

AD-A116 652 ARMY MATERIALS AND MECHANICS RESEARCH CENTER WATERTOWN MA F/6 7/1
INFLUENCE OF COMPOSITION AND PROCESS SELECTION ON DENSIFICATION--ETC(U)
MAY 82 G E GAZZA

UNCLASSIFIED AMMRC-TR-82-32

NL

1 OF 1
AMMRC
11-6-82

END
DATE FILMED
08-82
DTIC

AD A116652

AMMRC TR 82-32

AD

2

INFLUENCE OF COMPOSITION AND PROCESS SELECTION ON DENSIFICATION OF SILICON NITRIDE

GEORGE E. GAZZA
CERAMICS RESEARCH DIVISION

May 1982

Approved for public release; distribution unlimited.

DTIC
ELECTED
S JUL 8 1982 D
D

DTIC FILE COPY

ARMY MATERIALS AND MECHANICS RESEARCH CENTER
Watertown, Massachusetts 02172

82 07 07 009

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Mention of any trade names or manufacturers in this report shall not be construed as advertising nor as an official endorsement or approval of such products or companies by the United States Government.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed.
Do not return it to the originator.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Block No. 20

ABSTRACT

In the development of fully dense silicon nitride, both compositional selection and microstructural control are taken into consideration to maximize resultant properties. The effect of impurities and phase behavior on high temperature properties depends on the silicon nitride-additive compositional selection. Both strength and fracture toughness within a given compositional system can be improved by process control of the microstructure, i.e., grain size and morphology. Dual pressure processing of silicon nitride-yttria-alumina materials can be used to sinter these materials to near theoretical density.

X

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS

	Page
1 INTRODUCTION	1
2 MICROSTRUCTURAL EFFECTS	2
3 PHASE BEHAVIOR AND IMPURITY EFFECTS	3
4 COMPOSITIONAL MODIFICATIONS	4
5 GAS PRESSURE SINTERING.	6
6 SUMMARY AND CONCLUSIONS	9

Accession For	
NTIS GRA&I <input checked="" type="checkbox"/>	
DTIC TAB <input type="checkbox"/>	
Unannounced <input type="checkbox"/>	
Justification _____	
By _____	
Distribution/ _____	
Availability Codes _____	
Dist	Avail and/or Special
R	

BLANK PAGE

1 INTRODUCTION

Until approximately five to six years ago, dense Si_3N_4 was primarily produced by hot pressing with the use of an appropriate densifying additive. Recently, due to economic advantages and the necessity to produce complex shapes, sintering and hot isostatic gas pressing have received increasing attention. Adopted modifications of the sintering approach include the use of N_2 gas overpressure to 10 MPa to suppress thermal decomposition of the Si_3N_4 , and the development of a dual N_2 gas pressure procedure where densification from the closed pore stage proceeds under a higher N_2 gas pressure than used for the initial sintering step. The sintering approach has also been facilitated by the development of improved Si_3N_4 starting powders, i.e., having higher surface area and greater uniformity. The selection of the additive composition for densification is still primarily based on prior successful hot pressing results. Initial screening and evaluation of new compositional systems is quickly performed by hot pressing. It has been demonstrated that Si_3N_4 is adaptable to compositional and/or microstructural alterations which can improve the properties and performance of the material. The primary material parameters considered for alteration are shown in Table 1. The compositional approach involves additive selection, impurity effects, and phase equilibria/behavior studies. Microstructural improvement relies on starting material characteristics and optimum selection of processing parameters.

Most studies concerned with the densification of Si_3N_4 have concentrated on the use of MgO , Al_2O_3 , or Y_2O_3 as densification aids. More recently, CeO_2 and ZrO_2 have received attention. The criteria for additive selection generally emphasized resistance to high temperature creep and oxidation. Often, the selection of additive composition and quantity was problematic in that promoting ease of densification of Si_3N_4 bodies resulted in a degradation of their high temperature properties.

Table 1. Material Parameter

Goal	Approach	
	Compositional Control (Grain Boundary Eng.)	Microstructural Control
Improved Performance	Additives	Grain Size
Reliability of Si_3N_4 by Process Control	(MgO , Y_2O_3 , etc.)	
	Impurities (Metal Cations, Carbon)	Grain Morphology (Equiaxed/Prismatic)
	Phase Behavior (Multicomponent Systems)	Phase Control (α/β ratio)

2 MICROSTRUCTURAL EFFECTS

Studies on the use of MgO additive have been well documented in the technical literature. Within the past few years, these studies have been increasingly concerned with microstructural development and its influence on resultant properties of Si_3N_4 . Since the early observation that high alpha phase starting powders were required to produce the highest strength Si_3N_4 product, the effect of microstructure and microstructural modifications produced by changes in composition and process parameters were generally neglected until Lange (1) reported on the morphological development of beta grains in hot-pressed Si_3N_4 . Knoch and Gazzola (2) subsequently investigated the influence of Si_3N_4 starting powders with different alpha/beta phase content on the modulus of rupture of hot-pressed Si_3N_4 -5%MgO composition using different time, temperature, and pressure parameters. In this study, the most dramatic effect of process parameter variation on the resultant microstructure and properties was produced by hot pressing Si_3N_4 -5%MgO for various times from 10 minutes to three hours at 1600°C using 70 MPa uniaxial pressure. The room temperature modulus of rupture values and resulting β -fraction associated with these hot-pressing parameters are shown in Figure 1. Maximum strength is reached at nearly full conversion of α phase to β phase with interlocking elongated grain morphology. Further coarsening of the grain size by extending the hot-pressing time produces a reduction in strength.

