

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1952-05

The size of combustion turbine plants as affected by certain design parameters

Rule, Shelley Elmer

Massachusetts Institute of Technology, 1952

http://hdl.handle.net/10945/37243

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

THESIS

THE SIZE OF COMBUSTION TURBINE PLANTS AS AFFECTED BY CERTAIN DESIGN PARAMETERS

Shelley Elmer Rule

THE SIZE OF COMBUSTION TURBINE

PLANTS AS AFFECTED BY CERTAIN

DESIGN PARAMETERS G52-,

by

Shelley Elmer Rule

Department of Mechanical Emgineering

Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge 39, Massachusetts May 16, 1952

Professor J. P. DenHartog Chairman, Departmental Committee on Graduate Students Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge 39, Massachusetts

Dear Professor DenHartog:

In accordance with the requirements for graduation, I herewith submit a thesis entitled "The Size of Combustion Turbine Plants as Affected by Certain Design Parameters".

Sincerely yours,

Shelley Elmer Rule

Solventer in it will so near the solventer of the solvent

The state of the s

the state of the s

The solution with the modern to the solution of the color of the color

("C" L 273 C

shift water waters

THE SIZE OF COMBUSTION TURBINE PLANTS AS AFFECTED BY GERTAIN DESIGN PARAMETERS

BY

Shelley Elmer Rule Lieutenant Commander, U.S.N.

B.S. in M.E., Georgia School of Technology (1959)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY (1952)

Signature	of Author:	Department of Mechanical Engineering
		neber omen e or ve dunireer windrie errië
Gertified	by:	Thesis Supervisor

Chairman, Departmental Committee on Graduate Students

^

JEH WY II WELL TONE

repleases in Joseph Lines ... at

1115 ...

TOOL MAN IN THE SECOND STREET OF THE SECOND SECOND

- derested to the man to the second to the s

Contract the second of the contract of the con

ABSTRACT

THE SIZE OF COMBUSTION PLANTS AS AFFECTED BY CERTAIN DESIGN PARAMETERS

by.

Shelley Elmer Rule

Submitted for the degree of Master of Science in Mechanical Engineering, on 16 May 1952.

As a means toward determining the effect of various parameters on combustion turbine plant size and weight for a particular net power output, three have been chosen as independent variables in which the plant may be expressed.

These three are: the flow coefficient, (C_x/U); the blade length ratio, (L/d); the mass rate of flow, w. The size and weight of compressor, turbine and combustion components of a plant are stated in terms of these three, and the effect of blade aspect ratio on weight and volume is also mentioned. A specific example is used to illustrate the fact that the shaft speed ratio between compressor and turbine is intimately related to the optimum values of flow coefficient and blade length ratio to be chosen, whereas the effect of pressure ratio on this choice is very slight.

Thesis Supervisor:

Title:

Warren M. Rohsenow

Assistant Professor of Mechanical Engineering

gray the every of the party of

PERSONAL PROPERTY OF THE BOTH THE BOTH

= !

arm and a little

The fight of the second of the form of the second of the s

Le seeme tives on nombertion suchtan plant rise and votet for a service on nombertion suchtan plant rise and votet for a service of power output, three have been observed.

Indice transport the state the size of the service of the service of the service of the size of t

STEE STORY WITH E 13 PLY

200 9 5

Negroca M. Balgangow

AGENOWLE DOEMENTS

The foundation upon which the latter part of this thesis rests, and which has been condensed to form the entire first portion, is the development of L. W. Shallenberg, presented as a thesis in 1951. I wish to express appreciation to the author both for that work and for the encouragement and assistance subsequently extended.

I desire also to express appreciation for the assistance and direction of Professor Rohsenow, the supervisor of this thesis, whose ever-willing advice contributed in large measure to the result.

STEED STATE OF A

-iv is the continuous of the matter of the m

TABLE OF CONTENTS

		Page
I.	Introduction	1
II.	Basic Relations and Definitions	4
III.	Matching of Compressor and Turbine	12
IV.	Determination of the Stage	15
V.	Rotor Size and Weight	24
VI.	Combustion and Other Components	30
VII.	Application to a Particular Cycle	38
VIII.	Appendix:	
	Symbolism	55
	Bibliography	58

to the standard of the standar

es su di		
et et	4	4
aft.		ng ng não
SI		.111
15	aysif of a se for the	.01
45		. /
08	simpone vento am collegoso	21
38	rogs office the test calculation	. A.L
	\$ \$ =	.NIIV
55		
88		

The design of combustion turbine plants for optimum economy of construction and operation on the one hand, and for optimum weight and size against a specified useful output on the other, has been accompanied by much study, both along empirical and analytical lines.

In order to treat the problem by the ordinary mathematics, create a picture which can be grasped, cite an example which appears concrete and yet hold to a treatment sufficiently general to be useful, a considerable number of simplifying assumptions must be made — and yet a minimum of them.

In the design of a power plant for many purposes, the weight of the plant and the amount of space it occupies are of paramount importance, whereas in any case both of them bear a relation to the first cost of the plant and its accommodation. Factors which may be thought to have an obvious bearing on size and weight may diverge from that widely in their actual effect.

The treatment herewith, as a small part of an extensive program, has drawn generously on what has gone before in attempting to focus on the effect of three particular variables on the size of rotating machinery: one geometric, one kinematic, and one a scale factor. The examination of each of the first two is limited to a span of "good practice", with the implication that trends shown within that

L Property of the second of th

The state of the s

Is the stiple of a power plant for any respect.

The stiple of the plant and as a south of the stiple of a part of the stiple of

The series of th

span will continue sufficiently far beyond it to reach the region, from the standpoint of each variable individually, of physical absurdity. Hence, if it is felt that the delineation of these spans of good practice is unjustified, a later extension or contraction of them will not alter the general aspect of the conclusions.

Subsequent to the treatment of rotating machinery, a general discussion of combustion equipment leads to relations, empirical but rational, for the weight and volume of that part of the plant.

Despite the fact that numerical constants have been inserted wherever possible to facilitate illustration, the influence of individual factors such as pressure ratio and cascade geometry is more truly represented than is the quantitative result. Even when the expressions arrived at permit a more general application, the tacit physical plant is a stationary or heavy propulsion plant in the 1000-10,000 horsepower range, but one borrowing from the light weight features of other types.

Whereas the mothed developed is in principle applicable to a wider range of plant configurations, only the simple CST thermodynamic cycle between pressure ratios of five and ten has been investigated. An appropriate extension is to the CICSTX cycle, shown schematically in Fig. 1, using pressure ratios up to about fifteen. This is suggested as a subject for future study.

one and the second of the seco

The state of the s

Jenyles company of the competent of the control of

Speeding the section thesitaged in principle applies-

the to emiles range of plant confirmations, only to adapt the stage of the stage of

II. BASIC RELATIONS AND DEFINITIONS

Assumptions involved in the analysis of plant components include: a constant pitch diameter throughout a particular machine, potential vertex flow, equal work done per turbine or compressor stage, a uniform axial velocity over the entire length of a machine. Compressor blading is assumed to be symmetrical in all stages except that the first and last are modified to meet substantially axial entry and discharge velocities. No pressure losses are considered in other than the turbine, and mechanical friction is overlocked. A mean value of specific heat is used in each of the ranges of compression, combustion and expansion, and the changes in mass flow and fluid properties due to fuel addition are neglected.

With these in mind, certain basic relations and some mathematical approximations which are used herein are outlined below.

Polytropic efficiencies:

$$\gamma_{e} = \frac{r_{e}^{2} - 1}{(r_{o}s/r_{o}s) - 1} = \frac{r_{e}^{2} - 1}{r_{o}^{2} - 1} = \frac{\gamma_{e}e}{R_{o}^{*}}$$

$$\gamma_{e} = \frac{r_{o}^{2} + r_{o}s}{r_{o}s} = \frac{1 - r_{e}^{*}}{1 - r_{e}^{*}} = \frac{1 - r_{e}^{*}}{r_{o}s} =$$

Interpolate the content of the conte

ich the ir mird, orthir b is relition and noun m the side instions high to us desired to outlined below.

pol vissio er te neleg:

Stress parameter for tapered blades (ref 5):

$$\sum \equiv \frac{\sigma_b}{\tau_{Pb}} = \frac{\omega^2 d^3}{2g} - (L/d)$$

$$= \frac{\omega^A}{2\pi g} = 4(U^3/2g)(L/d)$$
(3)

where σ_b is due to rotation only.

This stress parameter commonly runs, for stationary or heavy propulsion plants, at about:

$$\sum_{\mathbf{c}} \approx 7000$$
 ft.
 $\sum_{\mathbf{t}} = 9000$ ft.

while in portable and aircraft plants the figure

$$\Sigma_{\rm t} = 14,000$$
 ft.

is frequently reached.

An examination of the mechanical properties of presently available alloys reveals that at the moderate temperature level of compressors the operating stresses are limited to about 36,000 to 42,000 psi by yield strength and endurance limits. At the temperature level of turbines the operating stresses are limited by creep rate to a value roughly proportional to T_{03} .

Approximation of the relation between static and stagnation densities:

$$\frac{p_0}{p} = \left[1 + \frac{k-1}{2}M^2\right]^{\frac{1}{k-1}} \approx \left[1 + \frac{1}{2}M^2\right]$$

: (and not let bear to a to the superior

. ine volinies of the Late of the case of

wall in some the and amoral to the first or a line

t frenchtly re olen.

A X X I lead of the condition of properties of the condition of the condit

the affects design of the test of the sold and arranged

: tare a lotter as

$$M^* = \frac{C^*}{kgRT} \approx \frac{CK^*}{kgRT_0}$$

By the continuity relation:

$$\frac{\text{wRT}}{P} = AC_{X} \approx \frac{\text{wRT}_{0}}{P_{0}} \left[1 + \frac{C_{X}^{3}/2g}{kRT_{0}} \right]$$

$$F_{R1} = \frac{G_{X}^{3}/2g}{kRT_{0}}; \quad F_{m_{3}} = \frac{G_{X}^{3}/2g}{kRT_{0}}$$
(4)

For the compressor discharge (or combustor inlet):

$$AC_{\mathbf{R2}} = \frac{\mathbf{wRT_{02}}}{\mathbf{P_{01}r_{0}}} \left[\mathbf{l+r_{0}}^{\lambda} \mathbf{F_{m1}} \right] = \frac{\mathbf{wRT_{01}r_{0}}}{\mathbf{P_{01}r_{0}}} \left[\mathbf{l+r_{0}}^{\lambda} \mathbf{F_{m1}} \right]$$

$$= \frac{\mathbf{wRT_{01}}}{\mathbf{P_{01}r_{0}}} \mathbf{r_{0}} + \mathbf{F_{m1}} \qquad (5)$$

A corresponding relation holds for the flow at turbine outlet, expressed in terms of $T_{\rm os}$.

Mean density of fluid in the compressor:

$$\rho_{1}$$
 ρ_{1} \approx 2 \approx 2 ρ_{1} \approx 1/2($\rho_{1}+\rho_{2}$) 1+(ρ_{2}/ρ_{1}) 1+(ρ_{02}/ρ_{01})

$$\frac{2}{1+(P_{os}/P_{o1})(T_{o1}/T_{o2})}$$

$$=\frac{2}{1+r_{o}}=F_{o} \qquad (6)$$

and correspondingly for the turbine:

the fd .6. This trans with the

the first and and an end end of the months commented

. Commondate the note of the following the files of the company of

the dualty of fluid in the course ore;

and propositions of the same

$$\frac{\rho_4}{r_t} \approx \frac{2}{1+r_t} \equiv F_t \tag{6a}$$

These functions are obtainable from Fig. 2.

