Конспект билетов

Аналитическая механика

Содержание

1	Кинематика точки. Траектория, скорость и ускорение точки. Скорость и ускорение точки в полярных координатах	5
	1.1 Кинематика точки	5
2	Кинематика точки. Естественный трёхгранник. Теорема Гюйгенса о разложении ускорения точки на тангенциальное и нормальное 2.1 Кинематика точки. Естественный трёхгранник	5 5
3	Сумма и пересечение подпространств. Линейно независимые подпространства, прямая сумма подпространств, её характеризации, прямое дополнение подпространства, проекция на подпространство вдоль прямого дополнения. Связь размерностей суммы и пересечения подпространств (формула Грассмана). Понятие факторпространства, его базис и размерность 3.1 Сумма и пересечение подпространств 3.2 Линейно независимые подпространства, прямая сумма подпространств, её характеризации, прямое дополнение подпространства, проекция на подпространство вдоль прямого дополнения 3.3 Связь размерностей суммы и пересечения подпространств 3.4 Понятие факторпространства, его базис и размерность	5 6 6 7
4	Понятие аффинного пространства, связь между аффинным и векторным пространством	7
Л	инейные отображения	7
5	Линейные отображения и линейные преобразования векторных пространств (линейные операторы). Операции над линейными отображениями, линейное пространство линейных отображений. Алгебра линейных операторов. Изоморфизмы 5.1 Линейные отображения и линейные преобразования векторных пространств (линейные операторы) 5.2 Операции над линейными отображениями, линейное пространство линейных отображений 5.3 Алгебра линейных операторов 5.4 Изоморфизмы	77 77 88 88 99
6	Матрица линейного отображения. Координатная запись линейного отображения. Связь операций над матрицами и над линейными отображениями. Изменение матрицы линейного отображения (преобразования) при замене базиса 6.1 Матрица линейного отображения	10
7	7.1 Ядро и образ, их описание в терминах матрицы линейного отображения	
8	Аффинные преобразования, их свойства. Аффинная группа 8.1 Аффинные преобразования, их свойства 8.2 Аффинная группа	
\mathbf{C}		12

9	Инвариантные подпространства. Ограничение оператора на инвариантное подпространство. Фактороператор	f 12
		12
		12
		12
10	Собственные векторы и собственные значения. Собственные подпространства. Харак-	
	теристический многочлен и его инвариантность. Определитель и след преобразования	
	10.1 Собственные векторы и собственные значения	
	10.2 Собственные подпространства	
	10.4 Определитель и след преобразования	
11	Линейная независимость собственных подпространств, отвечающих различным соб-	
	ственным значениям. Алгебраическая и геометрическая кратность собственного зна-	10
	чения. Критерий диагонализируемости преобразования 11.1 Линейная независимость собственных подпространств, отвечающих различным собствен-	13
	ным значениям	$\begin{array}{c} 13 \\ 14 \end{array}$
	11.2 Алгеораическая и геометрическая кратность сооственного значения	$\frac{14}{14}$
12	Инвариантные подпространства малой размерности в вещественном случае	14
13	Треугольный вид матрицы преобразования. Теорема Гамильтона-Кэли	15
	13.1 Треугольный вид матрицы преобразования	15 15
	10.2 Teopema Taminathiona Itolin	10
14	Корневые подпространства, их размерность. Разложение пространства в прямую сумму корневых. Жорданова нормальная форма, её существование и единственность. Минимальный многочлен, критерий диагонализируемости оператора в терминах мини-	
	мального многочлена	15
		$\frac{15}{16}$
	14.2 Разложение пространства в прямую сумму корневых	16 16
	14.4 Минимальный многочлен, критерий диагонализируемости оператора в терминах минималь-	10
	ного многочлена	17
Би	линейные формы	18
15	Билинейные (полуторалинейные) формы (функции). Координатная запись билиней-	
	ной формы. Матрица билинейной формы и её изменение при замене базиса	18
		18
		18
	15.3 Матрица билинейной формы и её изменение при замене базиса	18
16	Симметричные билинейные (полуторалинейные) формы. Взаимно-однозначное соот-	
	ветствие с квадратичными (эрмитовыми) формами	18
	1 / 1 / 1 1	18
	16.2 Взаимно-однозначное соответствие с квадратичными (эрмитовыми) формами	18
17	Ядро билинейной функции. Ортогональное дополнение подпространства. Ограничение билинейной функции на подпространство. Критерий невырожденности подпространства. Существование нормального вида билинейной симметричной формы над полями	
	\mathbb{R} и \mathbb{C} 17.1 Ядро билинейной функции	19 19
18	Алгоритмы приведения квадратичной формы к нормальному виду (метод Лагранжа	
	и слвоенных элементарных преобразований матрицы)	19

19	Закон инерции квадратичной (эрмитовой) формы. Положительный и отрицательный индексы инерции, их геометрическая характеризация. Критерий Сильвестра 19.1 Закон инерции квадратичной (эрмитовой) формы	19 19 20
20	Кососимметричные билинейные функции, приведение их к нормальному виду	20
ПІ	ространства со скалярным произведением	20
21	Евклидовы и унитарные пространства. Матрица Грама и её свойства. Неравенство Коши — Буняковского — Шварца, неравенство треугольника. Метрика. Выражение скалярного произведения в координатах 21.1 Евклидовы и унитарные пространства	20 20 21 21 21
22	Ортогональные системы векторов и подпространств. Существование ортонормированных базисов (ОНБ). Изоморфизм евклидовых пространств. Ортогональные и унитарные матрицы. Переход от ОНБ к ОНБ 22.1 Ортогональные системы векторов и подпространств	$\frac{22}{22}$
	23.2 Ортогональная проекция	23
	Описание линейных функций на евклидовом (унитарном) пространстве	23
25	Преобразование, сопряжённое данному. Его линейность, существование и единственность, его матрица в ОНБ. Теорема Фредгольма 25.1 Преобразование, сопряжённое данному	23
26	Самосопряжённые линейные преобразования. Свойства самосопряжённых преобразований, существование ОНБ из собственных векторов 26.1 Самосопряжённые линейные преобразования	24 24 24
27	Ортогональные и унитарные преобразования, их свойства. Канонический вид унитарного и ортогонального преобразования. Нормальные преобразования унитарных пространств 27.1 Ортогональные и унитарные преобразования, их свойства	24 24 25
28	Полярное разложение линейного преобразования в евклидовом пространстве, его существование	25
29	Квадратичные (эрмитовы) формы в евклидовых (унитарных) пространствах. Присоединенный оператор. Существование ОНБ, в котором квадратичная (эрмитова) форма имеет диагональный вид. Применение к классификации кривых второго порядка. Одновременное приведение пары квадратичных форм к диагональному виду 29.1 Квадратичные (эрмитовы) формы в евклидовых (унитарных) пространствах	25 25 26 26

	29.4 Одновременное приведение пары квадратичных форм к диагональному виду	26
Co	опряжённое пространство	26
30	Линейные функции. Сопряжённое пространство, его размерность. Биортогональный базис. Замена биортогональных базисов. Канонический изоморфизм пространства и	
	дважды сопряжённого к нему	26
	30.1 Линейные функции	26
	30.2 Сопряжённое пространство, его размерность	
	30.3 Биортогональный базис	27
	30.4 Замена биортогональных базисов	27
	30.5 Канонический изоморфизм пространства и дважды сопряжённого к нему	
31	Аннулятор подпространства, соответствие между подпространствами V и V*. Сопря-	
	жённое преобразование, его свойства	27
	31.1 Аннулятор подпространства, соответствие между подпространствами V и V^*	27
	31.2 Сопряжённое преобразование, его свойства	
Tε	ензоры	28
32	Полилинейные отображения. Определение тензора типа (p,q) на линейном простран-	
	стве V . Пространство $T^p_q(V)$ тензоров типа (p,q) . Тензорный базис в $T^p_q(V)$. Изменение	
	компонент тензора при замене базиса	28
	32.1 Полилинейные отображения	28

1 Кинематика точки. Траектория, скорость и ускорение точки. Скорость и ускорение точки в полярных координатах

1.1 Кинематика точки

Опр Кинематика точки. Траектория, скорость и ускорение точки

Раздел механики, изучающий математическое описание (средствами геометрии, алгебры, математического анализа...) движения материальной точки без рассмотрения причин движения (массы, сил и т. д.)

Опр Траектория

Опр Скорость

Опр Ускорение

1.2 Скорость и ускорение точки в полярных координатах

Опр Радиальная ось

Опр Трансверсальная ось

Для того чтобы получить скорость и ускорение в полярных координатах, достаточно выразить x и y в терминах r, φ , продифференцировать нужное число раз и вычленить базисные векторы

2 Кинематика точки. Естественный трёхгранник. Теорема Гюйгенса о разложении ускорения точки на тангенциальное и нормальное

2.1 Кинематика точки. Естественный трёхгранник

Опр Естественный способ задания движения

Опр Естественный трёхгранник

2.2 Теорема Гюйгенса о разложении ускорения точки на тангенциальное и нормальное

Запишем две формулы из дифференциальной геометрии и продифференцируем r и v с их учётом. Получим две компоненты ускорения: тангенциальное и нормальное

Theorem Гюйгенса о разложении ускорения

3 Криволинейные координаты точки. Коэффициенты Ламе. Скорость и ускорение точки в криволинейных координатах. Скорость точки в цилиндрических и сферических координатах

3.1 Криволинейные координаты точки

Опр Криволинейные координаты

Опр Первая координатная линия

Опр Первая координатная ось

Аналогично определяются и последующие координатные линии и оси

3.2 Коэффициенты Ламе

Опр Единичный вектор координатной оси

Опр Коэффициент Ламе

Опр Ортогональные криволинейные координаты

3.3 Скорость и ускорение точки в криволинейных координатах

Скорость находится по определению. Ускорение смотреть в конспекте Холостовой с 8 страницы

3.4 Скорость точки в цилиндрических и сферических координатах

Опр Цилиндрическая система координат

Опр Сферическая система координат

Скорость точки в этих координатах находится с помощью коэффициентов Ламе

4 Понятие аффинного пространства, связь между аффинным и векторным пространством

Опр Афинное пространство Отображение из точек-векторов в точки (откладывание от точки ...)

