Universidad Nacional Autónoma de Honduras Escuela de Física

Nombre:		
Verdadero o Falso: Encierre la letra V si considera que el enunciado es verdade contrario, seleccione la opción F . En caso de elegir $falso$, justifique su respuesta. ($Valor$	ero; de	e lo
1. Erwin Schrödinger postuló que la materia expres <mark>a una n</mark> aturaleza ondulatoria:	\mathbf{V}	${f F}$
2. Las partículas no respetan la relación de energía de Einstein $(E=hf)$:	V	\mathbf{F}
3. Davisson y Germer verificaron experimentalmente la dualidad de las partículas de materia:	\mathbf{V}	\mathbf{F}
4. El principio de incertid <mark>umbre se debe a Wolfgang Paul</mark> i:	V	\mathbf{F}
Selección única: Encierre la letra para el inciso que considere correcto. (Valor = 3 %	%)	

- - a La ecuación de Schrödinger.
 - b Los estados estacionarios.
 - c La función de estado.
- 2. En una partícula libre es verdadero que:
 - a La energía potencial es cero.
 - b La energía potencial no puede ser cero.
 - c La energía total es negativa.
- 3. La interpretación del propagador es que:
 - a Nos permite asociar una solución con un estado energético.
 - b Proyecta las soluciones desde el espacio de posiciones al del momento lineal.
 - c Da la probabilidad de una medida para un observable.

Resuelva: A continuación se le muestra un par de ejercicios para los que debe responder de forma concisa y con procedimiento a las preguntas anexadas. (Valor = 5%)

1. Para la función de onda:

$$\psi(x) = A \exp(i(5.00 \times 10^{10} x))$$

Responda (2.5%):

- a Cuál es su longitud de onda.
- b Cuál es su momento lineal.
- c Cuál es su energía cinética en eV.
- 2. Demuestre que la función de onda $\psi = A \exp(i(kx \omega t))$ es una solución para ecuación de Schrödinger, tomando $k = 2\pi/\lambda$ y U(x) = 0 (2.5%).

Universidad Nacional Autónoma de Honduras Escuela de Física Materia Condensada Normalización y Valores Esperados

	bre:		
Secci	ión: Nombre del Docente:		
-	puesta breve: Lea cuidadosamente las preguntas a continuación y responda con por 3%)	recisi	ón.
1.	¿Qué significa $ \Psi(\vec{\mathbf{r}},t) ^2$?		
2.	Explique brevemente en qué consiste el proceso de normalización de la función de e	stado).
3.	¿Qué implica el principio de incertidumbre de Heisenberg?.		
	dadero o Falso: Encierre la letra V si considera que el enunciado es verdader rario, seleccione la opción F . En caso de elegir $falso$, justifique su respuesta. ($valor\ 2$: lc
1.	Un operador es, grosso modo, una función.	V	F
2.	Un observable es cualquier propiedad física que puede medirse.	V	F
3.	Un valor esperado es una media aritmética de los posibles valores de un observable.	\mathbf{V}	F
4.	La incertidumbre dicta qué tan vaga es la medida de un observable.	\mathbf{V}	F

(Valor = 5%)

1. Una partícula cuántica está descrita por:

Resuelva:

$$\psi = A \cos\left(\frac{2\pi x}{L}\right)$$

Lea cuid<mark>adosa</mark>mente el enunciado y resuelva el problema para la cuestión planteada.

para toda $x \in [-L/4, L/4]$, siendo 0 en cualquier otro intervalo. Determine (2.5%):

- a La constante de normalización A.
- b La probabilidad de que la partícula sea encontrada entre x=0 y x=L/8 si se observa su posición.

2. Para una partícula en un pozo unidimensional (solo depende de x) que se extiende horizontalmente desde x=0 hasta x=L, demuestre que

$$\left\langle x^2\right\rangle = \frac{L^2}{3} - \frac{L^2}{2n^2\pi^2}$$

Ayuda: La función de onda de una partícula en un pozo infinito es:

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right)$$

Universidad Nacional Autónoma de Honduras Escuela de Física Materia Condensada Aplicaciones de la Mecánica Cuántica

Section:	Nombre del Docente:
Respuesta breve: (valor 10 %)	Lea cuidadosamente las preguntas a continuación y responda con precisión
1. Explique breve	mente el funcionamiento de un microscopio electrónico.
2. En sus propias	palabras, ¿qué es un espectro de emisión?
3. En sus propias	palabras, ¿qué es un espectro de absorción?
4. Describa en po	ca <mark>s pal</mark> abras cómo ope <mark>ra un</mark> láser.