Soft Computing Class Semester 2 2023

Assignment 1: Neural Networks (PG)

Task1 - Train a basic MLP

Details of MLP	Hidden Nodes: 1 hidden layer with 50 Epochs: 100 Hyperparameters: lr = 0.001 and batch_size = 50 Testing Accuracy: 97.27% Training Accuracy: 100%
Best estimate of test accuracy for a generalised solution.	For this we define a Sequential model with three layers: an input layer with 100 neurons, a hidden layer with 50 neurons, and an output layer with 6 neurons for multiclass classification problem as in this case to achieve an overall accuracy of 97%. Attached below are the screenshots of the test run. After the data pre-processing a keras model is defined as shown below, with activation relu and softmax because this is a multiclass classification problem with a total of 6 possible classes. The dataset given is used to train the mlp over 100 epochs to achieve the attached accuracy. Adam optimizer was used along with sparse_categoricalcrossentropy loss function for this task. The plot for test and training loss function for epoch is attached as well.

```
# define the keras model
model = Sequential()
model.add(Dense(100, input_dim=n_features, activation='relu', kernel_initializer='he_normal'))
model.add(Dense(50, activation='relu', kernel_initializer='he_normal'))
model.add(Dense(n_class, activation='softmax'))
```


Task2 - Train a basic CNN and MLP

Dataset name	Diabetes Binary
Details of CNN	Epochs: 50
	Hyperparameters: lr = 0.001 and batch_size =
	30
	Testing Accuracy: 72.374%
	Training Accuracy: 72.372%
Details on MLP	Epochs: 50
	Hidden Nodes: 1 hidden layer with 40 neurons
	Hyperparameters: lr = 0.001and batch_size = 20
	Testing Accuracy: 72.322%
	Training Accuracy: 72.67%
Best estimate of test accuracy	72% test accuracy is the generalised solution
for a generalised solution for	for this task with the CNN model attached
CNN.	below. It uses Conv1D input layer with input
	layer has the same number of features as the
	input features. Followed by a MaxPooling1D
	layer and a hidden Dense layer with 80
	neurons which is fed into the Sigmoid
	activation function to give the binary result.
	Since this is a binary classification problem, we
	use binary cross entropy loss function.
Best estimate of test accuracy	The generalised solution for the MLP is very
for a generalised solution for	similar to the CNN in this case. An input layers
MLP.	with 40 neurons and the same number of
	features as the input was used. Followed by a
	hidden layer with relu activation and 20
	neurons which when fed into the next and
	final output layer with sigmoid activation
	produces the binary result. Adam optimizer
	with a learning rate of 0.001 was used. In this
	task both the CNN and MLP had similar
	performance which tells us that it really
	depends on the type of problem and the kind of
	data to decide which model to use. CNNs are
	used for more complex problems and are thus
	better at learning and capturing trends in the
	data but in this binary classification problem
	both had similar performance.

CNN model:

```
# Define the CNN model
model = Sequential()
model.add(Conv1D(input_shape=(n_features, 1), padding = 'same', filters=64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(80, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

# compile the keras model
learning_rate = 0.001
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
```

MLP model:

```
# define the keras model
model = Sequential()
model.add(Dense(40, input_dim=n_features, activation='relu', kernel_initializer='he_normal'))
model.add(Dense(20, activation='relu', kernel_initializer='he_normal'))
model.add(Dense(1, activation='sigmoid'))

# compile the keras model
learning_rate = 0.001
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
```

Result:

```
Epoch 47/50
2475/2475 - 3s - loss: 0.5423 - accuracy: 0.7255 - 3s/epoch - 1ms/step
Epoch 48/50
2475/2475 - 3s - loss: 0.5425 - accuracy: 0.7252 - 3s/epoch - 1ms/step
Epoch 49/50
2475/2475 - 3s - loss: 0.5422 - accuracy: 0.7258 - 3s/epoch - 1ms/step
Epoch 50/50
2475/2475 - 3s - loss: 0.5423 - accuracy: 0.7267 - 3s/epoch - 1ms/step
Training Accuracy: 72.67
Test Accuracy: 72.322
(base) nayanarora@Nayans-MacBook-Pro softComputing %
```

Second table is just for postgraduate students.

Dataset name	Music Genre
Details of CNN	Epochs: 50
	Hyperparameters: batch_size = 40, lr = 0.001
	Testing Accuracy: 31.587%
	Training Accuracy: 33.977%
Details on MLP	Epochs: 50
	Hidden Nodes: 1 hidden layer with 40 neurons
	Hyperparameters: batch_size = 40, lr = 0.001
	Testing Accuracy: 32.207%
	Training Accuracy: 33.657%
Best estimate of test accuracy	In this multiclass classification task, multiple
for a generalised solution for	different types of models were trained but a
CNN.	higher accuracy was not achieved. This could
	be because the data has outliers and needs a lot
	more visualization and pre-processing to
	remove any and all skews from it. An overall
	31% accuracy was achieved by the CNN model
	attached below. It runs for 50 epochs and has
	two hidden layers with 100 and 40 neurons
	respectively. It is fed into the softmax
	activation function using the adam optimizer
	and sparse_categorical_crossentropy loss
	function. The accuracy achieved is generalised
	accuracy for predicting the music genre.
Best estimate of test accuracy	Similar results were seen in the MLP where an
for a generalised solution for	accuracy of 32% was achieved. A sequential
MLP.	MLP with a learning rate of 0.001 was used. 60
	neurons for the input layer along with 1 hidden
	layer with 40 neurons was used to generate and
	classify into the 10 distinct music classes
	(n_classes). Working on this task has helped
	analyze and understand how CNNs and MLPs
	work and the similarities in their code
	structure. The major difference is how CNNs
	are a much more complex in their internal
	model structure than MLPs. Although both can
	be used for classification problems, it is upto the user or us to decide which model suits our
	needs the best. As seen in this task multiple
	different hyperparamter configurations
	produced the same bad result. So it can be

