LISTA03: Równania stanu i transmitancje

Przygotowanie

- 1. Jak wyznaczyć równanie charakterystyczne i punkt równowagi na podstawie: a) równania n-tego rzędu; b) równań stanu; c) transmitancji
- 2. Jakie ograniczenia spełnia układ, który można opisać za pomocą transmitancji?
- 3. Co to są warunki początkowe i jak je zdefiniować (zadać) w przypadku: a) równania n-tego rzędu; b) układu n równań 1-ego rzędu; c) transmitancji
- 4. Jak zadać warunki początkowe przy uruchamianiu symulacji od zadanego stanu równowagi (w wybranym punkcie pracy)
- 5. Co to jest i kiedy można zastosować twierdzenie o wartości końcowej?

Zadania 1. Dla układów równań

- a) zapisz w postaci równań stanu (macierzy) i podaj równanie charakterystyczne
- b) wyznacz transmitancje dla zmiennych x₁ i x₂ i podaj równanie charakterystyczne
- c) przedstaw równania statyczne i wyznacz punkt/punkty równowagi

Przykłady

1)
$$\begin{cases} 4\ddot{x}_1(t) + b_3\dot{x}_1(t) - b_1x_2(t) = u_1(t) \\ b_1\dot{x}_2(t) - b_1\dot{x}_1(t) + 2x_1(t) = u_1(t) + u_2(t) \end{cases}$$

2)
$$\begin{cases} \dot{x}_2(t) - \dot{x}_1(t) + cx_1(t) = u_1(t) + u_2(t) \\ m\ddot{x}_1(t) + 3\dot{x}_1(t) - x_2(t) = u_1(t) \end{cases}$$

3)
$$\begin{cases} 4\ddot{x}_1(t) + b_2\dot{x}_1(t) + 4x_1(t) - cx_2(t) = u_1(t) \\ b_1\dot{x}_2(t) + cx_2(t) - 2x_1(t) = u_1(t) + u_2(t) \end{cases}$$

4)
$$\begin{cases} m\ddot{x}_1(t) + 2\dot{x}_1(t) + 4x_1(t) - x_2(t) = u_1(t) \\ b\dot{x}_2(t) + x_2(t) - 2x_1(t) = u_1(t) + u_2(t) \end{cases}$$

5)
$$\begin{cases} 4\ddot{x}_1(t) + b\dot{x}_1(t) - b\dot{x}_2(t) + 3x_1(t) = u_1(t) \\ b\dot{x}_2(t) - b\dot{x}_1(t) + x_2(t) = u_1(t) + u_2(t) \end{cases}$$

6)
$$\begin{cases} m\ddot{x}_1(t) + \dot{x}_1(t) - \dot{x}_2(t) + c_2x_1(t) = u_1(t) \\ \dot{x}_2(t) - \dot{x}_1(t) + c_1x_2(t) = u_1(t) + u_2(t) \end{cases}$$

7)
$$\begin{cases} m\ddot{x}_1(t) + 4\dot{x}_1(t) + 2x_2(t) + cx_1(t) = u_1(t) + 2u_2(t) \\ 2x_2(t) + cx_1(t) + 3\dot{x}_2(t) + 3\dot{x}_1(t) = 0 \end{cases}$$

8)
$$\begin{cases} m\ddot{x}_1(t) + 4\dot{x}_1(t) + cx_1(t) + 2x_2(t) = u_1(t) + 2u_2(t) \\ 2x_2(t) + 2x_1(t) + 3\dot{x}_2(t) + 3\dot{x}_1(t) = u_1(t) \end{cases}$$

9)
$$\begin{cases} 5\ddot{x}_1(t) + cx_1(t) + 5x_2(t) = u_1(t) \\ 2\dot{x}_2(t) + 2\dot{x}_1(t) + 3x_2(t) + 2x_1(t) = u_1(t) + 2u_2(t) \end{cases}$$

10)
$$\begin{cases} 5\ddot{x}_1(t) + b\dot{x}_1(t) + 5x_2(t) = 2u_1(t) \\ 2\dot{x}_2(t) + 2\dot{x}_1(t) + 2x_2(t) + 2x_1(t) = u_1(t) + 2u_2(t) \end{cases}$$

Zadania 2. Dla podanych przykładów kaskad zbiorników

- a) skonstruuj dokładny model kaskady, a następnie
- określ zmienne wejściowe i wyjściowe (zmienne stanu) uzasadnij,
- wyznacz równanie statyczne i charakterystyczne,
- wyznacz punkt/punkty równowagi.
- **b)** skonstruuj uproszczony (zlinearyzowany) model kaskady:
- przedstaw go w postaci równań stanu,
- napisz równanie statyczne i charakterystyczne,
- wyznacz punkt/punkty równowagi,
- wyznacz bieguny i określ warunki stabilności
- c) przedstaw uproszczony model kaskady w postaci transmitancji i na tej podstawie
- wyznacz punkt/punkty równowagi,
- wyznacz bieguny i określ warunki stabilności.

2

Zadania 3. Dla układów mechanicznych

- a) skonstruuj model (równania bilansowe sił)
- b) zapisz model w postaci równań stanu (macierzy) i podaj równanie charakterystyczne
- \mathbf{c}) wyznacz transmitancje wszystkich zmiennych wyjściowych ($x_1, x_2, ...$), podaj równanie charakterystyczne
- d) przedstaw równania statyczne i wyznacz punkt/punkty równowagi
- e) dla układów drugiego rzędu wyznacz tłumienie ξ

3

Jak wyznaczyć transmitancję gdy nie ma zewnętrznego wymuszenia? Dodać różne przykłady modeli mechanicznych – wózki, windy, ...

Rozwiązanie zadań 2 – przykład 3:

$$\begin{array}{c|c}
f_1 & \hline
 & f_2 & \hline
 & f_3 & \\
\hline
 & h_1 & f_2 & \\
\hline
 & & A_1 \dot{h}_1(t) = f_1(t) - f_2(t) \\
A_2 \dot{h}_2(t) = f_2(t) - f_3(t) \\
f_2(t) = A_{w1} \sqrt{2g(h_1(t) - h_2(t))} \approx a_1(h_1(t) - h_2(t))
\end{array}$$

Zad.2a) Dokładny model kaskady i badania

- $\begin{cases} A_1 \dot{h}_1(t) = f_1(t) A_{w1} \sqrt{2g(h_1(t) h_2(t))} \\ A_2 \dot{h}_2(t) = A_{w1} \sqrt{2g(h_1(t) h_2(t))} f_3(t) \end{cases}$ Dokładny model kaskady:
- Zmienne wyjściowe (zmienne stanu) h_1 , h_2 . Zmienne wejściowe f_1 , f_3 .
- $\begin{cases} 0 = f_1 A_{w1} \sqrt{2g(h_1 h_2)} \\ 0 = A_{w1} \sqrt{2g(h_1 h_2)} f_3 \end{cases} \rightarrow A_{w1} \sqrt{2g(h_1 h_2)} = f_1 = f_3$ Równania statyczne:
- dla $f_1 = f_3$ jest wiele rozwiązań (punktów równowagi) Punkt równowagi: dla $f_1 \neq f_3$ brak rozwiązań (punktu równowagi)

Zad.2b) Równania stanu i badania

Uproszczony model kaskady:

$$\begin{cases} A_{1}\dot{h}_{1}(t) = f_{1}(t) - a_{1}(h_{1}(t) - h_{2}(t)) \\ A_{2}\dot{h}_{2}(t) = a_{1}(h_{1}(t) - h_{2}(t)) - f_{3}(t) \end{cases}$$

$$\begin{bmatrix} \dot{h}_{1}(t) \end{bmatrix}_{-} \begin{bmatrix} \frac{-a_{1}}{A_{1}} & \frac{a_{1}}{A_{1}} \\ A_{1} & \frac{a_{1}}{A_{1}} \end{bmatrix} \begin{bmatrix} h_{1}(t) \end{bmatrix}_{-} \begin{bmatrix} \frac{1}{A_{1}} & 0 \\ 0 & \frac{1}{A_{1}} \end{bmatrix} \begin{bmatrix} f_{1}(t) \\ 0 & \frac{1}{A_{1}} \end{bmatrix}$$

- Równania stanu $\begin{bmatrix} \dot{h}_1(t) \\ \dot{h}_2(t) \end{bmatrix} = \begin{vmatrix} \frac{-a_1}{A_1} & \frac{a_1}{A_1} \\ \frac{a_1}{A_1} & \frac{-a_1}{A_1} \\ \frac{a_1}{A_1} & \frac{-a_1}{A_1} \end{vmatrix} \begin{bmatrix} h_1(t) \\ h_2(t) \end{bmatrix} + \begin{vmatrix} \frac{1}{A_1} & 0 \\ 0 & \frac{-1}{A_1} \\ \end{bmatrix} \begin{bmatrix} f_1(t) \\ f_3(t) \end{bmatrix}$ w postaci macierzowej:
- $\begin{vmatrix} -a_1 \lambda & \frac{a_1}{A_1} \\ \frac{a_1}{A} & \frac{-a_1}{A} \lambda \end{vmatrix} = 0$ Równanie charakterystyczne:

$$\frac{a_1}{A_2} \quad \frac{-a_1}{A_2} - \lambda$$

$$\left(\frac{-a_1}{A_1} - \lambda\right) \left(\frac{-a_1}{A_2} - \lambda\right) - \frac{a_1^2}{A_1 A_2} = 0$$

$$\left(\frac{a_1 + A_1 \lambda}{A_1}\right) \left(\frac{a_1 + A_2 \lambda}{A_2}\right) - \frac{a_1^2}{A_1 A_2} = 0 \quad | (A_1 A_2)$$

$$(a_1 + A_1\lambda)(a_1 + A_2\lambda) - a_1^2 = 0$$

$$A_1 A_2 \lambda^2 + a_1 (A_1 + A_2) \lambda + a_1^2 - a_1^2 = 0$$

$$A_1 A_2 \lambda^2 + a_1 (A_1 + A_2) \lambda = 0$$

$$\lambda (A_1 A_2 \lambda + a_1 (A_1 + A_2)) = 0$$

 $\lambda_1 = 0$, $\lambda_2 = \frac{-a_1(A_1 + A_2)}{A_1 A_2} < 0$, bo wszystkie współczynniki są Bieguny:

dodatnie. Układ na granicy stabilności.

