Relatório de Projecto de Redes 2014/2015

Trabalho prático n.º 3 - Solicitação de Proposta de Rede

Trabalho elaborado por:

Luis Pontes n.º 17670 Ricardo Godinho n.º 11743 Ricardo Lourenço n.º 18155

Índice

1. SU	UMÁRIO EXECUTIVO	4
1.1.	Âmbito do Projecto	4
1.2.	Objectivos do Projecto	4
1	1.1 Locais a Abranger	4
1.1.2	OBJECTIVOS	
1.1.3	PRESSUPOSTOS E EXCLUSÕES	
	ARACTERIZAÇÃO DA INFRAESTRUTURA ACTUAL	
2.1	Descrição dos serviços disponibilizados	
2.2	IDENTIFICAÇÃO DOS PRINCIPAIS RECURSOS	
2.3	DIAGRAMA LÓGICO E FÍSICO DA REDE	
2.4	Nomes e endereçamento	
2.5	AVALIAÇÃO DO ESTADO DA REDE QUANTO À:	
	5.1 Disponibilidade	
	5.2 Utilização	
	5.3 Capacidade	
3. DE	EFINIÇÃO DE REQUISITOS	10
3.1	CARACTERIZAÇÃO GERAL	10
3.1.1	L Requisitos impostos	10
3.1.2	2 SERVIÇOS DE COMUNICACAO DE DADOS	10
3.2	Caracterização Específica	
3.2.1	L ASPECTOS DE SEGURANÇA	10
3.2.2	• • • • • • • • • • • • • • • • • • • •	
3.2.3		
3.3	EXPANSIBILIDADE E CONDICIONANTES	
3.3.1		
3.3.2	2 CONDICIONANTES E RISCOS	11
4. AF	RQUITETURA DA SOLUÇÃO	12
4.1	ESTRUTURA DA ORGANIZAÇÃO	12
4.1.1	L Modelo Funcional	12
4.1.2	2 APLICAÇÕES E SUAS NECESSIDADES	13
4.1.3	3 CARACTERIZAÇÃO DE FLUXOS DE TRÁFEGO NA ORGANIZAÇÃO	13
4.1.4	ARQUITECTURA LÓGICA DA REDE LOCAL.	14
4.1.5	5 Arquitectura Física da rede local	14
4.1.6	ARQUITECTURA DE SEGURANÇA	15
4.1.7	7 ARQUITECTURAS PROTOCOLARES NAS REDES LOCAIS	15
4.1.8	Princípios orientadores na concretização da LAN	16
4.1.8	3.1 CABLAGEM DOS LOCAIS	16
4.1.8	3.2 TECNOLOGIAS DE COMUNICAÇÃO	16
4.1.8		
4.2	Redes Locais	
4.2.1		
4.2.2		
4.2.3	•	
4.2.4	4 REDES DE ACESSO	17

Instituto Politécnico de Tomar – Projecto de Redes

	4.3	Critérios de Gestão de Redes e Serviços	17
5.	DIMI	ENSIONAMENTO E PLANEAMENTO	18
	5.1	Redes Locals	18
	5.1.1	DIMENSIONAMENTO DE FLUXOS	
	5.1.1.1	DIMENSIONAMENTO DE FLUXOS DE TRÁFEGO NAS REDES LOCAIS	18
	5.1.1.2	DIMENSIONAMENTO DE LIGAÇÕES NOS EDIFÍCIOS	18
	5.1.2	Plano de Endereçamento e Virtualização	19
	5.1.2.2	Identificação de edifícios	19
	5.1.2.3	Plano de Endereçamento das Redes Locais	19
	5.1.2.4	Plano de Virtualização (VLANs, Virtualização de Serviços)	20
	5.1.3	DISPONIBILIDADE E DESEMPENHO	20
	5.2	REDE DE COMUNICAÇÕES	21
	5.2.1	DIMENSIONAMENTO DE TRÁFEGO	21
	5.2.1.2	DIMENSIONAMENTO DE LIGAÇÕES PARA A INTERNET	
	5.2.2	DISPONIBILIDADE, DESEMPENHO E DISASTER RECOVERY	21
6.	PRO.	IECTO E PRÉ-SELECÇÃO DE SOLUÇÕES	21
	6.1	ESPECIFICAÇÕES DE COMPONENTES DA INFRA-ESTRUTURA DE REDES LOCAIS	21
	6.1.1	EQUIPAMENTOS PASSIVOS	21
	6.1.2	EQUIPAMENTO ACTIVO	22
	6.1.3	DISPOSIÇÃO DOS EQUIPAMENTOS INTERMÉDIOS	23
	6.2	Solução de Gestão de Rede e Serviços	23
	6.3	ORCAMENTO	24

1. Sumário Executivo

1.1. Âmbito do Projecto

Este projecto tem como objectivo a actualização da infraestrutura da rede da escola St. John's Preparatory School. Esta actualização será desenvolvida tendo em conta os requisitos pedidos, sendo que numas situações terão de se migrar equipamentos e, noutras, aproveitar o existente.

