COMP 251: Algorithms & Data Structures

Owen Lewis

Winter 2018

Contents

1	Overview of Graph Theory		
	1.1	Definitions	2
	1.2	Some Theorems for Undirected Graphs	2
	1.3	"""Data Structures""" for Representing Graphs	4
		1.3.1 Adjacency Matrices	4
		1.3.2 Adjacency Lists	4
		1.3.3 Adjacency Matrices vs. Adjacency Lists	5
2	Div	ide & Conquer	6
	2.1	The Master Theorem	6
	2.2	MergeSort	8
	2.3	Binary Search	9
	2.4	Fast Multiplication	10
	2.5	Fast Matrix Multiplication	11
	2.6	Fast Exponentiation	12
	2.7	The Selection Problem	12
	2.8	The Closest Pair of Points in a Plane	14
3	Gra	ph Algorithms	15
4	\mathbf{Gre}	edy Algorithms	16
5	5 Dynamic Programming		17
6	Net	work Flows	18
7	Dat	a Structures	19

1 Overview of Graph Theory

1.1 Definitions

A graph G=(V,E) is a set V of vertices (a.k.a. nodes) and a set E of edges (denoting vertex pairs). We set n=|V|, and m=|E|. A graph is said to be undirected when for any edge $(u,v) \in E$ there exists an edge $(v,u) \in E$ for some nodes u, and v. A graph is said to be directed if it is not undirected. In other words, the edge set of a directed graph consists of ordered pairs where the edge set of an undirected graph consists of unordered pairs.

A walk is a set of vertices $\{v_0, v_1, \ldots, v_\ell\}$ such that $(v_i, v_{i+1}) \in E$, $\forall 0 \le i \le \ell$. A walk where $v_0 = v_\ell$ is said to be a *circuit* or a *closed walk*. A circuit where every edge in the graph is used exactly once is known as an *Eulerian circuit*. A *cycle* is a walk $\{v_0, v_1, \ldots, v_\ell\}$ such that every vertex is distinct except $v_0 = v_\ell$. A cycle where every vertex of the graph is used exactly once is known as a *Hamiltonian cycle*. A walk where every vertex is distinct is said to be a *path*.

A graph is said to be *connected* if for each $u, v \in V$ there exists a walk from u to v. A graph is said to be *disconnected* id it is not connected. Each connected subgraph of a graph is called a *component*. A connected graph therefore has exactly one component.

A connected component with no cycles is called a *tree*. A graph whose components are all trees is said to be a *forrest*. A tree is said to be *spanning* if it contains every vertex in the graph. A vertex in a tree with at most one neighbour is called a *leaf*.

A matching is a set of vertex-disjoint edges i.e. each edge is incident to at most one other edge in a matching. A matching is said to be *perfect* if every vertex is incident to exactly one edge in the matching.

A *clique* is a set of pairwise adjacent vertices. In *independent set* (a.k.a. a *stable set*) is set of pairwise non-adjacent vertices.

A bipartite graph is a graph such that the vertex set V can be partitioned as $V = X \cup Y$ where each edge has one node in X and the other node in Y. Note that X and Y are necessarily independent sets.

1.2 Some Theorems for Undirected Graphs

Theorem: (Handshaking Lemma) Let G = (V, E) be an undirected graph, let $\Gamma(v) := \{u : (u, v) \in E\}$ be the set of neighbours of a node v, and let the degree $\deg(v)$ of a vertex v equal the cardinality of $\Gamma(v)$. Then there are an even number of vertices with odd degree.

Proof: First note that since we're double-counting the number of pairs where

(v,e) is an edge incident to v

$$2 \cdot |E| = \sum_{v \in V} \deg(v)$$

Since the degree of a vertex is either even or odd, we can partition V into a set of odd-degree vertices \mathcal{O} , and a set of even-degree vertices \mathcal{E} . This gives us

$$\sum_{v \in V} \deg(v) = \sum_{v \in \mathcal{O}} \deg(v) + \sum_{v \in \mathcal{E}} \deg(v)$$

which implies

$$\sum_{v \in \mathcal{O}} \deg(v) = 2 \cdot |E| - \sum_{v \in \mathcal{E}} \deg(v)$$

since both the $2\cdot |E|$ term is even (obvious) and the $\sum_{v\in\mathcal{E}}\deg(v)$ term is even

(sum of even numbers) then the $\sum_{v \in \mathcal{O}} \deg(v)$ term must also be even.

