

Liquid EC & TDS Sensor User Manual

Version: v1.2

Index

1	Customer Support	3
2	Introduction	4
3	Wiring diagrams	5
4	Dimension and Ordering Infomation	7
	4.1 Dimension	7
5	Installation, On board buttons and Calibration	8
	5.1 Installation	8
	5.2 Installation Guide	
	5.3 On board buttons	
	5.4 Restore Factory Settings	
	5.5 Calibration	
	5.5.2 Perform EC calibration by command	
6	Output Signal Conversion	
7	RS485 Modbus Protocol	11
	7.1 Modbus Protocol	11
	7.2 Modbus Register	
	7.3 Modbus Register Detail Descripton	13
	7.4 Modbus Function Code	
	7.4.1 Function Code 3 Protocol Example	
	7.4.2 Function Code 4 Protocol Example7.4.3 Function Code 6 Protocol Example	
	7.4.4 Function Code 16 Protocol Example	
8	Software Configuration Utility	22
	8.1 Hardware Setup	22
	8.2 Universal Modbus Comm Utility	

1 Customer Support

Thank you very much for your order. Our success comes from the continuous faith in the excellence of our products and services, something we are committed to and would never sacrifice. Our customer service, especially in the after sales phase, guarantees the satisfaction of our clients. In line with this strategy, we appreciate that you can share with us your feedback at any time for our improvement, be it positive or negative, so if we can serve you better in anyway, please do inform us.

Need Technical Support?

Check out our Forum where is the base of our Technical Support Team. We tend to share our technical support at our Forum where the whole community can access it, but you may also email us at **sensecap@seeed.cc** for technical help.

2 Introduction

S-EC-01 measures Conductivity, Salinity, TDS with temperature compensation. The output signal can be RS485 or Analog Voltage. The sensor is applicable for industrial, water processing, sewerage system, irrigation, smart agriculture etc.

- Conductivity, Salinity and TDS measurement with temperature compensation
- With ABS or Stainless steel electrode
- Output Interface with RS485, Voltage
- High accuracy with excellent stability
- Reverse power protection and Built-in TVS/ESD protection

	Specifications				
Output Interface	Analog Voltage 0-2V	RS485 Modbus-RTU			
	(Output resistance ~0ohm)				
Power Supply	3.9-30V/DC 3.9-30V/DC				
Power Consumption(Idle)	40mA@24V DC	40mA@24V DC			
Power Consumption(Max)	80mA@24V DC	80mA@24V DC			
Start-up time	< 2 seconds				
EC Measurement	Isolated Sensor Input, Range: 0-20000us/cm				
	Resolution: 0-10000us/cm, 10us/cm; 100000-20000us/cm, 50us/cm				
	Accuracy: 0-10000us/cm, ±3%; 10000-20000us/cm, ±5%				
	EC temperature compensation: 0-50°C				
Temperature Measurement Range: -40~80°C, Resolution:0.1°C, Accuracy:±0.5°C					
IP Ratings	Electrode:IP68; Transmitter:IP6	65			
Operating Temperature	ure -40~85°C				
Installation	Electrode:1/2"NPT screw threads; Transmitter: Mounting hole				
Cable Length	Power and Signal Cable:2 meters or Customize; Electrode Cable:10 meters				
Dimension	Electrode:1/2"NPT screw threads; Transmitter:128*70*42mm				

Wiring diagrams

Type	Wiring diagram
Analog	Red (V+): Power Supply +
Voltage	Black (GND): Power Supply -
Output	Blue (O1): Analog Output
	Wiring Diagram for Analog Voltage Output 0-2V BLUE: 01 POWER SUPPLY DC
RS485	Red (V+): Power Supply +
Modbus	Black (GND): Power Supply -
	Yellow (T+): RS485+/A/T+ White (T-): RS485-/B/T-
	Wiring Diagram RS485 Modbus
C88	T+ T- YELLOW:T+ WHITE: T-
	POWER SUPPLY DC BLACK: G RED: V+
	ALL RS485 communication parameters (Modbus Slave Address, baud rate, parity, data bits,

stop bits) are set in internal register and can be saved when power down, the default setting is ADDRESS=1, BAUDRATE=9600bps, PARITY=NONE, DATABITS= 8bits, STOPBITS=1bit;

Sometimes you may FORGET the communication settings. In this case, you can open the shield module and press the SW1-SET button at least 3 seconds, then all the communication parameters reset to default setting, then communicating with the sensor using the default setting to set your desired settings.

