Análisis numérico de elementos finitos

Dr. Stefan Frei Department of Mathematics University College London

Curso compacto, Parte III Universidad Nacional Agraria La Molina Agosto 2-8, 2017

Elementos finitos

Método de Galerkin:

- Sea $V_h \subset V$ un espacio finito (discretización **conforme**)
- Problema discreto: Hallar $u_h \in V_h$ tal que

$$a(u_h, \phi_h) = (f, \phi_h)_{\Omega} \quad \forall \phi_h \in V_h$$

Elementos finitos

$$V_h := \left\{ v \in C(\Omega) \,\middle|\, v|_T \in P(T) \,\forall T \in \mathcal{T}_h, \ v = 0 \ \text{en} \ \partial \Omega
ight\}$$

Overview

1 Elementos finitos generales

Propiedades de aproximación

Definición de elementos finitos por funcionales

Nota: En la implementación solo entra la base del espacio finito V_h . Un espacio donde la base no es conocido no es útil.

Una manera común para construir elemento finitos es por

- ullet Una **triangulación** \mathcal{T}_h del dominio Ω
- Un espacio polinomial (local) P(T)
- Un conjunto de funcionales lineales $\{\chi_i : v \to \mathbb{R}, i = 1...N\}$

El espacio finito V_h está definido por

$$V_h = \left\{ v : \Omega \to \mathbb{R} \,\middle|\, v_{|T} \in P(T) \,\forall T \in \mathcal{T}_h, \, \chi_i(v) \text{ es continua } \forall i = 1...N \right\}$$

Una base $\{\phi_i:\Omega\to\mathbb{R},\phi_{i|T}\in P(T),i=1...N\}$ del espacio se obtiene por las relaciones

$$\chi_i(\phi_j) = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Definición de elementos finitos por funcionales

Nota: En la implementación solo entra la base del espacio finito V_h . Un espacio donde la base no es conocido no es útil.

Una manera común para construir elemento finitos es por

- Una triangulación \mathcal{T}_h del dominio Ω
- Un espacio polinomial (local) P(T)
- Un conjunto de funcionales lineales $\{\chi_i : v \to \mathbb{R}, i = 1...N\}$

El espacio finito V_h está definido por

$$V_h = \left\{ v : \Omega \to \mathbb{R} \ \middle| \ v_{\mid T} \in P(T) \ \forall T \in \mathcal{T}_h, \ \chi_i(v) \ \text{es continua} \ \forall i = 1...N
ight\}$$

Una **base** $\{\phi_i:\Omega\to\mathbb{R},\phi_{i|T}\in P(T),i=1...N\}$ del espacio se obtiene por las relaciones

$$\chi_i(\phi_j) = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Unisolvencia

Ejemplo de funcionales lineales χ_i

- Valores en nodos, puntos en arista o en el punto medio: $\chi_i(v) = v(x_i), v(e_i), v(m_i)$
- Valores de derivadas: $\chi_i(v) = \partial_x v(x_i), \partial_y v(x_i), \nabla v(x_i), \nabla^2 v(x_i), \partial_n v(e_i)$

Una **base** $\{\phi_i:\Omega\to\mathbb{R},\phi_{i|T}\in P(T),i=1...N\}$ del espacio se obtiene por las relaciones

$$\chi_i(\phi_j) = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Nota: Está relación no es necesariamente bien-definida

- Sea $\mathcal{X}^{\mathsf{loc}}$ el conjunto de los funcionales χ_i definidos en T
- Condición necesaria: $\dim(P(T)) = \#\mathcal{X}^{loc}$
- Condición suficiente:

$$\chi(p) = 0 \, \forall \chi \in \mathcal{X}^{\mathsf{loc}}, p \in P(T) \ \Rightarrow p = 0 \quad ext{(Unisolvencia)}$$

Unisolvencia

Ejemplo de funcionales lineales χ_i

- Valores en nodos, puntos en arista o en el punto medio: $\chi_i(v) = v(x_i), v(e_i), v(m_i)$
- Valores de derivadas: $\chi_i(v) = \partial_x v(x_i), \partial_y v(x_i), \nabla v(x_i), \nabla^2 v(x_i), \partial_n v(e_i)$

Una **base** $\{\phi_i:\Omega\to\mathbb{R},\phi_{i|T}\in P(T),i=1...N\}$ del espacio se obtiene por las relaciones

$$\chi_i(\phi_j) = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Nota: Está relación no es necesariamente bien-definida

- Sea $\mathcal{X}^{\mathsf{loc}}$ el conjunto de los funcionales χ_i definidos en T
- Condición necesaria: $\dim(P(T)) = \#\mathcal{X}^{loc}$
- Condición suficiente:

$$\chi(p) = 0 \,\forall \chi \in \mathcal{X}^{\mathsf{loc}}, p \in P(T) \Rightarrow p = 0 \quad (\mathsf{Unisolvencia})$$

Ejemplo: Elementos finitos P_1

En el caso de elementos P_1 elegimos una triangulación en triángulos, el espacio polinomial $P(T) = P_1(T)$ y los funcionales

$$\chi_i(v) = v(x_i), \quad i = 1...N$$

donde x_i son los nodos de la triangulación.

Ejemplo: Elementos finitos P_1 (cont)

La base está definido por las relaciones

$$\phi_{j|T} \in P_1(T), \phi_j(x_i) = \delta_{ij}$$

Por definición el espacio está dado por

$$V_h = \{v: \Omega \to \mathbb{R} \,|\, v_{|T} \in P(T) \,\forall \, T \in \mathcal{T}_h, \, v(x_i) \text{ es continua } \forall i = 1...N\}$$

Unisolvencia: $\chi_i(p) = 0 \forall \chi_i \in \mathcal{X}^{loc} \Rightarrow p = 0$

Continuidad: Cómo $v \in P_1(\Gamma)$ para la arista Γ entre dos elementos T_1 y T_2 , la continuidad en los dos nodos x_1 y x_2 implica la continuidad sobre Γ

$$V_h = \{ v \in C(\Omega) \mid v_{\mid T} \in P(T) \, \forall T \in \mathcal{T}_h \}$$

Ejemplo: Elementos finitos P_1 (cont)

La base está definido por las relaciones

$$\phi_{j|T} \in P_1(T), \phi_j(x_i) = \delta_{ij}$$

Por definición el espacio está dado por

$$V_h = \{v: \Omega \to \mathbb{R} \,|\, v_{|T} \in P(T) \,\forall \, T \in \mathcal{T}_h, \, v(x_i) \text{ es continua } \forall i = 1...N\}$$

Unisolvencia: $\chi_i(p) = 0 \forall \chi_i \in \mathcal{X}^{\mathsf{loc}} \Rightarrow p = 0$

Continuidad: Cómo $v \in P_1(\Gamma)$ para la arista Γ entre dos elementos T_1 y T_2 , la continuidad en los dos nodos x_1 y x_2 implica la continuidad sobre Γ

$$V_h = \{ v \in C(\Omega) \mid v_{\mid T} \in P(T) \, \forall \, T \in \mathcal{T}_h \}$$

Elementos finito P_2

Elegimos el espacio $P(T) = P_2(T)$ y los funcionales

$$\chi_i(v) = v(x_i), \quad i = 1...N$$

donde $\{x_i, i=1...N\}$ es el conjunto de todos los nodos de la triangulación y los puntos medios de las aristas.