Theorem: (Euler's Theorem) If G is an undirected graph then G contains an Eulerian circuit if and only if every vertex has even degree.

Proof: Easy proof by induction

Lemma: A tree T with $n \geq 2$ vertices has at least one leaf vertex.

Proof: Trees are connected so there exists no vertices with degree 0 when $n \geq 2$. Suppose each vertex has degree of at least 2. Then consider the longest path $P \subseteq T$, $P = \{v_1, v_2, \dots, v_{\ell-1}, v_\ell\}$. Since $\deg(v_\ell) \geq 2$, \exists a neighbour (of v_ℓ) $x \in P$ with $x \neq v_{\ell-1}$. If $x = v_{\ell+1}$ then P is not the longest path, a contradiction. Therefore, for P to be the longest path, x must be somewhere else in P, but this creates a cycle, another contradiction. Thus there must exist at least one node v such that $0 < \deg(v) < 2$ – a leaf.

Theorem: A tree with n vertices has exactly n-1 edges.

Proof: Simple proof by induction.

Base case: A tree with one vertex trivially has 0 edges.

Induction Hypothesis: Assume any tree with n-1 vertices has n-2 edges. Inductive Step: Take a tree with $n \geq 2$ vertices. By the previous lemma this tree contains a leaf vertex v. This implies that $T \setminus \{v\}$ is a tree with n-1 vertices and by the induction hypothesis $T \setminus \{v\}$ is a tree with n-2 edges, which implies that T is a tree with n-1 edges.

Theorem: (Hall's Theorem) Let $G = (X \cup Y, E)$ with |X| = |Y| be a bipartite graph. G contains a perfect matching if and only if $\forall B \subseteq X$, $|\Gamma(B)| \ge |B|$ (Hall's condition).

Proof: Firstly, the (\Rightarrow) direction is fairly obvious. If $B \subseteq X$ with $\Gamma(B) < |B|$ then the graph can't have a perfect matching. The (\Leftarrow) direction is a bit trickier. Suppose Hall's condition is satisfied. Then, take the maximum cardinality

matching M is the graph. If M is perfect then we are done. Otherwise there must exist an unmached vertex b_0 .

- Since Hall's condition holds, we have $|\Gamma(\{b_0\})| \ge |\{b_0\}| = 1$ so b_0 must have at least one neighbour s_0 .
- Suppose s_0 is matched in M to b_1 .
- Since Hall's condition holds, we have $|\Gamma(\{b_0, b_1\})| \ge |\{b_0, b_1\}| = 2$ so $\{b_0, b_1\}$ must have at least one neighbour $s_1 \ne s_0$.
- Suppose s_1 is matched in M to b_2 .
- Since Hall's condition holds, we have $|\Gamma(\{b_0, b_1, b_2\})| \ge |\{b_0, b_1, b_2\}| = 3$ so $\{b_0, b_1, b_2\}$ must have at least one neighbour $s_2 \notin \{s_0, s_1\}$.

• ...

we repeat this argument as long as we can. Since the graph contains a finite number of vertices this process must terminate, but it can only terminate when we reach an unmatched node s_k . Using the edges we've formed in M we can create a path P from b_0 to s_k that alternates between using non-matching edges and using matching edges. Swapping the matching edges with the non-matching edges gives us one more matching edge (as we have an odd number of edges.) This is still a valid matching as the internal nodes of P are still incident to exactly one matching edge. Also, the end nodes, b_0 and s_k were previously unmatched but are now incident to exactly one edge in the new matching. Thus M isn't the maximum capacity matching – a contradiction.

1.3 """Data Structures""" for Representing Graphs

1.3.1 Adjacency Matrices

For a graph, an adjacency matrix M is a matrix suxh that

- 1. There is a row for each vertex
- 2. There is a column for each vertex

3. The
$$ij-th$$
 entry is defined as $M_{ij} = \begin{cases} 1, (i,j) \in E \\ 0, (i,j) \notin E \end{cases}$

Note that in an undirected graph the matric is symmetric around the diagonal because $(i, j) \equiv (j, i)$. Of course this is not necessarily true of directed graphs.

