MP*4 - Préparation à l'oral 2022 - Version complète

Jour 1 : algèbre (algèbre linéaire)

- **1.** Mines 322. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer l'équivalence entre $A^2 = 0$ et A est semblable à $\begin{pmatrix} 0 & I_r \\ 0 & 0 \end{pmatrix}$ avec $2r \leqslant n$.
- **2.** Mines 310. Soit $n \ge 2$. Calculer le déterminant de $\Phi : A \in \mathcal{M}_n(\mathbb{K}) \mapsto A^T \in \mathcal{M}_n(\mathbb{K})$.
- **3.** Mines 313. Pour $n \in \mathbb{N}^*$, montrer qu'il existe un unique $(a_0, \ldots, a_{n-1}) \in \mathbb{R}^n$ tel que

$$\forall P \in \mathbb{R}_{n-1}[X], P(X+n) = \sum_{k=0}^{n-1} a_k P(X+k).$$

- **4.** Mines 320. 1) Soient E un \mathbb{R} -espace vectoriel de dimension finie et A un sous-espace de $\mathcal{L}(E,\mathbb{R})$. On suppose que $\bigcap_{\ell \in A} \ker \ell = \{0\}$. Montrer que $A = \mathcal{L}(E,\mathbb{R})$.
 - 2) Soient f_1, \ldots, f_n des fonctions de \mathbb{R} dans \mathbb{R} . Montrer que la famille (f_1, \ldots, f_n) est libre dans l'espace $\mathbb{R}^{\mathbb{R}}$ si et seulement s'il existe $(x_1, \ldots, x_n) \in \mathbb{R}^n$ tel que la matrice $((f_i(x_j))_{1 \leq i,j \leq n}$ soit inversible.
- **5.** Centrale **551.** X **200.** Soient $n \ge 3$ et $A \in \mathcal{M}_n(\mathbb{R})$.
 - 1) Montrer que $Com(A)^T A = det(A) I_n$.
 - 2) Déterminer le rang de Com(A) en fonction de celui de A.
 - 3) Résoudre Com(A) = A dans $\mathcal{M}_n(\mathbb{R})$. Traiter le cas n = 2.
 - 4) (X) Traiter le cas où l'on remplace \mathbb{R} par \mathbb{C} : on notera S^* les matrices non nulles vérifiant $\mathrm{Com}(A) = A$. On montrera qu'il s'agit d'un groupe pour la multiplication des matrices. On trouvera $A_0 \in S^*$ tel que det $A_0 = e^{\frac{2i\pi}{n-2}}$ et on exprimera les matrices solutions à l'aide de $\mathrm{SO}_n(\mathbb{C})$ vérifiant $AA^\top = I_n$ et det A = 1.
- **6.** ENS Lyon 35 Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$. On pose $\varphi_A : M \in \mathcal{M}_n(\mathbb{R}) \mapsto AM MA$.
 - 1) Montrer que φ_A est nilpotent si A est nilpotente.
 - 2) Montrer que φ_A est diagonalisable si A est diagonalisable.
 - 3) Montrer que φ_A est trigonalisable si A est trigonalisable.
- **7.** X 206. Soient $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{R})$ diagonalisable, C(A) l'ensemble des $M \in \mathcal{M}_n(\mathbb{R})$ qui commutent avec A, C'(A) l'ensemble des $M \in \mathcal{M}_n(\mathbb{R})$ qui commutent avec tout élément de C(A). Montrer que $C'(A) = \mathbb{R}[A]$.
- **8.** ENS Ulm 37. Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{C})$ telles que H = [A, B] = AB BA soit de rang majoré par 1. Montrer que A et B sont cotrigonalisables (Ind : pourquoi peut-on supposer 0 valeur propre de A? Montrer que ker A ou Im A est stable par B).
- **9.** X 197b. Soient $A, B \in \mathcal{M}_n(\mathbb{C})$.

On suppose que, pour tout $t \in \mathbb{C}$, $\det(A + tB) = \det(A) + t \det(B)$. Que peut-on dire de A et B? (traiter d'abord le cas A ou B inversible puis dans le cas A et B non inversibles, on montrera l'existence de deux sous-espaces de \mathbb{C}^n tel que $A(V) \subset W$ et $B(V) \subset W$ avec $\dim W < \dim V$).

Jour 2 : analyse (suites et séries de fonctions)

- 10. Mines 448 Soit (f_n) une suite de fonctions continues définies sur un segment S de \mathbb{R} . On suppose que (f_n) converge uniformément sur S vers une fonction f. Montrer que $(\min(f_n))_{n\geqslant 0}$ converge vers $\min(f)$ et $(\max(f_n))_{n\geqslant 0}$ converge vers $\max(f)$. Étudier la réciproque.
- 11. Mines 462. Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction continue, croissante et nulle en 0.
 - 1) Montrer qu'en posant $\forall x \in \mathbb{R}^+, g(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n f\left(\frac{x}{n}\right)}{1+nx}$, on définit une fonction continue sur \mathbb{R}^+ .
 - 2) Montrer que si f est C^1 , alors f soit dérivable sur \mathbb{R}^{+*} .
 - 3) On suppose f de classe C^2 sur \mathbb{R} et f'(0) = 0. Montrer que g est dérivable en 0.
- 12. Mines 478. Soit $f: \mathbb{R}^+ \to \mathbb{R}^{+*}$ continue et strictement décroissante. On suppose que f(0) = 1, que f est intégrable en $+\infty$ et que $\frac{1}{1-f}$ n'est pas intégrable en 0. On pose, pour $n \in \mathbb{N}^*$, $I_n = \int_0^{+\infty} f(t)^n dt$.
 - 1) Montrer que I_n est bien définie et que $I_n \to 0$.
 - 2) Montrer que la série de terme général I_n diverge.
 - 3) Déterminer le rayon de convergence de $\sum I_n x^n$.

- **13.** Centrale 600. On note R le rayon de convergence de $f(z) = \sum_{n=1}^{+\infty} a_n z^n$.
 - 1) Calculer $\int_0^{2\pi} f(re^{it}) dt$, pour $0 \leqslant r < R$.
 - 2) Soit $r \in]0, R[$. On veut montrer : $\forall z \in B_o(0, r)$, $f(z) = \frac{1}{2\pi} \int_0^{2\pi} re^{it} \frac{f(re^{it})}{re^{it} z} dt$.
 - a. Montrer la formule dans le cas $f: z \mapsto z^n$.
 - b. Montrer la formule dans le cas $f: z \mapsto \sum_{n=0}^{+\infty} a_n z^n$.
 - 3) Soit f continue sur $B_o(0,R)$. On suppose que :

$$\forall r \in \left] 0, R \right[, \ \forall z \in B_o(0, r) \,, \ f(z) = \frac{1}{2\pi} \int_0^{2\pi} r e^{it} \frac{f(re^{it})}{re^{it} - z} \, \mathrm{d}t.$$

Montrer que f est développable en série entière.

- **14.** X 260. Soit $(a_n)_{n\geqslant 0}$ une suite décroissante d'éléments de \mathbb{R}^+ . Pour $n\in\mathbb{N}$ et $t\in[0,\pi]$, on pose $f_n(t)=a_n\sin(nt)$.
 - 1) Soit $t \in]0, \pi[$. Trouver une constante C > 0 dépendant uniquement de t telle que, si p et q sont dans $\mathbb N$ avec p < q, alors $\left| \sum_{k=p}^q a_k \sin(kt) \right| \leqslant C a_p.$
 - 2) On suppose que $(a_n)_{n\geqslant 0}$ converge vers 0. Montrer que $\sum f_n$ converge simplement sur $[0,\pi]$.
 - 3) Montrer que $\sum f_n$ converge uniformément sur $[0,\pi]$ si et seulement si $na_n \to 0$ (pour la réciproque on coupera si besoin le reste à un entier N_t dépendant de t et pour le sens direct, on considèrera une tranche entre n+1 et 2n).
- **15.** ENS 99 (Théorème de Borel) On admet qu'il existe $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ égale à 1 sur [-1/2, 1/2] età 0 en dehors de l'intervalle [-1,1]. Soit $(a_n) \in \mathbb{R}^{\mathbb{N}}$. On cherche $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ telle que, pour tout $n \in \mathbb{N}$ $f^{(n)}(0) = a_n$. On pose, pour $n \in \mathbb{N}$, $g_n : x \longmapsto \frac{a_n}{n!} x^n \varphi(x)$ et $f_n : x \longmapsto \frac{1}{\lambda_n} g_n(\lambda_n x)$, avec $\lambda_n \geqslant 1$ à fixer. Soit $h = \sum f_n$. Montrer qu'on peut choisir les $(\lambda_n)_n$ pour que h convienne.
- 16. ENS Saclay 109.
 - 1) Montrer que $\int_{\mathbb{R}} \frac{x^2}{x^4+1} dx = \int_{\mathbb{R}} \frac{dx}{x^4+1}$ et calculer la valeur commune.

On pose pour $t \in \mathbb{R}^+$, $F(t) = \int_0^{+\infty} \frac{e^{-(x^2+i)t^2}}{x^2+i} dx$.

