UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

KAROLINE KIMIKO FIGUEIREDO SETOUE

IRIS - SEGUNDO TRABALHO

LISTA DE FIGURAS

Figura 1 <i>– Daugman's rubber sheet mod</i>		3
--	--	---

SUMÁRIO

1	CONCEITOS INTRODUTORIOS	3
2	EXPERIMENTOS	4
2.1	Base de dados	4
2.2	LBP - Local Binary Patterns	4
2.3	Filtros de Gabor	
3	RESULTADOS	5
4	CONCLUSÃO	6
	REFERÊNCIAS	7

1 CONCEITOS INTRODUTÓRIOS

Em 1987, John Daugman propôs um algoritmo de reconhecimento de pessoas através do padrão da íris (DAUGMAN, 2004). O reconhecimento através da íris é considerado por possuir características como altos níveis de universalidade, unicidade, persistência e desempenho, além de alto nível de segurança em relação à fraudes, devido ao fato da íris para cada pessoa ter características únicas de pessoa para pessoa. Apesar disso, o processo de extração das imagens das íris utilizadas na identificação de cada pessoa, ainda são processos considerados invasivos em relação aos demais métodos de identificação biométrica, o que diminui a aceptividade da técnica.

O processo de reconhecimento, em sua primeira fase, consiste no isolamento da região correspondente a íris em uma imagem. Para isso, o processo conhecido como *Daugman's rubber sheet model* (figura 1) consiste num mapeamento da região da íris, através da identificação do par de coordenadas polares (r, θ) , onde r é o intervalo [0,1] e θ é o angulo $[0,2\pi]$.

Figura 1 – Daugman's rubber sheet model

Fonte: (MASEK, 2003)

O modelo resultante da aplicação do filtro de Daugman contem as informações da íris que serão utilizadas na identificação. A técnica utilizada no presente relatório utilizada a implementação proposta pro Libor Masek (MASEK, 2003), na qual o método de criação de *template* da íris retorna, após a execução, um modelo no qual as técnicas de reconhecimento podem ser aplicadas. O chamado template biométrico codifica as características da imagem da íris.

2 EXPERIMENTOS

Para realizar uma análise comparativa entre as técnicas de reconhecimento biométrico, o presente trabalho fará avaliação das curvas ROC *Receiver operating characteristic* de cada técnica. As técnicas utilizadas no experimento são GLCM - *Gray Level Co-ocurrence Matrix*, LBP - *Local Binary Patterns* e os Filtros de Gabor.

O experimento é dividido em três fases, sendo a primeira no tratamento e extração do modelo da íris; a segunda na aplicação das técnicas e a terceira na análise dos resultados. Para os experimentos foram utilizadas 10 classes. Cada classe corresponde a uma pessoa. Para cada pessoa há um equivalente de 10 imagens, sendo 5 de cada seção de extração de imagens.

2.1 Base de dados

As imagens utilizadas foram extraídas da base 1.

A técnica GLCM - *Gray Level Co-ocurrence Matrix* para identificação de padrões de textura consiste no uso de matrizes de dependências para extração de características de textura de imagens. A técnica considera que há uma dependencia espacial de frequências entre a vizinhança dos *pixels* analizados de uma região da imagem. A partir disto, a matriz de co-ocorrencia é calculada. No presente experimento, foi utilizada a matriz de co-ocorrencia média e as propriedades de contraste, homogeneidade, correlação e energia.

2.2 LBP - Local Binary Patterns

A técnica LBP aplica a função *extractLBPFeatures* do Matlab para obter o vetor de características que é utilizado como descritor. Para cada amostra, obtida sem enlace, considerando as direções da imagem.

2.3 Filtros de Gabor

^{1 &}lt;http://iris.di.ubi.pt/>

3 RESULTADOS

4 CONCLUSÃO

As implementações podem ser encontradas em https://github.com/ksetoue/iris

REFERÊNCIAS

DAUGMAN, J. How iris recognition works. *IEEE Transactions on circuits and systems for video technology*, IEEE, v. 14, n. 1, p. 21–30, 2004.

MASEK, L. Recognition of human iris patterns. *Dissertation thesis, The University of Western Australia*, 2003.