

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра прикладной математики и информатики

Лабораторная работа N°4 по дисциплине «Методы оптимизации»

Статистические методы

Студенты БЕГИЧЕВ АЛЕКСАНДР

ШИШКИН НИКИТА

Бригада 08

Группа ПМ-92

Преподаватель ФИЛИППОВА Е.В.

Новосибирск, 2022

Цель работы

Ознакомиться со статистическими методами поиска при решении задач нелинейного программирования. Изучить методы случайного поиска при определении глобального экстремума функции.

Задание

Найти максимум заданной функции:

$$f(x,y) = \sum_{i=1}^{6} \frac{C_i}{1 + (x - a_i)^2 + (y - b_i)^2}$$

на области $-10 \le x \le 10$, $-10 \le y \le 10$.

C_1	C_2	C_4	C_5	C_6	a_1	a_2	a_3	a_4	a_5	a_6	b_1	b_2	b_3	b_3	b_4	b_5	b_6
2	1	7	2	8	4	5	2	-9	0	-3	-3	4	0	-6	-3	7	3

- 1. Разработать программу для решения задачи поиска глобального экстремума с использованием метода простого случайного поиска и трех алгоритмов глобального поиска.
- 2. Исследовать метод простого случайного поиска глобального экстремума при различных ε и P. Результат представить в таблице:

ε	P	N	(\hat{x},\hat{y})	$f(\hat{x}, \hat{y})$

- 3. Исследовать алгоритмы поиска глобального экстремума. Сравнить результаты поиска по количеству вычислений функций и найденной точке экстремума. Исследование провести при различных значениях числа попыток m.
- 4. П.3 повторить при пяти разных начальных значениях ГСЧ. Сделать выводы об устойчивости различных алгоритмов.

Выполнение работы

С помощью подпрограммы на python оценим нашу функцию.

Рис. 1: Заданная функция

Наибольшее значение функции в заданной области:

$$\max_{\Omega} f(x, y) = -8.32829340$$

Точка максимума:

$$(x,y) = (-2.99958534, 6.99227345)$$

Исследование метода простого случайного поиска

ε	P	N	(\hat{x},\hat{y})	$f(\hat{x}, \hat{y})$
0.1	0.6	36652	(-2.9328, 7.0202)	8.2865
0.025	0.6	586426	(-2.9907, 6.9770)	8.3258
0.01	0.6	3665163	(-2.9911, 6.9870)	8.3275
0.005	0.6	14660652	(-2.9993, 6.9891)	8.3282
0.1	0.7	48159	(-3.0521, 6.9877)	8.3060
0.025	0.7	770542	(-3.0049, 7.0062)	8.3265
0.01	0.7	4815891	(-3.0023, 6.9914)	8.3282
0.005	0.7	19263565	(-2.9991, 6.9932)	8.3282
0.1	0.8	64377	(-2.9864, 6.9647)	8.3208
0.025	0.8	1030040	(-3.0071, 6.9951)	8.3277
0.01	0.8	6437751	(-2.9942, 6.9954)	8.3279
0.005	0.8	25751006	(-3.0007, 6.9936)	8.3282

Вывод: метод простого случайного поиска напрямую зависит от значений ε и P. При увеличении вероятности P метод стремиться к истинному значению (глобальному экстремуму), а при увеличении значения ε вырастает точность найденного решения. Чем больше значение переменных P и ε , тем больше значение количества требуемых экспериментов N.

Исследование алгоритмов глобального поиска Алгоритм N°1

		ε 1 · 10 ⁻⁴		Cá	alls	m	x	y	$f(\overline{x})$	
		$1 \cdot 10^{-4}$ $1 \cdot 10^{-4}$		$^{-4}$ 2,	578	10	-2.9992	6.9946	8.3283	
					152	20	-3.0005	6.9935	8.3283	
			10-		335	30		6.9916	8.3283	
		1 ·	10-	9,	639	40	-3.0004	6.9909	8.3283	
		ε		cal	Is	\overline{m}	x	y	$f(\overline{x})$	
	1	• 10	- 5						- ' ' '	
		· 10		3,06		10	-2.99923		8.32829	
	- 1			6,01		20	-3.00010	6.99218	8.32829	
		• 10		8,28		30	-2.99930	6.99199	8.32829	
		• 10		11,1	98	40	-2.99921	6.99245	8.32829	,
		ε		calls	r	n	x	y	$f(\overline{x})$	
	1 ·	10^{-6}	3	3,204	1	0	-2.999722	6.992299	8.3282	93
	1 ·	10^{-6}	3	6,964	2	0	-2.999472	6.992277	8.3282	93
	1 •	10^{-6}	3 -	10,606	$3 \mid 3$	0	-2.999465	6.992157	8.3282	93
	1 ·	10^{-6}	3 -	$12,\!532$	2 4	0	-2.999587	6.992410	8.3282	93
	ε			alls	m		x	21	$f(\overline{x})$	<u>-)</u>
_		7						<i>y</i>		
	• 10		,	445	10		2.9995696	6.992216		
		0^{-7}	,	389	20		2.9996049	6.992242		
	• 10			,284	30		2.9995624	6.992316		
1	• 10	0^{-7}	14	,408	40	-	2.9995922	6.992225	$8 \mid 8.3282$	2934

