ServerWiz2 Overview

- Serverwiz2 is a hierarchically based XML editor that is targeted for representing a system topology.
- It has 3 primary concepts:
 - Instances
 - Node, card, connector, or chip
 - Chips can have units that specify subcomponents of that chip such as cores and bus interfaces
 - Busses/Connections
 - A connection between 2 units of 2 Instances
 - Connections are made at the level in the hierarchy where they exist in the real system
 - Attributes
 - Instances and Connections both have attributes
 - Attributes are variables that hostboot reads to direct the firmware

Instance Creation

Connection Creation

Connection Hierarchy

- Connections must be created at highest common point in hierarchy or physically where wire exists. Here are some examples:
 - Simple single motherboard system
 - All connections are created at motherboard level so Selected Card = motherboard.
 - The motherboard is also obviously where the physical wires exist
 - System with memory riser cards
 - The DMI bus spans the motherboard and riser card
 - The motherboard level is selected because that is the highest common level in the hierarchy
 - Multi-node system with cables connecting nodes
 - · System level is selected because that is highest common level in hierarchy

Select connection to View attributes. For example, An I2C bus has an address and speed.

Minimum System Requirements

DMI

- Required Connections: All membuf's must have a DMI connection to a CPU
- The DMI name in the parenthesis match the schematic names
- If there is an lane reversal in the design, change the MSBSWAP attributes below to "1".

DDR

- Required Connections: All DIMMs must be connected to a membuf
- The names for the DDR ports match schematic names. Make sure DIMM naming convention and connections match schematic. It will make the I2C connections more straightforward.

I2C

- Required connections:
 - BMC to CPU I2C slave for OCC communication
 - Membuf I2C connections to DIMMs SPD
 - Membuf I2C connection to GPIO expander to VDDR enable
 - Membuf or CPU I2C connection to VPD
- For I2C busses, make sure I2C_ADDRESS and I2C_SPEED attributes match the design

GPIO

 Required Connection: GPIO expander that controls the VDDR regulator enable. The GPIO port # from GPIO expander must match design.

Power

Required Connections: VDDR regulator connection to membuf

LPC Bus

 Required connection: The LPC bus connection between the BMC and one of the CPU's tells Hostboot which CPU is the master.

Logical Association

- Required connections: VPD that contains membuf wiring information connection to membuf
- This is a virtual connection that tells hostboot where the VPD exists for each membuf. The VPD can alternatively be attached to the CPU I2C master
- This logical association concept could be extended to FRU LED associations

PCle

The PCIe bus is unique in that it can be configured in several different ways.
Under the "pci_configs" parent, you will see the various configurations. To choose one, right-click and select "Select Config". The other configurations will be hidden. To make all configurations visible, right-click and select "Deconfig".

PCle

- Required Connections: None
- Here is an example where E0 is configured as a x16 and E1 is configured as 2 x8's.