Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2024-25

Αρχιτεκτονικές Συνόλου Εντολών

(Instruction Set Architectures - ISA)

https://mixstef.github.io/courses/comparch/

Μ.Στεφανιδάκης

Ο (μικρο)επεξεργαστής

- (Micro)processor
 - Αρχικά, μόνο η Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ)
 - Central Processing Unit (CPU)
 - Περιέχει σήμερα πολλαπλές υπομονάδες επεξεργασίας
 - Σε κάθε «πυρήνα» (core)
 - Με διαφορετικά χαρακτηριστικά ή/και ρόλους
 - Και μέρος της ιεραρχίας μνήμης (κρυφές μνήμες)
 - Καθώς και μέρος των διεπαφών (interfaces) επικοινωνίας
 με την κύρια μνήμη και τις μονάδες εισόδου εξόδου

Κεντρική Μονάδα Επεξεργασίας

- Central Processing Unit (CPU)
 - Ένας όρος που τείνει προς εξαφάνιση
 - Μετά την εμφάνιση των πολλών/διαφορετικών μονάδων επεξεργασίας στο ίδιο τσιπ
- Ποιος ο ρόλος μιας Μονάδας Επεξεργασίας
 - Μετασχηματίζει (επεξεργάζεται) δεδομένα σύμφωνα με ένα πρόγραμμα ελέγχου
 - Το πρόγραμμα ελέγχου αποτελείται από εντολές μηχανής

Το μοντέλο «von Neumann»

υπολογιστικό σύστημα

- Το πρόγραμμα ελέγχου, όπως και τα δεδομένα, αποθηκεύονται στη μνήμη του υπολογιστή
 - "Stored-program computer"

Εκτέλεση εντολών: ο κύκλος μηχανής

Εκτέλεση εντολών

- Program Counter (PC) ή Instruction Pointer (IP)
 - Καταχωρητής ειδικού σκοπού
 - Περιέχει τη διεύθυνση της θέσης μνήμης όπου βρίσκεται η εντολή προς εκτέλεση
- Αύξηση PC μετά την ανάκληση της εντολής (PC += d)
 - Μετάβαση στην επόμενη εντολή
- Ή μεταπήδηση σε νέα θέση μνήμης (ο PC παίρνει νέα τιμή)
 - Εντολές διακλάδωσης
- Η διαδικασία επαναλαμβάνεται συνεχώς
 - Όσο η Μονάδα Επεξεργασίας είναι σε λειτουργία

Η πρώτη εντολή που εκτελείται

- Εκκίνηση εκτέλεσης
 - Με την εφαρμογή τάσης ο PC παίρνει μια προκαθορισμένη τιμή
 - Συνήθως στην αρχή ή στο τέλος της υποστηριζόμενης περιοχής μνήμης
 - Ανάλογα με την αρχιτεκτονική της κάθε Μονάδας Επεξεργασίας
 - Εκεί ο κατασκευαστής έχει τοποθετήσει τις πρώτες εντολές αρχικοποίησης του συστήματος

Αρχιτεκτονική Συνόλου Εντολών

- Instruction Set Architecture (ISA)
 - Το ορατό μέρος ενός υπολογιστικού συστήματος για τον προγραμματιστή (και τον μεταγλωττιστή)
 - Δεκαετία 60-70: συνώνυμο του όρου «αρχιτεκτονική Η/Υ»
 - «η δομή ενός υπολογιστή, την οποία ο προγραμματιστής πρέπει να γνωρίζει για να γράψει ένα σωστό (χρονικά ανεξάρτητο) πρόγραμμα σε γλώσσα μηχανής για τον υπολογιστή αυτόν» (IBM)

Η διεπαφή ISA στην ιεραρχία επιπέδων

- Αρχιτεκτονική Εντολών (ISA)
 - Η διεπαφή υλικού-λογισμικού

Αρχιτεκτονική Συνόλου Εντολών (ISA)

