الاتصال والنهايات

الثانية بع ر

$$\lim_{x \to -\infty} \frac{x^2 + (x-1)\sqrt{1-x}}{x + \sqrt{x^2 + 1}}$$

$$= \lim_{x \to -\infty} \frac{x^2 + (x-1)\sqrt{x^2 \left(\frac{1}{x^2} - \frac{1}{x}\right)}}{x + \sqrt{x^2 + 1}} \times \frac{x - \sqrt{x^2 + 1}}{x - \sqrt{x^2 + 1}}$$

$$= \lim_{x \to -\infty} -\left(x^2 - x^2 \left(1 - \frac{1}{x}\right)\sqrt{\frac{1}{x^2} - \frac{1}{x}}\right) \left(x - \sqrt{x^2 + 1}\right)$$

$$= \lim_{x \to -\infty} -x^2 \left(1 - \left(1 - \frac{1}{x}\right)\sqrt{\frac{1}{x^2} - \frac{1}{x}}\right) \left(x - \sqrt{x^2 + 1}\right)$$

$$= +\infty$$

$$= \lim_{x \to \infty} -x \left(1 - \left(1 - \frac{1}{x} \right) \sqrt{\frac{x^2}{x^2} - \frac{1}{x}} \right) (x - \sqrt{x} + 1)$$

$$= +\infty$$

$$: نعتبر الدالة f المعرفة كما يلي: $\frac{2}{2}$ نعتبر الدالة f المعرفة كما يلي: $\frac{2}{2}$ نعتبر $\frac{2}{2}$ نعتبر الدالة f المعرفة كما يلي: $\frac{2}{2}$ نعتبر $\frac{2}{2}$ نعتبر $\frac{2}{2}$ نعتبر $\frac{2}{2}$ نعتبر الدالة f $\frac{2}{2}$ نعتبر $\frac{2}{2}$ نعتبر$$

لدينا
$$\lim_{0 \to 0} f(x) \neq \int_{0}^{\infty} f(x)$$
 إذن $\lim_{0 \to 0} f(x) \neq \int_{0}^{\infty} f(x)$ وبالتالي f غير متصلة في $\int_{0}^{\infty} f(x) dx$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sqrt{1 - \cos^2 x}}{\sin x} = \lim_{x \to 0} \frac{\sqrt{\sin^2 x}}{\sin x} = \lim_{x \to 0} \frac{|\sin x|}{\sin x}$$

$$\lim_{0^+} f(x) = \lim_{0^+} \frac{\sin x}{\sin x} = 1$$

$$\lim_{0^{-}} f(x) = \lim_{0^{-}} \frac{-\sin x}{\sin x} = -1$$

$$f(x) = \frac{\frac{1}{\cos^2 x} - 2\tan x}{\cos(2x)}$$
 : f نعتبر الدالة f : f نعتبر الدالة f نقبل تمدیدا بالاتصال في f

$$\lim_{x \to \frac{\pi}{4}} f(x) = \lim_{\frac{\pi}{4}} \frac{\frac{1}{\cos^2 x} - 2\tan x}{\cos(2x)}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{\frac{1}{\cos^2 x} - 2\frac{\sin x}{\cos x}}{\cos(2x)} = \lim_{\frac{\pi}{2}} \frac{\frac{1 - 2\sin x \cos x}{\cos^2 x}}{\cos(2x)}$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{1 - \sin(2x)}{\cos^2 x \cos(2x)} = \lim_{\frac{\pi}{4}} \frac{1}{\cos^2 x} \cdot \frac{1 - \sin 2x}{\cos 2x}$$

$$(1)\lim_{\frac{\pi}{4}} \frac{1}{\cos^2 x} = 2$$
 ولدينا

$$\lim_{x \to \frac{\pi}{4}} \frac{1 - \sin 2x}{\cos(2x)} \qquad :$$

$$x = t + \frac{\pi}{4}$$
 نضع $t = x - \frac{\pi}{4}$ نضع

$$x \to \frac{\pi}{4} \Rightarrow t \to 0$$

$$\lim_{x \to \frac{\pi}{4}} \frac{1 - \sin(2x)}{\cos(2x)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)}$$

$$|\psi|_{x \to \frac{\pi}{4}} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\cos\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\sin\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\sin\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\sin\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\sin\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t + \frac{\pi}{2}\right)}{\sin\left(2t + \frac{\pi}{2}\right)} = \lim_{t \to 0} \frac{1 - \sin\left(2t +$$

$$=\lim_{t\to 0}\frac{1-\cos 2t}{-\sin 2t}$$

$$\lim_{t\to 0}\frac{1-\cos 2t}{\left(2t\right)^2}\left(2t\right)^2\cdot\frac{-1}{\sin 2t}\cdot 2t$$

$$\lim_{t \to 0} \frac{1 - \cos 2t}{(2t)^2} \cdot \frac{-1}{\sin 2t} \cdot 2t = \frac{1}{2} \times -1 \times 0 = 0(2)$$

$$\lim_{x \to \frac{\pi}{4}} f(x) = 0$$
 من (1) و (2) لاينا:

$$g$$
 إذن f تقبل تمديدا g بالاتصال في g معرف بما يلي $g(x) = f(x); x \neq 0$
$$g\left(\frac{\pi}{4}\right) = 0$$

$$\begin{cases} f(x) = x \sin\left(\frac{2}{x}\right), x \neq 0 \\ f(0) = 0 \end{cases}$$

- 0 ادرس اتصال f في f
 - $\lim_{x\to\infty} f(x)$ الاتصال في 0:

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin\left(\frac{2}{x}\right)$$

$$\forall x \neq 0 - 1 \leq \sin(\frac{2}{x}) \leq 1$$
 لدينا:

 $x\rangle 0$ إذا كان

$$-x \le f(x) \le x$$
 يعني $-x \le x \sin \frac{2}{x} \le x$ لدينا

$$\lim_{0^{+}} x = \lim_{0^{+}} -x = 0$$
 ولدينا

$$\lim_{0^{+}} f(x) = 0$$
اِذن

 $x\langle 0$ إذا كان

$$x \le f(x) \le x$$
يعني $x \le x \sin \frac{2}{x} \le -x$

$$\lim_{n \to \infty} x = \lim_{n \to \infty} -x = 0$$
 ولدينا

$$\lim_{x \to 0^{-1}} f(x) = 0$$
 إذا

$$\lim_{x \to 0^{-1}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0) = 0$$
 لدينا

