CS 362 :: Homework 2

Ryan Magdaleno

February 16, 2024

Problem 1. Write the truth table for the CMOS Circuit given below and specify which logic gate it represents.

Solution ::

a) ::

A	В	Q_1	Q_2	Q_3	Q_4	F
0	0	1	1	0	0	1
0	1	1	0	1	0	0
1	0	0	1	0	1	0
1	1	0	0	1	1	0

This circuit represents a NOR gate.

b) ::

A	В	Out
0	0	0
0	1	0
1	0	0
1	1	1

This circuit represents an AND gate. $\,$

Write the truth table for the CMOS Circuit given below and specify the equation it represents.

a) ::

A	B	C	D
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

This circuit table can be represented like so:

$$D = ABC'$$

b) ::

A	В	Out
0	0	0
0	1	1
1	0	0
1	1	0

This circuit table can be represented like so:

$$Out = A'B$$

Problem 2. NAND gates and NOR gates are two types of Universal Gates. Represent each equation as a circuit using only **a single type** of a Universal Gate. I.E. Each answer must contain only NAND gates or must contain only NOR gates. Assume literals are not available in complemented form.

Solution ::

a) $F(x, y, z) = \overline{y}\overline{z} + \overline{y}z + \overline{x}y\overline{z}$

b) $F(x, y, z) = (x' + y) \cdot (y + z) \cdot (x' + y' + z)$

Problem 3. Write the truth table and equation for the following circuit diagram. Do not do any simplification on the equation when written for your answer.

Solution ::

A	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Equation:

$$Y = ABC + ABC' + AB'C + A'BC + A'BC' + A'B'C$$

The following Boolean Properties are to be used and referenced by name for each/every step to receive full credit when you "show your work" during the remaining problems in this homework.

$$a \cdot (b+c) = a \cdot + a \cdot c = \text{Distributive (AND)}$$

$$a + (b \cdot c) = (a+b) \cdot (a+c) = \text{Distributive (OR)}$$

$$a \cdot b = b \cdot a = \text{Commutative}$$

$$a + b = b + a$$

$$(a \cdot b) \cdot c = a \cdot (b \cdot c) = \text{Associative}$$

$$(a+b) + c = a + (b+c)$$

$$a \cdot a' = 0 = \text{Complement (AND)}$$

$$a + a' = 1 = \text{Complement (OR)}$$

$$a \cdot 1 = a = \text{Identity (AND)}$$

$$a + 0 = a = \text{Identity (OR)}$$

$$a \cdot 0 = 0 = \text{Null elements}$$

$$a + 1 = 1$$

$$a \cdot a = a = \text{Idempotent}$$

$$a + a = a$$

$$(a')' = a = \text{Involution}$$

$$(a \cdot b)' = (a' + b') = \text{DeMorgan's (AND)}$$

$$(a + b)' = (a' \cdot b') = \text{DeMorgan's (OR)}$$

Problem 4. Expand the following equations to sum-of-minterm equations Solution::

a)
$$ab' + a'bc$$
 (assume literals are a, b, c)

$$ab'(1) + a'bc$$
 (Null elements)
 $ab'(c'+c) + a'bc$ (Complement (OR))
 $ab'c + ab'c + a'bc$ (Distributive (AND))

b) ac + bc + a'b (assume literals are a, b, c)

$$ac(1) + bc(1) + a'b(1)$$
 (Null elements))
 $ac(b+b') + bc(a+a') + a'b(c'+c)$ (Complement (OR))
 $ab'c + abc + abc + a'bc + a'bc' + a'bc$ (Distributive (AND))

c) ad' + b'c (determine literals based on original equation)

$$ad'(1)(1) + b'c(1)(1)$$
 (Null elements)
$$ad'(b+b')(c+c') + b'c(a+a')(d+d')$$
 (Complement (OR))
$$ad'(bc+bc'+b'c'+b'c) + b'c(a'd'+a'd+ad'+ad)$$
 (Distributive (AND))
$$abcd' + abc'd' + ab'cd' + ab'cd + ab'cd' + a'b'cd + a'b'cd'$$
 (Distributive (AND))