- $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{vmatrix} \frac{-a_1}{A_1} & \frac{a_1}{A_1} \\ \frac{a_1}{A_1} & \frac{-a_1}{A_1} \\ \end{vmatrix} \begin{bmatrix} h_1(t) \\ h_2(t) \end{bmatrix} + \begin{vmatrix} \frac{1}{A_1} & 0 \\ 0 & \frac{-1}{A_1} \\ \end{vmatrix} \begin{bmatrix} f_1(t) \\ f_3(t) \end{bmatrix}$ Równania statyczne:
- $\begin{cases} 0 = f_1 a_1(h_1 h_2) \\ 0 = a_1(h_1 h_2) f_3 \end{cases} \rightarrow a_1(h_1 h_2) = f_1 = f_3$ Prostsza postać równań statycznych:
- dla $f_1 = f_3$ jest wiele rozwiązań (punktów równowagi) Punkt równowagi: dla $f_1 \neq f_3$ brak rozwiązań (punktu równowagi)

Podsumowanie: zerowy biegun i brak punktu równowagi przy stałym wymuszeniu – układ ma własności całkujące.

Zad.2c) Transmitancje i badania

Uproszczony model

Układ ma 4 transmitancje (2 we, 2 wy) o takim samym mianowniku (kaskada współdziałająca). $A_1\dot{h}_1(t) = f_1(t) - a_1(h_1(t) - h_2(t))$

kaskady:
$$\begin{cases} A_{2}\dot{h}_{2}(t) = a_{1}(h_{1}(t) - h_{2}(t)) - f_{3}(t) \\ A_{2}\dot{h}_{2}(t) = a_{1}(h_{1}(t) - h_{2}(t)) - f_{3}(t) \end{cases}$$
• Równanie operatorowe:
$$\begin{cases} A_{1}sh_{1}(s) = f_{1}(s) - a_{1}(h_{1}(s) - h_{2}(s)) \\ A_{2}sh_{2}(s) = a_{1}(h_{1}(s) - h_{2}(s)) - f_{3}(s) \end{cases}$$
• Transmitancje (1)

$$\begin{cases} (A_1s + a_1)h_1(s) = f_1(s) + a_1h_2(s) \\ (A_2s + a_1)h_2(s) = a_1h_1(s) - f_3(s) \end{cases}$$

$$\begin{cases} M_1 h_1(s) = f_1(s) + a_1 h_2(s) \\ M_2 h_2(s) = a_1 h_1(s) - f_3(s) \end{cases} \rightarrow h_1(s) = \frac{f_1(s) + a_1 h_2(s)}{M_1}$$

$$\begin{split} M_2h_2(s) &= a_1 \frac{f_1(s) + a_1h_2(s)}{M_1} - f_3(s) \mid \cdot M_1 \\ M_1M_2h_2(s) &= a_1f_1(s) + a_1^2h_2(s) - M_1f_3(s) \\ \left(M_1M_2 - a_1^2\right)h_2(s) &= a_1f_1(s) - M_1f_3(s) \quad \rightarrow h_2(s) = \frac{a_1f_1(s) - M_1f_3(s)}{M_1M_2 - a_1^2} \\ M_1h_1(s) &= f_1(s) + a_1 \frac{a_1f_1(s) - M_1f_3(s)}{M_1M_2 - a_1^2} \quad | \cdot \left(M_1M_2 - a_1^2\right) \end{split}$$

$$\begin{split} M_1h_1(s) &= f_1(s) + a_1 \frac{a_1f_1(s) - M_1f_3(s)}{M_1M_2 - a_1^2} \quad | \cdot \left(M_1M_2 - a_1^2 \right) \\ M_1\left(M_1M_2 - a_1^2 \right) h_1(s) &= \left(M_1M_2 - a_1^2 \right) f_1(s) + a_1^2 f_1(s) - a_1 M_1 f_3(s) \\ M_1\left(M_1M_2 - a_1^2 \right) h_1(s) &= M_1M_2 f_1(s) - a_1 M_1 f_3(s) \\ \left(M_1M_2 - a_1^2 \right) h_1(s) &= M_2 f_1(s) - a_1 f_3(s) \quad \rightarrow h_1(s) = \frac{M_2 f_1(s) - a_1 f_3(s)}{M_1M_2 - a_1^2} \end{split}$$

Zgodnie z przewidywaniem wyprowadzono:

$$h_{1} = \frac{M_{2}}{M} f_{1} + \frac{-a_{1}}{M} f_{3}$$

$$h_{2} = \frac{a_{1}}{M} f_{1} + \frac{-M_{1}}{M} f_{3}$$

$$gdzie M = M_{1}M_{2} - a^{2}$$

$$h_{1}(s) = \frac{A_{2}s + a_{1}}{M(s)} f_{1}(s) + \frac{-a_{1}}{M(s)} f_{3}(s)$$

$$h_{2}(s) = \frac{a_{1}}{M(s)} f_{1}(s) + \frac{-(A_{1}s + a_{1})}{M(s)} f_{3}(s)$$

$$gdzie M(s) = s(A_{1}A_{2}s + a_{1}A_{1} + a_{1}A_{2})$$

Transmitancje (2) - alternatywna metoda z zastosowaniem wzorów Cramera					
 uporządkowanie równania operatorowego: 	$\begin{cases} A_1 s h_1(s) + a_1 h_1(s) - a_1 h_2(s) = f_1(s) \\ -a_1 h_1(s) + A_2 s h_2(s) + a_1 h_2(s) = -f_3(s) \end{cases}$				
- zapis macierzowy:	$\begin{bmatrix} A_1 s + a_1 & -a_1 \\ -a_1 & A_2 s + a_2 \end{bmatrix} \begin{bmatrix} h_1(s) \\ h_2(s) \end{bmatrix} = \begin{bmatrix} f_1(s) \\ -f_3(s) \end{bmatrix}$				
- wzory Cramera: $h_i = \frac{W_i}{W}$	$W = \det \begin{bmatrix} A_1 s + a_1 & -a_1 \\ -a_1 & A_2 s + a_1 \end{bmatrix} = (A_1 s + a_1)(A_2 s + a_1) - a_1^2 = M(s)$				
**	$W_1 = \det \begin{bmatrix} f_1(s) & -a_1 \\ -f_3(s) & A_2s + a_1 \end{bmatrix} = (A_2s + a_1)f_1(s) - a_1f_3(s)$				
	$W_2 = \det \begin{bmatrix} A_1 s + a_1 & f_1(s) \\ -a_1 & -f_3(s) \end{bmatrix} = -(A_2 s + a_1) f_3(s) + a_1 f_1(s)$				
- wyniki	$h_1(s) = \frac{W_1}{W} = \frac{(A_2s + a_1)f_1(s) - a_1f_3(s)}{M(s)} = \frac{A_2s + a_1}{M(s)}f_1(s) + \frac{-a_1}{M(s)}f_3(s)$				

$$h_2(s) = \frac{W_2}{W} = \frac{a_1 f_1(s) - (A_2 s + a_1) f_3(s)}{M(s)} = \frac{a_1}{M(s)} f_1(s) + \frac{-(A_2 s + a_1)}{M(s)} f_3(s)$$

Transmitancje oczywiście identyczne jak poprzednio. Uwaga: mianownik (W) wyznaczany na podstawie jednego przekształcenia (bardzo podobne do równań stanu)

• Transmitancje (3) - alternatywna metoda z operatorem macierzowym

zapis równania operatorowego:
$$s\mathbf{x}(s) = \mathbf{A}\mathbf{x}(s) + \mathbf{B}\mathbf{u}(s) \begin{cases} sh_1(s) = \frac{a_1}{A_1}f_1(s) - \frac{a_1}{A_1}h_1(s) + \frac{a_1}{A_1}h_2(s) \\ sh_2(s) = \frac{a_1}{A_2}h_1(s) - \frac{a_1}{A_2}h_2(s) - \frac{1}{A_2}f_3(s) \end{cases}$$

$$s \begin{bmatrix} h_1(s) \\ h_2(s) \end{bmatrix} = \begin{bmatrix} \frac{-a_1}{A_1} & \frac{a_1}{A_1} \\ \frac{a_1}{A_2} & \frac{-a_1}{A_2} \end{bmatrix} \begin{bmatrix} h_1(s) \\ h_2(s) \end{bmatrix} + \begin{bmatrix} \frac{1}{A_1} & 0 \\ 0 & \frac{1}{A_2} \end{bmatrix} \begin{bmatrix} f_1(s) \\ f_3(s) \end{bmatrix}$$

