Introduction to bio-ontologies

UNIVERSIDAD DE MURCIA

(Part of) the Semantic Web Stack

What if...

I think that RDF is OK but that there is too much freedom in the definition and use of properties

What if...

I think that RDF is OK but that there is too much freedom in the definition and use of properties

The Semantic Web Stack

• Ontology: Formal representation of the domain knowledge:

Types of ontologies

• Top-level ontologies: "domain-independent" knowledge: Processes, objects, physical entity,...

• Domain ontologies: gene, protein, volume, unit of measurement

• Application ontologies: "my genes" (for my particular application)

Applications of ontologies in bioinformatics

Fig. 1. A classification scheme for the uses of ontology and ontology-like artefacts within biology

The Gene Ontology (https://www.geneontology.org)

The Sequence Ontology (http://www.sequenceontology.org)

In the image below graph nodes link to the appropriate terms. Clicking the image background will toggle the image between large and small formats.

Ontology repository

Database of ontologies

• Different types of ontologies in a repository: domain, top-level, application ontologies

Domain-specific repositories

Quality control/assurance

Biomedical ontologies: Bioportal

http://bioportal.bioontology.org

Statistics	
Ontologies	1,086
Classes	14,646,888

#	name	# visits
1	Medical Dictionary for Regulatory Activities Terminology (MedDRA) (MEDDRA)	23,031
2	SNOMED CT (SNOMEDCT)	10,222
3	RXNORM (RXNORM)	7,780
4	National Drug Data File (NDDF)	3,785
5	Foundational Model of Anatomy (FMA)	2,369
6	Read Codes, Clinical Terms Version 3 (CTV3) (RCD)	1,977
7	National Cancer Institute Thesaurus (NCIT)	1,766
8	Medical Subject Headings (MESH)	1,376
9	National Drug File - Reference Terminology (NDFRT)	1,348
10	Logical Observation Identifier Names and Codes (LOINC)	1,026
11	EDAM - Bioscientific data analysis ontology (EDAM)	982

Bioportal: Ontologies

Category

- ☐ All Organisms (31)
- ☐ Anatomy (71)
- Animal Development (16)
- Animal Gross Anatomy ...
- Arabidopsis (3)
- ☐ Biological Process (54)

_ - · · · · -

Group

- BIBLIO (10)
- BIS (3)
- CGIAR (1)
- □ CTSA (6)
- OBO_Foundry (11)
- □ PSI (4)

_ _

Format

- ─ OBO (100)
- OWL (638)
- ☐ SKOS (26)
- ☐ UMLS (31)

Bioportal: Ontologies

Medical Dictionary for Regulatory Activities Terminology (MedDRA) (MEDDRA)

notes 1 projects 10

classes 74,056

MedDRA is an international medical terminology with an emphasis on use for data entry, retrieval, analysis, and display

Uploaded: 9/25/20

SNOMED CT (SNOMEDCT)

SNOMED Clinical Terms

Uploaded: 9/25/20

notes 3 projects 23

classes 359,263

RxNORM (RXNORM)

