Fuzzy Inspirations in Unsupervised Learning

In Depth Study for Uncertain Systems February 2025

Oltolini Edoardo - 869124

Fuzzy Sets in Data Analysis: From Statistical Foundations to Machine Learning

Inés Couso

Department of Statistics and OR, University of Oviedo, Gijón, SPAIN

Christian Borgelt

Department of Computer and Information Science, University of Konstanz, Konstanz, GERMANY

Eyke Hüllermeier

Department of Computer Science, Paderborn University, GERMANY

Rudolf Kruse

Faculty of Computer Science, Otto von Guericke University, Magdeburg, GERMANY

Perché l'incertezza è importante?

Nella Data Analysis, di solito si assume che i dati provengano da misurazioni precise, questa supposizione è solitamente non corretta.

Punto di Vista Epistemico vs Ontico

Ontico

Le entità sono punti nello spazio F(X). Il "Lag Time" è una quantità che può assumere valori di appartenenza a diversi Fuzzy Set: breve, medio, lungo.

Epistemico

La conoscenza su un oggetto sconosciuto $x0 \in X$ è modellata da un Fuzzy Set \tilde{A} : $\forall x \in X$, $\tilde{A}(x)$ è il grado di possibilità che x0 = x.

Punto di Vista Epistemico vs Ontico

Unsupervised Learning

Clustering: insieme di tecniche di analisi multivariata dei dati volte al raggruppamento di elementi in un insieme di dati.

Clustering Fuzzy?

Ontico

Fuzzy C-Means

Epistemico

Possibilistic Clustering

Fuzzy Clustering

Hard Clustering

Soft Clustering

Gli algoritmi di fuzzy clustering, come il Fuzzy C-Means, sono del tipo «Soft Clustering», e assegnano ad ogni data point diversi gradi di appartenenza a ciascun cluster.

Fuzzy C-Means (FCM)

Ogni cluster Ci è rappresentato da un fuzzy set f_{Ci} . $\sum_i f_{Ci}(o_i) = 1$.

Si assegna l'oggetto ai cluster con un grado di membership basato sulla distanza rispetto ad essi.

> Vantaggi: cerca di evitare minimi locali. Problemi: può generare minimi globali indesiderati. Problema degli outlier

Fuzzy C-Means

$$SSE_f = \sum_{i=1}^{C} \sum_{k=1}^{N} u_{ki}^w * d(x_k, v_i)^2$$

- u^w_{ij} è una funzione convessa in [0, 1].
- w > 1, è detto "Fuzzifier", esprime l'impatto dell'aggiunta di u_{ki} al K-Means

Fuzzy C-Means

- Inizializzazione: genero casualmente gli insiemi fuzzy (cioè i gradi/pesi "u")
- Iterazione:
 - Aggiorno i centroidi per minimizzare SSE_f
 - Aggiorno i pesi per minimizzare SSE_f
- Ripeto fino al criterio di convergenza (cioè non diminuisce più l'errore) oppure ho superato un numero di iterazioni prefissato dall'utente.

$$u_{ki} = \frac{\frac{1}{D(x_k, v_i)^{\frac{1}{w-1}}}}{\sum_{j=1}^{C} \frac{1}{D(x_k, v_i)^{\frac{1}{w-1}}}} \qquad v_i = \frac{\sum_{k=1}^{N} (u_{ki})^w * x_k}{\sum_{k=1}^{N} (u_{ki})^w}$$

Fuzzy Numbers, come scelgo w?

Un Sottoinsieme Fuzzy A di U è formato da elementi di U con un ordine gerarchico dato dai gradi di appartenenza. $x \in U$ sarà in una "order class" α se il suo "membership value" è $\geq \alpha$, con $\alpha \in [0, 1]$, reale.

$$[A]^{\alpha} = \{x \in U : \varphi_A(x) \geq \alpha\}, \text{ con } 0 \leq \alpha \leq 1, \text{ } e \varphi_A : \text{membership function } \}$$

Fuzzy Numbers

Un Fuzzy Set A è un numero fuzzy se l'Universo U su cui ϕ_A è definita, è l'insieme di tutti i numeri reali e soddisfa le seguenti condizioni:

- (i) all the α -levels of A are not empty for $0 \le \alpha \le 1$;
- (ii) all the α -levels of A are closed intervals of \mathbb{R} ;
- (iii) supp $A = \{x \in \mathbb{R} : \varphi_A(x) > 0\}$ is bounded.

