PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 98/54206

C07K 1/00, C07H 21/04

A1

(43) International Publication Date:

3 December 1998 (03.12.98)

(21) International Application Number: PCT/US98/10868

(22) International Filing Date:

28 May 1998 (28.05.98)

(30) Priority Data: 60/044,039 30 May 1997 (30.05.97) US 30 May 1997 (30.05.97) US 60/048,093 30 May 1997 (30.05.97) US 60/048,190 US 30 May 1997 (30.05.97) 60/050,935 30 May 1997 (30.05.97) US 60/048,101 US 60/048,356 30 May 1997 (30.05.97) 29 August 1997 (29.08.97) US 60/056,250 US 29 August 1997 (29.08.97) 60/056,296 29 August 1997 (29.08.97) US 60/056,293

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive, Olney, MD 20832 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). CARTER, Kenneth, C. [US/US]; 11601 Brandy Hall Lane, North Potomac, MD 20878 (US). DILLON, Patrick, J. [US/US]; 1055 Snipe

Court, Carlsbad, CA 92009 (US). ENDRESS, Gregory, A. [US/US]; 9729 Clagett Farm Drive, Potomac, MD 20854 (US). YU, Guo-Liang [CN/US]; 13524 Straw Bale Lane, Darnestown, MD 20878 (US). NI, Jian [CN/US]; 5502 Manorfield Road, Rockville, MD 20853 (US). FENG, Ping [CN/US]; 4 Relda Court, Gaithersburg, MD 20878 (US).

(74) Agents: BROOKES, A., Anders et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: 32 HUMAN SECRETED PROTEINS

(57) Abstract

The present invention relates to 32 novel human secreted proteins and isolated nucleic acids containing the coding regions of the genes encoding such proteins. Also provided are vectors, host cells, antibodies, and recombinant methods for producing human secreted proteins. The invention further relates to diagnostic and therapeutic methods useful for diagnosing and treating disorders related to these novel human secreted proteins.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL AM AT AU AZ BA BB BE BF BG BJ BR CCF CG CH CI CM CN CU CZ DE DK EE	Albania Armenia Australia Australia Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark Estonia	ES FI FR GA GB GE GH GN IE IL IS IT JP KE KG KP KR LL LL LL LR	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Kazakstan Saint Lucia Liechtenstein Sri Lanka Liberia	LS LT LU LV MC MD MG MK ML MN MR MW MX NE NL NO NZ PL PT RO RU SD SE SG	Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Singapore	SI SK SN SZ TD TG TJ TM TR TT UA UG US UZ VN YU ZW	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe
---	--	--	---	---	---	--	---

10

15

20

25

30

35

32 Human Secreted Proteins

Field of the Invention

This invention relates to newly identified polynucleotides and the polypeptides encoded by these polynucleotides, uses of such polynucleotides and polypeptides, and their production.

Background of the Invention

Unlike bacterium, which exist as a single compartment surrounded by a membrane, human cells and other eucaryotes are subdivided by membranes into many functionally distinct compartments. Each membrane-bounded compartment, or organelle, contains different proteins essential for the function of the organelle. The cell uses "sorting signals," which are amino acid motifs located within the protein, to target proteins to particular cellular organelles.

One type of sorting signal, called a signal sequence, a signal peptide, or a leader sequence, directs a class of proteins to an organelle called the endoplasmic reticulum (ER). The ER separates the membrane-bounded proteins from all other types of proteins. Once localized to the ER, both groups of proteins can be further directed to another organelle called the Golgi apparatus. Here, the Golgi distributes the proteins to vesicles, including secretory vesicles, the cell membrane, lysosomes, and the other organelles.

Proteins targeted to the ER by a signal sequence can be released into the extracellular space as a secreted protein. For example, vesicles containing secreted proteins can fuse with the cell membrane and release their contents into the extracellular space - a process called exocytosis. Exocytosis can occur constitutively or after receipt of a triggering signal. In the latter case, the proteins are stored in secretory vesicles (or secretory granules) until exocytosis is triggered. Similarly, proteins residing on the cell membrane can also be secreted into the extracellular space by proteolytic cleavage of a "linker" holding the protein to the membrane.

Despite the great progress made in recent years, only a small number of genes encoding human secreted proteins have been identified. These secreted proteins include the commercially valuable human insulin, interferon, Factor VIII, human growth hormone, tissue plasminogen activator, and erythropoeitin. Thus, in light of the pervasive role of secreted proteins in human physiology, a need exists for identifying and characterizing novel human secreted proteins and the genes that encode them. This knowledge will allow one to detect, to treat, and to prevent medical disorders by using secreted proteins or the genes that encode them.

Summary of the Invention

The present invention relates to novel polynucleotides and the encoded polypeptides. Moreover, the present invention relates to vectors, host cells, antibodies, and recombinant methods for producing the polypeptides and polynucleotides. Also provided are diagnostic methods for detecting disorders related to the polypeptides, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying binding partners of the polypeptides.

10

15

20

25

30

35

5

Detailed Description

Definitions

The following definitions are provided to facilitate understanding of certain terms used throughout this specification.

In the present invention, "isolated" refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.

In the present invention, a "secreted" protein refers to those proteins capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.

As used herein, a "polynucleotide" refers to a molecule having a nucleic acid sequence contained in SEQ ID NO:X or the cDNA contained within the clone deposited with the ATCC. For example, the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, with or without the signal sequence, the secreted protein coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a molecule having the translated amino acid sequence generated from the polynucleotide as broadly defined.

In the present invention, the full length sequence identified as SEQ ID NO:X was often generated by overlapping sequences contained in multiple clones (contig

10

15

20

25

30

analysis). A representative clone containing all or most of the sequence for SEQ ID NO:X was deposited with the American Type Culture Collection ("ATCC"). As shown in Table 1, each clone is identified by a cDNA Clone ID (Identifier) and the ATCC Deposit Number. The ATCC is located at 10801 University Boulevard, Manassas, Virginia 20110-2209, USA. The ATCC deposit was made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for purposes of patent procedure.

A "polynucleotide" of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, the complement thereof, or the cDNA within the clone deposited with the ATCC. "Stringent hybridization conditions" refers to an overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 µg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

Also contemplated are nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37°C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M NaH₂PO₄; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50°C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).

Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.

Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a

35

10

15

complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

The polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single-and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.

The polypeptide of the present invention can be composed of amino acids joined 20 to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a 25 polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or 30 without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a 35 nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine,

10

15

20

25

30

35

formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth Enzymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).)

"SEQ ID NO:X" refers to a polynucleotide sequence while "SEQ ID NO:Y" refers to a polypeptide sequence, both sequences identified by an integer specified in Table 1.

"A polypeptide having biological activity" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention.)

Polynucleotides and Polypeptides of the Invention

FEATURES OF PROTEIN ENCODED BY GENE NO: 1

This gene maps to chromosome 3 and therefore polynucleotides of the present invention can be used in linkage analysis as a marker for chromosome 3.

This gene is expressed in several fetal tissues including brain, liver and lung and to a lesser extent in adult tissues, particularly skin.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, a variety of cancers, particularly of the brain, liver, and lung. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a

10

number of disorders of the above tissues or cells, particularly of the central nervous system, hepatic system, and hepatic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., brain and other tissue of the nervous system, liver, lung, and skin, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful as a target for a variety of blocking agents, as they are likely to be involved in the promotion of a variety of cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 2

In specific embodiments, the polypeptides of the invention comprise the sequence:MSVPAFIDISEEDQAAELRAYLKSKGAEISEENSEGGLHVDLAQIIEAC 15 DVCLKEDDKDVESVMNSVVSLLLILEPDKQEALIESLCEKLVKFREGERPSLRLQ LLSNLFHGMDKNTPVRYTVYCSLIKVAASCGAIQYIPTELDQVRKWISDWNLTT EKKHTLLRLLYEALVDCKKSDAASKVMVELLGSYTEDNASQARVDAHRCIVRA LKDPNAFLFDHLLTLKPVKFLEGELIHDLLTIFVSAKLASYVKFYQNNKDFIDSL GLLHEQNMAKMRLLTFMGMAVENKEISFDTMQQELQIGADDVEAFVIDAVRTK 20 MVYCKIDQTQRKVVVSHSTHRTFGKQQWQQLYDTLNAWKQNLNKVKNSLLS LSDT (SEQ ID NO:85), MSVPAFIDISEED (SEQ ID NO:86), QAAELRAYLKSKG AE (SEQ ID NO:87), ISEENSEGGLHVDLAQI (SEQ ID NO:88), IEACDVCLKED DKDVESV (SEQ ID NO:89), VARPSSLFRSAWSCEW (SEQ ID NO:90), LRLQLLS NLFHG (SEQ ID NO:91), KDVESVMNSVVSLLLIL (SEQ ID NO:92), DAASKVMV 25 ELLGSYTEDNASQARVDA (SEQ ID NO:93), and/or VEAFVIDAVR (SEQ ID NO:94). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed in bone and to a lesser extent in brain, lung, T-cells, muscle, skin, testis, spleen and macrophages.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, bone cancer, osteoarthritis, and autoimmune diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a

30

35

15

20

25

30

35

number of disorders of the above tissues or cells, particularly of the immune system and skeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, T-cells and other cells and tissue of the immune system, lung, muscle, skin, and testis and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:49 as residues: Arg-31 to Ser-37, Met-50 to Val-56, Glu-80 to Trp-87, Thr-94 to His-99, Tyr-129 to Ser-135, Tyr-193 to Phe-199, Ser-274 to Gln-285, and/or Ala-293 to Lys-302.

FEATURES OF PROTEIN ENCODED BY GENE NO: 3

The translation product of this gene shares sequence homology with various kinases. The closest homolog is mouse TIF1 which is a mouse nuclear protein. TIF1 enhances RXR and RAR AF-2 in yeast and interacts in a ligand-dependent manner with several nuclear receptors in yeast and mammalian cells, as well as in vitro. Remarkably, these interactions require the amino acids constituting the AF-2 activating domain conserved in all active NRs. Moreover, the oestrogen receptor (ER) AF-2 antagonist hydroxytamoxifen cannot promote ER-TIF1 interaction. We propose that TIF1, which contains several conserved domains found in transcriptional regulatory proteins, is a mediator of ligand-dependent AF-2. Interestingly, the TIF1 N-terminal moiety is fused to B-raf in the mouse oncoprotein T18.

This gene is expressed primarily in activated T-cells and to a lesser extent in various other tissues including testes and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, autoimmune diseases, AIDS, leukemias, and various other cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other cells and tissue of the immune system, testes and other reproductive tissue, and brain and other

10

tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:50 as residues: Ala-31 to Glu-36.

The tissue distribution and homology to TIF indicates that polynucleotides and polypeptides corresponding to this gene are useful for modulation of nuclear receptor and ligand interaction in various immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 4

This gene maps to chromosome 11. Accordingly, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 11. In specific embodiments, the polypeptides of the invention comprise the sequence:

MSEIYLRCQDEQQYARWMAGCRLASKGRTMADSSY (SEQ ID NO:95), LVAPRF QRKFKAKQLTPRILEAHQNVAQLSLAEAQLRFIQAWQSL (SEQ ID NO:96), VGD VVKTWRFSNMRQWNVNWDIR (SEQ ID NO:97), EEIDCTEEEMMVFAALQYH INKLSQS (SEQ ID NO:98), and/or EEIDCTEEEMMVFAALQYHINKLSQS (SEQ ID NO:99). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in several white blood cell types including monocytes, T-cells, and neutrophils and to a lesser extent in a limited number of other tissues including umbilical vein and liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 25 biological sample and for diagnosis of diseases and conditions which include, but are not limited to, various diseases of the immune system including AIDS, immunodeficency diseases, and autoimmune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders 30 of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, liver, and vascular tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to 35 the standard gene expression level, i.e., the expression level in healthy tissue or bodily

10

15

20

25

30

35

fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:51 as residues: Ser-3 to Pro-9, Leu-17 to Leu-29, Asp-64 to Pro-69, Ile-105 to Gln-110, Thr-183 to Gln-200, Cys-239 to Arg-247, Ser-256 to Met-261, Gln-280 to Ala-296, Arg-310 to Thr-321, Lys-363 to Asp-368, Ser-395 to Trp-400, and/or Thr-443 to Asp-453.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for replacement therapy in a variety of immune system disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 5

This gene is expressed primarily in brain and little or not at all in any other tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, mood disorders, schizophrenia and related diseases, bipolar disorder and unipolar depression. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:52 as residues: Met-1 to Gly-8, Pro-10 to Arg-17, Pro-45 to Ser-55, and/or Gly-63 to Tyr-74.

The tissue distribution of this gene primarily in brain indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. Also given the brain-specific expression of this gene, the promoter region of this gene contains a brain-specific element that could be used for targeting expression of vector systems to the brain in gene replacement therapy.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 6

This gene maps to chromosome 1 and therefore, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 1.

This gene is expressed abundantly in rhabdomyosarcoma, is expressed to a high level and in different regions of the brain and pituitary gland and to a lesser extent in a variety of other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurological disorders and muscular disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., smooth muscle, brain and other tissue of the nervous system, and pituitary, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The abundant expression of this gene in rhadomyosarcoma indicates a role for the protein product either in the detection and/or treatment of skeletal muscle disorders including muscle degeneration, muscle wasting, and rhabdomyolysis. Furthermore expression in the brain indicates a role for the protein product of this gene in the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 7

The translation product of this gene shares sequence homology with the TDAG51 gene which is thought to be important in the mediation of apoptosis and cell death by coupling TCR stimulation to Fas expression. In specific embodiments, the polypeptides of the invention comprise the sequence: KELSFARIKAVECVESTGR HIYFTLV(SEQ ID NO:100) and/or GWNAQITLGLVKFKNQQ (SEQ ID NO:101).

This gene is expressed in various human tissues including macrophages.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., macrophages and other blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:54 as residues: Met-1 to Pro-9, Gln-43 to Glu-49, and/or Phe-95 to Arg-102.

The tissue distribution and homology to TDAG51 gene indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of immune disorders, such as immunodeficiency, allergy, infection, inflammation, tissue/organ transplantation.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 8

This gene is expressed in breast tissue, and amniotic cells and to a lesser extent in smooth muscle, T-cells, and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, fetal distress syndrome and embryonic wasting. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the female reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue, amniotic cells, smooth muscle, brain and other tissue of the nervous system, and T-cells and other cells and tissue of the immune system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

` 35

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 9

In specific embodiments, the polypeptides of the invention comprise the sequence: LVLGLSXLNNSYNFSF (SEQ ID NO:102), HVVIGSQAEEGQYSLNF (SEQ ID NO:103), HNCNNSVPGKEHPFDITVM (SEQ ID NO:104), FIKYVLSD KEKKVFGIV (SEQ ID NO:105), IPMQVLANVAYII (SEQ ID NO:106), IPMQVL ANVAYII (SEQ ID NO:107), DGKVAVNLAKLKLFR (SEQ ID NO:108), and/or IREKNPDGFLSAA (SEQ ID NO:109). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is primarily expressed in the fetal liver, spleen and pituitary gland, and to a lesser extent in multiple tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune disorders and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic, immune and hematopoetic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., liver, spleen, and pituitary gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:56 as residues: Ser-62 to Cys-71, Thr-78 to Leu-86, Ser-104 to Lys-109, Ser-130 to Ala-135, and/or Gln-168 to Asp-174.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hepatic disorders, and disorders of the immune and hematopoetic systems, such as hepatic failure, hepatitis, alcoholic liver diseases, portal hypertension, toxic liver injury, liver transplantation, and neoplasm of the liver. The expression in the fetal liver spleen also indicates its function in hematopoiesis, and therefore the gene may be useful in hematopoietic disorders including anemia, leukemia or cancer

10

15

20

radiotherapy/chemotherapy. The expression in the pituitary gland may indicate its use in endocrine disorders with systemic or specific manifestations.

FEATURES OF PROTEIN ENCODED BY GENE NO: 10

The translation product of this gene shares sequence homology with a chicken DNA binding protein which is thought to be important in transcriptional regulation of gene expression. In specific embodiments, polypeptides of the invention comprise the sequence: MMFGGYETI (SEQ ID NO:110), YRDESSSELSVDSEVEFQLYSQIH (SEQ ID NO:111), YAQDLDDVIREEEHEEKNSGNSESSSSKPNQKKLIVLSDSEVI QLSDGSEVITLSDEDSIYRCKGKNVRVQAQENAHGLSSSLQSNELVDKKCKSDI EKPKSEERSGVIREVMIIEVSSSEEEESTISEGDNVESW (SEQ ID NO:112), MLLG CEVDDKDDDILLNLVGCENSVTEGEDGINWSIS (SEQ ID NO:113), DKDIEAQI ANNRTPGRWT (SEQ ID NO:114), QRYYSANKNIICRNCDKRGHLSKNCPLP RKV (SEQ ID NO:115), and/or RRCFLCSRRGHLLYSCPAPLCEYCPVPKMLDHS CLFRHSWDKQCDRCHMLGHYTDACTEIWRQYHLTTKPGPPKKPKTPSRPSAL AYCYHCAQKGHYGHECPEREVYDPSPVSPFICYYXDKYEIQEREKRLKQKIKV XKKNGVIPEPSKLPYIKAANENPHHDIRKGRASWKSNRWPQ (SEQ ID NO:116). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed in tonsils and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, disorders of the immune, hematopoetic, and lymphatic systems. 25 Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, hematopoetic, and lymph systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., tonsils, and 30 bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

The tissue distribution and homology to DNA binding protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of disorders in the immune, hematopoetic, and lymph systems.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 11

This gene is expressed in dendritic and T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, disorders of the immune system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cells types (e.g., dendritic cells, and T-cells and other cells and tissue of the immune system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for the treatment and diagnosis of immune system disorders, particularly those involving dendritic or T-cells such as inflammation.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 12

This gene is expressed in activated neutrophils, endothelial cells, T cells and to a lesser extent in brain and liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, AIDS, immune disorders and susceptibility to infectious disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and skin, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., neutrophils and other

10

15

20

25

30

35

blood cells, endothelial cells, T-cells and other cells and tissue of the immune system, brain and other tissue of the nervous system, and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:59 as residues: Glu-41 to Val-46.

This gene product is useful for the diagnosis and/or treatment of a variety of disorders, including hematopoietic disorders, neurological disorders, liver disease, and disorders involving angiogenesis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 13

This gene is expressed in keratinocytes and to a lesser extent in endothelial cells and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, impaired wound healing. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skin, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cells types (e.g., keratinocytes and other cells of the skin, endothelial cells, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:60 as residues: Pro-35 to Trp-42, Ala-53 to Asp-62, and/or Arg-103 to Pro-113.

The tissue distribution indicates that the protein products of this gene are useful for the treatment of wound healing deficiency and skin disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 14

This gene is expressed in kidney and to a lesser extent in embryonic tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

10

15

20

25

30

35

biological sample and for diagnosis of diseases and conditions which include, but are not limited to, renal failure. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the kidney, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., kidney, embryonic and other rapidly developing (e.g., dividing) tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 15

This gene is expressed primarily in brain and to a lesser extent in liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, depression, manic depression and other mental diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., brain and other tissue of the nervous system, and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for the treatment of central nervous system disorders such as depression and other mental illnesses.

FEATURES OF PROTEIN ENCODED BY GENE NO: 16

This gene is expressed in fetal brain and to a lesser extent in placenta, endothelial cells, fetal lung, and T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, restinosis, birth defects and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular system, and developmental process, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, endothelial cells, lung, and T-cells and other cells and tissue of the immune system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:63 as residues: Gln-36 to Lys-42, and/or Glu-89 to Arg-104.

The tissue distribution indicates that the protein products of this gene are useful for the development of agonists and/or antagonists for treatment of nervous system disorders and fetal development.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 17

This gene is expressed in hemangiopericytoma and to a lesser extent in fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, hemangiopericytomas and other cancers, as well as developmental disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., vascular tissue, pericytic tissue, and developing tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include

10

15

20

25

30

35

those comprising a sequence shown in SEQ ID NO:64 as residues: Glu-43 to Pro-51, Gly-71 to Arg-82, Pro-96 to Arg-103, and/or Thr-130 to Gly-140.

The polynucleotides and polypeptides related to this gene are believed to be useful for the treatment and diagnosis of tumors, particularly hemangiopericytomas, and for the treatment of developmental disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 18

This gene is expressed in fetal liver and to a lesser extent in brain and T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, fetal disorders, fetal development, and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic system, nervous system and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, brain and other tissue of the nervous system, and T-cells and other cells and tissue of the immune system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for the identification of agonists and /or antagonists for treatment of mental illnesses such as schizophrenia and depression. The gene product may also be useful for monitoring fetal development during pregnancy.

FEATURES OF PROTEIN ENCODED BY GENE NO: 19

This gene is expressed in T cells and to a lesser extent in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, central nervous diseases and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of

10

15

20

25

30

35

disorders of the above tissues or cells, particularly of the central nervous system and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other cells and tissue of the immune system, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:66 as residues: Lys-69 to Leu-74, Ser-92 to Phe-97, Asp-109 to Leu-117, Leu-142 to Ser-159, Thr-166 to Glu-183, Ala-191 to Glu-205, and/or Pro-213 to Glu-220.

The tissue distribution indicates that the protein products of this gene are useful for the development of drugs for treatment of disorders affecting the central nervous system and immune system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 20

The translation product of this gene shares sequence homology with a C. elegans ORF that seems to be a transmembrane protein. (See GenBank Accession No. 790406.) This contig has two probable frameshifts between the +2 and +3 frames based on homology with the C. elegans gene. This frameshift can easily be resolved by sequencing the deposited clone. Moreover, this gene maps to chromosome 8, and therefore can be used as a marker in linkage analysis for chromosome 8.

This gene is expressed ubiquitously, including T cells and amygdala.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other cells and tissue of the immune system, amygdala, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The ubiquitous tissue distribution and homology to a C. elegans transmembrane-like protein indicates that the protein product of this gene plays a role important in both vertebrates and invertebrates and is useful for diagnosis or treatment of disorders related to this gene.

5

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 21

This gene is expressed primarily in embryonic and testes and to a lesser extent in ovary, hepatoma, kidney, endothelial, and smooth muscle cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, metabolic disorder, abnormal embryonic development and tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the embryonic or vascular tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovary and other reproductive tissue, kidney, endothelial cells, and smooth muscle cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to NADH dehydrogenase indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and/or treating metabolic disorders, particularly involving embryonic and vascular tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 22

The translation product of this gene shares sequence homology with alpha 1C adrenergic receptor which is thought to be important in neuronal signal transmission.

This gene is expressed primarily in breast lymphnode and to a lesser extent in uterine cancer and testis tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurological disorders. Similarly, polypeptides and antibodies directed to

20

25

30

35

these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neurologic, breast lymphonode, uterine cancer, and testis, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., breast tissue, lymphoid tissue, uterine tissue, and testis and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to alpha 1C adrenergic receptor indicates that polynucleotides and polypeptides corresponding to this gene are useful for transmitting signals to neurons.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 23

The translation product of this gene shares sequence homology with G-protein-coupled receptor which is thought to be important in mediating a wide variety of physiological function and belongs to a gene superfamily with members ranging from chemokine receptor to bradykinin receptor. This gene has also recently been cloned by another group, calling the gene platelet activating receptor homolog. (See GenBank Accession No. 2580588.) Preferred polypeptide fragments comprise the amino acid sequence: LSIIFLAFVSIDRCLQL (SEQ ID NO:117) and GSCFATWAFIQKNTNHRCVSIY LINLLTADFLLTLALPVKIVVDLGVAPWKLKIFHCQVTACLIYIN (SEQ ID NO:118). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in immune cells, particularly lymphocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, disorders of lymphocytes and other immune cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lymphocytes and other cells and tissue of the immune system, and cancerous and wounded tissues) or bodily fluids (e.g., serum,

plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:70 as residues: Asp-59 to Asn-65, Lys-72 to Trp-79, Tyr-110 to Val-121, and/or Ala-204 to Asn-215.

The tissue distribution and homology to G-protein coupled receptor indicates that polynucleotides and polypeptides corresponding to this gene are useful as chemokine receptor on lymphocytes that regulate immune response.

10

15

20

25

30

35

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 24

The translation product of this gene shares sequence homology with protein disulfide isomerase which is thought to be important in protein folding and protein-protein interaction. This gene also shares homology to genes having thioredoxin domains. (See Accession No. 1943817.) This gene also maps to chromosome 9, and therefore may be useful in linkage analysis as a marker for chromosome 9.

This gene is expressed primarily in tumor tissues and to a lesser extent in a wide variety of normal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, disorders due to inappropriate protein folding and protein-protein interaction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the tumorigenic process, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:71 as residues: Glu-78 to Asn-83, Asp-91 to Gln-100, Glu-122 to Ser-128, Arg-137 to Pro-143, Asp-157 to Asn-162, Glu-168 to Asn-174, Ser-199 to Gly-206, Pro-213 to Ala-218, Glu-251 to Thr-257, Ser-353 to His-361, Gly-363 to Ala-375, Pro-382 to Phe-387, and/or Arg-401 to Leu-406.

10

15

20

25

30

35

The tissue distribution and homology to protein disulfide isomerase indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulating protein folding and protein-protein interaction in tumor tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 25

This gene is expressed primarily in leukocytes involved in immune defense, including T cells, macrophages, neutrophils and to a lesser extent in synovium, adrenal gland tumor, adipose, and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, defects or disorders in leukocytes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and defense systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., leukocytes and other cells and tissues of the immune system, synovium, adrenal gland, adipose and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulating leukocyte function and may be used for diagnosis and treatment of disorders in immune and defense systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 26

This gene is expressed in a variety of tissues and cell types, including colon cancer, breast cancer, neutrophils, T cells, spinal cord, fibroblasts, and vascular endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer, disorder and abnormalities in leukocytes and other tissues. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell

10

15

20

type(s). For a number of disorders of the above tissues or cells, particularly those cells involved in tumorigenesis and immune defense systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., colon, breast tissue, neutrophils, T-cells and other blood cells, spinal cord and other tissue of the nervous system, endothelial cells, vascular tissue, and fibroblasts, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancer or immune system disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 27

The translation product of this gene shares sequence homology with a mouse pancreatic polypeptide. (See GenBankAccession No. 200464.) Thus, it is likely that this gene has activity similar to the mouse pancreatic polypeptide. Preferred polypeptide fragments comprise the amino acids sequence: APLETMQNKPRAPQKRALPFPEL ELRDYASVLTRYSLGLRNKEPSLGHRWGTQKLGRSPC (SEQ ID NO:119). Also preferred are polynucleotide fragments encoding this polypeptide fragment.

This gene is expressed primarily in neutrophils and to a lesser extent in induced endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as 25 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, disorders in neutrophils or leukocyte adhesion. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of 30 disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., neutrophils and other blood cells, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having 35 such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulation of neutrophils or leukocyte adhesion to endothelial cells. It may be used to diagnose or treat disorders associated with neutrophils and vascular endothelial cells.

5

10

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 28

This gene is expressed primarily in prostate BPH.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, benign hypertrophy of the prostate. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male urogenital system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of benign hypertrophy of the prostate or prostate cancer.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 29

The translation product of this gene shares sequence homology with C16C10.7, a *C. elegans* gene similar to zinc finger protein, a protein involved in DNA binding. Thus, this protein is expected to share certain biological activities with C16C10.7 including DNA binding activities.

This gene is expressed primarily in activated T-cells and to a lesser extent in fetal brain, TNF-induced amniotic cells and epididymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune or neurodegenerative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

10

15

20

25

30

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and central nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other cells and tissue of the immune system, brain and other tissue of the nervous system, amniotic cells, and epididymus and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for the diagnosis and treatment of immune and/or neurodegenerative disorders and promotion of survival and differentiation of neurons.

FEATURES OF PROTEIN ENCODED BY GENE NO: 30

This gene is expressed primarily in T-cells and to a lesser extent in bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immunological disorders including autoimmune disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other cells and tissue of the immune system, and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. It is believed that this gene maps to chromosome 4: Transcript map: WI-11395, Chr.4, D4S395-D4S414; Whitehead map: WI-11395, Chr.4, 498.0 cR; dbSTS entries: G21269.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of immunologically mediated disorders as they are thought

10

15

20

25

30

35

to play a role in the proliferation, survival, differentiation, and/or activation of a variety of hematopoietic cells, including early progenitors or hematopoietic stem cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 31

This gene is expressed primarily in human skin.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, wound healing and skin cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the integumentary system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., skin and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of skin cancers and wound healing.

FEATURES OF PROTEIN ENCODED BY GENE NO: 32

The translation product of this gene shares sequence homology with human Tear Prealbumin (GenBank accession no. gil307518) and rat Oderant-binding protein (GenBank accession no. gil207551), both of which are thought to be important in molecule binding and transport.

This gene is expressed primarily in endometrial tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancers of the endometrium, skin and haemopoietic system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the haemopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cells and tissue of the immune system, and

endometrium and other tissue of the reproductive system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the molecule binding and transport gene family indicates that the protein products of this gene are useful for the diagnosis and treatment of cancers of the endometrium and haemopoietic system as well as for the treatment of autoimmune disorders such as inflammation.

10

5

	•	AA of ORF	145	311	46	466	207	82	62	123	179	286	33	23
	First A A			19	22	24 4	28 2	52	17	32 1	26	19 2	21 3	22 2
	Last AA		38	- 81	21	23	27	51		31	25	81	20	21
	First	of Sig Pep	J-	-	-	-	-	-	-	-	-	-		
		AŠ.	48	49	50	51	80	52	53	54	55	99	57	58
F1 X 13	of Of First	AA of Signal Pep	162	283	251	59	1148	91	1248	528	819	661	410	420
	S' NT	of Start Codon	162	283		59	1148	16	1248	528	819	199	410	420
	5' NT 3' NT of	ည	1060	1310		2271	2164	479	2058	993	1306	1337	1390	186
	5' NT of	Clone Seq.	64	-	61	743	1035	99	1170	396	420	47	237	178
		Total NT Seq.	1169	1310	1139	2271	2581	626	2118	9201	1379	1337	1390	1431
	NT SEQ	АÄ×		12	13	41	43	15	91	17	81	61	20	21 1
		Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1
	ATCC	Deposit Nr and Date	209075 05/22/97	<u> </u>	209075 05/22/97	209075 05/22/97								
		cDNA Clone ID	HSVBZ80	HTAAU21	HTLEK16	HUSIR91	HUSIR91	HADMC21	HAGFM45	HAIBE65		HATCX80	HCFLQ84	HCFLS78
		Gene No.	-	2	3	4	4	5	9	7	8	6	10	=

Last AA of ORF	46	113	31	08	103	145	145	30	259	22	26	28	215
	4	_	3	∞ —	=	1	1-	3	2	7		7	2
First AA of Secreted Portion	28	30	20	25	19	20	56	18	24		23	11	21
Last AA of Sig Pep	27	29	19	24	18	19	25	17	23		22	16	20
First AA of Sig Pep	-	Ī		-	-	1	-1			_		-	_
AA SEQ ID NO: Y	59	09	61	62	63	64	82	92	99	<i>L</i> 9	89	69	70
5' NT of First AA of Signal Pep	104	58	181	525	15	11	11	86	129	161	230	342	205
5' NT of Start Codon	104	58	181	525	15	77	11	86	129	191	230		205
	2539	1007	1947	1228	1340	908	796	684	963	2007	669	1264	697
S' NT 3' NT of of Clone Clone Seq. Seq.	69	48	1	321	325	31	31	-	71	126	196	_	74
Total NT Seq.	2539	1041	1962	1228	1340	908	796	969	1007	2017	669	1264	766
× S B S S S	22	23	24	25	26	27	45	28	29	30	31	32	33
Vector	Uni-ZAP XR	Uni-ZAP XR	pSport1	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Lambda ZAP II	pBluescript	pBluescript	Uni-ZAP XR	pBluescript	Lambda ZAP II	pSport1
ATCC Deposit Nr and Date	209075 05/22/97	209075 05/22/97	209075 05/22/97	209075 05/22/97	209075 05/22/97	209075 05/22/97	209075	209075 05/22/97	209075 05/22/97	209022 05/08/97	209022	209022 05/08/97	209022 05/08/97
cDNA Clone ID	HTADI12	HEMCM42	HEONP72	HFCDW34	HTTEU91	HHGBF89	HHGBF89	нклұ дез	HKMLN27	HKIAC30	HKIXB95	HLMIY86	HLYAZ61
Gene No.	12	13	14	15	16	17	17	18	19	20	21	22	23

Last AA of ORF	406	∞	33	56	25	14	32	22	172	30
First AA of Secreted Portion	33			30	25		27	23	22	18
Last AA of Sig Pep	32			29	24		26	22	21	17
First AA of Sig Pep	Ŀ	<u> </u>		-	-	1	-	-	-	-
SEQ Y	71	72	73	74	75	9/	77	78	79	84
S' NT of AA First SEQ AA of ID Signal NO:	192	211	100	576	95	843	204	110	43	23
5' NT of Start Codon	192		100		95	843	204	110	43	23
S' NT 3' NT of of Clone Clone Seq. Seq.	1897	1020	781	948	416	1114	602	970	1002	981
	37	E	31	507	-	804	142	-	-	-
Total NT Seq.	1914	1020	781	996	416	1114	602	970	1002	981
X NO BEO	34	35	36	37	38	39	40	41	42	47
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR						
ATCC Deposit Nr and Date	209022 05/08/97	209022 05/08/97	209022 05/08/97	209022 05/08/97	209022 05/08/97	209022 05/08/97	209022- 05/08/97	209022 05/08/97	209022 05/08/97	209022 05/08/97
cDNA Clone ID	НМОДТ36	HNEDF25	HNFET 17	HNHCR46	HPWAS91	HWTAW41	HBMUT52	HERAG83	HETFI51	HETFI51
Gene No.	24	25	26	27	28	29	30	31	32	32

10

15

20

25

30

35

Table 1 summarizes the information corresponding to each "Gene No." described above. The nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the "cDNA clone ID" identified in Table 1 and, in some cases, from additional related DNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.

The cDNA Clone ID was deposited on the date and given the corresponding deposit number listed in "ATCC Deposit No:Z and Date." Some of the deposits contain multiple different clones corresponding to the same gene. "Vector" refers to the type of vector contained in the cDNA Clone ID.

"Total NT Seq." refers to the total number of nucleotides in the contig identified by "Gene No." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." and the "3' NT of Clone Seq." of SEQ ID NO:X. The nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep."

The translated amino acid sequence, beginning with the methionine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be easily translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.

The first and last amino acid position of SEQ ID NO:Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." The predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion." Finally, the amino acid position of SEQ ID NO:Y of the last amino acid in the open reading frame is identified as "Last AA of ORF."

SEQ ID NO:X and the translated SEQ ID NO:Y are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID NO:Y may

10

15

20

25

30

35

be used to generate antibodies which bind specifically to the secreted proteins encoded by the cDNA clones identified in Table 1.

Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).

Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table 1. The nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. The predicted amino acid sequence can then be verified from such deposits. Moreover, the amino acid sequence of the protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.

The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, or the deposited clone. The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.

Also provided in the present invention are species homologs. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for the desired homologue.

The polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

10

20

25

30

35

The polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below). It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of a polypeptide, including the secreted polypeptide, can be substantially purified by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988). Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies of the invention raised against the secreted protein in methods which are well known in the art.

15 Signal Sequences

Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271-286 (1985), uses the information from a short N-terminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus of the secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of these methods is in the range of 75-80%. (von Heinje, supra.) However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.

In the present case, the deduced amino acid sequence of the secreted polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., Protein Engineering 10:1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis of the amino acid sequences of the secreted proteins described herein by this program provided the results shown in Table 1.

As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty.

Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID NO:Y which have an N-terminus beginning within 5 residues (i.e., + or - 5 residues) of the predicted cleavage point. Similarly, it is also recognized that in

some cases, cleavage of the signal sequence from a secreted protein is not entirely uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

10

15

20

25

30

35

5

Polynucleotide and Polypeptide Variants

"Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.

By a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be an entire sequence shown in Table 1, the ORF (open reading frame), or any fragement specified as described herein.

As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs. A preferred method for determined the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are:

10

15

20

25

30

35

Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignement of the first 10 bases at 5' end. The 10 unpaired bases represent 10% of the sequence (number of bases at the 5' and 3' ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words,

10

15

20

25

30 .

to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequences shown in Table 1 or to the amino acid sequence encoded by deposited DNA clone can be determined conventionally using known computer programs. A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence due to N- or Cterminal deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for N- and Cterminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the

35

10

15

20

25

30

35

subject sequence.

For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the Nterminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment of the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal deletions so there are no residues at the N- or Ctermini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequnce are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).

Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.

Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides of the present invention. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the secreted protein without substantial loss of biological function. The authors of Ron et al., J. Biol. Chem. 268: 2984-2988

10

15

20

25

30

35

(1993), reported variant KGF proteins having heparin binding activity even after deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)

Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem 268:22105-22111 (1993)) conducted extensive mutational analysis of human cytokine IL-1a. They used random mutagenesis to generate over 3,500 individual IL-1a mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See, Abstract.) In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.

Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic activities can readily be determined by routine methods described herein and otherwise known in the art.

Thus, the invention further includes polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity. For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.

The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these

10

15

20

25

30

35

positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.

The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.

As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.

Besides conservative amino acid substitution, variants of the present invention include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification. Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.

For example, polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993).)

10

15

20

25

30

35

Polynucleotide and Polypeptide Fragments

In the present invention, a "polynucleotide fragment" refers to a short polynucleotide having a nucleic acid sequence contained in the deposited clone or shown in SEQ ID NO:X. The short nucleotide fragments are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from the cDNA sequence contained in the deposited clone or the nucleotide sequence shown in SEQ ID NO:X. These nucleotide fragments are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., 50, 150, 500, 600, 2000 nucleotides) are preferred.

Moreover, representative examples of polynucleotide fragments of the invention, include, for example, fragments having a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, 701-750, 751-800, 800-850, 851-900, 901-950, 951-1000, 1001-1050, 1051-1100, 1101-1150, 1151-1200, 1201-1250, 1251-1300, 1301-1350, 1351-1400, 1401-1450, 1451-1500, 1501-1550, 1551-1600, 1601-1650, 1651-1700, 1701-1750, 1751-1800, 1801-1850, 1851-1900, 1901-1950, 1951-2000, or 2001 to the end of SEQ ID NO:X or the cDNA contained in the deposited clone. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has biological activity. More preferably, these polynucleotides can be used as probes or primers as discussed herein.

In the present invention, a "polypeptide fragment" refers to a short amino acid sequence contained in SEQ ID NO:Y or encoded by the cDNA contained in the deposited clone. Protein fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, or 161 to the end of the coding region. Moreover, polypeptide fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.

Preferred polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or

10

15

20

25

30

35

the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotide fragments encoding these polypeptide fragments are also preferred.

Also preferred are polypeptide and polynucleotide fragments characterized by structural or functional domains, such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions. Polypeptide fragments of SEQ ID NO:Y falling within conserved domains are specifically contemplated by the present invention. Moreover, polynucleotide

Other preferred fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

fragments encoding these domains are also contemplated.

Epitopes & Antibodies

In the present invention, "epitopes" refer to polypeptide fragments having antigenic or immunogenic activity in an animal, especially in a human. A preferred embodiment of the present invention relates to a polypeptide fragment comprising an epitope, as well as the polynucleotide encoding this fragment. A region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." In contrast, an "immunogenic epitope" is defined as a part of a protein that elicits an antibody response. (See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998- 4002 (1983).)

Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.)

In the present invention, antigenic epitopes preferably contain a sequence of at least seven, more preferably at least nine, and most preferably between about 15 to about 30 amino acids. Antigenic epitopes are useful to raise antibodies, including

10

15

20

25

30

35

monoclonal antibodies, that specifically bind the epitope. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe, J. G. et al., Science 219:660-666 (1983).)

Similarly, immunogenic epitopes can be used to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).) A preferred immunogenic epitope includes the secreted protein. The immunogenic epitopes may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting.)

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')2 fragments) which are capable of specifically binding to protein. Fab and F(ab')2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. (Wahl et al., J. Nucl. Med. 24:316-325 (1983).) Thus, these fragments are preferred, as well as the products of a FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeria single chair, and

Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies.

Fusion Proteins

Any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the polypeptide of the present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target cellular locations based on trafficking signals, the polypeptides of the present invention can be used as targeting molecules once fused to other proteins.

Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the

10

15

20

25

30

35

polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

Moreover, polypeptides of the present invention, including fragments, and specifically epitopes, can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker et al., Nature 331:84-86 (1988).) Fusion proteins having disulfide-linked dimeric structures (due to the IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995).)

Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D. Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).)

Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a peptide which facilitates purification of the fused polypeptide. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson et al., Cell 37:767 (1984).)

10

15

20

25

30

35

Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the present invention.

Vectors, Host Cells, and Protein Production

The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, 293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1

10

15

20

25

30

35

and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.

A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

Polypeptides of the present invention, and preferably the secreted form, can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

Uses of the Polynucleotides

Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.

The polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers,

10

15

20

25

30

35

since few chromosome marking reagents, based on actual sequence data (repeat polymorphisms), are presently available. Each polynucleotide of the present invention can be used as a chromosome marker.

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the SEQ ID NO:X will yield an amplified fragment.

Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flowsorted chromosomes, and preselection by hybridization to construct chromosome specific-cDNA libraries.

Precise chromosomal location of the polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).

For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes). Preferred polynucleotides correspond to the noncoding regions of the cDNAs because the coding sequences are more likely conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.

Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library).) Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.

10

15

20

25

30

35

Thus, once coinheritance is established, differences in the polynucleotide and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.

Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using polynucleotides of the present invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.

