Math 185 Notes Complex Analysis

Professor: Christopher Ryba Scribe: Kelvin Lee

Contents

1	1 Complex Numbers		3
	1.1 Intro		3
2	2 Complex Differentiation		6
	2.1 Derivatives		6
	2.1.1 Continuity		6
	2.1.2 Properties of Limits		8
	2.2 Derivatives (Cont'd)		8
	2.2.1 Properties of complex-derivatives		9
3	Holomorphic Functions and Cauchy-Riemann Equations		11
	3.1 Holomorphic Functions		11
	3.2 The Cauchy-Riemann Equations		12
	3.3 Möbius Transformation		16

Lecture 1

Complex Numbers

1.1 Intro

Suppose we have the a Taylor series as follows:

$$\sum_{n=0}^{\infty} a_n x^n, \quad a_n \in \mathbb{R}$$

which happens to converge absolutely for |x| < r, where r is the radius of convergence, i.e.

$$\sum_{n=0}^{\infty} |a_n| |x|^n < \infty \quad \text{when } |x| < r, \quad \text{i.e. } x \in (-r, r).$$

Example 1.1.1. The series

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

converges absolutely for |x| < 1.

Question. Now what if we replace the real variable x by the complex variable z?

Answer. If |z| < r, then

$$\sum_{n=0}^{\infty} |a_n| |z|^n < \infty.$$

so the sum converges absolutely for $z \in D(0,r)$ (disc of radius r centered at zero). This gives a wider range than the real case.

So in this situation, our real-valued series can be extended to a complex-valued series.

Example 1.1.2. Let

$$f(z) = \begin{cases} e^{-1/z^2} & z \neq 0, \\ 0 & z = 0. \end{cases}$$

When viewed as a function $\mathbb{R} \to \mathbb{R}$, f(z) is infinitely differentiable at z = 0, and all derivatives of f(z) are zero at z = 0. Hence, the Taylor series is

$$f(0) + f'(0) \cdot x + \frac{f''(0)}{2} \cdot x^2 + \dots = 0 + 0 + 0 + \dots = 0.$$

So the Taylor series converges to a function different from f(z)!

Example 1.1.3. Consider the same example as above, but with z as a complex number. Let z = it where $t \in \mathbb{R}$. Then

$$e^{-1/z^2} = e^{1/t^2}$$
.

and so

$$f(it) = \begin{cases} e^{1/t^2} & t \neq 0, \\ 0 & t = 0 \end{cases}$$

which is not continuous at z = 0 and thus not complex-differentiable at z = 0.

Example 1.1.4. Now let's set z = x + iy where $x, y \in \mathbb{R}$. Consider a suitable power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n,$$

which we may view as a function $\mathbb{R}^2 \to \mathbb{R}^2$ (instead of $\mathbb{C} \to \mathbb{C}$). Let's differentiate with respect to x:

$$\frac{\partial f(z)}{\partial x} = \frac{\partial f(z)}{\partial z} \cdot \frac{\partial z}{\partial x} = f'(z)$$
$$\frac{\partial^2 f(z)}{\partial x^2} = \frac{\partial f'(z)}{\partial x} = \frac{\partial f'(z)}{\partial z} \cdot \frac{\partial z}{\partial x} = f''(z).$$

Now with respect to y:

$$\begin{split} \frac{\partial f(z)}{\partial y} &= \frac{\partial f(z)}{\partial z} \cdot \frac{\partial z}{\partial y} = if'(z) \\ \frac{\partial^2 f(z)}{\partial y^2} &= i\frac{\partial f'(z)}{\partial y} = i\frac{\partial f'(z)}{\partial z} \cdot \frac{\partial z}{\partial y} = -f''(z). \end{split}$$

We observe that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) = 0,$$

which means (the real and imaginary parts of) f(z) satisfy the two-dimensional Laplace equation.

Thus, complex analysis is a very powerful tool for solving the 2D Laplace equation.

Example 1.1.5. Consider the integral

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \arctan(\infty) - \arctan(-\infty)$$
$$= \frac{\pi}{2} - \left(-\frac{\pi}{2}\right)$$
$$= \pi.$$

But what about

$$\int_{-\infty}^{\infty} \frac{\cos(ax)}{1+x^2} dx, \quad a \in \mathbb{R}$$

It turns out that this would be quite tricky to compute this with real-valued techniques. But it would be easier using complex techniques (contour integration). Thus, complex analysis is also a powerful too for computing integrals.

