Analysis I

Wintersemester 2013/2014

Prof. Dr. D. Lenz

Blatt 6

Abgabe 28.11.2013

(1) Sei a > 0 und für $n \in \mathbb{N}$ definiere

$$a_n = \sqrt{n+a} - \sqrt{n}, \quad b_n = \sqrt{n+\sqrt{n}} - \sqrt{n}, \quad c_n = \sqrt{n+n/a} - \sqrt{n}.$$

Man zeige, dass für alle $n > a^2$ gilt

$$a_n < b_n < c_n$$

und für $n \to \infty$ gilt

$$a_n \to 0$$
, $b_n \to \frac{1}{2}$, $c_n \to \infty$.

- (2) Sei (x_n) eine Folge reeller Zahlen und x eine reelle Zahl. Weiterhin seien folgende Aussagen gegeben:
 - (i)
 - $\forall k \in \mathbb{N} \qquad \exists n_0 \in \mathbb{N} \quad \forall n \ge n_0 \quad |x_n x| < \frac{1}{k},$ $\forall q \in \mathbb{Q} \setminus \{0\} \quad \exists n_0 \in \mathbb{N} \quad \forall n \ge n_0 \quad |x_n x| < q^2,$ (ii)
 - $\exists n_0 \in \mathbb{N} \quad \forall n \ge n_0 \quad |x_n x| \le \varepsilon,$ $\forall \varepsilon > 0$ (iii)
 - $\forall \varepsilon > 0 \quad \forall n \ge n_0 \quad |x_n x| < \varepsilon,$ $\exists n_0 \in \mathbb{N}$ (iv)
 - $\forall n > n_0 \quad |x_n x| < \varepsilon.$ (v) $\exists \varepsilon > 0$ $\forall n_0 \in \mathbb{N}$
 - (a) Schreiben Sie die Aussagen (i)-(v) als vollständige Sätze ohne Verwendung von Quantoren.
 - (b) Untersuchen Sie, ob die Aussagen (i)-(v) jeweils dazu äquivalent sind, dass die Folge (x_n) gegen die reelle Zahl x konvergiert.
- (3) Man beweise mit Hilfe der Grenzwertdefinition folgende Aussagen:
 - (a) $\frac{(n+1)^2 n^2}{n} \to 2$,
 - (b) $\frac{n}{2^n} \to 0$
 - (c) $\frac{1+2^3+...+n^3}{n^4} \to \frac{1}{4}$.

Hinweis: Beginnen Sie Ihre Beweise mit "Sei $\varepsilon > 0$.". In (c) zeige man zunächst, dass für alle $n \in \mathbb{N}$ gilt:

$$\sum_{n=1}^{n} k^3 = \frac{1}{4}n^2(n+1)^2.$$

b.w.

(4) Untersuchen Sie mit Hilfe der Rechenregeln für konvergente Folgen die angegebenen Folgen reeller Zahlen auf Konvergenz bzw. Divergenz:

(a)
$$\frac{(n+1)!}{(n+2)!-n!}$$
, (b) $\frac{(-1)^n n^2}{2n^2+5}$, (c) $\frac{3n^2+n}{n^3+n-1}$.

Zusatzaufgabe: (Z1)

(a) Die Funktion $\mathbb{Z} \to \mathbb{Z}$, $x \mapsto x(3x-1)$ ist injektiv.

(b) Für alle $a \in \mathbb{Q} \setminus \{0\}$ und $b \in \mathbb{Q}$ ist die Funktion $\mathbb{Q} \to \mathbb{Q}$, $x \mapsto x(ax + b)$ injektiv.

(c) Sei $a \in \mathbb{Q} \setminus \{0\}$ und $b \in \mathbb{Q}$. Die Funktion $\mathbb{Z} \to \mathbb{Z}$, $x \mapsto x(ax+b)$ injektiv genau dann wenn $b/a \in \mathbb{R} \setminus \mathbb{Z}$.