Basic Signal and Image Processing Knowledge (2)

基礎信號與影像處理知識(二)

丁建均 教授

國立台灣大學電信工程學研究所

Signal Processing 基礎知識

- (1) 實驗室網站資源
- (2) 資料的找尋
- (3) Fourier Transform
- (4) Convolution
- (5) Edge Detection Filter
- (6) Smooth Filter
- (7) Correlation and Matched Filter

(1) 實驗室網站資源

實驗室網站

http://disp.ee.ntu.edu.tw/

講座專區

程式教學	作者	日期	說明	
MATLAB簡介	黃俊德	2007/07/19	簡單介紹一下MATLAB的使用與一些小技巧 (2009/07/20丁建均老師更新)(重要)	
C++	李自恆	2008	介紹C/C++的基本語法(重要)	
聲音檔和 Video 檔的讀與寫	丁建均	2009/06/02	使用MATLAB來作聲音檔和Video檔的讀與寫(重要)	
MATLAB-GUI介面的設計	胡哲銘	2010/08/07	MATLAB-GUI介面的設計(重要)	
簡易留言版製作	黄俊德	2007/01/10	使用PHP/MySQL搭配FCKeditor做一個簡單的留言版	
使用C++存取BMP圖檔	黃俊德	2007/12/15	使用C++的物件導向方法來存取BMP圖檔	
C/C++簡介	林于哲	2007/11/08	介紹C/C++的基本語法	
時頻分析工具基本介紹	王文阜	2009/06/01	簡單地介紹時頻分析的工具軟體使用	
After Effect 教學	王昱翔	2010/03/02	After Effect製作3D動畫教學	
Matlab Package Design	冼 達	2010/03/02	Matlab GUI Design教學	
HTML教學	林保言	2010/06/29	HTML語言教學	
C++物件導向及增進效率程式 技巧	陳厚昇	2010/10/21	C++物件導向及增進效率程式技巧	
GoldWave 音樂編輯軟體	冼 逵	2010/10/21	GoldWave 音樂編輯軟體	
Introduction to GitHub	林家蓉	2013/10/04	GitHub 基本介紹	
Google 效應	盧奕帆	2014/05/30	Google效應	
Github	鄭雅馨	2015/10/28	Github	
Python簡介	林子傑	2016/04/29	Python簡介	
網站開發教學	張耀仁	2016/04/29	網站開發教學	

文件編輯	作者	日期	說明
Office使用技巧	郭國銓	2007/09/26	一些Word與PowerPoint的小技巧(2009/07/20丁建均老 師更新)(重要)
論文英文常見問題	丁建均	2009/05/24	論文英文常見的問題(2009/05/24更新)(重要)
一般論文的格式	丁建均	2008/04/16	一般論文的格式(重要)
IEEE Style Citation	李自恆	2009/06/02	IEEE引用文件的寫法(2009/07/20丁建均老師更新)(重要)
論文投稿時 PDF 檔的製作	丁建均	2009/07/20	投稿論文時PDF檔的製作方法(重要)
LaTeX	賴威昇	2012/10/26	Latex的編輯基本介紹
台大碩士論文範本	黃俊德	2008/03/01	依照台大碩士論文的格式規定做了一份論文的範本 方便大家可以直接改拿來修改使用,另外有把一些用 Word做論文的排板技巧也寫在裡面

