Рубежный контроль 1

Схема РК

- РК проходит в устной форме и состоит из практической и теоретической части
- Студент берет билет с двумя практическими задачами на решение которых он может потратить не более 30 минут
- При решении задач можно пользоваться материалами курса и python для выполнения вычислений
- Далее студент защищает решенные задачи и отвечает на 2-3 теоретических вопроса
- Теоретические вопросы могут подразумевать работу с ручкой и бумагой

Примеры практических задач

Задача 1

- 1. Что такое мультиколлинеарность, как она влияет на линейные модели?
- 2. Пусть в датасете есть следующие признаки:
 - Пол (М, Ж)
 - Опыт работы (число)
 - Цвет глаз (Г, К, З, Другой)
 - Количество дипломов (число)

Датасет без пропусков и каждая категория в датасете представлена.

Запишите уравнение модели линейной регрессии со свободным членом (без конкретных значений коэффициентов) для предсказания уровня зарплаты в рублях, избежав при этом строгой мультиколлинераности (то есть уравнение вида $y = \beta_0 + \beta_1 x_{\text{опыт}} + \beta_2 x_{\text{пол}=M} + \dots$)

Задача 2

Для задачи линейной регрессии с одной переменной $\hat{y} = \beta_0 + \beta_1 x_1$ покажите, что

$$\beta_1 = \frac{\sum_{i=1}^n x_i y_i - \frac{\sum_{i=1}^n y_i \sum_{i=1}^n x_i}{n}}{\sum_{i=1}^n x_i^2 - \frac{\sum_{i=1}^n x_i \sum_{i=1}^n x_i}{n}} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Задача 3

Дана следующая обучающая выборка для регрессии:

		1.5								
x_2	5	-7.5	8.5	-2	-4.5	-0.5	-3	-2	11	2
y	33	-63.5	66	-41	-25.5	-10.5	-14	-23	115	26

1. С помощью взвешенного метода k-NN выполните регрессию следующего датасета. Гиперпараметры алгоритма:

$\overline{x_1}$	3.5	-4.5	-6.5	4.5
$\overline{x_2}$	7.5	6	-3	-7

- k = 3
- метрика Manhattan distance $d(a,b) = \sum_i |a_i b_i|$
- $\bullet\,$ вес i-го ближайшего соседа определяется как $w(i)=\frac{(k-i+1)}{k}$
- 2. Какова вычислительная сложность предсказания в наивной имплементации k-NN по выбоке с N объектами и D признаками?

Задача 4

- 1. Выпишите формулу F-меры. Почему метрика качества $\min(\operatorname{precision}(a, X), \operatorname{recall}(a, X))$ считается не очень хорошим способом объединения точности и полноты?
- 2. Пусть даны выборка X, состоящая из 8 объектов, и классификатор a(x), предсказывающий оценку принадлежности объекта положительному классу. Предсказания a(x) и реальные метки объектов приведены ниже:

$$a(x_1) = 0.1, \quad y_1 = +1,$$

 $a(x_2) = 0.8, \quad y_2 = +1,$
 $a(x_3) = 0.2, \quad y_3 = -1,$
 $a(x_4) = 0.25, \quad y_4 = -1,$
 $a(x_5) = 0.9, \quad y_5 = +1,$

Постройте ROC-кривую и вычислите AUC-ROC

Задача 5

С помощью алгоритма Naive Bayes предскажите значение целевой переменной $buy_computer$ для объекта со следующими значениями признаков:

Для обучения модели используйте данные из таблицы и сглаживане Лапласа ($\alpha = 1$).

RID	age	income	student	credit_rating	Class: buys_computer
1	<=30	high	no	fair	no
2	<=30	high	no	excellent	no
3	31 40	high	no	fair	yes
4	>40	medium	no	fair	yes
5	>40	low	yes	fair	yes
6	>40	low	yes	excellent	no
7	31 40	low	yes	excellent	yes
8	<=30	medium	no	fair	no
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	excellent	yes
12	31 40	medium	no	excellent	yes
13	3140	high	yes	fair	yes
14	>40	medium	no	excellent	no

Теоретические вопросы

- 1. Постановка задач классификации и регрессии.
- 2. Метрики качества классификации и регрессии.
- 3. Переобучение. Разделение выборки, скользящий контроль.
- 4. Задачи и особенности Text Mining. Этапы обработки текста.
- 5. Байесовский классификатор. Оптимальное байесовское правило. Naive Bayes.
- 6. Деревья решений. Постановка задачи. Рекурсивный алгоритм. Сложность алгоритма.
- 7. Деревья решений. Критерии разбения для классифкации и регрессии. Криетерии остановаю.
- 8. Деревья решений. Укорачивание деревьев. Работа с отстутствующими значениями.
- 9. Линейная регрессия. Модель линейной регрессии. Регуляризация.
- 10. Линейная регрессия. Байесовская интерпретация.
- 11. Линейная регрессия. Точное решние, выписать формулу обновления весов для SGD
- 12. Логистическая регрессия. Модель логистичнкой регрессии. Регуляризация
- 13. Логистическая регрессия. Байесовская интерпитация
- 14. Логистическая регрессия. Моделирование нескольких классов.
- 15. Метрические методы. KNN.
- 16. Методы оптимизация. Градиентная оптимизация.
- 17. Градиентный спуск. Стохастический градиентный спуск