TPC-H performance measure

Keisuke Suzuki

2012年12月20日

1 実験環境

• CPU : Xeon X7560 @ 2.27GHz x4

 \bullet Memory : 64GB

 $\bullet~ \mathrm{DBMS}: \mathrm{PostgreSQL}~9.2$

• RAID0 : iodrive x8 (chunk size = 64KB)

• 各テーブルの primary key 上に B-tree index を構築

• Scale Factor = 100

• shared buffer = 8GB

● 各クエリの実行時の状況を iostat と mpstat で 1 秒おきに監視

2 Query 1 by index scan on I_shipdate

2.1 random read microbenchmark

look-ahead を切った状態での IO 性能が乱れていたので、その原因を探る。 測定時の条件

• look-ahead (read-ahead): 0

• iosize: 8KB

• raw device access

2.1.1 With O_DIRECT flag

まず OS のバッファリングなどを切った状態でのアクセス時の性能を示す。

表 1 IO spec average (iosize = 8KB) $(IOPS = (io \ issued \ by \ benchmark \ / \ elapsed \ time))$

IOPS	MBPS
4578	37.5

benchmark 実行時の IO の発行状況を blktrace で監視すると以下の通りであった。

9,0	1	1 0.0000	00000 3896	9 Q	R 1894937090 +	16 [random	read]
9,0	1	2 0.0000	11450 3896	9 U	N [randomread]	0	
9,0	1	3 0.0003	31059 3896	9 Q	R 1645272306 +	13 [random	read]
9,0	1	4 0.0003	38372 3896	9 Q	R 1645272319 +	3 [randomre	ead]
9,0	1	5 0.0003	39942 3896	9 X	R 1645272319 /	1645272320	[randomread]
9,0	1	6 0.0003	47454 3896	9 U	N [randomread]	0	
9,0	1	7 0.0006	11996 3896	9 Q	R 2143216519 +	16 [random	read]
9,0	1	8 0.0006	15720 3896	9 U	N [randomread]	0	
CPU1 (md0):						
Reads	Queued:	1,172K,	7,882MiB	Write	s Queued:	0,	OKiB
Read D	ispatches:	0,	OKiB	Write	Dispatches:	0,	OKiB
Reads	Requeued:	0		Write	s Requeued:	0	
Reads	Completed:	0,	OKiB	Write	s Completed:	0,	OKiB
Read M	erges:	0,	OKiB	Write	Merges:	0,	OKiB
Read d	epth:	0		Write	depth:	0	
IO unp	lugs:	1,000,000		Timer	unplugs:	0	

Throughput (R/W): OKiB/s / OKiB/s
Events (md0): 2,273,525 entries

2.1.2 Without O_DIRECT flag

O_DIRECT flag を使用しない状態でのアクセス時の性能を示す。

 $\boxtimes 2$ IO spec (iosize = 8KB)

表 2 IO spec average (iosize = 8KB)
$$(IOPS = (io issued by benchmark / elapsed time))$$

IOPS	MBPS
2787	22.8

図 2(b) を見ると、クエリ実行時と同様の性能の乱れが見られる。この乱れは、iodrive を OS の buffering を有効にして使用したときに生じる、デバイスの特性に由来するものではないかと考えられる。

また、iosize に着目すると、本来 8KB で IO を発行しているはずであるが、実際の IO は半分の 4KB で出ている。iostat で計測した IOPS と、benchmark で計算した IOPS も数値としてはあっていない。

そこで blktrace で benchmark 実行時の IO の発行状況を監視すると以下の通りであった。

```
9,0
                     0.000000000 39618 Q R 1894937088 + 8 [randomread]
       1
               1
9,0
                     0.000009686 39618 U
                                           N [randomread] 0
               2
                                            R 1894937096 + 8 [randomread]
9,0
               3
                     0.000274736 39618 Q
      1
                     0.000278264 39618 U
                                            N [randomread] 0
9,0
      1
               4
                     0.000503299 39618 Q
                                            R 1894937104 + 8 [randomread]
9,0
               5
9,0
                     0.000509047 39618 U
                                            N [randomread] 0
               6
                                            R 1645272304 + 8 [randomread]
9,0
               7
                     0.000794094 39618 Q
9,0
                     0.000800924 39618 U
                                            N [randomread] 0
      1
               8
                     0.001145873 39618 Q
                                            R 1645272312 + 8 [randomread]
9,0
               9
      1
                     0.001152079 39618 U
                                            N [randomread] 0
9,0
      1
              10
. . .
```

CPU1 (md0):

Reads Queued:	2,860K,	11,442MiB	Writes Queued:	Ο,	OKiB
Read Dispatches:	0,	OKiB	Write Dispatches:	Ο,	OKiB
Reads Requeued:	0		Writes Requeued:	0	
Reads Completed:	0,	OKiB	Writes Completed:	Ο,	OKiB
Read Merges:	0,	OKiB	Write Merges:	Ο,	OKiB
Read depth:	0		Write depth:	0	
IO unplugs:	2,860,599		Timer unplugs:	0	

Throughput (R/W): OKiB/s / OKiB/s Events (md0): 5,721,230 entries

この結果をみると、OS から発行される IO は $4{\rm KB}$ のサイズになっている。これは OS がページサイズ単位 $(4{\rm KB})$ に IO を分割して発行しているのではないかと考えられる。実際、他のサイズで IO を発行した場合も、OS からは $4{\rm KB}$ の IO として発行されていることが確認できた。以下は、 $16{\rm KB}$ のサイズでアクセスした場合の結果。

9,0	1	1	0.000000000	39810	Q	R 1894937088 + 8 [randomread]
9,0	1	2	0.000008815	39810	U	N [randomread] 0
9,0	1	3	0.000352988	39810	Q	R 1894937096 + 8 [randomread]
9,0	1	4	0.000359066	39810	U	N [randomread] 0
9,0	1	5	0.000656633	39810	Q	R 1894937104 + 8 [randomread]
9,0	1	6	0.000662659	39810	U	N [randomread] 0

CPU1 (md0):

Reads Queued:	4,831K,	19,327MiB	Writes Queued:	Ο,	OKiB
Read Dispatches:	0,	OKiB	Write Dispatches:	Ο,	OKiB

Reads Requeued:	0		Writes Requeued:	0	
Reads Completed:	0,	OKiB	Writes Completed:	0,	OKiB
Read Merges:	0,	OKiB	Write Merges:	0,	OKiB
Read depth:	0		Write depth:	0	
IO unplugs:	4,831,926		Timer unplugs:	0	

Throughput (R/W): OKiB/s / OKiB/s Events (md0): 9,663,852 entries