- **1.** Consider the matrix $A = \begin{pmatrix} 3 & 1 & -5 & 0 & 5 \\ 2 & 1 & -3 & 1 & 7 \\ 1 & 1 & -1 & 1 & 6 \end{pmatrix}$ which is row equivalent to $B = \begin{pmatrix} 1 & 0 & -2 & 0 & 1 \\ 0 & 1 & 1 & 1 & 5 \\ 0 & 0 & 0 & 1 & 3 \end{pmatrix}$.
 - (a) What is the relationship between the solution sets to $\mathcal{L}S(A)$ and $\mathcal{L}S(B)$? (1 point)
 - (b) Find a matrix *C* that is row equivalent to *A* and is in reduced row echelon form. Label any row operations you preform. **(2 points)**

(c) Parameterize all solutions to the linear system $\mathcal{L}S(A)$. (3 points)

(d) Find the dimension of the nullspace $\mathcal{N}(A)$ of A. (2 points)

- **2.** Let *W* be a subset of a vector space *V*. We say that *W* is *awesome* when both:
 - (i) The subset W is nonempty.
 - (ii) For all w_1 and w_2 in W and $a \in \mathbb{R}$, the linear combination $aw_1 + w_2$ is also in W.

Prove that if W is a subspace then it is awesome. **(6 points)**

3. Let S in $Mat_{2\times 2}(\mathbb{R})$ be the subspace of symmetric matrices, i. (a) Give an explicit basis for S , carefully justifying your answ	
(a) Give all explicit basis for 3, carefully justifying your allsw	ver. (o points)
(b) What is the dimension of S and why? (2 points)	

4. Suppose $\{w_1, w_2\}$ are linearly independent vectors in a ve $\{v, w_1, w_2\}$ is linearly dependent then v is in span (w_1, w_2) .	For v in V , p	rove that if

5.	. Suppose V is a vector space where $\dim V = 2$.
	(a) For any subspace $W \subset V$, what are the possibilities for dim W ? (2 points)
(b) Suppose $W_1 \subset W_2 \subset W_3 \subset W_4$ are all subspaces of V . Prove that at least two of W_1, W_2, W_3 and W_4 are the same. Hint: Use part (a). (5 points)	

6. Circle true or false as appropriate; you do **not** need to provide any justification.

(1 point each)

(a) If $A \in \operatorname{Mat}_{3\times 3}(\mathbb{R})$ is row equivalent to a matrix in RREF that has no zero rows then the linear system $\mathcal{LS}(A)$ is inconsistent.

true false

(b) If $\{u, v, w\}$ is a basis for \mathbb{R}^3 then $\{u - v, v - w, w - u\}$ is also a basis for \mathbb{R}^3 .

true false

(c) The set $\{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 1\}$ is a subspace of \mathbb{R}^3 .

true false

(d) The elements $f(t) = \sin^2(t)$, $g(t) = \cos^2(t)$ and h(t) = 1 are linearly dependent in $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

true false

(e) The set $\{ae^t + be^{-t} \mid a, b \in \mathbb{R}\}$ is a subspace of $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

true false

(f) Suppose a linear system with 4 variables and 6 equations has (1,2,0,1) and (3,0,1,5) as solutions. Then the total number of solutions to this system is finite.

true false

(g) With the terminology of Problem 2, if a subset W of a vector space V is awesome then it is a subspace.

true false