QUÍMICA

Profs.: Aleksándros Souza, Diego J. Raposo, Elaine C. Vaz,

Lêda C. Silva, Michelle F. Andrade

Nome:	
CPF:	Turma:

Primeiro Exercício Escolar de 2024.2

Orientações:

- Leia atentamente todas as questões antes de começar a prova
- Responder tudo de caneta azul ou preta, e na ordem
- Assinar também na folha do papel pautado
- Todas as respostas e cálculos devem ser realizados APENAS na folha do papel pautado
- É permitido o uso de qualquer tipo de calculadora, com excessão da do celular

Questão 1. (2,0 pontos) Sobre a teoria atômica moderna, responda:

- a) (1,0 ponto) O que são isótopos? Explique em termos das partículas subatômicas, e qual a definição de elemento.
- b) (1,0 ponto) Um átomo do isótopo mais comum do ouro, 197 Au, possui quantos prótons, nêutrons e elétrons?

Questão 2. (2,0 pontos) Sabe-se que a carga efetiva tem influência em algumas propriedades periódicas. Quanto a isso, responda:

- a) (1,0 ponto) Qual a definição de carga efetiva?
- b) (1,0 ponto) Qual a modificação no raio de um átomo quando ele se torna um cátion? Explique.

Questão 3. (2,0 pontos) Um determinado elemento químico possui número atômico 31. Quanto a isso, responda as alternativas:

- a) (0,5 ponto) Qual a sua configuração eletrônica?
- b) (0,5 ponto) Qual a estrutura de Lewis para este elemento?
- c) (1,0 ponto) A sua segunda energia de ionização é maior ou menor que a primeira? Justifique.

Questão 4. (2,0 pontos) Albert Einstein propôs que a luz se propaga e é emitida como quantum individuais. Nesse fenômeno, a luz transfere energia para os elétrons, comprovando-se o efeito fotoelétrico.

- a) (0,5 ponto) O que é o efeito fotoelétrico?
- **b)** (1,0 ponto) Uma radiação eletromagnética com comprimento de onda de 641 nm aparece como luz vermelha para o olho humano. Calcule a energia de um fóton dessa luz.
- c) (0,5 ponto) Um laser que emite $1,3 \times 10^{-2}$ J de energia em um pulso de luz nesse comprimento de onda produz quantos fótons em cada pulso?

Questão 5. (2,0 pontos) Baseando-se nos conceitos e observações realizadas na aula experimental, responda:

a) (1,0 ponto) Forneça o nome e aplicação principal de cada uma das vidrarias representadas ao lado:

II

b) (1,0 ponto) Observe o espectro de emissão de um sal desconhecido abaixo:

589 nm

Dentre os sais testados em aula, qual íon metálico deve fazer parte desse sal.

Formulário (equações):

$$E = hf$$

$$c = \lambda f$$

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \text{ com } n_2 > n_1$$

$$\lambda = \frac{h}{mv}$$

Em que:

h = constante de Planck = 6,626 · 10⁻³⁴ m²·kg· s⁻¹ ou J·s R_H = constante de Rydberg = 1,097 · 10⁷ m⁻¹ c = velocidade da luz no vácuo = 3,00 · 10⁸ m · s⁻¹ λ = comprimento de onda f ou ν = frequência n_1 = nível atômico inferior n_2 = nível atômico superior m = massa ν = velocidade do corpo

Tabela Periódica:

H																	He
Li	Be											B	Ĉ	Ň	Ő	F	Ne
Na	Mg											AI	Si	P 15	S 16	ČI	År
K	Ca	Sc	Ti	V 23	Ĉr	Mn	Fe	²⁷ C0	Ni	Cu	Žn	Ğa	Ğe	Ås	Se	³⁵ Br	Kr 36
Rb	Ŝ̈́r	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Åg	Cd Cd	ln	Sn	Sb	Te 52	53	Xe
Cs S	Ba		Hf	Ta	W	Re	Os	lr	Pt	Au	⊮g	**************************************	Pb	Bi	Po	Åt	₽
Fr	ква		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	LV	Ts	Og

La	Če	Pr											Yb	
Åc	Th	Pa	⁹²	Np	Pu	Åm	Cm	Bk	°s f	Ës	Fm	Md	No	Lr

ESPECTRO VISÍVEL

