Lecture 13

Instructor: Subrahmanyam Kalyanasundaram

30th September 2019

Plan

- Minimum spanning trees
- Proof of Correctness of Kruskal's Algorithm
- Union-Find Data Structure (Disjoint Set Data Structure)

Spanning Trees

Spanning Tree

Definition: An undirected graph *G* is *connected* if every vertex is reachable from every other vertex.

A graph T = (V, E') is a spanning tree of an undirected connected graph G = (V, E) if:

- $ightharpoonup E' \subseteq E$.
- ► *T* is a *tree*. i.e., *T* is an acyclic and connected.

Informally: A spanning tree for *G* is a tree that can be found inside *G* which *spans* all vertices of *G*.

What are the possible spanning trees for this graph?

Minimum Spanning Tree Problem

Input

- ▶ Undirected connected graph G = (V, E)
- ▶ Weight function $w: E \to \mathbb{Z}^+$

Goal

Compute a spanning tree for *G* with minimum total weight.

Kruskal's Algorithm (informal)

- Sort the edges in nondecreasing order by weight
- ▶ Set $T = \emptyset$
- ► Choose the lightest edge and add it to *T* as long as it does not create a cycle in *T*
- Terminate when T is spanning

Kruskal's Algorithm Pseudocode

Algorithm 1 Kruskal's algorithm

```
1: A = \emptyset
2: for each vertex v \in V do
      Make-Set(v)
4: end for
5: Sort the edges in E into nondecreasing order by weight w
6: for each edge (u, v) \in E taken in nondecreasing order by weight do
7:
      if FIND-SET(u) \neq FIND-SET(v) then
         A = A \cup \{(u, v)\}
         Union(u, v)
9:
      end if
10:
11: end for
12: Return A
```


Proof of Correctness of Kruskal's

Algorithm 2 Generic MST

- 1: *A* = ∅
- 2: **while** *A* does not form a spanning tree **do**
- 3: find an edge (u, v) that is safe for A
- $4: \quad A = A \cup \{(u,v)\}$
- 5: end while
- 6: Return A

Algorithm 3 Generic MST

- 1: *A* = ∅
- 2: **while** *A* does not form a spanning tree **do**
- 3: find an edge (u, v) that is safe for A
- $4: \quad A = A \cup \{(u,v)\}$
- 5: end while
- 6: Return A
 - Kruskal's is a special case of the above generic algorithm
 - ▶ (u, v) is safe for A: There is an MST that contains $A \cup \{(u, v)\}$
 - How does one find a safe edge?

- ▶ (u, v) is safe for A: There is an MST that contains $A \cup \{(u, v)\}$
- ► The cut (S, V S) respects A: No edge in A crosses the cut (S, V S)

- ▶ (u, v) is safe for A: There is an MST that contains $A \cup \{(u, v)\}$
- ► The cut (S, V S) respects A: No edge in A crosses the cut (S, V S)

Theorem (Cut Property)

Let G = (V, E) be a connected undirected graph with weight $w : E \to \mathbb{R}$. Let $A \subseteq E$ be included in some MST of G. Let (S, V - S) be a cut that respects A and let (u, v) be an edge of smallest weight that crosses this cut. Then (u, v) is safe for A.

Theorem (Cut Property)

Let G = (V, E) be a connected undirected graph with weight $w : E \to \mathbb{R}$. Let $A \subseteq E$ be included in some MST of G. Let (S, V - S) be a cut that respects A and let (u, v) be an edge of smallest weight that crosses this cut. Then (u, v) is safe for A.

Proof

Let T be an MST such that $A \subseteq T$. If $(u, v) \in T$, we are done. So assume $(u, v) \notin T$.

We will show that there is an MST T' such that $A \cup \{(u, v)\} \subseteq T'$. Thus (u, v) is safe for A.

Proof cont...

Consider $T \cup \{(u, v)\}$. There is a unique path p from u to v in T. When (u, v) is added to T, it forms a cycle along with the path p.

Proof cont...

Consider $T \cup \{(u, v)\}$. There is a unique path p from u to v in T. When (u, v) is added to T, it forms a cycle along with the path p.

Since u and v are on the opposite sides of the cut (S, V - S), at least one of the edges in p crosses the cut (S, V - S). Let (x, y) be such an edge. Since (S, V - S) respects $A, (x, y) \notin A$. Removing (x, y) breaks T into two components.

Proof cont...

