Úloha č. 2

a)

Jelikož 7 je prvočíslo, víme, že každý nenulový prvek \mathbb{Z}_7 je generátor grupy $(\mathbb{Z}_7, +)$. Z toho vyplývá, že pokud je v nějaké podmnožině \mathbb{Z}_7 nenulový prvek a požadujeme uzavřenost na sčítání, musí množina obsahovat celou \mathbb{Z}_7 .

Z předchozího tedy můžeme snadno nahlédnout, že podalgebry \mathbb{Z}_7 (+) jsou právě množiny \emptyset , $\{0\}$ a \mathbb{Z}_7 .

b)

Nejprve si uvědomme, že přítomnost 0 nemá vliv na uzavřenost množiny vzhledem k násobení $(0 \cdot x = 0$ pro všechna x). Vidíme tedy, že množina P je podalgebrou \mathbb{Z}_7 (\cdot) právě tehdy, když je podalgebrou množina $P \cup \{0\}$, resp. $P \setminus \{0\}$. Dále tedy BÚNO nebudeme přítomnost nuly uvažovat.

Prvky 3 a 5 jsou generátory grupy ($\mathbb{Z}_7 \setminus \{0\},\cdot$). Stejně jako v předchozím případě tedy množiny obsahující 3 nebo 5 musí obsahovat celou $\mathbb{Z}_7 \setminus \{0\}$. Ostatní prvky generují následující množiny:

- $\langle 1 \rangle = \{1\}$
- $\langle 2 \rangle = \langle 4 \rangle = \{2, 4, 1\}$
- $\langle 6 \rangle = \{1, 6\}$

Tyto množiny jsou triviálně podalgebry. Jelikož $2 \cdot 6 = 5$ a $4 \cdot 6 = 3$, množiny obsahující tyto dvojice prvků opět musí obsahovat celou množinu. Tím jsme ukázali, že žádné další podalgebry nemohou existovat.

Podalgebrami \mathbb{Z}_7 (·) jsou tedy množiny \emptyset , $\{1\}$, $\{1,2,4\}$, $\{1,6\}$, $\mathbb{Z}_7 \setminus \{0\}$ a jejich sjednocení s $\{0\}$