Trabalho prático 1 de redes de computadores

Nome: Vinícius Morais Silva – 2012050047

Introdução

Neste trabalho será construído uma comunicação cliente servido para analisar comunicação entre computadores usando sockets.

Metodologia

Tanto o servidor e o cliente foram feitos em linguagem c. Ambos os algorítimos são um arquivo único cada um. Após os sockets serem inicializados, o cliente executa uma comendo "ls" e posta dentro de um arquivo temporário, que guardará todos o nome dos arquivos do diretório. Esse arquivo será lido linha por linha e cada linha será uma mensagem para o servidor.

Cada mensagem está setado por default com tamanho de 2048 independente do tamanho da mensagem.

A contagem de tempo é feita por milissegundos, o contador inicia quando a primeira mensagem "conectar" é enviada e termina quando o comando "TCHAU" é enviado.

Caso algum arquivo tenha o nome de "TCHAU" não afetará na execução, pois todos os nomes do arquivo possuem um "\n" no final, que não é visível aos olhos do usuário. Enquanto a mensagem de encerramento "TCHAU" não possui o "\n".

Resultados

Foram executados várias instâncias, em todos elas foram criados arquivos com 250 a 270 caracteres.

Bytes	Tempo (Milisegundos)	Byte/segundo
2162	3	720666,666666667
5402	3	1800666,66666667
17066	8	2133250
27352	15	1823466,66666667
34386	15	2292400
68446	28	2444500
136990	103	1330000
274382	126	2177634,92063492
552990	253	2185731,22529644
1124206	618	1819103,55987055
2280638	1086	2100034,9907919

GRÁFICO 1

GRÁFICO 2

Analise

No gráfico 1 vemos que quanto maior a quantidade de dados maior, maior o tempo. Podemos ver que o crescimento é linear indicando que o tempo de envio de mensagens é proporcional ao número de bytes.

No gráfico 2 podemos ver que a taxa de transferência no inicio é bem aleatória, indicando que para pequenas quantidade de informação a execução é tão rápida que o programa e outros fatores pode alterar o tempo de execução do cliente. Mas com o aumento de bytes podemos ver que a taxa de transferência tende a estar 2000000 b/s, ou, (2 mb/s).

Execução do código

Para compilar basta executar o comando make dentro do diretório de cada um dos arquivos.

Para executar o servidor basta "./Servidor.out <porto>"
Para executar o Cliente basta "./Cliente.out <IP host> <porto> <diretório>"

Todos os testes foram executados no Ubuntu 14.04 trusty 64 bits.