GUIDE TO PASSIVE TRACERS IN SFINCS

ELIZABETH PAUL

1. Input Options

1.1. Input Namelist.

- --enable-mctracers Enables Monte-Carlo tracers
- --enable-vftracers Enables Velocity Field tracers
- --with-integrator=vl Tracers have only been implemented with the VL integrator.

SMR must be disabled (default setting) with tracers.

1.2. Preprocessor Directives.

- #define TOPHAT Apply top-hat smoothing of the particle output.
- #define DEBUG Additional debugging functions are called to test particle algorithms.

2. Source Code

The tracer particle modules are located in the src/tracers/ directory. The following files have been added.

- bvals_tracer.c Reflecting, outflow, and periodic boundary conditions have been implemented for the VFTRACERS and MCTRACERS.
- init_tracer_grid.c Tracer grid is initialized. Tracers can be initialized with uniform density (tracer_init_unif), in cells above a threshold density (tracer_init_threshold), or proportional to the fluid density (tracer_init_proportional). The function tracer_init_xlinflow initializes tracers in the ghost zone for outflow boundary problems. The function tracer_debug is used for testing purposes using assert statements.
- integrate_tracers.c
 - ran_gen Initializes the grid of tracers with pseudo-random numbers.
 - Tracerlist_sweep Sweeps through tracer list to move tracers that have been flagged for removal.
 - Tracerlist_sweep_bc Sweeps through tracer list (on boundary) to move tracers flagged for removal.
 - prob_iterate_x1 Sweeps through list to flag tracers to be moved in x1 direction.
 - prob_iterate_x2 Same, but in x2 direction.
 - prob_iterate_x3 Same, but in x3 direction.
 - flag_tracer_star This function is called when a star is created so a tracer can be flagged with star_id.
 - mc_tophat Tophat algorithm is used to smooth tracer density output.

- mctracer_out.c Write tracer output in formatted table, including density, initial density, position, and time. This also includes information of tracer particles within starparticles.
- output_tracer_vtk.c Writes output in vtk format.
- vfintegrate.c Contains functions for integrating VF tracers.
 - Integrate_vf_2nd Uses a second-order integration method with predicted position at t + dt/4.
 - Integrate_vf_2nd_lower Uses a second-order integration method without predicted position at t + dt/4.
 - vf_newijk Sweeps through tracer grid to move VF tracers to new positions.
 - vf_newpos This function is called to move VF tracer from a ghost zone to a cell in the active zone.
 - interp Uses interpolation weights to interpolate from the new time step.
 - interp_prev Uses interpolation weights to interpolate from the previous time step.
- vfinterp.c Contains several functions to obtain the interpolation weights for integration of the VF tracers.
 - getwei_linear Uses linear interpolation.
 - getwei_TSC Uses Traingular Shaped Cloud interpolation.
 - getwei_QP Uses quadratic polynomial interpolation.
- 2.1. main.c. If MCTRACERS or VFTRACERS are defined, the tracer grid is initialized (call to init_tracer_grid) after the grid and mesh are initialized in Step 4. The boundary conditions are initialized with a call to bvals_tracer_init, and the boundary condition is set with a call to bvals_tracer during Step 6. The boundary values are set again after the time is updated in Step 9h (another call to bvals_tracer). After updating the boundary values, there is a call to a debugging routine (tracer_debug) and a top-hat algorithm is called to smooth the output (mc_tophat). The tracer memory is freed with a call to tracer_destruct.
- 2.2. **Integrators.** I have implemented the tracer algorithms in the MUSC-Hancock (VL) integrators in 1D, 2D, and 3D.
 - src/integrators/integrate_1d_vl.c If MCTRACERS are defined, the probability flux of Monte Carlo tracer transfer is computed. The list of tracers is iterated through, and some are marked for transfer (call to prob_iterate_x1) to adjacent grid cells. The reduced mass is updated. The list of tracers is then swept through again, and those marked for transfer are moved (call to Tracerlist_sweep). If VFTRACERS is defined, the tracers positions are integrated (call to Integrate_vf_2nd). The list of tracers is swept through, and those marked for transfer are moved (call to Tracerlist_sweep).
 - src/integrators/integrate_2d_v1.c If MCTRACERS are defined, a similar procedure is followed as in the 1d integrator. There is an additional sweep through the tracers on the boundary if the inflow_x1 problem is being used. To compute the probability of transfer, prob_iterate_x2 is called rather than prob_iterate_x1. If VFTRACERS are defined, a call

- to an integrator is called (Integrate_vf_2nd_lower). The tracers are then moved to the linked list corresponding to their new position (call to vf_newijk).
- src/integrators/integrate_3d_vl.c The implementation is the same as in integrate_2d_vl.c, but a call to prob_iterate_x3 is made.
- 2.3. init_mesh.c. An MPI structure type for the tracer particles is created for communication.