COP 3710:

Database Management Systems

Basic SQL (PART ONE)

FAMU CIS Department Ms. Chatmon

Relational Database Management System (RDBMS) An RDBMS is the software program used to create the database and it allows you to enter, manipulate, and retrieve data

Sample Database: Case Study

- Business Rules
- E-R Diagram Level One
- E-R Diagram Level Two
- Tables w Sample Data

Case Study: Business Rules

- Each PROJECT is assigned to one or more EMPLOYEE(s), or none at all.
- Each EMPLOYEE is assigned to one or more PROJECT(s), or none at all.

Case Study: Relations

- PROJECT (*Proj_Id*, Proj_Name, Proj_Dept, Proj_MaxHours)
- **EMPLOYEE** (*Emp_Num*, Emp_Name, Emp_Phone, Emp_Dept)
- ASSIGNMENT (<u>Assign Empnum</u>, <u>Assign Projld</u>, Assign_HoursWk)

Tables (Relations) Case Study: w/ sample data

1000	Q3 Portfolio Analysis	Finance	75.0
1200	Q3 Tax Prep	Accounting	145.0
1400	Q4 Product Plan	Marketing	138.0
1500	Q4 Portfolio Analysis	Finance	110.0

Table Name: EMPLOYEE				
Emp_Num	Emp_Name	Emp_Phone	Emp_Dept	
100	Mary Jacobs	285-8879	Accounting	
200	Kenji Numoto	287-0098	Marketing	
300	Heather Jones	287-9981	Finance	
400	Rosalie Jackson	285-1273	Accounting	
500	James Nestor		Info Systems	
600	Richard Wu	287-0123	Info Systems	
700	Kim Sung	287-3222	Marketing	

Table Name: ASSIGNMENT

Assign_ProjID	Assign_EmpNum	Assign_HoursWk
1000	100	17.50
1000	300	12.50
1000	400	8.00
1000	500	20.25
1200	100	45.75
1200	400	70.50
1200	600	40.50
1400	200	75.00
1400	700	20.25
1400	500	25.25

SQL for Relational Query

- Reading Specified Columns from single Table
 Reading Specified Rows from a single Table
- Reading Specified Columns and Specified Rows from a single Table
- Ranges, Wildcards, and Nulls in Where Clauses
- Sorting the Results
- SQL Built-In Functions

SELECT Statement Syntax

- SELECT statements are used to retrieve data from the database
- Syntax gives the basic structure, or rules, for a command

[column(s) names] [table(s) names] [condition statement(s)];

Reading Specified Columns from single Table (Example 1)

 SQL statement below will guery (read) three of the four columns of the PROJECT table:

Query Statement:
The project name, project department, and maximum hours worked on the project.

SQL Statement: SELECT_PROJ_NAME, PROJ_DEPT, PROJ_MAXHOURS FROM PROJECT; "Noti in sair

Q4 Product Plan

Output: Proj_Name Proj_Dept Proj_MaxHours Q3 Portfolio Analysis

Marketing 138.0 Finance 110.0

**Notice output is in same order as columns in Select clause.

Reading Specified Columns from single Table (Example 2 & 3) Query Statement: All the departments who are conducting projects. Query Statement: All the different departments who are conducting projects. SQL Statement: SELECT Distinct Proj_Dept FROM PROJECT; SELECT Proj_Dept FROM PROJECT; Output: Proj_Dept Proj_Dept

Distinct: causes DBMS to check for and eliminates duplicate rows.

Reading Specified Rows from single Table (Example 1) SQL statements below are used to select all the columns for certain rows. Query Statement: The project id, name, department, and maximum hours of those projects sponsored by the finance department. SQL Statement: SELECT PROJ_ID, PROJ_NAME, PROJ_DEPT, PROJ_MAXHOURS FROM PROJECT WHERE PROJ_DEPT = 'Finance'; SELECT FROM PROJECT WHERE PROJ_DEPT = 'Finance'; Output: Proj_ID Proj_Name Proj_Dept Proj_MaxHours | Proj_Dept Proj_MaxHours | Proj_ID | Proj_MaxHours | Proj_Dept | Proj_D

Reading Specified Rows from single Table (Example 2) Query Statement: All project information relating to those projects sponsored by the finance department where the maximum hours worked on the project exceed 100 hours. SOL Statement: SELECT * FROM PROJECT WHERE PROJ_DEPT = 'Finance' AND PROJ_MAXHOURS > 100; Output: Proj_IO Proj_Name Proj_Dept Proj_MaxHours 1500 Q4 Portfolio Analysis Finance 110.0

Reading Specified Columns and Specified Rows from a single Table SQL statements below are used to select some columns and some rows from a table. Query Statement: The name and department of employees in the Accounting department. SQL Statement: SELECT EMP_NAME, EMP_DEPT FROM EMPLOYEE WHERE EMP_DEPT = 'Accounting'; Output: | Emp_Name | Emp_Dept | Many Jacobs | Accounting | Rosalie Jackson | Rosalie Jackson | Accounting | Rosalie Jackson | Rosalie Jackson | Accounting | Rosalie Jackson | Rosalie J

Reading Specified Columns and Specified Rows from a single Table

A column could have one of a set of values in a list, which can be defined using the **IN** operator.

