Práctica 2: Algoritmos Divide y Vencerás

Alejandro Rodríguez López alexrodriguezlop@correo.ugr.es

15 de abril de 2018

Presentación del problema

El elemento en su posición.

Dado un vector ordenado (de forma no decreciente) de números enteros v, todos distintos.

El objetivo es determinar si existe un índice i tal que v[i] = i y encontrarlo en ese caso.

Técnicas para dar solución al problema:

- Solución "divide y vencerás"
- Solución "fuerza bruta"

Solución: GENÉRICA

```
"Fuerza bruta"

int Fuerza_bruta(vector<int> &v){

for(int i=0;i<v.size();i++)

if(v[i]==i)

return i;

return -1;
```

 ${\bf Figura~1:~Soluci\'on~planteada~para~resolver~ambos~problemas~usando~la~t\'ecnica~de~fuerza~bruta~en~vectores~con~y~sin~elementos~repetidos.}$

Solución: DIVIDE Y VENCERÁS

```
"Divide y vencerás sin elementos repetidos" ____
   int Divide_v_venceras(vector<int> &v, int inicio, int fin) {
           int valor = -1;
           int mitad = (inicio + fin)/2:
           if(inicio <= fin){
                   if(v[mitad]==mitad){
                            valor = mitad;
                   elsef
                            if(v[mitad] > mitad)
10
                                    valor = Divide v venceras(v, inicio, mitad-1):
                            else
12
                                    valor = Divide v venceras(v, mitad+1, fin):
13
14
1.5
           return valor:
16
17
```

Figura 2: Solución planteada para resolver el problema usando la técnica divide y vencerás en vectores sin elementos repetidos.

Solución: DIVIDE Y VENCERÁS

```
🗕 "Divide y vencerás sin elementos repetidos" 🗕
  int Divide_y_venceras(vector<int> &v, int inicio, int fin) {
           int valor = -1;
           int mitad = (inicio + fin)/2:
           if(inicio <= fin){</pre>
                    if(v[mitad]==mitad){
                            valor = mitad;
                    elsef
                            valor = Divide_v_venceras(v, inicio, mitad-1);
10
                            if(valor == -1)
11
                                    valor = Divide_y_venceras(v, mitad+1, fin);
12
13
14
           return valor:
1.5
16
```

Figura 3: Solución planteada para resolver el problema usando la técnica divide y vencerás en vectores con elementos repetidos.

Análisis de eficiencia: Solución para vectores sin elementos repetidos

Figura 4: Cuando el escenario presenta un vector sin elementos repetido el algoritmo desarrollado con la técnica divide y vencerás deja clara su eficiencia, siendo esta bastante mejor que la aportada por el algoritmo de fuerza bruta.

Análisis de eficiencia: Solución para vectores con elementos repetidos

Figura 5: Ante un vector con elementos repetidos el algoritmo de fuerza bruta nos da mejores resultados.

Comparativas: ¿Repetidos o no repetidos? he ahí la cuestión.

Figura 6: El algoritmo desarrollado haciendo uso de la técnica divide y vencerás ve comprometida su eficiencia en los escenarios donde el vector presenta elementos repetidos, quedando claramente visible las diferencias de eficiencia en ambos casos.

Comparativas: ¿Repetidos o no repetidos? he ahí la cuestión.

Figura 7: La eficiencia de los algoritmos no se ve alterada frente a la posibilidad de encontrar elementos repetidos dentro del vector. El algoritmo soluciona el problema en ambos escenarios con la misma eficiencia.

Comparativas: ¿Repetidos o no repetidos? he ahí la cuestión.

Figura 8: Comparativa global, muestra claramente las diferencias que existen a nivel de eficiencia entre las distintas técnicas aplicadas en la resolución del problema.

CONCLUSIONES:

¿PREGUNTAS?

Gracias por su atención! . . .