Bài số 4

ĐẠO HÀM HÀM NGƯỢC. ĐẠO HÀM CẤP CAO

I. Hàm ngược. Đạo hàm của hàm ngược

a. Định nghĩa: Cho hàm số:

$$f: X \longrightarrow Y$$
$$x \longrightarrow y = f(x)$$

Nếu tương ứng ngược : $Y \rightarrow X$ sao cho $y \rightarrow x \mid y = f(x)$ cũng là một hàm số thì ta nói rằng hàm số y = f(x) có hàm số ngược

$$f^{-1}: Y \rightarrow X$$

 $y \rightarrow x = f^{-1}(y)$

Có hàm số ngược $f^{-1}(x)$

Không có hàm số ngược

b. Công thức hàm số ngược: Xét hàm số:

$$f: X \longrightarrow Y$$

$$x \longrightarrow y = f(x)$$

Xét phương trình ẩn x: f(x) = y (*)

Nếu với mỗi $y \in Y$ phương trình (*) có duy nhất một nghiệm $x \in X$ thì hàm số y = f(x) có hàm số ngược :

$$f^{-1}: Y \rightarrow X$$

 $y \rightarrow x = f^{-1}(y)$

trong đó $x = f^{-1}(y)$ chính là công thức nghiệm duy nhất của phương trình (*).

c Điều kiện tồn tại hàm số ngược

<u>Khái niệm</u>: Hàm số y = f(x) được gọi là hàm một – một nếu với $x_1 \neq x_2$ thì ta có $f(x_1) \neq f(x_2)$.

Không là hàm một - một

Nhận xét: + Hàm y = f(x) là hàm một — một trên một miền nào đó thì một đường thẳng cùng phương với truc hoành sẽ cắt đồ thi của hàm số trên miền đó nhiều nhất tai một điểm.

+ Một hàm số đơn điều là hàm một — một.

<u>Điều kiên</u>: Nếu y = f(x) là hàm số một — một có TXĐ là X và MGT là Y. Khi đó tồn tại hàm ngược f^{-1} với MXĐ là Y và TXĐ là X, hơn nữa $y = f(x) \Leftrightarrow x = f^{-1}(y)$.

1 o S 3 o N 8 o A 7 8 o A 7 Y

<u>Chú ý :</u> : + Nếu y = f(x) có hàm ngược f^{-1} thì

$$+ f^{-1}(f(x)) = x, \quad \forall x \in X.$$

+
$$f(f^{-1}(y)) = y$$
, $\forall y \in Y$

d. Đồ thị : Nếu y=f(x) có hàm số ngược $y=f^{-1}(x)$ thì đồ thị của hai hàm số đó sẽ đối xứng nhau qua đường phân giác thứ nhất y=x.

e. Hàm ngược của một số hàm sơ cấp

i) Hàm số:

$$f: \quad \mathbb{R}^+ \to \quad \mathbb{R}^+$$

$$x \quad \mapsto \quad y = f(x) = \sqrt{x}$$

có hàm số ngược là $y = x^2$.

ii) Hàm số ngược của hàm $y = \sin x$:

Nếu xét hàm số:

$$\sin : \left[-\pi / 2, \pi / 2 \right] \rightarrow \left[-1, 1 \right]$$

$$x \rightarrow y = \sin x$$

Khi đó tồn tại hàm số ngược:

$$\sin^{-1} : [-1,1] \rightarrow [-\pi/2, \pi/2]$$

 $y \rightarrow x = \sin^{-1} y$

• <u>Chú ý:</u> $a = \sin^{-1} b = \arcsin b$ chính là số đo góc mà $\sin a = b$.

- Ví dụ 1: $\sin \frac{\pi}{6} = \frac{1}{2} \Leftrightarrow \frac{\pi}{6} = \sin^{-1} \frac{1}{2} = \arcsin \frac{1}{2}$.
- Ví dụ 2: Giải phương trình $\sin x = \frac{1}{3}$

Ta viết nghiệm :
$$x=\sin^{-1}(1 \mathbin{/} 3) + k2\pi$$

$$x=\pi-\sin^{-1}(1 \mathbin{/} 3) + k2\pi$$

iii) Hàm ngược của hàm cosine: Tương tự, nếu xét

$$\cos : \begin{bmatrix} 0, \pi \end{bmatrix} \quad \to \quad \begin{bmatrix} -1, 1 \end{bmatrix}$$

$$x \quad \to \quad y = \cos x$$

Khi đó sẽ tồn tại hàm ngược : $y = \cos^{-1} x$.

