1.
$$\overrightarrow{e_3} = \frac{\overrightarrow{u}}{|\overrightarrow{u}|}, \theta = \arccos\left(\frac{\overrightarrow{u}\overrightarrow{t}}{|\overrightarrow{u}||\overrightarrow{t}|}\right), \overrightarrow{e_1} = \frac{\overrightarrow{t} \times \overrightarrow{u}}{|\overrightarrow{t}||\overrightarrow{u}|\sin(\theta)}, \overrightarrow{e_2} = \overrightarrow{e_3} \times \overrightarrow{e_1}.$$

- 2. We can write the function of plane, write the function of line PC. We can then compute the coordinate of P' by solving the equation system.
- 3. Using the function of $\overline{P_1P_2}$, $\overline{Q_1Q_2}$, solve the equation system to get the coordinate of the R. If $(R-Q_1)\cdot (R-Q_2)\leq 0$ and $(R-P_1)\cdot (R-P_2)\leq 0$, R is the intersection point.
- 4. By the coordinates of Q_1,Q_2,Q_3 , we can get the function for the plane which T in. And by the coordinate of C and by vector \overrightarrow{d} , we can get the function for the line that r is on. Solve the equation system, we can get the coordinate of Q. If $(Q-C)\cdot\overrightarrow{d}\geq 0$, and $Q=aQ_1+bQ_2+cQ_3$, where a+b+c=1 and $a\geq 0, b\geq 0, c\geq 0$, then Q is the intersection point.