南京信息工程大学高等数学滨江学院 I(1)标准化作业参考答案

第一章

第1节

- 1 (1) $[-2,-1) \cup (-1,1) \cup [1,+\infty)$; (2) (2,3];
- 2 (1) [0,2]; (2) [1,e].
- 3 $f[f(x)] = \frac{1+x}{2+x}$; $f[g(x)] = \frac{1}{1+e^x}$.
- $4 \frac{1}{2}$; 0.

第2节

- 1 略
- 2 (1) $\frac{1}{2}$; (2) 3; (3) $\frac{3}{2}$.

第3节

- 1. 略. 2. 略.
- 3. $f(x) \stackrel{.}{=} x \rightarrow 0^- \text{ if } -1$, $x \rightarrow 0^+ \text{ if } 1$;

$$g(x) \stackrel{\text{def}}{=} x \rightarrow 0^- \text{ pl} - \frac{\pi}{2} x \rightarrow 0^+ \text{ pl} \frac{\pi}{2}.$$

第4节

1. (1) 1; (2) ∞ ; (3) 2x; (4) $-\frac{1}{2}$; (5) 8; (6) $\frac{1}{3}$; (7) $\frac{4}{3}$; (8) $\frac{1}{3}$; (9) $\frac{2}{3}$; (10) 0; (11) 2; (12) $\frac{1}{6}$.

第5节

- 1. (1) $\frac{m}{n}$; (2) 0; (3) $\frac{1}{6}$; (4) $\frac{3}{2}$; (5) $\frac{1}{2}$; (6) -1
- 2. (1) e^{-2} ; (2) e^{2a} ; (2) e^{-1} ; (4) e^{3} .
- 3. 1:
- 4. 1.

第6节

- 1. (1) 当 $x \to \infty$ 时, $y = \frac{1}{x^2}$ 为无穷小,当 $x \to 0$ 时, $y = \frac{1}{x^2}$ 为无穷大.
 - (2) 当 $x \to 0^-$ 时, $y = 3^{\frac{1}{x}}$ 为无穷小;当 $x \to 0^+$ 时, $y = 3^{\frac{1}{x}}$ 为无穷大.
- 2. (1) 0; (2) 0; (3) 0; (4) 0.
- 3. (1) -2; (2) 2; (2) 2; (4) $\frac{1}{2}$; (5) 3; (6) $\frac{1}{2}$.

第7节

- 1.(1)第一类(跳跃型)间断点;(2)第二类(无穷型)间断点;
 - (3) 第一类(跳跃型)间断点.
- 2. (1) x = 2 为第二类 (无穷型) 间断点; x = 1 为第一类 (可去型) 间断点;
 - (2) $x = 0, x = k\pi + \frac{\pi}{2}(k = 0, \pm 1, \pm 2, \cdots)$ 为第一类(可去型)间断点;

 $x = k\pi(k = \pm 1, \pm 2, \cdots)$ 为第二类(无穷型)间断点.

3. a = 1, b = 2. 4 a = e, 第二类 (无穷型) 间断点.

第8节 略.

第二章

第1节

- 1. 1; 2. (1) -2f'(a), (2) -f'(a) 3. 2; 4. a; 5. a=2,b=-1;
- 6. 连续且可导; 7. $f(x) = \begin{cases} \cos x, & x < 0 \\ 1, & x \ge 0 \end{cases}$

第2节

- 1. (1) -1; (2) $\frac{3}{25}$, $\frac{17}{15}$.
- 2. (1) $y' = 2\sec^2 x + \sec x \tan x$; (2) $y' = x + 2x \ln x$;

 - (3) $y' = \frac{x \cos x \sin x}{x^2}$; (4) $y' = -\frac{4x^2}{(1+x^2)^2}$;
 - (5) $y' = \frac{1}{\sqrt{r^2 + a^2}}$;
- (6) $y' = \frac{2}{e^{2x} + 1}$.
- 3. (1) $y' = e^{f(x)} f'(x) + e^x f'(e^x)$ (2) $y' = \frac{f'(\ln x)}{x} \frac{f'(x)}{f(x)} + 2f(x)f'(x)$.