研究相關教學	作者	日期	說明
FT by DFT	丁建均		Implementing the Continuous Fourier Transform by the Discrete Fourier Transform(重要)
Integration 查詢	丁建均	2009/06/02	積分的計算與查詢(重要)
資料搜尋講座	丁建均	2009/06/02	資料搜尋的方法介紹(重要)
寫論文投稿的原則	丁建均	2009/07/20	寫論文投稿的原則(重要)
論文口試常見問題	徐康華	2009/06/02	論文口試中常見的問題介紹
數學式和數學用語的英文讀法	丁建均	2009/07/16	介紹常用的數學式和數學用語之英文讀法
口頭報告要注意的地方	丁建均	2009/07/20	口頭報告時要注意的事項及報告技巧
英文聽與說學習的資源	丁建均	2009/07/20	英文聽與說的學習資源
DSP和DIP的學習方法	丁建均	2009/07/20	DSP和DIP的學習方法
發明與創造的技巧	丁建均	2009/07/20	發明與創造的技巧
Color Space 的介紹與 ImageJ 的使用	洪文琦	2010/08/07	Color Space 的介紹與 ImageJ 的使用
SVD on Least square method and Implementation	陳宏毅	2016/01/20	SVD on Least square method and Implementation

進修、就業、預官	作者	日期	說明	
面試準備經驗分享	魏維毅	2010/08/07	面試準備經驗分享	
預官考試準備心得	廖科傑	2010/08/07	預官考試準備心得享	
數位相機剖析	蔡佳豪	2010/10/21	1 數位相機剖析	
談數位影像及數位攝影	陳立昂	2015/10/28	談數位影像及數位攝影	
淺談音樂訊號與音訊設備	徐嘉駿	2016/09/08	淺談音樂訊號與音訊設備	
股票介紹與分析	蔡開遠	2017/03/28	股票介紹與分析	

領域介紹

影像壓縮 相關主題	作者	年份
Image Compression	李自恒、林保言	2009
Image Compression	魏維毅	2009
Other Still Image Compression Standards	吳泊泓	2010
	,	
小波轉換 相關主題	作者	年份
A Tutorial of the Wavelet Transform	劉俊麟	2010
影像處理 相關主題	作者	年份
Image Segmentation tutorial	王昱翔	2010
標型辨識 相關主題	作者	年份
Face Recognition-survey	趙偉崙	2010
Introduction to Machine Learning	王麒瑋	2014
Neural Network	陳柏任	2015
快速演算法 相關主題	作者	年份
Integer-to-Integer Transform	丁建均	2011
Integer Transform tutorial	吳泊泓	2010
Music Signal Processing相關主題	作者	年份
Query-By-Singing-and-Hummimg	林巧薇	2015

2. 資料搜尋

(A) 不可不知道的方法

(a1) Google 學術搜尋

http://scholar.google.com.tw/

(太重要了,不可以不知道)只要任何的書籍或論文,在網路上有電子版,都可以用這個功能查得到

(a2) 尋找 IEEE 的論文

http://ieeexplore.ieee.org/Xplore/guesthome.jsp

註:這個功能,只能在學校使用,想要在家中查詢 IEEE 的論文,請看 (a5) 的說明

(B) 圖書館資源的利用

雖然,目前大部分的期刊和研討會論文已經 E 化,也有部分的書籍有電子版,但是,不可否認的,仍然有相當比例的期刊和研討會論文,以及八成以上的書籍,網路上找不到電子版。

希望各位同學,除了學會線上找資料以外,傳統找資料的方法...跑圖書館, 各位同學也能夠熟悉。

(b1) 台大圖書館

台大圖書館首頁: http://www.lib.ntu.edu.tw/

(b2) 查詢其他圖書館有沒有我要找的期刊,或其他特殊資料

台大圖書館首頁 ── 先按服務項目 ── 再按研究資源

繁體中文 English

🔖 國立臺灣大學圖書館

National Taiwan University Library 00

參考諮詢

服務項目

關於本館

常用服務

自訂搜尋

全站搜尋

查詢系統

館藏目錄

研究資源

整合查詢系統 Discovery

國內圖書館整合查詢 MetaCat

聯合目錄查詢

教師指定課程參考資料查詢

新書目錄

特藏資源

名家丰稿

臺灣研究資源

中文善本書與線裝書

日文善本與線裝書

專藏文庫

數位化資源

專題書目

更多資源

電子資源

電子期刊

資料庫

資料庫APP

電子書

臺大博碩士論文系統

書目管理軟體EndNote

考古題

校外連線(VPN)

學術典藏

臺大學術庫 Academic Hub

臺大機構典藏 NTUR

臺灣網站典藏庫 NTUWAS

學術資源網

臺灣法學資源網

(C) SCI 論文的查詢

我們經常聽到 SCI 論文,impact factor....那麼什麼是 SCI 和 impact factor?什麼樣的論文是 SCI Papers? Impact factor 號如何查詢?