In addition to the foregoing, a polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Both methods rely on binding of the polynucleotide to DNA or RNA. For these techniques, preferred polynucleotides are usually 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques are effective in model systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat disease.

Polynucleotides of the present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.

The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In

10

15

20

25

30

35

this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.

The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992).) Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.

There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to particular tissue prepared from the sequences of the present invention. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.

In the very least, the polynucleotides of the present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.

10

15

20

25

30

35

Uses of the Polypeptides

Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.

A polypeptide of the present invention can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell . Biol. 105:3087-3096 (1987).) Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

In addition to assaying secreted protein levels in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.

A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 131I, 112In, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).)

10

15

20

25.

30

Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of a polypeptide of the present invention in cells or body fluid of an individual; (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a disorder.

Moreover, polypeptides of the present invention can be used to treat disease. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B), to inhibit the activity of a polypeptide (e.g., an oncogene), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth).

Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease. For example, administration of an antibody directed to a polypeptide of the present invention can bind and reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).

At the very least, the polypeptides of the present invention can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the following biological activities.

Biological Activities

The polynucleotides and polypeptides of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides could be used to treat the associated disease.

35 Immune Activity

A polypeptide or polynucleotide of the present invention may be useful in treating deficiencies or disorders of the immune system, by activating or inhibiting the

10

15

20

25

30

35

proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune deficiencies or disorders may be genetic, somatic, such as cancer or some autoimmune disorders, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, a polynucleotide or polypeptide of the present invention can be used as a marker or detector of a particular immune system disease or disorder.

A polynucleotide or polypeptide of the present invention may be useful in treating or detecting deficiencies or disorders of hematopoietic cells. A polypeptide or polynucleotide of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat those disorders associated with a decrease in certain (or many) types hematopoietic cells. Examples of immunologic deficiency syndromes include, but are not limited to: blood protein disorders (e.g. agammaglobulinemia, dysgammaglobulinemia), ataxia telangiectasia, common variable immunodeficiency, Digeorge Syndrome, HIV infection, HTLV-BLV infection, leukocyte adhesion deficiency syndrome, lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency (SCIDs), Wiskott-Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.

Moreover, a polypeptide or polynucleotide of the present invention could also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity (clot formation). For example, by increasing hemostatic or thrombolytic activity, a polynucleotide or polypeptide of the present invention could be used to treat blood coagulation disorders (e.g., afibrinogenemia, factor deficiencies), blood platelet disorders (e.g. thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, a polynucleotide or polypeptide of the present invention that can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment of heart attacks (infarction), strokes, or scarring.

A polynucleotide or polypeptide of the present invention may also be useful in treating or detecting autoimmune disorders. Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.

10

15

20

25

30

35

Examples of autoimmune disorders that can be treated or detected by the present invention include, but are not limited to: Addison's Disease, hemolytic anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome, Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye disease.

Similarly, allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated by a polypeptide or polynucleotide of the present invention. Moreover, these molecules can be used to treat anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.

A polynucleotide or polypeptide of the present invention may also be used to treat and/or prevent organ rejection or graft-versus-host disease (GVHD). Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. The administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.

Similarly, a polypeptide or polynucleotide of the present invention may also be used to modulate inflammation. For example, the polypeptide or polynucleotide may inhibit the proliferation and differentiation of cells involved in an inflammatory response. These molecules can be used to treat inflammatory conditions, both chronic and acute conditions, including inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or IL-1.)

Hyperproliferative Disorders

A polypeptide or polynucleotide can be used to treat or detect hyperproliferative disorders, including neoplasms. A polypeptide or polynucleotide of the present invention may inhibit the proliferation of the disorder through direct or indirect

10

15

20

25

30

35

interactions. Alternatively, a polypeptide or polynucleotide of the present invention may proliferate other cells which can inhibit the hyperproliferative disorder.

For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative disorders can be treated. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating hyperproliferative disorders, such as a chemotherapeutic agent.

Examples of hyperproliferative disorders that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but are not limited to neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

Similarly, other hyperproliferative disorders can also be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of such hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

Infectious Disease

A polypeptide or polynucleotide of the present invention can be used to treat or detect infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, the polypeptide or polynucleotide of the present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of viruses, include, but are not limited to the following DNA and RNA viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes

Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza), Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g., Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps, Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Similarly, bacterial or fungal agents that can cause disease or symptoms and that 15 can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following Gram-Negative and Gram-positive bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Norcardia), Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae, Blastomycosis, Bordetella, Borrelia, Brucellosis, Candidiasis, Campylobacter, 20 Coccidioidomycosis, Cryptococcosis, Dermatocycoses, Enterobacteriaceae (Klebsiella, Salmonella, Serratia, Yersinia), Erysipelothrix, Helicobacter, Legionellosis, Leptospirosis, Listeria, Mycoplasmatales, Neisseriaceae (e.g., Acinetobacter, Gonorrhea, Menigococcal), Pasteurellacea Infections (e.g., Actinobacillus, Heamophilus, Pasteurella), Pseudomonas, Rickettsiaceae, Chlamydiaceae, Syphilis, 25 and Staphylococcal. These bacterial or fungal families can cause the following diseases or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AIDS related infections), paronychia, prosthesis-related infections, Reiter's Disease, respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme 30 Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, Typhoid, pneumonia, Gonorrhea, meningitis, Chlamydia, Syphilis, Diphtheria, Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections.

A polypeptide or polynucleotide of the present invention can be used to treat or detect

35

any of these symptoms or diseases.

10

15

Moreover, parasitic agents causing disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following families: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas. These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), Malaria, pregnancy complications, and toxoplasmosis. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Preferably, treatment using a polypeptide or polynucleotide of the present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.

Regeneration

A polynucleotide or polypeptide of the present invention can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See, Science 276:59-87 (1997).) The regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion injury, or systemic cytokine damage.

Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac), vascular (including vascular endothelium), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis.

Moreover, a polynucleotide or polypeptide of the present invention may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. A polynucleotide or polypeptide of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue

30

35

regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

Similarly, nerve and brain tissue could also be regenerated by using a polynucleotide or polypeptide of the present invention to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the polynucleotide or polypeptide of the present invention.

15 Chemotaxis

5

10

20

25

30

A polynucleotide or polypeptide of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

A polynucleotide or polypeptide of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.

It is also contemplated that a polynucleotide or polypeptide of the present invention may inhibit chemotactic activity. These molecules could also be used to treat disorders. Thus, a polynucleotide or polypeptide of the present invention could be used as an inhibitor of chemotaxis.

Binding Activity

A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit

10

15

20

25

30

35

(antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991).) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or *E. coli*. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.

The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.

Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.

Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptide from suitably manipulated cells or tissues.

10

15

20

Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide of the invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.

Other Activities

A polypeptide or polynucleotide of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.

A polypeptide or polynucleotide of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide or polynucleotide of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

A polypeptide or polynucleotide of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

A polypeptide or polynucleotide of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

30 Other Preferred Embodiments

Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of

35

10

15

20

25

30

positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Clone Sequence and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Start Codon and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Similarly preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:X beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X.

Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.

Also preferred is a composition of matter comprising a DNA molecule which comprises a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the material deposited with the American Type

10

15

20

25

30

35

Culture Collection and given the ATCC Deposit Number shown in Table 1 for said cDNA Clone Identifier.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in the nucleotide sequence of a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the deposit given the ATCC Deposit Number shown in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of the complete open reading frame sequence encoded by said human cDNA clone.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.

Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

10

15

20

25

30

35

A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

10

15

20

25

30

35

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1.

Also preferred is a polypeptide, wherein said sequence of contiguous amino acids is included in the amino acid sequence of SEQ ID NO:Y in the range of positions beginning with the residue at about the position of the First Amino Acid of the Secreted Portion and ending with the residue at about the Last Amino Acid of the Open Reading Frame as set forth for SEQ ID NO:Y in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a secreted portion of the secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

10

15

20

25

30

35

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

10

15

20

25

30

35

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

10

15

20

25

30

35

Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.

Also preferred is an isolated nucleic acid molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.

Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a secreted portion of a human secreted protein comprising an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y beginning with the residue at the position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y wherein Y is an integer set forth in Table 1 and said position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y is defined in Table 1; and an amino acid sequence of a secreted portion of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The isolated polypeptide produced by this method is also preferred.

Also preferred is a method of treatment of an individual in need of an increased level of a secreted protein activity, which method comprises administering to such an individual a pharmaceutical composition comprising an amount of an isolated polypeptide, polynucleotide, or antibody of the claimed invention effective to increase the level of said protein activity in said individual.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

10

15

20

Examples

Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample

Each cDNA clone in a cited ATCC deposit is contained in a plasmid vector. Table 1 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The table immediately below correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 1 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

Vector Used to Construct Library	Corresponding Deposited Plasmid
Lambda Zap	pBluescript (pBS)
Uni-Zap XR	pBluescript (pBS)
Zap Express	рВК
lafmid BA	plafmid BA
pSport1	pSport1
pCMVSport 2.0	pCMVSport 2.0
pCMVSport 3.0	pCMVSport 3.0
pCR [®] 2.1	pCR [®] 2.1
<u>.</u>	•

Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res.

- 25 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1 Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS.
- The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which are the first sites on each respective end of the linker). "+" or "-" refer to the orientation of the f1 origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the f1 ori generates sense strand DNA and in the other, antisense.

 Vectors pSport1, pCMVSport 2.0 and pCMVSp

Vectors pSport1, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain

10

15

20

DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR®2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide of the present invention does not comprise the phage vector sequences identified for the particular clone in Table 1, as well as the corresponding plasmid vector sequences designated above.

The deposited material in the sample assigned the ATCC Deposit Number cited in Table 1 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each cDNA clone identified in Table 1. Typically, each ATCC deposit sample cited in Table 1 comprises a mixture of approximately equal amounts (by weight) of about 50 plasmid DNAs, each containing a different cDNA clone; but such a deposit sample may include plasmids for more or less than 50 cDNA clones, up to about 500 cDNA clones.

Two approaches can be used to isolate a particular clone from the deposited sample of plasmid DNAs cited for that clone in Table 1. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to SEQ ID NO:X.

Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The oligonucleotide is labeled, for instance, with 32P-\gamma-ATP using T4 polynucleotide 25 kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as 30 those provided by the vector supplier or in related publications or patents cited above. The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 35 1.104), or other techniques known to those of skill in the art.

10

15

20

25

30

35

Alternatively, two primers of 17-20 nucleotides derived from both ends of the SEQ ID NO:X (i.e., within the region of SEQ ID NO:X bounded by the 5' NT and the 3' NT of the clone defined in Table 1) are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7):1683-1684 (1993).)

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is

10

15

20

25

30

35

used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide

A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the cDNA sequence corresponding to SEQ ID NO:X., according to the method described in Example 1. (See also, Sambrook.)

Example 3: Tissue Distribution of Polypeptide

Tissue distribution of mRNA expression of polynucleotides of the present invention is determined using protocols for Northern blot analysis, described by, among others, Sambrook et al. For example, a cDNA probe produced by the method described in Example 1 is labeled with P³² using the rediprime™ DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using CHROMA SPIN-100™ column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT1200-1. The purified labeled probe is then used to examine various human tissues for mRNA expression.

Multiple Tissue Northern (MTN) blots containing various human tissues (H) or human immune system tissues (IM) (Clontech) are examined with the labeled probe using ExpressHybTM hybridization solution (Clontech) according to manufacturer's protocol number PT1190-1. Following hybridization and washing, the blots are mounted and exposed to film at -70°C overnight, and the films developed according to standard procedures.

Example 4: Chromosomal Mapping of the Polynucleotides

An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and harnster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions is analyzed on

15

20

25

30

35

either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.

5 Example 5: Bacterial Expression of a Polypeptide

A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

The pQE-9 vector is digested with BamHI and XbaI and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^r). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.⁶⁰⁰) of between 0.4 and 0.6. IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., *supra*). Proteins with a 6 x His tag bind to the Ni-NTA resin with high

10

15

20

25

30

affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., *supra*).

Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called pHE4a. (ATCC Accession Number 209645, deposited on February 25, 1998.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.

DNA can be inserted into the pHEa by restricting the vector with NdeI and XbaI, BamHI, XhoI, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

10

15

20

25

30

Example 6: Purification of a Polypeptide from an Inclusion Body

The following alternative method can be used to purify a polypeptide expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 µm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

10

15

20

25

30

35

Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System

In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.

Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).

10

15

20

25

30

35

Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon and the naturally associated leader sequence identified in Table 1, is amplified using the PCR protocol described in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. *E. coli* HB101 or other suitable *E. coli* hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

Five μg of a plasmid containing the polynucleotide is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGold™ baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μg of BaculoGold™ virus DNA and 5 μg of the plasmid are mixed in a sterile well of a microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, supra. An agarose gel with "Blue Gal" (Life

10

15

20

25

30

Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 µl of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 μ Ci of ³⁵S-methionine and 5 μ Ci ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

Example 8: Expression of a Polypeptide in Mammalian Cells

The polypeptide of the present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from

10

15

20

25

30

35

Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No.209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

10

15

20

25

30

35

A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the vector does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five µg of the expression plasmid pC6 is cotransfected with 0.5 µg of the plasmid pSVneo using lipofectin (Felgner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of metothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 µM, 2 µM, 5 µM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 -200 μM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

Example 9: Protein Fusions

The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the

10

15

20

30

35

polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

25 Human IgG Fc region:

GGGATCCGGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACCGTGCC
CAGCACCTGAATTCGAGGGTGCACCGTCAGTCTTCCTCTTCCCCCCAAAACC
CAAGGACACCCTCATGATCTCCCGGACTCCTGAGGTCACATGCGTGGTGGT
GGACGTAAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG
GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAAC
AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG
AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAACCCCC
ATCGAGAAAACCATCTCCAAAGCCAAAGGCCACGAGAACCACAGGT
GTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT
GACCTGCCTGGTCAAAGGCTTCTATCCAAGCGACATCGCCGTGGAGTGGGA
GAGCAATGGGCAGCCGGAGAACCACGCCTCCCGTGCTGG

ACTCCGACGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCA

10

15

20

25

30

35

GGTGGCAGCAGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC ACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGTGC GACGCCGCGACTCTAGAGGAT (SEQ ID NO:1)

Example 10: Production of an Antibody from a Polypeptide

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) For example, cells expressing a polypeptide of the present invention is administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of the secreted protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In the most preferred method, the antibodies of the present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Köhler et al., Nature 256:495 (1975); Köhler et al., Eur. J. Immunol. 6:511 (1976); Köhler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 μg/ml of streptomycin.

The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with

10

15

20

25

30

35

this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein-specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.

It will be appreciated that Fab and F(ab')2 and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

For in vivo use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

Example 11: Production Of Secreted Protein For High-Throughput Screening Assays

The following protocol produces a supernatant containing a polypeptide to be tested. This supernatant can then be used in the Screening Assays described in Examples 13-20.

First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.

10

15

20

Plate 293T cells (do not carry cells past P+20) at 2 x 10⁵ cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8 or 9, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-Iml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37°C for 6 hours.

While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or CHO-5 media (116.6 mg/L of CaCl2 (anhyd); 0.00130 mg/L $CuSO_4$ -5 H_2O ; 0.050 mg/L of $Fe(NO_3)_3$ -9 H_2O ; 0.417 mg/L of $FeSO_4$ -7 H_2O ; 311.80 mg/L of Kcl; 28.64 mg/L of $MgCl_2$; 48.84 mg/L of $MgSO_4$; 6995.50 mg/L of NaCl; 25 2400.0 mg/L of NaHCO₃; 62.50 mg/L of NaH₂PO₄-H₂0; 71.02 mg/L of Na₂HPO4; .4320 mg/L of ZnSO₄-7H₂O; .002 mg/L of Arachidonic Acid; 1.022 mg/L of Cholesterol; .070 mg/L of DL-alpha-Tocopherol-Acetate; 0.0520 mg/L of Linoleic Acid; 0.010 mg/L of Linolenic Acid; 0.010 mg/L of Myristic Acid; 0.010 mg/L of Oleic Acid; 0.010 mg/L of Palmitric Acid; 0.010 mg/L of Palmitic Acid; 100 mg/L of 30 Pluronic F-68; 0.010 mg/L of Stearic Acid; 2.20 mg/L of Tween 80; 4551 mg/L of D-Glucose; 130.85 mg/ml of L- Alanine; 147.50 mg/ml of L-Arginine-HCL; 7.50 mg/ml of L-Asparagine-H₂0; 6.65 mg/ml of L-Aspartic Acid; 29.56 mg/ml of L-Cystine-2HCL-H₂0; 31.29 mg/ml of L-Cystine-2HCL; 7.35 mg/ml of L-Glutamic Acid; 365.0 mg/ml of L-Glutamine; 18.75 mg/ml of Glycine; 52.48 mg/ml of L-Histidine-HCL-35 H₂0; 106.97 mg/ml of L-Isoleucine; 111.45 mg/ml of L-Leucine; 163.75 mg/ml of L-

10

15

20

25

Lysine HCL; 32.34 mg/ml of L-Methionine; 68.48 mg/ml of L-Phenylalainine; 40.0 mg/ml of L-Proline; 26.25 mg/ml of L-Serine; 101.05 mg/ml of L-Threonine; 19.22 mg/ml of L-Tryptophan; 91.79 mg/ml of L-Tryrosine-2Na-2H₂0; 99.65 mg/ml of L-Valine; 0.0035 mg/L of Biotin; 3.24 mg/L of D-Ca Pantothenate; 11.78 mg/L of Choline Chloride; 4.65 mg/L of Folic Acid; 15.60 mg/L of i-Inositol; 3.02 mg/L of Niacinamide; 3.00 mg/L of Pyridoxal HCL; 0.031 mg/L of Pyridoxine HCL; 0.319 mg/L of Riboflavin; 3.17 mg/L of Thiamine HCL; 0.365 mg/L of Thymidine; and 0.680 mg/L of Vitamin B₁₂; 25 mM of HEPES Buffer; 2.39 mg/L of Na Hypoxanthine; 0.105 mg/L of Lipoic Acid; 0.081 mg/L of Sodium Putrescine-2HCL; 55.0 mg/L of Sodium Pyruvate; 0.0067 mg/L of Sodium Selenite; 20uM of Ethanolamine; 0.122 mg/L of Ferric Citrate; 41.70 mg/L of Methyl-B-Cyclodextrin complexed with Linoleic Acid; 33.33 mg/L of Methyl-B-Cyclodextrin complexed with Oleic Acid; and 10 mg/L of Methyl-B-Cyclodextrin complexed with Retinal) with 2mm glutamine and 1x penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37°C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 13-20.

It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide directly (e.g., as a secreted protein) or by the polypeptide inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

30

35

Example 12: Construction of GAS Reporter Construct

One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferon-sensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

10

25

30

GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.

The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proxial region encoding Trp-Ser-Xxx-Trp-Ser (SEQ ID NO:2)).

Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.

Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

5 .	<u>Ligand</u>	tyk2	JAKs Jak1	Jak2	<u>Jak3</u>	<u>STATS</u>	GAS(elements) or ISRE
10	IFN family IFN-a/B IFN-g II-10	+	+ + ?	- + ?	- - -	1,2,3 1 1,3	ISRE GAS (IRF1>Lys6>IFP)
15	gp130 family IL-6 (Pleiotrohic) Il-11(Pleiotrohic) OnM(Pleiotrohic) LIF(Pleiotrohic)	+ ? ?	+ + +	+ ? +	? ? ? ?	1,3 1,3 1,3 1,3	GAS (IRF1>Lys6>IFP)
20	CNTF(Pleiotrohic) G-CSF(Pleiotrohic) IL-12(Pleiotrohic)	-/+ ? +	++	+ ? +	; ? ? +	1,3 1,3 1,3	
25	g-C family IL-2 (lymphocytes) IL-4 (lymph/myeloid) IL-7 (lymphocytes) IL-9 (lymphocytes)	- - -	+ + + +	- - -	+ + +	1,3,5 6 5 5	GAS GAS (IRF1 = IFP >>Ly6)(IgH) GAS GAS
30	IL-13 (lymphocyte) IL-15	?	++	?	? +	6 5	GAS GAS
35	gp140 family 1L-3 (myeloid) IL-5 (myeloid) GM-CSF (myeloid)		- - -	+ + +	-	5 5 5	GAS (IRF1>IFP>>Ly6) GAS GAS
40	Growth hormone family GH PRL EPO	? ? ?	- +/- -	+ + +	- -	5 1,3,5 5	GAS(B-CAS>IRF1=IFP>>Ly6)
45	Receptor Tyrosine Kinas EGF PDGF	<u>es</u> ? ?	++	++	-	1,3 1,3	GAS (IRF1)
	CSF-1	?	+	+	-	1,3	GAS (not IRF1)

10

15

20

25

30

35

To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 13-14, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an XhoI site. The sequence of the 5' primer is: 5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATATCTTGCCCATCTCAATTAG:3' (SEQ ID NO:3)

The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:

With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and XhoI, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

10

15

20

25

30

35

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using SalI and NotI, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 13-14.

Other constructs can be made using the above description and replacing GAS with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 15 and 16. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, Il-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

Example 13: High-Throughput Screening Assay for T-cell Activity.

The following protocol is used to assess T-cell activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate T-cells. T-cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.

Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI + 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies)

10

15

20

25

30

with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.

During the incubation period, count cell concentration, spin down the required number of cells (10^7 per transfection), and resuspend in OPTI-MEM to a final concentration of 10^7 cells/ml. Then add 1ml of 1 x 10^7 cells in OPTI-MEM to T25 flask and incubate at 37°C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.

The Jurkat:GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing a polypeptide as produced by the protocol described in Example 11.

On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.

Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).

After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and H11 to serve as additional positive controls for the assay.

The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20°C until SEAP assays are performed according to Example 17. The plates containing the remaining treated cells are placed at 4°C and serve as a source of material for repeating the assay on a specific well if desired.

As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.

10

15

20

25

30

Example 14: High-Throughput Screening Assay Identifying Myeloid Activity

The following protocol is used to assess myeloid activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.

To transiently transfect U937 cells with the GAS/SEAP/Neo construct produced in Example 12, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell Growth & Differentiation, 5:259-265) is used. First, harvest 2x10e⁷ U937 cells and wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KCl, 375 uM Na₂HPO₄.7H₂O, 1 mM MgCl₂, and 675 uM CaCl₂. Incubate at 37°C for 45 min.

Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37°C for 36 hr.

The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.

These cells are tested by harvesting $1x10^8$ cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of $5x10^5$ cells/ml. Plate 200 ul cells per well in the 96-well plate (or $1x10^5$ cells/well).

Add 50 ul of the supernatant prepared by the protocol described in Example 11. Incubate at 37°C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 17.

10

15

20

25

30

35

Example 15: High-Throughput Screening Assay Identifying Neuronal Activity.

When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed.

Particularly, the following protocol is used to assess neuronal activity in PC12 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor). The EGR1 gene expression is activated during this treatment. Thus, by stably transfecting PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells can be assessed.

The EGR/SEAP reporter construct can be assembled by the following protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:

5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO:6)

5' GCGAAGCTTCGCGACTCCCCGGATCCGCCTC-3' (SEQ ID NO:7)

Using the GAS:SEAP/Neo vector produced in Example 12, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes XhoI/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.

To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.

PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.

Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 11. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine

10

15

20

25

30

growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS (Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.

The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium. Count the cell number and add more low serum medium to reach final cell density as $5x10^5$ cells/ml.

Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to $1x10^5$ cells/well). Add 50 ul supernatant produced by Example 11, 37°C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 17.

Example 16: High-Throughput Screening Assay for T-cell Activity

NF-κB (Nuclear Factor κB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-κB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF-κB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.

In non-stimulated conditions, NF- κB is retained in the cytoplasm with I- κB (Inhibitor κB). However, upon stimulation, I- κB is phosphorylated and degraded, causing NF- κB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- κB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-kB promoter element are used to screen the supernatants produced in Example 11. Activators or inhibitors of NF-kB would be useful in treating

10

20

diseases. For example, inhibitors of NF-kB could be used to treat those diseases related to the acute or chronic activation of NF-kB, such as rheumatoid arthritis.

The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:

5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene)

Sequencing with the T7 and T3 primers confirms the insert contains the following sequence:

5':CTCGAGGGGACTTTCCCGGGGACTTTCCGGGACTTTCC ATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCA TCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACT AATTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTC CAGAAGTAGTGAGGAGGCCTTTTTTGGAGGCCTAGGCTTTTTGCAAAAAGCTT: 3' (SEQ ID NO:10)

Next, replace the SV40 minimal promoter element present in the pSEAP2-promoter plasmid (Clontech) with this NF-κB/SV40 fragment using XhoI and HindIII. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

In order to generate stable mammalian cell lines, the NF-κB/SV40/SEAP

cassette is removed from the above NF-κB/SEAP vector using restriction enzymes SalI and NotI, and inserted into a vector containing neomycin resistance. Particularly, the NF-κB/SV40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with SalI and NotI.

10

15

20

25

Once NF-kB/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 13. Similarly, the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 13. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

Example 17: Assay for SEAP Activity

As a reporter molecule for the assays described in Examples 13-16, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 µl of 2.5x dilution buffer into Optiplates containing 35 µl of a supernatant. Seal the plates with a plastic sealer and incubate at 65°C for 30 min. Separate the Optiplates to avoid uneven heating.

Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 µl Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 µl Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.

Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

Reaction Buffer Formulation:

# of plates	Rxn buffer diluent (ml)	CSPD (ml)	
10	60	3	
11	65	3.25	
12	70	3.5	
13	75	3.75	
14	80	4	
15	8,5	4.25	
16	90	4.5	
17	95	4.75	
18	100	5	
19	105	5.25	
20	110	5.5	
21	115	5.75	
22	120	6	

23	125	6 35
24	130	6.25 6.5
25	135	
26	140	6.75 7
27	145	, 7.25
28	150	7.23 7.5
29	155	7.3 7.75
30	160	7.73 8
31	165	8.25
32	170	8.5
33	175	8.75
34	180	9
35	185	9.25
36	190	9.5
37	195	9.75
38	200	10
39	205	10.25
40	210	10.25
41	215	10.75
42	220	11
43	225	11.25
44	230	11.5
45	235	11.75
46	240	12
47	245	12.25
48	250	12.5
49	255	12.75
50	260	13

Example 18: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-3, used here.

For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO₂ incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

5

10

10

15

20

25

30

35

A stock solution of 1 mg/ml fluo-3 is made in 10% pluronic acid DMSO. To load the cells with fluo-3, 50 ul of 12 ug/ml fluo-3 is added to each well. The plate is incubated at 37°C in a CO₂ incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to 2-5x10⁶ cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-3 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37°C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to 1x10⁶ cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley CellWash with 200 ul, followed by an aspiration step to 100 ul final volume.

For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-3. The supernatant is added to the well, and a change in fluorescence is detected.

To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular signaling event which has resulted in an increase in the intracellular Ca⁺⁺ concentration.

Example 19: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

10

15

Because of the wide range of known factors capable of stimulating tyrosine kinase activity, the identification of novel human secreted proteins capable of activating tyrosine kinase signal transduction pathways are of interest. Therefore, the following protocol is designed to identify those novel human secreted proteins capable of activating the tyrosine kinase signal transduction pathways.

Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford,MA), or calf serum, rinsed with PBS and stored at 4°C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford,MA) are used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

To prepare extracts, A431 cells are seeded onto the nylon membranes of 20 Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 11, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from Boeheringer Mannheim 25 (Indianapolis, IN) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum 30 manifold and immediately placed on ice. To obtain extracts clarified by centrifugation, the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4°C at 16,000 x g.

Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.

Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a

35

10

15

20

25

biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg₂₊ (5mM ATP/50mM MgCl₂), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl₂, 5 mM MnCl₂, 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30°C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37°C for 20 min. This allows the streptavadin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37°C for one hour. Wash the well as above.

Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 20: High-Throughput Screening Assay Identifying Phosphorylation Activity

As a potential alternative and/or compliment to the assay of protein tyrosine kinase activity described in Example 19, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other

phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (1ug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4°C until use.

A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 11 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation.

25

5

10

15

20

Example 21: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is be isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X. Suggested PCR conditions consist of 35 cycles at 95°C for 30 seconds; 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky, D., et al., Science 252:706 (1991).

35

30

PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies).

10

15

20

25

30

35

The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations is then cloned and sequenced to validate the results of the direct sequencing.

PCR products is cloned into T-tailed vectors as described in Holton, T.A. and Graham, M.W., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.

Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson, Cg. et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson, Cv. et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

Example 22: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs.

For example, antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10.

10

15

20

25

30

35

The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.

The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbounded polypeptide.

Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.

Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale). Interpolate the concentration of the polypeptide in the sample using the standard curve.

Example 23: Formulating a Polypeptide

The secreted polypeptide composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about 1 µg/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about 1 µg/kg/hour to about 50 µg/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally,

10

15

20

25

30

35

intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules. Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22:547-556 (1983)), poly (2- hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and R. Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also include liposomally entrapped polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.

Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

10

15

20

25

30

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

35

10

15

20

25

30

Example 24: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of the polypeptide to increase the activity level of the polypeptide in such an individual.

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the polypeptide for six consecutive days. Preferably, the polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 23.

Example 25: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 23.

Example 26: Method of Treatment Using Gene Therapy

One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37°C for approximately one week.

10

15

20

25

30

At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference.

SEQUENCE LISTING

	(1) GENERAL INFORMATION:
5	(i) APPLICANT: Human Genome Sciences, Inc., et al.(ii) TITLE OF INVENTION: 32 Human Secreted Proteins(iii) NUMBER OF SEQUENCES: 120
10	(iv) CORRESPONDENCE ADDRESS:
	(A) ADDRESSEE: Human Genome Sciences, Inc.(B) STREET: 9410 Key West Avenue(C) CITY: Rockville
15	(D) STATE: Maryland (E) COUNTRY: USA (F) ZIP: 20850
20	(v) COMPUTER READABLE FORM:
	(A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage(B) COMPUTER: HP Vectra 486/33(C) OPERATING SYSTEM: MSDOS version 6.2
25	(D) SOFTWARE: ASCII Text
	(vi) CURRENT APPLICATION DATA:
30	(A) APPLICATION NUMBER:(B) FILING DATE: May 27, 1998(C) CLASSIFICATION:
35	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: (B) FILING DATE:
40	(viii) ATTORNEY/AGENT INFORMATION:
45	(A) NAME: A. Anders Brookes(B) REGISTRATION NUMBER: 36,373(C) REFERENCE/DOCKET NUMBER: PZ006PCT
	(vi) TELECOMMUNICATION INFORMATION:
50	(A) TELEPHONE: (301) 309-8504 (B) TELEFAX: (301) 309-8439
55	(2) INFORMATION FOR SEQ ID NO: 1:

55

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 733 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
10	GGGATCCGGA GCCCAAATCT TCTGACAAAA CTCACACATG CCCACCGTGC CCAGCACCTG	60
10	AATTCGAGGG TGCACCGTCA GTCTTCCTCT TCCCCCCAAA ACCCAAGGAC ACCCTCATGA	120
	TCTCCCGGAC TCCTGAGGTC ACATGCGTGG TGGTGGACGT AAGCCACGAA GACCCTGAGG	180
15	TCAAGTTCAA CTGGTACGTG GACGGCGTGG AGGTGCATAA TGCCAAGACA AAGCCGCGGG	240
	AGGAGCAGTA CAACAGCACG TACCGTGTGG TCAGCGTCCT CACCGTCCTG CACCAGGACT	300
20	GGCTGAATGG CAAGGAGTAC AAGTGCAAGG TCTCCAACAA AGCCCTCCCA ACCCCCATCG	360
20	AGAAAACCAT CTCCAAAGCC AAAGGGCAGC CCCGAGAACC ACAGGTGTAC ACCCTGCCCC	420
	CATCCCGGGA TGAGCTGACC AAGAACCAGG TCAGCCTGAC CTGCCTGGTC AAAGGCTTCT	480
25	ATCCAAGCGA CATCGCCGTG GAGTGGGAGA GCAATGGGCA GCCGGAGAAC AACTACAAGA	540
	CCACGCCTCC CGTGCTGGAC TCCGACGGCT CCTTCTTCCT CTACAGCAAG CTCACCGTGG	600
30	ACAAGAGCAG GTGGCAGCAG GGGAACGTCT TCTCATGCTC CGTGATGCAT GAGGCTCTGC	660
50	ACAACCACTA CACGCAGAAG AGCCTCTCCC TGTCTCCGGG TAAATGAGTG CGACGGCCGC	720
	GACTCTAGAG GAT	733
35		
	(2) INFORMATION FOR SEQ ID NO: 2:	,
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
	Trp Ser Xaa Trp Ser 1 5	
50		
	(2) TITONO TOUR DE COMO TE LES 2	
55	(2) INFORMATION FOR SEQ ID NO: 3:	
55	(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 86 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
	GCGCCTCGAG ATTTCCCCGA AATCTAGATT TCCCCGAAAT GATTTCCCCG AAATGATTTC	60
5	CCCGAAATAT CTGCCATCTC AATTAG	86
		•
10	(2) INFORMATION FOR SEQ ID NO: 4:	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
20	GCGGCAAGCT TTTTGCAAAG CCTAGGC	27
25	(2) INFORMATION FOR SEQ ID NO: 5:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 271 base pairs	
30	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
35	CTCGAGATTT CCCCGAAATC TAGATTTCCC CGAAATGATT TCCCCGAAAT GATTTCCCCG	60
	AAATATCTGC CATCTCAATT AGTCAGCAAC CATAGTCCCG CCCCTAACTC CGCCCATCCC	120
40	GCCCCTAACT CCGCCCAGTT CCGCCCCATTC TCCGCCCCAT GGCTGACTAA TTTTTTTTAT	180
	TTATGCAGAG GCCGAGGCCG CCTCGGCCTC TGAGCTATTC CAGAAGTAGT GAGGAGGCTT	240
45	TTTTGGAGGC CTAGGCTTTT GCAAAAAGCT T	271
43		
	(2) INFORMATION FOR SEQ ID NO: 6:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
	GCGCTCGAGG GATGACAGCG ATAGAACCCC GG	32
60		

	(2) INFORMATION FOR SEQ ID NO: 7:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
15	GCGAAGCTTC GCGACTCCCC GGATCCGCCT C	31
20	(2) INFORMATION FOR SEQ ID NO: 8:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 12 base pairs(B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
30	GGGGACTTTC CC	12
35	(2) INFORMATION FOR SEQ ID NO: 9:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 73 base pairs(B) TYPE: nucleic acid	
40 -	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
45	GCGGCCTCGA GGGGACTTTC CCGGGGACTT TCCGGGGACT TTCCATCCTG	60
	CCATCTCAAT TAG	. 73
50	(2) INFORMATION FOR SEQ ID NO: 10:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 256 base pairs	
JJ	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	

20

10	CTTTTGCAAA	AAGCTT					256
	GCCGCCTCG		TATTCCAGAA	GTAGTGAGGA	GGCTTTTTTG	GAGGCCTAGG	240
							180
5		CATTCTCCGC					
	CAATTAGTCA	GCAACCATAG	TCCCGCCCCT	AACTCCGCCC	ATCCCGCCCC	TAACTCCGCC	120
	CTCGAGGGGA	CTTTCCCGGG	GACTTTCCGG	GGACTTTCCG	GGACTTTCCA	TCTGCCATCT	6

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1169 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

25	GGGGCGCAAA TAGGGTCAGT GGGCCGCTTG GCGKTGTTCG TTGCGGTACC AGGTCCGCGT	60
	GAGGGGTTCG GGGGTTCTGG GCAGGCACAA TGGCGTCTCG AGCAGGCCCG CGAGCGGCCG	120
,	RCACCGACGC AGCGAGCTTT CAGCACCGGG AGCGCGTCGC CATGCACTAC CAGATGAGTG	180
30	TGACCCTCAA GTATGAAATC AAGAAGCTGA TCTACGTACA TCTGGTCATA TGGCTGCTGC	240
	TGGTTGCTAA GATGAGCGTG GGACACCTGA GGCTCTTGTC ACATGATCAG GTGGCCATGC	300
35	CCTATCAGTG GGAATACCCG TATTTGCTGA GCATTTTGCC CTCTCTCTG GGCCTTCTCT	360
	CCTTTCCCCG CAACAACATT AGCTACCTGG TGCTCTCCAT GATCAGCATG GGACTCTTTT	420
	CCATCGCTCC ACTCATTTAT GGCAGCATGG AGATGTTCCC TGCTGCACAG CCTTCTACCG	480
40	CCATGGCAAG GCCTACCGTT TCCTCTTTGG TTTTTCTGCC GTTTCCATCA TGTACCTGGT	540
	GTTGGTGTTG GCAGTGCAAG TGCATGCCTG GCAGTTGTAC TACAGCAAGA AGCTCCTAGA	600
45	CTCTTGGTTC ACCAGCACAC AGGAGAAGAA GCATAAATGA AGCCTCTTTG GGGTGAAGCC	660
	TGGACATCCC ATCGAATGAA AGGACACTAG TACAGCGGTT CCAAAATCCC TTCTGGTGAT	720
	TTTAGCAGCT GTGATGTTGG TACCTGGTGC AGACCCAGGC CAAAGTTCTG GAAAGCTCCT	780
50	TTTGCCATCT GCTGAGGTGG CAAAACTATA ATTTATTCCT GGTTGGCTAG AACTGGGTGA	840
	CCAACAGCTA TGAAACAAAT TTCAGCTGTT TGAAGTTGAA CTTTGAGGTT TTTCTTTAAG	900
55	AATGAGCTTC GTCCTTGCCT CTACTCGGTC ATTCTCCCCCA TTTCCATCCA TTACCCCTTA	960
33	GCCATTGAGA CTAAAGGAAA TAGGGAATAA ATCAAATTAC TTCATCTCTA GGTCACGGGT	1020
	CAGGAAACAT TTGGGCAGCT GCTCCCTTGG CAGCTGTGGT CTCCTCTGCA AAGCATTTTA	1080
60	ATTAAAAACC TCAATAAAGA TGCCCTGCCC ACAAAAAAAA AAAAAAAAA AATTCGGGGG	1140

GGGGCCCGGG NAACCAATTN GCCCCTANA

1169

5

10

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1310 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
	AATTCGGCAC GAGGCAGCGT CGCGCGGCCC AGTTCCCTTT TCCGGTCGGC GTGGTCTTGC	60
20	GAGTGGAGTG TCCGCTGTGC CCGGGCCTGC ACCATGAGCG TCCCGGCCTT CATCGACATC	120
20	AGTGAAGAAG ATCAGGCTGC TGAGCTTCGT GCTTATCTGA AATCTAAAGG AGCTGAGATT	180
	TCAGAAGAGA ACTCGGAAGG TGGACTTCAT GTTGATTTAG CTCAAATTAT TGAAGCCTGT	240
25	GATGTGTGTC TGAAGGAGGA TGATAAAGAT GTTGAAAGTG TGATGAACAG TGTGGTATCC	300
	CTACTCTTGA TCCTGGAACC AGACAAGCAA GAAGCTTTGA TTGAAAGCCT ATGTGAAAAG	360
30	CTGGTCAAAT TTCGCGAAGG TGAACGCCCG TCTCTGAGAC TGCAGTTGTT AAGCAACCTT	420
30	TTCCACGGGA TGGATAAGAA TACTCCTGTA AGATACACAG TGTATTGCAG CCTTATTAAA	480
	GTGGCAGCAT CTTGTGGGGC CATCCAGTAC ATCCCAACTG AGCTGGATCA AGTTAGAAAA	540
35	TGGATTICTG ACTGGAATCT CACCACTGAA AAAAAGCACA CCCTTTTAAG ACTACTTTAT	600
	GAGGCACTTG TGGATTGTAA GAAGAGTGAT GCTGCTTCAA AAGTCATGGT GGAATTGCTC	660
40	GGAAGTTACA CAGAGGACAA TGCTTCCCAG GCTCGAGTTG ATGCCCACAG GTGTATTGTA	720
.0	CGAGCATTGA AAGATCCAAA TGCATTTCTT TTTGACCACC TTCTTACTTT AAAACCAGTC	780
	AAGTTTTIGG AAGGCGAGCT TATTCATGAT CTTTTAACCA TTTTTGTGAG TGCTAAATTG	840
45	GCATCATATG TCAAGTTTTA TCAGAATAAT AAAGACTTCA TTGATTCACT TGGCCTGTTA	900
	CATGAACAGA ATATGGCAAA AATGAGACTA CTTACTTTTA TGGGAATGGC AGTAGAAAAT	960
50	AAGGAAATIT CTTTTGACAC AATGCAGCAA GAACTTCAGA TTGGAGCTGA TGATGTTGAA	1020
50	GCATTTGTTA TTGACGCCGT AAGAACTAAA ATGGTCTACT GCAAAATTGA TCAGACCCAG	1080
	AGAAAAGTAG TTGTCAGTCA TAGCACACAT CGGACATTTG GAAAACAGCA GTGGCAACAA	1140
55	CTGTATGACA CACTTAATGC CTGGAAACAA AATCTGAACA AAGTGAAAAA CAGCCTTTTG	1200
	AGTOTTTOTG ATACCTGAGT TTTTATGCTT ATAATTTTTG TTCTTTGAAA AAAAAGCCCT	1260
60	AAATCATAGT AAAACATTAT AAACTAAAAA, AAAAAAAAAA AAAAAAAAAA	1310

10

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1139 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

