CS338 Assignment ARP Spoofing

Kuo Wang

April 2022

1 Tasks

- a. 00:0c:29:dc:1d:df
- $b.\ \ 192.168.88.128$
- c. 00:0c:29:8c:02:4b
- d. 192.168.88.129
- e. it is as below:

Destination	Gateway	Genmask	Flags	MSS Window	irtt	Iface
default	192.168.88.2	0.0.0.0	$\overline{\mathrm{UG}}$	0 0	0	eth0
192.168.88.0	0.0.0.0	255.255.255.0	U	0.0	0	eth0

f. it is as below:

Address	HWtype	HWaddress	Flags Mask	Iface	irtt	Iface
192.168.88.254	ether	00:50:56:fd:27:c4	\mathbf{C}	eth0	0	eth0
192.168.88.2	$_{ m ether}$	00:50:56:e2:9f:ea	\mathbf{C}	eth0	0	eth0

g. it is as below:

Destination	Gateway	Genmask	Flags	MSS Window	irtt	Iface
default	192.168.88.2	0.0.0.0	UG	0 0	0	eth0
192.168.88.0	*	255.255.255.0	U	0 0	0	eth0

h. I ping'd google.com and this is the resulting cache:

address	HWtype	HWaddress	Flags	Flags	Iface
192.168.88.2	ether	00:50:56:E2:9F:EA	$^{\mathrm{C}}$	0.0	eth0

- i. The user needs to send it to 00:50:56:E2:9F:EA to get it started, since it is the foremost interface out of which all requests are sent.
- j. I see an HTTP response on MS, and I see some captured packets following DHCP, ICMPv6, and ARP protocol. They do not contain interesting information.
- k. I followed the guide. This answer holds place for "k".
- 1. It changed quite considerably. All the IP addresses point to the MAC address of the Kali machine.

address	HWtype	HWaddress	Flags	Mask	Iface
192.168.88.2	ether	00:0C:29:DC:1D:DF	\mathbf{C}		eth0
kuo-homePC	ether	00:0C:29:DC:1D:DF	\mathbf{C}		eth0
192.168.88.254	ether	00:0C:29:DC:1D:DF	\mathbf{C}		eth0
192.168.88.254	ether	00:0C:29:DC:1D:DF	\mathbf{C}		eth0

- m. It will go to 00:0C:29:DC:1D:DF, since ettercap spoofed the ARP so the sheep connects to 00:0C:29:DC:1D:DF (mal) instead of the correct MAC address.
- n. Wireshark started. This answer holds the place for "n".
- o. I see an HTTP response on MS. I also see the captured packets in Wireshark including HTTP GET requests and reponses. From Kali, I can also see the sequence of TCP handshake and the back-and-forth of HTTP communications between MS and the web server.
- p. Here is what happens:
 - After the attack begins, Kali sends to the router the rule that ALL IP's direct to Kali's MAC address. This changes the contents of the ARP cache of MS.
 - When MS executes curl, it sends the data packets to Kali via the spoofed MAC address.
 - In Kali, Ettercap receives data from MS and relays it to the actual destination. When Ettercap receives the destination's response, it relays the data to MS.
 - Meanwhile, all those activities are logged by Wireshark and visible to Mal.
- q. One scheme I can think of is an alarm that's triggered whenever a certain numbers of IP addresses direct to the same MAC address in the ARP cache, which is scanned periodically. A false positive alarm is possible when many IP addresses legitimately point to the same MAC address without spoofing.