Assessing the Accuracy of Density Functional Approximations for Predicting Hydrolysis Reaction Kinetics

Alexander Rizzolo Epstein, $^{\dagger,\perp}$ Evan Walter Clark Spotte-Smith, $^{\dagger,\ddagger,\perp}$ Maxwell C. Venetos, †,‡ Oxana Andriuc, ¶,§ and Kristin Aslaug Persson $^{*,\dagger,\parallel}$

†Department of Materials Science and Engineering, University of California, Berkeley

‡Materials Science Division, Lawrence Berkeley National Laboratory

¶Department of Chemistry, University of California, Berkeley

§Chemical Sciences Division, Lawrence Berkeley National Laboratory

∥Molecular Foundry, Lawrence Berkeley National Laboratory

⊥These authors contributed equally to this work

E-mail: kapersson@lbl.gov

Abstract

Hydrolysis reactions are ubiquitous in biological, environmental, and industrial chemistry. Density functional theory (DFT) is commonly employed to study the kinetics and reaction mechanisms of hydrolysis processes. Here, we present a new dataset, Barrier Heights for HydrOlysis - 36 (BH2O-36), to enable the design of density functional approximations (DFA) and the rational selection of DFAs for applications in aqueous chemistry. BH2O-36 consists of 36 diverse organic and inorganic forward and reverse hydrolysis reactions with reference energy barriers ΔE^{\ddagger} calculated at the CCSD(T)/CBS level. Using BH2O-36, we evaluate 63 DFAs. In terms

of mean absolute error (MAE) and mean relative absolute error (MRAE), ω B97M-V is the best-performing DFA tested, while MN12-L-D3(BJ) is the best-performing pure (non-hybrid) DFA. Broadly, we find that range-separated hybrid DFAs are necessary to approach chemical accuracy (0.043 eV). Although the best-performing DFAs include a dispersion correction to account for long-range interactions, we find that dispersion corrections do not generally improve MAE or MRAE for this dataset.

Introduction

Hydrolysis reactions are among the most important and widely studied reaction classes in chemistry. In addition to its relevance in biological and environmental processes, ^{1–5} hydrolysis finds a myriad of technical applications, including in pharmaceuticals, ^{6–8} total organic synthesis, waste treatment, ⁹ and the deconstruction of polymers. ^{10,11} Due to the ubiquity and technological importance of hydrolysis, many experimental and theoretical studies have been undertaken to understand the fundamental reaction mechanism involved, including the elementary reaction steps, reaction energy barriers (from which rate coefficients can be calculated), and the effect of solvent. ^{12–20}

First-principles quantum chemical calculations are a powerful tool for the prediction and analysis of reaction mechanisms. This frequently involves performing calculations to predict the geometries and subsequently the energies of reactants, products, intermediates, and transition-states (TS) along the reaction pathway. In particular, density functional theory (DFT) is widely used for studies of small-molecule hydrolysis ^{21–46} due to its reasonably high accuracy and low cost compared to more advanced wavefunction methods. A particularly popular choice of DFA in such studies is B3LYP. ^{21–38} Beyond DFT, common methods employed in computational studies of hydrolysis reactions include Hartree-Fock (HF) ^{23,25,31,35,45} and second order Møller-Plesset perturbation theory (MP2), ^{23–25,30,32,47,48} with less frequent use of higher-order Møller-Plesset perturbation theory, ^{24,30,49} coupled-cluster, ^{25,47} and configuration-interaction methods. ^{30,31,48}

While numerous benchmark studies have been conducted to evaluate the performance of various exchange-correlation density functional approximations (DFAs) for the prediction of reaction thermochemistry, 50-58 there exist relatively few such benchmark studies focused on reaction kinetics, 59-65 and even fewer include hydrolysis reactions. In one study of hydrolysis, Ribeiro et al. ⁶⁶ assessed the performance of 52 DFAs, Hartree-Fock, and 4 post-Hartree-Fock methods (MP2, MP3, MP4, CCSD) against the coupled-cluster singles, doubles and quasiperturbative triplets wavefunction method extrapolated to the complete basis set limit (CCSD(T)/CBS) in predicting the reaction and activation energies involved in the hydrolysis of dimethylphosphate as a model system for phosphodiester bonds. They performed calculations both in vacuum and with an implicit solvent and identified the same two global hybrid meta-generalized gradient approximation (hybrid meta-GGA) DFAs (MPWB1K and MPW1B95) to have the lowest mean absolute error (MAE) values (<1 kcal/mol) both overall and with respect to activation energies exclusively. In addition, Pereira et al. 67 benchmarked 40 DFAs, as well as the self-consistent-charge density-functional tight-binding method (SCC-DFTB) and 4 semiempirical methods (AM1, PM3, PM6, PDDG) against CCSD(T)/CBS//MP2/aug-cc-pVTZ in the study of the hydrolysis of glycosidic bonds. Using a 22-atom model system, they compared the performance of the methods under investigation both in geometry optimizations (bond lengths and angles) and electronic energy calculations (barrier heights and reaction energies). Their findings show that the inclusion of HF exchange generally correlates with an increase in accuracy, whereas the effect of adding D3 dispersion corrections on the accuracy of barrier heights can be either positive or negative. While these studies are significant contributions to the use of DFAs for studying hydrolysis, the class of reagents that can undergo hydrolysis reactions is extensive, and thus additional work is needed to assess the performance of DFAs for a broader range of hydrolysis applications.

Here we present a set of 36 forward and reverse hydrolysis reactions that we call BH2O-36 (Barrier Heights of HydrOlysis - 36). The reactions in BH2O-36 are diverse, including

single-step S_N2 and multi-step addition-elimination mechanisms; water-assisted and non-water-assisted reactions; acidic and basic hydrolysis; as well as a range of functional groups. We use BH2O-36 to benchmark the performance of 63 DFT methods in four different families – the generalized gradient approximation (GGA), meta-generalized gradient approximation (meta-GGA), hybrid GGA, and hybrid meta-GGA levels of theory. We assess the ability of DFAs to predict the electronic energy barriers of hydrolysis reactions at fixed geometries, referencing to energy values calculated using CCSD(T)/CBS. We also consider predictions of hydrolysis reaction energies. Based on these results, we make specific recommendations of DFAs for use in studying hydrolysis kinetics and general observations regarding particular types of DFAs or features included in DFA design.

Name	Type	Hybrid	HF	Dispersion	References
		Type	Exchange	Correction	
PBE	GGA	N/A	N/A	None	68
PBE-D3(BJ)	GGA	N/A	N/A	D3(BJ)	68,69
BLYP	GGA	N/A	N/A	None	70,71
BLYP-D3(BJ)	GGA	N/A	N/A	D3(BJ)	69-71
B97-D	GGA	N/A	N/A	D2	72
B97-D3	GGA	N/A	N/A	D3(0)	69,72
mPW91	GGA	N/A	N/A	None	73
mPW91-D3(BJ)	GGA	N/A	N/A	D3(BJ)	69,73
VV10	GGA	N/A	N/A	VV10	74
rVV10	GGA	N/A	N/A	rVV10	75
M06-L	meta-GGA	N/A	N/A	None	76
M06-L-D3(0)	meta- GGA	N/A	N/A	D3(0)	76,77
SCAN	meta- GGA	N/A	N/A	None	78
SCAN-D3(BJ)	meta- GGA	N/A	N/A	D3(BJ)	69,78
TPSS	meta-GGA	N/A	N/A	None	79
TPSS-D3(BJ)	meta-GGA	N/A	N/A	D3(BJ)	69,79
MN12-L	meta-GGA	N/A	N/A	None	80
MN12-L-D3(BJ)	$\rm meta\text{-}GGA$	N/A	N/A	D3(BJ)	69,80
B97M-rV	${\rm meta\text{-}GGA}$	N/A	N/A	rVV10	75,81
PBE0	hybrid GGA	global	0.25	None	82,83
PBE0-D3(BJ)	hybrid GGA	global	0.25	D3(BJ)	69,82,83
B3LYP	hybrid GGA	global	0.20	None	70,71,84
B3LYP-D3(BJ)	hybrid GGA	global	0.20	D3(BJ)	69-71,84
mPW1PW91	hybrid GGA	global	0.25	None	73
mPW1PW91-D3(BJ)	hybrid GGA	global	0.25	D3(BJ)	69,73
LRC- ω PBE	hybrid GGA	range-separated	0.0; 1.0	None	85
LRC- ω PBE-D3(BJ)	hybrid GGA	range-separated	0.0; 1.0	D3(BJ)	69,85
LRC- ω PBEh	hybrid GGA	range-separated	0.2; 1.0	None	86
LRC- ω PBEh-D3(BJ)	hybrid GGA	range-separated	0.2; 1.0	D3(BJ)	69,86

