BERÄKNING AV KURVINTEGRALER (LINJEINTEGRALER)

Låt $\vec{F} = (P(x, y, z), \ Q(x, y, z), \ R(x, y, z))$ vara ett kontinuerligt vektorfält (d v s en vektorfunktion) definierat i en öppen mängd Ω .

Låt γ vara en orienterad C^1 kurva given på parameter form x = x(t), y = y(t), z = z(t) eller $\vec{r}(t) = (x(t), y(t), z(t))$ där $t_A \le t \le t_B$

Kurvintegralen $\int_{\gamma} \vec{F} \cdot d\vec{r}$ längs kurvan γ från punkten A (som svarar mot $t=t_A$) till punkten B (som svarar mot $t=t_B$) beräknas enligt följande

$$\int_{\gamma} \vec{F} \cdot d\vec{r} = \int_{t_A}^{t_B} \vec{F}(t) \cdot \vec{r}'(t) dt$$

$$= \int_{a}^{b} [P(x(t), y(t) z(t)) \cdot x'(t) + Q(x(t), y(t) z(t)) \cdot y'(t) + R(x(t), y(t) z(t)) \cdot z'(t)] dt$$

Beteckningar:

 $\int_{\gamma} \vec{F} \cdot d\vec{r}$ betecknas ofta som $\int_{\gamma} (Pdx + Qdy + Rdz)$. Om kurvan är en sluten kurva då betecknas ibland kurvintegralen $\int_{\gamma} \vec{F} \cdot d\vec{r}$ som $\oint_{\gamma} \vec{F} \cdot d\vec{r}$.

Egenskaper:

1.
$$\int_{t_B} \vec{F}(t) \cdot \vec{r}'(t) dt = -\int_{t_A} \vec{F}(t) \cdot \vec{r}'(t) dt$$

2. Om $\vec{F}=(P,Q,R)$ är ett kraftfält då är $\int_{V} \vec{F} \cdot d\vec{r}$ fältets arbete längs kurvan γ :

Arbetet längs kurvan
$$\gamma = \int\limits_{\gamma} \vec{F} \cdot d\vec{r}$$

3. Om kurvan γ består av två (orienterade) delar γ_1 och γ_2 (se bilden) då gäller:

$$\int_{\gamma} \vec{F} \cdot d\vec{r} = \int_{\gamma_1} \vec{F} \cdot d\vec{r} + \int_{\gamma_2} \vec{F} \cdot d\vec{r}$$

Uppgift 1. Låt $\vec{F} = (2y, 2x, z + y)$. Beräkna kurvintegralen (linjeintegralen) $\int_{\gamma} \vec{F} \cdot d\vec{r}$ längs sträckan AB,

då A=(1,1,1) och B=(2,2,3)

Lösning:

Sträckans ekvation:

$$x = 1 + t$$

$$y = 1 + t \qquad 0 \le t \le 1$$

$$z = 1 + 2t$$

Alltså $\vec{r}(t) = (1+t,1+t,1+2t)$ och därför

$$\vec{r}'(t) = (1,1,2)$$

$$\vec{F} = (2y, 2x, z + y) \implies \vec{F}(t) = (2 + 2t, 2 + 2t, 2 + 3t)$$

Härav: $\vec{F}(t) \cdot \vec{r}'(t) = 8 + 10t$ och

$$\int_{\gamma} \vec{F} \cdot d\vec{r} = \int_{0}^{1} (8+10t)dt = \left[8t + 5t^{2}\right]_{0}^{1} = 13$$

Svar
$$\int_{V} \vec{F} \cdot d\vec{r} = 13$$

Uppgift 2. Låt $\vec{F} = (-2y, 2x)$ Beräkna kurvintegralen längs den kvartcirkelbåge av $x^2 + y^2 = 1$ i första kvadranten som börjar i A(1,0) och slutar i B(0,1) (d v s moturs eller i **positiv riktning**).

Lösning.

$$x = \cos t$$
, $y = \sin t$, $0 \le t \le \frac{\pi}{2}$

$$\vec{r}(t) = (\cos t, \sin t)$$

$$\vec{F}(t) = (-2\sin t, 2\cos t)$$
 och

$$\vec{r}'(t) = (-\sin t, \cos t)$$

Därför
$$\vec{F}(t) \circ \vec{r}'(t) = 2\sin^2 t + 2\cos^2 t = 2$$

$$\int_{0}^{\pi/2} \vec{F}(t) \circ \vec{r}'(t) dt = \int_{0}^{\pi/2} 2dt = \pi$$

Svar π

Uppgift 3. Låt $\vec{F} = (2x + y, x)$ Beräkna kurvintegralen längs den kvartcirkelbåge av $x^2 + y^2 = 1$ som börjar i B(0,1) och slutar i A(1,0) (d v s medurs eller i **negativ riktning**).

