

Substitution Techniques

Data Encryption & Security (CEN-451)

Spring 2025 (BSE-8A&B)

Substitution Technique

- Techniques in which the letters of plaintext are replaced by other letters, numbers or symbols.
- If the plaintext is viewed as a **sequence of bits**, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns.
- Substitution ciphers can be categorized as either monoalphabetic ciphers or polyalphabetic ciphers.

Monoalphabetic Ciphers

- In **monoalphabetic** substitution, the relationship between a symbol in the plaintext to a symbol in the ciphertext is always **one-to-one**.
- Example: the following shows a plaintext and its corresponding ciphertext. The cipher is monoalphabetic because both *l*'s are encrypted as *O*'s.

Plaintext: hello

Ciphertext: KHOOR

Additive Cipher

Additive Cipher (Cont.)

- The plaintext, ciphertext and key are integers in \mathbb{Z}_{26} .
- The general algorithm is:

$$C = E(k, P) = (P + k) \mod 26$$

• The decryption algorithm is simply:

$$P = D(k, C) = (C - k) \mod 26$$

- Where, k takes on a value in the range 1 to 25).
- With k = 0, ciphertext is same as plaintext. Hence, only 25 keys are useful.

Additive Cipher (Cont.)

- Example 01: use the additive cipher with k = 15 to encrypt the message "hello".
- Solution:

Plaintext: $h \rightarrow 07$	Encryption: $(07 + 15) \mod 26$	Ciphertext: $22 \rightarrow W$
Plaintext: $e \rightarrow 04$	Encryption: $(04 + 15) \mod 26$	Ciphertext: $19 \rightarrow T$
Plaintext: $1 \rightarrow 11$	Encryption: $(11 + 15) \mod 26$	Ciphertext: $00 \rightarrow A$
Plaintext: $1 \rightarrow 11$	Encryption: $(11 + 15) \mod 26$	Ciphertext: $00 \rightarrow A$
Plaintext: $o \rightarrow 14$	Encryption: $(14 + 15) \mod 26$	Ciphertext: $03 \rightarrow D$

Additive Cipher (Cont.)

- Example 02: use the additive cipher with k = 15 to decrypt the message "WTAAD".
- Solution:

Ciphertext: $W \rightarrow 22$	Decryption: $(22-15) \mod 26$	Plaintext: $07 \rightarrow h$
Ciphertext: $T \rightarrow 19$	Decryption: $(19 - 15) \mod 26$	Plaintext: $04 \rightarrow e$
Ciphertext: A \rightarrow 00	Decryption: $(00-15) \mod 26$	Plaintext: $11 \rightarrow 1$
Ciphertext: A \rightarrow 00	Decryption: $(00-15) \mod 26$	Plaintext: $11 \rightarrow 1$
Ciphertext: D \rightarrow 03	Decryption: $(03 - 15) \mod 26$	Plaintext: $14 \rightarrow 0$

Multiplicative Ciphers

- Multiplicative cipher is a monoalphabetic.
- The plaintext and ciphertext are integers in \mathbb{Z}_{26} , the key is an integer in \mathbb{Z}_{26}^* .
- Encryption is multiplying plain text by key, while decryption is multiplying ciphertext by multiplication inverse of that key.

Multiplicative Ciphers (Cont.)

• Example: Encrypt the message "hello" using the multiplicative cipher with a key of 7.

• Solution:

Plaintext: $h \rightarrow 07$	Encryption: $(07 \times 07) \mod 26$	ciphertext: $23 \rightarrow X$
Plaintext: $e \rightarrow 04$	Encryption: $(04 \times 07) \mod 26$	ciphertext: $02 \rightarrow C$
Plaintext: $1 \rightarrow 11$	Encryption: $(11 \times 07) \mod 26$	ciphertext: $25 \rightarrow Z$
Plaintext: $1 \rightarrow 11$	Encryption: $(11 \times 07) \mod 26$	ciphertext: $25 \rightarrow Z$
Plaintext: $o \rightarrow 14$	Encryption: $(14 \times 07) \mod 26$	ciphertext: $20 \rightarrow U$

• The ciphertext is "XCZZU".