SCI 全名: Science Citation Index

SCI 相關網站: ISI Web of Knowledge

連結至 ISI Web of Knowledge

http://admin-apps.webofknowledge.com/JCR/JCR?RQ=HOME

註:必需要在台大上網,或是在其他有付錢給 ISI 的學術單位上網, 才可以使用 ISI Web of Knowledge

(C) 關於 impact factor (影響係數):

若一個 journal 裡面的文章,被別人引用的次數越多,則這個 journal 的 impact factor 越高

一般而言, impact factor 在 2.5 以上的 journals,已經算是高水準的期刊

Nature 的 impact factor 為 40.137 Science 的 impact factor 為 37.205

IEEE 系列的期刊的 impact factors 通常在 1.5 到 7 之間 IEEE Trans. Image Processing的 impact factors 在 5 左右 IEEE Trans. Signal Processing的 impact factors 在 4.5 左右

中等水準的期刊的 impact factors 在 1 到 3 之間

(D) 資料搜尋與閱讀的原則

(d1) 如果你有意對一個領域作入門的了解:

看書會比看 journal papers 適宜 (因為 journal papers 有頁數的限制,以致於許多概念經常講得較簡略)

(d2) 有了相當基礎之後,再閱讀 journal papers

(以 Paper Title, Abstract, 以及其他 Papers 對這篇文章的描述, 來判斷這篇 journal papers 應該詳讀或大略了解即可)

(d3) 研究所看 journal papers 和大學看教課書的方法不同,應該採行「廣而精」的策略

「廣」指的是廣泛的閱讀各種相關的資料

然而,要把握「精」的原則,不鼓勵對所有的資料都逐字看

入門性質的論文要詳讀,其他的論文,則要判斷哪些 equations 和圖表是 重點,再集中精神來了解這幾個 equations 和圖表

3. Spectrum Analysis for Sampled Signals

(學信號處理的人一定要會的基本常識)

已知 x[n] 是由一個 continuous signal y(t) 取樣而得

$$x[n] = y(n\Delta_t)$$

DFT:
$$X[m] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi nm/N}$$
 FT: $Y(f) = \int_{-\infty}^{\infty} e^{-j2\pi f t} y(t) dt$

Q: x[n] 的 DFT 和 y(t) 的 Fourier transform 之間有什麼關係?

Basic rule:把間隔由 1 換成 f_s/N where $f_s = 1/\Delta_t$

$$f = m \frac{f_s}{N}$$

(Very important)

(1)
$$X[m]\Delta_t \cong Y\left(m\frac{f_s}{N}\right)$$
 $f_s = 1/\Delta_t$ for $m \le N/2$

(2)
$$X[m]\Delta_t \cong Y\left((m-N)\frac{f_s}{N}\right) = Y\left(m\frac{f_s}{N} - f_s\right)$$
 for $m > N/2$

