Controls, Not Shocks: Estimating Dynamic Causal Effects in Macroeconomics

Seminar, U. Glasgow

Simon Lloyd¹ Ed Manuel²

¹Bank of England and Centre for Macroeconomics

²London School of Economics

April 2024

The views expressed here do not necessarily reflect the position of the Bank of England.

Common Issue in Macro:

- Goal: Policy $z \stackrel{?}{\Rightarrow}$ Outcome variable y
- Challenge: $z = f(\mathbf{x}) + \varepsilon$ where $\mathbf{x} \Rightarrow y$

Common Issue in Macro:

- Goal: Policy $z \stackrel{?}{\Rightarrow}$ Outcome variable y
- Challenge: $z = f(\mathbf{x}) + \varepsilon$ where $\mathbf{x} \Rightarrow y$
- ► **Common Solution**: identify 'shock' first with two steps (e.g., Romer and Romer, 2004)
 - 1. Regress z on $\mathbf x$ and call residual the 'shock' (e.g., z change in FFR, $\mathbf x$ FOMC Greenbook forecasts)
 - 2. Regress y on constructed shock (e.g., y CPI)

- Common Issue in Macro:
 - Goal: Policy $z \stackrel{?}{\Rightarrow}$ Outcome variable y
 - Challenge: $z = f(\mathbf{x}) + \varepsilon$ where $\mathbf{x} \Rightarrow y$
- ► **Common Solution**: identify 'shock' first with two steps (e.g., Romer and Romer, 2004)
 - 1. Regress z on ${\bf x}$ and call residual the 'shock' (e.g., z change in FFR, ${\bf x}$ FOMC Greenbook forecasts)
 - 2. Regress y on constructed shock (e.g., y CPI)
- ▶ Alternative Approach: estimate in one step by regressing y on z with x as controls

Common Issue in Macro:

- Goal: Policy $z \stackrel{?}{\Rightarrow}$ Outcome variable y
- Challenge: $z = f(\mathbf{x}) + \varepsilon$ where $\mathbf{x} \Rightarrow y$
- ► **Common Solution**: identify 'shock' first with two steps (e.g., Romer and Romer, 2004)
 - 1. Regress z on ${\bf x}$ and call residual the 'shock' (e.g., z change in FFR, ${\bf x}$ FOMC Greenbook forecasts)
 - 2. Regress y on constructed shock (e.g., y CPI)
- ▶ Alternative Approach: estimate in one step by regressing y on z with x as controls

What is the difference between these two approaches for range of estimators?

- ► Starting Point: one- and two-step are two sides of same coin (Frisch-Waugh-Lovell)
 - BUT...only about coefficients (not standard errors) and a special case (OLS, one set of controls x)

- Starting Point: one- and two-step are two sides of same coin (Frisch-Waugh-Lovell)
 - ullet BUT...only about coefficients (not standard errors) and a special case (OLS, one set of controls x)
- * **Our Claim**: two-step approach generally problematic for *inference* and *identification*; one-step procedure yields unbiased and efficient estimates of causal effects

- Starting Point: one- and two-step are two sides of same coin (Frisch-Waugh-Lovell)
 - ullet BUT...only about coefficients (not standard errors) and a special case (OLS, one set of controls x)
- Our Claim: two-step approach generally problematic for inference and identification;
 one-step procedure yields unbiased and efficient estimates of causal effects
- \star **Why?** omitted-variable bias (OVB) in two-step, leading to some combination of ...
 - ...over-estimation of standard errors (OLS/IV without controls)
 - 2. ...'genuine bias' (OLS/IV/VAR with controls, QR)

- Starting Point: one- and two-step are two sides of same coin (Frisch-Waugh-Lovell)
 - ullet BUT...only about coefficients (not standard errors) and a special case (OLS, one set of controls x)
- Our Claim: two-step approach generally problematic for inference and identification;
 one-step procedure yields unbiased and efficient estimates of causal effects
- \star **Why?** omitted-variable bias (OVB) in two-step, leading to some combination of ...
 - ...over-estimation of standard errors (OLS/IV without controls)
 - 2. ...'genuine bias' (OLS/IV/VAR with controls, QR)
- * Matters in Practice: headline results can differ between one- and two-step approaches
 - Revisit estimated effects of monetary policy controlling for central-bank information
 - Simple resolution to price puzzle

Differences Matter in Practice: A Price-Puzzle Teaser

US $\ln(CPI)$ responses to Romer-Romer-style shock, controlling for lags of CPI, IP and U/E

Differences Have Broad Implications in Macro: Two-Step Widely Used

"Any exercise in dynamic causal inference involves **two conceptually distinct steps**: 1) the construction of the shocks, and 2) the specification used to construct an impulse response once one has the shocks in hand" [Nakamura & Steinsson 2018, JEP]

Differences Have Broad Implications in Macro: Two-Step Widely Used

"Any exercise in dynamic causal inference involves **two conceptually distinct steps**: 1) the construction of the shocks, and 2) the specification used to construct an impulse response once one has the shocks in hand" [Nakamura & Steinsson 2018, JEP]

- Used in studies of average causal effects:
 - Monetary policy [Romer & Romer 2004, AER; Coibion 2012, AEJ: Macro; Coibion et al. 2017, JME; Cloyne et al. 2020,
 REStud; Holm et al. 2021, JPE; Miranda-Agripinno & Ricco 2021, AEJM; Bauer & Swanson 2022, AER]
 - Fiscal policy [Auerbach & Gorodnichenko 2013, AER; Miyamoto et al. 2018, AEJ: Macro]
 - Macroprudential policy [Ahnert et al. 2021, JFE; Chari et al. 2022, JIE]
 - Non-policy, e.g.: Oil Prices [Kilian 2009, AER]; Sentiment [Al-Amine & Willems 2023, EJ]; etc.