Name	Type	Hybrid	HF	Dispersion	References
		Type	Exchange	Correction	
CAM-B3LYP	hybrid GGA	range-separated	0.19; 0.65	None	87
CAM-B3LYP-D3(0)	hybrid GGA	range-separated	0.19; 0.65	D3(BJ)	77,87
rCAM-B3LYP	hybrid GGA	range-separated	0.18; 0.65	None	88
rCAM-B3LYP-D3(0)	hybrid GGA	range-separated	0.18; 1.13	D3(BJ)	77,88
HSE-HJS	hybrid GGA	range-separated	0.25; 0.0	None	89,90
HSE-HJS-D3(BJ)	hybrid GGA	range-separated	0.25; 0.0	D3(BJ)	69,89,90
$\omega \mathrm{B}97\mathrm{X}$	hybrid GGA	range-separated	0.16; 1.0	None	91
$\omega \mathrm{B}97\mathrm{X}\text{-}\mathrm{D}$	hybrid GGA	range-separated	0.22; 1.0	D2	72,92
$\omega \mathrm{B}97\mathrm{X}\text{-}\mathrm{D}3$	hybrid GGA	range-separated	0.20; 1.0	D3(0)	77,93
$\omega \mathrm{B}97\mathrm{X}\text{-}\mathrm{V}$	hybrid GGA	range-separated	0.17; 1.0	VV10	74,94
M06-2X	hybrid meta-GGA	global	0.54	None	95
M06-2X-D3(0)	hybrid meta-GGA	global	0.54	D3(0)	77,95
M06-HF	hybrid meta-GGA	global	1.0	None	95
M06-HF-D3(0)	hybrid meta-GGA	global	1.0	D3(0)	77,95
M08-SO	hybrid meta-GGA	global	0.57	None	96
M08-SO-D3(0)	hybrid meta-GGA	global	0.57	D3(0)	77,96
MN15	hybrid meta-GGA	global	0.44	None	97
MN15-D3(0)	hybrid meta-GGA	global	0.44	D3(0)	77,97
BMK	hybrid meta-GGA	global	0.42	None	98
BMK-D3(BJ)	hybrid meta-GGA	global	0.42	D3(BJ)	69,98
TPSSh	hybrid meta-GGA	global	0.1	None	99
TPSSh-D3(BJ)	hybrid meta-GGA	global	0.1	D3(BJ)	69,99
SCAN0	hybrid meta-GGA	global	0.25	None	100
SCAN0-D3(BJ)	hybrid meta-GGA	global	0.25	D3(BJ)	69,100
mPWB1K	hybrid meta-GGA	global	0.44	None	101
mPWB1K-D3(BJ)	hybrid meta-GGA	global	0.44	D3(BJ)	69,101
$\omega { m M06-D3}$	hybrid meta-GGA	range-separated	0.27; 1.0	D3(0)	77,93
M06-SX	hybrid meta-GGA	range-separated	0.34; 1.0	None	102
M06-SX-D3(BJ)	hybrid meta-GGA	range-separated	0.34; 1.0	D3(0)	69,102

Name	Type	Hybrid	HF	Dispersion	References
		Type	Exchange	Correction	
M11	hybrid meta-GGA	range-separated	0.43; 1.0	None	103
M11-D3(0)	hybrid meta-GGA	range-separated	0.43; 1.0	D3(0)	77,103
revM11	hybrid meta-GGA	range-separated	0.23; 1.0	None	104
revM11-D3(0)	hybrid meta-GGA	range-separated	0.23; 1.0	D3(0)	77,104
ω B97M-V	hybrid meta-GGA	range-separated	0.15; 1.0	VV10	74,105

Table 1: Exchange-correlation DFAs considered in this benchmark study. For range-separated hybrid DFAs, the short-range and long-range fractions of HF exact exchange are provided, separated by a semicolon.

Computational Methods

The 63 exchange-correlation DFAs considered in this study are listed in Table 1. Of these 63 DFAs, 10 are GGA, 9 are meta-GGA, 20 are hybrid GGA, and 24 are hybrid meta-GGA. For hybrid DFAs, Table 1 lists whether the DFA is a global hybrid, which applies a fraction of Hartree-Fock (HF) exact electronic exchange energy uniformly through space, or a range-separated hybrid, which has HF contributions that vary spatially. Range-separated hybrids include different fractions of HF exchange at long range and short range and use a splitting function, commonly involving the error function, to interpolate between those two fractions. By spatially varying the fraction of HF exchange, range-separated hybrids aim to improve upon global hybrids to further reduce the detrimental self-interaction error inherent to DFAs and to improve the treatment of long-range electron-electron interactions. ⁹¹ DFAs were evaluated both with and without dispersion corrections unless they were designed specifically with an included dispersion correction. The dispersion correction chosen for most DFAs was the empirical D3 dispersion correction, either with the original (D3(0))⁷⁷ or the Becke-Johnson (D3(BJ))⁶⁹ damping functions. Some DFAs alternatively employ the

D2 dispersion correction,⁷² such as B97-D⁷² and ω B97X-D,⁹² or the VV10⁷⁴ and rVV10⁷⁵ nonlocal correlation DFAs, such as VV10,⁷⁴ B97M-rV,⁸¹ and ω B97M-V.¹⁰⁵ The notation D3(0) or D3(BJ) is used here for a dispersion correction appended during the calculation, while all other notation indicates the DFA was designed with the dispersion correction.

Calculations were performed using Q-Chem versions 5.3.2 and 5.4.2. 106 We performed all calculations using a tight threshold for the neglect of two-electron integrals (10^{-14}) to improve calculation precision and convergence, and we used the standard integration grid SG-3 107 for all atoms. Unless otherwise stated, all optimization calculations to ground-state potential-energy surface minima (reactants and products) and TS were conducted using the split-valence def2-SVPD basis set, 108 and all final energy calculations using DFT were performed with the larger triple-zeta def2-TZVPPD basis set. In a previous benchmark study from Mardirossian and Head-Gordon, 109 it was found that def2-TZVPPD had nearly the same accuracy as the quadruple-zeta def2-QZVPPD basis set, making it appropriate for benchmark studies. In evaluating the performance of DFAs for calculating electronic energy, we perform single-point energy evaluations in vacuum. In the Supporting Information, we also report data for calculations conducted using the integrated equation formalism method of the polarizable continuum model (IEF-PCM) 110 implicit solvent method with water as the solvent ($\varepsilon = 78.39$).

All TS were initially optimized in vacuum using the strongly constrained and appropriately normed (SCAN) meta-GGA DFA.⁷⁸ Reaction endpoints were then optimized by perturbing the TS along the reaction coordinate in both directions. To assess the influence of the DFA used for the optimization, we considered the effects of optimizing geometries with ω B97M-V, but the variation in the ranking of DFAs was insignificant (Figure S3).

Reference energies approximate the CCSD(T)/CBS level of theory. In order to avoid computationally demanding CCSD(T) calculations at large basis sets, HF exchange and MP2 correlation energy were first calculated with the def2-TZVPP ($\zeta_1 = 3$) and def2-QZVPP ($\zeta_2 = 4$) basis sets. These values were then extrapolated to the CBS limit using a scheme

similar to the Weizmann-1 extrapolation: 111,112

$$E_{CBS}^{HF} \approx E_{\zeta_2} + \frac{E_{\zeta_2} - E_{\zeta_1}}{\exp(\alpha(\sqrt{\zeta_2} - \sqrt{\zeta_1})) - 1} \tag{1}$$

$$E_{CBS}^{MP2} \approx \frac{\zeta_1^{\beta} E_{\zeta_1} - \zeta_2^{\beta} E_{\zeta_2}}{\zeta_1^{\beta} - \zeta_2^{\beta}} \tag{2}$$

with $\alpha = 7.880$, $\beta = 2.970$ as previously calculated for the chosen basis sets by Neese and Valeev.¹¹³ Then, to calculate CCSD(T)/CBS energy, the difference between CCSD(T) and MP2 using the def2-TZVP basis set was calculated,¹¹⁴ yielding

$$E_{CBS}^{CCSD(T)} = E_{CBS}^{HF} + E_{CBS}^{MP2} + (E_{def2-TZVP}^{CCSD(T)} - E_{def2-TZVP}^{MP2})$$
 (3)

This method is based on the notion that the difference between MP2 and CCSD(T) energies should be roughly the same regardless of basis set size. To ensure that this method provides reliable reference energy barriers, reaction barriers for a smaller set of 24 reactions from BH2O-36 were calculated with HF and CCSD extrapolated to the CBS limit using def2-TZVP and def2-QZVPP as above, and the (T) term extrapolated to the CBS limit using the def2-SVP and def2-TZVP basis sets with $\alpha = 10.390$, $\beta = 2.400$. The MAE for the method using Equation 3 with respect to the direct extrapolation of CCSD(T) was 0.016 eV, which is well within "chemical accuracy" of 0.043 eV.