- operacje macierzowe $\mathbf{x}(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}\mathbf{u}(s)$

$$\begin{bmatrix} h_{1}(s) \\ h_{2}(s) \end{bmatrix} = \begin{bmatrix} s + \frac{a_{1}}{A_{1}} & \frac{-a_{1}}{A_{1}} \\ \frac{-a_{1}}{A_{2}} & s + \frac{a_{1}}{A_{2}} \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{A_{1}} & 0 \\ 0 & \frac{1}{A_{2}} \end{bmatrix} \begin{bmatrix} f_{1}(s) \\ f_{3}(s) \end{bmatrix} = \begin{bmatrix} \frac{A_{1}s + a_{1}}{A_{1}} & \frac{-a_{1}}{A_{1}} \\ \frac{-a_{1}}{A_{2}} & \frac{A_{2}s + a_{1}}{A_{2}} \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{A_{1}} & 0 \\ 0 & \frac{1}{A_{2}} \end{bmatrix} \begin{bmatrix} f_{1}(s) \\ f_{3}(s) \end{bmatrix}$$
odwrotność $(s\mathbf{I} - \mathbf{A})^{-1}$

$$\begin{bmatrix} h_{1}(s) \end{bmatrix} \begin{bmatrix} (-1)^{1+1} \frac{W_{11}}{W} & (-1)^{1+2} \frac{W_{12}}{W} \end{bmatrix} \begin{bmatrix} \frac{1}{A} & 0 \\ \frac{1}{A} & 0 \end{bmatrix} \begin{bmatrix} f_{1}(s) \end{bmatrix}$$

$$\begin{bmatrix} h_1(s) \\ h_2(s) \end{bmatrix} = \begin{bmatrix} (-1)^{1+1} \frac{W_{11}}{W} & (-1)^{1+2} \frac{W_{12}}{W} \\ (-1)^{2+1} \frac{W_{21}}{W} & (-1)^{2+2} \frac{W_{22}}{W} \end{bmatrix} \begin{bmatrix} \frac{1}{A_1} & 0 \\ 0 & \frac{1}{A_2} \end{bmatrix} \begin{bmatrix} f_1(s) \\ f_3(s) \end{bmatrix}$$

$$W = \det(s\mathbf{I} - \mathbf{A}) = \det\begin{bmatrix} \frac{A_1 s + a_1}{A_1} & \frac{-a_1}{A_1} \\ \frac{-a_1}{A_2} & \frac{A_2 s + a_1}{A_2} \end{bmatrix} = \frac{(A_1 s + a_1)(A_2 s + a_1)}{A_1 A_2} - \frac{a_1^2}{A_1 A_2} = \frac{M(s)}{A_1 A_2}$$

gdzie
$$M(s) = s(A_1A_2s + a_1A_1 + a_1A_2)$$

$$\begin{split} W_{11} &= \frac{A_2 s + a_1}{A_2} \quad \rightarrow \frac{W_{11}}{W} = \frac{A_2 s + a_1}{A_2} \frac{A_1 A_2}{M(s)} = \frac{(A_2 s + a_1) A_1}{M(s)} \,, \\ W_{12} &= \frac{-a_1}{A_2} \quad \rightarrow \frac{W_{12}}{W} = \frac{-a_1}{A_2} \frac{A_1 A_2}{M(s)} = \frac{-a_1 A_1}{M(s)} \,, \\ W_{21} &= \frac{-a_1}{A_1} \quad \rightarrow \frac{W_{21}}{W} = \frac{-a_1}{A_1} \frac{A_1 A_2}{M(s)} = \frac{-a_1 A_2}{M(s)} \,, \\ W_{22} &= \frac{A_1 s + a_1}{A_1} \quad \rightarrow \frac{W_{22}}{W} = \frac{A_1 s + a_1}{A_1} \frac{A_1 A_2}{M(s)} = \frac{(A_1 s + a_1) A_2}{M(s)} \end{split}$$

$$W_{22} = \frac{A_1 + A_1}{A_1} \rightarrow \frac{M_{22}}{W} = \frac{A_1 + A_1}{A_1} \frac{A_1 + A_2}{M(s)} = \frac{(A_1 + A_1)A_2}{M(s)}$$

$$\begin{bmatrix} h_1(s) \\ h_2(s) \end{bmatrix} = \begin{bmatrix} \frac{(A_2 + a_1)A_1}{M(s)} & -\frac{-a_1A_1}{M(s)} \\ -\frac{-a_1A_2}{M(s)} & \frac{(A_1 + a_1)A_2}{M(s)} \end{bmatrix} \begin{bmatrix} \frac{1}{A_1} & 0 \\ 0 & \frac{1}{A_2} \end{bmatrix} \begin{bmatrix} f_1(s) \\ f_3(s) \end{bmatrix} = \begin{bmatrix} \frac{A_2 + a_1}{M(s)} & \frac{a_1A_1}{M(s)A_2} \\ \frac{a_1A_2}{M(s)A_1} & \frac{A_1 + a_1}{M(s)} \end{bmatrix} \begin{bmatrix} f_1(s) \\ f_3(s) \end{bmatrix}$$
Typiki

- wyniki

$$\begin{split} h_1(s) &= \frac{A_2 s + a_1}{M(s)} f_1(s) + \frac{-a_1}{M(s)} f_3(s) \\ h_2(s) &= \frac{W_2}{W} = \frac{a_1 f_1(s) - \left(A_2 s + a_1\right) f_3(s)}{M(s)} = \frac{a_1}{M(s)} f_1(s) + \frac{-\left(A_2 s + a_1\right)}{M(s)} f_3(s) \end{split}$$

