A Time-Series Analysis on the S&P 500 Stock Index

Chunmei Gao *500887771*

December 18, 2018

Drivers and Objectives

Drivers

- Work Needs
- Research & Learn

Objectives

- Time Series Analysis Techniques
- Practical Procedures
- Applications

Table of Contents

- Time Series Analysis ARIMA Model and Approach
- Dataset
- Data preparation
- Build & Fit ARIMA model
- Model diagnosis
- Make forecasts and cross validation
- Time series analysis techniques SVM vs. ARIMA
- Conclusion

Time Series Analysis - ARIMA Model and Approach

Time Series

- A sequence of numbers
- Constant Intervals
- Univariate & Multivariate
- Width & Depth
- **ARIMA** (p,d,q)
 - AR Auto Regressive (p)
 - MA Moving Average (q)
 - Integrated component (d)

Dataset – S&P 500 Daily Stock Index

Daily S&P 500 Stock Index Dataset

- 5 years historical data:
 September 2013 September 2018
- 30 days forecasts:
 October 1st November 9th, 2018

Date	Open	High	Low	Close*	Adj Close**	Volume
Sep 13, 2018	2,896.85	2,906.76	2,896.39	2,904.18	2,904.18	3,254,930,000
Sep 12, 2018	2,888.29	2,894.65	2,879.20	2,888.92	2,888.92	3,264,930,000
Sep 11, 2018	2,871.57	2,892.52	2,866.78	2,887.89	2,887.89	2,899,660,000
Sep 10, 2018	2,881.39	2,886.93	2,875.94	2,877.13	2,877.13	2,731,400,000

Characteristics of the Data

• Trend: uptrend

Seasonality: non-seasonal

Stationarity: not stationary

S&P 500 Stock Market Index

Data Preprocessing and Preparation

- Convert data to time series object: ts()
- Clean the data: tsclean()
- Stationarize the data
 - ADF: test for stationarity

```
adf.test(ts_close, alternative = "stationary")
Augmented Dickey-Fuller Test data: ts_closeDickey
-Fuller = -1.6706, Lag order = 10, p-value = 0.717
8 alternative hypothesis: stationary
```

- Differencing

```
close_d1 <- diff(ts_close, differences = 1)
plot(close_d1)</pre>
```


ARIMA Model Parameters Selection and Fitting

Determine Parameters

ACF: MA(q)PACF: AR(p)

Times of Differencing: d

ARIMA(0, 1, 0)

Identify Optimal Parameters

AIC: the lowest

```
arima(close_d1, order=c(0,0,0)) #ARIMA(0,1,0) aic = 10685.41

arima(close_d1, order=c(1,0,0)) #ARIMA(1,1,0) aic = 10686.73

arima(close_d1, order=c(1,0,1)) #ARIMA(1,1,1) aic = 10679.06, lowest

arima(close_d1, order=c(0,0,1)) #ARIMA(0,1,1) aic = 10686.63

arima(close_d1, order=c(0,0,2)) #ARIMA(0,1,2) aic = 10683.67

arima(close_d1, order=c(2,0,0)) #ARIMA(2,1,0) aic = 10683.75
```

ARIMA(1, 1, 1)

Diagnosis of the model

- White Noise
- Residuals: tsdiag()

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

Forecasts and Cross Validation

Forecasts from ARIMA(1,1,1) with drift

Techniques Comparison – SVM vs. ARIMA

ARIMA Model Errors

```
accuracy(fcast, sp500 Oct$Close)
##
                               RMSE
                                         MAE
                                                      MPE
                   ME
               0.02250337
                             16.58955 11.55024
                                                  -0.006219626 0.5332682
## Training set
                                       141.11746 -5.089648731
                                                               5.1614038
## Test set
            -139.01892711
                          162.13242
##
                  MASE
                              ACF1
## Training set 0.9897036
                            -0.01070866
## Test set
             12.0919119
                              NA
```

SVM Model Errors

Conclusion

- Time series analysis has clear characteristics.
- ARIMA model is well studied for time series analysis with well documented procedures to follow and tools to use.
- ARIMA has limitations.
- This study and project implementation enabled me to perform actual time series data analysis at work place.

Q & A