

Lierda NB-IoT 模块替换说明 NB86-G 替换 NBXX-01

版本: Rev1.1

日期: 2018-08-17

利尔达科技集团股份有限公司

法律声明

若接收浙江利尔达物联网技术有限公司(以下称为"利尔达")的此份文档,即表示您已经同意以下条款。若不同意以下条款,请停止使用本文档。

本文档版权所有浙江利尔达物联网技术有限公司,保留任何未在本文档中明示授 予的权利。文档中涉及利尔达的专有信息。未经利尔达事先书面许可,任何单位和个 人不得复制、传递、分发、使用和泄漏该文档以及该文档包含的任何图片、表格、数 据及其他信息。

本产品符合有关环境保护和人身安全方面的设计要求,产品的存放、使用和弃置应遵照产品手册、相关合同或者相关法律、法规的要求进行。

本公司保留在不预先通知的情况下,对此手册中描述的产品进行修改和改进的权利,同时保留随时修订或收回本手册的权利。

文件修订历史

版本	修订日期	修订日志	
1.0	2018-08-13	第一次发布版本	
1.1	2018-08-17	增加软件对比	×0.

适用模块型号

序号	模块型号	模块简介
1	NBXX-01	Band05, Band08, B版本, 20×16×2.2 (mm)
2	NB86-G	全频段,支持频段1/2/3/5/8等,20×16×2.2 (mm)

目录

法律声明	2
文件修订历史	3
适用模块型号	
目录	5
表格索引	6
	7
2 硬件对比	7
2.1 模块引脚	7
3 软件对比	
3.1 协议支持 3.2 指令区别	10
3.2.1 更新的指令及消息	11
3.2.2 NB86-G 新增命令	
3.3 设计建议	
3.4 小结	

表格索引

表	2-1	对应引脚位置及功能的替换说明	8
表	3-1	NBXX 与 NB86-G 支持的协议对比	,1
表	3-2	NBXX 系列模组与 NB86-G 模组有变化的指令及消息1	1
表	3-3	NB86-G 模组相对于 NBXX 系列模组新增的 AT 命令 1	3
表	3-4	Lierda NB-IoT 模组软件功能应用设计建议1	4
		ys lecunology Gions	

1 引言

利尔达NBXX-01系列模块是基于HISILICON Hi2110的Boudica芯片开发的NB-IoT模块, NB86-G系列模块是基于HISILICON Hi2115的Boudica芯片开发的模块, 两者外部规格一致, 用户在硬件设计上可以实现无差异化的替换, 本文就是为了更好的让用户了解两者替换的共性及差异性而作的一份说明文档,旨在帮助用户快速了解和替换该模块。

2 硬件对比

2.1 模块引脚

图 1 NBXX-01 系列引脚分配图

图 2 NB86-G 系列引脚分配图

表 2-1 对应引脚位置及功能的替换说明

NBXX-01		ı	NB86-G	## 14/ 77 HD
引脚号	引脚名	引脚号	引脚名	替换说明
1	GND	1	GND	同位置,同定义,完全替换
2	GND	2	GND	同位置,同定义,完全替换
3	RESERVED	3	PIO12	普通I/O,且PIO12未定义功能,可替换
4	RESERVED	4	PIO14	普通I/O,且PIO14未定义功能,可替换
5	RESERVED	5	PIO15	普通I/O,且PIO15未定义功能,可替换
6	GPIO11	6	PIO23	普通I/O,且PIO23未定义功能,可替换
7	VDD_EXT	7	VDD_IO_L1	3.0V电源输出,可替换
8	RESERVED	8	USIM_DET	USIM_DET:实际未使用,可替换

