Programação Linear - IME/UERJ

Estudo dirigido para a P2

1. Dualidade

- 1.1 Conversão do problema primal para dual;
- 1.2 Uso do Teorema das Folgas Complementares para encontrar a solução do dual no tableau ótimo do primal.

2. Análise de Sensibilidade

Dicas:

- 2.1 Alteração do vetor de coeficientes c da função objetivo z:
 - (a) Se o coeficiente c_k for de uma variável **básica** x_k do tableau ótimo:

A alteração de c_k para c'_k provoca alteração do vetor c_B para c'_B , e consequentemente, $z_N - c_N$ é alterado para $z'_N - c_N$, pois $z_N = c_B B^{-1} N$ é alterado para $z'_N = c'_B B^{-1} N$.

Logo, para que a solução permaneça ótima após a alteração, devemos calcular $z_N' - c_N \ge 0$.

Obs.: A matriz $B^{-1}N$, neste caso, é a submatriz do tableau ótimo associado às variáveis não básicas da solução ótima.

(b) Se o coeficiente c_k for de uma variável **não básica** x_k do tableau ótimo:

A alteração de c_k para c_k' provoca alteração do vetor c_N para c_N' , e consequentemente, $z_N - c_N$ é alterado para $z_N - c_N'$.

Devemos reescrever $z_N - c'_N = (z_N - c_N) + (c_N - c'_N)$.

Logo, para que a solução permaneça ótima após a alteração, devemos calcular $z_N-c_N'\geq 0.$

2.2 Alteração do vetor independente do lado direito das restrições b:

A alteração de um elemento b_i do vetor b é alterado para b'_i . Consequentemente, o vetor b é alterado para b'.

A alteração do vetor b para b' provoca alteração no vetor de solução básica atual $\bar{x}_B = B^{-1}b$ para $\bar{x}_B' = B^{-1}b'$.

Logo, para que a solução permaneça ótima, devemos ter $\bar{x}_B' = B^{-1}b' \geq 0$.

2.3 Alteração da matriz dos coeficientes das restrições A:

Uma alteração de uma coluna a_j da matriz A para a'_j provoca uma alteração da matriz A para A'.

Como a coluna a_j' pode estar associada a uma variável básica ou não básica do tableau ótimo, temos dois casos a tratar:

(a) Se a coluna modificada a'_j estiver associada a uma variável **básica** x_j do tableau ótimo:

Calculo $z'_j - c_j = C_B B^{-1} a'_j - c_j$. Note que podemos dividir este cálculo em duas partes:

Primeiro, calculamos $y_j = B^{-1}a'_j$. Depois, substituo este valor em $z'_j - c_j = C_B y_j - c_j$.

Depois, temos que tratar dois casos para verificação do sinal de $z'_i - c_j$:

- (a.1) Se $z_j'-c_j<0$, a solução não é ótima. Neste caso, faremos novas iterações do tableau usando o algoritmo Simplex até encontrar a solução ótima.
- (a.2) Se $z'_j c_j > 0$, devemos efetuar uma nova iteração usando o algoritmo Simplex, pois sabemos que $z'_j c_j = 0$ quando a variável x_j está na base. Neste caso, renomeamos a variável x_j para uma nova variável \bar{x}_j na primeira linha do tableau. Depois, faremos uma nova iteração usando o algoritmo Simplex fazendo com que a variável básica antiga x_j saia da base e a variável básica nova \bar{x}_j entre na base. Assim, tornamos $z'_j c_j = 0$ para a nova variável básica \bar{x}_j .
- (b) Se a coluna modificada a_j' estiver associada a uma variável **não básica** do tableau ótimo:

Calculo $z'_j - c_j = C_B B^{-1} a'_j - c_j$. Note que podemos dividir este cálculo em duas partes:

Primeiro, calculamos $y_j = B^{-1}a'_j$. Depois, substituo este valor em $z'_j - c_j = C_B y_j - c_j$.

Aqui, só precisamos nos preocupar se $z'_j - c_j < 0$, pois x_j é uma variável não básica. Se $z'_j - c_j < 0$, faremos novas iterações do tableau usando o algoritmo Simplex até encontrar a solução ótima.