RxNorm Vocabulary

Uploaded: 9/25/20

projects 7

classes 109,013

Information about the ontology

Accessing the ontology

Gene Expression Ontology

Last uploaded: December 16, 2015

, , , , , , , , , , , , , , , , , , , ,		
np to:	Details Visualiza	ation Notes (0) Class Mappings (18)
ntity abstract entity	Preferred Name	positive regulation of histone gene expression
physical entity		up-regulation of histone gene expression
material entity processual entity	Synonyms	upregulation of histone gene expression
process		positive regulation of expression of histone-encoding gene
biological process gene expression gene expression process CAAX-box protein modification	Definitions	Any process that increases the frequency, rate or extent of expression of a histone-encoding gene. Gene expression is the process in which a gene's coding sequence is converted into a mature gene product or products (proteins or RNA). This includes the production of an RNA transcript as well as any processing to produce a mature RNA product or an mRNA (for protein-coding genes) and the translation of that mRNA into protein.
CAAX-box protein processing cap snatching	ID	http://purl.obolibrary.org/obo/GO_0036207
cis assembly of pre-catalytic spliceosome cleavage involved in rRNA processing		up-regulation of histone gene expression
DNA-templated transcription, elongation	altLabel	upregulation of histone gene expression
DNA-templated transcription, initiation DNA-templated transcription, termination		positive regulation of expression of histone-encoding gene
DNA-templated transcriptional open complex for DNA-templated transcriptional preinitiation comp DNA-templated transcriptional preinitiation comp DNA-templated transcriptional start site selections dosage compensation complex assembly	definition	Any process that increases the frequency, rate or extent of expression of a histone-encoding gene. Gene expression is the process in which a gene's coding sequence is converted into a mature gene product or products (proteins or RNA). This includes the production of an RNA transcript as well as any processing to produce a mature RNA product or an mRNA (for protein-coding genes) and the translation of that mRNA into protein.
formation of cytoplasmic translation initiation col	hasOBONamespace	biological_process
formation of translation initiation ternary comple: formation of translation preinitiation complex	id	GO:0036207
generation of catalytic spliceosome for first trans	notation	CO:0036207
generation of catalytic spliceosome for second t maintenance of chromatin silencing	prefLabel	positive regulation of histone gene expression
maintenance of transcriptional fidelity during DN maintenance of translational fidelity		regulation of histone gene expression
mRNA branch site recognition	subClassOf	positive regulation of gene expression

Term mappings

GENE EXPRESSION ONTOLOGY	ADALAB-META ONTOLOGY	SOURCE
entity	Entity	LOOM
association	Association	LOOM

These mappings do not mean equivalency

Agroportal

<u> http://agroportal.lirmm.fr/</u>

It uses the BioPortal infrastructure for agriculture

AgroPortal Statistics	
Ontologies	158
Classes	688,240
Individuals	2,987,613
Projects	59
Users	390

<u> http://agroportal.lirmm.fr/</u>

It uses the BioPortal infrastructure for agriculture

Agroportal

<u> http://agroportal.lirmm.fr/</u>

Category	
☐ Agricultural Resear	(23)
☐ Animal Science an	(10)
$\hfill \square$ Biodiversity and Ec	(17)
$\hfill \square$ Breeding and Gene	(1)
$\hfill\Box$ Farms and Farming	(7)
$\hfill\Box$ Fisheries and Aqua	(2)
☐ Food Security	(2)
☐ Food and Human	(6)

Group	
□ AGBIODATA	(18)
□ AGROLD	(5)
□ CROP	(37)
□ INRAE	(30)
□ OBO-FOUNDRY	(23)
RICE	(24)
SEMANDIV	(11)
□ WHEAT	(19)

Format			
□ ОВО	(12)		
□ OWL			
(100)			
SKOS	(11)		
UMLS	(2)		
Ontology Co	ntent		
□ Notes	(3)		
Reviews	(2)		
Projects			
(110)			
☐ Summary Only	(0)		
Is of T	ype		
☐ Application Ontology (44)			
☐ Core Ontology			
□ Doma	in Ontology (53)		
☐ Task (Ontology (0)		
	r Level Ontol (6)		

Vocabulary

(3)

Natural Language German English (115)☐ French (15)Italian (2)Portuguese Spanish **Formality Levels** ☐ Classification sche... (2) (0)(0)(0)(0)

Ontology

Semantic network

(0)

(99)

(1)

OBO Foundry repository http://www.obofoundry.org/

The Open Biological and Biomedical Ontology (OBO) Foundry

Community development of interoperable ontologies for the biological sciences

Learn about OBO best practices and community resources

- · More about the OBO Foundry
- OBO Foundry principles
- OBO tutorial
- Ontology browsers, tutorials, and tools

Participate

- Join the OBO mailing list
- OBO Foundry Operations and Working Groups
- Submit bug reports or suggestions for improvement via GitHub
- Submit your ontology to be considered for inclusion in the OBO Foundry

OBO Library: find, use, and contribute to community ontologies

The table below lists current OBO ontologies (in alphabetical order, but with the ontologies that have been manually reviewed by the OBO Foundry listed first, and obsolete ontologies listed last).

