Relatório para o Roteiro I

Modelagem Matemática em Finanças I Luiz Rodrigo Silva de Souza

 $Observaç\~ao: \ o \ aplicativo \ que \ desenvolvi \ para \ essa \ atividade \ pode \ ser \ testado \ em \ http://lurodrigo.com/mmfin1/bopm/$

Atividade 2: O valor de u será $u_a^{\frac{T}{360N}}$. Basta ver que $u_d=u_a^{\frac{1}{360}}$. Tendo a taxa diária, o valor de u deve ser tal que $u^N=u_d^T$, e aí obtemos a fórmula acima. Utilizando o mesmo raciocínio, encontramos $r=(1+r_a)^{\frac{T}{360N}}-1$.

Atividade 3: Tanto faz, pois as transformação $u \mapsto u^{\frac{1}{360}}$ e $r \mapsto (1+r)^{\frac{1}{360}} - 1$ são crescentes, ou seja, preservam as comparações.

As figuras 1 e 2 têm exemplos de random walks com todos os parâmetros iguais, exceto pelo N, que é 10 ou 100.

Naturalmente, além dos resultados diferentes dos lançamentos de moeda, a diferença está na *resolução* do modelo: um modelo com N maior contempla uma quantidade maior de valores possíveis para o valor final do ativo.

Atividade 4: Fiz esse gráfico para o exemplo 1.2.2 do livro. A diferença está somente no payoff, que é de uma call option e não de uma loopback option. O diagrama gerado pode ser visto na figura 3.

O gráfico na figura 4 mantém os parâmetros fixos, exceto N, que varia. Parece haver convergência para um valor não-nulo à medida que N aumenta.

Atividade 5:

Implementei uma função para estimar o valor da opção por Monte Carlo especificando o número de tentativas (figura 5). Os valores costumam estar bem próximos dos estimados pelo modelo binomial.

Para ver o comportamento em função de N, plotei as séries estimadas pelo modelo binomial e por monte carlo lado a lado (figura 6). De fato o comportamento de ambas é bastante parecido. Para fins do gráfico, utilizei M=1000.

Atividade 6:

Para r_a , basta olhar a taxa básica de juros local, como a SELIC ou a LIBOR. Como elas podem variar, pode-se usar uma média ao longo do tempo. Podemos estimar u_d como a média aritmética dos retornos diários $\frac{S_{n+1}}{S_n}$ e depois aplicar uma transformação para encontrar u_a .

Figure 1: Random walk com N=10

Figure 2: Random walk com N=100

Figure 3: Diagrama binomial para as condições $S_0=4,\,N=3,\,r=.25$ e u=2

Figure 4: Gráfico de V em função de N para $S_0=4,\,r=.25$ e u=2

Valor da opção em t=0 por Monte Carlo: 1.52.

Figure 5: Exemplo de output

Figure 6: Comparação dos gráficos de V em função de N obtidos pelo modelo e por Monte Carlo