Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION

using the coalescent and maximum likelihood or Bayesian inference

Migrate-n version 3.7.2 [April-12-18]

Program started at Wed Jun 2 13:54:45 2021 Program finished at Wed Jun 2 21:12:23 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 4279187695

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	m	m	m	m	m	m	m	m	m	m	m	m
2 Bamfiel	m	m	m	m	m	m	m	m	m	m	m	m
3 PortRen	m	m	m	m	m	m	m	m	m	m	m	m
4 WalkOnB	m	m	m	m	m	m	m	m	m	m	m	m
5 BodegaH	m	m	m	m	m	m	m	m	m	m	m	m
6 Davenpo	m	m	m	m	m	m	m	m	m	m	m	m
7 VistaDe	m	m	m	m	m	m	m	m	m	m	m	m
8 HazardR	m	m	m	m	m	m	m	m	m	m	m	m
9 Refugio	m	m	m	m	m	m	m	m	m	m	m	m
10 Carpint	m	m	m	m	m	m	m	m	m	m	m	m

11 WhitePo	* *	* * *	* * * * * *
	* *	* * *	* * * * * *
12 LaJolla	^ *	^	
Order of param		0	
1	$\Theta_1 =$	Θ_1 [m]	
2	Θ_2 =	Θ_1 [m]	
3	$\Theta_3^2 =$	Θ_1 [m]	
4	$\Theta_4 =$	Θ_1 [m]	
5	$\Theta_5^{T} =$	Θ_1 [m]	
6	Θ_6 =	Θ_1 [m]	
7	$\Theta_7 =$	Θ_1 [m]	
8	$\Theta_8 =$	Θ_1 [m]	
9	$\Theta_{0} =$	Θ_1 [m]	
10	Θ_{10} =	Θ_1 [m]	
11	Θ_{11}		<displayed></displayed>
12	Θ_{12}		<displayed></displayed>
13	$M_{2->1}^{12} =$	$M_{2->1}$ [m]	<displayed></displayed>
14	$M_{3->1} =$	$M_{2->1}$ [m]	
15	$M_{4->1}^{3} =$	$M_{2->1}^{2}$ [m]	
16	$M_{5->1}^{7-1} =$	M $_{2->1}^{2}$ [m]	
17	$M_{6->1}^{5->1} =$	$M_{2->1}^{2->1}$ [m]	
18	$M_{7->1} =$	$M_{2->1}$ [m]	
19	$M_{8->1}^{7->1} =$	$M_{2->1}$ [m]	
20	$M_{9->1}^{6->1} =$	M $_{2->1}^{2->1}$ [m]	
21	M	$M_{2->1}$ [m]	
22	10->1	M $_{2->1}^{2->1}$ [m]	
23	M	M $_{2->1}^{2->1}$ [m]	
24	12->1	$M_{2->1}$ [m]	
25	$M_{1->2} = M_{3->2} = M_{1->2}$	$M_{2->1}$ [m]	
26	$M_{4->2} = M_{4->2}$	$M_{2->1}$ [m]	
27	$M_{5->2} = M_{5->2}$	$M_{2->1}$ [m] $M_{2->1}$ [m]	
28	$M_{5->2} = M_{6->2} = M_{10}$	$M_{2->1}$ [m] $M_{2->1}$ [m]	
29	$M_{6\rightarrow 2} = M_{7\rightarrow 2} =$	M [m]	
30	1-22	$\begin{array}{cc} M & [m] \\ M & [m] \end{array}$	
31	M _{8->2} =	$M = \begin{bmatrix} M \\ 2->1 \end{bmatrix} $ [m]	
32	M _{9->2} =	$M_{2\rightarrow 1} [m]$	
33	$M_{10->2} = M_{10->2}$	M = [m] $M = [m]$	
34	$M_{11->2} = M_{11->2}$	$M = \begin{bmatrix} M \\ 2->1 \end{bmatrix} $ [m]	
35	$M_{12->2} =$	M = [m]	
	$M_{1->3} = M_{1->3}$	$M_{2\rightarrow 1} [m]$	
36	$M_{2->3} =$	$M_{2\rightarrow 1} [m]$	
37	$M_{4->3} =$	$M_{2\rightarrow 1} [m]$	
38	$M_{5->3} =$	$M_{2->1}$ [m]	
39	IVI _{6->3} =	$M_{2->1}$ [m]	
40	$M_{7->3} =$	$M_{2->1}$ [m]	

