Problem_Set_3_Markdown

1

a.

A cubic function would overfit the traing data and lead us to reject or accept the null hypothesis incorrctly. Therefore I would say it is safe to assume that a linear model would be preferable than the cubic one as it would not overfit the training data.

b.

Since the cubic function overfits and the testing data is loaded with errors, you expect to have a lower RSS using linear as opposed to cubic.

2.

a.

There are 14 columns/variables in the data set and there are 506 observations.

```
library(MASS)
library(corrplot)
```

```
## corrplot 0.84 loaded
```

help(Boston)

b.

Istat ptratio rm indus

```
bostonplot <- cor(Boston)
corrplot(bostonplot, method='square')</pre>
```


C.

mod1 <- lm(medv ~ lstat + ptratio + rm + indus, data = Boston)
summary(mod1)</pre>

```
##
## Call:
## lm(formula = medv ~ lstat + ptratio + rm + indus, data = Boston)
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -14.5602 -3.1379 -0.7984
                               1.7783
                                      29.5739
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.614970 3.926680
                                    4.741 2.78e-06 ***
## lstat
              -0.575711
                          0.047885 -12.023 < 2e-16 ***
              -0.935122 0.120464 -7.763 4.71e-14 ***
## ptratio
## rm
               4.515179
                          0.426286 10.592 < 2e-16 ***
## indus
               0.007567
                          0.043594
                                    0.174
                                              0.862
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.234 on 501 degrees of freedom
## Multiple R-squared: 0.6786, Adjusted R-squared: 0.6761
## F-statistic: 264.5 on 4 and 501 DF, p-value: < 2.2e-16
```

d.

Istat, ptratio, and rm reject the null hypothesis that median value of owner-occupied homes are not affected by these variables. The only variable that is doesn't reject the null hypothesis is indus because it has a high P-Value.

e.

```
par(mfrow = c(2,2))
plot(mod1)
```


f.

Yes there is evidence of heteroscadicity on the graphs. There appears to be a U shaped curve on 2 of the Fitted Values graphs.

g.

```
loggeddata <- Boston$lnmedv <- log(Boston$medv)
lnmedv <- lm(loggeddata~ lstat + ptratio + rm + indus, data = Boston)
summary(lnmedv)</pre>
```

```
##
## Call:
## lm(formula = loggeddata ~ lstat + ptratio + rm + indus, data = Boston)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -0.92790 -0.11001 -0.01274 0.10998 0.86993
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.535070 0.164366 21.507 < 2e-16 ***
## lstat
              -0.034376
                          0.002004 -17.150 < 2e-16 ***
                          0.005042 -7.533 2.33e-13 ***
## ptratio
              -0.037987
                          0.017844 5.853 8.73e-09 ***
## rm
               0.104442
## indus
              -0.001878
                         0.001825 -1.029
                                             0.304
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2191 on 501 degrees of freedom
## Multiple R-squared: 0.7149, Adjusted R-squared: 0.7127
## F-statistic: 314.1 on 4 and 501 DF, p-value: < 2.2e-16
```

h.

```
par(mfrow = c(2,2))
plot(lnmedv)
```


Yes there is still some heteroscdastity still prevalent in the data. It has been slighly reduced but there still evidence of it in the Scale-Location graph

i.

```
rmSq <-Boston$rmSq <- Boston$rm * Boston$rm
medgraph <- lm(lnmedv~ rm + rmSq + ptratio, data = Boston)
summary(medgraph)</pre>
```

```
##
## Call:
## lm(formula = lnmedv ~ rm + rmSq + ptratio, data = Boston)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -1.1430 -0.1217 0.0590 0.1714 1.3125
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                        0.576644
                                    6.685 6.15e-11 ***
## (Intercept) 3.855021
## rm
              -0.222718
                          0.176997 -1.258 0.20886
## rmSq
               0.041036
                          0.013753
                                     2.984 0.00299 **
                          0.006447 -8.924 < 2e-16 ***
## ptratio
              -0.057533
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.291 on 502 degrees of freedom
## Multiple R-squared: 0.4962, Adjusted R-squared: 0.4932
## F-statistic: 164.8 on 3 and 502 DF, p-value: < 2.2e-16
```

