TalkingData AdTracking - Projeto do Curso 1 da Formação Cientista de Dados DSA

Carlos Paiva

03 de Outubro de 2020

Detectar cliques fraudulentos em anúncios de app mobile

Projeto da Formação Cientista de Dados da Data Science Academy.

Este projeto serve para prever se um clique em anúncio é fraudulendo ou não.

Entende-se como fraudulento quando clica no anúncio, mas não faz o download (is_attributed == 0)

 $\label{lem:detection_data} Dataset \quad usado: \quad https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection/data?select=train_sample.csv$

Carregando o dataset

```
# Coletando os dados
dataset <- read.csv("train_sample.csv")</pre>
```

Feature Selection e Feature Engineering

```
dataset.v1 <- dataset
dataset.v1$attributed_time <- NULL

# Agora quero dividir a click_time em duas colunas
# click_date e click_time
# click_date vai armazenar apenas data
# click_hour vai armazenar apenas hora

# Extraindo datas e convertendo para POSIXct
dates <- as.POSIXct(dataset.v1$click_time)

# Pegando datas
dataset.v1$click_date <- format(dates, format = "%Y/%m/%d")

# Pegando o dia da semana com base na data
dataset.v1$click_weekday <- weekdays(as.Date(dataset.v1$click_date))

# Pegando horas (apenas hora, estou ignorando os minutos e segundos)
dataset.v1$click_hour <- as.numeric(format(dates, format = "%H"))</pre>
```

```
# Vou remover o campo click_time pois já tenho os dados que preciso
# e não faz sentido manter dados duplicados
dataset.v1$click time <- NULL
# Tranformando variáveis em fator
dataset.v1$click_date <- as.factor(dataset.v1$click_date)</pre>
# Função para agrupar as horas de acordo com MEUS parâmetros de partes do dia
# Observação: Esses horários foram definidos por MIM, não quer dizer que precisem ser a regra geral
# Manhã - De 5 até 12
# Tarde - De 12 até 19
# Noite - De 19 até 5
group_day_part <- function(x){</pre>
  if(x>5 && x<=12){
   return("Manha")
  else if(x>12 & x<=19){
   return("Tarde")
 }else{
   return("Noite")
 }
}
# Armazenado as partes do dia em uma variável nova
# Preciso usar o unlist() señão não vou conseguir converter para fator, pois após o lapply
# a variável fica do tipo list
dataset.v1$day_part <- unlist(lapply(dataset.v1$click_hour, group_day_part))</pre>
dataset.v1$day_part <- as.factor(dataset.v1$day_part)</pre>
dataset.v1$click_weekday <- as.factor(dataset.v1$click_weekday)</pre>
dataset.v1$is_attributed <- as.factor(dataset.v1$is_attributed)</pre>
# Decidi remover as horas pois já tenho a informação que queria (parte do dia)
dataset.v1$click_hour <- NULL</pre>
head(dataset.v1)
         ip app device os channel is_attributed click_date click_weekday day_part
##
## 1 87540 12
                     1 13
                              497
                                              0 2017/11/07
                                                            terça-feira
                                                                            Manha
## 2 105560 25
                     1 17
                                              0 2017/11/07
                              259
                                                             terça-feira
                                                                            Tarde
## 3 101424 12
                    1 19
                                              0 2017/11/07
                                                                            Tarde
                              212
                                                            terça-feira
## 4 94584 13
                    1 13
                              477
                                              0 2017/11/07
                                                             terça-feira
                                                                            Noite
                    1 1
                                              0 2017/11/09 quinta-feira
## 5 68413 12
                              178
                                                                            Manha
## 6 93663 3
                     1 17
                              115
                                              0 2017/11/09 quinta-feira
                                                                            Noite
str(dataset.v1)
                  100000 obs. of 9 variables:
## 'data.frame':
                   : int 87540 105560 101424 94584 68413 93663 17059 121505 192967 143636 ...
## $ ip
## $ app
                   : int 12 25 12 13 12 3 1 9 2 3 ...
                  : int 1 1 1 1 1 1 1 1 2 1 ...
## $ device
## $ os
                   : int 13 17 19 13 1 17 17 25 22 19 ...
## $ channel
                   : int 497 259 212 477 178 115 135 442 364 135 ...
## $ is_attributed: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
```

```
## $ click_date : Factor w/ 4 levels "2017/11/06","2017/11/07",..: 2 2 2 2 4 4 4 2 3 3 ...
## $ click_weekday: Factor w/ 4 levels "quarta-feira",..: 4 4 4 4 2 2 2 4 1 1 ...
## $ day_part : Factor w/ 3 levels "Manha", "Noite",..: 1 3 3 2 1 2 2 1 1 1 ...
```

Análise Exploratória

```
table(dataset.v1$is_attributed)
##
##
       0
             1
## 99773
           227
# Como já era de se esperar, existem mais downloads NÃO efetuados
table(dataset.v1$click_weekday)
##
## quarta-feira quinta-feira segunda-feira terça-feira
##
           34035
                         28561
                                        5011
                                                     32393
# Já nessa outra tabela, observa-se que existem menos ocorrências na segunda-feira
# E maior numero de ocorrências na quarta
# Indicando que com base nesses dados, e nas datas analisadas, o dia da semana que
# os anúncios são mais clicados são na quarta-feira
library(ggplot2)
ggplot(dataset.v1[dataset.v1$is_attributed == 0,], aes(x = click_weekday)) +
  geom_bar() +
 ggtitle("CLIQUES SEM DOWNLOAD por DIA DA SEMANA")
```

CLIQUES SEM DOWNLOAD por DIA DA SEMANA


```
ggplot(dataset.v1[dataset.v1$is_attributed == 0,], aes(x = day_part)) +
geom_bar() +
ggtitle("CLIQUES SEM DOWNLOAD por PARTE DO DIA")
```

CLIQUES SEM DOWNLOAD por PARTE DO DIA


```
ggplot(dataset.v1[dataset.v1$is_attributed == 0,], aes(x = day_part, fill = click_weekday)) +
labs(fill = "Dia da Semana") +
geom_bar() +
facet_grid(. ~ click_weekday) +
ylab("Cliques") +
xlab("Parte do Dia") +
ggtitle("Downloads por parte do dia e dia da semana")
```

Downloads por parte do dia e dia da semana


```
# Como podemos ver, na terça e quarta a noite ocorrem a maioria dos cliques
# Sendo esse o período com maior chance de ocorrer alguma fraude (clique sem download)
# Essa informação pode ajudar a empresa a se preparar para esses dias e períodos, além de permitir
# que outras estratégias sejam adotadas para melhorar os números de cliques nos outros dias da semana
```

Balanceamento

```
##
## 0 1
## 99773 227

# Os dados estão desbalanceados
# Balanceando os dados através de undersampling
# (diminuir os dados com maior quantidade com base nos dados de menor quantidade)

# Separando as duas categorias de is_attributed (O e 1)
dataset.v1.0 <- dataset.v1[dataset.v1$is_attributed == 0,]
dataset.v1.1 <- dataset.v1[dataset.v1$is_attributed == 1,]

# Escolhendo os dados de forma randômica
dataset.v1.0 <- dataset.v1.0[sample(1:nrow(dataset.v1.1)),]</pre>
```

```
# Unindo os dois datasets
dataset.v2 <- merge(dataset.v1.0, dataset.v1.1, all = T)</pre>
head(dataset.v2)
##
      ip app device os channel is_attributed click_date click_weekday day_part
## 1 2600 12
                  1 18
                           265
                                          0 2017/11/07
                                                       terca-feira
                                                                       Tarde
## 2 2948 45
                  1 2
                           419
                                          1 2017/11/09 quinta-feira
                                                                       Tarde
## 3 3488
          3
                 1 22
                          115
                                         0 2017/11/07
                                                        terça-feira
                                                                       Noite
                1 22 115
1 19 265
## 4 4019 12
                                         0 2017/11/09 quinta-feira
                                                                       Noite
## 5 4865 19
                0 24
                         213
                                         1 2017/11/09 quinta-feira
                                                                       Noite
                       21
## 6 5281 35 1 13
                                         1 2017/11/09 quinta-feira
                                                                       Noite
str(dataset.v2)
## 'data.frame': 454 obs. of 9 variables:
                 : int 2600 2948 3488 4019 4865 5281 5314 5314 5314 5314 ...
## $ ip
## $ app
                 : int 12 45 3 12 19 35 2 10 18 28 ...
## $ device
                 : int 1 1 1 1 0 1 1 1 1 1 ...
                 : int 18 2 22 19 24 13 2 1 19 19 ...
## $ os
             : int 265 419 115 265 213 21 477 113 107 135 ...
## $ channel
## $ is_attributed: Factor w/ 2 levels "0","1": 1 2 1 1 2 2 1 2 2 1 ...
## $ click_date : Factor w/ 4 levels "2017/11/06", "2017/11/07", ...: 2 4 2 4 4 4 4 2 3 2 ...
## $ click_weekday: Factor w/ 4 levels "quarta-feira",..: 4 2 4 2 2 2 2 4 1 4 ...
                 : Factor w/ 3 levels "Manha", "Noite", ...: 3 3 2 2 2 2 1 2 1 3 ...
## $ day_part
table(dataset.v2$is_attributed)
##
##
   0
## 227 227
# São poucos dados mas agora não vai tender mais pra um dos lados
```

Normalização

```
# As variáveis estão com escala diferentes

# Função para alterar a escala
scale.features <- function(df, variables){
  for (variable in variables){
    df[[variable]] <- scale(df[[variable]], center=T, scale=T)
  }
  return(df)
}

# Normalizando as variáveis
numeric.vars <- c('ip', 'app', 'device', 'os', 'channel')
dataset.v2 <- scale.features(dataset.v2, numeric.vars)</pre>
```

```
# Separando dados em treino (70%) e teste (30%)
train_data <- dataset.v2[1:round(nrow(dataset.v2) * 0.7),]
test_data <- dataset.v2[(round(nrow(dataset.v2) * 0.7)+1):(nrow(dataset.v2)),]</pre>
```

Treinamento do Modelo

```
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
      margin
# Primeiramente estou criando o modelo usando todas as variáveis
model.rf.v1 <- randomForest(is_attributed ~ .,</pre>
                         data = train_data,
                         ntree = 100,
                         nodesize = 10)
\# Imprimindo resultado do treinamento v1
print(model.rf.v1)
##
## Call:
  randomForest(formula = is_attributed ~ ., data = train_data,
                                                                 ntree = 100, nodesize = 10)
##
                  Type of random forest: classification
                        Number of trees: 100
##
## No. of variables tried at each split: 2
##
           OOB estimate of error rate: 9.43%
## Confusion matrix:
      0 1 class.error
## 0 200 6 0.02912621
## 1 24 88 0.21428571
Avaliação do modelo
```

```
observado previsto
## 319
               1
## 320
               1
## 321
               1
                        1
## 322
               1
                        1
## 323
               1
                        0
## 324
# Criando a confusion matrix
library(caret)
## Loading required package: lattice
confusionMatrix(predict.rf$observado, predict.rf$previsto)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
##
            0 20 1
            1 31 84
##
##
##
                  Accuracy : 0.7647
##
                    95% CI: (0.6844, 0.8332)
##
       No Information Rate: 0.625
##
       P-Value [Acc > NIR] : 0.0003657
##
##
                     Kappa : 0.4311
##
   Mcnemar's Test P-Value : 2.951e-07
##
##
               Sensitivity: 0.3922
##
##
               Specificity: 0.9882
##
            Pos Pred Value : 0.9524
            Neg Pred Value: 0.7304
##
##
                Prevalence: 0.3750
##
            Detection Rate: 0.1471
##
      Detection Prevalence: 0.1544
##
         Balanced Accuracy : 0.6902
##
##
          'Positive' Class: 0
##
```

Otimizando o Modelo

```
importance = TRUE)
# Visualizando resultado
varImpPlot(variables.rf)
```

variables.rf


```
##
## Call:
## randomForest(formula = is_attributed ~ app + ip + channel + device + os, data = train_data, nt
## Type of random forest: classification
## Number of trees: 100
## No. of variables tried at each split: 2
##
```

OOB estimate of error rate: 10.38%

##

```
## Confusion matrix:

## 0 1 class.error

## 0 199 7 0.03398058

## 1 26 86 0.23214286
```

Avaliação do Modelo v2

```
##
##
            Reference
## Prediction
               Ω
##
           0 21
                    0
            1 12 103
##
##
##
                  Accuracy: 0.9118
##
                    95% CI: (0.8509, 0.9536)
       No Information Rate: 0.7574
##
##
       P-Value [Acc > NIR] : 3.207e-06
##
##
                     Kappa: 0.7261
##
   Mcnemar's Test P-Value: 0.001496
##
##
##
               Sensitivity: 0.6364
##
               Specificity: 1.0000
##
            Pos Pred Value : 1.0000
            Neg Pred Value: 0.8957
##
##
                Prevalence: 0.2426
##
            Detection Rate: 0.1544
     Detection Prevalence: 0.1544
##
##
         Balanced Accuracy: 0.8182
##
##
          'Positive' Class: 0
##
```

Como observado na confusion matrix acima, obtivemos uma melhora na acurácia, apenas alterando as variáveis usadas para o treinamento.