2. Conditional Probability and Bayes' Rule

$$P(A|B) \neq P(B|A)$$

How should we update our beliefs in light of the evidence we observe? *Bayes' rule* is an extremely useful theorem that helps us perform such updates.

Together, Bayes' rule and the law of total probability can be used to solve a very wide variety of problems.

2.1 The importance of thinking conditionally

A useful perspective is that all probabilities are *conditional*

A and B events, P(B) > 0, then *conditional probability* of A given B:

$$P(A|B) = rac{P(A \cap B)}{P(B)}$$

A is the event whose uncertainty we want to update, and B is the evidence we observe.

P(A) is called *prior probability* of A.

P(A|B) is called *posterior probability* of A.

P(A|B) is the probability of A given the evidence B, **not** the probability of some weird entity called A|B.

Note:

1. It's extremely important to be careful about which events to put on which side of the conditioning bar. Confusing these two quantities is called the *prosecutor's fallacy*.

2. Both P(A|B) and P(B|A) make sense. We are considering what **information** observing one event provides about another event, not whether one event **causes** another.

Frequentist interpretation:

The conditional probability of A given B: it is the fraction of times that A occurs, restricting attention to the trials where B occurs.

2.3 Bayes' rule and the law of total probability

Just move the denominator in the definition to the other side of the equation:

$$P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)$$

It often turns out to be possible to find conditional probabilities without going back to the definition.

Same for n events:

$$\forall A_1, \dots A_n$$

$$P(A_1, A_2, \ldots, A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1, A_2)\ldots P(A_n|A_1\ldots A_{n-1})$$

Then Bayes' rule:

$$P(A|B) = rac{P(B|A)P(A)}{P(B)}$$

The **law of total probability (LOTP)** relates conditional probability to unconditional probability:

 A_1,\ldots,A_n a partition of the sample space S (A_i disjoint, their union is S), $P(A_i)>0 \forall i$ then:

$$P(B) = \sum_{i=1}^n P(B|A_i)P(A_i)$$

Proof:

Decompsition of B:

$$B = (B \cap A_1) \cup (B \cap A_2) \cup \ldots \cup (B \cap A_n)$$

then

$$P(B)=P(B\cap A_1)+\ldots+P(B\cap A_n)=P(B|A_1)P(A_1)\ldots P(B|A_n)P(A_n)$$

The choice of how to divide up the sample space is crucial!

2.4 Conditional probabilities are probabilities

When we condition on an event E, we update our beliefs to be consistent with this knowledge, effectively putting ourselves in a **universe** where we know that **E** occurred.

Bayes' rule with extra conditioning

$$P(A \cap E) > 0$$
 and $P(B \cap E) > 0$

$$P(A|B,E) = rac{P(B|A,E)P(A|E)}{P(B|E)}$$

LOTP with extra conditioning

$$A_1,\ldots,A_n$$
 is a partition of S , $P(A_i\cap E)>0 orall i$

$$P(B|E) = \sum_{i=1}^n P(B|A_i,E)P(A_i|E)$$

2.5 Independence of events