```
In [1]: # import python libraries
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt # visualizing data
         %matplotlib inline
         import seaborn as sns
         # import csv file
In [2]:
         df = pd.read_csv('Diwali Sales Data.csv', encoding= 'unicode_escape')
         df.shape
In [3]:
         (11251, 15)
Out[3]:
         df.head()
In [4]:
Out[4]:
                                                  Age
            User_ID Cust_name Product_ID Gender
                                                       Age Marital_Status
                                                                                 State
                                                                                          Zone Occupation Product_Category Orders Amount Status unna
                                                Group
         0 1002903
                       Sanskriti P00125942
                                                         28
                                                                       0
                                                                            Maharashtra
                                                                                       Western
                                                                                                 Healthcare
                                                                                                                               1 23952.0
                                                 26-35
                                                                                                                                           NaN
                                                                                                                      Auto
         1 1000732
                              P00110942
                                                         35
                                                                       1 Andhra Pradesh Southern
                                                                                                                                  23934.0
                        Kartik
                                                 26-35
                                                                                                     Govt
                                                                                                                      Auto
                                                                                                                                            NaN
         2 1001990
                                                         35
                                                                                                                                 23924.0
                         Bindu
                              P00118542
                                                 26-35
                                                                           Uttar Pradesh
                                                                                        Central
                                                                                                Automobile
                                                                                                                      Auto
                                                                                                                                           NaN
         3 1001425
                                                                      0
                        Sudevi P00237842
                                              M
                                                  0-17
                                                        16
                                                                              Karnataka Southern Construction
                                                                                                                      Auto
                                                                                                                               2 23912.0
                                                                                                                                           NaN
                                                                                                     Food
         4 1000588
                                                        28
                                                                       1
                                                                                                                               2 23877.0
                          Joni P00057942
                                                 26-35
                                                                                Gujarat Western
                                                                                                                                           NaN
                                                                                                                      Auto
                                                                                                Processing
         df.info()
In [5]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 11251 entries, 0 to 11250
         Data columns (total 15 columns):
              Column
          #
                                  Non-Null Count Dtype
          0
              User ID
                                  11251 non-null int64
          1
                                  11251 non-null object
              Cust_name
          2
              Product ID
                                  11251 non-null object
              Gender
                                  11251 non-null object
          4
              Age Group
                                  11251 non-null object
          5
                                  11251 non-null int64
              Age
                                  11251 non-null int64
          6
              Marital Status
              State
                                  11251 non-null object
          8
              Zone
                                  11251 non-null object
```

```
Occupation
                                11251 non-null object
          10 Product_Category 11251 non-null object
          11 Orders
                                11251 non-null int64
                                11239 non-null float64
          12 Amount
          13 Status
                                0 non-null
                                                float64
          14 unnamed1
                                0 non-null
                                                float64
         dtypes: float64(3), int64(4), object(8)
         memory usage: 1.3+ MB
         #drop unrelated/blank columns
 In [6]:
         df.drop(['Status', 'unnamed1'], axis=1, inplace=True)
 In [7]:
         #check for null values
         pd.isnull(df).sum()
                              0
         User_ID
 Out[7]:
                              0
         Cust_name
         Product_ID
                              0
         Gender
         Age Group
         Age
         Marital_Status
         State
         Zone
         Occupation
         Product_Category
         Orders
                              0
         Amount
                             12
         dtype: int64
In [8]: # drop null values
         df.dropna(inplace=True)
         # change data type
 In [9]:
         df['Amount'] = df['Amount'].astype('int')
         df['Amount'].dtypes
In [10]:
         dtype('int32')
Out[10]:
         df.columns
In [11]:
         Index(['User_ID', 'Cust_name', 'Product_ID', 'Gender', 'Age Group', 'Age',
Out[11]:
                'Marital_Status', 'State', 'Zone', 'Occupation', 'Product_Category',
                'Orders', 'Amount'],
               dtype='object')
```

```
In [12]: #rename column
df.rename(columns= {'Marital_Status':'Shaadi'})
```

Out[12]:		User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Shaadi	State	Zone	Occupation	Product_Category	Orders	Amount
	0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Western	Healthcare	Auto	1	23952
	1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southern	Govt	Auto	3	23934
	2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Central	Automobile	Auto	3	23924
	3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnataka	Southern	Construction	Auto	2	23912
	4	1000588	Joni	P00057942	М	26-35	28	1	Gujarat	Western	Food Processing	Auto	2	23877
	11246	1000695	Manning	P00296942	М	18-25	19	1	Maharashtra	Western	Chemical	Office	4	370
	11247	1004089	Reichenbach	P00171342	М	26-35	33	0	Haryana	Northern	Healthcare	Veterinary	3	367
	11248	1001209	Oshin	P00201342	F	36-45	40	0	Madhya Pradesh	Central	Textile	Office	4	213
	11249	1004023	Noonan	P00059442	М	36-45	37	0	Karnataka	Southern	Agriculture	Office	3	206
	11250	1002744	Brumley	P00281742	F	18-25	19	0	Maharashtra	Western	Healthcare	Office	3	188

