w04-Lec

Mathematics and Computer Science:

Boolean Algebra

Assembled for 204111 by Areerat Trongratsameethong

204111: Fundamentals of Computer Science

Introduction to Logical Value

- A statement has its logical value, either true (T) or false (F)
 - "it is raining": may be true or false
 - "it is sunny": may be true or false
- Many statements can be combined with and and or to be a compound statement.
 - "it is raining and it is sunny"
 - "it is raining or it is sunny"
 - The logical values of the compound statements depend on the logical value of each combined statement and what connective ("and" or "or") is used.

Boolean Algebra

- Mathematics for Computer Scientists Janacek and Close
 - Introduction to Logical Value
 - Logical Operators

- Nathematics for Computer Scientists
 Carrier Lanceto Basis Common Chee

 Download fires books at bookboon.com
- Discrete Mathematics and Its Applications K.H.
 Rosen
 - Introduction to Boolean Algebra
 - Rules of Precedence for Boolean Operators
 - Boolean Properties
 - Boolean Expression Simplification

204111: Fundamentals of Computer Science

Logical Operators

- Three logical operators are used in Boolean
 Algebra
 - Negation (not)
 - Conjunction (and)
 - Disjunction (or)

Logical Operators [2]

- Symbolic Notation: is used to make things shorter
 - Negation denoted by —
 - "and" denoted by ∧
 - "or" denoted by
- A symbolic can be also used for a statement
 - p can be used for "it is raining"

5

204111: Fundamentals of Computer Science

Logical Operators [4]

 The logical values can be represented in form of truth table as an example below.

Example

Let p = "All computer scientists are men"

Two possible logical values of p are T and F

р	¬p
Т	F
F	Т

Table 2.1: Truth table for negation (→)

Logical Operators [3]

- Negation
 - The negation of a statement is false when the statement is true.
 - The negation of a statement is true when the statement is false.
- Example
 - Let p = "It is raining",
 then ¬p is "it is not raining"
 - If the logical value of p is F
 then logical value of ¬p is T

204111: Fundamentals of Computer Science

Logical Operators [5]

- Conjunction ∧
- If p and q are statements, then $p \wedge q$ is read as "p and q".
 - Let
 - p = "It is green",

T F F

Table 2.2: Truth table for ∧

- q = "It is an apple" then
- $p \wedge q$ = "It is green and It is an apple"
- The logical value of $p \wedge q$ depends on each logical value of p and q as shown in Table 2.2.

Logical Operators [6]

Disjunction V

- If p and q are statements, then $p \vee q$ is read as "p or q".
 - Let
 - p = "It is green".
 - q = "It is an apple" then

 $p \lor q$ = "It is green or It is an apple"

• The logical value of $p \vee q$ depends on each logical value of p and q as shown in Table 2.3.

Т Т F

Table 2.3: Truth table for ∨

204111: Fundamentals of Computer Science

Introduction to Boolean Algebra [2]

- The mathematical system written by Boole became known as Boolean algebra.
- All Boolean quantities have two possible outcomes: 1 or 0.
- There is no such thing as "2" or "-1" or "1/2" in the Boolean world.

Introduction to Boolean Algebra

- A Symbolic form of Aristotle's system of logic sought by George Boole (1815-1864) - The English mathematician
- Mathematical language dealing with the guestions of logic
- An Investigation of the Laws of Thought (Boole 1854),
 - Theories of Logic and Probabilities
 - Mathematical Relationship Quantities Rule
 - true or false
 - 1 or 0

204111: Fundamentals of Computer Science

Introduction to Boolean Algebra [3]

- Boolean algebra as on-and-off circuits Control
- All signals are characterized as either "high" (1) or "low" (0).
- A Symbolic Analysis of Relay and Switching Circuits MIT Thesis (Shannon 1938)
 - Mathematical tool for designing and analyzing digital circuits.
 - Defined the circuits in all electronic devices as 1 or 0 referring 'on' or in 'off' position.

Introduction to Boolean Algebra [4]

- Boolean algebra provides the operations and the rules for working with the set {0,1}.
- Operation for a circuit is called Boolean Function.
- Boolean Function produce output for each set of inputs.
- This function is built using Boolean expressions and operations.

13

204111: Fundamentals of Computer Science

Rules of Operator Precedence [2]

Example: Find the value of $1 \land 0 \lor \sim (0 \lor 1)$

$$1 \wedge 0 \vee \sim (0 \vee 1)$$

 $1 \wedge 0 \vee \sim 1$

 $1 \wedge 0 \vee 0$

 $0 \lor 0$

0

Rules of Operator Precedence

low

Order of Boolean Operators

- Complement (or Negation →) denoted by ~
- Boolean Product denoted by \wedge
- Boolean Sum denoted by V

14

204111: Fundamentals of Computer Science

Boolean Properties

- The simpler that we can make a Boolean function, the smaller the circuit that will result.
- Simpler Circuits
 - Cheaper to build
 - Consume less power
 - Run faster than the complex circuits
- With this in mind, we always want to reduce our Boolean functions to their simplest form.
- There are a number of Boolean identities that help us to do this.

Rules of Boolean Algebra

- Most Boolean identities have an AND (product) form as well as an OR (sum) form.
- We give our identities using both forms.

Identity Name	AND	OR
Identity Law	1 ∧ x = x	0 ∨ x = x
Null Law	0 ∧ x = 0	1 ∨ x = 1
Idempotent Law	x ∧ x = x	$x \lor x = x$
Inverse Law	x ∧ ~x = 0	x ∨ ~x = 1

x	1	1∧x
0	1	0
1	1	1

Truth table of 1 ∧ x

How about the others?

Note: These laws can be proved by truth table.

17

204111: Fundamentals of Computer Science

Rules of Boolean Algebra [3]

Identity Name	AND	OR
Absorption Law	$x \wedge (x \vee y) = x$	$x \lor (x \land y) = x$
De Morgan's Law	~(x ∧ y) = ~x ∨ ~y	~(x ∨ y) = ~x ∧ ~y
Double Complement Law	~(~x) = x	

Proof – Absorption Law:

$$x \wedge (x \vee y) = x$$

Rewrite: $\land \rightarrow \cdot, \lor \rightarrow +$

$$x \cdot (x + y) = \underbrace{x \cdot x}_{} + (x \cdot y)$$

$$= x + (x \cdot y)$$

$$= (x \cdot 1) + (x \cdot y)$$

$$= x \cdot (1 + y)$$

 $= x \cdot (1 + y)$ $= x \cdot 1$

= x

Proof – Absorption Law:

$$x \lor (x \land y) = x$$

Rewrite: $\wedge \rightarrow \cdot, \vee \rightarrow +$

ewrite:
$$(x - y)$$
 = $(x \cdot 1) + (x \cdot y)$
= $(x \cdot 1) + (x \cdot y)$

Rules of Boolean Algebra [2]

Identity Name	AND
Commutative Law	$x \wedge y = y \wedge x$
Associative Law	$(x \wedge y) \wedge z = x \wedge (y \wedge z)$
Distributive Law	$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$

Identity Name	OR
Commutative Law	$x \lor y = y \lor x$
Associative Law	$(x \lor y) \lor z = x \lor (y \lor z)$
Distributive Law	$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$

<u>Remark:</u> The above identities can be translated to logical <u>equivalences</u> about propositions and to identities about sets.

204111: Fundamentals of Computer Science

Absorption Law

Inverse Law

Boolean Expression Simplification

Example 1: $(X \lor Y) \land (X \lor \sim Y) \land \sim (X \land \sim Z)$

- 1 $(x \lor y) \land (x \lor \sim y) \land \sim (x \land \sim z)$
- 2 $(x \lor y) \land (x \lor \sim y) \land (\sim x \lor z)$ De Morgan's Law
- 3 $(\underline{x} \wedge \underline{x}) \vee (\underline{x} \wedge \neg \underline{y}) \vee (\underline{y} \wedge \underline{x}) \vee (\underline{y} \wedge \neg \underline{y}) \wedge (\neg \underline{x} \vee \underline{z})$ Distributive Law
- 4 $\underline{x} \lor (x \land \sim y) \lor (y \land x) \lor 0 \land (\sim x \lor z)$ Idempotent and Inverse Laws
- $5 \times (y \wedge x) \wedge (\sim x \vee z)$ Absorption and Identity Laws
- 6 $\times \wedge (\sim \times \times z)$
- 7 $(x \land \sim x) \lor (x \land z)$ Distributive Law
- 8 $0 \vee (x \wedge z)$
- 9 $\times \wedge Z$ Identity Law

ANZ

18

Boolean Expression Simplification [2]

 Example 2: Find the <u>complement</u> of the Boolean expression below. (De Morgan's Law)

$$(x \wedge y) \vee (\sim x \wedge z) \vee (y \wedge \sim z)$$

$$\sim ((x \wedge y) \vee (\sim x \wedge z) \vee (y \wedge \sim z))$$

$$\sim (x \wedge y) \wedge \sim (\sim x \wedge z) \wedge \sim (y \wedge \sim z)$$

$$(\sim x \vee \sim y) \wedge (x \vee \sim z) \wedge (\sim y \vee z)$$

21

204111: Fundamentals of Computer Science

References

- Mathematics for Computer Scientists, Janacek and Close
- Discrete Mathematics and Its Applications, K.H.
 Rosen

Summary

- Introduction to Logical Value
- Logical Operators
- Introduction to Boolean Algebra
- Rules of Precedence for Boolean Operators
- Boolean Properties
- Boolean Expression Simplification

22