41	M _{8->3} =	M _{2->1} [m]
42	M _{9->3} =	$M_{2\rightarrow 1} \text{ [m]}$
43	$M_{10->3} =$	$ \begin{array}{ccc} M & 2 & > 1 \\ 2 & > > 1 \end{array} $
44	10-25	
45	11-/3	$M_{2\rightarrow 1}$ [m]
46	12-/3	
	1-/4	M 2->1 [m]
47	$M_{2->4} =$	$M = \sum_{2\rightarrow 1} [m]$
48	$M_{3->4} =$	$M_{2->1}$ [m]
49	$M_{5->4} =$	$M_{2\rightarrow 1} [m]$
50	M _{6->4} =	$M_{2\rightarrow 1} \text{ [m]}$
51	M _{7->4} =	$M_{2\rightarrow 1}$ [m]
52	$M_{8->4} =$	$M_{2\rightarrow 1}$ [m]
53	$M_{9->4} =$	$M_{2\rightarrow 1}$ [m]
54	$M_{10->4} =$	$M_{2\rightarrow 1}$ [m]
55	$M_{11->4} =$	$ \begin{array}{ccc} M & 2 & > 1 \\ 2 & > > 1 \end{array} $ [m]
56	$M_{12->4} =$	$M_{2->1}$ [m]
57	$M_{1->5}^{12->4} =$	$M_{2->1}$ [m]
58	1-/3	
59	2 /3	$M_{2\rightarrow 1}$ [m]
60	3-23	$M_{2->1}$ [m]
61	4-/3	$M_{2->1}$ [m]
62	0-/3	M [m]
63	1-25	M _{2->1} [m]
64	0-/3	$ \begin{array}{ccc} M & 2 & & \\ 2 & & & \\ M & $
65	<i>j-></i> 5	$M_{2\rightarrow 1}^{2\rightarrow 1}$ [m] $M_{2\rightarrow 1}^{2\rightarrow 1}$ [m]
	10->3	
66	11->3	M 2->1 [m]
67	$M_{12->5} =$	$ \begin{array}{ccc} M & 2 & > 1 \\ 2 & > > 1 \end{array} $ [m]
68	$M_{1->6} =$	M _{2->1} [m]
69	$M_{2->6} =$	$M_{2\rightarrow 1}$ [m]
70	$M_{3->6} =$	$M_{2\rightarrow 1}$ [m]
71	IVI _{4->6} =	$M_{2\rightarrow 1} \text{ [m]}$
72	IVI _{5->6} =	$M_{2\rightarrow 1} \text{ [m]}$
73	IVI _{7->6} =	$M_{2\rightarrow 1} [m]$
74	IVI _{8->6} =	$M_{2\rightarrow1}$ [m]
75	M _{9->6} =	$M_{2\rightarrow 1} \text{ [m]}$
76	IVI _{10->6} =	$M_{2\rightarrow 1}$ [m]
77	$ VI _{11->6} =$	$M_{2\rightarrow 1}$ [m]
78	M _{12->6} =	$M_{2\rightarrow 1}$ [m]
79	IVI _{1->7} =	$M_{2\rightarrow 1}$ [m]
80	IVI _{2->7} =	M_{2-1} [m]
81	IVI _{3->7} =	$M_{2\rightarrow 1} [m]$
82	IVI _{4->7} =	$M_{2\rightarrow 1}$ [m]
83	M _{5->7} =	$M_{2->1}$ [m]
84	$M_{6->7}^{3->7} =$	$ M \underset{2->1}{\overset{2->1}{\longrightarrow}} [m] $
85	$M_{8->7}^{6->7} =$	$M = \sum_{2->1}^{2->1} [m]$
	δ−>/	Z->1 · ·

```
\overline{\mathsf{M}}_{9->7} =
                                     _{2\rightarrow 1} [m]
86
                 M _{10->7} =
87
                                  M_{2->1} [m]
                                  M _{2->1} [m]
88
                     11->7 =
                                  M _{2->1} [m]
89
                 M
                     12->7 =
                                  M_{2->1} [m]
90
                 M
                     1->8 =
91
                 M
                                  M_{2->1} [m]
                     2->8 =
92
                 M
                                  M _{2->1} [m]
                     3->8 =
                                  M _{2->1} [m]
93
                     4->8 =
94
                 M
                                  M_{2->1} [m]
                     5->8 =
95
                 M
                                  M_{2->1} [m]
                     6->8 =
                 M _{7->8} =
96
                                  M _{2->1} [m]
97
                 M_{9->8} =
                                  M_{2->1} [m]
                 M _{10->8} =
98
                                  M _{2->1} [m]
                 M _{11->8} =
99
                                  M_{2->1} [m]
100
                                  M_{2->1} [m]
                     12->8 =
                 M_{1->9} =
101
                                  M_{2->1} [m]
102
                 M
                                  M_{2->1} [m]
                     2->9 =
103
                 M
                     3->9 =
                                  M _{2->1} [m]
104
                                  M_{2->1} [m]
                 M
                     4->9 =
105
                 M
                                  M _{2->1} [m]
                     5->9 =
106
                 M
                                  M_{2->1} [m]
                     6->9 =
107
                                  M_{2->1} [m]
                     7->9 =
108
                                  M _{2->1} [m]
                 M
                     8->9 =
109
                 M
                                  M_{2->1} [m]
                     _{10->9} =
110
                 M
                     <sub>11->9</sub> =
                                  M_{2->1} [m]
111
                 M
                                  M_{2->1} [m]
                     12->9 =
                                  M _{2->1} [m]
112
                     1->10
                 M _{2->10} =
113
                                  M_{2->1} [m]
114
                 M
                                  M _{2->1} [m]
                     _{3->10} =
                                  M _{2->1} [m]
115
                 M
                     4->10
116
                                  M _{2->1} [m]
                     5->10 =
117
                 M
                     6->10
                                  M_{2->1} [m]
                                  M _{2->1} [m]
118
                     7->10
                 M _{8->10} =
                                  M _{2->1} [m]
119
                 M _{9->10} =
120
                                  M _{2->1} [m]
                                  M _{2->1} [m]
121
                 M
                     11->10
122
                 M
                     12->10
                                  M _{2->1} [m]
                 M _{1->11}
123
                                                    <displayed>
                 M _{2\rightarrow11}
124
                                                    <displayed>
                 M _{3->11}
125
                                                    <displayed>
                 M _{4->11}
126
                                                    <displayed>
                 M _{5->11}
127
                                                    <displayed>
128
                 Μ
                                                    <displayed>
                     6->11
129
                 M
                                                    <displayed>
                     7->11
130
                 M
                                                    <displayed>
                     8->11
```