- 2) Montrer que F est continue. Étudier la limite de F en $+\infty$.
- 3) Montrer que F est de classe C^1 sur \mathbb{R}^{+*} . Calculer F'(t) pour t > 0.
- 4) Montrer que $\int_0^{+\infty} e^{it^2} dt$ converge et calculer sa valeur.
- **17. X 262.** Soit $f: x \mapsto \sum_{n=1}^{+\infty} \ln(n) x^n$.
 - 1) Déterminer le rayon de convergence de cette série entière.
 - 2) Donner un équivalent de f en 1^- .
 - 3) Déterminer la limite de f en -1^+ (on partira sur (1-x)f(x) et on calculera $\sum_{n=2}^{+\infty} (-1)^n \ln(1-1/n)$ pour trouver finalement $\frac{1}{2}\ln(\pi/2)$).

Jour 3 : Probabilités

18. Centrale 621.

- 1) On considère une urne contenant n boules blanches et n boules noires. On effectue des tirages sans remise d'une boule jusqu'à ce que les boules restant dans l'urne soient toutes de la même couleur. Soit X_n le nombre de boules restant après ces tirages. Donner la loi de X_n (on regardera le processus en partant de la fin, au bout de 2n tirages), puis son espérance et un équivalent de cette espérance.
- 2) Problème des allumettes de Banach. On considère maintenant deux urnes contenant chacune n boules. On effectue des tirages sans remise en choisissant à chaque fois l'une des deux urnes de manière équiprobable. On s'arrète si l'urne choisie est vide. Soit Y_n le nombre de boules restant à ce moment dans l'autre urne. Donner la loi de Y_n et un équivalent de son espérance en suivant les étapes suivantes :

a.
$$P(Y_n = k) = {2n - k - 1 \choose n - 1} \frac{1}{2^{2n - k - 1}}$$
.

b.
$$\sum_{l=0}^{n} {2n-l \choose n} \frac{1}{2^{2n-l}} = 1.$$

c.
$$E(Y_n) = \frac{2n}{4^n} {2n \choose n} \sim 2\sqrt{\frac{n}{\pi}}$$
.

- **19.** Mines 516. Soit X une variable aléatoire réelle à valeurs dans [a,b]. Montrer que $Var(X) \leqslant \frac{(b-a)^2}{4}$.
- **20.** Mines 518. On lance une pièce équilibrée et on appelle X la variable aléatoire donnant le rang d'apparition de la première séquence « pile-face ». Déterminer l'espérance de X.
- **21.** Mines 520. Soit $(X_k)_{k\in\mathbb{N}}$ une suite i.i.d. de variables aléatoires suivant la loi géométrique de paramètre $p\in]0,1[$.
 - 1) Donner la loi de $S_n = \sum_{k=1}^{n-1} X_k$.
 - 2) Évaluer P $\left(\bigcup_{k=1}^{n} \left(X_k \geqslant \sum_{\substack{1 \leqslant i \leqslant n \\ i \neq k}} X_i\right)\right)$.
- **22. X 273.** 1) Soit X une variable aléatoire réelle admettant un moment d'ordre 2. Montrer, si $\lambda \in \mathbb{R}^{+*}$, que $P(X \ge E(X) + \lambda) \le \frac{\operatorname{Var}(X)}{\operatorname{Var}(X) + \lambda^2}$.
 - 2) Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires mutuellement indépendantes ayant un moment d'ordre 2. On suppose que, pour tout $n\in\mathbb{N}^*$, $\mathrm{E}(X_n)=0$ et $\mathrm{Var}(X_n)\leqslant 1$. On pose $N=\min\{n\in\mathbb{N}^*,\ X_n\leqslant 1\}$. Montrer que e^{aN} est d'espérance finie pour tout $a\in[0,\ln 2[$.
- **23.** ENS Lyon 138. Soient A, B, C des variables aléatoires indépendantes de loi de Poisson $\mathcal{P}(\lambda)$. Soit $p(\lambda)$ la probabilité que toutes les solutions de Ay'' + By' + Cy = 0 s'annulent une infinité de fois. Montrer que $p(\lambda) \xrightarrow[\lambda \to +\infty]{} 1$.
- **24.** ENS Saclay 145. Soit $(X_k)_{k\geqslant 1}$ une suite i.i.d. de variables de Rademacher. Pour $n\in\mathbb{N}^*$, soit $S_n=\sum_{k=1}^n X_k$. Soit enfin $N=\operatorname{Card}\{n\in\mathbb{N}^*\;;\;S_n=0\}\in\mathbb{N}\cup\{+\infty\}.$
 - 1) Donner un équivalent de $P(S_{2n} = 0)$. En déduire E(N).
 - 2) Montrer que N est presque sûrement égale à $+\infty$ (Etablir que $P(N = n + 1) = P(N = n) P(T < +\infty)$ où T désigne le temps d'attente du premier retour à 0.
- **25.** X 283. Soit un entier N > 5. Soient X_1, \ldots, X_N des variables aléatoires indépendantes de même loi. On suppose que X_1 est à valeurs dans $\{1,2,3\}$. On définit une variable aléatoire f à valeurs dans $\mathcal{F}(\mathbb{Z}/N\mathbb{Z},\mathbb{Z}/N\mathbb{Z})$ par $f(\omega)[\overline{n}] = \overline{n+X_n(\omega)}$ pour tout $n \in [\![1,N]\!]$ et toute issue ω . Déterminer la probabilité pour que f soit une permutation ayant au moins trois orbites.

Jour 4 : algèbre (algèbre bilinéaire)

- **26.** Centrale 566. Soient (E, \langle , \rangle) un espace euclidien, $x_1, ..., x_p$ des vecteurs unitaires de E. On note, pour $i \in]1; p[, \sigma_i]$ la symétrie orthogonale par rapport à H_i , l'orthogonal de x_i . On pose $G = \langle \sigma_1, ..., \sigma_p \rangle$ le sous-groupe engendré par les σ_i .
 - 1) Montrer l'équivalence entre $\bigcap_{f \in G} \text{Ker}(f \text{Id}) = \{0\}$ et $\text{Vect}(x_1, ..., x_p) = E$.
 - 2) Pour $x \in E \setminus \{0\}$, on note σ_x la symétrie orthogonale par rapport à l'orthogonal de x. Soit $\Delta = \{x \in E ; ||x|| = 1, \exists i \in \{1, \dots, p\}, f \in G, \sigma_x = f\sigma_i f^{-1}\}$. Montrer que Δ est stable par G.
- **27.** Mines 370. 1) Soit $M \in \mathcal{M}_{n,m}(\mathbb{R})$. Montrer que det $(MM^T) \geq 0$.
 - 2) Soient $m \in \{1, ..., n\}$ et $(A_i)_{1 \leqslant i \leqslant n}$ des parties de $\{1, ..., m\}$. On note, pour tout $(i, j) \in \{1, ..., n\}^2$, $a_{i,j} = \operatorname{Card}(A_i \cap A_j)$. Montrer que det $\left((a_{i,j})_{1 \leqslant i,j \leqslant n}\right) \geqslant 0$.
- **28.** Mines 377. Soit $A \in \mathcal{S}_n(\mathbb{R})$. Montrer que Tr(A) = 0 si et seulement si A est orthogonalement semblable à une matrice dont les éléments diagonaux sont nuls.
- **29.** Mines 381. 1) Soit $A \in \mathcal{M}_d(\mathbb{R})$. On suppose que la suite $(A^n)_{n \geqslant 0}$ converge vers une matrice B. Que peut-on dire de B?
 - 2) On suppose de plus que $A \in \mathcal{S}_d(\mathbb{R})$. Montrer que $\sum_{1 \leqslant i,j \leqslant n} |b_{i,j}| \leqslant d\sqrt{\operatorname{rg}(B)}$.

31. X 218. 1) Soit $d \in \mathbb{N}$. Montrer l'existence de $C_d \in \mathbb{R}^+$ tel que :

$$\forall P \in \mathbb{R}_d[X], |P(0)| \leqslant C_d \int_{-1}^1 |P(x)| \mathrm{d}x.$$

- 2) Que peut-on dire de C_d lorsque $d \to +\infty$?
- 3) Soit $d \in \mathbb{N}$. Montrer l'existence de $K_d \in \mathbb{R}^+$ tel que :

 $\forall P \in \mathbb{R}_d[X], \ |P(0)| \leqslant K_d \left(\int_{-1}^1 |P(x)|^2 \mathrm{d}x \right)^{1/2}. \ \text{Donner une minoration asymptotique de } K_d, \ \text{en utilisant } (1-x^2)^q.$

On pose, pour $n \in \mathbb{N}$, $L_n = \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left((1 - x^2)^n \right)$.

- 4) Montrer que $(L_n)_{n\geqslant 0}$ est orthogonale pour le produit scalaire donné par $\langle f,g\rangle=\int_{-1}^{1}fg$.
- 5) En déduire une expression de K_d .
- **32.** ENS 49. Soient $A \in \mathcal{S}_n(\mathbb{R})$, $C \in \mathcal{M}_{m,n}(\mathbb{R})$ et $B \in \mathcal{S}_m(\mathbb{R}) \cap \operatorname{GL}_m(\mathbb{R})$. On pose $M = \begin{pmatrix} A & C^T \\ C & B \end{pmatrix}$. Montrer que M est positive si et seulement si B et $A C^T B^{-1}C$ sont positives.
- **33.** ENS Saclay 44. Soit $A \in \mathcal{M}_{m,n}(\mathbb{R})$.
 - 1) Montrer que $A^T A$ est diagonalisable sur \mathbb{R} à valeurs propres positives.

On note $\mu_r \geqslant \mu_{r-1} \geqslant \cdots \geqslant \mu_1 > 0$ ses valeurs propres strictement positives comptées avec multiplicité. Pour $k \in [1, r]$, on pose $\sigma_k = \sqrt{\mu_k}$.

