2011 Fall

Bracketing Methods

Bisection M.

- must know an interval (i.e. [a, b]) which includes the root
- $f(a).f(b)<0 \rightarrow usually$ indicated there is a root in [a, b]
- c= mid pt. of [a, b]
- if f(a).f(c)<0, let a=c o/w let b=c

False Position M.

- must know an interval (i.e. [a, b]) which includes the root
- $f(a).f(b)<0 \rightarrow usually$ indicated there is a root in [a, b]

•
$$c = b - \frac{f(b)(b-a)}{f(b)-f(a)}$$

• if f(a).f(c)<0, let a=c o/w let b=c

Newton-Raphson M.

Open Methods

- one initial guess (i.e. x_0) is required.
- $\bullet \quad x_{i+1} = x_i \frac{f(x_i)}{f'(x_i)}$
- iteration is required

Secant M.

- two initial guess (i.e. x_0 and x_1) are required.
- $x_{i+1} = x_i \frac{f(x_i)(x_i x_{i-1})}{f(x_i) f(x_{i-1})}$
- iteration is required

Fixed Pt. Iteration

f(x)=0

- reorganize f(x)s.t. $x_{i+1} = q(x_i)$
- converges when $|g'(x_r)| < 1$
- one initial guess is required
- iteration is required

Indirect Methods

SYSTEM OF LINEAR EQUATIONS

Naive Gauss Elimination M.

Direct Methods

- Using elementary row operations convert $[A \mid b]$ into $[U \mid b^*]$
- U is an upper triangular matrix
- Solve

Gauss Elimination M.

- Partial pivoting
- Using elementary row operations convert $\begin{bmatrix} A \mid b \end{bmatrix}$ into $\begin{bmatrix} U \mid b^* \end{bmatrix}$
- U is an upper triangular matrix
- Solve

Simpler methods

- Graphical (*n*=2)
- Cramer's (n=3)
- Elimination of unknowns
- Matrix inversion $X = A^{-1}.\underline{b}$

Gauss-Jordan Elimination M.

- Partial pivoting
- Using elementary row operations convert $\begin{bmatrix} A \mid b \end{bmatrix}$ into $\begin{bmatrix} I \mid b^* \end{bmatrix}$
- U is an upper triangular matrix whose diagonal elements are all 1
- Solve

LU Decomposition M.

- Decompose A into LU
 where L and U are
 lower and upper
 triangular matrices,
 respectively.
- Doolittle's Algorithm for decomposition: diagonal elements of L are all 1
- $A\underline{X} = \underline{b}$ A = LU $LU\underline{X} = \underline{b}$ $U\underline{X} = \underline{Y}$ $L\underline{Y} = \underline{b}$

Gauss Jacobi M.

- Apply elementary row operations to obtain all diagonal elements of A as 1, call that A*
- $A\underline{X} = \underline{b}$ $A^* = I + B$ $(I + B)\underline{X} = \underline{b}^*$ $I\underline{X} + \underline{BX} = \underline{b}^*$ $I\underline{X} = -\underline{BX} + \underline{b}^*$ $\underline{X} = -\underline{BX} + \underline{b}^*$ $\underline{X}^{i+1} = -\underline{BX}^i + \underline{b}^*$
- 0

$$x_{i}^{k+1} = \frac{b_{i} - \sum_{\substack{j=1\\i\neq j}}^{n} a_{ij} x_{j}^{k}}{a_{ii}}$$

$$i = 1, 2, ..., n$$

Gauss Seidel M.

 Similar to Gauss Jacobi but use updated values of current iteration.

$$x_{i}^{k+1} = \frac{b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{k+1} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{k}}{a_{ii}}$$

$$i = 1, 2, ..., n$$