In this study, average errors compared to reference data are reported in two ways. For each DFA f considered, the MAE is calculated as

$$MAE = \frac{1}{n} \sum_{r}^{R} |V_{f,r} - V_{reference,r}| \tag{4}$$

where n is the number of reactions, and the sum is over the set of reactions R. Reaction barriers can vary significantly in magnitude, and as a result, the MAE may over-emphasize reactions with larger energy barriers, where large errors may be more likely. Because of this,

the mean relative absolute error (MRAE) is also calculated as

$$MRAE = \frac{1}{n} \sum_{r} \frac{|V_f - V_{reference}|}{V_{reference}}$$
 (5)

Number	Reaction	Class	Conditions	Assisted	References
1	0 + H-O OH OH	Anhydride	Acid/Base	No	N/A
2	$ \begin{array}{c} $	Amide	Base	Yes	23
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Amide	Base	Yes	23
4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Borohydride	Neutral/Acid	No	115
5	0 + 0 H → H0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Carbonate	Base	No	116
6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Diazonium	Acid	No	26
7	$HO \xrightarrow{\oplus} + H-O OH$	Epoxide	Acid	No	117
8	$HO \xrightarrow{\oplus} + HO \xrightarrow{H} \longrightarrow H_2O \xrightarrow{\oplus} OH$	Epoxide	Acid	No	117
9	о + о н о о о о о о о о о о о о о о о о	Epoxide	Base	No	N/A
10	0 + 0 H OH	Epoxide	Base	No	N/A
11	0 + H-O HO O	Ester	Base	No	N/A
12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Furan	Acid	Yes	41
13	0 H-O OH ₂	Furan	Acid	Yes	41

Number	Reaction	Class	Conditions	Assisted	References
14	⊕ O OH H-O H H-O H	Furan	Acid	Yes	41
15	N + H-O H OH	Imine	Base	No	48
16	$\begin{array}{c} H \\ N \\ \oplus \end{array} \begin{array}{c} + \begin{array}{c} H_{-}O \\ H \end{array} \end{array} \begin{array}{c} H_{2} \\ OH \end{array}$	Iminium	Acid	No	48
17	O HO O	Lactone	Base	No	30
18	CI CI HO CI	Phosgene	Acid/Base	No	118

Table 2: Reactions included in the BH2O-36 benchmark set.

BH2O-36 Dataset

The reactions included in BH2O-36 are listed in Table 2. Where possible, we took the geometries for our initial guesses from the literature. For each reaction listed, both the forward and reverse reaction were considered. BH2O-36 contains 36 total reactions representing 12 unique classes of hydrolysis reactions (anhydride, amide, borohydride, carbonate, diazonium, epoxide, ester, furan, imine, iminium, lactone, and phosgene/chlorinated hydrocarbon). The dataset is evenly split between acidic (16) and basic (16) hydrolysis reactions, with a small number of reactions that can occur in any aqueous environment (4). While most reaction mechanisms included in BH2O-36 do not include more than one explicit water molecule, the amide (2-3) and furan (12-14) reactions are water-assisted.

Results and discussion

Evaluations of Barrier Heights at Fixed Geometries

Table 3 lists the MAE, MRAE, and associated rankings of the 63 DFAs in Table 1 for barrier heights calculated in vacuum. DFAs are listed in order based on the average of the two rankings. This is meant to reduce bias towards any one particular metric. However, we note that rankings between metrics are qualitatively similar. The top two DFAs (ω B97M-V and CAM-B3LYP-D3(0)) are identical across both metrics, and only 7 DFAs appear in the bottom 5 of either ranking. As such, either MAE or MRAE could be reasonably used to draw conclusions on the DFAs considered.

Name	$\mathbf{MAE} \; (eV)$	Rank	MRAE	Rank
$\omega \mathrm{B97M-V}$	0.030	1	0.078	1
CAM-B3LYP-D3(0)	0.044	2	0.090	2
M06-SX-D3(BJ)	0.049	6	0.104	4
ω M06-D3	0.045	3	0.111	8
ω B97X-D3	0.049	7	0.109	6
$\omega \mathrm{B}97\mathrm{X}\text{-V}$	0.047	4	0.128	13
MN15	0.055	12	0.109	5
BMK-D3(BJ)	0.057	14	0.100	3
$\omega \mathrm{B97X-D}$	0.050	8	0.124	11
CAM-B3LYP	0.047	5	0.140	15
M11	0.052	10	0.123	10
BMK	0.063	19	0.110	7
mPW1PW91	0.063	18	0.113	9
M08-SO	0.053	11	0.142	17
$\omega \mathrm{B97X}$	0.056	13	0.143	18
HSE-HJS	0.071	25	0.128	12
M06-SX	0.051	9	0.215	29
PBE0	0.073	26	0.136	14

Name	MAE (eV)	Rank	MRAE	Rank
M08-SO-D3(0)	0.065	20	0.163	21
MN12-L-D3(BJ)	0.067	21	0.182	22
HSE-HJS-D3(BJ)	0.071	24	0.157	19
M11-D3(0)	0.058	15	0.225	31
MN12-L	0.067	22	0.186	24
mPWB1K	0.082	31	0.141	16
MN15-D3(0)	0.062	17	0.230	32
SCAN0	0.069	23	0.204	27
PBE0-D3(BJ)	0.074	27	0.183	23
mPWB1K-D3(BJ)	0.079	30	0.159	20
B97M-rV	0.060	16	0.302	39
LRC - $\omega PBEh$	0.083	35	0.200	25
LRC- ω PBE	0.082	34	0.206	28
M06-2X-D3(0)	0.076	28	0.275	37
LRC- ω PBE-D3(BJ)	0.082	33	0.247	33
M06-2X	0.077	29	0.277	38
SCAN	0.109	44	0.204	26
B3LYP-D3(BJ)	0.082	32	0.305	41
mPW1PW91-D3(BJ)	0.087	37	0.274	36
rCAM-B3LYP	0.088	38	0.267	35
SCAN-D3(BJ)	0.111	45	0.219	30
B3LYP	0.084	36	0.380	47
TPSSh-D3(BJ)	0.117	49	0.260	34
rCAM-B3LYP-D3(0)	0.088	39	0.378	46
revM11	0.102	42	0.367	44
TPSSh	0.111	47	0.303	40
LRC- ω PBEh-D3(BJ)	0.102	41	0.382	48
SCAN0-D3(BJ)	0.099	40	0.401	50
revM11-D3(0)	0.104	43	0.472	53
PBE	0.166	55	0.377	45
PBE-D3(BJ)	0.171	57	0.338	43

Name	$\mathbf{MAE} \; (eV)$	Rank	MRAE	Rank
M06-L	0.111	46	0.490	55
mPW91-D3(BJ)	0.180	59	0.315	42
M06-L-D3(0)	0.111	48	0.493	56
B97-D	0.155	52	0.488	54
TPSS	0.166	54	0.449	52
mPW91	0.168	56	0.432	51
TPSS-D3(BJ)	0.172	58	0.401	49
B97-D3	0.155	53	0.498	57
M06-HF-D3(0)	0.152	50	0.770	62
M06-HF	0.152	51	0.772	63
rVV10	0.183	60	0.550	59
VV10	0.183	61	0.540	58
BLYP	0.187	62	0.711	61
BLYP-D3(BJ)	0.190	63	0.623	60

Table 3: Mean absolute errors (MAE) and mean relative absolute errors (MRAE) of 63 exchange-correlation DFAs on the BH2O-36 benchmark set, referenced to CCSD(T)/CBS energies calculated from SCAN-optimized geometries. DFAs are listed in order of their average rankings in terms of MAE and MRAE for barrier heights calculated in vacuum.

With an MAE of 0.030 eV and an MRAE of 0.078, the range-separated hybrid meta-GGA DFA ω B97M-V is the best-suited DFA tested for calculations of hydrolysis energy barriers within the BH2O-36 benchmark set. ω B97M-V ranks first in both metrics studied, and it outperforms by considerable margins: the MAE of ω B97M-V is 31.8% lower than the 2nd-ranked DFA (CAM-B3LYP-D3(0)), and the MRAE is 15.3% lower than the 2nd-ranked DFA (also CAM-B3LYP-D3(0)). Beyond ω B97M-V, the differences between DFAs are less pronounced, and exact rankings are perhaps less meaningful. Other well-performing DFAs include the dispersion-corrected range-separated hybrid GGA DFAs based on B97¹¹⁹ – ω B97X-V, 94 ω B97X-D3, 93 and ω B97X-D⁹² – the range-separated hybrid GGA DFAs CAM-B3LYP-D3(0) and CAM-B3LYP, 87 and several DFAs derived from Minnesota functionals –

namely the range-separated meta-GGA hybrids M06-SX-D3(BJ) 102 and ω M06-D3 93 as well as the global meta-GGA hybrid MN15. 97 These DFAs are all designed for general-purpose use with main-group elements (and, in some cases, transition metals) and have previously performed well in broad benchmarks of reaction thermochemistry and barrier heights. 109 The BMK DFA, 98 which was designed specifically for calculations involving kinetics, achieves an MRAE value of only 0.100 when modified with the D3(BJ) dispersion correction. It also bears mention that the commonly used DFA B3LYP is amongst the poorest performing DFAs, ranking 36th in terms of MAE and 47th in terms of MRAE. The dispersion corrected DFA B3LYP-D3(BJ) performs somewhat better (32nd in terms of MAE, 41st in terms of MRAE) but is still lacking compared to many other functionals that have been highlighted here.

Figure 1 shows the accuracy of the four families of DFAs considered here – GGA, meta-GGA, hybrid GGA, and hybrid meta-GGA. At a high level, we observe that local GGA DFAs systematically underperform in calculating hydrolysis reaction energy barriers. On average, the GGA DFAs considered here have an MAE of 0.174 eV and an MRAE of 0.487. As a result, we would not generally recommend the use of GGA DFAs for applications in hydrolysis kinetics. The addition of second-derivative terms to meta-GGA DFAs leads to a significant improvement overall, though notably, the best-performing GGA DFAs tend to outperform the worst-performing meta-GGA DFAs (depending on the metric, TPSS-D3(BJ)⁷⁹ or M06-L-D3(0)⁷⁶). Several meta-GGA DFAs, especially MN12-L, ⁸⁰ MN12-L-D3(BJ), and B97M-rV, ⁸¹ achieve low MAE values (~ 0.06 eV) and should be strongly considered, especially where computational resources are constrained.

The addition of Hartree-Fock exact exchange in hybrid DFAs also leads to a general improvement over pure DFAs. Interestingly, in spite of the dominant performance of ω B97M-V, the hybrid meta-GGA DFAs exhibit higher error on average than the hybrid GGA DFAs, which is somewhat unexpected due to the greater complexity of the former compared to the latter. Even after removing the the outliers, representing the worst-performing hybrid

Figure 1: Performance of different families of exchange-correlation DFAs (GGA, meta-GGA, hybrid GGA, and hybrid meta-GGA) in calculating hydrolysis energy barriers from fixed SCAN-optimized geometries in terms of MAE (a) and MRAE (b) in vacuum. The median is represented by a black bar within the box defined by the upper and lower quartiles of the data. Outliers are indicated by empty circles and emphasized with arrows. Extreme values (not including outliers) are indicated by the bars above and below the boxes.

meta-GGA DFAs (M06-HF and M06-HF-D3(0), ⁹⁵ global hybrids with 100% HF exchange), the hybrid meta-GGA class performs slightly worse (0.077 eV MAE, 0.208 MRAE) than the hybrid GGA DFAs (0.071 eV MAE, 0.204 MRAE) on average.

The range of MAE values observed for meta-GGA and hybrid meta-GGA DFAs (Figure 1a) is particularly wide. This can be attributed to a very small number of poor-performing DFAs. In the case of the meta-GGA DFAs, the upper bound of the MAE range is populated by TPSS⁷⁹ and TPSS-D3(BJ). ^{69,79} These DFAs are known to underbind dispersion-bound compounds, ¹⁰⁹ which are exemplified by the reaction complexes and transition-states considered here. In addition to the M06-HF and M06-HF-D3(0) which we have already discussed, TPSSh⁹⁹ and TPSSh-D3(BJ) ^{69,99} exhibit high MAE among the hybrid meta-GGA DFAs. With a similar functional form to TPSS, it is perhaps somewhat unsurprising that TPSSh and its derivative perform poorly in the prediction of barrier heights. Although M06-HF was primarily designed for time-dependent DFT (TDDFT) calculations, ¹²⁰ it was parameterized on several barrier height datasets. It is therefore somewhat surprising that M06-HF and M06-HF-D3(0) appear to pathologically fail to predict hydrolysis energy barriers.

While hybrid DFAs generally perform better than their pure counterparts without the inclusion of HF exchange, not all hybrid DFAs are created equal. The hybrid DFAs included in this benchmark study have fractions of short-range HF exchange ranging from 0 (LRC- ω PBE and LRC- ω PBE-D3(BJ)) to 1 (M06-HF and M06-HF-D3(0)); in addition, we included both global hybrid DFAs, with HF exchange included uniformally through space, and range-separated hybrid DFAs, which aim to more rigorously eliminate self-interaction errors through the separation of the exchange into short-range and long-range terms. In most cases, the range-separated hybrids considered here perform better than global hybrids; this is especially true when considering the MAE (Figure 2a). It is worth noting that 8 of the top 10 ranked DFAs in Table 3 are range-separated hybrids (MN15 and BMK-D3(BJ) are global hybrids). Several of these high-performing range-separated hybrids highlight the improvement that range separation adds. CAM-B3LYP-D3(0) and ω M06-D3 both trans-

form a poorly performing DFA (B3LYP and M06-2X, respectively) to one that ranks in the top 5, with MAE improvements of 0.038 and 0.028 eV over the DFAs they were based on, respectively. These DFAs also all take significantly different approaches to range separation. For example, the long range HF exchange component of the range separation operator varies significantly – ω M06-D3 uses 100% and CAM-B3LYP uses 65%. Despite these differences in functional form, re-parameterization of the DFAs with the inclusion of range separation elevates their performances to a similar extent. Further emphasizing that different approaches to the functional form of range separation can lead to similarly positive results, the fraction of short-range HF exchange seems to have little effect on the accuracy of the range-separated hybrids in this benchmark set (Figure 2b,d). Based on these findings, for predictions of hydrolysis kinetics, range-separated hybrids should be preferred. If a global hybrid must be used, moderate to high fraction of HF exchange may be desirable.

Many of the DFAs that perform well on the BH2O-36 benchmark include a dispersion correction. Among the top 10 DFAs, two (ω B97M-V and ω B97X-V) use VV10, five (CAM-B3LYP-D3(0), M06-SX-D3(BJ), ω M06-D3, ω B97X-D3, and BMK-D3(BJ)) use the D3 empirical correction, and one (ω B97X-D) uses D2. It is therefore worth asking whether dispersion corrections, in general, improve the accuracy of DFT-predicted hydrolysis barrier heights.

Since transition-states often involve the formation and/or breaking of bonds, with interatomic interactions on length scales significantly longer than typical ground-state bond lengths, it would follow logically that the long-range energy terms provided by dispersion corrections would improve calculations of transition-state ground-state energies and, therefore, barrier heights. As Figure 3 shows, this does not appear to be the case for the BH2O-36 benchmark set. In terms of MAE (Figure 3a), dispersion corrections often lead to small changes on the order of meV. While modest improvement is seen for some DFAs (notably, those based on ω B97X and BMK), the addition of a D3 correction can lead to significantly higher error (e.g. for PBE, ⁶⁸ mPW91, ⁷³ M08-SO, ⁹⁶ and SCANO ¹⁰⁰). We note that ω B97X-D,

Figure 2: Performance of global and range-separated hybrid DFAs in calculating hydrolysis energy barriers from fixed SCAN-optimized geometries. a) Box plot of MAE for global and range-separated hybrid DFAs; b) scatter plot of MAE data, showing effect of HF exchange fraction on accuracy; c) box plot of MRAE for global and range-separated hybrid DFAs; d) scatter plot of MRAE data, showing effect of HF exchange fraction on accuracy. For range-separated hybrids, the x-axis of the scatter plots in b) and d) is the fraction of short-range exchange; for global hybrids, it is the global HF exchange fraction.

Figure 3: Comparing MAE (a) and MRAE (b) of DFAs with various dispersion corrections, including the empirical D2 and D3 corrections as well as the nonlocal correlation DFA VV10. The x axes are the MAE or MRAE of the non-dispersion-corrected DFA, and the y axes are the changes in MAE or MRAE or the dispersion-corrected DFAs relative to the non-corrected values. A change in error of 0 indicates that dispersion correction has no effect on the prediction error, on average. Negative values indicate an improvement over the non-dispersion-corrected DFA, while positive values indicate that the dispersion correction has a detrimental effect on the error.

 ω B97X-D3, and ω B97X-V were all specifically trained to use a dispersion correction, which is not true for most dispersion-corrected DFAs tested here. The changes in MRAE (Figure 3b) caused by the addition of dispersion corrections are more significant, but once again, uniform improvement is not observed upon addition of dispersion corrections. This finding is consistent with conclusions from a previous benchmark for the hydrolysis of glycosidic bonds. ⁶⁷

While our focus in this work is on reaction energy barriers, it is worth pausing to consider reaction thermochemistry, as both reaction energies ΔE and energy barriers ΔE^{\ddagger} are required for most practical applications (e.g. constructing energy diagrams or performing microkinetic modeling). The MAE and MRAE for ΔE^{\ddagger} versus those for ΔE are shown in Figure 4.

Figure 4: Error in predicted energy barrier ΔE^{\ddagger} versus reaction energy ΔE in terms of MAE (a) and MRAE (b). The dashed line, with the equation $Error_{\Delta E^{\ddagger}} = Error_{\Delta E}$, indicates DFAs that have equal error for reaction energies and energy barriers. Boundaries between the gray regions indicate deviations from the $Error_{\Delta E^{\ddagger}} = Error_{\Delta E}$ by factors of 1.5 and 3, as well as their reciprocals, as noted on the plots.

