Approximate queries and graph streams on Flink

Theodore Vasiloudis, Swedish Institute of Technology

tvas@kth.se
@thvasilo

Hello, I'm Theo!

Motivation

- We want analytics that provide us with immediate answers
 - Hadoop: Yesterday's insights, tomorrow!
- Data never stops!
 - o Infinite memory?
- Solution: windows and approximations
 - Windows give us a snapshot of the world
 - Approximations allow us to continuously measure the world
 - First part of presentation is about approximate streaming algorithms, second focuses on using windows for graph analytics

Approximate Queries on Flink

Work by Tobias Lindener, KTH https://github.com/tlindener/ApproximateQueries/

End Goal: Approximate SQL queries on Flink

SELECT avg(sessionTime)

FROM Table

WHERE city='San Francisco'

WITHIN 2 SECONDS

SELECT avg(sessionTime)

FROM Table

WHERE city='San Francisco'

ERROR 0.1 **CONFIDENCE** 95.0%

Queries with Time Bounds

Queries with Error Bounds

Source: BlinkDB

First step: Sketches for standing queries

Web Site Logs					Financial Transactions System Log				
Time	User ID	Site	Time Spent Sec	Items Viewed	Time	User ID	Site	Purchased	Revenue
9:00 AM	U1	Apps	59	5	9:00 AM	U1	Apps	FaceTune	\$3.99
9:30 AM	U2	Apps	179	15	9:30 AM	U2	Apps	Minecraft	\$6.99
10:00 AM	U3	Music	29	3	10:00 AM	U3	Music	Purple Rain	\$1.29
1:00 PM	U1	Music	89	10	Billions of rows				
Billions of rows									

- Num. unique users who visited both Apps and Music over the last hour
- Median and 95%ile Time Spent over the last day
- Most frequently purchased songs

Sketch Algorithms for Massive Data

- Research area since the 70s (Knuth, Indyk, Flajolet)
- Goal: Efficient (compute+memory) algorithms for "simple" tasks
 - Frequent items
 - Set cardinality
 - Moments (mean, median, variance etc.)
 - Quantiles and histograms
 - Graph algorithms (triangle count, connected components)
 - Nearest neighbors
- We use them as building blocks for more complex algorithms
 - Databases (joins)
 - Machine learning (decision trees)

Yahoo Datasketches

- Highly optimized sketch library
- Apache Licensed
- Available for Pig, Hive

Big Win #1: Size of the Query Process

Big Win #2: Sketch Mergeability Enables Parallel Processing

Big Wins #3 & 4: Query Speed, Architecture Simplicity

Big Wins #5 & 6: Real Time, Late Data Updates

Why Flink?

- From PR sketches-core#81: Sketch now implements Serializable (closed)
- Lee Rhodes (package author) writes:

Sketches are streaming algorithms and are **stateful by design**. Attempting to force them into a stateless paradigm will result in orders-of-magnitude poorer performance. It is like pounding a square peg into a round hole.

Library Design

Source: Tobias Lindender

Library Design

Source: Tobias Lindender

Query API

Cardinality Estimation Queries

Query API

Frequent Items & Quantiles

Experiments

Datasets

- Amazon Reviews
 - ~84M reviews of Amazon products
 - User, Item, Rating, Timestamp
- WikiTrace
 - Wikipedia access logs
 - ~80M requests, ~7M URLs

Runtime and memory consumption

	Runtime	Memory
Exact	~700s	~11GB
Sketch	~90s	~2GB

Summary

- Built library to allow to easily run approximate queries on top of Flink
- End goal is to enable approximate streaming queries with SQL syntax

Gelly Stream: Streaming Graph Processing

Paris Carbone, KTH, Flink Committer Vasiliki Kalavri, ETH, Flink PMC

Motivation

- Graphs are powerful representations of many interactions
 - Social networks
 - Purchases
 - Media views
- Again, data are massive, constantly arriving, and unbounded
- So we need distributed streaming graph processing

Previous work

- Graph snapshots
 - Pregel, Giraph, GraphX
- Graph streams
 - Summaries, approximate algorithms
 - Semi-streaming (disk)

Load-Compute-Store

- 1. **Load** snapshot to memory
- 2. **Compute** state/superstep
- 3. **Store** updated graph state
- 4. Goto 1