Please re-power up the sensor to make the settings effective.

Dimension and Ordering Infomation 4

4.1 **Dimension**

Unit: mm

*Note: Do not put the Transmitter into the liquid.

5 Installation, On board buttons and Calibration

5.1 Installation

1/2"NPT screw threads installation. Please refer to the dimensions.

5.2 Installation Guide

Should following the common requirements for conductivity electrode installation.

5.3 On board buttons

There are 3 buttons on the transmitter board.

Button	Functionality	Comment	
SW1-SET	1) Enter into EC calibration	1) Long press for more than 3	
	2) Exit EC calibration	seconds to restore the factory	
	3) Reset to factory settings	settings.	
	(0)	2) Short press to enter into the EC calibration.	
		3) Short press to exit the EC calibration.	
SW2-CALL	EC calibration for	In EC calibration mode, Immerse	
- ()	1413us/cm(1.413ds/m)	the electrode in 1413us/cm solution	
X 0.00		for a while and short press the	
1,10		button to perform the auto	
		calibration.	
SW3-CALH	EC calibration for	In EC calibration mode, Immerse	
	12880us/cm(12.88ds/m)	the electrode in 12880us/cm	
600		solution for a while and short press	
		the button to perform the auto	
		calibration.	

5.4 Restore Factory Settings

Long press SW1-SET button for more than 3 seconds to restore the factory settings. You can restore the factory settings in following cases:

- 1) EC Calibration failed and EC value is incorrect.
- 2) Can not communicate with sensor due to forgetting the communication parameters.

5.5 Calibration

When performing the EC calibration, you should guarantee the temperature of the standard EC calibration solution is around 25°C. And wait for a while for temperature and EC equilibrium after immersing the sensor into the standard solution.

5.5.1 Perform EC calibration by on board buttons

- 1) Short press SW1-SET button and enter into the EC calibration mode, then the led indicator flash two times every second, Note that communication is not available in calibration mode.
- 2) In EC calibration mode, Immerse the electrode in 1413us/cm solution for a while and short press the SW2-CALL button to perform the auto calibration.
- 3) In EC calibration mode, Immerse the electrode in 12880us/cm solution for a while and short press the button to perform the auto calibration.
- 4) Short press SW1-SET button to exit the EC calibration mode
- 5) Verify the sensor output.

5.5.2 Perform EC calibration by command

- 1) Immerse the electrode in 1413us/cm solution for a while and then write 0xFFFF to modbus register 0x0030 (ECCALIB 1413 EC calibration point for 1413us/cm) to perform auto calibration.
- 2) Immerse the electrode in 12880us/cm solution for a while and then write 0xFFFF to modbus register 0x0031 (ECCALIB_12880 EC calibration point for 12880us/cm) to perform auto calibration.
- 3) Verify the sensor output.

Output Signal Conversion

Output Interface	Parameters Range	Conversion Formula	
Analog Voltage	EC range: 0-2000us/cm	EC=1000*VOLTAGE. When VOLTAGE=0.3V, then	
Output 0-2V		EC=1000*0.3=300us/cm	
	EC range: 0-5000us/cm	EC=2500*VOLTAGE. When VOLTAGE=0.3V, then	
		EC=2500*0.3=750us/cm.	
	EC range: 0-10000us/cm	EC=5000*VOLTAGE. When VOLTAGE=0.3V, then	
		EC=5000*0.3=1500us/cm.	
	EC range: 0-20000us/cm	EC=10000*VOLTAGE. When VOLTAGE=0.3V, then	
		EC=10000*0.3=3000us/cm.	
RS485	EC range: All	EC=(REGISTER VALUE).When REGISTER	
Modbus-RTU		VALUE=1568, then EC= 1568us/cm.	

NOTE: The unit of VOLTAGE is (V).

NOTE: VWC is Volumetric Water Content, EC is Electrical Conductivity.

7 RS485 Modbus Protocol

7.1 Modbus Protocol

Modbus Protocol is widely used to establish master-slave communication between intelligent devices or sensors. A MODBUS message sent from a master to a slave contains the address of the slave, the function code (e.g. 'read register' or 'write register'), the data, and a check sum (LRC or CRC).

The sensor is RS485 interface with Modbus protocol. The default serial communication settings is slave address 1, modbus rtu, 9600bps, 8 databits and 1 stop bit. All communication settings can be changed with modbus command, and take effective after re-power up the sensor.

Following modbus function code are supported by sensor.

Modbus Function Code 0x03: used for reading holding register.

Modbus Function Code 0x04: used for reading input register.

Modbus Function Code 0x06: used for writing single holding register.

Modbus Function Code 0x10: used for writing multiple holding register.

7.2 Modbus Register

Parameters	Register Addr. (HEX/DEC)	Data Type	Modbus Function	Range and Comments	Default Value
			Code(DEC)		
TEMPRATURE	0x0000 /0	INT16	3/4	-4000-8000 for	N/A
		RO		-40.00~80.00°C.	
RESERVED	0x0001 /1	UINT16	3/4	0	0
		RO			
EC-Electrical	0x0002 /2	UINT16	3/4	0-20000 for	N/A
Conductivity		RO		0-20000us/cm	
SALINITY	0x0003 /3	UINT16	3/4	0-20000 for	N/A
		RO		0-20000mg/L	
TDS	0x0004 /4	UINT16	3/4	0-20000 for	N/A
		RO		0-20000mg/L	
RESERVED	0x0005 /5	UINT16	3/4	0	0
		RO			
RESERVED	0x0006 /6	UINT16	3/4	0	0
		RO			
RESERVED	0x0007 /7	UINT16	3/4	0	0

		RO			
ECRAWAD	0x0008 /8	UINT16 RO	3/4	0-4000	N/A
RESERVED	0x0009 /9	UINT16 RO	3/4	0	0
TEMPCOMPENSAT EEN	0x0020 /32	UINT16 R/W	3/6/16	0: External Temperature Sensor 1: Onboard temperature sensor 2: Disabled	0
RESERVED	0x0021 /33	UINT16 R/W	3/6/16	N/A	0
ECTEMPCOFF	0x0022 /34	UINT16 R/W	3/6/16	0-100 for 0.0%-10.0%	20(2%)
SALINITYCOFF	0x0023 /35	UINT16 R/W	3/6/16	0-100 for 0.00-1.00	55(0.55)
TDSCOFF	0x0024 /36	UINT16 R/W	3/6/16	0-100 for 0.00-1.00	50(0.5)
ELECTRODECONST ANT	0x0025 /37	UINT16 R/W	3/6/16	500-1500 for 0.500-1.500	1000(1.000)
ECCALIB_1413 EC calibration point for 1413us/cm	0x0030 /48	UINT16 R/W	3/6/16	Immerse the electrode in 1413us/cm solution for a while and write 0xFFFF into the register to perform the auto calibration.	223
ECCALIB_12880 EC calibration point for 12880us/cm	0x0031 /49	UINT16 R/W	3/6/16	Immerse the electrode in 12880us/cm solution for a while and write 0xFFFF into the register to perform the auto calibration.	1851
SLAVEADDRESS	0x0200 /512	UINT16 R/W	3/6/16	0-255	1 or 30
BAUDRATE	0x0201 /513	UINT16 R/W	3/6/16	0-6 0:1200bps 1:2400bps 2:4800bps 3:9600bps 4:19200bps 5:38400bps	3:9600bps

PROTOCOL	0x0202 /514	UINT16	3/6/16	0-1	0:Modbus
		R/W		0:Modbus RTU	RTU
				1:Modbus ASCii	
PARITY	0x0203 /515	UINT16	3/6/16	0-2	0:None
		R/W		0:None	Parity
				1:Even	
				2:Odd	
DATABITS	0x0204 /516	UINT16	3/6/16	1	1:8 databits
		R/W		1:8 databits	
STOPBITS	0x0205 /517	UINT16	3/6/16	0-1 0:1 stop	
		R/W		0:1 stopbit	
				1:2 stopbits	
RESPONSEDELAY	0x0206 /518	UINT16	3/6/16	0-255 for 0-2550	0
		R/W		milliseconds	
ACTIVEOUTPUTIN	0x0207 /519	UINT16	3/6/16	0-255 for 0-255 seconds.	0
TERVAL		R/W			

NOTE: UINT16:16 bit unsigned integer, INT16:16bit signed integer

NOTE: RO: Register is Read Only, R/W: Register is Read/Write

NOTE: HEX is Hexadecimal (data with 0x/0X prefix), DEC is Decimal

7.3 Modbus Register Detail Descripton

TEMPERATURE		
Data Range	-4000-8000 For -40.00~80.00°C	Default: N/A
Power Down Save	N/A	

Note: Temperature value (Binary complement).

