ENGR 308 (Fall 2025) S. Alghunaim

8. Numerical integration

- differentiation and integration
- Newton-Cotes integration
- Trapezoidal method
- Simpson 1/3 & 3/8 rules
- Romberg integration

Derivatives

Difference approximation

$$\frac{\Delta y}{\Delta x} = \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

Derivative

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

• $\frac{dy}{dx}$ (also y' or $f'(x_i)$) is the slope of the tangent to the curve at x_i

• second derivative: $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$ measures how fast slope changes (*curvature*)

Equal-area graphical differentiation

- compute divided differences $\Delta y/\Delta x$
- plot as a step curve versus x
- sketch a smooth curve balancing positive and negative areas
- read dy/dx values from the smooth curve

Integration

the inverse process to differentiation in calculus is integration

Integration

$$I = \int_{a}^{b} f(x) \, dx$$

- f(x) is the *integrand*
- \int is a stylized S symbolizing summation
- integral corresponds to area under the curve of f(x) between x = a and x = b
- definite integration: limits a, b specified
- indefinite integration: limits not specified, result is a family of functions

Relationship between differentiation and integration

differentiation and integration are inversely related processes

Example: if y(t) is position and v(t) is velocity, then

$$v(t) = \frac{d}{dt}y(t)$$

$$\iff y(t) = \int_0^t v(t) dt$$

General link: integration

$$I = \int_{a}^{b} f(x) \, dx$$

is equivalent to solving the differential equation

$$\frac{dy}{dx} = f(x), \quad y(a) = 0$$

for v(b)

Noncomputer methods for differentiation and integration

the function to be differentiated or integrated will usually be one of three forms:

- 1. simple continuous function (polynomial, exponential, trigonometric)
- 2. complicated continuous function (difficult or impossible to handle analytically)
- 3. tabulated function, values given at discrete points (e.g., experimental data)

Approaches

- for case 1: analytic calculus works well
- for cases 2 and 3: approximate methods must be employed

Graphical integration: grid method

- grid method: sum area of boxes under the curve
- finer grids → improved estimates

Graphical integration: strip method

- strip method: sum of rectangles area with height at strip midpoints
- finer strips → improved estimates

Outline

- differentiation and integration
- Newton-Cotes integration
- Trapezoidal method
- Simpson 1/3 & 3/8 rules
- Romberg integration

Newton-cotes formulas

replace a complicated function or data with an approximating polynomial:

$$I = \int_{a}^{b} f(x) dx \approx \int_{a}^{b} f_{n}(x) dx$$

where
$$f_n(x) = a_0 + a_1x + \dots + a_{n-1}x^{n-1} + a_nx^n$$

examples:

- the "strip method" corresponds to piecewise zero-order polynomials (constants)
- first-order polynomial: straight line connecting endpoints (trapezoid rule)
- second-order polynomial: parabola (Simpson rule)
- straight line segments

Closed and open Newton-Cotes formulas

Closed form

- data points at the beginning and end of the limits of integration are known
- · commonly used for definite integration
- trapezoid and Simpson rules are closed forms

Open form

- integration limits extend beyond available data points
- · does not use endpoints
- mainly applied to improper integrals and in solving ordinary differential equations

Outline

- differentiation and integration
- Newton-Cotes integration
- Trapezoidal method
- Simpson 1/3 & 3/8 rules
- Romberg integration

Trapezoidal rule

use a first-order polynomial as the approximation:

$$I = \int_{a}^{b} f(x) dx \approx \int_{a}^{b} f_{1}(x) dx$$

• recall, Newton linear interpolation between (a, f(a)) and (b, f(b)) is

$$f_1(x) = f(a) + \frac{f(b) - f(a)}{b - a} (x - a)$$

• the integral of the straight line approximation yields the trapezoidal rule:

geometrically: $I \approx$ trapezoid area formed by straight line connecting f(a), f(b)

Geometric interpretation of the trapezoidal rule

• from geometry, the area of a trapezoid is computed as

• in the trapezoidal rule, the trapezoid is rotated on its side, thus,

$$I \approx \text{width} \times \text{average height} = (b - a) \frac{f(a) + f(b)}{2}$$

Error of the trapezoidal rule

error can be substantial

an estimate of the local truncation error for a single application of trapezoidal rule:

$$E_t = -\frac{1}{12}f''(\xi)(b-a)^3, \quad \xi \in [a,b]$$

- if f(x) is linear, then f''(x) = 0 and the trapezoidal rule is exact
- for functions with nonzero second derivatives (curvature), error will occur
- the magnitude of the error depends on:
 - the size of the interval (b-a) cubed
 - the curvature of the function, as reflected by $f''(\xi)$

