Detailed Syllabus

Subject Code	21M71CS112		Semester Even	Semester M.Tech I	
				Session 2022- 2023	
				Month from July - December	
Subject Name	Advances in AI				
Credits	3		Contact Hours	3	
Faculty	Coordinator(s)	Dr. Ankit Vidyarthi			
(Names)	Teacher(s) (Alphabetically)	Dr. Ankit Vidyarthi			

S.No.	Description	Cognitive Level (Blooms Taxonomy)	
C161.1	Understand the characteristics & significance of AI	Understanding Level (Level III)	
C1(1.2	Analyze several AI/ML techniques to yield and process information	Analyzing Level	
C161.2	from open real-world data sources	(Level II)	
C161.3	Apply the concept of Machine Learning for industrial applications	Applying Level	
		(Level IV)	
C161.4	Evaluate the use of the Machine Learning algorithms towards pattern	Evaluating Level	
C101.4	mining	(Level V)	
C161.5	Design algorithmic frameworks for solving time series data patterns	Creating Level	
	Design argorithmic frameworks for solving time series data patterns	(Level VI)	

Module No.	Subtitle of the Module Topics in the module		No. of Lectures for the module
1	Introduction	Introduction of AI, introduction of Machine Learning, Significance of AI and ML, Application areas, model pipelining	3
2	Mathematical Formulation	Matrices and its operations, Overview of probability theory, Bayes networks, Independece, I-Maps, Undirected graphical models, Bayesian and Markov networks	5
3	Models and Learning	Learning, Types of learning, Local models; Exact inference, Clique trees, Belief propagation, Tree construction, applications solving problems	6

4	Optimization Inference	and	Introduction to optimization, Approximate inference: sampling, Markov chains, MAP inference, Inference in temporal models; Learning graphical models	6
5	Estimation		Parameter estimation, Bayesian networks and shared parameters, structure learning, Partially observed data, Dimension reduction: PCA, LDA	8
6	Decision making		Gradient descent, Expected Maximization, Hidden variables, HMM, Undirected models, Undirected structure learning, Causalty, Utility functions, Decision problem, Expected utility	8
7	Classification Segmentation	and	KNN, SVM, NN and its types, K-means, FCM, Introduction to Deep learning for classification and segmentation	6
Total number of Lectures			42	
Evaluation	Evaluation Criteria			
	Components Maximum Marks			
T1 20				
T2 20 End Semester Evenination 35				
TA	End Semester Examination 35 TA Attendance (15Marks), Assignment/Quiz/Mini-project (10Marks)			Marke)
	Total 100			viaik5)

Project based learning: Each student in a group of 2-3 will extract data from real-world domains using data from standard repositories that are globally recognized. For conducting application-based research, the students are encouraged to analyze social/political/financial/disease related data and generate underlying networked structure based on the algorithms of AI.

II .	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	Michael Negnevitsky, Artificial Intelligence, Person Publication, Third Edition, 2011		
2.	Toshinori Munakata, Fundamentals of the New Artificial Intelligence, Springer, Second Edition, 2008		
3.	Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong. <i>Mathematics for machine learning</i> . Cambridge University Press, 2020		
4.	Valliappa Lakshmanan, Martin Görner, Ryan Gillard - Practical Machine Learning for Computer Vision_ End-to-End Machine Learning for Images, O'Reilly Media, Inc., 2021		
5.	Laurence Moroney - AI and Machine Learning for On-Device Development_ A Programmer's Guide, O'Reilly Media, Inc., 2021		