Patent: Assignee: (CETU) CL /S CORP

Author (inventor): BJORN M J; FRANKEL A E; LAIRD W J; RING D B; WINKELHAKE

J L

Number of Patents: 002

Patent Family:

CC Number Kind Date Week

EP 226418 A 870624 8725 (Basic)

JP 62209098 A 870914 8742

Priority Data (CC, No, Date): US 806256 (851206);

Applications (CC, No, Date): EP 86309515 (861205); JP 86289791 (861206);

EP and/or WO Language: English

EP and/or WO Cited Patents:

No .SR.Pub; A3 ...8817; EP 121388; EP 74279; WO 8300810; 5.Jnl.REF;

Designated States (Regional): AT; BE; CH; DE; FR; GB; IT; LI; NL; SE

Abstract (Basic): EP0226418

AnImmunotoxin (I) comprising a cytotoxic moiety and an antigen-binding portion selected from the Fab, Fab' or F(ab')2 region of a monoclonal antibody is new when the monoclonal antibody (a) binds human ovarian cancer tissue; (b) has a selectivity of 0.11 or less; and (c) is an IgG or IgM.

(I) has a cytotoxicity ID50 of up to 10 nM against human ovarian cancer cells; it retards the growth of tumours comprising human ovarian cancer cells, carried by a mammal; or it extends the survival time of such a mammal.

USE/ADVANTAGE - (I) is useful for the treatment of human ovariant cancers, as it retards the growth of and kills the cancer cells. (I) may be used to kill the cancer cells in vitro in the diagnosis of the cancer. Dose is $0.01-100~\rm mg/kg$ intraperitoneally. @(21pp Dwg.No.0/0)@

File Segment: CPI

Derwent Class: B04; D16;

Int Pat Class: A61K-035/74; A61K-037/02; A61K-047/00; A61K-039/00;

C07K-015/12; C12N-015/00;

Manual Codes (CPI/A-N): B04-B02C5; B04-B04A3; B04-B04A4; B12-G07; B12-K04A1

: D05-H09:

Chemical Fragment Codes (M1):

01 M423 M710 M903 P631 P633 P831 Q233 V600 V611

⑩日本国特許庁(JP)

(1) 特許出願公開

@ 公 開 特 許 公 報 (A) 昭62-209098

@Int_Cl.4	識別記号	庁内整理番号	@公開	昭和62年(198	37) 9月14日
C 07 K 15/12 A 61 K 39/00 C 12 N 15/00	ADU	8318-4H 7252-4C 7115-4B※審査請求	未請求	発明の数 4	(全19頁)
	ーヒト卵巣癌免疫毒	素及びその使用方法			
•	②特 願	昭61-289791			

②出 願 昭61(1986)12月6日優先権主張 ②1985年12月6日③米国(US)③806256

砂発 明 者 マイケル ジョン ブ アメリカ合衆国、カリフォルニア 94547、ハーキュリー

ョルン ズ、オリープ コート 109

⑦発 明 者 デイビッド バラット アメリカ合衆国, カリフオルニア 94061, レッドウッド シティ, トルーマンストリート 1248

の発 明 者 アーサー エドワード アメリカ合衆国, ノースカロライナ 27514, チャベル, フランケル ハンティントンドライブ 223

フランケル ハンティントントライン 223 の出 関 人 シタス コーポレイシ アメリカ合衆国,カリフオルニア 94608, エミリービ

の代理人 弁理士 青木 朗 外4名 最終頁に続く

明和者の浄街(内容に変更なし)

23

1. 発明の名称

モノクローナル抗体が

抗一ヒト卵巣癌免疫毒素及びその使用方法 2. 特許請求の範囲

- 1. 細胞毒性成分及びモノクローナル抗体の Fab、Fab、及びF(ab、)。から成る群から選択された抗原結合部分を含む免疫毒素であって、前記
 - (i)ヒト卵巣癌組織を結合し:
- (ii) 0.11又はそれよりも低い選択性を有し;そして
 - (図) igG 又はigH であり;そして

ヒト卵県癌細胞に対して10m又はそれよりも 低い細胞球性1Dso;ヒト卵県癌細胞を担持する 哺乳類を前記免疫毒素により処理する場合、防配 哺乳類によって担持されるそのような細胞から成 る腫瘍の増殖速度をおそくすること;又は前配哺 乳類を前記免疫毒素により処理する場合、ヒト卵 県癌細胞から成る腫瘍を担待する哺乳類の生存時間を延ばすことから成る群から選択された少なく ともしつの能力を有する免疫毒素。

- 2. 前記ヒト卵風癌細胞がOVCAR-2,OVCAR-3. OVCAR-4,OVCAR-5 及びA1847から成る群から選択された少なくとも1つのものである特許請求の範囲第1項記載の免疫毒素。
- 3. 前記モノクローナル抗体を、263.9C6.33F8. 44B2.44F4.120B7.200F9.204F4.219F3.245E7.260F9. 266B2.280D11.317G5.369F10.388D4.421EB.454C11. 454A12.451C3.650E2.788C6.871E3及び多くの前記 群に機能的に等しいモノクローナル抗体から成る 群から選択する特許請求の範囲第1項記載の免疫 毒素。
- 4. 向記モノクローナル抗体が、高分子量ムチン、260F9 又は266B2 によって結合され得る 5 5 Kd抗原の1つのエピトープ、 200Kd抗原及び 4 2 Kdタンパク質性抗原から成る群から選択された抗原を結合せしめる特許請求の範囲第1項記載の免疫降着。
- 前配添成分が、リシン毒素 A 镇、フィトラカアメリカナ (Phytolacca americana) タンパク質、

特開昭62-209098(2)

ジフテリア毒素 A フラグメント、ジフテリア毒素 A フラグメントの非結活性フラグメント及びブソイドモナスアエルギノサ (Pseudomonas aeruginosa) 外毒素 A から成る群から選択された、細菌、植物 又はカビ起源の酵素的に活性の毒素である特許請求の範囲第1項記載の免疫毒素。

6. 前記リシン毒素 A 鎮が組換体リシン毒素 A 領である特許請求の範囲第1項記載の免疫毒素。

7. ヒトトランスフェリン受容体に結合するが、 しかしそこへトランスフェリンの結合を阻止しないモノクローナル抗体の抗原結合部分を少なくと も含む特許請求の範囲第1又は2項記載の免疫毒器。

8. 前記モノクローナル抗体の抗原結合部分が そのF(ab'):部分を含む特許請求の範囲第7項記 載の免疫毒素。

9. ヒト卵巣腫瘍細胞から成る腫瘍を担持する 哺乳類の生存時間を延ばす方法であって、前記哺 乳類の生存時間を延ばすのに有効な、特許額求の 種囲第1、2又は7項記載の免疫毒素の量を前記 哺乳類に投与することから成る方法。

10. 哺乳類によって担持されるヒト卵巢癌細胞から成る腫瘍の増殖速度をおそくする方法であって、前記哺乳類によって担持されるヒト卵巣腫瘍の増殖速度をおそくするのに有効な、特許請求の範囲第1、2又は7項記載の免疫毒素の量を前記哺乳類に投与することから成る方法。

11. ヒト卵ی原細胞を数す方法であって、特許 請求の範囲第1、2又は7項記載の、細胞毒性的 に有効な量の免疫毒素と前記細胞とを接触するこ とから成る方法。

3. 発明の詳細な説明

(産業上の利用分野)

以下介白

本発明は、免疫学及び窓診断法並びに治療法の 分野に関する。さらに詳しくは、それは、ヒト卵 県癌に対して活性のネズミモノクローナル抗体、 これらの抗体を産生するハイブリドマ、これらの 抗体から製造される免疫化学物質及びこれらの免 疫化学物質を使用する治療方法に関する。

(従来の技術)

アメリカ人女性に存在する婦外にない。 では、現性はことも知識に死体のでは、 の中でものでは、実質する。 のでは、ないでは、 のでは、では、 のでは、では、 のでは、では、 のでは、 の

癌性卵巣組織に関連する抗原に対するモノクローナル抗体の使用が、限定された範囲のみで報告されて来た。プソイドモナスの外毒者に結合されるヒトトランスフェリン受容体に対する抗体は、あるヒト卵風細胞系において細胞毒性活性を有することが報告されている(Pirkorなど...・プソイ

ドモナスの外毒器に結合される抗ートランスフェリン受容体抗体:ヒト卵鼠癌細胞系における典型的な免疫毒素。,Cancor Res. 45:751~757(1985))。トランスフェリン受容体へのトランスフェリンの結合を阻害する抗ートランスフェリンモノクローナル抗体は、アメリカ特許第4.434.156号の思想である。本発明の抗ートランスフェリンモノクローナル抗体は、アメリカ特許第4.434.156号に開示されている抗体は、トランスフェリン受容体へのトランスフェリンの結合を阻害しない。Schlomなど、アメリカ特許第4.522.918号は、ヒト乳癌の可溶性抽出物を用いて、あるヒト乳癌腫瘍に対するモノクローナル抗体の産生方法を開示する。

[問題点を解決するための手段] 本発明の主な観点は、

(a) ヒト卵泉癌組織の冷凍断片 を結合し: 098(2)

卵 菓 点 細 胞 方 法 卵 巣 点 那 胞 っ よ の 単 計 請 求 の り 量 を 前 壁

って、特許 月胞母性的 そ触するこ

1店に対

さする.

(b) igG 又はigH であり;

(c) 細胞母性成分に結合される場合、 OVC AR-2, OVC AR-3, OVC AR-4, OVC AR-5又は A1847から成る群から選択された、少なくとも1 つの卵巣癌細胞系に対して10mH又はそれよりも 低い10xeを有し;又は

細胞毒性成分に結合される場合、

ヒト卵巣腫瘍を担持する哺乳類の生存時間を延ば し:又は細胞毒性タンパク質に結合される場合、 そのような哺乳類によって担持されるヒト卵巣腫 瘍の増殖の速度をおそめるネズミのモノクローナ ル抗体に関する。

これらの抗体の好ましい態様は、263,9C6,33F8,44B2,44F4,120H7,200F9,204F4,219F3,245E7,260F9,266B2,280D11,317G5,369F10,388D4,421E8,451C3,454A12,454C11,650E2,788G6,871E3 と呼ばれる抗体及びそれらと機能的に等しい抗体である。

上記抗体を産生する、ネズミ×ネズミのハイブリドーマ及びこれらのハイブリドーマの子孫は、 本発明の他の観点である。

物を意味する。抗体の頑又はそれが製造される方

法に関して、制限されることは意図されていない。

モノクローナル抗体の消化及びそのようにして生

成されたフラグメントの遠元剂による還元的分離

によって得られる。還元的分離の不在においては、

ペプシンによるモノクローナル抗体の酵素的消化

本発明のもう1つの観点は、

- (a)上記モノクローナル抗体、及び
- (b)細胞毒性成分のほ合体である

免疫母素に関する。

本発明のもう1つの似点は、ヒト卵虱腫瘍細胞を退待する哺乳類の生存時間を延ばすために有効な量の上記免疫毒素をそのような哺乳類に投与することによって、そのような哺乳類の生存時間を延ばす方法に関する。

さらに本発明のもう1つの観点は、細胞を致す のに有効な量の上記免疫毒素とヒト卵瓜腫瘍細胞 とを接触することによってそのような細胞を殺す 方法に関する。

さらに本発明の観点は、上記免疫毒素の腫瘍細胞増殖遅延量をそのような哺乳類に投与することによって、そのような哺乳類によって退持されるヒト卵巣腫瘍細胞の増殖速度をおそめる方法に関する。

本明細書に使用される場合、用語 モノクローナル抗体 は、均質な抗体集団を有する抗体組成

がF(ab′):フラグメントを生成する。

本発明のモノクローナル抗体産生ハイブリドーマに関して本明細書に使用される場合、用語。子孫(progeny)。は、世代又は核型の同一性にもかかわらず、親によって産生されるモノクローナル抗ーヒト卵巣癌抗体を産生する親ハイブリドーマのすべての誘導体、子及び子孫を含むように思われる。

特開昭62-209098(4)

与される場合、そのような哺乳類中にヒト卵巣癌 細胞の増殖をおさえ又は (声) そのような細胞が 免疫诱索と接触される場合、ヒト卵巣癌細胞に対 して細胞毒性である免疫毒素を形成するモノクロ ーナル抗体を意味する。

木明細郡に使用される場合、上記のような用語 ・機能的同等物。とは、 5 種の基準を含む。例示 されたモノクローナル抗体と同じ抗原又はエピト - プに結合する、第1番目のこれらの基準は、礎 能的に等しいモノクローナル抗体によって、例示 されたモノクローナル抗体のクロスブロックを示 す実験によって実証され得る。クロスプロックは、 例示された抗体の1つによって結合されるのと同 じ抗原上のエピトープに結合する抗体の結果とし て、又は1つのエピトープへの抗体の結合が2番 目のエピトープへの抗体の結合を妨げる、同じ抗 原上にひじょうに接近して位置する異なったエピ トープに結合する抗体の結果として生じる。

いわゆる。サンドイッチ。アッセイとは、抗体 が同じ抗原又はエピトープを結合するかいづれか

を決定するためのもうしつの方法である。これら のアッセイにおいては、第1モノクローナル抗体 が支持体、たとえば力価プレートウェルの設面に 結合される。非特異的な結合を妨げるための処置 の後、ひじょうに可溶化された抗原調製物を、そ の結合抗体に添加する。次に、検出可能なラベル を有する第2抗体、たとえば螢光色素を添加する。 第2抗体がその抗原に結合する場合、異なったエ ピトープ特異性又は同じ抗原上に複数コピィの同 じエピトープが示される。第2抗体が結合しない 場合、同じエピトープ特異性又は異なった抗原特 異性のいづれかが示される。クロスブロッキング 及びサンドイッチアッセイの両者の結果は、両抗 体によって結合される抗原が同じ分子量を有する ことを示すために、第2シリーズの試験、たとえ ば免疫沈頭法又はウェスターン法によってさらに 定義される。

本発明の免疫毒素は、モノクローナル抗体の接 合体及び細胞毒性成分である。免疫毒素の細胞毒 性成分は、細胞毒性薬物又は細菌;カビ又は植物

. . . .

起源の酵素的に活性の毒素もしくは酵素的に活性 のポリペプチド領又はそのような毒素のフラグメ ント ("A镇) である。酵業的に活性の毒素及び そのフラグメントが好ましく、そしてジフテリア 遊素 A フラグメント、ジフテリア毒素の非結合活 性フラグメント、外毒器A(プソイドモナスアエ ルギノサ(<u>Pseudomonas aeruginosa</u>)からの)。 リシンA镇、アプリンA镇、モデシンA镇、αー アルシン、あるアレウリトス フォリジ(<u>Aleurites</u> ルデヒド、ピスーアジド化合物、たとえばピス fordii) タンパク質、あるジアンチン タンパク 質、フィトラカ アメリカナ (Phytolacca americana) タンパク質(PAP,PAPⅡ及びPAP-S)、 モモルジカ カランチア (Monordica charantia) 阻害剤、クラシン、クロチン、サポナリア オフ ィシナリス (<u>Saponaria officinalis</u>) 阻害剤、 ゲロニン、ミトゲリン、レストリクトシン、フェ ノマイシン及びエノマイシンによって例示される。 リシンA類、プソイドモナスアエルギノサの外毒 業 A 及び P A P が好ましい。

モノクローナル抗体及びそのような細胞毒性成

分の接合体は、種々の二官能価タンパク質カップ リング剤の使用により製造され得る。そのような 試薬の例は、N-スクシンイミディル-3-(2 ーピリジルジチオ) プロピオネート(SPDP)、イミ ノチオレーン(IT)、イミドエステルの二官能 価誘導体、たとえばジメチル アジピミデート・ DC&、活性エステル、たとえばジスクシンイミジ ル スペレート、アルデヒド、たとえばグルタア (<u>P</u>-ジアゾニアムベンゾイル) -エチレンジア ミン、ジイソシアネート、たとえばトリレン2. 6-ジィソシアネート及びピスー活性弗索化合物、 たとえば1,5-ジフルオロー2.4-ジニトロ ベンゼンである。

