Домашнее задание

по дисциплине «Методы машинного обучения»

Домашнее задание по дисциплине направлено на решение комплексной задачи машинного обучения. Домашнее задание включает выполнение следующих шагов:

- 1. Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.
- 2. Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.
- 3. Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков Масштабирование данных. 4. Формирование вспомогательных признаков, улучшающих качество моделей.
- 4. Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения. В зависимости от набора данных, порядок выполнения пунктов 2, 3, 4 может быть изменен.
- 5. Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее двух метрик и обосновать выбор.
- 6. Выбор наиболее подходящих моделей для решения задачи классификации или регрессии. Необходимо использовать не менее трех моделей, хотя бы одна из которых должна быть ансамблевой.
- 7. Формирование обучающей и тестовой выборок на основе исходного набора данных.
- 8. Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.
- 9. Подбор гиперпараметров для выбранных моделей. Рекомендуется подбирать не более 1-2 гиперпараметров. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 10. Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.
- 11. Формирование выводов о качестве построенных моделей на основе выбранных метрик.

In [58]:

```
import numpy as np
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
sns.set(style="ticks", rc={'figure.figsize': (10,10)})
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
```

Выбор данных

In [61]:

```
data = pd.read_csv('C:/Users/VTsapiy/Desktop/data/winequalityN.csv')
#data_1 = pd.read_csv('C:/Users/VTsapiy/Desktop/data/heart.csv')
data.head()
```

Out[61]:

	type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates
0	white	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45
1	white	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49
2	white	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44
3	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40
4	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40
4											>

Проведение разведочного анализа данных

In [62]:

data.shape

Out[62]:

(6497, 13)

In [63]:

data.dtypes

Out[63]:

type fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density	object float64 float64 float64 float64 float64 float64
density pH	float64 float64
sulphates	float64
alcohol	float64
quality	int64
dtype: object	

```
In [64]:
data.isnull().sum()
Out[64]:
type
                          0
fixed acidity
                         10
volatile acidity
                          8
citric acid
                          3
residual sugar
                          2
chlorides
                          2
free sulfur dioxide
                          0
total sulfur dioxide
density
                          9
рΗ
sulphates
alcohol
                          0
quality
dtype: int64
```

In [65]:

Out[65]:

```
data_new = data.dropna(axis=0, how='any')
(data.shape, data_new.shape)
```

```
((6497, 13), (6463, 13))
```

Пропусков данных теперь нет

Построение графиков, необходимых для понимания структуры данных

In [66]:

data_new.describe()

Out[66]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	
t	6463.000000	6463.000000	6463.000000	6463.000000	6463.000000	6463.000000	6463.000000	6
1	7.217755	0.339589	0.318758	5.443958	0.056056	30.516865	115.694492	
t	1.297913	0.164639	0.145252	4.756852	0.035076	17.758815	56.526736	
1	3.800000	0.080000	0.000000	0.600000	0.009000	1.000000	6.000000	
6	6.400000	0.230000	0.250000	1.800000	0.038000	17.000000	77.000000	
6	7.000000	0.290000	0.310000	3.000000	0.047000	29.000000	118.000000	
6	7.700000	0.400000	0.390000	8.100000	0.065000	41.000000	156.000000	
K	15.900000	1.580000	1.660000	65.800000	0.611000	289.000000	440.000000	
4							l	•

In [67]:

Уникальные значения для колонки age data_new['quality'].unique()

Out[67]:

array([6, 5, 7, 8, 4, 3, 9], dtype=int64)

