И.С. Коберси, В.В. Шадрина

РАЗРАБОТКА АЛГОРИТМА ОБУЧЕНИЯ ИНТЕЛЛЕКТУАЛЬНОЙ СИСТЕМЫ УПРАВЛЕНИЯ НА ОСНОВЕ ГЕНЕТИЧЕСКИХ АЛГОРИТМОВ

Рассмотрена разработка генетического алгоритма для обучения интеллектуальной системы управления транспортными средствами, система управления является нейро-нечеткой.

Нейронная система; генетические алгоритмы.

Нечеткая логика позволяет строить карты входного пространства вплоть до выходного пространства. Механизм построения выполняется посредством формирования правил IF-THEN, для этого необходимо тщательно построить нечеткие правила и их набор [2]. Основная проблема состоит в том, что применение данного подхода представляет некоторую трудность построения функции принадлежности. Генетический алгоритм – это технология, которая эмулирует теорию эволюции для решений сложных задач оптимизации. Генетические алгоритмы представляют альтернативу традиционным методам оптимизации, с применением случайного поиска, чтобы получить набор оптимальных решений. Генетические алгоритмы буквально ищут относительно двух концов пространства поиска с тем, чтобы определить оптимизационное решение. Популяции всех решений оцениваются для определения наилучшего решения. Гибридная система комбинирует систему нейронного нечеткого интерфейса, а генетические алгоритмы применяются для настройки параметров гибридной сети (ННС). Цель заключается в сокрушении набора правил, прежде чем подавать на вход сети. Модификации, внесенные в разные (отдельные) слои сети, повышают ее производительность. Предложенный ГА ННС-сети в состоянии достичь высоких классификационных показателей по сравнению с ННС-сетей. На рис. 1 показана гибридная система управления транспортными средствами ТС, она состоит из трех основных модулей.

В этой статье рассматривается разработка модуля управления скоростью ТС.

Архитектура модуля управления скоростью ТС

Слои характеризуются нечеткими операциями по следующему порядку:

- первый слой (входной слой);
- второй слой (слой состояний);
- третий слой (правило базовый слой);
- слой четвертый (слой отбора правил);
- пятый слой (слой следствия);
- шестой слой (выходной слой).

Рис. 1. Модуль системы управления транспортными средствами

Каждый слой имеет свое число нейронов. Число нейронов каждого слоя упорядочено. Номер нейронов в k-м слое назовем N_k , где $k \in \{1, \ldots, 6\}$. Нейроны, расположенные в k-м слое, имеют связь E. Значение $E_{i,j}^k$ означает связь i-го нейрона k-1-слоя с j-м нейроном k-го слоя, где $k \in \{2, \ldots, 6\}, i \in \{1, \ldots, N_{k-1}\}$ и $j \in \{1, \ldots, N_k\}$. Это не означает связь двух нейронов одного и того же слоя. Связи в нейронных сетях содержат веса w. В модуле [1,2] значения всех весов связей встраиваются вместе с нейронами. Таким образом, веса связи $E_{i,j}^k$ обозначаются $w_{i,j}^k$ и соединены с j-ми нейронами k-го слоя.

Первый слой (I) — **входной слой.** Вход модуля является ненечетким вектором данных, представляющим собой $\vec{x} = [x_1, x_2, x_3, \dots, x_i, \dots, x_{N_1}]^T$. Функция этого слоя заключается в приеме входных параметров, преобразовании их в одиночные нечеткие множества и передаче на следующий слой. Узлы (переменные)в этом слое называются лингвистическими переменными; они представляют входные лингвистические переменные типа "скорость", "направление", "препятствие" и т.д.

Однако в этой актуальной реализации все входы принимают non-нечеткие векторные значения. Следовательно, процесс non-фаззификации выполняется. Лингвистические связи прямо соединяют (передают) non-нечеткие входы на следующий слой. Каждый узел принимает только один вход в качестве одного из аспектов входных векторных данных по всей сети и вывод на несколько узлов следующего слоя.

Функции входа и вывода определяются следующими формулами:

Net вход:
$$f_i^I = x_i$$
 для $i = 1, \dots, N_1$,
Net вывод: $o_i^I = f_i^I$ для $i = 1, \dots, N_1$,

где f_i^I – вход узла і в (первом) слое І; o_i^I – вывод узла і в слое І; и x_i – і-й элемент входного вектора \vec{x} .

Второй слой (II) — слой состояний. Нейроны этого слоя называются узлами ввода элементов. Они представляют собой такие переменные как "высокий", "сред-

ний" или "медленный" из соответствующих входных лингвистических переменных. Подобная структура показана на рис. 2.

Рис. 2. Иллюстрация простого примера интерфейса нечеткого управления

Показные значения на рис. 2 "скорость", "направление" и "препятствие" представляют собой лингвистические переменные трех терм множества входного слоя. А

девять узловых значений в слое состояний (второй слой), представляют "состояние скорости", "состояние направления" и "состояние препятствия".

Входные значения применяют значения IL. Значения $IL_{i,j}$ обозначают узловые соединения j-го значения i-й входной лингвистической переменной.

Каждое входное узловое значение имеет только один вход, но с его выхода можно передать один или более выводов на следующий слой. Каждый узел этого слоя имеет одну функцию принадлежности. Аргумент выбора функции принадлежности исходит от подключенного лингвистического узла в первом слое. Выходные значения входного узлового слоя представляют собой значение принадлежности.