Lecture 2

Complex Differentiation

2.1 Derivatives

Definition 2.1.1 (Derivative). The *derivative* of a complex-valued function is

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

just as in the real-valued case.

Recall that for real valued $f: \mathbb{R} \to \mathbb{R}$,

$$\lim_{x \to a} f(x) = L$$

means for every $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$

whenever $0 < |x - a| < \delta$. (For any "tolerance" ϵ , we can guarantee f(x) is within ϵ of L by forcing x to be close enough to a.)

Remark. Note that x = a doesn't satisfy 0 < |x - a|, so the value of f at x = a has no bearing on whether $\lim_{x\to a} f(x)$ exists.

2.1.1 Continuity

Definition 2.1.2 (Continuous). If $\lim_{x\to a} f(x) = f(a)$, then we say f is continuous at a.

Remark. Setting L = f(a) in the limit, $0 < |x - a| < \delta$ implies $|f(x) - f(a)| < \epsilon$ (even when x = a) when talking about continuity, we leave out the 0 < |x - a| part for convenience because x - a = 0 automatically works.

Now let's consider a function $f: \mathbb{C} \to \mathbb{C}$, $\lim_{z\to a} f(z) = L$ means for every $\epsilon > 0$, there is $\delta > 0$ such that

$$0 < |z - a| < \delta \implies |f(z) - L| < \epsilon$$
.

Remark. Now the z's that we worry about form an open disc with radius δ instead of an interval from the real case.

Similarly, if $\lim_{z\to a} f(z) = f(a)$, we say f is continuous at z=a.

Example 2.1.3. f(z) = z is continuous at any point $a \in \mathbb{C}$.

Proof. For $\epsilon > 0$, let $\delta = \epsilon$, then

$$|z - a| < \delta = \epsilon \implies |f(z) - f(a)| < \epsilon.$$

Example 2.1.4. $\lim_{z\to 0} \overline{z}/z$ (although this is undefined at z=0, this has no bearing on whether the limit exists).

Proof. Suppose $\lim_{z\to 0} \overline{z}/z = L$ for some L. Let's take $\epsilon = 1$. There is a $\delta > 0$ such that

$$0 < |z - 0| < \delta \implies \left| \frac{\overline{z}}{z} - L \right| < \epsilon = 1.$$

Let $z = \delta/2$ and so does $z = i\delta/2$. Then for $z = \delta/2$:

$$\frac{\overline{z}}{z} = \frac{\delta/2}{\delta/2} = 1 \implies |1 - L| < 1,$$

and for $z = i\delta/2$:

$$\frac{\overline{z}}{z} = \frac{-i\delta/2}{i\delta/2} = -1 \implies |-1 - L| < 1.$$

Thus, we see that the L must lie in the intersection of the two open unit discs centered at -1 and 1. However, since they are open discs, these two discs do not overlap and so L does not exist.

Remark. This implies that there is no way to extend \overline{z}/z to a continuous function at z=0.

2.1.2 Properties of Limits

If $\lim_{x\to a} f(x) = L_1$, $\lim_{x\to a} g(x) = L_2$, then

(i) $\lim_{x \to a} (f(x) + g(x)) = L_1 + L_2.$

(ii) $\lim_{x \to a} f(x)g(x) = L_1 L_2.$

(iii) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L_1}{L_2}, \quad L_2 \neq 0.$

Remark. These implies that the sum/product/quotient of continuous functions are continuous.

Proposition 2.1.5 (Composite function of continuous functions is continuous). If f(x) is continuous at x = a, and g(x) is continuous at x = f(a), then g(f(x)) is continuous at x = a.

Proof. We want $|g(f(x)) - g(f(a))| < \epsilon$. By continuity of g at x = f(a), there exists $\delta_1 > 0$ such that

$$|w - f(a)| < \delta_1 \implies |g(w) - g(f(a))| < \epsilon.$$

We want to take w = f(x), so we need

$$|f(x) - f(a)| < \delta_1.$$

But by continuity of f at x = a, we know that δ_1 will be our ϵ when $|x - a| < \delta_2$ for some $\delta_2 > 0$. Then for such x,

$$|g(f(x)) - g(f(a))| < \epsilon.$$

2.2 Derivatives (Cont'd)

Definition 2.2.1 (Differentiable). We say that f(z) is differentiable at z = a iff $\frac{f(z) - f(a)}{z - a}$ extends to a continuous function at z = a (the value there is f'(a)).

