Seminario 1

Andoni Latorre Galarraga

$$a) \Rightarrow b$$

En el caso n=1, como f no puede tener más de una raiz y tiene al menos una, f tiene exactamnete una raiz. Ahora, argumentamos por induccíon sobre el grado del polinomio. Sea $f(x) \in k[x]$ de grado $\delta(f) = n \ge 2$, como tiene al menos una raiz, supongamos que $a \in K$ es raiz de f. Tenemos que $(x-a) \mid f(x)$. Es decir, f(x) = (x-a)g(x), y también $\delta(g) = n-1$. Por la hipótesis de inducción g tiene n-1 raices y f se anula en esas n-1 raices y en a dando un total de n raices cmo se quería probar.

$$b) \Rightarrow a)$$

$$c) \Rightarrow d)$$

 $c)\Rightarrow d$ Como K[x] es DFU todo polinomio se puede escribir como producto de irreducibles. Veamos que todo polinomio de grado 1 se puede escibir en la forma c(x-a) para concluir d).

$$ux + v = u(x + u^{-1}v)$$

$$\uparrow$$
 $K \text{ cuerpo}$

$$d) \Rightarrow c)$$

Los polinomios de grado 1 siempre son irreducibles. Además, tenemos que un polinomio de grado $n \ge 2$ no es irreducible ya que se puede poner de la forma $c(x-a_1^{n_1})\cdots(x-a_t^{n_t})$ y los polinomios de grado 1 no son unidades.

$$d) \Rightarrow a)$$

 $\boxed{d) \Rightarrow a)}$ Evidentemente a_1 es raiz de f.

$$a) \Rightarrow d)$$

Argumentando por inducción como en $a \Rightarrow b$ para obtener f(x) = (x - a)g(x) con $\delta(g) = n - 1$ y reescribiendo como en $|c\rangle \Rightarrow d$) si fuera necesario se tiene el resultado deseado.