

Design Guide

Design Guide for

Thin Wall Product

Design Concept

Material selection

Goal

Thin wall

Low weight

Minimum Size

Reduction of Cycle time

High Productivity

Saving Material

Application Development Center

Optimum Design

Processing technology

Material selection

Requirement

Thick Thin

High Flow Length

Resin Flow length: Spiral Flow(L/T)

100:1 ~ 150:1

>200:1

High Impact Strength

Notch Izod Impact Test, Low Temperature Impact Test

Good Appearance

Low Gloss, UV Resistance: deltaE 1~2

Stiffness

Neat engineering Plastics: Flexural Modulus- 2,000MPa Reinforced plastics: Flexural Modulus- 3,500~ 14,000MPa

Heat Resistance

UL Relative Thermal Index(RTI): 70 ~ 95°C

Mechanical Integrity

Design for assembly: Snap fit, Small Screw, Ultrasonic Welding

Flame Resistance

Mobile Phone: UL HB, Portable PC: UL94 V-0~V-1

Shrinkage

Amorphous vs. semi-crystalline

Shrinkage

Mechanical Integrity

Wall Thickness of Rib, Boss, Gusset in thin wall part may be same as part thickness because of low possibility of sink or void.

Guidelines for Rib dimensions:

Components wall thickness:T

Draft per side(d):0.5° ~1.5°

Rib height(H):less than 5T(typically 2.5T~3T)

Rib spacing(on center):more than (2T~3T)

Base radius(R):0.25T~0.40T

Rib thickness(W):0.4T~0.8T

(less than 0.5T for PC/ABS, 0.5T~0.7T for ABS)

A boss with outside diameter which is two times the inside diameter is sufficiently strong

Guidelines for Boss dimensions:

Components wall thickness:T

Draft per side(d):0.5° ~1.5°

Boss height(H):less than 5T(typically 2.5T~3T)

Base radius(R):0.25T~0.40T

Boss thickness(W):0.4T~0.8T

Gussets are another form of ribbing that can be used to reinforce a side wall of a part or boss

R&D,

Guidelines for Gusset dimensions:

Components wall thickness:T
Draft per side(d):0.5° ~1.5°
Gusset height(H):less than 5T(typically 2.5T~3T)
Base radius(R):0.25T~0.40T
Gusset thickness(W):0.4T~0.8T

Corner

Incorrect design

Stress concentration Sharp flow restriction Non-uniform wall thickness Shrinkage/void/sinks Non-uniform flow

Non-uniform wall thickness shrinkage/void/sinks
Non-uniform flow

Snap Fit Joint assembly

satisfy both Design for assembly and Design for disassembly

Simple & Most versatile means of plastic product assembly

Snap Fit Joint assembly

e = maximum tensile strain

$$y = 0.67 e L^2/d$$

R&D,

$$y = 1.1 e L^2/d$$

Permissible deflection for the tapered beam is about 60% greater than that of the constant cross section of rectangular beam

Last Updated DEC 07 1999

Snap Fit Joint assembly

Stress concentration factors show that larger radius values tend to reduce the stress concentration and mold filling orientation related problems, however, excessive radii can lead to complications due to sinks, voids, shrinkage stress.

Mechanical fastener - Screw

Screws provide a simple, fast, and effective method of joining similar or dissimilar materials

- **OMachine screws (I.e. nuts and bolts)**
- OMachine screws with a threaded metal inserts or molded threads
- **OSelf threading screws**

Application Development Center

Self threading screw

The core pins that are used to form the holes in blind bosses should be extended as much as possible to core out excessive material.

Self threading screw

L_b=length of hole in the blind boss

L_t= length of hole in the through boss

The blind boss core pin length is reduced to minimize the molding problems associated with long, cantilever core pins

Ultrasonic Welding

- ◆ Poor but joint design
- **◆** Excessive weld time
- **♦** Excessive weld energy
- Exuding melt results in a visual defect
- ♦ Improved butt joint design
- ◆ Reduced weld time
- ◆ Reduced weld energy
- **♦** Exuding flash (visible)
- ◆ Flash trap added
- ◆ Reduction in weld area
- Exuding melt does not result in a visual defect
- ◆ Step joint design
- ♦ Improved shear resistance
- Exuding melt does not result in a visual defect
- **◆** Assists in locating parts

Ultrasonic Welding

Typical energy director dimensions(millimeters)

	Amorphous polymer		Semi-crystalline polymer	
Dim.	Small part	Large part	Small part	Large part
h	0.3 - 0.4	0.5 - 0.6	0.5 - 0.7	0.7 - 1.0
q	60° to 90°		90°	

Ultrasonic Welding

Ultrasonic Welding

General Guidelines on the Compatibility of Various Thermoplastics for Ultrasonic Assembly

Material	Notation	Complete compatibility	Partial compatibility
ABS	Α	A,B,D	Т
PC/ABS alloy	В	A,B,K	D
Acetal	С	С	
Acrylic	D	A,D	B,E,J,K,T
Acrylic Multipolymer	E	E	A,D,Q,T
Cellulosics	F	F	
Fluoropolymer	G	G	
Nylon	Н	н	
Polyphenylene oxide	I	I,Q	D,K,T
Polyamide-imide	J	J	
PC	K	B,K	D,I,R
Polyester	L	L	
Polyethylene	M	M	
Polymethylpentane	N	N	
Polyphenylene sulfide	0	0	
PP	P	Р	
PS	Q	I,Q	E,T
Polysulfone	R	R	K
PVC	S	S	
SAN	Т	Т	A,D,E,I,Q

Processing Guide

	2.0mm 1.2mm		1.2mm
Injection Time	> 2.0 sec	0.6 ~ 2.0 sec	< 0.5sec
Cycle Time	40 ~ 60 sec	20 ~ 40 sec	6 ~ 20 sec

Pre-drying of Resin Dryer (dew point : -29 ~ -40 °C)

Mold Tooling

Complete Gas vent
Many larger eject pin
Use Sleeve or Blade type eject Pin
Use Non-looping Cooling line
Use Support pillar
Strong & Thick mold structure

Mold Filling Analysis (CAE) Example: 17" Monitor Rear cabinet STAREX ABS VE-0856

1086.49

1268.35

Original design

- 2.5mm standard thickness
- High Clamp force
- High Inj pressure

	GPROP Jan	to 3.0
	Too leads	1.625 e: th: 2.5mm
	Vanys	E-13
MINN IV	minute: 2.0mm	1,075
UM LXTAN	backside th 12.4nm	2.0
TIMA I YEA		2,125
	- VAIXIM	2.25
THE COLUMN		2.375
MILLIAM .	2 hot runner gates	25
MOST -	TARVA	2,625
MINIMA	XXX	2/3
		2.875
MINIS		3,0
		veck3H y y

Thin Wall design

750.54

- 2.0mm standard thickness

Inj. Pressure

134.4

- Install Flow leader
- Balanced Flow pattern
- Higher Injection Speed
- Low Clamp force
- Low Inj pressure
- Save materials

766.25

977.33

23

(Mna)

77.41

Mold Filling Analysis (CAE)

Example: TFTLCD Mold frame

STAROY PC LB-1020W

- Most of TFTLCD mold frame have severe change of thickness in cavity and the basic thickness is very thin (0.5mm ~ 1.0mm). Therefore, surely the check of flow pattern with CAE simulation is needed to prevent short shot or severe weld line.

Application Development Center