Example 2.2.2. f(z) = z is differentiable with f'(z) = 1.

Proof.

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \frac{z+h-z}{h} = \lim_{h \to 0} 1 = 1.$$

Example 2.2.3 (Interesting one). $f(z) = \overline{z}$ is not differentiable but is continuous.

Proof.

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \frac{\overline{z+h} - \overline{z}}{h}$$

$$= \lim_{h \to 0} \frac{\overline{z+h} - \overline{z}}{h}$$

$$= \lim_{h \to 0} \frac{\overline{h}}{h}$$

$$= \text{DNE} \qquad \text{(proved in previous example)}$$

Proposition 2.2.4 (Differentiability implies continuity). f(z) differentiable at z = a implies that f(z) is continuous at z = a.

Proof. We want to show that $\lim_{z\to a} f(z) = f(a)$.

$$\lim_{z \to a} f(z) - f(a) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a} \cdot (z - a)$$

$$= \lim_{z \to a} \frac{f(z) - f(a)}{z - a} \cdot \lim_{z \to a} (z - a) \quad \text{(assume both limits exist)}$$

$$= f'(a) \cdot 0$$

$$= 0.$$

Remark. This is a common technique to show continuity by showing the limit of the difference is zero.

2.2.1 Properties of complex-derivatives

(i)
$$\frac{d}{dz}cf(z) = cf'(z), \qquad \forall c \in \mathbb{C}.$$

(ii)
$$\frac{d}{dz}(f+g) = f'(z) + g'(z).$$

(iii)
$$\frac{d}{dz}(fg) = f'g + fg'.$$

(iv)
$$\frac{d}{dz}\left(\frac{f}{g}\right) = \frac{f'g - fg'}{g^2}.$$

(v)
$$\frac{d}{dz}f(g(z)) = g'(z)f'(g(z)).$$

Proposition 2.2.5 (Power rule).

$$\frac{d}{dz}z^n = nz^{n-1}$$

for all integers n.

Proof. We induct on n. For $n \geq 0$, when n = 0,

$$\frac{d}{dz}z^0 = \frac{d}{dz}1 = 0 = 0z^{-1}.$$

By the product rule,

$$\frac{d}{dz}z^n = \frac{d}{dz}(z \cdot z^{n-1})$$

$$= 1 \cdot z^{n-1} + z \cdot (n-1)z^{n-2} \qquad \text{(inductive hypothesis)}$$

$$= nz^{n-1}.$$

For n < 0, simply apply quotient rule.

Lecture 3

Holomorphic Functions and Cauchy-Riemann Equations

Recall

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}.$$

Being differentiable at a point says little about how "nice" a function is.

Example 3.0.1. Consider $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \backslash \mathbb{Q}. \end{cases}$$

This is nowhere continuous, and thus nowhere differentiable. But if we consider $x^2 f(x)$, it is differentiable at x = 0:

$$\lim_{h \to 0} \frac{h^2 f(h) - 0^2 f(0)}{h} = \lim_{h \to 0} h f(h) = 0.$$

Nevertheless, it's still not a very "nice" function.

3.1 Holomorphic Functions

Definition 3.1.1 (Holomorphic). A function $f: \mathbb{C} \to \mathbb{C}$ is *holomorphic* at a point a if it is differentiable at z for all z within distance r of a for some r > 0. In other words, f(z) is differentiable everywhere sufficiently close to a.

Definition 3.1.2 (Open/closed disk). The *open disk* of radius r centered at $a \in \mathbb{C}$ is

$$D(a,r) = \{ z \in \mathbb{C} \mid |z - a| < r \}.$$

The closed disk is

$$\overline{D}(a,r) = \{ z \in \mathbb{C} \mid |z - a| \le r \}.$$

Thus, we can say f(z) is holomorphic at $a \in \mathbb{C}$ if f(z) is differentiable on an open disk centered at a. (if the point is not specified, it means that f is holomorphic everywhere.)

Example 3.1.3 (Polynomials are holomorphic). We saw last time that z^n is differentiable everywhere for $n \geq 0$. Then the linear combinations

$$a_d z^d + a_{d-1} z^{d-1} + \dots + a_1 z + a_0$$

which is a polynomial, is differentiable (since multiplying by constants and summing preserves differentiability).

Example 3.1.4. $f(z) = |z|^2 = z\overline{z}$ is differentiable at zero.

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{h\overline{h} - 0}{h}$$
$$= \lim_{h \to 0} \overline{h}$$
$$= 0$$

However, this is not differentiable elsewhere (exercise). Thus, f is not holomorphic.

3.2 The Cauchy-Riemann Equations

Question. How to tell if a function is complex-differentiable?

Answer. We'll reduce this to a question about real derivatives.

Let x + iy, where $x, y \in \mathbb{R}$. If $f : \mathbb{C} \to \mathbb{C}$,

$$\frac{\partial f}{\partial x}(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$
$$= \lim_{h \to 0} \frac{f(x+h+iy) - f(x+iy)}{h}.$$

Note that h is real. Similarly,

$$\frac{\partial f}{\partial y}(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$
$$= \lim_{h \to 0} \frac{f(x+i(y+h)) - f(x+iy)}{h}.$$

Example 3.2.1. $f(z) = z^2$. Then

$$f(x+iy) = (x+iy)^2 = x^2 - y^2 + 2ixy.$$

$$\begin{split} \frac{\partial f}{\partial x}(z) &= \lim_{h \to 0} \frac{(x+h)^2 - y^2 + 2i(x+h)y - (x^2 - y^2 + 2ixy)}{h} \\ &= \lim_{h \to 0} \frac{2xh + h^2 + 2ihy}{h} \\ &= \lim_{h \to 0} 2x + h + 2iy \\ &= 2x + 2iy \\ &= 2z \\ &= f'(z). \end{split}$$

$$\frac{\partial f}{\partial y}(z) = \lim_{h \to 0} \frac{x^2 - (y+h)^2 + 2ix(y+h) - (x^2 - y^2 + 2ixy)}{h}$$

$$= \lim_{h \to 0} \frac{-2yh - h^2 + 2ixh}{h}$$

$$= \lim_{h \to 0} -2y - h + 2ix$$

$$= -2y + 2ix$$

$$= 2i(x+iy)$$

$$= if'(z).$$

Thus,

$$\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y} = -i \frac{\partial f}{\partial y}.$$

Theorem 3.2.2.

(i) If $f: \mathbb{C} \to \mathbb{C}$ is complex-differentiable, then $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and they satisfy

$$\frac{\partial f}{\partial x} = -i \frac{\partial f}{\partial y}.$$

(ii) If $f: \mathbb{C} \to \mathbb{C}$ is a function and $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist and are continuous on some open disk centered at z, and if

$$\frac{\partial f}{\partial x} = -i \frac{\partial f}{\partial y},$$

then f is complex-differentiable at z.

Proof.

(i) Since f is complex-differentiable, we have

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = f'(z).$$

This is equivalent to the statement that for every $\epsilon > 0$, there is a $\delta > 0$ such that

$$|h-0| < \delta \implies \left| \frac{f(z+h) - f(z)}{h} - f'(z) \right| < \epsilon.$$

Suppose h is real. Then

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = f'(z)$$

and since h is real, we get $\frac{\partial f}{\partial x}$ and thus

$$\frac{\partial f}{\partial x}(z) = f'(z).$$

Now suppose h is purely imaginary: h = ik for $k \in \mathbb{R}$. Then

$$\frac{f(z+h)-f(z)}{h} = \frac{f(x+iy+ik)-f(x+iy)}{ik}.$$

Then $h \to 0$ is equivalent to $k \to 0$ since |h| = |k|. Thus we have

$$\lim_{k\to 0} \frac{f(z+ik) - f(z)}{ik} = \frac{1}{i} \frac{\partial f}{\partial y} = f'(z).$$

Hence, we have

$$\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y} = -i \frac{\partial f}{\partial y}.$$

Let f(z) = u(z) + iv(z). If we choose real values for h, then the imaginary part y is kept constant, and the derivative becomes a partial derivative with respect to x. Thus we have

$$f'(z) = \frac{\partial f}{\partial x} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}.$$

Similarly, if we substitute purely imaginary values ik for h, we obtain

$$f'(z) = \lim_{k \to 0} \frac{f(z + ik) - f(z)}{ik} = -i\frac{\partial f}{\partial y} = -i\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}.$$

Since we have

$$\frac{\partial f}{\partial x} = -i \frac{\partial f}{\partial y},$$

this resolves into the following equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y},$$

or simply

$$u_x = v_y, \qquad v_x = -u_y.$$

These are known as the *Cauchy-Riemann* equations.

