R3.09 Cryptographie et sécurité TD 2 : Arithmétique et chiffrements asymmétrique

17 décembre 2024

1 Un peu d'arithmétique : Euclide Bézout, calcul du pgcd et de l'inverse

Définition 1

Soient $n \in \mathbb{N}, n > 1, (a, b) \in \mathbb{Z}^2$. a et b sont congrus modulo n. $a \equiv b \pmod{n} \Leftrightarrow \exists k \in \mathbb{Z}, a = b + kn$

 $x \in \mathbb{Z}/n\mathbb{Z}$ est inversible **si et seulement si** il existe $y \in \mathbb{Z}/n\mathbb{Z}$ tel que $x \times y = \overline{1}$ $x \in \mathbb{Z}/n\mathbb{Z}$ est un diviseur de zéro **si et seulement si** $x \neq \overline{0} \land \exists y \in \mathbb{Z}/n\mathbb{Z} \setminus \{\overline{0}\}, xy = \overline{0}$

Exercice 1. 1. Donnez les classes de congruence de $\mathbb{Z}/6\mathbb{Z}$.

Réponse

\oplus	0	1	2	3	4	5
0	0	0	0	0	0	0
1		1	2	3	4	5
2			4	0	2	4
3				3	0	3
4					4	2
5						1

Les diviseurs de zéro sont $\overline{2}, \overline{3}, \overline{4}$ car $\overline{2} \times \overline{3} = \overline{0}$ et $\overline{4} \times \overline{3} = \overline{0}$. Les éléments inversibles sont $\overline{1}$ et $\overline{5}$ car $\overline{1} \times \overline{1} = \overline{1}$ et $\overline{5} \times \overline{5} = \overline{1}$. $\overline{44} \times \overline{77} = \overline{2} \times \overline{5} = \overline{4}$

$$\overline{11}^3 + \overline{2013} = \overline{-1}^3 + \overline{3}$$
$$= \overline{-1} + \overline{3}$$
$$= \overline{2}$$

Théorème 1: Bachet-Bézout

Soient $a \in \mathbb{Z}^*$ et $b \in \mathbb{Z}^*$.

$$\operatorname{pgcd}(a,b) = 1 \iff \exists (u,v) \in \mathbb{Z}, au + bv = 1$$

$$u_i = u_{i-2} - u_{i-1}q_i$$

$$v_i = v_{i-2} - v_{i-1}q_i$$

$$pgcd(a, b) = pgcd(b, a \pmod{b})$$

 $\operatorname{pgcd}(143, 100) = 1 \operatorname{donc} \overline{100} \text{ est inversible dans } \mathbb{Z}/143\mathbb{Z}.$

 $143 \times 7 + 100(-10) = 1$

Dans $\mathbb{Z}/143\mathbb{Z}$, l'équation devient $\overline{0} \times \overline{7} + \overline{100}(\overline{-10}) = \overline{1}$

Exercice 2.

a	b	r	q	u	v	i
		114		1	0	-1
	114	33		0	1	0
114	33	15	3	1	-3	1
33	15	3	2	-2	7	2
15	3	0	5			3

pgcd(114, 33) = 3

 $\frac{10}{33}$ est un diviseur de zéro dans $\mathbb{Z}/114\mathbb{Z}$.

	7			Г				1
a	0	r	q		$\mid u \mid$	v	l	
		114			1	0	-1	
	114	35			0	1	0	
114	35	9	3		1	-3	1	pgcd(114, 35) = 1
35	9	6	3		-3	10	2	
9	6	3	1		4	-13	3	
6	3	0	2				4	

 $114 \times 4 + 35 \times (-13) = 1$ dans $\mathbb{Z}/114\mathbb{Z}$, l'équation devient $\overline{0} \times \overline{4} + \overline{35} \times (\overline{-13}) = \overline{0} + \overline{1} = \overline{1}$

Exercice 3. 1. Coder la lettre W.

$\overline{\text{Réponse}:\overline{\text{L}}}$

chiffre associé à W est 22, donc x = 22

$$f(22) = 9 \times 22 + 8 \equiv 9 \times (-4) + 8 \pmod{26}$$

 $\equiv -36 + 8 \pmod{26} \equiv -10 + 8 \pmod{26}$
 $\equiv -2 \pmod{26} \equiv 24 \pmod{26}$

et 24 est associé à la lettre Y.

