ooo Exercice 93.

Lire graphiquement les affixes des points placés sur la figure ci-dessous ainsi que celles des vecteurs \overrightarrow{w} et \overrightarrow{t} :

ooo Exercice 94.

On donne A(-3+i) et B(2-4i).

Déterminer l'affixe du point K milieu du segment [AB].

ooo Exercice 95.

Dans le plan complexe, on donne les affixes de deux vecteurs \overrightarrow{u} et $\overrightarrow{v}: z_{\overrightarrow{u}} = -2 + \mathrm{i}$ et $z_{\overrightarrow{v}} = 3 - 5\mathrm{i}$.

Déterminer les affixes des vecteurs suivants :

- 1. $\overrightarrow{u} + \overrightarrow{v}$.
- $2. \overrightarrow{u} \overrightarrow{v}.$
- $3. \ \frac{3}{5}\overrightarrow{u}.$
- $4. \ 2\overrightarrow{u} 3\overrightarrow{v}$

•∞ Exercice 96.

Dans le plan complexe, on considère les points A(-4+i), B(3i), C(3) et D(-1-2i).

- 1. Calculer les affixes des vecteurs \overrightarrow{AB} et \overrightarrow{DC} .
- 2. Que peut-on en déduire pour le quadrilatère ABCD?

●○○ Exercice 97.

Dans le plan complexe, on considère les points A(4-5i), B(3i), C(-1+4i) et D(11-20i).

Montrer que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

•00 Exercice 98.

Dans le plan complexe, on considère les points A(1-3i), B(2+4i) et C(5+3i).

- 1. Calculer l'affixe du point D pour que le quadrilatère ABCD soit un parallélogramme.
- 2. Calculer l'affixe du point K centre du parallélogramme ABCD.
- 3. Calculer l'affixe du point G symétrique du point K par rapport au point A.

ooo Exercice 99.

Déterminer le module des nombres complexes suivants :

- 1. $z_1 = 1 + i$
- 2. $z_2 = -2 + 2i$
- 3. $z_3 = 4 + 5i$
- 4. $z_4 = 2 i$

$\bullet \circ \circ$ Exercice 100.

Déterminer graphiquement les modules des nombres complexes z_A , z_B , z_C , z_D , z_E et z_F :

• ∞ Exercice 101.

Dans le plan complexe, on considère les points A(-5), B(3-4i), C(-4-3i) et D(-4+3i).

- 1. Placer ces quatre points dans le plan complexe.
- 2. Montrer que les points A, B, C et D appartiennent à un même cercle dont on précisera le centre et le rayon.

●○○ Exercice 102.

Soit $\mathbb U$ l'ensemble des nombres complexes de module 1. Parmi les complexes suivants, déterminer ceux qui appartiennent à $\mathbb U$:

1.
$$z_1 = \frac{1}{4} + \frac{i}{4}$$
.

2.
$$z_2 = \frac{2\sqrt{6} + i}{5}$$
.

3.
$$z_3 = \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}i$$
.

• ∞ Exercice 103.

Soient $z_1 = 4i$, $z_2 = -10$, $z_3 = 5 - 5i$ et $z_4 = \sqrt{3} + i$. Déterminer le module des nombres complexes suivants après avoir calculé les modules des nombres complexes z_1 , z_2 , z_3 et z_4 :

1.
$$a = z_1 z_2$$
.

2.
$$b = z_3^2 \times z_2$$
.

••o Exercice 104.

On se place dans le plan complexe muni d'un repère orthonormal d'origine O.

Soit
$$\mathscr{C} = \{M(z)/|z| = 3\}.$$

 $M \in \mathscr{C} \iff OM = 3$. Donc l'ensemble \mathscr{E} est le cercle de centre O et de rayon 3.

Reconnaître et représenter les ensembles suivants :

1.
$$\{M(z)/|z|=0\}.$$

2.
$$\{M(z)/|z-2|=3\}.$$

3. $\{M(z)/|z+4-i|=2\}.$

••o Exercice 105.

Dans le plan complexe muni d'un repère orthonormal, on donne R(1-i), S(6+3i),

T(10-2i) et U(5-6i).

- 1. Conjecturer la nature du quadrilatère RSTU.
- 2. Valider ou invalider la conjecture émise à la question précédente.

••o Exercice 106.

On se place dans le plan complexe muni d'un repère orthonormal. Traduire en utilisant des modules les propositions suivantes :

- 1. Le triangle ABC est équilatéral.
- 2. Le triangle HGY est rectangle en Y.
- 3. Le point M appartient à la médiatrice du segment [LK].
- 4. Le point C appartient au cercle de centre A(1-i) et de rayon 7.

$\bullet \infty$ Exercice 107.

Dans le plan complexe muni d'un repère orthonormal, on donne R(2-i), S(6-i), et $T(4+(2\sqrt{3}-1)i)$.

- 1. Démonter que le triangle RST est équilatéral.
- 2. Calculer l'aire du triangle RST.

•00 Exercice 108.

Déterminer graphiquement les arguments des nombres complexes z_A , z_B , z_C , z_D , z_E et z_F :

•00 Exercice 109.

Déterminer un argument des nombres complexes suivants :

1.
$$z_1 = 1 + \sqrt{3}i$$

2.
$$z_2 = -4$$

3.
$$z_3 = \sqrt{3} - 3i$$

4.
$$z_4 = -2 - 2i$$

• © Exercice 110.

Dans chaque cas, placer ci-dessous les points A, B, C et D tels que :

1.
$$|z_A| = 2$$
 et $\arg(z_A) = \frac{3\pi}{2} [2\pi]$.

2.
$$|z_B| = 3$$
 et $\arg(z_B) = \frac{\pi}{6} [2\pi]$.

3.
$$|z_C| = 4$$
 et $\arg(z_C) = -\frac{3\pi}{4} [2\pi]$.

4.
$$|z_D| = 5$$
 et $\arg(z_D) = \frac{2\pi}{3} [2\pi]$.

• co Exercice 111.

Dans chaque cas, donner la forme algébrique du complexe z tel que :

1.
$$|z| = 3$$
 et $\arg(z) = \frac{\pi}{2} [2\pi]$.

2.
$$|z| = 5$$
 et $\arg(z) = \pi [2\pi]$.

3.
$$|z| = 2$$
 et $\arg(z) = -\frac{\pi}{3} [2\pi]$.

4.
$$|z| = 7$$
 et $\arg(z) = \frac{3\pi}{4} [2\pi]$.

5.
$$|z| = 6$$
 et $\arg(z) = -\frac{5\pi}{6} [2\pi]$.

••o Exercice 112.

On donne $z_1 = 2\sqrt{3} - 2i$ et $z_2 = -1 + i$.

- 1. Calculer le module et un argument de z_1 et z_2 .
- 2. En déduire le module et un argument des complexes suivants :

(a)
$$a = -4z_2$$

(b)
$$b = \frac{z_1}{z_2}$$

(c)
$$c = z_2^{2023}$$