

Programação e IoT Laboratório 04 - ATUADORES

OBJETIVO

- Conhecer os periféricos de saída utilizados em IoT;
- Saber usar e aplicar atuadores discretos e não discretos;
- Conhecer a função PWM;
- Aprofundar sobre os recursos do Tinkercad.

MATERIAL UTILIZADO

- Computador com:
 - Sistema operacional Windows;
 - Porta USB;
 - Acesso à internet;
- Tinkercad:
 - https://www.tinkercad.com/

Programação e IoT Laboratório 04 - ATUADORES

TEORIA

TEORIA – Dispositivos discretos de saída

Eletroválvula

Eletroválvula

Relé fotocélula

TEORIA – Dispositivos discretos de saída

Motor de passo

Motor de passo

Transistor

Facens

Eletroválvula pneumática

Eletroválvula pneumática

TEORIA – Dispositivos não discretos de saída

Leds – intensidade do brilho

Servo motor

Facens

Transistor

Motor DC

Inversor de frequência

LISTA DE FUNÇÕES DO ARDUINO JÁ TRABALHADAS

As seguintes funções já foram utilizadas nos sketchs do Arduino:

- pinMode(numeroPino, modo);
 - numeroPino: 0 a 13
 - modo: pode ser INPUT, OUTPUT ou INPUT_PULLUP
- digitalRead(numeroPino);
- analogRead(nomePino);
 - nomePino: A0 a A5
- delay(ms);
 - ms: valor do tempo de espera em milissegundos
- Serial.print(val);
- Serial.println(val);
 - val: texto (entre aspas dupla) ou uma variável de programa
- Serial.begin(9600);

SINAIS DIGITAIS – digitalWrite()

Atribui um valor à um pino digital especifico

- Sintaxe
 - digitalWrite(numeroPino, valor)
- Parâmetros
 - numeroPino: número do pino de saída
 - valor: HIGH ou LOW
- Função sem retorno

```
void setup() {
  pinMode(13, OUTPUT);
}

void loop() {
  digitalWrite(13, HIGH);
  delay(1000);
  digitalWrite(13, LOW);
  delay(1000);
}
```


SINAIS ANALÓGICOS - analogWrite()

Aciona uma onda PWM em um pino digital

- Essa função funciona nos pinos 3, 5, 6, 9, 10
 e 11
- A frequência é de 490Hz
- Nos pinos 5 e 6 a frequência é de 980Hz
 - Sofrem interferência das funções millis() e delay(), que compartilham o timer
- Sintaxe
 - analogWrite(numeroPino, dutyCycle);
- Parâmetros
 - numeroPino: número do pino de entrada
 - 3, 5, 6, 9, 10 ou 11
 - dutyCycle: duty cycle do PWM
 - 0 (0%) ~ 255 (100%)
- Sem Retorno

```
// LED conectado ao pino digital 9
int ledPin = 9:
// potenciômetro conectado ao pino analógico 3
int analogPin = 3;
// variável para guradar o valor lido
int val = 0:
void setup() {
  // configura o pino como saída
  pinMode(ledPin, OUTPUT);
void loop() {
  // lê o pino de entrada analógica
 val = analogRead(analogPin);
  // analogRead retorna valores de 0 a 1023
 // analogWrite recebe de 0 a 255
  analogWrite(ledPin, val / 4);
```


PROGRAMAÇÃO DO SERVO

Programação e IoT Laboratório 04 - ATUADORES

PROCEDIMENTOS

PROCEDIMENTO 1 – USANDO RELÉ

1. Faça um programa em que o motor fica ligado por 3 segundos e desligado por 1

segundo.

PROCEDIMENTO 1 – USANDO RELÉ (Teoria)

a) O Tinkercad possui o LU-5-R, que tem a seguinte configuração de pinos:

PROCEDIMENTO 1 – USANDO RELÉ (Cuidados)

- b) Adicione um diodo invertido aos polos da bobina do relé
 - Quando o relé é energizado, a bobina acumula energia magnética
 - Ao tentar desligar o relé, a bobina tenta manter a corrente
 - Gera uma tensão reversa
 - A função desse diodo é proteger o Arduino contra tensão reversa gerada pelo relé
 - Conhecido como "diodo de roda livre"!
 - O diodo absorve a tensão reversa gerada pela bobina do relé

PROCEDIMENTO 1 – USANDO RELÉ (Cuidados)

- Cuidado na conexão do relé ao Arduino
 - Pino 8 na bobina "a"
 - GND na outra extremidade da bobina "a"

PROCEDIMENTO 1 – USANDO RELÉ (Algoritmo)

PROCEDIMENTO 2 – RELÉS CONTROLANDO MOTOR

- 2. Modifique o projeto do Procedimento 1 para acrescentar um segundo relé
 - a) O motor DC será controlado pelo Arduino
 - b) No loop, o motor deve:
 - Girar no sentido horário por 5 segundos
 - Parar por 1 segundo
 - Girar no sentido anti-horário por 5 segundos
 - Parar por 1 segundo

Pino 8	Pino 10	Motor
0V	0V	Off
0V	5V	Girando
5V	0V	Girando
5V	5V	Off

PROCEDIMENTO 2 – RELÉS CONTROLANDO MOTOR

PROCEDIMENTO 3 – CONTROLE DE UM SERVO MOTOR

- 3. Monte um circuito que faça o servo motor variar de 0° a 90° e depois 90° para 0°
 - Variar o ângulo de 1° a cada 20ms

