Yale

Applications of Hyperbolic Representation Learning

CPSC483: Deep Learning on Graph-Structured Data

Rex Ying

Readings

- Readings are updated on the website (syllabus page)
- Lecture 19 readings:
 - HGCN
 - Hyperbolic GNN survey
- Lecture 20 readings:
 - Neural Distance Embeddings
 - Hyperbolic Cone Embedding

Content

- Poincaré Ball Model and Hyperbolic Embedding
- Hierarchical Sequence Embeddings
 - Genomic Sequences
- Cone Embeddings
 - Knowledge Graphs

Content

- Poincaré Ball Model and Hyperbolic Embedding
- Hierarchical Sequence Embeddings
 - Genomic Sequences
- Cone Embeddings
 - Knowledge Graphs

Recap: Poincaré Ball Model

- Poincaré Ball Model $\mathbb{D}^n = \{x \in \mathbb{R}^n : ||x|| < 1\}$
 - ||·|| is the Euclidean norm
 - open ball without boundary
 - It is a projection of hyperboloid in Minkowski space
- The metric of Poincaré Ball Model is different from the Euclidean metric!
- n-dimensional Poincaré Ball Model is a hyperbolic space of dimension n

2-D Poincaré Model Visualization

Recap: Metric and Distance

Poincaré Metric:

$$g_{\mathbf{x}}^{B} = \left(\frac{2}{1-\|\mathbf{x}\|^{2}}\right)^{2} g^{E},$$

where g^E is the Euclidean metric.

• Hyperbolic distance with Poincaré Model:

$$d_{\mathbb{D}}(x, y) = \operatorname{arcosh}\left(1 + \frac{2\|x - y\|^2}{(1 - \|x\|^2)(1 - \|y\|^2)}\right)$$

Poincaré Norm:

$$\|\mathbf{x}\|_{\mathbb{D}} \coloneqq d_{\mathbb{D}}(0, \mathbf{x}) = 2\operatorname{artanh}(\|\mathbf{x}\|)$$

$$\operatorname{arcosh}(x) = \ln(x + \sqrt{x^2 + 1})$$
$$\operatorname{artanh}(x) = \frac{1}{2}\ln(\frac{1+x}{1-x})$$

Recap: Hyperbolic Embedding

- Hierarchical and Tree-like graphs are best with the hyperbolic space!
 - Lower Distance Distortion
 - Exponential Volume Growth

Poincaré Visualization

Distance of tree-like graphs

Today: we show how **hyperbolic space** (**Poincaré Ball Model**) helps to better capture hierarchical relations in tree-like graphs!

- Biological Sequences
- Heterogenous Knowledge Graph

Content

- Poincaré Ball Model and Hyperbolic Embedding
- Hierarchical Sequence Embeddings
 - Genomic Sequences
- Cone Embeddings
 - Knowledge Graphs

Motivation

- Human Microbiome: the "forgotten organ", wide variety of bacteria, fungi and viruses on the surfaces of our body, with its disfunctions linked to diseases and phenotypes:
 - Diabetes
 - Antibiotic-resistance
 - Inflammatory bowel disease
 - Allergies
 - Fibromyalgia
 - Depression
 - Various cancers

Existing Approaches

Inspired by Morgan & Huttenhower (2012)

Problem

- Exponentially increasing amount of genomic data available but often this is not used in bioinformatics:
 - Bioinformatics algorithms cannot exploit the underlying manifold assumption to generate effective representations and heuristics.
 - Existing machine learning frameworks do not fit well with tasks formalized as combinatorial optimization problems.

Need for a new framework for data-dependent approaches to learn the representation of biological sequences for bioinformatics tasks.

Neural Distance Embeddings (1)

Neural Distance Embeddings (NeuroSEED):

Neural Distance Embeddings (2)

Edit Distance Approximation

Method: learn the encoding function f that **minimizes** the approximation error given a distance function d:

$$\min_{f} \mathbb{E}\left(ED(s_i, s_j) - d\left(f(s_i), f(s_j)\right)\right)^2$$

How to choose the appropriate distance function d to preserve the distance?