2. Le but de cette question est de déterminer la fonction de chiffrement.

(a)

$$9x \equiv j \pmod{26} \iff 3 \times 9x \equiv 3j \pmod{26}$$

 $\iff 27x \equiv 3j \pmod{26} \iff x \equiv 3j \pmod{26}$

(b)

$$\forall x \in \mathbb{Z}/26\mathbb{Z}, y = 9x + 8 \iff 3y = 3 \times 9x + 2 \times 3 \pmod{26}$$

$$\iff 3y = 27x + 24 \pmod{26} \iff 3y = x + 24 \pmod{26}$$

$$\iff x = 3y - 24 \iff x = 3y + 2$$

On obtient $f^{-1}(y) = 3y + 2$

(c) Le chiffre associé de L est 11, donc y=11 $f^{-1}(11)=3\times 11+2=35\equiv 9\pmod{26}$ 9 est associé à J. La lettre L ets décodé en lettre J

Exercice 4. 1. Chiffrer le mot : INFINI

Réponse	:								
	lettre	$f(x) = 8x + 1 \pmod{26}$	lettre codée						
•	I	$11 \times 8 + 1 \pmod{26} \equiv 11$	L						
	N	$11 \times 13 + 1 \pmod{26} \equiv 14$	О						
	F	$11 \times 5 + 1 \pmod{26} \equiv 4$	E						
INFINI => LOELOL									

2. f(x) = 11x + 1, on cherche l'inverse de 11 dans $\mathbb{Z}/26\mathbb{Z}$ grâce à la méthode

	a	0	$\mid r \mid$	$\mid q \mid$	u	v	\imath	
			26		1	0	-1	
		26	11		0	1	0	
Euclide-Bézout	26	11	4	2	1	-2	1	On
	11	4	3	2	-2	5	2	
	4	3	1	1	3	-7	3	
	3	1	0	3			4	

On obtient $26 \times 3 + 11 \times$

 $(-7) = 1, -7 \equiv 19 \pmod{26}$ Donc 19 est l'inverse de 11 dans $\mathbb{Z}/26\mathbb{Z}$ Dans

$$\mathbb{Z}/26\mathbb{Z}, y = 11x + 1 \iff 19y = 19 \times 11x + 19 \pmod{26}$$
$$\iff 19y = x + 19 \pmod{26} \iff x = 19y - 19 \pmod{26}$$
$$\iff x = 19y + 7 \pmod{26}$$

On obtient $f^{-1}(y) = 19y + 7 \pmod{26}$

3. Déchiffrer XAZXZSBC.

Exercice 5.

Exercice 6. 1. La lettre E est associée au nombre 4 et l'image de E par f est E, ça veut dire f(4)=4, soit $a\times 4+b\equiv 4\pmod{26}$ Les lettres J et N sont associées aux nombres 9 et 13, et l'image de J est Nn ça veut

dire f(9) = 13, soit $a \times 9 + b \equiv 13 \pmod{26}$ Donc on obtient le système $\begin{cases} 4a + b \equiv 4 \pmod{26} \\ 9a + b \equiv 13 \pmod{26} \end{cases}$

2. (a) Nous avons
$$\begin{cases} 4a + b \equiv 4 \pmod{26} \\ 9a + b \equiv 13 \pmod{26} \end{cases} \Rightarrow (9a + b) - (4a + b) \equiv 13 - 4$$
 (mod 26) $\Rightarrow 5a \equiv 9 \pmod{26}$ Pour résoudre cette équation on cherche

l'inverse de 5 dans $\mathbb{Z}/26\mathbb{Z}$:

a	b	r	q	u	v	i	
		26		1	0	-1	
	26	5		0	1	0	Nous ob-
26	5	1	5	1	-5	1	
5	1	0	5			2	

tenons $5a \equiv 9 \pmod{26} \iff 21 \times 5a \equiv 21 \times 9 \pmod{26} \iff a \equiv 7$ $\pmod{26}$ posons a=7 dans l'équation $4a+b\equiv 4\pmod{26}$ Nous obtenons $28 + b \equiv 4 \pmod{26} \iff 6 \equiv 4 - 28 \pmod{26} \iff 6 \equiv 2$ (mod 26) Finalement f(x) = ax + b = 7x + 2

- (b) $7x \equiv z \pmod{26} \iff 15 \times 7x \equiv 15 \times z \pmod{26} \iff x \equiv 15z$ $\pmod{26}$
- (c) On cherche $f^{-1}(y)$

$$\forall y \in \mathbb{Z}/26\mathbb{Z}, y = 7x + 2 \iff y \equiv 7x + 2 \pmod{26}$$
$$\iff 15y \equiv 15 \times 7x + 15 \times 2 \pmod{26} \iff 15y \equiv x + 4 \pmod{26}$$

Donc on obtient $f^{-1}(y) = 15y + 22$

(d)

Définition 2: Nombres inversibles

Les nombres inversibles de $\mathbb{Z}/n\mathbb{Z}$ sont les nombres premiers avec n

Exemple 1

Soit n=6, les nombres inversibles de $\mathbb{Z}/n\mathbb{Z}$ sont $\{1,5\}$

Echange de clés Diffie-Hellman 2

— Soit p=17, prouvez que g=3 est un génrateur de $(\mathbb{Z}/17\mathbb{Z})^{\times}$. $(\mathbb{Z}/17\mathbb{Z})^{\times} = \{1, 2, \dots, 16\}, \varphi(17) = 16.$ $<3>=(\mathbb{Z}/17\mathbb{Z})^{\times},<3>$ est générateur de $(\mathbb{Z}/17\mathbb{Z})^{\times}.$

- Soit p = 17 et g = 3 les clés partagées entre Alice et Bob. Alice choisit a = 7, et Bob choisit b = 4. Completer le protocole de Diffie-Hellman pour partager une clé secrète.
 - -a = 7
 - $-g^a = 3^7 \pmod{17} \equiv 11 \pmod{17}$
 - envoie 11 à Bob
 - $-13^7 \pmod{17} \equiv (-4)^7 \pmod{17} \equiv ((-4)^2)^3 \times (-4) \pmod{17} \equiv 4 \pmod{17}$

3 Rappel arithmétique : Théorème d'Euler

Exercice 8. 1.

- 1. $77 = 7 \times 11$
- 2. $\varphi(77) = (7-1)(11-1) = 6 \times 10 = 60$
- 3. $\operatorname{pgcd}(77,9) = 1$, d'après le théorème de Fermat amélioré : $9^{60} \equiv 1 \pmod{77}$
- 4. $125 = 2 \times 60 + 5$
- 5. $9^{125} = 9^{2 \times 60 + 5} = (9^{60})^2 \times 9^5 \equiv 1^2 \times 9^5 \pmod{77} \equiv 9^5 \pmod{77} \equiv (9^2)^2 \times 9 \pmod{77} \equiv 4^2 \times 9 \pmod{77} \equiv 67 \pmod{77}$

Exercice 9. 1. (a) $291 = 3 \times 97$

- (b) $\varphi(291) = (3-1)(97-1) = 2 \times 96 = 192$
- (c) $100^{\varphi(291)} = 100^{192} \equiv 1 \pmod{291}$
- (d) 193 = 192 + 1
- (e) $100^{192+1} \pmod{291} \equiv 100^{192} \times 100^1 \pmod{291} \equiv 1 \times 100^1 \pmod{291} \equiv 100 \pmod{291}$
- 2. (a) $119 = 7 \times 17$
 - (b) $\varphi(119) = (7-1)(17-1) = 6 \times 16 = 96$
 - (c) $11^{\varphi(119)} = 11^{96} \equiv 1 \pmod{119}$
 - (d) $300 = 3 \times 96 + 12$
 - (e) $11^{3\times96+12} \pmod{119} \equiv (11^{96})^3 \times 11^{12} \pmod{119} \equiv 1^3 \times 11^{12} \pmod{119} \equiv 1^3 \times 11^{12} \pmod{119}$