Example

numerically integrate

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

from a = 0 to b = 0.8; the exact value of the integral is 1.640533

the function values are

$$f(0) = 0.2, \quad f(0.8) = 0.232$$

thus:

$$I \approx 0.8 \times \frac{0.2 + 0.232}{2} = 0.1728$$

error:

$$E_t = 1.640533 - 0.1728 = 1.467733$$

percent relative error:

$$\varepsilon_t = 89.5\%$$

large error results because the straight line neglects much of the area above it

Example: approximate error estimate

· second derivative:

$$f''(x) = -400 + 4050x - 10800x^2 + 8000x^3$$

• average value:

$$\bar{f''}(x) = \frac{\int_0^{0.8} \left(-400 + 4050x - 10800x^2 + 8000x^3\right) dx}{0.8} = -60$$

approximate error:

$$E_a = -\frac{1}{12}(-60)(0.8)^3 = 2.56$$

- this is of the same order of magnitude and sign as the true error
- but not exact because \bar{f}'' is not necessarily equal to $f''(\xi)$

Multiple-application trapezoidal rule

divide interval [a,b] into n equal segments $[x_{i-1},x_i]$ and integrate each segment

Trapezoidal method SA—ENGR308 8.16

Multiple-application trapezoidal rule

- consider n+1 equally spaced base points x_0, x_1, \ldots, x_n with step size $h=\frac{b-a}{n}$
- if a and b are designated as x_0 and x_n , the total integral is

$$I = \int_{x_0}^{x_1} f(x) \, dx + \int_{x_1}^{x_2} f(x) \, dx + \dots + \int_{x_{n-1}}^{x_n} f(x) \, dx$$

substituting the trapezoidal rule for each integral yields

$$I = \frac{h}{2} [f(x_0) + f(x_1)] + \frac{h}{2} [f(x_1) + f(x_2)] + \dots + \frac{h}{2} [f(x_{n-1}) + f(x_n)]$$

grouping terms gives

$$I = \frac{b-a}{2n} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right]$$

Error of the multiple-application trapezoidal rule

summing the individual errors for each segment gives

$$E_t = -\frac{(b-a)^3}{12n^3} \sum_{i=1}^n f''(\xi_i)$$

where $f''(\xi_i)$ is the second derivative at a point ξ_i located in segment i

- result can be simplified by estimating the mean or value of second derivative
- for the entire interval as:

$$\frac{1}{n}\sum_{i=1}^{n}f''(\xi_i)\approx \bar{f}''=\frac{\int_a^bf''(x)dx}{b-a}$$

• therefore, $\sum f''(\xi_i) \approx n\bar{f}''$ and approximate error is

$$E_a = -\frac{(b-a)^3}{12n^2} \bar{f}''$$

• if the number of segments is doubled, the truncation error will be quartered

Example

use the two-segment trapezoidal rule to estimate

$$\int_0^{0.8} \left(0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5\right) dx, \quad \text{true value: } 1.640533$$

• n = 2, h = 0.4; function values:

$$f(0) = 0.2$$
, $f(0.4) = 2.456$, $f(0.8) = 0.232$

• apply rule:

$$I = \frac{0.8}{4} [0.2 + 2(2.456) + 0.232] = 1.0688$$

· true error:

$$E_t = 1.640533 - 1.0688 = 0.57173, \quad \varepsilon_t = 34.9\%$$

• approximate error with $\bar{f}^{"}=-60$ (from page 8.15):

$$E_a = -\frac{0.8^3}{12(2)^2}(-60) = 0.64$$

Example

using n = 2, ..., 10, we get the result shown

\overline{n}	h	Ι	ε_t (%)
2	0.4	1.0688	34.9
3	0.2667	1.3695	16.5
4	0.2	1.4848	9.5
5	0.16	1.5399	6.1
6	0.1333	1.5703	4.3
7	0.1143	1.5887	3.2
8	0.1	1.6008	2.4
9	0.0889	1.6091	1.9
10	0.08	1.6150	1.6

as n increases, error decreases, but at a gradual rate since $E_a \propto 1/n^2$

Trapezoidal rule with unequal segments

consider unevenly spaced segments $h_i = x_i - x_{i-1}$

the trapezoidal rule can be applied segment by segment:

$$I = \frac{1}{2} \sum_{i=1}^{n-1} h_i \left(f(x_{i-1}) + f(x_i) \right)$$

= $h_1 \frac{f(x_0) + f(x_1)}{2} + h_2 \frac{f(x_1) + f(x_2)}{2} + \dots + h_n \frac{f(x_{n-1}) + f(x_n)}{2}$