Distance Functions

Consider a pair of vectors x and y of dimension n,

- Manhattan (L1): $d(x, y) = ||x y||_1 = \sum_{i=1}^{n} |x_i y_i|$
- Euclidean (L2): $d(x, y) = ||x y||_2 = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
- Squared distance: $d(x, y) = ||x y||_2^2 = \sum_{i=1}^n (x_i y_i)^2$
- Cosine similarity: $d(x, y) = 1 \frac{x \cdot y}{\|x\| \|y\|} = 1 \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}$
- Hyperbolic (use *n*-dimensional Poincaré Ball Model):

$$d(x, y) = \operatorname{arcosh} \left(1 + \frac{2\|x - y\|^2}{(1 - \|x\|^2)(1 - \|y\|^2)} \right)$$

Pipeline Overview

- Step 1: Collect training sequences. Generate ground-truth (edit distance)
- Step 2: Train the encoder and decoder
 - Minibatches of sequence pairs
 - Loss function:

$$L(\theta, S) = \sum_{s_1, s_2 \in S} (ED(s_1, s_2) - \alpha d(f_{\theta}(s_1), f_{\theta}(s_2)))^2$$

- ED is the ground-truth edit distance, f_{θ} is the encoder, $d(\cdot, \cdot)$ is the distance in the embedding space, α is the learnable scalar.
- Step 3: Inference step. Generate sequence from the embedding space
- Step 4: Downstream tasks

Alignment-free and Alignment-based Methods

- Alignment-free: compare the biological sequences by counting the frequencies of substrings with a specific length in respective sequences.
- Alignment-free Baselines:
 - $\underline{k\text{-mer:}}$ represents sequences by the frequency vector of subsequences of a certain length k
 - FFP: looks at the Jensen-Shannon divergence between distributions of k-mer.
- Embedding-based methods:
 - Use an encoder to map sequences into the embedding space and estimate distance using embeddings

EDA: Experimental Results

- Performance of Edit Distance Approximation (%RMSE) on real-world datasets (lower,
- Baseline geometries were chosen by best average performance

		RT988		Qiita		Greengenes		
	Model	Baseline	Hyperbolic	Baseline	Hyperbolic	Baseline	Hyperbolic	Training/Inference
	NW alignment	-	-	-	-	-	-	- / 17.5h
	4-mer	1.79	-	6.01	-	5.93	-	7s / 7s
	5-mer	1.41	-	5.03	-	3.60	-	29s / 29s
Alignment-free	6-mer	1.47	-	5.72	-	3.15	-	118s / 118s
methods \	FFP 8	12.03	-	20.42	-	10.26	-	360s / 360s
Embedding approaches	FFP 9	11.86	-	17.53	-	8.63	-	679s / 679s
	FFP 10	10.80	-	16.16	-	14.13	-	1274s / 1274s
	Linear	21.3±7.0	0.51±0.01	4.39±0.09	2.50±0.01	1155±18	2.70±0.01	1.1h / 3s
	MLP	1.10±0.05	0.59±0.20	4.36±0.19	1.85±0.02	4.38±0.13	2.53±0.03	0.9h / 3s
	CNN	0.58±0.05	0.59±0.01	2.68±0.05	1.56±0.01	1.37±0.04	1.00±0.01	2.1h / 6s
	GRU	1.10±0.11	2.56±3.33	3.30±0.06	2.60±0.16	1.61±0.02	1.18±0.16	7.4h / 65s
	Global T.	0.52±0.01	0.46±0.01	2.10±0.05	1.83±0.03	2.09±0.03	1.91±0.07	2.2h / 3s
	Local T.	0.57±0.00	0.45±0.01	2.42±0.02	1.86±0.02	1.85±0.04	1.89±0.05	2.0h / 3s

Best

EDA: Experimental Results

- Performance of Edit Distance Approximation (%RMSE) on real-world datasets (lower,
- Baseline geometries were chosen by best average performance

		RTS	88 Qiita		Greengene			
	Model	Baseline	Hyperbolic	Baseline	Hyperbolic	Baseline	Hyperbolic	Training/Inference
	NW alignment	-	-	-	-	-	-	- / 17.5h
	4-mer	1.79	-	6.01	-	5.93	-	7s / 7s
	5-mer	T '	29s / 29s					
Alignment-free	6-mer	Traini	118s / 118s					
methods \	FFP 8	•	The dista	360s / 360s				
	FFP 9		impact th	679s / 679s				
	FFP 10		•					1274s / 1274s
	Linear	2	Alignmer	1.1h / 3s				
(MLP	1.	inference	0.9h / 3s				
Alignment-based methods	CNN	0.58±0.05	0.59±0.01	2.68±0.05	1.56±0.01	1.37±0.04	1.00±0.01	2.1h / 6s
	GRU	1.10±0.11	2.56±3.33	3.30±0.06	2.60±0.16	1.61±0.02	1.18±0.16	7.4h / 65s
	Global T.	0.52±0.01	0.46±0.01	2.10±0.05	1.83±0.03	2.09±0.03	1.91±0.07	2.2h / 3s
	Local T.	0.57±0.00	0.45±0.01	2.42±0.02	1.86±0.02	1.85±0.04	1.89±0.05	2.0h / 3s
	-	-		<u> </u>		·		