15	AGGGCANACT TACAGAGATA TCATATGAGA TCACCCCTCG CATTCGTGTC TGGCGCCAGA	60
	CCCTCGAGCG GTGCCGGAGC GCASCCAGGT GTGCTTGTGC CTGGGCCAGC TGGAGAGGTC	120
	CATTGCCTGG GANGAAGTCT GTCAACAAAG TGACATGTCT AGTCTGCCGG AAGGGTGACA	180
20	ATGATGAGTT TCTTCTGCTT TGTGATGGGT GTRACCGTGG CTGCCACATT TACTGCCATC	240
	GTCCCAAGAT GGAGGCTGTC CCAGAAGGAG ATTGGTTCTG TACTGTCTGT TTGGCTCAGC	300
25	AGGTGGAGGG AGAATTCACT CAGAAGCCTG GTTTCCCAAA GCGTGGCCAG AAGCGGAAAA	360
20	GTGGTTATTC GCTGAACTTC TCAGAGGGTG ATGGCCGCCG ACGCCGGGTA CTGTTGAGGG	420
	GCCGAGAAAG CCCAGCAGCA GGGCCTCGGT ACTCGGAAGA AGGGCTCTCC CCCTCCAAGC	480
30	GGCGGCGACT CTCTATGCGG AACCACCACA GTGATCTCAC ATTTTGCGAG ATTATCCTGA	540
	TOGAGATOGA GTCCCATGAT GCAGCCTGGC CTTTCCTAGA GCCTGTGAAC CCACGTTTGG	600
35	TGAGTGGGTA CCGGCGCATC ATCAAAAATC CTATGGATTT TTCCACCATG CGGGAGCGGC	660
33	TGCTCAGGGG AGGGTACACC AGCTCAGAGG AGTTTGCGGC TGATGCCCTC CTGGTATTTG	720
	ACAACTGCCA GACTTTCAAC GAGGATGACT CTGAAGTAGG CAAGGCTGGG CACATCATGC	780
40	GCCGCTTCTT CGAGAGCCGC TGGGAGGAGT TTTATCAGGG AAAACAGGCC AATCTGTGAG	840
	GCAAGGGAGG TGGGGAGTCA CCTTGTGGCA TCTCCCCCCA CCTTCCAAAC AAAAACCTGC	900
4.5	CATTITCACC TGCTGATGCT GCCCTGGGTC CAGACTCAAG TCAGATACAA CCCTGATTIT	
45	TGACCTINCC CTTGGCAGTG CCCCACATCC TCTTATTCCT ACATCCCTTT CTCCCTTCCC	960
	TCCTCTTGCT CCTCAAGTAA GAGGTGCAGA GATGAGGTCC TTCTGGACTA AAAGCCAAAA	1020
50		1080
	NAAGAAAAA AAAAAAAAAA AAAAAAAA AAAAAAAA AAAAA	1139

55 (2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2271 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

5	GTTCCGGGGG	ATGCCAGCTC	ACTTCTCGGA	CAGCGCCCAG	ACTGAGGCCT	GCTACCACAT	60
	GCTGAGCCGG	CCCCAGCCGC	CACCCGACCC	CCTCCTGCTC	CAGCGTCTGC	CACGGCCCAG	120
10	CTCCCTGTCA	GACAAGACCC	AGCTCCACAG	CAGGTGGCTG	GACTCGTCGC	GGTGTCTCAT	180
10	GCAGCAGGGC	ATCAAGGCCG	GGGACGCACT	CTGGCTGCGC	TTCAAGTACT	ACAGCTTCTT	240
	CGATTTGGAT	CCCAAGACAG	ACCCCGTGCG	GCTGACACAG	CTGTATGAGC	AGGCCCGGTG	300
15	GGACCTGCTG	CTGGAGGAGA	TTGACTGCAC	CGAGGAGGAG	ATGATGGTGT	TTGCCGCCCT	360
	GCAGTACCAC	ATCAACAAGC	TGTCCCAGAG	CGGGGAGGTG	GGGGAGCCGG	CTGGCACAGA	420
20	CCCAGGGCTG	GACGACCTGG	ATGTGGCCCT	GAGCAACCTG	GAGGTGAAGC	TGGAGGGGTC	480
20	GGCGCCCACA	GATGTGCTGG	ACAGCCTCAC	CACCATCCCA	GAGCTCAAGG	ACCATCTCCG	540
	AATCTTTCGG	CCCCGGAAGC	TGACCCTGAA	GGGCTACCGC	CAACACTGGG	TGGTGTTCAA	600
25	GGAGACCACA	CTGTCCTACT	ACAAGAGCCA	GGACGAGGCC	CCTGGGGACC	CCATTCAGCA	660
	GCTCAACCTC	AAGGGCTGTG	AGGTGGTTCC	CGATGTTAAC	GTCTCCGGCC	AGAAGTTCTG	720
30 -	CATTAAACTC	CTAGTGCCCT	CCCCTGAGGG	CATGAGTGAG	ATCTACCTGC	GGTGCCAGGA	780
30	TGAGCAGCAG	TATGCCCGCT	GGATGGCTGG	CTGCCGCCTG	GCCTCCAAAG	GCCGCACCAT	840
	GGCCGACAGC	AGCTACACCA	GCGAGGTGCA	GGCCATCCTG	GCCTTCCTCA	GCCTGCAGCG	900
35	CACGGGCAGT	GGGGCCCGG	GCAACCACCC	CCACGGCCCT	GATGCCTCTG	CCGAGGGCCT	960
	CAACCCCTAC	GGCCTCGTTG	CCCCCGTTT	CCAGCGAAAG	TTCAAGGCCA	AGCAGCTCAC	1020
40	CCCACGGATC	CTGGAAGCCC	ACCAGAATGT	GGCCCAGTTG	TCGCTGGCAG	AGGCCCAGCT	1080
	GCGCTTCATC	CAGGCCTGGC	AGTCCCTGCC	CGACTTCGGC	ATCTCCTATG	TCATGGTCAG	1140
	GTTCAAGGGC	AGCAGGAAAG	ACGAGATCCT	GGGCATCGCC	AACAACCGAC	TGATCCGCAT	1200
45	CGACTTGGCC	GTGGGCGACG	TGGTCAAGAC	CTGGCGTTTC	AGCAACATGC	GCCAGTGGAA	1260
	TGTCAACTGG	GACATCCGGC	AGGTGGCCAT	CGAGTTTGAT	GAACACATCA	ATGTGGCCTT	1320
50	CAGCTGCGTG	TCTGCCAGCT	GCCGAATTGT	ACACGAGTAT	ATCGGGGGCT	ACATTTTCCT	1380
	GTCGACGCGG	GAGCGGCCC	GTGGGGAGGA	GCTGGATGAA	GACCTCTTCC	TGCAGCTCAC	1440
	CĢGGGCCAT	GAGGCCTTCT	GAGGGCTGTC	TGATTGCCCC	TGCCCTGCTC	ACCACCCTGT	1500
55	CACAGCCACT	CCCAAGCCCA	CACCCACAGG	GGCTCACTGC	CCCACACCCG	CTCCAGGCAG	1560
	GCACCCAGCT	GGGCATTTCA	CCTGCTGTCA	CTGACTTTGT	GCAGGCCAAG	GACCTGGCAG	1620
60	GGCCAGACGC	TGTACCATCA	CCCAGGCCAG	GGATGGGGGT	GGGGGTCCCT	GAGCTCATGT	1680

540

600

626

	GGTGCCCCCT TTCCTTGTCT GAGTGGCTGA GGCTGATACC CCTGACCTAT CTGCAGTCCC	1740
	CCAGCACACA AGGAAGACCA GATGTAGCTA CAGGATGATG AAACATGGTT TCAAACGAGT	1800
5	TCTTTCTTGT TACTTTTTAA AATTTCTTTT TTATAAATTA ATATTTTATT GTTGGATCCT	1860
	CCTCCTTTCT CTGGAGCTGT GCTTGGGGCT ACTCTGACAC TCTGTCTCTT CATCACCAGC	1920
10	CAAGGAAAGG GGCTTTCCTG ATAAAGACAA GAGTTGGTTA GAGAAAGGGA CACCTAAGTC	1980
	AGTCTAGGGT TGGAAGCTAG GAGAGAGGTG AGGGCAGAAG GGCACAGCTT TCAGGAACAA	2040
	GGAATAGGGG CTGGGGTKGT KGTTCTCACG GGTAGGCGTA CCTGCAGGGC CTCCTTGAAG	2100
15	TACTTGGGAA GGAGGAAGCC ATCAGTATTC CCTGGAGTCA GAATCACCCC ATTGGCAGAG	2160
	CGGAAGAAGG GTATTCCATC TGCTGACAGA GCCAGAGATG TGACTCATGC CCTCCCCGAA	2220
20	GGCAAAGTCA GCTCCTGCTT TGTCCAGACT CACCTGCCAG AGCCAGGGGT C	2271
25	(2) INFORMATION FOR SEQ ID NO: 15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 626 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
35	ACAACAAACA TCGAAAATCG ANTATGTGCC CCGAAAAGTC GGAACGCAGG CAATCAGTCC	60
	GCACGMGCGC AAGTTCAACA TGAAGATGAT ATGAGGCCGG GGCGGGGGGC AGGGACCCCC	120
	GGGCGGCCGG GCAGGGGAAG GGGCCTGGCC GCCACCTGCT CACTCTCCAG TCCTTCCCAC	180
40	CTCCTCCCTA CCCTTCTACA CACGTTCTCT TTCTCCCTCC CGCCTCCGTC CCCTGCTGCC	240
	CCCCGCCAGC CCTCACCACC TGCCCTCCTT CTACCAGGAC CTCAGAAGCC CAGACCTGGG	300
45	GACCCCACCT ACACAGGGGC ATTGACAGAC TGGAGTTGAA AGCCGACGAA CCGACACGCG	360
	GCAGAGTCAA TAATTCAATA AAAAAGTTAC GAACTTTCTC TGTAACTTGC GTTTCAATAA	420

TTATGGATTT TTATGAAAAC TTGAAATAAT AAAAAGAGAA AAAAACTATT TCCTATAGCT

AGTCGGAATG CAAACTTTTG ACGTCCTGAT TGCTCCAGGG CCCTCTTTCC AACTCAGTTT

CTTGTTTTTC CTCTTCCTCC TCCTCCTCTT CTTCCTCCTT TCTTTCTCTT NCCCCATGGG

(2) INFORMATION FOR SEQ ID NO: 16:

GGAGGGGTTC ATTCAGGGAA AACAGG

50

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2118 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

TITITIANTA AAAAGITATA TATAATTATC CCTITAATTA AAGGGAGAA AGGGCGTTC CACATGGACA GAGGCTTGGA CCGAGGCCTG GTCACAGCAG CGAGCATCCA GGGTTTGCAG 15 GGACGATGTT ACAGACTCTG TITTCTGCCT GGCGTTTCAC TIGTGTCTGC TCCTAGCCTG TGCTCTGCCA GCAGCACAGA CATCTGCTCC ATCAGACCTC TTCCATTTTG CACAGGGAGT GCAGGAGGTG AATGTTCACT TTCTGTTCTC CAGTGTCACT GTTCTGTTTC CACAGGGAGT AAAGCCCATG GGCCTGTGTC CATTGTAGAT TTCCTTCTAG ATTTCTGTTTC CACAGGGAGT GATTGTTCTG GATGAATGTC TTTTTTAATA CTCCGAAAAT TTCATCATCT AAGAAAATGA 25 TTCCATACAA ATAACTCAGC ACACAAGTGA CCCAGGACAT ATGCCTGCCA AAGGGATGTG TTAGAAGGCT GCCTTCTCAT GCGCATTGTC ACTTGGATCT TGTGGTGAGG ACGCCCCAT GTTGGGGGCA GCCTGTATTT TACCCTAGGG GCAGGCCTAC ATGGTGAGC CACACTGCCA TGGTAAACCA TTTGAGTCCC ACTCTTCATC CTGGAAGGGA ATCCTGGAGT TAAGACAGGT GTGGGGGCA GCCTGTATTT TACCCTAGGG GCAGGGCTTGC ATGGTGACCC CACATTGCAC TGGTAAACCA TTTGAGTCCC ACTCTTCATC CTGGAAGTGG GAACTGGAGT CCCACCCACA 35 GTGCATTCAG AAAGCATGCT GTGTGGGGGC TGCTTCTCAG GAGGCCAGGC CCTTCTGAGC GGAACCCTCC TGGAGAGAGC CTGCCCTCGT TTCCAGGCTG CAGCCCTAAC GCACTTTCTC CCAGGCTGAG GGCGGGTGTT CTGGGGTGTC TGCCCTCTGT CGGCCCTGCT TCCTGCCAGG ACGTGCCCT CTCCGATCCT TTTCTCTCAG ACACTGGGG TCTCTTCTGC CATTTGCCTG GTCCCATCCC AAGAATTGTA GGACAGGAGA CACACTGGGG CTCTTCTCGC CATTTGCTG GTCCCATCCC AAGAATTGTA GGACAGGAGA CACACTGGGG CTCTTCTCTG CAGCCTGCT CAGGCCTGC TCCGATCCT TTTCTCTCAG ACACTGGGG CTCTTTCTCC CATTGTCTG ACCTACCC AAGAATTGTA GGACAGGAGA CACACTGGGG CTCTTTCTCAG CACACTCCTC AACCTGCTT TCCGATCCT TTTCTCTCAG ACACTGGGG CTCTTTCTCTC CAGCCTGCT ACCTACCC AAGAATTGTA GGACAGGAGA CACACTGGGG CTCTTTCTCTC CAGCCAGG ACCTACTCC AAGAATTGAG GTTCTGGCGT CAAAATAGCGA CATTTCCAGT TTCTCTTAAA AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTGTCT TGTGAAAATG TTTCTCTTAAA AACCGTGTTT GTTTTCAGTT CAGTCCATTT CTGCCTTTAG CTTTTTGTTT TCCACAGGGAG GCAAAGCTGA CATGAACCTT TTOTCGTGGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGA CAGGCCCTCA TGGCAGGCTT GTTCCCGTGG CTCTGGAGGA GCCCTCTTCC TCCTGGGGCT CAAACCAACACA TCTACCATTC AGTTAAACCT TCTTTTATCT	10	TTTTCCAGCC	ATGTCACTAA	TTGTGAATTC	CTACCAACTA	TTGACAGAAT	ACAGAGTTGA	60
GGACGATGTT ACAGACTCTG TTTTCTGCCT GGCGTTTCAC TTGTGTCTGC TCCTAGCCTG TGCTCTGCCA GCAGGACAGA CATCTGCTCC ATCAGACCTC TTCCATTTTG CACAGGGAGT GCAGGAGGTG AATGTCACT TTCTGTTCTC CAGTGTCACT GTTCTGTTTC CACGGGAGTG AAAGCGCATG GGCCTGTGTC CATTGTAGAT TTCCTTCTAG ATTTCTGTGT ACACACACTT GATTGTTCTG GATGAATGTC TTTTTTAATA CTCCGAAAAAT TTCATCATCT AAGAAAATGA 25 TTCCATACAA ATAACTCAGC ACACAAGTGA CCCAGGACAT ATGCCTGCCA AAGGGATGTG TTAGAAGGCT GCCTTCTCAT GCGCATTGTC ACTTGGATCT TGTGGTGAGG ACGGCCCCAT GTTGGGGGCA GCCTGTATTT TACCCTAGGG GCAGGTCTGC ATGCTGAGGT TAAGACAGGT GTTGGGGGCA GCCTGTATTT TACCCTAGGG GCAGGTCTGC ATGCTGACC CACATYGCAC TGGTAAACCA TTTGAGTCCC ACTCTTCATC CTGGAAGTGG GAACTGGAGT CCCACCCACA 35 GTGCATTCAG AAAGCATGCT GTGTGGGGCC TGCTTCTCAG GAGGCCAGCC CCTTCTGAGC GGAACCGTCC TGGAGAGAGC CTGCCCTCGT TTCCAGGCTG CAGCCGTAAC GCACTTTCTC CCAGGCTGAG GCCGGGTGTT CTGGGGTGT TGCCCTTCTT CGGCCCTGCT TCCTCCCAGG ACGTGGCCTC TTCCGATCCT TTTCTCTCAG ACACTGAGG TCCCCCTCAC CATTGTCTG GTCCCATCCC AAGAATTGTA GGACAGGAGA CACACTGGGT CGGCCGGACAC AAAGTCCATC 45 CAGGACCCAG GCCGCAGAGG GAGCAGGAAG AGATGCTGAT AGTTTGATCT AGAAACCAGC AGCTACTCGC TCAAATTCAG GTTCTGGCGT CAAATACCGA CATTTCCAGT TTCTCTTAAA AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTTTCTCT GTTGAAAATG TTTCTCTTAAA 50 AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTTTCTCT GTTGAAAATG TTTCTCTTAAA AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTTTCTCT GTTGAAAATG TTTCTCTTAAA 51 GTTTTTCTTT CATTTCTCT CATTCCATTT CTGCCTTAAC TTTTAGTTTT TCACAGGGAG GCAAAGCTGA CATGAACCTT TTGTCGTGG ACTTCAGGCC ACATTGGCT GAAGGCATTC 52 GTTTCCTTCT GGGGTGGGA CAGGCCCTCA TGGCCGACCT TCTTGAGCGA GCCACTTCTC TCCTGGGGCC CCAGACTCCT TCTGCCGTTG CTCCCGTGG CTCTGGGCGAC GCCCTTCTCC TCCTGGGGCA CAGGCCCTCA TGGCAGGCT TGTTCTAGCCT TCACAGGCAG GCCCTTCTCC TCCTGGGGCA CAGGCCCTCA TGGCAGGCCT TTTTAGCTTC TCGGCCTTCT TCGGCTTCTG GTTTCCTTCT TCGGGGGA CAGGCCCTCA TGGCAGGCCT TGTTCAGGCC TCCTGGGCTAC TCTGGGCTAC GTTTCTTTCTT TCTTTTTTTCTTC GTTTTTTTTTTT		TTTTTTAATA	AAAAGTTATA	TATAATTATC	CCTTTAATTA	AAGGGAGCAA	AGGGGCGTTC	120
TGCTCTGCCA GCAGCACAGA CATCTGCTCC ATCAGACCTC TTCCATTTTG CACAGGGAGT GCAGGAGGTG AATGTTCACT TTCTGTTCTC CAGTGTCACT GTTCTGTTTC CACGGGATGG AAAGCCCATG GGCCTGTGTC CATTGTAGAT TTCCTTCTAG ATTTCTGTGT ACACACACTT GATTGTTCTG GATGAATGTC TTTTTTAATA CTCCGAAAAT TTCATCATCT AAGAAAATGA 25. TTCCATACAA ATAACTCAGC ACACAAGTGA CCCAGGACAT ATGCCTGCCA AAGGGATGTG TTAGAAAGGCT GCCTTCTCAT GCGCATTGTC ACTTGGATCT TGTGGTGAGG ACGGCCCCAT CTTTCTTGCC ACAGATTGAG GCCACTTTTC ACTTGGATCT TGTGGTGAGG ACGGCCCCAT GTTGGGGGCA GCCTGTATTT TACCCTAGGG GCAGGTCTGC ATGGTGACCC CACATTGCAC TGGTAAACCA TTTGAGTCCC ACTCTTCATC CTGGAAGTGG GAACTGGAGT CCCACCCACA 35. GTGCATTCAG AAAGCATGCT GTGTGGGGGC TGCTCTCTAG GAAGGCCAGGC CCTTCTGAGC GGAACCGTCC TGGAGAGAGC CTGCCCTCGT TTCCAGGCTG CAGCCGTAAC GCACTTTCTC CCAGGCTGAG GGCGGGTGTT CTGGGGTGC TGCCCTCTGT CGGCCCTGCT TCCTGCCAGG ACGTGGCCTC TTCCGATCCT TTTCTCTCAG ACACTGGAG TCTCTTCTGC CATTGTGCTG GTCCCATCCC AAGAATTGTA GGACAGAGAC CACACTGGGT CGGCCGGACAC AAAGTCCATC 45. CAGGACCCAG GCCGCAGAGG GAGCAGGAGA GAACTGGAG CATTTCAGT TCCTGCCAGC AGCTACTGCC TCAAATTCAG GTTCTGGCGT CAAATAGCGA CATTTCCAGT TTCTCTTAAA AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTTGTCT GTGCAGAACCAGC AGCTACTGC TCAAATTCAG GTTCTGGCGT CAAATAGCGA CATTTCCAGT TTCTCTTAAA AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTTTCTC GTTGAAAATG TTTCTTTAAA AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTTGTCT GTGCAGGGAG GCAAAGCTGA CATGAACCTT TTGTCTGTGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC 55. GTTTCCTTCT GGGGTGGGA CAGGCCCTCA TGGCCGGCC CCCACCTTC TCGGCTTCTG GCCTCTTCC TCCTGGGCGC CCAGACTCCT GCTCCCGTGC CCCCACCTTC TCGGCTTCTG GTTTCCTTCT TCCTGGGGCC CCAGACTCCT GCTCCCGTGC CCCCACCTTC TCGGCTTCTG GTTTTCTTTC TTTTTTCTGTA GAACCAACA TCTACCATTC AGTTTAAACCT TCTTTTTTCTC		CACATGGACA	GAGGCTTGGA	CCGAGGCCTG	GTCACAGCAG	CGAGCATCCA	GGGTTTGCAG	180
GCAGGAGGTG AATOTTCACT TTCTGTTCTC CAGTGTCACT GTTCTGTTTC CACGGATGG AAAGCCCATG GGCCTGTGTC CATTGTAGAT TTCCTTCTAG ATTTCTGTTA ACACACACTT GATTGTTCTG GATGAATGTC TTTTTTAATA CTCCGAAAAT TTCATCATCT AAGAAAATGA 25 TTCCATACAA ATAACTCAGC ACACAAGTGA CCCAGGACAT ATGCCTGCCA AAGGGATGTG TTAGAAGGCT GCCTTCTCAT GCGCATTGTC ACTTGGATCT TGTGGTGAGG ACGGCCCCAT GTTGGGGGCA GCCTGTATTT TACCCTAGGG GCAGGTCTG ATGGTGACCC CACATYGCAC TGGTAAACCA TTTGAGTCCC ACTCTTCATC CTGGAAGTGG GAACTGGAGT CCCACCCACA 35 GTGCATTCAG AAAGCATGCT GTGTGGGGCC TGCTTCTCAG GAGGCCAGCC CCTTCTGAGC GGAACCGTCC TGGAGAGAGC CTGCCCTCGT TTCCAGGCTG CAGCCCTGCT TCCTGCCAGG ACGTGGCCTC TTCCGATCCT TTTCTCTCAG ACACTGGAG TCCTTTCTCC CATTGTCTC GTCCCATCCC AAGAATTGTA GGACAGAGA CACACTGGGT CGGCCCTGCT TCCTGCCAGG ACGTGGCCTC TCCGATCCT TTTCTCTCAG ACACTGGAG TCTTTTTCC CATTGTCTC AGGACCCAG GCCGCAGAGG GAGCAGGAGA GAGTGCTGAT ACTTTCTCTC CATTCTCTCAG ACCTACTCGC TCAAATTGTA GGACAGAGA CACACTGGGT CGGCCGGACA AAAGTCCATC ACCTACTGCC TCAAATTCAG GTTCTGCGCT CAAATAGCGA CATTTCCAGT TTCTCTTTAAA AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTTGTCT GTTGAAAATG TTTCTTTTAAA AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTTGTCT GTTGAAAATG TTCCTTTAAA 50 GCAAAGCTGA CATGAACCTT TTGTCGTGGG ACTTCAGGCC ACATTGCCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGC CCCCACCTTC TCAGGCGAG GCCAAAGCTGA CATGAACCTT TTGTCGTGGG ACTTCAGGCC ACATTGCCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGCC CCCCACCTTC TCGGCCTTCTG GTTTTTCTTT CTTTTTGGTA GAAACACAACA TCTACCATTC AGTTAAACCT TCTTTTATCTC	15	GGACGATGTT	ACAGACTCTG	TTTTCTGCCT	GGCGTTTCAC	TTGTGTCTGC	TCCTAGCCTG	240
AAAGCGCATG GGCCTGTGTC CATTGTAGAT TTCCTTCTAG ATTTCTGTGT ACACACACTT GATTGTTCTG GATGAATGTC TTTTTTAATA CTCCGAAAAT TTCATCATCT AAGAAAATGA 25 TTCCATACAA ATAACTCAGC ACACAAGTGA CCCAGGACAT ATGCCTGCCA AAGGGATGTG TTAGAAGGCT GCCTTCTCAT GCGCATTGTC ACTTGGATCT TGTGGTGAGG ACGCCCCAT CTTTCTTGCC ACAGATTGAG GCCACTTTTG AGCAAGGGAG ATCCTGGAGT TAAGACAGGT GTTGGGGGCA GCCTGTATTT TACCCTAGGG GCAGGTCTGC ATGGTGACCC CACATYGCAC TGGTAAACCA TTTGAGTCCC ACTCTTCATC CTGGAAGTGG GAACTGGAGT CCCACCCACA 35 GTGCATTCAG AAAGCATGCT GTGTGGGGGC TGCTTCTCAG GAGGCCAGC CCTTCTGAGC GGAACCGTCC TGGAGAGAGC CTGCCCTCGT TTCCAGGCTG CAGCCGTAAC GCACTTTCTC CCAGGCTGAG GCCGGGTGTT CTGGGGTGTC TGCCCTCTGT CGGCCCTGCT TCCTGCCAGG ACGTGGCCTC TTCCGATCCT TTTCTCTCAG ACACTGGAGG TCTCTTCTCC CATTGTCTG GTCCCATCCC AAGAATTGTA GGACAGGAGA CACACTGGGG TCGGCGGACAC AAAGTCCATC 45 CAGGACCCAG GCCGCAGAGG GAGCAGGAAG AGATGCTGAT AGTTTGATCT AGAAAACCAGC AGCTACTGCC TCAAATTCAG GTTCTGGGT CAAATAGCGA CATTTCCAGT TTCTCTTTAAA AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTGTCT GTTGAAAACTG TTCTCTTTAAA 50 TTTTTCTTTC ATTTTTCTCT CATTCCATTT CTGCCTTAAC TTTTAGTTTT TCACAGGGAG GCAAAGCTGA CATGAACCTT TTGCTGTGG ACTTCAGGCC ACATTGCCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGC ACATTGCCTT GAAGGCATTC GTTTTTCTTT CTTTTTGGTA GAAACCAACA TCTACCAGTC CTCCCCCTCTT TCGGCTTCTG		TGCTCTGCCA	GCAGCACAGA	CATCTGCTCC	ATCAGACCTC	TTCCATTTTG	CACAGGGAGT	300
AAAGCGCATG GGCCTGTGTC CATTGTAGAT TTCCTTCTAG ATTTCTGTGT ACACACACTT GATTGTTCTG GATGAATGTC TTTTTTAATA CTCCGAAAAT TTCATCATCT AAGAAAATGA 25. TTCCATACAA ATAACTCAGC ACACAAGTGA CCCAGGACAT ATGCCTGCCA AAGGGATGTG TTAGAAGGCT GCCTTCTCAT GCGCATTGTC ACTTGGATCT TGTGGTGAGG ACGCCCCAT CTTTCTTGCC ACAGATTGAG GCCACTTTTG AGCAAGGGAG ATCCTGGAGT TAAGACAGGT GTTGGGGGCA GCCTGTATTT TACCCTAGGG GCAGGTCTGC ATGGTGACCC CACATYGCAC TGGTAAACCA TTTGAGTCCC ACTCTTCATC CTGGAAGTGG GAACTGGAGT CCCACCCACA 35. GTGCATTCAG AAAGCATGCT GTGTGGGGC TGCTTCTCAG GAGGCCAGCC CCTTCTGAGC GGAACCGTCC TGGAGAGAGC CTGCCCTCGT TTCCAGGCTG CAGCCGTAAC GCACTTTCTC CCAGGCTGAG GGCGGGTGTT CTGGGGTGTC TGCCCTCTGT CGGCCCTGCT TCCTGCCAGG ACGTGGCCTC TTCCGATCCT TTTCTCTCAG ACACTGGGG TCTCTTCTGC CATTGTGCTG GTCCCATCCC AAGAATTGTA GGACAGAGAC CACACTGGGT CGGCGGACAC AAAGTCCATC 45. CAGGACCCAG GCCGCAGAGG GAGCAGGAAG AGATGCTGAT AGTTTGATCT AGAAACCAGC AGCTACTGCC TCAAATTCAG GTTCTGGCGT CAAATAGCGA CATTTCCAGT TTCTCTTTAAA 50. AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTTGTCT GTTGAAAAATG TTTCTTGTTT TTTTTCTTTC ATTTTTCTCT CATTCCATTT CTGCCTTAAC TTTTAGTTTGT TCACAGGGAG GCAAAGCTGA CATGAACCTT TTGTGTGGG ACTTCAGGCC ACATTGCCTT GAAGGCATTC 55. GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGCTT GTTCCCGTGG CTCTGAGCGA GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTTCTTT CTTTTTGGTA GAAACACAACA TCTACCATTC AGTTTAAACCT TCTTTTTCTCT	20	GCAGGAGGTG	AATGTTCACT	TTCTGTTCTC	CAGTGTCACT	GTTCTGTTTC	CACGGGATGG	360
TTCCATACAA ATAACTCAGC ACACAAGTGA CCCAGGACAT ATGCCTGCCA AAGGGATGTG TTAGAAGGCT GCCTTCTCAT GCGCATTGTC ACTTGGATCT TGTGGTGAGG ACGGCCCCAT CTTTCTTGCC ACAGATTGAG GCCACTTTTG AGCAAGGGAG ATCCTGGAGT TAAGACAGGT GTTGGGGGGCA GCCTGTATTT TACCCTAGGG GCAGGTCTGC ATGGTGACCC CACATYGCAC TGGTAAACCA TTTGAGTCCC ACTCTTCATC CTGGAAGTGG GAACTGGAGT CCCACCCACA 35 GTGCATTCAG AAAGCATGCT GTGTGGGGGC TGCTTCTCAG GAGGCCAGGC CCTTCTGAGC GGAACCGTCC TGGAGAGAGC CTGCCCTCGT TTCCAGGCTG CAGCCGTAAC GCACTTTCTC CCAGGCTGAG GGCGGGTGTT CTGGGGTGTC TGCCCTCTGT CGGCCCTGCT TCCTGCCAGG ACGTGGCCTC TTCCGATCCT TTTCTCTCAG ACACTGGGG TCTCTTCTGC CATTGTCTG GTCCCATCCC AAGAATTGTA GGACAGAGAC CACACTGGGT CGGCGGACAC AAAGTCCATC 45 CAGGACCCAG GCCGCAGAGG GAGCAGGAGA AGATGCTGAT AGTTTGATCT AGAAACCAGC AGCTACTGGC TCAAATTCAG GTTCTGGCGT CAAATAGCGA CATTTCCAGT TTCTCTTAAA AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTTGTCT GTTGAAAATG TTTCTAGTTT TTTTTCTTTC ATTTTTCTCT CATTCCATTT CTGCCTTAAC TTTAGTTTGT TCACAGGGAG GCAAAGCTGA CATGAACCTT TTGTCTGGGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGA CAGGCCCTCA TGGCAGGCTT GTTCCCGTGG CTCTGAGCGA GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTTATCTC		AAAGCGCATG	GGCCTGTGTC	CATTGTAGAT	TTCCTTCTAG	ATTTCTGTGT	ACACACACTT	420
TTAGAAGGCT GCCTTCTCAT GCGCATTGTC ACTTGGATCT TGTGGTGAGG ACGGCCCCAT CTTTCTTGCC ACAGATTGAG GCCACTTTTG AGCAAGGGAG ATCCTGGAGT TAAGACAGGT GTTGGGGGCA GCCTGTATTT TACCCTAGGG GCAGGTCTGC ATGGTGAGCC CACATYGCAC TGGTAAAACCA TTTGAGTCCC ACTCTTCATC CTGGAAGTGG GAACTGGAGT CCCACCCACA 35 GTGCATTCAG AAAGCATGCT GTGTGGGGC TGCTTCTCAG GAGGCCAGGC CCTTCTGAGC GGAACCGTCC TGGAGGAGCC CTGCCCTCGT TTCCAGGCTG CAGCCGTAAC GCACTTTCTC CCAGGCTGAG GGCGGGTGTT CTGGGGTGTC TGCCCTCGT CGGCCCTGCT TCCTGCCAGG ACGTGGCCTC TTCCGATCCT TTTCTCTCAG ACACTGGGG TCTCTTCTGC CATTGTGCTG GTCCCATCCC AAGAATTGTA GGACAGAGAC CACACTGGGT CGGCGGACAC AAAGTCCATC AGCTACTGGC TCAAATTCAG GTTCTGGCGT CAAATAGCGA CATTTCCAGT TTCTCTTAAA AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTGTCT GTTGAAAATG TTTCTAGTTT TTTTTCTTTC ATTTTTCTCT CATTCCATTT CTGCCTTAAC TTTAGTTTGT TCACAGGGAG GCAAAGCTGA CATGAACCTT TTGTCGTGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGA CAGGCCCTCA TGGCAGGCTT GTTCCCGTGG CTCTGAGCGA GCCCTCTTCC TGCTGGGCT CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTTATCTC	-	GATTGTTCTG	GATGAATGTC	TTTTTTAATA	CTCCGAAAAT	TTCATCATCT	AAGAAAATGA	480
GTTTCTTGCC ACAGATTGAG GCCACTTTTG AGCAAGGGAG ATCCTGGAGT TAAGACAGGT GTTGGGGGCA GCCTGTATTT TACCCTAGGG GCAGGTCTGC ATGGTGACCC CACATYGCAC TGGTAAACCA TTTGAGTCCC ACTCTTCATC CTGGAAGTGG GAACTGGAGT CCCACCACA 35 GTGCATTCAG AAAGCATGCT GTGTGGGGGC TGCTTCTCAG GAGGCCAGGC CCTTCTGAGC GGAACCGTCC TGGAGAGAGC CTGCCCTCGT TTCCAGGCTG CAGCCGTAAC GCACTTTCTC 40 CCAGGCTGAG GGCGGGTGTT CTGGGGTGTC TGCCCTCTGT CGGCCCTGCT TCCTGCCAGG ACGTGGCCTC TTCCGATCCT TTTCTCTCAG ACACTGGAGG TCTCTTCTGC CATTGTGCTG GTCCCATCCC AAGAATTGTA GGACAGAGAC CACACTGGGT CGGCGGACAC AAAGTCCATC 45 CAGGACCCAG GCCGCAGAGG GAGCAGGAAG AGATGCTGAT AGTTTGATCT AGAAACCAGC AGCTACTGGC TCAAATTCAG GTTCTGGCGT CAAATAGCGA CATTTCCAGT TTCTCTTAAA 50 AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTGTCT GTTGAAAATG TTTCTAGTTT TTTTTCTTTC ATTTTTCTC CATTCCATTT CTGCCTTAAC TTTAGTTTGT TCACAGGGAG GCAAAGCTGA CATGAACCTT TTGTCGTGGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGCCT GTTCCCGTGG CTCTGAGCGA GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCAGTC AGTTAAACCT TCTTTTATCTC	25.	TTCCATACAA	ATAACTCAGC	ACACAAGTGA	CCCAGGACAT	ATGCCTGCCA	AAGGGATGTG	540
GTTGGGGGCA GCCTGTATTT TACCCTAGGG GCAGGTCTGC ATGGTGACCC CACATYGCAC TGGTAAACCA TTTGAGTCCC ACTCTTCATC CTGGAAGTGG GAACTGGAGT CCCACCCACA 35 GTGCATTCAG AAAGCATGCT GTGTGGGGGC TGCTTCTCAG GAGGCCAGGC CCTTCTGAGC GGAACCGTCC TGGAGAGAGC CTGCCCTCGT TTCCAGGCTG CAGCCGTAAC GCACTTTCTC CCAGGCTGAG GGCGGGTGTT CTGGGGTGTC TGCCCTCTGT CGGCCCTGCT TCCTGCCAGG ACGTGGCCTC TTCCGATCCT TTTCTCTCAG ACACTGGAGG TCTCTTCTGC CATTGTGCTG GTCCCATCCC AAGAATTGTA GGACAGAGAC CACACTGGGT CGGCGGACAC AAAGTCCATC 45 CAGGACCCAG GCCGCAGAGG GAGCAGGAAG AGATGCTGAT AGTTTGATCT AGAAACCAGC AGCTACTGCC TCAAATTCAG GTTCTGGCGT CAAATAGCGA CATTTCCAGT TTCTCTTAAA 50 AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTGTCT GTTGAAAAATG TTTCTAGTTT TTTTTCTTTC ATTTTTCTC CATTCCATTT CTGCCTTAAC TTTAGTTTGT TCACAGGGAG GCAAAGCTGA CATGAACCTT TTGTCGTGGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGCTT GTTCCCGTGG CTCTGAGCGA GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTTATCTC		TTAGAAGGCT	GCCTTCTCAT	GCGCATTGTC	ACTTGGATCT	TGTGGTGAGG	ACGGCCCCAT	600
GTTGGGGGCA GCCTGTATTT TACCCTAGGG GCAGGTCTGC ATGGTGACCC CACATYGCAC TGGTAAACCA TTTGAGTCCC ACTCTTCATC CTGGAAGTGG GAACTGGAGT CCCACCCACA 35 GTGCATTCAG AAAGCATGCT GTGTGGGGGC TGCTTCTCAG GAGGCCAGGC CCTTCTGAGC GGAACCGTCC TGGAGAGAGC CTGCCCTCGT TTCCAGGCTG CAGCCGTAAC GCACTTTCTC 40 CCAGGCTGAG GGCGGGTGTT CTGGGGTGTC TGCCCTCGT CGGCCCTGCT TCCTGCCAGG ACGTGGCCTC TTCCGATCCT TTTCTCTCAG ACACTGGAGG TCTCTTCTGC CATTGTGCTG GTCCCATCCC AAGAATTGTA GGACAGAGAC CACACTGGGT CGGCGGACAC AAAGTCCATC 45 CAGGACCCAG GCCGCAGAGG GAGCAGGAAG AGATGCTGAT ACTTTGATCT AGAAACCAGC AGCTACTGGC TCAAATTCAG GTTCTGGCGT CAAATAGCGA CATTTCCAGT TTCTCTTAAA 50 AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTGTCT GTTGAAAATG TTTCTAGTTT TTTTTCTTTC ATTTTTCTCT CATTCCATTT CTGCCTTAAC TTTAGTTTGT TCACAGGGAG GCAAAGCTGA CATGAACCTT TTGTCGTGGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGCT TGTTCCCGTGG CTCTGAGCGA GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTTATCTC	30	CTTTCTTGCC	ACAGATTGAG	GCCACTTTTG	AGCAAGGGAG	ATCCTGGAGT	TAAGACAGGT	660
GEGAACCGTCC TEGAGAGAGC CTECCCTCGT TTCCAGGCTG CAGCCGTAAC GCACTTTCTC CCAGGCTGAG GGCGGGTGTT CTGGGGTGTC TGCCCTCGT CGGCCCTGCT TCCTGCCAGG ACGTGGCCTC TTCCGATCCT TTTCTCTCAG ACACTGGAGG TCTCTTCTGC CATTGTGCTG GTCCCATCCC AAGAATTGTA GGACAGAGAC CACACTGGGT CGGCGGACAC AAAGTCCATC CAGGACCCAG GCCGCAGAGG GAGCAGGAAG AGATGCTGAT AGTTTGATCT AGAAACCAGC AGCTACTGGC TCAAATTCAG GTTCTGGCGT CAAATAGCGA CATTTCCAGT TTCTCTTAAA AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTGTCT GTTGAAAATG TTTCTAGTTT TTTTTCTTTC ATTTTTCTCT CATTCCATTT CTGCCTTAAC TTTAGTTTGT TCACAGGGAG GCAAAGCTGA CATGAACCTT TTGTCGTGGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGCTT GTTCCCGTGG CTCTGAGCGA GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTCTTT CTTTTTGGTA GAACCAACA TCTACCATTC AGTTAAACCT TCTTTATCTC		GTTGGGGGCA	GCCTGTATTT	TACCCTAGGG	GCAGGTCTGC	ATGGTGACCC	CACATYGCAC	720
GGAACCGTCC TGGAGAGAGC CTGCCCTCGT TTCCAGGCTG CAGCCGTAAC GCACTTTCTC 40 CCAGGCTGAG GGCGGGTGTT CTGGGGTGTC TGCCCTCTGT CGGCCTGCT TCCTGCCAGG ACGTGGCCTC TTCCGATCCT TTTCTCTCAG ACACTGGAGG TCTCTTCTGC CATTGTGCTG GTCCCATCCC AAGAATTGTA GGACAGAGAC CACACTGGGT CGGCGGACAC AAAGTCCATC 45 CAGGACCCAG GCCGCAGAGG GAGCAGGAAG AGATGCTGAT ACTTTGATCT AGAAACCAGC AGCTACTGGC TCAAATTCAG GTTCTGGCGT CAAATAGCGA CATTTCCAGT TTCTCTTAAA 50 AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTGTCT GTTGAAAATG TTTCTAGTTT TTTTTCTTTC ATTTTTCTCT CATTCCATTT CTGCCTTAAC TTTAGTTTGT TCACAGGGAG GCAAAGCTGA CATGAACCTT TTGTCGTGGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGCTT GTTCCCGTGG CTCTGAGCGA GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTTATCTC		TGGTAAACCA	TTTGAGTCCC	ACTCTTCATC	CTGGAAGTGG	GAACTGGAGT	CCCACCCACA	780
40 CCAGGCTGAG GGCGGGTGTT CTGGGGTGTC TGCCCTCTGT CGGCCCTGCT TCCTGCCAGG ACGTGGCCTC TTCCGATCCT TTTCTCTCAG ACACTGGAGG TCTCTTCTGC CATTGTGCTG GTCCCATCCC AAGAATTGTA GGACAGAGAC CACACTGGGT CGGCGGACAC AAAGTCCATC 45 CAGGACCCAG GCCGCAGAGG GAGCAGGAAG AGATGCTGAT AGTTTGATCT AGAAACCAGC AGCTACTGGC TCAAATTCAG GTTCTGGCGT CAAATAGCGA CATTTCCAGT TTCTCTTAAA 50 AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTGTCT GTTGAAAATG TTTCTAGTTT TTTTTCTTTC ATTTTTCTCT CATTCCATTT CTGCCTTAAC TTTAGTTTGT TCACAGGGAG GCAAAGCTGA CATGAACCTT TTGTCGTGGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGCTT GTTCCCGTGG CTCTGAGCGA GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTATCTC	35	GTGCATTCAG	AAAGCATGCT	GTGTGGGGGC	TGCTTCTCAG	GAGGCCAGGC	CCTTCTGAGC	840
ACGTGGCCTC TTCCGATCCT TTTCTCTCAG ACACTGGAGG TCTCTTCTGC CATTGTGCTG GTCCCATCCC AAGAATTGTA GGACAGAGAC CACACTGGGT CGGCGGACAC AAAGTCCATC 45 CAGGACCCAG GCCGCAGAGG GAGCAGGAAG AGATGCTGAT AGTTTGATCT AGAAACCAGC AGCTACTGGC TCAAAATTCAG GTTCTGGCGT CAAAATAGCGA CATTTCCAGT TTCTCTTAAA 50 AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTGTCT GTTGAAAATG TTTCTAGTTT TTTTTCTTTC ATTTTTCTCT CATTCCATTT CTGCCTTAAC TTTAGTTTGT TCACAGGGAG GCAAAGCTGA CATGAACCTT TTGTCGTGGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGCTT GTTCCCGTGG CTCTGAGCGA GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTATCTC		GGAACCGTCC	TGGAGAGAGC	CTCCCTCCT	TTCCAGGCTG	CAGCCGTAAC	GCACTTTCTC	900
GTCCCATCCC AAGAATTGTA GGACAGAGAC CACACTGGGT CGGCGGACAC AAAGTCCATC 45 CAGGACCCAG GCCGCAGAGG GAGCAGGAAG AGATGCTGAT AGTTTGATCT AGAAACCAGC AGCTACTGGC TCAAATTCAG GTTCTGGCGT CAAATAGCGA CATTTCCAGT TTCTCTTTAAA 50 AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTGTCT GTTGAAAATG TTTCTAGTTT TTTTTCTTTC ATTTTTCTCT CATTCCATTT CTGCCTTAAC TTTAGTTTGT TCACAGGGAG GCAAAGCTGA CATGAACCTT TTGTCGTGGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGCTT GTTCCCGTGG CTCTGAGCGA GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTTATCTC	40	CCAGGCTGAG	GCCGCGTGTT	CTGGGGTGTC	TGCCCTCTGT	CGGCCCTGCT	TCCTGCCAGG	960
AGCTACTGC TCAAATTCAG GTTCTGGCGT CAAATAGCGA CATTTCCAGT TTCTCTTAAA AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTGTCT GTTGAAAATG TTTCTAGTTT TTTTTCTTTC ATTTTTCTCT CATTCCATTT CTGCCTTAAC TTTAGTTTGT TCACAGGGAG GCAAAGCTGA CATGAACCTT TTGTCGTGGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGCTT GTTCCCGTGG CTCTGAGCGA GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTATCTC		ACGTGGCCTC	TTCCGATCCT	TTTCTCTCAG	ACACTGGAGG	TCTCTTCTGC	CATTGTGCTG	1020
AGCTACTGC TCAAATTCAG GTTCTGGCGT CAAATAGCGA CATTTCCAGT TTCTCTTAAA AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTGTCT GTTGAAAATG TTTCTAGTTT TTTTTCTTTC ATTTTTCTCT CATTCCATTT CTGCCTTAAC TTTAGTTTGT TCACAGGGAG GCAAAGCTGA CATGAACCTT TTGTCGTGGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGCTT GTTCCCGTGG CTCTGAGCGA GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTATCTC		GTCCCATCCC	AAGAATTGTA	GGACAGAGAC	CACACTGGGT	CGGCGGACAC	AAAGTCCATC	1080
AACCGTGTTT GGTTTCAGTT GGGATAGGCT TGTTTTGTCT GTTGAAAATG TTTCTAGTTT TTTTTCTTTC ATTTTTCTCT CATTCCATTT CTGCCTTAAC TTTAGTTTGT TCACAGGGAG GCAAAGCTGA CATGAACCTT TTGTCGTGGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGCTT GTTCCCGTGG CTCTGAGCGA GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTATCTC	45	CAGGACCCAG	GCCGCAGAGG	GAGCAGGAAG	AGATGCTGAT	AGTTTGATCT	AGAAACCAGC	1140
TTTTTCTTC ATTTTCTCT CATTCCATT CTGCCTTAAC TTTAGTTTGT TCACAGGAG GCAAAGCTGA CATGAACCTT TTGTCGTGGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGCTT GTTCCCGTGG CTCTGAGCGA GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTATCTC		AGCTACTGGC	TCAAATTCAG	GTTCTGGCGT	CAAATAGCGA	CATTTCCAGT	TTCTCTTAAA	1200
GCAAAGCTGA CATGAACCTT TTGTCGTGGG ACTTCAGGCC ACATTGGCTT GAAGGCATTC 55 GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGCTT GTTCCCGTGG CTCTGAGCGA GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTATCTC	50	AACCGTGTTT	GGTTTCAGTT	GGGATAGGCT	TGTTTTGTCT	GTTGAAAATG	TTTCTAGTTT	1260
55 GTTTCCTTCT GGGGTGGGGA CAGGCCCTCA TGGCAGGCTT GTTCCCGTGG CTCTGAGCGA GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTATCTC		TTTTTCTTTC	ATTTTTCTCT	CATTCCATTT	CTGCCTTAAC	TTTAGTTTGT	TCACAGGGAG	1320
GGCCTCTTCC TGCTGGGCTC CCAGACTCCT GCATCCAGGC CCCCACCTTC TCGGCTTCTG GTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTATCTC		GCAAAGCTGA	CATGAACCTT	TTGTCGTGGG	ACTTCAGGCC	ACATTGGCTT	GAAGGCATTC	1380
GTTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTATCTC	55	GTTTCCTTCT	GGGGTGGGGA	CAGGCCCTCA	TGGCAGGCTT	GTTCCCGTGG	CTCTGAGCGA	. 1440
GTTTTCTTT CTTTTTGGTA GAACACAACA TCTACCATTC AGTTAAACCT TCTTTATCTC		GGCCTCTTCC	TGCTGGGCTC	CCAGACTCCT	GCATCCAGGC	CCCCACCTTC	TCGGCTTCTG	1500
	60	GTTTTTCTTT	CTTTTTGGTA	GAACACAACA	TCTACCATTC	AGTTAAACCT	TCTTTATCTC	1560

