

- 1 -

METHOD OF ASSAYING PYRROLE-CONTAINING
BIOLOGICAL COMPOUNDS

1 Cross-Reference to Related Application

2

3 This application is a divisional of co-pending
4 U.S. Application No. 09/970,328, filed October 2,
5 2001, which is a continuation-in-part of U.S.
6 Application No. 09/679,141, filed October 3, 2000
7 (now abandoned), the disclosures of which are
8 incorporated herein by reference.

9

10 BACKGROUND OF THE INVENTION

11 Field of the Invention

12 This invention relates to methods of assaying
13 pyrrole-containing biological compounds and chemical
14 compositions that can be used in such methods. More
15 specifically, it relates to a method for detecting
16 pyrrole-containing molecules that are markers of
17 particular disease states.

18

19 Description of Related Art

20 Erlich's reagent, or *p*-dimethylaminobenzaldehyde
21 (1), is a molecule that can react with pyrroles and
22 indoles to form a chromogenic compound.

1

2 See G. Lombard and V. Dowell, *J. Clin. Microbiol.*

3 (1983) 18:609-613. The mechanism of action is
4 typically described as an electrophilic attack on the
5 α -carbon atom of a pyrrole. This attack forms a
6 highly conjugated cation that absorbs light in the
7 visible spectrum. Such a mechanism is graphically
8 represented in Scheme A above.

9

10 The reaction of Ehrlich's reagent with certain
11 compounds has been discussed. For instance, Iyer
12 reported a pyrrole is formed when LGE₂ is reacted
13 with proteins. See Iyer et al., *J. Org. Chem.* (1994)
14 59:6038-6043. When the pyrrole was contacted with
15 Ehrlich's reagent in the presence of BF₃OEt₂, a blue-
16 green chromophore was produced. The chromophore was
17 identified as a pyrrolic electrophilic substitution
18 product.

1 Lombard reported the reaction between Ehrlich's
2 reagent and bacterially derived indoles. See G.
3 Lombard and V. Dowell, *J. Clin. Microbiol.* (1983)
4 18:609-613. The sensitivity of the reagent was
5 compared to two other indole detecting compounds:
6 Kovac's reagent and DMCA. Ehrlich's reagent was
7 reported to be 10 times less sensitive than DMCA and
8 10 times more sensitive than Kovac's reagent in
9 detecting indole.

10

11 While Ehrlich's reagent has been used to roughly
12 detect the presence of pyrroles or indoles in a
13 targeted material, improved compositions and methods
14 for detecting such heterocycles are desirable,
15 especially methods that provide for detecting
16 pyrrole-containing molecules that are markers of
17 particular disease states.

18

19 SUMMARY OF THE INVENTION

20

21 The present invention provides methods of assaying
22 pyrrole-containing biological compounds.

23 In one case the method involves:

- 24 1) contacting the biological compound with either:
25 a) an optionally labelled derivatizing agent
26 (bound to or able to bind to a solid
27 support), wherein the derivatizing agent
28 forms a reaction product with the
29 biological compound (preferably via
30 covalent attachment thereto), followed by

- 1 exposure to a detectable molecule which
2 forms a complex with the reaction product;
3 or
4 b) an optionally labelled derivatizing agent
5 not bound to a solid support, wherein the
6 derivatizing agent forms a reaction product
7 with the biological compound (preferably
8 via covalent attachment thereto), followed
9 by exposure to a binding agent specific to
10 the biological compound in the reaction
11 product, said binding agent being bound to
12 a solid support; or
13 c) a binding agent bound to a solid support,
14 said binding agent being specific to the
15 biological compound and forming a complex
16 therewith, followed by exposure to an
17 optionally labelled, derivatizing agent
18 which forms a reaction product with the
19 biological compound moiety of said complex
20 (preferably via covalent attachment
21 thereto); and
22
23 2) determining the amount of bound biological
24 compound by detecting the detectable molecule,
25 or by determining the amount of free or bond
26 binding agent or by measuring the amount of
27 label present.
28

1 Preferably, the method of assaying pyrrole-containing
2 biological compounds is Method 1, described in part
3 a) above. Method 1 involves the following steps:

4

5 1) contacting a biological compound with a
6 derivatizing agent of the following structure in
7 the bound form;

8
9 wherein R¹ is an alkyl group, R² is an alkyl
10 group, A is a linking group and B is a solid
11 support, and wherein the contact induces
12 formation of a reaction product, and wherein the
13 reaction product comprises the covalent
14 attachment of the biological compound to the
15 derivatizing agent; followed by contacting the
16 reaction product with a detectable molecule,
17 wherein the contact induces specific binding of
18 the detectable molecule to the reaction product
19 to provide a complex; and

20
21 2) determining the amount of bound biological
22 material by detecting the detectable molecule.

23

1 Preferably the detectable molecule is a monoclonal
2 antibody (MAb) specific to the biological compound.
3 Preferably the solid support is a microtitre or a
4 treated glass slide.

5
6 Preferably the method of assaying pyrrole-containing
7 biological compounds is Method 2 described in part b)
8 above. Method 2 involves the following steps:

- 9
10 1) contacting the biological compound with an
11 optionally labelled derivatizing agent in
12 solution to form a reaction product therewith
13 (preferably via covalent attachment thereto)
14 followed by exposure to a binding agent bound to
15 a solid support, said binding agent being
16 specific to the biological compound in the
17 reaction product and
18
19 2) determining the amount of bound biological
20 compound by determining the amount of labelled
21 derivatizing agent bound to the solid support.

22
23 Preferably the derivatizing agent is biotinylated
24 Ehrlich's reagent. Preferably the solution
25 containing the reaction product is neutralised prior
26 to contact with the bound binding agent. Preferably
27 the bound MAb is bound to a solid support, suitably a
28 microtitre plate or a treated glass slide.

1 Preferably the derivatizing agent is labelled with a
2 labeling molecule, suitably a radio-labelled,
3 fluorescent label, enzyme label or the like.
4 Preferably the amount of bound biological compound is
5 determined by detecting the amount of labelled
6 derivatizing agent bound on the solid support.

7
8 Method 2 takes into account the fact that relatively
9 strong acid conditions are required for the reaction
10 of derivatizing reagents with pyrroles. Thus, most
11 non-covalent interactions, such as antibody-antigen
12 complexes, would be disrupted under these conditions.
13 To overcome this problem, pyrrolic units in the
14 biological sample are targeted in Method 2 by
15 reaction in solution with derivatizing agent to form
16 a reaction product, preferably via covalent
17 attachment thereto followed by capture of the
18 reaction product on a surface coated with specific
19 antibodies.

