СМАЧНЕЙШАЯ 2 КР ЛИНАЛ

ИТМО. 2 семестр. Переписывание контрольной работы №2. 16.05.2023

- 1. Являются ли следующие отображение $\varphi: \mathbb{R}^4 \to \mathbb{R}^5$ линейным? Если является, то запишите его матрицу в стандартных базисах пространств. $\varphi(x_1,x_2,x_3,x_4)=(3x_2,x_1-x_3,5x_2-x_1+x_4,x_4+x_3+x_2,-7x_2+z_3)$
- 2. Приведите квадратичную форму $f(x_1, x_2, x_3, x_4, x_5) = 4x_1x_5 + 3x_2x_5 + 2x_3x_4 + 5x_4^2$ к диагональному виду невырожденным преобразованием переменных.
- 3. Пусть e_1,\dots,e_n базис линейного пространства V над полем $\mathbb R$. Докажите, что $e_1+e_2,e_1+e_3,\dots,e_1+e_n$ тоже базис V
- 4. Линейные подпространства V_1 и V_2 линейного пространства V таковы, что $V=V_1\oplus V_2$. Пусть $a,b\in V$. Докажите, что аффинные подпространства V_1+a и V_2+b пересекаются ровно по одному вектору.
- 5. Пусть V конечномерное линейное пространство над полем \mathbb{C} , а оператор $\varphi \in \operatorname{End}(\mathsf{V})$ таков, что $\varphi^3 = \varphi + 1$. Докажите, что собственные числа φ могут принимать не более чем три значения.
 - 1. Являются ли следующие отображения $\varphi : \mathbb{R}^4 \to$ линейными:
 - a) $\varphi(x_1, x_2, x_3, x_4) = (x_2, x_1 + x_3, 5x_4 x_1);$
 - 6) $\varphi(x_1, x_2, x_3, x_4) = (x_1, x_2^3, x_3^2, x_4)$?

Для тех отображений, что являются линейными, запишите их матрицы в стандартных базисах пространств.

- 2. Приведите квадратичную форму $f(x_1,x_2,x_3,x_4,x_5,x_6)=2x_1x_6+3x_2x_5+2x_3x_4+5x_6^2$ к диагональному виду невырожденным преобразованием переменных.
- 3. Пусть e_1,\ldots,e_n базис линейного пространства V над полем $\mathbb R$. При каких $n\in\mathbb N$ $e_1+e_2,e_2+e_3,\ldots,e_n+e_1$ —
- тоже базис V? **4.** Пусть V — линейное пространство над \mathbb{R} , W — его аффинное, но не линейное подпространство, а $e_1, e_2, \ldots, e_n \in W$. Пусть числа $\alpha_1,\ldots,\alpha_n\in\mathbb{R}$ таковы, что $\alpha_1e_1+\ldots+\alpha_ne_n\in W.$ Докажите, что $\alpha_1+\ldots+\alpha_n=1.$
- 5. Дана матрица $A\in M_{m,n}(K)$ и матрицы $B,C\in M_{n,m}(K)$. Оказалось, что $AB=E_m$ и $CA=E_n$. Докажите, что
 - 6. Матрица $A \in M_n(K)$ обратима. Докажите, $\chi_{A \cdot A^T} = \chi_{A^T \cdot A}$.
- 7. Пусть $\dim V=n, \ x\in V$ и $\varphi\in \mathrm{End}(\mathrm{V})$ таковы, что вектора $\varphi(x), \ \varphi^2(x), \dots, \ \varphi^n(x)$ линейно независимы. Докажите, что φ обратим. . No 02 05 2023
- 1.1) да, является, просто проверить. Матрица вот
- 0 3 0 0
- 1 0 -1 0
- -1501
- 0111
- 0-7 1 0
- 1.3) Я так понимаю тут карпов опечатался и в базисе должно быть e1, e1 + e2, ..., e1 + en (иначе задача лажа). Решение: просто предположить р-во нулю, все коэфф будут = 0
- 1.4) пусть a \in V2, b \in V1. Случай когда a \in V1 и b \in V2 очев (пространство при сдвиге перешло само в себя)

Очев один элемент в пересечении это а + b, пусть есть еще один: v1 + a = v2 + b, v1 \in V1, v2 \in V2 v1 - v2 = b - a

