

Eshed Ohn-Bar

January 23, 2023

1

Overarching Objective for the Class

- Holistic understanding of *fundamental paradigms and challenges* in learning-based autonomous systems.
- Formulation of in-depth, critical analysis and communication of key concepts, terminology, *state-of-the-art research approaches* robotics

We must perceive in order to move, but we must also move in order to perceive - Gibson (1979)

Why Navigation?

"Come to Massachusetts to test your cars, we have bad roads, worse weather, even worse drivers,"

Transportation SecretaryStephanie Pollack

World Health Organization

Death from car accident ~ one person every 25 seconds

Massive technological challenge, <u>real-world</u>
 <u>applications</u> in safety and assistive technologies

Embodied intelligence, system can <u>act and move</u>

How to code this?

If Pedestrian then
Slow down
If Traffic Light is Red then Stop

•••

How to code this?

If **Pedestrian** then
Slow down
If Traffic Light is Red then Stop

. . .

Computer Vision – Then and Now

Otherwise, Could Miss (Rare) but Important Objects!

Otherwise, Could Miss (Rare) but Important Objects!

Computer Vision – Then and Now

State of the art object recognition using CNNs

Taken from Y. LeCunn

Computer Vision - Then and Now

- What should be the **output**?
- What supervision?
- Complex tasks?
- Agent is passive

Taken from Y. LeCunn

On the Importance of Embodied Intelligence

Which of the Surrounding Agents are More Important?

Which of the Surrounding Agents are More Important?

Which of the Surrounding Agents are More Important?

Computer Vision – Not Optimizing for the Right Thing!

Modeling, Training, Evaluation Should Consider Navigation Task

Color coded from high to moderate to low importance

- Massive technological challenge, <u>real-world</u>
 <u>applications</u> in safety and assistive technologies
- Embodied intelligence, system can <u>act and move</u>

How to code this?

If Pedestrian then
Slow down
If Traffic Light is Red then Stop

--- 24

Learning for Autonomous Navigation

- In robotics research, vision is **assumed a solved task**.
- Perfect knowledge of the state
- <u>Decoupled</u> perception from action

Classic sensorimotor control pipeline

- Perception system constructs a map of the environment
- Planner generates waypoints
- Continuous controller (e.g., proportional-derivative) actuates

What matters is action

- SLAM (Simultaneous Localization and Mapping) is solving a problem that may be both unnecessarily hard and incomplete
- Biological motivation suggests alternative approaches

Mishkin et al, Benchmarking Classic and Learned Navigation in Complex 3D Environments, 2019

Rapidly exploring random trees, Lavalle, Kuffner

The planner will take care of it

- SLAM does not tell us how to explore, navigate, accomplish goals
- But planners assume that the map is accurate and sufficiently complete
- When this assumption breaks, the whole system can fail

Hints from Natural World

Critique of Pure Vision

Vision, like other sensory functions, has its evolutionary rationale rooted in improved motor control. Although organisms can of course see when motionless or paralyzed, the visual system of the brain has the organization, computational profile, and architecture it has in order to facilitate the organism's thriving at the four Fs: feeding fleeing, fighting, and reproduction. By contrast, a pure visionary would say that the visual system creates a fully elaborated model of the world in the brain, and that the visual system can be studied and modeled without worrying too much about the nonvisual influences on vision.

- Churchland, Ramachandran, and Sejnowski (1994)

Critique of Pure Vision

Vision, like other sensory functions, has its evolutionary rationale rooted in improved motor control. Although organisms can of course see when motionless or paralyzed, the visual system of the brain has the organization, computational profile, and architecture it has in order to facilitate the organism's thriving at the four Fs: feeding fleeing, fighting, and reproduction. By contrast, a pure visionary would say that the visual system creates a fully elaborated model of the world in the brain, and that the visual system can be studied and modeled without worrying too much about the nonvisual influences on vision.

- Churchland, Ramachandran, and Sejnowski (1994)

Critique of Pure Action!

