Principles of Programming (4190.210)

Chung-Kil Hur (허충길)

Department of Computer Science and Engineering Seoul National University

Syllabus

- >Lecture
 - Tue & Thu: $14:00 \sim 15:15$ (@302-107)
 - https://github.com/snu-sf-class/pp202302
 - Bring your laptop to lectures
- >Instructor
 - Chung-Kil Hur
 - http://sf.snu.ac.kr/gil.hur/
- ➤ Teaching Assistant
 - Hoyoung Joo & Jaehyung Lee
 - Contact TAs at pp@sf.snu.ac.kr
- ➤ Grading (tentative)
 - Attendance: 5%
 - Assignments: 25%
 - Midterm exam: 30%
 - Final exam: 40%

Who am I?

- ▶Prof. Chung-Kil (Gil) Hur [허충길]
 - Education: KAIST (B.S.), Univ of Cambridge (Ph.D.)
 - (High school) Bronze medal in IMO 1994 @Hongkong.
 - Software Foundations Lab <u>http://sf.snu.ac.kr</u>
 - Research Topics
 - Software Verification
 - Low-level Language Semantics (C/C++/LLVM/Rust)
 - Relaxed-Memory Concurrency
 - Our collaborators
 - Many in USA, UK, Germany, France, Israel.
 - Publications in Programming Languages (PL) area
 - POPL and PLDI are the two most prestigious conferences in PL area (see https://csrankings.org)
 - Published 12 PLDI and 5 POPL papers for the last 10 years (6th in the world)
 - Published either POPL or PLDI paper for 13 years in a row (2nd in the world)
 - Received distinguished paper awards from PLDI 2017, 2021 & POPL 2020

Introduction

Overview

- ➤ Part 1
 Functional Programming (with Scala)
- ➤ Part 2
 Object-Oriented Programming (with Scala)
- ➤ Part 3
 Type Class (Type-Oriented) Programming (with Scala)
- ➤ Part 4
 Imperative Programming (with Scala & Rust)

Imperative vs. Functional Programming

- >Imperative Programming
 - Computation by memory reads/writes
 - Sequence of read/write operations
 - Repetition by loop
 - More procedural (ie, describe how to do)
 - Easier to write efficient code

```
sum = 0;
i = n;
while (i > 0) {
   sum = sum + i;
   i = i - 1;
}
```

- Functional Programming
 - Computation by function application
 - Composition of function applications
 - Repetition by recursion
 - More declarative (ie, describe what to do)
 - Easier to write safe code

```
def sum(n: Int): Int
  if (n <= 0)
    0
  else
    n + sum(n-1)</pre>
```

Both Imperative & Functional Style Supported

- ➤ Many languages support both imperative & functional style
 - More imperative: Java, Javascript, C++, Python, Rust, ...
 - More functional: OCaml, SML, Lisp, Scheme, ...
 - Middle: Scala
 - Purely functional: Haskell (monadic programming)

Object-Oriented vs. Type-Oriented Programming

- >Goal
 - To support module systems for writing large software
 - Specifically, to support code abstraction & reuse
- ➤ Object-Oriented Programming
 - Class Instance (ie, Object): data + methods (ie, functions)
 - Code abstraction & reuse together via inheritance
- ➤ Type Class (Type-Oriented) Programming
 - Type Class Instance: type + methods (ie, functions)
 - Abstraction and Reuse are separated
 - Code abstraction via type class instantiation
 - Code reuse via composition

Why Scala & Rust?

➤ Why Scala?

- Equally well support both imperative & functional style
- Many advanced features (both OOP & Type class supported)
- Compatible with Java
- Memory management with Garbage Collection (automatic, dynamic)

➤ Why Rust?

- Can write (low-level) efficient code like C and C++ but safely
- Using ownership types
- Memory management with ownership types (automatic, static) + lightweight Garbage Collection

PART 1 Functional Programming with Function Applications

Values, Expressions, Names

- ➤ Types and Values
 - A type is a set of values
 - Int: {-2147483648,...,-1,0,1, ...,2147483647} //32-bit integers
 - Double: 64-bit floating point numbers // real numbers in practice
 - Boolean: {true, false}
 - •
- > Expressions
 - Composition of values, names, primitive operations, ...
- ➤ Name Binding
 - Binding expressions to names
- > Examples

```
def a = 1 + (2 + 3)
def b = 3 + a * 4
```

Evaluation

Evaluation

- Reducing an expression into a value
- Strategy
- 1. Take a name or an operator (outer to inner)
- 2. (name) Replace the name with its associated expression
- 3. (name) Evaluate the expression
- 4. (operator) Evaluate its operands (left to right)
- 5. (operator) Apply the operator to its operands

Examples

$$5+b \sim 5+(3+(a*4)) \sim 5+(3+(1+(2+3))*4) \sim ... \sim 32$$

Functions and Substitution

- **Functions**
 - Expressions with Parameters
 - Binding functions to names

$$def f(x: Int): Int = x + a$$

- >Evaluation by substitution
 - •
 - (function) Evaluate its operands (left to right)
 - (function)
 Replace the function application by the expression of the function
 Replace its parameters with the operands

$$5+f(f(3)+1) \sim 5+f((3+a)+1) \sim ... \sim 5+f(10) \sim 5+(10+a)$$
 $\sim ... \sim 21$

Simple Recursion

> Recursion

- Use X in the definition of X
- Powerful mechanism for repetition
- Nothing special but just rewriting

```
def sum(n: Int) : Int =
  if (n <= 0)
    0
  else
    n + sum(n-1)

sum(2) ~ if (2<=0) 0 else (2+sum(2-1)) ~
2+sum(1) ~ 2+(if (1<=0) 0 else (1+sum(1-1))) ~
2+(1+sum(0)) ~ 2+(1+(if (0<=0) 0 else (0+sum(0-1))))
  ~ 2+(1+0) ~ 3</pre>
```

Termination/Divergence

Evaluation may not terminate

- **≻**Termination
 - An expression may reduce to a value
- **≻**Divergence
 - An expression may reduce forever

```
def loop: Int = loop
```

loop ~ loop ~ loop ~ ...

Evaluation strategy: Call-by-value, Call-by-name

- ➤ Call-by-value
 - Evaluate the arguments first, then apply the function to them
- ➤ Call-by-name
 - Just apply the function to its arguments, without evaluating them.

```
def square (x: Int) = x * x

[cbv]square(1+1) ~ square(2) ~ 2*2 ~ 4

[cbn]square(1+1) ~ (1+1)*(1+1) ~ 2*(1+1) ~ 2*2 ~ 4
```

CBV, CBN: Differences

- ➤ Call-by-value
 - Evaluates arguments once
- ➤ Call-by-name
 - Do not evaluate unused arguments
- **≻**Question
 - Do both always result in the same value?

Scala's evaluation strategy

- ➤ Call-by-value
 - By default
- ➤ Call-by-name
 - Use "=>"

```
def one(x: Int, y: =>Int) = 1
one(1+2, loop)
one(loop, 1+2)
```

Scala's name binding strategy

- ➤ Call-by-value
 - Use "val" (also called "field") e.g. val x = e
 - Evaluate the expression first, then bind the name to it
- ➤ Call-by-name
 - Use "def" (also called "method") e.g. def x = e
 - Just bind the name to the expression, without evaluating it
 - Mostly used to define functions

```
def a = 1 + 2 + 3
val a = 1 + 2 + 3 // 6
def b = loop
val b = loop

def f(a: Int, b: Int): Int = a*b - 2
```

Conditional Expressions

- >If-else
 - •if (b) e_1 else e_2
 - b : Boolean expression
 - e_1 , e_2 : expressions of the same type
- > Rewrite rules:
 - •if (true) e_1 else $e_2 \rightarrow e_1$
 - •if (false) e_1 else $e_2 \rightarrow e_2$

```
def abs(x: Int) = if (x \ge 0) x else -x
```

Boolean Expressions

- ➤ Boolean expression
 - •true, false
 - !b
 - b && b
 - b | b
 - •e <= e, e >= e, e < e, e > e, e == e, e != e
- > Rewrite rules:
 - •!true → false
 - •!false → true
 - •true && b \rightarrow b
 - false && b → false
 - •true || b → true
 - •false || b → b

true && (loop == 1) \sim loop == 1 \sim loop == 1

Exercise: and, or

```
➤ Write two functions
  • and (x,y) == x \&\& y
  •or(x,y) == x | | y
  • Do not use &&, |
  and(false,loop==1)
  ~ if (false) loop==1 else false
  ~ false
  and(true,loop==1)
  ~ if (true) loop==1 else false
  \sim loop==1 \sim loop==1 ...
```

Solution

```
def and(x: Boolean, y: =>Boolean) =
  if (x) y else false

def or(x: Boolean, y: =>Boolean) =
  if (x) true else y
```

Exercise: square root calculation

```
Calculate square roots with Newton's method
def isGoodEnough(guess: Double, x: Double) =
  ??? // guess*guess is 99.9% close to x
def improve(guess: Double, x: Double) =
  (guess + x/guess) / 2
def sqrtlter(guess: Double, x: Double): Double =
  ??? // repeat improving guess until it is good enough
def sqrt(x: Double) =
  sqrtIter(1, x)
sart(2)
```

Solution

```
Calculate square roots with Newton's method
def isGoodEnough(guess: Double, x: Double) =
  guess*guess/x > 0.999 && guess*guess/x < 1.001
def improve(guess: Double, x: Double) =
  (guess + x/guess) / 2
def sqrtlter(guess: Double, x: Double): Double =
  if (isGoodEnough(guess,x)) guess
  else sqrtlter(improve(guess,x),x)
def sqrt(x: Double) =
  sqrtIter(1, x)
sgrt(2)
```

Blocks and Name Scoping

Blocks in Scala

≻Block

```
• { val x1 = e1
    def x2 = e2
    e
}
```

- Is an expression
- Allow nested name binding
- Allow arbitrary order of "def"s, but not "val"s (think about why)

Scope of names

```
Flock
{ val t = 0
  def f(x: Int) = t + g(x+1)
  def g(y: Int) = y * y
  val x = f(5)
  val r = {
    val t = 10
    val s = f(5)
    s - t }
  t + r }
```

- A definition inside a block is only accessible within the block
- A definition inside a block shadows definitions of the same name outside the block
- A definition is accessible inside a nested block unless it is shadowed
- The same name cannot be defined twice in the same block
- A function is evaluated under the environment where it is defined, not the environment where it is invoked.

Problem

```
// should be allowed
  def f(x:Int) = g(x)
 def g(x: Int) = 10
 val x = f(10)
  X
// should not be allowed
  def f(x:Int) = g(x)
 val x = f(10)
 def g(x: Int) = 10
  X
```

Safety Checking

Safety checking for ruling out accessing undefined values is simple.

- For "val x = e", all names in "e" should be defined before this definition.
- For "def x = e", all names in "e" should be defined before the next "val" definition.

```
/* The following code passes the safety checking */
\{ def f(x:Int) = g(x) \}
  def g(x: Int) = 10
  val a = 10
  f(10) }
/* The following code fails at the safety checking */
{ def f(x:Int) = g(x)
  val a = 10
  def g(x: Int) = 10
```

Rewriting for Blocks

```
5: val r = {
1: \{ val t = 0 \}
2: def f(x: Int) = t + g(x+1) 6: val t = 10
3: def g(y: Int) = y*y
                                  7: val s = f(5)
4: val x = f(5)
                                    8: s - t }
9: t + r }
> Evaluation with Environment
[E0|t=,f=(x)t+g(x),g=(y)y*y,x=,r=],1 \sim 0
[E0|t=0,f=(x)t+g(x),g=(y)y*y,x=,r=],4 \sim f(5) \sim 36
 f(5): E0::[E1|x=5],t+g(x+1) ~ 0+g(6) ~ 36
          g(6): E0::[E2|y=6],y*y ~ 6*6 ~ 36
[E0|t=0,f=(x)t+g(x),g=(y)y*y,x=36,r= ],5 \sim 26
 5: E0::[E3|t=,s=],6 \sim 10
     E0::[E3|t=10,s=],7 \sim f(5) \sim 36
       f(5): E0::[E4|x=5],t+g(x+1) ~ 0+g(6) ~ 36
               g(6): E0::[E5|y=6],y*y ~ 6*6 ~ 36
     E0::[E3|t=10,s=36],8 \sim s-t \sim 26
[E0|t=0,f=(x)t+g(x),g=(y)y*y,x=36,r=26],9 \sim t+r \sim 26
```

Example: def with no arguments

3: $E0::[E1|t=],4 \sim 10$

 $x: E0, t+t \sim 0+0 \sim 0$

 \times : E0,t+t ~ 0+0 ~ 0

 $[E0|t=0,x=t+t,r=10],6 \sim x+t \sim 0+0 \sim 0$

E0:: $[E1|t=10], 5 \sim x+t \sim 0+10 \sim 10$

```
1: \{ va | t = 0 \}
   def x = t+t //basically treated same as <math>def x() = t+t
2:
3: val r = {
4: val t = 10
5: x+t
6: x+t
> Evaluation with Environment
\lceil E0 \mid t= ,x=t+t,r= \rceil,1 \sim 0
[E0|t=0,x=t+t,r=],3 \sim 10
```

Semi-colons and Parenthesis

≻Block

- Can write two definitions/expressions in a single line using;
- Can write one definition/expression in two lines using (), but can omit () when clear

```
// ok
val r = {
 val t = 10; val s = square(5); t +
  s }
// Not ok
val r = {
 val t = 10; val s = square(5); t
 + s }
// ok
val r = {
  val t = 10; val s = square(5); (t
  + s)
```

Exercise: Writing Better Code using Blocks

```
Make the following code better
def isGoodEnough(guess: Double, x: Double) =
  guess*guess/x > 0.999 && guess*guess/x < 1.001
def improve(guess: Double, x: Double) =
  (guess + x/guess) / 2
def sqrtlter(guess: Double, x: Double): Double = {
  if (isGoodEnough(guess,x)) guess
  else sqrtlter(improve(guess,x),x)
def sqrt(x: Double) =
  sqrtIter(1, x)
sart(2)
```