Афинное пространство удовлетворяет трём аксиомам (ассоциативность, существование нуля и единственность "дополнения"). Также справедливо "правило треугольника"

Тh О замене координат

Если существует две ДСК и S – матрица перехода от старой к новой, γ – координатный столбец начала координат новой системы в старой, то справедливо $X = SX^{'} + \gamma$

Достаточно рассмотреть произвольный вектор как сумму сдвигов в ноль и в точку, перейти к базису и координатным столбцам, вспомнить определение матрицы перехода и сократить базис

Линейные отображения

5 Линейные отображения и линейные преобразования векторных пространств (линейные операторы). Операции над линейными отображениями, линейное пространство линейных отображений. Алгебра линейных операторов. Изоморфизмы

5.1 Линейные отображения и линейные преобразования векторных пространств (линейные операторы)

Опр Линейное отображение Отображение, удовлетворяющее двум аксиомам

Отсюда следуют конечная линейность, отображение нулевого и противоположного вектора

Множество всех линейных отображений обозначается как L(V,W). В случае W=V линейное отображение называют линейным преобразованием (оператором)

Опр Линейная функция (функционая) Случай $\dim W = 1(W = \mathbb{K})$

Утв Под действием линейного отображения л.з. система остаётся л.з.

Достаточно записать нетривиальную линейную комбинацию и взять её образ, используя уже известные аксиомы

Утв Ранг системы под действием линейного отображения не возрастает

Это следует из определения ранга и противного к предыдущему утверждению. В силу равенства ранга и размерности в конечномерном случае, получаем аналогичное неравенство для размерностей

Утв Образ подпространства

Образ линейной оболочки есть линеная оболочка образов

Действительно, если записать определение линейной оболочки (множество всех линейных комбинаций) и подействовать отображением, то получится требуемое. В частном случае, если взять базис (его линейная оболочка есть всё пространство), то образ пространства есть линейная оболочка образов базисных векторов

Опр Линейное вложение Инъективное линейное отображение

Утв В случае линейного вложения л.н.з. система остаётся л.н.з.

Действительно, если записать л.к. образов и "вынести φ за скобки", то в силу инъективности получим, л.к. исходных векторов. В силу её линейной независимости, эта л.к. тривиальна, как и л.к. образов. В частном случае, если взять базис, то получим равенства рангов U и $\varphi(U)$, как и размерностей

Th Если взять базис e_i в V и произвольные векторы c_i в W, то $\exists! \varphi : \varphi(e_i) = c_i$. Дополнительно, φ инъективно $\Leftrightarrow c_i$ л.н.з.

1. Для начала докажем единственность. Зафиксируем произвольный вектор a пространства, разложим его по базису и рассмотрим $\varphi(a)$, имеющего единственные коэффициенты. В силу произвольности a теорема справедлива

2. Для доказательства существования, достаточно взять два произвольных вектора из пространства, подействовать на них отображением (с учётом $\varphi(e_i)=c_i$), затем проверить аксиомы линейного отображения

- 3. ⇒ следует из предыдущего утверждения
- 4. \Leftarrow : от противного, с использованием определения инъективности, разложения a-b по базису и $\varphi(e_i)=c_i$

5.2 Операции над линейными отображениями, линейное пространство линейных отображений

Опр Сумма отображений Такое отображение, что ...

Опр Произведение отображения на скаляр Такое отображение, что ...

В комплексном случае скаляр заменяется на комплексно-сопряжённый.

Нетрудно проверить, что оба нововведённых отображения линейны. Также проверкой доказывается ассоциативность, дистрибутивность и линейность в случае композиции отображений

5.3 Алгебра линейных операторов

На множестве L(V,V) определены операции сложения, умножения на скаляр и умножения, поэтому L(V,V) имеет структуру ассоциативной алгебры (непустое множество (носитель) с заданным на нём набором операций и отношений-сигнатурой). Ассоциативная потому как заданы операции ассоциативного умножения, то есть $\forall k,l \in \mathbb{F}$ и $\forall a,b,c \in A$ справедливо

- 1. a(b+c) = ab + ac
- 2. (a+b)c = ac + bc
- 3. (k+l)a = ka + la
- 4. k(a+b) = ka + kb
- 5. k(la) = (kl)a
- 6. k(ab) = (ka)b = a(kb)
- 7. 1a = a, где 1 единица кольца \mathbb{K}

Опр Аннулирующий многочлен для оператора $P(\varphi) = 0$

Опр *Минимальный многочлен* Аннулирующий многочлен с минимальной степенью

Утв Пусть μ — минимальный многочлен оператора φ , а $P \in \mathbb{F}$ — произвольный. Тогда P аннулирует

 $\varphi \Leftrightarrow P : \mu$ в кольце многочленов над $\mathbb F$

- 1. Разделим P на μ с остатком и подставим в полученное равенство φ
- 2. Воспользуемся условием и получим $P(\varphi) = 0 \Leftrightarrow r(\varphi) = 0$
- 3. В таком случае остаток должен быть аннулирующим для φ , то есть его степень меньше степени минимального многочлена, поэтому w не возникает только в случае $r \equiv 0$
- 4. Таким образом, эквивалентность доказана

Отсюда следует, что минимальный многочлен единственен с точностью до умножения на константу

5.4 Изоморфизмы

Опр Изоморфизм Линейное биективное отображение

Опр *Изоморфные векторные пространства* Между ними существует изоморфизм

Утв Обратный к изоморфизму изоморфизм

- 1. Биективность следует из тождеств для обратных функций
- 2. Далее берутся векторы из образа и на них проверяются аксиомы линейного отображения
- 3. Итого, обратный к изоморфизму изоморфизм по определению

Th *Классификация конечномерных векторных пространств* Пространства изоморфны ⇔ их размерности совпадают

1. ⇒: из изоморфности следует инъективность, а для инъективных отображений равенство доказано ранее

2. ⇐: построим изоморфизм между элементами каждого пространствами и их координатными столбцами в них по фиксированному базису. Ранее было доказано, что такое разложение единственно. Достаточно обратить какое-то из отображений (по предыдущему утверждению оно тоже будет изоморфизмом). Итого, мы получили композицию изоморфизмов, то есть изоморфизм

Th Если конечномерные пространства $U, V : \dim U = \dim V; e_i$ — базис в $U, \varphi \in L(U,V)$. Тогда следующие условия эквивалентны:

- 1. φ изоморфизм
- $2. \ \varphi$ инъективен
- $3. \varphi$ сюръективен
- 4. $\varphi(e_i)$ есть базис в V
- $1 \Rightarrow 2$: по определению
- 2 \Rightarrow 3 : из инъективности следует л.н.з. образа, поэтому $\dim(\varphi(U)) = \dim U \Rightarrow \varphi(U) \cong V \Rightarrow \varphi$ сюръективно
- $3 \Rightarrow 4$: это следует из свойства линейной оболочки образов базисных векторов, связи размерности и ранга, определения ранга и базиса
- $4 \Rightarrow 1$: по критерию инъективности, в силу л.н.з. $\varphi(e_i), \varphi$ будет инъективно, а из свойства линейной оболочки следует сюръективность φ
- 6 Матрица линейного отображения. Координатная запись линейного отображения. Связь операций над матрицами и над линейными отображениями. Изменение матрицы линейного отображения (преобразования) при замене базиса
- 6.1 Матрица линейного отображения

Опр *Матрица линейного отображения* Как и у матрицы перехода: склейка столбцов векторов $\varphi(e_i)$ Таким образом, существует биекция между L(V,W) и Mat(m,n), как и изоморфизм (проверяется). Отсюда следует, что размерность линейных операторов есть mn

6.2 Координатная запись линейного отображения

Th Если $\varphi \leftrightarrow A$; a = eX, $\varphi(a) = fY$, то y = Ax

Для доказательства достаточно записать определение координатного столбца, применить к ней φ и в силу коммутируемости, поменять местами строки и столбцы, чтобы увидеть запись матричного умножения, что доказывает равенство

Следствие Если дано неизвестное в плане линейности отображение φ , такое, что под его действием y = Ax, то оно линейное

В силу наличия биекции между матрицами и линейными отображениями, найдём такое ϕ . В таком случае по Th., они будут иметь одинаковую координатную запись y = Ax, то есть равны и φ линейно

Th Если линейное преобразование φ таково, что $\varphi(e_i)=e_i^{'}$, то $A:A\leftrightarrow \varphi$ есть матрица перехода между базисами

