Τεχνικές Βελτιστοποίησης

Τρίτη εργαστηριακή άσκηση

-

Μέθοδος μέγιστης καθόδου με προβολή

Κωνσταντίνος Κωνσταντινίδης,

AEM: 9162 / konkonstantinidis@ece.auth.gr

Το παρόν είναι μία αναφορά που παρουσιάζει και σχολιάζει τα ζητούμενα διαγράμματα και έπειτα καταλήγει στα συμπεράσματα της έρευνας.

Η συνάρτηση προς ελαχιστοποίηση είναι η:

$$f: R^2 \rightarrow R$$
, $f(x) = 0.5*x_1^2 + 0.5*x_2^2$

Θέμα 1

Με τη μέθοδο της μέγιστης καθόδου , με ακρίβεια $\varepsilon = 0.01$ και σημείο εκκίνησης το (1,2) , έχουμε τα εξής αποτελέσματα συναρτήσει του βήματος γ_k .

- i) Για $\gamma_k = 0.1$, χρειάστηκαν 52 επαναλήψεις για να συγκλίνει στο x = (0.0042, 0.0083).
- ii) Για $\gamma_k = 1$, χρειάστηκε 1 επανάληψη για να συγκλίνει στο x = (0,0). Αυτό συμβαίνει καθώς, για $\gamma_k = 1$, έχουμε ότι το $x_{k+1} = x_k \text{grad}f(x_k)$. Επειδή όμως $\text{grad}f = (x_1, x_2)$, έχουμε ότι είναι $x_{k+1} = 0$. Πράγματι, για οποιοδήποτε σημείο εκκίνησης, η συνάρτηση πάντα συγκλίνει στο σημείο ολικού ελάχιστου (0,0) σε ένα βήμα.
- iii) Για $\gamma_k = 2$, η συνάρτηση δεν σύγκλινε. Για κάθε επανάληψη ως τις 500 επαναλήψεις που τις επιτράπηκε να τρέξει, η συνάρτηση πήγαινε από το (1,2) στο(-1,-2) και ξανά πίσω, έπαιρνε δηλαδή συνέχεια για x_{k+1} το $-x_k$.
- iv) Για $\gamma_k = 10$, χρειάστηκαν 324 επαναλήψεις για να καταλήξει η συνάρτηση στο $\mathbf{x} = (\text{inf,-inf})$. Μαθηματικά, έχουμε ότι για $\gamma_k = 10$, είναι: $\mathbf{x}_{k+1} = \mathbf{x}_k 10^* \text{gradf}(\mathbf{x}_k)$. Όμως είναι $\text{gradf}(\mathbf{x}_k) = \mathbf{x}_k$, επομένως έχουμε ότι: $\mathbf{x}_{k+1} = -9\mathbf{x}_k$. Και μαθηματικά βλέπουμε λοιπόν πως με τόσο μεγάλο γ_k , η σύγκλιση είναι αδύνατη, καθώς για οποιοδήποτε σημείο εκκίνησης, το \mathbf{x}_k απλά θα μεγαλώνει (κατά απόλυτη τιμή) κάθε επανάληψη.

Έρευνα σύγκλισης:

Όπως είδαμε από iv), για πολύ μεγάλο γ_k ο αλγόριθμος δεν συγκλίνει. Μέχρι πόσο μπορεί να είναι λοιπόν το γ_k για να συγκλίνει ο αλγόριθμος; Στην συγκεκριμένη περίπτωση, εύκολα βλέπουμε πως αν το γ_k είναι μεγαλύτερο της μονάδας, θα ισχύει $|x_{k+1}| > x_k$, δηλαδή το x_k θα αυξάνεται συνεχώς και η σύγκλιση θα είναι αδύνατη. Πρέπει λοιπόν το γ_k να είναι μεταξύ 0 και 1.

Θέμα 2

Η συνάρτηση, έχοντας ως σημείο εκκίνησης της αναζήτησης το (8,3), θεωρώντας $s_k=15$, $\gamma_k=0.1$ και ακρίβεια $\epsilon=0.01$, χρειάστηκε 59 επαναλήψεις για να συγκλίνει στο $\mathbf{x}=(5.71*10^{-18},$ -0.01). Παρατηρούμε πως χρειάστηκαν περισσότερες επαναλήψεις σε σχέση με το (Θέμα 1,i). Ωστόσο, χρησιμοποιήθηκε διαφορετικό σημείο εκκίνησης της αναζήτησης, και ο αριθμός των επιπλέον επαναλήψεων είναι μικρός (7), επομένως κάτι τέτοιο είναι αναμενόμενο τελικά.

Θέμα 3

Η συνάρτηση, έχοντας ως σημείο εκκίνησης της αναζήτησης το (-5,7), θεωρώντας $s_k = 20$, $\gamma_k = 0.3$ και ακρίβεια $\epsilon = 0.02$, χρειάστηκε 161 επαναλήψεις για να συγκλίνει στο x = (-0.0116, -0.0116). Παρατηρούμε πως χρειάστηκαν περισσότερες επαναλήψεις σε σχέση με το (Θέμα 1,i). Αυτό οφείλεται μερικώς στην επιλογή διαφορετικού σημείου εκκίνησης της αναζήτησης, αλλά κυρίως στο μεγαλύτερο βήμα γ_k το οποίο στη προκειμένη περίπτωση είναι τριπλάσιο. Ένας απλός πρακτικός τρόπος για συγκλίνει πιο γρήγορα η μέθοδος είναι να μη γίνεται χρήση σταθερού βήματος γ_k , αλλά μεταβλητού, είτε κάνοντας χρήση του κανόνα Armijo, είτε διαλέγοντας το γ_k που ελαχιστοποιεί κάθε φορά την $f(x_k + \gamma_k * d_k)$.

Θέμα 4

Καταρχάς, σε αντίθεση με τα θέματα 2 και 3, έχουμε δώσει πολύ μικρά s_k και γ_k , επομένως εκ των προτέρων ξέρουμε ότι η συγκεκριμένη εκτέλεση της συνάρτησης θα χρειαστεί πολλές παραπάνω επαναλήψεις για να συγκλίνει σε σχέση με τις προηγούμενες δύο φορές. Πράγματι, πατώντας να εκτελεστεί ο αλγόριθμος για το Θέμα 4, έχουμε ότι χρειάστηκαν 7.346 επαναλήψεις ώστε η τελική τιμή του x να είναι [0.0071, 0.0071], χιλιάδες φορές παραπάνω δηλαδή από όσες χρειάστηκε η μέθοδος για να συγκλίνει με συγκριτικά μεγαλύτερα βήματα.