Analysing the MAE (Figure 4a), we find that many pure DFAs - and almost all GGA DFAs considered here - are considerably worse at predicting energy barriers than reaction

energies when benchmarked on BH2O-36. While underperformance on energy barriers is not unique to pure DFAs, hybrids in general seem to be better behaved and follow a more linear trend, adhering more or less closely to the line $Error_{\Delta E^{\ddagger}} = Error_{\Delta E}$. This provides further evidence that hybrid DFAs should be strongly favored over their pure counterparts. Further, the finding that many DFAs that can reasonably predict hydrolysis reaction energies fail when predicting related energy barriers highlights the necessity of benchmarks specific to chemical kinetics. The MRAE for ΔE and ΔE^{\ddagger} are more similar (Figure 4b) than the MAE. Most DFAs (and essentially all hybrid DFAs) have an MRAE_{ΔE^{\ddagger}} that is lower than the respective MRAE_{ΔE}. This is unsurprising, as the reference reaction energies are on average smaller in magnitude compared to the reference energy barriers ($|\Delta E|_{ref, avg} = 0.022$ eV, $\Delta E_{ref, avg}^{\ddagger} = 0.035$ eV).

Conclusion

In this work, we presented a new dataset, BH2O-36, which can be used to assess the ability of DFAs to predict the energy barriers of diverse hydrolysis reactions. Using BH2O-36, we analyzed 63 DFAs, including GGA, meta-GGA, and hybrid DFAs (the latter group including GGA, meta-GGA, global, and range-separated hybrids). The GGA DFAs we tested performed poorly on this benchmark, and therefore we would not generally recommend using GGA DFA in studies of hydrolysis kinetics or reaction barriers. When dealing with large systems or in cases where computational resources are otherwise constrained, several meta-GGA DFAs could be reasonably employed. In particular, we recommend the Minnesota DFAs MN12-L and MN12-L-D3(BJ), as well as the rVV10-corrected DFA B97M-rV. When computational cost is not a significant obstacle, we recommend the use of range-separated hybrid DFAs broadly. The ω B97M-V and CAM-B3LYP-D3(0) range-separated hybrid DFAs show the best performance within our benchmark set, but many other range-separated hybrids (e.g. M06-SX-D3(BJ) ω M06-D3, ω B97X-D3, ω B97X-V) are also well-performing contenders.

Considering DFA design, we found that dispersion correction does not systematically improve the accuracy of DFAs in predicting hydrolysis energy barriers, and in many cases, the introduction of a dispersion correction leads to significantly higher error. While this may be counter-intuitive, considering the role of long-range interactions at transition-states, this finding suggests that dispersion corrections should not be blindly applied in studies of hydrolysis reactions specifically, and perhaps of reaction mechanisms more generally. Likewise, although hybrid DFAs typically outperform pure DFAs on the BH2O-36 benchmark, we found that among hybrid DFAs, there is no strong indication that an increase in the fraction of short-range HF exchange leads to lower MAE or MRAE. This is not surprising for range-separated hybrids, which are all of the top-performing DFAs in this study, as they depend significantly on the interplay of several parameters tuned in their creation. For example, the ω parameter controlling the partitioning of the HF exchange 93 and the strength of the dispersion correction included in the parameterization, 92 are both known to lead to significant differences in the fraction of short-range HF exchange. We therefore emphasize that there is no single key to choosing a DFA for reaction kinetics, and benchmarks are essential for determining the appropriate DFA for particular tasks.

While particularly designed to assist in computational studies of aqueous chemistry and reactivity, the BH2O-36 can supplement other energy barrier and kinetic benchmark sets in order to aid in the design of new DFAs and semiempirical quantum chemical methods.

Author Contributions

Co-first author order is alphabetical by last name and does not reflect relative contributions. A.E and E.W.C.S.-S. both have the right to list their names first when presenting this research or listing it in their CVs. Conceptualization: A.E., E.W.C.S.-S., M.C.V.; data curation: A.E., E.W.C.S.-S.; formal analysis: A.E., E.W.C.S.-S., M.C.V., O.A.; funding: A.E., E.W.C.S.-S., M.C.V., K.A.P.; investigation: A.E., E.W.C.S.-S., M.C.V., O.A.; methodology:

A.E., E.W.C.S.-S., M.C.V.; project administration: A.E.; resources: K.A.P.; software: A.E., E.W.C.S.-S.; supervision: K.A.P.; validation: E.W.C.S.-S.; visualization: A.E., E.W.C.S.-S., M.C.V.; writing: original draft - A.E., E.W.C.S.-S., M.C.V., O.A.; writing - review & editing: all authors.

Code and Data Availability

All data used in this study, including reference values calculated at the CCSD(T)/CBS level of theory, as well as all code used to set up calculations, parse and process data, perform analysis, and generate plots for figures, is included in the "hydrobench" repository on Github (https://github.com/espottesmith/hydrobench).

Acknowledgement

E.W.C.S.-S. is supported by the Kavli Energy Nanoscience Institute Philomathia Graduate Student Fellowship. A.R.E. was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1752814. O.A. is supported by the Liquid Sunlight Alliance, which is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Fuels from Sunlight Hub under Award Number DE-SC0021266. Data for this study was produced using computational resources provided by the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility under Contract No. DE-AC02-05CH11231, the Eagle and Swift HPC systems at the National Renewable Energy Laboratory (NREL), and the Lawrencium HPC cluster at Lawrence Berkeley National Laboratory. The authors thank Samuel M. Blau for useful discussions.

Supporting Information Available

Analysis of signed errors for the prediction of hydrolysis energy barriers; analysis of MAE and MRAE in implicit solvent; analysis of MAE and MRAE for structures optimized using a different funtional (ω B97M-V); analysis of MAE and MRAE for prediction of reaction energies ΔE ; benchmark of computational cost in terms of walltime for single-point energy evaluations.

References

- (1) Weber, J.; Senior, A. E. ATP synthase: what we know about ATP hydrolysis and what we do not know about ATP synthesis. <u>Biochimica et Biophysica Acta (BBA) Bioenergetics</u> **2000**, <u>1458</u>, 300–309.
- (2) Korn, E. D.; Carlier, M.-F.; Pantaloni, D. Actin Polymerization and ATP Hydrolysis.

 <u>Science</u> **1987**, <u>238</u>, 638–644, Publisher: American Association for the Advancement of Science.
- (3) Mellouki, A.; Wallington, T. J.; Chen, J. Atmospheric Chemistry of Oxygenated Volatile Organic Compounds: Impacts on Air Quality and Climate. <u>Chemical Reviews</u> 2015, 115, 3984–4014, Publisher: American Chemical Society.
- (4) Mabey, W.; Mill, T. Critical review of hydrolysis of organic compounds in water under environmental conditions. <u>Journal of Physical and Chemical Reference Data</u> 1978, <u>7</u>, 383–415, Publisher: American Institute of Physics.
- (5) Pehkonen, S. O.; Zhang, Q. The Degradation of Organophosphorus Pesticides in Natural Waters: A Critical Review. <u>Critical Reviews in Environmental Science and Technology</u> **2002**, <u>32</u>, 17−72, Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/10643380290813444.

- (6) Li, J.; Mooney, D. J. Designing hydrogels for controlled drug delivery. <u>Nature Reviews</u>
 Materials **2016**, 1, 1–17, Number: 12 Publisher: Nature Publishing Group.
- (7) Sahin, U.; Karikó, K.; Türeci, mRNA-based therapeutics developing a new class of drugs. <u>Nature Reviews Drug Discovery</u> **2014**, <u>13</u>, 759–780, Number: 10 Publisher: Nature Publishing Group.
- (8) Vargiu, A. V.; Robertazzi, A.; Magistrato, A.; Ruggerone, P.; Carloni, P. The Hydrolysis Mechanism of the Anticancer Ruthenium Drugs NAMI-A and ICR Investigated by DFTPCM Calculations. <u>The Journal of Physical Chemistry B</u> 2008, <u>112</u>, 4401–4409, Publisher: American Chemical Society.
- (9) Barber, W. P. F. Thermal hydrolysis for sewage treatment: A critical review. Water Research **2016**, 104, 53–71.
- (10) Shen, M.; Cao, H.; Robertson, M. L. Hydrolysis and solvolysis as benign routes for the end-of-life management of thermoset polymer waste. <u>Annu. Rev. Chem. Biomol.</u> Eng 2020, 11, 183–201.
- (11) Helms, B. A. Polydiketoenamines for a Circular Plastics Economy. <u>Accounts of Chemical Research</u> **2022**, acs.accounts.2c00308.
- (12) Cordes, E.; Bull, H. Mechanism and catalysis for hydrolysis of acetals, ketals, and ortho esters. Chemical Reviews **1974**, 74, 581–603.
- (13) Brown, R. S.; Bennet, A. J.; Slebocka-Tilk, H. Recent perspectives concerning the mechanism of H3O+- and hydroxide-promoted amide hydrolysis. <u>Accounts of Chemical Research</u> 1992, <u>25</u>, 481–488, Publisher: American Chemical Society.
- (14) Larson, L. J.; Kuno, M.; Tao, F.-M. Hydrolysis of sulfur trioxide to form sulfuric acid in small water clusters. <u>The Journal of Chemical Physics</u> **2000**, <u>112</u>, 8830–8838, Publisher: American Institute of Physics.

