AES Algorithm

ADVANCED ENCRYPTION STANDARD

Overview

- Overview of the AES Algorithm.
- It's a Block Cipher
- Encrypts blocks of size 128 bits where DES 64 bits.
- Uses a key of size 128, 192, and 256 bits where DES 56 bits.

- Symmetric cipher: uses same key for encryption and decryption.
- Uses multiple rounds which all perform the identical operations.
- Different subkey in each round derived from main key

- Key in binary is 128,192 and 256 bits.
- Key is in hexadecimal (16 bytes).
- •We will divide key into words (8 bit each).
- We will fill the words into the matrix.

Key (128 bits) -

Key in Hex

73 61 74 69 73 68 63 6a 69 73 62 6f 72 69 6e 67

$$\begin{bmatrix} b_1 & b_5 & b_9 & b_{13} \\ b_2 & b_6 & b_{10} & b_{14} \\ b_3 & b_7 & b_{11} & b_{15} \\ b_4 & b_8 & b_{12} & b_{16} \end{bmatrix} \begin{bmatrix} 73 & 73 & 69 & 72 \\ 61 & 68 & 73 & 69 \\ 74 & 63 & 62 & 6e \\ 69 & 6a & 6f & 67 \end{bmatrix}$$

- Key 128 bits.
- Word is a 32 bits = 4 byte.
- For 128 key bit we will have from W0 to W43.
- For 192 key bit we will have from W0 to W51.
- For 256 key bit we will have from W0 to W59.
- •HOW CAN WE GENERATE OTHER WORDS?

$\begin{bmatrix} b_1 & b_5 & b_9 & b_{13} \\ b_2 & b_6 & b_{10} & b_{14} \\ b_3 & b_7 & b_{11} & b_{15} \\ b_4 & b_8 & b_{12} & b_{16} \end{bmatrix} \begin{bmatrix} 73 & 73 & 69 & 75 \\ 61 & 68 & 73 & 69 \\ 74 & 63 & 62 & 69 \\ 69 & 6a & 6f & 69 \end{bmatrix}$	$\lceil b_1 \rceil$	73 69	$b_5 b_9 b_{13}$]	72
$\begin{bmatrix} b_3 & b_7 & b_{11} & b_{15} \\ b_4 & b_7 & b_{11} & b_{15} \\ b_5 & b_7 & b_7 & b_7 \\ b_7 & b_7 & b_7 & b_7 \\ b_8 & b_8 & b_8 & b_7 \\ b_9 & b_8 & b_7 & b_7 \\ b_9 & b_9 & b_9 \\ b_9 & b_$	b_2	68 73	$b_6 b_{10} b_{14}$	69
69 6g 6f 6	b_2	63 62	$\begin{bmatrix} b_{11} & b_{15} \\ b_{14} & b_{15} \end{bmatrix}$	6e
$[b_4 b_8 b_{12} b_{16}]$	b_4	6a 6f	$\begin{bmatrix} b_8 & b_{12} & b_{16} \end{bmatrix}$	67

WO	W1.	W2.	W3	W4	W5	W6	W7	 	<u>W43</u>
b ₁ b ₂ b ₃ b ₄	b ₅ b ₆ b ₇ b ₈	b ₉ b ₁₀ b ₁₁ b ₁₂	b ₁₃ b ₁₄ b ₁₅ b ₁₆						

W0	W1	W2	W3	W4	W5	W6	W7	 	W43
73	73	69	72						
61	68	73	69						
74	63	62	6e						
69	6a	6f	67						

W0	W1	W2	W3	W4	W5	W6	W7	 	W43
73	73	69	72						
61	68	73	69						
74	63	62	6e						
69	6a	6f	67						

- W4 = W0 XOR g(W3)
- WHAT IS g FUNCTION?

Key Generation
 ★ g FUNCTION
 W3 RotWord (X1)
 69
 69
 69
 60
 60
 67
 72
 69
 69
 60
 67
 72

- 1. RotWord performs a one-byte circular left shift on a word. This means that an input word [b0, b1, b2, b3] is transformed into [b1,b2, b3, b0].
- 2. SubWord performs a byte substitution on each byte of its input word, using the S-box.
- 3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j].

