Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

КАФЕДРА _	_ИУК4	«Программное	обеспечение	ЭВМ,	информационны
технологии»_					

«РАЗЛОЖЕНИЯ СИГНАЛОВ В РЯД ФУРЬЕ»

ЛАБОРАТОРНАЯ РАБОТА №1

ДИСЦИПЛИНА: «Цифровая обработка сигнала»

Выполнил: студент гр. ИУК4 -72Б		_ (<u> Калашников А.С.</u>
, ,	(Подпись)		(Ф.И.О.)
Проверил:	(Подпись)	_ (<u>Тронов К.А.</u>) (Ф.И.О.)
Дата сдачи (защиты):			
Результаты сдачи (защиты):			
- Балльна	я оценка:		
- Оценка:			

<u>**Цель:**</u> формирование практических навыков разложения сигналов различного вида в ряд Фурье и моделирование сигналов различной формы с заданными параметрами.

Задачи:

- 1) Выполнить разложение сигналов в ряд Фурье. Разложению подлежат следующие сигналы: последовательность прямоугольных импульсов, меандр, пилообразный сигнал и последовательность треугольных импульсов.
- 2) Построить графики для промежуточных стадий суммирования. Для каждого варианта и каждого вида сигнала заданы параметры:
- для последовательности прямоугольных импульсов амплитуда, период повторения и длительность импульсов;
- для меандра, пилообразного сигнала и последовательности треугольных импульсов амплитуда и период повторения импульсов;
 - для всех видов сигналов задано число ненулевых гармоник.

Вариант 8.

No	Параметры для сигналов						
вариан	A –	<i>T</i> — период	τ –	k — число			
та	амплитуда	повторения	длительност	ненулевых			
	сигнала	сигналов	ь сигнала	гармоник			
6	5	3	2	14			

Последовательность прямоугольных импульсов:

```
N = 14;
t = -3:0.01:3;
A = 5;
T = 3;
tau = 2;
q = T/tau;
nh = (1:N);
harmonics = cos(2*pi*nh'*t/T);
Am = 2*A/pi./nh.*sin(pi.*nh/q);
s1 = harmonics .* repmat(Am', 1, length(t));
s2 = cumsum(s1) + A/q;
for k=1:N, subplot(5, 3, k), plot(t, s2(k,:)), end
```

Результат работы программы:

Рис. 1 Периодическая последовательность прямоугольных импульсов

Меандр:

```
N = 14;
t = -3:0.01:3;
A = 5;
T = 3;
nh = (1:N)*2-1;
                                             % Номера ненулевых гармоник
harmonics = cos((2*pi*nh)'*t/T);
Am = 2*A/pi./nh;
                                             % Амплитуды гармоник
Am(2:2:end) = -Am(2:2:end);
                                             % Чередование знаков
s = A/2 + harmonics .* repmat(Am', 1, length(t));
                                             % Строки - частичные суммы
гармоник
s = cumsum(s);
for k=1:N
    subplot(5, 3, k);
    plot(t, s(k,:));
end
```

Результаты работы программы:

Пилообразный сигнал

```
N = 14;
t = -3:0.01:3;
A = 5;
T = 3;
nh = (1:N);
                                             % Номера ненулевых гармоник
harmonics = sin((2*pi*nh)'*t/T);
Am = 2*A/pi./nh;
                                             % Амплитуды гармоник
Am(2:2:end) = -Am(2:2:end);
                                             % Чередование знаков
s = harmonics .* repmat(Am', 1, length(t)); % Строки - частичные суммы
гармоник
s = cumsum(s);
for k=1:N
    subplot(5, 3, k);
    plot(t, s(k,:));
end
```

Результат работы программы:

Рис. 3. Пилообразный сигнал

Последовательность треугольных импульсов

Результаты работы программы:

Рис.4. Последовательность треугольных импульсов

Выводы: в результате выполнения лабораторной работы были ознакомлены с примерами разложения сигналов в ряд Фурье и практической реализацией разложения различного вида сигналов в системе MatLab.