Job No.: Apiti Shed - 2 Address: 101 Table Flat Rd, Apiti, New Zealand Latitude: -39.948308 Longitude: 175.912963 Elevation: 558 m

## **General Input**

| Roof Live Load   | 0.25 KPa  | Roof Dead Load                 | 0.25 KPa  | Roof Live Point Load | 1.1 Kn    |
|------------------|-----------|--------------------------------|-----------|----------------------|-----------|
| Snow Zone        | N1        | Ground Snow Load               | 0.74 KPa  | Roof Snow Load       | 0.5 KPa   |
| Earthquake Zone  | 3         | Subsoil Category               | D         | Exposure Zone        | В         |
| Importance Level | 1         | Ultimate wind & Earthquake ARI | 100 Years | Max Height           | 2.8 m     |
| Wind Region      | NZ2       | Terrain Category               | 2.0       | Design Wind Speed    | 45.14 m/s |
| Wind Pressure    | 1.22 KPa  | Lee Zone                       | NO        | Ultimate Snow ARI    | 50 Years  |
| Wind Category    | Very High | Earthquake ARI                 | 100       |                      |           |

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

#### **Pressure Coefficients and Pressues**

Shed Type = Gable Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 6.20 m Cpe = -0.9 pe = -0.99 KPa pnet = -0.99 KPa

For roof CP,e from 6.20 m To 12.40 m Cpe = -0.5 pe = -0.55 KPa pnet = -0.55 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 28.8 m Cpe = 0.7 pe = 0.77 KPa pnet = 1.14 KPa

For side wall CP,e from 0 m To 6.20 m Cpe = pe = -0.72 KPa pnet = -0.72 KPa

Maximum Upward pressure used in roof member Design = 0.99 KPa

Maximum Downward pressure used in roof member Design = 0.59 KPa

Maximum Wall pressure used in Design = 1.14 KPa

Maximum Racking pressure used in Design = 1.1 KPa

# **Design Summary**

# **Girt Design Front and Back**

Girt's Spacing = 600 mm Girt's Span = 4800 mm Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet

First Page

condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.36 S1 Downward =12.23 S1 Upward =28.24

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

## **Capacity Checks**

| $M_{Wind+Snow}$          | 1.97 Kn-m | Capacity | 1.11 Kn-m  | Passing Percentage | 56.35 %  |
|--------------------------|-----------|----------|------------|--------------------|----------|
| $ m V_{0.9D	ext{-}WnUp}$ | 1.64 Kn-m | Capacity | 13.75 Kn-m | Passing Percentage | 838.41 % |

#### **Deflections**

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 39.47 mm Limit by Woolcock et al, 1999 Span/100 = 48.00 mm Sag during installation = 39.74 mm

#### Reactions

Maximum = 1.64 kn

# **Girt Design Sides**

Girt's Spacing = 1300 mm Girt's Span = 2000 mm Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.76 S1 Downward =12.23 S1 Upward =18.23

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

# **Capacity Checks**

| $M_{Wind+Snow}$            | 0.74 Kn-m | Capacity | 2.30 Kn-m  | Passing Percentage | 310.81 % |
|----------------------------|-----------|----------|------------|--------------------|----------|
| $V_{0.9 D\text{-W} n U p}$ | 1.48 Kn-m | Capacity | 13.75 Kn-m | Passing Percentage | 929.05 % |

#### **Deflections**

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 2.58 mm Limit by Woolcock et al. 1999 Span/100 = 20.00 mm

Second page

# Sag during installation =1.20 mm

#### Reactions

Maximum = 1.48 kn

# **End Pole Design**

# **Geometry For End Bay Pole**

# Geometry

| 125x125 SG8 Dry   | Dry Use      | Height | 2650 mm      |
|-------------------|--------------|--------|--------------|
| Area              | 15625 mm2    | As     | 11718.75 mm2 |
| Ix                | 20345052 mm4 | Zx     | 325521 mm3   |
| Iy                | 20345052 mm4 | Zx     | 325521 mm3   |
| Lateral Restraint | mm c/c       |        |              |

## Loads

# Total Area over Pole = 4.8 m2

| Dead        | 1.20 Kn   | Live        | 1.20 Kn   |
|-------------|-----------|-------------|-----------|
| Wind Down   | 2.83 Kn   | Snow        | 2.40 Kn   |
| Moment Wind | 0.91 Kn-m | Moment snow | 0.29 Kn-m |
| Phi         | 0.8       | K8          | 0.61      |
| K1 snow     | 0.8       | K1 Dead     | 0.6       |
| K1 wind     | 1         |             |           |

# Material

| Shaving | Steaming | Normal             | Dry Use  |
|---------|----------|--------------------|----------|
| fb =    | 14 MPa   | $f_{\mathbf{S}} =$ | 3 MPa    |
| fc =    | 18 MPa   | fp =               | 8.9 MPa  |
| ft =    | 6 MPa    | E =                | 8000 MPa |

# Capacities

| PhiNex Wind | 137.79 Kn | PhiMnx Wind | 2.23 Kn-m | PhiVnx Wind | 28.13 Kn |
|-------------|-----------|-------------|-----------|-------------|----------|
| PhiNcx Dead | 82.67 Kn  | PhiMnx Dead | 1.34 Kn-m | PhiVnx Dead | 16.88 Kn |
| PhiNcx Snow | 110.23 Kn | PhiMnx Snow | 1.79 Kn-m | PhiVnx Snow | 22.50 Kn |

## Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.45 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.21 < 1 OK$ 

Deflection at top under service lateral loads = 6.15 mm < 27.93 mm

Ds = 0.6 mm Pile Diameter

L = 600 mm Pile embedment length

f1 = 2100 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

#### Loads

Total Area over Pole =  $4.8 \text{ m}^2$ 

Moment Wind = 0.91 Kn-m Moment Snow = 0.29 Kn-mShear Wind = 0.43 Kn Shear Snow = 0.29 Kn

## **Pile Properties**

Safety Factory 0.55

Hu = 0.71 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 0.86 Kn-m Ultimate Moment Capacity of Pile

## Checks

Applied Forces/Capacities = 1.07 < 1 OK

# Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

## **Assumed Soil Properties**

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$ 

**Geometry For End Bay Pole** 

 $D_S = 0.6 \text{ mm}$  Pile Diameter

L = 600 mm Pile embedment length

f1 = 2100 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

## Loads

| Moment Wind = | 0.91 Kn-m | Moment Snow = | 0.29 Kn-m |
|---------------|-----------|---------------|-----------|
| Shear Wind =  | 0.43 Kn   | Shear Snow =  | 0.29 Kn   |

## **Pile Properties**

Safety Factory 0.55

Hu = 0.71 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 0.86 Kn-m Ultimate Moment Capacity of Pile

#### Checks

Applied Forces/Capacities = 1.07 < 1 OK

# **Uplift Check**

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(800) x Ks(1.5) x (0.5) x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(800)

Skin Friction = 5.17 Kn

Weight of Pile + Pile Skin Friction = 8.57 Kn

Uplift on one Pile = 7.34 Kn

Uplift is ok