Geometrijske transformacije u 2D i njihove matrične reprezentacije

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Geometrijske transformacije vs. Transformacije koordinata

Trigonometrijske funkcije zbroja dvaju kuteva

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

Eulerova formula

$$e^{i(\varphi+\vartheta)} = \cos(\varphi+\vartheta) + i\sin(\varphi+\vartheta)$$

$$e^{i(\varphi+\vartheta)} = e^{i\varphi+i\vartheta} = e^{i\varphi}e^{i\vartheta} = (\cos\varphi + i\sin\varphi)(\cos\vartheta + i\sin\vartheta) =$$
$$= (\cos\varphi\cos\vartheta - \sin\varphi\sin\vartheta) + i(\cos\varphi\sin\vartheta + \sin\varphi\cos\vartheta)$$

$$\Rightarrow$$
 $\cos(\varphi + \theta) = \cos\varphi\cos\theta - \sin\varphi\sin\theta$

$$\implies \sin(\varphi + \vartheta) = \cos\varphi\sin\vartheta + \sin\varphi\cos\vartheta$$

Rotacija oko ishodišta za kutartheta

$$x = r \cos \varphi$$
 pozicija točke $y = r \sin \varphi$ prije rotacije

$$x' = r \cos(\varphi + \vartheta)$$
 pozicija točke $y' = r \sin(\varphi + \vartheta)$ nakon rotacije

$$x' = \underbrace{r\cos\varphi\cos\theta - r\sin\varphi\sin\theta}_{x} \implies x' = x\cos\theta - y\sin\theta$$
$$y' = \underbrace{r\cos\varphi\sin\theta + r\sin\varphi\cos\theta}_{x} \implies y' = x\sin\theta + y\cos\theta$$

Matrični zapis transformacije

Koordinate (x, y) možemo interpretirati i kao vektor – u matematici je uobičajeni prikaz

$$\vec{r} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 $\vec{r}' = \begin{bmatrix} x' \\ y' \end{bmatrix}$

pa se veza između početnih i transformiranih koordinata može izraziti u matričnom obliku

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

to jest $\vec{r}' = R(\vartheta)\vec{r}$ pri čemu je

$$R(\mathcal{G}) = \begin{bmatrix} \cos \mathcal{G} & -\sin \mathcal{G} \\ \sin \mathcal{G} & \cos \mathcal{G} \end{bmatrix}$$

matrica rotacije oko ishodišta za kut ϑ .

Da li matrice rotacije doista imaju sva svojstva kao i prave rotacije u ravnini?

 Neutralni element: rotacija za 0°(=0 radijana) ostavlja koordinate točke nepromjenjenima, mora vrijediti

$$R(0) = I$$
 (jedinična matrica)

- Kompozicija rotacija: Dvije uzastopne rotacije, najprije za kut ϕ pa za kut ϑ , ekvivalentne su jednoj rotaciji za ukupni kut $\phi + \vartheta$, dakle mora vrijediti $R(\vartheta)R(\phi) = R(\phi + \vartheta)$
- Inverzna transformacija: ako rotiramo za neki kut θ , rotacijom za $-\theta$ moramo se vratiti na početno stanje, dakle mora vrijediti

$$R(-\theta)R(\theta) = I$$

PROVJERA

Neutralni element:

$$R(0) = \begin{bmatrix} \cos 0 & -\sin 0 \\ \sin 0 & \cos 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Kompozicija rotacija:

$$R(\vartheta)R(\phi) = \begin{bmatrix} \cos\vartheta & -\sin\vartheta \\ \sin\vartheta & \cos\vartheta \end{bmatrix} \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} =$$

$$= \begin{bmatrix} \cos\vartheta\cos\phi - \sin\vartheta\sin\phi & -\cos\vartheta\sin\phi - \sin\vartheta\cos\phi \\ \cos\vartheta\sin\phi + \sin\vartheta\cos\phi & \cos\vartheta\cos\phi - \sin\vartheta\sin\phi \end{bmatrix} =$$

$$= \begin{bmatrix} \cos(\phi + \vartheta) & -\sin(\phi + \vartheta) \\ \sin(\phi + \vartheta) & \cos(\phi + \vartheta) \end{bmatrix} = R(\phi + \vartheta)$$

PROVJERA

• Inverzna transformacija:

$$R(-\vartheta)R(\vartheta) = \begin{bmatrix} \cos(-\vartheta) & -\sin(-\vartheta) \\ \sin(-\vartheta) & \cos(-\vartheta) \end{bmatrix} \begin{bmatrix} \cos\vartheta & -\sin\vartheta \\ \sin\vartheta & \cos\vartheta \end{bmatrix} =$$

$$= \begin{bmatrix} \cos^2 \vartheta + \sin^2 \vartheta & -\cos \vartheta \sin \vartheta + \sin \vartheta \cos \vartheta \\ -\cos \vartheta \sin \vartheta + \sin \vartheta \cos \vartheta & \cos^2 \vartheta + \sin^2 \vartheta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Kako općenito vrijedi $A^{-1}A = I$ očito je da je $R(-\vartheta)$ zapravo inverzna matrica od $R(\vartheta)$ to jest $R^{-1}(\vartheta) = R(-\vartheta)$.

Također, inverznu matricu $R^{-1}(\vartheta)$ možemo dobiti transponiranjem originalne matrice $R(\vartheta)$ pa vrijedi $R^{-1}(\vartheta) = R^T(\vartheta)$

Matrice rotacije su takozvane ortogonalne matrice (ako stupce interpretiramo kao vektore oni čine ortonormiranu bazu).

Zaključak

- matrice rotacije $R(\theta)$ su vjerna reprezentacija rotacija u ravnini
- matematički to znači da postoji izomorfizam između grupe rotacija u ravnini na kojoj je definirana binarna operacija kompozicije i grupe matrica $R(\vartheta)$ na kojoj je definirana uobičajena operacija množenja matrica
- svakoj geometrijskoj rotaciji može se jednoznačno pridružiti odgovarajuća matrica rotacije, a operacija kompozicije geometrijskih rotacija odgovara operaciji množenja matrica rotacija

Matrična reprezentacija Skaliranja

- x koordinata množi se s faktorom s_x
- y koordinata množi se s faktorom s_y

$$x' = s_x x$$
$$y' = s_y y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$S(s_x, s_y) = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$$

Problem je translacija...

• pomak za a_x smjeru x i za a_y u smjeru y

$$x' = x + a_x$$
$$y' = y + a_y$$

$$x' = x + a_{x}$$

$$y' = y + a_{y}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a_{x} \\ a_{y} \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Translaciju nije moguće prikazati pomoću 2x2 matrica!

Rješenje je u homogenim koordinatama

Koristimo 3 komponente za prikaz točke (x, y):

$$\vec{r} \equiv \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \vec{r}' \equiv \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$

U tom slučaju postoji matrična reprezentacija translacije:

$$T(a_{x}, a_{y}) \vec{r} = \begin{bmatrix} 1 & 0 & a_{x} \\ 0 & 1 & a_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + a_{x} \\ y + a_{y} \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \vec{r}'$$

Matrica translacije

ullet pomak za a_x smjeru x i za a_y u smjeru y

$$x' = x + a_x$$
$$y' = y + a_y$$

$$T(a_x, a_y) = \begin{bmatrix} 1 & 0 & a_x \\ 0 & 1 & a_y \\ 0 & 0 & 1 \end{bmatrix}$$

Rotacija oko ishodišta

- rotacija za kut α
- pozitivan smjer je suprotan smjeru kazaljke na satu!

$$x' = x\cos(\alpha) - y\sin(\alpha)$$
$$y' = x\sin(\alpha) + y\cos(\alpha)$$

$$R(\alpha) = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matrica Skaliranja

- x koordinata množi se s faktorom s_x
- y koordinata množi se s faktorom s_y

$$x' = s_x x$$
$$y' = s_y y$$

$$S(s_x, s_y) = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Zrcaljenje na osi x

- mijenja se predznak y koordinate!
- specijalni slučaj skaliranja, kad je $s_{x}=1$, a $s_{y}=-1$

Zrcaljenje na osi y

- mijenja se predznak x koordinate
- specijalni slučaj skaliranja, kad je $s_{\chi}=-1$, a $s_{y}=1$

Kompozicija transformacija

- kompozicija geometrijskih transformacija svodi se na jednostavno množenje matrica transformacija
- OPREZ: općenito, geometrijske tranformacije (kao ni matrice) NE KOMUTIRAJU – važan je poredak transformacija!
- kod matrica treba imati na umu da najprije djeluje ona matrica koja se nalazi krajnje desno, a potom svaka sljedeća s desna na lijevo!

$$\vec{r}' = T(4,0) R(90^{\circ}) \vec{r}$$

$$\vec{r}' = R(90^{\circ})T(4,0)\vec{r}$$

$$\vec{r}' = T(4,0) R(90^{\circ}) \vec{r}$$

$$\vec{r}' = R(90^{\circ})T(4,0)\vec{r}$$

$$\vec{r}' = T(4,0) R(90^{\circ}) \vec{r}$$

$$\vec{r}' = R(90^{\circ})T(4,0)\vec{r}$$

Rotacija oko proizvoljne točke

- ako je središte rotacije proizvoljna točka (u, v):
 - najprije je moramo preslikati u ishodište translacijom za (-u, -v)
 - potom primijeniti matricu rotacije za željeni kut
 - te vratiti na početnu poziciju translacijom za (u, v)

$$R_{(u,v)}(\vartheta) = T(u,v)R(\vartheta)T(-u,-v)$$

Zrcaljenje na pravcu