- more practical since data (e.g., experimental measurements) are unevenly spaced
- same as multiple-application trapezoidal rule, except h_i not fixed
- cannot simplify as before, but easy to implement in computer code

Example: trapezoidal rule with unequal segments

use trapezoidal rule to integrate

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5,$$

for data shown where the exact value of the integral is 1.640533

х	f(x)	х	f(x)
0.00	0.200000	0.44	2.842985
0.12	1.309729	0.54	3.507297
0.22	1.305241	0.64	3.181929
0.32	1.743393	0.70	2.363000
0.36	2.074903	0.80	0.232000
0.40	2.456000		

applying the formula gives

$$I = 0.12 \frac{1.309729 + 0.2}{2} + 0.10 \frac{1.305241 + 1.309729}{2} + \dots + 0.10 \frac{0.232 + 2.363}{2} = 1.594801$$
 with error $\varepsilon_t = \frac{1.640533 - 1.594801}{1.640533} \times 100\% = 2.8\%$

Outline

- differentiation and integration
- Newton-Cotes integration
- Trapezoidal method
- Simpson 1/3 & 3/8 rules
- Romberg integration

Simpson rules

- use higher-order polynomials to better approximate the integral
- for three points between f(a) and f(b), use parabola
- four points can be connected with a third-order polynomial

• resulting formulas of integrals under these polynomials are called Simpson rules

Simpson 1/3 & 3/8 rules SA — ENGR308 8.23

Simpson 1/3 rule

- we are given three equally spaced data points x_0, x_1, x_2
- ullet Simpson 1/3 rule results when a 2nd-order interpolating polynomial is used

$$I = \int_{a}^{b} f(x) dx \approx \int_{a}^{b} f_{2}(x) dx$$

if $a = x_0$ and $b = x_2$, and $f_2(x)$ is represented by a 2nd Lagrange polynomial:

$$I = \int_{x_0}^{x_2} \left[\frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2) \right] dx$$

Simpson 1/3 rule: integrating yields

$$I_{1/3} \approx (b-a) \frac{f(x_0) + 4f(x_1) + f(x_2)}{6}$$
$$= \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

where $h = \frac{b-a}{2}$ (note that the midpoint is $x_1 = \frac{a+b}{2}$)

Error of Simpson 1/3 rule

truncation error for one segment (with $h = \frac{b-a}{2}$):

$$E_t = -\frac{1}{90} h^5 f^{(4)}(\xi) = -\frac{(b-a)^5}{2880} f^{(4)}(\xi) \quad \text{for some } \xi \in (a,b)$$

- Simpson 1/3 rule is third-order accurate (error $\propto f^{(4)}$)
- i.e., rule exact for all cubic polynomials
- approximate error for one segment

$$E_a = -\frac{(b-a)^5}{2880} \, \bar{f}^{(4)}, \quad \bar{f}^{(4)} = \frac{1}{b-a} \int_a^b f^{(4)}(x) dx$$

 $ar{f}^{(4)}$ is the average fourth derivative over the interval

Example

evaluate

$$I = \int_0^{0.8} (0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5) dx$$

with true value $I_{\text{true}} = 1.640533$ and f(0) = 0.2, f(0.4) = 2.456, f(0.8) = 0.232

• Simpson 1/3 rule:

$$I \approx (0.8) \frac{0.2 + 4(2.456) + 0.232}{6} = 1.367467$$

exact error:

$$E_t = I_{\text{true}} - I = 1.640533 - 1.367467 = 0.2730667 \quad (\varepsilon_t = 16.6\%)$$

· estimated error

$$-\frac{(b-a)^5}{2880}f^{(4)}(\xi) \approx E_a = -\frac{(0.8)^5}{2880}(-2400) = 0.2730667$$

where -2400 is the average of $f^{(4)}$ on [0, 0.8]

Multiple-application Simpson 1/3 rule

- subdivide [a,b] into **even** number n of equal segments $h=\frac{b-a}{n}$
- integrate

$$I = \int_{x_0}^{x_2} f(x) dx + \int_{x_2}^{x_4} f(x) dx + \dots + \int_{x_{n-2}}^{x_n} f(x) dx$$

