Roles and Effects of Environmental Carbon Dioxide in Insect Life

Pablo G. Guerenstein and John G. Hildebrand

Arizona Research Laboratories, Division of Neurobiology, The University of Arizona, Tucson, Arizona 85721-0077; email: pgg@neurobio.arizona.edu, igh@neurobio.arizona.edu

Annu. Rev. Entomol. 2008. 53:161-78

First published online as a Review in Advance on September 5, 2007

The Annual Review of Entomology is online at ento.annualreviews.org

This article's doi: 10.1146/annurev.ento.53.103106.093402

Copyright © 2008 by Annual Reviews. All rights reserved

0066-4170/08/0107-0161\$20.00

Key Words

behavior, olfaction, antennal lobe, herbivory, oviposition

Abstract

Carbon dioxide (CO₂) is a ubiquitous sensory cue that plays multiple roles in insect behavior. In recent years understanding of the well-known role of CO_2 in foraging by hematophagous insects (e.g., mosquitoes) has grown, and research on the roles of CO_2 cues in the foraging and oviposition behavior of phytophagous insects and in behavior of social insects has stimulated interest in this area of insect sensory biology. This review considers those advances, as well as some of the mechanistic bases of the modulation of behavior by CO_2 and important progress in our understanding of the detection and CNS processing of CO_2 information in insects. Finally, this review briefly addresses how the ongoing increase in atmospheric CO_2 levels may affect insect life.

INTRODUCTION

CO₂: carbon dioxide

LPO: labial-palp pit organ

Carbon dioxide (CO₂) is an important constituent of the chemical environment, and insects possess specialized receptor cells that can detect and measure environmental CO2 sensitively. It is well known that CO2 plays roles in the biology of insects despite being a ubiquitous sensory cue. Recently, those basic roles have been extended to an increasing number of insects, and similarities in its use appear to arise even among insects with rather different habits. After years of speculation, the mechanisms underlying transduction of CO2 stimuli at the level of receptor-cell dendrites are currently being unraveled, and processing of CO2 cues in insect brains also is beginning to be understood. This research is contributing to our understanding of olfactory mechanisms in insects. Also, as many insects use CO2 as a cue to find resources, expanding our understanding of the CO2 sensory system may lead to improved strategies for surveillance and control of harmful insects.

The global atmospheric concentration of CO₂ is rising markedly as a result of human activities. The average level has increased from about 280 ppm (µl/l) immediately before the Industrial Revolution to a daily average of 380 ppm in 2005 and is increasing at a rate of about 2 ppm per year (58). Present levels far exceed the natural range over the past 650,000 years (180-300 ppm). Such an increase in CO₂ levels is expected to affect the biology of a number of living organisms including insects and therefore is stimulating research on what those effects could be. Moreover, this aspect of global change highlights the importance of understanding the roles of CO2 in the biology of insects at present and past CO2 atmospheric levels. Owing to space constraints, this review emphasizes recent hypotheses and findings on the roles and effects of CO2 in insects.

BEHAVIORAL ROLES OF CO₂

Role of CO₂ Sensing in Insect-Plant Interactions

In the past decade dramatic progress has been made in our knowledge of the behavioral roles that CO_2 plays in the interaction between insects and their host plants. Even when much work remains to be done, there is evidence suggesting multiple roles in this interaction.

Oviposition behavior. Adult Lepidoptera possess an organ in their labial palps, the labial-palp pit organ (LPO), which is specialized for sensing CO₂ (17, 63). In the pyralid moth Cactoblastis cactorum this organ is vestigial in males and relatively prominent in females, and thus it was suggested that CO2 plays a role in the oviposition behavior of these moths (95, 97). C. cactorum is a nocturnal moth that oviposits on *Opuntia stricta*, a Crassulacean acid metabolism (CAM) plant. These plants, found mainly in arid regions, assimilate CO₂ during the night and thus are sinks for CO₂. Plants that have more photosynthetic activity during the day receive more eggs during the night (79). It is thought that these moths sense the magnitude of the negative CO2 gradients associated with a plant's metabolic activity and thus detect the healthiest plants, that is, the plants that assimilate more CO₂ during the night (95). Theoretical estimates suggest that a gradient of CO₂ occurring within a boundary layer of about 5 mm over the surface of the plant implies a concentration difference of more than 80 ppm, well above the detection threshold of the CO₂-detection system (below 40 ppm) of these moths. Moths probe the surface of a plant with their LPOs before ovipositing, apparently to measure this gradient (97). Therefore, CO₂ acts at short range for C. cactorum.

A role for CO₂ in oviposition behavior was also proposed for the sphingid moth Manduca sexta (1), although in adult M. sexta there is no apparent sexual dimorphism in the LPOs (63). A preferred host plant of M. sexta is a strong source, not sink, of CO_2 during the night (50), and thus this moth would use the high CO₂ levels generated by the plants as cues to evaluate their physiological status (1). Because M. sexta females do not probe the plant surface before ovipositing, CO₂ cues may affect the behavior of these moths at a distance from the plant, but it is not known if CO2 acts at long or short range or both. The evidence obtained so far for these species is indirect. Experiments involved masking of CO2 stimuli using methods (e.g., generation of fluctuations of artificially high CO₂ around test plants) that could, for example, affect the plants themselves and therefore alter other olfactory cues. To obtain direct evidence, plants emitting different natural levels of CO2 should be offered in a choice test. In the diurnal butterfly Pieris rapae, there is no clear evidence of a relationship between photosynthetic rates (CO₂ assimilation) in plants and the number of eggs laid on them (72, 73). Moreover, no data are available on the direct effects of CO₂ on the oviposition behavior of this insect.

Direct evidence for a role of CO₂ in the oviposition behavior of herbivorous insects, however, is available (94, 96). For example, tephritid flies, economically important parasites of fruit, oviposit into small existing lesions in the skin of fruits. Such lesions release volatile compounds including respiratory CO2. CO2 alone, released at levels similar to those emitted from lesions, attracts gravid flies at short range (centimeters) (96). Responses are dose dependent in the range 100–3000 ppm above ambient CO₂ levels. As CO2 alone attracts flies at levels lower than that of CO₂ in a natural, complete stimulus (fruit lesion; 96), other volatiles may increase the attraction by CO2. The effectiveness of such a ubiquitous stimulus may result from context specificity, because in the experiments CO2 was released from a small source over

and close to a fruit-like substrate, a context that simulates a lesion in a fruit (96).

As a result of insect oviposition, Scots pines (*Pinus sylvestris*) systemically reduce their rate of photosynthesis—that is, their rate of CO₂ assimilation—and thus trees bearing eggs become weaker CO₂ sinks than trees without eggs (87). Therefore, the number of eggs that a plant carries could modulate sensory responses of insects via CO₂ cues.

Foraging behavior. Many coleopteran larvae that feed on living or decaying plant material use CO₂ as a cue to find food (59, 80). Furthermore, CO₂ is the only volatile compound that larvae of the beetle Diabrotica virgifera virgifera use when orienting themselves toward corn roots (12). In addition, larvae of the noctuid moth Helicoverpa armigera preferred sources of high CO2 alone in a Y-maze choice experiment in which the control stimulus was CO2-free air (85). Field observations support a role of CO2 in their foraging behavior, because those larvae feed on plant tissues that do not assimilate but are sources of CO₂ (mainly fruits and flowers). Behavioral responses of *H. armigera* larvae are dose dependent, reaching a maximum at 800 ppm CO₂ (85). Larvae of the pyralid moth *Elasmopal*pus lignosellus also orientate toward sources emitting a range of CO2 concentrations in an olfactometer (mainly at 1000-1500 ppm) (55).

