Probabilistic Graphical Model Workshop: Sparsity,

Structure and High-dimensionality

Structure Learning of Bayesian Networks with p Nodes from n Samples when n<p

Joe Suzuki (Osaka Univ.)

March 25, 2016

Road map

Main Topic: efficient BNSL (30 mins)

- 1. BNSL definition
- 2. BNSL with B&B
- 3. BNSL with B&B for MDL
- 4. BNSL with B&B for MAP
- 5. Experiments
- 6. Discussion on n<<p
- 7. Summary

Bonus Topic: why HSIC? (15 mins)

Assumptions

Discrete Random Variables

Prior over Structures is Uniform

BNSL with Branch & Bound (Suzuki 1996)

Efficient Computation for Bayesian Network Structure Learning BNSL is to take exponential time with p (# of variables)

When I was young, ...

Bayesian Network (BN)

Factorization
$$P(X_1, \dots, X_p) = \prod_{i=1}^r P(X_i | \Pi_i)$$

Discrete Variables

p=3 (eleven Markov equivalent classes)

samples (x^n) and model G

Marginalizing over parameters θ with weights $w(\theta|G)$

$$P(x^{n}|G) = \int P(x^{n}|\theta, G)w(\theta|G)d\theta$$

P(G): prior over models G (Uniform)

$$P(G|x^n) \propto P(G)P(x^n|G) \to \max$$

Score of X given Y

c(x): occurrency of X = x

c(x,y): occurrency of (X,Y)=(x,y)

a(x), a(x, y) > 0

Dirichlet conjugate prior

$$w(\theta) = K \prod_{x} \theta(x)^{a(x)-1}$$

$$Q^{n}(X) := \int \prod_{x} \theta(x)^{c(x)} w(\theta) d\theta \propto \int \prod_{x} \theta(x)^{c(x) + a(x) - 1} d\theta$$

$$w(\theta) \propto \prod_{x} \prod_{y} \theta(x|y)^{a(x,y)-1}$$

$$Q^n(X|Y) \propto \int \prod_x \prod_y \theta(x|y)^{c(x,y)} w(\theta) d\theta = \prod_y \{ \frac{\Gamma(a(y)))}{\Gamma(c(y) + a(y))} \prod_x \frac{\Gamma(c(x,y) + a(x,y)))}{\Gamma(c(x,y) + a(x,y))}$$

Gamma Function: an Extention of Factorial

$$\Gamma(u) = \int_0^\infty t^{u-1} e^{-t} dt$$

$$\Gamma(u+1) = u\Gamma(u) \text{ for } u > 0$$

$$\Gamma(1) = 1$$

$$\Gamma(n) = (n-1)\Gamma(n-1)$$

$$= \cdots = (n-1)(n-2)\cdots 1 \cdot \Gamma(1) = (n-1)!$$

$$\frac{\Gamma(n+a)}{\Gamma(a)} = \frac{(n+a-1)\Gamma(n+a-1)}{\Gamma(a)}$$

$$= \cdots = (n+a-1)\cdots a$$

for integer $n \geq 0$ and real a > 0

For
$$i = 1, \dots, p$$

$$X_i = x \in \{1, \cdots, \alpha_i\}$$

$$\Pi_i = y \in \{1, \cdots, \beta_i\}$$

$$c_i(x)$$
: occurrency of $X_i = x$

$$c_i(x,y)$$
: occurrency of $(X_i,\Pi_i)=(x,y)$

Score of X_i given Π_i $Q^n(X_i|\Pi_i)$

Description Length of X_i given Π_i

$$-\log Q^{n}(X_{i}|\Pi_{i}) \approx H^{n}(X_{i}|\Pi) + \frac{(\alpha_{i} - 1)\beta_{i}}{2}\log n$$

$$H^n(X_i|\Pi) := \sum_{y} \sum_{x} -c_i(x,y) \log \frac{c_i(x,y)}{c_i(y)}$$

Formulation of Structure Learning

Silander-Milymaki (2006)

1. For each (X, S) s.t. $X \notin S \subseteq \{X_1, \dots, X_p\}$, compute

$$R^n(X|S) := \max_{U \subseteq S} Q^n(X|U)$$

Parent Set

2. Order X_1, \dots, X_p s.t.

$$\prod_{i=1}^{p} R^{n}(X_{i}|\{X_{1},\cdots,X_{i-1}\})$$

Order of Variables

 $(X_i \text{ does not have to depend on all the } X_1, \cdots, X_{i-1})$

BNSL computational complexity

р	DAG cardinality	# of Markov equivalent classes		
2	2	1		
3	25	11		
4	543	129		
5	29281	5921		
:	•			

Increases exponentially with p (# of variables)

David M. Chickering
"Learning Bayesian Networks is NP-Complete"

- NP-Completeness only implies existence of one computationally hard instance
- No such an instance was found when n is a constant (p may be large)

(n: # of samples, p: # of variables)

T-BNSL (p):= max_n T-BNSL(p,n)

We assume that n is a constant (small) and p is large (n << p) While David assumes that n should be large compared with p.

Parent set with maximum score

$$R^n(X|S) := \max_{U \subseteq S} Q^n(X|U)$$

 $= \max\{Q^n(X|S), \max_{Y \in S} R^n(X|S\setminus\{Y\})\}$

 $R^n(X|Y,Z,W)$ is one of the following:

- \bullet $Q^n(X|Y,Z,W)$
- $\bullet R^n(X|Y,Z)$
- \bullet $R^n(X|Z,W)$
- \bullet $\mathbb{R}^n(X|Z,W)$

We wants to avoid The computation

 $H^n(X|Y,Z)$ is one of the following:

- $\bullet (R^n(X|Y))$
- $\bullet R^n(X|Z)$

Cut computation for searching further if no optimal solution exists (B&B)

- An optimal solution is guaranteed
- Cut searching further if no optimal solution exists
- Take into account the overhead

The basic idea was first proposed for minimizing the MDL (Suzuki, 1996)

BNSL B&B for MDL (Suzuki, 1996)

$$X_i = X$$
 and $\Pi_i \subseteq \{Y, Z, W, \cdots\}$

$$X = x \in \{1, \dots, \alpha\}$$

$$Y = y \in \{1, \dots, \beta\}$$

$$Z = z \in \{1, \dots, \gamma\}$$

$$W = w \in \{1, \dots, \delta\}$$

$$-\log Q^n(X|Y) \approx H^n(X|Y) + \frac{(\alpha - 1)\beta}{2} \log n$$

$$-\log Q^{n}(X|YZ) \approx H^{n}(X|YZ) + \frac{(\alpha - 1)\beta\gamma}{2}\log n$$

$$H^{n}(X|Y) \leq \frac{(\alpha - 1)(\gamma - 1)\beta}{2} \log n$$

$$\Rightarrow \begin{cases} H^{n}(X|Y) + \frac{(\alpha - 1)\beta}{2} \log n \leq H^{n}(X|YZ) + \frac{(\alpha - 1)\beta\gamma}{2} \log n \\ H^{n}(X|Y) + \frac{(\alpha - 1)\beta}{2} \log n \leq H^{n}(X|YZW) + \frac{(\alpha - 1)\beta\gamma\delta}{2} \log n \end{cases},$$

{Y} may be optimal but {Y,Z} is not

 $\#\Pi_i$: the # of variables that the parent set Π_i contains

From
$$H^n(X|Y) \leq n \log \alpha$$
 and $\gamma \geq 2$

$$\#\Pi_i \ge \log n \ , \ n \ge 4$$

$$\implies \beta \ge n \ , \ n \ge 2$$

$$\implies \log \alpha \le \frac{(\alpha - 1)\beta}{2} \log n$$

$$\implies H^n(X|Y) \le \frac{(\alpha - 1)(\gamma - 1)\beta}{2} \log n$$

A optimal parent set contains at most log n variables (Campos et. al. 2011)

of the possible subsets is polynomial in p if n is independent from p

Only seeking the parent sets (Step 1) are considered

$$L = \log n$$

$$\sum_{i=0}^{L} \binom{p}{i} \le 1 + p^{L}$$

If n is small, the computation is efficient

$$n = 128 \Longrightarrow 1 + p^L = 1 + p^7$$

Conjecture: if n and p are independent, BNSL with MDL is polynomial time of p

Step	What to do
1	Parent sets
2	Order the variables

- Step 1 takes much more time than Step 2 in experiments
- Step 2 has not been proved to take polynomial time of p.