1.3.2 Adjacency Lists

An adjacency list of an undirected graph is such that for each vertex v of V we store a list of its neighbours. For a directed graph we have two lists: one in which we store the in-neighbours of v and one in which we store the out-neighbours of v.

1.3.3 Adjacency Matrices vs. Adjacency Lists

The main difference between the two is the amount of storage required to implement them.

- An adjacency matrix requires we store $\Theta(n^2)$ numbers
- An adjacency list requires we store $\Theta(m)$ numbers

In any graph $m = O(n^2)$. This means that for a sparse graph adjacency lists are highly favourable in terms of space complexity.

Verifying whether an edge exists, however, is much faster in an adjacency matrix – when using the array representation of a matrix it takes O(1) time, where verifying the existance of an edge takes $O(\log n)$ time for an ordered adjacency list (using binary search), and O(n) time if the adjacency list is not ordered (using sequential search).

2 Divide & Conquer

A $divide\ and\ conquer$ algorithm ideally breaks up a problem of size n into smaller sub-problems such that:

- ullet There are exactly a sub-problems
- Each sub-problem has a size of at most $\frac{1}{b} \cdot n$
- Once solved, the solutions to the sub-problems must be combined in $O(n^d)$ time to produce a solution to the original problem

Therefore the time-complexity of a divide and conquer algorithm satisfies a recurrence relation given by

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d)$$

2.1 The Master Theorem

Lemma 1:
$$\sum_{k=0}^{\ell} \tau^k = \frac{1-\tau^{\ell+1}}{1-\tau}$$
, for any $\tau \neq 1$.

Proof:

$$(1-\tau) \sum_{k=0}^{\ell} \tau^k = \sum_{k=0}^{\ell} \tau^k - \sum_{k=1}^{\ell+1} \tau^k$$
$$= \tau^0 - \tau^{\ell+1}$$
$$= 1 - \tau^{\ell+1}$$
$$\sum_{k=0}^{\ell} \tau^k = \frac{1 - \tau^{\ell+1}}{1 - \tau}$$

Lemma 2: $x^{\log_b y} = y^{\log_b x}$ for any base $b \in \mathbb{R}$.

Proof: From the power rule of logarithms we have

$$\log_b x \cdot \log_b y = \log_b \left(y^{\log_b x} \right)$$

similarily, we have

$$\log_b x \cdot \log_b y = \log_b \left(x^{\log_b y} \right)$$

therefore

$$\log_b \left(x^{\log_b y} \right) = \log_b \left(y^{\log_b x} \right)$$

thus

$$x^{\log_b y} = u^{\log_b x}$$

Theorem: (The Master Theorem) If a recurrence relation is of the form $T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d)$, for constants a > 0, b > 1, and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d) & \text{, if } a < b^d \text{ [Case I]} \\ O(n^d \cdot \log n) & \text{, if } a = b^d \text{ [Case II]} \\ O(n^{\log_b a}) & \text{, if } a > b^d \text{ [Case III]} \end{cases}$$

Proof: By adding dummy numbers, we may assume that n is a power of b, i.e. $n=b^{\ell}$, for some $\ell \in \mathbb{N}_0$. Then

$$T(n) = n^d + a\left(\frac{n}{b}\right)^d + a^2\left(\frac{n}{b^2}\right)^d + \dots + a^\ell\left(\frac{n}{b^\ell}\right)^d$$

simlifying, we get

$$T(n) = n^d \left(1 + \frac{a}{b^d} + \left(\frac{a}{b^d} \right)^2 + \dots + \left(\frac{a}{b^d} \right)^\ell \right)$$

we now have three cases:

Case I: $\frac{a}{b^d} < 1$ Set $\tau := \frac{a}{b^d}$ then we have

$$T(n) = n^d \sum_{k=0}^{\ell} \tau^k$$

applying lemma 1 we get

$$T(n) = n^d \left(\frac{1 - \tau^{\ell+1}}{1 - \tau}\right) \le n^d \left(\frac{1}{1 - \tau}\right)$$

but $\frac{1}{1-\tau}$ is a constant so $T(n) \le n^d$ and thus

$$T(n) = O(n^d)$$

Case II: $\frac{a}{b^d} = 1$ Then we have that

$$T(n) = n^d (1 + 1 + 1^2 + \dots + 1^\ell) = n^d (\ell + 1)$$

but $n = b^{\ell} \Rightarrow \ell = \log_b n$, thus

$$T(n) = O(n^d \cdot \log n)$$

Case III:
$$\frac{a}{b^d} > 1$$

Set $\tau := \frac{a}{b^d}$ then we have

$$T(n) = n^d \sum_{k=0}^{\ell} \tau^k$$

applying lemma 1 we get

$$T(n) = n^d \left(\frac{\tau^{\ell+1} - 1}{\tau - 1} \right) \le n^d \left(\frac{\tau^{\ell+1}}{\tau - 1} \right)$$

but since $\tau - 1$ is a constant we get

$$\begin{split} T(n) &= n^d O(\tau^{\ell+1}) \\ &= O(n^d \tau^{\ell+1}) \\ &= O(n^d \tau^{\ell}) \\ &= O\left(\left(\frac{a}{b^d}\right)^{\ell} n^d\right) \\ &= O\left(\left(\frac{n}{b^{\ell}}\right)^d a^{\ell}\right) \end{split}$$

but $n = b^{\ell}$ so

$$T(n) = O(a^{\ell})$$

and $\ell = \log_b a$ so

$$T(n) = O(a^{\log_b n})$$

and applying lemma 2 gives

$$T(n) = O(n^{\log_b a})$$

This completes the proof.

2.2 MergeSort

MergeSort is an algorithm to sort n numbers into non-decreasing order.

```
\begin{aligned} \operatorname{MergeSort}(x_1, x_2, \dots, x_n) \\ & \text{if } n = 1 \\ & \text{return } x_1 \\ & \text{else} \\ & \text{return Merge}(\operatorname{MergeSort}(x_1, \dots, x_{\lfloor \frac{n}{2} \rfloor}), \operatorname{MergeSort}(x_{\lfloor \frac{n}{2} \rfloor + 1}, \dots, x_n)) \end{aligned}
```

Where the Merge function is a linear time algorithm combining two sorted lists (by comparing the first element in each list and moving the smaller element of the two into our new list.)

MergeSort is correct!

- It calls itself on smaller instances until the division process terminates when it reaches a base case where each list has size 1
- MergeSort works trivially on the base cases
- This sort of strong induction-type proof works for just about all divide and conquer algorithms

MergeSort is efficient!

• The recurrence relation that we can construct to model the running time of MergeSort is given by

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n)$$

as we break the problem into two sub-problems of size $\frac{n}{2}$, plus a linear time sub-routine to combine the solutions (Merge.)

- This recurrence relation is in the proper form to use the Master Theorem and indeed we're in its Case II.
- By the master theorem the running time of MergeSort is $O(n \cdot \log n)$.
- The running time can also be proved by unwinding the recurrence.

2.3 Binary Search

BInary Search is an algorithm to search for whether a key k exists in a given sorted list.

```
BinarySearch(a_1, a_2, a_n; k)

while n > 0

if a_{\lfloor \frac{n}{2} \rfloor} = k

return true

if a_{\lfloor \frac{n}{2} \rfloor} > k

return BinarySearch(a_1, \dots, a_{\lceil \frac{n}{2} \rceil - 1}; k)

if a_{\lfloor \frac{n}{2} \rfloor} < k

return BinarySearch(a_{\lceil \frac{n}{2} \rceil + 1}, \dots, a_n; k)

return false
```

Binary Search works!

• It works for the same strong induction argument as MergeSort

Binary Search is efficient!

• The recurrence relation that we can construct to model the running time of Binary Search is given by

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

as we break the problem into one sub-problem of size $\frac{n}{2}$.

- This recurrence relation is case II of the master theorem.
- By the master theorem the running time of MergeSort is $O(\log n)$.
- Again, the running time can also be proved by unwinding the recurrence.

