Entregar por escrito el Jueves 34 de Febrero. Los ejercicios pueden hacerse en grupo; entregar en grupo, escribiendo por orden alfabético los nombres de todos los participantes, no penaliza.

Se asume siempre que estamos trabajando en un espacio de probabilidad (Ω, \mathcal{A}, P) , y que $\mathcal{B} \subset \mathcal{A}$ es una sub- σ -álgebra.

- 1) Sea X una v.a. no negativa. Mostrar que $\mathrm{E}X = \int_0^\infty \mathrm{P}(X>t)\,dt$. Concluir que si X toma valores en los enteros no negativos, entonces $\mathrm{E}X = \sum_{n=1}^\infty \mathrm{P}(X\geq n)$. Sugerencias: o bien reducir el problema al caso de una función indicatriz, o bien escribir $\mathrm{P}(X>t)$ como la integral de una función indicatriz y aplicar el Teorema de Fubini.
- $\mathbf{2}$) Sea X una v.a. Demostrar que

$$\sum_{n=1}^{\infty} P(|X| \ge n) \le E|X| \le 1 + \sum_{n=1}^{\infty} P(|X| \ge n).$$

Concluir que X es integrable si y sólo si $\sum_{n=1}^{\infty} P(|X| \ge n) < \infty$. Sugerencia: obsérvese que $|X| = \sum_{n=0}^{\infty} |X| 1_{\{n \le |X| < n+1\}}$.

- 3) Probar que si $E|X| < \infty$, entonces $\lim_{x \to \infty} x P(|X| \ge x) = 0$.
- 4) ESPERANZA DE UNA SUMA ALEATORIA, O IDENTIDAD DE WALD. Sean N, X_1, X_2, \ldots variables aleatorias. Se supone que N toma valores enteros no negativos y consideramos la variable $Y = \sum_{i=1}^{N} X_i$. Suponemos además que N, X_1, X_2, \ldots son independientes, y que las X_i tienen la misma distribución. Mostrar que si N y X_1 son integrables, entonces Y también lo es y $EY = ENEX_1$.
- 5) Lanzamos un dado equilibrado de 4 caras dos veces. Sea W la variable aleatoria que toma como valor el máximo de los dos lanzamientos. A continuación lanzamos una moneda equilibrada 4 veces, usando S para denotar el número de caras obtenido. Todos los lanzamientos son independientes. a) Hallar E(S|W).
- b) Hallar E(S).

Meditad sobre la siguiente pregunta: ¿se puede generalizar este resultado? ¿qué resultado?

- 6) Los límites superior e inferior de una sucesión de conjuntos $\{A_n\}_{n=1}^{\infty}$ se definen respectivamente como $\limsup_n A_n := \bigcap_{n\geq 1} \bigcup_{k\geq n} A_k$ y $\liminf_n A_n := \bigcup_{n\geq 1} \bigcap_{k\geq n} A_k$. Hallar la relación entre $\limsup_n A_n$ y $\limsup_n \mathbf{1}_{A_n}$. Hacer lo mismo con los límites inferiores.
- 7) Decimos que $\{Y_n\}_{n\geq 1}$ converge a Y en probabilidad si para todo $\epsilon>0$, $\lim_n P(\{|X_n-X|>\epsilon\})=0$, mientras que $\{Y_n\}_{n\geq 1}$ converge a Y casi seguramente si para casi todo $\omega\in\Omega$, $\lim_n X_n(\omega)=X(\omega)$. Dada la probabilidad uniforme en [0,1), para $n\geq 1$ y $0\leq k< n$ definimos $X_{n,k}:=\mathbf{1}_{[k/n,(k+1)/n)}$. Con el orden del diccionario, los pares (n,k) están ordenados linealmente. Hallar $\sup_{(n,k)\to\infty} X_{n,k}$ y $\lim\inf_{(n,k)\to\infty} X_{n,k}$. Hallar $P(\limsup_{(n,k)\to\infty} X_{n,k}>1/2\}$) y $\limsup_{(n,k)\to\infty} P(X_{n,k}>1/2\}$). Decidir razonadamente si la sucesión $\{X_{n,k}\}_{(n,k)\geq (1,0)}$ converge en probabilidad, en L^p , $0< p\leq \infty$, y en casi todo punto. ¿Es aplicable alguno de los lemas de Borel-Cantelli a esta sucesión? ¿Y la ley 0-1 de Kolmogorov?
- 8) Probar que si $\{X_n\}_{n=1}^{\infty}$ converge c. s. a X, entonces para todo $\epsilon > 0$, $P(\limsup_n \{|X_n X| > \epsilon\}) = 0$.
- 9) Probar que si para todo $\epsilon > 0$, $P(\limsup_n \{|X_n X| > \epsilon\}) = 0$, entonces $\{X_n\}_{n=1}^{\infty}$ converge casi seguro a X. Sugerencia: Tomar $\epsilon = 1/k$, k natural, y usar el hecho de que la unión numerable de conjuntos de probabilidad cero tiene probabilidad cero.

