		Cre	eated with Osdag®
Company Name			
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

1 Input Parameters

Modu	Module			Cover Plate Bolted Connection	
Main Me	Main Module			Moment Connection	
Bending Mome	Bending Moment (kNm) *			34.0	
Shear Force	e (kN) *			34.0	
Axial Ford	ce (kN)			34.0	
Beam Section - Mechanical P			Properties		
	Beam Sec	ction		JB 175	
	Materia	1 *		E 165 (Fe 290)	
. Y	Ultimate Strengt	h, F_u (MPa)		290	
T + !	Yield Strength,	F_y (MPa)		165	
	Mass, m (kg/m)	8.07	$I_z \text{ (cm}^4)$	480.0	
(B-t)/4	Area, $A \text{ (cm}^2)$	1020.0	$I_y(\text{cm}^4)$	9.65	
z— z D	D (mm)	175.0	r_z (cm)	6.83	
R2— /—R1	B (mm)	50.0	r_y (cm)	0.97	
	t (mm)	3.2	$Z_z \text{ (cm}^3)$	54.9	
j ,	T (mm)	4.8	$Z_y \text{ (cm}^3)$	3.86	
	Flange Slope	91.5	$Z_{pz} \ (\mathrm{cm}^3)$	64.2	
	$R_1 \text{ (mm)}$	5.0	$Z_{py} \ (\mathrm{cm}^3)$	6.32	
	$R_2 \text{ (mm)}$	1.5			
	Bolt Details - Inp	out and Desig	n Preference		
Diamantan	(***********		[8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39,		
Diameter	(IIIIII)		42, 45, 48, 52, 56, 60, 64]		
			[np.float64(3.6), np.float64(4.6), np.float64(4.8), np.f		
Property	Class *		loat64(5.6), np.float64(5.8), np.float64(6.8), np.float		
Froperty	Class		64(8.8), np.float64	64(8.8), np.float64(9.8), np.float64(10.9), np.float64(
			12.9)]		
Туре	Type *			Bearing Bolt	
Hole T	ype			Standard	
Slip Facto	$r, (\mu_f)$			0.3	
Edge Preparat	ion Method		Shea	ared or hand flame cut	

Gap Between Beams (mm)

Are the Members Exposed to Corrosive Influences?

3.0

False

		Cre	ated with Osdag®
Company Name		Project Title	Beam to Beam Cover Plate
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Plate Details - Input and Design Preference		
Preference *	Outside	
Ultimate Strength, F_u (MPa)	290	
Yield Strength, F_y (MPa)	165	
Material *	E 165 (Fe 290)	
Thickness (mm) *	[8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45,	
i mekness (mm)	50, 56, 63, 75, 80, 90, 100, 110, 120]	

		Cre	ated with Osdag®
Company Name		Project Title	Beam to Beam Cover Plate
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2 Design Checks

Design Status	Fail
---------------	------

2.1 Member Capacity

Check	Required	Provided	Remarks
Section Classification		Plastic	
Section Classification		[Ref: Table 2, Cl.3.7.2 and 3.7.4, IS 800:2007]	
		$T_{\rm dg} = \frac{A_g f_y}{\gamma_{m0}}$	
Axial Capacity Member (kN)	$P_x = 34.0$	$=\frac{1020.0\times165}{1.1\times10^3}$	
		= 153.0	
		[Ref. IS 800:2007, Cl.6.2]	
		$V_{d_y} = \frac{A_v f_y}{\sqrt{3} \gamma_{m0}}$	
Shear Capacity Member (kN)		$= \frac{165.4 \times 3.2 \times 165}{\sqrt{3} \times 1.1 \times 1000}$	
		=45.84	
		[Ref. IS 800:2007, Cl.10.4.3]	
		$V_d = 0.6 \ V_{dy}$	
		$= 0.6 \times 45.84$	
Allowable Shear Capacity (kN)	$V_y = 34.0$	= 27.5	Fail
		[Limited to low shear]	
		$M_{d_{\mathbf{Z}}} = \frac{\beta_b Z_p f y}{\gamma_{m0}}$	
		$=\frac{1\times64200.0\times165}{1.1\times10^6}$	
Plastic Moment Capacity			
(kNm)		= 9.63	
		[Ref. IS 800:2007, Cl.8.2.1.2]	

		Cre	ated with Osdag®
Company Name		Project Title	Beam to Beam Cover Plate
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Moment Deformation Criteria (kNm)		$M_{dc} = rac{1.5Z_e fy}{\gamma_{m0} imes 10^6}$ $= rac{1.5 imes 54900.0 imes 165}{1.1 imes 10^6}$ $= 12.35$ [Ref. IS 800:2007, Cl.8.2.1.2]	
Moment Capacity Member (kNm)	$M_z = 34.0$	[Ref. IS 800:2007, Cl.8.2.1.2] $M_{dz} = \min(M_{dz}, M_{dc})$ $= \min(9.63, 12.35)$ $= 9.63$ [Ref. IS 800:2007, Cl.8.2]	

