Assignment: Decision Tree Postprunning

Diabetes Dataset

Importing Libraries

```
In [ ]:
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        %matplotlib inline
        from sklearn.model_selection import train_test_split
In [ ]: data = pd.read_csv('./Dataset/diabetes.csv')
In [ ]: data.head()
Out[ ]:
           glucose bloodpressure diabetes
                                        0
                40
                              85
                40
                              92
                                        0
        2
                                        1
                45
                              63
                              80
                                        0
                                        1
                40
                              73
```

Splitting Data into train and test

Out[]:		glucose	bloodpressure
	903	45	83
	544	50	80
	465	50	70
	529	45	77
	468	50	88
	•••		
	106	45	75
	270	55	67
	860	35	78
	435	40	93
	102	45	95

666 rows × 2 columns

Postprunning

```
In [ ]: from sklearn.tree import DecisionTreeClassifier
In [ ]: treemodel=DecisionTreeClassifier(max_depth=2)
In [ ]: treemodel.fit(X_train,y_train)
Out[ ]:
                                                               DecisionTreeClassifier
                                DecisionTreeClassifier(max_depth=2)
In [ ]: from sklearn import tree
                                 plt.figure(figsize=(15,10))
                                 tree.plot_tree(treemodel,filled=True)
Out[]: [Text(0.5, 0.8333333333333334, 'x[1] <= 79.0\ngini = 0.499\nsamples = 666\nvalue = [344, 32
                                      Text(0.25, 0.5, 'x[1] <= 77.5 / ngini = 0.1 / nsamples = 302 / nvalue = [16, 286]'),
                                     Text(0.125, 0.166666666666666, 'gini = 0.044\nsamples = 269\nvalue = [6, 263]'),
                                      Text(0.75, 0.5, 'x[0] \le 37.5 \cdot [0] \le 37.5 \cdot [0] \le 37.5 \cdot [0] \le 364 \cdot [0.75, 0.5, 'x[0] \le 37.5 \cdot [0] \le 37.5
```



```
In [ ]: y_pred=treemodel.predict(X_test)
In [ ]: y_pred
Out[]: array([1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1,
               1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0,
               0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1,
               1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,
               0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0,
               1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0,
               0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0,
               1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1,
               0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0,
               0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
               1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0,
               1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0,
               0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1,
               0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0,
               0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0],
              dtype=int64)
In [ ]: from sklearn.metrics import accuracy_score,classification_report
        score=accuracy_score(y_pred,y_test)
        print(score)
       0.9179331306990881
In [ ]: print(classification_report(y_pred,y_test))
```

	precision	recall	f1-score	support
0 1	0.92 0.92	0.91 0.93	0.91 0.92	154 175
accuracy macro avg weighted avg	0.92 0.92	0.92 0.92	0.92 0.92 0.92	329 329 329