Ī

There is an increase in the housing values after 3 rooms. From 4 rms to 5 rms there appears to be a very drastic almost exponential increase in the predicted median value of the homes.

```
rmData <- data.frame(rm = 1:7, rmSq = 1:7 * 1:7, ptratio = rep(18.57,7))
summary(rmData)</pre>
```

```
##
                       rmSq
                                    ptratio
         rm
          :1.0
                         : 1.0
                                Min.
##
   Min.
                 Min.
                                        :18.57
   1st Qu.:2.5
##
                 1st Qu.: 6.5
                                1st Qu.:18.57
   Median :4.0
                 Median :16.0
                               Median :18.57
##
##
   Mean :4.0
                 Mean :20.0
                                Mean
                                      :18.57
   3rd Qu.:5.5
                  3rd Qu.:30.5
                                3rd Qu.:18.57
##
                                Max.
##
   Max.
          :7.0
                 Max.
                         :49.0
                                        :18.57
```

```
plot(rmData[, 1], predict(medgraph, newdata = rmData))
```


3

```
set.seed(1861)
x1 <- runif(100)
x2 <- 2 + x1 + rnorm(100, 0, 0.02)
Y <- 1 * x1 + 1 * x2 + rnorm(100)
DF <- data.frame(Y, x1, x2)</pre>
```

a.

The data, x1 and x2, appear to have a linear relationship.

```
plot(x1,x2)
```


b.

Yes X1 and X2 are very correlated. They have an r value of .99.

```
cor(x1,x2)
## [1] 0.9975058
```

C.

```
mod2 <- lm(Y~x1 + x2, data = DF)
summary(mod2)</pre>
```

```
##
## Call:
## lm(formula = Y \sim x1 + x2, data = DF)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
## -2.58089 -0.66373 -0.02267 0.62852 2.25911
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                  6.010
                            9.411
                                      0.639
                                               0.525
## (Intercept)
                  4.323
                             4.669
                                      0.926
                                               0.357
## x1
## x2
                 -2.114
                             4.687 - 0.451
                                               0.653
##
## Residual standard error: 0.9344 on 97 degrees of freedom
## Multiple R-squared: 0.3202, Adjusted R-squared: 0.3062
## F-statistic: 22.84 on 2 and 97 DF, p-value: 7.422e-09
```

```
x1 = 4.323 \ x2 = -2.114
```

d.

The value of the coefficients should be 1 as indiciated on the Y equation. Y <-1 * x1 + 1 * x2 + rnorm(100). 1 is the clear coefficient of x1and x2

е.

```
mod3 <- lm(Y~x1, data = DF)
summary(mod3)</pre>
```

```
##
## Call:
## lm(formula = Y \sim x1, data = DF)
##
## Residuals:
       Min
                  1Q
                       Median
                                    3Q
                                            Max
## -2.67131 -0.62930 -0.04688 0.57545 2.33560
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                     8.742 6.47e-14 ***
## (Intercept)
                            0.2022
                 1.7672
                                     6.772 9.46e-10 ***
## x1
                 2.2224
                            0.3282
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9306 on 98 degrees of freedom
## Multiple R-squared: 0.3188, Adjusted R-squared: 0.3118
## F-statistic: 45.86 on 1 and 98 DF, p-value: 9.46e-10
```

x1 = 2.22

```
mod4 <- lm(Y~x2, data = DF)
summary(mod4)</pre>
```

```
##
## Call:
## lm(formula = Y \sim x2, data = DF)
## Residuals:
##
                      Median
       Min
                 1Q
                                    30
                                            Max
## -2.76623 -0.61195 -0.04742 0.58785 2.40945
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                           0.8484 -3.144 0.0022 **
## (Intercept) -2.6677
                2.2150
                           0.3306
                                   6.701 1.32e-09 ***
## x2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9338 on 98 degrees of freedom
## Multiple R-squared: 0.3142, Adjusted R-squared: 0.3072
## F-statistic: 44.9 on 1 and 98 DF, p-value: 1.323e-09
```

x2 = 2.215

f.

X1 plotted against Y has has a higher R^2 and a lower a P value therefore X1 is my preferred data. There isn't a significant differece in the data as both have very similar R^2 I would prefer the one with a higher R value and the lowest P value.