MECH 498: Introduction to Robotics

Direct (Forward)
Manipulator Kinematics

M. O'Malley

#### **Kinematics - Introduction**

- Kinematics the science of motion which treat motions without regard to the forces that cause them
  - e.g. position, velocity, acceleration, higher derivatives of the position
- Kinematics of Manipulators All the geometrical and time based properties of the motion

### **Central Topic**

#### Problem

- Given: The manipulator geometrical parameters
- Specify: The position and orientation of manipulator

#### Solution

 Coordinate system or "Frames" are attached to the manipulator and objects in the environment following the Denenvit-Hartenberg notation.



### Joint/Link Description

 Lower pair - The connection between a pair of bodies when the relative motion is characterize by two surfaces sliding over one another.

Mechanical Design Constraints



1 DOF Joint Revolute Joint Prismatic Joint

 Link - A rigid body which defines the relationship between two neighboring joint axes of the manipulator



#### Link Parameters (Denevit-Hartenberg) – Length & Twist)

- Joint Axis A line in space (or a vector direction) about which link i rotates relative to link i-1
- Link Length a<sub>i-1</sub>
  - The distance between axis i and axis i-1

#### Notes

- Expanding cylinder analogy
- Distance
  - Parallel axes → ∞
  - Non-Parallel axes → 1
- Sign  $\rightarrow a_{i-1} \ge 0$
- Link Twist  $\alpha_{i-1}$ 
  - The angle measured from axis *i-1* to axis *i*
- **Note** : Sign  $\alpha_{i-1}$  by right hand rule



### Link Parameters - Example

- Axes
- Link Length  $\rightarrow a_{i-1} = 7$  in
- Link Twist  $\rightarrow a_{i-1} = 45^{\circ}$



### Joint Variables (Denevit-Hartenberg) – Angle & Offset

- Link Offset d<sub>i</sub>
  - The signed distance measured along the axis of joint i from the point where a<sub>i-1</sub> intersects the axis to the point where a<sub>i</sub> intersects the axis
    - The link offset d<sub>i</sub> is variable if joint i is prismatic
    - Sign of d<sub>i</sub>
- Joint Angle θ<sub>i</sub>
  - The signed angle made between an extension of a<sub>i-1</sub> and a<sub>i</sub> measured about the the axis of the joint i
- Note:
  - The joint angle  $\theta_{i}$  is variable if the joint  $\boldsymbol{i}$  is revolute
- Sign  $\theta_i \rightarrow$  Right hand rule



### Link Parameters - Example





Link offset  $d_i = 2.5in$ 

### Joint/Link Parameters & Values -First and last links in chain

| $\begin{cases} a_1 \to a_{n-1} \\ a_0 = a_n = 0 \end{cases}$                     | See Definition          |
|----------------------------------------------------------------------------------|-------------------------|
| $\int a_0 = a_n = 0$                                                             | Convention              |
| $\begin{cases} \alpha_1 \to \alpha_{n-1} \\ \alpha_0 = \alpha_n = 0 \end{cases}$ | See Definition          |
| $\alpha_0 = \alpha_n = 0$                                                        | Convention              |
| $\begin{cases} d_2 \to d_{n-1} \\ \theta_2 \to \theta_{n-1} \end{cases}$         | See Definition          |
| Joint 1 - Revolute Joint $\begin{cases} \theta_1 = 0 \\ d_1 = 0 \end{cases}$     | Arbitrary<br>Convention |
| Joint 1 - Prismatic Joint $\begin{cases} \theta_1 = 0 \\ d_1 = 0 \end{cases}$    | Convention<br>Arbitrary |

#### Affixing Frames to Links – Intermediate Links in the Chain

#### Origin of Frame {i} -

The origin of frame  $\{i\}$  is located where the  $a_i$  perpendicular intersects the joint i

**Z Axis** - - The  $\hat{Z}_i$  axis of frame  $\{i\}$  is coincident with the joint axis I

**X Axis** -  $\hat{X}_i$  axis points along the distance  $\mathbf{a}_i$  in the direction from joint  $\mathbf{i}$  to joint  $\mathbf{i+1}$ 

