dm24s1

Topic 04: Exploratory Data Analysis

Part 01: EDA

Dr Bernard Butler

Department of Computing and Mathematics, WIT. (bernard.butler@setu.ie)

Autumn Semester, 2024

Outline

- EDA Process
- Datasets = Tips, Titanic and Algae Blooms

Data Mining (Week 4)

EDA — Summary

- 1. Introduction
- 1.1 Example Datasets
- 1.2 Before we start . . .
- First Pass Load Dataset and Initial Clean
- 2.1 dtypes
- 2.2 Missing Values
- 3. A Selection of Statistical Visualisations and Metrics
- 3.1 Categorical Features
- 3.2 Numerical Features
- 4. Summary

Acknowledgment

A big thanks to Dr Kieran Murphy, who provided many of the slides for today's lecture.

Introduction

Exploratory Data Analysis (EDA)

Aim

To understand and summarise a dataset to ensure that the features which are feed to machine learning algorithms are refined and that the results are valid and can correctly interpreted.

Benefits

- Develop insight about the dataset and understanding of the underlying structure.
- Extract important parameters and relationships that hold between them.
- Test underlying assumptions.
- Identify issues that affect model performance outliers, missing values.

Data Pipeline

- Data preparation is the core of the data mining pipeline (typical estimates >50% of the time/effort).
- EDA is the data processing and wrangling.
- EDA informs the feature extraction, engineering, transformation and selection.

What questions to ask?

Dataset global questions: How many features? How many observations? What is the data type of each feature? Any null values? ... Feature specific questions: What is the distribution of each variable? Do there appear to be outliers? What features are related? ... Missing value questions: Are null value a result of the way data was recorded? Can we drop the rows with null values without it significantly affecting your analysis? Can we justify filling in the missing values with the mean or median for that variable? If the data is time-series data, can we fill the missing values with interpolation? Are there so many missing values for a variable that we should drop that variable from the dataset? ... Outlier questions: Why are outliers present? Do the outliers represent real observations (i.e. not errors)? Should we exclude these observations? If not, should we winsorise the values? ... Correlation/Relationships questions: Which variables are most correlated with your target variable? (If applicable) Is there multicollinearity? (Two features that have a correlation > 0.8) How will this affect your model? Do you have variables that represent the same information? Can one be dropped? ...

What questions to ask?

Dataset global questions: How many features? How many observations? What is the data type of each feature? Any null values? ... Feature specific questions: What is the distribution of each variable? Do there appear to be outliers? What features are related? ... Missing value questions: Are null value a result of the way data was recorded? Can we drop the rows with null values without it significantly affecting your analysis? Can we justify filling in the missing values with the mean or median for that variable? If the data is time-series data, can we fill the missing values with interpolation? Are there so many missing values for a variable that we should drop that variable from the dataset? ... Outlier questions: Why are outliers present? Do the outliers represent real observations (i.e. not errors)? Should we exclude these observations? If not, should we winsorise the values? ... Correlation/Relationships questions: Which variables are most correlated with your target variable? (If applicable) Is there multicollinearity? (Two features that have a correlation > 0.8) How will this affect your model? Do you have variables that represent the same information? Can one be dropped? ...

What visualisations to build?

What questions to ask?

Dataset global questions: How many features? How many observations? What is the data type of each feature? Any null values? ... Feature specific questions: What is the distribution of each variable? Do there appear to be outliers? What features are related? ... Missing value questions: Are null value a result of the way data was recorded? Can we drop the rows with null values without it significantly affecting your analysis? Can we justify filling in the missing values with the mean or median for that variable? If the data is time-series data, can we fill the missing values with interpolation? Are there so many missing values for a variable that we should drop that variable from the dataset? ... Outlier questions: Why are outliers present? Do the outliers represent real observations (i.e. not errors)? Should we exclude these observations? If not, should we winsorise the values? ... Correlations/Relationships questions: Which variables are most correlated with your target variable? (If applicable) Is there multicollinearity? (Two features that have a correlation > 0.8) How will this affect your model? Do you have variables that represent the same information? Can one be dropped? ...

What questions to ask?

Dataset global questions: How many features? How many observations? What is the data type of each feature? Any null values? ... Feature specific questions: What is the distribution of each variable? Do there appear to be outliers? What features are related? ... Missing value questions: Are null value a result of the way data was recorded? Can we drop the rows with null values without it significantly affecting your analysis? Can we justify filling in the missing values with the mean or median for that variable? If the data is time-series data, can we fill the missing values with interpolation? Are there so many missing values for a variable that we should drop that variable from the dataset? ... Outlier questions: Why are outliers present? Do the outliers represent real observations (i.e. not errors)? Should we exclude these observations? If not, should we winsorise the values? ... Correlations/Relationships questions: Which variables are most correlated with your proposed of the proposed of

Have a plan, be selective, understand strengths/weaknesses of metrics/visualisations

PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Survived
1	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	0
2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C	1
3	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	1
4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	1
5	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S	0
6	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q	0
7	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S	0
8	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S	0
9	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S	1
10	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	C	1
11	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	16.7000	G6	S	1

- A labeled dataset consists of m rows \times (n+1) columns / variables.
- Use bold to represent vectors and matrices.

- A labeled dataset consists of m rows \times (n+1) columns / variables.
- Use bold to represent vectors and matrices.
- Use subscripts to indicate particular feature / attribute / column

- A labeled dataset consists of m rows \times (n+1) columns / variables.
- Use bold to represent vectors and matrices.
- Use subscripts to indicate particular feature / attribute / column
- Use superscript in parenthesis to indicate particular observation / instance/ case / row

- A labeled dataset consists of m rows \times (n+1) columns / variables.
- Use bold to represent vectors and matrices.
- Use subscripts to indicate particular feature / attribute / column
- Use superscript in parenthesis to indicate particular observation / instance/ case / row
- So $x_j^{(i)}$ (or $x_{i,j}$) is the *i*-th observation in the *j*-th feature

We will use a few datasets today to illustrate the various features:

Tips

\times Titanic

Algae Blooms

We will use a few datasets today to illustrate the various features:

Tips

• Small dataset of total bills, and tips for different servers with gender, day, time and group size.