Solution

```
def sqrt(x: Double) = {
  def sqrtlter(guess: Double, x: Double): Double = {
    if (isGoodEnough(guess,x)) guess
    else sqrtlter(improve(guess,x),x)
  def isGoodEnough(guess: Double, x: Double) = {
    val ratio = guess * guess / x
    ratio > 0.999 && ratio < 1.001
  def improve(guess: Double, x: Double) =
    (guess + x/guess) / 2
  sqrtIter(1, x)
```

Lazy Call-By-Value

Lazy call-by-value

- ➤ Lazy call-by-value
 - Use "lazy val" e.g. lazy val x = e
 - Evaluate the expression first time it is used, then bind the name to it

```
def f(c: Boolean, i: =>Int): Int = {
    lazy val iv = i
    if (c) 0
    else iv * iv * iv
}

f(true, {print/n("ok"); 100+100+100+100})
f(false, {print/n("ok"); 100+100+100+100})
```

Tail Recursion & Tail Call

Recursion needs care

- >Summation function
 - Write a summation function sum such that sum(n) = 1+2+...+n
 - Test sum(10), sum(100), sum(1000), sum(10000), sum(100000)
 - What's wrong? (Think about evaluation)

Recursion: Try

```
def sum(n: Int): Int =
  if (n <= 0) 0 else (n+sum(n-1))</pre>
```

Recursion: Tail Recursion

```
import scala.annotation.tailrec

def sum(n: Int): Int = {
    @tailrec def sumItr(res: Int, m: Int): Int =
    if (m <= 0) res else sumItr(m+res,m-1)
    sumItr(0,n)
}</pre>
```

Mutual Recursion: Try

```
def sum(acc: Int, n: Int): Int =
  if (n <= 0) acc else sum2(n + acc, n-1)

def sum2(acc: Int, n: Int): Int =
  if (n <= 0) acc else sum(2*n + acc, n-1)

sum(0, 20000) // stack overflow
}</pre>
```

Mutual Recursion: Tail Call Optimization

import scala.util.control.TailCalls. def sum(acc: Int, n: Int): TailRec[Int] = if (n <= 0) done(acc) else tailcall(sum2(n + acc, n-1)) def sum2(acc: Int, n: Int): TailRec[Int] = if (n <= 0) done(acc) else tailcall(sum(2*n + acc, n-1)) sum(0, 20000).result

Higher-Order Functions

Functions as Values

> Functions

- Functions are normal values of function types $(A_1,...,A_n => B)$.
- They can be copied, passed and returned.
- Functions that take functions as arguments or return functions are called higher-order functions.
- Higher-order functions increase code reusability.

Examples

```
def sumLinear(n: Int): Int =
   if (n <= 0) 0 else n + sumLinear(n-1)

def sumSquare(n: Int): Int =
   if (n <= 0) 0 else n*n + sumSquare(n-1)

def sumCubes(n: Int): Int =
   if (n <= 0) 0 else n*n*n + sumCubes(n-1)</pre>
```

Q: How to write reusable code?

Examples

```
def sum(f: Int=>Int. n: Int): Int =
  if (n \le 0) 0 else f(n) + sum(f, n-1)
def linear(n: Int) = n
def square(n: Int) = n * n
def cube(n: Int) = n * n * n
def sumLinear(n: Int) = sum(linear, n)
def sumSquare(n: Int) = sum(square, n)
def sumCubes(n: Int) = sum(cube, n)
```

Anonymous Functions

➤ Anonymous Functions

```
• Syntax  (x_1\colon T_1,...,x_n\colon T_n) => e  or  (x_1,...,x_n) => e  def sumLinear(n: Int) = sum((x:Int)=>x, n)
```

```
def sumLinear(n: Int) = sum((x:Int)=>x, n)
def sumSquare(n: Int) = sum((x:Int)=>x*x, n)
def sumCubes(n: Int) = sum((x:Int)=>x*x*x, n)
```

Or simply

```
def sumLinear(n: Int) = sum((x)=>x, n)
def sumSquare(n: Int) = sum((x)=>x*x, n)
def sumCubes(n: Int) = sum((x)=>x*x*x, n)
```

Exercise

```
def sum(f: Int=>Int, a: Int, b: Int): Int =
   if (a <= b) f(a) + sum(f, a+1, b) else 0

def product(f: Int=>Int, a: Int, b: Int): Int =
   if (a <= b) f(a) * product(f, a+1, b) else 1</pre>
```

DRY (Do not Repeat Yourself) using a higher-order function, called "mapReduce".

Exercise

```
def mapReduce(reduce: (Int,Int)=>Int,inival: Int,
              f: Int=>Int, a: Int, b: Int): Int = {
  if (a <= b) reduce(f(a),mapReduce(reduce,inival,f,a+1,b))</pre>
 else inival
def sum(f: Int=>Int, a: Int, b: Int): Int =
  mapReduce((x,y)=>x+y,0,f,a,b)
def product(f: Int=>Int, a: Int, b: Int): Int =
  mapReduce((x,y)=>x*y,1,f,a,b)
```

Evaluation for functional values

```
1: \{ va | t = 0 \}
 2: val f: lnt = { // Note: What if using "def f" ?
 3:
          val t = 10
 4:
          def g(x: Int) : Int = x + t
 5: g _ }
 6: f(20) }
* Try: Evaluation without Closures
[E0|t=,f=],1 \sim 0
[E0|t=0,f=],2 \sim (x)x+t
  E0::[E1|t= ,g=(x)x+t],\frac{3}{3} ~ 10
  E0:: [E1|t=10,g=(x)x+t], 5 \sim (x)x+t
[E0|t=0,f=(x)x+t],6 \sim f(20) \sim 20
  f(20): E0::[E2|x=20],x+t ~ 20+0 ~ 20
```

Closures for functional values

```
1: \{ val t = 0 \}
 2: val f: lnt = { // Note: What if using "def f" ?
 3:
          val t = 10
 4:
          def g(x: Int) : Int = x + t
 5: g _ }
 6: f(20) }
* Evaluation with Closures
[E0|t=,f=],1 \sim 0
[E0|t=0,f=],2 \sim (E1,(x)x+t)
  E0:: [E1|t=,g=(x)x+t],3 \sim 10
  E0::[E1|t=10,g=(x)x+t],5 \sim (E1,(x)x+t)
[E0|t=0,f=(E1,(x)x+t)],6 \sim f(20) \sim 30
  f(20): E1::[E2|x=20],x+t ~ 20+10 ~ 30
```

(Parameterized) expression vs. (closure) value

- Functions defined using "def" are not values but parameterized expressions.
- Parameterized expression f can be converted to a value (f _).
- The compiler often infers and inserts missing conversions automatically.
- Anonymous functions are values.
- Anonymous functions can be seen as syntactic sugar:

```
(x:T)=>e
is equivalent to
  { def noname(x:T) = e; (noname _) }
where noname is not used in e.
```

- One can even write a recursive anonymous function in this way.
- Q: what's the difference between param. exps and function values? A: function values are "closures" (ie, param. exp. + env.)
- Q: how to implement call-by-name?
 - A: The argument expression is converted to a closure.

Example: call by name with closures

```
1: \{ va | t = 0 \}
2: def f(x: =>|nt|) = t + x
3: val r = {
4: val t = 10
5: f(t*t) }
                             // t*t is treated as ()=>t*t
6: r }
>Evaluation with Closures
[E0|t=,f=(x:=>Int)t+x,r=],1 \sim 0
[E0|t=0,f=(x:=>Int)t+x,r=],3 \sim 100
  E0::[E1|t=],4 \sim 10
  E0::[E1|t=10],5 \sim f(t*t) \sim 100
  f(t*t): E0::[E2|x=(E1,t*t)],t+x ~ 0+x ~ 0+100 ~ 100
    x: E1, t*t \sim 10*10 \sim 100
[E0|t=0,f=(x)t+x,r=100],6 \sim r \sim 100
```

Currying

Motivation

```
def sum(f: Int=>Int. a: Int. b: Int): Int =
  if (a \le b) f(a) + sum(f, a+1, b) else 0
def sumLinear(a: Int, b: Int) = sum((n)=>n, a, b)
def sumSquare(a: Int, b: Int) = sum((n)=>n*n, a, b)
def sumCubes(a: Int, b: Int) = sum((n)=>n*n*n, a, b)
We want the following. How?
def sumLinear = sum(linear)
def sumSquare = sum(square)
def sumCubes = sum(cube)
```

Solution

```
def sum(f: Int=>Int): (Int,Int)=>Int = {
    def sumF(a: Int, b: Int): Int =
        if (a <= b) f(a) + sumF(a+1, b) else 0
        sumF // sumF _
}

def sumLinear = sum((n)=>n)
def sumSquare = sum((n)=>n*n)
def sumCubes = sum((n)=>n*n*n)
```

Benefits

```
def sumLinear = sum((n)=>n)
def sumSquare = sum((n)=>n*n)
def sumCubes = sum((n)=>n*n*n)
sumSquare(3,10) + sumCubes(5,20)
```

We don't need to define the wrapper functions.

$$sum((n)=>n*n)(3,10) + sum((n)=>n*n*n)(5,20)$$

Multiple Parameter List

```
def sum(f: Int=>Int): (Int,Int)=>Int = {
  def sumF(a: Int, b: Int): Int =
    if (a \le b) f(a) + sumF(a+1, b) else 0
  sumF _
Or simply:
def sum(f: Int=>Int)(a: Int, b: Int): Int =
  if (a \le b) f(a) + sum(f)(a+1, b) else 0
Note that sum(f) is just a parameterized expression.
(sum(f) _) creates a closure like (sumF _)
The following code is slightly inefficient. Think about why.
def sum(f: Int=>Int): (Int,Int)=>Int =
  (a,b) = if (a \le b) f(a) + sum(f)(a+1, b) else 0
```

Comparison between Param. Exp vs. Closure

```
def sum(f: Int=>Int)(a: Int, b: Int): Int =
 if (a \le b) f(a) + sum(f)(a+1, b) else 0
def sumLinear = sum((n)=>n) // sum((n)=>n) incorrect
sumLinear(0,100)
def sum(f: Int => Int): (Int, Int) => Int = {
 def sumF(a: Int, b: Int): Int =
  if (a \le b) f(a) + sumF(a + 1, b) else 0
 sumF
def sumLinear = sum((n)=>n) // sum((n)=>n) incorrect
sumLinear(0,100)
```

Currying and Uncurrying

• A function of type

$$(T_1, T_2, ..., T_n) = > T$$

can be turned into that of type

$$T_1 = > (T_2 = > (... = > (T_n = > T)...))$$

- This is called "currying" named after Haskell Brooks Curry.
- The opposite direction is called "uncurrying".

Currying using Anonymous Functions

```
def foo(x: Int, y: Int, z: Int)(a: Int, b: Int) =
  x + y + z + a + b
val f1 = (x: Int, z: Int, b: Int) => foo(x, 1, z)(2, b)
val f2 = foo(_:|nt,1,_:|nt)(2,_:|nt)
val f3 = (x: Int, z: Int) => ((b: Int) => foo(x,1,z)(2,b))
f1(1,2,3)
f2(1,2,3)
f3(1,2)(3)
```

Exercise

Curry the mapReduce function.

```
def mapReduce(reduce: (Int,Int)=>Int,inival: Int.
              f: Int=>Int, a: Int, b: Int): Int = {
  if (a <= b) reduce(f(a), mapReduce(reduce, inival, f, a+1, b))</pre>
  else inival
def sum(f: Int=>Int, a: Int, b: Int): Int =
  mapReduce((x,y)=>x+y,0,f,a,b)
def product(f: Int=>Int, a: Int, b: Int): Int =
  mapReduce((x,y)=>x*y,1,f,a,b)
```

Solution

```
def mapReduce(reduce:(Int,Int)=>Int,inival: Int)
             (f: Int=>Int) (a: Int, b: Int): Int = {
  if (a <= b) reduce(f(a), mapReduce(reduce, inival)(f)(a+1,b))</pre>
  else inival
// need to make a closure since mapReduce is param. code.
def sum = mapReduce((x,y)=>x+y,0)
// val is better than def. Think about why.
val product = mapReduce((x,y)=>x*y,1) _
```

Exceptions

Exception & Handling

```
class factRangeException(val arg: Int) extends Exception
def fact(n : Int): Int =
  if (n < 0) throw new factRangeException(n)
  else if (n == 0) 1
  else n * fact(n-1)
def foo(n: Int) = fact(n + 10)
try {
 print/n (fact(3))
 print/n (foo(-100))
} catch {
  case e : factRangeException => {
   print/n("fact range error: " + e.arg)
```

Datatypes

Types so far

Types have introduction operations and elimination ones.

- Introduction: how to construct elements of the type
- Elimination: how to use elements of the type

➤ Primitive types

- Int, Boolean, Double, String, ...
- Intro for Int: ...,-2,-1,0,1,2,
- Elim for Int: +,-,*,/,<,<=,...

>Function types

- Int=>Int, (Int=>Int)=>(Int=>Int), ...
- Intro: (x:T)=>e
- Elim: f(v)

Tuples

> Tuples

Intro:

- (1,2,3): (Int, Int, Int)
- (1,"a") : (Int, String)

Elim:

- (1, "a", 10). 1 = 1
- (1, "a", 10). 2 = "a"
- (1, "a", 10)._3 = 10

Only up to length 22

Structural Types (a.k.a. Record Types): Examples

import reflect. Selectable. reflective Selectable def bar (x: Int) = x+1object foo $\{ val a = 1+2 \}$ def b = a + 1def f(x: Int) = b + xval g : Int => Int = bar _ foo.b foo. f(3)val ff: Int=>Int = foo.f def g(x: {val a: Int; def b: Int; def f(x:|nt): |nt; val g: |nt => |nt}) = x.f(3)g(foo)

Type Alias

g(foo)

import reflect. Selectable. reflective Selectable val gn = 0object foo { val a = 3def b = a + 1def f(x: Int) = b + x + gnfoo. f(3)type Foo = {val a: Int; def b: Int; def f(x:Int):Int} $def g(x: Foo) = \{$ val gn = 10x.f(3)

Structural Types: Evaluation

```
1: def bar (x: Int) = x+1
2: val foo = new //or, object foo
3: \{ val \ a = 2 + 1 \}
  def f(x: Int) = a + x
5: val g : Int => Int = bar
6: }
7: val b = foo.f(1)
8: foo.g(b)
>Evaluation with Closures
E1[], 1 \sim E1[bar=(x)x+1], 2 \sim E1[...]:E2[], 3 \sim
E1[...]:E2[a=3],4 \sim
E1[...]:E2[a=3,f=(x)a+x],5 \sim
E1[...]:E2[a=3,f=(x)a+x,g=((x)x+1,E1)],6 \sim
E1[bar=(x)x+1,foo=(E2)],7 \sim
E1[bar=(x)x+1,foo=(E2),b=4],8 \sim 5
7: E1:E2:E3[x=1], a+x \sim 3+1 \sim 4
8: E1:E4[x=4],x+1 \sim 4+1 \sim 5
```

Algebraic Datatypes

> Ideas

```
• T = C of T * ... * T

| C of T * ... * T

| ...

| C of T * ... * T
```

Intro:

```
Name("Chulsoo Kim"), Name("Younghee Lee"), Age(16), DOB(2000,3,10), Height(171.5), ...
```

Algebraic Datatypes: Recursion

> Recursive ADT

```
• E.g.

IList = INil

| ICons of Int * IList

Intro:

INil(),

ICons(3, INil()),

ICons(2, ICons(3, INil())),

ICons(1, ICons(2, ICons(3, INil()))),
```

Algebraic Datatypes In Scala

```
> Attr
 sealed abstract class Attr
 case class Name(name: String) extends Attr
 case class Age(age: Int) extends Attr
 case class DOB(year: Int, month: Int, day: Int) extends Attr
 case class Height(height: Double) extends Attr
 val a : Attr = Name("Chulsoo Kim")
 val b : Attr = DOB(2000, 3.10)
>IList
 sealed abstract class IList
 case class INiI() extends IList
 case class | Cons(hd: Int, tl: | List) extends | List
 val x : IList = /Cons(2, /Cons(1, /Ni/()))
 def gen(n: Int) : IList =
   if (n \le 0) /Ni/()
   else /Cons(n, gen(n-1))
```

Exercise

```
IOption = INone
        ISome of Int
BTree = Leaf
     Node of Int * BTree * BTree
sealed abstract class IList
case class INiI() extends IList
case class | Cons(hd: Int, t|: | List) extends | List
def x : IList = /Cons(2, /Cons(1, /Ni/()))
```

Solution

```
sealed abstract class lOption
case class lNone() extends lOption
case class lSome(some: Int) extends lOption

sealed abstract class BTree
case class Leaf() extends BTree
case class Node(value: Int, left: BTree, right: BTree)
    extends BTree
```

Pattern Matching

- > Pattern Matching
 - A way to use algebraic datatypes

```
e match {
  case C1(...) => e1 : T
  ...
  case Cn(...) => en : T
} : T
```

Pattern Matching: An Example

```
def length(xs: IList) : Int =
    xs match {
    case /Ni/() => 0
    case /Cons(x, tl) => 1 + length(tl)
  }
length(x)
```

Advanced Pattern Matching

➤ Advanced Pattern Matching

```
e match {
  case P1 => e1
  ...
  case Pn => en
}
```

- One can combine constructors and use _ and | in a pattern.
 (E.g) case ICons(x, INil()) | ICons(x, ICons(_, INil())) => ...
- The given value e is matched against the first pattern P1. If succeeds, evaluate e1. If fails, e is matched against P2. If succeeds, evaluate e2. If fails, ...
- The compiler checks exhaustiveness (ie, whether there is a missing case).

Advanced Pattern Matching: An Example

```
def secondElmt(xs: |List) : |Option =
  xs match {
    case /Ni/() \mid /Cons(\_, /Ni/()) \Rightarrow /None()
    case /Cons(\_, /Cons(x, \_)) \Rightarrow /Some(x)
Vs.
def secondElmt2(xs: |List) : |Option =
  xs match {
    case /Ni/() \mid /Cons(\_, /Ni/()) \Rightarrow /None()
    case |Cons(\_, |Cons(x, |Ni/()))| \Rightarrow |Some(x)|
    case => /None()
Vs.
def secondElmt2(xs: |List) : |Option =
  xs match {
    case |Cons(\_, |Cons(x, |Ni/()))| \Rightarrow |Some(x)|
    case => /None() }
```

Pattern Matching on Int

```
def factorial(n: Int) : Int =
  n match {
    case 0 \Rightarrow 1
    case \_ \Rightarrow n * factorial(n-1)
def fib(n: Int) : Int =
  n match {
    case 0 | 1 => 1
    case \_ => fib(n-1) + fib(n-2)
```

Pattern Matching with If

```
def f(n: Int) : Int =
  n match {
    case 0 | 1 => 1
    case _ if (n <= 5) => 2
    case _ => 3
def f(t: BTree) : Int =
  t match {
    case Leaf() \Rightarrow 0
    case Node(n, _, _) if (n <= 10) => 1
    case Node(\_,\_,\_) \Rightarrow 2
```

Exercise

Write a function "find(t: BTree, x: Int): Boolean" that checks whether x is in t.

```
sealed abstract class BTree
case class Leaf() extends BTree
case class Node(value: Int, left: BTree, right: BTree)
extends BTree
```

Solution

```
def find(t: BTree, i: Int) : Boolean =
  t match {
    case Leaf() => false
    case Node(n, It, rt) =>
       if (i == n) true
      else find(lt, i) || find(rt, i)
def find(t: BTree, i: Int) : Boolean = {
 t match {
  case Leaf() => false
  case Node(v, , ) if v == i => true
  case Node( , lt, rt) => find(lt, i) || find(rt, i)
def t: BTree = Node(5, Node(4, Node(2, Leaf(), Leaf()), Leaf()),
  Node(7, Node(6, Leaf(), Leaf()), Leaf()))
find(t,7), find(t,1)
```

Type Checking & Inference (Concept)

What Are Types For?

> Typed Programming

```
def id1(x: Int): Int = x
def id2(x: Double): Double = x
```

- At run time, type information is erased (ie, id1 = id2)
- Untyped Programming

```
def id(x) = x
```

- Do not care about types at compile time.
- But, many such languages check types at run time paying cost.
- Without run-time type check, errors can be badly propagated.
- ➤ What is compile-time type checking for?
 - Can detect type errors at compile time.
 - Increase Readability (Give a good abstraction).
 - Soundness: Well-typed programs raise no type errors at run time.

Type Checking and Inference

> Type Checking

```
x<sub>1</sub>:T<sub>1</sub>, x<sub>2</sub>:T<sub>2</sub>, ..., x<sub>n</sub>:T<sub>n</sub> ⊢ e : T
•def f(x: Boolean): Boolean = x > 3
=> Type error
•def f(x: Int): Boolean = x > 3
=> OK. f: (x: Int)Boolean
```

> Type Inference

$$x_1:T_1, x_2:T_2, ..., x_n:T_n \vdash e : ?$$

• def f(x: Int) = x > 3

- => OK by type inference. f: (x: Int)Boolean
- Too much type inference is not good. Why?

You can learn how type checking & inference work in 4190.310 Programming Languages

Parametric Polymorphism

Parametric Polymorphism: Functions

Problem

```
def id1(x: Int): Int = x
def id2(x: Double): Double = x
```

- Can we avoid copy and paste?
- Polymorphism to the rescue!
- Parametric Polymorphism (a.k.a. For-all Types)

```
def id[A](x: A) : A = x
```

- The type of id is [A] (val x:A)=>A
- id is a parametric expression.
- id[T] _ is a value of type T=>T for any type T.
- Function types do not support polymorphism.
 (E.g.) [A](A=>A) is not a valid function value type.

[We will learn other kinds of polymorphism later.]

Examples

```
def id[A](x:A) = x
id(3)
id("abc")
def applyn[A](f: A => A, n: Int, x: A): A =
  n match {
    case 0 \Rightarrow x
    case \Rightarrow f(applyn(f, n - 1, x))
applyn((x:Int)=>x+1, 100,3)
applyn((x:String)=>x+"!", 10, "gil")
applyn(id[String], 10, "hur")
def foo[A,B](f:A=>A, x:(A,B)):(A,B)=
  (applyn[A](f, 10, x. 1), x. 2)
foo[String, Int]((x:String)=>x+"!",("abc", 10))
```

Parametric Polymorphism: Datatypes

```
sealed abstract class MyOption[A]
case class MyNone[A]() extends MyOption[A]
case class MySome[A](some: A) extends MyOption[A]
sealed abstract class MyList[A]
case class MyNil[A]() extends MyList[A]
case class MyCons[A](hd: A, tl: MyList[A]) extends MyList[A]
sealed abstract class BTree[A]
case class Leaf[A]() extends BTree[A]
case class Node[A](value: A, left: BTree[A], right: BTree[A])
extends BTree[A]
def x: MyList[Int] = MyCons(3, MyNi/())
def y: MyList[String] = MyCons("abc", MyNi/())
```

Revisit: Solution with Tail Recursion

```
def find[A](t: BTree[A], x: A) : Boolean = {
 def findIter(ts: MyList[BTree[A]]) : Boolean =
  ts match {
   case MyNil() => false
    case MyCons(Leaf(), tl) => findIter(tl)
    case MyCons(Node(v, , ), ) if v == x => true
    case MyCons(Node(_,I,r), tl) =>
     findIter(MyCons(I, MyCons(r, tl))) }
 findIter(MyCons(t, MyNil()))
def genTree(v: Int, n: Int) : BTree[Int] = {
 def genTreeIter(t: BTree[Int], m : Int) : BTree[Int] =
  if (m == 0) t
  else genTreelter(Node(v, t, Leaf()), m-1)
 genTreeIter(Leaf(), n)
find(genTree(0,10000), 1)
```

Exercise

```
BSTree[A] = Leaf
          | Node of Int * A * BSTree[A] * BSTree[A]
def lookup[A](t: BSTree[A], k: Int) : MyOption[A] =
  ???
def t : BSTree[String] =
  Node(5, "My5",
    Node(4, "My4", Node(2, "My2", Leaf(), Leaf()), Leaf()),
    Node(7, "My7", Node(6, "My6", Leaf(), Leaf()), Leaf()))
lookup(t, 7)
lookup(t, 3)
```

Solution

```
sealed abstract class BSTree[A]
case class Leaf[A]() extends BSTree[A]
case class Node[A](key: Int, value: A, left: BSTree[A], right:
BSTree[A]) extends BSTree[A]
def lookup[A](t: BSTree[A], key: Int) : MyOption[A] =
  t match {
    case Leaf() => MyNone()
    case Node(k,v,lt,rt) =>
      k match {
        case _ if key == k => MySome(v)
        case _ if key < k => lookup(It,key)
        case _ => lookup(rt, key)
def t : BSTree[String] =
  Node(5, "My5",
    Node(4, "My4", Node(2, "My2", Leaf(), Leaf()), Leaf()),
    Node(7, "My7", Node(6, "My6", Leaf(), Leaf()), Leaf()))
lookup(t, 7)
lookup(t, 3)
```

A Better Way

```
sealed abstract class BTree[A]
case class Leaf[A]() extends BTree[A]
case class Node[A](value: A, left: BTree[A], right: BTree[A])
  extends BTree[A]
type BSTree[A] = BTree[(Int,A)]
def lookup[A](t: BSTree[A], k: Int) : MyOption[A] =
  ???
def t : BSTree[String] =
  Node((5, "My5"),
    Node((4, "My4"), Node((2, "My2"), Leaf(), Leaf()), Leaf()),
    Node((7, "My7"), Node((6, "My6"), Leaf(), Leaf()), Leaf()))
lookup(t, 7)
```

Solution

```
type BSTree[A] = BTree[(Int,A)]
def lookup[A](t: BSTree[A], key: Int) : MyOption[A] =
  t match {
    case Leaf() => MyNone()
    case Node((k,v), | t, rt) =>
      k match {
        case _ if key == k => MySome(v)
        case _ if key < k => lookup(It,key)
        case _ => lookup(rt, key)
def t : BSTree[String] =
  Node((5, "My5"),
    Node((4, "My4"), Node((2, "My2"), Leaf(), Leaf()), Leaf()),
    Node((7, "My7"), Node((6, "My6"), Leaf(), Leaf()), Leaf()))
lookup(t, 7)
lookup(t, 3)
```

Polymorphic Option (Library)

> Option[T]

Intro:

- None
- Some(x)
- Library functions

Elim:

- Pattern matching
- Library functions

Some(3): Option[Int]

Some("abc"): Option[String]

None: Option[Int]

None: Option[String]

Polymorphic List (Library)

➤ List[T]

Intro:

- Nil
- x :: L
- Library functions

Elim:

- Pattern matching
- Library functions

```
"abc"::Nil : List[String]
List(1,3,4,2,5) = 1::3::4::2::5::Nil : List[Int]
```

Summary: Parametric Polymorphism

- Parametric Polymorphism
 - Program against unknown datatypes
 - How is it possible?

PART 2 Object-Oriented Programming

Sub Type Polymorphism (Concept)

Motivation

```
We want:
object tom {
  val name = "Tom"
  val home = "02-880-1234"
object bob {
  val name = "Bob"
 val mobi/e = "010-1111-2222"
def greeting(r: ???) = "Hi " + r.name + ", How are you?"
greeting(tom)
greeting(bob)
Note that we have
tom: {val name: String; val home: String}
bob: {val name: String; val mobile: String}
```

Sub Types to the Rescue!

import reflect.Selectable.reflectiveSelectable

```
type NameHome = { val name: String; val home: String }
type NameMobile = { val name: String; val mobile: String}
type Name = { val name: String }
NameHome <: Name (NameHome is a sub type of Name)
NameMobile <: Name (NameMobile is a sub type of Name)
def greeting(r: Name) = "Hi " + r.name + ", How are you?"
greeting(tom)
greeting(bob)
```

Sub Types

- The sub type relation is kind of the subset relation.
- But they are **NOT** the same.
- T <: S Every element of T can be used as that of S.
- *Cf.* T is a subset of S. Every element of T is that of S.
- Why polymorphism?
 A function of type S=>R can be used as T=>R for many sub types T of S.

Note that S=>R <: T=>R when T <: S.

Summary: Subtype Polymorphism

- Subtype Polymorphism
 - Program against known datatypes with common structures
 - How is it possible?