Consider $T \cup \{(u, v)\}$. There is a unique path p from u to v in T. When (u, v) is added to T, it forms a cycle along with the path p.

Since u and v are on the opposite sides of the cut (S, V - S), at least one of the edges in p crosses the cut (S, V - S). Let (x, y) be such an edge. Since (S, V - S) respects $A, (x, y) \notin A$. Removing (x, y) breaks T into two components.

Consider $T' = T - \{(x,y)\} \cup \{(u,v)\}$. Adding (u,v) to $T - \{(x,y)\}$, reconnects the two components. Hence T' is a spanning tree.

► Solid edges are in *T*

- ► Solid edges are in *T*
- ► Red edges are in *A*

- ► Solid edges are in *T*
- ► Red edges are in A
- \blacktriangleright (u, v) is safe!

Proof cont...

Consider $T' = T - \{(x,y)\} \cup \{(u,v)\}$. Adding (u,v) to $T - \{(x,y)\}$, reconnects the two components. Hence T' is a spanning tree.

Proof cont...

Consider $T' = T - \{(x,y)\} \cup \{(u,v)\}$. Adding (u,v) to $T - \{(x,y)\}$, reconnects the two components. Hence T' is a spanning tree.

$$w(T') = w(T) - w((x, y)) + w((u, v))$$

 $\leq w(T)$ [since $w((u, v)) \leq w((x, y))$]

Proof cont...

Consider $T' = T - \{(x,y)\} \cup \{(u,v)\}$. Adding (u,v) to $T - \{(x,y)\}$, reconnects the two components. Hence T' is a spanning tree.

$$w(T') = w(T) - w((x, y)) + w((u, v))$$

 $\leq w(T)$ [since $w((u, v)) \leq w((x, y))$]

Hence T' is a minimum spanning tree!

Algorithm 4 Kruskal's algorithm

```
1: A = \emptyset
2: for each vertex v \in V do
      Make-Set(v)
4: end for
5: Sort the edges in E into nondecreasing order by weight w
6: for each edge (u, v) \in E taken in nondecreasing order by weight do
7:
      if FIND-SET(u) \neq FIND-SET(v) then
         A = A \cup \{(u, v)\}
         Union(u, v)
9:
      end if
10:
11: end for
12: Return A
```

- ▶ |V| Make-Set(v) operations
- ► At most 2|E| FIND-SET(v) operations
- ▶ |V| 1 Union(u, v) operations

- ▶ |V| Make-Set(v) operations
- ► At most 2|E| FIND-SET(v) operations
- ▶ |V| 1 Union(u, v) operations
- ▶ And a sort the edges takes $O(|E| \log |E|)$ time

- ▶ |V| Make-Set(v) operations
- ▶ At most 2|E| FIND-SET(v) operations
- ▶ |V| 1 Union(u, v) operations
- ▶ And a sort the edges takes $O(|E| \log |E|)$ time
- ▶ What if edges were already sorted? What if we can sort them in linear time?

Abstract Data Type

Disjoint Set

Maintain a collection $\mathcal{F} = \{S_1, S_2, \dots, S_k\}$ of disjoint sets. One element from each set serves as a 'representative' for that set.

Disjoint Set supports the following procedures:

- ► MakeSet(x) Creates a singleton set with element x.
- ▶ UNION(x, y) Performs union on sets containing x and y.
- ► FINDSET(x) Find the set containing x.

MAKESET

MAKESET(x)

Creates a singleton set containing x.

We assume that x is not an element of any other set in \mathcal{F} . We assign x as the representative for the set just created.

Union

Union(x, y)

Performs union on sets containing x and y.

Let $S, T \in \mathcal{F}$ such that $x \in S$ and $y \in T$.

Create a new set $U = S \cup T$.

Choose and assign a representative for U.

Remove S and T from \mathcal{F} .

FINDSET

FINDSET(x)

Find the set containing x.

Let $S \in \mathcal{F}$ such that $x \in S$. (Note: exactly one set contains x.) Return a pointer to the representative element of S.

Disjoint Set using linked lists:

Disjoint Set using linked lists:

- ► For each set *S*, maintain:
 - a node with metadata
 - ightharpoonup a linked list L_S with the objects in the set.
- The "Metadata Node" stores head and tail pointers to the linked list.
- Each node in the linked list consists of:
 - ▶ The value of the element.
 - A pointer to the next element.
 - A pointer to the Metadata Node.

The head of L_S is the representative of S.

Linked list for set $\{v_1, v_3, v_4, v_7\}$.

MAKESET(x)

Creates a singleton set with element *x*

- Create a new node for metadata
- Create a linked list containing just x.
- ▶ Node *x* is the head and tail of the list.
- ▶ Representative for this set is *x* itself.

FINDSET(x)

Find the set containing node x.

Return a pointer to the representative.

Union(x,y)

Union of sets containing *x* and *y*.

- ► Append linked list of set *S* containing *x* to set *T* containing *y*.
- ► Representative of new set is same as representative of *T*.
- ▶ Update meta pointers of nodes in *S* to the correct metadata node.
- ▶ Update tail pointer in metadata node of *T*.

Union of sets $S = \{v_1, v_3, v_7\}$ and $T = \{v_2, v_9\}$.

Analysis

Running time under Linked List implementation:

- ► MAKESET(x) O(1)
- ► FINDSET(x) O(1)
- ► Union(x, y) ?

Analysis

Union(x, y) -

- ▶ $S \leftarrow \text{FINDSet}(x)$ and $T \leftarrow \text{FINDSet}(y) O(1)$ time.
- ▶ Appending linked list of *S* to tail end of T O(1) time.
- ▶ Updating the new metadata (tail) O(1) time.
- ▶ Updating the backward pointers of nodes in S takes O(n) time.

We can show a case where after O(n) operations, time taken would be $O(n^2)$.

Recap: List Implementation

Disjoint Set using linked lists:

- ► For each set *S*, maintain:
 - a node with metadata
 - ightharpoonup a linked list L_S with the objects in the set.
- ► The "Metadata Node" stores:
 - Head and tail pointers to the linked list.
- Each node in the linked list consists of:
 - ► The value of the element.
 - A pointer to the next element.
 - A pointer to the Metadata Node.

The head of L_S is the representative of S.

List Implementation - Union by Rank heuristic

Disjoint Set using linked lists, union by rank:

- ► For each set *S*, maintain:
 - a node with metadata
 - ightharpoonup a linked list L_S with the objects in the set.
- ► The "Metadata Node" stores:
 - Head and tail pointers to the linked list.
 - Size of the set.
- Each node in the linked list consists of:
 - The value of the element.
 - A pointer to the next element.
 - A pointer to the Metadata Node.

The head of L_S is the representative of S.

List Implementation - Union by Rank heuristic

Union(x,y)

Union of sets containing *x* and *y*.

Let $x \in S$ and $y \in T$.

If
$$|S| \leq |T|$$
,

- ► Append list of *S* to tail end of list of *T*.
- ▶ Representative of new set is same as that of *T*.
- Update meta pointers of nodes in S
- ▶ Update tail pointer in metadata node of *T*.
- ► Update size of set in the metadata node.

Else, do the opposite.

Implementation - Union by Rank heuristic

Union of sets $S = \{v_1, v_3, v_7\}$ and $T = \{v_2, v_9\}$.

Analysis - Union by Rank heuristic

Theorem

A sequence of m operations in total, n of which are MAKESET takes $O(m + n \log n)$ time.

Analysis - Union by Rank heuristic

Observation 1

Updating the meta pointers takes the most time.

Observation 2

The meta pointer of a node *x* is updated only when union happens with a bigger set.

Proof strategy

- Fix an element x.
- Count number of times the meta pointer on node x is updated.

Analysis - Union by Rank heuristic

Observation 2 (informal)

If x lived inside a set of size s, and a union operation updated its meta pointer, then x now lives inside a set of size at least 2s.

- ► Initially, *x* starts off as a singleton set.
- After k many updates to its meta pointer, it lives inside a set of size at least 2^k.
- ► Total number of elements is n. So $2^k \le n$.
- ▶ This means $k \le \log n$

Hence, for each element the meta pointer can be updated at most $k \le \log n$ many times.

Worst case total number of updates to meta pointer across all n elements is $n \log n$.

Implementation - disjoint forests

The disjoint forest implementation:

► Each set *S* is implemented as a rooted tree.

A node corresponding to an $x \in S$ contains:

- ► The value (or pointer to) *x*.
- A pointer to its parent.

Implementation - disjoint forests

The disjoint forest implementation:

► Each set *S* is implemented as a rooted tree.

A node corresponding to an $x \in S$ contains:

- ► The value (or pointer to) *x*.
- A pointer to its parent.

Note:

- ► There are no pointers to children nodes!
- ▶ There is no dedicated metadata node for each set.
- Convention: Parent of root will be itself.
- Root node is also the representative.