Titanic

> Algae Blooms

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.

Titanic

Algae Blooms

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.
- Task: exploratory data analysis

\text{Titanic}

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.
- Task: exploratory data analysis

Titanic

• Classic dataset with passenger information for the Titanic's fatal voyage, and whether they survived.

Algae Blooms

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.
- Task: exploratory data analysis

>Titanic

- Classic dataset with passenger information for the Titanic's fatal voyage, and whether they survived.
- Has missing values and information rich text fields (Name, ticket number).

Algae Blooms

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.
- Task: exploratory data analysis

>Titanic

- Classic dataset with passenger information for the Titanic's fatal voyage, and whether they survived.
- Has missing values and information rich text fields (Name, ticket number).
- Task: classification predict whether a passenger survived.

> Algae Blooms

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.
- Task: exploratory data analysis

>Titanic

- Classic dataset with passenger information for the Titanic's fatal voyage, and whether they survived.
- Has missing values and information rich text fields (Name, ticket number).
- Task: classification predict whether a passenger survived.

Algae Blooms

• Water quality study where samples were taken from different rivers over time.

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.
- Task: exploratory data analysis

> Titanic

- Classic dataset with passenger information for the Titanic's fatal voyage, and whether they survived.
- Has missing values and information rich text fields (Name, ticket number).
- Task: classification predict whether a passenger survived.

Algae Blooms

- Water quality study where samples were taken from different rivers over time.
- Recorded levels of (seven) chemical substances and population of (six) algae species and other information on the sample conditions.

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.
- Task: exploratory data analysis

Titanic

- Classic dataset with passenger information for the Titanic's fatal voyage, and whether they survived.
- Has missing values and information rich text fields (Name, ticket number).
- Task: classification predict whether a passenger survived.

Algae Blooms

- Water quality study where samples were taken from different rivers over time.
- Recorded levels of (seven) chemical substances and population of (six) algae species and other information on the sample conditions.
- Task: regression predict algae population level (7 separate populations).

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
5	25.29	4.71	Male	No	Sun	Dinner	4
6	8.77	2.00	Male	No	Sun	Dinner	2
7	26.88	3.12	Male	No	Sun	Dinner	4
8	15.04	1.96	Male	No	Sun	Dinner	2
9	14.78	3.23	Male	No	Sun	Dinner	2

No target column, so mainly just an exploratory data analysis problem. But questions of interest:

- How do factors sex, smoker, day, time, or size affect tip / percentage tip?
- Does size vary with day, time, smoker?

But some questions don't make sense

 What is the relationship between sex and smoker? — why should they be related?

This is the downside of automatic EDA tools such as pandas—profiling — you will drown in statistics / charts.

Algae Blooms dataset

_																
	Season	Size	Speed	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1	a2	a3	a4	a 5
0	winter	small	medium	8.00	9.8	60.800	6.238	578.00000	105.00000	170.00000	50.000	0.0	0.0	0.0	0.0	34.2
1	spring	small	medium	8.35	8.0	57.750	1.288	370.00000	428.75000	558.75000	1.300	1.4	7.6	4.8	1.9	6.7
2	autumn	small	medium	8.10	11.4	40.020	5.330	346.66699	125.66700	187.05701	15.600	3.3	53.6	1.9	0.0	0.0
3	spring	small	medium	8.07	4.8	77.364	2.302	98.18200	61.18200	138.70000	1.400	3.1	41.0	18.9	0.0	1.4
4	autumn	small	medium	8.06	9.0	55.350	10.416	233.70000	58.22200	97.58000	10.500	9.2	2.9	7.5	0.0	7.5
5	winter	small	high	8.25	13.1	65.750	9.248	430.00000	18.25000	56.66700	28.400	15.1	14.6	1.4	0.0	22.5
6	summer	small	high	8.15	10.3	73.250	1.535	110.00000	61.25000	111.75000	3.200	2.4	1.2	3.2	3.9	5.8
7	autumn	small	high	8.05	10.6	59.067	4.990	205.66701	44.66700	77.43400	6.900	18.2	1.6	0.0	0.0	5.5
8	winter	small	medium	8.70	3.4	21.950	0.886	102.75000	36.30000	71.00000	5.544	25.4	5.4	2.5	0.0	0.0
9	winter	small	high	7.93	9.9	8.000	1.390	5.80000	27.25000	46.60000	0.800	17.0	0.0	0.0	2.9	0.0
10	spring	small	high	7.70	10.2	8.000	1.527	21.57100	12.75000	20.75000	0.800	16.6	0.0	0.0	0.0	1.2
11	summer	small	high	7.45	11.7	8.690	1.588	18.42900	10.66700	19.00000	0.600	32.1	0.0	0.0	0.0	0.0
12	winter	small	high	7.74	9.6	5.000	1.223	27.28600	12.00000	17.00000	41.000	43.5	0.0	2.1	0.0	1.2
13	summer	small	high	7.72	11.8	6.300	1.470	8.00000	16.00000	15.00000	0.500	31.1	1.0	3.4	0.0	1.9
14	winter	small	high	7.90	9.6	3.000	1.448	46.20000	13.00000	61.60000	0.300	52.2	5.0	7.8	0.0	4.0
15	autumn	small	high	7.55	11.5	4.700	1.320	14.75000	4.25000	98.25000	1.100	69.9	0.0	1.7	0.0	0.0
16	winter	small	high	7.78	12.0	7.000	1.420	34.33300	18.66700	50.00000	1.100	46.2	0.0	0.0	1.2	0.0
17	spring	small	high	7.61	9.8	7.000	1.443	31.33300	20.00000	57.83300	0.400	31.8	0.0	3.1	4.8	7.7
18	summer	small	high	7.35	10.4	7.000	1.718	49.00000	41.50000	61.50000	0.800	50.6	0.0	9.9	4.3	3.6

Algae Blooms dataset

_	•	٥.							w	n	01.	_	-	_		_
_	Season	Size	Speed	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1	a2	a 3	a4	a 5
0	winter	small	medium	8.00	9.8	60.800	6.238	578.00000	105.00000	170.00000	50.000	0.0	0.0	0.0	0.0	34.2
1	spring	small	medium	8.35	8.0	57.750	1.288	370.00000	428.75000	558.75000	1.300	1.4	7.6	4.8	1.9	6.7
2	autumn	small	medium	8.10	11.4	40.020	5.330	346.66699	125.66700	187.05701	15.6 <mark>0</mark> 0	3.3	53.6	1.9	0.0	0.0
3	spring	small	medium	8.07	4.8	77.364	2.302	98.18200	61.18200	138.70000	1.400	3.1	41.0	18.9	0.0	1.4
4	autumn	small	medium	8.06	9.0	55.350	10.416	233.70000	58.22200	97.58000	10.500	9.2	2.9	7.5	0.0	7.5
5	winter	small	high	8.25	13.1	65.750	9.248	430.00000	18.25000	56.66700	28. <mark>4</mark> 00	15.1	14.6	1.4	0.0	22.5
6	summer	small	high	8.15	10.3	73.250	1.535	110.00000	61.25000	111.75000	3.200	2.4	1.2	3.2	3.9	5.8
7	autumn	small	high	8.05	10.6	59.067	4.990	205.66701	44.66700	77.43400	6.900	18.2	1.6	0.0	0.0	5.5
8	winter	small	medium	8.70	3.4	21.950	0.886	102.75000	36.30000	71.00000	5.54 <mark>4</mark>	25.4	5.4	2.5	0.0	0.0
9	winter	small	high	7.93	9.9	8.000	1.390	5.80000	27.25000	46.60000	0.800	17.0	0.0	0.0	2.9	0.0
1	0 spring	small	high	7.70	10.2	8.000	1.527	21.57100	12.75000	20.75000	0.800	16.6	0.0	0.0	0.0	1.2
1	1 summer	small	high	7.45	11.7	8.690	1.588	18.42900	10.66700	19.00000	0.600	32.1	0.0	0.0	0.0	0.0
1	2 winter	small	high	7.74	9.6	5.000	1.223	27.28600	12.00000	17.00000	41.000	43.5	0.0	2.1	0.0	1.2
1	3 summer	small	high	7.72	11.8	6.300	1.470	8.00000	16.00000	15.00000	0.500	31.1	1.0	3.4	0.0	1.9
1	4 winter	small	high	7.90	9.6	3.000	1.448	46.20000	13.00000	61.60000	0.300	52.2	5.0	7.8	0.0	4.0
1	5 autumn	small	high	7.55	11.5	4.700	1.320	14.75000	4.25000	98.25000	1.100	69.9	0.0	1.7	0.0	0.0
1	6 winter	small	high	7.78	12.0	7.000	1.420	34.33300	18.66700	50.00000	1.100	46.2	0.0	0.0	1.2	0.0
1	7 spring	small	high	7.61	9.8	7.000	1.443	31.33300	20.00000	57.83300	0.400	31.8	0.0	3.1	4.8	7.7
1	8 summer	small	high	7.35	10.4	7.000	1.718	49.00000	41.50000	61.50000	0.800	50.6	0.0	9.9	4.3	3.6
4								0000	504 50000	554 50000						

Algae Blooms dataset

_	Season	Size	Speed	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1	a2	a 3	a4	a 5
0	winter	small	medium	8.00	9.8	60.800	6.238	578.00000	105.00000	170.00000	50.0 <mark>0</mark> 0	0.0	0.0	0.0	0.0	34.2
1	spring	small	medium	8.35	8.0	57.750	1.288	370.00000	428.75000	558.75000	1.30 <mark>0</mark>	1.4	7.6	4.8	1.9	6.7
2	autumn	small	medium	8.10	11.4	40.020	5.330	346.66699	125.66700	187.05701	15.6 <mark>0</mark> 0	3.3	53.6	1.9	0.0	0.0
3	spring	small	medium	8.07	4.8	77.364	2.302	98.18200	61.18200	138.70000	1.400	3.1	41.0	18.9	0.0	1.4
4	autumn	small	medium	8.06	9.0	55.350	10.416	233.70000	58.22200	97.58000	10.500	9.2	2.9	7.5	0.0	7.5
5	winter	small	high	8.25	13.1	65.750	9.248	430.00000	18.25000	56.66700	28.4 <mark>0</mark> 0	15.1	14.6	1.4	0.0	22.5
6	summer	small	high	8.15	10.3	73.250	1.535	110.00000	61.25000	111.75000	3.200	2.4	1.2	3.2	3.9	5.8
7	autumn	small	high	8.05	10.6	59.067	4.990	205.66701	44.66700	77.43400	6.900	18.2	1.6	0.0	0.0	5.5
8	winter	small	medium	8.70	3.4	21.950	0.886	102.75000	36.30000	71.00000	5.544	25.4	5.4	2.5	0.0	0.0
9	winter	Hov	v well c	an we p	redict tl	he (7) di	fferent alg	ae populati	on levels us	sing water	sample info	orma	tion	?	2.9	0.0
10	spring	small	high	7.70	10.2	8.000	1.527	21.57100	12.75000	20.75000	0.800	16.6	0.0	0.0	0.0	1.2
11	summer	small	high	7.45	11.7	8.690	1.588	18.42900	10.66700	19.00000	0.600	32.1	0.0	0.0	0.0	0.0
12	winter	small	high	7.74	9.6	5.000	1.223	27.28600	12.00000	17.00000	41.000	43.5	0.0	2.1	0.0	1.2
13	summer	small	high	7.72	11.8	6.300	1.470	8.00000	16.00000	15.00000	0.500	31.1	1.0	3.4	0.0	1.9
14	winter	small	high	7.90	9.6	3.000	1.448	46.20000	13.00000	61.60000	0.300	52.2	5.0	7.8	0.0	4.0
15	autumn	small	high	7.55	11.5	4.700	1.320	14.75000	4.25000	98.25000	1.100	69.9	0.0	1.7	0.0	0.0
16	winter	small	high	7.78	12.0	7.000	1.420	34.33300	18.66700	50.00000	1.100	46.2	0.0	0.0	1.2	0.0
17	spring	small	high	7.61	9.8	7.000	1.443	31.33300	20.00000	57.83300	0.400	31.8	0.0	3.1	4.8	7.7
18	summer	small	high	7.35	10.4	7.000	1.718	49.00000	41.50000	61.50000	0.800	50.6	0.0	9.9	4.3	3.6
								0000								

