Model Criticism

Goals:

- Test if a (complicated) model fits the data.
- 2 If it does not, show a location where it fails.

Problem Setting: Goodness-of-Fit Test

Test goal: Are data from the model p?

- Nonparametric.
- Linear-time. Runtime is O(n). Fast.
- 3 Interpretable. Model criticism by finding *.

Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

Find a location v at which q and p differ most [Jitkrittum et al., 2016].

witness(v) =
$$\mathbb{E}_{\mathbf{x} \sim q} [k_{\mathbf{v}}(\mathbf{x})] - \mathbb{E}_{\mathbf{y} \sim p} [k_{\mathbf{v}}(\mathbf{y})]$$

Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

Find a location v at which q and p differ most [litterittum et al., 2016].

$$witness(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[\mathbf{v}] - \mathbb{E}_{\mathbf{y} \sim p}[\mathbf{v}]$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard\ deviation(\mathbf{v})}$$

Model Criticism by Maximum Mean Discrepancy [Greaton et al., 2012]

Find a location v at which q and p differ most [lithrittum et al., 2016].

score: 0.008

Model Criticism by Maximum Mean Discrepancy Gretton et al., 2012]

Find a location v at which q and p differ most [Jitknitum et al., 2016].

score: 25

odel Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

Find a location v at which q and p differ most [Minutum et al., 2016].

score: 25

$$witness(v) = \mathbb{E}_{x \sim q} [v] - \mathbb{E}_{y \sim p} [v] - \mathbb{E}_{y \sim p} [v]$$

$$score(v) = \frac{|witness(v)|}{standard\ deviation(v)}$$
No sample from p.
Difficult to generate.

4/11

Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

Find a location v at which q and p differ most [litkrittum et al., 2016].

score: 25

$$witness(v) = \mathbb{E}_{x \sim q} \left[\frac{1}{|\mathbf{v}|} - \mathbb{E}_{y \sim p} \right]$$
No sample

$$score(v) = \frac{|witness(v)|}{standard deviation(v)}$$

No sample from p.
Difficult to generate.

The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate $\mathbb{E}_{y \sim p}[k_{\nu}(y)]$.

(Stein) witness(v) =
$$\mathbb{E}_{\mathbf{x} \sim q}[T_p] - \mathbb{E}_{\mathbf{y} \sim p}[T_p]$$

The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate $\mathbb{E}_{y \sim p}[k_{\nu}(y)]$.

(Stein) witness(v) = $\mathbb{E}_{\mathbf{x} \sim q}$

The Stein Witness Function [Liu et al., 2016, Chwialkowaki et al., 2016]

Problem: No sample from p. Cannot estimate Eyrp[kv(y)].

(Stein) witness(v) = Ex-q

Idea: Define T_p such that $\mathbb{E}_{y\sim p}(T_pk_v)(y)=0$, for any v.

Proposal: Model Criticism with the Stein Witness

$$score(v) = \frac{|witness(v)|}{standard deviation(v)}$$

Proposal: Model Criticism with the Stein Witness

$$score(v) = \frac{|witness(v)|}{standard deviation(v)}$$

Proposal: Model Criticism with the Stein Witness

score: 0.44

$$score(v) = \frac{|witness(v)|}{standard deviation(v)}$$

Experiment: Restricted Boltzmann Machine (RBM)

Experiment: Restricted Boltzmann Machine (RBM)

Interpretable Features: Chicago Crime

* = optimized v.
No robbery in Lake Michigan.

Interpretable Features: Chicago Crime

Still, does not capture the left tail.

Conclusions

Proposed a new goodness-of-fit test.

- I Nonparametric. Normalizer not needed.
- Tamear-time
 - Interpretable

Poster #57 tonight

Python code: https://github.com/wittawatj/kernel-gof

