Written Assignment 10

Lucas Bouck

1 Problem 1a

Let the interval [a, b] be given and let $c \in (a, b)$. Define f on [a, b] by

$$f(x) = \begin{cases} 1 & \text{if } x = c \\ 0 & \text{if } x \neq c \end{cases}$$

Prove that f is Darboux integrable on [a, b].

Proof:

Let $\epsilon > 0$. Let $P = \{x_0, ..., x_n\}$ be a partition of [a, b] such that $||P|| < \frac{\epsilon}{2}$. Then without loss of generality there exists a $k \in \{1, ..., n\}$ such that $c \in [x_{k-1}, x_k]$. Then

$$U(f, P) - L(f, P) = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1}) = \sum_{i=1}^{n} (M_i)(x_i - x_{i-1})$$

There will be three cases.

Case 1: Suppose $c \in (x_{k-1}, x_k)$. Then $M_k = 1$, and

$$\sum_{i=1}^{n} (M_i)(x_i - x_{i-1}) = (x_k - x_{k-1}) < \frac{\epsilon}{2} < \epsilon$$

Case 2: Suppose $k \in \{2,...,n\}$ and $c = x_{k-1}$. Then $M_k = M_{k-1} = 1$ and

$$\sum_{i=1}^{n} (M_i)(x_i - x_{i-1}) = (x_{k-1} - x_{k-2}) + (x_k - x_{k-1}) < \epsilon$$

Case 3: Suppose $k \in \{1, ..., n-1\}$ and $c = x_k$ Then $M_k = M_{k+1} = 1$ and

$$\sum_{i=1}^{n} (M_i)(x_i - x_{i-1}) = (x_{k+1} - x_k) + (x_k - x_{k-1}) < \epsilon$$

In all three cases, $U(f,P)-L(f,P)<\epsilon,$ which is what we want.

2 Problem 1b

Prove that $\int_a^b f = 0$.

Proof:

We want to show that $\int_a^b f = 0$. Let $P = \{x_0, ..., x_n\}$ be a partition of [a, b]. Then

$$L(f, P) = \sum_{i=1}^{n} \inf\{f(x) : x \in [x_{i-1}, x_i]\}(x_i - x_{i-1}) = \sum_{i=1}^{n} 0(x_i - x_{i-1}) = 0$$

Thus, for any partition, P, of [a,b], L(f,P)=0. Also for any partition, P, of [a,b], $L(f,P) \le 0$, so 0 is an upper bound of $S=\{L(f,P): P \text{ is a partition of } [a,b]\}$. Suppose s is an upper bound of S. Then for any partition P, $s \ge L(f,P)=0$, so $s \ge 0$. Therefore $\sup\{L(f,P): P \text{ is a partition of } [a,b]\}=0$, and since f is integrable, $\int_a^b f=0$.

3 Problem 2a

Define f on [-1,1] by

$$f(x) = \begin{cases} x^2 \sin(1/x^2) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Prove that f' exists at every point of [-1, 1].

Proof:

Let $x \in [-1, 1]$ there will be two cases.

Case 1: Suppose $x \neq 0$. Since t^2 , $\sin(t)$, and $1/t^2$ are all differentiable when $x \neq 0$, then by the product and chain rule, $f'(x) = 2x \sin\left(\frac{1}{x^2}\right) - \frac{2}{x} \cos\left(\frac{1}{x^2}\right)$.

Case 2: Suppose x=0. I claim that f'(x)=0. We must now show that $\lim_{h\to 0}\frac{f(0+h)-f(0)+0h}{h}=0$. To simplify things, we have $\lim_{h\to 0}\frac{f(0+h)-f(0)+0h}{h}=\lim_{h\to 0}\frac{f(h)}{h}=\lim_{h\to 0}h\sin\left(\frac{1}{h^2}\right)$. Since $-1\leq\sin\left(\frac{1}{h^2}\right)\leq 1$, for all $h\neq 0$, then $-|h|\leq h\sin\left(\frac{1}{h^2}\right)\leq |h|$. Let $\epsilon>0$. Choose $\delta>0$ such that $\delta<\epsilon$. If $0<|h|<\delta$, then $||h|-0|\leq |h|<\epsilon$ and $|-|h|-0|\leq |h|<\epsilon$. Therefore, $\lim_{h\to 0}-|h|=\lim_{h\to 0}|h|=0$. Since $-|h|\leq h\sin\left(\frac{1}{h^2}\right)\leq |h|$ for all $h\neq 0$, by the squeeze theorem, $\lim_{h\to 0}h\sin\left(\frac{1}{h^2}\right)=0$. Therefore, f'(0) exists and is equal to 0.

In both cases, f' exists, which means f' exists at every point of [-1, 1].

4 Problem 2b

Prove that f' is not bounded, and thus not continuous on [-1, 1].