Figure 1. Effect of hot-pressing time on flexural strength and β -fraction of hot-pressed Si_3N_4 -5%MgO.

1. LANGE, F. F. *Fracture Toughness of Si_3N_4 as a Function of Initial α -Phase Content*. Technical Report No. 4, Office of Naval Research, Contract N00014-77-C-0441, July 1978.
2. KNOCH, H., and GAZZA, G. E. *On the α to β Phase Transformation and Grain Growth During Hot Pressing of Si_3N_4 Containing MgO*. Ceramurgia International, v. 6, no. 2, 1980, p. 51-56.

Fracture toughness (K_C) of these samples, shown in Figure 2, were determined by the indentation method (3). The fracture toughness increased to a maximum of approximately $7 \text{ MNm}^{-3/2}$ with increasing α to β transformation and subsequently dropped to $4.5 \text{ MNm}^{-3/2}$ as the grain size coarsened and the aspect ratio decreased. Fracture toughness results from other studies (4,5) are also shown in Figure 2. Grain coarsening effects on K_C appear to be similar to those observed by Himsolt, et al (5).

3 PHASE BEHAVIOR AND IMPURITY EFFECTS

The development of more refractory Si_3N_4 materials using Y_2O_3 , CeO_2 , etc., tended to concentrate more on compositional alterations and phase relations. In particular, Y_2O_3 additions were found to form a higher viscosity glassy phase and quaternary oxynitrides. Although the properties of the Y_2O_3 -doped Si_3N_4 were found to be excellent, particularly at temperatures above 1200°C , certain intermediate temperature phase instability was found at temperatures between 700°C and 1100°C in an oxidizing environment (6). The instability was attributed to large changes in the molar volume of the secondary phase and its oxidation product. However, the phase instability and resultant crack formation was not always found in oxidized Si_3N_4 bodies containing these quaternary phases.

Figure 2. Variation of fracture toughness with β -fraction in hot-pressed Si_3N_4 -5% MgO .

3. EVANS, A. G., and CHARLES, E. A. *Fracture Toughness Determinations by Indentation*. Journal of American Ceramic Society, v. 59, 1976, p. 371-372.
4. KNOCH, H., GAZZA, G. E., and KATZ, R. N. *The Influence of Processing Parameters on Development of Microstructure in Hot-Pressed Silicon Nitride and Its Correlation With Mechanical Properties*. Proceedings of the 4th CIMTEC Meeting, Saint Vincent, Italy, 1979, p. 737-750.
5. HIMSOILT, G., HUEBNER, H., KLEINLEIN, W., and KNOCH, H. *Mechanical Properties of Hot-Pressed Silicon Nitride With Different Grain Structures*. Journal of American Ceramic Society, v. 62, no. 1-2, 1979, p. 29-32.
6. LANGE, F. F., SINGHAL, S. C., KUZNICKI, R. C. *Phase Relations and Stability Studies in the Si_3N_4 - SiO_2 - Y_2O_3 Pseudoternary System*. Journal of American Ceramic Society, v. 60, no. 5-6, 1977, p. 245.

In related studies, Knoch and Gazzia (7) at AMMRC and Schoun (8) at NASA found impurity influences associated with this behavior. In the former study, the presence of carbon or silicon carbide in hot-pressed Si_3N_4 - Y_2O_3 (melilite) specimens caused extensive cracking during oxidation at temperatures of 800°C to 1000°C while carbon-free material exhibited parabolic oxidation kinetics. When a carbon-containing Si_3N_4 powder with a carbon content of approximately 0.6% was used to form the melilite compound, degradation occurred during oxidation. Subsequently, it has been found that a carbon content as low as 0.2 to 0.3% in Si_3N_4 containing melilite phase will crack during oxidation. The extent of degradation may also depend on the amount and distribution of melilite phase in Si_3N_4 . Schoun (8) demonstrated that the presence of tungsten in sintered Si_3N_4 containing the melilite phase produced severe oxidation and cracking at 750°C while similar Si_3N_4 -8% Y_2O_3 material containing 2%WC or no intentional impurity showed only small weight gain.

Whether severe oxidation and cracking of Si_3N_4 - Y_2O_3 compositions containing melilite phase, K-phase, or J-phase is observed or not, most studies indicate that the oxidation rates of Si_3N_4 - Y_2O_3 compositions within these phase fields are higher than for compositions within the Si_3N_4 - $\text{Si}_2\text{N}_2\text{O}$ - $\text{Y}_2\text{Si}_2\text{O}_7$ triangle (6,9) or Si_3N_4 - $\text{Y}_2\text{Si}_2\text{O}_7$ - $\text{Y}_5\text{Si}_3\text{O}_{12}\text{N}$ triangle (10). Optimum Si_3N_4 - Y_2O_3 compositions with regard to the best combination of strength, oxidation, and creep resistance should be found within the latter two compatibility triangles.

4 COMPOSITIONAL MODIFICATIONS

The successful use of Y_2O_3 and CeO_2 as densification aids to Si_3N_4 suggested that other rare earth oxides might also be effective additives. Andersson and Bratton (11) studied the rare earth oxides of Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Er, and Yb with compositions within the compatibility triangle Si_3N_4 - $\text{Si}_2\text{N}_2\text{O}$ - $\text{M}_2\text{Si}_2\text{O}_7$. Additionally, they included Sc_2O_3 , NiO , Cr_2O_3 , and ZrO_2 in their study. The highest silicate composition ($\text{M}_2\text{Si}_2\text{O}_7$ for most additives studied) was chosen to maintain stability with respect to SiO_2 and retain good oxidation resistance. Incipient melting points were determined for Si_3N_4 - M_xO_y - SiO_2 compositions as well as elevated temperature flexural strengths. Both parameters are shown plotted in Figure 3 as functions of the ionic radii of the rare earth elements used for each composition.

7. KNOCH, H., and GAZZA, G. E. *Effect of Carbon Impurity on the Thermal Degradation of an Si_3N_4 - Y_2O_3 Ceramic*. Journal of American Ceramic Society, v. 62, no. 11-12, 1979, p. 634-635.
8. SCHOUN, S. *Effect of W and WC on the Oxidation Resistance of Yttria Doped Silicon Nitride*. NASA TM-81528, Presentation at American Ceramic Society Meeting, Chicago, Illinois, 28-30 April 1980.
9. RAE, A. W. J. M., THOMPSON, D. P., and JACK, K. H. *The Role of Additives in the Densification of Nitrogen Ceramics*. Ceramics For High Performance Applications-II. Proceedings of the 5th Army Materials Technology Conference, Newport, Rhode Island, March 1977.
10. QUACKENBUSH, C. L., and SMITH, J. T. *Phase Effects in Si_3N_4 Containing Y_2O_3 or CeO_2 : II. Oxidation*. American Ceramic Society Bulletin, v. 59, no. 5, 1980, p. 533-537.
11. ANDERSSON, C. A., and BRATTON, R. *Ceramic Materials For High Temperature Turbines*. Final Technical Report, U.S. Energy Res. Dev. Adm. Contract EY-76-C-05-5210, August 1977.

Army Materials and Mechanics Research Center,
Watertown, Massachusetts 02172
INFLUENCE OF COMPOSITION AND PROCESS
SELECTION ON DENSIFICATION OF SILICON
NITRIDE - George E. Gazzola

Technical Report AMMRC TR 82-32, May 1982, 11 pp -
illus-table, D/A Project 1L162105AH84,
AMMCS Code 62105A

In the development of fully dense silicon nitride, both compositional selection and microstructural control are taken into consideration to maximize resultant properties. The effect of impurities and phase behavior on high temperature properties depends on the silicon nitride-additive compositional selection. Both strength and fracture toughness within a given compositional system can be improved by process control of the microstructure, i.e., grain size and morphology. Dual pressure processing of silicon nitride-yttria-alumina materials can be used to sinter these materials to near theoretical density.

AD UNCLASSIFIED
UNLIMITED DISTRIBUTION

Key Words
Silicon nitride
Sintering
Yttrium silicon nitride

Army Materials and Mechanics Research Center,
Watertown, Massachusetts 02172
INFLUENCE OF COMPOSITION AND PROCESS
SELECTION ON DENSIFICATION OF SILICON
NITRIDE - George E. Gazzola

Technical Report AMMRC TR 82-32, May 1982, 11 pp -
illus-table, D/A Project 1L162105AH84,
AMMCS Code 62105A

In the development of fully dense silicon nitride, both compositional selection and microstructural control are taken into consideration to maximize resultant properties. The effect of impurities and phase behavior on high temperature properties depends on the silicon nitride-additive compositional selection. Both strength and fracture toughness within a given compositional system can be improved by process control of the microstructure, i.e., grain size and morphology. Dual pressure processing of silicon nitride-yttria-alumina materials can be used to sinter these materials to near theoretical density.

AD UNCLASSIFIED
UNLIMITED DISTRIBUTION

Key Words
Silicon nitride
Sintering
Yttrium silicon nitride

Army Materials and Mechanics Research Center,
Watertown, Massachusetts 02172
INFLUENCE OF COMPOSITION AND PROCESS
SELECTION ON DENSIFICATION OF SILICON
NITRIDE - George E. Gazzola

Technical Report AMMRC TR 82-32, May 1982, 11 pp -
illus-table, D/A Project 1L162105AH84,
AMMCS Code 62105A

In the development of fully dense silicon nitride, both compositional selection and microstructural control are taken into consideration to maximize resultant properties. The effect of impurities and phase behavior on high temperature properties depends on the silicon nitride-additive compositional selection. Both strength and fracture toughness within a given compositional system can be improved by process control of the microstructure, i.e., grain size and morphology. Dual pressure processing of silicon nitride-yttria-alumina materials can be used to sinter these materials to near theoretical density.

