House Price Prediction using Linear Regression

Introduction:

In this project, we are tasked with analyzing a dataset that contains housing-related information for a fictional town. The dataset consists of various numerical features such as average income, house age, number of rooms, and population, along with the corresponding house prices. Additionally, there is a categorical feature representing the addresses of the houses.

Problem Statement:

The goal is to develop a predictive model using Linear Regression that can accurately estimate house prices based on the given features. This involves several key steps in data preprocessing, model selection, and evaluation:

1. Data Preprocessing:

- Handling categorical data: Convert the categorical 'Address' feature into a numerical format suitable for machine learning models.
- Feature scaling: Normalize or standardize numerical features to ensure all features contribute equally to model training.
- o Optional feature engineering: Create new features or transform existing ones to potentially enhance model performance.

2. Model Selection and Training:

- Choose an appropriate regression model: Given the nature of the problem (predicting house prices), linear regression is a common starting point due to its interpretability and ease of implementation.
- Train the selected model on a training dataset prepared from the preprocessed data.

3. Model Evaluation:

Evaluate the trained model's performance using metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE),
 Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and R-squared (R2). These metrics provide insights into how well the model predicts house prices on both training and test datasets.

Procedure:

- Data Loading: Load the dataset containing housing information into a pandas DataFrame.
- **Data Engineering**: Preprocess the data by encoding categorical variables, scaling numerical features, and optionally performing feature engineering.
- **Model Training**: Select a linear regression model, split the data into training and testing sets, and train the model using the training set.
- **Model Evaluation**: Evaluate the model's performance using appropriate metrics on the test set to assess its accuracy and generalization capability.

Summary:

In summary, this project involves preparing and analyzing a housing dataset, building a predictive model using linear regression, and evaluating its performance. By following a systematic approach to data preprocessing, model selection, and evaluation, we aim to develop a robust model that accurately predicts house prices based on the provided features.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline

# Applying style settings for seaborn and matplotlib
sns.set_theme(style="whitegrid")
plt.style.use("ggplot")

df = pd.read_csv('/content/USA_Housing.csv')
# Displaying data
df.head()
```

-		_
•	•	÷
	⇁	\mathbf{v}
- 1	<u> </u>	_

•		Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address	11.
	0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael Ferry Apt. 674\nLaurabury, NE 3701	
	1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Johnson Views Suite 079\nLake Kathleen, CA	
	2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 Elizabeth Stravenue\nDanieltown, WI 06482	
	3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett\nFPO AP 44820	

Next steps:

Generate code with df

View recommended plots

#Displaying information about like dat type, Not- Null counts df.info()

<pr RangeIndex: 5000 entries, 0 to 4999 Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype	
0	Avg. Area Income	5000 non-null	float64	
1	Avg. Area House Age	5000 non-null	float64	
2	Avg. Area Number of Rooms	5000 non-null	float64	
3	Avg. Area Number of Bedrooms	5000 non-null	float64	
4	Area Population	5000 non-null	float64	
5	Price	5000 non-null	float64	
6	Address	5000 non-null	object	

dtypes: float64(6), object(1) memory usage: 273.6+ KB

#Summarize the distribution and central tendencies df.describe()

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

#Displaying columns
df.columns

```
Index(['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms', 'Avg. Area Number of Bedrooms', 'Area Population', 'Price', 'Address'], dtype='object')
```

Exploratory Data Analysis (EDA)

Let's create some simple plots to check out the data!

```
# Plotting pairplot
sns.pairplot(df, height=2.5, aspect=1.2)
```


 \blacksquare

ıl.

 $\overline{2}$

<seaborn.axisgrid.PairGrid at 0x7bfff9936fe0>

sns.histplot(df['Price'], kde=True)

<Axes: xlabel='Price', ylabel='Count'>

Start coding or generate with AI.

#Displaying the data after converstion df.head()

→		Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address	
	0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	NaN	ılı
	1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	NaN	
	2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	NaN	
	3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	NaN	
	4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	NaN	

Next steps:

Generate code with df

View recommended plots

Training a Linear Regression Model

Let's now begin to train out regression model! We will need to first split up our data into an X array that contains the features to train on, and a y array with the target variable,

```
X = df[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
               'Avg. Area Number of Bedrooms', 'Area Population']]
y = df['Price']
```

Train Test Split

Now let's split the data into a training set and a testing set. We will train out model on the training set and then use the test set to evaluate the model.