Rotational speed of a machine, optimized from the standpoint that the parts under radial stress are all at the allowable limit expressed by the stress parameter Σ , may be determined by combining (3) and (4) with the geometrical relations of the wheel to yield

$$RPM = \frac{60\omega}{2\pi} = \frac{30}{30} \left[\frac{P(G_{\chi}/U)}{\pi WRR} \right]^{1/2} \left[\frac{2g}{2g} \Sigma^{n} \right]$$

Since the longest blades and consequently the highest blade stresses are found at compressor inlet and turbine outlet, relating the general equation to these two stations gives, for the compressor:

$$RPM_{e} = 272 \left[\frac{P_{01}(C_{X}/U)_{1}}{WRT_{01}(F_{m_{1}}+1)} \right] \frac{1/2}{\left[\frac{\sum_{c}}{C_{c}} \right]} (7)$$

and for the turbine:

$$RPM_{t} = 272 \left[\frac{P_{oa}(G_{x}/U)_{a}}{wRT_{oa}(F_{ma} + r_{t}^{-12})} \right]^{1/2} \left[\frac{\Sigma_{t}}{(L/d)_{a}} \right]^{1/4}$$
 (7a)

It will be noted, when considering possible plant cycles, that a wide change in pressure ratio causes at most a 10% change in optimum RPM directly, but rather affects it via the air rate or w/P* ratio. Turbins inlet temperature affects permissible rotational speed slightly in a direct manner, but much more heavily via its bearing on the stress

1001

in the contract of the contrac

The state of the contract of the state of th

the tree of the line of the contract to the co

: 2 0 207 43 402 032

Is will be not a, introduction would not prove the color, and croic, and croic, and croic, and croic, and croic and croic and colors and colors

parameter.

Pitch diameter of a rotor, optimized from the same standpoint as the RPM, is likewise determined to appear as:

$$d = \begin{bmatrix} 2WRT \\ P(C_{\star}/U) \end{bmatrix}^{1/2} \begin{bmatrix} 2g \sum (L/d) \end{bmatrix}$$

Relating this to compressor inlet and turbine outlet as before yields, for the compressor:

$$d_{c} = .282 \left[\frac{\text{wRTol}}{P_{o_{1}}(C_{x}/U)_{1}} (F_{ml}+1) \right]^{1/2} \left[\Sigma_{c}(L/d)_{1} \right] (8)$$

$$D_{c} = \left[1 + \left(\frac{L}{d}\right)_{1}\right] a_{c} \tag{9}$$

and for the turbine:

$$d_{5} = .282 \left[\frac{\text{wRT}_{02}}{P_{0.5}(C_{X}/U)_{A}} (F_{ms} + r_{t}) \right]^{1/2} \left[\sum_{t} (L/d)_{s} \right]$$

$$D_{t} = \left[1 + (L/d)_{s} \right] d_{t}$$
(9a)

The same remarks regarding the effects of pressure ratio and turbine inlet temperature on the RPM apply generally to the diameter relations above, but of course in the reverse direction.

Power requirement and output, assuming a mean value of Cp and of k to be applicable over the temperature spans of each component, may be expressed, with (1) and (2), as:

$$P^* = W(h_1-h_2) \approx WC_p(T_{O_1}-T_{O_2})$$

which becomes, for the compressor:

" I | 14 14 14 1

Fiton in the or or, ortinized in the same when cain's to live in detained to come mi

to talt e sold not be a sold as a some of which the

ignited my distroit by a

$$\frac{1}{(88)} \left[\frac{1}{(812)} \frac{3}{3} \right] \left[\frac{1}{(3+3)} \frac{3}{3} \frac{3}{(3+3)} \frac{3$$

order community of the first of the community of the vilence of the feet of the contract of the said wildrest be to the district rate tions and, but of course in the . noito de cover

Fore remaining the police of the state of the nd of hit is applicable over the hisparature ones or such capenat, as to memory its (1) and (1), as:

$$(n_1-n_1) \approx (n_1-n_1)$$

 $(n_1-n_1) \approx (n_1-n_1)$

$$P^* = WC T (r^* - 1)$$
 (10)

and for the turbine, with negligible leaving loss:

$$P_{t}^{*} = w_{Dt}^{T} o_{s} (1 - r_{t}^{jt})$$
 (10a)

Allowing for leaving losses but assuming the leaving velocity nearly axial, or with negligible whirl, the last becomes:

$$P_{t}^{*} = w \left[C_{pt}^{T} \left(1 - r_{t}^{T} \right) - \frac{C_{x}}{2gJ} \right]$$
 (10b)

In a plant cycle the effect of pressure ratio on air rate, w/P*, is well known, and the curve of Fig. 4 is representative for a plant in which the output takes the form of shaft power. Since, knewing the cycle temperatures and the probable component efficiencies, the air rate is a known function of pressure ratio only, it will frequently be convenient to arrange an expression for, say, component weight in the form:

W# = F(cycle conditions) .F(pressure ratio)

. 1)

terrigate of eldigity a still control of

Allowing for its county to London to London ty or the county the long to the lon

I plat symbol to of present police to the color of the symbol to the color of the c

(off the manage of the first for the first for the first for the first for the first form the fi

III. MATCHING COMPONENTS

In matching components to form a plant cycle certain requirements are to be met, some of them necessary and obvious if the plant is to operate at all, others desirable and implicit if it is to give optimum satisfaction. For the simple cycle single-shaft jet propulsion plant (CBTJ), exemplified by aircraft installations for instance, the following hold:

Taking the ratio of (8) to (8a) and using (3) to eliminate gives:

$$\frac{d_{c}}{d_{t}} = \left[\frac{r_{c}T_{o,1}(F_{m1}+1)(G_{x}/U)_{4}(L/d)_{4}}{r_{t}T_{o,2}(F_{m,2}+r_{t}^{TL})(G_{x}/U)_{2}(L/d)_{4}} \right]^{1/3}$$
(11)

or:

$$\frac{d_{c}}{d_{t}} = \begin{bmatrix} r_{c} T_{o_{1}}(F_{ml}+1)(C_{x}/U)_{a} & \sigma_{bt} \\ r_{t} & T_{os}(F_{ms}+r_{t}^{+1})(C_{x}/U)_{1} & \sigma_{bc} \end{bmatrix}$$
(11a)

the latter holding only if T is the same for both machines, and the blade material is such that ρ_b is the same for both. Since turbine and compressor power are substantially equal at all times (10) and (10a) combine to give:

TILL MATCHER CO. HOLLEN

required the contract of the c

religion to retto of (E) to (Sa) and animal (S) to viminate river:

1717

the leading only if Jie is an for one dings, and the last the one of the last the la

The useful power output of such a plant takes the form of thrust, dependent on jet velocity.

$$\frac{C_{j}}{2gJ} = C_{ph}(T_{04} - T_{j}) = C_{ph}T_{04} \left[1 - \frac{T_{j}}{T_{04}}\right]$$

$$C_{j} = 2gJC_{ph}T_{08} \left[T_{t} - T_{04}\right]$$

or in terms of the compressor pressure ratio only:

$$C_{j} = 2gJC_{pb}^{T} c_{s} \left[1 - \frac{C_{pc}^{T} c_{1}}{C_{pt}^{T} c_{s}} (r_{c}^{\lambda} - 1) \right] \left[1 - \left(1 - \frac{C_{pc}^{T} c_{1}}{C_{pt}^{T} c_{s}} (r_{c}^{\lambda} - 1) \right) r_{c}^{\nu} \right]$$
(12)

In the special case of static thrust:

For the simple cycle stationary or heavy propulsion plant (CBTG), exemplified by the rallway locomotive unit, the following hold:

Substituting (7) and (7a) into the first of these relations, and making use of the others where appropriate:

$$G^{2} = \frac{T_{0}(F_{ml}+1)(C_{x}/U)_{*}}{T_{0}(F_{ms}+r^{\mu})(C_{x}/U)_{1}} \frac{(L/d)_{*} \Sigma_{t}^{3}}{(L/d)_{*} \Sigma_{c}^{3}}$$
(14)

or, using (3) to eliminate Σ leaves:

and the contract of the contra

the fit feels of the newspaper measure and to seed the fit

the med all the second fairway of all

To the fundamental of the same of the same of the same of the same of the following th

o, second I send to the first I some of

$$G = \frac{T_{03}(F_{ms}+r)(C_{x}/U)_{1}(L/d)_{1}d_{c}}{T_{01}(F_{m_{1}}+1)(C_{x}/U)_{4}(L/d)_{4}d_{t}}$$
(15)

The net power output of this type of plant is:

By (10) and (10a) then:

$$\frac{P^*}{w} = JC_{pe}T_{01} \left[\frac{C_{pt}}{C_{pe}} \frac{T_{02}}{T_{01}} (1-r^{2}) - (r^{2}-1) \right]$$
 (16)

And the cycle thermal efficiency becomes:

$$\gamma = \frac{G_{\text{pt}}(T_{08}/T_{01})(1-r^{2})-G_{\text{pc}}(r^{2}-1)}{G_{\text{pb}}[(T_{08}/T_{01})-r^{2}]}$$
(17)

ist soil, to soit int to suction to come and

(10) and (10) comes:

ne see threstettle . True of the term to the

IV. DETERMINATION OF THE STAGE

Thus far, no consideration has been given to aerodynamic relations or the factors affecting efficiency
within a stage, nor with stage dimensions. There are to be
developed an expression for the axial width of the blade
row, the blade spacing, and the number of stages required.
The length and volume of machine rotors is readily obtained
then from these expressions and those previously set forth.

Zweifel (ref. 1) has developed an aerodynamic load coefficient

$$\Psi_t = 2\sin^2\beta_2(\cot\beta_2 - \cot\beta_1)\frac{1}{\beta}$$

based upon the attainable pressure distribution around an airfoil, which coefficient he shows to have a value very near eight-tenths for minimum pressure loss and minimum drag/lift ratio in a cascade. This significantly corresponds to the preferred design deflection angle of eight-tenths that for which stall occurs, presented by Howell (ref. 2). The work done in a stage may be written as:

$$\frac{W}{U^2/2g} = 2(C_{\rm x}/U)(\cot\beta_2 - \cot\beta_1)$$

Combining the above two expressions, the optimum solidity of a blade row may be stated as:

$$\beta = 1.25 \frac{\sin^2 \theta_2}{(C_X/U)} \frac{W}{U^2/2g}$$
 (18)

On the other hand, Schnittger (ref. 3) has indicated that for optimum stage efficiency the camber of a blade is related

Total of Holland . . I

we far, no consideration has been given to nerversely at tions of the factor affecting friednesy ithin . then, which tog disention. The told to it is a law to the axial width of the all the same of the axial width of the all the same of the same of the same of the same of the same to the same these treatments.

contite (re. ; to tordared an nerolphanic lond

airfeil, lieu confficient buws to her interne and airfeil, lieu confficient buws to her internet and telaus and element of the conficient of the conficient

TRANSPORT OF THE TRANSPORT OF THE STREET OF

on the where cand, Samilting (ref. 5) we indicate mot for optimal try officients we combine of a last to male of

to the gas leaving angle by:

and further that the fluid deflection angle in decelerating cascades is related to this leaving angle by:

$$\varepsilon = .307 \beta_{2} (c/s)^{1/2} \approx .307 \beta_{2} s^{1/2}$$

Hence, by combination it follows that:

and by substitution in Zweifel's relation above, the optimum solidity becomes:

$$\beta = 2.5 \sin^3 \beta_8 \left[\cot \beta_8 - \cot (1 - .307 \delta^{1/2}) \beta_8 \right]$$
 (19)

which is readily solved by trial, on the first attempt estimating \$ = 1 on the right.

