

Week 7

**Artificial Intelligence Program** 

Infrastructure and Architecture



# > Agenda // Program

| WEEK | SUBJECT                                            | ASSIGNMENT / TO BE DELIVERED                     | DATES  |
|------|----------------------------------------------------|--------------------------------------------------|--------|
| 2    | Intro / Al Function / Enablers                     |                                                  | Sep 13 |
| 3    | Infra and Architecture / On-prem vs. Cloud / CSPs  | C1                                               | Sep 20 |
| 4    | Data Pipeline / Processes / Framework / AutoML     | #1 Image Classifier [5%]                         | Sep 27 |
| 5    | Data Pipeline / Processes / Framework / AutoML     | C2                                               | Oct 4  |
| 6    | More Data / SSIS / ADF / Data Quality              | #2 Machine Learning Studio [10%]                 | Oct 11 |
| 7    | Azure services – Intro EXAM 1 [20%]                | СЗ                                               | Oct 18 |
| 8    | READING WEEK                                       | NO CLASSES                                       | Oct 25 |
| 9    | Azure services – Cognitive Services 1              | 41                                               | Nov 1  |
| 10   | Azure services – Cognitive Services 2              | #3 Draw your own Architecture [5%]               | Nov 8  |
| 11   | Azure services – Cognitive Services 3              | 43                                               | Nov 15 |
| 12   | Azure services – Cognitive Services 4              | #4 Azure pipeline // Sentiment Analysis [20%] 44 | Nov 22 |
| 13   | AWS Academy – Cloud Foundations <b>aws</b> academy |                                                  | Nov 29 |
| 14   | AWS Academy – Machine Learning                     | #5 AWS Academy – Cloud Foundations [10%]         | Dec 6  |
| 15   | Enterprise Architecture EXAM 2 [20%]               | #6 AWS Academy – Machine Learning [10%]          | Dec 13 |



# > Agenda





# Machine Learning and AI be like..

fb.me/yuva.krishna.memes







@ROBOTOPIAWEEKLYCOMIC



# Azure Week 2 Microsoft







# Modern Data Platform Concepts



## What is a Data Lake?

It is a central storage repository that holds data coming from many sources in a raw, granular format. It can store **structured, semi-structured, or unstructured data**, which means data ingested quickly and can be kept in a more flexible format for future use cases.



# stics

- Schema-on-read (ELT)
- Collection of data, not a platform
- Perfect place for evolving data



# **Benefits**

- Quickly ingest high volumes of diverse data structures
- Enable advanced analytics and data exploration
- Scalability and storage cost reduction



# st Practices

- Data Governance needed to avoid Data Swamp
- Security considerations
- Design your Data Lake
- Metadata management

# Data Warehouse or Data Lake?

Answer: both.

|                          | Data Warehouse                        | Data Lake                                       |
|--------------------------|---------------------------------------|-------------------------------------------------|
| Requirements             | Relational requirements               | Diverse data, scalability, low cost             |
| Data Value               | Data of recognised high value         | Candidate data of potential value               |
| Data Processing          | Mostly refined calculated data        | Mostly detailed source data                     |
| <b>Business Entities</b> | Known entities, tracked over time     | Raw material for discovering entities and facts |
| Data Standards           | Data conforms to enterprise standards | Fidelity to original format and condition       |
| Data Integration         | Data integration upfront              | Data prep on demand                             |
| Transformation           | Data transformed, in principle        | Data repurposed later, as needs arise           |
| Schema Definition        | Schema-on-write                       | Schema-on-read                                  |
| Metadata Management      | Metadata improvement                  | Metadata developed on read                      |

# **Data Lake Design Considerations**

### **Data Lake Zones**

### **Transient Landing Zone**

Temporary storage of data to meet regulatory and quality control requirements. Limited access. May not be required depending on requirements.

### **Raw Zone**

Original source of data ready for consumption. Metadata publicly available but access to data still limited.

### **Trusted Zone**

Standardized and enriched datasets ready for consumption to those with appropriate role-based access. Metadata available to all.

### **Curated/Refined Zone**

Data transformed from Trusted Zone to meet specific business requirements.

### Sandbox Zone

Playground for Data Scientists for ad hoc exploratory use cases.

### **Data Governance Considerations**

### **Security and Compliance**

Access Control at Folder/File level

Encryption at rest

### **Metadata Management**

**Data Quality** 

Metadata Management

Lifecycle Management

# Azure Data Lake Storage Gen2

# Azure Data Lake Storage Gen2

A "no-compromises" Data Lake: Secure, performant and massively-scalable

A Data Lake that brings together the cost and scale of object storage with the performance and analytics feature set of data lake storage



### **Fast**

Atomic file operations mean jobs complete faster



### Manageable

Automated Lifecycle Policy Management

Object Level tiering





### Secure

Support for fine-grained ACLs, protecting data at the file and folder level

Multi-layered protection via at-rest Storage Service encryption & Azure Active Directory integration



### Scalable

No limits on data store size

Global footprint (50 regions)



### **Cost effective**

Object store pricing levels

File system operations minimize transactions required for job completion



### **Integration ready**

Optimized for Spark and Hadoop Analytic Engines

Tightly integrated with Azure end to end analytics solutions

Multiprotocol access





Single service

# Azure Data Lake Storage Gen2

High performance HDFS Endpoint to Azure Blob Storage



# Modern Data Platform Concepts

# What's No-SQL?

Term coined in 2009 for a developer meetup – "Not Only SQL" -> "NoSQL".

