Exercise 4.1 Let $(X, \|\cdot\|_X)$ be a normed space an let $U, V \subset X$ be subspaces. Prove the following.

- (i) If U is finite dimensional and V closed, then U + V is a closed subspace of X.
- (ii) If V is closed with finite codimension, i. e. $\dim(X/V) < \infty$, then U + V is closed.

Remark. The assumptions on the dimension and codimension above are crucial for the conclusions to hold; see Exercise 2.4.

Exercise 4.2 Let $X = C^0([0,1])$ endowed with the norm $\|\cdot\|_X = \|\cdot\|_{C^0([0,1])}$ and consider

$$U = C_0^0([0,1]) := \{ f \in C^0([0,1]) \mid f(0) = 0 = f(1) \}.$$

- (i) Show that U is a closed subspace of X
- (ii) Compute the dimension of the quotient space X/U and find a basis for X/U.

Exercise 4.3 A subspace $U \subset X$ of a Banach space $(X, \|\cdot\|_X)$ is called *topologically complemented* if there is a subspace $V \subset X$ such that the linear map I given by

$$I: (U \times V, \|\cdot\|_{U \times V}) \to (X, \|\cdot\|_X), \qquad \|(u, v)\|_{U \times V} := \|u\|_X + \|v\|_X,$$
$$(u, v) \mapsto u + v$$

is a continuous isomorphism of normed spaces with continuous inverse. In this case V is said to be a topological complement of U.

- (i) Prove that $U \subset X$ is topologically complemented if and only if there exists a continuous linear map $P: X \to X$ with $P \circ P = P$ and image P(X) = U.
- (ii) Show that a topologically complemented subspace must be closed.

Remarks. \bullet Clearly, if V is a topological complement of U, then U is a topological complement of V.

• If X is not isomorphic to a Hilbert space, then X has closed subspaces which are not topologically complemented [Lindenstrauss & Tzafriri. On the complemented subspaces problem. (1971)]. An example is $c_0 \subset \ell^{\infty}$ but this is not easy to prove.

Exercise 4.4 Let $(X||\cdot||_X)$, $(Y,||\cdot||_Y)$ be Banach spaces and let $T \in L(X,Y)$ be a surjective, continuous linear map. Prove the equivalence of the following statements:

Last modified: 9 October 2019

- (i) The subspace $\ker T$ is topologically complemented.
- (ii) There exists a continuous linear map $S \in L(Y, X)$ so that $T \circ S = 1_Y$. S is called *section* of T.

Exercise 4.5 Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be normed spaces. We consider the space $(X \times Y, \|\cdot\|_{X \times Y})$, where $\|(x,y)\|_{X \times Y} = \|x\|_X + \|y\|_Y$ and a bilinear map $B \colon X \times Y \to Z$.

(i) Show that B is continuous if

$$\exists C > 0 \quad \forall (x, y) \in X \times Y : \quad ||B(x, y)||_Z \le C||x||_X ||y||_Y.$$
 (†)

(ii) Assume that $(X, \|\cdot\|_X)$ is Banach. Assume further that the maps

$$\begin{array}{ccc} X \to Z & Y \to Z \\ x \mapsto B(x,y') & y \mapsto B(x',y) \end{array}$$

are continuous for every $x' \in X$ and $y' \in Y$. Prove that then B is continuous.

Hints to Exercises.

- **4.1** Is the canonical quotient map $\pi: X \to X/V$ continuous? What is $\pi^{-1}(\pi(U))$?
- **4.3** For (i), consider for one implication the projection map $P_1(u, v) = (u, 0)$, and for the other implication the identity 1 = P + (1 P), where 1 denotes the identity map on X.
- **4.4** For (i) \Rightarrow (ii), let V be the topological complement of ker T and consider the map $T|_V$. For (ii) \Rightarrow (i), use Exercise 4.3.
- **4.5** Apply the Theorem of Banach-Steinhaus to a suitable map. Do not forget that the theorem requires completeness of the domain.