

Efficient Processing of Natural Language with Artificial Neural Networks

The Pomodoro Technique

-- Francesco Cirillo, 1980s

Today's Training Structure:

- 1. three pomodoros (25 minutes + 5 minute break)
- 2. bonus five-minute break
- 3. three further pomodoros

Questions typically handled at break end

POLL

Where are you?

- The Americas
- Europe / Middle East / Africa
- Asia-Pacific
- Extra-Terrestrial Space

POLL

What are you?

- Developer / Engineer
- Scientist / Analyst / Statistician / Mathematician
- Combination of the Above
- Other

- 1. The Power and Elegance of Deep Learning for NLP
- 2. Modeling Natural Language Data
- 3. Recurrent and Advanced Neural Networks

- 1. The Power and Elegance of Deep Learning for NLP
 - Intro to Deep Learning for NLP
 - Review of Deep Learning Theory
 - Vector-Space Embeddings
 - Creating Word Vectors with word2vec
- 2. Modeling Natural Language Data
- Recurrent and Advanced Neural Networks

Dig Deeper ("reference NLP LiveLessons")

Search "Deep Learning for Natural Language Processing" or "Jon Krohn" in Safari

- 1. The Power and Elegance of Deep Learning for NLP
 - Intro to Deep Learning for NLP (reference NLP LiveLessons sections 1.1 to 1.3)
 - Review of Deep Learning Theory
 - Vector-Space Embeddings
- 2. Modeling Natural Language Data
- Recurrent and Advanced Neural Networks

Two Core Concepts

- Deep Learning
- 2. Natural Language Processing (NLP)

Traditional ML vs Deep Learning

Two Core Concepts

- Deep Learning
- 2. Natural Language Processing (NLP)

Natural Language Processing

NLP Applications

Easy

- spell checking
- synonym suggestions
- keyword search

NLP Applications

Intermediate

- reading level
- extracting information
- predicting next words
- classification
- sequence generation
- time series analysis

NLP Applications

Complex

- machine translation
- question-answering
- chatbots

POLL

Which of the following is unrelated to Natural Language Processing?

- Al
- Computer Science
- Linguistics
- Neuro-Linguistic Programming

- 1. The Power and Elegance of Deep Learning for NLP
 - Intro to Deep Learning for NLP
 - Review of Deep Learning Theory (reference NLP LiveLessons section 1.5, OR Deep Learning with TensorFlow LiveLessons)
 - Vector-Space Embeddings
- 2. Modeling Natural Language Data
- 3. Recurrent and Advanced Neural Networks

Deep Learning Fundamentals (assumed)

Search "Deep Learning with TensorFlow" or "Jon Krohn" in Safari

Neurons

- sigmoid
- tanh
- ReLU

Neurons

- sigmoid
- tanh
- ReLU

Cost Functions

quadratic cost

Neurons

- sigmoid
- tanh
- ReLU

Cost Functions

- quadratic cost
- cross-entropy

Neurons

- sigmoid
- tanh
- ReLU

Cost Functions

- quadratic cost
- cross-entropy

Stochastic Gradient Descent

- mini-batch size
- learning rate
- second-order, e.g., Adam

Neurons

- sigmoid
- tanh
- ReLU

Cost Functions

- quadratic cost
- cross-entropy

Stochastic Gradient Descent

- mini-batch size
- learning rate
- second-order, e.g., Adam

Backpropagation

Neurons

- sigmoid
- tanh
- ReLU

Cost Functions

- quadratic cost
- cross-entropy

Stochastic Gradient Descent

- mini-batch size
- learning rate
- second-order, e.g., Adam

Backpropagation

Initialization

- Glorot normal
- Glorot uniform

Neurons

- sigmoid
- tanh
- ReLU

Cost Functions

- quadratic cost
- cross-entropy

Stochastic Gradient Descent

- mini-batch size
- learning rate
- second-order, e.g., Adam

Backpropagation

Initialization

- Glorot normal
- Glorot uniform

Layers

- dense / fully-connected
- convolutional
- max-pooling
- flatten
- softmax

Neurons

- sigmoid
- tanh
- ReLU

Cost Functions

- quadratic cost
- cross-entropy

Stochastic Gradient Descent

- mini-batch size
- learning rate
- second-order, e.g., Adam

Backpropagation

Initialization

- Glorot normal
- Glorot uniform

Layers

- dense / fully-connected
- convolutional
- max-pooling
- flatten
- softmax

Avoiding Overfitting

- L1/L2 Regularization
- dropout
- data expansion

- 1. The Power and Elegance of Deep Learning for NLP
 - Intro to Deep Learning for NLP
 - Review of Deep Learning Theory
 - Vector-Space Embeddings (reference NLP LiveLessons sections 2.1 and 2.2)
- 2. Modeling Natural Language Data
- Recurrent and Advanced Neural Networks

One-Hot Word Representations

	The	cat	sat	oh	the	mat.
word						
the	1	O	0	0)	0
cat	0	1	0	0	0	0
on	0	0	6	1	0	O
•						
•						
Nunique_words						

Vector Representations of Words

you shall know a word by the company it keeps

A

Content

Vector Representations of Words

Word Vector Arithmetic

$$V_{\text{king}} - V_{\text{man}} + V_{\text{woman}} = V_{\text{queen}}$$
 $V_{\text{bezos}} - V_{\text{amazon}} + V_{\text{tesla}} = V_{\text{musk}}$
 $V_{\text{windows}} - V_{\text{microsoft}} + V_{\text{google}} = V_{\text{android}}$
 $V_{\text{cu}} - V_{\text{copper}} + V_{\text{gold}} = V_{\text{au}}$

Word Representations

One-Hot

Vector-Based

lack nuance

handle new words poorly

subjective

laborious, manual taxonomies

word similarity ignored

unwieldy with large vocabulary

extremely nuanced

seamlessly incorporate new words

driven by natural language data

fully-automatic

word similarity = closeness in space

accommodate large vocabularies

Vector-Space Embeddings

[word2viz demo]

- 1. The Power and Elegance of Deep Learning for NLP
- 2. Modeling Natural Language Data
 - Preprocessing Natural Language for word2vec
 - Document Classification with a Dense Net
 - Document Classification with a ConvNet
- Recurrent and Advanced Neural Networks

- 1. The Power and Elegance of Deep Learning for NLP
- 2. Modeling Natural Language Data
 - Preprocessing Natural Language for word2vec (reference NLP LiveLessons sections 2.4 and 3.1)
 - Document Classification with a Dense Net
 - Document Classification with a ConvNet
- Recurrent and Advanced Neural Networks

- 1. The Power and Elegance of Deep Learning for NLP
- 2. Modeling Natural Language Data
 - Preprocessing Natural Language for word2vec
 - **Document Classification with a Dense Net** (reference NLP LiveLessons section 3.3)
 - Document Classification with a ConvNet
- 3. Recurrent and Advanced Neural Networks

- 1. The Power and Elegance of Deep Learning for NLP
- 2. Modeling Natural Language Data
 - Preprocessing Natural Language for word2vec
 - Document Classification with a Dense Net
 - Document Classification with a ConvNet (reference NLP LiveLessons section 3.4)
- Recurrent and Advanced Neural Networks

- 1. The Power and Elegance of Deep Learning for NLP
- 2. Modeling Natural Language Data
- 3. Recurrent and Advanced Neural Networks
 - Recurrent Neural Networks
 - LSTMs
 - Bi-Directional LSTMs
 - Stacked LSTMs
 - Parallel Network Architectures

- 1. The Power and Elegance of Deep Learning for NLP
- 2. Modeling Natural Language Data
- 3. Recurrent and Advanced Neural Networks
 - Recurrent Neural Networks (reference NLP LiveLessons 4.1 and 4.2)
 - LSTMs
 - Bi-Directional LSTMs
 - Stacked LSTMs
 - Parallel Network Architectures

Recurrent Neural Networks

- 1. The Power and Elegance of Deep Learning for NLP
- 2. Modeling Natural Language Data
- 3. Recurrent and Advanced Neural Networks
 - Recurrent Neural Networks
 - LSTMs (reference NLP LiveLessons 4.3 and 4.4)
 - Bi-Directional LSTMs
 - Stacked LSTMs
 - Parallel Network Architectures

LSTM

- 1. The Power and Elegance of Deep Learning for NLP
- 2. Modeling Natural Language Data
- 3. Recurrent and Advanced Neural Networks
 - Recurrent Neural Networks
 - LSTMs
 - Bi-Directional LSTMs (reference NLP LiveLessons section 5.1)
 - Stacked LSTMs
 - Parallel Network Architectures

- 1. The Power and Elegance of Deep Learning for NLP
- 2. Modeling Natural Language Data
- 3. Recurrent and Advanced Neural Networks
 - Recurrent Neural Networks
 - LSTMs
 - Bi-Directional LSTMs
 - Stacked LSTMs (reference NLP LiveLessons 5.2)
 - Parallel Network Architectures

- 1. The Power and Elegance of Deep Learning for NLP
- 2. Modeling Natural Language Data
- 3. Recurrent and Advanced Neural Networks
 - Recurrent Neural Networks
 - LSTMs
 - Bi-Directional LSTMs
 - Stacked LSTMs
 - Parallel Network Architectures (reference NLP LiveLessons 5.3)

POLL

What other Deep Learning topic interests you most?

- CNNs and Machine Vision
- Generative Adversarial Networks
- Reinforcement Learning
- TensorBoard
- Something Else

Search "Deep Learning with TensorFlow" or "Jon Krohn" in Safari

Search "Deep Reinforcement Learning and GANs" or "Jon Krohn" in Safari

Staying in Touch

twitter.com/JonKrohnLearns

medium.com/@jonkrohn

linkedin.com/in/jonkrohn
 (with message mentioning today's Live Training)

PLACEHOLDER FOR:

5-Minute Timer

PLACEHOLDER FOR:

10-Minute Timer