9	DAC1	9	RIO1	同位置,同定义,完全替换
10	RESERVED	10	PIO25	普通I/O,且PIO25未定义功能,可替换
11	RESERVED	11	PIO24	普通I/O,且PIO24未定义功能,可替换
12	RESERVED	12	PIO26	普通I/O,且PIO26未定义功能,可替换
13	GND	13	GND	同位置,同定义,完全替换
		14		新增的引脚,所处PCB的位置在
		14	RESERVED	NBXX-01系列模块上是空的。
14	GND	15	GND	同位置,同定义,完全替换
15	GND	16	GND	同位置,同定义,完全替换
16	GND	17	GND	同位置,同定义,完全替换
17	GND	18	GND	同位置,同定义,完全替换
18	GND	19	GND	同位置,同定义,完全替换
19	GND	20	GND	同位置,同定义,完全替换
20	ANT_RFIO	21	ANT_RFIO	同位置,同定义,完全替换
21	GND	22	GND	同位置,同定义,完全替换
		23	RESERVED	新增的引脚,所处PCB的位置在
		23	KESEKVED	NBXX-01系列模块上是空的。
22	RESET	24	RESET	同位置,同定义,完全替换
23	RXD	25	RXD	同位置,同定义,完全替换
24	TXD	26	TXD	同位置,同定义,完全替换
25	DBG_RXD	27	DBG_RXD	同位置,同定义,完全替换
26	DBG_TXD	28	DBG_TXD	同位置,同定义,完全替换
27	NETLIGHT	29	NETLIGHT	同位置,同定义,完全替换
28	USIM_DATA	30	USIM_DATA	同位置,同定义,完全替换
29	USIM_CLK	31	USIM_CLK	同位置,同定义,完全替换
30	USIM_RST	32	USIM_RST	同位置,同定义,完全替换
31	USIM_VDD	33	USIM_VDD	同位置,同定义,完全替换
32	ADC0	34	ADC0	同位置,同定义,完全替换
33	ADC1	35	ADC1	同位置,同定义,完全替换
34	RI	36	RI	同位置,同定义,完全替换
		37	PIO22	新增的引脚,所处PCB的位置在
		31	F1022	NBXX-01系列模块上是空的。

35	USIM_GND	38	USIM_GND	同位置,同定义,完全替换
36	RESERVED	39	RESERVED	同位置,同定义,完全替换
37	RESERVED	40	RESERVED	同位置,同定义,完全替换
38	GND	41	GND	同位置,同定义,完全替换
39	VBAT	42	VBAT	同位置,同定义,完全替换
40	VBAT	43	VBAT	同位置,同定义,完全替换
41	GND	44	GND	同位置,同定义,完全替换
42	GND	45	GND	同位置,同定义,完全替换
		46	VDD 10 D0	新增的引脚,所处PCB的位置在
		46	VDD_IO_R2	NBXX-01系列模块上是空的。
				NBXX-01无此引脚,但需检查并确保
		47~66	普通I/O	NB86-G上的PIN47-66焊盘不会与用户
				底板短路

备注: 用户在替换过程中有疑问请联系当地技术支持。

3 软件对比

3.1 协议支持

NBXX 系列 NB-IoT 模组基于海思 Hi2110 芯片,作为全球首款量产的单模 NB-IoT 芯片,其主要支持 IPV4、UDP、CoAP、TUP、DTLS/DTLS+等协议。

NB86-G基于海思 Hi2115 芯片,作为 NB-IoT 单模的模组,支持全球主要运营商的绝大部分频段,在 Hi2110 的基础上新增了支持 IPV6、LwM2M、TCP、DNS 等用户更关心的协议,由于 NB86-G 与 IoT 平台之间通过标准 LwM2M 协议通信,因此要确认运营商 IoT 平台需要支持该协议,目前电信 1.5版本以上平台支持终端以 LwM2M 协议接入。

图 3-1 NBXX 模组与 NB86-G 模组协议支持对比概览

表 3-1 NBXX 与 NB86-G 支持的协议对比

序号	协议类型	NBXX-01	NB86-G
1	IPV4	支持	支持
2	IPV6	不支持	支持
3	UDP	支持	支持
4	DTLS	支持	支持
5	DTLS+	支持	支持
6	连接 IoT 平台	TUP	LwM2M
7	TCP	不支持	支持
8	DNS	不支持	支持
9	ICMP-PING	支持	支持
10	E-CID	不支持	目前仅供测试
11	ODTOA	不支持	目前仅供测试
12	Multi-PRB	不支持	目前仅供测试
13	Multi-Tone	不支持	支持
14	Multi-BAND	不支持	支持

