Report

Laplace Mask 1, threshold: 15

For pixel (r, c), calculate gradient by the following mask, (r, c) corresponds to the center of the mask

For zero-crossing edge detection, if gradient(r, c) >= threshold and one of its 8-neighbors' gradient <= -threshold, output(r, c) = 0, else output(r, c) = 255

Laplace Mask 2, threshold: 10

For pixel (r, c), calculate gradient by the following mask, (r, c) corresponds to the center of the mask

	1	1	1
1	1	-8	1
٦	1	1	1

For zero-crossing edge detection, if gradient(r, c) >= threshold and one of its 8-neighbors' gradient <= -threshold, output(r, c) = 0, else output(r, c) = 255

Minimum variance Laplacian, threshold: 20

For pixel (r, c), calculate gradient by the following mask, (r, c) corresponds to the center of the mask

J.	2	-1	2
1 3	-1	-4	-1
	2	-1	2

For zero-crossing edge detection, if gradient(r, c) >= threshold and one of its 8-neighbors' gradient <= -threshold, output(r, c) = 0, else output(r, c) = 255

Laplace of Gaussian, threshold: 3000

For pixel (r, c), calculate gradient by the following mask, (r, c) corresponds to the center of the mask

0	0	0	-1	-1	-2	-1	-1	0	0	0
0	0	-2	4	-8	-9	-8	-4	-2	0	0
0	-2	-7	-15	-22	-23	-22	-15	-7	-2	0
-1	4	-15	-24	-14	-1	-14	-24	-15	-4	-1
-1	-8	-22	-14	52	103	52	-14	-22	-8	-1
-2	-9	-23	-1	103	178	103	-1	-23	-9	-2
-1	-8	-22	-14	52	103	52	-14	-22	-8	-1
-1	4	-15	-24	-14	-1	-14	-24	-15	-4	-1
0	-2	-7	-15	-22	-23	-22	-15	-7	-2	0
0	0	-2	4	-8	-9	-8	-4	-2	0	0
0	0	0	-1	-1	-2	-1	-1	0	0	0

For zero-crossing edge detection, if gradient(r, c) >= threshold and one of its 8-neighbors' gradient <= -threshold, output(r, c) = 0, else output(r, c) = 255

Difference of Gaussian, threshold: 1

For pixel (r, c), calculate gradient by the following mask, (r, c) corresponds to the center of the mask

```
-1 -3 -4 -6 -7 -8 -7 -6 -4 -3 -1 

-3 -5 -8 -11 -13 -13 -13 -11 -8 -5 -3 

-4 -8 -12 -16 -17 -17 -17 -16 -12 -8 -4 

-6 -11 -16 -16 0 15 0 -16 -16 -11 -6 

-7 -13 -17 0 85 160 85 0 -17 -13 -7 

-8 -13 -17 15 160 283 160 15 -17 -13 -8 

-7 -13 -17 0 85 160 85 0 -17 -13 -7 

-6 -11 -16 -16 0 15 0 -16 -16 -11 -6 

-4 -8 -12 -16 -17 -17 -17 -16 -12 -8 -4 

-3 -5 -8 -11 -13 -13 -13 -11 -8 -5 -3 

-1 -3 -4 -6 -7 -8 -7 -6 -4 -3 -1
```

For zero-crossing edge detection, if gradient(r, c) >= threshold and one of its 8-neighbors' gradient <= -threshold, output(r, c) = 0, else output(r, c) = 255