1.2. Objectivos do Projecto

1.1.1 Locais a Abranger

Como a infraestrutura da rede está localizada numa escola, vários edifícios serão abrangidos. Na tabela seguinte são visualizados os mesmos e respectivas divisórias:

Nome do edificio	Nome dos pisos	Numero de pisos	
Studzinski Library	Studzinski Library MDF	1	
	Bookstore IDF		
Br. Benjamin Hall	2nd Floor IDF	3	
	Phone Closet		
Alumni Hall	Kaneb Auditorium IDF	1	
Ryken Hall	Ryken IDF	1	
Maintenance Barn	Maintenance IDF	1	
Xavier Hall	Basement IDF	2.	
Aavier Haii	3rd Floor IDF	2	
	Basement IDF		
Admin Building	2nd Floor IDF	3	
	3rd Floor IDF		
Memorial Cafeteria IDF	Cafeteria IDF	1	
Memorial Gymnasium	Gimnasium IDF	1	
Griffin Hall	Griffin IDF	1	

1.1.2 Objectivos

Na implementação deste projecto tem-se como objectivo transformar a rede existente numa rede mais robusta que garanta o cumprimento de todos os requisitos. Entenda-se por rede mais robusta, uma rede dividida por hierarquia de camadas (acesso, distribuição e core), onde cada camada tem a sua função e equipamento genérico. Esta divisão em camadas tem implicações no aumento da escalabilidade, redundância, desempenho, segurança e facilidade de gestão.

1.1.3 Pressupostos e exclusões

Através dos dados do RFP pressupõe-se que o número de pares de fibra óptica que ligam da Studzinski Library a Br. Benjamin Hall são seis, de Br. Benjamin Hall para Ryken Hall, Maintenance Barn, Admin Building e Alumni Hall são três para cada localização, assim como da Studzinski Library para Xavier Hall, da Xavier Hall para Memorial Cafeteria, Memorial Gymnasium e Griffin Hall, são também três.

2. Caracterização da infraestrutura actual

2.1 Descrição dos serviços disponibilizados

A rede actual encontra-se com os seguintes serviços de comunicação de dados:

- DHCP
- RDP
- iSCSI
- NFS/SMB
- VoIP
- RTCP
- Sistema de Controlo de Portas
- Sistema de Controlo HVAC
- Sistema de Controlo de Alarmes
- Sistema de Controlo de Luzes
- Sistema de Caixas Registadoras
- Sistema de Pagamento por Cartão de Débito/Crédito

Instituto Politécnico de Tomar – Projecto de Redes

2.2 Identificação dos principais recursos

Edifício	Local	Equipamento	Quantidade	AP's	
Constant I in the	Contain thi MDE	HP ProCurve 5308xl	2	4	
Studzinski Library	Studzinski MDF	HP ProCurve 2650	4		
		HP ProCurve 1810G	2		
	Bookstore IDF	HP ProCurve 2650	1	0	
De Danismin Hall	2nd Elega IDE	ProCurve 5308xl	1		
Br. Benjamin Hall	2nd Floor IDF	ProCurve 5304x1	1	4	
		ProCurve 2610-PoE	1		
	Phone Closet	ProCurve 2524	1	0	
Alumni Hall	Kaneb Auditorium IDF	ProCurve 2524	1	1	
Ryken Hall	Ryken IDF	ProCurve 2610-PoE	1	3	
		ProCurve 2524	1		
Maintenance Barn	Maintenance IDF	ProCurve 2524	1	0	
		ProCurve 5308x1	1	7	
	Xavier Hall Basement	ProCurve 2650	4		
	IDF	ProCurve 2626-PoE	1		
Xavier Hall		ProCurve 2520G-PoE	1		
		ProCurve 5308xl	1		
	Xavier 3rd Floor IDF	ProCurve 2650	6		
	Advict Station ibi	ProCurve 2626-PoE 1		6	
		ProCurve 2610-PoE	1		
	Basement IDF	ProCurve 5304xl	1	0	
Admin Building	2nd Floor IDF	ProCurve 2524	1	0	
	3rd Floor IDF	ProCurve 2524	1	0	
Memorial Cafeteria	Cafeteria IDF	ProCurve 2650	1	2	
Memorial	Gymnasium IDF	ProCurve 2524	1	2	
Gymnasium	Gyiiiiasiuiii iDF	FS726TP PoE	1	2	
Griffin Hall	Griffin IDF	ProCurve 2524	1	1	

