Examen (9 janvier 2015)

QUESTION DE COURS (3 pts). — Soit X un espace métrique. On dit d'une famille $(F_i)_{i\in I}$ de fermés de X qu'elle a la propriété d'intersection finie si pour tout sous-ensemble fini d'indices, $J\subseteq I$, on a $\cap_{i\in J}F_i\neq\emptyset$.

- (A) Définir ce que signifie «X est compact».
- (B) Démontrer que X est compact si et seulement tout famille de fermés de X ayant la propriété d'intersection finie est d'intersection non vide.

QUESTION DE COURS (3 pts). — Soit X un espace métrique. On dit que X est connexe par arcs si pour tous $x, y \in X$ il existe une application continue $\gamma : [0, 1] \to X$ telle que $\gamma(0) = x$ et $\gamma(1) = y$.

- (A) Définir ce que signifie «X est connexe».
- (B) Démontrer que si X est connexe par arcs, alors X est connexe.

EXERCICE 1 (5 pts). — On associe à chaque $\alpha \in \mathbb{R}$ une application $f_{\alpha} : \mathbb{R}^2 \to \mathbb{R}$ de classe C^{∞} en posant $f_{\alpha}(x,y) := x^2 + y^3 - 2xy - \alpha y^2, x, y \in \mathbb{R}$.

- (A) Déterminer le gradient et la matrice hessienne de f_{α} en chaque $(x,y) \in \mathbb{R}^2$.
- (B) Déterminer les points critiques de f_{α} . Déterminer en lesquels de ces points f_{α} admet un extremum local, et énoncer le théorème qui justifie votre réponse.
- (C) Montrer que la restriction de f_{α} au carré fermé $[0,1] \times [0,1]$ prend une plus petite valeur m_{α} et une plus grande valeur M_{α} .
- (D) Déterminer m_0 et M_0 .

EXERCICE 2 (6 pts). — Soient $f, g : \mathbb{R} \to \mathbb{R}$ deux fonctions de classe C^1 . On suppose $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, f'(x) \neq g'(y)$. On définit l'application F de classe C^1 par $F : \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \mapsto (x + y, f(x) + g(y))$.

- (A) Calculer la matrice jacobienne de F en chaque $(x,y) \in \mathbb{R}^2$, et montrer qu'elle est inversible.
- (B) Enoncer le théorème d'inversion locale. A l'aide de (A), en déduire que $F(\mathbb{R}^2)$ est ouvert.
- (C) Montrer que pour tous réels a < b il existe a < c < b et a < d < b tels que f(b) f(a) = (b-a)f'(c) et g(b) g(a) = (b-a)g'(c). En déduire que F est injective.
- (C) On suppose de plus : pour tout compact K de \mathbb{R} , la partie $f^{-1}(K)$ de \mathbb{R} est compacte et g est bornée. Soit $((x_n, y_y))_n$ une suite dans \mathbb{R}^2 telle que $(F(x_n, y_n))_n$ est convergente. Montrer que $(x_n)_n$ et $(y_n)_n$ sont toutes deux bornées dans \mathbb{R} . En déduire que $F(\mathbb{R}^2)$ est fermé.
- (D) Définir ce qu'est un difféomorphisme $\mathbb{R}^2 \to \mathbb{R}^2$ de classe C^1 . Montrer que F en est un.

EXERCICE 3 (3 pts). — Soit $M \subseteq \mathbb{R}^n$ et $1 \le m \le n$ un entier.

- (A) Enoncer trois définitions équivalentes de ce que signifie «M est une sous-variété différentielle de \mathbb{R}^n , de dimension m, de classe C^1 ».
- (B) En utilisant l'une des ces définitions, montrer que $\mathbb{S}^1 = \mathbb{R}^2 \cap \{(x,y) : x^2 + y^2 = 1\}$ est une sous-variété de \mathbb{R}^2 , de dimension 1, de classe C^1 .