力学与机械波实验

目录

1	运动]守恒定律实	:验	Ĺ													3
	1.1	实验目的															3
	1.2	实验原理															3
	1.3	实验仪器															3
	1.4	实验步骤															3
	1.5	实验数据															4
	1.6	实验结论				•											14
2	机械		波	ZS	Ę	验											14
	2.1	实验目的															14
	2.2	实验原理															15
	2.3	实验仪器															15
	2.4	实验步骤															15
	2.5	实验数据															16
	2.6	实验结论															21

1 运动守恒定律实验

1.1 实验目的

- (1) 理解动能、重力势能、机械能守恒; 掌握估测小球动能 和重力势能的方法; 验证机械能守恒定律。
- (2)理解动量、动量守恒;掌握估测小球速度和动量的方法, 验证动量守恒定律。

1.2 实验原理

以双线牛顿单摆为观测对象,通过测量小球的速度估算动能,通过测量其高度估算重力势能。速度和高度的测量通过钢尺 + 手机拍摄视频的方式进行数据采集,利用开源软件 Tracker 进行视频分析和小球速度、高度估计。

以双单摆为观测对象,通过速度测量估算小球的动量;通过两个小球的对心碰撞验证动量守恒定律。速度的测量方法同上。

1.3 实验仪器

双线牛顿单摆、双线牛顿双摆、钢卷尺、手机、计算机。

1.4 实验步骤

- (1) 放置双线单摆。
- (2) 将手机尽量垂直于摆动平面,在一定距离处固定好并开启录像功能。
- (3) 将钢尺平行于摆动平面并尽量靠近单摆放置。
- (4) 将小球置于某一高度并放开,令其进行自由摆动。

- (5) 用手机拍摄小球摆动视频,利用 Tracker 软件分析计算小球的位置,速度。
- (6) 利用公式

$$E_k = \frac{1}{2}mv^2, E_p = mgh, E_m = E_k + E_p$$

计算小球在不同时刻的动能、重力势能,验证机械能守恒 定律。

- (7) 改变小球初始高度进行多次实验。
- (8) 添加另一个双线单摆,形成双单摆。
- (9) 将小球 A 置于某一高度并放开,令其摆动并与小球 B 碰撞。
- (10) 用手机拍摄小球碰撞视频,利用 Tracker 软件分析计算两个小球碰撞前后的速度。
- (11) 利用公式

$$p = mv, \Delta p = p_{\text{before}} - p_{\text{after}}$$

计算小球在碰撞前后的动量变化,验证动量守恒定律。

(12) 改变小球初始高度、质量比进行多次实验。

1.5 实验数据

- 1. 验证机械能守恒(忽略空气阻力):
 - 1) 初始高度 $h = 6 \,\mathrm{cm}$:

动能	重力势	机械能
(J)	能 (J)	(J)
5.792e-	3.081e-	3.139e-
5	3	3
1.444e-	1.541e-	2.985e-
3	3	3
1.697e-	1.154e-	2.851e-
3	3	3

表 1: 初始高度 h = 6 cm

在忽略空气阻力的情况下,可以近似认为机械能守恒。

2) 初始高度 $h = 7.5 \, \text{cm}$:

动能	重力势	机械能
(J)	能 (J)	(J)
5.506e-	4.856e-	5.991e-
3	4	3
9.096e-	5.072e-	5.981e-
4	3	3
3.289e-	2.644e-	5.932e-
3	3	3

表 2: 初始高度 $h = 7.5 \, \text{cm}$

在忽略空气阻力的情况下,可以近似认为机械能守恒。

3) 初始高度 $h = 9.5 \, \text{cm}$:

动能	重力势	机械能
(J)	能 (J)	(J)
1.177e-	1.006e-	2.183e-
2	2	2
7.144e-	1.446e-	2.160e-
3	2	2
1.605e-	1.055e-	2.120e-
2	2	2

表 3: 初始高度 $h = 9.5 \, \text{cm}$

在忽略空气阻力的情况下, 可以认为机械能守恒。

2. 验证动量守恒:

1) 质量比 1.728, 初始高度 6cm

图 1: 质量比 1.728, 初始高度 6cm

碰撞次数	小球 A 速度	小球 B 速度	总动量
	(m/s)	(m/s)	$(kg \cdot m/s)$
第一次前:	3.65e-1	0	1.09e-2
第一次后:	2.86e-1	2.39e-1	1.27e-2
第二次前:	2.88e-1	3.16e-1	1.41e-2
第二次后:	2.23e-1	4.56e-1	1.46e-2
第三次前:	-2.19e-1	-3.32e-1	-1.23e-2
第三次后:	-3.14e-1	-1.84e-1	-1.26e-3

表 4: 质量比 1.728, 初始高度 6cm¹

2) 质量比 3.835, 初始高度 6cm

¹由于手机拍摄产生的丢帧和不良截取问题,部分数据并没有采用最接近碰撞时刻的数据。碰撞次数也是便于观察的第一,第二,第三次。

图 2: 质量比 3.835, 初始高度 6cm

9

碰撞次数	小球 A 速度	小球 C 速度	总动量
	(m/s)	(m/s)	(kg·m/s)
第一次前:	3.07e-1	0	9.20e-3
第一次后:	2.46e-1	2.24e-1	9.22e-3
第二次前:	-1.64e-1	-3.96e-1	-8.06e-3
第二次后:	-2.72e-1	-3.19e-2	-8.42e-3
第三次前:	-1.71e-1	-4.53e-1	-8.84e-3
第三次后:	-2.02e-1	-1.50e-1	-7.30e-3