Exercice 10. a = 9, b = 85

- $--\varphi(n) = \varphi(85) = \varphi(5 \times 17) = (5-1)(17-1) = 4 \times 16 = 64$
- l'inverse de e = 5 dans $\mathbb{Z}/\varphi(n)\mathbb{Z} = \mathbb{Z}/64\mathbb{Z}$

a	b	r	q	u	v	i
		64		1	0	-1
	64	5		0	1	0
64	5	4	12	1	-12	1
5	4	1	1	-1	13	2
4	1	0	4			3

Nous obtenus l'inverse de 5 dans
$$\mathbb{Z}/64\mathbb{Z}$$
 est $d=13$
— pgcd $(9,85)=1$ d'après le théorème d'Euler, $9^{64}\equiv 1\pmod{85}$
 $a^{e\times d}=(a^e)^d=9^{5\times 13}\equiv 9^{65}\pmod{85}\equiv 9^{64}\times 9\equiv 9\pmod{85}$

4 Chiffrement RSA

Exercice 11 (Justification de la méthode).

Exercice 12 (*Chiffrement/Déchiffrement RSA*). On considère la clé publique RSA (319, 11), c'est-à-dire pour n = 319 et e = 11.

1. Quel est le chiffrement avec cette clé du message M = 100?

Réponse
$$c = 100^{11} \pmod{319} = (10^{11})^2 \pmod{319} \equiv 263^2 \pmod{319} \equiv 265 \pmod{319}$$

2. Calculer d la clé privée correspondant à la clé publique e.

Réponse

$$\varphi(319) = 10 \times 28 = 280$$

On calcule l'inverse de e = 11 dans $\mathbb{Z}/280\mathbb{Z}$:

a	b	r	q	u	v	i
		280		1	0	-1
	280	11		0	1	0
280	11	5	25	1	-25	1
11	5	1	2	-2	51	2
5	1	0	5			3

Donc d = 51

3. Déchiffrer le message C = 133.

Réponse

$$M=C^d \pmod n = 133^{51} \pmod {319} \equiv (133^{25})^2 \times 133 \pmod {319} \equiv 133^3 \pmod {319} \equiv 12 \pmod {319}$$

4. Le message chiffré 625 peut-il résulter d'un chiffrement avec la clé publique? Même question avec la clé privée.

Réponse

Non pour les deux car les messages à chiffrer doivent être plus petits que n=319.

Exercice 13 (Cryptographie RSA et authentification).

Exercice 14 (Connaître p et q c'est connaître $\varphi(n)$).

Exercice 15 (Attaque RSA par module commun).

5 Arithmétique : Générateur et problème du logarithme discret

Exercice 16 (Notion de générateur). On se place dans $\mathbb{Z}/7\mathbb{Z}$

— Donner les éléments inversibles.

$$(\mathbb{Z}/7\mathbb{Z})^{\times} = \{1, 2, 3, 4, 5, 6\}, \varphi(7) = 6$$

- < 2 >= {1,2,4}, $2^0 \equiv 1 \pmod{7}$, $2^1 \equiv 2 \pmod{7}$, $2^2 \equiv 4 \pmod{7}$, $2^3 \equiv 1 \pmod{7}$ On s'arrête quand on obtient l'élément 1. < 3 >= {1,2,3,4,5,6} = $(\mathbb{Z}/7\mathbb{Z})^{\times}$ l'ordre de < 3 > est 6
 - Donc < 3 > est un générateur de $(\mathbb{Z}/7\mathbb{Z})^{\times}$.
- On se place maintenant dans $\mathbb{Z}/9\mathbb{Z}$.
 - $(\mathbb{Z}/9\mathbb{Z})^{\times} = \{1, 2, 4, 5, 7, 8\}, \varphi(9) = \varphi(3^2) = (3-1) \times 3^{2-1} = 2 \times 2 = 6.$
 - $--<4>=\{1,4,7\}, \text{ ordre de}<4>$ est 3.
 - $<7>=\{1,4,7\}$, ordre de <7> est 3.
 - $<2>=\{1,2,4,5,7,8\}, \text{ ordre de } <7> \text{ est } 4.$
 - $< 2 > \text{est un générateur de } (\mathbb{Z}/9\mathbb{Z})^{\times}.$