The name, phone, and department of employees in either the Accounting, Finance, or Marketing department.

SQL Statement:

SELECT EMP_NAME, EMP_PHONE, EMP_DEPT FROM EMPLOYEE
WHERE EMP_DEPT IN ('Accounting', 'Finance', 'Marketing');

Output:

Emp_Name	Emp_Phone	Emp_Dept
Mary Jacobs	285-8879	Accounting
Kenji Numoto	287-0098	Marketing
Heather Jones	287-9981	Finance
Rosalie Jackson	285-1273	Accounting
Kim Suna	207 2222	Marketing

Reading Specified Columns and Specified Rows from a single Table

Query Statement:

The name, phone, and department of employees $\underline{\text{not in}}$ the Accounting, Finance, or Marketing departments.

SQL Statement:

SELECT EMP_NAME, EMP_PHONE, EMP_DEPT
FROM EMPLOYEE
WHERE EMP_DEPT NOT IN ('Accounting', 'Finance', 'Marketing');

Output:

Emp_Name	Emp_Phone	Emp_Dept	
James Nestor		Info Systems	
Richard Wu	287-0123	Info Systems	

Ranges, Wildcards, and Nulls in Where Clauses

WHERE clause can also refer to <u>ranges of values</u>.

Query Statement:

The employee names and departments of those employees who have employee numbers ranging from 200 to 500.

SQL Statement (version #1):
SELECT EMP_NAME, EMP_DEPT
FROM EMPLOYEE
WHERE EMP_NUM BETWEEN 200 AND 500;

Output:

Emp_Name Emp_Dept Kenji Numoto Marketing Heather Jones Finance Kenji Numoto Heather Jones

 SQL Statement (version #2):

 SELECT
 EMP_NAME, EMP_DEPT

 FROM
 EMPLOYEE

 WHERE
 EMP_NUM => 200

 AND
 EMP_NUM = < 500;</td>

Ranges, Wildcards, and Nulls in Where Clauses
 The WHERE clause could include the keyword IS NULL to search for null values.
Query Statement: The names and departments of all employees who don't have a phone number.
SQL Statement: SELECT EMP_NAME, EMP_DEPT FROM EMPLOYEE WHERE EMP_PHONE IS NULL;
Output: James Nestor Info Systems

Sorting the Results (Example #1)

- The order of rows in the results of a SELECT statement is arbitrary.
- To sort the rows in the result, use the **ORDER BY** phrase.
 - By default, SQL will sort in ascending order
 - Keywords ASC and DESC used to specify ascending & descending

The name and department of all employees, where the employees are sorted in descending order by the department.

SQL Statement:

SELECT FROM ORDER BY

EMP_NAME, EMP_DEPT EMPLOYEE EMP_DEPT DESC;

***ORDER BY: the attribute in which you order by must be also be included in the SELECT clause.**

	Emp_Name	Emp_Dept	
	Kenji Numoto	Marketing	
	Kim Sung	Marketing	
	Richard Wu	Info Systems	
	James Nestor	Info Systems	
	Heather Jones	Finance	
Ī	Mary Jacobs	Accounting	
	Possilio Inckson	Accounting	

Sorting the Results (Example #2)

Query Statement:

The name and department of all employees, where the employees are sorted in descending order by the department then alphabetical **order by the** employee

SQL Statement:

EMP_NAME, EMP_DEPT
EMPLOYEE
EMP_DEPT DESC, EMP_NAME ASC;

Output:

Emp_Name	Emp_Dept	
Kenji Numoto	Marketing	
Kim Sung	Marketing	
James Nestor	Info Systems	
Richard Wu	Info Systems	
Heather Jones	Finance	
Mary Jacobs	Accounting	
Rosalie Jackson	Accounting	

ORDER BY: the attribute in which you order by must be also be included in the SELECT clause.

SQL Built-In Functions: COUNT, SUM, AVG, MAX, MIN

- (5) built-in functions operate on the result of SELECT statement
- FACTS:
 - □ **COUNT** works regardless of column data type
 - □ SUM, AVG, MAX, MIN operate only on integer or numeric columns

SQL Built-In Functions and Grouping:

- Built-in functions can be applied to groups of rows of data.
 - GROUP BY phrase is used to tell the DBMS to sort the table by the named column and then to apply the built-in function to group of rows having the same value of the name column.
 - Built-in function & grouping column can appear in SELECT statement together (**this is the only time**)
 - □ Key word for GROUP BY: "each"

Reading Specified Columns from single Table Reading Specified Rows from a single Table Reading Specified Columns from single Table and Specified Rows from a single Table

Ranges, Wildcards, and Nulls in Where Clauses

Sorting the ResultsSQL Built-In Functions

Summary (PART ONE)