20
21 Preferably, the method of assaying pyrrole-containing
22 biological compounds is Method 3, described in part
23 a) above. Method 3 involves the following steps:

24
25 1) contacting a biological compound with a
26 derivatizing agent in solution to form a
27 reaction product wherein the derivatizing agent
28 comprises a first partner of a strong binding
29 pair.

- 1 2) contacting the reaction product with a solid
- 2 support having a second partner of the strong
- 3 binding pair on its surface, to form a bound
- 4 complex with the reaction product;
- 5 3) contacting the bound complex with a detectable
- 6 molecule;
- 7 4) determining the amount of bound biological
- 8 compound by detecting the amount of detectable
- 9 molecule bound to the solid support.

10

11 Preferably the derivatizing agent is a *p*-
12 dimethylaminobenzaldehyde derivative, and in bound
13 form has the following structure:

14

15 wherein R¹ is an alkyl group, R² is an alkyl group, R⁴
16 is a heteroalkyl group, X is a first partner of a
17 strong binding pair and Y is a solid support having a
18 second partner of a strong binding pair on its
19 surface.

20

21 Preferably the solution containing the reaction
22 product is neutralized prior to contact with the
23 solid support.

24

1 In one embodiment the first partner of the strong
2 binding pair is from avidin and the second partner of
3 the strong binding pair is from biotin.

4 Alternatively the first partner of the strong binding
5 pair is from biotin and the second partner of the
6 strong binding pair is from avidin. In a second
7 embodiment the first partner of the strong binding
8 pair is from biotin and the second partner of the
9 strong binding pair is from streptavidin.

10 Alternatively the first partner of the strong binding
11 pair is from streptavidin and the second partner of
12 the strong binding pair is from biotin.

13
14 Preferably the detectable molecule is a monoclonal
15 antibody specific to the biological compound moiety
16 of the complex. Suitably the solid support is a
17 microtitre plate or a treated glass slide.

18
19 The present invention also provides a method of
20 purifying an antigen, said method comprising;

21
22 1) contacting a pyrrole-containing biological
23 compound with one of;
24 a) an optionally labelled derivatizing agent
25 (bound or able to bind to a solid support)
26 wherein the derivatizing agent forms a
27 reaction product with the biological
28 compound (preferably via covalent
29 attachment thereto) followed by exposure to

- 1 a detectable molecule which forms a complex
2 with the reaction product; or
3 b) an optionally labelled derivatizing agent,
4 not bound to a solid support, wherein the
5 derivatizing agent forms a reaction product
6 with the biological compound (preferably
7 via covalent attachment thereto), followed
8 by exposure to a binding agent bound to a
9 solid support wherein the binding agent is
10 specific to a biological compound in the
11 reaction product; or
12 c) a binding agent bound to a solid support,
13 said binding agent being specific to the
14 biological compound, and forming a complex
15 therewith, followed by exposure to an
16 optionally labelled, derivatizing agent,
17 which forms a reaction product with the
18 biological compound moiety of said complex
19 (preferably via covalent attachment
20 thereto); and
21 2) eluting the biological compound from the solid
22 support.

23
24 This method allows easy preparation of an antigen,
25 which can then be used in screening for an antigen
26 detection agent, for example antibody.

27
28 Preferably the derivatizing agent for use in the
29 method of purifying an antigen is of the following
30 structure in bound form:

1
2 wherein R¹ is an alkyl group, R² is an alkyl group, A
3 is a linking group and B is a solid support.

4
5 Preferably the labeled derivatizing agent has the
6 following structure in bound form:

7 wherein R¹ is an alkyl group, R² is an alkyl group, R⁴
8 is a heteroalkyl group, X is a first partner of a
9 strong binding pair and Y is a solid support having a
10 second partner of a strong binding pair on its
11 surface.

12
13 Preferably the detectable molecule is a monoclonal
14 antibody specific to the biological compound.

15
16 Optionally the derivatizing agent is labelled with a
17 radio-label, fluorescent label, enzyme label or the
18 like.

19

1 The present invention also provides compounds for use
 2 in the method of assaying pyrrole-containing
 3 biological compounds.

4

5 In one case, the compound is of the following
 6 structure:

7

8 wherein R¹ is an alkyl group, R² is an alkyl group, A
 9 is a linking group and B is a solid support.

10

11 More preferably the labeled derivatizing agent has
 12 the following structure:

13

1 wherein R¹ is a straight-chain alkyl group containing
2 1 to 10 carbon atoms, R² is a straight-chain alkyl
3 group containing 1 to 10 carbon atoms, and R⁴ is a
4 straight-chain heteroalkyl group containing 2 to 10
5 carbon atoms and at least 2 heteroatoms.

6

7 BRIEF DESCRIPTION OF THE DRAWINGS

8

9 FIGS. 1a-1i show mass spectrometry spectra of pyrrole
10 crosslink-containing peptides.

11

12 FIG. 2 schematically represents Methods 1, 2 and 3.

13

14 FIG. 3 shows the difference of pyrrole capture of
15 bone peptides at different dilutions.

16

17 FIG. 4 shows pyrrole capture at different dilution of
18 biological sample using detection antibodies specific
19 for isoaspartyl telopeptides.

20

21 FIG. 5 shows pyrrole capture assay for digested and
22 immobilized collagen-containing tissues.

23

24 FIG. 6 shows the results for a serial dilution of
25 biotin-ER reacted bone digest or a streptavidin
26 coated plate detected with NTP monoclonal antibody.

27

28

29

1 DESCRIPTION OF THE SPECIFIC EMBODIMENTS

2

3 Introduction

4 The present invention provides methods of assaying
5 pyrrole-containing biological compounds and chemical
6 compositions that can be used in those methods. In
7 Method 1 of the present invention, a biological
8 sample, that may have been processed, is contacted
9 with a solid support bound or able to bind
10 derivatizing agent. Pyrrolic units in the biological
11 sample react with the derivatizing agent, thereby
12 immobilizing components containing the pyrroles on
13 the solid support. The reacted solid support is
14 contacted with a detectable molecule, such as a MAb,
15 which interacts with a portion of the immobilized
16 biological material. Detection of the detectable
17 molecule on the solid support indicates that the
18 biological material contains pyrrolic units.

