# DAASA HACKATHON (11-04-23)

TEAM ML MAVERICKS

PROBLEM - I (BAD CYCLE PREDICTION)

# TEAM MEMBERS:

- 1. BHUVVAAN CHANDRA (LEAD)
- 2. TRINAY GANGISETTY
- 3. SIDDHARTH KALYANASUNDARAM
- 4. ANUDEEP NAYAK

#### PROBLEM STATEMENT:

Objective: Develop a predictive maintenance system for aluminum manufacturing.

**Issue:** Poor maintenance timing leads to bad furnace cycles, causing costly downtime and low-quality metal.

Solution: Create a model to predict bad cycles and schedule maintenance.

Benefits: Reducing downtime, minimizing maintenance costs, and improving metal quality.

Evaluation: Measure success using AUC-ROC score and Accuracy of the Model.

## SAMPLE DATA:

| Period Code | Cycle ID | B_2     | B_3     | B_4 | B_5    | B_9         | B_10  | B_14 | B_15  | B_16   | B_17    | B_18    | B_19   | B_20 | B_21    | B_22 | B_23 | B_24  | B_25    | Good/Bad | timestamp     |
|-------------|----------|---------|---------|-----|--------|-------------|-------|------|-------|--------|---------|---------|--------|------|---------|------|------|-------|---------|----------|---------------|
| 1           | 1        | -0.0007 | -0.0004 | 100 | 518.67 | 14.62       | 21.61 | 1.3  | 47.47 | 521.66 | 2388.02 | 8138.62 | 8.4195 | 0.03 | 392     | 2388 | 100  | 39.06 | 23.419  | 0        | 3/1/2020 0:00 |
| 1           | 2        | 0.0019  | -0.0003 | 100 | 518.67 | 14.62       | 21.61 | 1.3  | 47.49 | 522.28 | 2388.07 | 8131.49 | 8.4318 | 0.03 | 392     | 2388 | 100  | 39    | 23.4236 | 0        | 3/1/2020 0:05 |
| 1           | 3        | -0.0043 | 0.0003  | 100 | 518.67 | 14.62       | 21.61 | 1.3  | 47.27 | 522.42 | 2388.03 | 8133.23 | 8.4178 | 0.03 | 390     | 2388 | 100  | 38.95 | 23.3442 | 0        | 3/1/2020 0:10 |
| 1           | 4        | 0.0007  | 0       | 100 | 518.67 | 14.62       | 21.61 | 1.3  | 47.13 | 522.86 | 2388.08 | 8133.83 | 8.3682 | 0.03 | 392     | 2388 | 100  | 38.88 | 23.3739 | 0        | 3/1/2020 0:15 |
| 1           | 5        | -0.0019 | -0.0002 | 100 | 518.67 | 14.62       | 21.61 | 1.3  | 47.28 | 522.19 | 2388.04 | 8133.8  | 8.4294 | 0.03 | 393     | 2388 | 100  | 38.9  | 23.4044 | 0        | 3/1/2020 0:20 |
| 1           | 6        | -0.0043 | -0.0001 | 100 | 518.67 | 14.62       | 21.61 | 1.3  | 47.16 | 521.68 | 2388.03 | 8132.85 | 8.4108 | 0.03 | 391     | 2388 | 100  | 38.98 | 23.3669 | 0        | 3/1/2020 0:25 |
| 1           | 7        | 0.001   | 0.0001  | 100 | 518.67 | 14.62       | 21.61 | 1.3  | 47.36 | 522.32 | 2388.03 | 8132.32 | 8.3974 | 0.03 | 392     | 2388 | 100  | 39.1  | 23.3774 | 0        | 3/1/2020 0:30 |
| 1           | 8        | -0.0034 | 0.0003  | 100 | 518.67 | 14.62       | 21.61 | 1.3  | 47.24 | 522.47 | 2388.03 | 8131.07 | 8.4076 | 0.03 | 391     | 2388 | 100  | 38.97 | 23.3106 | 0        | 3/1/2020 0:35 |
| 1           | 9        | 0.0008  | 0.0001  | 100 | 518.67 | 14.62       | 21.61 | 1.3  | 47.29 | 521.79 | 2388.05 | 8125.69 | 8.3728 | 0.03 | 392     | 2388 | 100  | 39.05 | 23.4066 | 0        | 3/1/2020 0:40 |
| 1           | 10       | -0.0033 | 0.0001  | 100 | 518.67 | 14.62       | 21.61 | 1.3  | 47.03 | 521.79 | 2388.06 | 8129.38 | 8.4286 | 0.03 | 393     | 2388 | 100  | 38.95 | 23.4694 | 0        | 3/1/2020 0:45 |
| 1           | 11       | 0.0018  | -0.0003 | 100 | 518.67 | 14.62       | 21.61 | 1.3  | 47.15 | 521.4  | 2388.01 | 8140.58 | 8.434  | 0.03 | 392     | 2388 | 100  | 38.94 | 23.4787 | 0        | 3/1/2020 0:50 |
| 1           | 12       | 0.0016  | 0.0002  | 100 | 518.67 | 14.62       | 21.61 | 1.3  | 47.18 | 521.8  | 2388.02 | 8134.25 | 8.3938 | 0.03 | 391     | 2388 | 100  | 39.06 | 23.366  | 0        | 3/1/2020 0:55 |
| 1           | 13       | -0.0019 | 0.0004  | 100 | 518.67 | 14.62       | 21.61 | 1.3  | 47.38 | 521.85 | 2388.08 | 8128.1  | 8.4152 | 0.03 | 393     | 2388 | 100  | 38.93 | 23.2757 | 0        | 3/1/2020 1:00 |
| 1           | 14       | 0.0009  | 0       | 100 | 518.67 | no response | 21.61 | 1.3  | 47.44 | 521.67 | 2388    | 8134.43 | 8.3964 | 0.03 | 393     | 2388 | 100  | 39.18 | 23.3826 | 0        | 3/1/2020 1:05 |
| 1           | 15       | -0.0018 | -0.0003 | 1/0 | 518.67 | 14.62       | 21.61 | 1.3  | 47.3  | start  | 2388.08 | 8127.56 | 8.4199 | 0.03 | Missing | 2388 | 100  | 38.99 | 23.35   | 0        | 3/1/2020 1:10 |