Часто применяемая функция принадлежности имеет трапецеидальную форму, но в нашем случае применяется треугольная форма, поскольку данная функция имеет два боковых ограничения и один центр, в отличие от общепринятой формы, которая имеет четыре боковых и ни одного центра.

Горизонтальная ось функции принадлежности представляет собой входные лингвистические значения, а вертикальные оси представляют значения функции принадлежности $\mu(x_i)$, где x_i — параметр і-й лингвистической переменной и $\mu(x_i) \in [0,1]$. На рис. 3 показан вид функции принадлежности [1].

Рис. 3. Треугольная функция принадлежности

Входное значение узла $IL_{i,j}$ обозначает j-е значение i-й лингвистической переменной, вход и выход функции заданы следующими формулами:

вход
$$f_{ij}^{II} = egin{cases} 0, x \in [-\infty, a_i^k], \\ \frac{x_i - a_i^k}{b_i^k - a_i^k}, x \in [a_i^k, b_i^k], \\ \frac{x_i - c_i^k}{b_i^k - c_i^k}, x \in [a_i^k, c_i^k], \\ 0, x \in [c_i^k, +\infty], \end{cases}$$

для $i = 1, \ldots, N_1$ и $j = 1, \ldots, N_2$,

$$f_{ii}^{II} = o_{ii}^{II}$$
 для $i = 1, \dots, N_1$ и $j = 1, \dots, N_2$.

Значение выхода: где o_i^I вывод і-го лингвистического узла в первом слое и $\{a_{ij}^{II}, b_{ij}^{II}, c_{ij}^{II}\}$ это параметры треугольной функции принадлежности.

Третьи слой (III) — **слой базы правил.** Этот слой определяет нечеткие правила. Каждый его нейрон включает в себя нечеткие правила и называется узлом правил. Любая функция этого слоя узловых правил может быть проиллюстрирована, как показано на рис. 3.

ЕСЛИ ТС едет со скоростью ν_1 , И ЕСЛИ ТС двигается под углом α_1 , И ЕСЛИ обнаружено препятствие ρ_1 , ТО изменить скорость на значение $\nu_1 \pm \nu_i$. ЕСЛИ ТС едет со скоростью ν_2 , И ЕСЛИ ТС двигается под углом α_2 , И ЕСЛИ обнаружено препятствие ρ_2 , ТО изменить скорость на значение $\nu_2 \pm \nu_i$. ЕСЛИ ТС едет со скоростью ν_3 , И ЕСЛИ ТС двигается под углом α_3 , И ЕСЛИ обнаружено препятствие ρ_3 , ТО изменить скорость на значение $\nu_3 \pm \nu_i$.

Слова "увеличить", "оставить" и "резко увеличить скорость" — это соответствующие узловые правила. Число выводов каждого узлового правила фиксированоединственно, но число входов каждого узлового правила не фиксировано, а входит в интервал от 1 до N_1 (количество входной размерности) в зависимости от количества нечетких правил.

Количества входных и выходных функций k-го узлового правила этого слоя определяются следующими функциями соответственно:

входы:
$$f_l^{IV} = o_k^{III}$$
 для $l=1,\dots,N_4,$ и $k=1,\dots,N_3;$

выходы:
$$o_l^{IV} = egin{cases} 1, \text{когда } f_l^{IV}$$
 максимальная,
$$\text{для } l = 1, \dots, N_4 \\ 0 \text{ иначе} \end{cases}$$

где o_k^{III} – чистый выход k-го узлового правила в третьем (III) слое; f_l^{IV} – чистый вход выбранного l набора узлов четвертого слоя (IV); o_l^{IV} – чистый выход выбранного l набора узлов четвертого слоя (IV).

Рис. 4. Треугольная функция принадлежности

Пятый слой (IV) — слой следствия (вывода). Узлы этого слоя называются узлами следствия, и каждый его узел имеет количество N1+1 от входного слоя, имеющего два входа: первый от предыдущего слоя и N1 (количество входных данных). Первый вход от предыдущего слоя обеспечивает запуск силы связанных нечетких правил. Вход и выход этого слоя определяются следующими выражениями:

входы:
$$f_m^V=c_0x_0+c_1x_1+c_2x_2+\ldots+c_{N_1}x_{N_1},$$
 для $m=1,\ldots,N_5,$ выходы: $o_m^V=o_m^{IV}f_m^V$ для $m=1,\ldots,N_5,$

где f_m^V – чистый вход m-го определенного узла пятого слоя (V); c_i – коэффициент i-й входной переменной; o_m^{IV} – выходное значение m-го узла четвертого слоя (VI); v_m^V – чистое выходное значение m-го узла пятого слоя (V). Значение $\{c_0, x_1, x_2, \ldots, c_i, \ldots, c_{N_1}\}$ представляет собой набор параметров. Упомянутые па- раметры этого слоя являются параметрами следствия (вывода).

Шестой слой (IV) — выходной слой. Этот слой содержит только один узел, и он называется узлом выхода. Таким образом, значение $N_5 = 1$. Он суммирует все выходные значения предыдущего слоя (слой следствий).

Функция выхода сети представляется следующим образом:

$$o^{VI} = f^{VI} = \sum_{N_5}^{m=1} o_m^V,$$

где f^{VI} — чистый вход выходного узла; o^{VI} — чистый выход выходного узла; o^{V} — выходное значение пятого слоя (V).

Список литературы

- [1] V. I. Finaev. Модели систем принятия решений. 2005.
- [2] D. Rutkovskaya, M. Pilin'skij, and L. Rutkovskij. Нейронные сети, генетические алгоритмы и нечеткие системы. 2008.