Movimento harmônico simples

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

14 de Julho de 2022

Sumário

- Oscilador harmônico
- Aplicações
- Apêndice

Sistema massa-mola

Físico Robert Hooke.

Sistema massa-mola.

Força restauradora (\vec{F}_R)

Obriga o sistema retornar para a sua posição de equilíbrio (x_0) .

00000

Lei de Hooke

Aceleração a em função do deslocamento x.

k: constante elástica (depende das propriedades do material);

Se $x_0 = 0$, pela Lei de Hooke $\vec{F} = -k\vec{x}$.

$$\vec{F} = m\vec{a}$$
,

$$\vec{a} = -\frac{\kappa}{m}\vec{x}$$

Corollary

A aceleração do objeto e a força restauradora possuem sentidos contrários ao deslocamento.

Movimento harmônico simples (MHS)

Quatro etapas de um ciclo completo do MHS.

Amplitude (x_m) : Máximo deslocamento da mola;

Período (T): Tempo de cada ciclo;

Frequência (f): Núm. de ciclos por segundo.

Corollary

Na ausência de atrito, o objeto realiza por tempo infinito um Movimento Harmônico Simples (MHS) a uma frequência de f ciclos por unidade de tempo,

$$f=\frac{1}{T}$$

Sistema massa-mola e movimento circular uniforme (MCU)

Representação das quatro etapas do MHS no MCU.

Se $\theta = \omega t$, onde ω é a frequência angular,

$$x(t) = x_m cos(\theta),$$

$$\omega = 2\pi f = \frac{2\pi}{T}.$$

Pelo MCU a aceleração centrípeta a_{cpt} é dada por

$$a_{cpt}(t) = \omega^2 x_m.$$

Prof. Flaviano W. Fernandes

MHS e movimento circular uniforme

Pela Lei de Hooke, a aceleração má- portanto xima do objeto é dado por

$$a_m = \frac{k}{m} x_m.$$

Foi mostrado anteriormente que

$$a_{cpt} = \omega^2 x_m$$

$$\omega = \sqrt{\frac{k}{m}}.$$

Levando em consideração que $\omega = \frac{2\pi}{\tau}$.

Período de oscilação do sistema massa-mola

$$T=2\pi\sqrt{\frac{m}{k}}.$$

Pêndulo simples

Pêndulo simples.

Se $\theta \ll 1$ temos $sen(\theta) \approx \theta = \frac{x}{T}$,

$$egin{aligned} F_{R} &= -mgsen\left(heta
ight), \ ma &= -mrac{g}{L}x, \ a &= -rac{g}{L}x. \end{aligned}$$

Comparando com o sistema massa-mola temos $a = -\omega^2 x$, ou seia,

$$\omega^2 = \frac{g}{L}$$
.

Pêndulo simples (continuação)

Sabendo que o quadrado da frequência angular de oscilação do pêndulo simples equivale a $\omega^2=\frac{g}{I}$ temos

$$\omega = \sqrt{\frac{g}{L}}.$$

Porém, foi mostrado anteriormente que $\omega = \frac{2\pi}{T}$, portanto

$$\frac{2\pi}{T} = \sqrt{\frac{g}{L}}.$$

Período de oscilação do pêndulo simples

$$T=2\pi\sqrt{rac{L}{g}}.$$

Corollary

O período de oscilação do pêndulo depende somente do comprimento L do fio.

Aplicações envolvendo pêndulo simples

Pêndulo de Foucault.

Relógio de pêndulo.

Prof. Flaviano W. Fernandes

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	E	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	θ
lota	1	ι
Capa	Κ	κ
Lambda	Λ	λ
Mi	Μ	μ

Ν	ν
Ξ	ξ
0	0
П	π
P	ρ
Σ	σ
Τ	au
Υ	v
Φ	ϕ, φ
X	χ
Ψ	ψ
Ω	ω
	<i>Ο</i> Π <i>P</i> Σ <i>T</i> Υ Φ <i>X</i> Ψ

Referências e observações¹

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.2, 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.