	CTCCTYTGGC	ATCCATTTT	CCAAAGAAGA	GTCGAGTCCT	CTGAGGTCTG	TGCTTGAAAR	1620
	CCGTCCGAAG	GCATTCTTGT	TAGCTTTGCT	TTTCTCCCCA	TATCCCAAGG	CGAAGCGCTG	1680
5	AGATTCTTCC	АТСТААААА	CCCTCGACCC	GAAACCCTCA	CCAGATAAAC	TACAGTTTGT	1740
	TTAGGAGGCC	CTGACCTTCA	TGGTGTĊTTT	GAAGCCCAAC	CACTCGGTTT	CCTTCGGATT	1800
10	TTCCTCCCTT	TGTTCGGGGT	TIGGTTIGGC	TCCTCTGTGT	GTGTCCGTAT	CTTGTTCGGT	1860
	GTCCTCGAGG	TTGAGCTTCA	CTCCACTGCG	GCAGAGGCAG	CGTGCACACT	CGGATTTGCT	1920
	ACGTTTCTAT	ATATCTTGAA	GCTAAATGTA	TATATGAGTA	GTTTGCCATG	AGATAACACA	1980
15	GTGTAAACAG	TAGACACCCA	GAAATCGTGA	CTTCTGTGTT	CTCTCCATTT	GAGTATTTTG	2040
	TAATTTTTTT	GAAATATTIG	TGGACATAAA	TAAAACCAAG	CTACACTACA	АААААААА	2100
20	AAAAAAACTG	GAGACTAG					2118

(2) INFORMATION FOR SEQ ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1076 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

35	GCCCAAGGAG CTCAGCTTCG CCCGCATCAA GGCCGTTGAG TGCGTGGAGA GCACCGGGCG	60
	CCACATCTAC TTCACGCTGG TGACCGAAGG GWGCGGCGAG ATCGACTTCC GCTGCCCCCT	120
	GGAAGATCCC GGCTGGAACG CCCAGATCAC CCTAGGCCTG GTCAAGTTCA AGAACCAGCA	180
40	GGCCATCCAG ACAGTGCGGG CCCGGCAGAG CCTCGGGACC GGGACCCTCG TGTCCTAAAC	240
	CACCGGGCGC ACCATCTTTC CTTCATGCTA CCCACCACCT CAGTGCTGAG GTCAAGGCAG	300
45	CTTCGTTGTT CCCTCTGGCT TGTGGGGGCA CGGCTGTSYT CCATGTGGCA AGGTGGAAGG	360
	CATGGACGTG TGGAGGAGGC GCTGGAGCTG AAGGAATGGA CGAGCCCTGG GAGGAGGGCA	420
	GAAGGCTACG CAGGGCTGAG GATGAAGATG CAGCCCCTGG ATGGTCCCAG ACTCTCAGGA	480
50	CATGCCCAGC TCAGGGGCTT CGAGCCACAG GCCTGGCCTC ATATGGCATG AGGGGGAGCT	540
	GGCATAGGAG CCCCCTCCCT GCTGTGGTCC TGCCCTCTGT CCTGCAGACT GCTCTTAGCC	600
55	CCCTGGCTTT GTGCCAGGCC TGGAGGAGGG CAGTCCCCCA TGGGGTGCCG AGCCAACGCC	660
	TCAGGAATCA GGAGGCCAGC CTGGTACCAA AAGGAGTACC CAGGGCCTGG TACCCAGGCC	720
	CACTCCAGAA TGGCCTCTGG ACTCACCTTG AGAAGGGGGGA GCTGCTGGGC CTAAAGCCCA	780
60	CTCCTGGGGG TCTCCTGCTG CTTAGGTCCT TTTGGGACCC CCACCCATCC AGGCCCTTTC	840

25

	TTTGCACACT TCTTCCCCCA CCTCTAYGCA TCTTCCCCCC ACTGCGGTGT TCGGCCTGAA	900
5	GGTGGTGGGG GTGAGGGGGG GTTTGGCCAT TAGCATTTCA TGTCTTTCCC CAAATGAAGA	960
	TGCCCTGCAA AGGGCAGTNA ACCACAAAAA AAAAAAAAAA AAAAACNTGG GGGGGGGCC	1020
	CCGTTAACCA TTTTGGCCTN ATAGGGGGGN GGTTTTTAAA AATTAATTGG GCCCGG	1076
10		
	(2) INFORMATION FOR SEQ ID NO: 18:	
15 20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1379 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
	GGCACGAGCA CCCTCCCACA CCTCCCTGAA CTTCCATCTG ATCGACTTCA ACTTGCTGAT	60
25	GGTGACCACC ATCGTTCTGG GCCGCCGCTT CATTGGGTCC ATCGTGAAGG AGGCCTCTCA	120
	GAGGGGGAAG GTCTCCCTCT TTCGCTCCAT CCTGCTGTTC CTCACTCGCT TCACCGTTCT	180
30	CACGGCAACA GGCTGGAGTC TGTGCCGATC CCTCATCCAC CTCTTCAGGA CCTACTCCTT	240
50	CCTGAACCTC CTGTTCCTCT GCTATCCGTT TGGGATGTAC ATTCCGTTCC TGCARCTGAA	300
	TTKCGAMCTY CGSAAGACAA GCCTCTTCAA CCACATGGCC TCCATGGGGC CCCGGGAGGC	360
35	GGTCAGTGGC CTGGCAAAGA GCCGGGACTA CCTCCTGACA CTGCGGGAGA CGTGGAAGCA	420
	GCACASAAGA CAGCTGTATG GCCCGGACGC CATGCCCACC CATGCCTGCT GCCTGTCGCC	480
40	CAGCCTCATC CGCAGTGAGG TGGAGTTCCT CAAGATGGAC TTCAACTGGC GCATGAAGGA	540
. •	AGTGCTCGTS AGCTCCATGC TGAGCGCCTA CTATGTGGCC TTTGTGCCTG TYTGGTTCGT	600
	GAAGAACACA CATTACTATG ACAAGCGCTG GTCCTGTGNA ACTCTTCCTG CTGGTGTCCA	660
45	TCAGCACCTC CGTGATCCTC ATGCAGCACC TGCTGCNTGC CAGCTACTGT GACCTGCTGC	720
	ACAAGGCCGC CGCCCATCTG GGCTGTTGGC AGAAGGTGGA CCCAGCGCTG TGCTCCAACG	780
50	TGCTGCAGCA CCCGTGGACT GAAGAATGCA TGTGGCCGCA GGGCGTGCTG GTGAAGCACA	840
	GCAAGAACGT CTACAAAGCC GTAGGCCAMW ACAAMGTGGC TATCCCCTCT GACGTCTCCC	900
	ACTTCCGCTT CCAKTTCTTT TTCAGCAAAC CCCTGCGGAT CCTCAACATC CTCCTGCTGC	960
55	TGGAGGCGC TGTCATTGTC TATCAGCTGT ACTCCCTAAT GTCCTCTGAA AAGTGGCACC	1020
	AGACCATCTC GCTGGCCCTC ATCCTCTTCA GCAACTACTA TGCCTTCTTC AAGCTGCTCC	1080
60	GGGACCGCTT GGTATTGGGC AAGGCCTACT CATACTCTGC TAGCCCCCAG AGAGACCTGG	1140

ACCACCGTTT CTCCTGAGCC CTGGGGTCAC CTCAGGGACA GCGTCCAGGC TTCAGCAAGG 1200 GCTCCCTGGC AAGGGGCTGT TGGGTAGAAG TGGTGGTGGG GGGGACAAAA GACAAAAAAA 1260 TCCACCAGAG CTTTGTATTT TTGTTACGTA CTGTTTCTTT GATAATTGAT GTGATAAGGA 5. 1320 AAAAAAGTCCT ATTTTTATAC TCCCAANMAA AAAAAAAAAA NAAAAAGCGG CCGAAAGCT 1379 10 (2) INFORMATION FOR SEQ ID NO: 19: (i) SEQUENCE CHARACTERISTICS: 15 (A) LENGTH: 1337 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19: CTGGTGTIGG GCCTGAGCCN CCTCAACAAC TCCTACAACT TCAGTTTCCA CGTGGTGATC 60 GGCTCTCAGG CGGAAGAAGG CCAGTACAGC CTGAACTTCC ACAACTGCAA CAATTCAGTG 25 120 CCAGGAAAGG AGCATCCATT CGACATCACG GTGATGATCC GGGAGAAGAA CCCCGATGGC .180 TTCCTGTCGG CAGCGGAGAT GCCCCTTTTC AAGCTCTACA TGGTCATGTC CGCCTGCTTC 240 30 CTGGCCGCTG GCATCTTCTG GGTGTCCATC CTCTGCAGGA ACACGTACAG CGTCTTCAAG 300 ATCCACTGGC TCATGGCGGC CTTGGCCTTC ACCAAGAGCA TCTCTCTCT CTTCCACAGC 360 ATCAACTACT ACTTCATCAA CAGCCAGGGG CCACCCCATC GAAGGCCTTG CCGKCATGTA 35 420 CTACATCGCA CACCTGCTGA AGGGCGCCCT CCTCTTCATC ACCATCGCCC TGATTGGCTC 480 AGGCTGGGCT TCATCAAGTA CGTCCTGTCG GATAAGGAGA AGAAGGTCTT TGGGATCGTG 540 40 ATCCCCATGC AGGTCCTGGC CAACGTGGCC TACATCATCA TCGAGTCCCG CGAGGAAGGC 600 GCCACGAACT ACGTGCTGTG GAAGGAGATT TTGTTCCTGG TGGACCTCAT CTGCTGTGGT 660 GCCATCCTGT TCCCCGTAGT CTGGTCCATC CGGCATCTCC AGGATGCGTC TGGCACAGAC 45 720 GGGAAGGTGG CAGTGAACCT GGCCAAGCTG AAGCTGTTCC GGCATTACTA TGTCATGGTC 780 ATCTGCTACG TCTACTTCAC CCGCATCATC GCCATCCTGC TGCAGGTGGC TGTGCCCTTT 840 50 CAGTGGCAGT GGCTGTACMA GCTCTTGGTG GARGGCTCCA CCCTGGCCTT CTTCGTGCTC 900 ACGGGCTACA AGTTCCAGCC CACAGGGAAC AACCCGTACC TGCAGCTGCC CCAGGAGGAC 960 GAGGAGGATG TTCAGATGGA GCAAGTAATG ACGGACTCTG GGTTCCGGGA AGGCCTCTCC 1020 AAAGTCAACA AAACAGCCAG CGGGCGGGAA CTGTTATGAT CACCTCCACA TCTCAGACCA 1080 AAGGGTCGTC CTCCCCCAGC ATTTCTCACT CCTGCCCTTC TTCCACAGCG TATGTGGGGA 1140 GGTGGAGGGG TCCATGTGGA CCAGGCGCCC AGCTCCCGGG ACSCCGGTTC CCGGACAAGC 1200

55

1200

CCATTTGGAA GAAGAGTCCC TTCCTCCCCC CAAATATTGG GCAGCCCTGT CCTTACCCCG 1260 GGACCACCC TCCCTTCCAG CTATGTGTAC AATAATGACC AATCTGTTTG GCTAAAAAAA 1320 5 1337 AAAAAAAAA AACTCGA 10 (2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1390 base pairs 15 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20: 20 60 GCCGTTTTGG TTCCCGGTTG GTGCTTCCTG TTCGCAGCTG CGGCACTTCA AGGTTACTGA CTTTTTATGA TGTTTGGTGG CTATGAGACT ATAGAWGCRT RSGRRGATGA TYTTTATCGA 120 25 180 GATGAGTCAT CTAGTGAACT GAGTGTTGAT AGTGAGGTGG AATTTCAACT CTATAGCCAA 240 ATTCATTATG CCCAAGATCT TGATGATGTC ATCAGGGAGG AAGAGCATGA AGAAAAGAAC 300 TCTGGGAATT CGGAATCTTC GAGTAGTAAA CCAAATCAGA AGAAGCTAAT CGTCCTTTCA 30 GATAGTGAGG TCATCCAGCT GTCAGATGGG TCAGAGGTCA TCACTTTGTC TGATGAAGAC 360 AGTATTTATA GATGTAAAGG AAAGAATGTT AGAGTTCAAG CACAAGAAAA TGCCCATGGT 420 35 CTTTCTTCTT CTCTTCAATC TAATGAGCTG GTTGATAAGA AATGCAAGAG TGATATTGAG 480 AAGCCTAAAT CTGAAGAGAG ATCAGGTGTA ATCCGAGAGG TCATGATTAT AGAGGTCAGT 540 TCAAGTGAAG AGGAAGAGAG CACCATTTCA GAAGGTGATA ATGTGGAAAG CTGGATGCTA 600 40 CTGGGATGTG AAGTAGATGA TAAAGATGAT GATATCCTTC TCAACCTTGT GGGATGTGAA 660 AACTCTGTTA CTGAAGGAGA AGATGGTATA AACTGGTCCA TCAGTGACAA AGACATTGAG 720 45 GCCCAGATAG CTAATAACCG AACACCTGGA AGATGGACCC AGCGGTACTA TTCAGCCAAC 780 840 AAAAACATTA TCTGTAGAAA TTGTGACAAA CGTGGTCATT TATCAAAAAA CTGCCCCTTA 900 CCACGAAAAG TTCGTCGCTG CTTCCTGTGC TCCAGGAGAG GACATCTCCT GTATTCCTGT 50 CCAGCCCCC TTTGCGAATA CTGTCCTGTG CCTAAGATGT TGGACCACTC ATGTCTTTTC 960 AGACATTCCT GGGATAAACA GTGTGACCGA TGTCATATGC TAGGCCACTA TACAGATGCT 1020 55 TGCACAGAAA TCTGGAGGCA GTATCACCTA ACGACCAAAC CTGGACCACC CAAAAAGCCG 1080

AAGACCCCTT CAAGACCATC AGCCTTAGCA TATTGCTATC ACTGCGCGCA AAAAGGCCAT

TATGGACACG AATGTCCAGA AAGAGAAGTG TATGACCCGT CTCCAGTATC TCCATTCATC

960

1020

1080

1140

1200

TGCTACTATG RTGACAAATA TGAAATTCAG GAGAGAGAAA AGAGACTAAA ACAAAAAATA 1260 AAAGTANTCA AGAAAAATGG GGTTATCCCA GAGCCATCCA AGCTACCTTA TATAAAAGCA 1320 5 GCAAATGAGA ACCCCCACCA TGATATAAGG AAGGGCCGTG CCTCATGGAA AAGCAACAGG 1380 TGGCCTCAAG 1390 10 (2) INFORMATION FOR SEQ ID NO: 21: (i) SEQUENCE CHARACTERISTICS: 15 (A) LENGTH: 1431 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21: GCCTGCAGTC GACACTAGTG GATCCAAAGA ATTCGGCCTG TGCGAGTAGG CGCTTGGGCA 60 CTCAGTCTCC CTGGCGAGCG ACGGGCAGAA ATCTCGAACC AGTGGAGCGC ACTCGTAACC 25 120 TGGATCCCAG AAGGTCGCGA AGGCAGTACC GTTTCCTCAG CGGCGGACTG CTGCAGTAAG 180 AATGTCTTTT CCACCTCATT TGAATCGCCC TCCCATGGGA ATCCCAGCAC TCCCACCAGG 240 30 GATCCCACCC CCGCAGTTTC CAGGATTTCC TCCACCTGTA CCTCCAGGGA CCCCAATGAT 300 TCCTGTACCA ATGAGCATTA TGGCTCCTGC TCCAACTGTC TTAGTACCCA CTGTGTCTAT 360 GGTTGGAAAG CATTTGGGCG CAAGAAAGGA TCATCCAGGC TTAAAGGCTA AAGAAAATGA 35 420 TGAAAATTGT GGTCCTACTA CCACTGTTTT TGTTGGCAAC ATTTCCGAGA AAGCTTCAGA 480 540 40 AGGTGCTTCC GGAAAGCTTC AAGCCTTCGG ATTCTGTGAG TACAAGGAGC CAGAATCTAC 600 CCTCCGTGCA CTCAGATTAT TACATGACCT GCAAATTGGA GAGAAAAAGC TACTCGTTAA 660 AGTTGATGCA AAGACAAAGG CACAGCTGGA TGAATGGAAA GCAAAGAAGA AAGCTTCTAA 720 TGGGAATGCA AGGCCAGAAA CTGTCACTAA TGACGATGAA GAAGCCTTGG ATGAAGAAAC 780 AAAGAGGAGA GATCAGATGA TTAAAGGGGC TATTGAAGTT TTAATTCGTG AATACTCCAG 840 TGAGCTAAAT GCCCCCTCAC AGGAATCTGA TTCTCACCCC AGGAAGAAGA AGAAGGAAAA

GAAGGAGGAC ATTTTCCGCA GATTTCCAGT GGCCCCACTG ATCCCTTATC CACTCATCAC

TAAGGAGGAT ATAAATGCTA TAGAAATGGA AGAAGACAAA AGAGACCTGA TATCTCGAGA

GATCAGCAAA TTCAGAGACA CACATAAGAA ACTGGAAGAA GAGAAAGGCA AAAAGGAAAA

AGAAAGACAG GAAATTGAGA AAGAACGGAG AGAAAGAGAG AGGGAGCGTG AAAGGGAACG

AGAAAGGCGA GAACGGGAAC GAGAAAGGGA AAGAGAACGT GAACGAGAAA AGGAGAAAGA

45

50

55

	ACGGGAGCGG GAACGAGAAC GGGATAGGGA CCGTGACCGG ACAAAAGAGA GAGACCGAGA	1260
5	TCGGGATCGA GAGAGAGATC GTGACCGGGA TAGAGAAAGG AGCTCAGATC GTAATAAGGA	1320
5	TCGCATTCGA TCAAGAGAAA AAAGCAGAGA TCGTGAAAGG GAACGAGACC GGGAAAGAGA	1380
	GAGAGAGAG GAACGAGACGAGA ACGGGAGCGA GAGAGAGA	1431
10		
	(2) TIMONUMENT OF THE CO.	
15	(2) INFORMATION FOR SEQ ID NO: 22:	
13	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2539 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
	GGGTGCAGGA GTGCCACCCC CAGGGCCCTG TCAACCTCTC TTTTCTCCTC CATGGCTGTC	60
25	TGCCTGCGTA TCTGTCTCTG AGAATCCTCG GGGCGGTCAG GGGATGTCAG GAGGGGAAGG	120
	AGCCGCCCTC CCTATCTTGC TGCTCCTCTT GGCACTCAGG GGCACCTTCC ATGGAGCCAG	180
30	ACCGGGTGGA GGGGCTTCTG GGATTTGGTG TCTGCTGCTG CCAGAGCAGG AACCCCCAGT	240
	CTAGGACTTG GGCATTTTAA CAGGGAGAAA GTAGTGGCTT CCCTTTTCTC TCTCTCCTCC	300
	TTTTCCCTT TAAGCCCACA GATTCAGGTC ATGCCAAAAG CTCTCTGGTT GTAACCTGGA	360
35	GACATGTGGA GGGGAATGGC GATGGGATTA TAGGACTCTC CCCATCTCGG GCCCTGACCC	420
	TGACCCTTGC CACCAACCCA AAGACAGCTG GTGGGTTTCC CCTTGGAGAM AATCCTGCGT	480
40	TTGCCTGGCC CGCCCTGGC TGCCCTCAGC TTTCGCTGAT CTGCCCGGCC TGGAGCCTCC	540
, ,	CATCACCCCG CTTCTTGTTG GGCCTCAGGC ACTGGTTACC AGAAGGGGGT CTGGGTCTGC	600
-	TCAGGAATCA TGTTTTGTAG CACCTCCTGT TGGAGGGGTG GAGGGATGTT CCCCTGAGCC	660
45	AGGCTGAGAC TAGAACCCCA TCTTCCCTGA GCCAGGCTGA GACTAGAACC CCATCTTCCC	720
	CACCACGCCA CCCCTGTGST KGCTACAGGA GCACAGTAGT GAAGGCCTGA GCTCCAGGTT	780
50	TGAAAGACCC AACTGGAGCG TGGGGCGGGC AGGCAGGGGT TAGTGAAAGG ACACTTCCAG	840
50	GGTTAGGACA GAGCATTTAG CCTTCTGGAA GAACCCCTGC CTGGGGTGGG ACTGTGCAGG	900
	CCAGAGAAGG TGGCATGGGC CTGAACCCAC CTGGACTGAC TTCTGCACTG AAGCCACAGA	960
55	TGGAGGGTAG GCTGGTGGGT GGGGGTGGTT CGTTCTCTAG CCGGGGCAGA CACCCAGCTG	1020
	GCTGGGTCCT TCCTCAGCCT TGCCTCCTCC TGTCCCCAAC CCTTTCCTTT	1080
60	GCGGACTGCT GGTCCCCTCT CCTTCCCTCC TTCCAGCTGT TTCTAGTTAC CACCTACCCC	1140
60	•	

	TGGGCCGTGG ACTGATCAGA CCAGCATTCA AAATAAAAGT TTGTTCCAAG TTGACAGTGT	1200
	GGTGCTCCCT GCCCAGCCCC TCCAGGTGGA GGTGCTGCCA CGGGAACGCA GTTGCTCTGC	
5	CTGCCCTGGG CCCCTGGCGA CANTGGGAGC AGGGCAGTGC TGTGAGGAGC CCAGCTTTCC	1260
	CAGTCAGGCA GGCATGGCTT CCGTGTTCAG GCTCCCTCAC CAGCTGGTGA CACGGGACAA	1320
		1380
10	GCTTACAAAC CTTCTCTGAA CCTCAGTTTT CTCATTTACA AGAGGCAAAG CATCCATCAC	1440
	CTTGTGTGGA TTCARAGAAT GTRAGGCCCT GGGGTGTCCT ACACAAGGGA AAGGCTTGCT	1500
1.5	CAGTGAGCGG TCTGCACACC GTTAGCCACC CTGCCACCTC TGTGCCCTGG GCAGGCTCCA	1560
15	AAGGAAAGCT CTGGCTGGGA CTGCCRGGAG TCTCACACGC TCCTGTTGAC ATTCCCAGCA	1620
	GCYGCCCCTG AGGTCGATGT TTGTTCTGTT TTTCTTTTTC TTTTTTGAGA CGGAGTCTCG	1680
20	CTGTGTTGCC AGGCTGGAGT GCAGTGGTGT GATCTCTGCT CACTGCAACC TCCGCCTGCC	1740
	AGITICAAGI GATICICICC CICAGCCITC IGAGIAGCIG GGACIACAGG IGCACGCCAC	1800
	CACGCCCAGC TAACTTTTTG TATTIWAGTA GAGACAGGGT TTCGCCATGT CGGCCAGGGT	1860
25	GGTCTTGATC TCCTGACCTC ATGATCCACC CGCCTCAGCC TCCCAAAGTG CTGGGATTAC	1920
	AGGTATGAGC CACCGCACCG GGCCTGTTCT ATTTTTCTAG TTAAGGGAAC TGAAGCTCAG	1980
20	ARAGGTGTCA CCAGCARGTG TYCATTCCCA TGCCAGCCTT GCCCCCCGGC TTTTCCCAGG	
30	CAGGCTCCTG CGTGCCCACT GGCTCCAGCC TGGTCCTCTG TCTCTTGGCT GCTTCACTCC	2040
	TECTCTTTGT CCCGACTCTG GCCCTGCTTA CAGGGGCCAC TACCTGCTGG TGCCTCCATA	2100
35		2160
	ACAAGCGTCT GGCGTTGAGA CCCCTGGCAT GGCAGGGGCT TTGGGGTCTG GTTTCCACAA	2220
	GGCTTAGCCA TGGCAGAACC TCGTTTTATT TTAACTCTTT GCCCCTACAA ACAAACAGCA	2280
40	GTACTTGCCA GAACCATTCT TGGGATTCAG GAGCTCGGGC GACTGCCTTG GCCTCTGGCC	2340
	GCACCCAGGA GGGTGGGGTT GGATCTGTGT AGTTGCCAGG CCCACACCTG CCAGCAGGGG	2400
	GCTGACTGGA TCCATGCTTT ACTGTGTTTA ATGGGGGTAA CAGGGGTCCC TACAGCCCTC	2460
45	CCAGYTAAAM ATTTGGAACA AAACACCAGC CCTTTTGTAG TGGATGCAGA ATAAAATTGT	2520
	TAATCCAATC AAAAAAAA	2539

55

(2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1041 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

	TCGACCCACG	CGTCCGCCCA	CGCGTCCGCC	CACGCGTCCG	GGCGCAGGAC	GTGCACTATG	60
5	GCTCGGGGCT	CGCTGCGCCG	GTTGCTGCGG	CTCCTCGTGC	TGGGGCTCTG	GCTGGCGTTG	120
Ū	CTGCGCTCCG	TGGCCGGGGA	GCAAGCGCCA	GGCACCGCCC	CCTGCTCCCG	CGGCAGCTCC	180
	TGGAGCGCGG	ACCTGGACAA	GTGCATGGAC	TGCGCGTCTT	GCAGGGGGG	ACCGCACAGC	240
10	GACTTCTGCC	TGGGCTGCGC	TGCAGCACCT	CCTGCCCCCT	TCCGGCTGCT	TTGGCCCATC	300
	CTTGGGGGGG	CTCTGAGCCT	GACCTTCGTG	CTGGGGCTGC	TTTCTGGCTT	TTTGGTCTGG	360
15	AGACGATGCC	GCAGAGAGAG	AAGTTCACCA	CCCCCATAGA	GGAGACCGGC	GGAGAGGGCT	420
	GCCCAGCTGT	GGCGCTGATC	CAGTGACAAT	GTGCCCCCTG	CCAGCCGGGG	CTCGCCCACT	480
	CATCATTCAT	TCATCCATTC	TAGAGCCAGT	CTCTGCCTCC	CAGACGCGGC	GGGAGCAAGC	540
20	TCCTCCAACC	ACAAGGGGGG	TGGGGGGCGG	TGAATCACCT	CYGAGGCCTG	GGCCCAGGGT	600
	TCAGGGGAAC	TTCCAAGGTG	TCTGGTTGCC	CTGCCTCTGG	CTCCAGAACA	GAAAGGGAGC	660
25	CTCACGCTGG	CTCACACAAA	ACAGCTGACA	CTGACTAAGG	AACTGCAGCA	TTTGCACAGG	720
	GGAGGGGGT	GCCCTCCTTC	CTAGAGGCCC	TGGGGCCAG	GCTGACTTGG	GGGCAGACT	780
	TGACACTAGG	CCCCACTCAC	TCAGATGTCC	TGAAATTCCA	CCACGGGGGT	CACCCTGGGG	840
30	GGTTAGGGAC	CTATTTTTAA	CACTAGGGGG	CTGGCCCACT	AGGAGGGCTG	GCCCTAAGAT	900
	ACAGACCCCC	CCAACTCCCC	AAAGCGGGGA	GGAGATATTT	ATTTTGGGGA	GAGTTTGGAG	960
35	GGGAGGGAGA	TAATTATTTA	AAAAGAATCT	AATTTOAATT.	ААААААА	AAAAAAGGGC	1020
	GGCCGCTCTA	GAGGATCCCT	C		•		1041
				. •			

45

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1962 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

50							
	ACCCACGCGT	CCGGTACAAA	ACACAGTTTT	ATTCTATGAA	AATTTTGAGA	TTATTAGAAA	60
	CATTAGATTT	AGGGTTGCAT	ATTAAAAACT	ATATCCATTT	TGCCTTATTA	TTTAGTGTCT	120
55	CACTCAGGAT	ATAACACACT	ATAATAGAAA	ATGTAGACTT	CAGAATCAGG	TATATTTGAG	180
	ATGGTTTGTA	TACTGGTTCT	GACACTTGTT	AGCTATTCAT	CTTTGGTAAA	TTCCCCATTA	240
60	CCCTTTGTKC	ACCTATWIGT	GGGGATCAGT	GCATAGTGTG	TGTWAAGCAT	TTAATACCTG	300

	GCAAGTGTTC AGCAAATTTT TTGTTCTATA TATTTATTAT TTGATTATTG GCCCTGAGGA	360
	GTAGGTGTTT GTTTGTTTGTTT AGTTTTATTT CTCATCTCCT CAGGAACACA	420
5	AATGAAACIT GGATATTGTT ATGGTGCTTT TNATAATATA TTTATTATTT TCAGCAATTN	480
	ATTCTTGTTA AAACAATTTC TTATGACAAG TTACTCATCT TCAATGGTGA GAAGAAATCT	540
10	AGCTCAGAAT AATATATTT TAGTGTTTGT ATCTCTGGAT ACTCATTTTG CTCATTGCCA	600
	CGTAAAGTAA AAAAATACAT AAATTAGCTT ATTCCAATGT AATATCTTCA GGATAGTCAT	660
	GGGCAAGGAA TTAATCACAT TAAGAGATAA CTGCAACTAA GCACTATTTG AGGTGACTTC	720
15	TGTGGAAAAA AAATTAATYC TTTACCATTG CAGCGTTCTG CCCTAGGTCC AAATGTTACC	780
	AAAATCACTC TAGAATCTTT TCTTGCCTGG AAGAAAAGGA AAAGACAAGA AAAGATTGAT	840
20	AAACTTGAAC AAGATATGGA AAGAAGGAAA GCTGACTTCA AAGCAGGGAA AGCACTAGTG	900
	ATCAGTGGTC GTGAAGTGTT TGAATTTCGT CCTGAACTGG TCAATGATGA TGATGAGGAA	960
	GCAGATGATA CCCGCTACAC CCAGGGAACA GGTGGTGATG AGGTTGATGA TTCAGTGAGT	1020
25	GTAAATGACA TAGATTTAAG CCTGTACATC CCAAGAGATG TAGATGAAAC AGGTATTACT	1080
	GTAGCCAGTC TTGAAAGATT CAGCACATAT ACTTCAGATA AAGATGAAAA CAAATTAAGT	1140
30	GAAGCTTCTG GAGGTAGGGC TGAAAATGGT GAAAGAAGTG ACTTGGAAGA GGACAACGAG	1200
	AGGGAGGGAA CGGAAAATGG AGCCATTGAT GCTGTTCCTG TTGATGAAAA TCTTTTCACT	1260
	GGAGAGGATT TGGATGAACT AGAAGAAGAA TTAAATACAC TTGATTTAGA AGAATGACAC	1320
35	CAAACACATC GCTGAAAAAA TTAAGTCAGC TCAGCACGAG TTGAAATTGA CTACATTAAT	1380
	TTCTTTCCAC CTAGAATCAA CAGGATGTTT ATTTCCTATG CTGATTCTGG AGGAGTTAAC	1440
40	CTCCTGCAAA AAAGGCATCT TGTCCCTACA TCTTCTCTTC	1500
	AGTAAGTTCA GAGTAGTTCA TGATAAATTG AAAATATAAT GGTCATTGCA GAAAATGATT	1560
	GATGTTGTAA CTGTCCACCC AAGTAAGAAG TGTATCTGCC TTTCCATCTT TTGGTTTTCA	1620
45	TTTGGGCATG TGCTATTACC AGAAACAACA AACTTATATT TAAAATACCC TTCATTTGAC	1680
	ACAGTTTTTA ATGAGTGATT TAATTTCCTC TGTATTTGTA TGTTTAGAAG ACTGCCTAAA	1740
50	ACATGAGCAC TGTACTTCAT AAAGGAAACG CGTATGCAGA TTCAGTATTG TGTATCTTTG	1800
	GACAATTAGA TGGACATTTA AAATGGAACT TCTTTTATCT GACAGGATCA GCTACAATGC	1860
	CCTGTGTTAA ATTGTTAAA AGTTTCCCTT TTCTTTTTTG CCAATAAAGT TGTAAATAAA	1920
55	GACCATCATA САТТААААТС СААААААААА АААААААААА АА	1962

^{60 (2)} INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1228 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

10	GGCTGCCCAG	GCCCGCACT	GGAAGAGCCT	CCAGCAGCAA	GATGTGACCG	YTGTGCCGAT	60
	GAGCCCCAGC	AGCCACTCCC	CAGAGGGGAG	GCCTCCACCT	CTGCTGCCTG	GGGTCCAGT	120
15	GTGTAAGGCA	GCTGCATCTG	CACCGAGCTC	CCTCCTGGAC	CAGCCGTGCC	TCTGCCCCGC	180
15	ACCCTCTGTC	CGCACCGCTG	TTGCCCTGAC	AACGCCGGAT	ATCACATTGG	TTCTGCCCCC	240
	TGACATCATC	CAACAGGAAG	CGTCACCCTG	AGGGAGGAGA	CAGAAGCCTG	GGCCAGGTGA	300
20	ACAGTGGTAT	AGCAGCCACT	CCAGCCTCTG	CTGCAGCAGC	CACCCTGGAT	GTGGCTGTTC	360
	GGAGAGGCCT	GTCCCACGGA	GCCCAGAGGC	TGCTGTGCGT	GGCCCTGGGA	CAGCTGGACC	420
25	GGCCTCCAGA	CCTCGCCCAT	GACGGGAGGA	GTCTGTGGCT	GAACATCAGG	GGCAAGGAGG	480
	CGGCTGCCCT	ATCCATGTTC	CATGTCTCCA	CGCCACTGCC	AGTGATGACC	GGTGGTTTCC	540
	TGAGCTGCAT	CTTGGGCTTG	GTGCTGCCCC	TGGCCTATGN	TTCCAGCCTG	ACCTGGTGCT	600
30	GGTGGCGCTG	GGGCCTGCCA	NTGCCTGCAG	GCCCCCACG	CTGCACTCCT	GGCTGCAATG	660
	CTTCGGGGGC	TGGCAGGGGG	CCGAGTCCTG	GCCCTCCTGG	AGGAGAACTC	CACACCCCAG	720
35	CTAGCAGGGA	TCCTGGCCCG	GGTGCTGAAT	GGAGAGGCAC	CTCCTAGCCT	AGGCCCTTCC	780
	TCTGTGGCCT	CCCCAGAGGA	CGTCCAGGCC	CTGATGTACC	TGAGAGGCA	GCTGGAGCCT	840
	CAGTGGAAGA	TGTTGCAGTG	CCATCCTCAC	CTGGTGGCTT	GAAATCGGCC	AAGGTGGGAG	900
40	CATTTACACC	GCAGAAATGA	CACCGCACGC	CAGCGCCCCG	CGGCCGCGAT	CCGGACCCCA	960
	AGCCCACGGC	TCCCTCGACT	CTGGGGCACG	GAACCCCGCC	CACTCCCAAT	ccccccccc	1020
45	CGCCCTCTCC	CACCCGTGCT	TCCCCCGCTC	CACCCCTCAC	CTCACCTCGC	CCCSGCCCCA	1080
	CCCATCGCGC	CCCGGCCCGT	CCCATCGAGG	CCCATGCAAC	CCACGCTCGG	TYCCGTTCCG	1140
	GCCCCTGCGC	TCKCGCTKNS	TTCGCTCCCC	GCCCTTGCGC	CGTTAGTAAA	CATCGCTCAA	1200
50	ACGAAAAAA	ААААААААА	AAACTCGA				1228

