

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

FEBRUARY/MARCH/FEBRUARIE/MAART 2018

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 22 pages./ Hierdie nasienriglyne bestaan uit 20 bladsye.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking guidelines. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, merk slegs die EERSTE poging.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, merk die doodgetrekte poging.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.

Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

	GEOMETRY
C	A mark for a correct statement (A statement mark is independent of a reason.)
S	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede.)
R	A mark for a correct reason (A reason mark may only be awarded if the statement is correct.)
K	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is.)
C/D	Award a mark if the statement AND reason are both correct.
S/R	Ken 'n punt toe as beide die bewering EN rede korrek is.

Days/Dae	1	2	3	4	5	6	7	8	9	10
Units of blood/ Eenhede bloed	45	59	65	73	79	82	91	99	101	106

1.1.1	$\bar{x} = \frac{800}{}$,	✓ 800 (addition of units)
	$x = \frac{10}{10}$ $= 80$	Answer only: full marks	,	✓ answer (CA if ÷ 10)
	_ 00			(2)
1.1.2	$\sigma = 18,83$	No penalty for rounding	,	✓ answer (A) (2)
1.1.3	(61,17;98,83)		,	✓ mean – 1 SD
		nd 10 lie outside 1 standard deviation from	the	✓ mean + 1 SD
	mean ∴5 days	Correct answer only: full marks provided that 1.1.1. & 1.1.2 both correct	d ,	✓ answer (3)
1.2.1	Skewed to the less Skeef na links of	ft or negatively skewed/ negatief skeef	,	answer
1.0.0	A 65			(1)
1.2.2	A = 65 $B = 99$	Answers without labelling: 1/2		✓ answer ✓ answer
				(2)
1.3	New total = 95 × ∴ Units not coun	10 = 950 ted = $950 - 800 = 150$,	answer (CA from 1.1.1) (1)
				[11]

Number of hours Aantal uur	30	50	80	100	120	150	190	220	260
Value of sales (in thousands of rands) Waarde van verkope (in duisend rand)	270	275	376	100	420	602	684	800	820

2.1	Outlier/Uitskieter: (100; 100)	accept: 100 as answer	✓ answer
2.2	a = 94,50273 b = 2,913729 $\hat{y} = 94,50 + 2,91x$	Integral values: max 2/3 Swopped <i>a</i> and <i>b</i> : 2/3	$\begin{array}{c c} & & (1) \\ \hline \checkmark \text{ value of } a \\ \checkmark \text{ value of } b \\ \checkmark \text{ equation} \end{array}$
			(3)
2.3	= 792,90	rom 2.1)	✓ substitution
	Value = R793 000		✓ answer in thousands
	OR/OF		of Rands (2)
	$\hat{y} = 793,7978142$ (calculator) Value = R794 000	Penalise 1 mark if answer not in thousands of Rands	✓✓ answer in thousands of Rands (2)
2.4	b = 2,913729 $\therefore R2 914 \text{ OR/OF} R2 910 \text{ (call)}$	Iculator) Answer only: full marks	✓ value of b ✓ answer (2) [8]

3.1	x = 3	✓ answer
		(1)
3.2	$m_{\rm QP} = \tan 71,57^{\circ}$	$ \checkmark m_{QP} = \tan 71,57^{\circ} $
	= 3 Answer only: full marks	✓ answer
		\Box (2)
3.3	$y = mx + c \qquad \qquad y - y_1 = m(x - x_1)$	(m CA from 3.2 if > 0)
	-2 = 3(-7) + c or $y + 2 = 3(x + 7)$	✓ substitution of $m \& Q$
	y = 3x + 19	✓ equation
		(2)
3.4	R(3;0)	(wrong R: CA if $x > 0$)
	$QR = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
	$=\sqrt{(-7-3)^2+(-2-0)^2}$	✓ substitution
	$=\sqrt{104} \text{ or } 2\sqrt{26}$	✓ answer (in surd form)
		(2)

3.5	$\tan(90^{\circ} - \theta) = m_{\text{OR}}$	(wrong R: CA if $x > 0$)
		✓ gradient of QR/RN/QN
	$= \frac{0 - (-2)}{3 - (-7)}$ Answer only: full	✓ substitution of Q & R
	$=\frac{1}{5} \qquad \left \tan \theta = \frac{1}{5} : 1/3 \right $	✓ answer
2.5		(3)
3.6	$RN = \frac{1}{2}.2\sqrt{26} = \sqrt{26}$	✓ RN
	SR = 6	✓ SR
	$ \begin{array}{c c} \sqrt{26} & \theta \\ \hline 90^{\circ} - \theta & \hline 5 \end{array} $	✓ diagram (5 & $\sqrt{26}$)
	Area $\Delta RSN = \frac{1}{2}SR \cdot RN \cdot \sin \theta$	✓ use of correct area rule
	$= \frac{1}{2} \times 6 \times \sqrt{26} \times \frac{5}{\sqrt{26}}$	✓ substitution of $\sin \theta$
[[[[[[[[[[[[[[[[[[[[= 15 square units	✓ answer
lculator: max 4 marks	OR/OF	(6)
x 4 n	$RN = \frac{1}{2}.2\sqrt{26} = \sqrt{26}$	
max	SR = 6	✓ RN
tor:	θ	✓ SR
cula	$\sqrt{26}$ 1	
g cal	90°- θ	✓ diagram
using ca	5	
	Area $\Delta RSN = \frac{1}{2}SR \cdot RN \cdot \sin \theta$	✓ use of correct area rule
	$=\frac{1}{2}(6)(\frac{1}{2}QP).\sin\theta$	
	$=\frac{3}{2}(\sqrt{104}).\sin\theta$	
	$=\frac{3}{2}(\sqrt{104})\left(\frac{5}{\sqrt{26}}\right)$	✓ substitution of $\sin \theta$
	= 15 square units	✓ answer (6)
		(0)

OR/OF

$$SR = 6$$

$$\perp height = 5$$

$$A = \frac{1}{2} SR \times \bot h$$

$$= \frac{1}{2} (6)(5)$$

$$= 30 \text{ square units}$$

Using $A = \frac{1}{2}b \times \perp h$ incorrectly: max 1/6

✓ SR

✓✓ ⊥ height

- ✓ use of correct area formula
- ✓ substitution of $\sin \theta$
- ✓ answer

[16]

(6)

4.1	$OK = \sqrt{180} \text{or} 6\sqrt{5}$	✓ answer	(1)
4.2	$a^2 + b^2 = 180$		
	$b = \frac{1}{2}a$	✓ b in terms of a	
	$a^2 + \left(\frac{1}{2}a\right)^2 = 180$ No penalty if x and y are not converted to a and b	✓ substitution	
	$a^2 + \frac{1}{4}a^2 = 180$		
	$a^2 = 144 \therefore a = -12$	$\checkmark a^2 = 144$	
	$b = \frac{1}{2}(-12)$ Error in simplification: max 2/4	✓ substitution	
	K (-12; -6) (given)		(4)
	OR/OF		
	$a^2 + b^2 = 180$ $a = 2b$	$\checkmark a$ in terms of b	
	$(2b)^2 + b^2 = 180$	✓ substitution	
	$5b^2 = 180$ $b^2 = 36$	✓ $b^2 = 36$ ✓ substitution	
			(4)

