

Optimization criteria

Minimization of the maximal diameter $d(o_i, o_j)$ (polynomial for k=2)

Minimization of the sum of dissimilarities WCSD

Maximization of the minimal margin (polynomial)

Minimization of the sum of squares WCSS

Few exact methods for clustering

- Methods based on graphs
 - Minimization of the maximum diameter: graph coloring (Hansen & Delattre, 1978)
- Branch and bound algorithms
 - Diameter criterion (Brusco 2003)
 - WCSD criterion (Klein & Aronson 91, Brusco & Stahl 2005)
 - WCSS criterion (Koontz 1975, Brusco 2006, Carbonneau & al. 2012)
- Integer Linear Programming (Rao, 79, du Merle & al. 1999, Mueller & al. 2010, Babaki & al. 2014)

Constrained Clustering

- Clustering is in general NP-hard.
- Classic methods are usually heuristic and search for a local optimum. Different local optima may exist.
- The result does not always fit the desired solution.
- → User knowledge integration, written as constraints
- → Constrained clustering
 - Constraints on clusters
 - Constraints on pairs of points
- → Mostly heuristic methods dedicated to some types of constraints

Constraints on pairs of points

Constraints on clusters

• Capacity constraint:

$$\alpha \leq |C_i| \leq \beta$$

- Maximal diameter constraint
- Minimal margin constraint
- Density constraint
- ...

Outline

- Constraint Programming
- Pattern mining in CP
- Distance Based Clustering
 - Constrained Clustering
 - Distance-based constrained clustering in CP: How-to? (Dao, Duong, Vrain)
- Interest of declarativity (Dao, Duong, Vrain)
 - Flexibility
 - Finding a global optimum
 - Embedding in other algorithms
 - Integration in a more general framework
- Conclusion

Distance-based clustering

Inputs:

- a dissimilarity measure between pairs of objects
- a bound on the number of classes: $k_{min} \le k \le k_{max}$

Output: A data partition

- integration of different kinds of constraints
- choice of an optimization criterion among:
 - Minimizing the maximal diameter of clusters
 - Maximizing the minimal split between clusters
 - Minimizing the sum of dissimilarities inside the clusters

(Dao, Duong & Vrain, ECML/PKDD 2013, ICTAI 2013, RIA 2014, CP 2015, AIJ 2015)

First model (Dao, Duong & Vrain, ECML/PKDD 2013)

- A cluster is identified by a representative
- k variables:
 I[1],...,I[k] ∈ [1, n]
 I[c]: representative point of the cluster c

 For breaking symmetries: the point with the smallest index in the cluster

- Each point is linked to a point representing a cluster
- n variables $G[1], \ldots, G[n] \in [1, n]$ G[i]: representative point of the cluster containing i

Second model (Dao, Duong & Vrain, AIJ 2015)

• n integer variables: G_1, \ldots, G_n , $dom(G_i) = \{1, \ldots, k_{max}\}$.

$$G_1=1,G_2\in[1,2],G_3\in[1,2]$$
 Point 1 is put in Cluster 1, Point 2 may still be put in Cluster 1 or 2 and so on

 $G_i = c$: point *i* is assigned to class *c*

- A real variable capturing the objective to optimize:
 - D: maximal diameter
 - S: minimal split
 - V: sum of intra-cluster dissimilarities
 - $dom(D) = dom(S) = [\min_{i,j}(d(i,j)), \max_{i,j}(d(i,j))]$
 - $dom(V) = [0, \sum_{i < j} d(i, j)].$

Constraints on the partition

Breaking symmetries:

precede constraint:

$$G_1 = 1$$
 and $G_i \leq \max_{j \in [1, i-1]} (G_j) + 1$, for $i \in [2, n]$

▶
$$precede(G, [1, ..., k_{max}])$$

means $G_1 = 1$ and $\forall i \in [2, n]$, if $G_i = c$ then $\exists j < i G_j = c - 1$

At least k_{min} clusters:

count constraint:
$$\#\{i \mid G_i = k_{min}\} \ge 1$$

atleast(1, G, k_{min})

Adding redundant constraints may help filtering.

