

planetmath.org

Math for the people, by the people.

proof of Cauchy's theorem

Canonical name ProofOfCauchysTheorem

Date of creation 2013-03-22 12:23:30 Last modified on 2013-03-22 12:23:30

Owner yark (2760) Last modified by yark (2760)

Numerical id 8

Author yark (2760)

Entry type Proof

Classification msc 20E07 Classification msc 20D99 Let G be a finite group, and suppose p is a prime divisor of |G|. Consider the set X of all p-tuples (x_1, \ldots, x_p) for which $x_1 \cdots x_p = 1$. Note that $|X| = |G|^{p-1}$ is a multiple of p. There is a natural group action of the cyclic group $\mathbb{Z}/p\mathbb{Z}$ on X under which $m \in \mathbb{Z}/p\mathbb{Z}$ sends the tuple (x_1, \ldots, x_p) to $(x_{m+1}, \ldots, x_p, x_1, \ldots, x_m)$. By the Orbit-Stabilizer Theorem, each orbit contains exactly 1 or p tuples. Since $(1, \ldots, 1)$ has an orbit of cardinality 1, and the orbits partition X, the cardinality of which is divisible by p, there must exist at least one other tuple (x_1, \ldots, x_p) which is left fixed by every element of $\mathbb{Z}/p\mathbb{Z}$. For this tuple we have $x_1 = \ldots = x_p$, and so $x_1^p = x_1 \cdots x_p = 1$, and x_1 is therefore an element of order p.

References

[1] James H. McKay. Another Proof of Cauchy's Group Theorem, American Math. Monthly, 66 (1959), p119.