3.2 指令区别

3.2.1 更新的指令及消息

表 3-2 NBXX 系列模组与 NB86-G 模组有变化的指令及消息

序号	指令类型	NBXX-01	NB86-G
1	启动/重启		Boot: Unsigned
			Security B Verified
			Protocol A Verified
			Apps A Verified
		REBOOT_CAUSE_APPLICATION_AT	REBOOT_CAUSE_APPLICATION_AT
		Lierda	Lierda
		OK	OK
2	IoT 平台功	无	AT+ MLWM2MENABLE=0
	能开关		OK
			AT+NRB
			NOTE:LwM2M 功能默认开启,用户仅使用
			UDP或 TCP通信时建议关闭 LwM2M 功能,
			避免影响模组长时间运行 PSM 功耗
3	IoT 平台注	无	AT+MLWEVTIND=0
	册订阅状态		
	URC		AT+MLWEVTIND=3
			NOTE:这两条消息表示终端与 loT 平台之间
			的注册订阅状态,具体参考 AT 指令集

4	配置 APN 及	AT+CGDCONT=?	AT+CGDCONT=?
7	PDP 类型	+CGDCONT:(0-10),("IP","NONIP"),,,(0),(+CGDCONT:(0-10),("IP","NONIP","IPV6","IPV
	八里	0),,,,(0,1)	4V6"),,,(0),(0),,,,,(0,1)
		0,,,,,,(0,1)	1,10 1,1,(0),(0),,,,,(0,1)
		OK	ОК
		NOTE:默认 PDP 类型为 IP	NOTE:默认 PDP 类型为 IPV4V6
5	域名解析	不支持	AT+MDNS=0,www.lierda.com
			ОК
			+MDNS:202.107.200.164
			NOTE:B300SP2 以上支持
6	IoT 平台下	NNMI 默认为 0	NNMI 默认为 1
	行 URC		
7	UE 状态	AT+NUESTATS	AT+NUESTATS
		Signal power:-888	Signal power:-488
		Total power:-771	Total power:-431
		TX power:130	TX power:-90
		TX time:2349	TX time:2339
		RX time:35347	RX time:71494
		Cell ID:163090258	Cell ID:201538369
		ECL:1	ECL:0
		SNR:66	SNR:300
		EARFCN:2506	EARFCN:3738
		PCI:148	PCI:436
		RSRQ:-116	RSRQ:-108
			OPERATOR MODE:4
		ОК	
			ОК
			NOTE:新增 OPRATOR MODE
			0 Unknown mode
			1 Inband different pci mode
			2 Inband same pci mode
			3 Guardband mode
			4 Standalone mode
8	UE 配置信息	AT+NCONFIG?	AT+NCONFIG?
		+NCONFIG:AUTOCONNECT,TRUE	+NCONFIG:AUTOCONNECT,TRUE
//·		+NCONFIG:CR_0354_0338_SCRAMBLI	+NCONFIG:CR_0354_0338_SCRAMBLING,TR
		NG,TRUE	UE
		+NCONFIG:CR_0859_SI_AVOID,TRUE	+NCONFIG:CR_0859_SI_AVOID,TRUE
		+NCONFIG:COMBINE_ATTACH,FALSE	+NCONFIG:COMBINE_ATTACH,FALSE
		+NCONFIG:CELL_RESELECTION,TRUE	+NCONFIG:CELL_RESELECTION,TRUE
		+NCONFIG:ENABLE_BIP,FALSE	+NCONFIG:ENABLE_BIP,FALSE
		_	-
		+NCONFIG:ENABLE_BIP,FALSE +NCONFIG:NAS_SIM_POWER_SAVING	+NCONFIG:ENABLE_BIP,FALSE +NCONFIG:MULTITONE,TRUE

