

international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2020

Problem E Occult Square

A magic square is a square array of non-negative integers where the sums of the numbers on each row, each column, and both main diagonals are the same. An $N \times N$ occult square is a magic square with N rows and N columns with additional constraints:

- ullet The integers in the square are between 0 and N, inclusive.
- For all $1 \le i \le N$, the number i appears at most i times in the square.
- There are at least two distinct **positive** integers in the square.

For example, the following is a 5×5 occult square, where the sums of the numbers on each row, each column, and both main diagonals are 7:

For a given prime number P, you are asked to construct a $P \times P$ occult square, or determine whether no such occult square exists.

Input

Input contains a prime number: P ($2 \le P \le 1000$) representing the number of rows and columns in the occult square.

Output

If there is no $P \times P$ occult square, simply output -1 in a line. Otherwise, output P lines, each contains P integers representing an occult square. The j^{th} integer on the i^{th} line is the integer on the i^{th} row and the j^{th} column in the occult square. You may output any $P \times P$ occult square.

international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2020

Samp	le In	put	#1
------	-------	-----	----

5	5						
1							

Sample Output #1

0 0 0 3	4
2 4 0 0	1
0 0 3 4	0
5 0 0 0	2
0 3 4 0	0

Explanation for the sample input/output #1

This is the example from the problem description.

Sample Input #2

2

Sample Output #2

-1

Explanation for the sample input/output #2

There is no 2×2 occult square.