Titanic dataset

	PassengerId	Survived	Pclass		Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris		male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th		female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina		female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (May Peel)	Lily	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry		male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James		male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J		male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonar	rd	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisak Vilhelmina Berg)	oeth	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)		female	14.0	1	0	237736	30.0708	NaN	С
10	11	1	3	Sandstrom, Miss. Marguerite	Rut	female	4.0	1	1	PP 9549	16.7000	G6	S
11	12	1	1	Bonnell, Miss. Elizabeth		female	58.0	0	0	113783	26.5500	C103	S
12	13	0	3	Saundercock, Mr. William He	nry	male	20.0	0	0	A/5. 2151	8.0500	NaN	S
13	14	0	3	Andersson, Mr. Anders Johan		male	39.0	1	5	347082	31.2750	NaN	S
				Vestrom, Miss, Hulda Amanda	a .								13 c

Titanic dataset

P	Passengerl	d Surviv	ed Pclass		Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0 1	L	0	3	Braund, Mr. Owen Harris		male	22.0	1	0	A/5 21171	7.2500	NaN	S
1 2	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th		female	38.0	1	0	PC 17599	71.2833	C85	С
2 3	3	1	3	Heikkinen, Miss. Laina		female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3 4	ŀ	1	1	Futrelle, Mrs. Jacques Heath (May Peel)	Lily	female	35.0	1	0	113803	53.1000	C123	S
4 5	5	0	3	Allen, Mr. William Henry		male	35.0	0	0	373450	8.0500	NaN	S
5 6	6	0	3	Moran, Mr. James		male	NaN	0	0	330877	8.4583	NaN	Q
6 7	7	0	1	McCarthy, Mr. Timothy J		male	54.0	0	0	17463	51.8625	E46	S
7 8	3	0	3	Palsson, Master. Gosta Leona	rd	male	2.0	3	1	349909	21.0750	NaN	S
8 9)	1	3	Johnson, Mrs. Oscar W (Elisal Vilhelmina Berg)	beth	female	27.0	0	2	347742	11.1333	NaN	S
9 1	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)		female	14.0	1	0	237736	30.0708	NaN	С
10 1	1	1	3	Sandstrom, Miss. Marguerite	Rut	female	4.0	1	1	PP 9549	16.7000	G6	S
11 1	12	1	1	Bonnell, Miss. Elizabeth		female	58.0	0	0	113783	26.5500	C103	S
12 1	13	0	3	Saundercock, Mr. William He	nry	male	20.0	0	0	A/5. 2151	8.0500	NaN	S
13 1	14	0	3	Andersson, Mr. Anders Johan	ı	male	39.0	1	5	347082	31.2750	NaN	S
				Vestrom, Miss, Hulda Amanda	a								13

Titanic dataset

	Passengerl	d Surviv	ed Pclass		Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris		male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th		female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina		female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (May Peel)	Lily	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry		male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James		male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J		male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leona:	rd	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisal Vilhelmina Berg)	beth	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)		female	14.0	1	0	237736	30.0708	NaN	С
10	11	ب	بعيا	Sandston Mic Maronarita							16.7000	- 6 6	S
11	12	1	low well	can we predict a passenger'	s surviv	val usir	ng ini	format	ion at	time of depart	ure?	103	S
12	13	0	3	Saundercock, Mr. William He	enry	male	20.0	0	0	A/5. 2151	8.0500	NaN	S
13	14	0	3	Andersson, Mr. Anders Johan	l	male	39.0	1	5	347082	31.2750	NaN	S
_				Vestrom Miss Hulda Amanda	а								13 o

Before we start ... Loading libraries

We start by loading in the core data science modules...

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Before we start ... Loading libraries

We start by loading in the core data science modules...

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

matplotlib is an excellent visualisation library but some plots needs additional configuration. seaborn sits above matplotlib and has a collection of visualisations optimised for statistical analysis. . . .

```
import seaborn as sns
```

Before we start ... Loading libraries

We start by loading in the core data science modules...

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

matplotlib is an excellent visualisation library but some plots needs additional configuration. seaborn sits above matplotlib and has a collection of visualisations optimised for statistical analysis. . . .

```
import seaborn as sns
```

Next, we import some statistical modules ...

import scipy.stats as stats
import statsmodels.api as sm
import pingouin as pg

scipy.stats has a large number of distributions, parametric and nonparametric statistical tests, and descriptive statistics.

statsmodels is more focused on estimating statistical models.

pingouin overlaps with bits of scipy.stats and statsmodels but generates more details and nicer visualisations.

Before we start ... Loading libraries

We start by loading in the core data science modules...

