Bağlama ve Kapsam Kavramları

İçerik

- Bağlama Kavramı
 - Bağlama zamanı,
 - Tip bağlama, Bellek bağlama
- İsim Kapsamları
 - Durağan Kapsam Bağlama
 - Dinamik Kapsam Bağlama konuları

Bağlama(Binding)

 Bir özellikle bir program elemanı arasında ilişki kurulmasına bağlama (binding) denir.

 Çeşitli programlama dilleri, özelliklerin program elemanlarına bağlanma zamanı ve bu özelliklerin durağan (static) veya dinamik (dynamic) olması açısından farklılıklar göstermektedir.

Bağlama Zamanı

 Bir programlama dilinde çeşitli bağlamalar farklı zamanlarda gerçekleşebilir.

int hesap; hesap=hesap+10;		
Hesap için olası tipler	Dilin tasarım zamanında	
Hesap değişkeninin tipi	Dilin derlenmesi zamanında	
Hesap değişkeninin olası değerleri	Derleyici tasarım zamanı	
Hesabın değeri	Bu deyimin yürütülmesi zamanında	
+ işlemcisinin muhtemel anlamları	Dilin tanımlanması zamanında	
+ işlemcisinin bu deyimdeki anlamı	Derlenme süreci	
10 literalinin ara gösterimi	Derleyici tasarımı zamanında	
Hesap değişkeninin alacağı son değer	Çalışma zamanında	

Tip Bağlama

- Bir tanımlayıcı (id) bir tip bilgisi, ilişkilendirilince o tiple bağlanmış olur.
- Bir programlama dilinde bir değişken kullanılmadan önce isimlendirilmeli, bir tip ile bağlanmalıdır.
- Böylece o değişkenin hangi değerleri alabileceği ve üzerinde hangi işlemlerin yapılabileceği belirlenmiş olur.
- · Semantik anlam analizi için bu çok önemlidir.

Dagiailla Zaillaill		
Durağan Tip Bağlama	Dinamik Tip Bağlama	
Derleme Zamanında	bir değişkenin tipi çalışma zamanında, değişkenin bağlandığı değer ile	

bir değişken, integer tipi ile bağlanmışsa

FORTRAN, Pascal, C ve C++'da bir değişkenin tip

bağlaması durağan olarak gerçekleşir ve çalışma

derleyici, tip hatalarını, program çalıştırılmadan önce

süresince değiştirilemez.

yakalar.

bir değişken, atama sembolünün sağ

tarafında bulunan değerin, değişkenin

veya ifadenin tipine bağlanır ve

değiştirilir. A=1.5 A=14

Yorumlayıcı kullanırlar

değişkenin tipi, çalışma zamanında

değişkenin yeni değerler alması ile

Avantaj: Esneklik (örneğin sıralama)

Derleyicinin hata yakalama yeteneği

zayıftır. Statik tip kontrolü yapılamaz

APL, LISP, SMALLTALK, SNOBOL4

belirleniyorsa

Örtülü (implicit)

kurallar ile belirlenir

Tanımlama deyimleri kullanılmaz ve

değişkenlerin tipleri, varsayılan (*default*)

ve

Dışsal (explicit)

Değişkene, programda yer alan bir tanımlama deyimi ile bir tip ile bağlanır.

> procedure D; var n: char; begin n:= "D"; W; end;

FORTRAN'da bir değişenin ismi I,J, K, L, M, N harflerinden biri ile başlıyorsa bu değişken örtülü olarak INTEGER tipi ile aksi hallerde REAL tipi ile bağlanır.

BASIC:son karakteri \$ ola değişkenler karakter tipi ile bağlanır.

Yazım yanlışlığı hataların derleme sırasında yakalanması engellenebilir. Programlama dilinin güvenilirliğini azaltırlar.

Örnek: PL/I, BASIC, PERL ve FORTRAN

Bellek Bağlama

(allocation)

(deallocation) lifetime

etkinlik (activation) kaydı

aynı bellek bölümünün yeniden kullanılabilmesi

Doğrudan adresleme

Pascal-*dispose* Java-otomatik C'deki malloc fonksiyonu C++ 'daki new işlemcisi

Statik değişkenler, programın yürütülmesi başlamadan bellek hücrelerine bağlanırlar ve bellek hücreleri ile programın çalışması sonlanıncaya kadar bağlı kalırlar. FORTRAN I, II ve FORTRAN IV'de hepsi statik. C, C++ ve Java **static** anahtarını kullanır.

