21-849: Algebraic Geometry I

Rohan Jain

January 13, 2025

I don't know what a sheave or a category is. 💙

Table of Contents

1. Introduction	1
1.0.1. Administrivia	1
1.1. Features of algebraic geometry	1
2. Affine algebraic sets	2
2.1. Nullstellensatz	2

1. Introduction

1.0.1. Administrivia

- Grade consists of two takehomes and one presentation/paper.
- Exercise List/Notes: Canvas
- Prerequisites: basic algebra, topology, and "multivariable calculus".
- Textbooks: [G] Gathmann, [H1] Hartshorne, [H2] Harris
- OH: 2-4pm Wednesday, Wean 8113

1.1. Features of algebraic geometry

Consider the two functions e^z and $z^2 - 3z + 2$.

- Both are continuous in \mathbb{R} or \mathbb{C} .
- Both are holomorphic in \mathbb{C} .
- Both are analytic (power series expansion at every point).
- Both are C^{∞} .

There are differences as well.

- f(z) = a has no solution or infinitely many solutions for e^z , but for almost all a, 2 solutions for $z^2 3z + 2$.
- e^z is not definable from $\mathbb{Z} \to \mathbb{Z}$ but $z^2 3z + 2$ is.
- $\left(\frac{d}{dz}\right)^{\ell} \neq 0$ for all $\ell > 0$ for e^z but not for $z^2 3z + 2$.
- For nontrivial polynomials, as $z \to \infty$, p(z) goes to infinity. So, it can be defined as a function from $\hat{C} \to \hat{C}$. But e^z can be periodic as the imaginary part tends to infinity.

This motivates the following result:

Theorem 1.1 (GAGA Theorems): Compact (projective) C-manifolds are algebraic.

Here are more cool things about algebraic geometry:

1) Enumeration:

- How many solutions to p(z)?
- How many points in $\{f(x,y) = g(x,y) = 0\}$?
- How many lines meet a given set of 4 general lines in \mathbb{C}^3 ? The answer is 2.
- How many conics $(\{f(x,y)=0\},\deg f=2)$ are tangent to given 5 conics (in 2-space)? Obviously it's 3264...
- Now for any question of the previous flavor, the answer is coefficients of chromatic polynomials of graphs.

2) Birationality:

• Open sets are *huge*. That is, if we have X,Y and $U\subseteq X,V\subseteq Y$ such that $U\cong V$, then X and Y are closely related.

3) Arithmetic Geometry:

- Over $\mathbb{Z}, \mathbb{Z}_p, \mathbb{Q}_p$, etc.
- Weil conjectures: X carved by polynomials with \mathbb{Z} -coefficients. $H^2(X_{\mathbb{C}},\mathbb{Q})$ related to integer solutions.

1

2. Affine algebraic sets

2.1. Nullstellensatz

Notation: \mathbb{k} is an algebraically closed field ($\mathbb{k} = \mathbb{C}$).

Definition 2.1 (Affine space): An n-affine space $\mathbb{A}^n_{\mathbb{k}}$ is the set

$$\{(a_1, ..., a_n) \mid a_i \in \mathbb{k}, \forall i = 1, ..., n\} = \mathbb{k}^n.$$
 (1)

An affine algebraic subset of \mathbb{A}^n is a subset $Z \subseteq \mathbb{A}^n$ such that

$$Z = \{(a_1,...,a_n) \in \mathbb{A}^n \mid f(a_1,...,a_n) = 0, \forall f \in T\} \tag{2}$$

for some subset $T \subseteq \mathbb{k}[x_1, ..., x_n]$. We write Z = V(T).

Example 2.1 (An affine space):

- $V(x^2-y)\subset \mathbb{A}^2$. This is a parabola.
- $V(x^2+y^2)\subset \mathbb{A}^2$. Note that $x^2+y^2=(x+iy)(x-iy)$, so this is two lines.
- $V(x^2-y,xy-z)\subseteq \mathbb{A}^3$. We actually have $V(x^2-y,xy-z)=\{(x,x^2,x^3)\mid x\in \mathbb{R}\}$. Then note that if we project to any two dimensional plane (xy,yz,xz), then we get another affine subset but on \mathbb{A}^2 .

This leads us to the following question:

Question: $X \subseteq \mathbb{A}^n \Rightarrow \pi(X) \subseteq \mathbb{A}^{\{n-1\}}$?

Solution: Consider $V(1-xy)\subseteq \mathbb{A}^2$. If we project this to either axis, then we will miss the origin.

Definition 2.2 (Ideal): Let $Z \subseteq \mathbb{A}^n$ be an algebraic subset. Then

$$I(Z) = \{ f \in \mathbb{k}[x] \mid f(p) = 0, \forall p \in Z \}. \tag{3}$$

Example 2.2:

- 0) $Z = V(x^2) \subseteq \mathbb{A}^2$, then $I(Z) = \langle x \rangle$.
- 1) If $Z = V(x^2 y)$, then $I(Z) = \langle x^2 y \rangle$
- 2) If $Z = V(x^2 y, xy z)$, then $I(Z) = \langle x^2 y, xy z \rangle$.

Proposition 2.1:

- 1) I(Z) an ideal. $Z_1 \subseteq Z_2 \Rightarrow I(Z_1) \supseteq I(Z_2)$.
- 2) $T\subseteq \Bbbk[x].$ $V(T)=V(\langle T\rangle)$ AND $V(T)=V(f_1,...,f_m)$ for some $f_i.$
- 3) For $\mathfrak{a} \subseteq \mathbb{k}[x]$ ideal, $V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}})$, where $\sqrt{\mathfrak{a}} = \{ f \in \mathbb{k}[x] \mid f^m \in \mathfrak{a}, \exists m > 0 \}$.
- 4) Algebraic subsets of \mathcal{A}^n are closed under finite unions and arbitrary intersections.

PROOF: We prove number 2 by using the Hilbert Basis Theorem. In particular, k[x] is Noetherian.

Theorem 2.2 (Nullstellensatz): Let Z be an algebraic subset. Then V(I(Z))=Z and $I(V(\mathfrak{a}))=\sqrt{\mathfrak{a}}$. That is,

{algebraic subsets of
$$\mathbb{A}^n$$
} \leftrightarrow {radical ideals in $\mathbb{k}[x]$ }. (4)

PROOF: Finite type field extensions are finite, which implies that maximal ideals of $\Bbbk[x]$ are of the form $\langle x_1-a_1,...,x_n-a_n\rangle$ for $a_i\in \Bbbk$, using the fact that \Bbbk is algebraically closed.