Można też tak

$$s \begin{bmatrix} A_1 h_1(s) \\ A_2 h_2(s) \end{bmatrix} = \begin{bmatrix} -a_1 & +a_1 \\ a_1 & -a_1 \end{bmatrix} \begin{bmatrix} h_1(s) \\ h_2(s) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} f_1(s) \\ f_3(s) \end{bmatrix}$$
- operacje macierzowe
$$\begin{bmatrix} h_1(s) \\ h_2(s) \end{bmatrix} = \begin{bmatrix} A_1 s + a_1 & -a_1 \\ -a_1 & A_2 s + a_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} f_1(s) \\ 0 & -1 \end{bmatrix} \begin{bmatrix} f_1(s) \\ f_3(s) \end{bmatrix}$$
-
$$\det \begin{bmatrix} A_1 s + a_1 & -a_1 \\ -a_1 & A_2 s + a_1 \end{bmatrix} = (A_1 s + a_1)(A_2 s + a_1) - a_1^2$$

dokończyć

• Równanie charakterystyczne

$$s(A_1A_2s + aA_1 + aA_2) = 0$$

Pierwiastki: zawsze s_1 =0 (własności całkujące) i s_2 <0 (parametry A_1 , A_2 , a są zawsze dodatnie) Stabilność: zawsze na granicy stabilności

Punkt równowagi (na podstawie tw. o wartości końcowej)

1° wyjście h_1 przy stałych wymuszeniach f_1 i f_3

$$\begin{split} \lim_{t \to \infty} h_1(t) &= \lim_{s \to 0} s \frac{A_2 s + a}{s \left(A_1 A_2 s + a A_1 + a A_2\right)} \frac{f_{10}}{s} + \lim_{s \to 0} s \frac{-a}{s \left(A_1 A_2 s + a A_1 + a A_2\right)} \frac{f_{30}}{s} \text{ , o ile granica istnieje!} \\ &= \lim_{s \to 0} \frac{A_2 s + a}{s \left(A_1 A_2 s + a A_1 + a A_2\right)} f_{10} + \lim_{s \to 0} \frac{-a}{s \left(A_1 A_2 s + a A_1 + a A_2\right)} f_{30} \\ &= \lim_{s \to 0} \frac{A_2 s + a}{s \left(A_1 A_2 s + a A_1 + a A_2\right)} f_{10} + \lim_{s \to 0} \frac{-a}{s \left(A_1 A_2 s + a A_1 + a A_2\right)} f_{30} \end{split}$$

Próba obliczenia granicy:

- przez podstawienie s=0:

$$= \frac{A_2 0 + a}{0(A_1 A_2 0 + aA_1 + aA_2)} f_{10} + \frac{-a}{0(A_1 A_2 0 + aA_1 + aA_2)} f_{30}$$

$$= \infty - \infty \qquad \text{(symbol nieoznaczony)}$$

- połączenie wyrażeń i podstawienie *s*=0

$$= \lim_{s \to 0} \frac{(A_2 s + a)f_{10} - af_{30}}{s(A_1 A_2 s + aA_1 + aA_2)} = \lim_{s \to 0} \frac{A_2 sf_{10} + a(f_{10} - f_{30})}{s(A_1 A_2 s + aA_1 + aA_2)}$$

jeśli
$$f_{10} = f_{30}$$
, to:

$$= \lim_{s \to 0} \frac{A_2 s f_{10}}{s \left(A_1 A_2 s + a A_1 + a A_2\right)} = \lim_{s \to 0} \frac{A_2 f_{10}}{\left(A_1 A_2 s + a A_1 + a A_2\right)} = \frac{A_2 f_{10}}{\left(A_1 A_2 0 + a A_1 + a A_2\right)} = \frac{A_2 f_{10}}{a \left(A_1 + A_2\right)}$$

 $1e \sin f_{10} \neq f_{30}$, to:

$$= \lim_{s \to 0} \frac{A_2 s f_{10} + a (f_{10} - f_{30})}{s (A_1 A_2 s + a A_1 + a A_2)} = \frac{A_2 0 f_{10} + a (f_{10} - f_{30})}{0 (A_1 A_2 0 + a A_1 + a A_2)} = +\infty \text{ lub } -\infty$$

Jednak cała powyższa próba wyznaczenia granicy jest niepotrzebna \odot , ponieważ wiemy że układ ma własności całkujące i wobec tego granica $\lim_{t\to\infty} x(t)$ przy stałym wymuszeniu nie istnieje – warunki zastosowania twierdzenia o wartości końcowej nie są spełnione

