

Linear Algebra 1

Industrial AI Lab.
Changyun Choi, Juhyeong Jeon

• Set of linear equations (two equations, two unknowns)

$$4x_1 - 5x_2 = -13$$
$$-2x_1 + 3x_2 = 9$$

$$-2x_1 + 3x_2 = 9$$

- Solving linear equations
 - Two linear equations

$$4x_1 - 5x_2 = -13$$
$$-2x_1 + 3x_2 = 9$$

– In a vector form, Ax = b, with

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

- Solving linear equations
 - Two linear equations

$$4x_1 - 5x_2 = -13$$
$$-2x_1 + 3x_2 = 9$$

- In a vector form, Ax = b, with

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

Solution using inverse

$$Ax = b$$

$$A^{-1}Ax = A^{-1}b$$

$$x = A^{-1}b$$

- Solving linear equations
 - Two linear equations

$$4x_1 - 5x_2 = -13$$
$$-2x_1 + 3x_2 = 9$$

- In a vector form, Ax = b, with

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

Solution using inverse

$$Ax = b$$

$$A^{-1}Ax = A^{-1}b$$

$$x = A^{-1}b$$

- Don't worry here about how to compute matrix inverse
- We will use a numpy to compute

Linear Equations in Python

$$4x_1 - 5x_2 = -13$$

$$-2x_1 + 3x_2 = 9$$

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

```
import numpy as np
A = np.array([[4, -5],
              [-2, 3]]
b = np.array([[-13],
              [9]])
x = np.linalg.inv(A).dot(b)
print(x)
[[ 3.]
[ 5.]]
A = np.asmatrix(A)
b = np.asmatrix(b)
x = A.I*b
print(x)
[[ 3.]
[ 5.]]
```

System of Linear Equations

Consider a system of linear equations

$$y_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n}$$

$$y_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n}$$

$$\vdots$$

$$y_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$$

• Can be written in a matrix form as y = Ax, where

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \qquad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Elements of a Matrix

Can write a matrix in terms of its columns

$$A = \begin{bmatrix} | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | \end{bmatrix}$$

- Careful, a_i here corresponds to an entire vector $a_i \in \mathbb{R}^m$
- Similarly, can write a matrix in terms of rows

$$A = \begin{bmatrix} - & b_1^T & - \\ - & b_2^T & - \\ & \vdots & \\ - & b_m^T & - \end{bmatrix}$$

• $b_i \in \mathbb{R}^n$

Vector-Vector Products

• Inner product: $x, y \in \mathbb{R}^n$

$$x^T y = \sum_{i=1}^n x_i \, y_i \quad \in \mathbb{R}$$

```
x = np.asmatrix(x)
y = np.asmatrix(y)
print(x.T*y)
[[5]]
```

Matrix-Vector Products

- $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n \iff Ax \in \mathbb{R}^m$
- Writing A by rows, each entry of Ax is an <u>inner product</u> between x and a row of A

$$A = \begin{bmatrix} - & b_1^T & - \\ - & b_2^T & - \\ \vdots & & \\ - & b_m^T & - \end{bmatrix}, \qquad Ax \in \mathbb{R}^m = \begin{bmatrix} b_1^T x \\ b_2^T x \\ \vdots \\ b_m^T x \end{bmatrix}$$

Matrix-Vector Products

- $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n \iff Ax \in \mathbb{R}^m$
- Writing A by columns, Ax is a <u>linear combination</u> of the columns of A, with coefficients given by x

$$A = \begin{bmatrix} 1 & 1 & 1 \\ a_1 & a_2 & \cdots & a_n \\ 1 & 1 & 1 \end{bmatrix}, \qquad Ax \in \mathbb{R}^m = \sum_{i=1}^n a_i x_i$$

Norms (Strength or Distance in Linear Space)

• A vector norm is any function $f: \mathbb{R}^n \Longrightarrow \mathbb{R}$ with

1.
$$f(x) \geq 0$$
 and $f(x) = 0 \iff x = 0$

2.
$$f(ax)=|a|f(x)$$
 for $a\in\mathbb{R}$

3.
$$f(x+y) \leq f(x) + f(y)$$

$$\|x\|_p = (\sum_i |x_i|^p)^{rac{1}{p}}$$

• l_2 norm

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

• l_1 norm

$$||x||_1 = \sum_{i=1}^n |x_i|$$

• ||x|| measures length of vector (from origin)