Whereas it has been known that CO₂ cues play a role in the foraging behavior of lepidopteran larvae, it was not clear whether adults may also use those cues. Many adult lepidopterans feed on nectar, and it has long been assumed that flowers are important sources of CO₂ (53, 89). Production of nectar and CO₂ in the nocturnal, moth-pollinated flowers of *Datura wrightii* are positively correlated temporally (50), so that floral CO₂ emission may indicate food abundance to the moths. This idea is strengthened by the results of a choice experiment using the moth *M. sexta* (109), whose main host plant in the Sonoran Desert (Arizona) is *D. wrightii*. In a flight cage

CO₂ plume: physical structure that CO₂ dispersing downwind from a source adopts after being released into the air

a foraging, naïve moth was offered two plants, each bearing a single scented, nectar-free surrogate flower. The control flower emitted CO₂ at approximately ambient levels, and the test flower emitted CO₂ at 750 ppm, approximating the CO₂ emission typical of newly opened, highly profitable D. wrightii flowers (50). Most moths directed their first proboscis extension into the flower emitting the higher level of CO₂ (109), and therefore it was suggested that, as in the cases of other (e.g., hematophagous) adult insects, nectarfeeding insects may also use CO2 as a foraging cue. These experiments did not clarify whether CO₂ serves as a cue for orientation to, or only as a local feeding stimulus at, a flower. The behavioral response of M. sexta to CO_2 is plastic because if CO₂ is not associated with a reward, then moths learn not to prefer sources of high CO₂ (109). Plastic responses to CO₂ in the context of foraging are also found in honey bees (71).

The idea that moths use CO₂ as a cue for foraging could imply that they can predict nectar volumes before probing the flowers and would hover in front of (or land on) only promising flowers, thus increasing their foraging efficiency. This hypothesis assumes that in the field, at the time of moth foraging, there is a positive spatial correlation between nectar volumes in and CO₂ emissions by the flowers. This spatial correlation has not yet been demonstrated. Moreover, how a moth's visit (involving partial or full depletion of nectar) might affect such a spatial correlation between nectar and CO₂ emissions remains to be tested rigorously.

In *Drosophila melanogaster*, CO₂ cues have been suggested to play a local role in the selection of profitable food sources (36). In an olfactometer, adults and larvae avoid CO₂ when presented alone at 1000 ppm above ambient levels or at higher concentrations (36, 104). These responses have been correlated with CO₂ release from fruits: Unripe bananas emit more CO₂ than ripe ones, and flies prefer ripe fruits. The repellent effect of CO₂ was suggested to depend on the odor context (36). El-

evated CO₂ is also found in an odor blend released by stressed *D. melanogaster* and avoided by responding flies (104). Whether CO₂ can be attractive to the flies in any natural context is not yet clear.

Role of CO₂ Sensing in Insect-Vertebrate Interactions

CO₂ emanating from vertebrates helps bloodsucking (hematophagous) insects detect and orientate toward a host and thus plays a role in foraging (76). Such a role for CO_2 in foraging of mosquitoes was recognized long ago (20, 42, 105, 107). CO₂ alone activates and modulates the host-seeking behavior of mosquitoes in the laboratory and in the field (32, 40–42, 107), albeit less effectively than do complete, natural stimuli (20, 39). The fine-scale structure of the CO₂ plume strongly influences the behavioral responses of mosquitoes in a wind tunnel (29, 40). Whereas activation occurs with either a homogeneous or filamentous plume, upwind flight (also called attraction) and source-finding are observed mainly when the plume is filamentous, i.e., when flying mosquitoes are exposed to intermittent increases in concentration. Such a plume is what mosquitoes would encounter naturally at a relatively long distance from a host, and it was proposed that CO₂ plays an important role as a long-range orientation cue (123). Under filamentous conditions the response threshold falls below 500 ppm over ambient levels, and responses increase with doses up to 40,000 ppm above ambient levels (40). CO₂ also acts at close range, stimulating probing of the host's skin (32, 94). It is thought that CO₂ is an important attractant component for mosquitoes with generalist feeding habits, whereas CO2 is less important for specialists with a more specific host range and sensitivity to specific skin odors (41, 76, 106, 107).

In attracting mosquitoes, CO_2 acts synergistically with the human skin odorant L(+)-lactic acid (20, 28, 32, 39, 105), which evokes a variable level of response (33, 39). In a Y-tube olfactometer a mixture of CO_2 with

lactic acid attracts more mosquitoes than the arithmetic sum of the attraction to those two stimuli when presented alone. No such synergistic effect, however, is observed for activation (39). CO₂ also acts synergistically with 1-octen-3-ol (41, 105, 107), a vertebrate odorant present in human sweat (22), in attracting mosquitoes. Brief exposure to CO₂ instantaneously sensitizes (i.e., reduces the threshold for) mosquito attraction toward an upwind source of skin odor (27). Such sensitization may help mosquitoes identify and locate a host and may play a role in the synergistic responses described above.

For tsetse flies, CO2 acts as a behavioral activator and induces attraction and landing (41, 76, 118). In the field, attraction by CO_2 is enhanced synergistically in the presence of the ox-breath odorant acetone (110). In windtunnel experiments, a source emitting a turbulent plume of CO2 alone at a level as low as 50 ppm above ambient attracts the flies (35), which suggests that CO₂ plays a role in long-range attraction. In habitats of tsetse flies, ecologically relevant CO₂ sources can be detected by a CO₂ sensor as far as 60 m downwind (122). At such a distance from the source, a CO₂ plume exhibits intermittent pulses less than 10 ppm above ambient levels and about 100 ms in duration. It could be assumed that an insect's CO2-sensing system can detect those stimuli (46, 93, 122). Therefore, CO2 would act as a long-range attractant, although its effect would be enhanced by other vertebrate odorants.

Responses of walking larvae and adults of triatomine (kissing) bugs (Reduviidae) to CO₂ have been tested mainly in locomotion compensators and olfactometers. In contrast with adult mosquitoes and tsetse flies, triatomines showed little (47, 108) or no (6, 81) activation in response to CO₂. Tests in which CO₂ was produced by a culture of yeast, however, suggested an important activating effect (48), although it is unclear if other emitted odorants contributed to this effect. As for other hematophagous insects, the triatomines orient upwind in air streams enriched with CO₂

alone (6, 19, 47, 81, 108) or in combination with synthetic odorants (6, 7, 82). Unlike adult mosquitoes, however, walking kissing bug larvae can orient in homogeneous plumes of CO₂ alone (8). To understand better this interspecific difference, such studies should be extended to other flying and walking hematophagous arthropods. Orientation toward CO₂-enriched airstreams has a threshold of 350 ppm above ambient levels for CO₂ presented alone and 100 ppm above ambient when CO₂ is presented simultaneously with L(+)-lactic acid (6), suggesting synergism between the two stimuli (when presented alone, lactic acid does not attract the bugs). Responses to CO₂ are found only during the first hours of scotophase, when the insects are seeking a host, and this circadian rhythm is controlled endogenously (9). CO2, however, is not a necessary odor cue for attraction of triatomine bugs to hosts (7, 47, 81, 108). Moreover, at least some mosquitoes can be attracted by host odors lacking CO₂ (11, 18, 41, 91).

A number of other hematophagous arthropods also use CO₂ in host-seeking (21, 25, 41, 84, 86, 101, 111). Notably, and contrary to what has been found for phytophagous insects, CO₂ apparently plays no role in the oviposition behavior of the sheep blow fly (Calliphoridae) (113).

Role of CO₂ Sensing in Insect Social Behavior

Insect social behavior includes the control of environmental variables inside nests. For example, excessively high temperatures or CO_2 levels within nests can have deleterious effects on the colonies. As part of the control of nest-climate conditions, some social insects measure and regulate the levels of CO_2 . Regulation in honey bees involves collective ventilation by wing-fanning workers near the hive entrance, which actively drives air out of the hive (88, 92). Thus, under natural conditions, there is a positive temporal correlation between CO_2 levels in the hive and the number of fanning bees (88). Large colonies control

Scotophase: the dark phase of the day cycle

ORCs: odorant receptor cells

RCs: receptor cells

CO₂ levels more precisely and at lower levels (mean CO₂ level of 4400 ppm) than do small colonies (mean CO₂ level of 7800 ppm).

Colonies of bumble bees (*Bombus terrestris*) also control nest climate through fanning activity (116), and the number of fanning bees increases as CO₂ levels increase. The response threshold of colonies with up to 120 workers is about 16,000 ppm (115, 116), which roughly agrees with field studies in which that value was never reached. The individual fanning behavior underlying the collective control of CO₂ levels is variable (115). Thus, the threshold, probability (at above-threshold stimuli), and duration of fanning responses are independent parameters involving significant interindividual variability. Response thresholds decrease over successive trials, leading to specialization in individuals with a low response threshold (i.e., individuals that respond more frequently) (115). Specialization is believed to be a key factor in colony organization, leading to increased colony efficiency.