2.3 Diagrama lógico e físico da rede

Diagrama lógico da rede

Cablagem fibra utilizada entre edifícios (vermelho) e não utilizada (tracejado)

Diagrama físico da rede

2.4 Nomes e endereçamento

Atualmente existem 11 VLANs em vigor na rede. Os grupos de VLANs são baseadas em serviços e classes de máquinas. Descrição das Vlans:

- VLAN 1 = Core da rede. Para switches, servidores, e outros dispositivos que necessitam de acesso não filtrado à rede (card swipes, paineis de alarmes, etc...). Prefixo de rede: 10.0.0.0/23.
- VLAN 2 = Rede de administração. As únicas máquinas ligadas a esta VLAN são as que estão nos edifícios Admin e Admissions Office in Benjamin Hall. Prefixo da rede: 10.1.1.0/24.
- VLAN 3 = Wireless Segura. Esta VLAN serve para todos os clientes ligados à rede Wifi segura. Prefixo da rede: 10.6.0.0/16.
- VLAN 4 = Rede Académica. A maior rede no campus. Quase todas as estações de trabalho residem nesta VLAN. Prefixo de rede: 10.3.0.0/16
- VLAN 5 = Core Wireless. Nesta rede reside o controlador Bluesocket wireless e todos os access points. Não há mais utilizadores desta rede. Prefixo da rede: 10.4.0.0/16.
- VLAN 6 = Guest Wireless. Esta VLAN serve para todos os clientes ligados à rede Wifi Guest. Prefixo da rede: 10.6.0.0/16.
- VLAN 7 = Phone VLAN. Tráfego VoIP. Prefixo da rede: 10.7.0.0/24.
- VLAN 8 = Video VLAN. Tráfego de videovigilância. Prefixo da rede: 10.8.0.0/24.
- VLAN 12 = iSCSI VLAN. VLAN iSCSI primária. Prefixo da rede: 10.11.1.0/24
- VLAN 13 = 2nd iSCSI VLAN. VLAN iSCSI secundária. Prefixo da rede: 10.11.2.0/24

2.5 Avaliação do estado da rede quanto à:

2.5.1 Disponibilidade

Redes com alta disponibilidade fornecem meios alternativos pelos quais todos os caminhos da infra-estrutura da rede e servidores podem ser acedidos a qualquer momento. A rede actual, embora esteja preparada, não tem redundância a nível de links. Assim, bastará existir alguma falha relacionada com a fibra ou algum dispositivo intermédio para este perder conectividade com outro.

2.5.2 Utilização

A rede é essencialmente utilizada pelos seguintes hosts:

Hosts(tipo)	Conectados
Workstations	(+-) 350
VoIP	(+-) 75
IP Cameras	(+-) 15
Laptops	200
Porta eletrónica	10
Alarmes	10
Wireless	*Máximo 250

2.5.3 Capacidade

A rede tem capacidade para a seguinte quantidade de hosts:

Hosts(tipo)	Total(1980)
Workstations	(+-) 550
Voip	(+-) 75
IP Cameras	(+-) 15
Wireless	250

Largura de banda:

Local	Tipo	Velocidades
Entre edifícios	Fibra	1Gbps
Dentro dos edifícios	UTP (Cat5 & Cat5e)	100Mbps

3. Definição de Requisitos

3.1 Caracterização geral

3.1.1 Requisitos impostos

- É obrigatório a apresentação de um AUP (acceptable uses policy);
- Apenas serão consideradas redes organizadas em: core, distribuição e acesso;
- É obrigatório apresentar o dimensionamento das componentes activas e passivas;
- É obrigatório o uso de VLANs. Para além da VLAN de gestão, nenhuma das outras deve estar presente em mais do que 50% dos switches de acesso;
- É obrigatório o uso de redundância ao nível da camada física entre os equipamentos activos (routers, switches, firewalls);
- É obrigatória a existência de uma rede gestão que permita aos gestores dessa rede (e a apenas esses) gerir remotamente os equipamentos activos da rede;
- É obrigatório redundância no core;
- É obrigatório links redundantes entre edifícios;
- É obrigatório o aumento de largura de banda no core (>1 GigE);
- É obrigatório o aumento de largura de banda para os dispositivos finais (1 GigE);
- É obrigatório o suporte de iSCSI entre edifícios, de modo a separar-se o servidor backup do servidor master;
- É obrigatório o uso de controlos QoS de modo a expandir-se as capacidades VoIP;
- É obrigatório o suporte para streaming e distribuição de video pela LAN;
- É obrigatório regras de acesso inter-VLAN.