Multiplicative Ciphers (Cont.)

• Example: Decrypt the ciphertext "XCZZU" into its original form, provided that encryption key is 7 in \mathbb{Z}_{26} .

Find the multiplicative inverse of 7 in Z_{26} .

$$\mathbf{r} = \mathbf{r_1} - (\mathbf{q} \times \mathbf{r_2})$$

$$\mathbf{t} = \mathbf{t}_1 - (\mathbf{q} \times \mathbf{t}_2)$$

q	r1	r2	r	t1	t2	t
	26	7		0	1	

Brute-Force in Additive Cipher

- If it is known that a given ciphertext is an Additive cipher, then brute-force is easily performed.
- Simply try all the 25 possible keys.
- In this example, the plaintext leaps out as occupying the third line.
- *Note*: with only 25 possible keys, the Additive cipher is far from secure.

	PHHW	PH	DIWHU	WKH	WRJD	SDUWB
KEY						
1		_	chvgt		_	
2	nffu	nf	bgufs	uif	uphb	qbsuz
3	meet	me	after	the	toga	party
4	ldds	ld	zesdq	sgd	snfz	ozqsx
5	kccr	kc	ydrcp	rfc	rmey	nyprw
6	jbbq	jb	xcqbo	qeb	qldx	mxoqv
7	iaap	ia	wbpan	pda	pkcw	lwnpu
8	hzzo	hz	vaozm	ocz	ojbv	kvmot
9	gyyn	gу	uznyl	nby	niau	julns
10	fxxm	fx	tymxk	max	mhzt	itkmr
11	ewwl	ew	sxlwj	lzw	lgys	hsjlq
12	dvvk	dv	rwkvi	kyv	kfxr	grikp
13	cuuj	cu	qvjuh	jxu	jewq	fqhjo
14	btti	bt	puitg	iwt	idvp	epgin
15	assh	as	othsf	hvs	hcuo	dofhm
16	zrrg	zr	nsgre	gur	gbtn	cnegl
17	yqqf	уq	mrfqd	ftq	fasm	bmdfk
18	хрре	хр	lqepc	esp	ezrl	alcej
19	wood	wo	kpdob	dro	dyqk	zkbdi
20	vnnc	vn	jocna	cqn	схрј	yjach
21	ummb	um	inbmz	bpm	bwoi	xizbg
22	tlla	tl	hmaly	aol	avnh	whyaf
23	skkz	sk	glzkx	znk	zumg	vgxze
24	rjjy	rj	fkyjw	ymj	ytlf	ufwyd
25	qiix	qi	ejxiv	xli	xske	tevxc
						C • (

Polyalphabetic Ciphers

- In polyalphabetic substitution, each occurrence of a character may have a different substitute.
- The relationship between a character in plaintext to a character in ciphertext is **one-to-many**.
- E.g. "a" could be enciphered as "D" at beginning of text, but as "N" at the middle.
- Benefit of polyalphabetic ciphers:
 - Hides letter frequency of the language.
 - Cannot use frequency statistics to break the ciphertext.

Playfair Cipher

- The Playfair algorithm is based on 5×5 matrix of letters.
- The **secret key** is made of **25 alphabet letters** arranged in **5 × 5** matrix, where letters **I/J** are considered the same when encrypting.
- Different arrangements of letters in the matrix can create many different secret keys.
- Example of a secret key:

- In Playfair key matrix; fill in letters of a given **keyword** (*minus duplicates*) from left to right and top to bottom, then fill rest of the matrix with the remaining letters in alphabetic order.
- Example: using the keyword MONARCHY

M	O	N	A	R
C	Н	Y	В	D
E	F	G	I/J	K
L	P	Q	S	T
U	V	W	X	Z

- Playfair treats digrams in the plaintext as "single units" and translates these units into ciphertext digrams, according to the following rules:
 - 1. If both letters are the same, a bogus letter is inserted to separate them.
 - 2. After inserting bogus letters, if number of characters is **odd**, then add one extra character at the end. Hence, number of characters is **even**.