In ants the structure of the nest and surface wind are important for ventilation (65) and ensure relatively low interior CO₂ levels (66). CO₂ values do not exceed 28,000 ppm in giant nests of *Atta vollenweideri*, a figure similar to that reported for termite nests (94). As for bees, CO₂ in large nests is maintained at lower levels than in small nests (66). Ant workers can alter the shape of the nest's channel openings. It is thought that this could represent a relatively slow but long-term response of a colony to unfavorably high CO₂ levels (65).

DETECTION AND CNS PROCESSING OF CO₂ INFORMATION

Studies of the detection and processing of CO_2 cues should contribute to our understanding of the molecular and neural bases of CO_2 -related behaviors. This in turn may help us understand the behavioral roles of CO_2 and also may lead to the development of methods for the surveillance and control of harmful insects.

Detection of CO₂ Cues by Sensory Cells

The physiology of the CO₂ receptor cells (RCs) of different insects has been studied in detail. Those studies suggest that CO₂ RCs are not typical odorant receptor cells (ORCs).

Sensory physiology. Highly sensitive CO₂ RCs have been found in a number of insect species in mouthparts or antennae, but not in more than one appendage in a single species (98). Typically, CO2 RCs housed in thin-walled sensilla with wall pores have dendrites with an increased distal surface area (67, 90, 98). Those sensilla usually contain a single CO₂ RC, although a second CO₂ RC (17, 63, 75), ORCs (26, 44, 121), or a thermoreceptor cell (68) also might occur in the same sensillum in different species. In some cases, sensilla sensitive to CO2 are clustered to form a specialized sensory organ. On the basis of morphological findings, it has been proposed that CO₂-sensitive structures in insects have a polyphyletic origin (98), and other arthropods (e.g., centipedes, ticks, terrestrial crabs) also possess CO₂ RCs (100, 101, 119).

The lepidopteran LPOs, in the distalmost segments of the labial palps, contain a number of sensilla that vary from a few to more than 1000 depending on the species (63, 98). All those sensilla contain, apparently exclusively, RCs specialized to detect CO₂ (15, 46). The variability in the numbers of LPO sensilla is not understood, but it may be related to differences in feeding habits (63). For example, moths that do not feed as adults have vestigial LPOs (63). In moths, LPO RCs are selective, are highly sensitive, and can represent CO₂ levels over many orders of magnitude (46, 93, 97). In the moth Heliothis armigera, the response threshold for the LPO as a whole was estimated to be just 0.5 ppm over ambient levels (93).

The CO₂ RCs of moths can encode rapid changes in the level of CO₂ through a phasic component of their responses. Those

responses are bidirectional, so that the CO₂ RCs can signal both increases (through excitation) and decreases (through cessation of spiking) in concentration. In both cases responses are proportional to the change in concentration, so that they simultaneously signal both direction and rate of change (46). The phasic component of the responses could follow short, intermittent increases in CO2 level for stimuli delivered at a frequency as high as 10 Hz, suggesting a role in tracking a plume of CO₂ during long-range orientation (46, 93). In addition, the responses of the CO₂ RCs have a tonic component that does not adapt to prolonged stimulation (except in C. cactorum), so that the CO₂ RCs continuously signal the background (environmental) level of CO₂ from CO₂-free air up to levels at least one order of magnitude higher than the current atmospheric concentration (17, 46, 99). Both variable background levels and rapid signal fluctuations are features of natural CO₂ stimuli (46, 50, 94), and the moth's LPO RCs appear to process these features simultaneously.

Among dipterans, the CO₂ RCs of mosquitoes and biting midges are located in basiconic sensilla on the maxillary palps (43, 45, 62), whereas in tsetse flies the CO₂ RCs are located in the antennae (16, 30). As in moths, the physiological properties of the CO₂ RCs of mosquitoes include specificity, sensitivity, likely a broad concentration-response curve, bidirectionality of response, and the ability to signal continuously the CO2 background levels (44, 45). In mosquitoes, the sensilla that contain the CO₂ RCs also house two other sensory cells, one of which responds to 1-octen-3-ol (45). Because the CO₂ RCs of mosquitoes are in mouthparts and the ORCs tuned to lactic acid are in the antennae, the behavioral synergy between CO2 and lactic acid originates in the CNS. By contrast, interactions between sensory inputs tuned to CO_2 and 1-octen-3-ol are conceivable. In D. melanogaster CO2 RCs are found in the antennal basiconic sensillum 1 (ab1) (26). This type of sensillum houses four RCs, only one

of which is sensitive to CO₂ (ab1C cell); the other RCs in the sensillum are tuned to different odorants.

In bees and ants CO₂ RCs have been found in sensilla ampullacea on the antenna (68, 98). In ants the sensilla are grouped. Each sensillum consists of an external pore opening into a chamber that connects to the ampulla via a relatively long cuticular duct. As in bees, the ampulla contains one thin-walled wall-pore peg with a single CO₂ RC (67, 98), although a second, thermoreceptive cell is present in a fraction of the sensilla ampullacea of some ants (68). Enclosure of the pegs inside an ampulla somewhat resembles the LPO of lepidopterans. The rationale for these structures is not clear. As in moths and mosquitoes, the CO₂ RCs of ants can signal background levels of CO₂ continuously and without sensory adaptation, which would enable them to assess the absolute CO₂ concentration inside the nest (67).

CO₂ is detected by sensilla that strongly resemble olfactory sensilla, but it has been proposed that the CO₂ RCs function in a qualitatively different way than a typical ORC. Thus, CO₂ RCs function as concentration detectors, which can distinguish between changes in air speed and concentration because adsorption of CO₂ to sensory structures is reversible and there is a continuous equilibrium with the external CO₂. In contrast, typical ORCs function as flux detectors, which do not distinguish changes in speed from changes in concentration and measure the rate of odorant molecules irreversibly adsorbed by the sensillum (61). Additionally, CO₂ RCs bear certain physiological similarities to those responding to changes in ambient temperature and humidity (67, 112, 120). For example, thermoreceptors and hygroreceptors can also respond bidirectionally to step changes in concentration (112). Therefore, the CO₂ RCs could be not only considered ORCs but also included within the group of RCs that monitor environmental variables such as temperature and humidity. Dissimilarities in the structure of the dendrites of typical

Sensory adaptation: decrease in sensitivity of RCs due to the influence of a previous stimulus condition

GR: gustatory receptor

OR: odorant receptor

Antennal lobes (ALs): sites of

primary processing of olfactory information in the insect brain

SEG: subesophageal ganglion

Glomeruli:

functional modules in the AL, structures of condensed AL neuropil, often spheroidal and surrounded by glia, wherein neurites of AL neurons and terminals of axons of RCs interact synaptically

LPOG: LPO glomerulus

Projection neurons (PNs): AL output neurons that relay

synaptically processed information from AL glomeruli to higher centers in the protocerebrum

ORCs and CO₂ RCs, and similarities in those structures between CO₂ RCs and thermoreceptors, have been reported (98). The CO₂ RCs are not typical ORCs.

Signal transduction. The mechanism of transduction of CO₂ stimuli in the dendrites of insect CO₂ RCs has been a matter of speculation. A gustatory receptor (GR) gene (Gr21a) is expressed in the CO₂ RCs of D. melanogaster (ab1C cells) (104), and the GR gene family is now thought to include genes that encode GRs as well as odorant receptors (ORs). Both GR and OR genes encode seventransmembrane domain G-protein-coupled receptor proteins. Genetic silencing or ablation of Gr21a-expressing cells strongly interferes with a behavioral (avoidance) response of larval (36) and adult (104) fruit flies to CO₂, whereas activation of those cells is sufficient to elicit this behavior (103). Moreover, recently it has been found that Gr21a is coexpressed with Gr63a in all CO2 RCs of D. melanogaster (60, 70). Coexpression of both GR genes is necessary and sufficient for the CO_2 RCs to respond to CO_2 , and it is thought that those GRs form a heterodimeric receptor for the detection of CO2. Their exact role in CO₂ sensing, however, has yet to be determined.

Orthologs of Gr21a and Gr63a have been identified in mosquitoes, and they also are coexpressed in the same RCs. Moreover, they are expressed selectively in the maxillary palps, where the CO₂ RCs are located (60). Orthologs of these GR genes also have been identified in a moth and a beetle (70), but not in honey bees, suggesting that their chemoreceptors for CO₂ are different.

