Week 5

Ia) i. Base case: d is atomic, i.e. an n-place producte

If i, ..., in where each of is a term.

Since $V_{g}(q) = 1$ iff $U_{g}(q) = U_{g}(q) = U$

Same and by hypothesis $V_{9}(\Psi) = V_{11}(\Psi)$, so F_{12} holds, given variables are free $V_{11}(\Psi) = V_{11}(\Psi) = V_{12}(\Psi) = V_{12}(\Psi) = V_{13}(\Psi) = V_{14}(\Psi) = V_{14}(\Psi)$

(iii) If \$\phi\$ is \text{VxY then \$\pi\$ is not free in \$\phi\$, but all other free variables in \$\psi\$ remain free in \$\phi\$.

And by hypothesis \(V_g(\psi) = V_h(\psi), \quad \text{given } \quad \text{and } h \text{ agreeing} \]

Substituting in any flut D for \$\pi\$, it will hold that \(V_g(\psi) = V_h(\psi) = V_h(\psi), \quad \text{since } \quad \text{and } h \text{ agree on all the free variables in \$\psi\$ other than \$\psi\$.

So \(V_g(\psi \psi \phi) = V_h(\psi \pi \phi), \quad F \quad \text{holds}.

The result is groven with strong induction.

Assume that $[x]_g = [B]_g$.
Base case: ϕ is atomic, i.e. $\square \propto_i, \sim_i, \propto_n$.
Then $\phi(B/x)$ replies every free occurrence of a warms,

for each dr > Br. But since the extension of Bing is the sine as a's,

 $[\alpha_k]_g = [\beta_k]_g$ for all k. So $V_g(\phi) = V_g(\phi(b|a))$ I reductive hypothesis: Let & have complexity w. Assume 6-all Y with complexity USW, Ug (4) = Ug (4(b/a)). \$\Delta\$ is one of (i) 74, (ii) 4, 45 42, (iii) \$\frac{1}{2} \tag{1}. (1) (1) \$\phi(\phi/\pi) = 7 \tau(\phi/\pi), and \(\mu_q(\phi) = 1 - \mu_q(\psi), Unich by hypothesis = 1- vg (4(15/2)). So vg (4) = vg (15/2) as required. (ii) $\phi(\beta/x) = \Psi_1(\beta/x) \rightarrow \Psi_2(\beta/x)$, and Vq (β)=1 iff vg(4), = 0 or vg(42)=2. βνα This is equivalent to Ug (4, (3/x))=0 or $V_g(\psi) = V_g(\phi(B/\alpha)) = \Phi$ by hypothess, so $V_g(\phi) = V_g(\phi(B/\alpha))$ as required. (iii) \$ (B/a) = Yx 4 (B/a). For every g' differing from g at most in x, Vg'(4) = Vg'(4(b)d)(by hypothesis and since β is free for α , i.e. $x \neq d$) So $Vg(\forall x \, \Psi) = Vg(\forall x \, \Psi(B/x))$ as required. So the result holds by strong induction. b)i. 1 v(V x 0)=2 means that for all asservments u ∈ D, Vg x (\$)=2. Take one such assignment a, where by (4)-1. In particular, Validity (4) = 1. Take any PC-model M and assignment go sit.
Suffose, for reduction, that there exists some M, g,
such that VM, g (YA Ø > Ø(B/A)) = D. Then Uma (Uxb) = 1 and Uma (\$ (B/x)) = 0.

BOAT From (1), for all UED, VM, gu (\$)=1. For particular, VM, g [B]g (d) = 1. Coll this gx By a)ii., and since here have have things such thed [x] = [B] y; VM, g* (\$\phi(B/d)) = Vm, g(\phi) = 1 on all free variables in \$ (36) (they differ at most in & but & doesn't appear.) ii. Let M. 9 be an arbitrary PC-model, assignment. Assume that $V_{M,q} (\forall \alpha (\phi \rightarrow \psi)) = 2$ and $V_{M,q} (\phi) = 2$. For every $u \in D$, V_{M} , $g_{u}^{\alpha}(\phi \rightarrow \psi) = 1$. By a)in, since g and g_{u}^{α} agree on the free variables in ϕ (as a dognit occur freely in ϕ), $V_{M}g_{u}^{\alpha}(\phi) = V_{M},g_{u}^{\alpha}(\phi) = 1$ by hyp, for every u & D. This means, for every $u \in D$, $\forall m, g \in (4) = 1$, and thus VM, g (\) = 1 Sh. When And since M and g were arbitrary the sentence , $\forall x(p \Rightarrow 4) \Rightarrow (\phi \Rightarrow \forall x \neq)$ is let valid. If the VM, g (\$) = 1 for all PC-models M and assignments Pick some arbitrary M. q and select another g' st. for all works in, the Jax Consider ga, for every u FD. & is true under each

As M, g we arbitrary, this is PC-valid.

of these assignments, fom (i). So then Vm, g (ta \$)=1.

Nicely done here.