3.1.2 Serviços de comunicacao de dados

A escola tem e continuará a ter uma ligação à internet a partir da Studzinski Library, cuja largura de banda é desconhecida. Dentro da rede será necessária uma largura de banda de 1Gbps para cada endpoint e o core terá de ter uma largura de banda superior a 1Gbps. A rede WiFi terá obrigatoriamente e apenas o standard 802.11n.

3.2 Caracterização Específica

3.2.1 Aspectos de Segurança

- Autenticação de utilizadores, norma 802.1x (PEAP);
- Encriptação WPA2 Enterprise (AES);
- Logs de operações realizadas;
- Utilização de uma firewall para uma maior segurança em relação ao tráfego vindo de fora;
- Utilização de VLANs;
- Utilização de Access Lists;
- Utilização de mecanismos de segurança na camada de acesso (Port Security, DHCP Snooping, IP Source Guard, Dynamic ARP Inspection, ARP Rate Limiting Control, Storm Control, Spanning Tree BPDU Filter and Guard).

3.2.2 Aspectos de Gestão e Manutenção

Embora não haja nenhum requisito específico sobre a gestão e manutenção da rede, na perspectiva da gestão continuará a existir uma VLAN (99) dedicada apenas com permissões de acesso a administradores. Para o apoio da gestão e manutenção dos recursos da rede, irá ser usado SNMP.

3.2.3 Aspectos de Disponibilidade

- Garantir a disponibilidade de todos os serviços de aplicação, voip e videovigilância.
- Garantir maior largura de banda, no core e no acesso da rede.
- Garantir disponibilidade para o uso de 1400 dispositivos finais sem fios.
- Garantir redundância em caso de múltiplas falhas.

3.3 Expansibilidade e Condicionantes

3.3.1 Perspectivas de Evolução

Com mais e mais dispositivos conectados à rede da escola e cada vez mais as suas operações são dependentes de uma rede funcional, é necessário fornecer uma LAN robusta . Nos próximos 24 meses ir-se-á executar a transição que vai acrescentar cerca de 1400 dispositivos sem fio à rede (e remover cerca de 200 estações de trabalho com fio da LAN). Também será adicionado mais cameras IP para completar a cobertura de vigilância no campus. Finalmente, far-se-á a transição para uma WLAN 802.11n somente para suportar a maior largura de banda possível para os dispositivos sem fio. A expansão LAN sem fios irá aumentar o número de pontos de acesso 802.11n de 30 a cerca de 100, em todo o campus. Dividir-se-á alguns dos servidores e appliances entre a Studzinski MDF e a Xavier IDF para redundância e protecção.

3.3.2 Condicionantes e Riscos

Como será aplicado o standard 802.11n, os dispositivos que suportem apenas standards mais antigos poderão encontrar algumas restrições na velocidade, pois não irão utilizar os vários streams que a norma "n" disponibiliza. No caso de algum evento especial, poderá existir uma afluência enorme de dispositivos WiFi que baixem o desempenho parcial da rede.

4. Arquitetura da solução

4.1 Estrutura da organização

4.1.1 Modelo Funcional

Edifício	Local	Serviços
Studzinski Library	Studzinski MDF	Dados, Voz, Servidores, Video, Wifi, Gestao, Portas, Luzes, HVAC
	Bookstore IDF	Dados, Video, Wifi, Portas, Luzes, HVAC
Br. Benjamin Hall	2nd Floor IDF	Dados, Voz, Video, Wifi, Luzes, HVAC
	Phone Closet	Dados, Voz, Wifi, Luzes, HVAC
Alumni Hall	Kaneb Auditorium IDF	Dados, Wifi, Luzes, HVAC
Ryken Hall	Ryken IDF	Dados, Voz, Wifi, Luzes, HVAC
Maintenance Barn	Maintenance IDF	Dados, Voz, Wifi, Gestão, Luzes, HVAC
	Xavier Hall Basement	Dados, Voz, Servidores, Video, Wifi, Gestao, Luzes, HVAC
Xavier Hall	IDF	Dados, Voz, Video, Wifi
	Xavier 3rd Floor IDF	Budos, voz, video, viii
	Basement IDF	Dados, Video, Wifi, Portas
Admin Building	2nd Floor IDF	Dados, Video, Wifi, Administração, HVAC
	3rd Floor IDF	Dados, Video, Wifi, Administração, HVAC
Memorial Cafeteria	Cafeteria IDF	Dados, Video, Wifi, POS, Luzes, HVAC, Portas
Memorial Gymnasium	Gymnasium IDF	Dados, Video, Wifi, Luzes, HVAC, Portas
Griffin Hall	Griffin IDF	Dados, Video, Wifi, Luzes, HVAC, Portas