НУО v1 - v2 \in V1

(v1 - v2 = b - a; b - a \in V; V поделено на два подпространства; V1 и V2; и в каком-то одном лежит b - а (тк V1 и V1 пересекаются только в нуле, а если b = а то это неинтересный случай); пусть лежит в V1) но тогда a \in V1 - противоречие с критерием прямой суммы

1.5) пусть \alpha - собственное число. Заметим что $\phi^3(x) = \alpha^3 x$ Тогда по условию \alpha^3 = \alpha + 1 - над С не более 3 разных корней, чтд

- 2.1) а) да, б) нет
- 2.2)

$$\begin{split} f(x_1,x_2,x_3,x_4,x_5,x_6) &= 2x_1x_6 + 3x_2x_5 + 2x_3x_4 + 5x_6^2 \\ \left(\frac{1}{5}x_1^2 + 2x_1x_6 + 5x_6^2\right) - \frac{1}{5}x_1^2 + 3x_2x_5 + 2x_3x_4 = \left(\frac{\sqrt{5}}{5}x_1 + \sqrt{5}x_6\right)^2 - \frac{1}{5}x_1^2 + 3x_2x_5 + 2x_3x_4 \\ &= \frac{\sqrt{5}}{5}x_1 + \sqrt{5}x_6 = y_1, \ x_1 = y_2, \ x_2 = y_3 - y_4, \ x_5 = y_3 + y_4, \ x_3 = y_5 - y_6, \ x_4 = y_5 + y_6 \\ &= y_1^2 - \frac{1}{5}y_2^2 + 3(y_3 - y_4)(y_3 + y_4) + 2(y_5 - y_6)(y_5 + y_6) = y_1^2 - \frac{1}{5}y_2^2 + 3y_3^2 - 3y_4^2 + 2y_5^2 - 2y_6^2 \\ &= f(y_1, y_2, y_3, y_4, y_5, y_6) = y_1^2 - \frac{1}{5}y_2^2 + 3y_3^2 - 3y_4^2 + 2y_5^2 - 2y_6^2 \end{split}$$

- 2.3) Просто посчитать определитель матрицы соответствующей новому базису, он 1 + (-1)^n. Ответ: при нечетных 🛨
- 2.4) Пусть e_i = a + p_i, где p_i \in V. \alpha_1 * e_1 + ... + \alpha_n * e_n \in W a(\alpha_1 + ... + \alpha_n) + \alpha_1 * p1 + ... + \alpha_n * pn \in W Пусть \alpha_1 + ... + \alpha_n = b, HУО b > 1, \alpha_1 * $p1 + ... + \alpha pha_n * pn = v \in V$ тогда ab + $v = a(n + 1) + v \in W$, значит an in V => a in V, тогда W - линейное – противоречие
- 2.5) Pas AB = E_m, то A обратимая матрица и A^-1 = B. Так как $CA = E_n$, то $CA*B = E_n * B$ (она n на m, умножение норм), C = B, значит $C = A^{-1}$. $m = rk(E_m) = rk(AB) \le min(rk(A), rk(B)) = rk(A) \ge m$ $n = rk(E_n) = rk(CA) \le min(rk(C), rk(A)) \Longrightarrow rk(A) \ge n$ Однако A $\lim M_m, n \Rightarrow rk(A) \leq min(n, m)$ => n=m (n <= rk(A) <= min(n, m) => n <= m) $(m \le rk \le n \le m)$

2.7)

\phi - сюръекция, а так как у нас оператор, то и биекция. А биекция обратима

Пусть
$$P=a+U$$
, $Q=b+V$ — аффинные подпространства пространства V . Дано:

$$W = P \cap Q \neq \emptyset$$
.

Докажем, что W — аффинное подпространство.

Выберем $c \in W$. Тогда $c \in P$ и $c \in Q$, то есть:

$$P = c + U$$
, $Q = c + V$.

Тогда их пересечение:

$$W = P \cap Q = c + (U \cap V).$$

Так как $U\cap V$ — линейное подпространство, то Wимеет вид c+ (линейное подпространство), а значит, является аффинным подпространством.

$$W=c+(U\cap V)\Rightarrow W$$
 — аффинное

2. Построение матрицы перехода

Рассмотрим матрицу A, столбцы которой — координаты новых векторов в базисе $\{e_i\}$:

Эта матрица циркулянтная, и её определитель можно вычислить явно.