Fuzzy Number Triangolari

Di solito abbiamo a che fare con numeri fuzzy "triangolari", "trapezoidali" e "Gaussiani".

Un Fuzzy Set è "triangolare" se la sua funzione di membership è:

$$\varphi_A(x) = \begin{cases} 0 & \text{if } x \le a \\ \frac{x-a}{u-a} & \text{if } a < x \le u \\ \frac{x-b}{u-b} & \text{if } u < x \le b \\ 0 & \text{if } x \ge b \end{cases}$$

Trapezoidali e Gaussiani

$$\varphi_A(x) = \begin{cases} \frac{x-a}{b-a} & \text{if } a \le x < b \\ 1 & \text{if } b \le x \le c \\ \frac{d-x}{d-c} & \text{if } c < x \le d \\ 0 & \text{otherwise} \end{cases}$$

$$\varphi_A(x) = \begin{cases} \exp\left(-\left(\frac{x-u}{a}\right)^2\right) & \text{if } u - \delta \le x \le u + \delta \\ 0 & \text{otherwise} \end{cases}$$

FCM: Come scelgo m?

Minimi Globali Indesiderati

Una delle possibili
soluzioni è
utilizzare un diverso
«fuzzifier»

Classico: $g(u) = u^w$

Basta che:

$$- g(0) = 0$$

$$-g(1)=1$$

Deve essere facilmente derivabile, Trasformazione Quadratica?

Polynomial Fuzzifier

FCM – Polynomial Fuzzifier

$$f_{\text{PFCM}}(u) = \frac{1-\beta}{1+\beta}u^2 + \frac{2\beta}{1+\beta}u, \ \beta \in [0,1)$$

$$\boldsymbol{J}_{\mathrm{PFCM}}(\boldsymbol{X}, \boldsymbol{U}, \boldsymbol{Y}) = \sum_{i=1}^{c} \sum_{j=1}^{n} f_{\mathrm{PFCM}}(u_{ij}) d_{ij}^{2}$$

 $d_{ij} > d_{kj} \rightarrow u_{ij} \le u_{kj}$. I centroidi vengono ordinati in base alle loro distanze da xj, ciò fornisce anche un ordinamento sui membership degree.

FCM – Polynomial Fuzzifier

$$u_{ij}^{t+1} \overset{\text{PFCM}}{=} \left\{ \begin{array}{l} \frac{1}{1-\beta} \left(\frac{1+(\hat{c}_{j}^{t}-1)\beta}{\frac{\hat{c}_{j}^{t}}{\sqrt{(d_{ij}^{t})^{2}}}} - \beta \right) & \text{iff} \quad \varphi(i) \leq \hat{c}_{j}^{t} \\ 0 & \text{otherwise} \end{array} \right.$$

FCM con Noise Cluster

Il rumore è quindi una classe separata, rappresentata da un centroide extra, che ha distanza costante δ , da tutti i vettori "feature". La funzione da minimizzare diventa:

$$J_2(U,V) = \sum_{i=1}^c \sum_{k=1}^n (u_{ik})^m D_{ik} + \sum_{k=1}^n (u_{0k})^m \delta^2$$

Possibilistic Clustering -> Teoria della Possibilità

«Tizio è QUASI calvo»: appartiene alle persone calve? - Membership Degree.

«Tizio è QUASI CERTAMENTE calvo» - Teoria della Possibilità

I Fuzzy Set sono funzioni $\pi: S \rightarrow [0,1]$

Se $\pi(x) = 1$, x è totalmente possibile.

Se $\pi(x) = 0$, allora è impossibile.

Esempio: un'automobile è scura → è possibile che sia blu, nera... ma è impossibile che sia bianca.

Probabilità VS Possibilità

Totale ignoranza: $\forall x \in S$, $\pi(x) = 1$, tutti gli stati sono ugualmente e totalmente possibili.