- For  $\mathbf{a}_i$  = 0,  $\hat{X}_i$  is normal to the plane of  $\hat{Z}_i$  and  $\hat{Z}_{i+1}$
- The link twist angle  $\mathbf{a}_{\!i}$  is measured in a right hand sense about  $\hat{X}_i$

 ${\it Y\,Axis-} \ \hat{Y_i} \ {\it axis completes frame \{i\}} \ {\it following the right hand rule}$ 



### Affixing Frames to Links – First & Last Links in the Chain

 Frame {0} - The frame attached to the base of the robot or link 0 called frame {0} This frame does not move and for the problem of arm kinematics can be considered as the reference frame.

Frame {0} coincides with Frame {1} - 
$$\begin{cases} \alpha_0 = 0 \\ a_0 = 0 \end{cases}$$
 Joint 1 - Revolute Joint 
$$\begin{cases} \theta_1 = 0 & \text{Arbitrary} \\ d_1 = 0 & \text{Convention} \end{cases}$$
 Joint 1 - Prismatic Joint 
$$\begin{cases} \theta_1 = 0 & \text{Convention} \\ d_1 = 0 & \text{Arbitrary} \end{cases}$$

### Link Frame Attachment Procedure - Summary

- Identify the joint axes and imagine (or draw) infinite lines along them. For step 2 through step 5 below, consider two of these neighboring lines (at axes i and i+1)
- Identify the common perpendicular between them, or point of intersection. At the point of intersection, or at the point where the common perpendicular meets the *i* th axis, assign the link frame origin.
- 3. Assign the  $\hat{Z}_i$  axis pointing along the i th joint axis.
- 4. Assign the  $\hat{X_i}$  axis pointing along the common perpendicular, or if the axes intersect, assign  $\hat{X_i}$  to be normal to the plane containing the two axes
- 5. Assign the  $Y_i$  axis to the complete a right hand coordinate system.
- 6. Assign {0} to match {1} when the first joint veritable is zero. For {N}, choose an origin location and  $\hat{X}_N$  direction freely, but generally so as to cause as many linkage parameters as possible to be zero

### **DH Parameters - Summary**

 If the link frame have been attached to the links according to our convention, the following definitions of the DH parameters are valid:

```
a_i - The distance from \hat{Z}_i to \hat{Z}_{i+1} measured along \hat{X}_i
```

 $\alpha_{\!\scriptscriptstyle I}$  - The angle between  $\hat{Z}_{\!\scriptscriptstyle I}$  and  $\hat{Z}_{\!\scriptscriptstyle I+1}$  measured about  $\hat{X}_{\!\scriptscriptstyle I}$ 

 $d_i$  - The distance from  $\hat{X}_{i-1}$  to  $\hat{X}_i$  measured along  $\hat{Z}_i$ 

 $\theta_i$  - The angle between  $\hat{X}_{i\text{--}1}$  and  $\,\hat{X}_i\,$  measured about  $\hat{Z}_i$ 

#### Note:

 $-a_i \ge 0$ , and  $\alpha_i$ ,  $d_i$ , and  $\theta_i$  are signed quantities

### DH Parameters - RRR (3R) - Example



# DH Parameters - RRR (3R) - Example

Identify the joint axes



## DH Parameters - RRR (3R) - Example

Identify the common perpendicular between joint axes



# DH Parameters - RRR (3R) - Example

• Assign the  $\hat{Z}_i$  axis pointing along the i th joint axis.



• Assign the  $\hat{x_i}$  axis pointing along the common perpendicular

Example



## DH Parameters - RRR (3R) - Example

• Assign the  $\hat{Y}_i$  axis to the complete a right hand coordinate system



## DH Parameters - RRR (3R) - Example

• Assign {0} to match {1} when the first joint variable is zero. For {N} choose an origin location and  $\hat{X}_N$  direction freely, but generally so as to cause as many linkage parameters as possible to be zero



### DH Parameters - RRR (3R) -

Example

| i | $\alpha_{i-1}$ | $a_{i-1}$ | $d_i$ | $\Theta_i$ |
|---|----------------|-----------|-------|------------|
| 1 | 0              | 0         | 0     | $\theta_1$ |
| 2 | 0              | $L_1$     | 0     | $\theta_2$ |
| 3 | 0              | $L_2$     | 0     | $\theta_3$ |



# DH Parameters - RPR – Example



# DH Parameters - RPR – Example

Identify the joint axes



## DH Parameters - RPR – Example

Identify the common perpendicular between axis
 NONE



## DH Parameters - RPR – Example

• Assign the  $\hat{z}_i$  axis pointing along the i th joint axis.



