李青航 SA22225226

- 1. No.1Which of these sentences are propositions? What are the truth values of those that are propositions?
 - i. Nanjing is the capital of Jiangsu.
 - ii. Chongqing is the capital of Sichuan.

iii.
$$2 + 3 = 5$$

iv.
$$5 + 7 = 10$$
.

v.
$$x + 2 = 11$$
.

- vi. Answer this question.
- vii. x + y = y + x for every pair of real number x and y.

[Sol.] The propositions are:

Truth value:

2. No.4(Rosen, 2003, pp.26-28:1) Use truth tables to verify these equivalences.

i.
$$p \wedge T \equiv p$$

p	$p \wedge T$	
T	T	
\overline{F}	F	

ii.
$$p \lor F \equiv p$$

$$egin{array}{c|c} p & p ee F \ \hline T & T \ F & F \ \hline \end{array}$$

iii.
$$p \wedge F \equiv F$$

$$egin{array}{c|c} p & p \wedge F \\ \hline T & F \\ \hline F & F \\ \hline \end{array}$$

iv.
$$p \lor T \equiv T$$

p	p ee T
\overline{T}	T
\overline{F}	T

v.
$$p \lor p \equiv p$$

\overline{p}	$p \lor p$
\overline{T}	T
\overline{F}	F

vi.
$$p \wedge p \equiv p$$

$$egin{array}{c|c} p & p \wedge p \ \hline T & T \ \hline F & F \ \hline \end{array}$$

3. No.7 (Rosen, 2003, pp.26-28:4) Use truth table to verify the associative laws i. $(p\lor q)\lor r\equiv p\lor (q\lor r)$

\overline{p}	q	r	$(p \vee q) \vee r$	$p \vee (q \vee r)$
T	T	T	T	T
\overline{T}	F	T	T	T
\overline{F}	T	T	T	T
\overline{F}	F	T	T	T
\overline{T}	T	F	T	T
\overline{T}	F	F	T	T
\overline{F}	T	F	T	T
F	F	F	F	F

ii.
$$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$$

p	q	r	$(p \wedge q) \wedge r$	$p \wedge (q \wedge r)$
\overline{T}	T	T	T	T
\overline{T}	F	T	F	F
\overline{F}	T	T	F	F
\overline{F}	F	T	F	F
\overline{T}	T	F	F	F
\overline{T}	F	F	F	F
\overline{F}	T	F	F	F
F	F	F	F	F

4. No.10 Show that each of these implications is a tautology by using truth tables.

i.
$$(p \wedge q) o q$$

p	q	$(p \wedge q) \to q$
T	T	T
\overline{T}	F	T
F	T	T
\overline{F}	F	T

ii. p o (p ee q)

p	q	$(p \lor q)$	p o (p ee q)
T	T	T	T
T	F	T	T
\overline{F}	T	T	T
\overline{F}	F	F	T

iii. eg p o (p o q)

p	q	p o q	eg p o (p o q)
T	T	T	T
\overline{T}	F	F	T
\overline{F}	T	T	T
\overline{F}	F	T	T

iv. $(p \wedge q) o (p o q)$

\overline{p}	q	$p \wedge q$	p o q	eg p o (p o q)
T	T	F	T	T
\overline{T}	F	F	F	T
\overline{F}	T	F	T	T
\overline{F}	F	F	T	T

v. $\lnot(p
ightarrow q)
ightarrow p$

\overline{p}	q	p o q	$\lnot(p ightarrow q) ightarrow p$
\overline{T}	T	T	T
\overline{T}	F	F	T
\overline{F}	T	T	T
\overline{F}	F	T	T

vi.
$$\lnot(p
ightarrow q)
ightarrow \lnot q$$

\overline{p}	q	p o q	$\lnot(p ightarrow q)$	eg(p o q) o eg q
T	T	T	F	T
\overline{T}	F	F	T	T
\overline{F}	T	T	F	T
\overline{F}	F	T	F	T
	•			'