55 (2) INFORMATION FOR SEQ ID NO: 26:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1340 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

5	AATTCGGCAG AGAGATGGCC GCCCCCGTGG ATCTAGAGCT GAAGAAGGCC TTCACAGAGC	60
	TTCAAGCCAA AGTTATTGAC ACTCAACAGA AGGTGAAGCT CGCAGACATA CAGATTGAAC	120
10	AGCTAAACAG AACGAAAAAG CATGCACATC TTACAGATAC AGAGATCATG ACTTTGGTAG	180
10	ATGAGACTAA CATGTATGAA GGTGTAGGAA GAATGTTTAT TCTTCAGTCC AAGGAAGCAA	240
•	TTCACAGTCA GCTGTTAGAG AAGCAGAAAA TAGCAGAAGA AAAAATTAAA GAACTAGAAC	300
15	AGAAAAAGTC CTACCTGGAG CGACGTTAAA GGAAGCTGAG GACAACATCC GGGAGATGCT	360
	GATGGCACGA AGGGCCCAGT AGGGAGCCTC TCTGGGAAGC TCTTCCTCCT GCCCCTCCCA	420
20	TTCCTGGTGG GGGCAGAGGA GTGTCTGCAG GGAAACAGCT TCTCCTCTGC CCCGATGGAT	480
	GCTTTATTTG GATGGCCTGG CAACATCACA TTTTCTGCAT CACCCTGAGC CCCATTTGCT	540
	TCCCAGCCCT GGAGTTTTTA CCCGGCTTTG CTGCCACCTC TGCCCAGGAC ACKCTTCCCT	600
25	CTCGGGATGT GTGATGAACT CCCAGGAGAG GGAAGATGGG AGCCAGGGCA AGATAGGAAG	660
	CTCTGCCTGA GCTTTCCACT AGGCACGCCA GCCAGACCAA TAAAAAGCGT CTGTCCCACT	720
30	CTGCTAAGCC TGGTTTTCTT GAGCAGAGGG ATGGAACAGA GGGTGAGAGA GGCAGTGGCC	780
	GTCTCCACCT CAGCTCCTGC TCCCTCTGCA TCAGAGCCCT TCCTTTCTTG GGGGATGGGC	840
25	CTTGCCNTCT TCTCTTTTCC CTTCCTGTAC CTTTGACTAA CGCTCAGCTT CCGGGCCTGC	900
35	ATGCAGTAGA CAGAAGAGGA AGAAAGAACA GATGTTCACA GCTGAATCTC AGTGAACAGA	960
	ATAGCAGTCC CTGGATGGCA GTCTGCCTAA AGATTCCTTT CCCTGCCTTC TCCCATACAT	1020
40	TCCAAAAGGA AGTTCAACAG TAAGCAGCAC CTCCAAGACT GTCTCCTTTY GGCCARTATC	1080
	ATAAGATGGA CGCCATAATC CTGAGGCCTC CTAGAGGCTG AGGGGGCAAC GGTGTGATCC	1140
45	AGCTGGCTCA TCCCAGCCAG GTGGGCCAAT TATTCAATTT TCAAGAATTT TGTTGCAAGC	1200
70	CAGTTGTCAA ACACAGCCAT TATAATTATG TAAATTTGCA AATTATGTTA AAAACAAGGA	1260
	CAATAAATAT TCAAAATGCA TCCCTAAWWA AAAAAAAAA AANGGGNGGC CGCNCTAGGG	1320
50	GATCCAAGCT TACGTACGCG	1340

(2) INFORMATION FOR SEQ ID NO: 27:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 806 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
5	ACCTTCTTCC ATGTTTAGTC CCTTGGGCTC TGCTACCCTC CTGCTGGAGG TGAGAGCATC	60
J	CTGTGTGCAA CCAGAGATGC CCTCTGGCTT TCAGACCTGC CTGCTTTTCA CCCTCAGCCC	120
	TTTCTCACTC AGCAAAATTG TGGGGGTCCC TAGTCAGCAG CTCCCTGGGC AGCTCTCTGA	180
10	GCAAGGTGGT CTCTGTGGTC ATGAAGGAGA GCCGGCTAGG ACAGTGCCGG AAACTCAGCT	240
	GCCTCTCCCC TTCAACTCAG CTGGCCCCCC GCACCTGAAG TGCACAGGAG CCGGGAAGAG	300
15	AGTCTGGAGC CCACCCCGGA GGGCAGCACA GGAGGTGTCT CTGCAGCTGG TGTCCTGCCA	360
	CCCCTGCAGG CAGCACACGT CCCGGGCATT CTCCTTAGCC ACAGACAGAA CAGCCAGTGC	420
	CAGAGTCTGC TGTCGTTCCC CTTTAAGCAC ACTCATTCAC CACACCCGAG GAGGCCAGAG	480
20	GTGCAGGGAG CATGGGCTGT CGCTTCCCCT TTAAGCACAC TCATTCACCA CACCCGAGGA	540
	GGCCAGAAGT GCAGGGAGCA TGGGCTGGGT GCACCTCCGC AGGAGAGAAG GCTGAGCCAC	600
25	CGCCGTCCCG GGAGCCCGGC TCCCAGGCCT CTCGTTTTCC CCTACCTCCC TAAGACTTTT	660
	CTGTCACTCT CTGGCCATTG AAAGGCTTCT GTTCCTTAAA GTGCTGTTAC ACTCTCCTTT	720
	CCCAGGATGC AGCAAGCCAA AACAGTACCA CTGCACGTCA GCCTGGGTGA CAGAGTGAGA	780
20	CCCTTATION	006
30	CCCTATCTTA AAAAAAAAA AAAAAA	806
50	CCCTATCTTA AAAAAAAAA AAAAAA	806
		806
35	(2) INFORMATION FOR SEQ ID NO: 28:	806
	(2) INFORMATION FOR SEQ ID NO: 28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 696 base pairs	806
	(2) INFORMATION FOR SEQ ID NO: 28: (i) SEQUENCE CHARACTERISTICS:	806
35	(2) INFORMATION FOR SEQ ID NO: 28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 696 base pairs (B) TYPE: nucleic acid	
35	(2) INFORMATION FOR SEQ ID NO: 28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 696 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(2) INFORMATION FOR SEQ ID NO: 28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 696 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	. 60
35 40	(2) INFORMATION FOR SEQ ID NO: 28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 696 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
35 40 45	(2) INFORMATION FOR SEQ ID NO: 28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 696 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28: GAGTTCCCNA CGCGGTGGCG NCCGTTTTAG AAATTAGTGG ATCCCCCGG GCTGGCAGGG	. 60
35 40	(2) INFORMATION FOR SEQ ID NO: 28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 696 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28: GAGTTCCCNA CGCGGTGGCG NCCGTTTTAG AAATTAGTGG ATCCCCCGG GCTGGCAGGG AATTCGGCAC GAGCACAGAG GAAAGCGGGT GCCCGGCATG GCCATCCTGA TGTTGCTGGC	60 120
35 40 45	(2) INFORMATION FOR SEQ ID NO: 28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 696 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28: GAGTTCCCNA CGCGGTGGCG NCCGTTTTAG AAATTAGTGG ATCCCCCCGG GCTGGCAGGG AATTCGGCAC GAGCACAGAG GAAAGCGGGT GCCCGGCATG GCCATCCTGA TGTTGCTGGC GGGATCCCCA TGCACCTTGT CCTTCTCCAC TGATACTGGC AGCTCGGCTC CTGGACCCAA	60 120 180
35 40 45	(2) INFORMATION FOR SEQ ID NO: 28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 696 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28: GAGTTCCCNA CGCGGTGGCG NCCGTTTTAG AAATTAGTGG ATCCCCCCGG GCTGGCAGGG AATTCGGCAC GAGCACAGAG GAAAGCGGGT GCCCGGCATG GCCATCCTGA TGTTGCTGGC GGGATCCCCA TGCACCTTGT CCTTCTCCAC TGATACTGGC AGCTCGGCTC CTGGACCCAA GATCCCTTGA GTGGAATTCT GCAGTGCAAG AGCCCTTCGT GGGAGCTGTC CCATGTTTCC	60 120 180 240
35 40 45	(2) INFORMATION FOR SEQ ID NO: 28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 696 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28: GAGTICCCNA CGCGGTGGCG NCCGITTTAG AAATTAGTGG ATCCCCCCGG GCTGGCAGGG AATTCGGCAC GAGCACAGAG GAAAGCGGGT GCCCGGCATG GCCATCCTGA TGTTGCTGGC GGGATCCCCA TGCACCTTGT CCTTCTCCAC TGATACTGGC AGCTCGGCTC CTGGACCCAA GATCCCTTGA GTGGAATTCT GCAGTGCAAG AGCCCTTCGT GGGAGCTGTC CCATGTTTCC ATGGTCCCCA GTCTCCCCTC CACTTGGTGG GGTCACCAAC TACTCACCAG AAGGGGGCTT	60 120 180 240 300

660

720

780

840

900

960

1007

	CCATCTTGCA AACTACACTT TAAAAAAAAC TCATTGCTTT GTATTGTAGT AACCAATATG	54
	TGCAGTATAC GTTGAATGTA TATGAACATA CTTTCCTATT TCTGTTCTTT GAAAATGTCA	600
5	GAAATATTTT TTTCTTCTC ATTTTATGTT GAACTAAAAA GGATTAAAAA AAAAATCTCC	660
	AGAMAAAAA AAAAAAAAA AAATTACTGC GGTCCG	696
10		
	(2) INFORMATION FOR SEQ ID NO: 29:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1007 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
	AATTCGGCAC GAGGAAAAAA TACCATTTGT GTATGATACC CAATTTGGAT CTCAATTTGG	60
25	ATAGAGATTT GGTGCTTCCA GATGTRAGTT ATCAGGTGGA ATCCAGTGAG GAGGATCAGT	120
	CTCAGACTAT GGATCCTCAA GGACAAACTC TGCTGCTTTT TCTCTTTGTG GATTTCCACA	180
•	GTGCATTTCC AGTCCAGCAA ATGGAAATCT GGGGAGTCTA TACTTTGCTC ACAACTCATC	240
30	TCAATGCCAT CCTTGTGGAG AGCCACAGTG TAGTGCAAGG TTCCATCCAA TTCACTGTGG	300
	ACAAGGTCTT GGAGCAACAT CACCAGGCTG CCAAGGCTCA GCAGAAACTA CAGGCCTCAC	360
35	TCTCAGTGGC TGTGAACTCC ATCATGAGTA TTCTGACTGG AAGCACTAGG AGCAGCTTCC	420
	GAAAGATGTG TCTCCAGACC CTTCAAGCAG CTGACACACA AGAGTTCAGG ACCAAACTGC	480
	ACAAAGTATT TOGTGAGATC ACCCAACACC AATTTCTTCA CCACTGCTCA TGTGAGGTGA	540
40	AGCAGCTAAC CCTAGAAAAA AAGGACTCAG CCCAGGGCAC TGAGGACGCA CCTGATAACA	600

GCAGCCTGGA GCTCCTAGCA GATACCAGCG GGCAAGCAGA AAACAAGAGG CTCAAGAGGG

GCAGCCCCCG CATAGAGGAG ATGCGAGCTC TGCGCTCTGC CAGGGCCCCG AGCCCGTCAG

AGGCCGCCCC GCGCCCCCG GAAGCCACCG CGGCCCCCCT CACTCCTAGA GGAAGGGAGC

ACCGCGAGGC TCACGGCAGG GCCCTGGCGC CGGGCAGGGC GAGCCTCGGA AGCCGCCTGG

AGGACGTGCT GTGGCTGCAG GAGGTCTCCA ACCTGTCAGA GTGGCTGAGT CCCAGCCCTG

GGCCCTGAGC CGGGTCCCCT TNCGCAAGCG CCCACCGATC CGGARGCTGC GGGCAGCCGT

TATCCCGTGG TITAATAAAG TGCCGCGCGC TCACCAAAAA AAAAAAA

(2) INFORMATION FOR SEQ ID NO: 30:

45

50

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2017 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

10	AATTCGGCAC	GAGCGGATCC	GTTGCGGCTG	CAGCTCTGCA	GTCGGGCCGT	TCCTTCGCCG	60
10	CCGCCAGGGG	TAGCGGTGTA	GCTGCGCACG	TCGCGCGCGC	TACCGCACCC	AGGTTCGGCC	120
	CGTAGCGTCT	GGCAGCCCGG	CGCCATCTTC	ATCGAGCGCC	ATGGCCGCAG	CCTGCGGGCC	180
15	GGGAGCGGCG	GGTACTGCTT	GCTCCTCGGC	TTGCATTTGT	TTCTGCTGAC	CGCGGGCCCT	. 240
	GCCTGGGCTG	GAACGACCCT	GACAGAATGT	TGCTGCGGGA	TGTAAAAGCT	CTTACCCTCC	300
20	ACTATGACCG	CTATACCACC	TCCCGCAGCT	GGATCCCATC	CCACAGTTGA	AATGTGTTGG	360
20	AGGCACAGCT	GGTTGTGATT	CTTATACCCC	AAAAGTCATA	CAGTGTCAGA	ACAAAGGCTG	420
	GGATGGGTAT	GATGTACAGT	GGGAATGTAA	GACGGACTTA	GATATTGCAT	ACAAATTTGG	480
25	AAAAACTGTG	GTGAGCTGTG	AAGGCTATGA	GTCCTCTGAA	GACCAGTATG	TACTAAGAGG	540
	TTCTTGTGGC	TTGGAGTATA	ATTTAGATTA	TACAGAACTT	GGCCTGCAGA	AACTGAAGGA	600
30	GTCTGGAAAG	CAGCACGGCT	TTGCCTCTTT	CTCTGATTAT	TATTATAAGT	GGTCCTCGGC	660
50	GGATTCCTGT	AACATGAGTG	GATTGATTAC	CATCGTGGTA	CTCCTTGGGA	TCGCCTTTGT	720
	AGTCTATAAG	CTGTTCCTGA	GTGACGGCA	GTATTCTCCT	CCACCGTACT	CTGAGTATCC	780
35	TCCATTTTCC	CACCGTTACC	AGAGATTCAC	CAACTCAGCA	GGACCTCCTC	CCCCAGGCTT	840
	TAAGTCTGAG	TTCACAGGAC	CACAGAATAC	TGGCCATGGT	GCAACTTCTG	GTTTTGGCAG	900
40	TGCTTTTACA	GGACAACAAG	GATATGAAAA	TTCAGGACCA	GGGTTCTGGA	CAGGCTTGGG	960
	AACTGGTGGA	ATACTAGGAT	ATTTGTTTGG	CAGCAATAGA	GCGGCAACAC	CCTTCTCAGA	1020
	CTCGTGGTAC	TACCCGTCCT	ATCCTCCCTC	CTACCCTGGC	ACGTGGAATA	GGGCTTACTC	1080
45	ACCCCTTCAT	GGAGGCTCGG	GCAGCTATTC	GGTATGTTCA	AACTCAGACA	CGAAAACCAG	1140
	AACTGCATCA	GGATATGGTG	GTACCAGGAG	ACGATAAAGT	AGAAAGTTGG	AGTCAAACAC	1200
50	TGGATGCAGA	AATTTTGGAT	TTTTCATCAC	TTTCTCTTTA	GAAAAAAGT	ACTACCTGTT	1260
30	AACAATTGGG	AAAAGGGGAT	ATTCAAAAGT	TCTGTGGTGT	TATGTCCAGT	GTAGCTTTTT	1320
	GTATTCTATT	ATTTGAGGCT	AAAAGTTGAT	GTGTGACAAA	ATACTTATGT	GTTGTATGTC	` 1380
55	AGTGTAACAT	GCAGATGTAT	ATTGCAGTTT	TTGAAAGTGA	TCATTACTGT	GGAATGCTAA	1440
	AAATACATTA	АТТТСТАААА	CCTGTGATGC	CCTAAGAAGC	ATTAAGAATG	AAGGTGTTGT	1500
60	ACTAATAGAA	ACTAAGTACA	GAAAATTTCA	GTTTTAGGTG	GTTGTAGCTG	ATGAGTTATT	1560

	ACCTCATAGA GACTATAATA TYCTATYTGG TATTATATTA TYTGATGTYT GCTGTTCTTC	1620
	AAACATTTAA ATCAAGCTTT GGACTAATTA TGCTAATTTG TGAGTTCTGA TCACTTTTGA	1680
5	GCTCTGAAGC TTTGAATCAT TCAGTGGTGG AGATGGCCTT CTGGTAACTG AATATTACCT	1740
	TCTGTAGGAA AAGGTGGAAA ATAAGCATCT AGAAGGTTGT TGTGAATGAC TCTGTGCTGG	1800
. 10	CAAAAATGCT TGAAACCTCT ATATTTCTTT CGTTCATAAG AGGTAAAGGT CAAATTTTC	1860
	AACAAAAGTC TTTTAATAAC AAAAGCATGC AGTTCTCTGT GAAATCTCAA ATATTGTTGT	1920
1	AATAGTCTGT TTCAATCTTA AAAAGAATCA ATAAAAACAA ACAAGGGAAA AAAAAAAAA	1980
15	AAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA	2017
20	(2) INFORMATION FOR SEQ ID NO: 31:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 699 base pairs	

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

30	GNGTTTTTC CAGCCAGGAA GTGACCGNTA CTGCAGCACG AGANAGATTG GTTGGGTTGG	60
	TTGRAAATGA CYCTGAACAT TTATTTCCAT TGCAATTTCT GTGGCTGAGG AGACTTAAAC	120
35	TTTACAAGTA TTATCCTTTT AAGATCATTT TAATTTTAGT TGAGTGCAGA GGGCTTTTAT	180
	AACAAACGTG CAGAAATTTT GGAGGGCTGT GATTTTTCCA GTATTAAACA TGCATGCATT	240
	AATCTTGCAG TTTATTTTCT CATTGTGTAT GTATATATCG CTTTTCTCTG CAGCACGATT	300
40	TCTCTTTTGA TAAWKCCCTT TAGGGCACAA CTAGTTATCA GTAACTGAAT GTATCTTAAT	360
	CATTATGGCT GCTTCTGTTT TTTCATTAAC AAAGGTTATT CATATGTTAG CATATAGTTT	420
45	CTTTGCACCC ACTATTTATG TCTGAATCAT TTGTCACAAG AGAGTGTGTG CTGATGAGAT	480
	TGTAAGITTG TGTGTTTAAA CTTTTTTTTG AGCGAGGGAA GAAAAAGCTG TATGCATTTC	540
	ATTGCTGTCT ACAGGTTTCT TTCAGATTAT GTTCATGGGT TTGTGTGTAT ACAATATGAA	600
50	GAATGATCTG AAGTAATTGT GCTGTATTTA TGTTTATTCA CCAGTCTTTG ATTAAATAAA	660
	ААССАААААСС АСАААААААА ААААААААА ААААААА	699

55

60

25

(2) INFORMATION FOR SEQ ID NO: 32:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1264 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5	(xi)) SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 32:		
	GGCACGAGGG	CACTGTTTCC	TCAGTCCATG	GCTGAGTACA	TCACCGGTGT	TITCTCTCTT	60
10	ATTCCTCCCA	TCAAGCCTAA	AAGGAATCTC	TATTGGAGAT	ACTGCCATTA	GTGTTCCTTT	120
·	TATAGGTGAG	GAACTGAGGC	ATAKAGGGTT	CCCCAGTTGA	ACCAACTGAT	AAATAGTAGA	180
	ACTTGGATTT	TAATTCAGTC	TTGATGCCAG	GGATAAGGCT	CTTACTTTCT	ACCTTAGGCT	240
15	ATTTCTAGGA	AACGCAGGAG	AGTGTTGAAG	GGGCAGAGAA	AGGGATCCAG	TTCCTTTCTG	300
	TCCCGCATCC	TAGTCCCTGA	GAAGCAAAGA	ARAATGTGTG	GCTTCTTTTG	CTTTGCTTTT	360
20	GTTGTCATCC	CACACATCTC	CAGGGGAMCT	GGGCTCTTGA	TCTTGGSCTC	TTCCCCTTTA	420
	ACTGTTAAGT	GGGAGCARGT	AAGGGGGTAC	AGTAGGGCTG	GCCTGGAGTT	AGAGGCTTGG	480
•	ATGCCTTAGC	TCCTCTGTCT	GCACTCCAGA	ACTGCCTGAC	TTCATTTCGT	ATGTTGTCCT	540
25 -	TIGTTTTGAC	AATTGATCCA	TGTCCCAGTC	CGTCTCTTCT	TCCTTCTTGA	TACTTACACT	600
	GCTTCTTTCT	GTTGGTTTCC	AGTGTTTAAC	ACTGTATACA	ACAGTGACGA	CAACGTGTTT	660
30	GTGGGGGCCC	CCACGGGCAG	CGGGAAGACT	ATTTGTGCAG	AGTTTGCCAT	CCTGCGAATG	720
,	CTGCTGCAGA	GCTCGGAGGG	GCGCTGTGYS	TWCWTCACCM	CCATGGAGGC	CCTGGCCAGA	780
	RCAGGTATGA	CGTGGCGCTG	TGTCATGTGA	ATTTCCCAAG	AAGCATTTCA	TCTGTGATTC	840
35	CGTATGAAGG	CTTTCTAAGC	CCTGAAATTT	GCAGGGTCAT	TTCCTCAGTT	TGTGTATTAA	900
	AGAAAAGCTG	CCCCAGCCAA	GCGTGGTGGC	TCACGCCTGT	AATCCCAGCA	CTTTGGGAGG	960
40	CCGAGGCGGG	CAGATCTCCG	GAGATCAGGA	GTTCGAGACC	AGCCTGGCCA	ACATGGTGRA	1020
	ACCCTGTCTC	TACTAAAAWT	ACAGAAATTA	GCTGGGNGTG	GTGGTGTGCG	CCTGTAATCC	1080
	CAGCTACTTG	GAAGGCTGAG	GCAGGAGAAT	CGCTTGAACC	CGGGAGGCGG	AGGTTGCAGT	1140
45	GAGCCAAGTT	CGCACCACTG	CACTCCAGCC	TGGGCAACAA	GAGCGAGACT	TCATCTCAAA	1200
	ааааааааа	AAAAACTCGA	eeeeeeccc	GGTACCCAAT	TCGCCCTATA	GTGATCGTAT	1260
50	TACA						1264

(2) INFORMATION FOR SEQ ID NO: 33:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 997 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

60 (D) TOPOLOGY: linear

120

300

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33: ATTGGAAGTT GTTTTGCAAC CTGGGCTTTT ATACAGAAGA ATACGAATCA CAGGTGTGTG 5 AGCATCTACT TAATTAATTT GCTTACAGCC GATTTCCTGC TTACTCTGGC ATTACCAGTG AAAATTGTTG TTGACTTGGG TGTGGCACCT TGGAAGCTGA AGATATTCCA CTGCCAAGTA 180 ACAGCCTGCC TCATCTATAT CAATATGTAT TTATCAATTA TCTTCTTAGC ATTTGTCAGC 10 240 ATTGACCGCT GTCTTCAGCT GACACAGC TGCAAGATCT ACCGAATACA AGAACCCGGA 300 TTTGCCAAAA TGATATCAAC CGTTGTGTGG CTAATGGTCC TTCTTATAAT GGTGCCAAAT 360 15 ATGATGATTC CCATCAAAGA CATCAAGGAA AAGTCAAATG TGGGTTGTAT GGAGTTTAAA 420 AAGGAATTTG GAAGAAATTG GCATTTGCTG ACAAATTTCA TATGTGTAGC AATATTTTTTA 480 20 AATTTCTCAG CCATCATTTT AATATCCAAT TGCCTTGTAA TTCGACAGCT CTACAGAAAC 540 AAAGATAATG AAAATTACCC AAATGTGAAA AAGGCTCTCA TCAACATACT TTTAGTGACC 600 ACGGGCTACA TCATATGCTT TGTTCCTTAC CACATTGTCC GAATCCCGTA TACCCTCAGC 25 660 CAGACAGAAG TCATAACTGA TTGCTCAACC AGGATTTCAC TCTTCAAAGC CAAAGAGGGCT 720 ACACTGCTCC TGGCTGTGTC GAACCTGTGC TTTGATCCTA TCCTGTACTA TCACCTCTCA 780 30 AAAGCATTCC GCTCAAAGGT CACTGAGACT TTTGCCTCMC CTAAAGAGAC CAAGGTYAGA 840 AAGAAAAATT AAGANGTGGA AATAATGGCT AAAAGACAGG NITTTTGTGG TACCAATTCT 900 GGGCTTTATG GGACCNTAAA GTTATTATAG CTTGGAAGGT AAAAAAAAA AAAGGGNGGG 35 960 CGCTCTAGAG GTTCCCCGAG GGGCCAGCTT AGGGTGC 997 40 (2) INFORMATION FOR SEQ ID NO: 34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1914 base pairs 45 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34: 50 GTGTGAGAGG CCTCTCTGGA AGTTGTCCCG GGTGTTCGCC GCTGGAGCCC GGGTCGAGAG 60 GACGAGGTGC CGCTGCCTGG AGAATCCTCC GCTGCCGTCG GCTCCCGGAG CCCAGCCCTT 120 55 TCCTAACCCA ACCCAACCTA GCCCAGTCCC AGCCGCCAGC GCCTGTCCCT GTCACGGACC 180 CCAGCGTTAC CATGCATCCT GCCGTCTTCC TATCCTTACC CGACCTCAGA TGCTCCCTTC 240 TGCTCCTGGT AACTTGGGTT TTTACTCCTG TAACAACTGA AATAACAAGT CTTGATACAG

	AGAATATAGA	TGAAATTTTA	AACAATGCTG	ATGTTGCTTT	AGTAAATTTT	TATGCTGACT	360
	GGTGTCGTTT	CAGTCAGATG	TTGCATCCAA	TTTTTGAGGA	AGCTTCCGAT	GTCATTAAGG	420
5	AAGAATTTCC	AAATGAAAAT	CAAGTAGTGT	TTGCCAGAGT	TGATTGTGAT	CAGCACTCTG	480
	ACATAGCCCA	GAGATACAGG	ATAAGCAAAT	ACCCAACCCT	CAAATTGTTT	CGTAATGGGA	540
10	TGATGATGAA	GAGAGAATAC	AGGGGTCAGC	GATCAGTGAA	AGCATTGGCA	GATTACATCA	. 600
10	GGCAACAAAA	AAGTGACCCC	ATTCAAGAAA	TTCGGGACTT	AGCAGAAATC	ACCACTCTTG	660
	ATCGCAGCAA	AAGAAATATC	ATTGGATATT	TTGAGCAAAA	GGACTCGGAC	AACTATAGAG	720
15	TTTTTGAACG	AGTAGCGAAT	ATTTTGCATG	ATGACTGTGC	CTTTCTTTCT	GCATTTGGGG	780
	ATGTTTCAAA	ACCGGAAAGA	TATAGTGGCG	ACAACATAAT	CTACAAACCA	CCAGGGCATT	840
20	CTGCTCCGGA	TATGGTGTAC	TTGGGAGCTA	TGACAAATTT	TGATGTGACT	TACAATTGGA	900
	TTCAAGATAA	ATGTGTTCCT	CTTGTCCGAG	AAATAACATT	TGAAAATGGA	GAGGAATTGA	960
	CAGAAGAAGG	ACTGCCTTTT	CTCATACTCT	TTCACATGAA	AGAAGATACA	GAAAGTTTAG	1020
25	AAATATTCCA	GAATGAAGTA	GCTCGGCAAT	TAATAAGTGA	AAAAGGTACA	ATAAACTITT	1080
	TACATGCCGA	TTGTGACAAA	TTTAGACATC	CTCTTCTGCA	CATACAGAAA	ACTCCAGCAG	1140
30	ATTGTCCTGT	AATCGCTATT	GACAGCTTTA	GGCATATGTA	TGTGTTTGGA	GACTTCAAAG	1200
	ATGTATTAAT	TCCTGGAAAA	CTCAAGCAAT	TCGTATTIGA	CTTACATTCT	GGAAAACTGC	1260
	ACAGAGAATT	CCATCATGGA	CCTGACCCAA	CTGATACAGC	CCCAGGAGAG	CAAGCCCAAG	1320
35	ATGTAGCAAG	CAGTCCACCT	GAGAGCTCCT	TCCAGAAACT	AGCACCCAGT	GAATATAGGT	1380
	ATACTCTATT	GAGGGATCGA	GATGAGCTTT	AAAAACTTGA	AAAACAGTTT	GTAAGCCTTT	1440
40	CAACAGCAGC	ATCAACCTAC	GTGGTGGAAA	TAGTAAACCT	ATATTTTCAT	AATTCTATGT	1500
	GTATTTTTAT	TTTGAATAAA	CAGAAAGAAA	TTTTGGGTTT	TTAATTTT	TCTCCCGAC	1560
	TCAAAATGCA	TTGTCATTTA	ATATAGTAGC	СТСТТААААА	AAAAAAAAC	CTCCTAGGAT	1620
45	ТТАААААТАА	AAATCAGAGG	CCTATCTCCA	CTTTAAATCT	GTCCTGTAAA	AGTTTTATAA	1680
	ATCAAATGAA	AGGTGACATT	GCCAGAAACT	TACCATTAAC	TTGCACTACT	AGGGTAGGGA	1740
50	GGACTTAGGG	ATGTTTCCTG	TGTCGTATGT	GCTTTTCTTT	CTTTCATATG	ATCAATTCTG	1800
	TTGGTATTTT	CAGTATCTCA	TTTCTCAAAG	CTAAAGAGAT	ATACATTCTG	GATACTTGGG	1860
	AGGGGAATAA	ATTAAAGTTT	TCACACTGNA	АААААААА	АААААААААС	TCGA	1914
55							

(2) INFORMATION FOR SEQ ID NO: 35:

60 (i) SEQUENCE CHARACTERISTICS:

5	(A) LENGTH: 1020 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
	CCNITINITIT TITTITITITG CAAGACAAAA TATACTITAT TGTGACAGCA AATGCACATA	60
10	GTGCTGTAGG TAAGGCATGC TACTAGGAAT CTGCATATAA TCAAAAGCCA GTATGGAAAT	120
	GAATGGAAAT GAATGCTGTT GTTCTCAGAT TGAGTCCATG GTGGAGAAAG GATAGTTTGT	180
15	GTCCACTTAT TTCAAATGCA GTATCATACC TACTTAATCA GTTACCTATG CTTCTAACCA	240
10	ACAGCCCAGT GGCAAATAGG AGGAACTTAA CTGTACTCAG AAGTCACTTT TAATATCAAC	300
	GACAGAAATA TITCACTAAT TCAACTGAGG CAAATTTCCT TTCTAGACAA AGGACCTAGA	360
20	AATTGAGCAT GCAAAACATC CATCCATTCA TTCATTCAAA TAATTAGCCA ATTTTACCGT	420
	CATTTAATTC CACCAGAAGC AAATACTAGA ATATCTAGAA GTAGTTTGGG TAAAGAAACA	480
25	TTTACATTTT AATATTGTGT AATGTCATAA ATTTGGGGCT AAAATAACAC CAGGTCAAAT	540
	TTGATCCCTT TGTATGTGAG GGTACAAAGT ACAGTTTTCG TTTCAACAGC TGAACTTCTG	600
	AGAGAAGAGC TGAAAAAAAT GCTAAATAAG AGATCTAGGC CTTTGATGGA AACTATTAGG	660
30	CTCTACAGAC TTGTCAAAAA ATCAATGCAA AACTGAGGGG GAAAGGCTGA AATGCTTTGT	720
	AAAGCAGTAT TTTTAGACAA GTTGCTTCAT TTCCCCCTTT TCTAAAACAG ATGCAGATTA	780
35	AATGTTTTTT TGCATGAATG CACATTGACA TTCTGTTCAA CTGTTTTCTA AATGCAACAC	840
	TGCGGGTTTC AACAGTATGC TTTCATTTAA ACAAAGAATA TTATATGCAT GGTCAATTTA	900
	GTTTAAGAGA TGAAAAAAAA CTTTACTACT ATGAAAAATTG CTTATCAAAT ACTCTCCTCT	960
40	TTTATAAGGT GTTTTTARGC AACACAGGAC CGGTNGAACC GANCAAATTT ATAATTATAC	1020
45	(2) INFORMATION FOR SEQ ID NO: 36:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 781 base pairs(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
55	AACTCCTGAC CTCAAGTGCT CCACCTGCGT TGGCTTCCCA AAGTGCTGGG ATACAGGAGT	60
	RAGCCACTGC GCCTGGCTGA TCCCAGCACT TTTMAAATGA TGCCGCTCAA AGCCGTGACT	120
60	TGGCCTACTT TGAACAGCAA ACTTGTTGCT GCTGTTGTCA ACCTGAAGGC CTCTCAAATG	180

	CCAGCTTCAA	GCAGGGTGTG	AATTGGCCAG	TGTCAGATCT	CAGGAGTCCT	GTGTTGAGAG	240
	TGTGGCTTTC	AGCTGCGGG	AGCTGCACTT	GGTGGGGAAA	GCCAGGCAGG	TCACCCTCAC	300
5	AGCCAGATAA	TGTGGAGGTC	AGAACCCAAG	GAAGGGAGTG	AGACCTCCAC	TCCCAGTGGG	360
	GGACCTGGCC	ACCCATCCTT	GGGGACCTGA	GAAAGCGTAC	TTCACCTTGG	GGTGAAGGCT	420
0	GGGTGGGGCC	AGAGGGACCA	GTGCCCTCCT	CAGTGCTTAG	GGGCAGAGCC	ACCTGCAGCA	480
	ATGGTATCTG	CATATTAGCC	CCTCTCCACC	TTCTTTCTCC	CGCTGAATCA	TTTCCCTCAA	540
	AGCCCAAGAG	CTGTCACTGC	TTCTTTCTCC	CTGGGAAGAA	TGCGTGGACT	CTGCCTGGTG	600
5	ATAGACTGAA	GCCAGAACAG	TGCCACACCC	TCGCCTTAAT	TCCTTGCTAG	GTGTTCTCAG	660
	ATTTATGAGA	CTTCTTAGTC	AAATATGAGG	GAGGTTGGAT	CTCCTCCCTT	GTGCCTGTAA	720
20	TCCCAGCATT	TTGGGAAGCC	GAGGTGGGAG	GATCCCTTGA	AGCCAGGAGT	TTGAGACAAG	780
.0	С		•		•		781

(2) INFORMATION FOR SEQ ID NO: 37:

(i) SEQUENCE CHARACTERISTICS:

30

(A) LENGTH: 966 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

"							
	GGCACGAGGA	AGCAGCTGGG	GGCTGATCAG	GGGGAGCACG	CAGCCCTCCG	ATTGCAGGGC	60
	TGCCTATTTG	AGTGGCAGCT	CCTCTTGAAA	CAATGCAGAA	CAAGCCCAGG	GCCCCACAGA	120
40	AAAGGGCACT	GCCCTTCCCA	GAACTIGAGC	TCCGGGACTA	CGCATCTGTT	CTCACCAGAT	180
	ACAGCTTGGG	GCTGAGGAAC	AAAGAGCCTT	CCCTGGGCCA	CAGGTGGGG	ACCCAGAAGC	240
45	TGGGCAGGAG	CCCCTGTTCT	GAAGGGTCCC	AGGCCACAC	CACAGATGCT	GCTGACGTGC	300
75	AGAACCACTC	TAAAGAAGAA	CAGAGAGACG	CAGGAGCACA	GAGGARGTGC	GGCCAGGGGA	360
	GGCACACCTG	GGCGTACAGG	NGAGGGGCGC	AGGACACTŢC	GAGGCTGACA	GGAGACCCAC	420
50	GTGGTGGGGA	AAGGAGCCCC	CCAAAGTGTC	AGAGCATGAA	GCAGCAGGAA	GGAGCTCCCT	480
	CGGGCCACTG	CTGGGATCAG	TGGTGCCATG	GAGCAAGCGA	GGTTGTTTGG	CCTGAAAGCC	540
55	GGAAGCGTGC	CCAAATCTTT	SCATCACCAT	GTAGGCAGTC	ACCTCGCTCC	TCAGCACTCG	600
55	GGGCAGGACA	GAAGCTTGCT	GTCTGCTCAC	CAGACATCCT	GTGCTGCCCT	ACAGACACCT	660
	TGCTCGCCAG	CCATCCCCAC	TCACTTCTGA	CCGGGACCCA	ATTCTCTGGC	CAAACCCAGG	720
60	CTCTAGCACC	GTCTTGGTGT	CCTTGAGAAA	Canchachan	ΔΔΩΤΥΊΔΔΔΩΤ		780

	TYPE A AMAMAMA A CAMMAMA A CAMMAMA A CAMMAMA A CAMMAMA A CAMMAMAMA A CAMMAMA A CAMMAMAMA A CAMMAMA A CAMMAMAMA A CAMMAMA A CAMMAMAMA A CAMMAMAMAMA	
	TTTAATATAT AGACTATATG TACCTATGGA CTAGAGGTGA ATATATATAC ATCATATCAA	840
5		900
	GGGATTCTGG CATGAACTGC ACCTTATCTT CCTCGAGGGG GGGCCGGTAC CAATTGCCNA	960
	TAGTGG	966
10		300
	(2) INFORMATION FOR SEQ ID NO: 38:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 416 base pairs (B) TYPE: nucleic acid	•
	(C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
-	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
	GAATTCGGCA CGAGGTAATA GGAGCCCTCG TACCTCTTGT GTTCCTTACA AACATTCTCA	60
25	TCAGTAGCTC TACGCGTTGA CTGGGTGGTT TGARATGGCT GGTATACACA GGGCTTTCTT	120
	GGTGTTCTGT CTCTGGGGCT TARCTTTGTG TGTGGTTGGA GGGCCCTGGT GAGATTGGAA	180
20	GTACCAGAGA GTGCTGTGTC AGGGGCAGAG GGGCCTGTCG CTGGAGCTGG AGGGTGCCTG	
30	CCTTTGTGTC TGACTCARTC TCCTGTCTGC CTTGCCCCCT CAGGGTCTCG CCAGCCCAGC	240
	CTCTGTGGGA ATCTAAAAGG ARTGGATGTG GACGTKTGAC CAAGCACATC TCAGCTTTTA	300
35		360
	ATACCTGGGC TATTTATAGA CCTTTGGGGG GAATNGCTTG TGGAACAACA AGGGTT	416
40	(2) INFORMATION FOR SEQ ID NO: 39:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1114 base pairs	
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
50	TGTGTATTTG GGGGGACTGA AGGGTACGTG GGGCGAAACA AAACCGGCCA TGGCAGCAGC	60
	GGAGGAGGAG GACGGGGCC CCGAAGCCAA AATCGCGAGC GGGCGGGGC GGGCGCGACC	
	TTCGAATGTA ATATATGTTT GGAGACTGCT CGGGAAGCTG TGGTCAGTGT GTGTCGCCAC	120
55		.180
	CTGTACTGTT GGCCATGTCT TCATCAGTGG CTGGAGACAC GGCCAGAACG GCAAGAGTGT CCAGTATGTA AACGTCCAT CAGACACAC AACGTGT	240
60	CCAGTATGTA AAGCTGGGAT CAGCAGAGAG AAGGTTGTCC CGCTTTATGG GCGAGGGAGC	300
50	CAGAAGCCCC AGGATCCCAG ATTAAAAACT CCACCCGGCC CCCAGGGCCA GAGACCAGCT	360

