99 (15 на отл). Решетки в пространствах. Базис и определитель. Многомерная теорема Минковского (для произвольной решетки).

Опр Пусть $(e_1, ..., e_k)$ — набор линейно независимых векторов в \mathbb{R}^n . Тогда дискретная абелева группа в \mathbb{R}^n , порождённая $\{e_i\}$, называется решёткой, а набор $(e_1, ..., e_k)$ называется базисом решётки. Иными словами, решётка есть множество $\Lambda = \{a_1e_1 + ... + a_ke_k\}, a_i \in \mathbb{Z}$ Число $\det \Lambda = |\det(e_1^T, ..., e_n^T)|$ (объём одной "ячейки на которую разбивает пространство решётка (эта ячейка называется фундаментальной областью) - определитель решётки.

Утверждение. Определитель решётки не зависит от базиса в \mathbb{R}^n . Это результат свойств определителя.

Многомерная теорема Минковского (для произвольной решетки). Пусть $\Omega \subset \mathbb{R}^n$ - выпуклое ($\forall x,y \in \Omega$ отрезок ху целиком лежит в Ω), центрально-симметричное (симметрична относительно начала координат, т.к. можно выбрать систему координат, в которой центр - начало координат), измеримо, $\operatorname{Vol}\Omega > 2^n \det \Lambda$. Тогда $\Omega \cap \Lambda \setminus \{0\} \neq \emptyset$.

Возьмём некоторый р: рассмотрим пересечение Ω и решётки $\frac{1}{p}\Lambda$ и обозначим N_p мощность пересечения. Поскольку Ω - измеримое, то его объём можно сколь угодно близко приблитзить значением $N_p \det(\frac{1}{p}\Lambda)$, т.е.:

$$\frac{N_p}{p^n} \det \Lambda \to_{p \to \infty} Vol\Omega > 2^n \det \Lambda$$

Более того, для достаточно большого р выполнено $N_p > (2p)^n$. рассмотрим две произвольные точки из этого пересечения: $a = \frac{a_1}{p}e_1 + \dots + \frac{a_n}{p}e_n$ и $b = \frac{b_1}{p}e_1 + \dots + \frac{b_n}{p}e_n$. Поскольку $N_p > (2p)^n$, то по принципу Дирихле можно выбрать такие различные точки, что $a_i = b_i (mod 2p)$. Тогда в силу выпуклости и симметричности Ω точка $\frac{a-b}{2}$ лежит в $\Omega \cap \Lambda$ и не совпадает с началом координат в силу различности а и b.