Les nombres complexes

Chapitre 3

I. Définition

$$i^2 = -1$$

 $\forall z \in \mathbb{C}, \exists! (a, b) \in \mathbb{R}^2, z = a + ib$

II. Propriété

1. Conjugué

$$\frac{1}{z} = \frac{\bar{z}}{z\bar{z}}$$

$$z\bar{z} = a^2 + b^2$$

$$z + \bar{z} = 2a$$

$$z - \bar{z} = 2bi$$

2. Module

$$\begin{split} |z| &= \sqrt{a^2 + b^2} = \sqrt{z\bar{z}} \\ \big| |z| + |z'| \big| &\le |z + z'| \le |z| + |z'| \\ |z| &= |\bar{z}| \\ \big| \frac{1}{z} \big| &= \frac{1}{|z|} \\ \frac{1}{z} &= \frac{\bar{z}}{|z|^2} \end{split}$$

3. Forme trigonométrique et notation exponentielle

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

$$zz' = rr'\cos(\theta + \theta') + i\sin(\theta + \theta')$$

$$\cos\theta - i\sin\theta = \cos-\theta + i\sin-\theta$$

$$-\operatorname{Arg}(z) = \frac{1}{\operatorname{Arg}(z)}$$

III. Valeurs des sin et cos

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin x	$\frac{\sqrt{0}}{2} = 0$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2} = 1$
cos x	$\frac{\sqrt{4}}{2} = 1$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{0}}{2} = 0$

IV.Transformations complexes

« Définition »		Écriture simplifié		Écriture complète	
Translation	$M'(z') = T_{\overrightarrow{AB}(b)}M(z)$	z' = z + b			
Rotation	$M'(z') = \mathcal{R}(\Omega(\omega), \alpha)(M(z))$	$z' = e^{i\alpha}z + c$	$c = \omega(1 - e^{i\alpha})$	$z' - \omega = e^{i\alpha}(z - \omega)$	
Homothétie	$M'(z') = \mathcal{H}(\Omega(\omega), k)(M(z))$	z' = kz + c	$c = \omega(1 - k)$	$z' - \omega = k(z - \omega)$	