

What is Covariance?

- Measure of strength of correlation between two features
- Mathematically, for two features X and Y with n observations

$$(X_i, Y_i)$$
:

$$cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

What is a Covariance Matrix?

	Y_1	Y ₂	Y ₃
Y_1			
Y ₂			
Y ₃			

What is a Covariance Matrix?

	Y ₁	Y ₂	Y ₃
Y_1	5		
Y ₂		8	
Y ₃			1

What is a Covariance Matrix?

	Y ₁	Y ₂	Y ₃
Y_1	5	-1	0
Y ₂	-1	8	3
Y ₃	0	3	1

Consider a data matrix X with 3 features (A, B, C) and 2

rows

The data is column standardised

$$\bar{A} = \bar{B} = \bar{C} = 0$$

Covariance between two features A and B

$$cov(A,B) = \frac{1}{n} \sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})$$

$$= \frac{1}{2} \sum_{i=1}^{2} (a_i - 0)(b_i - 0) = \frac{1}{2} \sum_{i=1}^{2} (a_i)(b_i)$$

$$= \frac{1}{2} (a_1b_1 + a_2b_2)$$

$$a_1b_1 + a_2b_2$$

 $\begin{array}{ccc}
A & B \\
a_1 & b_1 \\
a_2 & b_2
\end{array}$

$$a_1b_1 + a_2b_2$$

A

a₁

 a_2

В

 b_1

 b_2

$$a_1b_1 + a_2b_2 = A.B$$

 $\begin{array}{ccc} A & B \\ a_1 & b_1 \\ a_2 & b_2 \end{array}$

cov(A, B) = A.B

		Α	В	С
cov =	Α	A.A	A.B	A.C
	В	B.A	B.B	B.C
	С	C.A	C.B	C.C

			Α	В	C			Α	В	С
Α	a ₁	a ₂	$a_{\scriptscriptstyle 1}$	b ₁	C ₁		А	A.A	A.B	A.C
	b ₁	b ₂	a_2	b ₂	C ₂	=	В	B.A	B.B	B.C
В	C ₁	C ₃					С	C.A	C.B	C.C
С	X	T		X				CC)V	

			А	В	C			А	В	С
Α	a ₁	a ₂	$a_{\scriptscriptstyle 1}$	b_1	C ₁		Α	A.A	A.B	A.C
	b_1	b ₂	a_2	b ₂	C ₂	=	В	B.A	B.B	B.C
В	C ₁	C ₃					С	C.A	C.B	C.C
С	X	T		X				CC)V	

$$cov = X^TX$$

Thank You!

