

Session Outline

- Introduce the maximum cut example
- Exercise: develop a QUBO for the maximum cut problem
- Review the solution

Session Goals

1. Practice formulating a QUBO

Problem

The maximum cut problem seeks to cut through the maximum amount of edges in a graph.

Another way of saying this is:

A maximum cut is a subset of a graph's vertices such that the number of edges between this subset and the remaining vertices is as large as possible

Problem

The maximum cut problem seeks to cut through the maximum amount of edges in a graph.

Another way of saying this is:

A maximum cut is a subset of a graph's vertices such that the number of edges between this subset and the remaining vertices is as large as possible

Problem

The maximum cut problem seeks to cut through the maximum amount of edges in a graph.

Exercise

Follow the QUBO formulation steps to write a QUBO that finds the subset of the graph below that cuts through a maximum amount of edges.

Problem

Partition the set so that the partition cuts through a maximum number of edges

QUBO Writing Process

- 1. Write out the objective and constraints in your problem domain
- 2. Define the binary variables
- 3. Write out objective in QUBO form
- 4. Write out constraints in QUBO form
- 5. Combine objectives and constraints
- 6. Solve and interpret results
- 7. Tune your QUBO to get better results

Problem

The maximum cut problem seeks to cut through the maximum amount of edges in a graph.

Exercise

Follow the QUBO formulation steps to write a QUBO that finds the subset of the graph below that cuts through a maximum amount of edges.

Hint

In this domain you're working with the graph's edges (whereas in the set partitioning problem you were thinking about the sums of numbers). You want edges in the same set to increase the QUBO's energy.

Building blocks of QUBOs

To construct a QUBO for a particular problem you need to define a few things about that problem

Binary Variables
Each state of the binary
variables must be
assigned a meaning

Objective

The overall goal of the problem – what we're trying to minimize or maximize

Constraints

Rules that define what solutions are acceptable and which are not

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 1. Write out the objective and constraints in your problem domain

Objective:

Constraints:

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 2. Define the binary values

$$E_{qubo} = \sum_{i} a_i x_i + \sum_{i} b_{i,j} x_i x_j$$

We're working in QUBO so our binary variables are $x_i \in \{0, 1\}$

Let's define them as

$$x_i = \begin{cases} 1 & \text{Assign meaning to binary values} \end{cases}$$

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 3. Write out the objective in QUBO form

Hint:

Think about cutting through one edge first. How would you write this out mathematically?

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 3. Write out the objective in QUBO form

Hint:

Can a truth table help?

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 3. Write out the objective in QUBO form

Hint:

How can you apply an expression for one edge to an entire graph?

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 3. Write out the objective in QUBO form

Hint:
$$E_{qubo} = \sum_{i} a_i x_i + \sum_{i} b_{i,j} x_i x_j$$

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 4. Write out the constraints in QUBO form

Hint:

Remember that constraints are rules about which solutions are feasible and which aren't.

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 5. Combine objectives and constraints

 $E_{qubo} = \min(objective) + \gamma(constraints)$

