Systemy cyfrowe i podstawy elektroniki

Adam Szmigielski

aszmigie@pjwstk.edu.pl

materially: ftp(public): //aszmigie/SYC

Kombinacyjne bloki funkcjonalne - wykład 8

Funkcja Boolowska a kombinacyjny blok funkcjonalny

- Kombinacyjny blok funkcjonalny w technice cyfrowej jest układem kombinacyjnym złożonym z n wejściach i m wyjść, gdzie $m, n = 1, 2, \ldots$ są liczbami naturalnymi.
- $Funkcja\ Boolowska$ jest szczególnym przypadkiem kombinacyjnego $bloku\ funkcjonalnego$ posiada tylko jedno wyjście m=1.

Kombinacyjne bloki funkcjonalne

Przykłady kombinacyjnych bloków funkcjonalnych

- układy komutacyjne:
 - multipleksery MUX,
 - demultipleksery DMUX,
 - konwertery kodów, dekodery DEC,
- układy arytmetyczne:
 - sumatory,
 - komparatory,
 - **—** ...
- inne.

Multiplekser (MUX)

- W multiplekserze wyróżnia się dwa rodzaje wejść wejścia adresowe i wejścia informacyjne,
- Multiplekser to funkcjonalny blok kombinacyjny, w którym jest n wejść adresowych i $N=2^n$ wejść informacyjnych, wyjście oraz wejście zezwolenia (enable).

Multiplekser jako przełącznik

- Multiplekser pracuje jako przełącznik,
- Dany multiplekser realizuje funkcję $y = \overline{a_1}a_0 + a_1a_0$
- Multiplekser wypisze na wyjściu taki sygnał jaki jest na wejściu informacyjnym wybranym przez wejścia adresowe.

Kaskadowe łączenie multiplekserów

- Liczba wejść informacyjnych multipleksera rośnie wykładniczo dlatego nie realizuje się bezpośrednio multiplekserów o dużej liczbie wejść adresowych,
- Większe multipleksery można budować z mniejszych.

Demultiplekser (DMUX)

• Demultiplekser to układ kombinacyjny o jednym wejściu informacyjnym o n wejść adresowych i $N=2^n$ wyjściach oraz wejściu zezwalającym .

Demultiplekser jako przełącznik

- Demultiplekser pracuje jako przełącznik,
- Demultiplekser wypisze sygnał z wejścia na wyjście wskazane przez stan wejść adresowych.

Multipleksery i demultipleksery grupowe

- Realizacja bloków komutacyjnych, czyli elementów umożliwiających proste przełączanie sygnałów, jest najczęściej grupowa,
- Multiplekser grupowy (w tym przypadku 4-bitowy) może być dołączane do szyny w zależności od stanu wejścia adresowego .

Realizacja funkcji Boolowskiej za pomocą multipleksera

Realizacja funkcji Boolowskiej za pomocą multipleksera o trzech wejściach adresowych - cd.

y	x_3	$x_2x_1x_0$	$x_2x_1x_0$
1	0	001	1
7	0	111	7
11	1	011	3
13	1	101	5
14	1	110	6
15	1	111	7

- $y = \sum (1, 7, 11, 13, 14, 15)$
- Na 1 wejściu MUX pojawia się $\overline{x_3}$ potrzebna negacja.

Realizacja funkcji Boolowskiej za pomocą multipleksera o trzech wejściach adresowych - wybór zmiennych sterujących

y	$x_3x_2x_1$	x_0	$x_3x_2x_1$
1	000	1	0
7	011	1	3
11	101	1	5
13	110	1	6
14	111	0	7
15	111	1	7

- $y = \sum (1, 7, 11, 13, 14, 15)$
- Tym razem negacja jest niepotrzebna.

