15.设 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 是欧氏空间V内一个向量组,令

$$D = \begin{bmatrix} (\alpha_1, \alpha_1) & (\alpha_1, \alpha_2) & \cdots & (\alpha_1, \alpha_s) \\ (\alpha_2, \alpha_1) & (\alpha_2, \alpha_2) & \cdots & (\alpha_2, \alpha_s) \\ \vdots & \vdots & & \vdots \\ (\alpha_s, \alpha_1) & (\alpha_s, \alpha_2) & \cdots & (\alpha_s, \alpha_s) \end{bmatrix}$$

证明: $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关的充分必要条件是 $\det(D) \neq 0$.

Pf: ①若 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关,则' $\sum c_i \alpha_i = 0 \Rightarrow c_i = 0$ '.....(*)

考虑
$$D$$
的列向量组 $\begin{bmatrix} (\alpha_1, \alpha_i) \\ (\alpha_2, \alpha_i) \\ \vdots \\ (\alpha_s, \alpha_i) \end{bmatrix}$,令 $\sum c_i \begin{bmatrix} (\alpha_1, \alpha_i) \\ (\alpha_2, \alpha_i) \\ \vdots \\ (\alpha_s, \alpha_i) \end{bmatrix} = 0$,则 $\begin{bmatrix} (\alpha_1, \sum c_i \alpha_i) \\ (\alpha_2, \sum c_i \alpha_i) \\ \vdots \\ (\alpha_s, \sum c_i \alpha_i) \end{bmatrix} = 0$

于是 $\left(\alpha_{j},\sum c_{i}\alpha_{i}\right)=0$,于是 $\sum c_{j}\left(\alpha_{j},\sum c_{i}\alpha_{i}\right)=0$,即 $\left(\sum c_{i}\alpha_{i},\sum c_{i}\alpha_{i}\right)=0$,于是 $\sum c_{i}\alpha_{i}=0$,故由 $(\star),c_{i}=0$. D的列向量线性无关,故 $\det\left(D\right)\neq0$.

②若
$$\det(D) \neq 0$$
,则 D 的列向量线性无关,则' $\sum c_i \begin{bmatrix} (\alpha_1, \alpha_i) \\ (\alpha_2, \alpha_i) \\ \vdots \\ (\alpha_s, \alpha_i) \end{bmatrix} = 0 \Rightarrow c_i = 0$ '......(*)

$$\Rightarrow \sum c_i \alpha_i = 0, \text{则}\left(\alpha_j, \sum c_i \alpha_i\right) = (\alpha_j, 0) = 0, \text{于是} \sum c_i \begin{bmatrix} (\alpha_1, \alpha_i) \\ (\alpha_2, \alpha_i) \\ \vdots \\ (\alpha_s, \alpha_i) \end{bmatrix} = \begin{bmatrix} (\alpha_1, \sum c_i \alpha_i) \\ (\alpha_2, \sum c_i \alpha_i) \\ \vdots \\ (\alpha_s, \sum c_i \alpha_i) \end{bmatrix} = 0, \text{故由}(*), c_i = 0.$$

10.将复方阵U分解为实部和虚部U = P + iQ(其中P,Q为实n阶方阵).

证明U为酉矩阵的充要条件是: P'Q对称,且PP'+Q'Q=E.

Pf: ①若U为酉矩阵,则 $(P+iQ)(P'-iQ')=UU^*=E$

 $\mathbb{R} (PP' + QQ') + i(QP' - PQ') = E$

比较实部和虚部得到:PP' + QQ' = E, QP' = PQ' = (QP')',得证!

②若P'Q对称,且PP'+Q'Q=E,则P'Q=(P'Q)'=Q'P.

于是 $UU^* = (P + iQ)(P' - iQ') = (PP' + QQ') + i(QP' - PQ') = E$.得证!

16.设A 是n 维酉空间V内的一个线性变换, $A^* = -A$.证明: A 的非零特征值都是纯虚数.

Pf:设 λ_i 是A的所有特征值,由于 $A^*=-A$,故 $A+A^*=0$,那么 $\lambda_i+\bar{\lambda}_i$ 是 $A+A^*$ 的特征值,所以 $\lambda_i+\bar{\lambda}_i=0$ 于是 λ_i 要么是0,要么是纯虚数.