

Introducción al Cálculo - MAT1107

Rodrigo Vargas

¹ Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile

²LIES Laboratorio Interdisciplinario de Estadística Social, Pontificia Universidad Católica de Chile, Chile

23 de Marzo de 2022

Enunciaremos un método para resolver algunas inecuaciones del tipo

$$\frac{P(x)}{Q(x)}<0\;,$$

donde el signo < puede ser también > 0, \le o \ge .

Nos concentraremos en el caso en que P(x) y Q(x) son productos de factores lineales de primer orden del tipo (ax + b). Diremos que el x = -b/a es un punto crítico para este factor y corresponde al valor en el cual el factor es cero.

Resolución de Inecuaciones

El método para resolver estas inecuaciones es:

- Determinar todos los puntos críticos de los factores lineales involucrados.
- Ordenar los puntos críticos de menor a mayor y formar los intervalos encerrados entre ellos.
- **1** Mediante una tabla de signos determinar el signo de la expresión $\frac{P(x)}{Q(x)}$ en los intervalos dados por el paso 2.
- Escoger los intervalos para los cuales se satisface la inecuación dada.

EJEMPLO 1 Resuelva las siguientes inecuaciones

$$x^2 + x > 2$$

Solución Notemos que

$$x^2 + x > 2 \iff x^2 + x - 2 > 0 \iff (x + 2)(x - 1) > 0$$
.

Los factores lineales se anulan cuando x=-2 y x=1 y estos son los puntos críticos de la inecuación. Ahora realizamos una tabla de signos con los factores lineales involucrados:

-0	o -: 	2 :	l ∝
x+2	_	+	+
x-1	_	_	+
	+	_	+

El conjunto solución para la inecuación es

$$S =]-\infty, -2[\cup]1, +\infty[$$
.

$$2x+1 \le 1$$

Solución Notemos que

$$\frac{2x+1}{x+2} \leqslant 1 \iff \frac{2x+1}{x+2} - 1 \leqslant 0$$

$$\iff \frac{2x+1}{x+2} - \frac{x+2}{x+2} \leqslant 0$$

$$\iff \frac{(2x+1) - (x+2)}{x+2} \leqslant 0$$

$$\iff \frac{x-1}{x+2} \leqslant 0.$$

En este caso los puntos críticos son x=1; x=-2. Note que en este caso tenemos que el punto crítico x=-2 es una restricción para la inecuación.

Realizando la tabla de signos

-0	o −: 	2 1	l 0
x+2	_	+	+
x-1	_	_	+
	+	_	+

En este caso el conjunto solución es S =]-2,1]. Note que el punto $1 \notin S$ ya que es una restricción de la inecuación.

$$3 \frac{x^2 - 8x + 15}{x - 4} < 0$$

Solución Notemos que

$$\frac{x^2 - 8x + 15}{x - 4} < 0 \Longleftrightarrow \frac{(x - 3)(x - 5)}{x - 4} < 0.$$

- Puntos críticos: x = 3, x = 4, x = 5.
- Restricción: $x \neq 4$.

• Tabla de signos

-0	0 :	3 4	1 ;	<u> </u>
x-3	_	+	+	+
x-4	_	_	+	+
x-5	_	_	_	+
	_	+	_	+

• Conjunto solución: $S =]-\infty, 3[\cup]4, 5[$.

$$3 + \frac{1}{x-1} > \frac{1}{2x+1}$$

Solución Notemos que tenemos la siguientes equivalencias con la inecuación original

$$\iff 3 + \frac{1}{x-1} - \frac{1}{2x+1} > 0$$

$$\iff \frac{3(x-1)(2x+1) + (2x+1) - (x-1)}{(x-1)(2x+1)} > 0$$

$$\iff \frac{6x^2 - 2x - 1}{(x-1)(2x+1)} > 0.$$

Las raíces de la ecuación $6x^2-2x-1=0$ son $x_1=\frac{1-\sqrt{7}}{6}=-0,274\ldots$ y $x_2=\frac{1+\sqrt{7}}{6}=0,607\ldots$ por lo que podemos realizar la factorización

$$6x^2 - 2x - 1 = 6(x - x_1)(x - x_2)$$

La inecuación nos queda

$$\frac{6\left(x-\frac{1-\sqrt{7}}{6}\right)\left(x-\frac{1+\sqrt{7}}{6}\right)}{(x-1)(2x+1)}>0.$$

- Puntos críticos: $x_1 = \frac{1 \sqrt{7}}{6}$, $x_2 = \frac{1 + \sqrt{7}}{6}$, x = 1, $x = -\frac{1}{2}$
- Restricciones: $x \neq 1$ y $x \neq -\frac{1}{2}$.