In [68]:

```
data['alcohol'].unique()
Out[68]:
                                 , 10.1
array([ 8.8
                     9.5
                                                  9.9
                                                               9.6
                    12.
                                    9.7
                                                10.8
                                                              12.4
       11.
                    12.8
                                  11.3
                                                10.5
                                                               9.3
       11.4
                   , 10.4
                                 , 11.6
       10.
                                               , 12.3
                                                             , 10.2
                   , 11.2
        9.
                                   8.6
                                                 9.4
                                                               9.8
                   , 10.9
       11.7
                                    9.1
                                                 8.9
                                                             , 10.3
       12.6
                   , 10.7
                                , 12.7
                                              , 10.6
                                                               9.2
                                , 11.8
                                              , 12.1
                   , 11.5
                                                             , 11.1
        8.7
                   , 12.5
                                 , 11.9
                                              , 12.2
        8.5
                                                             , 12.9
                                 , 13.5
       13.9
                    14.
                                                13.3
                                                             , 13.2
                                 , 13.
                                                             , 13.1
       13.7
                    13.4
                                                  8.
                                , 14.2
                                                             , 12.89333333,
       13.6
                      8.4
                                                11.94
       11.46666667, 10.98
                                  10.03333333, 11.43333333, 10.53333333,
        9.53333333, 10.93333333, 11.36666667, 11.33333333, 11.06666667,
        9.73333333, 11.05
                                              , 11.35
                                    9.75
                                                                9.55
                                ,
                                , 14.05
                   , 11.45
                                               , 12.33333333, 12.75
       10.55
       13.8
                                  13.05
                                               , 11.26666667, 10.56666667,
                   , 12.15
                                 , 10.65
                                              , 10.96666667, 10.13333333,
       11.73333333, 11.75
                   , 10.46666667, 11.63333333, 12.25
                                                            , 11.85
                                                            , 12.06666667,
       11.65
                   , 13.55
                                , 13.13333333, 11.95
                                              , 14.9
       11.55
                      9.63333333, 12.05
                                                                9.56666667,
       13.56666667,
                                    9.23333333, 9.25
                      9.95
                                                                9.05
                   ])
       10.75
```

In [43]:

```
data['chol'].unique()
```

Out[43]:

```
array([233, 250, 204, 236, 354, 192, 294, 263, 199, 168, 239, 275, 266, 211, 283, 219, 340, 226, 247, 234, 243, 302, 212, 175, 417, 197, 198, 177, 273, 213, 304, 232, 269, 360, 308, 245, 208, 264, 321, 325, 235, 257, 216, 256, 231, 141, 252, 201, 222, 260, 182, 303, 265, 309, 186, 203, 183, 220, 209, 258, 227, 261, 221, 205, 240, 318, 298, 564, 277, 214, 248, 255, 207, 223, 288, 160, 394, 315, 246, 244, 270, 195, 196, 254, 126, 313, 262, 215, 193, 271, 268, 267, 210, 295, 306, 178, 242, 180, 228, 149, 278, 253, 342, 157, 286, 229, 284, 224, 206, 167, 230, 335, 276, 353, 225, 330, 290, 172, 305, 188, 282, 185, 326, 274, 164, 307, 249, 341, 407, 217, 174, 281, 289, 322, 299, 300, 293, 184, 409, 259, 200, 327, 237, 218, 319, 166, 311, 169, 187, 176, 241, 131], dtype=int64)
```

In [69]:

```
data['fixed acidity'].unique()
```

Out[69]:

```
array([ 7. , 6.3 ,
                     8.1, 7.2, 6.2, 8.6, 7.9, 6.6,
                     6.5 ,
                                  6.8 ,
                                         7.6,
                                               6.9 ,
              7.4,
                            6.4 ,
                                                       8.5 ,
                                                              5.8 .
        nan,
                     6.,
                                         7.5 ,
                                               9.8,
       7.3,
                                                       5.5 ,
              6.7,
                            7.1, 6.1,
                           5.6, 5.2, 8.4, 10.2, 7.7,
       7.8,
             5.7, 8.2,
              9.1, 5., 8., 10.,
                                        5.1 , 9.2 , 9. ,
                                                              8.8,
       5.4,
       8.7,
              4.8 , 10.3 ,
                           9.4 , 9.6 ,
                                               8.9 , 9.7 , 10.7 ,
                                         9.3,
      14.2, 9.9, 9.5, 11.8, 4.6, 6.15, 4.5, 7.15, 6.45,
       4.2 , 4.9 , 4.7 , 3.8 , 4.4 , 3.9 , 11.2 , 10.1 , 11.5 ,
      12.8 , 11. , 11.6 , 12. , 15. , 10.8 , 11.1 , 12.5 , 10.9 , 11.4 , 10.4 , 13.3 , 10.6 , 13.4 , 11.9 , 12.4 , 12.2 , 13.8 ,
      13.5 , 10.5 , 12.6 , 14.    , 13.7 , 12.7 , 12.3 , 15.6 , 11.3 ,
      13. , 12.9 , 14.3 , 15.5 , 11.7 , 13.2 , 15.9 , 12.1 ])
```

