Optimizacijske metode, domača naloga 1

Janez Justin

April 14, 2020

1. Naloga

a) Odločite se, kaj bi bile primerne spremenljivke in za vsako napišite, kaj pomeni

Spremenljivka	Pomen
$\overline{x_1}$	število izdelanih sprejemnikov v 1. tednu
x_2	število izdelanih sprejemnikov v 2. tednu
x_3	število izdelanih sprejemnikov v 3. tednu
x_4	število izdelanih sprejemnikov v 4. tednu
$\overline{m_1}$	število mentorjev v 1. tednu
m_2	število mentorjev v 2. tednu
m_3	število mentorjev v 3. tednu
$\overline{s_1}$	število študentov, ki se urijo v 1. tednu
s_2	število študentov, ki se urijo v 2. tednu
s_3	število študentov, ki se urijo v 3. tednu
n_2	študenti, ki se že izurjeni v 2. tednu
n_3	študenti, ki se že izurjeni v 3. tednu
n_4	študenti, ki se že izurjeni v 4. tednu

b) Zapišite kriterijsko funkcijo in omejitve (vsako od njih razložite)

Maximizirati želimo funkcijo:

$$50 \cdot \left(20 \cdot x_1 + 18 \cdot x_2 + 16 \cdot x_3 + 14 \cdot x_4\right) - 132000 - 200 \cdot \left(n_2 + n_3 + n_4\right) - 100 \cdot \left(s_1 + s_2 + s_3\right)$$

Sestavljeno iz:

- $20 \cdot x_1 + 18 \cdot x_2 + 16 \cdot x_3 + 14 \cdot x_4$ predstavlja dobicek od prodanih sprejemnikov
- $132000 = 5 \cdot 20000 + 40 \cdot 200 \cdot 4 = \text{Strošek proizvodnje postaj} + \text{Plače za } 40 \text{ delavcev za } 4 \text{ dni}$
- $200 \cdot (n_2 + n_3 + n_4) = \text{Plača za študente, ki delajo}$
- 100 · $(s_1 + s_2 + s_3) =$ Plača za študente, ki se urijo

Pri pogojih:

x1 + x2 + x3 + x4 = 20000	Potrebujemo 20000 postaj
$m_1 \le 40$	Prvi teden je max 40 mentorjev
$m_2 \le 40 + n_2$	Drugi teden so mentorji lahko zaposleni in študenti 1.tedna
$m_3 \le 40 + n_3$	Tretji teden so mentorji lahko zaposleni in študenti 1. ter 2. tedna
$s_i \le 3 * m_i$	Vsak mentor izobrazi max 3 študente. $i \in 1, 2, 3$
$x_1 \le 50 \cdot (40 - m_1)$	Delavec, ki ni mentor, lahko naredi do 50 postaj
$x_2 \le 50 \cdot (40 + n_2 - m_2)$	Delavec/izurjen študent, ki ni mentor, lahko naredi do 50 postaj
$x_3 \le 50 \cdot (40 + n_3 - m_3)$	Delavec/izurjen študent, ki ni mentor, lahko naredi do 50 postaj
$x_4 \le 50 \cdot (40 + n_4)$	Delavec/izurjen študent lahko naredijo do 50 postaj
$n_2 \le s_1$	V 2. tednu je največ toliko študentov, kot jih je bilo izurjenih 1. teden
$n_3 \le n_2 + s_2$	V 3. tednu je največ toliko študentov,
	kot jih je bilo izurjenih 1. in 2. tednu
$n_4 \le n_3 + s_3$	V 4. tednu je največ toliko študentov,
	kot jih je bilo izurjenih v preteklih tednih
$x_{1,\dots,4} \ge 0$	Vsak teden dela 0 ali več delavcev
$m_{1,,3} \ge 0$	Vsak teden imamo 0 ali več mentorjev
$s_{1,,3} \ge 0$	Na uvajanju je lahko 0 ali več študentov
$n_{2,4} \ge 0$	Izurjenih študentov imamo 0 ali več

opomba: prvi teden še ni študentov, ki delajo, zato n_1 ne obstaja. Zadnji teden ni smiselno izobraževati študentov, zato s_4 in m_4 ne obstajata.

