Data Set Information:

The two datasets are related to red and white variants of the Portuguese "Vinho Verde" wine.

Due to privacy and logistic issues, only physicochemical (inputs) and sensory (the output) variables are available (e.g. there is no data about grape types, wine brand, wine selling price, etc.).

These datasets can be viewed as classification or regression tasks. The classes are ordered and not balanced (e.g. there are many more normal wines than excellent or poor ones).

Outlier detection algorithms could be used to detect the few excellent or poor wines. Also, we are not sure if all input variables are relevant. So it could be interesting to test feature selection methods.

Attribute Information:

Input variables (based on physicochemical tests):

- 1 fixed acidity
- 2 volatile acidity
- 3 citric acid
- 4 residual sugar
- 5 chlorides
- 6 free sulfur dioxide
- 7 total sulfur dioxide
- 8 density
- 9 pH
- 10 sulphates
- 11 alcohol

Output variable (based on sensory data):

12 - quality (score between 0 and 10)

```
In []: #EDA with Red Wine Data
In []: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

In []: df=pd.read_csv("/content/sample_data/winequality-red.csv")
df.head(5)
```

n	1.11	+		- 1	
U	и	L		- 1	
			-	-	

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide		density	рН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4

#summary of DataSet

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1599 entries, 0 to 1598 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In []: #descriptive summary of the dataset

df.describe()

Out[]:

•		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
	count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000
	mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792
	std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324
	min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000
	25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000
	50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000
	75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000
	max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000

```
In [ ]:
        ## shape of the data
         df.shape
        (1599, 12)
Out[ ]:
In [ ]: ## List down all the columns names
         df.columns
        Index(['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',
Out[ ]:
                'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density',
                'pH', 'sulphates', 'alcohol', 'quality'],
              dtype='object')
        df['quality'].unique() #unique values within a particular columns
        array([5, 6, 7, 4, 8, 3])
Out[]:
In [ ]: df.nunique() # unique values of all values from the dataset
Out[]: fixed acidity
                                  96
        volatile acidity
                                 143
        citric acid
                                  80
        residual sugar
                                  91
        chlorides
                                 153
        free sulfur dioxide
                                 60
        total sulfur dioxide
                                 144
        density
                                 436
        рΗ
                                  89
        sulphates
                                  96
        alcohol
                                  65
        quality
                                   6
        dtype: int64
In [ ]: # missing values within the values
         df.isnull().sum()
Out[ ]: fixed acidity
                                 0
        volatile acidity
                                 0
        citric acid
                                 0
        residual sugar
                                 0
        chlorides
        free sulfur dioxide
                                 0
        total sulfur dioxide
                                 0
        density
                                 0
                                 0
        рΗ
        sulphates
                                 0
        alcohol
                                 0
        quality
                                 0
        dtype: int64
In [ ]: # checking the Duplicate records
         df.duplicated()
```

```
False
Out[ ]:
               False
        2
               False
               False
                True
        1594
               False
        1595
               False
               True
        1596
        1597
               False
        1598
               False
        Length: 1599, dtype: bool
```

In []: # checking the Duplicate records within the dataframe

df[df.duplicated()]

_		-		
\cap	14		- 1	0
U	ィレ		- 1	0

•		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcoh
	4	7.4	0.700	0.00	1.90	0.076	11.0	34.0	0.99780	3.51	0.56	ć
	11	7.5	0.500	0.36	6.10	0.071	17.0	102.0	0.99780	3.35	0.80	1(
	27	7.9	0.430	0.21	1.60	0.106	10.0	37.0	0.99660	3.17	0.91	ć
	40	7.3	0.450	0.36	5.90	0.074	12.0	87.0	0.99780	3.33	0.83	1(
	65	7.2	0.725	0.05	4.65	0.086	4.0	11.0	0.99620	3.41	0.39	1(
	•••											
	1563	7.2	0.695	0.13	2.00	0.076	12.0	20.0	0.99546	3.29	0.54	1(
	1564	7.2	0.695	0.13	2.00	0.076	12.0	20.0	0.99546	3.29	0.54	1(
	1567	7.2	0.695	0.13	2.00	0.076	12.0	20.0	0.99546	3.29	0.54	1(
	1581	6.2	0.560	0.09	1.70	0.053	24.0	32.0	0.99402	3.54	0.60	11
	1596	6.3	0.510	0.13	2.30	0.076	29.0	40.0	0.99574	3.42	0.75	1'

240 rows × 12 columns

Out[]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	
fixed acidity	1.000000	-0.255124	0.667437	0.111025	0.085886	-0.140580	-0.103777	0.670195	-(
volatile acidity	-0.255124	1.000000	-0.551248	-0.002449	0.055154	-0.020945	0.071701	0.023943	(
citric acid	0.667437	-0.551248	1.000000	0.143892	0.210195	-0.048004	0.047358	0.357962	-(
residual sugar	0.111025	-0.002449	0.143892	1.000000	0.026656	0.160527	0.201038	0.324522	-(
chlorides	0.085886	0.055154	0.210195	0.026656	1.000000	0.000749	0.045773	0.193592	-(
free sulfur dioxide	-0.140580	-0.020945	-0.048004	0.160527	0.000749	1.000000	0.667246	-0.018071	(
total sulfur dioxide	-0.103777	0.071701	0.047358	0.201038	0.045773	0.667246	1.000000	0.078141	-(
density	0.670195	0.023943	0.357962	0.324522	0.193592	-0.018071	0.078141	1.000000	-(
рН	-0.686685	0.247111	-0.550310	-0.083143	-0.270893	0.056631	-0.079257	-0.355617	1
sulphates	0.190269	-0.256948	0.326062	-0.011837	0.394557	0.054126	0.035291	0.146036	-(
alcohol	-0.061596	-0.197812	0.105108	0.063281	-0.223824	-0.080125	-0.217829	-0.504995	(
quality	0.119024	-0.395214	0.228057	0.013640	-0.130988	-0.050463	-0.177855	-0.184252	-(

In []: #correlation in the form of graph
sns.heatmap(df.corr())

Out[]: <Axes: >

In []: plt.figure(figsize=(10,6))
sns.heatmap(df.corr(),annot=True)

Out[]: <Axes: >


```
## Visualization
In [ ]:
        #conclusion - It is a imbalance dataset
        df.quality.value_counts()
        quality
Out[]:
              577
        6
              535
        7
              167
        4
              53
        8
              17
        3
              10
        Name: count, dtype: int64
In [ ]: df.quality.value_counts().plot(kind="bar")
        plt.xlabel("Wine Quality")
        plt.ylabel("Count")
        plt.show()
            600
```



```
In [ ]: sns.histplot(df["alcohol"])
```

Out[]: <Axes: xlabel='alcohol', ylabel='Count'>


```
In [ ]: #univariate, bivariate, multivariate analysis
sns.pairplot(df) #comparing one feature with other feature
```

Out[]. <seaborn.axisgrid.PairGrid at 0x7d11b6420e50>


```
In [ ]: #Categorical Plot
sns.catplot(x="quality",y="alcohol",data=df,kind="box")
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x7d11aed468c0>


```
In [ ]: #ScatterPlot - numerical features
sns.scatterplot(x="alcohol",y="pH",hue="quality",data=df)
```

Out[]: <Axes: xlabel='alcohol', ylabel='pH'>

In []: