

Reference Tables for Physical Setting/CHEMISTRY 2011 Edition

Table A Standard Temperature and Pressure

Name	Value	Unit
Standard Pressure	101.3 kPa 1 atm	kilopascal atmosphere
Standard Temperature	273 K 0°C	kelvin degree Celsius

Table B Physical Constants for Water

Heat of Fusion	334 J/g
Heat of Vaporization	2260 J/g
Specific Heat Capacity of $\mathrm{H_2O}(\ell)$	4.18 J/g•K

Table C Selected Prefixes

Factor	Prefix	Symbol
10^{3}	kilo-	k
10^{-1}	deci-	d
10-2	centi-	c
10-3	milli-	m
10-6	micro-	μ
10-9	nano-	n
10^{-12}	pico-	p

Table D Selected Units

Symbol	Name	Quantity
m	meter	length
g	gram	mass
Pa	pascal	pressure
K	kelvin	temperature
mol	mole	amount of substance
J	joule	energy, work, quantity of heat
S	second	time
min	minute	time
h	hour	time
d	day	time
у	year	time
L	liter	volume
ppm	parts per million	concentration
M	molarity	solution concentration
u	atomic mass unit	atomic mass

Table E
Selected Polyatomic Ions

Formula	Name	Formula	Name
H ₃ O ⁺	hydronium	$\operatorname{CrO_4^{2-}}$	chromate
Hg ₂ ²⁺	mercury(I)	Cr ₂ O ₇ ²⁻	dichromate
NH ₄ ⁺	ammonium	MnO_4^-	permanganate
$\begin{bmatrix} \mathrm{C_2H_3O_2}^-\\ \mathrm{CH_3COO}^- \end{bmatrix}$	acetate	NO_2^-	nitrite
		NO ₃ -	nitrate
CN-	cyanide	O_2^{2-}	peroxide
CO ₃ ² -	carbonate	OH-	hydroxide
HCO ₃ ⁻	hydrogen carbonate	PO ₄ ³⁻	phosphate
$C_2O_4^{2-}$	oxalate	SCN-	thiocyanate
ClO-	hypochlorite	SO ₃ ²⁻	sulfite
ClO ₂ -	chlorite	SO ₄ ²⁻	sulfate
ClO ₃ -	chlorate	HSO ₄ ⁻	hydrogen sulfate
ClO ₄ ⁻	perchlorate	S ₂ O ₃ ²⁻	thiosulfate

Table F
Solubility Guidelines for Aqueous Solutions

Ions That Form Soluble Compounds	Exceptions
Group 1 ions (Li ⁺ , Na ⁺ , etc.)	
ammonium (NH ₄ ⁺)	
nitrate (NO ₃ ⁻)	
acetate $(C_2H_3O_2^-)$ or $CH_3COO^-)$	
hydrogen carbonate (HCO ₃ ⁻)	
chlorate (ClO ₃ ⁻)	
halides (Cl ⁻ , Br ⁻ , I ⁻)	when combined with Ag^+ , Pb^{2+} , or Hg_2^{2+}
sulfates (SO ₄ ²⁻)	when combined with Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , or Pb ²⁺

Ions That Form Insoluble Compounds*	Exceptions
carbonate (CO ₃ ² -)	when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$
chromate (CrO ₄ ² –)	when combined with Group 1 ions, Ca^{2+} , Mg^{2+} , or ammonium $(\operatorname{NH}_4^{\;+})$
phosphate (PO ₄ ³⁻)	when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$
sulfide (S ² -)	when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$
hydroxide (OH ⁻)	when combined with Group 1 ions, $\operatorname{Ca^{2+}}$, $\operatorname{Ba^{2+}}$, $\operatorname{Sr^{2+}}$, or ammonium $(\operatorname{NH_4^+})$

^{*}compounds having very low solubility in ${\rm H_2O}$

Table G Solubility Curves at Standard Pressure

Table H Vapor Pressure of Four Liquids

Table I Heats of Reaction at 101.3 kPa and 298 K

Reaction	$\Delta H (kJ)^*$
$\boxed{ \operatorname{CH}_4(\mathbf{g}) + 2\operatorname{O}_2(\mathbf{g}) \longrightarrow \operatorname{CO}_2(\mathbf{g}) + 2\operatorname{H}_2\operatorname{O}(\boldsymbol{\ell}) }$	-890.4
$\boxed{ \mathbf{C_3}\mathbf{H_8}(\mathbf{g}) + 5\mathbf{O_2}(\mathbf{g}) \longrightarrow 3\mathbf{C}\mathbf{O_2}(\mathbf{g}) + 4\mathbf{H_2}\mathbf{O}(\boldsymbol{\ell}) }$	-2219.2
$2C_8H_{18}(\ell) + 25O_2(g) \longrightarrow 16CO_2(g) + 18H_2O(\ell)$	-10943
$2\mathrm{CH_3OH}(\ell) + 3\mathrm{O_2(g)} \longrightarrow 2\mathrm{CO_2(g)} + 4\mathrm{H_2O}(\ell)$	-1452
	-1367
	-2804
$2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$	-566.0
$C(s) + O_2(g) \longrightarrow CO_2(g)$	-393.5
$4Al(s) + 3O_2(g) \longrightarrow 2Al_2O_3(s)$	-3351
$N_2(g) + O_2(g) \longrightarrow 2NO(g)$	+182.6
$N_2(g) + 2O_2(g) \longrightarrow 2NO_2(g)$	+66.4
$2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$	-483.6
$2H_2(g) + O_2(g) \longrightarrow 2H_2O(\ell)$	-571.6
$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$	-91.8
$2C(s) + 3H_2(g) \longrightarrow C_2H_6(g)$	-84.0
$2C(s) + 2H_2(g) \longrightarrow C_2H_4(g)$	+52.4
$2C(s) + H_2(g) \longrightarrow C_2H_2(g)$	+227.4
$H_2(g) + I_2(g) \longrightarrow 2HI(g)$	+53.0
$KNO_3(s) \xrightarrow{H_2O} K^+(aq) + NO_3^-(aq)$	+34.89
$NaOH(s) \xrightarrow{H_2O} Na^+(aq) + OH^-(aq)$	-44.51
$NH_4Cl(s) \xrightarrow{H_2O} NH_4^+(aq) + Cl^-(aq)$	+14.78
$NH_4NO_3(s) \xrightarrow{H_2O} NH_4^+(aq) + NO_3^-(aq)$	+25.69
$NaCl(s) \xrightarrow{H_2O} Na^+(aq) + Cl^-(aq)$	+3.88
$LiBr(s) \xrightarrow{H_2O} Li^+(aq) + Br^-(aq)$	-48.83
$H^+(aq) + OH^-(aq) \longrightarrow H_2O(\ell)$	- 55.8

^{*}The ΔH values are based on molar quantities represented in the equations. A minus sign indicates an exothermic reaction.

Table J
Activity Series**

Most Active	Metals	Nonmetals	Most Active
	Li	F_2	
	Rb	Cl_2	
	K	Br_2	
	Cs	I_2	
	Ba		
	Sr		
	Ca		
	Na		
	Mg		
	Al		
	Ti		
	Mn		
	Zn		
	Cr		
	Fe		
	Со		
	Ni		
	Sn		
	Pb		
	H_2		
	Cu		
	Ag		
Y Least Active	Au		Least Active

^{**}Activity Series is based on the hydrogen standard. ${\rm H_2}$ is not a metal.

Table K Common Acids

Formula	Name
HCl(aq)	hydrochloric acid
HNO ₂ (aq)	nitrous acid
HNO ₃ (aq)	nitric acid
$\mathrm{H_2SO_3(aq)}$	sulfurous acid
$\mathrm{H_2SO_4(aq)}$	sulfuric acid
$H_3PO_4(aq)$	phosphoric acid
$\begin{array}{c} \mathbf{H_2CO_3(aq)} \\ \mathbf{or} \\ \mathbf{CO_2(aq)} \end{array}$	carbonic acid
$\begin{array}{c} \operatorname{CH_3COOH(aq)} \\ \operatorname{or} \\ \operatorname{HC_2H_3O_2(aq)} \end{array}$	ethanoic acid (acetic acid)

Table L Common Bases

Formula	Name
NaOH(aq)	sodium hydroxide
KOH(aq)	potassium hydroxide
$Ca(OH)_2(aq)$	calcium hydroxide
NH ₃ (aq)	aqueous ammonia

Table M Common Acid-Base Indicators

Indicator	Approximate pH Range for Color Change	Color Change
methyl orange	3.1–4.4	red to yellow
bromthymol blue	6.0–7.6	yellow to blue
phenolphthalein	8–9	colorless to pink
litmus	4.5-8.3	red to blue
bromeresol green	3.8–5.4	yellow to blue
thymol blue	8.0-9.6	yellow to blue

