

How to migrate to Numonyx[®] Axcell™ M29EW (SBC) from Spansion S29GL flash (32-, 64- and 128-Mbit)

Application Note - 309014

May 2010

Application Note May 2010 1 309014-02

How to migrate to M29EW (SBC) from S29GL	L flash
--	---------

Revis	sion History 3
1	Introduction 4
2	Brief Comparison5
3	Hardware Considerations
3.1	Signal Description Difference
3.2	Mechanical Differences
3.3	ICC Difference
3.4	Device Capacitance Difference
4	Performance Differences
4.1	Write Performance13
4.2	Power-on and Reset Timings
5	Software Considerations15
5.1	Manufacturer ID and Other Autoselect Information
5.2	Autoselect Entry Comparison16
5.3	CFI Difference
5.4	Password Access17
5.5	Power-Loss Recovery
Appe	endix A Additional Information18

Revision History

Date of Revision	Revision	Description
Jun 2009	Rev01	Initial Release
May 2010	Rev02	Updated density to include 32M, 64M and 128M. Updated package, block Architecture information in <i>Table 1: General Feature Comparison</i> . Added 48B BGA and 48L TSOP layout information in <i>Section 3: Hardware Considerations</i> . Added Signal description comparison at <i>Section 3.1: Signal Description Difference</i> . Updated TSOP major dimension comparison in <i>Table 3: TSOP Dimension Comparison</i> . Updated I _{CC} comparison information in <i>Table 4: ICC Comparison</i> . Updated capacitance comparison information in <i>Table 5: Capacitance Comparison</i> . Added a note to state 1µs delay after Error bit (DQ5) set to issue Read/Reset command (F0h). Updated write performance information in <i>Table 6: Write Performance Comparison</i> . Updated power-on and reset timing Comparison information in <i>Table 7: Power-on and Reset Timing Comparison</i> . Update autoselect information comparison information in <i>Table 8: Autoselect Information Comparison (16-bit mode)</i> . Added Autoselect Entry Comparison at <i>Section 5.2: Autoselect Entry Comparison</i> . Updated CFI difference comparison information in <i>Table 10: CFI Difference Comparison</i> . Added order number and document/tool information in <i>Section Appendix A: Additional Information</i> . Added the power-loss recovery in <i>Section 5.5: Power-Loss Recovery</i> .

1 Introduction

This application note describes how to convert a system design from Spansion S29GL (including P series and N series) Flash to Numonyx[®] AxcellTM M29EW (SBC) Flash.

This document was written based on device information available at the time. The 32-, 64- and 128-Mbit SBC M29EW Datasheet may override this application note if there is a different description for the same items in the datasheet.

Note: SBC in this document refers to Single Bit per Cell.

2 Brief Comparison

The M29EW (SBC) flash memory device is manufactured on leading 65nm process lithography and is compatible to S29GL flash memory device. *Table 1* is a major feature comparison between the three devices.

Table 1. General Feature Comparison

Features	M29EW (SBC)		S29GL-P	S29GL-N		
Process Technology	65	inm SBC	90nm Mirror-bit	110n	m Mirror-bit	
Package	64-Ball Fortified BGA 48-Ball BGA 56-Lead TSOP 48-Lead TSOP		64-Ball Fortified BGA 56-Lead TSOP	64-Ball Fortified BGA 48-Ball BGA 56-Lead TSOP 48-Lead TSOP		
	128-Mbit	Uniform 128KB		128- Mbit	Uniform 128KB	
		Uniform 64KB			Uniform 64K	
Block Architecture	64-Mbit	Boot: 64KB (main block) and 8KB (boot block)	Uniform 128KB (128-Mbit only)	64-Mbit	Boot: 64KB (main block) and 8KB (boot block)	
		Uniform 64KB			Uniform 64K	
	32-Mbit	Boot: 64KB (main block) and 8KB (boot block)		32-Mbit	Boot: 64KB (main block) and 8KB (boot block)	
Page Read Size	8-Word		8-Word	8-Word		
Max. Program Buffer Size	2	56-Word	32-Word	16-Word		
Typical Single Word Program	15µ:	s per Word	60µs per Word	60µs per Word		
Typical Program Speed with full buffer	1.11µ	ıs per Word	15µs per Word	15µs per Word		
Random Access Time ⁽¹⁾		V _{CCQ} : 65ns V _{CCQ} : 60ns	1.8V V _{CCQ} : 110ns 3.0V V _{CCQ} : 100ns	1.8V V _{CCQ} : 110ns 3.0V V _{CCQ} : 100ns		
Typical Block Erase Time	0.5s		0.5s	0.5s		
Extended Memory Block	128 Words		128 Words	128 Words		
Support for Common Flash Interface	Yes		Yes	Yes		
Hardware Protection of Highest/Lowest Block or Top/Bottom two Blocks	Yes		Yes	Yes		
Software Protection and Password Protect		Yes	Yes	Yes		
Password Access		Yes	No	No		

The random access time of M29EW device varies according to different packages: BGA (3V: 60ns and 1.8V: 65ns) and TSOP (3V: 70ns and 1.8V: 75ns).

