

CD4511BM/CD4511BC BCD-to-7 Segment Latch/Decoder/Driver

General Description

The CD4511BM/CD4511BC BCD-to-seven segment latch/decoder/driver is constructed with complementary MOS (CMOS) enhancement mode devices and NPN bipolar output drivers in a single monolithic structure. The circuit provides the functions of a 4-bit storage latch, an 8421 BCD-to-seven segment decoder, and an output drive capability. Lamp test (LT), blanking (BI), and latch enable (LE) inputs are used to test the display, to turn-off or pulse modulate the brightness of the display, and to store a BCD code, respectively. It can be used with seven-segment light emitting diodes (LED), incandescent, fluorescent, gas discharge, or liquid crystal readouts either directly or indirectly.

Applications include instrument (e.g., counter, DVM, etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

Features

- Low logic circuit power dissipation
- High current sourcing outputs (up to 25 mA)
- Latch storage of code
- Blanking input
- Lamp test provision
- Readout blanking on all illegal input combinations
- Lamp intensity modulation capability
- Time share (multiplexing) facility
- Equivalent to Motorola MC14511

Connection Diagram

Dual-In-Line Package

TL/F/5991-1

Top View
Order Number CD4511B

Segment Identification

TL/F/5991-3

Truth Table

Inputs								(Out	put	s			
LE	BI	ΙŢ	D	С	В	Α	а	b	С	d	е	f	g	Display
X	Х	0	Х	Χ	Χ	Χ	1	1	1	1	1	1	1	В
X	0	1	X	Χ	Χ	Χ	0	0	0	0	0	0	0	
0	1	1	0	0	0	0	1	1	1	1	1	1	0	0
0	1	1	0	0	0	1	0	1	1	0	0	0	0	1
0	1	1	0	0	1	0	1	1	0	1	1	0	1	2
0	1	1	0	0	1	1	1	1	1	1	0	0	1	3
0	1	1	0	1	0	0	0	1	1	0	0	1	1	4
0	1	1	0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	1	0	0	0	1	1	1	1	1	6
0	1	1	0	1	1	1	1	1	1	0	0	0	0	7
0	1	1	1	0	0	0	1	1	1	1	1	1	1	8
0	1	1	1	0	0	1	1	1	1	0	0	1	1	9
0	1	1	1	0	1	0	0	0	0	0	0	0	0	
0	1	1	1	0	1	1	0	0	0	0	0	0	0	
0	1	1	1	1	0	0	0	0	0	0	0	0	0	
0	1	1	1	1	0	1	0	0	0	0	0	0	0	
0	1	1	1	1	1	0	0	0	0	0	0	0	0	
0	1	1	1	1	1	1	0	0	0	0	0	0	0	
1	1	1	Х	Х	Х	Х				*				*

X = Don't Care

*Depends upon the BCD code applied during the 0 to 1 transition of LE.

Display

TL/F/5991-2

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

DC Supply Voltage (V_{DD}) -0.5V to +18VInput Voltage (V_{IN}) $-0.5 \mbox{V}$ to $\mbox{V}_{\mbox{DD}} + 0.5 \mbox{V}$ -65°C to +150°C Storage Temperature Range (T_S)

Power Dissipation (PD)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L) (Soldering, 10 seconds)

Recommended Operating

Conditions (Note 2)

DC Supply Voltage (V_{DD}) 3V to 15V Input Voltage (V_{IN}) 0V to $V_{\mbox{\scriptsize DD}}$