Figures 5 and 6 illustrate the nomenclature used above. The latter is a reproduction of the curves presented by Zweifel on which has been drawn the line of maximum turbine stage efficiency given by Hawthorns (ref. 4). The difference in notation between these figures and that used herein should be noted.

Gas bending stress in a blade may be found from the fundamental formula of mechanics:

$$\sigma_{g} = \frac{my}{I} = \frac{m}{I/y}$$

wherein the moment is:

$$H = 1/2 LF = 1/2 d(L/d) \frac{W}{2U}$$

$$= \frac{W}{Z} (L/d) \frac{W}{U^2/2g} (U^2/2g)$$

177 130 Toler. L say ent a.

at further that is fluid deflection angular the sool and one of the sage of

Fines, by no binaster to rello a that:

and by eak fiturion is Lasifel' vision agers, the until vision of the

Figure of the sproperties of the corresponding of the later of the lat

tund sental formula of the least of the sental action that

int "cane of all toda

But from the geometry, and (18) above:

$$Z = \frac{\pi / 8}{(L/d)} = \frac{1.25 \pi / 8 \sin^2 \beta}{(L/d) (C_x/U)} = \frac{W}{U^2/2g}$$

Hence, by substitution:

$$w(1/4)^{3}(C_{x}/U)(U^{3}/2g)$$
1.25 π ω δ \sin β

In order to evaluate the blade section modulus, I/y, various airfoil section plans were measured to determine the effect of camber and thickness ratio in the moment of inertia and extrems fiber distance. A standard thickness distribution was used, with camber varied 25° to 109°, thickness ratio varied 7% to 10%, based on a parabolic camber line. The extreme of the shapes so measured are shown in Fig. 3. From this there was deduced (8 in radians here):

$$\frac{1}{y} = \frac{b^3}{1000} \left[.35\theta^2 - 85t^3 \right] \tag{20}$$

Substituting this in the above:

$$\sigma_{g} = \frac{2280 \text{ w } (L/d)^{3} (C_{x}/U) (U^{3}/2g)}{\pi \omega \delta b^{3} \sin^{3} \beta_{3} F_{b}}$$
(21)

wherein

$$F_b \equiv 0^{2.4} - 242.5t^2$$

Replacing the aspect ratio by its definition:

$$\delta \equiv (L/b) = (L/a)a/b$$

and using (3) to eliminate
$$\omega$$
, d and ($U^3/2g$):
$$\frac{1/2}{2280} \frac{1/2}{4\pi\sqrt{2g}} \frac{1/2}{\sigma_g F_b} \sin^2 \beta_2$$

tovode (EI) Bis (TE was, the work the

: och u"lie se of ...or

In order to relucte to be to the dulus of the order Justin odd antry to st burgerns even sorly a ston floirt clar normating , the color of the normal water of the color of the we will sto los established the control of the control ten of the carry to take on to make of the first : Ted and the team of the state

Sibs talk the in sect 8

residently the article to be straightfore

1824 " 13 to el minter us, & end (1) /201:

K & E CO., N. Y.

wherefrom:

$$b \approx \frac{4.75}{\sin \beta_3} \left[\frac{w(\sigma_x/u)}{\sigma_g F_b} \right]^{1/2} \left[(L/a) \Sigma \right]^{1/4}$$

Since in obtaining the overall rotor length the mean stage width is desired, a mean value of (L/d) must be obtained for use in the foregoing, and (L/d) in turn is proportional to local density if G_K is to be maintained constant. Hence, by (δ) , for the compressor:

$$(L/a)_{ma} = (L/a)_{2}(\rho_{2}/\rho_{m}) = (L/a)_{2} F_{t}$$
 (22)

and by (6a), for the turbine:

$$(L/d)_{mt} = (L/d)_s F_t \tag{22a}$$

These then lead to the compressor row width:

$$b_{\text{NS}} = \frac{4.75}{\sin\beta_2} \left[\frac{w(G_{\text{N}}/U)_1}{G_{\text{N}}} \right]^{1/2} \left[(L/a)_1 F_{\text{C}} \Sigma_{\text{C}} \right]$$
 (23)

and the turbine's:

$$b_{ab} = \frac{4.75}{\sin \beta_{a}} \left[\frac{v(O_{z}/U)}{\sigma_{g}} \right]^{1/2} \left[(L/d)_{*} F_{5} \Sigma_{b} \right]$$
 (23a)

The number of stages required depends jointly on the work to be done in a machine and the amount of work efficiently attainable per stage, or:

This becomes, for the compressor:

MIGORIES PORT

The contract through the contract of the contr

: 120 1 to all (1 1) 11 Late

these then less to the someoner for width

The Distance of Wilson profitings derended joining on the work to the court of the

All b cours, or to so means at

and by using (3) to eliminate circumferential speed:

$$N_e = \frac{31120_{pc}T_{01}(r_e^{\lambda}-1)(L/d)_1}{\Sigma_e \gamma_{sc} \frac{W}{Us/2g}}$$
 (24)

Correspondingly, the number of stages for the turbine is found to be:

$$\frac{3112C_{pt}T_{os}(1-r_{t}^{2})}{\Sigma_{t}} \frac{\gamma_{ss}(L/a)}{U^{2}/2g} \tag{24a}$$

General experience has shown that the blade aspect ratio, $\delta = L/b$, is in practice limited at the lower extreme by tip losses and wall friction, and at the upper extreme by stress considerations and mounting secondary flow losses. In view of these limits, the aspect ratio may be taken to vary from one to five, with the optimum at possibly two or three for "good practice".

By inserting (8) and (23) in the definition, aspect ratio may be related to other quantities, however, and the result will serve, in combination with the rule-of-thumb above, to limit the range of variation of other parameters. Thus, for the compressor:

$$\delta_{mc} = .0596 \frac{\sin \theta_{s}}{(c_{s}/u)_{s}F_{c}} \left[\frac{\sigma_{s}RT_{o}, (F_{s}+1)F_{bc}(L/d)}{\Gamma_{o}} \right]^{1/2}$$
(25)

there, for referrols examinate of (2) mich to les

ಕಟ್ಟು ಕ ಬರ್ಜನ್ ಕ್ರಾಂಡ್ ಬರ್ಚನ್ ಕ್ರಾಂಡ್ ಬರ್ಚನ್ ನಿಂದ್ರಾಗಿ ನಿಂದ್ರಾಗಿ ಬರ್ಚನ್ ಕ್ರಾಂಡ್ ಬರ್ಚನ್ ಬರ್ಚನ್ ಬರ್ಚನ್ ಬರ್ಚನ್ ಬಿ

The state of the s

THE STATE OF THE S

and for the turbine:

$$\delta_{\rm mt} = .0594 \frac{\sin \beta_2}{(Q/U)_4 F_t} \left[\frac{\sigma_{\rm g} R T_{08} (F_{\rm mat} r_t) F_{bt} (L/d)_4}{P_{04} \Sigma_t} \right]$$
(25a)

V. ROTOR SIZE AND WEIGHT

Rotor size is controlled by the number of stages, the axial length of each, and the tip diameter of the blading. For the length:

wherein the clearance ratio between adjacent rows is indicated by Y. From (25) and (24), and by properly arranging terms, it may be shown that for the compressor:

$$L_{c}^{**=29,600} = \frac{C_{pc}T_{01}(Q_{x}/U)_{1}^{\frac{1}{2}}}{\frac{W}{U^{*}/2g}} \frac{\left[Y(L/d)_{1} - \frac{1}{2} \left[Y(L/d)_{1} - \frac{1}{2} \left[Y(L/d)_{1}$$

and for the turbine:

$$L_{t}^{*}=29,600 \frac{C_{pt}T_{os}(C_{x}/U)_{4}\gamma_{st}[Y(L/d)_{4}}{\sqrt{\sigma_{g}^{t}}\sum_{t}Y_{bt}} \frac{1}{\sin\beta_{s}} \left[\left(\frac{W}{P^{*}}\right)^{t} F_{t}^{t}(1-r_{t}^{u})^{p+\frac{1}{2}}\right]$$

$$(26s)$$

In each of the above, the final bracket represents the explicit influence of pressure ratio while the first incorporates the influence of cascade geometry, broadly speaking. The trend of this pressure ratio influence is shown in Fig. 4 for compressor and turbine separately.

Rotor volume may be stated simply as:

$$V = \frac{1}{4}mD^2L^*$$

Substituting from (9) and (26) and rearranging as for the length yields, for the compressor:

ANDER OF PROPERTY OF THE CONTRACT OF PROPERTY OF THE PROPERTY

The second secon

1 A March 17 To the

of inflamed of training reliable the first incorporate to include the single of include the state of include the state of the state of

Surert touther rade (+) age (54) ad retermentant as for the American rates.

$$V_{e} = \frac{1850 \text{ RC}_{pe} T_{o1}^{2} P^{*}_{1}}{\sqrt{3c u^{2}/2g} P_{o1} (G_{x}/U)_{1}^{7}} \left[\frac{Y (1-(L/d)_{1})^{2} (L/d)_{1}^{3}}{\sin \beta_{3} G_{g}^{2} F_{be}^{7} \Sigma_{e}^{5/4}} \right] \cdot \left[(F_{ml}+1) (F_{e}^{\lambda}-1) F_{e}^{7} (\frac{W}{p^{*}})^{3/2} \right]$$
(27)

and likewise for the turbine:

$$V_{t} = \frac{1850 \text{ RC}_{Dt} T_{os}^{s} P^{st}}{\frac{V}{U^{s}/2g} P_{os}(C_{X}/U)_{+}^{s}} \left[\frac{Y(1+(L/d)_{1})^{s}(L/d)_{+}^{3/2}}{\sigma_{g}^{t} F_{bt} \sin \beta_{s}} \sum_{t}^{5/4} \right] \cdot \left[(F_{ms}+r_{t})^{s}(1-r_{t})F_{t} \left(\frac{w}{p^{s}}\right)^{\frac{3}{2}} \right]$$
(27a)

The two brackets here, as in the length relations, are intended to indicate the influence of stage geometry and pressure ratio respectively. The latter are shown in Fig. 4.

Rotor weight has been investigated for wheels of the DeLaval type by LaValle and Huppert (ref. 5). Their results, with some simplifying assumptions to fix a few minor influence variables which have small ranges, are here applied to both turbine and compressor, since the latter is taken to be of disk type construction and therefore comparable in each stage to a DeLaval wheel. All this is predicated on having a maximum allowable blade stress, as expressed by (3).

institute of the service of

Consideration of the constant of the constant

A CONTRACTOR OF A CONTRACTOR O

For one wheel or stage the weight is then:

$$\frac{\pi(L/d)^{3} d^{2} \rho_{b}}{\delta} \left[\frac{1.55 t \delta}{(L/d)^{3} \Delta_{a}} + \frac{\rho_{d} \Delta_{1}}{\rho_{b} \Delta_{2}} \right] \Delta_{a} + \frac{\rho_{d} \Delta_{1}}{\rho_{b} \delta} + \frac{.55 t \delta}{(L/d)} \right]$$
(28)

wherein:

$$\Delta_{3} \equiv \begin{bmatrix} 1 \\ (L/d) & 1 & -\frac{1}{\delta} \end{bmatrix}$$

$$\Delta_{2} \equiv \begin{bmatrix} 1 \\ (L/d) & -1 & -\frac{2}{\delta} \end{bmatrix}$$

$$\Delta_{3} \equiv \exp \left[.3 \frac{2}{5} \Delta_{3}^{2} (L/d) \right] -1$$

From Fig. 8 may be obtained A: and A:

The material density ratio, (ρ_b/ρ_d) , will approach unity in the case of a turbine or in the case of a compressor not having light metal blades. With this additional simplification (28) is combined with (8) and (24) to yield:

$$W_{e}^{*} = \frac{70 \text{ C}_{pe} T_{01}}{\eta_{eo} \frac{W}{U^{2}/2g} \sum_{o}^{7/4}} \left[\frac{P^{*}RT_{01}}{P_{01}(G_{x}/U)_{1}} \right]^{3/4} \left[(L/d)_{1}^{1/4} \frac{W_{e}^{*}}{d^{2}} \right] \cdot \left[(r_{e}^{\lambda} - 1) \left(\frac{W}{P^{*}} \right)^{3/4} \left(F_{m1} + 1 \right)^{3/4} \right]$$
(28a)

* L- I as you My

1112111

From Pig. & may be chicked by and by.

