Algèbre 2 – Structures algébriques

Exercice 1 – (Produit semi-direct)

Soit G un groupe

A. Troesch

- 1. Montrer que Aut(G) muni de la composition est un groupe.
- 2. Soit G et H deux groupes, et $\varphi: H \longrightarrow \operatorname{Aut}(G)$ un homomorphisme de groupe. On définit, pour tout $(g,h) \in G \times H$:

$$(g,h)\star(g',h')=(g\cdot\varphi(h)(g'),hh').$$

Montrer que $(G \times H, \star)$ est un groupe. Ce groupe est appelé produit semi-direct de G par H relativement à φ et est noté $G \rtimes_{\varphi} H$, ou plus simplement $G \rtimes H$, lorsqu'il n'y a pas d'ambiguïté possible.

Exercice 2 - (Théorème de Cayley)

En considérant les permutations de G définies par $x \mapsto gx$, montrer que tout groupe fini est isomorphe à un sous-groupe d'un groupe symétrique.

Exercice 3 – Soit G un ensemble muni d'une loi de composition \times associative telle que pour tout x et y de G, il existe un unique z et un unique z' de G tels que $x \times z = y$ et $z' \times x = y$. Montrer que G est un groupe.

Exercice 4 – Soit G un ensemble muni d'une loi de composition / vérifiant, pour tout $(a, b, c) \in G^3$:

- a/a = b/b
- $\bullet \ a/(b/b) = a$
- (a/a)/(b/c) = c/b
- (a/c)/(b/c) = a/b.

En interprétant la loi / comme une « division », construire sur G une structure de groupe.

Exercice 5 – Soit G un groupe non réduit à son élément neutre. Montrer que G n'admet aucun sous-groupe propre si et seulement si G est cyclique d'ordre p premier.

Exercice 6 – Soit G un groupe fini. Montrer que la relation H < K (sous-groupe) définit un ordre total sur l'ensemble des sous-groupes de G si et seulement si G est cyclique d'ordre p^{α} .

Exercice 7 - (Exposant d'un groupe)

Soit G un groupe fini abélien.

- 1. Montrer que pour tout x et y d'ordre a et b, il existe un élément z dans G d'ordre $a \lor b$
- 2. Montrer qu'il existe dans G un élément d'ordre égal au ppcm de l'ordre de tous les éléments. Cet ordre est appelé exposant du groupe G.
- 3. Le résultat reste-t-il vrai si ${\cal G}$ n'est pas supposé abélien ?

Exercice 8 – (Idempotents)

Soit (E, \star) un magma . On dit que $x \in E$ est idempotent si $x \star x = x$.

- 1. Montrer que si tout élément de E est régulier et si \star est distributive par rapport à elle-même, alors tout élément est idempotent.
- 2. Montrer que si tout élément de E est régulier et si \star est associative, alors E admet au plus un idempotent.

Exercice 9 – Soit (E, \cdot) un magma associatif tel qu'il existe $n \in \mathbb{N}$, supérieur ou égal à 2, tel que pour tout $(x, y) \in E^2$, $(xy)^n = yx$. montrer que · est commutative.

Exercice 10 – Soit (E, \cdot) un monoïde commutatif. Soit $(x, y) \in E^2$. On suppose que xy est symétrisable. Montrer que x et y le sont aussi.

Exercice 11 – Montrer que $\mathbb{R} \times \mathbb{R}$ muni de la loi \star définie par

$$(x,y) \star (x',y') = (x+x',ye^{x'}+y'e^x)$$

est un groupe.

Exercice 12 - (groupe des inversibles d'un monoïde)

Soit (E, \cdot) un monoïde, et S(E) l'ensemble des éléments symétrisables de E. Montrer que S(E) est stable par \cdot , et que la loi induite munit S(E) d'une structure de groupe.

Exercice 13 – Soit E un ensemble fini muni d'une loi de composition interne · associative, pour laquelle tous les éléments de E sont réguliers. Montrer que (E, \cdot) est un groupe.

Exercice 14 - (Caractérisation des couples de sous-groupes dont l'union est un groupe)

Soit G un groupe et H et K deux sous-groupes de G. Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$. Peut-on généraliser cela à une union de n sous-groupes?

Exercice 15 – (Autour du produit HK)

Soit (G, \times) un groupe, et H et K deux sous-groupes de G. Les questions sont indépendantes.

- 1. Montrer que si G est abélien, alors HK est un groupe, et que c'est le plus petit sous-groupe de G contenant $H \cup K$.
- 2. Dans le cas général, montrer que les propriétés suivantes sont équivalentes :
 - (i) HK est un sous-groupe de G
 - (ii) KH est un sous-groupe de G
 - (iii) $HK \subset KH$
 - (iv) $KH \subset HK$
- 3. Soit H, K, L trois sous-groupes de G tels que HK = KH et $H \subset L$. Montrer que

$$H(K \cap L) = (K \cap L)H = (HK) \cap L.$$

Exercice 16 – (Groupes cycliques)

- 1. Montrer que tout groupe cyclique est abélien, et isomorphe à un groupe $\mathbb{Z}/n\mathbb{Z}$.
- 2. Montrer que tout sous-groupe d'un groupe cyclique est cyclique.