19

20 In Method 2 of the present invention an optionally
21 processed biological sample is contacted with a non-
22 bound, optionally labeled derivatizing agent in
23 solution. The derivatizing agent is suitably labelled
24 with a radio-label, fluorescent label, enzyme label
25 or the like. The derivatizing agent reacts with the
26 pyrrolic units in the biological sample to form a
27 reaction product wherein the reaction product
28 comprises the covalent attachment of the derivatizing
29 agent and the pyrrolic units in the biological

1 compound. The solution containing the reaction
2 product is neutralised.

3

4 The reaction product may be contacted with a solid
5 support bound MAb specific to the biological sample.
6 The MAb reacts with the reaction product to form a
7 complex immobilized on the solid support. Detection
8 of the labeled molecule on the solid support
9 indicates that the biological material contains
10 pyrrolic units.

11

12 In method 3 of the present invention, an optionally
13 processed biological compound is contacted with a
14 derivatizing agent, wherein the derivatizing agent
15 comprises a first binding partner of a strong binding
16 pair, suitably from biotin. The derivatizing agent
17 is in solution. Pyrrolic units in the biological
18 compound react with the derivatizing agent to form a
19 reaction complex. The solution containing the
20 reaction product is neutralised prior to contact with
21 a solid support coated with a second binding partner
22 of the strong binding pair, to form a bound complex
23 with the reaction product. Suitably the second
24 binding partner is from streptavidin. The solid
25 support is then contacted with a detectable molecule,
26 preferably a MAb specific to the biological compound
27 moiety of said complex. The amount of bound
28 biological compound is determined.

29

30 FIG. 2 schematically illustrates Methods 1, 2 and 3.

1 Definitions

2 "Alkyl group" refers to a straight-chain, branched or
3 cyclic group containing a carbon backbone and
4 hydrogen. Examples of straight-chain alkyl groups
5 include methyl, ethyl, propyl, butyl, pentyl and
6 hexyl. Examples of branched alkyl groups include i-
7 propyl, sec-butyl and t-butyl. Examples of cyclic
8 alkyl groups include cyclobutyl, cyclopentyl and
9 cyclohexyl. The "alkyl" group also refers to
10 alkylene groups.

11

12 Alkyl groups are substituted or unsubstituted. In a
13 substituted alkyl group, a hydrogen on the carbon
14 backbone is replaced by a different type of atom
15 (e.g., oxygen, nitrogen, sulfur, halogen). For
16 instance, 2-hydroxyethyl is an ethyl group where one
17 of the hydrogens is replaced by an OH group; 2-
18 chloropropyl is a propyl group where one of the
19 hydrogens is replaced by a Cl group.

20

21 "Heteroalkyl group" refers to a straight-chain,
22 branched or cyclic group containing a carbon-
23 heteroatom backbone and hydrogen. Heteroatoms
24 include, without limitation, oxygen, nitrogen and
25 sulfur. The following groups are examples of
26 heteroalkyl groups: $-\text{CH}_2\text{OCH}_2\text{CH}_3$, $-\text{NH}(\text{CH}_2)_5\text{NH}-$ and
27 $-\text{NH}(\text{CH}_2)_2\text{SS}(\text{CH}_2)_2\text{NHC(O)(CH}_2)_5\text{NH}-$. As with alkyl
28 groups, heteroalkyl groups are substituted or
29 unsubstituted.

30

1 "Leaving group" refers to a chemical group that is
2 capable of being displaced in a nucleophilic
3 substitution reaction. Examples of leaving groups
4 include -Cl, -Br, -OC(O)CH₃ and -SPh.

5
6 "Linking group" refers to a chemical group that
7 connects one chemical group to another. For
8 instance, in the compound CH₃C(O)-NH(CH₂)₅NH-CH₃, the
9 group -NH(CH₂)₅NH- is a linking group between CH₃C(O)-
10 and -CH₃.

11
12 Types Of Biological Materials To Be Examined

13
14 The present method is used to determine the presence
15 of pyrrolic units in biological materials, including
16 pyrrolic crosslinks in collagen extracts. For some
17 time, researchers have proposed that pyrrolic
18 components exist in collagen. See Scott et al.,
19 Biosci. Rep. (1981) 1:611-618; see also Kuypers et
20 al., Biochem. J. (1992) 283:129-136. Only indirect
21 support for the proposal has been available, however,
22 as the isolation and characterization of collagen
23 derived pyrrolic crosslinks has proven difficult.

24
25 Experimental results presented herein provide direct
26 confirmation of pyrrolic crosslinks in collagen. See
27 Examples 4 and 5. A series of peptides from human
28 bone collagen enzyme digests were isolated using a
29 solid support bound *p*-aminobenzaldehyde, indicating

1 the presence of pyrrolic units in the collagen.
2 Analysis of the isolated peptides using mass
3 spectrometry showed that a relatively large number of
4 the peptides possessed masses extremely close to the
5 theoretic masses of complexes derivatized at
6 predominantly the N-telopeptide sites of collagen.

7
8 Pyrrolic crosslinks are particularly prevalent in
9 bone collagen where they result from the natural
10 maturation process of the tissue. During resorption
11 of bone by osteoclasts, fragments of collagen
12 crosslinked by pyrroles are released into the
13 circulation. Their concentration in various
14 biological fluids provides an indication of the rates
15 of bone degradation. Increased bone resorption rates
16 are associated with a number of diseases, including,
17 for example, the following: osteoporosis, osteo- and
18 rheumatoid arthritis, and diseases involving
19 abnormalities of vitamin D or parathyroid hormone
20 such as osteomalacia and hyperparathyroidism. By
21 detecting pyrrolic crosslinks using the present
22 invention, therefore, one is able to characterize and
23 monitor such diseases.

24
25 Another example of biological materials that can be
26 assayed using the present invention is the
27 isolevuglandins (e.g., levuglandin E₂).
28 Isolevuglandins are formed through free radical-
29 mediated oxidation of polyunsaturated fatty acid
30 esters in low-density lipoproteins. These compounds

1 react with various proteins to produce pyrroles in
2 vivo. See Brame et al., *J. Biol. Chem.* (1999)
3 274:13139-13146; see also Salomon et al., *J. Biol.*
4 *Chem.* (1999) 274:20271-20280.

5
6 Free radical-mediated oxidation has been implicated
7 in a wide variety of human diseases, including
8 atherosclerosis, cancer and neurodegenerative
9 diseases. See B. Halliwell and J. Gutteridge,
10 *Methods Enzymol.* (1990) 186:1-85. Specifically, the
11 oxidative modification of low density lipoproteins is
12 a key step in atherosclerosis etiology. The
13 detection of isolevuglandin derived pyrroles
14 accordingly provides a method for diagnosing and
15 monitoring atherosclerosis.