Example: When REGISTER = 0x0702 (HEX format), then

VALUE=(0x07*256+0x02)/100=17.94°C. When REGISTER=FF05H (HEX format), then

VALUE=((0xFF*256+0x05)-0xFFFF-0x01)/100 = (0xFF05-0xFFFF-0x01)/100 = -2.51°C.

ECElectrical Conductivity			
Data Range	0-20000 For 0-20000us/cm	Default: N/A	
Power Down Save	N/A		

Note: Electrical Conductivity.

Example: When REGISTER = 0x0702 (HEX format), then VALUE=(0x07*256+0x02)=1794us/cm

SALINITY--- Salinity

Data Range 0-20000 For 0-20000mg/L		Default: N/A
Power Down Save	N/A	

Note:SALINITY

Example: When REGISTER = 0x0702 (HEX format), then VALUE=(0x07*256+0x02)=1794mg/L, Salinity is derived by EC, SALINITY=EC* SALINITYCOFF, in which SALINITYCOFF is a coefficient, please refer to SALINITYCOFF.

TDSTotal Dissolved Solid				
Data Range	0-20000 For 0-20000mg/L	Default: N/A		
Power Down Save	N/A			

Note: Total Dissolved Solid

Example: When REGISTER = 0x0702 (HEX format), then VALUE=(0x07*256+0x02)=1794mg/L, TDS is derived by EC, TDS=EC* TDSCOFF, in which TDSCOFF is a coefficient, please refer to TDSCOFF.

ECRAWAD			
Data Range	0-4000	CO:1	Default: N/A
Power Down Save	N/A		

Note: Conductivity raw AD value

Example: When REGISTER = 0x0702 (HEX format), then VALUE=(0x07*256+0x02)=1794

TEMPCOMPENSATEEN		
Data Range	0: External Temperature Sensor	0
	1: Onboard temperature sensor	
	2: Disabled	
Power Down Save	YES	

Note: Temperature compensation

ECTEMPCOFFEC Temperature Compensation Coefficient			
Data Range	0-100 for 0.0%-10.0%	Default: 20	0(2%)
Power Down Save	YES		

Note:EC Temperature Compensation Coefficient

SALINITYCOFFSalinity Coefficient			
Data Range	0-100 for 0.00-1.00	Default:	55(0.55)

Power Down Save	YES	
-----------------	-----	--

Note:Salinity Coefficient.

TDSCOFFTDS Coefficient		
Data Range	0-100 for 0.00-1.00	Default: 50(0.50)
Power Down Save	YES	

Note: TDS Coefficient.

ELECTRODECONSTANT			
Data Range	500-1500 for 0.500-1.500	Default: 1000(1.000)	
Power Down Save	YES		

Note: Electrode constant provided by the electrode manufactor

SLAVEADDRESS -	Modbus Slave Address	
Data Range	0-255	Default: 1 or 30
Power Down Save	YES	

Note: Please re-power on the sensor to take effective after set.

BAUDRATE Serial Comm Baudrate		
Data Range	0-5	Default: 3
	0 :1200bps	
	1:2400bps	
	2:4800bps	
	3:9600bps	
	4: 19200bps	
6	5:38400bps	
Power Down Save	YES	

Note: Please re-power on the sensor to take effective after set.

PROTOCOL Serial Comm Protocol		
Data Range	0-1	Default: 0
	0:Modbus RTU	
	1:Modbus ASCii	
Power Down Save	YES	

Note: Please re-power on the sensor to take effective after set.

PARITY Serial Comm Parity			
Data Range	0-2	Default: 0	
	0:NONE		
	1:EVEN		
	2:ODD		
Power Down Save	YES		A

Note: Please re-power on the sensor to take effective after set.