c) Linearni program rešite s pomočjo računalnika

Rešeno s pomočjo mathematice:

```
\label{eq:localization} $$ \begin{aligned} & \{20 \times 1 + 18 \times 2 + 16 \times 3 + 14 \times 4 - 132000 - 200 \; (n2 + n3 + n4) - 100 \; (s1 + s2 + s3) \; , \\ & \times 1 \geq 0, \; \times 2 \geq 0, \; \times 3 \geq 0, \; \times 4 \geq 0, \; \times 1 + \times 2 + \times 3 + \times 4 \leq 20000, \\ & 50 \; (\times 1 + \times 2 + \times 3 + \times 4) \geq 20000, \\ & m1 \geq 0, \; m1 \leq 40, \; s1 \geq 0, \; s1 \leq 3 * m1, \; \times 1 \leq 50 \; (40 - m1) \; , \\ & m2 \geq 0, \; m2 \leq 40 + n2, \; s2 \geq 0, \; s2 \leq 3 * m2, \; \times 2 \leq 50 \; (40 + n2 - m2) \; , \\ & m3 \geq 0, \; m3 \leq 40 + n3, \; s3 \geq 0, \; s3 \leq 3 * m3, \; \times 3 \leq 50 \; (40 + n3 - m3) \; , \\ & \times 4 \leq 50 \; (40 + n4) \; , \\ & n2 \geq 0, \; n2 \leq s1, \; n3 \geq 0, \; n3 \leq n2 + s2, \; n4 \geq 0, \; n4 \leq n3 + s3 \; , \\ & \} \\ \\ & \ln[5]:= \; \text{Maximize}[\text{program}, \; \{\times 1, \times 2, \times 3, \times 4, \; m1, \; m2, \; m3, \; s1, \; s2, \; s3, \; n2, \; n3, \; n4\} \; ] \\ & \text{Out}[5]:= \; \{128000, \; \{\times 1 \rightarrow 0, \times 2 \rightarrow 8000, \; \times 3 \rightarrow 8000, \; \times 4 \rightarrow 4000, \; m1 \rightarrow 40, \; m2 \rightarrow 0, \; m3 \rightarrow 0, \; s1 \rightarrow 120, \; s2 \rightarrow 0, \; s3 \rightarrow 0, \; n2 \rightarrow 120, \; n3 \rightarrow 120, \; n4 \rightarrow 40\} \; \} \\ \end{aligned}
```

d) Komentirajte rešitev

Iz rešitve je razvidno, da se podjetu splača prvi teden porabiti vse delavce, da izurijo maksimalno število študentov in potem vsi skupaj delajo naslednja dva tedna. Zadnji teden pa $\frac{2}{3}$ študentov odposlijo. Razvidno je tudi, da imamo najvec 128000 evrov profita in $\frac{128000}{20000}=6,4$ evrov profita na izdelan radijski sprejemnik.

2. Naloga

Naj bo:
$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$
, $b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ in $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

Imamo:

$$\pi: \max c^T, A_1 x \le b_1, A_2 x \le b_2, x \ge 0$$

torej:

$$\pi: \max c^T, Ax < b, x > 0$$

optimalna rešitev tega programa je x*. In dual:

$$\pi'$$
: min b^T , $A^T y \ge c$, $y \ge 0$

Po KID ima tudi π' optimalno rešitev $y^* = \begin{bmatrix} y_1^* \\ y_2^* \end{bmatrix}$ in $c^T x^* = c_1^T x^* + c_2^T x^* = b_1^T y_1^* + b_2^T y_2^*$ (če $c_1 + c_2 = c$). Ker je y* optimalna je tudi dopustna. Torej: $A^Ty \ge c \implies A_1^Ty_1^* + A_2^Ty_2^* \ge c$. To neenačbo lahko razdelimo na dva dela in izrazimo s c_1 in c_2 . c_1 in c_2 izberemo taka, da je $c_1 + c_2 = c$ in da velja:

$$A_1^T y_1^* \ge c_1 \tag{1}$$

$$A_2^T y_2^* \ge c_2 \tag{2}$$

Iz navodil je:

$$\pi_1: \max c_1^T x, \ A_1 x \le b_1, \ x \ge 0$$

$$\pi_2: \max c_2^T x, \ A_2 x \le b_2, \ x \ge 0$$

in njuna duala:

$$\pi_1'$$
: min $b_1^T y_1$, $A_1^T y_1 \ge c_1$, $y_1 \ge 0$

$$\pi_2'$$
: min $b_2^T y_2$, $A_2^T y_2 \ge c_2$, $y_2 \ge 0$

 x^* je dopustna rešitev za π_1 in π_2 , ker velja $A_1x \leq b_1$ in $A_2x \leq b_2$. y_1^* je dopustna za π_1' ker velja: $A_1^Ty_1^* \geq c_1$ (iz (1)) in y_2^* je dopustna za π_2' ker velja: $A_2^Ty_2^* \geq c_2$ (iz (2)). Ali sta x^* in y_i^* tudi optimalna?

Če bo veljalo $c_i^T x^* = b_i^T y_i^*$, bo po posledici ŠID veljalo, da sta x^* in y_i^* optimalni rešitvi programov π_i in π_i' . Iz ŠID sledi: $c_i^T x^* \leq b_i^T y_i^*$ Predpostavimo, da je $c_1^T x^* < b_1^T y_1^*$. Potem je $c_1^T x^* + c_2^T x^* < b_1^T y_1^* + c_2^T x^* < b_1^T y_1^* + b_2^T y_2^*$ (Uporabili smo ŠID za $\pi_2 i n \pi_2'$). To je v protislovju z $c_1^T x^* + c_2^T x^* = b_1^T y_1^* + b_2^T y_2^* \implies x^*$ in y_1^* sta optimalni za π_1 in π'_1 . Od predpostavke naprej podobno še za π_2 .