4.1.2 Aplicações e suas necessidades

~	Necessidades			
Aplicação	Delay	Jitter	Perda de pacotes	Largura de banda
DHCP	<1000ms	N/A	N/A	N/A
RDP	<300ms	<10ms	<1%	110 Kbps
ISCSI	<800ms	N/A	N/A	1Gbps
NFS/SMB	N/A	N/A	<1%	N/A
VoIP	<150ms	<5ms	<0,1%	87,2 Kbps
RTP/RTCP	<150ms	<30ms	<1%	261.16 Mbps
Sis. Controlo de Portas	<3000ms	N/A	N/A	N/A
Sis. Controlo HVAC	<3000ms	N/A	N/A	N/A
Sis. Controlo de Alarmes	<1000ms	N/A	N/A	N/A
Sis. Controlo de Luzes	<500ms	N/A	N/A	N/A
Sis. Caixas Registadoras	N/A	N/A	N/A	N/A
SNMP	<1000ms	N/A	N/A	N/A

4.1.3 Caracterização de Fluxos de tráfego na organização

Serviço	Arquitetura	Fluxo	QoS
DHCP	Servidor/Cliente	Interior/Interior	Gold
RDP	Servidor/Cliente	Interior/Interior Exterior/Interior	Silver
ISCSI	Cliente/Servidor	Interior/Interior	Gold
NFS/SMB	Cliente/Servidor	Interior/Interior	Bronze
VoIP	Cliente/Servidor	Interior/Interior	Gold
RTP/RTCP	Cliente/Servidor	Interior/Interior	Gold
Sis. Controlo de Portas	Servidor	Interior/Interior	Gold
Sis. Controlo HVAC	Servidor	Interior/Interior	Bronze
Sis. Controlo de Alarmes	Servidor	Interior/Interior	Bronze
Sis. Controlo de Luzes	Servidor	Interior/Interior	Bronze
Sis. Caixas Registadoras	Cliente/Servidor	Interior/Interior	Silver
SNMP	cliente/servidor	Interior/Interior	Bronze

4.1.4 Arquitectura Lógica da Rede Local.

A figura seguinte mostra a topologia lógica da futura rede, conjugando as vlans com os respectivos endereços.

A figura seguinte mostra quais as áreas OSPF e como serão implementadas:

4.1.5 Arquitectura Física da rede local

A rede do campus estará dividida hierarquicamente em core, distribuição e acesso. O core estará situado em três edifícios, Studzinski Library (2 Switches), Xavier Hall (1 Switch) e Benjamin Hall (1 Switch). Existem edifícios que não se verifica a necessidade de ter switches de acesso, devido aos poucos endpoints por cabo. Nesse caso, os endpoints ligar-se-ão directamente ao switch de distribuição. Só nos três edifícios do Core é que se implementará

nas camadas inferiores, o MSTP. Um dos switches de distribuição será a bridge raiz da vlan de dados e vlan voip, enquanto que o outro será a bridge raiz das vlans de wifi e restantes. A distribuição ligar-se-á a pelo menos a um dos cores com dois cabos, sejam eles UTP ou fibra, assim como os switches de acesso se ligam à distribuição, através de LACP:

4.1.6 Arquitectura de Segurança

Entre o core e a Internet instalar-se-á uma firewall, assim como entre o core e os servidores, tanto no edifício Studzinski Library, como no edifício Xavier Hall. Na camada de acesso serão implementados os mecanismos de segurança mais comuns, descritos no ponto seguinte.

4.1.7 Arquitecturas Protocolares nas Redes Locais.

Hierarquia da rede	Protocolos/Mecanismos das camadas
Core	OSPF, iSCSI, SNMP
Distribuição	DHCP, OSPF, MSTP, LACP, HSRP, VLAN's, SNMP
Acesso	MSTP, LACP, Port Security, DHCP Snooping, IP Source Guard, Dynamic ARP Inspection, ARP Rate Limiting Control, Storm Control, Spanning Tree BPDU Filter and Guard, VLAN's, 802.11n, SNMP

4.1.8 Princípios orientadores na concretização da LAN

4.1.8.1 Cablagem dos locais

Nesta solução a cablagem da rede original irá ser reutilizada, ou seja, dentro dos edifícios serão usados os cabos UTP cat. 5 e 5e, e entre os edifícios será utilizada fibra multimodo (62.5 micron) entre os edifícios.