16
17 Proteins modified by non-enzymatic glycosylation
18 reactions constitute a third example of a biological
19 material that can be assayed using the present
20 invention. Threose, primarily derived from the
21 breakdown of ascorbate (vitamin C), represents one
22 instance of this reaction. It is particularly
23 reactive with lysine residues in proteins and forms
24 pyrrolic structures (e.g., formyl threosyl pyrrole)
25 as a result. See R. Nagaraj and V. Monnier, *Biochem.*
26 *Biophys. Acta* (1995) 1253:75-84.

27
28 Detecting formyl threosyl pyrrole is specifically
29 useful for monitoring patients with diabetes. It is
30 also an example of an advanced glycation end-product

1 (AGE). AGEs are associated, for example, with
2 abnormal neurofibrillar structures in Alzheimer's
3 disease, and the presence of increases AGEs in
4 lipoproteins appears to accelerate the oxidative
5 reactions leading to atherosclerosis. Therefore, the
6 detection of formyl threosyl pyrrole provides a
7 method for diagnosing and monitoring those diseases
8 as well.

9

10 Methods Of Processing Biological Materials

11

12 Subject biological materials assayed using the
13 present method may be unprocessed (e.g., urine, serum
14 or plasma) or processed. A primary goal of
15 processing is the solubilization of the sample.

16

17 Where the biological material is a tissue, it is
18 usually de-fatted by two brief extractions (e.g., 15
19 min.) with acetone or chloroform:methanol (2:1 v/v).
20 Mineralized tissues are, for example, powdered
21 underliquid nitrogen and subsequently demineralized
22 using extraction with 0.5 M EDTA at pH 7.5 for 72-96
23 hours at 4 °C. Connective tissue samples are
24 typically denatured by heating the sample in saline
25 at pH 7.4 for 30 min at 70 °C.

26

27 Sample solubilization typically involves the use of
28 proteases rather than chemical hydrolysis, as
29 pyrroles exhibit chemical instability under certain
30 conditions. Where proteases are used, a sample is

1 treated with a suitable proteolytic enzyme (e.g.,
 2 trypsin) at a suitable temperature (e.g., 37 °C).
 3 Examples of other enzymes one can use to solubilize a
 4 biological material include chymotrypsin, pronase,
 5 pepsin, proteinase K and members of the cathepsin
 6 family (B, L, N or K). For any chosen enzyme, one of
 7 ordinary skill can readily determine a suitable
 8 reaction buffer pH and temperature.

9

10 Derivatizing Agents

11
 12 The derivatizing agents used in the present assay are
 13 *p*-amino benzaldehyde derivatives used in the present
 14 assay are of the structures 4 and 5. R¹ in the
 15 structures is an alkyl group; R² is an alkyl group;
 16

17 R³ is a hydroxyl group or leaving group; and, R⁴ is a
 18 heteroalkyl group.

19
 20 The substituent R¹ is preferably a straight-chain
 21 alkyl group containing 1 to 10 carbon atoms. It is
 22 more preferably a straight-chain alkyl group

1 containing 1 to 5 carbon atoms. Most preferably, R¹
 2 contains 1 carbon atom (i.e., -CH₃).

3
 4 The substituent R² is preferably a straight-chain
 5 alkylene group containing 1 to 10 carbon atoms. It
 6 is more preferably a straight-chain alkylene group
 7 containing 1 to 5 carbon atoms. Most preferably R²
 8 contains 2 carbon atoms (i.e., -CH₂CH₂-).

9 The substituent R³ is preferably -OH, -OR⁵ (where R⁵
 10 is a straight chain alkyl such as methyl), -Cl or
 11 SR⁵. It is more preferably -OH or -OR⁵. Most
 12 preferably R³ is -OH.

13
 14 The substituent R⁴ is preferably a straight-chain
 15 heteroalkyl group containing 2 to 10 carbon atoms and
 16 at least 2 heteroatoms. It is more preferably a
 17 straight-chain heteroalkyl group containing 4 to 10
 18 carbon atoms and at least 2 nitrogen atoms. Most
 19 preferably R⁴ is -NHCH₂CH₂CH₂CH₂NH- or
 20 -NHCH₂CH₂SSCH₂CH₂NHC(O)-CH₂CH₂CH₂CH₂N-.

21
 22 Examples of three preferred derivatizing agents are
 23 p-amino benzaldehyde derivatives are shown as
 24 compounds 6, 7 and 8:

25

1

2 Modes Of Attachment To A Solid Support

3

4 The derivatizing agent is attached to the solid
 5 support through either a covalent bond or a
 6 noncovalent interaction. A derivatizing agent in
 7 bound form attached to solid support through a
 8 covalent bond is represented by compound 9; a
 9 derivitizing agent in bound form attached to a solid
 10 support through a noncovalent interaction is
 11 represented by compound 10:

12

13 The substituents of compound 9 are defined as
 14 follows: R¹ is an alkyl group; R² is an alkyl group;
 15 A is a linking group and B is a solid support.
 16 Preferably, R¹ and R² are alkyl groups containing 1
 17 to 10 carbon atoms and A is a heteroalkyl group.

1 More preferably, R¹ and R² are alkyl groups
2 containing 1 to 5 carbon atoms and A is a heteroalkyl
3 group comprising at least 1 nitrogen atom. Most
4 preferably, R¹ is -CH₃ and R² is -CH₂CH₂-. The
5 substituents of compound 10 are defined as follows:
6 R¹ is an alkyl group; R² is an alkyl group; R⁴ is a
7 heteroalkyl group; X is a first partner of a strong
8 binding pair and Y is a solid support having a second
9 partner of a strong binding pair on its surface.
10 Preferably, R¹ and R² are alkyl groups containing 1
11 to 10 carbon atoms and R⁴ is a straight-chain
12 heteroalkyl group containing 2 to 10 carbon atoms and
13 at least 2 heteroatoms. More preferably, R¹ and R²
14 are alkyl groups containing 1 to 5 carbon atoms, R⁴
15 is -NH(CH₂)₅NH- or -NH(CH₂)₂SS(CH₂)₂NHC(O)(CH₂)₅NH-.
16 Most preferably, R¹ is -CH₃ and R² is -CH₂CH₂-.