Tabla de signos

-0	$-\frac{1}{2}$	$\frac{1}{2}$ x	₁ x	2	1 ∝
$x-x_1$	_	_	+	+	+
$x-x_2$	_	_	_	+	+
x-1	-	_	_	_	+
2x+1	_	+	+	+	+
	+	_	+	_	+

Por lo tanto el conjunto solución es

$$S = \left] -\infty, -\frac{1}{2} \right[\cup \left] \frac{1-\sqrt{7}}{6}, \frac{1+\sqrt{7}}{6} \right[\cup]1, +\infty[\ .$$

EJEMPLO 2 Resuelva las siguientes inecuaciones con valor absoluto

1
$$2|x| < |x-1|$$

Solución Hay varias formas de resolver este tipo de inecuaciones, se pueden usar al menos tres métodos alternativos.

Método 1. (Uso de las propiedades de las desigualdades) Tenemos que

$$0 \le 2|x| < |x-1| \iff 4|x|^2 < |x-1|^2$$

$$\iff 4x^2 < (x-1)^2$$

$$\iff 4x^2 < x^2 - 2x + 1$$

$$\iff 0 < -3x^2 - 2x + 1$$

$$\iff 0 < (x+1)(-3x+1).$$

• Puntos críticos: x = -1, $x = \frac{1}{3}$:

• Tabla de signos

-0	o –	$\begin{bmatrix} 1 & 1_f \\ \end{bmatrix}$	^{∕3} ∝
-3x+1	+	+	_
x+1	_	+	+
	_	+	-

• Conjunto solución: $S = \left] -1, \frac{1}{3} \right[$.

Método 2. (Uso de las propiedades del valor absoluto) Esta técnica se usa del siguiente modo:

$$2|x| < |x-1| \iff -|x-1| < 2x < |x-1|$$

$$\iff (-2x < |x-1|) \land (|x-1| > 2x)$$

$$\iff (x-1 < 2x \lor x-2 > -2x) \land (x-1 < -2x \lor x-2 > 2x)$$

$$\iff (x > -1 \lor 3x > 1) \land (3x < 1 \lor x < -1)$$

$$\iff (x > -1) \land (x < \frac{1}{3})$$

$$\iff x \in \left(-1, \frac{1}{3}\right).$$

23 de Marzo de 2022

Método 3. (Uso de los puntos críticos)

Esta método comienza buscando todos los puntos en los cuales los factores bajo los valores absolutos cambian de signo. Si miramos la expresión

$$2|x| < |x-1|$$
,

vemos claramente que los puntos críticos son el 0 para el primer valor abosluto y el 1 para el segundo. Estos puntos críticos se ordenan de menor a mayor y con ellos se forman los intervalos $(-\infty,0]$, (0,1] y $(1,+\infty)$.

• Caso 1. $x \in (-\infty, 0]$, los factores x y x - 1 son ambos menores o iguales a cero, por lo que

$$2|x| < |x-1| \iff -2x < -(x-1)$$

 $\iff 2x > x - 1$
 $\iff x > -1$.

Por lo tanto en este intervalo la solución es $S_1 = (-1, 0]$.

• Caso 2. $x \in (0,1]$, el factor x es positivo y el factor x-1 es negativo, entonces

$$2|x| < |x-1| \iff 2x < -(x-1)$$

 $\iff 3x < 1$
 $\iff x < \frac{1}{3}$.

Luego en este intervalo la solución es $S_2 = \left(0, \frac{1}{3}\right)$.

• Caso 3. $x \in (1, \infty)$, los factores x y x - 1 son ambos positivos, entonces

$$2|x| < |x-1| \iff 2x < -(x-1)$$

 $\iff x < -1$.

Esta inecuación tiene solución $(-\infty, -1)$ en \mathbb{R} , pero como lo estamos resolviendo en el intervalo $(1, \infty)$, se deduce que la solución es $S_3 = \emptyset$.

En consecuencia la solución final es

$$S=S_1\cup S_2\cup S_3=(-1,0]\cup\left(0,rac{1}{3}
ight)\cuparnothing=\left(-1,rac{1}{3}
ight)\,.$$

$$|x^2 - |3 + 2x|| < 4$$