

Discriminant Functions

Fungsi Diskriminan dengan Dua Kelas

- Mulailah dengan 2 masalah kelas $t \in \{0, 1\}$
- Diskriminan linier sederhana $y(x) = w^T x + w_0$

terapkan fungsi ambang batas untuk mendapatkan klasifikasi

• Proyeksi x dalam w Adalah $\frac{wr}{\|w\|}$

Fungsi Diskriminan dengan Beberapa Kelas

- Diskriminan linier antara dua kelas terpisah dengan hyperplane
- Bagaimana cara menggunakan ini untuk beberapa kelas?
- Metode satu lawan satu: buat pengklasifikasi K-1, antara Ck dan yang lainnya
- Metode satu lawan satu: buat pengklasifikasi K(K-1)/2, di antara semua pasangan

Fungsi Diskriminan dengan Beberapa Kelas

Solusinya adalah membangun K fungsi linier

$$y_k(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_{k0}$$

tetapkan x ke kelas arg maxk yk(x)

mberikan wilayah keputusan konveks yang terhubung

$$\hat{\boldsymbol{x}} = \lambda \boldsymbol{x}_A + (1 - \lambda) \boldsymbol{x}_B$$

$$y_k(\boldsymbol{x}^{\hat{}}) = \lambda y_k(\boldsymbol{x}_A) + (1 - \lambda) y_k(\boldsymbol{x}_B)$$

$$\Rightarrow y_k(\boldsymbol{x}^{\hat{}}) > y_j(\boldsymbol{x}^{\hat{}}), \forall j \ f = k$$

Kuadrat Terkecil untuk Klasifikasi

- Bagaimana kita mempelajari batas keputusan (\boldsymbol{w}_k , \boldsymbol{w}_{k0})?
- Salah satu pendekatan adalah dengan menggunakan kuadrat terkecil, mirip dengan regresi
 - Temukan *W* untuk meminimalkan kesalahan kuadrat pada semua contoh dan semua komponen vektor label:

$$E(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(\mathbf{x})_n - t_{nk})^2$$

• Beberapa aljabar, menggunakan invers semu seperti dalam regresi

Permasalahan Kuadrat Terkecil

- Mudah dipisahkan oleh hyperplanes, tetapi tidak ditemukan menggunakan kuadrat terkecil!
- Mengatasi masalah ini dengan model yang lebih baik Pertama, lihat kriteria yang berbeda untuk diskriminan linier

Diskriminan Linier Fisher

Diskriminan linier dua kelas bertindak sebagai proyeksi:

$$y = \boldsymbol{w}^T \boldsymbol{x} \ge -w_0$$

diikuti oleh ambang batas

Ke arah mana kita harus memproyeksikan?

Yang memisahkan kelas "baik"

Diskriminan Linier Fisher

- Natural ide adalah memproyeksikan ke arah garis yang menghubungkan sarana kelas
- Namun, bermasalah jika kelas memiliki varian dalam arah ini
 - Kriteria Fisher: memaksimalkan rasio pemisahan antar kelas (antar) terhadap variansi intra kelas (di dalam)

Probabilistic Generative Models

Logistic Sigmoid

- Fungsi $\sigma(a) = \frac{1}{1 + \exp(-a)}$ diketahui sebagai logistic sigmoid
- Fungsi ini mengubah axis menjadi [0, 1]
- Berupa bilangan continuous dan bisa diturunkan
- Menghindari masalah yang diakibatkan oleh least-square error fitting yang terlalu tepat (nanti)

Multi-class Extension

 Ada generalisasi dimana logistic sigmoid K > 2 kelas:

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_j p(\mathbf{x}|C_j)p(C_j)}$$

$$= \frac{\exp(a_k)}{\sum_j \exp(a_j)}$$

$$\dim a_k = \ln p(\mathbf{x}|C_k)p(C_k)$$

Atau, fungsi softmax

• Jika beberapa $a_k >> a_i$, $p(C_k | \mathbf{x})$ menuju 1

Gaussian Class-Conditional Densities

- Kembali ke *a* di logistic sigmoid untuk 2 kelas
- Mari berasumsi densitas class-conditional $p(x|C_k)$ adalah Gaussian, dan memiliki kovariansi yang sama dengan matrix Σ :

$$p(\mathbf{x}|C_k) = \frac{1}{(2\pi)^{D/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

• a mengambil bentuk sederhana:

$$a = \ln \frac{p(\boldsymbol{x}|C_1)p(C_1)}{p(\boldsymbol{x}|C_2)p(C_2)} = \boldsymbol{w}^T \boldsymbol{x} + w_0$$

• Catatan bahwa ketentuan kuadrat $\mathbf{x}^T \Sigma^{-1} \mathbf{x}$ batal

Maximum Likelihood Learning

- Kita bisa memasukkan parameter ke dalam model ini menggunakan kemiripan maksimum
 - Parameternya adalah $\mu_1, \mu_2, \Sigma^{-1}, p(C_1) \equiv \pi, p(C_2) \equiv 1 \pi$
 - Dirujuk sebagai θ
- Untuk datapoint x_n dari kelas C_1 ($t_n = 1$):

$$p(\mathbf{x}_n, C_1) = p(C_1)p(\mathbf{x}_n|C_1) = \pi N \ (\mathbf{x}_n|\boldsymbol{\mu}_1, \Sigma)$$