Best

Worst

EDA: Error Analysis

- The blue shade represents the density of points
- The CNN model follows much more tighly the red line in the hyperbolic space

EDA: Dimensionality

- The hyperbolic space is more efficient than other geometries in capturing hierarchies
- The model with the hyperbolic space reaches the "elbow" at dimension 32
- Hyperbolic embeddings with only 8 dimension achieves the performance of other geometries with 128 dimensions

Edit distance approximation %RMSE on Qiita dataset for a global transformer with different distance functions

Task: Hierarchical Clustering (HC)

- Hierarchical clustering(HC):
 given a pairwise distance function, define a tree with internal points
 corresponding to clusters and leaves to datapoints.
- An example of the hierarchical clustering produced on the Poincaré disk:

Unsupervised Method for HC

Unsupervised Method:

- Agglomerative Clustering is the most commonly used method for Hierarchical Clustering task.
- NeuroSEED embeddings reduces the complexity to generate the pairwise distance matrix from $\mathcal{O}(N^2M^2/\log M)$ to $\mathcal{O}(N(M+N))$ for N sequences of length M

HC Experimental Results (1)

- Average Linkage: the best performing clustering heuristic across all models.
- No statistical difference in the quality of the hierarchical clustering produced with ground truth distances compared to that with NeuroSEED embeddings.

Baselines				
Single Linkage	0.628			
Complete Linkage	0.479			
Average Linkage	0.000			

Average Linkage % increase in <u>Dasgupta's cost</u> of NeuroSEED models compared to hierarchical clustering using ground truth distance

- Single Linkage, complete Linkage: alternative hierarchical clustering methods
- Dasgupta cost:

$$C(T, w) = \sum_{i,j} w_{ij} |leaves(T[i \lor j])|$$

Hierarchical Clustering can be described as a rooted tree T, for two datapoints i and j. w_{ij} is their pairwise similarity. $i \lor j$ is their lowest common ancestor in T. leaves $(T[i \lor j])$ is the set of leaves of the subtree rooted at $i \lor j$.

• **Dasgupta cost** measures how well the tree generated respects the similarities between datapoints (the lower, the better)

HC Experimental Results (2)

- Average Linkage: the best performing clustering heuristic across all models.
- There is statistical difference between the different architectures and geometries.
- NeuroSEED embedding produces lower Dasgupta's cost!

Model	Cosine	Euclidean	Square	Manhattan	Hyperbolic
4-mer	0.261	0.260	0.242	0.191	0.299
Linear	0.062±0.007	0.172±0.036	0.153±0.037	0.177±0.026	0.028±0.005
MLP	0.169±0.054	0.095±0.021	0.289±0.094	0.178±0.029	0.035±0.004
CNN	0.028±0.003	0.030±0.004	0.067±0.022	0.081±0.047	-0.004±0.015
GRU	-	0.042±0.006	0.068±0.010	0.069 _{±0.015}	0.066±0.043
Global T.	0.032±0.014	0.003±0.008	0.038±0.005	0.002±0.003	0.000±0.006
Local T.	0.035±0.003	0.022±0.008	0.034±0.005	0.022±0.003	0.000±0.007

Average Linkage % increase in Dasgupta's cost between different architectures and geometries

Supervised Heuristics for HC

 Use the <u>continuous relaxation</u> of Dasgupta's discrete cost as loss function to embed sequences in the hyperbolic space. No pretraining required.

 NeuroSEED significantly decreases the number of pairwise distances required, by directly mapping the sequences into the space.

HC Experimental Results (3)

 The performances are reported as the percentage increase in cost compared to the one of the Average Linkage (best performing)

HC Experimental Results (4)

• A simple linear layer with only N pairwise distances obtains very similar results to agglomerative clustering (N^2 distances) and hyperbolic embedding baselines ($N\sqrt{N}$ distances)

Task: Multiple Sequence Alignment

Multiple Sequence Alignment: process of sequence alignment of three or more biological sequences

Two approaches:

1. Unsupervised: uses the models pretrained for edit distance approximation followed by the Clustal method (a popular MSA heuristic).

