§3. Операция транспонирования матриц и её свойства

Определение 3.1. Если в матрице А размера т×п заменить строки на столбцы, то получится матрица размера п×т, называемая транспонированной по отношению к матрице А.

Tранспонированная матрица обозначается A^{T} , таким образом, если

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, mo A^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

Пример 3.1. Дана матрица $A = \begin{pmatrix} 1 & -5 & \pi \\ \sqrt{7} & 0 & 2 \end{pmatrix}$. Найти матрицу A^{T} .

► Имеем
$$A^T = \begin{pmatrix} 1 & \sqrt{7} \\ -5 & 0 \\ \pi & 2 \end{pmatrix}$$
. \blacktriangleleft

Диагональная матрица совпадает со своей транспонированной. Для двух матриц A \hat{u} $A^{\hat{T}}$ всегда определена операция умножения.

Свойства операции транспонирования

- 1. $(A^T)^T = A$.
- 2. $(A+B)^{T}=A^{T}+B^{T}$.
- 3. $(\lambda A)^{T} = \lambda A^{T}$. 4. $(AB)^{T} = B^{T}A^{T}$.

Первые три свойства проверяется непосредственно с помощью определения 3.1 и определений 1.2, 1.3. Доказательство свойства 4 приведено, например, в [3]. Здесь справедливость свойства 4 мы проверим на следующем примере.

Пример 3.2. Даны матрицы $A = \begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Проверить справедливость равенства: $(AB)^T = B^T A^T$