Problem 5. Determine if the two equations (y & z) are equivalent by expanding each to a sum-of-minterm equation. Show your work.

a)
$$y = ab' + a'b + c$$

 $z = ab'c' + ac + a'bc + a'c$

$$y = ab'c + ab'c' + a'bc + a'bc' + a'b'c + a'bc' + ab'c + abc$$

$$z = a'b'c + a'bc + abc + ab'c + a'bc' + ab'c'$$

$$y \text{ and } z \text{ are equivalent equations.}$$

b)
$$y = a'b' + bc'$$

 $z = a'c' + b'c$

$$y = a'bc'd' + a'bc'd + abc'd' + abc'd + a'b'c'd' + a'b'c'd + a'b'cd' + a'b'cd$$

$$z = a'b'cd' + a'b'cd + ab'cd' + ab'cd + a'b'c'd' + a'bc'd' + a'bc'd'$$

$$y = abc'd + abc'd'$$

$$z = ab'cd + ab'cd'$$

$$y \text{ and } z \text{ are not equivalent equations.}$$

 $\bf Problem~6a.$ Convert the truth table to sum-of-minterms expression. Show your work.

a	b	С	F	minterm
0	0	0	1	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	1	

$$= a'b'c' + a'b'c + ab'c' + abc' + abc$$
$$= (m_0 + m_1 + m_4 + m_6 + m_7)$$
$$F(a, b, c) = \sum (0, 1, 4, 6, 7)$$

Problem 6b. Convert the truth table to product-of-maxterms expression. Show your work.

а	b	С	F	maxterm
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	1	

$$= (a' + b' + c) \cdot (a + b' + c) \cdot (a + b + c)$$
$$= (M_0 \cdot M_2 \cdot M_6)$$
$$F(a, b, c) = \Pi M(0, 2, 6)$$

Problem 6c. Express the truth table to **either a sum-of-minterms expression or a product-of-maxterms expression.**

Choose the one with the simplest expression (i.e. fewest number of total literals). Show your work

а	b	С	F	minterm
0	0	0	1	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	1	

$$= (a' + b + c' + (a + b + c))$$

= $(M_0 \cdot M_5),$
 $F(a, b, c) = \Pi M(0, 5)$

Problem 6d. Express the truth table to either a sum-of-minterms expression or a product-of-maxterms expression. Choose the one with the simplest expression (i.e. fewest number of total literals). Show your work.

	a	b	С	F	minterm	maxterm
Ī	0	0	0	0		
	0	0	1	0		
	0	1	0	1		
	0	1	1	0		
Ī	1	0	0	0		
	1	0	1	0		
	1	1	0	1		
	1	1	1	0		

$$= abc' + ab'c$$

$$= (m_2, m_6)$$

$$F(a, b, c) = \sum m(2, 6)$$

Problem 7. Simplify the sum-of-minterms expression below to sum-of-products form using Boolean Algebra properties. The "simplest" expression has the fewest literals. Show your work. (I'm super lost on this one)

Solution ::

a)
$$F(x,y,z) = x'y'z' + x'yz + xy'z' + xyz' + xyz$$
$$= x'yz + y'z'(x'+x) + xy(x'+z) \quad \text{Null elements and comp. (OR)}$$
$$= xy + y'z' + x'yz$$
$$= y(x'y+x) + y'z' \quad \text{Dist. (AND)}$$

b)
$$F(x,y,z) = xyz' + x'y'z + x'y'z' + x'yz + x'yz'$$

$$xyz' + x'y'(x+z') + z'y(x+x')$$

$$xyz' + x'y'(1) + x'y(1) \quad \text{Null elements}$$

$$xyz' + x'y' + x'y \quad \text{complement (OR)}$$

$$x'y' + y(x' + z'x) \quad \text{Distributive (AND)}$$

$$x'y' + y((x+1) \cdot z') \quad \text{Null elements}$$

$$y'x + z'y$$

: (Ran out of time,