本発明の免疫毒素の酵素的活性のポリペプチド は、組換により生成され得る。組換的に産生され たリシン毒素 A 镇 (rRTA) は、1985年 8 月15日に公 衷されたPCT W085/03508 に開示された方法に従 って産生され得る。組換的に産生されたジフテリ ア毒素A類及びその非結合性活性フラグメントも

特開昭62-209098(5)

また、1985年8月15日に公表されたPCT HO85/ 03508 に記載されている。

診断目的のために<u>イン ピトロ</u>でヒト卵巣癌細 胞を殺すために用いられる場合、その接合体は、 典型的に、少なくとも約10aMの温度で細胞培養 培地に添加されるであろう。<u>イン</u><u>ピトロ</u>使用の ための役与の処方及び態様は、臨界的でない。培 **表物又は温淀培地と相容する水性配合物が通常、** 使用されるであろう。細胞毒性は、従来技術、た とえば色素排除又はクローン遺伝アッセイにおけ るコロニィ形成の抑制によって読取られ、対象の 免疫毒素による処置に対して影響されやすい卵巣 盛種塩の存在を決定することができる。

治療のために<u>イン</u> ビボに使用される場合、そ の免疫毒素は、治療上有効量(すなわち、患者の 腫瘍の悩みを除去又は減じもしくは妨害する量) で患者に投与される。それらは通常、非経口的に、 好ましくは腹膜内(IP)に投与されるであろう。 その投与量及び投与法は、癌(原発性又は転移性) 及びその集団の性質、特定の免疫毒素の特徴、た

とえばその治療指数、患者及び患者の病歴に依存 するであろう。投与される免疫毒素の量(IP) は、典型的には、迅者の体重当り約0.01~約 100 マ及び好ましくは0.01m~10mの範囲であろう。

非経口投与のためには、免疫毒素は、医薬的に 許容可能な非経口ピークルと共に注入可能なユニ ット剤形 (溶液、懸菌液、エマルジョン) で製剤 されるであろう。そのようなビークルは、本質的 に非路性且つ非治療性である。そのようなピーク ルの例は、水、生理的食塩水、リンガー溶液、デ キストロース溶液及び5%ヒト血清アルプミンで ある。非水性ピークル、たとえば固定油及びエチ . ルオレエートがまた使用され得る。リポソームが 担体として使用され得る。ピークルは、少量の添 加物、たとえば等張性及び化学的安定性を増強す る物質、たとえば級街液及び防腐剤を含むことが できる。その免疫游素は、典型的には、約0.01m /m & ~ 100 m / m & の流度でそのようなピーク ル中に配合されるであろう。

卵巣癌を治療するための細胞毒性放射性薬品は、

抭体にアイソト−プ(たとえばY,Pr)を放射す る高い線エネルギー付与(LET)を活用するこ とによって製造され得る。 本明細哲に使用される 用語。細胞導性成分。は、そのようなアイソトー アを含むであろう。

本発明のハイブリドーマを製造するために使用 される抗体産生融合パートナーは、生きているヒ ト乳癌細胞又はそれらから製造された膜抽出物に よりマウスを免疫化することによって生成される。 そのマウスは、免疫原性量の細胞又は抽出物によ り腹膜内に接種され、そして次に、同じ量の免疫 原により追加免疫される。歴終追加免疫の後、数 日後、免疫化されたマウスから脾臓を集め、そし て融合に使用するために細胞整函液をそれらから 国製する。Buck,D.W.,など、<u>In Vitro</u>(1982)<u>18</u>: 377~381 によって変形されたようなKobler.B. and Milstein.C.. Mature (1975) 256: 495~497 の一般的な体細胞ハイブリダイゼーション技法を 用いて、脚踝細胞及びネズミ臓瘍パートナーから、 ハイブリドーマを調製する。Salk Instituto,

Cell Distribation Center, San Diego, California, USA から入手できるネズミ骨髄腫系を、このハイ ブリダイゼーションに使用することができる。基 本的に、この技法は、フソゲン、たとえばポリエ チレングリコールを用いて、その樋瓜細胞及び脾 属細胞を融合することを含む。融合の後、細胞は、 融合培地から分離され、そして選択増殖培地、た とえばHAT培地中で増殖され、ハイブリッド形 成しなかった親細胞を除去する。所望により、そ のハイブリドーマを、拡張し、そして上清液を、 抗原として免疫化剤(乳癌細胞又は腹抽出物)を 用いて、従来のイムノアッセイ法(たとえば、ラ ジオイムノアッセイ、酵業イムノアッセイ又は螢 光イムノアッセイ) によって、抗ーヒト乳癌活性 について分析する。陽性クローンが本発明の抗体 の基準に適合するかいづれかを決定するために、 さらにそれを特徴づける。

そのような抗体を産生するハイブリドーマは、 既知方法を使用して、イン ピトロ又はイン ビ <u>ポ</u>で増殖され得る。好ましくは、そのハイブリド

゙カップ ような

198 (4)

. これら

ナル抗体

の皮面に

カの処置

夕を、そ

ようベル

5加する。

よったエ

ごィの母

含しない

こ抗原特

, キング

1、 面抗

:有する

たとえ

こさらに

「体の接

・細胞毒

は植物・

- (2

、イミ 二官能

- F -

イミジ

ルタア ピス

ンジア

ン2.

化合物、 ニトロ

プチド

生され ヨに公

去に従

フテリ

ーマは、マウス中の腹水として斑持される。そのモノクローナル抗体は、培養培地又は体液から、場合によっては、従来の免疫グロブリン特製法、たとえば硫酸アンモニウム沈殿法、ゲル電気泳動法、透析法、クロマトグラフィ法及び所望により限外遠過法によって単型され得る。

特許請求された抗体を選択することにおいて、

この特許の目的のためには、適用、特異性及び選択性が、交換可能的に使用され、そしてすべての組織(ここで、モノクローナル抗体が試験さた)において、いづれかのモノクローナル抗体によって結合された関構遺体(substructure)の合計数及

び試験された 5個の血液細胞型の数の総数によって割られた、16個の正常組織の冷凍断片における染色された副構造体の数及び結合した血液細胞型の数の総数として定義される。 123個の副構造体及び 5個の血液細胞型がこの試験において計数された。抗体は、それらが 0.11か又はそれよりも低い選択性を有し、そしてヒト卵巢癌組織に結合される場合、卵巢癌免疫毒素の目的のための適切な候補体であると見なされた。

1つのハイブリドーマによって産生された抗体は、200 K ドルトンの抗原を認識することが見出された。 2種のハイブリドーマからの抗体が、42 K ドルトンの抗原に粘合した。 4種のハイブリドーマからの抗体が1 又は複数の高分子量ムチン (H M W) に結合し、そして2種のハイブリドーマからの抗体が95 K ドルトンの抗原の形でのイブリンスフェリン受容体に結合した。 2種のハイブリドーマからの抗体が55 K ドルトンの抗原のの分子とトーブに結合した。 前記のすべての抗原の分子 量は、当業界において知られている方法を用いて、

遠元状態下でドデシル硫酸ナトリウム (SDS) ーポリアクリルアミドゲル電気泳動によって決定 された。

これらの抗体のさらに詳しい特徴は、下の例に 提供されている。

最も重要である本発明の免疫化学的誘導体は、 モノクローナル抗体及び細胞毒性剤の接合体である。

手術後の新鮮なヒト乳塩組織及び積々の正常な 組織を用いて、ホモジナイゼーション及び不連続 スクロースグラジェント遠心分離によって膜抽出 物を調製した。ヒト乳癌細胞系を、Breast Cancer Task Force, the American Type Culture Collection (ATCC)及びDr. Jorgen Fogh at Nemorial Stoan Kettering から得た。その細胞を、Breast Cancor Task Force, the ATCC 及びDr. Fogh によって推腐 されるようにして保存し、そして運んだ。免疫化 のために、100μgのタンパク質を含む膜抽出物 (Louryアッセイ)又は1000万の生きている乳癌細 胞のいづれかを、5週才のBag b/c マウス中の腹

特別昭62-209098(フ)

张稳超贯的定语之诸片含数物的落と夕之状の斯、んの物正常反口、性追片 2 だモバスの 1 。 ノ

異性及び てすべて 試験さた) 体によっ 合計数及

結合する

しないよ

S D S) って決定

Fの例に

中の腹

7.

