

OpenSense Training School OS-based nowcasting with pysteps

Wrap up and closure

Training instructors:

Jenna Ritvanen (Finnish Meteorological Institute) and Ruben Imhoff (Deltares)

W/bot was boyes lookes

What we have learned today

Reading data with pysteps and a full nowcasting workflow

Reading data with pysteps and a full nowcasting workflow

Your experience

- Was it easy/hard?
- Do you think you could make a nowcast yourself now with your own data?
- How did the different nowcasts (methods) compare?
- What was the quality of the nowcasts with the different OS product?

Further questions?

Challenges when using OS data compared to conventional radar data

Challenges when nowcasting with OS data

- Advection field derivation
- Data consistency
- What challenges did you come across?
- Can we directly go for nowcasting with OS data?
- How to improve it?

Imhoff et al., GRL, 2020

What more is possible with pysteps?

Blending with NWP: methods in pysteps

1. Linear blending

- Fixed start and end point of blending procedure
- Weights go linearly from 1 to 0
 and 0 to 1

Linear blending weights

2. Saliency-based blending

- Similar to linear blending, but:
- Preserves pixel intensities over time if they are strong enough according to their ranked salience.

Hwang et al., 2015, Weather and Forecasting

3. STEPS blending (see next slide)

T-DaTing module: Thunderstorm Detection and Tracking

- Identify and track thunderstorm cells from radar images
- Visualize cells and tracks in time
- Study properties of the cell tracks
- Tracking algorithm from the Swiss TRT
 Thunderstorms Radar Tracking algorithm
 - Hering et al., 2004, ERAD 2004
 - o Feldmann et al., 2021, Weather Clim. Dynam
- For how to use, see the <u>example</u> in the gallery

Benchmarking other methods

- When selecting correct method to benchmark against e.g. machine learning models, consider what do you want to achieve with the model
 - o preserve variance
 - o minimize error
 - o represent uncertainty?
- To get comparable forecasts, use methods that try to achieve similar objectives
- For a more detailed discussion, see the documentation

From the documentation:

	Nowcast type	Machine learning	pysteps	Verification
	Deterministic (variance-preserving)	SRGAN, Others?	pysteps.nowcasts.extrapolation (any optical flow method)	MSE, RMSE, MAE, ETS, etc
	Deterministic (error- minimization)	Classical ANNs, (deep) CNNs, random forests, AdaBoost, etc	pysteps.nowcasts.sprog, pysteps.nowcasts.anvil Or ensemble mean of pysteps.nowcasts.steps/linda	MSE, RMSE, MAE, ETS, etc or better normalized scores, etc
	Probabilistic (quantile- based)	Quantile ANN, quantile random forests, quantile regression	pysteps.nowcasts.lagrangian_probability or probabilities derived from pysteps.nowcasts.steps/linda	Reliability diagram (predicted vs observed quantile), probability integral transform (PIT) histogram
	Probabilistic (ensemble-based)	GANs, VAEs, etc	Ensemble and probabilities derived from pysteps.nowcasts.steps/linda	Probabilistic verification: reliability diagrams, continuous ranked probability scores (CRPS), etc. Ensemble verification: rank histograms, spread-error relationships, etc

Thank you!

Jenna Ritvanen (Finnish Meteorological Institute) and Ruben Imhoff (Deltares)