



# ShoppingCart+ System Abiel Garcia, Ankur Patel, Bilal Durrani BSEE





Joseph Santacroce, MS Wentworth Institute of Technology

# Abstract

Have you ever encountered a busy parking lot and the one spot you found has a shopping cart blocking the parking space? This project is solving the problem of abandoned shopping carts in undesirable locations in parking lots. The ShoppingCart+ is a prototype system that will allow a shopping cart to become self-guided. The ShoppingCart+ will identify its own geographical location and then drive itself to the assigned coordinates all, and while avoiding obstacles and collisions on its way to the specified coordinates.

# Introduction

Abandon shopping carts causes congestion, frustration, and traffic related problems.
A parking lot has traveling pedestrians, cars, and employees collecting shopping carts; which all take



place simultaneously. This project will be dealing with a shopping cart that will be avoiding obstacles, traveling from one location to another with little assistance.

# Objectives

- To Identify the shopping carts geographical location through the coordinate system.
- The cart must avoid obstacles while in the transition from its initial location to the assigned coordinates.
- To reach the desired destination of the cart safely.

#### Components

- Arduino Mega 2560
- Ultimate GPS Breakout
- Dual TB6612FNG Motor Driver
- # HMC5883 Magnetometer
- HCSR04 Ultrasonic Sensor (3)
- DC Motors (4)
- 6-Volt Battery
- 5-Volt USB power supply







Schematic Diagram



# Flow Chart



# Conclusion

Due to high-risk challenges, the decision to scale down the self-guided shopping cart was the most feasible option. The cart will travel to a designated area; this is done by sending coordinates of the designated area through a laptop. The cart will avoid obstacles during its journey to the designated coordinates.

# References

Nedelkovski, Dejan." Ultrasonic Sensor HC-SR04 and Arduino Tutorial" Howtomechatronics, July 26, 2015
"SparkFun Motor Driver - Dual TB6612FNG (1A)." Learn at SparkFun Electronics. N.p., n.d. Web. 09 Apr. 2017.

Earl, Bill "LSM303 Accelerometer + Compass Breakout" Adafruit, 10:16:47 PM October 4, 2016.

"Sensor Module: 3-axis Accelerometer and 3-axis Magnetometer" (n.d.): n. pag. LSM303DLH. Sparkfun, 9 Dec. 2017. Web. 9 Apr. 2017

Warren, John-David, Josh Adams, Harald Molle, and Guilherme Martins. Arduino Robotics. New York, NY: Apress, 2011. Web. "Arduino Lessons" *YouTube*, uploaded by Paul McWhorter, 5 March 2017, <a href="https://www.youtube.com/playlist?list=PLGs0VKk2DiYx6CMdOQR\_hmJ2NbB4mZC">https://www.youtube.com/playlist?list=PLGs0VKk2DiYx6CMdOQR\_hmJ2NbB4mZC</a>
Santacroce, Joseph "ENGINEERING SENIOR DESIGN II - ENGR 5500 - 03", Dobbs Hall 202. Wentworth Institute of Technology, Boston Massachusetts.

Keathley, Phillip Donnie "ENGINEERING SENIOR DESIGN II - ENGR 5500 - 03", Dobbs Hall 202. Wentworth Institute of Technology, Boston Massachusetts. Meeting Yang-Keathley, Yugu "ENGINEERING SENIOR DESIGN II - ENGR 5500 - 03", Dobbs Hall 202. Wentworth Institute of Technology, Boston Massachusetts. Meeting Diecidue, Joseph "ENGINEERING SENIOR DESIGN II - ENGR 5500 - 03", Dobbs Hall 202. Wentworth Institute of Technology, Boston Massachusetts. Meeting Gagne, Justin "Student in Computer Science Department at WIT", Wentworth Hall 209. Wentworth Institute of Technology, Boston Massachusetts. Meeting