## بِسْمِ ٱللهِ ٱلرَّحْمَٰنِ ٱلرَّحِيمِ

In the name of Allah, Most Gracious, Most Merciful

# CSE 4303 Data Structure

Topic: Introduction to data structures, Complexity Time-Space Tradeoff





### What is Data Structure?

Data: Simply values or sets of values, raw facts or figure without any specific meaning.

Data Structure: The logical or mathematical model of a particular organization of data.

- Can store data
  - Example: Integers, Strings, Floats, ... ...
- Can answer some questions about the stored data
  - Example: What is the smallest value not greater than x?
- Can add or remove data
  - Example: add the element x after y, remove values less than x.





# Why Study Data Structure?

### Applications of Data Structure:

- ➤ Computer file system ( Data structure maps file names onto hard drive sectors)
- Google and other search engines (Data structure maps keywords on web pages containing those keywords)
- What is the longest common subsequence of two DNA can be found?
- Geographic systems (Data structure find data relevant to the current view/location)
- Finding large Prime Numbers
- Block chain (Linked list)
- ➤ Google Map (Finding shortest distances in terms of distance and time)
- Data Compression (Huffman's encoding)
- Natural Language Processing (Strings)
- > ... ... ... ...

Many problems are solved efficiently just using the right data structure ...





# How do We Study Data Structures?

- What does the data structure represents?
  Computer file system (data structure maps file names onto hard drive track and sectors)
- What are the operations does it supports?
  - Reading: looking something up at a particular spot within the data structure.
  - Searching: looking for a particular value within a data structure.
  - Inserting: adding a new value to the data structure.
  - Deleting: removing a value from the data structure.
  - Sorting: rearranging element in some logical order.
  - Merging: Combining records of two different sorted files into one sorted files.
- What kind of performance does it have?
  - How long does each operation take? (Time complexity)
  - How much space does it use? (Memory complexity)





### Classification of Data Structure



# **Memory Allocation**

### Memory allocation can be classified into followings:

Contiguous

Example: arrays



> Linked

Example: linked lists



> Indexed

Example: array of pointers.



# **Contiguous Memory Allocation**

An array stores n objects in a single contiguous space of memory.

- → Can directly access any point randomly. Random access is possible.
- → Unfortunately, if more memory is required, a request for new memory usually requires copying all information into the new memory.
- → In general, you cannot request for the operating system to allocate to you the next n memory locations







# **Linked Memory Allocation**

Linked storage such as a linked list associates two pieces of data with each item being stored:

- → The object itself, and
- → A reference to the next item
- → Random access to any data apart from the beginning is not possible since the address of a particular data is only stored to its previous data.



The actual linked list class must store two pointers

- → A head and tail:
  - Node \*head;
  - Node \*tail;







# **Indexed Memory Allocation**

With indexed allocation, an array of pointers (possibly NULL) link to a sequence of allocated

memory locations.

Matrices can be implemented using indexed allocation:

 $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ 





# Other Memory Allocations

We will look at some varieties or hybrids of these memory allocations including:

- → Trees
- → Graphs

A rooted tree is similar to a linked list but with multiple next pointers



Tree

Arbitrary relations among the objects in a container



Graph



adjacency matrix



adjacency list





# Complexity, Time-space tradeoff

- > A function that estimates the running time/space with respect to the input size.
- Less time and space requirement is a blessing!
- Deals with large input size.
- > Tradeoff: Increased amount of space to store data can sometimes reduce time requirement (or vice-versa).

# Why Do We Care?

#### solution#1

for i=2 to n-1
 if i divides n
 n is not a prime

(n-2) divisions in worst case

### solution#2

for i=2 to  $\sqrt{n}$  if i divides n n is not a prime

 $(\sqrt{n}-1)$  divisions in worst case



# Complexity, Time-space tradeoff

| Assuming 1 ms to perform a division |                    |                   |  |
|-------------------------------------|--------------------|-------------------|--|
|                                     | Solution #1        | Solution#2        |  |
| n=11                                | 9 ms               | ~2 ms             |  |
| n=101                               | 99 ms              | ~9 ms             |  |
| n=1000003                           | ~10^6 ms =1000 sec | ~10^3 ms          |  |
| =10^6+3                             | =16.66min          | = 1sec            |  |
| n=10^10                             | 10^10 ms =10^7sec  | ~10^5 ms = 100sec |  |
|                                     | =115 days          | = 1.66 mins       |  |





# Complexity, Time-space tradeoff



Two functions plotted in this graph:

$$f(x) = x \text{ (red)}$$
  
 $f(x) = \sqrt{x} \text{ (blue)}$ 

Blue function is a bit costly in the beginning, but cheaper as x increases.



# Time Complexity Analysis

Measures how fast the time requirement of a program grows when the input size increases.

