AMS526: Numerical Analysis I (Numerical Linear Algebra)

Lecture 12: QR Factorization; Gram-Schmidt Process

Xiangmin Jiao

Stony Brook University

Outline

QR Factorization

2 Gram-Schmidt Orthogonalization

Xiangmin Jiao Numerical Analysis I 2 / 17

Motivation

Question: Given a linear system $Ax \approx b$ where $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ has full rank, how to solve the linear system?

Motivation

Question: Given a linear system $Ax \approx b$ where $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ has full rank, how to solve the linear system?

One approach is to solve normal equation $A^TAx = A^Tb$ directly using Cholesky factorization

• It is unstable, but is very efficient if $m \gg n \ (mn^2 + \frac{1}{3}n^3)$

Motivation

Question: Given a linear system $Ax \approx b$ where $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ has full rank, how to solve the linear system?

One approach is to solve normal equation $A^TAx = A^Tb$ directly using Cholesky factorization

• It is unstable, but is very efficient if $m\gg n\;(mn^2+\frac{1}{3}n^3)$

A more robust approach is to use QR factorization, which decomposes A into product of two simple matrices Q and R, where columns of Q are orthonormal and R is upper triangular.

Two Different Versions of QR

There are two versions of QR

• Full QR factorization: $A \in \mathbb{R}^{m \times n}$ (m > n)

$$A = QR$$

where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is upper triangular

• Reduced QR factorization: $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$

$$A = \widehat{Q}\widehat{R}$$

where $Q \in \mathbb{R}^{m \times n}$ contains orthonormal vectors and $R \in \mathbb{R}^{n \times n}$ is upper triangular

• What space do $\{q_1, q_2, \cdots, q_i\}$, $j \leq n$ span?

Two Different Versions of QR

There are two versions of QR

• Full QR factorization: $A \in \mathbb{R}^{m \times n}$ (m > n)

$$A = QR$$

where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is upper triangular

• Reduced QR factorization: $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$

$$A = \widehat{Q}\widehat{R}$$

where $Q \in \mathbb{R}^{m \times n}$ contains orthonormal vectors and $R \in \mathbb{R}^{n \times n}$ is upper triangular

- What space do $\{q_1, q_2, \cdots, q_i\}$, $j \leq n$ span?
 - ▶ Answer: For full rank A, first j column vectors of A, i.e., $\langle q_1, q_2, \ldots, q_i \rangle = \langle a_1, a_2, \ldots, a_i \rangle.$

Gram-Schmidt Orthogonalization

- A method to construct QR factorization is to orthogonalize the column vectors of A:
- Basic idea:
 - ▶ Take first column a_1 and normalize it to obtain vector a_1 :
 - ▶ Take second column a_2 , subtract its orthogonal projection to q_1 , and normalize to obtain q_2 ;

 - ▶ Take jth column of a_i , subtract its orthogonal projection to q_1, \ldots, q_{i-1} , and normalize to obtain q_i ;

$$v_j = a_j - \sum_{i=1}^{j-1} q_i^T a_j q_i, \ q_j = v_j / \|v_j\|.$$

• This idea is called *Gram-Schmidt orthogonalization*.

Gram-Schmidt Projections

 Orthogonal vectors produced by Gram-Schmidt can be written in terms of projectors

$$q_j = \frac{P_j a_j}{\|P_j a_j\|}$$

where

$$P_j = I - \hat{Q}_{j-1}\hat{Q}_{j-1}^T$$
 with $\hat{Q}_{j-1} = \begin{bmatrix} q_1 & q_2 & \cdots & q_{j-1} \end{bmatrix}$

• P_j projects orthogonally onto space orthogonal to $\langle q_1,q_2,\dots,q_{j-1}
angle$ and rank of P_j is m-(j-1)

Algorithm of Gram-Schmidt Orthogonalization

Classical Gram-Schmidt method
$$\begin{aligned} & \textbf{for } j = 1 \textbf{ to } n \\ & v_j = a_j \\ & \textbf{for } i = 1 \textbf{ to } j - 1 \\ & r_{ij} = q_i^T a_j \\ & v_j = v_j - r_{ij} q_i \\ & r_{jj} = \|v_j\|_2 \\ & q_j = v_j / r_{jj} \end{aligned}$$

Algorithm of Gram-Schmidt Orthogonalization

Classical Gram-Schmidt method
$$\begin{aligned} &\text{for } j = 1 \text{ to } n \\ &v_j = a_j \\ &\text{for } i = 1 \text{ to } j - 1 \\ &r_{ij} = q_i^T a_j \\ &v_j = v_j - r_{ij} q_i \\ &r_{jj} = \|v_j\|_2 \\ &q_j = v_j / r_{jj} \end{aligned}$$

 Classical Gram-Schmidt (CGS) is unstable, which means that its solution is sensitive to perturbation

Existence of QR

Theorem

Every $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ has full QR factorization, hence also a reduced QR factorization.

Existence of QR

Theorem

Every $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ has full QR factorization, hence also a reduced QR factorization.

Key idea of proof: If A has full rank, Gram-Schmidt algorithm provides a proof itself for having reduced QR.

If A does not have full rank, at some step $v_j = 0$. We can set q_j to be a vector orthogonal to q_i , i < j.

To construct full QR from reduced QR, just continue Gram-Schmidt an additional m-n steps.

Theorem

Every $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ of full rank has a unique reduced QR factorization $A = \widehat{Q}\widehat{R}$ with $r_{ij} > 0$.

Key idea of proof: Proof is provided by Gram-Schmidt iteration itself. If the signs of r_{ij} are determined, then r_{ij} and q_j are determined.

Theorem

Every $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ of full rank has a unique reduced QR factorization $A = \widehat{Q}\widehat{R}$ with $r_{ii} > 0$.

Key idea of proof: Proof is provided by Gram-Schmidt iteration itself. If the signs of r_{ij} are determined, then r_{ij} and q_j are determined.

Question: Why do we require $r_{ii} > 0$?

Theorem

Every $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ of full rank has a unique reduced QR factorization $A = \widehat{Q}\widehat{R}$ with $r_{ii} > 0$.

Key idea of proof: Proof is provided by Gram-Schmidt iteration itself. If the signs of r_{ij} are determined, then r_{ij} and q_i are determined.

Question: Why do we require $r_{jj} > 0$?

Question: Is full QR factorization unique?

Theorem

Every $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ of full rank has a unique reduced QR factorization $A = \widehat{Q}\widehat{R}$ with $r_{ij} > 0$.

Key idea of proof: Proof is provided by Gram-Schmidt iteration itself. If the signs of r_{ij} are determined, then r_{ij} and q_i are determined.

Question: Why do we require $r_{jj} > 0$? **Question**: Is full QR factorization unique? **Question**: What if A does not have full rank?

Outline

QR Factorization

2 Gram-Schmidt Orthogonalization

Xiangmin Jiao Numerical Analysis I 10 / 17

Gram-Schmidt Orthogonalization

- A method to construct QR factorization is to orthogonalize the column vectors of A:
- Basic idea: *Gram-Schmidt orthogonalization*.
 - ► Take *j*th column of a_j , subtract its orthogonal projection to q_1, \ldots, q_{j-1} , and normalize to obtain q_j ;

$$v_j = a_j - \sum_{i=1}^{j-1} q_i^\mathsf{T} a_j q_i, \ q_j = v_j / \|v_j\|.$$

 Orthogonal vectors produced by Gram-Schmidt can be written in terms of projectors

$$q_j = \frac{P_j a_j}{\|P_j a_j\|}$$

where

$$P_j = I - \hat{Q}_{j-1}\hat{Q}_{j-1}^T$$
 with $\hat{Q}_{j-1} = \begin{bmatrix} q_1 & q_2 & \cdots & q_{j-1} \end{bmatrix}$

• P_j projects orthogonally onto space orthogonal to $\langle q_1, q_2, \dots, q_{j-1} \rangle$ and rank of P_i is m - (j-1)

Algorithm of Gram-Schmidt Orthogonalization

Classical Gram-Schmidt method
$$\begin{aligned} &\text{for } j = 1 \text{ to } n \\ &v_j = a_j \\ &\text{for } i = 1 \text{ to } j - 1 \\ &r_{ij} = q_i^T a_j \\ &v_j = v_j - r_{ij} q_i \\ &r_{jj} = \|v_j\|_2 \\ &q_j = v_j / r_{jj} \end{aligned}$$

• Classical Gram-Schmidt (CGS) is **unstable**, which means that its solution is sensitive to perturbation

Alternative view to Gram-Schmidt Projection

 Orthogonal vectors produced by Gram-Schmidt can be written in terms of projectors

$$q_j = rac{P_j a_j}{\|P_j a_j\|}, ext{ where } P_j = I - \hat{Q}_{j-1} \hat{Q}_{j-1}^T, \; \hat{Q}_{j-1} = [q_1 | q_2 | \cdots | q_{j-1}]$$

• We may view P_j as product of a sequence of projections

$$P_j = P_{\perp q_{j-1}} P_{\perp q_{j-2}} \dots P_{\perp q_1}$$

where
$$P_{\perp q} = I - qq^T$$

• Instead of computing $v_j = P_j a_i$, one could compute $v_j = P_{\perp q_{j-1}} P_{\perp q_{j-2}} \dots P_{\perp q_1} a_j$ instead, resulting in modified Gram-Schmidt algorithm