- Playfair cipher rules (Cont.):
 - 3. If both letters fall in the same row, then replace each with letter to the right (wrapping back to start from end). E.g. "ar" encrypts as "RM".
 - 4. If both letters fall in the same column, then replace each with the letter below it (wrapping to top from bottom). E.g. "mu" encrypts to "CM".
 - 5. Otherwise, each letter is replaced by the one in its row in the column of the other letter of the pair. **E.g.** "hs" encrypts to "BP", and "ea" to "IM" or "JM" (as desired).

• Example: encrypt the plaintext "hello" using the key

Solution:

$$\begin{array}{lll} \text{he} \rightarrow \text{EC} & \text{lx} \rightarrow \text{QZ} & \text{lo} \rightarrow \text{BX} \\ \text{Plaintext: hello} & \text{Ciphertext: ECQZBX} \end{array}$$

Playfair Cipher: Cryptanalysis

- Brute-force attack on Playfair is difficult, since size of key domain is 25!
- Encipherment hides the single-letter frequency of the character.
- Though there are only 26 letters in the secret key, but there are 26 * 26 = 676 digrams. Hence, identification of individual digrams is more difficult.
- However, frequency of diagrams are preserved. Hence, cryptanalysis can use diagram frequency text to find the key.

Hill Cipher

- The plainttext is divided into **equal-size blocks** that are encrypted one at a time, where *m* is the size of the block.
- Each character in a block contributes to the encryption of other characters in the block.
- Hill cipher algorithm takes *m* successive plaintext letters and substitutes by *m* ciphertext letters.
- The key is a square matrix of size $m \times m$.

• Key in Hill cipher:

$$\mathbf{K} = \begin{bmatrix} k_{11} & k_{12} & \dots & k_{1m} \\ k_{21} & k_{22} & \dots & k_{2m} \\ \vdots & \vdots & & \vdots \\ k_{m1} & k_{m2} & \dots & k_{mm} \end{bmatrix}$$

• The key matrix needs to have a multiplicative inverse, where not all square matrices do in \mathbb{Z}_{26} .

- Substitution is determined by m linear equations.
- If we call m characters in plaintext block P_1 , P_2 , ..., P_m , the corresponding characters in ciphertext block are C_1 , C_2 , ..., C_m .
- Each ciphertext character depends on all plaintext characters.

$$C_{1} = P_{1} k_{11} + P_{2} k_{21} + \dots + P_{m} k_{m1}$$

$$C_{2} = P_{1} k_{12} + P_{2} k_{22} + \dots + P_{m} k_{m2}$$

$$\dots$$

$$C_{m} = P_{1} k_{1m} + P_{2} k_{2m} + \dots + P_{m} k_{mm}$$

• E.g. for m = 3, the system can be described as:

$$c_1 = (k_{11}p_1 + k_{21}p_2 + k_{31}p_3) \mod 26$$

 $c_2 = (k_{12}p_1 + k_{22}p_2 + k_{32}p_3) \mod 26$
 $c_3 = (k_{13}p_1 + k_{23}p_2 + k_{33}p_3) \mod 26$

• This can be expressed in terms of row vectors and matrices as:

• Example 01: consider the plaintext "paymoremoney" and use the encryption key for encryption purpose through Hill cipher, where m = 3.

$$\mathbf{K} = \begin{pmatrix} 17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 19 \end{pmatrix}$$

Solution:

- The first three letters of the plaintext are represented by the vector (15 0 24).
- Then $(15\ 0\ 24)$ **K** = $(303\ 303\ 531)$ mod $26 = (17\ 17\ 11) = RRL$.