2° wyjście h_1 przy wymuszeniach impulsowych f_1 i f_3 (wiemy, że granica istnieje)

$$\lim_{t \to \infty} h_1(t) = \lim_{s \to 0} s \frac{A_2 s + a}{s (A_1 A_2 s + a A_1 + a A_2)} 1 + \lim_{s \to 0} s \frac{-a}{s (A_1 A_2 s + a A_1 + a A_2)} 1$$

$$= \lim_{s \to 0} \frac{A_2 s + a}{(A_1 A_2 s + a A_1 + a A_2)} + \lim_{s \to 0} \frac{-a}{(A_1 A_2 s + a A_1 + a A_2)}$$

$$= \frac{A_2 0 + a}{(A_1 A_2 0 + a A_1 + a A_2)} + \frac{-a}{(A_1 A_2 0 + a A_1 + a A_2)} = \frac{0}{A_1 + A_2} = 0$$

Sprawdzenie (część odpowiedzi):

Zadania 1.

Równania stanu:
$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$
, $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, $\mathbf{u}(t) = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$

Transmitancje:
$$x_1(s) = \frac{L_{11}(s)}{M_{11}(s)}u_1(s) + \frac{L_{12}(s)}{M_{12}(s)}u_2(s), \ x_2(s) = \frac{L_{21}(s)}{M_{21}(s)}u_1(s) + \frac{L_{22}(s)}{M_{22}(s)}u_2(s)$$

	R.charakterystyczne	Punkt równowagi
1)	$4s^3 + b_3s^2 - b_1s + 2 = 0$	$x_1 = (u_1 + u_2)/2, \ x_2 = -u_1/b_1$
2)	$ms^3 + 3s^2 - s + c = 0$	$x_1 = (u_1 + u_2)/c$, $x_2 = -u_1$
3)	$4b_1s^3 + (4c + b_1b_2)s^2 + (cb_2 + 4b_1)s + 2c = 0$	$x_1 = u_1 + u_2 / 2$, $x_2 = (3u_1 + 2u_2) / c$
4)	$mbs^{3} + (m+2b)s^{2} + (2+4b)s + 2 = 0$	$x_1 = (2u_1 + u_2)/2$, $x_2 = 3u_1 + 2u_2$
5)	$4bs^3 + 4s^2 + 4bs + 3 = 0$	$x_1 = u_1 / 3$, $x_2 = u_1 + u_2$
6)	$ms^3 + mc_1s^2 + (c_1 + c_2)s + c_1c_2 = 0$	$x_1 = u_1 / c_2, \ x_2 = (u_1 + u_2) / c_1$
7)	$3ms^3 + (2m+12)s^2 + (3c+2)s = 0$	jeśli $u_1 + 2u_2 = 0$ to wiele rozwiązań
8)	$3ms^{3} + (12+2m)s^{2} + (3c+2)s + 2c - 4 = 0$	$x_1 = \frac{2u_2}{c-2}, \ x_2 = \frac{(c-2)u_1 - 4u_2}{2c-4}$
9)	$10s^3 + 15s^2 + (2c - 10)s + 3c - 10 = 0$	$x_1 = \frac{-2u_1 - 10u_2}{3c - 10}, x_2 = \frac{(c - 2)u_1 + 2cu_2}{3c - 10}$
10)	$5s^3 + (5+b)s^2 + (b-5)s - 5 = 0$	$x_1 = u_1 / 10 + u_2, \ x_2 = 2u_1 / 5$

ListaZad03.doc

9

Zadania 2 (część odpowiedzi):.

Przyjęto następujące oznaczenia:

 A_1, A_2 – powierzchnia dna odpowiednio pierwszego i drugiego zbiornika

 A_{w1} , A_{w2} – powierzchnia otworów odpowiednio pierwszego i drugiego zbiornika (o ile występują)

 a_1, a_2 — współczynnik wynikający z linearyzacji swobodnego wypływu odpowiednio pierwszego i drugiego zbiornika (o ile występuje)