Databases that allow you to store and retrieve data in various structures, formats, and models other than tabular relational model.

## There's a time and a place for everything

Sometimes a relational store is the right choice

Sometimes a NoSQL store is the right choice

Sometimes you need more than one store for an app -> polyglot persistence

### **Data Structures**



**→** Key-Value Databases

Cosmos DB, Redis Cache, Azure Table



Column Family Stores

Cosmos DB, Cassandra, HBase



**Graph Databases** 

Cosmos DB, Neo4j, Gremlin



**Document Databases** 

Cosmos DB, MongoDB

# Azure ML

# > Azure ML Workspaces

### **Azure Machine Learning workspaces**

A workspace is a context for the experiments, data, compute targets, and other assets associated with a machine learning workload.

### **Workspaces for Machine Learning Assets**

A workspace defines the boundary for a set of related machine learning assets. You can use workspaces to group machine learning assets based on projects, deployment environments (for example, test and production), teams, or some other organizing principle. The assets in a workspace include:

- Compute targets for development, training, and deployment.
- Data for experimentation and model training.
- Notebooks containing shared code and documentation.
- Experiments, including run history with logged metrics and outputs.
- Pipelines that define orchestrated multi-step processes.
- Models that you have trained.



# > Azure ML Workspaces





# > Azure ML Studio

Built on the Microsoft Azure cloud platform, Azure Machine Learning enables you to manage:

- Scalable on-demand compute for machine learning workloads.
- Data storage and connectivity to ingest data from a wide range sources.
- Machine learning workflow orchestration to automate model training, deployment, and management processes.
- Model registration and management, so you can track multiple versions of models and the data on which they were trained.
- Metrics and monitoring for training experiments, datasets, and published services.
- Model deployment for real-time and batch inferencing.



# > Azure ML Studio



Azure Machine Learning studio
You can manage the assets in your
Azure Machine Learning
workspace in the Azure portal, but
as this is a general interface for
managing all kinds of resources in
Azure, data scientists and other
users involved in machine learning
operations may prefer to use a
more focused, dedicated
interface.



# > Azure ML Studio

Python code runs in the context of a *virtual*environment that defines the version of the Python
runtime to be used as well as the installed packages
available to the code. In most Python installations,
packages are installed and managed in environments
using Conda or pip.

To improve portability, we usually create environments in docker containers that are in turn be hosted in compute targets, such as your development computer, virtual machines, or clusters in the cloud.





# Azure Al

# **Azure Al**

### **Solution Areas**

Al apps and agents



Azure Cognitive Services

Azure Bot Service

**Knowledge mining** 



**Azure Search** 

**Machine learning** 



Azure Databricks
Azure Machine Learning
Azure Al Infrastructure

Productive Built for enterprises Trusted

# Machine Learning on Azure

To accelerate deep learning

### Domain specific pretrained models To simplify solution development Vision Language Speech Search **Familiar Data Science tools** To simplify model development Jupyter **Visual Studio Code** Command line Azure Notebooks Popular frameworks To build advanced deep learning solutions TensorFlow ONNX PyTorch Scikit-Learn **Productive services** To empower data science and development teams Azure Machine Machine Azure **Databricks Learning VMs** Learning Powerful infrastructure





**GPU** 

**FPGA** 

CPU



# **Cognitive Services capabilities**

# Infuse your apps, websites, and bots with human-like intelligence



### **Vision**

Object, scene, and activity detection

Face recognition and identification

Celebrity and landmark recognition

Emotion recognition

Text and handwriting recognition (OCR)

Customizable image recognition

Video metadata, audio, and keyframe extraction and analysis

Explicit or offensive content moderation



### **Speech**

Speech transcription (speech-to-text)

Custom speech models for unique vocabularies or complex environment

Text-to-speech

**Custom Voice** 

Real-time speech translation

Customizable speech transcription and translation

Speaker identification and verification



## Language

Language detection

Named entity recognition

Key phrase extraction

Text sentiment analysis

Multilingual and contextual spell checking

Explicit or offensive text content moderation

PII detection for text moderation

Text translation

Customizable text translation

Contextual language understanding



## Knowledge

Q&A extraction from unstructured text

Knowledge base creation from collections of Q&As

Semantic matching for knowledge bases

Customizable content personalization learning



### **Search**

Ad-free web, news, image, and video search results

Trends for video, news

Image identification, classification and knowledge extraction

Identification of similar images and products

Named entity recognition and classification

Knowledge acquisition for named entities

Search query autosuggest

Ad-free custom search engine creation

# **Knowledge mining with Azure Search**

### **Documents**



Key Phrase extraction



Organization entity extraction



Face detection



Custom skills

### **Cognitive skills**



Location entity extraction



Persons entity extraction



Celebrity recognition



Landmark detection

# Fully text-searchable rich index



Sentiment analysis



Language detection



Tag extraction



Printed text recognition



# > Case // Example // Parallel processes



# > Case // Example // Flow Detail





# Stream Analytics

# **Stream Analytics**

Event-processing engine that allows you to examine high volumes of data streaming from devices