Norms in Python

np.linalg.norm(x, 1)

7.0

Orthogonality

• Two vectors $x, y \in \mathbb{R}^n$ are *orthogonal* if

$$x^T y = 0$$

• They are *orthonormal* if

$$x^T y = 0$$
 and $||x||_2 = ||y||_2 = 1$

Angle between Vectors

• For any $x, y \in \mathbb{R}^n$,

$$|x^Ty| \leq \|x\| \, \|y\|$$

• (unsigned) angle between vectors in \mathbb{R}^n defined as

$$\theta = \angle(x, y) = \cos^{-1} \frac{x^T y}{\|x\| \|y\|}$$

thus
$$x^T y = ||x|| ||y|| \cos \theta$$

Angle between Vectors

$$\theta = \angle(x, y) = \cos^{-1} \frac{x^T y}{\|x\| \|y\|}$$

• $\{x | x^T y \le 0\}$ defines a half space with outward normal vector y, and boundary passing through 0

Linear Algebra 2

Industrial AI Lab.
Changyun Choi, Juhyeong Jeon

Linear Transformation

- See if the given transformation is linear
 - A linear system makes our life much easier
- Superposition
- Homogeneity

Linear Transformation

• Superposition

$$T(x_1+x_2) = T(x_1) + T(x_2)$$

Linear Transformation

Homogeneity

$$x \longrightarrow T \xrightarrow{k} kT(x)$$

$$T(kx) = kT(x)$$

Matrix and (Linear) Transformation

Given		Interpret
linear transformation	\longrightarrow	matrix
matrix	\longrightarrow	linear transformation

 \vec{x} linear transformation input output

• Is a rotation operation linear?

- Rotation matrix: $M = R(\theta)$
- Transformation: $\vec{y} = R(\theta)\vec{x}$

• To find matrix $M = R(\theta)$

$$ec{y} = R(heta)ec{x}$$

$$egin{bmatrix} \cos(heta) \ \sin(heta) \end{bmatrix} = R(heta) egin{bmatrix} 1 \ 0 \end{bmatrix}$$

• To find matrix $M = R(\theta)$

$$ec{y} = R(heta)ec{x}$$

$$\left[egin{array}{c} -\sin(heta) \ \cos(heta) \end{array}
ight] = R(heta) \left[egin{array}{c} 0 \ 1 \end{array}
ight]$$

• To find matrix $M = R(\theta)$

$$\implies \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} = R(\theta) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = R(\theta)$$

Note on how to find a matrix from two vectors and their linearly-transformed ones

Stretch/Compress

- Stretch/Compress
 - keep the direction

$$ec{y} = k ec{x} \ \uparrow \ ext{scalar (not matrix)}$$

$$ec{y} = k I ec{x}$$

$$ec{y} = egin{bmatrix} k & 0 \ 0 & k \end{bmatrix} ec{x}$$

where I = Identity martix

• Still represented by a matrix

Stretch/Compress: Example

- T: stretch by a along \hat{x} -direction & stretch by b along \hat{y} -direction
- Compute the corresponding matrix A

$$egin{bmatrix} ax_1 \ bx_2 \end{bmatrix} &= A \begin{bmatrix} x_1 \ x_2 \end{bmatrix} \Longrightarrow A = ? \ &= \begin{bmatrix} a & 0 \ 0 & b \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \end{bmatrix}$$

$$A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a \\ 0 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ b \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

• More importantly, can you think of the corresponding transformation T by looking at $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$?

