

86.03 - DISPOSITIVOS SEMICONDUCTORES Evaluación Parcial 23 de junio de 2022

Nombre y apellido:				
			N° de examen:	
			60 % de cada problema esté correctamente	
•	Se considerará: La clar gráficos/circuitos, la ex	idad y síntesis conceptual de las respuest actitud de los resultados numéricos.	as y justificaciones, los detalles de los	
•	Cada uno de los dos ej	ercicios debe estar resuelto en hojas indepe	ondientes.	

Datos generales: $q = 1,602 \times 10^{-19} \,\mathrm{C}$; $m_0 = 9,109 \times 10^{-31} \,\mathrm{kg}$; $k = 1,381 \times 10^{-23} \,\mathrm{J/K}$; $h = 6,626 \times 10^{-34} \,\mathrm{Js}$;

1)

a) Se tiene el circuito de la figura 1 donde R_1 , R_2 y R_3 son resistencias fabricadas con distintos materiales semiconductores intrínsecos. Inicialmente $R_1 = R_2 = R_3$ pero, pasado un tiempo y como consecuencia

Calificación: _

de brecha de los materiales es E_{g1} < E_{g2} < E_{g3}, determinar por cuál resistencia circulará la menor intensidad de corriente y explicar por qué no son necesarios más datos para predecir este fenómeno.
b) Graficar la curva de salida (I_D vs V_{DS}) y la recta de carga del circuito de la figura 2 (μ_pC'_{cx}W/L = 1 mA/V²; V_T = -1 V; λ = 0,11 V⁻¹; R_{G1} = 2 kΩ; R_{G2} = 2,5 kΩ; R_D = 2 kΩ; V_{DD} = 5 V) indicando los valores de I_{Dsat}, V_{DSsat}, I_{DQ}, V_{DSQ}, y la intersección con abscisa y la ordenada al origen de la

del efecto Joule, esta igualdad deja de cumplirse. Sabiendo que la relación que existe entre las energías

 $\varepsilon_0 = 8.85 \times 10^{-12} \,\text{F/m}; \ \varepsilon_r(\text{Si}) = 11.7; \ \varepsilon_r(\text{SiO}_2) = 3.9.$

recta de carga.

Figura 1

Figura 2

2) Se tiene un diodo de juntura PN simétrico basado en silicio del cual se conocen los siguientes datos: $A=0.1\,\mathrm{mm}^2$; $W_p=10\,\mathrm{\mu m}\gg x_p$; $W_n=10\,\mathrm{\mu m}\gg x_n$; $C_{j0}=76\,\mathrm{pF}$; $\tau_T=20\,\mathrm{ns}$ y $V_{D(\mathrm{ON})}=0.7\,\mathrm{V}$. Además, se sabe que las movilidades pueden estimarse como $\mu_n\approx 1400\,\mathrm{cm}^2/\mathrm{Vs}$ y $\mu_p\approx 485\,\mathrm{cm}^2/\mathrm{Vs}$ dentro de las zonas de interés en todo el dispositivo. Se realizan dos mediciones de la curva I-V del diodo a temperatura ambiente ($T=300\,\mathrm{K}$) y se presentan en la siguiente tabla:

$V_D[V]$	-1,2	0,65
$I_D[A]$	$6,5 \times 10^{-15}$	516 × 10 ⁻⁶

- a) Determinar el valor de la corriente I₀, las concentraciones N_A y N_D y el valor de φ_B.
- b) Dicho diodo se polariza en directa mediante una fuente de 5 V y una resistencia de 470 Ω. Obtener los valores de polarización, dibujar y calcular el modelo de pequeña señal del mismo. Indicar y justificar cuál es el efecto capacitivo que predomina en esta condición.