Diffusion in Battery Cells

Solid redox reactions need solid diffusion

SOLUTION

The redox reagent is initially in the solution. It diffuses to the interface, reacts, then returns to the solution,

transfer

Diffusion is slow, specially in the solid state

time constant = L^2/D

Estimate the time required for lithium ions to diffuse a distance of 100 μ m. Use the approximation $t=L^2/D$ and consider $D=10^{-10}$ cm²/s

Answer: 10⁶ seconds (280 hours)

Diffusion is slow, specially in the solid state

Estimate now the time required for lithium ions to diffuse a distance of 100 nm. Use the approximation $t=L^2/D$ and consider $D=10^{-10}$ cm²/s

Answer: 1 seconds

Diffusion in Battery Cells

Fick's First Law:

Flux

$$J(mol\ cm^{-2}s^{-1}) = -D\frac{\partial c}{\partial x}$$

(with Faraday) Current/area

$$j\left(Acm^{-2}\right) = -nFD\frac{\partial c}{\partial x}$$

Distance, x

Diffusion in Battery Cells

Fick's Second Law:

Positive Curvature accompanies accumulation $\frac{\partial^2 c}{\partial x^2} = \frac{\partial c}{\partial t}$

Current in:

$$j (Acm^{-2}) = -nFD \frac{\partial c}{\partial x} (x=0)$$

Distance, x

Solution: Composite Electrodes!

Made of active material + conductive additive (carbon) + binder

Composite Electrodes

Rough and Porous Electrodes: the De Levie model

electrolyte resistance per unit electrode length, r

capacitance per unit electrode length, *c*

Equivalent circuit

Infinite sum of small components

Result:

Effective diffusion coefficient = r*c

Derivative Chronopotentiometry(DCP)

IR drop is constant - does not increase toward peak top

DCP for a Li-ion positive electrode

The Spinel Li_xMn₂O₄ lithium cathode shows both 1-phase and 2-phase insertion reactions

Li₂Mn₂O₄

- •N.B. plateau in E gives singularity in dx/dE
- •Nernst Equation gives const $E = \Delta G/nF$

Fick's laws of Diffusion and the Sand Equation for constant current

• 1st law: flux $J_{Li+} = -D \frac{\partial c}{\partial x} \int_{-\infty}^{-ve} \frac{\partial c}{\partial x}$

• 2nd law:
$$\frac{\partial c}{\partial t} = -\frac{\partial J}{\partial x} = D \frac{\partial^2 c}{\partial x^2}$$
 +ve $\frac{\partial^2 c}{\partial x^2}$

- Current pulse boundary conditions $J_{i+}(x=0) = j/F$ where j = current / area
- Result: c increases as $it^{1/2}/nFD^{1/2}\pi^{1/2}$

Chronopotentiometry

- Constant current pulse
- Measure potential vs time
- Measure equilibrium potential after the pulse

c increases as $jt^{1/2}/nFD^{1/2}\pi^{1/2}$

The Galvanostatic Intermittent Titration Technique (GITT)

Current pulse analysis (GITT) to measure diffusion in single phase materials

A complete titration

GITT profile for first discharge of Li/S cell using 5 min pulse and 10 min relaxation (5/10), with 1M LiTFSI in TEGDME/DOL. The red circles represent the last data point at the end of each relaxation period at discharge state of Li-S cell.

Further GITT analysis

$$D = \left(\frac{4}{\pi}\right) \left(\frac{L^2}{\tau_{pulse}}\right) \left(\frac{dEs}{dEt}\right)^2$$

Relaxed Potential, Diffusion Coefficient, Pseudocapacitance and Thermodynamic Factors from GITT

- D generally follows T.F. except at end point where tortuosity is high.
- Anomalous diffusion at 0.8 followed by T.F. = 0.
- Suggests nucleation & growth of a solid phase during which D value is invalid.

Conclusion – the rate limiting step rules!

Slow ambipolar diffusion in the composite electrode

Summary

- Diffusion is modelled by Fick's 1st and 2nd Laws
- Slow diffusion in solds is compensated by fine particle composites
- Galvanostatic potentiometry gives t^{1/2} potential profiles, measuring D at a single composition
- GITT gives both Thermodynamic and Diffusion data over a range of compositions,

Diffusion in Battery Cells

Fick's First Law:

Flux

$$J(mol\ cm^{-2}s^{-1}) = -D\frac{\partial c}{\partial x}$$

(with Faraday) Current/area

$$j\left(Acm^{-2}\right) = -nFD\frac{\partial c}{\partial x}$$

Distance, x

Diffusion in Battery Cells

Fick's Second Law:

Positive Curvature accompanies accumulation $\frac{\partial^2 c}{\partial x^2} = \frac{\partial c}{\partial t}$

Current in:

$$j (Acm^{-2}) = -nFD \frac{\partial c}{\partial x} (x=0)$$

Distance, x

Rough and Porous Electrodes: the De Levie model

electrolyte resistance per unit electrode length, r

capacitance per unit electrode length, *c*

Equivalent circuit

Infinite sum of small components

Result:

Effective diffusion coefficient = r*c

Derivative Coulometric Titration (DCT)

IR drop is constant - does not increase toward peak top

DCT for a Li-ion positive electrode

The Spinel Li_xMn₂O₄ lithium cathode shows both 1-phase and 2-phase insertion reactions

NaCl-type Li₂Mn₂O₄

- •N.B. plateau in E gives singularity in dx/dE
- •Nernst Equation gives const $E = \Delta G/nF$

The Galvanostatic Intermittent Titration Technique (GITT)

Fick's laws of Diffusion and the Sand Equation for constant current

• 1st law: flux
$$J_{Li+} = -D \frac{\partial c}{\partial x}$$
 $\frac{\partial c}{\partial x}$

• 2nd law: $\frac{\partial c}{\partial t} = -\frac{\partial J}{\partial x} = D \frac{\partial^2 c}{\partial x^2}$ +ve $\frac{\partial^2 c}{\partial x^2}$

- Current pulse boundary conditions $J_{i+}(x=0) = j/F$ where j = current / area
- Result: c increases as $it^{1/2}/nFD^{1/2}\pi^{1/2}$

Current pulse analysis (GITT) to measure diffusion in single phase materials

A complete titration

GITT profile for first discharge of Li/S cell using 5 min pulse and 10 min relaxation (5/10), with 1M LiTFSI in TEGDME/DOL. The red circles represent the last data point at the end of each relaxation period at discharge state of Li-S cell.

Further GITT analysis

$$D = \left(\frac{4}{\pi}\right) \left(\frac{L^2}{\tau_{pulse}}\right) \left(\frac{dEs}{dEt}\right)^2$$

Relaxed Potential, Diffusion Coefficient, Pseudocapacitance and Thermodynamic Factors from GITT

- D generally follows T.F. except at end point where tortuosity is high.
- Anomalous diffusion at 0.8 followed by T.F. = 0.
- Suggests nucleation & growth of a solid phase during which D value is invalid.

Conclusion – the rate limiting step rules!

Summary

- Normal cyclic voltammetry does not work well with battery cells
- Slow scan voltammetry gives a good overall picture of redox reactions and the useable potential range
- Derivative Coulometric Titration gives superior results
- GITT gives both Thermodynamic and Diffusion data