- 10) Probar que la convergencia casi seguro implica la convergencia en probabilidad. Sugerencia: Usar alguno de los problemas anteriores.
- 11) Probar que si $X_n \to X$ en probabilidad, entonces $X_n \to X$ en distribución. Decimos que $X_n \to X$ en distribución si para todo punto x de continuidad de F_X , $\lim_n F_{X_n}(x) = F_X(x)$.
- 12) Supóngase que A, B, C, D, E son sucesos independientes. Probar o refutar las afirmaciones siguientes:
 - (a) Los sucesos AB y $C^c \cup (DE^c)$ son independientes.
 - (b) $A \cup B$ y AC son independientes.
 - (c) P(AB|C) = P(A|C)P(B|C) (se supone que P(C) > 0).
- 13) Sea $\Omega = \{\omega_1, \ldots, \omega_p\}$, donde p es un número primo. Supongamos que los elementos de Ω son equiprobables. Comprobar que (salvo en los casos triviales de probabilidad cero y uno) dos sucesos A y B no pueden ser independientes.
- 14) Encontrar $\limsup A_n$ y $\liminf A_n$ en los siguientes casos:
 - (a) $A_n = A$, si n es par y $A_n = B$, si n es impar.
 - (b) $A_n = (-2 1/n, 1]$, si n es par y $A_n = [-1, 2 + 1/n)$, si n es impar.
 - (c) $A_n = [0, a_n)$, siendo $a_n = 2 + (-1)^n (1 + 1/n)$.
 - (e) Los A_n son disjuntos dos a dos.
- **15)** Decidir razonadamente:
- a) Existe una sucesión de v.a.'s $\{Y_n\}_{n\geq 1}$ no negativas tales que $\sum_1^\infty Y_n < 1$ en un conjunto de probabilidad 1/2 y $\sum_{1}^{\infty} Y_n = \infty$ en un conjunto de probabilidad 1/2.
- b) Existe una sucesión de v.a.'s $\{Y_n\}_{n\geq 1}$ independientes y no negativas tales que $\sum_{1}^{\infty}Y_n<1$ en un conjunto de probabilidad 1/2 y $\sum_{1}^{\infty} Y_{n} = \infty$ en un conjunto de probabilidad 1/2.
- **16)** Sean X_1, X_2, \ldots variables aleatorias sobre (Ω, \mathcal{A}, P) con valores reales y sea $M(\omega) = \sup_{n \geq 1} X_n(\omega)$. Mostrar que:

 - (a) Si existe $x \in \mathbb{R}$ tal que $\sum_{n=1}^{\infty} P(X_n > x) < \infty$, entonces $P(M < \infty) = 1$. (b) Si X_1, X_2, \ldots son independientes y $\sum_{n=1}^{\infty} P(X_n > x) = \infty$ para todos los $x \in \mathbb{R}$, entonces $P(M=\infty)=1.$
- 17) Para a > 1, sean X_1, X_2, \ldots v.a. independientes con la misma densidad $f(x) = (a-1)/x^a$ si x > 1 (y f(x) = 0 si $x \le 1$).
 - (a) Hallar la probabilidad de que ocurran infinitos de los sucesos $A_n = \{X_n > n\}$.
 - (b) Hallar la probabilidad de que ocurran casi todos los sucesos A_n , es decir, todos salvo un número finito de ellos.