Алгоритм №2

			$\overline{\varepsilon}$		ca	lls	: 1	$\frac{n}{n}$	x	П	y		$f(\overline{x})$		
		1.	10	-4	1,8			0	-2.9957	7	3.0264		$\frac{6347}{6347}$		
			$\cdot 10^{-1}$		3,8			20	-2.9989		3.0226		.6347		
			10		5,9			30	-9.0005		-6.0015		.1077		
			10		8,4			10	-2.9982		6.9916		.3283		
														_	
		٤	Ē	C	alls	5	m		\boldsymbol{x}		y		$f(\overline{x})$		
]	$1 \cdot 1$	0^{-5}	2	,288	3	10		-2.99918		6.99251	8	3.32829		
			0^{-5}		,683	3	20		-8.99851		-5.99954	7	7.10778		
			0^{-5}		,667	7	30		-8.99973		-5.99898	7	7.10778		
	_ 1	l · 1	0^{-5}	8	,890)	40		-2.99915		6.99263	8	3.32829		
		ε		ca	lle	Т	\overline{m}		\overline{x}	T	21		$f(\overline{x})$		
			-6							<u> </u>	<i>y</i>			○ ►	
		10-		2,1			10		8.999352		-5.999124		7.1077		
		10-		5,2		- 1	20		-2.999653		6.992369		8.3282		
		10-		8,0			30		2.999328		6.992184		8.3282		
	1 ·	10-	-6	10,4	400	4	40	_	8.998974		-5.999024	=	7.1077	84	
Г			Τ,	alls	, T		.		or.	Т	24		$f(\overline{x})$:)	\neg
L	ε	. 7				m			<i>x</i>	<u> </u>	<i>y</i>				
	1 · 10			,120		10			.9995358		6.9922084		8.3282		
	1 · 10			,75!		20			.9995314		6.9922925		8.3282		
	1 · 10			3,349		30			.9991412	-	-5.9990618	5	7.1077		
	1 · 10)-7	1	1,68	6	40) -	-2	.9995703		6.9922296		8.3282	2934	E
	arepsilon		ca	lls	$\mid \eta$	n			\overline{x}		\overline{y}		f ($\overline{\overline{x}}$	
1	· 10 ⁻	8		878	10		_8	3 9	9917922		-5.9990933	4	7.107		72.
	· 10 ⁻		6,7		20				9958935		6.99229481		8.328		
	· 10 ⁻			638	30				9958301		6.99229391		8.328		
	· 10 ⁻		1	540	40				9958796		6.99229373		8.328		

Хочется сразу сказать пару слов об этом алгоритме. В описании алгоритма говорится, что для начала должна быть получена точка, которая является локальным экстремумом, однако возможен случай, когда данная точка будет уже являться глобальным экстремумом и последующий поиск новой точки через алгоритм ненаправленного случайного поиска может не прийти к решению. Поэтому данный алгоритм неустойчив.

Алгоритм N°3

		ε	С	alls		\overline{m}	x		y	$f(\overline{x})$	
	1 ·	$ \begin{array}{ c c c c c } \hline 1 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \end{array} $,573		10	-8.9974	1	-5.9984	7.1078	
	1 ·	10-	-4 9	,978		20	-3.0008	3	6.9933	8.3283	
	1 ·	10	$^{-4}$ 14	1,429	9	30	-2.9983	3	6.9922	8.3283	
	1 ·	10	$^{-4}$ 18	18,085		40	-8.9991	1	-5.9974	7.1078	
	ε		ca	calls		\overline{a}	\overline{x}		y	$f(\overline{x})$	
	1 · 10	0^{-5}	5,0	70	1() .	-2.99946		6.99168	8.32829)
	$1 \cdot 10$	0^{-5}			20		-2.99958		6.99173	8.32829)
	$1 \cdot 10$	0^{-5}			30) .	-2.99912		6.99241	8.32829)
	$1 \cdot 10$			378	4() .	-8.99926		-5.99967	7.10778	3
										<i>c</i> (—)	
	ε		calls		$m_{\underline{}}$		x		y	$f(\overline{x})$	
	$1 \cdot 10^{-}$		5,715		10		8.999022	-	-5.999206	7.1077	
	$1 \cdot 10^{-}$		11,73		20		2.999483		6.992178	8.3282	
	$1 \cdot 10^{-}$		17,97		30		2.999435		6.992311	8.3282	
	$1 \cdot 10^{-}$	-6	24,35	0 4	40		2.999430		6.992380	8.3282	93
	arepsilon		calls		n		\overline{x}		\overline{y}	$f(\overline{x})$	
1	$1 \cdot 10^{-7}$	7	6,824	1	0	-2	.9996487		6.9923286	8.32829	934
1	$1 \cdot 10^{-7}$	7	13,547	2	0	-2	.9996233		6.9922558	8.32829	934
1	$1 \cdot 10^{-7}$	7 :	20,412	3	0	-2	.9995626		6.9922401	8.32829	934
]	$1 \cdot 10^{-7}$	7	27,536	4	0	-2	.9995865		6.9922356	8.32829	934
	ε		alls	\overline{m}			\overline{x}	Ι	y	$f(\overline{a})$	
1	$\frac{5}{10^{-8}}$,848	10		2.0	9959658	6	$\frac{g}{6.99227584}$	8.3282	
	10^{-8}		,646 1,633	20			9960549		6.99221384 6.99228217	8.3282	
	10^{-8}		3,015	30			9958244		6.99226217 6.99226299	8.3282	
	10^{-8}),889	40			9959341		5.99227933	8.3282	

Вывод: данные алгоритмы имеют прямую зависимость от точности ε и числа попыток m, так как при большем значении точности ε и количестве попыток m возрастает число оценки функции.