Realizacja funkcji Boolowskiej za pomocą multipleksera o dwóch wejściach adresowych

$x_3x_2\backslash x_1x_0$	00	01	11	10
00	0	1	0	0
01	0	0	1	0
11	0	1	1	1
10	0	0	1	0

- $y = \sum (1, 7, 11, 13, 14, 15)$
- Jak wybrać wejścia adresowe?

cd. - Wybór zmiennych adresowych

$x_3x_2\backslash x_1x_0$	00	01	11	10
00	0	1	0	0
01	0	0	1	0
11	0	1	1	1
10	0	0	1	0

Na wejście adresowe wybraliśmy x_3x_2 wówczas na wejścia informacyjne podajemy wyjście funkcji $f(x_1, x_0)$ opisane poprzez odpowiednie wiersze mapy Karnough-a

- $x_3x_2 = 00 \Longrightarrow f(x_1, x_0) = \overline{x_1}x_0$
- $x_3x_2 = 01 \Longrightarrow f(x_1, x_0) = x_1x_0$
- $x_3x_2 = 11 \Longrightarrow f(x_1, x_0) = x_1 + x_0$
- $\bullet \ x_3x_2 = 10 \Longrightarrow f(x_1, x_0) = x_1x_0$

cd. - Realizacja

- $x_3x_2 = 00 \Longrightarrow f(x_1, x_0) = \overline{x_1}x_0$
- $\bullet \ x_3x_2 = 01 \Longrightarrow f(x_1, x_0) = x_1x_0$
- $x_3x_2 = 11 \Longrightarrow f(x_1, x_0) = x_1 + x_0$
- $x_3x_2 = 10 \Longrightarrow f(x_1, x_0) = x_1x_0$

Układy artytmetyczne i logiczne

Popularne kody liczbowe używane w technice cyfrowej

- Kod dwójkowy to pozycyjny system liczbowy, w którym podstawą jest liczba 2.
- ullet Kod 1 z N sposób kodowania, w którym słowa binarne o długości n bitów zawierają zawsze tylko jeden bit o wartości 1.
- **HEX** kod szesnastkowy
- Kod Graya dwójkowy kodem bezwagowy niepozycyjny.
- kod BCD (dziesiętny zakodowany dwójkowo) sposób zapisu liczb polegający na zakodowaniu kolejnych cyfr dziesiętnych liczby dwójkowo przy użyciu czterech bitów.
- kod ZM Znak Moduł
- kod U1 uzupełnień do 1
- kod U2 uzupełnień do 2

Kod dwójkowy - Naturalny kod binarny (NKB)

pozycja: 7 6 5 4 3 2 1 0 wartość: 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0 wartość: 128 64 32 16 8 4 2 1 bity: b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0

- System pozycyjny o podstawie systemu 2
- Liczby określone są bez znaku
- Wartość liczby binarnej (N- długość słowa kodowego) $Wartosc = \sum_{i=0}^{N-1} 2^i \cdot b_i$
- Wartość cyfry zależy od pozycji $b_i = 2^i$ (numerowanie od zera)
- 2^N różnych wartości kodu (kod pełny)

Kod 1 z N

Wartość dziesiętna	Wartość binarna	Kod 1 z 10
0	0000	0000000001
1	0001	0000000010
2	0010	0000000100
3	0011	0000001000
4	0100	0000010000
5	0101	0000100000
6	0110	0001000000
7	0111	0010000000
8	1000	0100000000
9	1001	1000000000

Kod BCD

Cyfra dziesiętna	zapis binarny cyfry		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0101 0110		
6			
7	0111		
8	1000		
9	1001		

- np. Liczba 123 składa się z trzech cyfr. Kodując każdą cyfrę binarnie otrzymujemy kod BCD: 0001 0010 0011.
- Kod niepełny,
- Używany ze względu na prostotę konwersji liczb zapisanych dziesiętnie.

Reprezentacja "znak-moduł" ZM

Najstarszy bit słowa b_{N-1} (MSB - ang. Most Significant Bit) pełni rolę znaku (tj. jeśli $b_{N-1}=1$ to liczna jest ujemna, gdy $b_{N-1}=0$ dodatnia) np.:

$$-24_{10} = 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0$$

$$118_{10} = 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0$$

$$-14_{10} = 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0$$

$$wrtosc = (-1)^{b_{N-1}} \cdot \sum_{i=0}^{N-2} 2^{i} \cdot b_{i}$$

- Ze względu na najstarszy bit kod nie jest wagowy,
- zakres kodu $< -(2^{N-1} 1), 2^{N-1} 1 >$,
- $2^N 1$ kombinacji zero posiadałoby dwie reprezentacje (kombinacja 10000000 (minus zero) jest zabroniona),

kod uzupełnień do 1 (U1) (ang. 1's complement)