309014-02 5

3 Hardware Considerations

The M29EW (SBC) device is ball/pin compatible to the S29GL series flash, in the 64-Ball Fortified BGA, 48-Ball BGA, 56-Lead TSOP and 48-Lead TSOP packages.

Figure 1, Figure 2, Figure 3 and Figure 4 show the ball/pin details of all packages.

Figure 1. M29EW (SBC) 64-Ball Fortified BGA Ball Layout (top and bottom views)

- 1. A-1 is the least significant address bit in x8 mode.
- 2. A21 is valid for 64-Mbit density and above; otherwise, it is not connected internally but RFU.
- 3. A22 is valid for 128-Mbit density; otherwise, it is not connected internally but RFU.
- 4. RFU stands for Reserved for Future Use.

Figure 2. M29EW (SBC) 48-Ball BGA Ball Layout (top and bottom views)

- 1. A-1 is the least significant address bit in x8 mode.
- 2. A21 is valid for 64-Mbit density; otherwise, it is not connected internally but RFU.
- 3. RFU stands for Reserved for Future Use.

309014-02 7

Figure 3. M29EW (SBC) 56-Lead TSOP Pin Layout

- 1. A-1 is the least significant address bit in x8 mode.
- 2. A21 is valid for 64-Mbit density and above; otherwise, it is not connected internally but RFU.
- 3. A22 is valid for 128-Mbit density; otherwise, it is not connected internally but RFU.
- 4. RFU stands for Reserved for Future Use.

48 A16 A15 2 47 BYTE# A14 46 Vss A13 45 DQ15/A-1 4 A12 DQ7 44 5 A11 43 DQ14 6 A10 42 DQ6 Α9 7 41 DQ13 8 **A8** 40 DQ5 9 A19 39 DQ12 A20 10 **48-Lead TSOP Pinout** 38 DQ4 WE# 11 12 mm x 20 mm 37 Vcc 12 RST# 36 DQ11 (A21) [13 DQ3 35 V_{PP}/WP# 14 **Top View** DQ10 34 RY/BY# 15 33 DQ2 A18 16 32 DQ9 A17 17 31 DQ1 18 A7 30 DQ8 A6 19 29 DQ0 A5 20 28 OE# A4 21 22 27 Vss АЗ 26 A2 23 CE# 25 Α1 24 Α0

Figure 4. M29EW (SBC) 48-Lead TSOP Pin Layout

- 1. A-1 is the least significant address bit in x8 mode.
- 2. A21 is valid for 64-Mbit density; otherwise, it is not connected internally but RFU.
- 3. RFU stands for Reserved for Future Use.

3.1 Signal Description Difference

Table 2 gives a comparison between the M29EW (SBC) and S29GL signals. On both devices, the V_{PP} function allows the memory to use an external high voltage power supply to reduce the time required for fast program operations. The Write Protect (WP) function provides a hardware method of protecting the highest, lowest, top two or bottom two blocks.

When V_{PP} /WP is Low, V_{IL} , the highest, lowest, top two or bottom two blocks are protected on both the M29EW (SBC) and S29GL devices.

When V_{PP} /WP is High, V_{IH} , the memory reverts to the previous protection status of the highest, lowest, top two or bottom two blocks.

When V_{PP} /WP# pin is raised to V_{PPH} , the memory automatically enters the Unlock Bypass mode for both the M29EW (SBC) and S29GL devices.

Table 2. Signal Description Comparison

Na	me	Description	Direction
M29EW (SBC)	S29GL	Description	Direction
A0-Ar	max ⁽¹⁾	Address inputs	Input
DQ0	-DQ7	Data inputs/outputs	I/O
DQ8-	DQ14	Data inputs/outputs	I/O
DQ1	5/A-1	Data input/output or address input	I/O or input
CI	Ε#	Chip Enable	Input
OE#		Output Enable	Input
W	E#	Write Enable	Input
RST#	RESET#	Reset	Input
RY/	BY#	Ready/Busy output	Output
BY	TE#	Byte/word organization select	Input
Vccq	Vio	Input/output buffer supply voltage	Supply
Vcc		Supply voltage	Supply
V _{PP} /WP# WP#/ACC		Acceleration Input/Write Protect	Input
V	SS	Ground	-
NC		Not connected	-

^{1.} A22, A21 and A20 are maximum address pins for 128-Mbit, 64-Mbit and 32-Mbit density respectively.

