Supplementary Material

Visual comparison of several LBAM variants on Paris StreetView dataset

We implement our bidirectional attention maps by employing an asymmetric Gaussian shaped form (Eqn. 9) for activation the attention map and the modified activation function (Eqn. 8) for updating the mask. In this material, we give visual comparison of several variants of our LBAM model, *i.e.*, (i) Ours(full): the full LBAM model, (ii) Ours(unlearned): the LBAM model where all the elements in mask convolution filters are set as $\frac{1}{16}$ because the filter size is 4×4 , and we adopt the activation functions defined in Eqn. 4 and Eqn. 5, (iii) Ours(forward): the LBAM model without reverse attention map, (iv) Ours(w/o \mathcal{L}_{adv}): the LBAM model without (w/o) adversarial loss, (v) Ours(Sigmoid/LeakyReLU/ReLU/3 \times 3): the LBAM model using Sigmoid/LeakyReLU/ReLU as activation functions or 3×3 filter for mask updating.

Fig. 10 shows qualitatively comparison over variants (i) to (iv). Ours (forward) model benefits from learnable attention map and helps reduce reduce the artifacts and noise of unlearned one, see Fig. 10(a) and (b). But its decoder hallucinates both holes and known regions and produces some blurry effects compared to our full model with learnable reverse attention map Fig. 10(d).

The qualitative comparison in ablation studies with the effect of GAN loss is shown in Fig. 10(c) and (d). The inpainted results of our LBAM model without adversarial loss (Fig. 10(c)), are much better than the unlearned model Fig. 10(a), and somehow clearer in producing details than ours without reverse attention map which applied GAN loss. Our LBAM full model (Fig. 10(d)) benefits from GAN loss, is superior in giving fine-detailed structures and capturing global semantics.

The visual comparison of different activation functions or 3×3 filter for mask updating are shown in Fig. 11.

Failure cases. Fig. 12 shows some failure cases of our LBAM model. Our model struggles to recover the high-frequency details while the damaged areas are too large or the background objects are too complex. In some cases, the mask covers a large portion of a specific object, like a car, it is still difficult for our LBAM model to recover the original shape.

Model Architectures

Architecture of Our Learnable Bidirectional Attention Map

The learnable bidirectional attention model takes the damaged image, the mask M^{in} and the reverse mask $1-M^{in}$ as input. We adopt the basic U-Net structure with 14 layers, and both encoder and decoder consists of 7 layers. The fea-

tures are normalized by the learnable bidirectional attention maps through element-wise product. We use convolution filters of size 4×4 , stride = 2, padding = 1 for all layers including the bidirectional attention maps.

The forward attention map takes the mask M^{in} as input, it contains 7 layers, and the reverse attention map takes the reverse mask $1 - M^{in}$ as input, which consists of 6 layers. We adopt an asymmetric Gaussian-shaped form as activation function $(g_A(\cdot))$ of Eqn. 9) for activating the attention map and a modified ReLU based activating function $(g_M(\cdot))$ of Eqn. 8) for updating mask maps. In consideration of the skip connection of the U-Net structure, the symmetric forward and reverse attention maps are concatenated for normalizing the connected features of the corresponding layer in the decoder, under Eqn. 12. Besides, batch normalization and Leaky ReLU non-linearity are used to the features after attention re-normalization. The last layer of our LBAM model are directly de-convoluted with filters of size 4×4 , stride = 2, padding = 1, followed by a tanh non-linear activation. More details about our model is given in Table 4. Note that each activation function $g_A(\cdot)$ and mask updating term $g_M(\cdot)$ are unique for each layer, and they do not share parameters among layers.

Architecture of the Discriminator

The discriminator is trained to produce adversarial loss for minimizing the distance between the generated images and the real data distributions. In our work, we use a two-column discriminator with one column takes the remained area of inpainted result or a ground-truth image, and another column takes the missing holes of inpainted result or a ground-truth image as input. The two-column discriminator consists of 7 layers, the two parallel features are emerged after 6_{th} layer at the resolution of 4×4 . We specifically use convolution layer with filters size of 4×4 , stride =2 and padding =1, except the last layer with stride =0. We use sigmoid non-linear activation function at last layer, while the leaky ReLU with slope of 0.2 for other layers. Table 3 provides a more details of the discriminator.

More Comparisons on Paris StreetView and Places

More comparisons with PatchMatch (PM) [2], Global&Local (GL) [10], Context Attention (CA) [36], and Partial Convolution (Pconv) [17] are also conducted. Fig. 13, 14 and 15 show the qualitative comparison on Paris StreetView dataset and Places dataset. For Paris StreetView [6] dataset, we use its original splits, 14, 900 images for training, and 100 images for testing.