In [75]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='citric acid', y='alcohol', data=data)
```

Out[75]:

<matplotlib.axes._subplots.AxesSubplot at 0x172e6990>

In [77]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='citric acid', y='alcohol', data=data, hue='quality')
```

Out[77]:

<matplotlib.axes._subplots.AxesSubplot at 0x17644b50>

In [82]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['residual sugar'])
```

Out[82]:

<matplotlib.axes._subplots.AxesSubplot at 0x177b55f0>

In [83]:

sns.jointplot(x='citric acid', y='alcohol', data=data_new, kind="kde")

Out[83]:

<seaborn.axisgrid.JointGrid at 0x19f17550>

In [84]:

sns.pairplot(data, hue="quality")

Out[84]:

<seaborn.axisgrid.PairGrid at 0x19f17730>

In [86]:

```
fig, ax = plt.subplots(2, 1, figsize=(10,10))
sns.violinplot(ax=ax[0], x=data_new['alcohol'])
sns.distplot(data_new['alcohol'], ax=ax[1])
```

Out[86]:

<matplotlib.axes._subplots.AxesSubplot at 0x193868b0>

In [87]:

sns.heatmap(data.corr())

Out[87]:

<matplotlib.axes._subplots.AxesSubplot at 0x1904a090>

In [88]:

```
sns.heatmap(data.corr(), annot=True, fmt='.3f', cmap='YlGnBu')
```

Out[88]:

<matplotlib.axes._subplots.AxesSubplot at 0x193f1950>

In [89]:

```
# Треугольный вариант матрицы
mask = np.zeros_like(data.corr(), dtype=np.bool)
# чтобы оставить нижнюю часть матрицы
# mask[np.triu_indices_from(mask)] = True
# чтобы оставить верхнюю часть матрицы
mask[np.tril_indices_from(mask)] = True
sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.3f')
```

Out[89]:

<matplotlib.axes._subplots.AxesSubplot at 0x1f998790>

Выбор признаков, подходящих для построения моделей.

На корреляционной матрице видно что качество вина больше всего коррелирует с алкоголем, затем идет citric acid(лимонная кислота), общим диоксидом серы. При отрицательной корреляции, при возрастании одного параметра, значение другого параметра уменьшается. Так например в зависимости от volatile acidity(летучей кислотности), значение качества вина уменьшается.

Масштабирование данных

```
In [90]:
```

```
data_new.shape

Out[90]:
  (6463, 13)

In [92]:
  data.head()
```

Out[92]:

	type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates
0	white	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45
1	white	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49
2	white	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44
3	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40
4	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40
4											•

Удаление лишних данных

```
In [91]:
```

```
data_clean = data_new
```

In [93]:

```
data_clean = data_new.drop('type', axis=1)
data_clean = data_clean.drop('fixed acidity', axis=1)
data_clean = data_clean.drop('volatile acidity', axis=1)
data_clean = data_clean.drop('residual sugar', axis=1)
data_clean = data_clean.drop('chlorides', axis=1)
data_clean = data_clean.drop('free sulfur dioxide', axis=1)
data_clean = data_clean.drop('total sulfur dioxide', axis=1)
data_clean = data_clean.drop('density', axis=1)
data_clean = data_clean.drop('pH', axis=1)
data_clean = data_clean.drop('sulphates', axis=1)
```

In [94]:

```
data_clean.head()
```

Out[94]:

	citric acid	alcohol	quality
0	0.36	8.8	6
1	0.34	9.5	6
2	0.40	10.1	6
3	0.32	9.9	6
4	0.32	9.9	6

In [95]:

```
data_clean.corr()
```

Out[95]:

	citric acid	alcohol	quality
citric acid	1.000000	-0.010056	0.084926
alcohol	-0.010056	1.000000	0.444637
quality	0.084926	0.444637	1.000000

Выбор метрик

Для оценки качества работы алгоритма на каждом из классов по отдельности введем метрики precision (точность) и recall (полнота). Precision можно интерпретировать как долю объектов, названных классификатором положительными и при этом действительно являющимися положительными, а recall показывает, какую долю объектов положительного класса из всех объектов положительного класса нашел алгоритм. Именно введение precision не позволяет нам записывать все объекты в один класс, так как в этом случае мы получаем рост уровня False Positive. Recall демонстрирует способность алгоритма обнаруживать данный класс вообще, а precision — способность отличать этот класс от других классов. Существует несколько различных способов объединить precision и recall в агрегированный критерий качества. Будем использывать F-мера — среднее гармоническое precision и recall. Выбранные метрики:

- 1. Precision
- 2. recall
- 3. F-мера

Выбор моделей для задачи классификации

- 1. SGDClassifier стохастический градиентный спуск.
- 2. DecisionTreeClassifier дерево решений.
- 3. RandomForestClassifier случайный лес.

```
In [111]:
```

```
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import precision_score, recall_score, f1_score
import warnings
from sklearn.model_selection import GridSearchCV
```

```
In [97]:
```

```
target = data_clean['quality']
```

In [98]:

```
X_train, X_test, Y_train, Y_test = train_test_split(
  data_clean,
  target,
  test_size=0.2,
  random_state=1
)
```

In [99]:

```
X_train.shape, Y_train.shape, X_test.shape, Y_test.shape
```

Out[99]:

```
((5170, 3), (5170,), (1293, 3), (1293,))
```

Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров

Стохастический градиентный спуск

In [105]:

```
sgd = SGDClassifier().fit(X_train, Y_train)
predicted_sgd = sgd.predict(X_test)
```

In [106]:

```
def print_metrics(Y_test, predicted_value):
    print("precision_score {}".format(
    precision_score(Y_test, predicted_sgd, average='weighted')))
    print("recall_score {}".format(
    recall_score(Y_test, predicted_sgd, average='weighted')))
    print("f1_score {}".format(
    f1_score(Y_test, predicted_sgd, average='weighted')))
```

```
In [108]:
```

```
print_metrics(Y_test, predicted_sgd)
```

precision_score 0.7973186602072507
recall_score 0.860015467904099
f1_score 0.8266143010369312

Случайный лес

In [109]:

```
rfc = RandomForestClassifier().fit(X_train, Y_train)
predicted_rfc = rfc.predict(X_test)
print_metrics(Y_test, predicted_rfc)
```

precision_score 0.7973186602072507
recall_score 0.860015467904099
f1_score 0.8266143010369312

Дерево решений

In [110]:

```
dt = DecisionTreeClassifier().fit(X_train, Y_train)
predicted_dt = dt.predict(X_test)
print_metrics(Y_test, predicted_dt)
```

precision_score 0.7973186602072507
recall_score 0.860015467904099
f1 score 0.8266143010369312

In [113]:

```
rfc_n_range = np.array(range(5,100,5))
rfc_tuned_parameters = [{'n_estimators': rfc_n_range}]
rfc_tuned_parameters
```

Out[113]:

```
[{'n_estimators': array([ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95])}]
```

Подбор гиперпараметров для Случайного леса(RAndomForest)

In [115]:

```
warnings.filterwarnings('ignore')
gs_rfc = GridSearchCV(RandomForestClassifier(), rfc_tuned_parameters, cv=5,
    scoring='accuracy')
gs_rfc.fit(X_train, Y_train)
```

Out[115]:

```
GridSearchCV(cv=5, error_score=nan,
             estimator=RandomForestClassifier(bootstrap=True, ccp_alpha=0.0,
                                               class_weight=None,
                                               criterion='gini', max depth=No
ne,
                                               max features='auto',
                                               max_leaf_nodes=None,
                                               max_samples=None,
                                               min_impurity_decrease=0.0,
                                               min_impurity_split=None,
                                               min_samples_leaf=1,
                                               min_samples_split=2,
                                               min_weight_fraction_leaf=0.0,
                                               n_estimators=100, n_jobs=None,
                                               oob_score=False,
                                               random_state=None, verbose=0,
                                               warm start=False),
             iid='deprecated', n_jobs=None,
             param_grid=[{'n_estimators': array([ 5, 10, 15, 20, 25, 30, 35,
40, 45, 50, 55, 60, 65, 70, 75, 80, 85,
       90, 95])}],
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
```

In [116]:

```
gs_rfc.best_params_
```

Out[116]:

```
{'n_estimators': 75}
```

scoring='accuracy', verbose=0)

In [117]:

```
plt.plot(rfc_n_range, gs_rfc.cv_results_['mean_test_score'])
```

Out[117]:

[<matplotlib.lines.Line2D at 0x2122e150>]

Сравнение моделей после подбора гиперпараметров

```
In [120]:
rfc_optimized = RandomForestClassifier(n_estimators=gs_rfc.best_params_['n_estimators'
]).fit(X_train, Y_train)
predicted_rfc_opt = rfc_optimized.predict(X_test)
from sklearn.metrics import accuracy_score
In [122]:
accuracy_score(Y_test, predicted_rfc_opt)
Out[122]:
0.9969064191802011
In [124]:
(precision_score(Y_test, predicted_rfc_opt, average='weighted'),
recall_score(Y_test, predicted_rfc_opt, average='weighted'))
Out[124]:
(0.9961996737104459, 0.9969064191802011)
In [125]:
f1_score(Y_test, predicted_rfc_opt, average='weighted')
Out[125]:
```

0.9962789164363217

Подбор гиперпараметров для Дерево решений (DecisionTreeClassifier)

```
In [126]:
```

```
n_range = np.array(range(1,10,1))
tuned parameters = [{'max depth': n range}]
tuned parameters
```

Out[126]:

```
[{'max_depth': array([1, 2, 3, 4, 5, 6, 7, 8, 9])}]
```

In [128]:

```
clf_gs_dt = GridSearchCV(DecisionTreeClassifier(random_state=1), tuned_parameters,
  cv=5, scoring='accuracy')
clf_gs_dt.fit(X_train, Y_train)
```

Out[128]:

```
GridSearchCV(cv=5, error_score=nan,
             estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=No
ne,
                                               criterion='gini', max_depth=No
ne,
                                               max features=None,
                                               max_leaf_nodes=None,
                                               min_impurity_decrease=0.0,
                                               min_impurity_split=None,
                                               min_samples_leaf=1,
                                               min_samples_split=2,
                                               min_weight_fraction_leaf=0.0,
                                               presort='deprecated',
                                               random_state=1, splitter='bes
t'),
             iid='deprecated', n_jobs=None,
             param_grid=[{'max_depth': array([1, 2, 3, 4, 5, 6, 7, 8, 9])}],
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring='accuracy', verbose=0)
```

In [129]:

```
clf_gs_dt.best_params_
```

Out[129]:

```
{'max_depth': 4}
```

In [130]:

```
plt.title('Дерево решений')
plt.plot(n_range, clf_gs_dt.cv_results_['mean_test_score'],label='mean_test_score')
plt.legend()
plt.show()
```


Сравнение моделей после подбора гиперпараметров для Дерева решений (DecisionTreeClassifier)

```
In [133]:
dt optimized = DecisionTreeClassifier(max depth=clf gs dt.best params ['max depth']).fit(X
predicted_dt_opt = dt_optimized.predict(X_test)
In [135]:
accuracy_score(Y_test, predicted_dt_opt)
Out[135]:
1.0
In [136]:
(precision_score(Y_test, predicted_dt_opt, average='weighted'),
recall_score(Y_test, predicted_dt_opt, average='weighted'))
Out[136]:
(1.0, 1.0)
In [137]:
f1_score(Y_test, predicted_dt_opt, average='weighted')
Out[137]:
1.0
```

Подбор гиперпараметров для SGDClassifier