Processing of CO₂ Information in the Antennal Lobe

In lepidopterans the axons of the CO₂ RCs project, via the labial-palp nerve, into the CNS at the level of the labial neuromere of the subesophageal ganglion (SEG) and then continue bilaterally, targeting both antennal

lobes (ALs) of the deutocerebrum (63, 64, 74). This finding was surprising because it was expected that sensory input from the labial palps would be processed in the labial neuromere of the SEG, not in the primary center for processing olfactory input from the antenna. This unexpected projection pattern suggests that information about CO₂ cues is integrated with sensory inputs from the antennae. Typically, an insect AL comprises an array of condensed neuropil structures called glomeruli, which contain RC axon terminals, neurites of AL neurons, and synapses among those elements. Glomeruli are functional modules of the AL, and CO₂ RCs project into a single, specific glomerulus—in lepidopterans, the LPO glomerulus (LPOG)-in each AL (17, 46, 63, 64, 74). The LPOG receives no primary-afferent input from the antenna and thus appears to be a dedicated target for sensory projections from the CO₂ RCs (17, 63, 64, 74). This finding, together with results of studies of the AL neurons associated with the LPOG, argues that the LPOG is devoted to processing of CO₂ information from the LPO and thus is the CO₂ glomerulus of lepidopterans.

Intracellular recording from and staining of AL neurons have provided physiological and anatomical evidence unequivocally establishing that the AL is the first-order processing center for CO₂ information in the moth's brain (46). The CO₂-responsive projection neurons (PNs) in the AL have dendrites that arborize exclusively in the LPOG. In M. sexta, PN axons project into the ipsilateral protocerebrum, mainly to the lateral horn and the calves of the mushroom body. As found in the case of CO₂ RCs of moths, CO₂-responsive PNs are specific, sensitive, and bidirectionally responsive over a wide range of CO2 concentrations (46, 49). In addition, those PNs follow short, intermittent stimuli up to a frequency of at least 10 Hz (46), an ability that may enable the moths to follow a plume of CO₂ to locate a CO₂ source from relatively long distances (e.g., meters). It remains to be tested if CO₂-responsive PNs can signal background levels of CO₂ continuously as do CO₂ RCs of *M. sexta*.

In mosquitoes, the RCs housed in maxillary-palp sensilla have axonal projections into the CNS resembling those of CO₂ RCs of the LPOs of moths. In Anopheles gambiae the projections extend bilaterally beyond the SEG and terminate in three glomeruli in each AL that do not receive antennal afferents (4, 5, 57). By contrast, in Aedes aegypti the projections are unilateral (ipsilateral) but also terminate in three glomeruli that are not innervated by axons of antennal ORCs (3, 5, 31, 57). The number of glomeruli receiving axonal projections from the maxillary-palp sensilla matches the number of types of RCs in the sensilla that house the CO₂ RCs. This suggests that CO2 cues may be processed by just one glomerulus in the AL, and that the other two RCs accompanying the CO₂ RCs in the maxillary palp sensilla are olfactory. There is some evidence suggesting that one of the three glomeruli receives input from the CO2 RCs (10, 57).

In *D. melanogaster*, the CO₂ RCs, located on the antenna, project into a single AL glomerulus. Two-photon imaging with a calcium-sensitive fluorescent protein expressed in all neurons shows that a single AL glomerulus, the V glomerulus, is activated by stimulation with step increases in CO₂ (104). As in the case of the LPOG in moths, the V glomerulus of *D. melanogaster* is a CO₂ glomerulus. Activation of this glomerulus is highly specific and sensitive and has a relatively broad concentration-response curve. Moreover, this activation is necessary and sufficient for a behavioral (avoidance) response (104).

In summary, these recent, first studies suggest that terminals of the CO_2 RCs, located in antennae or mouthparts, project (uni- or bilaterally) into a single glomerulus in each AL. This glomerulus is specialized for processing CO_2 cues, and the PNs arborizing in it exhibit responses to CO_2 that at least partly resemble those of the RCs that provide input to the glomerulus.

PREDICTED EFFECTS OF RISING ATMOSPHERIC CO₂ LEVELS ON INSECTS

The level of CO₂ in the atmosphere has been increasing at an accelerating rate in recent years. Even if human efforts lead to stabilization of that rate in the near future, a value of 570 ppm atmospheric CO₂ is expected for the end of this century, and 770 ppm (double current levels) for 2200 (58).

Indirect Effects on Insects

Increases in atmospheric levels of CO₂ can cause increases in plant growth rates and changes in the physical and chemical defenses of plants and the chemical composition of their tissues (14, 23, 56, 83, 102), and phytophagous insects are indirectly affected by those changes in their host plants. Observed decreases in the protein content and increases of the C/N ratio in leaves under elevated CO2 (13, 56) imply a reduction in food quality. In some cases herbivorous insects compensate for that change through increased consumption (24, 56, 117). In some communities increased herbivory also may be due to the phagostimulant effects of increased levels of sugar in plants (51). The increase in plant biomass induced by elevated CO₂ may, in turn, compensate for increases in defoliation (24). Some insect populations may not fully compensate for the reduced quality of their diet, while others may overcompensate (13, 37, 56). In addition, in some communities, decreased instead of increased herbivory occurs (69).

Studies of community interactions are useful to evaluate the effects of increased levels of CO₂ in realistic experimental conditions that, for example, include feedback between populations (83). Such studies do not allow discernment between indirect and direct effects on insects, but tests for indirect effects have been carried out. For example, when leaves of two different species of plants are offered to caterpillars in dual-choice experiments, the insects' host plant preference shifts whether the plants

were grown at elevated CO₂ (560 ppm) or at ambient CO₂ levels (2). Thus, the insects' choice is affected by the induced changes in the host plants. Experiments that help to predict the effects of future climate changes on insect populations are, by necessity, becoming more complex. The anthropogenic increase of atmospheric CO2 levels "very likely" is responsible for the ongoing global warming, as well as for changes in environmental variables other than temperature (58). Therefore, in addition to its own effects, elevated CO₂ could affect insects through changes in those other environmental variables. It has been suggested that the effects of elevated CO₂ should be studied simultaneously with those and other environmental variables of climate change (e.g., with increased temperature and levels of O₃), as the effects of altered climatic variables can interact (37, 38, 54, 56, 83, 117). In addition, impacts of elevated CO₂ on insects through effects on their natural enemies (parasites, predators, pathogens) also are under consideration (24, 54, 77). Moreover, long-term field experiments (preferably involving multiple generations) should provide more realistic data on the variables studied in both plants and insects (56, 114, 117). Because the responses of individual species can be highly variable, it has been suggested that each plant-insect system has some particular responses to elevated CO₂ levels (52, 56). Thus, results from complex studies emphasize the difficulties in generalizing the effects of CO₂ enrichment on ecosystems and the need for more research (38, 56, 78). In any case, a serious impact on insect populations can already be anticipated (24, 34).

Direct Effects on Insects

Very few studies have dealt with direct effects of high atmospheric levels of CO₂ on insects. Knowledge of those direct effects should help to illuminate the mechanistic bases of the effects of high CO₂ on interactions of insects with plants and enemies and should improve

our ability to predict shifts in insect population dynamics and community interactions in future environments.

CO₂ appears to be used by moths as a cue to locate suitable oviposition substrates. Elevated ambient CO₂ levels (720 ppm) may interfere with the oviposition behavior of the moth C. cactorum; under these conditions females oviposit fewer eggs (95). The oviposition behavior of the moth M. sexta, by contrast, is not affected by elevated CO₂ levels up to at least 1200 ppm (1). The physiological bases of decreased oviposition in C. cactorum appear to include sensory adaptation of CO₂ RCs when continuously exposed to CO₂ levels of 600 ppm or greater. Under these conditions the CO₂ RCs cannot encode CO₂ information, suggesting that these CO₂ RCs are genetically adapted for detection of CO₂ fluctuations around atmospheric levels that prevailed before the Industrial Revolution (97). In the moth M. sexta and other insects, the CO2 RCs do not adapt to such levels of CO₂. Testing of more insect species is needed to determine if *C. cactorum* is an exception. Insects that exploit hosts that are CO₂ sinks (e.g., C. cactorum) may be more affected by the global increases in atmospheric CO2 levels than insects that use hosts that are CO₂ sources, because the latter evolved in a niche where they frequently encounter relatively high levels of CO₂ (1).