Download table as: [YAML | JSON-LD | RDF/Turtle]

bfo	Basic Formal Ontology (cc) BY	The upper level ontology upon which OBO Foundry ontologies are built. Detail	6 ♠ ▼ ▼ ★
chebi	Chemical Entities of Biological Interest	A structured classification of molecular entities of biological interest focusing on 'small' chemical compounds. Detail	
doid	Human Disease Ontology (0) PUBLICDOMAIN	An ontology for describing the classification of human diseases organized by etiology. Detail	

OBO Foundry repository

An ontology for describing the function of genes and gene products

OntoBee AberOWL OLS AmiGO

The goal of the ConcOntology (CO) project is to provide a uniformwa

bvide a uniformway to describe the functions of gene products

from organisms across all kingdoms of life and thereby enable analysis of genomic data

Products

go.owl	GO (OWL edition)	The main ontology in OWL. This is self contained and does not have connections to other OBO ontologies [page]
go.obo	GO (OBO Format edition)	Equivalent to go.owl, in obo format [page]
go.json	GO (JSON edition)	Equivalent to go.owl, in obograph json format [page]
go/extensions/go- plus.owl	GO-Plus	The main ontology plus axioms connecting to select external ontologies, with subsets of those ontologies [page]
go/go-base.owl	GO Base Module	The main ontology plus axioms connecting to select external ontologies, excluding the external ontologies themselves [page]
go/extensions/go- plus.json	GO-Plus	As go-plus.owl, in obographs json format [page]
go/go-basic.obo	GO-Basic, Filtered, for use with legacy tools	Basic version of the GO, filtered such that the graph is guaranteed to be acyclic and annotations can be propagated up the graph. The relations included are is a, part of, regulates, negatively regulates and positively regulates. This version excludes relationships that cross the

ID Space go

PURL http://purl.obolibrary.org

/obo/go.owl

License CC BY 4.0
Review Date 2010

Review Document n/a

Homepage http://geneontology.org/

Contact Suzi Aleksander
Trackers https://github.com

/geneontology/go-

ontology/issues/

Domain biology
Taxon All life
Dependencies uberon

. . .

ncbitaxon

O

go/extensions/gobridge-to-nifstd.owl

View Edit PURL

Generated by: _layouts/ontology_detail.html

See metadata guide

Edit the metadata for this page: go.md (GitHub will help you create a fork and pull request.)

Ontobee visualization

UNIVERSIDAD DE MURCIA

Gene Ontology

Keywords: Search terms

Ontology: GO

- IRI: http://purl.obolibrary.org/obo/go.owl
- OBO Foundry: Foundry
- · Download: http://purl.obolibrary.org/obo/go.owl
- · Home: http://geneontology.org/
- Documentation: Gene Ontology documentation
- Contact: suzia@stanford.edu
- Description: An ontology for describing the function of genes and gene products

Annotations

- description: The Gene Ontology (GO) provides a framework and set of concepts for describing the functions of gene products from all organisms.
- title: Gene Ontology
- versionIRI: http://purl.obolibrary.org/obo/go/releases/2020-10-09/go.owl
- · default-namespace: gene_ontology
- has_obo_format_version: 1.2
- license: http://creativecommons.org/licenses/by/4.0/

Number of Terms (including imported terms) (Detailed Statistics)

- Class (50422)
- ObjectProperty (9)
- AnnotationProperty (50)

Number of SPARQL queries:8

Quality control in repositories

- BioPortal, AgroPortal:
 - Users can freely upload their ontologies

- OBO Foundry:
 - The consortium decides which ontologies are published
 - Ontologies are expected to adhere to modeling principles
- In general, not much information about metrics

OBO Foundry principles

http://www.obofoundry.org/principles/fp-000-summary.html

- Overview
- Open (principle 1)
- Common Format (principle 2)
- URI/Identifier Space (principle 3)
- Versioning (principle 4)
- Scope (principle 5)
- Textual Definitions (principle 6)
- Relations (principle 7)
- Documentation (principle 8)
- Documented Plurality of Users (principle 9)
- Commitment To Collaboration (principle 10)
- Locus of Authority (principle 11)
- Naming Conventions (principle 12)
- Maintenance (principle 16)

Ontology building

- Classes (Concepts): gene, protein (sets of individuals that share some properties)
- Individuals (Instances)
- Properties
 - Object properties (relations between instances of classes): regulates
 - Datatype properties (attributes, associations between instances of classes and data types): length
 - Annotations: label, synonym
- Axioms (restrictions, asserted conditions): gene codified in 1 organism

Ontology building

- Terminological Knowledge (T-BOX)
 - Axioms that describe the structure of the domain (conceptual schema, class level)
- Knowledge about individuals (A-BOX)
 - Axioms describing data, facts (instance level)

HappyFather(John) hasChild(John, Mary)

Web Ontology Language Requirements

Desirable features identified for Web Ontology Language:

- Extends existing Web standards
 - Such as XML, RDF, RDFS
- Easy to understand and use
 - Should be based on familiar Knowledge Representation idioms
- Formally specified
- Of "adequate" expressive power
- Possible to provide automated reasoning support

Taxonomy (IS A, subClassOf)

- Hierarchical relation to define types of classes, from the most general to the most specific ones. These rules apply:
 - Rule "is-a": Every subclass is a instance of the superclass
 - It is transitive (C is-a B and B is-a A then C is-a A)

Build new classes from
 Class, property and individuals

Union

Intersection

Build new classes from
 Class, property and individuals

Complement: not politician

Closed classes

- build new classes from class, property and individual names
 - existential quantification: ∃hasChild.Female

```
<owl:Restriction>
  <owl:onProperty rdf:resource="hasChild"/>
   <owl:someValuesFrom rdf:resource="Female"/>
</owl:Restriction>
```


- build new classes from class, property and individual names
 - universal quantification: ∀hasChild.Female

- build new classes from class, property and individual names
 - cardinality restriction: ≥2hasChild.Female

schild

Constructor	DL Syntax	Example	Modal Syntax
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human	$C_1 \wedge \ldots \wedge C_n$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer	$C_1 \vee \ldots \vee C_n$
complementOf	$\neg C$	¬Male	$\neg C$
oneOf	$ \{x_1\} \sqcup \ldots \sqcup \{x_n\} $	{john} ⊔ {mary}	$x_1 \vee \ldots \vee x_n$
allValuesFrom	$\forall P.C$	∀hasChild.Doctor	P C
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer	$ \langle P \rangle C$
maxCardinality	$\leqslant nP$	≤1hasChild	$ P _{n+1}$
minCardinality	$\geqslant nP$	≥2hasChild	$ \langle P \rangle_n $
	'	***	MINIE MINIE PI

Special classes and properties

- Top class: class that contains all the individuals
 - owl:Thing

- Bottom class: empty class, no individuals
 - owl:Nothing

- Universal property: it links every individual to every individual
 - owl:topObjectProperty

Manchester OWL Syntax

Closer to DL and closed to natural language

OWL	DL Symbol	Manchester OWL Syntax Keyword	Example
someValuesFrom	3	some	hasChild some Man
allValuesFrom	\forall	only	hasSibling only Woman
has∀alue	э	value	hasCountryOfOrigin value England
minCardinality	≥	min	hasChild min 3
cardinality	=	exactly	hasChild exactly 3
maxCardinality	≤	max	hasChild max 3

OWL	DL Symbol	Manchester OWL Syntax Keyword	Example	
intersectionOf	п	and	Doctor and Female	
unionOf	П	ог	Man or Woman	
complementOf	7	not	not Child	l

Open Vs Closed World Assumption

- Open World Assumption (OWA)
 - The knowledge base may not contain all known individuals and facts
 - The existence of further individuals is possible if not explicitly excluded

- Closed World Assumption (CWA)
 - The knowledge base is assumed to contain all known individuals and facts

Which one do you think is used in OWL?

Open Vs Closed World Assumption

Questions, comments...