		_ENABLE,TRUE	+NCONFIG:NAS_SIM_POWER_SAVING_ENA BLE,TRUE
		ОК	+NCONFIG:BARRING_RELEASE_DELAY,64 +NCONFIG:RELEASE_VERSION,13
			+NCONFIG:RPM,FALSE
			+NCONFIG:SYNC_TIME_PERIOD,0
			+NCONFIG:IPV6_GET_PREFIX_TIME,15
			+NCONFIG:NB_CATEGORY,1
			+NCONFIG:RAI,FALSE
			+NCONFIG:HEAD_COMPRESS,FALSE
			+NCONFIG:RLF_UPDATE,FALSE
			+NCONFIG:CONNECTION_REESTABLISHMEN
			T,FALSE
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			OK
			NOTE:测试 OTDOA 及其他 R14 特性时需要
			配置
			AT+CFUN=0
			AT+NCONFIG=RELEASE_VERSION,14
			AT+NRB
9	PING 命令	PING 包大小: 8-1460	PING 包大小: 12-1480
		默认: 8	默认: 12
10	创建 Socket	返回 Socket 编号从 0 开始	返回 Socket 编号从 1 开始
11	发送 UDP 数	AT+NSOST= <socket>,<remote_addr>,</remote_addr></socket>	AT+NSOST= <socket>,<remote_addr>,</remote_addr></socket>
	据	<remote_port>,<length>,<data></data></length></remote_port>	<remote_port>,<length>,<data></data></length></remote_port>
		NOTE:最大数据包长 512 字节	[, <sequence>]</sequence>
			NOTE:最大数据包长 1358 字节
12	读取 Socket	AT+NSORF= <socket>,<req_length></req_length></socket>	AT+NSORF= <socket>,<req_length></req_length></socket>
	数据	NOTE: req_length 最大 512 字节	NOTE: req_length 最大 1358 字节
13	BAND 设置	AT 指令不能设置 BAND	AT+NBAND?
			+NBAND:5,8,28,3
			ОК
			NOTE: AT 指令可以设置多个 BAND,默认同
			时支持 BAND 5、8、28、3,搜索顺序从前向后

3.2.2 NB86-G 新增命令

表 3-3 NB86-G 模组相对于 NBXX 系列模组新增的 AT 命令

序号	指令类型	说明
1	AT+CGCONTRDP[= <cid>]</cid>	读取 PDP 上下文动态参数
2	AT+CNMPSD	UE 无应用数据指示

3	AT+MLWSREGIND	控制模组向 NB-IoT 平台注册
4	AT+MLWULDATASTATUS	获取发送 CON 数据的状态
5	AT+MLWFOTAIND	设置 FOTA 下载和升级的模式
6	AT+MLWEVTIND	向终端通知当前与 IoT 平台的连接状态
7	AT+MREGSWT	设置模组重启后注册模式
8	AT+MRESETDTLS	如果 DTLS 已经完成握手或重协商,通过该 AT 命令将 DTLS 状态
		置为 INIT 态,在下次发送数据时会重新走握手流程
9	AT+MDTLSSTAT	查询 DTLS 当前的建链状态
10	AT+ MBOOTSTRAPHOLDOFF	设置和查询 ClientHoldOffTime,默认 600s
11	AT+ MBOOTSTRAPSERVERIP	设置和删除 BOOTSTRAP 和 IOT 平台服务器的 IP 地址
12	AT+ MDNS	触发 DNS 域名解析
13	AT+ MLWM2MENABLE	控制 LWM2M 模块是否使能
14	AT+NQSOS	查询当前终端处于挂起状态的数据流
15	AT+NSOCO	建立 TCP 连接
16	AT+NSOSD	发送 TCP 数据包
17	+NSOCLI	Socket 关闭提示

