Mobile Robot Navigation Amidst Humans with Intents and Uncertainties: A Time Scaled Collision cone Approach

Akhil Nagariya¹ Bharath Gopalakrishna¹ Arun Singh² Krishnam Gupta ¹ K Madhava Krishna ¹

¹RRC IIIT Hyderabad

²Ben-Gurion University, Isreal

CDC 2015

Outline

Motivation

Human Intention prediction

Motivation

- Robots and humans are beginning to occupy the same work spaces
- Account for human intent in robot's navigation and avoidance Maneuver
- Uncertain and Haphazard local movements of human

Outline

Motivation

Human Intention prediction

Human Intention prediction

- Characterize intents as the final destinations a person might reach
- ▶ Let $D = \{d^1, d^2, ..., d^m\}$ be the set of final destinations a person can go to in a given environment
- compute the probability of each of these intents Using Hidden Markov Model.
- ► Characterize local Haphazard movements as a gaussian $\mathcal{N}(\mu_i(\mathbf{x}^t), \sigma_t)$

Human Intention prediction

- Let $S^t \in D$ represent the intent of a person to reach destination S^t at time t.
- D represents set of states in HMM.
- ▶ Human trajectories are represented as $X(T) = \{x^1, x^2, ..., x^T\}$

- $ightharpoonup O^t$ is the angle defined by the first derivative of the trajectory at point xt
- ▶ Given the current position and orientation we compute the probability of reaching each of the destination $d^i \in D$

- $\blacktriangleright \mu_i(t)$ is the measure relative to the destination \mathbf{d}^i
- $ightharpoonup O^t$ is the global measure of the target orientation
- $\theta_{ij}(t)$ is the measure between final destinations $\mathbf{d^i}$ and $\mathbf{d^j}$ relative to the current position $\mathbf{x^t}$

▶ $b_i(O^t)$ is the probability of observing heading O^t given that the person is following the intent \mathbf{d}^i at time t.

$$b_i(O^t) = p(O^t|S^t = \mathbf{d^i}) = \mathcal{N}(O^t|\mu_i(t), \sigma_o)$$

▶ $a_{ij}(t)$ is the probability that the human changes his intent from $\mathbf{d^i}$ to $\mathbf{d^j}$ at any discrete instant t

$$a_{ij}(t) = p(S^{t+1} = \mathbf{d}^{\mathbf{j}}|S^t = \mathbf{d}^{\mathbf{i}}) = \eta \mathcal{N}(\theta_{ij}(t)|0, \sigma_a)$$

- Let $O^{1:T} = \{O^1, O^1, ..., O^T\}$ is the set of measurements obtained till time T.
- Our task is to calculate $p(S^t = \mathbf{d^i} | O^{1:T}, \lambda)$
- ▶ In HMM this term is usually referred to as $\gamma_t(i)$ To find this we use standard forward and backward algorithms.

- ► To propose an optimization framework, That achieves an elegant balance between minimizing risk and ease of collision avoidance maneuver.
- ► Ease of Collision avoidance maneuver directly relates to factors like deviation from current path and acceleration and deceleration capabilities of robot.
- Minimizing risk boils down to biasing the maneuver towards avoiding the most likely intent with higher confidence.

Formulation steps

► Formulation for finding a relation between a particular collision avoidance maneuver and its confidence of safety, for a particular obstacle/intent.

Formulation steps

▶ Formulation extending it to multiple intent space

Explanation of Formulation one

- Finding a relation between a particular collision avoidance maneuver and its confidence of safety, for a particular obstacle/intent [1]
- [1]: Bharath Gopalakrishnan*, Arun Kumar Singh*, K.Madhava Krishna, Closed form characterization of Collison free velocities and confidence boinds for Non- holonomic robots in uncertain dynamic environments- To appear in IEEE Proc of IROS 2015

Recap of time scaled collision cone:

Time scaled collision cone constraint takes the following from

$$f_i^s \geq 0$$

• where f_i^s is given by

$$f_{i} = (x^{t_{c}} - x_{i}^{t_{c}})^{2} + (y^{t_{c}} - y_{i}^{t_{c}})^{2} - R^{2}$$

$$- \frac{(s\dot{x}^{t_{c}} - \dot{x}_{i}^{t_{c}})(x^{t_{c}} - x_{i}^{t_{c}}) + (s\dot{y}^{t_{c}} - \dot{y}_{i}^{t_{c}})(y^{t_{c}} - y_{i}^{t_{c}})^{2}}{(s\dot{x}^{t_{c}} - \dot{x}_{i}^{t_{c}})^{2} + (s\dot{y}^{t_{c}} - \dot{y}_{i}^{t_{c}})^{2}}$$

$$, \forall i = 1, 2...n$$

• f_i^s denotes the collision cone constraint for the i^{th} obstacle as a function of scale s. which depends on the state of the robot and obstacle at time $t = t^c$ which gets reduced to

$$a_i s^2 + b_i s + c_i \ge 0$$

Probabilistic version of time scaled collision cone

• if at time $t = t_c$ the obstacles state are given by

$$\mathbf{x}_i^{t_c} = \mathcal{N}(\mu_i^{\mathsf{x}}, \sigma_i^{\mathsf{x}}), \dot{\mathbf{x}}_i^{t_c} = \mathcal{N}(\mu_i^{\dot{\mathsf{x}}}, \sigma_i^{\dot{\mathsf{x}}})$$

$$y_i^{t_c} = \mathcal{N}(\mu_i^y, \sigma_i^y), \dot{y}_i^{t_c} = \mathcal{N}(\mu_i^{\dot{y}}, \sigma_i^{\dot{y}})$$

▶ Then the objective would be to find the scale that maximizes

$$P(f_i^s \geq 0)$$

Objective

$$\underset{s}{\operatorname{argmax}} \{ P(f_i^s \geq 0) \}$$

Challenge

f_i^s is a random variable with unknown analytical expression for its probability distribution.

Solution

- ▶ Though the pdf of f_i^s is does not have an analytical expression we can get its mean and standard deviation in closed form as a function of s
- By the law of unconscious statistician

$$E[f_i^s] = \mu_{f_i^s} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_i^s(.) P_i(.) dx_i^{t_c} dy_i t_c d\dot{x}_i^{t_c} d\dot{y}_i^{t_c}$$

Which evaluates as

$$\mu_{f_i^2} = A_i s^2 + B_i s + C_i$$

Where A_i, B_i and C_i are the function of robot states and obstacle distribution parameters , $\mu_i^1, \mu_i^2, \sigma_i^1, \sigma_i^2$

Solution

Similarly

$$\sigma_{f_i^s} = \sqrt{E[(f_i^s - E[f_i^s])^2} = \sqrt{D_i s^4 + E_i^3 + F_i^2 + G_i s + H}$$

Where D_i, E_i, F_i, G_i , and H_i are the function of robot states and obstacle distribution parameters , $\mu_i^1, \mu_i^2, \sigma_i^1, \sigma_i^2$

Solution

$$\underset{s}{\operatorname{argmax}} \{ P(f_i^s \ge 0) \} \Longrightarrow \mu_{f_i^s} \pm k * \sigma_{f_i^s}$$

This can be suitably achieved by suitably changing the value of k

Summary

- ► The first main message of your talk in one or two lines.
- ► The second main message of your talk in one or two lines.
- ▶ Perhaps a third message, but not more than that.
- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

For Further Reading I

Handbook of Everything.

Some Press, 1990.

On this and that.

Journal of This and That, 2(1):50-100, 2000.