Zależność parametrów ogniwa fotowoltaicznego od temperatury

Jędrzej Górny, Jan Kurek, Rafał Staroszczyk

1 Metodologia badania

Badanie rozpoczęto od kalibracji stanowiska by uzyskać oświetlenie badanego panelu równe 1 słońcu poprzez dobranie odpowiedniej odległości źródła światła od panelu fotowoltaicznego. Po uzyskaniu odpowiedniego oświetlenia, rozpoczęto badania właściwe. Doświadczenie składało się z czterech serii pomiarowych. Podczas każdej serii mierzono napięcie na obciążeniu oraz prąd układu przy danej wartości oporu obciążenia. Pomiar prądu zwarcia wykonywano poprzez zwarcie obciążenia a pomiar napięcia otwartego wykonywano poprzez otwarcie układu przy obciążeniu. Pomiary pośrednie wykonywano poprzez stopniowe zmienianie wartości oporu obciążenia i odczyt wartości napięcia na obciążeniu oraz prądu przepływającego przez układ. Pierwsza seria odbywała się przy temperaturze panelu równej 25 °C, druga seria – w temperaturze 40 °C, trzecia – 50 °C, a czwarta – 60 °C. Temperatura była utrzymywana poprzez termostatyczną grzałkę elektryczną.

2 Wyniki i wnioski

Podczas badania krzywej prądowo-napięciowej ogniwa otrzymano następujące wykresy dla różnych temperatur.

Rysunek 1: Zależność prądowo-napięciowa od temperatury

Z otrzymanych danych można obliczyć zależność mocy od napięcia według wzoru P=UI.

Rysunek 2: Zależność krzywej mocy od temperatury

Z wykresu 2 można odczytać parametry ogniwa w punkcie maksymalnej mocy:

Temperatura U_{OC}		I_{SC}	U_{MPP}	I_{MPP}	FF	P_{MPP}
[°C	[mV]	[mA]	[mV]	[mA]	[%]	[mW]
25	2029.2	112.5	1581.6	104.9	73	165.9
40	1898.3	116.9	1495.9	104.9	71	156.9
50	1859.5	118.0	1390.7	108.6	69	151.0
60	1770.3	121.6	1317.2	110.5	68	145.6

Tabela 1: Parametry ogniwa dla różnych temperatur

Wraz ze wzrostem temperatury występuje spadek napięcia układu otwartego i punktu maksymalnej mocy, współczynnika wypełnienia oraz mocy maksymalnej. Zwiększa się jednak prąd obwodu zamkniętego i punktu maksymalnej mocy. Wszystkie zależności są w przybliżeniu liniowe w badanym zakresie.

Rysunek 3: Zmiany parametrów z temperaturą

3 Podsumowanie

Podczas doświadczenia zbadano kształt krzywej I(U) w zależności of temperatury. Z otrzymanych danych obliczono parametry charakterystyczne takie jak napięcie, prąd oraz moc w punkcie maksymalnej mocy, napięcie obwodu otwartego, prąd obwodu zamkniętego oraz współczynnik wypełnienia. Zmiany tych parametrów w funkcji temperaratuty są w przybliżeniu liniowe.

Zwiększenie temperatury zmniejsza wykładik we wzorze na diodę idealną. Powoduje to obniżenie charakterystyki prądowo-napięciowej, a więc też obniżenie napięcia obwodu otwartego i zmniejszenie współczynnika wypełnienia. Zwiększenie prądu może być spowodowane podwyższeniem ruchliwości, a zatem obniżeniem oporu materiału, lub innym mechanizmem.