4.1.8.2 Tecnologias de Comunicação

Serão implementadas as seguintes tecnologias de comunicação:

- ETHERNET permite que vários dispositivos comuniquem entre si, ou com o exterior, a partir de um meio físico.
- Wi-Fi permite que vários dispositivos comuniquem entre si, ou com o exterior, a partir de um meio sem fios.

4.1.8.3 Equipamentos

Na camada de core optou-se pela utilização de quatro switches *Catalyst* 6503-E. Na distribuição ir-se-á utilizar treze switches *Catalyst* 3850.No acesso pretende-se instalar dezoito *switches Catalyst* 2960 e dezoito *Catalyst* 3560-cx com PoE. Nesta camada também se irão instalar cem pontos de acesso Aironet 700W.

Equipamentos	Quantidade
Cabos	N/A
Fiber patch box	2
UPS	N/A
Bastidores	N/A
Switches	53
Acess Points	100
Telefones VOIP	75
Firewall	3
Wireless Controller	2

4.2 Redes Locais

4.2.1 Core

O core da rede encontra-se dividido em três edifícios. No edifício Studzinski Library, é composto por 2 switches Catalyst 6503-E, no Xavier Hall e no Benjamin Hall é composto cada um também por um switch Catalyst 6503-E. A ligação entre o core e o exterior terá uma firewall para filtrar o trafego, assim como uma firewall entre os switches e os servidores.

4.2.2 Redes do Centro de Dados

Esta rede agrupa todos os servidores existentes no campus e está directamente ligada a uma firewall, que por sua vez, está ligada à camada de core. É aqui que se encontram os servidores de ESx, videovigilância, syslog, controlo de portas, HVAC, alarmes, caixas registadoras, luzes, armazenamento e dois controladores Wifi. Esta rede está implementada no edifício Studzinski Library e no Xavier Hall.

4.2.3 Redes de distribuição

Nesta camada garante-se redundância, tanto a nível L2 (MSTP, LACP), como L3 (OSPF, HSRP). É aqui que se faz a interface entre o acesso e o core da rede, equilibrando o tráfego da rede. Serão usados switches L3 Catalyst 3850. Nos edifícios com poucos endpoints, estes serão ligados directamente a esta camada sem necessidade de equipamento de acesso.

4.2.4 Redes de acesso

A camada de acesso será utilizada para ligar todos os endpoints e access points e estará ligada à camada de distribuição de forma redundante. É aqui que se implementam mecanismos de segurança, garantindo que só hosts legítimos se poderão conectar à rede.

4.3 Critérios de Gestão de Redes e Serviços

Os critérios de gestão de rede e serviços são os seguintes:

- Gestão de falhas;
- Gestão das configurações;
- Gestão da contabilização;
- Gestão de desempenho;
- Gestão de segurança;

5. Dimensionamento e planeamento

5.1 Redes Locais

5.1.1 Dimensionamento de Fluxos

5.1.1.1 Dimensionamento de Fluxos de tráfego nas Redes Locais

	Edifícios									
Serviços/Hosts/ Largura de banda	Studzinski Library	Br. Benjamin Hall	Alumni Hall	Ryken Hall	Maintenance Barn	Xavier Hall	Admin Building	Memorial Cafeteria	Memorial Gymnasium	Griffin Hall
			Nº de dis _l	positivos 1	inais					
Nº de Workstations/Laptops	690	590	150	300	120	1670	150	210	210	150
Voip (Nº Dispositivos)	22	18	0	13	0	22	0	0	0	0
Vigilância (Nº Dispositivos)	10	10	10	10	10	10	10	10	10	10
			Largur	a de Band	la					
Voip (256kbps/cada) (Mbps)	5.6	4.6	0	3.4	0	5.6	0	0	0	0
Vigilância (2kbps/cada) (kbps)	20	20	20	20	20	20	20	20	20	20
Internet (Gbps)	2	1.7	0.5	0.9	0.36	5	0.5	0.07	0.7	0.5
Largura de Banda(Gbps)	2,005	1,704	0,500	0,903	0,360	5,005	0,500	0,070	0,700	0,500
Total de Largura de Banda	12,2494 Gbps									

Nesta tabela visualiza-se o número máximo de hosts em cada edifício, assim como dispositivos VoIP e cameras de vigilância. Indica também o tráfego de dados aproximado dos serviços mais utilizados. Somando também os outros serviços (alarmes, portas, etc), conclui-se então que o máximo de tráfego total gerado na rede é sensivelmente 13Gbps.