# DH Parameters - RPR – Example

• If the  $\hat{Z}_i$  axes intersect, assign  $\hat{X}_i$  to be normal to the plane containing the two axes



### DH Parameters - RPR – Example

• Assign the  $\hat{Y}_i$  axis to the complete a right hand coordinate system



## DH Parameters - RPR – Example

• Assign {0} to match {1} when the first joint variable is zero. For {N} choose an origin location and  $\hat{X}_N$  direction freely, but generally so as to cause as many linkage parameters as possible to be zero



### DH Parameters - RPR -Example

| i | $\alpha_{i-1}$ | $a_{i-1}$ | $d_i$ | $\theta_i$ |
|---|----------------|-----------|-------|------------|
| 1 | 0              | 0         | 0     | $\theta_1$ |
| 2 | 90°            | 0         | $d_2$ | 0          |
| 3 | 0              | 0         | $L_2$ | θ3         |



### DH Parameters - RRR (3R) -Example

- Orthogonal Axes (Intersection) & Parallel Axes Non
- Uniqueness of DH parameters When  $\hat{Z}_i$  and  $\hat{Z}_{i+1}$  intersect there are two choices for  $\hat{X}_i$
- There are four more possibilities corresponding to the four configurations but with  $\hat{Z}_i$  pointing downward





### **Central Topic**

· Where is the tool?



### Derivation of Link Homogeneous Transformation

Problem: Determine the transformation which defines frame {i} relative to the frame {i+1}

 $^{i-1}_{i}T$ 

Note: For any given link of a robot, <sup>i-1</sup><sub>i</sub>T will be a function of only one variable out of a<sub>i</sub>, α<sub>i</sub>, d<sub>i</sub>, θ<sub>i</sub>. The other three parameters are fixed by mechanical design.



- − Revolute Joint  $\rightarrow \theta_i$
- Prismatic Joint → d<sub>i</sub>

#### Derivation Homogeneous Transformation

#### · Solution:

- The problem is further broken into
   4 sub problems such that each of the transformations will be a function of one link parameter only
- · Define three intermediate frames:
  - {**P**}, {**Q**}, and {**R**}
  - Frame  $\{R\}$  is different from  $\{i+1\}$  only by a rotation of  $\alpha_{i-1}$
  - Frame {Q} is different from {R} only by a translation a<sub>i-1</sub>
  - Frame {**P**} is different from {**Q**} only by a rotation θ<sub>i</sub>
  - Frame {i} is different from {P} only by a translation d;



### Derivation of link Homogeneous Transformation

**Solution:** A vector defined in frame  $\{i\}$  is expressed in  $\{i-I\}$  as follows

$$^{i-1}P = {}^{i-1}_R T_Q^R T_P^Q T_i^P T^i P$$

$$^{i-1}P = ^{i-1}_{i}T^{i}P$$

The transformation from frame  $\{i-I\}$  to frame  $\{i\}$  is defined as follows

$$_{i}^{i-1}T = _{R}^{i-1}T_{Q}^{R}T_{P}^{Q}T_{I}^{P}T$$

$$_{i}^{i-1}T = R_X(\alpha_{i-1})D_X(\alpha_{i-1})R_Z(\theta_i)D_Z(d_i)$$



Note:  $\hat{y}$  was omitted

$${}^{i-1}_{i}T = R_{X}(\alpha_{i-1})D_{X}(a_{i-1})R_{Z}(\theta_{i})D_{Z}(d_{i})$$

$${}^{i-1}_{i}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c\alpha_{i-1} & -s\alpha_{i-1} & 0 \\ 0 & s\alpha_{i-1} & c\alpha_{i-1} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i-1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & 0 \\ s\theta_{i} & c\theta_{i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & \mathbf{0} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{i-1}_{i}T = \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & a_{i-1} \\ s\theta_{i}c\alpha_{i-1} & c\theta_{i}c\alpha_{i-1} & -s\alpha_{i-1} & -s\alpha_{i-1}d_{i} \\ s\theta_{i}s\alpha_{i-1} & c\theta_{i}s\alpha_{i-1} & c\alpha_{i-1} & c\alpha_{i-1}d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