- (15) Gunaydin, H.; Houk, K. N. Molecular Dynamics Prediction of the Mechanism of Ester Hydrolysis in Water. <u>Journal of the American Chemical Society</u> **2008**, <u>130</u>, 15232–15233, Publisher: American Chemical Society.
- (16) Kamerlin, S. C. L.; Haranczyk, M.; Warshel, A. Are Mixed Explicit/Implicit Solvation Models Reliable for Studying Phosphate Hydrolysis? A Comparative Study of Continuum, Explicit and Mixed Solvation Models. <u>ChemPhysChem</u> 2009, <u>10</u>, 1125–1134, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cphc.200800753.
- (17) Brás, N. F.; Fernandes, P. A.; Ramos, M. J. QM/MM Studies on the -Galactosidase Catalytic Mechanism: Hydrolysis and Transglycosylation Reactions. <u>Journal of Chemical Theory and Computation</u> **2010**, <u>6</u>, 421–433, Publisher: American Chemical Society.
- (18) Freedman, H.; Laino, T.; Curioni, A. Reaction Dynamics of ATP Hydrolysis in Actin Determined by ab Initio Molecular Dynamics Simulations. <u>Journal of Chemical Theory</u> and Computation **2012**, 8, 3373–3383, Publisher: American Chemical Society.
- (19) Robins, L. I.; Fogle, E. J.; Marlier, J. F. Mechanistic investigations of the hydrolysis of amides, oxoesters and thioesters via kinetic isotope effects and positional isotope exchange. Biochimica et Biophysica Acta (BBA) Proteins and Proteomics 2015, 1854, 1756–1767.
- (20) Galib, M.; Limmer, D. T. Reactive uptake of N2O5 by atmospheric aerosol is dominated by interfacial processes. <u>Science</u> **2021**, <u>371</u>, 921–925, Publisher: American Association for the Advancement of Science.
- (21) Glancy, J. H.; Lee, D. M.; Read, E. O.; Williams, I. H. Computational simulation of mechanism and isotope effects on acetal heterolysis as a model for glycoside hydrolysis. Pure and Applied Chemistry 2020, 92, 75–84.

- (22) Labet, V.; Grand, A.; Morell, C.; Cadet, J.; Eriksson, L. A. Proton catalyzed hydrolytic deamination of cytosine: a computational study. <u>Theor Chem Account</u> **2008**, 120, 429–435.
- (23) Cheshmedzhieva, D.; Ilieva, S.; Hadjieva, B.; Galabov, B. The mechanism of alkaline hydrolysis of amides: a comparative computational and experimental study of the hydrolysis of N-methylacetamide, N-methylbenzamide, and acetanilide. <u>Journal of Physical Organic Chemistry</u> **2009**, <u>22</u>, 619–631, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/poc.1492.
- (24) Gorb, L.; Asensio, A.; Tuñón, I.; Ruiz-López, M. F. The Mechanism of Formamide Hydrolysis in Water from Ab Initio Calculations and Simulations. <u>Chem. Eur. J.</u> 2005, 11, 6743–6753.
- (25) Xiong, Y.; Zhan, C.-G. Theoretical Studies of the Transition-State Structures and Free Energy Barriers for Base-Catalyzed Hydrolysis of Amides. <u>J. Phys. Chem. A</u> 2006, 110, 12644–12652, Publisher: American Chemical Society.
- (26) García Martínez, A.; de la Moya Cerero, S.; Osío Barcina, J.; Moreno Jiménez, F.; Lora Maroto, B. The Mechanism of Hydrolysis of Aryldiazonium Ions Revisited: Marcus Theory vs. Canonical Variational Transition State Theory: Hydrolysis of Aryldiazonium Ions Revisited. <u>Eur. J. Org. Chem.</u> 2013, 2013, 6098–6107.
- (27) Shi, H.; Huang, X.; Liu, G.; Yu, K.; Xu, C.; Li, W.; Zeng, B.; Tang, Y. The role of benzoic acid in proline-catalyzed asymmetric michael addition: A density functional theory study. <u>International Journal of Quantum Chemistry</u> **2013**, <u>113</u>, 1339–1348, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.24297.
- (28) Ren, J.; Li, G.-Y.; Shen, L.; Zhang, G.-L.; Nafie, L. A.; Zhu, H.-J. Challenges in the assignment of relative and absolute configurations of complex molecules: computation

- can resolve conflicts between theory and experiment. <u>Tetrahedron</u> **2013**, <u>69</u>, 10351–10356.
- (29) Erdemir, S.; Malkondu, S.; Kararkurt, S. Synthesis and cell imaging studies of an unusual "OFF–ON" fluorescent sensor containing a triazole unit for Al ³⁺ detection *via* selective imine hydrolysis. Analyst **2020**, 145, 3725–3731.
- (30) Gómez-Bombarelli, R.; Calle, E.; Casado, J. Mechanisms of Lactone Hydrolysis in Neutral and Alkaline Conditions. <u>J. Org. Chem.</u> **2013**, <u>78</u>, 6868–6879, Publisher: American Chemical Society.
- (31) Cheshmedzhieva, D.; Ilieva, S.; Galabov, B. Computational study of the alkaline hydrolysis of acetanilide. <u>Journal of Molecular Structure: THEOCHEM</u> **2004**, <u>681</u>, 105–112.
- (32) Ivanova, E. V.; Muchall, H. M. From Inert to Explosive, The Hydrolytic Reactivity of R-NSO Compounds Understood: A Computational Study. <u>J. Phys. Chem. A</u> 2011, 115, 3095–3105.
- (33) Ivanova, E. V.; Muchall, H. M. Hydrolysis of N -Sulfinylamines and Isocyanates: A Computational Comparison. J. Phys. Chem. A **2007**, 111, 10824–10833.
- (34) Rosta, E.; Kamerlin, S. C. L.; Warshel, A. On the Interpretation of the Observed Linear Free Energy Relationship in Phosphate Hydrolysis: A Thorough Computational Study of Phosphate Diester Hydrolysis in Solution. Biochemistry **2008**, 47, 3725–3735.
- (35) Galabov, B.; Cheshmedzhieva, D.; Ilieva, S.; Hadjieva, B. Computational Study of the Reactivity of N -Phenylacetamides in the Alkaline Hydrolysis Reaction. <u>J. Phys.</u> Chem. A **2004**, 108, 11457–11462.
- (36) Janesko, B. G. Acid-catalyzed hydrolysis of lignin -O-4 linkages in ionic liquid solvents: a computational mechanistic study. Phys. Chem. Chem. Phys. **2014**, 16, 5423.

- (37) Karaman, R. Analyzing the efficiency in intramolecular amide hydrolysis of Kirby's N-alkylmaleamic acids A computational approach. <u>Computational and Theoretical</u> Chemistry **2011**, 974, 133–142.
- (38) Li, L.; Lelyveld, V. S.; Prywes, N.; Szostak, J. W. Experimental and Computational Evidence for a Loose Transition State in Phosphoroimidazolide Hydrolysis. <u>J. Am.</u> Chem. Soc. **2016**, 138, 3986–3989.
- (39) Ribaudo, G.; Bortoli, M.; Oselladore, E.; Ongaro, A.; Gianoncelli, A.; Zagotto, G.; Orian, L. Selenoxide Elimination Triggers Enamine Hydrolysis to Primary and Secondary Amines: A Combined Experimental and Theoretical Investigation. <u>Molecules</u> 2021, 26, 2770.
- (40) Berkefeld, A.; Guerra, C. F.; Bertermann, R.; Troegel, D.; Daiß, J. O.; Stohrer, J.; Bickelhaupt, F. M.; Tacke, R. Silicon -Effect: A Systematic Experimental and Computational Study of the Hydrolysis of C and C -Functionalized Alkoxytriorganylsilanes of the Formula Type ROSiMe ₂ (CH ₂) _n X (R = Me, Et; n = 1, 3; X = Functional Group). Organometallics 2014, 33, 2721–2737.
- (41) Nikbin, N.; Caratzoulas, S.; Vlachos, D. G. On the Brønsted Acid-Catalyzed Homogeneous Hydrolysis of Furans. <u>ChemSusChem</u> **2013**, <u>6</u>, 2066–2068.
- (42) Szeler, K.; Williams, N. H.; Hengge, A. C.; Kamerlin, S. C. L. Modeling the Alkaline Hydrolysis of Diaryl Sulfate Diesters: A Mechanistic Study. <u>J. Org. Chem.</u> **2020**, <u>85</u>, 6489–6497.
- (43) Yang, L.; Feng, J.; Zhang, W.; Qu, J.-e. Experimental and computational study on hydrolysis and condensation kinetics of -glycidoxypropyltrimethoxysilane (-GPS). Applied Surface Science 2010, 257, 990–996.
- (44) Kabanda, M. M.; Tran, V. T.; Tran, Q. T.; Ebenso, E. E. A computational study

