Конфигурирование VLAN

Лабораторная работа № 5

Абд эль хай Мохамад

Содержание

1	Цел	ь работы	4											
2	Задание													
3	Выполнение лабораторной работы													
	3.1	Конфигурация Trunk-порта	6											
	3.2	Конфигурация VLAN	8											
	3.3	Конфигурация VTP	10											
	3.4	Конфигурация диапазона портов	11											
	3.5	Тестирование с помощью ping	14											
	3.6	IP-адреса	16											
4	Выв	оды	18											
5	Контрольные вопросы													
	5.1 Просмотр списка VLAN на сетевом устройстве													
	5.2 Транкинговый протокол VLAN (VTP)													
		5.2.1 Команды для настройки и просмотра информации о VLAN	19											
	5.3	Протокол управляющих сообщений Интернета (ІСМР)	20											
	5.4	Протокол разрешения адресов (ARP)	21											
		5.4.1 Формат ARP-пакета	21											
	5.5	МАС-адрес	21											
		5.5.1 Структура МАС-адреса	21											

Список иллюстраций

3.1	Название рисунка	•	•	•	•	•	•		•	•			•			•			6
3.2	Название рисунка																		7
3.3	Название рисунка																		8
3.4	Название рисунка																		ç
3.5	Название рисунка																		10
3.6	Название рисунка																		11
3.7	Название рисунка																		12
3.8	Название рисунка																		13
3.9	Название рисунка																		14
3.10	Название рисунка																		15
3.11	Название рисунка																		16
3.12	Название рисунка																	_	17

1 Цель работы

Получить основные навыки по настройке VLAN на коммутаторах сети.

2 Задание

- 1. На коммутаторах сети настроить Trunk-порты на соответствующих интерфейсах (см. табл. 3.2 из раздела 3.3), связывающих коммутаторы между собой.
- 2. Коммутатор msk-donskaya-sw-1 настроить как VTP-сервер и прописать на нём номера и названия VLAN согласно табл. 3.1 из раздела 3.3.
- 3. Коммутаторы msk-donskaya-sw-2 msk-donskaya-sw-4, msk-pavlovskaya-sw-1 настроить как VTP-клиенты, на интерфейсах указать принадлежность к соответствующему VLAN (см. табл. 3.3 из раздела 3.3).
- 4. На серверах прописать IP-адреса, как указано в табл. 3.2 из раздела 3.3.
- 5. На оконечных устройствах указать соответствующий адрес шлюза и прописать статические IP-адреса из диапазона соответствующей сети, следуя регламенту выделения ір-адресов (см. табл. 3.4 из раздела 3.3).
- 6. Проверить доступность устройств, принадлежащих одному VLAN, и недоступность устройств, принадлежащих разным VLAN.
- 7. При выполнении работы необходимо учитывать соглашение об именовании.

3 Выполнение лабораторной работы

3.1 Конфигурация Trunk-порта

Я начал настраивать trunk порт для каждого коммутатора. Например, коммутатор msk-donakaya-sw-1 имеет 3 mqk порта. trunk порт позволяет передавать данные через сетевой узел для нескольких VLAN.

Рис. 3.1: Название рисунка

После переключения в режим конфигурации в командной строке коммутатора я начал с указания интерфейса, который хочу редактировать, с помощью команды interface g0/1.

Затем я переключаю режим порта в транке, используя switchport mode Trunk

Рис. 3.2: Название рисунка

Рис. 3.3: Название рисунка

3.2 Конфигурация VLAN

В командной строке коммутатора я начал с указания номера VLAN, а затем изменил его имя. Таким образом, я смог назвать VLAN для одного коммутатора. Этого хватит для одного коммутаторая. Мне все еще нужно вручную

выполнить этот процесс на каждом коммутаторае. Вместо этого я использил VTP, протокол для распространения определения VLAN по всей локальной сети.

Рис. 3.4: Название рисунка

Рис. 3.5: Название рисунка

3.3 Конфигурация VTP

Коммутатор, на котором у меня был список VLAN, я настроил его как сервер. Это означает, что мне нужно будет настроить другие коммутаторы в качестве клиентов.

Рис. 3.6: Название рисунка

3.4 Конфигурация диапазона портов

Порты, связанные с VLAN. Устройства, подключенные к этим портам, получат доступ к VLAN, которой назначен порт.

Рис. 3.7: Название рисунка

Рис. 3.8: Название рисунка

3.5 Тестирование с помощью ping

Рис. 3.9: Название рисунка

```
P
                                                                                                < < <</p>
                                                 PC0(5)
                     Desktop
  Physical
            Config
                               Programming
                                              Attributes
  Command Prompt
Тор
```

Рис. 3.10: Название рисунка

3.6 ІР-адреса

```
P
                                                   Server0
  Physical
             Config
                      Services
                                 Desktop
                                                           Attributes
                                            Programming
   Command Prompt
Тор
```

Рис. 3.11: Название рисунка

Рис. 3.12: Название рисунка

4 Выводы

Научился настраивать VLAN в сети. Я также узнал о trunk портах, портах доступа и VTP.

5 Контрольные вопросы

5.1 Просмотр списка VLAN на сетевом устройстве

Чтобы просмотреть список VLAN на сетевом устройстве, можно использовать следующую команду:

показать Влан

Эта команда предоставляет список всех сетей VLAN, настроенных на сетевом устройстве, а также их соответствующие сведения.

5.2 Транкинговый протокол VLAN (VTP)

VLAN Trunking Protocol (VTP) — это собственный протокол Cisco, который управляет добавлением, удалением и переименованием VLAN в масштабе всей сети. Это уменьшает необходимость настройки одной и той же информации VLAN на каждом коммутаторе отдельно.

5.2.1 Команды для настройки и просмотра информации о VLAN

• Включить VTP на коммутаторе

режим vtp {сервер | клиент | прозрачный}

Эта команда устанавливает режим VTP для коммутатора, который может быть серверным, клиентским или прозрачным.

• Настроить домен VTP

vtp-домен имя_домена

Эта команда устанавливает имя домена VTP.

• Просмотр информации VTP

показать статус vtp

Эта команда отображает конфигурацию и информацию о состоянии VTP.

5.3 Протокол управляющих сообщений Интернета (ІСМР)

ICMP — это протокол сетевого уровня, используемый для отправки сообщений об ошибках и оперативной информации, указывающей, например, что запрошенная услуга недоступна или что хост или маршрутизатор не могут быть достигнуты. Формат ICMP-пакета

- Тип
- Код
- Контрольная сумма
- Остальная часть заголовка
- Данные

5.4 Протокол разрешения адресов (ARP)

ARP используется для сопоставления IP-адреса с адресом физического компьютера, который распознается в локальной сети. Это важно для функционирования Интернет-протокола (IP).

5.4.1 Формат ARP-пакета

Тип оборудования Тип протокола HLEN (длина аппаратного адреса) PLEN (длина адреса протокола) Операция Аппаратный адрес отправителя Протокольный адрес отправителя Целевой аппаратный адрес Адрес целевого протокола

5.5 МАС-адрес

МАС-адрес (управление доступом к среде передачи) — это уникальный идентификатор, назначаемый сетевым интерфейсам для связи в физическом сегменте сети. Он используется для большинства сетевых технологий и часто представляется в виде 12-значного шестнадцатеричного числа.

5.5.1 Структура МАС-адреса

- Первые 6 цифр: уникальный идентификатор организации (OUI).
- Последние 6 цифр: серийный номер устройства.

OUI назначается IEEE и однозначно идентифицирует производителя сетевой карты или устройства.