Conoscenza completa: $\exists x \in S, \pi(x) = 1 \text{ e } \forall b \neq x, \pi(b) = 0.$

La misura di Possibilità ha un suo duale, la misura di Necessità:

Misura di Possibilità: $\Pi(A) = \max_{a \in A} \{\pi(a)\}.$

Misura di Necessità: $N(A) = 1 - \Pi(A^C) = \min_{a \notin A} \{1 - \pi(a)\}$

Possibilistic Clustering

- Rilassa il vincolo sui gradi di membership. La somma ora può essere $\leq o \geq 1$. Almeno un cluster deve contenere l'oggetto o_j , quindi sicuramente la somma è > 0.
- Deve essere modificata la funzione obiettivo, altrimenti avremo sempre $u_{ki} = 0$
- Le f_{C_i} diventano distribuzioni possibilistiche, $f_{C_i}(o_j)$ rappresenta la tipicality dell'oggetto o_i nel cluster Ci

Possibilistic: Funzione Obiettivo e Aggiornamenti

Nella versione di Krishnapuram e Keller, è formulata come:

$$\min_{\mathbf{U},\mathbf{H}} J_{PkM} = \sum_{i=1}^{n} \sum_{g=1}^{k} u_{ig}^{m} d^{2} \left(\mathbf{x}_{i}, \mathbf{h}_{g}\right) + \sum_{g=1}^{k} \eta_{g} \sum_{i=1}^{n} \left(1 - u_{ig}\right)^{m},$$
s.t.
$$u_{ig} \in [0, 1], i = 1, \dots, n, \forall g = 1, \dots, k,$$

Aggiornamenti:

$$u_{ig} = \frac{1}{1 + \left(\frac{d_{ig}^2}{\eta_g}\right)^{\frac{1}{m-1}}}. \qquad \eta_i = K \frac{\sum_{j=1}^N u_{ij}^m d_{ij}^2}{\sum_{j=1}^N u_{ij}^m}$$

Penalizzazione

Possibilistic Clustering – Repulsion Constraints:

$$\min_{\mathbf{U},\mathbf{H}} J_{PkM-R} = \sum_{i=1}^{n} \sum_{g=1}^{k} u_{ig}^{m} d^{2} \left(\mathbf{x}_{i}, \mathbf{h}_{g} \right) + \sum_{g=1}^{k} \eta_{g} \sum_{i=1}^{n} \left(1 - u_{ig} \right)^{m} \\
+ \sum_{g=1}^{k} \gamma_{g} \sum_{g'=1, g' \neq g}^{k} \frac{1}{\xi d^{2} \left(\mathbf{h}_{g}, \mathbf{h}_{g'} \right)} \\
\text{s.t.} \qquad u_{ig} \in [0, 1], i = 1, \dots, n, \forall g = 1, \dots, k,$$

Termine di Repulsione

Valutazione del Clustering

Silhouette: coesione e separazione

- Calcola a = distanza media di i dai punti nello stesso cluster
- Calcola b = min(distanza media di i dai punti in altri cluster)
- \bullet Coefficiente di Silhouette: $s_i = (b-a) \; / \; max(a,\,b)$

Come deve essere s_i?

Fuzzy Silhouette

$$CS = \frac{1}{n} \sum_{j=1}^{n} s_j$$

$$FS = \frac{\sum_{j=1}^{n} (u_{pj} - u_{qj})^{\alpha} S_{j}}{\sum_{j=1}^{n} (u_{pj} - u_{qj})^{\alpha}}$$

Xie-Beni Index: Compattezza e Separazione

$$XB = \frac{\sum_{i=1}^{N} \sum_{k=1}^{c} u_{ik}^{m} ||x_{i} - v_{k}||^{2}}{N \cdot \min_{j \neq k} ||v_{j} - v_{k}||^{2}}$$

- N: numero di punti dati;
- c: numero di cluster;

Principal Component Analysis (PCA)

B I C O C C A ONALIMITATION TO THE STATE OF THE STATE OF

Fuzzy PCA

Fuzzy PCA, Fuzzy 1-Line

$$J(A,L;\alpha) = \sum_{j=1}^{n} [A(x^{j})]^{2} d^{2}(x^{j},L) + \sum_{j=1}^{n} [\bar{A}(x^{j})]^{2} \frac{\alpha}{1-\alpha}$$

$$J_2(U,V) = \sum_{i=1}^c \sum_{k=1}^n (u_{ik})^m D_{ik} + \sum_{k=1}^n (u_{0k})^m \delta^2$$