Исследование на устойчивость алгоритмов глобального поиска

Алгоритм N°1

CH Nº1

ε	calls	m	x	y	$f(\overline{x})$
$1 \cdot 10^{-7}$	3,686	10	-2.9995460	6.9922771	8.3282934
$1 \cdot 10^{-7}$	7,035	20	-2.9995460	6.9922771	8.3282934
$1 \cdot 10^{-7}$	10,459	30	-2.9995460	6.9922771	8.3282934
$1 \cdot 10^{-7}$	13,985	40	-2.9995460	6.9922771	8.3282934

ГСЧ №2

arepsilon	calls	m	x	y	$f(\overline{x})$
$1 \cdot 10^{-7}$	3,980	10	-2.9996332	6.9923047	8.3282934
$1 \cdot 10^{-7}$	7,376	20	-2.9996332	6.9923047	8.3282934
$1 \cdot 10^{-7}$	10,929	30	-2.9996103	6.9922708	8.3282934
$1 \cdot 10^{-7}$	14,550	40	-2.9996103	6.9922708	8.3282934

ГСЧ №3

arepsilon	calls	m	x	y	$f(\overline{x})$
$1 \cdot 10^{-7}$	3,783	10	-2.9995541	6.9923023	8.3282934
$1 \cdot 10^{-7}$	7,261	20	-2.9995541	6.9923023	8.3282934
$1 \cdot 10^{-7}$	10,664	30	-2.9995559	6.9923004	8.3282934
$1 \cdot 10^{-7}$	14,146	40	-2.9995559	6.9923004	8.3282934

ГСЧ N°4

ε	calls	m	x	y	$f(\overline{x})$
$1 \cdot 10^{-7}$	3,612	10	-2.9996030	6.9923224	8.3282934
$1 \cdot 10^{-7}$	7,369	20	-2.9996030	6.9923224	8.3282934
$1 \cdot 10^{-7}$	10,944	30	-2.9996030	6.9923224	8.3282934
$1 \cdot 10^{-7}$	14,471	40	-2.9996030	6.9923224	8.3282934

ГСЧ N°5

ε	calls	m	x	y	$f(\overline{x})$
$1 \cdot 10^{-7}$	3,432	10	-2.9995929	6.9923198	8.3282934
$1 \cdot 10^{-7}$	6,977	20	-2.9995929	6.9923198	8.3282934
$1 \cdot 10^{-7}$	10,403	30	-2.9995929	6.9923198	8.3282934
$1 \cdot 10^{-7}$	13,827	40	-2.9995441	6.9922683	8.3282934

Алгоритм N°2

ГСЧ N°1

ε	calls	m	x	y	$f(\overline{x})$
$1 \cdot 10^{-7}$	2,975	10	-2.9995194	6.9922965	8.3282934
$1 \cdot 10^{-7}$	6,085	20	-2.9995194	6.9922965	8.3282934
$1 \cdot 10^{-7}$	9,395	30	-2.9995194	6.9922965	8.3282934
$1 \cdot 10^{-7}$	12,905	40	-2.9995194	6.9922965	8.3282934

ГСЧ №2

arepsilon	calls	m	x	y	$f(\overline{x})$
$1 \cdot 10^{-7}$	3,191	10	-2.9996103	6.9922708	8.3282934
$1 \cdot 10^{-7}$	6,320	20	-2.9996103	6.9922708	8.3282934
$1 \cdot 10^{-7}$	9,669	30	-2.9996103	6.9922708	8.3282934
$1 \cdot 10^{-7}$	13,179	40	-2.9996103	6.9922708	8.3282934

ГСЧ N°3

ε	calls	m	x	y	$f(\overline{x})$
$1 \cdot 10^{-7}$	2,958	10	-8.9991403	-5.9990645	7.1077847
$1 \cdot 10^{-7}$	5,958	20	-8.9991403	-5.9990645	7.1077847
$1 \cdot 10^{-7}$	9,360	30	-2.9995252	6.9922672	8.3282934
$1 \cdot 10^{-7}$	12,900	40	-2.9995252	6.9922672	8.3282934

ГСЧ N°4

ε	calls	m	x	y	$f(\overline{x})$
$1 \cdot 10^{-7}$	3,129	10	-2.9996547	6.9923179	8.3282934
$1 \cdot 10^{-7}$	6,359	20	-2.9996547	6.9923179	8.3282934
$1 \cdot 10^{-7}$	9,789	30	-2.9996547	6.9923179	8.3282934
$1 \cdot 10^{-7}$	13,419	40	-2.9996547	6.9923179	8.3282934

