

Curs 2/1: Probabilități condiționate. Evenimente independente

Conf.dr. Maria Jivulescu

Departamentul de Matematică UPT

- Definiția probabilității condiționate
- Formula de condiţionare iterată
- Evenimente independente

Definiția probabilității condiționate

Universitatea Politehnica Timișoara

Definiție

Probabilitatea unui eveniment E_2 , condiționată de evenimentul E_1 , cu $P(E_1) \neq 0$, este prin definiție

$$P_{E_1}(E_2) := \frac{P(E_1 \cap E_2)}{P(E_1)}$$

 $P_{E_1}(E_2)$ se mai notează $P(E_2|E_1)$.

Propoziție

Fie (Ω, \mathcal{K}, P) un câmp de probabilitate, $E_1 \in \mathcal{K}$, un eveniment de probabilitate nenulă, $P(E_1) \neq 0$. Atunci P_{E_1} este o probabilitate pe \mathcal{K} :

- $0 \le P_{E_1}(E_2) \le 1, E_2 \in \mathcal{K};$
- $P_{E_1}(\Omega) = 1;$
- Pentru E, F, mutual exclusive: $P_{E_1}(E \cup F) = P_{E_1}(E) + P_{E_1}(F)$.

Universitatea Politehnica Timisoara

Rezultat: Folosind probabilități condiționate putem calcula probabilitatea evenimentului intersecție:

$$P(E_1 \cap E_2) = P(E_1)P_{E_1}(E_2)$$

Eșantionare fără înlocuire

In experimentul generării unui număr aleator în algoritmul de verificarea a echivalenței a două polinome:

- dacă la una din iterații s-a generat numărul r, nu vom mai permite ca acest număr să fie ales la iterațiile ulterioare ale algoritmului
- ullet E_i numărul r_i generat la iterația i a algoritmului este o rădăcină a polinomului F-G
- Avem $P(E_1) \leq \frac{d}{100d}$, $P_{E_1}(E_2) \leq \frac{d-1}{100d-1}$.
- în acest caz, $P(E_1 \cap E_2) = P(E_1)P_{E_1}(E_2) \le \frac{d(d-1)}{100d(100d-1)}$.

Acastă formulă se poate generaliza.

(ロ) (a) (注) (注) 注 り(C

Formula de condiționare iterată

Universitatea Politehnica Timișoara

Fie E_1, E_2, \ldots, E_n , n evenimente într-un experiment. Din formula de calcul a probabilității condiționate, $P(E_2|E_1) = \frac{P(E_1 \cap E_2)}{P(E_1)}$ deducem recursiv modalitatea de calcul a probabilității intersecției unui număr arbitrar de evenimente din cele n:

$$P(E_1 \cap E_2) = P(E_1)P(E_2|E_1)$$

$$P(E_1 \cap E_2 \cap E_3) = P((E_1 \cap E_2) \cap E_3) = P(E_1 \cap E_2)P(E_3|E_1 \cap E_2) =$$

$$= P(E_1)P(E_2|E_1)P(E_3|E_1 \cap E_2)$$

$$\vdots$$

$$P(E_1 \cap E_2 \cap ... \cap E_k) =$$

 $P(E_1)P(E_2|E_1)P(E_3|E_1 \cap E_2) \dots P(E_k|E_1 \cap E_2 \dots \cap E_{k-1})$

Esantionare fără înlocuire

Avem

$$P(E_j|E_1 \cap E_2 \cap \dots E_{j-1}) \leq \frac{d-(j-1)}{100d-(j-1)}$$

$$P(E_1 \cap E_2 \cap \dots E_k) \le \prod_{j=1}^k \frac{d - (j-1)}{100d - (j-1)} \le (\frac{1}{100})^k$$

Universitatea Politehnica Timisoara

Definitie

Fie (Ω, \mathcal{K}, P) un câmp de probabilitate.

Evenimentele E_1 , $E_2 \in \mathcal{K}$, de probabilităti nenule, cu proprietatea că

$$P(E_1 \cap E_2) = P(E_1)P(E_2)$$

se numesc evenimente independente.