Two Kinds of Sub Types

- ➤ Structural Sub Types (a.k.a. Duck Typing)
 - The system implicitly determines the sub type relation by the structures of data types.
 - Structurally equivalent types are treated the same.
- ➤ Nominal Sub Types (a.k.a. Ad hoc Polymorphism)
 - The user explicitly specify the sub type relation using the names of data types.
 - Structurally equivalent types with different names may be treated differently.

Structural Sub Types

General Sub Type Rules

• Reflexivity: For any type T, we have:

• Transitivity: For any types T, S, R, we have:

Sub Types for Special Types

- Nothing: The empty set
- Any: The set of all values
- For any type T, we have:

```
Nothing <: T <: Any
```

Example

```
val a : Int = 3
val b : Any = a
def f(a: Nothing) : Int = a
```

Sub Types for Records

Permutation

• Width

Depth

Sub Types for Records

Example

```
{val x: { val y: Int; val z: String}, val w: Int}
<: (by permutation)
{val w: Int; val x: { val y: Int; val z: String}}
<: (by depth & width)
{val w: Int; val x: {val z: String}}</pre>
```

Sub Types for Tuples

• Depth

Sub Types for Functions

Function Sub Type

Example

```
import reflect.Selectable.reflectiveSelectable
def foo(s: {val a: Int; val b: Int}) : {val x: Int; val y: Int} = {
   object tmp {
     val x = s.b
     val y = s.a
   }
   tmp
}
val gee: {val a: Int; val b: Int; val c: Int} => {val x: Int} =
   foo _
```

Classes

Class: Parameterized Record

import reflect.Selectable.reflectiveSelectable

```
type gee_type = {val name:String; val age: Int; def getPP(): String}
def gee_fun(_name: String, _age: Int) : gee_type = {
 if (!( age >= 0 && _age < 200)) throw new Exception("Out of range")
 object tmp {
  val name : String = _name
  val age: Int = _age
  def getPP(): String = name + " of age " + age.toString() }
 tmp }
val gee : gee_type = gee_fun("David Jones",25)
gee.getPP()
```

Class: Parameterized Record

```
class foo_type(_name: String, _age: Int) {
 if (!(_age >= 0 && _age < 200)) throw new Exception("Out of range")
 val name: String = _name
 val age: Int = _age
 def getPP() : String = name + " of age " + age.toString() }
val foo : foo_type = new foo_type("David Jones",25)
foo.getPP()
use: foo.name foo.age foo.getPP

    foo is a value of foo_type

• gee is a value of gee_type
```

Class: No Structural Sub Typing

> Records: Structural sub-typing

```
foo_type <: gee_type</pre>
```

> Classes: Nominal sub-typing

```
gee_type 
foo_type
```

```
val v1 : gee_type = foo
val v2 : foo_type = gee // type error
```

```
def greeting(r:{val name:String}) =
   "Hi " + r.name + ", How are you?"
greeting(foo)
```

Structural Types vs. Nominal Types

- ➤ Structural Types
 - Includes arbitrary values with the required structures as elements
 - Allows arbitrary types with the required structures as sub types
 - Cannot assume any properties on their elements
- ➤ Nominal Types
 - Includes only specific values as elements
 - Allows only specific types as sub types
 - Can assume specific properties on their elements

Class: Can be Recursive!

```
class MyList[A](v: A, nxt: Option[MyList[A]]) {
  val value : A = v
  val next : Option[MyList[A]] = nxt
}
type YourList[A] = Option[MyList[A]]

val t : YourList[Int] =
  Some(new MyList(3, Some (new MyList(4, None))))
```

Note on Null value

- null: The special element of every class & structural type
- null is often used to represent None instead of using an Option type (Efficient but Not Safe)
- It is discouraged to use null in Scala although Scala supports null for compatibility with Java.

Simplification using Argument Members

```
class MyList[A](v: A, nxt: Option[MyList[A]]) {
  val va/ue : A = v
  val next : Option[MyList[A]] = nxt
class MyList[A](val value:A, val next:Option[MyList[A]]) {
class MyList[A](val value:A, val next:Option[MyList[A]])
```

Simplification using Companion Object

```
class MyList[A](v: A, nxt: Option[MyList[A]]) {
  val value = v
  val next = nxt
object MyList
{ def apply[A](v: A, nxt: Option[MyList[A]]) =
    new MyList(v,nxt)
type YourList[A] = Option[MyList[A]]
object YourList
{ def apply[A](v: A, nxt: Option[MyList[A]]) =
    Some(new MyList(v,nxt))
val t0 = None
val t1 = Some(new MyList(3, Some(MyList(4, None))))
val t2 = YourList(3,(YourList(4,None)))
```

Exercise

Define a class "MyTree[A]" for binary trees:

```
MyTree[A] =
  (value: A) *
  (left: Option[MyTree[A]]) *
  (right: Option[MyTree[A]])
```

Solution

```
class MyTree[A](v: A,
                It: Option[MyTree[A]],
                rt: Option[MyTree[A]]) {
  val value = v
  val /eft = |t|
  val right = rt
type YourTree[A] = Option[MyTree[A]]
val t0 : YourTree[Int] = None
val t1 : YourTree[Int] = Some(new MyTree(3, None, None))
val t2 : YourTree[Int] =
  Some(new MyTree(3, Some (new MyTree(4, None, None)), None))
```

Simplified Solution

```
class MyTree[A](val value : A,
                 val /eft : Option[MyTree[A]],
                 val right : Option[MyTree[A]])
type YourTree[A] = Option[MyTree[A]]
object YourTree
{ def apply[A](v:A, It:Option[MyTree[A]], rt:Option[MyTree[A]]) =
   Some(new MyTree(v, It, rt))
val t0: YourTree[Int] = None
val t1: YourTree[Int] = YourTree(3, None, None)
val t2: YourTree[Int] = YourTree(3, YourTree(4, None, None), None)
```

Nominal Sub Typing for Classes

Nominal Sub Typing, a.k.a. Inheritance

```
class foo_type(x: Int, y: Int) {
  val a : Int = x
  def b : Int = a + y
  def f(z: Int) : Int = b + y + z
class gee_type(x: Int) extends foo_type(x+1,x+2) {
  val c: Int = f(x) + b
                     gee_type <: foo_type</pre>
(\text{new gee\_type}(30)).c
def test(f: foo_type) = f.a + f.b
test(new foo_type(10,20))
test(new gee_type(30))
```

Overriding 1

```
class foo_type(x: Int, y: Int) {
  val a : Int = x
  def b : Int = a + y
  def f(z: Int) : Int = b + y + z
class gee_type(x: Int) extends foo_type(x+1,x+2) {
  override def f(z: Int) = b + z
  // or, override def f(z: Int) = super.f(z) * 2
  val c: Int = f(x) + b
(new gee_type(30)).c
```

Overriding 2

```
class foo_type(x: Int, y: Int) {
  val a : Int = x
  def b : Int = 0
  def f(z: Int) : Int = b * z
class gee_type(x: Int) extends foo_type(x+1,x+2) {
  override def b = 10
(new gee_type(30)).f(10)
Q: Can we override with a different type?
override def f(z: String): Int = 77 //No, arg: diff type
def f(z: String): Int = 77  // Overloading, arg: diff type
override def f(z: Int): Int = 77 //Yes, arg: same type
```

Example: MyList

```
class MyList[A](v: A, nxt: Option[MyList[A]]) {
  va \mid va \mid ue : A = v
  val next : Option[MyList[A]] = nxt
type YourList[A] = Option[MyList[A]]
val t : YourList[Int] =
  Some(new MyList(3, Some (new MyList(4, None))))
class MyList[A]()
class MyNil[A]() extends MyList[A]
class MyCons[A](val hd: A, val tl: MyList[A])
  extends MyList[A]
val t: MyList[Int] =
    new MyCons(3, new MyCons(4, new MyNil()))
```

Simplification: MyList

```
class MyList[A]
class MyNil[A]() extends MyList[A]
object MyNil { def apply[A]() = new MyNil[A]() }
class MyCons[A](val hd: A, val tl: MyList[A])
  extends MyList[A]
object MyCons {
  def apply[A](hd:A, tl:MyList[A]) = new MyCons[A](hd, tl)}
val t: MyList[Int] = MyCons(3, MyNil())
def length(x: MyList[Int]) = ???
```

Case Class

```
class MyList[A]() { ... }
case class MyNil[A]() extends MyList[A] { ... }
object MyNil { def apply[A]() = new MyNil[A]() }
case class MyCons[A](val hd: A, val tl: MyList[A])
  extends MyList[A] { ... }
object MyCons {
def apply[A](hd:A, tl:MyList[A]) = new MyCons[A](hd, tl)}
val t: MyList[Int] = MyCons(3, MyNil())
             Allow Pattern Matching
def length(x: MyList[Int]): Int =
  x match {
    case MyNi/() \Rightarrow 0
    case MyCons(hd, tl) => 1 + length(tl)
Cf. sealed abstract class MyList[A]
```

Exercise

Define "MyTree[A]" using sub class. class MyTree[A](v: A, It: Option[MyTree[A]], rt: Option[MyTree[A]]) { val value = v val /eft = |t|val right = rt type YourTree[A] = Option[MyTree[A]]

Solution

```
sealed abstract class MyTree[A]
case class Empty[A]() extends MyTree[A]
case class Node[A](value:A, left:MyTree[A], right:MyTree[A])
  extends MyTree[A]
val t : MyTree[Int] =
  Node(3, Node(4, Empty(), Empty()), Empty())
t match {
  case Empty() \Rightarrow 0
  case Node(v, I, r) => v
```

Solution with Monotonicity

```
// sealed abstract class MyTree[A]
// case class Empty[A]() extends MyTree[A]
// case class Node[A](value:A, left:MyTree[A], right:MyTree[A])
// extends MyTree[A]
// MyTree[+A]: A <: B \implies MyTree[A] <: MyTree[B]
// MyTree[-A]: A <: B \implies MyTree[B] <: MyTree[A]
sealed abstract class MyTree[+A]
case object Empty extends MyTree[Nothing]
case class Node[A](value:A, left:MyTree[A], right:MyTree[A])
  extends MyTree[A]
val t : MyTree[Int] = Node(3, Node(4, Empty, Empty), Empty)
t match {
  case Empty => 0
  case Node(v, I, r) => v
```

Solution with enum

```
// sealed abstract class MyTree[+A]
// case object Empty extends MyTree[Nothing]
// case class Node[A](value:A, left:MyTree[A], right:MyTree[A])
// extends MyTree[A]
enum MyTree[+A]:
  case Empty //: MyTree[Nothing]
  case Node(value: A, left: MyTree[A], right: MyTree[A])
import MyTree._
val t : MyTree[Int] = Node(3, Node(4, Empty, Empty), Empty)
t match {
  case Empty => 0
  case Node(v.l.r) => v
```

Encoding ADT using classes

```
sealed abstract class MyOption[A] {
 def matches[B](e1 : =>B, e2: A=>B) : B
class MyNone[A]() extends MyOption[A] {
 def matches[B](e1 : =>B, e2: A=>B) = e1
object MyNone { def apply[A]() = new MyNone() }
class MySome[A](v: A) {
 def matches[B](e1 : =>B, e2: A => B) = e2(v)
object MySome { def apply[A](v: A) = new MySome(v) }
val x = MySome(42)
val y : MyOption[Int] = MyNone()
x.matches(0,(n)=>n+1)
y.matches(0,(n)=>n+1)
```

Encoding ADT using classes: Monotonicity

```
sealed abstract class MyOption[+A] {
 def matches[AA>:A,B](e1:=>B, e2:AA=>B):B
object MyNone extends MyOption[Nothing] {
 def matches[AA,B](e1 : =>B, e2: AA=>B) = e1
class MySome[A](v: A) {
 def matches[AA>:A,B](e1 : =>B, e2: AA=>B) = e2(v)
object MySome { def apply[A](v: A) = new MySome(v) }
val x = MySome(42)
val y : MyOption[Int] = MyNone
x.matches(-1,(n)=>n+1)
y.matches(-1,(n)=>n+1)
```

Abstract Classes for Interface

Abstract Class: Interface

- ➤ Abstract Classes
 - Can be used to abstract away the implementation details.

Abstract classes for Interface Concrete sub-classes for Implementation

Abstract Class: Interface

```
>Example Interface
// Written by Alice
// if getValue(i) returns None, you should not use i.getNext()
abstract class Iter[A] {
  def getValue: Option[A]
  def getNext: Iter[A]
def sumElements[A](f: A=>Int)(xs: Iter[A]) : Int =
  xs.getValue match {
    case None => 0
    case Some(n) => f(n) + sumElements(f)(xs.getNext)
def sumElementsId(xs:Iter[Int]) =
  sumElements((x:Int)=>x)(xs)
```

Concrete Class: Implementation

```
// Written by Bob
sealed abstract class MyList[A] extends Iter[A]
case class MyNil[A]() extends MyList[A] {
  def getValue = None
  def getNext = throw new Exception("...")
case class MyCons[A](hd: A, tl: MyList[A])
  extends MyList[A]
  def getValue = Some(hd)
  def getNext = tl
val t1 = MyCons(3, MyCons(5, MyCons(7, MyNi/())))
sumElementsId(t1)
```

Exercise

Define IntCounter(n) that implements the interface Iter[A].

```
// Written by Catherine
class IntCounter(n: Int) extends Iter[Int] {
  def getValue = ???
  def getNext = ???
}
```

Solution

Define IntCounter(n) that implements the interface Iter[A].

```
// Written by Catherine
class IntCounter(n: Int) extends Iter[Int] {
  def getValue = if (n >= 0) Some(n) else None
  def getNext = new IntCounter(n-1)
}
sumElementsId(new IntCounter(100))
```

More on Abstract Classes

Problem: Iter for MyTree

```
abstract class Iter[A] {
  def getValue: Option[A]
  def getNext: Iter[A]
// Written by David
sealed abstract class MyTree[A]
case class Empty[A]() extends MyTree[A]
case class Node[A](value: A.
                    left: MyTree[A],
                    right: MyTree[A]) extends MyTree[A]
Q: Can MyTree[A] implement Iter[A]?
   Try it, but it is not easy.
```

