

Features:

- · Lead-Free
- · Specially designed of general purpose
- Highly reliable resin dipped type
- · Excellent frequency and temperature characteristics
- Non-flammable epoxy resin

Specifications:

Performa	Performance Characteristics							
-55°C to +	55°C to +125°C (>85°C with rated voltage derating)							
6.3V DC t	5.3V DC to 50V DC							
0.1 to 330	0.1 to 330µF							
±20% (±1	0% is avai	lable) (12	20H2	z, +20°C)				
Not more	Not more than 0.01CV [μA] or 0.5μA whichever is greater							
Working	yoltage			6.3	to 50V			
Capac	citance	≤1µF		1.5 to 6.8µF	10 to 68	μF	≥100µF	
tan 8	max	0.04		0.06	0.08		0.1	
-55°C	-55°C Capacitance change ±12% of initial measured value at +20°C							
10500	Leakag	ge curren	t	≤10% of initial measured value		ed value		
+105°C	+105°C Capacitance change ±12% of initial measured value at +20°C				lue at +20°C			
Relative Ambient	Test conditions Relative humidity : 90 to 95% without load Ambient temperature : +40°C							
Leakage	Post test requirements at+ 20°C Leakage current :≤0.012CV or 0.75 [µF], whichever is gre Capacitance change :±10% of initial measured value				reater			
Test cond	itions							
Item	Conditions			- 1		Rating		
	Duration			1,000 hours		1,000 hours		
Ambie	ent temper	ature		+105°C		+85°C		
Apı	olied volta	ge	De	Derated working voltage		Rated working voltage		age
Sour	ce impeda	nce	1Ω/V		1Ω/V			
	-55°C to + 6.3V DC t 0.1 to 330 ±20% (±1) Not more Working Capac tan 8 -55°C +105°C Test cond Relative Ambient Duration Post test I Leakage Capacita tan 8 Test cond Item Ambie Apple	-55°C to +125°C (>8 6.3V DC to 50V DC 0.1 to 330μF ±20% (±10% is avai Not more than 0.010 Working voltage Capacitance tan δ max -55°C Capacita +105°C Capacita Test conditions Relative humidity Ambient temperatu Duration Post test requirement Leakage current Capacitance change tan δ Test conditions Relative humidity Ambient temperatu Duration Post test requirement Leakage current Capacitance change tan δ Test conditions Co Item Duration Ambient temper Applied voltage	-55°C to +125°C (>85°C with 6.3V DC to 50V DC 0.1 to 330μF ±20% (±10% is available) (12 Not more than 0.01CV [μA] of Working voltage Capacitance ≤1μF tan δ max 0.04 -55°C Capacitance chan +105°C Capacitance chan Test conditions Relative humidity Ambient temperature Duration Post test requirements at+ 20 Leakage current Capacitance change tan δ Test conditions Test conditions Conditions Item	-55°C to +125°C (>85°C with rate 6.3V DC to 50V DC 0.1 to 330μF ±20% (±10% is available) (120H) Not more than 0.01CV [μA] or 0. Working voltage Capacitance ≤1μF tan δ max 0.04 -55°C Capacitance change Leakage current Capacitance change Test conditions Relative humidity Ambient temperature Duration Post test requirements at+ 20°C Leakage current Capacitance change tan δ Test conditions Test conditions Item Duration Ambient temperature Applied voltage	-55°C to +125°C (>85°C with rated voltage der 6.3V DC to 50V DC 0.1 to 330μF ±20% (±10% is available) (120Hz, +20°C) Not more than 0.01CV [μA] or 0.5μA whicheve Working voltage 6.3 Capacitance ≤1μF 1.5 to 6.8μF tan δ max 0.04 0.06 -55°C Capacitance change ±12% of initi Capacitance change ±12% of initi Test conditions Relative humidity :90 to 95 Ambient temperature :+40°C Duration :500 hou Post test requirements at+ 20°C Leakage current :≤0.012C Capacitance change :±10% of tan δ :≤150% of Test conditions Derating (for 10 to 50V) Duration 1,000 hou Ambient temperature +105°C Applied voltage Derated working	-55°C to +125°C (>85°C with rated voltage derating) 6.3V DC to 50V DC 0.1 to 330μF ±20% (±10% is available) (120Hz, +20°C) Not more than 0.01CV [μA] or 0.5μA whichever is greater Working voltage 6.3 to 50V Capacitance ≤1μF 1.5 to 6.8μF 10 to 68 tan δ max 0.04 0.06 0.08 -55°C Capacitance change ±12% of initial measur +105°C Leakage current ≤10% of initial measur Test conditions Relative humidity :90 to 95% without Ambient temperature :+40°C Duration :500 hours Post test requirements at+ 20°C Leakage current :≤0.012CV or 0.75 Capacitance change :±10% of initial measur Test conditions Test conditions Test conditions Test conditions Test conditions Test conditions Ambient temperature +105°C Applied voltage Derated working voltage	-55°C to +125°C (>85°C with rated voltage derating) 6.3V DC to 50V DC 0.1 to 330μF ±20% (±10% is available) (120Hz, +20°C) Not more than 0.01CV [μA] or 0.5μA whichever is greater Working voltage 6.3 to 50V Capacitance ≤1μF 1.5 to 6.8μF 10 to 68μF tan δ max 0.04 0.06 0.08 -55°C Capacitance change ±12% of initial measured variants and capacitance change ±10% of initial measure ±40°C Leakage current ±40°C Leakage current ±50.012CV or 0.75 [μF], Capacitance change ±10% of initial measure tan δ ±150% of Initial specific test conditions Test conditions Conditions Derating (for 10 to 50V only) Duration 1,000 hours Ambient temperature +105°C Applied voltage Derated working voltage Rate	-55°C to +125°C (>85°C with rated voltage derating) 6.3V DC to 50V DC 0.1 to 330μF ±20% (±10% is available) (120Hz, +20°C) Not more than 0.01CV [μA] or 0.5μA whichever is greater Working voltage

