Homewrork 10

Riemann Integration

Riemann integration begins by partitioning the *domain* (the x-axis) into subintervals. Within each subinterval, one evaluates the function at a chosen point (often a midpoint or endpoint). Summing these values, each multiplied by the subinterval width, approximates the total area. In the limit as the partition gets finer (i.e., the width of the intervals \rightarrow 0), the Riemann sums converge if the function has certain regularity properties—chiefly, it must not be *too* discontinuous. Conceptually, one can picture adding up infinitely many vertical "strips."

Lebesgue Integration

Lebesgue integration adopts a different lens by focusing on the range of the function, partitioning the values of f(x) instead of partitioning the x-axis. Then it measures the set of x-values mapping into each slice of the range. This method follows from measure theory and is more powerful than Riemann's approach because it can handle complicated discontinuities. One can define a Lebesgue integral even when a function fails to be Riemann-integrable.

Continuous vs. Discontinuous Functions

When f(x) is continuous on a given interval, both Riemann and Lebesgue integration typically yield the same result. However, a function with too many discontinuities (or certain kinds of "wild" behavior) may lack a Riemann integral but still have a Lebesgue integral.

Features

Comparing Riemann and Lebesgue frameworks showcases key developments in modern analysis. Riemann's sums are intuitive and suffice for most elementary calculus, while Lebesgue integration extends integrability to a broader class of functions. Crucially, Lebesgue's construction unifies integration with measure theory, offering profound insights into convergence, the definition of measurable sets, and the generalization of "area under the curve."