	CCGGAGAGCA	GAGGGGGATT	CCAGCCATTT	GGTGATACCG	GGGGCTTCCA	CTTCTCATTT	420
5	GGTGTTGGTG	CTTTTCCCTT	TGGCTTTTTC	ACCACCGTCT	TCAATGCCCA	TGAGCCTTTC	480
,	CGCCGGGGTA	CAGGTGTGGA	TCTGGGACAG	GGTCACCCAG	CCTCCAGCTG	GCAGGATTCC	540
	CTCTTCCTGT	TTCTCGCCAT	CTTCTTCTTT	TTTTGGCTGC	TCAGTATTTG	AGCTATGTCT	600
10	GCTTCCTGCC	CACCTCCAGC	CAGAGAAGAA	TCAGTATTGA	GGTCCCTGC	TGACCCTTCC	660
	GTACTCCTGG	ACCCCCTTGA	CCCCTCTATT	TCTGTTGGCT	AAGGCCAGCC	CTGGACATTG	720
15	TCCAGGAAGG	CCTGGGGAGG	AGGAGTGAAG	TCTGTGCATA	GATGGGAGAG	CCTTCTGCTC	780
	AGAGGCTCAC	TCAGTAACGT	TGTTTAATTC	TCTGCCCTGG	GGAAGGAGGA	TGGATTGAGA	840
	GAATGTCTTT	CTCCTCTCCT	AAGTCTTTGC	TTTCCCTGAT	TTCTTGATTT	GATCTTCAAA	900
20	GGTGGGCAAA	GTTCCCTCTG	ACTCTTCCCC	CACTCCCCAT	CTTACTGATT	TAATTTAATT	960
	TTTCACTCCC	CAGAGTCTAA	TATGGATTCT	GACTCTTAAG	TGCTTCCGCC	CCCTCACTAC	1020
25	CTCCTTTAAT	ACAAATTCAA	TAAAAAAGGT	GAAATATAAA	АААААААА	AAAAAACYCG	1080
	GGGGGGCCC	CGGTCCCCAT	TCCCTTTGGG	CCCT			1114
30							
		SEQUENCE CH	Q ID NO: 40 HARACTERIST: 5TH: 602 bas	ICS: se pairs			
35		SEQUENCE CH (A) LENG (B) TYPI (C) STR	HARACTERIST	ICS: se pairs acid double		· · ·	
	(i) _.	SEQUENCE CH (A) LENK (B) TYPI (C) STRI (D) TOPO	HARACTERIST STH: 602 base E: nucleic and ANDEDNESS: 6	ICS: se pairs acid double ar	: 40:		
35	(i) _.	SEQUENCE CH (A) LENK (B) TYPI (C) STRA (D) TOPO SEQUENCE I	HARACTERIST: STH: 602 base: E: nucleic and ANDEDNESS: O DLOGY: line	ICS: se pairs acid double ar : SEQ ID NO:		CCTTGTTTAC	60
35	(i) (xi) GGGTCGACCC	SEQUENCE CH (A) LENK (B) TYPH (C) STRA (D) TOPK SEQUENCE I	HARACTERIST: STH: 602 base: E: nucleic and announce of the colory of the color of the c	ICS: se pairs acid double ar : SEQ ID NO: AAGACATTTC	CTGCTCGGAA		60 120
35	(i) (xi) GGGTCGACCC TAATTGTCTC	SEQUENCE CHECK (A) LENK (B) TYPH (C) STREE (D) TOPK SEQUENCE I ACGCGTCCGT	HARACTERIST: GTH: 602 bas E: nucleic a ANDEDNESS: 6 DLOGY: line DESCRIPTION CCCAGGCCAC	ICS: se pairs acid double ar : SEQ ID NO: AAGACATTC GTGCCTTGGG	CTGCTCGGAA	CAGCTGATAT	
35	(xi) (xi) GGGTCGACCC TAATTGTCTC GAATGAATGC	SEQUENCE CHECK (A) LENK (B) TYPH (C) STRUCT (D) TOPK SEQUENCE IN ACGCGTCCGT TGTGGCACAT	HARACTERIST: GTH: 602 bas E: nucleic a ANDEDNESS: 6 DLOGY: line DESCRIPTION CCCAGGCCAC TTTGTTTCCC GAACAAGCGT	ICS: se pairs acid double ar : SEQ ID NO: AAGACATTTC GTGCCTTGGG CGCAATGAGG	CTGCTCGGAA TGTCAAGTTG ACTCTCTACA	CAGCTGATAT	120 180
35	(xi) (xi) GGGTCGACCC TAATTGTCTC GAATGAATGC TGGCATCCCT	SEQUENCE CHECK (A) LENK (B) TYPH (C) STRUCT (D) TOPK SEQUENCE IN ACGCGTCCGT TGTGGCACAT TGTCTGTGTG	HARACTERIST: GTH: 602 bas E: nucleic a ANDEDNESS: 6 DLOGY: line DESCRIPTION CCCAGGCCAC TTTGTTTCCC GAACAAGCGT GTGATGACTA	ICS: se pairs acid double ar : SEQ ID NO: AAGACATTTC GTGCCTTGGG CGCAATGAGG TATGGCAACT	CTGCTCGGAA TGTCAAGTTG ACTCTCTACA CTTTGCTGTC	CAGCTGATAT	120 180 240
35 40 45	(xi) GGGTCGACCC TAATTGTCTC GAATGAATGC TGGCATCCCT TCTTTGCCAA	SEQUENCE CHARLES CONTROL CONTR	HARACTERIST: GTH: 602 bas E: nucleic a ANDEDNESS: 6 DLOGY: line DESCRIPTION CCCAGGCCAC TTTGTTTCCC GAACAAGCGT GTGATGACTA ATATCAACAG	ICS: se pairs acid double ar : SEQ ID NO: AAGACATTTC GTGCCTTGGG CGCAATGAGG TATGGCAACT AAGGAGAGCC	CTGCTCGGAA TGTCAAGTTG ACTCTCTACA CTTTGCTGTC ATGCGTACTT	CAGCTGATAT GGACCCGATA CTCATTGTAC	120 180 240 300
35 40 45	(xi) GGGTCGACCC TAATTGTCTC GAATGAATGC TGGCATCCCT TCTTTGCCAA GATGGTGAAA	SEQUENCE CHECK (A) LENK (B) TYPH (C) STRICT (D) TOPK SEQUENCE I ACGCGTCCGT TGTGGCACAT TGTCTGTGTG GGATCTATTT ATCAAGAGAGAGAGAGAGCTCTTACC	HARACTERIST: GTH: 602 bas E: nucleic a ANDEDNESS: 6 DLOGY: line DESCRIPTION CCCAGGCCAC TTTGTTTCCC GAACAAGCGT GTGATGACTA ATATCAACAG GAAGCAACAA	ICS: se pairs acid double ar : SEQ ID NO: AAGACATTTC GTGCCTTGGG CGCAATGAGG TATGGCAACT AAGGAGAGCC AATTCAGCAG	CTGCTCGGAA TGTCAAGTTG ACTCTCTACA CTTTGCTGTC ATGCGTACTT ACACCTCTTC	CAGCTGATAT GGACCCGATA CTCATTGTAC TCTAAAAAACT	120 180 240 300 360
35 40 45	(xi) GGGTCGACCC TAATTGTCTC GAATGAATGC TCGCATCCCT TCTTTGCCAA GATGGTGAAA CTTCACCATC	SEQUENCE CHECK (A) LENK (B) TYPH (C) STRICT (D) TOPK SEQUENCE I ACGCGTCCGT TGTGGCACAT TGTCTGTGTG GGATCTATTT ATCAAGAGAG AGCTCTTACC	HARACTERIST: GTH: 602 bas E: nucleic a ANDEDNESS: 6 DLOGY: line DESCRIPTION CCCAGGCCAC TTTGTTTCCC GAACAAGCGT GTGATGACTA ATATCAACAG GAAGCAACAA GAAGTATGAT	ICS: se pairs acid double ar : SEQ ID NO: AAGACATTTC GTGCCTTGGG CGCAATGAGG TATGGCAACT AAGGAGAGCC AATTCAGCAG GGATATGCTT	CTGCTCGGAA TGTCAAGTTG ACTCTCTACA CTTTGCTGTC ATGCGTACTT ACACCTCTTC AAGTACAACT	CAGCTGATAT GGACCCGATA CTCATTGTAC TCTAAAAAACT AGCTTGAGTT	120 180 240 300 360 420

TTACATTTGA AATATAAACC AAATGAAATA TTTTACTGAA AAAAAAAAA AAAAAANCCC

CA

602

970

5

(2) INFORMATION FOR SEQ ID NO: 41:

(i) SEQUENCE CHARACTERIS	TTCS-
--------------------------	-------

(A) LENGTH: 970 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15

20

25

30

35

40

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
GGCAGAGCTT AGGAGAACAG CTCCCTTTGG ATCCCTNTCA AAGGTGATAC CATTGGCTCC	60
CAGCTTAGAG TAAGAAGCTC TGAGAAGTTG AATGAAGGGT GAGATAGAGA TGCTGAACCC	120
ATTCTTSCAG CTTCTTCTAG TGTTGTTATT TCCAGAATGG CCAACACCCC TACATTGATA	180
CATAAACACA TTCCAAGGCC TTGTGTAATA CAAAGTTCAC CGTCCTCCTG GAATAGGAGC	240
CCTGGGTTCT AGTTCTCACT CTGCCACTGG GGGAAAATCC AATTAAAGTC TGGTTTAGTC	300
AGCTTGGGTC ACCATAGACT GGGTGGCTTA AACAGCAGAC ATTTATTTCT GGTAGTTTCT	360
GGAGGCTACA AATCTAAGAG CAAGGTGCCA GCATGGTCAC ATTCTGGTGA GGGSCCTCTT	420
CCTGGCTTGT AGACGGCTGC YTTCTCACCG TGTGCTCACA TAGCCTTTCG TGTGTGTG	480
TGTGTGTGT TGCGTKCGTG CAAGCTTCCK GATGTCTCTT CTTAGAAGGA CACCAACCCC	540
ATCATGAGAG CCCTACTCTC ATGACTTAGC CTAACCCTAA TTACCCTCCA AAGGCCCCAT	600
CTCCAAATGC CATCACATTG GAGGGTAGAG CTTCAACATA GGGATTTTGG GGGACACAAA	660
CATTCAGTCC ATAACAAAGG CTGTAGTCCT TARTTTCCTT GTCTGTGAAA TGAGAGTGTT	720
GAGATICITT CTAGCCTITA TCATITATAA TICTGTGAGA TGTAGATITG CATTATITTC	780
GAGTTCGAGT TATATGAAAT GTTTCCCTCT ACATTTTCTT GGGCAACTGA GAACTGAATA	840
GGGCTAGGTT TAAATAGAGT TAGGCAGTTA GGCTTATTCT TITATTTAAT AAGCATTTTT	900
GGAGCATCTA CGGTGTTCCA GGAACTGAAC TGTTGTAAAC ATTGGAGCTG TAACAGAGAA	960
CAAAAGAGAC	

50

45

(2) INFORMATION FOR SEQ ID NO: 42:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1002 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

60

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

	GAATTCGGCA	CGAGCCGAGG	TCGGCAGCAC	AGAGCTCTGG	AGATGAAGAC	CCTGTTCCTG	60
5	GGTGTCACGC	TCGGMCTGGC	CGCTGCCCTG	TCCTTMACCC	TGGRGGAGGA	GGATATCACA	120
	GGGACCTGGT	ACGTGAAGGC	CATGGTGGTC	GATAAGACTT	TCCGGAGACA	GGAGGCCCAG	180
10	AAGGTGTCCC	CAGTGAAGGT	GACAGCCCTG	GGCGGTGGGA	AGTTGGAAGC	CACGTTCACC	240
	TTCATGAGGG	AGGATCGGTG	CATCCAGAAG	AAAATCCTGR	TGCGGAAGAC	GGAGGAGCCT	300
	GGCAAATACA	GCGCCTGTGA	GCCCTCCCC	CAYTCCCACC	CCCACCYTCC	CCCACCGCCA	360
15	ACCCCAGTGC	ACCAGCCTCC	ACAGGTAGAG	AGTGCCCAGG	CTGCCCTTTT	GCCAGGGCCC	420
	CAGCTCTGCC	CACCTCCAAG	GAGGGGCTGG	CCTCTCCTTC	CTGGGGGGCT	GGTGGCCCTG	480
20	ACATCAGACA	CCGGGTGTGA	CAGGCTTGTC	CGCAGTCGAG	ATGGACCAGA	TCACGCCTGC	540
-0	CCTCTGGGAG	GCCCTAGCCA	TTGACACATT	GAGGAAGCTG	AGGATTGGGA	CAAGGAGGCC	600
	AAGGATTAGA	TGGGGGCAGG	AAGCTCATGT	ACCTGCAGGA	GCTGCCCAGG	AGGGACCAYT	660
25	ACATCTTTTA	CTGCAAAGAC	CAGCACCATG	GGGGCSTGCT	CCACATGGGA	AAGCTTGTGG	720
	GTAGGAATTC	TGATACCAAC	CGGGAGGCCC	TGGAAGAATT	TAAGAAATTG	GTGCAGCGCA	780
30	AGGGACTCTC	GGAGGAGGAC	ATTTTCACGC	CCCTGCAGAC	GGGAAGCTGC	GTTCCCGAAC	84,0
	ACTAGGCAGC	CCCCGGGTCT	GCACCTCCAG	AGCCCACCCT	ACCACCAGAC	ACAGAGCCCG	900
	GACCACCTGG	ACCTACCCTC	CAGCCATGAC	CCTTCCCTGC	TCCCACCCAC	CTGACTCCAA	960
35	ATAAAGTCCT	TCTCCCCCAA	ААААААААА	АААААААСТС	GA		1002

40 (2) INFORMATION FOR SEQ ID NO: 43:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2581 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

50	TGCAAAACCA	CTGGACACTG	GACAAGTACG	GGATCCTGGS	CGACGCACGC	CTCTTCTTTG	60
	GGCCCCAGCA	CCGGSCCGTC	ATCCTTCGGT	TGTCCAACCG	CCGCGCACTG	CGCCTCCGTG	120
55	CCAGCTTCTC	CCAGCCCCTC	TTCCAGGCTG	TGGSTGCCAT	CTGCCGCCTC	CTCAGCATCC	180
<i>J</i> J	GGCACCCCGA	GGAGCTGTCC	CTGCTCCGGG	CTCCTGAGAA	GAAGGAGAAG	AAGAAGAAAG	240
	AGAAGGAGCC	AGAGGAAGAG	CTCTATGACT	TGAGCAAGGT	TGTCTTGGCT	GGGGGCGTGG	300
60	CACCTCCACT	· GTTTCCGGGGG	አ ጥር-ርር አር-ርጥር	activity acca	CACCCCCAC	እርጥር እርርርርጥ	360

	GCTACCACAT GCTGAGCCGG CCCCAGCCGC CACCCGACCC CCTCCTGCTC CAGCGTCTGC	420
5	CACGGCCCAG CTCCCTGTCA GACAAGACCC AGCTCCACAG CAGGTGGCTG GACTCGTCGC	480
	GGTGTCTCAT GCAGCAGGGC ATCAAGGCCG GGGACGCACT CTGGCTGCGC TTCAAGTACT	540
	ACAGCTTCTT CGATTTGGAT CCCAAGACAG ACCCCGTGCG GCTGACACAG CTGTATGAGC	600
10	AGGCCCGGTG GGACCTGCTG CTGGAGGAGA TTGACTGCAC CGAGGAGGAG ATGATGGTGT	660
15	TTGCCGCCCT GCAGTACCAC ATCAACAAGC TGTCCCAGAG CGGGGAGGTG GGGGAGCCGG	720
	CTGGCACAGA CCCAGGGCTG GACGACCTGG ATGTGGCCCT GAGCAACCTG GAGGTGAAGC	780
	TGGAGGGGTC GGCGCCCACA GATGTGCTGG ACAGCCTCAC CACCATCCCA GAGCTCAAGG	840
	ACCATCTCCG AATCTTTCGG CCCCGGAAGC TGACCCTGAA GGGCTACCGC CAACACTGGG	900
20	TGGTGTTCAA GGAGACCACA CTGTCCTACT ACAAGAGCCA GGACGAGGCC CCTGGGGACC	960
	CCATTCAGCA GCTCAACCTC AAGGGCTGTG AGGTGGTTCC CGATGTTAAC GTCTCCGGCC	1020
25	AGAAGTTCTG CATTAAACTC CTAGTGCCCT CCCCTGAGGC ATGAGTGAGA TCTACCTGCG	1080
	GTGCCAGGAT GAGCAGCAGT ATGCCCGCTG GATGGCTGGC TGCCGCCTGG CCTCCAAAGG	1140
30	CCGCACCATG GCCGACAGCA GCTACACCAG CGAGGTGCAG GCCATCCTGG CYTTCCTCAG	1200
30	CCTGCAGCGC ACGGGCAGTG GGGGCCCGGG CAACCACCCC CACGGCCCTG ATGCCTCTGC	1260
	CGAGGGCCTC AACCCCTACG GCCTCGTTGC CCCCCGTTTC CAGCGAAAGT TCAAGGCCAA	1320
35	GCAGCTCACC CCACGGATCC TGGAAGCCCA CCAGAATGTG GCCCAGTTGT CGCTGGCAGA	1380
	GGCCCAGCTG CGCTTCATCC AGGCCTGGCA GTCCCTGCCC GACTTCGGCA TCTCCTATGT	1440
40	CATGGTCAGG TTCAAGGGCA GCAGGAAAGA CGAGATCCTG GGCATCGCCA ACAACCGACT	1500
	GATCCGCATC GACTTGGCCG TGGGCGACGT GGTCAAGACC TGGCGTTTCA GCAACATGCG	1560
45	CCAGTGGAAT GTCAACTGGG ACATCCGGCA NGTGGCCATC GAGTTTGATG AACACATCAA	1620
	TGTGGCCTTC AGCTGCGTGT CTGCCAGCTG CCGAATTGTA CACGAGTATA TCGGGGGCTA	1680
	CATTITCCTG TCGACGCGGG AGNGGGCCCG TGGGGAGGAG CTGGATGAAG ACCTCTTCCT	1740
50	GCAGCTCACC GGGGGCCATG AGGCCTTCTG AGGGCTGTCT GATTGCCCCT GCCCTGCTCA	1800
	CCACCCTGTC ACAGCCACTC CCAAGCCCAC ACCCACAGGG GCTCACTGCC CCACACCCGC	1860
55	TCCAGGCAGG CACCCAGCTG GGCATTTCAC CTGCTGTCAC TGACTTTGTG CAGGCCAAGG	1920
	ACCTGGCAGG GCCAGACGCT GTACCATCAC CCAGGCCAGG	1980
	AGCTCATGTG GTGCCCCCTT TCCTTGTCTG AGTGGCTGAG GCTGATACCC CTGACCTATC	2040
60	TGCAGTCCCC CAGCACACA GGAAGACCAG ATGTAGCTAC AGGATGATGA AACATGGTTT	2100
	CAAACGAGTT CTTTCTTGTT ACTITITAAA ATTTCTTTTT TATAAATTAA TATTTTATTG	2160

900

ATCACCAGCC AAGGAAAGGG GCTTTCCTGA TAAAGACAAG AGTTGGTTAG AGAAAGGG ACCTAAGTCA GTCTAGGGTT GGAAGCTAGG AGAGAGGTGA GGGCAGAAGG GCACAGCT CAGGAACAAG GAATAGGGGC TGGGGTKGTK GTTCTCACGG GTAGGCGGTA CCTGCAGG 10 CTCCTTGAAG TACTTGGGAA GGAGGAAGCC ATCAGTATTC CCTGGAGTCA GAATCACC ATTGGCAGAG CGGAAGAAGG GTATTCCATC TGCTGACAGA GCCAGAGATE TGACTCAT CCTCCCCGAA GGCAAAGTCA GCTCCTGCTT TGTCCAGACT CACCTGCCAG AGCCAGGG 15 C (2) INFORMATION FOR SEQ ID NO: 44: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1764 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44: GAATTCGGCA CGAGGATGAT ATTCCTACTA TTCCTCACCC CACTCTGGCT GCAAAAAGG AGTGCAGGGA AAATGAGTGG GGAGTTCCTG TATGCCAGTC TGTTTCAATG GAACTATT TGGAGGAATA AAAAAGTATG CTAGATTATA TTGGTACGAT AGGCATTTTC TTACATTGG TATAGTCTCC TTTGGCTTTT ACCTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAATCAGAATCACCAGTATGTTTCCCTAGAGAGAGAAAGAA		ATCACCAGCC AAGGAAAGGG
ACCTAAGTCA GTCTAGGGTT GGAAGCTAGG AGAGAGGTGA GGGCAGAAGG GCACAGCT CAGGAACAAG GAATAGGGGC TGGGGTKGTK GTTCTCACGG GTAGGCGGTA CCTGCAGG 10 CTCCTTGAAG TACTTGGGAA GGAGGAAGCC ATCAGTATTC CCTGGAGTCA GAATCACC ATTGGCAGAG CGGAAGAAGG GTATTCCATC TGCTGACAGA GCCAGAGATG TGACTCAT CCTCCCCGAA GGCAAAGTCA GCTCCTGCTT TGTCCAGACT CACCTGCCAG AGCCAGGGG C 20 (2) INFORMATION FOR SEQ ID NO: 44: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1764 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44: GAATTCGGCA CGAGGATGAT ATTCCTACTA TTCCTCACCC CACTCTGGCT GCAAAAAGG AGTGCAGGGA AAATGAGTGG GGAGTTCCTG TATGCCAGTC TGTTTCAATG GAACTATT 35 TGGAGGAATA AAAAAGTATG CTAGATTATA TTGGTACGAT AGGCATTTTC TTACATTG TATAGTCTCC TTTGGCTTTT ACCTGTTGAG GGGAAGAATG AGGAGAGGT AAAAATCAG GTATCCCCTA GAGAAGGAAT ATCAAAAATCC ATTTAATAAA AAAACTCATA CTAAGAATCAG GTATCCCCTA GAGAAGGAAT ATCAAAAATCC ATTTAATAAA AAAACTCATA CTAAGAATCAGAT	.GAGAGGTGA GGGCAGAAGG GCACAGCTTT 234(
ATTGCCAGAG TACTTGGGAA GGAGGAAGCC ATCAGTATTC CCTGGAGTCA GAATCACC ATTGCCAGAG CGGAAGAAGG GTATTCCATC TGCTGACAGA GCCAGAGATG TGACTCAT CCTCCCCGAA GGCAAAGTCA GCTCCTGCTT TGTCCAGACT CACCTGCCAG AGCCAGGG C (2) INFORMATION FOR SEQ ID NO: 44: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1764 base pairs (B) TYPE: nucleic acid (C) STRANDEINESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44: GAATTCGGCA CGAGGATGAT ATTCCTACTA TTCCTCACCC CACTCTGGCT GCAAAAAGA AGTGCAGGGA AAATGAGTGG GGAGTTCCTG TATGCCAGTC TGTTTCAATG GAACTATT TGGAGGAATA AAAAAGTATG CTAGATTATA TTGGTACGAT AGGCATTTTC TTACATTG TATAGTCTCC TTTGGCTTTT ACCTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAATCATA GTATCCCCTA GAGAAGGAAT ATCAAAATCC ATTTAATAAA AAAACTCATA CTAAGAATCATA		ACCTAAGTCA GTCTAGGGTT
ATTGGCAGAG CGGAAGAAG GTATTCCATC TGCTGACAGA GCCAGAGATG TGACTCAT CCTCCCCGAA GGCAAAGTCA GCTCCTGCTT TGTCCAGACT CACCTGCCAG AGCCAGGG C (2) INFORMATION FOR SEQ ID NO: 44: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1764 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44: GAATTCGGCA CGAGGATGAT ATTCCTACTA TTCCTCACCC CACTCTGGCT GCAAAAAGAAGTGCAGGGAAAAAAGTCATA TTGGTACGAT AGGCATTTTC TTACATTGTACGTC TTTGGAGAAAAAGTCATA TTGGTACGAT AGGCATTTTC TTACATTGTACGTC TTTTGGTTTTC AAAAAATCACTATACTTCACTCACTC TTTTGGCTTTTT ACCTTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAAATCACTATACTCACTCACCC TTTTGGCTTTT ACCTTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAAATCACTATACTCACTCACCC TTTTGGCTTTT ACCTTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAAATCACTATACTCACTCACTCACTCACTCACTC	TTCTCACGG GTAGGCGGTA CCTGCAGGGC 2400	CAGGAACAAG GAATAGGGGC
CCTCCCCGAA GGCAAAGTCA GCTCCTGCTT TGTCCAGACT CACCTGCCAG AGCCAGGG C (2) INFORMATION FOR SEQ ID NO: 44: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1764 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44: GAATTCGGCA CGAGGATGAT ATTCCTACTA TTCCTCACCC CACTCTGGCT GCAAAAAG AGTGCAGGGA AAATGAGTGG GGAGTTCCTG TATGCCAGTC TGTTTCAATG GAACTATT TGGAGGAATA AAAAAGTATG CTAGATTATA TTGGTACGAT AGGCATTTTC TTACATTG TATAGTCTCC TTTGGCTTTT ACCTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAATCA GTATCCCCTA GAGAAGGAAT ATCAAAAATCC ATTTAATAAA AAAACTCATA CTAAAGAAT.	TCAGTATTC CCTGGAGTCA GAATCACCCC 2460	CTCCTTGAAG TACTTGGGAA
C 20 (2) INFORMATION FOR SEQ ID NO: 44: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1764 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44: GAATTCGGCA CGAGGATGAT ATTCCTACTA TTCCTCACCC CACTCTGGCT GCAAAAAAG AGTGCAGGGA AAATGAGTGG GGAGTTCCTG TATGCCAGTC TGTTTCAATG GAACTATT 35 TGGAGGAATA AAAAAGTATG CTAGATTATA TTGGTACGAT AGGCATTTTC TTACATTG TATAGTCTGC TTTGGCTTTT ACCTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAATCAC GTATCCCCTA GAGAAGGAAT ATCAAAAATCC ATTTAATAAA AAAACTCATA CTAAGAAT.	GCTGACAGA GCCAGAGATG TGACTCATGC 2520	ATTGGCAGAG CGGAAGAAGG
(2) INFORMATION FOR SEQ ID NO: 44: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1764 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44: GAATTCGGCA CGAGGATGAT ATTCCTACTA TTCCTCACCC CACTCTGGCT GCAAAAAGAAGAAGAAGAAGAAAAAGAAAAAAAAAA	GTCCAGACT CACCTGCCAG AGCCAGGGGT 2580	CCTCCCCGAA GGCAAAGTCA
(2) INFORMATION FOR SEQ ID NO: 44: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1764 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44: GAATTCGGCA CGAGGATGAT ATTCCTACTA TTCCTCACCC CACTCTGGCT GCAAAAAG AGTGCAGGGA AAATGAGTGG GGAGTTCCTG TATGCCAGTC TGTTTCAATG GAACTATT TGGAGGAATA AAAAAGTATG CTAGATTATA TTGGTACGAT AGGCATTTTC TTACATTG TATAGTCTGC TTTGGCTTTT ACCTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAATCAG GTATCCCCTA GAGAAGGAAT ATCAAAAATCC ATTTAATAAA AAAACTCATA CTAAGAAT.	2581	С
(2) INFORMATION FOR SEQ ID NO: 44: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1764 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44: GAATTCGGCA CGAGGATGAT ATTCCTACTA TTCCTCACCC CACTCTGGCT GCAAAAAG AGTGCAGGGA AAATGAGTGG GGAGTTCCTG TATGCCAGTC TGTTTCAATG GAACTATT TGGAGGAATA AAAAAGTATG CTAGATTATA TTGGTACGAT AGGCATTTTC TTACATTG TATAGTCTGC TTTGGCTTTT ACCTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAATCAG GTATCCCCTA GAGAAGGAAT ATCAAAAATCC ATTTAATAAA AAAACTCATA CTAAGAAT.		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1764 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44: GAATTCGGCA CGAGGATGAT ATTCCTACTA TTCCTCACCC CACTCTGGCT GCAAAAAG AGTGCAGGGA AAATGAGTGG GGAGTTCCTG TATGCCAGTC TGTTTCAATG GAACTATT TGGAGGAATA AAAAAGTATG CTAGATTATA TTGGTACGAT AGGCATTTTC TTACATTGG TATAGTCTCC TTTGGCTTTT ACCTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAATCAG GTATCCCCTA GAGAAGGAAT ATCAAAAATCC ATTTAATAAA AAAACTCATA CTAAGAATCAGAT		(2) INFORMATION FOR G
(A) LENGTH: 1764 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44: GAATTCGGCA CGAGGATGAT ATTCCTACTA TTCCTCACCC CACTCTGGCT GCAAAAAG AGTGCAGGGA AAATGAGTGG GGAGTTCCTG TATGCCAGTC TGTTTCAATG GAACTATT TGGAGGAATA AAAAAGTATG CTAGATTATA TTGGTACGAT AGGCATTTTC TTACATTGG TATAGTCTGC TTTGGCTTTT ACCTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAATCAG GTATCCCCTA GAGAAGGAAT ATCAAAATCC ATTTAATAAA AAAACTCATA CTAAGAATCAGAT		
(C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44: GAATTCGGCA CGAGGATGAT ATTCCTACTA TTCCTCACCC CACTCTGGCT GCAAAAAG AGTGCAGGGA AAATGAGTGG GGAGTTCCTG TATGCCAGTC TGTTTCAATG GAACTATT TGGAGGAATA AAAAAGTATG CTAGATTATA TTGGTACGAT AGGCATTTTC TTACATTG TATAGTCTGC TTTGGCTTTT ACCTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAATCAG GTATCCCCTA GAGAAGGAAT ATCAAAAATCC ATTTAATAAA AAAACTCATA CTAAGAAT.	se pairs	(A) LEN
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44: GAATTCGGCA CGAGGATGAT ATTCCTACTA TTCCTCACCC CACTCTGGCT GCAAAAAG AGTGCAGGGA AAATGAGTGG GGAGTTCCTG TATGCCAGTC TGTTTCAATG GAACTATT TGGAGGAATA AAAAAGTATG CTAGATTATA TTGGTACGAT AGGCATTTTC TTACATTG TATAGTCTGC TTTGGCTTTT ACCTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAATCAG GTATCCCCTA GAGAAGGAAT ATCAAAATCC ATTTAATAAA AAAACTCATA CTAAGAAT.	puble	(C) STR
GAATTCGGCA CGAGGATGAT ATTCCTACTA TTCCTCACCC CACTCTGGCT GCAAAAAG AGTGCAGGGA AAATGAGTGG GGAGTTCCTG TATGCCAGTC TGTTTCAATG GAACTATT TGGAGGAATA AAAAAGTATG CTAGATTATA TTGGTACGAT AGGCATTTTC TTACATTG TATAGTCTGC TTTGGCTTTT ACCTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAATCAG GTATCCCCTA GAGAAGGAAT ATCAAAATCC ATTTAATAAA AAAACTCATA CTAAGAAT.		·
AGTGCAGGA AAATGAGTGG GGAGTTCCTG TATGCCAGTC TGTTTCAATG GAACTATT TGGAGGAATA AAAAAGTATG CTAGATTATA TTGGTACGAT AGGCATTTTC TTACATTG TATAGTCTGC TTTGGCTTTT ACCTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAATCAG GTATCCCCTA GAGAAGGAAT ATCAAAATCC ATTTAATAAA AAAACTCATA CTAAGAAT.		
TGGAGGAATA AAAAAGTATG CTAGATTATA TTGGTACGAT AGGCATTTTC TTACATTG TATAGTCTGC TTTGGCTTTT ACCTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAATCA GTATCCCCTA GAGAAGGAAT ATCAAAAATCC ATTTAATAAA AAAACTCATA CTAAGAAT.		
TATAGTCTGC TTTGGCTTTT ACCTGTTGAG GGGAAGAATG AGGAGAGGAT AAAAATCA: GTATCCCCTA GAGAAGGAAT ATCAAAAATCC ATTTAATAAA AAAACTCATA CTAAGAAT.		
GTATCCCCTA GAGAAGGAAT ATCAAAATCC ATTTAATAAA AAAACTCATA CTAAGAAT.		•
40		
AAATCAGITT CTTTATGAAA AAATATGACC TGTATGCCTT TATTCTCTCC TTTCCTTC		
45 CCCACCCGTC GCTTCTTTTC TTCTCTTCCT TTTTTTCTTT CCTTGTCCTC TGACTAAA		
AAGAACAAAC ATTTGATAAA AGCCACTGCC AATTCATGAT AAAAATTCAC AGCAAAGT		
GTACAGAAAA GAACTITCTC TGCGTGTTAA AGGGTGCCTC TCCCATGCTC TCAGCAAA		
50 TTTAATGATG AAATCTTATT AATAATCACT GTAGAACCAA GAATTAAACT AGTATACC		
Other Con Chilland Alliand		
	IGGTTCTAG CCAGTGCAAT AAGACAAGAG 720	
CTGTCTTGGC TTGTAATCAA CAATATACAG GTGGTTCTAG CCAGTGCAAT AAGACAAG. 55 AAACAAAAAT GTTATAAGGC CTGGAAAAGA TGAAACAAAC TGTTATTCAC AAAATACT		AAACAAAAAT GTTATAAGGC

CTTCTGCCCT ATCTTAAAAT CACGTGGTGG GGGGTGGTGT CTGCACTTGA AACAGGACAC

	TTGGTTCCTC	GGTTTAGCAT	TGACCTTGC	C AGCTTGGTYT	'GGCAGCTGAG	TTGTTGGACT	960
	AGGAAGCGTC	CYTGCAGGTT	GTGKTCTGKT	r acctetetet	' AAAGCCTGAA	AGCATCCTAC	1020
5	SATTGCATTI	GCTAGKTCTC	AGTAGAGCT	TTTAACAAGA	ATCTGGAAAC	ATTTTYCCTG	1080
	AGGGCTCTCT	TTAGACAGCA	GTAAAATGTA	GCTGGAGACA	TATTGAGTAA	ATGGAAAAGA	1140
10	AAAATCTAAT	GAGGCCAGGA	ATTTTTTAA	TCTTCTATTC	TCACAGAAGG	CCTCAAGGAG	1200
10	AACACCATAA	TTCATATTTT	ACTCAKGTGG	GTTAGGCATA	AAGCCTCCCC	CATAGATCCA	1260
	ATAACCTGTA	RGTGTYCTGG	TTTTGAAATT	GCACCTGCTT	ACATKGCTGG	ATCNTAGCAC	1320
15	TAAWTCACAC	RGCAACGGCT	TCTGGTTCAA	TKGTTCATTA	CTTGGGAATG	TCAGATTGCC	1380
	AGAGAGCAGC.	CTGATGTTTA	CATCCAATCG	GCAATGCCTT	AGGAAATCAG	TTTTAATTAC	1440
20	AATCTCACGT	AGCAGCACTG	CACTCAACCT	TCAGAGAGGC	TGGGATTTGT	GTTGAACCTA	1500
	CATCTTATAG	CTGTGCAGAA	AATGCCTGTC	CGACTGGGTC	ATGCAAAATG	GACAGCAAAG	1560
25	TCAGCAGAAC	CTTAGAAAAG	ATGACACAGC	AAGTGGAACA	CAGCTGGATC	ATCCCCCGTC	1620
	CTGTCAAGCG	TGCAGTGCTC	TCTGGCCCCT	TTTTAAAACA	AGGGAACCCA	GTTGGCGTTT	1680
	GCCTTTCAGC	TTCCCCATTC	TGATATAAAA	ATCTGTGACC	CAGCAGCTTT	AACCATAAAA	1740
30	АААААААА	AAAAAAAAAC	TCGA				1764

(2) INFORMATION FOR SEQ ID NO: 45:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 796 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

45	ACCITCITCC ATGITTAGTC CCTTGGGCTC TGCTACCCTC CTGCTC	GAGG TGAGAGCATC	. 60
	CTGTGTGCAA CCAGAGATGC CCTCTGGCTT TCAGACCTGC CTGCTT	TTCA CCCTCAGCCC	120
50	TTTCTCACTC AGCAAAATTG TGGGGGTCCC TAGTCAGCAG CTCCCT	GGGC AGCTCTCTGA	180
	GCAAGGTGGT CTCTGTGGTC ATGAAGGAGA GCCGGCTAGG ACAGTG	CCGG AAACTCAGCT	240
	GCCTCTCCCC TTCAACTCAG CTGGCCCCCC GCACCTGAAG TGCACA	GGAG CCGGGAAGAG	300
55	AGTCTGGAGC CCACCCCGGA GGGCACACA GGAGGTGTCT YTGCAG	CTGG TGTCCTGCMA	360
	CCCYTGCAGG CAGMACACGT CCCGGGCATT YTCYTTAGCC ACAGAC	AGAA CAGCCAGTGC	420
	CAGAGICIGC TGTCGYTTCC CCTTTAAGCA CACTCATTCA CCACAC		480
60	GGTGCAGGGA GCATGGGCTG TCGTTCCCCT TTAAGCACAC TCATTC		540

1080

	GGCCAGAAGT GCAGGGAGCA TGGGCTGGGT GCACCTCCGC AGGAGAGAAG GCTGAGCCAC	600
5	CGCCGTCCCG GGAGCCCGGC TCCCAGGCCT CTCGTTTTCC CCTACCTCCC TAAGACTTTT	660
5	CTGTCACTCT CTGGCCATTG AAAGGCTTCT GTTCCTTAAA GTGCTGTTAC ACTCTCCTTT	720
	CCCAGGATGC AGCAAGCCAA AACAGTACCA CTGCACGTCA GCCTGGGTGA CAGAGTGAGA	780
10	CCCTATCTTA AAAAAA	796
15	(2) INFORMATION FOR SEQ ID NO: 46:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1705 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
25	TGGCCATGGA AGCGCTAGAA GGTTTAGATT TTGAAACAGC AAAGAAGGAT TTCCTTGGAT	60
	CTGGAGACCC CAAAGAAACA AAGATGCTAA TCACCAAACA GGCTGACTGG GCCAGAAATA	120
30	TCAAGGAGCC CAAAGCCGCC GTGGAGATGT ACATCTCAGC AGGAGAGCAC GTCAAGGCCA	180
50	TCGAGATCTG TGGTGACCAT GGCTGGGTTG ACATGTTGAT CGACATCGCC CGCAAACTGG	240
	ACAAGGCTGA GCGCGAGCCC CTGCTGCTGT GCGCTACCTA CCTCAAGAAG CTGGACAGCC	300
35	CTGGCTATGC TGCTGAGACC TACCTGAAGA TGGGTGACCT CAAGTCCCTG GTGCAGCTGC	360
	AGTGGAGACC CAGCGCTGGG ATGAGGCCTT TGCTTTGGGT GAGAAGCATC CTGAGTTTAA	420
40	GGATGACATC TACATGCCGT ATGCTCAGTG GCTAGCAGAG AACGATCGCT TTGAGGAAGC	480
40	CCAGAAAGCG TTCCACAAGG CTGGGCGACA GAGAGAAGCG GTCCAGGTGC TGGAGCAGCT	540
	CACAAACAAT GCCGTGGCGG AGAGCAGGTT TAATGATGCT GCCTATTATT ACTGGATGCT	600
45	GTCCATGCAG TGCCTCGATA TAGCTCAAGA TCCTGCCCAG AAGGACACAA TGCTTGGCAA	660
	GTTCTACCAC TTCCAGCGTT TGGCAGAGCT GTACCATGGT TACCATGCCA TCCATCGCCA	720
50	CACGGAAGAT CCGTTCAGTG TCCATCGTCC TGAAACTCTT TTCAACATCT CCAGGTTCCT	780
50	GCTGCACAGC CTGCCCAAGG ACACCCCCTC GGGCATCTCT AAAGTGAAAA TACTCTTCAC	840
	والمركوروع والمراهور والمركورون والمراهورون والمركورون والمركورون والمراهورون والمركورون	900

GCTGCGTGGC CTGTACATCC CTGCCAGATT CCAAAAGTCC ATTGAGCTGG GTACCCTGAC

CATCCGCGCC AAGCCCTTCC ACGACAGTGA GGAGTTGGTG CCCTTGTGCT ACCGCTGCTC

CACCAACAAC CCGCTGCTCA ACAACCTGGG CAACGTCTGC ATCAACTGCC GCCAGCCCTT

55

CATCITCTCC GCCTCTTCCT ACGACGTGCT ACACCTGGTT GAGTTCTACC TGGAGGAAGG 1140 GATCACTGAT GAAGAAGCCA TCTCCCTCAT CGACCTGGAG GTGCTGAGAC CCAAGCGGGA 1200 5 TGACAGACAG CTAGAGATTT GCAAACAACA GCTCCCAGAT TCTTGCGGCT AGTGGGAGAC 1260 CAAGGGACTC CATCGGAGAT NAGGACCCGT TCACAGCTAA GCTRAGCTTT GAGCAAGGTG 1320 GCTCARAGTT CGTGCCAGTG GTGGTGAGCC GGCTGGTGCT GCGCTCCATG AGCCGCCGGG 1380 10 ATGTCCTCAT CAAGCGATGG CCCCCACCCC TGAGGTGGCA ATACTTCCGC TCACTGCTGC 1440 CTGACGCCTC CATTACCATG TGCCCCTCCT GCTTCCAGAT GTTCCATTCT GAGGACTATG 1500 15 AGTTGCTGGT GCTTCAGCAT GGCTGCTGCC CCTACTGCCG CAGGTGCAAG GATGACCCTG 1560 GCCCATGACC AGCATCCTGG GGACGGCCTG CACCCTCTGC CCGCCTTGGG GTCTGCTGGG 1620 CTGTGAAGGA GAATAAAGAG TTAAACTGTC AAAAAAAAA AAAAAAAAA AAAAAAAAA 1680 20 AMAAA AAAAAAAA AAAAAAAAA 1705

25

30

(2) INFORMATION FOR SEQ ID NO: 47:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 981 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

TCGGCAGCAC AGAGCTCTGG AGATGAAGAC CCTGTTCCTG GGTGTCACGC TCGGCCTGGC 60 GCTGCCCTGT CCTTCACCCT GGRGGAGGAG GATATCACAG GGACCTGGTA CGTGAAGGCC 120 40 ATGGTGGTCG ATAAGACTTT CCGGAGACAG GAGGCCCAGA AGGTGTCCCC AGTGAAGGTG 180 ACAGCCCTGG GCGGTGGGAA GTTGGAAGCC ACGTTCACCT TCATGAGGGA GGATCGGTGC 240 ATCCAGAAGA AAATCCTGRT GCGGAAGACG GAGGAGCCTG GCAAATACAG CGCCTGTGAG 300 45 CCCCTCCCC AYTCCCACCC CCACCYTCCC CCACCGCCAA CCCCAGTGCA CCAGCCTCCA 360 CAGGTAGAGA GTGCCCAGGC TGCCCTTTTG CCAGGGCCCC AGCTCTGCCC ACCTCCAAGG 420 50 AGGGGCTGGC CTCTCCTTCC TGGGGGGCTG GTGGCCCTGA CATCAGACAC CGGGTGTGAC 480 AGGCTTGTCC GCAGTCGAGA TGGACCAGAT CACGCCTGCC CTCTGGGAGG CCCTAGCCAT 540 TGACACATTG AGGAAGCTGA GGATTGGGAC AAGGAGGCCA AGGATTAGAT GGGGGCAGGA 600 55 AGCTCATGTA CCTGCAGGAG CTGCCCAGGA GGGACCAYTA CATCTTTTAC TGCAAAGACC 660 AGCACCATGG GGGCSTGCTC CACATGGGAA AGCTTGTGGG TAGGAATTCT GATACCAACC 720 60 GGGAGGCCCT GGAAGAATTT AAGAAATTGG TGCAGCGCAA GGGACTCTCG GAGGAGGACA 780