5.1.1.2 Dimensionamento de Ligações nos Edifícios

As ligações entre os edifícios estão preparadas para suportar um tráfego máximo que está compreendido entre os 10Gbps e os 20Gbps.

5.1.2 Plano de Endereçamento e Virtualização

5.1.2.2 Identificação de edifícios

ID	Nome do edifício
0	Studzinski Library
1	Br. Benjamin Hall
2	Alumni Hall
3	Ryken Hall
4	Maintenance Barn
5	Xavier Hall
6	Admin Building
7	Memorial Cafeteria
8	Memorial Gymnasium
9	Griffin Hall

5.1.2.3 Plano de Endereçamento das Redes Locais

As ligações lógicas entre os edifícios serão implementadas de acordo com a tabela seguinte, de modo a que a vlan seja "9YZ", sendo Y e Z o identificador de cada edifício (Y<Z), e X seja o endereço de rede de cada ligação.

Edifício Y	Edifício Z	vlan	10.255.255.X/30
0	1	901	.0
0	3	903	.4
0	5	905	.8
0	6	906	.12
0	7	907	.16
1	2	912	.20
1	3	913	.24
1	4	914	.28
2	4	924	.32
4	6	946	.36
5	7	957	.40
5	8	958	.44
5	9	959	.48
8	9	989	.52

Vlan ID	Grupo de Utilizador	Prefixo de rede (X = id do edifício)	N° Endereços Disponíveis por edifício	Edifícios
10	Dados	10.X.0.0/23	510	Todos
11	Voz	10.X.1.0/24	254	0,1,3,5
12	Servidores	10.X.2.0/24	254	0,5
13	Vídeo	10.X.3.0/25	126	Todos
14	Serviços	10.X.4.0/25	126	Todos
15	Wi-Fi	10.X.5.0/22	1022	Todos
16	Guest-Wi-Fi	10.X.6.0/22	1022	Todos
17	Admin	10.X.7.0/24	254	6
99	Gestão	10.X.99.0/26	62	Todos

5.1.2.4 Plano de Virtualização (VLANs, Virtualização de Serviços)

Foram atribuidas nove vlans, de modo a limitar domínios de broadcast:

- Vlan de Dados: Aqui estão localizados todas as workstations e laptops da rede, orientado para utilizador comum.
- Vlan de Voz: Usada em apenas quatro edifícios: Studzinski, Xavier, Benjamin e Ryken.
- Vlan Servidores: Para uso dos servidores Esx e iSCSI
- Vlan Video: Para uso do tráfego das cameras IP
- Vlan Serviços: Todos os servidores de HVAC, portas automáticas, alarmes, luzes, caixas registadoras e controlador WiFi estão nesta vlan.
- Vlan WiFi: Para uso de todos os dispositivos sem fios que se conectarem à rede Wifi segura.
- Vlan Guest-Wifi: Para uso dos utilizadores com dispositivos não autenticados na rede Wifi segura, afim de apoiar o utilizador acerca de configurações sobre a rede wifi segura.
- Vlan Admin: Para uso de todos os funcionários administrativos do campus.
- Vlan Gestão: Rede presente em todos os dispositivos intermédios, servindo para uma fácil gestão destes equipamentos.

5.1.3 Disponibilidade e Desempenho

Nesta solução garante se a disponibilidade, superior a 1400 cliente por acesso Wi-Fi, aproximadamente 150 worksations prontos a utilizar e capacidade de acrescentar mais 300 workstations. O Sistema de rede implementado é resistente a falhas de hardware, software e energia, com objetivo é manter os serviços disponibilizados o máximo de tempo possível. Existe uma redundância alta pois na nossa topologia existem pelo menos trés ligações entre cada edifício, de modo a existir mais do que um ou dois caminhos entre os dispositivos presentes na rede.

5.2 Rede de Comunicações

5.2.1 Dimensionamento de tráfego

5.2.1.2 Dimensionamento de Ligações para a Internet

Não existe informação suficiente para calcular a largura de banda necessária, logo, este ponto é irrelevante para a topologia e configuração da rede proposta. A rede está preparada para receber qualquer tipo de largura de banda convencional sem que seja necessário acrescentar novos dispositivos ou alterar a topologia física ou lógica.