- Τι περιγράφει;
 - Διαθέσιμες πράξεις/λειτουργίες
 - Κωδικοποίηση λειτουργιών
 - Μορφή των δεδομένων εισόδου-εξόδου
 - Operands
 - Μέθοδοι προσπέλασης μνήμης
 - Προέλευση των δεδομένων, σχηματισμός διευθύνσεων μνήμης
 - Χώροι προσωρινής αποθήκευσης
 - Καταχωρητές
 - Διακοπές και καταστάσεις σφάλματος
 - Ποια η "αντίδραση" του επεξεργαστή

Η εξέλιξη της αρχιτεκτονικής εντολών

- Οι πρώτοι υπολογιστές (.. '60)
 - Αρχιτεκτονική συσσωρευτή και αργότερα στοίβας
 - Ικανοποιητική λύση λόγω της απλής τεχνολογίας των μεταγλωττιστών της εποχής
- Πολύπλοκες αρχιτεκτονικές ('70 ..)
 - Ενσωμάτωση σύνθετων μορφών εντολών και μεθόδων προσπέλασης μνήμης
 - Προσπάθεια υποστήριξης υψηλών γλωσσών
 προγραμματισμού μείωσης κόστους λογισμικού
 - Πολλά χαρακτηριστικά έμεναν όμως αχρησιμοποίητα...
 - Complex Instruction Set Computers (CISC)

Η εξέλιξη της αρχιτεκτονικής εντολών

- Reduced Instruction Set Computers (RISC) ('80 ...)
 - Απλούστερες και φθηνότερες load-store αρχιτεκτονικές με σταθερό μήκος εντολών
 - Μεγαλύτερη απόδοση ταχύτερη εκτέλεση εντολών
 - Ευνοείται από την αφθονία υλικού χαμηλού κόστους και την προηγμένη τεχνολογία των μεταγλωττιστών
 - Οι σημερινοί επεξεργαστές με εντολές CISC (π.χ. η αρχιτεκτονική x86), μεταφράζουν εσωτερικά μέσω πρόσθετου υλικού (hardware) σε (μικρο)εντολές RISC

Αρχιτεκτονική συσσωρευτή (accumulator)

- Μια πηγή δεδομένων και ταυτόχρονα θέση αποθήκευσης
 του αποτελέσματος είναι πάντα ο συσσωρευτής
 - 1-address architecture
 - Αρχιτεκτονική των πρώτων υπολογιστών

Αρχιτεκτονική στοίβας (stack)

π.χ. η εντολή:

add

σημαίνει:

 $t \leftarrow pop()$

 $u \leftarrow pop()$

v ← t + u

push(v)

- Οι πηγές προσδιορίζονται έμμεσα
 - Κορυφή της στοίβας δεν περιγράφονται στην εντολή
 - 0-address architecture
 - Δημοφιλές σχήμα κατά τη δεκαετία του 60
 - Δύσκολη προσπέλαση στοίβας, απαιτούνται πολλαπλές αντιμεταθέσεις και αντιγραφές για να έρθουν τα δεδομένα στη σωστή θέση

Αρχιτεκτονικές με καταχωρητές (registers)

- Memory-register
 - Οποιαδήποτε εντολή μπορεί να προσπελάσει τη μνήμη
- Πολλαπλές προσπελάσεις μνήμης ανά εντολή
 - Λήψη εντολής Λήψη δεδομένων εντολής
 - Συνωστισμός στον δίαυλο επικοινωνίας με μνήμη
- Πολύπλοκη εκτέλεση εντολής σε πολλαπλά στάδια

Αρχιτεκτονικές με καταχωρητές (registers)

π.χ. η εντολή:

add R1, R2,R3

σημαίνει:

R1 ← R2 + R3

- Register-register (load-store)
 - Μόνο εντολές load (ανάγνωση) store (εγγραφή) μπορούν να προσπελάσουν τη μνήμη
- Η αρχιτεκτονική των σύγχρονων επεξεργαστών
 - Οι καταχωρητές προσπελαύνονται πολύ γρήγορα
 - Η εκτέλεση των εντολών απαιτεί λιγότερα στάδια
 - Χρειάζονται λιγότερα bits για την επιλογή καταχωρητών

Κωδικοποίηση Εντολών

• Κάθε εντολή είναι μια σειρά δυαδικών ψηφίων

Μεταβλητού ή σταθερού μήκους;

