Лабораторная работа № 2

Автор	Группа	Вариант
Волков Матвей Андреевич	М8О-407б	15

Тема

Линейная нейронная сеть. Правило обучения Уидроу-Хоффа

Цель работы

Исследование свойств линейной нейронной сети и алгоритмов её обу- чения, применения сети в задачах аппроксимации и фильтрации.

Основные этапы работы

- 1. Использовать линейную нейронную сеть с задержками для аппроксимации функ- ции. В качестве метода обучения использовать адаптацию.
- 2. Использовать линейную нейронную сеть в качестве адаптивного фильтра для подавления помех. Для настройки весовых коэффициентов использовать метод наименьших квадратов.

Данные

Входные данные

$$x = sin(sin(t)t^3 - 10), \quad t/in[1,3], h = 0.01$$

$$x = cos(t^2 - 10t + 3), \quad t/in[1, 6], h = 0.025$$

Выходные данные

$$y=\frac{cos(t^2-10t+6)}{5}$$

Исходный код

Part 1

В данной ЛР была использована библиотека pandas и новый визуализатор графиков.

Снипет модели для аппроксимации функции

```
# configurating model
model = keras.models.Sequential([
    keras.layers.Dense(1, input_dim=window, activation='linear')
])
model.compile(keras.optimizers.SGD(0.01), 'mse', ['mse'])
hist = model.fit(data, target, batch_size=1, epochs=50, verbose=0, shuffle=True)
```

Метрики

Метрики

Результаты

Part 2

Инициализация модели для подавления шума

```
# configurating model
model = keras.models.Sequential([
          keras.layers.Dense(1, input_dim=window, activation='linear')
])
model.compile(keras.optimizers.SGD(0.01), 'mse', ['mse'])
hist = model.fit(data, target, batch_size=1, epochs=50, verbose=0, shuffle=True)
```

Шум и сигнал

Метрики

Результат обучения и показатели ошибки

Вывод

В ходе выполнения первой лабораторной работы я научился подавлять шум сигнала при помощи элементарного персептрона. Также научился аппроксимировать функцию.