Differences Have Broad Implications in Macro: Two-Step Widely Used

"Any exercise in dynamic causal inference involves **two conceptually distinct steps**: 1) the construction of the shocks, and 2) the specification used to construct an impulse response once one has the shocks in hand" [Nakamura & Steinsson 2018, JEP]

- Used in studies of average causal effects:
 - Monetary policy [Romer & Romer 2004, AER; Coibion 2012, AEJ: Macro; Coibion et al. 2017, JME; Cloyne et al. 2020, REStud; Holm et al. 2021, JPE; Miranda-Agripinno & Ricco 2021, AEJM; Bauer & Swanson 2022, AER]
 - Fiscal policy [Auerbach & Gorodnichenko 2013, AER; Mivamoto et al. 2018, AEI; Macro]
 - Macroprudential policy [Ahnert et al. 2021, JFE; Chari et al. 2022, JIE]
 - Non-policy, e.g.: Oil Prices [Kilian 2009, AER]; Sentiment [Al-Amine & Willems 2023, EJ]; etc.
- · And studies of causal effects across quantiles:
 - Fiscal policy [Linnemann & Winkler 2016, OEP]
 - Macroprudential policy [Brandão-Marques et al. 2021, IMF WP]
 - Capital-flow measures [Gelos et al. 2022, JIE]

Plan for Today

- 1. Setup
- 2. Key Insight: An 'Omitted-Variable Bias' (OVB) Result
- 3. Implications and Applications: OVB in Different Settings
 - Ordinary Least Squares and SVARs with Internal Instruments
 - Instrumental Variables and SVARs with External Instruments
 - Quantile Regression

Throughout, applications focus on transmission of US monetary policy controlling for central-bank information [Romer and Romer, 2004; Miranda-Agrippino and Ricco, 2021]

Related Literature

Not aware of other literature explicitly highlighting the drawbacks of the two-step approach popular in the macroeconomics literature, but most clearly related to:

- #1. Various literature stresses shock-identification strategies relying on orthogonalisation **equivalent** to regression-control approach
 - Angrist & Kuersteiner (2011), Jordà & Taylor (2016), Angrist, Jordà & Kuersteiner (2018), Barnichon
 & Brownlees (2019), Jordà, Schularick & Taylor (2020), Plagborg-Møller & Wolf (2021)
 - \rightarrow **This Paper**: They are **not** (always) equivalent—highlight drawbacks of two-step approach
- #2. Generated regressors in macroeconomics
 - Pagan (1984), Murphy & Topel (2002)
 - → **This Paper**: We propose two-step approach amounts to mis-specification, driven by omission of relevant variables from outcome regression

Setup

Focus: Effect of some variable z on outcome variable of interest y

Focus: Effect of some variable z on outcome variable of interest y

Two-Step Approach:

#1 $z_t=\mathbf{x}_{1,t}'\boldsymbol{\delta}+arepsilon_t$, where \mathbf{x}_1 captures endogenous drivers of z, and arepsilon captures 'shock'

#2 $y_t = \mathbf{x}'_{2,t}\pi + \varepsilon_t\beta_{2S} + u_t$, where \mathbf{x}_2 other drivers of y, and β_{2S} is 'two-step' coefficient

Focus: Effect of some variable z on outcome variable of interest y

Two-Step Approach:

#1 $z_t = \mathbf{x}_{1,t}' \boldsymbol{\delta} + \varepsilon_t$, where \mathbf{x}_1 captures endogenous drivers of z, and ε captures 'shock' #2 $y_t = \mathbf{x}_{2,t}'' \pi + \varepsilon_t \beta_{2S} + u_t$, where \mathbf{x}_2 other drivers of y, and β_{2S} is 'two-step' coefficient

One-Step Approach:

$$y_t = \mathbf{x}_t' m{ heta} + z_t eta_{1S} + e_t$$
, where $\mathbf{x}_t' = [\mathbf{x}_{1,t}', \mathbf{x}_{2,t}']'$

Focus: Effect of some variable z on outcome variable of interest y

Two-Step Approach:

#1 $z_t=\mathbf{x}_{1,t}'\boldsymbol{\delta}+arepsilon_t$, where \mathbf{x}_1 captures endogenous drivers of z, and arepsilon captures 'shock'

#2 $y_t=\mathbf{x}_{2,t}''\pi+arepsilon_teta_{2S}+u_t$, where \mathbf{x}_2 other drivers of y, and eta_{2S} is 'two-step' coefficient

One-Step Approach:

$$y_t = \mathbf{x}_t' m{ heta} + z_t eta_{1S} + e_t$$
, where $\mathbf{x}_t' = [\mathbf{x}_{1,t}', \mathbf{x}_{2,t}']'$

Setup very general:

- Not OLS-specific: only require coefficients to be unique solution to minimisation of some function of the residuals
- Nests Frisch-Waugh-Lovell benchmark
- \cdot Broad identification: \mathbf{x}_t can contain numerous types of variables

Focus: Effect of some variable z on outcome variable of interest y

Two-Step Approach:

#1 $z_t=\mathbf{x}_{1,t}'\boldsymbol{\delta}+arepsilon_t$, where \mathbf{x}_1 captures endogenous drivers of z, and arepsilon captures 'shock'

#2 $y_t=\mathbf{x}_{2,t}''\pi+\varepsilon_t\beta_{2S}+u_t$, where \mathbf{x}_2 other drivers of y, and β_{2S} is 'two-step' coefficient

One-Step Approach:

$$y_t = \mathbf{x}_t' m{ heta} + z_t eta_{1S} + e_t$$
, where $\mathbf{x}_t' = [\mathbf{x}_{1,t}', \mathbf{x}_{2,t}']'$

Setup very general:

- Not OLS-specific: only require coefficients to be unique solution to minimisation of some function of the residuals
- Nests Frisch-Waugh-Lovell benchmark
- \cdot Broad identification: \mathbf{x}_t can contain numerous types of variables

How does β_{2S} compare to β_{1S} ?