On the Importance of Interactive Intelligence

Held and Hein: Movement-produced stimulation in the development of visually guided behavior. Journal of Comparative and Physiological Psychology, 1963.

On the Importance of Interactive Intelligence

the brain switches perception and response to sensory stimuli depending on internal state and needs

Two Brain Pathways Initiate Distinct Forward Walking Programs in *Drosophila*, *Neuron*, 2020 Sten et al., An arousal-gated visual circuit controls pursuit during *Drosophila* courtship, bioRxiv, 2020

On the Importance of Interactive Intelligence

The **Gaze Heuristic** – how to catch a flying ball?

CALCULATE TRAJECTORY:

$$z(x) = x \left(\tan \alpha_0 + \frac{mg}{\beta \nu_0 \cos \alpha_0} \right) + \frac{m^2 g}{\beta^2} \ln \left(1 - \frac{\beta}{m} \frac{x}{\nu_0 \cos \alpha_0} \right)$$

GAZE HEURISTIC:

1. Fix your gaze on the ball,

2. start running, and

3. adjust your running speed so that the angle of gaze remains constant.

Gigerenzer, "Homo Heuristicus: Why Biased Minds Make Better Inferences", 2009

expression of 24 olfactory receptor genes in the AWA olfactory neuron is influenced by a wide array of states and 25 stimuli, including feeding state, physiological stress, and recent sensory cues

Diverse states and stimuli tune olfactory receptor expression levels to modulate food-seeking behavior, bioRxiv, 2022

https://www.biorxiv.org/content/10.1101/2022.04.27.489714v1.full.pdf

Acoustic motion of a spider orb-web

Outsourced hearing in an orb-weaving spider that uses its web as an auditory sensor, PNAS, 2022

Keller GB, et al (2012). <u>Sensorimotor Mismatch Signals in Primary Visual</u> Cortex of the Behaving Mouse. *Neuron*.

Contents

Goal: How can we design robotic systems that robustly operate in complex, dynamic, and uncertain real-world environments?

- How to formulate learning algorithms for general robotics and sensori-motor navigation
- Explore challenges in perception-based control pipelines
- Affordance-based and goal-directed representation of semantic scene, motion, and geometry
 Limitations (and complementarity) of reinforcement, inverse reinforcement, and imitation learning approaches
- Policy optimization (e.g., model-based vs. model-free) and sample efficiency analysis
- Multi-modal algorithms for multi-sensor (camera, LIDAR and radar perception) and multi-task learning
- Human-in-the-loop and social learning
- Reading and presenting recent research papers
- Participation in a competition to put these ideas to the test (for awards and fame)

Tentative Agenda

Date	Topic	Notes	
1/23	Introduction: Why Navigation?	HW0: Due 1/30	
1/25	Deep Imitation Learning		
1/30	Deep Imitation Learning	HW1: Due in 2 weeks	
2/1	Affordances and Direct Perception		
2/6	Dynamics and Localization		
2/8	Semantic Scene Understanding		
2/13	Semantic Scene Understanding	HW2: Due in 2 weeks	
2/15	Object Detection and Tracking		