ГСЧ №5

ε	calls	m	x	y	$f(\overline{x})$
$1 \cdot 10^{-7}$	3,238	10	-2.9996161	6.9923195	8.3282934
$1 \cdot 10^{-7}$	$6,\!558$	20	-2.9996161	6.9923195	8.3282934
$1 \cdot 10^{-7}$	10,078	30	-2.9996161	6.9923195	8.3282934
$1 \cdot 10^{-7}$	13,798	40	-2.9996161	6.9923195	8.3282934

Алгоритм N°3

FC4 Nº1

ε	calls	m	x	y	$f(\overline{x})$
$1 \cdot 10^{-7}$	6,659	10	-2.9995194	6.9922965	8.3282934
$1 \cdot 10^{-7}$	13,443	20	-2.9995934	6.9922339	8.3282934
$1 \cdot 10^{-7}$	20,545	30	-2.9995934	6.9922339	8.3282934
$1 \cdot 10^{-7}$	27,705	40	-2.9995934	6.9922339	8.3282934

TC4 N°2

arepsilon	calls	m	x	y	$f(\overline{x})$
$1 \cdot 10^{-7}$	6,863	10	-2.9995406	6.9922968	8.3282934
$1 \cdot 10^{-7}$	13,791	20	-2.9995599	6.9923082	8.3282934
$1 \cdot 10^{-7}$	20,879	30	-2.9995599	6.9923082	8.3282934
$1 \cdot 10^{-7}$	27,804	40	-2.9995680	6.9922987	8.3282934

LCA N₀3

ε	calls	m	x	y	$f(\overline{x})$
$1 \cdot 10^{-7}$	6,412	10	-8.9992036	-5.9990731	7.1077847
$1 \cdot 10^{-7}$	12,848	20	-2.9995956	6.9922256	8.3282934
$1 \cdot 10^{-7}$	19,659	30	-2.9995956	6.9922256	8.3282934
$1 \cdot 10^{-7}$	26,322	40	-2.9995956	6.9922256	8.3282934

ГСЧ N°4

ε	calls	m	x	y	$f(\overline{x})$
$1 \cdot 10^{-7}$	6,943	10	-2.9996449	6.9922706	8.3282934
$1 \cdot 10^{-7}$	13,819	20	-2.9996154	6.9922954	8.3282934
$1 \cdot 10^{-7}$	20,949	30	-2.9996154	6.9922954	8.3282934
$1 \cdot 10^{-7}$	28,073	40	-2.9996154	6.9922954	8.3282934

ГСЧ №5

ε	calls	m	x	y	$f(\overline{x})$
$1 \cdot 10^{-7}$	6,876	10	-2.9995435	6.9922949	8.3282934
$1 \cdot 10^{-7}$	13,727	20	-2.9995435	6.9922949	8.3282934
$1 \cdot 10^{-7}$	21,110	30	-2.9995435	6.9922949	8.3282934
$1 \cdot 10^{-7}$	27,962	40	-2.9996221	6.9922696	8.3282934

Вывод: из проведенного исследования можно сказать, что алгоритмы $N^{o}1$ и $N^{o}3$ являются устойчивыми, так как при различных ГСЧ приходят к истинному решению, однако алгоритм $N^{o}3$ основан на случайном направлении и может прийти в локальный экстремум, что мы наблюдаем при ГСЧ $N^{o}3$. Про алгоритм $N^{o}2$ было сказано в исследовании выше, но при ограничении генерации точек в алгоритме ненаправленного случайного поиска он сходится к нужному решению.

Листинг

Program.cs

```
using oMethods_4;

Solver solver = Solver.CreateBuilder()
.SetFunction(new Function())
.SetMethod(new SimpleRandomSearch(0.1, 0.999))
.SetArea(Rectangle.ReadJson("area.json")!.Value);

solver.Compute();
```

Solver.cs

```
namespace oMethods_4;
1
2
3
    public class Solver {
        public class SolverBuilder {
4
            private readonly Solver _solver = new();
5
6
            public SolverBuilder SetFunction(IFunction function) {
8
                 _solver._function = function;
                 return this;
9
10
11
            public SolverBuilder SetMethod(ISearchMethod2D method) {
12
                 _solver._method = method;
13
                 return this;
14
15
16
            public SolverBuilder SetArea(Rectangle rectangle) {
17
                 _solver._rectangle = rectangle;
18
                 return this;
19
            }
20
            public static implicit operator Solver(SolverBuilder builder)
22
                 => builder._solver;
23
24
25
        private IFunction _function = default!;
26
        private ISearchMethod2D _method = default!;
27
        private Rectangle _rectangle = default!;
28
29
        public void Compute() {
            try {
31
                 ArgumentNullException.ThrowIfNull(_function,
32
                                                     $|"{nameof(_function)} cannot be null,
33
                                                      → set the function");
34
                  ArgumentNullException.ThrowIfNull(_rectangle,
35
                                                     nameof(_rectangle)} cannot be null,
36

    set the area");

37
                 ArgumentNullException.ThrowIfNull(_method,
38
                                                     $"{nameof(_method)} cannot be null, set
39

→ the method of minimization");

40
                 _method.Compute(_rectangle, _function);
41
            } catch (Exception ex) {
42
```

```
Console.WriteLine($"We had problem: {ex.Message}");

Console.WriteLine($"We had problem: {ex.Message}");

public static SolverBuilder CreateBuilder()

new();

new();
```