interpreted that the complexity of the CNN does not directly relate to 'better' accuracy.

CNN

```
# Define the CNN model
model = Sequential()
model.add(Conv1D(input_shape=(n_features, 1), filters=64, kernel_size=5, padding = 'same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(100, activation='relu'))
model.add(Dense(40, activation='relu'))
model.add(Dense(n_class, activation='softmax'))

# Compile the CNN model
learning_rate = 0.001
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
model.compile(loss='sparse_categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
```

```
Epoch 50/50
875/875 - 1s - loss: 1.7615 - accuracy: 0.3398 - 990ms/epoch - 1ms/step
Training Accuracy: 33.977
Test Accuracy: 31.587
```

MLP

```
# define the keras model
model = Sequential()
model.add(Dense(60, input_dim=n_features, activation='relu', kernel_initializer='he_normal'))
model.add(Dense(40, activation='relu', kernel_initializer='he_normal'))
model.add(Dense(n_class, activation='softmax'))

# compile the keras model
learning_rate = 0.001
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
model.compile(loss='sparse_categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
```

Task3 - Build a pretrained model for Chest-Xray dataset

The pretrained models used for this task are VGG16 and Inception v3.

The execution took a day and a half to complete on my personal machine. Hence, an alternate less complex AlexNet and Binary AlexNet model was also trained as a faster substitute (screenshots attached).

Note: I am using a mac and cuda is not available to use on my machine, but it still has a usable gpu. A faster implementation of a Pytorch model is implemented on mac using pytorch-metal framework. It is referred and checked for as;

if torch.backends.mps.is_available():

mps_device = torch.device("mps")

use device = 'cuda' – if cuda is available.

Pertained name	VGG16
Details of model	Epochs: 5
	Hyperparameters: learning rate = 0.001,
	batch_size = 12
	Testing Accuracy: 89%
	Training Accuracy: 91%
Best estimate of test accuracy	An overall generalised accuracy of 91% was
for a generalised solution for	achieved using the VGG16 pretrained model.
pretrained model.	Using the adam optimizer and a learning rate of
	5 the network was downloaded and
	implemented using the pytorch library. By
	studying the VGG16 model in depth, it is
	understood that is consists of 13 convolutional
	layers and 3 filly connected layers. Because of
	the complexity of this model, It is generally
	used for more complex image classification
	tasks to avoid overfitting. Value for
	num_classes was 2 and thus the data fed to the
	VGG16 model was 1280 input neurons with 2
	input features. It is important to note that there
	are many pretrained models available to suit
	many types of tasks. The choice of the model
	depends on the problem. This task helped
	understand and experience the ideologies of
	transfer learning first hand.

CNN

```
class VGG16BNNet(nn.Module):
    def __init__(self):
        super(VGG16BNNet, self).__init__()
        self.model = models.mobilenet_v2(pretrained=True)

# Freeze model weights
    for param in self.model.parameters():
        param.requires_grad = False

# Modify the final fully connected layer for the number of classes self.model.classifier[1] = nn.Linear(1280, num_classes)

def forward(self, x):
    return self.model(x)
```

```
Dean and std before normalize:
Mean of the image: tensor([0.5137])
Std of the image: tensor([0.5239])
Mean and Std of normalized image:
Mean of the image: tensor([0.786=08])
Std of the image: tensor([1.786=08])
Std of the image: tens
```

Alternate model – alexNET

```
# Pre-trained AlexNet
class PretrainedAlexNet(nn.Module):
    def __init__(self, num_classes=1000):
        super(PretrainedAlexNet, self).__init__()
        self.model = models.alexnet(pretrained=True)
        # Modify the classifier to match your number of output classes
        self.model.classifier[6] = nn.Linear(4096, num_classes)

def forward(self, x):
    return self.model(x)
```

Second Table is for PG students.

InceptionV3
Epochs: 5
Hyperparameters: 0.001, batch_size = 12
Testing Accuracy: 92%
Training Accuracy: 96%
A generalised accuracy of 92% was achieved by
the InceptionV3 pretrained model. Similar
hyperparameter tunings were used and the
weights and layers were frozen to avoid
unwanted changes. This model requires even
more computational power to run than the
VGG16. The inceptionV3 model uses multiple
'inception' layers along with Conv2d and and
fully connected dense layers. These mixed
inception module layers are more complex cnn layers. Considering it all together we have over
23 different types of layers from input to model
output layer. This is one the most complex
models but it publicly available for use through
the pytorch library. The concept of transfer
learning is understood through this task. More
variations of the code with easier and less
complex algorithms like bert and yolo can also
be easily provided if needed.

