ЛЕКЦИЯ 14.

Гетероскедастичность и автокорреляция: когда ошибки модели становятся предсказуемыми

Введение

Вы уже узнали, что модель — это не только формула, но и **совокупность условий**.

Если эти условия нарушаются — модель начинает "врать".

В прошлой лекции мы говорили о **нормальности остатков** — важнейшем условии для корректности выводов.

Сегодня — продолжим проверку качества ошибок модели, а именно:

- Гетероскедастичность когда разброс ошибок непостоянен
- Автокорреляция когда ошибки "запоминают" предыдущие ошибки

1. Что такое гетероскедастичность?

📌 Это ситуация, когда дисперсия остатков зависит от значений х или ŷ.

Иными словами:

ошибки "растут" или "сжимаются" в зависимости от предсказаний

Как выглядит на графике остатков:

Вид графика остатков	Интерпретация
"Веер" вправо	Ошибки растут с ŷ
"Веер" влево	Ошибки уменьшаются
"Бабочка"	Ошибки сперва растут, потом падают
Равномерный шум вдоль нуля	√ Гомоскедастичность — всё ок

Почему это важно?

Гетероскедастичность:

- делает стандартные ошибки некорректными,
- искажает t- и F-статистику,
- приводит к ложным выводам.

Как проверить гетероскедастичность

- 1. Постройте график остатков от предсказанных значений (ŷ)
- 2. Визуально посмотрите: нет ли "веера", "трубы", "конуса"
- 3. (Опционально) используйте **тест Бреуша-Пагана** или **тест Уайта** (в Python/R)

Что делать, если она есть?

Подход	Что делать
Логарифмирование переменной Ү	In(y) или √у уменьшает разброс
Модель с взвешенной регрессией	(в продвинутых инструментах)
Разделить выборку на группы	Например: "малоэкранные" и "многоэкранные"
Использовать робастные ошибки	Только в Python/R (если доступно)

2. Что такое автокорреляция?

У Это ситуация, когда ошибки модели следуют шаблону во времени или порядке наблюдений.

Пример:

Студенты сдавали опрос по порядку → ошибки скапливаются у первых/ последних

Модель по продажам по месяцам \rightarrow ошибка января похожа на ошибку февраля

Как выглядит:

Остатки "скачут" как волна

Присутствует регулярный паттерн

Модель недостаточно быстро подстраивается

Почему это важно?

Автокорреляция:

делает ошибки предсказуемыми

нарушает независимость наблюдений (одно из ключевых допущений!)

может искажать доверие к модели

Как проверить автокорреляцию?

- 1. Построить график остатков в порядке наблюдений
- 2. Использовать **тест Дарбина-Уотсона** (DW)
- DW ≈ 2 → ошибок нет
- DW < 1.5 → положительная автокорреляция
- DW > 2.5 → отрицательная автокорреляция

(Доступно в Python, R, STATA, и иногда в Excel через надстройки)

Что делать?

Сценарий	Решение
Данные имеют временной характер	Используйте временные модели (ARIMA, и т.д.)
Ошибки идут "волнами"	Добавьте переменные, отражающие динамику
Есть "группы" в данных	Добавьте категориальную переменную, которая их разделит

Как объяснить студентам на пальцах:

Гетероскедастичность — когда у кого-то ошибка = ±1, а у кого-то = ±10 Автокорреляция — когда ошибка сегодня зависит от вчерашней

Использование ИИ

Инструмент	Как помогает	
------------	--------------	--

ChatGPT	Интерпретирует график остатков
Excel Copilot	Показывает "веерообразные" отклонения
Notion Al	Формулирует вывод о качестве модели

🚫 Запрещено:

- Не проверять остатки на гетероскедастичность
- Строить модель на временных данных без учёта времени
- Интерпретировать результат модели без учёта ошибок
- Считать, что R² и F "всё, что нужно"

Вывод

Если вы видите гетероскедастичность или автокорреляцию — **модель теряет свою достоверность**.

Вы как исследователь обязаны не только строить уравнение, но и проверять, честна ли модель по отношению к данным.