Source: The Merck Index, 14th ed., 2006, Merck Publishing Group

Table N
Selected Radioisotopes

Nuclide	Half-Life	Decay Mode	Nuclide Name
¹⁹⁸ Au	2.695 d	β-	gold-198
¹⁴ C	5715 y	β-	carbon-14
³⁷ Ca	182 ms	β+	calcium-37
⁶⁰ Co	5.271 y	β-	cobalt-60
$^{137}\mathrm{Cs}$	30.2 y	β-	cesium-137
$^{53}\mathrm{Fe}$	8.51 min	β+	iron-53
$^{220}\mathrm{Fr}$	27.4 s	α	francium-220
³ H	12.31 y	β-	hydrogen-3
$^{131}\mathrm{I}$	8.021 d	β-	iodine-131
37 K	1.23 s	β+	potassium-37
$^{42}\mathrm{K}$	12.36 h	β-	potassium-42
$^{85}\mathrm{Kr}$	10.73 y	β-	krypton-85
^{16}N	7.13 s	β-	nitrogen-16
¹⁹ Ne	17.22 s	β+	neon-19
$^{32}\mathrm{P}$	14.28 d	β-	phosphorus-32
²³⁹ Pu	$2.410 \times 10^4 \mathrm{y}$	α	plutonium-239
²²⁶ Ra	1599 y	α	radium-226
$^{222}\mathrm{Rn}$	3.823 d	α	radon-222
⁹⁰ Sr	29.1 y	β-	strontium-90
⁹⁹ Tc	$2.13 \times 10^5 \mathrm{y}$	β-	technetium-99
²³² Th	$1.40 \times 10^{10} \mathrm{y}$	α	thorium-232
²³³ U	$1.592 \times 10^5 \mathrm{y}$	α	uranium-233
$^{235}\mathrm{U}$	$7.04 \times 10^{8} \mathrm{y}$	α	uranium-235
$^{238}\mathrm{U}$	$4.47 \times 10^9 \mathrm{y}$	α	uranium-238

Source: CRC Handbook of Chemistry and Physics, 91st ed., 2010–2011, CRC Press

Table O Symbols Used in Nuclear Chemistry

Name	Notation	Symbol
alpha particle	${}^4_2 ext{He}$ or 4_2lpha	α
beta particle	$_{-1}^{0}e \text{ or } _{-1}^{0}\beta$	β-
gamma radiation	0	γ
neutron	$\frac{1}{0}$ n	n
proton	$^{1}_{1}\mathrm{H}$ or $^{1}_{1}\mathrm{p}$	p
positron	$^{0}_{+1}e \text{ or } ^{0}_{+1}\beta$	β+

Table P
Organic Prefixes

Prefix	Number of Carbon Atoms
meth-	1
eth-	2
prop-	3
but-	4
pent-	5
hex-	6
hept-	7
oct-	8
non-	9
dec-	10

Table Q Homologous Series of Hydrocarbons

Name	General		Examples
	Formula	Name	Structural Formula
alkanes	C_nH_{2n+2}	ethane	H H H-C-C-H H H
alkenes	C_nH_{2n}	ethene	C=C H H
alkynes	C_nH_{2n-2}	ethyne	H−С≡С−Н

Note: n = number of carbon atoms

Table R
Organic Functional Groups

Class of Compound	Functional Group	General Formula	Example
halide (halocarbon)	-F (fluoro-) -Cl (chloro-) -Br (bromo-) -I (iodo-)	R—X (X represents any halogen)	CH ₃ CHClCH ₃ 2-chloropropane
alcohol	-он	<i>R</i> −ОН	CH ₃ CH ₂ CH ₂ OH 1-propanol
ether	-0-	R $-$ O $ R'$	$\mathrm{CH_{3}OCH_{2}CH_{3}}$ methyl ethyl ether
aldehyde	O -C-H	О R—С—Н	$\begin{array}{c} & \text{O} \\ \text{II} \\ \text{CH}_3\text{CH}_2\text{C} - \text{H} \\ \text{propanal} \end{array}$
ketone	O -C -	R-C-R'	$\begin{array}{c} \text{O} \\ \text{II} \\ \text{CH}_3\text{CCH}_2\text{CH}_2\text{CH}_3 \\ \text{2-pentanone} \end{array}$
organic acid	O O O O O O O O O O	О R—С—ОН	O II CH ₃ CH ₂ C—OH propanoic acid
ester	O -C-O-	$\begin{bmatrix} O \\ II \\ R-C-O-R' \end{bmatrix}$	O CH ₃ CH ₂ COCH ₃ methyl propanoate
amine	- N-	R' $R-N-R''$	$\begin{array}{c} \mathrm{CH_{3}CH_{2}CH_{2}NH_{2}} \\ \mathrm{1\text{-}propanamine} \end{array}$
amide	O II I -C-NH	$\begin{matrix} O & R' \\ II & I \\ R-C-NH \end{matrix}$	$\begin{array}{c} \text{O} \\ \text{II} \\ \text{CH}_3\text{CH}_2\text{C}-\text{NH}_2 \\ \text{propanamide} \end{array}$

Note: *R* represents a bonded atom or group of atoms.