Simpson 1/3 & 3/8 rules

Multiple-application Simpson 1/3 rule

applying Simpson 1/3 rule to each subinterval:

$$I \approx \frac{2h}{6} \left[f(x_0) + 4f(x_1) + f(x_2) \right] + \frac{2h}{6} \left[f(x_2) + 4f(x_3) + f(x_4) \right]$$
$$+ \cdots + \frac{2h}{6} \left[f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right]$$

• combining terms and using $h = \frac{b-a}{n}$ yields

$$I \approx \frac{b-a}{3n} \Big[f(x_0) + 4 \sum_{\substack{i=1 \ i \text{ odd}}}^{n-1} f(x_i) + 2 \sum_{\substack{j=2 \ i \text{ even}}}^{n-2} f(x_j) + f(x_n) \Big]$$

method requires even number of segments (n odd)

Error of multiple-application Simpson 1/3 rule

• approximate truncation is sum of errors and average over n/2 intervals:

$$E_a = -\frac{(b-a)^5}{180 n^4} \bar{f}^{(4)}$$

where

$$\bar{f}^{(4)} = \frac{1}{a-b} \int_{a}^{b} f^{(4)}(x) dx$$

is the average value of the fourth derivative of f(x) on [a,b]

• error decreases much faster than trapezoidal rule:

- trapezoidal: $E \sim O(n^{-2})$

- Simpson 1/3: $E \sim O(n^{-4})$

Example

use multiple application of Simpson 1/3 rule with n=4 to estimate the integral

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

from a = 0 to b = 0.8; exact value: 1.640533

• for n = 4 (h = 0.2):

$$f(0) = 0.2, \ f(0.2) = 1.288, \ f(0.4) = 2.456, \ f(0.6) = 3.464, \ f(0.8) = 0.232$$

· hence.

$$I = \frac{0.8}{12} [0.2 + 4(1.288 + 3.464) + 2(2.456) + 0.232] = 1.623467$$

true error and estimated error:

$$E_t = 1.640533 - 1.623467 = 0.017067,$$
 $\varepsilon_t = 1.04\%$

$$E_a = -\frac{(0.8)^5}{180(4)^4} (-2400) = 0.017067$$

Simpson 3/8 rule

a third-order Lagrange polynomial is fit to four points (3 segments):

$$I = \int_{a}^{b} f(x) dx \approx \int_{a}^{b} f_{3}(x) dx$$

resulting formula:

$$I_{3/8} \approx \frac{b-a}{8} \left[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right]$$
$$= \frac{3h}{8} \left[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right]$$

where $h = \frac{b-a}{3}$

• truncation error:

$$E_t = -\frac{3}{80}h^5 f^{(4)}(\xi) = -\frac{(b-a)^5}{6480}f^{(4)}(\xi)$$

slightly more accurate than Simpson 1/3 rule, but requires 4 points

Simpson 1/3 versus 3/8 rules

- Simpson 1/3 rule is usually the method of preference:
 - attains third-order accuracy with only 3 points
 - more efficient than 3/8 rule
- Simpson 3/8 rule requires 4 points, but has special utility:
 - useful when the number of segments is odd

Example: suppose we have 5 segments, then we have two options:

- multiple-application trapezoidal rule → large truncation error
- apply Simpson 1/3 rule to the first 2 segments and Simpson 3/8 rule to others

Simpson 1/3 & 3/8 rules 9A_ENGRADS 8.32

Example

integrate

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$
, $a = 0$, $b = 0.8$

using (a) Simpson 3/8 rule; (b) 5 segments used with Simpson 1/3 and 3/8 rules

(a) Simpson 3/8 rule with four equally spaced points ($h=\frac{0.8}{3}=0.2667$)

$$f(0) = 0.2, \quad f(0.2667) = 1.432724,$$

 $f(0.5333) = 3.487177, \quad f(0.8) = 0.232$

yields

$$I_{3/8} \approx \frac{0.8}{8} [0.2 + 3(1.432724 + 3.487177) + 0.232] = 1.519170$$

 $E_t = 1.640533 - 1.519170 = 0.121363 \quad (\varepsilon_t = 7.4\%)$
 $E_a = -\frac{(0.8)^5}{6480} (-2400) = 0.121363$

