

UNIVERSITE MOHAMED I

FACULTÉ DES SCIENCES
DÉPARTEMENT DE MATHÉMATIQUES
ET INFORMATIQUE, OUJDA

Année Universitaire 2007/08
Algèbre, SMPC, S₁

Feuille 2 d'exercices d'algèbre. Polynômes, Fractions rationnelles et espaces vectoriels

EXERCICE I.

1. Soit le polynôme $P(X) = X^4 - 2X^3 + 2X^2 - 2X + 1$.
 - (a) Vérifier que $P(i) = 0$. Quelle est alors la relation entre $(X - i)$ et $P(X)$? De même entre $X^2 + 1$ et $P(X)$?
 - (b) Donner l'ordre de multiplicité de chaque zéro de $P(X)$, et décomposer P sur \mathbb{R} et sur \mathbb{C} .

EXERCICE II.

1. Donner le PGCD des polynômes $A(X) = 6X^5 + 7X^4 - 5X^3 - 2X^2 - X + 1$ et $B(X) = 6X^4 - 5X^3 - 19X^2 - 13X - 5$.
2. Trouver un couple de polynômes (U, V) tels que $UA + VB = \text{PGCD}(A, B)$.

EXERCICE III.

1. Donner la division euclidienne de X^4 par $X^2 + X + 1$. et déduire la décomposition en éléments simples dans $\mathbb{R}(X)$ de la fraction rationnelle $F = \frac{X^4}{(X^2 + X + 1)^3}$.
2. Donner deux polynômes U et V tels que $U(X^2 + X + 1) + V(X^2 + 1) = 1$. et déduire la Décomposition en éléments simples dans $\mathbb{R}(X)$ et dans $\mathbb{C}(X)$ de la fraction rationnelle $G = \frac{3}{(X^2 + X + 1)(X^2 + 1)}$.
3. Soit la fraction $H = \frac{X^2 + 1}{X^4 + X^2 + 1}$.
 - (a) Montrer que $X^4 + X^2 + 1 = (X^2 + X + 1)(X^2 - X + 1)$.
 - (b) Justifier l'écriture de F sous la forme $H = \frac{aX + b}{X^2 + X + 1} + \frac{cX + d}{X^2 - X + 1}$. Montrer que $a = -c$ et $b = d$ (H est paire). Calculer a, b, c et d .

EXERCICE IV.

1. Soit $F = \{(x, y, z) \in \mathbb{R}^3; xz = 0\}$. F est-il un sous-espace vectoriel de \mathbb{R}^3 ? Si oui donner-en une base.
2. Montrer que l'ensemble $E = \{(x, y, z) \in \mathbb{R}^3; x + y + z = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 . Et donner sa dimension.
3. Montrer que $\text{vect}\{(1, 2, 1), (2, 1, 2)\} = \text{vect}\{(2, 7, 2), (3, 9, 3)\}$.

EXERCICE V. Soient $U = (1, 2, 3)$ et $V = (3, 2, 1)$ deux vecteurs de \mathbb{R}^3 .

1. Pour quelle condition un élément (x, y, z) de \mathbb{R}^3 est dans $\text{vect}\{U, V\}$?

2. Existe-t-il une base de \mathbb{R}^3 contenant $\{U, V\}$? Si oui compléter $\{U, V\}$ en une base de \mathbb{R}^3 .

EXERCICE VI. Soient F , F' deux espaces vectoriels d'un même espace vectoriel E .

1. Montrer que l'intersection $F \cap F'$ et la somme $F + F'$ sont des sous espaces vectoriels de E .
2. Donner un exemple tel que que la réunion $F \cup F'$ n'est pas un sous espace vectoriel de E .
3. Dans \mathbb{R}^3 , soient $F = \text{vect}\{(1, 2, -1), (2, -3, 2)\}$ et $F' = \text{vect}\{(4, 1, 3), (-3, 1, 2)\}$
 - (a) Calculer $\dim(F)$ et $\dim(F')$. F et F' sont-ils identiques?
 - (b) Déterminer une base de $F \cap F'$.
 - (c) Déterminer une base de $F + F'$.
 - (d) Est ce que la somme $F + F'$ est une somme directe?

EXERCICE VII.

1. Décomposer sur \mathbb{C} la fraction rationnelle $F = \frac{1}{(X^4 - 1)^2}$. (indication on remarquera que F est paire et réelle, en déduire des relations sur les coefficients)
2. Même question pour $G = \frac{X^2 + 2X + 5}{(X^2 - 3X + 2)}$.
3. Donner la décomposition en éléments simples, dans $\mathbb{R}(X)$, de $F = \frac{X^2 - 3}{X(X^2 - 1)(X^2 + 1)}$,
 $G = \frac{X^4 - 5X^3 + 10X^2 - 8X - 1}{(X - 1)^3(X - 2)}$, $H = \frac{X^5 + X^4 - 14X^3 + 31X^2 - 5X - 50}{(X + 1)(X + 3)(X - 2)}$
et $K = \frac{X}{(X - 2)^5(X - 1)}$.