5.2.2 Disponibilidade, Desempenho e Disaster Recovery

Existe uma redundância alta visto que na topologia futura existem pelo menos duas ligações entre os edifícios, de modo a existir mais do que um caminho entre os mesmos. O endereçamento proposto satisfaz mais do que o necessário a topologia proposta. A rede futura irá encaminhar os pacotes aproveitando os custos iguais para o mesmo destino, de forma a rentabilizar da melhor forma o tráfego da rede, aumentando as suas velocidades.

Em relação ao plano de disaster recovery, visto que existe redundância de dados dos servidores em diferentes edifícios, está planeado uma sincronia em tempo real entre os servidores master e backup. Por isso, algum problema que surja, bastará activar o servidor backup e activá-lo como Master.

6. Projecto e Pré-Selecção de Soluções

6.1 Especificações de Componentes da Infra-estrutura de Redes Locais

6.1.1 Equipamentos Passivos

Tipo	Marca	Características
Cabos	N/A	Fibra multi-mode 62.5 micron
Cabos	N/A	UTP Cat5 & Cat5e
Fiber patch box	N/A	N/A
UPS	N/A	N/A
Bastidores	N/A	N/A

Instituto Politécnico de Tomar – Projecto de Redes

6.1.2 Equipamento Activo

Tipo	Marca	Modelo	Portas
Switch	Cisco	Catalyst 6503-E	99 Gbit
Switch	Cisco	Catalyst 3850	48 Gbit
Switch	Cisco	Catalyst 2960	48 Gbit
Switch	Cisco	Catalyst 3560-cx	12 Gbit
Acess point	Cisco	Aironet 700W	N/A
FireWall	Cisco	ASA 5505	N/A
Telefones VOIP	N/A	N/A	N/A
Wireless Controllers	Cisco	5500 Series	N/A

6.1.3 Disposição dos equipamentos intermédios

Edifício	Local	Equipamento	Número de portas	Quantidade	AP's	
Studzinski Library		Catalyst 3850	48	2		
	Studzinski MDF	Catalyst 6503-E	99	2	13	
Studziński Libiary		Catalyst 2960	48	4	13	
		Catalyst 3560-CX	12	3		
	Bookstore IDF	Catalyst 3560-CX	12	1	1	
		Catalyst 6503-E	99	1		
Br. Benjamin Hall	2nd Floor IDF	Catalyst 3850	48	2	11	
Bi. Benjamin Han	211d T 1001 1D1	Catalyst 2960	48	3	11	
		Catalyst 3560-CX	12	4		
	Phone Closet	Catalyst 3560-CX	12	1	1	
Alumni Hall	Kaneb Auditorium IDF	Catalyst 3850	48	1	4	
Ryken Hall	Ryken IDF	Catalyst 3850	48	1	9	
Maintenance Barn	Maintenance IDF	Catalyst 3850	48	1	3	
	Xavier Hall Basement IDF Xavier 3rd Floor IDF	Catalyst 6503-E	99	1	20	
		Catalyst 2960	48	4		
		Catalyst 3560-CX	12	4		
Xavier Hall		Catalyst 3850	48	2		
		Catalyst 2960	48	6		
		Catalyst 3560-CX	12	4	1)	
	Basement IDF	Catalyst 3850	48	1	1	
Admin Building	2nd Floor IDF	Catalyst 3560-CX	12	1	1	
	3rd Floor IDF	Catalyst 3560-CX	12	1	1	
Memorial Cafeteria	Cafeteria IDF	Catalyst 3850	48	1	6	
Memorial Gymnasium	Gymnasium IDF	Catalyst 3850	48	1	6	
Griffin Hall	Griffin IDF	Catalyst 3850	48	1	4	

6.2 Solução de Gestão de Rede e Serviços

Para a gestão e monitorização da rede serão aproveitados os agentes SNMP instalados nos vários dispositivos. Elegeu-se o Nagios para a monitorização da rede e detecção de falhas de segurança. Como já referido, também serão utilizadas três firewalls para apoio da rede em questões de segurança e para se obter conhecimento acerca do tráfego de saída e entrada. Para registo de actividade será utilizado um servidor de Syslog.

Instituto Politécnico de Tomar – Projecto de Redes

6.3 Orçamento

A soma de todos os preços dos equipamentos necessários à implementação deste projecto está divulgado na seguinte tabela:

Nome	Preço	Quantidades	Total
Catalyst 6503-E	1.500.00€	4	6.000.00
Catalyst 3850	1.700.00€	13	22.100.00
Catalyst 2960	6.600.00€	17	112.200.00
Catalyst 3560-cx	1.745.00€	19	33.155.00
Aironet 700W	470.00€	100	47.000.00
ASA 5505	400.00€	3	1.200.00
5500 Series	10,995.00	2	21.990.00
			243.645.00€