### **1.5 Exponential and Scientific Notation**

- 1. Number Classification
- 2. Properties of Real Numbers
- 3. Use properties of exponents
- 4. Convert from scientific to decimal notation
- 5. Convert from decimal to scientific notation
- 6. Perform computations using scientific notation
- 7. Solve applied problems using scientific notation

Copyright © 2018 R.M. Laurie 1

#### **The Set of Real Numbers** $\left\{-7, -\frac{3}{4}, 0, 0.\overline{6}, \sqrt{5}, \pi, 7.3, \sqrt{81}\right\}$ Real numbers \* Which of the numbers Rational Irrational ▲ Natural numbers? numbers numbers ▲ Whole numbers? Integers ◆ Integers? Whole ◆ Rational numbers? numbers ◆ Irrational numbers? Natural ▲ Real numbers? numbers Copyright © 2018 R.M. Laurie 2

|    | <b>Properties of the Real Numbers</b>                                                       |                                         |  |
|----|---------------------------------------------------------------------------------------------|-----------------------------------------|--|
|    | Property                                                                                    | Example                                 |  |
| 1. | Commutative Property of Addition $a + b = b + a$                                            | 2 + 3 = 3 + 2                           |  |
| 2. | Commutative Property of Multiplication $a \cdot b = b \cdot a$                              | 2 • (3) = 3 • (2)                       |  |
| 3. | Associative Property of Addition $a + (b + c) = (a + b) + c$                                | 2+(3+4)=(2+3)+4                         |  |
| 4. | Associative Property of Multiplication $a \cdot (b \cdot c) = (a \cdot b) \cdot c$          | 2 • (3 • 4) = (2 • 3) • 4               |  |
| 5. | Distributive Property $a \cdot (b + c) = a \cdot b + a \cdot c$                             | $2 \cdot (3+4) = 2 \cdot 3 + 2 \cdot 4$ |  |
| 6. | Additive Identity Property $a + 0 = a$                                                      | 3 + 0 = 3                               |  |
| 7. | Multiplicative Identity Property $a \cdot 1 = a$                                            | 3 • 1 = 3                               |  |
| 8. | Multiplicative Inverse Property $a \cdot \left(\frac{1}{a}\right) = 1$ Note: $a$ cannot = 0 | $3 \cdot \left(\frac{1}{3}\right) = 1$  |  |

| Property                                      | Meaning                                                                                                                                | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zero Exponent Rule $b^o = 1$                  | If b is any real number other than 0 and exponent is zero the result is 1                                                              | $7^{\circ} = 1$<br>$(-5)^{\circ} = 1$<br>$-5^{\circ} = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| The Product Rule $b^m \cdot b^n = b^{m+n}$    | When multiplying exponential expressions with the same base, add the exponents.                                                        | $9^6 \cdot 9^{12} = 9^{6+12}$ $= 9^{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The Power Rule $(b^m)^n = b^{mn}$             | When an exponential expression is raised to a power, multiply the exponents.                                                           | $(3^4)^5 = 3^{4 \cdot 5} = 3^{20}$<br>$(5^3)^8 = 5^{3 \cdot 8} = 5^{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The Quotient Rule $\frac{b^m}{b^n} = b^{m-n}$ | When dividing exponential expressions with the same base, subtract the exponent in the denominator from the exponent in the numerator. | $\frac{5^{12}}{5^4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{12-4} = 5^{$ |

### **The Negative Exponent Rule**

❖ If b is any real number other than 0 and m is a natural number,

$$b^{-m} = \frac{1}{b^m}$$

$$8^{-2} = \frac{1}{8^2} = \frac{1}{8 \cdot 8} = \frac{1}{64}$$

$$5^{-3} = \frac{1}{5^3} = \frac{1}{5 \cdot 5 \cdot 5} = \frac{1}{125}$$

$$7^{-1} = \frac{1}{7^1} = \frac{1}{7}$$

Copyright © 2018 R.M. Laurie 5

### **Powers of Ten**

- 1. A positive exponent tells how many zeros follow the 1.
  - For example, 10<sup>9</sup>, is a 1 followed by 9 zeros: 1,000,000,000.
- 2. A negative exponent tells how many places there are to the right of the decimal point. For example, 10-9 has nine places to the right of the decimal point.

 $10^{-9} = 0.000000001$ 

Copyright © 2018 R.M. Laurie 7

# **Exponent Exercises**

Negative Exponents causes switch between denominator and numerator

$$t^{15} \cdot t^{-20}$$

Prob 1.5.39

$$\frac{3^5 \cdot x^5}{3^7 \cdot x^3}$$

Prob 1.5.45

$$\frac{(x^{-4} \cdot y^3)^5}{(x^7 \cdot y^{-5})^{-2}}$$

Prob 1.5.53

Copyright © 2018 R.M. Laurie

# **Scientific Notation**

❖ A real number is written in scientific notation when it is expressed in the form

$$M \times 10^n$$
  $M = Mantissa$ ,  $n = Exponent$ 

- where M is a number greater than or equal to 1 and less than 10 (1  $\leq M <$  10), and n is an integer.
- Convert Scientific Notation to Decimal
  - ♦ If n is positive, move the decimal point in M to the right n places.

    a.  $2.6 \times 10^7 = 26,000,000$ Move the decimal 7 places to the n = 7
  - ♦ If *n* is negative, move the decimal point in *M* to the left | *n*| places.

     If *n* is negative, move the b. 1.1 × 10<sup>-4</sup> = 0.00011



Move the decimal point |-4|
places, or 4 places, to the left.
Copyright © 2018 R.M. Laurie ■ 8







