Almacenamiento y Formatos 3D

- Andres Felipe Poveda Vellón
- Justin Brad Rodriguez Sanchez
- Daniel Felipe Soracipa Torres
- Camilo Trujillo Garzón

Introducción al almacenamiento de información 3D en archivos

El almacenamiento de información 3D en archivos es fundamental para el intercambio eficiente de modelos entre aplicaciones y dispositivos. Los datos se guardan en formatos específicos que representan la geometría, materiales y texturas del objeto digital.

Estos formatos varían en estructura y compatibilidad, lo que afecta la precisión y fidelidad del modelo al ser transferido. Comprender estos aspectos es esencial para profesionales y estudiantes que trabajan con modelado 3D y necesitan asegurar la integridad del intercambio de datos.

Formato OBJ: Geometría y materiales clásicos

Estructura del archivo OBJ

Usa una representación de la geometría basada en vértices, caras y normales, especificadas en texto plano para fácil lectura y edición.

Archivos MTL asociados

Complementa el OBJ con archivos MTL que describen materiales, reflejando propiedades como color, textura, brillo y transparencia.

Compatibilidad

Formato ampliamente soportado en software de modelado, ideal para intercambio entre programas diversos, aunque no incluye animaciones ni información avanzada.

OBJ file offes 3D/mode compatibiles introdate

Formato STL: Geometría para impresión 3D

Uso principal

Confeccionado para impresión 3D, almacena solo la geometría de los modelos mediante triángulos planos.

Estructura simple

Formato binario o ASCII, sin información sobre color, materiales o texturas.

Compatibilidad

Universal en impresoras 3D, pero limitado para aplicaciones que requieren detalles visuales complejos.

Formato DXF Intercambio CAD y geometría 2D/3D

Descripción

Formato desarrollado por Autodesk para compatibilidad entre programas CAD, capaz de almacenar geometría 2D y 3D.

Estructura del archivo

Basado en texto ASCII o binario, con secciones que definen entidades, capas y propiedades detalladas.

Uso y compatibilidad

Ideal para planos técnicos y diseño arquitectónico, ampliamente soportado en software profesional.

Representación de geometría en formatos 3D

Vértices

Puntos en el espacio 3D que definen la forma del objeto.

Bordes

Líneas que conectan vértices formando la estructura base.

Caras

Superficies delimitadas por bordes, comúnmente triángulos o polígonos.

Materiales y texturas: cómo se almacenan

Materiales

Definen propiedades visuales como color base, reflectividad, transparencia y rugosidad.

Se incluyen en archivos como MTL o dentro de formatos más complejos como FBX o gITF.

Texturas

Imágenes 2D aplicadas a la superficie 3D para añadir detalles visuales como patrones, imperfecciones o relieves.

Referenciadas mediante coordenadas UV que mapean las texturas sobre la geometría.

Compatibilidad y limitaciones entre formatos

1 Diferencias esenciales

Algunos formatos, como STL, solo almacenan geometría básica, mientras que OBJ permite materiales y texturas simples.

2 Uso recomendado

El formato elegido depende del propósito: impresión 3D, renderizado o edición CAD.

3 Intercambio fiable

Para transferencias más complejas que incluyen materiales y texturas, OBJ con MTL o formatos avanzados son preferidos.¿

i Gracias por su atención!