• $\dim(P_2(T)) = 6 = \#X^{loc}$

De nuevo el espacio es continuo porque $v \in P_2(\Gamma)$ y $v(x_i)$ continuo en 3 puntos en la arista

- Mejores propiedades de aproximación por el grado polinomial superior
- Más elementos non-zero en la matríz

Elementos finito P_2

Elegimos el espacio $P(T) = P_2(T)$ y los funcionales

$$\chi_i(v) = v(x_i), \quad i = 1...N$$

donde $\{x_i, i=1...N\}$ es el conjunto de todos los nodos de la triangulación y los puntos medios de las aristas.

• $\dim(P_2(T)) = 6 = \#X^{loc}$

De nuevo el espacio es continuo porque $v \in P_2(\Gamma)$ y $v(x_i)$ continuo en 3 puntos en la arista

- Mejores propiedades de aproximación por el grado polinomial superior
- Más elementos non-zero en la matríz

Elemento de Argyris

• Elemento Argyris para la ecuación biharmónica $P(T) = P_5(T)$

$$v_h(x,y) = \sum_{i+j\leq 5} c_{ij} x^i y^i$$

21 grados de libertad por elemento

$$v_h(x_i), \nabla v_h(x_i), \nabla^2 v_h(x_i), \partial_n v_h(m_i)$$

Las funciones y las derivadas son continuas sobre aristas

$$V_h \subset C^1(\Omega), \quad V_h \subset H^2(\Omega)$$

Desventaias:

- Muchos grados de libertad por elemento ⇒ Muchos elementos non-zero en la matr/z
- Complicado para implementar por la base complicada

Para la ecuación biharmónica se utilizan frequentemente elementos non-conformes

Elemento de Argyris

• Elemento Argyris para la ecuación biharmónica $P(T) = P_5(T)$

$$v_h(x,y) = \sum_{i+j\leq 5} c_{ij} x^i y^i$$

21 grados de libertad por elemento

$$v_h(x_i), \nabla v_h(x_i), \nabla^2 v_h(x_i), \partial_n v_h(m_i)$$

Las funciones y las derivadas son continuas sobre aristas

$$V_h \subset C^1(\Omega), \quad V_h \subset H^2(\Omega)$$

Desventajas:

- Muchos grados de libertad por elemento ⇒ Muchos elementos non-zero en la matríz
- Complicado para implementar por la base complicada

Para la ecuación biharmónica se utilizan frequentemente elementos non-conformes

Elemento non-conforme de Morley

Elemento de Morley para la ecuación biharmónica

- $P(T) = P_2(T)$
- Funcionales $\chi_{i,1}(v) = v(x_i)$, $\chi_{i,2}(v) = \partial_n v(e_i)$

Espacio finito

$$V_h:=\Big\{v:\Omega o\mathbb{R}\,:\,v|_T\in P_2(T)\,orall\,T\in\mathcal{T}_h,\,v ext{ continuo en nodos y} \ \partial_nv ext{ continuo en puntos medios de aristas}\Big\}$$

- Ni siquiera continuo sobre aristas, $V_h \not\subset H^1(\Omega), V_h \not\subset H^2(\Omega)$ es un espacio non concorme
- Análisis del error más complicado. Error addicional por la non-conformidad

Elemento non-conforme de Morley

Elemento de Morley para la ecuación biharmónica

- $P(T) = P_2(T)$
- Funcionales $\chi_{i,1}(v) = v(x_i)$, $\chi_{i,2}(v) = \partial_n v(e_i)$

Espacio finito

$$V_h:=\Big\{v:\Omega o\mathbb{R}\,:\,v|_T\in P_2(T)\,orall\,T\in\mathcal{T}_h,\,v ext{ continuo en nodos y} \ \partial_nv ext{ continuo en puntos medios de aristas}\Big\}$$

- Ni siquiera continuo sobre aristas, $V_h \not\subset H^1(\Omega), V_h \not\subset H^2(\Omega)$ es un espacio non-concorme
- Análisis del error más complicado. Error addicional por la non-conformidad

Elementos finitos en quadrilaterales

En quadrilaterales, se utilizan normalmente los espacios polinomiales

$$Q_r := \left\{ u(x, y) = \sum_{0 \le i, j \le r} \alpha_{ij} x^i y^j \right\}$$

El espacio finito se define cómo

$$V_h'(\mathcal{T}_h) := \left\{ v : \Omega \to \mathbb{R} \, \middle| \, (v \circ \Phi_{\mathcal{T}}) \middle|_{\widehat{\mathcal{T}}} \in \mathcal{Q}_r \, \forall \, \mathcal{T} \in \mathcal{T}_h, \, \chi_i(v) \text{ es continua } \forall i = 1...N \right\}$$

donde $\Phi_{\mathcal{T}}:\widehat{\mathcal{T}}\to\mathcal{T}$ es la transformación del elemento de referencia $\hat{\mathcal{K}}$ a $\mathcal{K}.$

Para poder obtener arbitrarios quadrilaterales, ϕ_T tiene que ser bilineal

$$\phi_T(x, y) = \alpha_0 + \alpha_1 x + \alpha_2 y + \alpha_3 xy \in Q_1(\hat{T})$$

Elementos bilineales (Q_1)

Elementos bilineales con 4 grados de libertad por elemento

$$\varphi(x,y)_{|T} := \alpha_0 + \alpha_1 x + \alpha_2 y + \alpha_3 x y$$

• Funcionales: $\chi_i(v) = v(x_i)$ en todos los nodes

- Unisolvente y continuo (conforme en $H^1(\Omega)$)
- Base

Elementos bilineales (Q_1)

