MATH 547/ BIOINF 547: Mathematics of Data

Date: April 19, 2019 Due date: April 28, 2019

Problem Set 4: The goal of the following problems is to refresh your memory about PCA, MDS and SVD.

- 1. Principal component analysis (PCA): Take any digit data ('0',...,'9'), or all of them, from this website: http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/zip.digits/ (data info here, full gzipped data download here), and perform PCA.
 - (a) Set up data matrix Set up data matrix $\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_n) \in \mathbb{R}^n$ and compute the sample mean μ_n and form $\mathbf{Y} = \mathbf{X} e\mu_n^T$.
 - (b) Compute top k SVD of $\mathbf{Y} = \mathbf{USV}^T$.
 - (c) Plot eigenvalue curve, i.e. i vs. $\frac{\lambda_i(\mathbf{M})}{\sum \lambda_i(\mathbf{M})}$ (i = 1, ..., k), with top-k eigenvalue λ_i for sample covariance matrix $\mathbf{M} = \frac{1}{n} \mathbf{Y} \mathbf{Y}^T$, which gives you explained variation of data by principal components.
 - (d) Use imshow to visualize the mean and top-k principle components as left singular vectors $\mathbf{U} = [\mathbf{u}_1, ..., \mathbf{u}_k]$.
 - (e) For k = 1, sort the image data $(\mathbf{x}_i)(i = 1, ..., n)$ according to the top right singular vectors, \mathbf{v}_1 , in an ascending order. For k = 2, make a scatter plot $(\mathbf{v}_1, \mathbf{v}_2)$ and show those images on a grid in such a plane (e.g. Figure 14.23 in book Elements of Statistical Learning [1]).
- 2. Multidimensional scaling (MDS) of cities: Visit the following website to perform the following exercise. http://geobytes.com/citydistancetool/
 - (a) Input a few cities (no less than 7), and collect the pairwise air traveling distances shown on the website into a matrix \mathbf{D} .
 - (b) Make your own codes for the MDS algorithm for **D**;
 - (c) Plot the normalized eigenvalues $\frac{\lambda_i}{\sum \lambda_i}$ in a descending order of magnitudes, analyze your observations (did you see any negative eigenvalues? if yes, why?).
 - (d) Make a scatter plot of those cities using top 2 or 3 eigenvectors, and analyze your observations.
- 3. Singular Value Decomposition (SVD): One of the best references for the SVD is Chapter 2 in the book Matrix Computations (Golub and Van Loan, 3rd edition [2]).
 - (a) **Existence**: Prove the existence of the SVD. That is, show that if **A** is an $m \times n$ real valued matrix, then $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$, where **U** is an $m \times m$ orthogonal matrix, **V** is an $n \times n$ orthogonal matrix, and $\mathbf{S} = \operatorname{diag}(\sigma_1, \sigma_1, ..., \sigma_p)$ (where $p = \min\{m, n\}$) is an $m \times n$ diagonal matrix. It is conventional to order the singular values in decreasing order: $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0$. Determine to what extent the SVD is unique. (See Theorem 2.5.2, page 70 in Golub and Van Loan).
 - (b) Best rank-k approximation Frobenius norm: Show that the SVD also provides the best rank-k approximation for the Frobenius norm, that is, $\mathbf{A}_k = \mathbf{U}\mathbf{S}_k\mathbf{V}^T$ satisfies

$$\|\mathbf{A} - \mathbf{A}_k\|_F = \min_{rank(B)=k} \|\mathbf{A} - \mathbf{B}\|_F$$

References

- [1] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. *The elements of statistical learning*, volume 1. Springer series in statistics New York, 2001.
- [2] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU press, 2012.