0 اذن f متصلة في

$$\lim_{x \to \infty} f(x)$$
 حساب (2

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \sin\left(\frac{2}{x}\right)$$

$$x \to +\infty \Rightarrow t \to 0$$
 $t = \frac{2}{x}$

$$\lim_{x \to +\infty} x \sin\left(\frac{2}{x}\right) = \lim_{t \to 0} \frac{2}{t} \sin t = \lim_{t \to 0} 2 \frac{\sin t}{t} = 2$$

II) مرکب دالتین:

1) اتصال مركب دالتين:

J متصلة على مجال I مفتوح و g متصلة على f $f(I) \subset J$ بحیث

لنبين أن gof متصلة على I.

 x_0 ليكن البين أن $x_0 \in I$ متصلة في ليكن البين

ليكن
$$\alpha > 0$$
 عن $\alpha > 0$ بحيث: $|x - x_0| < \alpha \Rightarrow |gof(x) - gof(x_0)| < \varepsilon$

الدينا $f(x_0)$ لان و متصلة في الدينا

 $\varepsilon\rangle 0$ بالنسية $\alpha_{\scriptscriptstyle 1}\rangle 0$ $|x-f(x_0)|\langle \alpha_1 \Rightarrow |g(x)-g(f(x_0))|\langle \varepsilon|(I)$ ولدينا f متصلة في x_0 إذن بالنسبة α_1 يوجد α_2 بحيث: $|x-x_0|\langle \alpha_2 \Rightarrow |f(x)-f(x_0)|\langle \alpha_1(H)\rangle$ $\alpha = \alpha_2$ نأخذ

بحيث

$$|x - x_0| \langle \alpha \Rightarrow |x - x_0| \langle \alpha_2$$

$$(II) \Rightarrow |f(x) - f(x_0)| \langle \alpha_1$$

$$(I) \Rightarrow |g(f(x)) - g(f(x_0))| \langle \varepsilon$$

 $(\forall \varepsilon \rangle 0)(\exists \alpha \rangle 0): |x-x_0|\langle \alpha \Rightarrow |gof(x)-gof(x_0)|\langle \varepsilon \rangle$

 x_0 متصلة في x_0 بالتالي gof متصلة على gof

 \overline{I} لتكن f دالة متصلة على مجال I و g دالة متصلة على مجال الدالة gof متصلة على $f(I) \subset J$ بحيث

 $f(x_0)$ ملاحظة: إذا كانت f متصلة في x_0 و g متصلة في x_0 فإن x_0 متصلة في x_0

$$f(x) = \cos(\frac{1}{x^2 + 1}) \quad \vdots \quad \vdots$$

$$h(x) = \cos x \quad g(x) = \frac{1}{x^2 + 1}$$

f = goh لدينا

 $g(\mathbb{R}) \subset \mathbb{R}$ و \mathbb{R} متصلة على \mathbb{R} و متصلة على و لاينا \mathbb{R} الذن f = hog إذن

2) مركب دالة متصلة ودالة تقبل نهاية:

لتكن f دالة معرفة على مجال I منقط مركزه g، و g دالة $f(I) \subset J$ بحیث J معرفة على اذا كانت لـ f نهاية l في x_0 و g متصلة في l فإن $\cdot \lim gof(x) = g(l)$

 $\lim_{x \to 0} f(x) : \frac{f(x)}{\sqrt{1+x-1}}$ لنحسب: $f(x) = \cos\left(\frac{x}{\sqrt{1+x-1}}\right)$

 $\lim_{x\to 0} \frac{x}{\sqrt{1+x}-1} = \lim_{x\to 0} \sqrt{1+x}+1=2$

ولدينا: $x \to \cos x$ متصلة في

 $\lim_{x \to \infty} f(x) = \cos(2) : \psi(x)$

ملاحظة: عمليا لحساب هذه النهاية نتبع ما يلي :

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \cos\left(\frac{x}{\sqrt{1+x}-1}\right)$$
$$= \lim_{x \to 0} \cos\left(\sqrt{1+x}+1\right) = \cos(2)$$

III) صورة مجال بدالة متصلة:

1) أمثلة

 $f(x) = x^2$ نعتبر نعتبر

 \mathbb{R} لدينا f متصلة على

ولدينا

f([-1,1]) = [-1,1] f([0,1]) = [0,1]

f(]-1,1[) = [0,1[f(]0,1[) =]0,1[

f([-1,1[)=[0,1]) f([0,1[)=[0,1[)]) $f(\mathbb{R})=[0,+\infty[$

f(x) = E(x) فعتبر الدالة

لدينا f غير متصلة على [0,1] لأنها غير متصلة على يسار [0,1]

 $\lim_{1+} f(x) = \lim_{1-} E(x) = \lim_{1-} 0 = 0 \neq f(1) = 1$

الذن f غير متصلة على يسار f

 $f([0;1]) = \{0,1\}$ ولدينا

2) خاصیات:

خاصية مقبولة:

1- صورة مجال بدالة متصلة هي مجال.

2- صورة قطعة بدالة متصلة هي قطعة.

3) مبرهنة القيم الوسيطية.

 $\cdot [a,b]$ دالة متصلة على f

نعلم أن صورة قطعة هي قطعة بدالة متصلة

f([a;b]) = [m,M] إذن

f(x) = y بحیث $x \in [a,b]$ يوجد $y \in [m,M]$ ککل

f(b) ه الدينا f(b) ه الدينا f(b) ه الدينا f(b) ه الدينا f(b) ه عدد محصور بين $\lambda \in [m,M]$ الإن $f(c) = \lambda$ بحيث $f(c) = \lambda$

خاصية: (م.ق.و).

[a,b] دالة متصلة على f

 $f\left(b
ight)$ إذا كان λ عدد محصور بين $f\left(b
ight)$ فإنه

 $\cdot f(c) = \lambda$ بحيث $c \in [a,b]$ يوجد

<u>ملاحظة:</u>

y لكل f([a,b]) = [m,M] بحيث [a,b] لكل f(x) = y متصلة على [a,b] بحيث [a,b] يوجد على الأقل [a,b] من [a,b] يوجد على الأقل [a,b]

حالات خاصة:

<u>خاصية (1):</u>

 $\overline{\cdot [a,b]}$ لتكن f دالة متصلة على

إذا كان 0(b) (b) (b) (b) (b) (a) (a) (b) لهما إشارتان (a) (b) فإنه يوجد (a) (b) بحيث (a)

.]a,b[في الأقل في f(x)=0 تقبل حلا على الأقل في

ملاحظة:

 $c \in [a,b]$ فإن $f(b).f(a) \le 0$

خاصية (<u>2):</u>

[a,b]لتكن f مُتصْلة على

إذا كانت f رتيبة قطعا على [a,b] و a,b و a,b فإنه يوجد $c\in a,b$ عدد وحيد a,b

<u>برهان:</u>

 $f\left(c\right)=0$ بحيث $c\in\left]a,b\right[$ بحيث (1) نستنج أنه يوجد لنبين أن $c\in\left[a,b\right]$ بحيث لنبين أن $c\in\left[a,b\right]$

 $f\left(c_{2}\right)=f\left(c_{1}\right)=0$ نفتر ض أنه يوجد c_{2} مختلفان بحيث $c_{2}\langle c_{1}\rangle$ أو $c_{2}\langle c_{2}\rangle$ أو $c_{1}\langle c_{2}\rangle$

وبما أن f رتيبة قطعا (تزايدية مثلا).