The market 1214 (1964) 1020 to 280 1 2 2 min of

is the child of a timile on in the cion of a compression of a compression of a compression of the city of the city

$\begin{array}{cccccccccccccccccccccccccccccccccccc$																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		L		-	1 -	1.	1	5 .				ļ		1.			11.	1				1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 1		1.	1	-	 		-					-			j		1 .		1		·		5				
$\begin{array}{c} 5 & \text{for} & \Delta_1 \\ 3 & \text{for} \\ 10 & \text{for} \\ 2 & \text{for} \\ 2 & \text{for} \\ 3 & \text{for} \\ 4 & \text{for} \\ 4 & \text{for} \\ 5 & \text{for} \\ 4 & \text{for} \\ 5 & \text{for} \\ 4 & \text{for} \\ 6 & \text{for} \\ 5 & \text{for} \\ 4 & \text{for} \\ 6 & $		1		-1	1		1	1 . 1								1		-	ļ		-			J.	-1.	- :	L	
$\begin{array}{c} 0 \\ 10 \\ -3 \\ 4 \\ -2 \\ 4 \\ -2 \\ -4 \\ -3 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5$		1 -	}	1.	1	1 1 1		10		1			10.	2	DI		1	4	1	4.			-	+			hay .	
$\begin{vmatrix} 2 & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $		1 7			117	7.1	1., 17	1; -	-	-		ζ.	fol	Ŋ :		3			_	+		-	. ,	T. T			- 1	-
$\begin{vmatrix} 10 & 3 & 3 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4$		- 1	1 - 1	1	世1:	1-7-1	117	1	-		ļ		-	<u>.</u>	ļ	٠	-	-	Ţ.,	. 8								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ri			,		7-1-1	1 .	-	1:		-	2.	_	-	+	-		1	1		4		: 4	1.2		1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	-	1	+-	-	1:			1	1	-	1			_			1							+ + .	.L.	1111
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-		-	- 1.	-	-			-	}		FOT		12	-				·				1 - 7		Profession 40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		14	1 -	.4 -			4	1 -	2.		1	1	1	0				 								1		1111
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1-1	1	Λ.		-				:	1			1	1					-	-						++1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1	X	-	1	1		-	1			<u> </u>		-	-				}		-					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	per part share		: :	1.		1.6	1	-		<u> </u>	-			1	-		=									F		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$;			0		1					1.								1	=		-				-		, 1
$\begin{array}{c} 4 - 2 \\ 2 - \\ 3 \end{array}$ $\begin{array}{c} 6 - \\ 4 - 6 \\ A \end{array}$ $\begin{array}{c} -5 \\ -2 - \\ -4 \end{array}$ $\begin{array}{c} \Delta_1 \equiv \frac{1}{(1/d)} - 1 - \frac{1}{5} \\ \Delta_2 \equiv \frac{1}{(1/d)} - 1 - \frac{1}{5} \end{array}$ -3 $Fig. 8$					-3	+			-			+	ļ						-	-					-			-
$ \begin{array}{c} 2 \\ 1 \\ -1 \end{array} $ $ \begin{array}{c} 6 \\ -1 \end{array} $ $ \begin{array}{c} -1 \\ -1 $ $ \begin{array}{c} -1 \\ -1 \end{array} $ $ \begin{array}{c} -1 \\ -1 \end{array} $ $ \begin{array}{c} -1 \\ -1 \end{array} $ $ \begin{array}{c} -1 \\ -1 $ $ \begin{array}{c} -1 \\ -1 \end{array} $ $ \begin{array}{c} -1 \\ -1 \end{array} $ $ \begin{array}{c} -1 \\ -1 $ $ \begin{array}{c} -1 \\ -1 \end{array} $ $ \begin{array}{c} -1 \\ -1 $ $ \begin{array}{c} -1 \\ -1 \end{array} $ $ \begin{array}{c} -1 \\ -1 $ $ \begin{array}{c} -1 \\ -1 \end{array} $ $ \begin{array}{c} -1 \\ -1 $ $ \begin{array}{c} -1 \\ -1 \end{array} $	~		1,2	1		-		1.			1-4	1			ļ	-			-								11 .	
$ \begin{array}{c} 5 \\ -5 \\ -5 \\ -4 \end{array} $ $ \begin{array}{c} \Delta_1 \equiv \frac{1}{(1/3)} - 1 - \frac{1}{8} \\ \Delta_2 \equiv \frac{1}{(1/3)} - 1 - \frac{1}{8} \end{array} $ $ \begin{array}{c} Fig. 8 \end{array} $			1	7	12		1	A	-						1		-	-						-				1
$ \begin{array}{c} 5 \\ -5 \\ -5 \\ -4 \end{array} $ $ \begin{array}{c} \Delta_1 \equiv \frac{1}{(1/3)} - 1 - \frac{1}{8} \\ \Delta_2 \equiv \frac{1}{(1/3)} - 1 - \frac{1}{8} \end{array} $ $ \begin{array}{c} Fig. 8 \end{array} $		1 -	-	-		1	1	Fr	11		-				1		-		1	-							-	
$ \begin{array}{c} 5 \\ -5 \\ -5 \\ -4 \end{array} $ $ \begin{array}{c} \Delta_1 \equiv \frac{1}{(1/3)} - 1 - \frac{1}{8} \\ \Delta_2 \equiv \frac{1}{(1/3)} - 1 - \frac{1}{8} \end{array} $ $ \begin{array}{c} Fig. 8 \end{array} $				2-	-		1	1	-			-						-derbour	1	1		-		-	.,			
$\begin{vmatrix} 1 & -1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1$			-					1	6	17	1	-								1.1		,				. ,		,
$ \begin{array}{c} 6 \\ -5 \\ -4 \end{array} $ $ \begin{array}{c} \Delta_1 \equiv (\frac{1}{4}) - 1 - \frac{1}{5} \\ \Delta_2 \equiv (\frac{1}{4}) - 1 - \frac{2}{5} \end{array} $ $ \begin{array}{c} Fig. 8 \end{array} $			1		4 1	1	-	1.	-	- Le	T	1		,	-	1		1					-		-			-
$ \begin{array}{c} 6 \\ -5 \\ -4 \end{array} $ $ \begin{array}{c} \Delta_1 \equiv (\frac{1}{4}) - 1 - \frac{1}{5} \\ \Delta_2 \equiv (\frac{1}{4}) - 1 - \frac{2}{5} \end{array} $ $ \begin{array}{c} Fig. 8 \end{array} $				1	- Li-				1		10	-)										and a draw pagement						
	-11			1.	-/.				1				1			-	-	1			1 7		. = "	- ·	113			
			-		-		= ;		+	1	1					-		-						-, .				
		1=		7.1				FIL		1		1 1					-			,							1	-
	1			6-		1	- :			1	6									(.			-			-	- 1	
$ \begin{array}{c} 4 \\ -5 \\ -4 \\ -4 \\ \Delta_1 \equiv (1/2) 1 8 \\ \Delta_2 \equiv (1/2) 1 5 \\ Fig. 8 \end{array} $				-				+	1	1				-						-						-4 -		
$ \begin{array}{c} 4 \\ -5 \\ -4 \\ -4 \\ \Delta_1 \equiv (1/2) 1 8 \\ \Delta_2 \equiv (1/2) 1 5 \\ Fig. 8 \end{array} $:	-	17.0	-	1	1. 1.	-1		1					-				-						TU	÷	4
$ \begin{array}{c} \Delta_1 \equiv \frac{1}{(1/d)} - 1 - \frac{1}{\delta} \\ \Delta_2 \equiv \frac{1}{(1/d)} - 1 - \frac{1}{\delta} \end{array} $ $ \begin{array}{c} \Delta_2 \equiv \frac{1}{(1/d)} - 1 - \frac{1}{\delta} \\ \end{array} $ $ \begin{array}{c} Fig. 8 \end{array} $. !						1.1.1	177	TE		1	+		-				1	-			-			= ; .	+		
$ \begin{array}{c} \Delta_1 \equiv \frac{1}{(1/d)} - 1 - \frac{1}{8} \\ \Delta_2 \equiv \frac{1}{(1/d)} - 1 - \frac{2}{8} \end{array} $ 3				4-	^	1-1-1		: 7.		1	-	1			-	_			-					1		2.		_ L-1
			.2		.6	1			- 11	++		1			-					1		-	2.1					- 1
	* .	4 .	V			1	1		1	in it	1.5	-	1 -1	1				1-1			1.	-			. :.			
			.2			1:		::	1 1				1	-			ţ,						1				: 1	an adversary o
		- 1.		1.									1															
$\triangle_{i} \equiv \overline{(1/i)} \cdot \overline{I} \cdot \overline{\delta}$ -3 -3 $Fig. 8$	1:-		4		5	51		EF.	1.7	-1		1	\	1				- ·						;	,			_
	17.3			h)		1	+117	FI	1::::	14		L		1		1.	77.3	7		,					1			
$\triangle_{1} \equiv \langle 1/a \rangle - I = \frac{1}{8}$ -3 -3 $Fig. 8$						1	1	F +		7 7 7	1					- 17	. + 1		-	- 1		- : :						
$\triangle_{1} \equiv \langle 1/a \rangle - I = \frac{1}{8}$ -3 -3 $Fig. 8$				2-						1 1	- : -				1					-	- , ,		- ak					1.
$\triangle_{1} \equiv \overline{(1/2)} = 1 + \overline{5}$ -3 $Fig. 8$	- 4-		-0 0 -0 0 -0 0	-				1 -1	777			i.			1		-	4 -									1::	
Δ, Ξ, (-/δ) - δ3337777777777	• •	+				1						1	-								-							
Δ, Ξ, (-/δ) - δ3337777777777				FLF.	- 4						- : :	1									- 1	-1 _4:		en en en				
Δ, Ξ, (-/δ) - δ3337777777777	+ 1				. +			HE		1	-		<u>.</u>		: -		-		7 1	-T;-			+ 1			in the second	.: +	+1-
Δ, Ξ, (-/δ) - δ3337777777777		· • ÷		-	Andrein -	1 1						1	^					1		1.2		7+	·			· - ·		
Δ, Ξ, (-/δ) - δ3337777777777	-		THE RESERVE TO THE		7.14		2.7.7.		-				4	1	F /	Lle		1	5						7		L."	
Δ, Ξ, (-/δ) - δ3337777777777					÷ :					1		1	11					÷			7				+1			. :
3 3 Fig. 8		- 6				- 1 -							^	-		1		1	-2			-		. : :3				. , ["
Fig. 8		-: -:												2	- 1	1-10	/)	1	- 8)					. 57			A 10 -
3			-		11						-	+-		1-4									101		7		-	
Fig. 8			-	†				-		1				1		,-	1.1.1	1	+	. 1		17.5		1	1			* .
Fig. 8				1 :		1-		-						E 1 !							" I.				-	-		
Fig. 8				1 3 -	3	1 -	=			1		1:4	Ti.	-						-1 +0			Ē.		_		-	
Fig. 8		. =.	-	-		-						 		-	-						-:::	-11	. L.	177			- +-	,
Fig. 8	-							-		1	*	1						1=		i quipre			- the free parties.	1 -				
Fig. 8	-				-						-1					1		-			7 1	Ť	+ r	-	,	-1		
Fig. 8	-							-	TIL		1.7 1 5	+		Eu:	111		t: -		1.	municipal re	- married pass - married		+	17		1	7. 1	- Sec. 100-1-10-1
				-			-	-				1 . 1	1	1				-				- Contract of the Contract of				-i		
	-				e. e.		, -	1 1		in:::		1; -	1	tat:	7.	H			, 1, 1				, 4.4.	=	Fi	<i>g</i> .	O	. "
				-				1		1:-			+	1:-:	77													
						1			-1 -	1	1 +	1.11.	71			1 - 1-1		1 -	L :									

and:

$$W_{t}^{*} = \frac{70 \text{ C}_{pt} T_{cs} \gamma_{st}}{W^{*}_{us} \sum_{t}^{7/4} \left[P^{*}_{o_{4}} (Q_{x}/U)_{4} \right]^{3/4} \left[(L/d)_{*}^{4} \frac{W_{s}^{*}}{d^{3}} \right]} \cdot \left[(1-r_{t}^{-1}) \left(\frac{W}{p^{*}} \right)^{3/4} \left(F_{ma} + r_{t}^{*} \right)^{3/4} \right]$$
(28b)

