

μTelescope: User Interface and noise reduction

Hendrik Borras

Supervisor: Michael Schmelling

Updates from CosmicPi

- Final run for production of V1.5 Units
 - Scintillator and SiPM-based design
 - This design was tested during the summer
 - 30 Units assembled
 - 28 Units tested
 - Basic user interface finished
 - To be shipped next week
- User interface will be used for the uTelescope as well

Part of the V1.5 units, without scintillators; Notice how each unit is a stack of: Arduino DUE, mainboard, anagoge board, Raspberry Pi Zero W

High level software for the CosmicPi and the µTelescope

- Runs on Raspberry Pi (Versions: 3 and Zero W)
- Stores events locally in a SQLite database
- Publishes events via MQTT
- Provides a user interface via HTTP
 - Displays basic information
 - Allows to create customized histograms
 - Allows export of local data
 - Controls basic network settings
- Code managed via GitHub: https://github.com/CosmicPi/cosmicpi-rpi_V1.5

High level software: Architecture on boot

High level software: Architecture after boot

Dashboard

- Basic information
- Visible when connecting
- Can update itself automatically

Custom functionality

- Create histograms similar to that on the dashboard
- Configurable:
 - Start time
 - End time
 - Number of bins

- Example of a custom histogram (bigger binning, longer timeframe)
- Notice how the URL contains parameters for the plot
 - The dashboard creates it's plot in the same way

Settings page

- Behind user/password authentication
- Export of local data
- Change the currently connected WiFi network
- Set an email address for notifications

High level software: Underlying technologies

- OS: Raspbian Stretch Lite
- Backend
 - Python
 - Mosquitto (MQTT-Client)
 - SQLite
- Frontend:
 - JavaScript for UI look and feel
 - Python with Flask for UI content serving
 - SQLite
- Contributors
 - JavaScript for the frontend: Darku Lukić
 - Backend and Flask for the frontend: Hendrik Borras
 - Testing on V1.5 units and bug fixes: James Devine

Measurements of signal characteristics of the uTelescope

- Pins for the attachment of probes were soldered onto the board
 - Directly at the PIN-diode output
 - After the first amplifier (JFET)
- Prohibits the use of the upper noise shield
 - As long as the pin is attached
 - Strong 50 Hz noise became visible
 - Shielding-box was built

15.01.2018

50 Hz noise without bias voltage applied to the PIN-diodes

50.0 mV/div 0 µV offset

50 Hz noise with bias voltage applied to the PIN-diodes

50.0 mV/div

0 μV offset

50 Hz noise with bias voltage applied and additional shielding

0 μV offset

- Standard shielding box from the electronics group
- Custom drilled holes by our workshop
- Features:
 - 3 Banana connectors for power supply
 - 4 BNC connectors for signals
- Significantly less 50Hz noise
- Still notable noise from the PSUs
 - High frequency
 - Burst like

Next steps

- Ordering of the radiation source from Ralf Lackner
- Investigation of how the high frequency noise can be reduced
- So far coincidence measurements with the CosMo detector yielded no results
 - Further testing seems to be required

