Characteristic Equation

Section 5.2

Learning Objectives:

- 1. Use the characteristic equation to find the eigenvalues of a matrix.
- 2. Define when two matrices are similar.

1 Characteristic polynomial

Recall: So far we have seen how to find eigenvectors if we are given eigenvalues. So far we do not know how to find the eigenvalues themselves.

Example 1. How do we find the eigenvalues of a matrix A?

Solution. In order to determine the eigenvalues of a matrix A, we must determine for which values λ

$$(A - \lambda I)\mathbf{x} = \mathbf{0}$$

has non-trivial solutions. Note that $A - \lambda I$ has non-trivial solutions if and only if it is non-invertible (by the IMT). Thus, an equivalent criteria for $A - \lambda I$ to have non-trivial null space is

$$\det(A - \lambda I) = 0.$$

The determinant of $A - \lambda I$ is simply a polynomial in the variable λ (why?) So, solving

$$\det(A - \lambda I) = 0$$

is equivalent to solving for the roots of some polynomial equation. We call this equation the *characteristic equation*. We often write the polynomial $p_A(\lambda) = \det(A - \lambda I)$ to signify the fact that the determinant is a polynomial of the variable λ . We call $p_A(\lambda)$ the **characteristic polynomial**.

Example 2. Find the eigenvalues of and eigenvectors of

$$A = \left(\begin{array}{cc} 2 & -4 \\ -1 & 2 \end{array}\right).$$

Solution. Computing

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & -4 \\ -1 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^2 - 4 = 4 - 4\lambda + \lambda^2 - 4 = \lambda^2 - 4\lambda.$$

Thus setting $\det(A - \lambda I) = 0$ yields $\lambda(\lambda - 4) = 0$ so $\lambda = 0, 4$ are the eigenvalues. To find the 0 eigenspace we solve

$$(A - 0I)\mathbf{x} = \mathbf{0},$$

SO

$$\left(\begin{array}{cc} 2 & -4 \\ -1 & 2 \end{array}\right) \sim \left(\begin{array}{cc} 1 & -2 \\ 0 \end{array}\right),$$

so $x_1 = 2x_2$ and thus $\mathbf{x} = \begin{pmatrix} 2x_2 \\ x_2 \end{pmatrix} = x_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ so one eigenvector is $\mathbf{x} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

The 4 eigenspace is found by reducing

$$A - 4I = \begin{pmatrix} -2 & -4 \\ -1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$$

so $x_1 = -2x_2$ and thus $\mathbf{x} = x_2 \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ and an eigenvector is $\mathbf{x} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$.

Example 3. Find the eigenvalues of

$$A = \left(\begin{array}{ccc} 6 & -2 & 0 \\ -2 & 9 & 0 \\ 5 & 8 & 3 \end{array}\right).$$

Solution. Computing

$$\det(A - \lambda I) = \begin{vmatrix} 6 - \lambda & -2 & 0 \\ -2 & 9 - \lambda & 0 \\ 5 & 8 & 3 - \lambda \end{vmatrix}$$

$$= (3 - \lambda) \begin{vmatrix} 6 - \lambda & -2 \\ -2 & 9 - \lambda \end{vmatrix} = (3 - \lambda)[(6 - \lambda)(9 - \lambda) - 4]$$

$$= (3 - \lambda)(54 - 15\lambda + \lambda^2 - 4) = (3 - \lambda)(\lambda^2 - 15\lambda + 50)$$

$$= (3 - \lambda)(\lambda - 5)(\lambda - 10).$$

Setting the characteristic polynomial to zero we see that $\lambda = 3, 5, 10$ are the roots.

2 Similar matrices

In practice, it is often hard to compute eigenvalues for large matrices. Instead we utilize **similar matrices** to simplify the calculation.

Definition: Two matrices A and B are **similar** if there exists an invertible matrix P so that $A = P^{-1}BP$. Of course, this equation also means that $B = PAP^{-1}$, so A is similar to B if and only if B is similar to A.

Theorem: If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomials and eigenvalues.

Proof. Since A and B are similar, there exists an invertible matrix P so that $B = PAP^{-1}$. Thus,

$$\det(A - \lambda I) = \det(PP^{-1}) \det(A - \lambda I) = \det(P) \det(A - \lambda I) \det(P^{-1})$$
$$= \det(P(A - \lambda I)P^{-1}) = \det(PAP^{-1}\lambda PP^{-1}) = \det(B - \lambda I).$$

Example 4. T/F: If A and B are similar then $\det A = \det B$.

Solution. True. Notice that $A = P^{-1}BP$ for some invertible matrix P. Then

$$\det(A) = \det(P^{-1}BP) = \det(P^{-1})\det(B)\det(P) = \frac{1}{\det(P)}\det(B)\det(P) = \det(B).$$

Example 5. T/F: The matrices

$$\left(\begin{array}{ccc} 2 & 0 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{array}\right), \quad \left(\begin{array}{ccc} 2 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{array}\right)$$

are similar.

Solution. False, they have different characteristic polynomials and so cannot be similar.