	TTTTCACGCC CCTGCAGACG GGAAGCTGCR TTCCCGAACA CTAGGCAGCC CCCGGGTCTG	840
5	CACCTCCAGA GCCCACCCTA CCACCAGACA CAGAGCCCGG ACCACCTGGA CCTACCCTCC	900
5	AGCCATGACC CTTCCCTGCT CCCACCCACC TGACTCCAAA TAAAGTCCTT CTCCCCCAAA	960
	AAAAAAAAA AAAAAACTCG A	981
10		
	(2) INFORMATION FOR SEQ ID NO: 48:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 146 amino acids (B) TYPE: amino acid	
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
20	Met His Tyr Gln Met Ser Val Thr Leu Lys Tyr Glu Ile Lys Lys Leu	
	1 5 10 15	
25	Ile Tyr Val His Leu Val Ile Trp Leu Leu Val Ala Lys Met Ser 20 25 30	
	Val Gly His Leu Arg Leu Leu Ser His Asp Gln Val Ala Met Pro Tyr	
	35 40 45	
30	Gln Trp Glu Tyr Pro Tyr Leu Leu Ser Ile Leu Pro Ser Leu Leu Gly 50 55 60	
	Leu Leu Ser Phe Pro Arg Asn Asn Ile Ser Tyr Leu Val Leu Ser Met	
35	65 . 70 75 80	
	Ile Ser Met Gly Leu Phe Ser Ile Ala Pro Leu Ile Tyr Gly Ser Met 85 90 95	
40	Glu Met Phe Pro Ala Ala Gln Pro Ser Thr Ala Met Ala Arg Pro Thr	
40	100 105 110	
	Val Ser Ser Leu Val Phe Leu Pro Phe Pro Ser Cys Thr Trp Cys Trp 115 120 125	
45	Cys Trp Gln Cys Lys Cys Met Pro Gly Ser Cys Thr Thr Ala Arg Ser	
	130 135 140	
50	Ser Xaa 145	
50		
	(2) INFORMATION FOR SEQ ID NO: 49:	•
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 312 amino acids	
	(B) TYPE: amino acid (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	

	М е	et 1	Ası	n Se	er Va	l Va	al Se 5	er Le	eu Le	u Le	eu Il 1		u Gl	u Pr	o As	2 Ly	s Gln 5
5	G1	u	Ala	a Le	u Il 2	e G] 0	.u Se	er Le	u Cy	s G1 2	u Ly 5	s Le	u Va	l Ly:	s Phe		g Glu
	G1	У	Glu	ı Ar 3	g Pr 5	o Se	r Le	u Ar	g Le 4	u Gl: 0	n Le	u Le	u Sei	Ası 45		ı Phe	∋ His
10	Gl	у	Met 50	: As _i	p Ly	s As	n Th	r Pr	o Va 5	l Ar	g Ty:	r Thi	r Val		Cys	Ser	Leu
15	11¢	e :	Lys	Va.	l Al	a Al	a Se 7	r Cy: 0	s Gl	y Ala	a Ile	e Glr 75		Ile	Pro	Thr	Glu 80
	Lei	ב נו	Asp	Glı	n Vai	l Ar 8	g Ly	s Tr	o Ile	e Sei	Asr 90	Trp	Asn	Leu	Thr	Thr 95	Glu
20	Lys	3 I	Ьуs	His	100	Le	u Lei	ı Arç	j Lei	105	і Туг 5	Glu	ı Ala	. Leu	Val 110		Cys
	Lys	s I	ŗys	Ser 115	Asp	Ala	a Ala	a Ser	Lys 120	Val	. Met	: Val	Glu	Leu 125		Gly	Ser
25	Тут	1	hr 30	Glu	Asp) Ası	n Ala	Ser 135	Gln	Ala	Arg	Val	Asp 140	Ala	His	Arg	Cys
30	11e	• V	al	Arg	Ala	Let	150	: Asp	Pro	Asn	Ala	Phe 155	Leu	Phe	Asp	His	Leu 160
						165	1				170		Glu			175	
35					100					185			Ser		190		
40				193					200				Gly	205			
40	Gln	A:	sn 10	Met	Ala	Lys	Met	Arg 215	Leu	Leu	Thr	Phe	Met 220	Gly	Met	Ala	Val
45	Glu 225	A	sn	Lys	Glu	Ile	Ser 230	Phe	Asp	Thr	Met	Gln 235	Gln	Glu	Leu	Gln	Ile 240
	Gly	A.	la .	Asp	Asp	Val 245	Glu	Ala	Phe	Val	Ile 250	Asp	Ala	Val		Thr 255	Lys
50	Met	Vá	al '	Tyr	Cys 260	Lys	Ile	Asp	Gln	Thr 265	Gln	Arg	Lys	Val	Val 270	Val	Ser
	His	Se	er :	Thr 275	His	Arg	Thr	Phe	Gly 280	Lys	Gln	Gln	Trp	Gln 285	Gln .	Leu	Tyr
55	Ąsp	Th 29	ur 1	Leu	Asn	Ala	Trp	Lys 295	Gln	Asn	Leu .		Lys 300	Val	Lys :	Asn .	Ser
60	Leu 305	Le	u s	Ser	Leu	Ser	Asp 310	Thr	Xaa								

	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	50:							
5 .			(i)	(A) L B) T	ENGT YPE:	H: 4 ami	no a	ino cid	: acid	s					
10			(xi)					lin PTIO		EQ I	D NO	: 50	:			
	Gly 1	Gly	Cys	Pro	Arg 5	Arg	Arg	Leu	Val	Leu 10	Tyr	Cys	Leu	Phe	Gly 15	Ser
15	Ala	Gly	Gly	Gly 20	Arg	Ile	His	Ser	Glu 25	Ala	Trp	Phe	Pro	Lys 30	Ala	Trp
20	Pro	Glu	Ala 35	Glu	Lys	Trp	Leu	Phe 40	Ala	Glu	Leu	Leu	Arg 45	Gly	Xaa	
20	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	NO: 5	51:							
25				(A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	no a lin	mino cid ear	: aci EQ I		: 51	:			
30	Met 1	Leu	Ser	Arg	Pro 5	Gln	Pro	Pro	Pro	Asp 10	Pro	Leu	Leu	Leu	Gln 15	Arg
35	Leu	Pro	Arg	Pro 20	Ser	Ser	Leu	Ser	Asp 25	Lys	Thr	Gln	Leu	His 30	Ser	Arg
	Trp	Leu	Asp 35	Ser	Ser	Arg	Cys	Leu 40	Met	Gln	Gln	Gly	Ile 45	Lys	Ala	Gly
40	Asp	Ala 50	Leu	Trp	Leu	Arg	Phe 55	Lys	Tyr	Tyr	Ser	Phe 60	Phe	Asp	Leu	Asp
	Pro 65	Lys	Thr	Asp	Pro	Val 70	Arg	Leu	Thr	Gln	Leu 75	Tyr	Glu	Gln	Ala	Arg 80
45	Trp	Asp	Leu	Leu	Leu 85	Glu	Glu	Ile	Asp	Суs 90	Thr	Glu	Glu	Glu	Met 95	Met
50	Val	Phe	Ala	Ala 100	Leu	Gln	Tyr	His	Ile 105	Asn	Lys	Leu	Ser	Gln 110	Ser	Gly
	Glu	Val	Gly 115	Glu	Pro	Ala	Gly	Thr 120	Asp	Pro	Gly	Leu	Asp 125	Asp	Leu	Asp
55	Val	Ala 130	Leu	Ser	Asn	Leu	Glu 135	Val	Lys	Leu	Glu	Gly 140	Ser	Ala	Pro	Thr
	Asp 145	Val	Leu	Asp	Ser	Leu 150	Thr	Thr	Ile	Pro	Glu 155	Leu	Lýs	Asp	His	Leu 160
60	Ara	Tle	Phe	Δνα	Dro	720	Larc	T.O.	Thr	Lau	Lac	G11-	The pro-	7~~	C1-	ui-

				165	5				17	70				1	75
5	Trp Va	ıl Va	l Phe 180	e Lys	Gl	u Th	r Th	r Le	eu Se 15	er Ty	r Ty	r Ly	's Se 19		ln Asp
-	Glu Al	a Pro 199	o Gly 5	/ Asp	Pr	o Il	e G1 20	n Gl 0	n L∈	eu As	n Le	u Ly 20		У С ^у	's Glu
10	Val Va 21	1 Pro 0	Asp	Val	Ası	n Va 21	1 Se:	r Gl	y Gl	n Ly	s Ph	е Су 0	s Il	e Ly	s Leu
	Leu Va: 225	l Pro	Ser	Pro	Glu 230	ı Gly	y. Mei	t Se	r Gl	u Il	е Ту: 5	r Le	u Ar	g Cy	s Gln 240
15	Asp Gl	ı Gln	Gln	Tyr 245	Ala	a Arg	J Tr) Me	t Al. 25	a Gly	у Суз	s Arg	g Lei	1 Al	
20	Lys Gl ₎	/ Arg	Thr 260	Met	Ala	Asp	Ser	Se:	с Ту: 5	r Thi	: Ser	Glu	1 Va] 27(n Ala
	Ile Lev	1 Ala 275	Phe	Leu	Ser	Leu	Gln 280	Arg	y Thi	r Gly	/ Ser	Gl _y 285		Pro	Gly
25	Asn His 290	Pro	His	Gly	Pro	Asp 295	Ala	Ser	Ala	a Glu	Gly 300	Leu	. Asn	Pro	Tyr
	Gly Leu 305	Val	Ala	Pro	Arg 310	Phe	Gln	Arg	Lys	Phe 315		Ala	Lys	Glr	Leu 320
30	Thr Pro	Arg	Ile	Leu 325	Glu	Ala	His	Gln	Asn 330	Val	Ala	Gln	Leu	Ser	
35 ·	Ala Glu	Ala	Gln 340	Leu .	Arg	Phe	Ile	Gln 345	Ala	Trp	Gln	Ser	Leu 350	Pro	Asp
	Phe Gly	Ile 355	Ser	Tyr '	Val	Met	Val 360	Arg	Phe	Lys	Gly	Ser 365	Arg	Lys	Asp
40	Glu Ile 370	Leu	Gly	Ile 2	Ala	Asn 375	Asn	Arg	Leu	Ile	Arg 380	Ile	Asp	Leu	Ala
	Val Gly 385	Asp	Val '	Val I	Э90	Thr	Trp	Arg	Phe	Ser 395	Asn	Met	Arg	Gln	Trp 400
45	Asn Val	Asn '	Trp /	Asp 1 405	île.	Arg	Gln	Val	Ala 410	Ile	Glu	Phe	Asp	Glu 415	His
50	Ile Asn	Val ;	Ala 1 420	Phe S	Ger (Cys	Val	Ser 425	Ala	Ser	Cys		Ile 430	Val	His
	Glu Tyr	Ile (435	Gly 6	Sly T	yr :	Ile :	Phe :	Leu	Ser	Thr		Glu 445	Arg .	Ala	Arg
55	Gly Glu 450	Glu I	eu A	sp G	lu A	Asp 1 155	Leu 1	Phe	Leu	Gln :	Leu : 460	Thr (Gly (Gly	His
	Glu Ala 1	Dha													

	(2) INFORMATION FOR SEQ ID NO: 52: (i) SEQUENCE CHARACTERISTICS:															
5		٠		(A) L B) T D) T	ENGT YPE : OPOL	H: 8 ami OGY:	3 am no a lin	ino cid	acid		: 52	:			
10	Met 1	Arg	Pro	Gly	Arg 5	Gly	Ala	Gly	Thr		Gly	Arg	Pro	Gly		Gl
		Glv	Leu	Ala		Thr	Cvs	Ser	ī.eu	10	Sar	Pro	Ser	uic	15	T ex
15	9	01,	204	20	,,,,	****	CyS	JCI	25	Ser	Ser	FIO	261	30	neu	ne
·	Pro	Thr	Leu 35	Leu	His	Thr	Phe	Ser 40	Phe	Ser	Leu	Pro	Pro 45	Pro	Ser	Pro
20	Ala	Ala 50	Pro	Arg	Gln	Pro	Ser 55	Pro	Pro	Ala	Leu	Leu 60	Leu	Pro	Gly	Pro
	Gln 65	Lys	Pro	Arg	Pro	Gly 70	Asp	Pro	Thr	Tyr	Thr 75	Gly	Ala	Leu	Thr	Ası 80
25	Trp	Ser	Xaa													
30	(2)	INF	ORMA	rion	FOR	SEQ	ID I	. : OV	53:							
35			(i) (xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 6 ami OGY:	3 am no a lin		acid		: 53	:			
40	Met 1	Phe	Leu	Val	Phe 5	Phe	Leu	Ser	Phe	Phe 10	Ser	His	Ser	Ile	Ser 15	Ala
	Leu	Thr	Leu	Val 20	Cys	Ser	Gln	Gly	Gly 25	Lys	Ala	Asp	Met	Asn 30	Leu	Let
45	Ser	Trp	Asp 35	Phe	Arg	Pro	His	Trp 40	Leu	Glu	Gly	Ile	Arg 45	Phe	Leu	Let
	Gly	Trp 50	Glý	Gln	Ala	Leu	Met 55	Ala	Gly	Leu	Phe	Pro 60	Trp	Leu	Xaa	
50							,									
	(2)	INF	ORMAT	NOI	FOR	SEQ	ID 1	10: 5	54:							
55			(i) :	()	A) L B) T	ENGT YPE :	H: 1 ami		mino cid		ds					

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

Met Arg Gly Ser Trp His Arg Ser Pro Leu Pro Ala Val Val Leu Pro

	1		9	5				10)				1	5
5	Ser Va	l Leu G	ln Thr 20	Ala	Leu	Ser	Pro 25	Leu	ı Ala	Let	Cys	Gln 30		a Trp
	Arg Arg	Ala V 35	al Pro	His	Gly	Val 40	Pro	Ser	Gln	Arg	Leu 45		Ası	n Gln
10	Glu Ala 50	Ser L	eu Val	Pro	Lys 55	Gly	Val	Pro	Arg	Ala 60		Tyr	Pro	Gly
	Pro Leu 65	Gln A	sn Gly	Leu 70	Trp	Thr	His	Leu	Glu 75	Lys	Gly	Glu	Let	Leu 80
15	Gly Leu	Lys Pı	0 Thr 85	Pro	Gly	Gly	Leu	Leu 90	Leu	Leu	Arg	Ser	Phe 95	
20	Asp Pro	His Pr	o Ser	Arg	Pro	Phe	Leu 105	Cys	Thr	Leu	Leu	Pro 110	Pro	Pro
	Leu Xaa	Ile Ph	e Pro	Pro	Leu	Arg 120	Cys	Ser	Ala	Xaa				
25	(2) INF	ORMATIC	N FOR	SEQ	ID N	IO: 5	55 :							
30			UENCE (A) L (B) T (D) T	CHAF ENGTH YPE: OPOLO	ACTE i: 18 amir XGY:	ERIST 80 ar no ac line	PICS: mino cid	acio		· 55:	:			
35	Met Thr	Ser Al	a Gly 5	Pro '	Val	Xaa	Leu	Phe 10	Leu	Leu	Val	Ser	Ile 15	Ser
	Thr Ser	Val Il	e Leu	Met (Gln :	His	Leu : 25	Leu	Xaa	Ala	Ser	Tyr 30	Cys	Asp
40	Leu Leu	His Ly: 35	Ala .	Ala i	Ala I	His :	Leu (Gly ·	Cys	Trp	Gln 45	Lys	Val	Asp
45	Pro Ala 50	Leu Cys	Ser.	Asn V	Val 1	Leu (Gln I	His :	Pro '	Trp (Thr	Glu (Glu	Суз
	Met Trp 65	Pro Glr	Gly	Val I 70	Leu V	Val 1	Lys I	His :	Ser 1 75	Lys .	Asn '	Val '	ſyr	Lys 80
50	Ala Val	Gly Xaa	Xaa :	Xaa V	/al /	Ala :	Ile H	Pro 8	Ser 1	Asp 1	Val	Ser 1	lis 95	Phe
	Arg Phe	Xaa Phe 100	Phe 1	Phe S	Ser I		Pro I	Leu /	Arg 1	[le]		Asn :	Ile	Leu
55	Leu Leu	Leu Glu 115	Gly A	Ala V	al I	le V .20	al T	yr (Sln I		fyr : 125	Ser I	.eu :	Met
60	Ser Ser (Glu Lys	Trp 1	lis G	ln T 35	hr I	le S	Ger I		la I .40	Leu I	le I	eu	Phe

	Ser 2	Asn	Tyr	Tyr	Ala	Phe 150	Phe	Lys	Leu	Leu	Arg 155	Asp	Arg	Leu	Val	Leu 160
5	Gly 1	Lys	Ala	Tyr	Ser 165	Tyr	Ser	Ala	Ser	Pro 170	Gln	Arg	Asp	Leu	Asp 175	His
	Arg l	Phe	Ser	Xaa 180												
10																
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	NO: 5	56:							
15				(. ()	A) L B) T D) T	ENGT YPE : OPOL	H: 2 ami: OGY:	87 a no a lin		aci		: 56	:			
20	Met I	Pro	Leu	Phe	Lys 5	Leu	Tyr	Met	Val	Met 10	Ser	Ala	Cys	Phe	Leu 15	Ala
25	Ala (Gly	Ile	Phe 20	Trp	Val	Ser	Ile	Leu 25	Cys	Arg	Asn	Thr	Tyr 30	Ser	Val
. 	Phe I	Lys	Ile 35	His	Trp	Leu	Met	Ala 40	Ala	Leu	Ala	Phe	Thr 45	Lys	Ser	Ile
30	Ser I	Leu 50	Leu	Phe	His	Ser	Ile 55	Asn	Tyr	Tyr	Phe	Ile 60	Asn	Ser	Gln	Gly
	Pro I 65	Pro	His	Arg	Arg	Pro 70	Cys	Arg	His	Val	Leu 75	His	Arg	Thr	Pro	Ala 80
35	Glu (Зlу	Arg	Pro	Pro 85	Leu	His	His	His	Arg 90	Pro	Asp	Trp	Leu	Arg 95	Leu
40	Gly I	Phe	Ile	Lys 100	Tyr	Val	Leu	Ser	Asp 105	Lys	Glu	Lys	Lys	Val 110	Phe	Gly
	Ile V	Val	Ile 115	Pro	Met	Gln	Val	Leu 120	Ala	Asn	Val	Ala	Tyr 125	Ile	Ile	Ile
45	Glu S	Ser 130	Arg	Glu	Glu	Gly	Ala 135	Thr	Asn	Tyr	Val	Leu 140	Trp	Lys	Glu	Ile
	Leu I 145	Phe	Leu	Val	Asp	Leu 150	Ile	Cys	Cys	Gly	Ala 155	Ile	Leu	Phe	Pro	Val 160
50	Val 7	ľrp	Ser	Ile	Arg 165	His	Leu	Gln	Asp	Ala 170	Ser	Gly	Thr	Asp	Gly 175	Lys
55	Val A	Ala	Val	Asn 180	Leu	Ala	Lys	Leu	Lys 185	Leu	Phe	Arg	His	туг 190	Tyr	Val
	Met V	/al	Ile 195	Cys	Tyr	Val	Tyr	Phe 200	Thr	Arg	Ile	Ile	Ala 205	Ile	Leu	Leu
60	Gln V	/al 210	Ala	Val	Pro	Phe	Gln 215		Gln	Trp	Leu	Туг 220	Xaa	Leu	Leu	Val

	Glu Gly Ser Thr Leu Ala Phe Phe Val Leu Thr Gly Tyr Lys Phe Gl 225 230 235 24
5	Pro Thr Gly Asn Asn Pro Tyr Leu Gln Leu Pro Gln Glu Asp Glu Gl 245 250 255
10	Asp Val Gln Met Glu Gln Val Met Thr Asp Ser Gly Phe Arg Glu Gl 260 265 270
	Leu Ser Lys Val Asn Lys Thr Ala Ser Gly Arg Glu Leu Leu Xaa 275 280 285
15	(2) INFORMATION FOR SEQ ID NO: 57:
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:
25	Met Pro Met Val Phe Leu Leu Phe Asn Leu Met Ser Trp Leu Ile 1 5 10 15
	Arg Asn Ala Arg Val Ile Leu Arg Ser Leu Asn Leu Lys Arg Asp Gln 20 25 30
30	Val Xaa
35	(2) INFORMATION FOR SEQ ID NO: 58:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:
45	Met Lys Ile Val Val Leu Leu Pro Leu Phe Leu Leu Ala Thr Phe Pro 1 5 10 15
	Arg Lys Leu Gln Thr Cys Leu Xaa 20
50	(2) INFORMATION FOR SEQ ID NO: 59:
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 47 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:
60	Met Ser Gly Gly Glu Gly Ala Ala Leu Pro Ile Leu Leu Leu Leu Leu 1 5 10 15

	Ala	Leu	Arg	Gly 20	Thr	Phe	His	Gly	Ala 25	Arg	Pro	Gly	Gly	Gly 30	Ala	Ser
5	Gly	Ile	Trp 35	Cys	Leu	Leu	Leu	Pro 40	Glu	Gln	Glu	Pro	Pro 45	Val	Xaa	
10	(2)	INF	ORMA?	rion	FOR	SEQ	ID 1	VO: 6	50:							
15				(B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	14 a no a lin	mino cid ear	: aci		: 60	:			
20	Met 1	Ala	Arg	Gly	Ser 5	Leu	Arg	Arg	Leu	Leu 10	Arg	Leu	Leu	Val	Leu 15	Gly
	Leu	Trp	Leu	Ala 20	Leu	Leu	Arg	Ser	Val 25	Ala	Gly	Glu	Gln	Ala 30	Pro	Gly
25	Thr	Ala	Pro 35	Cys	Ser	Arg	Gly	Ser 40	Ser	Trp	Ser	Ala	Asp 45	Leu	Asp	Lys
	Cys	Met 50		Cys	Ala	Ser	Cys 55	Arg	Ala	Arg	Pro	His 60	Ser	Asp	Phe	Cys
30	Leu 65	Gly	Cys	Ala	Ala	Ala 70	Pro	Pro	Ala	Pro	Phe 75	Arg	Leu	Leu	Trp	Pro 80
35	Ile	Leu	Gly	Gly	Ala 85	Leu	Ser	Leu	Thr	Phe 90	Val	Leu	Gly	Leu	Leu 95	Ser
33	Gly	Phe	Leu	Val 100	Trp	Arg	Arg	Cys	Arg 105	Arg	Glu	Arg	Ser	Ser 110	Pro	Pro
40	Pro	Xaa														
45	(2)	INF		SEQU (FOR ENCE (A) L (B) T	CHA ENGI	RACT H: 3	ERIS 2 am	TICS iino	: acid	s	-				
50			(xi)		(D) I					EQ I	D NO	: 61	:			
	. Met		Cys	Ile	Leu 5	Val	Leu	Thr	Leu	Val 10	Ser	Tyr	Ser	Ser	Leu 15	Val
55	Asn	Ser	Pro	Leu 20		Phe	Val	His	Leu 25	Xaa	Val	Gly	Ile	Ser 30	Ala	Xaa

	(2) INFORMATION FOR SEQ ID NO: 62:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 81 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:
10	Met Thr Gly Gly Phe Leu Ser Cys Ile Leu Gly Leu Val Leu Pro Leu 1 5 10 15
15	Ala Tyr Xaa Ser Ser Leu Thr Trp Cys Trp Trp Arg Trp Gly Leu Pro 20 25 30
20	Xaa Pro Ala Gly Pro Pro Arg Cys Thr Pro Gly Cys Asn Ala Ser Gly 35 40 45
20	Ala Gly Arg Gly Pro Ser Pro Gly Pro Pro Gly Gly Glu Leu His Thr 50 55 60
25	Pro Ala Ser Arg Asp Pro Gly Pro Gly Ala Glu Trp Arg Gly Thr Ser 65 70 75 80
	Xaa
30	(2) INFORMATION FOR SEQ ID NO: 63:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 104 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:
40	Met Ala Ala Pro Val Asp Leu Glu Leu Lys Lys Ala Phe Thr Glu Leu 1 5 10 15
0.	Gln Ala Lys Val Ile Asp Thr Gln Gln Lys Val Lys Leu Ala Asp Ile 20 25 30
45	Gln Ile Glu Gln Leu Asn Arg Thr Lys Lys His Ala His Leu Thr Asp 35 40 45
50	Thr Glu Ile Met Thr Leu Val Asp Glu Thr Asn Met Tyr Glu Gly Val 50 55 60
٠	Gly Arg Met Phe Ile Leu Gln Ser Lys Glu Ala Ile His Ser Gln Leu 65 70 75 80
55	Leu Glu Lys Gln Lys Ile Ala Glu Glu Lys Ile Lys Glu Leu Glu Gln 85 90 95
	Lys Lys Ser Tyr Leu Glu Arg Arg

(2) INFORMATION FOR SEQ ID NO: 64:

5			(i) (xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	ERIS 46 a no a lin PTIO	mino cid ear	aci		. 64				
			(,,,	SEQ	OEMC.	e De.	SCKI	PIIO	N. D	CQ I	D 140	. 04	•			
	Met 1	Pro	Ser	Gly	Phe 5	Gln	Thr	Cys	Leu	Leu 10	Phe	Thr	Leu	Ser	Pro 15	Phe
15	Ser	Leu	Ser	Lys 20	Ile	Val	Gly	Val	Pro 25	Ser	Gln	Gln	Leu	Pro 30	Gly	Glr
1.5	Leu	Ser	Glu 35	Gln	Gly	Gly	Leu	Cys 40	Gly	His	Glu	Gly	Glu 45	Pro	Ala	Arg
20	Thr	Val 50	Pro	Glu	Thr	Gln	Leu 55	Pro	Leu	Pro	Phe	Asn 60	Ser	Ala	Gly	Pro
	Pro 65	His	Leu	Lys	Суз	Thr 70	Gly	Ala	Gly	Lys	Arg 75	Val	Trp	Ser	Pro	Pro 80
25	Arg	Arg	Ala	Ala	Gln 85	Glu	Val	Ser	Leu	Gln 90	Leu	Val	Ser	Cys	His 95	Pro
30	Cys	Arg	Gln	His 100	Thr	Ser	Arg	Ala	Phe 105		Leu	Ala	Thr	Asp 110	Arg	Thi
50	Ala	Ser	Ala 115	Arg	Val	Cys	Cys	Arg 120	Ser	Pro	Leu	Ser	Thr 125	Leu	Ile	His
35	His	Thr 130	Arg	Gly	Gly	Gln	Arg 135	Cys	Arg	Glu	His	Gly 140	Leu	Ser	Leu	Pro
	Leu 145	Xaa														
40																
	(2)	INF	ORMA	TION	FOR	SEQ	ID 1	NO:	65:							
45		٠		. (A) I B) I D) I	ENGT YPE: OPOL	H: 3 ami OGY:	l am no a lin	ino cid ear	acid		: 65	:			
50	Met 1	Ala	Ile	Leu	Met 5	Leu	Leu	Ala	Gly	Ser 10	Pro	Cys	Thr	Leu	Ser 15	Phe
55	Ser	Thr	Asp	Thr 20	Gly	Ser	Ser	Ala	Pro 25	Gly	Pro	Lys	Ile	Pro 30	Xaa	
	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO:	66:							
60			(i)	SEQU	ENCE	CHA	RACT	ERIS	TICS	:						

					(B)	TYPE	: an		acid	i	ids				•	
•			(x:	i) SE	(D) EQUEN	TOPO					TD N	o. 6	<i>c</i> .			
5	V a	-	, B.													
	Me	t As	sp Pi	O GI	n GL	y Gli 5	n Th	r Le	u Le	u Le		e Le	u Ph	e Va	1 As _l	p Phe 5
10	His	s Se	er Al	a Ph 2	e Pro	o Vai	l Gli	n Gl	n Me	t Gli	u Ile	e Trj	Gl _y	y Va.		r Thr
	. Leu	ı Le	u Th	r Th	r His	5 Let	ı Ası	n Ala	a Ile	⊋ Lei	ı Va]	l Glu	Sei		s Sei	. Val
15	Val	. G1 5	n Gl 0	y Se:	r Ile	e Glr	Phe 55	e Thi	· Val	l Asr	Lys	Va]		ı Glu	ı Glr	n His
20	His 65	Gl	n Al	a Ala	a Lys	Ala 70	Glr	Glr	Lys	Leu	0 Gln 75		Ser	Leu	Ser	Val 80
	Ala	. Va	l Ası	n Sei	: Ile 85	Met	Ser	Ile	. Leu	Thr 90		Ser	Thr	Arg	Ser 95	Ser
25	Phe	Arg	g Lys	Met 100	: Cys	Leu	Gln	Thr	Leu 105	Gln	Ala	Ala	Asp	Thr 110		Glu
	Phe	Arg	7 Thi 119	Lys	Leu	His	Lys	Val 120	Phe	Arg	Glu	Ile	Thr 125	Gln	His	Gln
30	Phe	Leu 130	ı His	His	Cys	Ser	Cys 135	Glu	Val	Lys	Gln	Leu 140	Thr	Leu	Glu	Lys
35	Lys 145	Asr	Ser	: Ala	Gln	Gly 150	Thr	Glu	Asp	Ala	Pro 155	Asp	Asn	Ser	Ser	Leu 160
	Glu	Leu	ı Leu	Ala	Asp 165	Thr	Ser	Gly	Gln	Ala 170	Glu	Asn	Lys	Arg	Leu 175	Lys
40	Arg	Gly	Ser	Pro 180	Arg	Ile	Glu	Glu	Met 185	Arg	Ala	Leu	Arg	Ser 190	Ala	Arg
	Ala	Pro	Ser 195	Pro	Ser	Glu	Ala	Ala 200	Pro	Arg	Arg	Pro	Glu 205	Ala	Thr	Ala
45	Ala	Pro 210	Leu	Thr	Pro	Arg	Gly 215	Arg	Glu	His	Arg	Glu 220	Ala	His	Gly	Arg
50	Ala 225	Leu	Ala	Pro	Gly	Arg 230	Ala	Ser	Leu		Ser 235	Arg	Leu	Glu		Val 240
	Leu '	Trp	Leu	Gln	Glu 245	Val	Ser	Asn	Leu	Ser 250	Glu	Trp	Leu		Pro 255	Ser
55	Pro (Gly	Pro	Xaa 260												

(2) INFORMATION FOR SEQ ID NO: 67:

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 amino acids
	(B) TYPE: amino acid
5	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:
	Met Ala Ala Cys Gly Pro Gly Ala Ala Gly Thr Ala Cys Ser Ser 1 5 10 15
10	Ala Cys Ile Cys Phe Cys Xaa 20
15	(2) INFORMATION FOR SEQ ID NO: 68: (i) SEQUENCE CHARACTERISTICS:
20	(A) LENGTH: 27 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:
25	Met His Ala Leu Ile Leu Gln Phe Ile Phe Ser Leu Cys Met Tyr Ile 1 5 10 15
20	Ser Leu Phe Ser Ala Ala Arg Phe Leu Phe Xaa 20 25
30	(2) INFORMATION FOR SEQ ID NO: 69:
	(i) SEQUENCE CHARACTERISTICS:
35	(A) LENGTH: 29 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:
40	Leu Leu Leu Cys Phe Cys Cys His Pro Thr His Leu Gln Gly Xaa 1 5 10 15
	Trp Ala Leu Asp Leu Gly Leu Phe Pro Phe Asn Cys Xaa 20 25
45	
	(2) INFORMATION FOR SEQ ID NO: 70:
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 216 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:
55	Met Tyr Leu Ser Ile Ile Phe Leu Ala Phe Val Ser Ile Asp Arg Cys 1 5 10 15
60	Leu Gln Leu Thr His Ser Cys Lys Ile Tyr Arg Ile Gln Glu Pro Gly 20 25 30

	Phe	e Al	a Lys	Met	: Ile	Ser	Thr	Val 40		. Trp	Leu	Met	Va]		ı Lev	ıIl
5	Met	Va 5	l Pro) Asn	Met	Met	Ile 55		Ile	: Lys	Asp	Ile 60		Glu	Lys	Se:
	Asr 65	ı Va	l Gly	Cys	Met	Glu 70	Phe	Lys	Lys	Glu	Phe 75	Gly	Arg	Asn	Trp	Hi:
10	Leu	ı Le	u Thr	Asn	Phe 85	Ile	Cys	Val	Ala	Ile 90		Leu	Asn	Phe	Ser 95	
15	Ile	e Ile	e Leu	Ile 100	Ser	Asn	Cys	Leu	Val 105		Arg	Gln	Leu	Tyr 110	Arg	Asr
	Lys	: Ası	9 Asn 115	Glu	Asn	Tyr	Pro	Asn 120	Val	Lys	Lys	Ala	Leu 125	Ile	Asn	Ile
20	Leu	Let 130	u Val)	Thr	Thr	Gly	Tyr 135	Ile	Ile	Cys	Phe	Val 140	Pro	Tyr	His	Ile
	Val 145	Arg	, Ile	Pro	Tyr	Thr 150	Leu	Ser	Gln	Thr	Glu 155	Val	Ile	Thr	Asp	Cys 160
25	Ser	Thr	Arg	Ile	Ser 165	Leu	Phe	Lys	Ala	Lys 170	Glu	Ala	Thr	Leu	Leu 175	Leu
30	Ala	Val	. Ser	Asn 180	Leu	Cys	Phe	Asp	Pro 185	Ile	Leu	Tyr	туг	His 190	Leu	Ser
	Lys	Ala	Phe 195	Arg	Ser	Lys	Val	Thr 200	Glu	Thr	Phe	Ala	Ser 205	Pro	Lys	Glu
35	Thr	Lys 210	Val	Arg	Lys	Lys	Asn 215	Xaa						•		
40	(2)	INF	ORMAI	SEQUE		CHAF	RACTE	RIST	'ICS:		a.	e e	-			
45			(xi)	(I (I	3) TY	PE:	amir XGY:	o ac line	id ar		NO:	71				
	Met 1	His	Pro										Arg	Cys		Leu
50	Leu	Leu	Leu	Val 20		Trp '	Val :	Phe '	Thr 25		Val '	Phr '	Thr	Glu 30	15 Ile	Thr
55	Ser	Leu	Asp 35	Thr	Glu i	Asn :	Ile /	Asp (Glu	Ile:	Leu A	Asn i	Asn 45		Asp	Val
JJ	Ala	Leu 50	Val .	Asn :	Phe :	ryr i	Ala i 55	Asp :	Irp (Cys .	Arg I	Phe 5	Ser	Gln i	Met :	Leu
60	His 65	Pro	Ile	Phe (Glu (3lu <i>1</i> 70	Ala S	Ser 1	Asp '	Val :	Ile I 75	ys (Glu (Glu :	Phe :	Pro 80

	Asn	Glu	Asn	Gln	Val 85		. Phe	Ala	Arg	Va]		Cys	Asp	Gln	His	Ser
5	Asp	Ile	Ala	Gln 100		Tyr	Arg	Ile	Ser 105		Tyr	Pro	Thr	Leu 110	Lys	Leu
10	Phe	Arg	Asn 115	Gly	Met	Met	Met	Lys 120		Glu	Tyr	Arg	Gly 125		Arg	Ser
	Val	Lys 130	Ala	Leu	Ala	Asp	Tyr 135		Arg	Gln	Gln	Lys 140		Asp	Pro	Ile
15	Gln 145	Glu	Ile	Arg	Asp	Leu 150		Glu	Ile	Thr	Thr 155	Leu	Asp	Arg	Ser	Lys 160
	Arg	Asn	Ile	Ile	Gly 165	Tyr	Phe	Glu	Gln	Lys 170		Ser	Asp	Asn	Туг 175	Arg
20	Val	Phe	Glu	Arg 180	Val	Ala	Asn	Ile	Leu 185	His	Asp	Asp	Cys	Ala 190	Phe	Leu
25	Ser	Ala	Phe 195	Gly	Asp	Val	Ser	Lys 200	Pro	Glu	Arg	Tyr	Ser 205	Gly	Asp	Asn
	Ile	Ile 210	Tyr	Lys	Pro	Pro	Gly 215	His	Ser	Ala	Pro	Asp 220	Met	Val	Tyr	Leu
30	Gly 225	Ala	Met	Thr	Asn	Phe 230	Asp	Val	Thr	Tyr	Asn 235	Trp	Ile	Gln	Asp	Lys 240
	Cys	Val	Pro	Leu	Val 245	Arg	Glu	Ile	Thr	Phe 250	Glu	Asn	Gly	Glu	Glu 255	Leu
35	Thr	Glu	Glu	Gly 260	Leu	Pro	Phe	Leu	Ile 265	Leu	Phe	His	Met	Lys 270	Glu	Asp
40	Thr	Glu	Ser 275	Leu	Glu	Ile	Phe	Gln 280	Asn	Glu	Val	Ala	Arg 285	Gln	Leu	Ile
	Ser	Glu 290	Lys	Gly	Thr	Íle	Asn 295	Phe	Leu	His	Ala	Asp 300	Cys	Asp	Lys	Phe
45	Arg 305	His	Pro	Leu	Leu	His 310	Ile	Gln	Lys	Thr	Pro 315	Ala	Asp	Cys	Pro	Val 320
	Ile	Ala	Ile	Asp	Ser 325	Phe	Arg	His	Met	Тут 330	Val	Phe	Gly	Asp	Phe 335	Lys
50	Asp	Val	Leu	Ile 340	Pro	Gly	Lys	Leu	Lys 345	Gln	Phe	Val	Phe	Asp 350	Leu	His
55	Ser	Gly	Lys 355	Leu	His	Arg	Glu	Phe 360	His	His	Gly	Pro	Asp 365	Pro	Thr	Asp
	Thr	Ala 370	Pro	Gly	Glu	Gln	Ala 375	Gln	Asp	Val	Ala	Ser 380	Ser	Pro	Pro	Glu
60	Ser 385	Ser	Phe	Gln	Lys	Leu 390	Ala	Pro	Ser	Glu	Tyr 395	Arg	Tyr	Thr	Leu	Leu 400

Arg Asp Arg Asp Glu Leu Xaa 405 5 (2) INFORMATION FOR SEQ ID NO: 72: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 9 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72: 15 Tyr Leu Ile Ser Tyr Leu Cys Phe Xaa 5 20 (2) INFORMATION FOR SEQ ID NO: 73: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids (B) TYPE: amino acid 25 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73: Met Pro Leu Lys Ala Val Thr Trp Pro Thr Leu Asn Ser Lys Leu Val 30 Ala Ala Val Val Asn Leu Lys Ala Ser Gln Met Pro Ala Ser Ser Arg 20 Val Xaa 35 (2) INFORMATION FOR SEQ ID NO: 74: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74: Gin Ser Pro Arg Ser Ser Ala Leu Gly Ala Gly Gln Lys Leu Ala Val 50 Cys Ser Pro Asp Ile Leu Cys Cys Pro Thr Asp Thr Leu Leu Ala Ser 20 His Pro His Ser Leu Leu Thr Gly Thr Gln Phe Ser Gly Gln Thr Gln 55

Ala Leu Ala Pro Ser Trp Cys Ala Xaa

55

50

```
(2) INFORMATION FOR SEQ ID NO: 75:
               (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 26 amino acids
  5
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:
       Met Ala Gly Ile His Arg Ala Phe Leu Val Phe Cys Leu Trp Gly Leu
 10
       Xaa Leu Cys Val Val Gly Gly Pro Trp Xaa
                    20
 15
       (2) INFORMATION FOR SEQ ID NO: 76:
              (i) SEQUENCE CHARACTERISTICS:
 20
                     (A) LENGTH: 15 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:
 25
      Met Ser Phe Ser Ser Pro Lys Ser Leu Leu Ser Leu Ile Ser Xaa
                        5
                                            10
30
       (2) INFORMATION FOR SEQ ID NO: 77:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 33 amino acids
                     (B) TYPE: amino acid
35
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:
      Met Thr Ile Trp Gln Leu Phe Ala Val Leu Ile Val Leu Phe Ala Lys
                       5
                                           10
40
      Ser Arg Glu Ile Ser Thr Glu Gly Glu Pro Cys Val Leu Ser Lys Asn
                                       25
      Xaa
45
      (2) INFORMATION FOR SEQ ID NO: 78:
50
            (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 23 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
55
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:
     Met Leu Asn Pro Phe Xaa Gln Leu Leu Leu Val Leu Leu Phe Pro Glu
                       5
60
     Trp Pro Thr Pro Leu His Xaa
```

5	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	79:							
10				((A) I (B) T (D) T	ENGI TYPE : TOPOL	H: 1 ami OGY:	ERIS 173 a ino a : lin	mino cid near	aci): 7 9	:			
15	Met 1	Lys	Thr	Leu	Phe 5		Gly	Val	Thr	Leu 10	Gly	Leu	Ala	Ala	Ala 15	Leu
	Ser	Xaa	Thr	Leu 20	Xaa	Glu	Glu	Asp	Ile 25	Thr	Gly	Thr	Trp	Туr 30	Val	Lys
20	Ala	Met	Val 35	Val	Asp	Lys	Thr	Phe 40	Arg	Arg	Gln	Glu	Ala 45	Gln	Lys	Val
	Ser	Pro 50	Val	Lys	Val	Thr	Ala 55	Leu	Gly	Gly	Gly	Lys 60	Leu	Glu	Ala	Thr
25	Phe 65	Thr	Phe	Met	Arg	Glu 70	Asp	Arg	Cys	Ile	Gln 75	Lys	Lys	Ile	Leu	Xaa 80
30	Arg	Lys	Thr	Glu	Glu 85	Pro	Gly	Lys	Tyr	Ser 90	Ala	Суз	Glu	Pro	Leu 95	Pro
	His	Ser	His	Pro 100	His	Xaa	Pro	Pro	Pro 105	Pro	Thr	Pro	Val	His 110	Gln	Pro
35	Pro	Gln	Val 115	Glu	Ser	Ala	Gln	Ala 120	Ala	Leu	Leu	Pro	Gly 125	Pro	Gļn	Leu
	Cys	Pro 130	Pro	Pro	Arg	Arg	Gly 135	Trp	Pro	Leu	Leu	Pro 140	Gly	Gly	Leu	Val
40	Ala 145	Leu	Thr	Ser	Asp	Thr 150	Gly	Cys	Asp	Arg	Leu 155	Val	Arg	Ser	Arg	Asp 160
45	Gly	Pro	Asp	His	Ala 165	Cys	Pro	Leu	Gly	Gly 170	Pro	Ser	His			
50	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	10: 8	30:							
50			(i) S	()	A) L	ENGTI	H: 2	ERIST 08 ar no ac	mino		ds					
55			(xi)					line PTION		EQ II	ONO:	: 80:	:			
	Met 1	Ala	Asp	Ser	Ser 5	Tyr	Thr	Ser	Glu	Val 10	Gln	Ala	Ile	Leu	Ala 15	Phe
60	Leu	Ser	Leu	Gln 20	Arg	Thr	Gly	Ser	Gly 25	Gly	Pro	Gly	Asn	His	Pro	His

