(19) []本国特許庁 (JP)

(12) 公開特許公報(A)

FΙ

(11)特許出額公開番号

特開平4-287033

(43)公爵日 平成4年(1992)10月12日

(51) Int.Cl.⁵

識別記号

广内整理番号

技術表示箇所

G 0 3 B 21/62 21/10

7316-2K

Z 7316-2K

審査請求 未請求 請求項の数1(全 4 頁)

(21)出關番号

待顧平3-51252

(22)出顧日

平成3年(1991)3月15日

(71)出題人 000002369

セイコーエブソン株式会社

東京都新宿区西新宿2丁目4番1号

(72)発明者 石川真己

長野県諏訪市大和3丁目3番5号セイコー

エプソン株式会社内

(72)発明者 篠崎順一郎

長野県諏訪市大和3丁目3番5号セイコー

エブソン株式会社内

(74)代理人 弁理士 鈴木 喜三郎 (外1名)

(54) [発明の名称] 育面投射型表示装置

(57)【要約】

【目的】 室内照明光などのような外光を吸収することにより、コントラストが低下することのない、高コントラストな背面投射型表示装置を提供する。

【構成】 投射光1が入射する側に資線状ないし円弧状の微小プリズム9が形成されているスクリーン3に、斜め投射する背面投射型表示装置であって、プリズム9の一方の面9bが光吸収面になっている。

PAT-NO: JP404287033A

DOCUMENT-IDENTIFIER: JP 04287033 A

TITLE: BACK PROJECTION TYPE DISPLAY DEVICE

PUBN-DATE: October 12, 1992

INVENTOR-INFORMATION:

NAME

ISHIKAWA, MASAKI SHINOZAKI, JUNICHIRO

ASSIGNEE-INFORMATION:

NAME COUNTRY SEIKO EPSON CORP N/A

APPL-NO: JP03051252

APPL-DATE: March 15, 1991

INT-CL (IPC): G03B021/62, G03B021/10

US-CL-CURRENT: 359/455

ABSTRACT:

PURPOSE: To obtain the high-contrast device which has no decrease in contrast by absorbing external light such as interior illumination light.

CONSTITUTION: This device projects slantingly light on a screen 3 where straight or arcuate extremely small prisms 9 are formed on the side where the projection light 6 is made incident, and one surface of each prism 9 is a light absorbing surface. The illumination light 8 which irradiates the inside of a room where an observer is present is made incident on the

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A) (11)特許出願公開番号

FΙ

特開平4-287033

(43)公開日 平成4年(1992)10月12日

(51) Int.Cl.5

識別記号

庁内整理番号

技術表示箇所

G 0 3 B 21/62

7316-2K

21/10

Z 7316-2K

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号

(22)出顧日

特願平3-51252

(71)出願人 000002369

セイコーエプソン株式会社

平成3年(1991)3月15日

東京都新宿区西新宿2丁目4番1号

(72)発明者 石川真己

長野県諏訪市大和3丁目3番5号セイコー

エプソン株式会社内

(72)発明者 篠崎順一郎

長野県諏訪市大和3丁目3番5号セイコー

エプソン株式会社内

(74)代理人 弁理士 鈴木 喜三郎 (外1名)

(54) 【発明の名称】 背面投射型表示装置

(57)【要約】

【目的】 室内照明光などのような外光を吸収すること により、コントラストが低下することのない、高コント ラストな背面投射型表示装置を提供する。

【構成】 投射光1が入射する側に直線状ないし円弧状 の微小プリズム9が形成されているスクリーン3に、斜 め投射する背面投射型表示装置であって、プリズム9の 一方の面9 bが光吸収面になっている。

【特許請求の範囲】

【請求項1】 投射光入射側に、直線状ないし円弧状に 延びる多数のプリズムアレイが形成されているスクリー ンに、表示体の表示画像を、投射レンズにより、背面方 向より斜め投射する背面投射型表示装置において、前記 プリズムの一方の面が、光吸収面であることを特徴とす る、背面投射型表示装置。

【発明の詳細な説明】

[0001]

一夕画像等を背面より拡大投射する表示装置に関する。 [0002]

【従来の技術】近時、CRTまたは液晶等の表示画像を スクリーンに拡大投射して大画面として見せる、拡大投 射表示装置が注目されている。

【0003】これは、プラウン管(CRT)による画像 表示には自ずと大きさに限界があり、大画面化するには プラウン管自体の大型化を伴い、実用上は40インチ程 度の大きさが限度となるため、それ以上の画像を得たい との要望に応えるためである。

【0004】そのため、CRTまたは液晶を用いて、こ れに表示される画像を拡大投射する光学系をキャビネッ トに納め、キャピネットの前面に設けたスクリーンに背 面投射して、キャビネットの前面から、拡大画像を見る ことができるようにした表示装置が提供されるに至って いる。

【0005】この種の従来の背面投射型表示装置は、図 4に示すように、表示体を含む投射光学ユニット12か ら出た投射光16を、第1の反射ミラー14、及び第2 の背面に入射させ、図4に示すように、スクリーン13 の全面に設けた、微小プリズム19の19 a 面で屈折し た後、19 b面により全反射して、観察者17に集光さ せる構造である。これにより、投射光学系は、すべてキ ャピネット11に納められ、明るい室内であっても、ス クリーン13上に投射された表示体の拡大画像を見るこ とができる。また、スクリーン13の前面には、図6に 示すように、画面水平方向に光を拡散させるためのレン チキュラーレンズアレイ20が設けられているため、観 察者17が水平方向に移動しても、スクリーン13の正 40 面で観察するのと同様に、明るい拡大投射画像を見るこ とができる。