(b) five-segment case ($h = \frac{0.8}{5} = 0.16$)

$$f(0) = 0.2,$$
 $f(0.16) = 1.296919,$ $f(0.32) = 1.743393,$ $f(0.48) = 3.186015,$ $f(0.64) = 3.181929,$ $f(0.80) = 0.232$

First two segments (Simpson 1/3 rule)

$$I_1 = \frac{0.32}{6} [0.2 + 4(1.296919) + 1.743393] = 0.380324$$

Last three segments (Simpson 3/8 rule)

$$I_2 = \frac{0.48}{8} [1.743393 + 3(3.186015 + 3.181929) + 0.232] = 1.264754$$

Total integral

$$I = I_1 + I_2 = 0.380324 + 1.264754 = 1.645077$$

$$E_t = 1.640533 - 1.645077 = -0.004544 \quad (\varepsilon_t = -0.28\%)$$

Example: combination of methods for uneven data

using Simpson rules where appropriate integrate

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

for data shown where the exact value of the integral is 1.640533

$\boldsymbol{\mathcal{X}}$	f(x)	x	f(x)
0.00	0.200000	0.44	2.842985
0.12	1.309729	0.54	3.507297
0.22	1.305241	0.64	3.181929
0.32	1.743393	0.70	2.363000
0.36	2.074903	0.80	0.232000
0.40	2.456000		

Example: inclusion of Simpson rules for uneven data

- first segment (x = 0 to 0.12): trapezoidal rule $I_1 = 0.0906$
- next two segments (x = 0.12 to 0.32): Simpson 1/3 rule $I_2 = 0.2758$
- next three segments: Simpson 3/8 rule $I_3 = 0.2727$
- two segments from x = 0.44 to 0.64: Simpson 1/3 rule $I_4 = 0.6685$
- last two unequal segments: trapezoidal rule $I_5 = 0.1663 + 0.1298$

total integration:

$$I_{\text{total}} = I_1 + I_2 + I_3 + I_4 = 1.603641 \implies \varepsilon_t = 2.2\%$$

Simpson 1/3 & 3/8 rules SA — ENGR308 8.36

Outline

- differentiation and integration
- Newton-Cotes integration
- Trapezoidal method
- Simpson 1/3 & 3/8 rules
- Romberg integration

Romberg integration

- Romberg integration is based on successive applications of the trapezoidal rule
- but employs mathematical manipulations to achieve higher accuracy
- key idea: combine results from trapezoidal approximations with different step sizes to accelerate convergence

Romberg integration SA_ENGR308 8.37

Richardson extrapolation

suppose trapezoidal rule estimate is

$$I = I(h) + E(h), \qquad h = (b - a)/n$$

- -I(h) = the approximation from an n-segment application of the trapezoidal rule
- -E(h) = the truncation error
- for two estimates with step sizes h_1 and h_2 :

$$I(h_1) + E(h_1) = I(h_2) + E(h_2)$$

where error is

$$E(h) \approx -\frac{b-a}{12}h^2\bar{f}^{"}$$

ratio of errors:

$$\frac{E(h_1)}{E(h_2)} \approx \left(\frac{h_1}{h_2}\right)^2 \Rightarrow E(h_1) \approx \left(\frac{h_1}{h_2}\right)^2 E(h_2)$$

Error elimination and improved estimate

substituting and rearranging gives

$$E(h_2) \approx \frac{I(h_1) - I(h_2)}{1 - (h_1/h_2)^2}$$

gives estimate of truncation error in terms of integral estimates and step sizes

• improved estimate of the integral:

$$I \approx I(h_2) + E(h_2) = I(h_2) + \frac{1}{(h_1/h_2)^2 - 1} [I(h_2) - I(h_1)]$$

ullet estimate has error $O(h^4)$, versus $O(h^2)$ for trapezoidal rule

Special case: halved intervals

• if $h_2 = h_1/2$, the Romberg formula simplifies to

$$I \approx \frac{4}{3}I(h_2) - \frac{1}{3}I(h_1)$$

• forms the basis of Romberg integration tables

before, we evaluated

$$\int_0^{0.8} \left(0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5\right) dx$$

by single and multiple applications of the trapezoidal rule, obtaining:

segments	h	integral	ε_t (%)
1	8.0	0.1728	89.5
2	0.4	1.0688	34.9
4	0.2	1.4848	9.5

use Richardson extrapolation with halved step ($h_2 = h_1/2$),

$$I \approx \frac{4}{3}I(h/2) - \frac{1}{3}I(h)$$

to compute improved estimates of the integral

combine 1- and 2-segment results

$$I \approx \frac{4}{3}(1.0688) - \frac{1}{3}(0.1728) = 1.367467$$

$$E_t = 1.640533 - 1.367467 = 0.273067 \quad (\varepsilon_t = 16.6\%)$$

• combine 2- and 4-segment results

$$I \approx \frac{4}{3}(1.4848) - \frac{1}{3}(1.0688) = 1.623467$$

$$E_t = 1.640533 - 1.623467 = 0.017067 \quad (\varepsilon_t = 1.0\%)$$

Takeaway

- a single Richardson step boosts the order from $O(h^2)$ (trapezoid) to $O(h^4)$
- significant accuracy gains with no extra function evaluations beyond two trap. runs

Romberg integration: higher-order error correction

• combine two $O(h^4)$ results $\Rightarrow O(h^6)$

$$I \approx \frac{16}{15}I_m - \frac{1}{15}I_l$$

- $-I_m$ = more accurate estimate
- $-I_1$ = less accurate estimate
- combine two $O(h^6)$ results $\Rightarrow O(h^8)$

$$I \approx \frac{64}{63}I_m - \frac{1}{63}I_l$$

Example

- we used Richardson extrapolation to compute two integral estimates of $O(h^4)$
- ullet we can combine these estimates to compute an integral with $O(h^6)$

$$I = \frac{16}{15}(1.623467) - \frac{1}{15}(1.367467) = 1.640533$$

exact to seven significant figures

Romberg integration: general algorithm

$$I_{j,k} \approx \frac{4^{k-1}I_{j+1,k-1} - I_{j,k-1}}{4^{k-1} - 1}$$

- *I_{i,k}* = improved integral
- $k = \text{level of accuracy } (k = 1: O(h^2), k = 2: O(h^4)....)$
- j = index distinguishing more (j + 1) and less (j) accurate integrals

Stopping criterion:

$$|\varepsilon_a| = \left| \frac{I_{1,k} - I_{2,k-1}}{I_{1,k}} \right| \times 100\%$$

terminate when $|\varepsilon_a| < \varepsilon_s$

Interpretation

- each iteration adds one trapezoidal estimate
- successively better integrals appear along the lower diagonal

Graphical depiction of Romberg integration

Trapezoid
$$k = 1 \qquad k = 2 \qquad k = 3 \qquad k = 4 \qquad k = 5$$

$$O(h^{2}) \qquad O(h^{4}) \qquad O(h^{6}) \qquad O(h^{8}) \qquad O(h^{10})$$

$$h \qquad I_{1,1} \qquad I_{1,2} \qquad I_{1,3} \qquad I_{1,4} \qquad I_{1,5}$$

$$h/2 \qquad I_{2,1} \qquad I_{2,2} \qquad I_{2,3} \qquad I_{2,3} \qquad I_{2,4}$$

$$h/4 \qquad I_{3,1} \qquad I_{3,2} \qquad I_{3,3} \qquad I_{3,3}$$

$$h/8 \qquad I_{4,1} \qquad I_{4,2} \qquad I_{4,2}$$

$$h/16 \qquad I_{5,1} \qquad I_{4,2} \qquad I_{5,1} \qquad I_{6,1} \qquad$$

the first column contains the trapezoidal rule evaluations that are designated $I_{j,1}$

- $j = 1 \implies$ single-segment application (step size = b a)
- $j = 2 \implies$ two-segment application (step size = $\frac{b-a}{2}$)
- $j = 3 \implies$ four-segment application (step size $= \frac{b-a}{4}$)
- and so forth

	O(h²)	O(h⁴)	O(h ⁶)	O(h ⁸)
(a)	0.172800 1.068800	\$ 1.367467		
(b)	0.172800 1.068800 1.484800	1.367467 1.623467	\$ 1.640533	
(c)	0.172800 1.068800 1.484800 1.600800	1.367467 1.623467 1.639467	1.640533 1.640533	1.640533

References and further readings

- S. C. Chapra and R. P. Canale. Numerical Methods for Engineers (8th edition). McGraw Hill, 2021. (Ch.21, 22)
- S. C. Chapra. Applied Numerical Methods with MATLAB for Engineers and Scientists (5th edition).
 McGraw Hill, 2023. (Ch.19, 20)

references SA_ENGR308 8.46