

Institut für Experimentalphysik der Technischen Universität Graz

&

Institut für Physik der Universität Graz

LABORÜBUNGEN 2: ELEKTRIZITÄT, MAGNETISMUS, OPTIK

Übungstite	E Dünne Line	sen		
Betreuer:	Elena Steinwe	ender		
Gruppennu	mmer: 4	1	Vorbereitung Durchführung Protokoll	Σ
Name:	Tanja Maier, 3	Johannes Winkler		
Kennzahl:	033 678	Matrikelnummer:	11778750, 0076089	97
Datum:	09. Oktober 202	20	Ws <u>20</u>	

1 Aufgabenstellung

- 1. Justieren der optischen Anordnung mittels Laser und Lochblende.
- 2. Die Brennweite einer dünnen Sammellinse ist nach 2.1.1 10 mal für verschiedene Gegenstands und Bildweiten zu messen.
 - Deren Unsicherheiten sind nach Größtunsicherheitsmethode zu bestimmen Das endgültige Messergebnis wird statistische ermittelt.
- 3. Bestimmung der Brennweite durch grafische Auswertung der b^{-1} über g^{-1} Darstellung auf mm-Papier (oder mit einem Programm) gemäß Gleichung (1) mit Angabe der Unsicherheiten $\Delta(g^{-1})$ und $\Delta(b^{-1})$.
- 4. Für 5 verschiedene Gesamtabstände a (siehe Abb. 2) ist die Brennweite derselben Linse nach dem Bessel'schen Verfahren (Abschnitt 2.1.2) zu kontrollieren.
- 5. Es ist nach Abschnitt 2.2.1 die Brennweite der Zerstreuungslinse 10 mal für verschiedene Gegenstands- und Bildweiten zu messen. Das Messergebnis ist statistisch zu ermitteln.
- 6. Einige Linsenfehler/Unsicherheitsfaktoren sollten durch geeignetes Experimentieren dargestellt bzw. abgeschätzt werden.

2 Grundlagen und Versuchsaufbau

2.1 Sammellinse

2.1.1 Laplace'sche Methode

Durch Messen von g und b bei scharfer Abbildung kann die Brennweite f einer dünnen Sammellinse aus der Laplace'schen Abbildungsgleichung bestimmt werden:

$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b} \tag{1}$$

Abbildung 1: Schema des Aufbaues. Bildkonstruktion für einen Objektpunkt nach der geometrischen Optik. g Gegenstandsweite, b Bildweite, f Brennweite, F_1 , F_2 Brennpunkte.

2.1.2 Bessel'sches Verfahren

Hier wird der Grundsatz von der Umkehrbarkeit der Lichtwege ausgenützt. Es gelingt unter der Voraussetzung $g+b>4\cdot f$ für zwei Gegenstands- bzw. Bildweiten je eine reelle Abbildung zu erhalten (Abb. 2). Die Brennweite steht mit der dazu notwendigen Verschiebung e und dem Gesamtabstand g+b=a in folgendem Zusammenhang:

$$f = \frac{1}{4} \cdot \left(\frac{a^2 - e^2}{a}\right) \tag{2}$$

Abbildung 2: Die Bessel'sche Anordnung zur Messung der Brennweite. G Gegenstand, L Linse, B_I , B_{II} Abbildungen, e Verschiebung, a Gesamtabstand, g_I , g_{II} Gegenstandsweiten, b_I , b_{II} Bildweiten.

2.2 Zerstreuungslinse

Mit einer Zerstreuungslinse allein gelingt keine reelle Abbildung. Gegenstand und Bild liegenauf derselben Seite. Die Messung der Brennweite erfolgt in diesem Fall durch Kombination miteiner Sammellinse geeigneter Brennweite nach zwei Methoden:

2.2.1 Methode 1

Abbildung 3: Kombination einer Sammelinse L_1 mit einer Zerstreuungslinse L_2 . G Gegenstand, B' Bild mit L_1 ohne L_2 , B Bild mit L_1 und L_2 , g, g' Gegenstandsweite, b, b' Bildweite.

2.2.2 Methode 2

Verändert man den Abstand der Zerstreuungslinse L_2 von B' derart, dass $g' = -f_2$ wird, so rückt das Bild B ins Unendliche, was mit einem auf *Unendlich* justierten Fernrohr festgestellt werden kann, und eine direkte Brennweitenbestimmung leicht ermöglicht.

3 Geräteliste

Tabelle 1: Liste der verwendeten Geräte

Bezeichnung	Inventarnummer	Unsicherheit
Sammellinse	V221	
Zerstreuungslinse		
Lampe	V/747/4	
Gegenstand	F4	
Schirm	V/539/32	
Maßband		$\pm 1~\mathrm{mm}$

4 Durchführung und Messwerte

4.1 Brennweite der Sammellinse nach Laplace

Es werden 10 Messungen durchgeführt. Bei jeder Messung wird die Position die Gegenstands- und Bildweite, sowie die Position der Linse gemessen. Die Positionen werden relativ zu einem Fixpunkt gemessen. Die Messwerte sind in Tabelle 2 dargestellt.

Tabelle 2: Messwerte der Methode nach Laplace. G Gegenstandsposition, B Bildposition, L Linsenposition

Nr.	G / cm	B / cm	L / cm
1	160	15	136.2
2	160	20	135.7
3	160	25	135.2
4	160	30	134.5
5	160	35	134.9
6	160	40	134.0
7	160	45	133.9
8	160	50	133.6
9	160	55	132.9
10	160	60	131.9

4.2 Brennweite der Sammellinse nach Bessel

Hier wird bei gegebener Position von Gegenstand und Bild die Linse auf die Positionen L_1 und L_2 verschoben. Es wird für 5 Fälle gemessen.

Tabelle 3: Messwerte der Methode nach Bessel. G Gegenstandsposition, B Bildposition, L_1 , L_2 Linsenpositionen

Nr.	G / cm	B / cm	L_1 / cm	L_2 / cm
1	160	15	135.6	39.5
2	160	20	135.3	44.8
3	160	18	135.1	42.7
4	160	12	135.8	36.4
5	160	22	135.3	46.8
6	160	5	136.2	29.2
7	160	8	135.9	32.3
8	160	10	136.1	34.5
9	160	24	135.5	49.1
10	160	26	135.2	51.1

4.3 Brennweite der Zerstreuungslinse

Tabelle 4: Messwerte für die Zerstreuungslinse. G Gegenstandsposition, B' Bildposition nur für Sammellinse, B Bildposition, L_1 Position v. Sammellinse, L_2 Positin von Zerstreuungslinse

Nr.	G / cm	B' / cm	B / cm	L_1 / cm	L_2 / cm
1	160	77	65.0	112	90.0
2	160	77	35.5	112	94.5
3	160	77	56.6	112	92.0
4	160	77	50.0	112	93.0
5	160	77	60.3	112	91.0
6	160	77	22.6	112	96.0
7	160	77	54.1	112	92.5
8	160	77	35.9	112	95.0
9	160	77	69.8	112	88.0
10	160	77	69.6	112	87.5

5 Auswertung

5.1 Laplace

Die Größtunsicherheitsmethode für die Brennweite nach Laplace aus Gleichung (1) ergibt

$$\Delta f = \left| \frac{\partial f}{\partial g} \right| \cdot \Delta g + \left| \frac{\partial f}{\partial b} \right| \cdot \Delta b = \left(\frac{1}{g} + \frac{1}{b} \right)^{-2} \cdot \left(\frac{\Delta g}{g^2} + \frac{\Delta b}{b^2} \right)$$

Mit diesen Erkentnissen wird die Tabelle 2 ausgewertet.