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

matplotlib is an excellent visualisation library but some plots needs additional configuration. seaborn sits above matplotlib and has a collection of visualisations optimised for statistical analysis. . . .

ates more details and nicer visualisations.

```
import seaborn as sns
```

Next, we import some statistical modules ...

import scipy.stats as stats
import statsmodels.api as sm
import pingouin as pg

scipy.stats has a large number of distributions, parametric and nonparametric statistical tests, and descriptive statistics.

statsmodels is more focused on estimating statistical models.

pingouin overlaps with bits of scipy.stats and statsmodels but gener-

Finally we set options ...

plt.style.use("seaborn-v0_8-darkgrid")

Before we start ... auto EDA using ydata-profiling

Before we start ... auto EDA using ydata-profiling

Well, almost zero code....

```
import pandas as pd
import dtale

# Read the Tips data into a dataframe, check it looks OK
df = pd.read_csv('tips.csv')
df.head()

# Run dtale to visualize the structure of the dataframe
dtale.show(df)
```


First Pass — Load Dataset and Initial Clean

- Load dataset
- Check variables names
- Verify variable types
- Identify (and possibly address) missing values

Tips — Load

```
df = pd.read_csv("data/tips.csv")
print(df.shape)
df.head(10) (244, 7)
```

_	total_bill	tip	sex	smoker	day	time size
0	16.99	1.01	Female	No	Sun	Dinner 2
1	10.34	1.66	Male	No	Sun	Dinner 3
2	21.01	3.50	Male	No	Sun	Dinner 3
3	23.68	3.31	Male	No	Sun	Dinner 2
4	24.59	3.61	Female	No	Sun	Dinner 4
5	25.29	4.71	Male	No	Sun	Dinner 4
6	8.77	2.00	Male	No	Sun	Dinner 2
7	26.88	3.12	Male	No	Sun	Dinner 4
8	15.04	1.96	Male	No	Sun	Dinner 2
9	14.78	3.23	Male	No	Sun	Dinner 2

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
    Column
              Non-Null Count Dtvpe
    total bill 244 non-null float64
    tip
              244 non-null float64
    sex
              244 non-null object
    smoker
              244 non-null object
    dav
              244 non-null object
    time
              244 non-null object
    size
              244 non-null int64
dtypes: float64(2), int64(1), object(4)
memory usage: 13.5+ KB
```

Tips — Load

```
df = pd.read_csv("data/tips.csv")
print(df.shape)
df.head(10) (244, 7)
```

total_bill	tip	sex	smoker	day	time	size
0 16.99	1.01	Female	No	Sun	Dinner	2
1 10.34	1.66	Male	No	Sun	Dinner	3
2 21.01	3.50	Male	No	Sun	Dinner	3
3 23.68	3.31	Male	No	Sun	Dinner	2
4 24.59	3.61	Female	No	Sun	Dinner	4
5 25.29	4.71	Male	No	Sun	Dinner	4
6 8.77	2.00	Male	No	Sun	Dinner	2
7 26.88	3.12	Male	No	Sun	Dinner	4
8 15.04	1.96	Male	No	Sun	Dinner	2
9 14.78	3.23	Male	No	Sun	Dinner	2

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
    Column
              Non-Null Count Dtvpe
    total bill 244 non-null float64
              244 non-null float64
    tip
              244 non-null object
    Sex
    smoker
              244 non-null object
    dav
              244 non-null object
    time
              244 non-null object
    size
              244 non-null int64
dtypes: float64(2), int64(1), object(4)
memory usage: 13.5+ KB
```

Issue: categorical data treated as object (string).

Tips — Fix Data Types

```
df.sex.unique()
array(['Female', 'Male'], dtype=object)

df.sex = pd.Categorical(df.sex)
df.sex.unique()

['Female', 'Male']
Categories (2, object): ['Female', 'Male']
```

Tips — Fix Data Types

```
df.sex.unique()
array(['Female', 'Male'], dtype=object)

df.sex = pd.Categorical(df.sex)
df.sex.unique()

['Female', 'Male']
Categories (2, object): ['Female', 'Male']
```

```
df.smoker.unique()
array(['No', 'Yes'], dtype=object)

df.smoker = pd.Categorical(df.smoker)
df.smoker.unique()

['No', 'Yes']
Categories (2, object): ['No', 'Yes']
```

Tips — Fix Data Types

```
df.sex.unique()
                                                      df.smoker.unique()
                                                      array(['No', 'Yes'], dtype=object)
array(['Female', 'Male'], dtype=object)
df.sex = pd.Categorical(df.sex)
                                                      df.smoker = pd.Categorical(df.smoker)
df.sex.unique()
                                                      df.smoker.unique()
['Female', 'Male']
                                                      'No'. 'Yes'
Categories (2, object): ['Female', 'Male']
                                                      Categories (2, object): ['No', 'Yes']
df.dav.unique()
array(['Sun', 'Sat', 'Thur', 'Fri'], dtype=object)
df.day = pd.Categorical(df.day, categories=['Thur', 'Fri', 'Sun', 'Sat'], ordered=True)
df.dav.unique()
['Sun', 'Sat', 'Thur', 'Fri']
Categories (4, object): ['Thur' < 'Fri' < 'Sun' < 'Sat']</pre>
```

Tips — fix datatypes

```
df.time = pd.Categorical(df.time, categories=['Lunch', 'Dinner'], ordered=True)
df.time.unique()
```

```
['Dinner', 'Lunch']
Categories (2, object): ['Lunch' < 'Dinner']</pre>
```

Tips — fix datatypes

```
df.time = pd.Categorical(df.time, categories=['Lunch', 'Dinner'], ordered=True)
df.time.unique()
```

```
['Dinner', 'Lunch']
Categories (2, object): ['Lunch' < 'Dinner']</pre>
```

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries. 0 to 243
Data columns (total 7 columns):
    Column
              Non-Null Count Dtvpe
    total bill 244 non—null float64
              244 non-null float64
    tip
    sex
              244 non-null category
    smoker
              244 non-null category
    dav
              244 non-null category
              244 non-null category
    time
    size
              244 non-null int64
dtypes: category(4), float64(2), int64(1)
memory usage: 7.4 KB
```

Tips — fix datatypes

```
df.time = pd.Categorical(df.time, categories=['Lunch', 'Dinner'], ordered=True)
df.time.unique()
```

```
['Dinner', 'Lunch']
Categories (2, object): ['Lunch' < 'Dinner']</pre>
```

df.info()

Converting to category will:

- Simplify visualisation (order can be preserved).
- Reduce memory usage (not that big a deal for us).
- Speed up I/O (depending on file format).
- ⇒ Convert to category is a bigger deal for features where the levels have an order.

```
Data columns (total 7 columns):
    Column
              Non-Null Count Dtype
    total bill 244 non—null float64
                            float64
    tip
              244 non-null
    sex
              244 non-null category
    smoker
              244 non-null
                            category
    dav
              244 non-null
                            category
              244 non-null
    time
                            category
    size
              244 non-null int64
dtypes: category(4), float64(2), int64(1)
memory usage: 7.4 KB
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries. 0 to 243

Titanic — load

- Dataset is split into two parts:
 - train.csv 891 rows with Survived column, used in EDA and model training.
 - test.csv 418 rows without the Survived column, used in competition scoring.

$Algae_Blooms - load$

Pandas function pd.read_table, is a more general function than read_csv.

```
df = pd.read_table('src/Analysis.txt')
print(df.shape)
df.head()
(199, 1)
```

winter small medium 8.00000 9.80000 60.80000 6.23800 578.00000 105.00000 170.00000 50.00000 0.00000 0.00000 0.00000 0.00000 34.20000 8.30000 0.00000

- $\boldsymbol{0}$ spring small medium 8.35000 ...
- 1 autumn small medium 8.10000 1...
- 2 spring small medium 8.07000 ...
- 3 autumn small medium 8.06000 ...
- 4 winter small high 8.25000 13....

Two problems, first row was treated as column headers, and we need to specify the character(s) used to separate columns

```
df = pd .read_table('src/Analysis.txt', sep='\s+', header=None)
print(df.shape)
df.head()

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 winter small medium 8.00000 9.80000 60.80000 57.75000 1.28800 370.00000 428.75000 558.75000 1.30000 1.4 7.6 4.8 1.9 6.7 0.0 2.1

2 autumn small medium 8.07000 4.80000 77.36400 2.30200 98.18200 61.18200 138.70000 1.40000 3.1 41.0 18.9 0.0 1.4 0.0 1.4

4 autumn small medium 8.06000 9.00000 55.35000 10.41600 233.70000 58.22200 97.58000 10.50000 9.2 2.9 7.5 0.0 7.5 4.1 1.0
```

- Now, notice that the number of data row changed from 199 to 200 since the first row is now counted as a data row. And now we are using default columns names.
- The "\s+" matches one or more spaces. This is an example of a regex.
- We need to name the columns.

Algae_Blooms — load (3rd attempt)

```
Speed max pH min O2 mean Cl mean NO3 mean NH4 mean oPO4 mean PO4 mean Chlor a1 a2 a3 a4
        small medium 8.00000 9.80000 60.80000 6.23800
                                                      578.00000
                                                               105.00000
                                                                          170.00000 50.00000
                                                                                              0.0 0.0 0.0 0.0 34.2 8.3
                                                     370.0 <class 'pandas.core.frame.DataFrame'>
1 spring
        small medium 8.35000 8.00000 57.75000 1.28800
                                                           RangeIndex: 200 entries, 0 to 199
                                                     346.6
2 autumn small medium 8 10000 11 40000 40 02000 5 33000
                                                           Data columns (total 18 columns):
3 spring small medium 8.07000 4.80000 77.36400 2.30200
                                                     98.18
                                                                Column
                                                                             Non-Null Count Dtype
4 autumn small medium 8.06000 9.00000 55.35000 10.41600
                                                     233.7
                                                                Season
                                                                             200 non-null
                                                                                               object
```

Dataframe looks a bit better, but why are numeric columns converted as **object**?
Reading instructions.txt we see that missing values are indicated by XXXXXXXX.

Size 200 non-null object Speed 200 non-null object object max_pH 200 non-null min O2 200 non-null object mean Cl 200 non-null object mean NO3 200 non-null object mean NH4 200 non-null object mean_oP04 200 non-null object 26 of 45

27 of 45

Season	Size	Speed max	x_pH min	_O2 mean_	_Cl mean_	NO3 mean	NH4	mean_oPO	4 mean_PO	4 mean_Chlo	r a1	a2 a	3 a4	a5 a6
0 winter	small	medium 8.00	9.8	60.800	6.238	578.00	000	105.000	170.00000	50.0	0.0	0.0 0.0	0.0	34.2 8.3
1 spring	small	medium 8.35	8.0	57.750	1.288	370.00	<c.< td=""><td>lass 'pan</td><td>das.core</td><td>e.frame.D</td><td>ataF</td><td>'rame'</td><td>></td><td></td></c.<>	lass 'pan	das.core	e.frame.D	ataF	'rame'	>	
2 autumn	small	medium 8.10	11.4	40.020	5.330	346.66	Rai	ngeIndex	: 200 en	tries, 0 1 l 18 colur	to 19	9		
3 spring	small	medium 8.07	4.8	77.364	2.302	98.182	Da #	Column	-	-Null Coun	-			
4 autumn	small	medium 8.06	9.0	55.350	10.416	233.70								
							0	Season	200	non-nul	1 ol	oject		
							1	Size	200	non-nul	1 ol	oject		
~~~		~~~				~~	2	Speed	200	non-nul	1 ol	oject		
Now so	me v	ariables h	ave mis	ssing val	ues	8	3	max_pH	199	non-nul	1 f	loat6	4	
Also we should convert Season, Size and Speed to category and ensure the levels are ordered.							4	min_02	198	non-nul	1 f	loat6	4	
							5	mean_C	190	non-nul	1 f	loat6	4	
to categ	ory a	and ensure	the lev	els are o	ordered.		6	mean_N	03 198	non-nul	1 f	loat6	4	
~~~	$\sim$		$\sim$	~~~	~~~	~~	7	mean N	H4 198	non-nul	1 f	loat6	4	

mean oPO4 198 non-null

float64

Algae_Blooms — Fix Data Types

The three categorical variables have levels with a natural order \Rightarrow convert to category and specify order:

```
df.Season = pd.Categorical(df.Season, categories=['spring', 'summer', 'autumn', 'winter'], ordered=Tr
print(df.Season.unique())

['winter', 'spring', 'autumn', 'summer']
Categories (4, object): ['spring' < 'summer' < 'autumn' < 'winter']</pre>
```

df.Size = pd.Categorical(df.Size, categories=['small', 'medium', 'large'], ordered=True)
print(df.Size.unique())

```
['small', 'medium', 'large']
Categories (3, object): ['small' < 'medium' < 'large']</pre>
```

df.Speed = pd.Categorical(df.Speed, categories=['low', 'medium', 'high'], ordered=True)
print(df.Speed.unique())

```
['medium', 'high', 'low']
Categories (3, object): ['low' < 'medium' < 'high']</pre>
```

Which columns have missing values?

Which rows have missing values?
How many NAs per row?

Rows / Cols to drop?

Which columns have missing values? df.isna().sum()

Season Size Speed max_pH min_02 mean_Cl 10 mean_NO3 mean_NH4 mean_oPO4 mean PO4 mean_Chlor a1 a2 a3 a4 a5 a6 a7

Which rows have missing values? How many NAs per row?

Rows / Cols to drop?

```
Which columns have missing values?
 df.isna().sum()
Season
Size
Speed
max_pH
min O2
mean_Cl
              10
mean_NO3
mean_NH4
mean_oPO4
mean PO4
mean_Chlor
a1
a2
a3
a4
a5
a6
а7
```

```
Which rows have missing values?
How many NAs per row?
 df.isna().sum(axis=1).value_counts()
     184
dtvpe: int64
  Rows / Cols to drop?
```

Which columns have missing values?

df.isna().sum()

Season Size Speed max_pH min O2 mean_Cl 10 mean_NO3 mean_NH4 mean_oPO4 mean PO4 12 mean_Chlor a 1 a2 a3 a4 a5 a6 а7

- Two columns (features) account for 22 NAs, but cannot just drop them as will lose a lot of information.
- Two rows (observations) account for 12 NAs ⇒ remove.
- Removing other rows with a NA will result in a los of 14 rows (7% of the data), instead will impute later.

Which rows have missing values?
How many NAs per row?

df.isna().sum(axis=1).value_counts()

0 184
1 7
2 7
6 2
dtype: int64

Rows / Cols to drop?

Which columns have missing values? df.isna().sum() Season Size Speed max_pH min O2 mean_Cl 10 mean_NO3 mean_NH4 mean_oPO4 mean PO4 mean Chlor a 1 a2 a3 a4 a 5 a6 а7

• Two columns (features) account for 22 NAs, but cannot just drop them as will lose a lot of information.

- Two rows (observations) account for 12 NAs \Rightarrow remove.
- Removing other rows with a NA will result in a los of 14 rows (7% of the data), instead will impute later.

Which rows have missing values? How many NAs per row?

df.isna().sum(axis=1).value_counts()

184 0 dtvpe: int64

Rows / Cols to drop?

df.loc[df.isna().sum(axis=1)==6]

	Season	Size	Speed	max_pH	min_0	2 mean	Cl mean	_NO3 n	nean_	NH4 mea	n_oPO4 m	ean_PO4 n	nean_C	hlor	a1	a2	a
61	summer	small 1	medium	6.4	NaN	NaN	NaN	N	laN	NaN	14	.0 N	laN	1	9.4	0.0	0.
198	winter	large 1	medium	8.0	7.6	NaN	NaN	N	laN	NaN	Na	aN N	laN	0	.0	12.5	3.

df = df.loc(df.isna().sum(axis=1)<61.copv()print(df.shape) (198, 18)

After Loading and Initial Clean — Where are we?

Tips

- ✓ Loaded data, corrected dtypes (categorical with order levels)
- Sanitised column names not needed, but note column name size shadows pandas dataframe function size \Rightarrow so use df["size"] instead of df.size.
- ✓ No missing values

>Titanic >

- ✓ Loaded data no conversion of dtypes needed (but if you don't plots/crosstab order won't agree)
- ✓ Sanitised column names not needed.
- Missing values in Age (177/891=20%), Cabin (687/891=77%), and Embarked (2/891=0.2%).
 - A feature with 77% missing values should be considered for deletion, but what if the presence of a missing value actually tells us something? \Rightarrow convert to a boolean feature.

Algae Blooms

- ✓ Loaded data, corrected dtypes (categorical with ordered levels)
- Sanitised column names.
- Missing values
 - Removed two rows with 6 NA each, accounted for 12/33=36% of the missing values.
 - Remaining, 21 NAs are concentrated in mean_CL (8) and mean_Chlor (10). EDA will suggest options.

After Loading and Initial Clean — Where are we?

Next we might

- Save result of initial clean:
 - To either a CSV (if we don't mind losing dtype metadata)

```
df.to_csv('data/Analysis.csv', index=False)
```

• To (say) pickle format (to keep dtype metadata)

```
df.to_pickle('data/Analysis.pkl')
```

Later can read dataframe back in using

```
df = pd.read_pickle('data/Analysis.pkl')
print(df.shape)
df.head(1)
```

• If the dataset is large (>100K rows), save a (reproducible) sample of the dataset for later EDA to speed up calculations (especially visualisations).

```
df.sample(frac=.25, random_state=42).to_pickle('data/Analysis_sample.pkl')
```

A Selection of Statistical Visualisations and Metrics

Categorical Variables

The Ideal

- Each level equally likely.
- Not too many levels: 2–12(ish).

Tools

- nunique, unique, value_counts.