Running time of program may depend on:

- → Single vs multi processor
- → Read/write speed of memory
- → 32-bit or 64-bit
- → Size of input

For time complexity analysis, we are only interested in (size of input)

- Takes same amount of time regardless of input size
- Constant time algorithm
- Time Complexity O(1)

```
Sum(a,b) {
  return a+b
}
```

Let's think about this function

Time requirement: ~ 2 time-units (1 unit for addition, 1 unit for return statement)



# Time Complexity Analysis

|                                  |                                                                                                   | # times       | Cost<br>unit                         |
|----------------------------------|---------------------------------------------------------------------------------------------------|---------------|--------------------------------------|
| 1.<br>2.<br>3.<br>4.<br>5.<br>6. | <pre>sumOfList (A, n) {   total=0   for i=0 to n-1    total = total + A[i]   return total }</pre> | 1<br>n+1<br>n | 1 (c1)<br>2 (c2)<br>2 (c3)<br>1 (c4) |

### Comments

#### In line 3:

- Executes n+1 times. One extra checking for breaking condition.
- c2: 1 unit for increment, 1 unit for assignment.

#### In line 4:

- 1 unit for addition, 1 for assignment.
- T(n) = 1 + 2(n+1) + 2n + 1 = 4n + 4
- In other words,  $T(n) = c_1 + c_2(n+1) + c_3n + c_4 = cn + c'$ 
  - here  $(c = c_2 + c_3, \& c' = c_1 + c_3 + c_4)$
- Don't care much about value of c or c', focus on the rate of growth.
- Here the growth is linear. Termed as O(n), AKA 'Big-oh of n' AKA 'Order of n'.





### Some Growth Functions



$$f(x) = 1$$
 (red),  
 $f(x) = x$  (blue),  
 $f(x) = x^2$  (green),  
 $f(x) = logx$  (purple)  
Check the growth of function as values in x axis grows!



# Asymptotic Analysis

- Asymptotic Analysis is the big idea that helps to analyze algorithms.
- In Asymptotic Analysis, we evaluate the performance of an algorithm in terms of input size (we don't measure the actual running time).
- Define mathematical bound of how the time (or space) taken by an algorithm increases with the input size.
- An algorithm that is asymptotically more efficient will be the best choice for all but very small inputs.

[Generally, the term 'asymptotic' means approaching but never connecting with a line or curve.]



# Asymptotic Analysis









- The 'O' Notation
  - A function f(n) = O(g(n)) if there exists  $n_0$  and c such that f(n) < cg(n)
  - Whenever,  $n > n_0$ 
    - *O* (pronounced big-oh) is the formal method of expressing <u>upper bound</u> of an algorithm's running time.
    - Measures the *longest amount of time it could possibly take*.
    - g(n) is an <u>asymptotic upper bound</u> for f(n).



- Example of '0' notation:
  - Suppose, f(n) = 2n + 8 and  $g(n) = n^2$
  - Can we find a constant  $n_0$ , so that  $2n + 8 \le n^2$ ?
  - $n_0 = 4$  works here!
  - For any number n greater than 4, this will still work. Since we are trying to generalize this for large values of n
    - f(n) is bounded by g(n) and will always be less. (here c=1 is good enough.)
    - Conclusion, f(n) = O(g(n)), for all n > 4
    - Thus here,  $f(n) = O(n^2)$









- Can we bound f(n) = 2n + 8 using g(n) = n? (meaning, can f(n) = O(n) be true?)
  - Yes! Pick the value of 'c' carefully!
  - *if* c = 3, f(n) = O(n) *for all*  $n \ge 8$
  - We can also define, if c = 2.5, f(n) = O(n) for all  $n \ge 16$









- Big-Omega Notation:
  - A function  $f(n) = \Omega(g(n))$  if there exists  $n_0$  and c such that f(n) > cg(n)
  - Whenever  $n > n_0$ :
    - Almost same definition as Big-Omega, except that 'f(n) > cg(n)'
    - This makes g(n) a <u>lower bound</u> function, instead of a upper bound function.
    - g(n) is an <u>asymptotic lower bound</u> for f(n)
    - Describes the <u>best that can happen</u> for a given data size.



3





### • Big-Theta Notation:

- A function  $f(n) = \Theta(g(n))$  if and only if f(n) = O(g(n)) and  $f(n) = \Omega(g(n))$
- f(n) is bounded both from the top and bottom by the same function g(n).
- Thus, g(n) is an <u>asymptotic tight bound</u> for f(n)
- Tight bounds are obtained from asymptotic upper and lower bounds.
- 3n + 3 is:
  - O(n) (let's say for c=4)
  - $\Omega(n)$  (let's say for c=1)
  - So it can be written as  $\Theta(n)$
- 3n + 3 is
  - $O(n^2)$  (for all  $n \ge 4$ )
  - $\Omega(n^2)$  (only true for n=1,2,3)
  - So it can not be written as  $\Theta(n^2)$







#### **Acknowledgement**

Rafsanjany Kushol
PhD Student, Dept. of Computing Science,
University of Alberta

Sabbir Ahmed Assistant Professor Department of CSE, IUT



