

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

Студент	Никат	ов Владислав Алекс	еевич
Группа	РК6-8	4б	
Тип задания	Лабор	раторная работа	
Тема лабораторной работы	Решен	ние задачи компонов	жи
Вариант	7		
Студент			Никатов В.А.
•		подпись, дата	фамилия, и.о.
Преподаватель			Берчун Ю.В.
		подпись, дата	фамилия, и.о.
Оценка			

Оглавление

1 Задание	3
2 Выбор наилучшего решения	4
3 Описание решения для наилучшего набора контейнеров	4
3.1 Последовательный алгоритм компоновки	4
3.2 Итерационный алгоритм компоновки	6
Приложение 1	10

1 Задание

Решить задачу компоновки. Компоненты можно группировать в контейнеры из списка определённых размеров (для примера - 3, 4, 5, 6 и 7). При этом сперва нужно решить комбинаторную задачу. Для каждого из возможных вариантов набора контейнеров уже решаем задачу компоновки. В отчёте подробно, по шагам, разбираем решение для наилучшего варианта набора контейнеров.

Таблица 1.1. Матрица смежности для графа из условия.

1 0 0 1 3 0 0 3 0 1 0 2 1 0 0 0 0 0 3 2 2 0 0 4 0 0 0 0 1 2 3 1 3 0 4 0 0 0 0 4 1 2 0 0 2 3 2 4 0 4 3 0 3 0 0 0 0 0 0 0 2 0 4 0 0 1 0 0 1 3 1 3	2 1 2 0 0 4 0 2 1 3 0 0	1 5 0 3 2 0 0 4 2 0 0 1 0 0	0 0 0 0 4 1 1 4 2 0 0 0	0 0 2 3 0 0 2 0 0 0 0 3	2 0 3 0 3	1 3 3 0 1 0 0 0 2 3	5 0 0 0	5 1 0 2	2 0 0 2	0 0 0 2	2 0 0
0 0 0 3 2 2 0 0 4 0 0 0 1 2 3 1 3 0 4 0 0 0 0 4 1 2 0 0 2 3 2 4 0 4 3 0 3 0 0 0 0 0 0 0 2 0 4 0 0 1 0 0 1 3 1 3	2 1 2 0 0 4 0 2 1 3 0 0 3 2 4	2 0 0 4 2 0 0 1	4 1 1 4 2 0	0 0 2 0 0 0	3 0	1 0 0 0	0	0	0	0	0
3 1 3 0 4 0 0 0 0 4 1 2 0 0 2 3 2 4 0 4 3 0 3 0 0 0 0 0 0 0 2 0 4 0 0 1 0 0 1 3 1 3	0 0 4 0 2 1 3 0 0 3 2 4	0 4 2 0 0 1	1 4 2 0	2 0 0 0	0	0 0	0	_	1	 	_
2 3 2 4 0 4 3 0 3 0 0 0 0 0 0 0 2 0 4 0 0 1 0 0 1 3 1 3	0 2 1 3 0 0 3 2 4	2 0 0 1	2 0	0 0	1 1			2	2	2	
0 0 2 0 4 0 0 1 0 0 1 3 1 3	3 0 0 3 2 4	0 1			3	2 3	_				4
	3 2 4		0 0	$0 \mid 3$			0	3	0	0	0
	_ + _ + _ +	0 0		0 3	0	0 0	0	2	2	4	1
	0 0 4		3 2	0 0	1	1 1	1	0	2	2	0
4 3 0 0 0 1 0 0 0 4 0 2 2 0		3 0	0 0	0 0	0	0 0	0	0	0	1	1
1 0 4 0 3 0 0 0 0 0 2 1 0 0	0 3 0	0 1	0 2	2 0	0	1 2	3	2	0	0	3
0 1 0 4 0 0 3 4 0 0 0 0 0	2 0 1	0 0	4 0	0 0	4	0 0	0	0	0	2	0
0 0 0 1 0 1 0 2 0 0 0 0	0 0 0	2 0	1 0	1 1	0	2 1	3	1	2	0	0
3 2 0 2 0 3 1 2 1 0 0 0 4 0	0 0 0	3 0	4 0	3 3	0	3 0	0	0	3	0	4
0 1 1 0 0 1 3 2 0 0 0 4 0 0	0 0 3	0 0	0 2	3 0	2	3 0	0	0	0	4	0
0 0 2 0 0 3 3 0 0 2 0 0 0 0	0 4 3	1 3	0 0	1 1	0	0 4	0	0	2	3	4
0 3 1 0 2 0 2 0 3 0 0 0 0 4	4 0 0	1 0	0 0	0 0	0	0 0	0	4	0	0	0
0 0 2 4 1 0 4 4 0 1 0 0 3 3	3 0 0	1 0	0 2	2 0	0	3 1	0	0	0	2	0
1 0 2 0 2 0 0 3 0 0 2 3 0	1 1 1	0 0	1 0	0 0	1	0 3	1	2	1	0	1
5 3 0 4 0 1 0 0 1 0 0 0 3	3 0 0	0 0	2 0	0 3	0	2 2	0	4	3	0	0
0 0 4 1 2 0 3 0 0 4 1 4 0 0	0 0 0	1 2	0 0	4 1	1	0 2	0	0	0	0	0
0 0 1 4 0 0 2 0 2 0 0 0 2 0	0 0 2	0 0	0 0	0 0	0	0 4	1	0	1	0	0
0 2 0 2 0 0 0 0 2 0 1 3 3	1 0 2	0 0	4 0	0 4	0	0 2	0	4	0	0	0
0 3 0 0 0 3 0 0 0 1 3 0	1 0 0	0 3	1 0	4 0	0	3 3	4	4	1	0	3
2 0 3 0 3 0 1 0 0 4 0 0 2 0	0 0 0	1 0	1 0	0 0	0	0 0	0	4	2	4	0
1 3 1 0 2 0 1 0 1 0 2 3 3 0	0 0 3	0 2	0 0	0 3	0	0 0	0	0	0	2	0
3 0 0 0 3 0 1 0 2 0 1 0 0 4	4 0 1	3 2	2 4	2 3	0	0 0	1	0	0	2	4
5 0 0 0 0 0 1 0 3 0 3 0 0	0 0 0	1 0	0 1	0 4	0	0 1	0	0	4	1	0
5 1 0 2 3 2 0 0 2 0 1 0 0	0 4 0	2 4	0 0	4 4	4	0 0	0	0	0	1	2
2 0 0 2 0 2 2 0 0 0 2 3 0 2	2 0 0	1 3	0 1	0 1	2	0 0	4	0	0	0	0
0 0 0 2 0 4 2 1 0 2 0 0 4 3	3 0 2	0 0	0 0	0 0	4	2 2	1	1	0	0	0
2 0 0 4 0 1 0 1 3 0 0 4 0 4	4 0 0	1 0	0 0	0 3	0	0 4	0	2	0	0	0