If the sampling frequency is f_s , the FT output has the period of f_s

The DFT output has the period of N

Proof:
$$Y(f) = \int_{-\infty}^{\infty} e^{-j2\pi f t} y(t) dt$$

$$\exists t = n\Delta_t, \ f = m\Delta_f \ \not\uparrow \ \downarrow \ \downarrow$$

$$Y(m\Delta_f) \cong \sum_n e^{-j2\pi m\Delta_f n\Delta_t} y(n\Delta_t) \Delta_t = \Delta_t \sum_n e^{-j2\pi m\Delta_f n\Delta_t} x[n]$$

$$\exists \Delta_t \Delta_f = \frac{1}{N} \quad \text{i.e.,} \quad \Delta_f = \frac{1}{N\Delta_t} = \frac{f_s}{N}$$

$$Y(m\frac{f_s}{N}) \cong \Delta_t \sum_n e^{-j2\pi \frac{mn}{N}} x[n]$$

$$= \Delta_t DFT\{x[n]\}$$

Example:已知

$$y(t) = (2t)^2 \quad \text{for } 0 \le t \le 1$$

$$y(t) = (2t)^2$$
 for $0 \le t \le 1$ $y(t) = (4-2t)^2$ for $1 \le t \le 2$

取樣間隔: $\Delta_t = 0.1$

$$x[n] = y(n \Delta_t) \text{ for } 0 \le n \le 20$$

如何用 DFT 來正確的畫出 y(t) 的頻譜?

(Step 2-1)
$$Y\left(m\frac{f_s}{N}\right) \cong X\left[m\right]\Delta_t$$
 for $m \le N/2$

(Step 2-2)
$$Y\left((m-N)\frac{f_s}{N}\right) \cong X\left[m\right]\Delta_t$$
 for $m > N/2$

In this example,
$$\frac{f_s}{N} = \frac{1}{N\Delta_t} = \frac{1}{21 \cdot 0.1} = 0.4762$$

(4) Convolution

(4-A) Discrete Convolution

range variation after convolution

$$x[n]$$
的範圍為 $n \in [n_1, n_2]$,大小為 $N = n_2 - n_1 + 1$

$$h[n]$$
的範圍為 $n \in [k_1, k_2]$,大小為 $K = k_2 - k_1 + 1$

$$y[n] = x[n] * h[n] = \sum_{k=k_1}^{k_2} x[n-k]h[k]$$
 $y[n]$ 的範圍?

$$n = n - k + k$$

$$\min(n) = \min(n-k) + \min(k)$$

$$= n_1 + k_1$$

$$\max(n) = \max(n-k) + \max(k)$$

$$= n_2 + k_2$$

Convolution output 的範圍以及點數, 是學信號處理的人必需了解的常識

Discrete Convolution by fft

$$y[n] = x[n] * h[n] Y[m] = X[m]H[m]$$

$$y_1[n] = IDFT_P \{DFT_P(x_1[n])DFT_P(h_1[n])\}$$

$$x_1[n] = x[n+n_1] \text{for } n = 0, 1, 2, ..., N-1$$

$$x_1[n] = 0 \text{for } n = N, N+1, ..., P-1$$

$$h_1[n] = h[n+k_1] \text{for } n = 0, 1, 2, ..., M-1$$

$$h_1[n] = 0 \text{for } n = M, M+1, ..., P-1$$

$$y[n] = y_1[n-n_1-k_1]$$

 DFT_P : the P-point FFT $IDFT_P$: the P-point inverse FFT

$$y[n] = x[n] * h[n] Y[m] = X[m]H[m]$$
$$y_1[n] = IDFT_P \{DFT_P(x_1[n])DFT_P(h_1[n])\}$$

How do we choose *P*?

If length(
$$x[n]$$
) = N
length($h[n]$) = M
then $P \ge M + N - 1$

In Matlab, $DFT_P(x_1[n])$ can be written as fft(x,P)

Discrete Convolution by conv

$$y[n] = x[n] * h[n]$$

$$x_2[n] = x[n+n_1] \qquad h_2[n] = h[n+k_1]$$

$$y_2[n] = conv(x_2[n], h_2[n])$$

$$y[n] = y_2[n - n_1 - k_1]$$

(4-B) Continuous Convolution

$$y_c(t) = x_c(t) * h_c(t) = \int x_c(t-\tau)h_c(\tau)d\tau$$

(1)
$$x[n] = x_c(n\Delta_t)$$
 $h[n] = h_c(n\Delta_t)$

(2) Compute the discrete convolution

$$y[n] = x[n] * h[n]$$
 By Matlab: $y = conv(x, h, 'same')$

(3) $y_n(n\Delta_t) \cong y[n]\Delta_t$

$$\Delta_{t} \leq \frac{1}{2\min(B_{x}, B_{h})}$$

(5) Edge Detection Filter

x[n] * h[n]

where h[n] satisfies

- (i) h[n] = -h[-n] for all n, i.e., h[n] is odd,
- (ii) $h[n] \rightarrow 0$ when |n| is large,
- (iii) |h[n]| is larger when n is around zero. |h[n]| tends to decaying with |n|.

Example

$$h_1[-1] = 1/\sqrt{2} \;, \quad h_1[1] = -1/\sqrt{2} \;, \quad \text{or} \quad \begin{array}{l} h_2[1] = 8/\sqrt{260} \;, \quad h_2[2] = 6/\sqrt{260} \;, \quad h_2[3] = 4/\sqrt{260} \;, \\ h_2[4] = 3/\sqrt{260} \;, \quad h_2[5] = 2/\sqrt{260} \;, \quad h_2[6] = 1/\sqrt{260} \;, \\ h_2[n] = -h_2[-n] \quad \text{for } n = -1, -2, -3, -4, -5, -6, \quad h_2[n] = 0 \; \text{otherwise.} \end{array}$$

(a) A rectangular signal $x_1[n]$;

(c)
$$x_1[n] * h_1[n]$$

(b)
$$x_2[n] = x_1[n] + \text{noise};$$

(d)
$$x_2[n] * h_1[n]$$

$$h_1[-1] = 1/\sqrt{2}$$
, $h_1[1] = -1/\sqrt{2}$,
 $h_1[n] = 0$ otherwise,

Edge Detection (long impulse response)

(a) A rectangular signal $x_1[n]$;

(e)
$$x_1[n] * h_2[n]$$

(b)
$$x_2[n] = x_1[n] + \text{noise};$$

(f)
$$x_2[n] * h_2[n]$$

$$\begin{array}{c} h_2[1]=8/\sqrt{260}\;,\quad h_2[2]=6/\sqrt{260}\;,\quad h_2[3]=4/\sqrt{260}\;,\\ h_2[4]=3/\sqrt{260}\;,\quad h_2[5]=2/\sqrt{260}\;,\quad h_2[6]=1/\sqrt{260}\;,\\ h_2[n]=-h_2[-n]\quad \text{ for } n=-1,\,-2,\,-3,\,-4,\,-5,\,-6, \qquad h_2[n]=0 \text{ otherwise}. \end{array}$$

$$y[n] = x[n] * h[n]$$

$$h[n] = C \operatorname{sgn}[n] \exp(-\sigma | n|) \qquad \text{for } |n| \le L$$

$$\operatorname{sgn}[n] = 1 \quad \text{for } n > 0 \qquad \operatorname{sgn}[n] = -1 \quad \text{for } n < 0 \qquad \operatorname{sgn}[0] = 0$$

$$C = 1 / \sum_{n=1}^{L} \exp(-\sigma | n|)$$

smaller noise: larger σ (or extracting tiny edges)

larger noise: smaller σ

(or extracting large-scaled edges)

(6) Smoother

$$y[n] = x[n] * h[n]$$

- (i) h[n] = h[-n], (i.e., h[n] is even),
- (ii) $h[n] \to 0$ when |n| is large,
- (iii) $|h[n_1]| \ge |h[n_2]|$ if $|n_1| < |n_2|$,
- (iv) $\sum_{n=-\infty}^{\infty} h[n] = 1,$
- (v) $h[n] \ge 0$ for all n.

