Imperial College Business School

Lecture 4:

Trade size and market depth

© Foucault/Pagano/Roell 2024

Readings

Core

• Chapter 4 of textbook

Recommended

• Kyle, Albert S., 1985 Continuous auctions and insider trading, *Econometrica* 53, Sections 1, 2 and 6 only, pp. 1315-1320, 1333-1335 only.

Imperial College Business School

2

Outline

- How does trade size affect prices?
- What is market depth?
- How do traders choose their trade size?
- We shall address these questions in the context of call markets:
 - 1. with informative order flow: Kyle's model
 - · under perfect and imperfect competition
 - 2. with risk averse market makers
 - · again, under perfect and imperfect competition

Imperial College Business School

3

Société Générale, January 2008

- Friday 18 January: Société Générale discovers that employee Jerome Kerviel has accumulated massive positions in European equity derivatives ⇒ losses = €1.5 bn
- · 21 January: bank starts executing small sales
- 22 January: even though sales less than 10% of daily volume, stock markets decline steeply ⇒ Fed intervenes
- 24 January: SG discloses the news publicly; its losses = €4.9 bn
- Episode illustrates three facts:
 - · large intended trades, yet gradual and cautious sales
 - · secrecy, for fear of unsettling market
 - even so, steep price drop: derivative markets have limited depth, even though they are very liquid

Imperial College Business School

4

5

Depth vs. spread: two dimensions of liquidity

- A market can be very liquid for small trades, but not for large ones: "it lacks depth"
- Why?
 - Large orders may be much more informative than small ones, being more likely placed by informed traders
 - Filling a large order exposes market makers to **greater inventory risk**: this depends on their total risk bearing capacity (number of market makers also matters)
 - Market makers may have market power: if they do, they may offer less depth to large order placers
- To capture these points, we must allow for variable order *size* (not just order *direction*)
- **Depth** = size of order that can be filled at a given deviation of price from its pre-existing level

Imperial College Business School

Depth and asymmetric information

Imperial College Business School

7

1. Market depth under asymmetric information

- Model by Kyle (1985): as in Glosten-Milgrom, there are two types of traders:
 - uninformed traders, who place random order $u \sim N(0, \sigma_u^2)$
 - informed traders, who observe $v \sim N(\mu, \sigma_v^2)$ and place order with size (x) that depends on v: x = X(v)
- <u>But</u> now orders are not executed one by one. They are batched and submitted as a single net trade *q*:

$$q \equiv x + u$$
 order from informed trader ("insider") order from uninformed trader ("noise trader")

Imperial College Business School

8

Market makers

- Risk neutral, competitive market makers:
 - do not observe *v*, and cannot distinguish *x* (informed orders) from *u* (noise)
 - post price-quantity schedules based on expectation of v, conditional on the total net trade q
- They try to infer v from q = x + u or from the price p
- In equilibrium *p* and *q* will be linearly related:

$$p = \mu + \lambda q$$

where λ = price impact of a market order $\Rightarrow 1/\lambda = depth$

In equilibrium, λ depends on order flow informativeness, which drives dealers' inference about v

Imperial College Business School

9

9

Solving for equilibrium: four steps

- **Market maker's inference**: explain how market makers infer *v* from orders *q*, for a *given* (assumed) strategy of informed traders *x*=*X*(*v*)
- **Pricing function**: derive the market makers' pricing function p(q), assuming perfect competition among them (zero expected profits)
- Order placement by informed traders: find the parameters of the X(v) function that maximize expected profits, for a given pricing function of market makers
- Nash equilibrium: find the parameters that make the two best responses p(q) and X(v) mutually consistent

Imperial College Business School

Market makers' inference

- The insider trades $x = X(v) = \beta(v \mu)$ for some $\beta > 0$
- Market makers do not observe x, but total demand q:

$$q = x + u = \beta(v - \mu) + u$$
, with $q \sim N(0, \beta^2 \sigma_v^2 + \sigma_u^2)$

• Their estimate of v is:

$$E(v|q) = \mu + \underbrace{\frac{\text{cov}(v,q)}{\text{var}(q)}}_{\text{OLS}} q = \mu + \underbrace{\frac{\beta \sigma_v^2}{\beta^2 \sigma_v^2 + \sigma_u^2}}_{\alpha} q$$

Imperial College Business School

11

What does order flow informativeness α depend on?