2 Выбор наилучшего решения

В рамках задачи компоновки необходимо разделить граф G(V,R) на подграфы $\{G_i(V_i,R_i)\}_{i=1}^n$. Критерием оптимальности в данной задаче является число внешних связей. Его можно записать в виде формулы $Q=\frac{1}{2}\sum_{\substack{i,j=1\\i\neq j}}^n \left|R_{ij}\right|$.

В ходе решения задачи были получены все возможные сочетания из множества $\{3, 4, 5, 6, 7\}$. Для каждого полученного сочетания была решена задача компоновки. Наилучшим сочетанием оказался набор контейнеров $\{3, 6, 7, 7, 7\}$. Значением критерия оптимальности Q для такого набора было равно 214.

3 Описание решения для наилучшего набора контейнеров

3.1 Последовательный алгоритм компоновки

Сначала необходимо получить опорное решение с помощью последовательного алгоритма, чтобы потом его улучшить с помощью итерационного.

Первым шагом необходимо вычислить суммарное количество связей для каждой из вершин графа. Эти значения представлены в таблице 3.1.2.

Таблица 3.1.2а. Суммарное количество связей для первой половины вершин.

v_i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
s_i	20	31	19	31	18	24	32	33	26	18	30	13	32	33	20

Таблица 3.1.26. Суммарное количество связей для второй половины вершин.

v_i	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
s_i	26	25	23	33	29	14	27	23	20	26	34	25	23	28	24

Выбираем вершину с наименьшим числом внешних связей (v_{11}) и определяем её в первое подмножество V_0 . Если для нескольких вершин s_i одинаково, то следует выбирать вершину, которая имеет связи с минимальным числом других вершин. Если и таких вершин несколько – любую из них.

Рассмотрим вершины $\{v_5, v_6, v_{16}, v_{20}, v_{22}, v_{24}\}$, имеющие общие связи с вершинами из подмножества V_0 – вершиной v_{11} . Приращение связей при включении

вершины в подмножество V_0 является коэффициентом внешней связанности вершины и считается по формуле

$$\delta_i = 2 \cdot \mathbf{r}_i - s_i$$

где r_i — количество связей с вершинами из уже сформированного подмножества V_0 . А сам δ_i называют коэффициентом внешней связности вершины. Его значение равно разности между числом внешних (с вершинами, не входящими в соответствующее подмножество) связей вершины и внутренних (с вершинами подмножества, в котором находится рассматриваемая вершина). связей вершины.