(3)
$$y' = \frac{2f(x)f'(x) + 2g(x)g'(x)}{2\sqrt{f^2(x) + g^2(x)}}$$

第3节

1. (1)
$$y' = -\csc^2(x+y)$$
; (2); $-\sqrt{\frac{y}{x}}$; (3) $y'\Big|_{(0,\frac{\pi}{2})} = 1 - \frac{\pi}{2}$.

2. (1)
$$y' = (x-1)\sqrt[3]{\frac{(x-2)^2}{x-3}} \left[\frac{1}{x-1} + \frac{2}{3} \frac{1}{x-2} - \frac{1}{3(x-3)} \right];$$

(2)
$$y' = x^{\sin x} \left(\frac{\sin x}{x} + \ln x \cdot \cos x \right).$$

3. (1)
$$\frac{dy}{dx} = \frac{3}{2}(1+t)$$

$$(2) \frac{dy}{dx}\Big|_{t=1} = 2$$

3. (1)
$$\frac{dy}{dx} = \frac{3}{2}(1+t)$$
; (2) $\frac{dy}{dx}\Big|_{t=1} = 2$; (3) $\frac{dy}{dx} = \frac{\cos\theta - \theta\sin\theta}{1 - \sin\theta - \theta\cos\theta}$.

1. (1)
$$y'' = 2x(2x^2 + 3)e^{x^2}$$

1. (1)
$$y'' = 2x(2x^2 + 3)e^{x^2}$$
; (2) $y'' = -\frac{x}{(1+x^2)^{\frac{3}{2}}}$;

(3)
$$y'' = \cos^2 x f''(\sin x) - \sin x f'(\sin x)$$
;

$$(4) y'' = \frac{f''(x)f(x) - [f'(x)]^2}{[f(x)]^2}.$$

2.
$$y^{(n)} = e^x[x^2 + (2n-2)x + n^2 - 3n - 1]$$
.

3.
$$y'' = \frac{e^{2y}(3-y)}{(2-y)^3}$$
. 4. $\frac{d^2y}{dx^2} = \frac{1+t^2}{4t}$.

4.
$$\frac{d^2y}{dx^2} = \frac{1+t^2}{4t}$$

第5节

1.
$$(1 dy = (-\frac{1}{x^2} + \frac{\sqrt{x}}{x}) dx;$$
 $(2) dy = \frac{-x}{|x|\sqrt{1-x^2}} dx;$

(2)
$$dy = \frac{-x}{|x|\sqrt{1-x^2}}dx$$
;

(3)
$$dy = e^{2x}(2\cos 3x - 3\sin 3x)dx$$
; (4) $dy = (\sin 2x + 2x\cos 2x)dx$.

$$(4) dy = (\sin 2x + 2x \cos 2x) dx.$$

$$2 \qquad dy = \frac{2(e^x - y\cos xy)}{1 + 2x\cos xy} dx \ .$$

3
$$dy = \sin 2x [f'(\sin^2 x) - f'(\cos^2 x)]dx$$
;

4
$$\Delta y = 0.0401, dy = 0.04$$
.

5 (1)
$$\ln x + C$$
; (2) $\tan x + C$; (3) $\arcsin x + C$; (4) $\frac{\sin \sqrt{\cos x}}{2\sqrt{\cos x}}$ (5) $-\frac{1}{3}e^{-x^3}$

第三章

第1节

4. 3 个根, 分别属于区间(1,2),(2,3),(3,4); 其余略.

第2节

1. (1)
$$\frac{\cos a}{2a}$$
; (2) $\frac{1-\ln 2}{2}$; (3) $\frac{1}{2}(\beta^2 - \alpha^2)$; (4) $\frac{1}{2}$; (5) $-\frac{1}{2}$; (6) ∞ ; (7) $\frac{1}{2}$; (8) 1.