[0006]

【発明が解決しようとする課題】上記投射光学表示装置 では、スクリーン13の光透過率が高いため、観察者1 7がいる室内を照明している照明光18のような外光 が、スクリーン13前面に設けられたレンチキュラーア レイ20により、水平方向に拡散しながら入射し、スク リーン13のプリズム面19aで全反射した後、19b 面で屈折し、キャビネット11内に入りこむ。キャビネ 50 画像のコントラストを低下させたりしないため、高コン

ット11内部に入り込んだ光は、第2の反射ミラー15 で反射して、再びスクリーン13に戻る。そのため、拡 大投射画像のコントラストを著しく低下させる。あるい

は、キャビネット11内部に入り込んだ光は、キャビネ ット11内部で何度も反射を繰り返した後、スクリーン 13に入射して、画像のコントラストを低下させる、と いった問題があった。

[0007]

【課題を解決するための手段】本発明は投射光入射側 【産業上の利用分野】本発明は、ビデオ映像やコンピュ 10 に、直線状ないし円弧状に延びる多数のブリズムアレイ が形成されているスクリーンに、表示体の表示画像を、 投射レンズにより、背面から斜め投射する背面投射型表 示装置において、前記プリズムの一方の面が、光吸収面 であることを特徴とする。

[0008]

【実施例】(実施例1) 図1は本発明の一実施例であ る。本実施例では、箱型のキャビネット1を有し、この キャピネット1内に、表示体を含む投射光学ユニット2 と、キャビネット1の前面に設けられた背面投射型のス 20 クリーン3と、前記投射光学ユニット2からの投射光束 を、前記スクリーン3の背面に導くための第1、第2の 反射ミラー4,5とを備えている。

【0009】図1において、表示体を含む投射光学ユニ ット2より出た投射光6は、第1の反射ミラー4にて反 射し、第2の反射ミラー5で反射した後、スクリーン3 に斜め方向から入射する。スクリーン3に斜め方向から 入射した投射光6は、図2に示すように、スクリーン3 のプリズム面9aにて屈折し、プリズム面9bで全反射 した後、スクリーン3の前面から、スクリーン3の前方 の反射ミラー15により光路変換して、スクリーン13 30 にいる観察者7に集光される。そのため、観察者7は室 内照明光8の下の明るい室内においても、表示体の拡大 投射像である明るい表示画像を観察できる。

> 【0010】図3はスクリーン3の水平断面図である。 図3に示すように、スクリーン3の前面には、画面垂直 方向に投射光6を拡散させるための、レンチキュラーレ ンズアレイ10が設けられているため、観察者7が水平 方向に移動しても、スクリーン3の正面で観察するのと 同様に、明るい拡大投射画像が観察できる。

【0011】一方、観察者7がいる室内を照明している 照明光8は、観察者7の上部からスクリーン3に入射す る。スクリーン3に入射した光は、屈折し、スクリーン 3の前面に設けられたレンチキュラーレンズアレイ10 により水平方向には拡散して、プリズム面9 a に入射す る。プリズム面9 a に入射した光は全反射した後、プリ ズム面9 bに入射するが、プリズム面9 bで吸収され、 キャピネット1の内部には入り込まない。

【0012】室内照明光8がキャピネット1の内部に入 り込まないため、室内照明光8が直接、画像の観察者7 に戻ったりせず、また迷光となってスクリーン3に戻り

トラストな表示体の拡大投射画像が得られる。

[0013]

【発明の効果】以上述べたように、投射光入射側に直線 状ないし円弧状に延びる多数のプリズムが形成されてい るスクリーンに、表示体の表示画像を、投射レンズによ り、背面から斜め投射する背面投射型表示装置におい て、前記プリズムの一方の面を、光吸収面とすることに より、照明光のような外光が、背面投射型表示装置の内 部に入り込まずに吸収されるため、画像のコントラスト が低下したり、あるいは照明光が観察者に戻ったりする 10 9 微小プリズム 事のない、高コントラストな背面投射型表示装置を提供 できる。

【図面の簡単な説明】

【図1】本発明の実施例による、斜め背面投射型表示装 置の図である。

【図2】本発明のスクリーンの垂直方向断面図である。

【図3】本発明のスクリーンの水平方向断面図である。

【図4】従来の斜め背面投射型表示装置の図である。

【図5】従来の斜め背面投射型表示装置に使用されてい るスクリーンの垂直方向断面図である。

【図6】従来の斜め背面投射型表示装置に使用されてい るスクリーンの水平方向断面図である。

【符号の説明】

- 1 キャビネット
- 2 投射光学ユニット
- 3 スクリーン
- 4 第1の反射ミラー
- 5 第2の反射ミラー
- 6 投射光
- 7 観察者
- 8 室内照明光
- - 10 レンチキュラーレンズアレイ
 - 11 キャピネット
 - 12 投射光学ユニット
 - 13 スクリーン
 - 14 第1の反射ミラー
 - 15 第2の反射ミラー
 - 16 投射光
 - 17 観察者
 - 18 室内照明光
- 20 19 微小プリズム
 - 20 レンチキュラーレンズアレイ

【図1】

[図2]

screen 3 from above
the observer, refracted, and diffused horizontally by a
lenticular lens
provided on the front surface of the screen 3 to strike on
a prism surface 9a.

The light incident on the prism surface 9a is totally
reflected and then made
incident on a prism surface 9b, but the light is absorbed
by the prism surface
9b and does not enter a cabinet. Therefore, the interior
illumination light
neither returns directly to the observer who observes an
image nor returns to
the screen 3 as stray light to decrease the contrast of the
image.

COPYRIGHT: (C) 1992, JPO&Japio