Normal Equation Noninvertibility

$$\theta = (X^T X)^{-1} X^T y$$

What if X^TX is non-invertible?

Some matrices do not have an inverse we call those non-invertible matrices. Singular or degenerate matrices (The issue or the problem of X^TX being non invertible should happen pretty rarely).

Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

- What if X^TX is non-invertible? (singular/degenerate)
- Octave: pinv (X'*X) *X'*y

What if X^TX is non-invertible?

• Redundant features (linearly dependent).

E.g. $x_1 = \text{size in } feet^2$

$$x_2 = \text{size in } m^2$$

 $x_1 = (3.28)^2 x_2$ (variables related).

The second thing that can cause X^TX to be non-invertible is if we are trying to run the learning algorithm with a lot of features.

• Too many features (e.g. $m \le n$).

Solution: Delete some features, or use regularization.

a parameter vector theta which is, $\theta \in \mathbb{R}^{101}$

Summary

When implementing the normal equation in octave we want to use the 'pinv' function rather than 'inv.' The 'pinv' function will give us a value of θ even if X^TX is not invertible.

If X^TX is noninvertible, the common causes might be having :

- Redundant features, where two features are very closely related (i.e. they are linearly dependent)
- Too many features (e.g. $m \le n$). In this case, delete some features or use "regularization".

Solutions to the above problems include deleting a feature that is linearly dependent with another or deleting one or more features when there are too many features.