- Διαφορετικές αρχιτεκτονικές συνόλου εντολών
 - Μεταβλητού μήκους: οι εντολές δεν έχουν τον ίδιο αριθμό bits
 - Συμπαγή προγράμματα (οι συχνά χρησιμοποιούμενες εντολές έχουν μικρότερο μέγεθος)
 - Σημαντικά πολυπλοκότερο υλικό αποκωδικοποίησης
 - Σταθερού μήκους: όλες οι εντολές έχουν τον ίδιο αριθμό bits (π.χ. 32 bits)
 - Μεγαλύτερα προγράμματα (οι εντολές έχουν μεγαλύτερο μέγεθος)
 - Απλούστερη και ταχύτερη λήψη-αποκωδικοποίηση

Εντολές: κατηγορίες λειτουργιών

- Οι τρεις βασικές κατηγορίες
 - Αριθμητικές και λογικές πράξεις
 - Από δύο πηγές εισόδου (καταχωρητές/μνήμη) προς έναν προορισμό (καταχωρητή/μνήμη)
 - Μεταφορά δεδομένων
 - Από-πρός καταχωρητές/μνήμη
 - Έλεγχος ροής εκτέλεσης
 - Διακλαδώσεις και κλήσεις/επιστροφές συναρτήσεων
 - Ειδικές εντολές διακοπής εκτέλεσης

Αριθμητικές/λογικές εντολές

- Αριθμητικές-λογικές πράξεις
 - Είδος πράξης
 - Είδος δεδομένων
 - Πηγές δεδομένων και προορισμός
 - Παράδειγμα (θεωρητικό):
 - Rd = Rs1 + Rs2

add	Rd	Rs1	Rs2
4	i l		

- Rd: προορισμός (καταχωρητής αποθήκευσης αποτελέσματος)
- Rs1, Rs2: πηγές (καταχωρητές δεδομένων εισόδου)

Εντολές μεταφοράς δεδομένων

- Μεταφορά δεδομένων
 - Πηγή δεδομένων και προορισμός
 - Το μήκος της μεταφερόμενης λέξης
 - 64, 32, 16 ή 8 bits
 - Παράδειγμα (θεωρητικό):
 - Rd = mem[addr]

- Στο παράδειγμα η διεύθυνση είναι απόλυτη (προσδιορίζεται μέσα στην εντολή)
 - Δεν είναι η χρησιμότερη μορφή διεύθυνσης!

Μέθοδοι προσπέλασης μνήμης

- Ορισμένες εντολές προσπελαύνουν τη μνήμη για ανάγνωση ή εγγραφή δεδομένων
 - Σχεδιασμός για υποβοήθηση του λογισμικού
 - Τοπικές μεταβλητές
 - Δείκτες (έμμεση προσπέλαση)
 - Στατικά δεδομένα
 - Διάσχιση πινάκων
 - Σταθερές τιμές
- Υποστήριξη ανάλογα με αρχιτεκτονική συνόλου εντολών

Μέθοδοι προσπέλασης μνήμης (addressing modes)

- Στο σχηματισμό της διεύθυνσης μνήμης μπορούν να συμμετέχουν:
 - Απόλυτες τιμές διεύθυνσης
 - Καταχωρητές
 - Σταθερές τιμές μετατόπισης (offsets)

πιθανή
χρήση

displacement	mem[offs+reg]	τοπικές
register indirect	mem[reg]	δείκτες
indexed	mem[reg1+reg2]	πίνακες
direct	mem[addr]	στατικές
memory indirect	mem[mem[reg]]	*δείκτες
auto-increment	mem[reg++]	πίνακες
scaled	mem[offs+reg1+reg2*d]	πίνακες

Εντολές διακλάδωσης

- Με συνθήκη
 - bne R1, R2, +8 // branch if not R1==R2
- Χωρίς συνθήκη, σε απόλυτη διεύθυνση
 - jump 0xFF97DE00
- Σχετικά ως προς την τρέχουσα θέση
 - jump +130 // τρέχουσα θέση + offset (+130)
 - Ο παραγόμενος κώδικας μπορεί να τοποθετηθεί οπουδήποτε στη μνήμη

• Εντολές διακλάδωσης είναι και οι κλήσεις συναρτήσεων και οι επιστροφές από αυτές