Example

$$h[n] = \frac{1}{2L_1 + 1}$$
 for $-L_1 \le n \le L_1$, $h[n] = 0$ otherwise

$$y[n] = x[n] * h[n] = \frac{1}{2L_1 + 1} \sum_{m=n-L_1}^{n+L_1} x[m]$$
 (local average)

Smoother

Example

$$h[0] = 0.2$$
, $h[1] = h[-1] = 0.16$, $h[2] = h[-2] = 0.12$, $h[3] = h[-3] = 0.08$, $h[4] = h[-4] = 0.04$, $h[n] = 0$ otherwise.

$$x[n] = 0.05(n-20) + noise$$

$$y[n] = x[n] * h[n]$$

$$h[n] = C \exp(-\sigma | n |) \qquad \text{for } |n| \le L$$

$$C = 1 / \sum_{n=-L}^{L} \exp(-\sigma | n |)$$

extracting the smaller scaled (short term) feature: larger σ extracting the larger scaled (long term) feature : smaller σ

(7) Correlation and Matched Filter

Used for demodulation, similarity measurement, and pattern recognition "Edge and corner detections" are special cases of pattern recognition.

To detect a pattern h[n], we use its <u>time-reverse</u> and <u>conjugation</u> form as the filter (correlation)

$$y[n] = x[n] * h^*[-n] = \sum_{\tau = -\tau_1}^{-\tau_2} x[n - \tau] h^*[-\tau] = \sum_{\tau = \tau_1}^{\tau_2} x[n + \tau] h^*[\tau]$$
if $h[n] \neq 0$ for $\tau_1 \leq n \leq \tau_2$

x[n]: input pattern, h[n]: the desired pattern

2-D form:

$$y[m,n] = x[m,n] * h^*[-m,-n] = \sum_{\tau=\tau_1}^{\tau_2} \sum_{\rho=\rho_1}^{\rho_2} x[m+\tau,n+\rho] h^*[\tau,\rho]$$

if
$$h[m, n] \neq 0$$
 for $\tau_1 \leq m \leq \tau_2$, $\rho_1 \leq n \leq \rho_2$,

• Normalization Form

$$y[n] = \frac{\sum_{\tau=\tau_{1}}^{\tau_{2}} x[n+\tau]h^{*}[\tau]}{\sqrt{\sum_{s=n+\tau_{1}}^{n+\tau_{2}} |x[s]|^{2} \sum_{s=\tau_{1}}^{\tau_{2}} |h[s]|^{2}}} \quad \text{when} \quad \sum_{s=n+\tau_{1}}^{n+\tau_{2}} |x[s]|^{2} \neq 0$$

$$y[n] = 0 \quad \text{when} \quad \sum_{s=n+\tau_{1}}^{n+\tau_{2}} |x[s]|^{2} = 0$$

2-D Case

$$y[m,n] = \frac{\sum_{\tau=\tau_{1}}^{\tau_{2}} \sum_{\rho=\rho_{1}}^{\rho_{2}} x[m+\tau,n+\rho]h^{*}[\tau,\rho]}{\sqrt{\sum_{s=m+\tau_{1}}^{m+\tau_{2}} \sum_{v=n+\rho_{1}}^{n+\rho_{2}} |x[s,v]|^{2} \sum_{s=\tau_{1}}^{\tau_{2}} \sum_{v=\rho_{1}}^{\rho_{2}} |h[s,v]|^{2}}} \quad \text{when } \sum_{s=m+\tau_{1}}^{m+\tau_{2}} \sum_{v=n+\rho_{1}}^{n+\rho_{2}} |x[s,v]|^{2} \neq 0$$

$$y[m,n] = 0 \quad \text{when } \sum_{s=m+\tau_{1}}^{m+\tau_{2}} \sum_{v=n+\rho_{1}}^{n+\rho_{2}} |x[s,v]|^{2} = 0$$

