ACP TP1

Analyse du nuage des points-individus

1) Exemple du cours et calculs avec R :

On considère le tableau de données brute suivant :

	intensité émission de bulles	saveur salée	appréciation globale
St Yorre	3,9	6,4	2,9
Vichy	1,4	6,0	2,8
Quézac	5,1	4,7	3,5
Salvetat	2,9	4,1	3,4
Perrier	8,2	4,9	2,8

- Calculez la matrice des corrélations \mathbf{R} à partir de la matrice des données centrées-réduite \mathbf{Z} , en pondérant les lignes par 1/n.
- Effectuez la décomposition spectrale de **R** et en déduite la matrice **V** des vecteurs propres de **R** triés par ordre décroisant des valeurs propres. Vérifiez que les vecteurs propres sont bien normés à 1 et orthogonaux (i.e. orthonormés).
- Calculez la matrice Ψ des coordonnées factorielles des 5 eaux sur les trois axes factoriels. Calculez les moyennes et les variances des trois colonnes de Ψ . Comparez aux valeurs propres de \mathbf{R} .
- Représentez graphiquement les 5 eaux sur le premier plan factoriel 1-2 des individus et sur la plan 1-3
- Quelle est l'inertie du nuage des 5 eaux calculée à partir des coordonnées factorielles Ψ . Vérifiez que $I(\Psi)=p=I(\mathbf{Z})$.
- Quelle est le pourcentage d'inertie expliquée par chaque composante principale. Quelle est le pourcentage cumulé ? Combien de composantes retiendriez-vous ?

2) Exemple du cours avec R et le package FactoMineR:

- Les deux fonctions de base sous R qui réalisent des ACP sont prcomp() et princomp(). En vous aidant de l'aide, retrouvez les résultats du 1). Laquelle utilise n et (n-1) au numérateur pour les calculs de variance ?
- Installez le package FactoMineR et utilisez la fonction PCA() pour retrouver les résultats du 1)

ACP TP2

Analyse du nuage des points-variables

3) Exemple du cours et calculs avec R :

- Calculez la matrice des produits scalaires des 5 eaux ZZ^tN.
- Effectuez la décomposition spectrale de **cette matrice** et en déduite la matrice *U* de ses vecteurs propres triés par ordre décroisant des valeurs propres, et **N-normés**. Comparez aux valeurs propres de la matrice des corrélations **R** et vérifiez alors que *U* et bien N-orthonormés.
- Calculez la matrice Φ des coordonnées factorielles des 3 variables sur les trois axes factoriels. Représentez graphiquement les 3 variables sur le premier plan factoriel 1-2.
- Effectuez la décomposition en valeurs singulières (DVS) de Z avec le métriques I_p et N (fonction svd.triplet()).
 - O Vérifiez que les valeurs singulières sont bien les racines des valeurs propres déjà trouvées. Retrouvez à partir de cette DVS les matrices U et V (déjà trouvées aux questions précédentes).
 - 0 Vérifiez les formules de passages $\psi^{\alpha} = \sqrt{\lambda_{\alpha}} u_{\alpha}$ et $\phi^{\alpha} = \sqrt{\lambda_{\alpha}} v_{\alpha}$.
- Calculez les corrélations entre intensité des bulles et la première composante principale ψ^1 . Vérifiez que vous retrouvez bien ϕ_{11} .

4) Exemple du cours avec R et le package FactoMineR:

- Retrouvez les coordonnées factorielles des variables (les loadings) c'est-à-dire la matrice Φ avec les deux fonctions de base prcomp() et princomp().
- Retrouvez ensuite Φ avec la la fonction PCA() FactoMineR.
- Retrouvez la représentation graphique des 3 variables sur le premier plan factoriel. Interprétez. Interprétez ensuite le premier plan factoriel des eaux en fonction de ce graphique.