Key Insight

Key Insight: An 'Omitted Variable Bias' Result

Proposition: OVB Result

Difference between β_{1S} and β_{2S} can be expressed in terms of OVB in β_{2S} :

$$\beta_{2S} = \beta_{1S} + \Omega_{2S}$$

Key Insight: An 'Omitted Variable Bias' Result

Proposition: OVB Result

Difference between β_{1S} and β_{2S} can be expressed in terms of OVB in β_{2S} :

$$\beta_{2S} = \beta_{1S} + \Omega_{2S}$$

Sketch Proof:

$$y_t = \mathbf{x}'_{2,t}\pi + \varepsilon_t \beta_{2S} + u_t$$
 (Two-Step)
 $y_t = \mathbf{x}'_t \theta + z_t \beta_{1S} + e_t$ (One-Step)
 $y_t = \mathbf{x}'_t \phi + \epsilon_t \beta_{hub} + \eta_t$ (Hybrid)

Key Insight: An 'Omitted Variable Bias' Result

Proposition: OVB Result

Difference between β_{1S} and β_{2S} can be expressed in terms of OVB in β_{2S} :

$$\beta_{2S} = \beta_{1S} + \Omega_{2S}$$

Sketch Proof:

$$y_t = \mathbf{x}'_{2,t}\pi + \varepsilon_t \beta_{2S} + u_t$$
 (Two-Step)
 $y_t = \mathbf{x}'_t \theta + z_t \beta_{1S} + e_t$ (One-Step)
 $y_t = \mathbf{x}'_t \phi + \epsilon_t \beta_{hub} + \eta_t$ (Hybrid)

- · Since $\varepsilon_t=z_t-\mathbf{x}_{1,t}'\boldsymbol{\delta}$ and $\mathbf{x}_1\subset\mathbf{x}$, one-step and hybrid estimators equivalent: $\beta_{1S}=\beta_{hyb}$
- · But, relative to hybrid estimator, two-step excludes \mathbf{x}_1 . So difference can be expressed as: $\beta_{2S} = \beta_{1S} + \Omega_{2S}$ where Ω_{2S} is OVB from exclusion of \mathbf{x}_1 from second-stage regression

Implications and Applications

OLS and SVARs with Internal Instruments

Simple OLS Case: No Auxiliary Controls

Setup:

$$z_{t} = \delta \mathbf{x}_{1,t} + \varepsilon_{t}$$

$$y_{t} = \beta_{2S} \overbrace{\varepsilon_{t}}^{\epsilon_{t}} + u_{t}$$
(2S)

$$y_t = \beta_{1S} z_t + \gamma \mathbf{x}_{1,t} + e_t \tag{1S}$$

Simple OLS Case: No Auxiliary Controls

Setup:

$$z_{t} = \delta \mathbf{x}_{1,t} + \varepsilon_{t}$$

$$y_{t} = \beta_{2S} \overbrace{\varepsilon_{t}} + u_{t}$$
(2S)

$$y_t = \beta_{1S} z_t + \gamma \mathbf{x}_{1,t} + e_t \tag{1S}$$

Results:

- 1. Point estimates equivalent (Frisch-Waugh-Lovell): $eta_{2S}=eta_{1S}$ and $\hat{eta}_{2S}=\hat{eta}_{1S}$
- 2. Population standard errors identical: $V(\hat{\beta}_{2S}) = V(\hat{\beta}_{1S})$
- 3. Two-step leads to over-estimation of standard errors in sample: $\hat{V}(\hat{\beta}_{2S}) > \hat{V}(\hat{\beta}_{1S})$

Simple OLS Case: No Auxiliary Controls

Setup:

$$z_{t} = \delta \mathbf{x}_{1,t} + \varepsilon_{t}$$

$$y_{t} = \beta_{2S} \overbrace{\varepsilon_{t}} + u_{t}$$
(2S)

$$y_t = \beta_{1S} z_t + \gamma \mathbf{x}_{1,t} + e_t \tag{1S}$$

Results:

- 1. Point estimates equivalent (Frisch-Waugh-Lovell): $eta_{2S}=eta_{1S}$ and $\hat{eta}_{2S}=\hat{eta}_{1S}$
- 2. Population standard errors identical: $V(\hat{\beta}_{2S}) = V(\hat{\beta}_{1S})$
- 3. Two-step leads to over-estimation of standard errors in sample: $\hat{V}(\hat{\beta}_{2S}) > \hat{V}(\hat{\beta}_{1S})$

Intuition: \mathbf{x}_1 explains some variation in z (\uparrow s.e.), but also has explanatory power for y (\downarrow s.e.) \Rightarrow two-step standard errors only reflect first force

Local-Projection Application: No Auxiliary Controls

Romer-Romer-style identification

▶ Detail

- ► US data, converted from meeting to monthly frequency, 1972m1-2007m12
- ► Two step:
 - 1. Regress ΔFFR_t (i.e., z) on Greenbook forecasts (i.e., \mathbf{x}_1), save residual $\hat{\varepsilon}_t$
 - 2. Regress $\ln(CPI)_{t+h}$ (i.e., y) on $\hat{\varepsilon}_t$
- ► One step: Regress $\ln(CPI)_{t+h}$ on ΔFFR_t and Greenbook forecasts

Local-Projection Application: No Auxiliary Controls

Romer-Romer-style identification

▶ Detail

- ► US data, converted from meeting to monthly frequency, 1972m1-2007m12
- ► Two step:
 - 1. Regress ΔFFR_t (i.e., z) on Greenbook forecasts (i.e., \mathbf{x}_1), save residual $\hat{\varepsilon}_t$
 - 2. Regress $\ln(CPI)_{t+h}$ (i.e., y) on $\hat{\varepsilon}_t$
- ▶ One step: Regress $\ln(CPI)_{t+h}$ on ΔFFR_t and Greenbook forecasts

Note: OLS-LP, US 1972m1-2007m12. 90% confidence bands from Newey-West s.e.

