Foundations of Audio Signal Processing Assignment 3

Giulia Baldini, Luis Fernandes, Agustin Vargas Toro November 17, 2018

Exercise 4.1

$$\begin{split} \|\sum_{j=1}^n x_j\|^2 &= \langle \sum_{j=1}^n x_j, \sum_{i=1}^n x_i \rangle \text{ Scalar product norm definition} \\ &= \sum_{i,j=1}^n \langle x_j, x_i \rangle \qquad \text{ Linearity of scalar product} \\ &= \sum_{j=1}^n \langle x_j, x_j \rangle \qquad \text{ Ortogonality of } x_j \\ &= \sum_{j=1}^n \|x_j\|^2 \qquad \text{ Scalar product norm definition} \end{split}$$

Exercise 4.2

a.
$$d(x,y) = |x - y|$$

b.
$$d(x,y) = |x| \cdot |y|$$

In this case the second property (d(x,y) = 0 iff x = y) does not hold because d(x,y) = 0 with x = 0 and y = 2 - 5i.

c.
$$d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & \text{else} \end{cases}$$

 $\forall x, y, z \in \mathcal{C}$:

- 1. $d(x,y) \ge 0$ holds, because the possible values are 0, 1.
- 2. d(x,y) = 0 iff x = y holds for the definition of d(x,y).
- 3. d(x,y) = d(y,x) holds, because $x \neq y$ and $y \neq x$ are the same.
- 4. $d(x, z) \le d(x, y) + d(y, z)$ holds because if $x \ne y \ne z$ then $1 \le 1 + 1$. If $x = y \ne z$ then $1 \le 0 + 1$. If $x \ne y = z$ then $1 \le 1 + 0$. If $x = z \ne y$ then $0 \le 1 + 1$. If x = y = z then $0 \le 0 + 0$.

Exercise 4.3

a-b. The solutions can be found inside the code folder.

Exercise 4.4

a-b. The solutions can be found inside the code folder.