Modified Gram-Schmidt Algorithm

Classical Gram-Schmidt method for j=1 to n $v_j = a_j$ for i=1 to j-1 $r_{ij} = q_i^T a_j$ $v_j = v_j - r_{ij} q_i$ $r_{jj} = \|v_j\|_2$ $q_i = v_i/r_{ji}$

Modified Gram-Schmidt method for j=1 to n $v_j = a_j$ for i=1 to n $r_{ii} = \|v_i\|_2$ $q_i = v_i/r_{ii}$ for j=i+1 to n $r_{ij} = q_i^T v_j$ $v_j = v_j - r_{ij}q_i$

Modified Gram-Schmidt Algorithm

Classical Gram-Schmidt method $\begin{aligned} \textbf{for } j &= 1 \textbf{ to } n \\ v_j &= a_j \\ \textbf{for } i &= 1 \textbf{ to } j - 1 \\ r_{ij} &= q_i^T a_j \\ v_j &= v_j - r_{ij} q_i \\ r_{jj} &= \|v_j\|_2 \\ q_j &= v_j/r_{jj} \end{aligned}$

```
Modified Gram-Schmidt method  \begin{aligned} &\text{for } j = 1 \text{ to } n \\ &v_j = a_j \\ &\text{for } i = 1 \text{ to } n \\ &r_{ii} = \|v_i\|_2 \\ &q_i = v_i/r_{ii} \\ &\text{for } j = i+1 \text{ to } n \\ &r_{ij} = q_i^T v_j \\ &v_i = v_i - r_{ij} q_i \end{aligned}
```

- Key difference between CGS and MGS is how rij is computed
- CGS above is column-oriented (in the sense that *R* is computed column by column) and MGS above is row-oriented, but this is NOT the main difference between CGS and MGS. There are also column-oriented MGS and row-oriented CGS.
- MGS is numerically more stable than CGS (less sensitive to round-off errors)

Example: CGS vs. MGS

Consider matrix

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ \varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{array} \right]$$

where ε is small such that $1+\varepsilon^2=1$ with round-off error

For both CGS and MGS

$$\begin{aligned} v_1 \leftarrow (1, \varepsilon, 0, 0)^T, & r_{11} = \sqrt{1 + \varepsilon^2} \approx 1, & q_1 = v_1/r_{11} = (1, \varepsilon, 0, 0)^T, \\ v_2 \leftarrow (1, 0, \varepsilon, 0)^T, & r_{12} = q_1^T a_2 (\text{or } = q_1^T v_2) = 1 \\ v_2 \leftarrow v_2 - r_{12} q_1 = (0, -\varepsilon, \varepsilon, 0)^T, \\ r_{22} = \sqrt{2}\varepsilon, & q_2 = (0, -1, 1, 0)/\sqrt{2}, \\ v_3 \leftarrow (1, 0, 0, \varepsilon)^T, & r_{13} = q_1^T a_3 (\text{or } = q_1^T v_3) = 1 \\ v_3 \leftarrow v_3 - r_{13} q_1 = (0, -\varepsilon, 0, \varepsilon)^T \end{aligned}$$

Example: CGS vs. MGS Cont'd

For CGS:

$$r_{23} = q_2^T a_3 = 0, \ v_3 \leftarrow v_3 - r_{23} q_2 = (0, -\varepsilon, 0, \varepsilon)^T$$

 $r_{33} = \sqrt{2}\varepsilon, q_3 = v_3/r_{33} = (0, -1, 0, 1)^T/\sqrt{2}$

- ▶ Note that $q_2^T q_3 = (0, -1, 1, 0)(0, -1, 0, 1)^T / 2 = 1/2$
- For MGS:

$$r_{23} = q_2^T v_3 = \varepsilon / \sqrt{2}, \ v_3 \leftarrow v_3 - r_{23} q_2 = (0, -\varepsilon/2, -\varepsilon/2, \varepsilon)^T$$

$$r_{33} = \sqrt{6}\varepsilon/2, q_3 = v_3 / r_{33} = (0, -1, -1, 2)^T / \sqrt{6}$$

Note that $q_2^T q_3 = (0, -1, 1, 0)(0, -1, -1, 2)^T / \sqrt{12} = 0$

Operation Count

- It is important to assess the efficiency of algorithms. But how?
 - We could implement different algorithms and do head-to-head comparison, but implementation details might affect true performance
 - We could estimate cost of all operations, but it is very tedious
 - Relatively simple and effective approach is to estimate amount of floating-point operations, or "flops", and focus on asymptotic analysis as sizes of matrices approach infinity
- Count each operation +,-,*,/, and $\sqrt{\ }$ as one flop, and make no distinction of real and complex numbers

Theorem

CGS and MGS require $\sim 2mn^2$ flops to compute a QR factorization of an $m \times n$ matrix.