Problem Set # 1

Math262a: Quantum theory from a geometric viewpoint I

These problems are supplementary to the lectures and the lecture notes. I hope you tackle many of them, even if you don't complete them. Many are open-ended. They provide a gateway to engage with the material in the class. I suggest you form small groups to discuss the class material, including these problems. Those getting a grade in the course should regularly hand in some solutions. Please come to office hours and the discussion section to discuss these problems, and also take advantage of Discord as a platform for discussion.

Problems

- In this problem you will derive the symplectic form on the space of classical trajectories of a particle, for simplicity a particle of mass m moving on the standard Euclidean line E¹ with coordinate x.
 Let V: E¹ → R be a smooth function, which is the potential energy of the particle. Let F = Map(R, E¹) be the space of smooth possible particle trajectories.
 - (a) What is the space $N \subset \mathcal{F}$ of classical trajectories, i.e., trajectories that satisfy Newton's law? Consider the special cases V = 0 and $V(x) = kx^2/2$ for some k > 0.
 - (b) Review the derivation of Newton's law from the calculus of variations (Euler-Lagrange equations) applied to the *action* function

$$S(\gamma) = \int \left[\frac{1}{2} m \dot{x}(t)^2 - V(x(t)) \right] dt$$

where $x: \mathbb{R} \to \mathbb{E}^1$ is a smooth motion.

(c) Rephrase this computation using calculus on $\mathcal{F} \times \mathbb{R}$. Observe that the Euler-Lagrange equations only depend integrand in the action—the lagrangian—not its integral. Write δ for the de Rham differential on \mathcal{F} and d for the de Rham differential $d = dt \cdot \partial/\partial t$ on \mathbb{R} . Then the total de Rham differential on $\mathcal{F} \times \mathbb{R}$ is $\delta + d$. In particular, $(\delta + d)^2 = 0$. A differential form on $\mathcal{F} \times \mathbb{R}$ has $type\ (p,q),\ p \in \mathbb{Z}^{\geqslant 0},\ q \in \{0,1\}$, if it is nonzero only when evaluated on p vectors tangent to \mathcal{F} and q vectors tangent to \mathbb{R} . Calculus on the Cartesian product $\mathcal{F} \times \mathbb{R}$ is depicted in the diagram

(If one writes the lagrangian and action as a density rather than a differential form—use |dt| in place of dt—which we should do since we should not use an orientation on \mathbb{R} to define this

mechanical system, then the formatting of the square makes more sense: starting from the top, the vertical degrees are then written as '|0|' and '|-1|'.) Let

$$e: \mathfrak{F} \times \mathbb{R} \longrightarrow \mathbb{E}^1$$
 $x, t \longmapsto x(t)$

be the evaluation function. Show that the integrand above can be written as

$$L = \left[\frac{1}{2}m\dot{e}^2 - V \circ e\right]dt$$

and that it is an element of $\Omega^{0,1}(\mathcal{F}\times\mathbb{R})$. (Be sure to define \dot{e} , which is a directional derivative of e along a certain vector field on $\mathcal{F} \times \mathbb{R}$.)

- (d) Compute $\delta L \in \Omega^{1,1}(\mathfrak{F} \times \mathbb{R})$. Carry out the integration by parts in the following form: find $\theta \in \Omega^{1,0}(\mathcal{F} \times \mathbb{R})$ so that $\delta L + d\theta$ is a function times $\delta e \wedge dt$, i.e., it has no $\delta \dot{e} \wedge dt$ term.
- (e) Show that $\delta L + d\theta$ vanishes on N, and in fact that vanishing defines N.
- (f) Show that the restriction of $\delta\theta \in \Omega^{2,0}(\mathcal{F} \times \mathbb{R})$ to $N \times \{t_0\}$ is independent of t_0 . Show that this restriction is a symplectic form. Identify it with the symplectic form you may have run into before in this context.
- 2. In the previous problem specialize to $V(x) = kx^2/2$ for fixed k > 0.
 - (a) Fix $t \in \mathbb{R}$ and consider the observables (functions on N) given by $\mathcal{O}_1(x) = x(0)$ and $\mathcal{O}_2(x) = x(t)$. Choose a pure state σ , which is a point of N. Compute the expectation values $\langle \mathcal{O}_1 \rangle_{\sigma}$ and $\langle \mathcal{O}_2 \rangle_{\sigma}$. Compute the correlation function $\langle \mathcal{O}_2 \mathcal{O}_1 \rangle_{\sigma}$. Investigate the dependence on t and on σ .
 - (b) Now consider the mixed Gibbs state, which is a probability measure on the space N of classical solutions. Its probability density is a constant times $e^{-\beta E}$, where $\beta > 0$ is a constant and $E: N \to \mathbb{R}$ is the energy function $E = m\dot{x}^2/2 + kx^2/2$. Compute the Gibbs state (a function times the standard measure on the (x, \dot{x}) -plane) and evaluate the expectation values in part (a) in the Gibbs state.
 - 3. Verify the axioms in §1.2 of the lecture notes for the case of a classical mechanical system.
 - 4. In the context of a general mechanical system, let σ_1, σ_2 be states and let A, A' be observables. Fix $t \in [0,1]$. Prove that for the convex combination $\sigma = t\sigma_1 + (1-t)\sigma_2$ the standard deviations $\Delta_{\rho}B$ of the probability distributions ρ_{B} obtained from the various states ρ and observables B satisfy

$$\Delta_{\sigma} A \, \Delta_{\sigma} A' \geqslant t(\Delta_{\sigma_1} A) \, (\Delta_{\sigma_1} A') + (1 - t)(\Delta_{\sigma_2} A) \, (\Delta_{\sigma_2} A')$$

In particular, conclude that

$$\Delta_{\sigma}A \geqslant \min_{2}(\Delta_{\sigma_{1}}A, \Delta_{\sigma_{2}}A).$$

(Recall that the standard deviation of a probability measure on \mathbb{R} is the square root of the integral of $(\lambda - \mu)^2$ times the probability measure on the real line \mathbb{R}_{λ} with coordinate λ , where μ is the *mean* or *expected value*, i.e., μ is the integral of λ times the probability measure.)