- W zapisie tym najbardziej znaczący bit jest także bitem znaku (0
 liczba dodatnia, 1 liczba ujemna), ale w zależności od jego wartości dalsze bity zapisu maja różne znaczenie,
 - Jeśli bit znaku jest 0 (liczba dodatnia), to dalsze bity reprezentują liczby dodatnie w ZM,
 - Natomiast gdy bit znaku jest 1 (liczba ujemna), to dalsze bity reprezentują moduł liczby ujemnej, w taki sposób, że zanegowane ich wartości odpowiadają modułowi tej liczby w kodzie ZM,
- Zapis U1 dla liczb dodatnich jest taki sam jak zapis ZM,
- Różnice w zapisie występują jedynie dla liczb ujemnych,
- Zakres liczb tego zapisu jest taki sam jak dla zapisu ZM.

Kod uzupełnień do 1

- W zapisie U1 występują także dwie reprezentacje zera: 000000...00 i 111111...11,
- Sposób przeliczenia liczby ujemnej w zapisie ZM na zapis U1:
 Zanegować bity oznaczające moduł liczby (bit znaku pozostaje
 1). Np. dla liczb 8-bitowych:

zapis ZM: 11010110 (dziesiętnie -86)

zapis U1: 10101001

Kod uzupełnień do 2 (U2) (ang. 2's complement)

Najstarszy bit MSB ma wartość ujemną pozostałe bity są dodatnie:

$$wartosc = -2^{N-1} \cdot b_{N-1} + \sum_{i=0}^{N-2} 2^{i} \cdot b_{i}$$

- Najstarszy bit identyfikuje czy liczba jest dodatnia czy ujemna,
- Zakres kodu: $< -2^{N-1}, 2^{N-1} 1 >$,
- \bullet 2^N kombinacji (kod pełny), zero ma tylko jedną reprezentację,
- Liczby dodatnie z przedziału $<0,2^{N-1}-1>$ mają identyczną reprezentacje w U2 co w NKB, tj.:

$$(0, b_{N-2}, \dots, b_1, b_0)_{U2} = \sum_{i=0}^{N-2} 2^i \cdot b_i$$

• kod wagowy, najstarszy bit na wartość ujemną. Liczby ujemne można interpretować jako sumę:

$$(1, b_{N-2}, \dots, b_1, b_0)_{U2} = -2^{N-1} + \sum_{i=0}^{N-2} 2^i \cdot b_i$$

- wada kodu U2: zakres kodu jest niesymetryczny, negacja liczby -2^{N-1} prowadzi do błędu (np. dla N=128 liczba -128 mieści się w zakresie, ale 128 już nie),
- Przekroczenie zakresu przy sumowaniu, np. dla N=8: $(127)_{U2}+(4)_{U2}=(-125)_{U2}$ błąd,
- Inkrementacja liczby 127 daje wynik -128.

Negowanie liczb w kodzie U2

$$-(wartosc)_{U2} = \overline{(wartosc)_{U2}} + 1$$

Aby obliczyć liczbę przeciwną do danej w kodzie U2 należy zanegować wszystkie bity i do wyniku dodać jedynkę np.:

$$7_{10}$$
 (00000111)

negacja bitów (11111000)

dodać bit + (00000001)

wynik -7_{10} = (11111001) $_{U2}$

Dodawanie i odejmowanie w kodzie U2

- **Dodawanie** wykonywane jak w NKB, niezależnie od znaków argumentów
- Wartość przeniesienia z najstarszego bitu jest ignorowana,
- Przekroczenie zakresu może wystąpić w dwóch przypadkach:
 - gdy suma dwóch liczb dodatnich przekracza zakres,
 - gdy suma dwóch liczb ujemnych przekracza zakres,
- ullet Odejmowanie w U2 dodanie negacji odjemnika tj.:

$$a - b = a + (-b)$$

- wystarczą operacje negowania i dodawania.