Model	Cosine	Euclidean	Hyperbolic	
Linear	60.6±35.1	111.3±3.6	57.5±22.0	
MLP	72.3±11.8	53.6±3.1	-11.7±18.9	
CNN	31.0±16.2	4.7±9.7	-16.3±16.1	
Global T.	39.4±74.3	1.9±3.8	31.1±21.8	
Local T.	31.9±30.5	8.6±14.1	-20.1±7.3	

Percentage improvement in the alignment cost (the lower the better) returned by Clustal

Supervised Heuristics for MSA

2. Steiner String: autoencoder with distance preserving latent space to predict

median string. Decoding the geometric median point (minimizing the sum of distances in the embedding space) **Training Test ACATCATCAGT CGATCATGCAT ACTCATCTATCA** Sequence Sequence Decoder Decoder space space Sequence reconstruction Vector Vector loss space space **Edit distance** approximation Encoder Encoder loss **CGATCATGCAT CGATCATGCAT** Sequence **ACATCATCAGT CGATCATGCAT** Sequence space

space

ACTGATCATG

ACATCATCAGT

Summary: Applications of Sequence Embeddings

Unsupervised embeddings, expensive string problems

Closest sequence retrieval:

- database searching
- sequence classification

Understand relations between groups of sequences:

- sequence clustering
- hierarchical clustering

Summary: Applications of Sequence Embeddings

Unsupervised embeddings, expensive string problems

Closest sequence retrieval:

- database searching
- sequence classification

Understand relations between groups of sequences:

- sequence clustering
- hierarchical clustering

Decode from embedding space:

- compression of sequences
- retrieving alignment
- decoding new sequences

Content

- Poincaré Ball Model and Hyperbolic Embedding
- Hierarchical Sequence Embeddings
 - Genomic Sequences
- Cone Embeddings
 - Knowledge Graphs

Background: Knowledge Graph

Knowledge graph contains:

- Hierarchical relations
- Non-hierarchical relations

Background: Heterogeneous Hierarchies

> Key property: Transitivity

partOf + ... + partOf = partOf
subClass + ... + subClass = subclass

"subClass" Hierarchy

Why Modeling Transitivity?

Ancestor-Descendant prediction task:

- Do hierarchical reasoning that involves cross-layer connection
- Query: is there a relationship between "tree" and "Sugar palm"?

Such tasks require:

- Model non-hierarchical properties (to infer the missing link first) √
- Model transitivity of hierarchical relations ✓

tree

Previous Methods

- Knowledge graph embedding model
 - TransE, ComplEx, RotatE, TuckER, etc.
 - Model transitivity: X
- Geometry-based modeling on hierarchy
 - Order, Box, Cone
 - Model heterogeneous hierarchies: X
 - Model non-hierarchical relations: X

```
➤ Transitivity:

partOf + ... + partOf = partOf

subClass + ... + subClass = subclass
```

Cone Embedding

- ConE (Cone Embedding)
- Knowledge graph embedding model that simultaneously
 - Capture transitive closure property of heterogeneous hierarchies
 - Partial Ordering
 - partOf; subClass ...
 - Model other non-hierarchical relations
 - Symmetry
 - $r(x,y) \Rightarrow r(y,x)$
 - Composition
 - $r_1(x, y) \land r_2(y, z) \Rightarrow r_3(x, z) \quad \forall x, y, z$

Idea: Nested Cones for Hierarchy

- Hyperbolic space better preserves tree-like structure
- Each hierarchical relation induces a partial ordering
- Use hyperbolic entailment cones^[1] to capture the partial ordering

Hyperbolic entailment cones in hyperbolic plane

[1] Hyperbolic Entailment Cones for Learning Hierarchical Embeddings

Hyperbolic Cones

- Let C_x denote the cone at apex x. The entailment cones satisfy transitivity: $\forall x, y \in B^d : y \in C_x \Rightarrow C_y \subseteq C_x$
- To ensure the transitivity of nested cones [see proof in Paper (Appendix F)]:

$$C_x = \{ y \in B^d | \angle_x y \le \sin^{-1}(K \frac{1 - ||x||^2}{||x||}) \}, K \text{ is a hyper-parameter}$$

