On Job-Insertion for the Blocking-Job-Shop and its Application to the SBB Challenge

Master thesis of

Fabio Degiacomi

Supervised by

Dr. Reinhard Bürgy & Prof. Bernhard Ries

Decision Support & Operations Research Group, University of Fribourg

September 2020

References / Complete Definition / etc

https://github.com/MrPascalCase/SbbChallenge

Job-Shop Problem

The 'input' data:

- ightharpoonup A set of jobs $\mathcal{J} = \{J_1, \ldots, J_n\}$
- ► Each job is a sequence of *operations*, i.e. $J = (o_{J1}, \dots, o_{Jn_J})$
- \triangleright Each operation o has a processing time p_o
- ightharpoonup A set of machines $\mathcal{M} = \{M_1, \dots, M_m\}$
- \triangleright Each operation o has a machine associated M(o)

The 'problem', define a time t_o for every operation o:

$$\min_{t} \max_{J \in \mathcal{J}} \{ t_{Jn_J} + p_{Jn_J} \}$$

$$0 \le t_o \qquad \forall o \in \mathcal{O}$$

$$t_{Jk} + p_{Jk} \le t_{Jl} \qquad \forall J \in \mathcal{J} \ \forall k \ \forall l \ | \ 1 \le k < l \le n_J$$

$$t_{o_1} + p_{o_1} \le t_{o_2} \lor t_{o_2} + p_{o_2} \le t_{o_1}$$

$$\forall \{ (o_1, o_2) \mid o_1 \in \mathcal{O}, o_2 \in \mathcal{O}, o_1 \ne o_2, M(o_1) = M(o_2) \}$$

Blocking-Job-Shop Problem

The 'input' data:

- ightharpoonup A set of jobs $\mathcal{J} = \{J_1, \ldots, J_n\}$
- Each job is a sequence of *operations*, i.e. $J = (o_{J1}, \dots, o_{Jn_J})$
- \triangleright Each operation o has a processing time p_o
- ▶ A set of machines $\mathcal{M} = \{M_1, \ldots, M_m\}$
- \triangleright Each operation o has a machine associated M(o)

The 'problem', define a time t_o for every operation o:

$$\min_{t} \max_{J \in \mathcal{J}} \{t_{Jn_J} + p_{Jn_J}\}$$

$$0 \le t_o \qquad \forall o \in \mathcal{O}$$

$$t_{Jk} + p_{Jk} \le t_{Jl} \qquad \forall J \in \mathcal{J} \ \forall k \ \forall l \mid 1 \le k < l \le n_J$$

$$t_{succ(o_1)} \le t_{o_2} \lor t_{succ(o_2)} \le t_{o_1}$$

$$\forall \{(o_1, o_2) \mid o_1 \in \mathcal{O}, o_2 \in \mathcal{O}, o_1 \ne o_2, M(o_1) = M(o_2)\}$$

Precedence constraint graph

Disjunctive graph

Definition. A tuple $(V, A, E, \mathcal{E}, l)$ defines a <u>disjunctive graph</u>, if

- (i) $(V, A \cup E)$ is a directed graph.
- (ii) (V, A) is an acyclic directed graph.
- (iii) \mathcal{E} is a set of unordered pairs of arcs; E exactly contains all arcs of \mathcal{E} , i.e.:

$$\forall (e, \bar{e}) \in \mathcal{E} \ (e \in E \land \bar{e} \in E).$$

Furthermore, adding both arcs of a pair to (V, A) yields a cyclic graph. i.e.:

$$\forall (e, \bar{e}) \in \mathcal{E} (V, A \cup \{e, \bar{e}\}) \text{ is cyclic.}$$

For $(e, \bar{e}) \in \mathcal{E}$, we call \bar{e} the <u>mate</u> of e and vice versa.

(iv) $l: (A \cup E) \to \mathbb{R}_{>0}$, defines the length of an arc.

Selection

Definition. S is a selection in a disjunctive graph $G = (V, A, E, \mathcal{E}, l)$ if

- $ightharpoonup S \subset E$
- \triangleright S contains at most one element of every pair of \mathcal{E} .

We call S complete (else <u>partial</u>) if S contains one element of every pair of \mathcal{E} .

S is called <u>feasible</u> if $(V, A \cup S)$ is acyclic.

Selection (ii)

Goal:

Given a complete feasible selection, create 'neighbour' selections, such that we can apply a meta search heuristic (such as a taboo-search).

- ▶ In the (classical-)job-shop exchanging any e with \bar{e} yields such a neighbour.
- ▶ Not in the blocking-job-shop. How can we 'repair' a selection after such a change?
- Context: $\max_{x} \{ f(x) \mid x \in \{0, 1\}^n \},$ $N_1(x) = \{ y \mid ||x - y||_1 = 1 \}.$

Critical arcs

Selection $S \to \text{entry times } t$

- ▶ A selection corresponds to a set of feasible schedules. One of which, the *earliest-starting-date-schedule*, is among the best.
- ▶ For all $v \in V$, in topological order, set:

$$t_v = \max\{ t_u + l(u, v) \mid (u, v) \in (A \cup S) \}$$

▶ Disregarding other schedules, we have a one-to-one relation.

Job-Insertion Graph

Definition. Given a blocking-job-shop problem with jobs \mathcal{J} , a specific job $J \in \mathcal{J}$ and a complete feasible selection S to the problem $\mathcal{J} \setminus J$. For S i.e.:

- $\forall (e, \bar{e}) \in \mathcal{E} \text{ not adjacent to } J, e \in S \vee \bar{e} \in S.$
- $\blacktriangleright \ \forall (e, \bar{e}) \in \mathcal{E} \text{ adjacent to } J, e \notin S \land \bar{e} \notin S.$

Associated with the blocking-job-shop problem is the graph $G = (V, A, E, \mathcal{E}, l)$.

The job-insertion graph $G^J=(V,A^J,E^J,\mathcal{E}^J,l)$ is constructed as follows:

- $ightharpoonup A^J := A \cup S$
- $\triangleright \mathcal{E}^J := \mathcal{E}$ restricted to arcs adjacent to J.
- $ightharpoonup E^J := E$ restricted to arcs adjacent to J.

Short-Cycle Property (i)

Definition. A disjunctive graph $G = (V, A, E, \mathcal{E}, l)$ has the short-cycle property if for any cycle Z in $(V, A \cup E)$, there exists a cycle Z' in $(V, A \cup E)$ with $Z' \cap E \subseteq Z \cap E$ and $|Z' \cap E| = 2$.

Short-Cycle Property (ii)

Proposition. The job-insertion graph $G^J = (V, A^J, E^J, \mathcal{E}^J, l)$ has the short cycle property.

- ▶ $(\mathbf{n} = \mathbf{1})$ Enter and leave $J, |Z \cap E| = 2$. ✓
- ▶ $(\mathbf{n} \leadsto \mathbf{n} + \mathbf{1})$ Prove that: a cycle entering J n + 1 times has a short cycle.

Let Z be a cycle which enters J n+1 times. We choose arbitrarily a vertex a where the cycle Z leaves J.

Let b be the first vertex after a where Z reenters J. We differentiate two cases:

- (i) a ≤ b:
 Define a cycle Z', equal to Z, with the path a → b replaced by the path a → b within J. Then Z' enters J n times.
 From the induction hypothesis it follows that a short cycle exists. √
- (ii) $\neg(\mathbf{a} \leq \mathbf{b})$: $b \to a$ (within Z) followed by $a \to b$ (within J) is a valid short cycle. \checkmark

Conflict graph (i)

- ▶ We define a conflict graph for a job-insertion graph G^J : $H_{G^J} = (E^J, U)$.
- ▶ Vertices of H_{G^J} are elements to be selected: arcs.
- ▶ Vertices are connected, if they conflict, i.e. selecting all vertices connected by an arc u leads to a cyclic graph $(V, A \cup u)$.
- $u \in U$ if u is a partial infeasible selection.
- As we require a feasible solution, it suffices to consider minimally infeasible edges (if we avoid all of them, we are good).
- ► The short cycle property guarantees that all edges connect *two* vertices.
- ▶ Hence, $U = \{(e, f) \mid (V, A^J \cup \{e, f\}) \text{ cyclic}\}.$
- $ightharpoonup (H_{G^J} \text{ is bipartite.})$

Conflict graph (ii)

- ▶ stable sets of size $|E^J|/2$ in the conflict graph correspond to complete feasible solutions.
- ightharpoonup (bipartite \Longrightarrow at least 2 exist)

Closure

used to generate a complete feasible selection S' from S which does not include $e \in S$.

Idea:

- ▶ Pick $J \in \mathcal{J}$ with $h(e) \in J$.
- ightharpoonup Construct G^J .
- ightharpoonup Construct H_{G^J} .
- ▶ Select \bar{e} in H_{G^J} .
- ▶ For all f such that (e, f) in U, select \bar{f} . (*)
- ► Take the closure of (*).
- ightharpoonup Complement this selection with S for all pairs in E^J where we did not make a choice due to the closure.
- ▶ done.

Why do we need the conflict graph?

- \triangleright We use the conflict graph to query information like 'enumerate the neighbours of e'.
- ▶ In the disjunctive graph, this is equivalent to 'find all disjunctive arcs $f \in E^J$ such that $(V, A^J \cup \{e, f\})$ is cyclic'.
- ▶ This corresponds to paths searches: for all $\{f \in E^J \mid h(f) \in J \land h(f) \leq t(e)\}$ does a path $h(e) \to t(f)$ exist?