OLS with Auxiliary Controls

Setup:

e.g., lagged macro controls

$$y_t = \beta_{2S}\varepsilon_t + \pi \widehat{\mathbf{x}_{2,t}} + u_t \tag{2S}$$

$$y_t = \beta_{1S} z_t + \gamma \mathbf{x}_{1,t} + \frac{\theta}{\mathbf{x}_{2,t}} + e_t \tag{1S}$$

OLS with Auxiliary Controls

Setup:

$$y_t = \beta_{2S}\varepsilon_t + \pi \widehat{\mathbf{x}_{2,t}} + u_t \tag{2S}$$

$$y_t = \beta_{1S} z_t + \gamma \mathbf{x}_{1,t} + \frac{\theta}{\mathbf{x}_{2,t}} + e_t \tag{1S}$$

Results:

1. OVB has the form:
$$\beta_{2S} = \beta_{1S} + \underbrace{\mathbb{E}\left[\varepsilon_t \mathbf{x}_{2,t}'\right] \mathbf{A}^{-1} \mathbb{E}\left[\mathbf{x}_{2,t} \mathbf{x}_{1,t}'\right] \boldsymbol{\phi}_1}_{\equiv OVB}$$

- 2. When $\left[\varepsilon_t\mathbf{x}_{2,t}'\right]=0$: two-step consistent, but inefficient $\left(V(\hat{\beta}_{2S})>V(\hat{\beta}_{1S})\right)$
- 3. When $\left[\varepsilon_t \mathbf{x}_{2,t}'\right] \neq 0$: two-step inconsistent

OLS with Auxiliary Controls

Setup:

$$y_t = \beta_{2S}\varepsilon_t + \pi \widehat{\mathbf{x}_{2,t}} + u_t \tag{2S}$$

$$y_t = \beta_{1S} z_t + \gamma \mathbf{x}_{1,t} + \boldsymbol{\theta} \mathbf{x}_{2,t} + e_t \tag{1S}$$

Results:

1. OVB has the form:
$$\beta_{2S} = \beta_{1S} + \underbrace{\mathbb{E}\left[\varepsilon_t\mathbf{x}_{2,t}'\right]\mathbf{A}^{-1}\mathbb{E}\left[\mathbf{x}_{2,t}\mathbf{x}_{1,t}'\right]\boldsymbol{\phi}_1}_{\equiv OVB}$$

- 2. When $\left[\varepsilon_t\mathbf{x}_{2,t}'\right]=0$: two-step consistent, but inefficient $\left(V(\hat{\beta}_{2S})>V(\hat{\beta}_{1S})\right)$
- 3. When $\left[\varepsilon_t \mathbf{x}_{2,t}'\right] \neq 0$: two-step inconsistent

Intuition: one-step avoids bias, as coefficient estimated 'as if' shock was constructed to be exogenous w.r.t. $\mathbf{x}_{1,t}$ and $\mathbf{x}_{2,t} \Rightarrow$ so two-step less robust to misspecification

Local-Projection Application: With Auxiliary Controls

Romer-Romer-style identification

- ightharpoonup Let $\mathbf{x}_{2,t}$ include: lagged CPI, IP and U/E
- ► Two step:
 - 1. Regress ΔFFR_t (i.e., z) on Greenbook forecasts (i.e., \mathbf{x}_1), save residual $\hat{\varepsilon}_t$
 - 2. Regress $\ln(CPI)_{t+h}$ (i.e., y) on $\hat{\varepsilon}_t$ and $\mathbf{x}_{2,t}$
- ► One step: Regress $\ln(CPI)_{t+h}$ on ΔFFR_t , Greenbook forecasts and $\mathbf{x}_{2,t}$

Local-Projection Application: With Auxiliary Controls

Romer-Romer-style identification

- ightharpoonup Let $\mathbf{x}_{2,t}$ include: lagged CPI, IP and U/E
- ► Two step:
 - 1. Regress ΔFFR_t (i.e., z) on Greenbook forecasts (i.e., \mathbf{x}_1), save residual $\hat{\varepsilon}_t$
 - 2. Regress $\ln(CPI)_{t+h}$ (i.e., y) on $\hat{\varepsilon}_t$ and $\mathbf{x}_{2,t}$
- ► One step: Regress $\ln(CPI)_{t+h}$ on ΔFFR_t , Greenbook forecasts and $\mathbf{x}_{2,t}$

Note: OLS-LP, US 1972m1-2007m12. 90% confidence bands from Newey-West s.e.