Exercice 17 – Soit $n \in \mathbb{N}$. Déterminer tous les sous-groupes de $\mathbb{Z}/n\mathbb{Z}$.

Exercice 18 -

- 1. Déterminer (à isomorphisme près) tous les groupes d'ordre p premier.
- 2. Soit G un groupe abélien tel que tous ses sous-groupes propre soient cycliques. Est-ce que G est cyclique?

Exercice 19 – (ENS)

Caractériser les groupes dont l'ensemble des sous-groupes est fini.

Exercice 20 - (ENS)

Soit G un groupe abélien d'ordre pq, où p et q sont deux nombres premiers distincts. Montrer que G est cyclique.

Exercice 21 – Soit (G, \times) un groupe, de neutre e. On suppose que pour tout $x \in E$, $x^2 = e$.

- 1. Montrer que G est abélien et que s'il n'est pas réduit à $\{e\}$, son cardinal est pair.
- 2. Montrer que si G est fini, |G| est une puissance de 2.

Exercice 22 – Soit $f: G \to H$ un morphisme de groupes (noté additivement).

- 1. Montrer que pour tout sous-groupe G' de G, f(G') est un sous-groupe de H
- 2. Montrer que pour tout sous-groupe H' de H, $f^{-1}(H')$ est un sous-groupe de H.
- 3. L'image par f d'un sous-groupe distingué de G est-elle un sous-groupe distingué de H?
- 4. L'image réciproque par f d'un sous-groupe distingué de G est-elle un sous-groupe distingué de F?

Exercice 23 -

- 1. Soit $f: G \to H$ un morphisme de groupes. Montrer que Ker(f) est un sous-groupe distingué de f.
- 2. Réciproquement, montrer que tout sous-groupe distingué de G est le noyau d'un certain morphisme de groupes $f: G \to H$.

Exercice 24 – Soit H et K deux sous-groupes de G d'ordres finis respectifs α et β tels que $\alpha \wedge \beta = 1$. Montrer que $H \cap K = \{e\}$, où e est le neutre de G.

Exercice 25 – Soit (G, \times) un groupe.

- 1. On définit le centre Z de G par $Z = \{a \in G \mid \forall g \in G, ag = ga.\}$. Montrer que Z est un sous-groupe de G.
- 2. Montrer que si G/Z est cyclique, alors G est abélien.
- 3. Soit G un groupe abélien de neutre e, et x deux éléments de G d'ordre p, tel que y ne soit pas dans le sous-groupe monogène < x > engendré par x. Montrer que $< x > \cap < y >= \{e\}$.
- 4. En déduire que si p est un entier premier, tout groupe d'ordre p^2 est isomorphe soit à $\mathbb{Z}/p^2\mathbb{Z}$, soit à $(\mathbb{Z}/p\mathbb{Z})^2$.

Exercice 26 – Soit $(A, +, \times)$ un anneau. Montrer que U(A) l'ensemble des éléments inversibles de A est stable par \times , et est un groupe pour cette loi de composition interne.

Exercice 27 – Soit A un anneau, et $a \in A$. On suppose que a admet un unique inverse à droite. Montrer que a est régulier à gauche, puis que a est inversible. Quel est son inverse?

Exercice 28 – Soit A un anneau. Montrer que l'intersection de deux sous-anneaux de A est encore un anneau.

Exercice 29 – Soit X un ensemble non vide.

- 1. Montrer que $(\mathcal{P}(X), \Delta, \cap)$ est un anneau. Quels sont les éléments neutres? Est-ce un corps?
- 2. (a) Soit $Y \subset X$. $\mathcal{P}(Y)$ est-il un sous-anneau de $\mathcal{P}(X)$?
 - (b) Montrer que $\mathcal{P}(Y)$ peut être muni à l'aide des lois induites d'une structure d'anneau.
- 3. Soit $\{I_1, \ldots, I_n\}$ une partition de X, et $A = \{\bigcup_{j \in J} I_j, J \in \mathcal{P}(\llbracket 1, n \rrbracket)\}$. Montrer que A est un sous-anneau de $\mathcal{P}(X)$.
- 4. Réciproquement, montrer que tout sous-anneau de $\mathcal{P}(X)$ est de cette forme.

Exercice 30 – Soit $J=(a_{i,j})_{1\leqslant i,j\leqslant n}$ la matrice de $\mathcal{M}_n(\mathbb{R})$ définie par

$$a_{i,j} = \begin{cases} 1 & \text{si } i+j=n+1\\ 0 & \text{sinon.} \end{cases}$$

 $A = \{aI_n + bJ, (a, b) \in \mathbb{R}^2\}$ est-il un sous-groupe $\mathcal{M}_n(\mathbb{R})$? un sous-anneau?

