1 Permutace na množině

Obsah

Obsah

1 Permutace na množině 1

5

2 Výpočet a vlastnosti determinantu

Permutace na množině

Definice 6.1

Dána konečná množina $A = \{a_1, a_2, \ldots, a_n\}$. Pořadím π množiny A nazveme každou n-tici $\pi = (a_{k_1}, a_{k_2}, \ldots, a_{k_n}) \in A^n$ takovou, že každý prvek z A je v ní zastoupen právě jednou.

Definice 6.2

 $Permutaci\ P$ na množině $A=\{a_1,a_2,\ldots,a_n\}$ rozumíme každou bijekci $P:A\to A.$

ullet Permutaci P množiny A můžeme zapisovat ve tvaru

$$P = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ a_{\pi(1)} & a_{\pi(2)} & \dots & a_{\pi(n)} \end{pmatrix},$$

kde π je některé pořadí indexové množiny $\{1, 2, \ldots, n\}$.

Permutace na množině

Věta 6.1

Pro každou n-prvkovou $(n \ge 1)$ množinu $A = \{a_1, a_2, \dots, a_n\}$ je počet permutací na ní stejný jako počet pořadí této množiny, a je roven číslu n!.

- Protože nazáleží na povaze prvků a_1, a_2, \ldots, a_n množiny A, můžeme dále pracovat přímo s množinou prvních n přirozených čísel, tedy $\{1, 2, \ldots, n\}$.
- $Z\acute{a}kladn\'{i}m$ pořad $\'{i}m$ množiny A přitom rozum $\'{i}me$ n-tici $\pi_0=(1,2,\ldots,n)$.
- Každou permutaci na množině A můžeme zkráceně psát jako $P = \begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix}$, kde π_1 a π_2 jsou některá pořadí množiny A.

Permutace na množině

• Všimněme si, že zápisy

$$\left(\begin{array}{ccccc} 2 & 1 & 3 & 5 & 4 \\ 3 & 1 & 2 & 4 & 5 \end{array}\right) \quad a \quad \left(\begin{array}{cccccc} 3 & 5 & 1 & 2 & 4 \\ 2 & 4 & 1 & 3 & 5 \end{array}\right)$$

jsou ekvivalentní vyjádření jedné permutace Pna množině $A=\{1,2,3,4,5\},$ tedy

$$P = \left(\begin{array}{cccc} 2 & 1 & 3 & 5 & 4 \\ 3 & 1 & 2 & 4 & 5 \end{array}\right) = \left(\begin{array}{cccc} 3 & 5 & 1 & 2 & 4 \\ 2 & 4 & 1 & 3 & 5 \end{array}\right).$$

• Permutace na A budeme tedy pokud možno zapisovat v tzv. základním tvaru, tj. ve tvaru

$$P = \left(\begin{array}{c} \pi_0 \\ \pi_1 \end{array}\right),$$

kde π_0 je základní pořadí množiny A.

Znaménko pořadí

Definice 6.3

- Nechť $\pi = (k_1, k_2, \dots, k_n)$ je pořadí množiny $A = \{a_1, a_2, \dots, a_n\}$. Říkáme, že prvky k_i a k_j tvoří *inverzi* v π , jestliže i < j, přestože $k_i > k_j$.
- Znaménkem pořadí π nazveme číslo $sgn(\pi)=(-1)^{[\pi]},$ přitom $[\pi]$ značí počet inverzí v pořadí $\pi.$
- Je-li $sgn(\pi) = 1$, nazveme pořadí π sudé.
- Je-li $sgn(\pi) = -1$, nazveme π liché.

Příklad 6.1

V pořadí $\pi=(2,1,4,5,3)$ množiny A jsou inverze 2,1 4,3 5,3 tedy $sgn(\pi)=(-1)^3=-1,$ tedy π je liché.

Znaménko permutace

Definice 6.4

- Nechť $P=\left(\begin{array}{c} \pi_1 \\ \pi_2 \end{array}\right)$ je permutace množiny A.
- Znaménkem permutace P nazveme číslo 1, jestliže $sgn(\pi_1) = sgn(\pi_2)$, a číslo -1, pokud $sgn(\pi_1) \neq sgn(\pi_2)$.
- Je-li sgn(P) = 1, nazývá se permutace P sudá.
- Je-li sgn(P) = -1, říkáme, že P je lichá.