Periodic Table of the Elements

Period

9

18 6 6 6 6 6 6 6 6 6 6		² ⁴ ⁰	4 4 4 5 0 4 4 5 0 4 4 5 0 4 4 5 0 4 4 5 0 4 4 5 0 4 4 5 0 4 4 5 0 4 6	0	9
4,00260 2,2 2,2 1,002 lo 1,002 lo	139.948 ++5 +7 18 2-8-8	+1 +5 +5 36 2-8-18-8	+1 +5 +5 54 2-8-18-18-8	RD 86 -18-32-18-8	(294) 118
18.9984	35.453 17 2-8-7	79.904 B 35 2-8-18-7	126.904 53 2-8-18-18-7	(210) At 85 -18-32-18-7	ت الالالا 117
up 16 15,99942	32.065 -2 32.065 -2 -2.45 2-8-6	78.96 -2 Se +6 34 2-8-18-6	127.60 -2 +4 52 +6 52 -8-18-18-6	(209) +2 PO +4 84 -18-32-18-6	Uuh
5	‡¢ 6 4 4	60 60 60 60 60 60 60 60 60 60 60 60 60 6	იიი	ω ₁ ν	<u></u>
15 14.0067 7	2-5 ++ +4 15 15 15	74.9216 +4 A 33 2-8-18-5	Sb + 2 121.760 + 4 Sb + 5 2-8-18-5	+2 208.980 +4 83 83 -18-32-18-5	15 15
147	28.0855 Si 14 14 2-8-4	72.64 Ge 2.8-18-4	Sn 50 2-8-18-18-4	Pb 82 -18-32-18-4	(289) Uuo 114
13 5 1 3	8154 +3	69.723 +3 2.8-18-3	49 T8-18-3 C-8-18-18-3	204.383 +1 +3 81 -18-32-18-3	Uut
- 1 3	12 2 2	- L	+2 -18-2	+1 +2 +2 18-2	Ľ
ased	_	- ²	-	+ + 3	(285) Q 112
States ses are b arenthese of the mos	=	29 29 29 2-8-18-1	Ag 47 2-8-18-18-1	Au 796.367 79 79 -18-32-18-1	(280) 11 14
Selected Oxidation States Relative atomic masses are based on ¹² C = 12 (exact) Note: Numbers in parentheses are mass numbers of the most stable or common isotope.	10	58.693 N 28 2-8-16-2	Pd 46 2-8-18-18	195.08 Pt 78 -18-32-17-1	DS 110
 Selected Oxidation States Relative atomic masses ar on ¹²C = 12 (exact) Note: Numbers in parenth are mass numbers of the ratable or common isotope. 	o	58.9332 +2 CO +3 27 2.8-15-2	+3 102.906 +5 Rh 45 2-8-18-16-1	192.217 +3 77 77 77 1 8-32-15-2	.276) Mt 109
4 4 4	8 <u>q</u>	55.845 +2 F C +3 26 2-8-14-2	3 +3	3 +4 5 +4 2-14-2	HS 80
	Group 7	\$\$\$\$\$	(98) +4 11 TC +5 43 43 43 2-8-18-13-2	4.97	3h ,
12.011		+2 54.9380 +3 +6 25 25 2-8-13-2	© 4 .9	56 18 7	
Atomic Mass -> Symbol Atomic Number -> an Configuration ->	9	24 44 45 45 45 47 48-13-1	+5 WO +6 +6 +6 +6 +6 +6 +6 +6 +6 +6 +6 +6 +6	+5 183.84 X X X X X X X X X X	Se ⁽²⁶⁶⁾
KEY Atomic Mass → Symbol — Atomic Number → Electron Configuration →	r2	50.9415 23 2-8-11-2	Nb 41 22.9064 4 41 41 2-8-18-12-1	+4 180.948 + Ta 73 73 74 74 73 74	Db 105
KEY	4	₹ 3 2 2 2 4 4	-10-2	178.49 +4 Hf 72 *18-32-10-2	Rf 104
	ო	္	+3	+3	1C +3
+5	+5	2, 44,9559 2,8-9-2	7	+2 138,9055	+2 (227) 89 3-2 -18-35
Group 2 4	+1 24.305 12 12 2-8-2	28 28 2-8-8-2	87.62 S 38 2-8-18-8-2	Ba 56 5-8-18-18-8-2	Ra 88 -18-8-2
T T T	S +	39.0983 +1 19 2-8-8-1	Rb 37 2-8-18-8-1	132.905 +1 CS 55 55 2-8-18-18-8-1	(223) +1 Fr 87 -18-32-18-8-1
	8 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	Ω ∞ ω 4	6 5 70-6	Z

43
(262) L
4 4
S
(259)
245
<u> </u>
(258) 101
್ಕ್
ES7)
(257) 16
φ ₊
S
(252)
<u>م</u>
² ن ا
S2 8
£ 4
BK ,
+3 (247) 97
C
3
43) +3 (4) +4 (5) (5) (6) (6) (7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
+4 +5 +6 95
3
(244) Q
54 t t d
N N N
23 2)
£+ + + + 9+ 2
238.02
4 4
a a
231.03
4
232.0

^{*}denotes the presence of (2-8-) for elements 72 and above

^{**}The systematic names and symbols for elements of atomic numbers 113 and above will be used until the approval of trivial names by IUPAC.

Table S roperties of Selected Element

Atomic Number	Symbol	Name	First Ionization Energy (kJ/mol)	Electro- negativity	Melting Point (K)	Boiling* Point (K)	Density** (g/cm ³)	Atomic Radius (pm)
L 61	H He	hydrogen helium	1312 2372	2.2	14 —	$\frac{20}{4}$	$\begin{array}{c} 0.000082 \\ 0.000164 \end{array}$	32 37
က .	Ë	lithium	520.	1.0	454	1615	0.534	130.
4 TC	B B	beryllium boron	900. 801	1.6 2.0	1560. 2348	2744 4273	1.85 2.34	99 84
9	C	carbon	1086	2.6				75
- •	Z	nitrogen	1402	3.0	63 7	<u>F</u> 8	0.001145	71
• ၈ ရ) দ :	oxygen fluorine	1681	4.0	. 55 4	. 35	0.001553	60.
2	Ne	neon	2081		24	27	0.000825	62
= ;	Na ;	sodium	496	0.9	$\frac{371}{22}$	1156	0.97	160.
2] 22	M S S	magnesium aluminum	7.38 87.78 87.78	 	923 933	1363 2792	1.74 2.70	140. 194
14	Si	silicon		1.9	1687	3538	2.3296	114
15	Ь	phosphorus (white)) 1012	2.5	317	554	1.823	109
16	S &	sulfur (monoclinic)		2.6	388	718	2.00	104
12 18	; ⊊ C	chlorine	1251 1591	3.5	172 22	239 87	0.002898	100.
10	₹ ⅓	argon potassium	419	8:0	337	$\frac{37}{1032}$	0.89	200.
20	Ca	calcium	590.	1.0	1115	1757	1.54	174
21	Sc	scandium	633	1.4	1814	3109	2.99	159
5 53 67 5	ij,	titanium 1.	659 673	75.	1941	3560.	$\frac{4.506}{6.5}$	148
21 e 52 4	> Ċ	vanadium chromium	653	1.6	2183 2180	3680. 2944	5.0 7.5 7.5	144
25	m Mn	manganese	717	1.6	1519	2334	7.3	129
26	Fe	iron	762	1.8	1811	3134	7.87	124
61 6 0 10	S	cobalt	760. 737	1.9	$\frac{1768}{1798}$	3200.	8.86 9.00	118
62.6	Cn	copper	745	. T .	1358	2835	8.96 8.96	122
30	Zu	zinc	300	1.7	693	1180.	7.134	120.
31	Ca	gallium	579	1.8	303	2477	5.91	123
3 8 33 0	Ge As	germannum arsenic (grav)	, 62 944	9, 6 <u>1</u> 0, 61	1211 1090.	001c	5.2534 5.75	120. 120.
8 4 %	Se Br	selenium (gray) bromine	941	2.6 3.0	494 266	958 332	4.809	118
36	Kr	krynton	1351		116	120	0.003495	116
37	Rb	rubidium	403	0.8	312	961	1.53	215
38 30	Sr.	strontium	549 600	1.0	1050. 1795	1655 3618	2.64 7.7	190. 176
40	Zr	ytariam zirconium	640.	1.3	2128	4682	6.52	164

