

Quadratic Probing in Hash Tables

SWIPE

BY ARPIT BHAYANI

Conflict Resolution with Quadratic Probing

key attempt Probing Function is defined as p[k,i) = j - index we use the probing function to find the first available slot the same function is used during lookups

Challenges with Linear Probing

Probing Function

linear probing suffers from cascading collisions

 $k_i \supset \langle c \rangle$ if k, hashes to 2 K2 hashes to 2 ks hashes to 3

Quadratic Probing

Instead of placing the collided key in the neighbouring slot, quadratic probing adds successive value of an arbitrary quadratic polynomial

p(k,i) = h(k) + i

Quadratic Probing

 $p(k_i) = h(k) + c_1 i + c_2 i^2$

linear Probing

Sample sequence:

h(k), h(k)+12, h(k)+22, h(k)+32,...

How is it better than linear probing?

It reduces clustering and cascaded collisions

as collided keys are placed further away from each other

ARPIT BHAYANI

Properties of Quadratic Probing

- 1. It reduces clustered collisions by distributing it quadratically
- * It is not immune to it, but still it oreduces it to a good extent
- 2. It has a good locality of steperence but not as great as linear probing
- * leverages CPU cache cuell

 Unless there are large collisions

 Two sloks are already
- on same key, at least a

 couple of subsequent slots

 couple of subsequent slots

 couple of subsequent slots
- will be in CPU Cache.

a[2] a[3]