	Job Scheduling
Input:	· There are n jobs \J_1,,Jn}. · Job Ji takes to time to complete. · Job Ji has deadline di.
Output	: Schedule them on a single server such
	Schedule them on a single server such that the maximum delay is minimized.
	Is this a hard to delay broblem?
<u>-</u>	problem;
- Idea	is: 1) Schedule in the order of tils.
	2) " " " di'8,
_	Shortest job vs Earliest deadline
	Counterexample for Idea-1:
	{Jz, Jz} above. It is letter if Jz is
	scheduled first.
D	For two jobs, Idea-2 always works.

Proof: Let [J, J2] be the jobs.

If Ji is scheduled first, the delay is t1+t2-d2. · If Iz is scheduled first, then the delay is ty+tz-dy. according to the earliest deadline. - an: What to do with no2 jobs? - Consider a scheduling in the order (J, Jz,..., Jh). Focus on [Ji, Ji+1]. · If di > di+1 then swapping them gives us a better scheduling, => Thus, in an optimal schedule we have $d_1 \leq d_2 \leq \leq d_n$. Theorem: Job Scheduling (min max delay) can be done in O(nlgn) time.

Greed	y Parad	lig	m
		-)	

- In the last algorithm we wed a local approach to get a global one. (From n=2 to n=2.)

- Given an optimization problem P,

with instance A of size n: Greedy Step identifies an instance

A of size n'<n.

. In the Proof you are required to formally show that:

A lemma = OPT(A') follows from OPT(A), is needed & OPT(A) " " OPT(A'),

This is what gives the pseudocode.

- Greedy paradign is a very powerful technique.

In the end, you only need sorting.

Binary Coding of files

- Suppose a file Fhas m letters & there are n alphabets in the language.
- Pn: How large is the binary coding?
- Ans: At least m.lgn.
 - Additional assumption: Suppose we know the frequency distribution of the alphabets in F.

Can we use the distribution to have a smaller coding of the file?

- Idea	;	More	frequent	alphabets	should
mab	to	shorter	strings.	alphabets	

- This gives an average lit length ABL of: $0.45 \times 1 + 0.18 \times 2 + (0.15 + 0.12 + 0.10) \times 3$ $= 1.92 = \sum_{\alpha \in A} f(\alpha) \cdot |\gamma(\alpha)|$

 \Rightarrow A file of size m has an encoding of size $\approx 1.92 \, \text{m}$, which is smaller than $3 \, \text{m}$.

- But, this coding has ambiguity.
01010111 is abbe

D'b' is a prefix of "d'.

- Prefix coding: If \$\pi \times \pi \in A s.t.

 \[\gamma(\fix) \text{ is a prefix of } \gamma(\gamma).
- Algorithmic problem:

 Given A of n alphabets with their frequencies, compute a prefix encoding y sit. ABL(7) is minimum.
- Brute-force: A naive aborithm would go over all the n-subsets of [2n].

 => 2-2(n) time taken.
 - Instead, we can model a prefix code as a labeled timory tree.
 - Ze. the blue leaves paths form a prefix code!

(Exercise)

-	
-	Huffman Code - Optimal prefix code
_	We make the following observations
	about the labelled binary tree of the
	Obtimal brefix code V.
	We make the following observations about the labelled binary tree Tof the optimal prefix code y. 1: T must be a full binary tree,
Lemma	1: I must be a full bingry treo,
Proof	;
1/20-5	If there is a node with out-degree <1. then we can shrink it.
	then we can shrink it.
	2e 0
-	to 2
	rg. gi to gi.
	=> Every node has out-deg = 2. => Tis full.
-	= Tis full
=	- In jule.
10000	2. More forequest all that are close to the mi
Pros	2: More forequent alphabets are close to the roo
17-00}	· If face ((a) & a is deples in THE
-	of f(a1) < f(a2) & a2 is deeper in T than a, then swapping them reduces Zf(a). Ir(a) !.
	of, then proupping them recourses = Jean-19(a)1.

Lemma	3: Let A= {a1,-, an} & f(a1) < < f(an) There is an optimal T where a1& az are siblings in the deepest level.
	There is an optimal T where a, & az
	are siblings in the deepest level.
Proof:	
	· Suppose b is a sibling of an & fran Sf(as)
-	=> Whog we can swap & Laz, = f(8).
getting	· Suppose & is a sibling of on & f(a,) < f(a) => Wlog we can swap & & az, ≤ f(e). az in the deepest level with ay. 1)
	- By Lemma 3 we can modify the instance
-	A = \{a_1, a_2, \ldots a_n\} to A' = \{a_3, a_4, \ldots a_n\} U\{a'
	by merging the two alphabets and a
	to a'.
	DIF we set f(a') := f(a,)+f(a) then
	DIf we set $f(\alpha') := f(\alpha_1) + f(\alpha_2)$ then OPT(A) will also give us OPT(A).
Pf:	
	$OPT(A') = \sum_{b \in A'} f(b). \gamma(b) = OPT(A) - f(a')$
	minimizing ABL(Y).