Tabelle 5: Auswertung für die Laplace-Methode. g=G-L Gegenstandsweite, b=L-B Bildweite, f berechnete Brennweite, Δf Unsicherheit

Nr.	g / cm	b / cm	f / cm	Δf / cm
1	23.8	121.2	19.89	0.44
2	24.3	115.7	20.08	0.43
3	24.8	110.2	20.24	0.42
4	25.5	104.5	20.50	0.41
5	25.1	99.9	20.06	0.41
6	26.0	94.0	20.37	0.40
7	26.1	88.9	20.18	0.39
8	26.4	83.6	20.06	0.38
9	27.1	77.9	20.11	0.37
10	28.1	71.9	20.20	0.36

5.2 Bessel

Die Größtunsicherheitsmethode für die Brennweite nach Bessel aus Gleichung (2) ergibt

$$\Delta f = \left| \frac{\partial f}{\partial a} \right| \cdot \Delta a + \left| \frac{\partial f}{\partial e} \right| \cdot \Delta e = \frac{1}{4 \cdot a^2} \cdot \left[\left(a^2 + e^2 \right) \cdot \Delta a + 2 \cdot a \cdot e \cdot \Delta e \right]$$

Tabelle 6: Auswertung für die Bessel-Methode. a=G-B Gesamtabstand, $e=|L_1-L_2|$ Verschiebung der Linse, f berechnete Brennweite, Δf Unsicherheit

Nr.	a / cm	e / cm	f / cm	Δf / cm
1	145	96.1	20.33	0.41
2	140	90.5	20.37	0.41
3	142	92.4	20.47	0.41
4	148	99.4	20.31	0.42
5	138	88.5	20.31	0.40
6	155	107.0	20.28	0.43
7	152	103.6	20.35	0.42
8	150	101.6	20.30	0.42
9	136	86.4	20.28	0.40
10	134	84.1	20.30	0.40

5.3 Zerstreuungslinse

Die Brennweite berechnet sich in dem Fall analog zur Laplace Methode mit

$$\frac{1}{f} = \frac{1}{g'} + \frac{1}{b} \tag{3}$$

Tabelle 7: Auswertung für die Zerstreuungslinse. $g' = B' - L_2$, $b = L_2 - B$, f berechnete Brennweite, Δf Unsicherheit

Nr.	g' / cm	b / cm	f / cm	Δf / cm
1	-13.0	25.0	-27.08	3.31
2	-17.5	59.0	-24.88	1.32
3	-15.0	35.4	-26.03	2.13
4	-16.0	43.0	-25.48	1.73
5	-14.0	30.7	-25.74	2.45
6	-19.0	73.4	-25.64	1.17
7	-15.5	38.4	-25.99	1.96
8	-18.0	59.1	-25.88	1.36
9	-11.0	18.2	-27.81	5.23
10	-10.5	17.9	-25.40	4.72

6 Zusammenfassung und Diskussion

Für die Brennweite nach der Laplace-Messung gilt durch Mittelung

$$f = (20.17 \pm 0.4) \text{ cm}$$

Für die Brennweite nach der Bessel-Messung gilt durch Mittelung

$$f = (20.33 \pm 0.41) \text{ cm}$$

Für die Zerstreuungslinse gilt durch Mittelung

$$f = (25.99 \pm 2.54) \text{ cm}$$

Die Methoden nach Laplace und Bessel ergeben unter Berücksichtigung der Unsicherheit dasselbe Ergebnis. Bei der Messung der Zerstreuungslinse werden zwei Linsenpositionen gemessen, was den höheren Fehler erklärt.

Die angenommene Unsicherheit setzt sich zusammen aus der Unsicherheit des Maßbandes (\pm 0.1 cm), mit dem der jeweilige Linsenabstand gemessen wurde und der Unsicherheit die entsteht, wenn man ein Objekt scharf stellt (Schärfebereich), welche mit \pm 0.2 cm abgeschätzt wurde. Unbedingt zu beachten ist auch, dass bei der Ermittlung der Brennweite nach Bessel der Gegenstand und der Schirm relativ weit voneinander zu platzieren sind, um sichergehen zu können, dass auch immer ein Abstand von 4 Mal der Brennweite eingehalten werden kann, da sonst das Bessel'sche Verfahren nicht wirksam wäre.

A Python Skript

```
def custom_round(num,n=2):
             if n == 1:
                          return '{:.1f}'.format(round(num,1))
             else:
                          return '{:.2f}'.format(round(num,2))
#Messen nach Laplace
#G Gegenstandsposition
#B Bildposition
#L Linsenposition
#G, B fix, L messen, alles in cm
B = [15, 20, 25, 30, 35, 40, 45, 50, 55, 60]
L = [136.2, 135.7, 135.2, 134.5, 134.9, 134.0, 133.9,
           133.6, 132.9, 131.9]
#unsicherheit fuer laengenmessung in cm
delta_1 = 0.3
delta_b = 0.3*2
delta_g = 0.3*2
file = open("laplace_messwerte.tex", "w")
file.write("\\begin{tabular}{c|rrr}\n")
file.write("Nr. & $G$ / cm & $B$ / cm & $L$ / cm \\\\
          n")
file.write("\hline\n")
for i in range(10):
             file.write(str(i+1) + " & " + str(round(G[i],2)) +
             " & " + str(round(B[i],2)) + " & " + str(round(L[i
          ],2)))
             if i != 9:
                          file.write("\\\")
             \label{file.write("\n")} % \begin{center} \begin{
file.write("\\end{tabular}\n")
file.close()
g = [0] * 10
b = [0] * 10
```

```
f = [0] * 10
delta_f = [0] * 10
for i in range(10):
              g[i] = G[i] - L[i]
              b[i] = L[i] - B[i]
              f[i] = 1/(1/g[i] + 1/b[i])
              delta_f[i] = (1/g[i] + 1/b[i])**-2 * (delta_g/g[i])
                         ]**2 + delta_b/b[i]**2)
file = open("laplace_auswertung.tex", "w")
file.write("\\begin{tabular}{c|rrrr}\n")
file.write("Nr. & $g$ / cm & $b$ / cm & $f$ / cm & $\\
           Delta f$ / cm \\\\n")
file.write("\hline\n")
for i in range(10):
              file.write(str(i+1) + " & " + str(round(g[i],2)) +
              " & " + str(round(b[i],2)) + " & " + str(
           \verb"custom_round(f[i],2)) + " & " + \verb"str(custom_round(
           delta_f[i],2)))
              if i != 9:
                            \label{file.write("\\\")} % % \begin{center} \beg
              file.write("\n")
file.write("\\end{tabular}\n")
file.close()
file = open("laplace_ergebnis.tex", "w")
file.write("\\begin{align*}\n")
file.write("f = (" + str(round(sum(f)/10,2)) + " \protector{pm}"
              + str(round(sum(delta_f)/10,2)) + ")~\text{cm}
            \\\\")
file.write("\\end{align*}\n")
```

Listing 1: Laplace Auswertung

```
def custom_round(num,n=2):
    if n == 1:
        return '{:.1f}'.format(round(num,1))
    else:
        return '{:.2f}'.format(round(num,2))
#Messen nach Bessel
```

```
#G Gegenstandsposition
#B Bildposition
#L Linsenposition
#G fix, L1, L2 messen, alles in cm
L1 =
   [135.6,135.3,135.1,135.8,135.3,136.2,135.9,136.1,135.5,135.2]
L2 =
   [39.5,44.8,42.7,36.4,46.8,29.2,32.3,34.5,49.1,51.1]
B = [15,20,18,12,22,5,8,10,24,26]
#unsicherheit fuer laengenmessung in cm
delta_1 = 0.3
delta_a = 0.3*2
delta_e = 0.3*2
file = open("bessel_messwerte.tex", "w")
file.write("\\\\\tabular){c|rrrr}\n")
file.write("Nr. & $G$ / cm & $B$ / cm & $L_1$ / cm &
   $L_2$ / cm \\\\n")
file.write("\hline\n")
for i in range (10):
   file.write(str(i+1) + " & " + str(round(G[i],2)) +
    " & " + str(round(B[i],2)) + " & " + str(round(L1[
   i],2))+ " & " + str(round(L2[i],2)))
   if i != 9:
       file.write("\\\")
   file.write("\n")
file.write("\\end{tabular}\n")
file.close()
a = [0] * 10
e = [0] * 10
f = [0] * 10
delta_f = [0] * 10
for i in range(10):
   a[i] = G[i] - B[i]
   e[i] = abs(L1[i] - L2[i])
   f[i] = 0.25 * (a[i]**2 - e[i]**2)/a[i]
   delta_f[i] = 0.25/a[i]**2 * ((a[i]**2 + e[i]**2)
```

```
* delta_a + 2*a[i]*e[i]* delta_e)
file = open("bessel_auswertung.tex", "w")
file.write("\\begin{tabular}{c|rrrr}\n")
file.write("Nr. & $a$ / cm & $e$ / cm & $f$ / cm & $\
   Delta f$ / cm \\\\n")
file.write("\hline\n")
for i in range(10):
    file.write(str(i+1) + " & " + str(round(a[i],2)) +
    " & " + str(round(e[i],2)) + " & " + str(
   custom_round(f[i],2)) + " & " + str(custom_round(
   delta_f[i],2)))
    if i != 9:
        file.write("\\\")
    file.write("\n")
file.write("\\end{tabular}\n")
file.close()
file = open("bessel_ergebnis.tex", "w")
file.write("\\begin{align*}\n")
file.write("f = (" + str(round(sum(f)/10,2)) + " \protect{pm}"
    + str(round(sum(delta_f)/10,2)) + ")~\\text{cm}
   \\\\")
file.write("\\end{align*}\n")
```