Solution (Cont.):

- Continuing this way, the ciphertext for the entire plaintext is RRLMWBKASPDH.
- Decryption requires using the inverse of the matrix **K**.

$$\mathbf{K}^{-1} = \begin{pmatrix} 4 & 9 & 15 \\ 15 & 17 & 6 \\ 24 & 0 & 17 \end{pmatrix}$$

• It can be seen that if the matrix K^{-1} is applied to the ciphertext, then the plaintext is recovered.

- Example 02: the plaintext "code is ready" can make a 3×4 matrix, where m = 4, when adding extra bogus character "z" to the last block along with removing spaces.
- Ciphertext is:

"OHKNIHGKLISS"

• Note: (mod 26) is applied.

$$\begin{bmatrix} C \\ 14 & 07 & 10 & 13 \\ 08 & 07 & 06 & 11 \\ 11 & 08 & 18 & 18 \end{bmatrix} = \begin{bmatrix} 02 & 14 & 03 & 04 \\ 08 & 18 & 17 & 04 \\ 00 & 03 & 24 & 25 \end{bmatrix} \begin{bmatrix} 09 & 07 & 11 & 13 \\ 04 & 07 & 05 & 06 \\ 02 & 21 & 14 & 09 \\ 03 & 23 & 21 & 08 \end{bmatrix}$$

a. Encryption

$$\begin{bmatrix} P & C & K^{-1} \\ 02 & 14 & 03 & 04 \\ 08 & 18 & 17 & 04 \\ 00 & 03 & 24 & 25 \end{bmatrix} = \begin{bmatrix} 14 & 07 & 10 & 13 \\ 08 & 07 & 06 & 11 \\ 11 & 08 & 18 & 18 \end{bmatrix} \begin{bmatrix} 02 & 15 & 22 & 03 \\ 15 & 00 & 19 & 03 \\ 09 & 09 & 03 & 11 \\ 17 & 00 & 04 & 07 \end{bmatrix}$$

b. Decryption

Hill Cipher Benefits:

- It completely hides single-letter frequencies.
- The use of a larger matrix hides more frequency information.
- A Hill cipher hides not only single-letter but also two-letter frequency information.
- Hill cipher is strong against a ciphertext-only attack.

Hill Cipher Cryptanalysis

- Hill cipher is easily broken with a **known plaintext** attack.
- We define two $m \times m$ matrices $X = (p_{ij})$ and $Y = (c_{ij})$. Then, we can form the matrix equation Y = XK.
- If X has an inverse, then we can determine $K = X^{-1}Y$.
- If **X** is not invertible, then a new version of **X** can be formed with additional plaintext-ciphertext pairs until an invertible **X** is obtained.

Vernam Cipher

- Choose a keyword that is as long as the plaintext and has no statistical relationship to it.
- The system works on binary data (bits) rather than letters. The system can be expressed as follows:

 $p_i = i$ th binary digit of plaintext $k_i = i$ th binary digit of key $c_i = i$ th binary digit of ciphertext \bigoplus = exclusive-or (XOR) operation

Vernam Cipher (Cont.)

- The ciphertext is generated by performing the bitwise XOR of the plaintext and the key.
- Because of the properties of the XOR, decryption simply involves the same bitwise operation:

$$p_i = c_i \oplus k_i$$

• Essence of this technique is the means of key construction.

One-Time Pad

- An improvement to the Vernam cipher.
- Use a random key that is as long as the message so that the key need not be repeated.
- Key is used to encrypt and decrypt a **single message** and then is discarded.
- Each new message requires a new key of the same length as the new message.

One-Time Pad (Cont.)

32

Advantage of One-Time Pad:

- Produces random output that bears no statistical relationship to the plaintext.
- The ciphertext contains no information whatsoever about the plaintext, hence there is simply no way to break the code.

• Disadvantage of One-Time Pad:

- Problem of making large quantities of random keys.
- Key distribution problem, where for every message, a key of equal length is needed at both sender and receiver.

Thank You!