iv. Hàm ngược của hàm tang

Xét hàm số:

$$\tan : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow (-\infty, \infty)$$

$$x \rightarrow y = \tan x$$

khi đó tồn tại hàm số ngược $\tan^{-1}:(-\infty,+\infty) \to \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Chú ý: $a = \tan^{-1} b$ chính là số đo của góc mà $\tan b = a$. Đồ thị của hàm $y = \tan^{-1} x$ là đường đậm nét ở Hình 9.19.

v. Hàm ngược của hàm cotang:

Khi xét

$$\cot x : (0, \pi) \to (-\infty, \infty)$$

$$x \to y = \cot x$$

Tương tự: Hàm $y = \operatorname{arccot} x = (\cot)^{-1}(x)$.

f. Đạo hàm của hàm ngược

Cho hàm y=f(x) là hàm liên tục, một – một trên khoảng (a,b). Khi đó tồn tại hàm ngược $x=f^{-1}(y)$ xác định trong lân cận của y_0 với $y_0=f(x_0)$. Giả sử y=f(x) có đạo hàm tại x_0 và $f(x_0)\neq 0$, thì hàm ngược

$$x=f^{-1}(y) \text{ sẽ có đạo hàm tại } y_0 \text{ và } \left[f^{-1}\right]^{\text{'}}(y_0)=\frac{1}{f^{\text{'}}\!\left(x_0\right)}.$$

Ví dụ 3: Hàm số
$$y = f(x) = \sqrt{x}$$
 có hàm ngược $x = f^{-1}(y) = y^2$

$$\text{Ta c\'o}: f'(x) = \frac{1}{2\sqrt{x}}, \quad \forall x > 0 \ ; \quad \left[f^{-1}\right]'(y) = 2y = 2\sqrt{x} = \frac{1}{\frac{1}{2\sqrt{x}}} = \frac{1}{f'(x)}, \ \forall x > 0 \ .$$

Bảng các đạo hàm các hàm cơ bản.

y = f(x)	y = f'(x)	y = f(x)	y = f'(x)
y = C	y' = 0	$y = \log_a x$	$y' = \frac{1}{x \ln a}$
$y = x^{\alpha}, \alpha \in \mathbb{R}$	$y' = \alpha x^{\alpha - 1}$		4
$y = \sin x$	$y' = \cos x$	$y = \ln x$	$y' = \frac{1}{x}$
$y = \cos x$	$y = -\sin x$. 1
,	$y' = \frac{1}{\cos^2 x}$	$y = \arcsin x$	$y' = \frac{1}{\sqrt{1 - x^2}}$
$y = \tan x$	$\cos^2 x$	$y = \arccos x$	$u' = \underline{-1}$
$y = \cot x$	1	9	$y' = \frac{-1}{\sqrt{1 - x^2}}$
J	$y' = -\frac{1}{\sin^2 x}$	$y = \arctan x$	$y' = \frac{1}{1+x^2}$
$y = a^x$	$y' = a^x \ln a$		$1+x^2$
$y = e^x$	$y' = e^x$	$y = \operatorname{arccot} x$	$y' = \frac{-1}{1+x^2}$
y	Ü		1 + x

Kết hợp với đạo hàm của hàm hợp ta có

• Ví dụ 4. Ta có:
$$\frac{d}{dx}e^{4x} = ?;$$
 $\frac{d}{dx}e^{x^2} = ?;$ $\frac{d}{dx}e^{1/x} = ?.$
$$\frac{d}{dx}\ln(3x+1) = ?;$$
 $\frac{d}{dx}\ln(1-x^2) = ?;$ $\frac{d}{dx}\ln\left(\frac{3x}{2x+1}\right) = ?,$

• Ví dụ 5. Tìm đạo hàm của các hàm dưới đây:

a)
$$y = \sin 5x$$
;

b)
$$y = \sin \sqrt{x}$$
;

$$c) \quad y = \cos(2 - 3x^4)$$

Tìm đạo hàm của các hàm dưới đây:

a)
$$y = \sin^3 4x$$

b)
$$y = e^{\cos x}$$

c)
$$y = \ln(\sin x)$$

b)
$$y = e^{\cos x}$$
 c) $y = \ln(\sin x)$ d) $y = \sin(\ln x)$

• Ví dụ 6. Chứng tổ rằng $\frac{d}{dx} \left| \frac{1}{3} \cos^3 x - \cos x \right| = \sin^3 x$

II.Vi phân

a. Định nghĩa: Cho hàm số y=f(x) xác định tại x_0 và lân cận của x_0 . Cho số gia Δx , nếu số gia của hàm số $\Delta y=f(x_0+\Delta x)-f(x_0)$ có thể viết được dưới dạng :

$$\Delta y = A \Delta x + o(\Delta x) \text{ trong đó } A \text{ chỉ phụ thuộc } x_0 \text{ và } \lim_{\Delta x \to 0} \frac{o(\Delta x)}{\Delta x} = 0$$

thì ta nói rằng hàm số y=f(x) khả vi tại x_0 và biểu thức $A\Delta x$ được gọi là vi phân của hàm số y=f(x) tại x_0 và được ký hiệu là dy. Như vậy: $dy=df=A.\Delta x$.

b. Liên hệ giữa đạo hàm và vi phân

- + Nếu hàm số y=f(x) khả vi tại x_0 thì nó có đạo hàm tại x_0 ; ngược lại nếu hàm số y=f(x) có đạo hàm tại x_0 thì nó khả vi tại x_0 và : $dy=df=f'(x).\Delta x$.
- + Tuy nhiên : Nếu y = f(x) = x thì f'(x) = 1 nên $dy = dx = \Delta x$, do đó : dy = df = f'(x)dx
- + Và từ đó ta có : $f'(x) = \frac{dy}{dx}$.

Ví dụ 1: $y = x^2 \Rightarrow \frac{dy}{dx} = 2x \Leftrightarrow dy = 2x.dx$.

c. Quy tắc tính vi phân. Quy tắc tính đạo hàm dẫn đến các công thức vi phân tương ứng.

$$\frac{d}{dx}c = 0 \qquad d(c) = 0$$

$$\frac{d}{dx}u^{n} = nu^{n-1}\frac{du}{dx} \qquad d(x^{n}) = nx^{n-1}dx$$

$$\frac{d}{dx}(cu) = c\frac{du}{dx} \qquad d(cu) = cdu$$

$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx} \qquad d(u+v) = du + dv$$

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx} \qquad d(uv) = vdu + udv$$

$$\frac{d}{dx}(\frac{u}{v}) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^{2}} \qquad d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^{2}}$$

$$\frac{d}{dx}u^{n} = nu^{n-1}\frac{du}{dx} \qquad d(u^{n}) = nu^{n-1}du$$

Ví dụ 2. Giả sử $y = x^4 + 3x^2 + 7$ tìm dy

Giải : + Cách 1 : Một cách để làm là tìm đạo hàm

$$\frac{dy}{dx} = 4x^3 + 6x$$

và nhân với dx

$$dy = (4x^3 + 6x)dx$$

+ <u>Cách 2</u>: Chúng ta cũng có thể dùng các công thức vi phân ở trên

$$dy = d(x^4 + 3x^2 + 7) = d(x^4) + 3d(x^2) + d(7)$$
$$= 4x^3 dx + 6x dx = (4x^3 + 6x)dx$$

Ví dụ 3. Tính
$$d\left(\frac{x^2}{\sqrt{x^2+1}}\right)$$

Giải: + Dùng công thức vi phân của một thương:

$$d\left(\frac{x^2}{\sqrt{x^2+1}}\right) = \frac{\sqrt{x^2+1}.d(x^2) - x^2d(\sqrt{1+x^2})}{x^2+1}$$

$$d\left(\frac{x^2}{\sqrt{x^2+1}}\right) = \frac{2x\sqrt{x^2+1}dx - \frac{x^3dx}{\sqrt{x^2+1}}}{x^2+1} = \frac{x^3+2x}{(x^2+1)^{3/2}}dx.$$

Ví du 4: Giả thiết rằng y là một hàm khả vi đối với x và thỏa mãn phương trình:

$$x^2y^3 - 2xy + 5 = 0.$$

Hãy sử dụng vi phân để tìm $\frac{dy}{dx}$.

Giải: + Lấy vi phân 2 vế phương trình ta có:

$$2xy^3dx + 3x^2y^2dy - 2ydx - 2xdy = 0$$

hay là

$$\left(3x^2y^2 - 2x\right)dy = \left(2y - 2xy^3\right)dx,$$

+ Kết quả:

$$\frac{dy}{dx} = \frac{2y - 2xy^3}{3x^2y^2 - 2x} \text{ v\'oi d\'/k } 3x^2y^2 - 2x \neq 0.$$

d. Ứng dụng của vi phân trong tính gần đúng (tự đọc)

Xét hàm số y = f(x) khả vi trong lân cận của $x_0 \in (a,b)$. Theo công thức số gia của hàm khả vi ta có

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \cdot \Delta x$$

• Ví dụ: Tính xấp xỉ ln 11.

Giải: + Xét
$$f(x) = \ln x$$
, $x_0 = 10$, $\Delta x = 1$

+ Áp dụng
$$f(x_{_0}+\Delta x)\approx f(x_{_0})+f\,{}^{\rm t}(x_{_0}).\Delta x\qquad {\rm ta~c\acute{o}}$$

$$ln 11 = ln(10+1) \approx ln 10 + \frac{1}{10 \cdot ln 10} \cdot 1 \approx 1,043.$$

III. Đạo hàm và vi phân cấp cao

1. Đinh nghĩa

Cho hàm số y = f(x) xác đinh trong khoảng (a, b). Giả sử hàm số y = f(x) có đạo hàm y' = f'(x) và f'(x) có đạo hàm thì ta gọi đạo hàm của nó là đạo hàm cấp hai của hàm y = f(x).

$$Ki\ hi\hat{e}u$$
: $y" = f"(x) = [f'(x)]'$.

Tương tự ta có đạo hàm cấp n của hàm $y=f(x)\colon \ y^{(n)}(x)=\left[y^{(n-1)}(x)\right]'$.

Ví dụ 1: Cho hàm số $y = e^{-x^2}$. Tính y'''?

Ta có:
$$y' = -2xe^{-x^2}$$

$$y'' = -2e^{-x^2} + 4x^2e^{-x^2} = e^{-x^2}(4x^2 - 2)$$

$$y''' = -2xe^{-x^2}(4x^2 - 2) + 8xe^{-x^2} = 4e^{-x^2}(3x - 2x^3).$$

2. Các qui tắc lấy đao hàm cấp cao

1) Với bất kì hàm số f,g có đạo hàm cấp n và $\lambda,\mu\in R$, ta có

$$(\lambda f(x) + \mu g(x))^{(n)} = \lambda f^{(n)}(x) + \mu g^{(n)}(x).$$

2) *Qui tắc Leibniz*: Với bất kì hàm số f,g có đạo hàm cấp n ta có:

$$(fg)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(n-k)} g^{(k)}.$$

Ví du 2: Tính các đạo hàm cấp 100 của hàm số sau:

$$y = x^2 e^{2x}.$$

Áp dung qui tắc Leibniz ta có:

$$y^{(100)} = (x^2 e^{2x})^{(100)} = C_{100}^0 x^2 (e^{2x})^{(100)} + C_{100}^1 (x^2)! (e^{2x})^{(99)} + C_{100}^2 (x^2)'' (e^{2x})^{(98)}$$

Ta có:
$$(e^{2x})^{(n)} = 2^n e^{2x}$$

Do vậy:
$$y^{(100)} = 2^{100}x^2e^{2x} + 100(2x)2^{99}e^{2x} + 4950.2.2^{98}e^{2x} = 2^{100}(x^2 + 100x + 2475)e^{2x}$$
.

<u>Ví du 3</u>: $y = x^2 \sin 2x$. Tính y⁽⁵⁰⁾?

Ta có:
$$y^{(50)} = (x^2 \sin 2x)^{(50)} = x^2 (\sin 2x)^{(50)} + 50(x^2)'(\sin 2x)^{(49)} + 1225.(x^2)''(\sin 2x)^{(48)}$$
 ap dung công thức:

$$(\sin 2x)^{(2n)} = 2^{2n} (-1)^n \sin 2x$$
$$(\sin 2x)^{(2n+1)} = 2^{2n+1} (-1)^n \cos 2x$$

Ta được: $y^{(50)}=x^2\left(-2^{50}\right)\sin 2x+50.2x.2^{49}\cos 2x+1225.2.2^{48}\sin 2x$ $= -2^{50} \left(x^2 \sin 2x - 50x \cos 2x - \frac{1225}{2} \sin 2x \right).$

3. Vi phân cấp cao

Vi phân cấp hai của hàm số f(x) tai một điểm nào đó (nếu có) là vi phân của vi phân (cấp một) df.

Kí hiệu: $d^2f = d(df)$,

Quy nạp ta có: Vi phân cấp n, kí hiệu là $d^n f$ là vi phân cấp một của vi phân cấp (n-1):

$$d^n f = d(d^{n-1}f).$$

Ví du 4: Cho hàm số $f(x) = x^2$. Suy ra df = 2xdx và $d^2f = 2(dx)^2 = 2dx^2$.

ightharpoonup Chú ý: Khi tìm vị phân cấp cao của hàm số ta luôn coi dx như là hàng số.

$$d^{n}y = d(d^{n-1}y) = y^{(n)}dx^{n}.$$

Ví dụ 5: Cho hàm số $y = \ln x$. Tìm d^5y ?

Ta có:
$$d^5y = y^{(5)}dx^5 = \frac{4!}{x^5}dx^5 = \frac{24}{x^5}dx^5$$
.

Bài tập về nhà: Tr. 112, 117 175.

Đọc trước các mục: 4.3; 4.4; 12.1; 12.2; 12.3 chuẩn bị cho Bài số 5

Úng dụng của đạo hàm: Bài toán cực trị. Định lý giá trị trung bình. Quy tắc L'Hospital.