

True or False?

Classification error of the training set is a good measure of the true classification error

A good estimate of the actual, true error is all we are interested in when building a classification system

Evaluation

> Marco Loog

Past

- > Regularization
- › Bias-variance
- > How classifiers and regressers can overtrain...

Let's Recap a Bit

› Bias-variance for histogram

• • •

Present

> Evaluating learners [focus is on classifiers]

Cross validation

Learning curves

Feature curves

Complexity curves

Confusion matrix

Curse of dimensionality

Bias / variance

Determining Errors

Determining Errors

- Apparent or resubstitution error
 - = error classifier makes on its training data set

True Classification Error

> How does it behave?

True Classification Error

> How does it behave?

True Classification Error

> How does apparent error behave?

Apparent Classification Error

Determining Errors

- > Apparent or resubstitution error
 - = error classifier makes on its training data set
- › How do we determine the true error in practice?

Error Estimation by Test Set

Other training set → other classifier
Other test set → other error estimate

How Variable?

$$\sigma_{\hat{\epsilon}}^2 = \text{Var}(\hat{\epsilon} \mid \text{test set size } N) = \frac{\epsilon(1-\epsilon)}{N}$$

$$\sigma_{\hat{\epsilon}} = \sqrt{\frac{\epsilon(1-\epsilon)}{N}}$$

\ ,			
$N \setminus$	0.01	0.03	0.1
10	0.031	0.054	0.095
100	0.010	0.017	0.030
1000	0.003	0.005	0.009

Training Set Size vs. Test Set Size

Large training set → good classifiers

Large test set → reliable, unbiased error estimate

In practice often just a single design set is given

Cross Validations

Cross Validation

Leave-one-out Procedure

n equals training set size

Cross Validation Curves and Related

Cross Validation Curves and Related

Learning Curves

Learning Curves

 Curves that plot [estimated] classification errors against the number of samples in training set

Usually plot error both on training and on test set Gives insight, e.g. into

Amount of overtraining
Usefulness of additional data
How different classifiers compare

•••

Different Classifier Complexities

Real-world Learning Curves

Small sample sizes have a large variability


```
a = gendath([200 200]);
for j=1:10
  e = cleval(a,ldc,[2,3,5,7,10,15,20],1);
  hold on; plote(e);
end
```

Averaged Learning Curve


```
a = gendath([200 200]);
e = cleval(a,ldc,[2,3,5,7,10,15,20],500);
plote(e);
```

Feature Curves

Feature Curves

Polynomial Complexity Example

Polynomial Complexity Example

Parzenc Complexity Example

Parzenc Complexity Example

Curse of Dimensionality

Curse of Dimensionality

Some Concluding Claims...

- > Larger training sets yield better classifiers
- > Independent test sets needed for unbiased error estimates
- > Larger test sets yield more accurate error estimates
- > LOO cross validation "optimal", but might be infeasible
- More complex classifiers need larger training sets Same holds for larger feature set sizes
- Small training sets need simpler classifiers or smaller feature sets
- > There is no single best classifier!

Confusion Matrices

Provides counts of class-dependent errors: How many object have been classified as A that should have been classified as B?

Give a more detailed view than overall error rate

Can be used to estimate overall cost for particular classifier

Confusion Matrices

$$N_A = 10, N_B = 30, N_C = 20$$

$$E = \frac{c_{12} + c_{13} + c_{21} + c_{23} + c_{31} + c_{32}}{N_A + N_B + N_C}$$
$$E = 14/60 = 0.2333$$

$C = \operatorname{confmat}(\Lambda, L)$				
Λ	real labels			

L obtained labels

	classified to		
п	A B C		
ror	class A	8 2 0	
ts f	class B	6 23 1	
jec	class C	6 23 1 4 1 15	
$\frac{1}{2}$			

0.20 error in class A
0.23 error in class B
0.25 error in class C
0.228 averaged error