12:	NSC/NSS – Marking Guidelines/Nasienrigh	yne
4.3.1	$m_{\text{OK}} = \frac{1}{2} \qquad [y = \frac{1}{2}x]$	
	$m_{\rm PT} = -2$ [radius \perp tangent/raaklyn]	$\checkmark m_{\rm PT} = -2$
	$y = mx + c$ OR/OF $y - y_1 = m(x - x_1)$	
	-6 = -2(-12) + c y - (-6) = -2(x - (-12))	✓ substitution of <i>m</i> &
	c = -30 $c = -30$	K(-12; -6)
	$y = -2x - 30$ Using $m = \frac{1}{2} : 0/3$	✓ equation
	Using $m = -\frac{1}{2} \text{ or } 2:2/3$	
4.3.2	3MK = OK	(3) ✓ 3MK = OK
1.5.2		4
	$\Rightarrow OM = \frac{4}{3}OK$	\checkmark OM = $\frac{4}{3}$ OK
	$M = \frac{4}{3}(-12; -6)$ Answer only: 0/6	$\checkmark \checkmark M = \frac{4}{3}(-12; -6)$
	∴M(-16; -8)	✓ x-coordinate
	OR/OF	✓ y-coordinate (6)
	GR/O7	(0)
	$3MK = OK$ $9MK^2 = OK^2 = 180$	✓ 3MK = OK
	$\therefore MK^2 = 20$	\checkmark MK ² = 20
	Let $M(x; y)$, then:	
	$(x+12)^2 + (y+6)^2 = 20$	d aquation
	$\left((x+12)^2 + \left(\frac{1}{2}x+6\right)^2 = 20\right)$	✓ equation
		✓ substitution
	$x^{2} + 24x + 144 + \frac{1}{4}x^{2} + 6x + 36 = 20$	
	$\frac{5}{4}x^2 + 30x + 160 = 0$	
	$x^{2} + 24x + 128 = 0$ (x + 16)(x + 8) = 0	
	$x = -16$ $x \neq -8$ [since M is outside the large circle]	
	y = -8	✓ <i>x</i> -coordinate
	M(-16; -8)	✓ y-coordinate
	OR/OF	(6)
	4 12	✓ 3MK = OK
		SIMIX - OIX
	$8 \qquad \begin{vmatrix} 6 & 3r \end{vmatrix}$	✓ ✓ ✓ diagram with
	K(-12;-6)	values OR valid explanation
	M K(-12, -0)	✓ <i>x</i> -coordinate
	∴M(-16; -8)	✓ y-coordinate
	OR/OF	(6)
<u> </u>	UNUI	

		,
	3MK = OK	✓ 3MK = OK
	$9MK^2 = OK^2 = 180$	(2
	$\therefore MK^2 = 20$	$\checkmark MK^2 = 20$
	Let M(x; y), then $y = \frac{1}{2}x$:	
	$(x+12)^2 + (y+6)^2 = 20$	✓ equation
	$(x+12)^2 + \left(\frac{1}{2}x+6\right)^2 = 20$	✓ substitution
	$4(x+12)^2 + (x+12)^2 = 80$	
	$(x+12)^2 = 16$	
	$x+12=\pm 4$	
	$x = -16$ $x \neq -8$ [since M is outside the large circle] y = -8	✓ x-coordinate ✓ y-coordinate
	M(-16; -8)	(6)
4.3.3	$(x - (-16))^{2} + (y - (-8))^{2} = \left(\frac{1}{3}\sqrt{180}\right)^{2}$	✓ LHS (CA from 4.3.2) ✓ RHS (CA from 4.1)
	$(x+16)^2 + (y+8)^2 = 20$	(CA Holli 4.1)
		(2)
4.4	OK < r < OK + 2KM	(-)
	$\sqrt{180} < r < \sqrt{180} + \frac{2}{3}\sqrt{180}$ Answer only: full marks (No need to simplify)	✓✓ values ✓ inequality
	$6\sqrt{5} < r < 10\sqrt{5}$	(3)
4.5	$x^{2} + 32x + (16)^{2} + y^{2} + 16y + (8)^{2} = 256 + 64 - 240$	
	$(x+16)^2 + (y+8)^2 = 80$	✓ equation in centre, radius form
	New circle/nuwe sirkel:	
	Centre/middelpt $(-16; -8)$ &	(0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	$r = 4\sqrt{5}$	✓ Centre: (-16; -8)
	, , , , ,	$\checkmark r = 4\sqrt{5} \text{ (new)}$
	Original circle/oorspronklike sirkel:	
	$M(-16;-8) \& r = 2\sqrt{5}$	$\checkmark r = 2\sqrt{5}$ (original)
	This circle will never cut the circle with centre M as they have the same centre (concentric circles) but unequal radii/Hierdie sirkel sal nooit die sirkel met middelpt M sny nie, want hulle is konsentries, want het dieselfde	✓ conclusion ("concentric" must be stated) (5)
	middelpunt met verskillende radii.	[24]
<u> </u>	I	<u> </u>

