Hultivariate random vectors

$$X = (X_1, \dots, X_p)'$$
 $X_i \cap \alpha r. V. \text{ on } (\Omega, \mathcal{F}_t, \mathcal{P}) \text{ say}$
 $\mathcal{X} = (X_1, \dots, X_p)'$
 $\mathcal{X} = (X_1, \dots, X_p)'$

Dist for joint dist for X is a random vector

 $F_{X}(x_{1},\ldots,x_{p}) = P(\omega: X_{1}(\omega) \leq x_{1}, X_{2}(\omega) \leq x_{2},\ldots X_{p}(\omega) \leq x_{p})$ $= P(X_{1} \leq x_{1}, X_{2} \leq x_{2},\ldots,X_{p} \leq x_{p})$

Note that Fx (.) as defined above satisfies

(i) $\lim_{\substack{m \in X \\ m \neq x}} F_X(\underline{x}) = 1$

(ii) $\lim_{x \to -\alpha} F_{x(x)} = 0$ for i = 1, -., b

(iii) $F_{X}(x)$ is non decreasing in each argument (iv). $F_{X}(x)$ is right continuous in each argument

Remark: $\frac{1}{p=2} \lim_{X_2 \to a^*} F_X(x_1, x_2) = F_X(x_1, a^*) = F_X(x_1)$ marginal dist" f" f f

In general for any K=1, -- 11.

lim F (x1, -, xb) = F (x1, .xk-1, xk+1, -.xb)

xk >d x (x1, .xk-1, xk+1, ..xb)

marginal joint 1-f. } (X1, -. X K-1, X K+1) -. X b)

Remark:

P(X & B) can be expressed through Joint d.f.

p-dimensional semiclosed rectangle of the form

(a, b,] x (a2, b2] x - · · x (ax, bx)

a; < b; for i=1,...,k

Consider p=2, to have a feel

a, <b, ; a2 < b2

$$P(a, \langle X, \leq b_1, a_2 \langle X_2 \leq b_2)$$

$$= P(x_1 \le b_1, \dot{x}_2 \le b_2)$$

$$=F_{x_1,x_2}(b_1,b_2)-F_{x_1,x_2}(a_1,b_2)-F_{x_1,x_2}(b_1,a_2)$$

Remark: The four conditions that Fx(.) satisfies (i)-(iv) are

not n. s. c. for a f' to be d.f. of rondom vector.

We additionally need condition (efor \$=2) that

$$P(a_1 < X_1 \leq b_1, a_2 < X_2 \leq b_2) > 0 + a_1 < b_1$$

Discrete random vector

Ad': A random vector $X = (X_1, ..., X_p)'$ is said to be discrete

If there exist a countable set $E \subset \mathbb{R}^p \supset P(X \in E) = 1$ (finite or countably infinite)

i.e. $P_X(X) = P(X_1 = X_1, \dots, X_p = X_p)$.

Consider a birariate setup b=2 case

(i) marginal p.m.t. of X; can be obtained by summing over possible values of the other variable

e.g $P(X_1=x_1) = \sum_{y} P(X_1=x_1, X_2=y)$; i=1,2,--Sly $P(X_2=y_1) = \sum_{x} P(X_1=x_1, X_2=y_2)$; j=1,2,--

(ii) Conditional dist of X, given X2 or X2 given X, conditional p.m.t of X2 given X,

$$\frac{|Y|}{|X_2|} = \frac{P(X=Y, X_1=x_i)}{P(X_1=X_i)}$$

Sty $P_{X_1|X_2=y_i}$ = $\frac{P(X_1=X_1,X_2=y_i)}{P(X_1=y_i)}$

For a p-dimensional random vector $X = (X_1, -.. \times p)$, We can obtain p non 1-variate marginals for $X_1, X_2, -.. \times p$ (p) 2-variate joint marginals for (X_i, X_i)

and so on

One can obtain conditional p.m.t. of (Xi, Xiz, ..., Xir)

Given the remaining variables on or any subset of

the remaining variables.

Independence: Discrete random variables are XII. Xp

are independent iff the joint p.m. f can be expressed

as

 $P(X_1=x_1,...,X_p=x_p) = \frac{1}{11} P(X_1=x_1)$ $(x_1,...,x_p) \in E$

Note that in such a case conditional p.m.f. will be identical to unconditional p.m.f. s.

Example à a multivariate discrete dist

Consider a random experiment with 3 mutually exclusive and exhaustive outcomes, $A_{1,1}A_{2} \& A_{3}$ with probabilities $\theta_{1,1}, \theta_{2,1}, \theta_{3,2}$, respectively. Repeat the trials in times along the fine.

Alefine

X,: number of times A, occurs out of n trials

X2: ---
A2 occurs out of n trials

X3: ---
A3 occurs out of n trials

Let (x_1, x_2, x_3) denote the observed count in ntrials $x_i \ge 0$, $x_i \le n$ $\forall i=1,2,3$ & $\sum_{i=1}^3 x_i = n$ $E = \left\{ (x_1, x_2, x_3) : 0 \le x_i \le n , \sum_{i=1}^3 x_i = n \right\} - \text{finite number of points}$

It p.m.f.

$$P(X_1=x_1, X_2=x_2, X_3=x_3) = \frac{n!}{x_1! x_2! x_3!} P_1^{x_1} P_2^{x_2} P_3^{x_3};$$

Note that $x_3=n-x_1-x_2$ and $\sum x_i=n$

 $P(X_1 = X_1, X_2 = X_2) = \frac{n!}{x_1! x_2! (n-x_1-x_2)!} P(X_1 = X_1, X_2 = X_2)$

 $x_1, x_2 \ge 0$ $x_1 + x_2 \le n$

 (X_1, X_2) in said to follow a trinomial distⁿ (n, θ_1, θ_2) Marginal distⁿs:

Marginal p.m. f. of X1: n-x1

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2} + \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2} + \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2} + \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2} + \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2} + \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2} + \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2} + \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2} + \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2} + \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2} + \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2} + \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2} + \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2} + \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2} + \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1} - x_{1}} \left(1 - \theta^{1} - \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^{1} - \theta^{2}\right)_{x_{1} - x_{1}}$$

$$= \begin{pmatrix} x^{1} \\ y \end{pmatrix} \theta_{x_{1}}^{1} \left(1 - \theta^$$

i.e. X, ~ Bin (n, 0,) Sly X, ~ Bin (n, 0,)