ИТМО. 2 семестр. Контрольная работа леж. 1. Являются ли следующие отображения $\varphi: \mathbb{R}^4 o$ линейными:

- a) $\varphi(x_1, x_2, x_3, x_4) = (x_2, x_1 x_3, 2x_4 x_2);$
- 6) $\varphi(x_1, x_2, x_3, x_4) = (x_1, x_2^2, x_3^3, x_4^3)$?
- Для тех отображений, что являются линейными, запишите их матрицы в стандартных базисах пространств. 2. Пусть U,V — конечномерные линейные пространство, U_1 и U_2 — подпространства U,V_1 и V_2 — подпространства

V, а $\varphi:U\to V$ — линейное отображение. Докажите верное из следующих двух равенств. Неверное равенство замените на подходящее включение и докажите

это включение, к неверному включению постройте контриример.

- a) $\varphi(U_1 + U_2) = \varphi(U_1) + \varphi(U_2);$
- 6) $\varphi^{-1}(V_1 + V_2) = \varphi^{-1}(V_1) + \varphi^{-1}(V_2)$.
- 3. Пусть V конечномерное линейное пространство пад полем $\mathbb C$, а оператор $\varphi \in \operatorname{End}(\mathbb V)$ таков, что $\varphi^k = 0$ для некоторого патурального числа k. Найдите собственные числа оператора φ .
 - 4. Матрица $A \in M_{m,n}(K)$ такова, что $A \cdot A^T$ обратима. Чему может быть равен $\operatorname{rk}(A)$?
- 5. Пусть P и Q аффинные подпространства линейного простраства V , а $W=P\cap Q$ непусто. Докажите, что Wтакже аффинное подпространство V.
- 6. Пусть V линейное подпространство \mathbb{F}_2^n (напомним, что $\mathbb{F}_2 = \{0,1\}$ поле вычетов по модулю 2, а \mathbb{F}_2^n множество из всех векторов-столбцов, каждый из которых состоит из n нулей и единиц). Весом век- тора из F_2^n называется сумма его коэффициентов. Сколько может быть в V векторов нечетного веса?

3.1) а) да, б) нет

3.2)

3.3)
$$\phi(x) = \lambda x$$

 $\phi(x)^2 = \lambda x$
...

 $\phi(x) ^k = \lambda ^k x = 0 => \lambda = 0$

3.4) Пусть А^Т = В (лень писать символы). АВ обратима, значит rk(AB) = n. Мы знаем что rk(A), rk(B)<= n, но n = rk(AB) <= min(rk(A), rk(B)) <= n, значит rk(A) = n

Во втором у меня тут получилось, что а) верно, т.к. для любого и из U_1+U_2 верно $\varphi(u)=$ $\varphi(u_1)+\varphi(u_2)$, а это входит в $\varphi(U_1)+\varphi(U_2)$; также для любых u_1 из U_1 и u_2 из U_2 справедливо $\varphi(u_1)+\varphi(u_2)=\varphi(u_1+u_2)$, а это входит в $\varphi(U_1+U_2)$. В таком случае, б) неверно, а правильное утверждение там - $\varphi^{\{-1\}}(V_1+V_2)$ является надмножеством $\varphi^{\{-1\}}(V_1)$ + $\varphi^{(-1)}(V_2)$. Идея в том, что для любых v_1 из V_1 и v_2 из V_2 справедливо $\varphi^{(-1)}(v_1)+\varphi^{(-1)}(v_2)=u_1+u_2=u$, и при этом $\varphi^{(-1)}(v_1)+\varphi^{(-1)}(v_2)=\varphi^{(-1)}(v_1+v_2)$, то есть все возможные u из U, такие, что $\varphi^{\{-1\}}(v_1) + \varphi^{\{-1\}}(v_2) = u$, автоматически являются прообразами и для $v_1 + v_2$, а значит, $\varphi^{\{-1\}}(V_1)+\varphi^{\{-1\}}(V_2)$ является подмножеством $\varphi^{\{-1\}}(V_1+V_2)$. Обратное может быть неверно, так как могут существовать такие v_1 из V_1 и v_2 из V_2 , что их прообразов не существует (и, соответственно, не существует такого u из U, что $u=\varphi^{\{-1\}}(v_1)+\varphi^{\{-1\}}(v_2))$, но существует прообраз v_1+v_2 , так что в $\varphi^{\{-1\}}(V_1+V_2)$ существует элемент, которого нет в $arphi^{\{-1\}}(V_1) + arphi^{\{-1\}}(V_2)$. Контрпример в голову приходит такой: пусть V - это трёхмерное пространство, U - одномерное, $\varphi((u_1))=(u_1,0,0),$ $V_1=\{(x,y,0)\},$ $V_2=\{(0,y,z)\},$ тогда v_1 из V_1 и v_2 из V_2 , у которых у не равно 0, не имеют прообразов, но если они обратны друг другу по сложению (а ещё z у v_2 равен 0), то $v_1+v_2=(x,0,0)$ - элемент, имеющий прообраз Пусть V — линейное подпространство поля вычетов по модулю 2, т.е. \mathbb{F}_2^n , где $\mathbb{F}_2=\{0,1\}$. Вес вектора из \mathbb{F}_2^n определяется как сумма его коэффициентов (в поле \mathbb{F}_2). Сколько может быть в V векторов нечетного веса?

