# CS448 PSO Week 4

CS448 staff

### Example

- Consider the relation
  - Contracts(contractId, supplierId, projectId, deptId, partId, qty, value)
  - We will denote this relation schema by listing the attributes CSJDPQV
- Functional dependencies
  - o C is the key
    - $\blacksquare$  C $\rightarrow$ CSJDPQV
  - Project purchases each part using single contract
    - JP→C
  - Dept purchases at most one part from a supplier
    - $\blacksquare$  SD $\rightarrow$ P
  - Each project deals with a single supplier
    - $J \rightarrow S$

- Schema: <u>CSJDPQV</u>
- FDs:  $\{SD \rightarrow P, J \rightarrow S, JP \rightarrow C\}$
- FDs violate BCNF

- Schema: <u>CSJDPQV</u>
- FDs:  $\{SD \rightarrow P, J \rightarrow S, JP \rightarrow C\}$
- FDs violate BCNF

SD is not a key,  $SD \rightarrow P$  causes violation of BCNF



- Schema: <u>CSJDPQV</u>
- FDs:  $\{SD \rightarrow P, J \rightarrow S, JP \rightarrow C\}$
- FDs violate BCNF

 $\rm J$  is not a key,  $\rm J{\to}S$  causes violation of BCNF



## Alternatives in decomposing into BCNF

- Schema: <u>CSJDPQV</u>
- FDs:  $\{SD \rightarrow P, J \rightarrow S, JP \rightarrow C\}$
- FDs violate BCNF

Order in which we deal with the FDs, can lead to very different sets of relations



### Which alternative should be used?

# Choose the alternatives based on the semantics of the application. Example:

R=(course id, course name, course abbreviation, year, instructor)

- $\circ$  course abbreviation  $\rightarrow$  course name
- $\circ$  course name, year  $\rightarrow$  instructor

#### The most frequently used query:

> selecting instructors given the course name and year.

#### Two decompositions:

- (course name, course abbreviation) and (course id, course abbreviation, year, instructor)
- (course name, year, instructor) and (course id, course name, course abbreviation, year)

Decomposed schema: <u>SDP</u>, <u>JS</u>, <u>CJDQV</u>

- √ lossless join decomposition
- X dependency preserving decomposition



### Example 2: dependency-preserving decomposition into 3NF

- Schema: <u>CSJDPQV</u>
- FDs:  $\{SD \rightarrow P, J \rightarrow S, JP \rightarrow C\}$
- $SD \rightarrow P$ ,  $J \rightarrow S$  violate 3NF

**C**SJDPQV

### Example 2: dependency-preserving decomposition into 3NF

- Schema: <u>CSJDPQV</u>
- FDs:  $\{SD \rightarrow P, J \rightarrow S, JP \rightarrow C\}$
- SD→P, J→S violate 3NF

Dependency  $JP \rightarrow C$  is not preserved



### Example 2: dependency-preserving decomposition into 3NF

- Schema: <u>CSJDPQV</u>
- FDs:  $\{SD \rightarrow P, J \rightarrow S, JP \rightarrow C\}$
- SD→P, J→S violate 3NF

Add a relation schema: CJP



### Create views to consolidate a non-preserved FD

- Use materialized views to consolidate a non-preserved FD into one table
- Check the FD in that materialized view by making LHS of the FD the key for the view
- > But will need to maintain the views when the base tables get updated

## 3NF synthesis

- ➤ Take all the attributes over the original relation R and a minimal cover F for the FDs that hold over it, and add a relation schema XA to the decomposition of R for each FD X→A in F.
- ➤ If no decomposed table contains a candidate key for R, add a relation schema of any candidate key for R.

### Minimal cover

Minimal (Canonical) Cover for a set F of FDs is a set G of FDs such that:

- 1. Every dependency in G is of the form  $X \rightarrow A$ , where A is a single attribute
- 2. The closure  $F^+$  is equal to the closure  $G^+$
- 3. If we obtain a set H of dependencies from G by deleting one or more dependencies or by deleting attributes from a dependency in G, then  $F^+ \neq H^+$

### Example 3: find the minimal cover set

#### Let F be the set of dependencies:

$$A \rightarrow B$$
,  $ABCD \rightarrow E$ ,  $EF \rightarrow G$ ,  $EF \rightarrow H$ ,  $ACDF \rightarrow EG$ 

- 1. Rewrite ACDF→EG to: ACDF→E, ACDF→G
- 2. Delete  $ACDF \rightarrow G$  (redundant), implied by  $A \rightarrow B$ ,  $ABCD \rightarrow E$ ,  $EF \rightarrow G$ )
- 3. Delete ACDF→E (redundant)
- 4. Minimize left side of ABCD $\rightarrow$ E to ACD $\rightarrow$ E, since A $\rightarrow$ B holds

