

Chapter 0

Basic Prerequisite Knowledge

1. Distributions

• Normal Distribution, $N(\mu, \sigma^2)$

- Chi-square Distribution, $\chi^2(n)$
 - Let $U = Z^2$. If $Z \sim N(0, 1)$, then $U \sim \chi^2(1)$
 - Let $W = X_1 + \dots + X_n$. If $X_i \sim \chi^2(1)$, i = 1, ..., n, independently, then

$$W \sim \chi^2(n)$$

1. Distributions

• t-Distribution, t(m)

- If $Z \sim N(0, 1)$ and $V \sim \chi^2(m)$ independently, then

$$T = \frac{Z}{V/\sqrt{m}} \sim t(m)$$

• F-Distribution, F(m, n)

- If $V \sim \chi^2(m)$ and $W \sim \chi^2(n)$ independently, then

$$F = \frac{V/m}{W/n} \sim F(m, n)$$

2. Confidence Interval

- If $\hat{\theta}$ is a point estimate of θ , which follows a normal or an approximate normal distribution,
- then a $100(1 \alpha)\%$ confidence interval for θ is given by

$$\hat{\theta} \pm t_{v,1-\alpha/2}$$
 s.e. $(\hat{\theta})$

where s.e. $(\hat{\theta})$ is the standard error (i.e. the estimated standard deviation) of $\hat{\theta}$

3. Review of Matrices

3.1 Notation

- $A = (a_{ij})_{i=1, ..., p; j=1, ..., q}$ denotes a $p \times q$ matrix.
- $\underline{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$ denotes a *p*-dimensional vector.
- $A' = (a_{ii}) = \text{transpose of } A$.
- I_p = p x p identity matrix.
 1̄_p = p-dimensional vector of 1's.

3. Review of Matrices

3.1 Notation

If A is a $p \times p$ matrix, then

- |A| = determinant of A (or det(A)),
- A^{-1} = inverse of A. (i.e. $AA^{-1} = A^{-1}A = I_p$.)

3.2 Expectation

• Let
$$\underline{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_p \end{pmatrix}$$
 and $\underline{Y} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_p \end{pmatrix}$ be random vectors

• Then
$$E(\underline{X}) = \begin{pmatrix} E(X_1) \\ \vdots \\ E(X_p) \end{pmatrix}$$
 and $E(\underline{Y}) = \begin{pmatrix} E(Y_1) \\ \vdots \\ E(Y_p) \end{pmatrix}$

If A is a q x p matrix of constants and <u>b</u> is a q x 1 vector of constants, then

$$E(A \underline{X} + \underline{b}) = A E(\underline{X}) + \underline{b}$$

3.3 Covariance Matrix

Covariance matrix is defined as

$$Cov(\underline{X},\underline{Y}) = E\left[\left(\underline{X} - E(\underline{X})\right)\left(\underline{Y} - E(\underline{Y})\right)'\right]$$

$$= E\left(\cdots (X_i - E(X_i))(Y_j - E(Y_j)) \cdots\right)$$

$$\vdots \cdots \vdots$$

$$= \left(\cdots E\left[(X_i - E(X_i))(Y_j - E(Y_j))\right] \cdots\right)$$

$$\vdots \cdots \vdots$$

$$= \left(Cov(X_i, Y_j)\right)_{i=1,\dots,p; j=1,\dots,p}$$

3.3 Covariance Matrix (Continued)

• When $\underline{Y} = \underline{X}$, $Cov(\underline{X}, \underline{X})$ is called the variance-covariance matrix of \underline{X} (or dispersion matrix) and is denoted by $V(\underline{X})$.

$$V(\underline{X}) = Cov(\underline{X}, \underline{X})$$

$$= \begin{pmatrix} Var(X_1) & Cov(X_1, X_2) & \cdots & Cov(X_1, X_p) \\ Cov(X_2, X_1) & Var(X_2) & \cdots & Cov(X_2, X_p) \\ \vdots & \vdots & \ddots & \vdots \\ \cdots & \cdots & Var(X_p) \end{pmatrix}$$

3.3 Covariance Matrix (Continued)

- Note: $V(\underline{X})$ is a symmetric matrix.
- If *A* is a *p* x *p* matrix of constants and <u>b</u> is a *p* x 1 vector of constants, then

$$V(A \underline{X} + \underline{b}) = A V(\underline{X}) A'.$$

- In particular, $V(A \underline{X}) = A V(\underline{X}) A'$.
- Note: Adding a constant vector \underline{b} to the random vector \underline{AX} does not change the variance of \underline{AX} .

3.4 Some properties of matrices

1.
$$AB \neq BA$$

2.
$$(A')' = A$$
 and $(AB)' = B'A'$

3.
$$(AB)^{-1} = B^{-1}A^{-1}$$
 providing A^{-1} and B^{-1} exist

4.
$$(A')^{-1} = (A^{-1})'$$