AD UNCLASSIFIED
UNLIMITED DISTRIBUTION

Key Words
Silicon nitride
Sintering
Yttrium silicon nitride

Army Materials and Mechanics Research Center,
Watertown, Massachusetts 02172
INFLUENCE OF COMPOSITION AND PROCESS
SELECTION ON DENSIFICATION OF SILICON
NITRIDE - George E. Gazzola

Technical Report AMMRC TR 82-32, May 1982, 11 pp -
illus-table, D/A Project 1L162105AH84,
AMMCS Code 62105A

In the development of fully dense silicon nitride, both compositional selection and microstructural control are taken into consideration to maximize resultant properties. The effect of impurities and phase behavior on high temperature properties depends on the silicon nitride-additive compositional selection. Both strength and fracture toughness within a given compositional system can be improved by process control of the microstructure, i.e., grain size and morphology. Dual pressure processing of silicon nitride-yttria-alumina materials can be used to sinter these materials to near theoretical density.

AD UNCLASSIFIED
UNLIMITED DISTRIBUTION

Key Words
Silicon nitride
Sintering
Yttrium silicon nitride

Army Materials and Mechanics Research Center,
Watertown, Massachusetts 02172
INFLUENCE OF COMPOSITION AND PROCESS
SELECTION ON DENSIFICATION OF SILICON
NITRIDE - George E. Gazzola

Technical Report AMMRC TR 82-32, May 1982, 11 pp -
illus-table, D/A Project 1L162105AH84,
AMMCS Code 62105A

In the development of fully dense silicon nitride, both compositional selection and microstructural control are taken into consideration to maximize resultant properties. The effect of impurities and phase behavior on high temperature properties depends on the silicon nitride-additive compositional selection. Both strength and fracture toughness within a given compositional system can be improved by process control of the microstructure, i.e., grain size and morphology. Dual pressure processing of silicon nitride-yttria-alumina materials can be used to sinter these materials to near theoretical density.

Figure 3. Effect on ionic radius of rare earth elements on the eutectic melting points and elevated temperature strengths of $\text{Si}_3\text{N}_4-\text{M}_x\text{O}_y-\text{SiO}_2$. (Ref. 11)

The ionic radii were selected because they are indicative of the bond strengths of those rare earths in the $\text{M}_2\text{Si}_2\text{O}_7$ structures. Both the elevated temperature flexural strength and eutectic melting points of the $\text{Si}_3\text{N}_4-\text{Si}_2\text{N}_2\text{O}-\text{M}_2\text{Si}_2\text{O}_7$ systems increase with decreasing rare earth ionic radii, i.e., with increasing bond strength. The high temperature property potential of Sc-containing Si_3N_4 is suggested on the plot and recent work by Morgan, Lange, et al (12) illustrates the excellent properties achieved with the $\text{Si}_3\text{N}_4-\text{Sc}_2\text{O}_3-\text{SiO}_2$ system. The cost of Sc_2O_3 may limit its usefulness, however, beyond the research stage. Further property improvement was suggested by alloying various rare earth pyrosilicates or by substituting smaller ions, e.g., Al^{+3} , Cr^{+3} , within solubility limits in the monoclinic structures.

As processing emphasis of dense Si_3N_4 gradually shifted from hot pressing to sintering, accommodations in additive selection were necessary to insure a sufficient amount of liquid phase formed to promote densification. Additionally, the liquid had to form at temperatures where the system was thermally stable, and be sufficiently reactive with the Si_3N_4 to produce densification by the mechanism of solution-reprecipitation. The addition of Al_2O_3 to the $\text{Si}_3\text{N}_4-\text{Y}_2\text{O}_3$ system is effective in promoting sinterability over Y_2O_3 additions alone. Excellent RT strength values are obtained using the combined $\text{Y}_2\text{O}_3-\text{Al}_2\text{O}_3$ additions to Si_3N_4 but high temperature properties can be adversely affected by the formation of low viscosity $\text{Y}-\text{Si}-\text{Al}-\text{O}-\text{N}$ glasses. The high temperature property studies of Smith and Quackenbush (13) have shown that for

12. MORGAN, P. E. D., LANGE, F. F., CLARKE, D. R., and DAVIS, B. I. Journal of American Ceramic Society, Communications Section, v. 64, no. 4, 1981, p. c77.
13. SMITH, J. T., and QUACKENBUSH, C. L. *Phase Effects in Si_3N_4 Containing Y_2O_3 or CeO_2 : I. Strength*. American Ceramic Society Bulletin, v. 59, no. 5, 1980, p. 529-532, 537.