17 Where a covalent bond is used for attachment, a
18 surface is typically derivatized to afford a reactive
19 functional group such as an alcohol or amine. For
20 instance, compound 6 is coupled to a Nunc Covalink™
21 plate, available from Nalge Nunc International,
22 through the formation of an amide bond with a C8-
23 primary amine. See www.nalgenunc.com. A second
24 example of a suitable solid support is a DNA-BIND™
25 surface, available from Corning. See
26 www.scienceproducts.corning.com. One reacts a
27 bifunctional compound, such as 1,5-diaminopentane,
28 with the surface to provide available amine groups

1 for covalent attachment. A compound such as 6, which
2 contains a carboxylic acid, is coupled to the surface
3 groups through the formation of an amide bond. A
4 third example of a solid support is a glass
5 substrate. A glass slide is treated with
6 aminopropyl-triethoxysilane to provide a glass
7 substrate containing a reactive amine across its
8 surface. See U.S. 5,919,523. The derivatized slide
9 is reacted with compound such as 6 in the presence of
10 a suitable reagent that induces amide bond formation.
11 Where a noncovalent interaction is used for
12 attachment, a compound containing one partner of a
13 strong binding pair is adhered or bonded to the solid
14 support. The other partner of the pair is covalently
15 attached to a derivatizing agent to form a conjugate.
16 When the conjugate is contacted with the solid
17 support, a strong interaction (e.g., one or more
18 hydrogen bonds) immobilizes the conjugate on the
19 support.

20
21 An example of a strong binding pair is a
22 biotin:avidin complex. (A biotin:streptavidin
23 complex is another example.) Typically, a support
24 surface is derivatized to include biotin or avidin.
25 Avidin coated polystyrene plates (i.e., Reacti-Bind™
26 NeutrAvidin™ coated plates) are available, for
27 instance, from Pierce. See www.piercenet.com. The
28 avidin coated plate is contacted with a biotin
29 containing *p*-aminobenzaldehyde derivative such as
30 compound 7. The resulting biotin-avidin complex

1 serves to attach compound 7 to the solid support
2 through noncovalent interactions.

3

4 Examples Of Different Assay Formats

5

6 The method of assaying pyrrole-containing biological
7 compounds is typically run in a multi-well plate
8 (e.g., 96-well plate), but other assay formats are
9 also used. The method is also performed using a
10 strip format, where a derivatizing agent is
11 immobilized on the strip surface. A third exemplary
12 format involves the use of a polymeric bead (e.g.,
13 polystyrene bead) on which a derivatizing agent is
14 immobilized. Yet another format involves the use of
15 micro-array or chip technology; use with surface
16 plasmon resonance technology.

17

18 Contact Of Extract/Isolate With Detection Compound

19

20 To perform a method of the present invention, a
21 biological fluid or processed biological material is
22 contacted with a solid support bound derivatizing
23 agent. The biological material may be solubilized in
24 a suitable solvent to form a solution prior to the
25 contact. When a multi-well format is used, for
26 example, the solution and any additional elements
27 readily discernable to one of ordinary skill in the
28 art is added to one or more wells. For the strip
29 format, a strip is dipped into a solution containing
30 the biological material; and, for the bead format, a

1 vial or tube is used to mix the beads and the
2 solution.

3
4 Regardless of assay format, contact between a
5 pyrrole-containing biological material and the
6 support bound derivatizing agent induces a coupling
7 reaction. The result of the reaction is a covalent
8 bond between the biological material and the
9 derivatizing agent. This serves to immobilize the
10 pyrrole-containing biological material on the solid
11 support.

12
13 When desired, the solid support bound biological
14 material is washed with at least one suitable solvent
15 to remove impurities from the reaction medium. The
16 solid support is typically dried after a washing
17 step. A variety of drying techniques are used,
18 including air drying, drying under reduced pressure
19 and thermal drying.

20
21 Methods Of Detection Using A Detectable Molecule

22
23 In a method of the present invention, the immobilized
24 material is contacted with a detectable molecule.
25 The detectable molecule specifically binds to a
26 portion of a targeted biological material. If the
27 material on the solid support is not the targeted
28 material, the detectable molecule will not bind to it
29 with high affinity.

30

1 The detectable molecule can bind to the targeted
2 biological material through either covalent or
3 noncovalent bonds. Typically, the detectable
4 molecule is a polyclonal, monoclonal or phage
5 library-derived antibody that binds to the biological
6 material through noncovalent bonds. Preferably, it
7 is a monoclonal antibody.

8

9 The detectable molecule is typically detectable in
10 one of three ways: 1) it contains functionality one
11 can observe; 2) it induces a chemical reaction that
12 produces an observable product; or 3) it interacts
13 with a second molecule that either contains
14 functionality one can observe or induces a chemical
15 reaction that produces an observable product.
16 Functionality one can observe includes chemical
17 groups that exhibit a measurable effect upon
18 stimulation. For instance, the following chemical
19 groups exhibit such an effect: a chemical group that
20 absorbs light at a certain wavelength (a chromophore)
21 and a chemical group that fluoresces upon exposure to
22 a particular wavelength of light. A chemical
23 reaction that produces an observable product
24 includes, for example, a reaction producing a
25 fluorescent compound, a luminescent compound or a
26 chromophoric compound.

27

28 Where the targeted biological material is collagen
29 derived pyrrole crosslinks, an example of a
30 detectable molecule is a monoclonal antibody (NTP)

1 raised against a synthetic octapeptide comprising
2 part of the sequence of the α 2(I) N-terminal
3 telopeptide. The NTP antibody is contacted with the
4 immobilized biological material. A secondary
5 antibody (goat anti-mouse IgG-peroxidase conjugate)
6 is introduced; which interacts with a portion of the
7 NTP antibody. Upon addition of 3,3',5,5'-
8 tetramethyl-benzidine dihydrochloride and hydrogen
9 peroxide, a chromophoric compound exhibiting an
10 absorbance at 450 nm is produced. See Example 6.

11

12 Contact of Extract/Isolate with Detection Compound
13 To perform Method 2 or 3 of the present invention, a
14 biological fluid or processed biological material is
15 contacted with a labeled derivatizing agent in
16 solution. The derivatizing agent is labeled with a
17 labeling molecule. Any suitable solvent as known by
18 a person skilled in the art may be used. A coupling
19 reaction between pyrrole-containing biological
20 material results in a reaction product comprising the
21 derivatizing agent covalently bonded to any pyrrole-
22 containing biological material.

