Topic 2: Functions

Exercise 3A

Question 7

Find the largest possible domain of each of the following functions.

(c)
$$\sqrt{x-4}$$

(d)
$$\sqrt{4-x}$$

(c)
$$\sqrt{x(x-4)}$$

(f)
$$\sqrt{2x(x-4)}$$

(g)
$$\sqrt{x^2-7x+12}$$

(h)
$$\sqrt{x^3-8}$$

(i)
$$\frac{1}{x-2}$$

$$0), \frac{1}{\sqrt{x-2}}$$

(k)
$$\frac{1}{1+\sqrt{x}}$$

(a)
$$\sqrt{x}$$
 (b) $\sqrt{-x}$ (c) $\sqrt{x-4}$ (d) $\sqrt{4-x}$ (e) $\sqrt{x(x-4)}$ (f) $\sqrt{2x(x-4)}$ (g) $\sqrt{x^2-7x+12}$ (h) $\sqrt{x^3-8}$ (i) $\frac{1}{x-2}$ (ii) $\frac{1}{\sqrt{x-2}}$ (k) $\frac{1}{1+\sqrt{x}}$ (l) $\frac{1}{(x-1)(x-2)}$

Question 8

The domains of these functions are the set of all positive real numbers. Find their ranges.

(a)
$$f(x) = 2x + 7$$

(b)
$$f(x) = -5x$$

(c)
$$f(x) = 3x - 1$$

(d)
$$f(x) = x^2 - 1$$

(b)
$$f(x) = -5x$$
 (c) $f(x) = 3x - 1$
(e) $f(x) = (x + 2)^2 - 1$ (f) $f(x) = (x - 1)^2 + 2$

(f)
$$f(x) = (x-1)^2 + 2$$

Question 9a), b) and e)

Find the range of each of the following functions. All the functions are defined for all real values of x.

(a)
$$f(x) = x^2 + 4$$

(b)
$$f(x) = 2(x^2 + 5)$$

(d)
$$f(x) = -(1-x)^2 + 7$$

(a)
$$f(x) = x^2 + 4$$
 (b) $f(x) = 2(x^2 + 5)$
(d) $f(x) = -(1-x)^2 + 7$ (e) $f(x) = 3(x+5)^2 + 2$

Exercise 11A

Question 10

Given that $f: x \mapsto 2x+1$ and $g: x \mapsto 3x-5$, where $x \in \mathbb{R}$, find the value of the following.

(f)
$$ff(-5)$$
 (g) $gg(4)$ (h) $gg(2\frac{2}{9})$

Question 12

Given that $f: x \mapsto 5 - x$ and $g: x \mapsto \frac{4}{r}$, where $x \in \mathbb{R}$ and $x \neq 0$ or 5, find the values of the following.

(b)
$$ff(-19)$$
 (c) $gg(1)$ (d) $gg(\frac{1}{2})$

(e)
$$gggg(\frac{1}{2})$$

Question 15

Given that $f: x \mapsto x+4$, $g: x \mapsto 3x$ and $h: x \mapsto x^2$, where $x \in \mathbb{R}$, express each of the following in terms of f, g, h as appropriate.

(a)
$$x \mapsto x^2 + 4$$

(b)
$$x \mapsto 3x + 4$$

(c)
$$x \mapsto x^4$$

(d)
$$x \mapsto 9x^2$$

(e)
$$x \mapsto 3x + 12$$

(b)
$$x \mapsto 3x + 4$$
 (c) $x \mapsto x^4$
(e) $x \mapsto 3x + 12$ (f) $x \mapsto 3(x^2 + 8)$

(g)
$$x \mapsto 9x + 16$$

(h)
$$x \mapsto x^2 + 8x + 16$$

(i)
$$x \mapsto 9x^2 + 48x + 64$$

Question 19

For $f: x \mapsto ax + b$, f(2) = 19 and ff(0) = 55. Find the possible values of a and b.

Question 20

The functions $f: x \mapsto 4x + 1$ and $g: x \mapsto ax + b$ are such that fg = gf for all real values of x. Show that a = 3b + 1.

Exercise 11B

Question 7

Each of the following functions has domain $x \ge \hat{\mathcal{X}}$ In each case, find the smallest possible value of k such that the function is one-one.

(a)
$$f: x \mapsto x^2 - 4$$

(b)
$$f: x \mapsto (x+1)^2$$

(c)
$$f: x \mapsto (3x-2)^2$$

(d)
$$f: x \mapsto x^2 - 8x + 15$$

(e)
$$f: x \mapsto x^2 + 10x + 1$$

(f)
$$f: x \mapsto (x+4)(x-2)$$

(a)
$$f: x \mapsto x^2 - 4$$
 (b) $f: x \mapsto (x+1)^2$ (c) $f: x \mapsto (3x-2)^2$ (d) $f: x \mapsto x^2 - 8x + 15$ (e) $f: x \mapsto x^2 + 10x + 1$ (f) $f: x \mapsto (x+4)(x-2)$ (g) $f: x \mapsto x^2 - 3x$ (h) $f: x \mapsto 6 + 2x - x^2$ (i) $f: x \mapsto (x-4)^4$

(h)
$$f: x \mapsto 6 + 2x - x^2$$

(i)
$$f: x \mapsto (x-4)^4$$

Question 12

Find the inverse of each of the following functions.

(a)
$$f: x \mapsto \frac{x}{x-2}, x \in \mathbb{R} \text{ and } x \neq 2$$

(b)
$$f: x \mapsto \frac{2x+1}{x-4}, x \in \mathbb{R} \text{ and } x \neq 4$$

(c)
$$f: x \mapsto \frac{x+2}{x-5}, x \in \mathbb{R} \text{ and } x \neq 5$$

(c)
$$f: x \mapsto \frac{x+2}{x-5}, x \in \mathbb{R} \text{ and } x \neq 5$$
 (d) $f: x \mapsto \frac{3x-11}{4x-3}, x \in \mathbb{R} \text{ and } x \neq \frac{3}{4}$

Question 13

The function $f: x \mapsto x^2 - 4x + 3$ has domain $x \in \mathbb{R}$ and x > 2.

- (a) Determine the range of f.
- (b) Find the inverse function f⁻¹ and state its domain and range.
- (c) Sketch the graphs of y = f(x) and $y = f^{-1}(x)$.

Question 14

The function $f: x \mapsto \sqrt{x-2} + 3$ has domain $x \in \mathbb{R}$ and x > 2.

- (a) Determine the range of f.
- (b) Find the inverse function f⁻¹ and state its domain and range.
- (c) Sketch the graphs of y = f(x) and $y = f^{-1}(x)$.