膜内に接種した。そのマウスを、1ヵ月間隔で2 度同じように追加免疫した。最後の追加免疫の後、 3日後、細胞融合のために脾臓を除去した。

体細胞ハイブリッドを、ネズミ骨髄騒系5p-2/0/Ag14を用いて、Buck.D.N..など、<u>向配</u>、の方法によって調製した。すべてのハイブリドーマ細胞系を、限界希釈法によってクローン化した。マウスからの膵臓細胞を使用した融合体の半分を、乳癌膜抽出物により免疫化し、そしてマウスからの膵臓細胞を使用した半分を、生きている乳癌細胞系により免疫化した。83、424個のウェルを、これらの融合体から生成し、そしてこのうち22、459個がハイブリドーマの増殖を示した。

ハイブリドーマ上流液を、免疫性乳癌膜抽出物と共に固相酵素結合のイムノソルベントアッセイ(ELISA) 又は免疫性乳癌細胞系と共に間接的な免疫性光アッセイのいづれかで反応性抗体について分析した。固相膜ELISA のためには、0.1 m/m & 乳癌膜タンパク質 4 0 μ & を、4 ℃で1 2 時間、塩化ポリビニル (PVC) 微量力価ウェル中

に置いた。抽出物を吸出し、そしてそのウェルを、 1%ウシ血清アルプミン (BSA) を含むりン砂 以街溶液(PBS)により洗浄した。次にそのゥ ェルを、ハイブリドーマ上清液の1:10 希釈溶 液 4 5 pl と共にインキュペートした。 希収剤は、 2 5 mH級街液、1 0 % ウシ血清及び 0.1 % アジ化 ナトリウムを含む培地であった。窒温で30分後、 そのウェルを再び洗浄し、そして31セで45分 間、ペルオキジダーゼ接合のヤギ抗ーマウスlaG の1:200 希釈溶液と共にインキュベートした。 その希収剤はPBSであった。次に、そのウェル を、PBSにより洗浄し、そして室温で30分間、 pll 4.2 の 0.1 M クエン酸ナトリウム扱街液中 1 . 2-アジノージ(3-エチルベンズチアゾリンス ルホン酸)200μμ と共に反応せしめた。光学密度 を、Micro Elisa Readerにより 405mmで測定した。 おのおのの実験のために、陽性対照、すなわち5 μ 8 ℓ m ℓ での抗 $-\beta$ -2 ミクログロブリンを、 正常なヒト腎臓膜と共に反応せしめた。これは、 1.0 ± 0.1 (標準偏差) の光学密度を与えた。マ

ウスモノクローナル抗体を含まない培地を用いてのバックグラウンドは、0±0.1の光密度ユニット(0.D.)であった。0.70.D.よりも大きな乳癌膜抽出物に基づく反応を与えるウェルを、貯蔵した。

間接的免疫蛍光細胞系アッセイのためには、免 疫性細胞系の 100.000個の乳癌細胞を、8チャン パースライドのセットのそれぞれのチャンパー中 に、適切な培地と共に1晩証いた。同様に、細胞 系CC95からの 100.000個の繊維芽細胞を、チャン パースライドウェル中に1晩、インキューベート した。その細胞を、1%BSAを含むPBSによ り洗浄した。乳癌細胞及び繊維芽細胞の両者のウ ェルを、ハイブリドーマ上清液の1:10希釈溶 液と共に4℃で30分間、インキュペートした。 その細胞を、耳び洗浄し、そしてフルオレセイン イソチオシアネート(FITC) ~ 接合のヤギF(ab'): 抗ーマウス I g の 1:50 希釈溶液と共に、4で で30分間、インキュベートした。その細胞を、 3 度洗浄し、PBS中1.5 %ホルムアルデヒド中 で5分間、固定し、チャンパーを除去しそして

PBS中でゆすいだ。次に、そのスライドを、ポリピニルアルコール、グリセロール、級街液及び保存剤を含む組成物中に固定し、そして發光顕微鏡により試験した。乳癌細胞に対して強い發光結合性を示すが、但し繊維芽細胞に対して強光結合性を示さないハイブリドーマウェルを、貯蔵した。5.156個のハイブリドーマウェルが、最初のスクリーンにおいて乳癌反応性を示した。

次に、5156個の陽性ウェルからの上清液を、7 種の正常組織の膜抽出物(肝臓、肺、結腸、胃、 腎臓、扁桃腺及び脾臓)と共に固相ELISA で試験 した。0.3よりも大きなELISA 0.D.を与えるすべ ての上清液を、捨てた。1101の上清液が、正常な 組織抽出物と反応しないことが見出された。

その1101個のハイブリドーマ上清液を、ヒト乳 癌組織の冷凍断片に対して試験した。 6 ミクロン の断片をスライドにはり付け、4 セで 1 0 分間、 アセトン中で固定し、窒温で 1 0 分間、乾燥せし め、PBSにより洗浄し、ウマ血清によりブロッ クしそして 100 pl のウシハイブリドーマ上清液

特開昭62-209098(8)

と共に室温で20分間、インキュベートした。そのスライドを、PBSにより洗浄し、そして良後に、ペルオキシダーゼ接合のウサギ(ホーマ20分間、インキュベートし、で20分間、インキュベートし、調査がPBSにより洗浄して20分間、インキュベートし、調査を含む、PB7.2ののの5M Tris 観街でPBSにより洗浄でファミノベートのジンと共に37ドを、ヘマ/m2ージアミノベートと共に37ドを、ヘマ/m2ージアミノベートとい、脱水して35.9%メチルノローブチルメタクリレート及び0.3%2チルノローブチルメフタレート及び0.3%2・6ージタートブチルーフタレート及び1.3%2を与クリレート及び1.3%2をしてクローンの乳流選択結合性を与え、そしてクローン化された。

モノクローナル乳癌選択抗体の免疫グロブリンクラス及びサブクランを、McDougalなど、J. immunol、Meth. 63: 281~290(1983) において 記載されたものと実質的に同じイムノドットアッ セイによって決定した。抗体をまた、0.2 gCiの ***Sーメチオニンを含むメチオニン不含培地中で2~3×10*個のハイブリドーマ細胞を、4時間、増殖することによって内部的にラベルした。***Sーラメルされた抗体を、固定されたブリンには関いに被関された、固定されたブリンには関いに被関された、固定されたでがは関へを設定された。
***SDS-PAGEによって分析し、抗体のし及びH域のでより免疫は関の欠乏及びブドウは関のプロティンAを結合するおのおのの抗体の能力を決定した。

その抗体を、イン ビボ中で拡張した。Ball b/c 又はF1 (C57B/6×Ball b/c)マウスを、 0.5 mll のプリスタンにより腹膜内 (ip) で感作し、そ して10~14日後、PBS中、百万の対数増殖器の ハイブリドーマ細胞により接種した。 腹水を - 70 でで貯蔵し、そして解凍し、そして 0.8 ミクロン のフィルターユニットを通して濾過し、そしてさ らに精製した。