For Places [40] dataset, 10 categories from the total 365 categories are choosed for training our LBAM model, they are: apartment_building_outdoor, beach, house, ocean, sky, throne_room, tower, tundra, valley and wheat_field. We gather all 5000 images of each category to form our training set of 50,000 images. The validation set from each cat-

Figure 10. Visual comparison of variants (i) to (iii) of our LBAM model. From left to right are: Input, (a) Ours with unlearned model, (b) Ours without reverse attention map, (c) Our without (w/o) adversarial loss, (d) our full LBAM model. All images are scaled to 256×256 .

Figure 11. Visual comparison of different activation functions or 3×3 filters on the bidirectional attention maps. From left to right are: Input, (a) Sigmoid as activation function, (b) Leaky ReLU with slope of 0.2 as activation function, (c) ReLU, (e) 3×3 filter for mask updating, and (e) our full LBAM model. All images are scaled to 256×256 .

egory of 1,000 images into two equal non-overlapped sets of 500 images respectively for validation and testing. It can be seen that our model performs better in producing both global consistency and fine-detailed structures.

Object removal on real world images.

Finally, we apply our model trained on Places dataset for object removal on real world images. As shown in

Fig. 16, although these images contain different objects, background, context and shapes, even some of them have large portion masked regions, our model can handle them well, demonstrating its practicability and generalization ability of our LBAM model.

Figure 12. Failure cases of our LBAM model. Each group is ordered as input image, our result and ground truth. All images are scaled to 256×256 .

Table 3. The architecture of the discriminator. BN represents BatchNorm, LReLU denotes leaky ReLU with slope of 0.2, and M represents mask with zeros denote the missing pixels and ones denote the remained pixels.

Input:	Image $(256 \times 256 \times 3) *M$	Input:	Image $(256 \times 256 \times 3) * (1 - M)$		
[Layer 1-1]	Conv. $(4, 4, 64)$, stride = 2; LReLU;	[Layer 1-2]	Conv. $(4, 4, 64)$, stride = 2; LReLU;		
[Layer 2-1]	Conv. $(4, 4, 128)$, stride = 2; BN; LReLU;	[Layer 2-2]	Conv.(4, 4, 128), stride = 2; BN; LReLU;		
[Layer 3-1]	Conv. $(4, 4, 256)$, stride = 2; BN; LReLU;	[Layer 3-2]	Conv.(4, 4, 256), stride = 2; BN; LReLU;		
[Layer 4-1]	Conv. $(4, 4, 512)$, stride = 2; BN; LReLU;	[Layer 4-2]	Conv. $(4, 4, 512)$, stride = 2; BN; LReLU;		
[Layer 5-1]	Conv. $(4, 4, 512)$, stride = 2; BN; LReLU;	[Layer 5-2]	Conv.(4, 4, 512), stride = 2; BN; LReLU;		
[Layer 6-1]	Conv. $(4, 4, 512)$, stride = 2; BN; LReLU;	[Layer 6-2]	Conv. $(4, 4, 512)$, stride = 2; BN; LReLU;		
	Concatenate(Layer 6-1, Layer 6-2);				
[Layer 7]	Conv. $(4, 4, 1)$, stride = 0; Sigmoid;				
Output:	Real or Fake $(1 \times 1 \times 1)$				

Table 4. The architecture of our LBAM model. Ewp() means element-wise product, Cat() represents feature concatenation operation, $g_A(\cdot)$ denotes asymmetric Gaussian-shaped form activation function of Eqn. (9), and $g_M(\cdot)$ denotes mask updating function of Eqn. (8), BN represents BatchNorm, LReLU denotes leaky ReLU with slope of 0.2, and M^{in} represents mask with zeros indicating the missing pixels and ones indicating the remained pixels. Note that $g_A(\cdot)$ and $g_M(\cdot)$ are unique among layers and do not share its parameters.

