Procesamiento Digital de Señales

Humberto Loaiza Correa, Ph.D. (humberto.loaiza@correounivalle.edu.co)

Escuela de Ingeniería Eléctrica y Electrónica Facultad de ingeniería Universidad del Valle Febrero 2025 - Junio 2025

Proyecto 1: Procesamiento de Señales

1. Implementar un sistema de adquisición, procesamiento y visualización de señales, con las siguientes especificaciones generales:

1.1. Entradas

- Micrófono: voz y música
- Señales Sintéticas: Chirp, Sinc, Seno, Coseno, Diente de Sierra, Rampa, Escalón, Triangular, etc.
- **Archivos de audio** (mono y estereofónicos → uno y dos canales respectivamente)
- Tarjeta de adquisición: Tarjeta National Instrument (O cualquier tarjeta de adquisición) para tomar señales provenientes de cualquier sensor o fuente de señal.

1.2. Funciones de Procesamiento

- Operaciones sobre una señal
- Operaciones entre señales
- El programa debe permitir seleccionar por ventana de diálogo cualquier señal para aplicar las operaciones.

1.2.1. **Preprocesamiento**

- Normalización de las amplitudes de las señales. Entre 0 y 1, -1 y 1, normalización estándar. Normalización estándar: $x_{new} = \frac{x - \mu_x}{\sigma_x}$; μ_x valor medio de x y σ_x desviación estándar de x.
- Detección y eliminación de datos faltantes o Nan o Inf. de las señales antes de procesarlas.

1.2.2. Procesamiento (Filtrado)

- Convolución **por bloques** sistema FIR: $y(n) = \sum_{k=0}^{n} x(n-k)h(k)$ Ecuación de diferencia Sistema IIR: $y(n) = -\sum_{k=1}^{N} \frac{a_k}{a_0} y(n-k) + \sum_{k=0}^{M} \frac{b_k}{a_0} x(n-k)$
- El programa debe permitir introducir los parámetros de los sistemas $[h(n), a_k, b_k]$ a través de ventanas de diálogo o desde un archivo.

1.2.3. Procesamiento entre señales

- Cambiar frecuencia de muestreo (submuestreo y sobremuestreo)
- Desplazar señales en el tiempo (adelanto y atraso)
- Sumar y multiplicar dos señales (de longitudes diferentes)
- Reproducir de forma normal e inversa una señal.
- Generar una señal estereofónica (dos canales: música, voz, sinc, seno) a partir de dos señales monofónicas (un canal). (Cada canal debe escucharse en un parlante distinto)
- Convertir una señal estéreo en una monofónica (explicar el método seleccionado de conversión)
- Ajustar el volumen del audio
 - Amplitud constante 0
 - Amplitud cambiando linealmente (creciente y decreciente)
- Producir eco a partir de una señal de audio x(n): mediante el sistema:

$$y(n) = x(n) + A_1 x(n - k_1) + A_2 x(n - k_2) + A_3 x(n - k_3)$$

- O Asigne los valores de $k_1 < k_2 < k_2$ para que sea audible el eco producido.
- Asigne los valores de amplitud de $A_1 > A_2 > A_3$

1.2.4. Procesamiento en el dominio frecuencial (T. Fourier)

- Obtener la magnitud y fase de la transformada de Fourier (DFT) de las señales y sistemas utilizados.
- Filtrar en el dominio de la frecuencia (incluir padding). Seleccionar diferentes filtros y aplicarlos a una señal.
- Obtener el *espectrograma* de las señales de entrada y salida.

1.2.5. Verificaciones

- Evitar divisiones por cero
- Verificación y cambio de la frecuencia de muestreo antes de realizar operaciones entre audios
- Verificación y cambio de las longitudes de las señales a procesar (incluir padding)

1.3. Salidas

- Gráficas con los ejes de tiempo y frecuencia que correspondan a la señal.
- Audibles a través del parlante del PC.

2. Prueba del sistema

- 2.1. Aplicar el procesamiento a todas las diferentes señales de entrada.
- 2.2. Aplicar las convolución y ecuaciones de diferencias a señales chirp con los filtros suministrados.
- Medir experimentalmente (en las gráficas) los parámetros por cada filtro
- Completar la información de la siguiente tabla:

Tipo de Filtro (PB, BP, BR, PB)	Frecuencia de muestreo	Amplitud banda de paso	Amplitud banda de rechazo	Frecuencia de corte 3dB banda de paso		Frecuencia de corte banda de rechazo		Ancho de banda de transición
				w (entre 0 y 1) [Pi rad/sample]	F=Fs wc/2 [Hz]	w (entre 0 y 1) [Pi rad/sample]	F=Fs wc/2 [Hz]	[Hz]

3. Operación de la Interfaz de Usuario

La **interfaz** debe permitir las siguientes operaciones:

- Seleccionar la señal de entrada desde cualquiera de las posibles entradas
- Reproducir (escuchar) señales de audio o señales sintéticas.
- Visualizar las señales en gráficas.
- Grabar en archivos las señales de entrada o resultantes
- Generar señales sintéticas (chirp, seno, coseno, triangular, ...) con parámetros ajustables por el usuario.
- Seleccionar el filtro a aplicar por convolución y ecuaciones de diferencia.
 - O Utilizar una señal chirp para prueba visual y audible de los filtros
 - O Utilizar señales de audio para prueba visual y audible de los filtros

- Para la convolución, el valor del **tamaño del bloque** debe seleccionarse por ventana de dialogo.

4. Requerimientos Proyectos (Estudiantes por grupo: Máximo 4)

- Interfaz gráfica funcional donde se visualicen las etapas principales de cada procesamiento.
- 5. Presentación en PowerPoint para 15 minutos por proyecto

Contenido de la Presentación

- i. Introducción
- ii. Objetivo General
- iv. Solución Implementada (Diagrama de Bloques y funciones precisas)
- v. Pruebas realizadas y resultados obtenidos
- iv. Conclusiones

6. Observaciones Generales

- El proyecto debe funcionar para señales diferentes y deberá permitir cambiar los parámetros de configuración y funcionamiento (frecuencia de muestreo, amplitudes y frecuencias de las señales de entrada, etc.) y deberán ser diferentes a los de otros grupos.
- Puede utilizarse ambientes de programación como: Matlab, Python, Mathematica, R, C, C++
- No usar ambientes de programación gráfica como Simulink o Labview
- Se considera para el cálculo de la nota del trabajo final:
 - o Calidad de la exposición oral (individual)
 - Cumplimiento **TOTAL** de las especificaciones del trabajo y desempeño de la aplicación (grupal)
 - o Diapositivas en Inglés
 - Opcional: si la presentación oral es en inglés: tres décimas más para la nota individual del estudiante.
- 7. Fecha Presentación: 22 Abril-2024