Proof:

Let M>0. Choose $n\in\mathbb{N}$ such that $n>\frac{M}{2\sqrt{\pi}}$. Let $x=\frac{1}{n\sqrt{\pi}}$. Since n is a natural number, 0< x<1. Then, $|f'(x)|=|\frac{2}{n\sqrt{\pi}}\sin\left(n^2\pi\right)-2n\sqrt{\pi}\cos\left(n^2\pi\right)|$. Then, $|f'(x)|=|2n\sqrt{\pi}|$. Since $n>\frac{M}{2\sqrt{\pi}}$, we know that $2n\sqrt{\pi}>M$ and $|f'(x)|=|2n\sqrt{\pi}|>M$. Therefore, for all M>0, there exists an $x\in[-1,1]$ such that $|f'(x)|\geq M$, and f' is not bounded on [-1,1].

5 Problem 3a

Define f on [-1,1] by

$$f(x) = \begin{cases} x^2 \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Prove that f' exists at every point of [-1, 1].

Proof:

Let $x \in [-1, 1]$ there will be two cases.

Case 1: Suppose $x \neq 0$. Since t^2 , $\sin(t)$, and 1/t are all differentiable when $x \neq 0$, then by the product and chain rule, $f'(x) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$.

Case 2: Suppose x=0. I claim that f'(x)=0. We must now show that $\lim_{h\to 0}\frac{f(0+h)-f(0)+0h}{h}=0$. To simplify things, we have $\lim_{h\to 0}\frac{f(0+h)-f(0)+0h}{h}=\lim_{h\to 0}\frac{f(h)}{h}=\lim_{h\to 0}h\sin\left(\frac{1}{h}\right)$. Since $-1\leq\sin\left(\frac{1}{h}\right)\leq 1$, for all $h\neq 0$, then $-|h|\leq h\sin\left(\frac{1}{h}\right)\leq |h|$. Let $\epsilon>0$. Choose $\delta>0$ such that $\delta<\epsilon$. If $0<|h|<\delta$, then $||h|-0|\leq |h|<\epsilon$ and $|-|h|-0|\leq |h|<\epsilon$. Therefore, $\lim_{h\to 0}-|h|=\lim_{h\to 0}|h|=0$. Since $-|h|\leq h\sin\left(\frac{1}{h}\right)\leq |h|$ for all $h\neq 0$, by the squeeze theorem, $\lim_{h\to 0}h\sin\left(\frac{1}{h}\right)=0$. Therefore, f'(0) exists and is equal to 0.

In both cases, f' exists, which means f' exists at every point of [-1,1].

6 Problem 3b

Prove that f' is bounded on [-1, 1].

Proof:

Choose M=3. Let $x\in [-1,1]$. If x=0, then |f'(x)|=0<3. If $x\neq 0$, then $|f'(x)|=2x\sin\left(\frac{1}{x}\right)-\cos\left(\frac{1}{x}\right)$. Since $|\sin\left(\frac{1}{x}\right)|\leq 1$ and $|\cos\left(\frac{1}{x}\right)|\leq 1$ for all $x\neq 0$, then $-2x-1\leq 2x\sin\left(\frac{1}{x}\right)-\cos\left(\frac{1}{x}\right)\leq 2x+1$. Since $x\in [-1,1], -2x-1\geq -3$ and $2x+1\leq 3$. Therefore, $|f'(x)|=|2x\sin\left(\frac{1}{x}\right)-\cos\left(\frac{1}{x}\right)|\leq |2x+1|\leq 3$ for all $x\in [-1,1]$, and f' is bounded on [-1,1].

7 Problem 3c

Prove that f' is not continuous on x = 0.

Proof:

We need to show that f' is not continuous at x=0, which means we need to construct a sequence x_n such that $x_n \to 0$ but $f'(x_n)$ does not converge to f'(0)=0. We shall now construct x_n . For all $n \in \mathbb{N}$, choose $x_n = \frac{1}{2n\pi}$. We must first show that $x_n \to 0$. Let $\epsilon > 0$. Choose $N \in \mathbb{N}$ such that $N > \frac{1}{2\pi\epsilon}$. If $n \ge N$, then $n > \frac{1}{2\pi\epsilon}$. If $n \ge N$, then $x_n = \frac{1}{2n\pi} < \epsilon$. Therefore, $x_n \to 0$. We must now show that $f'(x_n)$ does not converge to 0. For all $n \in \mathbb{N}$, $f'(x_n) = \frac{2}{2n\pi}\sin(2n\pi) - \cos(2n\pi) = 1$. Since $f'(x_n) = 1$ for all $n, f'(x_n) \to 1$, which means $f'(x_n)$ does not converge to 0. We have found a $x_n \in [-1,1]$ such that $x_n \to 0$ but $f'(x_n)$ does not converge to f'(0). Therefore, f'(x) is not continuous at x=0.