Again the parts have been arranged so that the final bracket in each equation represents the explicit pressure ratio influence and the bracket immediately preceding represents the stage geometry. The pressure ratio factor is shown in Fig. 4 and the geometry factor, calculated from (28) above, appears in Fig. 9.

Due to its effect on rotor thickness, increasing aspect ratio causes a decrease in rotor weight, but a simultaneous rise in rotor volume. This last effect will appear later (see p. 43, eq. (33) et seq.). Hence the mean density of the rotor bulk drops doubly fast with rising aspect ratio. Since a high machine density tends toward compactness of plant for a fixed power output, this gives the first indication that low blade aspect ratios are to be preferred.

in one equivalent the collect of the care of the same of the same

The to the trivial control of the co

-	1		1	1		1.		1		1		1		+				1-		1 .	:	-				1
1	-							-1				1		1				-		-				-4-	7 ,	-
}								1		!		+ '				-				1	-			- 7	-	
		1	"	1										T				 	Ţ. T*	-			:	11		- :
							, .											1 =	= [1	7					
		1			-	†	I	1-,-						1				1	-				-	1 1		11
-				1 = 1	-					1		<u> </u>		- 1									1		i de la companya de l	11
				1	-4		1:.			1	-	I		1					1	√s*(d3	L/	4)4	=8			
		-		1111		+		com	n	00		1/+	d =	- 10	7)	<u> </u>		. /	-	d3		/			- +	
		1	ļ.,	1	-	ļ		2011	Pr	C3.	Or	11/	9	.,,	4			/		·		=11				-
		+ -		-		1.	-	-		-	1	10		02)	- 1		1	-	-	8				-		
		5	-			1		tu	roi	ne	(1.0	/	02			1-	- /		0						-
		1:				[·	-			1	-	 				1		/!		10		2	1111	7-		- 4 4
		 				11:		-		-	-				/			/	/		_	-				-
		1									-	-			/	_/	/-/	_/				-		1 .	,	
	1		- +	İ				1:						/		/,				-		† <u> </u>		1		
te.		4		1 .		- ,			1=	+	-	1	/			/-				1	_	1-1-	:	* *	1.1	
		7	-			-						1		/	1	-/	/_	,			4					
	- jeste teen.							į .			1		/	/		/			1	5					1	
			1			-	-	-	_		-	/	-	/	/			,			- 1-					
		: :	- 4	-	1 2	-	-	-					/-	1	-		1		1	15				•	1	- 1
			1.1			-	1						/	-	=1	-/										
		3										/			-	/			/	20						
		. "										- :	-	/		/		/		20		<u> </u>				. 5
	-	δ		-		-3			11:	1.		1711			/		/		/	~			£			-
				-			**.1	- 1				1			1					20						
	<u>.</u>		- : :			2	1			-				/		/		•		30	- 1		1			
-		2				-											/			30	111 4					
			-	= 1				-		_	-								•					,Ī		- ;
			7 1		+	_				-	1		٠												. :	
-			: []	+1					H H	-						-		- 1		40	T. 1	1 1	-, .	#]-		
	7.5						-							-		. 1				40						
_				-				1-1-1-1			نيسا			-		1-14				50						
		1-	1 - 1						-							Ŧ;;			(1	E T		- 1 -+			*
	;	-	1,		7 1 1		1.1.												111	50			11.5			1-1.
	-							- +				1 . 1 = 3	111		7											1-1
					-:	1 1	-:-		-				LII	7						III.	+ , .					11
•)T		h.							1									-111		+		-1-1	- 4-1	
-																								J.	_ <u>1</u> _r	-
		1		-		†		i		-	2		7.1		5		Ē		•		711	- - - -	= 1			-
-				1		-			+ -	- 1		L	(d)					<u> </u>	177		. 1		4- j v			1
								dop						-		-					7 -		FI	g.	9	T -
										-:-	HH.							F. i	:1:	1				5		

VI. COMBUSTION COMPONENTS AND CASINGS

Over the variety of combustion turbine plant types, from heavy stationary generating equipment to light weight air-craft propulsion sets, combustion equipment varies in weight and size fully as much as does any other component, and with considerably greater empiricism. Watson and Clarke (ref. 6) have summarized current practice. The first parameter to be considered is heat release rate per unit volume:

$$\frac{h_f w_f}{v_b^{Pos}} = \frac{wC_{pb}(T_{os} - T_{os})}{v_b^{Po}^{Pos}} = .65 = .65$$

$$\frac{v_b^{Pos}}{v_b^{Pos}} = .65 = .65 = .65$$

The constant employed is based on the fact that good combustor performance regularly can be attained for heat release rates up to but not much exceeding 5.7xl0 BTU/hr. ft. atm. The actual limit depends on a balance between heat conduction, diffusion, wall cooling and metallurgical properties. A slightly more conservative figure, 4.95, is used above.

Another limitation is flame stability in the moving gas flow. Based only on experience and good practice again, the permissible maximum bulk velocity entering the flame zone is found to be about 500 ft./sec. Hence, leaving again a margin of safety by using 400, there is:

$$\frac{w}{\text{PaAb}} = \frac{\text{wRTol} (F_{\text{ml}} + r_{\text{c}}^{\lambda})}{\text{Abr}_{\text{c}}^{\text{Pol}}} \qquad \text{ft.}$$

Combustor length is then, assuming a shape approximately prismatic:

The value of the continue of t

Little of the control
The part of the control of the control of the eming the control of
Concentor comple to them, to thing a composite tell prisont

$$L_{b}^{*} = \frac{V_{b}}{A_{b}} = 616 \frac{G_{pb} [(T_{os}/T_{e1}) - r_{e}^{\lambda}]}{R(F_{ml} + r_{e}^{\lambda})} ft. \quad (29)$$

In case, as is true for sireraft and certain other plants, combustion is to be equally shared among several chambers, a third limiting factor to be considered is minimum flame tube diameter. This may be met by: (a) limiting the number of separate chamber; or (b) increasing the total cross-sectional area beyond that required for permissible maximum gas velocity.

The weight of a combustor is a function of wall construction and surface area. Assuming that if a number of chambers are operated in parallel they are all exactly alike, then the total surface area is:

$$A_{s} = nd_{b}L^{n}N = 2 V_{b} (\pi N/A_{b})^{1/2}$$

$$= 109 C_{pb} \left[\frac{T_{os}}{T_{os}} - r_{o}^{\lambda} \right] \left[\frac{NwT_{os}}{Rr_{o}P_{os}(F_{ml}+r_{o}^{\lambda})} \right]^{1/2} rt.$$

Wall construction is considered to be based on resistance to sagging and buckling rather than to rupture in tension. Thus for a cylinder in transverse loading, as a first approximation,

$$\sigma = \frac{my}{I} \sim \frac{(t.d)d}{(t.d)^3} \sim \frac{d}{(t.d)^2}$$

$$W_b^* \sim A_s (t.d) \sim A_s(d/\sigma)^{1/2} = A_s d/(\sigma d)^{1/2}$$

But since

The contract of the contract o

-roo figs to workers it to confirm the said of the sai

Lali senting in conting of it hereing in conting the sector.

and a configuration in the sector country as a time approximation.

sendi limi

smalles are or any one in any

$$W_b^{**} \sim \frac{V_b}{(\sigma d)^{1/2}} \sim V_b \left[\frac{N}{\sigma^2 A_b} \right]^{1/4}$$

In order to eliminate the tensile stress from this expression the proportionality $\sigma_{T_{OS}}$, obtainable from Fig. 10, to give:

$$W_b^* \sim C_{pb} T_{oa} = \begin{bmatrix} T_{oa} & r \\ T_{o1} & r \end{bmatrix} \begin{bmatrix} wT_{o1} \\ r_{c} T_{o1} \end{bmatrix} \begin{bmatrix} WT_{o1} \\ R(F_{m1} + r_{c}) \end{bmatrix}$$

The foregoing was intended to apply to metallic combustors only. Another type, intended for large marine or stationary plants and lined with refractory, requires separate treatment.

Bata on current combustion equipment permit approximate evaluation of the constant of proportionality to give:

$$W_{b}^{*} = \frac{G_{pb}T_{os}}{2000} \begin{bmatrix} T_{os} & \\ T_{os} & \\ T_{os} \end{bmatrix} \begin{bmatrix} WT_{os} \\ T_{c}P_{os} \end{bmatrix} \begin{bmatrix} WT_{os} \\ R(F_{ml}+r_{c}^{\lambda}) \end{bmatrix}$$
(30)

Further, the space required for a combustion system composed of a set of identical can-type units, as opposed to the net internal or gas volume used above, may be approximated as:

$$V_b^* = \pi (1.5 d_b)^* L_b^*$$

$$725 \text{ Nd}^* C_{pb} \qquad (T_{oa}/T_{o1}) - r_c^{\lambda}$$

$$(F_{ml} + r_c^{\lambda})$$

By making use of the flame cross-sectional area relation for proper gas velocity mentioned at the beginning of this section, this becomes:

The color to eligh to the same that the color of the same that the color of the same that the same t

entries of her than the standard some setting of the setting of th

-in of discontinuous of the second to the se

Turking, the apare required for a confige 8 to a grature conscion of a area of identified conscions units, he opposed to the factor of any or any for appointed earne any

the property of the leader of the constant of the constant of the property of this section, this becomes

$$V_b^* = 2.31 \frac{G_{pb}T_{01}p^*}{P_{01}} \left[\frac{(T_{03}/T_{01}) - r_0^{\lambda}}{r_0} \left(\frac{w}{p^*} \right) \right]$$
 (31)

The trend of combustor volume with pressure ratio as given by this is shown for the single temperature ratio $(T_{0s}/T_{01}) = 3.7$ in Fig. 4.