NOTE: 具体指令参数格式及说明参考 AT 指令集。

3.3 设计建议

表 3-4 Lierda NB-IoT 模组软件功能应用设计建议

	W o I Blotda 10 101 Design 1 White Amount of the				
序	号 模组平台	设计建议	不采纳影响		
1	NBXX ,NB86-G	NCDP 必须在 CFUN=0 时配置,配置	模组向平台发送数据返回 513 错误,数据		
		完 NRB 模组或 CFUN=1,CGATT=1	始终无法上报给平台		
2	NBXX ,NB86-G	终端上报业务时必须实现离散策	大量终端在短时间内大量执行上报业务,		
		略,以模组 IMEI 或表号等离散因子	导致网络侧压力过大,业务数据无法成功		
		设计离散策略,离散范围尽可能做	上报给 IoT 平台		
		到 24 小时			
3	NBXX ,NB86-G	终端发送完数据后不断电,自动进	终端采用发送完数据断电的使用模式,每		
		入 PSM 模式,上报业务时逻辑参考	次重新上报数据时大量终端同时附着网		
		2 中的描述进行离散设计	络,导致网络承载短期剧增,大量终端无		
			法附着成功		
4	NBXX ,NB86-G	建议终端首次搜网等待 5 分钟,搜	终端控制模组搜网 NB-loT 网络时,没有限		
		网失败后根据异频组网的策略清除	制连续搜索次数,导致在无网络或网络覆		
		频点再搜索一次,再次搜索失败后	盖很差的情况下连续搜网,对网络侧造成		
		静默一段时间(小时级)后,再重	大量接入压力,终端电量迅速耗尽		
		新启动搜网流程			
5	NBXX ,NB86-G	MCU 检测模组复位后打出的	MCU 未检测模组的异常复位,没有自愈并		
		REBOOT 信息并做自愈处理,重新配	重新配置模组的各报文开关,如 NNMI,		
		置各项开关,确保模组的各项配置	导致后续上行数据后不到下行应答		
		处于正常状态			
6	NBXX ,NB86-G	建议根据《Lierda NB Module	终端 MCU 没有适配模组的 FOTA 流程,导		

		V150_FOTA_ 用 户 使 用 指 导	致后续模组优化升级固件后无法执行
		_V1.5.20180817.pdf》实现 MCU 适	FOTA 升级,无法适配更新的模组固件版本
		配模组 FOTA 流程	
7	NBXX ,NB86-G	上报业务使用带 RA 功能的指令,并	终端上报完业务后未使用带 RA 功能的指
		且 IoT 平台不对带 RA 指令的上报数	令,导致发送数据功耗偏高
		据进行应答,避免终端 RA 上报进入	
		ldle 后被平台下行应答重新拉到	
		Connect 状态	
8	NBXX ,NB86-G	建议终端上报业务数据中携带:	终端上报给 loT 平台的业务数据未包含现
		RSRP,SNR,ECL,CELL ID,PCI 等信	网的覆盖信息,导致后期批量部署后较难
		息	针对性的进行维测优化
9	NB86-G	如果确定一型或一批次产品的运营	模组默认支持 BAND 5、8、28、3,例如选
		商不会切换,建议配置 NBAND 为仅	择联通 BAND3 网络,不配置 NBAND 的情
		支持所选运营商的 BAND	况下,搜网效率较低
10	NB86-G	如仅使用 UDP/TCP 协议直连应用服	LwM2M 功能默认打开,如终端为仅通过
		务器,不需要经过运营商 loT 平台,	UDP/TCP 通信的低功耗应用,LwM2M 功能
		建议关闭 LwM2M 功能	将导致终端在长时间 PSM 状态下功耗偏高
		·	

3.4 小结

NB86-G 模组在软件上兼容 NBXX 系列模组,如:搜网过程,配置 IoT 平台地址,向 IoT 平台发送数据,接收 IoT 平台的下行数据等。但支持的协议和功能更为复杂,用户可以做无缝切换,但如果要提升产品的体验,需要根据设计建议进行微调。