IMethods.cs

```
namespace oMethods_4;
1
    public interface IMinMethod2D {
3
        public Vector2D? Min { get; }
4
        public double Eps { get; init; }
5
6
        public void Compute(IFunction function, Vector2D initPoint);
7
   }
8
9
    public interface ISearchMethod2D {
10
        public Vector2D? Min { get; }
11
        public double Eps { get; init; }
12
13
        public void Compute(Rectangle rectangle, IFunction function);
14
   }
15
```

Function.cs

```
namespace oMethods_4;
1
2
    public interface IFunction {
3
        public double Value(Vector2D point);
4
5
6
    public class Function : IFunction {
7
        public double Value(Vector2D point)
8
            = ((2.0 / (1 + ((point.X - 5) * (point.X - 5)) + ((point.Y - 4) * (point.Y - 4))))
9
             \rightarrow - 4)))) +
                (1.0 / (1 + ((point.X - 2) * (point.X - 2)) + (point.Y * point.Y))) +
10
                (7.0 / (1 + ((point.X + 9) * (point.X + 9)) + ((point.Y + 6) * (point.Y +
11
                \rightarrow 6)))) +
               (2.0 / (1 + (point.X * point.X) + ((point.Y + 3) * (point.Y + 3)))) +
12
                (8.0 / (1 + ((point.X + 3) * (point.X + 3)) + ((point.Y - 7) * (point.Y - 3)))
13
                → 7)))) +
               (4.0 / (1 + ((point.X + 3) * (point.X + 3)) + ((point.Y - 3) * (point.Y - 3)))
                → 3))));
   }
15
```

