A - Analyse

a) On considère deux suites numériques $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que $(v_n)_{n\in\mathbb{N}}$ est non nulle à partir d'un certain rang et $u_n \underset{n\to+\infty}{\sim} v_n$.

Démontrer que u_n et v_n sont de même signe à partir d'un certain rang.

- b) Déterminer le signe, au voisinage de l'infini, de : $u_n = \operatorname{sh}\left(\frac{1}{n}\right) \tan\left(\frac{1}{n}\right)$.
- 2 a) On considère les fonctions $g: x \mapsto e^{2x}$ et $h: x \mapsto \frac{1}{1+x}$. Calculer, pour tout entier naturel k, la dérivée d'ordre k des fonctions g et h sur leurs ensembles de définition respectifs.
 - b) On considère la fonction $f: x \mapsto \frac{e^{2x}}{1+x}$. En utilisant la formule de Leibniz concernant la dérivée n-ième d'un produit de fonctions, déterminer, pour tout entier naturel n et pour tout $x \in \mathbb{R} \setminus \{-1\}$, la valeur de $f^{(n)}(x)$.
 - c) Démontrer, dans le cas général, la formule de Leibniz, utilisée dans la question précédente.
- 3 a) Énoncer le théorème des accroissements finis.
 - b) On considère une application $f:[a,b]\mapsto\mathbb{R}$ et un réel $x_0\in]a,b[$. On suppose que f est continue sur [a,b] et que f est dérivable sur $]a,x_0[$ et sur $]x_0,b[$. Démontrer que, si f' admet une limite finie en x_0 , alors f est dérivable en x_0 et $f'(x_0)=\lim_{x\to x_0}f'(x)$.
 - c) Prouver que l'implication : (f est dérivable en x_0) \Longrightarrow (f' admet une limite finie en x_0) est fausse.

[Indication : on pourra considérer la fonction $g: \mathbb{R} \to \mathbb{R}$.] $x \mapsto \begin{cases} 0 & \text{si } x = 0 \\ x^2 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \end{cases}$

- [4] a) On considère deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ de nombres réels positifs. On suppose que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont non nulles à partir d'un certain rang. Montrer que : $(u_n \underset{n\to+\infty}{\sim} v_n) \Longrightarrow (\text{les séries } \sum u_n \text{ et } \sum v_n \text{ sont de même nature}).$
 - b) Étudier la convergence de la série $\sum_{n\geq 2} \frac{((-1)^n+i)\,\ln(n)\,\sin\left(\frac{1}{n}\right)}{(\sqrt{n+3}-1)} \ (\text{où i désigne le nombre complexe de partie imaginaire positive et de carré égal à -1)}.$
- 5 a) Déterminer une primitive de la fonction $x \mapsto \cos^4(x)$.
 - b) Résoudre sur \mathbb{R} l'équation différentielle : $y'' + y = \cos^3(x)$ en utilisant la méthode de variation des constantes.
- 6 On considère les deux équations différentielles (H): 2xy' 3y = 0 et $(E): 2xy' 3y = \sqrt{x}$.
 - a) Résoudre l'équation (H) sur l'intervalle $]0, +\infty[$.
 - b) Résoudre l'équation (E) sur l'intervalle $]0, +\infty[$.
 - c) L'équation (E) admet-elle des solutions sur l'intervalle $[0, +\infty[$?

- [7] On considère un réel x_0 et on définit la suite (u_n) définie par $u_0 = x_0$ et : $\forall n \in \mathbb{N}, u_{n+1} = \operatorname{Arctan}(u_n)$.
 - a) α . Démontrer que la suite (u_n) est monotone et déterminer, en fonction de la valeur de x_0 , le sens de variations de (u_n) .
 - β . Montrer que (u_n) converge et déterminer sa limite.
 - b) Déterminer l'ensemble des fonctions h, continues sur \mathbb{R} , telles que : $\forall x \in \mathbb{R}$, $h(x) = h(\operatorname{Arctan}(x))$.
- $\fbox{8}$ On considère un nombre complexe a et on note E l'ensemble des suites à valeurs complexes telles que :
 - $\forall n \in \mathbb{N}, u_{n+2} = 2 a u_{n+1} + 4 (i a 1) u_n, \text{ avec } (u_0, u_1) \in \mathbb{C}^2.$
 - a) α . Prouver que E est un sous-espace vectoriel de l'ensemble des suites à valeurs complexes. β . Déterminer, en le justifiant, la dimension de E.
 - b) Dans cette question, on considère la suite de E définie par : $u_0 = 1$ et $u_1 = 1$. Exprimer, pour tout entier naturel n, le nombre complexe u_n en fonction de n. [Indication : discuter suivant les valeurs de a.]
- 9 On considère la fonction H définie sur $]1, +\infty[$ par $H(x) = \int_x^{x^2} \frac{dt}{\ln(t)}.$
 - a) Montrer que H est de classe \mathcal{C}^1 sur $]1, +\infty[$ et calculer sa dérivée.
 - b) Montrer que la fonction u définie par $u(x) = \frac{1}{\ln(x)} \frac{1}{x-1}$ admet une limite finie en x = 1.
 - c) En utilisant la fonction u de la question b), calculer la limite en 1^+ de la fonction H.

