Zusammenfassung Analysis III

© M Tim Baumann, http://timbaumann.info/uni-spicker

Maßtheorie

Problem (Schwaches Maßproblem). Gesucht: Abbildung $\mu: \mathcal{P}(\mathbb{R}^n) \to [\mathbb{R}, \infty]$ mit folgenden Eigenschaften:

- Normierung: $\mu([0,1]^n) = 1$
- Endliche Additivität: Sind $A, B \subset \mathbb{R}^n$ disjunkt, so gilt $\mu(A \cup B) = \mu(A) + \mu(B)$.
- Bewegungsinvarianz: Für eine euklidische Bewegung $f: \mathbb{R}^n \to \mathbb{R}^n$ und $A \subset \mathbb{R}^n$ gilt $\mu(f(A)) = \mu(A)$.

 \mathbf{Satz} (Hausdorff). Das schwache Maßproblem ist für $n \geq 3$ nicht lösbar.

Satz (Banach). Das schwache Maßproblem ist für n=1,2 lösbar, aber nicht eindeutig lösbar.

Problem (Starkes Maßproblem). Gesucht ist eine Abbildung $\mu: \mathcal{P}(\mathbb{R}^n) \to [0,\infty]$ wie im schwachen Maßproblem, die anstelle der endlichen Additivität die Eigenschaft der σ -Additivität besitzt:

• Für eine Folge $(A_n)_{n\in\mathbb{N}}$ pw. disjunkter Teilmengen des \mathbb{R}^n ist

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n=0}^{\infty}\mu(A_n).$$

Satz. Das starke Maßproblem besitzt keine Lösung.

Notation. Sei im Folgenden Ω eine Menge.

Definition. $\mathfrak{R} \subset \mathcal{P}(\Omega)$ heißt Ring, wenn für alle $A, B \in \mathfrak{R}$ gilt:

- $\emptyset \in \Re$ Abgeschlossenheit unter Differenzen: $A \setminus B \in \Re$
- Abgeschlossenheit unter endlichen Vereinigungen: $A \cup B \in \Re$

Definition. $\mathfrak{A} \subset \mathcal{P}(\Omega)$ heißt **Algebra**, wenn für alle $A, B \in \mathfrak{A}$ gilt:

- $\emptyset \in \mathfrak{A}$ Abgeschlossenheit unter Komplementen: $A^c = \Omega \setminus A \in \mathfrak{A}$
- Abgeschlossenheit unter endlichen Vereinigungen: $A \cup B \in \mathfrak{A}$

Definition. Eine Algebra $\mathfrak{A} \subset \mathcal{P}(\Omega)$) heißt σ -Algebra, wenn \mathfrak{A} unter abzählbaren Vereinigungen abgeschlossen ist, d. h. für jede Folge $(A_n)_{n\in\mathbb{N}}$ in \mathfrak{A} gilt $\bigcup_{n\in\mathbb{N}} A_n \in \mathfrak{A}$.

Bemerkung. • Jede Algebra ist auch ein Ring.

- Ein Ring $\mathfrak{R}\subset\mathcal{P}(\Omega)$ ist auch unter endlichen Schnitten abgeschlossen, da $A\cap B=A\setminus(B\setminus A)\in\mathfrak{R}$
- Ein Ring $\mathfrak{R} \subset \mathcal{P}(\Omega)$ ist genau dann eine Algebra, wenn $\Omega \in \mathfrak{R}$
- Eine σ -Algebra $\mathfrak{A} \subset \mathcal{P}(\Omega)$ ist auch unter abzählbaren Schnitten abgeschlossen: Sei $(A_n)_{n \in \mathbb{N}}$ eine Folge in \mathfrak{A} , dann gilt

$$\bigcap_{n\in\mathbb{N}} A_n = \left(\bigcup_{n\in\mathbb{N}} (A_n)^c\right)^c \in \mathfrak{A}$$

Notation. Sei im Folgenden $\mathfrak{R} \subset \mathcal{P}(\Omega)$ ein Ring.

Satz. Sei $(A_i)_{i\in I}$ eine Familie von Ringen / Algebren / σ -Algebren über Ω . Dann ist auch $\cap_{i\in I}A_i$ ein Ring / eine Algebra / eine σ -Algebra über Ω .

Definition. Sei $E \subset \mathcal{P}(\Omega)$. Setze

$$\mathcal{R}(E) := \{ \mathfrak{R} \subset \mathcal{P}(\Omega) \mid E \subset \mathfrak{R}, \mathfrak{R} \text{ Ring} \} \text{ und}$$
$$\mathcal{A}(E) := \{ \mathfrak{A} \subset \mathcal{P}(\Omega) \mid E \subset \mathfrak{A}, \mathfrak{A} \text{ } \sigma\text{-Algebra} \}.$$

 $\begin{array}{ll} \text{Dann heißen} & \mathfrak{R}(E) \coloneqq \bigcap_{\mathfrak{R} \in \mathcal{R}(E)} \mathfrak{R}, & \mathfrak{A}(E) \coloneqq \bigcap_{\mathfrak{A} \in \mathcal{A}(E)} \mathfrak{A} \end{array}$

von E erzeugter Ring bzw. von E erzeugte σ -Algebra.

Definition. Ist (Ω, \mathcal{O}) ein topologischer Raum, dann heißt $\mathfrak{B} = \mathfrak{B}(\Omega, \mathcal{O}) := \mathfrak{A}(\mathcal{O})$ Borelsche σ -Algebra von (Ω, \mathcal{O}) .

Bemerkung. Die Borelsche σ-Algebra $\mathfrak{B}(\mathbb{R})$ wird auch erzeugt von $\{I\subset\mathbb{R}\mid I$ Intervall $\}$. Dabei spielt es keine Rolle, ob man nur geschlossene, nur offene, nur nach einer Seite halboffene Intervalle oder gar nur Intervalle obiger Art mit Endpunkten in \mathbb{Q} zulässt.

Definition. Eine Funktion $\mu: \mathfrak{R} \to [0, \infty]$ heißt **Inhalt** auf \mathfrak{R} , falls

 $\bullet \ \mu(\emptyset) = 0 \quad \bullet \ \mu(A \sqcup B) = \mu(A) + \mu(B) \text{ für disjunkte } A, B \in \Re.$

Definition. Ein Inhalt $\mu: \mathfrak{R} \to [0, \infty]$ heißt **Prämaß** auf \mathfrak{R} , wenn μ σ-additiv ist, d. h. wenn für jede Folge $(A_n)_{n \in \mathbb{N}}$ paarweise disjunkter Elemente von \mathfrak{R} mit $\bigsqcup_{n \in \mathbb{N}} A_n \in \mathfrak{R}$ gilt:

$$\mu\left(\bigsqcup_{n\in\mathbb{N}}A_n\right)=\sum_{n=0}^{\infty}\mu(A_n)$$

Definition. Ein Maß ist ein Prämaß auf einer σ -Algebra.

Satz. Für einen Inhalt μ auf \Re gilt für alle $A, B \in \Re$:

- $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$
- $A \subset B \implies \mu(A) < \mu(B)$ (Monotonie)
- Aus $A \subset B$ und $\mu(B) < \infty$ folgt $\mu(B \setminus A) = \mu(B) \mu(A)$
- Für $A_1,...,A_n \in \Re$ ist $\mu\left(\bigcup_{i=1}^n A_i\right) \leq \sum_{i=1}^n \mu(A_i)$ (Subadditivität)
- Ist $(A_n)_{n\in\mathbb{N}}$ eine Folge disjunkter Elemente aus \mathfrak{R} , sodass $\bigsqcup_{n\in\mathbb{N}}A_n\in\mathfrak{R}, \text{ so gilt } \mu(\bigsqcup_{n\in\mathbb{N}}A_n)\geq\sum_{n=0}^{\infty}\mu(A_n).$

Definition. Ein Inhalt / Maß auf einem Ring \mathfrak{R} / einer σ -Algebra \mathfrak{A} heißt endlich, falls $\mu(A) < \infty$ für alle $A \in \mathfrak{R}$ bzw. $A \in \mathfrak{A}$.

Satz. Ein Maß auf einer σ -Algebra $\mathfrak A$ ist σ -subadditiv, d. h. es gilt

$$\mu(\bigcup_{n\in\mathbb{N}} A_n) \le \sum_{n=0}^{\infty} \mu(A_n)$$
 für alle Folgen $(A_n)_{n\in\mathbb{N}}$ in \mathfrak{A} .

Definition. Sei $A \subset \Omega$. Dann heißt die Abbildung

$$\chi_A = \mathbbm{1}_A : \Omega \to \mathbb{R}, \quad \omega \mapsto |\{\star \, | \, \omega \in A\}| = \begin{cases} 1, & \text{falls } \omega \in A \\ 0, & \text{falls } \omega \not \in A \end{cases}$$

Indikatorfunktion oder charakteristische Funktion von A.

Definition. Eine Folge $(A_n)_{n\in\mathbb{N}}$ konvergiert gegen $A\subset\Omega$, notiert $\lim_{n\to\infty}A_n=A$, wenn $(\mathbbm{1}_{A_n})_{n\in\mathbb{N}}$ punktweise gegen $\mathbbm{1}_A$ konvergiert.

Definition. Für eine Folge $(A_n)_{n\in\mathbb{N}}$ in $\mathcal{P}(\Omega)$ heißen

 $\limsup_{n\to\infty} A_n := \{\omega \in \Omega \,|\, \omega \text{ liegt in unendlich vielen } A_n\}$

 $\liminf_{n\to\infty}A_n:=\{\omega\in\Omega\,|\,\omega\text{ liegt in allen bis auf endlich vielen }A_n\}$

Limes Superior bzw. Limes Inferior der Folge A_n . Es gilt

$$\limsup_{n \to \infty} A_n = \bigcap_{n=0}^{\infty} \bigcup_{k=n}^{\infty} A_n, \quad \liminf_{n \to \infty} A_n = \bigcup_{n=0}^{\infty} \bigcap_{k=n}^{\infty} A_n.$$

Satz. Es gilt $\lim_{n\to\infty} A_n = A \iff \liminf_{n\to\infty} A_n = \limsup_{n\to\infty} A_n = A$.

Definition. Eine Folge $(A_n)_{n\in\mathbb{N}}$ in $\mathcal{P}(\Omega)$ heißt

- monoton wachsend, wenn für alle $n \in \mathbb{N}$ gilt $A_n \subset A_{n+1}$,
- monoton fallend, wenn für alle $n \in \mathbb{N}$ gilt $A_n \supset A_{n+1}$.

Satz. Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge in $\mathcal{P}(\Omega)$.

- Ist (A_n) monoton wachsend, so gilt $\lim_{n\to\infty} A_n = \bigcup_{n\in\mathbb{N}} A_n$.
- Ist (A_n) monoton fallend, so gilt $\lim_{n\to\infty} A_n = \bigcap_{n\in\mathbb{N}} A_n$.

Satz. Sei μ ein Inhalt auf $\mathfrak{R} \subset \mathcal{P}(\Omega)$. Wir betrachten die Aussagen:

- (i) μ ist ein Prämaß auf \Re .
- (ii) Stetigkeit von unten: Für jede monoton wachsende Folge $(A_n)_{n\in\mathbb{N}} \text{ in } \Re \text{ mit } A \coloneqq \lim_{n\to\infty} A_n = \bigcup_{n=0}^\infty A_n \in \Re \text{ gilt } \\ \lim_{n\to\infty} \mu(A_n) = \mu(A).$
- (iii) Stetigkeit von oben: Für jede monoton fallende Folge $(A_n)_{n\in\mathbb{N}}$ in \mathfrak{R} mit $\mu(A_0)<\infty$ und $A:=\lim_{n\to\infty}A_n=\bigcap_{n=0}^\infty A_n\in\mathfrak{R}$ gilt $\lim_{n\to\infty}\mu(A_n)=\mu(A).$
- (iv) Für jede monoton fallende Folge $(A_n)_{n\in\mathbb{N}}$ in \mathfrak{R} mit $\mu(A_0)<\infty$ und $\lim_{n\to\infty}A_n=\bigcap_{n=0}^\infty A_n=\emptyset$ gilt $\lim_{n\to\infty}\mu(A_n)=0$.

Dann gilt (i) \iff (ii) \implies (iii) \iff (iv). Falls μ endlich ist, so gilt auch (iii) \implies (ii).

Satz. Sei μ ein Maß auf einer σ -Algebra $\mathfrak{A} \subset \mathcal{P}(\Omega)$. Dann gilt:

- Für eine Folge $(A_n)_{n\in\mathbb{N}}$ in \mathfrak{A} gilt $\mu\left(\liminf_{n\to\infty}A_n\right)\leq \liminf_{n\to\infty}(\mu(A_n))$.
- Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge in \mathfrak{A} , sodass es ein $N\in\mathbb{N}$ gibt mit $\mu\left(\bigcup_{n=N}^{\infty}A_n\right)<\infty$, dann gilt $\mu\left(\limsup_{n\to\infty}A_n\right)\geq\limsup_{n\to\infty}\mu(A_n)$. • Sei μ endlich und $(A_n)_{n\in\mathbb{N}}$ eine Folge in \mathfrak{A} , dann gilt
- Sei μ endlich und $(A_n)_{n\in\mathbb{N}}$ eine Folge in \mathfrak{A} , dann gilt $\mu\left(\liminf_{n\to\infty}A_n\right)\leq \liminf_{n\to\infty}\mu(A_n)\leq \limsup_{n\to\infty}\mu(A_n)\leq \mu\left(\limsup_{n\to\infty}A_n\right)$
- Sei μ endlich und $(A_n)_{n\in\mathbb{N}}$ eine gegen A konvergente Folge in \mathfrak{A} , dann gilt $A\in\mathfrak{A}$ und $\mu(A)=\lim_{n\to\infty}\mu(A_n)$.

Definition. Ein Inhalt auf einem Ring $\mathfrak{R} \subset \mathcal{P}(\Omega)$ heißt σ -endlich, wenn gilt: Es gibt eine Folge $(S_n)_{n \in \mathbb{N}}$ in \mathfrak{R} , sodass

$$\Omega = \bigcup_{n \in \mathbb{N}} S_n$$
 und $\mu(S_n) < \infty$ für alle $n \in \mathbb{N}$.

Definition. Eine Funktion $f: \Omega \to \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ wird numerische Funktion genannt.

Definition. Eine numerische Funktion $\mu^* : \mathcal{P}(\Omega) \to \overline{\mathbb{R}}$ heißt äußeres Maß auf Ω , wenn gilt:

- $\mu^*(\emptyset) = 0$ $A \subset B \implies \mu^*(A) \le \mu^*(B)$ (Monotonie)
- Für eine Folge $(A_n)_{n\in\mathbb{N}}$ in $\mathcal{P}(\Omega)$ gilt $\mu^*\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq \sum_{n=0}^{\infty}\mu^*(A_n)$.

Bemerkung. Wegen $\mu^*(\emptyset) = 0$ und der Monotonie nimmt ein äußeres Maß nur Werte in $[0, \infty]$ an.

Definition. Eine Teilmenge $A \subset \Omega$ heißt μ^* -messbar, falls

$$\mu^*(Q) = \mu^*(Q \cap A) + \mu^*(Q \setminus A)$$
 für alle $Q \subset \Omega$.

Satz (Carathéodory). Für ein äußeres Maß $\mu^* : \mathcal{P}(\Omega) \to [0, \infty]$ ist

- $\mathfrak{A}^* := \{A \subset \Omega \mid A \text{ ist } \mu^*\text{-messbar }\}$ eine σ -Algebra und
- $\mu^*|_{\mathfrak{A}^*}$ ist ein Maß auf \mathfrak{A}^* .

Satz (Fortsetzungssatz). Sei μ ein Prämaß auf einem Ring \mathfrak{R} , dann gibt es ein Maß $\tilde{\mu}$ auf der von \mathfrak{R} erzeugten σ -Algebra $\mathfrak{A}(\mathfrak{R})$ mit $\tilde{\mu}|_{\mathfrak{R}} = \mu$. Falls μ σ -endlich, so ist $\tilde{\mu}$ eindeutig bestimmt.

Bemerkung. Im Beweis wird ein äußeres Maß auf Ω so definiert:

$$\mathfrak{U}(Q) := \left\{ (A_n)_{n \in \mathbb{N}} \, \middle| \, Q \subset \bigcup_{n=0}^{\infty} A_n \text{ und } A_n \text{ Folge in } \mathfrak{R} \right\},$$
$$\mu^*(Q) := \inf \left(\left\{ \sum_{i=0}^{\infty} \mu(A_n) \, \middle| \, (A_n)_{n \in \mathbb{N}} \in \mathfrak{U}(Q) \right\} \cup \{\infty\} \right).$$

Das äußere Maß μ^* eingeschränkt auf $\mathfrak{A}^* \supset \mathfrak{A}(\mathfrak{R})$ ist ein Maß.

Satz. Sei $(\Omega, \mathfrak{A}, \mu)$ ein σ -endlicher Maßraum und \mathcal{E} ein Erzeuger von \mathfrak{A} , der unter Schnitten abgeschlossen ist. Es gebe eine Folge $(E_n)_{n\in\mathbb{N}}$ mit $E_n \uparrow \Omega$ und $\mu(E_n) < \infty$ für jedes $n \in \mathbb{N}$. Dann ist μ durch die Werte auf \mathcal{E} eindeutig festgelegt.

Das Lebesgue-Borel-Maß

Notation. Für $a = (a_1, ..., a_n)$ und $b = (b_1, ..., b_n)$ schreibe

- $a \triangleleft b$, falls $a_j < b_j$ für alle j = 1, ..., n.
- $a \leq b$, falls $a_j \leq b_j$ für alle j = 1, ..., n.

Definition. Für $a, b \in \mathbb{R}^n$ heißen

$$]a,b[:= \{x \in \mathbb{R}^n \mid a \triangleleft x \triangleleft b\}, \quad \mu(]a,b[) := \prod_{j=1}^n (b_j - a_j)$$

Elementarquader und Elementarinhalt. Sei im Folgenden $\mathcal E$ die Menge aller Elementarquader.

Satz. Für alle $A \in \mathfrak{R}(\mathcal{E})$ gibt es paarweise disjunkte Elementarquader $Q_1,...,Q_p \in \mathcal{E}$ sodass $A = Q_1 \sqcup ... \sqcup Q_p$.

Definition. Für $A \in \mathfrak{R}(\mathcal{E})$ setze $\mu(A) := \sum_{i=1}^{p} \mu(Q_i)$, wenn $A = Q_1 \sqcup ... \sqcup Q_p$ für paarweise disjunkte $Q_1, ..., Q_p$.

Satz. μ definiert ein Prämaß auf $\mathfrak{R}(\mathcal{E})$, genannt das Lebesgue-Borel-Prämaß auf \mathbb{R}^n .

Definition. Die eindeutige (da μ σ -endlich) Fortsetzung $\tilde{\mu}$ von μ auf $\mathfrak{A}(\mathcal{E}) = \mathfrak{B}(\mathbb{R}^n)$ wird **Lebesgue-Borel-Maß** genannt.

Bemerkung. Nur das Lebesgue-Borel-Maß ist ein Maß auf $\mathfrak{B}(\mathbb{R}^n)$. welches jedem Elementarquader seinen Elementarinhalt zuordnet.

Definition. Sei μ ein Maß auf einer σ -Algebra $\mathfrak{A} \subset \mathcal{P}(\Omega)$. Eine Menge $N \subset \Omega$ heißt (μ) -Nullmenge, wenn es $A \in \mathfrak{A}$ gibt mit $N \subset A$ und $\mu(A) = 0$. Die Menge aller Nullmengen ist $\mathfrak{N}_{\mu} \subset \mathcal{P}(\Omega)$.

Definition. Sei μ das Lebesgue- Borel-Maß auf $\mathfrak{B}(\mathbb{R}^n)$. Dann heißt die von $\mathfrak{B}(\mathbb{R}^n)$ und den entsprechenden Nullmengen erzeugte σ-Algebra $\tilde{\mathfrak{A}}_{\mu}$ Lebesguesche σ-Algebra, notiert $\mathfrak{L}(\mathbb{R}^n)$, und das fortgesetzte Maß Lebesgue-Maß.

Definition. Sei Ω eine Menge und $\mathfrak{A} \subset \mathcal{P}(\Omega)$ eine σ -Algebra auf Ω , sowie ggf. μ ein Maß auf \mathfrak{A} . Dann heißt

- das Tupel (Ω, \mathfrak{A}) messbarer Raum,
- das Tripel $(\Omega, \mathfrak{A}, \mu)$ Maßraum.

Definition. Seien (Ω, \mathfrak{A}) und (Ω', \mathfrak{A}') zwei messbare Räume. Eine Abbildung $f: \Omega \to \Omega'$ heißt **messbar** oder genauer $(\mathfrak{A}, \mathfrak{A}')$ -messbar, wenn für alle $A' \in \Omega'$ gilt $f^{-1}(A') \in \Omega$ oder, kürzer, $f^{-1}(\mathfrak{A}') \subset \mathfrak{A}$.

Bemerkung. Die messbaren Räume bilden eine Kategorie mit messbaren Abbildungen als Morphismen, d. h. die Identitätsabbildung von einem messbaren Raum zu sich selbst ist messbar und die Verkettung zweier messbarer Abbildungen ist messbar.

Satz. • Seien (Ω, \mathfrak{A}) ein messbarer Raum, Ω' eine Menge und $f: \Omega \to \Omega'$ eine Abbildung. Die größte σ -Algebra auf Ω' , sodass f messbar ist, ist dann $\mathfrak{A}' := \{A' \subset \Omega' \mid f^{-1}(A') \in \mathfrak{A}\}.$

- Ist Ω eine Menge und (Ω', \mathfrak{A}') ein messbarer Raum sowie $f: \Omega \to \Omega'$ eine Abbildung. Dann ist $f^{-1}(\mathfrak{A}')$ eine σ -Algebra.
- Seien I eine Indexmenge, Ω eine Menge, $(\Omega_i, \mathfrak{A}_i), i \in I$ messbare Räume und $f_i : \Omega \to \Omega_i$ Abbildungen, dann ist

$$\mathfrak{A} := \mathfrak{A} \left(\bigcup_{i \in I} f_i^{-1}(\mathfrak{A}_i) \right)$$

die kleinste σ -Algebra auf Ω , sodass alle Abbildungen $f_i, i \in I$, messbar sind. Diese σ -Algebra wird die von der Familie $\{f_i \mid i \in I\}$ erzeugte σ -Algebra genannt.

Satz. Sei $f:\Omega\to\Omega'$ eine Abbildung und $\mathcal{E}'\subset\mathcal{P}(\Omega'),$ dann ist

$$\mathfrak{A}(f^{-1}(\mathcal{E}')) = f^{-1}(\mathfrak{A}(\mathcal{E}')).$$

Satz. Sei (Ω, \mathfrak{A}) ein messbarer Raum und $f : \Omega \to \Omega'$ eine Abbildung, sowie $\mathcal{E}' \subset \mathcal{P}(\Omega')$. Dann gilt:

$$f$$
 ist $(\mathfrak{A},\mathfrak{A}(\mathcal{E}'))$ -messbar $\iff f^{-1}(\mathcal{E}') \subset \mathfrak{A}$

Satz. Seien (Ω, \mathcal{O}) und (Ω', \mathcal{O}') zwei topologische Räume und $\mathfrak{A} := \mathfrak{A}(\mathcal{O})$ bzw. $\mathfrak{A}' := \mathfrak{A}(\mathcal{O}')$ die dazugehörigen Borelschen σ -Algebren. Dann ist jede stetige Abbildung $f: \Omega \to \Omega'$ $(\mathfrak{A}, \mathfrak{A}')$ -messbar.

 $\begin{array}{l} \textbf{Satz} \ (\text{Projektionssatz}). \ \ \text{Seien} \ I \ \text{eine Indexmenge}, \ (\Omega_0,\mathfrak{A}_0) \ \text{sowie} \\ (\Omega_i,\mathfrak{A}_i), \ i \in I \ \text{messbare R\"{a}ume} \ \text{und} \ \Omega \ \text{eine Menge}. \ \text{Seien} \\ g_i: \Omega \to \Omega_i, i \in I \ \text{und} \ f: \Omega_0 \to \Omega \ \text{Abbildungen}. \ \text{Wir setzen} \\ \mathfrak{A} := \mathfrak{A} \left(\bigcup_{i \in I} g_i^{-1}(\mathfrak{A}_i)\right) . \ \text{Dann sind folgende Aussagen} \ \ \text{\"{a}quivalent}: \end{array}$

- f ist $(\mathfrak{A}_0, \mathfrak{A})$ -messbar.
- Für alle $i \in I$ sind die Abbildungen $g_i \circ f$ $(\mathfrak{A}_0, \mathfrak{A}_i)$ -messbar.

Satz. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum und (Ω', \mathfrak{A}') ein messbarer Raum und $f: \Omega \to \Omega'$ eine messbare Abbildung, dann ist

$$\mu' = f_*(\mu) = \mu \circ f^{-1} : \mathfrak{A}' \to [0, \infty], \quad A' \mapsto \mu(f^{-1}(A'))$$

ein Maß auf (Ω', \mathfrak{A}') , genannt das **Bildmaß** von f.

Bemerkung. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum, (Ω', \mathfrak{A}') und $(\Omega'', \mathfrak{A}'')$ messbare Räume und $f: \Omega' \to \Omega'', g: \Omega \to \Omega'$ messbare Abbildungen, dann gilt $(f \circ g)_* \mu = f_*(g_* \mu)$.

Definition. Die σ -Algebra der Borelmengen auf $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ ist

$$\mathfrak{B}(\overline{\mathbb{R}}) = \{A, A \cup \{+\infty\}, A \cup \{-\infty\}, A \cup \{\pm\infty\} \mid A \in \mathfrak{B}(\mathbb{R})\}.$$

Satz. $\mathfrak{B}(\overline{\mathbb{R}}) = \mathfrak{A}(\{[a,\infty] \mid a \in \mathbb{R}\})$

Notation. Seien $f, g: \Omega \to \overline{\mathbb{R}}$ zwei numerische Funktionen. Setze

$$\{f \leq g\} \coloneqq \{\omega \in \Omega \,|\, f(\omega) \leq g(\omega)\} \subset \Omega$$

und definiere analog $\{f < g\}, \, \{f \geq g\}, \, \{f > g\}, \, \{f = g\}, \, \{f \neq g\}.$

Satz. Für eine numerische Fkt. $f:(\Omega,\mathfrak{A})\to(\overline{\mathbb{R}},\overline{\mathfrak{B}})$ sind äquivalent:

- f ist messbar $\forall a \in \mathbb{R} : \{f \ge a\} = f^{-1}([a, \infty]) \in \mathfrak{A}$
- $\forall a \in \mathbb{R} : \{f > a\} \in \mathfrak{A}$ $\forall a \in \mathbb{R} : \{f \leq a\} \in \mathfrak{A}$
- $\forall a \in \mathbb{R} : \{f < a\} \in \mathfrak{A}$

Satz. Für zwei numerische Funktionen $f, q: (\Omega, \mathfrak{A}) \to (\overline{\mathbb{R}}, \overline{\mathfrak{B}})$ gilt:

- $\{f < g\} \in \mathfrak{A}$ $\{f > g\} \in \mathfrak{A}$ $\{f = g\} \in \mathfrak{A}$
- $\{f < q\} \in \mathfrak{A}$ $\{f > q\} \in \mathfrak{A}$ $\{f \neq q\} \in \mathfrak{A}$

Satz. Seien $f, g: (\Omega, \mathfrak{A}) \to (\overline{\mathbb{R}}, \overline{\mathfrak{B}})$ messbare numerische Funktionen und $\lambda, \mu \in \mathbb{R}$. Dann auch messbar (‡: falls $0 \notin \operatorname{Bild}(f)$):

•
$$\lambda \cdot f$$
 • $f + \mu \cdot g$ • $f \cdot g$ • $\frac{1}{f}$ (‡) • $\frac{g}{f}$ (‡)

Satz. Seien $f_n:(\Omega,\mathfrak{A})\to(\overline{\mathbb{R}},\overline{\mathfrak{B}}), n\in\mathbb{N}$ messbare numerische Funktionen, dann auch messbar:

• $\sup_{n\in\mathbb{N}} f_n$ • $\inf_{n\in\mathbb{N}} f_n$ • $\liminf_{n\in\mathbb{N}} f_n$ • $\limsup_{n\in\mathbb{N}} f_n$ Dabei werden Infimum, Supremum, usw. punktweise gebildet.

Satz. Seien $f_1, ..., f_n : (\Omega, \mathfrak{A}) \to (\overline{\mathbb{R}}, \overline{\mathfrak{B}})$ messbare numerische Fktn., dann sind auch $\max(f_1, ..., f_n)$ und $\min(f_1, ..., f_n)$ messbar.

Definition. Für $f:\Omega\to\overline{\mathbb{R}}$ heißen die Funktionen

- $|f| := \max(f, -f) : \Omega \to [0, \infty]$ Betrag von f
- $f^+ := \max(f,0) : \Omega \to [0,\infty]$ Positivteil von f
- $f^- := -\min(f, 0) : \Omega \to [0, \infty]$ Negativteil von f

Bemerkung. $f = f^{+} - f^{-} \text{ und } |f| = f^{+} + f^{-}$

Satz. Falls $f:(\Omega,\mathfrak{A})\to(\overline{\mathbb{R}},\overline{\mathfrak{B}})$ messbar, dann auch |f|, f^+ und f^- .

Das Lebesguesche Integral

Definition. Eine Funktion $f:(\Omega, \mathfrak{A}) \to (\mathbb{R}, \mathfrak{B})$ heißt **einfache Funktion** oder **Elementarfunktion** auf (Ω, \mathfrak{A}) , wenn gilt:

• f ist messbar

• $f(\Omega) \subset [0, \infty[$ • $f(\Omega)$ ist endlich

• f ist messbar • $f(\Omega) \subset [0, \infty[$ • $f(\Omega)$ ist endly Die Menge aller einfachen Funktionen auf (Ω, \mathfrak{A}) ist $\mathbb{E}(\Omega, \mathfrak{A})$.

Definition. Sei $f \in \mathbb{E}(\Omega, \mathfrak{A})$ und $\Omega = A_1 \sqcup ... \sqcup A_k$ eine disjunkte Vereinigung von Mengen mit $A_j \in \mathfrak{A}$ für alle j = 1, ..., k, sodass $f(A_j) = \{y_j\}$, dann heißt die Darstellung

$$f = \sum_{j=1}^{k} y_j \cdot \mathbb{1}_{A_j}$$
 kanonische Darstellung.

Bemerkung. Die kanonische Darstellung ist nicht eindeutig.

Satz. Seien $f, g \in \mathbb{E}(\Omega, \mathfrak{A})$ und $a \geq 0$. Dann auch in $\mathbb{E}(\Omega, \mathfrak{A})$:

$$\bullet \ f + g \qquad \bullet \ f \cdot g \qquad \bullet \ \max(f,g) \ \bullet \ \min(f,g) \ \bullet \ a \cdot f$$

Definition. Sei $f \in \mathbb{E}(\Omega, \mathfrak{A})$ und $f = \sum\limits_{j=1}^k y_j \mathbbm{1}_{A_j}$ eine kanonische

Darstellung von f. Sei ferner μ ein Maß auf $\mathfrak A$. Dann heißt die Größe

$$\int\limits_{\Omega} f \,\mathrm{d}\mu \coloneqq \sum_{j=1}^k y_j \mu(A_j) \quad \textbf{Lebesgue-Integral} \text{ von } f \text{ bzgl. } \mu.$$

Bemerkung. Obige Größe ist wohldefiniert, d. h. unabhängig von der kanonischen Darstellung.

Satz. Seien $f, g \in \mathbb{E}(\Omega, \mathfrak{A})$, μ ein Maß auf \mathfrak{A} und $\alpha \geq 0$, dann gilt

•
$$\int_{\Omega} (\alpha \cdot f + g) d\mu = \alpha \cdot \int_{\Omega} f d\mu + \int_{\Omega} g d\mu$$
 (Linearität)

• Falls
$$g \le f$$
, dann $\int_{\Omega} g \, d\mu \le \int_{\Omega} f \, d\mu$ (Monotonie)

Satz. Angenommen, die Funktionen $f_n \in \mathbb{E}(\Omega, \mathfrak{A}, \mu), n \in \mathbb{N}$ bilden eine monoton wachsende Funktionenfolge und für $g \in \mathbb{E}(\Omega, \mathfrak{A})$ gilt $g \leq \sup_{n \in \mathbb{N}} f_n$, dann gilt $\int_{\Omega} g \, \mathrm{d} \mu \leq \sup_{n \in \mathbb{N}} \int_{\Omega} f_n \, \mathrm{d} \mu$.

Korollar. Seien $f_n, g_n \in \mathbb{E}(\Omega, \mathfrak{A}), n \in \mathbb{N}$ und die Funktionenfolgen f_n und g_n monoton wachsend mit $\sup_{n \in \mathbb{N}} f_n = \sup_{n \in \mathbb{N}} g_n$. Dann gilt

$$\sup_{n \in \mathbb{N}} \int_{\Omega} f_n \, \mathrm{d}\mu = \sup_{n \in \mathbb{N}} \int_{\Omega} g_n \, \mathrm{d}\mu.$$

Definition. Sei $\overline{\mathbb{E}}(\Omega, \mathfrak{A})$ die Menge aller Funktionen $f: \Omega \to \overline{\mathbb{R}}$, die Grenzfunktionen (pktw. Konvergenz) monoton wachsender Funktionenfolgen in $\mathbb{E}(\Omega, \mathfrak{A})$ sind.

Definition. Für eine Funktion $f \in \overline{\mathbb{E}}(\Omega, \mathfrak{A})$ (d. h. es existiert eine Folge $(g_n)_{n \in \mathbb{N}}$ in $\mathbb{E}(\Omega, \mathfrak{A})$ mit $f = \sup_{n \in \mathbb{N}} g_n$) und ein Maß μ auf \mathfrak{A} heißt

$$\smallint_{\Omega} f \, \mathrm{d} \mu \coloneqq \sup_{n \in \mathbb{N}} \smallint_{\Omega} g_n \, \mathrm{d} \mu \quad \mathbf{Lebesgue\text{-}Integral} \text{ von } f \text{ bzgl. } \mu.$$

Satz. $\overline{\mathbb{E}}(\Omega, \mathfrak{A}) = \{ f : (\Omega, \mathfrak{A}) \to (\overline{\mathbb{R}}, \mathfrak{B}) \mid f \text{ messbar und } f \geq 0 \}$

Satz. Die Eigenschaften des Integrals für einfache Funktionen (Linearität, Monotonie) übertragen sich auf das Lebesgue-Integral.

Satz (Satz von der monotonen Konvergenz). Sei $(f_n)_{n\in\mathbb{N}}$ eine monoton wachsende Folge von Funktionen in $\overline{\mathbb{E}}(\Omega,\mathfrak{A})$, dann gilt für $f:=\lim_{n\to\infty}f_n=\sup_{n\in\mathbb{N}}f_n\in\overline{\mathbb{E}}(\Omega,\mathfrak{A})$ und jedes Maß μ auf \mathfrak{A} :

$$\lim_{n \to \infty} \iint_{\Omega} f \, d\mu_n = \sup_{n \in \mathbb{N}} \iint_{\Omega} f_n \, d\mu = \iint_{\Omega} f \, d\mu$$

Bemerkung. Die Aussage ist für monoton fallende Fktn. i. A. falsch.

Definition. Eine messbare Funktion $f:(\Omega,\mathfrak{A})\to(\overline{\mathbb{R}},\overline{\mathfrak{B}})$ heißt integrierbar bzw. μ -integrierbar (im Sinne von Lebesgue), falls

$$\int_{\Omega} f^{+} d\mu < \infty \quad \text{und} \quad \int_{\Omega} f^{-} d\mu < \infty.$$

In diesem Fall definieren wir das Lebesgue-Integral von f als

$$\int_{\Omega} f \, \mathrm{d}\mu := \int_{\Omega} f^+ \, \mathrm{d}\mu - \int_{\Omega} f^- \, \mathrm{d}\mu.$$

Notation. $\mathcal{L}^1(\Omega, \mathfrak{A}, \mu) = \mathcal{L}^1(\mu)$ bezeichnet die Menge der μ -integrierbaren Funktionen auf Ω .

Satz. Für eine messbare Fkt. $f:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}},\overline{\mathfrak{B}})$ sind äquivalent:

- $f \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$.
- $|f| \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$.
- $f^+, f^- \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$.
 - $\exists g \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu) \text{ mit } |f| \leq g.$
- Es gibt nicht negative $u, v \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$ mit f = u v.

Im letzten Fall gilt $\int\limits_{\Omega}f\,\mathrm{d}\mu=\int\limits_{\Omega}u\,\mathrm{d}\mu-\int\limits_{\Omega}v\,\mathrm{d}\mu.$

Satz. • $\mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$ ist ein \mathbb{R} -VR und die Abbildung

$$\int : \mathcal{L}^1(\Omega, \mathfrak{A}, \mu) \to \mathbb{R}, \quad f \mapsto \int_{\Omega} f \, d\mu \quad \text{ist linear.}$$

- $f, g \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu) \implies \max(f, g), \min(f, g) \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$
- $f, g \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu), f \leq g \implies \int_{\Omega} f \, \mathrm{d}\mu \leq \int_{\Omega} g \, \mathrm{d}\mu$ (Monotonie)
- $|\iint_{\Omega} d\mu| \leq \iint_{\Omega} |f| d\mu$ für alle $f \in \mathcal{L}^{1}(\Omega, \mathfrak{A}, \mu)$ (\triangle -Ungleichung)

Definition. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum, $A \in \mathfrak{A}$ und $f \in \overline{\mathbb{E}}(\Omega, \mathfrak{A}, \mu)$ oder $f \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$. Dann ist das μ -Integral von f über A

$$\int_{A} f \, \mathrm{d}\mu = \int_{\Omega} (\mathbb{1}_{A} \cdot f) \, \mathrm{d}\mu.$$

Definition. Ein Maßraum $(\Omega, \mathfrak{A}, \mu)$ heißt vollständig, wenn jede Nullmenge $N \subset \Omega$ in \mathfrak{A} liegt.

Definition. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum. Setze

$$\tilde{\mathfrak{N}}_{\mu} := \{ N \subset \Omega \mid N \text{ ist } \mu\text{-Nullmenge } \},$$

$$\tilde{\mathfrak{A}}_{\mu} := \{ A \cup N \mid A \in \mathfrak{A}, \ N \in \tilde{\mathfrak{N}}_{\mu} \}.$$

Dann ist $\tilde{\mathfrak{A}}_{\mu}$ eine σ -Algebra und mit $\tilde{\mu}(A \cup N) := \mu(A)$ ist $(\Omega, \tilde{\mathfrak{A}}_{\mu}, \tilde{\mu})$ ein Maßraum, genannt **Vervollständigung** von $(\Omega, \mathfrak{A}, \mu)$.

Definition. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum und $E(\omega)$ eine Aussage für alle $\omega \in \Omega$. Man sagt, E ist (μ) -fast-überall wahr, wenn $\{\omega \in \Omega \mid \neg E(\omega)\}$ eine Nullmenge ist. Zwei Funktionen $f, g: \Omega \to X$ heißen $(\mu$ -)fast-überall gleich,

Bemerkung. Das Cantorsche Diskontinuum ist eine Menge $C \subset [0,1], C \in \mathfrak{B}$, welche die bemerkenswerte Eigenschaft hat, dass sie gleichzeitig überabzählbar ist und Maß 0 besitzt. Da außerdem $\mathfrak{B} \cong \mathbb{R}$ gilt, folgt $\mathcal{P}(C) \cong \mathcal{P}(\mathbb{R}) \not\cong \mathbb{R} \cong \mathfrak{B}$. Somit gibt es eine Nullmenge $N \subset C$, die nicht in \mathfrak{B} liegt. Es folgt:

Satz. Der Maßraum $(\mathbb{R}, \mathfrak{B}, \mu)$ ist nicht vollständig.

Definition. Sei $(\mathbb{R}^n, \mathfrak{B}_L^n, \lambda)$ die Vervollständigung von $(\mathbb{R}^n, \mathfrak{B}^n, \mu)$, dann heißt \mathfrak{B}_L die **Lebesguesche** σ -Algebra und λ das **Lebesgue-Maß** auf \mathbb{R}^n (analog: $(\mathbb{R}, \overline{\mathfrak{B}}, \lambda)$).

Satz. Sei $f \in \overline{\mathbb{E}}(\Omega, \mathfrak{A}, \mu)$, dann gilt $\int_{\Omega} f \, d\mu = 0 \iff f \stackrel{\text{f.ü.}}{=} 0$.

Satz. Seien $f, g: (\Omega, \mathfrak{A}, \mu) \to (\overline{\mathbb{R}}, \overline{\mathfrak{B}})$ messbar mit $f \stackrel{\text{f.ü.}}{=} g$, dann gilt:

- Wenn $f, g \in \overline{\mathbb{E}}(\Omega, \mathfrak{A})$, dann $\int_{\Omega} f d\mu = \int_{\Omega} g d\mu$.
- Wenn $f \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$, dann $g \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$ mit $\int\limits_{\Omega} f \, \mathrm{d}\mu = \int\limits_{\Omega} g \, \mathrm{d}\mu$.

Satz. Sei $f:(\Omega, \mathfrak{A}, \mu) \to (\overline{\mathbb{R}}, \overline{\mathfrak{B}})$ eine messbare Fkt. und $g \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu), g \geq 0$. Wenn $f \stackrel{\text{f.ü.}}{\leq} g$, dann gilt $f \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$.

Satz (Lemma von Fatou). Sei $(f_n)_{n\in\mathbb{N}}$ eine Funktionenfolge mit f_n μ -integrierbar und $f_n\overset{\text{f.ü.}}{\geq} 0$. Dann $\int\limits_{\Omega} (\liminf_{n\to\infty} f_n) \,\mathrm{d}\mu \leq \liminf_{n\to\infty} \int\limits_{\Omega} f_n \,\mathrm{d}\mu$.

Satz. Sei $(f_n)_{n\in\mathbb{N}}$ Folge messbarer Fkt. $f_n:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}},\overline{\mathfrak{B}})$ und $g\in\mathcal{L}^1(\Omega,\mathfrak{A},\mu),g\geq 0$, sodass $\forall\,n\in\mathbb{N}:|f_n|\stackrel{\mathrm{f.ü.}}{\leq}g$. Dann: $f(\liminf(f_n))\,\mathrm{d}\mu\leq\liminf(f_n\,\mathrm{d}\mu)\leq$

$$\int_{\Omega} (\liminf_{n \to \infty} (f_n)) d\mu \le \liminf_{n \to \infty} (\int_{\Omega} f_n d\mu) \le
\le \limsup_{n \to \infty} (\int_{\Omega} f_n d\mu) \le \int_{\Omega} (\limsup_{n \to \infty} f_n) d\mu.$$

Satz (von der majorisierten Konvergenz). Sei $g \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu), g \geq 0$.

Sei $(f_n)_{n\in\mathbb{N}}$ Folge messbarer Fkt. $f_n:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}},\overline{\mathfrak{B}})$ mit $|f_n|\leq g$ (Majorisierung). Sei ferner $f:\Omega\to\overline{\mathbb{R}}$ $(\mathfrak{A},\overline{\mathfrak{B}})$ -messbar mit

 $f_n \xrightarrow[n \to \infty]{\text{f.ü.}} f$, d. h. $\{\omega \in \Omega \mid \lim_{n \to \infty} f_n(\omega) = f(\omega) \text{ falsch} \}$ ist Nullmenge

Dann ist f integrierbar mit $\int_{\Omega} f \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mu$.

Satz. Sei $f \in \overline{\mathbb{E}}(\Omega, \mathfrak{A}, \mu)$ bzw. $f \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$, $(A_n)_{n \in \mathbb{N}}$ Folge in \mathfrak{A} ,

$$A_n \cap A_m = \emptyset$$
 für $n \neq m, A = \bigsqcup_{n=1}^{\infty} A_n$. Dann:

$$\int_{A} f \, \mathrm{d}\mu \coloneqq \int_{\Omega} f \cdot \mathbb{1}_{A} \, \mathrm{d}\mu = \sum_{n=1}^{\infty} \left(\int_{A_{n}} f \, \mathrm{d}\mu \right).$$

 $\begin{array}{l} \textbf{Satz.} \ \ \text{Seien} \ f, f_j: (\Omega, \mathfrak{A}, \mu) \to (\mathbb{R}, \mathfrak{B}), j \in \mathbb{N} \ \text{messbare Funktionen}, \\ g: (\Omega, \mathfrak{A}, \mu) \to (\mathbb{R}, \mathfrak{B}) \ \text{integrierbar}, \ \text{sodass} \ \left| \sum_{j=1}^n f_j \right|^{f. \ddot{\mathbf{u}}.} \leq g \ \forall n \in \mathbb{N} \ \text{und} \\ f \overset{\text{f. \ddot{\mathbf{u}}.}}{=} \sum_{n=1}^{\infty} f_j. \ \text{Dann sind} \ f, f_j \ \text{integrierbar} \ \text{mit} \ \int\limits_{\Omega} f \ \mathrm{d} \mu = \sum_{j=1}^{\infty} \int\limits_{\Omega} f_j \ \mathrm{d} \mu. \end{array}$

Satz (Ableiten unter Integral). Seien $a, b \in \mathbb{R}$ mit a < b, $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum und sei $f : [a, b[\times \Omega \to (\mathbb{R}, \mathfrak{B})$ eine Funktion, sodass:

- Für alle $t \in [a, b[$ ist die Abbildung $f(t, -): \Omega \to \mathbb{R}$ μ -integrierbar.
- Für alle $\omega \in \Omega$ ist die Abbildung $f(-,\omega): [a,b] \to \mathbb{R}$ diff'bar.
- Es gibt eine Funktion $g \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$ mit $g \geq 0$, sodass für alle $t \in]a, b[$ und fast alle $\omega \in \Omega$ gilt: $|f(-, \omega)'(t)| \leq g(\omega)$.

Dann ist die Funktion $F:]a, b[\to \mathbb{R}, t \mapsto \int_{\Omega} f_t d\mu$ differenzierbar mit $F'(t) = \int_{\Omega} h_t d\mu$, wobei $h_t: \Omega \to \mathbb{R}, \ \omega \mapsto f(-, \omega)'(t)$.

Satz. Sei $f \in \overline{\mathbb{E}}(\Omega, \mathfrak{A}, \mu)$. Dann ist die Abbildung

$$f\mu: \mathfrak{A} \to [0,\infty], \quad A \mapsto \int_A f \,\mathrm{d}\mu$$

ein Maß, genannt Maß mit der Dichte fbzgl. μ oder Stieltjes-Maß zu f.

Zusammenhang mit dem Riemann-Integral

Definition. Eine **Zerlegung** eines Intervalls [a,b] ist eine geordnete endliche Teilmenge $\{a=a_0 < a_1 < ... < a_k = b\} \subset [a,b]$.

Notation. Die Menge aller Zerlegungen von [a, b] ist $\mathcal{Z}([a, b])$.

Definition. Die Feinheit einer Zerlegung $\{a_0,...,a_n\} \in \mathcal{Z}([a,b])$ ist

$$|Z| := \max\{x_j - x_{j-1} \mid j \in \{1, ..., n\}\}.$$

Definition. Für eine beschränkte Funktion $f:[a,b]\to\mathbb{R}$ und eine Zerlegung $Z=\{a_0,...,a_n\}\in\mathcal{Z}([a,b])$ bezeichnen

$$O(f,Z) := \sum_{j=1}^{n} (\sup\{f(x) \mid x \in [x_{j-1}, x_j]\})(x_j - x_{j-1}),$$

$$U(f,Z) := \sum_{j=1}^{n} (\inf\{f(x) \mid x \in [x_{j-1}, x_j]\})(x_j - x_{j-1})$$

die (Darbouxschen) Ober- und Untersummen von f bzgl. Z.

$$O_*(f) := \inf\{O(f, Z) \mid Z \in \mathcal{Z}([a, b])\}\$$

 $U^*(f) := \sup\{U(f, Z) \mid Z \in \mathcal{Z}([a, b])\}\$

Definition. Eine beschränkte Funktion $f:[a,b] \to \mathbb{R}$ heißt Riemann-integrierbar, wenn $O_*(f) = U^*(f)$. In diesem Fall heißt

$$\int_{a}^{b} f(x) dx := O_{*}(f) = U^{*}(f) \quad \text{Riemann-Integral von } f.$$

Notation. Sei $(Z_k)_{k\in\mathbb{N}}$ eine Folge in $\mathcal{Z}([a,b])$ mit $Z_k=\{a_0^k,a_1^k,...,a_{n_k}^k\}$. Für eine beschränkte Funktion $f:[a,b]\to\mathbb{R}$ definieren wir $f^k,f_k,f^*,f_*:[a,b]\to\mathbb{R}$ durch

$$f^k = \sup f([a,a_1^k]) \cdot \mathbbm{1}_{[a,a_1^k]} + \sum_{j=2}^{n_k} \sup f([a_{j-1}^k,a_j^k]) \cdot \mathbbm{1}_{]a_{j-1}^k,a_j^k]},$$

$$f_k = \inf f([a, a_1^k]) \cdot \mathbb{1}_{[a, a_1^k]} + \sum_{j=2}^{n_k} \inf f([a_{j-1}^k, a_j^k]) \cdot \mathbb{1}_{]a_{j-1}^k, a_j^k]}$$

$$f^*(x) = \liminf_{y \to x} f(y) = \lim_{\epsilon \downarrow 0} \inf \{ f(y) \, | \, y \in [x - \epsilon, x + \epsilon] \cap [a, b] \}$$

$$f^*(x) = \limsup_{y \to x} f(y) = \limsup_{\epsilon \downarrow 0} \left\{ f(y) \, | \, y \in [x - \epsilon, x + \epsilon] \cap [a, b] \right\}$$

Bemerkung. Es gilt: $f_* \le f \le f^*$ und $f_*(x_0) = f(x_0) = f^*(x_0)$ für $x_0 \in [a,b]$ genau dann, wenn f in x_0 stetig ist.

Satz. Sei $f:[a,b]\to\mathbb{R}$ beschränkt und $(Z_k)_{k\in\mathbb{N}}$ eine Folge in $\mathcal{Z}([a,b])$ mit $\lim_{n\to\infty}|Z_k|=0$. Dann gilt:

• Sei $R = \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{n_k} \{a_j^k\}$ die Vereinigung aller Zerlegungen $Z_k, k \in \mathbb{N}$. Für alle $x \in [a,b] \setminus R$ gilt dann

$$\lim_{k \to \infty} f^k(x) = f^*(x) \quad \text{und} \quad \lim_{k \to \infty} f_k(x) = f_*(x).$$

• Die Funktionen f^* und f_* sind Borel-messbar und integrierbar bzgl. des Borel-Maßes μ mit

$$\int\limits_{[a,b]} f^* \, \mathrm{d}\mu = O_*(f) \quad \text{und} \quad \int\limits_{[a,b]} f_* \, \mathrm{d}\mu = O^*(f).$$

Satz. Sei $f:[a,b] \to \mathbb{R}$ beschränkt. Dann sind äquivalent:

- f ist Riemann-integrierbar.
- f ist fast-überall stetig (im Sinne des Lebesgue-Borel-Maßes).

Satz. Ist eine beschränkte Funktion $f:[a,b]\to\mathbb{R}$ Riemann-integrierbar, so ist sie auch auf [a,b] Lebesgue-integrierbar bzgl. dem Lebesgue-Maß λ und es gilt

$$\int_{a}^{b} f(x) dx = \int_{[a,b]} f d\lambda.$$

 ${\bf Satz.}\,$ Sei Iein Intervall und $f:I\to\mathbb{R}$ über jedem kompakten Teilintervall von I Riemann-integrierbar. Dann sind äquivalent:

- |f| ist auf I uneigentlich Riemann-integrierbar.
- f ist auf I Lebesgue-integrierbar.

Falls eine der Bedingungen erfüllt ist, so stimmt das Riemann-Integral von f auf I mit dem Lebesgue-Integral von f auf I überein.

Miscellanea

Satz. Sei $f:[a,b]\to\mathbb{R}$ Lebesgue-integrierbar. Dann ist $F:[a,b]\to\mathbb{R}, t\mapsto\int\limits_{[a,t]}f\,\mathrm{d}\lambda$ stetig.

Satz. Sei $f:[a,b]\to\mathbb{R}$ Lebesgue-integrierbar. Wenn $\forall\,t\in[a,b]$ gilt: $\int\limits_{[a,t]}f\,\mathrm{d}\lambda=F(t)=0,\,\mathrm{dann}\,\,f\stackrel{\mathrm{f.ii.}}{=}0.$

Notation. Sei $f: \mathbb{R} \to \mathbb{R}$ eine Abbildung, dann setzen wir

$$C(f) = \{x \in \mathbb{R} \mid f \text{ stetig in } x\} \text{ und }$$

 $D(f) = \{x \in \mathbb{R} \mid f \text{ unstetig in } x\} = \mathbb{R} \setminus C(f).$

Definition. Sei $A \subset \mathbb{R}$, A heißt

- G_{δ} -Menge, wenn gilt: $A = \bigcap_{n \in \mathbb{N}} O_n$, $O_n \otimes \mathbb{R} \ \forall n \in \mathbb{N}$
- F_{σ} -Menge, wenn gilt: $A = \bigcup_{n \in \mathbb{N}} F_n, \ F_n \in \mathbb{R} \ \forall n \in \mathbb{N}$

Bemerkung. A ist G_{δ} -Menge $\iff A^C$ ist F_{σ} -Menge.

Satz (Young). Sei $f : \mathbb{R} \to \mathbb{R}$ eine beliebige Abbildung. Dann ist C(f) eine G_{δ} -Menge (und somit D(f) eine F_{σ} -Menge).

Korollar. Es gibt keine Abbildung $f: \mathbb{R} \to \mathbb{R}$ mit $D(f) = \mathbb{R} \setminus \mathbb{Q}$.

Definition. Ein Maß μ auf $\mathfrak{B}(\mathbb{R}^d)$ heißt translationsinvariant, wenn für jedes $v \in \mathbb{R}^d$ gilt $(T_v)_*\mu = \mu$, wobei $T_v : \mathbb{R}^d \to \mathbb{R}^d$, $x \mapsto x + v$ die Translation um den Vektor v bezeichnet.

Notation. Bezeichne mit μ_{LB} das Borel-Lebesgue-Maß auf \mathbb{R}^d .

Notation. Der Einheitswürfel im \mathbb{R}^d ist $W_1 := [(0, ..., 0), (1, ..., 1)]$.

Satz. Ist μ ein translations invariantes Maß auf $\mathfrak{B}(\mathbb{R}^d)$ mit $\alpha := \mu(W_1) < \infty$, dann gilt $\mu = \alpha \cdot \mu_{LB}$.

Satz. Sei $A \in GL_d(\mathbb{R}) = \{A \in \mathbb{R}^{d \times d} \mid \det A \neq 0\}$, dann gilt $A_* \mu_{LB} = \frac{1}{|\det(A)|} \cdot \mu_{LB}.$

Satz. Das Lebesgue-Borel-Maß μ_{LB} ist invariant unter Transformationen in $\mathrm{SL}_n(\mathbb{R})$. Ferner ist μ_{LB} invariant unter Euklidischen Bewegungen.

Satz (Kurt Hensel). Sei $\Phi: \mathrm{GL}_n(\mathbb{R}) \to (\mathbb{R} \setminus \{0\}, \cdot)$ ein Gruppenhomomorphismus, dann gibt es einen Gruppenautomorphismus $\phi: (\mathbb{R} \setminus \{0\}, \cdot) \to (\mathbb{R} \setminus \{0\}, \cdot)$, sodass $\Phi = \phi \circ \det$.

Satz. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum und $h \in \overline{\mathbb{E}}(\Omega, \mathfrak{A})$. Eine messbare Funktion $f: \Omega \to \overline{\mathbb{R}}$ ist genau dann $h\mu$ -integrierbar, wenn $(f \cdot h)$ μ -integrierbar ist. In diesem Fall gilt

$$\int_{\Omega} f \, \mathrm{d}(h\mu) = \int_{\Omega} f \cdot h \, \mathrm{d}\mu.$$

Obige Gleichung ist auch erfüllt, wenn lediglich $f \in \overline{\mathbb{E}}(\Omega, \mathfrak{A})$ gilt.

Bemerkung. Somit ist $g(h\mu) = (g \cdot h)\mu$.

Satz. Sei $U, \widetilde{U} \subseteq \mathbb{R}^d$, $\phi: U \to \widetilde{u}$ ein \mathcal{C}^1 -Diffeomorphismus, dann gilt:

$$\phi_*^{-1}\mu_{LB}|_{\widetilde{U}} = \underbrace{|\det(D\phi)|}_{U \to \mathbb{R}_{>0} \text{ stetig}} \mu_{LB}|_U$$

Satz. Sei $U, \widetilde{U} \subseteq \mathbb{R}^d$, $\phi: U \to \widetilde{u}$ ein \mathcal{C}^1 -Diffeomorphismus und $Q =]a, b[\subset U$ Elementarquader mit $a \triangleleft b$, dann gilt $\mu_{LB}(Q) \cdot \inf_{q \in Q} |\det D\phi(q)| \le \mu_{LB}(\phi(Q)) \le \mu_{LB}(Q) \cdot \sup_{q \in Q} |\det(D(\phi(q)))|$

Satz (Transformations satz). Sei $U,\widetilde{U} \subseteq \mathbb{R}^d$ und sei $\phi: U \to \widetilde{U}$ ein \mathcal{C}^1 -Diffeomorphismus. Dann ist eine Funktion $f:\widetilde{U} \to \overline{\mathbb{R}}$ genau dann auf \widetilde{U} Lebesgue-Borel-integrierbar, wenn $(f \circ \phi) \cdot |\det(D\phi)| : U \to \overline{\mathbb{R}}$ auf U Lebesgue-Borel-interierbar ist. In diesem Fall gilt

$$\smallint_U (f \circ \phi) \cdot |\mathrm{det}(D\phi)| \ \mathrm{d}\mu_{LB} = \smallint_{\phi(U)} f \ \mathrm{d}\mu_{LB} = \smallint_{\widetilde{U}} f \ \mathrm{d}\mu_{LB}.$$

Obige Gleichung ist auch erfüllt, wenn lediglich $f \in \overline{\mathbb{E}}(\widetilde{U},\mathfrak{B}(\widetilde{U}))$ gilt.

Bemerkung. Im Transformationssatz kann man "Lebesgue-Borel" durch "Lebesgue" ersetzen.

Definition. Seien $(\Omega_j, \mathfrak{A}_j, \mu_j)$ Maßräume für j = 1, ..., n. Die kleinste σ-Algebra \mathfrak{A} auf σ , sodass alle $\Pi_j, j = 1, ..., n$ $(\mathfrak{A}, \mathfrak{A}_j)$ -messbar sind, heißt **Produkt** der σ-Algebren $\mathfrak{A}_1, ..., \mathfrak{A}_n$, notiert $\mathfrak{A} =: \mathfrak{A}_1 \otimes ... \otimes \mathfrak{A}_n$.

Satz. Sei \mathcal{E}_j Erzeugendensystem von $\mathfrak{A}_j, j=1,...,n$, d. h. $\mathfrak{A}(\mathcal{E}_j)=\mathfrak{A}_j$. Annahme: Für alle $j\in\{1,...,n\}$ gibt es eine monoton gegen Ω_j wachsende Folge $(E_t^j)_{k\in\mathbb{N}}$ in \mathcal{E}_j . Dann ist

$$\mathfrak{A}_1 \otimes ... \otimes \mathfrak{A}_n = \mathfrak{A}(\mathcal{E}_1 \times ... \times \mathcal{E}_n)$$
 mit
$$\mathcal{E}_1 \times ... \times \mathcal{E}_n = \{ E_1 \times ... \times E_n \mid E_j \in \mathcal{E}_j, j = 1, ..., n \}.$$

Satz.
$$\mathfrak{B}(\mathbb{R}^n) = \underbrace{\mathfrak{B}(\mathbb{R}) \otimes ... \otimes \mathfrak{B}(\mathbb{R})}_{n\text{-mal}}$$

Satz (Eindeutigkeit von Produktmaßen). Seien $(\Omega_j, \mathfrak{A}_j, \mu_j)$ Maßräume und E_j ein Erzeugendensystem von \mathfrak{A}_j für j=1,...,n. Angenommen, E_j ist stabil unter Schnitten und $\exists (E_k^{(j)})_{k\in\mathbb{N}}\uparrow\Omega_j$ mit $\mu_j(E_k^{(j)})<\infty$ für alle j. Dann gibt es höchstens ein Maß $\nu:\mathfrak{A}_1\otimes\ldots\otimes\mathfrak{A}_n\to[0,\infty]$, sodass für alle $E_j\in\mathcal{E}_j, j\in\{1,...,n\}$ gilt:

$$\nu(E_1 \times ... \times E_n) = \mu_1(E_1) \cdot ... \cdot \mu_n(E_n).$$

Definition. Sei Ω eine Menge. Eine Teilmenge $\mathfrak{D} \subset \Omega$ heißt **Dynkin-System**, wenn gilt:

- $\bullet \ \Omega \in \mathfrak{D} \qquad \bullet \ D \in \mathfrak{D} \implies D^C = \Omega \setminus D \in \mathfrak{D}$
- $(D_n)_{n\in\mathbb{N}}$ Folge pw. disjunkter Mengen in $\mathfrak{D},$ dann: $\bigcup_{n\in\mathbb{N}}D_n\in\mathfrak{D}$

Notation. Seien Ω_1, Ω_2 Mengen, $\Omega \subset \Omega_1 \otimes \Omega_2, \omega_1 \in \Omega_1, \omega_2 \in \Omega_2$

$$Q_{\omega_1} := \{ \omega_2 \in \Omega_2 \, | \, (\omega_1, \omega_2) \in Q \} = \pi_2(\pi_1^{-1}(\{\omega_1\}) \cap Q)$$
$$Q_{\omega_2} := \{ \omega_1 \in \Omega_1 \, | \, (\omega_1, \omega_2) \in Q \} = \pi_1(\pi_2^{-1}(\{\omega_2\}) \cap Q)$$

Satz. $Q \subset \mathfrak{A}_1 \otimes \mathfrak{A}_2, \omega_1 \in \Omega_1, \omega_2 \in \Omega_2 \implies Q_{\omega_1} \in \mathfrak{A}_2, Q_{\omega_2} \in \mathfrak{A}_1.$

Satz. (Cavalieri 1) Seien $(\Omega_1, \mathfrak{A}_1, \mu_1)$ und $(\Omega_2, \mathfrak{A}_2, \mu_2)$ σ -endliche Maßräume, $Q \in \mathfrak{A}_1 \otimes \mathfrak{A}_2$. Dann:

- $h_O^1: \Omega_1 \to [0, \infty], \ \omega_1 \mapsto \mu_2(Q_{\omega_1}) \ \text{ist } (\mathfrak{A}_1, \overline{\mathfrak{B}})$ -messbar.
- $h_Q^2: \Omega_2 \to [0, \infty], \ \omega_2 \mapsto \mu_1(Q_{\omega_2}) \ \text{ist } (\mathfrak{A}_2, \overline{\mathfrak{B}})$ -messbar.

Satz (Existenz von Produktmaßen). Die Abbildungen

$$u_1: \mathfrak{A}_1 \otimes \mathfrak{A}_2 \to [0, \infty], \quad Q \mapsto \int_{\Omega_1} \mu_2(Q\omega_1) \,\mathrm{d}\mu_1$$

$$\nu_2: \mathfrak{A}_2 \otimes \mathfrak{A}_1 \to [0, \infty], \quad Q \mapsto \int_{\Omega_2} \mu_1(Q\omega_2) \,\mathrm{d}\mu_2$$

sind Maße und es gilt für alle $A_1 \in \mathfrak{A}_1$ und $A_2 \in \mathfrak{A}_2$

$$\nu_1(A_1 \times A_2) = \mu_1(A_1) \cdot \mu_2(A_2) = \nu_2(A_1 \times A_2)$$

und somit $\nu_1 = \nu_2$. Dieses Maß $\mu_1 \otimes \mu_2 := \nu_1 = \nu_2$ heißt **Produktmaß** von μ_1 und μ_2 .

Notation. Für $f: \Omega_1 \times \Omega_2 \to \overline{\mathbb{R}}$ und $\omega_1 \in \Omega_1, \omega_2 \in \Omega_2$ schreibe $f_{\omega_1}: \Omega_2 \to \overline{\mathbb{R}}, \ \omega_2 \mapsto f(\omega_1, \omega_2), \qquad f_{\omega_2}: \Omega_1 \to \overline{\mathbb{R}}, \ \omega_1 \mapsto f(\omega_1, \omega_2)$

Lemma. Angenommen, $f: \Omega_1 \times \Omega_2 \to \overline{\mathbb{R}}$ ist $(\mathfrak{A}_1 \otimes \mathfrak{A}_2, \overline{\mathfrak{B}})$ -messbar. Dann ist auch für alle $\omega_1 \in \Omega_1$ die Abbildung f_{ω_1} $(\mathfrak{A}_2, \overline{\mathfrak{B}})$ -messbar und für alle $\omega_2 \in \Omega_2$ die Abbildung f_{ω_2} $(\mathfrak{A}_1, \overline{\mathfrak{B}})$ -messbar.

Satz (Tonelli). Sei $f \in \overline{\mathbb{E}}(\Omega_1 \times \Omega_2, \mathfrak{A}_1 \otimes \mathfrak{A}_2)$, dann:

- $\bullet \ \Omega_2 \to [0,\infty], \ \omega_2 \mapsto \int\limits_{\Omega_1} f_{\omega_2} \,\mathrm{d} \mu_1 \quad \mathrm{ist} \ (\mathfrak{A}_2, \overline{\mathfrak{B}})\text{-messbar},$
- $\Omega_1 \to [0, \infty], \ \omega_1 \mapsto \int\limits_{\Omega_2} f_{\omega_1} \, \mathrm{d}\mu_2 \ \text{ist } (\mathfrak{A}_1, \overline{\mathfrak{B}})\text{-messbar},$

Satz (Fubini). Sei $f: \Omega_1 \times \Omega_2 \to \overline{\mathbb{R}}$ ($\mu_1 \otimes \mu_2$)-integrierbar. Dann ist für μ_1 -fast-alle $\omega_1 \in \Omega_1$ der Schnitt f_{ω_1} μ_2 -integrierbar, und die μ_1 -fast-überall definierte Funktion $\omega_1 \mapsto \int_{\Omega_2} f_{\omega_1} d\mu_2$ ist

 $\mu_1\text{-integrierbar}.$ Analoges gilt mit 1 und 2 vertauscht. Es gilt:

$$\int_{\Omega_1 \otimes \Omega_2} f \, \mathrm{d}(\mu_1 \otimes \mu_2) = \int_{\Omega_1} \left(\int_{\Omega_2} f_{\omega_1} \, \mathrm{d}\mu_2 \right) \mathrm{d}\mu_1 = \int_{\Omega_2} \left(\int_{\Omega_1} f_{\omega_2} \, \mathrm{d}\mu_1 \right) \mathrm{d}\mu_2.$$

Differentialformen

Notation. Sei im Folgenden V ein n-dimensionaler \mathbb{R} -Vektorraum.

Alternierende Multilinearformen

Definition. Eine alternierende k-Form auf V ist eine Abb.

$$\omega: \underbrace{V \times ... \times V}_{k\text{-fach}} \to \mathbb{R} \quad \text{mit}$$

• ω ist multilinear, d. h. linear in jedem Argument, d. h. für alle $l \in \{1, ..., k\}$ und $v_1, ..., v_{l-1}, v_{l+1}, ..., v_k \in V$ ist

$$\omega(v_1, ..., v_{l-1}, -, v_{l+1}, ..., v_k) \in \text{Hom}(V, \mathbb{R}).$$

• Falls $v_j = v_l$ für j < l, dann ist $\omega(v_1, ..., v_j, ..., v_l, ..., v_k) = 0$.

Beispiel. Die Determinante ist eine alternierende n-Form auf \mathbb{R}^n .

Notation. $\Lambda^k V^* := \{k \text{-Formen auf } V\} \text{ für } k \in \mathbb{N}^*$

Bemerkung. $\Lambda^1 V^* = V^*, \Lambda^0 V^* := \mathbb{K} = \mathbb{R}$

Lemma. Sei $\omega \in \Lambda V^*$, $\sigma \in S_k$, dann gilt:

$$\omega(v_{\sigma(1)}, ..., v_{\sigma(k)}) = \operatorname{sgn}(\sigma) \cdot \omega(v_1, ..., v_k).$$

Definition. Für $\phi_1,...,\phi_k\in\Lambda^1V^*=V^*$ ist das **Dachprodukt** $\phi_1\wedge...\wedge\phi_k\in\Lambda^kV^*$ definiert durch

$$\phi_1 \wedge \ldots \wedge \phi_k : V \times \ldots \times V \to \mathbb{R}$$

$$(v_1, ..., v_k) \mapsto \det \begin{pmatrix} \phi_1(v_1) & \phi_1(v_2) & ... & \phi_1(v_k) \\ \phi_2(v_1) & \phi_2(v_2) & ... & \phi_2(v_k) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_k(v_1) & \phi_k(v_2) & ... & \phi_k(v_k) \end{pmatrix}$$

Eigenschaften. • Das Dachprodukt von Elementen aus V^* ist in jedem Argument linear.

• Für $\sigma \in S_k$ gilt $\phi_{\sigma(1)} \wedge ... \wedge \phi_{\sigma(k)} = \operatorname{sgn}(\sigma) \cdot (\phi_1 \wedge ... \wedge \phi_k)$.

 $\begin{array}{ll} \textbf{Proposition.} & \bullet & \text{Ist } \{\phi_1,...,\phi_n\} \text{ eine Basis von } V^*, \text{ dann ist} \\ \{\phi_{j_1} \wedge ... \wedge \phi_{j_k} \, | \, 1 \leq j_1 < j_2 < ... < j_k \leq n \} \text{ eine Basis von } \Lambda^k V^*. \end{array}$

•
$$\dim(\Lambda^k V^*) = \binom{n}{k}$$
 • $\Lambda^k V^* = \{0\}$ für $k > n$

Proposition. Seien $\phi_1, ..., \phi_k \in V^*$ und $A = (a_{jl}) \in \mathbb{R}^{k \times k}$ gegeben.

Dann gilt für $\varphi_j := \sum_{l=1}^k a_{jl} \phi_l \in V^*, j=1,...,k$:

$$\varphi_1 \wedge ... \wedge \varphi_k = \det(A) \cdot (\phi_1 \wedge ... \wedge \phi_k).$$

Satz. Seien $k, l, m \in \mathbb{N}^*$. Dann gilt:

• Es gibt eine eindeutig bestimmte bilineare Abbildung

$$(\Lambda^k V^*) \times (\Lambda^l V^*) \to \Lambda^{k+l} V^*, \quad (\omega, \widetilde{\omega}) \mapsto \omega \wedge \widetilde{\omega},$$

sodass für $\omega = \phi_1 \wedge ... \wedge \phi_k$ und $\widetilde{\omega} = \widetilde{\phi}_1 \wedge ... \wedge \widetilde{\phi}_l \ (\phi_j, \widetilde{\phi}_i \in V^*)$ gilt: $(\phi_1 \wedge \cdots \wedge \phi_k) \wedge (\widetilde{\phi}_1 \wedge ... \wedge \widetilde{\phi}_l) = \phi_1 \wedge ... \wedge \phi_k \wedge \widetilde{\phi}_1 \wedge ... \wedge \widetilde{\phi}_l.$

• Sei
$$\{\phi_1,...,\phi_k\}$$
 eine Basis von V^* , dann gilt für $\omega = \sum_{i_1 < ... < i_k} a_{i_1 ... i_k} (\phi_{i_1} \wedge ... \wedge \phi_{i_k})$ und $\widetilde{\omega} = \sum_{j_1 < ... < j_k} \widetilde{a}_{j_1 ... j_k} (\phi_{j_1} \wedge ... \wedge \phi_{j_k})$:

$$\begin{array}{l} \omega \wedge \widetilde{\omega} = \sum\limits_{\substack{i_1 < \ldots < i_k \\ j_1 < \ldots < j_l}} (a_{i_1 \ldots i_k} \cdot \widetilde{a}_{j_1 \ldots j_l}) \cdot (\phi_{i_1} \wedge \ldots \wedge \phi_{i_k} \wedge \phi_{j_1} \wedge \ldots \wedge \phi_{j_l}) \end{array}$$

Differentialformen

Notation. Sei im Folgenden $u \in U \otimes \mathbb{R}^n$. Setze $T_uU := \{u\} \times \mathbb{R}^n = \{(u, V) | V \in \mathbb{R}^n\} \cong \mathbb{R}^n$

Bemerkung. T_uU ist ein \mathbb{R} -Vektorraum mit

 $\bullet \ (u,V)+(u,W)=(u,V+W), \quad \bullet \ \lambda(u,V)=(u,\lambda V).$

Bemerkung. Für $U_1, U_2 \otimes \mathbb{R}^n$, $u \in U_1 \cap U_2$ gilt $T_u U_1 = T_u U_2$.

Definition. • Tangentialbündel an $U \otimes \mathbb{R}^n$: $TU = \bigsqcup_{u \in U} T_u U$

- **Dualraum** von T_uU : $T_u^* = \{\alpha : T_uU \to \mathbb{R} \mid \alpha \text{ linear } \}$
- Kotangentialbündel an $U: T^*U = \bigsqcup_{u \in U} T_u^*U$
- Einsform (Differential form von Grad 1, Pfaffsche Form) auf U:

$$\omega: U \to T^*U \quad \text{mit} \quad \omega(u) \in T_u^*U$$

Beispiel. Sei $f: U \to \mathbb{R}$ total diff'bar, dann heißt die Einsform $df: U \to T^*U, \quad u \mapsto (u, V) \mapsto D_u f(V)$ totales Differential.

Notation. $x_j: U \to \mathbb{R}, \quad (u_1, ..., u_n) \mapsto u_j$

Bemerkung. $dx_i(v_1,...,v_n) = v_i$

 $\begin{aligned} \textbf{Definition.} & \text{ Eine } \textbf{k-Form and } U, \ k \in \mathbb{N}^*, \text{ ist eine Abbildung} \\ \omega : U \to \bigsqcup_{u \in U} \Lambda^k T_u^* U & \text{mit} \quad \omega(u) \in \Lambda^k T_u^* U \text{ für alle } u \in U. \end{aligned}$

Eine 0-Form ist eine Abbildung $\omega: U \to \mathbb{R}$.

Beobachtung. Sei ω eine k-Form auf U, dann gibt es $\binom{n}{k}$ Funktionen $f_{j_1...j_k}: U \to \mathbb{R}, \ 1 \le j_1 < ... < j_k \le n$, sodass

$$\begin{array}{l} \omega = \sum\limits_{j_1 < \ldots < j_k} f_{j_1} \ldots_{j_k} \, \mathrm{d} x_{j_1} \, \wedge \ldots \wedge \, \mathrm{d} x_{j_k}. \end{array}$$

Definition. Die k-Form ω auf U heißt stetig/diff'bar/ \mathbb{C}^k , wenn alle $\binom{n}{k}$ Abbildungen $f_{j_1\cdots j_k}:U\to\mathbb{R}$ stetig/total diff'bar/ \mathbb{C}^k sind.

Beobachtung. • $\{k\text{-Form auf }U\}$ ist Modul über $\{f:U\to\mathbb{R}\}$

• Für eine k-Form ω und eine l-Form η ist $\omega \wedge \eta$ definiert durch $(\omega \wedge \eta)(u) := \omega(u) \wedge \eta(u)$ für $u \in U$ eine (k+l)-Form auf U.

Definition. Sei $\omega = \sum_{j_1,\dots,j_k} (\mathrm{d} x_{j_1} \wedge \dots \wedge \mathrm{d} x_{j_k})$ eine diff'bare $j_1 < \dots < j_k$

k-Form auf U, dann heißt die (k+1)-Form

$$\mathrm{d}\omega \coloneqq \sum_{j_1 < \ldots < j_k} \mathrm{d}f_{j_1 \ldots j_k} \wedge \mathrm{d}x_{j_1} \wedge \ldots \wedge \mathrm{d}x_{j_k} \quad \text{\"außere Ableitung}.$$

Bemerkung. • Für eine diff'bare Einsform $\omega = \sum_{j=1}^n f_j dx_j$ auf U gilt

$$d\omega = \sum_{j < l} \left(\frac{\partial f_l}{\partial x_j} - \frac{\partial f_j}{\partial x_l} \right) dx_j \wedge dx_l.$$

• Eine diff'bare (n-1)-Form ω auf U können wir schreiben als

$$\omega = \sum_{j=1}^{n} (-1)^{j-1} f_j dx_1 \wedge \dots \wedge \widehat{dx_j} \wedge \dots \wedge x_n$$

mit total diff'baren Funktionen $f_i:U\to\mathbb{R}$. Dann ist

$$d\omega = \left(\sum_{j=1}^{n} \frac{\partial f_j}{\partial x_j}\right) dx_1 \wedge \dots \wedge dx_n.$$

Satz. • $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$

• $d(\lambda \omega_1 + \omega_2) = \lambda d\omega_1 + d\omega_2$ • $d(d\omega) = 0$, falls ωC^2 ist

Definition. Sei $U \otimes \mathbb{R}^n$, $\widetilde{U} \otimes \mathbb{R}^m$, $\phi : \widetilde{U} \to U$ total diff'bar und ω eine k-Form auf U. Die k-Form $\phi^*\omega$ auf \widetilde{U} , welche durch

$$(\phi^*\omega(\widetilde{u}))(X_1,...,X_k) = (\omega(\phi(\widetilde{u})))(D_{\widetilde{u}}\phi(X_1),...,D_{\widetilde{u}}\phi(X_k))$$

für alle $\widetilde{u}\in \widetilde{U},~X_1,...,X_k\in T_{\widetilde{u}}\widetilde{U}$ definiert ist, heißt **Rücktransport** von ω über ϕ .

Anmerkung. Sei $\phi:\widetilde{U}\to U$ total diff'bar. Sei $\widetilde{u}\in\widetilde{U},$ dann ist

$$D_{\widetilde{u}}\phi: T_{\widetilde{u}}\widetilde{U} \to T_{\phi(\widetilde{u})}U$$
 linear.

Satz. Sei $\check{U} \otimes \mathbb{R}^d$, $\widetilde{U} \otimes \mathbb{R}^m$, $U \otimes \mathbb{R}^n$ und $\psi : \check{U} \to \widetilde{U}$ und $\phi : \widetilde{U} \to U$ total diff'bar. Seien $\omega, \omega_1, \omega_2$ k-Formen auf U, η ein l-Form auf U und $\lambda \in \mathbb{R}$. Dann gilt

• $\phi^*(\lambda\omega_1 + \omega_2) = \lambda\phi^*(\omega_1) + \phi^*(\omega_2)$ (Linearität)

• $\phi^*(\omega \wedge \eta) = (\phi^*\omega) \wedge (\phi^*\eta)$ (Verträglichkeit mit \wedge)

• $\psi^*(\phi^*\omega) = (\phi \circ \psi)^*\omega$ (Funktorialität)

• $d(\varphi^*\omega) = \phi^*(d\omega)$, falls ω diff'bar und ϕ eine \mathcal{C}^2 -Abb. ist

• Wenn $\omega = \sum_{j_1 < \ldots < j_k} f_{j_1 \cdots f_k} \mathrm{d} x_{j_1} \wedge \ldots \wedge \mathrm{d} x_{j_k} : U \to \mathbb{R}$, dann gilt:

$$\phi^*\omega = \sum_{j_1 < \dots < j_k} (f_{j_1 \dots j_k} \circ \phi) d\phi_{j_1} \wedge \dots \wedge d\phi_{j_k}$$

Definition. • Für $k \ge 1$ heißt eine k-Form auf U exakt, wenn es eine diff'bare (k-1)-Form η auf U gibt, sodass $\omega = \mathrm{d}\eta$.

• Eine diff'bare k-Form ω auf U heißt geschlossen, wenn d $\omega = 0$.

Beobachtung. Jede diff'bare exakte k-Form auf U ist geschlossen.

Definition. Eine Teilmenge $U \subset \mathbb{R}^n$ heißt **sternförmig**, falls es einen Punkt $u_0 \in U$ gibt, sodass für alle anderen Punkte $u \in U$ die Verbindungsstrecke von u_0 nach u in U liegt.

Lemma (Poincaré). Ist U sternförmig, dann ist jede stetig diff'bare k-Form mit $k \geq 1$ auch exakt.

Bemerkung. Statt Sternförmigkeit kann man auch nur Zusammenziehbarkeit fordern.

Lemma. Sei $U \otimes \mathbb{R}^n$ und $V \otimes \mathbb{R}^{n+1} = \mathbb{R} \times \mathbb{R}^n$, sodass der Zylinder $[0,1] \times U$ in V liegt. Sei σ eine geschlossene stetig diff'bare k-Form auf V mit $k \geq 1$ und sei $\varphi_r : U \to V, \ u \mapsto (r,u)$ für $r \in \{0,1\}$. Dann gibt es eine stetig diff'bare (k-1)-Form η auf U mit $\varphi_1^*\sigma - \varphi_2^*\sigma = \mathrm{d}\eta$.

Divergenz von F div $F: U \to \mathbb{R}$, $u \mapsto \sum_{j=1}^{n} \frac{\partial F_{j}}{\partial x_{j}}(u)$ Rotation von F rot $F: U \to \mathbb{R}^{3}$, $u \mapsto \begin{pmatrix} \frac{\partial F_{3}}{\partial x_{2}}(u) - \frac{\partial F_{2}}{\partial x_{3}}(u) \\ \frac{\partial F_{1}}{\partial x_{3}}(u) - \frac{\partial F_{3}}{\partial x_{1}}(u) \\ \frac{\partial F_{2}}{\partial x_{1}}(u) - \frac{\partial F_{1}}{\partial x_{2}}(u) \end{pmatrix}$

Nabla-Operator
$$\nabla = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix}$$

Physiker-Notation:

$$\begin{split} &\operatorname{grad} f = \nabla f \\ &\operatorname{div} F = \nabla \cdot F \text{ "Skalarprodukt-Analogon"} \\ &\operatorname{in} \ \mathbb{R}^3 \colon \operatorname{rot} F = \nabla \times F \text{ "Vektorprodukt-Analogon"} \\ &\operatorname{Vektoranalysis} \ &\operatorname{im} \ \mathbb{R}^3 \ &\operatorname{mit} \ \operatorname{Physiker-Notation} \end{split}$$

$$ds = \begin{pmatrix} dx_1 \\ dx_2 \\ dx_3 \end{pmatrix}$$

$$/dx_2 \wedge$$

$$dS = \begin{pmatrix} dx_2 \wedge dx_3 \\ dx_3 \wedge dx_1 \\ dx_1 \wedge dx_2 \end{pmatrix}$$

 $dV = dx_1 \wedge dx_2 \wedge dx_3$

In Analogon zum Skalarprodukt in $U \otimes \mathbb{R}^3$

0-Form auf $U: f: U \to \mathbb{R}$

1-Form auf
$$U: \omega = \sum_{j=1}^3 f_j dx_j = F \cdot ds, F = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix}: U \to \mathbb{R}^3$$

2-Form auf U:

$$\omega = g_1 dx_2 \wedge dx_3 + g_2 dx_3 + dx_1 + g_3 dx_1 \wedge x_2 =: G \cdot dS, G = \begin{pmatrix} g_1 \\ g_2 \\ g_3 \end{pmatrix}$$