Příklad 6.2

Dána permutace
$$P = \begin{pmatrix} 2 & 1 & 3 & 5 & 4 \\ 3 & 1 & 2 & 4 & 5 \end{pmatrix} = \begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix}$$
. Pak

$$sgn(\pi_1) = (-1)^2 = 1$$
 a $sgn(\pi_2) = (-1)^2 = 1$,

tedy P je sudá permutace.

Znaménko permutace, inverzní permutace

- Pokud je permutace P na A dána v základním tvaru, tedy $P = \begin{pmatrix} \pi_0 \\ \pi_1 \end{pmatrix}$, pak platí $sgn(P) = sgn(\pi_1)$.
- Symbolem P_0 budeme značit identickou permutaci, tj. $P_0 = \begin{pmatrix} \pi_0 \\ \pi_0 \end{pmatrix}$.
- Je-li $P = \begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix}$ permutace na množině A, pak víme, že musí existovat i inverzní permutace P^{-1} (viz Věta 2.11).
- Přitom $P^{-1}=\begin{pmatrix} \pi_2 \\ \pi_1 \end{pmatrix}$, protože musí platit $P\circ P^{-1}=P_0=P^{-1}\circ P.$

Věta 6.2

Platí $sgn(P_0) = 1$ a pro každou permutaci P na A $sgn(P^{-1}) = sgn(P)$.

Transpozice na množině

Definice 6.5

Transpozicí na $A = \{1, 2, ..., n\}$ rozumíme permutaci P na A takovou, že existují $i, j \in A$ tak, že P(i) = j, P(j) = i, P(k) = k pro všechny $k \in A \setminus \{i, j\}$.

- Je-li P transpozice na A, pak $P^{-1} = P$.
- Je-li P transpozice na A zaměňující prvky i,j, pak ji budeme značit P=T(i,j).
- Např. na $A = \{1, 2, 3, 4, 5, 6\}$ platí

$$T(1,4) = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 3 & 1 & 5 & 6 \end{array}\right).$$

Transpozice na množině

Věta 6.3

Každou permutaci je možné vyjádřit jako složení konečného počtu transpozic. Navíc, permutace je sudá (resp. lichá), je-li tento počet sudý (resp. lichý).

Příklad 6.3

Permutaci $P=\begin{pmatrix}1&2&3&4&5&6&7&8\\1&5&4&3&7&6&8&2\end{pmatrix}$ na množině $A=\{1,2,3,4,5,6,7,8\}$ získáme jako složení transpozic T(2,5),T(3,4),T(2,7) a T(2,8).

Transpozice na množině

Příklad 6.3

Permutaci
$$P=\left(\begin{array}{cccccc}1&2&3&4&5&6&7&8\\1&5&4&3&7&6&8&2\end{array}\right)$$
získáme jako složení

T(2,5), T(3,4), T(2,7) a T(2,8). Platí totiž

$$T(2,5) = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 5 & 3 & 4 & 2 & 6 & 7 & 8 \end{array}\right).$$

Pak ale

Transpozice na množině

Příklad 6.3

Permutaci
$$P = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 5 & 4 & 3 & 7 & 6 & 8 & 2 \end{pmatrix}$$
 získáme jako složení

$$T(2,5), T(3,4), T(2,7)$$
 a $T(2,8)$.

Pak tedy
$$T(2,5) \circ T(3,4) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 5 & 4 & 3 & 2 & 6 & 7 & 8 \end{pmatrix}$$
.

A dále

Transpozice na množině

Příklad 6.3

Permutaci
$$P = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 5 & 4 & 3 & 7 & 6 & 8 & 2 \end{pmatrix}$$
 získáme jako složení

$$T(2,5), T(3,4), T(2,7)$$
 a $T(2,8)$.

Tedy
$$T(2,5) \circ T(3,4) \circ T(2,7) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 5 & 4 & 3 & 7 & 6 & 2 & 8 \end{pmatrix}$$
.

A konečně

2 Výpočet a vlastnosti determinantu

Obsah

Obsah

Determinant

Definice 6.6

Nechť $A = (a_{ij}) \in \mathcal{M}_n(T)$ je čtvercová matice stupně n nad číselným tělesem T. Determinantem matice A rozumíme číslo $\det(A)$ (někdy také |A|) z tělesa T takové, že

$$\det(A) = \sum_{P} sgn(P) \cdot a_{1k_1} \cdot a_{2k_2} \cdot \ldots \cdot a_{nk_n},$$

kde sčítáme přes všechny permutace $P=\begin{pmatrix}1&2&\dots&n\\k_1&k_2&\dots&k_n\end{pmatrix}$ na indexové množině $\{1,2,\dots,n\}.$

Každý ze součinů $a_{1k_1} \cdot a_{2k_2} \cdot \cdots \cdot a_{nk_n}$ přitom nazýváme *člen determinantu* $\det(A)$.

Determinant

Jinými slovy:

- Determinant čtvercové matice je číslo z T, které se rovná součtu n! součinů prvků matice A, přičemž v každém z těchto součinů $a_{1k_1} \cdot a_{2k_2} \cdot \cdots \cdot a_{nk_n}$ je každý řádek a sloupec matice zastoupen právě jedním prvkem.
- Tento součin ale musíme doplnit znaménkem stejným jako je znaménko permutace určené řádkovými a sloupcovými indexy prvků zastoupených v tomto součinu.

Determinant čtvercové matice stupně 2

Příklad 6.4

Určete determinant matice
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathcal{M}_2(T)$$
.

Determinant čtvercové matice stupně 2

Příklad 6.4

Určete determinant matice $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathcal{M}_2(T)$.

Řešení: Členy determinantu budou součiny $a_{11} \cdot a_{22}$, který odpovídá permutaci

$$P_1 = \left(\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array}\right),$$

jejíž znaménko je 1,

Determinant čtvercové matice stupně 2

Příklad 6.4

Určete determinant matice $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathcal{M}_2(T)$.

Řešení: Členy determinantu budou součiny $a_{11} \cdot a_{22}$, který odpovídá permutaci

$$P_1 = \left(\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array}\right),$$

jejíž znaménko je 1, a také $a_{12} \cdot a_{21}$, který odpovídá permutaci

$$P_2 = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right),$$

jejíž znaménko je -1.

Determinant čtvercové matice stupně 2

Příklad 6 4

Určete determinant matice $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathcal{M}_2(T)$.

 $\mathbf{\check{R}e\check{s}en\acute{i}}:$ Členy determinantu budou součiny $a_{11}\cdot a_{22},$ který odpovídá permutaci

$$P_1 = \left(\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array}\right),$$

jejíž znaménko je 1, a také $a_{12} \cdot a_{21}$, který odpovídá permutaci

$$P_2 = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right),$$

jejíž znaménko je -1. Celkem tedy dostáváme

$$\det(A) = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}.$$

Determinant čtvercové matice stupně 3

Příklad 6.5

Určete determinant matice
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in \mathcal{M}_3(T).$$

Determinant čtvercové matice stupně 3

Příklad 6.5

Určete determinant matice
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in \mathcal{M}_2(T).$$

Řešení: Členy determinantu a znaménka jim odpovídajících permutací na $\{1,2,3\}$ jsou zde

1.
$$a_{11} \cdot a_{22} \cdot a_{33}$$
, $sgn(P_1) = sgn\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = 1$,

Determinant čtvercové matice stupně 3

Příklad 6.5

Určete determinant matice
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in \mathcal{M}_2(T).$$

 $\bf \check{R}e\bf\check{s}en\bf\acute{s}$ i: Členy determinantu a znaménka jim odpovídajících permutací na $\{1,2,3\}$ jsou zde

2.
$$a_{12} \cdot a_{23} \cdot a_{31}$$
, $sgn(P_2) = sgn\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = 1$,

Determinant čtvercové matice stupně 3

Příklad 6.5

Určete determinant matice
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in \mathcal{M}_2(T).$$

 $\check{\mathbf{R}}$ ešení: Členy determinantu a znaménka jim odpovídajících permutací na $\{1,2,3\}$ jsou zde

3.
$$a_{13} \cdot a_{21} \cdot a_{32}$$
, $sgn(P_3) = sgn\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = 1$,

Determinant čtvercové matice stupně 3

Příklad 6.5

Určete determinant matice
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in \mathcal{M}_2(T).$$

Řešení: Členy determinantu a znaménka jim odpovídajících permutací na $\{1,2,3\}$ jsou zde

4.
$$a_{13} \cdot a_{22} \cdot a_{31}$$
, $sgn(P_4) = sgn\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = -1$,

Determinant čtvercové matice stupně 3

Příklad 6.5

Určete determinant matice
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in \mathcal{M}_2(T).$$

 $\bf \check{R}e \check{s}en \acute{i}$: Členy determinantu a znaménka jim odpovídajících permutací na $\{1,2,3\}$ jsou zde

5.
$$a_{11} \cdot a_{23} \cdot a_{32}$$
, $sgn(P_5) = sgn\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = -1$,

Determinant čtvercové matice stupně 3

Příklad 6.5

Určete determinant matice
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in \mathcal{M}_2(T).$$

 $\check{\mathbf{R}}$ ešení: Členy determinantu a znaménka jim odpovídajících permutací na $\{1,2,3\}$ jsou zde

6.
$$a_{12} \cdot a_{21} \cdot a_{33}$$
, $sgn(P_6) = sgn\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right) = -1$,

Determinant čtvercové matice stupně 3

Příklad 6.5

Určete determinant matice
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in \mathcal{M}_3(T).$$

Celkem tedy dostáváme, že

$$\det(A) = a_{11} \cdot a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{13} \cdot a_{21} \cdot a_{32} -a_{13} \cdot a_{22} \cdot a_{31} - a_{11} \cdot a_{23} \cdot a_{32} - a_{12} \cdot a_{21} \cdot a_{33}$$

Sarrusovo pravidlo

Vyjádření determinantů matic 2. a 3. stupně lze znázornit i schématicky:

$$n = 2$$
: $n = 3$:

Věta 6.5 + Má-li matice $A \in \mathcal{M}_n(T)$ v některém řádku (sloupci) samé nuly, platí $\det(A) =$

Věta 6.6

Má-li matice $A \in \mathcal{M}_n(T)$ pod (nad) hlavní diagonálou samé nuly, platí $\det(A) = \prod_{i=1}^n a_{ii} = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}$.

Determinanty matic ve speciálních tvarech

Věta 6.7

Vznikne-li matice $B \in \mathcal{M}_n(T)$ z matice $A \in \mathcal{M}_n(T)$ vzájemnou záměnou dvou jejích řádků (sloupců), pak $\det(B) = -\det(A)$.

Důsledek 6.8

Vznikne-li matice $B \in \mathcal{M}_n(T)$ z matice $A \in \mathcal{M}_n(T)$ provedením některé permutace P na její řádky (sloupce), pak $\det(B) = sgn(P) \cdot \det(A)$.

Důsledek 6.9

Má-li matice $A \in \mathcal{M}_n(T)$ dva stejné řádky (sloupce), pak $\det(A) = 0$.

Submatice, subdeterminant

Definice 6.7

Nechť $A = (a_{ij}) \in \mathcal{M}_{m \times n}(T)$. Pak každou matici, která vznikne z A vynecháním některých jejích řádků a sloupců, nazýváme submatice (nebo dílčí matice) matice A.

Je-li submatice čtvercová, pak její determinant nazýváme subdeterminant matice ${\cal A}.$

$$\begin{pmatrix}
2 & -1 & 0 & 0 \\
1 & 4 & -2 & 1 \\
-2 & 0 & 1 & -3
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
2 & -1 & 0 & 0 \\
1 & 4 & -2 & 1 \\
-2 & 0 & 1 & -3
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
2 & 0 \\
1 & 4 & -2 & 1 \\
-2 & 0 & 1 & -3
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
2 & 0 \\
-2 & 1
\end{pmatrix}$$

Algebraický doplněk prvku ve čtvercové matici

Definice 6.8

Nechť $A = (a_{ij}) \in \mathcal{M}_n(T)$. Potom subdeterminant (dílčí) matice, která vznikne z A vynecháním i-tého řádku a j-tého sloupce, budeme nazývat minor matice A příslušný k prvku a_{ij} , značíme M_{ij} .

