Chapter 14 ARM GPIO (General Purpose Input/Output)

Embedded Systems with ARM Cortex-M Updated 3/6/2018

Board IO Pins

GPIO Pins

- Flexibility due to limited amount of pins on the board.
- Can be configured as 4 types:
 - Digital INPUT
 - Digital OUTPUT
 - Analog INPUT (ADC)/OUTPUT (DAC)
 - Alternate Function (USART)

I/O Electronics

Figure 16. Basic structure of a five-volt tolerant I/O port bit

V_{DD_FT} is a potential specific to five-volt tolerant I/Os and different from V_{DD}.

Digital OUTPUT

Figure 19. Output configuration Input data register Read VDD TTL Schmitt VDD Bit set/reset registers trigger on/off protection Write diode Input driver Output data register up I/O pin Output driver V_{DD} on/off P-MOS protection Output down diode Read/write control VSS N-MOS Push-pull or V_{SS} Open-drain ai15941b

Digital INPUT

Figure 18. Input floating/pull up/pull down configurations

Analog IN/OUT

Figure 21. High impedance-analog configuration

Alternate Function

Alternate function input To on-chip peripheral Input data register on Read V_{DD} TTL Schmitt on/off Bit set/reset registers trigger protection diode Input driver Write Output data register I/O pin on/off Output driver V_{DD} protection P-MOS down diode Output V_{SS} control N-MOS Read/write push-pull or open-drain From on-chip Alternate function output peripheral ai15942b

Figure 20. Alternate function configuration

8.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A..E and H)

Address offset: 0x0C

Reset values:

- 0x6400 0000 for port A
- 0x0000 0100 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPDF	R15[1:0]	PUPDE	R14[1:0]	PUPDE	R13[1:0]	PUPDE	R12[1:0]	PUPDE	R11[1:0]	PUPDE	R10[1:0]	PUPD	R9[1:0]	PUPD	R8[1:0]
rw	rw	rw	rw	rw	rw										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPDR7[1:0]		PUPDR6[1:0]		PUPDR5[1:0]		PUPDR4[1:0]		PUPDR3[1:0]		PUPDR2[1:0]		PUPDR1[1:0]		PUPDR0[1:0]	
rw	rw	rw	rw	rw	rw										

Bits 2y:2y+1 **PUPDRy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O pull-up or pull-down

00: No pull-up, pull-down

01: Pull-up 10: Pull-down 11: Reserved

8.4.5 GPIO port input data register (GPIOx_IDR) (x = A..E and H)

Address offset: 0x10

Reset value: 0x0000 XXXX (where X means undefined)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 IDRy: Port input data (y = 0..15)

These bits are read-only and can be accessed in word mode only. They contain the input value of the corresponding I/O port.

All pins are configured in SW!

- By default all peripherals are not clocked. You must enable the clock to each peripheral you wish to use.
- You must then READ the datasheet and find out which registers need to be changed to get desired configuration.

Memory Map of STM32F401

Peripheral Registers

2.3 Memory map

See the datasheet corresponding to your device for a comprehensive diagram of the memory map. *Table 1* gives the boundary addresses of the peripherals available in STM32F411xC/E device.

Table 1. STM32F411xC/E register boundary addresses

Boundary address	Peripheral	Bus	Register map					
0x5000 0000 - 0x5003 FFFF	USB OTG FS	AHB2	Section 22.16.6: OTG_FS register map on page 744					
0x4002 6400 - 0x4002 67FF	DMA2		Continuo E 44, DMA register man en page 404					
0x4002 6000 - 0x4002 63FF	DMA1		Section 9.5.11: DMA register map on page 194					
0x4002 3C00 - 0x4002 3FFF	Flash interface register	- 2	Section 3.8: Flash interface registers on page 5					
0x4002 3800 - 0x4002 3BFF	RCC		Section 6.3.22: RCC register map on page 133					
0x4002 3000 - 0x4002 33FF	CRC	20 80 W (m02) (000)	Section 4.4.4: CRC register map on page 68					
0x4002 1C00 - 0x4002 1FFF	GPIOH	AHB1						
0x4002 1000 - 0x4002 13FF	GPIOE							
0x4002 0C00 - 0x4002 0FFF	GPIOD		Continue 0.4.44. OBIO no nieto name na name 400					
0x4002 0800 - 0x4002 0BFF	GPIOC		Section 8.4.11: GPIO register map on page 160					
0x4002 0400 - 0x4002 07FF	GPIOB							
0x4002 0000 - 0x4002 03FF	GPIOA	72						

Figure 12. Clock tree

6.3.9 RCC AHB1 peripheral clock enable register (RCC_AHB1ENR)

Address offset: 0x30

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
				D	a				DMA2EN	DMA1EN		D				
	Reserved								rw	rw	Reserved					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Reserved		CRCEN	Reserved			GPIOH EN	100-14000-0	erved	GPIOEEN	GPIOD EN	GPIOC EN	GPIOB EN	GPIOA EN		
			rw					rw			rw	rw	rw	rw	rw	

Bits 31:23 Reserved, must be kept at reset value.

Bit 22 DMA2EN: DMA2 clock enable

Set and cleared by software.

0: DMA2 clock disabled

1: DMA2 clock enabled

Bit 21 DMA1EN: DMA1 clock enable

Set and cleared by software.

0: DMA1 clock disabled

1: DMA1 clock enabled

Bits 20:13 Reserved, must be kept at reset value.

Bit 12 CRCEN: CRC clock enable

Set and cleared by software.

0: CRC clock disabled

1: CRC clock enabled

Bits 11:8 Reserved, must be kept at reset value.

Bit 7 GPIOHEN: IO port H clock enable

Set and reset by software.

Steps to set up Digital OUTPUT

- Provide CLOCK to the port
- Configure the desired I/O as OUTPUT or INPUT in the GPIOx_MODER register
- View the RESET values for the other registers that control I/O and change if necessary:
 - GPIOx_OTYPER Open-Drain/Push-Pull
 - GPIOx_OSPEEDR Low/Med/High Speed
 - GPIOx_PUPDR (Weak) P/U, P/D, None

Calculating Delay Loop

- Desired delay time = 500ms
- Clock Frequency = 10MHz (Prove it)
- 10*10 ^6 (cycles/second) * 500 * 10^-3
 seconds = 40000000 cycles
- Instructions in loop?

Board Schematic