Possible Solution

```
// Written by David
sealed abstract class MyTree[A] extends Iter[A]
case class Empty[A]() extends MyTree[A] {
 def getValue = None
 def getNext = this }
case class Node[A](value: A, left: MyTree[A], right: MyTree[A])
    extends MyTree[A] {
 def getValue = Some(value)
 def getNext: MyTree[A] = {
  def merge right(I : MyTree[A]): MyTree[A] = I match {
   case Empty() => right
   case Node(v, It, rt) => Node(v, It, merge right(rt)) }
  merge right(left) } }
val t1 = Node(3, Node(7, Node(2, Empty(), Empty()), Empty()),
             Node(8, Empty(), Empty()))
sumElements[Int]((x)=>x*x)(t1)
```

Solution: Better Interface

```
abstract class Iter[A] {
  def getValue: Option[A]
  def getNext: Iter[A]
abstract class | terable[A] {
  def iter : Iter A
def sumElements[A](f: A=>Int)(xs: Iter[A]) : Int =
  xs.getValue match {
    case None => 0
    case Some(n) => f(n) + sumElements(f)(xs.getNext)
def sumElementsGen[A](f: A=>Int)(xs: Iterable[A]) : Int =
  sumElements(f)(xs.iter)
```

Let's Use MyList

```
sealed abstract class MyList[A] extends Iter[A]
case class MyNil[A]() extends MyList[A] {
  def getValue = None
 def getNext = throw new Exception("...")
case class MyCons[A](val hd: A, val tl: MyList[A])
  extends MyList[A] {
 def getValue = Some(hd)
  def getNext = tI
```

MyTree <: Iterable (Try)

```
sealed abstract class MyTree[A] extends | terable[A]
case class Empty[A]() extends MyTree[A] {
  val iter = MyNi/()
case class Node[A](value: A.
                   left: MyTree[A],
                   right: MyTree[A]) extends MyTree[A] {
  // "val iter" is more specific than "def iter",
  // so it can be used in a sub type.
  // In this example, "val iter" is also
  // more efficient than "def iter".
  val iter = MyCons(value, ???(left.iter,right.iter))
```

Extend MyList with append

```
sealed abstract class MyList[A] extends Iter[A] {
  def append(lst: MyList[A]) : MyList[A]
case class MyNil[A]() extends MyList[A] {
  def getValue = None
 def getNext = throw new Exception("...")
 def append(lst: MyList[A]) = lst
case class MyCons[A](val hd: A, val tl: MyList[A])
  extends MyList[A]
  def getValue = Some(hd)
  def getNext = tl
  def append(lst: MyList[A]) = MyCons(hd,tl.append(lst))
```

MyTree <: Iterable

```
sealed abstract class MyTree[A] extends Iterable[A] {
  def iter : MyList[A]
  // Note:
  // def iter : Int // Type Error because not (Int <: Iter[A])
case class Empty[A]() extends MyTree[A] {
  val iter = MyNi/()
case class Node[A](value: A,
                   left: MyTree[A],
                   right: MyTree[A]) extends MyTree[A] {
  def iter = MyCons(value, left.iter.append(right.iter))
  // def iter = left.iter.append(MyCons(value,right.iter))
  // def iter = left.iter.append(right.iter.append(
                  MyCons(value, MyNi/()))
```

Test

```
def generateTree(n: Int) : MyTree[Int] = {
  def gen(lo:Int, hi: Int) : MyTree[Int] =
    if (lo > hi) Empty()
    else {
      val mid = (lo+hi)/2
      Node(mid, gen(lo,mid-1), gen(mid+1,hi))
    gen(1,n)
sumElementsGen((x:Int)=>x)(generateTree(100))
```

Iter <: Iterable

```
abstract class | terable[A] {
  def iter : Iter[A]
abstract class | ter[A] extends | terable[A] {
  def getValue: Option[A]
  def getNext: Iter[A]
  def iter = this
val lst : MyList[Int] =
  MyCons(3, MyCons(4, MyCons(2, MyNil())))
sumElementsGen ((x:Int)=>x)(Ist)
```

Note: tail-recursive "append"

```
sealed abstract class MyList[A] extends Iter[A] {
  def append(Ist: MyList[A]) : MyList[A] =
    MyList. revAppend(MyList. revAppend(this, MyNi/()), Ist)
object MyList { // Mutual references are allowed between class T and object T
  // Tail-recursive functions should be written in "object", or as final methods
  def revAppend[A](Ist1: MyList[A], Ist2: MyList[A]): MyList[A] =
    Ist1 match {
      case MyNi/() \Rightarrow 1st2
      case MyCons(hd, tl) => revAppend(tl, MyCons(hd, lst2))
case class MyNil[A]() extends MyList[A] {
  def getValue = None
  def getNext = throw new Exception("...") }
case class MyCons[A](val hd:A, val tl:MyList[A]) extends MyList[A] {
  def getValue = Some(hd)
  def getNext = tl }
```

Lazy List

Problem: Inefficiency

```
def time[R](block: \Rightarrow R): R = {
  val t0 = System.nanoTime()
  val result = block // call-by-name
  val t1 = System.nanoTime()
  print/n("Elapsed time: " + ((t1 - t0)/1000000) + "ms"); result
def sumN[A](f: A=>Int)(n: Int, xs: Iterable[A]) : Int = {
  def sumIter(res : Int, n: Int, xs: Iter[A]) : Int =
    if (n \le 0) res
    else xs.getValue match {
      case None => res
      case Some(v) => sum|ter(f(v) + res, n-1, xs.getNext)
  sumlter(0,n,xs.iter)
// Problem: takes a few seconds to get a single value
{ val t: MyTree[Int] = generateTree(200000)
  time (sumN((x:Int) \Rightarrow x)(1, t)) }
```

Solution 1: Using Lists of Trees

```
class MyTreeIter[A](val lst: MyList[MyTree[A]]) extends Iter[A] {
 val getValue = Ist match {
  case MyCons(Node(v, _,_), _) => Some(v)
  case => None
 def getNext = {
  val remainingTrees : MyList[MyTree[A]] = Ist match {
   case MyNil() => throw new Exception("...")
   case MyCons(hd,tl) => hd match {
    case Empty() => throw new Exception("...")
    case Node( ,Empty(),Empty()) => tl
    case Node( ,lt,Empty()) => MyCons(lt,tl)
    case Node( ,Empty(),rt) => MyCons(rt,tl)
    case Node( ,lt,rt) => MyCons(lt,MyCons(rt,tl))
  new MyTreelter(remainingTrees)
```

Lazy Iteration using Lists of Trees

```
sealed abstract class MyTree[A] extends Iterable[A]
case class Empty[A]() extends MyTree[A] {
  val iter = new MyTreeIter(MyNi/())
case class Node[A](value: A,
                    left: MyTree[A],
                    right: MyTree[A]) extends MyTree[A]
  val iter = new MyTreelter(MyCons(this, MyNi/()))
{ val t: MyTree[Int] = generateTree(200000)
  time (sumN((x:Int) \Rightarrow x)(100, t))
  time (sumN((x:Int) => x)(100000, t))
```

Solution 2: Lazy List

```
sealed abstract class LazyList[A] extends Iter[A] {
 def append(lst: LazyList[A]) : LazyList[A]
case class LNil[A]() extends LazyList[A] {
 def getValue = None
 def getNext = throw new Exception("")
 def append(lst: LazyList[A]) = lst
class LCons[A](hd: A, tl: =>LazyList[A]) extends LazyList[A] {
 lazy val tl = tl
 def getValue = Some(hd)
                                   Note: "append" is not recursive!!!
 def getNext = t/
 def append(lst: LazyList[A]) = LCons(hd, tl.append(lst)) }
object LCons {
 def apply[A](hd: A, tl: =>LazyList[A]) = new LCons(hd, tl)
```

Lazy Iteration using LazyList

```
sealed abstract class MyTree[A] extends Iterable[A] {
  def iter : LazyList[A]
case class Empty[A]() extends MyTree[A] {
  val iter = LNi/()
                                     Note: "iter" is not recursive!!!
case class Node[A](value: A,
                    left: MyTree[A],
                    right: MyTree[A]) extends MyTree[A] {
  lazy val iter = LCons(value, left.iter.append(right.iter))
  // lazy val iter = left.iter.append(LCons(value, right.iter))
  // lazy val iter = left.iter.append(right.iter.append(
                        LCons(value, LNi/()))
  val t: MyTree[Int] = generateTree(200000)
  time (sumN((x:Int) \Rightarrow x)(100, t))
  time (sumN((x:Int) => x)(100000, t))
```

Wrapper for Inheritance

Using a Wrapper Class

```
abstract class Iter[A] {
  def getValue: Option[A]
  def getNext: Iter[A]
class ListIter[A](val list: List[A]) extends Iter[A] {
  def getValue = list.headOption
  def getNext = new ListIter(list.tail)
sumElements((x:Int)=>x)(new ListIter(List(1,2,3,4)))
```

MyTree Using ListIter

```
abstract class | terable[A] {
  def iter : Iter[A]
sealed abstract class MyTree[A] extends Iterable[A] {
  override def iter : ListIter[A]
case class Empty[A]() extends MyTree[A] {
  val iter : ListIter[A] = new ListIter(Ni/)
case class Node[A](value: A,
                   left: MyTree[A],
                   right: MyTree[A])
  extends MyTree[A] {
  val iter : ListIter[A] = new ListIter(
    value::(left.iter.list ++ right.iter.list))
```

Test

```
val t : MyTree[Int] =
  Node(3, Node(4, Node(2, Empty(), Empty()),
      Node(3, Empty(), Empty())),
      Node(5, Empty(), Empty()))
sumElementsGen((x:Int)=>x)(t)
```

Abstract Class With Abstract Types

Using an Abstract Type

```
abstract class | terable[A] {
  type iter_t
  def iter: iter t
  def getValue(i: iter_t) : Option[A]
  def getNext(i: iter_t) : iter_t
def sumElements[A](f:A=>Int)(xs: Iterable[A]) : Int = {
  def sumElementsIter(i: xs.iter_t) : Int =
    xs.getValue(i) match {
      case None => 0
      case Some(n) => f(n) + sumElementsIter(xs.getNext(i))
  sumElementsIter(xs.iter)
```

MyTree Using List

```
sealed abstract class MyTree[A] extends Iterable[A] {
  type iter_t = List[A]
  def getValue(i: List[A]): Option[A] = i.headOption
  def getNext(i: List[A]): List[A] = i.tail
case class Empty[A]() extends MyTree[A] {
 val iter : List[A] = Ni/
case class Node[A](value: A,
                   left: MyTree[A], right: MyTree[A])
  extends MyTree[A] {
  val iter = value :: (left.iter ++ right.iter) //Pre-order
//val iter = left.iter ++ (value :: right.iter) // ln-order
//val iter = left.iter ++ (right.iter ++ List(value))
                                                //Post-order
```

Test

```
val t : MyTree[Int] =
  Node(3, Node(4, Node(2, Empty(), Empty()),
       Node(3, Empty(), Empty())),
       Node(5, Empty(), Empty()))
sumElements((x:Int)=>x)(t)
```

Abstract Class with Arguments

Abstract Class with Arguments

```
abstract class IterableHE[A](eq: (A,A) => Boolean)
  extends Iterable[A]
  def hasElement(a: A) : Boolean = {
    def hasElementIter(i: iter_t) : Boolean =
      getValue(i) match {
        case None => false
        case Some(n) =>
          if (eq(a,n)) true
          else hasElementIter(getNext(i))
    hasElementIter(iter)
```

MyTree

```
sealed abstract class MyTree[A](eq:(A,A)=>Boolean)
  extends IterableHE[A](eq) {
  type iter t = List[A]
  def getValue(i : List[A]) : Option[A] = i.headOption
  def getNext(i: List[A]) : List[A] = i.tail
case class Empty[A](eq: (A,A)=>Boolean)
  extends MyTree[A](eq) {
  val iter: List[A] = Ni/
case class Node[A](eq: (A,A)=>Boolean,
               value: A, left: MyTree[A], right: MyTree[A])
  extends MyTree[A](eq) {
  val iter : List[A] = value :: (left.iter ++ right.iter)
```

Test

```
val leq = (x:lnt,y:lnt) => x == y
val | Empty = Empty(leg)
def | Node(n: Int, t1: MyTree[Int], t2: MyTree[Int]) =
  Node(leg.n.t1,t2)
val t : MyTree[Int] =
  INode(3, INode(4, INode(2, IEmpty, IEmpty),
                    INode(3, IEmpty, IEmpty)),
            INode(5.lEmpty.lEmpty))
sumElements((x:Int)=>x)(t)
t.hasElement(5)
t.hasElement(10)
```

Alternatively, Argument Elimination

```
abstract class | terableHE[A]
  extends | terable[A]
  def eq(a:A, b:A) : Boolean
  def hasElement(a: A) : Boolean = {
    def hasElementIter(i: iter t) : Boolean =
      getValue(i) match {
        case None => false
        case Some(n) =>
          if (eq(a,n)) true
          else hasElementIter(getNext(i))
    hasElementIter(iter)
```

MyTree

```
sealed abstract class MyTree[A] extends IterableHE[A] {
  type iter_t = List[A]
  def getValue(i : List[A]) : Option[A] = i.headOption
  def getNext(i: List[A]) : List[A] = i.tail
case class Empty[A](_eq:(A,A)=>Boolean) extends MyTree[A] {
  def eq(a:A, b:A) = eq(a,b)
 val iter : List[A] = Ni/
case class Node[A](_eq: (A,A)=>Boolean.
               value: A, left: MyTree[A], right: MyTree[A])
  extends MyTree[A] {
  def eq(a:A, b:A) = eq(a,b)
  val iter : List[A] = value :: (left.iter ++ right.iter)
```

Test

```
val leq = (x:lnt,y:lnt) => x == y
val | Empty = Empty(leg)
def | Node(n: Int, t1: MyTree[Int], t2: MyTree[Int]) =
  Node(leg.n.t1,t2)
val t : MyTree[Int] =
  INode(3, INode(4, INode(2, IEmpty, IEmpty),
                    INode(3, IEmpty, IEmpty)),
            INode(5.lEmpty.lEmpty))
sumElements((x:Int)=>x)(t)
t.hasElement(5)
t.hasElement(10)
```

Code Reuse without Inheritance

```
abstract class IterableHE[A] extends Iterable[A] {
 def eq(a:A, b:A) : Boolean
 def hasElement(a: A) : Boolean }
object IterableHE {
 def hasElement[A](eq: (A,A)=>Boolean, xs: Iterable[A], a: A) = {
  def hasElementIter(i: xs.iter t) : Boolean =
   xs.getValue(i) match {
     case None => false
     case Some(n) =>
      if (eq(a,n)) true
      else hasElementIter(xs.getNext(i))
  hasElementIter(xs.iter) } }
sealed abstract class MyTree[A] extends IterableHE[A] {
  def hasElement(a: A) = IterableHE.hasElement(eq, this, a)
```

More on Classes

Motivating Example

```
class Primes(val prime: Int, val primes: List[Int]) {
  def getNext: Primes = {
    val p = computeNextPrime(prime + 2)
    new Primes(p, primes ++ (p :: N//))
  def computeNextPrime(n: Int) : Int =
    if (primes.forall((p:Int) => n%p != 0)) n
    else computeNextPrime(n+2)
def nthPrime(n: Int): Int = {
  def go(primes: Primes, k: Int): Int =
    if (k <= 1) primes.prime</pre>
    else go(primes.getNext, k - 1)
  if (n \le 0) 2 else go(new Primes(3, List(3)), n)
nthPrime(10000)
```

Multiple Constructors

```
class Primes(val prime: Int, val primes: List[Int]) {
  def this() = this(3, \angle ist(3))
  def getNext: Primes = {
    val p = computeNextPrime(prime + 2)
    new Primes(p, primes ++ (p :: N//))
  def computeNextPrime(n: Int) : Int =
    if (primes.forall((p:Int) => n%p != 0)) n
    else computeNextPrime(n+2)
def nthPrime(n: Int): Int = {
  def go(primes: Primes, k: Int): Int =
    if (k <= 1) primes.prime</pre>
    else go(primes.getNext, k - 1)
  if (n == 0) 2 else go(new Primes, n)
nthPrime(10000)
```

Access Modifiers

- > Access Modifiers
 - Private: Only the class can access the member.
 - Protected: Only the class and its sub classes can access the member.

