Examenul de bacalaureat 2012

Proba E.c)

Proba scrisă la MATEMATICĂ

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera teoretică, profilul real, specializarea științele naturii

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$2^{-1} + 2^{-2} = \frac{1}{2} + \frac{1}{4} =$	3p
	$= \frac{3}{4} = 0.75$ $= \frac{3}{4} = 0.75$ $= \frac{2}{x - 3} < 0 \Leftrightarrow x - 3 < 0$	2p
2.	$\frac{2}{x-3} < 0 \Leftrightarrow x-3 < 0$	3 p
	$x \in (-\infty, 3)$	2 p
3.	Condiție: $x + 2 \ge 0 \Rightarrow x \ge -2$	1p
	$x + 2 = x^2 + 4x + 4$	2 p
	$x_1 = -2$ și $x_2 = -1$	2p
4.	Dobânda obținută este $D = 1008 \text{lei} - 900 \text{lei} = 108 \text{lei}$	1p
	$\frac{p}{100} \cdot 900 = 108$	2 p
	p=12	2 p
5.	$x_A = \frac{x_O + x_B}{2}$ și $y_A = \frac{y_O + y_B}{2}$	3p
	$x_B = 4 \text{ si } y_B = 6$	2 p
6.	$\sin x + 4\cos x = 5\cos x$	1p
	$\sin x = \cos x$	2 p
	$x = 45^{\circ}$	2p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	$\det(H(x)) = 1 + 0 + 0 - 0 - 0 - 0$	4p
	Finalizare	1p
b)	$H(x) \cdot H(a) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \ln a + \ln x \end{pmatrix}$	3р
	$\begin{pmatrix} 0 & 0 & 1 & \end{pmatrix}$ $\ln a = 0 \Rightarrow a = 1$	2 p

Probă scrisă la Matematică

Varianta 5

Barem de evaluare și de notare

 $Filiera\ teoretică,\ profilul\ real,\ specializarea\ științele\ naturii$

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

c)	(2012 0 0)	
	$H(1) + H(2) + + H(2012) = \begin{vmatrix} 0 & 2012 & \ln(2012!) \\ 0 & 0 & 2012 \end{vmatrix}$	3р
	$\begin{vmatrix} 2012 & 0 & 0 \\ 0 & 2012 & \ln(2012!) \\ 0 & 0 & 2012 \end{vmatrix} = 2012^3$	2p
2.a)	$f(1) = 1^3 + 3 \cdot 1^2 - 3 \cdot 1 - 1 = 0$	3p
	$f(1) = 0 \Longrightarrow X - 1 \mid f$	2p
b)	$x_1 + x_2 + x_3 = -3$	1p
	$x_1 x_2 + x_1 x_3 + x_2 x_3 = -3$	1p
	$x_1^2 + x_2^2 + x_3^2 = 15$	3 p
c)	$f = X^3 + 3X^2 - 3X - 1 = (X - x_1)(X - x_2)(X - x_3) \Rightarrow f(2) = (2 - x_1)(2 - x_2)(2 - x_3)$	3p
	f(2) = 13	2p

SUB.	SUBIECTUL al III-lea (30 de punc	
1.a)	$f'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{x}, \ x > 0$	2p
	f derivabilă în $x = 4 \Rightarrow \lim_{x \to 4} \frac{f(x) - f(4)}{x - 4} = f'(4)$	2p
	Finalizare	1p
b)	f este derivabilă pe $(0,+\infty)$ și $f'(x) = \frac{\sqrt{x}-2}{2x}$	2p
	$f'(x) > 0$ pentru orice $x \in (4, +\infty) \Rightarrow$ funcția f este crescătoare pe intervalul $(4, +\infty)$	3 p
c)	$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \left(\sqrt{x} - \ln x\right) = +\infty$	3 p
	x = 0 este ecuația asimptotei verticale la graficul funcției f	2 p
2.a)	F este derivabilă și $F'(x) = xe^x + e^x - e^x$, pentru orice $x \in \mathbb{R}$	3 p
	F' = f	2 p
b)	$\int_{1}^{e} f(\ln x) dx = \int_{1}^{e} x \ln x dx =$	1p
	$= \frac{x^2}{2} \ln x \bigg _{1}^{e} - \int_{1}^{e} \frac{x^2}{2} \cdot \frac{1}{x} dx =$	2 p
	$=\frac{e^2}{2} - \frac{x^2}{4} \bigg _1^e = \frac{e^2 + 1}{4}$	2p
c)	$V = \pi \int_{1}^{2} g^{2}(x) dx =$	2 p
	$= \pi \int_{1}^{2} e^{2x} dx = \pi \frac{e^{2x}}{2} \Big _{1}^{2} =$	2 p
	$=\frac{\pi e^2 \left(e^2-1\right)}{2}$	1p

Probă scrisă la **Matematică**

Varianta 5

Barem de evaluare și de notare

 $Filiera\ teoretic\ \ \ \ profilul\ real,\ specializarea\ \ \ \ stiințele\ naturii$

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale