

Uma implementação *multi-core* do ILS para o problema do caixeiro viajante

Isaac Kosloski OLIVEIRA(1), Bianca de Almeida DANTAS(1), Graziela Santos ARAUJO(1)

(1)Faculdade de Computação

Grande área do conhecimento: CIÊNCIAS EXATAS E DA TERRA

INTRODUÇÃO

Um dos mais proeminentes problemas de otimização combinatória é o problema do caixeiro viajante (*Traveling Salesman Person* - TSP). Dado um grupo de cidades e estradas que interligam as cidades seu principal objetivo é realizar um *tour*, visitando cada cidade exatamente uma vez [1].

Sua solução não é trivial, o que motiva a utilização de meta-heurísticas para obtenção de soluções, tais como a Busca Local Iterada (*Iterated Local Search* - ILS).

A solução eficiente do TSP permite inúmeras aplicações em diferentes áreas, incluindo Logística e gerenciamento da cadeia de suprimentos, perfuração de placas de circuito impresso, revisão de motores de turbina a gás, análise de Cristalografia de Raios X, entre outros[3].

O ILS opera realizando buscas locais em uma solução inicial, a fim de otimizá-la[2]. Utiliza-se um método guloso para gerar uma solução \mathbf{s} inicial. Então, uma busca local é realizada (2-Opt). Para fugir dos ótimos locais, utiliza-se algum método (double-bridge) para perturbar a solução obtida localmente e uma nova busca local é realizada. Caso a nova solução tenha custo menor, torna-se a solução principal. Itera-se estes últimos dois passos k ($k \in \mathbb{N}^*$) vezes e conclui-se o algoritmo, com a solução \mathbf{s}^* .

O ILS foi implementado sequencialmente e em paralelo utilizando OpenMP. Na estratégia paralela, cada uma das n threads realiza uma quantidade k/n de iterações e, ao fim do grupo de iterações, sincronizam-se as n soluções s^* .

RESULTADOS E DISCUSSÃO

Os resultados foram obtidos por meio de valores médios de 30 execuções em cada instância com k = 1000 iterações, tanto sequencial como paralelo com 12 threads.

Tabela 1. Acurácia das soluções, sequencial e paralelo (n=12).

Instância	Acurácia Sequencial (%)	Acurácia Paralela (%)
d198	96,91	91,97
a280	97,58	94,50
lin318	95,91	88,25
pcb442	98,18	94,95
rat783	94,98	91,17
u1060	96,74	92,75
pcb1173	93,79	87,55

Tabela 2. Tempo de execução dos algoritmos, Speedup e Eficiência.

Instância	Tempo Sequencial (s)	Tempo Paralelo (s)	Speedup	Eficiência (%)
d198	6,114E+01	8,649E+00	7,069E+00	58,91
a280	1,755E+02	2,411E+01	7,279E+00	60,66
lin318	2,775E+02	3,941E+01	7,041E+00	58,68
pcb442	7,463E+02	1,018E+02	7,331E+00	61,09
rat783	4,620E+03	5,999E+02	7,701E+00	64,18
u1060	1,217E+04	5,062E+03	2,404E+00	20,03
pcb1173	1,676E+04	2,183E+03	7,679E+00	63,99

CONCLUSÃO

Os resultados de acurácia entre a solução obtida e o ótimo, demonstram uma qualidade de pelo menos 87%, e ainda com eficiência, quase sempre próximo de 60%, o que mostra que o ILS paralelo pode ser uma boa estratégia para obtenção de soluções de boa qualidade em tempo viável para o TSP.

Como trabalhos futuros, pretende-se estudar outras alternativas para paralelizar o ILS como, por exemplo, com o uso de GPGPU, bem como analisar outras meta-heurísticas de busca, como o GRASP.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein (2009). Introduction to Algorithms. The MIT Press, 3º edição.
- [2] Helena R. Lorenço, Olivier Martinz and Thomas Stutzle (2003). "Iterated Local Search". HANDBOOK OF METAHEURISTICS. Editado por Frederick S. Hillier. Kluwer Academic Publishers.
- [3] Quang Trung Luu. Traveling Salesman Problem: Exact Solutions vs. Heuristic vs. Approximation Algorithms. Baeldung cs, 18, Março, 2024. Disponível em www.baeldung.com/cs. Acesso em: 11, Julho, 2024.

Apoio financeiro: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)