فإن: $f(c_1)\langle f(c_2) \atop 0 \rangle 0$ أو يعني $f(c_1)\langle f(c_2) \atop f(c_1)\rangle f(c_2)$

العدد c وحيد.

تمارین تطبیقیة:

 $x^3 + x^2 + x - \sqrt{2} = 0$ بين أن المعادلة أن المعادلة عمرين 1

تقبل على الأقل حلا في ₪.

[0,1] نضع $f(x) = x^3 + x^2 + x - \sqrt{2}$ ونعتبر المجال [0,1] لدينا $f(x) = x^3 + x^2 + x - \sqrt{2}$ لدينا

 $3-\sqrt{2}=f(1)$ $f(0)=-\sqrt{2}$ لدينا

 $f(0).f(1)\langle 0$ إذن

إذن حسب (م.ق.و) المعادلة f(x) = 0 تقبل على الأقل حلا في [0,1]

وبالتالي المعادلة $0=\sqrt{2}+x^3+x^2+x-\sqrt{2}=0$ تقبل حلا على الأقل في $x^3+x^2+x-\sqrt{2}=0$ تقبل حلا وحيدا مرين $x^5+x^3+3x-4=0$ في $x^5+x^3+3x-4=0$ في $x^5+x^5+x^3+3x-4=0$

[0,1] $f(x) = x^5 + x^3 + 3x - 4$

* لدينا f متصلة على [0,1] لأنها دالة حدودية .

ولدينا $f'(x) = 5x^4 + 3x^2 + 3$ فإن $f'(x) = 5x^4 + 3x^2 + 3$ ولدينا على \mathbb{R} وبالتالي على \mathbb{R}

 $\cdot f(0).f(1)\langle 0 \rangle f(1) = 1\rangle$ باذن $f(0) = -4\langle 0 \rangle$

.]0,1[وحسب (م.و.ق) المعادلة f(x) = 0 تقبل حلا وحيدا في

 $]-\infty,0[$ و]1,+ ∞ النبين أن المعادلة ليست لها حل في المجالين: α الدينا α الدينا α الدينا α الدينا الدينا المعادلة ليست لها حل في المعادلة المعادل

 $f(\alpha)\rangle f(1)$ يعني . $f(\alpha)\rangle 1$

ومنه f(x)=0 ومنه f(x)=0 ليست حلا للمعادلة f(x)=0 ومنه المعادلة f(x)=0 لا تقبل حلا في f(x)=0

 $[-\infty,0]$ وبنفس الطريقة نبين أنها لا تقبل حلا في $[0,\infty-1]$ وبالتالي $[0,\infty]$ تقبل حلا وحيدا في $[0,\infty]$

بحيث [a,b] بحيث دالة متصلة على f لتكن f $f([a,b]) \subset [a,b]$

[a,b]بين أن f تقبل نقطة صامدة في [a,b] يعني يوجد f من f(c)=c بحيث

تمارين تطبيقية:

تمرين 1: بين أن المعادلة $x^5 + x^3 + 3x - 4 = 0$ تقبل حلا وحيدا

 $f(x) = x^5 + x^3 + 3x - 4$

 \mathbb{R} لدينا f متصلة على

 $(\forall x \in \mathbb{R}): f'(x) = 5x^4 + 3x^2 + 3 \geq 0$

 \mathbb{R} اذن f متصلة على

$$f(\mathbb{R}) = \lim_{-\infty} f; \lim_{+\infty} f \left[\text{ (لاينا: } \right]$$
$$= \left] -\infty; +\infty \right[= \mathbb{R}$$

 \mathbb{R} بنحو \mathbb{R} الذن f نحو

 \mathbb{R} ولدينا $\mathbb{R} \ni 0$ إذن \mathbb{R} يقبل سابقا وحيدا في

 \mathbb{R} ومنه المعادلة f(x) = 0 تقبل حلا وحيدا في

 $f:[0,4] \to \mathbb{R}$ نعتبر الدالة 2: نعتبر

 $x \rightarrow 2x$

بین أن f تقابل (دالة عکسیة) من [0,4] نحو مجال یجب -1تحديده.

 f^{-1} حدد -2

. أنشئ C_{f} في نفس المعلم -3

[0,4] لدينا f متصلة على f

 $(\forall x \in [0,4]): f'(x) = 2$ * لدينا *

[0,4] تزایدیة قطعا علی f

f([0,4]) = [f(0), f(4)] : * =[0,8]

إذن تقابل من [0,4] نحو [0,8].

 $\cdot [0,4]$ إلى f^{-1} من [0,8] الى وبالتالى تقبل

 $f^{-1}(x)$ لنحدد *2

 $(\forall x \in [0,8]) (\forall y \in [0,4])$ $f^{-1}(x) = y \Leftrightarrow f(y) = x$

 $\Leftrightarrow 2y = x$

 $\Leftrightarrow y = \frac{x}{2}$

 $f^{-1}(x) = \frac{x}{2}$ إذن

نالحظ أن f^{-1} متصلة ولها نفس رتابة f ومنحناها هو ماثل منحنى f بالنسبة للمنصف الأول.

2) خاصيات الدالة العكسية:

a) الاتصال:

خاصية: (مقبولة)

Iلتكن f متصلة ورتيبة قطعا على مجال f(I) = J الدالة f^{-1} متصلة على

h) الا تابة:

I دالة متصلة ورتبية قطعا على مجال ff(I) = J على طعا ولها نفس رتابة f^{-1} على الدالة

g(x) = f(x) - x نضع

 $x \to x$ متصلة و $x \to x$ متصلة الدينا و متصلة على الدينا

 $f(a) \in [a,b]$ ولدينا g(a) = f(a) - a

 $g(a) \ge 0$ أي $f(a) - a \ge 0$ إذن

 $f(b) \in [a,b]$ ولدينا g(b) = f(b) - b

 $g(b) \le 0$ أي $f(b) - b \le 0$ إذن $f(b) \le b$ $g(a).g(b) \le 0$ ومنه

g(c) = 0 بحیث [a,b] بحیث [a,b] بحیث

f(c)-c=0 يعنى

f(c) = c

 $\cdot [a,b]$ وبالتالي f تقبل نقطة صامدة في

IV) الدالة العكسية لدالة متصلة ورتبية قطعا.