Elementos bilineales con 4 grados de libertad por elemento

$$\varphi(x,y)_{|T} := \alpha_0 + \alpha_1 x + \alpha_2 y + \alpha_3 xy$$

• Funcionales: $\chi_i(v) = v(x_i)$ en todos los nodes

- Unisolvente y continuo (conforme en $H^1(\Omega)$)
- Base

Elementos finitos Q2

• $\dim(Q_2(T)) = 9$

$$\varphi(x,y) = \sum_{i,j=0}^{2} \alpha_{ij} x^{i} y^{j}$$

 Funcionales: Valores en nodos, puntos medios de aristas y en el punto medio de un elemento

$$\chi_{i,1}(v) = v(x_i), i = 1, ..., M_1,
\chi_{i,2}(v) = v(e_i), i = 1, ..., M_2,
\chi_{i,3}(v) = v(m_i), i = 1, ..., M_3$$

• Unisolvente y continuo (conforme en $H^1(\Omega)$)

P_1 en 3d

- $P(T) = P_1(T)$
- $\chi_i(v) = v(x_i)$, i = 1...N, donde x_i son los nodos de la triangulación

Overview

1 Elementos finitos generales

Propiedades de aproximación

Método de Galerkin

ullet Problema continuo: Hallar $u \in V$ tal que

$$a(u,\phi)=(f,\phi)\quad\forall\phi\in V.$$

• Método de Galerkin: Hallar $u_h \in V_h \subset V$ tal que

$$a(u_h, \phi_h) = (f, \phi_h) \quad \forall \phi_h \in V_h$$

Ortogonalidad de Galerkin

$$a(u-u_h,\phi_h)=0 \quad \forall \phi_h \in V_h$$

• Propriedad de la mejor aproximación

$$||u - u_h||_a = \min_{\phi_h \in V_h} ||u - \phi_h||_a, \quad ||u - u_h||_V \le C \min_{\phi_h \in V_h} ||u - \phi_h||_V$$

 Lo que viene: Estimación de las propriedades de aproximación de los espacios V_h ⊂ V dependiendo de h

$$\min_{\phi_h \in V_h} \|u - \phi_h\|_V \le Ch^? \|u\|_?$$

Error de discretización

Estrategía: Construcción de una interpolante $I_h:V \to V_h$ para una función $u \in V$

$$\min_{\phi_h \in V_h} \|u - \phi_h\|_V \le \|u - I_h u\|_V \le Ch^? \|u\|_?$$

Utilizamos la base $\{\phi_i, i=1,...,N\}$ de V_h construida por las relaciones

$$\chi_i(\phi_j) = \delta_{ij}, \quad i = 1, ..., \Lambda$$

Definimos

$$I_h u = \sum_{i=1}^N \chi_i(u) \phi_i$$

Ejemplo: Elementos finitos P

$$I_h u = \sum_{i=1}^N u(x_i)\phi_i$$

Error de discretización

Estrategía: Construcción de una interpolante $I_h:V \to V_h$ para una función $u \in V$

$$\min_{\phi_h \in V_h} \|u - \phi_h\|_V \le \|u - I_h u\|_V \le Ch^2 \|u\|_2$$

Utilizamos la base $\{\phi_i, i=1,...,N\}$ de V_h construida por las relaciones

$$\chi_i(\phi_j) = \delta_{ij}, \quad i = 1, ..., N$$

Definimos

$$I_h u = \sum_{i=1}^N \chi_i(u) \phi_i$$

Ejemplo: Elementos finitos P₁

$$I_h u = \sum_{i=1}^N u(x_i)\phi_i$$

Error de discretización

Estrategía: Construcción de una interpolante $I_h:V \to V_h$ para una función $u \in V$

$$\min_{\phi_h \in V_h} \|u - \phi_h\|_V \le \|u - I_h u\|_V \le Ch^2 \|u\|_2$$

Utilizamos la base $\{\phi_i, i = 1, ..., N\}$ de V_h construida por las relaciones

$$\chi_i(\phi_j) = \delta_{ij}, \quad i = 1, ..., N$$

Definimos

$$I_h u = \sum_{i=1}^N \chi_i(u) \phi_i$$

Ejemplo: Elementos finitos P_1

$$I_h u = \sum_{i=1}^N u(x_i)\phi_i$$

Transformación

Espacio finito

$$V_h = \{ v : \Omega \to \mathbb{R} \, | \, v \circ \phi_T \in P(\hat{T}) \, \forall \, T \in \mathcal{T}_h, v(x_i) \text{ es continua } \forall i = 1...N \}$$

ullet Triángulos (Teatraedros): Transformación $\phi_{\mathcal{T}}:\hat{\mathcal{T}} o \mathcal{T}$ es lineal

$$\phi_T(s,t) = x^0 + s(x^1 - x^0) + t(x^2 - x^0)$$

Las condiciones $v \circ \phi_T \in P(\hat{T}) \Leftrightarrow v \in P(T)$ son equivalentes

Transformación, quadrilaterales

Quadrilaterales (Hexaedros): Transformación $\phi_T: \hat{T} \to T$ es bilineal

$$\phi_T(s,t) = x^0 + s(x^1 - x^0) + t(x^2 - x^0) + st(x^3 + x^0 - x^1 - x^2)$$

La función v es racional

$$v(x) = \underbrace{v \circ \phi_T}_{\in P(\hat{T})} \circ \phi_T^-$$

Condiciones a la triangulación

Suponemos que $\Omega \subset \mathbb{R}^2$ es un polígono tal que puede ser resuelto exacto por una triangulación $\mathcal{T}_h = \{T_1, \dots, T_N\}$:

$$\overline{\Omega} = \cup_{T \in \mathcal{T}_h} \overline{T}.$$

Una triangulación en triángulos o quadrilaterales se llama regular, si para cada $1 \le i < j \le N$,

 $T_i \cap T_i$

- es vacío
- o consiste de un solo nodo
- consiste de una arista entera

Condiciones a la triangulación (cont.)

 $h_T = \text{radius exterior}$

 $ho_{T}={
m radius}$ interior

Una familia de triangulaciones $\mathcal{T}_1, \mathcal{T}_2, \ldots$ se llama regular de forma si existe una constante κ tal que

$$\max_{i} \max_{T \in \mathcal{T}_{i}} \frac{h_{T}}{\rho_{T}} \leq \kappa$$

Se llama quasi-uniforme si además

$$\frac{\max_{T \in \mathcal{T}_i} h_T}{\min_{T \in \mathcal{T}_i} \rho_T} \le \kappa \qquad \forall i$$

Definimos $h = \max_{T \in \mathcal{T}_h} h_T$

Resultado

Condiciones

- La triangulación \mathcal{T}_h es quasi-uniforme
- $P_{m-1}(\hat{T}) \subset P(\hat{T})$
- Las funcionales $\chi_i \in \mathcal{X}^{\text{loc}}, i = 1, ..., M$ son unisolventes con $P(\hat{T})$ y H^m -estable: Existe C > 0 tal que

$$|\chi_i(v)| \leq C ||v||_{H^m(\hat{T})} \quad \forall v \in H^m(\hat{T})$$

Bajo estas condiciones, la **interpolante** $I_h:V o V_h$ definido por

$$I_h u = \sum_{i=1}^N \chi_i(u) \phi_i$$

cumple las estimaciones

$$||u-I_hu||_{H^k(\Omega)}\leq Ch^{m-k}||u||_{H^m(\Omega)}$$

para $u \in H^m(\Omega)$ y $0 \le k \le m$.

