The lines l and m have vector equations

$\mathbf{r} = -\mathbf{i} + 3\mathbf{j} + 4\mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} - \mathbf{k})$ and $\mathbf{r} = 5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k} + \mu(a\mathbf{i} + b\mathbf{j} + \mathbf{k})$	
respectively, where a and b are constants.	
(a) Given that l and m intersect, show that $2b - a = 4$.	[4]

•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••
	•••••		•••••		•••••	•••••	••••••
•••••							
••••••••	•••••••		••••••	••••••••	••••••	••••••	••••••
			•••••				
	•••••		•••••				••••••
•••••					•••••	•••••	••••••
When a and a							