Using Access Modifiers

```
class Primes private (val prime: Int, protected val primes: List[Int])
{ def this() = this(3, \angle ist(3))
  def getNext: Primes = {
    val p = computeNextPrime(prime + 2)
    new Primes(p, primes ++ (p :: N//))
  private def computeNextPrime(n: Int) : Int =
    if (primes.forall((p:Int) => n%p != 0)) n
    else computeNextPrime(n+2)
def nthPrime(n: Int): Int = {
  def go(primes: Primes, k: Int): Int =
    if (k <= 1) primes.prime</pre>
    else go(primes.getNext, k - 1)
  if (n == 0) 2 else go(new Primes, n)
nthPrime(10000)
```

Using Interface

```
➤ OOP-style Interface
abstract class PrimesSig {
  // Problem: need an instance of PrimesSig to make a new instance
  def makeNew : PrimesSig
  def prime : Int
  def getNext : PrimesSig }
abstract class PrimesSig {
 def prime: Int
 def getNext : PrimesSig }
abstract class PrimesFactory {
 def newPrimes : PrimesSig }
def nthPrime(pf: PrimesFactory, n: Int): Int = {
 def go(primes: PrimesSig, k: Int): Int =
  if (k <= 1) primes.prime
  else go(primes.getNext, k - 1)
 if (n == 0) 2 else go(pf.newPrimes, n)
```

Implementation

```
/* import begin */
class Primes private (val prime:Int,protected val primes:List[Int])
 extends PrimesSig
{ def this() = this(3, List(3))
 def getNext: Primes = {
  val p = computeNextPrime(prime + 2)
  new Primes(p, primes ++ (p :: Nil))
 private def computeNextPrime(n: Int) : Int =
  if (p:Int) => n\%p!=0)
  else computeNextPrime(n+2)
class PrimesImpl extends PrimesFactory {
 def newPrimes = new Primes()
/* import end */
nthPrime(new PrimesImpl, 10000)
```

Using Interface

```
Type class-style Interface
abstract class PrimesSig[P] {
   def makeNew : P
   def prime(p: P) : Int
   def getNext(p: P) : P
}
def nthPrime[P](n: Int)(implicit tc: PrimesSig[P]): Int = {
   def go(p: P, k: Int): Int =
      if (k <= 1) tc.prime(p) else go(tc.getNext(p), k - 1)
   if (n == 0) 2 else go(tc.makeNew, n)
}</pre>
```

Implementation

```
class Primes private (val prime: Int, protected val primes: List[Int])
{ def this() = this(3, \angle ist(3))
  def getNext: Primes = {
    val p = computeNextPrime(prime + 2)
    new Primes(p, primes ++ (p :: N//))
  private def computeNextPrime(n: Int) : Int =
    if (primes.forall((p:Int) => n%p != 0)) n
    else computeNextPrime(n+2)
class PrimesImpl extends PrimesSig[Primes] {
  def makeNew = new Primes
  def prime(p: Primes) = p.prime
  def getNext(p: Primes) = p.getNext
implicit val primesTC = new PrimesImpl
nthPrime(10000) // (primesTC)
```

Traits for Multiple Inheritance

Multiple Inheritance Problem

- ➤ Multiple Inheritance
 - The famous "diamond problem"

```
class A(val a: Int)
class B extends A(10)
class C extends A(20)
class D extends B, C.
```

Problem 1: What is the value of (new D).a?

Problem 2: The constructor of A must be executed once because A may contain side effects such as sending messages over the network.

Java's Solution: Interface

>Interface

- An interface cannot contain any implementation but only types of its methods.
- A class can inherit implementations from only one parent class but implement multiple interfaces.

Scala's Solution: Trait

>Traits

- A trait can implement any of its methods, but should have only one constructor with no arguments.
- An (abstract) class (resp. trait) X can "extends" one trait or (abstract) class with any (resp. no) arguments "with" multiple traits T_1 , ..., T_n such that, for each i, the least superclass of T_i , if exists, should be a superclass of X where C is a superclass of T if C is an (abstract) class and T transitively "extends" C.
- No cyclic inheritance is allowed.

> Property

- Among the ancestors of a class, for the same class,
 - A constructor with arguments can appear at most once
 - A constructor with no argument can appear multiple times

Example

```
class A(val a : Int) {
 def this () = this(0)
trait B {
  def f(x: Int): Int = x
trait C extends A with B {
  def g(x: Int): Int = x + a
trait D extends B {
  def h(x: Int): Int = f(x + 50)
class E extends A(10) with C with D {
 override def f(x: Int) = x * a
val e = new E
```

Algorithm for Multiple Inheritance

≻Algorithm

- Give a linear order among all ancestors by "post-order" traversing without revisiting the same node.
- Invoke the constructors once in that order.

 Note. Post-order traversal of a class C means
 - Recursively post-order traverse C's first parent; ...;
 - Recursively post-order traverse C's last parent; and
 - Visit C.

- A constructor with arguments is always visited before the same constructor with no arguments.
- Compile error if the same field is implemented by multiple classes

A Simple Example With Traits

Motivation

```
abstract class Iter[A] {
  def getValue: Option[A]
  def getNext: Iter[A]
class ListIter[A](val list: List[A]) extends Iter[A] {
  def getValue = list.headOption
  def getNext = new ListIter(list.tail)
abstract class Dict[K,V] {
  def add(k: K, v: V): Dict[K,V]
  def find(k: K): Option[V]
```

Q: How can we extend ListIter and implement Dict?

Interface using Traits

```
// abstract class Dict[K,V] {
// def add(k: K, v: V): Dict[K,V]
// def find(k: K): Option[V] }

trait Dict[K,V] {
  def add(k: K, v: V): Dict[K,V]
  def find(k: K): Option[V]
}
```

Implementing Traits

```
class ListIterDict[K,V]
      (eq: (K,K)=>Boolean, list: List[(K,V)])
      extends ListIter[(K,V)](list)
         with Dict[K,V]
  def add(k:K,v:V) = new ListIterDict(eq,(k,v)::list)
  def find(k: K) : Option[V] = {
    def go(|: List[(K, V)]): Option[V] = | match {
        case Ni/ => None
        case (k1, v1) :: t | =>
          if (ea(k, k1)) Some(v1) else go(t1) }
    go(list) }
```

Test

```
def sumElements[A](f: A=>Int)(xs: Iter[A]) : Int =
  xs.getValue match {
    case None => 0
    case Some(n) => f(n) + sumElements(f)(xs.getNext)
def find3(d: Dict[Int,String]) = {
  d.find(3)
val d0 = new ListIterDict[Int,String]((x,y)=>x==y,Ni/)
val d = d0.add(4, "four").add(3, "three")
sumElements[(Int,String)](x=>x. 1)(d)
find3(d)
```

Without Using Inheritance (a.k.a. Composition)

```
class ListIterDict[K,V]
    (eq: (K,K)=>Boolean, list: List[(K,V)])
    extends Iter[(K,V)] with Dict[K,V]
  val /ist/ter = new ListIter(list)
  def getValue = /ist/ter.getValue
  def getNext = /ist/ter.getNext
  def add(k:K,v:V) = new ListIterDict(eq,(k,v)::list)
  def find(k: K) : Option[V] = {
    def go(I: List[(K, V)]): Option[V] = I match {
      case N// => None
      case (k1, v1) :: t | =>
        if (eq(k, k1)) Some(v1) else go(t1) }
    go(list) }
```

Inheritance vs. Composition

```
class A(arg)
  a
  h = \cdots f \cdots
class B(arg) extends A(arg+1)
  b
  override f = \cdots
```

```
trait Al {
 g; h
class A(_of, arg) extends Al {
  a
  f = _of match {
      case None => ···
      case Some _f => _f }
  h = \cdots f \cdots
class B(arg) extends Al {
  b
  p = new A(Some(\cdots), arg+1)
 g = p.g; h = p.h
```

Mixin with Traits

Motivation: Mixin Functionality

```
abstract class Iter[A] {
  def getValue: Option[A]
  def getNext: Iter[A]
class ListIter[A](val list: List[A]) extends Iter[A]
  def getValue = list.headOption
 def getNext: ListIter[A] = new ListIter(list.tail)
trait MRIter[A] extends Iter[A] {
  def mapReduce[B,C](combine: (B,C)=>C, ival: C, f: A=>B): C = ???
```

Mixin Composition

```
trait MRIter[A] extends Iter[A] {
  override def getNext: MRIter[A]
  def mapReduce[B,C](combine: (B,C)=>C, ival: C, f: A=>B): C = A
    getValue match {
      case None => ival
      case Some(v) =>
        combine(f(v), getNext.mapReduce(combine, ival, f))
class MRListIter[A](list: List[A])
  extends ListIter (list) with MRIter[A]
 override def getNext = new MRListIter(super.getNext.list)
                 // new MRListIter(list.tail)
val mr = new MRListIter[Int](\angle ist(3,4,5))
mr.mapReduce[Int,Int]((b,c)=>b+c,0,(a)=>a*a)
```

Mixin Composition: A Better Way

```
trait MRIter[A] extends Iter[A] {
  def mapReduce[B,C](combine: (B,C)=>C, ival: C, f: A=>B): C = \{
    def go(c: Iter[A]): C = c.getValue match {
      case None => ival
      case Some(v) => combine(f(v), go(c.getNext))
    go(this)
class MRListIter[A](list: List[A])
  extends ListIter (list) with MRIter[A]
val mr = new MRListIter[Int](\angle ist(3,4,5))
// or, val mr = new ListIter(List(3,4,5)) with MRIter[Int]
mr.mapReduce[Int,Int]((b,c)=>b+c,0,(a)=>a*a)
```

Syntactic Sugar: new A with B with C { ... }

```
new A(...) with B1 ··· with Bm {
  code
is equivalent to
  class _tmp_(args) extends A(args) with B1 ... with Bm {
    code
  new _tmp_(...)
```

Intersection Types

Intersection Types

> Typing Rule

```
> Example
trait A { val a: Int = 0 }
trait B { val b: Int = 0 }
class C extends A with B {
  override val a = 10
  override val b = 20
  val c = 30
val x = new C
val y: A with B = x
y.a // 10
y.b // 20
y.c // type error
```

Subtype Relation for "with"

The subtype relation for "with" is structural.

Permutation

... with T1 with T2 ... <: ... with T2 with T1 ...

• Width

... with T ... <: ...

Depth

 $T \leq S$

... with T ... <: ... with S ...