Значения δ_i для вершин-кандидатов $\{v_5, v_6, v_{16}, v_{20}, v_{22}, v_{24}\}$ представлены в таблице 3.1.3.

Таблица 3.1.3. Приращение связей для вершин-кандидатов.

v_i	5	6	16	20	22	24
δ_{i}	-16	-28	-23	-12	-21	-18

Из них необходимо выбрать ту, при включении которой в подмножество V_0 будет минимально приращение количество связей. Включаем в подмножество вершину v_{20} , таким образом $V_0 = \{v_{11}, v_{20}\}$.

К вершинам-кандидатам на добавление, имеющим общие связи с вершинами из подмножества V_0 , добавились вершины $\{v_{12}, v_{13}, v_{15}, v_{16}, v_{19}, v_{22}\}$, имеющие общую связь с добавленной на предыдущем этапе вершиной v_{20} . Приращения связей для вершин-кандидатов представлены в таблице 3.1.4.

Таблица 3.1.4. Приращение связей для вершин-кандидатов.

v_i	5	6	12	13	15	16	18	19	22	24
δ_{i}	-16	-24	-28	-25	-24	-23	-27	-27	-21	-18

После добавления вершины v_5 в подмножество V_0 оно становится сформированным, потому как его размер изначально полагался равным 3, таким образом $V_0 = \{v_5, v_{11}, v_{20}\}.$

Исключаем уже скомпонованные вершины из дальнейшего рассмотрения.

Находим вершину с наименьшим количеством внешних связей среди оставшихся вершин – v_4 . Добавляем данную вершину в новое подмножество $V_1 = \{v_4\}$.

Перечень вершин, имеющих общие связи с уже размещенной вершиной v_4 : $\{v_3, v_6, v_{15}, v_{17}, v_{19}, v_{22}, v_{25}\}$. Значение δ_i для этих вершин представлено в таблице 3.1.5. Таблица 3.1.5. Приращение связей для вершин-кандидатов.

v_i	3	6	15	17	19	22	25
δ_{i}	-25	-30	-22	-15	-25	-21	-28

Добавляем вершину с наименьшим по модулю приращением v_{17} , таким образом $V_1 = \{v_4, v_{17}\}.$

Повторяем процедуру до тех пор, пока не будет достигнут необходимый размер подмножества V_1 . Вершины в будут добавлены в следующем порядке: v_{15}, v_{27}, v_3, v_8 . Таким образом $V_1 = \{v_3, v_4, v_8, v_{15}, v_{17}, v_{27}\}$.

Исключаем скомпонованные вершины из рассмотрения и повторяем процедуру. Результатом алгоритма является следующие опорное решение:

- $$\begin{split} &- V_0 = \{v_5, v_{11}, v_{20}\}; \\ &- V_1 = \{v_3, v_4, v_8, v_{15}, v_{17}, v_{27}\}; \\ &- V_2 = \{v_0, v_2, v_{10}, v_{12}, v_{14}, v_{16}, v_{26}\}; \end{split}$$
- $V_3 = \{v_1, v_9, v_{21}, v_{22}, v_{24}, v_{28}, v_{29}\};$
- $V_4 = \{v_6, v_7, v_{13}, v_{18}, v_{19}, v_{20}, v_{23}\}.$

Количество внешних связей для такого разбиения Q=219.

3.2 Итерационный алгоритм компоновки

Для улучшения разбиения необходимо совершить перемещения вершин из одного подмножества в другое так, чтобы значение целевой функции (количество внешних связей) уменьшилось. Для того, чтобы эффект от перемещения для каждой рассматриваемой пары вершин, для них вычисляется значение:

$$\Delta R_{ij} = \delta_i + \delta_j - 2 \cdot R_{ij} .$$

Если $\Delta R_{ij} > 0$, то после перестановки вершин количество связей уменьшится, а значит, такую перестановку следует выполнить. Основной задачей на каждом этапе

является получение матрицы перестановок, строки которой соответствуют одному из подмножеств, а столбцы – второму. Элементами матрицы являются значения ΔR_{ij} .

Матрица перестановок подмножества V_0 с подмножествами V_1 , V_2 , V_3 и V_4 представлена в таблице 3.2.1. Находим в матрице перестановок максимальный элемент и, если он больше нуля, выполняем перестановку соответствующих ему вершин, после чего пересчитываем матрицу перестановок и повторяем операцию. Перестановка производится ровно до тех пор, пока в матрице не останется положительных элементов. Таблица 3.2.1. Матрица перестановок. Подмножество V_0 , итерация 1.

	3	4	8	15	17	27	0	2	10	12	14	16	26	1	9	21	22	24	28	29	6	7	13	18	19	23	25
5	-11	-7	-3	-3	-12	-7	-7	-10	-16	-19	-13	-11	-11	-15	-7	-11	-6	-10	-12	-12	-10	-15	-9	-14	-13	-14	-9
11	-14	-12	-12	-10	-17	-16	-10	-13	-15	-22	-16	-14	-14	-16	-8	-12	-9	-15	-13	-7	-17	-18	-12	-15	-12	-17	-10
20	-9	-7	-7	-7	-12	-11	-5	-8	-10	-21	-11	-7	-9	-17	-9	-13	-8	-8	-14	-8	-5	-6	-8	-9	-2	-5	2

Меняем элементы 20 и 25 местами.

Таблица 3.2.2. Матрица перестановок. Подмножество V_0 , итерация 2.

	3	4	8	15	17	27	0	2	10	12	14	16	26	1	9	21	22	24	28	29	6	7	13	18	19	23	20
5	-9	-5	-2	-3	-11	-8	-8	-11	-17	-18	-14	-12	-12	-12	-8	-9	-7	-11	-11	-13	-16	-17	-19	-14	-17	-8	-11
11	-10	-8	-9	-8	-14	-15	-9	-12	-14	-19	-15	-13	-13	-11	-7	-8	-8	-14	-10	-6	-19	-16	-18	-11	-12	-7	-12
25	-1	1	2	3	-3	0	-3	-6	-8	-21	-9	-5	-7	-12	0	-7	1	1	-7	1	-7	-8	-10	-11	-4	-7	-2

Меняем элементы 25 и 15 местами.

Таблица 3.2.3. Матрица перестановок. Подмножество V_0 , итерация 3.

	3	4	8	25	17	27	0	2	10	12	14	16	26	1	9	21	22	24	28	29	6	7	13	18	19	23	20
5	-15	-7	-6	-6	-9	-4	-6	-11	-17	-22	-14	-12	-8	-16	-8	-11	-7	-11	-13	-12	-13	-17	-19	-16	-15	-12	-10
11	-16	-10	-13	-11	-12	-11	-7	-12	-14	-23	-15	-13	-9	-15	-7	-10	-8	-14	-12	-5	-16	-16	-18	-13	-10	-11	-11
15	-4	-2	-1	-3	-6	-3	-3	-4	-6	-15	-7	-3	-9	-15	-7	-12	-6	-6	-12	-7	-10	-8	-10	-9	-6	-3	-3

Положительных элементов среди всех ΔR_{ij} больше нет.

Исключаем скомпонованное подмножество $V_0 = \{v_5, v_{11}, v_{15}\}$ из рассмотрения и переходим к подмножеству V_1 . Матрица перестановок подмножества V_1 с подмножествами V_2 , V_3 и V_4 представлена в таблице 3.2.4.

Таблица 3.2.4. Матрица перестановок. Подмножество V_1 , итерация 1.

	0	2	10	12	14	16	26	1	9	21	22	24	28	29	6	7	13	18	19	23	20
3	-18	-17	-27	-26	-24	-18	-22	-21	-19	-22	-17	-19	-20	-17	-23	-24	-30	-20	-17	-14	-19
4	-16	-15	-19	-24	-22	-16	-20	-19	-17	-16	-13	-17	-18	-15	-23	-18	-20	-18	-19	-12	-17
8	-9	-16	-12	-17	-15	-13	-13	-16	-10	-9	-10	-14	-11	-8	-21	-20	-18	-16	-13	-12	-15
25	-12	-11	-15	-28	-18	-12	-16	-19	-9	-14	-3	-9	-14	-7	-16	-13	-15	-21	-10	-15	-12
17	-17	-16	-22	-27	-23	-17	-21	-21	-19	-18	-13	-21	-22	-17	-26	-23	-25	-23	-22	-17	-22
27	-12	-11	-15	-22	-18	-16	-16	-12	-10	-9	-4	-14	-13	-16	-21	-18	-20	-18	-19	-12	-17

Видно, что среди всех пар элементов из подмножества V_1 с элементами из других подмножеств положительных ΔR_{ij} не оказалось, а значит перестановки делать не нужно, а подмножество $V_1 = \{v_3, v_4, v_8, v_{17}, v_{25}, v_{27}\}$ можно считать скомпонованным. Исключаем вершины подмножества V_1 из рассмотрения и переходим к следующему этапу — подмножеству V_2 . Матрица перестановок подмножества V_2 с подмножествами V_3 и V_4 представлена в таблице 3.2.5.

Таблица 3.2.5. Матрица перестановок. Подмножество V_2 , итерация 1.

	1	9	21	22	24	28	29	6	7	13	18	19	23	20
0	-13	-13	-15	-7	-17	-15	-13	-15	-8	-10	-5	-2	-2	-2
2	-14	-14	-16	-8	-18	-16	-18	-16	-13	-17	-16	-17	-13	-13
10	-18	-10	-18	-10	-14	-12	-10	-23	-20	-20	-25	-20	-20	-20
12	-26	-26	-28	-22	-30	-28	-26	-26	-29	-23	-26	-23	-23	-27
14	-21	-15	-17	-9	-21	-17	-15	-19	-16	-16	-19	-22	-18	-16
16	-15	-13	-13	-5	-15	-17	-13	-18	-15	-21	-18	-15	-15	-15
26	-11	-11	-13	-11	-17	-17	-11	-16	-15	-13	-22	-13	-15	-13

Положительных элементов в матрице перестановок нет, а значит подмножество $V_2 = \{v_0, v_2, v_{10}, v_{12}, v_{14}, v_{16}, v_{26}\}$ мы так же можем считать скомпонованным. Исключаем его из дальнейшего рассмотрения и остается два подмножества: V_3 и V_4 . Матрица перестановок этих подмножеств представлена в таблице 3.2.6.

Таблица 3.2.5. Матрица перестановок. Подмножество V_3 , итерация 1.

	6	7	13	18	19	23	20
1	-28	-24	-30	-24	-27	-23	-26
9	-13	-11	-13	-15	-14	-6	-9
21	-18	-18	-22	-14	-17	-19	-16
22	-19	-15	-21	-17	-18	-14	-17
24	-25	-21	-27	-21	-24	-20	-23
28	-24	-14	-24	-18	-17	-13	-16
29	-19	-21	-21	-15	-18	-14	-17

Положительный элементов в матрице перестановок так же не оказалось. Это значит, что подмножество $V_3=\{v_1,v_9,v_{21},v_{22},v_{24},v_{28},v_{29}\}$ можно считать скомпонованным. И остается одно подмножество $V_4=\{v_6,v_7,v_{13},v_{18},v_{19},v_{20},v_{23}\}$, которое так же скомпоновано.

Результатом итерационного алгоритма компоновки является решение

- $V_0 = \{v_5, v_{11}, v_{20}\};$
- $V_1 = \{v_3, v_4, v_8, v_{15}, v_{17}, v_{27}\};$
- $V_2 = \{v_0, v_2, v_{10}, v_{12}, v_{14}, v_{16}, v_{26}\};$
- $V_3 = \{v_1, v_9, v_{21}, v_{22}, v_{24}, v_{28}, v_{29}\};$
- $V_4 = \{v_6, v_7, v_{13}, v_{18}, v_{19}, v_{20}, v_{23}\}.$

Количество внешних связей для такого разбиения Q=214.

Малое количество итераций алгоритма было достигнуто хорошей точностью опорного решения, полученного с использованием алгоритма последовательной компоновки.

Код программы на языке Python3.7, реализующий оба алгоритма компоновки для решения поставленной задачи, представлен в приложении 1.

Приложение 1.

