Chapter 25

Alcohols, Phenols and Ethers

1. The major product obtained on interaction of phenol with sodium hydroxide and carbon dioxide is:

[AIEEE-2009]

- (1) Salicylaldehyde
- (2) Salicylic acid
- (3) Phthalic acid
- (4) Benzoic acid
- From amongst the following alcohols the one that would react fastest with conc. HCl and anhydrous ZnCl₂, is [AIEEE-2010]
 - (1) 1-Butanol
- (2) 2-Butanol
- (3) 2-Methylpropan-2-ol (4) 2-Methylpropanol
- The correct order of acid strength of the following compounds is [AIEEE-2011]
 - A. Phenol
 - B. p-Cresol
 - C. m-Nitrophenol
 - D. p-Nitrophenol
 - (1) A > B > D > C
- (2) C > B > A > D
- (3) D > C > A > B
- (4) B > D > A > C
- Consider the following reaction

$$C_2H_5OH + H_2SO_4 \rightarrow Product$$

Among the following, which one cannot be formed as a product under any conditions? [AIEEE-2011]

- (1) Diethyl ether
- (2) Ethyl-hydrogen sulphate
- (3) Ethylene
- (4) Acetylene
- Arrange the following compounds in order of decreasing acidity [JEE (Main)-2013]

- $(1) | | > | \lor > | > | | |$
- (2) | > | > | | > | | > | | | > | | | | |
- (3) ||| > | > || > |V
- (4) |V > || > | > ||

An unknown alcohol is treated with the "Lucas reagent" to determine whether the alcohol is primary, secondary or tertiary. Which alcohol reacts fastest and by what mechanism?

[JEE (Main)-2013]

- (1) Secondary alcohol by S_N1
- (2) Tertiary alcohol by S_N1
- (3) Secondary alcohol by S_N2
- (4) Tertiary alcohol by S_N2
- Sodium phenoxide when heated with CO2 under pressure at 125°C yields a product which on acetylation produces C.

ONa +
$$CO_2 \xrightarrow{125^{\circ}} B \xrightarrow{H^{+}} Ac_2O C$$

The major product C would be [JEE (Main)-2014]

8. The correct sequence of reagents for the following conversion will be [JEE (Main)-2017]

- (1) CH₃MgBr, [Ag(NH₃)₂]+OH-, H+/CH₃OH
- (2) [Ag(NH₃)₂]⁺OH⁻, CH₃MgBr, H⁺/CH₃OH
- (3) $[Ag(NH_3)_2]^+OH^-$, H^+/CH_3OH , CH_3MgBr
- (4) CH₃MgBr, H⁺/CH₃OH, [Ag(NH₃)₂]⁺OH⁻

Phenol on treatment with CO₂ in the presence of NaOH followed by acidification produces compound X as the major product. X on treatment with (CH₃CO)₂O in the presence of catalytic amount of H₂SO₄ produces [JEE (Main)-2018]

(1)
$$CH_3$$
 (2) CH_3 (2) CO_2H (3) CO_2H (4) CO_2H CO_2H CO_2H CO_2H

The major product formed in the following reaction is

[JEE (Main)-2018]

11. The major product of the following reaction is

[JEE (Main)-2019]

Br
$$\xrightarrow{(1) \text{ KOH (aqueous)}}$$
 $(2) \text{ CrO}_3/\text{H}^+$
 $(3) \text{ H}_2\text{SO}_4/\Delta$

(1)
Br (2)
 (3)
 (4)
 (4)

 The products formed in the reaction of cumene with O₂ followed by treatment with dil. HCl are

[JEE (Main)-2019]

13. Which is the most suitable reagent for the following transformation? [JEE (Main)-2019]

- (1) I₂/NaOH
- (2) Alkaline KMnO₄
- (3) Tollen's reagent
- (4) CrO₂Cl₂/CS₂
- 14. The major product of the following reaction is

The major product obtained in the following conversion is

[JEE (Main)-2019]

The major product obtained in the following reaction is

[JEE (Main)-2019]

(1)
$$CH_3$$
 (2) CH_3 CH_3 (3) CH_3 CH

17. CH₃CH₂ — C — CH₃ cannot be prepared by | Ph

[JEE (Main)-2019]