Stacking with Traits

Typical Hierarchy in Scala

• BASE

Interface (trait or abstract class)

• CORE

Functionality (trait or concrete class)

CUSTOM

Modifications (each in a separate, composable trait)

IntStack: Base

BASE

```
trait Stack[A] {
  def get(): (A,Stack[A])
  def put(x: Int): Stack[A]
}
```

IntStack: Core

>CORE

```
class BasicIntStack protected (xs: List[Int]) extends Stack[Int]
  override val toString = "Stack:" + xs.toString
  def this() = this(Ni/)
  protected def mkStack(xs: List[Int]): Stack[Int] =
    new BasicIntStack(xs)
  def get(): (Int,Stack[Int]) = (xs.head, mkStack(xs.tail))
  def put(x: Int): Stack[Int] = mkStack(x :: xs)
val s0 = new BasicIntStack
val s1 = s0.put(3)
val s2 = s1.put(-2)
val s3 = s2.put(4)
val(v1,s4) = s3.get()
val(v2,s5) = s4.get()
```

IntStack: Custom Modifications

>CUSOM

```
trait Doubling extends Stack[Int] {
 abstract override def put(x: Int): Stack[Int] = super.put(2 * x)
trait Incrementing extends Stack[Int] {
 abstract override def put(x: Int): Stack[Int] = super.put(x + 1)
trait Filtering extends Stack[Int] {
 abstract override def put(x: Int): Stack[Int] =
    if (x \ge 0) super.put(x) else this
```

IntStack: Stacking

>Stacking

```
class DIFIntStack protected (xs: List[Int])
  extends BasicIntStack(xs)
 with Doubling with Incrementing with Filtering
  def this() = this(Ni/)
  override def mkStack(xs: List[Int]): Stack[Int] =
    new DIFIntStack(xs)
val s0 = new DIFIntStack
val s1 = s0.put(3)
val s2 = s1.put(-2)
val s3 = s2.put(4)
val(v1,s4) = s3.get()
val(v2.s5) = s4.get()
```

Additional Resources

- **≻**Traits
 - http://www.scala-lang.org/old/node/126
- **➤**Mixin Composition
 - http://www.scala-lang.org/old/node/117
- ➤ Stackable Trait Pattern
 - http://www.artima.com/scalazine/articles/stackable_trait_pattern.h
 tml
- ➤ Multiple Inheritance via Traits
 - https://www.safaribooksonline.com/blog/2013/05/30/traits-how-scala-tames-multiple-inheritance/
- >UCSD CSE 130
 - http://cseweb.ucsd.edu/classes/wi14/cse130-a/lectures/scala/02-classes.html

PART 3 Type Classes for Interfaces

Interfaces over Parameter Types

Subtype Polymorphism

```
trait Ord {
  // this cmp that < 0 iff this < that
  // this cmp that > 0 iff this > that
  // this cmp that == 0 iff this == that
  def cmp(that: Ord): Int
  def ===(that: Ord): Boolean = (this.cmp(that)) == 0
  def < (that: Ord): Boolean = (this cmp that) < 0</pre>
  def > (that: Ord): Boolean = (this cmp that) > 0
  def <= (that: Ord): Boolean = (this cmp that) <= 0</pre>
  def >= (that: Ord): Boolean = (this cmp that) >= 0
def max3(a: Ord, b: Ord, c: Ord) : Ord =
  if (a <= b) { if (b <= c) c else b }
  else \{ if (a \le c) c else a \}
```

^{*} Problem: hard (almost impossible) to implement Ord (e.g., using Int)

Interface over Parameter Types

```
trait Ord[A] {
  def cmp(that: A): Int
  def ===(that: A): Boolean = (this.cmp(that)) == 0
  def < (that: A): Boolean = (this cmp that) < 0</pre>
  def > (that: A): Boolean = (this cmp that) > 0
  def <= (that: A): Boolean = (this cmp that) <= 0</pre>
  def >= (that: A): Boolean = (this cmp that) >= 0
def max3[A <: Ord[A]](a: A, b: A, c: A) : A =
  if (a <= b) {if (b <= c) c else b }
  else \{if (a \le c) c else a \}
class Olnt(val value : Int) extends Ord[Olnt] {
  def cmp(that: Olnt) = value - that.value
max3(new Olnt(3), new Olnt(2), new Olnt(10)).value
```

Further example: Ordered Bag

```
class Bag[U <: Ord[U]] protected (val toList: List[U]) {</pre>
  def this() = this(Ni/)
  def add(x: U) : Bag[U] = {
    def go(elmts: List[U]): List[U] =
      elmts match {
        case N// \Rightarrow x :: N//
        case e :: if (x < e) \Rightarrow x :: elmts
        case e :: _ if (x === e) => e Imts
        case e :: rest => e :: go(rest)
    new Bag(go(toList))
val emp = new Bag[0|nt]()
val b = emp.add(new 0Int(3)).add(new 0Int(2)).
  add(new Olnt(10)).add(new Olnt(2))
b.toList.map((x) = > x.value)
```

Problems with OOP

- 1. Needs "subtyping" like "OInt <: Ord[OInt]", which is quite complex as we have seen (and moreover, involves more complex concepts like variance).
- 2. Needs a wrapper class like "OInt" in order to add a new interface to an existing type like "Int".
- 3. Interface only contains only "elimination" functions, not "introduction" functions.

Type Classes

Completely Separating Ord from Int

```
trait Ord[A] {
  def cmp(me: A, you: A): Int
  def === (me: A, you: A): Boolean = cmp(me, you) == 0
  def < (me: A, you: A): Boolean = cmp(me,you) < 0</pre>
  def > (me: A, you: A): Boolean = cmp(me, you) > 0
  def <= (me: A, you: A): Boolean = cmp(me,you) <= 0</pre>
  def >= (me: A, you: A): Boolean = cmp(me, you) >= 0
def max3[A](a: A, b: A, c: A)(implicit ord: Ord[A]) : A =
  if (ord.<=(a, b)) {if (ord.<=(b,c)) c else b }
                    \{if (ord. \le (a.c)) c else a \}
  else
implicit val intOrd : Ord[Int] = new Ord[Int] {
  def cmp(me: Int, you: Int) = me - you }
\max 3(3,2,10) // 10
```

Implicit

- >Implicit
 - An argument is given "implicitly"

```
def foo(s: String)(implicit t: String) = s + t
implicit val exclamation : String = "!!!!!"

foo("Hi")
foo("Hi")("???") // can give it explicitly
```

Bag Example

```
class Bag[A] protected (val toList: List[A])(implicit ord: Ord[A])
{ def this()(implicit ord: Ord[A]) = this(N//)(ord)
  def add(x: A) : Bag[A] = {
    def go(elmts: List[A]) : List[A] =
      elmts match {
        case N// \Rightarrow x :: N//
        case e :: _ if (ord.<(x,e)) \Rightarrow x :: elmts
        case e :: _ if (ord.===(x,e)) => elmts
        case e :: rest => e :: go(rest)
    new Bag(go(toList))
(new Bag[Int]()).add(3).add(2).add(3).add(10).toList
```

Implicitly

```
≻Definition
  def implicitly[A](implicit a: A) : A = a
Example
class Bag[A] protected (val toList: List[A])(implicit ord: Ord[A])
{ def this()(implicit ord: Ord[A]) = this(Ni/)(ord)
        case e :: _ if (ord.===(x,e)) => elmts
is equivalent to
class Bag[A : Ord] protected (val toList: List[A])
\{ def this() = this(Ni/) \}
        case e :: _ if (imp/icit/y[Ord[A]].===(x,e)) => elmts
```

Bag Example Implicitly

```
class Bag[A : Ord] protected (val toList: List[A])
\{ def this() = this(Ni/) \}
  def add(x: A) : Bag[A] = {
    def go(elmts: List[A]) : List[A] =
      elmts match {
        case N// \Rightarrow x :: N//
        case e :: _ if (imp/icit/y[Ord[A]].<(x,e)) => x :: elmts
        case e :: _ if (imp/icit/y[Ord[A]].===(x,e)) => elmts
        case e :: rest => e :: go(rest)
    new Bag(go(toList))
(new Bag[Int]()).add(3).add(2).add(3).add(10).toList
```

Bootstrapping Implicits

```
// lexicographic order
implicit def tupOrd[A, B](implicit ordA: Ord[A], ordB: Ord[B])
  : Ord[(A, B)] =
  new Ord[(A, B)] {
    def cmp(me: (A, B), you: (A, B)) : Int = {
      val c1 = ordA.cmp(me._1, you._1)
      if (c1 != 0) c1
      else { ordB.cmp(me._2, you._2) }
val b = new Bag[(Int,(Int,Int))]
b.add((3,(3,4))).add((3,(2,7))).add((4,(0,0))).toList
```

With Different Orders

```
val intOrdRev : Ord[Int] =
  new Ord[Int] { def cmp(me: Int, you: Int) = you - me }

(new Bag[Int]()(intOrdRev)).add(3).add(2).add(10).toList
```

Type Classes With Multiple Parameters

Interfaces I

```
// trait | ter[A] {
// def getValue: Option[A]
// def getNext: | ter[A]
// }
trait | ter[|,A] {
  def getValue(i: |): Option[A]
 def getNext(i: |): |
// trait | terable[A] {
// def iter : |ter[A]
// }
trait Iterable[R,A] {
  type Itr
  def iterIF: Iter[Itr, A]
  def iter(a: R): Itr
```

Programs for Testing: use Iter, Iterable

```
def sumElements[|](xs: |)(implicit | T: | ter[|, | nt]) : | Int =
  IT.getValue(xs) match {
    case None => 0
    case Some(n) => n + sumElements(IT.getNext(xs)) }
def printElements[I,A](xs: I)(implicit IT: Iter[I,A]) : Unit =
  IT.getValue(xs) match {
    case None =>
    case Some(n) => {print/n(n); printElements(IT.getNext(xs))}}
def sumElements2[R](xs: R)(implicit | ITR: | Iterable[R, Int]) =
  sumElements(ITR.iter(xs))(ITR.iterIF)
//sumElements[I](ITR.iter(xs))(ITR.iterIF)
def printElements2[R,A](xs: R)(implicit | TR: | Iterable[R,A]) =
  printElements(ITR.iter(xs))(ITR.iterIF)
//printElements[I,A](ITR.iter(xs))(ITR.iterIF)
```

Interfaces II

```
trait ListIF[L,A] {
 def empty : L
 def head(I: L) : Option[A]
 def tail(I: L) : L
 def cons(a: A, I: L) : L
 def append(|1: L, |2: L) : L
trait TreeIF[T,A] {
 def empty : T
 def node(a: A, I: T, r: T) : T
 def head(t: T) : Option[A]
 def left(t: T) : T
 def right(t: T) : T
```

Programs for Testing: use All

```
def testList[L](implicit LI: ListIF[L,Int], IT: Iter[L,Int]) {
  val I = LI.cons(3, LI.cons(5, LI.cons(2, LI.cons(1, LI.empty))))
  print/n(sumElements(I)) //sumElements(I)(list/ter[Int])
  printElements(I) //printElements(I)(listIter[Int])
def testTree[T](implicit TI: TreeIF[T,Int],
                        ITR: Iterable[T,Int]) {
  val t: T = TI.node(3, TI.node(4, TI.empty, TI.empty),
                        Tl.node(2, Tl.empty, Tl.empty))
 print/n(sumElements2(t))
  printElements2(t)
```

List: provide Iter, ListIF

```
implicit def listIter[A] : Iter[List[A], A] =
 new Iter[List[A],A] {
   def getValue(a: List[A]) = a.headOption
   def getNext(a: List[A]) = a.tail
implicit def listIF[A] : ListIF[List[A],A] =
 new ListIF[List[A],A] {
   def empty: List[A] = Ni/
   def head(I: List[A]) = I.headOption
   def tail(I: List[A]) = I.tail
   def cons(a: A, I: List[A]) = a :: I
   def append(I1: List[A], I2: List[A]) = I1:::I2
```

MyTree: use Iter, ListIF, provide Iterable, TreeIF

```
sealed abstract class MyTree[A]
case class Empty[A]() extends MyTree[A]
case class Node[A](value: A, left: MyTree[A], right: MyTree[A])
  extends MyTree[A]
implicit def treelF[A] : TreelF[MyTree[A],A] =
  new TreeIF[MyTree[A],A] {
    def empty = Empty()
    def node(a: A, I: MyTree[A], r: MyTree[A]) = Node(a, I, r)
    def head(t: MyTree[A]) = t match {
      case Empty() \Rightarrow None
      case Node(v, \_, \_) \Rightarrow Some(v) }
    def left(t: MyTree[A]) = t match {
      case Empty() \Rightarrow t
      case Node(_, | t ,_) => | t }
    def right(t: MyTree[A]) = t match {
      case Empty() \Rightarrow t
      case Node(\_,\_,rt) \Rightarrow rt }
```

MyTree: use Iter, ListIF, provide Iterable, TreeIF

implicit def treelterableList[A] = treelterable[List[A],A]

Linking Modules

```
testList[List[Int]]
```

testTree[MyTree[Int]]

Refined Interfaces

```
trait ListProdIF[L,A] {
  def empty : L
  def cons(a: A, I: L) : L
  def append(|1: L, |2: L) : L
def treelterable[L,A]
  (implicit IF: ListProdIF[L,A], IT: Iter[L,A]) =
  new Iterable[MyTree[A], A] {
    type |tr = L|
    def iter(a: MyTree[A]): L = a match {
      case Empty() => IF.empty
      case Node(v, left, right) =>
        IF.cons (v, IF.append(iter(left), iter(right)))
    val iter/F = IT }
implicit def treelterableList[A] = treelterable[List[A],A]
```

Linking Modules

```
implicit def List2ListProdIF[L,A]
    (implicit IF: ListIF[L,A]) : ListProdIF[L,A] =
 new ListProdIF[L,A] {
   def empty = IF.empty
   def cons(a: A, I: L) = IF.cons(a, I)
   def append(|1: L, |2: L) = |F.append(|1, |2)
testList[List[Int]]
testTree[MyTree[Int]]
```

Iter being Iterable

```
implicit def iterIterable[I,A](implicit IT: Iter[I,A])
             : Iterable[I,A] =
  new Iterable[I, A] {
    type | tr = |
    val iter/F = IT
   def iter(a: |) = a
val = List(3,5,2,1)
sumElements2(I) //sumElements2(iterIterable(listIter[Int]))
printElements2(I) //printElements2(iter/terable(/ist/ter[/nt]))
```

Higher-kind Type Classes

Interfaces I

```
import scala.language.higherKinds
//trait | ter[|,A] {
// def getValue(a: 1): Option[A]
// del getNext(a: 1): | }
trait | ter[|[ ]] {
  def getValue[A](a: |[A]) : Option[A]
  def getNext[A](a: |[A]) : |[A]
//trait Iterable[R,A] {
// type Itr
// def iterIF: Iter[Itr, A]
// def iter(a: R): Itr
//}
trait | terable[R[_]] {
  type |trl_]
  def iter[A](a: R[A]): Itr[A]
  def iterIF: Iter[Itr]
```

Programs for Testing: use Iter, Iterable

```
def sumElements[|[_]](xs: |[Int])(implicit | T: | ter[|]): | Int = {
  IT.getValue(xs) match {
    case None => 0
    case Some(n) => n + sumElements(IT.getNext(xs)) }
def printElements[|[_],A](xs:|[A])(implicit | T: | ter[|]): Unit = {
  IT.getValue(xs) match {
    case None =>
    case Some(n) => {print/n(n); printElements(IT.getNext(xs))}}
def sumElements2[R[_]](xs: R[Int])(implicit ITR: Iterable[R]) =
  sumElements(ITR.iter(xs))(ITR.iterIF)
def printElements2[R[_],A](xs: R[A])(implicit | ITR: | Iterable[R]) =
  printElements(ITR.iter(xs))(ITR.iterIF)
```