main.py

```
from iterative_solver import optimal
from iterative_solver import iterative_algorithm_v2
from sequential_solver import sequential_algorithm
from helper import get_combs
from data import matrix
def main():
  combs = get_combs(min_cont_size=2,
           max_cont_size=7,
           element_number=len(matrix))
  group_list_list = []
  new_group_list_list = []
  opt_list = []
  for size list in combs:
    print(size_list)
    group_list = sequential_algorithm(matrix, size_list)
    group_list_list.append(group_list)
    new_group_list = iterative_algorithm_v2(matrix, group_list)
    new_group_list_list.append(new_group_list)
    opt_list.append(optimal(matrix, new_group_list))
  ind = [i for i, opt in enumerate(opt_list) if opt == min(opt_list)][0]
  print('size_list:', combs[ind])
  print('group_list:', group_list_list[ind])
  print('new_group_list:', new_group_list_list[ind])
  print('opt:', opt_list[ind])
def result():
  size_list = (3, 6, 7, 7, 7)
  old_group_list = sequential_algorithm(matrix, size_list, info=False)
  old opt = optimal(matrix, old group list)
  for i in range(len(old_group_list)):
    old_group_list[i] = sorted(old_group_list[i])
  new_group_list = iterative_algorithm_v2(matrix, old_group_list, info=True)
```

```
new_opt = optimal(matrix, new_group_list)
 print('old_group_list:', old_group_list)
 print('new group list:', new group list)
 print('old_opt:', old_opt)
 print('new_Q:', new_opt)
if __name__ == '__main__':
 # main()
 result()
sequential solver.py
from print import print_r_matrix
def sequential_algorithm(matrix, size_list, info=False):
 group_list = [[] for _ in size_list]
 use_list = []
 for i, (group, size) in enumerate(zip(group_list, size_list)):
   if info:
      print('Γρуππa', i)
    for _ in range(size):
      element = next_element(group, matrix, use_list, info)
      group.append(element)
      if info:
        print('Добавлен вершина', element)
   if info:
      print('В результате руппа', i, ':', group)
      print()
 return group list
def first_element(matrix, use_list, info=False):
  # создание словарей нераспределенных вершин:
  # 1. количество связей с ненулевыми неиспользуемыми вершинами
  # 2. сумма связей с ненулевыми неиспользуемыми вершинами
 count_dict = dict()
 sum dict = dict()
  # строки матрицы, соответствующие неиспользуемым вершинам
 for elem, line in [(i, line) for i, line in enumerate(matrix) if i not in use list]:
    # количество ненулевых связей с вершинами, отсутствующими в списке
```

```
use_list
    count_dict.update([(elem, len([v for el, v in enumerate(line) if v != 0 and el not in
use_list]))])
    # сумма связей с вершинами, отсутствующими в списке use list
    sum_dict.update([(elem, sum([v for el, v in enumerate(line) if el not in use_list]))])
  if info:
    print('Сумма связей для нераспределенных вершин:')
    print_r_matrix([list(sum_dict.values())], [list(sum_dict.keys())])
  # вершины с минимальной суммой
  elem_list = [i for i, v in sum_dict.items() if v == min(sum_dict.values())]
  # оставляем только вершины с минимальной суммой
  for el in [elem for elem in range(len(matrix)) if elem not in elem_list and elem not
in use_list]:
    count_dict.pop(el)
  if info:
    print('Вершины с минимальной суммой внешних связей:',
list(count_dict.keys()))
  # вершина с минимальным количеством связей
  value = [el for el in elem_list if count_dict[el] == min(count_dict.values())][0]
  if info and len(count_dict) > 1:
    print('Количество внешних связей для них:')
    print_r_matrix([list(count_dict.values())], [list(count_dict.keys())])
    print('Вершина с минимальным количеством внешних связей:', value)
  use_list.append(value)
  return value
def next_element(group, matrix, use_list, info=False):
  adjacent_group = get_adjacent_group(group, matrix, use_list)
  if info:
    print("Перечень неразмещенных вершин, имеющих общие связи с
размещенными:", adjacent group)
  if len(adjacent_group) == 0:
    return first element(matrix, use list, info)
  p_list = list(map(sum, matrix))
  delta = dict([(i, 0) for i in adjacent_group])
  for el1 in adjacent_group:
    for el2 in group:
      delta[el1] += matrix[el2][el1] * 2
    delta[el1] -= p_list[el1]
  if info:
    print("Значение дельта для выбранных вершин:")
    print_r_matrix([delta.values()], [delta.keys()])
  value, delta = [(i, v) \text{ for } i, v \text{ in } delta.items() \text{ if } v == max(delta.values())][0]
```

```
use_list.append(value)
  return value
def get_adjacent_group(group, matrix, use_list):
  adjacent group = set()
  for el1 in group:
    adjacent group.update([i for i, el2 in enumerate(matrix[el1]) if el2!= 0 and i not
in use_list])
  return list(adjacent_group)
iterative solver.py
import numpy as np
import copy
from print import print_p_matrix
from helper import concat