Estabilidad H^m

Por $H^2(\Omega) \subset C(\Omega)$ tenemos

$$|v(x_i)| \leq ||v||_{\infty,\Omega} \leq C||v||_{H^2(\Omega)}.$$

Los funcionales de los elementos P_1 , P_2 son H^2 -estable. Analogamente

$$|\partial_j v(x_i)| \leq \|\nabla v\|_{\infty,\Omega} \leq C\|v\|_{H^3(\Omega)}$$

$$|\partial_n v(x_i)| \le \|\nabla v\|_{\infty,\Omega} \le C \|v\|_{H^3(\Omega)}$$

$$|\partial_{jk}v(x_i)| \leq \|\nabla^2 v\|_{\infty,\Omega} \leq C\|v\|_{H^4(\Omega)}$$

Ejemplos: P_1

Elementos P_1 :

- ullet $P_{m-1}(\hat{T})\subset P(\hat{T})=P_1(\hat{T})$ para $m\leq 2$
- $|\chi_i(v)| = |v(x_i)| \le C||v||_{H^m(\hat{T})}$ para $m \ge 2$

Tenemos

$$||v - I_h v||_{L^2(\Omega)} \le Ch^2 ||v||_{H^2(\Omega)},$$

$$||v - I_h v||_{H^1(\Omega)} \le Ch ||v||_{H^2(\Omega)},$$

$$||v - I_h v||_{H^2(\Omega)} \le C ||v||_{H^2(\Omega)}.$$

Problema de Poisson:

$$\|\nabla(u - u_h)\|_{\Omega} \le \min_{\phi_h \in V_h} \|\nabla(u - \phi_h)\|_{\Omega} \le \|\nabla(u - I_h u)\|_{\Omega} \le Ch\|u\|_{H^2(\Omega)}$$

Ejemplos: P_1

Elementos P_1 :

- ullet $P_{m-1}(\hat{T})\subset P(\hat{T})=P_1(\hat{T})$ para $m\leq 2$
- $|\chi_i(v)| = |v(x_i)| \le C||v||_{H^m(\hat{T})}$ para $m \ge 2$

Tenemos

$$||v - I_h v||_{L^2(\Omega)} \le Ch^2 ||v||_{H^2(\Omega)},$$

$$||v - I_h v||_{H^1(\Omega)} \le Ch ||v||_{H^2(\Omega)},$$

$$||v - I_h v||_{H^2(\Omega)} \le C ||v||_{H^2(\Omega)}.$$

Problema de Poisson:

$$\|\nabla(u-u_h)\|_{\Omega} \leq \min_{\phi_h \in V_h} \|\nabla(u-\phi_h)\|_{\Omega} \leq \|\nabla(u-I_h u)\|_{\Omega} \leq Ch\|u\|_{H^2(\Omega)}$$

Estrategía de la prueba

Definimos $\hat{v}(\hat{x}) := v(\phi_T(\hat{x}))$ y mostramos el resultado en el elemento de referencia \hat{T} .

• Transformación a \hat{T} , $0 \le l \le k$

$$\|\nabla^{\prime}(u-I_hu)\|_{\mathcal{T}}\leq Ch^{-\prime}|\mathrm{det}(\nabla\phi_{\mathcal{T}})|\|\hat{\nabla}^{\prime}(\hat{u}-I_h\hat{u})\|_{\hat{\mathcal{T}}}.$$

Lema de Bramble-Hilbert en el elemento de referencia

$$\|\hat{\nabla}^k(\hat{u}-I_h\hat{u})\|_{\hat{T}} \leq C\|\hat{\nabla}^m\hat{u}\|_{\hat{T}}.$$

Transformación al elemento físico T

$$\|\hat{\nabla}^m \hat{u}\|_{\hat{T}} \leq Ch^m |\det(\nabla \phi_T)|^{-1} \|\nabla^m u\|_T.$$

Juntos

$$\|\nabla^{l}(u - l_{h}u)\|_{T} \le Ch^{m-l}\|\nabla^{m}u\|_{T} \quad 0 \le l \le k$$

$$\Rightarrow \|u - l_{h}u\|_{H^{k}(T)} \le Ch^{m-k}\|\nabla^{m}u\|_{T}$$

El resultado sigue por elevación al cuadrado y sumación sobre $T \in \mathcal{T}_h$.

Nota: Todas las constantes C son independientes de h y de u

Estrategía de la prueba

Definimos $\hat{v}(\hat{x}) := v(\phi_T(\hat{x}))$ y mostramos el resultado en el elemento de referencia \hat{T} .

• Transformación a \hat{T} , $0 \le l \le k$

$$\|\nabla^{I}(u-I_{h}u)\|_{\mathcal{T}} \leq Ch^{-I}|\det(\nabla\phi_{\mathcal{T}})|\|\hat{\nabla}^{I}(\hat{u}-I_{h}\hat{u})\|_{\hat{\mathcal{T}}}.$$

Lema de Bramble-Hilbert en el elemento de referencia

$$\|\hat{\nabla}^k(\hat{u}-I_h\hat{u})\|_{\hat{T}}\leq C\|\hat{\nabla}^m\hat{u}\|_{\hat{T}}.$$

Transformación al elemento físico T

$$\|\hat{\nabla}^m \hat{u}\|_{\hat{\tau}} \leq Ch^m |\det(\nabla \phi_T)|^{-1} \|\nabla^m u\|_T.$$

Juntos

$$\|\nabla^{I}(u - I_{h}u)\|_{T} \leq Ch^{m-I}\|\nabla^{m}u\|_{T} \quad 0 \leq I \leq k$$

$$\Rightarrow \|u - I_{h}u\|_{H^{k}(T)} \leq Ch^{m-k}\|\nabla^{m}u\|_{T}$$

El resultado sigue por elevación al cuadrado y sumación sobre $\mathcal{T} \in \mathcal{T}_h$.