Object Detection and Tracking	Project Proposal Reports Due	
Markov Decision Process	HW3: Due in 2 weeks	
Q-Learning and SARSA		
Double Q-Learning and Deep RL for Robotics	Competition Presentations	
Spring Recess		
Spring Recess		
TRPO, DDPG, PPO	Project Proposal Revision Due	
LfD/Inverse Reinforcement Learning		
LfD/Inverse Reinforcement Learning		
Human-in-the-Loop Learning		
Human-in-the-Loop Learning		
Midterm Project Updates		
Model-based RL		
Model-based RL		
Sim2Real		
Bio-Inspired and Evolutionary Techniques		
Patriot's Day		
Incorporating Language		
Partial Observability		
Human-Robot Interaction		
Ethics and Social Implications		
Research Presentations		
Research Paper Submission		
	Markov Decision Process Q-Learning and SARSA Double Q-Learning and Deep RL for Robotics Spring Recess Spring Recess TRPO, DDPG, PPO LfD/Inverse Reinforcement Learning LfD/Inverse Reinforcement Learning Human-in-the-Loop Learning Human-in-the-Loop Learning Midterm Project Updates Model-based RL Sim2Real Bio-Inspired and Evolutionary Techniques Patriot's Day Incorporating Language Partial Observability Human-Bobt Interaction Ethics and Social Implications Research Presentations	Reports Due Markov Decision Process HW3: Due in 2 weeks Q-Learning and SARSA Double Q-Learning and Deep RL for Robotics Spring Recess Spring Recess Spring Recess TRPO, DDPG, PPO Revision Due LfD/Inverse Reinforcement Learning Human-in-the-Loop Learning Human-in-the-Loop Learning Midterm Project Updates Model-based RL Model-based RL Sim2Real Bio-Inspired and Evolutionary Techniques Partiot's Day Incorporating Language Partial Observability Human-Robot Interaction Ethics and Social Implications Research Presentations

Team

Zhongkai Shangguan Jimuyang Zhang

Office hours: Wednesdays after class, 6:15-7:15?

Grading

► Homework: 30%

► Presentations and participation: 20%

► Final Project: 50%

HW 0 details (not graded)

Exercises

0.1 SCC Setup (0 Points)

We recommend using the SCC desktop version for a better interactive experience. For more details, you can refer to https://www.bu.edu/tech/support/research/system-usage/connect-scc/scc-ondemand/.

- a) Read the cluster documentation and log in to the cluster after you get the account.
- b) Apply for a desktop in Interactive Apps with 4 cores and 1 GPU, and load python3/3.8.3, libjpeg-turbo/2.0.4, and any other modules which you think is useful.
- c) Connect to your desktop and you are now having a remote computer with powerful computing resources!

0.2 Anaconda Installation (0 Points)

To ensure a working environment, we ask you to install and create an Anaconda environment on your machine:

- a) It is recommended to manage your Python environment with Anaconda. Please install Anaconda following instructions at https://www.anaconda.com/download/.
- b) Create and activate your own environment by conda create -n < your_env_name > python=3.7. You can choose any other python version > 3.7.
- c) Install PyTorch following instructions at https://pytorch.org/get-started/locally/ in your environment.
- d) We ask you to run the toy regression code exercise.pytorch.py we provided. Please save the output log in the terminal as a .txt file.

0.3 CARLA Simulator Installation (0 Points)

In most of our homework, we use CARLA as our environment:

- a) Read documents and get to know what CARLA is and what can it do https://carla.org/.
- b) Download ubuntu version CARLA 0.9.10.1 (development) from https://github.com/ carla-simulator/carla/releases. In order to avoid bugs caused by version inconsistencies, we restrict the CARLA version to 0.9.10.1.
- c) Unzip your CARLA, cd to your CARLA directory, start your carla-server by running DISPLAY= _/CarlaUE_i.sh -opengl. Note: it is okay to have error messages like "Disabiling core dumps." or "error: XDG.RUNTIME.DIR not set in the environment." as long as it is still running.
- d) Open a new terminal and import CARLA by :
 - 1 export CARLA\-ROOT=YOUR-CARLA-DRECTORY
- 2 export PYTHONPATH-\$PYTHONPATH:\$CARLA_ROOT/PythonAPI/carla
- 3 export PYTHONPATH-SPYTHONPATH-SCARLAROOT/PythonAPI/ / carla/dist/carla -0.9.10-py3.7-linux-x86_64.egg

then run the toy manual control code manual_control.py under "YOUR_CARL_ADRECTORL'PythonAPI/camples". You are supposed to use $1\downarrow \mapsto t$ to control the car in a simulated driving environment. Please make screenshot and compress to your submission z.

Today's Readings

- Critique of pure vision, https://papers.cnl.salk.edu/PDFs/A%20Critique%20of%20Pure%20Vision%20 1994-2933.pdf

Patricia S. Churchland, V. S. Ramachandran, and, Terrence J. Sejnowsk, 1994