• Half Aperture $\phi_{\chi} = \sin^{-1}(K \frac{1 - ||\chi||^2}{||\chi||})$

Note: Half Aperture ϕ_x decreases as ||x|| increases \Rightarrow guarantee the transitive closure

11/26/2023

Rex Ying, CPSC 483: Deep Learning for Graph-structured Data

Cone Embedding

Entity → Hyperbolic Cone

Relation

Cone Transformation

Partial Ordering

Cone Containment

Model Overview

- We use the product of 2d hyperbolic planes as the embedding space
 - $S = B^2 \times B^2 \times \cdots \times B^2$ is a product space of d 2-dimensional Poincaré disk, resulting in an embedding dimension of 2d.
- For each relation r, the planes are separated into 2 types
 - Use restricted rotation in a relation-specific subspace to model hierarchical relation
 - Use a general rotation to model non-hierarchical relation

Embedding Space

- Entity h: $h = (h_1, h_2, ..., h_d)$, h_i is the apex of the i-th 2D hyperbolic cone.
- Relation r: $r=(r_1,r_2,...,r_d)$ where $r_i=(s_i,\theta_i)$ parameterizes transformation for the i-th hyperbolic plane.
 - s_i is the **scaling factor** indicating how far to go in radial direction
- $\phi_{h_i} = \sin^{-1}(K \frac{1 ||h_i||^2}{||h_i||})$
- $(\theta_i \phi_{h_i}/\pi)$ is the **rotation angle** restricted by **half aperture** ϕ_{h_i} of the cone that apexs at h_i

Cone Rotation from *h* to *t*:

Restricted Rotation from *h* to *t*:

1: scaling

2: **rotation** (s_i, θ_i)

11/26/2023

Rex Ying, CPSC 483: Deep Learning for Graph-structured Data

Embedding Subspaces

 For each relation: we assign a subspace X of hyperbolic space to capture hierarchical properties of the relation

Resulting cone is guaranteed to be contained by the original cone

- Use restricted rotation from the parent cone to the child cone in the assigned relationspecific subspace X
- For the complement subspace $E \setminus X$, we use a general rotation to model the relation.

Transformation (1)

Non-hierarchical transformation

 f_1 is a function of **head** and **relation**, and will be combined with **tail** t to compute the scores (for the i-th hyperbolic plane)

$$f_1(\boldsymbol{h}_i, \boldsymbol{r}_i) = \exp_o(\boldsymbol{G}(\theta_i) \log_o(\boldsymbol{h}_i))$$

•
$$G(\theta_i) = \begin{bmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{bmatrix}$$

- \exp_{o} and \log_{o} are exponential and logrithmic mapping at origin o
- Apply rotation in the tangent space of origin o

Cone rotation from h to t used for non-hierarchical relations

Rex Ying, CPSC 483: Deep Learning for Graph-structured Data

Transformation (1)

Non-hierarchical transformation

$$f_1(\boldsymbol{h}_i, \boldsymbol{r}_i) = \exp_o(\boldsymbol{G}(\theta_i) \log_o(\boldsymbol{h}_i))$$

•
$$G(\theta_i) = \begin{bmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{bmatrix}$$

- \exp_{o} and \log_{o} are exponential and logrithmic mapping at origin o
- Apply rotation in the tangent space of origin o

 f_1 cannot model hierarchical relations! Rotation does not obey transitive property: rotation by θ_i twice result in a rotation of $2\theta_i$ $r(h_1,h_3)$ and $r(h_1,h_2) \Rightarrow r(h_2,h_3)$ X

Use Restricted Rotation Transformation to model hierarchical relations!

Rex Ying, CPSC 483: Deep Learning for Graph-structured Data

Transformation (2)

Hierarchical transformation

$$\frac{1}{h}$$
 where $m = (a, 0)$

Restricted rotation

$$f_2(\boldsymbol{h}_i, \boldsymbol{r}_i) = \exp_{\boldsymbol{h}_i}(s_i \boldsymbol{G}\left(\frac{\theta_i \phi_{h_i}}{\pi}\right) \overline{\boldsymbol{h}_i})$$
, where $\boldsymbol{r}_i = (s_i, \theta_i)$

- Where $\overline{m{h}_i}$ is the unit vector of $m{h}_i$ in the tangent space of $m{h}_i$
- $\overline{h_i} = \widehat{h_i} / \|\widehat{h_i}\|$, where $\widehat{h_i} = \log_{h_i}(\frac{1 + \|h_i\|}{2\|h_i\|} h_i)$

