1. Basics of Networking

Q1. Computer network kya hai aur kyun use hoti hai?

- Network = Interconnected devices jo resources & data share karte hain.
- Use: Communication (email, WhatsApp), resource sharing (printers, files), remote access.

Q2. Types of networks: LAN, MAN, WAN - example ke sath.

- LAN (Local Area Network) → Small area, high speed (e.g., college lab, office).
- MAN (Metropolitan Area Network) → City-wide network (e.g., cable TV, city Wi-Fi).
- WAN (Wide Area Network) → Global scale (e.g., Internet).

Q3. Hub vs Switch vs Router.

- Hub → Layer 1, broadcasts to all, no intelligence.
- **Switch** → Layer 2, forwards using MAC, reduces collision domain.
- Router → Layer 3, forwards using IP, connects different networks.

Q4. Unicast, Broadcast, Multicast, Anycast – examples.

- Unicast: 1 → 1 (WhatsApp message).
- **Broadcast**: 1 → All (ARP request).
- **Multicast**: 1 → Many interested (IPTV, Zoom call).
- **Anycast**: 1 → Nearest one (DNS guery).

Q5. Circuit switching vs Packet switching.

- Circuit Switching: Dedicated path, reserved bandwidth (Telephone).
- Packet Switching: Data split in packets, shared path (Internet).

Q6. Peer-to-Peer vs Client-Server model.

- **P2P**: All nodes equal, share resources (BitTorrent).
- **Client-Server**: Centralized server, clients request (Websites).

Q7. What is bandwidth, latency, throughput?

- **Bandwidth**: Max data transfer capacity (e.g., 100 Mbps).
- Latency: Delay (ms) in transmission.
- Throughput: Actual data achieved (e.g., 70 Mbps on 100 Mbps link).

Q8. Half-duplex vs Full-duplex communication.

- Half: One direction at a time (Walkie-talkie).
- **Full**: Both directions simultaneously (Telephone).

Q9. What is multiplexing? Types (TDM, FDM).

- Multiple signals on one channel.
- **TDM**: Time Division Multiplexing (time slots).
- FDM: Frequency Division Multiplexing (radio channels).

Q10. What is demultiplexing?

Reverse of multiplexing: Receiver extracts original streams from combined signal.

2. OSI & TCP/IP Models

Q11. What is the OSI model? Why is it important?

- OSI (Open Systems Interconnection): A 7-layer reference model for standardizing communication between systems.
- Importance: Breaks complex networking into layers → easier troubleshooting, standardization, protocol design.

Q12. Name OSI layers in order.

 \leftarrow Application → Presentation → Session → Transport → Network → Data Link → Physical.

Mnemonic: All People Seem To Need Data Processing.

Q13. What is the function of each OSI layer with examples?

- Application → Interface for end-users (HTTP, FTP, DNS).
- **Presentation** → Data translation, compression, encryption (SSL, JPEG).
- **Session** → Establish, maintain, terminate sessions (RPC, NetBIOS).
- Transport → Reliable delivery, error control (TCP/UDP).
- **Network** → Logical addressing, routing (IP, ICMP).
- Data Link → Error detection, MAC addressing (Ethernet, ARP).
- **Physical** → Transmission of bits (cables, NICs).

Q14. TCP/IP model layers aur difference with OSI.

• TCP/IP Layers → Application, Transport, Internet, Network Access.

- Difference:
 - OSI = 7 layers, theoretical model.
 - TCP/IP = 4 layers, practical implementation.
 - Example: HTTP (App), TCP (Transport), IP (Internet), Ethernet (Network Access).

Q15. Encapsulation & Decapsulation process?

- Encapsulation: Data wrapped layer by layer with headers/trailers (App → Transport → Network → Data Link → Physical).
- **Decapsulation**: Reverse process at receiver side.

Q16. Difference between TCP & UDP (Transport layer).

- **TCP**: Reliable, connection-oriented, error correction, ordered delivery (HTTP, FTP, Email).
- **UDP**: Unreliable, connectionless, faster, no ordering (Video streaming, DNS, VoIP).

Q17. What is a port number? Well-known ports?

