

Morphological

Image Processing

李东晚

lidx@zju.edu.cn

Contents

- 9.1 Preliminaries
- 9.2 Erosion and Dilation
- 9.3 Opening and Closing
- 9.4 The Hit-or-Miss Transformation
- 9.5 Some Basic Morphological Algorithms

Preliminaries – Set Theory

2022/4/20

Preliminaries – Set Theory

- Binary image: Z², set of (x, y) coordinates
- Gray-scale image: Z³, set of (x, y, f(x, y))
- Set reflection $\hat{B} = \{w | w = -b, \text{ for } b \in B\}$
- Set translation $(B)_z = \{c | c = b + z, \text{ for } b \in B\}$

What Is Binary Morphology?

- Morphological image processing describes a range of image processing techniques that deal with the shape (or morphology) of features in an image.
- Morphological operations are typically applied to remove imperfections introduced during segmentation, and so typically operate on binary images.
- Whether 0 and 1 refer to white or black is a little interchangeable

Objects & Structure Elements

Objects representeed as sets

Structuring element represented as a set

Objects represented as a graphical image

Structuring element represented as a graphical image

Digital image

Digital structuring element

Structuring Elements

Structuring Element (SE):

small set or sub-image, any size and any shape

• For symmetric SE, the center is the default origin

Image Processing 1

Structuring Elements & Reflections

Foreground and Background

Foreground (Object)

L09 Morphological Image Processing 1 2022/4/20

9

Structuring Elements: Hit, Fit, Miss

Fit: All on pixels in the structuring element cover on pixels in the image

Hit: Any on pixel in the structuring element covers an on pixel in the image

Miss: otherwise

All morphological processing operations are based on these simple ideas

Fitting & Hitting

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	B	1	1	1	0	0	0	0	0
0	1	1	1	1	1	1	1	0	0	0	0
0	1	1	1	1	1	1	1	0	0	0	0
0	0	1	1	1	1	1	1	0	0	0	0
0	0	1	1	1	1	1	1	1	0	0	0
0	0	1	1	1	1	1	A	1	1	1	0
0	0	0	0	0	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0

1	1	1
1	1	1
1	1	1

Structuring Element 1

0	1	0
1	1	1
0	1	0

Structuring Element 2

Fundamental Operation - Erosion

$$A \ominus B = \{z | (B)_z \subseteq A\} = \{z | (B)_z \cap A^c = \emptyset\}$$

Erosion Example

Processed Image

Structuring Element

14

Erosion Example 1

Original image

Erosion by 3*3 square structuring element

Erosion by 5*5 square structuring element

Watch out: In these examples a 1 refers to a black pixel !

Erosion Example 2

Original image (486x486 binary)

After erosion with SE of size 11x11

After erosion with SE of size 15x15

After erosion with SE of size 45x45

What Is Erosion For?

Erosion can split apart joined objects

What Is Erosion For?

morphological filtering operation
 image details smaller than the structuring element are filtered (removed) from the image

Watch out: Erosion shrinks objects

Dilation

$$A \oplus B = \left\{ z | (\hat{B})_z \cap A \neq \emptyset \right\}$$

Why reflection?

Make Duality between a Erosion & Dilation

 The reflection and shifting of B is analogous to spatial convolution

Dilation Example

Original Image

Processed Image With Dilated Pixels

Structuring Element

Dilation Example 1

Original image

Dilation by 3*3 square structuring element

Dilation by 5*5 square structuring element

Watch out: In these examples a 1 refers to a black pixel!

Dilation Example 2

Original image

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

After dilation

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

0	1	0
1	1	1
0	1	0

Structuring element

What Is Dilation For?

