## Computational Math Project

Illinois Institute of Technology

Miles Bakenhus Ahmed Lodhika Gunjan Sharma Quinn Stratton Jan-Eric Sulzbach

November 5, 2018

## **Contents**

| 0.0 | Introduction | 1 |
|-----|--------------|---|
| 0.1 | Theory       | 1 |

## 0.0 Introduction

## 0.1 Theory

**Theorem 0.1.1.** If A is a tridiagonal matrix. Then R in the the product A = QR is a upper triangular matrix with non zero entries only in the diagonal and the two super diagonals.

Pf. To prove the statement we will use the classical Gram-Schmidt method for the QR decomposition.

Step 1: we want to show that 
$$q_j$$
 has the form  $q_j = \begin{pmatrix} * \\ \vdots \\ * \\ 0 \\ \vdots \end{pmatrix} \leftarrow j + 1$ -th entry.

We prove this by induction:

Base step j = 1 the if we assume that  $||a_1|| = 1$  then  $q_1 = a_1$  thus

$$q_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ 0 \\ \vdots \end{pmatrix}$$

**Induction step** Assume that the statement holds for j-1. Then

$$v_j = a_j - \sum_{k=1}^{j-1} (q_k^* a_j) q_k$$
 and  $q_j = v_j / ||v||_j$ 

and by using the form of  $q_{j-1}$  we obtain

$$q_{j} = \begin{pmatrix} 0 \\ \vdots \\ a_{j-1,j} \\ a_{jj} \\ a_{j+1,j} \\ 0 \\ \vdots \end{pmatrix} - \sum_{k=1}^{j-1} \begin{pmatrix} * \\ \vdots \\ \vdots \\ * \\ 0 \\ \vdots \\ \vdots \end{pmatrix} \leftarrow k + 1 \text{-th entry} = \begin{pmatrix} * \\ \vdots \\ \vdots \\ * \\ 0 \\ \vdots \\ \vdots \end{pmatrix} \leftarrow j + 1 \text{-th entry}$$

Step 2: Compute  $r_{ij}$  in the CGS method

For j=1 to n and for i=1 to j-1:  $r_{ij}=q_i^*a_j$ . Then by step 1 we obtain that  $r_{ij}=0$  if  $i \leq j-3$  since then by the form of the vectors  $q_{j-3}$  and  $a_j$ 

$$0 = \begin{pmatrix} * \\ \vdots \\ * \\ 0 \\ \vdots \\ 0 \\ * \\ * \\ * \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow j\text{-th enttry}$$

The above argument holds for all  $i \leq j-3$ .