User constraints

A minimal size α for clusters: $\forall i \in [1, n], \#\{j \mid G_j = G_i\} \ge \alpha$

- $\forall i \in [1, n]$: $atleast(\alpha, \mathcal{G}, G_i)$
- $G_i \leq \lfloor n/\alpha \rfloor, \forall i \in [1, n]$

A maximal diameter γ for clusters:

- $D \leq \gamma$
- $\forall i, j$ such that $d(i, j) > \gamma$, the constraint $G_i \neq G_j$ is put

Constraints on pairs of points

A must-link constraint: $G_i = G_j$ et $D \ge d(i,j)$

A cannot-link constraint: $G_i \neq G_j$ et $S \leq d(i, j)$

Search strategy

- lacktriangledown Initial ordering of points o use of FPF
- Strategy for choosing variables

Optimization of WCSD

- greedy search for "finding" quickly a "good" first solution
- then strategy change for detecting quickly failure

Development of filtering algorithms

Filtering algorithms

To improve the efficiency

Diameter constraint

$$\forall i < j \in [1, n] \rightarrow \text{a dedicated filtering algorithm} \ D < d(i, j) \rightarrow G_i \neq G_j$$

Implementation by reified constraints

A quadratic number of reified constraints

To improve the filtering capacity

$$WCSD: V = \sum_{i < j} (G_i == G_j) d(i, j)$$

development of an algorithm to improve the clustering

Not enough propagation for WCSD

• Let us suppose that we have a solution with V = 5, the branch-and-bound strategy add a new constraint

$$(G_1 == G_4) + 2 \times (G_2 == G_4) + 3 \times (G_3 == G_4) + 1 < 5$$

- Points 2 et 3 are in the same cluster
- \rightarrow $(G_2 == G_4) = (G_3 == G_4)$
 - If (G₂ == G₄) then (G₃ == G₄) and the sum is greater to 5
- → Point 4 cannot be in cluster

- But value 2 is not removed from the domain of G_4
- → A filtering algorithm (Dao, Duong, Vrain, ICTAI 2013)

Two models

	First model	Second model			
Var.	$\mathcal{I} = [I_1, \ldots, I_k], \textit{Dom}(I_c) = [1, n]$				
	$\mathcal{G} = [G_1, \ldots, G_n], \textit{Dom}(G_i) = [1, n]$	$\mathcal{G} = [G_1, \ldots, G_n], Dom(G_i) = [1, k_{max}]$			
>	D (diameter), S (split), V (WCSD)				
Partition	$\forall c \in [1, k], element(\mathcal{G}, I_c, I_c)$	$precede(\mathcal{G},[1,\ldots,k_{max}])$			
	$\forall i \in [1, n], exactly(1, \mathcal{I}, G_i)$	atleast(1, \mathcal{G} , k_{min})			
Ιŧ	$\forall i \in [1, n], G_i \leq i$				
Ра	$orall c < c' \in [1,k], \ \mathit{l_c} \leq \mathit{l_{c'}}$				
	$I_1 = 1$				
	WCSD criterion	$n: \textit{wcsd}(\mathcal{G}, V, d)$			
Crit.	Diameter criterion:				
نپ	$\forall i < j \in [1, n], d(i, j) > D \rightarrow (G_i \neq G_j)$	$diameter(\mathcal{G}, D, d)$			
Opt.	Split criterion:				
	$\forall i < j \in [1, n], d(i, j) < S \rightarrow (G_i = G_j)$	$split(\mathcal{G},\mathcal{S},d)$			