• Untuk datapoint \mathbf{x}_n dari kelas C_2 ($t_n = 0$):

$$p(\mathbf{x}_n, C_2) = p(C_2)p(\mathbf{x}_n | C_2) = (1 - \pi)N(\mathbf{x}_n | \boldsymbol{\mu}_2, \Sigma)$$

Maximum Likelihood Learning

• Kemiripan data latihan adalah:

$$p(\boldsymbol{t}|\boldsymbol{\pi}, \boldsymbol{\mu}_1, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{n=1}^{\infty} [\boldsymbol{\pi}N (\boldsymbol{x}_n|\boldsymbol{\mu}_1, \boldsymbol{\Sigma})] - \boldsymbol{\pi})N (\boldsymbol{x}_n|\boldsymbol{\mu}_2 \boldsymbol{\Sigma})]^{1-tn}$$

• Seperti biasa, ln adalah teman kita:

$$A(\mathbf{t};\theta) = \sum_{n=1}^{N} t_n \ln \pi + -t_{\underline{n}} \ln (1-\pi) + t_n \ln N_1 + (1-t_n) \ln N_2$$

Maksimal untuk setiapnya secara terpisah

Maximum Likelihood Learning - Class Priors

• Memaksimalkan sehubungan dengan kelas prior parameter π sangat mudah:

$$\frac{\partial}{\partial \pi} A(t; \theta) = \sum_{n=1}^{N} \frac{t_n}{\frac{\pi}{N_1}} \frac{1}{1 - \pi}$$

$$\Rightarrow \pi = \frac{N_1}{N_1 + N}$$

- N_1 dan N_2 adalah angka untuk poin poin latihan di setiap kelas
- Prior hanyalah sebagian dari poin poin di setiap kelas

Maximum Likelihood Learning - Gaussian Parameters

- Parameter yang lain juga bisa ditemukan dalam bentuk yang sama
- Rata rata kelas :

$$\mu_{1} = \frac{1}{N_{1}} \sum_{n=1}^{N} t_{n} \mathbf{x}_{n}$$

$$\mu_{2} = \frac{1}{N_{2}} \sum_{n=1}^{N} (1 - t_{n}) \mathbf{x}$$

- Rata rata contoh latihan dari setiap kelas
- Matrix kovariansi terbagi:

$$\Sigma = \frac{Nl}{N} \frac{1}{N_1} \sum_{n \in C_1} (\mathbf{x}^n - \boldsymbol{\mu}) (\mathbf{x}_n - \boldsymbol{\mu})^T + \frac{N2}{N} \frac{\sum_{n \in C_2} (\mathbf{x}_n - \boldsymbol{\mu}_2) (\mathbf{x}_n - \boldsymbol{\mu}_2)^T}{1}$$
• Bobot rata - rata dari kovariansi kelas

Gaussian dengan Kovariansi berbeda

 $-(x-\mu_b)^T \Sigma_b(x-\mu_b^c)^{\frac{1}{2}} (x-\mu_r)^T \Sigma_r(x-\mu_r)$

Konstanta.

$$a = \ln \frac{p(x|C_b)p(C_b)}{p(x|C_r)p(C_r)}$$

$$a = \ln(p(x|C_b)) - \ln(p(x|C_r)) + \ln(p(C_b)) - \ln(p(C_r))$$

- Mencocokkan Gaussian menggunakan criterion machine learning sensitif terhadap outlier
- Bentuk linear sederhana untuk *a* di dalam logistic sigmoid terjadi lebih dari sekedar distribusi Gaussian
 - Muncul pada distribusi mana saja di dalam keluarga exponensial, sebuah kelas besar dari distribusi

Support Vector Machine

- Pengembangan dari Perceptron yang dikembangkan oleh Rosenblatt pada tahun 1958.
- Perceptron menjamin bahwa Anda menemukan hyperplane jika ada.
- SVM menemukan margin maksimum yang memisahkan hyperplane.

Support Vector Machine

$$g(x) = w^T x + b$$

Maksimalkan k sedemikian rupa sehingga:

$$-w^Tx + b \ge k$$
 untuk $d_i == 1$

$$-w^Tx + b \le k$$
 untuk $d_i == -1$

Nilai g(x) tergantung pada ||w||:

- Biarkan ||w|| = 1 dan maksimalkan nilai g(x), atau
- $g(x) \ge 1$ dan minimalkan nilai ||w||

Support Vector Machine

Iterative Reweighted Least Squares

- Iterative reweighted least squares (IRLS) adalah metode penurunan seperti pada metode penurunan gradien.
- Kasus khusus dari metode Newton-Raphson
 - Fungsi Aproksimasi menggunakan ekspansi Taylor orde kedua:

$$\hat{f}(\boldsymbol{w}+\boldsymbol{v}) = f(\boldsymbol{w}) + \nabla f(\boldsymbol{w})^T (\boldsymbol{v}-\boldsymbol{w}) + \frac{1}{2} (\boldsymbol{v}-\boldsymbol{w})^T \nabla^2 f(\boldsymbol{w}) (\boldsymbol{v}-\boldsymbol{w})$$

- Solusi bentuk tertutup untuk meminimalkan ini adalah *straight-forward*: kuadratik, turunan linier

Iterative Reweighted Least Squares

Grafik Metode Newton-Raphson

Resources

http://vda.univie.ac.at/Teaching/ML/15s/LectureNotes/04_classification.pdf

https://www.ics.uci.edu/~xhx/courses/CS273P/05-linear-classification-273p.pdf

Terima Kasih