```
In [140]:
```

```
clf_gs_sgd = GridSearchCV(SGDClassifier(), tuned_parameters, cv=5,
    scoring='accuracy')
clf_gs_sgd.fit(X_train, Y_train)
```

Out[140]:

```
GridSearchCV(cv=5, error_score=nan,
             estimator=SGDClassifier(alpha=0.0001, average=False,
                                     class_weight=None, early_stopping=Fals
e,
                                     epsilon=0.1, eta0=0.0, fit_intercept=Tr
ue,
                                     l1_ratio=0.15, learning_rate='optimal',
                                     loss='hinge', max_iter=1000,
                                     n_iter_no_change=5, n_jobs=None,
                                     penalty='12', power_t=0.5,
                                     random_state=None, shuffle=True, tol=0.
001,
                                     validation_fraction=0.1, verbose=0,
                                     warm_start=False),
             iid='deprecated', n_jobs=None,
             param_grid=[{'l1_ratio': array([0. , 0.05, 0.1 , 0.15, 0.2 ,
0.25, 0.3, 0.35, 0.4, 0.45, 0.5,
       0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95])
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring='accuracy', verbose=0)
```

In [141]:

```
clf_gs_sgd.best_params_
```

Out[141]:

{'l1_ratio': 0.2}

In [142]:

```
import matplotlib.pyplot as plt
plt.style.use('ggplot')
```

In [143]:

```
plt.title('SGD')
plt.plot(n_range, clf_gs_sgd.cv_results_['mean_test_score'],label='mean_test_score')
plt.legend()
plt.show()
```


Сравнение моделей после подбора гиперпараметров для SGDClassifier

```
In [144]:
sgd_optimized = SGDClassifier(l1_ratio=clf_gs_sgd.best_params_['l1_ratio']).fit(X_train, Y_
predicted_sgd_opt = sgd_optimized.predict(X_test)
In [145]:
accuracy_score(Y_test, predicted_sgd_opt)
Out[145]:
0.8553750966744006
In [146]:
(precision_score(Y_test, predicted_sgd_opt, average='weighted'),
recall_score(Y_test, predicted_sgd_opt, average='weighted'))
Out[146]:
(0.8180031103415984, 0.8553750966744006)
In [148]:
f1_score(Y_test, predicted_sgd_opt, average='weighted')
Out[148]:
0.824273094662115
```

SVG

In [150]:

```
from sklearn.svm import SVC
svm=SVC(random_state=1)
svm.fit(X_train,Y_train)
print("train accuracy:",svm.score(X_train,Y_train))
print("test accuracy:",svm.score(X_test,Y_test))
predicted_sgd = svm.predict(X_test)
def print_metrics(Y_test, predicted_value):
    print("precision_score {}".format(
    precision_score(Y_test, predicted_sgd, average='weighted')))
    print("recall_score {}".format(
    recall_score(Y_test, predicted_sgd, average='weighted')))
    print("f1_score {}".format(
    f1_score(Y_test, predicted_sgd, average='weighted')))
    print_metrics(Y_test, predicted_sgd)
```

train accuracy: 0.9941972920696325 test accuracy: 0.9961330239752514 precision_score 0.9925266676752896 recall_score 0.9961330239752514 f1 score 0.9942672196488804

Вывод:

наибольшую точность показал метод деревья решений при изначальном исследовании и после подбора гиперпараметров. Метод случайного леса и опорных векторов имеют почти одинковые показатели, которые бликзки к методу деревья решений. Модель SGD показал низкие результаты, по сравнению с тремя предыдущими методами, на 15-20% меншье.

1. SVG: 0.9942672196488804 2. SGD: 0.824273094662115

3. RAndom Forest: 0.9962789164363217

4. Decision Tree: 1.0

Судя по результатам, наиболее оптимальной моделью является метод дерева решений, но случайный лес и svg так же подойдут. При изменении гиперпараметром сильных изменений не обнаружено

In []:			