In the moth *H. armigera*, whose CO₂ RCs do not adapt to high levels of CO₂, other effects are seen. After exposure to CO₂ levels above 400 ppm, those CO₂ RCs respond to changes in temperature, in addition to changes in the level of CO₂ (99). This finding suggests that under these conditions the CO₂ sensory system confuses fluctuations in CO₂ with fluctuations in temperature, which presumably could affect behaviors in which CO₂ plays a role. At about pre-Industrial Revolution CO₂ levels, the CO₂ RCs do not respond to temperature changes, supporting the idea that they are genetically adapted to past atmospheric levels of CO₂. These studies show that

increased levels of atmospheric CO₂, such as the physiology of the insect's CO₂-sensing those predicted for the near future, can affect system per se.

SUMMARY POINTS

- 1. CO₂ may play a role in the foraging behavior of nectar-feeding insects.
- 2. While host-seeking, mosquitoes find a source of CO₂ at a distance only if they encounter a filamentous plume of CO₂ (that is, when they are exposed to intermittent increases in CO₂ concentration), whereas homogeneous plumes do not lead to source-finding. This contrasts with the behavior of walking kissing bugs, which can orient themselves using homogeneous plumes of CO₂ while seeking a vertebrate host.
- 3. In host-seeking mosquitoes, brief exposure to an increase in CO₂ concentration instantaneously sensitizes their attraction toward an upwind source of skin odor.
- 4. As previously thought, CO2 RCs are not typical ORCs.
- 5. The CO₂ RCs of *D. melanogaster* coexpress two GR genes, which are necessary and sufficient for the response of CO₂ RCs to CO₂.
- 6. CO₂ RCs, located in either the antenna or the mouthparts, project their axons into a single glomerulus in the AL, which is specialized for processing information about CO₂ stimuli. This suggests that information about CO₂ cues is integrated centrally with olfactory information detected by the antennae. However, behavioral responses to CO₂ alone (i.e., without integration of odorant information from the antenna) occur.
- Despite difficulties in generalizing some of the effects that the ongoing increase in atmospheric CO₂ levels will have on ecosystems, a serious impact on insect populations can be predicted.
- 8. Increased levels of atmospheric CO₂, such as those predicted for the near future, can affect the physiology of the insect's CO₂-sensing system.

DISCLOSURE STATEMENT

The authors are not aware of any biases that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

The authors' research in this field is supported by grants from the National Science Foundation, IOB-0444152 (in collaboration with Dr. Robert Raguso), and from the National Institutes of Health, R01 DC002751. We thank our coworkers at the Hildebrand laboratory for stimulating discussions. We regret that some important work could not be included here because of space constraints. This chapter is dedicated to Professor Dr. Josué A. Núñez on the occasion of his 83rd birthday.

LITERATURE CITED

Abrell L, Guerenstein PG, Mechaber WL, Stange G, Christensen TA, et al. 2005. Effect
of elevated atmospheric CO₂ on oviposition behavior in *Manduca sexta* moths. *Global Change Biol.* 11:1272–82

2. A good example of the indirect effects that the rise in atmospheric CO₂ levels may have on insect behavior, independently of the effects on the insects themselves.

- 2. Agrell J, Kopper B, McDonald EP, Lindroth RL. 2005. CO₂ and O₃ effects on host plant preferences of the forest tent caterpillar (*Malacosoma disstria*). *Global Change Biol.* 11:588–99
- Anton S. 1996. Central olfactory pathways in mosquitoes and other insects. In Olfaction in Mosquito-Host Interactions, Ciba Found. Symp. 200, pp. 184–96. Chichester, UK: Wiley. 331 pp.
- Anton S, Rospars JP. 2004. Quantitative analysis of olfactory receptor neuron projections in the antennal lobe of the malaria mosquito, *Anopheles gambiae*. J. Comp. Neurol. 475:315– 26
- Anton S, van Loon JJA, Meijerink J, Smid HM, Takken W, Rospars JP. 2003. Central projections of olfactory receptor neurons from single antennal and palpal sensilla in mosquitoes. Arthropod Struct. Dev. 32:319–27
- Barrozo RB, Lazzari CR. 2004. The response of the blood-sucking bug *Triatoma infestans* to carbon dioxide and other host odours. *Chem. Senses* 29:319–29
- Barrozo RB, Lazzari CR. 2004. Orientation behaviour of the blood-sucking bug *Triatoma*infestans to short-chain fatty acids: synergistic effect of L-lactic acid and carbon dioxide.
 Chem. Senses 29:833–41
- 8. Barrozo RB, Lazzari CR. 2006. Orientation response of haematophagous bugs to CO₂: the effect of the temporal structure of the stimulus. *J. Comp. Physiol. A* 192:827–31
- Barrozo RB, Minoli SA, Lazzari CR. 2004. Circadian rhythm of behavioural responsiveness to carbon dioxide in the blood-sucking bug *Triatoma infestans* (Heteroptera: Reduviidae). 7. Insect Physiol. 50:249–54
- Bausenwein B, Boeckh J. 1996. Activity patterns induced by odors involved in host-finding of the mosquito *Aedes aegypti*: a ³H-2-deoxyglucose study. In *Göttingen Neurobiology Report*, ed. N Elsner, HU Schnitzler, p. 269. Stuttgart: Thieme
- Bernier UR, Kline DL, Posey KH, Booth MM, Yost RA, Barnard DR. 2003. Synergistic attraction of *Aedes aegypti* (L.) to binary blends of L-lactic acid and acetone, dichloromethane, or dimethyl disulfide. *J. Med. Entomol.* 40:653–56
- Bernklau EJ, Bjostad LB. 1998. Reinvestigation of host location by western corn rootworm larvae (Coleoptera: Chrysomelidae): CO₂ is the only volatile attractant. J. Econ. Entomol. 91:1331–40
- 13. Bezemer TM, Jones TH. 1998. Plant-insect herbivore interactions in elevated atmospheric CO₂: quantitative analyses and guild effects. *Oikos* 82:212–22
- 14. Bidart-Bouzat MG, Mithen R, Berenbaum MR. 2005. Elevated CO₂ influences herbivory-induced defense responses of *Arabidopsis thaliana*. *Oecologia* 145:415–24
- Bogner F. 1990. Sensory physiological investigation of carbon-dioxide receptors in Lepidoptera. J. Insect Physiol. 36:951–57
- Bogner F. 1992. Response properties of CO₂-sensitive receptors in tsetse flies (Diptera, Glossina palpalis). Physiol. Entomol. 17:19–24
- Bogner F, Boppré M, Ernst K-D, Boeckh J. 1986. CO₂ sensitive receptors on labial palps of *Rhodogastria* moths (Lepidoptera, Arctiidae): physiology, fine-structure and central projection. *J. Comp. Physiol. A* 158:741–49
- Bosch OJ, Geier M, Boeckh J. 2000. Contribution of fatty acids to olfactory host finding of female Aedes aegypti. Chem. Senses 25:323–30
- Botto-Mahan C, Cattan PE, Canals M. 2002. Field tests of carbon dioxide and conspecifics as baits for Mepraia spinolai, wild vector of Chagas disease. Acta Trop. 82:377–80
- Bowen MF. 1991. The sensory physiology of host-seeking behavior in mosquitoes. Annu. Rev. Entomol. 36:139–58