(b) Function g

									١	1							
		0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	FO	AD	D4	A2	AF	9C	A4	72	CO
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	СВ	BE	39	4A	4C	58	CF
	6	DO	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	Α8
х	7	51	АЗ	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
	8	CD	OC.	13	EC	5F	97	44	17	C4	Α7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	В8	14	DE	5E	OB	DB
	a	EO	32	ЗА	OA	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	b	E7	C8	37	6D	8D	D5	4E	Α9	6C	56	F4	EA	65	7A	ΑE	08
	С	BA	78	25	2E	1C	Α6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	d	70	3E	B5	66	48	03	F6	OE	61	35	57	B9	86	C1	1D	9E
	е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	f	8C	Α1	89	0D	BF	E6	42	68	41	99	2D	OF	ВО	54	BB	16

S-Box

W3 RotWord SubWord (X1) (Y1) 72 69 f9 69 6e 9f 6e 67 85 67 72 40

❖ g FUNCTION

- 1. RotWord performs a one-byte circular left shift on a word. This means that an input word [b0, b1, b2, b3] is transformed into [b1,b2, b3, b0].
- 2. SubWord performs a byte substitution on each byte of its input word, using the S-box.

3.	The result of steps 1 and 2 is XORed	with a
	round constant, Rcon[j].	V1

gl	w3) F8	9F	85	40
81	VV	, 10	21	$o_{\mathcal{I}}$	40

R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	
01	02	04	08	10	20	40	80	18	36	
00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	

• W4 = W0 XOR g(W3)

W0	W1	W2	W3	W4	W5	W6	W7	 	W43
73	73	69	72	86	f8	91	е3		
61	68	73	69	fe	96	e5	8c		
74	63	62	6e	f1	92	fO	9e		
69	6a	6f	67	29	43	2c	4b		

W0 01110011011000010111010001101001 g(w3) 111110001001111111000010101000000

W4 10001011111111111111000100100101001

8b fe f1 29

- Divide plain text to blocks of 128 bit block size
- Add round Key XOR with Plaintext
- Each round consists of a number of layers:
 - Byte substitution layer
 - Diffusion layer
 - Shift Rows
 - Mix Columns
 - Key addition layer

After XORING

 $\begin{bmatrix} 00 & 16 & 1a & 17 \\ 04 & 1c & 00 & 07 \\ 17 & 0e & 03 & 01 \\ 1b & 0f & 0f & 10 \end{bmatrix}$

									١	1							
		0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	FO	AD	D4	A2	AF	9C	A4	72	CO
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	СВ	BE	39	4A	4C	58	CF
	6	DO	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	Α8
х	7	51	АЗ	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
	8	CD	OC.	13	EC	5F	97	44	17	C4	Α7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	В8	14	DE	5E	OB	DB
	a	EO	32	ЗА	OA	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	b	E7	C8	37	6D	8D	D5	4E	Α9	6C	56	F4	EA	65	7A	ΑE	08
	С	BA	78	25	2E	1C	Α6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	d	70	3E	B5	66	48	03	F6	OE	61	35	57	B9	86	C1	1D	9E
	е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	f	8C	Α1	89	0D	BF	E6	42	68	41	99	2D	OF	ВО	54	BB	16

S-Box

Byte substitution layer

- Diffusion layer
 - Shift Rows
 - Mix Columns

B_0	B_4	B ₈	B_{12}
B_1	B_5	B_9	B_{13}
B_2	B_6	B_{10}	B_{14}
B_3	B_7	B_{11}	B_{15}

the output is the new state:

B_0	B_4	B_8	B_{12}	no shift
B_5	B_9	B_{13}	B_1	← one position left shift
				← two positions left shift
B_{15}	B_3	B_7	B_{11}	← three positions left shift

- **Diffusion layer**
 - **Shift Rows**
 - Mix Columns (Last Round doesn't involve Mix Columns)

$$\begin{bmatrix} 63 & 47 & a2 & f0 \\ 9c & 63 & c5 & f2 \\ 7b & 7c & f0 & ab \\ ca & af & 76 & 76 \end{bmatrix} * \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \longrightarrow \begin{bmatrix} r_1 & r_5 & r_9 & r_{13} \\ r_2 & r_6 & r_{10} & r_{14} \\ r_3 & r_7 & r_{11} & r_{15} \\ r_4 & r_8 & r_{12} & r_{16} \end{bmatrix}$$

r1 -> 63*02 + 9c*03 + 7b*01 + ca*01

63: $01100011 \rightarrow x^6 + x^5 + x + 1$

02: 00000010 ->

63*02

 $-> (x^6 + x^5 + x+1)*x -> x^7+x^6+x^2+x$

-> 11000110

 $r1 -> x^8 + x^7 + x^6 + x^4 + x + 1$ (111010011) Where p(x) -> $x^8 + x^4 + x^3 + x + 1$ (100011011)

R1 -> C8

111010011 divided 100011011 11001000 (C8)

Key

Expand key

w(4,7)

Plaintext

Add round key

Substitutive bytes

Shift row

Mix columns

Add round key

Key addition layer

W0	W1	W2	W3	W4	W5	W6	W7	 	W43
73	73	69	72	86	f8	91	e3		
61	68	73	69	fe	96	e5	8c		
74	63	62	6e	f1	92	fO	9e		
69	6a	6f	67	29	43	2c	4b		

XORING

$$egin{bmatrix} r_1 & r_5 & r_9 & r_{13} \ r_2 & r_6 & r_{10} & r_{14} \ r_3 & r_7 & r_{11} & r_{15} \ r_4 & r_8 & r_{12} & r_{16} \end{bmatrix}$$

AES Decryption

Round has the following steps

- Substitution Bytes
- Shift Rows
- Mixing Columns (Not applicable for Round 10)
- Add round key

AES Decryption

- Byte substitution layer
- Diffusion layer
 - Inv Shift Rows
 - Inv Mix Columns (Last Round doesn't involve Mix Columns)

B ₀	B ₄	B ₈	B ₁₂
B ₁₃	B_1	B ₅	B_9
B ₁₀	B ₁₄	B_2	B_6
B ₇	B ₁₁	B ₁₅	B_3

no shift

- $\rightarrow \text{ one position right shift}$
- \rightarrow two positions right shift
- \rightarrow three positions right shift

)	7							
	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
(0 52	09	6A	D 5	30	36	A5	38	BF	40	A3	9E	81	F3	D7	FB
	1 70	E3	39	82	9B	2F	FF	87	34	8E	43	44	C4	DE	E9	$^{\mathrm{CB}}$
	2 54	- 7B	94	32	Аб	C2	23	3D	EE	4C	95	0B	42	FΑ	C3	4E
-	3 08	2E	A1	66	28	D9	24	B2	76	5 B	A2	49	6D	8B	D1	25
4	4 72	F8	F6	64	86	68	98	16	D4	Α4	5C	CC	5D	65	B 6	92
	5 60	70	48	50	FD	ED	B9	DA	5E	15	46	57	A7	8D	9D	84
(5 90	D8	AB	00	8C	BC	D3	0A	F 7	E 4	58	05	B8	B3	45	06
	7 DX) 2C	1E	8F	CA	3F	0F	02	C1	AF	BD	03	01	13	8A.	6B
$X = \{$	8 3 <i>A</i>	91	11	41	4F	67	DC	EΑ	97	F2	CF	CE	F0	B4	E 6	73
9	9 96	AC	74	22	E 7	AD	35	85	E 2	F9	37	E8	1C	75	DF	6E
I	4 47	F1	1A	71	1D	29	C5	89	6F	B 7	62	0E	AA	18	BE	1B
I	3 F0	56	3E	4B	C6	D2	79	20	9A	$\mathbb{D}\mathbb{B}$	C0	FE	78	$^{\mathrm{CD}}$	5A	F4
(C IF	DD	A8	33	88	07	C7	31	B1	12	10	59	27	80	EC	5F
I	O 60	51	7F	A9	19	B 5	4A	0D	2D	E5	7A	9F	93	C9	9C	EF
I	E A() E0	3B	4D	ΑE	2A	F5	B0	C8	EB	BB	3C	83	53	99	61
1	F 17	2B	04	7E	BA	77	D6	26	E 1	69	14	63	55	21	0C	7D

(0 <i>E</i>	0 <i>B</i>	0 <i>D</i>	09
09	0 <i>E</i>	0 <i>B</i>	0 <i>D</i>
0 <i>D</i>	09	0 <i>E</i>	0 <i>B</i>
0 <i>B</i>	0 <i>D</i>	09	0 <i>E</i>)

Assignment

Use AES to encrypt and decrypt a message with the following requirements for the AES:

- •You will make the user choose between 128 bits, 192 bits 256 bits key.
- Key will be entered in hexadecimal format.
- Message will be entered in hexadecimal format.
- You have to show every step results in the CLI.
- •Sbox will be the same as mentioned in the slides (in hexadecimal format).
- •You should decrypt the message and get the original one in hexadecimal format.
- Note: the whole team must understand the whole code.
- •Will be submitted on blackboard by max 18th of Dec 2021, and will be discussed on that next lab.