VAR with Internal Instruments

▶ Two-Step Internal-Instruments Approach: include ε_t in VAR with $\mathbf{w}_t = [\varepsilon_t, \mathbf{y}_t]'$ and put first in recursive ordering

$$y_t = \varepsilon_t \beta_{2S} + \underbrace{\sum_{j=1}^p \mathbf{\Gamma}_j^{2S} \mathbf{y}_{t-j} + \sum_{j=1}^p \lambda_j^{2S} \varepsilon_{t-j}}_{=\boldsymbol{\pi} \mathbf{x}_{2,t}} + u_t^{2S}$$

VAR with Internal Instruments

▶ Two-Step Internal-Instruments Approach: include ε_t in VAR with $\mathbf{w}_t = [\varepsilon_t, \mathbf{y}_t]'$ and put first in recursive ordering

$$y_t = \varepsilon_t \beta_{2S} + \underbrace{\sum_{j=1}^p \mathbf{\Gamma}_j^{2S} \mathbf{y}_{t-j} + \sum_{j=1}^p \lambda_j^{2S} \varepsilon_{t-j}}_{=\boldsymbol{\pi} \mathbf{x}_{2,t}} + u_t^{2S}$$

▶ Alternative One-Step Approach: include $\mathbf{x}_{1,t}$ and z_t , ordered first and second respectively, such that $\mathbf{w}_t = \left[\mathbf{x}_{1,t}', z_t, \mathbf{y}_t\right]'$

$$y_t = z_t \beta_{1S} + \sum_{j=0}^p \mathbf{\Theta}_j \mathbf{x}_{1,t-j} + \sum_{j=1}^p \mathbf{\Gamma}_j^{1S} \mathbf{y}_{t-j} + \sum_{j=1}^p \lambda_j^{1S} z_{t-j} + u_t^{1S}$$

VAR with Internal Instruments

▶ Two-Step Internal-Instruments Approach: include ε_t in VAR with $\mathbf{w}_t = [\varepsilon_t, \mathbf{y}_t]'$ and put first in recursive ordering

$$y_t = \varepsilon_t \beta_{2S} + \underbrace{\sum_{j=1}^p \mathbf{\Gamma}_j^{2S} \mathbf{y}_{t-j} + \sum_{j=1}^p \lambda_j^{2S} \varepsilon_{t-j}}_{=\boldsymbol{\pi} \mathbf{x}_{2,t}} + u_t^{2S}$$

▶ Alternative One-Step Approach: include $\mathbf{x}_{1,t}$ and z_t , ordered first and second respectively, such that $\mathbf{w}_t = \left[\mathbf{x}_{1,t}', z_t, \mathbf{y}_t\right]'$

$$y_t = z_t \beta_{1S} + \sum_{j=0}^p \mathbf{\Theta}_j \mathbf{x}_{1,t-j} + \sum_{j=1}^p \mathbf{\Gamma}_j^{1S} \mathbf{y}_{t-j} + \sum_{j=1}^p \lambda_j^{1S} z_{t-j} + u_t^{1S}$$

▶ OVB now captures omission of contemporaneous and lagged $\mathbf{x}_{1,t}$: $\Omega_{2S} = \mathbb{E}\left[\varepsilon_t \mathbf{x}_{2,t}'\right] \mathbf{A}^{-1} \mathbb{E}\left[\mathbf{x}_{2,t} \mathbf{x}_{1,t}^p\right] \Phi^p$, where $\mathbf{x}_{1,t}^p = \left[\mathbf{x}_{1,t}', \mathbf{x}_{1,t-1}', \dots, \mathbf{x}_{1,t-p}'\right]'$ and Φ^p collects coefficients from hybrid regression

VAR with Internal Instruments Application

Two-step: $\mathbf{w}_t = \left[\hat{\varepsilon}_t^{RR}, \mathbf{y}_t\right]'$ where $\mathbf{y}_t = \mathbf{x}_{2,t}$ including CPI, IP, U/E

Note: VAR(4), US 1972m1-2007m12, 68% confidence bands from wild bootstrap (1000 reps)

One-step: $\mathbf{w}_t = \left[\mathbf{x}_{1,t}', \Delta FFR_t, \mathbf{y}_t'\right]'$ where $\mathbf{x}_{1,t}$ is Greenbook forecasts

VAR with Internal Instruments Application

Two-step: $\mathbf{w}_t = \left[\hat{\varepsilon}_t^{RR}, \mathbf{y}_t\right]'$ where $\mathbf{y}_t = \mathbf{x}_{2,t}$ including CPI, IP, U/E

Note: VAR(4), US 1972m1-2007m12. 68% confidence bands from wild bootstrap (1000 reps)

One-step: $\mathbf{w}_t = \left[\mathbf{x}_{1,t}', \Delta FFR_t, \mathbf{y}_t'\right]'$ where $\mathbf{x}_{1,t}$ is Greenbook forecasts

Implications and Applications

IV and SVARs with External Instruments

Simple IV Case: No Auxiliary Controls

Setup:

IV with
$$m_t^{\perp \mathbf{x}_{1,t}}$$

$$y_t = \beta_{2S} \underbrace{z_t}_{t} + u_t \tag{2S}$$

$$y_t = \beta_{1S} \underbrace{z_t}_{\text{IV with } m_t} + \gamma \mathbf{x}_{1,t} + e_t \tag{1S}$$

Simple IV Case: No Auxiliary Controls

Setup:

IV with
$$m_t^{\perp \mathbf{x}_{1,t}}$$

$$y_t = \beta_{2S} \underbrace{z_t}_{t} + u_t \tag{2S}$$

$$y_t = \beta_{1S} \underbrace{z_t}_{\text{IV with } m_t} + \gamma \mathbf{x}_{1,t} + e_t \tag{1S}$$

Results:

- 1. Point estimates still equivalent (Frisch-Waugh-Lovell): $eta_{2S}=eta_{1S}$ and $\hat{eta}_{2S}=\hat{eta}_{1S}$
- 2. Two-step leads to over-estimation of standard errors in sample: $\hat{V}(\hat{\beta}_{2S}) > \hat{V}(\hat{\beta}_{1S})$
- 3. First-stage F-stats from two-step underestimated