ALGOL 60 ve bu çizgideki diller yığıt dinamik değişkenleri tanımlamaktadır. FORTRAN77 ve FORTRAN90 yerel olarak yığıt dinamik değişkenlere izin vermektedir. Pascal, C ve C++'da, lokal değişkenler, varsayılan olarak yığıt_dinamik değişkenlerdir.

Dışsal yığın dinamik değişkenlerin bellek yeri bağlaması çalışma zamanında gerçekleşir. Ne kadar bellek gerektiği önceden bilinmez. Çalışma zamanında veriler oldukça belleğe atanır ve bellek yeri yığın bellekten alınır ve daha sonra yığın belleğe iade edilir. Bu verilere sadece işaretçi (pointer) değişkenler aracılığıyla ulaşılabilir. Bu değişkenlerin tip bağlaması derleme zamanında, bellek yeri bağlaması ise çalışma zamanında gerçekleşir.

	Statik	Stack	Неар
Ada		Lokal değişkenler, altprogram parametreleri	implicit: local değişkenler; explicit: new (garbage collection)
С	global değişkenler; statik local değişkenler	Lokal değişkenler, altprogram parametreleri	explicit : malloc ve free
C++	C ile aynı, static sınıf üyeleri	C ile aynı	Explicit: new ve delete
Java		Sadece ilkel tipli local değişkenler	Implicit: her sınıf(garbage collection)
Fortran7		Lokal değişkenler, altprogram parametreleri (implementation dependent)	
Pascal	değişkenler(compiler	global değişkenler(compiler dependent), local değişkenler altprogram parametreleri	Explicit: new ve dispose

ISIM KAPSAMLARI (Name Scope)

 Belirli isim tanımlarının etkin olduğu bir program alanına isim kapsamı denir.

S	tatik isim kapsam	Dinamik Kapsam
d	Değişkenlerin kapsamları, programın metinsel lüzenine göre, fiziksel yakınlığa göre, relirlenir.	Bir ismin kapsamının, altprogramların fiziksel yakınlıklarına göre değil, altprogramların çağrılma sırasına göre çalışma zamanında belirlenmesi dinamik kapsam bağlama olarak adlandırılır.
Δ	ALGOL 60'ı izleyen çok sayıda dilde tanımlıdır. Altprogramlar iç içe yuvalanabilir. (C++ ve ORTRAN hariç)	LISP, APL dillerinin ilk sürümleri
2	 Altprogramların yuvalanması sonucu gereğinden fazla genel değişken kullanımı olabilir. Bir programda genel olarak tanımlanan değişkenler tüm altprogramlara görünebilir olacakları için güvenilirlik azalmaktadır. 	 Bir altprogramda bir değişkene yapılan başvuru, deyimin her çalışmasında farklı değişkenleri gösterebilir. Programların anlaşılabilirliğini azaltmaktadır

```
program L;
   var n: char;
                                    {n, L' de bildirilmiş }
   procedure W;
           begin
                writeln(n)
                             {W de n 'ye başvuru var.}
           end;
   procedure D;
           var n: char;
                                   {D de n tekrar bildirilmiş}
           begin
              n:= "D";
              W;
                                    { D' deki W' i çağırdı}
           end;
   begin {L}
       <u>n</u>:= "L";
                                                                                Dinamik kapsam bağlama kuralına göre
                                   {Ana program L' den W' u cağrıldı}
       W;
       D;
   end.
```

Örnek: Aşağıdaki program parçasının çıkışını

- a) statik kapsam bağlama kurallarına göre
- b) Dinamik kapsam bağlama kurallarına göre bulunuz.

```
int x;
  int main() {
   x = 2;
   f();
   g();
  void f() {
   int x = 3;
   h();
  void g() {
    int x = 4;
    h();
  void h() {
    printf("%d\n",x);
```

Dinamik kapsam bağlamaya göre çıkış: 34 Statik kapsam bağlamaya göre çıkış: 22

Özet

- Bu hafta
- Programlama elemanlarıyla çeşitli özelliklerinin ilişkilendirilmesini sağlayan bağlama konusu, durağan-dinamik tip, bellek ve isim kapsamı bağlama yönüyle incelenmiştir.
- İsim kapsamlarının durağan kapsam bağlama ve dinamik kapsam bağlama seçenekleri incelenmiş ve karşılaştırılmıştır.