- Informativeness of order flow α is
 - Increasing in σ_{v}^{2} (variance of the "signal")
 - decreasing in σ_{ν}^{2} (variance of the "noise")
- It is non-monotonic in β (aggressiveness of trading by insiders): first increasing, then decreasing in β
- Why?
 - · aggressive trading by insiders makes their orders more informative
 - it also inflates trades for given $v \to \alpha$ must be scaled down when insiders' trading is very aggressive

Imperial College Business School

12

Perfect competition among market makers

• Zero expected profits for market makers:

$$p(q) = E(v|q) = \mu + \underbrace{\frac{\beta \sigma_v^2}{\beta^2 \sigma_v^2 + \sigma_u^2}}_{\lambda = \text{price pressure}} q \implies \lambda = \alpha$$

 So the call market implicitly features a bid-ask spread that is increasing in the quantity traded:

$$S(q) = 2\lambda q$$

• Note: p depends on **total** order flow $q \Rightarrow$ (i) depth = $1/\lambda$; (ii) execution risk for any given order (as q is random)!

Imperial College Business School

13

13

Expected price and noise trade size

depth depends inversely on price pressure parameter λ

Imperial College Business School

Endogenous insider behavior

- So far β (intensity of insider's trading) was taken as given
- But the insider chooses x to maximize expected profits:

$$\max_{\mathbf{x}} \mathbf{E}[\mathbf{x} \cdot (\mathbf{v} - \mathbf{p})] = \mathbf{x} \cdot (\mathbf{v} - (\mu + \lambda \mathbf{E}(\mathbf{q} \mid \mathbf{x})))$$

• The first order condition yields the "optimal aggressiveness" β :

$$v - \mu = 2\lambda x$$
 = $x \cdot (v - (\mu + \lambda x))$

$$\Rightarrow x = \frac{1}{2\lambda} (v - \mu)$$

$$\Rightarrow x = \frac{1}{2\lambda} (v - \mu)$$

$$= \beta$$
aggressiveness of insider's orders β is inversely related to price pressure $\lambda \Rightarrow$ it is proportional to market depth $1/\lambda$.

Imperial College Business School

15

15

We derived the best responses of the two players

Market maker set prices:

$$\lambda = \frac{\beta \sigma_v^2}{\beta^2 \sigma_v^2 + \sigma_u^2}$$

The insider responds with:

$$\beta = \frac{1}{2\lambda}$$

The values of β and λ that solve these 2 equations make the best response of the market makers (1st equation) and that of the informed trader (2nd equation) mutually consistent: **Nash equilibrium**

Imperial College Business School

Solving for the Nash equilibrium

$$\lambda = \frac{\beta \sigma_v^2}{\beta^2 \sigma_v^2 + \sigma_u^2}, \qquad \beta = \frac{1}{2\lambda}$$

$$\beta = \frac{1}{2\lambda}$$

From the 1st eq.:

$$\frac{1}{\lambda} = \frac{\beta^2 \sigma_v^2 + \sigma_u^2}{\beta \sigma_v^2} = 2\beta \text{ by using the } 2^{\text{nd}} \text{ eq.}$$

$$\Rightarrow \beta^2 \sigma_v^2 + \sigma_u^2 = 2\beta^2 \sigma_v^2 \Rightarrow \sigma_u^2 = \beta^2 \sigma_v^2 \Rightarrow \beta = \frac{\sigma_u}{\sigma_v}$$

From the 2nd eq. again:

$$\lambda = \frac{1}{2\beta} \implies \lambda = \frac{\sigma_v}{2\sigma_u}$$

Imperial College Business School

17

Imperial College Business School

β (insider trading intensity)

(market makers' pricing function)

19

Equilibrium market depth

aggressively: equilibrium is at **blue point**

• The equilibrium value of λ determines the price response to the total net order q:

$$p(q) = \mu + \lambda q = \mu + \frac{\sigma_v}{2\sigma_u} \cdot q$$

- The equilibrium market depth, $1/\lambda = 2\sigma_u/\sigma_v$, is
 - increasing in the variability of noise trading σ_u : the greater noise trading volume, the more market makers earn to compensate losses with insiders
 - decreasing in the variability of the stock value σ_{V} : the greater the insider's informational advantage, the more market makers are afraid of losing money to insiders

Imperial College Business School

20

How much money do insiders make on average?

• Insider's expected profit, conditional on v:

$$E[x \cdot (v-p) | v] = x \cdot [v - E(p | x)] = x \cdot [v - (\mu + \lambda x)]$$

$$= \underbrace{\beta(v-\mu)}_{x} \cdot [v - \mu - \lambda \underbrace{\beta(v-\mu)}_{x}]$$

$$= \underbrace{\frac{1}{2}\beta(v-\mu)^{2}}_{x} = \underbrace{\frac{1}{2}\frac{\sigma_{u}}{\sigma_{v}}(v-\mu)^{2}}_{x}$$

• So it is increasing in σ_u (as noise trading allows the insider to "hide") and in the distance of v from its mean μ (which measures the insider's information advantage)

Imperial College Business School 21

21

Ex ante, how much money do insiders expect to make?

- Consider the insider's expected profit, before he observes the asset value *v*, that is, unconditionally.
- We must take the expectation of the previous expression over the asset value v:

$$E[x \cdot (v-p)] = \frac{1}{2} \frac{\sigma_u}{\sigma_v} E(v-\mu)^2 \qquad = \frac{1}{2} \frac{\sigma_u}{\sigma_v} \sigma_v^2 \qquad = \frac{1}{2} \sigma_v \sigma_u$$

- Increasing in σ_v : "information is money"
- Increasing in σ₁: noise trading allows the insider to "hide"
- Insider's expected profit = average noise trader's costs

Imperial College Business School

Kyle (1985): dynamic case

- Suppose that there are two trading rounds.
- Then the informed investor's problem is more complex:
 - 1. he can repeatedly exploit his signal
 - 2. however, each trade permanently impacts the price and therefore reduces the profit that the informed investor can expect from future trades
- Solving the equilibrium: $\{\beta_t\}$, $\{\lambda_t\}$ are jointly determined at each date (no recursive solution)

Imperial College Business School

23

23

Key findings for the dynamic case

Kyle (1985) shows that, in discrete time, illiquidity

- decreases over time
- increases as the number of trading rounds increases

Instead, in continuous time, illiquidity is constant at each date

Imperial College Business School

24

Market Depth and Imperfect Competition

25

Imperial College Business School

25

Imperfectly competitive market making

- Now consider a call auction where K risk neutral market makers compete by submitting supply schedules $y^k = Y^k(p)$, for k = 1,..., K
- · Look for rational expectations equilibrium, i.e.:
 - market makers maximize expected profits, given their beliefs about the security's value, and the (assumed) behavior of (i) the informed trader *and* (ii) their competitors
 - their beliefs are rational (=verified in equilibrium)
 - the market clears

26

Imperial College Business Schoo

Updating and market clearing conditions

• As before, assume that the order flow *q* is informative about the value of the security *v*:

$$E(v|q) = \mu + \alpha q$$

• The market clears when the market makers' total supply equals the customers' order flow *q*:

$$\sum_{k=1}^{K} Y^k(p) = q$$

• Note that by conditioning on p, each market maker can effectively condition on q

Imperial College Business School

07

27

Imperfectly competitive equilibrium

• Derive the optimal (profit-maximizing) response of market maker k, assuming that each competitor j submits an *identical linear* supply function:

$$y^j = Y^j(p) = \phi(p - \mu)$$

- Market maker k's optimal response $y^k = Y^k(p)$ also depends on his estimate $\mathbb{E}(v \mid q)$
- In equilibrium, the slope of y^k must equal the slope ϕ assumed for his competitors, which yields:

$$p = \mu + \underbrace{\alpha \frac{K-1}{K-2}}_{\lambda} q \qquad \qquad \frac{K-1}{K-2} > 1$$

Imperial College Business School

Imperfectly competitive equilibrium (2)

• So under imperfect competition the price "overreacts" to the order flow relative to perfect competition:

$$p = \underbrace{\mu + \alpha q}_{\text{competitive price} = E(\nu|q)} + \underbrace{\frac{1}{K - 2} \alpha q}_{\text{markup}}$$
 $\Rightarrow \lambda > \alpha$

- The markup is positive for *K*>2 and is inversely related to the number of competing market makers *K*
- The markup goes to 0 as *K* goes to ∞ : perfect competition!

Imperial College Business School

29

29

Dealers' quotes: perfect vs. imperfect competition

Imperial College Business School

30

2. Market depth with risk averse market makers

• K risk averse market makers k = 1,...,K, with utility:

 $\mathrm{E}[U(w^k)] = \mathrm{E}(w^k) - \frac{\overline{\rho}}{2} \mathrm{var}(w^k)$ and budget constraint:

initial inventory
$$w^k = v(z^k - y^k) + py^k + c^k$$
 initial cash

- The security has value with mean μ and variance σ_{v}^{2}
- Each market maker posts a net supply schedule
- He is **competitive**, i.e. takes p as given

