Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

по дисциплине "Математическая статистика"

Выполнила студентка группы 3630102/80201

Проверил доцент, к.ф.-м.н.

Деркаченко Анна Олеговна

Баженов Александр Николаевич

Содержание

1.	Постановка задачи	4
2.	Теория	4
	2.1. Боксплот Тьюки	4
	2.2. Теоретическая вероятность выбросов	5
3.	Реализация	5
4.	Результаты	6
	4.1. Боксплот Тьюки	6
	4.2. Доля выбросов	8
5.	Обсуждение	9

Список иллюстраций

1.	Нормальное распределение	(
2.	Распределение Коши	(
3.	Распределение Лапласа	,
4.	Распределение Пуассона	,
5.	Равномерное распределение	۶

1. Постановка задачи

Даны распределения:

- ullet нормальное распределение N(x,0,1)
- \bullet распределение Коши C(x,0,1)
- распределение Лапласа $L(x,0,\frac{1}{\sqrt{2}})$
- распределение Пуассона P(k, 10)
- равномерное распределение $U(x,-\sqrt{3},\sqrt{3})$

Необходимо:

- 1) Сгенерировать выборки размером 20 и 100 элементов
- 2) Построить для них боксплот Тьюки
- 3) Для каждого распределения определить долю выбросов экспериментально (сгенерировав выборку, соответствующую распределению 1000 раз, и вычислив среднюю долю выбросов) и сравнить с результатами, полученными теоретически

2. Теория

2.1. Боксплот Тьюки

Боксплот Тьюки - график, использующийся в описательной статистике, компактно изображающий одномерное распределение вероятностей. Данный вид диаграммы в удобной форме показывает множество характеристик положения случайной величины.

Построение боксплота производится по следующим параметрам:

- ullet границы боксплота $Q_1,\,Q_3$ первый и третий квартили соответственно
- линия середины боксплота медиана
- концы "усов края статистически значимой выборки (без выбросов). Их длина определяется по формуле:

$$X_1 = Q_1 - \frac{3}{2}(Q_3 - Q_1)X_2 = Q_3 + \frac{3}{2}(Q_3 - Q_1)$$
(1)

, где X_1 — нижняя граница уса, X_2 — верхняя граница уса

• выбросы - данные, выходящие за границы усов, отображающиеся на графике в виде кружков

2.2. Теоретическая вероятность выбросов

После вычисления первого и третьего квартилей и нижней и верхней границы уса по формуле (1), можно определить выбросы x:

$$\begin{bmatrix}
x < X_1^T \\
x > X_2^T
\end{bmatrix}$$
(2)

Пусть $F(X) = P(x \le X)$ - функция распределения. Теоретическая вероятность выбросов

• для непрерывных распределений:

$$P_B^T = P(x < X_1^T) + P(x > X_2^T) = F(X_1^T) + (1 - F(X_2^T))$$
(3)

• для дискретных распределений:

$$P_B^T = P(x < X_1^T) + P(x > x_2^T) = (F(X_1^T) - P(x = X_1^T)) + (1 - F(X_2^T))$$
(4)

3. Реализация

Реализация лабораторной работы проводилась на языке Python в среде разработки PyCharm с использованием дополнительных библиотек:

- scipy
- numpy
- math
- matplotlib
- \bullet seaborn

Исходный код лабораторной работы размещен в GitHub-репозитории.

URL: https://github.com/derkanw/Mathstat/tree/main/lab3

4. Результаты

4.1. Боксплот Тьюки

Рис. 1. Нормальное распределение

Рис. 2. Распределение Коши

Рис. 3. Распределение Лапласа

Рис. 4. Распределение Пуассона

Рис. 5. Равномерное распределение

4.2. Доля выбросов

Выборка	Доля выбросов	P_B^T
Normal n = 20	0.0229	0.007
Normal $n = 100$	0.0096	0.007
Cauchy n = 20	0.1526	0.156
Cauchy n = 100	0.1555	0.156
Laplace $n = 20$	0.0744	0.063
Laplace $n = 100$	0.0663	0.063
Poisson $n = 20$	0.0238	0.008
Poisson $n = 100$	0.0096	0.008
Uniform $n = 20$	0.0027	0
Uniform n = 100	0	0

Таблица 1. Практическая доля выбросов

Распределение	Q_1^T	Q_3^T	X_1^T	X_2^T	P_B^T
Нормальное	-0.674	0.674	-2.698	2.698	0.007
Коши	-1	1	-4	4	0.156
Лапласа	-0.490	0.490	-1.961	1.961	0.063
Пуассона	8	12	2	18	0.008
Равномерное	-0.866	0.866	-3.464	3.464	0

Таблица 2. Теоретическая вероятность выбросов

5. Обсуждение

Боксплот Тьюки позволяет наглядно представить характеристики заданного распределения, такие как медиана, первый и третий квартили, наличие выбросов. К тому же процесс анализа данной диаграммы удобнее, нежели полный аналитический расчет.

Судя по данным таблиц для различных выборок, в большинстве случаев наблюдается закономерность: чем больше размерность выборки, тем ближе найденная доля выбросов к теоретической оценке. Практическая и теоретическая доля выбросов для распределения Коши имеют значения, значительно превышающие аналогичные для остальных распределений, что говорит о относительно частом возникновении выбросов при использовании данного распределения. Стоит сказать, что у равномерного распределения, наоборот, выбросы почти не наблюдаются.