2.4 Fast Multiplication

In COMP 250 we found an $O(n^2)$ algorithm to multiply 2 n-digit numbers (in any base). Let's try to do better using divide and conquer. Consider the example:

Let
$$\mathbf{x} := x_n x_{n-1} \dots x_{\frac{n}{2}+1} x_{\frac{n}{2}} \dots x_2 x_1$$

Let $\mathbf{y} := y_n y_{n-1} \dots y_{\frac{n}{2}+1} y_{\frac{n}{2}} \dots y_2 y_1$

Then
$$\mathbf{x} = 10^{\frac{n}{2}}\mathbf{x}_L + \mathbf{x}_R$$
, where $\mathbf{x}_L = x_n \dots x_{\frac{n}{2}+1}$, and $\mathbf{x}_R = x_{\frac{n}{2}} \dots x_1$
Similarly $\mathbf{y} = 10^{\frac{n}{2}}\mathbf{y}_L + \mathbf{y}_R$, where $\mathbf{y}_L = y_n \dots y_{\frac{n}{2}+1}$, and $\mathbf{y}_R = y_{\frac{n}{2}} \dots y_1$

Thus

$$\mathbf{x} \cdot \mathbf{y} = (10^{\frac{n}{2}} \mathbf{x}_L + \mathbf{x}_R)(10^{\frac{n}{2}} \mathbf{y}_L + \mathbf{y}_R)$$
$$= 10^n \cdot \mathbf{x}_L \mathbf{y}_L + 10^{\frac{n}{2}} (\mathbf{x}_L \mathbf{y}_R + \mathbf{x}_R \mathbf{y}_L) + \mathbf{x}_R \mathbf{y}_R$$

So we've found a divide and conquer algorithm to multiply two n-digit numbers. Here we're breaking the problem down into four sub-problems of size $\frac{n}{2}$, with a few additions thrown in there (can be done in linear time). Therefore, the recurrence for this algorithm is given by

$$T(n) = 4 \cdot T\left(\frac{n}{2}\right) + O(n)$$

then, by the master theorem, the running time of this algorithm is $O(n^2)$. Hmmm. This isn't better. Well thanks to our good friend Carl "G-Money" Gauss, all is not lost. Gauss was studying the product of complex numbers

$$(a+bi)(c+di) = ac - bd + (bc + ad)i$$

which seemingly involved 4 multiplications, when he noticed that actually we can do it with only 3. Note that

$$(bc + ad) = (a+b)(c+d)$$

Now we can use this exact same trick but we'll replace the i with $10^{\frac{n}{2}}$. This gives

$$(\mathbf{x}_L\mathbf{y}_R + \mathbf{x}_R\mathbf{y}_L) = (\mathbf{x}_R + \mathbf{x}_L)(\mathbf{y}_R + \mathbf{y}_L) - \mathbf{x}_R\mathbf{y}_R - \mathbf{x}_L\mathbf{y}_L$$

So now we can break our problem into only 3 sub-problems! Our new recurrence is

 $T(n) = 3 \cdot T\left(\frac{n}{2}\right) + O(n)$

so finally, by the master theorem, $T(n) = O(n^{\log_2 3}) \approx O(n^{1.59})$

2.5 Fast Matrix Multiplication

Let's try to efficiently multiply two $n \times n$ matrices. Let

$$X := \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
, and $Y := \begin{pmatrix} E & F \\ G & H \end{pmatrix}$

where X, and Y are two $n \times n$ matrices and A, B, ... H are eight $\frac{n}{2} \times \frac{n}{2}$ matrices. Then their product Z is given by

$$Z = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{pmatrix}$$

Therefore multiplying two $n \times n$ matrices involves eight products of $\frac{n}{2} \times \frac{n}{2}$ matrices, and n^2 additions. Therefore the recurrence relation is given by

$$T(n) = 8 \cdot T\left(\frac{n}{2}\right) + O(n^2)$$

By the master theorem, this then takes $O(n^3)$ time. That's ok but again, we can do better. To do better however, we need a little algebraic trick. To do this, we need to define 7 matrices, S_1, \ldots, S_7 given by

$$S_1 = (B - D) \cdot (G + H)$$
 $S_2 = (A + D) \cdot (E + H)$
 $S_3 = (A - C) \cdot (E + F)$ $S_4 = (A + B) \cdot H$
 $S_5 = A \cdot (F - H)$ $S_6 = D \cdot (G - E)$
 $S_7 = (C + D) \cdot E$

then the product of X, and Y is given by

$$Z = \begin{pmatrix} S_1 + S_2 - S_4 + S_6 & S_4 + S_5 \\ S_6 + S_7 & S_2 - S_3 + S_5 - S_7 \end{pmatrix}$$