表 5: 质量比 3.835, 初始高度 6cm

3) 质量比 1.728, 初始高度 7.5cm

图 3: 质量比 1.728, 初始高度 7.5cm

碰撞次数	小球 A 速度	小球 B 速度	总动量
	(m/s)	(m/s)	(kg·m/s)
第一次前:	1.19e-1	-1.73e-2	3.27e-3
第一次后:	-1.45e-2	1.67e-1	2.46e-3
第二次前:	-1.64e-1	-3.96e-1	-8.06e-3
第二次后:	-2.72e-1	-3.19e-2	-8.42e-3
第三次前:	-1.71e-1	-4.53e-1	-8.84e-3
第三次后:	-2.02e-1	-1.50e-1	-7.30e-3

表 6: 质量比 1.728, 初始高度 7.5cm

4) 质量比 3.835, 初始高度 7.5cm

图 4: 质量比 3.835, 初始高度 7.5cm

碰撞次数	小球 A 速度	小球 C 速度	总动量
	(m/s)	(m/s)	(kg·m/s)
第一次前:	3.77e-1	0	1.13e-2
第一次后:	3.82e-1	1.69e-1	1.28e-2
第二次前:	-9.98e-2	-2.80e-1	-5.21e-3
第二次后:	-1.94e-1	-5.21e-2	-6.25e-3
第三次前:	5.33e-2	8.85e-2	2. 30e-3
第三次后:	-6.37e-2	1.49e-1	-7.31e-4

表 7: 质量比 3.835, 初始高度 7.5cm

1.6 实验结论

1) 在忽略空气阻力的情况下,可以认为机械能守恒。

$$E_{\text{before}} = E_{\text{after}}$$

2) 在误差允许范围内,可以认为动量守恒。

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

2 机械振动与机械波实验

2.1 实验目的

- (1) 理解简谐振动,机械波的概念。
- (2) 掌握估测小球运动轨迹和运动状态的方法; 观测分析单个 小球的简谐振动和多个小球形成的机械波。

2.2 实验原理

以牛顿单摆为观测对象,观测分析小球的简谐振动;以不同摆长的牛顿摆为观测对象,观测分析多个小球形成的机械波。

速度和位置的测量通过钢尺 + 手机拍视频的方式进行数据采集,利用开源软件 Tracker 进行视频分析和小球速度、位置估计。

2.3 实验仪器

双线牛顿单摆、不同摆长的双线牛顿摆、钢卷尺、手机、计算机。

2.4 实验步骤

- (1) 放置双线单摆。
- (2) 将手机尽量垂直于小球摆动平面,在一定距离处固定好并 开启录像功能。
- (3) 将钢尺平行于摆动平面并尽量靠近单摆放置。
- (4) 将小球置于某一高度并放开,令其进行自由摆动。
- (5) 用手机拍摄小球摆动视频,利用 Tracker 软件分析计算小球的位置、速度。
- (6) 改变小球初始高度、摆长进行多次实验。
- (7) 放置不同长度的多个单摆,将手机摄像头从侧上方对准多 单摆。
- (8) 用长直尺将多摆中的所有小球侧推至同一角度后放开,令 其进行自由摆动。
- (9) 用手机拍摄小球摆动视频,利用 Tracker 软件分析计算每个小球的位置、速度变化。进而分析多个小球形成的机械 波的周期,频率变化。

(10) 分析机械波的周期、频率与摆长的关系。

2.5 实验数据

1. 单个小球分析:

图 5: 7.5cm 高度

此情况

$$v_{max}=0.929\,\mathrm{m/s}$$

小球的最大位移为

$$x_{max}=0.132\,\mathrm{m}$$

图 6: 9cm 高度

此情况

 $v_{max} = 0.964 \,\mathrm{m/s}$

小球的最大位移为

 $x_{max}=0.144\,\mathrm{m}$

图 7:6cm 高度

此情况

$$v_{max}=0.452\,\mathrm{m/s}$$

小球的最大位移为

$$x_{max} = 0.100\,\mathrm{m}$$

数据如下:

初始高度 (cm)	最大位移 (m)	最大速度
		(m/s)
6	0.100	0.452
7.5	0.132	0.929
9.5	0.144	0.964

表 8: 不同高度速度位移的变化

由此得小球的速度与初始高度正相关,与摆长无关;小球的位置与初始高度正相关,与摆长成负相关。

2. 多个小球分析:

数据如下:

小球名称	摆长 (m)	周期 (s)
A	0.185	0.866
В	0.205	0.900
С	0.210	0.917
D	0.215	0.922
E	0.220	0.933

表 9: 机械波周期与摆长关系

可得单摆的周期随摆长变长而增大,频率随摆长变长而减小。

2.6 实验结论

- 1) 小球在 x 方向上的运动可以近似认为是简谐运动。
- 2) 小球速度与初始高度正相关,与摆长无关。
- 3) 小球位置与初始高度正相关,与摆长负相关。
- 4) 小球机械波周期与摆长正相关,频率相反。

以上实验结果符合忽略空气阻力的位置公式:

$$\begin{cases} l(1 - \cos(\theta)) = h \\ l\sin(\theta) = x \end{cases}$$

以及小球速度公式(忽略空气阻力):

$$v = \sqrt{2gh}$$

多个小球分析则符合单摆周期公式:

$$T = 2\pi \sqrt{\frac{l}{g}}$$