九年级第一学期期末质量检测

参考答案

注:本答案只给简单过程和评分细则!

一、选择题:本大题共 10 小题,每小题 3 分,共 30 分,在每小题给出的四个选项中,只有一项是符合题目要求的.

题号	1	2	3	4	5	6	7	8	9	10
选项	В	D	D	С	D	A	A	С	A	С

【附解】

10. 联立得到 $\begin{cases} y = tx^2 - x \\ y = 4t|x| - t + 3 \end{cases}$, 整理得 $tx^2 - x = 4t|x| - t + 3$,考虑对此方程进行如下变形: $tx^2 - x = 4t|x| - t + 3 \Rightarrow$

 $tx^2-4t|x|+t=x+3 \Rightarrow t\left(x^2-4|x|+1\right)=x+3$,考虑令 $k=\frac{1}{t}$,那么原方程又可化为 $x^2-4|x|+1=k(x+3)$,这可以看成是 $y=x^2-4|x|+1$ 与 y=k(x+3) 联立,在同一直角坐标系作出图像:

(第10题图解)

从图像上可以看出,当 $-3 \le k < -\frac{1}{2}$ 或 $k = \frac{1}{3}$ 时,原方程有两组解,对应可得 t 的取值范围是 $-2 < t \le -\frac{1}{3}$ 或 t = 3,其中,整数只有 -1 和 3 这 2 个,故选 C.

二、填空题:本大题共6小题,每小题3分,共18分.

11.-112.106° 或 164°13.10814.2 或
$$-\frac{5}{2}$$
15.①③④16.2√3

- 三、解答题:本大题共8小题,共72分,解答应写出必要的文字说明、证明过程或演算步骤。
- 17. 由二次根式的非负性知 a=2、b=-3(3 分),由根的定义知 a+b+c=0,代入得到 c=1(5 分),于是原方程化为 $\frac{1}{4}y^2-1=0$,据此解得 $y_1=-2$ 、 $y_2=2$ (8 分). 18. (1) 证明 $\triangle ABE$ 和 $\triangle ACF$ 全等就可得到 $\triangle AEF$ 是等边三角形.(4 分)
- - (2) 过 E 作 $ET \perp CF$ 交 FC 延长线于 T, 易证 CT = 1、 $ET = \sqrt{3}$, 于是 $S_{\triangle ECF} = \frac{1}{2}ET \cdot CF = \frac{\sqrt{3}}{2}$. (8 分)
- 19. (1) $\frac{11}{16}$ $(3 \, \%)$ (2) 由树状图(表格)(5 %)可知有 12 种等可能的结果(6 %),其中 "两球标号互质" 共 4 种(7 %),故 P(两球标号互质) = $\frac{4}{12} = \frac{1}{3}$.(8 %)
- 20. (1) $\widehat{DB^l} = \frac{\pi}{3} (1 \%)$, $S = \pi 2 (2 \%)$

(2) 在 CD 延长线上截 TD = BD, 连 AT, 证明 ΔTAD 与 ΔBAD 全等 (5分), 再证 ΔTAC 是等腰直角三角形, 得 到 $BD + DC = TD + DC = TC = \sqrt{2}AC = 2\sqrt{6}$ 即可(8分).

21. 作出 AD 给 2 分, 作出点 E 给 5 分, 作出 AF 给 8 分

- 22. (1) $v_1 = -20t_1 + 40 \ (1 \ \%)$, $s = -10t^2 + 40t \ (2 \ \%)$
 - (2) 由小球乙共运动 3 秒可知当 t_2 = 3 时,h = 0(3 分),进而解得 v_2 = 6(4 分). 从而 v_1 = v_2 = 6,对应可解得 t_1 = 1.7(5 分),代入 s 得到 s = 39.1,故 AB 长 39.1dm(6 分).
 - (3) 解三角形得到 $h_{max}=2$ (7分),分析 $h-v_2$ 图像可得当 $t_2=\frac{v_2}{4}$ 时,h=2,解方程并舍去负根得到 $v_2=4$ (8分),从而 $v_1=v_2=4$,对应可解得 $t_1=1.8$ (9分),代入 s 得到 s=39.6,故 AB 长 39.6dm(10分).
- 23. (1) 直接导角即可(2分).