The construction of stators and casings is considered to be governed by regard for stiffness rather more than for rupture strength. Stator blading weight is assumed to average the same as that of rotor blading operating within it. Following ref. 5 and the foregoing treatment of combustor shell weight, the stator blading and easing weights become:

$$V^* \sim V^* \left[\frac{1}{\sigma^* p_T^2} \right]^{1/4} \sim d_T^{3/2} \left[1 - (L/d) \right]^{3/2} L_T^* \text{ for the casing}$$

Again the constant is approximated on the basis of current plants to give, for the compressor:

$$W_{ec}^* = \pi d_0 P_b \left[\frac{t / (L/d)^2 d_c}{2 \delta} + \left[.006 \ l + (L/d) \right]^{3/2} L_c^* \right]$$
the turbine: (32)

and for the turbine:

$$W^* = \pi \hat{a}_t^{3/2} \rho_b \left[\frac{ts(L/d)_4 \hat{a}_t^{3/2}}{2s} + .01 \left[1 + (L/d) \right]^{3/2} L_{t_32a}^* \right]$$

both of which increase monotonically with (L/d).

Equally defensible is the approximation to casing volume as, in the case of the compressor:

$$V^{*} = V_{c} \left[\frac{D+2t}{D}^{3} \right] = V_{c} (1+2b/D)^{3}$$

The second of each retor rounce of the recourse at the second of the sec

to the complete of the control of th

To the cut the security of the country of the country of

both of the tree a soft all the total (s/a).

CONTRACTOR OF TAXABLE CONTRACTOR OF TAXABLE

but since

$$\delta = (L/d) (d/b)$$
 and $b/D = (b/d)(d/D)$

by (9) there appears that:

$$V^* \approx V_{e} \left[1+6b/D \right] = V_{e} \left[1+ \frac{(6/\delta_{me})(L/d)_{1}}{1+(L/d)_{1}} \right]$$
 (33)

and similarly for the turbine casing volume.

$$V_{te}^* = V_{t} \left[1 + \frac{(6/\delta_{mt})(L/d)_4}{1+(L/d)_4} \right]$$
 (33a)

espita dari

(N) 13 1 0

(c/c)(c/e) = 11/2 21

100. - - - - - (0) TO

and the state of t

(635)

(56)

SCROLLS, VOLUTES and DUCTS

vary greatly from plant to plant for the good reason that plant location and job assignment dictate component layout to a large extent. The straight-through aircraft jet engine with axial compressor certainly has the minimum of such parts, whereas a marine propulsion or shore power generation plant has a good deal of its total weight and space so constituted. Hence no definitive mathematical treatment can be shown, but a few general rules can be given.

For the simple cycle, gas pressures up to the compressor inlet and beyond the turbine exit are of the order
of one atmosphere. Within these sections of the flow path
design is considered to be based on rigidity rather than
bursting pressure. Hence, following the reasoning of ref 9:

V*~ W

From the compressor discharge to the turbine nozzle the flow path carries the same weight flow at a pressure re times as great and a specific volume correspondingly less. In this section design is considered to be based on bursting strength, but in the first approximation it turns out again that:

W#~W

while.

V*~W/ro

Man G G F Tall Phil

resident, rolets, pining, tore and colon to the very read of the total very read of the term of the very read of the term of the plant location at location at location at location at location at location at the structure of the term of the structure of the stru

or the single cole, it we are the cocolor laintend event the earth of the color of the first put
of the thoughts. It in the colors of the first put
decity constent of the color of the c

W ~* 1

con the convener lindares to the continue of t

年 ~ 年

Since it has been shown that the net power output for given cycle conditions is:

P*~ W

then it may be concluded that for a given type of plant — aircraft, mobile or stationary — the size and volume of ducting will vary nearly linearly with the mass flow, once the cycle thermodynamic conditions are fixed. Taking account of the relation between air rate and pressure ratio; the weight and size of ducting and connections may be expressed as a function of the variable (w/P*) to fit any plant capacity.

free it has not a shown that the met were cotout

22 W

then it my he conclude to for a cyroty of alors of tree of the size of tree of the size of

VII. APPLICATION

In order to clarify the effect of certain variables as they individually influence the design, it is advisable to fix as many of the other variables as possible, or in other words to take a particular plant and inquire as to how the internal geometry of the components may be optimized to produce the most power for the least investment.

Choosing a simple CBTG plant (Fig. 1) for this purpose, the following points are fixed:

	Compressor		T	urbine
Tol	= 530°R	To3	=	1960°R
Cp	= .24	c_p		.27
750	.90	Nec	te:	.85
βa	= 60°	βæ	#	30°
0	= 40°	0	202	60°
t	= .10	t	223	.15
σ_{b}	= 22,000 psi	$\sigma_{\!\!\!p}$	312	24,000 ps1
$\sigma_{\!\!\!\!g}$	= 4000 psi	σ_{g}	22	5000 psi
Both	n machines:			
r	= 5	J	*	.7
R	= 53.3 ft./°R		-	500 lb./ft.
Y	= 1.3	P 01 =1	P	= 2116 lb./ft.

NOTH THE A . I.V

In order to clarify the freet of reals verical to the try fall thereing the try fall thereing the state of th

Chocaing a simple Chromata (ig. 1) for this purpose, this is lowin rolate to firel:

ST LATER	all the second second second second
-02 - 105 - 30-	Tol = 550°A
712. a 7.0	0 p
38 95	Tec = .90
°05 : a8	82 · (10°
909 A	908 - 8
35. = 3	Jr 3
T = 24,000 = ±	139,000 pei
000 pri	Og - 4000 vsi
	roth avertness;
23. E.	B = T
8,72\. 01 103 = 69 g	301.5268
Pol od 110 -0./ft.	E.1 = Y

From these it follows that (Fig. 11 et seq):

MVC.

$$F_{m_1} = .1$$
 $F_{m_2} = .03$ $F_{bc} = 2.85$ $F_{bt} = 6.58$ $\lambda = .318$ $\mu = .211$ $r_0^{\lambda} = 1.67$ $r_0^{\dagger} = .711$ $r_0^{\dagger - \lambda} = 3.0$ $r_0^{\dagger - \lambda} = 3.56$ $F_{c} = .5$ $F_{t} = .439$ $\Gamma_{c} = 9050$. $\Gamma_{c} = 9870$. $\Gamma_{c} = 9870$. $\Gamma_{c} = 9870$. $\Gamma_{c} = 9870$.

Having decided to investigate the effect of the flow coefficient (C_x/U), blade length ratio (L/d) and mass flow (w), all other parameters are expressed in terms of these three by using the information above and the equations set forth previously. That these three variables are independent may be seen from the continuity relation and (3). Under the original simplifying assumptions and the above set conditions none of these three variables affect the thermodynamics of the cycle, however, and so the air rate (w/P*) remains unchanged. The effect of scaling up the power rating of the plant, then, for any fixed set of values such as the above may be taken directly as the effect of increasing the mass flow rate.

Equations here are numbered to correspond to their counterparts in the preceding general development. They are:

ro there it rollors that (Fig. 11 t each):

Having Acolded to investigate the effect of the flow congrictant (O_N/U), there length ratio [1/d) or mest flow (1), all other part for an entropy at the entropy and the entropy and there three variables of the entropy previously. That there three variables or independent by the entropy the entropy that the continues of the first or the conditions of the tree variables of the the three variables of the exception of the first of the six of the entropy of the first of scaling up the every result of the plant, then, for any fired act of vince and a the entropy of the entropy of the effect of scaling up the country the entropy of the entropy of the effect of scaling up the country the entropy of the entropy of the effect of increasing the entropy of the entropy of the entropy of the effect of increasing the energy of the entropy of the e

counterprete in the preceding renord develops n. The me:

			100				1:	+-			1							4-1	- for reference	-		1	1	Т	11,11		Tipl.	
	; . : `		1.1		11			1		- :		1.1.	1		1 - dec. 1			1 2					-1		1.1			42
		:				1 72	.: 1	1.		-		.,-		iii	- [+					-1.			ī. i	- 1		
		:	.:: [-	1	: :	: : 1"	i		- 1		1111				- 1		1111							- 1			
					F1 -			Ein:							3					à-				-7-7				
		- 1		. * :		7-0-0-0 		711				:===			177							11		1.4	- 1			
						-							,,,,,,,,,						1+1		1. tr							
								1-1		1 T					4-7	1 1 2 1	1,21	-1.;						+				
1	11			Language A				1 1 1			112	21				13	ti.			* + + +	. 1.	1.	-1	1				
	***	, , ,	mark-uponty-sales			1 1										1 de 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· 1 day 2						1					
-			Å	-			-		-						1 1.	4								100		11.		
4				17 s		73 TT :	1 1 1	1 - 1 - 1			-+-	1 22								4.77	+ =			111				
			- - 1	11	1.0.	Special art			1				177	- 1	-1								111	- 3	2			
						##.		1.77			1			-		.5	1			7-17	F			75				
		-				-,-				1 -			- 1	7	٠.	5/	11							. i : 1		121		
				<u>, 11</u>	17				7.4		1.1	. :		'St	>	7	-, -, -, -, -, -, -, -, -, -, -, -, -, -	11.1				H-EL:	+ +	·Hi				
			7 -			- '	-		i i dan Lib ban			. :	-:::	8	7	-17:			10000				+ -, - : -		1			
	- :	-1.	6 -	-		-			1	1" 11. 1		1-4-				- 31				irit								
-	: '		_	!		1 . /	-71					1 - 1	>	1	C.j.	1			iii				F.	1	Y			
		1.5	5 -	C			1		- 1			- 1	1			7	!		4	, 1, 1, 1			exponent	19	1-1-4			
			_	CIC				-1 -		-		1		9		= 1		- L	1.	Hist	T		ne				H	
	K		4 -			-	†	_			7	1	0	m		53				: 111		t, 	d	A.4 ()	1111	elit.		
-							ī				X			n,	C			7.	+				e e		L	11.11 17.11		
2.	:	1.3	3 -		i).		=			1	f. 1	6				1.	7-4-	- ·	÷ -2.		+11	:†.! ** ;	U	-		Hing.	講	
	1 1	1	· dead		: + -:	-		-11		/	5				The second					7 -	;		rde	1	H		1 121	
1 -		. 1							-							·			1	: :	- : :-	-	ropic		,		EF I	
		1.2	2 -		-						-			-							1		70/		.71	- 1	14.	
						1	-			-								1		1		t	Ľ		11	1::		
		- 1							= .						2						7				-1 ± 1			
																	1					E		- 6	3	1		
										λ	=	k.	-1	777								f. <u></u>		-				
											-	k ?	rsc					-	7							1 2 1		
									-				-	-1-				7 -				1- 1- - 11-		117	1 = -			
	-										, .	K	-1	n					1	, 1 , " ;		-: .'·	- 4		7	717-		
			}					=-					k	(5)	t				-	. 4,		- 17						
				- 1	-	1		-			· · · ·					, ",			: :	1	- ('			1 - Lu - L	manus proses	1		
									-		-		-							-1	11.		T		7:4:	+		
har-						•	-											.]	1	- 2		-	4	1 7	-:		1	
				_ 1														. = - !			+	1.		+-				
- 1														-				·	1.1			!: 				17.2		. N. Y.
				,				+		, ,-				-								<u>†</u> '		Fi	g.	13		K & P CO N. Y.
1	i	1					1	1	1.								:	- 1 . 1	- 1		+-	2 = 1			. 4 .			×
			- 1							. '	1		1 4	1 11			1 4 1	-					1	-111				

$$d_{e} = .1106 \frac{1/2}{(C_{x}/U)_{1}^{1/2} (L/d)_{1}^{1/4}}$$
(8)

$$d_t = .171 \frac{\sqrt{2}}{(C_x/U_a)^{1/2} (L/d)^{1/4}}$$
 (8a)

$$G = .674 \left[\frac{(C_{x}/U_{4})}{(C_{x}/U)_{1}} \right]^{1/2} \left[\frac{(L/d)_{1}}{(L/d)_{4}} \right]$$
(15)

$$\delta_{me} = 3.15 \frac{(L/d)_1}{(C_x/U)_1}$$
 (25)

$$\delta_{\text{mt}} = 4.84 \frac{(L/d)_4}{(C_{\text{x}}/U)_4}$$
 (25a)

$$\delta_{\rm mc}/\delta_{\rm mt} = 1.43 \, \rm G^2$$

$$\begin{bmatrix} \frac{W}{u^2/2g} \end{bmatrix}_{t} = 3.46 (C_{x}/U)_{4}$$
 (18)

$$V^{*} = .0282 \frac{3/2}{(C_{X}/U)_{1}} \frac{3/4}{[1+(L/d)_{1}]} \frac{1.9(C_{X}/U)_{1}(L/d)_{1}}{1+(L/d)_{1}} [1+(L/D)_{1}]$$
(33)

$$V_{to}^{*} = .0252 \frac{3/2}{(C_{x}/U)_{4}} \frac{3/4}{3/2} \left[\frac{1.24(C_{x}/U)_{4}(L/d)_{4}}{1 + (L/d)_{4}} \right] \left[\frac{1}{1 + (L/d)_{4}} \right] (33a)$$