Mai general, evenimentele E_1, E_2, \ldots, E_n cu proprietatea:

$$P(E_{i_1} \cap E_{i_2} \cap \cdots \cap E_{i_k}) = P(E_{i_1})P(E_{i_2}) \cdots P(E_{i_k}),$$

pentru orice $k \in \{2, \dots n\}$ și indicii $1 \le i_1 < i_2 < \dots < i_k \le n$ se numesc evenimente independente.

Evenimente independente

Universitatea Politehnica Timisoara

Observații:

- Pentru a testa independența a n- evenimente E_1, E_2, \ldots, E_n , avem de verificat $C_n^2 + C_n^3 + \ldots + C_n^n = 2^n (1+n)$ relații.
- A nu se confunda evenimentele mutual exclusive cu evenimentele independente!
 - E_1, E_2 sunt mutual exclusive dacă $E_1 \cap E_2 = \emptyset$, deci $P(E_1 \cap E_2) = 0$
 - Evenimentele E_1, E_2 sunt independente dacă $P(E_1 \cap E_2) = P(E_1)P(E_2)$.
- Dacă E_1 , E_2 , E_3 sunt trei evenimente, două câte două independente, atunci E_1 , E_2 , E_3 nu sunt neapărat independente, adică relațiile: $P(E_1 \cap E_2) = P(E_1)P(E_2)$, $P(E_1 \cap E_3) = P(E_1)P(E_3)$, $P(E_2 \cap E_3) = P(E_2)PE_1C$), dar nu implică obligatoriu: $P(E_1 \cap E_2 \cap E_3) = P(E_1)P(E_2)P(E_3)$.

Universitatea Politehnica Timisoara

Observații:

Dacă E_1 și E_2 sunt evenimente independente atunci

- CE₁ şi E₂;
- E₁ si CE₂:
- \blacksquare CE₁ si CE₂

sunt independente.

Generalizarea la un număr arbitrar de evenimente independente: dacă A_1, A_2, \ldots, A_n sunt evenimente independente, atunci și evenimentele B_1, B_2, \ldots, B_n , sunt independente, unde:

$$B_{i_1} = A_{i_1}, B_{i_2} = A_{i_2}, \dots, B_{i_k} = A_{i_k}, B_j = \bar{A}_j,$$

unde i_1, i_2, \ldots, i_k sunt elemente distincte din $\{1, 2, \ldots, n\}$ și $j \in \{1, 2, \dots, n\} \setminus \{i_1, i_2, \dots, i_k\}, 1 \le k \le n$

Esantionare cu înlocuire

Universitatea Politehnica Timișoara

- nu ne amintim ce numere au fost testate în rulările anterioare ale algoritmului;
- presupunem că reluăm algoritmul de k ori;
- la fiecare rulare, se genereaza un numă aleator, uniform din $\{1,2,\ldots,100d\}$, indiferent de alegerile anterioare
- lacktriangle la fiecare reluare a algoritmului avea prb de eroare d/100d
- definim E_i : la iterația i s-a găsit o rădăcină a polinomului F-G; avem $P(E_1)=P(E_2)\leq 1/100$;
- probabilitatea ca la ambele iterații să se găsească o rădăcină a lui F-G este $P(E_1 \cap E_2) = P(E_1)P(E_2) \le (1/100)^2$
- rezultatul unei iterații nu este influențat de rezultatul altei iterații, deci E_1, E_2 sunt independente
- probabilitatea ca la k iterații să se găsească rădăcini ale lui F G este $P(E_1 \cap ... E_k) \leq (1/100)^k$;

Se observă că eșantionarea fără întoarcere produce rezultate mai bune decât cea cu întoarcere.

Concluzii cu care să rămânem

Universitatea Politehnica Timisoara

- Formula probabilității condiționate
- Formula de iterare condiţionată
- Definiție evenimente independente
- Observații legate de evenimente independente

Vă mulțumesc pentru atenție! Întrebări?