11239 rows × 13 columns

```
In [13]: # describe() method returns description of the data in the DataFrame (i.e. count, mean, std, etc)
df.describe()
```

```
Out[13]:
                       User_ID
                                        Age Marital_Status
                                                                  Orders
                                                                               Amount
           count 1.123900e+04 11239.000000
                                              11239.000000 11239.000000 11239.000000
           mean 1.003004e+06
                                   35.410357
                                                  0.420055
                                                                2.489634
                                                                           9453.610553
             std 1.716039e+03
                                   12.753866
                                                  0.493589
                                                                1.114967
                                                                           5222.355168
             min 1.000001e+06
                                   12.000000
                                                  0.000000
                                                                1.000000
                                                                            188.000000
            25% 1.001492e+06
                                   27.000000
                                                  0.000000
                                                                2.000000
                                                                           5443.000000
            50% 1.003064e+06
                                   33.000000
                                                  0.000000
                                                                2.000000
                                                                           8109.000000
            75% 1.004426e+06
                                   43.000000
                                                  1.000000
                                                                3.000000 12675.000000
            max 1.006040e+06
                                   92.000000
                                                                4.000000 23952.000000
                                                  1.000000
```

```
In [14]: # use describe() for specific columns
df[['Age', 'Orders', 'Amount']].describe()
```

		Age	Orders	Amount
(count	11239.000000	11239.000000	11239.000000
ı	mean	35.410357	2.489634	9453.610553
	std	12.753866	1.114967	5222.355168
	min	12.000000	1.000000	188.000000
	25%	27.000000	2.000000	5443.000000
	50%	33.000000	2.000000	8109.000000
	75%	43.000000	3.000000	12675.000000
	max	92.000000	4.000000	23952.000000

Exploratory Data Analysis

Gender

Out[14]:

```
In [15]: # plotting a bar chart for Gender and it's count
    ax = sns.countplot(x = 'Gender', data = df)

for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [16]: # plotting a bar chart for gender vs total amount
    sales_gen = df.groupby(['Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
    sns.barplot(x = 'Gender', y= 'Amount' , data = sales_gen)
Out[16]: 

Out[16]: # plotting a bar chart for gender vs total amount
```


From above graphs we can see that most of the buyers are females and even the purchasing power of females are greater than men

Age

```
In [17]: ax = sns.countplot(data = df, x = 'Age Group', hue = 'Gender')
for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [18]: # Total Amount vs Age Group
    sales_age = df.groupby(['Age Group'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
    sns.barplot(x = 'Age Group', y= 'Amount' , data = sales_age)
Out[18]: <Axes: xlabel='Age Group', ylabel='Amount'>
```


From above graphs we can see that most of the buyers are of age group between 26-35 yrs female

State


```
In [20]: # total amount/sales from top 10 states
    sales_state = df.groupby(['State'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False).head(10)
    sns.set(rc={'figure.figsize':(15,5)})
    sns.barplot(data = sales_state, x = 'State', y= 'Amount')
Out[20]: <Axes: xlabel='State', ylabel='Amount'>
```


From above graphs we can see that most of the orders & total sales/amount are from Uttar Pradesh, Maharashtra and Karnataka respectively

Marital Status

```
In [21]: ax = sns.countplot(data = df, x = 'Marital_Status')
sns.set(rc={'figure.figsize':(7,5)})
for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [22]: sales_state = df.groupby(['Marital_Status', 'Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
    sns.set(rc={'figure.figsize':(6,5)})
    sns.barplot(data = sales_state, x = 'Marital_Status',y= 'Amount', hue='Gender')
```

Out[22]: <Axes: xlabel='Marital_Status', ylabel='Amount'>

From above graphs we can see that most of the buyers are married (women) and they have high purchasing power

Occupation

```
In [23]: sns.set(rc={'figure.figsize':(20,5)})
    ax = sns.countplot(data = df, x = 'Occupation')

for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [24]: sales_state = df.groupby(['Occupation'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
    sns.set(rc={'figure.figsize':(20,5)})
    sns.barplot(data = sales_state, x = 'Occupation',y= 'Amount')
```

Out[24]: <Axes: xlabel='Occupation', ylabel='Amount'>

From above graphs we can see that most of the buyers are working in IT, Healthcare and Aviation sector

Product Category

```
In [25]: sns.set(rc={'figure.figsize':(20,5)})
    ax = sns.countplot(data = df, x = 'Product_Category')

for bars in ax.containers:
    ax.bar_label(bars)
```


Out[26]: <Axes: xlabel='Product_Category', ylabel='Amount'>

From above graphs we can see that most of the sold products are from Food, Clothing and Electronics category

```
In [27]: sales_state = df.groupby(['Product_ID'], as_index=False)['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Product_ID',y= 'Orders')
```

Out[27]: <Axes: xlabel='Product_ID', ylabel='Orders'>

In [28]: # top 10 most sold products (same thing as above)

```
fig1, ax1 = plt.subplots(figsize=(12,7))
df.groupby('Product_ID')['Orders'].sum().nlargest(10).sort_values(ascending=False).plot(kind='bar')
```

Out[28]: <Axes: xlabel='Product_ID'>

Conclusion:

Married women age group 26-35 yrs from UP, Maharastra and Karnataka working in IT, Healthcare and Aviation are more likely to buy products from Food, Clothing and Electronics category

Thank you!