

TP Convertisseur Numérique Analogique

Le but du TP est de réaliser un convertisseur numérique-analogique (CNA) à échelle R-2R.

I Etude théoriques du CNA à échelle R-2R.

Le schéma du montage CNA à échelle R-2R à réaliser se trouve sur la figure ci-dessous :

- 1. Quel est le seul élément actif du montage ? Par quoi est constituée la partie numérique du montage ?
- 2. Ce montage est un CNA à n bits. Combien vaut n ici?
- 3. Redonner d'après le cours ou le TD correspondant, la formule de V_S en fonction des valeurs respectives (1 ou 0) de l'état des interrupteurs a_0 , a_1 , a_2 , et a_3 . Pour V_{REF} donné, quelle est la plage théorique de valeurs de sortie V_S ? Quelle est la résolution de la conversion?
- 4. Le montage ci-dessus recèle une légère modification par rapport au montage donné dans le cours ou le TD. Que vaut V_P , le potentiel au point P, lorsque l'interrupteur a_0 est fermé? Que vaut V_P , en fonction de R, R' et V_L , lorsque l'interrupteur est ouvert? Que peut-on dire de $V_L V_P$ lorsque $R' \ll R$? Peut-on choisir R' = 0? Quelle différence y a-t-il en pratique entre ce montage et celui donné en TD du point de vue des interrupteurs?

II Câblage du TL081

- 1. Quelle est la fonction de ce composant et comment faut-il l'alimenter?
- 2. Câblez le composant sur la platine d'expérimentation en réservant deux lignes pour l'alimentation et une troisième pour la masse.
- 3. Quelle précaution doit-on prendre concernant le point milieu de l'alimentation symétrique et la masse du schéma ci-dessus?
- 4. Quelle valeur V_{REF} ne doit-elle pas dépasser afin de ne pas mettre en saturation le composant?
- 5. En utilisant la série d'interrupteurs, câbler le montage. On prendra $R' \simeq 100 \,\Omega$ et R de l'ordre de $100 \,\mathrm{k}\Omega$ (maximum $300 \,\mathrm{k}\Omega$). On prendra soin d'ordonner proprement le montage et notamment d'espacer les résistances de manière à éviter les contacts entre pattes voisines.
- 6. Mesurer, à l'aide d'un multimètre la tension de sortie V_S du montage. Relever la valeur de V_S obtenue pour chacun des nombres binaires codés. Porter les résultats dans un tableau puis dans un graphique.
- 7. Le CNA est-il linéaire? Pour argumenter votre réponse, vous calculerez la résolution moyenne et l'écart type autour de cette valeur. On rappel que $\sigma = \sqrt{\sum_{i=1}^{n} (r_i \bar{r})^2}$.