SESSION 2013 MPM2006

EPREUVE SPECIFIQUE - FILIERE MP

MATHEMATIQUES 2

Durée : 4 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées

Le sujet est composé d'un exercice et d'un problème indépendants.

Exercice: points à coordonnées entières sur une hyperbole

On munit le plan d'un repère orthonormé. On considère la conique $\mathcal H$ d'équation cartésienne :

$$x^2 - 13y^2 = 1.$$

- 1. Tracer l'allure de l'hyperbole \mathcal{H} . On précisera les tangentes aux points d'ordonnée nulle ainsi que les branches infinies.
- 2. Ecrire un algorithme en français qui renvoie les éventuels couples d'entiers naturels (x, y) vérifiant :

(I)
$$\begin{cases} x^2 - 13y^2 = 1 \\ y \leqslant 200 \end{cases}$$
.

3. Programmer cet algorithme sur calculatrice et donner les couples d'entiers naturels (x, y) solutions du système (I). On ne demande pas d'écrire le programme sur la copie.

Problème: matrices «toutes-puissantes»

Notations et objectifs

Dans tout le texte, \mathbb{K} désigne le corps \mathbb{R} ou \mathbb{C} et p un entier naturel non nul.

On note $\mathcal{M}_p(\mathbb{K})$ le \mathbb{K} -espace vectoriel des matrices carrées de taille p à coefficients dans \mathbb{K} et I_p la matrice unité de $\mathcal{M}_p(\mathbb{K})$.

On pourra confondre $\mathcal{M}_1(\mathbb{K})$ et \mathbb{K} .

Une matrice N de $\mathcal{M}_p(\mathbb{K})$ est dite nilpotente s'il existe un entier naturel r tel que $N^r = 0$.

Si M_1, \ldots, M_k sont des matrices carrées, la matrice diag (M_1, \ldots, M_k) désigne la matrice diagonale par blocs dont les blocs diagonaux sont M_1, \ldots, M_k .

Si E est un \mathbb{K} -espace vectoriel, on note id_E l'application identité sur E.

Enfin, on note $\mathbb{K}[X]$ la \mathbb{K} -algèbre des polynômes à coefficients dans \mathbb{K} .

On dit qu'une matrice A de $\mathcal{M}_p(\mathbb{K})$ est «**toute-puissante** sur \mathbb{K} » et on notera en abrégé $TP\mathbb{K}$ si, pour tout $n \in \mathbb{N}^*$, il existe une matrice B de $\mathcal{M}_p(\mathbb{K})$ telle que $A = B^n$.

On note $T_p(\mathbb{K})$ l'ensemble des matrices de $\mathcal{M}_p(\mathbb{K})$ toutes-puissantes sur \mathbb{K} :

$$T_p(\mathbb{K}) = \{ A \in \mathcal{M}_p(\mathbb{K}) \mid \forall n \in \mathbb{N}^* \exists B \in \mathcal{M}_p(\mathbb{K}) \ A = B^n \}.$$

L'objectif principal du sujet est d'établir le résultat suivant :

toute matrice inversible de $\mathcal{M}_p(\mathbb{C})$ est TPC.

Dans la partie I, on traite quelques exemples et contre-exemples.

Dans la partie II, on montre que, dans le cas où le polynôme caractéristique de la matrice A est scindé, on peut ramener l'étude au cas des matrices de la forme $\lambda I_p + N$ avec N nilpotente.

Dans la partie III, on traite le cas des matrices unipotentes c'est-à-dire de la forme $I_p + N$ avec N nilpotente et on en déduit le théorème principal.

Les parties I et II sont dans une large mesure indépendantes. La partie III utilise les résultats des parties précédentes.

Partie I : quelques exemples

1. Le cas de la taille 1

(a) Démontrer que $T_1(\mathbb{R}) = [0, +\infty[$.

(b) Soient $n \in \mathbb{N}^*$ et $b = re^{i\theta}$ avec r > 0 et $\theta \in \mathbb{R}$. Donner les racines n-ièmes du nombre complexe b, c'est-à-dire les solutions de l'équation $z^n = b$ d'inconnue $z \in \mathbb{C}$.

(c) En déduire $T_1(\mathbb{C})$.

2. Une condition nécessaire...

(a) Démontrer que si $A \in T_p(\mathbb{K})$, alors det $A \in T_1(\mathbb{K})$.

(b) En déduire un exemple de matrice de $\mathcal{M}_2(\mathbb{R})$ qui n'est pas TPR.

3. ...mais pas suffisante

Soit $A = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$. Démontrer qu'il n'existe aucune matrice $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$ telle que $A = B^2$. En déduire que la condition nécessaire de la question précédente n'est pas suffisante.

4. Un cas où A est diagonalisable

Soit
$$A = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix}$$
.

(a) Démontrer que A est diagonalisable sur \mathbb{R} (le détail des calculs n'est pas demandé).

(b) Démontrer que la matrice A est $TP\mathbb{R}$.

(c) Pour chacun des cas n=2 et n=3, expliciter une matrice B de $\mathcal{M}_3(\mathbb{R})$ vérifiant $B^n=A$ (on pourra utiliser la calculatrice).

5. Un exemple de nature géométrique

Soit
$$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
.

(a) Justifier que A est la matrice d'une rotation vectorielle dont on précisera une mesure de l'angle.

