Dangerous Skating 危険なスケート解説

今西 健介 (@japlj)

情報オリンピック 2015-2016 春季トレーニング合宿 競技日4

0		
I		
	出A	
		*

グリッド上で JOI 君がスケートをする

元いた場所に氷塊が!

コワイ!はよ帰ろ……

_			
		出日	

グリッド上で JOI 君がスケートをする

縦 R マス, 横 C マス 最短何ステップ?

制約

- $R \le 1,000$
- $C \le 1,000$
- ・最初から氷塊のマス有

あきらかな最短路?

最短路問題に見えるが、これまでの動作によって 氷塊の配置が異なる状態になりうる

- 位置だけで状態は確定しない

直後の動き

全探索しよう!!

O*(3^{answer})時間で小課題 1 が解ける (13 点)

氷塊が生える

実はかばくない?

ショートカットできるし **左みたいなの考えなくて** いいんでは

生えてきた氷を使う

氷塊が生

後で使う場合

やっぱりやばくない?

実はかばくない?

ショートカットできるし **左みたいなの考えなくて** いいんでは

実はやっぱりやばくない!

この辺で利して小下つ

後で使う場合

やっぱりやばくない?

元からある氷塊

こういう往復運動でしか使わなくてもよいのでは?

こういう往復運動でしか使わなくてもよいのでは?

証明しよう!

簡単な証明

簡単な証明

簡単な証明

⇒ショートカット可能!

つまり

こういう辺を張って**最短路**を求めれば 良いのでは???? (Dijkstra)

つまり

こういう辺を張って**最短路**を求し 良いのでは????? (Dijk:

↓ - これは非自明

往復だけ考えたらあとは氷塊は無視してよい

元からある氷塊

往復以外で新しい氷塊を使わない

往復以外で新しい氷塊を使わない

往復以外で新しい氷塊を使わない

往復以外で新しい氷塊を使わない

往復以外で新しい氷塊を使わない

往復以外で新しい氷塊を使わない

往復以外で新しい氷塊を使わない

小課題 2 (65点)

これで Dijkstra すれば、頂点数 $\mathcal{O}(RC)$ 各頂点の次数が $\mathcal{O}(R+C)$ なので計算量は

 $\mathcal{O}(RC(R+C)\log RC)$

(queue を O(R+C) 個使えば log は消える)

実はこれは無駄が多い

これだけで問題ない

よくある, こういうのを

こうするやつ

よくある, こういうのを

各頂点の次数が $\mathcal{O}(1)$ になって全体で $\mathcal{O}(RC \log RC)$ または $\mathcal{O}(RC)$

こうするやつ

得点分布