- of pyrazinamide: Tautomerism, acid—base properties, micro-solvation effects and acid hydrolysis mechanism. Computational and Theoretical Chemistry **2014**, 1046, 30–41.
- (45) Goodell, J. R.; Svensson, B.; Ferguson, D. M. Spectrophotometric Determination and Computational Evaluation of the Rates of Hydrolysis of 9-Amino-Substituted Acridines. Journal of Chemical Information and Modeling **2006**, 46, 876–883.
- (46) Demarteau, J.; Epstein, A. R.; Christensen, P. R.; Abubekerov, M.; Wang, H.; Teat, S. J.; Seguin, T. J.; Chan, C. W.; Scown, C. D.; Russell, T. P.; Keasling, J. D.; Persson, K. A.; Helms, B. A. Circularity in mixed-plastic chemical recycling enabled by variable rates of polydiketoenamine hydrolysis. <u>Science Advances</u> 8, eabp8823, Publisher: American Association for the Advancement of Science.
- (47) Bakowies, D.; Kollman, P. A. Theoretical Study of Base-Catalyzed Amide Hydrolysis: Gas- and Aqueous-Phase Hydrolysis of Formamide. 15.
- (48) Hall, N. E.; Smith, B. J. High-Level ab Initio Molecular Orbital Calculations of Imine Formation. <u>J. Phys. Chem. A</u> 1998, <u>102</u>, 4930–4938, Publisher: American Chemical Society.
- (49) Antonczak, S.; Ruiz-Lopez, M. F.; Rivail, J. L. Ab Initio Analysis of Water-Assisted Reaction Mechanisms in Amide Hydrolysis. J. Am. Chem. Soc. **1994**, 116, 3912–3921.
- (50) Lynch, B. J.; Zhao, Y.; Truhlar, D. G. Effectiveness of Diffuse Basis Functions for Calculating Relative Energies by Density Functional Theory. <u>The Journal of Physical</u> <u>Chemistry A</u> 2003, <u>107</u>, 1384–1388, Publisher: American Chemical Society.
- (51) Zhao, Y.; González-García, N.; Truhlar, D. G. Benchmark Database of Barrier Heights for Heavy Atom Transfer, Nucleophilic Substitution, Association, and Unimolecular Reactions and Its Use to Test Theoretical Methods. <u>J. Phys. Chem. A</u> 2005, <u>109</u>, 2012–2018, Publisher: American Chemical Society.

- (52) Karton, A.; Gruzman, D.; Martin, J. M. L. Benchmark Thermochemistry of the CnH2n+2 Alkane Isomers (n = 28) and Performance of DFT and Composite Ab Initio Methods for Dispersion-Driven Isomeric Equilibria. <u>The Journal of Physical</u> Chemistry A 2009, 113, 8434–8447, Publisher: American Chemical Society.
- (53) Goerigk, L.; Grimme, S. A General Database for Main Group Thermochemistry, Kinetics, and Noncovalent Interactions Assessment of Common and Reparameterized (meta-)GGA Density Functionals. <u>Journal of Chemical Theory and Computation</u> 2010, 6, 107–126, Publisher: American Chemical Society.
- (54) Karton, A.; Daon, S.; Martin, J. M. L. W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from first-principles W4 data. <u>Chemical Physics Letters</u> 2011, <u>510</u>, 165–178.
- (55) Goerigk, L.; Grimme, S. Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals—Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. <u>Journal of Chemical Theory</u> and Computation **2011**, 7, 291–309, Publisher: American Chemical Society.
- (56) Karton, A.; Schreiner, P. R.; Martin, J. M. L. Heats of formation of platonic hydrocarbon cages by means of high-level thermochemical procedures. <u>Journal of Computational Chemistry</u> **2016**, <u>37</u>, 49–58, <u>leprint:</u> https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.23963.
- (57) O'Reilly, R. J.; Karton, A. A dataset of highly accurate homolytic NBr bond dissociation energies obtained Means of W2by theory. Journal of Quantum Chemistry International 2016, 116, 52–60, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.25024.
- (58) Maurer, L. R.; Bursch, M.; Grimme, S.; Hansen, A. Assessing Density Functional

- Theory for Chemically Relevant Open-Shell Transition Metal Reactions. <u>J. Chem.</u> Theory Comput. **2021**, acs.jctc.1c00659.
- (59) Zheng, J.; Zhao, Y.; Truhlar, D. G. Representative Benchmark Suites for Barrier Heights of Diverse Reaction Types and Assessment of Electronic Structure Methods for Thermochemical Kinetics. <u>Journal of Chemical Theory and Computation</u> **2007**, <u>3</u>, 569–582, Publisher: American Chemical Society.
- (60) Karton, A.; Tarnopolsky, A.; Lamère, J.-F.; Schatz, G. C.; Martin, J. M. L. Highly Accurate First-Principles Benchmark Data Sets for the Parametrization and Validation of Density Functional and Other Approximate Methods. Derivation of a Robust, Generally Applicable, Double-Hybrid Functional for Thermochemistry and Thermochemical Kinetics. The Journal of Physical Chemistry A 2008, 112, 12868–12886, Publisher: American Chemical Society.
- (61) Karton, A.; O'Reilly, R. J.; Radom, L. Assessment of Theoretical Procedures for Calculating Barrier Heights for a Diverse Set of Water-Catalyzed Proton-Transfer Reactions. J. Phys. Chem. A 2012, 116, 4211–4221.
- (62) Karton, A.; O'Reilly, R. J.; Chan, B.; Radom, L. Determination of Barrier Heights for Proton Exchange in Small Water, Ammonia, and Hydrogen Fluoride Clusters with G4(MP2)-Type, MPn, and SCS-MPn Procedures—A Caveat. <u>Journal of Chemical</u> Theory and Computation **2012**, 8, 3128–3136, Publisher: American Chemical Society.
- (63) Yu, L.-J.; Sarrami, F.; O'Reilly, R. J.; Karton, A. Reaction barrier heights for cycloreversion of heterocyclic rings: An Achilles' heel for DFT and standard ab initio procedures. Chemical Physics **2015**, 458, 1–8.
- (64) Karton, A.; Goerigk, L. Accurate reaction barrier heights of pericyclic reactions: Surprisingly large deviations for the CBS-QB3 composite method and their consequences

- in DFT benchmark studies. <u>Journal of Computational Chemistry</u> **2015**, <u>36</u>, 622–632, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.23837.
- (65) Prasad, V. K.; Pei, Z.; Edelmann, S.; Otero-de-la Roza, A.; DiLabio, G. A. BH9, a New Comprehensive Benchmark Data Set for Barrier Heights and Reaction Energies: Assessment of Density Functional Approximations and Basis Set Incompleteness Potentials. J. Chem. Theory Comput. 2022, 18, 151–166, Publisher: American Chemical Society.
- (66) Ribeiro, A. J. M.; Ramos, M. J.; Fernandes, P. A. Benchmarking of DFT Functionals for the Hydrolysis of Phosphodiester Bonds. <u>J. Chem. Theory Comput.</u> **2010**, <u>6</u>, 2281–2292.
- (67) Pereira, A. T.; Ribeiro, A. J. M.; Fernandes, P. A.; Ramos, M. J. Benchmarking of density functionals for the kinetics and thermodynamics of the hydrolysis of glycosidic bonds catalyzed by glycosidases. <u>International Journal of Quantum Chemistry</u> 2017, 117, e25409.
- (68) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. **1996**, 77, 3865–3868, Publisher: American Physical Society.
- (69) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. <u>Journal of Computational Chemistry</u> **2011**, <u>32</u>, 1456–1465, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.21759.
- (70) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A **1988**, 38, 3098–3100.
- (71) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B **1988**, 37, 785.