プドウ球菌のプロテインAを結合したいくつか

のIgG 抗体を、アガロース、デキストリン及び/ 又はアクリルアミドを含むプロテインA-クロマ トグラフィー樹脂上でpB段階グラジェント溶離に よるアフィニティクロマトグラフィーによって精 製した。プロテインAを結合しなかったIgG 抗体 は、0℃で40%飽和状態への硫酸アンモニウム の添加又はDEAE又は Affigel** (Biorad, Richmond, California) に結合することによって沈殿された。 他方、lgG 抗体を、Sephacryl S-200 カラム、次 に記載したようなDEAEセルロースを用いてクロマ トグラフィーによって特製した。その沈段物を、 PBS中に再溶解し、pil 7.2の20mH fris に透 折しそして 4 ℃で 1 m & /分の流速で 1.5 & の 0 ~600mH の HaCA グラジェントにより溶離するジ エチルアミノエチルセルロース(DEAE)の1.6× 50cmカラム上でクロマトグラフィー処理した。 おのおのの場合、カラム酉分を、 SDS-PAGEによ って调節し、そして母っとも境枠な抗体西分を、 プールし、 1 ~ 3 m/ml に温縮し、PBS/0.02% NaNaに対して透折しそして4℃で貯蔵した。

lgM 抗体を、室温で l m e /分の浪速でPBS/
0.01%アジ化ナトリウムにより溶離する、Sephacryl
S-300 の2.6×40 cmカラム又は他のゲル濾過も
しくはアガロース、デキストリン及び/又はアク
リルアミドを含む樹脂上でゲル濾過材によって精製した。

それらの選択性を評価するために、その特別である。、16種では、16種では、16種では、 16種では、 16年では、 16種では、 16種では、 16種では、 16種では、 16種では、 16種では、 16種では、 16種では、 16年では、 16種では、 16種では、 16種では、 16種では、 16種では、 16種では、 16種では、 16種では、 16年では、 16年では、 16年では、 16年では、 16年では、 16年では、 16年では、 16年では、 16年では、 16年では

末梢血液細胞(血小板、リンパ球、赤血球、類

098(8)

きをしてりまととなり は、たウン国段びの地々。ほにA物Hプ中時が 国よ細を頃口で聞いるののです。

: Bal b/c 0.5 ml 5作し、そ (増殖を一70 ミクロン もしてさ

]を決定し

:いくつか

₹ CPBS/

· . Sephacryl

プル誠過も ′又はアク

こよって精

· の精製さ "

で対する

て及び5

択によっ

:色を、上 · 0 # g /

の既知希

りに使用

乳癌断片

色を与え

組織の試

卵巢组織

血球、類

粒球及び単球)を、多形核白血球から単球を分離 する培地を用いて、遠心分離によって調製した。 その細胞を、4℃で30分間、上で決定された最 適濃度で抗体と反応せしめ、洗浄し、4℃で30 分間、フルオレセインイソチオシアネート接合の ヤギ抗ーマウス1gの1:50希収溶液と反応せ しめ、再び洗浄しそして細胞選別器により試験し た。その洗浄緩衝液及び希釈剤は、1%ゼラチン 及び0.02%アジ化ナトリウムを含むPBSであっ た。その細胞選別器は、76ミクロンのノズル及 び 488mmで1 Wのアルゴンイオンレーザーを備え ている。80mの共魚レンズを、魚点を合わすた めに光学レールアセンブリー上に使用した。使用 される他のフィルターは、 515mmの干渉フィルタ -及び 515nmの吸収フィルター (放乱されたレー ザー光のための)並びに前方角度の光散乱

(forward angle light scatter) のためにニュトラルデンスィティ 1.5 フィルターであった。前方角度の光散乱に対する対数フルオレセイン螢光の輪郭プロットが、サンプル分析のために使用され

t.

本発明の免疫では、 なは、 ないのでは、 でいるが、

<u>事 1 妻</u>

	<u> 卵集MABの正常な類積積合</u>																
	正常な																
М	А В	膵障	众迈	脚	なほ	精蹈	7	E	马袂脉	肝臓	心臟	即具	皮區	骨髓	子宫	膀胱	乳房
ī	263	2Ac	28	14	21	0	11	0	18	. 0	0	0	0	0	2 L	2 E	2 E
2	906	0	2 E	0	0	0	16	0	1Ly. 28	0	0	0,	0	2Gr	0	0	2 E
	3378	0	28	0	17	0	0	0	1Ly	0	0	0.	19	18k	IL	1 2	0
	4482	0	1 E	0	0	0	16	0	0	1	0	0	0	0	0	0	0
5	44F4	lAc	2 E	0	1T, B	11	2L	0	12	0	0	0	18	2G <i>r</i>	2L	0	2 E
6	12007	0	1 E	0	17	0 .	11	0	0	0	0	0	25	0	2L	0 -	0 .
7	20079	1Ac	0	0	2 L	0	0	0	0	0	0	0	25	0	0	0	0
8	204F4	0	2 E	0	2T	2X .	21	0	2Ly.E	0	0	0	25.W	0	2L	. 0	18
9	219F3	lAc	2 E	0	įT	0	0	0	ily, E	. 0	0	0	28.W	1-2Gr	16	0	2E.
10	245E7	11	0	IA.H	0	0	2L	0	18	0	0	0	25	0	2L	18	2L
11	260F9	lAc	2 E	0	1T	, 0	16	0	28	20	0	. 0	2E.2H	0	11	2E	2 E
12	266B2	IAc. ID	28	0	11	0	0	0	2E .	0	0	0 .	2E.2W	0	0	-18	1 E
13	280011	0	1 E	0	2T.B	11	2L	0	0	2 D	. 0	0	18.18	26 r	26	0	2 L
14	31765	lAc.l	0 .	0	21	16	0	0	0	20	0	0	0	0	16	0	0
!5	369F10	0	0 .	0	. 0	0	16	0	0	0	0	0	15	0	0	0	0
16	38804	2Ac. 11	28	0.	1-27	1 - 26	11	0	18	0	0	0	2E.S.1	0	16	2 E	1
17	42128	lAc	1 E	0 .	17	0	16	0	0	1	0	0	0	0	10	0	0
18	451C3	0	0	2H	0	0	0	14	2Ly. 1BL	. 0	0	0	0	2	16	0	0
19	454A12	0	0	18	0	1 G	0	0	0	0	0	0	0	1	18	0	0
20	454C11	1 D	1-28	0	17	0	0	0	18	19	0	0	12.8	0	16	16	1 8
21	650E2	lAc. 1	0	.1-2A	21 .	2G	0	0	0	2 D	0	0	0	0	26	0	1
22	78866	0 .	0	0	21	0	0	0	1 F E	0	0	0	0	0	0	0	0
23	87183	21.Ac.D	188	0	0	16	16.2Gr	0	ie.Ly	0	0	2G r	ĽS	0	0	0	0

特開昭62-209098 (12)

13	280011	390000	8.8×10*	HCF7
14	31765	3200000	1.6×10*	CAMAL
15	369F10			
16	388D4			
17	421E8	•		
18	451C3	400000	4 × 10*	NCF7
19	· 454A12	470000	1.2×10°	MCF7
20	454C11	390000	4.8×10°	ZR7530
21	650E2			
22	78866			
23	871E3			

モノクローナル抗体によって認識された抗原を 同定するために、抗原の免疫沈限法を、次の方法 に従って行なった。 8 mm の直径のポリスチレンポ ール(Precision Plastic Ball Co.)を、氷酢酸中、 10%発煙硝酸により波覆し、そして50℃の水 浴中で3時間、インキュベートした。酸処理した 後、そのボールを、蒸留水により3度すすぎ、 0.1 M NaOll 中、1%亜ジチオン酸ナトリウムに より被覆し、そして 5 0 での水浴中で 3 時間、インキュベートした。そのボールを、再び蒸留水により 3 度すすぎ、0.1 %1-エチルー 3 - (3 - ジメチルアミノブロビル) -カルボジイミド(EDAC)、0.2 %スペリン酸(ジメチルホルムアミド中に溶解されたスペリン酸) により被覆し、そして窒温で 1 吸インキュベートした。そのボールを、蒸留水により 3 度すすぎ、そして識別のために印を付けた。

精製されたモノクローナル抗体を、2 - (Nーモルホリン) エタンスルホン酸酸街液中に発現し、そして前もって処理を発表して印を付けられたポリスチレンボールの発表をして250μ2の希になりは、60μ2の新鮮な1%8DACによりをした。チューブに蓋をし、そして25℃で24時間、インキュベートした。このインキューで設けで使用するか又は使用する前、保存した。保存した。