SimpleRandomSearches.cs

```
namespace oMethods_4;

public class UndirectedSimpleRandomSearch : ISearchMethod2D {
    private Vector2D? _min;
    public Vector2D? Min => _min;
    public double Eps { get; init; }
    public double Probability { get; init; }

public UndirectedSimpleRandomSearch(double eps, double probability)
```

```
=> (Eps, Probability) = (eps, probability);
10
        public void Compute(Rectangle rectangle, IFunction function) {
12
             double functionMaxValue = function.Value(rectangle.LeftBottom);
13
             int tests = 1;
15
             double neighbourhood = Eps * Eps;
16
             double probabilityEps = neighbourhood / rectangle.Square;
17
18
             while (tests \langle Math.Log(1.0 - Probability) / Math.Log(1.0 - probabilityEps)) {
19
                 tests++;
20
21
22
             for (int itest = 0; itest < tests; itest++) {</pre>
23
                 double newX = new Random().NextDouble(rectangle.LeftBottom.X,
24
                 → rectangle.RightBottom.X);
                 double newY = new Random().NextDouble(rectangle.LeftBottom.Y,
                 → rectangle.LeftTop.Y);
26
                 double temp;
27
28
                 if ((temp = function.Value(new(newX, newY))) < functionMaxValue) {</pre>
29
                     _{min} = new(newX, newY);
30
                     functionMaxValue = temp;
31
                 }
             }
33
34
            Console.WriteLine($"N: {tests}");
35
            Console.WriteLine($"P: {Probability}");
36
            Console.WriteLine($"Extremum: {_min}");
37
            Console.WriteLine($\$\"f(extremum) = {-functionMaxValue}\");
38
39
40
41
    public class SimplexMethod : IMinMethod2D {
42
        private Vector2D? _min;
43
        public Vector2D? Min => _min;
44
        public int MaxIters { get; init; }
45
        public double Step { get; init; }
46
        public double Eps { get; init; }
48
        public SimplexMethod(int maxIters, double step, double eps) {
49
            MaxIters = maxIters;
50
            Step = step;
51
             Eps = eps;
52
        }
53
        public void Compute(IFunction function, Vector2D initPoint) {
55
            Vector2D[] points = new Vector2D[3];
56
57
             double d1 = Step * (Math.Sqrt(2 + 1) + 2 - 1) / (2 * Math.Sqrt(<math>2));
58
             double d2 = Step / (2 * Math.Sqrt(2) * (Math.Sqrt(2 + 1) - 1));
59
60
             points[0] = initPoint;
61
             points[1] = new(d1, d2);
62
             points[2] = new(d2, d1);
63
64
             for (int iter = 0; iter < MaxIters; iter++) {</pre>
65
                 Vector2D xG;
66
                 Vector2D xR;
67
```

```
Vector2D xC;
68
                  Vector2D xE;
70
                  double sumX = \emptyset;
71
                  double sumY = 0;
72
73
                  points = points.OrderBy(point => function.Value(point)).ToArray();
74
75
                  for (int i = 0; i < 2; i++) {
                       sumX += points[i].X;
77
                       sumY += points[i].Y;
78
79
80
                  xG = new(sumX / 2.0, sumY / 2.0);
82
                  if (Criteria(points, xG, function)) {
83
                       _min = points[0];
84
                       break;
85
86
87
88
                  xR = Reflection(points, xG);
89
                  double value = function.Value(xR);
90
91
                  if (function.Value(points[0]) <= value</pre>
92
                       && value < function.Value(points[1])) {
93
                       points[2] = xR;
94
                  } else if (value < function.Value(points[0])) {</pre>
95
                       xE = Expansion(xG, xR);
96
97
                       if (function.Value(xE) < value) {</pre>
98
                           points[2] = xE;
                       } else {
100
                           points[2] = xR;
101
102
                  } else if (value < function.Value(points[2])) {</pre>
103
                       xC = OutsideContraction(xG, xR);
104
105
                       if (function.Value(xC) < value) {</pre>
106
                           points[2] = xC;
108
                       } else {
                           Shrink(points);
109
110
                  } else {
                       xC = InsideContraction(points, xG);
112
113
                       if (function.Value(xC) < function.Value(points[2])) {</pre>
                            points[2] = xC;
115
                       } else {
116
                           Shrink(points);
117
118
119
                  }
              }
120
121
              _min = points[∅];
122
123
124
         private bool Criteria(Vector2D[] points, Vector2D xG, IFunction function) {
125
              double sum = 0.0;
126
              double valueXG = function.Value(xG);
127
```

```
128
             for (int i = 0; i < 3; i++) {
                  double valuePoint = function.Value(points[i]);
130
131
                 sum += (valuePoint - valueXG) * (valuePoint - valueXG);
132
133
134
             return Math.Sqrt(sum / (2 + 1)) < Eps;</pre>
135
         }
136
137
         private static Vector2D Reflection(Vector2D[] points, Vector2D xG)
138
             \Rightarrow new(xG.X - points[2].X + xG.X, xG.Y - points[2].Y + xG.Y);
139
140
         private static Vector2D Expansion(Vector2D xG, Vector2D xR)
141
             \Rightarrow new(xG.X + (2 * (xR.X - xG.X)), xG.Y + (2 * (xR.Y - xG.Y)));
142
143
         private static Vector2D OutsideContraction(Vector2D xG, Vector2D xR)
             \Rightarrow new(xG.X + (0.5 * (xR.X - xG.X)), xG.Y + (0.5 * (xR.Y - xG.Y)));
145
146
         private static Vector2D InsideContraction(Vector2D[] points, Vector2D xG)
147
              \Rightarrow new(xG.X + (0.5 * (points[2].X - xG.X)), xG.Y + (0.5 * (points[2].Y -
               \rightarrow xG.Y)));
149
         private static void Shrink(Vector2D[] points) {
             for (int i = 1; i <= 2; i++)
151
                  points[i] = points[0] + (0.5 * (points[i] - points[0]));
152
         }
153
155
    // public class DirectedSimpleRandomSearch : ISearchMethod2D { // алгоритм парной
156
        пробы
            private Vector2D? _min;
157
            public Vector2D? Min => _min;
158
            public double Eps { get; init; }
159
            public double Probability { get; init; }
160
161
            public DirectedSimpleRandomSearch(double eps, double probability)
162
                => (Eps, Probability) = (eps, probability);
163
164
            public void Compute(Rectangle rectangle, IFunction function) {
165
166
                double functionMaxValue = function.Value(rectangle.LeftBottom);
167
                int tests = 1;
168
                const double step = 1.0;
                double neighbourhood = Eps * Eps;
170
                double probabilityEps = neighbourhood / rectangle.Square;
171
172
                while (tests < Math.Log(1.0 - Probability) / Math.Log(1.0 -
173
        probabilityEps)) {
                     tests++;
174
175
176
                for (int i = 0; i < tests; i++) {
177
                     double newX = new Random().NextDouble(rectangle.LeftBottom.X,
178
        rectangle.RightBottom.X);
                     double newY = new Random().NextDouble(rectangle.LeftBottom.Y,
179
        rectangle.LeftTop.Y);
180
                     double temp;
181
182
```

```
if ((temp = function.Value(new(newX, newY))) > functionMaxValue) {
183
                         _{min} = new(newX, newY);
184
                         functionMaxValue = temp;
185
186
                         Vector2D unitVector = new(1.0 / (rectangle.RightBottom.X -
187
         rectangle.LeftBottom.X),
                                                               1.0 / (rectangle.LeftTop.Y -
188
        rectangle.LeftBottom.Y));
189
                         unitVector = unitVector.Normalize();
190
191
                         if (function.Value(_min.Value + unitVector) >
192
         function.Value(_min.Value - unitVector)) {
                             _min = new(_min.Value.X + (step * unitVector.X), _min.Value.Y
193
          (step * unitVector.Y));
                         } else {
194
                             _min = new(_min.Value.X - (step * unitVector.X), _min.Value.Y
195
           (step * unitVector.Y));
196
197
198
199
200
```

