CALCULUS, FOURIER NUMERICAL TECHNIQUES

[21 MAT31]

TIE REVIEW TEAM

Module - 01

01. Find the Laplace Transform of the following:

(i) cos2t - cos3t (ii) cosat-cosbt

(iv) $\frac{1-\cos t}{t^2}$ (iii) $t^2e^{2t}\cos 2t$

02. Evaluati Set tisint de using laplace Transform

03. Find the Laplace Transform of the periodic function $f(t) = \int f(t) dt = 0$ $f(t) = \int f(t) dt = 0$

Hence show that $L\{f(t)\}=\frac{1}{s^2}\tanh\left(\frac{as}{2}\right)$

04. Find the inverse Laplace transforms of: (i) $\frac{4s+5}{(s-1)^2(s+2)}$

(iii) s^2+4 (iv) $log \left[\frac{s^2 + 1}{s(s+1)} \right]$ s(s+4)(s-4)

05. Obtain the inverse Laplace transform using Convolution theorem: (i) $L^{-1} \left\{ \frac{1}{(s^2 + a^2)^2} \right\}$ (ii) $L^{-1} \left\{ \frac{s^2}{(s^2 + a^2)(s^2 + b^2)} \right\}$

Scanned with CamScanner

$$f(x) = \frac{\pi - x}{2} \quad 0 < x < 2\pi \text{ Hence deduce that}$$

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

$$0 + 0 \text{ btain the fourier series for the function}$$

$$f(x) = \int_{0}^{\pi x} \pi x \quad 0 \le x \le 1$$

$$\int_{0}^{\pi (2-x)} \pi(2-x) \quad 1 \le x \le 2$$

$$\int_{0}^{\pi (2-x)} \pi(2-x) \quad 1 \le x \le 2$$

$$\int_{0}^{\pi (2-x)} \pi(2-x) = \int_{0}^{\pi (2-x)} \pi(2-x)^{2}$$

05. Find the cosine half range formier series

for f(x)= x(1-x) in 0<x<1.

(iii) $L^{-1} \left\{ \frac{8}{(s^2 + a^2)^2} \right\}$

Module - 02

06. Solve the differential equation

01. Find the fourier series of fex) = 1x1 in

using Laplace transforms.

 $\frac{\Pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} + \cdots$

y" + 4y' + 4y = e given y(0)=0, y'(0)=0

 $-\pi < z < \pi$. Hence deduce that $\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$

02. Find the fourive series in $(-\pi, \pi)$ to represent $f(x) = x - x^2$. Hence deduce that

03. Obtain the fourier expansion of the function

Scanned with CamScanner

(iv) L^{-1} $\left\{ \frac{6^2}{\left(5^2 + a^2\right)^2} \right\}$

60. Find the costine in
$$0 < x < \pi$$
. Deduce that
$$\frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} - \frac{1}{7 \cdot 9} + \frac{1}{4} \cdot \dots = \frac{\pi - 2}{4}$$
07. Obtain the sine half sange series 9

$$f(x) = \int \frac{1}{4} - x \quad \text{in } 0 < x < \frac{1}{2}$$

06. Find the cosine half range Fourier series

 $f(x) = \begin{cases} \frac{1}{4} - x & \text{in } 0 < x < \frac{1}{2} \\ x - \frac{3}{4} & \text{in } \frac{1}{2} < x < 1 \end{cases}$ 08. Obtain the constant term and firstsine and cosine turns in the fourier

expansion of y from the following table:

y 9 18 24 28 26 20 Express y as a Fourier series	(2)	San Barrette	1 0000					5	
		y	9	18	24	28	26	20	
	•		-	s.1	700	by'	No. 175		series

09

ι	harn	ronie	gir	ien:		: 128	h.	<u> </u>
	x	0	}	2	3	4	5	
	y	4	8	15	7	6	2	114 119 11
10.	The	boce	owir	ig ta	ble	giv es	the	variotions q

that there is a direct current part of
0.75 amp and obtain aniphitude of the
first harmonic.

| t(sec) | 0 | T/6 | T/3 | T/2 | 2T/3 | 5T/6 | T |
| A(amps) | 1.98 | 1.30 | 1.05 | 1.30 | -0.88 | -0.25 | 1.98 |

periodic current over a period. Show

upto first

Module - 03

01. Find the Fourier transform of the following:

(i)
$$f(x) = \begin{cases} 1 & \text{for } |x| < a \\ 0 & \text{for } |x| > a \end{cases}$$
 Hence evaluate
$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx.$$

(ii)
$$f(x) = e^{-|x|}$$
, hence evaluali $\int \frac{\cos t}{1+t^2} dt$

(iii)
$$f(x) = \begin{cases} 1 - |x| & \text{for } |x| \le 1 \text{ and thence} \\ 0 & \text{for } |x| > 1 \end{cases}$$

deduce that $\int_{0}^{\infty} \frac{\sin^2 t}{t^2} dt = \frac{T}{2}$

(iv)
$$f(x) = \begin{cases} 1-x^2 & \text{for } |x| < 1 \end{cases}$$
, Hence evalually
$$\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx, \quad \int_{0}^{\infty} \frac{x \cos x - \sin x}{x^3} dx$$

(v)
$$f(x) = \int x$$
 for $0 < x < 1$ Find the $2-x$ for $1 < x < 2$ fourier cosine for $x > 2$, transform.