These last two may also be written:

$$V_{ee}^* = .00504(w\delta_{me})^{3/2} \left[1 + \frac{(6/\delta_{me})(L/d)_1}{1 + (L/d)_1} \right]^{2}$$

: Luttire of only of the lace of

$$V_{te}^{*} = .00237 \ (w \, \delta_{mt}) \ \ \frac{3/2}{1 + \frac{(6/\delta_{mt})(L/d)_{4}}{1 + (L/d)_{4}}} \left[1 + (L/d)_{4} \right]^{2}$$

$$W_{t}^{*} = .0433 \ \frac{3/2}{(C_{x}/U)_{x}} \left[\frac{1/4}{(L/d)_{x}} \left(\frac{W^{*}/d}{g}^{3} \right) \right]$$

$$W_{t}^{*} = .057 \ \frac{3}{(C_{x}/U)_{x}^{5/2}} \left[\frac{1/4}{(L/d)_{x}} \left(\frac{W^{*}/d}{g}^{3} \right) \right]$$

$$W_{te}^{*} = \frac{1.02 \ w}{(C_{x}/U)_{x}^{5/4}} \left[\frac{1/4}{(L/d)_{x}^{3/2}} \left(\frac{(C_{x}/U)_{x}^{3/4}}{(L/d)_{x}^{3/2}} + \left[\frac{3/2}{(L/d)_{x}^{3/2}} \right] \right]$$

$$W_{te}^{*} = \frac{1.23 \ w}{(C_{x}/U)_{x}^{5/4}} \left[\frac{7/8}{(L/d)_{x}^{4}} \left[\frac{(C_{x}/U)_{x}^{3/4}}{(L/d)_{x}^{4}} + \left[\frac{3/2}{(L/d)_{x}^{4/4}} \right] \right]$$

$$W_{te}^{*} = \frac{1.23 \ w}{(C_{x}/U)_{x}^{4/4}} \left[\frac{3/2}{(L/d)_{x}^{4/4}} \right]$$

$$(32a)$$

From (15), (25) and (25a) above the curves of Fig. 14 have been drawn. As brought out earlier the aspect ratio has been found in practice to be restricted, by loss considerations, to upper and lower limits of about five and one, respectively. Likewise, the blade length ratio (L/d) is restricted at the upper limit by blade stresses and the mechanics of construction, while restricted at the lower limit by

$$\begin{bmatrix} (a \land b) + 1 \end{bmatrix} \begin{bmatrix} (a \land b) & (a \land$$

ros (13), (13) and (13) even to curves of the bear drawn.

by or bear drawn.

by or bear drawn.

by or to the policy of the loss of the loss of the consideration, the many of the limits of the loss

the fact that large physical dimensions become necessary to pass a required mass rate of flow.

Moreover the flow coefficient (C_X/U) is restricted at the lower limit by this same inability of a machine to pass sufficient mass flow, and at its upper limit is restricted by the permissible Mach No. incident to the compressor rotor blades. For example this limit may be so set that the relative velocity

Then since by geometry

$$\frac{w_1}{U} = \frac{(C_X/U)}{\sin \theta_1}$$

there is

$$(C_{\mathbf{X}}/U) \leq .5656 \sin \beta_1 \sqrt{(2g/U^{\bullet}) \text{KRT}_0}$$

Obtaining from (3) for the example in hand

$$(U^2/2g) = 2262/(L/d)_1$$

then, for the compressor inlet:

$$(C_{X}/U)_{1} \le 1.585 (L/d)_{1}^{-1/2}$$

or

$$\frac{(c_{x}/v)_{1}}{(L/d)_{1}^{1/2}} \leq 1.585$$

Hence, by (25):

the fat the law e daste l dimensions become necessary teresease a rete of flow.

the cores the close of intert ($\frac{1}{N}$) is refricted at the lower limit to represent the lower limit to represent in the second set its where the result of the perminsible refresher in the form of the result of the second refer to the second

The fines of constru

th re is

be d ai elquine eds of (8) for minierdo

then, for the compressor inlet:

TO

$$\frac{(c_{\chi}/U)_1}{(L/d)_1} \le 1.685$$

Hane, sy (25):

and by a similar procedure for the turbine:

Neither of these, it so happens, offers any additional restriction here.

With all the foregoing in mind the dotted rectangles of Fig. 14 were constructed to the (L/d) and (C_χ/U) limits, the portion of such rectangles within acceptable limits of then being taken as the area of possible designs. It should be emphasized that the demarcation of these areas is carried out to show that such limits exist, rather than to pretend to lay down their numerical values.

Possible gear ratios for the plant constants chosen are indicated. Direct drive, G = 1, appears to be appropriate here since that line is the only one intersecting the rectangle properly. If direct drive is chosen, the gear may be dispensed with and the design latitude remaining is represented by the straight line segment A-B. Re-examination of equations (33) in their latter form above shows a design point near A to be preferred since lower values of aspect ratio assist in reducing turbine and compressor volume. If the point is so chosen that:

then the choice still remains open for the compressor along the arc a-a' and for the turbine along the arc b-b'.

ad a, thill e roc un for to tribine:

Teither of hes, it a happen, off re my difficant resident

If he list of the rand the late of relation of C_{χ} lists, of in joint of the joint of the joint of the part of the list of the lists of the list of the lists of the lists of the lists of the lists of the list of the lists of the lists of the lists of the lists of the list of the lists
For ible year ratios for the class of the character of the special are independent. Throughly, C. I, appears to in space prints to her other cine with like it is configurable production. If threat drive to contain the contain the case of the decimal of the contain the contain the contain the contain the contain the contains the contains the contains the contains the contains to be restored that the case of the contains the contain

then the choles etill remains open for the common money the uncertainty and the common and
Again (33) shows the lower end of each range to be preferred in order to gain a lower value of (L/d). Hence the design may be fixed at:

$$(C_{X}/U)_{1} = .5$$
 $(C_{X}/U)_{4} = .88$ $(L/d)_{4} = .11$

and with these in hand the size and weight of the plant may be calculated from the foregoing equations, making use of the air rate, .0105 lb/HP sec., to express the results in terms of power output rather than mass flow rate.

This leads to, for the pressure ratio of five:

$$V^* = V^*_{cc} + V^*_{tc} + V^*_{b}$$

$$= (.49 \text{ P*}^{1/2} + 6.42) 10^{-4} \text{ P*} \qquad \text{ft.}^3$$

and

$$W^{*} = W^{*} + W^{*$$

In order to discover the influence of pressure ratio changes on the plant size and weight, the detailed calculations may be repeated for ratios of seven and ten, with other data remaining the same. Following that, by the same criteria as before, there are obtained rectangles which overlie as shown in Fig. 15. When design values of δ , (L/d) and ($C_{\rm x}/U$) have been chosen the values for all three pressure ratios may be tabulated as:

train (33) how the later of ach range to be preferred in or or to each value of (1/d). Trace the decimaly be five a st.

The sale of the sale of the sale of the plant may be sale of the s

The Louis to the the course rether of the

Fift "

change on the piece the influence of the setting of the piece of the case of the c

4.			1	1:-:		1.	,		1	1		1.		1	-	1			,		1	1	,		:-:		
		-	-			ļ	† †			<u> </u>			1 ° 4 • • •	ļ		ļ			٠. ـــ		·						
							1						1								}		1				- 1
ī				7		-	i		1			 	ļ							-			-		. ! -		
								ļ											+		-						
		l 1	4			1	1		1				1	1		1	1.		1						* *		
		<u>'</u>					-	-	-			-	-					-			-		-	7		-	
						11.1	E	ffe	ct	0	1	Pr	ess	ur	e f	rat	10	01	7						- 4	, #j	
+ 1	-					.1	f-	1			g		T		í	-	1	-	1								
į			-				ļ	<u> </u>		-			1						l 		-			1+	7		4
-		-				-	De	tei	m	na	tia	n	01	1	9sE	ect		Ra	tio			-	4	-	*****	no."	
					-		ļ			1			-	- 1	/										-	= 12	
4	1						Y	-					11	1	1								1	14			
.1	-				-				1		-		1.	1-					,	1	!			-	. 1		1
	المسا					1	1	-	!				-						1								1:4
11:1	71	-						-					1				. 1		L.	1			4		, ,	104	
																			-				1				
	-					-	-	Ì				l l.,		1.							_				= : i		i L.
1 .							1			1			1 1											1	.11		
					r neglenado e			-				-	1									-			- '	=1	
				1							-								-		7.						
	- 1 .	1.	T							-	an gu e — made —		÷						-/	,			-	;			
7							1	-			۲							4	1	/							
		7 :			Ť.			· .			4.	1						1	7%	0/		1			÷ -		* 1
														- =			. — .	1	/	/					-		
1	- 1		-				1		L							_	-		/	ale.			1		ĭ ,	1	
		1	5	-			1	11				-7	-				7	7	B						Ţ.	,	
				i	- 1						H	-				1-1-	1-1		D				-				
+			1			-			1	ы			1			1											1411
				1 -				-					-			1		f							-		1 7 7 7
, 1		11:1		-	Ц.	1		,					} ~ = -					- 1-	- : -		-				:		1
											1	1		,		/-/								-		:5	
-			4			. 1.			-]-	1											
	- !	11.		++		!			-	M	·= , ,				//												
		11.			1				-						-			-	,		-			F			
. 1	: •	<u>r</u>					-		-							-		1 -								1	
	. 1	δ,									1.	<u>.</u> '	11				- 1								-	7.5	-
1111		U)	nc.	1									1/-	/							-		0.1				
_		1 5	5			1	0-1-			42		1	//			-				E			- 1				
			2	H		+::	1	1				11	1	,	de la company				7.	-	-			7 1		-4	
1.						.111			+		/	//						g . s . s		. ` _			-, .				. 3
-	. :			-							11						-	1	-						518.1		
				-							44	-															
		- : : : : :							L -+	X				-				-						_			7
					E			11.5		XX	A		- 1		. '								12.	4:		-	
			2				T.		-//	1								2 1 20						-:			
			=:.		H.		[TITE	111									+7.	7	-			 				
		: ::	11-			311		1					=		-1 -		-	-		- 4 -			1	=_;			- 1
111	1				1-4	ETT:		111				-	1		1-15		r	= /	U	- 4 -						. ,	1 T
-:		-11			1 .		1	4/.								II. L		-	7	÷: 5			4- 1-	111	1		+
		1		:			///										1-1-1		7								
	-=:				* 1		//		- tim time;		-	1				1 ===		1	5	1		EE:	11	-	1 1	E	
	. = 13°.					11			1 :						77		2										
- 1						11								44.1								-				-	
-	:							1										1							-		
				7	#			-1	- 1	-									===			1-1					
		!		/						-	-			. 1			-		-	1.1	1	÷	-				,
1		-	_	1					L			1-1-			_'		7	- 1	'		111	9-8 1 = -					
- !									-																	!	
			1	- 1		10	_	1			-	2.		1 2		3		1 -	- 4	-				5	*	-	
					-				1.			1 -0 -9-		.:,			17 [2]			-		: ::		÷ ;			7
: -1		- +							4-	1,1					01	nt					1.		:			-	
:. ;			:			1 -			4=4 1			4		17	1	- 1-		: ; ;						Fis	7.	15	= 1
										-								-								-	
1	1	1: 1						170	11.	7-1				1				1.	1.151	_51			-	. 7			- 1
					-			-																			

r	5	7	10
δ_{mo}	2.5	2.5	2.5
(C _x /U) ₁	.5	.5	.5
(L/d) ₂	.16	.145	.13
δ_{mt}	1.7	1.85	1.95
(Cx/U)4	.88	.88	.87
(L/d)4	.11	.11	.11

It may be concluded that in the range covered by CBT plants a pressure ratio variation effects little change in the choice of these parameters in turbine and compressor. On the other hand equations (11) et seq. show that the stress parameter Σ , the blade angle and camber β and θ , and the degree of aerodynamic loading under which the blades operate are the three major factors which in the end direct the selections of (L/d) and (C_X/U). Component stage efficiencies bear on the thermal efficiency and the air rate, and via the latter affect the selection as well.