Operating Temperature Range (T_A) CD4510BM, CD4516BM CD4510BC, CD4516BC

 -55°C to $+125^{\circ}\text{C}$ -40°C to $+85^{\circ}\text{C}$

DC Electrical Characteristics CD4511BM

Symbol	Parameter	Conditions		−55°C		+ 25°C			+ 125°C	
Symbol	raiametei	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		5			5		150	μΑ
55	Supply Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		10			10		300	, μA
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		20			20		600	μΑ
VOL	Output Voltage	$V_{DD} = 5V$		0.01		0	0.01		0.05	V
02	Logical "0"	V _{DD} = 10V		0.01		0	0.01		0.05	V
	Level	V _{DD} = 15V		0.01		0	0.01		0.05	V
V _{OH}	Output Voltage	$V_{DD} = 5V$	4.1		4.1	4.57		4.1		٧
	Logical "1"	V _{DD} = 10V	9.1		9.1	9.58		9.1		V
	Level	V _{DD} = 15V	14.1		14.1	14.59		14.1		V
V _{IL}	Low Level	$V_{DD} = 5V, V_{OUT} = 3.8V \text{ or } 0.5V$		1.5		2	1.5		1.5	V
	Input Voltage	$V_{DD} = 10V, V_{OUT} = 8.8V \text{ or } 1.0V$		3.0		4	3.0		3.0	V
		$V_{DD} = 15V, V_{OUT} = 13.8V \text{ or } 1.5V$		4.0		6	4.0		4.0	V
V_{IH}	High Level	$V_{DD} = 5V, V_{OUT} = 0.5V \text{ or } 3.8V$	3.5		3.5	3		3.5		V
	Input Voltage	$V_{DD} = 10V, V_{OUT} = 1.0V \text{ or } 8.8V$	7.0		7.0	6		7.0		V
		$V_{DD} = 15V, V_{OUT} = 1.5V \text{ or } 13.8V$	11.0		11.0	9		11.0		V
V_{OH}	Output	$V_{DD} = 5V$, $I_{OH} = 0$ mA	4.1		4.1	4.57		4.1		V
	(Source) Drive	$V_{DD} = 5V$, $I_{OH} = 5 \text{ mA}$				4.24				V
	Voltage	$V_{DD} = 5V$, $I_{OH} = 10$ mA	3.9		3.9	4.12		3.5		V
		$V_{DD} = 5V$, $I_{OH} = 15 \text{ mA}$				3.94				V
		$V_{DD} = 5V$, $I_{OH} = 20 \text{ mA}$	3.4		3.4	3.75		3.0		V
		$V_{DD} = 5V$, $I_{OH} = 25 \text{ mA}$				3.54				V
		$V_{DD} = 10V$, $I_{OH} = 0$ mA	9.1		9.1	9.58		9.1		V
		$V_{DD} = 10V, I_{OH} = 5 \text{ mA}$				9.26				V
		$V_{DD} = 10V, I_{OH} = 10 \text{ mA}$	9.0		9.0	9.17		8.6		V
		$V_{DD} = 10V, I_{OH} = 15 \text{ mA}$	8.6		0.6	9.04		8.2		V V
		$V_{DD} = 10V, V_{OH} = 20 \text{ mA}$ $V_{DD} = 10V, V_{OH} = 25 \text{ mA}$	0.0		8.6	8.9 8.75		0.2		V
			444		444			444		
		$V_{DD} = 15V, I_{OH} = 0 \text{ mA}$	14.1		14.1	9.58 14.27		14.1		V V
		$V_{DD} = 15V, I_{OH} = 5 \text{ mA}$ $V_{DD} = 15V, I_{OH} = 10 \text{ mA}$	14.0		14.0	14.27		13.6		V
		$V_{DD} = 15V, I_{OH} = 15 \text{ mA}$	14.0		14.0	14.17		13.0		ľ
		$V_{DD} = 15V, I_{OH} = 20 \text{ mA}$	13.6		13.6	13.95		13.2		v
		$V_{DD} = 15V, I_{OH} = 25 \text{ mA}$				13.8				V
loL	Low Level	$V_{DD} = 5V, V_{OL} = 0.4V$	0.64		0.51	0.88		0.36		mA
OL.	Output Current	$V_{DD} = 10V, V_{OL} = 0.5V$	1.6		1.3	2.25		0.9		mA
		$V_{DD} = 15V, V_{OL} = 1.5V$	4.2		3.4	8.8		2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.10		-10-5	-0.10		-1.0	μΑ
		$V_{DD} = 15V, V_{IN} = 15V$		0.10		10-5	0.10		1.0	μA