Imperial College Business School

31

31

Individual optimization

• Market maker k chooses y^k so as to maximize his utility under the budget constraint. Replace the constraint in $E[U(w^k)]$:

$$\mu(z^{k}-y^{k})+py^{k}+c^{k}-\frac{\overline{\rho}}{2}\sigma_{v}^{2}(z^{k}-y^{k})^{2}$$

and compute the first order condition:

$$p - \mu + \overline{\rho}\sigma_v^2(z^k - y^k) = 0$$

• So the individual supply function of market maker k is:

$$y^k = \frac{p - \mu}{\overline{\rho}\sigma_v^2} + z^k$$

Imperial College Business School

Competitive equilibrium

• The market clearing condition is:

$$\sum_{k=1}^{K} y^k = q$$

• So the equilibrium price is:

$$p = \mu - \rho \sigma_v^2 Z + \rho \sigma_v^2 q$$

where

$$Z = \sum_{k=1}^{K} z^k$$
 and $\rho = \frac{\overline{\rho}}{K}$

the "risk aversion of the market" is inversely related to number of dealers K: each supplies 1/K of q

Imperial College Business School

33

33

Competitive equilibrium (2)

• Since

$$p = \underbrace{\mu - \rho \sigma_v^2 Z}_{\text{midquote } m} + \rho \sigma_v^2 q = m + \rho \sigma_v^2 q$$

the trading cost p-m is increasing in the

- · risk of the security
- size of total net trade q
- market makers' "collective" risk aversion $\rho \Rightarrow$ decreasing in their number K (= risk bearing capacity of the market)

Imperial College Business School

34

35

Imperfectly competitive dealers

- Suppose dealers are (i) imperfectly competitive; (ii) equally risk averse
- There is Nash equilibrium in which each dealer *k* submits the following supply function, assuming that his competitors submit *identical linear* supply functions:

 $y^k = Y^k(p) = \phi(p - \mu) + \psi z^k$

• Market maker k's optimal response y^k takes into account that the price responds to his supply y^k in equilibrium:

$$y^{k} + (K-1)\phi(p-\mu) + \psi \sum_{j \neq k} z^{j} = q$$
supply by k's competitors

Imperial College Business School

Deriving the Nash equilibrium: three steps

- 1. Dealer k maximizes his mean-variance objective considering the response of the equilibrium price to his trade \Rightarrow obtain his **supply** function (best response) $Y^k(p)$
- 2. By **symmetry** the coefficients of dealer *k*'s supply must **equal** those of his competitors' (conjectured) supplies ⇒ obtain his **Nash equilibrium supply** function:

$$Y^{k}(p) = \frac{K-2}{K-1} \left[\frac{p-\mu}{\overline{\rho}\sigma_{v}^{2}} + z^{k} \right]$$

3. Impose market clearing:

$$\sum_{k=1}^{K} Y^k(p) = q$$

Imperial College Business School

37

37

Nash equilibrium price

• Equilibrium price (for K >2):

$$p = \mu - \rho \sigma_v^2 Z + \frac{K - 1}{K - 2} \rho \sigma_v^2 q$$

$$Z = \sum_{k=1}^{K} z^k \quad \text{and} \quad \rho = \frac{\overline{\rho}}{K}$$

where

- So the price "overreacts" to the order flow compared to perfect competition (case where $K \rightarrow \infty$)
- The markup is inversely related to the number of competing market makers K
- Here *K* adds to market depth for 2 reasons: 1) more risk bearing capacity; 2) more competition

Imperial College Business School

38

Risk sharing in the competitive case

- How do dealers share risk? Do they share risk efficiently?
- Suppose q=0. If all dealers have the same risk aversion, efficient risk sharing requires each to have a final position Z/K: so risk is shared equally among dealers
- This is indeed the case in the competitive equilibrium since after trading, a dealer's position is:

 $z^k - y^k (p^*) = \frac{Z}{K}$

 \bullet This yields a Pareto optimal allocation among dealers after trading \Rightarrow no need for re-trading

Imperial College Business School

39

39

Risk sharing in the imperfectly competitive case

• In a non-competitive equilibrium, a dealer's position after trading is a weighted average of his initial position z^k and Z/K:

$$z^{k} - y^{k}(p^{*}) = \frac{1}{K-1}z^{k} + \frac{K-2}{K-1}\frac{Z}{K}$$

- So risk allocation after one trading round is not Pareto- optimal
- Why? Dealers trade "too little": they reduce their supply or demand so as to limit the adverse price reaction they trigger
- If the market reopens, they would want to trade again after the first trading round

Imperial College Business School

Key takeaways

- Large orders generally affect prices more than small orders: markets can offer great liquid for small trades but lack depth
- The price impact of large orders is an inverse measure of market depth
- Depth is lower
 - the more informative is the order flow, i.e., the higher the signal to noise ratio
 - the greater is asset risk and market makers' risk aversion, and the lower their number
 - the greater is the market power of liquidity suppliers, and thus (again) the fewer they are

Imperial College Business School