- Port = Logical endpoint for process-to-process communication.
- Examples:
 - o 21 FTP
 - o 22 SSH
 - o 25 SMTP
 - o 53 DNS
 - o 80 HTTP
 - 443 HTTPS

Q18. What is socket?

- Combination of IP address + Port number = socket.
- Example: 192.168.1.5:80

Q19. Explain connection establishment in TCP (3-way handshake).

- Step 1: Client → SYN → Server
- Step 2: Server → SYN-ACK → Client

Step 3: Client → ACK → Server
 Connection established.

Q20. What is 4-way termination in TCP?

- Step 1: Client → FIN → Server
- Step 2: Server → ACK → Client
- Step 3: Server → FIN → Client
- Step 4: Client → ACK → Server
 Connection closed.

3. IP Addressing & Subnetting

Q21. What is an IP address? Types?

- Unique identifier for devices in a network.
- **IPv4** (32-bit, e.g., 192.168.1.1), **IPv6** (128-bit, e.g., 2001:db8::1).
- Types: Public, Private, Static, Dynamic.

Q22. Difference between IPv4 & IPv6.

- IPv4: 32-bit, ~4.3B addresses, dotted decimal notation.
- IPv6: 128-bit, virtually unlimited addresses, hex notation, supports auto-configuration & better security (IPSec).

Q23. What is subnetting? Why is it used?

- Breaking large IP network into smaller networks.
- Uses: Efficient IP allocation, better security, reduces broadcast traffic.

Q24. Explain Class A, B, C IP ranges.

- Class A → 0.0.0.0 127.255.255.255 (/8 mask) → Big networks.
- Class B \rightarrow 128.0.0.0 191.255.255.255 (/16) \rightarrow Medium networks.
- Class C → 192.0.0.0 223.255.255.255 (/24) → Small networks.
- (D \rightarrow Multicast, E \rightarrow Research).

Q25. Example: Company needs 600 hosts. Which subnet mask to use?

• Formula: 2^n - 2 ≥ hosts.

- $2^{10} 2 = 1022 \rightarrow \text{need } 10 \text{ host bits.}$
- Subnet mask = /22 (255.255.252.0)

Q26. What is CIDR notation?

- Classless Inter-Domain Routing.
- IP address + prefix length.
- Example: $192.168.1.0/24 \rightarrow 24$ bits network, 8 bits host.

Q27. What is a default gateway?

• A router that forwards traffic from local network to external networks (e.g., Internet).

Q28. What is ARP? Difference between ARP & RARP.

- ARP (Address Resolution Protocol): IP → MAC mapping.
- RARP (Reverse ARP): MAC → IP mapping.

Q29. What is ICMP? Use cases.

- Internet Control Message Protocol (Layer 3).
- Used for error reporting & diagnostics.
- Example: ping, traceroute.

Q30. Static routing vs Dynamic routing.

- Static: Manual entry in routing table. Simple, less overhead.
- **Dynamic**: Auto-updates using protocols (RIP, OSPF, BGP). Scalable, efficient.

Q31. Explain routing protocols: RIP, OSPF, BGP.

- **RIP**: Distance-vector, hop count ≤ 15, slow convergence.
- **OSPF**: Link-state, fast convergence, large networks.
- **BGP**: Path-vector, used on the Internet, connects ISPs.

Q32. What is NAT? Types?

- **Network Address Translation**: Private ↔ Public IP conversion.
- **Types**: Static NAT, Dynamic NAT, PAT (Port Address Translation).

Q33. Example: Why do we subtract 2 from total hosts formula $(2^n - 2)$?

- 1 IP reserved for **network addresses**.
- 1 IP reserved for broadcast address.

Q34. What is DHCP? How does it work?

- Dynamic Host Configuration Protocol.
- Assigns IP automatically.
- Process: **DORA** \rightarrow Discover \rightarrow Offer \rightarrow Request \rightarrow Acknowledge.

Q35. What is the difference between public & private IP ranges?

- **Private**: For internal LAN (10.x.x.x, 172.16.x.x 172.31.x.x, 192.168.x.x).
- Public: Globally routable, unique on Internet.

4. Protocols

Q36. What is HTTP? Difference between HTTP & HTTPS.

