Parallel Databases

Introduction

- Databases are growing increasingly large
 - "Big Data" is a huge industry buzzword
 - Data considered a competitive advantage
 - Collect as much as possible
 - Use data to make decisions
 - Machine learning models train better with more data
- Single server with single processor not viable any more
 - Need multiple processors
 - Need large amounts of memory
 - Need more disks
- Want to benefit from these additional resources through parallelizing work across them

Parallelism in Databases

- □ For a single query / transaction (xact):
 - CPU work can be partitioned across multiple processors
 - Data can be partitioned across multiple disks for parallel I/O
 - Both of the above can make the query go faster
- For multiple queries / xacts
 - Different processors can work on different queries / xacts
 - Improves system throughput (and also latency because less waiting)
- User does not need to be aware of parallel execution of queries in the system
 - Same interface (SQL)
 - Same final result
 - But better performance

Shared-Memory

Shared-Disk

Shared-Nothing

I/O Parallelism

- Divide tables across multiple disks
 - Seek / rotate disks in parallel to multiply data read per unit time
- Several ways to partition tables
 - Horizontally (different rows on different disks)
 - Most common
 - Vertically (different columns on different disks)
 - Covered in CMSC 624 / 828N
- □ Partitioning techniques (number of disks = n):
 - Round robin
 - Send the Ith tuple inserted in the relation to disk i mod n.
 - Hash partitioning
 - Choose one (or more) attribute as the partitioning attribute, p.
 - Choose hash function h with range 0...n 1
 - ▶ For each tuple, t, apply *h* to t.p. Send t to corresponding disk.

I/O Parallelism (Cont.)

Range partitioning:

- Choose an attribute as the partitioning attribute, p.
- Divide p into n disjoint ranges that cover the entire domain of p
- Ideally, choose ranges such that equal % of p in each range
- Allocate one range per disk
- For each tuple t, place t on the disk which owns the range in which t.p is located.
- □ For example, 26 disks, partitioning attribute is person.name
 - One disk per letter of the alphabet that name starts with
 - But some disks (e.g. the one for 'X') would be nearly empty
 - So likely better off using 26 ranges based on the first 2-3 letters instead of just the first

Parallelizing Where Clause Selections

SELECT * FROM table WHERE x = 10

SELECT * FROM table WHERE x > 20

- Assume each disk has own processor (E.g. a shared-nothing architecture)
 - If data partitioned evenly across disks:
 - Each processor (at the same time / in parallel) reads the partition on its disk, searches for x = 10 or x > 20
 - If there are n disks, then each disk has 1/nth of the data
 - So search happens n times faster than if only one disk
 - Results found by each processor assembled at end of the query
 - This cost assumed to be small relative to search cost

What partitioning scheme is most likely to fall short of being n times faster for SELECT * FROM table WHERE x = 10

- A. Round robin
- B. Hash partitioning on x
- C. Hash partitioning on some other attribute
- D. Range partitioning on x or some other attribute

What partitioning scheme is least likely to fall short of being n times faster for SELECT * FROM table WHERE x = 10

- A. Round robin
- B. Hash partitioning on x
- C. Hash partitioning on some other attribute
- D. Range partitioning on x or some other attribute

Note: we are for now ignoring start-up cost and machine skew which are discussed on later slides. If we considered those, choice B is also a viable answer (and maybe even a better one)

What partitioning scheme should be used if every query looks like: SELECT * FROM table WHERE x = <const>

- A. Round robin
- B. Hash partitioning on x
- C. Hash partitioning on some other attribute
- D. Range partitioning on x
- E. Range partitioning on some other attribute

Choice B allows most of cluster to remain idle, so they can work on other queries.

What partitioning to use. Every query looks like: SELECT * FROM table WHERE x = <const> OR SELECT * FROM table WHERE x > <const>

- A. Round robin
- B. Hash partitioning on x
- C. Hash partitioning on some other attribute
- D. Range partitioning on x
- E. Range partitioning on some other attribute

What partitioning to use. Every query looks like: SELECT x FROM table; OR SELECT agg_func(x) FROM table;

- A. Round robin
- B. Hash partitioning on x
- C. Hash partitioning on some other attribute
- D. Range partitioning on x
- E. Range partitioning on some other attribute

Comparison of Partitioning Techniques (Cont.)