- (1) PhCOCH₂CH₃ + CH₃MgX
- (2) CH₃CH₂COCH₃+ PhMgX
- (3) HCHO+PhCH(CH₃)CH₂MgX
- (4) PhCOCH₃+ CH₃CH₂MgX
- 18. The major product of the following reaction is

 The organic compound that gives following qualitative analysis is

Inference

Insoluble

Test

(a) Dil. HCI

(b) NaOH solution Soluble
(c) Br₂/water Decolourization

[JEE (Main)-2019]

(1) OH
(2) OH
(3) NH₂
(4) NH₂

20. p-Hydroxybenzophenone upon reaction with bromine in carbon tetrachloride gives

[JEE (Main)-2019]

21. The major product of the following reaction is :

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

[JEE (Main)-2019]

22. The major products of the following reaction are:

[JEE (Main)-2019]

23. What will be the major product when m-cresol is reacted with propargyl bromide (HC \equiv C-CH₂Br) in presence of K₂CO₃ in acetone?

[JEE (Main)-2019]

24. Consider the following reactions:

$$A \xrightarrow{Ag_2O} ppt$$

$$A \xrightarrow{B} \xrightarrow{ABH_4} C \xrightarrow{ZnCl_2} \xrightarrow{Turbidity} within 5 minutes$$

'A' is

[JEE (Main)-2019]

(1)
$$CH_3 - C \equiv CH$$

(2)
$$CH_3 - C \equiv C - CH_3$$

(3)
$$CH_2 = CH_2$$

25. 1-methylethylene oxide when treated with an excess of HBr produces: [JEE (Main)-2020]

$$(1) = \begin{matrix} Br \\ CH_3 \end{matrix} \qquad (2)$$

$$(2) \longrightarrow_{Br}^{Br}$$

$$(3) \quad \text{Br} \quad \text{CH}_3 \qquad \qquad (4) \quad \text{B}$$

26. In the following reaction sequence, structures of A and B, respectively will be

(1)
$$CH_2Br$$
 CH_2Br

(2)
$$\begin{array}{c} Br \\ OH \\ CH_2Br \end{array}$$

ARCHIVE - JEE (Main)

CHEMISTRY

27. The major product of the following reaction is

[JEE (Main)-2020]

28. Among the compounds A and B with molecular formula C₉H₁₈O₃, A is having higher boiling point the B. The possible structures of A and B are

[JEE (Main)-2020]

29. The major product [B] in the following sequence of reactions is

$$CH_3 - C = CH - CH_2CH_3$$

$$CH(CH_3)_2$$

$$(i) B_2H_6$$

$$(ii) H_2O_2, OH$$

$$(ii) H_2O_2 + OH$$

$$(iii) H_2O_2 + OH$$

$$(iii) H_2O_3 + OH$$

$$(iii) H_2O_3 + OH$$

$$(iii) H_2O_3 + OH$$

(1)
$$CH_3 - C - CH_2CH_2CH_3$$
 C
 C
 C
 C

(2)
$$CH_2 = C - CH_2CH_2CH_3$$

 $CH(CH_3)_2$

(3)
$$CH_3 - C = CH - CH_2CH_3$$

 $CH(CH_3)_2$

(4)
$$CH_3 - CH - CH = CH - CH_3$$

 $CH(CH_3)_2$

30. Preparation of Bakelite proceeds via reactions

[JEE (Main)-2020]

- (1) Electrophilic substitution and dehydration
- (2) Electrophilic addition and dehydration
- (3) Nucleophilic addition and dehydration
- (4) Condensation and elimination
- 31. The major aromatic product C in the following reaction sequence will be

$$\frac{\text{HBr}(\text{excess}),}{\Delta} A \xrightarrow{\text{(i) KOH (A lc.)}} B$$

[JEE (Main)-2020]

 Two compounds A and B with same molecular formula (C₃H₆O) undergo Grignard's reaction with methylmagnesium bromide to give products C and D. Products C and D show following chemical tests.

Test	С	D
Ceric		-
ammonium	Positive	Positive
nitrate Test		
Lucas Test	Turbidity	Turbidity obtained immediately
	after five minutes	
Iodoform Test	Positive	Negative

C and D respectively are

[JEE (Main)-2020]

(1)
$$C = H_3C - CH_2 - CH - CH_3$$
;

$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{D} = \operatorname{H_3C} - \operatorname{C} - \operatorname{OH} \\ \operatorname{CH_3} \end{array}$$

(2)
$$C = H_3C - CH_2 - CH_2 - CH_2 - OH$$
;

$$\label{eq:defD} \begin{split} \mathsf{D} = \mathsf{H}_3 \mathsf{C} - \mathsf{CH}_2 - \mathsf{CH} - \mathsf{CH}_3 \\ \mathsf{OH} \end{split}$$

(3)
$$C = H_3C - CH_2 - CH_2 - CH_2 - OH$$
;

$$D = H_3C - C - OH$$

 CH_3

$$D = H_3C - CH_2 - CH - CH_3$$
 OH

33. An organic compound 'A' (C₉H₁₀O) when treated with conc. HI undergoes cleavage to yield compounds 'B' and 'C'. 'B' gives yellow precipitate with AgNO₃ where as 'C' tautomerizes to 'D'. 'D' gives positive iodoform test. 'A' could be

[JEE (Main)-2020]

(2)
$$H_3C - CH = CH_2$$

(3)
$$\sqrt{}$$
 -CH₂ - O - CH = CH₂

34. The major product of the following reaction is:

$$\begin{array}{c|c} \text{OH} & \text{conc. HNO}_3 + \text{conc.} \\ \hline & \text{H}_2\text{SO}_4 \\ \hline & \text{NO}_2 \\ \end{array}$$

(3)
$$H_3C$$
 OH NO_2 NO_2 NO_2 NO_2

35. An organic compound [A], molecular formula C₁₀H₂₀O₂ was hydrolyzed with dilute sulphuric acid to give a carboxylic acid [B] and an alcohol [C]. Oxidation of [C] with CrO₃ – H₂SO₄ produced [B]. Which of the following structures are not possible for [A]? [JEE (Main)-2020]

(1)
$$CH_3 - CH_2 - CH - OCOCH_2CH - CH_2CH_3$$
 CH_3 CH_3

(2)
$$CH_3 - CH_2 - CH - COOCH_2 - CH - CH_2CH_3$$

 CH_3

- (3) $(CH_3)_3C COOCH_2C(CH_3)_3$
- (4) CH₃CH₂CH₂COOCH₂CH₂CH₃CH₃
- 36. Consider the following reaction:

The product 'P' giv

The product 'P' gives positive ceric ammonium nitrate test. This is because of the presence of which of these –OH group(s)? [JEE (Main)-2020]

- (1) (d) only
- (2) (c) and (d)
- (3) (b) only
- (4) (b) and (d)
- 37. When neopentyl alcohol is heated with an acid, it slowly converted into an 85 : 15 mixture of alkenes A and B, respectively. What are these alkenes?

[JEE (Main)-2020]

(4)
$$H_3C$$
 CH_3 H_3C CH_3 and CH_2

38. The major product [B] in the following reactions is

$$CH_{3}$$

$$CH_{3}-CH_{2}-CH-CH_{2}-OCH_{2}-CH_{3}$$

$$\xrightarrow{\text{HI}} \text{Heat} \rightarrow [A] \text{ alcohol} \xrightarrow{\text{H}_{2}SO_{4}} \rightarrow [B]$$

[JEE (Main)-2020]

(1)
$$CH_3 - CH_2 - CH = CH - CH_3$$

(2)
$$CH_3 - CH_2 - C = CH_2$$

$$\begin{array}{c}
\mathsf{CH}_{3} \\
\mathsf{I}
\end{array}$$
(3) $\mathsf{CH}_{3} - \mathsf{CH} = \mathsf{C} - \mathsf{CH}_{3}$

(4)
$$CH_2 = CH_2$$

39. The major product [C] of the following reaction sequence will be

$$CH_2 = CH - CHO \xrightarrow{(i) NaBH_4} [A] \xrightarrow{Anhy.} [B] \xrightarrow{DBr} [C]$$

40. Which of the following derivatives of alcohols is unstable in an aqueous base? [JEE (Main)-2020]

(2) RO-CMe₃

41. The major product of the following reaction is

[JEE (Main)-2020]

(1)
$$CHCH_3$$
 CH_2CH_3 (2) CH_2CH_3 (3) CH_2CH_3 (4) CH_2CH_3

42. A solution of phenol in chloroform when treated with aqueous NaOH gives compound P as a major product. The mass percentage of carbon in P is _____. (to the nearest integer)

(Atomic mass : C = 12; H = 1; O = 16)