Atomic Number	Symbol	Name	First Ionization Energy (kJ/mol)	Electro- negativity	Melting Point (K)	Boiling* Point (K)	Density** (g/cm ³)	Atomic Radius (pm)
41 42	$_{ m Mo}^{ m Nb}$	niobium molvbdenum	652 684	1.6	2750. 2896	5017 4912	$8.57 \\ 10.2$	156 146
43	Tc	technetium	702	2.1	2430.	4538	111	138
44 45	$ m _{Rh}$	ruthenium rhodium	710. 720.	ଷ ଷ ଷ	$2606 \\ 2237$	4423 3968	12.1 12.4	136 134
46	Pd	palladium	804	2.2	1828	3236	12.0	130.
47	Ag	silver	731	1.9	1235	2435	10.5	136
\$ 1 \$	r Cd	cadmium	х х х х х	¤	594 430	1040.	8.69	140.
1 5	Sn	tin (white)	709	2.0	1 505.	2875	7.287	140.
51	qs	antimony (gray)	831	2.1	904	1860.	89.9	140.
35 22 23	Te	tellurium	869	100	723	1261	6.232	137
5. 5.	r Xe	senon xenon	1170.	2.6	387 161	$\frac{457}{165}$	$\frac{4.955}{0.005366}$	136
55	Cs	cesium	376	8.0	302	944	1.873	238
26	Ва	barium	503	6.0	1000.	2170.	3.62	206
57	La	lanthanum	538	1.1	1193	3737	6.15	194
			Elements 58	58-71 have been	n omitted.			
72	JH	hafnium	629	1.3	2506	4876	13.3	164
<u>.</u> 53	Ta	tantalum	728	<u>.</u> ල්	3290.	5731	16.4	158
47 57	$^{ m Re}$	tungsten rhenium	759 756	7.7 1.9	3695 3458	5828 5869	19.3 20.8	150. 141
92	Os	osmium	814	2.2	3306	5285	22.587	136
22	Ir	iridium	865	2.2	2719	4701	22.562	132
8 G	Pt •	platinum	864	61 6 61 7	2041	4098	21.5	130.
6.7 8.7	Au Hg	gold mercury	1007	2.4 1.9	155 <i>/</i> 234	5129 630.	19.5 13.5336	132
81	Π	thallium	589	1.8	277	1746	11.8	144
8	Pb ::	lead	$\frac{716}{266}$	1.8		2022	11.3	145
§ \$	B Po	bismuth polonium	703 819	9.7 0.03	544 527	1837 1935	97.6 920	150. 142
85	Āţ	astatine	!	2.2	575	<u> </u>) — (148
98	Rn	radon	1037	1	202	211	0.009074	146
87	Fr	francium	393	0.7	300.		1	242
86 80	na Ac	radium actinium	309 499	1.1	909 1323	3471	10.	201
		19 	ements 90 an	Elements 90 and above have been omitted	been omitted	 		

**density of solids and liquids at room temperature and density of gases at 298 K and 101.3 kPa — no data available Source: *CRC Handbook for Chemistry and Physics*, 91st ed., 2010–2011, CRC Press *boiling point at standard pressure

Table T Important Formulas and Equations

Density	$d = \frac{m}{V}$	d = density $m = mass$ $V = volume$
Mole Calculations	number of moles =	given mass gram-formula mass
Percent Error	% error = measure	ed value – accepted value accepted value × 100
Percent Composition	% composition by 1	$\text{mass} = \frac{\text{mass of part}}{\text{mass of whole}} \times 100$
Consequenties	parts per million =	$\frac{\text{mass of solute}}{\text{mass of solution}} \times 1000000$
Concentration	$molarity = \frac{moles}{liter of}$	of solute solution
Combined Gas Law	$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$	<pre>P = pressure V = volume T = temperature</pre>
Titration	$M_A V_A = M_B V_B$	M_A = molarity of H ⁺ M_B = molarity of OH ⁻ V_A = volume of acid V_B = volume of base
Heat	$q = mC\Delta T$ $q = mH_f$ $q = mH_v$	q = heat H_f = heat of fusion m = mass H_v = heat of vaporization C = specific heat capacity ΔT = change in temperature
Temperature	K = °C + 273	K = kelvin °C = degree Celsius