Half aperture:

$$\phi_{h_i} = \sin^{-1}(K \frac{1 - ||h_i||^2}{||h_i||})$$

Restricted Rotation from h to t for hierarchical relations:

1: scaling S_i

2: rotation θ_i

Scoring Function

- Cone containment constraint serves to preserve partial ordering of a hierarchical relations
- To enforce the cone containment constraint, the **distance scoring function** for triple (h,r,t) is defined as

$$f_r(h,t) = -\frac{1}{d} \left[\sum_{i=1}^{d} m(r)_i \left(d_{\mathbb{D}}(f_2(\boldsymbol{h}_i,\boldsymbol{r}_i),\boldsymbol{t}_i) \right) + b_h + b_t \right]$$
Hyperbolic distance
$$+ \sum_{i=1}^{d} (1 - m(r)_i) \left(d_{\mathbb{D}}(f_1(\boldsymbol{h}_i,\boldsymbol{r}_i),\boldsymbol{t}_i) \right) + b_h + b_t \right]$$
Rotation

- Where $d_{\mathbb{D}}$ is the distance in the hyperbolic plane (2D Poincaré model)
- b_h and b_t are the learnt radius parameters of h and t
- $m(r) \in \{0,1\}^d$ is a d-dimensional mask for each relation r. $m(r)_i = 1$ indicates restricted rotation is used for relation r in the i-th hyperbolic plane

Loss Function

• **Distance Loss:** for a triple (h, r, t), we generate negative samples (h, r, t') by sdubstituting the tail with a random entity $t' \in \mathcal{T}$, \mathcal{T} is the entity set.

$$L_d(h,r,t) = -\log \sigma \left(f_r(h,t) \right) + \sum_{t' \in \mathcal{T}} \frac{1}{|\mathcal{T}|} \log \sigma \left(-f_r(h,t') \right)$$
Negative log likelihood

• Angle Loss: encourages cone of h to contain cone of t in relation-specific subspaces, by constraining the angle between the cones

$$L_a(h,r,t) = \sum_{i=1}^{a} m(r)_i \max \left(0, \angle_{\boldsymbol{h}_i} \boldsymbol{t}_i - \phi(\boldsymbol{h}_i)\right)$$

• The final loss: $L = L_d + wL_a$

Half aperture:

$$\phi_{h_i} = \sin^{-1}(K \frac{1 - ||h_i||^2}{||h_i||})$$

Hyper-parameter

Embedding Subspaces (1)

How to choose the subspace for each relation?

Example:

Consider $S = B^2 \times B^2 \times B^2 \times B^2 \times B^2 \times B^2$ (10-dimensional embedding space) and 5 hierarchical relations. We use dimension 1 to 2 for relation R_1 , dimension 3 to 4 for relation R_2 , etc.

• The subspace dimension can be at most $\frac{d}{n}$, where n is the number of hierarchical relations, d is the embedding dimension.

Hierarchical Reasoning

Example of Hierarchical Reasoning:

- B studiesAt A; B classmateOf C; missing link between C and A
 - studiesAt: hierarchical relation, satisfies partial ordering
 - classmateOf: non-hierarchical relation

Query: is there a relationship between "C" and "A"?

- Consider the case where the embedding dimension $S=B^2$, we use **restricted rotation** to model hierarchical relation **studiesAt** in the single hyperbolic plane. At the same time, we use **general rotation** to model non-hierarchical relation **classmateOf**.
- With a single hyperbolic plane, we can predict the missing relation between C and A: studiesAt.

Embedding Subspaces (2)

- Option 2: Independent random sampling (Overlapping)
- Assigning overlapping subspaces is better for knowledge graph completion, and scalable to number of hierarchical relations

	MRR	H@1	H@3	H@10
Orthogonal	.493	.449	.512	.577
Overlapping	.495	.451	.513	.582

Comparison between orthogonal subspaces and overlapping subspaces for knowledge graph completion

Experiments: Hierarchical Reasoning

Ancestor-descendant prediction

- Is "Tree" and ancestor of "Wine Palm", and through which relation type?
- Ancestor-descendant relationship: If there exists a path from h_1 to h_2 containing only one type of hierarchical relation
- Inferred descendant pairs: harder samples, there is missing edge in the path that require the model to infer

