2013 Specialist Maths Trial Exam 2 Solutions © Copyright itute.com

Section 1

1	2	3	4	5	6	7	8	9	10	11
В	Е	C	D	В	D	C	Е	В	D	Α

Ī	12	13	14	15	16	17	18	19	20	21	22
	C	Е	D	D	Α	Α	C	В	D	C	C

Q1
$$\tan \theta = -\frac{4}{3}$$
, (another possible answer is $\tan \theta = -\frac{3}{4}$) B

Q2
$$i^7 z = \frac{\pi}{2} cis \left(-\frac{2\pi}{3} \right), i^8 z = i \frac{\pi}{2} cis \left(-\frac{2\pi}{3} \right),$$

 $z = i \frac{\pi}{2} cis \left(-\frac{2\pi}{3} \right), z = \frac{\pi}{2} cis \left(-\frac{2\pi}{3} + \frac{\pi}{2} \right) = \frac{\pi}{2} cis \left(-\frac{\pi}{6} \right)$

Q3 $2 \operatorname{Re}(z) = \operatorname{Im}(z)$ forms a straight line through the origin. $a|z|^2 + b|z| - c = 0$, $|z| = \frac{-b + \sqrt{b^2 + 4ac}}{2a}$ forms a circle centred at the origin. The two sets have two intersections.

Q4 Refer to the diagram below. $|w| = 2r \sin \frac{\theta}{2}$

Q5
$$\frac{b}{a} = \tan 60^{\circ}$$
, $\frac{b}{a} = \frac{\sqrt{3}}{1}$, $\frac{b^2}{a^2} = \frac{3}{1}$

Q6 $y = \frac{1}{x^2 - px + q}$ has a turning point when $x^2 - px + q$ is **not** a perfect square, i.e. $\Delta \neq 0$, $p^2 - 4q \neq 0$, $p^2 \neq 4q$

Q7
$$\frac{(x-2)^2}{4} + 4y^2 = 1 \rightarrow \frac{x^2}{4} + 4y^2 = 1, \left(\frac{x}{2}\right)^2 + (2y)^2 = 1$$

 $\rightarrow x^2 + y^2 = 1$

Q8 $\sec(a+b) = -\csc(a-b)$, $\frac{1}{\cos(a+b)} = -\frac{1}{\sin(a-b)}$, $\cos(a+b) = -\sin(a-b)$,

$$: \sin\left(\frac{\pi}{2} - (a+b)\right) = \sin(-(a-b)) \text{ or}$$

$$\sin\left(\frac{\pi}{2} - (a+b)\right) = \sin(\pi - (a-b))$$

$$\therefore \frac{\pi}{2} - (a+b) = -(a-b) \text{ or } \frac{\pi}{2} - (a+b) = \pi - (a-b)$$

$$b = \frac{\pi}{4} \text{ or } -\frac{\pi}{4}$$

Q9 f(x) is a decreasing function. $f\left(\frac{1}{a}\right) = \frac{2}{3}$, $f(0) = \frac{4}{3}$.

The range of f is $\left[\frac{2}{3}, \frac{4}{3}\right]$ and it is the domain of f^{-1} .

Q10 Let $\frac{x-c}{b} = \theta$ where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

$$\therefore \frac{x-c}{a} = \frac{b}{a}\theta \text{ and the equation is } \frac{b}{a}\tan^{-1}\left(\frac{b}{a}\theta\right) - \tan\theta = 0.$$

More than one solution when $\frac{b}{a} > 1$, .: a < b

Q11 The addition of position vectors is undefined in kinematics.