### DH Parameters – RPR – Example



### **Concatenating Link Transformation**

- · Define link frames
- · Define DH parameters of each link
- · Compute the individual link transformation matrix
- Relates frame { N } to frame { 0 }

$$_{N}^{0}T = _{1}^{0}T_{2}^{1}T_{3}^{2}T..._{N}^{N-1}T$$

- The transformation  $\sqrt[0]{T}$  will be a function of all n joint variables.
- If the robot's joint position sensors are measured, the Cartesian position and orientation of the last link may be computed by  ${}^{\circ}_{N}T$

### Actuator Space – Joint Space – Cartesian Space



Task Oriented Space Operational Space

### **PUMA Family**

**PUMA 500** 

**PUMA 200** 





**PUMA 700** 







PUMA 560 – 6R



### Kinematics of an Industrial Robot – PUMA 560

 The robot position in which all joint angles are equal to zero





# PUMA 560 – Frame Assignments – {0} and {1}

- Assign {0} to match {1} when the first joint variable is zero. Frame {0} is coincident with Frame {1}
- Assign the  $\hat{Z}_1$  axis pointing along the Ist joint axis.
- Assign the  $\hat{X}_1$  axis pointing along the common perpendicular, or if the axes intersect, assign  $\hat{X}_1$  to be normal to the plane containing the two axes
- Assign the Î<sub>1</sub> axis to the complete a right hand coordinate system.



# PUMA 560 – Frame Assignments – {2}

- Assign the  $\hat{Z}_2$  axis pointing along the  $2^{nd}$  joint axis.
- Assign the  $\hat{X}_2$  axis pointing along the common perpendicular
- Assign the  $\hat{Y}_2$  axis to the complete a right hand coordinate system.



# PUMA 560 – Frame Assignments – {3}

- Assign the  $\hat{Z}_3$  axis pointing along the  $3^{rd}$  joint axis
- Assign the  $\hat{X}_{\rm 3}$  axis pointing along the common perpendicular
- Assign the  $\hat{Y}_3$  axis to the complete a right hand coordinate system.



# PUMA 560 – Frame Assignments – {4}

- Assign the  $\hat{Z}_4$  axis pointing along the  $\it 4th$  joint axis.
- Assign the Â<sub>4</sub>axis pointing along the common perpendicular if the axes intersect, assign Â<sub>4</sub>to be normal to the plane containing the two axes
- Assign the Ŷ<sub>4</sub>axis to the complete a right hand coordinate system.



# PUMA 560 – Frame Assignments – {5}

- Assign the  $\hat{Z}_5$  axis pointing along the  $\it 5th$  joint axis.
- Assign the  $\hat{X}_5$  axis pointing along the common perpendicular if the axes intersect, assign  $\hat{X}_5$  to be normal to the plane containing the two axes
- Assign the Ŷ<sub>5</sub> axis to the complete a right hand coordinate system.



# PUMA 560 – Frame Assignments – {6}

- Assign the  $\hat{Z}_6$  axis pointing along the 6th joint axis.
- For frame {N} ({6}) choose an origin location and  $\hat{X}_6$  direction freely, but generally so as to cause as many linkage parameters as possible to be zero
- Assign the  $\hat{Y}_6$  axis to the complete a right hand coordinate system.



### PUMA 560 - DH Parameters



| i | $\alpha_f-1$ | $a_{i-1}$      | $d_i$ | $\theta_i$     |
|---|--------------|----------------|-------|----------------|
| 1 | 0            | 0              | 0     | $\theta_1$     |
| 2 | -90°         | 0              | 0     | $\theta_2$     |
| 3 | 0            | $a_2$          | $d_3$ | $\theta_3$     |
| 4 | -90°         | a <sub>3</sub> | $d_4$ | θ4             |
| 5 | 90°          | 0              | 0     | θ <sub>5</sub> |
| 6 | -90°         | 0              | 0     | θ <sub>6</sub> |

#### PUMA 560 - Link Transformations

$$i^{-1}T = \begin{bmatrix} c\theta_i & -s\theta_i & 0 & a_{i-1} \\ s\theta_i c\alpha_{i-1} & c\theta_i c\alpha_{i-1} & -s\alpha_{i-1} & -s\alpha_{i-1}d_i \\ s\theta_i s\alpha_{i-1} & c\theta_i s\alpha_{i-1} & c\alpha_{i-1} & c\alpha_{i-1}d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

| í | $\alpha_i=1$ | $a_{i-1}$      | $d_i$ | $\theta_i$     |
|---|--------------|----------------|-------|----------------|
| 1 | 0            | 0              | 0     | $\theta_1$     |
| 2 | -90°         | 0              | 0     | θ2             |
| 3 | 0            | σ <sub>2</sub> | $d_3$ | θ <sub>3</sub> |
| 4 | -90°         | a <sub>3</sub> | $d_4$ | θ4             |
| 5 | 90"          | 0              | 0     | θ <sub>5</sub> |
| 6 | -90°         | 0              | 0     | θ <sub>6</sub> |

$${}^{0}_{1}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}_{2}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{2} & -c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}_{3}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & a_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}_{4}T = \begin{bmatrix} c\theta_{4} & -s\theta_{4} & 0 & a_{3} \\ 0 & 0 & 1 & d_{3} \\ -s\theta_{4} & -c\theta_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{6}_{4}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{6}_{5}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

$${}_{o}^{5}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{5} & -c\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}_{o}^{4}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s\theta_{5} & c\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

### PUMA 560 - Kinematic Equations

 The kinematics equations of PUMA 560 specify how to compute the position & orientation of frame {6} (tool) relative to frame {0} (base) of the robot. These are the basic equations for all kinematic analysis of this manipulator.

$${}_{6}^{0}T = {}_{1}^{0}T_{2}^{1}T_{3}^{2}T_{4}^{3}T_{3}^{4}T_{6}^{5}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{split} r_{11} &= c_1 \left[ c_{23} (c_4 c_5 c_6 - s_4 s_6) - s_{23} s_5 c_6 \right] + s_1 (s_4 c_5 c_6 + c_4 s_6), \\ r_{21} &= s_1 \left[ c_{23} (c_4 c_5 c_6 - s_4 s_6) - s_{23} s_5 c_6 \right] - c_1 (s_4 c_5 c_6 + c_4 s_6), \\ r_{31} &= -s_{23} (c_4 c_5 c_6 - s_4 s_6) - c_{23} s_5 c_6, \end{split}$$

$$\begin{split} r_{12} &= c_1 \left[ c_{23} (-c_4 c_5 s_6 - s_4 c_6) + s_{23} s_5 s_6 \right] + s_1 (c_4 c_6 - s_4 c_5 s_6), \\ r_{22} &= s_1 \left[ c_{23} (-c_4 c_5 s_6 - s_4 c_6) + s_{23} s_5 s_6 \right] - c_1 (c_4 c_6 - s_4 c_5 s_6), \\ r_{32} &= -s_{23} (-c_4 c_5 s_6 - s_4 c_6) + c_{23} s_5 s_6, \end{split}$$

$$\cos(\theta_1) = c\theta_1 = c_1$$
  

$$\cos(\theta_1 + \theta_2) = c_{12} = c_1c_2 - s_1s_2$$
  

$$\sin(\theta_1 + \theta_2) = s_{12} = c_1s_2 + s_1c_2$$

$$r_{13} = -c_1(c_{23}c_4s_5 + s_{23}c_5) - s_1s_4s_5,$$

$$r_{23} = -s_1(c_{23}c_4s_5 + s_{23}c_5) + c_1s_4s_5, \\$$

$$r_{33} = s_{23}c_4s_5 - c_{23}c_5,$$

$$p_x = c_1 \left[ a_2 c_2 + a_3 c_{23} - d_4 s_{23} \right] - d_3 s_1,$$

$$p_y = s_1 \left[ a_2 c_2 + a_3 c_{23} - d_4 s_{23} \right] + d_3 c_1,$$

$$p_z = -a_3 s_{23} - a_2 s_2 - d_4 c_{23}$$
.

