Introduction à l'algorithmique et la complexité (et un peu de CAML) Diviser pour Régner

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

Cours dispensés en MPSI (option Info) au CIV, depuis 2011-

http://www-sop.inria.fr/members/Nicolas.Nisse/lectures/prepa/

- Diviser pour Régner
- 2 Aparté mathématique : $u_k = a \cdot u_{k-1} + O(b^k)$
- Multiplication de matrices
- Multiplication de polynômes

ser pour Régner Aparté Matrices Polynômes

Diviser pour Régner ("Divide and Conquer" en anglais)

Nous entrons maintenant dans le cœur de ce cours, à savoir, concevoir des algorithmes efficaces.

Une méthode pour cela est celle dite de Diviser pour régner.

Étant donnés un problème Π et une instance \mathscr{I} pour ce problème, il s'agit de déterminer des instances $\mathscr{I}_1, \cdots, \mathscr{I}_k$ plus petites et "indépendantes/disjointes" les unes des autres, telles que, pour résoudre (récursivement) Π pour \mathscr{I} , il est suffisant de résoudre Π pour chacune des instances $\mathscr{I}_1, \cdots, \mathscr{I}_k$ puis combiner les solutions obtenues.

Nous avons déjà vu des exemples de tels algorithmes :

Exponentiation rapide : (slide 14, Chap 3). Il s'agit de calculer x^c , et pour cela, l'algorithme résout (récursivement) le "sous-problème" $x^{c/2}$ (de "taille" deux fois plus petite) et utilise la solution obtenue pour calculer x^c .

Recherche dichotomique : (slide 17, Chap 3). Il s'agit de trouver un élément x dans un tableau tab trié. Pour cela, on détermine dans quelle moitié de tab se trouve x et on cherche (récursivement) dans un tableau (trié) deux fois plus petit.

Tri Fusion: (slides 9-10, Chap 4). On veut trier un tableau tab, pour cela, on divise tab en 2 tableaux (disjoints) deux fois plus petits, que l'on trie récursivement, et on fusionne les résultats.

- Diviser pour Régner
- 2 Aparté mathématique : $u_k = a \cdot u_{k-1} + O(b^k)$
- Multiplication de matrices
- Multiplication de polynômes

Résolution de $u_k = a \cdot u_{k-1} + O(b^k)$

Lors de l'étude de la complexité d'un algorithme récursif de type "diviser pour régner", on rencontre souvent des suites de la forme $u_0 = O(1)$ et $u_k = a \cdot u_{k-1} + O(b^k)$ (rappelez vous le Tri_Fusion avec a = b = 2, slide 10 Chap. 4). Nous apprenons ici à déterminer u_k .

Th : Soient $a,b\in\mathbb{R}^{+*}$ et $(u_k)_{k\mathbb{N}}$ telle que $u_0=O(1)$ et $u_k=a\cdot u_{k-1}+O(b^k)$

- $u_k = O(a^k)$ si a > b;
- $u_k = O(b^k)$ si b > a;
- $u_k = O(k \cdot a^k)$ si a = b.

Preuve: Posons $v_k = u_k/a^k$. Alors $v_k = v_{k-1} + O((\frac{b}{a})^k)$. Si a = b, alors $v_k = v_{k-1} + O(1)$, d'où $v_k = O(k)$ et $u_k = O(k \cdot a^k)$. Sinon, $v_k = O(\sum_{0 \le j \le k} (\frac{b}{a})^k) = O(\frac{1 - (b/a)^{k+1}}{1 - b/a})$. Si a > b, $v_k = O(1)$ et $u_k = O(a^k)$. Si b > a, $v_k = O((b/a)^k)$ et $u_k = O(b^k)$.

La propriété suivante sera aussi souvent utilisée. Soit $n = 2^k$ et supposons que $c(n) = O(x^k)$ alors, $c(n) = O(n^{\log_2 x})$, en effet, $k = \log_2 n$ et donc $x^k = (2^{\log_2 x})^k = (2^{\log_2 x})^{\log_2 n} = (2^{\log_2 n})^{\log_2 x} = n^{\log_2 x}$. (rappel : $y = 2^{\log_2 y}$ par définition de $\log_2 n$)

- Diviser pour Régner
- 2 Aparté mathématique : $u_k = a \cdot u_{k-1} + O(b^k)$
- Multiplication de matrices
- Multiplication de polynômes

