Taller 2

Dado:

$$f(n) = n^3 + 9n^2 \log(n)$$

$$g(n) = n^2 \log(n)$$

a) Comprobar si $f(n) \in O(g(n))$

Para determinar si $f(n) \in O(g(n))$, comparamos los órdenes de crecimiento:

$$f(n) = n^3 + 9n^2\log(n)$$

$$g(n) = n^2 \log(n)$$

El término dominante en f(n) es n^3 , y en g(n) es $n^2\log(n)$.

Sabemos que: n^3 crece más rápido que $n^2\log(n)$ cuando $n \to \infty$

Por lo tanto, $f(n) \notin O(g(n))$, ya que f(n) crece más rápido que g(n).

b) Comprobar si $f(n) \notin O(n^2)$

Para verificar si $f(n) \notin O(n^2)$, comparamos los órdenes de crecimiento:

$$f(n) = n^3 + 9n^2log(n)$$

El término dominante sigue siendo n³, y sabemos que: n³ crece más rápido que n²

Entonces, $f(n) \notin O(n^2)$, ya que n^3 no está acotado por una constante multiplicativa de n^2 para n suficientemente grande.

2. Relaciones de Pertenencia para Funciones Exponenciales

Sea:

$$f(n) = 2^n$$

$$g(n) = 2^{(2n)} = 4^n$$

a) $f(n) \in O(g(n))$?

Comparamos los órdenes de crecimiento:

$$f(n) = 2^n$$

$$g(n) = 4^n = (2^2)^n = 2^{2n}$$

Dado que:

$$2^n < 2^{2n} = 4^n$$
 para todo $n \ge 1$,

entonces f(n) crece más lentamente que g(n), por lo tanto, $f(n) \in O(g(n))$.

b) $g(n) \in O(f(n))$?

Como ya vimos:

$$g(n) = 4^n = 2^{2n} y f(n) = 2^n,$$

lo que implica que:

$$g(n) = (2^n)^2 = f(n)^2$$

Esto indica que g(n) crece mucho más rápido que f(n), por lo tanto, $g(n) \notin O(f(n))$.