CS 236 Autumn 2019/2020 Homework 2

SUNet ID: 06009508

Name: Brandon McKinzie

Collaborators: N/A

By turning in this assignment, I agree by the Stanford honor code and declare that all of this is my own work.

Problem 1: Implementing the Variational Autoencoder (VAE)

3. Report the three numbers you obtain as part of the write-up.

My numbers for the log-likelihood lower bounds on the test subset are reported below.

• **NELBO**: 100.8358154296875

• KL: 19.305727005004883

• **Rec**: 81.53005981445312

5. Visualize 200 digits.

Problem 2: Implementing the Mixture of Gaussians VAE (GMVAE)

2. My numbers for the log-likelihood lower bounds on the test subset are reported below.

• **NELBO**: 97.71849060058594

• **KL**: KL: 17.689722061157227

• **Rec**: 80.02876281738281

3. Visualize 200 digits.

Problem 3: IWAE

1. Prove that IWAE is a valid lower bound of the log-likelihood, and that the ELBO lower bounds IWAE

$$\log p_{\theta}(\boldsymbol{x}) \ge \mathcal{L}_m(\boldsymbol{x}) \ge \mathcal{L}_1(\boldsymbol{x}) \tag{1}$$

for any $m \geq 1$.

The IWAE bound is defined as

$$\mathcal{L}_{m}(\boldsymbol{x}; \theta, \phi) = \mathbb{E}_{\boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(m)} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{1}{m} \sum_{i=1}^{m} \frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z}^{(i)})}{q_{\phi}(\boldsymbol{z}^{(i)} \mid \boldsymbol{x})} \right]$$
(2)

which for m = 1 reduces to the standard ELBo:

$$\mathcal{L}_{1}(\boldsymbol{x}; \boldsymbol{\theta}, \phi) = \mathbb{E}_{\boldsymbol{z}^{(1)} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z}^{(1)})}{q_{\phi}(\boldsymbol{z}^{(1)} \mid \boldsymbol{x})} \right]$$
(3)

Jensen's inequality tells us that

$$\log\left(\mathbb{E}\left[x\right]\right) \ge \mathbb{E}\left[\log x\right] \tag{4}$$

and more generally, that the logarithm of any *convex combination* of x is greater than or equal to that convex combination over the logarithm of x. Any simple average, such as the average over the m unnormalized densities above, is a convex combination.

First, note that an expectation, taken over m i.i.d. samples, of an average over those samples, is equal to the expectation taken over single samples of the quantity being averaged over. Formally,

$$\mathbb{E}_{x^{1}, x^{2}, \dots, x_{m} \sim p(x)} \left[\frac{1}{m} \sum_{i=1}^{m} f(x^{i}) \right] = \mathbb{E}_{x \sim p(x)} \left[f(x) \right]$$
 (5)

which is really just another way of stating the fact that the Monte-Carlo average is an unbiased estimator.

Next, we use Jensen's inequality to show that $\log p_{\theta}(x) \geq \mathcal{L}_m(x)$ for $m \geq 1$:

$$\log p_{\theta}(\boldsymbol{x}) = \log \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right]$$
 (6)

$$= \log \mathbb{E}_{\boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(m)} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\frac{1}{m} \sum_{i=1}^{m} \frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z}^{(i)})}{q_{\phi}(\boldsymbol{z}^{(i)} \mid \boldsymbol{x})} \right]$$
(7)

$$\geq \mathbb{E}_{\boldsymbol{z}^{(1)},\dots,\boldsymbol{z}^{(m)} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{1}{m} \sum_{i=1}^{m} \frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z}^{(i)})}{q_{\phi}(\boldsymbol{z}^{(i)} \mid \boldsymbol{x})} \right]$$
(8)

$$= \mathcal{L}_m(\boldsymbol{x}; \theta, \phi) \tag{9}$$

which proves that $\log p_{\theta}(\boldsymbol{x}) \geq \mathcal{L}_m(\boldsymbol{x})$ for $m \geq 1$.

