CLAIM AMENDMENTS

1. (Currently Amended)

A printing plate material comprising a support and provided thereon, an image formation layer, the support being a polyester film sheet with a thickness dispersion of not more than 10% and the support having a water content of not more than 0.5% by weight, wherein the printing plate material is capable of being folded by heating.

2. (Original)

The printing plate material of claim 1, wherein the support has an average thickness of from 80 to 400 $\mu m\,.$

3. (Original)

The printing plate material of claim 1, wherein the image formation layer contains heat melting particles or heat fusible particles.

4. (Original)

The printing plate material of claim 1, wherein one or more hydrophilic layers are provided between the support and the image formation layer.

5. (Original)

The printing plate material of claim 4, wherein at least one of the hydrophilic layers has a porous structure.

6. (Original)

The printing plate material of claim 1, further comprising a layer containing a light-to-heat conversion material.

7. (Canceled)

8. (Currently Amended)

A process of printing comprising the steps of:

- (a) forming an image on a printing plate material capable of being folded by heating comprising a support and provided thereon, an image formation layer, the support being a polyester film sheet with a thickness dispersion of not more than 10% and the support having a water content of not more than 0.5% by weight, and the material being not subjected to wet development;
- (b) folding the resulting printing plate material at the edge portion by heating;

- (c) mounting the folded printing plate material on a plate cylinder of a printing press; and
- (d) removing the image formation layer at non-image portions of the printing plate material mounted on the plate cylinder.

9. (Original)

The process of claim 8, wherein the image formation is carried out employing a thermal head or a thermal laser.

10. (Original)

The process of claim 8, wherein the removing is carried out supplying dampening water and/or printing ink to the printing plate material.

11. (Original)

The process of claim 8, wherein the support has an average thickness of from 80 to 400 $\mu \text{m}\,.$

12. (Original)

The process of claim 8, wherein the image formation layer contains heat melting particles or heat fusible particles.

13. (Original)

The process of claim 8, wherein one or more hydrophilic layers are provided between the support and the image formation layer.

14. (Original)

The process of claim 13, wherein at least one of the hydrophilic layers has a porous structure.

15. (Original)

The process of claim 8, wherein further comprising a layer containing a light-to-heat conversion material.

16. (Canceled)

17. (Currently Amended)

A process of folding a printing plate material comprising a support and provided thereon, an image formation layer, the support being a polyester film sheet with a thickness dispersion of not more than 10% and the support having a water content of not more than 0.5% by weight, the process comprising the steps of:

folding the printing plate material at the edge portion by heating.

18. (Currently Amended)

The process of claim $\frac{16}{17}$, wherein the support has an average thickness of from 80 to 400 μm .

19. (Currently Amended)

The process of claim $\frac{16}{17}$, wherein the image formation layer contains heat melting particles or heat fusible particles.

20. (Currently Amended)

The process of claim $\frac{16}{17}$, wherein one or more hydrophilic layers are provided between the support and the image formation layer.

21. (Original)

The process of claim 20, wherein at least one of the hydrophilic layers has a porous structure.

22. (Currently Amended)

The process of claim $\frac{16}{17}$, wherein further comprising a layer containing a light-to-heat conversion material.

23. (Canceled)