Следует из определений (матрица линейного преобразования будет удовлетворять определению матрицы перехода)

6.3 Связь операций над матрицами и над линейными отображениями

Утв Композиции линейных отображений соответствует произведение соответствующих матриц Доказывается по определению (подстановкой)

Следствие Обратному отображению соотвествует обратная матрица

Следует из предыдущего утверждения и того, что тождественному отображению соответствует единичная матрица

Следствие $P(\varphi) \leftrightarrow P(A)$

Следствие $\varphi \leftrightarrow A$ задаёт изоморфизм алгебр линейных преобразований и квадратных матриц

То есть изоморфизм группы биективных линейных преобразований и группы невырожденных матриц

6.4 Изменение матрицы линейного отображения (преобразования) при замене базиса

Th Если $L(V,W); S: e^{'}=eS; y=Ax, y^{'}=Ax^{'}; f^{'}=fR,$ то $A^{'}=R^{-1}AS$ (матрица линейного отображения в другом базисе)

Доказывается путём подстановок и комбинаций равенств

В частном случае $L(V, V)A' = S^{-1}AS$

Следствие Ранг матрицы линейного отображения не зависит от выбора базисов в пространствах

Потому что мы домножаем слева и справа на невырожденные матрицы

7 Ядро и образ, их описание в терминах матрицы линейного отображения. Критерий инъективности. Связь между размерностями ядра и образа

7.1 Ядро и образ, их описание в терминах матрицы линейного отображения

Опр Образ линейного отображения Множество всех векторов V под действием $\varphi \in L(V,W)$ Th Koopдинатное описание образа

```
Если \varphi \in L(V, W), а b \in W : b = fY, то b \in \operatorname{Im} \varphi \Leftrightarrow Y \in \langle a_{.1}, \ldots, a_{.n} \rangle
```

Это следует из записи образа через линейную оболочку действия φ на базисные векторы, определения матрицы линейного отображения и того факта, что b=fY есть л.к. столбцов Y

Отсюда также следует, что размерность образа равна рангу матрицы линейного отображения

Утв В случае $\varphi \in L(V,W)$ прообразы образов в подмножестве W являются подмножеством V

Опр Ядро линейного отображения Множество всех векторов V, которые зануляются под действием $\varphi \in L(V,W)$

То есть ядро есть подмножество V. Также ядро можно охарактеризовать как полный прообраз нулевого пространства

Если ядро пусто, то оператор невырожден

Th Координатное описание ядра

```
Если \varphi \in L(V, W), а a \in V : a = eX, то a \in Ker \varphi \Leftrightarrow AX = 0
```

В обе стороны по определению ядра

Другими словами, в терминах координатных столбцов ядро задается как общее решение однородной СЛУ Ax=0

Следствие $\dim Ker\varphi = n - rgA$

7.2 Критерий инъективности

Th Критерий инъективности

```
Если \varphi \in L(V, W), инъективно \Leftrightarrow Ker \varphi = 0
```

 \Rightarrow : пользуемся $\varphi(0) = 0$

⇐: от противного с использованием определения инъективности

7.3 Связь между размерностями ядра и образа

```
Th В конечномерных пространствах \dim Ker\varphi + \dim \operatorname{Im} \varphi = n Следует из \dim \operatorname{Im} \varphi = rgA и \dim Ker\varphi = n - rgA
```

8 Аффинные преобразования, их свойства. Аффинная группа

8.1 Аффинные преобразования, их свойства

Опр Аффинно-линейное преобразование

Опр Дифференциал отображения Обозначение элемента $\varphi \in L(V,V)$

Опр Аффинное преобразование Биективное преобразование

Утв Преобразование аффинно ⇔ его дифференциал биективен

Для доказательства достаточно воспользоваться определением при одной фиксированной точке в нём

Утв Композиция линейных и аффинных преобразований линейна и аффинна соответственно, а их дифференциал есть произведение дифференциалов

Следует из определения и того, что композиция биективных отображений биективна

Утв Обратное к аффинному отображению отображение аффинно

Следует из определения

8.2 Аффинная группа

Аффинные преобразования образуют группу относительно композиции

 \mathbf{Y} тв Y = AX + C

Достаточно взять в определении аффинно-линейного преобразования точку M=0

Отсюда следует, что любое аффинное преобразование задаётся параллельным переносом и поворотом вокруг неподвижной точки, то есть линейное преобразование однозначно задаётся нулевой точкой и базисом

Th Линейное преобразование f аффинно \Leftrightarrow переводит неколлинеарные точки в неколлинеарные

Построим ДСК на наших трёх точках, подействуем на них преобразованием и получим новую ДСК. f однозначно задано этой ДСК. Поэтому f аффинно $\Leftrightarrow f$ биективно \Leftrightarrow неколлинеарная система (л.н.з) переходит в неколлинеарную (в частности, система три точки)

Тһ Связь аффинного преобразования с заменой координат

При аффинном преобразовании координатный столбец вектора не меняется

Достаточно воспользоваться координатной запись вектора, а потом к концевым точкам применить аффинное преобразование

Тh При аффинном преобразовании

- 1. прямая переходит в прямую
- 2. параллельные прямые переходят в параллельные
- 3. отношения длин отрезков сохраняются
- 4. центральная симметрия сохраняется
- 1. достаточно параметризовать прямую и применить определение к концевым точкам
- 2. аналогичным образом в силу линейности (из определения) сохраняются отношения длин отрезков (в случае с отрезками между прямыми они не схлопываются в точку)
- 3. аналогично
- 4. при центральной симметрии для любых двух симметричных точек центр есть середина соответствующего отрезка, а так как отношения сохраняются, то получаем сохранение определения

Тh Изменение площадей

При аффинном преобразовании, чей дифференциал имеет матрицу A, площадь фигуры умножается на $|\det A|$

Покажем на примере параллелограмма. Достаточно расписать определение ориентированной площади, применить преобразование и взять модуль (настоящая площадь неотрицательна)

Тһ При аффинном преобразовании порядок алгебраической кривой не меняется

При аффинном преобразовании координаты не меняются, то не поменяется и многочлен, задающий кривую (скалярное произведение коэффициентов на переменные), как и его порядок

Структура линейного преобразования

9 Инвариантные подпространства. Ограничение оператора на инвариантное подпространство. Фактороператор

9.1 Инвариантные подпространства

Опр Инвариантное подпространство Образ лежит в нём же

Утв Сумма и пересечение инвариантных подпространств инвариантно

Доказывается поэлементной проверкой определения

Утв В случае коммутирующих преобразований ядро и образ одного инвариантно относительно другого Доказывается по определению

Следствие Ядро и образ многочлена $f(\varphi)$ инвариантны относительно $\varphi \in L(V,V)$

Утв U инвариантино относительно $\varphi \Leftrightarrow U$ инвариантино относительно $\varphi - \lambda, \lambda \in \mathbb{F}$

Доказывается проверкой в одну сторону и путём взятия другой λ в обратную

Таким образом, в случае $\operatorname{Im}(\varphi - \lambda) \subset U \Rightarrow U$ инвариантно φ

9.2 Ограничение оператора на инвариантное подпространство

Утв Если U инвариантно относительно φ – изоморфизма, то U инвариантно относительно φ^{-1}

Достаточно рассмотреть сужение φ на U. В силу инъективности это будет изоморфизм. Тогда обращаем его и получаем требуемое

Утв Если U_k инвариантно относительно линейное оболочки первых k векторов $\Leftrightarrow a_{ij} = 0, i \in \overline{k+1, n}, j \in \overline{1, k}$, то есть матрица имеет блочно-диагональный вид, где второй квадрант есть сужение φ на U_k

Достаточно воспользоваться определением матрицы линейного преобразования и вспомнить, что у нас базис не меняется

Утв Если $\varphi \in L(V,V)$, а $P(\varphi)$, $\deg P = k$ вырожден, то существует не более чем k-мерное инвариантное подпространство V относительно φ

- 1. Возьмём произвольный элемент ядра a и покажем, что $U = < a, \varphi(a), \dots, \varphi^{k-1}(a) >$ инвариантно относительно φ
- 2. В силу индуктивности φ^j , достаточно доказать лишь что $\varphi^k(a) \in U$
- 3. Подставляем $\varphi(a)$ в многочлен и получаем, что $\varphi^k(a)$ линейно выражается через остальные члены, что доказывает инвариантность и утверждение

9.3 Фактороператор

Опр Φ актороператор Линейный оператор, определённый формулой $(v+U)=\varphi(v)+U, \forall v\in V$

10 Собственные векторы и собственные значения. Собственные подпространства. Характеристический многочлен и его инвариантность. Определитель и след преобразования

10.1 Собственные векторы и собственные значения

Опр Собственное значение Существует $a \in V$:

Опр *Собственный вектор* Ненулевой вектор a преобразования ...

 ${f Утв}$ Ненулевой вектор a собственный для $\varphi \Leftrightarrow < a >$ инвариантна относительно φ

В силу эквивалентности инвариантности наличию собственного значения

Утв Ненулевой вектор a собственный для φ с собственным значением $\lambda \Leftrightarrow a \in \ker(\varphi - \lambda)$

Достаточно вспомнить определение ядра

10.2 Собственные подпространства

Опр *Собственное подпространство* Ядро $\ker(\varphi - \lambda)$, содержащее ...

