Übungsblatt LA 7

Computational and Data Science FS2025

Mathematik 2

Lernziele:

- Sie kennen die Begriffe Spur, Determinante, Leibnizsche Formel, Regel von Sarrus, Gramsche Matrix und deren wichtigste Eigenschaften.
- > Sie kennen die Formel zur Berechnung von Massen (Länge, Fläche, Volumen ...) und können sie anwenden.
- Sie können die Eigenschaften einer Matrix anhand ihrer Spur und Determinante beurteilen.
- > Sie können die Determinante quadratischer Matrizen in 2D und 3D berechnen.
- Sie können die Determinante einer quadratischen Matrix mit Hilfe des Gaußschen Verfahrens berechnen.

1. Aussagen über die Spur

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Die Spur ist für jede Matrix definiert.		
b) Ob eine Matrix regulär oder singulär ist, lässt sich nicht alleine		
anhand der Spur beurteilen.		
c) Für alle orthogonalen Matrizen gilt: $tr(A^T \cdot A) = n$.		
d) Für alle quadratischen nxn Matrizen gilt: $tr(A \cdot B - B \cdot A) = 0$.		
e) Für alle quadratischen nxn Matrizen gilt:		
$tr(A \cdot B) = tr(A) \cdot tr(B).$		
f) Die Matrix A ist schiefsymmetrisch, wenn gilt: $tr(A) = 0$.		

2. Spur und Determinante der Standardmatrizen in 2D

Bestimmen Sie für die Standardmatrizen \mathbb{E} , \mathbb{I} , P, Z_{λ} , P_{x} , P_{y} , S_{x} und S_{y} jeweils die Spur und die Determinante.

3. Spur und Determinante berechnen

Berechnen Sie jeweils die Spur und die Determinante.

a)
$$\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$ c) $\begin{pmatrix} -1 & 3 & 0 \\ 0 & 2 & 0 \\ 1 & 2 & -1 \end{pmatrix}$ d) $\begin{pmatrix} -2 & 4 & 8 \\ 1 & -2 & -4 \\ 6 & -3 & 12 \end{pmatrix}$ e) $\begin{pmatrix} 1 & 0 & 3 & 0 \\ 4 & -2 & 12 & 6 \\ 1 & 2 & 3 & -4 \\ 3 & 3 & 15 & -2 \end{pmatrix}$ f) $\begin{pmatrix} 1 & \sqrt{3} & 8 & -\sqrt{2} \\ -13 & 3 & \sqrt{2} & 0 \\ \sqrt{17} & -1 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{pmatrix}$

g)
$$\begin{pmatrix} 2 & -3 & 5 & 1 & 4 \\ 2 & -3 & 1 & -6 & 18 \\ 4 & -3 & 9 & 6 & 10 \\ -2 & 4 & -6 & -1 & -1 \\ -6 & 11 & -23 & -14 & 9 \end{pmatrix}$$

$$h) \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sqrt{2} \end{pmatrix}$$

4. Spur und Determinante mit Python/Numpy bestimmmen

Berechnen Sie jeweils Spur und Determinante der Matrizen aus Aufgabe 3 mit Python/Numpy.

5. Aussagen über die Determinante

Welche der folgenden Aussagen sind wahr und welche falsch?

		wahr	falsch
a)	Die Determinante ist nur für quadratische Matrizen definiert.		
b)	Ob eine quadratische Matrix regulär oder singulär ist, lässt sich		
	nicht nur anhand der Determinante beurteilen.		
c)	Für eine quadratische nxn Matrix A und eine orthogonale nxn		
	Matrix Q gilt: $det(QA) = det(A)$.		
d)	Für quadratische <i>nxn</i> Matrizen <i>A</i> und <i>B</i> gilt:		
	det(A + B) = det(A) + det(B).		
e)	Gilt $A = A^{-1}$, dann folgt: $det(A) \in \{-1;1\}$.		
f)	A sei eine schiefsymmetrische nxn Matrix. Für ungerade n gilt:		
	det(A) = 0.		

6. Aussagen über 2 Matrizen in 2D

Gegeben sind die beiden Matrizen

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ und } B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Die Matrix A ist orthogonal.		
b) Die Matrix <i>B</i> beschreibt eine Spiegelung an einer Geraden.		
c) Es gilt: $det(B) = tr(A) + tr(B)$.		
d) Es gibt ein $n \in \mathbb{N}$, so dass $B^n = 0$.		
e) Die Matrizen A und B kommutieren nicht, d. h. es gilt $A \cdot B \neq B \cdot A$.		
f) Es gilt $B = B^{-1}$.		

7. Aussagen über 2 Matrizen in 3D

Gegeben sind die beiden Matrizen

Gegeben sind die beiden Matrizen
$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \text{ und } B = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}.$$

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Die Matrix A ist singulär.		
b) Die Matrix A^{102} ist symmetrisch.		
c) Es gilt: $det(B) = det(A)$.		
d) Es gilt: $det(A) = tr(A)$.		
e) Es gilt: $A \cdot B = B \cdot A$.		

8. Determinante mit Parameter

a)
$$\begin{vmatrix} 1-\lambda & 2\\ 1 & -2-\lambda \end{vmatrix}$$

Für welche reellen Parameter
$$\lambda$$
 verschwinden die Determinanten? a) $\begin{vmatrix} 1-\lambda & 2 & 0 \\ 1 & -2-\lambda \end{vmatrix}$ b) $\begin{vmatrix} 1-\lambda & 2 & 0 \\ 0 & 3-\lambda & 1 \\ 0 & 0 & 2-\lambda \end{vmatrix}$