The Filtering Problem

Shino Takayama
School of Economics
University of Queensland

The Filtering Problem

```
* Given the observations Z_s satisfying: for 0 \le s < t, (observations) dZ_t = c(t, X_t) dt + \gamma(t, X_t) dV_t; Z_0 = 0 (6.1.6) what is the best estimate \hat{X}_t of the state X_t of: (system) dX_t = b(t, X_t) dt + \sigma(t, X_t) dU_t (6.1.2) based on these observations?
```

More Detailed Description

* By saying that the estimate $\hat{X_t}$ is based on the observations $\{Z_s; s \leq t\}$

we mean that

 $\hat{X}_{t}(\cdot)$ is \mathcal{G}_{t} -measurable, where \mathcal{G}_{t} is the σ -algebra generated by $\{Z_{s}(\cdot); s \leq t\}$. (6.1.7)

"The Best Such Estimate"

* By saying that \hat{X}_t is the best such estimate, we mean that $\int |X - \hat{X}|^2 dP = E[|X - \hat{X}|^2] = \inf\{E[|X - Y|^2 \cdot Y \in K\}\}$ (6.1)

$$\int_{\Omega} |X_t - \hat{X}_t|^2 dP = E[|X_t - \hat{X}_t|^2] = \inf\{E[|X_t - Y|^2; Y \in \mathcal{K}\}.(6.1.8)$$

* (Ω, \mathcal{F}, P) is the probability space corresponding to the (p+r)-dimensional Brownian motion (U_t, V_t) starting at 0 E denotes expectation w.r.t. P and $\mathcal{K} \coloneqq \mathcal{K}_t \coloneqq \mathcal{K}(Z,t)$

 $:= \{Y : \Omega \to \Re^n; Y \in L^2(P) \text{ and } Y \text{ is } \mathcal{G}_t - \text{measurable} \} (6.1.9)$ where $L^2(P) = L^2(\Omega, P)$.

Lemma 6.1.1

* Let $\mathcal{H} \subset \mathcal{F}$ be a σ -algebra and let $X \in L^2(P)$ be

 \mathcal{F} -measurable. Put

$$\mathcal{N} = \{Y \in L^2(P); Y \text{ is } \mathcal{H} - \text{measurable}\}$$

and let $\mathcal{P}_{\mathcal{N}}$ denote the orthogonal projection from the Hilbert space $L^2(P)$ into the subspace \mathcal{N} . Then,

$$\mathcal{P}_{\mathcal{N}}(X) = E[X \mid \mathcal{H}].$$

Proof: Lemma 6.1.1

- Proof: The existence and uniqueness of $E[X \mid \mathcal{H}]$ comes from the Radon-Nikodym theorem:
- * Let μ be the measure on $\mathcal H$ defined by

$$\mu(H) = \int_{H} XdP; \ H \in \mathcal{H}.$$

* Then, μ is absolutely continuous w.r.t. $P \mid \mathcal{H}$, so there exists a $P \mid \mathcal{H}$ -unique \mathcal{H} -measurable function F on Ω such that

$$\mu(H) = \int_{H} FdP \text{ for all } H \in \mathcal{H}.$$

* Then, $E[X \mid \mathcal{H}] := F$ is unique w.r.t. $P \mid \mathcal{H}$.

Proof Continued

* Now, $\mathcal{P}_{\mathcal{N}}(X)$ is \mathcal{H} -measurable and $\int\limits_{\Omega} Y(X-\mathcal{P}_{\mathcal{N}}(X))dP=0 \quad \text{for all } Y\in\mathcal{N}.$

* In particular,

$$\int_{A} (X - \mathcal{P}_{\mathcal{N}}(X)) dP = 0 \quad \text{for all } A \in \mathcal{H}.$$

* Hence, by uniqueness,

$$\mathcal{P}_{\mathcal{N}}(X) = E[X \mid \mathcal{H}].$$

Theorem 6.1.2

$$\hat{X}_t = \mathcal{P}_{\mathcal{K}_t}(X_t) = E[X_t \mid \mathcal{G}_t].$$

The 1-Dimensional Linear Filtering Problem

Consider the 1-dimensional case:

(System)

$$dX_{t} = F(t)X_{t}dt + C(t)dU_{t}; \quad F(t), C(t) \in \Re (6.2.3)$$

(Observations)

$$dZ_{t} = G(t)X_{t}dt + D(t)dV_{t}; \quad G(t), D(t) \in \Re (6.2.4)$$

- * Assume that F,G,C,D are bounded on bounded intervals.
- * Assume that $Z_0 = 0$.
- * Assume that X_0 is normally distributed and independent of $\{U_t\}, \{V_t\}$.
- * Assume that D(t) is bounded away from 0 on bounded intervals.