23

24 Methods of Detection Using a MAb
25 In Method 2 of the present invention the reaction
26 product is immobilised by contact of the solution
27 with a MAb bound on a solid support.

28

29

30

1 Example 1: Preparation of compound 6.

2 N-Methyl-N-cyanoethyl-4-amino benzaldehyde (available
3 from Enterwin Chemicals, China or Sigma-Aldrich, USA)
4 (150 mg) was dissolved in 7.5 M NaOH, 6% H₂O₂ (5 ml)
5 and refluxed for 2 hours. The hydrolysate was
6 acidified by addition of concentrated HCl, dried
7 under vacuum and redissolved in ethanol (1.5 ml). An
8 aliquot of the solution (1 ml) was added to 0.2 M
9 NaOH (1 ml) and applied to an anion exchange column
10 (Bio-Rad AG 1-X8; 2 ml, pretreated with 2 M HCl, 2 M
11 NaOH and equilibrated with water). The column was
12 washed with water (12 ml) before elution of the bound
13 material with 2 M HCl. The eluent was dried under
14 vacuum and the residue resuspended in water (1 ml).
15 A small amount of residue (soluble in ethanol but
16 containing no compound 6) was removed after which the
17 aqueous fraction was dried under vacuum (yielding 7
18 mg of material) and redissolved in 0.1%
19 trifluoroacetic acid (1 ml). Aliquots (100 µl) of
20 the material was chromatographed on a Waters RCM
21 Prep-Pak® C₁₈ column (25 mm x 100 mm, 10 µm) pumped
22 at 4 ml/min. The buffers used were 0.1% TFA (buffer
23 A) and 70% acetonitrile, 0.1% TFA (buffer B) with a
24 gradient of 5 minutes at 5% B followed by a linear
25 increase to 70% B over 35 minutes. Monitoring at 330
26 nm showed a single major peak which eluted at 28.3
27 min. Fractions corresponding to the peak were pooled
28 and dried under vacuum (yield = 3 mg). Analysis of
29 the material by electrospray mass-spectrometry in
30 negative-ion mode using a MAT 900 mass spectrometer

1 (Finnigan MAT, Bremen, Germany) revealed the major
2 ion as $[M-H] = 206.2$ which corresponds to the
3 expected value for N-methyl-N-propionic acid-4-amino
4 benzaldehyde M_r 207.2.

5
6 Example 2: Preparation of compound 7.
7 Compound 6 (3 mg) was dissolved in water (3 ml) and
8 biotin-pentyl amine (30 mg; Pierce) was added. A
9 solution of 1-ethyl-3-(3-dimethylamino-
10 propyl)carbodiimide/N-hydroxysuccinimide (0.035
11 M/0.028 M respectively; 3 ml) was added and heated to
12 50 °C for 4 h. The resulting solution was dried
13 under vacuum and chromatographed using the
14 preparative RCM Prep-Pak® column described in
15 Example 1. The gradient applied was 20% B for 5 min
16 followed by a linear increase to 60% B over 30 min.
17 Two major components were detected, one eluting at 15
18 min. (unreacted acid) and one eluting at 18 min. The
19 component eluting at 18 min was analyzed by positive-
20 ion electrospray mass-spectrometry and showed $[M+H]$
21 of 518.7 and $[M+Na]$ of 540.6. These values
22 corresponded to the calculated M_r of compound 7 of
23 517.7. Compound 7 reacted with pyrrole carboxylic
24 acid in 4 M HCl to give a characteristic pink color
25 absorbing at 573 nm.

26
27 Example 3: Preparation of compound 8.
28 Compound 6 (1 mg) was dissolved in 0.1 M MES buffer
29 pH 5 (1 ml) and a ten-fold molar excess of cystamine
30 ($H_2N(CH_2)_2SS(CH_2)_2NH_2$) was added. The solution pH was

1 adjusted to 5 using HCl, and a solution of 1-ethyl-3-
2 (3-dimethylamino-propyl)-carbodiimide/N-
3 hydroxysuccinimide (0.035 M/0.028 M respectively; 1
4 ml) was added. The solution was heated to 50 °C for
5 4 h. The resulting aminated derivative was purified
6 by HPLC, eluting with 10 mM TFA and an acetonitrile
7 gradient (monitoring 330 nm). Biotinylation of the
8 aminated derivative was performed using succinimide-
9 LC-biotin (Pierce) according to the manufacturer's
10 instructions and again purified by HPLC. Structure 8
11 was confirmed by MALDI-TOF mass spectrometry.

12

13 Example 4: Reaction of compound 7 with a bone
14 digest.

15 De-fatted human bone (7 g) was powdered in a Spex
16 freezer-mill in liquid nitrogen. The resultant
17 powder was decalcified by 3 x 2-day extractions in
18 0.5 M EDTA, pH 8 at 4 °C, washed with water and
19 lyophilized. The decalcified bone powder (1.1 g) was
20 suspended in 0.1 M citrate buffer, pH 5, heated to
21 70°C for 1 hour to denature the triple-helical
22 structure and allowed to cool to 45 °C. Papain (100
23 U) was added, and the digest was incubated for 4
24 hours. The pH of the digest was adjusted to 7.4 by
25 the addition of 1 M Tris, and the temperature was
26 lowered to 37 °C for an overnight digestion with
27 protease type X (100 U). The completed digest
28 (estimated as 110 µM collagen by total pyridinium

1 crosslink content) was frozen, lyophilized and
2 suspended in water (7 ml).

3
4 After the addition of compound 7 (50 µg) to the bone
5 digest (500 µl), the mixture was acidified by the
6 addition of 12 M HCl (250 µl). During incubation for
7 30 min at room temperature, the solution turned
8 cherry-pink in color, and spectrometry showed the
9 presence of an absorption maximum at 571.7 nm
10 (characteristic of product from reaction of 4-
11 dimethylamino benzaldehyde with pyrrole). The acid
12 was neutralized by the addition of 12 M NaOH (approx.
13 220 µl) followed by 40 mM phosphate buffer (20 ml).

14
15 Example 5: Isolation of conjugation product between
16 compound 7 and pyrrolic peptides.

17 A monomeric avidin column (5 ml) was prepared
18 according to manufacturer's (Pierce) instructions.
19 The reacted bone digest of Example 4 at neutral pH
20 was added slowly to the column, which was then washed
21 with 6 column volumes of PBS followed by 1 column
22 volume of water. The biotinylated material was
23 eluted at about 1 ml/min with 1 M acetic acid
24 adjusted to pH 2.5 with ammonia, and 8 fractions (5
25 ml) were collected.