Two models

	First model	Second model
ints	Minimal size d	α of clusters: $\forall i \in [1, n]$, $\mathit{atleast}(\alpha, \mathcal{G}, G_i)$
nstra	Maximal size	eta of clusters: $orall c \in [1, k_{max}]$, $\mathit{atmost}(eta, \mathcal{G}, c)$
User-constraints	Minimal split δ	$S: S \geq \delta, G_i = G_j, \text{ for all } i < j \text{ st. } d(i,j) < \delta$
ň	Maximal diam	eter γ : $D \le \gamma$, $G_i \ne G_j$ for all $i < j$ st. $d(i,j) > \gamma$
	Density const	raint: $\forall i \in [1, n]$, atleast $(m, N_{i\epsilon}, G_i)$
	Must-link cons	straint: $G_i = G_j, D \ge d(i,j)$
	Cannot-link co	onstraint: $G_i eq G_j, S \leq d(i,j)$

 \rightarrow choice of the models and of the strategies

Dataset	# Objets	# Classes
Iris	150	3
Wine	178	3
Glass	214	7
Ionosphere	351	2
User Knowledge	403	4
Breast Cancer	569	2
Synthetic Control	600	6
Vehicle	846	4
Yeast	1484	10
Multiple Features	2000	10
Image Segmentation	2000	7
Waveform	5000	3

- Minimization of the maximal diameter
- Comparison between
 - ► BaB: branch-and-bound approach (Brusco 2005)
 - ► GC: graph coloring (Hansen 1980)
 - ► CP1: first model (Dao, Duong & Vrain, ECML 2013, ICTAI2013)
 - CP2: second model (Dao, Duong & Vrain, IAF 2015)
- Without user constraints

Dataset	Dopt	BaB	GC	CP1	CP2
Iris	2.58	1.4	1.8	< 0.1	< 0.1
Wine	458.13	2	2.3	0.3	< 0.1
Glass	4.97	8.1	42	0.9	0.2
IonoSphere	8.6	_	0.6	0.4	0.3
User Knowledge	1.17	_	3.7	75	0.2
Breast Cancer	2377.96	_	1.8	0.7	0.5
Synthetic Control	109.36	_	_	56.1	1.6
Vehicle	264.83	_	_	14.3	0.9
Yeast	0.67	_	_	2389.9	5.2
Multi Features	12505.5	_	_	*	10.4
Image Segmentation	436.4	_	_	589.2	5.7
Waveform	15.6	_	_	*	50.1

Performance (in seconds) - minimization of the maximal diameter

And the WCSS criterion? (*k*-means)

$$WCSS = \sum_{c \in [1,k]} \frac{1}{2|C_c|} \sum_{o_i,o_j \in C_c} ||o_i - o_j||^2$$

- RBBA: Repetitive Branch and Bound Algorithm (Brusco, 2006), without user constraints
 - Points ordering
 - lteratively, solve the problem for k + 1, ..., k + n objects: the optimal value at one step gives a bound for the other step
 - Experiments:
 - ★ well separated clusters: n=240, k=8
 - ★ no underlying structure: n=60, k=6
- Integer Linear Programming with user constraints: (Babaki & al. 2014)

And the WCSS criterion?

Friday, 10:30 – 12:10 Yangtze 2

 Proposition of a filtering algorithm for WCSS (Dao, Duong, Vrain, CP 2015)

2

See presentation on Friday morning
Repetitive Branch-and-Bound using Constraint Programming for
Constrained MSS Clustering
T. Guns, T.-B.-H. Dao, C. Vrain, K.-C. Duong

- Constraint Programming
- Pattern mining in CP
- Distance Based Clustering
 - Constrained Clustering
 - Distance-based constrained clustering in CP: How-to? (Dao, Duong, Vrain)
- 4 Interest of declarativity (Dao, Duong, Vrain)
 - Flexibility
 - Finding a global optimum
 - Embedding in other algorithms
 - Integration in a more general framework
- Conclusion

- Constraint Programming
- Pattern mining in CP
- Oistance Based Clustering
 - Constrained Clustering
 - Distance-based constrained clustering in CP: How-to? (Dao, Duong, Vrain)
- 4 Interest of declarativity (Dao, Duong, Vrain)
 - Flexibility
 - Finding a global optimum
 - Embedding in other algorithms
 - Integration in a more general framework
- Conclusion

