Ontology Languages Web Ontology Language (OWL)

Objectives

Objective
Explain how ontology
is represented in
OWL

Explain the relationship between OWL and DL

Objective

Introduction to OWL

A family of KR language for authoring ontologies; W3C Recommendation

Three variants of OWL with different levels of expressiveness

- OWL Lite: not widely used
- OWL DL: correspond with description logic
- OWL Full: designed to extend RDF and RDFS; undecidable

Syntax of OWL:

- 1. Functional style syntax
- 2. RDF/XML syntax
- 3. Manchester syntax

OWL in Functional Style Syntax

```
SubClassOf (
:C
ObjectIntersectionOf (
:D
ObjectSomeValuesFrom(:r:E))))
```

OWL in RDF/XML

```
<owl:Class rdf:about=":C">
 <rdfs:subClassOf>
    <owl:Class>
       <owl:intersectionOf rdf:parseType="Collection">
         <rdf:Description rdf:about=":D"/>
         <owl:Restriction>
            <owl: onProperty rdf:resource=":r"/>
            <owl: someValuesFrom rdf:resource=":E"/>
         </owl:Restriction>
        </owl:intersectionOf>
      </owl:Class>
   </rdfs:subClassOf>
</owl:Class>
```

OWL in Manchester Syntax

```
Class: :C
```

SubClassOf: :D and (:r some :E)

Semantics

Two different methods of defining the semantics of OWL ontologies

- Direct semantics: defined for the functional style syntax. Referred to as OWL 2 DL ontologies
- RDF-based semantics: applicable to any graph, including malformed syntax

We will focus on OWL 2 DL, which is close to description logic SROIQ

Description Logic SROIQ

S: ALC extended with transitive roles

R: extended set of Role axioms (RBox)

O: Nominal

I: Inverse roles

Q: Qualified number restrictions

SROIQ: Constructors (Omitting ALC)

Roles	Syntax	Semantics
Inverse role	R	$\{(x,y) \ (y,x)\in R^I\}$
Universal role	U	$\Delta^I \times \Delta^I$

parentOf ≡ childOf -

Concepts	Syntax	Semantics
At-least restriction	$\geq n R.C$	$\{x \mid \text{at least n } \mathbb{R}^{\mathbb{I}} \text{ successors of } x \text{ are in } \mathbb{C}^{\mathbb{I}}\}$
At-most restriction	$\leq n R.C$	$\{x \mid \text{at most n } R^{I} \text{ successors of x are in } C^{I}\}$
Local reflexivity	$\exists R. Self$	$\{x \mid (x, x) \in R^I\}$
Nominal	<i>{a}</i>	$\{a^I\}$

SROIQ: Axioms (Omitting ALC)

Roles	Syntax	Semantics
Individual equality	$a \approx b$	$a^I = b^I$
Individual inequality	a ≉ b	$a^I \neq b^I$

RBox	Syntax	Semantics
Role inclusion	$R \sqsubseteq S$	$R^I \subseteq S^I$
Role equivalence	$R \equiv S$	$R^I = S^I$
Complex role inclusion	$R_1 \circ R_2 \sqsubseteq S$	$R_1^I \circ R_2^I \subseteq S^I$, i.e., $\{(d,f) \mid \exists e \text{ s. t. } (d,e) \in R_1^I \text{ and } (e,f) \in R_2^I\} \subseteq S^T$
Role disjointness	Disjoint(R,S)	$R^I \cap S^I = \emptyset$

brotherOf ∘ parentOf ⊑ uncleOf Disjoint(parentOf, childOf)

DL and OWL Terminologies

description logics	OWL
concept	class
role	object property
constant/individual	individual
theory	ontology

DL and OWL Syntax

description logics syntax	Manchester syntax (OWL in Protégé)
$\begin{array}{c} C_1 \sqsubseteq \ C_2 \\ C_1 \equiv \ C_2 \\ C_1 \sqsubseteq \neg C_2 \\ R_1 \sqsubseteq R_2 \end{array}$	\mathcal{C}_1 SubClassOf \mathcal{C}_2 \mathcal{C}_1 EquivalentTo \mathcal{C}_2 \mathcal{C}_1 DisjointWith \mathcal{C}_2 \mathcal{R}_1 SubPropertyOf \mathcal{R}_2
$\neg C$ $C_1 \sqcup C_2$ $C_1 \sqcap C_2$ $\exists R. C$ $\forall R. C$ $\exists R. \{i\}$ $(\geq 2 RC)$ $(\leq 2 RC)$	not C C_1 or C_2 C_1 and C_2 R some C R only C R value $\{i\}$ R min 2 C R max 2 C
R^{-}	inverse R

Implemented DL Systems

Implemented DL Systems, cont'd

DL reasoners for the ontologies and Semantic Web era:

- FaCT++
- RACERPro
- KAON2
- Pellet
- HermiT

NOTE: See http://www.cs.man.ac.uk/~sattler/reasoners.html for links to webpages of DL reasoners.

Wrap-Up

