Track Planarity Testing and Embedding

Christian Bachmaier bachmaier@fmi.uni-passau.de

Franz J. Brandenburg brandenb@fmi.uni-passau.de

Michael Forster forster@fmi.uni-passau.de

University of Passau, Germany

Motivation

- Graphs are abstract models of relations in the real world
- Drawing graphs planar
- Planarity test in O(n) of [Lempel, Even, Cederbaum (LEC) 67]
- Directed acyclic graphs
 - Scheduling
 - Flow charts
 - ER diagrams
 - UML diagrams

UML Diagrams

- Vertices
 - Classes
 - Interfaces
- DirectedEdges
 - Inheritance
 - Association

- Algorithm
 - Remove cycles
 - Generate levelling

- Algorithm
 - Remove cycles
 - Generate levelling
 - Split long edges

- Algorithm
 - Remove cycles
 - Generate levelling
 - Split long edges
 - Reduce crossings

- Algorithm
 - Remove cycles
 - Generate levelling
 - Split long edges
 - Reduce crossings

- Algorithm
 - Remove cycles
 - Generate levelling
 - Split long edges
 - Reduce crossings

- Algorithm
 - Remove cycles
 - Generate levelling
 - Split long edges
 - Reduce crossings

- Algorithm
 - Remove cycles
 - Generate levelling
 - Split long edges
 - Reduce crossings

- Algorithm
 - Remove cycles
 - Generate levelling
 - Split long edges
 - Reduce crossings

- Algorithm
 - Remove cycles
 - Generate levelling
 - Split long edges
 - Reduce crossings
 - Assign x-coordinates

- Algorithm
 - Remove cycles
 - Generate levelling
 - Split long edges
 - Reduce crossings
 - Assign x-coordinates
 - Join long edges

- Algorithm
 - Remove cycles
 - Generate levelling
 - Split long edges
 - Reduce crossings
 - Assign x-coordinates
 - Join long edges

- 2 level crossing minimisation
- Minimum edge set whose removal eliminates crossings
- NP-hard
- Is there a drawing without crossings?

Idea

- Level planarity solved
 - Needs O(n) time
 - Levelling given
 - Implicit edge directions

Planarity with horizontal edges

Overview

- Motivation
- Level graphs
 - Level planar graphs
 - Related Work
 - Level planarity testing & embedding
- Track graphs
 - Track planar graphs
- Reduction of track planarity to level planarity
- Track planarity testing & embedding
- Circle planarity testing & embedding

Level Planarity

Definition, Example, Previous Work

Level Graph

- A graph $G = (V_1 \cup V_2 \cup ... \cup V_k, E)$ is a k-level graph
 - Vertex partitioning into k disjoint levels
 - No horizontal edges
- G is proper
 - Each edge between adjacent levels

Level Planar Graph

- A k-level graph is k-level planar
 - Edges drawn strictly downwards
 - Planar
- Level planar embedding
 - Vertex ordering for each level ≤_i

Levelling

- Level planarity depends on levelling
- Given Levelling
 - NP-hard for proper graphs [Heath, Rosenberg 92]

Level Planarity Testing & Embedding

- [Jünger, Leipert, Mutzel (JLM) 98 and 99] O(n) time
 - Fastest algorithm
 - Based on PQ-tree data structure
 - Similar to vertex addition method for testing planarity (LEC)
- [Healy and Kuusik 99] O(n²) time
 - Simpler than the above
 - Only for proper graphs
 - Embedding in O(n³) time

Extensions

- Planar
- Level Planar
- Extensions
 - Track planar
 - Radial level planar
 - Circle planar
 - Clustered level planar (next talk)

Track Planarity

Definitions, Example

Track Graph

- A graph $G = (V_1 \cup V_2 \cup ... \cup V_k, E \cup E')$ is a k-track graph
 - \blacksquare ($V_1 \cup V_2 \cup ... \cup V_k$, E) is a k-level graph
 - Horizontal edges E' within the same level (track)

Track Planar Graph

- A k-track graph is k-track planar
 - Without horizontal edges k-level planar
 - Horizontal edges connect consecutive vertices according to a ≤;
 - No vertex between two end vertices of a horizontal edge
 - All edges are drawn weak monotonic downwards

Reduction of Track Planarity to Level Planarity

Idea, Example

Transformation

- Triple levels
- Replace each horizontal edge by a diamond

- Lemma
 - Transformation can be done in O(n) time
 - Transformed graph has O(n) size
- W.I.o.g. G contains no isolated vertices

Transformation Example

Generates long edges even for proper graphs

Transformation Example

Generates long edges even for proper graphs

Transformation Example

- Generates long edges even for proper graphs
- Planarity and embedding is preserved