Advantage of Flexibility

Advantage of Flexibility

Human in the loop

 \rightarrow suggest an iterative process: Search - Adapt/Learn constraints

- Constraint Programming
- Pattern mining in CP
- Oistance Based Clustering
 - Constrained Clustering
 - Distance-based constrained clustering in CP: How-to? (Dao, Duong, Vrain)
- 4 Interest of declarativity (Dao, Duong, Vrain)
 - Flexibility
 - Finding a global optimum
 - Embedding in other algorithms
 - Integration in a more general framework
- Conclusion

Importance of exact algorithms

- COP-kmeans is a fast and greedy algorithm, which may fail when the number of cannot-link constraints increases
- Dataset Iris, COP-kmeans runs 1000 times
 left: COP-kmeans, #CL cannot-link constraints
 right: COP-kmeans, #c must-link and #c cannot-link constraints

In these experiments, our CP model

- always finds a solution satisfying all the constraints,
- for Iris dataset, succeeds in proving the optimality for roughly 60% cases.

- Constraint Programming
- Pattern mining in CP
- Oistance Based Clustering
 - Constrained Clustering
 - Distance-based constrained clustering in CP: How-to? (Dao, Duong, Vrain)
- 4 Interest of declarativity (Dao, Duong, Vrain)
 - Flexibility
 - Finding a global optimum
 - Embedding in other algorithms
 - Integration in a more general framework
- Conclusion

Bi-criterion clustering

Criteria have often undesirable effect

(A) Intuitive groups

- (B) Minimizing max diameter
- (C) Maximizing min split
- (D) Miminizing WCSS

Bi-criterion split-diameter clustering

 $(\min D, \max S)$

- → find the Pareto front
 - A partition Δ' dominates a partition Δ iff: $D(\Delta') \leq D(\Delta)$ and $S(\Delta') > S(\Delta)$ or $D(\Delta') < D(\Delta)$ and $S(\Delta') \geq S(\Delta)$.
 - Δ is a Pareto-optimal solution iff there exists no partition Δ' that dominates Δ
 - Pareto front = $\{(D(P), S(P)) \mid PPareto-optimal solution\}$

Split-diameter clustering

(Dao, Duong, Vrain, AIJ 2015)

- Iteration of the model by adding constraints
- → interest of a declarative framework

```
Algorithm
                                                                                 S
\mathcal{A} \leftarrow \emptyset:
i \leftarrow 1;
\Delta_i^D \leftarrow \text{Min Diameter}(\mathcal{C});
while \Delta_i^D \neq NULL do
         \Delta_i^S \leftarrow
         Max\_Split(\mathcal{C} \cup \{D \leq D(\Delta_i^D)\});
         \mathcal{A} \leftarrow \mathcal{A} \cup \{\Delta_i^{\mathcal{S}}\};
         i \leftarrow i + 1:
         \Delta_i^D \leftarrow \text{Min Diameter}(\mathcal{C} \cup \{S > \})
         S(\Delta_{i-1}^S));
```

split-diameter bi-criterion - $k \in [2, real number of classes]$

Dataset	n	k	#Sol	bGC	CP2
Iris	150	3	8	4.2	< 0.1
Wine	178	3	8	0.9	< 0.1
Glass	214	7	9	21.5	0.4
Ionosphere	351	2	6	1.8	2.6
User Knowledge	403	4	16	23.6	12.8
Breast Cancer	569	2	7	167.5	1.1
Synthetic Control	600	6	6	_	6.7
Vehicle	846	4	13	_	5.5
Yeast	1484	10	_	_	_
Multi Features	2000	10	15	_	229.1
Image Segmentation	2000	7	8	_	41.3
Waveform	5000	3	_	_	

- bGC: best exact algorithm known (Delattre et al., 1980), coded in C++
- Times in seconds, time out 1 hour

- Constraint Programming
- Pattern mining in CP
- 3 Distance Based Clustering
 - Constrained Clustering
 - Distance-based constrained clustering in CP: How-to? (Dao, Duong, Vrain)
- 4 Interest of declarativity (Dao, Duong, Vrain)
 - Flexibility
 - Finding a global optimum
 - Embedding in other algorithms
 - Integration in a more general framework
- 6 Conclusion