Robust fuzzy principal component analysis (FPCA). A comparative study concerning interaction of carbon-hydrogen bonds with molybdenum-oxo bonds

Fuzzy PCA

Il prototipo, la prima componente principale, viene denotata con L(u,v), dove v è il centro della classe e u, con ||u|| = 1, che è la direzione principale, associata all'autovalore di modulo massimo λ_{max} della matrice di covarianza fuzzy:

$$C_{kl} = \frac{\sum_{j=1}^{n} [A_i(x^j)]^2 (x_{jk} - \bar{x}_k)(x_{jl} - \bar{x}_l)}{\sum_{j=1}^{n} [A_i(x^j)]^2}$$

$$A(x^j) = \frac{\alpha/(1 - \alpha)}{[\alpha/(1 - \alpha)] + d^2(x^j, L)}$$

PCA vs FPCA

Digits Dataset

Shape: 1797x64

- Contenuto: 1797 immagini di cifre scritte a mano.
- Formato: Ogni immagine è una matrice 8x8 → 64 caratteristiche.
- Scala di grigi: I valori dei pixel vanno da 0 (bianco) a 16 (nero).
- Etichette: Ogni immagine ha un'etichetta che indica la sua cifra (da 0 a 9).

Metriche	FCM-PF	KM	FCM
Silhouette (Sil)	0.2984	0.1687	-0.0584
Silhouette con Fuzzy (SilF)	0.3755	_	0.0417
Xie-Beni (XB)	2.2441	1.6271	6.0807e + 26

Digits +	FPCA,	n	= 2
----------	-------	---	-----

Varianza Spiegata	PC1 + PC2		
FPCA	0.6883		
PCA	0.2851		

Metriche	FCM-PF	PCM	KM	FCM
Silhouette (Sil)	0.5641	-0.3541	0.3844	0.5559
Silhouette con Fuzzy (SilF)	0.6239	0.0473	_	0.6904
Xie-Beni (XB)	0.2101	374000.1748	0.2785	0.1445

Labeled Data

FCM in Brain Tumor Segmentation

I diversi tessuti cerebrali, tra cui il liquido cerebrospinale, la materia bianca e la materia grigia, non sono ben distinguibili nelle RM, di conseguenza, i bordi tra le regioni si confondono tra loro, come nella seguente sezione:

FCM - Gustafson-Kessel

$$\mathbf{F}_{i} = \frac{\sum_{j=1}^{N} \mu_{ij}^{m} (\mathbf{x}_{j} - \mathbf{c}_{i}) (\mathbf{x}_{j} - \mathbf{c}_{i})^{\mathsf{T}}}{S_{i}}, \quad 1 \leq i \leq C$$

$$S_i = \sum_{j=1}^N \mu_{ij}^m$$

$$D_{ij} = \sqrt{(\mathbf{x}_j - \mathbf{c}_i)^{\top} \left[\det(\mathbf{F}_i)^{1/N} \mathbf{F}_i^{-1} \right] (\mathbf{x}_j - \mathbf{c}_i)}, \quad 1 \le i \le C, \quad 1 \le j \le N$$

Brain Tumor Segmentation con FCM (GK)

Il processo di segmentazione include i seguenti passaggi:

- Preparare i vettori delle caratteristiche dai dati di addestramento e di test.
- 2. Raggruppare i dati di addestramento utilizzando la metrica di distanza specificata.
- 3. Identificare il cluster che rappresenta il tumore.
- 4. Utilizzare i centri dei cluster identificati per individuare i tumori nei dati di test.

https://it.mathworks.com/help/fuzzy/brain-tumor-segmentation-using-fuzzy-c-means-clustering.html

Brain Tumor Segmentation con FCM (GK)

Questo esempio utilizza il dataset BraTS, che contiene volumi 4D. Ogni volume è di dimensioni 240×240×152×4. Le prime tre corrispondono all'altezza, larghezza e profondità dell'immagine 3D, mentre la quarta rappresenta le diverse modalità di scansione.

```
trainDataFileName = fullfile(imageDir,...
    "sampleBraTSTestSetValid","imagesTest","BraTS447.mat");
testDataFileName = fullfile(imageDir,...
    "sampleBraTSTestSetValid","imagesTest","BraTS463.mat");
testLabelFileName = fullfile(imageDir,...
    "sampleBraTSTestSetValid","labelsTest","BraTS463.mat");
```


