Test Outputs

Where the carry out (Co) is high when addition rolls over, or when subtraction rolls under.

Т	T (binary)	F	Α	В	S	Co
0	000000000000000000000000000000000000000	00	0000	0000	0000	0
3855	000000111100001111	00	1111	1111	0000	1
2565	000000101000000101	00	1010	0101	1111	0
1290	000000010100001010	00	0101	1010	1111	0
65536	0100000000000000000	01	0000	0000	1111	0
69391	010000111100001111	01	1111	1111	1111	0
68101	010000101000000101	01	1010	0101	0000	0
66826	010000010100001010	01	0101	1010	0000	1
131843	100000001100000011	10	0011	0011	0110	0
132614	100000011000000110	10	0110	0110	1100	0
134156	100000110000001100	10	1100	1100	1000	1
133637	100000101000000101	10	1010	0101	1111	0
197379	110000001100000011	11	0011	0011	0000	0
198150	110000011000000110	11	0110	0110	0000	0
199692	110000110000001100	11	1100	1100	0000	0
199173	110000101000000101	11	1010	0101	0101	0

T (10ps)	T (binary)	F	Α	В	S	Со
0	000000000000000000000000000000000000000	00	00000000	00000000	00000000	0
65535	00111111111111111111	00	11111111	11111111	00000000	1
43605	001010101001010101	00	10101010	01010101	11111111	0
21930	000101010110101010	00	01010101	10101010	11111111	0
65536	01000000000000000000	01	00000000	00000000	11111111	0
131071	01111111111111111111	01	11111111	11111111	11111111	0
109141	011010101001010101	01	10101010	01010101	00000000	0
87466	010101010110101010	01	01010101	10101010	00000000	1
131843	100000001100000011	10	00000011	00000011	00000110	0
132614	100000011000000110	10	00000110	00000110	00001100	0
134156	100000110000001100	10	00001100	00001100	00011000	0
137240	100001100000011000	10	00011000	00011000	00110000	0

T (10ps)	T (binary)	F	Α	В	S	Со
208944	110011000000110000	11	00110000	00110000	00000000	0
221280	110110000001100000	11	01100000	01100000	00000000	0
245952	111100000011000000	11	11000000	11000000	00000000	0
262058	1111111111110101010	11	11111111	10101010	01010101	0

Code

alu_slice.sv

```
module alu_slice (
    input logic [1:0] f,
    input logic a, b,
    input logic c_in = 0,
    output logic s, c_out
);

logic w, x, y, g;

assign w = a ^ b;
    assign x = ~w;
    assign y = w ^ c_in;

assign g = a & b;
    assign c_out = (y & c_in) | (a & b);

assign s = (~f[0]&~f[1] & w) | (~f[0]&f[1] & x) | (f[0] & y);

endmodule
```

alu_parm.sv

```
module alu_parm #(
    parameter N = 4
) (
    input logic [1:0] f,
    input logic [N-1:0] a, b,
    output logic [N-1:0] s,
    output logic c_out
);
    logic [N-1:0] w, x, y, g, h;
    logic [N:0] c;

always_comb begin
    w = b ^ { N{f[0]} };
```

testbench lab4.sv

```
`timescale 10ps/1ps
module testbench_lab4 ();
    logic [17:0] i=15'b0;
    logic [11:0] s;
    logic [01:0] co;
    alu_parm #(8) UUT8 (
        i[17:16],
        i[15:8],
        i[7:0],
        s[11:4],
        co[1]
    );
    alu_parm #(4) UUT4 (
        i[17:16],
        i[11:8],
        i[3:0],
        s[3:0],
        co[0]
    );
    always begin
        i = \frac{1}{2} \times (2 ** 18);
        #0.5
        if (
            (i[17:16] = 0) & (s[3:0] \neq (i[11:8] ^ i[3:0])) ||
             (i[17:16] = 1) \& (s[3:0] \neq (i[11:8] \hat{i}[3:0])) |
```

```
(i[17:16] = 2) & (s[3:0] \neq (i[11:8] + i[3:0])) |
            (i[17:16] = 3) & (s[3:0] \neq (i[11:8] - i[3:0])) |
            (i[17:16] = 0) & (s[11:4] \neq (i[15:8] ^ i[7:0])) ||
            (i[17:16] = 1) \& (s[11:4] \neq (i[15:8] \hat{i}[7:0])) |
            (i[17:16] = 2) \& (s[11:4] \neq (i[15:8] + i[7:0])) |
            (i[17:16] = 3) & (s[11:4] \neq (i[15:8] - i[7:0]))
        ) begin
            $display("Failed tests! %2d", $time);
            $display("Values: F: %b S: %b A: %b B: %b", i[17:16],
s[3:0], i[11:8], i[3:0]);
            $stop();
        end
        #0.5;
    end
    initial begin
        $display("TIME | F | A B | S8 S4 | C8 C4");
        $display("----");
        $monitor(" %2d | %d | %d %d | %d %d | %b %b",
            $time, i[17:16], i[15:8], i[7:0], s[11:4], s[3:0], co[1],
co[0]);
        #262144
        $display("Permuted through all possible combinations.");
        $display("ALL TESTS PASSED");
        $stop();
    end
endmodule
```

Deliverables

