Three-View Geometry

Computer Vision II
CSE 252B

Trifocal Plane

Trifocal Tensor

- 3x3x3 tensor
- 27 elements, 18 degrees of freedom
 - 33 degrees of freedom (3 camera projection matrices) minus 15 degrees of freedom (3D projective transformation)
- Uses tensor notation
 - Einstein summation
- Retrieve fundamental matrices and camera projection matrices

Trilinear Relations

Correspondence	Relation
three points	$x^i x'^j x''^k \epsilon_{jqs} \epsilon_{krt} \mathcal{T}_i^{qr} = 0_{st}$
two points, one line	$x^i x'^j l_r'' \epsilon_{jqs} \mathcal{T}_i^{qr} = 0_s$
one point, two lines	$x^i l_q' l_r'' \mathcal{T}_i^{qr} = 0$
three lines	$l_p l_q' l_r'' \epsilon^{piw} \mathcal{T}_i^{qr} = 0^w$

3 Points

• Point-Point-Point

2 Points, 1 Line

- Point-Line-Point
 - Note: image line must pass through corresponding image point

1 Point, 2 Lines

- Point-Line-Line
 - Note: image lines do not need to correspond, but must pass through corresponding image points

3 Lines

• Line-Line

Trifocal Tensor, Minimal Solution

- 6 image point correspondences between three images
 - The last 4 image points must be in general position
 - 6 choose 4 = 15 combinations (rearrange, if needed)
- Carlsson-Weinshall duality (interchange camera and points)
 - Dualize first 2 image points
 - Results in 3 dual point correspondences
 - Additional 4 dual point correspondences are 2D projective basis
 - Calculate reduced dual fundamental matrix (5 degrees of freedom) from 7 dual point correspondences
 - 1 or 3 solutions
- Solve for three camera projection matrices
 - 5 3D points are 3D projective basis
 - 1 or 3 solutions for 6th 3D point using dual fundamental matrix
- Calculate trifocal tensor from three camera projection matrices
 - 1 or 3 solutions

Trifocal Tensor Estimation

- Outlier rejection (MSAC)
 - 6-point algorithm (previous slide)
 - Sampson error
- Linear estimate (DLT) $x^i l_q' l_r'' \mathcal{T}_i^{qr} = 0$
 - Enforce constraints on resulting trifocal tensor
 - 18 degrees of freedom
- Nonlinear estimate (L-M)
 - Cameras
 - · Retrieve camera projection matrices from trifocal tensor
 - First camera projection matrix is canonical camera
 - Parameterize second and third cameras
 - » Minimal parameterization
 - 18 parameters (18 degrees of freedom)
 - » Non-minimal parameterization
 - Second and third camera projection matrices using parameterization of homogeneous vectors
 - 3D scene points
 - Triangulation of Sampson correct points
 - Adjust second and third camera parameters, and 3D scene points such that reprojection error is minimized

Mapping Under Trifocal Tensor

Example: lines in any two images to line in the other image

$$l_p l_q' l_r'' \epsilon^{piw} \mathcal{T}_i^{qr} = 0^w$$

Mapping Under Trifocal Tensor

 Example: points in any two images to point in the other image

$$x^{i}x^{\prime j}x^{\prime\prime k}\epsilon_{jqs}\epsilon_{krt}\mathcal{T}_{i}^{qr}=0_{st}$$