- If size was the target, then most models will train towards the majority class (size=2).
- If size was a feature, then quality of predictor could vary greatly depending on the feature categorical level.
- Consider merge/drop rare category levels.
- sns.countplot shows the counts of observations in each categorical level using bars.

Categorical Variables — Relationship with (Categorical) Target

62.07% 61.78% 61.89% No 37.93% 38.22% 38.11% Yes

No relationship between sex and smoker

female	male	All						
Survived								
25.80%	81.11%	61.62%						
74.20%	18.89%	38.38%						
	25.80%	25.80% 81.11% 74.20% 18.89%						

Strong relationship between Sex and Survived

Categorical Variables — Relationship with (Numerical) Target

sns.countplot(x="Size", data=df);

 Shows the counts of observations in each categorical level using bar (height/width).

Is it usable?

sns.catplot(x="Size", y="a4", data=df, kind='bar');

- Shows the average level (mean) and uncertainty (std) of the numerical target (a4) in each categorical level of the categorical variable.
- Vertical bar shows 95% confidence interval.

Is it useful?

Categorical Variables — Relationship with (Numerical) Target

The option kind in catplot can be:

- bar and point show essentially the same information, but point is more compact when comparing multiple categorical features to a continuous target on the same plot.
- strip shows individual observations useful (as in this case) to show that the larger uncertainty in Size="small" observations is mainly due to two outliers.

Example — Dataset: Algae Blooms, Feature: Season, Target: a1

df.groupby("Season")["a1"].agg(["mean","count","std"])

	mean	count	std
Season	\bar{x}	n	σ
spring	16.649057	53	23.093786
summer	16.038636	44	17.920798
autumn	17.745000	40	21.611203
winter	17.498361	61	22.568256

- Countplot shows no issues with feature Season all levels approximately
 equally represented.
- Catplots show slightly less spread in a1 for Season="summer" observations.
 (strip shows smaller range, point shows smaller standard deviation).
- \Rightarrow Mean levels of a1 for different levels of Season are well within the 95% confidence intervals $(\bar{x} \pm \sigma 1.96/\sqrt{n})$, so no/weak relationship between categorical feature and numerical target.

Example — Dataset: Algae Blooms, Feature: Size, Target: a1

df.groupby("Size")["a1"].agg(["min","max","mean","count","std"])

	min	max	mean co	unt std
Size			\bar{x} n	σ
small	0.0	89.8	27.255714 70	24.895426
medium	0.0	86.6	11.267857 84	17.163124
large	0.0	56.8	11.611364 44	16.556123

- Countplot shows no issues with feature Size.
- Catplot (point) shows that levels of a1 are higher for Size="small" observations.
- ⇒ Confidence interval for Size="small" observations do not overlap with CI for other levels, so significant relationship between categorical feature and numerical target.

Numerical Variables

Things here are more complicated as a numerical variable could follow many different distributions. Here we look at data following the standard normal distribution. To start we generate 10,000 values and put in to new DataFrame, df2.

```
rv = stats.norm()
data = rv.rvs(size=10_000)
df2 = pd.DataFrame(data, columns=["x"])
df2.head(5)
```


Histplot (Histogram) and Boxplot

- Histogram is useful in depicting location, spread and shape.
- Curve, is estimate of shape given infinite data and infinite number of bins.
- Boxplots also depicts location, spread and shape, but uses median for estimate of centre. and quartiles for spread.
- Half the data is within the box, data points outside the whiskers (lines) are possible outliers, denoted by circles.

Cumulative Plot and QQ-Plot

sns.ecdfplot(data=df2, x="x");

 Represents the proportion of observations less than or equal to given value. import pingouin as pg
pg.qqplot(df2.x);

• Plot of observed quantiles against theoretical (assuming normal) quantiles. If both sets of quantiles came from the same distribution, we should see the points forming a line that's roughly straight.

Example — Dataset: Tips, Feature: total_bill

df.total_bill.describe()

244.000000
19.785943
8.902412
3.070000
13.347500
17.795000
24.127500
50.810000
total_bill, dtype: flo

- Data is bell curve shaped, but right skewed (data is more spread out to the right).
- Outliners to the right.
- QQ-Plot indicate that data is not normal, but we could transform it to be more closer to normal.

Example — Dataset: Titanic, Feature: Fare

df.Fare	.describe()
---------	-------------

count	891.000000
mean	32.204208
std	49.693429
min	0.000000
25%	7.910400
50 %	14.454200
75%	31.000000
max	512.329200
Name:	Fare, dtype: float64

 This variable is more skewed and dominated by its outliers which need to be resolved.

Warning — Plot Output Depends on Data Assumptions

df.Survived = pd.Categorical(df.Survived)
sns.catplot(data=df, x="Fare", y="Survived");

df = pd.read csv("data/train.csv") df = pd.read_csv("data/train.csv") df.Survived = df.Survived.astype(str) sns.catplot(data=df, x="Fare", y="Survived"); sns.catplot(data=df, x="Fare", y="Survived"); 1.0 seaborn tries to infer the correct graph based on the data 0.8 values/type, but it does not always Survived 0.4 get it correct. Survived Survived stores 0 and 1 and has dtype **int**. Converting to a Categorical 整體: " with numeric levels is not enough. 0.2 astype(str) converts 0 and 1 to "0" and "1". 0.0 200 400 Fare Fare df = pd.read_csv("data/train.csv")

Summary

- After reading in the data, exploratory data analysis begins
- Pass 1 is all about assessing the structure and cleanliness of the data
 - Are the column names descriptive and short, or do we need to rename them?
 - What datatype is each column are there any surprises there?
 - Mow are missing values handled, and can we standardise this?
- Passes 2 and 3 will examine the data more closely, in a repeatable fashion
- Pandas and seaborn offer easy-to-use ways of visualising columns, noting
 - their datatype
 - their cardinality
 - the visualisation objective: observe distributions or relationships