$\overrightarrow{AD} = [-3z-2,z-1]$. Ponieważ $\overrightarrow{AB} \perp \overrightarrow{AD}$ oraz oba wektory są tej samej długości, więc z powyższego twierdzenia otrzymujemy z porównania odpowiednich współrzędnych dwa układy równań liniowych:

$$\begin{cases} 2y - 7 = -z + 1 \\ -3z - 2 = y - 1 \end{cases} \text{ oraz } \begin{cases} 2y - 7 = z - 1 \\ 3z + 2 = y - 1 \end{cases}.$$

Po rozwiązaniu pierwszego układu dostajemy $y=3,\ z=0$, czyli $B_1(5,3),\ D_1(4,0)$ oraz $\overrightarrow{AB}=[-1,2]$. Ponieważ $\overrightarrow{AB}=\overrightarrow{DC},$ więc $C_1(3,2)$. Rozwiązaniem drugiego układu jest $y=5,\ z=-2,$ czyli $B_2(9,5),\ D_2(10,-2)$ i podobnie jak poprzednio $\overrightarrow{AB}=\overrightarrow{DC}=[4,-3],$ skąd $C_2(13,2).$ Rozwiązanie ilustruje rysunek 32.

Uwaga. Ze względu na ogólnie przyjęty sposób oznaczania wierzchołków wielokątów na rysunku 32 przestawiono litery B i D, oznaczając $B_2(10,-2)$ i $D_2(9,5)$.

Rys. 32

Odp. Istnieją dwa kwadraty spełniające warunki zadania. Ich wierzchołkami, oprócz wierzchołka A, są punkty $B_1(5,3)$, $C_1(3,2)$, $D_1(4,0)$ oraz $B_2(10,-2)$, $C_2(13,2)$, $D_2(9,5)$.

Rozwiazanie zadania 32.7

Równanie stycznej do wykresu funkcji f(x) w punkcie $S(x_0, f(x_0))$ ma postać ogólną $y - f(x_0) = f'(x_0)(x - x_0)$. Ponieważ w naszym przypadku