Water Nutrient Monitoring

Do Hoang

University of Science And Technology of Hanoi

August 14, 2019

- 1 Introduction
- 2 Our Work
- **3** Results
- 4 Future Plan

Section 1

Introduction

Introduction

Introduction

Introduction

- Monitoring water quality
- Build IOT system to collect data
- Visualization of the data

Our Work

System Overview

Figure 1: System Overview

Components: Sensors

- Module Power: 5.00V
- Measuring Range: 0-14PH
- Measuring Temperature: 0-60 Celcius
- Accuracy: 0.1pH (25) Celcius)
- Response Time: <= 1min
- Industry pH Electrode with **BNC** Connector

Figure 2: pH Sensor

Components: Arduino

• Arduino UNO:

- Microcontroller board
- Provides electricity to the sensors
- Collects data directly from the sensors
- Delivers the data

Figure 3: Arduino UNO-R3

Components: Communication

- Module Power: 5-18VDC >= 1A
- Communication Signal Level: TTL (3.3-5VDC) or RS232
- Intergrated with IC RS232 MAX232
- Provide internet connection for Arduino

Figure 4: Sim800A

Data flow

Figure 5: Data flow

Components

- USTH Server:
 - Hosted by the ICTLab
 - Receives data via HTTP GET request
 - Manages database

Section 3

Results

Results: Hardware

Figure 6: Hardware Connection

Results: Software

 $Figure~7:~http://scg.sontg.net/ph_index.php$

Future Plan

Future Plan

- Better architecture
- Better energy consumption
- Better visualization
- Use more sensor type such as Electrical Conductivity(EC), Total dissolved solid (TDS), Salinity Sensors