Q12 The vectors $3\tilde{k}-a\tilde{i}$, $\tilde{i}-b\tilde{j}$ and $2\tilde{j}-c\tilde{k}$ are linearly dependent if

aependent if $3\tilde{k} - a\tilde{i} = m(\tilde{i} - b\tilde{j}) + n(2\tilde{j} - c\tilde{k}) = m\tilde{i} + (2n - bm)\tilde{j} - cn\tilde{k}$ $\therefore m = -a, n = -\frac{3}{c} \text{ and } 2n - bm = 0,$

$$\therefore -\frac{6}{c} + ab = 0, \therefore abc = 6$$

C

D

.: the vectors $3\tilde{k} - a\tilde{i}$, $\tilde{i} - b\tilde{j}$ and $2\tilde{j} - c\tilde{k}$ are linearly independent if $abc \neq 6$.

Q13 Refer to the following diagram. The scalar resolute of \tilde{a} in the direction of $\tilde{a} + \tilde{b}$ is the darker line segment which is half as

C

long as vector
$$\tilde{a} + \tilde{b}$$
 , i.e. $\frac{1}{2} \left| \tilde{a} + \tilde{b} \right|$.

Q14
$$\int_{-\frac{a}{2}}^{\frac{a}{2}} \sqrt{a^2 - t^2} dt = area of the shaded regions$$

= area of the sector + total area of the 2 triangles

$$= \left(\frac{\pi}{6} + \frac{\sqrt{3}}{4}\right)a^2$$

Q15 Find the intersections: $(\tan^{-1} x)^2 = \frac{\pi^2}{16}$, $x = \pm 1$

Area =
$$\int_{-1}^{1} \left(\frac{\pi^2}{16} - \left(\tan^{-1} x \right)^2 \right) dx \approx 0.7431 \text{ by CAS}$$

Q16
$$t = \tan^{-1} x$$
, $\frac{dt}{dx} = \frac{1}{1+x^2}$
 $\frac{dy}{dx} = \frac{dt}{dx} \times \frac{dy}{dt}$, $\therefore \frac{dy}{dx} = \frac{1}{1+x^2} \times \frac{dy}{dt}$
 $(\tan^{-1} x)^2 \frac{dy}{dx} - \frac{1}{1+x^2} = 0$, $t^2 \times \frac{1}{1+x^2} \times \frac{dy}{dt} - \frac{1}{1+x^2} = 0$
 $\therefore \frac{1}{1+x^2} \left(t^2 \frac{dy}{dt} - 1 \right) = 0$
Since $\frac{1}{1+x^2} \neq 0$, $\therefore t^2 \frac{dy}{dt} - 1 = 0$

Q17

Q18
$$v = \frac{dx}{dt} = 2e^{-x} - 1$$
, $\frac{dx}{dt} = \frac{2 - e^x}{e^x}$, $\frac{dt}{dx} = \frac{e^x}{2 - e^x}$
 $\therefore t = \int \frac{e^x}{2 - e^x} dx = -\log_e(2 - e^x)$ satisfying $x = 0$ initially.
 $\therefore e^{-t} = 2 - e^x$, $\therefore e^{-x} = \frac{1}{2 - e^{-t}} = \frac{e^t}{2e^t - 1}$

$$v = 2e^{-x} - 1 = \frac{2e^t}{2e^t - 1} - 1 = \frac{1}{2e^t - 1}$$

Q19
$$\Delta \tilde{p} = m\Delta \tilde{v}$$
, $\Delta \tilde{v} = \frac{\Delta \tilde{p}}{m} = \frac{-3\tilde{i} + 3\tilde{j} - 1.5\tilde{k}}{m}$

$$\tilde{a} = \tilde{a}_{average} = \frac{\Delta \tilde{v}}{\Delta t} = \frac{-3\tilde{i} + 3\tilde{j} - 1.5\tilde{k}}{5.0m} = \frac{-0.6\tilde{i} + 0.6\tilde{j} - 0.3\tilde{k}}{m}$$

$$\tilde{R} = m\tilde{a} = -0.6\tilde{i} + 0.6\tilde{j} - 0.3\tilde{k}$$

$$\therefore |\tilde{R}| = \sqrt{(-0.6)^2 + 0.6^2 + (-0.3)^2} = 0.9 \text{ N}$$

Q20 Total distance travelled in the first 40 seconds $= \frac{1}{2} \times (10 + 30) \times 5 + \frac{1}{2} \times (5 + 10) \times 5 = 137.5 \text{ m}$