Round robin:

- Advantages
 - Best suited for sequential scan of entire relation on each query.
 - All disks have almost an equal number of tuples; retrieval work is thus well balanced between disks.
- Disadvantages
 - All disks have to get involved for point (=x) and range queries

Comparison of Partitioning Techniques (Cont.)

Hash partitioning:

- Usually good for sequential access
 - Assuming hash function is good, and partitioning attribute(s) is a key, tuples will be equally distributed between disks
 - But value skew of partitioning attribute can cause problems
 - Retrieval work is then well balanced between disks.
- Good for point queries on partitioning attribute
 - Only one disk gets involved, leaving others available for answering other queries.
- BUT: all disks have to get involved for range queries

Comparison of Partitioning Techniques (Cont.)

Range partitioning:

- OK for sequential access
 - But skew more likely to be issue
- Good for point queries on partitioning attribute: only one disk needs to be accessed.
- For range queries on partitioning attribute, one to a few disks may need to be accessed
 - Remaining disks are available for other queries.

Partitioning a Relation across Disks

- If a relation contains only a few tuples which will fit into a single disk block, then assign the relation to a single disk.
- Large relations are preferably partitioned across all the available disks.
- If a relation consists of m disk blocks and there are n disks available in the system, then the relation should be allocated min(m,n) disks.

Handling of Skew

- ☐ The distribution of tuples to disks may be **skewed** that is, some disks have many tuples, while others may have fewer tuples.
- Types of skew:
 - Attribute-value skew.
 - Some values for partitioning attribute(s) appear frequently; all the tuples with that same value end up in the same partition.
 - Can occur with range-partitioning and hash-partitioning.
 - Partition skew.
 - Arises from bad partitioning functions
 - Most likely happens for range partitioning

Handling Skew in Range-Partitioning

- □ To create a balanced range partitioning function:
 - Sort the relation on the partitioning attribute.
 - Construct the partition vector by scanning the relation in sorted order as follows.
 - After every 1/nth of the relation has been read, the next new value of the partitioning attribute is the beginning of the next range
 - n denotes the number of partitions to be constructed.
 - Duplicate entries or imbalances can result if duplicates are present in partitioning attributes.
- Alternative technique based on histograms is faster, but less precise (see next slide)

Handling Skew using Histograms

- Create logical buckets corresponding to m ranges that span domain of p (m >> n)
- Allocate one counter per bucket, initialize all counters to 0
- Sample or scan range partitioning attribute p
 - For every tuple t from sample/scan, add one to the bucket counter in which t.p is located
 - ☐ At the end, you have a histogram
- Assume uniform distribution within each range of the histogram
 - Use histogram to create n ranges of approximately same size

Handling Skew Using Virtual Processor Partitioning

- Third option: virtual processor partitioning:
 - Create a large number of partitions (say 10 to 20 times the number of processors)
 - Assign virtual processors to partitions either in round-robin fashion or based on hash function or mapping of virtual partition ids
- Basic idea:
 - If any normal partition would have been skewed, it is very likely the skew is spread over a number of virtual partitions
 - Skewed virtual partitions get spread across a number of processors, so work gets distributed evenly!
 - If not, can move virtual partitions around
 - Requires changing hash function or mapping

Intraquery Parallelism

- Execution of a single query in parallel on multiple processors/disks;
 important for speeding up long-running queries.
- Two complementary forms of intraquery parallelism:
 - Intraoperation Parallelism parallelize the execution of each individual operation in the query.
 - Interoperation Parallelism execute the different operations in a query expression in parallel.
- Intraoperation scales better
 - Number of tuples processed by each operation is typically more than number of operations in a query.

