Teoremas de Ascoli

Jose Antonio Lorencio Abril

Necesitamos bastantes definiciones previas:

Definition 0.1. Si X es un conjunto, denotamos por Δ la diagonal $\{(x,x) | x \in X\} \subset X \times X$. Si $U,V \subset X \times X$, entonces $U \circ V = \{(x,y) | \exists z : (x,z) \in V, (z,y) \in U\}$

Una uniformidad diagonal en un conjunto X es una colección $\mathcal{D}(X)$ de subconjuntos de $X \times X$, llamados alrededores, que satisfacen:

- 1. $D \in \mathcal{D} \implies \Delta \subset D$
- 2. $D_1, D_2 \in \mathcal{D} \implies D_1 \cap D_2 \in \mathcal{D}$
- 3. $D \in \mathcal{D} \implies \exists E \in \mathcal{D} : E \circ E \subset D$
- 4. $D \in \mathcal{D} \implies \exists E \in \mathcal{D} : E^{-1} \subset D$
- 5. $D \in \mathcal{D}, D \subset E \implies E \in \mathcal{D}$

Cuando X tiene una estructura como esta, se dice que es un **espacio uniforme**.

La uniformidad \mathcal{D} se llama **separadora** y X está **separado** si, y solo si $\bigcap \{D|D \in \mathcal{D}\} = \Delta$. Una **base para la uniformidad** \mathcal{D} es cualquier subcolección \mathcal{E} de \mathcal{D} a partir de la cual podemos recuperar D aplicando la condición 5. Por tanto, \mathcal{E} es una base para \mathcal{D} si, y solo si, $\mathcal{E} \subset \mathcal{D}$ y $\forall D \in \mathcal{D}, \exists E \in \mathcal{E} | E \subset D$.

También, una colección \mathcal{E} de subconjuntos de $X \times X$ es una base para alguna uniformidad si, y solo si, sus conjuntos satisfacen 1., 3., 4. y la siguiente forma modificada de 2.: $D_1, D_2 \in \mathcal{E} \implies \exists D_3 \in \mathcal{D} : D_3 \subset D_1 \cap D_2$

Una subbase para \mathcal{D} es una subcolección \mathcal{E} de \mathcal{D} tal que todas las intersecciones finitas de elementos de \mathcal{E} forman una base para \mathcal{D} .

Definition 0.2. Para $x \in X$ y $D \in \mathcal{D}$, definimos

$$D[x] = \{y \in Y | (x, y) \in D\}$$

Esto se extiende a subconjuntos $A \subset X$:

$$D\left[A\right] = \bigcup_{x \in A} D\left[x\right]$$

Definition 0.3. Y^X es el conjunto de todas las aplicaciones de X en Y.

Una subcolección $\mathcal{F} \subset Y^X$ tiene la **topología de la convergencia puntual** (o **convergencia puntual**) si, y solo si, viene dada por la topología de subespacio inducida por le topología producto de Tychonoff en Y^X .

Esta topología en \mathcal{F} está determinada por la topología de Y, la estructura de X no afecta en nada. Nótese también que la proyección de \mathcal{F} toma la forma de la evaluación en un punto. Es decir, para cada $x \in X$, la aplicación proyección $\pi_x : \mathcal{F} \to Y$ se define por $\pi_x(f) = f(x)$.

Definition 0.4. Si Y es un espacio uniforme, la uniformidad producto \mathcal{D}_p en Y^X se denomina la **uniformidad de la convergencia puntual**. La topología asociada con esta uniformidad es la topología puntual.

Theorem 0.5. Sea Y Hausdorff. Un espaci de funciones $\mathcal{F} \subset Y^X$ con la topología puntual, es compacto si, y solo si:

- 1. \mathcal{F} es puntualmente cerrado en Y^X
- 2. para cada $x \in X$, $\pi_x(\mathcal{F}) = \{f(x) | f \in \mathcal{F}\}$ tiene clausura compacta en Y^X

Definition 0.6. Si Y tiene una uniformidad \mathcal{D} , a familia de conjuntos de la forma

$$E_D = \{(f, g) \mid (f(x), g(x)) \in D, \forall x \in X\}$$

para $D \in \mathcal{D}$, forma una base para la uniformidad \mathcal{D}_u en Y^X denominada la **uniformidad de** la convergencia uniforme.

Su topología, τ_u , es la topología de la convergencia uniforme.

Si (f_{λ}) converge a f en esta topología, decimos que (f_{λ}) converge uniformemente a f. Las redes de Cauchy en la uniformidad de la convergencia uniforme se dice que son uniformemente de Cauchy.