#### Thus, a minimal cover for F is the set:

$$A \rightarrow B$$
,  $ACD \rightarrow E$ ,  $EF \rightarrow G$ ,  $EF \rightarrow H$ 

## General algorithm for obtaining a minimal cover set

- 1. Put the FDs in a standard form (single attribute on the right)
- 2. Minimize the left side of each FD
- 3. Delete redundant FDs

- Schema: <u>CSJDPQV</u>
- FDs:  $\{C \rightarrow CSJDPQV, JP \rightarrow C, SD \rightarrow P, J \rightarrow S\}$
- Find the minimal cover set

- Schema: <u>CSJDPQV</u>
- FDs:  $\{C \rightarrow CSJDPQV | JP \rightarrow C, SD \rightarrow P, J \rightarrow S\}$
- Find the minimal cover set

$$C \rightarrow S, C \rightarrow J, C \rightarrow D, C \rightarrow P, C \rightarrow Q, C \rightarrow V, JP \rightarrow C, SD \rightarrow P, J \rightarrow S$$

- Schema: <u>CSJDPQV</u>
- FDs:  $\{C \rightarrow CSJDPQV, JP \rightarrow C, SD \rightarrow P, J \rightarrow S\}$
- Find the minimal cover set

$$C \rightarrow S$$
,  $C \rightarrow J$ ,  $C \rightarrow D$ ,  $C \rightarrow P$   $C \rightarrow Q$ ,  $C \rightarrow V$ ,  $JP \rightarrow C$ ,  $SD \rightarrow P$ ,  $J \rightarrow S$ 

- Schema: <u>CSJDPQV</u>
- FDs:  $\{C \rightarrow CSJDPQV, JP \rightarrow C, SD \rightarrow P, J \rightarrow S\}$
- Find the minimal cover set

$$C \rightarrow S$$
,  $C \rightarrow J$ ,  $C \rightarrow D$ ,  $C \rightarrow P$ ,  $C \rightarrow Q$ ,  $C \rightarrow V$ ,  $JP \rightarrow C$ ,  $SD \rightarrow P$ ,  $J \rightarrow S$ 

- Schema: <u>CSJDPQV</u>
- FDs:  $\{C \rightarrow CSJDPQV, JP \rightarrow C, SD \rightarrow P, J \rightarrow S\}$
- Find the minimal cover set

$$C \rightarrow S$$
,  $C \rightarrow J$ ,  $C \rightarrow D$ ,  $C \rightarrow P$ ,  $C \rightarrow Q$ ,  $C \rightarrow V$ ,  $JP \rightarrow C$ ,  $SD \rightarrow P$ ,  $J \rightarrow S$ 

- Schema: <u>CSJDPQV</u>
- FDs:  $\{C \rightarrow CSJDPQV, JP \rightarrow C, SD \rightarrow P, J \rightarrow S\}$
- Find the minimal cover set

$$C \rightarrow S, C \rightarrow J, C \rightarrow D, C \rightarrow P, C \rightarrow Q, C \rightarrow V, JP \rightarrow C, SD \rightarrow P, J \rightarrow S$$

- > Schemas: CJ, CD, CQ, CV, SDP, JS, JPC
- ➤ (Optional) Combine: CJDQVP, SDP, JS
- CJDQVP is a superkey

### Case Study: The Internet shop

#### Relations:

- Books (<u>isbn</u>, title, author, qty\_in\_stock, price, year\_published)
- Customers (cid, cname, address)
- Orders (<u>ordernum, isbn</u>, cid, cardnum, qty, order\_date, ship\_date)

## Case Study: The Internet shop

#### Relations:

- Books(<u>isbn</u>, title, author, qty\_in\_stock, price, year\_published)
- Customers( $\underline{\text{cid}}$ , cname, address)
- Orders(<u>ordernum</u>, <u>isbn</u>, cid, cardnum, qty, order date, ship date)

#### Functional Dependencies:

- Books has one key: isbn. No other FDs
- Customers has one key: cid. No other FDs
- Orders has key: (ordernum, isbn).
  - Other FDs: ordernum→cid, ordernum→order\_date, ordernum→cardnum

### Decomposition

- Schema: Orders(<u>ordernum</u>, <u>isbn</u>, cid, cardnum, qty, order\_date, ship\_date)
- FDs: ordernum—cid, ordernum—order date, ordernum—cardnum



### References

1. "The cow book": Database management systems by Raghu Ramakrishnan and Johannes Gehrke

