Building Time Series Predictive Model with Hyper-Parameters Tuning using Differential Evolution Algorithm

10/27/16

Table of Contents

- Perceptron
- Feed Forward
- Hyper-Parameter
 - Momentum
 - ► Full vs Stochastic vs Batch
 - Number of Nodes and Hidden layers
- Recurrent Unite vs Hidden Markov Chain vs Feed Forward
- Simple Recurrent Unit
- Rated Recurrent Unit
- Gated Recurrent Unit

Perceptron

Feed Forward

Gradient Descent Algorithm!

Momentum

Regular Momentum

$$v_t = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta).$$
 $heta = \theta - v_t.$

- Nesterov Accelerated Gradient (NAG)
 - Look ahead and then correct the position if it makes a mistakes

$$v_t = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma v_{t-1}).$$
 $heta = \theta - v_t.$

- https://www.youtube.com/watch?v=OWzkRD6MjYl
- And gifs

Learning Rate (Hyper-Parameter1)

- Point: Decay the learning rate as we close to the solution
- Step Decay
 - Ex) Reduce every 5, 10 or 20 steps
- Exponential Decay
 - \triangleright Ex) LR = exp(LR)
- 1/t decay
 - \triangleright EX) LR = 1/(1 + LR)

Learning Rate (Hyper-Parameter1)

- Adagrad It adapts the learning rate to the parameters.
 - ▶ Keep the current changes in to the cache
 - ▶ More changes now and slower changes later
 - w -= LR * gradient / sqrt(cache) + epsilon)
 - But it's too aggressive
- RMSprop
 - Make cache self decay (leaky cache)
 - cache = decay_rate * cache + (1-decay_rate)*gradient^2
 - w -= LR * gradient / sqrt(cache) + epsilon)

Full vs Batch vs Stochastic GD (Hyper-Parameter 2)

- Full gradient descent
- ► O(N)
- Stochastic gradient descent

- Batch gradient descent
- O(batch size) $\theta = \theta \eta \cdot \nabla_{\theta} J(\theta)$.
- Batch size is another hyper-parameter

Number of Node and Layers (Hyper-Parameter 3)

Why RNN?

- Feed Forward
 - Can't take sequences
 - Ex) "I love dogs and cats" vs "Dogs love cats and I"
 - Number of layer grow exponentially as the number of input grows
- Markov Chain
 - longer seq. have prob. that approach 0 because it keeps multiplying values < 1</p>
 - Markov Assumption, is less accurate
 - ► Ex) p(cats) ~= p(cat | and)

Why RNN?

- Predict a label over entire sequence
 - Ex) "hello world" -> male, "bob hi" -> female
- Predict a label for every step of input sequence
 - ▶ No need to wait till the end of the node

Simple RNN

$$h(t) = f(W_h^T h(t-1) + W_x^T x(t) + b_h)$$

$$y(t) = softmax(W_o^Th(t) + b_o)$$

f = sigmoid, tanh, relu

Regular feedforward net:

Recurrent net:

Unfold Simple RNN

Rated Recurrent Unit (RRU)

- Simple RNN has lack of variation, since it's multiplying the previous output over and over.
- RRU solves the problem by adding more variation

Gate Recurrent Unit (GRU) - 2014

- Regular RNN has to take entire previous history
 - lots of unnecessary data -> wastes of memory
 - Need to forget some of the data (r = reset gate)

$$r_{t} = \sigma(x_{t}W_{xr} + h_{t-1}W_{hr} + b_{r})$$

$$z_{t} = \sigma(x_{t}W_{xz} + h_{t-1}W_{hz} + b_{z})$$

$$\hat{h}_{t} = g(x_{t}W_{xh} + (r_{t} \odot h_{t-1})W_{hh} + b_{h})$$

$$h_{t} = (1 - z_{t}) \odot h_{t-1} + z_{t} \odot \hat{h}_{t}.$$

Conclusion

- Why make RNN more complex?
 - Adding more parameters makes the model more expressive and able to solve more complex problem.