Sales Data Analysis Documentation

Project Overview

Project Name: Sales Data Analysis

Project Data Source: MeriSkill

Project Creator: Prakhar Tripathi

Purpose

The purpose of this project is to analyze sales data in order to identify trends, top-selling products, and revenue metrics for making informed business decisions.

Description

In this project, we dive into a large sales dataset sourced from MeriSkill to extract valuable insights. Through data analysis, we aim to accomplish the following tasks:

- Explore sales trends over time.
- Identify the best-selling products.
- Calculate revenue metrics such as total sales and profit margins.
- Create visualizations to effectively present findings.

This project showcases the ability to manipulate and derive insights from large datasets, enabling data-driven recommendations for optimizing sales strategies.

Data Analysis Process

1. Importing Libraries and Dataset

```
import pandas as pd
import matplotlib.pyplot as plt
```

Importing the sales dataset

```
# Importing the sales dataset
data = pd.read_csv("C:\\Users\\prakh\\Downloads\\Practice DataSet\\Sales Data.csv")
```

2. Data Exploration

```
checking the dataset
print(data.head())

# Checking the column of the dataset
print(data.columns)

# Removing the unused columns from dataset
data.drop( labels: ["Unnamed: 0", "Hour", "Month", "Order ID"], axis=1, inplace=True)
print(data.columns)

# Checking the summary of data
print(data.describe())

# Checking the null values in dataset
rint(data.info())
```

Output

```
RangeIndex: 185950 entries, 0 to 185949
Data columns (total 7 columns):
    Column
                      Non-Null Count
                                      Dtype
                      185950 non-null object
0
    Product
    Quantity Ordered 185950 non-null int64
 2
                     185950 non-null float64
    Price Each
    Order Date
                     185950 non-null object
    Purchase Address 185950 non-null object
                     185950 non-null float64
    Sales
    City
                     185950 non-null object
dtypes: float64(2), int64(1), object(4)
memory usage: 9.9+ MB
None
```

3. Data Preprocessing

```
# Changing the datatype of Order Date

data["Order Date"] = pd.to_datetime(data["Order Date"])
```

4. Data Visualization

```
Plotting a graph that show the count of products by cities

product_count = data.groupby("City").size()

plt.figure(figsize=(18, 7))

plt.bar(product_count.index, product_count.values, color="lightgreen")

plt.xlabel("City")

plt.ylabel("Count of Products")

plt.title("Count of products by cities")

plt.show()

# Sales of all Products

unique_products = data["Product"].unique()

product_price = data.groupby('Product')['Price Each'].sum()

plt.figure(figsize=(18, 7))

plt.bar(unique_products, product_price, color="lightblue")

plt.xlabel("Products")

plt.xlabel("Total amount in Millions")

plt.title("Sales of all Products")

lt.show()
```

```
# Maximum Quantity ordered by customers
quantity = data["Quantity Ordered"].value_counts()
plt.figure(figsize=(18, 7))
plt.bar(quantity.index, quantity.values, color="yellow")
plt.xlabel("Number of Quantity")
plt.ylabel("Count")
plt.title("Quantity ordered by customers")
plt.show()
```

```
Sales in Cities
sales_count = data.groupby('City')['Sales'].size()
plt.figure(figsize=(18, 7))
plt.plot( 'args: sales_count.index, sales_count.values, color="orange")
plt.xlabel("City")
plt.ylabel("Sales Count")
plt.title("Sales count per city")
plt.show()

# Product Counts
products = data["Product"].value_counts()
plt.figure(figsize=(18, 7))
plt.bar(products.index, products.values, color="purple")
plt.xlabel("Products")
plt.xticks(rotation='vertical')
plt.ylabel("Count")
plt.title("Product Count")
lt.show()
```

Output

5. Dashboard

Insights

Sales Trends by City:

The bar chart depicting the count of products by cities reveals the distribution of sales across different locations.

Insight: It helps in identifying cities with higher sales activity and potential areas for targeted marketing or expansion efforts.

Top-Selling Products:

The bar chart showcasing the sales of all products provides an overview of the revenue generated by each product.

Insight: It identifies the top-selling products contributing the most to the overall revenue, enabling inventory management and marketing focus.

Order Quantity Distribution:

The bar chart illustrating the quantity ordered by customers displays the distribution of order quantities.

Insight: Understanding the common order quantities helps in optimizing inventory levels and forecasting demand accurately.

Sales Distribution by City:

The line plot representing sales count per city illustrates the distribution of sales across different cities.

Insight: It highlights cities with higher sales volumes, allowing for targeted marketing campaigns and resource allocation.

Product Popularity:

The bar chart displaying product counts showcases the popularity of each product based on the number of orders.

Insight: It identifies products with high demand, helping in decision-making related to product promotions, pricing, and inventory management.

Overall Sales Performance:

Summary statistics provide insights into the overall sales performance, including total sales, average sales, and other relevant metrics.

Insight: It offers a comprehensive understanding of the sales data, enabling comparison with targets and historical performance to assess business growth and profitability.

Conclusion

This documentation outlines the process of analysing sales data to derive valuable insights for business decision-making. Through data exploration, preprocessing, and visualization techniques, we were able to identify sales trends, top-selling products, and other relevant metrics. These insights can be utilized to optimize sales strategies and enhance overall business performance.