GlobalSearchAlgorithms.cs

```
namespace oMethods_4;
1
2
    public class AlgorithmA : ISearchMethod2D {
3
         private Vector2D? _min;
4
         public Vector2D? Min => _min;
5
         public double Eps { get; init; }
6
         public int Trying { get; init; }
8
         public AlgorithmA(double eps, int trying)
9
             => (Eps, Trying) = (eps, trying);
10
11
         public void Compute(Rectangle rectangle, IFunction function) {
             IMinMethod2D method = new SimplexMethod(1000, 1.0, Eps);
13
             _{\text{min}} = \text{new}(\emptyset.\emptyset, \emptyset.\emptyset);
14
15
             for (int i = 0; i < Trying; i++) {</pre>
                 double newX = new Random().NextDouble(rectangle.LeftBottom.X,
17
                  → rectangle.RightBottom.X);
                  double newY = new Random().NextDouble(rectangle.LeftBottom.Y,
18
                  → rectangle.LeftTop.Y);
19
                 method.Compute(function, new(newX, newY));
20
21
                  if (function.Value(method.Min!.Value) < function.Value(_min.Value)) {</pre>
22
                      _min = method.Min;
23
                  }
             }
25
26
             Console.WriteLine($"Extremum: {_min}");
27
             Console.WriteLine($\big|"f(extremum) = {-function.Value(_min!.Value)}");
28
         }
30
31
    public class AlgorithmB : ISearchMethod2D {
```

```
private Vector2D? _min;
33
        public Vector2D? Min => _min;
34
        public double Eps { get; init; }
35
        public int Trying { get; init; }
36
37
        public AlgorithmB(double eps, int trying)
38
             => (Eps, Trying) = (eps, trying);
39
40
        public void Compute(Rectangle rectangle, IFunction function) {
             IMinMethod2D simplexMethod = new SimplexMethod(1000, 1.0, Eps);
42
             Vector2D point;
43
44
             double temp;
             _{\text{min}} = \text{new}(\emptyset.\emptyset, \emptyset.\emptyset);
47
48
             double functionValue = function.Value(_min!.Value);
50
             for (int i = ∅; i < Trying; i++) {</pre>
51
                 int index = 0;
52
                 simplexMethod.Compute(function, _min.Value);
53
54
                 if ((temp = function.Value(simplexMethod.Min!.Value)) < functionValue) {</pre>
55
                      _min = simplexMethod.Min;
56
                      functionValue = temp;
57
                 }
58
59
                 do {
60
                      index++;
61
                      double newX = new Random().NextDouble(rectangle.LeftBottom.X,
62
                      → rectangle.RightBottom.X);
                      double newY = new Random().NextDouble(rectangle.LeftBottom.Y,
63
                      → rectangle.LeftTop.Y);
                      point = new(newX, newY);
64
                  } while ((temp = function.Value(point)) >= functionValue && index <</pre>
65
                  → Trying);
                 if (temp < functionValue) {</pre>
67
                      _min = point;
68
                      functionValue = temp;
                 }
70
             }
71
72
             Console.WriteLine($"Extremum: {_min}");
73
             Console.WriteLine($\"f(extremum) = {-function.Value(_min!.Value)}\");
74
        }
75
76
77
    public class AlgorithmC : ISearchMethod2D {
78
        private Vector2D? _min;
79
        public Vector2D? Min => _min;
80
81
        public double Eps { get; init; }
82
        public int Trying { get; init; }
83
        public AlgorithmC(double eps, int trying)
84
             => (Eps, Trying) = (eps, trying);
85
86
        public void Compute(Rectangle rectangle, IFunction function) {
87
             IMinMethod2D simplexMethod = new SimplexMethod(1000, 1.0, Eps);
88
89
```

```
double newX = new Random().NextDouble(rectangle.LeftBottom.X,
90
             → rectangle.RightBottom.X);
            double newY = new Random().NextDouble(rectangle.LeftBottom.Y,
91
             → rectangle.LeftTop.Y);
92
            double temp;
93
            double functionValueX2;
94
            Vector2D x1, x2;
            Vector2D initPoint = new(newX, newY);
97
            _{min} = new(newX, newY);
98
99
            double functionValueX1 = function.Value(_min.Value);
100
            for (int i = 0; i < Trying; i++) {
102
                double step = 1.0;
103
                simplexMethod.Compute(function, initPoint);
105
                x1 = simplexMethod.Min!.Value;
106
107
                if ((temp = function.Value(simplexMethod.Min!.Value)) < functionValueX1) {</pre>
108
                    _min = simplexMethod.Min;
109
                    functionValueX1 = temp;
110
                }
111
                newX = new Random().NextDouble(rectangle.LeftBottom.X,
113
                 → rectangle.RightBottom.X);
                newY = new Random().NextDouble(rectangle.LeftBottom.Y,
                 → rectangle.LeftTop.Y);
115
                Vector2D randomVector = new(newX, newY);
116
                Vector2D direction = simplexMethod.Min!.Value + (step *
117
                 double functionValueDirection = function.Value(direction);
118
119
                while (functionValueDirection >= function.Value(simplexMethod.Min.Value)
120

→ && rectangle.Inside(direction)) {
                    direction = simplexMethod.Min!.Value + (step *
121
                     functionValueDirection = function.Value(direction);
                    step++;
123
                 }
124
125
                simplexMethod.Compute(function, direction);
126
                 functionValueX2 = function.Value(simplexMethod.Min.Value);
127
128
                x2 = simplexMethod.Min.Value;
130
                if (functionValueX2 < functionValueX1) {</pre>
131
                    _min = simplexMethod.Min;
132
133
134
                if (functionValueX2 < functionValueX1) {</pre>
135
                    initPoint = x2;
136
                 } else {
                    initPoint = x1;
138
                 }
139
            }
140
141
            Console.WriteLine($"Extremum: {_min}");
142
```