Lösning:

Vi parametriserar cirkelns ekvation:

$$x = \cos t$$
 $dx = -\sin t dt$

$$y = \sin t$$
 $dy = \cos t dt$

Lägg märke till att startpunkt A (0,1) svarar mot $t = \pi/2$ och ändpunkt B(1,0) mot t = 0.

$$\int_{\gamma} \vec{F} \cdot d\vec{r} = \int_{\gamma} (2x + y)dx + xdy = \int_{\pi/2}^{0} (2\cos t + \sin t)(-\sin t)dt + \cos t \cos t dt$$

$$= \int_{\pi/2}^{0} (-2\cos t \sin t + \cos^{2} t - \sin^{2} t)dt = \int_{\pi/2}^{0} (-\sin 2t + \cos 2t)dt$$

$$= \left[\frac{\cos 2t}{2} + \frac{\sin 2t}{2}\right]_{\pi/2}^{0} = 1$$
Svar:
$$\int_{\gamma} \vec{F} \cdot d\vec{r} = 1$$

Uppgift 4. Låt $\vec{F} = (-3y, 3x)$ Beräkna kurvintegralen längs kurvan γ som består av två delar:

Del 1 Den kvarteirkelbåge av $x^2 + y^2 = 1$ i första kvadranten som börjar i A(1,0) och slutar i B(0,1)

Del 2. Sträkan BC från punkten B (0,1) till C (-1,0)

Lösning:

$$\int_{\gamma} \vec{F} \cdot d\vec{r} = \int_{t_A}^{t_B} \vec{F} \cdot d\vec{r} + \int_{t_B}^{t_C} \vec{F} \cdot d\vec{r}$$

Del 1:

$$x = \cos t$$
, $y = \sin t$, $0 \le t \le \frac{\pi}{2}$ där $t_A = 0$ och $t_B = \frac{\pi}{2}$

$$\vec{r}(t) = (\cos t, \sin t)$$

$$\vec{F}(t) = (-3\sin t, 3\cos t)$$
 och

$$\vec{r}'(t) = (-\sin t, \cos t)$$

Därför
$$\vec{F}(t) \circ \vec{r}'(t) = 3\sin^2 t + 3\cos^2 t = 3$$

$$\int_{0}^{\pi/2} \vec{F}(t) \circ \vec{r}'(t) dt = \int_{0}^{\pi/2} 3 dt = \frac{3\pi}{2}$$

Del 2:

Först parametriserar vi sträckan BC:

Vi kan använda ekvationen för den linje som går genom B och C,

$$y = x + 1$$
.

Vi tar x = t och därför y = t + 1

Altså

$$\vec{r}(t) = (t, t+1)$$

$$\vec{r}'(t) = (1, 1)$$

$$\vec{F}(t) = (-3(t+1), 3t)$$

Därför
$$\vec{F}(t) \circ \vec{r}'(t) = -3t - 3 + 3t = -3$$

Den här gången t = 0 svarar mot B och t = -1 mot C, d v s vi har

$$t_B = 0 \text{ och } t_C = -1$$

$$\int_{t_B}^{t_C} \vec{F} \cdot d\vec{r} = \int_{0}^{-1} \vec{F}(t) \circ \vec{r}'(t) dt = \int_{0}^{-1} -3 dt = 3$$

Slutligen

$$\int_{\gamma} \vec{F} \cdot d\vec{r} = \int_{t_A}^{t_B} \vec{F} \cdot d\vec{r} + \int_{t_B}^{t_C} \vec{F} \cdot d\vec{r} = \frac{3\pi}{2} + 3$$

Svar:
$$\int_{\gamma} \vec{F} \cdot d\vec{r} = \frac{3\pi}{2} + 3$$

Uppgift 5. Låt $\vec{F} = (\frac{-4y}{x^2 + y^2}, \frac{4x}{x^2 + y^2})$. Beräkna kurvintegralen ett varv längs cirkeln $x^2 + y^2 = 25$

a) i positiv riktning (moturs) b) i negativ riktning (medurs)

Lösning:

Cirkelns ekvation på parameter form:

$$x = 5\cos t$$
, $y = 5\sin t$, $0 \le t \le 2\pi$

eller

$$\vec{r}(t) = (5\cos , 5\sin t)$$

Därför

$$\vec{F}'(t) = (-5\sin t, 5\cos t)$$

$$\vec{F}(t) = (\frac{-20\sin t}{25}, \frac{20\cos t}{25}) = (\frac{-4\sin t}{5}, \frac{4\cos t}{5})$$

$$\vec{F}(t) \cdot \vec{r}'(t) = 4\sin^2 t + 4\cos^2 t = 4$$

a) Kurvintegral längs positivt orienterade cirkeln

$$\int_{Y} \vec{F} \cdot d\vec{r} = \int_{0}^{2\pi} \vec{F}(t) \cdot \vec{r}'(t) dt = \int_{0}^{2\pi} 4 dt = 8\pi$$

b) Kurvintegral längs negativt orienterade cirkeln

$$\int_{\gamma} \vec{F} \cdot d\vec{r} = \int_{2\pi}^{0} \vec{F}(t) \cdot \vec{r}'(t) dt = \int_{2\pi}^{0} 4dt = -8\pi$$