1

Exercice1: (j'ai corrigé cet ex avec les groupes Aet B) Soit $f \in \mathcal{L}(\mathbb{R}^3)$ tel que $f \circ f = f^2 = 0$. Montrer qu'il existe un vecteur $v \in \mathbb{R}^3 \setminus \{0_{\mathbb{R}^3}\}$ et $g \in \mathcal{L}(\mathbb{R}^3, \mathbb{R})$ tels que :

$$\forall x \in \mathbb{R}^3, f(x) = g(x)v.$$

Exercice2: (Application du théorème du rang) Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$ tel que f^3 est l'endomorphisme nul.

- 1. Montrer que $rg(f) + rg(f^2) \le dim(E)$.
- 2. Montrer que $2rg(f^2) \le rg(f)$.

Exercice3: (Endomorphisme d'un e.v.de dimension finie) Montrer que pour tout $Q \in \mathbb{K}_n[X]$ il existe un unique $P \in \mathbb{K}_n[X]$ tel que $Q = P + P' + ... + P^{(n)}$. Ind° Montrer que l'app $f(P) = P + P' + ... + P^{(n)}$ est un automorphisme de $\mathbb{K}_n[X]$.