- HTTP (Hypertext Transfer Protocol) → Client-server communication for web. Port 80.
- **HTTPS** → HTTP + SSL/TLS encryption, secure communication. Port 443.

Q37. What is DNS? How does it work?

- **Domain Name System** → Converts domain names to IP addresses.
- Steps: Client → Resolver → Root server → TLD → Authoritative server → Response.
- Example: google.com → 142.250.182.78

Q38. What is SMTP? Port numbers?

- Simple Mail Transfer Protocol → Used to send emails.
- Ports: 25 (default), 587 (secure submission), 465 (SSL).

Q39. Difference between POP3 & IMAP.

- POP3: Downloads mail from server, deletes copy (Port 110).
- **IMAP**: Keeps mail on server, syncs across devices (Port 143, 993 SSL).

Q40. What is FTP? Difference between FTP, SFTP, FTPS.

- **FTP**: File Transfer Protocol, insecure (Port 21).
- **SFTP**: FTP over SSH, secure.
- **FTPS**: FTP + SSL/TLS encryption.

Q41. What is DHCP? Explain the DORA process.

- Dynamic IP assignment.
- **DORA**: Discover → Offer → Request → Acknowledge.

Q42. What is SNMP?

- Simple Network Management Protocol → Monitors and manages devices.
- Works on UDP port 161.
- Used by routers, switches, servers for health monitoring.

Q43. What is Telnet? Why is SSH preferred?

- **Telnet**: Remote login protocol, plaintext (Port 23).
- **SSH**: Secure Shell, encrypted remote login (Port 22).

Q44. What is ICMP? Example commands.

- Internet Control Message Protocol.
- Used for error messages & diagnostics.
- **Examples**: ping, traceroute.

Q45. What is ARP? How does it work?

- Address Resolution Protocol → Maps IP → MAC in local network.
- Uses broadcast request and unicast reply.

Q46. What is RARP?

- Reverse ARP \rightarrow Maps MAC \rightarrow IP.
- Rarely used now (DHCP replaced it).

Q47. What is NTP?

- Network Time Protocol → Synchronizes clocks across systems.
- Example: Ensures servers have same timestamps.

Q48. What is LDAP?

- Lightweight Directory Access Protocol.
- Used for accessing & maintaining distributed directory info (e.g., Active Directory).

Q49. What is MQTT?

- Message Queuing Telemetry Transport → Lightweight IoT protocol.
- Publisher-Subscriber model.

Q50. What is gRPC?

- Remote procedure call protocol, faster than REST.
- Uses HTTP/2 & Protobuf.

5. Firewall

Q51. What is a firewall? Types?

- Firewall: Security device/software that controls traffic based on rules.
- Types:
 - Packet-filtering (Layer 3, checks IP/port).
 - o Stateful inspection (tracks sessions).
 - o Application-level (deep packet inspection).
 - Next-gen firewalls (NGFW, with IDS/IPS).

Q52. Difference between firewall & proxy.

- Firewall: Protects network by filtering traffic.
- Proxy: Acts as an intermediary between client & server (can provide anonymity, caching, access control).

Q53. What is VPN? Why is it used?

- Virtual Private Network: Creates secure encrypted tunnels over the public Internet.
- Uses: Remote work, secure browsing, bypassing geo-blocks, enterprise intranet access.

Q54. VPN protocols (basic overview).

- PPTP: Old, insecure, fast.
- **L2TP/IPSec**: More secure, widely used.
- OpenVPN: Secure, open-source, uses SSL/TLS.
- WireGuard: Modern, lightweight, very fast.

Q55. What is IDS & IPS?

- IDS (Intrusion Detection System): Monitors & alerts on malicious activity.
- IPS (Intrusion Prevention System): Monitors + blocks suspicious activity.

Q56. What is a DoS attack? Difference between DoS & DDoS.

- **DoS (Denial of Service)**: Overwhelms server with traffic.
- **DDoS (Distributed DoS)**: Multiple systems attack simultaneously → much harder to stop.

Q57. What is an MITM (Man-in-the-Middle) attack?

- Attacker intercepts communication between two parties.
- Example: Fake Wi-Fi hotspot capturing login credentials.

Q58. What is DNS spoofing / poisoning?

