Άσκηση Dijkstra

Εφαρμόσετε τον αλγόριθμο του Dijkstra για να υπολογίσετε τα shortest paths από τον κόμβο *u* προς τους κόμβους του δικτύου που φαίνεται δίπλα

N'	D(c), p(c)	D(a), p(a)	D(d), p(d)	D(b), p(b)	D(t), p(t)
u	15,u	18,u	20,u	8	∞
uc	-	17,c	20,u	29,c	∞
uca	-	-	20,u	26,a	∞
ucad	-	-	-	26,a	40,d
ucadb	-	-	-	-	40,d
ucadbt	-	-	-		-

Άσκηση Distance Vector

Θεωρήστε ότι ο αλγόριθμος δρομολόγησης που τρέχει είναι ο distance vector. Δώστε μία αλλαγή στο κόστος μίας ζεύξης, είτε για c(x,w), είτε για c(x,y), έτσι ώστε ο κόμβος x να πρέπει να ενημερώσει τους γείτονες του για ένα νέο μονοπάτι ελάχιστου κόστους προς τον u.

$$Dx(u) = c(x,w) + c(w,u) = 2 + 5 = 7$$

 $Dx(u) = c(x,y) + c(y,u) = 5 + 6 = 11$

- Μία αλλαγή στο κόστος του c(x,w), δ>4, κάνει πλέον μονοπάτι ελάχιστου κόστους αυτό που περνάει από τον y και όχι αυτό που περνάει από το w.
- Μία αλλαγή στο κόστος του c(x,y), δ<1, κάνει πλέον μονοπάτι ελάχιστου κόστους αυτό που περνάει από τον y και όχι αυτό που περνάει από το w.