- 2) On suppose que m = n. Montrer qu'il existe deux matrices $U \in \mathcal{O}_n(\mathbb{R})$ et $V \in \mathcal{O}_n(\mathbb{R})$ telles que $A = U \Sigma V^T$, où $\Sigma \in \mathcal{M}_{m,n}(\mathbb{R})$ a pour coefficients diagonaux $\sigma_1, \ldots, \sigma_r, 0, \ldots, 0$, et tous ses coefficients hors-diagonale nuls.
- 3) Cas général : $m \neq n$. Montrer qu'il existe deux matrices $U \in \mathcal{O}_m(\mathbb{R})$ et $V \in \mathcal{O}_n(\mathbb{R})$ telles que $A = U\Sigma V^T$, où $\Sigma \in \mathcal{M}_{m,n}(\mathbb{R})$ a pour coefficients diagonaux $\sigma_1,\ldots,\sigma_r,0,\ldots,0$, et tous ses coefficients hors-diagonale nuls. Une telle décomposition est-elle unique? Donner une interprétation de ce résultat appelé décomposition en valeurs singulières de A.

Jour 5 : analyse (calcul différentiel et équations différentielles)

34. Mines 497. Étudier la continuité et la différentiabilité à l'origine de

$$f:(x,y)\mapsto \max\left(\frac{x^4y}{|x|+y^2}, \frac{y^4x}{|y|+x^2}\right).$$

- **35.** Mines 503. Soient E un espace euclidien, $\| \|$ la norme de cet espace, $\varphi \in E^*$, f la fonction de E dans \mathbb{R} définie par $\forall x \in E, f(x) = \varphi(x) e^{-\|x\|^2}$. Étudier les extrema de f.
- **36.** Mines 502. Montrer que les fonctions f de classe C^1 de \mathbb{R}^2 dans \mathbb{R} vérifiant

$$\forall (x,y) \in \mathbb{R}^2, 2xy \frac{\partial f}{\partial x}(x,y) + (1+y^2) \frac{\partial f}{\partial y}(x,y) = 0$$

sont les applications de la forme $f(x,y) = g\left(\frac{x}{1+y^2}\right)$, où $g: \mathbb{R} \to \mathbb{R}$ est une application de classe C^1 .

- **37.** X 266. Résoudre sur $\mathbb R$ l'équation différentielle $y'' = (1 + x^2)y$. On pourra introduire les opérateurs $A: f \mapsto -f' + \operatorname{Id} \times f$ et $B: f \mapsto f' + \operatorname{Id} \times f$.
- **38.** X 268. oit $q \in \mathcal{C}^1(\mathbb{R}^+, \mathbb{R})$. On suppose que q' est intégrable sur \mathbb{R}^+ et que $q(t) \to 0$ quand $t \to +\infty$. Montrer que les solutions de y'' + (q+1)y = 0 sont bornées sur \mathbb{R}^+ .
- **39.** ENS Lyon 127. Soit $f: \mathbb{R}^n \to \mathbb{R}$ de classe C^2 et de limite $+\infty$ en ∞ . On suppose f strictement convexe, c'est-à-dire que f((1-t)x+ty) < (1-t)f(x)+tf(y) pour tous x,y distincts dans \mathbb{R}^n et tout $t \in [0,1[$.
 - 1) Montrer que f admet un minimum en un unique point, que l'on notera x^* .
 - 2) Soit $x_0 \in \mathbb{R}^n$. On considère une fonction $x : \mathbb{R}^+ \to \mathbb{R}^n$ de classe \mathcal{C}^1 telle que $x(0) = x_0$ et $\forall t \in \mathbb{R}^+, \ x'(t) = -\nabla f(x(t))$. Montrer que x tend vers x^* en $+\infty$.
 - 3) On suppose qu'il existe un réel $\alpha > 0$ tel que

$$\forall y \in \mathbb{R}^n, \ \forall (x_1, \dots, x_n) \in \mathbb{R}^n, \ \sum_{1 \le i, j \le n} \partial_i \partial_j f(y) \, x_i x_j \geqslant \alpha \sum_{i=1}^n x_i^2.$$

Montrer alors que pour tout $t \ge 0$, $f(x(t)) - f(x^*) \le e^{-2\alpha t} (f(x_0) - f(x^*))$.

- **40.** ENS Lyon 118. Soit $k \in \mathbb{R}$. Soit $y \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$ vérifiant $y'' = (x^3 + kx)y$, y(0) = 1 et y'(0) = 0. Montrer que l'ensemble des zéros de y est majoré et non minoré.
- **41.** Centrale 614. Soit $f \in \mathcal{C}^1([1, +\infty[, \mathbb{R}^{+*}) \text{ telle que } \lim_{x \to +\infty} f'(x) = \alpha > 0.$

Soit $u \in \mathcal{C}^2([1, +\infty[, \mathbb{R})$ bornée et solution de l'equation différentielle $u'' - \frac{f'}{f}u' - \frac{u}{f^2} = 0$. On posera $h = \frac{u'}{f}$.

- 1) Montrer que u'(x) = O(1/x) lorsque $x \to +\infty$.
- 2) Montrer que u tend vers 0 en $+\infty$.

Jour 6 : probabilités

- **42.** Centrale 631. On pose, pour $x \in \mathbb{R}$, $\gamma(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ et l'on admet que $\int_{\mathbb{R}} \gamma = 1$.
 - 1) Montrer que l'intégrale est bien définie.

Soit $(X_k)_{k\geqslant 0}$ une suite i.i.d. de variables de Rademacher. On pose, pour $n\in\mathbb{N}^*$, $S_n=\frac{1}{\sqrt{n}}\sum_{k=1}^n X_k$.

- 2) Soit p entier impair. Montrer que $\mathrm{E}\left(S_{n}^{p}\right)=\int_{\mathbb{R}}t^{p}\gamma(t)\mathrm{d}t=0.$
- 3) Soit $Q \in \mathbb{R}[X]$. On veut montrer que $\mathbb{E}(Q(S_n)) \underset{n \to +\infty}{\longrightarrow} \int_{\mathbb{R}} Q\gamma$.

On notera $M_n(t)$ pour cela la série génératrice exponentielle des $E(S_n^p)$ et

- a. Vérifier que $M_n(t) = \mathbb{E}\left(e^{tS_n}\right) = \left(\operatorname{ch} t/\sqrt{n}\right)^n$.
- b. Expliciter $\frac{1}{2\pi} \int_0^{2\pi} M_n(e^{it}) e^{-ipt} dt$.
- c. En déduire une expression intégrale des $A_p = \lim_{n \to +\infty} \mathrm{E}(S_n^p)$.
- d. Prouver que $A_{2p} = (2p-1)A_{2p-2}$ pour $p \ge 1$.
- e. Conclure. Interprétation?
- **43.** Mines 508. Soit $(n,p) \in \mathbb{N}^2$ avec $1 \leq p \leq n-1$. On extrait simultanément p boules d'une urne contenant n boules numérotées de 1 à n. Soit X la variable aléatoire donnant le maximum des numéros tirés. Déterminer la loi de X. Calculer son espérance et sa variance.
- 44. Mines 528. Une urne contient n boules identiques numérotées de 1 à n. On effectue des tirages. Aprés chaque tirage, on enlève les boules qui ont un numéro supérieur ou égal à celui de la boule tirée. On note X_n le nombre de tirages nécessaires pour vider l'urne.
 - 1) Calculer $E(X_1)$ et $E(X_2)$.
 - 2) Soit $n \ge 2$. Montrer que $E(X_n) = 1 + \frac{1}{n} \sum_{k=1}^{n-1} E(X_k)$.
 - 3) Déterminer un équivalent de $E(X_n)$.
- 45. Mines 529. Soit X une variable aléatoire réelle positive admettant un moment d'ordre 2.
 - 1) Montrer que, pour tout $\lambda > 0$, $X \leq \lambda \mathbf{E}(X) + X \mathbf{1}_{x \geq \lambda \mathbf{E}(X)}$.
 - 2) On suppose que $E(X^2) > 0$. Montrer que $P(X \ge \lambda \mathbf{E}(X)) \ge (1 \lambda)^2 \frac{\mathbf{E}(X)^2}{\mathbf{E}(X^2)}$.
- **46.** X 279. Soit $d \ge 1$ entier. Pour toute partie $A = \{a_1, \dots, a_d\}$ de [1, d], avec $a_1 < \dots < a_p$, et toute matrice M de $\mathcal{M}_n(\mathbb{R})$, on pose $M^A = (m_{a_k, a_\ell})_{1 \le k, \ell \le p}$.
 - 1) Montrer, pour toute matrice M de $\mathcal{M}_n(\mathbb{R})$, l'égalité

$$\det(I_d + M) = \sum_{A \subset [\![1,d]\!]} \det(M^A).$$

Dans la suite, on se donne une variable aléatoire X à valeurs dans $\mathcal{P}(\llbracket 1, d \rrbracket)$. On suppose qu'il existe $K \in \mathcal{S}_d(\mathbb{R})$ telle que, pour toute partie A de $\llbracket 1, d \rrbracket$, on ait $P(A \subset X) = \det(K^A)$.

2) Soient $f: [1,d] \to \mathbb{R}$ et D la matrice diagonale de coefficients diagonaux $f(1), \ldots, f(d)$. Montrer que

$$E\left(\prod_{i\in X}(1+f(i))\right) = \det(I_d + DK).$$

- 3) Montrer que le spectre de K est inclus dans [0, 1].
- 4) Montrer que |X| suit la loi de la somme de d variables de Bernoulli indépendantes dont les paramètres respectifs sont les valeurs propres de K.