Утв Сумма подпространств V_{λ_i} прямая

1. От противного: возьмём $a_1 \in V_{\lambda_1} \cap \sum_{i=1}^n V_{\lambda_i}$, то есть $a_1 = \sum_{i=1}^n a_i$

- 2. Применим к этому равенству преобразование $\sqcap_2^k(\varphi-\lambda_k)$
- 3. Справа у нас получится ноль, а слева нет, w

10.3 Характеристический многочлен и его инвариантность

Опр Характеристический многочлен Функция от константы. Не забыть про обозначение

Опр Характеристическое уравнение Равенства многочлена нулю

Опр Характеристические числа Корни характерестического многочлена

Характеристический многочлен можно записать и с учётом алгебраической кратности его корней

Утв Характерестический многочлен имеет вид $(-1)^n \lambda^n + (-1)^{n-1} tr A + \cdots + |A|$

Достаточно знать, что определитель есть функция от всех элементов матрицы, затем просто расписать коэффициенты перед требуемыми степенями

Отсюда, в соответствии с теоремой Виета, сумма всех характеристических чисел равна следу, а произведение есть $\det A$

Стоит учесть, что данное утверждения верно лишь в \mathbb{C} . В \mathbb{R} собственные значения есть только вещественные характеристические числа

10.4 Определитель и след преобразования

Утв Если матрица оператора верхнетреугольна, то характеристические числа совпадают с диагональными элементами

Верно в силу того, что определитель верхнетреугольной матрицы равен произведению диагональных элементов

Тһ Инвариантность характеристического многочлена

Характеристический многочлен не зависит от выбора базиса

Достаточно записать характеристическое уравнение в двух базисах, перейти от одного к другому с помощью матрицы перехода и преобразовать выражение

Следствие Определитель, след, набор характеристических чисел матрицы оператора не зависят от выбора базиса

Все вышеперечисленные термины выражаются через коэффициенты характеристического многочлена

11 Линейная независимость собственных подпространств, отвечающих различным собственным значениям. Алгебраическая и геометрическая кратность собственного значения. Критерий диагонализируемости преобразования

11.1 Линейная независимость собственных подпространств, отвечающих различным собственным значениям

Th λ – собственное значение $\Leftrightarrow \lambda$ характеристическое число

- 1. λ собственное значение $\Leftrightarrow \ker(\varphi \lambda) \neq O$
- 2. \Leftrightarrow соответствующая СЛУ имеет нетривиальное решение
- $3. \Leftrightarrow$ соответствующая квадратная матрица вырождена
- 4. ⇔ соответствующий определитель равен нулю
- 5. $\Leftrightarrow \lambda$ характеристическое число

Тһ Собственные векторы различных собственных значений л.н.з.

- 1. Доказывается по индукции. База очевидна
- 2. Докажем переход. Для этого рассмотрим k+1 собственный вектор, из которых k заведомо л.н.з
- 3. Применим к их л.к. φ . Из неё вычтем правильную л.к. первых k векторов (чтобы обнулить α_{k+1})
- 4. Итого, k коэффициентов нули, а значит, и k+1 тоже, то есть система осталась л.н.з.

11.2 Алгебраическая и геометрическая кратность собственного значения

Опр *Геометрическая кратность* Размерность собственного подпространства

Тһ Геометрическая кратность не превосходит алгебраическую

- 1. Рассмотрим собственное пространство размерности s и произвольный базис в нём. Дополним его до базиса во всём пространстве
- 2. Запишем матрицу линейного оператора. Она будет иметь блочно-диагональный вид
- 3. Вычислим характеристический многочлен матрицы и непосредственно убедимся в доказываемом (потому как в оставшемся многочлене собственное значение может быть корнем; в противном случае достигается равенство)

11.3 Критерий диагонализируемости преобразования

Опр Диагонализируемое преобразование Существует базис, в котором достигается диагональный вид **Тh** Первый критерий диагонализируемости

Если $\varphi \in L(V,V)$ имеет попарно различные собтсвенные значения λ_i кратнойстей s_i , то следующие условия эквивалентны:

- 1. φ диагонализируем
- 2. В пространстве существует базис из собственных векторов
- 3. dim $V_{\lambda_i} = s_i$
- 4. $V = \bigoplus_{i} V_{\lambda_i}$
- ullet $1\Leftrightarrow 2$: в силу того, что матрица A есть склейка применения arphi на базисные векторы
- $2 \Rightarrow 3$: суммируем $t_i \leq \dim V_{\lambda_i} \leq s_i$ по i
- $3 \Rightarrow 4$: так как собственные пространства разных собственных значений не пересекаются, то они разлагаются в прямую сумму. Сумма их размерностей будет $\sum_i s_i = n$, то есть всего пространства
- 4 \Rightarrow 2 : достаточно выбрать базис в каждом подпространстве и объединить. Ранее доказывалось, что он будет базисом во всём пространстве (второй критерий прямой суммы)

Следствие Достаточное условие диагонализируемости

Если характеристический многочлен имеет n различных корней из поля, то φ диагонализируем

Действительно, в таком случае у каждого собственного подпространство размерность единица и они располагаются на главной диагонали

12 Инвариантные подпространства малой размерности в вещественном случае

Th

- 1. В \mathbb{C} у $\varphi \exists$ одномерное инвариантное подпространство
- 2. В \mathbb{R} у φ \exists одномерное инвариантное подпространство в случае нечётного n
- 3. У φ \exists ненулевое инвариантное подпространство размерности не выше 2
- 1. По основной теореме алгебры у любого многочлена есть по крайней мере один комплексный корень
- 2. Из анализа известно, что в таком случае у многочлена есть по крайней мере один вещественный корень
- 3. Если у многочлена есть вещественный корень, то у него есть и одномерное инвариантное подпространство. Иначе рассмотрим комплексный корень. Из анализа известно, что его сопряжённый тоже будет корнем характеристического многочлена. Тогда многочлен P с этими коэффициентами будет вещественен, а $\det P(A)=0$ в силу наличия соответствущих собственных значений, то есть наш многочлен вырожден. В таком случае ранее было доказано, что у φ \exists двумерное (на самом деле, ≤ 2) инвариантное подпространство

13 Треугольный вид матрицы преобразования. Теорема Гамильтона-Кэли

13.1 Треугольный вид матрицы преобразования

Лемма \exists (n-1)-мерное инвариантное подпространтво

- 1. Возьмём произвольное λ_0 и сделаем выводы по размерности ядра и образа для $\varphi \lambda_0$
- 2. Выясним существования $U: \dim U = n-1$ не более чем надмножество $\operatorname{Im} \varphi \lambda_0$. Для его построения возьмём базис в образе и дополним его до базиса во всём V
- 3. В конце возьмём базис для U (первые n-1 вектор), задаваемый требуемое подпространство

Лемма О треугольном виде

 \exists базис, в котором матрица $\varphi \in L(V,V)$ верхнетреугольна с заданным порядком расстановки характеристических числе по диагонали

- 1. Возьмём произвольные λ_0 и инвариантное n-1 подпространство
- 2. Далее получим вид для $\varphi: \varphi = \lambda_0 e_n + \sum_1^{n-1} \mu_i f_i$
- 3. Сделаем вывод о матрице оператора, характеристическом многочлене сужения
- 4. Затем применяем спуск индукции, чтобы поместить на главную диагональ нужные базисные векторы

13.2 Теорема Гамильтона-Кэли

Тh Гамильтона-Кэли

Характеристический многочлен является аннулирующим для матрицы оператора

Это следует из того, что $s_i \ge m_i$, то есть характеристический многочлен содержит в себе минимальный (то есть аннулирующий)

14 Корневые подпространства, их размерность. Разложение пространства в прямую сумму корневых. Жорданова нормальная форма, её существование и единственность. Минимальный многочлен, критерий диагонализируемости оператора в терминах минимального многочлена

14.1 Корневые подпространства, их размерность

Опр Корневое подпространство Первое стабильное ядро

Притом корневое пространство равно и все стабильным ядрам большей размерности

Лемма $\dim \ker (\varphi - \lambda_i)^{s_i} \geq s_i$

- 1. Запишем матрицу в верхнетреугольном виде, притом расположим λ_i в первых s_i диагональных клетках
- 2. Применим к матрице преобразование $\varphi \lambda_i$. Получим нильпотентный левый верхний блок
- 3. Возведём матрицу в нужную степень с учётом перемножения блочных матриц и получим левый верхний блок нулей
- 4. Тогда получим, что первые s_i векторов принадлежат соответствующему ядру. А так как такими же могут быть и последующие векторы, то возможно строгое неравенство

Следствие $\dim V^{\lambda_i} > s_i$

14.2 Разложение пространства в прямую сумму корневых

Лемма Сумма любых степеней ядер $\varphi - \lambda_i$ прямая

- 1. От противного: пусть $\exists a_1 = V^{\lambda_1} \cap \sum_{i=1}^k V^{\lambda_i}$
- 2. Тогда этот вектор можно разложить по этим подпространствам
- 3. Применим к обеим частям равенства $\psi = \prod_{i=1}^{k} (\varphi \lambda_i)$
- 4. Тогда справа получим ноль, а слева нет, w

