Classical criteria Sensitivity criteria

Practical design criteria

- Classical criteria
 - Time response constraints
 - Frequency response constraints
- Sensitivity criteria
 - Sensitivity functions
 - Shaping of sensitivity functions
 - Multi-model pole placement

- Classical criteria
 - Time response constraints
 - Frequency response constraints
- 2 Sensitivity criteria
 - Sensitivity functions
 - Shaping of sensitivity functions
 - Multi-model pole placement

Definitions

Characterizations of a step response (example in parenthesis)

Overshoot: Maximum minus setpoint in percent (45%)

Settling time: to 10% maximum deviation from setpoint (37)

Rise time: Minimum time to reach 90% of setpoint (8)

Dominating poles

Poles closest to 1 determines characteristic shape of step response

Pole position versus overshoot and speed

Study step response of system

$$G(q^{-1}) = \frac{B}{A} = \frac{A(1)q^{-1}}{(1 - \lambda q^{-1})(1 - \lambda^* q^{-1})}$$

Practical design criteria

- Classical criteria
 - Time response constraints
 - Frequency response constraints
- Sensitivity criteria
 - Sensitivity functions
 - Shaping of sensitivity functions
 - Multi-model pole placement

Amplitude and phase margins

Nyquist curve in complex plane

$$G_{open}(\mathrm{e}^{-\mathrm{i}\omega}), \quad \omega = 0 o \pi$$

Closed loop stability margins

Amplitude (gain) margin: A_m

Phase margin: ϕ_m

Margins in Nyquist and Bode diagram

Classical design in frequency domain by sequence of lead-lag filters

$$C = C_1 C_2 \dots$$

shapes the (open-loop) frequency function to obtain good margins

Classical lead-lag design

Benefits

- + The robustness margins make sense
- + Model-based design (constructive, not ad hoc)

Drawbacks

- Awkward with two margins in two curves
- Unnecessary high order controller
- No control over dominant poles (time response)

- Classical criteria
 - Time response constraints
 - Frequency response constraints
- Sensitivity criteria
 - Sensitivity functions
 - Shaping of sensitivity functions
 - Multi-model pole placement

Closed-loop sensitivity for process variations

$$y = Hr, \quad H = \frac{PC}{1 + PC}$$

$$\frac{dH}{dP} = \frac{C(1 + PC) - CPC}{(1 + PC)^2} = \frac{H}{P} \frac{1}{1 + PC}$$

Relative sensitivity

$$\frac{dH}{H} = \underbrace{\frac{1}{1 + PC}}_{S_v} \frac{dP}{P}$$

(Output) Sensitivity function

$$S_y = \frac{1}{1 + PC}$$

Loop transfer

Output sensitivity function

Output disturbance C = A related to output sensitivity

$$y = \frac{AR}{A_c}d = \frac{S_y}{A_c}d$$

Relation between Nyquist curve and output sensitivity

$$\begin{array}{ll} \max_{\omega} |S_y(e^{-i\omega})| &= \max \frac{1}{|1 + L(e^{-i\omega})|} \\ &= \frac{1}{\min |1 + L(e^{-i\omega})|} \\ &= \frac{1}{r} \end{array}$$

One margin ensuring two

$$\begin{cases} A_m \ge \frac{1}{1-r} \\ \phi_m \ge 2 \arcsin(\frac{r}{2}) \end{cases}$$

Example

Nyquist curve avoid circle with radius $r = 1/\max|S_v(e^{-i\omega})| = 1/1.83 = 0.55$

Input sensitivity function

Input response to output disturbance (C = A)

$$u = -\frac{SA}{A_c}d$$

Define Input sensitivity function

$$S_u = -\frac{SA}{A_c}$$

Should be bounded at high frequencies to reduce noise feedback

- Classical criteria
 - Time response constraints
 - Frequency response constraints
- 2 Sensitivity criteria
 - Sensitivity functions
 - Shaping of sensitivity functions
 - Multi-model pole placement

Shaping of sensitivity functions

Interactive pole placement

- Find poles related to peak in S_y (arg $\lambda = \omega$)
- Move these towards origin

Notice: Nyquist bubble moves away from -1

- Classical criteria
 - Time response constraints
 - Frequency response constraints
- 2 Sensitivity criteria
 - Sensitivity functions
 - Shaping of sensitivity functions
 - Multi-model pole placement

Example

Mass balance

$$A\frac{dh}{dt} = q_{in} - q_{out}$$

Energy balance

$$\rho gh = \frac{\rho v^2}{2} \quad \Rightarrow v = \sqrt{2gh}$$

Outflow

$$q_{out} = av = a\sqrt{2gh}$$

Pump flow

$$q_{in} = kV$$

Example: dynamical model

Nonlinear tank dynamics

$$\begin{array}{l} A\frac{dh_1}{dt} = kV - a\sqrt{2gh_1} \\ A\frac{dh_2}{dt} = a\sqrt{2gh_1} - a\sqrt{2gh_2} \end{array} \rightarrow \left\{ \begin{array}{l} \frac{dh_1}{dt} = -\alpha\sqrt{h_1} + \beta V \\ \frac{dh_2}{dt} = \alpha\sqrt{h_1} - \alpha\sqrt{h_2} \end{array} \right.$$

Assume $\alpha = \frac{a\sqrt{2g}}{A} = \beta = \frac{k}{A} = 1$ Linearize around equilibrium h^0

$$x = \begin{pmatrix} h_1 - h^0 \\ h_2 - h^0 \end{pmatrix}, \quad u = V - \sqrt{h^0}, \quad y = h_2 - h^0$$

$$\begin{cases} \dot{x} = Ax + Bu = \begin{pmatrix} -c & 0 \\ c & -c \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u \\ y = Cx = \begin{pmatrix} 0 & 1 \end{pmatrix} x \end{cases}$$

$$G(s) = C(sI - A)^{-1}B = \frac{c}{(s+c)^2}, \text{ where } c = \frac{1}{2\sqrt{h^0}}$$

Example: Study two different linearization points

With
$$h^0 = 1/4$$

$$G_1(1) = \frac{4}{(s+4)^2}$$

With $h^0 = 4$

$$G_2(s) = \frac{1/4}{(s+1/4)^2}$$

Nonlinear and linear responses

Multi-model pole placement

Open polp.sq in Sysquake and write

$$(B1, A1) = c2dm(4, poly([-4, -4]), 1)$$

 $(B2, A2) = c2dm(1/4, poly([-1/4, -1/4]), 1)$

Change to backward-shift representation

$$B1 = [0, B1]$$

 $B2 = [0, B2]$

In **Settings-System**, change [*B*1; *B*2], [*A*1; *A*2] (write digits manually)

In **Settings-Fix factor** R_f , change to [1, -1] (integral action)

Sysquake: start of design

Sysquake: after some moves of poles