Example 3.2.3. Consider $f(z) = z^2$. Then

$$f(x + iy) = x^2 + y^2 + 2ixy.$$

Here $u(x,y) = x^2 - y^2$ and v(x,y) = 2xy. We have

$$u_x = 2x = v_y \qquad v_x = 2y = -u_y.$$

Example 3.2.4. Consider $f(z) = |z|^2$. Then $f(x + iy) = x^2 + y^2$ where $u(x, y) = x^2 + y^2$ and v(x, y) = 0. But here we have

$$u_x = 2x \neq v_y = 0$$
 $v_x = 0 \neq -u_y = -2y$.

Thus, the Cauchy-Riemann equations only hold at (x, y) = (0, 0) and as we saw previously that this function is only differentiable at z = 0 and nowhere else.

We can generalize the Cauchy-Riemann equations further to second order. Suppose we have f = u + iv. Then

$$u_{xx} = \frac{\partial}{\partial x} u_x = \frac{\partial}{\partial x} v_y = \frac{\partial}{\partial x} \frac{\partial}{\partial y} v = \frac{\partial}{\partial y} \frac{\partial}{\partial x} v = \frac{\partial}{\partial y} v_x = \frac{\partial}{\partial y} (-u_y) = -u_{yy}.$$

Thus, we have

$$u_{xx} + u_{yy} = 0$$
, or $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

Similarly, we also have

$$v_{xx} = (v_x)_x = (-u_y)_x = -u_{yx} = -u_{xy} = -(u_x)_y = -(v_y)_y = -v_{yy},$$

which gives

$$v_{xx} + v_{yy} = 0, \text{ or } \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.$$

These are the *Laplace's equations* in 2D we saw earlier.

For $f: \mathbb{R} \to \mathbb{R}$, we know that f'(x) = 0 implies that f is constant. But for $f: \mathbb{C} \to \mathbb{C}$, we can use the Cauchy-Riemann equations. Since $f'(z) = \frac{\partial f}{\partial x}$,

$$f'(z) = 0 \implies u_x + iv_x = 0 \implies u_x = 0, v_x = 0.$$

By Cauchy-Riemann, we also have $u_y = v_y = 0$. Since $u_x = 0$, we know that for fixed y, u(x,y) is some constant that could depend on y. Thus, we have

$$u(x, y) = g(y).$$

But $u_y = 0$, so g'(y) = 0, which means g is actually a constant independent of y. Thus, u is globally constant. Similar argument applies to v as well.

3.3 Möbius Transformation

Definition 3.3.1 (Möbius transformation). A Möbius transformation is a function of the form

$$f(z) = \frac{az+b}{cz+d},$$

where $a, b, c, d \in \mathbb{C}$ satisfy $ad - bc \neq 0$.

Remark. If ad = bc, then $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 0$, so rows are linearly dependent: $\lambda(a,b) + \mu(c,d) = (0,0)$, which implies that

$$a = \frac{-\mu}{\lambda}c$$
 $b = \frac{-\mu}{\lambda}d.$

Then

$$\begin{split} f(z) &= \frac{az+b}{cz+d} \\ &= \frac{-\frac{\mu}{\lambda}(cz+d)}{cz+d} \\ &= -\frac{\mu}{\lambda}, \end{split}$$

which is a constant independent of z.

Proposition 3.3.2 (Composite Möbius transforms is Möbius). If $f_1(z)$, $f_2(z)$ are Möbius transforms, then then $f_1(f_2(z))$ is also a Möbius transform.

Proof. Suppose

$$f_1(z) = \frac{a_1 z + b_1}{c_1 z + d_1}$$
 $f_2(z) = \frac{a_2 z + b_2}{c_2 z + d_2}$.

Then

$$f_1(f_2(z)) = \frac{a_1 \frac{a_2 z + b_2}{c_2 z + d_2} + b_1}{c_1 \frac{a_2 z + b_2}{c_2 z + d_2} + d_1}$$

$$= \frac{a_1(a_2 z + b_2) + b_1(c_2 z + d_2)}{c_1(a_2 z + b_2) + d_1(c_2 z + d_2)}$$

$$= \frac{(a_1 a_2 + b_1 c_2)z + (a_1 b_2 + b_1 d_2)}{(c_1 a_2 + d_1 c_2)z + (c_1 b_2 + d_1 d_2)},$$

which is another Möbius transform.

Remark. Note that

$$\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 + b_1 c_2 & a_1 b_2 + b_1 d_2 \\ c_1 a_2 + d_1 c_2 & c_1 b_2 + d_1 d_2 \end{pmatrix}$$

and the entries coincide with the composite Möbius transform.