Listing 2: Bessel Auswertung

```
def custom_round(num,n=2):
    if n == 1:
        return '{:.1f}'.format(round(num,1))
    else:
        return '{:.2f}'.format(round(num,2))

#Messen der Zerstreuungslinse

#G Gegenstandsposition
#B Bildposition
#B1 Bildposition der Sammellinse
#L1 Linsenposition Sammellinse
#L2 Linsenposition Zerstreuungslinse

#G, B fix, L messen, alles in cm
```

```
B = [65, 35.5, 56.6, 50, 60.3, 22.6, 54.1, 35.9, 69.8,
   69.6]
L2 = [90, 94.5, 92, 93, 91, 96, 92.5, 95, 88, 87.5]
#unsicherheit fuer laengenmessung in cm
delta_1 = 0.3
delta_b = 0.3*2
delta_g = 0.3*2
file = open("zerstreuungslinse_messwerte.tex", "w")
file.write("\\begin{tabular}{c|rrrrr}\n")
file.write("Nr. & $G$ / cm & $B^\\prime$ / cm & $B$ /
   cm & L_1 / cm & L_2 / cm \\\n")
file.write("\hline\n")
for i in range(10):
   file.write(str(i+1) + " & " + str(round(G[i],2)) +
   " & " + str(round(B1[i],2)) + " & " + str(
   custom_round(B[i],1)) + " & " + str(round(L1[i],2))
   + " & " + str(custom_round(L2[i],1)))
   if i != 9:
       file.write("\\\")
   file.write("\n")
file.write("\\end{tabular}\n")
file.close()
g1 = [0] * 10
b = [0] * 10
f = [0] * 10
delta_f = [0] * 10
for i in range (10):
   g1[i] = B1[i] - L2[i]
   b[i] = L2[i] - B[i]
   f[i] = 1/(1/g1[i] + 1/b[i])
   delta_f[i] = (1/g1[i] + 1/b[i])**-2 * (delta_g/g1[i])
```

```
i]**2 + delta_b/b[i]**2)
file = open("zerstreuungslinse_auswertung.tex", "w")
file.write("\\begin{tabular}{c|rrrr}\n")
file.write("Nr. & $g^{\pm} / cm & $b$ / cm & $f$ /
   cm & $\\Delta f$ / cm \\\\n")
file.write("\hline\n")
for i in range (10):
    file.write(str(i+1) + " & " + str(custom_round(g1[
   i],1)) + " & " + str(custom_round(b[i],1)) + " & "
   + str(custom_round(f[i],2)) + " & " + str(round(
   delta_f[i],2)))
    if i != 9:
        file.write("\\\")
    file.write("\n")
file.write("\\end{tabular}\n")
file.close()
file = open("zerstreuungslinse_ergebnis.tex", "w")
file.write("\\begin{align*}\n")
file.write("f = (" + str(round(abs(sum(f))/10,2)) + "
   \pm " + str(round(sum(delta_f)/10,2)) + ")~\\text{
   cm}\\\\")
file.write("\\end{align*}\n")
```

Listing 3: Zerstreuungslinse Auswertung