Lenguajes, Computación y Sistemas Inteligentes

Grado en Ingeniería Informática de Gestión y Sistemas de Información
Escuela de Ingeniería de Bilbao (UPV/EHU)

Departamento de Lenguajes y Sistemas Informáticos

2º curso

Curso académico: 2015-2016

Grupo 16

Tema 7: Los AF – Equivalencias

1,000 puntos

Índice

- 7.1 Transformar un λ-AF para obtener un AF equivalente sin transiciones λ (0,500 puntos) . . .
 7.2 Transformar un AFND sin transiciones λ para obtener un AFDC equivalente (0,500 puntos)
 - ****************

7.1 Transformar un λ -AF para obtener un AF equivalente sin transiciones λ (0,500 puntos)

En la figura 1, se muestra el diagrama de transiciones de un autómata finito definido sobre el alfabeto $\mathbb{A} = \{a,b,c\}$ y que contiene transiciones λ (λ -AF). Se ha de obtener un AF que sea equivalente y que no tenga transiciones λ . Para ello, hay que utilizar el método presentado en clase.

Figura 1: Diagrama de transiciones de un AF definido sobre el alfabeto $\mathbb{A} = \{a, b, c\}$.

7.2 Transformar un AFND sin transiciones λ para obtener un AFDC equivalente (0,500 puntos)

En la figura 2, se muestra el diagrama de transiciones de un autómata finito no determinista (AFND) definido sobre el alfabeto $\mathbb{A} = \{a, b, c\}$ y que no tiene transiciones λ . Se ha de obtener un autómata finito determinista

completo (AFDC) que sea equivalente. Para ello, hay que utilizar el método presentado en clase.

Figura 2: Diagrama de transiciones de un AFND sin transiciones λ definido sobre el alfabeto $\mathbb{A}=\{a,b,c\}.$