1 General Problems

Configuration and Specification (Sets)

Equivalence Configuration Problem

```
Input: C = \{\alpha_1, \dots, \alpha_n\}
Query: Whether \exists K \subseteq C : K \equiv \beta
```

Let

$$IMP(C, \beta) := \{ \alpha \mid \alpha \in C \text{ and } \beta \models \alpha \}$$

Then

$$\exists K \subseteq C(K \text{ is satisfiable and } K \equiv \beta) \iff \text{IMP}(C,\beta) \text{ is satisfiable and IMP}(C,\beta) \models \beta$$

So, equivalence problem is in $P^{NP[\log n]}$ which is the class of problems solvable in polynomial time with $O(\log n)$ queries to an NP oracle.

Next we show hardness. The problem SAT_{odd}^n is complete for $P^{NP[\log n]}$. Where SAT_{odd}^n is the problem of determining whether the number of satisfiable formulas among n given CNF formulas.

We shall construct a reduction from SAT_{odd}^n to the equivalence configuration problem.

Suppose F_1, \dots, F_n are 3CNF formulas such that they have pairwisely distinct variables. We assume n is even. Otherwise we add formula $p \wedge \neg p$.

For F_i introduce a new variable w_i . We claim that F_i is unsatisfiable iff $T_i := (\neg F_i \to w_i) \leftrightarrow w_i$ is tautological. In other word, F is satisfiable iff T_i is not a tautology (i.e., $\neg T_i$ is satisfiable.

Let
$$C := \{ \neg w_1 \land F_1 \land \neg T_1, \cdots, F_n \land \neg T_i \}$$
.
Let $\beta := (F_1 \land \neg T_1) \otimes \cdots \otimes (F_n \land \neg T_n)$.

Suppose there are odd number of satisfiable formulas, say F_1, \dots, F_{2k+1}

Let $K := \{ \neg T_1, \cdots, \neg T_{2k+1} \}.$

Clearly, $K \models \beta$.

Retricted Equivalence Configuration(R-equivalence)

Input: $C = \{\alpha_1, \dots, \alpha_n\}, \beta$, and a set V of variables Query: Whether $\exists K \subseteq C : K \equiv^V \beta$

the problem of determining whether $F \equiv_V G$ is in Π_2^P (for the complementary problem: we guess a clause γ over V, check that $G \models \gamma$ but $F \not\models \gamma$.

Thus, R-equivalence configuration is Σ_3^P (guess a $K \subseteq C$, theck that it is satisfiable and $K \equiv_V \beta$.)

Next we show the hardness.

Consider $\Phi := \exists \vec{x} \forall \vec{y} \exists \vec{z} \varphi$ where φ is a CNF formula.

We assume w.l.o.g. that φ contains a non-tautological clause over \vec{z} (otherwise, we pick new variable z' and consider $\exists \vec{x} \forall \vec{y} \exists \vec{z} \exists z' (\varphi \land z')$).

We assume that each clause contains a positive occurrence of a variable from $\vec{y} \cup \vec{z}$. If otherwise pick a new variable u, and consider $\exists \vec{x} \forall \vec{y} \forall u \exists \vec{z} \varphi^u$, where φ^u is obtained from φ by adding u to clauses containing no positive literal from $\vec{y} \cup \vec{z}$. Clearly, Φ and the resulting formula has the same truth.

By our assumption $\forall \vec{x} \exists \vec{y} \exists \vec{z} \phi$ is true. (we will use this assumption later).

 φ be written as $(c'_1 \vee c''_1) \wedge (c'_n \vee c''_n)$ in which c'_i is clause over \vec{x} . Pick new variables w_1, \dots, w_n, w . Let

Let

$$\psi := \left(\bigwedge_{i=1}^{n} (c_i' \to w_i) \right) \wedge \left(\bigwedge_{i=1}^{n} (\neg c_i' \wedge \neg c_i'' \to \neg w_i) \right)$$

Let

$$C_0 := \{ \psi \land \neg c_1' \land (c_1'' \to w_1), \cdots, \psi \land \neg c_n' \land (c_n'' \to w_n) \}$$

$$C_1 = \{c_1', \cdots, c_n', \}$$

$$C_2 = \{x_1, \neg x_1 \cdots, x_n, \neg x_n\}$$

$$C_3 = \{ (w \to (c_1' \lor c_1'') \land \cdots \land (c_n' \lor c_n'')) \}$$

Now let

$$C := C_0 \cup C_1 \cup C_2 \cup C_3 \cup \{w\}$$

Let β be

$$w_1 \wedge \cdots \wedge w_n \wedge w$$

Let
$$V := \vec{y} \cup \{w_1, \dots, w_n, \} \cup \{w\}$$

(Lemma: $F \models_V G$ iff for for any truth assignment t on V, if it can be extended to a satisfying truth assignment for F, it can be extended to an satisfying truth assignment for G.)

We shall show Φ is true if and only if there is satisfiable $K\subseteq C$ s.t. $K\equiv_V \beta$

From right to left:

Given a such $K \equiv_V \beta$. Clearly, $K \cap C_0$ is non-empty.

It must be that $w \in K$. Let t satisfy K. By our assumption we know $t \uparrow \vec{x}$ can be extended to s which falsifies φ . Now we assign truth values to w_i according to the tuth values $s(c'_i)$ and $s(c''_i)$ to make formulas ψ and $(c''_i \to w_i)$ to be true. There there must some w_i which is false. Then if we set w to be false, K is still be satisfied by s (because clauses in C_3 are satisfied). This contradict the V-euivalence.

It must be that $w \to (c'_1 \vee c''_1) \wedge \cdots \wedge (c'_n \vee c''_n)$ is in K. Suppose it is not the case. Similar as above, there would be a satisfying truth assignment of K which makes some w_i false, contradicts the V-equivalence.

Suppose $K \not\models c'_i$. Then $\psi \wedge \neg c'_i \wedge (c''_i \to w_i)$ must be in K. Otherwise, $K \cup \{\neg c'_i\}$ is consitent, then there is a satisfying truth assignment t for K such that $t(c'_i) = 0$, t(w) = 1, $t(w_i) = 0$. (In fact by our assumption, t can be assumed to satisfy $(c'_1 \vee c''_1) \wedge \cdots \wedge (c'_n \vee c''_n)$ because every clause contains positive literal from $\vec{y} \cup \vec{z}$). This contradict the fact that $K \equiv_V \beta$.

Now we can see for each i, either $K \models \neg c'_i$ or $K \models c'_i$. That is, for any two satisfying truth assignments t_1, t_2 of K, each c'_i has the same truth under

 $t_1 \uparrow \vec{x}$ and $t_2 \uparrow \vec{x}$.

Now fix a trut assignment e on \vec{x} which can be extended to a satisfying truth assignment of K.

Consider any truth assignment s on \vec{y} . Since s can be extended to satisfy β , it can be extended to a truth assignment t which satisfies K. Please note we can assume that $t \uparrow \vec{x}$ is e. Since w and $w \to (c'_1 \lor c''_1) \land \cdots \land (c'_n \lor c''_n)$ are in K. We can see t satisfy φ .

Consequently, for any truth assignment s on \vec{y} , e * s can be extended to a satisfying truth assignment of φ . Thus, Φ is true.

From left to right.

Suppose $\Phi = \exists \vec{x} \forall \vec{y} \exists \vec{z} \varphi$ is true.

Let e be a truth assignment on \vec{x} such that $\forall \vec{y} \exists \vec{x} \varphi[x/e]$ is true Let

$$K_0 := \{ \psi \land \neg c_i' \land (c_i'' \to w_i) \mid e(c_i') = 0, i = 1, \cdots, n \}$$

$$K_1 := \{c'_i \mid e(c'_i) = 1, i = 1, \cdots, n\}$$

$$K_2 := \{x_i \mid e(x_i) = 1, i = 1, \dots, n\} \cup \{\neg x_i \mid e(x_i) = 0, i = 1, \dots, n\}$$

$$K:=K_0\cup K_1\cup K_2\cup C_3\cup \{w\}$$

Consider any truth assignment s on V.

Suppose s can be extended to satisfy K. Say the extenson is t. Since $w \in K$, $(c'_1 \vee c''_1) \wedge \cdots \wedge (c'_n \vee c'_n)$ be be true under t. By formulas in K_0 , we can see each w_i is true under t. That means s make β true. Thus, $K \models_V \beta$.

Now suppose s satisfies β . Since Φ is true, $e * (s \uparrow \vec{y})$ can be extended to satisfy Φ . Let t be such an extension. Next we show t can be extended to satisfies K. Since t makes φ true, either c'_i is true or c''_i is true. We set each w_i to be true. Then all clauses in K_0 are true. Set w to be true. Then clauses in C_3 are true. Please note formulas in $K_1 \cup K_2$ are already atisfied by e. Consequently, s can be extended to satisfy K. Hence, $\beta \models_V K$.

Altogether we obtain $K \equiv_V \beta$.

Implication Problem

Input: $C = \{\alpha_1, \dots, \alpha_n\}, \beta$

Query: Whether $\exists K \subseteq C : K \models \beta$

Clearly in Σ_2^P . We shall the hardness

Consider $\Phi = \exists x_1, \dots, x_n \forall y_1, \dots, y_m \varphi$ where φ is a DNF formula. Pick a new varibale z.