3.6)

Анализ задачи:

- 1. Определение веса вектора:
 - ullet Вес вектора $v=(v_1,v_2,\ldots,v_n)\in \mathbb{F}_2^n$ это сумма его компонентов:

$$\mathrm{Bec}(v)=v_1+v_2+\cdots+v_n\pmod{2}.$$

- Вес вектора является нечетным , если он равен 1 (модию 2).
- 2. Свойства подпространства V :
 - Подпространство $V \subseteq \mathbb{F}_2^n$ это множество векторов, замкнутое относительно сложения и умножения на скаляры из \mathbb{F}_2 .
 - ullet Размерность подпространства V обозначим через k. Тогда V содержит 2^k векторов.
- 3. Количество векторов нечетного веса:
 - Мы хотим найти количество векторов в V, у которых вес является нечетным.

Теорема о распределении весов в подпространстве:

Для любого линейного подпространства $V\subseteq \mathbb{F}_2^n$:

- Количество векторов с нечетным весом равно ровно половине всех векторов в V, если размерность V больше нуля.
- Если $V=\{0\}$ (подпространство состоит только из нулевого вектора), то количество векторов нечетного веса равно 0

Доказательство:

- 1. Пусть V линейное подпространство размерности k. Тогда V содержит 2^k векторов.
- 2. Рассмотрим операцию сложения векторов в V:
 - ullet Если $u,v\in V$, то $u+v\in V$.
 - Вес суммы двух векторов удовлетворяет следующему свойству:

$$\operatorname{Bec}(u+v) = \operatorname{Bec}(u) + \operatorname{Bec}(v) \pmod{2}.$$

- Это означает, что операция сложения сохраняет четность/нечетность веса.
- 3. Рассмотрим функцию $f:V o \mathbb{F}_2$, определенную как:

$$f(v) = \text{Bec}(v) \pmod{2}$$
.

- Эта функция является линейной, так как f(u+v) = f(u) + f(v).
- ullet Ядро $\ker(f)$ состоит из всех векторов $v\in V$, для которых $\mathrm{Bec}(v)=0\pmod 2$ (четные векторы).
- ullet Образ $\mathrm{im}(f)$ это множество значений $\{0,1\}$, так как вес может быть либо четным, либо нечетным.
- 4. По теореме о ранге-нуле:

$$\dim(V) = \dim(\ker(f)) + \dim(\operatorname{im}(f)).$$

- ullet Так как $\operatorname{im}(f)\subseteq \mathbb{F}_2$, размерность образа $\dim(\operatorname{im}(f))\leq 1$.
- ullet Если $V
 eq \{0\}$, то $\dim(\operatorname{im}(f)) = 1$ (так как существует хотя бы один вектор нечетного веса).
- ullet Следовательно, $\dim(\ker(f)) = \dim(V) 1$.
- 5. Количество векторов в $\ker(f)$ (четных векторов) равно:

$$|\ker(f)|=2^{\dim(\ker(f))}=2^{\dim(V)-1}.$$

• Количество векторов нечетного веса равно:

$$|V| - |\ker(f)| = 2^{\dim(V)} - 2^{\dim(V)-1} = 2^{\dim(V)-1}.$$

Итог:

Если $V
eq \{0\}$, то количество векторов нечетного веса в V равно:

$$2^{k-1}$$
,

где k — размерность подпространства V.

