

Course > Unit 3: ... > 5 Solvi... > 4. Solvi... 4. Solving the system with 3 tanks Solving the system: the first eigenvalue and eigenspace (Caption will be displayed when you start playing the video.) 14:20 / 14:20 X ▶ 2.0x HD

Video

Download video file

Transcripts

Download SubRip (.srt) file

Download Text (.txt) file

Let us review the solution to the system

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} \quad \text{where } \mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$$

in the context of the 3 connected storage tanks.

Solution:

Step 1. Eigenvalues

The characteristic equation of ${f A}$ is

$$\det(\lambda \mathbf{I} - \mathbf{A}) = egin{bmatrix} \lambda + 2 & -1 & -1 \ -1 & \lambda + 2 & -1 \ -1 & -1 & \lambda + 2 \end{bmatrix} = 0.$$

Expanding in polynomial form and factoring, we get

$$\lambda^{3} + 6\lambda^{2} + 9\lambda = 0$$
$$\lambda(\lambda^{2} + 6\lambda + 9) = 0$$
$$\lambda(\lambda + 3)^{2} = 0.$$

Therefore, the eigenvalues of $\bf A$ are $\bf 0$, with multiplicity $\bf 1$, and $\bf -3$ with multiplicity $\bf 2$.

Step 2. Eigenvectors and the exponential solutions

Let us find the eigenvectors/eigenspace to accompany each eigenvalue.

Eigenspace of $\lambda = 0$:

The eigenspace corresponding to $\lambda_1=0$ is the null space of

$$egin{pmatrix} -2 & 1 & 1 \ 1 & -2 & 1 \ 1 & 1 & -2 \end{pmatrix}.$$

By inspection, we see that the vector of all ${f 1}$'s is an eigenvector. Therefore, the eigenspace is spanned by the eigenvector

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

and a normal mode to the system of DE is

$$\mathbf{v}_1 e^{0t} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

This solution, or a positive scalar multiple of it, corresponds to a constant (or steady state) solution where the tanks all have the same level of fluid and there is no net flow between the tanks.

Solving the system: the repeated eigenvalue

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} \quad \text{where } \mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$$

in the context of the three connected fluid tanks.

Eigenspace of $\lambda = -3$:

Next, we find the eigenvectors corresponding to the repeated eigenvalue -3. We need to find the nullspace of the matrix

We can find 2 eigenvectors by inspection:

$$\mathbf{v_2} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \qquad \mathbf{v_3} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

Since the multiplicity of the eigenvalue -3 is 2, the maximum number of linearly independent eigenvectors is 2, and so we have found enough eigenvectors.

Step 3. The general solution

The general solution is a linear combination of the normal modes:

$$egin{array}{lcl} \mathbf{x}(t) & = & c_1 \mathbf{v}_1 e^{0t} + c_2 \mathbf{v}_2 e^{-3t} + c_3 \mathbf{v}_3 e^{-3t} \ & = & c_1 egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix} + egin{bmatrix} c_2 egin{pmatrix} 1 \ 0 \ -1 \end{pmatrix} + c_3 egin{pmatrix} 1 \ -1 \ 0 \end{pmatrix} \end{bmatrix} e^{-3t}. \end{array}$$

The three constants c_1, c_2 , and c_3 are determined by the initial conditions.

Note that the terms proportional to e^{-3t} will decay to zero as $t \to \infty$, so every solution, regardless of the initial conditions, will approach a constant solution. This means that the fluid heights in the three tanks will approach the same height as time goes on, as expected from physical experience.

4. Solving the system with 3 tanks Topic: Unit 3: Solving systems of first order ODEs using matrix methods / 4. Solving the system with 3 tanks Add a Post Show all posts ▼ by recent activity ▼ There are no posts in this topic yet. ★ Learn About Verified Certificates

© All Rights Reserved