2.2 Load Consideration

Check	Required	Provided		Remarks
		I.R. axial	$= P_{\rm x}/T_{\rm dg}$	
			=34.0/153.0	
			=0.2222	
		I.R. momen	$t = M_z/M_{d_z}$	
Interaction Ratio			=34.0/9.63	
			=3.5306	
		I.R. sum	= I.R. axial + I.R. moment	
			= 0.2222 + 3.5306	
			=3.7528	

		Cre	ated with Osdag®
Company Name		Project Title	Beam to Beam Cover Plate
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Minimum Required Load	$\begin{aligned} &\text{if I.R. axial} < 0.3 \text{ and I.R. moment} < 0.5 \\ &P_{\text{xmin}} = 0.3T_{\text{dg}} \\ &M_{\text{zmin}} = 0.5M_{dz} \end{aligned}$ $&\text{elif sum I.R.} <= 1.0 \text{ and I.R. moment} < 0.5 \\ &\text{if } (0.5 - \text{I.R. moment}) < (1 - \text{sum I.R.}) \\ &M_{\text{zmin}} = 0.5 \times M_{dz} \\ &\text{else} \\ &M_{\text{zmin}} = M_{\text{z}} + ((1 - \text{sum I.R.}) \times M_{dz}) \\ &P_{\text{xmin}} = P_{\text{x}} \end{aligned}$ $&\text{elif sum I.R.} <= 1.0 \text{ and I.R. axial} < 0.3 \\ &\text{if } (0.3 - \text{I.R. axial}) < (1 - \text{sum I.R.}) \\ &P_{\text{xmin}} = 0.3T_{\text{dg}} \\ &\text{else} \\ &P_{\text{xmin}} = P_{\text{x}} + ((1 - \text{sum I.R.}) \times T_{\text{dg}}) \\ &M_{\text{zmin}} = M_{\text{z}} \end{aligned}$ $&\text{else} \\ &P_{\text{xmin}} = P_{\text{x}} \\ &M_{\text{zmin}} = P_{\text{x}} \end{aligned}$	$M_{ m zmin} = 34.0$ $P_{ m xmin} = 34.0$ [Ref. IS 800:2007, Cl.10.7]	
Applied Axial Force (kN)	Note: AL is the user input for load $P_x = 34.0$	$P_u = \max(P_x, P_{xmin})$ = $\max(34.0, 34.0)$ = 34.0	

		Created with Osdag®	
Company Name		Project Title	Beam to Beam Cover Plate
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$V_{y_{\min}} = \min(0.15V_{d_y}, 40.0)$	
		$= \min(0.15 \times 45.84, \ 40.0)$	
		= 6.88	
Applied Shear Force	$V_y = 34.0$	$V_u = \max(V_y, V_{y_{\min}})$	
(kN)		$= \max(34.0, 6.88)$	
		= 34.0	
		[Ref. IS 800:2007, Cl.10.7]	
		$M_u = \max(M_z, M_{z\min})$	
		$= \max(34.0, 34.0)$	
Applied Moment	$M_z = 34.0$	= 34.0	
(kNm)			
		[Ref. IS 800:2007, Cl.8.2.1.2]	
		$A_w = Axial$ force in web	
		$=\frac{(D-2T)tAu}{A}$	
		11	
		$=\frac{(175.0-2\times4.8)\times3.2\times34.0}{1020.0}$	
		= 17.64 kN	
Force Carried by Web			
		$M_w = \text{Moment in web}$	
		$=rac{Z_wMu}{Z}$	
		$= \frac{Z}{21885.73 \times 34.0}$	
		$=\frac{21863176 \times 6118}{64200.0}$	
		= 11.59 kNm	

		Created with Osdag®	
Company Name		Project Title	Beam to Beam Cover Plate
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$A_f = \text{Axial force in flange}$ $= \frac{AuBT}{A}$ $= \frac{34.0 \times 50.0 \times 4.8}{1020.0}$ $= 8.0 \text{ kN}$	
Force Carried by Flange		$M_f = \text{Moment in flange}$ $= Mu - M_w$ $= 34.0 - 11.59$ $= 22.41 \text{ kNm}$	
		$F_f = \text{flange force}$ $= \frac{M_f \times 10^3}{D - T} + A_f$ $= \frac{22.41 \times 10^3}{175.0 - 4.8} + 8.0$ $= 139.67 \text{ kN}$	

		Created with OSdag®	
Company Name		Project Title	Beam to Beam Cover Plate
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

3 3D Views

C:3-env-packages.png	C:3-env-packages.png
(a) 3D View	(b) Top View
C:3-env-packages.png	C:3-env-packages.png
(c) Side View	(d) Front View

4 Design Log

2025-01-21 13:47:45 - Osdag - WARNING - : The value of factored shear load exceeds by 0.6 times the shear capacity of the member, 27.5 kN.

2025-01-21 13:47:45 - Osdag - ERROR - : Design of members in high shear is not recommended by Osdag. Design is unsafe.