SOLUCIONES A LOS EJERCICIOS DEL CONTROL DEL TEMA 4

Ejercicio 1. Se elige al azar un comité de 2 alumnos de entre 3 delegados de 3°, 2 de 2° y 1 de 1°. Sean $X = \{número de alumnos de 2° en el comité\} e Y = \{número de alumnos de 1° en el comité}. Hallar la Cov <math>(X,Y)$.

Solución: La función de cuantía conjunta viene dada por la tabla

y las marginales

X	0	1	2
f_1	6 15	8 15	1/15

$$\begin{array}{c|cccc} Y & 0 & 1 \\ \hline f_2 & \frac{2}{3} & \frac{1}{3} \end{array}$$

De las tablas se obtiene

$$E(XY) = \frac{2}{15}, \quad E(X) = \frac{2}{3}, \quad E(Y) = \frac{1}{3}.$$

Por tanto

$$\operatorname{Cov}\left(X,Y\right) = \operatorname{E}\left(XY\right) - \operatorname{E}\left(X\right)\operatorname{E}\left(Y\right) = -\frac{4}{45}.$$

Ejercicio 2. La publicidad de ciertos fondos de inversión de alto riesgo afirma que el 40% de los clientes doblan la cantidad invertida; el 10% la triplican, el 35% pierden la mitad y el 15% de los clientes pierden todo lo invertido ¿Cuál es la ganancia esperada si decido invertir 6000 euros?

Solución:

Llamando G = ganancia

se tiene que G = 6000 si se dobla, G = 12000 si se triplica, G = -3000 si se pierde la mitad, y G = -6000 si se pierde todo.

La función de probabilidad es

G	-6000	-3000	6000	12000
f	0'15	0'35	0'4	0'1

La ganancia esperada es

$$E(G) = (-6000 \times 0.15) - (3000 \times 0.35) + (6000 \times 0.4) + (12000 \times 0.1) = 1650$$
 euros.

Ejercicio 3. Se tiene la siguiente función de cuantía de una v. a. (X, Y)

Determínese:

- a) Cov (X, Y)
- b) E(X / Y = 1)

Solución:

(a) Se debe calcular E(X), E(Y) y E(XY). Las distribuciones marginales son

X	0	1	2	3
f_1	1/8	-3/8	-3/8	1/8

Y	1	3
f_2	2/8	6/8

Calculando..

$$\mathbf{E}(X) = 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = \frac{3}{2}$$

•
$$E(Y) = 1 \cdot \frac{2}{8} + 3 \cdot \frac{6}{8} = \frac{5}{2}$$

•
$$E(XY) = 1 \cdot 3 \cdot \frac{3}{8} + 2 \cdot 3 \cdot \frac{3}{8} + 3 \cdot 1 \cdot \frac{1}{8} = \frac{15}{4}$$

Por tanto Cov
$$(X,Y) = \frac{15}{4} - \frac{35}{22} = 0$$

(b) La distribución condicional es

(X Y=1)	0	3	
$g_1(x 1)$	1/2	1/2	

de donde
$$E(X \mid Y = 1) = \frac{3}{2}$$

Ejercicio 4. El número de resfriados que padecen los niños de edad preescolar en un colegio viene dado según la edad por la función de cuantía (función de probabilidad) conjunta:

Edad					
5	0.02	0.07	0.15	0.11	
4	0.03	0.07	0.14	0.09	
3	0.02	0.06	0.14	0.10	
	0	1	2	3	Resfriados

Calcula:

- a) La covarianza
- b) La esperanza del número de resfriados para los niños de 3 años

Solución:

a)

Resfriados X	0	1	2	3
	0.07	0.20	0.43	0.30

Edad Y	
5	0.35
4	0.33
3	0.32

$$E(XY) = 7.90$$

$$E(X) = 1.96$$

$$E(Y) = 4.03$$

$$Cov(X,Y) = 7.90 - (1.96 \cdot 4.03) = 0.0012$$

b)

X Y=3	0	1	2	3
g1(x 3)	0.02/0.32	0.06/0.32	0.14/0.32	0.10/0.32

$$E(X|Y = 3) = 2$$