Model 010: Representing Negative Values in Binary

1. Non-negative – 0

Negative – 1

2. 3: 011, -8: 11000

Bits	Most Positive	Most Negative
1	0	-1
2	1	-2
3	3	-4
4	7	-8

3

Model 1: Bit-Level Operations

Dec	Bin	X & 0x1
-2	1110	0000
-1	1111	0001
0	0000	0000
1	0001	0001
2	0010	0000

2. The odd, non-zero numbers.

3.

Model 2: Logical Operations

1. (0x3 && 0xC) -> 0x1 (0x3 & 0xC) -> 0x0

2.

Model 3: Shifts, Multiplication and Division

1. 011b, 3 decimal

2. -1

3. -2 – 1110

>>1 either 1111 (-1) or 0111 (7)

4. $0xA \rightarrow 0x5$

5. rem = x & 0x1;

x = x >> 1;

Model 1: What if floating point?

1. 1.5213e4

Model 2: Binary Scientific Notation

1. 1.0111*2^4

1.0111*2^2

1.0111*2^1

1.0111*2^0

Model 3: IEEE Notation

- 1. The sign bit. The number is negative.
- 2. 0111b
- 3. With no bias, the smallest value with exponent 0x1 would be 2, which is greater than 1.
- 4. $E = \exp 127 = 0x1$, $\exp = 128$

Model 4: Extreme Exponents

- 1. 1.0000
- 2. No
- 3. Two, one positive and one negative
- 4. 0.0001

Model 5: Addition

- 1. 1.0011*2^4
- 2. 4 bits
- 3.

Model 6: Simple Floating-point

- 1. 15.5 (01101111), 0 (00000000)
- 2. 7, 0b111
- 3. 0x5C + 0x43 = 7 + 2.375 = 9.375 = 0x63 (9.5)
- 4. 0x5C * 0x43 = 7 * 2.375 = 16.625 = 0x70 (+inf)

Model I: Bit Puzzle

- (assume unsigned arg)
 unsigned sign = arg >> 31;
 unsigned exp = (arg >>) &;
 unsigned frac = arg &;
- 2.
- 3.
- 4.

Model R: Review

- 1. Yes. 2^24
- 2. Does not terminate.