B - Algèbre

10 On considère un entier naturel n tel que $n \geq 2$.

On note E l'espace vectoriel des polynômes à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) de degré inférieur ou égal à n.

On considère l'application $f: E \to E$ définie par : $\forall P \in E, f(P) = P - P'$.

- a) Démontrer que f est bijective de deux manières :
 - $\alpha.$ sans utiliser de matrice de f ;
 - β . en utilisant une matrice de f.
- b) On considère un polynôme $Q \in E$.

Déterminer un polynôme P tel que f(P) = Q.

[Indication : si $P \in E$, quel est le polynôme $P^{(n+1)}$?]

- 11 On considère la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ et l'endomorphisme f de $\mathcal{M}_2(\mathbb{R})$ défini par : f(M) = AM.
 - a) Démontrer une base de Ker(f).
 - b) f est-il surjectif?
 - c) Déterminer une base de Im(f).
 - d) A-t-on $\mathcal{M}_2(\mathbb{R}) = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$?

- 12 On considère un espace vectoriel E sur \mathbb{R} ou \mathbb{C} et un endomorphisme $f \in \mathcal{L}(E)$ tel que f^2 $f - 2\operatorname{id}_E = 0.$
 - a) Prouver que f est bijectif et exprimer f^{-1} en fonction de f.
 - b) Prouver que $E = \text{Ker}(f + \text{id}_E) \oplus \text{Ker}(f 2 \text{id}_E)$.
 - c) Dans cette question, on suppose que E est de dimension finie. Prouver que $\operatorname{Im}(f + \operatorname{id}_E) = \operatorname{Ker}(f - 2\operatorname{id}_E)$.
- 13 Pour tout entier $n \geq 1$, on considère la matrice carrée d'ordre n à coefficients réels

$$A_n = \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & -1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 2 & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix} \text{ et on désigne par } D_n \text{ le déterminant de } A_n.$$

- a) Démontrer que : $\forall n \geq 1, D_{n+2} = 2D_{n+1} D_n$.
- b) Pour $n \geq 1$, calculer D_n en fonction de n.
- 14 On considère un endomorphisme f d'un espace vectoriel E de dimension $n \in \mathbb{N}^*$.
 - a) Démontrer que : $E = \operatorname{Im}(f) \oplus \operatorname{Ker}(f) \Longrightarrow \operatorname{Im}(f) = \operatorname{Im}(f^2)$.
 - b) α . Démontrer que : $\operatorname{Im}(f) = \operatorname{Im}(f^2) \iff \operatorname{Ker}(f) = \operatorname{Ker}(f^2)$.
 - β . Démontrer que : $\operatorname{Im}(f) = \operatorname{Im}(f^2) \Longrightarrow E = \operatorname{Im}(f) \oplus \operatorname{Ker}(f)$.
- 15 On considère la projection vectorielle p de \mathbb{R}^3 , sur le plan P d'équation x+y+z=0 et parallèlement à la droite D d'équation $x = \frac{y}{2} = \frac{z}{2}$.
 - a) Vérifier que $\mathbb{R}^3 = P \oplus D$.
 - b) On considère un vecteur $u = (x, y, z) \in \mathbb{R}^3$.

Déterminer p(u) et donner la matrice de p dans la base canonique de \mathbb{R}^3 .