2. e^2 . 3. 1.

第3节

1.
$$\frac{1}{2} + \frac{1}{2^2}(x-1) + \frac{1}{2^3}(x-1)^2 + \frac{1}{2^4}(x-1)^3 + o((x-1)^3)$$
;

3. $-2x^2 + o(x^2)$.

第4节

- 1. (1) 单调增加区间为 $(-\infty,-1)$, $(3,+\infty)$, 单调减少区间为(-1,3);
 - (2) 单调增加区间为 $(\frac{1}{2},+\infty)$, 单调减少区间为 $(0,\frac{1}{2})$.
- 2. 略 3.略
- 4. (1) 凹区间为 $(-\infty,0)$, $(1,+\infty)$, 凸区间为(0,1), 拐点为(0,0),(1,-1);
 - (2) 凹区间为(-1,1), 凸区间为 $(-\infty,-1)$, $(1,+\infty)$, 拐点为 $(-1,\ln 2)$, $(1,\ln 2)$.

第5节

- 1. (1) 在x = 1处取极大值 e^{-1} ;
 - (2) 在 x = 0 处取极大值 2, 在 x = 1 和 x = -1 处取极小值 1.
- 2. $a = -\frac{2}{3}, b = -\frac{1}{6}$, 极小值 $f(1) = \frac{5}{6}$, 极大值 $f(2) = \frac{4}{3} \frac{2}{3} \ln 2$.
- 3. x=1是驻点, 也是极小值点.
- 4. 最小值 y(2) = -14, 最大值 y(3) = 11.
- 5. 边长为 $\frac{a}{6}$ 时,容积最大为 $\frac{2a^3}{27}$.
- 6. 4.

第6节

- 1. (1) $x = 1 \neq 1 = -1$, y = x; (2) y = -x 1, x = 1, y = x; (3) y = 1, y = -1, x = 0,
- 2. 略.

第7节

1. 曲率 $K = \frac{1}{2\sqrt{2}}$, 曲率半径 $\rho = 2\sqrt{2}$.

第四章

第1节

- 1. (1) $-\frac{1}{2}\cos 2x + C$; (2) $\frac{a^{2x}}{2\ln a} + C$; (3) $\frac{1}{n+1}(ax+b)^{n+1} + C$
- 2. (1) $-\frac{1}{r} + C$;
- (2) $\frac{x^3}{3} 2x^2 + 4x + C$
- (3) $x \arctan x + C$; (4) $\frac{6}{12}x^{\frac{13}{6}} \frac{6}{7}x^{\frac{7}{6}} + C$;
- (5) $\frac{4^x}{\ln 4} + \frac{2 \times 6^x}{\ln 6} + \frac{9^x}{\ln 9} + C;$ (6) $\sin x \cos x + C;$
- (7) $\frac{1}{2}x \frac{1}{2}\sin x + C$;
- $(8) \frac{|x|x}{2} + C.$
- 3. $f(x) = \begin{cases} e^x, x \ge 0 \\ x + \frac{x^2}{2} + 1, x < 0 \end{cases}$

第2节

- 1. (1) $-\frac{1}{8}(1-2x)^4 + C$; (2) $\frac{1}{2}\sin(2x-5) + C$;

- (3) $\frac{2}{2}e^{3\sqrt{x}}+C$;
- $(4) \ln |\ln x| + C;$
- (5) $\arctan e^x + C$; (6) $6(\sqrt[6]{x} \arctan \sqrt[6]{x}) + C$;
- (7) $\arcsin x + \sqrt{1 x^2} + C$; (8) $\frac{1}{2} (\arcsin x x\sqrt{1 x^2}) + C$.
- (9) $-\frac{1}{(x-1)} \left[\frac{1}{9} + \frac{x-1}{4} + \frac{(x-1)^2}{7} \right] + C$ (10) $\sqrt{x^2 a^2} a \arccos \frac{a}{x} + C$