This means that we only need to do 7 multiplications! Therefore our new recurrence is

 $T(n) = 7 \cdot T\left(\frac{n}{2}\right) + O(n^2)$

and thus by the master theorem $T(n) = O(n^{\log_2 7}) \approx O(n^{2.81})$

2.6 Fast Exponentiation

Consider the following algorithm to quickly calculate x^n :

```
\begin{aligned} \operatorname{FastExp}(x,n) & \text{if } n = 1 \\ & \operatorname{return} \ x_1 \\ & \text{else if } n \text{ is even} \\ & \operatorname{return} \operatorname{FastExp}(x, \lfloor \frac{n}{2} \rfloor)^2 \\ & \text{else if } n \text{ is odd} \\ & \operatorname{return} \ x \cdot \operatorname{FastExp}(x, \lfloor \frac{n}{2} \rfloor)^2 \end{aligned}
```

Assuming that n is a power of two, we get that recurrence is given by

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

and thus by the master theorem this algorithm has time complexity of $O(\log n)$.

2.7 The Selection Problem

Suppose we're given a list of number and we want to find the k^{th} smallest number in that list. We can use the following divide and conquer algorithm:

```
\begin{aligned} \operatorname{Select}(\mathcal{S}, k) & \text{if } |\mathcal{S}| = 1 \\ & \operatorname{return} x_1 \\ & \text{else} \end{aligned} \operatorname{set} \mathcal{S}_L := \{x_i \in \mathcal{S} : x_i < x_1\} \\ & \text{set } \mathcal{S}_R := \{x_i \in \mathcal{S} : x_i \geq x_1\} \end{aligned} \operatorname{if} |\mathcal{S}_L| = k - 1 \\ & \operatorname{return} x_1 \\ & \text{else if } |\mathcal{S}_L| > k - 1 \\ & \operatorname{return} \operatorname{Select}(\mathcal{S}_L, k) \\ & \text{else if } |\mathcal{S}_L| < k - 1 \\ & \operatorname{return} \operatorname{Select}(\mathcal{S}_R, k - 1 - |\mathcal{S}_L|) \end{aligned}
```

Well.. this actually sucks because it runs in $\Omega(n^2)$ time. Note that it would actually be faster to just sort the list and then pull the k^{th} element (this can of course be done in $O(n \cdot \log n)$ time.) One idea that we can exploit to improve this is to use a random pivot rather than deterministically selecting x_1 as a pivot.

We will define a good pivot to be such neither S_L , nor S_R contain more than $\frac{3}{4}$ of S, and a bad pivot to be otherwise. Note that by this definition the probability that a pivot will be either good or bad (respectively) is 0.5.

For randomized algorithms we're always interested in the *expected runtime* of the algorithm rather than the worst case runtime. The recurrence relation, $\bar{T}(n)$, for the expected runtime for the randomized version of the selection is then given by

 $\bar{T}(n) \le \frac{1}{2} \cdot \bar{T}\left(\frac{3n}{4}\right) + \frac{1}{2} \cdot \bar{T}(n) + O(n)$

where the $\frac{1}{2} \cdot \bar{T} \left(\frac{3n}{4} \right)$ term represents the recursive call given a good pivot, and the $\frac{1}{2} \cdot \bar{T}(n)$ term represents the recursive call on a bad pivot. It's less than or equal to because we will only ever use one of those terms at once but not both. We can clean this recurrence up a bit to find the expected runtime.

$$\bar{T}(n) \le \frac{1}{2} \cdot \bar{T}\left(\frac{3n}{4}\right) + \frac{1}{2} \cdot \bar{T}(n) + O(n)$$
$$\frac{1}{2} \cdot \bar{T}(n) \le \frac{1}{2} \cdot \bar{T}\left(\frac{3n}{4}\right) + O(n)$$
$$\bar{T}(n) \le \bar{T}\left(\frac{3n}{4}\right) + O(n)$$

Applying the master theorem to that recurrence gives $\bar{T}(n) = O(n)$

This is good but let's try to do better, i.e. let's see if we can find a deterministic linear time algorithm. It turns out we can but it requires a little trick called the *median of medians*.