def iterative algorithm(matrix, all group list, info=False):
  group_list = copy.deepcopy(all_group_list)
  for i in range(len(group_list)):
    for j in range(i, len(group_list)):
      group1 = group_list[i]
      group2 = group_list[j]
      alpha1 = [get_a(matrix, el, group1, group2) for el in group1]
      alpha2 = [get_a(matrix, el, group1, group2) for el in group2]
      p matrix = get b(matrix, alpha1, alpha2, group1, group2)
      ind1, ind2 = np.unravel_index(p_matrix.argmax(), p_matrix.shape)
      it = 0
      while p_{matrix}[ind1][ind2] > 0:
        if info:
          print('Подмножества:', i, 'и', j, ', итерация:', it)
          print_p_matrix(p_matrix, group1, group2)
          print('Меняем элементы', group1[ind1], 'и', group2[ind2], 'местами.')
          print('group_list', group_list)
          print()
        group1[ind1], group2[ind2] = group2[ind2], group1[ind1]
        alpha1 = [get_a(matrix, el, group1, group2) for el in group1]
        alpha2 = [get_a(matrix, el, group1, group2) for el in group2]
        p_matrix = get_b(matrix, alpha1, alpha2, group1, group2)
        ind1, ind2 = np.unravel_index(p_matrix.argmax(), p_matrix.shape)
        it += 1
      if info:
```

```
print('Подмножества:', i, 'и', j, ', итерация:', it)
        print('Положительных элементов следи всех deltaR больше нет.')
        print()
  return group_list
def iterative_algorithm_v2(matrix, all_group_list, info=False):
  all group list = copy.deepcopy(all group list)
  for i in range(len(all_group_list) - 1):
    group_list = all_group_list[i:]
    p_matrix = get_b_matrix_v2(matrix, group_list)
    el1, el2 = find_elements_to_swap(p_matrix, group_list)
    iter = 1
    while el1 is not None:
      if info:
        print('Подмножество:', i, ', итерация:', iter)
        print_p_matrix(p_matrix, group_list[0], concat(group_list[1:]))
        print('Меняем элементы', el1, 'и', el2, 'местами.')
        print()
      group_list = swap_group(group_list, el1, el2)
      p_matrix = get_b_matrix_v2(matrix, group_list)
      el1, el2 = find_elements_to_swap(p_matrix, group_list)
      iter += 1
    if info:
      print('Подмножество:', i, ', итерация:', iter)
      print_p_matrix(p_matrix, group_list[0], concat(group_list[1:]))
      print('Положительных элементов следи всех deltaR больше нет.')
      print()
  return all_group_list
def get_a(matrix, v_index, group1, group2):
  alpha = 0
  for el in group1:
    alpha -= matrix[v_index][el]
  for el in group2:
    alpha += matrix[v_index][el]
  if v_index in group2:
    alpha *= -1
  return alpha
def get_b(matrix, alpha1, alpha2, group1, group2):
  b = \Pi
  for i in range(0, len(alpha1)):
```

```
tmp = \prod
    for j in range(0, len(alpha2)):
      b_value = alpha1[i] + alpha2[j] - 2 * matrix[group1[i]][group2[j]]
      tmp.append(b value)
    b.append(tmp)
  return np.array(b)
def get_b_v2(elem1, elem2, group_list, matrix):
  val = 0
  for el in group_list[0]:
    val -= matrix[elem1][el]
    val += matrix[elem2][el]
  for group in group list[1:]:
    if elem2 in group:
      for el in group:
        val += matrix[elem1][el]
        val -= matrix[elem2][el]
  val -= 2 * matrix[elem1][elem2]
  return val
def get_b_matrix_v2(r_matrix, group_list):
  p matrix = []
  for i, elem in enumerate(group_list[0]):
    p matrix.append([])
    for j, other_elem in enumerate(concat(group_list[1:])):
      p_matrix[i].append(get_b_v2(elem, other_elem, group_list, r_matrix))
  return np.array(p_matrix)
def find_elements_to_swap(p_matrix, group_list):
  i, j = np.unravel_index(p_matrix.argmax(), p_matrix.shape)
  if p_matrix[i][j] <= 0:
    return None, None
  return group_list[0][i], concat(group_list[1:])[j]
def g_ind(elem, group_list):
  for i, group in enumerate(group_list):
    for j, el in enumerate(group):
      if elem == el:
        return i, j
```

```
def swap_group(group_list, elem1, elem2):
  i1, j1 = g_ind(elem1, group_list)
  i2, j2 = g_ind(elem2, group_list)
  group_list[i1][j1], group_list[i2][j2] = group_list[i2][j2], group_list[i1][j1]
  return group_list
def optimal(r matrix, group list):
  result = 0
  for i, group1 in enumerate(group_list):
    for group2 in group_list[i + 1:]:
      for el1 in group1:
        for el2 in group2:
          result += r matrix[el1][el2]
  return result
helper.py
from itertools import combinations_with_replacement
def concat(ll):
  return [el for lst in ll for el in lst]
def get_combs(min_cont_size,
       max_cont_size,
       element number):
  min_comb_size = (element_number - 1) // max_cont_size + 1
  max_comb_size = (element_number - 1) // min_cont_size + 1
  combs = []
  for comb_size in range(min_comb_size, max_comb_size + 1):
    combs += list(combinations_with_replacement(range(min_cont_size, max_cont_size)
+ 1), comb size))
  return [cont for cont in combs if sum(cont) == element_number]
```

print.py

from helper import concat

```
def print_r_matrix(r_matrix, group_list=None):
  if group_list is None:
    group_list = list([range(len(r_matrix[0]))])
  elem_list = concat(group_list)
  # шапка
  print(end=' R ')
  for el in elem list:
    if el < 10:
      print(end='')
    print(el, end=' ')
  print()
  # столбец + матрица
  for i, line in enumerate(r_matrix):
    # столбец
    if elem_list[i] < 10:</pre>
      print(end='')
    print(elem_list[i], end=")
    # строка матрицы
    for el in line:
      if el <= -10:
        print(el, end=")
      elif el < 0 or el >= 10:
        print(", el, end=")
      elif el < 10:
        print(' ', el, end=")
    print()
def print_p_matrix(p_matrix, group1, group2):
  # шапка
  print(end=' ')
  for el in group2:
    if el <= -10:
      print(", el, end=")
    elif el < 0 or el >= 10:
      print('', el, end=")
    elif el < 10:
      print(' ', el, end='')
  print()
  # столбец + матрица
  for i, line in enumerate(p_matrix):
    # столбец
```

```
if group1[i] < 10:
    print(end=' ')
print(group1[i], end=")
# строка матрицы
for el in line:
    if el <= -10:
        print(", el, end=")
    elif el < 0 or el >= 10:
        print(' ', el, end=")
    elif el < 10:
        print(' ', el, end=")
print(' ', el, end=")</pre>
```

data.py

```
matrix = [[0, 0, 4, 4, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 3, 0, 0, 2, 1, 0, 1, 0, 4, 0, 2, 4, 0, 1, 0, 0]
            [0, 0, 0, 2, 0, 0, 0, 4, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 3, 2, 0, 1, 0, 0, 0, 1],
            [4, 2, 0, 0, 0, 0, 1, 0, 4, 3, 0, 0, 4, 0, 4, 0, 0, 0, 1, 0, 2, 3, 3, 0, 1, 4, 0, 0, 0, 3],
            [1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 3, 0, 0, 0, 3, 0, 3, 0, 0]
            [0, 0, 0, 0, 0, 0, 2, 4, 0, 3, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 2, 1, 1, 0, 2, 0, 0, 0]
            [1, 0, 0, 1, 0, 2, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 2, 0, 2, 1, 3, 3, 4]
            [0, 4, 0, 0, 2, 4, 3, 0, 0, 0, 2, 3, 0, 0, 0, 0, 1, 0, 0, 1, 0, 3, 2, 0, 3, 0, 0, 0, 4, 0],
            [4, 2, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 4, 0, 0, 0, 1, 0, 4, 0, 0, 0, 1, 0, 0]
            [0, 0, 0, 3, 0, 3, 0, 0, 2, 0, 0, 0, 0, 2, 0, 3, 2, 4, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 2, 0],
            [1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 4, 0, 4, 0, 3, 4, 0],
            [0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0]
            [1, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 3, 3, 0, 4, 0, 0, 3, 1, 0, 2, 0, 0, 0, 2],
            [0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 4, 0, 2, 0, 4],
            [3, 0, 0, 4, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, 1, 2, 0, 0, 0, 2, 0, 4, 3, 0, 3, 0, 4],
            [0, 0, 2, 0, 0, 0, 0, 0, 3, 3, 0, 0, 4, 0, 2, 0, 3, 4, 4, 0, 0, 0, 2, 0, 3, 1, 0, 0, 0, 1],
            [0, 0, 0, 0, 3, 0, 0, 1, 0, 2, 0, 0, 3, 0, 2, 3, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0]
            [2, 0, 0, 0, 2, 4, 0, 0, 4, 4, 0, 0, 3, 0, 1, 4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0],
            [1, 0, 4, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 4, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0]
            [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 1, 3, 1, 3, 0, 0, 0]
            [1, 3, 2, 2, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 4, 0, 2, 0, 1, 4, 3],
            [0, 3, 0, 3, 3, 1, 1, 3, 1, 3, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 0, 1, 0, 3, 1, 0],
            [4, 2, 0, 3, 0, 2, 0, 2, 0, 0, 0, 0, 3, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0]
            [0, 0, 0, 0, 0, 1, 2, 0, 4, 1, 4, 0, 1, 3, 0, 0, 0, 0, 1, 1, 4, 4, 0, 0, 2, 0, 0, 0, 0, 4],
            [2, 1, 0, 1, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 4, 3, 0, 0, 0, 3, 0, 0, 4, 2, 0, 4, 4, 0, 4, 3],
            [4, 0, 3, 4, 3, 0, 2, 0, 0, 0, 4, 0, 2, 4, 3, 1, 0, 0, 0, 1, 2, 1, 0, 0, 4, 0, 3, 0, 0, 0]
            [0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 4, 3, 0, 1, 0, 0]
            [1, 0, 2, 0, 3, 0, 3, 0, 1, 0, 3, 0, 0, 2, 3, 0, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 1, 0, 4, 4],
            [0, 0, 0, 0, 0, 0, 3, 4, 0, 2, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 1, 0, 0, 4, 0, 0, 4, 0, 3],
            [0, 1, 0, 3, 0, 0, 4, 0, 0, 0, 0, 0, 2, 4, 4, 1, 0, 0, 0, 0, 3, 0, 0, 4, 3, 0, 0, 4, 3, 0]]
```