1) الوجود: Existence

I لتكن f دالة متصلة ورتيبة قطعا على مجال

J = f(I) نظم أن f(I) مجال. نضع

J نحو I نحو f نخو f نحو f

لدينا f(I) = J إذن f شمولي.

لنبین أن f تباینی:

لدينا f رتيبة قطعا. نفترض مثلا أن f تزايدية قطعا.

 $x \neq x'$ من I بحیث $x \neq x$

 $x \neq x' \Rightarrow x \langle x' \mathcal{I} \rangle x \langle x' \mathcal{I} \rangle x'$

 $\Rightarrow \begin{cases} f(x)\langle f(x') \\ f(x)\rangle f(x') \end{cases}$ لدينا

 $\Rightarrow f(x) \neq f(x')$

 $(\forall (x, x') \in I^2) x \neq x' \Rightarrow f(x) \neq f(x')$ إذن:

ومنه f تباینی.

J نحو I نحو وبالتالي f تقابل من

I متصلة على مجال f

I رتيبة قطعا على f

f(I) = J (*

 $f^{-1}: J \to I$ وبالتالي f تقبل دالة عكسية و لدينا:

 $(\forall x \in J)(\forall y \in I): f^{-1}(x) = y \Leftrightarrow f(y) = x$

J نحو انحو f فإن

: إذا كانت f دالة تزايدية ومتصلة فإن -1f([a,b]) = [f(a), f(b)]

 $f([a,b[)=|f(a),\lim_{x\to a}f(x)|$

 $f([a,b[)=f(a),\lim f(x)]$

: دا كانت f دالة متصلة و تتاقصية فإن -2

f([a,b]) = [f(b), f(a)]

 $f([a,b[) = \left| \lim_{b \to a} f(x), f(a) \right|)$

 $f([a,+\infty[)=\lim_{n\to\infty}f;f(a)]$

f(a)

f(b)

$$f: I \rightarrow J$$
 $f^{-1}: J \rightarrow I$

$$y_2 \neq y_1$$
 من J من y_2 وي ليكن الم

$$\frac{f^{-1}(y_2)-f^{-1}(y_1)}{y_2-y_1}$$
 لندرس إشارة

$$f(x_2) = y_2$$
 $f(x_1) = y_1$ يعني $x_2 = f^{-1}(y_2)$ $x_1 = f^{-1}(y_1)$ نضع $x_2 = f^{-1}(y_2)$

$$\frac{f^{-1}(y_2) - f^{-1}(y_1)}{y_2 - y_1} = \frac{x_2 - x_1}{f(x_2) - f(x_1)}$$
لدينا

$$=\frac{1}{f(x_2)-f(x_1)}$$

$$x_2 - x_1$$

إذن
$$\frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
 و $\frac{f^{-1}(y_2) - f^{-1}(y_1)}{y_2 - y_1}$ المارة

وبالتالي f و f^{-1} لهما نفس الرتابة.

c) المنحنى:

Iلتكن f متصلة ورتيبة قطعا على مجال راكب الأول. متماثلان بالنسبة للمنصف الأول. متماثلان بالنسبة للمنصف الأول.

$$M \binom{x}{y} \in C_f \Leftrightarrow f(x) = y$$
 لدينا $\Leftrightarrow f^{-1}(y) = x$ $\Leftrightarrow M' \binom{y}{x} \in C_{f^{-1}}$

وبما أن M' هي مماثلة

بالنسبة للمنصف الأول فإن $C_{f^{-1}}$ هو مماثل C_{f} بالنسبة Mللمنصف الأول.

تمرین تطبیقی:

$$f(x) = 2x^2 + x - 1$$
 نعتبر الدالة

$$C_f$$
 ادرس تغیرات f وأنشئ (1

$$I = \left[\frac{-1}{4}, +\infty\right]$$
 ليكن g قصور f على (2

- ه) بین أن g تقابل من I نحو مجال یجب تحدیده.
 - $g^{-1}(x)$ حدد (b
 - $C_{g^{-1}}$ أنشى (c 1- تغيرات *f* :

$$(x) = 4x + 1$$
 دينا:

$$f'(x) = 4x + 1$$
 لدينا:

ومن خلال جدول تغيرات
$$f$$
 لدينا g تزايدية قطعا على I

$$g\left(\left[\frac{-1}{4};+\infty\right[\right) = \left[\frac{-9}{8};+\infty\right[$$

$$y + \frac{1}{4} \ge 0$$
 يعني $y \ge \frac{-1}{4}$ يوني $y + \frac{1}{4} = \frac{\sqrt{9 + 8x}}{4}$ إذن $y = \frac{\sqrt{9 + 8x} - 1}{4}$ يعني $y = \frac{\sqrt{9 + 8x} - 1}{4}$

 $g^{-1}(x) = \frac{\sqrt{9+8x}-1}{4}$ إذن:

V) تطبیقات:

1) الدوال العكسية للدوال المثلثية:

Arc sinus دالة قوس الجيب (a

$$f:\left[-\frac{\pi}{2};\frac{\pi}{2}\right] \to \mathbb{R}$$
 نعتبر الدالة

$$x \rightarrow \sin x$$
 $\pi \pi$

$$\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$$
لدينا f متصلة على

$$f'(x) = \cos x$$

لدينا 0
$$(x)$$
0 على $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ ما عدا في $f'(x)$ 0 على الدينا

$$\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$$
 إذن f تزايدية قطعا على

$$f\!\left(\!\left[-\frac{\pi}{2},\!\frac{\pi}{2}\right]\!\right)\!=\!\left[f\!\left(-\frac{\pi}{2}\right)\!;f\!\left(\frac{\pi}{2}\right)\right]\!=\!\left[-1,\!1\right]$$

إذن
$$f$$
 نقابل من $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ نحو $\left[-1,1\right]$ وبالتالي تقبل دالة عكسية $\cdot f^{-1}:[-1,1] \to \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

 $Arc\sin$ الدالة f^{-1} نسمى دالة قوس الجيب. نرمز لها

<u>تعريف:</u> نسمي دالة قوس الجيب الدالة العكسية للدالة

.
$$Arc\sin$$
 ونرمز لها ب $f:\left[-\frac{\pi}{2};\frac{\pi}{2}\right] \to \left[-1,1\right]$

$$f^{-1} = Arc \sin : \left[-1, 1 \right] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \qquad f : \left[-\frac{\pi}{2}; \frac{\pi}{2} \right] \rightarrow \left[-1, 1 \right]$$

$$(\forall x \in [-1,1]) \left(\forall y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \right) : f^{-1}(x) = y \iff f(y) = x$$