Intuition: IV the ratio of two OLS coefficients, so Frisch-Waugh-Lovell benchmark still applies

LP-IV Application: Romer-Romer Example

Romer-Romer-style identification

- ► Two step:
 - 1. Regress ΔFFR_t (i.e., m) on Greenbook forecasts (i.e., \mathbf{x}_1), save residual $\hat{\varepsilon}_t$
 - 2. Regress $\ln(CPI)_{t+h}$ (i.e., y) on one-year yield (i.e., z) using $\hat{\varepsilon}_t$ as instrument
- ▶ One step: Regress $\ln(CPI)_{t+h}$ on one-year yield and Greenbook forecasts, using ΔFFR_t as instrument

LP-IV Application: Romer-Romer Example

Romer-Romer-style identification

- Two step:
 - 1. Regress ΔFFR_t (i.e., m) on Greenbook forecasts (i.e., \mathbf{x}_1), save residual $\hat{\varepsilon}_t$
 - 2. Regress $\ln(CPI)_{t+h}$ (i.e., y) on one-year yield (i.e., z) using $\hat{\varepsilon}_t$ as instrument
- ▶ One step: Regress $\ln(CPI)_{t+h}$ on one-year yield and Greenbook forecasts, using ΔFFR_t as instrument

Note: OLS-LP, US 1972m1-2007m12. 90% confidence bands from Newey-West s.e.

LP-IV Application with Auxiliary Controls: High-Frequency Surprises

Results with auxiliary controls (i.e., $\mathbf{x}_{2,t}$) analogous to OLS

LP-IV Application with Auxiliary Controls: High-Frequency Surprises

Results with auxiliary controls (i.e., $\mathbf{x}_{2,t}$) analogous to OLS

Miranda-Agrippino-Ricco-style identification

Two step:

- ▶ Detail
- 1. Regress high-frequency surprise m_t on Greenbook forecasts \mathbf{x}_1), save residual $\hat{\varepsilon}_t$
- 2. Regress $\ln(CPI)_{t+h}$ (i.e., y) on one-year yield (i.e., z) and $\mathbf{x}_{2,t}$ using $\hat{\varepsilon}_t$ as instrument
- ▶ One step: Regress $\ln(CPI)_{t+h}$ on one-year yield, Greenbook forecasts and $\mathbf{x}_{2,t}$, using m_t as instrument

LP-IV Application with Auxiliary Controls: High-Frequency Surprises

Results with auxiliary controls (i.e., $\mathbf{x}_{2,t}$) analogous to OLS

Miranda-Agrippino-Ricco-style identification

Two step:

▶ Detail

- 1. Regress high-frequency surprise m_t on Greenbook forecasts \mathbf{x}_1), save residual $\hat{\varepsilon}_t$
- 2. Regress $\ln(CPI)_{t+h}$ (i.e., y) on one-year yield (i.e., z) and $\mathbf{x}_{2,t}$ using $\hat{\varepsilon}_t$ as instrument
- ▶ One step: Regress $\ln(CPI)_{t+h}$ on one-year yield, Greenbook forecasts and $\mathbf{x}_{2,t}$, using m_t as instrument

First-Stage F-Statistics

That stage 1 statisties		
	Two-Step	One-Step
Without Aux. Controls	11.76	19.57
With Aux. Controls	11.27	19.58

VAR with External Instruments

Two-Step Approach: let $\mathbf{w}_t = [m_t, \mathbf{y}_t]'$, estimate contemporaneous responses via

$$\mathbf{w}_t = \boldsymbol{\beta}_{2S}^0 \overbrace{m_t}^{\text{over}} + \mathbf{\Pi}(L) \mathbf{w}_{t-1} + \mathbf{u}_t^{2S}$$

and estimate IRFs via: $oldsymbol{eta}_{2S}^h = \mathbf{C}^h oldsymbol{eta}_{2S}^0$

VAR with External Instruments

Two-Step Approach: let $\mathbf{w}_t = [m_t, \mathbf{y}_t]'$, estimate contemporaneous responses via

$$\mathbf{w}_t = \boldsymbol{\beta}_{2S}^0 \underbrace{\boldsymbol{m}_t}^{\mathsf{IV} \ \mathsf{with} \ \varepsilon_t} + \boldsymbol{\Pi}(L) \mathbf{w}_{t-1} + \mathbf{u}_t^{2S}$$

and estimate IRFs via: $oldsymbol{eta}_{2S}^h = \mathbf{C}^h oldsymbol{eta}_{2S}^0$

▶ **Alternative One-Step Approach**: now estimate contemporaneous responses via:

$$\mathbf{w}_t = oldsymbol{eta}_{1S}^0 \overbrace{m_t}^{ ext{IV with } z_t} + oldsymbol{\gamma} \mathbf{x}_{1,t} + oldsymbol{\Theta}(L) \mathbf{w}_{t-1} + \mathbf{u}_t^{1S}$$

and estimate IRFs via: $oldsymbol{eta}_{1S}^h = \mathbf{C}^h oldsymbol{eta}_{1S}^0$

VAR with External Instruments

Two-Step Approach: let $\mathbf{w}_t = [m_t, \mathbf{y}_t]'$, estimate contemporaneous responses via

$$\mathbf{w}_t = \boldsymbol{\beta}_{2S}^0 \overbrace{m_t}^{\text{IV with } \varepsilon_t} + \mathbf{\Pi}(L) \mathbf{w}_{t-1} + \mathbf{u}_t^{2S}$$

and estimate IRFs via: $oldsymbol{eta}_{2S}^h = \mathbf{C}^h oldsymbol{eta}_{2S}^0$

