CMSC 141 - Automata and Language Theory

Handout: Unrestricted Grammars By: Gianina Renee V. Vergara

Unrestricted Grammars

- An unrestricted grammar, UG is also a 4-tuple (V, T, P, S)...
- Each production is of the form $\alpha \rightarrow \beta$, where $\alpha \in (V \cup T)^+$, $\beta \in (V \cup T)^*$
 - \circ α must contain at least one variable

Example 1: Grammar for $L = \{a^nb^nc^n | n>0 \}$

a. First, generate aⁿ(BC)ⁿ

$$S \rightarrow aSBc$$

$$S \rightarrow aBc$$

b. Next, non-deterministically rearrange cB.

$$cB \rightarrow Bc$$

c. Finally, convert remaining variables to terminals, ensuring the string is in proper order.

$$aB \rightarrow ab$$

$$bB \rightarrow bb$$

Derivation	Production
S	
aSBc	$S \rightarrow aSBc$
aaSBcBc	$S \rightarrow aSBc$
aaaBcBcBc	$S \rightarrow aBc$
aaaBBccBc	$cB \rightarrow Bc$
aaaBBcBcc	$cB \rightarrow Bc$
aaaBBBccc	$cB \rightarrow Bc$
aaabBBccc	$aB \rightarrow ab$
aaabbBccc	$bB \rightarrow bb$
aaabbbccc	$bB \rightarrow bb$

Example 2: Grammar for $L = \{a^{2^i} | i>0 \}$

a. Use D to start duplication process.

$$S \rightarrow \#aD$$

b. A will duplicate every terminal a.

$$D \rightarrow AD$$

$$aA \to Aaa$$

c. We get rid of A when it reaches the start of the string.

$$\#A \rightarrow \#$$

d. We get rid of D and # when we've completed all duplications we need.

$$D \to \epsilon$$

$$\# \to \epsilon$$

Note: It is possible to find other UG for the same language.

Example 3: Grammar for $L = \{a^{2^i} | i > 0 \}$

$$S \rightarrow DaB$$

$$D \rightarrow DA$$

$$Aa \rightarrow aaA$$

$$\mathsf{AB}\to\mathsf{B}$$

$$D \to \epsilon$$

$$B\to\epsilon$$

Using Example 2:

Derivation	Production
S	
#aD	$S \rightarrow \#aD$
#aAD	$D \to AD$
#AaaD	$aA \rightarrow Aaa$
#aaD	$\#A \to \#$
#aaAD	$D \to AD$
#aAaaD	$aA \rightarrow Aaa$
#AaaaaD	$aA \rightarrow Aaa$
#aaaaD	$\#A \to \#$
#aaaa	$D \to \epsilon$
aaaa	$\# o \epsilon$

Using Example 3:

Derivation	Production
S	
DaB	S o DaB
DAaB	$D \to DA$
DaaAB	$Aa \rightarrow aaA$
DaaB	$AB \rightarrow B$
DAaaB	$D \to DA$
DaaAaB	$Aa \rightarrow aaA$
DaaaaAB	$Aa \rightarrow aaA$
DaaaaB	$AB \rightarrow B$
aaaaB	$D \to \epsilon$
aaaa	$B \to \epsilon$

Example 4: Grammar for $L = \{ w \in \{0,1\}^* \mid ww \}$

a. First, generate ww^R

$$\mathsf{S} \to \mathsf{WR}$$

$$W \rightarrow 0W0$$

$$W \rightarrow 1W1$$

$$W \rightarrow M$$

b. Carefully, reverse the order of characters in w^R . Create a reverse marker # $M \rightarrow M\#$

c. The marker will take the terminal next to it towards R

$$\#00 \to 0\#0$$

d. We get rid of the marker when it reaches R. Move the terminal to the right of R.

$$\#0R \rightarrow R0$$

$$\#1R \rightarrow R1$$

e. Repeat (step b) until all terminals are to the right of R. Finally, get rid of M and R.

$$MR \to \epsilon$$

Example 5: Another Grammar for $L = \{ w \in \{0,1\}^* \mid ww \}$

a. We will use W to generate the string, and Z to mark the end of the string.

$$S \rightarrow WZ$$

b. Mimic the first half of the input string, matching an A or B for every 0 or 1 respectively.

$$W \rightarrow 0AW$$

$$W \rightarrow 1BW$$

$$W \to \epsilon$$

c. Push all A's and B's to the right as 2nd half of the string.

$$A0 \to 0A$$

$$A1 \rightarrow 1A$$

$$BO \rightarrow OB$$

$$B1 \rightarrow 1B$$

d. When A's and B's are finally in order, use Z to convert each variable to a terminal.

$$AZ \rightarrow ZO$$

$$BZ \rightarrow Z1$$