 $Arc\sin x = y \Leftrightarrow \sin y = x$

$$y$$
 هو العدد $Arc\sin x$ هو العدد x من x هو العدد x

$$\sin y = x$$
من $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ الذي يحقق

$$\begin{cases} \sin y = x \Rightarrow Arc \sin x = y \\ y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \end{cases} \begin{cases} Arc \sin x = y \Rightarrow \sin y = x \\ x \in [-1, 1] \end{cases}$$
 (*

$$\left(0 \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \mathcal{A} \sin 0 = 0\right) \qquad \sin 0 = 0$$

$$Arc\sin 1 = \frac{\pi}{2}$$

$$Arc\sin{\frac{1}{2}} = -\frac{\pi}{6}; Arc\sin{\frac{1}{2}} = \frac{\pi}{6}$$
$$Arc\sin{\frac{\sqrt{2}}{2}} = \frac{\pi}{4}$$

$$Arc\sin\frac{\sqrt{3}}{2} = \frac{\pi}{3}$$

$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$
 نحو $\left[-1,1\right]$ نحو (1

- [-1,1] متصلة على $Arc \sin 4$
- [-1,1] ترایدیة قطعا علی $Arc \sin 3$
 - $D_{Arcsin} = [-1,1]$ (4
 - $(\forall x \in [-1,1]): -\frac{\pi}{2} \le Arc \sin x \le \frac{\pi}{2}$ (5
 - $(\forall x \in [-1,1]) : \sin(Arc\sin x) = x \quad (6$

$$\left(\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$$
: $Arc\sin(\sin x) = x$ (7

$$(\forall x \in [-1,1]) : Arc \sin x = Arc \sin y \Leftrightarrow x = y$$

$$Arc \sin x \langle Arc \sin y \iff x \langle y \rangle$$
(8)

$$\left(\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right) : \sin x = \sin y \iff x = y$$

$$\sin x \langle \sin y \iff x \langle y \rangle$$

10) الدالة Arc sin فردية.

لنبين أن Arcsin فردية:

$$-x \in [-1,1]$$
 لدينا $[-1,1]$ من x

 $(\forall x \in [-1,1]) Arc \sin(-x) = -Arc \sin x$ لنبين أن

طريقة 1:

$$\sin(Arc\sin(-x)) = -x$$
 : لدينا

$$\sin(-Arc\sin(x)) = -\sin(Arc\sin(x))$$

 $(1)\sin(Arc\sin(-x)) = \sin(-Arc\sin(x))$ إذِن

$$(2) - \frac{\pi}{2} \le Arc\sin(-x) \le \frac{\pi}{2}$$
 ونعلم أن

$$-\frac{\pi}{2} \le Arc\sin\left(x\right) \le \frac{\pi}{2}$$

$$(3) - \frac{\pi}{2} \le -Arc\sin(x) \le \frac{\pi}{2}$$
 يعني

 $Arc\sin(-x) = -Arc\sin x$ من (1) و (2) من (1) نستنج أن وبالتالى الدالة Arcsin فردية.

طريقة 2:

 $Arc\sin(-x) = -Arc\sin x$ لنبين أن

نستعمل التكافؤات المتتالية:

 $Arc\sin(-x) = -Arc\sin x$ لدينا:

$$\Leftrightarrow \sin(Arc\sin(-x)) = \sin(-Arc\sin x)$$

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 من $Arc \sin(-x)$ لأن $Arc \sin(x)$

$$\Leftrightarrow -x = -\sin(Arc\sin x)$$

$$\Leftrightarrow -x = -x$$

 $Arc\sin(-x) = -Arc\sin(x)$ بما أن العبارة الأخيرة صحيحة فإن

طربقة 3:

 $Arc\sin(-x) = -Arc\sin(x)$ لنبين أن

$$y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
 مع $Arc\sin(-x) = y$ نضع

 $\left(y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right) Arc \sin(-x) = y \Leftrightarrow \sin y = -x$

$$\Leftrightarrow$$
 $-\sin y = x$

$$\Leftrightarrow \sin(-y) = x$$

 $\Leftrightarrow Arc\sin(\sin-y) = Arc\sin x$

$$\left(-y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right) \Leftrightarrow -y = Arc\sin x$$

 $\Leftrightarrow y = -Arc\sin x$

 $\Leftrightarrow Arc\sin(-x) = -Arc\sin x$

طريقة 4:

 $Arc\sin(-x) = -Arc\sin x$ لنبين أن:

ملاحظة: لكى نبين أن $\alpha = \beta$ يكفى أن نبين أن

 $-\frac{\pi}{2} \le \beta \le \frac{\pi}{2} \qquad \qquad \mathfrak{sin} \ \beta = \alpha$

 $\sin(-Arc\sin x) = -\sin(Arc\sin x)$ لدينا:

 $(1)\sin(-Arc\sin x) = -x$

 $-\frac{\pi}{2} \le -Arc\sin x \le \frac{\pi}{2}$ ولدينا

 $Arc\sin(-x) = -Arc\sin x$ من (1) و (2) نستنج أن $arc\sin(-x) = -Arc\sin x$

$$Arc\sin\left(\sin\frac{2\pi}{3}\right)$$
 (1)

$$Arc\sin\left(\sin\frac{107\pi}{3}\right)$$
 (2

$$Arc \sin\left(\sin\frac{2\pi}{3}\right) = Arc \sin\left(\sin\left(\pi - \frac{\pi}{3}\right)\right) - 1$$
$$= Arc \sin\left(\sin\frac{\pi}{3}\right) = \frac{\pi}{3}$$

$$\left(\frac{\pi}{3} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$$
لأن

$$Arc\sin\left(\sin\frac{107\pi}{3}\right) = Arc\sin\left(\sin\left(35\pi + \frac{2\pi}{3}\right)\right) - 2$$

$$= Arc\sin\left(\sin\left(35\pi + \pi - \frac{\pi}{3}\right)\right)$$

 $= Arc \sin \left(\sin - \frac{\pi}{3} \right) = -\frac{\pi}{3}$

 $\left(-\frac{\pi}{3} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$ لأن $Arc \sin$ للمثيل المبياني للدالة

<u>Arc cos inus</u> الدالة قوس جيب التمام (b

 $f:[0,\pi] \to \mathbb{R}$ نعتبر الدالة:

 $x \to \cos x$

 $[0,\pi]$ لدينا f متصلة على

$$f'(x) = -\sin x$$

fلدينا $f'(x)\langle 0$ على $f'(x)\langle 0$ ما عدا في π و0 حيث تتعدم، إذن $f'(x)\langle 0$ تناقصية قطعا على $[0,\pi]$.