▶ **Alternative One-Step Approach**: now estimate contemporaneous responses via:

$$\mathbf{w}_t = oldsymbol{eta_{1S}^0} \overbrace{m_t}^{ ext{IV with } z_t} + \gamma \mathbf{x}_{1,t} + oldsymbol{\Theta}(L) \mathbf{w}_{t-1} + \mathbf{u}_t^{1S}$$

and estimate IRFs via: $oldsymbol{eta}_{1S}^h = \mathbf{C}^h oldsymbol{eta}_{1S}^0$

▶ OVB now captures omission of contemporaneous $\mathbf{x}_{1,t}$ scaled by \mathbf{C}^h :

$$\Omega_{2S} = \mathbf{C}^{h} \frac{\mathbb{E}\left[\varepsilon_{t} \mathbf{y}_{t-1}^{\prime}\right] \mathbf{A}_{y}^{-1} \mathbb{E}\left[\mathbf{y}_{t-1} \mathbf{x}_{1,t}^{\prime}\right] \boldsymbol{\phi}_{y}}{\mathbb{E}\left[\varepsilon_{t} \mathbf{y}_{t-1}^{\prime}\right] \mathbf{A}_{m}^{-1} \mathbb{E}\left[\mathbf{y}_{t-1} \mathbf{x}_{1,t}^{\prime}\right] \boldsymbol{\phi}_{m}}$$

Intuition: failure of exogeneity in two-step since instrument (potentially) correlated with $\mathbf{x}_{2.t}$ lags that affect the outcome variable

VAR with External Instruments Application

Two-step: $\mathbf{y}_t = \left[\Delta FFR_t, \mathbf{x}_{2,t}'\right]'$ where $\hat{\varepsilon}_t^{RR}$ used as external IV for ΔFFR_t

One-step: $\mathbf{y}_t = \left[\mathbf{x}_{1,t}', \Delta FFR_t, \mathbf{x}_{2,t}'\right]'$ with $\hat{\varepsilon}_t^{RR}$ as external IV

Note: VAR(4), US 1972m1-2007m12. 68% confidence bands from block bootstrap (1000 reps)

VAR with External Instruments Application

Two-step: $\mathbf{y}_t = \left[\Delta FFR_t, \mathbf{x}_{2:t}'\right]'$ where $\hat{\varepsilon}_t^{RR}$ used One-step: $\mathbf{y}_t = \left[\mathbf{x}_{1:t}', \Delta FFR_t, \mathbf{x}_{2:t}'\right]'$ with $\hat{\varepsilon}_t^{RR}$ as as external IV for ΔFFR_t

external IV

Note: VAR(4), US 1972m1-2007m12, 68% confidence bands from block bootstrap (1000 reps)

Unemployment Rate 0.2

Implications and Applications

Quantile Regression

Quantile-Regression Setting: No Auxiliary Controls

Setup:

$$y_t = \beta_{2S}(\tau) \overbrace{\varepsilon_t}^{z_t^{-1,\tau}} + u_t(\tau)$$
 (2S)

$$y_t = \beta_{1S} z_t + \gamma(\tau) \mathbf{x}_{1,t} + e_t(\tau) \tag{1}$$

where $\beta_{2S}(\tau)$, $\beta_{1S}(\tau)$ and $\gamma(\tau)$ are QR coefficients for $\tau \in [0,1]$

Quantile-Regression Setting: No Auxiliary Controls

Setup:

$$y_t = \beta_{2S}(\tau) \underbrace{\varepsilon_t}^{z_t^{\perp * 1, t}} + u_t(\tau)$$
 (2S)

$$y_t = \beta_{1S} z_t + \gamma(\tau) \mathbf{x}_{1,t} + e_t(\tau) \tag{1}$$

where $\beta_{2S}(\tau)$, $\beta_{1S}(\tau)$ and $\gamma(\tau)$ are QR coefficients for $\tau \in [0,1]$

Results: even without a without auxiliary controls, two-step inconsistent due to QR-OVB:

$$\beta_{2S} = \beta_{1S} + \underbrace{\phi_1(\tau) \frac{\mathbb{E}[w_{\tau}(\mathbf{x}) \epsilon_t \mathbf{x}_{1,t}]}{\mathbb{E}[w_{\tau}(\mathbf{x}) \epsilon_t^2]}}_{\equiv OVB \text{ [Angrist et al. 2006, Ecta]}}$$

OVB term more complex with auxiliary controls

Quantile-Regression Setting: No Auxiliary Controls

Setup:

$$y_t = \beta_{2S}(\tau) \overbrace{\varepsilon_t}^{z_t^{\perp \mathbf{x}_{1,t}}} + u_t(\tau)$$
 (2S)

$$y_t = \beta_{1S} z_t + \gamma(\tau) \mathbf{x}_{1,t} + e_t(\tau) \tag{1}$$

where $\beta_{2S}(\tau)$, $\beta_{1S}(\tau)$ and $\gamma(\tau)$ are QR coefficients for $\tau \in [0,1]$

Results: even without a without auxiliary controls, two-step inconsistent due to QR-OVB:

$$\beta_{2S} = \beta_{1S} + \underbrace{\phi_1(\tau) \frac{\mathbb{E}[w_{\tau}(\mathbf{x})\epsilon_t \mathbf{x}_{1,t}]}{\mathbb{E}[w_{\tau}(\mathbf{x})\epsilon_t^2]}}_{\equiv OVB \text{ [Angrist et al. 2006, Ecta]}}$$