Dilation can repair breaks

Dilation can repair intrusions

Watch out: Dilation enlarges objects

Duality

$$(A \ominus B)^c = A^c \oplus \hat{B}$$

$$(A \oplus B)^c = A^c \ominus \hat{B}$$

Proof:

$$(A \ominus B)^{c} = \left\{ z | (B)_{z} \subseteq A \right\}^{c}$$

$$= \left\{ z | (B)_{z} \cap A^{c} = \emptyset \right\}^{c}$$

$$= \left\{ z | (B)_{z} \cap A^{c} \neq \emptyset \right\}$$

$$A \oplus B = \left\{ z | (\hat{B})_{z} \cap A \neq \emptyset \right\}$$

$$= A^{c} \oplus \hat{B}$$

Definition:
$$A \oplus B = \{z | (\hat{B})_z \cap A \neq \emptyset\}$$

$$A \ominus B = \{z | (B)_z \subseteq A\} = \{z | (B)_z \cap A^c = \emptyset\}$$

Dilation = Minkowski Union

$$A \oplus B = \bigcup_{z \in A} B_z = \left\{ (z+b) \middle| z \in A, b \in B \right\} = \bigcup_{b \in B} A_b$$

Erosion = Minkowski Intersection

$$A\Theta B = \bigcap_{b \in B} A_{-b}$$

$$A\Theta B = (A^C \oplus \hat{B})^C = (\bigcup_{b \in \hat{B}} (A^C)_b)^C = \bigcap_{b \in \hat{B}} A_b = \bigcap_{b \in B} A_{-b}$$

Compound Operations

More interesting morphological operations can be performed by performing combinations of erosions and dilations

The most widely used of these *compound* operations are:

- Opening
- Closing

Opening

$$A \circ B = (A \ominus B) \oplus B$$

$$A \circ B = \bigcup \{(B)_z | (B)_z \subseteq A\}$$

Structuring element B rolling along the inner boundary of A

L09 Morphological Image Processing 1 2022/4/20

28

Opening

$$A \circ B = (A \ominus B) \oplus B$$

$$A \circ B = \bigcup \{(B)_z | (B)_z \subseteq A\}$$

Structuring element B rolling along the inner boundary of A

Image, I

Opening Example

L09 Morphological Image Processing 1 Structuring Element

30

Opening Example

Processed Image

Structuring Element

Closing

$A \bullet B = (A \oplus B) \ominus B$

Structuring element B rolling along the outer boundary of A

Image, I

Closing Example

Structuring Element

L09 Morphological Image Processing 1

淅沙 大 学 信息与电子工程学院

Closing Example

Original Image

Processed Image

Structuring Element

Opening and Closing Example

Opening and Closing Properties

Duality

$$(A \bullet B)^c = (A^c \circ \hat{B})$$
$$(A \circ B)^c = (A^c \bullet \hat{B})$$

Opening

- (a) $A \circ B$ is a subset (subimage) of A.
- **(b)** If C is a subset of D, then $C \circ B$ is a subset of $D \circ B$.
- (c) $(A \circ B) \circ B = A \circ B$.
 - Closing
- (a) A is a subset (subimage) of $A \cdot B$.
- **(b)** If C is a subset of D, then $C \bullet B$ is a subset of $D \bullet B$.
- (c) $(A \bullet B) \bullet B = A \bullet B$.

Opening, Closing & Set Operations

Set Union

$$\left(igcup_{i=1}^n A_i
ight) \circ B \supseteq igcup_{i=1}^n ig(A_i \circ Big)$$

$$\left(igcup_{i=1}^n A_i
ight)ullet B\supseteqigcup_{i=1}^nig(A_iullet Big)$$

Set Intersection

$$\left(\bigcap_{i=1}^n A_i\right) \circ B \subseteq \bigcap_{i=1}^n \left(A_i \circ B\right)$$

$$\left(\bigcap_{i=1}^n A_i\right) ullet B \subseteq \bigcap_{i=1}^n \left(A_iullet B\right)$$