$$f([0,\pi]) = [f(\pi), f(0)] = [-1,1]$$

إذن f نقابل من $[0,\pi]$ نحو [-1,1] وبالتالي تقبل دالة عكسية: $f^{-1}:[-1,1] \to [0,\pi]$

. $Arc\cos$ سمى دالة قوس جيب التمام. نرمز لها ب

<u>تعریف:</u>

نسمي دالة قوس جيب التمام الدالة العكسية للدالة: $f:[0,\pi] \to [-1,1]$ $x \to \cos x$

$$f^{-1}:[-1,1] \to [0,\pi]$$
 $f:[0,\pi] \to [-1,1]$ $x \to Arc\cos x$ $x \to \cos x$ $(\forall x \in [-1,1]) \forall y \in [0,\pi] Arc\cos x = y \Leftrightarrow \cos y = x$

لك x من $[0,\pi]$ الذي من $Arc\cos x$ من [-1,1] الذي $\cos y = x$ من .

 $Arc\cos x = y \Rightarrow \cos y = x$ *

$$\begin{cases} \cos y = x \Rightarrow Arc \cos x = y \\ y \in [0, \pi] \end{cases}$$

أمثلة:

$$Arc\cos 1 = 0 \qquad Arc\cos 0 = \frac{\pi}{2}$$

$$Arc\cos\frac{\sqrt{3}}{2} = \frac{\pi}{6}$$

$$Arc\cos\frac{1}{2} = \frac{\pi}{3}$$

$$Arc\cos^{-1} = \pi \qquad Arc\cos\frac{\sqrt{2}}{2} = \frac{\pi}{4}$$

$$Arc\cos{-\frac{\sqrt{3}}{2}} = \frac{5\pi}{6} \qquad Arc\cos{-\frac{1}{2}} = \frac{2\pi}{3}$$

 $[0,\pi]$ نحو [-1,1] نحو Arc cos تقابل من

[-1,1] متصلة على $Arc\cos$

[-1,1] على $Arc\cos$ تناقصية قطعا على -3

$$D_{Arccos} = [-1,1] -4$$

 $(\forall x \in [-1,1]) \ 0 \le Arc \cos x \le \pi -5$

 $(\forall x \in [-1,1]) \cos(Arc\cos x) = x -6$

$$(\forall x \in [0, \pi]) Arc \cos(\cos x) = x -7$$

 $(\forall x \, \mathcal{J} y \in [-1,1]) Arc \cos x = Arc \cos y \iff x = y - 8$ $Arc \cos x \langle Arc \cos y \iff x \rangle y$

$$(\forall x \mathfrak{Z} y \in [0, \pi]) \cos x = \cos y \iff x = y \quad -9$$
$$\cos x \langle \cos y \iff x \rangle y$$

-10 الدالة $Arc\cos a$ ليست لا زوجية و لا فردية. a=b نبين أن a=b ملاحظة: لكي نبين أن a=b يكفي أن نبين أن a=b.

مثال:

$$Arc\cos\left(\cos\frac{11}{3}\pi\right)$$
 حسب $Arc\cos\left(\cos\frac{11}{3}\pi\right) = Arc\cos\left(\cos\left(4\pi - \frac{\pi}{3}\right)\right)$

$$= Arc\cos\left(\cos\left(-\frac{\pi}{3}\right)\right)$$

 $= Arc \cos \left(\cos \frac{\pi}{3}\right) = \frac{\pi}{3} \left(\frac{\pi}{3} \in [0, \pi]\right)$ $Arc \cos \frac{\pi}{3} = \frac{\pi}{3} \left(\frac{\pi}{3} \in [0, \pi]\right)$ التمثيل المبياني الدالة

Arc tan gente الدالة قوس الظل (c

$$f:\left]-rac{\pi}{2},rac{\pi}{2}
ight]
ightarrow\mathbb{R}$$
 :نعتبر الدالة

$$x \rightarrow \tan x$$

$$-\frac{\pi}{2}, \frac{\pi}{2}$$
لدينا f متصلة على f

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \qquad f^{-1}(x) = 1 + \tan^2 x > 0$$

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 إذن f تزايدية قطعا على f

$$f\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right) = \lim_{\frac{\pi}{2}^{+}} f(x), \lim_{\frac{\pi}{2}^{-}} f\left[\right]$$
$$= \left[-\infty, +\infty\right] = \mathbb{R}$$

$$\mathbb{R}$$
 نحو $\left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$ نحو f

$$f^{-1}:\mathbb{R}
ightarrow\left]-rac{\pi}{2},rac{\pi}{2}
ight]$$
وبالتالي تقبل دالة عكسية

. $Arc an بالطل نرمز لها بالطل من <math>f^{-1}$

$$\frac{\mathbf{rav}}{\mathbf{par}}$$
 نسمي دالة قوس الظل الدالة العكسية للدالة \mathbf{rav} \mathbf{rav} \mathbf{rav} \mathbf{rav} \mathbf{rav} \mathbf{rav}

ملاحظة:

$$f: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{R}$$

$$\begin{array}{ccc}
J \cdot \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] & \xrightarrow{\mathbb{R}} \\
x & \rightarrow \tan x
\end{array}$$

$$x \to Arc \tan x$$

 $f^{-1}: \mathbb{R} o \left[-rac{\pi}{2}, rac{\pi}{2} \right]$

$$(\forall x \in \mathbb{R}) \left(\forall y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\right) Arc \tan x = y \Leftrightarrow \tan y = x$$

العدد
$$\frac{\pi}{2}$$
 من \mathbb{R} العدد x من \mathbb{R} العدد x من \mathbb{R} العدد x العدد x د العدد x العدد x

 $Arc \tan x = y \Rightarrow \tan y = x$ (*

$$\begin{cases} \tan y = x \Rightarrow Arc \tan x = y \\ y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \end{cases}$$
 (*

أمثلة:

$$Arc \tan \sqrt{3} = \frac{\pi}{3}$$

$$Arc \tan 0 = 0$$

$$Arc \tan \frac{\sqrt{3}}{3} = \frac{\pi}{6} \qquad Arc \tan 1 = \frac{\pi}{4}$$

$$Arc \tan \left(-\sqrt{3}\right) = -\frac{\pi}{3}$$
 $Arc \tan \left(-1\right) = -\frac{\pi}{4}$

خاصبات:

$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$
 نقابل من \mathbb{R} نحو Arc tan الدالة

$$\mathbb{R}$$
 الدالة $Arc an$ متصلة على (2

$$\mathbb{R}$$
 الدالة $Arc an Arc$ تز ايدية قطعا على (3

$$D_{Arctan} = \mathbb{R}$$
 (4

$$(\forall x \in \mathbb{R}) - \frac{\pi}{2} \langle Arc \tan(\frac{\pi}{2}) (5) \rangle$$

$$(\forall x \in \mathbb{R}) \tan(Arc \tan x) = x \quad (6$$

$$\left(\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\right) Arc \tan(\tan x) = x \quad (7)$$

$$(\forall x \mathcal{J} y \in \mathbb{R}) Arc \tan x = Arc \tan y \Leftrightarrow x = y$$
 (8)
$$Arc \tan x \langle Arc \tan y \Leftrightarrow x \langle y \rangle$$

$$\left(\forall x \mathcal{I} y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\right) \tan x = \tan y \iff x = y \quad (9)$$

$$\tan x \langle \tan y \iff x \langle y \rangle$$

10) الدالة Arc tan فدية.