'Left' Closure (i)

- ▶ Constructing G^J we picked J such that $h(e) \in J$.
- ► (We could do the same thing with J such that $t(e) \in J$ \Longrightarrow 'right' closure.)
- ▶ In case of the left-closure: Arcs such as e which $enter\ J$ are replaced by arcs \bar{e} that $leave\ J$. Whenever we insert \bar{e} , we have to check if a path exists between $h(\bar{e}) \to t(\bar{e})$ $(t(\bar{e}) \in J,\ h(\bar{e}) \notin J)$. Of a potential cycle, only the disjunctive arc reentering J is relevant. Hence we search paths from $h(\bar{e})$ into the vertex interval $[o_{J1}, \ldots, t(\bar{e})]$. This is done efficiently with a forward path search.

'Left' Closure (ii)

- ▶ We remove an arc e which enters J while adding an arc \bar{e} that leaves J.
- ▶ A short cycle through \bar{e} must therefore contain an arc f which enters J.
- ▶ f must be replaced with \bar{f} , which leaves J.
- ▶ The same argument holds for \bar{f} , indeed for the complete process. More and more arcs leave J, while fewer and fewer arcs enter J. This has the effect that J moves backward in time through the time table, or, in a Gantt-chart, to the left. We call this version of the closure the <u>left-closure</u>.

Algorithm 1: Naive left-closure

```
Input: A graph G corresponding to the current selection S: G = (V, A \cup S), a disjunctive arc a to remove from the selection.
```

Output: A modified graph G, corresponding to a modified selection S, which is similar to the input S but does not contain the arc a.

My Contribution

Observe that, the later within J the operation $t(\bar{e})$ occurs, the larger the target vertex interval of the path search. Indeed, $t(\bar{f}) \leq t(\bar{e})$ implies $\{o_{J1}, \ldots, t(\bar{f})\} \subseteq \{o_{J1}, \ldots, t(\bar{e})\}$. Hence, for any vertex $v \in G$ such that a path exists form $h(\bar{f}) \to v$ and $h(\bar{e}) \to v$, the forward path search (v onward) to be completed for \bar{e} renders the path search for \bar{f} irrelevant.

My Contribution

Algorithm 2: All at once left-closure

the selection.

Input: A disjunctive graph G and a selection S: $G = (V, A \cup S)$, a disjunctive arc a to remove from

Output: A modified graph G, corresponding to a modified selection S, which is similar to the input S but does not contain the arc a.

[...]

Algorithm 3: All at once left-closure

[...]

Queue<Arc> Q = new BucketQueue()

let \bar{a} be s.t. $\bar{a} \in \text{G.SwapInMate}(\mathbf{a})$ and $t(\bar{a}) \in J$

 $Q.Add(\bar{a}, priority = any)$

int[] P = new int[G.Count]

Initialize P: $P[o_{jk}] = \begin{cases} k, & \text{if } j = J \\ 0, & \text{otherwise} \end{cases}$

[...]

```
Algorithm 4: All at once left-closure
while Q.Count > 0 do
   Arc a = Q.Pop()
   if not G.ArcExists(a) then
      continue
   else if h(a) \in J and P[t(a)] \geq P[h(a)] then
      foreach Arc \ b \in G.SwapInMate(a) do
          if P[t(b)] > 0 then
           Q.Add(b, priority = P[t(b)])
          end
      end
   else if P[t(a)] > P[h(a)] then
      P[h(a)] = P[t(a)]
      foreach Arc\ b \in G.OutgoingArc(h(a)) do
          Q.Add(b, priority = P[t(b)])
      end
   end
end
```

Another improvement

▶ For a time t, we split $(V, A \cup S)$ into

$$A := \{ v \mid t_v \le t \} \text{ and } B := \{ v \mid t_v > t \}.$$

- No vertex of A is reachable from any vertex in B. Assuming that the left-closure computation affects no arcs adjacent to or in B, we can establish that A remains unreachable from B. If we then-during the forward path search of the left closure-encounter a vertex of B we can skip this branch of the path search.
- We choose $t = \max_{a \in \delta(J)} \{ t_{h(a)} \}$.

Algorithm 5: All at once left-closure with termination criterion

Initialize B: $B[i] = \begin{cases} true, & \text{if } t_i > \max_{b \in \delta(J)} \{ \ t_{h(b)} \ \} \\ false, & \text{otherwise} \end{cases}$ while Q.Count > 0 do

Arc a = Q.Pop()[...]

else if B[h(a)] then

| continue

end

Results (i)

Results (ii)