47. X 284. Soit $(U_n)_{n\geqslant 1}$ une suite de variables aléatoires réelles i.i.d. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions à valeurs dans \mathbb{R}^+ telle que f_n ait pour ensemble de départ \mathbb{R}^n pour tout $n\in\mathbb{N}$. On suppose que

$$\forall (m,n) \in \mathbb{N}^2, \ f_{n+m}(U_1,\ldots,U_{m+n}) \leqslant f_n(U_1,\ldots,U_n) + f_m(U_{n+1},\ldots,U_{n+m}).$$

On pose enfin $X_n = f_n(U_1, \dots, U_n)$, et on suppose que X_n possède un moment d'ordre 2.

- 1) Montrer que la suite de terme général $\frac{1}{n}\mathbf{E}(X_n)$ converge vers un réel ℓ .
- 2) Soit $\varepsilon > 0$. Montrer que $\mathbf{P}\left(\left|\frac{X_n}{n} \ell\right| \geqslant \varepsilon\right) \underset{n \to +\infty}{\longrightarrow} 0$.

On admettra qu'étant données deux suites $y \in (\mathbb{R}^+)^{\mathbb{N}}$ et $\varepsilon \in \mathbb{R}^{\mathbb{N}^2}$ telles que pour tout $(m,n) \in \mathbb{N}^2$,

$$y_{m+n} \le \frac{n^2}{(m+n)^2} y_n + \frac{m^2}{(m+n)^2} y_m + \varepsilon_{m,n}$$

et $\varepsilon_{m,n}$ tend vers 0 quand m+n tend vers $+\infty$, la suite y converge vers 0.

- **48.** ENS Ulm 153. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles, ayant un moment d'ordre 2. On suppose qu'il existe M>0 tel que : $\forall n\in\mathbb{N}, \, \mathrm{E}(X_n^2)\leqslant M$. Montrer l'équivalence des conditions suivantes :
 - (i) pour toute $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{C})$ bornée et à dérivée bornée, on a $\mathrm{E}(X_n f(X_n) f'(X_n)) \underset{n \to \infty}{\longrightarrow} 0$;
 - (ii) pour toute $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{C})$ bornée, on a $\mathrm{E}(f(X_n)) \underset{n \to \infty}{\longrightarrow} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-x^2/2} \mathrm{d}x$.
- **49.** ENS concours 2017. 1) Soit X une variable aléatoire discrète à valeurs dans \mathbb{R}_+ telle que $0 < \mathrm{E}(X^2) < +\infty$. Montrer que $\mathrm{P}(X>0) \geqslant \frac{\mathrm{E}(X)^2}{\mathrm{E}(X^2)}$.

Pour chaque $n \in \mathbb{N}^*$, on se donne un réel $p_n \in]0,1[$. On considère le graphe aléatoire non orienté Γ_n , de sommets $1,\ldots,n$, tel que, si pour tout (i,j) tel que $1 \leq i < j \leq n$, $X_{i,j}$ est la variable indicatrice de l'événement $\{i,j\}$ est une arête de $\Gamma_n \gg$, alors les $X_{i,j}$ sont indépendantes et suivent toutes la loi de Bernoulli de paramètre p_n .

On note alors Y_n la variable aléatoire qui donne le nombre de sommets isolés (reliés à aucun autre).

- 2) On suppose que $\frac{\ln n}{n} = o(p_n)$. Montrer que $P(Y_n > 0) \xrightarrow[n \to +\infty]{} 0$.
- 3) On suppose que $p_n = o\left(\frac{\ln n}{n}\right)$. Montrer que $P(Y_n > 0) \xrightarrow[n \to +\infty]{} 1$.

Jour 7 : algèbre (polynômes et algèbre linéaire)

- **50.** Centrale 545. Soit \mathbb{K} une \mathbb{R} -algèbre intègre de dimension finie $n \ge 2$. En notant e son neutre multiplicatif, on assimile $\mathbb{R}e$ à \mathbb{R} et donc e à 1.
 - 1) On fixe a non nul dans \mathbb{K} . Montrer que $\phi_a: x \mapsto xa$ est un automorphisme d'espace vectoriel de \mathbb{K} . En déduire que a est inversible.
 - 2) On fixe $a \in \mathbb{K} \setminus \mathbb{R}$. Montrer que la famille (1, a) est libre mais pas $(1, a, a^2)$.
 - 3) Montrer que l'on peut trouver $i \in \mathbb{K}$ tel que $i^2 = -1$. En déduire que \mathbb{K} est isomorphe à \mathbb{C} .
- **51.** Mines 297. Soient $n \in \mathbb{N}^*$ pair, $P = 1 + X + \cdots + X^n$, α une racine de P. Montrer que, pour tout $k \ge 1$, α^{2^k} est racine de P. Qu'en est-il pour n impair?
- **52.** Mines 300 Soit $P = a_0 + \cdots + a_n X^n \in \mathbb{R}[X]$ un polynôme non constant, scindé à racines simples sur \mathbb{R} .
 - 1) Montrer que pour tout $x \in \mathbb{R}$, $P''(x) P(x) P'(x)^2 < 0$.
 - 2) Soit $k \in \{1, ..., n-1\}$, montrer que $a_{k-1}a_{k+1} \le a_k^2$.
- **53.** Mines 326. Soit $M \in GL_n(\mathbb{R})$. Montrer qu'il existe $P \in \mathbb{R}[X]$ tel que $M^{-1} = P(M)$.
- **54.** Mines 327. On pose $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et on note D l'opérateur de dérivation. Montrer qu'il n'existe pas d'endomorphisme Φ de E dont le carré vaut D.
- **55.** X 1993. Si $F \in \mathbb{C}(X)$ est non constant, on pose $\Phi_F : R \in \mathbb{C}(X) \mapsto R(F) \in \mathbb{C}(X)$.
 - 1) Soit $F \in \mathbb{C}(X)$ non constant. Montrer que Φ_F est un endomorphisme d'algèbre de $\mathbb{C}(X)$.
 - 2) Montrer que tout endomorphisme d'algèbre de $\mathbb{C}(X)$ est de la forme Φ_F avec F non constant.
 - 3) Montrer que tout endomorphisme d'algèbre de $\mathbb{C}(X)$ est injectif.
 - 4) Montrer que Φ est un automorphisme d'algèbre si et seulement s'il existe $R \in \mathbb{C}(X)$ tel que $\Phi(R) = X$.
 - 5) Soit $F = \frac{P}{Q}$ où $P \wedge Q = 1$. On suppose que Φ_F est un automorphisme. Montrer que $\deg(P) \leqslant 1$ et $\deg(Q) \leqslant 1$.
 - 6) Déterminer complètement les automorphismes d'algèbre de $\mathbb{C}(X)$.

57. ENS Lyon 12. 1) Montrer que l'ensemble A des nombres complexes algébriques est un sous-corps de C.

Un entier algébrique est un nombre complexe racine d'un polynôme unitaire de $\mathbb{Z}[X]$.

- 2) Soit $a \in C$. Montrer que a est un entier algébrique, si et seulement si, il existe un sous-espace V du \mathbb{Q} -espace vectoriel \mathbb{C} contenant $\mathbb{Q}(a), v_1, \ldots, v_n \in V$ engandrant V tel que $a(\mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n) \subset \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$ (utiliser le polynôme caractéristique d'une matrice ad hoc).
- 3) En déduire que \mathcal{O} l'ensemble des entiers algébriques est un sous-anneau de \mathbb{C} . Donner une autre démontration utilisant les propriétés des expressions symétriques des racines.
- 4) n appelle unité tout inversible de l'anneau des entiers algébriques. Montrer que, si q est une racine n-ième primitive de 1 et $m \geqslant 2$ un entier premier avec n, alors $\frac{q^m-1}{q-1}$ est une unité.
- 5) Montrer qu'un nombre complexe est une unité si et seulement s'il annule un polynôme $P \in \mathbb{Z}[X]$ unitaire tel que $P(0) = \pm 1$.
- **58.** ENS Lyon 13. Déterminer les $P \in \mathbb{Z}[X]$ tels que $\forall z \in \mathbb{U}, |P(z)| \leq 1$.
- **59.** ENS Ulm 14. Trouver les $P \in \mathbb{R}[X]$ tels que $P(\mathbb{R} \setminus \mathbb{Q}) \subset \mathbb{R} \setminus \mathbb{Q}$.

Jour 8 : analyse (suites, séries, fonctions)

- 60. Centrale 595.
 - 1) Soit f continue par morceaux sur \mathbb{R} et T-périodique, avec T > 0.

Montrer que $\int_{-a}^{a+T} f$ ne dépend pas de $a \in \mathbb{R}$.

Montre qu'il existe $\alpha \in \mathbb{R}$ tel que $x \mapsto \int_0^x f - \alpha x$ soit T-périodique.