BNSL B&B for MAP (Campos, et. Al. 2011)

$$\begin{array}{lcl} R^n(X|S) & = & \displaystyle \max_{U \subseteq S} Q^n(X|U) \\ \\ & = & \displaystyle \max\{Q^n(X|S), \displaystyle \max_{Y \in S} R^n(X|S\backslash \{Y\})\} \end{array}$$

$$\max_{Y \in S} R^n(X|S \setminus \{Y\}) \ge \sup_{S \subset S'} Q^n(X|S') \qquad \mathsf{UpperBound}$$

 $\Longrightarrow S$ and its supersets are not optimal

Find $Q_*^n(X|S)$

1.
$$Q^n(X|S) \leq Q^n_*(X|S)$$

$$Q_*^n(X|S) := \prod_{y:c(y)>0} \frac{\max_x a(x,y)}{a(y)}$$

2.
$$Q^{n}(X|S') \leq Q^{n}_{*}(X|S)$$
 for all $S' \supseteq S$ $a(x,y) = a(y) = 0.5 \Longrightarrow Q^{n}_{*}(X|S) = \alpha^{\#\{y|c(y)>0\}}$

A Tighter Upper Bound (Suzuki 2015)

Proposed

$$Q_{**}^{n}(X|S) := \prod_{x} \prod_{y} \{ \frac{\Gamma(c(x,y) + a(x,y))}{\Gamma(a(x,y))} \cdot \frac{\Gamma(a(y))}{\Gamma(c(x,y) + a(y))} \}$$

$$\sup_{S' \supseteq \Pi} Q^n(X|S') \le Q^n_{**}(X|S) \le Q^n_{*}(X|S)$$

Existing
$$Q_*^n(X|S) := \prod_{y:c(y)>0} \frac{\max_x a(x,y)}{a(y)}$$

Experiments using Alarm Netwok data

(The proposed is three times faster than the existing one)

n=100

n = 500

p^{-}	2^{p-1}	R_*	R_{**}
-	t	T_*	T_{**}
16	32,768	11,834	3,366
	3.123	2.156	0.828
18	13,1072	41,903	11,342
	11.641	3.766	1.385
20	524,288	145,374	37,306
- 8	56.875	15.047	5.063
22	2,097,152	514,300	127,562
	203.766	49.843	15.406
24	8,388,608	1,698,040	411,466
- 33	1012.234	211.656	63.95

p	2^{p-1}	R_*	R_{**}
	t	T_*	T_{**}
16	32,768	24,788	17,337
	22.469	17.891	13.312
18	131,072	119,828	76,698
	92.047	83.080	59.172
20	524,288	355,379	192,798
	782.72	548.219	367.969
22	2,097,152	1,251,530	705,208
n 8	2992.078	1816.0630	1122.531
24	8,388,608	4,380,355	2,468,228
5. 3.	10720.192	6356.221	3928.858

What we can say from the experiments

The proposed bound cut the computation

to one-third compared with Campos 2011

10% to compared with computation w/o B&B

When the bound works most often?

The sample size n is small

The # of variables p is large

Discussion for small n

Why B&B works so effectively?

Bayes/MDL avoids complicated models for small n even during the search

- ⇒ The search space is limited for small n
- ⇒ The computational effort is small for small n

Why we do not seek consistency?

If the MAP solution is obtained, Bayes/MDL does its best, and we should be satisfied.

Prior info should be tuned carefully for small n

Summary for the main topic

BNSL with B&B

MDL: started when I was young, and many other started now

MAP: recently improved for small n and large p (n<<p)

Future Task:

BNSL takes polynomial when p and n are independent

Many people believes that the statement is false

I have much evidence that the statement is true

Why HSIC?