Multiplication de matrices

Une matrice est repésentée ici par un tableau de tableaux (un tableau de "lignes"). Étant données deux matrices $n \times n$: $A = [a_{i,j}]_{1 \le i,j \le n}$ et $B = [b_{i,j}]_{1 \le i,j \le n}$, on désire calculer leur produit $C = A \cdot B = [c_{i,j}]_{1 \le i,j \le n} = [\sum_{1 \le k \le n} a_{i,k} b_{k,j}]_{1 \le i,j \le n}$.

```
Caml Light version 0.80
                                                           Terminaison: triple boucles imbriquées
#let mult a b =
                                                             Correction : laissée au lecteur
        let n = vect length a in
        let c = make_matrix n n 0 in
                                                            Complexité: triple boucles imbriquées.
        for i=0 to n-1 do
                                                                          c(mult) = O(n^3).
                for j=0 to n-1 do
                        let temp = ref 0 in
                        for k=0 to n-1 do
                                temp := !temp + a.(i).(k) * b.(k).(i):
                        c.(i).(i) <- ! temp:
                done:
        done:
mult : int vect vect -> int vect vect -> int vect vect = <fun>
```

Il est possible de faire mieux que le $O(n^3)$ de cet algorithme "naïf" comme nous allons le voir dans la suite

Exercice : Étant données deux matrices $n \times q$: $A = [a_{i,j}]$ et $B = [b_{i,j}]$, donnez un algorithme pour calculer $C = A + B = [a_{i,j} + b_{i,j}]_{1 < i < n, 1 < j < q}$ en temps O(nq).

Multiplication de matrices

Aparté de programmation. Tester les 2 algorithmes ci-dessous et vérifier qu'ils "buggent"

```
Caml Light version 0.80
#let mult a b =
        let n = vect length a in
                                                                    #let mult a b =
        let ligne = make vect n 0 in
                                                                             let n = vect_length a in
        let c = make_vect n ligne in
                                                                            let c = make vect n (make vect n 0) in
        for i = 0 to n-1 do
                                                                             for i=0 to n-1 do
                for j = 0 to n-1 do
                                                                                     for j=0 to n-1 do
                         let tmp = ref 0 in
                                                                                             let temp = ref 0 in
                         for k =0 to n-1 do
                                                                                             for k=0 to n-1 do
                                 tmp := !tmp + a.(i).(k) * b.(k).
                                                                                                    temp := !temp + a.(i).(k) * b.(k).(
                         c.(i).(i) <- !tmp:
                                                                                            c.(i).(j) <- ! temp;
                done:
                                                                                    done;
        done;
                                                                            done:
                                                                            C::
mult : int vect vect -> int vect vect -> int vect vect = <fun>
                                                                    mult : int vect vect -> int vect vect -> int vect vect = <fun>
```

Cela est dû au fait que $let\ c = make_vect\ n\ init$, si init est mutable (comme c'est le cas de $init = ligne = make_vect\ n\ 0$) et de $init = make_vect\ n\ 0$), "met" dans chaque "case" de c une référence à init (et non sa valeur). Ainsi, si la valeur de init est modifié(e), elle l'est dans chaque "occurrence de sa référence" (donc, ici, dans chaque "case").

Algorithme de Strassen (1969)

Soit $p \in \mathbb{N}^*$. Pour simplifier la présentation, supposons que N et M (dont on veut faire le produit) sont des matrices $2^p \times 2^p$. Soient A, B, C, D, E, F, G et H les huit matrices $2^{p-1} \times 2^{p-1}$ telles que

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \text{ et } N = \begin{bmatrix} E & F \\ G & H \end{bmatrix}. \text{ Soient } P_1 = A*(F-H), P_2 = (A+B)*H, P_3 = (C+D)*E, P_4 = D*(G-E), P_5 = (A+D)*(E+H), P_6 = (B-D)*(G+H) \text{ et } P_7 = (A-C)*(E+F).$$

L'algorithme de Strassen repose sur le fait suivant.

Prouver que
$$M*N = \begin{bmatrix} -P_2 + P_4 + P_5 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 - P_3 + P_5 - P_7 \end{bmatrix}$$

Algorithme de Strassen

complexité c(p)

• Si p = 0, $MN = [m_{0.0} * n_{0.0}]$, sinon

- O(1) opérations
- Calcul de F H, A + B, C + D, G E, A + D, E + H, B D, G + H, A C et E + F, soit 10 additions de matrices $2^{p-1} \times 2^{p-1}$. $O((2^{p-1})^2)$ opérations.
- Calcul des P_i avec 7 multiplications de matrices $2^{p-1} \times 2^{p-1}$. 7c(p-1) opérations.
- Calcul de $-P_2 + P_4 + P_5 + P_6$; $P_1 + P_2$; $P_3 + P_4$ et $P_1 P_3 + P_5 P_7$: quelques additions/soustractions de matrices $2^{p-1} \times 2^{p-1}$ $O((2^{p-1})^2)$ opérations.

Donc, c(0) = O(1) et $c(p) = 7c(p-1) + O(4^p)$. Donc $c(p) = 7^p$ (cf. Th. Slide 5). Si $2^{p-1} < n \le 2^p$, la multiplication de 2 matrices $n \times n$ est réalisée en $O(7^p) \approx O(n^{2,8})$ opérations.