Nota: Todas las constantes C son independientes de h y de u

Prueba, parte I: Transformación

Sea $\hat{f}(\hat{x}) := f(\phi_T(\hat{x}))$. Consideramos un espacio finito en triángulos. La transformación está dado por

$$\phi_T(s,t) = x^0 + s(x^1 - x^0) + t(x^2 - x^0)$$

Su derivada es

$$F = \nabla \phi_T = \left(x^1 - x^0, \quad x^2 - x^0 \right)$$

Teorema de transformaciones

$$\int_{\mathcal{T}} f \, dx = \int_{\hat{\mathcal{T}}} |\det(F)| \hat{f} \, d\hat{x}$$

Aplicando para f = 1, obtenemos que la determinante es el cambio de área

$$|\det(F)| = \frac{\int_T 1 \, dx}{\int_{\hat{T}} 1 \, dx} = \frac{|T|}{|\hat{T}|} = 2|T|.$$

Por las condiciones a la triangulación, tenemos

$$2\pi\rho_T^2 \le |T| \le 2\pi h_T^2$$

$$\Rightarrow c_1 h^2 \le |\det(F)| \le c_2 h^2$$

Prueba, parte I: Transformación

Sea $\hat{f}(\hat{x}) := f(\phi_T(\hat{x}))$. Consideramos un espacio finito en triángulos. La transformación está dado por

$$\phi_T(s,t) = x^0 + s(x^1 - x^0) + t(x^2 - x^0)$$

Su derivada es

$$F = \nabla \phi_T = \left(x^1 - x^0, \quad x^2 - x^0 \right)$$

Teorema de transformaciones

$$\int_{\mathcal{T}} f \, dx = \int_{\hat{\mathcal{T}}} |\det(F)| \hat{f} \, d\hat{x}$$

Aplicando para f=1, obtenemos que la determinante es el cambio de área

$$|\det(F)| = \frac{\int_T 1 \, dx}{\int_{\hat{T}} 1 \, dx} = \frac{|T|}{|\hat{T}|} = 2|T|.$$

Por las condiciones a la triangulación, tenemos

$$2\pi \rho_T^2 \le |T| \le 2\pi h_T^2$$

$$\Rightarrow c_1 h^2 \le |\det(F)| \le c_2 h^2.$$

25

Prueba, parte I: Transformación (cont.)

Por las condiciones a la triangulación, tenemos

$$|(x^1-x^0)_i| \le Ch$$
, $|(x^1-x^0)_i| \le Ch$, $i=1,2$

y por eso $\max_{i,j=1,2} |f_{ij}| \leq Ch$.

Por la regla de Cramer, la mátriz inversa está dado por

$$F^{-1} = |\det(F)|^{-1} \begin{pmatrix} f_{22} & -f_{12} \\ -f_{21} & f_{11} \end{pmatrix}$$

y con el cálculo previo

$$\max_{ij=1,2} |f_{ij}^{-1}| \le c_1 h^{-2} ch \le Ch^{-1}$$

Prueba, parte I: Transformación (cont.)

Cambio de derivadas (regla de la cadena)

$$\hat{\partial}_i \hat{\mathbf{v}}(\hat{\mathbf{x}}) = \hat{\partial}_i \mathbf{v}(\phi_T(\hat{\mathbf{x}})) = \sum_{j=1}^2 \partial_j \mathbf{v}(\mathbf{x}) \underbrace{\partial_i (\phi_T(\hat{\mathbf{x}}))_j}_{F_{ji}},$$

en notación vectorial $\hat{\nabla} v = F^T \nabla v$, $\nabla v = F^{-T} \hat{\nabla} v$.

Con el teorema de transformaciones

$$\int_{T} (\nabla(v - I_h v))^2 dx = \int_{\hat{T}} |\det(F)| \left(F^{-T} \hat{\nabla} (\hat{v} - I_h \hat{v}) \right)^2 d\hat{x}$$

$$\leq |\det(F)| \left(\max_{i,j=1,2} |f_{ij}^{-1}| \right)^2 \int_{\hat{T}} \left(\hat{\nabla} (\hat{v} - I_h \hat{v}) \right)^2 d\hat{x}$$

$$\leq Ch^{-2} |\det(F)| ||\hat{\nabla} (\hat{v} - I_h \hat{v})||_{\hat{T}}^2.$$

Por inducción

$$\|\nabla^{I}(v - I_{h}v)\|_{T} \le Ch^{-I}|\det(F)|\|\hat{\nabla}^{I}(\hat{v} - I_{h}\hat{v})\|.$$

Prueba, parte I: Transformación (cont.)

Cambio de derivadas (regla de la cadena)

$$\hat{\partial}_i \hat{\mathbf{v}}(\hat{\mathbf{x}}) = \hat{\partial}_i \mathbf{v}(\phi_T(\hat{\mathbf{x}})) = \sum_{j=1}^2 \partial_j \mathbf{v}(\mathbf{x}) \underbrace{\partial_i (\phi_T(\hat{\mathbf{x}}))_j}_{F_{ji}},$$

en notación vectorial $\hat{\nabla} v = F^T \nabla v$, $\nabla v = F^{-T} \hat{\nabla} v$.

Con el teorema de transformaciones

$$\int_{T} (\nabla(v - I_h v))^2 dx = \int_{\hat{T}} |\det(F)| \left(F^{-T} \hat{\nabla} (\hat{v} - I_h \hat{v}) \right)^2 d\hat{x}$$

$$\leq |\det(F)| \left(\max_{i,j=1,2} |f_{ij}^{-1}| \right)^2 \int_{\hat{T}} \left(\hat{\nabla} (\hat{v} - I_h \hat{v}) \right)^2 d\hat{x}$$

$$\leq Ch^{-2} |\det(F)| ||\hat{\nabla} (\hat{v} - I_h \hat{v})||_{\hat{T}}^2.$$

Por inducción

$$\|\nabla^{I}(v - I_{h}v)\|_{T} \leq Ch^{-I}|\det(F)|\|\hat{\nabla}^{I}(\hat{v} - I_{h}\hat{v})\|_{\hat{T}}$$

Prueba, parte I: Segunda transformación

Transformación del elemento de referencia \hat{T} al elemento físico T

$$\begin{split} \int_{\hat{T}} \left(\hat{\nabla}(\hat{v}) \right)^2 \, dx &= \int_{T} \left| \det(F) \right|^{-1} \left(F^T \nabla v \right)^2 \, dx \\ &\leq \left| \det(F) \right|^{-1} \left(\max_{i,j=1,2} |f_{ij}| \right)^2 \int_{T} \left(\nabla v \right)^2 \, dx \\ &\leq C h^2 |\det(F)|^{-1} \| \nabla v \|_{T}^2. \end{split}$$

