4.c) On construit le symétrique A'_1 de A_1 par rapport à l'axe des abscisses. Pour cela on trace les cercles de centre O et de rayon OA_1 et de centre A_0 et de rayon A_0A_1 . Ces deux cercles se coupent en A_1 et A'_1 . On trace la droite OA'_1 , (D), en vert sur le graphe ci-dessous. On trace la droite A_1A_2 et le cercle de centre A_1 et de rayon $R = OA_4$. Ils se coupent en A'_4 . On trace la droite A'_4A_4 , (D'), en rouge sur le graphe. Le point d'intersection de (D) et (D') est A_5 .

4.d) L'argument de l'affixe de A_5 est $5\frac{\pi}{6}$. L'argument de l'affixe de A_1 , conjugué de l'affixe de A_1 , est $2\pi - \frac{\pi}{6} = 11\frac{\pi}{6} = \pi + 5\frac{\pi}{6}$. Donc A_1 et A_2 sont alignés avec O sur la droite (D).

Les arguments des affixes de A_1 et A_4 diffèrent de $4\frac{\pi}{6} - \frac{\pi}{6} = \frac{\pi}{2}$. Donc OA_1 et OA_4 sont perpendiculaires. Par ailleurs, d'après 4.b), A_1A_2 est perpendiculaire à OA_1 . Donc A_1A_2 est parallèle à OA_4 . Par construction, $A_1A'_4 = OA_4$. On en déduit que $OA_1A'_4A_4$ est un rectangle et que A'_4A_4 est perpendiculaire à OA_4 .

D'après 4.b), A_5 doit se trouver sur la droite (D') perpendiculaire à OA_4 . Donc, A5 se trouve à l'intersection de (D) et (D').