Let $C:=\{\varphi \to z, x_1, \neg x_1, \cdots, x_n, \neg x_n\}, \ \beta:=z$

Clearly, Φ is true if and only if $\exists K \subseteq C$ such that $K \models \beta$.

Note: In all problems K is demanded satisfiable.

$$\alpha \equiv_V \beta \iff \forall \gamma \text{ over } V, (\alpha \models \gamma \Leftrightarrow \beta \models \gamma)$$

$$\alpha \models_V \beta \iff \forall \gamma \text{ over } V, (\beta \models \gamma \implies \alpha \models \gamma)$$

2 Resticted to DHORN

C: set of DHORN, β : DHORN

Equivalence problem is in PTIME

Idea: just checked $IMP(C, \beta) \equiv \beta$.

Implication problem is trivial

The existence of K is equivalent to $C \models \beta$

The V-equivalence problem

we guess it seems Σ_2^P -complete. See Hans's book page 251

3 Restricted to HORN

Equivalence Problem: same as the DHORN case (PTIME).

iff $IMP(C, \beta)$ is satisfiable and $IMP(C, \beta) \models \beta$

V-Equivalence Problem: Σ_2^P -complete

$$\Phi := \exists y_1, \cdots, y_k \forall x_1, \cdots, x_m (c_1 \lor \cdots \lor c_n)$$

Where c_i is a conjunction of literals.

for each variable z, introduce a new variable $\pi(\neg z)$. Let $\pi(z) = z$.

introduce U.

for a clause $c = L_1 \wedge \cdots \wedge L_s$, we write $\pi(c) := \pi(L_1) \wedge \cdots \wedge \pi(L_s)$

$$C := \{\pi(c_i) \to U \mid i = 1, \dots, n\} \cup \{\neg \pi(\neg x_j) \lor \neg x_j \mid j = 1, \dots, m\} \cup \{\neg \pi(\neg y_i) \lor \neg y_i \mid i = 1, \dots, k\} \cup \{y_i, \pi(\neg y_i) \mid i = 1, \dots, k\}$$

$$\beta := U \vee \left(\bigvee_{j=1}^{k} (\neg \pi(\neg x_j) \wedge \neg x_j) \right)$$

(Remark: using Tsting algorithm)

Let

$$V := \{U\} \cup \{x_1, \cdots, x_m\}$$

 $(\exists K \subseteq C \text{ such that } K \equiv_V \beta) \text{ if and only if } \Phi \text{ is true.}$

Implication Problem NP-complete Given a 3CNF F

$$\bigwedge_{i=1}^{m} (L_{i,1} \vee L_{i,2} \vee L_{i,3}) \text{ over } x_1, \cdots, x_n$$

For each $i = 1, \dots, m$, pick a new variable z_i . For each $j = 1, \dots, n$ we pick a new variable $\pi(\neg x_j)$. For convenience, we also write x_j as $\pi(x_j)$.

Define C

$$C := \bigcup_{i=1}^{m} \{ \pi(L_{i,1}) \to z_i, \pi(L_{i,2}) \to z_i, \pi(L_{i,3}) \to z_i \} \cup \bigcup_{j=1}^{n} \{ \to x_j, \to \pi(\neg x_j) \cup \{ z_1 \wedge \cdots \wedge z_m \to z \}$$

Define

$$\beta := z \land \bigwedge (\neg \pi(\neg x_j) \lor \neg x_j)$$

Impliation problem iff F is satisfiable

Specification Problem

Given a partial configuration K, demand β , a set of variables V,W Looking for σ over W such that

- 1. $K \wedge \sigma(W) \equiv \beta$
- 2. $K \wedge \sigma(W) \equiv_V \beta$
- 3. $K \wedge \sigma(W) \models \beta$

Query Learning

black box α

equivalence query. Guess a β ask whether $\alpha \equiv \beta$. If the answer is no, output a truth assignment satisfying α and $\neg \beta$ or satisfying $\neg \alpha$ and β .

membership query guess a truth assignment v answer $v(\alpha) = 0$ or 1.

4 Configuration with constraints

 $C = \{\alpha_1, \dots, \alpha_n\}, \beta, D$ is set of formulas over A_1, \dots, A_n which are propositional atoms. Whether there is $K \subseteq C$ such that

- *K* is satisfiable,
- $K \equiv \beta$, and
- the truth assignment v_K satisfies D, where $v_K(A_i) = \begin{cases} 1 & \text{if } \alpha_i \in K \\ 0 & \text{if } \alpha_i \notin K \end{cases}$