	Gly	Pro	Asp 35	Ala	Ser	Ala	Glu	Gly 40	Leu	Asn	Pro	Tyr	Gly 45	Leu	Val	Al
5	Pro	Arg 50	Phe	Gln	Arg	Lys	Phe 55	Lys	Ala	Lys	Gln	Leu 60	Thr	Pro	Arg	Il
10	Leu 65	Glu	Ala	His	Gln	Asn 70	Val	Ala	Gln	Leu	Ser 75	Leu	Ala	Glu	Ala	Gl:
10	Leu	Arg	Phe	Ile	Gln 85	Ala	Trp	Gln	Ser	Leu 90	Pro	Asp	Phe	Gly	Ile 95	Se
15	Tyr	Val	Met	Val 100	Arg	Phe	Lys	Gly	Ser 105	Arg	Lys	Asp	Glu	Ile 110	Leu	Gly
	Ile	Ala	Asn 115	Asn	Arg	Leu	Ile	Arg 120	Ile	Asp	Leu	Ala	Val 125	Gly	Asp	Va:
20	Val	Lys 130	Thr	Trp	Arg	Phe	Ser 135	Asn	Met	Arg	Gln	Trp 140	Asn	Val	Asn	Tr
25	Asp 145	Ile	Arg	Xaa	Val	Ala 150	Ile	Glu	Phe	Asp	Glu 155	His	Ile	Asn	Val	Ala 160
	Phe	Ser	Cys	Val	Ser 165	Ala	Ser	Cys	Arg	Ile 170	Val	His	Glu	Туг	Ile 175	Gl
30	Gly	Tyr	Ile	Phe 180	Leu	Ser	Thr	Arg	Glu 185	Xaa	Ala	Arg	Gly ·	Glu 190	Glu	Le
	Asp	Glu	Asp 195	Leu	Phe	Leu	Gln	Leu 200	Thr	Gly	Gly	His	Glu 205	Ala	Phe	Xaa
35									•							
40	(2)	TNFC	ORMAI	PTON	FOR	SEO	א כד	Ι Ο		,						
	•		(i) :	SEQU	ENCE	CHAI		ERIST	rics		_		٠			
45			(xi)	(B) T D) T	YPE: OPOL	ami OGY:	no ao line	cid ear			: 81	•			
50	Met 1	Ile	Phe	Leu	Leu 5	Phe	Leu	Thr	Pro	Leu 10	Trp	Leu	Gln	Lys	Gly 15	Ser
30	Ala	Gly	Lys	Met 20	Ser	Gly	Glu	Phe	Leu 25	Tyr	Ala	Ser	Leu	Phe 30	Gln	Trį
55	Asn	Тут	Phe 35	Trp	Arg	Asn	Lys	Lys 40	Val	Cys	Xaa					
60	(2)	INFO	ORMAT	rion	FOR	SEQ	ID N	10: 8	12 :							

	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 146 amino acids
	(B) TYPE: amino acid (D) TOPOLOGY: linear
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:
	Met Pro Ser Gly Phe Gln Thr Cys Leu Leu Phe Thr Leu Ser Pro Phe
	1 5 10 15
10	Ser Leu Ser Lys Ile Val Gly Val Pro Ser Gln Gln Leu Pro Gly Gln
	20 25 30
	Leu Ser Glu Gla Cla Cla Lan G
	Leu Ser Glu Gln Gly Gly Leu Cys Gly His Glu Gly Glu Pro Ala Arg 35 40
15	4 J
	Thr Val Pro Glu Thr Gln Leu Pro Leu Pro Phe Asn Ser Ala Gly Pro
	50 55 60
	Pro His Leu Lys Cys Thr Gly Ala Gly Lys Arg Val Trp Ser Pro Pro
20	65 70 75 80
	Arg Arg Ala Ala Gln Glu Val Ser Leu Gln Leu Val Ser Cys Xaa Pro
25	95
25	Cys Arg Gln Xaa Thr Ser Arg Ala Phe Ser Leu Ala Thr Asp Arg Thr
	100 105 110
	Ala Ser Ala Arg Val Cys Cys Arg Phe Pro Phe Lys His Thr His Ser
20	115 120 125
30	
	Pro His Pro Arg Arg Pro Glu Val Gln Gly Ala Trp Ala Val Val Pro
	135 140
35	Leu Xaa
33	145
40	(2) INFORMATION FOR SEQ ID NO: 83:
40	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 25 amino acids
	(B) TYPE: amino acid
45	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:
	Met Pro Trp Arg Arg Ala Gly Leu Met Met Leu Pro Ile Ile Thr Gly
	1 5 10 15 The The Thr Gly
50	•
	Cys Cys Pro Cys Ser Ala Ser Ile Xaa 20
	25
	·
55	(2) INFORMATON TOTAL
	(2) INFORMATION FOR SEQ ID NO: 84:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 31 amino acids
60	(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:

Met Lys Thr Leu Phe Leu Gly Val Thr Leu Gly Leu Ala Leu Pro Cys

1 5 10 15

Pro Ser Pro Trp Xaa Arg Arg Ile Ser Gln Gly Pro Gly Thr Xaa

20 25 30

10

15

(2) INFORMATION FOR SEQ ID NO: 85:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 374 amino acids
- (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:
- Met Ser Val Pro Ala Phe Ile Asp Ile Ser Glu Glu Asp Gln Ala Ala

 1 5 10 15

Glu Leu Arg Ala Tyr Leu Lys Ser Lys Gly Ala Glu Ile Ser Glu Glu 20 25 30

- Asn Ser Glu Gly Gly Leu His Val Asp Leu Ala Gln Ile Ile Glu Ala 35 40 45
- Cys Asp Val Cys Leu Lys Glu Asp Asp Lys Asp Val Glu Ser Val Met 50 55 60

Asn Ser Val Val Ser Leu Leu Leu Ile Leu Glu Pro Asp Lys Gln Glu 65 70 75 80

- Ala Leu Ile Glu Ser Leu Cys Glu Lys Leu Val Lys Phe Arg Glu Gly 85 90 95
 - Glu Arg Pro Ser Leu Arg Leu Gln Leu Leu Ser Asn Leu Phe His Gly 100 105 110
- 40 Met Asp Lys Asn Thr Pro Val Arg Tyr Thr Val Tyr Cys Ser Leu Ile 115 120 125
- Lys Val Ala Ala Ser Cys Gly Ala Ile Gln Tyr Ile Pro Thr Glu Leu 130 135 140
 - Asp Gln Val Arg Lys Trp Ile Ser Asp Trp Asn Leu Thr Thr Glu Lys 145 150 155 160
- Lys His Thr Leu Leu Arg Leu Leu Tyr Glu Ala Leu Val Asp Cys Lys 165 170 175
 - Lys Ser Asp Ala Ala Ser Lys Val Met Val Glu Leu Leu Gly Ser Tyr 180 185 190
- 55 Thr Glu Asp Asn Ala Ser Gln Ala Arg Val Asp Ala His Arg Cys Ile
 195 200 205
- Val Arg Ala Leu Lys Asp Pro Asn Ala Phe Leu Phe Asp His Leu Leu 210 215 220 $$

	Thr 225	Leu	Lys	Pro	Val	Lys 230	Phe	Leu	Glu	Gly	Glu 235	Leu	Ile	His	Asp	Leu 240
5	Leu	Thr	Ile	Phe	Val 245	Ser	Ala	Lys	Leu	Ala 250	Ser	Tyr	Val	Lys	Phe 255	Tyr
	Gln	Asn	Asn	Lys 260	Asp	Phe	Ile	Asp	Ser 265	Leu	Gly	Leu	Leu	His 270	Glu	Gln
10	Asn	Met	Ala 275	Lys	Met	Arg	Leu	Leu 280	Thr	Phe	Met	Gly ·	Met 285	Ala	Val	Glu
15	Asn	Lys 290	Glu	Ile	Ser	Phe	Asp 295	Thr	Met	Gln	Gln	Glu 300	Leu	Gln	Ile	Gly
	Ala 305	Asp	Asp	Val	Glu	Ala 310	Phe	Val	Ile	Asp	Ala 315	Val	Arg	Thr	Lys	Met 320
20	Val	Tyr	Cys	Lys	Ile 325	Asp	Gln	Thr	Gln	Arg 330	Lys	Val	Val	Val	Ser 335	His
	Ser	Thr	His	Arg 340	Thr	Phe	Gly	Lys	Gln 345	Gln	Trp	Gln	Gln	Leu 350	Tyr	Asp
25	Thr	Leu	Asn 355	Ala	Trp	Lys	Gln	Asn 360	Leu	Asn	Lys		Lys 365	Asn	Ser	Leu
30	Leu	Ser 370	Leu	Ser	Asp '	Thr		-								
35	(2)	(i) s	EQUE (A) (B) (D)	NCE) TY) TO	CHAR NGTH PE: POLC	ACTE 1: 13 amin	O: 8 RIST ami o ac line TION	ICS: no a id ar			96				
40	Met :												Asp			
45	(2)	INFO	RMAT:	ION E	FOR S	SEQ :	ED NO	D: 87	7.:							
50				(A (B (D) LE) TY) TO	NGTH PE: POLO	: 15 amin GY:	RIST amino o ac linea TION:	no a id ar		NO:	87:				
55	Gln A	Ala A	Ala C	3lu L	eu A 5	rg P	la 1	Yr I	eu L	ys S 10	er L	ys G	sly A	la G	lu 15	
60	(2) I	NFOF	ITAM	ON F	OR S	EQ I	D NO	: 88	:							

```
(i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 17 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
 5
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:
      Ile Ser Glu Glu Asn Ser Glu Gly Gly Leu His Val Asp Leu Ala Gln
10
      Ile
15
      (2) INFORMATION FOR SEQ ID NO: 89:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 18 amino acids
                     (B) TYPE: amino acid
20
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:
      Ile Glu Ala Cys Asp Val Cys Leu Lys Glu Asp Asp Lys Asp Val Glu
25
      Ser Val
30
      (2) INFORMATION FOR SEQ ID NO: 90:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 16 amino acids
35
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:
      Val Ala Arg Pro Ser Ser Leu Phe Arg Ser Ala Trp Ser Cys Glu Trp
40
                       5
45
      (2) INFORMATION FOR SEQ ID NO: 91:
             (i) SEQUENCE CHARACTERISTICS:
50
                    (A) LENGTH: 12 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:
55
      Leu Arg Leu Gln Leu Leu Ser Asn Leu Phe His Gly
       1
                       5
60
      (2) INFORMATION FOR SEQ ID NO: 92:
```

	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 17 amino acids
5	(B) TYPE: amino acid
9	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:
	Lys Asp Val Glu Ser Val Met Asn Ser Val Val Ser Leu Leu Ile
	1 5 10 15
10	
	Leu
	•
15	
	(2) INFORMATION FOR SEQ ID NO: 93:
	25 No. 95.
	(i) SEQUENCE CHARACTERISTICS:
20	(A) LENGTH: 26 amino acids
20	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:
	Asp Ala Ala Ser Lys Val Met Val Glu Leu Leu Gly Ser Tyr Thr Glu
25	1 5 10 15
	Asp Asn Ala Ser Gln Ala Arg Val Asp Ala
	20 25
30	
20	
	(2) INFORMATION FOR SEQ ID NO: 94:
	, , , , , , , , , , , , , , , , , , ,
25	(i) SEQUENCE CHARACTERISTICS:
35	(A) LENGTH: 10 amino acids
	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:
40	Val Glu Ala Phe Val Ile Asp Ala Val Arg
	1 5 10
45	(2) INFORMATION FOR SEC. TO US
	(2) INFORMATION FOR SEQ ID NO: 95:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 35 amino acids
50	(B) TYPE: amino acid
50	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:
	Met Ser Clu Tle mer Lau 200
	Met Ser Glu Ile Tyr Leu Arg Cys Gln Asp Glu Gln Gln Tyr Ala Arg
55	10 15
	Trp Met Ala Gly Cys Arg Leu Ala Ser Lys Gly Arg Thr Met Ala Asp
	20 25 30
60	Ser Ser Tyr
55	35

5	(2) INFORMATION FOR SEQ ID NO: 96:
J	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 45 amino acids(B) TYPE: amino acid
10	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:
	Leu Val Ala Pro Arg Phe Gln Arg Lys Phe Lys Ala Lys Gln Leu Thr 1 5 10 15
15	Pro Arg Ile Leu Glu Ala His Gln Asn Val Ala Gln Leu Ser Leu Ala 20 25 30
20	Glu Ala Gln Leu Arg Phe Ile Gln Ala Trp Gln Ser Leu 35 40 45
	(2) INFORMATION FOR SEQ ID NO: 97:
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:
30	Val Gly Asp Val Val Lys Thr Trp Arg Phe Ser Asn Met Arg Gln Trp 1 5 10 15
35	Asn Val Asn Trp Asp Ile Arg
40	(2) INFORMATION FOR SEQ ID NO: 98:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:
	Glu Glu Ile Asp Cys Thr Glu Glu Glu Met Met Val Phe Ala Ala Leu 1 5 10 15
50	Gln Tyr His Ile Asn Lys Leu Ser Gln Ser 20 25
55	(2) INFORMATION FOR SEQ ID NO: 99:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 amino acids
50	(B) TYPE: amino acid (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

Glu Glu Ile Asp Cys Thr Glu Glu Glu Met Met Val Phe Ala Ala Leu 1 5 10 15

Gln Tyr His Ile Asn Lys Leu Ser Gln Ser 20 25

10

15

5

- (2) INFORMATION FOR SEQ ID NO: 100:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:
- Lys Glu Leu Ser Phe Ala Arg Ile Lys Ala Val Glu Cys Val Glu Ser

 1 5 10 15

Thr Gly Arg His Ile Tyr Phe Thr Leu Val 20 25

25

- (2) INFORMATION FOR SEQ ID NO: 101:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:
- 35 Gly Trp Asn Ala Gln Ile Thr Leu Gly Leu Val Lys Phe Lys Asn Gln
 1 5 10 15

Gln

40

- (2) INFORMATION FOR SEQ ID NO: 102:
- 45 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:

Leu Val Leu Gly Leu Ser Xaa Leu Asn Asn Ser Tyr Asn Phe Ser Phe 1 5 10 15

55

60

(2) INFORMATION FOR SEQ ID NO: 103:

ISDOCID: <WO___9854206A1_I_>

5	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:
	His Val Val Ile Gly Ser Gln Ala Glu Glu Gly Gln Tyr Ser Leu Ass 1 5 10 15
10	Phe
15	(2) INFORMATION FOR SEQ ID NO: 104:
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:
25	His Asn Cys Asn Asn Ser Val Pro Gly Lys Glu His Pro Phe Asp Ile 1 5 10 15
-	Thr Val Met
30	(2) INFORMATION FOR SEQ ID NO: 105:
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:
40	Phe Ile Lys Tyr Val Leu Ser Asp Lys Glu Lys Lys Val Phe Gly Ile 1 5 10 15
0_	Val
45	(2) INFORMATION FOR SEQ ID NO: 106:
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:
55	Ile Pro Met Gln Val Leu Ala Asn Val Ala Tyr Ile Ile 1 5 10
60	(2) INFORMATION FOR SEQ ID NO: 107:

	The state of the s
	(A) LENGTH: 13 amino acids
5	(B) TYPE: amino acid
5	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:
	2
	Ile Pro Met Gln Val Leu Ala Asn Val Ala Tyr Ile Ile
	7
10	1 10
10	
	·
	(2) INFORMATION FOR SEQ ID NO: 108:
	2
15	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 15 amino acids
	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:
20	
	ASD GIV Ive Val ala Val aco I av ala var
	Asp Gly Lys Val Ala Val Asn Leu Ala Lys Leu Lys Leu Phe Arg
	1 5 10 15
25	•
25	
	(2) INFORMATION FOR SEQ ID NO: 109:
	(i) SEQUENCE CHARACTERISTICS:
30	(A) LENGTH: 13 amino acids
30	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:
	SEQ ID NO: 109:
	The Arg Glu Lyg Age Dec Arg Glu Pl
35	Ile Arg Glu Lys Asn Pro Asp Gly Phe Leu Ser Ala Ala
	1 5 10
	(2) INFORMATION FOR SEQ ID NO: 110:
40	10.
	(i) CEOUTING CONTRACTOR
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 9 amino acids
	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:
	DESCRIPTION: SEQ ID NO: 110:
	Met Met Dhe Clarche man et al.
•	Met Met Phe Gly Gly Tyr Glu Thr Ile
	1 5
50	
50	
	(2) INFORMATION FOR SEQ ID NO: 111:
	TO THE SECOND TO A SEQ TO NO: III:
	(1)
==	(i) SEQUENCE CHARACTERISTICS:
55	(A) LENGTH: 24 amino acids
	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:
50	
,,	Tyr Arg Asp Glu Ser Ser Ser Glu Leu Ser Val Asp Ser Glu Val Glu
	July Val Git

	1				5					10					15	
5	Phe	Gln	Leu	Tyr 20	Ser	Gln	Ile	His								
10	(2)	INF			•	SEQ CHA				•		•				
				((A) L B) T D) T	ENGT YPE: OPOL E DE	H: 1 ami OGY:	36 a no a ´lin	mino cid ear	aci		. 11	2 ·			
15	Tyr 1	Ala				Asp				-				His	Glu 15	Glu
20	Lys	Àsn	Ser	Gly 20	Asn	Ser	Glu	Ser	Ser 25	Ser	Ser	Lys	Pro	Asn 30	Gln	Lys
	Lys	Leu	Ile 35	Val	Leu	Ser	Asp	Ser 40	Glu	Val	Ile	Gln	Leu 45	Ser	Asp	Gly
25	Ser	Glu 50	Val	Ile	Thr	Leu	Ser 55	Asp	Glu	Asp	Ser	Ile 60	Tyr	Arg	Cys	Lys
30	Gly 65	Lys	Asn	Val	Arg	Val 70	Gln	Ala	Gln	Glu	Asn 75	Ala	His	Gly	Leu	Ser 80
	Ser	Ser	Leu	Gln	Ser 85	Asn	Glu	Leu	Val	Asp 90	Lys	Lys	Cys	Lys	Ser 95	Asp
35.	Ile	Glu	Lys	Pro 100	Lys	Ser	Glu	Glu	Arg 105	Ser	Gly	Val	Ilė	Arg 110	Glu	Val
	Met	Ile	Ile 115	Glu	Val	Ser	Ser	Ser 120	Glu	Glu	Glu	Glu	Ser 125	Thr	Ile	Ser
40	Glu	Gly 130	Asp	Asn	Val	Glu	Ser 135	Trp								
45	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	10: 2	113:							
			(i)	(A) L	CHA	н: 3	7 am	ino		s					
50			(xi)	(D) T	YPE: OPOL E DE:	OGY:	lin	ear	EQ II	D NO	: 11	3:			
55	Met 1	Leu	Leu	Gly	Cys 5	Glu	Val	Asp	Asp	Lys 10	Asp	Asp	Asp	Ile	Ļeu 15	Leu
	Asn	Leu	Val	Gly 20	Cys	Glu	Asn	Ser	Val 25	Thr	Glu	Gly	Glu	Asp 30	Gly	Ile
60	Asn	Trp	Ser 35	Ile	Ser											

5	(2) INFORMATION FOR SEQ ID NO: 114:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:	
	Asp Lys Asp Ile Glu Ala Gln Ile Ala Asn Asn Arg Thr Pro Gly F	ır
15	Trp Thr	
20	(2) INFORMATION FOR SEQ ID NO: 115:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids	
25	(B) TYPE: amino acid (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:	
30	Gln Arg Tyr Tyr Ser Ala Asn Lys Asn Ile Ile Cys Arg Asn Cys A 1 5 10 15	sp
	Lys Arg Gly His Leu Ser Lys Asn Cys Pro Leu Pro Arg Lys Val 20 25 30	
35	(2) INFORMATION FOR SEQ ID NO: 116:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 179 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:	•
45	Arg Arg Cys Phe Leu Cys Ser Arg Arg Gly His Leu Leu Tyr Ser Cy 1 5 10 15	rs
	Pro Ala Pro Leu Cys Glu Tyr Cys Pro Val Pro Lys Met Leu Asp Hi 20 25 30	s
50	Ser Cys Leu Phe Arg His Ser Trp Asp Lys Gln Cys Asp Arg Cys Hi 35 40 45	.s
55	Met Leu Gly His Tyr Thr Asp Ala Cys Thr Glu Ile Trp Arg Gln Ty 50 55 60	r
	His Leu Thr Thr Lys Pro Gly Pro Pro Lys Lys Pro Lys Thr Pro Se 65 70 75 8	r 0
60	Arg Pro Ser Ala Leu Ala Tyr Cys Tyr His Cys Ala Gln Lys Gly Hi 85 90 95	s

_	Tyr Gly His Glu Cys Pro Glu Arg Glu Val Tyr Asp Pro Ser Pro Val 100 105 110
5	Ser Pro Phe Ile Cys Tyr Tyr Xaa Asp Lys Tyr Glu Ile Gln Glu Arg 115 120 125
10	Glu Lys Arg Leu Lys Gln Lys Ile Lys Val Xaa Lys Lys Asn Gly Val 130 . 135 140
	Ile Pro Glu Pro Ser Lys Leu Pro Tyr Ile Lys Ala Ala Asn Glu Asn 145 150 155 160
15	Pro His His Asp Ile Arg Lys Gly Arg Ala Ser Trp Lys Ser Asn Arg 165 170 175
	Trp Pro Gln
20	
	(2) INFORMATION FOR SEQ ID NO: 117:
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:
30	Leu Ser Ile Ile Phe Leu Ala Phe Val Ser Ile Asp Arg Cys Leu Gln 1 5 10 15
	Leu ,
35	
	(2) INFORMATION FOR SEQ ID NO: 118:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 67 amino acids (B) TYPE: amino acid
15	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:
45	Gly Ser Cys Phe Ala Thr Trp Ala Phe Ile Gln Lys Asn Thr Asn His 1 5 10 15
50	Arg Cys Val Ser Ile Tyr Leu Ile Asn Leu Leu Thr Ala Asp Phe Leu 20 25 30
	Leu Thr Leu Ala Leu Pro Val Lys Ile Val Val Asp Leu Gly Val Ala 35 40 45
55	Pro Trp Lys Leu Lys Ile Phe His Cys Gln Val Thr Ala Cys Leu Ile 50 55 60
60	Tyr Ile Asn 65

	(2)	IN	FORM/ (i)	SEQ	JENCI	E CHI LENG	ARAC TH:	reri: 60 a	STIC: mino		ds					
5			(xi)		(D) '	TOPO!	LOGY	: li	near	SEQ :	ID N): 1 1	19:			
10	Ala 1	Pro	Leu	ı Glu	Thr 5		: Glr	a Asr	i Lys	Pro 10		, Ala	Pro	Glr	Lys 15	
	Ala	Let	Pro	Phe 20	Pro	Glu	. Leu	Glu	Leu 25		J Asp	Тух	Ala	Ser 30		. Le
15	Thr	Arg	35	Ser	Leu	Gly	Leu	Arg 40		Lys	Glu	Pro	Ser 45		Gly	Hi.
	Arg	Trp 50	Gly	Thr	Gln	Lys	Leu 55		'Arg	Ser	Pro	Cys 60				
20	(2)	INF	ORMA	TION	FOR	. SEQ	ID	NO:	120:							
25				((A) I (B) I (D) I	ENGI YPE : OPOL	TH:] ami OGY:	no a	mino cid ear	aci	ids D NO	: 12	0: ⁻			
30	Asn 1	Arg	Glu	Arg	Gly 5	Gly	Ala	Gly	Ala	Thr 10	Phe	Glu	Cys	Asn	Ile 15	
	Leu	Glu	Thr	Ala 20	Arg	Glu	Ala	Val	Val 25	Ser	Val	Cys	Gly	His 30		ту
35	Cys	Trp	Pro 35	Cys	Leu	His	Gln	Trp 40	Leu	Glu	Thr	Arg	Pro 45	Glu	Arg	Glı
40		50	Pro				55					60				
	65		Gly			70					75					80
45	Pro	Pro	Arg 、	Pro	Gln 85	Gly	Gln	Arg	Pro	Ala 90	Pro	Glu	Ser	Arg	Gly 95	Gly
Ω	Phe	Gln	Pro	Phe 100	Gly	Asp	Thr	Gly	Gly 105	Phe	His	Phe	Ser	Phe 110	Gly	Va]
50	Gly	Ala	Phe 115	Pro	Phe	Gly	Phe	Phe 120	Thr	Thr	Val	Phe	Asn 125	Ala	His	Glu
55	Pro	Phe 130	Arg	Arg	Gly	Thr	Gly 135	Val	Asp	Leu	Gly	Gln 140	Gly	His	Pro	Ala
	Ser 145	Ser	Trp	Gln	Asp	Ser 150	Leu	Phe	Leu	Phe	Leu 155	Ala	Ile	Phe	Phe	Phe 160
60	Phe	Trp	Leu	Leu	Ser 165	Ile										

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page 29 , line N/A									
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 📑								
Name of depositary institution American Type Culture Collection									
Address of depositary institution (including postal code and count	Address of depositary institution (including postal code and country)								
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America									
Date of deposit May 22, 1997	Accession Number 209075								
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet								
	·								
*									
	·								
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)								
EUROPE In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4)EPC).									
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)								
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")									
For receiving Office use only	For International Bureau use only								
This sheet was received with the international application	This sheet was received by the International Bureau on:								
Authorized officer JERYL MoDOWELL 703-305-3639	Authorized officer								

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page 30 , line N/A								
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet							
Name of depositary institution American Type Culture Collection								
Address of depositary institution (including postal code and country) 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America								
Date of deposit May 8, 1997	Accession Number 209022							
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet							
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)							
EUROPE In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4)EPC).								
E. SEPARATE FURNISHING OF INDICATIONS (leave	•							
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")								
For receiving Office use only	For International Bureau use only							
This sheet was received with the international application	This sheet was received by the International Bureau on:							
Authorized officer JERYL McDOWELL 703-305-3639	Authorized officer							

10

15

20

What Is Claimed Is:

- 1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:
- (a) a polynucleotide fragment of SEQ ID NO:X or a polynucleotide fragment of the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (b) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (c) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y or a polypeptide domain encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (d) a polynucleotide encoding a polypeptide epitope of SEQ ID NO:Y or a polypeptide epitope encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (e) a polynucleotide encoding a polypeptide of SEQ ID NO:Y or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X, having biological activity;
 - (f) a polynucleotide which is a variant of SEQ ID NO:X;
 - (g) a polynucleotide which is an allelic variant of SEQ ID NO:X;
 - (h) a polynucleotide which encodes a species homologue of the SEQ ID NO:Y;
- (i) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h), wherein said polynucleotide does not hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence of only A residues or of only T residues.
- The isolated nucleic acid molecule of claim 1, wherein the
 polynucleotide fragment comprises a nucleotide sequence encoding a secreted protein.
- The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding the sequence identified as SEQ ID NO:Y or the polypeptide encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

4. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises the entire nucleotide sequence of SEQ ID NO:X or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

5

5. The isolated nucleic acid molecule of claim 2, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.

10

6. The isolated nucleic acid molecule of claim 3, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.

15 claim 1.

- 7. A recombinant vector comprising the isolated nucleic acid molecule of 1.
- 8. A method of making a recombinant host cell comprising the isolated nucleic acid molecule of claim 1.

20

- 9. A recombinant host cell produced by the method of claim 8.
- 10. The recombinant host cell of claim 9 comprising vector sequences.
- 11. An isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:
 - (a) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (b) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z, having biological activity;

- (c) a polypeptide domain of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- (d) a polypeptide epitope of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- (e) a secreted form of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (f) a full length protein of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;

- (g) a variant of SEQ ID NO:Y;
- (h) an allelic variant of SEQ ID NO:Y; or
- (i) a species homologue of the SEO ID NO:Y.
- 12. The isolated polypeptide of claim 11, wherein the secreted form or the full length protein comprises sequential amino acid deletions from either the C-terminus or the N-terminus.
 - 13. An isolated antibody that binds specifically to the isolated polypeptide of claim 11.
 - 14. A recombinant host cell that expresses the isolated polypeptide of claim 11.
 - 15. A method of making an isolated polypeptide comprising:
- 15 (a) culturing the recombinant host cell of claim 14 under conditions such that said polypeptide is expressed; and
 - (b) recovering said polypeptide.
 - 16. The polypeptide produced by claim 15.
 - 17. A method for preventing, treating, or ameliorating a medical condition, comprising administering to a mammalian subject a therapeutically effective amount of the polypeptide of claim 11 or the polynucleotide of claim 1.
- 25 18. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
 - (a) determining the presence or absence of a mutation in the polynucleotide of claim 1; and
- (b) diagnosing a pathological condition or a susceptibility to a pathologicalcondition based on the presence or absence of said mutation.
 - 19. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
- (a) determining the presence or amount of expression of the polypeptide of claim 11 in a biological sample; and
 - (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or amount of expression of the polypeptide.

- 20. A method for identifying a binding partner to the polypeptide of claim 11 comprising:
 - (a) contacting the polypeptide of claim 11 with a binding partner; and
- (b) determining whether the binding partner effects an activity of the polypeptide.
 - 21. The gene corresponding to the cDNA sequence of SEQ ID NO:Y.
- 10 22. A method of identifying an activity in a biological assay, wherein the method comprises:
 - (a) expressing SEQ ID NO:X in a cell;
 - (b) isolating the supernatant;
 - (c) detecting an activity in a biological assay; and
- (d) identifying the protein in the supernatant having the activity.
 - 23. The product produced by the method of claim 22.

INTERNATIONAL SEARCH REPORT

IPC(6) US CL	The state of the s								
Minimum	documentation searched (classification system follow-	ed by classification symbols)							
U.S. :	530/350; 536/23.5								
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched									
l .	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) MPSRCH								
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.						
X 	Database Genbank on MPSRCH, (Edinburgh, UK), No. N20562, HILLI	University of Edinburgh,	1						
Y	sapiens cDNA clone 264086 3'.' 18	December 1995, compare to	2-10, 14, 15, 21						
	SEQ ID No. 11.	zoo, compute to	2 10, 14, 12, 21						
X	WO 95/31544 A1 (H WEINWURZE	EL. H.) 23 November 1995.	1						
_	compare Figure 1b to SEQ ID No. 12	•							
Y	·		2-10, 14, 15, 21						
x	Database Genbank on MPSRCH,	University of Edinburgh.	1						
	(Edinburgh, UK), No. N23080, HILLI	IER et al. 'yw43d02.s1 Homo							
Y	sapiens cDNA clone 254979 3'.' 28 SEQ ID No. 13.	December 1995, compare to	2-10, 14, 15, 21						
	•								
X Furth	er documents are listed in the continuation of Box C	. See patent family annex.							
	ocial categories of cited documents:	"T" later document published after the inte date and not in conflict with the appl							
to 1	cument defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the	invention						
"L" doc	tier document published on or after the international filing date cument which may throw doubts on priority claim(s) or which is	"X" document of particular relevance; the considered novel or cannot be consider when the document is taken alone							
cited to establish the publication date of another citation or other special reason (as specified) "Y" document of perticular relevance; the claimed invention cannot be considered to inventive step when the document is									
me	"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination or other being obvious to a person skilled in the art								
the	cument published prior to the international filing date but later than priority date claimed	"&" document member of the same patent							
Date of the	actual completion of the international search	Date of mailing of the international sea	irch report						
02 OCTO	BER 1998	280CT1998	·						
Name and n	nailing address of the ISA/US . ner of Patents and Trademarks	Authorized officer							
Box PCT	a, D.C. 20231	BRUCE CAMPELL							
Facsimile N		Telephone No. (703) 308-0196							

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/10868

C (Coordinate)			
1	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevan	Relevant to claim No.	
X Y	Database Genbank on MPSRCH, University of Edinburg (Edinburgh, UK), No. G23170, HUDSON, T. 'human S 16915', 31 May 1996, compare with SEQ ID No. 14.	gh, TS WI-	1 2-10, 14, 15, 21
X Y	Database Genbank on MPSRCH, University of Edinburg (Edinburgh, UK), No. H18098, HILLIER et al. 'yn47d0 sapiens cDNA clone 171553 3'.' 29 June 1995, compare ID No. 15.	1.sl Homo	1 2-10, 14, 15, 21
Y	Database Genbank on MPSRCH, University of Edinburg (Edinburgh, UK), No. N46256, HILLIER et al. 'yy72g09 sapiens cDNA clone 279136 3'.' 14 February 1996, com SEQ ID No. 16.	9.sl Homo	1 2-10, 14, 15, 21
Y	Database Genbank on MPSRCH, University of Edinburgh (Edinburgh, UK), No. N28611, HILLIER et al. 'yx38f03 sapiens cDNA clone 264029 5'.' 04 January 1996, compa SEQ ID No. 17.	rl Homo	1 2-10, 14, 15, 21
Y	Database Genbank on MPSRCH, University of Edinburgh (Edinburgh, UK), No. R70283, HILLIER et al. 'yj81c08. sapiens cDNA clone 155150 5'.' 01 June 1995, compare vID No. 18.	rl Homo	1 2-10, 14, 15, 21
Y (s	Database Genbank on MPSRCH, University of Edinburgh (Edinburgh, UK), No. T98012, HILLIER et al. 'ye56e07. sapiens cDNA clone 121764 3'.' 29 March 1995, compar SEQ ID No. 19.	sl Homo	1 2-10, 14, 15, 21
Y	Database Genbank on MPSRCH, University of Edinburgh (Edinburgh, UK), No. Z44692, GENEXPRESS. 'H. sapies DNA sequence, clone 27b07, mRNA sequence.' 21 September 1995, compare with SEQ ID No. 20.	ns partial	1 2-10, 14, 15, 21
Y (15	Database Genbank on MPSRCH, University of Edinburgh Edinburgh, UK), No. W83277, MARRA et al. 'mf25e5.r nouse embryo NbME13.5 14.5 Mus musculus cDNA clorb', mRNA sequence.' 12 September 1996, compare with No. 43.	1 Soares	1 2-10, 14, 15, 21

Form PCT/ISA/210 (continuation of second sheet)(July 1992)★

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group 1:

Claims 1-10, 14, 15, and 21 drawn to a polynucleotide(s), vector(s) containing the polynucleotide, host cells containing the vector(s) which are SEQ ID NO: X or a polynucleotide encoding the polypeptide Y or a cDNA in the material deposited with American Type Culture Collection with accession number Z wherein the cDNA in Z hybridizes to X. Additionally Group I contains the first method making the cells (claim 14) containing the vector(s) containing the polynucleotide(s) and the first method of use of the cells (claim 15) to make a product. There appear to be a total of 46 polynucleotide sequences of which the first ten (10) are selected for examination and therefore, there are nine (9) remaining additional groups of four (4) polynucleotide sequences.

Group II:

Claims 11, 12, 16, and 23 drawn to polypeptides and/or fragments thereof with the amino acid sequence defined by SEQ ID NO: Y as found in the material deposited with the American Type Culture Collection with accession number Z. There appear to be a total of 74 polypeptide sequences and therefore 73 additional species of proteins.

Group III:

Claim 13, drawn to an antibody and/or fragments thereof that bind to a polypeptide with the amino acid sequence defined by SEQ ID NO: Y as found in the material deposited with the American Type Culture Collection with accession number Z. There appear to be a total of 74 antibodies that correspond to the SEQ ID NOs: for the "Y" and "Z" sequences and therefore 73 additional species of proteins.

Group IV:

Claim 17, drawn to a process of preventing, treating, or ameliorating a medical condition by administering a polypeptide or a polynucleotide which a second/alternative process of use of the second product and of an alternative process of use of the first claimed product in Group I.

In Group IV, and where additional fees are paid, the claims are searched only insofar as they are applicable to the selected polypeptide and its corresponding SEQ ID NO: as the first species as directed to a process practiced using a polypeptide. The second species is the practice of the process using a polynucleotide. In each instance, the same selected polypeptide as for the first species of Group II and for the first 10 polynucleotide sequences for Group I would be examined. Applicant may elect to pay additional fees for each additional o the 73 different polypeptide species beyond the first one (1) polypeptide and/or the first 10 polynucleotides as set forth in the above paragraphs directed to Group I and II.

Group V:

Claim 18, drawn to a method of diagnosis of a pathological condition an another alternative process of use of the first claimed product in Group I. Additionally Group V contains indica that there are a total of 46 polynucleotide sequences and therefore, nine(9) additional groups of four (4) polynucleotide sequences beyond the first ten (10) sequences.

Group VI:

Claim 19, drawn to a method of diagnosis of a pathological condition an another alternative process of use of the polypeptide. There appear to be a total of 74 polypeptide sequences and therefore 73 additional species of proteins.

Group VII:

Claim 20, drawn to a method of identification of a binding partner for a polypeptide. There appear to be a total of 74 polypeptide sequences and therefore 73 additional species of proteins.

Group VIII:

Claim 22, drawn to a method of identification of function of a protein is another alternative process of use of the product in Group I. Additionally Group V contains indica that there are a total of 46 polynucleotide sequences and therefore, nine(9) additional groups of four (4) polynucleotide sequences beyond the first ten (10) sequences.

Form PCT/ISA/210 (extra sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/10868

The inventions listed as Groups I through VIII do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons.

Claims of Group I are drawn to nucleotides, nucleotide constructs, and/or methods requiring the use of nucleotides or nucleotide constructs that contain more than ten individual, independent, and distinct nucleotide sequences in alternative form. Accordingly, these claims are subject to lack of unity as outlined in 1192 O.G. 68 (19 November 1996).

For Group I, the first ten (10) of the individual polynucleotide sequences designated as "X" by SEQ ID NO: as set forth in the application (see for example page 29+ and/or the SEQUENCE LISTING) are included for search. The corresponding SEQ ID NO: for "Y" and "Z" for each selected "X" should also be noted. The search of the no more than ten sequences may include the complements of the selected sequences and, where appropriate, may include subsequences within the selected sequences (e.g., oligomeric probes and/or primers).

In Group IV (as directed to the species which are polynucleotides) should applicant pay the additional fee for the second appearing species in Group IV which are polynucleotides, first ten (10) of the individual polynucleotide sequences designated as "X" by SEQ ID NO: as set forth in the application (see for example page 29+ and/or the SEQUENCE LISTING) are included for search of Group IV should the fees for Group IV be paid. This is also applied to Groups V and VIII. The corresponding SEQ ID NO: for "Y" and "Z" for each selected "X" should also be noted. The search of the no more than ten sequences may include the complements of the selected sequences and, where appropriate, may include subsequences within the selected sequences (e.g., oligomeric probes and/or primers).

Where Applicant may elect to pay additional fees for a search of sequences beyond the initial ten (10) polynucleotide sequences, and in accordance with 1192 O.G. 68 (19 November 1996), applicant may select additional groups of polynucleotides consisting of four (4) sequences beyond the initial ten (10) sequences for Group I which would then be searched with Group I upon payment of the requisite fees for the requisite Groups beyond Group I.

As to the polypeptides of Groups II, III, IV (as directed to a species which is a polypeptide), VI, and VII each is a distinct and different protein. Should additional fees for the above indicated Groups be paid, the first amino acid sequence identified from the SEQUENCE LISTING by applicant would be searched with the additional group for which the additional search fees were paid.

Applicant may select additional proteins and or antibodies to be searched by specifying the appropriate SEQ ID NOs and payment of the requisite additional fees for each single additional particular species that are selected beyond the one (1) protein identified by SEQ ID NO:.

The SEQ ID NOs in Group I define, absent evidence to the contrary, structurally distinct and different proteins. Note the present application written description (page 5+) refers to the protein encoded by gene 1 as likely to be involved in promotion of a variety of cancers whereas gene 2 (pages 6-7) is directed to apparently a variety but not correlated immune system disorder(s) whereas gene 3 (pages 7-8) is asserted at page 7 to be a mediator of ligand dependent AF-2. Each of which and absent factual evidence to the contrary, are directed to genes encoding distinct and different proteins and are therefore distinct and different genes and appear to map to different chromosomes.

As to the protein of Group II and the antibody of Group III, each is distinct and different for the reasons indicated in the preceding paragraph and because the proteins have distinct and different chemical, physical, and biological properties from that of DNA/polynucleotides/vectors and cells containing same.

Groups IV through VIII are directed to alternative processes of use of the Group I and II compositions where Group I contains in claims 14 and 15, the first claimed method of making the polynucleotide and the first claimed process of use of the cells containing the vector which contains the polynucleotides.

Form PCT/ISA/210 (extra sheet)(July 1992)*