3-Form auf $U: \omega = q \cdot dV, q: U \to \mathbb{R}$

Annahme: f, g, F, G seien C^1 , dann gilt:

•
$$\mathrm{d}f = \sum_{j=1}^{3} \frac{\partial f}{\partial x_j} \mathrm{d}x_j = \mathrm{grad}(f) \cdot \mathrm{d}s$$

•
$$d(F \cdot ds) = d\left(\sum_{j=1}^{3} f_{j} dx_{j}\right) = \sum_{j=1}^{3} d(f_{j} dx_{j}) =$$

$$\sum_{j=1}^{3} \sum_{k=1}^{3} \frac{\partial f}{\partial x_{k}} dx_{k} \wedge dx_{j} = \dots =$$

$$(\frac{\partial f_{3}}{\partial x_{2}} - \frac{\partial f_{2}}{\partial x_{2}}) dx_{2} \wedge dx_{3} + (\frac{\partial f_{3}}{\partial x_{1}} - \frac{f_{1}}{x_{3}}) dx_{1} \wedge dx_{3} + (\frac{\partial f_{2}}{\partial x_{1}} - \frac{f_{1}}{x_{2}}) dx_{1} \wedge dx_{2}$$

• $d(GdS) = d(G_1dx_2 \wedge x_3 + G_2dx_3 \wedge dx_1 + G_3dx_1 \wedge dx_2) = (\sum_{j=1}^{3} \frac{\partial G_j}{\partial x_j})dx_1 \wedge dx_2 \wedge dx_3 = (\operatorname{div} G)dV$

Sei $f:U\to\mathbb{R}$ ein \mathcal{C}^2 -Vektorfeld, $F:U\to\mathbb{R}^3$ \mathcal{C}^2 , dann gilt: $\mathrm{rot}(\mathrm{grad} f)=0$, $\mathrm{div}(\mathrm{rot} F)=0$

Sei U sternförmig (oder allgemeiner zusammenziehbar). Zu zeigen:

- Ist $f: U \to \mathbb{R}^3$ ein C^1 -Vektorfeld mit $\operatorname{rot} F = 0$, dann gibt es $f: U \to \mathbb{R}$ (C^1) mit $F = \operatorname{grad} f$.
- Ist $G: U \to \mathbb{R}^3$ ein \mathcal{C}^1 -Vektorfeld mit divG = 0, dann gibt es $\widehat{F}: U \to \mathbb{R}^3$ (\mathcal{C}^1) mit $G = \operatorname{rot} \widehat{F}$.

Definition. Sei $U \otimes \mathbb{R}^n$, $\omega = f dx_1 \wedge ... \wedge dx_n$ eine *n*-Form, wobei $f: U \to \mathbb{R}$ Lebesgue-integrierbar. Sei $C \subset U$ eine Borel-Menge, dann

$$\int_{C} \omega \, \mathrm{d} := \int_{C} f \, \mathrm{d} \lambda_n \in \mathbb{R}$$

 $\phi:\widetilde{U}\to U$ sei $\mathcal{C}^1\text{-Abbildung},\,U,\widetilde{U}\Subset\mathbb{R}^n,\,\mathrm{dann}$ $\phi^*\omega=((f\circ\phi)\cdot\det(D\phi))\mathrm{d}x_1\wedge\ldots\wedge\mathrm{d}x_n$ Transformationsregel für Integrale von n-Formen Sei $\phi:\widetilde{U}\to U,\,\widetilde{U},U\Subset\mathbb{R}^n.$ Sei $\omega=f\mathrm{d}x_1\wedge\ldots\wedge\mathrm{d}x_n$ eine n-Form auf U. Dann gilt für ein Kompaktum $C\subset\widetilde{U}$:

$$\int\limits_{C} \phi^* \omega \, \mathrm{d} = \int\limits_{C} (f \circ \phi) \cdot \det(D\phi) \mathrm{d} x_1 \wedge \ldots \wedge \mathrm{d} x_n \, \mathrm{d} = \int\limits_{C} (f \circ \phi) \det(D\phi) \, \mathrm{d} \mathrm{d} \lambda_n.$$

Wenn $\det(D\phi(\widetilde{u})) > 0$ für alle $\widetilde{u} \in U$ (also ϕ orientierungserhaltend):

$$\smallint_C \phi^* \omega \operatorname{d} = \smallint_C (f \circ \phi) \cdot | {\det D} \phi | \operatorname{d} = \smallint_{\phi(C)} f \operatorname{dd} \lambda_n = \smallint_{\phi(C)} \omega \operatorname{d}$$

Wenn $\det(D\phi(\widetilde{u})) < 0$ für alle $\widetilde{u} \in U$ (also ϕ orientierungsumkehrend):

$$\int_{C} \phi^* \omega \, d = - \int_{\phi(C)} \omega \, d$$

Teilung der Eins:

Hutfunktion:
$$g: \mathbb{R} \to \mathbb{R}$$
, $x \mapsto \begin{cases} \exp(\frac{1}{t^2 - 1}), & |x| < 0 \\ 0, |x| \ge 1 \end{cases}$
Hutsummen: $G: \mathbb{R} \to \mathbb{R}$, $x \mapsto \sum_{k \in \mathbb{Z}} g(x - k)$

 $\text{normalisierter Hut für } k \in \mathbb{Z} \text{: } h_k : \mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{g(x-k)}{G(x)} \text{ ist } \mathcal{C}^\infty,$

 $dann supp(h_k) = [k-1, k+1]$

Tolle Eigenschaft:

$$\sum_{k \in \mathbb{Z}} h_k(x) = \sum_{k \in \mathbb{Z}} \frac{g(x-k)}{G(x)} = \frac{1}{G(x)} \sum_{k \in \mathbb{Z}} g(x-k) = 1 \text{ für alle } x \in \mathbb{R}$$
Also $\{h_k\}$ bilden **Teilung der Eins**
In \mathbb{R}^n : Sei $q = (q_1, ..., q_n) \in \mathbb{Z}^n$, $\epsilon > 0$

$$d\alpha_{q,\epsilon} : \mathbb{R}^n \to \mathbb{R}, (x_1, ..., x_n) \mapsto \prod_{j=1}^n h_{q_j} \cdot (\frac{x_j}{\epsilon})$$

Es gilt:

- $d\alpha_{q,\epsilon}$ ist \mathcal{C}^{∞}
- $\operatorname{supp}\alpha_{q,\epsilon} = \{(x_1, ..., x_n) \in \mathbb{R}^n \mid |x_i \epsilon q_i| < \epsilon \text{ für alle } i \in \{1, ..., n\}\}$

•
$$\sum_{q \in \mathbb{Z}^n} \alpha_{q,\epsilon} = 1$$
 (Übung)

Definition. Eine m-dimensionale **Untermannigfaltigkeit** (UMF) des \mathbb{R}^n ist eine Teilmenge $M \subset \mathbb{R}^n$ mit:

• $\forall x \in M : \exists \widetilde{U} \otimes \mathbb{R}^n, x \in \widetilde{U} : \exists \widetilde{V} \otimes \mathbb{R}^n : \exists \widetilde{\phi} : \widetilde{U} \to \widetilde{V} :$ Diffeomorphismus, sodass gilt:

$$\widetilde{\phi}(M \cap \widetilde{U}) = \widetilde{V} \cap \underbrace{\{(x_1, ..., x_m, 0, ..., 0) \mid x_1, ..., x_m \in \mathbb{R}\}}_{\mathbb{R}^m \cap \mathbb{R}^m \cap \mathbb{R}^n - m \cong \mathbb{R}^n}$$

Nomenklatur. $\widetilde{\phi}:\widetilde{U}\to\widetilde{V}$ heißt Untermannigfaltigkeit-Karte, notiert $(\widetilde{\phi},\widetilde{U})$

$$\begin{array}{c} \textbf{Definition.} \ \ \widetilde{\mathcal{A}} = \{ \underbrace{ \ \ \widetilde{(\phi_i,\widetilde{U}_i)} \ \ }_{\text{UMF-Karten von }M} \mid i \in I \} \text{ mit} \\ M \subset \bigcup_{i \in I} \widetilde{U}_i \ \ \text{heißt } \mathbf{UMF-Atlas} \text{ von } M. \end{array}$$

Überdeckungseigenschaft

Beobachtung. $\widetilde{\phi}:\widetilde{U}\to\widetilde{V}$ ist UMF-Karte von M, dann $M\cup\widetilde{U}$ © M (bzgl. Relativtopologie), $\widetilde{V}\cap\mathbb{R}^m$ © \mathbb{R}^m

Definition. Der Homö
omorphismus $\phi \coloneqq \widetilde{\phi}|_U: U \to V$ heißt Karte von M.

Definition. Ist $\widetilde{A} = \{(\widetilde{\phi}_i, \widetilde{U}_i) | i \in I\}$ ein UMF-Atlas, dann heißt $\mathcal{A} = \{(\phi_i, U_i) | i \in I\}$ Atlas von M.

Definition. Ein Atlas $\mathcal{A} = \{(\phi_i, U_i) \mid i \in I\}$ heißt **orientiert**, wenn für alle $i, j \in I$ die Abbildung $\phi_j \circ \phi_i^{-1}|_{\phi_i(U_i \cap U_j)} : \phi(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$ orientierungserhaltend sind, wenn $U_i \cap U_i \neq \emptyset$.

Definition. • Eine UMF M von \mathbb{R}^n heißt **orientierbar**, wenn M einen orientierten Atlas besitzt.

 Zwei orientierte Atlanten A₁, A₂ von M heißen gleichorientiert, wenn A = A₁ ∪ A₂ ein orientierter Atlas ist.

- Eine Orientierung auf einer orientierbaren UMF M ist eine Äquivalenzklasse bzgl. der Äquivalenzrelation A₁ ~ A₂ : ← A₁, A₂ gleichorientiert auf der Menge aller orientierten Atlanten.
- M orientierbare UMF, [A] Orientierung von M, dann heißt (M, [A]) orientierte UMF.
- A' orientierter Atlas von (M, [A]) heißt positiv orientiert, wenn A' ∈ [A].

Gegeben (M, [A]) orientierte UMF, $A = \{(\phi_i, U_i) | i \in I\}$ ein positiv orientierter Atlas,

$$\tau: \mathbb{R}^m \to \mathbb{R}^m, \quad (x_1, ..., x_m) \mapsto (x_1, ..., x_{m-1}, -x_m)$$

orientierungsumkehrend. Dann ist auch $\mathcal{A}' = \{(\phi_i', U_i) \mid i \in I\}$ mit $\phi_i' = \tau \circ \phi_i : U_i \to \tau(V_i)$ ein orientierter Atlas von M, aber $\mathcal{A}' \not\in [A]$ Notation: -[A] := [A'] die zu [A] entgegengesetzte Orientierung. Integration von k-Formen auf k-dimensionalen UMFen Gegeben:

- $\widehat{U} \oslash \mathbb{R}^n$
- $M \subset \widehat{U} \subset \mathbb{R}^n$ k-dimensionale UMF
- ω k-Form auf U
- $C \subset M$ kompakt
- [A] Orientierung von M

Gesucht:
$$\int_{(C,[A])} \omega d$$

Fall 1: $\exists\,\phi:U\to V\,:$ positiv orientierte Karte mit $C\subset U,$ dann setze:

$$\int\limits_{(C,[\mathcal{A}])} \omega \, \mathrm{d} \coloneqq \int\limits_{\phi(C)} (\phi^{-1})^* \omega \, \mathrm{d}$$

Unabhängigkeit von Karte:

Sei $\phi': U' \to V'$ positiv orientierte Karte mit $C \subset U'$, o. E. U' = U. $\iota := \phi \circ \phi'^{-1}$

$$\int\limits_{\phi(C)} (\phi^{-1})^* \omega \, \mathrm{d} = \int\limits_{\phi(C)} (\phi'^{-1} \circ \iota^{-1})^* \omega \, \mathrm{d} = \int\limits_{\phi(C)} \iota^{-1*} (\phi'^{-1*} \omega) \, \mathrm{d} = \int\limits_{\phi'(C)} \phi'^{-1*} \omega \, \mathrm{d}$$