Projection

- Is a projection operation linear?
- Suppose P: Projection onto \hat{x} axis

$$egin{bmatrix} P \ [x_1] & \Longrightarrow & \begin{bmatrix} x_1 \ 0 \end{bmatrix} \ ec{x} & ec{y} \end{bmatrix}$$

$$ec{y} = Pec{x} = egin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} x_1 \ 0 \end{bmatrix}$$

$$P\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$P\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$P\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Multiple Transformations

- T_1 : transformation 1 of matrix M_1
- T_2 : transformation 2 of matrix M_2
- T: Do transformation 1, followed by transformation 2

$$egin{array}{ccccc} & T_1 & & T_2 \ ec{x} & \longrightarrow & ec{y} & \longrightarrow & ec{z} \end{array}$$

$$egin{array}{ll} ec{y} &= M_1ec{x} \ ec{z} &= M_2ec{y} &= M_2M_1ec{x} \ &= Mec{x} \end{array}$$

$$M = M_2 M_1$$

Example: Projection onto Vector = $\begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$

$$egin{array}{ll} P egin{bmatrix} 1 \ 0 \end{bmatrix} &= egin{bmatrix} \cos^2 heta \ \cos heta \sin heta \end{bmatrix} \ P egin{bmatrix} 0 \ 1 \end{bmatrix} &= egin{bmatrix} \sin heta \cos heta \ \sin^2 heta \end{bmatrix} \ P egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} &= egin{bmatrix} \cos^2 heta & \sin heta \cos heta \ \cos heta \sin heta & \sin^2 heta \end{bmatrix} \end{array}$$

Example: Projection onto Vector = $\begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$

Another way to find this projection matrix

$$R(-\theta)$$
 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $R(\theta)$ $\vec{x} \implies \vec{x}' \implies \vec{y}$

$$\vec{y} = R(\theta) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} R(-\theta) \vec{x}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix}$$

Eigenvalue and Eigenvector

$$A\vec{v}=\lambda\vec{v}$$

 $A\vec{v}$ parallel to \vec{v}

$$\lambda = egin{cases} ext{positive} \ 0 \ ext{negative} \end{cases}$$

 $\lambda \vec{v}$: stretched vector

(same direction with \vec{v})

 $A \vec{v}$: linearly transformed vector

(generally rotate + stretch)

How to Compute Eigenvalue and Eigenvector

$$egin{aligned} Aec{v} &= \lambdaec{v} = \lambda Iec{v} \ Aec{v} - \lambda Iec{v} &= (A-\lambda I)ec{v} = 0 \end{aligned}$$

$$\Longrightarrow \quad A - \lambda I = 0 ext{ or } \ ec{v} = 0 ext{ or } \ (A - \lambda I)^{-1} ext{ does not exist}$$

$$\implies \det(A - \lambda I) = 0$$

Example: Eigen Analysis of $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

- $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$: projection onto \hat{x} axis
- Find eigenvalues and eigenvectors of A.

$$ec{y} = \left[egin{array}{c} 0 \ 0 \end{array}
ight] = Aec{x} = 0 \cdot ec{x} \ \lambda_1 = 0 \ ext{ and } ec{v}_1 = \left[egin{array}{c} 0 \ 1 \end{array}
ight]$$

Example: Eigen Analysis of $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$

- $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$: stretch by 2 along \vec{x} axis stretch by 1 along \vec{y} axis
- Find eigenvalues and eigenvectors.

Eigen Analysis in Python

Example: Eigen Analysis of Projection

- Projection onto the plane
- Find eigenvalues and eigenvectors

- For any \vec{x} in the plane, $P\vec{x} = \vec{x} \rightarrow \lambda = 1$
- For any \vec{x} perpendicular to the plane, $P\vec{x} = \vec{0} \rightarrow \lambda = 0$

Linear Algebra 3

Industrial AI Lab.
Changyun Choi, Juhyeong Jeon

System of Linear Equations

- Well-determined linear systems
- Under-determined linear systems
- Over-determined linear systems