Odejmowanie w kodzie U2 - przykłady

• Sumowanie liczby dodatniej i ujemnej - wynik dodatni,

$$25 + (-1):$$

$$25: 00011001$$

$$-1: + 1111111$$

$$(c_7 = 1): = 00011000_{U2} = 24_{10}$$

• Sumowanie liczby dodatniej i ujemnej - wynik ujemny

$$25 + (-56):$$

$$25: 00011001$$

$$-56: + 11001000$$

$$(c_7 = 0): = 11100001_{U2} = -31_{10}$$

Dodawanie w kodzie U2 - przykłady

• Sumowanie dwóch liczb dodatnich bez przekroczenia zakresu,

$$25 + 1:$$
 $25:$
 00011001
 $+1:$
 $+$
 00000001

$$(c_7 = 0): = 00011010_{U2} = 26_{10}$$

• Sumowanie dwóch liczb ujemnych bez przekroczenia zakresu,

$$(-25) + (-56)$$
:
 -25 : 111001111
 -56 : $+ 11001000$

$$(c_7 = 1): = 10101111_{U2} = -81_{10}$$

Przekroczenie zakresu w kodzie U2 - przykłady

• Sumowanie dwóch liczb dodatnich z przekroczeniem zakresu,

$$112 + 113$$
:

112: 01110000

113: + 01110001

 $(c_7 = 0, c_6 = 1)$: = 11100001 - przekroczeniem zakresu

• Sumowanie dwóch liczb ujemnych z przekroczeniem zakresu,

$$(-75) + (-56)$$
:

-75: 10110101

-56: + 11001000

 $(c_7 = 1, c_6 = 0)$: = 01111101 - przekroczeniem zakresu

Sprzętowe wykrywanie przekroczenia zakresu w U2

• Przekroczenie zakresu w U2 można zidentyfikować analizując przeniesienia:

przychodzące C_{IN} i generowane C_{OUT} przez najstarszy bit,

A B C _{IN}	C _{OUT}	S	OFL
0 0 0	0	0	0
0 0 1	0	1	1
0 1 0	0	1	0
0 1 1	1	0	0
1 0 0	0	1	0
1 0 1	1	0	0
1 1 0	1	0	1
1 1 1	1	1	0

$$\Rightarrow$$
 OFL = $C_{IN} \oplus C_{OUT}$

• Przekroczenie zakresu występuje wtedy i tylko wtedy, gdy oba przeniesienia C_{IN} i C_{OUT} są przeciwnego znaku.

Reprezentacja liczb rzeczywistych

- Reprezentacja stałoprzecinkowa (ang. fixed point)
- Reprezentacja zmiennoprzecinkowa (ang. floating point)

Reprezentacja stałoprzecinkowa

- W sposób arbitralny przyjmuje się, że część słowa jest *częścią* całkowitą, a pozostała część słowa *część ułamkową*,
- Przykładowo, dla słowa ośmiobitowego przyjmijmy część całkowitą jako 5 bitów a część ułamkową jako 3 bity:

```
pozycja: 7 6 5 4 3 2 1 0 wartość: 2^4 2^3 2^2 2^1 2^0 2^{-1} 2^{-2} 2^{-3} wartość: 16 8 4 2 1 \frac{1}{2} \frac{1}{4} \frac{1}{8} bity: b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0
```

Reprezentacja stałoprzecinkowa

- \bullet Liczby stałoprzecinkowe można również interpretować w kodach $U1,\,U2$ czy ZM najstarszy bit będzie miał znaczenie jak w tych kodowaniach,
- Kodowanie stałoprzecinkowe może powodować błąd,
- Dokładność kodowania zależna jest od długości słowa,
- Niektóre liczby całkowite i wymierne nie mają swojej dokładnej reprezantacji w skończonym kodowaniu,
- Liczby niewymierne zawsze kodowane są z błędem.

Reprezentacja stałoprzecinkowa - przykład

Podtrzymując założenie że, 5 najstarszych bitów przeznaczone jest na część całkowitą a pozostałe 3 bity na część ułamkową.

