Exercice 1

4.5 pts

a étant un réel strictement positif.

- 1) On considère dans \mathbb{C} l'équation (E) d'inconnue z : (E) : $z^2 (1+2ia)z + a(i-a) = 0$
 - a) Vérifier que (ia) est une solution de (E) .
 - b) Résoudre alors (E).

Le plan complexe est rapporté à un repère orthonormé direct (O, u, v).

- 2) On considère les points I et A d'affixes respectives $z_I=1$ et $z_A=i \tan \theta$ où θ est un réel de l'intervalle $\left|0,\frac{\pi}{2}\right|$. On désigne par H le projeté orthogonal de O sur (AI) .
 - a) Déterminer l'ensemble des points A , lorsque θ varie.
 - b) Vérifier que $\frac{1-i\tan\theta}{1+i\tan\theta} = e^{-2i\theta}$.
 - c) Montrer que : $h-1=e^{-2i\theta}\left(\bar{h}-1\right)$ et $\bar{h}=-e^{2i\theta}h$ où h l'affixe de H.
 - d) Déduire que : h = $\frac{1 e^{-2i\theta}}{2}$
 - e) Déterminer l'ensemble Γ des points H lorsque θ varie.
 - 3) Soit J le point d'affixe $z_J = \frac{\sin \theta}{\sin \theta + \cos \theta + 1} (1+i)$.
 - a) Justifier que l'affixe du vecteur \overrightarrow{JI} est : $z_{\overrightarrow{JI}} = \frac{2\cos\left(\frac{\theta}{2}\right)}{\sin\theta + \cos\theta + \frac{1}{2}}$
 - b) Déterminer la forme exponentielle de Z_{IA}
 - c) Montrer que : $(\overrightarrow{IA}, \overrightarrow{IO}) \equiv 2(\overrightarrow{IJ}, \overrightarrow{IO}) \pmod{2\pi}$.
 - d) Montrer que J est le centre du cercle inscrit au triangle IOA.

Exercice 2

(5) 40 min

4.5 pts

- A. Pour tout entier naturel non nul n, on pose : $S_n = \sum_{k=1}^n \frac{1}{n+k}$
- 1)a) Montrer que pour tout entier naturel $n \ge 1$, $S_{n+1} S_n = \frac{1}{2n+1} \frac{1}{2n+2}$.
 - b) Montrer que pour tout $n \ge 1, \frac{1}{2} \le S_n < 1 \frac{1}{n+1}$.
 - c) Montrer que la suite (S_n) converge vers un réel ℓ de l'intervalle $\left|\frac{1}{2}, 1\right|$.

- 2) Pour tout $n \ge 1$, on pose : $U_n = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}$.
 - a) Montrer par récurrence que pour tout entier $n \ge 1$, $U_{2n} = S_n$.
 - b) Vérifier que pour tout $n \ge 1$, $U_{2n+1} = S_n + \frac{1}{2n+1}$.
 - c) Montrer que (Un) converge vers l.
- B. n est un entier naturel non nul.
- 1)a) Montrer que l'équation $(x + n) \sin \left(\frac{\pi}{2}x\right) = 1$ admet dans]0, 1[une solution unique α_n .
 - b) Montrer que la suite (α_n) est décroissante.
 - c) Montrer que (α_n) converge vers 0.
 - d) Montrer que $\lim_{n\to +\infty} n\alpha_n = \frac{2}{\pi}$.
- 2) Pour tout $n \ge 1$, on pose : $\sigma_n = \sum_{k=n}^{2n} \frac{1}{\alpha_k + k}$
 - a) Montrer que pour tout $n \ge 1$, $\frac{1}{2n+1} + S_n \le \sigma_n \le S_n + \frac{1}{n}$.
 - b) Déterminer $\lim_{n\to +\infty} \sigma_n$.

Exercice 3

4 pts

- I. On considère la suite (Un) définie sur IN* par : $U_n = \sum_{k=1}^n \frac{1}{k^2}$
- 1) Déterminer les quatre premiers termes de la suite (U_n).
- 2) Démontrer que la suite (Un) est croissante sur IN*.
- 3)a) Montrer que pour tout entier $k \ge 2$, $\frac{1}{k^2} \le \frac{1}{k-1} \frac{1}{k}$.
 - b) En déduire que la suite (Un) est majorée par 2.
- 4) Justifier que la suite (U_n) converge. (Euler a démontré en 1748 que cette suite converge vers $\frac{\pi^2}{6}$)

II On considère les suites (V_n) et (W_n) définies sur IN* par : $V_n = U_n + \frac{1}{n+1}$ et

$$W_n = U_n + \frac{1}{n}$$

- 1) a) Montrer que pour tout entier $n \ge 1$, $V_{n+1} V_n = \frac{1}{(n+1)^2(n+2)}$
 - b) En déduire le sens de variations de la suite (V_n).
- 2) Montrer que les suites (V_n) et (W_n) sont adjacentes
- 3) En déduire que pour tout entier $n \ge 1$, $V_n \le \frac{\pi^2}{6} \le W_n$.
- 4) Montrer que pour tout entier $n \ge 1$, $0 \le W_n V_n \le \frac{1}{n^2}$
- 5) En déduire un encadrement de $\frac{\pi^2}{6}$ d'amplitude inférieure ou égale à 10^{-4}

Exercice 4

6 pts

Dans la figure ci-contre C_f est la courbe représentative d'une fonction f définie sur $]-\infty,-2]\cup[2,+\infty[$.

- C_f admet une branche parabolique de direction asymptotique celle de la droite (D) au voisinage de $+\infty$
- L'axe des abscisses est une asymptote à C_f au voisinage de $-\infty$.

1) Par lecture graphique déterminer en justifiant les limites suivantes :

$$\lim_{x\to +\infty}\frac{f(x)}{x}\quad \text{et} \quad \lim_{x\to -\infty}\frac{\sin\big(f(x)\big)}{f(x)}.$$

2) On donne ci-dessous le tableau de variation d'une fonction g définie et continue sur $]-\infty,0]\cup]2,+\infty[$

- a) Montrer que l'équation g(x) = 2 admet dans l'intervalle $]-\infty,0]$ une solution unique α .
 - b) Montrer que $\ f\circ g$ est définie sur $]-\infty,\alpha]\cup]2,+\infty[$.
 - c) Déterminer $(f \circ g)(\alpha)$ et $\lim_{x \to -\infty} (f \circ g)(x)$.
 - d) Déterminer l'image de l'intervalle $\left]\!-\!\infty,\alpha\right]$ par la fonction $\,f\circ g$.
 - e) Etudier le sens de variation de $f \circ g$ sur l'intervalle $]2,+\infty[$.