Item	Performance Characteristics					
	Derating voltage +105°C for 10 to 50V working					
	Working voltage [V] DC	10	16	25	35	50
Endurance	Derating voltage [V] DC	6.3	10	16	23	33
	Post test requirements at +2 Leakage current Capacitance change tan δ	20°C : ≤ 0.01% CV or 00625[1-'A], whichever is greater : ±10% of initial measured value : ≤ Initial specified value				
Shelf Life	Test conditions Duration Ambient temperature Applied voltage	: 1,000 hours : +85°C : (none)			requiremer its for "End	nts at +20°C lurance".

Tantalum Capacitor Dipped Type Outline Drawings:

Case Size	Α	В	С	D	E	F
Formats 1/2 H1 max	7	8	9.5	11	13	16.5
D1 max	4.5	5	5.5	6.5	8.5	9.5
Dmax	4.2	4.7	5.5	6.5	8.5	9.5

Dimensions: Millimetres

Wire Length (L)	5,7±1	>12,14
Code	Α	В

Rated Voltage, Capacitance of Capacitors:

VR (V)	6.3	10	16	25	35	50
Code	Ol	1A	1C	1E	1V	1H
Capacitance (IJF)			Cas	se Size		
0.1 (104)					А	A
0.15 (154}					А	А
0.22 (224)					А	А
0.33 (334)					А	А
0.47 (474)					Α	А
0.68 (684)					A	А
1 (105}				A	A	В
1.5 (155)			А	А	А	С
2.2 (225)		А	А	Α	В	С
3.3 (335)	Α	А	А	В	В	D
4.7 (475)	Α	А	В	В	С	D
6.8 (685)	Α	В	В	С	D	E
10 (106)	В	В	В	С	D	E
15 (156)	В	С	С	D	E	F
22 (226)	С	С	С	D	E	F
33 (336)	С	D	D	E	F	F
47 (476}	D	D	D	E	F	
68 (686)	D	D	E	F	F	
100 (107)	E	E	Е	F		
150 (157)	Е	E	F			
220 (227}	E	F	F			
330 (337)	F	F				
470 (477)	F	F				
680 (687)	F					

Leads & Solderability
Tinned radial leads, ø:0.5.mim.
Standard lead spacing: 2.54±0.5, 5.08±0.5mm
Solderability:

- Recommended soldering bath

temperature: 260°C -Time of immersion:3s

The tin should cover 95% of wire surface.

Permissible pull test: 10N.