Exercice 31 – Soit A un anneau et a un élément nilpotent de A. Montrer que 1-a est inversible, et exprimer son inverse en fonction des puissances successives de a.

*Exercice 32 – (Exponentielle et logarithme d'un élément nilpotent)

Soit A un anneau tel que tout élément $n = n \times 1_A$ $(n \in \mathbb{N}^*)$ est inversible. Ces éléments commutant de façon évidente avec tout autre élément de A, on s'autorise à écrire la multiplication par n^{-1} sous forme d'une fraction. On définit, pour tout élément nilpotent a:

$$\exp(a) = \sum_{n=0}^{+\infty} \frac{a^n}{n!} \quad \text{et} \quad \ln(1-a) = -\sum_{n=1}^{+\infty} \frac{a^n}{n},$$

ces sommes étant bien définies, puisqu'elles ne comportent qu'un nombre fini de termes non nuls.

- 1. Montrer que pour tout a et b nilpotents tels que ab = ba, $\exp(a + b) = \exp(a) \exp(b)$.
- 2. Montrer que pour tout élément nilpotent a, $\exp(a)$ est inversible, et donner son inverse.
- 3. Montrer que pour tout élément nilpotent a, $\exp(\ln(1-a)) = 1-a$ Indication : on pourra mener de front le calcul de $\exp(\ln(1-a))$ dans A et un développement limité à un ordre assez grand de $\exp(\ln(1-x))$ dans \mathbb{R} , et comparer ensuite les coefficients obtenus.
- 4. Montrer que pour tout élément nilpotent a, $\ln(\exp(a)) = a$.

Exercice 33 – Soit A un anneau, et a et b deux éléments de A. Montrer que si ab est nilpotent, alors ba aussi.

Exercice 34 – Soit A un anneau commutatif. Soit N l'ensemble des éléments nilpotents de A. Soit $B = \{1 + x, x \in N\}$. Montrer que (B, \times) est un groupe.

Exercice 35 – Soit A un anneau, a un élément nilpotent de A, et $B = \{1 + aP(a), P \in \mathbb{Z}[X]\}$. Montrer que B est stable par \times , et que (B, \times) est un groupe.

Exercice 36 – Soit A un anneau. Pour tout $x \in A$, on définit

$$x^{(0)} = 1,$$
 $x^{(1)} = x,$ $x^{(2)} = x(x-1),$... $x^{(n)} = x(x-1)...(x-n+1).$

- 1. Soit P, Q dans $\mathbb{Z}[X]$. Montrer que si x et y commutent, alors P(x) et Q(y) aussi.
- 2. Montrer que pour tout x et y de A, si xy = yx, alors :

$$(x+y)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} x^{(n-k)} y^{(k)}.$$

Exercice 37 – Soit A un anneau, et a et b deux éléments de A tels que ab soit inversible et ba ne soit pas diviseur de zéro. Montrer que a et b sont inversibles.

Exercice 38 - (Anneaux euclidiens et anneaux principaux)

Soit A un anneau. On dit que A est euclidien si A est intègre, et s'il existe une fonction $v:A\setminus\{0\}\to\mathbb{N}$, appelée stathme, telle que :

$$\forall (a, b) \in (A \setminus \{0\})^2$$
, $\exists (q, r) \in A^2$, $a = bq + r$ et $(r = 0 \text{ ou } v(r) < v(b))$.

- 1. Justifier que \mathbb{Z} , $\mathbb{R}[X]$ sont euclidiens.
- 2. Soit $\mathbb{Z}[i] = \{(a+ib), (a,b) \in \mathbb{Z}\}$ (entiers de Gauss) En considérant $v: z \mapsto |z|^2$, montrer que $\mathbb{Z}[i]$ est euclidien.
- 3. Montrer qu'un anneau euclidien est principal.

Exercice 39 – Soit K un corps

- 1. Montrer que si la caractéristique de K est p premier, il existe un morphisme de corps injectif $i: \mathbb{F}_p \to K$.
- 2. Montrer que si la caractéristique de K est nulle, il existe un morphisme de corps injectif $i: \mathbb{O} \to K$.

Exercice 40 - (Caractérisation d'un corps parmi les anneaux par ses idéaux)

Soit A un anneau commutatif non réduit à $\{0\}$. Montrer que A est un corps si et seulement si les seuls idéaux de A sont $\{0\}$ et A.

Exercice 41 – (Un corps de nombres)

Soit $a \in \mathbb{Q}_+^*$ tel que $\sqrt{a} \notin \mathbb{Q}$. On définit :

$$\mathbb{Q}(\sqrt{a}) = \{\lambda + \mu \sqrt{a}\}, (\lambda, \mu) \in \mathbb{Q}^2.$$

- 1. Montrer que $\mathbb{Q}(\sqrt{a})$ est un sous-corps de \mathbb{R} .
- 2. Les corps $\mathbb{Q}(\sqrt{2})$ et $\mathbb{Q}(\sqrt{3})$ sont-ils isomorphes?