Por inducción

$$\|\hat{\nabla}'\hat{\mathbf{v}}\|_{\hat{T}} \leq Ch'|\det(F)|^{-1}\|\nabla'\mathbf{v}\|_{\mathcal{T}}$$

Prueba, parte II: Estimación el elemento de referencia

Lo que falta es la estimación en el elemento de referencia $\hat{\mathcal{T}}$

$$\|\hat{\nabla}^k(\hat{u}-I_h\hat{u})\|_{\hat{\mathcal{T}}}\leq C\|\hat{\nabla}^m\hat{u}\|_{\hat{\mathcal{T}}}.$$

Definimos la parte al lado izquierdo cómo funcional $F:H^m(\Omega) o\mathbb{R}$

$$F(u) := \|\hat{\nabla}^k(\hat{u} - I_h\hat{u})\|_{\hat{T}}$$

Lema de Bramble-Hilbert

Sea $F:H^m(\Omega) o \mathbb{R}$ un funcional que cumple las siguientes condiciones

- Sublineal: $|F(u+v)| \le c(|F(u)| + |F(v)|)$
- F(p) = 0 para polinomios $p \in P_{m-1}(\Omega)$
- H^m -estable: $|F(u)| \leq c ||u||_{H^m(\Omega)}$

Bajo estas condiciones existe una constante C>0 tal que

$$|F(u)| \leq C \|\nabla^m u\|_{\Omega}$$

Condiciones de Bramble-Hilbert

Aplicación para el funcional

$$F(u) := \|\hat{\nabla}^k (\hat{u} - I_h \hat{u})\|_{\hat{T}}$$

- $|F(u+v)| \le |F(u)| + |F(v)|$ por la desigualdad triangular
- F(p)=0 para polinomios $p\in P_{m-1}(\Omega)$: Por definición de la interpolante: $\chi_i(p)=\chi_i(I_hp)$ Por la unisolvencia tenemos $\chi_i(p-I_hp)=0 \ \forall i\in \mathcal{X}^{\mathrm{loc}} \Rightarrow p-I_hp=0$
- H^m-estable:

$$|F(u)| = \|\hat{\nabla}^{k}(\hat{u} - I_{h}\hat{u})\|_{\hat{T}} \leq \|\hat{\nabla}^{k}\hat{u}\|_{\hat{T}} + \sum_{i} \|\chi_{i}(\hat{u})\hat{\nabla}^{k}\phi_{i}\|_{\hat{T}}$$

$$\leq \|\hat{u}\|_{H^{k}(\hat{T})} + \sum_{i} |\chi_{i}(\hat{u})| \|\hat{\nabla}^{k}\phi_{i}\|_{\hat{T}}.$$

 $\|\hat{\nabla}^k \phi_i\|_{\hat{\tau}} \leq C$, los funcionales χ_i son H^m -estable por suposición,.

Condiciones de Bramble-Hilbert

Aplicación para el funcional

$$F(u) := \|\hat{\nabla}^k (\hat{u} - I_h \hat{u})\|_{\hat{T}}$$

- $|F(u+v)| \le |F(u)| + |F(v)|$ por la desigualdad triangular
- F(p)=0 para polinomios $p\in P_{m-1}(\Omega)$: Por definición de la interpolante: $\chi_i(p)=\chi_i(I_hp)$ Por la unisolvencia tenemos $\chi_i(p-I_hp)=0 \ \forall i\in \mathcal{X}^{\mathsf{loc}} \Rightarrow p-I_hp=0$
- H^m-estable:

$$|F(u)| = \|\hat{\nabla}^{k}(\hat{u} - I_{h}\hat{u})\|_{\hat{\tau}} \leq \|\hat{\nabla}^{k}\hat{u}\|_{\hat{\tau}} + \sum_{i} \|\chi_{i}(\hat{u})\hat{\nabla}^{k}\phi_{i}\|_{\hat{\tau}}$$
$$\leq \|\hat{u}\|_{H^{k}(\hat{\tau})} + \sum_{i} |\chi_{i}(\hat{u})| \|\hat{\nabla}^{k}\phi_{i}\|_{\hat{\tau}}.$$

 $\|\hat{\nabla}^k \phi_i\|_{\hat{\tau}} \leq C$, los funcionales χ_i son H^m -estable por suposición,

Condiciones de Bramble-Hilbert

Aplicación para el funcional

$$F(u) := \|\hat{\nabla}^k (\hat{u} - I_h \hat{u})\|_{\hat{T}}$$

- $|F(u+v)| \le |F(u)| + |F(v)|$ por la desigualdad triangular
- F(p)=0 para polinomios $p\in P_{m-1}(\Omega)$: Por definición de la interpolante: $\chi_i(p)=\chi_i(I_hp)$ Por la unisolvencia tenemos $\chi_i(p-I_hp)=0 \ \forall i\in \mathcal{X}^{\mathsf{loc}} \Rightarrow p-I_hp=0$
- H^m-estable:

$$|F(u)| = \|\hat{\nabla}^{k}(\hat{u} - I_{h}\hat{u})\|_{\hat{T}} \leq \|\hat{\nabla}^{k}\hat{u}\|_{\hat{T}} + \sum_{i} \|\chi_{i}(\hat{u})\hat{\nabla}^{k}\phi_{i}\|_{\hat{T}}$$

$$\leq \|\hat{u}\|_{H^{k}(\hat{T})} + \sum_{i} |\chi_{i}(\hat{u})| \|\hat{\nabla}^{k}\phi_{i}\|_{\hat{T}}.$$

 $\|\hat{\nabla}^k \phi_i\|_{\hat{T}} \leq C$, los funcionales χ_i son H^m -estable por suposición,.

Prueba del lema de Bramble-Hilbert

Una de las condiciones es la estabilidad en H^m

$$|F(v)| \leq C||v||_{H^m(\Omega)}$$

Tenemos que probar que

$$|F(v)| \leq C|v|_{H^m(\Omega)}$$

Desigualdad generalizada de Poincaré

Para una funciíon $v \in H^m(\hat{T})$ tal que

$$\int_{\hat{T}} D^{\alpha} v \, dx = 0 \quad \forall |\alpha| \le m - 1,$$

se cumple

$$||v||_{H^m(\hat{T})} \leq C|v|_{H^m(\Omega)}$$

Proyección polinomial

Para aplicar la desigualdad generalizada de Poincaré necesitamos el siguiente lema

Lema: Proyección polinomial

Para cada función $v \in H^m(\hat{T})$ existe un polinomio $\pi_h v \in P_{m-1}(\hat{T})$ tal que

$$\int D^{\alpha}(v-\pi_h v) dx = 0 \quad \forall |\alpha| \leq m-1.$$

Prueba del lema de Bramble-Hilbert

Utilizando la sublinealidad y $F(p) = 0 \quad \forall p \in P_{m-1}(\hat{T})$, obtenemos

$$|F(v)| \leq |F(v - \pi_h v + \pi_h v)| \leq c(|F(v - \pi_h v)| + |F(\pi_h v)|) = c|F(v - \pi_h v)|.$$