В

C

Average speed = $\frac{137.5}{40} \approx 3.4 \text{ m s}^{-1}$

Q21 Let *P* be the reaction force of the crate on the machine. R = ma, $1500 \times 9.8 - P = 1500 \times 0.8$ $\therefore P = 13500 \text{ N}$

Section 2

D

Q1a
$$\frac{z}{2} = \sqrt{a - \sqrt{a + \frac{z}{2}}}$$
, $\frac{z^2}{4} = a - \sqrt{a + \frac{z}{2}}$, $a - \frac{z^2}{4} = \sqrt{a + \frac{z}{2}}$
$$\left(a - \frac{z^2}{4}\right)^2 = a + \frac{z}{2}$$
, $a^2 - \frac{az^2}{2} + \frac{z^4}{16} = a + \frac{z}{2}$

A : $\frac{z^4}{16} - \frac{az^2}{2} - \frac{z}{2} + a^2 - a = 0$

A :: $z^4 - 8az^2 - 8z + 16(a^2 - a) = 0$:: l = -8a, m = -8 and $n = 16(a^2 - a)$

> Q1bi $z^4 - 8az^2 - 8z + 16(a^2 - a) = (z^2 + 2z + p)(z^2 + rz + q)$ = $z^4 + (r+2)z^3 + (p+q+2r)z^2 + (pr+2q)z + pq$: r+2=0, p+q+2r=-8a, pr+2q=-8 and $pq=16(a^2-a)$: r=-2, p+q=4-8a, q-p=-4

Q1bii $z^4 - 8az^2 - 8z + 16(a^2 - a) = 0$ $(z^2 + 2z + (4 - 4a))(z^2 - 2z - 4a) = 0$ $z^2 + 2z + (4 - 4a) = 0$ or $z^2 - 2z - 4a = 0$

2q = -8a, q = -4a and p = 4 + q = 4 - 4a

By quadratic formula: $z = -1 \pm \sqrt{4a - 3}$ or $z = 1 \pm \sqrt{4a + 1}$

Q1ci All real solutions: $4a-3 \ge 0$ AND $4a+1 \ge 0$ i.e. $a \ge \frac{3}{4}$ AND $a \ge -\frac{1}{4}$, .: $a \ge \frac{3}{4}$

C Q1cii All solutions has imaginary part: 4a-3<0 AND 4a+1<0, i.e. $a<\frac{3}{4}$ AND $a<-\frac{1}{4}$, .: $a<-\frac{1}{4}$

2

Q1ciii To have both real solutions and solutions with imaginary part: $a < \frac{3}{4}$ AND $a \ge -\frac{1}{4}$, .: $-\frac{1}{4} \le a < \frac{3}{4}$

Q1di
$$z = -1 \pm \sqrt{4a - 3}$$
 OR $z = 1 \pm \sqrt{4a + 1}$
When $a = \frac{1}{2}$, $z = -1 \pm i = \sqrt{2}cis\left(\pm \frac{3\pi}{4}\right)$
OR $z = 1 \pm \sqrt{3} = \left(1 + \sqrt{3}\right)cis0$ or $\left(\sqrt{3} - 1\right)cis\pi$

Q1dii
$$z_1 = (1 + \sqrt{3})cis0$$
, $z_2 = (\sqrt{3} - 1)cis\pi$, $z_3 = \sqrt{2}cis\left(\frac{3\pi}{4}\right)$,
$$z_4 = \sqrt{2}cis\left(-\frac{3\pi}{4}\right)$$

Q2ai
$$\tilde{r}(0) = \log_{e}(1) \left[\cos(0)\tilde{i} + \sin(0)\tilde{j}\right] = \tilde{0}$$

Q2aii

<u>~</u> _									
	t	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{4\pi}{3}$	2π	$\frac{5\pi}{2}$
	$ \widetilde{r} $	0.00	0.42	0.72	0.94	1.13	1.65	1.99	2.18

Q2aiii, Q2aiv and Q2biii

Q2bi
$$\tilde{r}(t) = \log_e(t+1)[\cos(t)\tilde{i} + \sin(t)\tilde{j}]$$

 $\tilde{v}(t) = \frac{1}{t+1}[\cos(t)\tilde{i} + \sin(t)\tilde{j}] + \log_e(t+1)[-\sin(t)\tilde{i} + \cos(t)\tilde{j}]$
 $= \left(\frac{\cos(t)}{t+1} - \log_e(t+1)\sin(t)\right)\tilde{i} + \left(\frac{\sin(t)}{t+1} + \log_e(t+1)\cos(t)\right)\tilde{j}$

Q2bii
$$\tilde{v}(0) = \tilde{i}$$

Q2biv Let
$$\frac{\cos(t)}{t+1} - \log_e(t+1)\sin(t) = 0$$
, by CAS $t \approx 0.78$ s, heading north; $t = 3.30$ s, heading south.

Q2bv
$$\tilde{v}(3.3) \approx 0\tilde{i} - 1.48\tilde{j}$$
, speed $\approx 1.48 \text{ m s}^{-1}$

Q3a
$$\overrightarrow{OM} = \frac{1}{2}(\widetilde{b} + \widetilde{c}), \overrightarrow{ON} = \frac{1}{2}(\widetilde{c} + \widetilde{a})$$

$$2\overrightarrow{OM} = \widetilde{b} + \widetilde{c} , :: -2\overrightarrow{OM} + \widetilde{b} + \widetilde{c} = \widetilde{0} , 2m\widetilde{a} + \widetilde{b} + \widetilde{c} = \widetilde{0} ... (1)$$

$$2\overrightarrow{ON} = \widetilde{c} + \widetilde{a} . :: -2\overrightarrow{ON} + \widetilde{c} + \widetilde{a} = \widetilde{0} , \widetilde{a} + 2n\widetilde{b} + \widetilde{c} = \widetilde{0} (2)$$

Q3bii (2) – (1):
$$\tilde{a} - 2m\tilde{a} - \tilde{b} + 2n\tilde{b} = \tilde{0}$$

 $(1 - 2m)\tilde{a} - (1 - 2n)\tilde{b} = \tilde{0}$

Q3biii Since \tilde{a} and \tilde{b} are independent (non-parallel), $\therefore 1-2m=0$ and 1-2n=0

:
$$m = \frac{1}{2}$$
 and $n = \frac{1}{2}$

Q3biv Since $2m\tilde{a} + \tilde{b} + \tilde{c} = \tilde{0}$, $\therefore \tilde{a} + \tilde{b} + \tilde{c} = \tilde{0}$, $\therefore \tilde{b} = -\tilde{a} - \tilde{c}$

Q3by Since
$$\overrightarrow{AB} = \widetilde{b} - \widetilde{a}$$
, :: $\overrightarrow{AB} = (-\widetilde{a} - \widetilde{c}) - \widetilde{a} = -2\widetilde{a} - \widetilde{c}$

Q3ci
$$\overrightarrow{AP} = k\overrightarrow{AB}$$
, $-\tilde{a} - p\tilde{c} = k(-2\tilde{a} - \tilde{c})$,
 $2k\tilde{a} - \tilde{a} + k\tilde{c} - p\tilde{c} = \tilde{0}$, .: $(2k-1)\tilde{a} + (k-p)\tilde{c} = \tilde{0}$

Q3cii Since \tilde{a} and \tilde{c} are independent, .: 2k-1=0 and k=p, .: $k=\frac{1}{2}$ and $p=\frac{1}{2}$

Q3ciii $\overrightarrow{AP} = k\overrightarrow{AB}$, .: $\overrightarrow{AP} = \frac{1}{2}\overrightarrow{AB}$, .: P is the midpoint of \overrightarrow{AB} , .: \overrightarrow{CP} is a median of $\triangle ABC$.