Morphological Processing Example

Hit-or-Miss Transformation

Find the location of a shape

$$A \circledast B = (A \ominus D) \cap [A^c \ominus (W - D)]$$

$$A \circledast B = (A \ominus B_1) \cap (A^c \ominus B_2)$$

$$A \circledast B = (A \ominus B_1) \stackrel{!}{\smile} (A \oplus \hat{B}_2)$$

Hit-or-Miss Transformation

× : don't care pixels

Structuring elements for corner detection

$$A \circledast B = (A \ominus B_1) \cap (A^c \ominus B_2)$$

(a) B_1

(b) B_2

Properties

运算性质	膨胀	腐蚀	开	闭
位移不 变性	$(A)_{x} \oplus B = (A \oplus B)_{x}$	$(A)_{x}\Theta B = (A\Theta B)_{x}$	$A \circ (B)_{x} = A \circ B$	$A \bullet (B)_{_{X}} = A \bullet B$
互换性	$A \oplus B = B \oplus A$			
组合性	$(A \oplus B) \oplus C$	$(A\Theta B)\Theta C$		
	$=A\oplus (B\oplus C)$	$= A\Theta(B \oplus C)$		
增长性	$A \subseteq B \Rightarrow$	$A \subseteq B \Rightarrow$	$A \subseteq B \Rightarrow$	$A \subseteq B \Rightarrow$
	$A \oplus C \subseteq B \oplus C$	$A\Theta C \subseteq B\Theta C$	$A \circ C \subseteq B \circ C$	$A \bullet C \subseteq B \bullet C$
同前性			$(A \circ B) \circ B = A \circ B$	$(A \bullet B) \bullet B = A \bullet B$
外延性	$A \subseteq A \oplus B$	$A\Theta B \subseteq A$	$A \circ B \subseteq A$	$A \subseteq A \bullet B$

上表中膨胀和腐蚀的外延性只当结构元原点在内部时成立

Basic Morphological Algorithms

- Boundary Extraction
- Region Filling
- Extraction of Connected Components
- Convex Hull
- Thinning
- Thickening
- Skeletons
- Pruning(修剪)

Boundary Extraction

Extracting the boundary (or outline) of an object is often extremely useful

The boundary can be given simply as

$$\beta(A) = A - (A \ominus B)$$

 $A \ominus B$

 $\beta(A)$

Boundary Extraction Example

A simple image and the result of performing boundary extraction using a square 3*3 structuring element

2022/4/20

44

Region Filling

Given a pixel inside a boundary, *region filling* attempts to fill that boundary with object pixels (1s)

Given a point inside here, can we fill the whole circle?

Region Filling (cont...)

The key equation for region filling is

$$X_{k} = (X_{k-1} \oplus B) \cap A^{c}$$
 $k = 1, 2, 3....$

Where X_0 is simply the starting point inside the boundary, B is a simple structuring element and A^c is the complement of A

This equation is applied repeatedly until X_k is equal to X_{k-1}

Finally the result is unioned with the original boundary

Image Processing 1

Region Filling Step By Step

Region Filling Example

Extraction of Connected Components

$$X_k = (X_{k-1} \oplus B) \cap A$$
 $k = 1, 2, 3, ...$

$$k = 1, 2, 3, \dots$$

Extraction of Connected Components $X_k = (X_{k-1} \oplus B) \cap A$ k = 1, 2, 3, ...

$$X_k = (X_{k-1} \oplus B) \cap A \qquad k = 1, 2, 3, ...$$

X-ray Image of Chicken breast

Thresholded

Eroded	with	a
5x5 SE	of 1s	3

L09 Morphological **Image Processing 1** 20:

Johnected	connected comp	
omponent		
01	11	
02	9	
03	9	
04	39	
05	133	
06	1	
07	1	
08	743	
09	7	
10	11	
11	11	
12	9	
13	9	
14	674	
15	85	

No of pixels in

Connected

Convex Hull

• Convex (凸): set A is said to be convex if the straight line segment joining any two points in A lies entirely within A.

