02 - I flopital.

1.
$$\lim_{x\to 0} e^{x} - e^{-x} = e^{\circ} - e^{-\circ} = 1 - 1 = 0$$
 $\lim_{x\to 0} \operatorname{Sen}(e) = 0$

enfonces:

 $\lim_{x\to 0} e^{x} - e^{-x} = \lim_{x\to 0} e^{x} + e^{-x} = 1 + 1 = 2$
 $\lim_{x\to 0} \operatorname{Sen}(e) = 0$
 $\lim_{x\to 0} e^{x} - e^{-x} = 0$
 $\lim_{x\to 0} e^{x} + e^{-x} = 1 + 1 = 2$

2.
$$l_{1M}$$
 χ $= \Delta$ $l_{N}^{3}\chi + 2\chi$ $= \Delta$

$$\lim_{Y \to \infty} \frac{1}{\ln^3 x} + 2x = \lim_{X \to \infty} \frac{1}{3} + 2 = \frac{1}{3} + 2 = \frac{1}{2}$$

entonces por l'Hopful:

lm Cosx - 1 = 0 x->0 Smx + x Cosx

lm -Senx = 0 = 0 x-30 Cosx + Cosx - x8enx 2

3. $\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right) = \lim_{x\to 0} \frac{\operatorname{Sen} x - x}{\operatorname{Sen} x} = \frac{0}{0}$

$$\lim_{X\to\infty}\frac{\frac{1}{x}}{-Cx^2x}$$

Segundu l'Hopital.

lm -2 Smx Cosx

