Travaux dirigés d'analyse 3 (SMA2/SMI2) $\frac{\text{Série 2}}{\text{Série 2}}$

Exercice 1

1. Démontrer que

$$\ln(1+x) + x^2 \sim x \text{ et } x^2 + x^3 \sim x^2.$$

En déduire $\lim_{x \to 0^+} \frac{\ln(1+x) + x^2}{x^2 + x^3}$.

2. Démontrer que

$$\sin(2x) \sim 2x \text{ et } \tan(3x) \sim 3x,$$

En déduire $\lim_{x\to 0^+} \frac{\sin(2x)}{\tan(3x)}$

Exercice 2

1. Supposons que f(x) = o(g(x)). Montrer que

- si
$$g(x) \xrightarrow[x \to x_0]{} 0$$
 alors $f(x) \xrightarrow[x \to x_0]{} 0$

- si
$$|f(x)| \underset{x \to x_0}{\longrightarrow} +\infty$$
 alors $|g(x)| \underset{x \to x_0}{\longrightarrow} +\infty$

2. Montrer les assertions suivantes

♦ En l'infini:

•
$$x^{\alpha} = o(x^{\beta})$$
 ssi $0 < \alpha < \beta$ et $\frac{1}{x^{\alpha}} = o(\frac{1}{x^{\beta}}:)$ ssi $0 < \beta < \alpha$

$$\bullet (\ln x)^{\alpha} = o(x^{\beta}) \,\forall \alpha > 0, \forall \beta > 0.$$

•
$$x^{\alpha} = o(e^{\beta x}) \quad \forall \alpha > 0, \forall \beta > 0 \quad \text{et} \quad e^{-\beta x} = o(\frac{1}{x^{\alpha}}) \forall \alpha > 0, \forall \beta > 0$$

♦ En 0

•
$$(\ln x)^{\alpha} = o\left(\frac{1}{x^{\beta}}\right) \quad \forall \alpha > 0, \forall \beta > 0$$

$$\bullet \ln(1+x) = x + o(x)$$

$$e^x = 1 + x + o(x)$$

Exercice 3

Donner les développements limités à l'ordre 4, au voisinage de 0, (DL_0^4) , des fonctions suivantes définies par:

1.
$$f_1(x) = \sqrt{1 + \cos x}$$

2.
$$f_2(x) = e^{\cos x}$$

3.
$$f_3(x) = \log(1 + \sinh(x))$$

4.
$$f_4(x) = (1+x)^{\frac{1}{x}}$$

$$5. f_5(x) = \log(\sin(x))$$

Exercice 4

Donner les (DL_1^3) , des fonctions suivantes définies par:

$$1. f_1(x) = \frac{\log(x)}{x}$$

2.
$$f_2(x) = Arctan(x)$$

Exercice 5

Déterminer le développement limité à l'ordre 3 , au voisinage de $+\infty$, de $f(x) = e^{\frac{1}{x}}$ Arctan x.

Exercice 6

Déterminer les nombres réels a et b de manière que la fonction f, définie par $f(x) = \cos x - \frac{1 + ax^2}{1 + bx^2}$, soit au voisinage de 0 un infiniment petit d'ordre aussi élevé que possible ; trouver alors sa partie principale.

Exercice 7

A l'aide des D.L. déterminer les limites suivantes :

$$\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x} \qquad \text{et} \qquad \lim_{x \to 0} (a^x + b^x - c^x)^{\frac{1}{x}}$$

avec
$$(a, b, c) \in (\mathbb{R}_+^*)^3$$
.

Exercice 8

A l'aide des développements limités, étudier localement la fonction suivante, au voisinage de 1, $f(x) = \frac{x \log(x)}{x^2 - 1}$.

Exercice 9

Soit $f(x) = x \cdot \sqrt{\frac{x-1}{x+1}} + ax + b + \frac{c}{x}$ avec a, b, c des nombres réels.

- 1. Déterminer le développement limité généralisé en $\frac{1}{x^2}$ de f en $+\infty$.
- 2. En déduire l'existence d'une asymptote oblique Δ à la courbe \mathcal{C} de f en $+\infty$; et étudier la position de \mathcal{C} par rapport à Δ en $+\infty$.
- 3. Déterminer les réels a,b,c pour que $\lim_{x\to +\infty} x f(x) = 0.$