- c) Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de p est diagonale.
- 16 On considère un \mathbb{R} -espace vectoriel E muni d'un produit scalaire noté \langle , \rangle . Pour $x \in E$, on pose $||x|| = \sqrt{\langle x, x \rangle}$.
 - a) α . Énoncer et démontrer l'inégalité de Cauchy-Schwarz.
 - β . Dans quel cas a-t-on égalité? Le démontrer.

b) On considère l'ensemble $E = \{ f \in \mathcal{C}([a,b],\mathbb{R}) \, / \, \forall \, x \in [a,b], f(x) > 0 \}.$ Prouver que l'ensemble $\left\{ \int_a^b f(t) \, dt \, \times \, \int_a^b \frac{1}{f(t)} \, dt \, / \, f \in E \right\}$ admet une borne inférieure m et déterminer la valeur de m

- 17 On considère un espace euclidien E.
 - a) On considère un sous-espace vectoriel A de E. Démontrer que $(A^{\perp})^{\perp} = A$.
 - b) On considère deux sous-espaces vectoriels F et G de E.
 - α . Démontrer que $(F+G)^{\perp}=F^{\perp}\cap G^{\perp}$.
 - β . Démontrer que $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

18 On considère un espace euclidien E de dimension $n \in \mathbb{N}^*$.

On note $\langle x, y \rangle$ le produit scalaire de x et de y et $||\cdot||$ la norme euclidienne associée.

- a) On considère un endomorphisme u de E tel que : $\forall x \in E, ||u(x)|| = ||x||$.
 - α . Démontrer que : $\forall (x,y) \in E^2, \langle u(x), u(y) \rangle = \langle x,y \rangle$.
 - β . Démontrer que u est bijectif.
- b) Démontrer que l'ensemble $\mathcal{O}(E)$ des isométries vectorielles de E, muni de la loi \circ , est un groupe.
- c) On considère $u \in \mathcal{L}(E)$ et $e = (e_1, e_2, \dots, e_n)$ une base orthonormée de E. Prouver que : $(u \in \mathcal{O}(E)) \iff ((u(e_1), u(e_2), \dots, u(e_n)) \text{ est une base orthonormée de } E).$
- 19 On considère deux réels a et b tels que a < b.
 - a) On considère une fonction h continue et positive de [a,b] dans \mathbb{R} .

Démontrer que $\int_a^b h(x) dx = 0 \Longrightarrow h = 0$.

b) On note E le \mathbb{R} -espace vectoriel des fonctions continues de [a,b] dans \mathbb{R} et on pose, pour tout couple $(f,g) \in E^2$: $\langle f,g \rangle = \int_a^b f(x) g(x) dx$. Démontrer que l'on définit ainsi un produit scalaire sur E.

- c) Majorer $\int_{0}^{1} \sqrt{x} e^{-x} dx$ en utilisant l'inégalité de Cauchy-Schwarz.
- On considère l'espace vectoriel E des applications continues et 2π -périodiques de \mathbb{R} dans \mathbb{R} .
 - a) Démontrer que $\langle f,g\rangle=\frac{1}{2\,\pi}\int_0^{2\,\pi}f(t)\,g(t)\,dt$ définit un produit scalaire sur E. b) On considère le sous-espace vectoriel F de E engendré par les fonctions $f:x\mapsto\cos(x)$ et
 - $g: x \mapsto \cos(2x)$.

Déterminer le projeté orthogonal sur F de la fonction $u: x \mapsto \sin^2(x)$.

21 On considère l'application $\varphi: \mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}$, où A^T désigne la matrice $(A, A') \mapsto \operatorname{tr}(A^T A')$

transposée de A et tr l'application trace.

On considère l'ensemble $\mathcal{F} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} / (a, b) \in \mathbb{R}^2 \right\}.$

- a) Démontrer que φ est un produit scalaire sur E.
- b) Démontrer que \mathcal{F} est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- c) Déterminer une base de \mathcal{F}^{\perp} .
- d) Déterminer la projection orthogonale de $J=\begin{pmatrix}1&1\\1&1\end{pmatrix}$ sur \mathcal{F}^{\perp} . e) Calculer la distance de J à \mathcal{F} .
- 22 On considère un espace préhilbertien E et un sous-espace vectoriel F de E de dimension finie $n \in \mathbb{N}^*$.
 - a) Démontrer que, pour tout $x \in E$, il existe un unique vecteur y_0 de F tel que $x y_0$ soit orthogonal à F et que la distance de x à F soit égale à $||x-y_0||$.
 - b) Pour $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $A' \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ dans $\mathcal{M}_2(\mathbb{R})$, on pose : $\langle A, A' \rangle = a \, a' + b \, b' + c \, c' + d \, d'$.
 - α . Démontrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $\mathcal{M}_2(\mathbb{R})$.
 - β . Calculer la distance de la matrice $A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$ au sous-espace vectoriel F des matrices triangulaires supérieures.

- 23 a) Donner la définition d'un argument d'un nombre complexe non nul (on ne demande ni l'interprétation géométrique, ni la démonstration de l'existence d'un tel nombre).
 - b) Pour $n \in \mathbb{N}^*$, donner, en justifiant la réponse, les solutions dans \mathbb{C} de l'équation $z^n = 1$, et préciser leur nombre.
 - c) En déduire, pour $n \in \mathbb{N}^*$, les solution dans \mathbb{C} de l'équation $(z+i)^n = (z-i)^n$ et démontrer que ce sont des nombres réels.
- 24 a) On considère un entier $n \in \mathbb{N}^*$, un polynôme $P \in \mathbb{R}_n[X]$ et un réel a.
 - α . Donner, sans démonstration, en utilisant la formule de Taylor, la décomposition de P(X) dans la base $(1, X a, (X a)^2, \dots, (X a)^n)$ de $\mathbb{R}_n[X]$.
 - β . On considère un entier $r \in \mathbb{N}^*$.

Déduire de la question précédente que a est une racine de P d'ordre de multiplicité r si et seulement si $P^{(r)}(a) \neq 0$ et : $\forall k \in [[0, r-1]], P^{(k)}(a) = 0$.

- b) Déterminer deux réels a et b pour que 1 soit racine double du polynôme $P = X^5 + a X^2 + b X$ et factoriser alors ce polynôme dans $\mathbb{R}[X]$.
- [25] a) On considère un triplet d'entiers $(a, b, p) \in \mathbb{Z}^3$. Prouver que, si $p \wedge a = 1$ et $p \wedge b = 1$, alors $p \wedge (a b) = 1$.
 - b) On considère un nombre premier p.
 - α . On considère un entier $k \in [[1, p-1]]$.

Prouver que p divise $\binom{p}{k}$ k!, puis en déduire que p divise $\binom{p}{k}$.

 β . Prouver que : $\forall n \in \mathbb{N}, n^p \equiv n \mod p$.

[Indication: on pourra procéder par récurrence.]

- γ . En déduire, pour tout entier naturel n, que : (p ne divise pas $n) \Longrightarrow (n^{p-1} \equiv 1 \mod p)$.
- On considère n+1 réels a_0, a_1, \ldots, a_n deux à deux distincts.
 - a) Montrer que, si b_0, b_1, \ldots, b_n sont n+1 réels quelconques, alors il existe un unique polynôme P vérifiant $\deg(P) \leq n$ et : $\forall i \in [[0,n]], P(a_i) = b_i$.
 - b) On considère un entier $k \in [[0, n]]$.

Expliciter ce polynôme P, que l'on notera L_k , lorsque : $\forall i \in [[0, n]], b_i = \begin{cases} 0 & \text{si } i \neq k \\ 1 & \text{si } i = k \end{cases}$.

- c) Prouver que : $\forall p \in [[0, n]], \sum_{k=0}^{n} a_k^p L_k = X^p$.
- 27 On considère un entier $n \ge 2$ et on pose $z = e^{i\frac{2\pi}{n}}$.

a) On considère un entier $k \in [[1, n-1]]$.

Déterminer le module et un argument du nombre complexe $z^k - 1$.

b) On pose $S = \sum_{k=0}^{n-1} |z^k - 1|$.

Montrer que $S = \frac{2}{\tan(\frac{\pi}{2n})}$.

MP* 2019 - 20

BANQUE CCP 2019 Exercices sur le programme de MPSI

- On considère trois scalaires distincts a_1, a_2, a_3 d'un corps \mathbb{K} égal à \mathbb{R} ou \mathbb{C} .
 - a) Montrer que l'application $\Phi: \mathbb{K}_2[X] \to \mathbb{K}^3$ est un isomorphime d'es- $P \mapsto (P(a_1), P(a_2), P(a_3))$

paces vectoriels.

- b) On note (e_1, e_2, e_3) la base canonique de \mathbb{K}^3 et on pose : $\forall k \in \{1, 2, 3\}, L_k = \Phi^{-1}(e_k)$. α . Justifier que (L_1, L_2, L_3) est une base de $\mathbb{K}_2[X]$.
 - β . Exprimer les polynômes L_1 , L_2 et L_3 en fonction de a_1 , a_2 et a_3 .
- c) On considère un polynôme $P \in \mathbb{K}_2[X]$.

Déterminer les coordonnées de P dans la base (L_1, L_2, L_3) .