- 2) Soit $f: \mathbb{R} \to \mathbb{C}$ continue et 1 périodique. Déterminer la nature de $\sum \int_n^{n+1} \frac{f(t)}{t} dt$.
- 3) Déterminer la nature de $\int_0^{+\infty} \frac{\left|\sin(\pi t)\right|}{t} dt$ et $\int_0^{+\infty} \frac{t \lfloor t \rfloor}{t} dt$.
- **61.** Mines 411. Nature des séries de terme général $\frac{1}{(\ln n)^{\ln n}}$ et $\frac{1}{(\ln n)^{\ln(\ln n)}}$
- **62.** Mines 416. Pour $s \in]1, +\infty[$, soit $\zeta(s) = \sum_{n=1}^{+\infty} \frac{1}{n^s}$.
 - 1) Si $n \in \mathbb{N}^*$, soit d(n) le nombre de diviseurs de n dans \mathbb{N}^* . Montrer que, si s > 1, $\sum_{n=1}^{+\infty} \frac{d(n)}{n^s} = \zeta(s)^2$.
 - 2) Pour s > 2, montrer que $\sum_{n=1}^{+\infty} \frac{\varphi(n)}{n^s} = \frac{\zeta(s-1)}{\zeta(s)}$.
 - 3) BONUS Montrer que pour s > 1, $\sum_{n \ge 1} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)}$ et $\sum_{n \ge 1} \frac{|\mu(n)|}{n^s} = \frac{\zeta(s)}{\zeta(2s)}$.
- **63.** Mines **418.** Soit $E = \mathcal{C}^0([0,1], \mathbb{R})$. Pour $f \in E$, on pose $u(f) : x \in [0,1] \mapsto \int_0^1 \min\{x,t\} f(t) dt$.
 - 1) Montrer que u est un endomorphisme de E.
 - 2) Déterminer ses valeurs propres et ses espaces propres.
- **64.** X 2019. Soit $f \in \mathcal{C}^1(\mathbb{R}^+, \mathbb{R})$. On suppose que $\int_0^{+\infty} f$ converge et que $x \mapsto \int_x^{x+1} {f'}^2$ est bornée. Montrer que $f(x) \underset{x \to +\infty}{\longrightarrow} 0$.
- **65.** X 244. Soit $f:[0,1] \longrightarrow \mathbb{R}$. On dit que f est à variation bornée s'il existe M>0 tel que pour toute suite croissante $(a_k)_{0\leqslant k\leqslant n}$ de [0,1], on a $\sum_{k=1}^n |f(a_k)-f(a_{k-1})|\leqslant M$.
 - 1) Montrer que si f est monotone, f est à variation bornée.
 - 2) Montrer que si f est de classe C^1 , f est à variation bornée.
 - 3) Exhiber une fonction continue qui n'est pas à variation bornée.
 - 4) Montrer qu'une fonction $f:[0,1] \longrightarrow \mathbb{R}$ est à variation bornée si, et seulement si f est différence de deux fonctions croissantes.
 - 5) On suppose f à variation bornée. Montrer que pour tout $\varepsilon > 0$, il existe $h : [0,1] \longrightarrow \mathbb{R}$ en escalier telle que $|f h| \leq \varepsilon$.

- **66.** X 230. Soit $f:[0,1] \to [0,1]$ une fonction 1-lipschitzienne. Soit $(x_n)_{n \in \mathbb{N}}$ une suite vérifiant $\forall n \in \mathbb{N}, x_{n+1} = \frac{x_n + f(x_n)}{2}$. Montrer que $(x_n)_n$ converge.
- 67. X 236. Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite strictement croissante d'entiers naturels non nuls. Nature de la série de terme général $\frac{1}{\operatorname{ppcm}(a_1,\ldots,a_n)}$?
- **68.** ENS Saclay 81. Soit $f:[0,1] \to \mathbb{R}$ de classe C^2 telle que f(0) = f'(0) = f'(1) = 0 et f(1) = 1. Montrer qu'il existe $c \in [0,1]$ tel que $|f''(c)| \ge 4$.
- **69.** ENS Lyon 76 1) Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite d'éléments de \mathbb{R}^{+*} telle que $\sum a_n$ converge. Montrer que $\int_{k=1}^n a_k = o(1/n)$.
 - 2) Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite d'éléments de \mathbb{R}^{+*} telle que $\sum a_n$ converge.

 $\text{Montrer que } \sum_{n=1}^{+\infty} \sqrt[n]{\prod_{k=1}^n a_k} < e \sum_{n=1}^{+\infty} a_n.$

Jour 9 : probabilités

70. Centrale 630. Soit $(X_i)_{i\geq 0}$ une suite i.i.d. de variables de Rademacher.

On pose, pour $n \in \mathbb{N}^*$, $S_n = X_1 + \cdots + X_n$.

- 1) Montrer: $\forall t \in \mathbb{R}$, $\operatorname{ch} t \leqslant e^{t^2/2}$.
- 2) Soit s > 0. Montrer que $P(S_n \ge s) \le \exp\left(\frac{nt^2}{2} ts\right)$. En déduire une majoration de $P(|S_n| \ge s)$. Optimiser cette majoration.
- 3) Soit $\alpha > 1/2$. Montrer que $P\left(\bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} |S_k| \geqslant k^{\alpha}\right) = 0$.
- 4) Montrer que la suite (S_n/n) converge presque sûrement vers 0
- 71. ENS Ulm 153. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles, ayant un moment d'ordre 2. On suppose qu'il existe M>0 tel que : $\forall n\in\mathbb{N}, \ \mathrm{E}(X_n^2)\leqslant M$. Montrer l'équivalence des conditions suivantes :
 - (i) pour toute $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{C})$ bornée et à dérivée bornée, on a $\mathrm{E}(X_n f(X_n) f'(X_n)) \underset{n \to \infty}{\longrightarrow} 0$;
 - (ii) pour toute $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{C})$ bornée, on a $\mathrm{E}(f(X_n)) \underset{n \to \infty}{\longrightarrow} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-x^2/2} \mathrm{d}x$.
- **72.** ENS concours 2017. 1) Soit X une variable aléatoire discrète à valeurs dans \mathbb{R}_+ telle que $0 < \mathrm{E}(X^2) < +\infty$. Montrer que $\mathrm{P}(X>0) \geqslant \frac{\mathrm{E}(X)^2}{\mathrm{E}(X^2)}$.

Pour chaque $n \in \mathbb{N}^*$, on se donne un réel $p_n \in]0,1[$. On considère le graphe aléatoire non orienté Γ_n , de sommets $1,\ldots,n$, tel que, si pour tout (i,j) tel que $1 \leq i < j \leq n$, $X_{i,j}$ est la variable indicatrice de l'événement $\{i,j\}$ est une arête de $\Gamma_n \gg$, alors les $X_{i,j}$ sont indépendantes et suivent toutes la loi de Bernoulli de paramètre p_n .

On note alors Y_n la variable aléatoire qui donne le nombre de sommets isolés (reliés à aucun autre).

- 2) On suppose que $\frac{\ln n}{n} = o(p_n)$. Montrer que $P(Y_n > 0) \xrightarrow[n \to +\infty]{} 0$.
- 3) On suppose que $p_n = o\left(\frac{\ln n}{n}\right)$. Montrer que $\mathrm{P}(Y_n > 0) \xrightarrow[n \to +\infty]{} 1$.
- 73. ENS Saclay 150 Pour une variable aléatoire X réelle, on considère les propriétés suivantes :
 - $(P_1) \exists a > 0, \forall t > 0, P(X > t) \leq e^{-at^2}, (P_2) \exists c > 0, \forall u > 0, E(e^{uX}) \leq e^{cu^2}.$
 - 1) Soit X une variable de Rademacher. Montrer que X vérifie (P_1) et trouver la meilleure constante a.
 - 2) Montrer $(P_2) \Rightarrow (P_1)$.
 - 3) Montrer que, pour $x \leq 1$, $e^x \leq 1 + x + x^2$.
 - 4) Montrer que, pour X centrée réduite, $(P_1) \Rightarrow (P_2)$. On écrira à cette occasion que

$$E(e^{uX}1_{uX>1}) \le E(u^2X^2e^{uX}1_{uX>1}) \le E(u^2X^2e^{(u/b)(bX)}1_{X>0}),$$

et on choisira un b ad hoc.

74. X-ENS Variables aléatoires infiniment divisibles. Soit X une variable aléatoire à valeurs dans \mathbb{N} . On dit que X est infiniment divisible si, pour tout $n \in \mathbb{N}^*$, il existe n variables aléatoires $X_{1,n}, \ldots, X_{n,n}$ i.i.d., à valeurs dans \mathbb{N} , telles que

$$X \sim \sum_{i=1}^{n} X_{i,n}.$$

- 1) Donner un exemple de variable infiniment divisible. Montrer qu'une variable de Bernoulli de paramètre $p \in]0,1[$ n'est pas infiniment divisible (on considèrera la fonction caractéristique).
- 2) Soient $(Y_n)_{n\geqslant 1}$ une suite de variables aléatoires i.i.d. à valeurs dans \mathbb{N} , N une variable aléatoire de Poisson indépendante de $(Y_n)_{n\geqslant 1}$. On pose $S=\sum_{i=1}^N Y_i$. Montrer que S est infiniment divisible.
- 3) On suppose dans cette question que G_X peut s'écrire sous la forme $s \mapsto p_0 \exp\left(\sum_{i=1}^{+\infty} b_i s^i\right)$ où p_0 et les b_i sont des

éléments de \mathbb{R}^+ et $\sum b_i$ converge. Montrer que X est infiniment divisible. Vérifier ensuite que X est de même loi que $S = Y_1 + \cdots + Y_N$ où les Y_n sont des variables aléatoires à valeurs dans \mathbb{N}^* indépendantes de même loi et N une variable aléatoire de Poisson indépendantes des Y_n .

