Pepsi Co. Training Syllabus

1. Day 1 - Demystifying Artificial Intelligence - Lecture

- a. AI in our everyday lives
 - i. Recommendation systems (netflix, youtube, etc)
 - ii. computer vision (self driving, object detection, segmentation analysis)
 - iii. natural language understanding (siri, alexa, GPS, google translate, email spam detection, etc)
 - iv. Job/college/loan/credit applications
 - v. Fraud detection
 - vi. Optimizing store inventory/shelving/staffing
- b. What is AI?
 - i. Computers + Math + Data
 - ii. How does it work?
- c. Data
 - i. What is data
 - ii. Data sources
 - iii. Data storage
- d. Subsets of AI
 - i. Supervised vs Unsupervised vs Reinforcement Learning
 - ii. Machine learning
 - iii. Deep learning
 - iv. Reinforcement learning
- e. Introduction to ML algorithms
 - i. What tasks are associated with what algorithms
 - ii. Flavors of ML algorithms
 - iii. Examples of ML algorithms
- f. Identifying & Productizing ML use-cases
 - i. Consistent data
 - ii. Large volume
 - iii. Interactive vs Non-Interactive
 - iv. Single Record vs Batch
- g. Conclusion Day 1 Quiz

2. Day 2 - Machine Learning Algorithm Foundations - Lecture

- a. Establish Term Glossary
- b. The Artificial Neuron
- c. Open-source software

- i. Layers of auto-ml (code a network/keras & torch/auto-ml)
- d. The components of ML algorithms (rudimentary concepts)
- e. Walkthrough an example with real data
- f. Conclusion Day 2 Quiz

3. Day 3 - Functions, Data Structures & EDA - Jupyter Notebook

- a. Data Structures
- b. Basic Functions
- c. Intermediate Functions
- d. Working with Datasets
 - i. Reading in different data
 - ii. Examining features
 - iii. Visualizations
- e. Conclusion Day 3 Quiz

4. Day 4 - Feature Selection & Feature Engineering - Jupyter Notebook

- a. Feature Selection
 - i. Choosing relevant features for your ML model
- b. Feature Engineering
 - i. Process of cleaning data for a ML model
- c. Data preparation
 - i. Putting it all together
 - ii. Preparing data to train a ML model
- d. Conclusion Day 4 Quiz

5. Day 5 - Basic ML Algorithms (Regression) - Jupyter Notebook

- a. Regression
 - i. Different types
 - ii. How it works
 - iii. Examples
- b. Interpreting model results
 - i. Accuracy
 - ii. ROC/AUROC/F1/recall/precision/etc
- c. Conclusion Day 5 Quiz

6. Day 6 - Intermediate ML Algorithms - Trees/Ensemble Methods (RFs) - Jupyter Notebook

- a. Decision Trees
- b. Random Forest
- c. Hyper-Parameters & Model tuning
- d. Conclusion Day 6 Quiz

7. Day 7 - Advanced ML Algorithms - Neural Networks (ANNs) - Jupyter Notebook

- a. The basic, forward ANN
 - i. The artificial neuron
 - ii. The network
- b. The CNN
- c. The RNN
- d. Open-source models
- e. Transfer Learning
- f. Conclusion Day 7 Quiz

8. Day 8 - E2E Build - Putting It All Together - Jupyter Notebook

- a. Given a dataset, experiment with different methods & models.
- b. Develop the end-to-end process from scratch and choose the optimal solution
 - i. Feature Selection / Eng
 - ii. Define the task and experiment with different algorithms
 - iii. Tune the model
- c. Create interpretable visualizations

9. Day 9 - Productization - Infrastructure - Lecture + VSCode

- a. Different types of deployment
 - i. Interactive vs non-interactive (client facing or not)
- b. The client facing API
- c. The internal system
- d. Things to consider

- i. Model drift
- ii. Model re-training
- iii. Throughput & latency
- e. Cloud infra
 - i. azure/aws/gcp/redis/etc
 - ii. Worker jobs
- f. Conclusion Day 9 Quiz

10. Day 10 - Productization - Deployment - Lecture + VSCode

- a. Hosting, and deployment of the API
- b. Moving from dev environment to prod environment!
 - i. stress-testing
 - ii. Secret keys
 - iii. Modularize code
 - iv. Encryption
- c. Conclusion Day 10 Quiz