CS5800: Algorithms Spring 2018 Assignment 2.1

Saptaparna Das

January 29, 2018

1.(a)
$$T(n) = 3T(\frac{n}{4}) + \sqrt{n}, T(1) = 1$$

Since, this is in the form $T(n)=aT(\frac{n}{b})+f(n)$, we can try to apply Master theorem. Here, a=3,b=4 and $f(n)=\sqrt{n}=n^{0.5}$. Now, $n^{\log_b a}=n^{\log_4 3}=n^{0.79}$. f(n) can be written as, $O(n^{0.79-0.29})=O(n^{\log_4 3-\varepsilon})$. So Case 1 applies. Hence, we can write, $T(n)=\Theta(n^{\log_4 3})=T(n)=\Theta(n^{0.79})$.[Solved]

(b)
$$T(n) = 9T(\frac{n}{3}) + 5n^2, T(1) = 1$$

Since, this is in the form $T(n) = aT(\frac{n}{b}) + f(n)$, we can try to apply Master theorem. Here, a = 9, b = 3 and $f(n) = 5n^2 = O(n^2)$

Now, $n^{\log_b a} = n^{\log_3 9} = n^2$ (same as f(n)).

So, Case 2 applies. Hence we can write $T(n) = \Theta(n^{\log_3 9} \cdot \log n) = \Theta(n^2 \log n) \cdot [\mathbf{Solved}]$

(c)
$$T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + cn^2, T(1) = 1$$

The recursion tree of T(n) looks like,

and so on...

So, we can see that left-most path in T(n) tree, will reach to T(1) first. Because n gets divided by 3 here. Similarly, right-most path will take longest time to reach base (n gets divided by $\frac{3}{2}$). Clearly, the depth of the left-most path is $\log_3 n$ and the right-most path is $\log_3 n$. Now for the cn^2 , the recurion tree looks like..

and so on..

So, Level 0 can be expressed as... $cn^2((\frac{1}{3})^2 + (\frac{2}{3})^2))^2 = cn^2(\frac{5}{9})^0$

Level1 can be expressed as... $cn^2((\frac{1}{3}^2)^1*(\frac{2^2}{3^2})^0+(\frac{1}{3^2})^0*(\frac{2^2}{3^2})^1)=\sum_{i=0}^1 \text{C}_i(\frac{1}{3^2})^{1-i}(\frac{2^2}{3^2})^i=cn^2(\frac{5}{9})^1$

Level2 can be expressed as... $cn^2((\frac{1}{3}^2)^2 + 2(\frac{2}{3^2})^2 + (\frac{2^2}{3^2})^2)) = \sum_{i=0}^2 {}_2C_i(\frac{1}{3^2})^{2-i}(\frac{2^2}{3^2})^i = cn^2(\frac{5}{9})^2$

.

. Same way, Level m can be expressed as, $cn^2 \sum_{i=0}^m {C_i} (\frac{1}{3^2})^{2-i} (\frac{2^2}{3^2})^i = ((\frac{1}{3^2}) + (\frac{2^2}{3^2}))^m = cn^2 (\frac{5}{9})^m$

Now, we have already seen depth of left-most path is $\log_3 n$

So we can write, $T(n) >= T(1)2^{no.ofleavesatlastlevel} + \sum_{i=0}^{\log_3 n-1} cn^2(\frac{5}{9})^i = T(1)2^{log_3 n} + cn^2 \frac{1}{1-5/9} = 1 * n^{log_3 2} + cn^2 \frac{1}{1-5/9} = \Omega(n^2)$

Similarly, for the right most path, the depth is $log_{3/2}n$. We can write, $T(n) <= T(1)2^{no.ofleavesatlastlevel} + \sum_{i=0}^{\log_{3/2}n-1} cn^2(\frac{5}{9})^i = 1*$ $n^{log_{3/2}2} + cn^2 \frac{1}{1-5/9} = O(n^2)$. Hence, n^2 is a tight bound for T(n). So, T(n)= $\Theta(n^2)$ [Solved]