Efectele cuantizării în filtrarea digitală în filtrarea digitală

Laborator 9, PSS

Objectiv

Studiul efectelor produse de cuantizarea semnalelor în cadrul unui filtru digital.

Noțiuni teoretice

Exerciții

1. Fie sistemul cu ecuația cu diferențe următoare:

$$y[n] = \frac{1}{2}y[n-1] + x[n]$$

Calculați primele 6 eșantioane ale răspunsului la semnalul de intrare $x[n] = \left(\frac{1}{4}\right)^n$, în trei moduri:

- a. Calcule în precizie infinită
- b. Calcule în formatul virgulă fixă 1S0Î4F, cuantizare prin trunchiere
- c. Calcule în formatul virgulă fixă 1S0Î4F, cuantizare prin rotunjire
- 2. În Matlab, încărcați semnalul mtlb și cuantizați-l pe N=8 biți.
 - a. Deduceti dacă aveti nevoie de bit de semn sau nu;
 - Aflaţi valoarea absolută maximă a semnalului şi deduceţi numărul de biţi necesar pentru partea întreagă, respectiv câţi biţi mai rămân disponibili pentru partea fracţionară;
 - c. Utilizați funcția fixdt() pentru a crea tipul de date corespunzător

- d. Utilizați funcția num2fixpt pentru a converti semnalul mt1b la formatul virgulă fixă ales, prin toate cele 3 metode de cuantizare
- e. Pentru toate cele 3 metode de cuantizare, vizualizați eroarea de cuantizare, calculați valoarea medie și dispersia erorii. Care metodă de cuantizare produce erorile minime?
- f. Redați semnalul cuantizat. Se poate sesiza diferența?
- 3. În Matlab, realizați o funcție pentru a implementa sistemul din exercițiul 1. Valorile se vor cuantiza după fiecare operație de înmulțire / adunare. Aplicați la intrarea sistemului semnalul cuantizat de la exercițiul 2.

Întrebări finale

1. TBD