3.2 Mechanical Differences

The M29EW (SBC) 48-Lead TSOP package has the same mechanical dimensions as S29GL 48-Lead TSOP package.

The M29EW (SBC) 56-Lead TSOP package has a few mechanical dimensions that are different from S29GL 56-Lead TSOP package.

Table 3 shows the major dimension comparison between M29EW (SBC) and S29GL TSOP devices.

The M29EW (SBC) 64-Ball Fortified BGA package and 48-Ball BGA package have the same mechanical dimensions as S29GL 64-Ball Fortified BGA package and 48-Ball BGA package respectively.

DI DIE TSOP-b

Figure 5. 56-Lead TSOP and 48-Lead TSOP, package outline

Table 3. TSOP Dimension Comparison

Symbol	M29EW (SBC) (Typical in millimeters)		S29Gi (Typical in m		S29GL-N (Typical in millimeters)		
A2	56-Lead TSOP	0.995	56-Lead TSOP	1.00	56-Lead TSOP	1.00	
A2	48-Lead TSOP	1.00	30-Leau 130F	1.00	48-Lead TSOP	1.00	
В	56-Lead TSOP	0.15	56-Lead TSOP	0.22	56-Lead TSOP	0.22	
В	48-Lead TSOP	0.22	JU-Lead 130F	0.22	48-Lead TSOP	0.22	

3.3 I_{CC} Difference

Table 4 compares the I_{CC} values for the M29EW (SBC) and S29GL devices. The $I_{CCStandby}$ difference has minimal system impact because the lower I_{CCRead} , $I_{CCWrite}$, and $I_{CCErase}$ specs of M29EW (SBC) provide for better overall system power consumption.

Table 4. I_{CC} Comparison

Symbol		M29EW (SBC)	S290	GL-P	S29GL-N		Unit		
Syllibol	Density	Test condition	Тур	Max	Тур	Max	Тур	Max	Onit
	128-Mbit		50	120	1	5			
I _{CCStandby}	64-Mbit	-	35	120		_	1	5	μA
	32-Mbit		35	120	-	-			
	32- and 64-Mbit	Random read, f = 5MHz	25	-	-	25	30		
^I CCRead	128-Mbit		f = 5MHz	25	30	55	30	50	
	32- and 64-Mbit	V _{PP} /WP# = V _{IL} or V _{IH} 35	35 50	50	-	-	50	60	mA
I _{CCWrite}	128-Mbit		00	50	90	50	90		
I _{CCErase}	32- and 64-Mbit	V _{PP} /WP# =	26	33	-	-	50	60	
	128-Mbit	V _{PPH}	∠6	33	50	80	50	90	

3.4 Device Capacitance Difference

M29EW (SBC) flash has a different input/output capacitance, compared with S29GL flash. *Table 5* shows the detail comparison. The minor difference for Input/Output Capacitance won't impact customer's hardware.

Table 5. Capacitance Comparison

Symbol	Parameter	Test Con	dition		EW BC)	S290	GL-P	S29G	L-N		Unit		
				Min	Max	Тур	Max	Density	Тур	Max			
			TCOD					32- and 64-Mbit	6.0	10.0			
_	Input		.,		TSOP	2	7	6	10	128-Mbit	6.0	7.5	
	Capacitance		ВСА	2	'	0	6 10	32- and 64-Mbit	TBD	TBD			
			BGA	BGA	BGA					128-Mbit	4.2	5.0	nE
	TSOP			TO					32- and 64-Mbit	6.0	12.0	pF	
C	Output	V _{OUT} =	1301	2	5	10	12	128-Mbit	8.5	12.0			
	Capacitance	0V	BGA		3	10	12	32- and 64-Mbit	TBD	TBD			
								128-Mbit	5.4	6.5			

4 Performance Differences

The M29EW (SBC) device has better program performance vs. S29GL devices.

4.1 Write Performance

The M29EW (SBC) has a larger program buffer than the S29GL-P and S29GL-N devices. Modifying system software will greatly improve system performance. *Table 6* compares buffer sizes and typical write performance between the three devices.

Note: A Read/Reset command (F0h) must be issued with 1µs delay after the Error bit (DQ5) is set during Program/Erase operations.