Interfaces II

```
trait ListIF[L[ ]] {
 def empty[A] : L[A]
 def head[A](I: L[A]) : Option[A]
 def tail[A](I: L[A]) : L[A]
 def cons[A](a: A, I: L[A]) : L[A]
 def append[A](I1: L[A], I2: L[A]) : L[A]
trait Tree | F[T[ ]] {
 def empty[A] : T[A]
 def node[A](a: A, I: T[A], r: T[A]) : T[A]
 def head[A](t: T[A]) : Option[A]
 def \ left[A](t: T[A]) : T[A]
 def right[A](t: T[A]) : T[A]
```

Programs for Testing: use All

```
def testList[L[_]](implicit LI: ListIF[L], IT: Iter[L]) {
  val I = LI.cons(3, LI.cons(5, LI.cons(2, LI.cons(1, LI.empty))))
  print In(sumElements(I)) //sumElements[L](I)(IT)
  printElements(I) //printElements[L](I)(IT)
def testTree[T[_]](implicit TI: TreeIF[T], ITR: Iterable[T]) {
  val t = Tl.node(3, Tl.node(4, Tl.empty, Tl.empty),
                     Tl.node(2, Tl.empty, Tl.empty))
 print/n(sumElements2(t))
  printElements2(t)
```

List: provide Iter, ListIF

```
implicit val listIter : Iter[List] =
 new Iter[List] {
   def getValue[A](a: List[A]) = a.headOption
   def getNext[A](a: List[A]) = a.tail
implicit val listIF : ListIF[List] =
 new ListIF[List] {
   def empty[A]: List[A] = Ni/
   def head[A](I: List[A]) : Option[A] = I.headOption
   def tail[A](I: List[A]) : List[A] = I.tail
   def cons[A](a: A, I: List[A]) = a :: I
   def append[A](I1: List[A], I2: List[A]) = I1 ::: I2
```

MyTree: use Iter, ListIF, provide Iterable, TreeIF

```
sealed abstract class MyTree[A]
case class Empty[A]() extends MyTree[A]
case class Node[A](value: A, left: MyTree[A], right: MyTree[A])
  extends MyTree[A]
def treeIterable[L[ ]](implicit IF: ListIF[L], IT: Iter[L]): Iterable[MyTree] =
 new Iterable[MyTree] {
  type Itr[A] = L[A]
  def iter[A](a: MyTree[A]): L[A] = a match {
   case Empty() => IF.empty
   case Node(v, left, right) =>
     IF.cons (v, IF.append(iter(left), iter(right))) }
  val iterIF : Iter[L] = IT }
implicit val treelterableList : Iterable[MyTree] = treelterable[List]
```

MyTree: use Iter, ListIF, provide Iterable, TreeIF

```
implicit val treeIF : TreeIF[MyTree] =
 new TreeIF[MyTree] {
   def empty[A] = Empty()
    def node[A](a: A, I: MyTree[A], r: MyTree[A]) = Node(a,I,r)
    def head[A](t: MyTree[A]) = t match {
      case Empty() \Rightarrow None
      case Node(v, \_, \_) => Some(v) }
   def left[A](t: MyTree[A]) = t match {
      case Empty() \Rightarrow t
      case Node(_, | t ,__) => | t }
    def right[A](t: MyTree[A]) = t match {
      case Empty() \Rightarrow t
      case Node(_,_,rt) => rt }
```

Linking Modules

```
testList[List]
```

testTree[MyTree]

Iter being Iterable

List with Map

```
trait ListIF[L[ ]] {
 def empty[A] : L[A]
 def head[A](I: L[A]) : Option[A]
 def tail[A](I: L[A]) : L[A]
 def cons[A](a: A, I: L[A]) : L[A]
 def append[A](I1: L[A], I2: L[A]) : L[A]
 def map[A,B](f: A=>B)(I: L[A]): L[B] // Added
def testList[L[ ]](implicit Ll: ListIF[L], IT: Iter[L]) = {
 val I1 = Ll.cons(3.3, Ll.cons(2.2, Ll.cons(1.5, Ll.empty)))
 val I2 = LI.map((n:Double) = > n.toInt)(I1)
 val I3 = LI.map((n:Int)=>n.toString)(I2)
 printElements(I3)
```

List with Map

```
implicit val listIF : ListIF[List] =
 new ListIF[List] {
  def empty[A]: List[A] = Nil
  def head[A](I: List[A]) : Option[A] = I.headOption
  def tail[A](I: List[A]) : List[A] = I.tail
  def cons[A](a: A, I: List[A]) = a :: I
  def append[A](I1: List[A], I2: List[A]) = I1 ::: I2
  def map[A,B](f: A => B)(I: List[A]): List[B] = I.map(f) // Added
testList[List]
```

Even Higher Kinds

```
// /ter: (* -> *) -> *
trait | ter[|[ ]] {
  def getValue[A](a: |[A]) : Option[A]
  def getNext[A](a: |[A]) : |[A]
// /: (* -> *) -> *
// Foo: ((* -> *) -> *) -> *
trait Foo[|[_[_]]] {
  def get : I[List]
def f(x: Foo[Iter]) : Iter[List] = x.get
```

Turning Type Classes into OO Classes

Interfaces

```
trait DataProcessor[D] {
 def input(d: D, s: String) : D
 def output(d: D) : String
trait DPFactory {
 def getTypes: List[String]
 def makeDP(dptype: String) : ???
trait UserInteraction {
 def run(factory: DPFactory) : Unit
```

How to return data with associated functions like OOP?

Turning Type Classes into OO Classes

```
import scala.language.higherKinds
import scala.language.implicitConversions
trait Box[S[_]] {
  type Data
  val d: Data
  val i: S[Data]
object Box {
  implicit // needed for implicit conversion of D into Box[S]
  def apply[D,S[\_]](dd: D)(implicit ii: S[D]): Box[S] =
    new Box[S] {
      type Data = D
      val d = dd
      val / = ii
```

Interfaces

```
trait DataProcessor[D] {
 def input(d: D, s: String) : D
 def output(d: D) : String
trait DPFactory {
 def getTypes: String
 def makeDP(dptype: String) : Box[DataProcessor]
trait UserInteraction {
 def run(implicit factory: DPFactory) : Unit
```

User Intraction

```
val userInteraction = new UserInteraction {
 def run(factory: DPFactory) = {
  val dptype = scala.io.Stdln.readLine(
   "Input a processor type " + factory.getTypes.toString + ": ")
  val dp = factory.makeDP(dptype)
  val d done = getInputs(dp.d)(dp.i)
  printOutputs(d done)(dp.i)
 def getInputs[D](d: D)(implicit DP: DataProcessor[D]): D = {
  val d2 = DP.input(d, scala.io.StdIn.readLine("Input Data: "))
  val done = scala.io.StdIn.readLine("More inputs? [Y/N]: ")
  if (done.toLowerCase() == "n") d2
  else getInputs(d2)
 def printOutputs[D](d: D)(implicit DP: DataProcessor[D]) = {
  println("The result of processing your inputs is:")
  println(DP.output(d))
```

Data Processor

```
val dpfactory = new DPFactory {
 def getTypes = List("sum","mult")
 def makeDP(dptype: String) = {
  if (dptype == "sum")
   makeProc(0, (x,y) => x + y)
  else
   makeProc(1, (x,y)=> x * y)
 def makeProc(init: Int, op: (Int,Int)=>Int): Box[DataProcessor] = {
  implicit val dp = new DataProcessor[Int] {
   def input(d: Int, s: String) = op(d, s.toInt)
   def output(d: Int) = d.toString()
  init // Box.apply[Int,DataProcessor](init)(dp)
```

Linking

userInteraction.run(dpfactory)

Heterogeneous List of Iter

```
trait | ter[|,A] {
  def getValue(i: |): Option[A]
  def getNext(i: |): |
def sumElements[|](xs: |)(implicit | T: | ter[|, | nt]) : | Int =
  IT.getValue(xs) match {
    case None => 0
    case Some(n) => n + sumElements(IT.getNext(xs))
def sumElementsList(xs: List[Box2[Iter,Int]]) : Int =
  xs match {
    case Ni/ \Rightarrow 0
    case hd :: tl => sumElements(hd.d)(hd.i) + sumElementsList(tl)
```

Turning Type Classes into OO Classes

```
import scala.language.higherKinds
import scala.language.implicitConversions
trait Box2[S[_,_],A] {
  type Data
  val d: Data
  val i: S[Data.A]
object Box2 {
  implicit def apply[S[_, _],D,A](dd: D)(implicit ii: S[D,A]):
  Box2[S,A] = new Box2[S,A] {
    type Data = D
   val d = dd
    val / = ii
```

Test

```
implicit def listIter[A] : Iter[List[A], A] =
  new Iter[List[A],A] {
    def getValue(a: List[A]) = a.headOption
    def getNext(a: List[A]) = a.tail
implicit def declter : Iter[Int,Int] = new Iter[Int,Int]
  def getValue(i: Int) = if (i >= 0) Some(i) else None
  def getNext(i: Int) = i - 1
sumElementsList(List(
  100,
  List(1,2,3),
  10))
```

Iterable

```
// trait | terable[R.A] {
// type /tr
// def iter(a: R): Itr
// def iter/F: |ter/|tr. A|
// }
trait | terable[R,A] {
  def iter(a: R): Box2[Iter,A]
def sumElements2[R](xs: R)(implicit | ITR: | Iterable[R, Int]) = {
  val cs = ITR.iter(xs)
  sumElements(cs.d)(cs.i)
def printElements2[R,A](xs: R)(implicit | TR: | Iterable[R,A]) = {
val cs = ITR.iter(xs)
  printElements(cs.d)(cs.i)
```

MyTree

```
sealed abstract class MyTree[A]
case class Empty[A]() extends MyTree[A]
case class Node[A](value: A, left: MyTree[A], right: MyTree[A])
  extends MyTree[A]
implicit def treelterable[A] :
  Iterable[MyTree[A], A] = new Iterable[MyTree[A], A] {
  def iter(a: MyTree[A]) : Box2[Iter,A] = {
    def go(I: MyTree[A]) : List[A] =
      | match {
        case Empty() \Rightarrow Ni/
        case Node(v, left, right) => v :: (go(left) ++ go(right)) }
    go(a) // Box2(go(a))(listIter[A])
val t : MyTree[Int] =
  Node(3, Node(4, Empty(), Empty()), Node(2, Empty(), Empty()))
sumElements2(t) //sumElements2(t)(tree!terable[Int])
printElements2(t) //printElements2(t)(tree/terable[Int])
```

Iter being Iterable

```
implicit def iterlterable[|,A](implicit |T: |ter[|,A]) :
    lterable[|,A] = new |terable[|,A] {
        def iter(a: ||) = a // Box2(a)(/T)
    }

vall = List(3,5,2,1)
sumElements2(||)
printElements2(||)
```

Stacking with Type Classes

IntStack Spec

```
trait Stack[S,A] {
  def empty : S
  def get(s: S): (A,S)
  def put(s: S)(x: A): S
def testStack[S](implicit stk: Stack[S,Int]) = {
  val s0 = stk.empty
  val s1 = stk.put(s0)(3)
  val s2 = stk.put(s1)(-2)
  val s3 = stk.put(s2)(4)
  val(v1,s4) = stk.get(s3)
  val(v2,s5) = stk.get(s4)
  (v1, v2)
```

Implementation using List

```
implicit def StackListInt : Stack[List[Int],Int] =
  new Stack[List[Int],Int] {
    val empty = List()
    def get(s: List[Int]) = (s.head, s.tail)
    def put(s: List[Int])(x: Int) = x :: s
}
```

Modifying Traits

```
def IntStackWithPut[S](parent: Stack[S,Int],
                       newPut: (S,Int) => S) : Stack[S,Int] =
  new Stack[S,Int] {
    def empty = parent.empty
    def get(s: S) = parent.get(s)
    def put(s: S)(x: Int) = newPut(s,x)
def Doubling[S](parent: Stack[S,Int]) : Stack[S,Int] =
  IntStackWithPut(parent, (s,x) => parent.put(s)(2 * x))
def Incrementing[S](parent: Stack[S,Int]) : Stack[S,Int] =
  IntStackWithPut(parent, (s,x) => parent.put(s)(x + 1))
def Filtering[S](parent: Stack[S,Int]) : Stack[S,Int] =
  IntStackWithPut(parent,
                  (s,x) \Rightarrow if (x >= 0) parent.put(s)(x) else s
```

Linking

testStack(Filtering(Incrementing(Doubling(StackListInt))))

Implementation: Sorted Stack

```
def SortedStackListInt : Stack[List[Int],Int] =
  new Stack[List[Int],Int] {
    def empty = List()
    def get(s: List[Int]) : (Int,List[Int]) = (s.head, s.tail)
    def put(s: List[Int])(x: Int) : List[Int] = {
      def go(|: List[Int]) : List[Int] = | match {
        case N// \Rightarrow x :: N//
        case hd :: tl => if (x \le hd) x :: l else hd :: go(tl)
      go(s)
```

testStack(Filtering(Incrementing(Doubling(SortedStackListInt))))

PART 4 Imperative Programming with Memory Updates

Mutable Variables

- ➤ Mutable Variables
 - Use "var" instead of "val" and "def"
 - We can update the value stored in a variable.

```
class Main(i: Int) {
  var a = i
}

val m = new Main(10)
m.a // 10
m.a = 20
m.a // 20
m.a += 5 // m.a = m.a + 5
m.a // 25
```

While loop

- ➤ While loop
 - Syntax: while (cond) body Executes body while cond holds.
 - It is equivalent to:

```
def mywhile(cond: =>Boolean)(body: =>Unit) : Unit =
  if (cond) { body; mywhile(cond)(body) } else ()
```

Example

```
var i = 0
var sum = 0
while (i <= 100) { // mywhile (i <= 100) {
    sum += i
    i += 2
}
sum // 2550</pre>
```

For loop

- ➤ For loop
 - Syntax: for (i <- collection) body Executes body for each i in collection.
 - It is equivalent to:

```
def myfor[A](xs: Traversable[A])(f: A => Unit) : Unit =
    xs.foreach(f)
```

Example

```
var sum = 0
for (i <- 0 to 100 by 2) { // myfor (0 to 100 by 2) { i =>
    sum += i
}
sum // 2550
```

Additional Resources

≻UCSD CSE 130

- http://cseweb.ucsd.edu/classes/wi14/cse130-a/lectures/scala/00-crash.html
- http://cseweb.ucsd.edu/classes/wi14/cse130-a/lectures/scala/01-iterators.html

Thanks for your hard work!