```
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random state=42)
from sklearn.model selection import cross val score, train test split
from sklearn.metrics import mean absolute error, mean squared error, r2 score
# Define a function to calculate MAPE (Mean Absolute Percentage Error)
def mape_score(y_true, y_pred):
    return np.mean(np.abs((y_pred - y_true) / y_true)) * 100
# Function to print and return evaluation metrics
def evaluate(true, predicted):
   mae = mean_absolute_error(true, predicted)
   mse = mean_squared_error(true, predicted)
    rmse = np.sqrt(mse)
   mape = mape_score(true, predicted)
   r2_square = r2_score(true, predicted)
   print('MAE:', mae)
   print('MSE:', mse)
   print('RMSE:', rmse)
   print('MAPE:', mape)
   print('R2 Square:', r2 square)
    print('_____')
    return mae, mse, rmse, mape, r2 square
# Function to perform cross-validation and return mean score
def cross_val(model, X, y, cv=10):
    scores = cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=cv)
    return np.sqrt(-scores.mean())
```

Preparing Data For Linear Regression

```
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
pipeline = Pipeline([
    ('std scalar', StandardScaler())
# use piplines to scale data (Whenever our data is not normally distributed, we use it to get normal distribution. You mus
X_train = pipeline.fit_transform(X_train)
X test = pipeline.transform(X test)
#
X_train
→ array([[-0.19049241, -0.12817719, -0.13160635, 0.12038585, -0.82761782],
            [-1.38876401, 0.43080443, 0.80028487, -0.55648895, 1.15829878],
            [-0.35012392, 0.46680752, 1.70375078, 0.03067955, -0.31904298],
            [-0.22335061, 0.53809182, -0.36489661, -0.68697084, 0.11908894],
            [-0.92417067, 1.43077434, 2.26846315, 0.2753331, 1.39018355],
            [-0.69357335, -0.07762332, 0.89219611, 1.67801341, -0.00681852]])
X_test
\rightarrow \overline{\phantom{a}} array([[-0.62396497, 1.05134233, -0.53493732, -0.59726454, 0.77509854],
            [-1.06752524, 0.92593776, -0.05804915, -0.69512596, 0.73880748],
            [0.14995479, 0.77674776, -0.31465336, -1.60849918, -0.69076777],
            [1.16115701, 1.18417775, 0.25662849, 1.18870632, 0.93991305],
            [ 1.69832503, 0.56046124, -1.85607396, -1.54325824, 1.16585758],
            [-0.14145775, -1.04516314, 0.64633545, 0.8625016, -0.40292631]])
```

Linear Regression

```
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X_train,y_train)

* LinearRegression
LinearRegression()
```

Model Evaluation

Let's evaluate the model by checking out it's coefficients and how we can interpret them.

```
# print the intercept
print(lin_reg.intercept_)
     1229576.9925600903
coeff_df = pd.DataFrame(lin_reg.coef_, X.columns, columns=['Coefficient'])
coeff_df
\overline{2}
                                       Coefficient
                                                      Avg. Area Income
                                     231741.876652
                                                      ıl.
           Avg. Area House Age
                                     163580.776566
       Avg. Area Number of Rooms
                                     120724.771387
      Avg. Area Number of Bedrooms
                                       2992.449135
             Area Population
                                     152235.900097
              Generate code with coeff_df
                                              View recommended plots
 Next steps:
```

Predictions from our Model

Let's grab predictions off our test set and see how well it did!

pred = lin_reg.predict(X_test)

plt.scatter(y_test, pred)

<matplotlib.collections.PathCollection at 0x7bfff7ad5b40>

sns.displot((y_test - pred), bins=50, kde=True) # Replace with your data and parameters
plt.show() # Display the plot


```
#Displaying Evaluation of Model
test_pred = lin_reg.predict(X_test)
train_pred = lin_reg.predict(X_train)

print('Test set evaluation:\n______')
evaluate(y_test, test_pred)
print('Train set evaluation:\n_____')
evaluate(y_train, train_pred)
```

Test set evaluation:

MAE: 80879.09723489445 MSE: 10089009300.89399 RMSE: 100444.06055558482 MAPE: 7.387838859754366

R2 Square: 0.9179971706834331

Train set evaluation:

MAE: 81509.3933124445 MSE: 10256318867.482723 RMSE: 101273.48551068401 MAPE: 7.682929604751326

R2 Square: 0.9179787435623722

(81509.3933124445, 10256318867.482723, 101273.48551068401, 7.682929604751326, 0.9179787435623722)

results_df = pd.DataFrame(data=[["Linear Regression", *evaluate(y_test, test_pred), cross_val(LinearRegression(), X_train, y columns=['Model', 'MAE', 'MSE', 'RMSE', 'MAPE', 'R2 Square', 'Cross Validation'])

Display the results_df results_df

→ MAE: 80879.09723489445 MSE: 10089009300.89399

> RMSE: 100444.06055558482 MAPE: 7.387838859754366

R2 Square: 0.9179971706834331