Well-Determined Linear Systems

• System of linear equations

$$egin{array}{cccc} 2x_1+3x_2&=7&&&x_1^*=2\ x_1+4x_2&=6&&x_2^*=1 \end{array}$$

Geometric point of view

Well-Determined Linear Systems

System of linear equations

$$egin{array}{cccc} 2x_1+3x_2&=7&&&x_1^*=2\ x_1+4x_2&=6&&&x_2^*=1 \end{array}$$

Matrix form

$$egin{aligned} a_{11}x_1 + a_{12}x_2 &= b_1 & ext{ Matrix form} \ a_{21}x_1 + a_{22}x_2 &= b_2 & \Longrightarrow & egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} b_1 \ b_2 \end{bmatrix} \end{aligned}$$

$$AX = B$$

$$X^* = A^{-1}B$$
 if A^{-1} exists

Under-Determined Linear Systems

• System of linear equations

$$2x_1 + 3x_2 = 7 \implies \text{Many solutions}$$

Geometric point of view

Under-Determined Linear Systems

System of linear equations

$$2x_1 + 3x_2 = 7 \implies \text{Many solutions}$$

Matrix form

$$egin{aligned} a_{11}x_1 + a_{12}x_2 &= b_1 \end{aligned} egin{aligned} \operatorname{Matrix form} \ &\Longrightarrow \end{aligned} egin{aligned} \left[egin{aligned} a_{11} & a_{12} \end{array}
ight] \left[egin{aligned} x_1 \ x_2 \end{array}
ight] = b_1 \end{aligned}$$

$$AX = B$$

 \therefore Many Solutions when A is fat

Over-Determined Linear Systems

• System of linear equations

$$egin{array}{lll} 2x_1+3x_2&=7\ x_1+4x_2&=6&\Longrightarrow& ext{No solutions}\ x_1+x_2&=4 \end{array}$$

Geometric point of view

Over-Determined Linear Systems

System of linear equations

$$egin{array}{lll} 2x_1+3x_2&=7\ x_1+4x_2&=6&\Longrightarrow& ext{No solutions}\ x_1+x_2&=4 \end{array}$$

Matrix form

$$egin{aligned} a_{11}x_1 + a_{12}x_2 &= b_1 \ a_{21}x_1 + a_{22}x_2 &= b_2 \ a_{31}x_1 + a_{32}x_2 &= b_3 \end{aligned} \qquad egin{aligned} \operatorname{Matrix form} & egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} &= egin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix} \end{aligned}$$

$$AX = B$$

 \therefore No Solutions when A is skinny

Summary of Linear Systems

$$AX = B$$

• Square: Well-determined

$$egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} b_1 \ b_2 \end{bmatrix}$$

Fat: Under-determined

$$egin{bmatrix} \left[egin{array}{cc} a_{11} & a_{12} \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \end{array}
ight] = b_1$$

Skinny: Over-determined

$$egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix}$$

Least-Square Solution

• For over-determined linear system

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \neq \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \quad \text{or} \quad AX \neq B$$

$$x_{1} \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} + x_{2} \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} \neq \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$$

- Find X that minimizes ||E|| or $||E||^2$ (error)
- *i.e.* optimization problem

$$\min_{X}\left\Vert E
ight\Vert ^{2}=\min_{X}\left\Vert AX-B
ight\Vert ^{2}$$

Least-Square Solution

• *i.e.* optimization problem

$$egin{align} \min_{X} \left\| E
ight\|^2 &= \min_{X} \left\| AX - B
ight\|^2 \ X^* &= \left(A^T A
ight)^{-1} A^T B \ B^* &= AX^* &= A ig(A^T A ig)^{-1} A^T B \end{aligned}$$

• Geometric interpretation

$$x_{1} \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} + x_{2} \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} \neq \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$$

Often estimation problem

Vector Projection onto Y

The vector projection of a vector X on (or onto) a nonzero vector Y is the orthogonal projection of X
onto a straight line parallel to Y

$$egin{aligned} Y \perp (X-W) \ \Longrightarrow Y^T (X-W) &= Y^T \left(X - \omega rac{Y}{\|Y\|}
ight) = 0 \ \Longrightarrow \omega &= rac{Y^T X}{Y^T Y} \|Y\| \ W &= \omega rac{Y}{\|Y\|} &= rac{Y^T X}{Y^T Y} Y = rac{\langle X,Y
angle}{\langle Y,Y
angle} Y \end{aligned}$$

Orthogonal Projection onto a Subspace

- Projection of B onto a subspace U of span of A_1 and A_2
- Orthogonality

 $\min_{X}\left\|E
ight\|^{2}=\min_{X}\left\|AX-B
ight\|^{2}$