26
27 Estimation of biotinylated compounds by competitive
28 ELISA. In order to assess the efficiency of the
29 monomeric avidin column (Example 5), a competitive

1 ELISA was developed. Immulon 4 immunoassay plates
2 were coated with streptavidin (25 nM) in PBS for 2
3 hours at 37 °C. Samples or standards in PBS 0.1%
4 Tween, 0.5% fat-free milk powder (FFMP; 110 µl) were
5 added to biotinylated peroxidase (Sigma; 10 ng/ml;
6 110 µl) in PBS Tween, 0.5% FFMP in a U-bottomed 96-
7 well plate. The mixed samples were transferred to
8 the washed, streptavidin-coated plate and incubated
9 for 90 min at 37 °C. After washing the plate 3 times
10 with PBS/0.1% Tween, the peroxidase substrate (200
11 µl) tetramethyl-benzidine dihydrochloride (TMB) was
12 added (0.1 mg/ml) in 0.05 M citrate/phosphate buffer
13 pH 5, 0.012% v/v hydrogen peroxide. The reaction was
14 stopped by the addition of 3 M sulphuric acid (50 µl)
15 after 15 min.

16
17 *Analysis of isolated material by HPLC.* Material
18 eluted from the avidin column was reduced in volume
19 (100 µl) and chromatographed on a reversed phase HPLC
20 column (4.6 x 100 mm; C₁₈; particle size 3 µm). The
21 column was equilibrated with 0.1% TFA (buffer A), and
22 peptides were eluted over 35 min with linear
23 gradients formed with 70% acetonitrile, 0.1% TFA
24 (buffer B). The eluent was monitored at 214 nm, 280
25 nm and at 330 nm. Each fraction from the HPLC was
26 dried and redissolved in water (2 µl). An aliquot (1
27 µl) was mixed with α-cyano-4-hydroxy-cinnamic acid (1
28 µl of a 10 mg/ml solution in 70% acetonitrile 0.1%
29 TFA), dried onto a sample plate and analyzed by

1 MALDI-TOF mass spectrometry (Voyager-DE; Applied
2 Biosystems) calibrated externally using bradykinin.

3
4 The MALDI-TOF mass spectrometry spectra of each
5 fraction is shown in FIG. 1. As there were
6 insufficient quantities of many of the smaller
7 peptides to obtain amino acid composition data, some
8 ambiguities in their structural assignments did
9 arise. In particular, the mass difference between
10 Glu and Ile/Leu is equivalent to an additional
11 hydroxyl group and, for the isolated peptide with M_r
12 = 1086 (FIG. 1a), the ambiguity is due to the
13 possible presence of a hydroxylated crosslink. Thus,
14 this peptide may contain Gly and Glu (from either the
15 C- or N-telopeptides of the α_1 chain) or, for a
16 hydroxylated crosslink, a Gly residue linked with
17 either Ile (from the α_1 helix) or a leucine (from the
18 α_2 helix). Even where the amino acid composition is
19 known, the precise location of the residues may not
20 be clear, as in the case of the peptide with M_r = 957
21 (FIG. 1a) containing the biotinylated pyrrole with a
22 single Gly residue. This residue is shown in a
23 helical position (which could be at the N- or C-
24 terminal overlap sites) but could also be derived
25 from the $\alpha_2(I)$ N-telopeptide: this peak may contain
26 a mixture of Gly-containing peptides from the
27 different locations. The M_r = 1029 peptides shown in
28 FIG. 1e and 1g could have the same alternatives of
29 glutamate or hydroxylated pyrrole-leucine/isoleucine.

1 The peaks corresponding to a loss of Gly (FIG. 1b,
2 1c) are probably losses due to the energy of the
3 laser-desorption rather than discrete peptides, but
4 these peaks provide additional evidence for the
5 peptide structures proposed. The structures of the
6 larger peptides shown in the other panels are
7 unambiguous.

8

9 Example 6: Detection of pyrrole crosslinks (Method 1)

10 The carboxyl-Ehrlich derivative was coupled to a Nunc
11 Covalink® plate via a C8-primary amine group. After
12 adding the derivative to the plate (250 pmoles/well in
13 100 µl MES buffer, pH 4.5) followed by 100 µl of 1-
14 ethyl-3-(3-dimethylamino-propyl)carbodiimide/ N-
15 hydroxysuccinimide (0.035M / 0.028M respectively),
16 the plate was heated to 50°C and left overnight at
17 room temperature. The plate was aspirated and washed
18 with 4M HCl and 3 times with water. Each well
19 coupled the equivalent of 66 pmoles of the reagent
20 and the coupling was confirmed using HPLC.

21

22 Samples (110µl), prepared in a separate plate, were
23 acidified by the addition of 8M HCl (110 µl). The
24 acidified samples (200 µl) were then added to the
25 Ehrlich reactive plate and agitated for 1 hour at
26 room temperature. The plate was aspirated and washed
27 3 times in 4 M HCl, 3 times in water and finally 3
28 times in PBS/0.1% Tween; 10mM lysine, 0.5% fat-free
29 milk powder (assay buffer). The antibodies used were

1 a monoclonal antibody (NTP) raised against the $\alpha_2(I)$
2 telopeptide (1:1000 dilution) or affinity-purified,
3 polyclonal antibodies raised against the isoaspartyl
4 $\alpha_2(I)$ telopeptide (1:250 dilution). After incubation
5 for 17 hours at 4 °C, the plate was washed 3 times
6 with PBS-Tween and incubated for 1 hour with
7 secondary antibodies, goat anti-mouse IgG-peroxidase
8 conjugate, used at a dilution of 1:4000. The plate
9 was washed 3 times with PBS-Tween, and 200 μ l of
10 peroxidase substrate, 3,3',5,5'-tetramethyl-benzidine
11 dihydrochloride (TMB) is added (0.1 mg/ml) in 0.05 M
12 citrate/phosphate buffer, pH 5, containing 0.012% v/v
13 hydrogen peroxide. The reaction is stopped by the
14 addition of 3 M sulfuric acid (50 μ l), and the
15 absorbance was measured at 450 nm using a Dynatech MR
16 7000 plate reader.

17
18 Using the pyrrole-capture assay, serial dilutions of
19 a bone digest (starting at ~1.0 nmole/well collagen)
20 reacted in the Ehrlich plate gave progressively
21 decreasing reactivity with NTP antibody (FIG. 3). At
22 a fixed concentration (0.125 nmole/well) of pyrrole-
23 crosslinked bone peptides on the plate, preincubation
24 of the NTP antibody with serial dilutions adolescent-
25 human urine gave essentially complete inhibition of
26 colour development.