• Attacker alters DNS responses → redirects users to malicious sites.

Q59. What is ARP spoofing?

 \bullet Attackers send fake ARP messages to associate their MAC with the victim's IP \to intercepts traffic.

Q60. What is SSL/TLS?

- Encryption protocol securing data transfer.
- Provides Confidentiality, Integrity, Authentication.
- Example: HTTPS uses TLS.

Q61. Symmetric vs Asymmetric encryption.

- **Symmetric**: Same key for encryption & decryption (AES, DES). Fast, but key distribution problem.
- **Asymmetric**: Public key encrypts, private key decrypts (RSA, ECC). Slower, but secure key exchange.

Q62. What is hashing? Examples.

- One-way function to convert data → fixed hash value.
- Examples: MD5, SHA-256.
- Used in passwords, integrity checks.

Q63. What is IPsec? Modes of operation.

Protocol suite for secure IP communication.

- **Transport mode**: Encrypts payload only.
- Tunnel mode: Encrypts the entire packet (used in VPN).

Q64. What is Zero Trust Architecture?

- Security model → "Never trust, always verify."
- Even internal network traffic is verified & authenticated.

Q65. Example: If your company's server is under DDoS attack, what immediate steps would you suggest?

- Block suspicious IP ranges (firewall rules).
- Use rate limiting.
- Redirect via CDN/DDoS protection service (Cloudflare, Akamai).
- Increase server redundancy (load balancing).

6. Congestion, Flow & Error Control

Q66. What is a firewall? Types?

- Firewall: Security device/software that controls traffic based on rules.
- Types:
 - o Packet-filtering (Layer 3, checks IP/port).
 - Stateful inspection (tracks sessions).
 - Application-level (deep packet inspection).
 - Next-gen firewalls (NGFW, with IDS/IPS).

Q67. Difference between firewall & proxy.

- Firewall: Protects network by filtering traffic.
- **Proxy**: Acts as an intermediary between client & server (can provide anonymity, caching, access control).

Q68. What is VPN? Why is it used?

- Virtual Private Network: Creates secure encrypted tunnel over public Internet.
- Uses: Remote work, secure browsing, bypassing geo-blocks, enterprise intranet access.

Q69. VPN protocols (basic overview).

- **PPTP**: Old, insecure, fast.
- L2TP/IPSec: More secure, widely used.
- OpenVPN: Secure, open-source, uses SSL/TLS.
- WireGuard: Modern, lightweight, very fast.

Q70. What is IDS & IPS?

- IDS (Intrusion Detection System): Monitors & alerts on malicious activity.
- IPS (Intrusion Prevention System): Monitors + blocks suspicious activity.

Q71. What is DoS attack? Difference between DoS & DDoS.

- DoS (Denial of Service): Overwhelms server with traffic.
- DDoS (Distributed DoS): Multiple systems attack simultaneously → much harder to stop.

Q72. What is an MITM (Man-in-the-Middle) attack?

- Attacker intercepts communication between two parties.
- Example: Fake Wi-Fi hotspot capturing login credentials.

Q73. What is DNS spoofing / poisoning?

• Attacker alters DNS responses → redirects user to malicious site.

Q74. What is ARP spoofing?

 \bullet Attacker sends fake ARP messages to associate their MAC with victim's IP \to intercepts traffic.

Q75. What is SSL/TLS?

- Encryption protocol securing data transfer.
- Provides Confidentiality, Integrity, Authentication.
- Example: HTTPS uses TLS.

Q76. Symmetric vs Asymmetric encryption.

- **Symmetric**: Same key for encryption & decryption (AES, DES). Fast, but key distribution problem.
- **Asymmetric**: Public key encrypts, private key decrypts (RSA, ECC). Slower, but secure key exchange.

Q77. What is hashing? Examples.

- One-way function to convert data → fixed hash value.
- Examples: MD5, SHA-256.
- Used in passwords, integrity checks.

Q78. What is IPsec? Modes of operation.

- Protocol suite for secure IP communication.
- Transport mode: Encrypts payload only.
- Tunnel mode: Encrypts entire packet (used in VPN).

Q79. What is Zero Trust Architecture?

- Security model → "Never trust, always verify."
- Even internal network traffic is verified & authenticated.

Q80. Example: If your company's server is under DDoS attack, what immediate steps would you suggest?

- Block suspicious IP ranges (firewall rules).
- Use rate limiting.
- Redirect via CDN/DDoS protection service (Cloudflare, Akamai).
- Increase server redundancy (load balancing).

8. Advanced / Real-World Concepts

Q81. What is a Content Delivery Network (CDN)? Why is it used?

- **CDN** = Globally distributed servers delivering content from nearest location.
- Benefits: Low latency, high availability, reduced bandwidth costs.
- Example: Netflix, YouTube, Cloudflare.

Q82. What is Load Balancing? Types?

- Technique to distribute workload across multiple servers/links.
- Types:
 - o Round Robin
 - Least Connections
 - o IP Hash

- Geo Load Balancing
- Example: AWS Elastic Load Balancer.

Q83. What is SDN (Software Defined Networking)?

- Separates control plane (routing decisions) from data plane (forwarding).
- Centralized controller manages the network (OpenFlow).
- Benefit: Programmable, flexible, reduces vendor lock-in.

Q84. What is MPLS (Multi-Protocol Label Switching)?

- Routing technique → uses labels instead of IP lookup.
- Faster packet forwarding, supports QoS (Voice/Video).
- Used by ISPs for VPNs & high-performance routing.

Q85. What is QoS (Quality of Service) in networks?

- Mechanism to prioritize traffic.
- Example: Video calls & VoIP get higher priority than email.
- Ensures low latency, low jitter, controlled packet loss.

Q86. What is Proxy Server? Types?

- **Proxy** = Middle server between client & Internet.
- Types:
 - Forward Proxy (hides client identity).
 - Reverse Proxy (hides server identity, load balancing).
 - Transparent Proxy (caching).
- Example: Nginx reverse proxy.

Q87. What is NAT Traversal?

- Technique to allow devices behind NAT to communicate over Internet.
- Used in: VPNs, VoIP (Skype/Zoom), P2P apps.

Q88. What is Overlay Networking?

- Virtual network built on top of another (physical) network.
- Used in cloud & containers (Docker overlay networks, Kubernetes).

Q89. What is VPC (Virtual Private Cloud)?

- Private isolated network in cloud.
- Example: In AWS, you create a VPC with subnets, route tables, security groups to simulate on-prem LAN.

Q90. What is Anycast Routing? Where is it used?

- Same IP advertised by multiple servers at different locations.
- Client automatically connects to **nearest server**.
- Used in: DNS (Google DNS 8.8.8.8), CDNs, Cloud services.

9. Wireless & Miscellaneous

Q91. What is latency?

• Delay between sender → receiver. Measured in ms.

Q92. What is jitter?

Variation in packet delay. Critical for video/audio calls.

Q93. What is throughput?

Actual achieved data transfer rate.

Q94. MTU (Maximum Transmission Unit)?

Largest packet size that can be sent without fragmentation (Ethernet MTU = 1500 bytes).

Q95. What is fragmentation in IP?

Splitting packets into smaller chunks when they exceed MTU.

Q96. Difference between hub & switch?

- Hub: Broadcasts to all (Layer 1).
- Switch: Forwards to correct MAC (Layer 2).

Q97. Difference between switch & bridge?

• Switch = multi-port bridge. Both work at Layer 2.

Q98. Example of Layer 7 attack?

HTTP Flood (DDoS targeting web apps).

Q99. Difference between stateful & stateless firewall?

- Stateful: Tracks session info.
- Stateless: Filters packet by packet only.

Q100. What is traceroute?

• Diagnostic tool showing path packets take (uses ICMP TTL).

Q101. What is TTL in IP header?

• Time-To-Live = max hops packet can take before being discarded.

Q102. What is DHCP lease time?

• Time duration for which IP is assigned before renewal.

Q103. What is sticky session in load balancing?

• Ensures client always connects to same backend server.

Q104. Difference between forward DNS & reverse DNS lookup?

- Forward: Name \rightarrow IP (google.com \rightarrow 142.250.x.x).
- Reverse: IP → Name.

Q105. What is Port Forwarding?

• Redirecting traffic from one port/IP → another. Used in NAT & home routers.