(2) 连 $EC \setminus AC$, 证明 $\triangle ADC$ 是等边三角形(3 分),从而得到 $\triangle AEC$ 全等于 $\triangle AFD$ (5 分),于是 $\angle ECA = \angle FDA \setminus EC = DF$,这可以得到 $\angle BEC = 135^{\circ}$ (6 分),最后解 $\triangle BEC$ 就可以得到 BE = 2(7 分).

- (3) $PQ_{min} = \sqrt{35} 3 \ (10 \ \%)$.
- 24. (1) ① (0,1) (1分); (-2,2) 或 (2,2) (2分) ② $y = \frac{1}{4}x^2 + 1$ (3分)
 - (2) 【解答】

如图, 过P作 $PC \perp x$ 轴交MN于C.

∴
$$x_P = -2$$
, $MN : y = kx + 2k + 4$.∴ $P(-2,2)$, $C(-2,4) \Rightarrow PC = x_C - x_P = 2$ (4 $\frac{4}{1}$).

$$x_{N} = -2$$
、 $x_{N} = -2$ 、 $x_{N} = -2$ (4 分).
联立 $x_{N} = -2$ (4 分).
联立 $x_{N} = -2$ (4 分).
東京 $x_{N} = -2$ (5 分

根,故由韦达定理,
$$\begin{cases} x_M + x_N = 4k \\ x_M \cdot x_N = -8k - 12 \end{cases}$$
 (6分)

令 $h = (x_M - x_N)^2$,有 $S_{\triangle MPN} = \frac{1}{2} PC\sqrt{h} = \sqrt{h}$,故当 $S_{\triangle MPN}$ 最小时,h 最小.

∴ 当 k = -1 时, $S_{\triangle MPN}$ 取到最小值 $4\sqrt{2}$.

综上所述, $\triangle MPN$ 的面积最小为 $4\sqrt{2}$. (8分)

(3) 【解答】

【点参法】

设
$$P(2p, p^2 + 1)$$
、 $Q(2q, q^2 + 1)$ 、 $PQ: y = k'x + b'$ 、 $PT: y = mx + n$.

这样有
$$\begin{cases} p^2 + 1 = 2pk' + b' \\ q^2 + 1 = 2qk' + b' \end{cases}$$
 ,解得 $\begin{cases} k' = \frac{p+q}{2} \\ b' = -pq \end{cases}$,故 $PQ: y = \frac{p+q}{2}x - pq$,又 PQ 过 $F(0,2)$ $\therefore -pq = 2 \Rightarrow pq = -2 \ (9 \ \%)$

$$pq = -2$$
 (9分)
:: P 在 PT 上... $p^2 + 1 = 2mp + n \Rightarrow n = -2pm + p^2 + 1 \Rightarrow PQ$: $y = mx - 2pm + p^2 + 1$
联立 PT 和 Γ 的方程,有
$$\begin{cases} y = \frac{1}{4}x^2 + 1 \\ y = mx - 2pm + p^2 + 1 \end{cases}$$
,整理得 $x^2 - 4mx + 8pm - 4p^2 = 0$.:: PT 与 Γ 有且仅有一

个公共点... 此方程两实根相同,即

$$\Delta = 0 \Rightarrow (-4m)^2 - 4(8pm - 4p^2) = 0$$
$$m^2 - 2pm + p^2 = 0$$
$$(m - p)^2 = 0$$
$$m = p$$

故
$$PT: y = px - p^2 + 1$$
, 同理, $QT: y = qx - q^2 + 1$ (11分).