It may be concluded from the curves (W*/P*) of Fig. 17 that, on the basis of minimum plant weight being a desirable factor, it is advantageous at certain pressure ratios to divide a load between two or more identical plants operating in parallel at a net saving in weight. The same possibility with respect to reducing total plant space requirements is suggested by curves (V*/P) of the same figure. Mitigating against this apparent opportunity to save weight and space,

10	2/16	5	4
6.0	Conversion of the second	€.5	० ठ
8.	8.	(f) to	(alen)
85.	.145	* <u> </u>	s(1\1)
30.1	50.2	5. 2	Sat
73.	88.	BB.	s.Ulzu)
II.	II.	4.1.	6.14)

It we be concluded that is the range covered by GPT rights at receive ratio variation fiect little charge in the second of the speciments in the first and consider. On the other hand constant (11) at no. sow that the abress parameter \sum , in this will at which the little of array made localing union thick the little are the interestors which in the other are the interestors which in the other are the interestors which in the constant that the constant is a second of the constant that the constant is a second of the constant that the latter of the hour or the hour lefticions and the circums of the little after the latter of the little of the circums and the circums of the little are latter to the latter than the latter of the latter o

It may no concluded the concrete (1/2) of Tir. 17 that, on the bark of rinings of night might being a desirable factor, is in seven about of contributes of the contribution of the contri

and in all likelihood actually reversing the trend in an actual installation, is the necessity for duplication of controls, accessories, instrumentation and servicing when sets of smaller unit size are used to fulfill a job requirement.

A quantitative analysis of these two opposing effects is suggested as a suitable subject of further investigation.

et al like libro et ly v v ring the trend in an etal installation, is he need to durite tion of control, research a instrumentation a servicin when et of aller out of the research and the service research.

A curtifictive of these the opposite off ates.

i who sted as - ruit ble ubjet of further investigation.

VIII. APPENDIX

Symbolism

			3
A	-	area, annular unless otherwise noted	ft.
To	-	blade width, axially	ft.
O	***	absolute velocity ft/s	ec.
G _P	***	specific heat at constant pressure BTU/1b,	or.
D	-	tip diameter, over longest blade	ft.
đ	440	pitch diameter, at mid-blade	ft.
350	•	general function; also a general force	
g	***	gravitational constant, 32.2	sec ²
h	***	enthalpy	1/16
I	_	moment of inertia	ft.
J	ingan)	mechanical equivalent of heat, 778 ft.1b/	'BTU
k	~	ratic of specific heats, Cp/Cv	
L	bail	blade length, radially	ft.
L#	-	component length	ft.
M	-	Mach No.	
	-	bending moment	o.ft
N	-	number of like stages or units	
P	-	pressure	ft.
P*	Carel	power, horsepower unless otherwise shown	
R	-	gas constant, for air 53.3	of.
R#	-	reheat factor	
r	-	pressure ratio in a component, greater than unity	
3	-	blade spacing, circumferentially, on pitch circle	ft.
\$	•	solidity, b/S	

The contract of the contract o

- 0 1/2/3/2

e	on the state of th		
.112 X.L.1.	in and the sould -	- 16	
.0=8/.*=	riselor statement	- 3)	
. The same of the	to dead attions	00	
.st loanest land.	TT (=511 .737	- 7	
.11 -12-22-31 18	and ell books .	- 10	
able of Theoremah movements	genori netton	u V E	
net: ot, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30	. fac 3 stve-	- 19	
5.0/16	m I one	· d	
e e e e e e e e e e e e e e e e e e e	recal to Jacob		
oraldi. or new t, the control of the	Time Datamon -	s t	
0 25 21, 50/2.	17350 18 70 027.4	. 30	
.1Y vilain	and the state of t	- J	
. 0 7	of a l to Moreo	n di L	
	Madii Wg.	. 14	
-à ₋ - € - [CATHODOLIN VIV. EMBER	A.	
of its to so any at	o oll * - during -	usk III	
* 121	eviseem.	- 0	
porodia philosolita analysi e	programme to the second		
, es/49 6.1.5 es. 1	AT STREETON BAD .	ş.al	
	corpus Totales	4 · 3	
n s compount, trader than enths	iolis remote	per E	
design of the control of the		ing	

111111

T	-	temperature
t	-	thickness ratio, vs., chord or diameter
U	-	circumferential velocity on pitch diameter ft/sec.
V	-	net or working volume ft.
V*	-	component volume, overall ft.
W	-	work ft.lb/lb.
W#	-	component weight lb.
W	-	mass flow rate; also relative velocity lb/sec;ft/sec.
Y	-	cascade elearance factor
y	-	extreme fiber distance from neutral axis ft.
Z	-	number of blades in a row
Cr.	-	angle of absolute velocity with plane of cascade
β	-	angle of relative velocity with plane of cascade
Δ	100	a special function of (L/d) and δ
δ	-	blade aspect ratio, L/b
3	-	angle of fluid deflection
7	-	efficiency, output/input
0	-	blade camber angle
λ	•	the exponent (k-1)/k 7 se
j.L	-	the exponent (k-1) γ_{st}/k
		the exponent (k-1)/k
P	-	density lb/ft.
Σ	-	stress parameter, $\sigma/\gamma\rho_b$ ft.
σ		tensile stress lb/ft.
T	-	taper factor, for stress reduction in rotating blade
Ψ	-	aerodynamic load coefficient

No	্ এই প্র	uloulio	វា
- oj	dirings weld, the coord or the	~	
.00 13: 30:00:	le sofic as priou v L itas sons uto	Japon	U
\$. 72	e usov alao ao ta.	annual .	¥.
· · · · · ·	co won nt volume, ov - 11	262	44
*t.11/11.		gare	
.('_	community of the	grap.	THE PERSON
tr 1 / nec;ft/ ec.	icolov aviiving onis ; afer old padi	Shah	W.
	chords cherrace fector	- Company	4
.72	f then west compate still entitle	900	E.
	nurber of olacter in a row	~	2
		,	
19. 19 to 9	engle of shedowe which it had n	##A	30
nonos o to s	a li nii: viin lev viinla 10 elan	Johann	B
	a special function of (L/A) and 6	Saper .	۵
	blue aspect write, I/b	Ros	8
	not outlied bille to day.	Parts.	3
	efilelency, out out/in ut	Graft	2
	blude a ub m engle	- Consul	9
	the execution (1-1)/: 72 se	-	1
	x/2 /2 (2-5) 350 2000 000,	Sports	4
	th onent (1-1)/	draw	V
2 2 7 7	* * \$ * £ * £ * £ * £ * £ * £ * £ * £ *	Alped	N.S
. J e	66.448	nyshig	Ž.,
1/10.	no min of their	spine	0
	taper factor, for stress relaction i	v9-0	T
	te to to bol of of as		Y

ω - angular velocity

rad/sec.

Subscripts

b - burner or combustor; also blade

c - compressor; also casing or stator

g - gas-bending

j - jet

m - mean; also pertaining to Mach No.

n - net

o - stagnation state

p - constant pressure

s - stage; also static

t - turbine

x - axial direction

Station identification

1 - compressor rotor entrance

2 - compressor exit; combustor entrance

3 - combustor exit; turbine inlet

4 - turbine exit

5 - jet discharge

15 1:0 1

- b burser or combatter; the blade
- e course un; al o certar or strion
 - althousing m
 - 7 2 5
- E 10 Los cortainis to aco No.
 - \$ 1 1.
 - o ntimetan et
 - पान पा रेग रेगाउन व
 - nitia o : : : : : : e
 - क्तार्याचे व
 - molfort Litz T

molification to the test of

- 1 com refer extenses
- 2 con multiper but to but top were not
 - trial relate tix relate to .
 - t = aid e* !
 - 5 111 21.10 3

Bibliography

- (1) The Spacing of Turbo-Machinery Blading, Especially for Large Angular Deflections. O. Zweifel, Brown-Boveri Review, v.32, p. 436, 1945.
- (2) Lectures on the Development of the Internal Combustion Turbine. Proc. Inst. Mech. Eng., v. 153, 1945.
- (3) Swedish Practice in Compressor Design.J. R. Schnittger, lectures, M.I.T., 1952.
- (4) Elements of Turbine and Compressor Theory.

 W.R. Hawthorne, notes, M.I.T., 1948.
- (5) Effects of Several Design Variables on Turbine Wheel Weight. LaValle and Huppert, NACA TN 1814, 1949.
- (6) Combustion and Combustion Equipment for Aero Gas
 Turbines. Watson and Clarke, Jour. Inst. of Fuels,
 v. 21, p. 2, 1947.
- (7) Review of Combustion Phenomena for the Gas Turbine. Shepherd, Trans. ASME, v.73, p.921, 1951.
- (8) Design Features of a 4800-HP Locomotive Gas Turbine Power Plant. Howard, General Electric Tech. Bull. 1457A, 1752, 1753.
- (9) Aerodynamic Turbine with Closed Circuit. Ackeret and Keller, Escher Wyss News, v. 15/16, 1942/43.

Partie and Parties

- (1) was solve of unto-deficer Chains, something for a soveri-
- (2) .eetar on the Davilograt of the Lagrant Committee article or the Lagrant Committee.
 - (2) The the tentor sector sector.

 J. L. 'choitter, lectures, ...'., 152.
 - (4) I with of Turbine or for resprincery.
 - (5) If the control total writing on tarbine total edget, telliller no tarbine total edget.
 - (5) Julka ton and Jeneral no control of the control
 - (7) Sent of Judguting Just not the Internation. Chephard, Trans. 22, 73, 2,921, 1002.
 - (6) Deatin Fortures of SOU-HT Locasotive for for iron Fower Tient, Howard, Commed Mostric Wood. (bil).
 - (1) erolynosic urbine this dicted direct. The retain Iller, teher year or v. 10/16, 1945/45.

ACCOSTOR BINDER

No. BK 2507

Made By
ACCO PRODUCTS, INC.
Ogdensburg, N. Y., U.S.A.

