Metody Statystyczne

kierunek: INF SSI

rok akademicki: 2021/2022

rok studiów: 2

semestr: 4

Projekt

prowadzący zajęcia: prof. dr hab. inż. Katarzyna Stąpor

sekcja 4-1

skład sekcji:

Wojciech Ptaś

Wojciech Siudy

Jan Kocurek

Tomasz Zawadzki

Bartosz Orlof

Paweł Skorupa

Gliwice, 31 maja 2022

Tematem projektu była analiza wyników finansowych firm handlowych zatrudniających do 5 pracowników funkcjonujących na terenie Wrocławia w 1997 r.

1. Analiza struktury kosztów i obrotów

Obliczono następujące miary położenia:

- $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ Średnia
- Moda (najczęściej występująca wartość)
- Q_2 Mediana
- Q_1 Kwartyl rzędu ¼
- **Q**3 Kwartyl rzędu ¾

Obliczono również miary zróżnicowania:

- $s^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2$ $s = \sqrt{s^2}$ Wariancja
- Odchylenie standardowe
- $D = \frac{\sum_{i=1}^{n} |x_i \bar{x}|}{n}$ $\nu = \frac{s}{\bar{x}}$ Średnie odchylenie bezwzględne
- Współczynnik zmienności
- Rozstęp $x_{max} - x_{min}$
- $IQR = Q_3 Q_1$ Rozstęp ćwiartkowy

Następnie obliczono wybrane miary asymetrii:

 $A = \frac{\frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|^3}{s^3}$ Współczynnik asymetrii (skośność)

Obliczono również miary skupienia:

 $Kurt = \frac{\frac{1}{n}\sum_{i=1}^{n}|x_i - \bar{x}|^4}{s^4}$ Kurtoza

Rozkład obrotów wykazuje lekką prawostronną asymetrię (skośność jest równa 0,05) oraz spłaszczenie (kurtoza wynosi 2,1 < 3).

Rozkład kosztów również wykazuje prawostronną asymetrię (skośność jest w tym przypadku równa 0,18) oraz cechuje go spłaszczenie (kurtoza jest równa 1,93 < 3).

2. Sprawdzenie rozkładów kosztów i obrotów

W celu sprawdzenia czy koszty i obroty mają rozkład normalny, przeprowadzono test rozkładu Kołmogorowa. W tym celu wykorzystano gotową funkcjonalność języka **R**, funkcję **ks.test()**. Jako oszacowane parametry rozkładu podano estymator wartości oczekiwanej i odchylenia standardowego.

Dla kosztów, otrzymano wartość p-value=0.7676, ponieważ poziom istotności jest mniejszy niż uzyskana wartość, nie ma podstaw do odrzucenia hipotezy, że koszty mają rozkład normalny.

Dla obrotów, otrzymano wartość p-value=0.7661, ponieważ poziom istotności jest mniejszy niż uzyskana wartość, nie ma podstaw do odrzucenia hipotezy, że obroty mają rozkład normalny.

3. Szacunek przedziałowy kosztów

Próba jest niewielka, a wariancja populacji nie jest znana. Z tego powodu skorzystano z poniższego wzoru:

$$\left(\overline{x}-t\left(1-\frac{\alpha}{2},n-1\right)\frac{s}{\sqrt{n-1}},\overline{x}+t\left(1-\frac{\alpha}{2},n-1\right)\frac{s}{\sqrt{n-1}}\right)$$

Obliczono również względną precyzję szacunku, korzystając ze wzoru:

$$prec = \frac{d(\hat{a}_n)}{\hat{a}_n} * 100\%$$
, gdzie $d(\hat{a}_n) = \frac{l_n}{2}$

$$l_n = a_q(X_1, ..., X_n) - a_d(X_1, ..., X_n)$$

Otrzymano wartość prec=2,64%. Ponieważ wartość precyzji wynosi mniej niż 5%, oznacza to, że nasze wnioskowanie statystyczne jest całkowicie bezpieczne, więc mamy podstawy do uogólnienia wyników na całą populację małych firm.

4. Szacunek przedziałowy wariancji kosztów

Zważywszy na małą wielkość próby, skorzystano z rozkładu chi-kwadrat. Wykorzystany, w celu estymacji przedziałowej wariancji kosztów, wzór jest następujący:

$$\left(\frac{n*s^2}{\chi^2(1-\frac{\alpha}{2},n-1)},\frac{n*s^2}{\chi^2(\frac{\alpha}{2},n-1)}\right)$$

Oszacowano przedziałowo wariancję kosztów, dla zadanego współczynnika ufności, a następnie obliczono względną precyzję szacunku, korzystając z tego samego wzoru, co w zadaniu 3. Ponieważ otrzymano wartość powyżej 10% (dokładnie prec=86,06%), wynik należy określić jako całkowicie niepewny, nie ma podstaw do uogólnienia go na całą populację.

5. Weryfikacja hipotezy o dochodowości branży

W celu dowiedzenia, czy branża jest dochodowa, przeprowadzono test istotności. Postawiono hipotezę zerową o równości wartości przeciętnych kosztów i obrotów:

$$H_0: m_o = m_k$$

którą spodziewano się odrzucić na rzecz następującej hipotezy alternatywnej:

$$H_1: m_o > m_k$$

Ponieważ nie posiadano informacji o tym, czy wariancje dwóch populacji są równe, przeprowadzono test, z tym samym współczynnikiem istotności.

Hipoteza zerowa: wariancje obu populacji są równe.

$$H_0$$
: $\sigma_0^2 = \sigma_k^2$

Hipoteza alternatywna: wariancje obu populacji są różne

$$H_1: \sigma_0^2 \neq \sigma_k^2$$

Wartość statystyki testowej obliczono ze wzoru:

$$F = \frac{S_o^2}{S_b^2}$$

A krawędź rozkładu odczytano z tablicy kwantyli rozkładu F Snedecora:

$$F(1-\alpha, n_0-1, n_1-1)$$

Test wykazał brak podstaw do odrzucenia hipotezy mówiącej, że wariancje dwóch populacji są równe.

Następnie zbudowano statystykę testową testu dotyczącego równości wartości oczekiwanych. Wartość statystyki testowej obliczono ze wzoru:

$$T = \frac{\overline{X_o} - \overline{X_k}}{\sqrt{\frac{n_o S_o^2 + n_k S_k^2}{n_o + n_k - 2} * \frac{n_o + n_k}{n_o * n_k}}}$$

Wartość lewej krawędzi zbioru krytycznego odczytano z rozkładu kwantyli t-Studenta:

$$t(1-\alpha,n_o+n_k-2)$$

Wartość statystyki testowej należała do przedziału krytycznego, co zadecydowało o odrzuceniu hipotezy zerowej i zaakceptowania hipotezy alternatywnej. To oznacza, że tezę mówiącą o tym, że branża jest dochodowa, można dla zadanego współczynnika ufności przyjąć za prawdziwą.