	WN18RR				DDB14		GO21			
20	Frac	Fraction of inferred descendant pairs among all true descendant pairs in the test set								
Model	0%	50%	100%	0%	50%	100%	0%	50%	100%	
Order [19]	.889	<u>.739</u>	.498	.731	.633	.513	.642	.592	.534	
Poincaré [10]	.810	.685	.508	.976	.832	.571	.525	.519	.516	
HypCone [12]	.799	.677	.504	.973	.823	.594	.554	.539	.519	
RotatE [7]	.601	.593	.582	.615	.590	.565	.546	.534	.526	
RotH [16]	.601	.608	.611	.609	.596	.578	.596	.583	.564	
ConE	.895	.801	.679	.981	.909	.818	.789	.744	.693	
Improvement (%)	+1.9%	+9.6%	+11.1%	+0.5%	+10.3%	+38.4%	+22.9%	+25.7%	+22.9%	

Table 2: Ancestor-descendant prediction results in mAP (mean average precision). Best score in **bold** and second best <u>underlined</u>. We create different test sets that get harder as they contain more and more test cases (0%, 50%, 100%) of inferred descendant pairs.

Experiments: Knowledge Graph Completion

-	WN18RR		DDB14			GO21			FB15k-237							
	$\kappa =$	(1.00, 0.	61, 0.99	, 0.50)	$\kappa = (1.00, 0.84, 0.78, 0.18)$, 0.18)	$\kappa = (1.00, 0.65, 0.96, 0.22)$				$\kappa = (1.00, 0.18, 0.36, 0.06)$			
Model	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10
TransE [5]	.226	.017	.403	.532	.183	.103	.212	.337	.149	.066	.179	.310	.294	-	-	.465
RotatE [7]	.476	.428	.429	.571	.225	.154	.245	.362	.203	.123	.234	.357	.338	.241	.375	.533
TuckER [14]	.470	.443	.482	.526	.198	.137	.219	.314	.205	.136	.222	.342	.358	.266	.394	.544
HAKE [33]	.496	.451	.513	.582	.217	.146	.237	.361	.169	.104	.185	.295	.341	.243	.378	.535
MuRP [15]	.481	.440	.495	.566	.214	.146	.231	.349	.166	.100	.181	.301	.335	.243	.367	.518
RotH [16]	.495	.449	.514	.586	.223	.152	.245	.357	.151	.079	.171	.289	.344	.246	.380	.535
ConE	.496	.453	.515	.579	.231	.161	.252	.364	.211	.140	.237	.347	.345	.247	<u>.381</u>	.540

Knowledge Graph Completion results, best out of dimension $d \in \{100, 250, 500\}$. Best score in **bold** and second best <u>underlined</u>. κ is a tuple denoting the <u>4 Krackhardt scores</u> that measure how hierarchical a graph is, higher scores mean more hierarchical.

Cone Containment is Well-preserved

Hierarchical-ness scores

Relation	Score	Hierarchical
administrative_area/administrative_parent	2.0	true
award_category/category_of	2.0	true
music/genre/parent_genre	2.0	true
location/contains	2.0	true
music/instrument/family	1.7	true
medicine/disease/risk_factors	1.7	unknown
influence/influence_node/influenced_by	1.6	unknown
medicine/symptom/symptom_of	1.4	unknown
organization_relationship/child	1.4	true
administrative_division/first_level_division_of	1.3	true
rest of the relations	< 1.1	false

Above the line (> 1.1) are predicted to be hierarchical relations

Ground-truth relation (manually labeled)

Hierarchical-ness Scores visualization

x: asymmetry, the same as hierarchy metric in Krackhardt scores

y: Tree_likeness. Adapted from the LUBedness metric in Krackhardt scores

Summary of Hyperbolic Embedding

- Hyperbolic space reflects the hierarchical structure when embedding biological sequences.
 - Alignment-based and data-dependent methods greatly accelerate large-scale analyses in bioinformatics.
 - NeuroSEED provides fast approximations of the distance, low-dimensional hyperbolic representations for biological sequences.
- Hierarchical KG embedding: ConE models entities as hyperbolic cones to simultaneously capture hierarchical and non-hierarchical relation patterns in heterogeneous knowledge graphs.
 - Assign subspace to each relation to tackle heterogeneity in hierarchies.
 - General rotation models non-hierarchical relations, while **restricted rotation** models partial ordering.