Induction

```
P(0) \land \forall i \ [i \in \mathbb{N} : P(i) \Rightarrow P(i+1)] \Rightarrow \forall n \ [n \in \mathbb{N} : P(n)]
```

P - unary predicate over N

```
P(0)
 (m)
         {Assume}
(k)
         var i; i \in \mathbb{N}
(k+1)
          | P(i+1)
(I-I)
          \{\Rightarrow-intro on (k+1) and (I-1)\}
        | P(i) \Rightarrow P(i+1)
         \{\forall-intro on (k) and (l)\}
(I+I) \ \forall i[i \in \mathbb{N} : P(i) \Rightarrow P(i+I)]
         {induction on (m) and (I+I)}
(l+2) \forall n[n \in \mathbb{N} : P(n)]
```

Basis

induction hypothesis

Induction step

Inductive definitions

Inductive proof: truth is passed on

Inductive definition: construction is passed on

well defined by induction

Example

The sequence of real numbers $(a_i \mid i \in \mathbb{N})$ is defined inductively by

$$a_0 = 2$$

 $a_{i+1} = 2a_i - 1$

a	a	a	a	a	• • •
2	3	5	9	17	

proof by induction

Conjecture

For all $n \in \mathbb{N}$ it holds that

$$a_n = 2^n + 1$$

Strong induction

P - unary predicate over N

 $\forall k \; [k \in \mathbb{N}: \; \forall j [j \in \mathbb{N} \; \land \; j \leq k : P(j)] \Rightarrow P(k)] \; \Rightarrow \forall n \; [n \in \mathbb{N}: \; P(n)]$

 $\forall \text{ elim with } k=1$ $P(0) \Rightarrow P(1)$ $P(0) \land P(1)$ $P(0) \land P(1) \Rightarrow P(2)$ $\land \text{ intro}$ $P(0) \land P(1) \land P(2)$ $P(0) \land P(1) \land P(2) \Rightarrow P(3)$ \cdots

Definition of $(a_i \mid i \in \mathbb{N})$ with strong induction

 a_n is defined via $a_0, ..., a_{n-1}$

Cardinality

Cardinals

Def.

Two sets A and B have the same cardinality (are equinumerous) if there is a bijection $f:A \rightarrow B$. Notation A ~ B, or |A| = |B|.

Prop.

The relation ~ is an equivalence relation on sets.

Def.

A set A has at most as large cardinality as a set B if there is an injection $f:A \rightarrow B$. Notation $|A| \leq |B|$.

Def.

A set A has at least as large cardinality as a set B if there is a surjection $f:A \rightarrow B$. Notation $|A| \ge |B|$.

Def.

A set A has smaller cardinality than a set B if there is an injection $f:A \rightarrow B$ and there is no surjection $f:A \rightarrow B$. Notation |A| < |B|.

 $|A| = [A]_{\sim}$

cardinal
numbers are
~ equivalence
classes

Theorem (Cantor)

If
$$|A| \le |B|$$

and
 $|B| \le |A|$,
then
 $|A| = |B|$.

Operations on cardinals

Def.

Let A and B be two disjoint sets. Then $|A| + |B| = |A \cup B|$.

Def.

Let A and B be two sets. Then $|A| \cdot |B| = |A \times B|$.

Def.

Let A and B be two sets. Then $|A|^{|B|} = |A^B|$ where A^B is the set of all functions from B to A, i.e. $A^B = \{f \mid f: B \rightarrow A\}$.

Prop.

Let A be a set. Then $|\mathcal{P}(A)| = 2^{|A|}$.

 $|A| = [A]_{\sim}$

cardinal
numbers are
~ equivalence
classes

Note: $2 = |\{0,1\}|$

Finite sets, finite cardinals

We write \mathbb{N}_k for the set $\{0,1,...,k-1\}$. Then $\mathbb{N}_0 = \emptyset$.

We will also write k for $|\mathbb{N}_k|$.

Def.

A set A is finite if and only if |A| = k, for some $k \in \mathbb{N}$.

Hence

A set A is finite if and only if there is a natural number $k \in \mathbb{N}$ and a bijection $f: A \to \mathbb{N}_k$.

 $|A| = [A]_{\sim}$

cardinal
numbers are
~ equivalence
classes

if and only if A has k elements, for some $k \in \mathbb{N}$

E.g. If |A| = k and |B| = mfor some k,m $\in \mathbb{N}$ then $|AxB| = k \cdot m$

The operations on cardinals when restricted to finite cardinals coincide with the operations on natural numbers!

This justifies the notation.

Infinite, countable and uncountable sets

Time for a video!

Hilbert's infinite hotel :-)