Parallel Processing of Relational Operations

- Assume *n* processors, P_0 , ..., P_{n-1} , and *n* disks D_0 , ..., D_{n-1} , where disk D_i is associated with processor P_i .
 - Assumption works best in shared-nothing architecture, but:
 - If a processor has multiple disks they can simply simulate a single disk D_i.
 - If m processors per disk, can logically divide disk into $D_1, ..., D_m$
 - Thus, can work on shared memory and shared disk as well

Parallel Sort

Range-Partitioning Sort

- □ Choose processors P_0 , ..., P_m , where $m \le n$ -1 to do sorting.
- ☐ Create range-partition vector with m entries, on the sorting attributes
- Redistribute the relation using range partitioning
 - all tuples that lie in the ith range are sent to processor P_i
 - \square P_i stores the tuples it received temporarily on disk D_i .
 - This step requires I/O and communication overhead.
- Each processor P_i sorts its partition of the relation locally.
- □ Each processors executes same operation (sort) in parallel with other processors, without any interaction with the others (data parallelism).
- Final merge operation is trivial: range-partitioning ensures that, for 1 j m, the key values in processor P^i are all less than the key values in P_j .

Parallel Sort (Cont.)

Parallel External Sort-Merge

- Assume the relation has already been partitioned among disks D_0 , ..., D_{n-1} (in whatever manner).
- \square Each processor P_i locally sorts the data on disk D_i .
- The sorted runs on each processor are then merged to get the final sorted output.
- Parallelize the merging of sorted runs as follows:
 - □ The sorted partitions at each processor P_i are range-partitioned across the processors P_0 , ..., P_{m-1} .
 - \square Each processor P_i performs a merge on the streams as they are received, to get a single sorted run.
 - □ The sorted runs on processors $P_0,...,P_{m-1}$ are concatenated to get the final result.

Parallel Join

- The join operation requires pairs of tuples to be tested to see if they satisfy the join condition, and if they do, the pair is added to the join output.
- Parallel join algorithms attempt to split the pairs to be tested over several processors. Each processor then computes part of the join locally.
- In a final step, the results from each processor can be collected together to produce the final result.

Partitioned Join

- For equi-joins and natural joins only
- Let r and s be the input relations, and we want to compute $r \bowtie s$.
- Partition r and s across the processors; compute join locally at each processor.
 - rand s each are partitioned into n partitions, denoted $r_0, r_1, ..., r_{n-1}$ and $s_0, s_1, ..., s_{n-1}$.
- Can use either range partitioning or hash partitioning on the join attributes
 - Must use same function for both r and s
- \square Partitions r_i and s_i are sent to processor P_i ,
- □ Each processor P_i locally computes $r_i \bowtie s_i$.
 - Any join method can be used.

Partitioned Parallel Hash-Join

- Special case of Partitioned join where
 - \square Partitions are created via a hash function, h_1
 - □ Join is done via a local hash join (use different hash function, h_2)

Fragment-and-Replicate Join

- Partitioning not possible for some join conditions
 - E.g., non-equijoin conditions, such as Query 10 from Project 1 (r.A > s.A)
- Need to compare every tuple from r with every tuple from s
 - But want to parallelize by dividing this comparison work across processors
- Choice 1: Broadcast join (book calls it asymmetric fragment-and-replicate)
 - One of the relations, say r, is partitioned; any partitioning technique can be used.
 - Usually already partitioned prior to storage; if so, skip this step
 - The other relation, s, is replicated across all the processors.
 - Processor P_i locally computes the join of r_i with all of susing any join technique.
 - Very popular when b_r >> b_s

Fragment-and-Replicate Join (Cont.)

- Choice 2 (General case):
 - Γ is partitioned into n partitions, $r_0, r_1, ..., r_{n-1}$;
 - \square s is partitioned into m partitions, s_0 , s_1 , ..., s_{m-1} .
 - Any partitioning technique may be used.
 - There must be at least m * n processors.
 - $P_{0,0}, P_{0,1}, ..., P_{0,m-1}, P_{1,0}, ..., P_{n-1\,m-1}$
 - $ightharpoonup r_i$ is replicated to $P_{i,0}, P_{i,1}, ..., P_{i,m-1}$,
 - ightharpoonup s_i is replicated to $P_{0,i}$, $P_{1,i}$, ..., $P_{n-1,i}$
 - $P_{i,j}$ computes the join of r_i with s_j .
 - Any join method can be used

Which Parallel Join to use?