Load-Compute-Store

- Wide adoption: Pregel, Graphlab, GraphX
- Interfaces well with existing batch systems
- But has model issues:
 - Unnecessary latency for all graph measures.
 - Inefficient for incorporating updates
 - Sensitive to the partitioning method
 - Re-computation across snapshots

Graph Summaries: Intuition

Graph Summary Flavours

- Spanners : distance estimation
- Sparsifiers : cut estimation
- Sketches: homomorphic properties

Engineering benefits of stream processing

- Low latency and high-throughput
- Long-running processes can now pipeline computation
- Production Ready: end-to-end fault tolerance

Realizations brought by stream processing

- 1. Duality of **input** data + computational **state**
- 2. Out-of-order processing

Exploiting stream processing for graphs

1. Duality of **input** data + computational **state**

- a. Define evolving graph properties
- b. Graph updates (input) ⇔ properties (state)

2. Out-of-order processing

- a. Pre-compute blocking graph operations
- b. Multiplex processing per snapshot or window

Gelly-stream overview

- ➤ Static Graphs
- ➤ Multi-Pass Algorithms
- ➤ Single Answer

- ➤ Dynamic Graphs
- ➤ Single-Pass

Properties/Summaries

➤ Multi-Pass on Snapshots

Gelly-Stream Data Types

- <u>EdgeStream</u> -> Non-Blocking / Single-Pass Computation
 - A distributed data stream consisting of graph edge additions.
 - Edges can contain state (e.g. weights).
 - Supports property streams, transformations and aggregations.
- SnapshotStream -> Blocking / Multi-Pass Computation
 - Each Snapshot is bounded~ i.e., static graph window.
 - It enables neighborhood aggregations, iterations (e.g., BSP)

EdgeStream Operations

Property Streams

EdgeStream → DataStream

- .getEdges()
- .getVertices()
- .numberOfVertices()
- .numberOfEdges()
- .getDegrees()
- .inDegrees()
- .outDegrees()

Transformation Streams

EdgeStream → EdgeStream

- .mapEdges();
- .distinct();
- .filterVertices();
- .filterEdges();
- .reverse();
 - .undirected();
- .union();

EdgeStream Summaries

```
edgeStream.aggregate
(new Summary(window, fold, combine, lower))
```

edgeStream.aggregate
(new Summary(window, fold, combine, lower))

edgeStream.aggregate
(new Summary(window, fold, combine, lower))


```
edgeStream.aggregate
(new Summary(window, fold, combine, lower))
```


edgeStream.aggregate
(new Summary(window, fold, combine, lower))

Provided Aggregates/Summaries

- Connected Components
- Bipartiteness Check (Binary)
- Window Triangle Count
- Rolling Triangle Count (Approximate)
- Continuous Degree Aggregate

Neighborhood Aggregation Example

edgeStream.filterVertices(DataScientists())
.slice(Time.of(10, MINUTE), EdgeDirection.IN)
applyOnNeighbors(FindPairs())

wend tom wendy checked in glaze steve steve checked in glaze tom checked in joe's grill rafa sandra checked in glaze sandf rafa checked_in joe's_grill {wendy, steve} {steve, sandra} {wendy, sandra} {tom, rafa}

Snapshot Iterations

- Most "deep" graph properties require multiple passes
- Sensitivity to synchrony during iterative processing depends on the algorithm and should be flexible (e.g., as in GraphLab).
- Avoiding scheduling delays (e.g. scheduling DataSet Iterations) is crucial for continuous processing.

Flink Stream Iterations

- A logical+physical loop redesign on Flink
- Introduces scoping and custom progress tracking
- Extends out-of-order dataflow processing
- Fully decentralised iterative execution
 - termination condition
 - level of (a)synchrony

Take home message

- Streaming means unbounded
- Input <==> State
- Sketches and summaries let you deal with the unbounded nature of data using limited resources

Thank you!

tvas@kth.se @thvasilo

References

- ApproximateQueries on Flink:
 https://github.com/tlindener/ApproximateQueries/
- Gelly Streaming
 https://github.com/vasia/gelly-streaming
- Yahoo Datasketches
 https://datasketches.github.io/
- Collection of links on streaming algorithms and sketches https://gist.github.com/debasishg/8172796