Started on Saturday, 21 October 2023, 10:50 AM

State Finished

Completed on Saturday, 21 October 2023, 11:29 AM

Time taken 39 mins 14 secs

Grade 9.00 out of 10.00 (**90**%)

Question **1**

Correct

Mark 1.00 out of 1.00

Select one:

- $||\bar{s}||^2$
- $|2||\bar{s}||^2$
- $\frac{\|\bar{\mathbf{s}}\|}{2}$

Your answer is correct.

The correct answer is: $\frac{\|\bar{\mathbf{s}}\|^2}{2}$

Question **2**

Correct

Mark 1.00 out of 1.00

Select one:

$$\bigcirc \operatorname{Pr}(\mathcal{H}_0) P_{FA} + \operatorname{Pr}(\mathcal{H}_1) P_D$$

•
$$Pr(\mathcal{H}_0) P_{FA} + Pr(\mathcal{H}_1) P_{MD} \checkmark$$

The probability of error for detection can be evaluated as

$$\bigcirc \operatorname{Pr}(\mathcal{H}_1) P_{FA} + \operatorname{Pr}(\mathcal{H}_0) P_D$$

$$\bigcirc \operatorname{Pr}(\mathcal{H}_1) P_{FA} + \operatorname{Pr}(\mathcal{H}_0) P_{MD}$$

Your answer is correct.

The correct answer is: $\Pr(\mathcal{H}_0) P_{FA} + \Pr(\mathcal{H}_1) P_{MD}$

Question **3**

Correct

Mark 1.00 out of 1.00

The probability of error for the ML detector in the signal detection problem is

The threshold γ for the ML detection in the signal detection problem is given as

Select one:

$$Q\left(\frac{\|\bar{\mathbf{s}}\|}{\sigma}\right)$$

$$Q\left(\frac{\|\bar{\mathbf{s}}\|}{2\sigma}\right) \checkmark$$

$$Q\left(\frac{2\|\bar{\mathbf{s}}\|}{\sigma}\right)$$

$$Q\left(\frac{\|\bar{\mathbf{s}}\|^2}{2\sigma^2}\right)$$

Your answer is correct.

The correct answer is: $Q\left(\frac{\|\bar{\mathbf{s}}\|}{2\sigma}\right)$

Question **4**

Correct

Consider the signal

Mark 1.00 out of 1.00

♥ Flag question

$$\bar{\mathbf{s}} = \begin{bmatrix} 4 \\ 4 \\ -4 \\ -4 \end{bmatrix}$$

and noise variance $\sigma^2 = 3 \, dB$. The probability of error of the ML detector is

Select one:

- $Q\left(\frac{1}{\sqrt{2}}\right)$
- $Q(\sqrt{2})$
- $Q(2\sqrt{2}) \checkmark$
- $Q\left(\frac{1}{4}\right)$

Your answer is correct.

The correct answer is: $Q(2\sqrt{2})$

Question **5**

Correct

Mark 1.00 out of 1.00

For the Amplitude Shift Keying (ASK) constellation with

$$\frac{E_b}{N_0} = 6 \ dB_t$$
 the BER is given as

Select one:

- Q(1)
- $Q(\sqrt{2})$
- Q(2)
 ✓
- $Q(2\sqrt{2})$

Your answer is correct.

The correct answer is: Q(2)

Question **6**

Correct

Mark 1.00 out of 1.00

Flag question

Let detector choose \mathcal{H}_1 when $\overline{\mathbf{y}} \in R_1$ and \mathcal{H}_0 when $\overline{\mathbf{y}} \in R_0$. The probability of detection is given as

Select one:

$$\bigcirc \int_{R_1} p(\bar{\mathbf{y}}; \mathcal{H}_0) \, d\bar{\mathbf{y}}$$

$$\int_{R_0} p(\bar{\mathbf{y}}; \mathcal{H}_1) \, d\bar{\mathbf{y}}$$

$$\bigcirc \int_{R_0} p(\bar{\mathbf{y}}; \mathcal{H}_0) \, d\bar{\mathbf{y}}$$

Your answer is correct.

The correct answer is: $\int_{R_1} p(ar{f y}; {\cal H}_1) \, dar{f y}$

Question **7**

Correct

Let detector choose \mathcal{H}_1 when $\overline{\mathbf{y}} \in R_1$ and \mathcal{H}_0 when $\overline{\mathbf{y}} \in R_0$. The probability of false alarm is given as

Mark 1.00 out of 1.00

Select one:

$$\bigcirc \int_{R_0} p(\bar{\mathbf{y}}; \mathcal{H}_1) \, d\bar{\mathbf{y}}$$

$$\bigcirc \int_{R_1} p(\bar{\mathbf{y}}; \mathcal{H}_1) \, d\bar{\mathbf{y}}$$

$$\bigcirc \int_{R_0} p(\bar{\mathbf{y}}; \mathcal{H}_0) d\bar{\mathbf{y}}$$

Your answer is correct.

The correct answer is: $\int_{R_1} p(ar{\mathbf{y}}; \mathcal{H}_0) \, dar{\mathbf{y}}$

Question **8**

Incorrect

Mark 0.00 out of 1.00

Let detector choose \mathcal{H}_1 when $\overline{\mathbf{y}} \in R_1$ and \mathcal{H}_0 when $\overline{\mathbf{y}} \in R_0$. We must have

Select one:

$$\int_{R_1} p(\bar{\mathbf{y}}; \mathcal{H}_0) d\bar{\mathbf{y}} + \int_{R_1} p(\bar{\mathbf{y}}; \mathcal{H}_1) d\bar{\mathbf{y}} = 1$$

$$\int_{R_1} p(\bar{\mathbf{y}}; \mathcal{H}_0) d\bar{\mathbf{y}} + \int_{R_0} p(\bar{\mathbf{y}}; \mathcal{H}_1) d\bar{\mathbf{y}} = 1$$

$$\int_{R_1} p(\overline{\mathbf{y}}; \mathcal{H}_0) d\overline{\mathbf{y}} + \int_{R_0} p(\overline{\mathbf{y}}; \mathcal{H}_0) d\overline{\mathbf{y}} = 1$$

Your answer is incorrect.

The correct answer is:
$$\int_{R_1} p(\bar{\mathbf{y}}; \mathcal{H}_0) \, d\bar{\mathbf{y}} + \int_{R_0} p(\bar{\mathbf{y}}; \mathcal{H}_0) \, d\bar{\mathbf{y}} = 1$$

Question **9**

Correct

Mark 1.00 out of 1.00

▼ Flag question

The optimal detector

Select one:

- \bigcirc Maximizes sum of P_D and P_{FA}
- \bigcirc Maximizes both P_D and P_{FA}
- \bigcirc Maximizes P_D for a given P_{FA}
- \bigcirc Minimizes P_D for a given P_{FA}

Your answer is correct.

The correct answer is: Maximizes P_D for a given P_{FA}

Question 10

Correct

Mark 1.00 out of 1.00

 $\ensuremath{\mathbb{V}}$ Flag question

The optimal detector for the binary hypothesis testing according to the Neyman-Pearson (NP) criterion is given by the

Select one:

- Maximum Likelihood
- Likelihood Ratio Test
- Minimum Mean Squared Error
- Maximum Aposteriori Probability Rule

Your answer is correct.

The correct answer is: Likelihood Ratio Test

Finish review