Our Modified U-Net		Learnable Bidirectional Attention Maps				
Input:	Image $(256 \times 256 \times 3)$	Input:	$M^{in} (256 \times 256 \times 3)$			
[Layer 1-1]	Conv. $(4, 4, 64)$, stride = 2;	[Layer 1-2]	Conv. $(4, 4, 64)$, stride = 2;			
	Ewp(Layer 1-1, g_A (Layer 1-2)); LReLU;					
[Layer 2-1]	Conv. $(4, 4, 128)$, stride = 2;	[Layer 2-2]	$g_M(\cdot)$; Conv.(4, 4, 128), stride = 2;			
	Ewp(Layer 2-1, g_A (Layer 2-2)); BN; LReLU;					
[Layer 3-1]	Conv. $(4, 4, 256)$, stride = 2;	[Layer 3-2]	$g_M(\cdot)$; Conv.(4, 4, 256), stride = 2;			
	Ewp(Layer 3-1, g_A (Layer 3-2)); BN; LReLU;					
[Layer 4-1]	Conv. $(4, 4, 512)$, stride = 2;	[Layer 4-2]	$g_M(\cdot)$; Conv.(4, 4, 512), stride = 2;			
	Ewp(Layer 4-1, g_A (Layer 4-2)); BN; LReLU;					
[Layer 5-1]	Conv. $(4, 4, 512)$, stride = 2;	[Layer 5-2]	$g_M(\cdot)$; Conv.(4, 4, 512), stride = 2;			
	Ewp(Layer 5-1, g_A (Layer 5-2)); BN; LReLU;					
[Layer 6-1]	Conv. $(4, 4, 512)$, stride = 2;	[Layer 6-2]	$g_M(\cdot)$; Conv.(4, 4, 512), stride = 2;			
	Ewp(Layer 6-1, g_A (Layer 6-2)); BN; LReLU;					
[Layer 7-1]	Conv. $(4, 4, 512)$, stride = 2;	[Layer 7-2]	$g_M(\cdot)$; Conv.(4, 4, 512), stride = 2;			
	Ewp(Layer 7-1, g_A (Layer 7-2)); BN; LReLU;					
[Layer 8-1]	DeConv. $(4, 4, 512)$, stride = 2;	[Layer 6-3]	$g_M(\cdot)$; Conv.(4, 4, 512), stride = 2;			
Ewp(Cat(Layer 8-1, Layer 6-1), Cat(g_A (Layer 6-3), g_A (Layer 6-2)));BN; LReLU;						
[Layer 9-1]	DeConv. $(4, 4, 512)$, stride = 2;	[Layer 5-3]	$g_M(\cdot)$; Conv.(4, 4, 512), stride = 2;			
Ewp(Cat(Layer 9-1, Layer 5-1), Cat(g_A (Layer 5-3), g_A (Layer 5-2)));BN; LReLU;						
[Layer 10-1]	DeConv. $(4, 4, 512)$, stride = 2;	[Layer 4-3]	$g_M(\cdot)$; Conv.(4, 4, 512), stride = 2;			
Ewp(Cat(Layer 10-1, Layer 4-1), Cat(g_A (Layer 4-3), g_A (Layer 4-2)));BN; LReLU;						
[Layer 11-1]	DeConv. $(4, 4, 256)$, stride = 2;	[Layer 3-3]	$g_M(\cdot)$; Conv.(4, 4, 256), stride = 2;			
Ewp(Cat(Layer 11-1, Layer 3-1), Cat(g_A (Layer 3-3), g_A (Layer 3-2)));BN; LReLU;						
[Layer 12-1]	DeConv. $(4, 4, 128)$, stride = 2;	[Layer 2-3]	$g_M(\cdot)$; Conv.(4, 4, 128), stride = 2;			
Ewp(Cat(Layer 12-1, Layer 2-1), Cat(g_A (Layer 2-3), g_A (Layer 2-2)));BN; LReLU;						
[Layer 13-1]	DeConv. $(4, 4, 64)$, stride = 2;	[Layer 1-3]	Conv. $(4, 4, 64)$, stride = 2;			
Ewp(Cat(Layer 13-1, Layer 1-1), Cat(g_A (Layer 1-3), g_A (Layer 1-2)));BN; LReLU;						
[Layer 14-1]	DeConv. $(4, 4, 3)$, stride = 2; tanh;	Input:	$1 - M^{in} (256 \times 256 \times 3)$			
Output:	Final result $(256 \times 256 \times 3)$]	Reverse Attention Maps			

Figure 13. Qualitative comparison on Paris StreetView dataset. Comparison with PatchMatch (PM) [2], Global&Local (GL) [10], Context Attention (CA) [36], and Partial Convolution (PConv) [17]. All images are scaled to 256×256 .

Input PM [2] GL [10] CA [36] PConv [17] Ours Figure 14. Qualitative comparison on Paris StreetView dataset. Comparison with PatchMatch (PM) [2], Global&Local (GL)GL [10], Context Attention (CA) [36], and Partial Convolution (PConv) [17]. First three rows are from Paris StreetView dataset and the last four rows are from Places dataset. All images are scaled to 256×256 .

Input PM [2] GL [10] CA [36] PConv [17] Ours Figure 15. Qualitative comparison on Places dataset. Comparison with PatchMatch (PM) [2], Global&Local (GL) [10], Context Attention (CA) [36], and Partial Convolution (PConv) [17]. All images are scaled to 256×256 .

