Exercise 6. (Conjugate gradient method)

Consider the conjugate gradient method applied to the minimization of

$$f(x) = \frac{1}{2} \boldsymbol{x}^T A \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x}$$

where A is a positive definite and symmetric matrix.

Show that the iterate x^k minimizes f over

$$x^0 + < v^0, Av^0, ..., A^{k-1}v^0 >$$

where $\mathbf{v}^0 = \nabla f(\mathbf{x}^0)$, and $\langle v^0, A\mathbf{v}^0, ..., A^{k-1}\mathbf{v}^0 \rangle$ is the subspace generated by $v^0, A\mathbf{v}^0, ..., A^{k-1}\mathbf{v}^0$

Solution

According to the conjugate gradient method's theorem, x^k minimizes f in the subspace $x^0+< z^1,...,z^k>$, so we only need to prove that

$$V^k := \langle v^0, Av^0, ..., A^{k-1}v^0 \rangle = \langle z^1, ..., z^k \rangle := Z^k.$$

Since the z^j are linearly independent $\dim(Z^k)=k$, and since $\dim(V^k)\leq k$ it follows that $V^k\subset Z^k$. Thus, it is sufficient to prove that $Z^k\subset V^k$. This will be proved by induction on k.

• Case k=1.

Since $z^1 = -\nabla f(x^0)$, we have

$$Z^1 = \langle z^1 \rangle = \langle -\nabla f(x^0) \rangle = \langle v^0 \rangle = V^1.$$

- Induction hypothesis. $Z^p \subset V^p$ for any p < k.
- Final statement.

Note that $z^{p+1} = -\nabla f(x^p) + \sum_{j=1}^p \beta_{kj} z^j$, and that the sumation of the right hand side is in V^p (using the induction hypothesis). From the other hand

$$\nabla f(x^p) = Ax^p - b = A(x^{p-1} + \alpha^p z^p) - b = Ax^{p-1} - b + \alpha^p Az^p = \nabla f(x^{p-1}) + \alpha^p Az^p.$$

By the induction hypothesis, it follows that $\alpha^p A z^p \in V^{p+1}$. Iterating the process (expanding $\nabla f(x^{p-1}),...$) we finally get

$$\nabla f(x^p) = \nabla f(x^0) + p, \quad \text{with} \quad p \in V^{p+1} \quad \Rightarrow \quad \nabla f(x^p) \in V^{p+1}.$$

So $z^{p+1} \in V^{p+1}$ and, consequently, $Z^{p+1} \subset V^{p+1}$.