ETH zürich

Physikalisches Praktikum der ETH Zürich

Name 1 Datum:

Name 2 Platz-Nr:

10 - Universal Gas Constant

General observations

Molecular weight of air, $M_L =$ Barometer reading, b=

Ambient temperature, t = Reduced barometer reading, b' =

Relative air humidity, $\varphi =$ Ambient pressure, p =

Determining the mass of air in the glass bulb

Mass of the air-filled bulb $m_{KL1} =$ Mass of the evacuated bulb $m_{KV1} =$ Mass of the humid air: m_{KL1} - m_{KV1} $m_1 =$

Repeating the measurement

Mass of the air-filled bulb $m_{KL2} =$ Mass of the evacuated bulb $m_{KV2} =$ Mass of the humid air: m_{KL2} - m_{KV2} $m_2 =$

Determining the volume of the glass bulb

Approximate value for the universal gas constant (not correcting for air humidity)

From the 1st measurement R'_{1} =
From the 2nd measurement R'_{2} =

More precise value for the universal gas constant (taking air humidity into account)

Saturation pressure p_{WS} =
Partial pressure of the air humidity p_W Partial pressure of the dry air p_L Molecular weight of water M_W

Universal gas constant (from the 1st measurement): R_1 =
Universal gas constant (from the 2nd measurement): R_2 =