- If non-equi join, partitioned join not an option
- If equi-join
 - If data is not already partitioned by join attribute
 - Partitioned join repartitions both tables
 - (Almost) entirety of both tables must be sent over network
 - Fragment-and-replicate join usually only repartitions one table
 - But other one must be repartitioned and replicated n times
 - Partition/replication cost often performance bottleneck
 - So calculating data transfer size for each technique is important

Parallel (Index) Nested-Loop Join

- Special case of broadcast join (asymmetric fragment-and-replicate)
- Assume that
 - relation s is much smaller than relation r
 - r is already partitioned.
- S gets replicated to every partition of r
- As each block of S arrives, keep it in memory
 - For each tuple of that block, scan the local partition of r
 - So partition of r is the inner table, s is the outer table
 - If we have an index on local partition of r, use that instead of scan
 - If local partition of r is larger than memory, and we don't have an index on r, use local block nested-loops join instead

Other Relational Operations

Selection $\sigma_{\theta}(\mathbf{r})$

- If θ is of the form $a_i = v$, where a_i is an attribute and v a value.
 - If r is partitioned on a_i the selection is performed at a single processor.
- If θ is of the form $I \le a_i \le u$ (i.e., θ is a range selection) and the relation has been range-partitioned on a_i
 - Selection is performed at each processor whose partition overlaps with the specified range of values.
- In all other cases: the selection is performed in parallel at all the processors.

Other Relational Operations (Cont.)

Duplicate elimination

- Perform by using either of the parallel sort techniques
 - eliminate duplicates as soon as they are found during sorting.
- Can also partition the tuples (using either range- or hashpartitioning) and perform duplicate elimination locally at each processor.

Projection

- Projection without duplicate elimination can be performed as tuples are read in from disk in parallel.
- If duplicate elimination is required, any of the above duplicate elimination techniques can be used.

Grouping/Aggregation

- Partition the relation on the grouping attributes and then compute the aggregate values locally at each processor.
- Optimization: computer partial aggregate values before partitioning.
 - Fewer tuples need to be sent to other processors during partitioning.

A	В
Group1	5
Group2	8
Group2	7
Group2	2

A	В
Group1	1
Group3	9
Group3	3
Group1	5

A	В
Group1	5
Group2	6
Group3	1
Group3	2

A	В
Group1	5
Group2	17

A	В
Group1	6
Group3	12

A	В
Group1	5
Group2	6
Group3	3

Calculate partial sums

Α	В
Group1	5
Group1	6
Group1	5

A	В
Group2	17
Group2	6

A	В
Group3	12
Group3	3

Cost of Parallel Evaluation of Operations

- Best case scenario for parallel operators is 1/n speed-up over non-parallel version, but usually fall slightly short:
 - Start-up costs to start to operator on multiple processors
 - A little skew is common
 - Data skew we discussed already
 - Processing skew also issue --- some machines unexpectedly slow
 - Network can become bottleneck
- Cost of parallel operation can be estimated as

$$T_{start} + T_{part} + T_{asm} + max (T_0, T_1, ..., T_{n-1})$$

- T_{start} is the time for partitioning the relations small, often ignored
- T_{part} is the time for (re)partitioning the relations
- T_{asm} is the time for assembling the results usually small, often ignored
- T_i is the time taken for the operation at processor P_i

Interoperator Parallelism

Pipelined parallelism

- Consider a join of four relations
 - $r_1 \bowtie r_2 \bowtie r_3 \bowtie r_4$
- Set up a pipeline that computes the three joins in parallel
 - Let P1 be assigned the computation of temp1 = $r_1 \bowtie r_2$
 - ▶ And P2 be assigned the computation of temp2 = temp1 \bowtie r₃
 - ▶ And P3 be assigned the computation of temp2 ⋈ r₄
- Each of these operations can execute in parallel, sending result tuples it computes to the next operation even as it is computing further results
 - Provided a pipelineable join evaluation algorithm (e.g., indexed nested loops join) is used

Factors Limiting Utility of Pipeline Parallelism

- Pipeline parallelism is useful since it avoids writing intermediate results to disk
- Useful with small number of processors, but does not scale up well with more processors. One reason is that pipeline chains do not attain sufficient length.
- Cannot pipeline operators which do not produce output until all inputs have been accessed (e.g., aggregate and sort)
- Little speedup is obtained for the frequent cases of skew in which one operator's execution cost is much higher than the others.