- d) Application : on se place dans \mathbb{R}^2 muni d'un repère orthonormé et on considère les trois points A(0,1), B(1,3) et C(2,1).
 - Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points $A,\,B$ et C.
- On considère un entier $n \in \mathbb{N}^*$ et on note $E = \mathcal{M}$ l'espace vectoriel des matrices carrées d'ordre n.

On pose, pour tout $(A, B) \in E^2$, $\langle A, B \rangle = \operatorname{tr}(A^T B)$, où tr désigne la trace et A^T désigne la transposée de la matrice A.

- a) Prouver que l'application $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E.
- b) On note $S_n(\mathbb{R})$ l'ensemble des matrices symétriques de E.

Une matrice A de E est dite antisymétrique lorsque $A^T = -A$.

On note $\mathcal{A}_n(\mathbb{R})$ l'ensemble des matrices antisymétriques de E.

- α . Justifier que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont deux sous-espaces vectoriels de E.
- β . Prouver que $E = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$.
- γ . Prouver que $(\mathcal{A}_n(\mathbb{R}))^{\perp} = \mathcal{S}_n(\mathbb{R})$.
- c) On considère l'ensemble F des matrices diagonales de E. Déterminer F^{\perp} .
- $\boxed{30}$ a) Énoncer le théorème de Bézout dans \mathbb{Z} .
 - b) On considère deux entiers naturels a et b premiers entre eux et un entier naturel c. Prouver que : $(a \mid c \text{ et } b \mid c) \iff (a b \mid c)$.
 - c) On considère le système (S): $\begin{cases} x \equiv 6 \mod 17 \\ x \equiv 4 \mod 15 \end{cases}$ dans lequel l'inconnue x appartient à \mathbb{Z} .
 - α . Déterminer une solution particulière x_0 de (S) dans \mathbb{Z} .
 - β . Déduire des questions précédentes la résolution dans \mathbb{Z} du système (S).

C - Probabilités

- 31 Une urne contient deux boules blanches et huit boules noires.
 - a) Un joueur tire successivement, avec remise, cinq boules dans cette urne.

Pour chaque boule blanche tirée, il gagne 2 points et, pour chaque boule noire tirée, il perd 3 points.

On note X la variable aléatoire représentant le nombre de boules blanches tirées.

On note Y la variable aléatoire représentant le nombre de points obtenus par le joueur sur une partie.

- α . Déterminer la loi de X, son espérance et sa variance.
- β . Déterminer la loi de Y, son espérance et sa variance.
- b) Dans cette question, on suppose que les cinq tirages successifs se font sans remise.
 - α . Déterminer la loi de X.
 - β . Déterminer la loi de Y.
- $\boxed{32}$ a) Une secrétaire effectue, une première fois, un appel téléphonique vers n correspondants distincts.

On admet que les n appels constituent n expériences indépendantes et que, pour chaque appel, la probabilité d'obtenir le correspondant demandé est p (avec $p \in]0,1[$).

On note X la variable aléatoire représentant le nombre de correspondants obtenus.

Donner la loi de X. Justifier.

b) La secrétaire rappelle une seconde fois, dans les mêmes conditions, chacun des n-X correspondants qu'elle n'a pas pu joindre au cours de la première série d'appels.

On note Y la variable aléatoire représentant le nombre de personnes jointes au cours de la seconde série d'appels.

 α . On considère un entier $i \in [[0, n]]$.

Déterminer, pour $k \in \mathbb{N}$, la probabilité conditionnelle $\mathbb{P}_{\{X=i\}}(\{Y=k\})$.

- β . Prouver l'égalité suivante : $\binom{n-i}{k-i}\binom{n}{i}=\binom{k}{i}\binom{n}{k}$, où $n,\ k$ et i sont trois entiers naturels tels que $i\leq k\leq n$.
- γ . Prouver que la variable aléatoire Z=X+Y suit une loi binomiale dont on déterminer le paramètre.
- δ . Déterminer l'espérance et la variance de Z.
- [33] a) Rappeler l'inégalité de Bienaymé-Tchebychev.
 - b) On considère une suite $(Y_n)_{n\geq 1}$ de variables aléatoires mutuellement indépendantes, de même loi et admettant un moment d'ordre 2.

Pour
$$n \in \mathbb{N}^*$$
, on pose $S_n = \sum_{k=1}^n Y_k$.