27
28 When pyrrole crosslink-containing peptides in urine
29 from an adolescent were reacted with the plate, the

1 NTP antibody failed to detect any telopeptide (FIG.
2 4). A possible explanation for this is that the
3 large quantities of non-isomerised telopeptide found
4 in urine at this age may not be extensively
5 crosslinked. This is supported by the fact that the
6 polyclonal antibody raised against the isoaspartyl
7 rearranged peptide did show reactivity towards
8 captured peptides in urine from an older subject (30
9 years), see FIG. 4.

10
11 The specificity of the assay was demonstrated by
12 showing that peptides derived from cartilage and
13 skin, which have no pyrrolic crosslinks, gave very
14 little reaction in the assay compared to the bone
15 digest and a phorphobilinogen standard (FIG. 5).

16
17 Example 7: Detection of pyrrole-containing peptides
18 from enzyme digests of bone (Method 2)
19 A tryptic digest of demineralized human bone (0.5 ml
20 containing approximately 5 μ M collagen) was reacted
21 with biotinylated Ehrlich's reagent (50 μ g; 0.1
22 μ moles) in 3M HCl for 30 min at room temperature. The
23 sample was neutralized by the addition of 2M NaOH and
24 diluted to 10 ml in phosphate buffered saline, pH 7.5
25 (PBS) containing 0.1% Tween 20. Serial (x2)
26 dilutions of this pre-reacted mixture were prepared
27 in PBS-Tween for addition to the detection plate.

28
29 The detection microtitre plate was coated with a
30 monoclonal antibody (NTP) recognizing an octapeptide

1 sequence containing the cross-linking region of the
2 N-telopeptide of collagen type I α_2 chain. In order
3 to gain the appropriate orientation of the antibody,
4 the plate was initially coated (3 hours at room
5 temperature) with anti-mouse IgG (raised in donkey)
6 by adding to each well 0.2 ml of a solution
7 containing 1 μ g/ml protein in PBS. After washing 3
8 times with PBS-0.05% Tween 20, the NTP antibody (1
9 μ g/ml in PBS) was added and reaction allowed to
10 proceed for 1 hour at room temperature. The plate
11 was again washed 3 times with PBS-Tween.
12
13 Serial dilutions of the pre-reacted mixture were
14 added to the coated plate and incubated at room
15 temperature for 2 hours. The plate was washed 3
16 times with PBS-Tween and the biotin-pyrrole detected
17 by the addition of streptavidin-horseradish
18 peroxidase (Amersham plc, Little Chalfont, UK)
19 diluted 1:2000 in PBS-Tween. After 1 hour the plate
20 was washed 3 times in PBS-Tween and the colour
21 developed by the addition of 200 μ l of peroxidase
22 substrate, 3,3',5,5'-tetramethyl-benzidine
23 dihydrochloride (TMB) is added (0.1 mg/ml) in 0.05 M
24 citrate/phosphate buffer, pH 5, containing 0.012% v/v
25 hydrogen peroxide. The reaction is stopped by the
26 addition of 3 M sulfuric acid (50 μ l), and the
27 absorbance was measured at 450 nm using a Dynatech MR
28 7000 plate reader.
29

1 Example 8: Detection of pyrrole-containing peptides
2 from enzyme digests of bone (Method 3)
3 Biotinylated Ehrlich's reagent was reacted with
4 tryptic peptides of human bone collagen as described
5 for Method 2.

6 For the detection plate, high-binding microtitre
7 plates (Immunlon 4) were coated with streptavidin (1
8 µg/ml in PBS) by incubating for 3 hours at 37°C. The
9 plates were washed 3 times with PBS-Tween and any
10 remaining binding sites were blocked by incubation at
11 room temperature for 1 hour with 3% bovine serum
12 albumin in PBS-Tween. The plate was again washed 3
13 times with PBS-Tween. Alternatively, ready coated
14 plates are available commercially from several
15 sources, such as Streptavidin-coated Combiplates from
16 Thermo Labsystems, Basingstoke, UK.

18 Serial dilutions of the pre-reacted mixture were
19 added to the streptavidin-coated plate and incubated
20 at room temperature for 2 hours. The plate was
21 washed 3 times with PBS-Tween and, after the addition
22 of NTP monoclonal antibody (1:1000 dilution in PBS-
23 Tween), the plate was incubated at 4°C for 18 hours.
24 The plate was washed 3 times with PBS-Tween and
25 incubated for 1 hour with secondary antibodies, goat
26 anti-mouse IgG-peroxidase conjugate, used at a
27 dilution of 1:4000. After washing the plate 3 times
28 with PBS-Tween, colour development with TMB and
29

1 recording optical densities at 450 nm using the plate
2 reader were done as described previously.

3

4 Example 9: Preparation of pyrrole containing antigens
5 from bone collagen peptides

6 Peptides were prepared from powdered, decalcified
7 human bone by digestion with cathepsin K. The bone
8 (10mg) was suspended in 1.0ml of 50mM sodium acetate
9 buffer, pH 5.0, containing 2mM EDTA and 2mM
10 dithiothreitol and, after the addition of 0.1mg
11 recombinant cathepsin K dissolved in 100 μ l PBS,
12 digestion was continued for 24 hours at 37°C with
13 gentle agitation. The digest was centrifuged
14 (13,000g) to remove any undigested tissue, and the
15 supernatant solution was desalted on a column (1.0 x
16 12cm) of Sephadex G25 equilibrated and eluted with
17 0.2M acetic acid. Pooled fractions containing the
18 bone peptides were lyophilised and reacted with
19 biotinylated, disulphide Ehrlich's reagent (compound
20 8; 0.1mg; 0.2 μ moles) in 3M HCl at room temperature
21 for 30 mins. The solution was neutralized by the
22 addition of 2 M NaOH and diluted to 10ml with PBS.

23

24 The bone digest Ehrlich conjugate was applied to a
25 5ml column of immobilized avidin (Pierce Chemical Co)
26 prepared according to the manufacturer's
27 instructions, and the column washed with PBS
28 containing 10 mM dithiothreitol and located by
29 monitoring the column effluent at 230nm. Pooled
30 fractions were dialysed against PBS to remove

1 reducing agent. This material was mixed with an
2 equal volume of adjuvant and used directly for
3 immunization of rabbits and mice.