			illiary migrate ana				
131	M ₉₋	->11	<(displayed>			
132	N/I)->11	<0	displayed>			
133	N/I	2->11	<0	displayed>			
134	M ₁₋	->12	<0	displayed>			
135	M ₂₋	->12	<0	displayed>			
136	R A	->12	<0	displayed>			
137	M ₄₋	->12	<0	displayed>			
138	M ₅₋	->12	<0	displayed>			
139	M ₆₋	->12	<(displayed>			
140	M ₇₋	->12	<(displayed>			
141	M ₈₋	->12	<(displayed>			
142	M ₉₋	->12	<(displayed>			
143	N/I)->12	<0	displayed>			
144	N/I	1->12	<0	displayed>			
Mutation	rate among loc	i:				Mutation ra	te is constant
Analysis	strategy:					Baye	sian inference
Proposal	distributions fo	r parameter					
Paramet	er		Proposal				
Theta		Me	tropolis sampling				
М			Slice sampling				
Prior dist	tribution for para	ameter					
Paramet	er Prior	Minimum	Mean*	Maximum		Delta	Bins
Theta	Exp window	0.000010	0.010000	10.000000	1.000	0000	500
М	Exp window	0.000100	100000.000000	1000000.000000	100000.000	0000	500
Markov o	chain settings:						Long chain
Number	of chains						1
Record	ded steps [a]						1000
Increm	nent (record eve	ry x step [b]					100
Numbe	er of concurrent	chains (repli	cates) [c]				3
Visited	l (sampled) para	ameter value:	s [a*b*c]				300000
Numbe	er of discard tre	es per chain	(burn-in)				1000
Multiple I	Markov chains:						
Static	heating scheme	:				4 chains with	temperatures
				1000	00.00	3.00 1.5	50 1.00
						Swappin	g interval is 1

Print options:

Data file:	//mcalifornianus_210528.mig
Output file:	outfile.txt
Posterior distribution raw histogram file:	bayesfile
Print data:	No
Print genealogies [only some for some data type]:	None

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	11
12 LaJolla	1	8
Total of all populations	1	193

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_3	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_7	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01200
1	Θ_{12}^{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01085
1	M _{2->1}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{3->1}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{4->1}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{5->1}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{6->1}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{7->1}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{8->1}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{9->1}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{10->1}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{11->1}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{12->1}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{1->2}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{3->2}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{4->2}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{5->2}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{6->2}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{7->2}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{8->2}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{9->2}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{10->2}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{11->2}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{12->2}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{1->3}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{2->3}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{4->3}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{5->3}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{6->3}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{7->3}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{8->3}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{9->3}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{10->3}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{11->3}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{12->3}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{1->4}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{2->4}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{3->4}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{5->4}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{6->4}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{7->4}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{8->4}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{9->4}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{10->4}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{11->4}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{12->4}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{1->5}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{2->5}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{3->5}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{4->5}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{6->5}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{7->5}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{8->5}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{9->5}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{10->5}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{11->5}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{12->5}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{1->6}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{2->6}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	2->6 M _{3->6}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{4->6}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{5->6}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{7->6}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{8->6}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{9->6}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{10->6}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{11->6}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{12->6}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{1->7}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{2->7}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{3->7}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{4->7}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{5->7}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{6->7}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{8->7}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{9->7}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{10->7}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{11->7}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{12->7}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{1->8}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{2->8}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{3->8}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{4->8}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{5->8}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{6->8}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{7->8}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{9->8}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{10->8}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{11->8}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{12->8}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{1->9}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{2->9}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{3->9}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{4->9}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	4->9 M _{5->9}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	5->9 M _{6->9}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	6->9 M _{7->9}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	7->9 M _{8->9}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	8->9 M _{10->9}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{11->9}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{12->9}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{1->10}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{2->10}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1		26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{3->10}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{4->10}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{5->10}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{6->10} M _{7->10}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{8->10}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{9->10}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{11->10}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{12->10}	26000.0	40000.0	49000.0	58000.0	70000.0	51000.0	49704.9
1	M _{1->11}	16000.0	30000.0	53000.0	82000.0	110000.0	77000.0	148034.8
1	M _{2->11}	58000.0	0.00008	97000.0	132000.0	204000.0	119000.0	122845.7
1	M _{3->11}	16000.0	52000.0	71000.0	92000.0	114000.0	71000.0	67420.0
1	M _{4->11}	78000.0	102000.0	127000.0	152000.0	236000.0	147000.0	153952.2
1	M _{5->11}	32000.0	116000.0	133000.0	146000.0	168000.0	101000.0	100250.3
1	M _{6->11}	18000.0	36000.0	61000.0	86000.0	106000.0	79000.0	105357.0
1	M _{7->11}	50000.0	132000.0	163000.0	188000.0	208000.0	145000.0	135110.5
1	M _{8->11}	6000.0	44000.0	67000.0	90000.0	122000.0	85000.0	111434.0
1	M _{9->11}	72000.0	104000.0	121000.0	146000.0	180000.0	129000.0	126512.4
1	M _{10->11}	32000.0	50000.0	77000.0	102000.0	142000.0	101000.0	131206.1
1	M _{12->11}	82000.0	106000.0	127000.0	148000.0	190000.0	119000.0	97758.9
1	M _{1->12}	64000.0	100000.0	117000.0	140000.0	168000.0	107000.0	86961.7
1	M _{2->12}	10000.0	16000.0	35000.0	58000.0	212000.0	93000.0	100787.0
1	M _{3->12}	68000.0	82000.0	103000.0	126000.0	202000.0	129000.0	131957.5
1	M _{4->12}	100000.0	122000.0	141000.0	168000.0	230000.0	139000.0	128067.0
1	M _{5->12}	6000.0	50000.0	69000.0	84000.0	114000.0	63000.0	61506.6
1	M _{6->12}	38000.0	0.00088	111000.0	132000.0	148000.0	105000.0	97991.2
1	M _{7->12}	0.0	32000.0	51000.0	66000.0	76000.0	47000.0	40852.7
1	M _{8->12}	16000.0	24000.0	47000.0	118000.0	170000.0	113000.0	153402.8
1	M _{9->12}	6000.0	16000.0	33000.0	54000.0	158000.0	69000.0	77567.1
1	M _{10->12}	0.0	0.0	17000.0	30000.0	48000.0	31000.0	41838.7
1	M _{11->12}	0.0	14000.0	35000.0	54000.0	64000.0	157000.0	218214.5

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci Freq Freq 600.00 -600.00 400.00 -400.00 200.00 -200.00 0.00 -0.00 - Θ_1 8 2 2 8 6 6 Θ_{11} Freq Freq 200.0 -600.00 150.0 400.00 100.0 200.00 50.0 0.00 0.0 Θ_{12} 200000 400000 600000 800000 8 M _{2->1} Freq Freq 60.0 60.0 40.0 40.0 20.0 20.0 0.0 0.0 200000 400000 600000 800000 200000 400000 600000 800000 M _{1->11} M _{2->11}

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 13:54:45]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2406.999041	(1a)
	-2283.273446	(1b)
Harmonic mean	-1965.022997	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	14/1074	0.01304
Θ_2^{-}	14/1074	0.01304
Θ_3^2	14/1074	0.01304
Θ_4°	14/1074	0.01304
$\Theta_5^{}$	14/1074	0.01304
Θ_6°	14/1074	0.01304
Θ_7°	14/1074	0.01304
$\Theta_8^{'}$	14/1074	0.01304
$\Theta_{\mathbf{q}}$	14/1074	0.01304
Θ_{10}	14/1074	0.01304
Θ_{11}^{10}	731/1030	0.70971
Θ_{12}^{11}	691/1037	0.66635
M ¹² _{2->1}	1053/1053	1.00000
M 3->1	1053/1053	1.00000
M _{4->1}	1053/1053	1.00000
$\sqrt{1} \int_{5->1}^{4->1}$	1053/1053	1.00000
$M_{6\rightarrow 1}^{5\rightarrow 1}$	1053/1053	1.00000
$V_{7\rightarrow 1}^{0\rightarrow 1}$	1053/1053	1.00000
M _{8->1}	1053/1053	1.00000
$M_{9->1}^{8->1}$	1053/1053	1.00000
M 10->1	1053/1053	1.00000
M 11->1	1053/1053	1.00000
$VI_{12->1}^{11->1}$	1053/1053	1.00000
$M_{1->2}^{12->1}$	1053/1053	1.00000
$M_{3\rightarrow 2}$	1053/1053	1.00000
$\sqrt{1} \frac{3-22}{4-2}$	1053/1053	1.00000
$VI_{5->2}^{4->2}$	1053/1053	1.00000
$M_{6\rightarrow 2}^{3\rightarrow 2}$	1053/1053	1.00000
M _{7->2}	1053/1053	1.00000
$M_{8\rightarrow 2}$	1053/1053	1.00000
$VI_{9->2}^{8->2}$	1053/1053	1.00000
$\sqrt{10->2}$	1053/1053	1.00000
$\sqrt{10->2}$	1053/1053	1.00000
$M_{12->2}^{11->2}$	1053/1053	1.00000
12->2 M	1053/1053	1.00000
1->5	1053/1053	1.00000
VI 2->3 VI 4 > 2	1053/1053	1.00000

M _{5->3}	1053/1053	1.00000
M _{6->3}	1053/1053	1.00000
M _{7->3}	1053/1053	1.00000
M _{8->3}	1053/1053	1.00000
M _{9->3}	1053/1053	1.00000
M 10->3	1053/1053	1.00000
M _{11->3}	1053/1053	1.00000
M _{12->3}	1053/1053	1.00000
M _{1->4}	1053/1053	1.00000
M _{2->4}	1053/1053	1.00000
$M_{3\rightarrow4}$	1053/1053	1.00000
M _{5->4}	1053/1053	1.00000
M _{6->4}	1053/1053	1.00000
M 7->4	1053/1053	1.00000
M _{8->4}	1053/1053	1.00000
$M_{9->4}$	1053/1053	1.00000
M 10->4	1053/1053	1.00000
M 11->4	1053/1053	1.00000
M _{12->4}	1053/1053	1.00000
M _{1->5}	1053/1053	1.00000
M _{2->5}	1053/1053	1.00000
M _{3->5}	1053/1053	1.00000
M _{4->5}	1053/1053	1.00000
M _{6->5}	1053/1053	1.00000
M _{7->5}	1053/1053	1.00000
M _{8->5}	1053/1053	1.00000
M _{9->5}	1053/1053	1.00000
M _{10->5}	1053/1053	1.00000
M _{11->5}	1053/1053	1.00000
M _{12->5}	1053/1053	1.00000
M _{1->6}	1053/1053	1.00000
M _{2->6}	1053/1053	1.00000
M _{3->6}	1053/1053	1.00000
M _{4->6}	1053/1053	1.00000
M 5->6	1053/1053	1.00000
M _{7->6}	1053/1053	1.00000
M _{8->6}	1053/1053	1.00000
M _{9->6}	1053/1053	1.00000
M _{10->6}	1053/1053	1.00000
M 11->6	1053/1053	1.00000
M 12->6	1053/1053	1.00000
M 1->7	1053/1053	1.00000
M 2->7	1053/1053	1.00000
M 3->7	1053/1053	1.00000
M _{4->7}	1053/1053	1.00000
<u> </u>		

M 5 > 7		1,0000
M _{6 > 7}	1053/1053 1053/1053	1.00000 1.00000
NA 0->/	1053/1053	1.00000
N/ 8->/		
M 10 27	1053/1053	1.00000
M 10->7	1053/1053	1.00000
11->/	1053/1053	1.00000
M 12->7	1053/1053	1.00000
M 1->8	1053/1053	1.00000
M 2->8	1053/1053	1.00000
M 3->8	1053/1053	1.00000
M 4->8	1053/1053	1.00000
M 5->8	1053/1053	1.00000
M 6->8	1053/1053	1.00000
M 7->8	1053/1053	1.00000
M 9->8	1053/1053	1.00000
M 10->8	1053/1053	1.00000
M 11->8	1053/1053	1.00000
M 12->8	1053/1053	1.00000
M 1->9	1053/1053	1.00000
M _{2->9}	1053/1053	1.00000
$M_{3->9}$	1053/1053	1.00000
M _{4->9}	1053/1053	1.00000
M _{5->9}	1053/1053	1.00000
M _{6->9}	1053/1053	1.00000
M _{7->9}	1053/1053	1.00000
M _{8->9}	1053/1053	1.00000
M _{10->9}	1053/1053	1.00000
M _{11->9}	1053/1053	1.00000
M _{12->9}	1053/1053	1.00000
M _{1->10}	1053/1053	1.00000
M _{2->10}	1053/1053	1.00000
M _{3->10}	1053/1053	1.00000
M _{4->10}	1053/1053	1.00000
M _{5->10}	1053/1053	1.00000
M _{6->10}	1053/1053	1.00000
M _{7->10}	1053/1053	1.00000
M _{8->10}	1053/1053	1.00000
$M_{9->10}$	1053/1053	1.00000
M 11->10	1053/1053	1.00000
$M_{12->10}$	1053/1053	1.00000
M _{1->11}	1056/1056	1.00000
M _{2->11}	1025/1025	1.00000
$M_{3->11}$	1053/1053	1.00000
M _{4->11}	1034/1034	1.00000
$M_{5->11}$	1016/1016	1.00000
Migrate 3.7.2: (http://popgen.sc.fsu.edu.) [prog		

M _{6->11}	1027/1027	1.00000
M _{7->11}	1091/1091	1.00000
M _{8->11}	1064/1064	1.00000
M _{9->11}	1026/1026	1.00000
$M_{10->11}$	1069/1069	1.00000
$M_{12->11}$	1009/1009	1.00000
$M_{1->12}$	1095/1095	1.00000
$M_{2->12}$	1039/1039	1.00000
$M_{3->12}$	1028/1028	1.00000
$M_{4->12}$	1021/1021	1.00000
$M_{5->12}$	1019/1019	1.00000
M _{6->12}	1067/1067	1.00000
$M_{7->12}$	1065/1065	1.00000
M _{8->12}	1010/1010	1.00000
$M_{9->12}$	1020/1020	1.00000
$M_{10->12}$	1030/1030	1.00000
$M_{11->12}$	1066/1066	1.00000
Genealogies	23289/149847	0.15542

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.99264	11.07
Θ_2	0.99264	11.07
Θ_3^2	0.99264	11.07
\mathbf{p}_{4}°	0.99264	11.07
)5	0.99264	11.07
6	0.99264	11.07
) ₇	0.99264	11.07
) ₈	0.99264	11.07
a	0.99264	11.07
10	0.99264	11.07
11	0.81827	300.86
12	0.82168	293.57
2->1	0.98962	15.64
3->1	0.98962	15.64
4->1	0.98962	15.64
5->1	0.98962	15.64
6->1	0.98962	15.64
7->1	0.98962	15.64
8->1	0.98962	15.64
9->1	0.98962	15.64
10->1	0.98962	15.64
11->1	0.98962	15.64
12->1	0.98962	15.64
1->2	0.98962	15.64
3->2	0.98962	15.64
4->2	0.98962	15.64
5->2	0.98962	15.64
6->2	0.98962	15.64
7->2	0.98962	15.64
8->2	0.98962	15.64
9->2	0.98962	15.64
10->2	0.98962	15.64
11->2	0.98962	15.64
11->2	0.98962	15.64
1->3	0.98962	15.64
1 2->3	0.98962	15.64
1 4->3	0.98962	15.64

		1 71
M _{5->3}	0.98962	15.64
M _{6->3}	0.98962	15.64
M _{7->3}	0.98962	15.64
$M_{8\rightarrow3}$	0.98962	15.64
$M_{9->3}^{6->3}$	0.98962	15.64
$M_{10->3}$	0.98962	15.64
M 11->3	0.98962	15.64
$M_{12->3}^{11->3}$	0.98962	15.64
I M	0.98962	15.64
M 1->4 M 2->4	0.98962	15.64
$M_{3\rightarrow 4}^{2\rightarrow 4}$	0.98962	15.64
$M_{5->4}^{5->4}$	0.98962	15.64
I M	0.98962	15.64
M 6->4 M 7->4	0.98962	15.64
$M_{8->4}^{7->4}$	0.98962	15.64
$M_{9->4}^{8->4}$	0.98962	15.64
M 10->4	0.98962	15.64
M 11->4	0.98962	15.64
$M_{12->4}^{11->4}$	0.98962	15.64
$M_{1->5}^{12->4}$	0.98962	15.64
$M_{2->5}^{1->3}$	0.98962	15.64
$M_{3->5}^{2->3}$	0.98962	15.64
$M_{4->5}^{5->5}$	0.98962	15.64
M _{6->5}	0.98962	15.64
M 7->5	0.98962	15.64
M _{8->5}	0.98962	15.64
M _{9->5}	0.98962	15.64
M _{10->5}	0.98962	15.64
M _{11->5}	0.98962	15.64
M _{12->5}	0.98962	15.64
M _{1->6}	0.98962	15.64
M _{2->6}	0.98962	15.64
M _{3->6}	0.98962	15.64
M _{4->6}	0.98962	15.64
M _{5->6}	0.98962	15.64
M _{7->6}	0.98962	15.64
M _{8->6}	0.98962	15.64
M _{9->6}	0.98962	15.64
M _{10->6}	0.98962	15.64
M _{11->6}	0.98962	15.64
M _{12->6}	0.98962	15.64
M 1->7	0.98962	15.64
M 2->7	0.98962	15.64
M _{3->7}	0.98962	15.64
M _{4->7}	0.98962	15.64

		1 //
M _{5->7}	0.98962	15.64
M _{6->7}	0.98962	15.64
M _{8->7}	0.98962	15.64
M _{9->7}	0.98962	15.64
M 10->7	0.98962	15.64
M 11->7	0.98962	15.64
M _{12->7}	0.98962	15.64
M 1->8	0.98962	15.64
M 2->8	0.98962	15.64
$M_{3->8}$	0.98962	15.64
M _{4->8}	0.98962	15.64
M _{5->8}	0.98962	15.64
M 6->8	0.98962	15.64
M 7->8	0.98962	15.64
$M_{9->8}$	0.98962	15.64
M 10->8	0.98962	15.64
M 11->8	0.98962	15.64
M 12->8	0.98962	15.64
M _{1->9}	0.98962	15.64
M _{2->9}	0.98962	15.64
M _{3->9}	0.98962	15.64
M _{4->9}	0.98962	15.64
M _{5->9}	0.98962	15.64
M _{6->9}	0.98962	15.64
M _{7->9}	0.98962	15.64
M _{8->9}	0.98962	15.64
M _{10->9}	0.98962	15.64
M _{11->9}	0.98962	15.64
M _{12->9}	0.98962	15.64
M _{1->10}	0.98962	15.64
M 2->10	0.98962	15.64
M 3->10	0.98962	15.64
M _{4->10}	0.98962	15.64
M 5->10	0.98962	15.64
M 6->10	0.98962	15.64
M 7->10	0.98962	15.64
M 8->10	0.98962	15.64
M 9->10	0.98962	15.64
M 11->10	0.98962	15.64
M 12->10	0.98962	15.64
M 1->11	0.92029	125.00
M 2->11	0.93004	108.95
M 3->11	0.91299	136.68
M 4->11	0.89110	173.23
M _{5->11}	0.88186	189.79

6->11	0.83831	264.45
7->11	0.90976	142.32
8->11	0.90333	157.92
9->11	0.88761	179.57
10->11	0.89405	169.78
12->11	0.91322	138.34
1->12	0.92525	116.84
2->12	0.91783	128.44
3->12	0.88341	185.98
4->12	0.91127	139.40
5->12	0.91585	131.87
6->12	0.83510	270.10
7->12	0.89687	163.19
8->12	0.91965	125.95
9->12	0.93965	94.00
10->12	0.87784	197.25
11->12	0.91722	130.74
Prob(D G)]	0.97939	31.28

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.

- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- _____
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!
- r aram 10. Encouve sample size of full seems too shorts
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short!
Param 13: Effective sample size of run seems too short!
Param 13: Effective sample size of run seems too short!