5.2	$\sin(180^{\circ} - x).\cos(-x) + \cos(90^{\circ} + x).\cos(x - 180^{\circ})$ $= \sin x.\cos x - \sin x(-c)$ $= 2\sin x.\cos x$ $= \sin 2x$ Second line written as $\sin x \cos x + \sin x \cos x$: $\max 5/6$	$✓ \sin x \checkmark \cos x$ $✓ -\sin x \checkmark -\cos x$ $✓ \text{ simplification}$ $✓ \text{ answer}$ (6)
5.3	$\sin 3x.\cos y + \cos 3x.\sin y$ $\sin(3x + y)$ $= \sin 270^{\circ}$ $= -1$	✓ compound angle ✓ answer (2)
5.4.1	$2\cos x = 3\tan x$ $2\cos x = \frac{3\sin x}{\cos x}$ $2\cos^2 x = 3\sin x$ $2(1 - \sin^2 x) = 3\sin x$ $2 - 2\sin^2 x = 3\sin x$ $2\sin^2 x + 3\sin x - 2 = 0$	✓ $tan x = \frac{\sin x}{\cos x}$ ✓ multiplying by $cos θ$ ✓ $cos^2 x = 1 - sin^2 x$ (3)
5.4.2	$2\sin^{2} x + 3\sin x - 2 = 0$ $(2\sin x - 1)(\sin x + 2) = 0$ $\sin x = \frac{1}{2} \text{ or } \sin x = -2 \text{ (no solution)}$ $x = 30^{\circ} + k.360^{\circ} \text{ or } x = 150^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	✓ factors ✓ both values of $\sin x$ ✓ no solution ✓ $30^{\circ} + k.360^{\circ}$ ✓ $150^{\circ} + k.360^{\circ}$; $k \in \mathbb{Z}$ (5)
5.4.3	$5y = 30^{\circ} + k.360^{\circ}$ or $5y = 150^{\circ} + k.360^{\circ}$ $y = 6^{\circ} + k.72^{\circ}$ or $y = 30^{\circ} + k.72^{\circ}$ $\therefore y = 144^{\circ} + 6^{\circ}$ or $y = 144^{\circ} + 30^{\circ}$ $y = 150^{\circ}$ or $y = 174^{\circ}$ \mathbf{OR}/\mathbf{OF} $144^{\circ} \le y \le 216^{\circ}$ $720^{\circ} \le 5y \le 1080^{\circ}$ $5y = 750^{\circ}$ or $5y = 870^{\circ}$ $y = 150^{\circ}$ or $y = 174^{\circ}$	
5.5.1	$g(x) = -4\cos(x + 30^{\circ})$ maximum value = 4	(4) ✓ answer (1)

	Answer only: full marks	
	$\therefore h(x) = -4\sin x$	\checkmark equation of h (3)
	$=4\sin x$	✓ reduction
	$= -4\cos(x+90^\circ)$	
	shifted to the left/skuif na links: $y = -4\cos(x + 30^{\circ} + 60^{\circ})$	✓ shift of 60° to the left
5.5.3	$y = -4\cos(x + 30^\circ)$	
	Answer only: full marks	
	$-3 \le y \le 5$ OR/OF $y \in [-3; 5]$	✓ answer (2)
	∴ range of/waardeversameling van $g(x) + 1$:	
5.5.2	range of/waardeversameling van $g(x)$: $-4 \le y \le 4$ OR/OF $y \in [-4; 4]$	\checkmark range of $g(x)$