## DATA EXPLORATION (STEP - 1):

- 1. The first step and the most important step is understanding the columns.
- 2. We have explored a few insights from the data and they are as follows:
  - 1. We have identified the target column, quantitative, qualitative variables
  - 2. We have identified all the columns which had non-numerical text data
  - 3. We looked into the data set for any missing values
  - 4. We looked into the statistical analysis for all the numerical columns
  - 5. We further looked if the data in the columns is normally distributed or if the data is skewed
  - 6. We have identified that Period and Cycle goes together and cycle starts newly for each period again
  - 7. We have identified that duration between each cycle is 5 mins
  - 8. We have identified that there is no overlapping between any two periods and a new period starts only after the previous period is over and not simultaneously.

## DATA CLEANING (STEP - 2):

- 1. The next step is data cleaning
  - a. Non numerical text data > NaN
  - b. NaN -> imputed the mean / median values with help of (Kolmogorov Smirnov) test to check for the "Normality of the data".
  - c. If P <= 0.05 -> Median else Mean
  - d. We have converted the data types of the numerical columns from object -> float
  - e. Grouped the values by period -> added +1 to the previous value of missing cycle value and replaced it.

#### FEATURE ENGINEERING:

We decided to use only a few sensors that are highly correlated and have high variation, and drop the rest of the features. So we explored the same using several methods

- 1. RFE Recursive Feature Elimination
- 2. VIF Variation Influence Factor
- 3. ANOVA (Analysis of Variance) F Test

### CORRELATION MATRIX



### MODELLING:

| ALGORITHM                | ACCURACY |  |  |  |  |  |  |
|--------------------------|----------|--|--|--|--|--|--|
| RANDOM FOREST CLASSIFIER | 91.12%   |  |  |  |  |  |  |
| XGBOOST                  | 95.60%   |  |  |  |  |  |  |

#### Why XGBOOST?

- 1. XGBoost is a great algorithm for classification and regression problems.
- 2. It has inbuilt feature selection capability
- 3. Really good for imbalanced datasets such as ours.
- 4. Lots of hyperparameter tuning possibilities.

# HYPFRTUNING: 1.0BJECTIVE - LOGISTIC 2. PARAMETER GRID SEARCH A. LEARNING RATE - STEP SIZE LEARNING - 0.02 B. N\_ESTIMATORS - NO OF BASE LEARNERS - [150, C. MAX\_DEPTH - HEIGHT OF DT - [3,4,5]

TOTAL 9 POSSIBLE COMBINATIONS, 300 AND 5 BEING THE BEST

#### CONFUSION MATRIX



- The train data set is further split into test and train data sets to estimate the accuracy of the model.
- 75% of the data set is used for training and 25% of the data set is used for testing.
- This leads to a test data set of ~12000.

#### ROC CURVE



- The train data set is further split into test and train data sets to estimate the accuracy of the model.
- 75% of the data set is used for training and 25% of the data set is used for testing.
- This leads to a test data set of ~12000.

#### FEATURE EXTRACTION



# THANK YOU!:)