#### Frame with Standard Names

#### Base Frame (B) -

- {B} is located at the base of the manipulator affixed to the nonmoving part of the robot (another name for frame {0})

#### Station Frame (S) -

- {S} is located in a task relevant location (e.g. at the corner of the table upon the which the robot is to work). From the user perspective {S} is the universe frame (task frame or world frame) and all action of the robot are made relative to it. The station frame **{S}** is always specify with respect to the base frame (B),



#### Frame with Standard Names

#### Wrist Frame (W) -

**{W}** is affixed to the last link of the manipulator the wrist (another name for frame {N}). The wrist frame **{W}** is defined relative to the base frame i.e.  ${}^B_W T = {}^0_N T$ 

#### Tool Frame {T} -

{T} is affixed to the end of any tool the robot happens to be holding. When the hand is empty, **{T}** is located with its origin between the fingertips of the robot. The tool frame {T} is always specified with respect to the wrist frame **{W}** i.e.





#### Frame with Standard Names

- Goal Frame {G} -
  - {G} is describing the location to which the robot is about to move the tool. At the end of the robot motion the tool frame {T} is about to coincide with the goal frame {G}. The goal frame is always specified with respect to the station frame {S} i.e.

 $_{G}^{S}T$ 



### Where is the tool?

· Problem:

Calculate the transformation matrix of the the tool frame {T} relative to the station frame {S} -  $^S_TT$ 

Solution:

Cartesian Transformation

$$_{T}^{S}T = _{S}^{B}T^{-1}_{W}^{B}T_{T}^{W}T$$



### Manipulator Kinematics - Example - 3R - Wrist



### Manipulator Kinematics - Example - 3R - Wrist



### Manipulator Kinematics – Example - PRR



Manipulator Kinematics – Example - PRR



## Manipulator Kinematics – Example – 3P



# Manipulator Kinematics – Example – 3P



### Manipulator Kinematics – Example – PRRR



### Manipulator Kinematics – Example – PRRR



# Manipulator Kinematics – Example – 3R



| i-I | i | $\alpha_{i-1}$ | $a_{i-1}$ | $d_i$ | $\theta_i$ |
|-----|---|----------------|-----------|-------|------------|
| 0   | 1 |                |           |       |            |
| 1   | 2 |                |           |       |            |
| 2   | 3 |                |           |       |            |

 $_{W}^{B}T$ 

# Manipulator Kinematics – Example – 3R



| i-1 | i | $\alpha_{i-1}$ | $a_{i-1}$ | $d_i$ | $\theta_i$ |
|-----|---|----------------|-----------|-------|------------|
| 0   | 1 | 0              | 0         | 0     | $\theta_1$ |
| 1   | 2 | 90             | $L_1$     | 0     | $\theta_2$ |
| 2   | 3 | 0              | $L_2$     | 0     | $\theta_3$ |

 $_{W}^{B}T = _{3}^{0}T = _{1}^{0}T_{2}^{1}T_{3}^{2}T$ 

### Manipulator Kinematics – Example – 3R



| i-1 | i | $\alpha_{i-1}$ | $a_{i-1}$ | $d_{i}$ | $\theta_i$ |
|-----|---|----------------|-----------|---------|------------|
| 0   | 1 |                |           |         |            |
| 1   | 2 |                |           |         |            |
| 2   | 3 |                |           |         |            |
| 3   | 4 |                |           |         |            |

 $_{T}^{B}T$ 

# Manipulator Kinematics – Example – 3R



| i-1 | i | $\alpha_{i-1}$ | $a_{i-1}$ | $d_{i}$         | $\theta_{i}$ |
|-----|---|----------------|-----------|-----------------|--------------|
| 0   | 1 | 0              | 0         | $L_{1} + L_{2}$ | $\theta_1$   |
| 1   | 2 | 90             | 0         | 0               | $\theta_2$   |
| 2   | 3 | 0              | $L_3$     | 0               | $\theta_3$   |
| 3   | 4 | 0              | $L_4$     | 0               | 0            |