Table 6. Write Performance Comparison

Description	M29EW (SBC)	S29GL-P	S29GL-N
Program Buffer Size	256-word	32-word	16-word
Typical Program Speed with Full Buffer	1.8MB/s	0.133MB/s	0.133MB/s
NVPBs Clear Time	0.5s	NA	NA
Erase Suspend Latency	20μs (typ)/25μs (max)	5μs (typ)/20μs (max)	5μs (typ)/20μs (max)
Program Suspend Latency	20μs (typ)/25μs (max)	5μs (typ)/15μs (max)	5μs (typ)/20μs (max)

4.2 Power-on and Reset Timings

The M29EW (SBC) device has slightly different power-on and reset timing specifications, compared with the S29GL-P and S29GL-N devices. However, the difference has been proven to be of minimal impact on the customer, since many common processors support those parameters.

Table 7. Power-on and Reset Timing Comparison

Symbol	Alt.	Parameter	Min/Max	M29EW (SBC)	S29GL-P	S29GL-N
t _{VCHPH}	t _{VCS}	V _{CC} power valid to Reset# high (Min)	Min	60µs	35µs	50µs
+	Reset# low to read mode, during Proc		Max	25µs	-	20µs
t _{PLRH}	t _{READY}	resett low to read mode, during i rogram or Erase	Min	-	35µs	-
t _{PLPH}	t _{RP}	Reset# pulse width	Min	100ns	35µs	500ns
t _{PHEL}	t _{RH}	Reset# high to Chip Enable low, Output Enable low	Min	50ns	200ns	50ns
t _{RHEL}	t _{RB}	RY/BY# high to Chip Enable low, Output Enable low	Min	0ns	0ns	0ns

Figure 6. Power-on and Reset Timing Sequences

5 Software Considerations

The command set of M29EW (SBC) flash is fully compatible with that of S29GL-P/S29GL-N devices. Therefore, no command change in software is required to accommodate M29EW (SBC) flash.

5.1 Manufacturer ID and Other Autoselect Information

Numonyx and Spansion have different Manufacturer IDs, therefore, a slight modification in the software is required during migration.

Table 8 outlines the differences of Autoselect information.

 Table 8.
 Autoselect Information Comparison (16-bit mode)

Description			Address	M29EW (SBC) (Hex)		S29 GL-P (Hex)	S29GL-N (Hex)		
Manufactui	er ID		(Base)+00h	0089h		0001h	0001h		
Device ID (Cycle 1		(Base)+01h	227Eh		227Eh	227Eh		
				128-Mbit	2221h		128-Mbit	2221h	
				64-Mbit, boot	2210h	2221h	64-Mbit, boot	2210h	
Device ID	cycle 2		(Base)+0Eh	64-Mbit, uniform	220Ch	(128- Mbit	64-Mbit, uniform	220Ch	
				32-Mbit, boot	221Ah	only)	32-Mbit, boot	221Ah	
				32-Mbit, uniform	221Dh		32-Mbit, uniform	221Dh	
Device ID o	Device ID cycle 3			128- and 64- Mbit uniform, 64- and 32-Mbit top	2201h	2201h (128- Mbit	128- and 64- Mbit uniform, 64- and 32-Mbit top	2201h	
				64- and 32-Mbit bottom, 32-Mbit uniform	2200h	only)	64- and 32-Mbit bottom, 32-Mbit uniform	2200h	
	V _{DD} /WP	V _{PP} /WP	Factory Locked		128-Mbit	0099h	0099h	128-Mbit	0098h
	# Locks Highest	raciory Locked		64- and 32-Mbit	009Ah	-	64- and 32-Mbit	009Ah	
	Block	Factory Unlocked		128-Mbit	0019h	0019h	128-Mbit	0018h	
Protection	(s) ⁽¹⁾	raciory officered	(Bass) (02h	64- and 32-Mbit	001Ah	-	64- and 32-Mbit	001Ah	
Register Indicator	V _{PP} /WP	Footony Looked	(Base)+03h	128-Mbit	0089h	0089h	128-Mbit	0088h	
	# Locks	ocks		64- and 32-Mbit	008Ah	-	64- and 32-Mbit	008Ah	
	Lowest Block	Factory Unlocked		128-Mbit	0009h	0009h	128Mbit	0008h	
	(s) ⁽²⁾	T actory officered		64- and 32-Mbit	000Ah	-	64- and 32-Mbit	000Ah	

Table 8. Autoselect Information C	Comparison (16-bit mode)
-----------------------------------	--------------------------

Description		Address	M29EW (SBC) (Hex)	S29 GL-P (Hex)	S29GL-N (Hex)
Block Protection	Unprotected	(Base)+02h	0000h	0000h	0000h
Block Flotection	Protected		0001h	0001h	0001h

^{1.} When VPP/WP# is V_{IL} , the highest (M29EWH) or top two (M29EWT) blocks are protected.