DATABITS Serial Comm Databits		
Data Range	1	Default: 1
	1:8 databits	
Power Down Save	YES	

Note: Please re-power on the sensor to take effective after set.

STOPBITS Serial Comm Stopbits			
Data Range	0-1	Default: 0	
	0:1 stopbit		
	1:2 stopbits		
Power Down Save	YES		

Note: Please re-power on the sensor to take effective after set.

RESPONSEDELAY Serial Comm Response Delay		
Data Range	0-255 for 0-2550 milliseconds, 0 for disabled	Default: 0
Power Down Save	YES	

Note: Please re-power on the sensor to take effective after set.

Note: Sensor will delay a period before response to master request command.

Example: When set to 5 and receive a request from master device, then sensor will delay

5*10ms=50ms, then response to master.

ACTIVEOUTPUTINTERVAL Serial Comm Active Output Interval time		
Data Range	0-255 for 0-255 seconds, 0 for disabled	Default: 0
Power Down Save	YES	

Note: Please re-power on the sensor to take effective after set.

Note: Sensor will output the data actively without any master request command.

Note:Only ONE sensor should be on RS485 network, or there will be data collision and corrupt the data on line.

Note: Refer to SETTING mode to exit the Active Output Mode.

Example: When set to 5 then sensor will output the data every 5 seconds without any master request command.

7.4 Modbus Function Code

For description below, data started with 0X/0x means that it's in HEX format.

7.4.1 Function Code 3 Protocol Example

Master Request: AA 03 RRRR NNNN CCCC

AA	1 byte	Slave Address,0-255
0x03	1 byte	Function Code 3
RRRR	2 byte	Starting Register Addr
NNNN	2 byte	Quantity of Register to read
CCCC	2 byte	CRC CHECKSUM

Slave Response: AA 03 MM VV0 VV1 VV2 VV3... CCCC

AA	1 byte	Slave Address,0-255
		,
0x03	1 byte	Function Code 3
MM	1 byte	Register Data Byte Count
VV0,VV1	2 byte	Register Value (High8bits first)
VV2,VV3	2 byte	Register Value (High8bits first)
		Register Value (High8bits first)
CCCC	2 byte	CRC CHECKSUM

Example: Read register 0x0200-0x0201, that is slave address and baudrate.

Master Request:01 03 0200 0002 C5B3

Slave Addr.	1 byte	0x01
Function Code	1 byte	0x03
Starting Register	2 byte	0x0200
Addr.		

Quantity of Register	2 byte	0x0002
to read		
Checksum	2 byte	0xC5B3

Slave Response:01 03 04 00 01 00 03 EB F2

Slave Addr.	1 byte	0x01
Function Code	1 byte	0x03
Register Data Byte	1 byte	0x04
Count		
Register Value:	2 byte	0x00(HIGH 8 Bits)
Address		0x01(LOW8 Bits)
Register Value:	2 byte	0x00(HIGH 8 Bits)
Baudrate		0x03(LOW8 Bits)
Checksum	2 byte	0xEBF2

7.4.2 Function Code 4 Protocol Example

Master Request: AA 04 RRRR NNNN CCCC

AA	1 byte	Slave Address,0-255
0x04	1 byte	Function Code 4
RRRR	2 byte	Starting Register Addr
NNNN	2 byte	Quantity of Register to read
CCCC	2 byte	CRC CHECKSUM

Slave Response: AA 04 MM VV0 VV1 VV2 VV3... CCCC

AA	1 byte	Slave Address,0-255
0x04	1 byte	Function Code 4
MM	1 byte	Register Data Byte Count
VV0,VV1	2 byte	Register Value (High8bits first)
VV2,VV3	2 byte	Register Value (High8bits first)
		Register Value (High8bits first)
CCCC	2 byte	CRC CHECKSUM

Example: Read register 0x0000-0x0002, that is temperature, reserved, and EC.