 $Algebraickým\ doplňkem\ prvku\ a_{ij}\ matice\ A\ rozumíme\ číslo$

$$\mathcal{A}_{ij} = (-1)^{i+j} \cdot M_{ij}.$$

Příklad 6.7

$$A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 4 & 1 \\ -2 & 0 & -3 \end{pmatrix} \longrightarrow \mathcal{A}_{32} =$$

Algebraický doplněk prvku ve čtvercové matici

Definice 6.8

Nechť $A = (a_{ij}) \in \mathcal{M}_n(T)$. Potom subdeterminant (dílčí) matice, která vznikne z A vynecháním i-tého řádku a j-tého sloupce, budeme nazývat minor matice A příslušný k prvku a_{ij} , značíme M_{ij} .

 $Algebraickým\ doplňkem\ prvku\ a_{ij}$ matice A rozumíme číslo

$$\mathcal{A}_{ij} = (-1)^{i+j} \cdot M_{ij}.$$

Příklad 6.7

$$A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 4 & 1 \\ -2 & 0 & -3 \end{pmatrix} \longrightarrow \mathcal{A}_{32} = (-1)^{3+2} \cdot \begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix} = -2$$

Laplaceův rozvoj determinantu

Věta 6.10 (Laplaceova)

Nechť $A = (a_{ij}) \in \mathcal{M}_n(T)$. Pak pro každý řádkový index $i = 1, 2, \dots, n$ platí

$$\det(A) = \sum_{j=1}^{n} a_{ij} \cdot \mathcal{A}_{ij} = a_{i1} \cdot \mathcal{A}_{i1} + a_{i2} \cdot \mathcal{A}_{i2} + \dots + a_{in} \cdot \mathcal{A}_{in},$$

resp. pro každý sloupcový index j = 1, 2, ..., n platí

$$\det(A) = \sum_{i=1}^{n} a_{ij} \cdot \mathcal{A}_{ij} = a_{1j} \cdot \mathcal{A}_{1j} + a_{2j} \cdot \mathcal{A}_{2j} + \dots + a_{nj} \cdot \mathcal{A}_{nj}.$$

Laplaceův rozvoj determinantu

Příklad 6.8

$$|A| = \begin{vmatrix} 2 & -1 & 0 \\ 1 & 4 & 1 \\ -2 & 0 & -3 \end{vmatrix} =$$

Laplaceův rozvoj determinantu

Příklad 6.8

$$|A| = \begin{vmatrix} 2 & -1 & 0 \\ 1 & 4 & 1 \\ -2 & 0 & -3 \end{vmatrix} =$$

Laplaceův rozvoj determinantu

Příklad 6.8

$$|A| = \begin{vmatrix} 2 & -1 & 0 \\ 1 & 4 & 1 \\ -2 & 0 & -3 \end{vmatrix} =$$
$$= (-1) \cdot (-1)^{1+2} \cdot \begin{vmatrix} 1 & 1 \\ -2 & -3 \end{vmatrix} +$$

Laplaceův rozvoj determinantu

Příklad 6.8

$$|A| = \begin{vmatrix} 2 & -1 & 0 \\ 1 & 4 & 1 \\ -2 & 0 & -3 \end{vmatrix} =$$

$$= (-1) \cdot (-1)^{1+2} \cdot \begin{vmatrix} 1 & 1 \\ -2 & -3 \end{vmatrix} + 4 \cdot (-1)^{2+2} \cdot \begin{vmatrix} 2 & 0 \\ -2 & -3 \end{vmatrix} +$$

Laplaceův rozvoj determinantu

Příklad 6.8

$$|A| = \begin{vmatrix} 2 & -1 & 0 \\ 1 & 4 & 1 \\ -2 & 0 & -3 \end{vmatrix} =$$

$$= (-1) \cdot (-1)^{1+2} \cdot \begin{vmatrix} 1 & 1 \\ -2 & -3 \end{vmatrix} + 4 \cdot (-1)^{2+2} \cdot \begin{vmatrix} 2 & 0 \\ -2 & -3 \end{vmatrix} +$$

$$+0 \cdot (-1)^{3+2} \cdot \begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix} =$$