Brain Tumor Segmentation con FCM (GK)

```
kDim = [3 3];
trainFeatures = createMovingWindowFeatures(trainingData,kDim);
```

```
refTumor = cell(1,n); % Tumor pixel ids
refHasTumor = false(1,n);
for id = 1:n
    refTumor{id} = find(refLabel(:,:,id)==1);
    refHasTumor(id) = ~isempty(refTumor{id});
end
```


Brain Tumor Segmentation with FCM (GK)

```
rng("default")
mnCenters = fcm(trainFeatures, options);
mnDist = findDistance(mnCenters, testFeatures);
    [~,mnLabel] = min(mnDist',[],2);
    mnLabel = reshape(mnLabel,n,r*c)';
    mnLabel = reshape(mnLabel,[r c n]);
```


Brain Tumor Segmentation with FCM (GK)

Ora identifichiamo i pixel tumorali nelle immagini di test con la funzione «segmentTumor», specificando l'indice del cluster che rappresenta il tumore.

- Etichetta i pixel tumorali nell'immagine.
- Calcola il numero di pixel falsi positivi.
- Restituisce un valore logico che indica se l'immagine contiene un tumore.

BICOCCA BICOCCA

Segmentation with FCM (GK)

Test Image

Tumor Detection

Segmented Image

Labeled Image

Ground Truth

Euclidean Distance

Mahalanobis Distance

	True Pos	True Neg	False Pos	False Neg	
Euclidean Distance	80	26	46	0	
Mahalanobis Distance	79	36	36	1	

BICOCCA ONALIMIDATION BICOCCA

Confronto con K-Means

Conclusioni

1. Prestazioni Migliorate:

I risultati dimostrano che il fuzzy clustering supera il kmeans standard in termini di qualità, essendo più robusto e cercando minimi globali.

2. Segmentazione Ottimizzata dei Tumori Cerebrali:

L'FCM-GK riesce a identificare con maggiore precisione le boundary region, dove le caratteristiche dei tessuti tumorali e sani si sovrappongono, migliorando l'accuratezza nella segmentazione.

Risultati Finali con FCM (GK)

	True Pos	True Neg	False Pos	False Neg
Euclidean Distance	80	26	46	0
Mahalanobis Distance	79	36	36	1

Calcolo delle Componenti Connesse + Rimozione Elementi Piccoli

True Pos	True Neg	False Pos	False Neg
79	61	11	1

Fuzzy Clustering su Iris Dataset

Metriche	FCM-PF	KM	FCM
Silhouette (Sil)	0.7357	0.5528	0.7320
Silhouette Fuzzy (SilF)	0.7578	_	0.8091
Xie-Beni (XB)	0.1543	0.1628	0.1369

Iris + FPCA, n=2, varianza 100%

Metriche	FCM-PF	KM	FCM
Silhouette (Sil) Silhouette con Fuzzy (SilF) Xie-Beni (XB)	0.8023 0.8061 0.1564	0.6056 $ 0.1557$	0.7131

Possibilistic + Repulsion

Metriche	Valore
Silhouette (Sil) Silhouette con Fuzzy (SilF) Xie-Beni (XB)	0.7380 0.7988 0.0741

Wine Dataset

Il dataset contiene informazioni su **178 campioni di vino** con **13** caratteristiche chimiche.

Wine Dataset

Pre-PCA

Metriche	FCM-PF	KM	FCM
Silhouette (Sil)	0.7125	0.5422	0.7117
Silhouette con Fuzzy (SilF)	0.7383	_	0.7876
Xie-Beni (XB)	0.1904	0.2077	0.1393

Table 8: Risultati delle metriche per PF, KM e FCM.

Post-PCA n=2

Metriche	FCM-PF	PCM	KM	FCM
Silhouette (Sil) Silhouette con Fuzzy (SilF)	$0.6740 \\ 0.7130$	0.0247 0.5718	0.4811	0.6698 0.7718
Xie-Beni (XB)	0.7130 0.1114	467.8961	0.1643	020

Table 9: Risultati delle metriche per PF, PCM, KM e FCM.

Wine Dataset

Clustering Fuzzy su Wine Data