- 21. Cilek JE, Kline DL. 2002. Adult biting midge response to trap type, carbon dioxide, and an octenol-phenol mixture in northwestern Florida. *J. Am. Mosg. Control Assoc.* 18:228–31
- 22. Cork A, Park KC. 1996. Identification of electrophysiologically-active compounds for the malaria mosquito, *Anopheles gambiae*, in human sweat extracts. *Med. Vet. Entomol.* 10:269–76
- 23. Coviella CE, Stipanovic RD, Trumble JT. 2002. Plant allocation to defensive compounds: interactions between elevated CO₂ and nitrogen in transgenic cotton plants. *J. Exp. Bot.* 53:323–31
- Coviella CE, Trumble JT. 1999. Effects of elevated atmospheric carbon dioxide on insectplant interactions. *Conserv. Biol.* 13:700–12
- Cox R, Stewart PD, Macdonald DW. 1999. The ectoparasites of the European badger, Meles meles, and the behavior of the host-specific flea, Paraceras melis. J. Insect Behav. 12:245–65
- de Bruyne M, Foster K, Carlson JR. 2001. Odor coding in the *Drosophila* antenna. *Neuron* 30:537–52
- 27. Dekker T, Geier M, Cardé RT. 2005. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J. Exp. Biol. 208:2963–72
- 28. Dekker T, Steib B, Cardé RT, Geier M. 2002. L-lactic acid: a human-signifying host cue for the anthropophilic mosquito *Anopheles gambiae*. *Med. Vet. Entomol.* 16:91–98
- Dekker T, Takken W, Cardé RT. 2001. Structure of host-odour plumes influences catch
 of Anopheles gambiae s.s. and Aedes aegypti in a dual-choice olfactometer. Physiol. Entomol.
 26:124–34
- 30. den Otter CJ, van Naters WMV. 1992. Single cell recordings from tsetse (*Glossina m. morsitans*) antennae reveal olfactory, mechano and cold receptors. *Physiol. Entomol.* 17:33–42
- 31. Distler PG, Boeckh J. 1997. Central projections of the maxillary and antennal nerves in the mosquito *Aedes aegypti. J. Exp. Biol.* 200:1873–79
- 32. Eiras AE, Jepson PC. 1991. Host location by *Aedes aegypti* (Diptera, Culicidae): a windtunnel study of chemical cues. *Bull. Entomol. Res.* 81:151–60
- Eiras AE, Jepson PC. 1994. Responses of female Aedes aegypti (Diptera, Culicidae) to host odors and convection currents using an olfactometer bioassay. Bull. Entomol. Res. 84:207–11
- 34. Emmerson M, Bezemer M, Hunter MD, Jones TH. 2005. Global change alters the stability of food webs. *Global Change Biol.* 11:490–501
- Evans WG, Gooding RH. 2002. Turbulent plumes of heat, moist heat, and carbon dioxide elicit upwind anemotaxis in tsetse flies Glossina morsitans Mestwood (Diptera: Glossinidae). Can. 7. Zool. 80:1149–55
- Faucher C, Forstreuter M, Hilker M, de Bruyne M. 2006. Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context. J. Exp. Biol. 209:2739–48
- Flynn DFB, Sudderth EA, Bazzaz FA. 2006. Effects of aphid herbivory on biomass and leaf-level physiology of *Solanum dulcamara* under elevated temperature and CO₂. *Environ.* Exp. Bot. 56:10–18
- 38. Fuhrer J. 2003. Agroecosystem responses to combinations of elevated CO₂, ozone, and global climate change. *Agric. Ecosyst. Environ.* 97:1–20
- 39. Geier M, Boeckh J. 1999. A new Y-tube olfactometer for mosquitoes to measure the attractiveness of host odours. *Entomol. Exp. Appl.* 92:9–19
- 40. Geier M, Bosch OJ, Boeckh J. 1999. Influence of odour plume structure on upwind flight of mosquitoes towards hosts. *J. Exp. Biol.* 202:1639–48

27. An interesting study on how CO₂ cues modulate responses to host odor.

- 41. Gibson G, Torr SJ. 1999. Visual and olfactory responses of haematophagous Diptera to host stimuli. *Med. Vet. Entomol.* 13:2–23
- 42. Gillies MT. 1980. The role of carbon dioxide in host-finding by mosquitoes (Diptera, Culicidae): a review. *Bull. Entomol. Res.* 70:525–32
- 43. Grant AJ, Kline DL. 2003. Electrophysiological responses from Culicoides (Diptera: Ceratopogonidae) to stimulation with carbon dioxide. *J. Med. Entomol.* 40:284–92
- 44. Grant AJ, O'Connell RJ. 1996. Electrophysiological responses from receptor neurons in mosquito maxillary palp sensilla. In *Olfaction in Mosquito-Host Interactions*, *Ciba Found. Symp.* 200, pp. 233–253. Chichester, UK: Wiley. 331 pp.
- Grant AJ, Wigton BE, Aghajanian JG, O'Connell R. 1995. Electrophysiological responses of receptor neurons in mosquito maxillary palp sensilla to carbon dioxide. *J. Comp. Physiol.* A 177:389–96
- 46. Guerenstein PG, Christensen TA, Hildebrand JG. 2004. Sensory processing of ambient CO₂ information in the brain of the moth *Manduca sexta*. J. Comp. Physiol. A 190:707-25
- 47. Guerenstein PG, Guerin PM. 2001. Olfactory and behavioural responses of the blood-sucking bug *Triatoma infestans* to odours of vertebrate hosts. *7. Exp. Biol.* 204:585–97
- 48. Guerenstein PG, Lorenzo MG, Núñez JA, Lazzari CR. 1995. Baker's yeast, an attractant for baiting traps for Chagas' disease vectors. *Experientia* 51:834–37
- 49. Guerenstein PG, Thom C, Pawlowski V, Paulk A, Christensen TA, Hildebrand JG. 2005. Is there a functional rationale for the glomerular spatial map in an insect's olfactory lobe? *Soc. Neurosci.* 614:20 (Abstr.)
- Guerenstein PG, Yepez EA, van Haren J, Williams DG, Hildebrand JG. 2004. Floral CO₂ emission may indicate food abundance to nectar-feeding moths. *Naturwissenschaften* 91:329–33
- Hamilton JG, Dermody O, Aldea M, Zangerl AR, Rogers A, et al. 2005. Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. *Environ. Entomol.* 34:479–85
- 52. Hattenschwiler S, Schafellner C. 2004. Gypsy moth feeding in the canopy of a CO₂-enriched mature forest. *Global Change Biol.* 10:1899–908
- 53. Hew CS, Thio YC, Wong SY, Chin TY. 1978. Rhythmic production of CO₂ by tropical orchid flowers. *Physiol. Plant.* 42:226–30
- 54. Holton MK, Lindroth RL, Nordheim EV. 2003. Foliar quality influences tree-herbivoreparasitoid interactions: effects of elevated CO₂, O₃, and plant genotype. *Oecologia* 137:233–44
- Huang XP, Mack TP. 2001. Artificial carbon dioxide source to attract lesser cornstalk borer (Lepidoptera: Pyralidae) larvae. J. Econ. Entomol. 994:860–67
- 56. Hunter MD. 2001. Effects of elevated atmospheric carbon dioxide on insect-plant interactions. *Agric. For. Entomol.* 3:153–59
- Ignell R, Dekker T, Ghaninia M, Hansson BS. 2005. Neuronal architecture of the mosquito deutocerebrum. J. Comp. Neurol. 493:207–40
- 58. IPCC. 2007. *Climate Change 2007: The Physical Science Basis*. Rep. Work. Group I Intergov. Panel Climate Change, IPCC Secr., Geneva, Switz. http://www.ipcc.ch/
- Jones OT, Coaker TH. 1978. Basis for host plant finding in phytophagous larvae. Entomol. Exp. Appl. 24:472–84
- Jones WD, Cayirlioglu P, Grunwald Kadow I, Vosshall LB. 2007. Two chemosensory receptors together mediate carbon dioxide detection in *Drosophila*. Nature 445:86–90

46. First study on CO₂-responsive PNs in the AL to describe their arborization pattern in the AL, projections to the protocerebrum, and physiology.

