

MEEC/MIEEC

RADIO FREQUENCY CIRCUITS AND SYSTEMS

Communication Link Simulation in GNU-Radio Testing of a Low-IF receiver (SDR)

Authors:

Diogo Matos Novais (70118) Francisco Simões Coelho Sá da Costa (70386) Martim Duarte Agostinho (70392) Sofia Margarida Mafra Dias Inácio (58079)

```
dm.novais@campus.fct.unl.pt
  fsc.costa@campus.fct.unl.pt
md.agostinho@campus.fct.unl.pt
  sm.inacio@campus.fct.unl.pt
```


Contents

1	Template	3
2	Introduction (objectives)	4
3	GNU Radio setup, simulation results and comments	4
4	SPICE simulation results and analysis	4
5	VNA measurements and impedance transformation discussion	4
6	RFFE experiment setup, results, and analysis	4
7	Conclusions	1

List of Figures

	Logo da Nova FCT . NTC's block diagram																				
List	of Tables																				
1	Anti-Aliasing Filter Sp	ecific	ati	on	s ai	nd	Ac	chie	eve	ed	Ре	erfo	ori	ne	anc	ee					3

1 **Template**

Table 1: A	Anti-Aliasing	Filter	Specifications	and	Achieved	Performance

Specification	Target	$2^{ m nd} ext{-}{ m Order}$ Butterworth	3 rd -Order Butterworth
Pass-band ripple A_{max} (dB)	≤ 0.5	0.5	0.5
Stop-band attenuation A_{\min} (dB)	≥ 80	90	90
Pass-band edge f_p (kHz)	20	20	20
Stop-band edge f'_s (MHz) ¹	4.62	4.62	4.62
Transition ratio f_s'/f_p	231	231	231
Filter order N	_	2 (chosen)	3 (strict)
Theoretical in-band group delay ² (μ s)	_	7.9	11.8

Figure 1: Logo da Nova FCT

$$\begin{cases} R(283, 15) = 1,998 \cdot 10^{4} \ \Omega \\ R(298, 15) = 10^{4} \ \Omega \\ R(313, 15) = 0,5282 \cdot 10^{4} \ \Omega \end{cases} \Leftrightarrow \begin{cases} A = 1,3092 \cdot 10^{-3} \\ B = 2,1439 \cdot 10^{-4} \\ C = 9,6600 \cdot 10^{-8} \end{cases}$$
(1)

Listing 1: Matlab code example

```
printf('Polos: ');
PlFdz
\%figure (3);
pzmap (Fdz);
%figure (4);
step (Fdz);
```

¹First stop-band edge equals $f_s - f_p$, where f_s is the modulator sampling frequency (4.64 MHz). ²Approximate group delay evaluated at ω_p for a Butterworth LPF: $\tau_g \approx N/(2\pi f_p)$.

- item 1
 - • •
- item n
- 1. Butterworth
- 2. Chebyshev
- 3. Elliptic
- 4. Bessel

In the application in study, the group delay is a critical factor because the ECG signal is a time-domain signal, and the phase distortion can lead to a misinterpretation of the signal. So it is safe to say that the Bessel filter is the best choice for this application.

Figure 2: NTC's block diagram

Referece like this [1]

- 2 Introduction (objectives)
- 3 GNU Radio setup, simulation results and comments
- 4 SPICE simulation results and analysis
- 5 VNA measurements and impedance transformation discussion
- 6 RFFE experiment setup, results, and analysis
- 7 Conclusions

References

[1] E. Systems, "Esp32 series datasheet," https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf, 2024.