** Review Praktikum ** Metode ** Peramalan

2022 - 05 - 23

Metode-metode yang telah kita pelajari

Let's Get Started

Metode Naive

Digunakan saat: Data stasioner

Catatan: Apa yang terjadi di waktu yang lalu akan terjadi lagi di waktu kini. Metode ini hanya dapat digunakan untuk meramalkan sampai satu periode ke depan.

Metode Rata-rata Bergerak Tunggal (Single MA)

Digunakan saat: Data stasioner

Catatan: digunakan rata-rata dari N (orde) observasi sebelumnya sebagai ramalan hari itu. Apabila N tidak diketahui, bandingkan paling tidak 3 bilangan N

Metode Rata-rata Bergerak Ganda (Double MA)

Digunakan saat: Data mengandung trend

Catatan:

- 1. Hitunglah MA(N) terlebih dahulu mulai pada observasi ke N, baru menghitung MA(MxN) mulai pada observasi ke (M+N-1).
- 2. N disarankan bilangan ganjil. Hal ini didasarkan pada MA yang terletak di tengah-tengah nilai data yang dirata-ratakan. Dengan menggunakan periode ganjil tidak terdapat masalah, tetapi untuk data yang genap terdapat masalah.
- 3. M x N biasanya diketahui agar mempermudah

Metode Pemulusan Eksponensial Tunggal

Digunakan saat: Data stasioner

Catatan:

- 1. Pada metode ini, terdapat sebuah konstanta α . Konstanta pemulusan α berfungsi sebagai faktor penimbang
- 2. Nilai α berada di interval 0 dan 1, apabila α tidak diketahui, perlu dicobakan 0.1, 0.2, ..., sampai 0.9

Metode Pemulusan Eksponensial Ganda - 2 Parameter Holt

Digunakan saat: Data mengandung trend

Catatan: Menggunakan 2 konstanta (α dan γ) dengan nilai antara 0 dan 1. Masing

masing nilai konstanta dicobakan satu per satu

Metode Pemulusan Eksponensial Ganda - 1 Parameter Brown

Digunakan saat: Data mengandung trend

Catatan: Menggunakan 1 konstanta (α) dengan nilai antara 0 dan 1. Nilai

konstanta dicobakan satu per satu

Metode Pemulusan Eksponensial Tripel - 3 Parameter Winter Digunakan saat: Data mengandung musiman

Catatan:

- 1. Terdapat 2 Jenis Metode : Winter Multiplikatif & Winter Aditif
- 2. Terdapat 3 Parameter yang digunakan alpha, beta, dan gamma.
- 3. Masing masing parameter dicobakan satu per satu

Metode Klasifikasi Pegels

Digunakan saat: Data mengandung trend dan musiman

Catatan:

- 1. Pemulusan eksponensial dengan cara memisahkan antara aspek musiman dan trend
- 2. Aspek musiman dan trend akan menentukan P dan Q yang akan digunakan dalam rumus, jadi periksa kembali apakah rumus yang digunakan benar-benar sudah sesuai dengan musiman dan trend data
- 3. Terdapat 3 Parameter yang digunakan; alpha, beta, dan gamma.
- 4. Masing masing parameter dicobakan satu per satu

Decomposition Method

Metode Dekomposisi

Digunakan saat: Data memiliki pola kompleks, misalnya ada unsur kenaikan, berfluktuasi dan tidak teratur

Catatan:

- 1. Diadakan pemecahan ke dalam 4 komponen pola perubahan yaitu: trend (T), fluktuasi musiman (M), fluktuasi siklis (S) dan perubahan yang bersifat random (R).
- 2. Ingat, banyaknya bulan menyesuaikan dengan musiman data (L). Jadi, banyaknya It adalah sama dengan L.

Autoregressive Integrated Moving Average

Metode ARIMA

Digunakan saat: Asumsi stasioneritas mean dan variansi terpenuhi

Catatan:

- 1. Apabila asumsi tidak terpenuhi, lakukan transformasi dan tetap gunakan dtrans meskipun terkadang |t-stat| ddif lebih tinggi
- 2. Orde transformasi maksimal 2, cek 4 lag pertama untuk membuat model awal
- 3. Perhatikan aturan underfitting, jangan sampai ada model yang terlewat
- 4. Pada saat menuliskan estimate equation di Eviews: AR sebanyak p, MA sebanyak q, kalau ada konstan tambahin c, kalau ga ada konstan ga usah pake c. Misal ARIMA(1,2,2) dengan konstan menjadi dlog(data,2) AR(1) MA(2) MA(1) C

Pemodelan ARIMA

Data awal

- Cek Plot data (stasioner)
 - Transformasi data (dtrans)

Identifikasi model

- **02** pdq
 - PACF -> p, ACF -> q

Penurunan model

Nilai d selalu tetap dan tidak boleh (0, d, 0).

Overfitting

O4 Pemilhan kelayakan model.

Diagnostic Checking

- 05 Normalitas residual,
 - No autokorelasi residual,
 - Homoskedastisitas residual

Pemilihan model terbaik

- R^2, Adj. R^2, LL terbesar- SE of regression, SSR, AIC, dan SBC terkecil
- Forecast dan penulisan model

$$Dp(B)(1 - B)dXt = \mu + Cq(B)\varepsilon t$$

Rata-rata Bergerak Tunggal

Pemulusan Eksponensial Tunggal

01

02

03

04

05

Rata-rata Bergerak Ganda

Pemulusan Eksponensial Ganda - Holt

Pemulusan Eksponensial Ganda - Brown

01

02

03

04

05

Pemulusan Eksponensial Tripel - Winter

Klasifikasi Pegels

Dekomposisi

01

02

03

04

05

)3

Klasifikasi Pola Time Series

Musiman Aditif

Tanpa

Pengaruh Musiman

Multiplikatif

Musiman

01

03

04

05

06

龠

	No Seasonality (E)	Additive Seasonality (S _A)	Multiplicative Seasonality (S _M)
No Trend (L)	pohora sepanamana popular sepana pop	Cenderung sama	Semakin panjang
Linear Trend (T _L)	and the same of th		

*