Si_3N_4 containing 4 to 13% Y_2O_3 , the Al_2O_3 addition should be less than 2% to approach high temperature property requirements of gas turbine engine components. For maximum high temperature creep and oxidation resistance, the Al_2O_3 should be minimized or eliminated. The effect of small Al_2O_3 additions on the stress-rupture life of a commercially pure Si_3N_4 -7.5% Y_2O_3 composition is shown in Figure 4. A stress-rupture temperature of 1300°C and a step temperature-stress rupture (STSР) cycle of 1000°C to 1300°C was used with applied stresses of 140 MPa (20 ksi) and 200 MPa (30 ksi). As shown in the figure, a reduction in the amount of added Al_2O_3 from 2% to 0.5% dramatically increases the time to failure under the given stresses. Reducing the stress level from 200 MPa (30 ksi) to 140 MPa (20 ksi) produces a 2½ to 3 times increase in stress-rupture life. The slight difference in time to failure between the stress-rupture and STSR values may be due to a small contribution to slow crack growth at temperatures below 1300°C. In the STSR test, the specimen were held under stress at temperatures of 1000°C, 1100°C, and 1200°C for 24 hours at each temperature before reaching the final test temperature of 1300°C. As a comparative point of reference, STSR conditions (1300°C, 200 MPa) resulted in an approximately 15-hour failure life for hot-pressed NC-132 (14). The use of higher purity Si_3N_4 starting material rather than the commercially pure grade should shift the curves shown in Figure 4 toward longer time to failure.

Figure 4. Effect of Al_2O_3 additions on the stress-rupture life of a Si_3N_4 -7.5% Y_2O_3 base composition.

5 GAS PRESSURE SINTERING

As processing emphasis shifts from hot pressing to sintering, modification to conventional sintering procedures must be explored to overcome densification problems associated with low diffusivity

14. QUINN, G. D., and QUINN J. B. *Slow Crack Growth in Hot-Pressed Silicon Nitride*. Proceedings of The International Symposium on the Fracture Mechanics of Ceramics, Penn State University, Pennsylvania, July 1981.

and dissociation. The use of high N₂ gas pressure for sintering was found to be effective in promoting densification while limiting decomposition of the material (15-17). The need to densify complex shapes of Si₃N₄ requires that isostatic gas pressure be used. Conventional hot isostatic pressing where pressures greater than 70 MPa are normally used has been successful in producing Si₃N₄-5%Y₂O₃ material with excellent high temperature properties (18). A cladless dual N₂ pressure technique has also shown good results in producing near fully dense ceramics (19). Greskovich and Palm (20) reported using the two-step method to produce 99+% dense Si₃N₄/SiBeN₂ composition. Recently, Gazzetta et al (21) densified Si₃N₄/Y₂O₃/Al₂O₃ compositions using 0.1 MPa N₂ pressure for initial sintering, then raising the pressure to 3.0 MPa to produce final densification.

The compositions used in this study are shown in Figure 5, a plot of density versus N₂ pressure. Some additive compositions were prereacted to form compounds, e.g., Y₃Al₅O₁₂, Y₄Al₂O₉, before mixing with the Si₃N₄ powders. Cold-pressed specimens were initially sintered under 0.1 MPa N₂ pressure. Some compositions sintered to the closed pore stage. In the second sintering step, the pressure was raised to 2.0 MPa while the temperature was held at 1770°C to 1780°C. Ninety-minute hold times were used for each step. As shown in Figure 5, all compositions exhibited increased densification. Those which were initially sintered to the closed pore stage were densified to near maximum density. The poor initial sintering behavior of the 117 and 113 compositions is probably related to lack of sufficient liquid formed with the available silica in the system.

Differences in resultant properties and microstructures were observed which were influenced by the starting Si₃N₄ powder. In Figure 6, microstructures obtained from replicas on polished and etched surfaces and scanning electron micrographs on fracture surfaces are shown for dual-pressure sintered Si₃N₄-10%YAG compositions. Finer grain size and higher grain aspect ratios appear to be developed in the LC-10 powder for the processing conditions used. Room temperature modulus of rupture measurements on both 112 and 105 materials reflect the microstructural differences. An average MOR of 779 MPa (113 ksi) was observed for the finer grain specimen while the coarser 105 specimen had an average MOR of 538 MPa (78 ksi).

15. MITOMO, M., TSUTSUMI, BANNAI, E., and TANAKA, T. *Strengthening of Si₃N₄*. American Ceramic Society Bulletin, v. 55, no. 3, 1976, p. 313.
16. PRIEST, H. F., PRIEST, G. L., and GAZZA, G. E. *Centering of Si₃N₄ Under High Nitrogen Pressure*. Journal of American Ceramic Society, v. 60, no. 1-2, 1977, p. 81.
17. MITOMO, M. *Pressure Sintering of Si₃N₄*. Journal of Materials Science, v. 11, no. 6, 1976, p. 1103.
18. WILLS, R. R., BROCKWAY, M. C., MCCOY, L. G., and NIESZ, D. E. *Preliminary Observations on the Hot Isostatic Pressing of Silicon Nitride*. Proceedings Ceramic Engineering and Science, v. 1, no. 7-8, 1980, p. 534-539.
19. HARDTL, K. H. *Gas Isostatic Hot Pressing Without Molds*. American Ceramic Society Bulletin, v. 54, no. 2, 1975, p. 201-205, 207.
20. GRESKOVICH, C., and PALM, J. *Development of High Performance Sintered Si₃N₄*. Final Technical Report SRD-80-111, September 1980, Contract No. DAAG-46-78-C-0058, under AMMRC/DOE Interagency Agreement EC-76-A-1017-002.
21. GAZZA, G. E., and KATZ, R. N. *Development of Sinterable Si₃N₄*. Army Materials and Mechanics Research Center, AMMRC SP 80-5, November 1980; also presented at the Department of Energy Automotive Technology Development Contractor's Coordination Meeting, Dearborn, Michigan, November 1980.

Figure 5. Effect of Dual N_2 pressure process on densification on various Si_3N_4 - Y_2O_3 - Al_2O_3 compositions.

Figure 6. Microstructures of sintered Si_3N_4 -10%YAG; fractographs (upper) and surface replicas (lower).

6 SUMMARY AND CONCLUSIONS

Studies on the hot-pressing of various Si_3N_4 /metal oxide systems demonstrate that both compositional and microstructural alterations can be used to produce significant property differences within a given materials system. For $\text{Si}_3\text{N}_4/\text{MgO}$, microstructural studies demonstrate the need for judicious selection of starting materials and a more exact determination of optimum process parameters required for densification. For the $\text{Si}_3\text{N}_4/\text{Y}_2\text{O}_3$ materials system, it appears that composition restricted to the $\text{Si}_3\text{N}_4-\text{Si}_2\text{N}_2\text{O}-\text{Y}_2\text{Si}_2\text{O}_7$ or $\text{Si}_3\text{N}_4-\text{Y}_2\text{Si}_2\text{O}_7-\text{Y}_5\text{Si}_3\text{O}_{12}\text{N}$ phase fields will have the best combination of high temperature properties. The role of impurities within this compositional system needs further elucidation.

The addition of Al_2O_3 to the $\text{Si}_3\text{N}_4/\text{Y}_2\text{O}_3$ system facilitates densification but appears to degrade high temperature properties with some dependence on the amount of Al_2O_3 added. This paper did not consider grain boundary crystallization techniques which may alleviate the formation of low viscosity phases.

Emphasis on densifying high purity $\text{Si}_3\text{N}_4/\text{Y}_2\text{O}_3$ compositions appears to be emerging in the area of hot isostatic gas pressing. Techniques requiring cladding have been successful in producing dense, high strength bodies. Cladless hot isostatic gas pressure methods using N_2 pressures less than 10 MPa have also been effective in producing dense bodies with strength and microstructure similar to hot-pressed material.

BLANK PAGE

DISTRIBUTION LIST

No. of Copies	To	No. of Copies	To
	Office of the Under Secretary of Defense for Research and Engineering, The Pentagon, Washington, DC 20301		Director, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD 21005
1	ATTN: Mr. J. Persh	1	ATTN: DRDAR-TSB-S (STINFO)
1	Dr. G. Gamota		Commander, U.S. Army Test and Evaluation Command, Aberdeen Proving Ground, MD 21005
12	Commander, Defense Technical Information Center, Cameron Station, Building 5, 5010 Duke Street, Alexandria, VA 22314	1	ATTN: DRSTE-ME
1	National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161		Commander, U.S. Army Foreign Science and Technology Center, 220 7th Street, N.E., Charlottesville, VA 22901
	Director, Defense Advanced Research Projects Agency, 1400 Wilson Boulevard, Arlington, VA 22209	1	ATTN: Military Tech, Mr. W. Marley
1	ATTN: Dr. A. Bement		Commander, Watervliet Arsenal, Watervliet, NY 12189
1	Dr. Van Reuth	1	ATTN: Dr. T. Davidson
	Battelle Columbus Laboratories, Metals and Ceramics Information Center, 505 King Avenue, Columbus, OH 43201		Director, Eustis Directorate, U.S. Army Mobility Research and Development Laboratory, Fort Eustis, VA 23604
1	ATTN: Mr. Winston Duckworth	1	ATTN: Mr. J. Robinson, DAVDL-E-MOS (AVRADCOM)
1	Dr. D. Niesz	1	Mr. C. Walker
1	Dr. R. Wills		Chief of Naval Research, Arlington, VA 22217
	Deputy Chief of Staff, Research, Development, and Acquisition, Headquarters, Department of the Army, Washington, DC 20301	1	ATTN: Code 471
1	ATTN: DAMA-ARZ	1	Dr. A. Diness
1	DAMA-CSS, Dr. J. Bryant	1	Dr. R. Pohanka
	Commander, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21701		Naval Research Laboratory, Washington, DC 20375
1	ATTN: SGRD-SI, Mr. Lawrence L. Ware, Jr.	1	ATTN: Dr. J. M. Krafft - Code 5830
	Commander, Army Research Office, P.O. Box 12211, Research Triangle Park, NC 27709	1	Mr. R. Rice
1	ATTN: Information Processing Office		Headquarters, Naval Air Systems Command, Washington, DC 20360
1	Dr. G. Mayer	1	ATTN: Code 5203
1	Dr. J. Hurt	1	Code MAT-042M
	Commander, U.S. Army Materiel Development and Readiness Command, 5001 Eisenhower Avenue, Alexandria, VA 22333		Commander, U.S. Air Force of Scientific Research, Building 410, Bolling Air Force Base, Washington, DC 20332
1	ATTN: DRCDMD-ST	1	ATTN: MAJ W. Simmons
1	DRCLDC		Commander, U.S. Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, OH 45433
	Commander, Harry Diamond Laboratories, 2800 Powder Mill Road, Adelphi, MD 20783	1	ATTN: AFWAL/MLLM, Dr. N. Tallan
1	ATTN: Mr. A. Benderly	1	AFWAL/MLLM, Dr. H. Graham
1	Technical Information Office	1	AFWAL/MLLM, Dr. R. Ruh
1	DELHD-RAE	1	AFWAL/MLLM, Mr. K. S. Mazdiyasni
	Commander, U.S. Army Missile Command, Redstone Arsenal, AL 35809	1	Aero Propulsion Labs, Mr. R. Marsh
1	ATTN: Mr. P. Ormsby		National Aeronautics and Space Administration, Washington, DC 20546
1	Technical Library	1	ATTN: Mr. G. C. Deutsch - Code RW
	Commander, U.S. Army Aviation Research and Development Command, 4300 Goodfellow Boulevard, St. Louis, MO 63120	1	Mr. J. Gangler
1	ATTN: DRDAV-EGX	1	AFSS-AD, Office of Scientific and Technical Information
1	DRDAV-QE		National Aeronautics and Space Administration, Lewis Research Center, 21000 Brookpark Road, Cleveland, OH 44135
	Commander, U.S. Army Tank-Automotive Command, Warren, MI 48090	1	ATTN: J. Accurio, USAMRDL
1	ATTN: Dr. W. Bryzik	1	Dr. H. B. Probst, MS 49-1
1	Mr. E. Hamperian	1	Dr. S. Dutta
1	D. Rose	1	Mr. Robert Evans
1	DRSTA-RKA		National Aeronautics and Space Administration, Langley Research Center, Center, Hampton, VA 23665
1	DRSTA-UL, Technical Library	1	ATTN: Mr. J. Buckley, Mail Stop 387
	Commander, U.S. Army Armament Research and Development Command, Dover, NJ 07801		Department of Energy, Division of Transportation, 20 Massachusetts Avenue, N.W., Washington, DC 20545
1	ATTN: Dr. G. Vezzoli	1	ATTN: Mr. George Thut (TEC)
1	Technical Library	1	Mr. Robert Schulz (TEC)
	Commander, U.S. Army Armament Materiel Readiness Command, Rock Island, IL 61299	1	Mr. John Neal (CLNRT)
1	ATTN: Technical Library	1	Mr. Steve Wander (Fossil Fuels)
	Commander, Aberdeen Proving Ground, MD 21005		Department of Transportation, 400 Seventh Street, S.W., Washington, DC 20590
1	ATTN: DRDAR-CLB-PS, Mr. J. Vervier	1	ATTN: Mr. M. Lauriente
	Commander, U.S. Army Mobility Equipment Research and Development Command, Fort Belvoir, VA 22060		National Bureau of Standards, Washington, DC 20234
1	ATTN: DRDME-EM, Mr. W. McGovern	1	ATTN: Dr. S. Wiederhorn
1	DRDME-V, Mr. E. York		National Research Council, National Materials Advisory Board, 2101 Constitution Avenue, Washington, DC 20418
		1	ATTN: R. M. Spriggs
			National Science Foundation, Washington, DC 20550
		1	ATTN: B. A. Wilcox

No. of Copies	To	No. of Copies	To
	Admiralty Materials Technology Establishment, Poole, Dorset BH16 6JU, UK		Kaweco Berylco Industries, Inc., P.O. Box 1462, Reading, PA 19603
1	ATTN: Dr. D. Godfrey Dr. M. Lindley	1	ATTN: Mr. R. J. Longenecker
	AiResearch Manufacturing Company, AiResearch Casting Company, 2525 West 190th Street, Torrance, CA 90505		Kyocera International, Inc., 8611 Balboa Avenue, San Diego, CA 92123
1	ATTN: Mr. K. Styhr	1	ATTN: Dr. E. H. Kraft
	AiResearch Manufacturing Company, Materials Engineering Dept., 111 South 34th Street, P.O. Box 5217, Phoenix, AZ 85010		Martin Marietta Laboratories, 1450 South Rolling Road, Baltimore, MD 21227
1	ATTN: Mr. D. W. Richerson, MS 93-393/503-44	1	ATTN: Dr. J. Venables
	AVCO Corporation, Applied Technology Division, Lowell Industrial Park, Lowell, MA 01887		Massachusetts Institute of Technology, Department of Metallurgy and Materials Science, Cambridge, MA 02139
1	ATTN: Dr. T. Vasilos	1	ATTN: Prof. R. L. Coble Prof. H. K. Bowen Prof. W. D. Kingery
	Babcock & Wilcox, Lynchburg Research Center, Research and Development Division, P.O. Box 239, Lynchburg, VA 24505		Midwest Research Institute, 425 Volker Boulevard, Kansas City, MO 64110
1	ATTN: Mr. D. R. Petrik	1	ATTN: Mr. Gordon W. Gross, Head, Physics Station
	Carborundum Company, Research and Development Division, P.O. Box 1054, Niagara Falls, NY 14302		Norton Company, Worcester, MA 01606
1	ATTN: Dr. J. A. Coppola	1	ATTN: Dr. N. Ault Dr. M. L. Torti
	Case Western Reserve University, Department of Metallurgy, Cleveland, OH 44106		Pennsylvania State University, Materials Research Laboratory, Materials Science Department, University Park, PA 16802
1	ATTN: Prof. A. H. Heuer	1	ATTN: Prof. R. E. Tressler Prof. R. Bradt Prof. V. S. Stubican
	Ceradyne, Inc., 3030-A South Red Hill Avenue, Santa Ana, CA 92705		RIAS, Division of the Martin Company, Baltimore, MD 21203
1	ATTN: Dr. J. P. Moskowitz	1	ATTN: Dr. A. R. C. Westwood
	Cummins Engine Company, Columbus, IN 47201		Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
1	ATTN: Mr. R. Kamo	1	ATTN: Dr. F. Lange Dr. D. F. Clarke
	Deposits and Composites, Inc., 1821 Michael Faraday Drive, Reston, VA 22090		Stanford Research International, 333 Ravenswood Avenue, Menlo Park, CA 94025
1	ATTN: Mr. R. E. Engdahl	1	ATTN: Dr. P. Jorgensen Dr. D. Rowcliffe
	Electric Power Research Institute, P.O. Box 10412, 3412 Hillview Avenue, Palo Alto, CA 94304		State University of New York at Stony Brook, Department of Materials Science, Long Island, NY 11790
1	ATTN: Dr. A. Cohn	1	ATTN: Prof. Franklin F. Y. Wang
	European Research Office, 223 Old Marylebone Road, London, NW1 - 5the, England		United Technologies Research Center, East Hartford, CT 06108
1	ATTN: Dr. R. Quattrone	1	ATTN: Dr. J. Brennan Dr. F. Galasso
1	LT COL James Kennedy		University of California, Lawrence Livermore Laboratory, P.O. Box 808, Livermore, CA 94550
	Ford Motor Company, Turbine Research Department, 20000 Rotunda Drive, Dearborn, MI 48121	1	ATTN: Dr. C. F. Cline
1	ATTN: Mr. A. F. McLean		University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32601
1	Mr. E. A. Fisher	1	ATTN: Dr. L. Hench
1	Mr. J. A. Mangels		University of Newcastle Upon Tyne, Department of Metallurgy and Engineering Materials, Newcastle Upon Tyne, NE1 7 RU, England
	General Electric Company, Research and Development Center, Box 8, Schenectady, NY 12345	1	ATTN: Prof. K. H. Jack
1	ATTN: Dr. R. J. Charles		University of Washington, Ceramic Engineering Division, FB-10, Seattle, WA 98195
1	Dr. C. D. Greskovich	1	ATTN: Prof. James I. Mueller Prof. A. Miller
1	Dr. S. Prochazka		Westinghouse Electric Corporation, Research Laboratories, Pittsburgh, PA 15235
	General Motors Corporation, AC Spark Plug Division, Flint, MI 48556	1	ATTN: Dr. R. J. Bratton
1	ATTN: Dr. M. Berg		Director, Army Materials and Mechanics Research Center, Watertown, MA 02172
	Georgia Institute of Technology, EES, Atlanta, GA 30332	2	ATTN: DRXMR-PL
1	ATTN: Mr. J. D. Walton	1	Author
	Gorham International, Inc., Gorham, ME 04038		
1	ATTN: Mr. P. F. Jahn		
	GTE Laboratories, Waltham Research Center, 40 Sylvan Road, Waltham, MA 02154		
1	ATTN: Dr. C. Quackenbush		
1	Dr. W. H. Rhodes		
	IIT Research Institute, 10 West 35th Street, Chicago, IL 60616		
1	ATTN: Mr. S. Bortz, Director, Ceramics Research		
	International Harvester, Solar Division, 2200 Pacific Highway, P.O. Box 80966, San Diego, CA 92138		
1	ATTN: Dr. A. Metcalfe		
1	Ms. M. E. Gulden		

