

CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Disciplina De Processamento Digital De Imagens

Prof. Dr. Jacques Facon Email: jacques.facon@ufes.br

Descrição das Etapas de Implementação do Tema Redness

O tema proposto neste semestre é o estudo de detecção de padrões avermelhados em imagens por uso de índices de vermelhidão (Redness Index). E a implementação de uma técnica de detecção de padrões avermelhados por uso de um índice especifico de vermelhidão descrito em artigos publicados.

O Objetivo será gerar uma imagem de saída binária com os padrões avermelhados destacados na cor preta (0) e apagar os outros padrões não avermelhados da imagem na cor branca (255). A seguir a Figura 1 exemplificando o objetivo no caso de detecção de maças vermelhas :

Figura 1: Detecção de maças vermelhas

Tal Objetivo exige algumas observações:

- 1) Aplicar um índice de vermelhidão tem como objetivo ressaltar e destacar padrões avermelhados;
- 2) Aplicar um índice de vermelhidão tem como vantagem transformar uma imagem colorida (3 canais RGB) em uma nova imagem de um só canal (imagem em níveis de cinza) com os padrões avermelhados destacados;
- 3) Do ponto de vista puramente matemático, as fórmulas de índices de vermelhidão gerarão valores negativos e/ou superiores a 255. O que significa que não será possível gerar imagens de saída em níveis de cinza com todos os valores obtidos entre 0 e 255;

4) Portanto um processo de normalização entre 0 e 255 será necessário para gerar imagens em níveis de cinza que podem ser visualizadas na tela do computador. Uma maneira de normalizar a intensidade de cada pixel, é regido pela a equação 1:

$$P_{normalizado} = \frac{P_{atual} - r_1}{r_2 - r_1} (255 - 0)$$
 Equação 1

Sendo que:

- $P_{normalizado}$ é o valor de intensidade do pixel normalizado entre 0 e 255;
- ullet O valor da intensidade atual (P_{atual}) de cada pixel da imagem a ser normalizada;
- O maior valor de intensidade (r₂) da imagem original a ser normalizada;
- O menor valor de intensidade (r₁) da imagem original a ser normalizada.
- 5) Por fim, será usada uma técnica de binarização que irá converter a imagem em níveis de cinza para uma imagem binária. O objetivo do uso de uma técnica de binarização será converter os padrões avermelhados destacados na cor preta (0) e apagar os outros padrões não avermelhados da imagem na cor branca (255). Conforme o exemplo da Figura 1.