

Department of Computer Science

SE Research Seminar: Knowledge Graphs Knowledge Assessment

By Penz Manuel, Rasmusen Sven, Zaric Marko

Accessibility

- Provisioning of public endpoint
 - Weight = 0.4
 - 1 If SPARQL and REST API
 - 0.75 If SPARQL OR REST API
 - 0.5 If REST API OFFLINE DATA DUMP
 - Otherwise

Retrievable format

- Weight = 0.4
- 1 If RDF export available
- 0.75 If JSON export available
- 0.5 If semi-structured data available
- 0 Otherwise

Content negotiation

- Weight = 0.2
- 1 If content negotiation is supported
- 0 Otherwise

developer preferences, one developer might prefer json over rdf, oder umgekehrt

"Why is having SPARQL endpoint better than having a REST API?"

Accessibility

- Provisioning of public endpoint
 - Weight = 0.4
 - 1 If SPARQL and REST API
 - 0.75 If SPARQL
 - 0.5 If REST API
 - Otherwise

Retrievable format

- Weight = 0.4
- 1 If RDF export available
- 0.75 If JSON export available
- 0.5 If semi-structured data available
- 0 Otherwise

Content negotiation

- Weight = 0.2
- 1 If content negotiation is supported
- 0 Otherwise

- Completeness
 - Data completeness
 - Weight = 0.4
 - $m = \frac{number\ of\ values\ from\ required\ classes\ \&\ properties}{number\ of\ total\ values\ from\ required\ classes\ \&\ properties} \xrightarrow{\text{remove "required" also take into account all existing props\ \&\ classes}}$
 - Population completeness
 - Weight = 0.4
 - $m = \frac{number\ of\ objects\ per\ domain\ represented\ in\ the\ data\ source}{total\ number\ objects\ per\ domain}$
 - Interlinking completeness
 - Weight = 0.2

 $m = \frac{number\ of\ instances\ are\ interlinked}{total\ number\ of\ instances}$

redefine our meaning of interlinking

- Rename to "Instance completeness"
- Why only required properties considered?

- Completeness
 - Data completeness
 - Weight = 0.4
 - $m = \frac{\text{number of values from required classes \& properties}}{\text{number of total values from required classes \& properties}}$
 - Population completeness
 - Weight = 0.4
 - $m = \frac{number\ of\ objects\ per\ domain\ represented\ in\ the\ data\ source}{total\ number\ objects\ per\ domain}$
 - Interlinking completeness
 - Weight = 0.2
 - $m = \frac{\text{number of instances are interlinked}}{\text{total number of instances}}$

Remove & Adjust Weights

- Accuracy
 - Semantic validity
 - Weight = 1.0
 - $m = \frac{|\{o \mid (s,p,o) \in r \land o \in L \land semValid(o)\}|}{|\{o \mid (s,p,o) \in r \land o \in L\}|}$

- Accuracy
 - Semantic validity
 - Weight = 0.5
 - $m = \frac{|\{o \mid (s,p,o) \in r \land o \in L \land semValid(o)\}|}{|\{o \mid (s,p,o) \in r \land o \in L\}|}$

Say we do "formal semantic validity"

- Syntactic validity
 - Weight = 0.5
 - $\mathbf{m} = \frac{|\{o \mid (s, p, o) \in r \land o \in L \land synValid(o)\}|}{|\{o \mid (s, p, o) \in r \land o \in L\}|}$

Check datatype
Check string distance (example: hemming distance)

Say how we want to do our assessment. Eg. "we will take a subset for this metric...."

Thank You!

We are open for feedback and questions.