RandomExtensions.cs

Rectangle.cs

```
namespace oMethods_4;
1
    public readonly record struct Rectangle {
3
        [JsonProperty("Left bottom")]
4
        public Vector2D LeftBottom { get; init; }
5
6
        [JsonProperty("Right top")]
        public Vector2D RightTop { get; init; }
8
q
        [JsonIgnore]
10
        public Vector2D RightBottom { get; init; }
11
12
        [JsonIgnore]
13
        public Vector2D LeftTop { get; init; }
15
        [JsonIgnore]
16
        public double Square { get; init; }
17
18
        [JsonConstructor]
19
        public Rectangle(Vector2D leftBottom, Vector2D rightTop) {
20
            LeftBottom = leftBottom;
21
            RightTop = rightTop;
22
            RightBottom = new(rightTop.X, leftBottom.Y);
23
            LeftTop = new(leftBottom.X, rightTop.Y);
24
            Square = LeftTop.Distance(rightTop) * leftBottom.Distance(RightBottom);
25
        }
26
27
        public bool Inside(Vector2D point)
28
            => point.X >= LeftBottom.X && point.X <= RightBottom.X && point.Y >=
29
             → LeftBottom.Y && point.Y <= LeftTop.Y;</pre>
30
        public static Rectangle? ReadJson(string jsonPath) {
31
            try {
                 if (!File.Exists(jsonPath))
33
                     throw new Exception("File does not exist");
34
35
36
                 var sr = new StreamReader(jsonPath);
37
                 using (sr) {
                     return JsonConvert.DeserializeObject<Rectangle>(sr.ReadToEnd());
38
39
            } catch (Exception ex) {
40
                 Console.WriteLine($\big|"We had problem: \{ex.Message\}");
41
                 return null;
42
```

Vector2D.cs

```
namespace oMethods_4;
2
    public readonly record struct Vector2D(double X, double Y) {
3
        [JsonIgnore]
4
        public double Norm => Math.Sqrt((X * X) + (Y * Y));
5
6
        public static Vector2D operator +(Vector2D a, Vector2D b)
        \Rightarrow new(a.X + b.X, a.Y + b.Y);
8
9
        public static Vector2D operator -(Vector2D a, Vector2D b)
10
             \Rightarrow new(a.X - b.X, a.Y - b.Y);
11
12
        public static Vector2D operator /(Vector2D a, double v)
13
             => new(a.X / v, a.Y / v);
14
15
        public static Vector2D operator *(Vector2D a, double v)
16
             \Rightarrow new(a.X * v, a.Y * v);
17
18
        public static Vector2D operator *(double v, Vector2D a)
19
             => new(v * a.X, v * a.Y);
21
        public static double Distance(Vector2D a, Vector2D b)
22
             \Rightarrow (a - b).Norm;
23
24
        public double Distance(Vector2D vector)
25
             => Distance(this, vector);
26
        public Vector2D Normalize() => this / Norm;
28
29
        public static Vector2D Zero
30
             ⇒ new(∅.∅, ∅.∅);
31
32
        public override string ToString()
33
             => $\"\{X\}\"\;
34
35
```

max.py

```
from pylab import figure, cm
1
   import matplotlib.pyplot as plt
3
   import numpy as np
4
5
6
   def f(x1,x2):
7
       return ((2.0 / (1 + ((x1 - 5) * (x1 - 5)) + ((x2 - 4) * (x2 - 4)))) +
8
               (1.0 / (1 + ((x1 - 2) * (x1 - 2)) + (x2 * x2))) +
               (7.0 / (1 + ((x1 + 9) * (x1 + 9)) + ((x2 + 6) * (x2 + 6)))) +
               (2.0 / (1 + (x1 * x1) + ((x2 + 3) * (x2 + 3)))) +
11
               (8.0 / (1 + ((x1 + 3) * (x1 + 3)) + ((x2 - 7) * (x2 - 7)))) +
12
               (4.0 / (1 + ((x1 + 3) * (x1 + 3)) + ((x2 - 3) * (x2 - 3)))))
13
14
15
```

```
x1_min = -10.0
16
   x1_max = 10.0
17
    x2_min = -10.0
18
   x2_max = 10.0
19
20
    x1, x2 = np.meshgrid(np.arange(x1_min,x1_max, 0.1), np.arange(x2_min,x2_max, 0.1))
21
22
   y = f(x1, x2)
23
24
    plt.imshow(y,extent=[x1_min,x1_max,x2_min,x2_max], cmap=cm.jet, origin=[]lower[])
25
26
    plt.colorbar()
27
28
29
   plt.show()
30
```