Snow64 Operand Manager Details

- General Notes
 - This module determines the operands that are used in the EX stage.
 - Note that this module is the one that actually performs operand forwarding.
 - Also, it can produce a stall in some cases.
- Ports of Snow640perandManager
 - This module is clocked.
 - Inputs:
 - An enable signal. This module will not do anything unless this enable signal is high.
 - This enable signal should only be high during the first clock cycle that an instruction is in the EX stage.
 - Perhaps an easy way to do this is to just check if the program counter value in the EX stage has changed? This might not work for a single-instruction infinite loop....
 - Whether or not to perform type casting of register B and whether or not to perform type casting of register C.
 - These are two separate signals.
 - Not all instructions actually need the type casting of both registers. Some instructions only need register B to be casted, and some instructions only need register C to be casted. Still others potentially need both B and C to be casted, and others do not need either register B or C to be casted (mostly those that depend only on register A, such as the control flow instructions).
 - If casting registers B and C, an ove
 - The LAR file's read ports (including all metadata, such as the data type and scalar data offset)
 - The EX stage's past output (and whether or not it's valid)
 - Outputs:
 - The vector values of data LARs a, b, and c.
 - True scalar values of data LARs a, b, and c.
 - Whether or not the EX stage should stall on the current cycle.
- Functionality
 - Operand forwarding.
 - "Pure" scalar result to scalar instruction operand forwarding:
 - For "pure" scalar result to scalar instruction operand forwarding, the base_addr, data_offset, and the data type of the scalar are used to determine how to perform operand forwarding.
 - "Pure" scalar result to scalar instruction operand forwarding only happens if these conditions are met:
 - Same base addr
 - Same data offset

- One of the following must be the case:
 - Both the data to forwarded and the register the forwarding will happen for are integers, and they have the same int type size
 - Both the data to be forwarded and the register the forwarding will happen for are of the BFloat16 type.
- If these conditions are met, then operand forwarding will look very similar to the operand forwarding of typical scalar architectures.
- All other forwarding:
 - For every
- What happens regardless of the type of forwarding:
 - Inject previously computed scalar results into captured vectors of data.
 - This is done to speed up any operand forwarding besides the ideal case of "pure" scalar result to scalar instruction operand forwarding.