Dodatkowo przyjmujemy, że liczba jest zapisana w kodzie U2:

wartość:
$$-2^4$$
 2^3 2^2 2^1 2^0 2^{-1} 2^{-2} 2^{-3} wartość: -16 8 4 2 1 $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{8}$

• Przykładowy ciąg bitów 11001110 jest wówczas równy: $-16 + (8+1+\frac{1}{2}+\frac{1}{4}) = -6\frac{1}{4},$

- Zakres reprezentowanych liczb mieści się w przedziale $<-16,15\frac{7}{8}>,$
- Liczby rzeczywiste są reprezentowane z błędem nie większym od $\frac{1}{8}$.

Reprezentacja zmiennoprzecinkowa

eksponent mantysa

• Liczba zmiennoprzecinkowa jest reprezentowana jako mantysa i eksponent przy podstawie 2:

 $mantysa \cdot 2^{wykladnik}$

- Mantysa może mieć różne interpretacje (co może być przyczyną nieporozumień),
- Eksponent jest liczbą całkowitą dodatnią albo ujemną.

Dekoder

Dekoder zamienia kod NKB na 1 z N.

• Szczególnym przypadkiem demultipleksera jest dekoder, w którym przyjmuje się, że do wejścia d zawsze jest dołączony sygnał o wartości logicznej 1. Wejście to nie jest dostępne na zewnątrz układu.

Sumowanie

• Sumowanie dwóch a, b bitów:

$$a_i, b_i, c_i \Rightarrow s_i, c_{i+1}$$

(c - przeniesienie, s - wynik sumowania)

Przekroczenie zakresu

- Przeniesienie z najstarszego bitu $(c_{N-1}=1)$ oznacza przekroczenie zakresu dla słowa N-bitowego,
- \bullet Alternatywnie: Wystąpienie przeniesienia oznacza, że wynik jest liczbą bitową o długości N+1. Przeniesienie bitu należy wówczas traktować jako N+1 bit wyniku.

Układy arytmetyczne - sumator

- Operację sumowania arytmetycznego $Y = A + B + c_0$ realizuje sumator. Na wyjściu sumatora powstaje suma n-bitowych liczb binarnych A i B.
- Przypadek przekroczenia zakresu sygnalizowany jest sygnałem przeniesienia c_n .
- Bit przeniesienia można traktować jako najstarszy bit wyniku.

Budowa kaskadowa sumatora

• W najprostszej realizacji sumator jest zbudowany z kaskadowo połączonych sumatorów jednobitowych, o wejściach a_i , b_i i c_i , wyjściach y_i i c_{i+1} .

Budowa sumatora jednobitowego

a	b	c_o	c	у
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- $y = a \oplus b \oplus c_o$
- $\bullet \ c = ab + ac + bc_o$

Komparator

• Komparator umożliwia porównanie dwóch liczb *n*-bitowych i określenie czy są sobie równe, a także która z liczb jest większa, a która mniejsza.

Jednostka arytmetyczno - logiczna ALU

ALU jest układem cyfrowym kombinacyjnym, służącym do wykonywania operacji arytmetycznych, operacji logicznych pomiędzy dwiema liczbami lub operacji jednoargumentowych.

A i B - dane; R - wyjście; F - wybór operacji; D - status wyjścia

Realizacja ALU na multiplekserze

Zadania na ćwiczenia

- 1. Za pomocą multipleksera o czterech wejściach adresowych zrealizuj daną funkcję.
- 2. Za pomocą multipleksera o trzech wejściach adresowych i co najwyżej jednego negatora zrealizuj daną funkcję.
- 3. Zrealizuj układ identyfikujący przekroczenie zakresu dla liczb 4-bitowych w kodzie U2.
- 4. Zrealizuj 4-bitowe ALU wykonujący 4 działania. Kody operacji:
 - 00 ADD suma arytmetyczna,
 - 01 NEG negacja arytmetyczna,
 - 10 XOR,
 - 11 AND.

ALU dodatkowo powinno ustawiać flagi:

Z=1, gdy wynik operacji wynosi zero,

C=1, gdy przekroczenia zakresu w kodzie U2.