Accepted: March 23, 2016 Appears coming week

Article

An Estimator of Mutual Information and its Application to Independence Testing

Joe Suzuki *,

Received: date; Accepted: date; Published: date

Academic Editor: name

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Correspondence: suzuki@math.sci.osaka-u.ac.jp

What measures Independence?

$$\rho(X,Y) := \frac{cov(X,Y)}{\sqrt{V(X)V(Y)}} = 0 \iff X \perp\!\!\!\perp Y$$

• Mutual Information: $I(X,Y) := \sum_{x} \sum_{y} P_{XY}(x,y) \log \frac{P_{XY}(x,y)}{P_{X}(x)P_{Y}(y)}$

$$I(X,Y)=0 \iff X \perp \!\!\!\perp Y$$

Hilbert Schmidt independent criterion

$$HSIC(X, Y) = 0 \iff X \perp\!\!\!\perp Y$$

Independence Test (Whether $X \perp \!\!\!\perp Y$ or not)

Given $(x_1, y_1), \dots, (x_n, y_n)$, estimate I(X, Y), HSIC(X, Y), etc.

A naive estimator of I(X,Y)

$$I_n := \sum_{x} \sum_{y} \frac{c(x,y)}{n} \log \frac{\frac{c(x,y)}{n}}{\frac{c(x)}{n} \cdot \frac{c(y)}{n}}$$

c(x), c(y), c(x, y): Occurrencies of x, y, (x, y) in (x_1, \dots, x_n) and (y_1, \dots, y)

 $I_n > 0$ with positive probability as $n \to \infty$ even when $X \perp \!\!\!\perp Y$

$$H^{n}(X) := \sum_{x} -\frac{c(x)}{n} \log \frac{c(x)}{n} \qquad H^{n}(Y) := \sum_{y} -\frac{c(y)}{n} \log \frac{c(y)}{n}$$

$$H^{n}(X,Y) := \sum_{x} \sum_{y} -\frac{c(x,y)}{n} \log \frac{c(x,y)}{n}$$

$$I_{n} = \frac{1}{n} \{H^{n}(X) + H^{n}(Y) - H^{n}(X,Y)\}$$

$$-\log Q^{n}(X) \approx H^{n}(X) + \frac{\alpha - 1}{2} \log n \qquad -\log Q^{n}(Y) \approx H^{n}(Y) + \frac{\beta - 1}{2} \log n$$

$$-\log Q^{n}(X,Y) \approx H^{n}(X,Y) + \frac{\alpha\beta - 1}{2} \log n$$

$$-\log Q^{n}(X,Y) \approx H^{n}(X,Y) + \frac{\alpha\beta - 1}{2}\log n$$

$$J_n := \frac{1}{n} \log \frac{Q^n(X,Y)}{Q^n(X)Q^n(Y)} = I_n - \frac{(\alpha - 1)(\beta - 1)}{2n} \log n$$

MDL/Bayes Estimators (Suzuki 1993, 2012)

$$J_n = \max\{\frac{1}{n}\log\frac{Q^n(X,Y)}{Q^n(X)Q^n(Y)}, 0\} \approx \max\{I_n - \frac{(\alpha - 1)(\beta - 1)}{2n}\log n, 0\}$$

For large n (almost surely),

$$J_n = 0 \iff X \perp\!\!\!\perp Y$$

$$I_n = 0 \iff X \perp \!\!\!\perp Y$$

I_n overestimates but J_n captures the I(X,Y)

Binary sequences of length 100 with $X \perp \!\!\! \perp Y$ and $X \not \perp \!\!\! \perp Y$

Why HSIC?

$$E_{XX'YY'}[k(X,X')l(Y,Y')] + E_{XX'}[k(X,X')] \cdot E_{YY'}[l(Y,Y')] - 2E_{XY}\{E_{X'}[k(X,X')]E_{Y'}[l(Y,Y')]\}$$

$$HSIC(X,Y) = 0 \iff X \perp \!\!\!\perp Y$$
 for characteristic kernels k,l

Commonly used Estimator of HSIC
$$\frac{1}{n^2} \sum_{i,j} k(x_i, x_j) l(y_i, y_j) + \frac{1}{n^4} \sum_{i,j} k(x_i, x_j) \sum_{p,q} l(y_p, y_q) - \frac{2}{n^3} \sum_{i,p,q} k(x_i, x_p) l(y_i, y_q) \}$$

- no Estimator $HSIC_n$ s.t.