Если $V = \{0\}$, то количество векторов нечетного веса равно:

Для отображения $\varphi:U o V$, которое является линейным, нужно решить следующее:

- 1. Пусть U и V конечномерные линейные пространства.
- 2. U_1 и V_1 подпространства U и V соответственно.
- 3. $\, \varphi : U o V o$ линейное отображение.

Требуется доказать или опровергнуть одно из двух равенств:

$$\varphi(U_1) = V_1$$
,

или заменить это равенство на включение:

$$\varphi(U_1)\subseteq V_1$$
.

Анализ задачи:

1. Определение линейного отображения:

Линейное отображение $\varphi:U o V$ удовлетворяет следующим свойствам:

- Аддитивность: $arphi(u_1+u_2)=arphi(u_1)+arphi(u_2)$ для любых $u_1,u_2\in U$.
- ullet Гомогенность: arphi(lpha u) = lpha arphi(u) для любого $u \in U$ и скаляра lpha.

2. Образ подпространства:

Образ подпространства $U_1 \subseteq U$ при отображении φ определяется как:

$$arphi(U_1) = \{arphi(u) \mid u \in U_1\}.$$

Это множество является подпространством V, так как φ — линейное отображение.

3. Равенство $arphi(U_1)=V_1$:

Для того чтобы $arphi(U_1) = V_1$, должно выполняться два условия:

- 1. $\varphi(U_1) \subseteq V_1$ (включение).
- 2. $V_1 \subseteq arphi(U_1)$ (обратное включение).

4. Включение $arphi(U_1)\subseteq V_1$:

Включение $arphi(U_1)\subseteq V_1$ означает, что образ каждого элемента из U_1 лежит в V_1 . Это условие может быть выполнено, если arphi специально задано таким образом, что все элементы U_1 отображаются в V_1 .

Доказательство или опровержение:

Проверка равенства $arphi(U_1)=V_1$:

Равенство $arphi(U_1) = V_1$ верно только в том случае, если:

- 1. $arphi(U_1)\subseteq V_1$ (все элементы из $arphi(U_1)$ принадлежат V_1).
- 2. $V_1 \subseteq arphi(U_1)$ (каждый элемент из V_1 является образом некоторого элемента из U_1).

Однако без дополнительных условий (например, сюръективности φ на V_1 или специального выбора U_1 и V_1) нет гарантии, что $V_1\subseteq \varphi(U_1)$. Поэтому равенство $\varphi(U_1)=V_1$ не всегда верно.

Проверка включения $arphi(U_1) \subseteq V_1$:

Включение $\varphi(U_1)\subseteq V_1$ означает, что для любого $u\in U_1$ выполняется $\varphi(u)\in V_1$. Это условие можно проверить напрямую, используя определение линейного отображения и свойства подпространств.

Если φ задано так, что $\varphi(U_1)\subseteq V_1$, то это включение всегда верно. Однако если этого не указано явно, то равенство $\varphi(U_1)=V_1$ нельзя считать верным без дополнительных данных.

Итог

Без дополнительных условий равенство $\varphi(U_1)=V_1$ не всегда верно. Однако включение $\varphi(U_1)\subseteq V_1$ может быть верным, если φ специально задано таким образом.

Ответ:

$$arphi(U_1)\subseteq V_1$$

Во втором у меня тут получилось, что а) верно, т.к. для любого и из $U_1 + U_2$ верно $\phi(u) = \phi(u_1) + \phi(u_2)$ $\rho(u_2)$, а это входит в $\rho(u_1) + \rho(u_2)$; также для любых u_1 из U_1 и u_2 из U_2 справедливо \phi(u_1) + $\phi(u_2) = \phi(u_1 + u_2)$, а это входит в $\phi(u_1 + u_2)$. В таком случае, б) неверно, а правильное утверждение там - \phi^{-1}(V_1 + V_2) является надмножеством $\phi^{-1}(V_1) + \phi^{-1}(V_2)$. Идея в том, что для любых v_1 из V_1 и v_2 из V_2 справедливо \phi^{-1}(v_1) + $\phi^{-1}(v_2) = u_1 + u_2 = u$, и при этом $\phi^{-1}(v_1) + u$ $\phi^{-1}(v_2) = \phi^{-1}(v_1 + v_2)$, то есть все возможные u из U, такие, что \phi^{-1}(v_1) + \phi^{-1}(v_2) = u, автоматически являются прообразами и для $v_1 + v_2$, а значит, $\phi^{-1}(V_1) + \phi^{-1}(V_2)$ является подмножеством $\phi^{-1}(V_1 + V_2)$. Обратное может быть неверно, так как могут существовать такие v_1 из V_1 и v_2 из V_2 , что их прообразов не существует (и, соответственно, не существует такого и из U, что u = $\phi^{-1}(v_1) + \phi^{-1}(v_2)$, но существует прообраз $v_1 + v_2$, так что в \phi^{-1}($V_1 + V_2$) существует элемент, которого нет в $\phi^{-1}(V_1) +$ \phi^{-1}(V_2). Контрпример в голову приходит такой: пусть V - это трёхмерное пространство, U - одномерное, $\phi(u_1) = (u_1, 0, 0), V_1 = \{(x, y, 0)\}, V_2 = \{(0, y, z)\},$ тогда v_1 из V_1 и v_2 из V_2, у которых у не равно 0, не имеют прообразов, но если они обратны друг другу по сложению (а ещё z y v_2 равен 0), то v_1 + v_2 = (x, 0, 0) элемент, имеющий прообраз в U.

Manynery Задача 3 mu 0000... 1000 ... 001 1 1 1 0 0 ··· 0 0 0 0 1 1 1 0 ··· 0 0 0 0 0 1 1 1 ··· 0 0 0 0 0 0 0 0 ·· 1 0 0 "onyomums bugesonth gracon us equiny, ma 1000000...111 nozamen bruz, re werles onnegementel --- 0 0 OLL ...00 -7/...-1-1 ... 0 0 1...00/ ... 00 Kocke zonux npeochozobanin, 00 -00 -10 7/0 -1-1 0 TOL no repooler myle ...00 -- 00 n paben anaromnon, poznepa Bronce noncem demb mon ayras nym n 2 = 0 (m od 3) nym n=1 (mod 3) 10-1=3 = det 0/11 11 11 0 01 10-10 3) 0 11 0 1100 17-1-1 001 21 = 3 mm n=2 (mod 3) 100=det =def1 1110 def 11 112 01 0111 1 1 0 100111 Barren, notice nadon beamond man-me dozac nouno n/3 nnn

ИТМО. 2 семестр. Контрольная работа №2. 20.05.2025

- 1. Являются ли следующие отображения $\varphi: \mathbb{R}^4 \to$ линейными:
- a) $\varphi(x_1, x_2, x_3, x_4) = (x_2, x_1 x_3, x_4 + x_1 + 2x_2);$
- 6) $\varphi(x_1, x_2, x_3, x_4) = (x_1, x_2^3, x_3^2, x_4 + x_3)$?

Для тех отображений, что являются линейными, запишите их матрицы в стандартных базисах пространств.

- **2.** Приведите квадратичную форму $f(x_1, x_2, x_3, x_4) = 2x_1x_3 + 3x_2x_4 + 5x_3^2$ к диагональному виду невырожденным преобразованием переменных.
- **3.** Пусть $n \geq 4$, а e_1, \dots, e_n базис линейного пространства V над полем \mathbb{R} . При каких $n \in \mathbb{N}$ $e_1 + e_2 + e_3, e_2 + e_3 + e_4, \dots, e_n + e_1 + e_2$ тоже базис V?
- 4. Дана матрица $A \in M_{m,n}(K)$ и матрицы $B,C \in M_{n,m}(K)$. Оказалось, что $AB = E_m$ и $CA = E_n$. Докажите, что n = m.
- 5. Пусть P и Q аффинные подпространства линейного простраства V , а $W = P \cap Q$ непусто. Докажите, что W также аффинное подпространство V.
 - 6. Матрица $A \in M_n(K)$ обратима. Докажите, $\chi_{A \cdot A^T} = \chi_{A^T \cdot A}$.
- 7. Пусть $\dim V = n, \ x \in V$ и $\varphi \in \operatorname{End}(V)$ таковы, что вектора $\varphi(x), \ \varphi^2(x), \dots, \ \varphi^n(x)$ линейно независимы. Докажите, что φ обратим.

