SMP basel pachway algorithm. Summary date & Bi, Jis from population A Summer data {Bi, (B)} from population B Based on ele deference sample RCA)
and deference sample RCB find mafin and
mafile for sample Rind a common set of SUPS such that Maf (A) > C and Maf (13)>C (e.g. c=23) Now, we are dealing with a common set of Get the Z score for each SAP in population A and B, let them be Zi and ZiB, Zi Tical Before doing LD pruning use function from SARTP its get the covariance matrix for ele Z Scores of all considered SNPS- in population A and B, let them to I can and I can

Combine the Z Scores given BCA) Jich Bi (B) define ele combined 7 Score for See update $Z = W_1 Z_1^{(A)} + W_1 Z_2^{(B)}$ See update $Z = W_1 Z_1^{(A)} + W_2^{(B)} Z_1^{(B)}$ At element $W_1^{(A)} = V_2^{(A)} / (V_2^{(A)})^2 + (V_2^{(B)})^2$ $W_i^{(CB)} = \frac{1}{\sqrt{(CB)}} \left(\frac{\sqrt{(CA)}^2 + \left(\frac{1}{\sqrt{\sqrt{(CB)}}} \right)^2}{\sqrt{(CB)}^2 + \left(\frac{1}{\sqrt{\sqrt{(CB)}}} \right)^2} \right)$ Obtain the covariance matrix for Z, as (or (Z;, Z;) =) $= W_i^{(A)} \times X_i^{(A)} \times X_i^{(A)} + W_i^{(B)} \times X_i^{(B)} \times X_i^{(B)}$ (8) Given I, use function from SARTP to do LD pruning, obtain the final set of Update I and Zi, for de demaining Syps, and run sARTP.

Note: We already have the covariance matrix for the Z score, you can use it it generate Z scores under the mull the other steps are ble same as if we are running SARTP are the same as if we are running SARTP on data from one topulation.

<u> </u>	Update for Step 6 for M population:	•		•
•	Lat - Cm be ele 7-score for supi from	(P)	PN/PU/=	n M _.
	and Bing com be el corresponding eszemble	inl	Stanl	ard .
		•		٠
	Obtain $Z_i = \sum_{m=1}^{M} W_i^{cm} Z_i^{cm}$, with	•		•
	N = (•		•
	$W_{i}^{c}(m) = \overline{U_{i}^{c}(m)} / \overline{U_{i}^{m}}$	•		•
>	update for Step 7.	•	• •	•
	Obtain the covariance matrix Just Co	•		•
	$\sum_{i,j} = (\text{ev}(Z_i, Z_j))$ $= (\text{w}(w)) \text{ (m)} \text{ (m)} \text{ (m)} \text{ (ov}(Z_i, Z_j))$ $= (\text{w}(w)) \text{ (m)} \text{ (m)} \text{ (ov}(Z_i, Z_j))$	•		٠
	= Dwim wim Cov(7i, ti)		۰
	M=1 $M=1$ $M=1$ $M=1$			•

Where 5 cm is the covariance matrix for population m.