Con la estabilidad en $H^m(\hat{T})$

$$|F(v)| \leq C||v - \pi_h v||_{H^m(\Omega)}.$$

Cómo $\int_{\hat{T}} v - \pi_h v \, dx = 0$, la desigualdad generalizada de Poincaré resulta en $|F(v)| \le C|v - \pi_h v|_{H^m(\Omega)} = C|v|_{H^m(\Omega)}.$

Conclusión de la prueba

Conclusión

• Condiciones: \mathcal{T}_h es quasi-uniforme Transformación a \hat{T} , $0 \le l \le k$

$$\|\nabla^{I}(u-I_{h}u)\|_{T} \leq Ch^{-I}|\det(\nabla\phi_{T})|\|\hat{\nabla}^{I}(\hat{u}-I_{h}\hat{u})\|_{\hat{T}}.$$

Transformación al elemento físico T

$$\|\hat{\nabla}^m \hat{u}\|_{\hat{T}} \leq Ch^m |\det(\nabla \phi_T)^{-1}| \|\nabla^m u\|_T.$$

• Condiciones: $P_{m-1}(T) \subset P(\hat{T})$, $\chi_i \in \mathcal{X}^{\text{loc}}$ unisolventes con $P(\hat{T})$ y H^m -estable:

Lema de Bramble-Hilbert en el elemento de referencia

$$\|\hat{\nabla}^k(\hat{u} - I_h\hat{u})\|_{\hat{T}} \le C\|\hat{\nabla}^m\hat{u}\|_{\hat{T}}.$$

Juntos

$$\|\nabla^k(u-I_hu)\|_T \leq Ch^{m-k}\|\nabla^m u\|_T$$

34

Conclusión de la prueba

Conclusión

• Condiciones: \mathcal{T}_h es quasi-uniforme

Transformación a
$$\hat{T}$$
, $0 \le l \le k$

$$\|\nabla^{I}(u-I_{h}u)\|_{\mathcal{T}} \leq Ch^{-I}|\det(\nabla\phi_{\mathcal{T}})|\|\hat{\nabla}^{I}(\hat{u}-I_{h}\hat{u})\|_{\hat{\mathcal{T}}}.$$

Transformación al elemento físico T

$$\|\hat{\nabla}^m \hat{u}\|_{\hat{T}} \leq Ch^m |\det(\nabla \phi_T)^{-1}| \|\nabla^m u\|_T.$$

• Condiciones: $P_{m-1}(T) \subset P(\hat{T})$, $\chi_i \in \mathcal{X}^{\text{loc}}$ unisolventes con $P(\hat{T})$ y H^m -estable:

Lema de Bramble-Hilbert en el elemento de referencia

$$\|\hat{\nabla}^k(\hat{u}-I_h\hat{u})\|_{\hat{T}}\leq C\|\hat{\nabla}^m\hat{u}\|_{\hat{T}}.$$

Juntos

$$\|\nabla^k(u-I_hu)\|_T < Ch^{m-k}\|\nabla^m u\|_T$$

Conclusión de la prueba

Conclusión

• Condiciones: \mathcal{T}_h es quasi-uniforme

Transformación a
$$\hat{T}$$
, $0 \le l \le k$

$$\|\nabla^{I}(u-I_{h}u)\|_{\mathcal{T}} \leq Ch^{-I}|\det(\nabla\phi_{\mathcal{T}})|\|\hat{\nabla}^{I}(\hat{u}-I_{h}\hat{u})\|_{\hat{\mathcal{T}}}.$$

Transformación al elemento físico T

$$\|\hat{\nabla}^m \hat{u}\|_{\hat{T}} \leq Ch^m |\det(\nabla \phi_T)^{-1}| \|\nabla^m u\|_T.$$

• Condiciones: $P_{m-1}(T) \subset P(\hat{T})$, $\chi_i \in \mathcal{X}^{\text{loc}}$ unisolventes con $P(\hat{T})$ y H^m -estable:

Lema de Bramble-Hilbert en el elemento de referencia

$$\|\hat{\nabla}^k(\hat{u}-I_h\hat{u})\|_{\hat{T}}\leq C\|\hat{\nabla}^m\hat{u}\|_{\hat{T}}.$$

Juntos

$$\|\nabla^k(u-I_hu)\|_T\leq Ch^{m-k}\|\nabla^mu\|_T$$

Ejemplos: P_1

Elementos P_1 :

•
$$P_{m-1}(\hat{T}) \subset P(\hat{T}) = P_1(\hat{T})$$
 para $m \leq 2$

•
$$|\chi_i(v)| = |v(x_i)| \le C||v||_{H^m(\hat{T})}$$
 para $m \ge 2$

Tenemos

$$||v - I_h v||_{L^2(\Omega)} \le Ch^2 ||v||_{H^2(\Omega)},$$

$$||v - I_h v||_{H^1(\Omega)} \le Ch ||v||_{H^2(\Omega)},$$

$$||v - I_h v||_{H^2(\Omega)} \le C||v||_{H^2(\Omega)}.$$

Problema de Poisson:

$$\|\nabla(u-u_h)\|_{\Omega} \leq \min_{\phi_h \in V_h} \|\nabla(u-\phi_h)\|_{\Omega} \leq \|\nabla(u-I_h u)\|_{\Omega} \leq Ch\|u\|_{H^2(\Omega)}$$

Ejemplos: P_2

Elementos P_2 :

- $P_{m-1}(\hat{T}) \subset P(\hat{T}) = P_2(\hat{T})$ para $m \leq 3$
- $|\chi_i(v)| = |v(x_i)| \le C||v||_{H^m(\hat{T})}$ para $m \ge 2$

Tenemos

$$\begin{split} \|v - I_h v\|_{L^2(\Omega)} & \leq C h^2 \|v\|_{H^2(\Omega)}, \quad \|v - I_h v\|_{L^2(\Omega)} \leq C h^3 \|v\|_{H^3(\Omega)}, \\ \|v - I_h v\|_{H^1(\Omega)} & \leq C h \|v\|_{H^2(\Omega)}, \quad \|v - I_h v\|_{H^1(\Omega)} \leq C h^2 \|v\|_{H^3(\Omega)}, \end{split}$$

