Distance Vector Algorithm – Problems, Solutions and a Standard

Kameswari Chebrolu

Recap

- Nodes exchange with their neighbors their current routing table information (destination, estimated cost)
- On receipt of a message, nodes update cost to destination based on Bellman-ford equation
- Messages sent periodically as well as when table changes

Reference Node C Example

C to D: C = 4

Routing Table of C

Routing Table of C Message from D

(3)

Every path has its puddle!

Counting to Infinity

Distance to Node D

Mesg.	A	B	C
	(2,B)	∞,-	2,B_
$B \rightarrow A$	∞,-	∞,-	(2,B)
$C \rightarrow A$	3,C	∞ ,-	2,B
в→с	3,C	∞ ,-	∞,-
A→B	3,C	4,A	∞,-
C→A	∞ ,-	4,A	∞ ,-
в→с	∞ ,-	4,A	5,B
A→B	∞ ,-	∞ ,-	5,B

State maintained by nodes A,B and C

Partial Solutions

- Make infinity small
 - Use for example 16 to represent <u>infinity</u> (assumes max no of hops under 16)

> hop count

- Bounds time it takes to count to infinity
- Split horizon
 - Don't send routes learnt from a neighbor back to it

Partial Solutions

- Split horizon with poison reverse
 - Send routes learnt from a neighbor back to it but with infinite cost (2) (A) (B) X (C)

• Both don't work for loops with more than 2 nodes

Partial Solutions

- Hold-Down Timer: Wait some time before propagating link failure
 - Slows down convergence
- Path-vector routing is a variation of distance-vector
 - Each node sends to its neighbors not just the cost, but the entire path to the destination
 - Avoids the looping problem of DV but more overhead

RIP

- Routing Information Protocol (RIP) is a standard that implements DV routing
- One of the oldest DV based protocol
 - Popular once, not used much due to convergence problems

+ 8ize

RIP Features

- Uses UDP and work over reserved port 520
- Period updates sent every 30 sec
- Supports multiple address families
- Cost of a link is 1 (finds minimum hop route)
- 16 represents infinity split horizon, hold-down
- RIP can run only on very small networks

RIPv1 Packet Format

Reserved

Reserved

Distance to Net 1

each entry is 20 bytes

1 to 25 sets

dansurs

of entries.

Distance to Net 1 Family of Net 2

Address of Net 2 (IP Address)

dassful

Reserved

fields are set to all

zero IPF.

Reserved

Summary

- Distance vector is a distributed, dynamic algorithm
- Exchanges information locally to determine routes
- Suffers from poor convergence, routing loops
- Suffers from poor convergence, routing loops
 RIP is a standard that implements the DV protocol
- Handles above problems via (split horizon, hold-down timer and using a value of 16 to represent infinity)
 - Better approach: Link-state routing