故
$$PT: y = px - p^2 + 1$$
,同理, $QT: y = qx - q^2 + 1$ (11 分).
联立 PT 和 QT 的方程,有
$$\begin{cases} y = px - p^2 + 1 \\ y = qx - q^2 + 1 \end{cases}$$
,解得
$$\begin{cases} x = p + q \\ y = pq + 1 = 0 \end{cases}$$
,即 $T(p + q, 0)$.

:: 由勾股定理,

$$PF^{2} = (x_{P} - x_{F})^{2} + (y_{P} - y_{F})^{2} = 4p^{2} + (p^{2} - 1)^{2} = (p^{2} + 1)^{2}$$

$$FT^{2} = (x_{F} - x_{T})^{2} + (y_{F} - y_{T})^{2} = (p + q)^{2} + 4 = (p + q)^{2} - 4pq = (p - q)^{2}$$

$$PT^{2} = (x_{P} - x_{T})^{2} + (y_{P} - y_{T})^{2} = (p - q)^{2} + (p^{2} + 1)^{2} = PF^{2} + FT^{2}$$

∴ 由勾股逆定理, TF⊥PQ, 证毕. (12 分)

【线参法】

设 PQ: y=kx+b, : PQ 过 F(0,2)... $2=b \Rightarrow b=2 \Rightarrow PQ: y=kx+2$ 联立 PQ 和 Γ 的方程,有 $\begin{cases} y=\frac{1}{4}x^2+1\\ y=kx+2 \end{cases}$,整理得 $x^2-4kx-4=0$... x_P 、 x_Q 是这个方程的两根... 由韦达定理,

$$\begin{cases} x_P + x_Q = 4k \\ x_P \cdot x_Q = -4 \end{cases} \tag{9 \frac{4}{17}}$$

$$(x_P \cdot x_Q = -4)$$

设 $T(p,q)$,过 T 的直线 $l_T : y = mx + n$,有 $q = mp + n \Rightarrow n = -mp + q \Rightarrow l_T : y = mx - mp + q$.
联立 l_T 和 Γ 的方程,有
$$\begin{cases} y = \frac{1}{4}x^2 + 1 \\ y = mx - mp + q \end{cases}$$
,整理得 $x^2 - 4mx + 4mp - 4q + 4 = 0$

$$\Delta = 0 \Rightarrow (-4m)^2 - 4(4mp - 4q + 4) = 0$$
$$m^2 - mp + q - 1 = 0$$

由韦达定理, $\begin{cases} m_1+m_2=p\\ m_1\cdot m_2=q-1 \end{cases}$,此时方程的解为 $x_1=x_2=2m$,故可设 $PT:y=m_1x-m_1p+q$ 、 $QT:y=m_1x-m_2p+q$, $QT:y=m_1x-m_2p+q$, $QT:y=m_1x-m_2p+q$, $QT:y=m_2x-m_2p+q$,

$$m_2 x - m_2 p + q$$
, 有 $x_P = 2m_1$ 、 $x_Q = 2m_2$ (11 分).
于是 $\begin{cases} 2m_1 + 2m_2 = 4k \\ 2m_1 \cdot 2m_2 = -4 \end{cases}$ $\Rightarrow \begin{cases} 2p = 4k \\ q - 1 = -1 \end{cases}$ $\Rightarrow \begin{cases} p = 2k \\ q = 0 \end{cases}$ $\Rightarrow T(2k, 0)$

:: 由勾股定理,

$$CF^{2} = (x_{C} - x_{F})^{2} + (y_{C} - y_{F})^{2} = (2k)^{2} + (2k^{2} + 2 - 2)^{2} = 4k^{4} + 4k^{2}$$
$$TF^{2} = (x_{T} - x_{F})^{2} + (y_{T} - y_{F})^{2} = (2k)^{2} + (2)^{2} = 4k^{2} + 4$$

 $\therefore CT^2 = CF^2 + TF^2$, 由勾股逆定理, $PO \bot TF$, 证毕. (12 分)