Problema de Poisson

$$\|\nabla(u - u_h)\|_{\Omega} \le \min_{\phi_h \in V_h} \|\nabla(u - \phi_h)\|_{\Omega} \le \|\nabla(u - l_h u)\|_{\Omega} \le Ch^2 \|u\|_{H^3(\Omega)}$$
$$\|\nabla(u - u_h)\|_{\Omega} \le Ch \|u\|_{H^2(\Omega)}$$

Ejemplos: P_2

Elementos P_2 :

- $P_{m-1}(\hat{T}) \subset P(\hat{T}) = P_2(\hat{T})$ para $m \leq 3$
- $|\chi_i(v)| = |v(x_i)| \le C||v||_{H^m(\hat{T})}$ para $m \ge 2$

Tenemos

$$\begin{split} \|v - I_h v\|_{L^2(\Omega)} & \leq C h^2 \|v\|_{H^2(\Omega)}, \quad \|v - I_h v\|_{L^2(\Omega)} \leq C h^3 \|v\|_{H^3(\Omega)}, \\ \|v - I_h v\|_{H^1(\Omega)} & \leq C h \|v\|_{H^2(\Omega)}, \quad \|v - I_h v\|_{H^1(\Omega)} \leq C h^2 \|v\|_{H^3(\Omega)}, \end{split}$$

Problema de Poisson:

$$\|\nabla(u-u_h)\|_{\Omega} \leq \min_{\phi_h \in V_h} \|\nabla(u-\phi_h)\|_{\Omega} \leq \|\nabla(u-I_h u)\|_{\Omega} \leq Ch^2 \|u\|_{H^3(\Omega)},$$

$$\|\nabla(u-u_h)\|_{\Omega} \leq Ch \|u\|_{H^2(\Omega)}$$

Ejemplos: Elemento de Argyris

Elemento de Argyris:

- $P_{m-1}(\hat{T}) \subset P(\hat{T}) = P_5(\hat{T})$ para $m \leq 6$
- $|\chi_i(v)| = |\partial_{jk}v(x_i)| \le C||v||_{H^m(\hat{T})}$ para $m \ge 4$

Tenemos

$$\begin{split} \|v-I_hv\|_{L^2(\Omega)} &\leq Ch^4 \|v\|_{H^4(\Omega)}, \ \dots \ \|v-I_hv\|_{L^2(\Omega)} \leq Ch^6 \|v\|_{H^6(\Omega)}, \\ \|v-I_hv\|_{H^1(\Omega)} &\leq Ch^3 \|v\|_{H^4(\Omega)}, \ \dots \ \|v-I_hv\|_{H^1(\Omega)} \leq Ch^5 \|v\|_{H^6(\Omega)}, \\ \|v-I_hv\|_{H^2(\Omega)} &\leq Ch^2 \|v\|_{H^4(\Omega)}, \ \dots \ \|v-I_hv\|_{H^2(\Omega)} \leq Ch^4 \|v\|_{H^6(\Omega)}. \end{split}$$

Problema de la placa

$$\begin{split} \|\nabla^{2}(u-u_{h})\|_{\Omega} &\leq C \min_{\phi_{h} \in V_{h}} \|\nabla^{2}(u-\phi_{h})\|_{\Omega} \leq \|\nabla^{2}(u-I_{h}u)\|_{\Omega} \leq Ch^{2} \|u\|_{H^{4}(\Omega)}, \\ \|\nabla^{2}(u-u_{h})\|_{\Omega} &\leq Ch^{3} \|u\|_{H^{5}(\Omega)}, \\ \|\nabla^{2}(u-u_{h})\|_{\Omega} &\leq Ch^{4} \|u\|_{H^{6}(\Omega)} \end{split}$$

Ejemplos: Elemento de Argyris

Elemento de Argyris:

- \bullet $P_{m-1}(\hat{T}) \subset P(\hat{T}) = P_5(\hat{T})$ para $m \leq 6$
- $|\chi_i(v)| = |\partial_{jk}v(x_i)| \le C||v||_{H^m(\hat{T})}$ para $m \ge 4$

Tenemos

$$\begin{split} \|v - I_h v\|_{L^2(\Omega)} &\leq Ch^4 \|v\|_{H^4(\Omega)}, \ \dots \ \|v - I_h v\|_{L^2(\Omega)} \leq Ch^6 \|v\|_{H^6(\Omega)}, \\ \|v - I_h v\|_{H^1(\Omega)} &\leq Ch^3 \|v\|_{H^4(\Omega)}, \ \dots \ \|v - I_h v\|_{H^1(\Omega)} \leq Ch^5 \|v\|_{H^6(\Omega)}, \\ \|v - I_h v\|_{H^2(\Omega)} &\leq Ch^2 \|v\|_{H^4(\Omega)}, \ \dots \ \|v - I_h v\|_{H^2(\Omega)} \leq Ch^4 \|v\|_{H^6(\Omega)}. \end{split}$$

Problema de la placa:

$$\begin{split} \|\nabla^2(u-u_h)\|_{\Omega} &\leq C \min_{\phi_h \in V_h} \|\nabla^2(u-\phi_h)\|_{\Omega} \leq \|\nabla^2(u-I_h u)\|_{\Omega} \leq Ch^2 \|u\|_{H^4(\Omega)}, \\ \|\nabla^2(u-u_h)\|_{\Omega} &\leq Ch^3 \|u\|_{H^5(\Omega)}, \\ \|\nabla^2(u-u_h)\|_{\Omega} &\leq Ch^4 \|u\|_{H^6(\Omega)} \end{split}$$

Conclusión

• Elementos finitos pueden estar definidos por una triangulación \mathcal{T}_h , espacios polinomiales $P(\hat{T})$ locales y un conjunto \mathcal{X} de funcionales lineales

$$V_h = \left\{ v : \Omega o \mathbb{R} \ \middle| \ v_{\mid T} \in P(T) \ \forall T \in \mathcal{T}_h, \ chi_i(v) \ \text{es continua} \ \forall i = 1...N
ight\}$$

- Elementos conformes y unisolventes
- Orden de aproximación depende del grado polinomial
- Estimación para el error de interpolación

$$\|\nabla^k(u-I_hu)\|_T \leq Ch^{m-k}\|\nabla^m u\|_T$$

- Transformación al elemento de referencia y lema de Bramble-Hilbert
- Error (optimal) con elementos P_{m-1} para el problema de Poisson:

$$\|\nabla(u-u_h)\|_{\Omega} \leq \min_{\phi_h \in V_h} \|\nabla(u-\phi_h)\|_{\Omega} \leq \|\nabla(u-I_h u)\|_{\Omega} \leq Ch^{m-1}\|u\|_{H^m(\Omega)}$$

Lo que falta: Estimación en la norma de L²(Ω)