51. An example of the variability of the effects of the rise in atmospheric CO₂ levels on the insect-plant interaction.

60. An important study on the molecular bases of CO₂ reception at the level of RC dendrite.

- Kaissling KE. 1998. Flux detectors vs concentration detectors: two types of chemoreceptors. Chem. Senses 23:99–111
- 62. Kellogg FE. 1970. Water vapour and carbon dioxide receptors in *Aedes aegypti. J. Insect Physiol.* 16:99–108
- 63. Kent KS, Harrow ID, Quartararo P, Hildebrand JG. 1986. An accessory olfactory pathway in Lepidoptera: the labial pit organ and its central projections in *Manduca sexta* and certain other sphinx moths and silk moths. *Cell Tissue Res.* 245:237–45
- 64. Kent KS, Oland LA, Hildebrand JG. 1999. Development of the labial pit organ glomerulus in the antennal lobe of the moth *Manduca sexta*: the role of afferent projections in the formation of identifiable olfactory glomeruli. *7. Neurobiol.* 40:28–44
- Kleineidam C, Ernst R, Roces F. 2001. Wind-induced ventilation in the giant nests of the leaf-cutting ant Atta vollenweideri. Naturwissenschaften 88:301–5
- Kleineidam C, Roces F. 2000. Carbon dioxide concentrations and nest ventilation in nests of the leaf-cutting ant Atta vollenweideri. Insectes Soc. 47:241–48
- 67. Kleineidam C, Romani R, Tautz J, Isidoro N. 2000. Ultrastructure and physiology of the CO₂ sensitive sensillum ampullaceum in the leaf-cutting ant *Atta sexdens*. *Arthropod Struct*. *Dev*. 29:43–55
- 68. Kleineidam C, Tautz J. 1996. Perception of carbon dioxide and other "air-condition" parameters in the leaf cutting ant *Atta cephalotes*. *Naturwissenschaften* 83:566–68
- Knepp RG, Hamilton JG, Mohan JE, Zangerl AR, Berenbaum MR, DeLucia EH. 2005.
 Elevated CO₂ reduces leaf damage by insect herbivores in a forest community. New Phytol. 167:207–18
- 70. Kwon JY, Dahanukar A, Weiss LA, Carlson JR. 2007. The molecular basis of CO₂ reception in *Drosophila*. *Proc. Natl. Acad. Sci. USA* 104:3574–78
- 71. Lacher V. 1967. Verhaltensreaktionen der Bienenarbeiterin bei dresser auf Kohlendioxid. Z. Vergl. Physiol. 54:75–84
- 72. Langan AM, Wheater CP, Dunleavy PJ. 2001. Does the small white butterfly (*Pieris rapae* L.) aggregate eggs on plants with greater gas exchange activity? *J. Insect Behav.* 14:459–68
- 73. Langan AM, Wheater CP, Dunleavy PJ. 2004. Biogenic gradients of CO₂ and H₂O and oviposition by the small white butterfly (*Pieris rapae* L.) in cages. *Appl. Entomol. Zool.* 39:55–59
- 74. Lee JK, Altner H. 1986. Primary sensory projections of the labial palp-pit organ of *Pieris rapae* L. (Lepidoptera: Pieridae). *Int. J. Insect Morphol. Embryol.* 15:439–48
- 75. Lee JK, Selzer R, Altner H. 1985. Lamellated outer dendritic segments of a chemore-ceptor within wall-pore sensilla in the labial palp-pit organ of the butterfly, *Pieris rapae* L. (Insecta, Lepidoptera). *Cell Tissue Res.* 240:333–42
- Lehane MJ. 2005. Location of the host. In *The Biology of Blood-Sucking in Insects*, pp. 27–55. Cambridge, UK: Cambridge Univ. Press. 321 pp.
- 77. Mondor EB, Tremblay MN, Awmack CS, Lindroth RL. 2004. Divergent pheromone-mediated insect behaviour under global atmospheric change. *Global Change Biol.* 10:1820–24
- Mondor EB, Tremblay MN, Awmack CS, Lindroth RL. 2005. Altered genotypic and phenotypic frequencies of aphid populations under enriched CO₂ and O₃ atmospheres. Global Change Biol. 11:1990–96
- Myers JH, Monro J, Murray N. 1981. Egg clumping, host plant selection and population regulation in *Cactoblastis cactorum* (Lepidoptera). *Oecologia* 51:7–13
- Nicolas G, Sillans D. 1989. Immediate and latent effects of carbon dioxide on insects. Annu. Rev. Entomol. 34:97–116

63. Established that the axons of the RCs in the LPO project into a single glomerulus in each AL.

70. An important study on the molecular bases of CO₂ reception at the level of RC dendrite.

- 81. Núñez JA. 1982. Food source orientation and activity in *Rhodnius prolixus* Stal (Hemiptera, Reduviidae). *Bull. Entomol. Res.* 72:253–62
- 82. Otálora-Luna F, Perret JL, Guerin PM. 2004. Appetence behaviours of the triatomine bug *Rhodnius prolixus* on a servosphere in response to the host metabolites carbon dioxide and ammonia. *J. Comp. Physiol. A* 190:847–54
- 83. Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, et al. 2002. Altered performance of forest pests under atmospheres enriched by CO₂ and O₃. *Nature* 420:403–7
- 84. Pinto MC, Campbell-Lendrum DH, Lozovei AL, Teodoro U, Davies CR. 2001. Phlebotomine sandfly responses to carbon dioxide and human odour in the field. *Med. Vet. Entomol.* 15:132–39
- 85. Rasch C, Rembold H. 1994. Carbon dioxide: highly attractive signal for larvae of *Helicoverpa armigera*. *Naturwissenschaften* 81:228–29
- 86. Schofield SW, Sutcliffe JF. 1996. Human individuals vary in attractiveness for host-seeking black flies (Diptera: Simuliidae) based on exhaled carbon dioxide. *J. Med. Entomol.* 33:102–8
- 87. Schroder R, Forstreuter M, Hilker M. 2005. A plant notices insect egg deposition and changes its rate of photosynthesis. *Plant Physiol.* 138:470–77
- 88. Seeley TD. 1974. Atmospheric carbon dioxide regulation in honeybee (*Apis mellifera*) colonies. *J. Insect Physiol.* 20:2301–5
- 89. Seymour RS, Gibernau M, Ito K. 2003. Thermogenesis and respiration of inflorescences of the dead horse arum *Helicodiceros muscivorus*, a pseudothermoregulatory aroid associated with fly pollination. *Funct. Ecol.* 17:886–94
- Shanbhag SR, Muller B, Steinbrecht RA. 1999. Atlas of olfactory organs of *Drosophila melanogaster*.
 Types, external organization, innervation and distribution of olfactory sensilla. *Int. J. Insect Morphol. Embryol.* 28:377–97
- 91. Smallegange RC, Qiu YT, van Loon JJA, Takken W. 2005. Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito *Anopheles gambiae* sensu stricto (Diptera: Culicidae). *Chem. Senses* 30:145–52
- 92. Southwick EE, Moritz RFA. 1987. Social control of air ventilation in colonies of honeybees, *Apis mellifera*. *7. Insect Physiol.* 33:623–26
- 93. Stange G. 1992. High-resolution measurement of atmospheric carbon dioxide concentration changes by the labial palp organ of the moth *Heliothis armigera* (Lepidoptera, Noctuidae). *J. Comp. Physiol. A* 171:317–24
- 94. Stange G. 1996. Sensory and behavioural responses of terrestrial invertebrates to biogenic carbon dioxide gradients. In *Advances in Bioclimatology*, ed. G Stanhill, 4:223–53. Berlin: Springer-Verlag. 288 pp.
- 95. Stange G. 1997. Effects of changes in atmospheric carbon dioxide on the location of hosts by the moth, *Cactoblastis cactorum*. *Oecologia* 110:539–45
- 96. Stange G. 1999. Carbon dioxide is a close-range oviposition attractant in the Queensland fruit fly *Bactrocera tryoni*. *Naturwissenschaften* 86:190–92
- 97. Stange G, Monro J, Stowe S, Osmond CB. 1995. The CO₂ sense of the moth *Cactoblastis cactorum* and its probable role in the biological control of the CAM plant *Opuntia stricta*. *Oecologia* 102:341–52
- Stange G, Stowe S. 1999. Carbon-dioxide sensing structures in terrestrial arthropods. Microsc. Res. Tech. 47:416–27
- 99. Stange G, Wong C. 1993. Moth response to climate. Nature 365:699-700
- 100. Stensmyr MC, Erland S, Hallberg E, Wallen R, Greenaway P, Hansson BS. 2005. Insect-like olfactory adaptations in the terrestrial giant robber crab. *Curr. Biol.* 15:116–21

