Curse of Dimensionality:

- -> ML excels at analyzing data with many dimensions, but it becomes challenging to create meaningful models as the number of dimensions increases.
 - -> curse of dimensionality
 - -> increasing data dimensions and its explosine tendencies
 - -> increase computational efforts for analyze and process the data.

Curse of

As the dimensionality of the features space increases, the number Configurations can grow exponentially, and thus the number of configurations covered by an observation decreases

-> say, # of features = p # of data points = n

S COD => P>> N

Hughes Phenomenon:

say that model's performance increases with the increasing number of features until me reach the Optimal # of features.

→ distance = Euclidean distance
$$d(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

-> each new dimension adds a non-- negative term to the sum.

L> distance 1 00 # dimension 1 uector

-> now with given datapointsas # of dimension 1 >> feature space becomes less deuse _ extremity sparse or emptier

 \rightarrow In other words,

> lower data density requires more observations to keep any distance b/w datapoints same.

Overfitting:

-> variance increases as they get more opportunity to overfit to noise in more dimensions.

-> poor generalization

-> KNIN is very susceptible to overfitting due to COD.

-> sparsity 1 meiter dimension? for fixed # of doutapoints.

L> 80 the closest neighbour is also too far away in high dim space to give a good esti mente.

-> There is no scope of adding regularization in KNN 80 suffers from CoD.

-> as p>>n => datapoints << features -> overfit 1 > fails in test delta.

-> to reduce chunce of onerfitting, un compressimple model with ress parameters.

L> But this may suffer from anderfitting

soution:

> Forward feature selection

> Dimension Reduction