NSC/NSS-Marking~Guidelines/Nasienriglyne

6.1.1	$\tan \theta = \frac{PQ}{QR} = \frac{PQ}{x}$ $\therefore PQ = x \tan \theta$ Answer only: full marks OR/OF	✓ trig ratio ✓ answer (2)
	$\frac{QR}{\sin P} = \frac{PQ}{\sin PRQ}$ $\therefore PQ = \frac{x.\sin \theta}{\sin(90^\circ - \theta)}$	✓ trig ratio ✓ answer (2)
6.1.2	$\frac{AR}{\sin A\hat{Q}R} = \frac{QR}{\sin Q\hat{A}R}$ $AR = \frac{x\sin(90^{\circ} + \theta)}{\sin \theta}$ Answer only: full marks	✓ use of sine rule ✓ substitution into sine rule correctly (2)

	_ _	
6.2	$\sin 2\theta = \frac{AB}{AR}$ $AB = AR \sin 2\theta$ $= \frac{x \sin(90^\circ + \theta) \cdot \sin 2\theta}{\sin \theta}$	✓ substitution into trig ratio and AB as subject ✓ substitution of AR
	$= \frac{x\cos\theta.\sin 2\theta}{\sin\theta}$ $= \frac{x\cos\theta.2\sin\theta\cos\theta}{\sin\theta\cos\theta}$	✓ co-ratio ✓ $\sin 2\theta = 2 \sin \theta \cos \theta$
	$ \sin \theta \\ = 2x \cos^2 \theta $	(4)
6.3	$\frac{AB}{QP} = \frac{2x\cos^2 12^\circ}{x \tan 12^\circ}$ = 9	✓ substitution CA from 6.1.1) ✓ answer
		(2) [10]

7.1.1	$\hat{T}_1 = 70^{\circ}$	[ext \angle of cyclic quad/buite \angle van koordevh]	✓ S ✓ R
			(2)
7.1.2	$\hat{\mathbf{Q}}_1 = \hat{\mathbf{Q}}_2 = 35^{\circ}$	[equal chords;equal \(\s/gelyke \) koorde; gelyke \(\alpha e \)]	$\checkmark S \checkmark R$ (2)
7.2.1	$\hat{T}_2 = \hat{Q}_1 = 35^{\circ}$	[alt ∠s/verwiss ∠e; PQ TR]	✓ S ✓ R
			(2)
7.2.2	$\frac{PT}{TS} = \frac{QR}{RS}$	[prop theorem/eweredighst; PQ \parallel TR]	✓ S ✓ R
	$\therefore \frac{TR}{TS} = \frac{QR}{RS}$	[PT = TR]	
			(2)
			[8]

$P\hat{T}R = 90^{\circ}$ $x = 90^{\circ} + \hat{R}$	[\angle in semi-circle/halfsirkel] [ext/buite \angle of/van \triangle]	✓ S/R ✓ S/R
$\therefore \hat{R} = x - 90^{\circ}$ $S\hat{T}P = x - 90^{\circ}$ $x + x - 90^{\circ} + y = 180^{\circ}$ $\therefore y = 270^{\circ} - 2x$	[tan chord theorem/raakl koordstelling] [sum of/som van \angle s/e in Δ]	✓ S ✓ R ✓ S ✓ answer [6]

9.1	equiangular Δs/gelykhoekige Δe	OR/OF ($\angle\angle\angle$)	✓ answer (1)
9.2	$\therefore \frac{GE}{GF} = \frac{DE}{GE}$ $GE^{2} = 45 \times 80$ $GE = 60$	[\(\Delta s \)]	✓ proportion ✓ substitution ✓ answer (3)
9.3	In ΔDEH and ΔFGH: DĤE = FĤG DÊH = FĜH EDH = GFH ∴ ΔDEH ΔFGH	[vert opp \angle s =/regoorst \angle e =] [$ \Delta$ s] [sum of/som van \angle s/e in Δ]	✓ S/R ✓ S/R ✓ S (3)
	OR/OF In ΔDEH and ΔFGH: DĤE = FĤG DÊH = FĜH ∴ ΔDEH ΔFGH	[vert opp \angle s =/regoorst \angle e =] [$ \Delta$ s] [$\angle \angle \angle$]	✓ S/R ✓ S/R ✓ R