260°C

Symbol	Parameter	Conditions	−55°C		+ 25°C			+ 85°C		Units
Syllibol	Farameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Uiilis
I _{DD}	Quiescent Supply Current	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		20 40 80			20 40 80		150 300 600	μΑ μΑ μΑ
V _{OL}	Output Voltage Logical "0" Level	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		0.01 0.01 0.01		0 0 0	0.01 0.01 0.01		0.05 0.05 0.05	V
V _{OH}	Output Voltage Logical "1" Level	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$	4.1 9.1 14.1		4.1 9.1 14.1	4.57 9.58 14.59		4.1 9.1 14.1		V V V
V _{IL}	Low Level Input Voltage	$V_{DD} = 5V$, $V_{OUT} = 3.8V$ or 0.5V $V_{DD} = 10V$, $V_{OUT} = 8.8V$ or 1.0V $V_{DD} = 15V$, $V_{OUT} = 13.8V$ or 1.5V		1.5 3.0 4.0		2 4 6	1.5 3.0 4.0		1.5 3.0 4.0	V V V
V _{IH}	High Level Input Voltage	$\begin{split} &V_{DD} = 5\text{V, } V_{OUT} = 0.5\text{V or } 3.8\text{V} \\ &V_{DD} = 10\text{V, } V_{OUT} = 1.0\text{V or } 8.8\text{V} \\ &V_{DD} = 15\text{V, } V_{OUT} = 1.5\text{V or } 13.8\text{V} \end{split}$	3.5 7.0 11.0		3.5 7.0 11.0	3 6 9		3.5 7.0 11.0		V V V
V _{OH}	Output (Source) Drive Voltage	$V_{DD} = 5V, I_{OH} = 0 \text{ mA}$ $V_{DD} = 5V, I_{OH} = 5 \text{ mA}$ $V_{DD} = 5V, I_{OH} = 10 \text{ mA}$ $V_{DD} = 5V, I_{OH} = 15 \text{ mA}$ $V_{DD} = 5V, I_{OH} = 20 \text{ mA}$	4.1 3.6 2.8		4.1 3.6 2.8	4.57 4.24 4.12 3.94 3.75 3.54		4.1 3.3 2.5		V V V V V
		$\begin{split} &V_{DD} = 5V, I_{OH} = 25 \text{ mA} \\ &V_{DD} = 10V, I_{OH} = 0 \text{ mA} \\ &V_{DD} = 10V, I_{OH} = 5 \text{ mA} \\ &V_{DD} = 10V, I_{OH} = 10 \text{ mA} \\ &V_{DD} = 10V, I_{OH} = 15 \text{ mA} \\ &V_{DD} = 10V, I_{OH} = 20 \text{ mA} \\ &V_{DD} = 10V, I_{OH} = 25 \text{ mA} \end{split}$	9.1 8.75 8.1		9.1 8.75 8.1	9.58 9.26 9.17 9.04 8.9 8.75		9.1 8.45 7.8		V V V V V V
		V _{DD} = 15V, I _{OH} = 0 mA V _{DD} = 15V, I _{OH} = 5 mA V _{DD} = 15V, I _{OH} = 10 mA V _{DD} = 15V, I _{OH} = 15 mA V _{DD} = 15V, I _{OH} = 20 mA V _{DD} = 15V, I _{OH} = 25 mA	14.1 13.75 13.1		14.1 13.75 13.1	14.59 14.27 14.18 14.07 13.95 13.8		14.1 13.45 12.8		V V V V V V
l _{OL}	Low Level Output Current	V _{DD} = 5V, V _{OL} = 0.4V V _{DD} = 10V, V _{OL} = 0.5V V _{DD} = 15V, V _{OL} = 1.5V	0.52 1.3 3.6		0.44 1.1 3.0	0.88 2.25 8.8		0.36 0.9 2.4		mA mA mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$ $V_{DD} = 15V, V_{IN} = 15V$		-0.30 0.30		-10 ⁻⁵	-0.30 0.30		-1.0 1.0	μA μA