Theorem 0.7. Una red (f_{λ}) converge uniformemente a f si, y solo si, (f_{λ}) es uniformemente de Cauchy y converge puntualmente a f.

Definition 0.8. La topología compacto-abierta o k-topología en $\mathcal{F} \subset Y^X$ es la topología que tiene como base los conjuntos

$$(K, U) = \{ f \in \mathcal{F} | f(K) \subset U \}$$

para K compacto en X y U abierto en Y. Esta topología se denota por τ_C .

Definition 0.9. Un espacio topológico X es un k-espacio o espacio compactamente generado si, y solo si, se verifica la condición:

1. $A \subset X$ es abierto $\iff A \cap K$ es abierto en K para cada conjunto compacto K en X

Definition 0.10. Sean X un espacio topológico e Y un espacio uniforme. Una familia \mathcal{F} de funciones continuas de X en Y es **equicontinua en** $x \in X$ si, y solo si, para cada $D \in \mathcal{D}(Y)$, hay un entorno U de x tal que $f(U) \subset D[f(x)], \forall f \in \mathcal{F}$.

Y ya podemos establecer algunos resultados previos:

Lemma 0.11. Si \mathcal{F} es una familia equicontinua de funciones, entonces también lo es su clausura puntual $\overline{\mathcal{F}}$.

Theorem 0.12. En una familia equicontinua \mathcal{F} , la topología compacto-abierta es la topología puntual.

Y finalmente llegamos al teorema de Ascoli:

Theorem 0.13. Teorema de Ascoli

Sea X un k-espacio Hausdorff o regular, Y un espacio uniforme Hausdorff y \mathcal{F} una familia de funciones continuas de X en Y. Entonces \mathcal{F} es compacto en la topología compacto-abierta si, y solo si:

- 1. \mathcal{F} es cerrado puntualmente
- 2. $\forall x \in X, \pi_x(\mathcal{F})$ tiene clausura compacta
- 3. \mathcal{F} es equicontinua en cada subconjunto compacto de X

Proof. [\Longrightarrow] Si \mathcal{F} es compacto en la topología compacto-abierta, entonces \mathcal{F} es compacto en la topología puntual, por tanto las dos primeras condiciones las da el teorema 0.5.

Sea K un subconjunto compacto de X, \mathcal{F}_K la familia de restricciones a K de los miembros de \mathcal{F} . Entonces \mathcal{F}_K es compacto en la topología compacto-abierta en C(K,Y), que se reduce a la topología de la convergencia uniforme porque K es compacto. Vamos a ver que esto implica la equicontinuidad de \mathcal{F}_K :

Sea $x \in K$, $E \in \mathcal{D}(Y)$. Sea D un elemento simétrico de $\mathcal{D}(Y)$ tal que $D \circ D \subset E$. Como X es Hausdorff o regular y K es compacto, entonces K es regular. Por tanto, existe un entorno U_f de x tal que $f\left(\overline{U_f}\right) \subset D\left[f(x)\right]$. Pero $\left(\overline{U_f}, F\left[f(x)\right]\right)$ es entonces un entorno de f en la topología compacto-abierta, y el cubrimiento resultante de \mathcal{F}_K tiene un subcubrimiento finito, digamos $\left(\overline{U_{f_1}}, D\left[f_1(x)\right]\right), ..., \left(\overline{U_{f_n}}, D\left[f_n(x)\right]\right)$. Sea $U = \bigcup_i U_{f_i}$.

Ahora para $f \in \mathcal{F}, f \in (\overline{U_{f_i}}, D[f_i(x)])$ para algún i y entonces $f(U) \subset f(\overline{U_{f_i}}) \subset D[f_i(x)]$, y entonces se tiene que $f(U) \subset (D \circ D)[f(x)] \subset E[f(x)]$, por lo que \mathcal{F}_K es equicontinuo en x.

[\Leftarrow] Basta ver que la condición 3. fuerza a que la topología compacto-abierta se reduzca a la topología puntual. Por el teorema 0.12, 3. fuerza que la topología compacto-abierta se reduzca a la puntual, para cada compacto $K \subset X$. Sea ahora (K,U) cualquier conjunto subbásico en la topología compacto-abierta en X, se tiene que $(K,U)_{|\mathcal{F}_K} = \{f_{|K}|f \in (K,U)\}$ es puntualmente abierto en \mathcal{F}_K . Pero la aplicación $f \to f_{|K}$ es puntualmente continua, pues la convergencia puntual se conserva ante la restricción a un subespacio, y la inversa mediante esta aplicación del conjunto $(K,U)_{|\mathcal{F}_K}$ es el conjunto (K,U). Por tanto (K,U) es puntualmente abierto.