- (72) Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. <u>Journal of Computational Chemistry</u> **2006**, <u>27</u>, 1787–1799, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20495.
- (73) Adamo, C.; Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. <u>J. Chem. Phys.</u> **1998**, <u>108</u>, 664–675, Publisher: American Institute of Physics.
- (74) Vydrov, O. A.; Van Voorhis, T. Nonlocal van der Waals density functional: The simpler the better. <u>J. Chem. Phys.</u> **2010**, <u>133</u>, 244103, Publisher: American Institute of Physics.
- (75) Sabatini, R.; Gorni, T.; de Gironcoli, S. Nonlocal van der Waals density functional made simple and efficient. <u>Phys. Rev. B</u> **2013**, <u>87</u>, 041108, Publisher: American Physical Society.
- (76) Zhao, Y.; Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions.
 J. Chem. Phys. 2006, 125, 194101, Publisher: American Institute of Physics.
- (77) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. <u>J. Chem. Phys.</u> **2010**, <u>132</u>, 154104, Publisher: American Institute of Physics.
- (78) Sun, J.; Ruzsinszky, A.; Perdew, J. Strongly Constrained and Appropriately Normed Semilocal Density Functional. <u>Phys. Rev. Lett.</u> **2015**, <u>115</u>, 036402, Publisher: American Physical Society.
- (79) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for

- Molecules and Solids. <u>Phys. Rev. Lett.</u> **2003**, <u>91</u>, 146401, Publisher: American Physical Society.
- (80) Peverati, R.; Truhlar, D. G. An improved and broadly accurate local approximation to the exchange–correlation density functional: The MN12-L functional for electronic structure calculations in chemistry and physics. Phys. Chem. Chem. Phys. 2012, 14, 13171–13174, Publisher: The Royal Society of Chemistry.
- (81) Mardirossian, N.; Ruiz Pestana, L.; Womack, J. C.; Skylaris, C.-K.; Head-Gordon, T.; Head-Gordon, M. Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals. <u>J. Phys. Chem. Lett.</u> 2017, 8, 35–40, Publisher: American Chemical Society.
- (82) Perdew, J. P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. <u>The Journal of chemical physics</u> **1996**, <u>105</u>, 9982–9985.
- (83) Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of chemical physics **1999**, 110, 6158–6170.
- (84) Becke, A. D. A new mixing of Hartree–Fock and local density-functional theories. <u>The</u> Journal of Chemical Physics **1993**, 98, 1372–1377.
- (85) Rohrdanz, M. A.; Herbert, J. M. Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory. <u>The Journal of Chemical Physics</u> **2008**, <u>129</u>, 034107, Publisher: American Institute of Physics.
- (86) Rohrdanz, M. A.; Martins, K. M.; Herbert, J. M. A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states.

 <u>The Journal of Chemical Physics</u> 2009, <u>130</u>, 054112, Publisher: American Institute of Physics.

- (87) Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). <u>Chemical Physics Letters</u> **2004**, 393, 51–57.
- (88) Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Development of exchange-correlation functionals with minimal many-electron self-interaction error. <u>The Journal of Chemical Physics</u> **2007**, 126, 191109, Publisher: American Institute of Physics.
- (89) Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. <u>The Journal of Chemical Physics</u> 2006, <u>125</u>, 224106, Publisher: American Institute of Physics.
- (90) Henderson, T. M.; Janesko, B. G.; Scuseria, G. E. Generalized gradient approximation model exchange holes for range-separated hybrids. <u>The Journal of Chemical Physics</u> 2008, 128, 194105, Publisher: American Institute of Physics.
- (91) Chai, J.-D.; Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. The Journal of chemical physics **2008**, 128, 084106.
- (92) Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom—atom dispersion corrections. <u>Physical Chemistry Chemical Physics</u> **2008**, 10, 6615–6620, Publisher: Royal Society of Chemistry.
- (93) Lin, Y.-S.; Li, G.-D.; Mao, S.-P.; Chai, J.-D. Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections. <u>J. Chem. Theory Comput.</u> 2013, 9, 263–272.
- (94) Mardirossian, N.; Head-Gordon, M. ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Physical Chemistry Chemical Physics 2014, 16, 9904–9924.

- (95) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group ther-mochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 2008, 120, 215–241.
- (96) Zhao, Y.; Truhlar, D. G. Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. <u>J. Chem. Theory Comput.</u> 2008, <u>4</u>, 1849–1868, Publisher: American Chemical Society.
- (97) S. Yu, H.; He, X.; L. Li, S.; G. Truhlar, D. MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. <u>Chemical Science</u> **2016**, <u>7</u>, 5032–5051, Publisher: Royal Society of Chemistry.
- (98) Boese, A. D.; Martin, J. M. L. Development of density functionals for thermochemical kinetics. <u>J. Chem. Phys.</u> 2004, <u>121</u>, 3405–3416, Publisher: American Institute of Physics.
- (99) Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. <u>J.</u> Chem. Phys. **2003**, 119, 12129–12137, Publisher: American Institute of Physics.
- (100) Hui, K.; Chai, J.-D. SCAN-based hybrid and double-hybrid density functionals from models without fitted parameters. <u>J. Chem. Phys.</u> 2016, <u>144</u>, 044114, Publisher: American Institute of Physics.
- (101) Zhao, Y.; Truhlar, D. G. Hybrid meta density functional theory methods for ther-mochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. The Journal of Physical Chemistry A 2004, 108, 6908–6918.

- (102) Wang, Y.; Verma, P.; Zhang, L.; Li, Y.; Liu, Z.; Truhlar, D. G.; He, X. M06-SX screened-exchange density functional for chemistry and solid-state physics.
 Proceedings of the National Academy of Sciences 2020, 117, 2294–2301, Publisher: Proceedings of the National Academy of Sciences.
- (103) Peverati, R.; Truhlar, D. G. Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation. <u>J. Phys. Chem. Lett.</u> **2011**, <u>2</u>, 2810–2817, Publisher: American Chemical Society.
- (104) Verma, P.; Wang, Y.; Ghosh, S.; He, X.; Truhlar, D. G. Revised M11 Exchange-Correlation Functional for Electronic Excitation Energies and Ground-State Properties. <u>The Journal of Physical Chemistry A</u> 2019, <u>123</u>, 2966–2990, Publisher: American Chemical Society.
- (105) Mardirossian, N.; Head-Gordon, M. ω B97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. The Journal of chemical physics 2016, 144, 214110.
- (106) Epifanovsky, E.; Gilbert, A. T.; Feng, X.; Lee, J.; Mao, Y.; Mardirossian, N.; Pokhilko, P.; White, A. F.; Coons, M. P.; Dempwolff, A. L., et al. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. The Journal of chemical physics **2021**, 155, 084801.
- (107) Dasgupta, S.; Herbert, J. M. Standard grids for high-precision integration of modern density functionals: SG-2 and SG-3. <u>Journal of computational chemistry</u> **2017**, <u>38</u>, 869–882.
- (108) Rappoport, D.; Furche, F. Property-optimized Gaussian basis sets for molecular response calculations. <u>The Journal of chemical physics</u> **2010**, <u>133</u>, 134105.
- (109) Mardirossian, N.; Head-Gordon, M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density function-

- als. <u>Molecular Physics</u> **2017**, <u>115</u>, 2315–2372, Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/00268976.2017.1333644.
- (110) Cances, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of chemical physics **1997**, 107, 3032–3041.
- (111) Martin, J. M.; de Oliveira, G. Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory. The Journal of chemical physics 1999, 111, 1843–1856.
- (112) Parthiban, S.; Martin, J. M. Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities. The Journal of Chemical Physics 2001, 114, 6014–6029.
- (113) Neese, F.; Valeev, E. F. Revisiting the atomic natural orbital approach for basis sets: Robust systematic basis sets for explicitly correlated and conventional correlated ab initio methods? Journal of chemical theory and computation **2011**, 7, 33–43.
- (114) Helgaker, T.; Jorgensen, P.; Olsen, J. Molecular electronic-structure theory; John Wiley & Sons, 2014.
- (115) Jin, Y.; Shi, Y.; Qi, X.; Huang, S.; Zhang, Q. Theoretical Study on Hydrolytic Stability of Borohydride-Rich Hypergolic Ionic Liquids. <u>The Journal of Physical Chemistry A</u> **2020**, 124, 2942–2950.
- (116) Xie, X.; Clark Spotte-Smith, E. W.; Wen, M.; Patel, H. D.; Blau, S. M.; Persson, K. A. Data-Driven Prediction of Formation Mechanisms of Lithium Ethylene Monocarbonate with an Automated Reaction Network. <u>Journal of the American Chemical Society</u> 2021, 143, 13245–13258.

- (117) Muniz Filho, R. C. D.; Sousa, S. A. A. d.; Pereira, F. d. S.; Ferreira, M. M. C. Theoretical study of acid-catalyzed hydrolysis of epoxides. <u>The Journal of Physical Chemistry A</u> **2010**, 114, 5187–5194.
- (118) Sundararajan, M.; Rajaraman, G.; Jayapal, P.; Tamilmani, V.; Venuvanalingam, P. An ab initio and DFT study on the hydrolysis of carbonyl dichloride. <u>Journal of Molecular Structure</u> **2005**, 730, 155–160.
- (119) Becke, A. D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. <u>The Journal of chemical physics</u> **1997**, <u>107</u>, 8554–8560.
- (120) Zhao, Y.; Truhlar, D. G. Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States. J. Phys. Chem. A 2006, 110, 13126–13130, Publisher: American Chemical Society.

TOC Graphic