Next, we need to show that $\mathcal{L}_m(\boldsymbol{x}) \geq \mathcal{L}_1(\boldsymbol{x})$ for $m \geq 1$. To do this, note that, by definition of the uniform distribution over integers $1 \leq j \leq m$,

$$\frac{1}{m} \sum_{i=1}^{m} f(\boldsymbol{z}^{(i)}) = \mathbb{E}_{i \sim U(1..m)} \left[f(\boldsymbol{z}^{(i)}) \right]$$
(10)

We can use this, combined with Jensen's inequality, to show

$$\mathcal{L}_{m}(\boldsymbol{x}; \boldsymbol{\theta}, \phi) = \mathbb{E}_{\boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(m)} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{1}{m} \sum_{i=1}^{m} \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z}^{(i)})}{q_{\phi}(\boldsymbol{z}^{(i)} \mid \boldsymbol{x})} \right]$$
(11)

$$= \mathbb{E}_{\boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(m)} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \mathbb{E}_{j \sim U(1..m)} \left[\frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z}^{(j)})}{q_{\phi}(\boldsymbol{z}^{(j)} \mid \boldsymbol{x})} \right] \right]$$
(12)

$$\geq \mathbb{E}_{\boldsymbol{z}^{(1)},\dots,\boldsymbol{z}^{(m)} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\mathbb{E}_{j \sim U(1..m)} \left[\log \frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z}^{(j)})}{q_{\phi}(\boldsymbol{z}^{(j)} \mid \boldsymbol{x})} \right] \right]$$
(13)

$$= \mathbb{E}_{\boldsymbol{z}^{(1)} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z}^{(1)})}{q_{\phi}(\boldsymbol{z}^{(1)} | \boldsymbol{x})} \right]$$
(14)

$$= \mathcal{L}_1(\boldsymbol{x}; \boldsymbol{\theta}, \boldsymbol{\phi}) \tag{15}$$

which proves that $\mathcal{L}_m(\boldsymbol{x}) \geq \mathcal{L}_1(\boldsymbol{x})$ for $m \geq 1$

- 3. My numbers for the log-likelihood lower bounds on the test subset are reported below.
 - Negative IWAE-1: 100.11393737792969
 - Negative IWAE-10: 78.5806655883789
 - Negative IWAE-100: 46.388160705566406
 - Negative IWAE-1000: 45.54800796508789
- 4. My numbers for the log-likelihood lower bounds on the test subset are reported below.
 - Negative IWAE-1: 97.7275619506836
 - Negative IWAE-10: 77.10411071777344
 - Negative IWAE-100: 43.673885345458984
 - Negative IWAE-1000: 43.121673583984375

The IWAE bounds for GMVAE have the same trend as VAE: increasing the number of importance samples m decreases the NIWAE. The numbers above also confirm that, for m=1, the NIWAE-1 values match the associated NELBo from the previous question.

Problem 4: SSVAE

- $1.\ \mathrm{My}$ classification accuracy on the test set: 0.7531999945640564
- 3. My classification accuracy on the test set: 0.9271000027656555

Problem 5: SVHN

Since fully-supervised VAE (FSVAE) always conditions on an observed y in order to generate the sample x, it is a special case of the conditional variational autoencoder. Derive the Evidence Lower Bound $\mathcal{L}(\mathbf{x}; \theta, \phi, y)$ of the conditional log probability $\log p_{\theta}(x|y)$. You are allowed to introduce the amortized inference model $q_{\phi}(z|x,y)$.

The model defines the distribution¹

$$p_{\theta}(\boldsymbol{x} \mid \boldsymbol{y}) = \int p_{\theta}(\boldsymbol{x}, \boldsymbol{z} \mid \boldsymbol{y}) d\boldsymbol{z}$$
 (16)

$$= \int p(\boldsymbol{z} \mid \boldsymbol{y}) p_{\theta}(\boldsymbol{x} \mid \boldsymbol{y}, \boldsymbol{z}) d\boldsymbol{z}$$
 (17)

$$= \int p(\boldsymbol{z}) p_{\theta}(\boldsymbol{x} \mid \boldsymbol{y}, \boldsymbol{z}) d\boldsymbol{z}$$
 (18)

$$= \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})} \left[p_{\theta}(\boldsymbol{x} \mid \boldsymbol{y}, \boldsymbol{z}) \right] \tag{19}$$