Step 1

* Let $\mathcal{L} = \mathcal{L}(Z,t)$ be the closure in $L^2(P)$ of functions which are linear combinations of the form

$$c_0 + c_1 Z_{s_1}(\omega) + \dots + c_k Z_{s_k}(\omega)$$
, with $s_j \le t, c_j \in \Re$.

* Let

 $\mathcal{P}_{\mathcal{L}}$ denote the projection from $L^2(P)$ onto \mathcal{L} .

* Then, with \mathcal{K} as in (6.1.9),

$$\hat{X}_t = \mathcal{P}_{\mathcal{K}}(X_t) = E[X_t | \mathcal{G}_t] = \mathcal{P}_{\mathcal{L}}(X_t).$$

* Then, the best Z-measurable estimate of X_t coincides with the best Z-linear estimate of X_t .

Step 1: Lemma 6.2.2

* Let $X, Z_s; s \le t$ be random variables in $L^2(P)$ and assume that

$$(X, Z_{S_1}, Z_{S_2}, \dots, Z_{S_n}) \in \Re^{n+1}$$

has a normal distribution for all $S_1, S_2, \dots, S_n \leq t, n \geq 1$.

Then,

$$\mathcal{P}_{\mathcal{L}}(X) = E[X \mid \mathcal{G}] = \mathcal{P}_{\mathcal{K}}(X).$$

Proof: Lemma 6.2.2

* Let

$$X = \mathcal{P}_{\mathcal{L}}(X), \tilde{X} = X - X.$$

- st Then, we claim that $ilde{X}$ is independent of $\mathcal G$.
- * Recall that a random variable $(Y_1, \dots, Y_k) \in \mathbb{R}^k$ is normal if and only if $c_1Y_1 + \dots + c_kY_k$ is normal for all choices of $c_1, \dots, c_k \in \mathbb{R}$.
- * An L^2 -limit of normal variables is again normal (by Appendix A).
- * Therefore,

 $(\tilde{X}, Z_{s_1}, \dots, Z_{s_n})$ is normal for all $s_1, \dots, s_n \leq t$.

Proof Continued

- * Since $E[\tilde{X}Z_{s_i}] = 0$,
 - \tilde{X} and Z_{s_j} are uncorrelated for $1 \le j \le n$.
- * Thus,
- \tilde{X} and $(Z_{s_j}, \dots, Z_{s_n})$ are independent.
- * But then,

$$E[\chi_G(X - \check{X})] = E[\chi_G \tilde{X}] = E[\chi_G] \cdot E[\tilde{X}] = 0$$
 for all $G \in \mathcal{G}$.

* Since \breve{X} is \mathcal{G} -measurable, we conclude:

$$\widetilde{X} = E[X \mid \mathcal{G}].$$

Lemma 6.2.3

$$M_t = \begin{bmatrix} X_t \\ Z_t \end{bmatrix} \in \Re^2$$
 is a Gaussian Process.

* Proof: We may regard \boldsymbol{M}_t as the solution of a 2-dimensional linear stochastic differential equation of the form

$$dM_t = H(t)M_t dt + K(t)dB_t; M_0 = \begin{bmatrix} X_0 \\ 0 \end{bmatrix}; (6.2.9)$$

where $H(t) \in \Re^{2 \times 2}$; $K(t) \in \Re^{2 \times 2}$ and B_t is a 2-dimensional Brownian motion.

Proof: Lemma 6.2.3

* Put

$$M_t^{(n+1)} = M_0 + \int_0^t H(s)M_s^{(n)}ds + \int_0^t K(s)dB_s; n = 0,1,2,\dots(6.2.10)$$

* Then, $\boldsymbol{M}_t^{(n)}$ is Gaussian for all n and $\boldsymbol{M}_t^{(n)} \to \boldsymbol{M}_t$ in $L^2(P)$.