新たにラベルされたターゲット細胞抽出物を、 Marchalonis.J., "An Enzymic Method for the Trace Iodination of Immunoglobulins and other Proteins", Biochem, J. 113: 299~305(1969) Ø ラクトペルオキシダーゼ法によって 125-1によ り又は35~Sメチオニン中での増殖によって35~ Sによりラベルされたヒト乳癌細胞系から調製し た。そのラベルされ細胞を、可溶化緩衝液(1% (v / v) Triton X - 100. 150mM NaC# .5mM EDTA. 25mH Tris-UC&, pU=7.5) 中に溶解した。4 部のラベルされた抽出物を、50m/ml ウム血 治アルブミンを含む 1 部の可溶化級街液と共に容 器中で混合し、最終濃度10mg/mg のBSAを 得た。モノクローナル抗体により被覆されたポー ルを、その容器に添加し、そして張遠しながら氷 上で4時間、インキュペートした。ラベルされた 抗原を、その容器からピペットで取り、そしてそ のボールを、可溶化超街液により4度すすいだ。 次に、そのポールを取り出し、 100μℓ のLaemeli SDS ゲルサンプル級街液を含む個々のテューブ内

に置き、そして熱湯中で3分間、インキュベート した。そのボールを取り出し、そしてそのサンプ ルを、適切な標準液と共にSDSゲル上に注いだ。

その抗体に対する免疫沈殿試験は、それらのうち8種 (263,12087,200F9,204F4,245E7,369F10,78866 及び871E3)すべてが高分子量ムチン(H M W)に結合することを指摘する。2種は (260F9 及び266B2)、5 5 Kdの糖タンパク質抗原の同じエピトープに結合する。2種は(317C5及び650E2)、4 2 Kdの抗原に結合する。2 つの抗体 (451C3 及び454A12) は、9 5 Kdの抗原の形でのトランスフェリン受容体に結合した。451C3 及び454A12のいづれも、受容体へのトランスフェリンの結合を妨げなかった。試験されたモノクローナル抗体の抗原結合特徴は、第6変に要約される。以下公台

○間、イ ・図水に

(3-

ř

・ムアミ

!し、そ

・ボール |のため

(N -

おいて

理され、

を、個

希釈さ

.より被 で24

- ~ -

2度す

'る前、

·ベート リサンプ

注いだ。

.らのう i9F10,

. (нм

:260F9

・同じエ

i0E2) .

i1C3 及

ンスフ :12のい

合を妨

体の抗

Ħ	6	衷

卵のチノクロ	ローナル抗体によって認識される抗原
MAB	坑原
1 263	II M W
2 906	7 5 Kd
3 33F8	6 6 Kg
4 4482	
5 44F4	18.39.72.81.175kd(すべては パンドを 拡散する)
6 120117	нмw
7 200F9	н м w
8 204F4	н м м
9 219F3	
10 245E7	нмw
11 260F9	5 5 Ka
12 26682	5 5 Kd
13 280011	
14 31765	4 2 Kd
15 369F10	H M W

16 388D4

17 421E8

18 451C3 9 5 Kd (トランスフェリン受容体)

19 454A12 9 5 Kd (トランスフェリン受容体)

20 454C11 2 0 0 Kd

21 650E2 4 2 Kd

22 788G6 H M W

23 871E3 H M W

抗体のイソタイプを、次のようにして決定した:
5 m平方のグリッドを、ニトロセルロースシート上に鉛筆で薄く描き、そして抗イソタイプ血清
(Litton Bionetics.Kensington.Haryland、マウスェ・λ、α・r 1・r 2a・r 2b・r 3及びロ対するウサギ抗血流)の1m ℓ 小滴を適用し、その結果、おのお現で1つのスポットを受ける。そのシートを、湿った室内で1時間室温でインキュベートし、すぐに1%(w/v)を含む PBS-BSA によりすぎ、そして4でで PBS-BSA 中に1 嗅放置する。ストリップを、ハサミでばらばらに切

り、そして 0.02%アジ化ナトリウムを含む PBS-BSA 中に4℃で保存することができる。他方、ス トリップを、空気乾燥し、そして4℃で乾燥保存 することができる。3mg のハイブリドーマ培養 上清液又は PBS-BSA により希釈された上清液を 含む一連の小さな管を用意する。1:10の希釈 溶液が一般的に好結果をもたらし;そしていくつ かの上済液を、1:200 ほどに希釈することがで きる。ニトロセルロースのストリップを、窒温で 1時間、おのおのの管内でインキュベートする。 そのストリップを、 PBS-BSA により3度すすぎ、 そして室温で1時間、希釈されたウサギ抗ーマウ スーホースラティッシュペルオキシダーゼ中でイ ンキュペートする。そのストリップを、 PBS-BSA により2度及びTris級街液により2度すすぐ。そ のストリップを、十分な色が抗-イソタイプスポ ット上に進展するまで(普通3~4分)、ジアミ ノベンジジン及び過酸化水器を含むTris級街液中 に置く。

その抗体イソタイプが第7衷に示される。

<u>第7</u>表

卵巣モノクローナル抗体のイソタイプ

MAB.	イソタイプ	
1 263	G 1	
2 906	М	
3 33F8	G 1	
4 4482	G 1 .	
5 44F4	G 3	
6 120H7	M	
7 200F9	G _. 1	
8 204F4	М	
9 219F3	G 1	
10 245E7	G 1	
11 260F9	G 1	
12 266B2	G 1	
13 280011	G 1	
14 31765	G 1	
15 369F10	М	
16 38804	Gl	
17 421E8	G 1	

特開昭62-209098 (14)

C I 18 451C3 19 454A12 · G I 20 454C11 .G 2 A GI 21 650E2 GI 22 78866 23 871E3 М

Antiboclies for the Development of Breast Cancer Immunotoxins. Cancer Res. 45: 1214~ 1221(1985)及びCarisson.J. など..Biochem.J. (1978)_173: 723~737 によって記載されている ようにSPDPにより又はイミノチオレーン(IT) により処理し、そしてリシン毒素A鎖(RTA) に接合し、本発明の免疫毒素を製造した。

20倍のモル過剰量のSPBP(エタノール中にお いて20ml) を抗体に添加し、そして窒温で30 分間インキュペートした後、反応しなかったSPDP を、PBSに対する透析によって除去した。誘導 体化の程度は、ジチオトレイトール (DTT) に

よる区元の後、 343nsでピリジン-2-チオンの 放出を測定することによって決定された。抗体に 依存して、3~8個のリシンアミノ酸茲 (抗体分 子当り)が、ピリジルージスルフィド誘導体に転 換された。

SPDP処理された抗体を、RTAに接合した。接 ·合のすぐ前で、RTAを50mMのDTTにより選 抗体を、Bjorn など...*Evaluation of Monocional 元し、次にアガロース、デキストラン及び/又は アクリルアミドを含むクロマトグラフィー樹脂の カラム上で脱塩し、タンパク質からDTTを除去 する。還元されたRTAは、ピリジルージスルフ ィドよりも3~5倍のモル過剰量で抗体に添加さ れた。典型的な反応混合物 (1mℓ) は、1μΜ 抗体及び30μmのRTAから成った。その反応 を、4℃で一晩、進行せしめた。抗体へのRTA の接合の程度を、ピリジン-2-チオンの放出を 湖定することによって分光測光的に決定した。 平 均して、接合体は、抗体分子当り2~3個のRT A分子を含んだ。これは、非遠元性 SDS - PAGBゲ ル (7.5%) によって確認され、そしてそれはま

た、典型的な接合体調製物が10%~30%の遊離抗 体を含んだことを示した。

接合体混合物を、IPLCサイズ排除カラム上でク ロマトグラフィー処理し、残存する反応しなかっ たRTAから接合体を分離した。そのカラムを、 0.1 Mの硫酸ナトリウム/ 0.02 Mのリン酸ナトリ ウム (pil=6.8) により平衡化した。接合体混合 物 (0.7 ml) を、注入し、次に1 ml/分の流 速でクロマトグラフィー処理した(室温)。 0.5 ml の西分を集め、そしてピークの接合体画分を プールし、そしてフィルターを細胞毒性試験の前 に消毒した。

0.10Mのリン酸ナトリウム、 0.001MのNa EDTA. pB = 8.0 (この後、P - EDTA超衝液として背及す る)中におけるおよそ30m/mlの抗体を、窒 温で約15分間、laHの5,5′ージチオピスー (2-ニトロ安息香酸)(DTNB) と反応せしめ、そ して次に永浴中で0℃に冷却する。十分な1Tを、 この溶液に添加し、抗体分子当り平均2.5の1下 分子を得、そしてこの得られた溶液を、0~5℃

で、 300倍過剰体積の PーEDTA銀街液に対して透 折する。

1 mMのDTTを含むP-EDTA中に通常保存され ているRTAを、10~15m/m g の湿度に限外滤 過し、そして0~5℃で、 300倍過剰体積のP-EDTAに対して透析する。十分なRTAを、誘導体 化された抗体に添加し、誘導体化された抗体上の 阻止されたチオール当り平均 l. 0 ~ l. 2 の R T A 上の遊離チオールを得る。この混合物を、室温で 2時間、インキュベートする。

その結合反応混合物を、固体支持体に共有結合 されたブルー色素(トリサクリルブルー)に基づ くクロマトグラフィー樹脂のカラムに適用し、そ して次にその混合物を、室温でP-EDTAにより溶 難する。そのカラムは、出発抗体の≈当りおよそ 2mlのベッド体積を含むような初合で作られる。 接合しなかった抗体の初期ピークがカラムから溶 斌された後、溶型剤が1Mの NaCst を含むP-EDTAに変換される。免疫接合体及び反応しなかっ たRTAを、ひじょうに鋭いピークとしてこの扱

9098 (14)

ーチオンの た。抗体に なく抗体分 器単体に転

合丁及ィT-本ま、ハイミニラ・しにぴーTジに、そののし個ーそたよ/樹をス添1のR放たのAのBは、り又脂除ル加μ反丁出。REBは接選はの去フさM応Aを平Tゲま

:対して透

保に積め、抗のRTA

、室温で

共)明こりをなってこ有にしよおらかPなこ結基、りよれらーかのおろって紹そる部のの扱

本発明は、次の例によってより一層理解され、 そしてその例は例示的であり、限定するものでは ない。

M 1

16~22gの重さの雌性無胸腺ヌードマウス

その結果は第8次に報告する。第8表及び次の 要において、"はれ指数(Swelling Index)"とは、 次のように定義される:0 = 腹部のはれがない: 1 = わずかに目に見える腹部のはれ;2 = 中ぐら いの腹部のはれ;及び3 = ひどい腹部のはれ。

第 1 表

<u> 実験 A</u>

試験物質	投与量	生存数 (85日)	はれ 指数	平均生存日
31765-11-RTA	50 µ g 100 µ g	0 2	- 3	49.8 + / - 10 60.2 + / - 5.2
260P9-IT-RTA	50 # g 100 # g	0	-	26 + / - 1.4 24.6 + / - 3.3
113F1-IT-RTA	25 # g 50 # g	0	3	32.2+/-13.9 29+/-3.0
PBS対照	0. 1 m £	0	-	2 9

(Nu/Nu、Balb/c 系) を用いた。 NIB: OVCAR-3 腹水細胞を、キャリアーマウスから得た。 その細胞を、リン放緩街溶液(PBS)により2 度洗浄し、そして2体積のPBSに対しておよそ 1 体積の細胞でPBS中に再懸濁した。細胞の計 数を、血球計数器により計数することによって決 定した。細胞生存度を、トリパンブルー色素排除 試験によって決定した。おのおのの動物を、日ゼ ロで、5×10'個の生存細胞により腹膜内に注射 した。4.7及び10日目に免疫毒素を注射した。 この免疫添煮は普通、 0. 1 m & の P B S で投与さ れた。対照動物を、同じスケジュールに基づいて 0.1 m!のPBSにより注射した。5匹の動物を、 試験されるおのおのの免疫毒素の個々の投与及び 対照のために使用した。動物を毎日、観察した。 おのおのの実験において、対照と比較して生存時 間の増大により又は同じ生存時間を有する対照と 比較して処理された動物の腫瘍拡大の阻止による ほとんど少ない腹部のはれによって、効果が決定

.

実験B

された。

试验物質	投与量	生存数 (85日)	はれ 指数	平均生存日
PBS	_	0	3	4 8
454A12-IT-FRTA	25 µ g	1	2	> 7 4
280D11-IT-RTA	50 # g 100 # g	1 2	2 2	> 6 6 > 7 1
2G3-IT-RTA	50 # g 100 # g	0	3 3	3 0 3 5

<u>F4 2</u>

…… 次の例において、実験は前の例に記載されているようにして本質的に行なった。但し、動物は 4.6 及び 8 日目に注射された。この例は、免疫毒素 454A12-IT-rRTAの抗-関係効果が、関係を担持する動物を、免疫毒素が誘導される、過剰のモノクローナル抗体454A12により処理する場合、阻止されることを示す。NOPC21、すなわちヒト卵巣関係特異性でない抗体は、過剰量で投与される場合、対応する阻止効果を持たない。

٠R	a	- 73

第 10 衷

试验物質	投与量 (μg)	生存数 (69日)	はれ 指数	生存日 (平均日)	以股物質	投与型 (μg)	生存数 (34日)	はれ 指数	生存日 (平均日)
PBS	-	0	3	4 1	PBS	-	3	3	> 3 4
454A12-11-R	TA 25	4	0	> 6 9	454A12-11-RT 454A12-11-RT		2 3	0	> 3 4
454A12-11-R + 454A12(50		0	3	2 6	454A12-11-RT	A 50	4	ŏ	> 3 4 > 3 9 > 3 9
454A12-11-R + MOPC21(50	TA 25	3	1	> 6 5	454A12-RTA (Fab ' 2)	10 25 50	3 4 3	0 0 0	> 3 9 > 3 9 > 3 4
317G5-11RT	A 50	2 4	0 -	> 6 0 > 6 5					

<u>194 3</u> .

この実験に使用される方法は、本質的に例1と同じある。この実験は、RTAに接合される、Pab'2フラグメントの454A12から成る免疫講案が454A12-IT-RTAに匹敵する抗腫瘍活性を有することを示す。

次の例は、いくつかの卵瓜癌細胞系に対する免疫接合体の<u>インピトロ</u>での細胞毒性を示す。

NII: OVCAR-2,-3,-4 及び-5を、卵虱癌を有する患者の思性腹水から単離する。これらの細胞系は、次の引用中で前に記載されており、そしてこの開示を引用によりこの明細恐中に組み入れる。
Hamiltonなど..。アンドロゲン及びエストロゲン 受容体を有するヒト卵虱癌細胞系(NII: OVC AR-3) の特徴化(Characterization of Human Ovarian Carcinoma Cell Lines with Ardrogen and Estrogen

Receptors Cancer Res. 43: 5379~5389(1983). Namiltonなど.. * 卵巣癌の実験的モデルシステム: 新処理アプローチの計画及び評価への適用 (Experimental Model Systems of Ovarian Cancer: Aplications to the Design and Evaluation of New Treatment Approaches " Seminars in Oncology 11: 285~298 (1985)。卵巣癌細胞系A1847を、 S. Aaronson (National Cancer Institute, Bethesda, Maryland) から得た。その卵巣細胞を、RPMI培地 1640、10%ウシ胎児血清、10mg/mlのイ ンシュリン及びペニシリン-ストレアトマイシン 中で増殖した。KB細胞を、ダルベッコの変性イ ーグル培地(DMEM)、10%ウシ血清、グルタミン 及びペニシリン-ストレプトマイシン中で増殖し た。組織培養培地(血清、グルタミン及び抗生物 買)を、Grand Island Biological Col. Grand Island NY から購入し、そしてインシュリンを、 Elanco Products Company, Indianapolis, IN か ら得た。タンパク質合成阻害アッセイのために、 細胞を、使用する1日前、2×10°個の細胞/

35mmでプレートした。免疫毒素を添加する前、細胞を、ウシ血清アルブミン(2m/ml)を含むDMEM (DMEM-BSA)により2度洗浄した。挙げられた免疫毒素は、イミノチオレーン誘導体化及び上記のようにしてRTAへの接合によって製造された。

