Xiaobin Zhuang - 300519184 ECEN220 Lab 5 09/10/2020

Objectives

The object of this lab was to upsample the signal.

Methodology

1. First, we sampled the original signal at 2kHz, then take 8k samples of pulse. Code and graph Shown in figure 1.

fig. 1

2. We then created a low pass filter (sinc function). Code shown in figure 2, we limited x-axis from -50 to 50, to make plot (since function) more observable.

```
28
        % Q2
        L = 100;
29 -
30 -
        n = -L:L;
31 -
        W = 0:1/length(n):pi;
32 -
        h = zeros(1,length(n));
33 -
        h = M.*sin((pi.*n)/M)./(pi.*n); % filter response
34 -
        figure()
35 -
        h (n == 0) = 1;
        freqz(h,1,W)
36 -
37 -
        figure()
38 -
        plot(n,h)
39 -
        xlim([-50 50]) % limit x-axis from -50 to 50, to make plot more observable
40 -
        xlabel('n')
41 -
        ylabel('h')
42 -
        title('Sinc')
43
44 -
        xL = xlim;
45 -
        yL = ylim;
        line([0 0], yL, 'color', 'black'); %x-axis
line(xL, [0 0], 'color', 'black'); %y-axis
46 -
47 -
```


fig. 3

Here are the plot of sinc function and frequency response.

3. Implement the low pass filter by using command, which shown in the figure below.

fig. 4

4. Next, we convolve the low pass filter with pulses, then compared the original signal and upsampled signal over the range 30ms to 40ms. Code shown in figure 5.

fig. 5

Figure 6 showed the comparison of two signals, we can see two waveforms are not

aligned.

fig. 6

5. Implement a delay into the filter I created before, and make new filter. Then, use this filter to filter zero-inserted signal. We shifted the red waveform to the right. Code shown in figure 7.

```
61 %Q5
62 - delay = zeros(1,L+1);
63 - delay (L+1) = 1;
64 - Y2 filter(delay,1,x2) % new LPF (with delay)
65 - figure()
66 - plot(t2,Y2) % the original zero-inserted signal with new LPF
67 - hold on
68 - plot(t2,Y) % the original zero-inserted signal with original LPF
69 - hold off
70 - xlim([0.03 0.04])
71 - legend('signal with new LPF', 'signal with old LPF')
```

fig. 7

Figure 8 showed a good comparison of two waveforms. We can see the original signal has been recovered.

fig. 8