1. Boolean Algebra & Logic Gates

07 November 2023 0

BOOLEAN ALGEBRA, LOGIC GATES - INTRO

- · Mathematics used to analyse and simplify logic/digital circuits -> booken algebra
- · Digital circuits --> constructed using logic gates
- · logic gates: one on more inputs, only one output
- · Number of possible input states = 2th no. of inputs

AND GATE

All inputs are 1 -> output is 1

Truth Jable

INPUTS		Τυστυο	
Α	В	У	
0		0	
0	0	0	
4	0	0	

OR GATE

Any input is 1 --- Output is 1

٦		7	1 1	0
J)	wth	d	9	ble

INPUTS		OUTPUT	
A	B	у	
0	0	0	
0			
1	O	1	
	1	1	

NOT GATE

Touth Jable

INPUT	OUTPUT
A	у
0	1
	0

NAND GATE

Active low: If any input is 0 - Output is 1

INPUTS		OUTPUT
A	В	7
0	0	1
0	1	1
1	0	1
	1	0

NOR GATE

NOT (OR) = NOR

Active high: If any input is 1 -> output is 0

Touth Jable

INPUTS		OUTPUT	
A	B	Y	
0	0		
0	ı	0	
1	0	0	
· ·	1	0	

XOR GATE

ODD function gate: If there is an odd no. of Is in input --- Output is 1

Jouth Jable

INPUTS		ОитриТ
A	В	У
0	0	0
0	1	1
1	0	
	1	0

dymbol

3- INPUT XOR GATE

	INPUT	5	OUTPUT
A_	В	<u></u>	У
0	0	0	0
0	0	1	1
0	1	0	J
ı	0	0	
1	l	0	0
	0	1	0
0		1	0
1		1	1

A 15	· • • • • • • • • • • • • • • • • • • •
	A(+) B(+) C
В	—
<u> </u>	

Associative law $(A \oplus B) + C = A \oplus (B \oplus C)$

$$= A \times + A \times$$

PROPERTIES OF XOR GATE

THR	LEE	INPUT	XNOR	GA
INPUTS		OUTPU	п	
A	B	e	У	
0	0	٥	l l	
1	0	0	0	
0		0	0	
0	0	•	0	
1	ı	0	1	
0	1		1	
1	0	1	1	
1	1		0	