Dumitrache Morian - George 324 CC

Jemaz - AA

```
11
then ( table )
   while true
        table = choice ({ passible - morees - Dareid })
        ret = f(table)
        if ret = = 1
       success
      else if ret == 0 or ret == -1
          fail
        talele = chaice (& passible - marces - opponent },
        ret = f(table)
        if ret = = 1
         ruccess
        else if ret == 0 or ret == -1
        fail
```

2101 numeratare - gralioura - medet (G) 11G=(V, E) for each re EV -> O(n) num $(ne) = \text{chaice}(\{1, 2, ..., n\})$ if num $(ne) \in \text{num}(-> 0)$ fail fail nums = nums v & num (re) } for each (u, re) E E -> O(m) dif = num (u) - num (re) if dif & nums -> O(m) fail nums = nums v & dil } for each $t \in \mathbb{R} \in \mathbb{R}$ (m) (m) (m^2) MICCIN

 $= 10(m^2 + m^2 + m^2) = 0(m^2 + m^2)$

```
21le)
numeratare - gratioarà - det, G, 11G=(V, E)
     permutation [][]= 0
     generate - permutations (permutations, [1,2,..., m], m)
     for each permit permutations -> O(n!)
           1=0
          for each to EV -> O(n)
             num ( re) = perm [ i]
           numy = 0; 0 K = 1
           for each (u, ve) E E -> O(m)
               dif = num(lu) - num(re)
               if dif E nums -> O(m)
                  0 K = 0
               numy = nums uf del ?
           for each x ∈ d 1, 2, ..., m } -> 0(m)
                                  ----) O(m)
               if x ∉ nums -
                 0 K = 0
            If OK
              return 1
      return a
```

generate_permutations (result [][], perm [], size)

if size == 1

result append (perm) () (11)

return

for i = 0... size -1 -> 0(m) ... 0(2)

generate = permutations (result, perm, size -1) -> 0(2)

if size %, 2 == 1

ruean (perm [0], perm [MZe -1]) ((1)

else

Ne ap (perm [], perm [size -1])

 $=) O(n!) + O(n! \cdot (n + m^{2} + m^{2})) =$ $= O(n!)(n + m^{2}))$

4

Algoritmul este:

- determinist (nu re balarette chaice)

return (S, Sm, h)

- tractabel (complexitate polinomiala O (m)
- relurnearà date de intrare pentru Set-Coreer parniir d de lat la date de intrare pentru K-Acaparire

Oles .:

S= multimen muchiilor din graf Sn [U] = multimen muchiilor ce au ca extremitate madul U 3) le, Demanstratie de echivalentà a ienvilar:

Tie $Sn Eu I = \{(H, y) \in E \mid H = u \text{ in / sau } y = u \} =$ = multimea muchilar in care u este extremitate

Tie Sn E V I = Sn Eu I I V Sn E U I I V Sn (u card (V)) Sn Eu I C E = > Sn E V I C EGare a K-Acaperire => $\exists V' \subseteq V$ cu card (V') = k

Gare & K-dcaperize => $\exists V' \subseteq V$ cu card (V') = Ka.i. $\forall (u, v) \in E$ areem $u \in V'$, i / saw $v \in V' = 1$ $= \exists \forall (u, v) \in E$, $(u, v) \in Sn \cup V' = 1$

 $= \sum_{S \in V'} E \subseteq S \cap E \cup J' = \sum_{S \in V'} S \cap E \cup J'$

=) Sn [MI] U Sn [M2] U... U Sn [MA] = S =)

=>] A sulemultini date Sn [u] u ∈ V .a. ī. reuniturea lor dā salemultinea S =>

=) Set-Corer (5, & Sm [M,], Sn [M,], ..., Sn [M,], h)=1

=) Amo elemanstrat cà dacà G are a K-acaperire, atunci si multimec sa de muchi, alaturi de sulmultonite Sn, lormeara un Set Gareer de marinea h.

Von demonstra acem si echirealenta innerra: Oles prultimile Sn trelouie sa duca la posibilitatea de lormeure un a umi grat. Jee à multime S si n submultani Sn ale sale pontru din care la astlet de submultani, octatà reunite, formeara multime a S.

Representam aceastà multimea ca un graf in care Es pi V = filare mod va fi representat de a submullime, iar muchiile lor rear li elementele submullarillar.

Ih submultani Sn u.i. Sm [41] V... U Sm [4] = S

File V' multanen nodurilor representate de ale h

multani =, Sn [V'] = S =)

an and (V') = h

shear'

= 7 H (u, re) ES, (u, re) E Sa [V']

V(u, v) ∈ S jarem u ∈ V' si 1 sau re ∈ V'

Deci:] V'C V an aurd (V') = h -a.t.

U(u, re)∈ E perem u∈ V' si sau re∈ V'=,

: , G are a la - acoperare

Am demanstrat ca:

- 15, 25 n Tuis, ..., Sn Tun 33, h) re paale alethe den (G, h)

- 6 wre a h-acorperère (=) S, ES_CM.J... S~ CM.J. .. S~ CM.J. .. S~ CM.J. .. S~ CM.J. .. S~ CM.J. ..

=) K - Acapertre = n Sete Concer