Independent Parallelism

Independent parallelism

Consider a join of four relations

$$r_1 \bowtie r_2 \bowtie r_3 \bowtie r_4$$

- Let P_1 be assigned the computation of temp1 = $r_1 \bowtie r_2$
- ▶ And P_2 be assigned the computation of temp2 = $r_3 \bowtie r_4$
- And P₃ be assigned the computation of temp1 ⋈ temp₂
- ▶ P₁ and P₂ can work independently in parallel
- P₃ has to wait for input from P₁ and P₂
 - Can pipeline output of P₁ and P₂ to P₃, combining independent parallelism and pipelined parallelism
- Does not provide a high degree of parallelism
 - useful with a lower degree of parallelism.
 - less useful in a highly parallel system.

MapReduce: Simplified Data Processing on Large Clusters

Motivation

- Large-Scale Data Processing
 - Want to use 1000s of machines
 - Read-oriented workload
 - Paper we read was published by Google
 - But open source version (Hadoop) not built by Google, very popular
- Scalable/parallel SQL queries one (of many) applications for MapReduce / Hadoop
 - Can convert SQL queries into native MapReduce jobs
 - Can be done by hand
 - ▶ There exist ~8-10 SQL parsers that do this automatically
 - HadoopDB, Hadapt, Hive, Impala (sort of), Spark SQL (sort of), etc.
 - Automatic parallelization & distribution across machines in cluster

Map/Reduce

- Map/Reduce
 - Programming model from Lisp
 - (and other functional languages)
- Many problems can be phrased this way
- Easy to distribute across nodes
- □ Nice retry/failure semantics

Map/Reduce ala Google

- map(key, val) is run on each item in set
 - emits new-key / new-val pairs
- reduce(key, vals) is run for each unique key emitted by map()
 - emits final output

count words in docs

- Input consists of (url, contents) pairs
- map(key=url, val=contents):
 - ▶ For each word w in contents, emit (w, "1")
- reduce(key=word, values=uniq_counts):
 - Sum all "1"s in values list
 - Emit result "(word, sum)"

Count, Illustrated

```
map(key=url, val=contents):
```

For each word w in contents, emit (w, "1")

reduce(key=word, values=uniq_counts):

Sum all "1"s in values list

Emit result "(word, sum)"

Grep

- Input consists of (url+offset, single line)
- map(key=url+offset, val=line):
 - If contents matches regexp, emit (line, "1")
- reduce(key=line, values=uniq_counts):
 - Don't do anything; just emit line

Execution

- How is this distributed?
 - Partition input key/value pairs into chunks, run map() tasks in parallel
 - After all map()s are complete, consolidate all emitted values for each unique emitted key
 - 3. Now partition space of output map keys (this is called a "shuffle"), and run reduce() in parallel

SQL operators in MapReduce

- □ Each "processor" from Chapter 18 of textbook corresponds to a partition of a "Map task" or "Reduce task".
 - These partitions run in parallel across machines in a cluster
- Many of the parallel version of operators we discussed required a repartition
 - E.g. both sort algorithms, partitioned join, parallel hash join, fragment-and-replicate join, grouping/aggregation, etc.
 - Map defines how to do repartition, shuffle repartitions, and the operator done in reduce
 - In some cases, data was already partitioned correctly and this can be skipped
- Operators that do not require a repartition typically done during Map
 - E.g. Operators done during a scan (e.g. selects and projects without deduplication)

Spark generalizes MapReduce model

sc.textFile(hdfsPath)
.map(parseInput)
.filter(subThreshold)
.reduceByKey(tallyCount)
.map(formatOutput)
.saveAsTextFile(outPath)

map filter reduceBykey map saveAsTextFile

Spark generalizes MapReduce model

sc.textFile(hdfsPath)

- .map(parseInput)
- .filter(subThreshold)
- .reduceByKey(tallyCount)
- .map(formatOutput)
- .saveAsTextFile(outPath)

Spark generalizes MapReduce model

sc.textFile(hdfsPath)
.map(parseInput)
.filter(subThreshold)
.reduceByKey(tallyCount)
.map(formatOutput)
.saveAsTextFile(outPath)