Two frameworks for clustering in CP

- Conceptual Clustering (Guns & al.):
 - based on k-pattern mining
 - based on qualitative properties
 - does not take into account quantitative information, e.g. clusters diameter
- Distance-based clustering (Dao & al.):
 - based on dissimilarities between objects
 - appropriate for quantitative data
 - does not take into account qualitative properties
- → A unified framework (Dao, Lesaint, Vrain, JFPC 2015):
 - taking into account quantitative and qualitative data
 - modeling each clustering task
 - combining conditions/criteria from both frameworks
 - relying on the framework developed for distance-based clustering

An integrated model

- Data:
 - a set \mathcal{O} of objects, a set \mathcal{I} of boolean properties
 - ▶ a dissimilarity measure d(o, o') for any pairs of objects o, o' in O or a database from which the dissimilarity measure is computed
 - ▶ a binary database \mathcal{D} : $\forall o \in \mathcal{O}, p \in \mathcal{I}, D_{op} = 1$, when o satisfies p
- Clusters are defined by:
 - 1 n variables with dom in [1, k]: G[o] = c
 - a boolean $k \times n$ matrix: A[c, p] = 1 iff p is in the description of cluster c.
- Constraints
 - Constraints of the distance-based model: partition, breaking symmetries
 - Constraints from the conceptual model

Extension (cover) constraint

$$\forall o \in \mathcal{O}, \forall c \in \mathcal{C}$$

$$G[o] = c \Leftrightarrow \sum_{p \in \mathcal{I}} A[c, p](1 - D_{op}) = 0$$

Car Dataset

- 193 objects
- technical properties (22 attributes) :
 - motorization (diesel or not)
 - drive wheels (4, 2 front, 2 rear)
 - power (between 48 and 288)
 - etc.

discretization: 64 qualitative attributes

price (quantitative attribute)

Car dataset

- Conceptual setting
- → (e) concepts + maximizing min. size of clusters
- (f) concepts + maximizing min. size of concepts
 Price distribution not convincing
- Distance-based setting
- → (g) minimizing max diameter No convincing concepts
- Unified framework
- → (h) concepts + minimizing max diameter A better modeling of the 3 car ranges with concepts based on size, engine power, fuel consumption, . . .

Actionable clustering

Find useful groups each of which you can invite to a different dinner party

- equal number of males and females
- width of a cluster in terms of age at most 10
- each person in a cluster should have at least r other people with the same hobby

 \rightarrow Introduce requirements/constraints making the clustering useful for a given purpose.

See presentation on Friday morning

A Framework for Actionable Clustering Using Constraint Programming

T.-B.-H. Dao, C. Vrain, I. Davidson, K.-C. Duong

Friday, 10:30 - 12:10 Yangtze 2

- Constraint Programming
- Pattern mining in CP
- Distance Based Clustering
 - Constrained Clustering
 - Distance-based constrained clustering in CP: How-to? (Dao, Duong, Vrain)
- 4 Interest of declarativity (Dao, Duong, Vrain)
 - Flexibility
 - Finding a global optimum
 - Embedding in other algorithms
 - Integration in a more general framework
- Conclusion

Conclusion

Declarative frameworks for constrained clustering, and more generally for Data Mining

CP, Integer Linear Programming, SAT

Advantages

- Handling different kinds of constraints
- → A better modeling of user needs
- New paradigms: actionable clustering
- Exact methods
- Integration in other frameworks
- → Bi-criterion clustering
- Embedding in other search methods

Drawbacks

- Efficiency
- → Small / medium size datasets
- → Smart data
- Design of an efficient model difficult
- In CP
- → Constraints allowing to filter domains / Constraints only tested at the bottom of the tree
- → Combining several paradigms
- → Parallelization: Enumeration / Optimization

Further directions

- User in the loop
 - Feedbacks for guiding the user
 - Learning constraints
- Combining several frameworks
- Improving the efficiency

Thanks to T.B.H. Dao and K.C. Duong for some slides and figures