2. $-\frac{1}{2}(1-x^2)^2 + C$

- 1. (1) $\frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + C$;
- (2) $x \arctan x \frac{1}{2} \ln(1 + x^2) + C$;
- (3) $x \ln(1+x^2) 2x + 2\arctan x + C$; (4) $-x\cot x + \ln|\sin x| + C$;
- (5) $\frac{1}{2}e^{-x}(\sin x \cos x) + C$;
- (6) $2\sqrt{x}e^{\sqrt{x}}-2e^{\sqrt{x}}+C$.

(7)
$$-e^x \ln(1+e^x) - \ln(1+e^{-x}) + C$$

(7)
$$-e^{x} \ln(1+e^{x}) - \ln(1+e^{-x}) + C$$
 (8) $x \tan x + \ln|\cos x| - \frac{x^{2}}{2} + C$

2. $x\cos x - \sin x + C$, $-x\sin x - \cos x + C$.

第4节

1. (1)
$$\frac{1}{3}x^3 - \frac{1}{2}x^2 + x - \ln|x+1| + C$$
; (2) $x + 3\ln|x-3| - 3\ln|x-2| + C$;

(3)
$$\ln|x+1| -\arctan x + C$$
;

(4)
$$\frac{1}{2} \ln \left| \tan \frac{x}{2} \right| + \tan \frac{x}{2} + \frac{1}{4} \tan^2 \frac{x}{2} + C$$
;

(5)
$$2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} - 6\ln(1 + \sqrt[6]{x}) + C$$
;

(6)
$$2\sqrt{3-4x} - \sqrt{3} \ln \left| \frac{\sqrt{3-4x} + \sqrt{3}}{\sqrt{3-4x} - \sqrt{3}} \right| + C$$
.

(7)
$$\frac{1}{\sqrt{2}}\arctan\left[\frac{1}{\sqrt{2}}(x-\frac{1}{x})\right]+C$$
; (8) $-x\cot\frac{x}{2}+2\ln|\sin\frac{x}{2}|+C$.

(8)
$$-x \cot \frac{x}{2} + 2 \ln |\sin \frac{x}{2}| + C$$
.

第五章

第1节

1. (1)
$$\frac{\pi a^2}{2}$$
; (2) $\frac{1}{2}$.

(2)
$$\frac{1}{2}$$
.

2.
$$(1)\int_{0}^{1}x^{2} \ge \int_{0}^{1}x^{3}dx$$

2. (1)
$$\int_0^1 x^2 \ge \int_0^1 x^3 dx$$
; (2) $\int_0^1 \ln(1+x) dx \le \int_0^1 x dx$.

3. (1)
$$6 \le I \le 51$$
:

3. (1)
$$6 \le I \le 51$$
; (2) $-2e^2 \le I \le -2e^{-\frac{1}{4}}$

第2节

1. (1)
$$\sqrt{1+x^2} \sin x$$

1. (1)
$$\sqrt{1+x^2} \sin x$$
; (2) $2\ln(1+4x^2) - \ln(1+x^2)$.

2. (1)
$$\frac{2}{3}$$
; (2) $\frac{7}{3}$; (3) $a^2 f(a)$ (4) $\frac{2}{3}$

(2)
$$\frac{7}{3}$$
;

$$(3) a^2 f(a)$$

$$(4) \frac{2}{3}$$

3. (1)
$$\frac{8}{3}$$

(2)
$$\frac{3}{2}$$

3. (1)
$$\frac{8}{3}$$
; (2) $\frac{3}{2}$; (3) $\frac{2\pi}{3} - \sqrt{3}$; (4) 4. (5) $\frac{4}{5}$; (6) $\frac{23}{6}$.

(6)
$$\frac{23}{6}$$

第3节 定积分的换元积分法与分部积分法

1.
$$(1)\frac{7}{72}$$

1. (1)
$$\frac{7}{72}$$
; (2) $-\ln\sqrt{3}(\sqrt{2}-1)$; (3) 12;

(4)
$$2(\sqrt{3}-1)$$
; (5) $e^{-\frac{1}{2}}-e^{-1}$;

(5)
$$e^{-\frac{1}{2}} - e^{-1}$$

(6)
$$7 + 2 \ln 2$$
.

2. (1)
$$1 - \frac{2}{e}$$
; (2) $\frac{\pi}{4} - \frac{1}{2}$.

(2)
$$\frac{\pi}{4} - \frac{1}{2}$$

4.
$$\frac{62}{3}$$
.

第4节 反常积分

- 1. (1) $\frac{1}{3}$; (2) 1; (3) 发散; (4) $\frac{\pi}{2}$ (5) π

第7节

- 1. $e + \frac{1}{e} 2$; 2. $\frac{3}{8}\pi a^2$;

- 3. $\frac{3}{2}\pi a^2$; 4. $\frac{128}{7}\pi$ (绕x轴), $\frac{64}{5}\pi$ (绕y轴).
- 5. 8*a*.
- 6. $1 + \frac{1}{2} \ln \frac{3}{2}$.
- 7. $\frac{\pi \rho g R^4}{4}$; 8. $\frac{2\rho g R^3}{2}$;

第六章

6-2

- 1, (1) $y = Ce^{\sqrt{1-x^2}}$ $(C = \pm e^{C_1});$ (2) $e^x + e^{-y} = C;$

- (3) $y = xe^{Cx+1}$;
- (4) $x^3 2y^3 = Cx$.
- 2. (1) $e^x + 1 = 2\sqrt{2}\cos y$;
- (2) $y = \frac{1}{2} e^{\sqrt{1-x^2}}$;
- (3) $e^{\frac{y}{x}} = \ln|x| + e$.
- $(4) Cy^2 e^{\frac{y}{x}} = x$

6-3

- 1. (1) $y = (1+x^2)(x+C)$;
- (2) $y = \frac{1}{2}x \ln^2 x + Cx$;
- (3) $x = e^{y}(y+C)$;
- (4) $\frac{1}{v^4} = Ce^{-4x} x + \frac{1}{4}$.
- 2. (1) $y = \frac{1}{x}(\pi 1 \cos x)$;
- $(2) \quad y = x \sec x.$
- (3) $v = x^3 (1 e^{\frac{1}{x^2} 1})$.

6-4

- (1) $y = \cos x \sin x 5x^4 + e^x + C_1x^2 + C_2x + C_3$ $(C_1 = \frac{C}{2})$;
- (2) $y = C_1 e^x + C_2 + x e^x e^x x$;
- (3) $y^2 = C_1 x + C_2$;

(4)
$$y = x^3 + 3x + 1$$
.

1. (1) 无关; (2) 相关. 2. (略)

3. $y = C_1(e^{2x} - e^{-x}) + C_2e^{-x} + xe^x + e^{2x}$.

6-6

1. (1) $y = C_1 e^{-x} + C_2 e^{2x}$; (2) $y = C_1 \cos x + C_2 \sin x$;

(3) $y = C_1 + C_2 x + (C_3 + C_4 x)e^x$; (4) $y = C_1 e^{-x} + C_2 e^{3x} - 3x + 4$;

(5) $y = C_1 e^{-x} + C_1 e^{3x} + 2xe^{3x}$;

(6) $y = e^x (C_1 \cos 2x + C_2 \sin 2x) - \frac{1}{4} x e^x \cos 2x$.

2. (1) $y = e^{-x} - e^{4x}$;

(2) $s = (4+2t)e^{-t}$;

(3) $y = -5e^x + \frac{7}{2}e^{2x} + \frac{5}{2}$;

(4)