 For large n (almost surely), $HSIC_n = 0 \iff X \perp\!\!\!\perp Y$
- no null hypothesis distribution is known
- $O(n^4)$ computation
- hard to extend Independence to Conditional Independence

Estimating MI for Continuous variables

$$J_n^{(u,v)} = I_n^{(u,v)} - \frac{(p^u - 1)(q^u - 1)}{2n} \log n$$

$$J_n := J_n^{(u,v)}$$

1 2 3 4 5 6 7 8 125 125 125 125 125 125 125

```
1 2 3 4 5 6 7 8
1 75 32 12 5 1 0 0 0
2 25 41 25 18 9 7 0 0
3 15 23 32 27 14 11 1 2
4 5 17 24 22 27 19 11 0
5 5 9 19 24 23 23 17 5
6 0 3 7 18 26 26 28 17
7 0 0 6 9 19 21 45 25
8 0 0 0 2 6 18 23 76
```

Properties of the Proposed Method

Theorem 1 For $n \ge n_0 := \max\{p^{\frac{2}{(p-1)(1-1/q)}}, q^{\frac{2}{(q-1)(1-1/p)}}\}$, the optimal (u, v) satisfies $p^u q^v \le n$.

Theorem 2 With probability one as $n \to \infty$, $J_n \le 0$ if and only if X and Y are independent.

 $X \in \{0,1\}$ (equi-prob), $U \in \{0,1\}$ (prob. p=0.1,0.2,0.3,0.4,0.5) $Y = X + U \bmod 2$ $n=100, \ n=200$

Repeat to compute $J_n(x^n, y^n)$ and $HSIC_n(x^n, y^n)$ 100 times

n = 200	p=	0.5	.5 p=0.4		n = 100	p=0.5		p=0.4	
(100 trials)	11	N	Ш	TT	(100 trials)	11	N	11	T
HSIC	95	5	24	76	HSIC	95	5	49	51
MI	94	6	19	81	MI	88	12	33	67

 $X, U \sim \mathcal{N}(0,1)$ (mutually independent)

$$Y = qX + \sqrt{1 - q^2}U, q = 0, 0.2, 0.4, 0.6, 0.8$$

n = 100, n = 200.

Repeat to compute $J_n(x^n, y^n)$ and $HSIC_n(x^n, y^n)$ 100 times

n = 200	q=	=0	q=	0.2	q=	=0.4	n = 100	q=	=0	q=	0.2	q=	0.4
(100 trials)	Ш	T	Ш	T	11	N.	(100 trials)	11	-XI	11	NT.	1	T
HSIC	97	3	51	49	0	100	HSIC	93	7	74	26	11	89
MI	95	5	58	42	4	92	MI	94	6	56	44	23	77

Cases that HSIC does not detect independences

1. $X, U \sim \mathcal{N}(0, 0.25)$ (mutually independent) Y = X - |X| + |U| Integers and fractions are independent and dependent for X, Y

$$Y = X - \lfloor X \rfloor + \lfloor U \rfloor$$

$$X \in \{0, 1, \dots, 9\} \text{ (uniform)}$$

$$Y \in \begin{cases} \{0, 2, 4, 6, 8\}, & X : even \\ \{1, 3, 5, 7, 9\}, & X : odd \end{cases}$$
Rounding
$$100 \quad 0$$

$$1 \quad 99$$

2.
$$X \in \{0, 1, \dots, 9\}$$
 (uniform)

$$Y \in \begin{cases} \{0, 2, 4, 6, 8\}, & X : even \\ \{1, 3, 5, 7, 9\}, & X : odd \end{cases}$$

X + Y should be even

n = 200	parity			
(100 trials)	11	T		
HSIC	96	4		
MI	0	100		

The proposed and HSIC require $O(nlog^2n)$ and $O(n^3)$ computations

n	100	500	1000	2000
HSIC	0.50	9.51	40.28	185.53
Proposed	0.30	0.33	0.62	1.05

Summary for the Bonus Topic

No Free Lunch for Independence Testing

No one independent test outperm other test for all the problem (correctness)

Efficiency

The proposed and HSIC require $O(nlog^2n)$ and $O(n^3)$ computations

The largest merit: for large n

$$J_n = 0 \iff X \perp \!\!\!\perp Y$$

Open Problem

Is there any estimator $HSIC_n$ s.t. for large n

$$HSIC_n = 0 \iff X \perp\!\!\!\perp Y$$