9.4 GH EH	-=	[Δs]	✓S
	$\frac{\text{GH}}{\text{GH}} = \frac{80}{100}$	[EH = 60 - GH]	✓ substitution
45 (-GH - 45 $GH = 80(60 - GH)$		
	GH = 4800 – 80 GH GGH = 4800		
GH	1 = 38,4		✓ answer
			(3) [10]

10.1	Construction:	
	AO is drawn and produced to M	✓ Constr
		(0 75
	$\hat{O}_1 = \hat{A}_1 + \hat{B}$ [ext \angle of $\triangle/buite \angle van \triangle$]	✓ S/R
	But $\hat{A}_1 = \hat{B}$ [$\angle s \text{ opp} = \text{radii}/\angle e \text{ teenoor} = radii$]	✓ S/R
	$\therefore \hat{O}_1 = 2\hat{A}_1$	✓ S
	Similarly/Netso: $\hat{O}_2 = 2\hat{A}_2$	
	$\therefore \hat{\mathbf{O}}_1 + \hat{\mathbf{O}}_2 = 2\hat{\mathbf{A}}_1 + 2\hat{\mathbf{A}}_2$	✓ S
	$=2(\hat{A}_1+\hat{A}_2)$	
	$\hat{BOC} = 2\hat{BAC}$	
		(5)

10.2

10.2.1(a)	$\hat{\mathbf{F}}_1 = 2x$	$[\angle \text{ centre} = 2\angle \text{ at circum}/midpts \angle = 2omtreks \angle]$	✓ S ✓ R	(2)
				(2)
10.2.1(b)	$\hat{\mathbf{C}} = x$	[\(\s \) in the same seg/\(\section \) in dieselfde segment]	✓ S ✓ R	(2)
	OR/OF			(2)
	$\hat{\mathbf{C}} = x$	$[\angle \text{ centre} = 2\angle \text{ at circum/} midpts \angle = 2omtreks \angle]$	✓ S ✓ R	(2)
10.2.2	$\hat{\mathbf{D}}_3 = x$	$[\angle s \text{ opp equal sides}/\angle e \text{ teenoor} = sye]$	✓ S/R	
	$\hat{\mathbf{E}}_3 = 2x$ $\therefore \hat{\mathbf{F}}_1 = \hat{\mathbf{E}}_3 = 2x$	[ext \angle of \triangle /buite \angle van \triangle]	✓ S/R ✓ S	
	=	clic quadrilateral [converse \angle s in the same seg]/ pordevierhoek [omgekeerde \angle e in dieselfde segm]	✓ R	
				(4)

10.2.3	$\hat{A}_2 + \hat{A}_3 + \hat{D}_1 + \hat{F}_1 = 180^\circ$ [sum of \angle s in \triangle /som van \angle e in \triangle]	✓ S
	$\hat{A}_2 + \hat{A}_3 = D_1$ [\(\angle \text{s opp} = \text{sides}/\(\angle e \text{ teenoor} = \text{sye}\)]	
	$\therefore \hat{A}_2 + \hat{A}_3 = 90^\circ - x$	✓ S
	$\hat{E}_1 = \hat{A}_2 + \hat{A}_3 \qquad [ext \angle of cyclic quad/buite \angle v \ koordevh]$ $= 90^{\circ} - x$	✓ R ✓ S
	$\hat{FKE} = 90^{\circ}$ [line from centre bisects chord]/ [lyn van midpt halveer koord]	✓ S ✓ R
	$\hat{\mathbf{F}}_3 = x$ [sum of \angle s in Δ /som van \angle e in Δ]	(6)
10.2.4	$BAC = \hat{D}_3$ [\angle s in the same seg/ \angle e in dieselfde segm] $AE = BE$ [sides opp equal \angle s/sye teenoor = \angle e]	✓ S ✓ S
	$\frac{\text{area } \Delta AEB}{\text{area } \Delta DEC} = \frac{\frac{1}{2} (BE)(AE).\sin A\hat{E}B}{\frac{1}{2} (EC)(ED).\sin D\hat{E}C}$	✓ substitution into area rule

TOTAL/TOTAAL: 150

✓ simplification of RHS

(5) [**24**]