Master Request:01 04 0000 0003 B00B

Slave Addr.	1 byte	0x01
Function Code	1 byte	0x04
Starting Register	2 byte	0x0000
Addr.		
Quantity of Register	2 byte	0x0003
to read		
Checksum	2 byte	0xB00B

Slave Response: 01 04 06 08 16 00 00 05 78 2B 6A

Slave Addr.	1 byte	0x01
Function Code	1 byte	0x04
Register Data Byte	1 byte	0x06
Count		
Register Value:	2 byte	0x08(HIGH 8 Bits)
Temperature		0x16(LOW8 Bits)
Register Value:	2 byte	0x00(HIGH 8 Bits)
Reserved		0x00(LOW8 Bits)
Register Value: EC	2 byte	0x05(HIGH 8 Bits)
		0x78(LOW8 Bits)
Checksum	2 byte	0xD257

Temperature =(0x08*256+0x 16)/100=2070/100=20.70 °C EC=0x05*256+0x78=5*256+120=1400 us/cm

7.4.3 Function Code 6 Protocol Example

Master Request: AA 06 RRRR VVVV CCCC

AA	1 byte	Slave Address,0-255
0x06	1 byte	Function Code 6
RRRR	2 byte	Register Addr (High8bits first)
VVVV	2 byte	Register Value (High8bits first)
CCCC	2 byte	CRC CHECKSUM

Slave Response: AA 06 RRRR VVVV CCCC

AA	1 byte	Slave Address,0-255
0x06	1 byte	Function Code 6
RRRR	2 byte	Register Addr (High8bits first)
VVVV	2 byte	Register Value (High8bits first)
CCCC	2 byte	CRC CHECKSUM

Example: Write Register 0x0020, that is set temperature compensation

Request: 01 06 0020 0000 8800

Slave Addr.	1 byte	0x01
Function Code	1 byte	0x06
Register Addr.	2 byte	0x0020 (High8bits first)
Register Value	2 byte	0x0000 (High8bits first)
Checksum	2 byte	0x8800

Response:01 06 0021 0001 1800

Slave Addr.	1 byte	0x01
Function Code	1 byte	0x06
Register Addr.	2 byte	0x0020 (High8bits first)
Register Value	2 byte	0x0000 (High8bits first)
Checksum	2 byte	0x8800

7.4.4 Function Code 16 Protocol Example

Master Request: AA 10 RRRR NNNN MM VVVV1 VVVV2 ... CCCC

AA	1 byte	Slave Address,0-255
0x10	1 byte	Function Code 0x10
RRRR	2 byte	Starting Register Addr
NNNN	2 byte	Quantity of Register to write
MM	1 byte	Register Data Byte Count
VVVV1	2 byte	Register Value(High8bits first)
VVVV2	2 byte	Register Value(High8bits first)
		Register Value(High8bits first)
CCCC	2 byte	CRC CHECKSUM

Slave Response: AA 10 RRRR NNNN CCCC

AA	1 byte	Slave Address,0-255
0x10	1 byte	Function Code 0x10
RRRR	2 byte	Starting Register Addr
NNNN	2 byte	Quantity of Register to write
CCCC	2 byte	CRC CHECKSUM

Example: Write Register 0x0200-0x0201, that is set slave address to 1, and baudrate to 19200bp.

Master Request:01 10 0200 0002 04 0001 0004 BACC

0x01	1 byte	Slave Addr.
0x10(HEX)	1 byte	Function Code 0x10
0x0200	2 byte	Starting Register Addr
0x0002	2 byte	Quantity of Register to write
0x04	1 byte	Register Data Byte Count
0x0001	2 byte	Register Value: Slave Address 1
0x0004	2 byte	Register Value: Baudrate 19200bps
0xBACC	2 byte	CRC CHECKSUM

Salve Response:01 10 0200 0002 4070

0x01	1 byte	Slave Addr.
0x10(HEX)	1 byte	Function Code 0x10
0x0200	2 byte	Starting Register Addr(High8bits first)
0x0002	2 byte	Quantity of Register to write(High8bits first)
0x4070	2 byte	CRC CHECKSUM

8 Software Configuration Utility

8.1 Hardware Setup

8.2 Universal Modbus Comm Utility

You can use software listed below to try reading/writing the register of sensor, https://github.com/ed-chemnitz/qmodbus/releases

Document version

Version	Date	Description Editor
V1.0		First Version
V1.1	11/18/22	Add Note in Chapter 4 Yvonne.Meng
V1.2	01/29/23	Delete the SensorOneSet Yvonne.Meng
		Configuration Utility in
		Chapter 5 and 8
	06/26/23	Modify Electrode Cable:10 Yvonne.Meng
		meters