2) Physical meaning of Fourier series expansion of a function fox):
Assume we have a signal

(3) Compaing Fourier series and power series

Tourier Cosine and sine senes

Let's begin our discussion with two examples:

Example 1: Expand the square wave by its Fourier Series

$$f(x) = \frac{a_0}{z} + \sum_{n=1}^{\infty}$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty}$$

Example 2: Expand the triangle wave by its Former series

$$f(x) = \frac{1}{\pi} x$$

1) If fex) is

$$f(x) = \frac{a_0}{2} + q_1 \cos \frac{\pi}{p} x + q_2 \cos \frac{2\pi}{p} x + \cdots$$

Find ao inner product with

Find an: inner product with

2) If fox) is

Find by: inner product with

Remarks:

- O Fourier sine series
- 2 In many physical problems, we may also have a nonperiodic. function f(x) defined on [0, 1]. To expressit by the Former series, we can

Example: Expand afunction fix) by its Fourier sine seies

Use Fourier series to solve DEs

In the following, we will discuss these two types of publicus.

I. Use Former series to solve

Example: A spring-mass system is described by

y"+60y=f(t), where f(t)=xt

is diren periodically as

Please solve, the response y.

II. Use Fourier series to solve boundary-value publems

Mp to now, we mainly deal with "initial-value problems" (IVP). Many physical applications lead to another type of publens, called boundary-value problems (BVP). The features of the two types are compared below:

Initial-value problems (IVP) v.s. boundary-value problems