Note that $p(z \mid y) = p(z)$ due to the independence assumptions defined by the graphical model. As in the original ELBo derivation, we proceed by acknowledging Jensen's inequality:

$$\log p_{\theta}(\boldsymbol{x} \mid \boldsymbol{y}) = \log \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})} \left[p_{\theta}(\boldsymbol{x} \mid \boldsymbol{y}, \boldsymbol{z}) \right]$$
(20)

$$\geq \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})} \left[\log p_{\theta}(\boldsymbol{x} \mid \boldsymbol{y}, \boldsymbol{z}) \right] \tag{21}$$

$$= \mathcal{L}(\boldsymbol{x}; \theta, \phi, y) \tag{22}$$

Although technically we have "derived" the ELBo as the question has asked, I'm going to assume the instructors actually want us to derive a form reminiscent of a VAE. There are many ways we can write $\mathcal{L}(\boldsymbol{x}; \theta, \phi, y)$, but the form most associated with VAEs can be derived by first acknowledging that, for any valid probability distribution $q(\boldsymbol{z})$ over \boldsymbol{z}

$$p_{\theta}(\boldsymbol{x} \mid y) = \int p_{\theta}(\boldsymbol{x}, \boldsymbol{z} \mid y) d\boldsymbol{z}$$
 (23)

$$= \int \frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z} \mid \boldsymbol{y})}{q(\boldsymbol{z})} q(\boldsymbol{z}) d\boldsymbol{z}$$
 (24)

$$= \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z})} \left[\frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z} \mid \boldsymbol{y})}{q(\boldsymbol{z})} \right]$$
 (25)

Therefore, we can apply the exact same earlier derivation of $\mathcal{L}(x;\theta,\phi,y)$ with Jensen's

¹I've written the prior p(z) without dependence on θ because part 2 of the question defines it as such.

inequality to obtain an equivalent definition in a different form²:

$$\log p_{\theta}(\boldsymbol{x} \mid \boldsymbol{y}) = \log \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z})} \left[\frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z} \mid \boldsymbol{y})}{q(\boldsymbol{z})} \right]$$
(26)

$$\geq \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z})} \left[\log \frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z} \mid \boldsymbol{y})}{q(\boldsymbol{z})} \right]$$
 (27)

$$= \mathcal{L}(\boldsymbol{x}; \theta, \phi, y) \tag{28}$$

From basic definitions of probability³, logarithms⁴, expectation, and fractions, we know that the above is maximized when $q(\mathbf{z}) = p_{\theta}(\mathbf{z} \mid \mathbf{x}, y)$. Of course, this distribution is (potentially) different depending on \mathbf{x} and \mathbf{y} . Therefore, we use amortized inference as the question suggests and instead learn a parameterized $q_{\phi}(\mathbf{z} \mid \mathbf{x}, y)$ with parameters ϕ shared (i.e. not depending on) for all \mathbf{x}, \mathbf{y} . Now we have the form

$$\mathcal{L}(\boldsymbol{x}; \theta, \phi, y) = \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z} | \boldsymbol{x}, y)} \left[\log \frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z} | y)}{q_{\phi}(\boldsymbol{z} | \boldsymbol{x}, y)} \right]$$
(29)

(30)

Using the exact same derivations from the lectures, we know that we can also write this in the form

$$\mathcal{L}(\boldsymbol{x}; \theta, \phi, y) = \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}, y)} \left[\log p_{\theta}(\boldsymbol{x} \mid \boldsymbol{z}, y) \right] - D_{KL} \left(q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}, y) || p(\boldsymbol{z}) \right)$$
(31)

(32)

which can interpreted from the VAE perspective with $p_{\theta}(\boldsymbol{x} \mid \boldsymbol{z}, y)$ representing a decoder and $q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}, y)$ representing an encoder.

²Again, there are many ways of writing $\mathcal{L}(\boldsymbol{x}; \theta, \phi, y)$, but I'm providing a couple because I was docked severely on the last homework for "insufficient analysis."

³I'm assuming Bayes rule is obvious.

⁴I'm assuming that monotonicity of log and the fact that log(1) = is obvious.