Rmq: Le meilleur algorithme connu a une complexité de O(n^{2.3728639}) [François Le Gall (2014)]. COATI (nrita

- Diviser pour Régner
- 2 Aparté mathématique : $u_k = a \cdot u_{k-1} + O(b^k)$
- Multiplication de matrices
- Multiplication de polynômes

Multiplication de polynômes

Soient $P(X) = \sum\limits_{i=0}^n a_i X^i$ et $Q(X) = \sum\limits_{i=0}^n b_i X^i$ $(a_n,b_n \neq 0)$ deux polynômes de $\mathbb{R}[X]$ de degré n représentés par les tableaux de leurs coefficients (les algorithmes ci-dessous supposent que P et Q ont même degré, le cas général est laissé au lecteur).

On veut déterminer le tableau des coefficients de $P \cdot Q = \sum_{i=0}^{2n} {i \choose j=0} a_j b_{i-j} X^i$.

```
#let multPol p q = Terminaison: double boucles imbriquées let ne vect_length p in let res = make_vect (2*n-1) 0 in for i = 0 to (2*n-2) do for j=0 to i do cone res.(i) <- res.(i) + p.(j)*q.(i-j); double boucles imbriquées. c(multPol) = O(n^2). done done; res;; multPol : int vect -> int vect -> int vect = <fun>
```

Il est possible de faire mieux que le $O(n^2)$ de cet algorithme "naïf" comme nous allons le voir dans la suite.

Multiplication de polynômes, fonctions auxiliaires

Continuons avec de "simples" fonctions sur les polynômes.

Addition de 2 polynômes

Exercice : Ecrire un algorithme qui prends (les coefficients de) 2 polynômes $P(X) = \sum_{i=0}^{p} a_i X^i$ et $Q(X) = \sum_{i=0}^{q} b_i X^i$ et calcule les coefficients du polynôme $(P+Q)(X) = \sum_{i=0}^{\max\{p,q\}} (a_i+b_i)X^i$ en temps $O(\max\{p,q\})$.

Multiplication par un monôme

L'algorithme ci-dessous calcule les coefficients du polynôme $X^q P(X)$ en temps O(q + degre(P)).

```
#let multMonome p q =
    let ne vect_length p in
    let res = make_vect (n=q) 0 in
    for i=q to n-1+q do
        res.(i) <- p.(i-q)
    done;
    multMonome : int vect -> int -> int vect = <fun>
```

Division euclidienne d'un polynôme par un monôme

Rappel : Étant donné un polynôme $P(X) = \sum_{i=0}^{p} a_i X^i$ et $q \le n$, il existe deux uniques polynômes $A(X) = \sum_{i=0}^{n-q} a_{i+q} X^i$ et

$$B(X) = \sum_{i=0}^{q-1} a_i X^i \text{ tels que } P(X) = X^q A(X) + B(X).$$

Exercice: Ecrire un algorithme qui prends P(X) et $q \le n$ et calcule (les coefficients de) A(X) et B(X) tels que $P(X) = X^q A(X) + B(X)$ en temps O(n).

iviser pour Régner Aparté Matrices Polynômes

Multiplication de polynômes, méthode de Karatsuba (1962)

Soit $p \in \mathbb{N}^*$. Pour simplifier la présentation, supposons que P et Q (dont on veut faire le produit) sont des polynômes de degré $n=2^p$. Soient A,B,C et D les quatre polynômes de degré $\leq n/2$ (< n/2 pour B et D) tels que $P(X)=X^{n/2}A(X)+B(X)$ et $Q(X)=X^{n/2}C(X)+D(X)$.

L'algorithme de Karatsuba repose sur le fait suivant.

Prouver que

$$P \cdot Q(X) = X^{n} A(X) C(X) + X^{n/2} ((A(X) + B(X)) (C(X) + D(X)) - A(X) C(X) - B(X) D(X))$$

Algorithme de Strassen

complexité c(p)

Si p = 0, on conclut facilement, sinon

- O(1) opérations
- Calcul de A+B et C+D: 2 additions de polynômes de degré 2^{p-1} . $O(2^{p-1})$ opérations.
- Calcul de A · C, (A + B)(C + D) et B · D, soit 3 multiplications de polynômes de degré 2^{p-1}.
 3c(p-1) opérations.
- Multiplication par Xⁿ, multiplication par X^{n/2} et quelques additions/soustractions de polynômes de degré n = 2^p O(2^p) opérations.

Donc, c(0) = O(1) et $c(p) = 3c(p-1) + O(2^p)$. Donc $c(p) = 3^p = n^{\log 3} \approx n^{1.585}$ (cf. Th. Slide 5).