Ratings and Part Number Reference:

	Y	•			,
Part Number	Case Size	Capacitance F	DCL (µA) Max.	DF % Max.	ESR max. (Q) @ 100kHz
6.3 volt @ 85°C (4 vol	t, @ 125°C)				
MCCB 0J335##A##	Α	3.3	0.5	6	13
MCCB 0J475##A##	Α	4.7	0.5	6	10
MCCB 0J685##A##	Α	6.8	0.5	6	8
MCCB 0J106##8##	В	10	0.6	8	6
MCCB 0J156##8##	В	15	0.9	8	5
MCCB 0J226##C##	С	22	1.4	8	3.7
MCCB 0J336##C##	С	33	2.1	8	3
MCCB 0J476##D##	D	47	3	8	2
MCCB 0J686##D##	D	68	4.3	8	1.8
MCCB 0J107##E##	E	100	6.3	10	1.6
MCCB 0J157##E##	E	150	9.5	10	0.9
MCCB 0J227##E##	E	220	13.9	10	0.9
MCCB 0J337##F##	F	330	20.8	10	0.7
MCCB 0J477##F##	F	470	29.6	10	0.6
MCCB 0J687##F##	F	680	42.8	12	0.5
10 volt @ 85°C (6.3 vo	·	ı	r		
MCCB 1A225##A##	Α	2.2	0.5	6	13
MCCB 1A335##A##	Α	3.3	0.5	6	10
MCCB 1A475##A##	Α	4.7	0.5	6	8
MCCB 1A685##B##	В	6.8	0.7	6	6
MCCB 1A106##B##	В	10	1	8	5
MCCB 1A156##C##	C	15	1.5	8	3.7
MCCB 1A226##C##	С	22	2.2	8	2.7
MCCB 1A336##D##	D	33	3.3	8	2.1
MCCB 1A476##D##	D	47	4.7	8	1.7
MCCB 1A686##D##	D	68	6.8	8	1.3
MCCB 1A107##E##	E	100	10	10	1 1
MCCB 1A157##E##	E	150	15	10	0.8
MCCB 1A227##F##	F	220	22	10	0.8
MCCB 1A337##F##	F	330	33	10	0.6
MCCB 1A477##F##	F	470	47	10	0.5
16 volt @ 85°C (10 vo	· · · · · · · · · · · · · · · · · · ·		Γ		
MCCB 1C155##A##	A	1.5	0.5	6	10
MCCB 1C225##A##	A	2.2	0.5	6	8
MCCB 1C335##A##	A	3.3	0.5	6	6
MCCB 1C475##8##	В	4.7	0.8	6	5
MCCB 1C685##B##	В	6.8	1.1	6	4
MCCB 1C106##B##	В	10	1.6	8	3.2
MCCB 1C156##C##	С	15	2.4	8	2.5
MCCB 1C226##C##	С	22	3.5	8	2
MCCB 1C336##D##	D	33	5.3	8	1.6
MCCB 1C476##D##	D	47	7.5	8	1.3
MCCB 1C686##E##	E	68	10.9	8	1
MCCB 1C107##E##	E	100	16	10	0.8
MCCB 1C157##F## MCCB 1C227##F##	F F	150 220	24 35.2	10 10	0.6 0.5
WICCD TOZZI##F##	<u> </u>	1 220] 33.2	10	0.0