87. Shows that potential CO₂ cues from plants can be modulated by insect behavior.

99. A report on how some CO₂ RCs could be affected by the global rise in atmospheric CO₂ levels.

- Steullet P, Guerin PM. 1992. Perception of breath components by the tropical bont tick, *Amblyomma variegatum* Fabricius (Ixodidae).
 CO₂-excited and CO₂-inhibited receptors.
 Comp. Physiol. A 170:665–76
- Sudderth EA, Stinson KA, Bazzaz FA. 2005. Host-specific aphid population responses to elevated CO₂ and increased N availability. Global Change Biol. 11:1997–2008
- Suh GSB, Ben-Tabou de Leon S, Tanimoto H, Fiala A, Benzer S et al. 2007. Light activation of an innate olfactory avoidance response in *Drosophila*. Curr. Biol. 17:905–8
- 104. Suh GSB, Wong AM, Hergarden AC, Wang JW, Simon AF, et al. 2004. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in *Drosophila*. Nature 431:854–59
- Takken W. 1991. The role of olfaction in host seeking of mosquitoes: a review. *Insect Sci. Appl.* 12:287–95
- 106. Takken W. 1996. Synthesis and future challenges: the response of mosquitoes to host odours. In *Olfaction in Mosquito-Host Interactions*, *Ciba Found. Symp.* 200, pp. 302–20. Chichester, UK: Wiley. 331 pp.
- Takken W, Knols BGJ. 1999. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu. Rev. Entomol. 44:131–57
- 108. Taneja J, Guerin PM. 1995. Oriented responses of the triatomine bugs Rhodnius prolixus and Triatoma infestans to vertebrate odours on a servosphere. J. Comp. Physiol. A 176:455– 64
- 109. Thom C, Guerenstein PG, Mechaber WL, Hildebrand JG. 2004. Floral CO₂ cues reveal flower profitability to moths. *J. Chem. Ecol.* 30:1285–88
- 110. Torr SJ. 1990. Dose responses of tsetse flies (*Glossina*) to carbon dioxide, acetone and octenol in the field. *Physiol. Entomol.* 15:93–103
- 111. Torr SJ, Mangwiro TNC, Hall DR. 2006. The effects of host physiology on the attraction of tsetse (Diptera: Glossinidae) and *Stomoxys* (Diptera: Muscidae) to cattle. *Bull. Entomol. Res.* 96:71–84
- 112. Waldow U. 1970. Elektrophysiologische Untersuchungen an Feuchte-, Trocken- und Kaelterezeptoren auf der Antenne der Wanderheuschrecke Locusta. Z. Vergl. Physiol. 69:249–83
- 113. Wall R, Warnes ML. 1994. Responses of the sheep blowfly *Lucilia sericata* to carrion odor and carbon dioxide. *Entomol. Exp. Appl.* 73:239–46
- 114. Walther GR. 2007. Tackling ecological complexity in climate impact research. *Science* 315:606–7
- 115. Weidenmuller A. 2004. The control of nest climate in bumblebee (Bombus terrestris) colonies: interindividual variability and self reinforcement in fanning response. Behav. Ecol. 15:120–28
- Weidenmuller A, Kleineidam C, Tautz J. 2002. Collective control of nest climate parameters in bumblebee colonies. *Anim. Behav.* 63:1065–71
- 117. Whittaker JB. 1999. Impacts and responses at population level of herbivorous insects to elevated CO₂. *Eur. J. Entomol.* 96:149–56
- Willemse LPM, Takken W. 1994. Odor-induced host location in tsetse flies (Diptera, Glossinidae). 7. Med. Entomol. 31:775–94
- 119. Yamana K, Toh Y, Tateda H. 1986. Electrophysiological studies on the temporal organ of the Japanese house centipede, *Thereuonema hilgendorfi. J. Exp. Biol.* 126:297–314
- 120. Yokohari F, Tateda H. 1976. Moist and dry hygroreceptors for relative humidity of the cockroach, *Periplaneta americana* L. *J. Comp. Physiol. A* 106:137–52

109. Suggests that nectar-feeding insects may use CO₂ cues from flowers during foraging.

- 121. Ziesmann J. 1996. The physiology of an olfactory sensillum of the termite *Schedorhinotermes lamanianus*: carbon dioxide as a modulator of olfactory sensitivity. *J. Comp. Physiol. A* 179:123–33
- Zöllner GE, Torr SJ, Ammann C, Meixner FX. 2004. Dispersion of carbon dioxide plumes in African woodland: implications for host-finding by tsetse flies. *Physiol. Entomol.* 29:381– 94
- Zwiebel LJ, Takken W. 2004. Olfactory regulation of mosquito-host interactions. *Insect Biochem. Mol. Biol.* 34:645–52

RELATED RESOURCES

- Hallem EA, Dahanukar A, Carlson JR. 2006. Insect odor and taste receptors. *Annu. Rev. Entomol.* 51:113–35
- Keller A, Vosshall LB. 2003. Decoding olfaction in *Drosophila. Curr. Opin. Neurobiol.* 13:103–10Raguso RA. 2004. Flowers as sensory billboards: progress towards an integrated understanding of floral advertisement. *Curr. Opin. Plant Biol.* 7:434–40
- Schachtner J, Schmidt M, Homberg U. 2005. Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea plus Hexapoda). *Arthropod Struct. Dev.* 34:257–99

Annual Review of Entomology

Volume 53, 2008

Contents

Frontispiece Geoffrey G.E. Scudder xiv
Threads and Serendipity in the Life and Research of an Entomologist Geoffrey G.E. Scudder
When Workers Disunite: Intraspecific Parasitism by Eusocial Bees Madeleine Beekman and Benjamin P. Oldroyd
Natural History of the Scuttle Fly, Megaselia scalaris R.H.L. Disney
A Global Perspective on the Epidemiology of West Nile Virus Laura D. Kramer, Linda M. Styer, and Gregory D. Ebel
Sexual Conflict over Nuptial Gifts in Insects Darryl T. Gwynne
Application of DNA-Based Methods in Forensic Entomology *Jeffrey D. Wells and Jamie R. Stevens
Microbial Control of Insect Pests in Temperate Orchard Systems: Potential for Incorporation into IPM Lawrence A. Lacey and David I. Shapiro-Ilan
Evolutionary Biology of Insect Learning *Reuven Dukas* 145
Roles and Effects of Environmental Carbon Dioxide in Insect Life Pablo G. Guerenstein and John G. Hildebrand
Serotonin Modulation of Moth Central Olfactory Neurons Peter Kloppenburg and Alison R. Mercer
Decline and Conservation of Bumble Bees D. Goulson, G.C. Lye, and B. Darvill
Sex Determination in the Hymenoptera George E. Heimpel and Jetske G. de Boer

The Argentine Ant: Challenges in Managing an Invasive Unicolonial Pest Jules Silverman and Robert John Brightwell	23.1
Diversity and Evolution of the Insect Ventral Nerve Cord Jeremy E. Niven, Christopher M. Graham, and Malcolm Burrows	
Dengue Virus–Mosquito Interactions Scott B. Halstead	
Flash Signal Evolution, Mate Choice, and Predation in Fireflies Sara M. Lewis and Christopher K. Cratsley	293
Prevention of Tick-Borne Diseases Joseph Piesman and Lars Eisen	323
Entomological Reactions to Darwin's Theory in the Nineteenth Century Gene Kritsky	345
Resource Acquisition, Allocation, and Utilization in Parasitoid Reproductive Strategies Mark A. Jervis, Jacintha Ellers, and Jeffrey A. Harvey	361
Population Ecology of Insect Invasions and Their Management Andrew M. Liebhold and Patrick C. Tobin	387
Medical Aspects of Spider Bites Richard S. Vetter and Geoffrey K. Isbister	409
Plant-Mediated Interactions Between Whiteflies, Herbivores, and Natural Enemies Moshe Inbar and Dan Gerling	431
Ancient Rapid Radiations of Insects: Challenges for Phylogenetic Analysis *James B. Whitfield and Karl M. Kjer*********** **Tames B. Whitfield and Karl M. Kjer******************** **Tames B. Whitfield and Karl M. Kjer********************* **Tames B. Whitfield and Karl M. Kjer************************************	449
Fruit Fly (Diptera: Tephritidae) Host Status Determination: Critical Conceptual, Methodological, and Regulatory Considerations Martín Aluja and Robert L. Mangan	473
Codling Moth Management and Chemical Ecology Peter Witzgall, Lukasz Stelinski, Larry Gut, and Don Thomson	503
Primer Pheromones in Social Hymenoptera Yves Le Conte and Abraham Hefotz	523