AC Electrical Characteristics* $T_A=25^{\circ}C$ and $C_L=50$ pF, typical temperature coefficient for all values of $V_{DD}=0.3\%/^{\circ}C$

Symbol	Parameter	Conditions		Units			
Syllibol	Parameter	Conditions	Min	Тур	Max	Units	
C _{IN}	Input Capacitance	$V_{IN} = 0$		5.0	7.5	pF	
t _r	Output Rise Time	$V_{DD} = 5V$		40	80	ns	
	(Figure 1a)	$V_{DD} = 10V$		30	60	ns	
		$V_{DD} = 15V$		25	50	ns	
t _f	Output Fall Time	$V_{DD} = 5V$		125	250	ns	
	(Figure 1a)	$V_{DD} = 10V$		75	150	ns	
		$V_{DD} = 15V$		65	130	ns	
t _{PLH}	Turn-Off Delay Time	$V_{DD} = 5V$		640	1280	ns	
	(Data) <i>(Figure 1a)</i>	$V_{DD} = 10V$		250	500	ns	
		$V_{DD} = 15V$		175	350	ns	
t _{PHL}	Turn-On Delay Time	$V_{DD} = 5V$		720	1440	ns	
	(Data) <i>(Figure 1a)</i>	$V_{DD} = 10V$		290	580	ns	
		$V_{DD} = 15V$		195	400	ns	
t _{PLH}	Turn-Off Delay Time	$V_{DD} = 5V$		320	640	ns	
	(Blank) <i>(Figure 1a)</i>	$V_{DD} = 10V$		130	260	ns	
		$V_{DD} = 15V$		100	200	ns	
t _{PHL}	Turn-On Delay Time	$V_{DD} = 5V$		485	970	ns	
	(Blank) <i>(Figure 1a)</i>	$V_{DD} = 10V$		200	400	ns	
		$V_{DD} = 15V$		160	320	ns	
t _{PLH}	Turn-Off Delay Time	$V_{DD} = 5V$		313	625	ns	
	(Lamp Test) (Figure 1a)	$V_{DD} = 10V$		125	250	ns	
		$V_{DD} = 15V$		90	180	ns	
t _{PHL}	Turn-On Delay Time	$V_{DD} = 5V$		313	625	ns	
	(Lamp Test) (Figure 1a)	$V_{DD} = 10V$		125	250	ns	
		$V_{DD} = 15V$		90	180	ns	
tSETUP	Setup Time	$V_{DD} = 5V$	180	90		ns	
	(Figure 1b)	$V_{DD} = 10V$	76	38		ns	
		$V_{DD} = 15V$	40	20		ns	
t _{HOLD}	Hold Time	$V_{DD} = 5V$	0	-90		ns	
	(Figure 1b)	$V_{DD} = 10V$	0	-38		ns	
		$V_{DD} = 15V$	0	-20		ns	
PW_{LE}	Minimum Latch Enable	$V_{DD} = 5V$	520	260		ns	
	Pulse Width (Figure 1c)	$V_{DD} = 10V$	220	110		ns	
		$V_{DD} = 15V$	130	65		ns	

^{*}AC Parameters are guaranteed by DC correlated testing.

Typical Applications (Continued)

Gas Discharge Readout

Liquid Crystal (LC) Readout

TL/F/5991-8

Direct DC drive of LC's not recommended for life of LC readouts.

Incandescent Readout

**A filament pre-warm resistor is recommended to reduce filament thermal shock and increase the effective cold resistance of the filament.

Fluorescent Readout

TL/F/5991-10

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N) Order Number CD4511BMN or CD4511BCN NS Package Number N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 35 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.