

## Thermal Modeling of 3D Polylithic Integration

Ankit Kaul, Madison Manley, Muhannad Bakir School of Electrical and Computer Engineering, Georgia Institute of Technology

## 

Interconnect bandwidth
Figure 1: Motivation

- 3D integration of functional chiplets is primarily realized via TSV-based 3D stacking or monolithic 3D integration.
- However, there is a performance gap between TSVbased 3D and 3D monolithic ICs in terms of bandwidth and interconnect density.



Figure 2: (a) Interposer-based 2.5-D and (b) 3D integration examples. (c) Maximum junction temperatures: Tier powers: 1. processor (150W), 2. processor (150W).



Figure 3: (a) 3D Seamless off-chip Connectivity (SoC+) concept: BEOL-embedded chiplet integration. (b) thermal simulations: design specifications & assumptions



Figure 4: Considered cooling techniques and tier power densities for thermal evaluation and steady state evaluation



Figure 5: Maximum junction temperatures as a function of varying dielectric thermal conductivity in 1) all tiers with (a) air and (b) DSC and 2) just embedded tier with (c) air and (d) DSC.

## **Transient Thermal Analysis**



Figure 6: Transient state thermal evaluation

## Conclusion

We have presented a thermal study for 3D polylithic integration as a function of tier power density, dielectric thermal conductivity, and transient power variation to identify thermal limits and challenges in such integration approaches.