• Convex Hull (凸包): convex hull H of an arbitrary set S is the smallest convex set containing S

• Convex Deficiency (凸缺):
set difference *H* - S is
called the *convex deficiency*

of S

Don't care Convex Hull

$$X_k^i = (X_{k-1} \circledast B^i) \cup A$$

 $i = 1, 2, 3, 4$
 $k = 1, 2, 3, \dots$

$$X_0^i = A$$
 $D^i = X_k^i$

$$C(A) = \bigcup_{i=1}^{4} D^i$$

Limiting growth of the convex hull

※バグンナ、学 信息与电子工程学院

Thinning

$$A \otimes B = A - (A \circledast B) = A \cap (A \circledast B)^c$$

$${B} = {B^1, B^2, B^3, \dots, B^n}$$

 B^i is a rotated version of B^{i-1}

$$A \otimes \{B\} = ((\dots((A \otimes B^1) \otimes B^2) \dots) \otimes B^n)$$

Figure 1 Thinning **Example**

$$A_3=A_2\otimes B^3$$

$$A_5 = A_4 \otimes B^5$$

$$A_6 = A_5 \otimes B^6$$

$$A_8 = A_6 \otimes B^{7,8}$$

$$A_{8,4} = A_8 \otimes B^{1,2,3,4}$$

 $A_{8,5} = A_{8,4} \otimes B^5$

 $A_{8,6} = A_{8,5} \otimes B^6$ No more changes after this.

 $A_{8,6}$ converted to m-connectivity.

Thickening

$$A \odot \{B\} = ((\dots((A \odot B^1) \odot B^2) \dots) \odot B^n)$$

Duality:

Thickening the foreground = Thinning the background

A

 A^{c}

Thinning of A^c

Thickening of *A*

Remove disconnected points

Skeletons (骨架、中轴)

- (a) If z is a point of S(A) and $(D)_z$ is the largest disk centered at z and contained in A, one cannot find a larger disk (not necessarily centered at z) containing $(D)_z$ and included in A. The disk $(D)_z$ is called a maximum disk.
- **(b)** The disk $(D)_z$ touches the boundary of A at two or more different places.
- 区域边界内切圆的圆心的集合
- 火烧草地: 边界上同时点火,

假设火蔓延的速度处处相同,

火线相遇的地方构成中轴

Skeletons (骨架、中轴)

$$S(A) = \bigcup_{k=0}^{K} S_k(A)$$

$$S_k(A) = (A \ominus kB) - (A \ominus kB) \circ B$$

$$(A \ominus kB) = ((\dots((A \ominus B) \ominus B) \ominus \dots) \ominus B)$$

$$K = \max\{k | (A \ominus kB) \neq \emptyset\}$$

$$A = \bigcup_{k=0}^{K} (S_k(A) \oplus kB)$$

$$(S_k(A) \oplus kB) = ((\ldots((S_k(A) \oplus B) \oplus B) \oplus \ldots) \oplus B)$$

Skeletons Example

Pruning

Problem: "spurs" (parasitic components) after thinning and skeletonizing

$$X_1 = A \otimes \{B\}$$
 3 times Thinning $X_2 = \bigcup_{k=1}^8 (X_1 \otimes B^k)$ Hit-or-Miss $X_3 = (X_2 \oplus H) \cap A$ 3 times $X_4 = X_1 \cup X_3$

L09 Morphological Image Processing 1 2022/4/20

59

Assignments

• 9.8, 9.9, 9.23, 9.26

课后作业题目请对照参考第4版英文原版

• 第4次编程作业

从Laboratory Projects_DIP3E.pdf的Proj09-xx中选做1个题目。也可针对DIP4E Chapter 9内容,自拟任务。

Assignments

每个编程作业要求递交1份实验报告,命名"学号姓名_prjX.pdf",内容提纲包括:

- 实验任务: 描述本次实验的任务, 即所选择的 ProjXX-xx题目,或自拟题目。
- 算法设计: 理论上描述所设计的算法。
- 代码实现: 描述编程环境, 给出自己编写的核心代码。
- 实验结果: 描述具体的实验过程,给出每个小实验的输入数据、算法参数和实验结果,并对结果做简要的讨论。
- 总结: 简要总结本次实验的技术内容, 以及心得体会