Laplaceův rozvoj determinantu

Příklad 6.8

$$|A| = \begin{vmatrix} 2 & -1 & 0 \\ 1 & 4 & 1 \\ -2 & 0 & -3 \end{vmatrix} =$$

$$= (-1) \cdot (-1)^{1+2} \cdot \begin{vmatrix} 1 & 1 \\ -2 & -3 \end{vmatrix} + 4 \cdot (-1)^{2+2} \cdot \begin{vmatrix} 2 & 0 \\ -2 & -3 \end{vmatrix} +$$

$$+0 \cdot (-1)^{3+2} \cdot \begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix} = -1 + (-24) + 0 = -25$$

Řádkové a sloupcové vektory matice

Nechť $A = (a_{ij}) \in \mathcal{M}_{m \times n}(T)$.

- n-tici $\vec{a_i} = (a_{i1}, a_{i2}, \dots, a_{in})$ budeme nazývat i-tý řádkový vektor matice A pro každý index $i = 1, 2, \dots, m$.
- m-tici $\vec{a_j}^T = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}$ budeme nazývat j-tý sloupcový vektor

matice A pro každý index $j = 1, 2, \dots, n$.

• Zkráceně tedy můžeme psát $A = (\vec{a_1}^T, \dots, \vec{a_n}^T) = \begin{pmatrix} \vec{a_1} \\ \vdots \\ \vec{a_m} \end{pmatrix}$.

Úpravy matice při výpočtu determinantu

Věta 6.11

Vznikne-li matice $B \in \mathcal{M}_n(T)$ z matice $A \in \mathcal{M}_n(T)$ vynásobením *i*-tého řádku (sloupce) číslem $c \in T$, pak $\det(B) = c \cdot \det(A)$.

Důsledek 6.12

Nechť $A \in \mathcal{M}_n(T), c \in T$. Pak $\det(c \cdot A) = c^n \cdot \det(A)$.

Úpravy matice při výpočtu determinantu

Věta 6.13

Je-li i-tý řádek (sloupec) matice $A \in \mathcal{M}_n(T)$ součtem vektorů \vec{x} a \vec{y} z AVP T^n , pak

$$\det \begin{pmatrix} \vec{a_1} \\ \vdots \\ \vec{a_i} \\ \vdots \\ \vec{a_n} \end{pmatrix} = \det \begin{pmatrix} \vec{a_1} \\ \vdots \\ \vec{x} \\ \vdots \\ \vec{a_n} \end{pmatrix} + \det \begin{pmatrix} \vec{a_1} \\ \vdots \\ \vec{y} \\ \vdots \\ \vec{a_n} \end{pmatrix} .$$

Úpravy matice při výpočtu determinantu

Věta 6.14

Přičteme-li k některému řádku (sloupci) matice $A \in \mathcal{M}_n(T)$ některou lineární kombinaci ostatních řádků, pak získáme matici $B \in \mathcal{M}_n(T)$, pro kterou platí $\det(B) = \det(A)$.

Věta 6.15

Jsou-li řádkové (sloupcové) vektory matice $A \in \mathcal{M}_n(T)$ lineárně závislé, pak platí $\det(A) = 0$.

Věta 6.15

Nechť $A, B \in \mathcal{M}_n(T)$. Pak $\det(A \cdot B) = \det(A) \cdot \det(B)$.

Úpravy matice při výpočtu determinantu

- Předchozích výsledků, a zejména pak Věty 6.14 lze výhodně využít při výpočtu determinantů matic vyšších řádů než 3.
- Nabízí se např. přičítáním různých lineárních kombinací některých řádků
 k jiným vynulovat prvky nad nebo pod hlavní diagonálou matice, přitom
 se hodnota determinantu nezmění.
- Další možná varianta je analogickými úpravami vynulovat v některém řádku nebo sloupci všechny prvky až na jeden a následným použitím Laplaceovy věty snížit řád determinantu o 1. Opět neměníme jeho hodnotu.