Q4a
$$x = 0$$
, $y = 0$; $x = \frac{1}{2}$, $y = \frac{\pi}{2}$

Q4b
$$\frac{dy}{dx} = \frac{2}{\sqrt{1-4x^2}} = 4$$
, $1-4x^2 = \frac{1}{4}$, $x = \frac{\sqrt{3}}{4}$,

$$\therefore y = \sin^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{3}, \text{ ... the point is } \left(\frac{\sqrt{3}}{4}, \frac{\pi}{3}\right).$$

Q4c

$$y = \sin^{-1} 2x$$
, .: $x = \frac{1}{2} \sin y$

$$Area = \int_{0}^{\frac{1}{2}} \sin^{-1}(2x)dx = \frac{1}{2} \times \frac{\pi}{2} - \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \sin y dy$$

$$= \frac{\pi}{4} + \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (-\sin y) dy = \frac{\pi}{4} + \frac{1}{2} [\cos y]_{0}^{\frac{\pi}{2}} = \frac{\pi}{4} - \frac{1}{2}$$

Q4d
$$V_{top} = \int_{0}^{\frac{\pi}{2}} \pi x^2 dy = \int_{0}^{\frac{\pi}{2}} \frac{\pi}{4} \sin^2 y dy = \int_{0}^{\frac{\pi}{2}} \frac{\pi}{8} (1 - \cos 2y) dy$$

$$= \frac{\pi}{8} \left[y - \frac{\sin 2y}{2} \right]_0^{\frac{\pi}{2}} = \frac{\pi^2}{16} \text{ unit}^3$$

Volume of wood cut out from the block

$$=1\times1\times2-\frac{\pi^2}{16}=2-\frac{\pi^2}{16}$$
 unit³

Q4e
$$y = \frac{1}{\sqrt{(\frac{1}{2})^2 - x^2}}$$
, $y^2 = \frac{1}{\frac{1}{4} - x^2}$, $x^2 = \frac{1}{4} - \frac{1}{y^2}$

When x = 0, y = 10

$$V_{dowel} = \int_{2}^{10} \pi x^{2} dy = \pi \int_{2}^{10} \left(\frac{1}{4} - \frac{1}{y^{2}} \right) dy = \pi \left[\frac{y}{4} + \frac{1}{y} \right]_{2}^{10} = \frac{8\pi}{5} \text{ unit}^{3}$$

Q5a Let \tilde{i} and \tilde{j} be unit vectors pointing to the east and to the north respectively.

Resultant \tilde{R} of the 3 pulling forces

=
$$(16\sin 120^{\circ} + 24\sin(-135^{\circ}))\tilde{i} + (28 + 16\cos 120^{\circ} + 24\cos 135^{\circ})\tilde{j}$$

$$=-3.1142\tilde{i}+3.0294\tilde{j}$$

$$|\tilde{R}| = 4.3446 \approx 4.3 \text{ N}$$

$$\tan \theta = \frac{3.114}{3.029}$$
, $\theta \approx 45.8^{\circ}$, i.e. N45.8°W

Q5b Approximately 4.3 N N45.8°W

Q5c Limiting friction =
$$\mu N$$
, $4.3446 \approx 0.25 \times m \times 9.8$, $m \approx 1.8$ kg

Q5d Resultant \tilde{R} of the 3 pulling forces = $(16\sin 120^{\circ} + 20\sqrt{2}\sin(-135^{\circ}))\tilde{i} + (28 + 16\cos 120^{\circ} + 20\sqrt{2}\cos 135^{\circ})\tilde{j}$ = $-6.1436\tilde{i}$

Resultant force on the box = ma

$$\therefore -6.1436\tilde{i} + 4.3446\tilde{i} \approx 1.8\tilde{a}$$

$$\therefore \tilde{a} \approx -1.0\tilde{i} \text{ m s}^{-2}$$
, i.e. 1.0 m s⁻² west

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors