Angry birds et fonctions polynômes du second degré

Seconde 11

Les trajectoires des oiseaux dans Angry birds sont des paraboles, représentations graphiques de fonctions polynômes du second degré.

Pour rappel : Geogebra se trouve dans le lecteur Progs dans le répertoire ro.

Définition 1 On appelle fonction polynôme du second degré toute fonction f définie sur \mathbb{R} de la forme

$$f(x) = ax^2 + bx + c.$$

où a, b et c sont des réels appelés coefficients avec $a \neq 0$.

Dans un repère $(O; \overrightarrow{i}; \overrightarrow{j})$, la courbe représentative d'une fonction polynôme de degré 2 est une **parabole**.

1 Fonction second degré : forme développée

- 1. (a) Ouvrir le fichier Geogebra Angry_Birds.ggb
 - (b) A l'aide des curseurs *a*, *b* et *c* déterminer une équation de la trajectoire que suit Angry birds pour atteindre la cible 1.

 Donner son équation :
 - (c) A l'aide des curseurs *a*, *b* et *c* déterminer une équation de la trajectoire que suit Angry birds pour atteindre la cible 2.

 Donner son équation :
 - (d) A l'aide des curseurs *a*, *b* et *c* déterminer une équation de la trajectoire que suit Angry birds pour atteindre la cible 3.

 Donner son équation :

2.	Exploitation:
	(a) Quelle est l'influence de <i>a</i> sur la trajectoire (parabole)?
	(b) Quelle est l'influence de <i>c</i> sur la trajectoire (parabole)?
	(c) Quel(s) est(sont) le(s) coefficient(s) influençant le sommet de la parabole ?
	(d) Quelle propriété géométrique semble posséder la parabole?

2 Fonction second degré : forme canonique

Définition 2 Forme Canonique L'expression $f(x) = ax^2 + bx + c$ peut s'écrire sous la forme $f(x) = a(x - \alpha)^2 + \beta$ Cette forme est appelée **forme canonique**

- 1. (a) Ouvrir le fichier Geogebra Angry_Birds2.ggb
 - (b) A l'aide des curseurs a, α et β déterminer une équation de la trajectoire que suit Angry birds pour atteindre la cible 1.

Donner son équation :

(c) A l'aide des curseurs a, α et β déterminer une équation de la trajectoire que suit Angry birds pour atteindre la cible 2.

Donner son équation :

(d) A l'aide des curseurs a, α et β déterminer une équation de la trajectoire que suit Angry birds pour atteindre la cible 3.

Donner son équation :

- 2. Exploitation:
 - (a) Quelle est l'influence de *a* sur la trajectoire?
 - (b) Quelle est l'influence de α sur la trajectoire (parabole)?
 - (c) Quelles sont les coordonnées du sommet de la parabole en fonction des paramètres étudiés ?

3 Approfondissement (élèves souhaitant une filière scientifique ou ayant fini les parties précédentes):

- 1. Développer l'expression $a(x \alpha)^2 + \beta$.
- 2. Comparer les coefficients de ce développement avec l'expression $ax^2 + bx + c$.
- 3. En déduire une relation entre α , a et b puis en déduire l'expression de α en fonction de a et b.
- 4. Faire de même pour β .
- 5. Afficher à l'aide de geogebra la valeur de α que vous avez calculée et vérifier votre résultat.