 $_{T}^{S}T = _{4}^{0}T = _{1}^{0}T_{2}^{1}T_{3}^{2}T_{4}^{3}T$ 

### Manipulator Kinematics – Example – RRPRR



| i-I | i | $\alpha_{i-1}$ | $a_{i-1}$ | $d_{i}$ | $\Theta_i$ |
|-----|---|----------------|-----------|---------|------------|
| 0   | 1 |                |           |         |            |
| 1   | 2 |                |           |         |            |
| 2   | 3 |                |           |         |            |
| 3   | 4 |                |           |         |            |
| 4   | 5 |                |           |         |            |

 $_{W}^{B}T$ 

# Manipulator Kinematics – Example – RRPRR (2RP2R)



### Manipulator Kinematics – Example – RRPRR (2RP2R)

| i-1 | i | $\alpha_{i-1}$ | $a_{i-1}$ | $d_{i}$ | $\Theta_i$   |
|-----|---|----------------|-----------|---------|--------------|
| 0   | 1 | 0              | 0         | 0       | $\Theta_1$   |
| 1   | 2 | $\alpha_1$     | $a_1$     | $-d_1$  | $\theta_2$   |
| 2   | 3 | $-\alpha_2$    | 0         | $d_2$   | 0            |
| 3   | 4 | $-\alpha_3$    | 0         | $d_3$   | $\theta_4$   |
| 4   | 5 | 0              | $a_4$     | 0       | $\theta_{5}$ |

 $_{W}^{B}T = {}_{5}^{0}T = {}_{1}^{0}T {}_{2}^{1}T {}_{3}^{2}T {}_{4}^{3}T {}_{5}^{4}T$ 

### Link Frame Attachment Procedure - Summary

- Identify the joint axes and imagine (or draw) infinite lines along them.
   For step 2 through step 5 below, consider two of these neighboring lines (at axes *i* and *i+1*)
- Identify the common perpendicular between them, or point of intersection. At the point of intersection, or at the point where the common perpendicular meets the *i* th axis, assign the link frame origin.
- 3. Assign the  $\hat{Z}_i$  axis pointing along the i th joint axis.
- 4. Assign the  $\hat{X}_i$  axis pointing along the common perpendicular, or if the axes intersect, assign  $\hat{X}_i$  to be normal to the plane containing the two axes
- 5. Assign the  $\hat{y_i}$  axis to the complete a right hand coordinate system.
- 6. Assign {0} to match {1} when the first joint veritable is zero. For {N}, choose an origin location and  $\hat{X}_N$  direction freely, but generally so as to cause as many linkage parameters as possible to be zero

#### **DH Parameters - Review**

- $a_i$  The distance from  $\hat{Z}_i$  to  $\hat{Z}_{i+1}$  measured along  $\hat{X}_i$
- $lpha_{\!\scriptscriptstyle I}$  The angle between  $\hat{Z}_{\!\scriptscriptstyle I}$  and  $\hat{Z}_{\!\scriptscriptstyle I+1}$  measured about  $\hat{X}_{\!\scriptscriptstyle I}$
- $d_i$  The distance from  $\hat{X}_{i-1}$  to  $\hat{X}_i$  measured along  $\hat{Z}_i$
- $\theta_i$  The angle between  $\hat{X}_{i\text{--}1}$  and  $\,\hat{X}_i\,$  measured about  $\hat{Z}_i$

#### · Note:

 $-a_i \ge 0$  ,and  $\alpha_i$  ,  $d_i$  , and  $\theta_i$  are signed quantities



### Derivation of Link Homogeneous Transformation



$${}_{i}^{i-1}T = \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & a_{i-1} \\ s\theta_{i}c\alpha_{i-1} & c\theta_{i}c\alpha_{i-1} & -s\alpha_{i-1} & -s\alpha_{i-1}d_{i} \\ s\theta_{i}s\alpha_{i-1} & c\theta_{i}s\alpha_{i-1} & c\alpha_{i-1} & c\alpha_{i-1}d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$