Ukł.	Model dokładny			Model zlinearyzowany
	równania	we	p. równowagi	r.charkterystyczne
3)	$\begin{cases} A_1 \dot{h}_1 = f_1 - A_{w1} \sqrt{2g(h_1 - h_2)} \\ A_2 \dot{h}_2 = A_{w1} \sqrt{2g(h_1 - h_2)} - f_3 \end{cases}$	f_1 , f_3	Jeśli f_1 = f_3 , to wiele rozwiązań ⁽¹⁾ :	s(bs+c)=0
	$A_2 \dot{h}_2 = A_{\text{vi}} \sqrt{2g(h_1 - h_2)} - f_2$	<i>J J</i>	- 2	$b = A_1 A_2$
	(2 '2 WI V 3 (1 '2) J 3		$h_1 - h_2 = \frac{f_1^2}{2gA_{w1}^2}$	$c = a_1(A_1 + A_2)$
4)	$\begin{cases} A_1 \dot{h}_1 = f_{we} - f_2 \\ A_2 \dot{h}_2 = f_2 - A_{w2} \sqrt{2gh_2} \end{cases}$	$f_{\text{we}},$ f_2	Jeśli $f_2 = f_{we}$, to h_1 ma wiele rozw. (1)	$s(A_2s + a_2) = 0$
	$A_2 \dot{h}_2 = f_2 - A_{w2} \sqrt{2gh_2}$	0 -	$h_2 = \frac{f_2^2}{2gA_{w2}^2}$	
5)	$\begin{cases} A_1 \dot{h}_1 = -A_{w1} \sqrt{2g(h_1 - h_2)} \\ A_2 \dot{h}_2 = f_1 + A_{w1} \sqrt{2g(h_1 - h_2)} - A_{w2} \sqrt{2gh_2} \end{cases}$	f_1	$h_1 = h_2 = \frac{f_1^2}{2gA_{v2}^2}$	$as^2 + bs + c = 0$
	$A_2 \dot{h}_2 = f_1 + A_{w1} \sqrt{2g(h_1 - h_2)} - A_{w2} \sqrt{2gh_2}$		$2gA_{w2}^2$	$a = A_1 A_2$
				$b = A_1(a_1 + a_2) + A_2a_1$
				$c = a_1 a_2$
6)	$A_1 \dot{h}_1 = f_1 - A_{w1} \sqrt{2g(h_1 - h_2)}$	f_1	Jeśli $f_1 = f_3 - f_4$, to	s(bs+c)=0
	$\begin{cases} A_1 \dot{h}_1 = f_1 - A_{w1} \sqrt{2g(h_1 - h_2)} \\ A_2 \dot{h}_2 = A_{w1} \sqrt{2g(h_1 - h_2)} - f_3 + f_4 \end{cases}$	$f_{3,}$ f_{4}	wiele rozwiązań ⁽¹⁾ :	$b = A_1 A_2$
	$(I_2 I_2 - I_{wl} \sqrt{28} (I_1 - I_2) - J_3 + J_4$	J4	$h_1 - h_2 = \frac{f_1^2}{2gA_{w1}^2}$	$c = a_1(A_1 + A_2)$
7)	$\begin{cases} A_1 \dot{h}_1 = f_1 - A_{w1} \sqrt{2gh_1} \\ A_2 \dot{h}_2 = A_{w1} \sqrt{2gh_1} - f_{wv} \end{cases}$	f_1 , f_{wv}	Jeśli $f_I = f_{wy}$, to h_2 ma wiele rozw. (1)	$s(A_1s + a_1) = 0$
	$A_2 \dot{h}_2 = A_{w1} \sqrt{2gh_1} - f_{wy}$		$h_1 = \frac{f_1^2}{2\sigma A^2}$	
0)	A 1 · · · · 1 · 4		$2gA_{w1}$	
	Analogicznie jak p.4	C	T 1 2	1
9)	$\int A_1 \dot{h}_1 = f_1 - A_{w1} \sqrt{2g(h_1 - h_2)}$	f_1 ,	Jak p.3, oraz	$s(bs+c)(A_3s+a_3)=0$
	$\begin{cases} A_2 \dot{h}_2 = A_{w1} \sqrt{2g(h_1 - h_2)} - f_3 \end{cases}$	f_3	$h_3 = \frac{f_3^2}{2gA_{23}^2}$	$b = A_1 A_2$
			$2gA_{w3}^2$	$c = a_1(A_1 + A_2)$
	$A_3 \dot{h}_3 = f_3 - A_{w3} \sqrt{2gh_3}$			
10)	áli nadana przeplywy sa równa ta pieskań sza			

(1) Jeśli podane przepływy są równe, to nieskończenie wiele rozwiązań. Jeśli przepływy są różne, to brak rozwiązania (brak punktu równowagi przy stałym niezerowym wymuszeniu)

Zadania 3 (część odpowiedzi):.

Oznaczenia: x_1, x_2, \dots – punkty "bilansowe"

Ukł	Równania bilansowe	P. równowagi	R.charkterystyczne
1)	$\int F = m\ddot{x}_1 + c_2 x_1 + b_1 (\dot{x}_1 - \dot{x}_2)$	$x_1 = F/c_2$	$M_1 M_2 - b_1^2 s^2 = 0$
	$0 = b_1(\dot{x}_2 - \dot{x}_1) + c_1 x_2$	$x_2 = 0$	$M_1 = ms^2 + b_1 s + c_2$
			$M_2 = b_1 s + c_1$
5)	$\int F_1 = c_1 x_1 + b_2 \dot{x}_1 + b_1 (\dot{x}_1 - \dot{x}_2)$	$x_1 = F_1 / c_1$	$M_1 M_2 - b_1^2 s^2 = 0$
	$\int F_2 = m\ddot{x}_2 + b_1(\dot{x}_2 - \dot{x}_1) + c_2 x_2$	$x_2 = F_2 / c_2$	$M_1 = b_1 s + b_2 s + c_1$
			$M_2 = ms^2 + b_1 s + c_2$

ListaZad03.doc 10