www.element14.com www.farnell.com www.newark.com

Part Number	Case Size	Capacitance F	DCL (µA) Max.	DF % Max.	ESR max. (Q) @ 100kHz
25 volt @ 85°C (16 vo	lt, @125°C)				
MCCB 1E105##A## MCCB 1E155##A## MCCB 1E225##A## MCCB 1E335##B## MCCB 1E475##B## MCCB 1E685##C## MCCB 1E106##C## MCCB 1E156##D## MCCB 1E226##D## MCCB 1E336##E## MCCB 1E476##E## MCCB 1E476##E## MCCB 1E107##F## MCCB 1E107##F##	A A B B C C D D E E F	1 1.5 2.2 3.3 4.7 6.8 10 15 22 33 47 68 100	0.5 0.6 0.8 1.2 1.7 2.5 3.8 5.5 8.3 11.8 17 25	4 6 6 6 6 8 8 8 8 8 8	10 8 6 5 4 3.1 2.5 2 1.5 1.2 1 0.8 0.8
MCCB 1V104##A## MCCB 1V154##A## MCCB 1V224##A## MCCB 1V334##A## MCCB 1V474##A## MCCB 1V684##A## MCCB 1V10S##A## MCCB 1V155##A## MCCB 1V225##B## MCCB 1V475##C## MCCB 1V475##C## MCCB 1V156##E## MCCB 1V156##E## MCCB 1V26##E## MCCB 1V476##F## MCCB 1V476##F##	A A A A A A B B C D D E E F F	0.1 0.15 0.22 0.33 0.47 0.68 1 1.5 2.2 3.3 4.7 6.8 10 15 22 33 47 68	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.8 1.2 1.6 2.4 3.5 5.3 7.7 11.6 16.5 23.8	4 4 4 4 4 4 6 6 6 6 6 8 8 8 8 8	26 21 17 15 13 10 8 6 5 4 3 2.5 2 1.6 1.3 1 0.8 0.7
MCCB 1H104##A## MCCB 1H154##A## MCCB 1H224##A## MCCB 1H334##A## MCCB 1H474##A## MCCB 1H474##A## MCCB 1H684##A## MCCB 1H105##B## MCCB 1H155##C## MCCB 1H335##D## MCCB 1H475##D## MCCB 1H685##E## MCCB 1H1685##E## MCCB 1H1685##E## MCCB 1H1685##F## MCCB 1H168#F## MCCB 1H168#F##	It, @ 125°C) A A A A B C D D E F F	0.1 0.15 0.22 0.33 0.47 0.68 1 1.5 2.2 3.3 4.7 6.8 10 15 22 33	0.5 0.5 0.5 0.5 0.5 0.5 0.8 1.1 1.7 2.4 3.4 5 7.5 11 16.5	4 4 4 4 4 6 6 6 6 8 8 8	26 21 17 15 13 10 8 6 3.5 3 2.5 2 1.6 1.2 1

www.element14.com www.farnell.com www.newark.com

Note: All ## A ## to ambient temperature of + 20°C measured at 120Hz, 0.5V rms unless otherwise stated

insert capacitance tolerance; K for ±10% and M for ±20% insert format 1. for pitch 2.54mm; format 2. for pitch 5.08mm insert wire length see page 8 insert Bulk: Code B or Ammo pack: Code T

Packaging of bead tantalum capacitors Explantion Of Part Numbers

MC C B O J 475 M I A B B&T Series Code Rated Voltage Nominal Capacitance Capacitance Capacitance Lead Space Length Ammo Pack

Quantity per bag: Code B

The capacity of the plastic bags depends on

Case Size Format ①	Qty per bag (cut ≤ 7mm)
From A to B	1,000
From C to D	1,000
FromE to F	500

Case Size Format ①	Qty per bag (cut ≥ 14mm)
From A to B	1,000
From C to D	500
FromE to F	250

Case Size Format ②	Qty per bag (cut ≥ 7mm)
From A to B	1,000
From C to D	500

Tape & Ammo Packing (conform to: IEC286-2) Code T.

Tape & Ammo Packing (conform to: IEC286-2)

Case Code	А	B-C	D-F
QTY. (PCS/box)	2500	2000	1000

www.element14.com www.farnell.com www.newark.com

Item	Code	Dimension (mm)
Carrier tape width	w	18 +1 -0.5
Hold down tape width	W ₁	6± 0.5
Hold down tape position	W ₂	1max
Feed hole diameter	D	4± 0.2
Feed hole pitch	Р	12.7± 0.3
		Format 1: 5.05± 0.7
Hole center to lead	P ₁	Format 2: 3.85± 0.7
Hole center to component center	Р	6.35 ± 1
Lead wire clench height	Н	16± 0.5
Hole position	H ₁	9± 0.5
Base of component height	H ₂	0.8 min.
Component height	H ₃	32.2 max.
	Δр	0± 1.3
Component alignment	Δh	0± 2
		'S' wires: 2.5 +0.6 -0.1
Lead spacing	S	'B' wires: 5 +0.6 -0.5
Lead diameter	d	0.5± 0.05
length of snipped lead	L	11 max.
Carrier tape thickness	Т	0.5± 0.1

Important Notice: This data sheet and its contents (the "Information") belong to the members of the Premier Farnell group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp is the registered trademark of the Group. © Premier Farnell plc 2012.