(b) En déduire que A est $TP\mathbb{R}$.

6. Le cas des matrices nilpotentes

Soit N une matrice nilpotente de $\mathcal{M}_p(\mathbb{K})$.

(a) Déterminer le polynôme caractéristique de N, en déduire que $N^p=0$.

(b) Démontrer que si N est TPK, alors N est la matrice nulle.

Partie II: le cas où le polynôme caractéristique est scindé

Dans toute cette partie, A désigne une matrice de $\mathcal{M}_p(\mathbb{K})$ dont le polynôme caractéristique noté χ_A est scindé sur \mathbb{K} , c'est-à-dire de la forme :

$$\chi_A = (-1)^p \prod_{i=1}^k (X - \lambda_i)^{r_i},$$

avec k, r_1, \ldots, r_k des entiers de \mathbb{N}^* et $\lambda_1, \ldots, \lambda_k$ les valeurs propres de A, éléments de \mathbb{K} .

On note \mathcal{B} la base canonique de \mathbb{K}^p et u l'endomorphisme de \mathbb{K}^p dont A est la matrice dans la base \mathcal{B} .

Enfin, pour $i \in \{1, ..., k\}$, on note $C_i = \text{Ker}(u - \lambda_i \operatorname{id}_{\mathbb{K}^p})^{r_i}$ que l'on appelle sous-espace caractéristique de u associé à la valeur propre λ_i .

- 7. Démontrer que $\mathbb{K}^p = C_1 \oplus \cdots \oplus C_k$.
- 8. (a) Soit v un endomorphisme de \mathbb{K}^p qui commute avec u et Q un polynôme à coefficients dans \mathbb{K} . Démontrer que Ker Q(u) est stable par v.
 - (b) En déduire que pour tout $i \in \{1, ..., k\}$, le sous-espace caractéristique C_i est stable par u.

On note ainsi u_{C_i} l'endomorphisme induit par u sur C_i .

- **9.** Soit $i \in \{1, ..., k\}$. Justifier que l'application $u_{C_i} \lambda_i \operatorname{id}_{C_i}$ est un endomorphisme de C_i nilpotent.
- ${f 10.}$ En déduire que la matrice A peut s'écrire sous la forme :

$$A = P \operatorname{diag}(\lambda_1 I_{p_1} + N_1, \dots, \lambda_k I_{p_k} + N_k) P^{-1}$$
,

avec P une matrice inversible de $\mathcal{M}_p(\mathbb{K})$ et pour tout $i \in \{1, \ldots, k\}$, $p_i = \dim C_i$ et N_i est une matrice nilpotente de $\mathcal{M}_{p_i}(\mathbb{K})$.

On rappelle que diag $(\lambda_1 I_{p_1} + N_1, \dots, \lambda_k I_{p_k} + N_k)$ désigne la matrice diagonale par blocs de premier bloc $\lambda_1 I_{p_1} + N_1$, de deuxième bloc $\lambda_2 I_{p_2} + N_2$ et de dernier bloc $\lambda_k I_{p_k} + N_k$.

11. Démontrer que, si pour tout $i \in \{1, ..., k\}$ la matrice $\lambda_i I_{p_i} + N_i$ est TPK, alors A est elle-même TPK.

Partie III : le cas des matrices unipotentes

Soit N une matrice nilpotente de $\mathcal{M}_p(\mathbb{K})$. Nous allons montrer que la matrice unipotente $I_p + N$ est $\mathrm{TP}\mathbb{K}$.

On pourra confondre polynôme et fonction polynôme.

On rappelle que si f est une fonction, la notation $f(x) = o(x^p)$ signifie qu'il existe une fonction ε tendant vers 0 en 0 telle que $f(x) = x^p \varepsilon(x)$ au voisinage de 0.

- 12. Une application des développements limités
 - (a) Soit V un polynôme de $\mathbb{R}[X]$ tel que $V(x) = o(x^p)$ au voisinage de 0. Démontrer, à l'aide d'une division euclidienne, qu'il existe un polynôme Q de $\mathbb{R}[X]$ tel que $V = X^p \times Q$.
 - (b) Soit $n \in \mathbb{N}^*$. Démontrer l'existence d'un polynôme U de $\mathbb{R}[X]$ tel que l'on ait, au voisinage de 0:

$$1 + x = (U(x))^n + o(x^p)$$

(on pourra utiliser un développement limité de $(1+x)^{\alpha}$).

(c) En déduire que, pour tout $n \in \mathbb{N}^*$, il existe un polynôme Q de $\mathbb{R}[X]$ tel que :

$$1 + X = U^n + X^p \times Q.$$

- 13. Applications
 - (a) Démontrer que la matrice unipotente $I_p + N$ est TPK.
 - (b) Soit $\lambda \in \mathbb{K}$ non nul. En déduire que si λ est TPK, alors la matrice $\lambda I_p + N$ est TPK.
- 14. Le résultat annoncé
 - (a) Conclure que toute matrice inversible de $\mathcal{M}_p(\mathbb{C})$ est TPC.
 - (b) Toute matrice de $\mathcal{M}_p(\mathbb{C})$ est-elle TP \mathbb{C} ?
- 15. Donner un exemple de matrice de $\mathcal{M}_4(\mathbb{R})$ non diagonalisable et non inversible qui est TPR.

Fin de l'énoncé