# > Draw your own architecture...

Microsoft Azure Cloud and AI Symbol / Icon Set - SVG

Pointer

<u>Azure Icons - Azure Architecture Center | Microsoft</u>

**Docs** 

### **Terms**

Microsoft permits the use of these icons in architectural diagrams, training materials, or documentation. You may copy, distribute, and display the icons only for the permitted use unless granted explicit permission by Microsoft. Microsoft reserves all other rights.



**Download SVG icons** 





# > Why should you use professional icons?



# > Why should you use professional icons?



# Assignment #3 Microsoft







# > #3 Draw your own Architecture

### **INSTRUCTIONS:**

Think about a possible architecture / business needs based on the case detailed in the next slide.

Consider all the data sources and steps to ingest data and to show the visualizations.

- Use PowerPoint or other drawing tool (draw.io)
- <a href="https://app.diagrams.net/">https://app.diagrams.net/</a> | <a href="https://www.diagrams.net/">https://app.diagrams.net/</a> | <a href="https://www.diagrams.net/">https://www.diagrams.net/</a>
- Use the <u>standard icons</u> for each service available
- Explain why do you select the resource / Clarify your expectations

After you finish your Architecture, please explain why you selected each of the different services and make sure that you draw the arrows showing the data flow.

### **EVALUATION:**

Mark: 5 points

**Delivery: PPT OR Video 1-4 minutes (explanations)** 

Ensure that you recorded yourself explaining your data flow Ensure that you showed all the performed steps
Data Sources / Data ingestion / Store / Process / Serve
Ensure to explain each resource and why you choose them

Will be considered:

Your results, level of detail and clarity to explain and video quality.

**Due date: Week 9 class** 



# > #3 Draw your own Architecture

### **SCOPE**

The STK company is a brand-new start-up responsible to deliver 95% of all the products sold by Amazon in Canada. This company is using SAP, ORACLE, and Microsoft Dynamics 365 CRM, as the main data sources. The company also has some data stored in a blob storage service on Azure (CSV files and unstructured data).

The main idea is to move ALL the data to a cloud instance (Azure). They need a unique place to store all the data and to help them to explore the data, generating data analysis, and prep the structure for future Al projects.

### **SOME QUESTIONS**

Your architecture should answer questions like:

- How to ingest the data from the different data sources?
- Where to store the data?
- What are the tools to perform data analysis?
- What are the resources you are planning to use for future Al projects?
- Where to process and train your data?
- What are the tools / resources to perform AI models?
- Where are you planning to generate the management data visualization? Dashboards?



# References



# > References

- Big Data Analytics Program, 2019/2020 Georgian College, Barrie, Ontario
- Microsoft, Azure data platform, <a href="https://docs.microsoft.com/en-us/azure/architecture/example-scenario/dataplate2e/data-platform-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-to-end-
- Microsoft, Data warehousing and analytics, <a href="https://docs.microsoft.com/en-us/azure/architecture/example-scenario/data/data-warehouse">https://docs.microsoft.com/en-us/azure/architecture/example-scenario/data/data-warehouse</a>
- Microsoft, Advanced Analytics Architecture, <a href="https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/advanced-analytics-on-big-data">https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/advanced-analytics-on-big-data</a>
- Microsoft, Azure Synapse Analytics dedicated SQL pool Videos, <a href="https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-videos">https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse/sql-data-warehouse-videos</a>
- Microsoft, Success by Design Implementation Guide, First Edition, 2021
- Monkey Learn, Sentiment Analysis, <a href="https://monkeylearn.com/sentiment-analysis/">https://monkeylearn.com/sentiment-analysis/</a>
- Cloud Geeks, Jerry Hargrove, website, <a href="https://www.lucidchart.com/blog/what-are-cloud-regions">https://www.lucidchart.com/blog/what-are-cloud-regions</a>
- Microsoft, Authentication, Microsoft Docs, <a href="https://docs.microsoft.com/en-us/learn/modules/recognize-dynamics-365-security/4-authentication">https://docs.microsoft.com/en-us/learn/modules/recognize-dynamics-365-security/4-authentication</a>
- Microsoft, Dataverse, Microsoft Docs, <a href="https://docs.microsoft.com/en-us/learn/modules/connect-analyze-dynamics-365-data/3-benefits-dataverse">https://docs.microsoft.com/en-us/learn/modules/connect-analyze-dynamics-365-data/3-benefits-dataverse</a>
- Microsoft, Azure Data Platform End-to-End, Implement a Modern Data Platform Architecture, Official Material



# f Georgian **END OF DAY 7**