برهان: نفس برهان Arc sin

bو $a = \tan b$ و $a = \tan b$ و a = b $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ ينتميان إلى التمثيل المبياني للدالة Arc tan

 $\times \to \arctan(x)$

racine nième n Lipin 10 2

a) تعریف:

 $n \in \mathbb{N}^*$ لبكن

$$f: \mathbb{R}^+ \to \mathbb{R}$$
 : is in the contraction of $f: \mathbb{R}^+$

$$x \to x^n$$

 \mathbb{R}^+ لدينا f متصلة على

$$f'(x) = nx^{n-1} *$$

لدينا f'(x) على \mathbb{R}^+ ما عدا في f'(x)

 \mathbb{R}^+ الذن f تز ايدية قطعا على f

$$f([0,+\infty[)=[0,+\infty[$$

إذن f تقابل من \mathbb{R}^+ نحو \mathbb{R}^+ و بالتالى تقبل دالة عكسية $f^{-1}: \mathbb{R}^+ \to \mathbb{R}^+$

الدالة f^{-1} تسمى دالة الجذر من الرتبة n ونرمز لها ب $\sqrt[n]{}$.

نسمى دالة الجذر من الرتبة n الدالة العكسية للدالة: n^{-1} ونرمز لها ب $f: \mathbb{R}^+ \to \mathbb{R}^+$

$$f^{-1}: \mathbb{R}^+ \to \mathbb{R}^+ \qquad f: \mathbb{R}^+ \to \mathbb{R}$$
$$x \to \sqrt[n]{x} \qquad x \to x^n$$

$$(\forall x, y \in \mathbb{R}^+) \sqrt[n]{x} = y \iff y^n = x$$

هذا يعنى أن لكل x من \mathbb{R}^+ العدد $\sqrt[n]{x}$ هو العدد y من \mathbb{R}^+ والذي $v^n = x$ بحقق

دائما صحیحة
$$\sqrt[n]{x} = y \Rightarrow y^n = x$$
 (*

$$\begin{cases} y^n = x \\ y \in \mathbb{R}^+ \end{cases} \Rightarrow \sqrt[n]{x} = y$$

$$lpha \in \mathbb{R}^+$$
لکي نبين أن $lpha = eta^+$ $rac{\sqrt[n]{lpha}}{\sqrt[n]{lpha}} = eta^+$ $eta \in \mathbb{R}^+$ $eta^n = lpha$

. الجذر من الرتبة 2 هو الجذر مربع (
$$\forall x \ge 0$$
) $\sqrt[3]{x} = \sqrt{x}$

$$(\forall x \ge 0)\sqrt[1]{x} = x \quad (*$$

$$\sqrt[4]{81} = 3$$
 $\sqrt[3]{8} = 2$

$$-8 = \left(-2\right)^3 \Rightarrow \sqrt[3]{-8} = -2$$

$$(-2)^4 = 16 \Rightarrow \sqrt[4]{16} = -2$$

b) خاصیات:

$$\mathbb{R}^+$$
 الدالة $\sqrt[n]{}$ تقابل من \mathbb{R}^+ نحو -1

$$\mathbb{R}^+$$
الدالة $\sqrt[n]{}$ متصلة على -2

$$\mathbb{R}^+$$
 الدالة $\sqrt[\infty]{}$ تزايدية قطعا على -3

$$D_{g/} = \mathbb{R}^+ -4$$

$$(\forall x \in \mathbb{R}^+) \sqrt[n]{x} \ge 0 -5$$

$$(\forall x, y \in \mathbb{R}^+) \sqrt[n]{x} = \sqrt[n]{y} \Leftrightarrow x = y$$
$$\sqrt[n]{x} \langle \sqrt[n]{y} \Leftrightarrow x \langle y \rangle -6$$

$$(\forall x, y \in \mathbb{R}^+) x^n = y^n \iff x = y$$
 -7

$$x^n \langle y^n \Leftrightarrow x \langle y$$

ملاحظة:

*) إذا كان n فردي:

$$(\forall x, y \in \mathbb{R}) \ x^n = y^n \iff x = y$$

 $x^n \langle y^n \iff x \langle y$

*) إذا كان n زوجي:

$$(\forall x, y \in \mathbb{R}) x^n = y^n \iff |x|^n = |y|^n \iff |x| = |y|$$

$$x^n \langle y^n \iff |x| \langle |y|$$

لكي نبين أن a = b يكفي أن نبين أن (*

$$\begin{cases} a^n = b^n \\ a, b \in \mathbb{R}^+ \end{cases}$$

I دالة موجبة على مجال I

. I الإا كانت f متصلة على الإا فإن f متصلة على ا

 $\sqrt[n]{l}$ اإذا كانت f به يقبل نهاية l في x_0 فإن $\sqrt[n]{f}$ تقبل نهاية t

 $x^n = a$ حل المعادلة (c

أمثلة:

حل في ۩ المعادلات التالية:

$$x^4 = 16$$
 (1

$$x^4 = 16 \Leftrightarrow |x|^4 = 16 \Leftrightarrow |x| = \sqrt[4]{16}$$
 الدينا:

$$\Leftrightarrow |x| = 2$$

 $\Leftrightarrow x = 2$ j x = -2

$$S = \{2; -2\}$$
 إذن:

$$x^6 = -10$$
 (2)

لدينا 00 – و x^6 دائما موجبة

$$S = \emptyset$$
 إذن المعادلة مستحيلة:

$$x^3 = 7$$
 (3)

(لأن
$$n$$
 فردي) $x^3 = 7 \Leftrightarrow x^3 = (\sqrt[3]{7})^3 \Leftrightarrow x = \sqrt[3]{7}$ لاينا: $x^3 = -6$

$$x^3 = -6 \Leftrightarrow x^3 = -\left(\sqrt[3]{6}\right)^3 \Leftrightarrow x^3 = \left(-\sqrt[3]{6}\right)^3$$
 لدينا:

$$\Leftrightarrow x = -\sqrt[3]{6} \text{ (Vi)} \quad n$$

d) العمليات على الجذور من الرتبة <u>d</u>

خاصية:

 \mathbb{R}^+ ليكن n و p من n و n ليكن

$$\sqrt[n]{a^n} = a$$
 $\int \left(\sqrt[n]{a}\right)^n = a$ (*

$$\sqrt[n]{a}.\sqrt[n]{b} = \sqrt[n]{ab}$$
 (*

$$\sqrt[np]{a^p} = \sqrt[n]{a} \qquad ; \qquad \left(\sqrt[n]{a}\right)^p = \sqrt[n]{a^p} \quad (*$$

$$\sqrt[n]{\frac{\sqrt[n]{p}}{\sqrt{a}}} = \sqrt[n]{a} \qquad ; \qquad (b\rangle 0) \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}} \quad (*$$

$$\sqrt[n]{a}.\sqrt[p]{a} = \sqrt[np]{a^{n+p}}$$
 (*

ملاحظة:

$$\sqrt[n]{ab} = \sqrt[n]{|a|} \cdot \sqrt[n]{|b|}$$
 $ab \ge 0$ إذا كان $\sqrt[n]{ab} = \sqrt[n]{|a|}$ $\sqrt[n]{ab} = \sqrt[n]{|a|}$ $(b)(0)$

<u>برهان:</u>

$$\sqrt[n]{\sqrt[p]{a}} = \sqrt[np]{a}$$
 if i.e. *

$$\left[\left(\sqrt[p]{\sqrt[p]{a}} \right)^n \right]^p = \left(\sqrt[p]{a} \right)^p = a$$
 لدينا:

$$\sqrt[n]{\sqrt[p]{a}} \in \mathbb{R}^+$$
ولدينا

$$\sqrt[n]{\sqrt[p]{a}} = \sqrt[np]{a}$$
 إذن:

$$\sqrt[n]{a}$$
. $\sqrt[p]{a} = \sqrt[np]{a^{n+p}}$ ننبین أن *

$$\left(\sqrt[n]{a}.\sqrt[p]{a}\right)^{np} = \left(\left(\sqrt[n]{a}\right)^n\right)^p \cdot \left(\left(\sqrt[p]{a}\right)^p\right)^n$$

$$= a^p \cdot a^n = a^{n+p}$$

 $\cdot \sqrt[n]{a}.\sqrt[p]{a} = \sqrt[np]{a^{n+p}}$ إذن $\sqrt[np]{a}.\sqrt[p]{a}.\sqrt[pp]{a} \in \mathbb{R}^+$ ولدينا

e) الأس الجذري لعدد حقيقي موجب قطعا:

<u>عریف:</u>

 $r \in \mathbb{Q}$ ليكن a > 0 وليكن

$$(q,q'\in\mathbb{N}^+)$$
و $(p,q'\in\mathbb{Z})=\frac{p}{q}=\frac{p'}{q'}$ نفترض أن:

$$\sqrt[q]{a^p} = \sqrt[q']{a^{p'}}$$
 لنبين أن

$$\left(\sqrt[q]{a^p}\right)^{qq'}=a^{pq'}$$
 لدينا

$$\left(\sqrt[q]{a^{p'}}\right)^{qq'} = a^{p'q}$$

$$a^{pq'}=a^{p'q}$$
 :ولدينا $pq'=p'q$ إذن

$$\left(\sqrt[q]{a^p}\right)^{qq'} = \left(\sqrt[q']{a^{p'}}\right)^{qq'}$$
يعني:

$$\sqrt[q]{a^p} = \sqrt[q']{a^{p'}}$$
 إذن:

$$a^r = a^{\frac{p}{q}} = \sqrt[q]{a^p}$$
 :نضع إذن

$$q\in \mathbb{N}^*$$
 هع $p\in \mathbb{Z}$ مع $r=rac{p}{q}\in \mathbb{Q}$ هي 0 ليكن 0

$$a^r = a^{\frac{p}{q}} = \sqrt[q]{a^p}$$
 :العدد a^r هو العدد المعرف بما يلي

$$16^{\frac{3}{4}} = \sqrt[4]{16^3} = (\sqrt[4]{16})^3 = 2^3 = 8$$
; $8^{\frac{1}{3}} = \sqrt[3]{8} = 2$

$$8^{\frac{1}{2}} = \sqrt{8} = 2\sqrt{2}$$

$$(\forall a \ge 0) a^{\frac{1}{2}} = \sqrt{a}$$
$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

باستعمال الأس الجذري العمليات على الجذور من الرتبة n

$$\left(a^{\frac{1}{n}}\right)^n = a \qquad ; \qquad \left(a^n\right)^{\frac{1}{n}} = a \quad (*$$

$$a^{\frac{1}{n}}.b^{\frac{1}{n}}=(ab)^{\frac{1}{n}}$$
 (*

$$a^{\frac{p}{np}} = a^{\frac{1}{n}} \quad (*$$

$$\left(a^{\frac{1}{p}}\right)^{\frac{1}{n}} = a^{\frac{1}{np}} \qquad ; \qquad \frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}} = \left(\frac{a}{b}\right)^{\frac{1}{n}} \quad (*$$

$$a^{\frac{1}{n}}.a^{\frac{1}{p}} = a^{\frac{n+p}{np}}$$
 (*

r<u>خاصیات:</u> b > 0 هر b > r و ر

$$a^{-r} = \frac{1}{a^r}$$
 ; $a^r \cdot a^{r'} = a^{r+r'}$ (*

$$a^{r}.b^{r} = (ab)^{r}$$
 ; $\frac{a^{r}}{a^{r'}} = a^{r-r'}$ (*

$$(a^r)^{r'} = a^{r,r'}$$
 ; $\frac{a^r}{b^r} = \left(\frac{a}{b}\right)^r$ (*

$$a^{r}.a^{r'} = a^{r+r'}$$
 نبین أن –

$$r' = \frac{p'}{q'}$$
 ين $r' = \frac{p}{q}$

$$a^{r}.a^{r'} = a^{\frac{p'}{q}}.a^{\frac{p'}{q'}}$$
 : دينا $a^{r}.a^{r'} = a^{q} a^{p}.a^{q'} a^{p'}$
 $a^{pp'}.a^{pp'}.a^{pp'} = a^{pp'q'} p \left(a^{pp'}\right)^{qp'+q'p}$
 $a^{p} a^{p} a^{q} = a^{p} a^{q} a^{p} a^{p} = a^{p} a^{p} a^{p} a^{p} a^{p} a^{p} a^{p}$