Walmart Retail Weekly Sales

A prediction algorithm for weekly sales at Walmart retail locations

Capstone 2 Presentation
Damilola T. Olaiya

Proposal

- Hypothesis → How can Walmart use its reported sales data to
 - o predict and take advantage of future sales/demand
 - o potentially improve inventory allocation/scheduling?

- Criteria for success
 - Creating a model that can accurately predict the sales with regards to single and multiple features

Data Wrangling

- The dataset contains sales information from 45 walmart stores. Source:
 - https://www.kaggle.com/datasets/yasserh/walmart-dataset
- There were 7 features/columns:
 - o store
 - weekly_sales
 - holiday_flag, temperature
 - o fuel_price
 - o cpi
 - o unemployment.

Data Wrangling

- The target feature is weekly_sales.
- There were 6435 entries/samples in the data. This corresponded to 143 entries each for 45 stores.
- There were no missing values. The data was clean.

Data Wrangling

Weekly sales grouped by store

Exploratory Data Analysis (EDA)

- The date feature was deconstructed. This included extracting weekday, month and year from each sample.
- Categorical and numeric features were parsed and listed out. There were 2 categorical (holiday_flag, store) and 4 numerical features (unemployment, fuel_price, cpi, temperature, weekly_sales).
- As expected, there are far more non-holidays than holidays.

Exploratory Data Analysis (EDA)

• Distribution and Countplot of weekly sales

- No duplicate rows
- Outliers were removed using Inter Quartile Range (IQR).
 - This dropped total samples by 7.52%.

- Dummy variables were created for holiday flag, store, weekday, month and year features.
 - The first column was dropped in each case to prevent issues of multicollinearity.
 - The end result was a dataframe with 69 features/columns. This had potential to be cumbersome.
- Data was split into training and test sets
 - Scaling/standardized to have a mean of 0 and a standard deviation of 1.
 - Scaling was fit using X_train only then used to transform X_test.
 - This was done so that the model would be completely unaffected by the testing data.

- Principal component analysis (PCA) was performed on the data.
- Using all features (no reduction), the variance was explained as such:

 Using PCA and linear regression, RMSE was calculated on the train and test datasets for features ranging in number from 1 to 69. Naturally, the error reduced with more features as more variance was explained.

- Using dummy variables for all categorical features makes the data too granular and convoluted (69 features/columns) as evidenced by the PCA decomposition result from pre-processing.
- Going forward, I assumed that all stores (store 1 to store 45) are within the same market segment and ignored store to store differences.
- Additionally, the holiday_flag feature did not need to be standardized as the values were already within scale for analysis.
- To that effect, I mapped the holiday_flag feature back to 1s and 0s and eliminated the store, month and year features from the data.
- This left 11 features remaining in the dataset (holiday_flag, temperature, fuel_price, cpi, unemployment, weekday_1, weekday_2, weekday_3, weekday_4, weekday_5, weekday_6).

• I was able to infer that feature reduction may be unnecessary as, although 90% of the variance is explained cumulatively by 8/11 principal components, only one of the components had a variance that was significantly lower than the others.

• That, combined with the relatively small number of features, allowed me to ignore feature

reduction.

- There were four different models used
 - o multiple linear regression
 - lasso regression
 - ridge regression
 - o random forest regression.
- Cross validation was performed for ridge, lasso and random forest regressions using:
 - o alphas of 0.1, 1, 10, 100,1000 and 10000 for lasso and ridge regression
 - o parameters {n_estimators: [300,400,500], max_depth:[4,6,8], min_samples_leaf :[0.1,0.2], max_features:['log2','sqrt']} for random forest regression

- The best alpha for both lasso and ridge was found to be 100.
- The best parameters for the random forest regression were found to be:
 - o max_depth: 6
 - max_features: log2
 - o min_samples_leaf: 0.1
 - o n_estimators: 400

Model Evaluation Comparison Matrix (MECM)

- The following metric were used to evaluate both training and test datasets
 - R^2 or Coefficient of determination
 - Sum of squared residuals
 - Mean squared error
 - Root mean squared error

	Train-R2	Test-R2	Train-RSS	Test-RSS	Train-MSE	Test-MSE	Train-RMSE	Test-RMSE
Random Forest Regression Model (RF)	0.036973	0.040372	1.490568e+15	3.847395e+14	3.131446e+11	3.230391e+11	559593.245026	568365.259504
Lasso Linear Regression (LLR)	0.019928	0.018191	1.516950e+15	3.936325e+14	3.186869e+11	3.305059e+11	564523.605053	574896.441420
Ridge Linear Regression (RLR)	0.019971	0.017923	1.516884e+15	3.937400e+14	3.186731e+11	3.305961e+11	564511.408328	574974.888760
Multiple Linear Regression (MLR)	0.020051	0.017895	1.516760e+15	3.937511e+14	3.186470e+11	3.306055e+11	564488.278884	574983.013229

Inference

	Train-R2	Test-R2	Train-RSS	Test-R\$\$	Train-MSE	Test-MSE	Train-RMSE	Test-RMSE
Random Forest Regression Model (RF)	0.036973	0.040372	1.490568e+15	3.847395e+14	3.131446e+11	3.230391e+11	559593.245026	568365.259504
Lasso Linear Regression (LLR)	0.019928	0.018191	1.516950e+15	3.936325e+14	3.186869e+11	3.305059e+11	564523.605053	574896.441420
Ridge Linear Regression (RLR)	0.019971	0.017923	1.516884e+15	3.937400e+14	3.186731e+11	3.305961e+11	564511.408328	574974.888760
Multiple Linear Regression (MLR)	0.020051	0.017895	1.516760e+15	3.937511e+14	3.186470e+11	3.306055e+11	564488.278884	574983.013229

- Lower RMSE implies a better the model. That said, a significant disparity between training and testing scores would suggest overfitting.
- All regression models were fairly similar in terms of training and test R2 and RMSE.
- However, Multiple linear regression performed best in training metrics but worst in test metrics suggesting that it was slightly overfitting.

Inference

	Train-R2	Test-R2	Train-RSS	Test-RSS	Train-MSE	Test-MSE	Train-RMSE	Test-RMSE
Random Forest Regression Model (RF)	0.036973	0.040372	1.490568e+15	3.847395e+14	3.131446e+11	3.230391e+11	559593.245026	568365.259504
Lasso Linear Regression (LLR)	0.019928	0.018191	1.516950e+15	3.936325e+14	3.186869e+11	3.305059e+11	564523.605053	574896.441420
Ridge Linear Regression (RLR)	0.019971	0.017923	1.516884e+15	3.937400e+14	3.186731e+11	3.305961e+11	564511.408328	574974.888760
Multiple Linear Regression (MLR)	0.020051	0.017895	1.516760e+15	3.937511e+14	3.186470e+11	3.306055e+11	564488.278884	574983.013229

- This is in line with what we would expect from lasso and ridge regression which work to combat overfitting.
- Random forest regression performed best for all metrics and gave the best overall results.

Conclusions

- 1. The dataset was quite small with just 6435 samples initially, which dropped 7.5% after cleaning.
- 2. Cross validating the Lasso and Ridge regressions allowed us to select the best alpha.
- 3. We will proceed with the Random forest regression model as it performed best.

Further Steps to Consider

- 1. Using pca for feature reduction
- 2. Using more of the generated features in the regression
- 3. Testing more parameters in the grid search cv at the cost of time
- 4. Using random forest with bagging, boosting etc
- 5. Using a polynomial regression model