It's best to illustrate this concept with an example. Suppose we have a list, $S = \{x_1, x_2, \dots, x_n\}$, from which we want to find the median of medians. To do this we partition the list into $\left\lceil \frac{n}{5} \right\rceil$ groups of cardinality 5. Denote each such group by $G_1, \dots, G_{\left\lceil \frac{n}{5} \right\rceil}$ Then we'll sort each group and let z_i be the median of each group G_i . Let m be the median of the set $\mathcal{Z} = \{z_1, \dots, z_{\left\lceil \frac{n}{5} \right\rceil}\}$. Predictably, we call m the median of medians. This is significant because m will always be a good pivot. This is because there will always be at least $\frac{3n}{10} - 1$ numbers $\frac{3n}{10}$

in S less than m, and $\frac{3n}{10} - 1$ numbers in S at least as large as m. Therefore $|S_R| \leq \frac{7n}{10}$, and $|S_L| \leq \frac{7n}{10}$.

Now that we have a deterministic way to guarntee we have a good pivot, all that's left is to bake it into a selection algorithm. Luckily, our algorithm won't vary too much since all we have to do is add a few steps at the beginning.

```
 \begin{aligned} &\text{DetSelect}(\mathcal{S},k) \\ &\text{if } |\mathcal{S}| = 1 \\ &\text{return } x_1 \\ &\text{else} \end{aligned} \\ &\text{partition } \mathcal{S} \text{ into } \left\lceil \frac{n}{5} \right\rceil \text{ groups of 5} \\ &\text{for } j \text{ in range } \left( 1, \left\lceil \frac{n}{5} \right\rceil \right) \\ &\text{let } z_j \text{ be the median of the group } G_j. \\ &\text{let } \mathcal{Z} = \left\{ z_1, \dots, z_{\left\lceil \frac{n}{5} \right\rceil} \right\} \\ &\text{set } m := \text{DetSelect} \left( \mathcal{Z}, \left\lceil \frac{n}{10} \right\rceil \right) \end{aligned} \\ &\text{set } \mathcal{S}_L := \left\{ x_i \in \mathcal{S} : x_i < m \right\} \\ &\text{set } \mathcal{S}_R := \left\{ x_i \in \mathcal{S} : x_i \geq m \right\} \end{aligned} \\ &\text{if } |\mathcal{S}_L| = k - 1 \\ &\text{return } m \\ &\text{if } |\mathcal{S}_L| > k - 1 \\ &\text{return DetSelect}(\mathcal{S}_L, k) \\ &\text{if } |\mathcal{S}_L| < k - 1 \\ &\text{return DetSelect}(\mathcal{S}_R, k - 1 - |\mathcal{S}_L|) \end{aligned}
```

The recursive formula for the running time of this algorithm is

$$T(n) \le T\left(\frac{7n}{10}\right) + T\left(\frac{n}{5}\right) + O(n)$$

where the $T\left(\frac{n}{5}\right)$ term is the time to find the median of medians, the $T\left(\frac{7n}{10}\right)$ term is pivoting based on the median of medians. Unfortunately, this doesn't work with the master theorem and we can't simplify it down to a form that does (unlike with the randomized algorithm, we need both of the $T(\dots)$ terms.) Since it doesn't work with the master theorem, we need to use the recusion tree method. From the recursion tree method, T(n) = O(n). So there it is.. a linear time deterministic algorithm to select the k^{th} smallest element from a list!

2.8 The Closest Pair of Points in a Plane

3 Graph Algorithms

4 Greedy Algorithms

5 Dynamic Programming

6 Network Flows

7 Data Structures