4) On suppose X infiniment divisible. Montrer que $p_0 = P(X = 0) > 0$ puis que G_X est de la forme $s \mapsto p_0 \exp\left(\sum_{i=1}^{+\infty} b_i s^i\right)$

où p_0 et les b_i sont des éléments de \mathbb{R}^+ et $\sum b_i$ converge : pour cela on considèrera la limite lorsque k tend vers l'infini de $k\left(\left(\frac{G_X(s)}{p_0}\right)^{1/k}-1\right)$.

- **75.** Mines 525. Soit $(X_n)_{n\geqslant 1}$ une suite i.i.d de variables aléatoires suivant la loi géométrique de paramètre $p\in]0,1[$. On pose q=1-p. Pour $n,k\in\mathbb{N}$ avec $n\geqslant 2$ et $k\geqslant 1$, on pose $A_n=(X_1<\cdots< X_n),\ B_{n,k}=(X_1<\cdots< X_n,\ X_1=k),$ $u_n=\mathrm{P}(A_n),\ v_{n,k}=\mathrm{P}(B_{n,k}).$ Si $n\in\mathbb{N}^*$, on pose $\pi_n=\prod_{j=1}^n(1-q^j).$
 - 1) Calculer $P(X_1 = X_2)$ et $P(X_1 < X_2)$.
 - 2) Montrer, pour $n \geqslant 3$ et $k \in \mathbb{N}^*$, $v_{n,k} = pq^{k-1} \sum_{j=k+1}^{+\infty} v_{n-1,j}$.
 - 3) En déduire que, pour $n \ge 2$ et $k \in \mathbb{N}^*$, $v_{n,k} = \frac{1}{\pi_{n-1}} (pq^{k-1})^n q^{\alpha_n}$ où α_n est un entier que l'on précisera.
 - 4) En déduire que, pour $n \ge 2$, $u_n = \frac{1}{\pi_n} p^{\beta_n} q^{\gamma_n}$ où β_n et γ_n sont des entiers que l'on précisera. Donner enfin un équivalent de u_n .
- **76.** Mines 519. Dans un jeu, deux joueurs s'affrontent indéfiniment dans une succession de parties indépendantes. Le joueur A (resp. B) a la probabilité p (resp. q = 1 p) de gagner une partie. On note a_{2n} la probabilité pour qu'aprés 2n parties A et B aient gagné autant de parties.

Soit
$$f: x \mapsto \sum_{n=1}^{+\infty} a_{2n} x^n$$
.

- 1) Déterminer a_{2n} pour $n \in \mathbb{N}^*$.
- 2) Déterminer le rayon de convergence de f. La série $\sum a_{2n}$ est-elle convergente ?
- 3) Exprimer A(x).
- 4) Quelle est la probabilité qu'il n'y ait jamais égalité au cours du jeu?

Jour 10 : algèbre (algèbre générale)

- 77. Mines 291. Montrer que 2021 a un multiple dont tous les chiffres en base 10 valent 1.
- 78. Mines 294. Soit G un groupe cyclique de cardinal n. Quel est le nombre de sous-groupes de G?
- **79.** Mines 295. Soit G un sous-groupe fini de $GL_2(\mathbb{C})$ tel que $G \cap SL_2(\mathbb{C}) = \{I_2\}$. Montrer que G est cyclique.
- **80.** X 172. A quelle condition une permutation de [1, n] est-elle un carré?
- 81. X 177 et 168. Soit p un nombre premier impair. On suppose connus les carrés dans $\mathbb{Z}/p\mathbb{Z}$.
 - 1) Déterminer les carrés dans $\mathbb{Z}/p^2\mathbb{Z}$.
 - 2) Dénombrer les carrés de l'anneau $\mathbb{Z}/p^{\alpha}\mathbb{Z}$.

82	\mathbf{v}	1	69

- 1) Si $\alpha \in \mathbb{N}^*$, résoudre $x^2 = 1$ dans l'anneau $\mathbb{Z}/2^{\alpha}\mathbb{Z}$.
- 2) Pour quels $\alpha \in \mathbb{N}^*$ le groupe $(\mathbb{Z}/2^{\alpha}\mathbb{Z})^*$ est-il cyclique?

83. ENS Lyon 2. Soit φ l'indicatrice d'Euler.

- 1) Montrer que $\forall n \in \mathbb{N}^*, \ \varphi(n) \geqslant \frac{\sqrt{n}}{2}$.
- 2) Existe-t-il $C \in \mathbb{R}^{+*}$ tel que $\forall n \in \mathbb{N}^*, \varphi(n) \geqslant Cn$?

84. ENS Lyon 11. Soit $n \in \mathbb{N}^*$. Déterminer la somme μ_n des racines primitives n-ièmes de l'unité.

- **85.** ENS 9. Un anneau intégre A est dit euclidien s'il existe une fonction $N: A \setminus \{0\} \to \mathbb{N}$ telle que pour tout $(a,b) \in A \times (A \setminus \{0\})$, il existe un couple $(q,r) \in A^2$ tel que a = bq + r et si $r \neq 0$ alors N(r) < N(b).
 - 1) Montrer que $\mathbb{Z}[i]$, défini comme $\{a+ib, (a,b) \in \mathbb{Z}^2\}$, est euclidien.
 - 2) Énoncer un théorème d'existence et d'unicitéde décomposition en facteurs irréductibles dans $\mathbb{Z}[i]$.
 - 3) Montrer que pour tout réel $\varepsilon > 0$, le cardinal de $\{(a,b) \in \mathbb{Z}^2 : a^2 + b^2 = R^2\}$ est dominé par R^{ε} quand R tend vers $+\infty$.

86. ENS Lyon 3. Résoudre dans \mathbb{Z}^2 l'équation $y^3 = x^2 + 1$.

87. ENS Lyon 2019. 1) Soit α un nombre réel irrationnel. Montrer que, pour tout $n \in \mathbb{N}^*$, il existe (p,q) de $\mathbb{Z} \times [\![1,n]\!]$ tel que $\left|\alpha - \frac{p}{a}\right| < \frac{1}{an}$.

Soit $d \in \mathbb{N}^*$ sans facteur carré. On note $\mathbb{Z}[d] = \{a + b\sqrt{d} \mid (a,b) \in \mathbb{Z}^2\}$ et on pose $N(a + b\sqrt{d}) = a^2 - db^2$ pour tout $(a,b) \in \mathbb{Z}^2$.

- 2) Montrer qu'il existe $\omega \in \mathbb{Z}[\sqrt{d}]$ tel que $\{x \in \mathbb{Z}[d] : N(x) = 1\} = \{\varepsilon \omega^k \mid \varepsilon \in \{-1, 1\}, k \in \mathbb{Z}\}.$
- 3) Montrer qu'il existe un réel C > 0 tel que $\{x \in \mathbb{Z}[d] : |N(x)| \leq C\}$ soit infini.
- 4) En déduire que $\omega \neq \pm 1$. Conclusion?

Jour 11: analyse (topologie)

88. Centrale 580.

- 1) Quels sont les compacts convexes de \mathbb{R} ?
- 2) Soit B un compact convexe de \mathbb{R}^n et $u \in \mathcal{L}(\mathbb{R}^n)$ tel que $u(B) \subset B$. On pose $u_0 = \mathrm{Id}_{\mathbb{R}^n}$ et pour tout $p \in \mathbb{N}^*$, $u_p = \frac{1}{p} \sum_{0 \le k \le p-1} u^k$. On pose enfin $A = \bigcap_{p \in \mathbb{N}} u_p(B)$.
- 3) Montrer que $A=\{x\in B,\ u(x)=x\}.$ 4) Montrer que A n'est pas vide.

89. Mines 387. Soit $E = \{ f \in C^2([0,1], \mathbb{R}), f(0) = f'(0) = 0 \}.$

Si $f \in E$, on pose $N(f) = ||f + 2f' + f''||_{\infty}$.

- 1) Montrer que N est une norme sur E.
- 2) On fixe $f \in E$ et on pose g = f + 2f' + f''. Exprimer f en fonction de g.
- 3) Montrer qu'il existe $a \in \mathbb{R}^+$ tel que, pour tout $f \in E$, $||f||_{\infty} \leq a N(f)$.
- 4) Les normes $\| \|_{\infty}$ et N sont-elles équivalentes?

90. Mines 389. Soit $E = \mathcal{C}([0,1],\mathbb{R})$ muni du produit scalaire usuel $\langle f,g \rangle = \int_0^1 fg$. On note $H = \{f \in E \mid \int_0^{1/2} f = 0\}$. Déterminer H^{\perp} .

- **91.** X 224. Soient E un espace vectoriel normé de dimension finie, F un sous-espace vectoriel strict de E, et λ une forme linéaire sur F vérifiant $\forall x \in F$, $|\lambda(x)| \leq ||x||$.
 - 1) Montrer que pour tous x, z dans F et pour tout y dans E, $\lambda(x) ||x y|| \le ||y + z|| \lambda(z)$.
 - 2) Montrer que l'on peut prolonger λ en une forme linéaire $\overline{\lambda}$ sur E telle que :

 $\forall x \in E, \ |\overline{\lambda}(x)| \leq ||x|| \ (th\'{e}or\`{e}me \ de \ Hann-Banach).$

92. X 225. 1) Soit $(F_i)_{i\in I}$ une famille de fermés de [0,1] telle que, pour toute partie finie J de I, on ait $\bigcap_{i\in J} F_i \neq \emptyset$. Montrer

que
$$\bigcap_{i\in I} F_i \neq \emptyset$$
.

2) Soit \mathcal{I} un idéal de l'anneau $C([0,1],\mathbb{R})$ des fonctions continues de [0,1] dans \mathbb{R} . On suppose que $\mathcal{I} \neq C([0,1],\mathbb{R})$. Montrer qu'il existe $x \in [0,1]$ tel que $\forall f \in \mathcal{I}, f(x) = 0$.

- **93.** Ulm 59 On dit qu'uune fonction continue $f:[0,1] \to [0,1]$ est ouverte si l'image d'un ouvert de [0,1] est un ouvert de [0,1]. Caractériser ces fonctions
- **94.** Ulm 60 Soit K un compact non vide d'un espace vectoriel normé E. Soit $f: K \to K$ telle que $\forall (x,y) \in K^2$, $d(f(x),f(y)) \geqslant d(x,y)$. Montrer que f est une isométrie, puis que f est bijective.
- **95.** Ulm 66. Soit $n \in \mathbb{N}^*$. Déterminer l'ensemble des points de continuité de l'application de $\mathcal{M}_n(\mathbb{C})$ dans $\mathbb{C}_n[X]$ qui à une matrice associe son polynôme minimal.
- **96. ENS Saclay 67.** Soit $\|$ $\|$ une norme sur \mathbb{C}^n . Pour $A \in \mathcal{M}_n(\mathbb{C})$ on pose $\rho(A) = \max_{\lambda \in \operatorname{Sp} A} |\lambda|$ et $\|A\| = \max\{\|Ax\| \; ; \; x \in \mathbb{C}^n, \; \|x\| = 1\}$.
 - 1) Montrer que $\| \| \|$ est une norme sur $\mathcal{M}_n(\mathbb{C})$. On dit que $\| \| \|$ est la norme sur $\mathcal{M}_n(\mathbb{C})$ subordonnée à $\| \| \|$. Montrer que, pour $A, B \in \mathcal{M}_n(\mathbb{C})$, $\| AB \| \leq \| A \| \times \| B \|$.
 - 2) Montrer que $\rho(A) \leq ||A||$.
 - 3) Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $\varepsilon > 0$. Montrer qu'il existe une norme $\| \|$ sur \mathbb{C}^n pour laquelle $\|A\| \le \rho(A) + \varepsilon$.
 - 4) Montrer qu'il y a équivalence entre les trois conditions suivantes :
 - (i) il existe sur \mathbb{C}^n une norme $\| \| \|$ telle que pour la norme subordonnée $\| A \| < 1$;
 - (ii) $(A^k)_{k\in\mathbb{N}}$ converge vers 0;
 - (iii) il existe M semblable à A telle que $\|M\|_{\infty} < 1$ avec $\| \| \|_{\infty}$ la norme subordonnée à $\| \| \|_{\infty}$.
 - 5) Montrer que pour toute norme N sur $\mathcal{M}_n(\mathbb{C})$, $\lim_{k\to\infty} N(A^k)^{1/k} = \rho(A)$.

Jour 12 : probabilités

97. ENS.Soit X une variable aléatoire à valeurs dans \mathbb{N}^* telle que, pour tout $k \in \mathbb{N}^*$, $P(X = k) = \frac{1}{k(k+1)}$. Soit $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires indépendantes, identiquement distribuées, suivant la loi de X. On pose, pour $n \in \mathbb{N}^*$, $S_n = X_1 + \dots + X_n$. Démontrer que la suite $\left(\frac{S_n}{n \ln n}\right)$ converge en probabilité vers la constante 1 (on procèdera à une troncature en considérant $X_i^N = X_i.1_{X_i < N}$ avec N à choisir).

On retiendra la tecnhique de la troncature utile pour se ramener à espérance finie.

- 98. X-ENS Loi uniforme divisible sur [1, n]. Soit $n \ge 2$.
 - 1) On suppose que $1 + X + X^2 + \cdots + X^{n-1} = P(X)Q(X)$ où P,Q sont deux polynômes réels unitaires à coefficients positifs ou nuls. Montrer que les coefficients de P et Q sont dans $\{0,1\}$.
 - 2) Soit X une variable aléatoire qui suit la loi uniforme sur l'ensemble $[\![1,n]\!]$. Montrer qu'il existe deux variables aléatoires Y,Z définies sur un même espace probabilisé, à valeurs dans \mathbb{N} , non presque sûres, indépendantes, telles que $X \sim Y + Z$ si et seulement si n n'est pas premier.
- **99.** ENS Ulm 152. Pour $n \in \mathbb{N}^*$, soit $(X_{i,j}^n)_{1 \leqslant i \leqslant j \leqslant n}$ une famille i.i.d. de variables aléatoires vérifiant $\forall \lambda \in \mathbb{R}$, $\mathrm{E}(e^{\lambda X_{i,j}^n}) \leqslant e^{\lambda^2}$. Soit $M^n = (M_{i,j}^n)_{1 \leqslant i,j \leqslant n}$ la matrice aléatoire symétrique telle que, si $1 \leqslant i \leqslant j \leqslant n$, $M_{i,j}^n = X_{i,j}^n$.
 - 1) On munit \mathbb{R}^n de sa structure euclidienne canonique. Soit v un vecteur unitaire de \mathbb{R}^n . Montrer que, pour $n \in \mathbb{N}^*$ et $\alpha \in \mathbb{R}^{+*}$,

$$P\left(\langle M^n v, v \rangle \geqslant \alpha \sqrt{n}\right) \leqslant e^{-n\alpha^2/8}$$

- 2) Montrer que l'on peut trouver un nombre fini de points constituant un ensemble Λ_n contenu dans la sphère unité de \mathbb{R}^n tels les points de Λ_n sont distants de plus de 1/4 et tout point de la sphère est à une distance de moins de 1/4 de Λ_n . Majorer le cardinal de Λ_n .
- 3) On note $\lambda_n(M^n)$ la plus grande valeur propre de M^n . Montrer que si $\alpha > 0$, il existe $\beta > 0$ tel que pour n assez grand,

$$P(\lambda_n(M_n) \geqslant \alpha \sqrt{n}) \leqslant 2e^{-n\beta}.$$

- 100. ENS Lyon 144. Soit $(X_k)_{k\geqslant 1}$ une suite de variables de Rademacher indépendantes. Pour $n\in\mathbb{N}^*$, on pose $S_n=\sum_{k=1}^n X_k$.
 - Soit T la variable aléatoire égale à $+\infty$ si, pour tout $n \in \mathbb{N}^*$ $S_n \leq 0$, et à $\min\{n \in \mathbb{N}^*, S_n > 0\}$ sinon.
 - 1) Montrer que pour tout $n \in \mathbb{N}^*$

$$P(S_{2n} \neq 0) = 2P(S_{2n} > 0) = P(T \leq 2n - 1).$$

2) Déterminer la loi de T.

101. X-ENS. Suites équiréparties, critère de Weyl. Soit $(u_n)_{n\geqslant 1}$ une suite de [0,1]. Pour $0\leqslant a\leqslant b\leqslant 1$, on pose

$$X_n(a,b) = \text{Card}\{k \in [1, n], u_k \in [a, b]\}.$$

- 1) Prouver l'équivalence des propriétés suivantes :
 - (i) $\frac{X_n(a,b)}{n}$ tend vers b-a pour tout couple (a,b);
 - (ii) pour toute fonction $f:[0,1] \longrightarrow \mathbb{R}$ continue, on a

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(u_k) = \int_{0}^{1} f(t) dt ;$$

$$(iii) \text{ pour tout } p \in \mathbb{N}^*, \text{ on a } \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^n e^{2i\pi p u_k} = 0.$$

Une suite qui vérifie ces conditions est dite équirépartie dans [0, 1].

- 2) Préciser les valeurs d'adhérence d'une suite équirépartie dans [0, 1].
- 3) Soit α un irrationnel. Montrer que la suite $(n\alpha |n\alpha|)_{n \ge 0}$ est équirépartie.
- 4) Etudier l'équirépartition de $(\sqrt{n} |\sqrt{n}|)$, de $(\ln n |\ln n|)$.

102. X 218. 1) Soit $d \in \mathbb{N}$. Montrer l'existence de $C_d \in \mathbb{R}^+$ tel que :

$$\forall P \in \mathbb{R}_d[X], |P(0)| \leqslant C_d \int_{-1}^1 |P(x)| \mathrm{d}x.$$

- 2) Que peut-on dire de C_d lorsque $d \to +\infty$?
- 3) Soit $d \in \mathbb{N}$. Montrer l'existence de $K_d \in \mathbb{R}^+$ tel que :

 $\forall P \in \mathbb{R}_d[X], \ |P(0)| \leqslant K_d \left(\int_{-1}^1 |P(x)|^2 \mathrm{d}x \right)^{1/2}. \ \text{Donner une minoration asymptotique de } K_d, \ \text{en utilisant } (1-x^2)^q.$

On pose, pour $n \in \mathbb{N}$, $L_n = \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left((1 - x^2)^n \right)$.

- 4) Montrer que $(L_n)_{n\geqslant 0}$ est orthogonale pour le produit scalaire donné par $\langle f,g\rangle=\int_{-1}^{1}fg$.
- 5) En déduire une expression de K_d .
- **103.** Soit φ un endomorphisme de $\mathcal{M}_n(\mathbb{C})$ tel que si M appartient à $\mathrm{GL}_n(\mathbb{C})$, alors $\varphi(M)$ appartient à $\mathrm{GL}_n(\mathbb{C})$.
 - 1) Donner des exemples de tels endomorphismes.
 - 2) Montrer que, pour tout $M \in \mathcal{M}_n(\mathbb{C})$, M appartient à $GL_n(\mathbb{C})$ si, et seulement si, $\varphi(M)$ appartient à $GL_n(\mathbb{C})$. Pour cela, on prouvera que si rg M < n, il existe $P \in GL_n(\mathbb{C})$ tel que pour tout $\lambda \in \mathbb{C}$, $P \lambda M$ est inversible.
 - 3) Montrer que rg $\varphi(M) \geqslant \operatorname{rg} M$. Pour cela, on prouvera que si rg M = r, il existe $Q \in \operatorname{GL}_n(\mathbb{C})$ tel que $Q \lambda M$ soit non inversible pour r valeurs de λ exactement.
 - 4) Montrer que φ conserve le rang.

104. Théorème de Cauchy-Lipschitz pour les équations autonomes. Soit U_0 un intervalle ouvert de \mathbb{R} , $f:U_0 \longrightarrow \mathbb{R}$ de classe \mathcal{C}^1 . On appelle solution (I,x) du problème de Cauchy (\mathcal{P})

$$x' = f(x)$$
 et $x(t_0) = x_0$,

un couple où I est un intervalle d'intérieur non vide contenant t_0 et $x:I \longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^1 vérifiant pour tout $t \in I$, x'(t) = f(x(t)) et $x(t_0) = x_0$.

- 1) Montrer que à l'aide du lemme de Gromwall que si (I, x) et (J, \tilde{x}) sont des solutions du même problème de Cauchy (\mathcal{P}) , elles coïncident sur $I \cap J$ tout entier.
- 2) Montrer que si I est un intervalle d'intérieur non vide contenant $t_0, x : I \longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^1 , (I, x) est solution du problème de Cauchy (\mathcal{P}) si et seulement si,

$$\forall t \in I, \ x(t) = x_0 + \int_{t_0}^t f(x(\tau)) d\tau.$$

3) a. Montrer qu'il existe $\alpha, \beta > 0$ tels que $[x_0 - \beta, x_0 + \beta] \subset U_0$ et pour toute fonction de classe $\mathcal{C}^1, x : [t_0 - \alpha, t_0 + \alpha] \longrightarrow [x_0 - \beta, x_0 + \beta] \subset U_0$, la fonction

$$F(x): t \in [t_0 - \alpha, t_0 + \alpha] \longmapsto x_0 + \int_{t_0}^t f(x(\tau)) d\tau$$

est à valeurs dans $[x_0 - \beta, x_0 + \beta]$.

- b. On considère la fonction constante X_0 égale à x_0 sur $[t_0 \alpha, t_0 + \alpha]$, et $X_{n+1} = F(X_n)$. Montrer que $\sum (X_{n+1} X_n)$ converge normalement. En déduire l'existence d'une solution du problème de Cauchy (\mathcal{P}) définie sur un intervalle dont t_0 est un point intérieur.
- 4) On appelle solution maximale de (\mathcal{P}) toute solution qu'on ne peut pas prolonger en une solution de (\mathcal{P}) . Montrer que (\mathcal{P}) admet une unique solution maximale (I_{max}, X_{max}) et vérifier de plus que I_{max} est un intervalle ouvert et que toute solution de (\mathcal{P}) est une restriction de cette solution maximale.
- 5) Soit $x_0 \in I_0$ et $t_0 \in \mathbb{R}$. Relier les solutions maximales de x' = f(x) portant sur les conditions $x(0) = x_0$ et $x(t_0) = x_0$.
- 6) Que dire que la solution maximale de x' = f(x) avec $x(0) = x_0$ si $f(x_0) = 0$?
- 7) Montrer que si $I_0 = \mathbb{R}$ et f est bornée, alors toute solution maximale est définie sur \mathbb{R} tout entier.

On peut renplacer U_0 intervalle ouvert de \mathbb{R} par U_0 ouvert de \mathbb{R}^n et f de classe \mathcal{C}^1 sur \mathbb{R} . En particulier, on peut considérer alors les solutions de $x' = -\nabla x$.

- **105.** X 283. Soit un entier N > 5. Soient X_1, \ldots, X_N des variables aléatoires indépendantes de même loi. On suppose que X_1 est à valeurs dans $\{1, 2, 3\}$. On définit une variable aléatoire f à valeurs dans $\mathcal{F}(\mathbb{Z}/N\mathbb{Z}, \mathbb{Z}/N\mathbb{Z})$ par $f(\omega)[\overline{n}] = n + X_n(\omega)$ pour tout $n \in [1, N]$ et toute issue ω . Déterminer la probabilité pour que f soit une permutation ayant au moins trois orbites.
- **106.** X 197b. Soient $A, B \in \mathcal{M}_n(\mathbb{C})$.

On suppose que, pour tout $t \in \mathbb{C}$, $\det(A + tB) = \det(A) + t \det(B)$. Que peut-on dire de A et B? (traiter d'abord le cas A ou B inversible puis dans le cas A et B non inversibles, on montrera l'existence de deux sous-espaces de \mathbb{C}^n tel que $A(V) \subset W$ et $B(V) \subset W$ avec $\dim W < \dim V$).

- 107. Le théorème de l'inversion locale. On désigne par k et n deux entiers non nuls et par U un ouvert de \mathbb{R}^n . On considère une norme quelconque sur \mathbb{R}^n et $\|$ $\|$ la norme subordonnée sur $\mathcal{L}(\mathbb{R}^n)$.
 - I. Théorème de l'inversion locale : un cas particulier. On suppose que $0 \in U$. Soit $f: U \longrightarrow \mathbb{R}^n$ de classe \mathcal{C}^1 telle que f(0) = 0 et $\mathrm{d} f_0 = \mathrm{Id}_{\mathbb{R}^n}$. On considère la fonction de classe \mathcal{C}^1 , $\varphi: x \in U \longmapsto x f(x) \in \mathbb{R}^n$.
 - 1) Justifier l'existence de r > 0 tel que pour tout $x \in \mathbb{R}^n$ avec $||x|| \leqslant r$, on a $||d\varphi_x||| \leqslant \frac{1}{2}$ et $df_x \in GL(\mathbb{R}^n)$.
 - 2) Démontrer que pour tout $x \in \overline{B}(0,r), \|\varphi(x)\| \leqslant \frac{r}{2}$.
 - 3) On fixe $y \in \mathbb{R}^n$ avec $||y|| \leqslant \frac{r}{2}$ et on considère l'application

$$\begin{array}{cccc} & \overline{B}(0,r) & \longrightarrow & \overline{B}(0,r) \\ g_y: & x & \longmapsto & \varphi(x)+y \end{array}$$

- a. Démontrer que g_y est bien définie et $\frac{1}{2}$ -lipschitzienne.
- b. En déduire que g_y possède un unique point fixe.
- 4) On pose $V = f^{<-1>}\left(B\left(0,\frac{r}{2}\right)\right) \cap B(0,r)$. Montrer que V est un ouvert, puis que $\tilde{f}: x \in V \longmapsto f(x) \in B\left(0,\frac{r}{2}\right)$ est bien définie.
- 5) Vérifier que \tilde{f} est bijective.
- 6) Vérifier que si $x, x' \in \overline{B}(0, r), \|x x'\| \le 2\|f(x) f(x')\|$. En déduire que \tilde{f}^{-1} est continue.
- 7) Justifier l'existence de $M \ge 0$ tel que pour tout $x \in \mathbb{R}^n$ avec $||x|| \le r$, on a $||(\mathrm{d}f_x)^{-1}|| \le M$.
- 8) Montrer que si $y, y_0 \in B\left(0, \frac{r}{2}\right)$ et $x = \tilde{f}^{-1}(y), x_0 = \tilde{f}^{-1}(y_0),$ on a

$$\left\| \tilde{f}^{-1}(y) - \tilde{f}^{-1}(y_0) - (d_{x_0}f)^{-1}(y - y_0) \right\| \le M \|f(x) - f(x_0) - df_{x_0}(x - x_0)\|.$$

- 9) Conclure que \tilde{f} établit un C^1 -difféomorphisme de V sur $B\left(0,\frac{r}{2}\right)$.
- II. Théorème de l'inversion locale : le cas général. Soit $f: U \longrightarrow \mathbb{R}^n$ de classe \mathcal{C}^1 , $a \in U$ tel que $u = \mathrm{d} f_a \in \mathrm{GL}(\mathbb{R}^n)$. On considère $F: x \in (-a) + U \longmapsto u^{-1}(f(x+a) f(a))$.
- 10) En appliquant le résultat de la première partie à F, vérifier l'existence de deux ouverts V et W de \mathbb{R}^n avec $a \in V \subset U$ et $f(a) \in W$ tels que f induise un \mathcal{C}^1 -difféomorphisme \tilde{f} de V sur W.
- 11) Vérifier que si f est de classe \mathcal{C}^k avec $k \geq 2$, alors \tilde{f} est un \mathcal{C}^k -difféomorphisme.
- III. Le théorème de l'inversion globale. Soit $f:U\longrightarrow \mathbb{R}^n$. On suppose f de classe \mathcal{C}^k et injective. De plus, on suppose que $\mathrm{d} f_a$ est un isomorphisme de \mathbb{R}^n pour tout $a\in U$. Montrer qu'alors, f(U) est un ouvert et que f établit un \mathcal{C}^k -difféomorphisme de U sur f(U).