Рейтинг суперкомпьютеров Тор 500

Цыпляев А.С., 6057/12 26.09.11

Введение

- Тор 500 это проект по составлению рейтинга и описаний 500 самых мощных компьютерных систем мира
- Запущен в 1993 г.
- Обновление дважды в год
- Индекс производительности скорость работы в HPL (Linpack) системе решения линейных уравнений
- http://top500.org/

Введение

- Составители:
 - Hans Meuer of the University of Mannheim, Germany
 - Jack Dongarra, University of Tennessee, Knoxville
 - Erich Strohmaier and Horst Simon,
 NERSC/Lawrence Berkeley National Laboratory

Применение

- Статистика высокопроизводительных компьютерных систем (далее ВКС) необходима производителям, пользователям и потенциальным пользователям ВКС
- Необходима информация не только о производительности конкретной ВКС, но и её сравнение с другими ВКС, тип приложений, для которых ВКС используется
- Данная статистика способствует установлению сотрудничества в области ВКС: обмена данными и программным обеспечением, а также обеспечить лучшее понимание рынка ВКС

История создания

- Ежегодно, начиная с 1986 Hans Meuer (Мангеймский университет) публиковал список ВКС
- Статистика была основана только на имени производителя
- В 1992 г. была опробована новая метрика, основанная на количестве процессоров ВКС, но...
- Требовалась новая статистика, отражающая:
 - разнообразие суперкомпьютеров
 - разницу в производительности между low-end и high-end системами
 - растущую доступность систем с массово-параллельной архитектурой (системы с разделяемой памятью)

Система строится из отдельных блоков, содержащих: CPU, оперативную память, сетевой интерфейс, иногда — HDD и/или другие IO. Доступ к оперативной памяти из данного блока имеют только процессоры из этого же блока. Блоки соединяются специальными коммуникационными каналами.

История создания

- В 1993 году в Мангеймском университете родилась идея собрать и сохранить детализированный список 500 самых мощных КС
- Список обновляется 2 раза в год с июня 1993 года с помощью данных, полученных от специалистов в области ВКС, ученых, производителей и интернет-сообщества в целом, которые отвечают на анкету

Структура списка

- Rank ранг КС в списке. Зависит от Rmax
- Rmax (petaflops) максимальная производительность, которую показала система в тесте Linpack
- Rpeak (petaflops) теоретическая пиковая производительность системы
- Name имя КС, которое дал ей владелец или географическое положение КС
- Computer/Processor cores коммерческая платформа (Xeon, Opteron, e.t.c.)/количество процессорных ядер в КС, которые были задействованы в тесте Linpack
- Vendor производитель КС
- Site/Country/Year организация, использующая суперкомпьютер/Страна, в которой расположена КС/год создания или крупного обновления

Немного статистики

 Мощность системы Тор500 №1 изменялась согласно закону Мура

Немного статистики

TOP500 performance by country (November 2009)

• Распределение вычислительной мощности по странам (2009 г).

Немного статистики

Страна	Количество КС в списке	Максимальное Rmax	Суммарное Rmax
США	256	1800	25.3
Япония	26	8200	11.2
Китай	62	2600	7.2
Германия	30	830	3.2
Франция	25	1100	3.1
Соединённое Королевство	27	280	1.9
Россия	12	680	1.3

Top 500 №1

• Соревнование США vs Япония (теперь и vs

Китай)

Fujitsu K computer	Япония
NUDT Tianhe-1A	Китай
Cray Jaguar	Сша
IBM Roadrunner	Сша
IBM Blue Gene	Сша
NEC Earth Simulator	Япония
IBM ASCI White	Сша
Intel ASCI Red	Сша
Hitachi CP-PACS	Япония
Hitachi SR2201	Япония
Fujitsu Numerical Wind Tunnel	Япония
Intel Paragon XP/S140	Сша
Fujitsu Numerical Wind Tunnel	Япония
TMC CM-5	Сша

World's No.1 on TOP500 List

- Находится в RIKEN (Институт физико-химических
 - <u>-исследований)</u>

КС на стадии строительства, ввод — в 2012 году 68,544×8 SPARC64 VIIIfx processors, OS Linux

- Использует водяное охлаждение
- Сайт проекта: http://www.fujitsu.com/global/about/tech/k/
- Энергопотребление ~ 10000 домов
- Производительность ~1000000 ПК

"6-dimensional mesh/torus" topology (model)

Top 500 №2 Tianhe-I

- Национальный суперкомпьютерный центр
 Тяньцзинь
- Rmax/Rpeak 2.566/4.701 Pflops
- 14,336×6 Xeon + 7168×14 Fermi, OS Linux
 - Используется для поиска углеводородов и
 - для разработки самолётов

Top 500 №3 Jaguar

- Национальный центр компьютерных исследований в Оук-Ридже, Теннеси
- Rmax/RPeak 1.759/2.331 Pflops
 224,162 Opteron, Cray Linux Environment

- Использование:
 - моделирование климата
 - материаловедение
 - сейсмология
 - RNMNX
 - астрофизика,
 - моделирование термоядернх реакций

Топология сети — 3D тор

