Dynamic Programming

Dr. Raghunath Reddy M

Dept. of Computer Science Engineering, Bennett University, Greater Noida

February 12, 2020

Dr. R Reddy M Dynamic Programming February 12, 2020 Slide - 1 of 20

Weighted Interval Selection / Activity Scheduling Problem

Figure: An instance of the problem.

Weighted Interval Selection / Activity Scheduling Problem

Problem Definition

Input: We are given a set of n intervals labeled 1, 2, ..., n and each interval i is of the form (s_i, f_i) $(s_i < f_i)$. Further, every interval i has a value (profit) v_i .

Output: Find a subset S of $\{1, 2, ..., n\}$ such that

- No two intervals in S overlap and

Question

Any of the greedy selection rules:

- least (minimum) finishing time (f_i)
- Pick the maximum value interval / activity

give optimal solution?

Ans: NO

Slide - 3 of 20

Dynamic Programming

• Let's suppose that the intervals are sorted in order of non-decreasing finish time: $f_1 \le f_2 \le \cdots \le f_n$.

Notation

For any given interval j, let p(j) be the largest index i < j such that both intervals i and j do not overlap.

Some observation about an optimum solution

- Let \mathcal{O} be an optimal set of intervals (which are disjoint and has maximum total value)
- Actually, we do not know \mathcal{O} . In fact, we have to compute \mathcal{O} .

Look for interval n in the set \mathcal{O}

Case (i): $n \notin \mathcal{O}$

Index p(1) = 02 p(2) = 03 p(3) = 1 $v_4 = 7$ 4 p(4) = 0 $v_5 = 2$ 5 p(5) = 36 p(6) = 3

Figure: Consider an instance with intervals $\{1, 2, 3, 4, 5, 6\}$.

Case (i): $n \notin \mathcal{O}$

Index

Case (i): $n \notin \mathcal{O}$

• \mathcal{O} is the same as the optimal solution to the problem consists of internals $\{1, 2, \dots, n-1\}$.

Case (ii): $n \in \mathcal{O}$

Index

Case (ii): $n \in \mathcal{O}$

Case (ii): $n \in \mathcal{O}$

• Further, \mathcal{O} must include an optimum solution to the problem consists of intervals $\{1, 2, \dots, p(n)\}$ i.e., $\mathcal{O} = \{n\} \cup$ the optimal solution of the problem with intervals $\{1, 2, \dots, p(n)\}$.

Connecting the dots

Case (i): $n \notin \mathcal{O}$

 $\mathcal O$ is the same as the optimal solution to the problem consists of internals $\{1,2,\ldots,n-1\}.$

Case (ii): $n \in \mathcal{O}$

 $\mathcal{O} = \{n\} \cup \text{the optimal solution of the problem with intervals } \{1, 2, \dots, p(n)\}.$

Combining the both cases

Let \mathcal{O}_j be the optimum set of intervals for the sub-problem with intervals $\{1, 2, \dots, j\}$. Then,

- $\mathcal{O} = \mathcal{O}_n$ and
- further, \mathcal{O} is either $\{n\} \cup \mathcal{O}_{p(n)}$ or \mathcal{O}_{n-1} .

Generalization of the facts

- Let \mathcal{O}_j be the optimum set of intervals for the sub-problem with intervals $\{1, 2, \dots, j\}$.
- ② Further, let OPT(j) be the value of the solution \mathcal{O}_j i.e., the sum of values of intervals in \mathcal{O}_j .

Case (i): $j \in \mathcal{O}_j$

- $OPT(j) = v_j + OPT(p(j))$

Case (ii): $j \notin \mathcal{O}_j$

- $\mathcal{O}_i = \mathcal{O}_{i-1}$ and
- OPT(j) = OPT(j-1)

Connecting the dots

$$OPT(j) = \max\{v_i + OPT(p(j)), OPT(j-1)\}$$

Algorithm

• Recall that $OPT(j) = \max\{v_j + OPT(p(j)), OPT(j-1)\}$

Algo. to compute OPT(j) for a given j

ComputeOpt(j)

- If j = 0 then
 - return 0
- Else
 - return $\max\{v_j + ComputeOpt(p(j)), ComputeOpt(j-1)\}$

Lemma 0.1.

ComputeOpt(j) correctly computes OPT(j) for each j = 1, 2, ..., n.

Remark

ComputeOpt(j) takes $O(2^{j})$ -time to return the value.

Reason for exponential time

Figure: OPT(6) computation tree

 $\mathsf{Dr.}\ \mathsf{R}\ \mathsf{Reddy}\ \mathsf{M}$

Reason for exponential time

Figure: OPT(6) computation tree

Memorizing the recursion

• Let M[0..n] be a global array of size n+1 and initially, all the locations are empty.

Modifed Algo. to compute OPT(j) for a given j

- M ComputeOpt(j)
 - If j = 0 then
 - return 0
 - Else if M[j] is not empty then
 - return M[j]
 - Else
 - $M[j] = \max\{ v_j + ComputeOpt(p(j)), ComputeOpt(j-1) \}$

Slide - 18 of 20

• return M[j]

Lemma 0.2.

The running time of the above algorithm is O(n).

Find the set of intervals using array M

- Recall that $OPT(j) = \max\{v_j + OPT(p(j)), OPT(j-1)\}$
- Interval j belongs to an optimum solution for the set of intervals $\{1, 2, ..., j\}$ if and only if $v_j + OPT(p(j)) \ge OPT(j-1)$.

Algo.

FindSolution(j)

- If j = 0 then
 - output nothing
- Else if $v_j + M[p(j)] \ge M[j-1]$
 - output *j*
 - call FindSolution(p(j))
- Else
 - call FindSolution(j-1)

Memorization vs Iteration over sub-problems

Algo. with memorization over sub-problems

- M ComputeOpt(j)
 - If i = 0 then
 - return 0
 - Else if M[j] is not empty then
 - return M[j]
 - Else
 - $M[j] = \max\{ v_j + ComputeOpt(p(j)), ComputeOpt(j-1) \}$
 - return M[j]

Iteration over sub-problems

- M[0] = 0
- For j = 1, 2, ..., n
 - $M[j] = \max\{v_j + M[p(j)], M[j-1]\}$
- EndFor