1

Is a even?

(1) 2a is even --> a can be even as well as odd. Not sufficient.

(2)
$$\sqrt{a}$$
 is even --> $\sqrt{a} = even$ --> $a = even^2 = even$. Sufficient.

Answer: B.

2

How many different prime numbers are factors of the positive integer n?

- (1) 4 different prime numbers are factors of 2n --> if $\,n\,$ itself has 2 as a factor (eg $\,n=2^*3^*5^*7\,$) than its total # of primes is 4 but if $\,n\,$ doesn't have 2 as a factor (eg $\,n=3^*5^*7\,$) than its total # of primes is 3. Not sufficient.
- (2) 4 different prime numbers are factors of n^2 --> n^{x} (where x is an integer ≥ 1) will have as many different prime factors as integer n, exponentiation doesn't "produce" primes. So, 4 different prime numbers are factors of n. Sufficient.

Answer: B.

3

If Z is an integer, is Z prime?

- (1) $15! < z \longrightarrow Z$ is more than some number (15!). Z may or may not be a prime. Not sufficient.
- (2) $17!+2 \le z \le 17!+17$ --> z cannot be a prime. For instance if z=17!+13=13*(2*4*5*6*7*8*9*10*11*12*14*15*16*17+1), then z is a multiple of 13, so not a prime. Same for all other numbers in this range. So, z=17!+x, where $2 \le x \le 17$ will definitely be a multiple of x (as we would be able to factor out x out of 17!+x, the same way as we did for 13). Sufficient.

Answer: B.

4

If ${\mathcal Y}$ is a positive integer is $\sqrt{{\mathcal Y}}$ an integer?

Note that as y is a positive integer then \sqrt{y} is either a positive integer or an irrational number. Also note that the question basically asks whether y is a perfect square.

(1)
$$\sqrt{4*y}$$
 is not an integer --> $\sqrt{4*y} = 2*\sqrt{y} \neq integer$. Sufficient.

(2)
$$\sqrt{5*y}$$
 is an integer --> y can not be a prefect square because if it is, for example if $y=x^2$ for some positive integer x then $\sqrt{5*y}=\sqrt{5*x^2}=x\sqrt{5}\ne integer$. Sufficient.

Answer: D.