В частности, сумма корневых пространств прямая **Th**

- 1. $V = \bigoplus_i V^{\lambda_i}$
- 2. dim $V_i^{\lambda} = s_i$
- 3. $m_i \leq s_i$, то есть стабилизация ядер наступает не позже s_i шага
- 1. В силу $\dim V_i^{\lambda} \geq s_i$ сложим неравенства по всем i. Тогда $\sum_i s_i \geq n$, однако у нас $\dim V = n$, поэтому $V = \bigoplus_i V^{\lambda_1}$
- 2. Предыдущий пункт возможен лишь когда во всех неравенствах выполнено равенство
- 3. $\dim \ker(\varphi \lambda_i)^{s_i} \ge s_i = \dim V_i^{\lambda}$, однако $\ker(\varphi \lambda_i) \subset V_i^{\lambda}$. В противном случае не выполнена формула суммы размерностей ядра и образа

14.3 Жорданова нормальная форма, её существование и единственность

- **Опр** *Жорданова клетка* Верхнетреугольная матрица, в которой на главной диагонали ...
- Опр Жорданова матрица, ЖНФ Блочно-диагональная матрица, каждый блок которой ...
- **Опр** *Жорданов базис* Базис, в котором оператор имеет ЖНФ
- Опр Жорданова цепочка, присоединённый вектор
- 1. Рассмотрим жорданову клетку запишем её действие в строчном виде
- 2. Рассмотрим новый оператор $\psi = \varphi \lambda_0$. Под его действием векторы сваливаются в ядра меньшего по степени оператора
- 3. Полученная последовательность называется жордановой цепочкой
- 4. Вектор над данным называется присоединённым. Ясно, что он может быть и не единственен

Тһ Существование ЖНФ

Существует базис, в котором матрица оператора жорданова

- 1. Требуется доказать, что существует базис, являющийся объединением жордановых цепочек, то есть так надо сделать в каждом корневом подпространстве
- 2. Рассмотрим нильпотентный оператор $\psi:V_i^\lambda\to V_i^\lambda,$ являющийся ограничением оператора $\varphi-\lambda_i$ на V_i^λ
- 3. Заметим, что если $a \in \ker \psi^t$, то $a \in \ker \psi^{t-1}$ (непосредственно проверяется)
- 4. Теперь рассмотрим вложенную цепочку ядер и определим к последнему, V_i^{λ} прямое (нулевое дополнение) $W_{m,+1}$ до следующего ядра (которое будет являться самим V_i^{λ})
- 5. Рассмотрим ядро $\psi(W_{t+1})$, для которого выполнено три условия
- 6. Из них мы можем определить W_t как прямое дополнение $\ker \psi^{t-1}$ до $\ker \psi^t$ (дополним до базиса)
- 7. Таким образом, применяя оператор $\psi(W_{t+1})$ мы спускаемся вниз по цепочке и, дополнив до базиса, продолжаем спуск
- 8. Жорданов базис есть объединение базисов W_i каждое из которых лежит в $\ker \psi^i$, то есть базисных разных W_i пересекаются тривиально (к том же мы пользовались л.н.з. дополнением)

Тh Единственность ЖНФ

Для данного базиса ${\rm WH}\Phi$ единственна с точностью до перестановки жордановых клеток

1. Требуется доказать, что $\forall \lambda_i$ количество жордановых цепочек данной длины в жордановом базисе определено однозначно

- 2. Рассмотрим все цепочки, соответствующие фиксированному λ_i . Их линейная оболочка находится $\in V_i^{\lambda}$, dim $< B_{\lambda i} > \le s_i$
- 3. Так как всего в (жордановом) базисе у нас n векторов, а $< B_{\lambda i} >$ и составляют этот базис, то в неравенствах выше достигается равенство
- 4. Рассмотрим нильпотентный оператор $\psi:V_i^\lambda\to V_i^\lambda,$ являющийся ограничением оператора $\varphi-\lambda_i$ на V_i^λ
- 5. Его образ состоит из всех не верхних векторов в цепочках, образ его образа состоит из всех векторов, кроме . . .
- 6. Введём обозначения для количества жордановых цепочек длины d, отвечающих λ_i за c_i^d
- 7. Составим уравнения на их суммы, чья система легко решается и однозначно выражается через характеристики оператора φ , то есть инвариантно

Из указанного рассмотрения нетрудно заметить, что степень $\lambda - \lambda_i$ характеристического многочлена s_i равна длине всех цепочек, отвечающих $\forall \lambda_i$, а степень m_i минимального многочлена равна длине максимальной (иначе оператор обнулится не полностью, не по всем цепочкам-базисным векторам)

14.4 Минимальный многочлен, критерий диагонализируемости оператора в терминах минимального многочлена

Опр *Минимальный многочлен* Многочлен, обгуляющий оператор, минимальной степени **Утв** Минимальный многочлен является аннулирующим

- 1. Хотя бы один аннулирующий многочлен существует, ведь если взять степени оператора, которые будет больше размерности пространства, то эта система будет л.з., а значит, у соответствующего многочлена будут ненулевые коэффициенты
- 2. Теперь возьмём произвольный вектор $a \in V = \oplus_i V^{\lambda_i}$
- 3. Так как ядра каждого одночлена содержатся в ядре минимального, то каждый член разложения из ядра минимального многочлена. Тогда и a тоже
- 4. Итого, в силу произвольности а, минимальный многочлен аннулирующий

Утв Минимальный многочлен есть $\prod_i (\lambda - \lambda_i)^{m_i}$

- 1. От противного: пусть хотя бы одна степень тут меньше, то есть БОО $m_{1}^{'} < m_{1}$
- 2. Тогда $\dim \ker(\varphi \lambda_1)^{m_1'} < s_1$ по лемме
- 3. Если мы сложим все ядра такого вида то получи строгое неравенство. То есть существуют вектор пространства $a: \mu_{\varphi}(\varphi(a)) \neq 0$, то есть новый многочлен не минимальный

 \mathbf{Th} Второй критерий диагонализируемости

Если $\varphi \in L(V,V)$ имеет попарно различные собтсвенные значения λ_i кратнойстей s_i , то следующие условия эквивалентны:

- 1. φ диагонализируем
- 2. $V_{\lambda_i} = V^{\lambda_i}$
- 3. μ_{arphi} раскладывается на различные линейные множители
- 1 \Leftrightarrow 2 : в силу того, что $V_{\lambda i} \subseteq V_i^{\lambda}$ и $V = \bigoplus_i V_{\lambda_i}$, достигается равенство множеств
- $2 \Rightarrow 3$: из 2 следует, что $m_i = 1 \forall i$, поэтому все n множителей различны

Билинейные формы

15 Билинейные (полуторалинейные) формы (функции). Координатная запись билинейной формы. Матрица билинейной формы и её изменение при замене базиса

15.1 Билинейные (полуторалинейные) формы (функции)

Опр *Биленейная форма, полуторалинейное отображение* Не забыть сопрячь на втором аргументе Опр *Матрица билинейной формы* Её элемент есть результат применения формы на пару базисных векторов

15.2 Координатная запись билинейной формы

Тh Координатная запись

 $\beta(x,y) = x^T B \overline{y}$

Достаточно представить векторы в координатной записи и раскрыть по билинейности

Утв Если произвольно отображения удовлетворяет равенству $\beta(x,y) = x^T B \overline{y}$, то это билинейная форма

Так как запись верна для всех векторов, то она верна и для базисных, к чему мы её и применим. Далее проверим аксиомы и убедимся, что перед нами билинейная форма

15.3 Матрица билинейной формы и её изменение при замене базиса

 ${f Th}$ Изменение матрицы при замене базиса $eta' = S^T B \overline{S}$

Достаточно вставить матрицу перехода на нужные места

16 Симметричные билинейные (полуторалинейные) формы. Взаимнооднозначное соответствие с квадратичными (эрмитовыми) формами

16.1 Симметричные билинейные (полуторалинейные) формы

Опр (Эрмитова) симметричная форма $\beta(x,y) = \overline{\beta(y,x)}$

Th Билинейная форма симметрична $\Leftrightarrow B = B^*, B^* = \overline{B^T}$

⇒: по определению билинейной формы ←: надо воспользоваться тем, что результат билинейной формы есть число (матрица 1 на 1), а затем подогнать под определение, используя транспонирования и сопряжение

16.2 Взаимно-однозначное соответствие с квадратичными (эрмитовыми) формами

Опр Квадратичная (эрмитова) форма $q(x)=\beta(x,x)$, порождённая билинейной Учтём, что теперь $\beta(a,a)=\overline{\beta(a,a)}, q(a)=x^TB\overline{x}$

Th (Эрмитова) квадратичная форма порождается ровно одной билинейной $\Leftrightarrow B = B^*, B^* = \overline{B^T}$

- 1. Требуется доказать, что значение билинейной формы однозначно восстанавливается по квадратичной
- 2. В \mathbb{R} достаточно рассмотреть q(x+y)
- 3. В $\mathbb C$ достаточно рассмотреть q(x+y) и iq(x+iy), не забыв, где надо, про комплексное сопряжение и что $i^2=-1$

17 Ядро билинейной функции. Ортогональное дополнение подпространства. Ограничение билинейной функции на подпространство. Критерий невырожденности подпространства. Существование нормального вида билинейной симметричной формы над полями $\mathbb R$ и $\mathbb C$

17.1 Ядро билинейной функции

18 Алгоритмы приведения квадратичной формы к нормальному виду (метод Лагранжа и сдвоенных элементарных преобразований матрицы)

```
Опр Диагональный вид формы Матрица формы в данном базисе диагональна Опр Канонический диагональный вид формы Каждый элемент диагонали \in \{-1; 0; 1\} Заметим, от диагонального вида легко перейти к каноническому (путём линейной замены) Тh Существует базис, в котором квадратичная форма имеет диагональный вид
```

- Допустим $b_{11} \neq 0, b_{m1} \neq 0$. Тогда применим сдвоенное элементарное преобразование: вычтем из m-й строки и столбца 1-ю строку и столбец, домноженные на соответствующий коэффициент $(b_{1m} \neq \overline{b_{m1}})$. Далее продолжим с матрицей меньшей размерности
- Если хотя бы один диагональный элемент не ноль, то поменяем местами базисные векторы и продолжим как в простом случае
- Если все диагональные элементы ноль, то прибавим к нему столбец и строку с ненулевым элементом λ той же линии (получится в результате сдвоенности 2λ). Затем продолжим как в простом случае
- 19 Закон инерции квадратичной (эрмитовой) формы. Положительный и отрицательный индексы инерции, их геометрическая характеризация. Критерий Сильвестра
- 19.1 Закон инерции квадратичной (эрмитовой) формы

Опр Положительно (полу) определённая форма Положительна (неотрицательна) на ...

Опр Отрицательно (полу) определённая форма Аналогично

Th Квадратичная форма определена положительно $\Leftrightarrow d_i > 0 \forall i$

 \Rightarrow : $d_i = q(e_i)$ по определению положительной определённости \Leftarrow : в силу $q(a) = \sum_i d_i |x_i|^2$

Отсюда следует, что определитель матрицы положительно определённой формы положителен

Аналогичные критерии есть и у отрицательно- и полуопределённых форм

Опр *Положительный индекс инерции* Наибольшее число, для которого $\exists U \dots$

Тһ Об индексах инерции

Индексы инерции p,q равны количеству соответствующих по знаку чисел среди d_i

- 1. Докажем для положительного индекса инерции
- 2. БОО положительные можно считать $p^{'}$ количество положительных d_{i} элементов первыми. Тогда ограничение на этом подпространстве и будет отвечать определению положительного индекса инерции
- 3. Пусть $p > p^{'}$. Тогда рассмотрим подпространство соответствующей размерности
- 4. По формуле включений-исключений придём к тому, что пересечение пространства и отрицательно полуопределённого подпространства ненулевое. Тогда существует ненулевой вектор, на котором форма не определена однозначно, w

```
Следствие Ранг квадратичной формы равен p+q Опр Сигнатура квадратичной формы (p,q,n-p-q)
```

19.2 Критерий Сильвестра

Тһ Критерий Сильвестра

Квадратичная форма определена положительна $\Leftrightarrow M_i > 0 \forall i$

1. ⇒: достаточно рассмотреть сужение на каждое подпространство и вспомнить про следствие из закона инерции

- 2. \Leftrightarrow : от противного. Положим m минимальное число первых базисных векторов элементов, на которых форма определена не положительно и рассмотрим сужение на них
- 3. Тогда из $p \ge m-1$ (в силу сужения на m-1 подпространстве) и p < m, иначе m определено неверно. Получаем равенство p = m-1
- 4. Перейдём к диагональному виду и рассмотрим определитель сужения на m-ное пространство. Он будет неположителен, w

20 Кососимметричные билинейные функции, приведение их к нормальному виду

Опр Кососимметрическая билинейная функция $\beta(x,y) = -\overline{\beta(y,x)}$

Из определения видно, что $\beta(x,x) = 0$

Th Билинейная форма кососимметрическая $\Leftrightarrow \overline{B^T} = -B$

 \Rightarrow : по определению кососимметрической формы \Leftarrow : надо воспользоваться тем, что результат билинейной формы есть число (матрица 1 на 1), а затем подогнать под определение, используя транспонирования и сопряжение

Следствие Билинейная форма в нечётномерное векторном пространстве вырождена Потому как тожлественна O

Тһ Канонический вид

Существует базис, в котором квадратичная форма имеет диагональный вид

- Допустим $b_{11} = 0$ и соответствующие строка и столбец нулевые, то спускаем по размерности вниз
- Если хотя бы один не первый элемент строки не ноль, то поменяем местами вторую и эту строки. Затем путём элементарных преобразований сделаем +1 (на столбце получим схожую картину) и спустимся вниз
- Если и после первого есть ненулевой элемент, то его можно сдвоенными ЭПС сделать нулевым

Пространства со скалярным произведением

21 Евклидовы и унитарные пространства. Матрица Грама и её свойства. Неравенство Коши – Буняковского – Шварца, неравенство треугольника. Метрика. Выражение скалярного произведения в координатах

21.1 Евклидовы и унитарные пространства

Опр *Евклидово (унитарное) пространство* Пространство над полем с фиксированным скалярным произведением

Опр Норма (длина) вектора $|x| = \beta(x,x)$

Норма неотрицательна и нулевая в случае нулевого вектора

Опр Ортогональные векторы $\beta(x,y)=0$

21.2 Матрица Грама и её свойства

Опр *Матрица Грама* Матрица система векторов: $g_{ij} = (a_i, a_j)$

Утв Определитель матрицы Грама положителен при л.н.з системе и ноль иначе

- 1. На л.н.з. векторах матрица Грама есть матрица п.о. билинейной симметрической формы, поэтому её детерминант положителен.
- 2. В случае л.з. системы составим её нетривиальную л.к., домножим на векторы a_j и повторим так $\forall j \in \overline{1,n}$
- 3. Тогда если составить из строчек матричное уравнение, то получим $\Gamma x=0$, что в силу $x\neq 0$ означает вырожденность Γ

21.3 Неравенство Коши – Буняковского – Шварца, неравенство треугольника

Следствие Неравенство Коши – Буняковского – Шварца

 $\forall a, b \in E|a||b| \ge |(a, b)|$

Достаточно воспользоваться предыдущей теоремой и раскрыть определитель, сняв в конце квадраты Следствие *Неравенство треугольника*

 $\forall a, b \in E|a||b| \ge |a+b|$

Достаточно расписать $|a+b|^2$ и воспользоваться предыдущим неравенством

21.4 Метрика

На E введём метрику как $\rho(a,b) = |b-a|$. Заметим, что в таком случае выполняются все 4 аксиомы метрики (неотрицательность, ноль при нуле, симметричность и неравенство треугольника)

21.5 Выражение скалярного произведения в координатах

Опр *Скалярное произведение* Билинейная (эрмитова) симметричная положительно ...

Тh Скалярное произведение

 $(a,b) = x^T \Gamma \overline{y}$

Это верно, потому как в случае базисных векторов матрица Грамма совпадает с матрицей билинейной формы скалярного произведения

22 Ортогональные системы векторов и подпространств. Существование ортонормированных базисов (ОНБ). Изоморфизм евклидовых пространств. Ортогональные и унитарные матрицы. Переход от ОНБ к ОНБ

22.1 Ортогональные системы векторов и подпространств

Опр Ортогональная, ортонормированная система Векторы системе попарно ...

Утв Теорема Пифагора

 $|a_1 + \dots + a_n|^2 = |a_1|^2 + \dots + |a_n|^2$

Раскрываем по линейности и ортогональности

Утв Система ортогональная ⇔ матрица Грама ортогональная

Следует из определения матрицы Грама. Аналогично в ортонормированном случае матрица Грама единичная

Следствие 1 Ортогональная система ненулевых векторов л.н.з.

Потому как соответсвующая матрица Грама невырождена

Следствие 2 При ортогональном базисе матрица формы скалярного произведения имеет диагональный вид, а при ОНБ – канонический

22.2 Существование ортонормированных базисов (ОНБ)

Следствие 3 В конечномерном евклидовом пространстве существует ОНБ

Потому как существуют ортогональные системы. Если мы их запишем в виде матрицы формы, то, так как мы их умеем приводить к каноническому виду, мы получим ОНБ

22.3 Изоморфизм евклидовых пространств

Опр Изоморфизм евклидовых пространств Изоморфизм линейных пространств и ...

Утв Отображение изоморфно ⇔ оно переводит ОНБ в ОНБ

⇒: в силу сохранения скалярного произведения и соразмерности пространств (следствие изоморфности) ←: отображение переводит базис в базис, поэтому перед нами обычный изоморфизм линейных пространств. Применим отображение на двух произвольных векторах пространства. И получим, что сохраняется скалярное произведение, то есть перед нами изоморфизм линейных пространств по определению

Тһ Два конечномерных евклидова пространства изоморфны ⇔ они соразмерны

⇒: в силу свойств изоморфизма линейных пространств ⇔: приведём базисных обеих пространств к ОНБ и построим отображение, переводящее базис в базис. По предыдущему утверждению, перед нами изоморфизм

22.4 Ортогональные и унитарные матрицы

Опр Ортогональная, унитарная матрицы Над разными полями, множества пересекаются

Утв Матрицы Q, R унитарны \Rightarrow матрицы $Q^T, \overline{Q}, Q^*, QR, Q^{-1}$ унитарны

Непосредственно проверяется определение

Утв Детерминант унитарной матрицы единичен

Для доказательства достаточно расписать определитель в определении и воспользоваться свойствами определителя

 $\mathbf{y_{TB}}$ Для комплекснозначных матриц Q следующие условия эквивалентны

- 1. Q унитарна
- 2. $\exists Q^{-1}, Q^{-1} = Q^*$
- 3. Столбцы Q образуют ОНБ в унитарном пространстве столбцов
- $1 \Leftrightarrow 2$: по определению
- $1 \Leftrightarrow 3$: в силу определения унитарной матрицы возьмём скалярное произведение и получим, что каждый элемент результата есть δ_{ij} , то есть перед нами ОНБ
- \bullet Столбцы Q образуют ОНБ в унитарном пространстве столбцов

22.5 Переход от ОНБ к ОНБ

Следствие Переход от ОНБ к ОНБ

Базисы ОНБ 🖨 матрица перехода между ними ортогональная (унитарная)

 \Rightarrow : потому что произведение матриц единично \Leftrightarrow матрицы единичны \Leftarrow : по определению матрицы перехода

23 Ортогональное дополнение подпространства. Ортогональная проекция. Алгоритм ортогонализации Грама-Шмидта

23.1 Ортогональное дополнение подпространства

Опр Ортогональное дополнение Множество всех векторов, ортогональных ...

Пространство образует со своим ортогональным дополнением прямую сумму

Тh Сумма подпространства и его ортогонального дополнения есть всё евклидово пространство

- 1. Достаточно научиться представлять любой вектор пространства в виде суммы U и U^T
- 2. Выберем ортогональный базис в U и запишем его линейную комбинацию + вектор $c \in U^T$
- 3. Теперь надо подобрать такие коэффициенты, чтобы $c \perp U$
- 4. Заменим условие на эквивалентные, вспомним про ортонормированность базиса и выразим коэффициенты

Следствие 1 $\dim U = k, \dim E = n \rightarrow \dim U^T = n - k$

Следствие 2 $(U^T)^T = U$

Потому как одно пространство вложено в другое и у них, по предыдущему следствию, равны размерности

Следствие 2 В конечномерном случае данную ортогональную систему из ненулевых векторов можно дополнить до ОНБ

Достаточно дополнить векторами из ортогонального дополнения

23.2 Ортогональная проекция

Опр *Ортогональная проекция* Проекция на подпространство вдоль (параллельно) U^T

Утв Формула проекции

 $pr_U \overline{a} = \sum_i \frac{(a_i, b_i)}{(b_i, b_i)} b_i$

Следствие последней теоремы

Утв Ортогональное дополнение в координатах

Ортогональное дополнение есть пространство решений уравнения $(A_1, \ldots, A_n)^* x = 0$

 $x \in A^T \Leftrightarrow x \perp A \Leftrightarrow A_i \perp x \Leftrightarrow A_i^* x = 0$ и перейдём к матричной записи. Решение полученного уравнения и есть ортогональное дополнение

23.3 Алгоритм ортогонализации Грама-Шмидта

Утв Существует метод найти ортогональный базис в заданном подпространстве

- Рассмотрим линейную оболочку подпространства. Если $a_1=0$, то выкинем его из линейной оболочки
- Если $a_1 \neq 0$, то оставим его таким, какой он есть: $b_1 = a_1$
- Если все a_k до текущего уже ортогонализованы, то $b_{k+1} = a_{k+1} pr_{< b_1, \dots, b_k >} a_{k+1}$

При необходимости, полученную систему можно нормировать для получения ОНБ

24 Описание линейных функций на евклидовом (унитарном) пространстве

25 Преобразование, сопряжённое данному. Его линейность, существование и единственность, его матрица в ОНБ. Теорема Фредгольма

25.1 Преобразование, сопряжённое данному

Опр Сопряжённое преобразование $\varphi^*: (\varphi(a), b) = (a, \varphi(b))$

25.2 Его линейность, существование и единственность, его матрица в ОНБ

```
Утв \psi = \varphi^* \Leftrightarrow B = A^*
```

Достаточно расписать результат формы на паре векторов, определение сопряжённого преобразование и взглянуть на матрицы

Следствие 1 φ^* единственно

Потому как у каждой матрицы есть единственная сопряжённо-транспонированная

Следствие 1 Для сопряжённых преобразований справедливо 4 свойства

Первые три следуют из аналогичных свойств для матриц, а последнее из свойств комплексного сопряжения

Th U инвариантно относительно $\varphi \Leftrightarrow U^{\perp}$ инвариантно относительно φ^*

Достаточно вспомнить определения инвариантности, ортогонального дополнения и сопряжённого образования

25.3 Теорема Фредгольма

```
Th \Phi редгольма \ker \varphi^* = (\operatorname{Im} \varphi)^{\perp}
```

- 1. Докажем вложенность ядра в чужой образ и равенство размерностей. Это будет означать равенство
- 2. Равенство размерностей доказывается по прошлым утверждениям
- 3. Чтобы доказать вложенность рассмотрим произвольный вектор ядра, воспользуемся определениями ортогонального дополнения, образа и сопряжённого преобразования

26 Самосопряжённые линейные преобразования. Свойства самосопряжённых преобразований, существование ОНБ из собственных векторов

26.1 Самосопряжённые линейные преобразования

```
Опр Сопряжённое линейное преобразование \varphi^*=\varphi В таком случае (\varphi(a),b)=(a,\varphi(b))
```

26.2 Свойства самосопряжённых преобразований, существование ОНБ из собственных векторов

```
Th \varphi самосопряжено \Leftrightarrow A = A^*
```

Аналогично доказательству для сопряжённых преобразований

Тһ У самосопряжённого преобразования все характеристические числа действительны

В $\mathbb C$ достаточно расписать определение самосопряжённого преобразования, собственного числа и прийти к равенству $\lambda = \overline{\lambda}$, что означает действительность

Так как в $\mathbb C$ доказано, что характеристическое уравнение имеет лишь действительные корни. А симметрические вещественные матрицы являются частным случаем эрмитовых, поэтому теорема доказана и в $\mathbb R$

 $\mathbf{y_{TB}}$ У самосопряжённого преобразования различные корневые подпространства перпендикулярны

Достаточно рассмотреть два вектора из разных корневых подпространств, расписать определение самосопряжённого преобразования, собственного числа и прийти к единственному случаю $(a_i, a_i) = 0$

Тh Основная теорема о самосопряжённых преобразованиях

Для самосопряжённого преобразования сущетсвует ОНБ из собственных векторов

- 1. Пусть $\dim E = n$. В случае n = 1 очевидно
- 2. Ортогональное дополнение первого вектора ОНБ инвариантно относительно $\varphi*$, как и относительно φ в силу самосопряжённости
- 3. Поэтому мы получили ортонормированный базис на сужении размерности n-1 и их объединение будет ОНБ на подпространстве соответствующей размерности

27 Ортогональные и унитарные преобразования, их свойства. Канонический вид унитарного и ортогонального преобразования. Нормальные преобразования унитарных пространств

27.1 Ортогональные и унитарные преобразования, их свойства

```
Опр Ортогональное (униатрное) преобразование (\varphi(a), \varphi(b)) = (a, b)
Утв \varphi ортогонально (матрица перехода между ОНБ) \Leftrightarrow \varphi изоморфизм евклидовых (унитарных) про-
```

 \Rightarrow : в силу биективности (ОНБ переходит в ортонормированную систему из n векторов, то есть в ОНБ, потому что скалярное произведение сохранено) \Leftarrow : достаточно расписать скалярное произведение двух произвольных векторов и воспользоваться изоморфностью (идея как при изоморфизме линейных пространств). Получим сохранение скалярного произведения и ортогональность φ по определению

Следствие 1 Ортогональное преобразование переводит ОНБ в ОНБ

Следствие 2 Преобразование ортогонально \Leftrightarrow его матрица ортогональна

Потому как ортогональная матрица – матрица перехода между ОНБ

Следствие 3 Преобразование ортогонально $\Leftrightarrow \varphi$ обратимо и матрица $\varphi^{-1} = \varphi^*$

Достаточно расписать определение унитарного преобразования

Утв Групповые свойства

Для ортогональных преобразований их композиция и обратное тоже ортогональное

Достаточно привести к определению

Утв Характеристические числа ортогональных преобразований по модулю равны единице

Достаточно расписать определение и вспомнить про комплексное сопряжение

27.2 Канонический вид унитарного и ортогонального преобразования

Тһ Канонический вид унитарного преобразования

Для унитарного преобразования сущетсвует ОНБ из собственных векторов

- 1. Пусть $\dim E = n$. В случае n = 1 очевидно
- 2. Ортогональное дополнение первого вектора ОНБ инвариантно относительно φ^* , как и относительно φ^{-1} в силу ортогональности. При изучении инвариантных подпространств мы выяснили, что это эквивалентно инвариантности и относительно φ
- 3. Поэтому мы получили ортонормированный базис на сужении размерности n-1 и их объединение будет ОНБ на подпространстве соответствующей размерности

28 Полярное разложение линейного преобразования в евклидовом пространстве, его существование

Лемма О главных направлениях

Для линейного преобразования φ существует ОНБ $e_1,\ldots,e_n:\varphi(e_1),\ldots,\varphi(e_n)$ образуют ортогональную систему

Рассмотрим оператор $\varphi^*\varphi$ (проверяется, что он СС) и ОНБ из его собственных векторов (по теореме). Далее, пользуясь СС-ю получаем, что $(\varphi(e_i), \varphi(e_i)) = \cdots = \lambda_i \delta_{ij}$

Th Для линейного преобразования $\varphi \exists$ самосопряжённое преобразвоание ψ и ортогональное (унитарное) θ

- 1. Рассмотрим ортогональную систему из леммы, притом $|\varphi(e_i)| = \sqrt{\lambda_i}$. При необходимости, переупорядочим её
- 2. Отнормируем систему и дополним её до ОНБ, убрав, при необходимости, нулевые векторы. Получим ОНБ f_1, \ldots, f_n
- 3. Теперь определим $\psi = \varphi \theta^{-1}$ и убедимся, что $\psi(f_i) = \cdots = \sqrt{\lambda_i} f_i$
- 4. Итого, нежные отображения подобраны

Совсем необязательно, что данные преобразования коммутируют (перестановочны). Однако можно применить теорему к φ^* и взять сопряжение с обеих сторон. Тогда мы как раз получим другой порядок

- 29 Квадратичные (эрмитовы) формы в евклидовых (унитарных) пространствах. Присоединенный оператор. Существование ОНБ, в котором квадратичная (эрмитова) форма имеет диагональный вид. Применение к классификации кривых второго порядка. Одновременное приведение пары квадратичных форм к диагональному виду
- 29.1 Квадратичные (эрмитовы) формы в евклидовых (унитарных) пространствах

Опр Квадратичная форма в евклидовом пространстве $\beta_{\omega}(a,b)=(a,\varphi(b))$

Утв В случае ОНБ $B = \overline{A}$

Пользуемся результатом действия билинейной формы на паре векторов и сравниваем записи.

В случае произвольного базиса $B = \Gamma \overline{A}$

Следствие 1 Задана биекция между линейными преобразованиями и билинейными формами

Следствие 2 Задана биекция между множество самосопряжённых операторов и квадратичных форм

Потому как и тем, и другим соответствует симметричная матрица

Итого, изучения биленейных форм можно свести к изучению операторов (и наоборот), а изучение квадратичных – к самосопряжённым операторам

29.2 Существование ОНБ, в котором квадратичная (эрмитова) форма имеет диагональный вид

Тh Приведение к главным осям

Существует ОНБ, в котором матрица квадратичной формы над ЕП имеет диагональный вид

Следует из того, что для самосопряжённого оператора существует ОНБ, в котором его матрица диагональна. Она отличается от требуемой не более, чем сопряжением

29.3 Применение к классификации кривых второго порядка

Лемма ∃ ПДСК, в которой кривая второго порядка задаётся уравнением без перекрёстных членов. Аналогично для поверхностей

Для предъявления такой ПДСК достаточно привести квадратичную форму к главным осям

29.4 Одновременное приведение пары квадратичных форм к диагональному виду

Th O nape ϕ opM

Если в векторном пространстве (без евклидовой / унитарной структуры) заданы две симметрические квадратичные формы, причём первая п.о. то существует базис, в котором первая имеет канониыеский вид, а вторая – диагональный

Достаточно объявить п.о. форму скалярным произведением. Тогда будет существовать базис, в котором вторая форма диагональна

Сопряжённое пространство

30 Линейные функции. Сопряжённое пространство, его размерность. Биортогональный базис. Замена биортогональных базисов. Канонический изоморфизм пространства и дважды сопряжённого к нему

30.1 Линейные функции

Опр *Линейная функция* Отображение, удовлетворяющая двум аксиомам

30.2 Сопряжённое пространство, его размерность

Опр Сопряжённое (двойственное) пространство Пространство ...

Элементы сопряжённого пространства – линейные функционалы (функции), поэтому такие пространства также называют пространством линейных функций. Обозначаются как V^*

Утв $\dim V^* = \dim V$

Следует из $\dim \mathbb{R} = \dim \mathbb{C} = 1$ и отождествления с матрицами размерности nm

Применению линейной функции к вектору, удовлетворяющему четырём аксиомам, соответствует билинейная (полуторалинейная) форма

30.3 Биортогональный базис

Опр Взаимный / биортогональный / двойственный базис $< e_i, e^j >= \delta_i^j$

Утв К данном базису существует и единственен взаимный

Любому элементу взаимного базиса соответствует строчная единица. Строчные единицы образуют базис в V, поэтому и элементы взаимного базиса образуют базис в V^* . Базис единственен по построению (в силу инъективности линейных функций)

Утв Двойственный базис является базисом в V^*

В силу равенства размерностей пространств достаточно доказать л.н.з. f_1, \ldots, f_n . Это делается от противного с применением $e_j \forall j$ на линейной комбинации

Утв Если при фиксированном $a \in V < a, l >= 0 \forall l \in V^*,$ то a = 0

От противного включим a в какой-то базис

 $\mathbf{y}_{\mathbf{TB}} < a, l > = x^i \overline{y_i}$

Следует из подстановки разложений по базисам и определения δ_i^j

Следствие $\langle a, e^i \rangle = x^i$

30.4 Замена биортогональных базисов

```
Утв Если e^{'}=eS, e^{'*}=e^{*}C, то C=(S^{-1})^{*}
```

Тензорно запишем $e^{'}$ как строки матрицы на векторы-столбцы и введём $R=C^{T}$, чтобы аналогично сделать с $e^{'*}$. Затем раскроем по условию биортогональности и вернёмся к матричной записи

30.5 Канонический изоморфизм пространства и дважды сопряжённого к нему

Опр Канонический изоморфизм Не меняется при замене базиса

Опр Дважды сопряжённое пространство Отображение, сопостовляющее вектору $a \in V$ отображение $\overleftarrow{a}: V^* \to \mathbb{R}(\mathbb{C})$ по правилу $< l, \overleftarrow{a}> = \overline{< a, l>}$ есть инъевтиный гомоморфизм (вложение) $V \to V^{**}$

 ${f Th}$ Канонический изоморфизм между V и V^{**}

Между линейным пространством и дважды сопряжённым к нему сущесвтует канонический изоморфизм

Для доказательства достаточно проверить линейность по обеим аргументам и тривиальность ядра (всё по определению). По критерию изоморфности в силу инъективности (тривиальность ядра) имеем изоморфизм

31 Аннулятор подпространства, соответствие между подпространствами V и V*. Сопряжённое преобразование, его свойства

31.1 Аннулятор подпространства, соответствие между подпространствами V и V^*

Опр Биортогональные множества $\forall a \in U \forall l \in W < a, l >= 0$

 ${f y}_{{f T}{f B}}$ Признак биортогональности

 $U \perp W \Leftrightarrow a_i \perp l_i$

⇒: очевидно в силу вложенности ←: из разложения по базису и линейности

Опр Аннулятор / биортогональное дополнение Множество W линейных функций Обозначается как U^\perp

Опр Hyль-npocmpancmeo Обратное к аннулятору: множество U векторов

Th $(U^{\perp})^{\perp} = U$ и dim $U + \dim U^{\perp} = n$

- 1. Выберем базис e_1, \ldots, e_k в U и дополним его до базиса во всём пространстве векторами e_{k+1}, \ldots, e_n
- 2. Далее рассмотрим линейную функцию, записанную в своём базисе и перейдём к системе, задающей \bot
- 3. Получим, что тогда каждый коэффициент $\lambda_i = 0, i \in \overline{1,k}$, что говорит о структуре U^{\perp}
- 4. Аналогичную операцию произведём в V^* и докажем первый факт
- 5. Собрав информацию о размерностях, получим второй факт

31.2 Сопряжённое преобразование, его свойства

Опр Сопряжённое преобразование Отображение уже из пространства функций

Утв Сопряжённое преобразование лежит в пространстве функций

Проверяется линейность (4 аксиомы) с использованием определения

Утв Сопряжённое преобразование соотвествует матрица A^*

Надо разложить в матричный вид равенства из определения сопряжённого пространства и сравнить их. Получив искомую структуру матрицы

Следствие 1 Верны 4 равенства

Введём взаимные базисы и перейдём к матрицам. Доказательства очевидны случаю евклидова пространства

Th U инвариантно относительно $\varphi \Leftrightarrow U^{\perp}$ инвариантно относительно φ^*

 \Rightarrow : возьмём $f \in U^{\perp}$ и распишем его применение по определению \Leftarrow : следует из \Rightarrow , $(U^{\perp})^{\perp} = U$ и $(\varphi^*)^* = \varphi$

Th Фредгольма $\ker \varphi^* = (\operatorname{Im} \varphi)^{\perp}$

- 1. Аналогично случаю в ЕП: докажем вложенность ядра в чужой образ и равенство размерностей. Это будет означать требуемое равенство
- 2. Равенство размерностей доказывается по прошлым утверждениям
- 3. Чтобы доказать вложенность рассмотрим произвольный вектор ядра, воспользуемся определениями ортогонального дополнения, образа и сопряжённого преобразования

Тензоры

- 32 Полилинейные отображения. Определение тензора типа (p,q) на линейном пространстве V. Пространство $T_q^p(V)$ тензоров типа (p,q). Тензорный базис в $T_q^p(V)$. Изменение компонент тензора при замене базиса
- 32.1 Полилинейные отображения