タンパク質合成の阻害法を用いて、免疫毒素の活性を測定した。細胞を、37℃で24時間、種々の過度の免疫毒素を含むDMEM-BSA と共にインキュペートし、そして次にPirkerなど..。プソイドモナスの外球素に結合された抗ートランスフェリン受容体抗体:ヒト卵風癌細胞系における典型的な免疫毒素(Anti-Transferrin Receptor Antibody Linked to Pseudomonas Exotoxin: A Model Immunotoxin in Human Ovarian Carcinoma Cell Lines)。Cancer 45: 751~757 (1985)に記載されたようにTCA-不溶性物質への〔3H〕ロイシン(New England Muclear, Boston, MA:比活性 - 140.8 Ci/mモル)の組込みについて分析した。重複体の平均値は、免疫毒素を受けなかった

-209098 (16)

. 0

र ऱ	生存 (平均	8)
3	>	3	4
}	>	333	4
}	>		9
}.	>		9
)	>	3	9
)	>	3	9
)	>	3	4

す。 を 脚し れる こ。 こ。 AR-3) ian

Estrogen

トる前、 を含 がら

:及び l造さ

深の!、種

ソイ フェ 典型

ntibody I

311 3 h

イシ 生

テし った 同じ細胞系の対照の百分率として変わされた。

10 aH又はそれよりも低い処理されなかった対照 (IDso)と比較して、タンパク質合成の50% 阻害を与える免疫接合体が有効であると思われた。 試験された免疫接合体のIDsoは、下の第11表 に挙げられる。

<u>第 11 表</u>

インピトロ細胞群性 (1 D se(nH))

RTA接合体	<u>0 V - 2</u>	<u>07-3</u>	<u>0 V - 4</u>	<u>0V-5</u>	A 1847	<u>K B</u>
454A12	0.04	0.05	0.05	0.03	·	0.01
31765	0.1	0.2	0.1	0.3		0.1-2
260F9	0.2	0.5	0 2	0.2	> 5	140
113F1		2				
280D11	> 30	4	13	> 20	> 30	120
263		8				
369F10		10				
454C11	> 5	> 5	> 5	> 5	> 5	> 5
520C9	> 5		•	•		
245E7	> 30	> 30	> 30	> 30	> 30	> 30

リクロロ酢酸により2度洗浄した。細胞を乾燥せ しめ、シンチレーション液を添加し、そして放射 能を、Packazol CL/D 液体シンチレーションカウ ンターにより測定した。

タンパク質合成の阻害を、おのおののパイアルについてのTCA沈殿可能な³³Sの組込みとして計算した。平均値は、免疫毒素を受けなかった同じ細胞系の対照の百分率として示された。 IDsoは、例4におけるようにして決定された。その結果を、次の第12衷に報告する。

第 12 表

インピトロ細胞群性対OVCAR-3

接合体	1 D 3 . (n M)
454A12-RTA	0.05
454A12-RTA	0.2
454A12-(Fab')=-RTA	0.4
317G5-RTA	0.2
113F1-RTA	2
2G3-RTA	3
2G0F9-RTA	4
280D11-RTA	3 0
454C11-RTA	5 0
369F10-RTA	> 5 6

<u>§4 5</u>

例4において記載された免疫毒素を、 NIB: OVCAR-3 細胞に対して試験した。細胞を、RPMI培 地1640、10%ウシ胎児血清、10μg/mgの インシュリン及びペニシリンーストレプトマイシ ン中に保持した。細胞を、トリプシンによる軽い 消化又はパーセン(Versene) の添加によって、培 養フラスコから取り出した。その細胞違度を、調 整した。 4×10°個の NIN: OVCAR-3 細胞を、培 地 1 m 4 中に無潜し、そして 8 m 4 のガラスパイ アル(ICN)に添加し、次に接合体希釈溶液 2 (100 µ g / m l のウシ血清アルブミンを含む P B S中における)を添加した。37℃で22時間イ ンキュペートした後、その培地を吸い出し、その 且団をPBSにより洗浄しそしてQ5 μCiのし-(23 S) メチオニン(Amersham: 1400 Ci/mモ ル) により補足された、0.5 ml のメチオニン不 会培地を添加した。37℃で2時間インキュペー トした後、その培地を吸い出し、そして細胞の単 既を、メチオニン (l m/ml) を含む10%ト

245E7-RTA > 5 6 520C9-RTA > 1 1 2 MOPC21-RTA > 1 1 2 MOPC21-RTA > 8 0

154 6

この例は、上記のモノクローナル抗体及びプソ イドモナスの外毒素を含む免疫接合体の細胞毒性 を示す。

アソイドモナス外毒素(PE)は、Dr.S.Leppla (Ft.Detrick,Frederick,HD) のギフトであった。PEをまた、Swiss Serum and Vaccine Institute,Berne,Switzerland から商菜的に入手することができる。PE接合体を構成し、そして前に引用(Pirkなど、(1985))によって本明細番に組込まれた方法の変法によって構製した。PE(30nモル)を、5000nモルの2-イミノチオレーンーUCL (Pierce Chemical Co.,Rockford,IL) 1mMのEGTAを含む0.1 Mリン酸級衝液(pB=8.0) 1mL 中 500nモルのNAD・と37でで1時間、反応せしめた。次に、その誘導体化されたPEを、

その反応体からUPLCを用いて分離し、そして5.

5′ージチオーピス (2ーニトロ安息香酸)(DTNB) の添加によって活性化し、及終濃度をlanにした。 抗体 (40~50nモル) を、37℃で1時間、1mM のEGTAを含む 0.1 Mリン酸銀街液 (pB = 8.0) 0.75ml 中 100~ 200nモルの2-イミノチオレ ーン-IICL と共にインキュベートした。その抗体 と、活性化されたPEとを反応せしめ、そしてそ の投合体を、記載されたようにしてAPLCを用いて 複製した。Pirkerなど、(1985)。PBと抗体との a:特にことわらない限り、この値は、少なくと 一対一の接合体を含むピークを回収し、そして下 に記載したすべての研究のために使用した。

タンパク質合成の阻害及び I D, を、上の例 4 に記載したようにして決定した。但し、その細胞 を、12時間、免疫毒素と共にインキュベートし た。代衷的なタンパク質阻害アッセイからの結果 を示し、そしてすべての実験の平均IDso値を、 第13 表に提供する。1D5.6は、その表において ng/mg 及び(nH)として示される。 以下介白

<u>タンパク質合成の阻容についてのID,。値*(ng/me)(n</u>	H)
---------------------------------------	----

細胞	454C11-PE	260F9-PE	280D11-PE
OVCAR-2	1.6(0.01)	3.4(0.02)	835(4)
OVCAR-3	3.6(0.02)	41.5(0.2)	805(4)
OVCAR-4	0.7(0.005)	4.7(0.02)	54(0.3)
OVCAR-5	10(0.05)	23(0.1)	3450(>15)
A 1847	2.5(0.015)	. 385° (2)	2200(>10)
к в	15 (0.08)	>600(>3)	>250(>1)

も2つの実験の平均値である。

b:1つの実験からの結果。

c:非特異的な母性。

本発明の免疫毒素を誘導するモノクローナル位 体を産生するハイブリドーマのサンブルを、次の 寄託番号下でAmerican Type Culture Collection 又は Collections of In Vitro International に寄託した。 以下介白

ATCC

ハイブリドーマ	寄託番号
2G3	HB 8491
280D11	UB 8487
266B2 .	HB 8486
245E7	UB 8489
31765	HB 8485
369F10	UB 8682
454C11	HB 8484
78866	NB 8692
33F8	
260F9	BB 8488

204F4

219F3	171	10072
388D4		
42188	141	10064
871E3		
451C3	141	10081
650E2	141	10083
454412	171	10075

これらの雰託は、ブダベスト条約に基づいて行 なわれ、そしてその規定に従って保持され、そし て入手可能である。

以下企白

In Vitro International Collection

ハイブリドーマ	苏胜着号
906	IVI 10056
4482	
44P4	•
12007	IVI 10061
200F9	IVI 10062

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

⊠ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
A FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.