$^{\prime}$ תורת החישוביות (236343) – מועד א $^{\prime}$ חורף תשע $^{\prime\prime}$ ט

18.2.2019

מרצים: פרופ' איל קושלביץ.

מתרגלים: אוהד טלמון (אחראי), מיכל דורי, דוד נאורי, אבי קפלן, דור קצלניק.

הנחיות:

- הבחינה היא עם חומר סגור. חל איסור מפורש על החזקת אמצעי תקשורת נייד, דוגמת טלפון סלולרי, ברשות הנבחן בעת
- משך הבחינה שלוש שעות. השתדלו לא להתעכב יתר על המידה על אף סעיף, כדי לצבור את מרב הנקודות בזמן העומד לרשותכם.
 - לשימושכם מצורפים למחברת זו דפי עזר.
 - יש להשתמש בעט שחור או כחול בלבד.
- בשאלות בהן יש לתאר מכונת טיורינג, ניתן להסתפק בתיאור מילולי משכנע של אופן פעולת המכונה, ואין צורך להגדיר את פונקציית מעברים.
- מותר להשתמש בכל טענה שהוכחה בהרצאה או בתרגול, בתנאי שמצטטים אותה באופן מדויק, אלא אם נדרשתם במפורש להוכיחה.
 - יש להוכיח כל טענה אחרת בה אתם משתמשים, אלא אם צוין במפורש אחרת.
 - ."לא יודע". פיתן לקבל בכל סעיף 20% מהניקוד עבור כתיבת "לא יודע". •

בהצלחה!

$(\mathrm{RE}$ שאלה 1, 15 נק' (ת"ב 2, אפיונים אלטרנטיביים של

 $f:\mathbb{N} o L$ בזכור, קבוצה אינסופית L היא כת מניה (או ניתנת למניה) אם קיימת פונקציה מלאה ועל L היא כת מניה לחישוב. (10 הראו כי עבור כל שפה L לא ריקה, $L\in RE$ אם ורק אם קיימת פונקציה $f:\mathbb{N} o L$ שהיא מלאה, על וניתנת לחישוב. (10 נק')

- $w\in \Sigma^*$ כאשר (w,π) , כאשר זוג קלטים, q_{acc},q_{rej} , פוודא V עבור שפה L הוא מכונת טיורינג בעלת שני מצבים סופיים, $\pi\in \Sigma^*$ היא "הוכחה" לשייכות T יכול להיעזר. T בודק את שייכותה ל־T ו־T ו-T היא "הוכחה" לשייכות T יכול להיעזר.
- לכל זוג q_{acc} אם המוודא עוצר במצב מסמן על הקלט (w,π) בממן לכל אוג לעצור. נסמן מסמן אם המוודא עוצר במצב על הקלט (w,π) בנוסף, על המוודא לקיים את התכונות הבאות: עוצר ב q_{rej} . בנוסף, על המוודא לקיים את התכונות הבאות:
- .(עבור טענה נכונה היימת הוכחה שאותה כך עבור ענה עבור עבור ער עבור ער עבור עבור עבור $w\in L$ אז קיימת הכך שלמות) •
- על המוודא אפשר "לעבוד" אי אפשר ענה שגויה, אי עלה אי (עבור פון מתקיים $V\left(w,\pi\right)=\mathrm{rej}$ מתקיים אז לכל שגויה, אי אפשר אנויה).

(נק') גור השפה עבור כל שפה מוודא V עבור מוודא $L\in\mathrm{RE}$ הראו כי עבור כל הראו

הערה: שימו לב שבתרגיל הבית הייתם צריכים להראות שני כיוונים, ופה אתם מתבקשים להראות רק כיוון אחד.

שאלה 2, 10 נק' (ת"ב 9, טענות והשלכותיהן)

עבור הטענות הבאות קבעו האם הן נכונות, שגויות או שקולות לבעיה פתוחה מוכרת (לדוגמא, אם טענה גוררת את נכונות או אי נכונות P=NP מן הסתם איננו מצפים שתגידו אם היא נכונה או שגויה).

.9 שמה כלשהי ל- φ , ואחרת פולטת השמה כלשהי ל- φ אם בהנתן פסוק ישמה φ שמה בהנתן פסוק ישמה ל- φ . אם בהנתן פסוק ישמה כלשהי ל- φ . אם בהנתן פסוק ישמה כלשהי ל- φ . אם בהנתן פסוק ישמה כלשהי ל- φ .