• Normalization and Offset Form

$$y[n] = \frac{\sum_{\tau=\tau_{1}}^{\tau_{2}} x[n+\tau]h_{1}^{*}[\tau]}{\sqrt{\sum_{s=n+\tau_{1}}^{n+\tau_{2}} |x[s] - x_{0}[n]|^{2} \sum_{s=\tau_{1}}^{\tau_{2}} |h_{1}[s]|^{2}}} \quad \text{when} \quad \sum_{s=n+\tau_{1}}^{n+\tau_{2}} |x[s] - x_{0}[n]|^{2} \neq 0$$

$$y[n] = 0 \quad \text{when} \quad \sum_{s=n+\tau_{1}}^{n+\tau_{2}} |x[s] - x_{0}[n]|^{2} = 0$$

$$\text{where} \quad h_{1}[s] = h[s] - \frac{1}{\tau_{2} - \tau_{1} + 1} \sum_{s=\tau_{1}}^{\tau_{2}} h[s] = h[s] - mean(h[s])$$

$$x_{0}[n] = \frac{1}{\tau_{2} - \tau_{1} + 1} \sum_{s=n+\tau_{1}}^{n+\tau_{2}} x[s] \quad \text{(local mean)}$$

Normalization and Offset Form for the 2D Case

$$y[m,n] = \frac{\sum_{\tau=\tau_{1}}^{\tau_{2}} \sum_{\rho=\rho_{1}}^{\rho_{2}} x[m+\tau,n+\rho] h_{1}^{*}[\tau,\rho]}{\sqrt{\sum_{s=m+\tau_{1}}^{m+\tau_{2}} \sum_{v=n+\rho_{1}}^{n+\rho_{2}} |x[s,v] - x_{0}[s,v]|^{2} \sum_{s=\tau_{1}}^{\tau_{2}} \sum_{v=\rho_{1}}^{\rho_{2}} |h_{1}[s,v]|^{2}}}$$

$$\text{when } \sum_{s=m+\tau_{1}}^{m+\tau_{2}} \sum_{v=n+\rho_{1}}^{n+\rho_{2}} |x[s,v] - x_{0}[s,v]|^{2} \neq 0$$

$$y[m,n] = 0 \quad \text{when } \sum_{s=m+\tau_{1}}^{m+\tau_{2}} \sum_{v=n+\rho_{1}}^{n+\rho_{2}} |x[s,v] - x_{0}[s,v]|^{2} = 0$$

$$\text{where } h_{1}[s,v] = h[s,v] - \frac{1}{\tau_{2} - \tau_{1} + 1} \frac{1}{\rho_{2} - \rho_{1} + 1} \sum_{s=\tau_{1}}^{\tau_{2}} \sum_{v=\rho_{1}}^{\rho_{2}} h[s,v] = h[s,v] - mean(h[s,v])$$

$$x_{0}[s] = \frac{1}{\tau_{2} - \tau_{1} + 1} \frac{1}{\rho_{2} - \rho_{1} + 1} \sum_{s=\tau_{1}}^{m+\tau_{2}} \sum_{s=\tau_{1}}^{n+\rho_{2}} x[s,v] \quad \text{(local mean)}$$

練習

- (1) 用 Matlab 讀取一個 *.wav 檔,並且正確的用 fft 畫出頻譜
- (2) 若 x[n] = 1 for $-10 \le n \le 20$, $50 \le n \le 80$ x[n] = 0 for $-30 \le n < -10$, 20 < n < 50, $80 < n \le 100$ $x_1[n] = x[n] + \text{noise}$ 運用 page 28 的 edge detection filter 來找尋 $x_1[n]$ 的 edge noise = an*(rand(1,131)-0.5) 試用 二個以上的 σ 值和二個以上的 an 值
- (3) 若 $x_1[n] = 0.1n + \text{noise for } -50 \le n \le 100$ 運用 page 31 的 smoother filter 來找尋 $x_1[n]$ 的趨勢 noise = an*(rand(1,151)-0.5) 試用 二個以上的 σ 值和二個以上的 an 值