5.2 Autoselect Entry Comparison

The M29EW device does not support 12V V_{HH} on A9 pin to enter Autoselect mode, while normal command sequence (AAh/55h/90h) can enter Autoselect mode. Applying 12V on A9 pin may damage the device. S29GL devices support both methods to enter Autoselect mode.

Table 9. Autoselect Entry Comparison

Autoselect Entry Mode	M29EW (SBC)	S29GL-P	S29GL-N
12V on A9 pin	No	Yes	Yes
Entry Command (90h)	Yes	Yes	Yes

5.3 CFI Difference

CFI differences exist between M29EW (SBC) and S29GL-P/S29GL-N due to device features and performance characteristics.

The Table 10 outlines the relevant information.

Table 10. CFI Difference Comparison

Address (HEX)	Description	M29EW (SBC) (HEX)	S29GL-P (HEX)	S29GL-N (HEX)
1D	VPPH [programming] supply minimum Program / Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV	00B5	0000	0000
1E	VPPH [programming] supply maximum Program / Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV	00C5	0000	0000
1F	Typical time-out for single byte/word program = $2^n \mu s$	0004	0006	0007
20	Typical time-out for maximum size buffer program = $2^n \mu s$	0009	0006	0007
21	Typical time-out for individual block erase = 2 ⁿ ms	0009	0009	000A

^{2.} When VPP/WP# is V_{IL} , the lowest (M29EWL) or bottom two (M29EWB) blocks are protected.

Table 10. CFI Difference Comparison

Address (HEX)	Description	M29EW (SBC) (HEX)		S29GL-P (HEX)	S29GL-N (HEX)
		128-Mbit	0011		
22	Typical time-out for full Chip Erase = 2 ⁿ ms	64-Mbit	0010	0013	0000
		32-Mbit	0009		
23	Maximum time-out for byte/word program = 2 ⁿ times typical time-out	0004		0003	0003
24	Maximum time-out for buffer program = 2 ⁿ times typical time-out	0002		0005	0005
25	Maximum time-out per individual block erase = 2 ⁿ times typical time-out	0003		0003	0004
26	Maximum time-out for Chip Erase = 2 ⁿ times typical time-out		2	0002	0000
2A 2B	Maximum number of byte in multiple-byte write = 2 ⁿ	0008 0000		0006 0000	0005 0000
45	Address Sensitive Unlock (Bits 1 to 0) 0 = Required, 1 = Not Required Silicon revision number (Bits 7 to 2)		3	0014	0010

5.4 Password Access

Password Access is a security enhancement offered on the M29EW (SBC) device. This feature protects information stored in the main-array blocks by preventing content alteration or reads until a valid 64-bit password is received. Password Access may be combined with Non-Volatile and/or Volatile Protection to create a multi-tiered solution.

S29GL-P and S29GL-N series devices don't support this feature.

Please contact your Numonyx sales representatives for further details concerning Password Access feature.

5.5 Power-Loss Recovery

It is recommended that the user enable robust power-loss recovery in software system, especially during the flash write operations. Please refer to the Application Note 309046 for detail information.

Additional Information Appendix A

Order Number	Document / Tool		
208031	Numonyx [®] Axcell TM M29EW (SBC) 128-Mbit, 64-Mbit, 32-Mbit (x8 or x16, page) 3V Supply Flash Memory Datasheet		
S29GL-P_00	SPANSION [®] MirrorBit [®] S29GL-P 1-Gbit, 512-Mbit, 256-Mbit, 128-Mbit 3.0 Volt-only Page Mode Flash Memory Datasheet		
S29GL-N_00	SPANSION [®] MirrorBit [®] S29GL-N 512-Mbit, 256-Mbit, 128-Mbit 3.0 Volt-only Page Mode Flash Memory Datasheet		
S29GL-N_01	SPANSION [®] MirrorBit [®] S29GL-N 64-Mbit, 32-Mbit 3.0 Volt-only Page Mode Flash Memory Datasheet		
309046	Application Note: Power-Loss Recovery for Nor Flash Memory		

Notes:

Contact your local Numonyx or distribution sales office to request Numonyx documentation. Visit the Numonyx World Wide Web home page at http://www.Numonyx.com for further information, technical documentation and tools.

Please Read Carefully:

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Numonyx may make changes to specifications and product descriptions at any time, without notice.

Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Numonyx reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting Numonyx's website at http://www.numonyx.com.

Numonyx Axcell is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2009, Numonyx, B.V., All Rights Reserved.