Prouver que :
$$\forall a \in]0, +\infty[, \mathbb{P}(\{\left|\frac{S_n}{n} - \mathbb{E}(Y_1)\right|\} \geq a) \leq \frac{\mathbb{V}(Y_1)}{n a^2}.$$

c) Application : On effectue des tirages successifs, avec remise, d'une boule dans une urne contenant 2 boules rouges et 3 boules noires.

À partir de quel nombre de tirages peut-on garantir à plus de 95% que la proportion de boules rouges obtenues restera comprise entre 0,35 et 0,45?

[Indication : on pourra considérer la suite (Y_i) de variables aléatoires de Bernoulli où Y_i mesure l'issue du i-ème tirage.]

|34| On considère un entier naturel $n \geq 3$.

On dispose de n boules numérotées de 1 à n et d'une boîte formée de trois compartiments identiques également numérotés de 1 à 3.

On lance simultanément les n boules. Elles viennent toutes se ranger aléatoirement dans les trois compartiments. Chaque compartiment peut éventuellement contenir les n boules.

On note X la variable aléatoire qui, à chaque expérience aléatoire, fait correspondre le nombre de compartiments restés vides.

- a) Préciser les valeurs prises par X.
- b) α . Déterminer la probabilité $\mathbb{P}(X=2)$.
 - β . Achever de déterminer la loi de probabilité de X.
- c) α . Calculer $\mathbb{E}(X)$.
 - β . Déterminer $\lim_{n \to +\infty} \mathbb{E}(X)$. Interpréter ce résultat.

35 a) Énoncer et démontrer la formule de Bayes pour un système complet d'événements.

b) On dispose de 100 dés, dont 25 sont pipés (c'est-à-dire truqués).

Pour chaque dé pipé, la probabilité d'obtenir le chiffre 6 lors d'un lancer vaut $\frac{1}{2}$.

- α . On tire un dé au hasard parmi les 100 dés. On lance ce dé et on obtient le chiffre 6. Quelle est la probabilité que ce dé soit pipé?
- β . On considère un entier $n \in \mathbb{N}^*$.

On tire un dé au hasard parmi les 100 dés. On lance ce dé n fois et on obtient n fois le chiffre 6.

Quelle est la probabilité p_n que ce dé soit pipé?

 γ . Déterminer $\lim_{n\to+\infty} p_n$.

Interpréter ce résultat.

36 On dispose de deux urnes U_1 et U_2 .

L'urne U_1 contient deux boules blanches et trois boules noires.

L'urne U_2 contient quatre boules blanches et trois boules noires.

On effectue des tirages successifs dans les conditions suivantes :

- on choisit une urne au hasard et on tire une boule dans l'urne choisie;
- on note sa couleur et on la remet dans l'urne d'où elle provient;
- si la boule tirée était blanche, le tirage suivant se fait dans l'urne U_1 ; sinon, le tirage suivant se fait dans l'urne U_2 .

Pour tout $n \in \mathbb{N}^*$, on note B_n l'événement « la boule tirée au n-ième triage est blanche » et on pose $p_n = \mathbb{P}(B_n)$.

- a) Calculer p_1 .
- b) Prouver que : $\forall n \in \mathbb{N}^*, p_{n+1} = -\frac{6}{35} p_n + \frac{4}{7}$.
- c) En déduire, pour tout entier naturel non nul n, la valeur de p_n .

MP* 2019 - 20

BANQUE CCP 2019 Exercices sur le programme de MPSI

- Une urne contient $n \in \mathbb{N}^*$ boules blanches numérotées de 1 à n et deux boules noires numérotées 1 et 2.
 - On effectue le tirage, une à une, sans remise, de toutes les boules de l'urne.
 - On note X la variable aléatoire égale au rang d'apparition de la première boule blanche.
 - On note Y la variable aléatoire égale au rang d'apparition de la première boule numérotée 1.
 - a) Déterminer la loi de X.
 - b) Déterminer la loi de Y.
- 38 On considère un entier $n \in \mathbb{N}^*$ et un ensemble E possédant n éléments.
 - On désigne par $\mathcal{P}(E)$ l'ensemble des parties de E.
 - a) Déterminer le nombre a de couples $(A, B) \in (\mathcal{P}(E))^2$ tels que $A \subset B$.
 - b) Déterminer le nombre b de couples $(A, B) \in (\mathcal{P}(E))^2$ tels que $A \cap B = \emptyset$.
 - c) Déterminer le nombre c de triplets $(A, B, C) \in (\mathcal{P}(E))^3$ tels que A, B et C soient deux à deux disjoints et vérifient $A \cup B \cup C = E$.