(ז נק') . $n^{O(\log n)}$ מ"ט הרצה בזמן אז לכל אז לכל $n^{O(\log n)}$ אז הרצה בזמן הרצה ל-2

שאלה 3, 25 נק'

Lעבור שפה L נגדיר L שאורכן הוא לפחות . $L^{\geq k}$ היא אוסף כל המילים ב־L שאורכן הוא לפחות אבור שפה Rבור השפות הבאות קבעו האם הן ב־R והאם הן ב־R

נק') נק') בו 10)
$$L_1=\left\{\langle M
angle\mid \exists k:\;\;L\left(M
ight)^{\geq k}\cap HP^{\geq k}
eq\emptyset
ight\}$$
 .1

נק') נק')
$$L_2=\left\{\langle M
angle\mid \exists k:\;\;L\left(M
ight)^{\geq k}=HP^{\geq k}
ight\}$$
 .2

נק')
$$L_3=\left\{\langle M
angle\mid \exists k:\ L\left(M
ight)^{\geq k}=\overline{HP}^{\geq k}
ight\}$$
 .3

שאלה 4, 25 נק'

נאמר שפסוק φ' הוא ספיק באמצעות k ג'וקרים אם קיימים k משתנים φ כך שהפסוק המתקבל מהסרת כל φ המתקבל מהסרת כל הפסוקיות בהן מופיעים המשתנים הללו ב- φ (בחיוב או בשלילה), הוא ספיק.

לדוגמא - עבור הפסוק φ' הפסוק φ' הפסוק φ' אם φ' אם φ' אם φ' המתקבל φ' הפסוק φ' המתקבל φ' הפסוק φ' הפסוק φ' הפסוק φ' הפסוק φ'

הערה: לצורך ההגדרה נניח כי פסוק ריק (כלומר פסוק ללא פסוקיות) הוא ספיק.

-שלמה איא P בהנחה היא ב־P או שהיא מהשפות מהשפות לכל אחת לכל אחת $P \neq N$

(ט נק') או 10) $L_1 = \{ \varphi \mid$ הוא פסוק 3CNF ספיק באמצעות 3 הוא פסוק 3CNF הוא פסוק .1

(7 נק') ל $L_2 = \{\varphi \mid$ ג'וקרים אות מפיק ספיק בCNF הוא פסוק .2

(8 נק') א 2CNF אין א ג'וקרים אוא פסוק פאמצעות פסיק ספיק אין ספיק פאמצעות א 2CNF הוא פסוק .3

שאלה 5, 25 נק'

. נסמן ב־ M_1 ור־ M_2 לא מסכימות על M_2 והמיכימות את המילים אוסף אוסף M_2 והמיכימות על את מסכימות על M_2 והמיכימות על את את מחלקת השפות השפות השפות השרות ווא ורשר מיניסטיות בולינומיות בך ער M_1 והכיחו/הפריכו בקצרה את הטענות הבאות:

(ז נק') . $\mathrm{P}\subseteq\mathcal{PA}$.1

(ז נק') . $\mathcal{P}\mathcal{A}\subseteq\mathrm{P}$.2

 $\mathcal{NPA}=\{L \mid \mathrm{Disagree}\,(M_1,M_2)=L$ כעת נגדיר את פולינומיות וו־ M_1 ור M_2 אי־דטרמיניסטיות פולינומיות כך אימו לב שמכונות טיורינג א"ד לא מסכימות אם אחת מקבלת והשנייה דוחה בהתאם להגדרת קבלה ודחייה של מ"ט אי דטרמיניסטיות.

הוכיחו/הפריכו בקצרה את הטענות הבאות:

נק') . $\mathrm{coNP} \subseteq \mathcal{NPA}$.3

(נק') או $\mathcal{NPA}=\mathrm{R}$.4

 $\oplus {
m SAT}=\{arphi_1,arphi_2\ |\$ הוא ספיק הוא כך CNF כך כך מבדיוק הוא ספיק $arphi_1\}$ הוא כגדיר את השפה בסוקי $L\in \mathcal{NPA}$ מתקיים ב $L\in \mathcal{NPA}$ הכל שפה לכל שפה ב