(vi) .

02. Find the fourier sine and cosine transform
$$9 f(x) = e^{-ax}$$
, $a > 0$. Hence deduce that
$$\int_{0}^{\infty} \frac{\cos mx}{a^{2} + x^{2}} dx = \frac{\pi}{2a} e^{-am}$$

08. Using z-transform, solve the following:
(i)
$$u_{n+2} + 2u_{n+1} + u_n = n$$
 with $u_0 = 0$, $u_1 = 0$
(ii) $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$
(iii) $u_{n+2} - 4u_n = 0$ with $u_0 = 0$, $u_1 = 2$

03. Find the fourier sine transform of the function $f(x) = e^{-|x|}$, hence evaluate

04. Solve the integral equation Sf(x)cosdxdx =

05. Find the invouse fourier sine transform of

06. Find the z-transform of the following:

01. Find the inverse z-transform 9:

(i) $2z^2 + 3z$ (ii) $4z^2 - 2z$ (z+2)(z-4) $z^3 - 5z^2 + 8z - 4$

(i) coshno (ii) sinh no (iii) cos(no) and sin(no)

 $\begin{cases} 1-\alpha & \text{for } 0 \le \alpha \le 1 \end{cases}$ and hence deduce $0 & \text{for } \alpha > 1 \end{cases}$

 $\int_{0}^{\infty} \frac{x \sin mx}{1+x^{2}} dx \quad m > 0$

 $\frac{e^{-us}}{o}$, a > 0

the value of Juin't de

Module - 04

01. Classify the following Partial differential equations:

(i) $u_{xx} + 4u_{xy} + 4u_{xy} - u_x + 2u_y = 0$ (ii) $(1 + x^2)u_{xx} + (5 + 2x^2)u_{xx} + (4 + x^2)u_{tt} = 0$

02. Solve numerically $u_{xx} = 0.0625 u_{tt}$, subject to the conditions u(0, t) = 0 = u(5, t), $u(x, 0) = x^2(x-5)$ and $u_t(x, 0) = 0$ by taking h = 1 for $0 \le t \le 1$.

03. Solve $u_{xx} = 32u_t$ subject to the conditions u(0,t) = 0, u(1,t) = t and u(2k,0) = 0. Find the values of u upto t = 5 by schmidt's process taking $h = \frac{1}{4}$. Also extract the following values:

(a) u (o.75,4) (b) u (o.5,5) (c) u (o.25,4)

OH. Solve numerically the equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial E}$ subject to the conditions

u(0,t)=0=u(1,t), $t\geq 0$ and u(x,0)= sin (πx) , $0\leq x\leq 1$. Carryout-computations for two levels taking $h=\frac{1}{3}$ and $k=\frac{1}{36}$.

05. Solve $u_{xx} + 2u_{yy} = 0$ in the following square region with the boundary conditions as indicated:

Module - 05

01. Apply fourth order Runge-Kutta method to:

(i) find
$$y(0.1)$$
 for an $2VP$ $y''-x^2y'-2xy=1$, $y(0)=1$, $y'(0)=0$

(ii) find y(0.2) for an 2VP y"- xy'- y=0, y(0) = 1, y'(0) = 0

(iii) solve
$$\frac{d^2y}{dx^2} - x \left(\frac{dy}{dx}\right)^2 + y^2 = 0$$
, $y(0) = 1$, $y'(0) = 0$. Evaluate $y(0.2)$ to four decimal places.

02. Apply Milne's method to: (i) find y(0.8) given that y

j				0	9 -	1-299
	20	0		0.2	0.4	0.6
	y	0		0.02	0.0795	0.1762
SV	y'	0		0.1996	0.3937	0.5689
)	find	ulo	. / :) lex th		

9 0 0.02 0.0795 0.1762

$$y'$$
 0 0.1996 0.3937 0.5689
(ii) find $y(0.4)$ for the equation $\frac{d^2y}{dx^2} + 3x \frac{dy}{dx} - 6x = 0$ given that $y(0) = 1$,

y(0,1) = 1.03995 , y(0,2) = 1.138036,

$$y(0.3) = 1.29865$$
, $y'(0) = 0.1$, $y'(0.1) = 0.6955$, $y'(0.2) = 1.258$, $y'(0.3) = 1.873$.

03. Apply Milne's predictor-corrector method to compute $\frac{d^2y}{dx^2} = 1 + \frac{dy}{dx}$ and the following

table of initial values:

α	0	0.1	0.2	0.3
y	1	1.1103	1.2427	1.3990
y'	VET-	1.2103	1.4427	1.6990

- 04. Given the differential equation
 - $2\frac{d^2y}{dx^2} = 4x + dy$ and the following table of lnitial values:

 x
 1
 1.1
 1.2
 1.3

 y
 2
 2.2156
 2.4649
 2.7514

 y'
 2
 2.3178
 2.6725
 3.0657

- 05. Derive Euler's equation in the standard form $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y} \right) = 0$
- 06. Find the curves on which the functional $\int_{0}^{1} \left[(y')^{2} + 12xy \right] dx \text{ with } y(0) = 0 \text{ and } y(1) = 1$ can be extremized.
- 07. Show that the geodesics on a plane are straight lines.

Prove that shortest distance between two points in a plane is along the straight line joining them.