OVB term more complex with auxiliary controls

Intuition: $\mathbb{E}[\varepsilon_t \mathbf{x}_{1,t}] = 0$ by construction in two-step, but does not imply $\mathbb{E}[w_\tau(\mathbf{x})\varepsilon_t \mathbf{x}_{1,t}] = 0$ Hard to find reasonable assumptions under which bias is zero ($\phi_1(\tau) = 0$ or $w_\tau(\mathbf{x})$ constant)

Quantile Application: Effect of Monetary Policy Across Quantiles

Romer-Romer-style identification

- ► Two step:
 - 1. OLS of ΔFFR_t (i.e., z) on Greenbook forecasts (i.e., \mathbf{x}_1), save residual $\hat{\varepsilon}_t$
 - 2. QR of $\ln(CPI)_{t+h}$ (i.e., y) on $\hat{\varepsilon}_t$
- ▶ One step: QR of $\ln(CPI)_{t+h}$ on ΔFFR_t and Greenbook forecasts

Figure: Quantile Response of $\ln(CPI)$ after 4 years

Note: 90% CI from bootstrapped s.e.

Conclusions

- Widely-used two-step shock-first approach is problematic for identification and inference
 - OLS and IV: over-estimation of standard errors + inconsistency (with auxiliary controls)
 - Inconsistency in QR even absent auxiliary controls
- Alternative one-step estimation procedure will circumvent OVB, yielding unbiased and efficient estimates with same (claimed) identification ▶ More on 1S

- Differences between two- and one-step approaches matter in practice
 - Simple resolution to price puzzle from one-step, when revisiting estimated effects of monetary policy controlling for central-bank information

Appendix

Empirical Setup

- Response of US CPI to US interest rate i, coontrolling for Greenbook forecasts of GDP growth Δy^e , inflation π^e and unemployment u^e
- Estimate at monthly frequency (rather than meeting frequency) for 1972m1-2007m12
- Two-step approach:

$$\Delta i_{t} = \delta_{0} + \delta_{1} i_{t-1} + \sum_{i=-1}^{2} \left[\delta_{2,i} \Delta y_{t,i}^{e} + \delta_{3,i} \left(\Delta y_{t,i}^{e} - \Delta y_{t-1,i}^{e} \right) + \delta_{4,i} \pi_{t,i}^{e} + \delta_{5,i} \left(\pi_{t,i}^{e} - \pi_{t-1,i}^{e} \right) \right]$$

$$+ \delta_{6} u_{t,0}^{e} + \epsilon_{t}$$
(Step #1)
$$\ln(CPI_{t+h}) = \beta_{2S}^{h} \epsilon_{t} + \mathbf{x}_{2:t}^{\prime} \pi^{h} + \epsilon_{t+h}$$
(Step #2)

· One-step approach:

$$\ln(CPI_{t+h}) = \theta_0^h + \beta_{1S}^h \Delta i_t + \theta_2^h i_{t-1} + \mathbf{x}_{2,t}' \theta_3^h$$

$$+ \sum_{i=1}^{2} \left[\theta_{4,i}^h \Delta y_{t,i}^e + \theta_{5,i}^h \left(\Delta y_{t,i}^e - \Delta y_{t-1,i}^e \right) + \theta_{6,i}^h \pi_{t,i}^e + \theta_{7,i}^h \left(\pi_{t,i}^e - \pi_{t-1,i}^e \right) \right] + \theta_8^h u_{t,0}^e + e_{t+h}$$

Two-Step Approach in IV: Motivation

- Intuition: interested in identifying effects of monetary policy using high-frequency 'surprises'
- → Surprises best thought of as an instrument for 'true' shock ⇒ use IV to estimate effects to avoid issues of measurement error [Stock & Watson 2018]
- HF surprises may not be fully exogenous (including due, e.g., Fed information effect)
 - → Regress surprises on CB forecasts or private-sector forecasts and use residual as instrument [Gertler & Karadi 2015; Miranda-Agrippino & Ricco 2021; Bauer & Swanson 2022]
- Other papers similarly use OLS residuals as instruments:
 - Monetary-policy shock identification based on intnl. finance 'trilemma' [Jorda et al. 2020]
 - Romer and Romer monetary policy shocks as external instruments in a VAR [Barnichon & Mesters 2020]
 - High-frequency oil-price shock identification [Känzig 2021]

So, Why Use Two-Step Approach?

A few explanations:

#1. Plotting and Interpreting Shock

- Hybrid regression \Rightarrow no reason not to plot shock (with appropriate controls $\mathbf{x}_{1,t}$ and $\mathbf{x}_{2,t}$)
- ightarrow Inference on causal coefficients should be carried out on one-step estimates

#2. Mixed Frequencies

- Shocks observed at different frequency to macro variables
- ightarrow Possible to run one-step LP with T at shock frequency and H at data frequency

#3. Accounting for Additional Controls in Step #2

- $-\,$ Easy to assess robustness by adding controls $\mathbf{x}_{2,t}$
- \rightarrow Unless $\mathbb{E}_t[\epsilon_t \mathbf{x}'_{2,t}] = 0$, additional controls should be reflected in step #1 too
- → Publish shocks and controls

Implications of Results for Different Estimation Approaches

Results have implications for range of techniques used in applied literature

#1. Local Projections

- Issues for s.e. calculation arise when using generated residual in LP, and can get inconsistency when shock is correlated with auxiliary controls in LP
- → Simple multivariate LP using confounders as controls avoids these issues

#2. External Instruments

- Using generated residuals as instrument in LP-IV or Proxy-SVAR runs into similar issues for s.e.
 calculation, efficiency, and/or consistency
- → Can avoid these issues by including confounders as exogenous variables

#3. Quantile Regression (or other 'non-linear' estimators)

- Using orthogonalised shock in QR (or other non-OLS settings) generates inconsistency in general
- → Always use one-step estimator, controlling for confounding factors