Reduction

- Lemma
 - Let G be a k-track graph and G' its 3k-level transformation
 - G is k-track planar ⇔ G' is 3k-level planar

Proof

- "⇒"
 - G is k-track planar

Reduction

- Lemma
 - Let G be a k-track graph and G' its 3k-level transformation
 - G is k-track planar ⇔ G' is 3k-level planar

Proof

- | "⇒"
 - G has a k-track planar embedding

Reduction

- Lemma
 - Let G be a k-track graph and G' its 3k-level transformation
 - G is k-track planar ⇔ G' is 3k-level planar

Proof

- "⇒"
 - Construct a level planar embedding with $\leq'_{3i-1} = \leq_i$

- Lemma
 - Let G be a k-track graph and G' its 3k-level transformation
 - G is k-track planar ⇔ G' is 3k-level planar

- "⇒"
 - Orderings of dummy vertices defined by adjacent original vertices

- Lemma
 - Let G be a k-track graph and G' its 3k-level transformation
 - G is k-track planar ⇔ G' is 3k-level planar

- " ← "
 - G' is 3k-level planar

- Lemma
 - Let G be a k-track graph and G' its 3k-level transformation
 - G is k-track planar ⇔ G' is 3k-level planar

- " ← "
 - G' has a 3k-level planar embedding

- Lemma
 - Let G be a k-track graph and G' its 3k-level transformation
 - G is k-track planar ⇔ G' is 3k-level planar

- " ← "
 - The inner face of every diamond is empty

- Lemma
 - Let G be a k-track graph and G' its 3k-level transformation
 - G is k-track planar ⇔ G' is 3k-level planar

Proof

Create an edge between the original vertices of every diamond

- Lemma
 - Let G be a k-track graph and G' its 3k-level transformation
 - G is k-track planar ⇔ G' is 3k-level planar

- " ← "
 - Discard dummy levels

- Lemma
 - Let G be a k-track graph and G' its 3k-level transformation
 - G is k-track planar ⇔ G' is 3k-level planar

- " ← "
 - Renumber remaining levels

Reduction...

- Theorem
 - There is an O(n) time reduction of track planarity to level planarity

Algorithm for Track Planarity Testing and Embedding

Automated Detection

Algorithm

- Transform the k-track graph in a 3k-level graph
 - O(n) for non-proper case
- Any level planarity testing algorithm can be used
 - Construction must be made proper for [Healy and Kuusik 99]
 - Dominates time complexity of track planarity testing

Complexity

- Corollary
 - There is an O(n) time algorithm to decide k-track planarity of a graph
- Corollary

SOFSEM '04

- There is an O(n) time algorithm for computing a k-track planar embedding for a k-track planar graph
 - The algorithm of JLM computes a level embedding in O(n) time
 - Treat this embedding like shown in the proof of the last lemma

Circle Planarity

Definition, Idea, Example, Result

Radial Level Planar Graphs

- Generalisation of level planar graphs
- Level graph G is radial k-level planar if it can be drawn such that
 - Vertices of each level lie on a concentric circle
 - Edges drawn strictly outwards
 - Planar

SOFSEM '04

Transformation

- 4-level graph
- Not level planar
- Radial 4-level planar

Transformation

- 4-level graph
- Not level planar
- Radial 4-level planar
- Bend level lines to circles
- Planar possibility to route edge (1, 6)
- Testing and embedding in O(n)
 - Brandenburg, Forster 2003]

Circle Planar Graph

- Combination of radial planarity and track planarity
 - Radial planar graphs with inner level edges

- Idea
 - Transformation into radial 3k-level graph
- Isolated vertices
 - Postprocessing step

Circle Planarity

Complexity

- Lemma
 - Let G be a k-circle graph and G' its radial 3k-level transformation
- Theorem
 - There is an O(n) time reduction of circle planarity to radial level planarity
- Corollary
 - There is an O(n) time algorithm for
 - Deciding k-circle planarity of a graph
 - Computing a k-circle planar embedding

Remarks

Past and Future Work

Summary

- More graphs having its vertices assigned to levels can be drawn nicely
- Prototypic implementation
 - **C++**
 - Using GTL
 - Following the technique of JLM
 - Feasibility study
 - Proof of concept
 - Understanding all technical details

Future Work

- Assigning Coordinates
 - Drawing
 - Few edge bends
- Detection of Minimum (Level|Track) Non-Planar subgraph patterns
 - Level variants of Kuratowski graphs K_{3, 3} and K₅
 - MLNP pattern
 - MTNP pattern
 - Patterns for radial cases

Thank you!