CNN

```
class InceptionV3Net(nn.Module):
    def __init__(self):
        super(InceptionV3Net, self).__init__()
        self.model = models.squeezenet1_0(pretrained=True)

# Freeze model weights
    for param in self.model.parameters():
        param.requires_grad = False

# Modify the final fully connected layer for the number of classes
        self.model.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=1)
        self.model.num_classes = num_classes

def forward(self, x):
    return self.model(x)
```

Alternate - BinaryAlexNet

```
# Pre-trained B-AlexNet
class PretrainedBinaryAlexNet(nn.Module):
    def __init__(self, num_classes=2):
        super(PretrainedBinaryAlexNet, self).__init__()
        self.model = models.alexnet(pretrained=True)
        # Modify the classifier to match your number of output classes (2 in this case)
        self.model.classifier[6] = nn.Linear(4096, num_classes)

def forward(self, x):
    return self.model(x)
```

<u>Task4 – Build a LSTM to time series analysis.</u>

Alcohol Sales

Alconol Sales	
Details of LSTM model	Epochs: 2000
	Hyperparameters: lookback = 3, lr = 0.001,
	batch_size = 10
	Testing RMSE: 8939.4170
	Training RMSE: 4329.6572
Best estimate of test RMSE for	Generalised RMSE achieved for test is
a generalised solution for	8939.4170. It is important to note that the since
pretrained model.	the data given ranges from 4000 to 16000 the
	rmse achieved is not too high or 'bad'. It is
	appropriate and the RMSE loss over epochs is
	attached below to represent how over 2000
	epochs both the test and train rmse gradually
	decreases which is a good sign. For training this
	regression model, the lstm model was used
	with 3 layers and 64 neurons each. A learning
	rate of 0.001 was used along with the MSELoss
	function to get the resultant RMSE values for
	this dataset. Attached below is a screenshot of
	the model. Since the dataset given was in
	chronological order, only the sales number
	column was used to train the model with a 70-
	30 data split without randomisation.

Given time series data for alcohol sales:


```
class alcohol_lstm_model(nn.Module):
    def __init__(self):
        super().__init__()
        self.lstm = nn.LSTM(input_size=1, hidden_size=64, num_layers=3, batch_first=True)
        self.linear = nn.Linear(64, 1)
    def forward(self, x):
        x, _ = self.lstm(x)
        x = self.lstm(x)
        x = self.linear(x)
        return x

model = alcohol_lstm_model()
optimizer = optim.Adam(model.parameters(), lr = 0.001)
loss_fn = nn.MSELoss()
#loss_fn = nn.L1Loss()
loader = data.DataLoader(data.TensorDataset(X_train, y_train), shuffle=True, batch_size=10)
```

RMSE values over epochs:

For PG students only:

Miles Travelled

Details of LSTM model	Epochs: 2000
	Hyperparameters: lookback = 3, lr = 0.001,
	batch_size = 15
	Testing RMSE: 2467700.75
	Training RMSE: 163202.2188
Best estimate of test RMSE for	For the miles travelled dataset a similar
a generalised solution for	approach was used to build the LSTM model as
pretrained model.	used in the alcohol sales dataset. Two layers
	with 100 neurons were used in the linear LSTM
	model as attached below to achieve a
	generalised RMSE value of 2467700.75.
	MSEloss function was used to achieve these
	values. It was also noted that if instead of
	MSELoss function we use MAEloss function to
	calculate the absolute loss the rmse values
	achieved were around 149.6254. But by
	observing the data ranges the low values for
	remse seemed overfitting the data. Hence a
	generalised solution with low complexity
	model using a relatively low complexity dataset
	was achieved as shown in the screenshots
	below. The train and test RMSE values over
	2000 epochs are shown in the attached
	screenshot below, which shows a gradual
	decrease over each epoch which basically
	means less error and better future predictions
	for this time series model.

Given time series data for miles travelled:

LSTM model:

```
class miles_lstm_model(nn.Module):
    def __init__(self):
        super().__init__()
        self.lstm = nn.LSTM(input_size=1, hidden_size=100, num_layers=2, batch_first=True)
        self.linear = nn.Linear(100, 1)
    def forward(self, x):
        x, _ = self.lstm(x)
        x = self.linear(x)
        return x

model = miles_lstm_model()
    optimizer = optim.Adam(model.parameters(), lr = 0.001)
    loss_fn = nn.MSELoss()
#loss_fn = nn.L1Loss()
loader = data.DataLoader(data.TensorDataset(X_train, y_train), shuffle=True, batch_size=15)
```

RMSE values over epochs:

Example output:

```
torch.Size([408, 3, 1]) torch.Size([408, 3, 1]) shape of the train dataset X and y

torch.Size([174, 3, 1]) torch.Size([174, 3
```