

Mathématiques

Classe: BAC

Chapitre: Suites Réelles

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1:

© 30 min

5 pts

 $\label{eq:continuous} \text{Soit U Ia suite réelle définie sur IN par } \begin{cases} U_{_0} = 2 \\ U_{_{n+1}} = \frac{U_{_n}{}^2 - U_{_n} + 2}{1 + U_{_n}} \text{ ,pour tout } n \in IN \end{cases}$

- 1) Montrer que pour tout $n \in \square$, $1 < U_n \le 2$.
 - b) Etudier la monotonie de la suite U. En déduire que U est convergente et calculer sa limite.
- 2) a) Montrer que pour tout n de IN on a : $0 \le U_{n+1} 1 \le \frac{1}{2} (U_n 1)$.
 - b) En déduire que pour tout $n \in IN$, $0 \le U_n 1 \le \left(\frac{1}{2}\right)^n$, retrouver alors $\lim_{n \to +\infty} U_n$.
- 3) On pose $S_n = \sum_{k=1}^{n} U_k$ pour tout $n \in IN^*$
 - a) Montrer que pour tout $n \in IN^*$ on $a : n < S_n \le n + 1 (\frac{1}{2})^n$
 - b) En déduire $\lim_{n\to +\infty} S_n$ et $\lim_{n\to +\infty} \frac{S_n}{n}$

Exercice 2:

Soit la suite réelle (U_n) définie sur IN par : $\begin{cases} U_0 = 3 \\ U_{n+1} = \frac{2U_n^2 + U_n + 2}{2 + U_n^2} \text{ pour tout } n \in IN. \end{cases}$

- **1) a-** Montrer que pour tout $n \in IN$, on a : $U_n > 2$.
 - **b-** Montrer que la suite (U_n) est décroissante.
 - **c-** En déduire que la suite (U_n) est convergente et déterminer sa limite.
- 2) a- Montrer que pour tout n de IN; $0 < U_{n+1} 2 \le \frac{1}{2} (U_n 2)$.
 - **b-** En déduire que pour tout n de IN, $0 < U_n 2 \le \frac{1}{2^n}$, puis retrouver $\lim_{n \to +\infty} U_n$.
- **3)** On pose pour tout $n \in IN^*$, $S_n = \sum_{k=1}^n U_k$ et $V_n = \frac{1}{n} \sum_{k=1}^n U_k$
 - **a-** Montrer que pour tout n de IN^* ; $2n \le S_n \le 2n + 1$
 - **b-** En déduire $\lim_{n \to +\infty} S_n$ et $\lim_{n \to +\infty} V_n$.

Exercice 3:

(S) 24 min

4 pts

On considère les suites réelles définies sur IN par

$$\begin{cases} U_0 = 0 \text{ et } U_{n+1} = \frac{2U_n + V_n}{3} \\ V_0 = 1 \text{ et } V_{n+1} = \frac{3U_n + 2V_n}{5} \end{cases}$$

- 1) Montrer que pour tout $n \in \square$; on a $U_n \le V_n$.
- 2) Montrer que la suite (U_n) est croissante et (V_n) est décroissante.
- 3) Montrer que les suites (U_n) et (V_n) sont convergentes et admettent la même limite.
- 4) Soit la suite (W_n) définie sur IN par $W_n = 9U_n + 5V_n$.
 - a) Montrer que (W_n) est une suite constante.
 - b) En déduire la limite commune des suites (U_n) et (V_n)

Exercice 4:

(5) 24 min

4 pts

On considère les suites réelles (U_n) et (V_n) définies par : U_0 = 1 ; V_0 = 2 et, pour tout entier naturel n, U_{n+1} = α U_n +(1- α) V_n et V_{n+1} = (1- α) U_n + α V_n où α est un réel donné tel que $\frac{1}{2}$ < α < 1.

- 1) Soit (t_n) la suite définie sur N par $t_n = v_n u_n$.
 - a) Calculer to et t1.
 - b) Montrer que, pour tout entier naturel n, $t_n = (2 \alpha 1)^n$.
 - c) En déduire la limite de t_n.
- 2) a) Montrer que, pour tout entier naturel $n, u_n \le v_n$
 - b) Montrer que la suite (u,,) est croissante et que la suite (vn) est décroissante.
 - c) En déduire que les suites (u_n) et (v_n) convergent vers une même limite I.
 - d) Montrer que, pour tout entier naturel n, $u_n + v_n = 3$ et en déduire la valeur de la limite l.

Exercice 5:

(\$ 30 min

5 pts

Soit la suite réelle (U_n) définie sur IN par : $\begin{cases} U_0 = \frac{3}{2} \\ U_{n+1} = \frac{8+U_n}{1+2U_n} & \text{pour tout } n \in IN. \end{cases}$

- **1/ a-** Déterminer U_1 et U_2 .
 - b- La suite U est-elle monotone?
- **2/ a-** Montrer que pour tout $n \in IN$, on $a : \frac{3}{2} < U_n < 3$.
 - **b-** Montrer que pour tout $n \in IN$, on a : $\left|U_{n+1} 2\right| \le \frac{3}{4} \left|U_n 2\right|$
 - **c-** Montrer par récurrence, que pour tout $n \in IN$ on a : $\left|U_n 2\right| \le \frac{1}{2} (\frac{3}{4})^n$.
 - d- En déduire qu'elle est convergente et calculer sa limite.
- 3/ On considère la suite (V_n) définie sur IN par : $V_n = \frac{U_n 2}{2 + U_n}$.
- **a)** Montrer que (V_n) est une suite géométrique dont on précisera la raison et le premier terme
- **b)**Exprimer V_n puis U_n en fonction de n.
- c) Déterminer alors $\lim_{n\to\infty} U_n$.

Exercice 6:

© 24 min

4 pts

- 1) Soit f la fonction définie par $f(x) = \frac{x}{\sqrt{1+x}}$. Montrer que : $\forall x > 0$, 0 < f(x) < x
- 2) Soit (U_n) la suite réelle définie sur \square par : U_0 = 1 et U_{n+1} = f (U_n)
 - a) Montrer que, pour tout n de \square , on a : $U_n > 0$
 - b) Montrer que (U_n) est décroissante
 - c) En déduire que $(U_{\scriptscriptstyle n})$ est convergente et déterminer sa limite.
- 3) Soit (V_n) la suite réelle définie par : $V_0 = 1$ et $V_{n+1} = \frac{V_n}{U_n}$

- a) Montrer que $\forall n \in \square^*, \ V_{n+1} \ge \sqrt{2} \ .V_n$
- b) En déduire que $\forall n \in \square^*, \ V_n \ge \frac{\left(\sqrt{2}\right)^{n+1}}{2}$, déterminer $\lim_{n \to +\infty} V_n$

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000