Дизайн систем машинного обучения

2. Основы проектирования ML-систем

План курса

- 1) Практическое применение машинного обучения
- 2) Основы проектирования МL-систем Вы находитесь здесь
- 3) Обучающие данные
- 4) Подготовка и отбор признаков
- 5) Выбор модели, разработка и обучение модели
- 6) Оценка качества модели
- 7) Развертывание систем
- 8) Диагностика ошибок и отказов ML-систем
- 9) Мониторинг и обучение на потоковых данных
- 10) Жизненный цикл модели
- 11) Отслеживание экспериментов и версионирование моделей
- 12) Сложные модели: временные ряды, модели над графами
- 13) Непредвзятость, безопасность, управление моделями
- 14) МL инфраструктура и платформы
- 15) Интеграция ML-систем в бизнес-процессы

Погружаемся

- Бизнес-анализ зачем?
- Дизайн системы как?
- Проектные ограничения чем?
- Юридические ограничения можно ли?
- Технические ограничения что придется использовать?
- Формулировка задачи ML чему будем учить машину?

Стоит ли запускать проект

Reliable ML: Какие инициативы продвинутой аналитики реализовывать? Ключевые принципы выбора инвестиционных инициатив в области продвинутой аналитики Сложность реализации инициативы средствами продвинутой аналитики **ACTIONABLE** Применимость инициативы для текущих бизнес-процессов Для инициативы возможно проведение пилотного эксперимента и корректная **MEASURABLE** оценка ее эффекта на ключевые бизнес-показатели компании Для инициативы возможно рассчитать ожидаемый эффект на ключевые бизнеспоказатели компании **IMPACT** Эффект является материальным с точки зрения PnL компании Эффект является достижимым в ближайшие 12 месяцев (Quick-Wins First) Оценка приоритетности выполнения инициативы со стороны бизнес-**BUSINESS PRIORITY** подразделений Ожидаемый эффект от реализации инициативы превышает затраты на проект POSITIVE BUSINESS CASE Инициатива может быть встроена в бизнес-процессы в ближайшие 12 месяцев (Quick-Wins First)

Инвестиционный цикл

Reliable ML

Интерпретируемость ML моделей для конечного пользователя: где нужна на практике

Как сделать из прототипа стабильное боевое решение и определить, когда его нужно дорабатывать

Как проект может увеличить прибыль

- Явно:
 - увеличить продажи
 - снизить затраты
- Неявно:
 - увеличить удовлетворенность пользователей
 - увеличить удовлетворенность персонала
- Совсем неявно:
 - Увеличить инвестиционную привлекательность
 - Перенести операционные затраты в капитальные

Например, ML в интернет-магазине

- Как увеличить прибыль?
- Чего мы хотим от пользователя?
- Что мы помогаем ему сделать?
- Что мы мешаем ему сделать?
- Какая метрика надежнее?
- Какая метрика удобнее?

Метрики проекта

- Бизнес-метрики: влияние на ключевые показатели бизнеса
 - Прибыль
 - Доля рынка
 - Привлекательность для инвесторов
 - F1, ROC-AUC, Accuracy, Precision, Recall интересно, но не нужно
- Инженерные метрики:
 - Задержка
 - Пропускная способность
 - F1, ROC-AUC, Accuracy, Precision, Recall не всегда можем измерить

Прокси-метрика

- Если что-то не можем измерить
- Если не можем измерить в нужное время
- Дополнительные материалы:
 - Модель сломалась, выручка выросла
- Прокси-метрика из знаний о бизнесе
- Прокси-метрика из корреляций в данных
- Комбинировать ML и знания о бизнесе

https://habr.com/ru/company/retailrocket/blog/591205/

Дизайн систем машинного обучения

- Процесс принятия решений про
 - Интерфейс
 - Алгоритмы, данные
 - Программную инфраструктуру
 - Оборудование
- Чтобы соответствовать требованиям к
 - Надежности (reliable)
 - Масштабируемости (scalable)
 - Обслуживаемости (maintainable)
 - Адаптируемости (adaptable)

Надежность Reliability

- Свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных условиях применения, технического обслуживания, хранения и транспортирования >
- Как мы поймем, что все работает правильно?
- Как мы отличим ошибочный предикт от хорошего?
- Подробнее в лекции про мониторинг.

Масштабируемость Scalability

- Способность системы, сети или процесса справляться с увеличением рабочей нагрузки (увеличивать свою производительность) при добавлении ресурсов (обычно аппаратных) →
- Если повезет, вам потребуется масштабируемость
- Растет трафик и объем данных
- Растет количество моделей и сценариев использования
- Обсудим в дальнейших лекциях

Обслуживаемость Maintainability

- Приспособленность к восстановлению работоспособного состояния после отказа или повреждения →
- Аварии серверов и сетей связи
- Проблемы с данными
- Проблемы с персоналом
- Обновление оборудования и схемы данных

Адаптируемость Adaptability

- Способность адаптироваться к меняющимся обстоятельствам >
- Меняются:
 - Бизнес-требования
 - Структура данных
 - Доступность данных
 - Оборудование
 - Инфраструктурные сервисы
 - Распределение данных (data shift, target drift)

Проектные ограничения

- Время
 - Примерно 20% на разработку решения, 80% на доводку
- Бюджет
 - Данные
 - Деньги
 - Оборудование
 - Люди

Купить немного времени

- Мощнее сервера дороже, быстрее
- Больше людей на разметке дороже, быстрее
- Больше людей в разработке дороже, быстрее
- Купить существующее решение дороже, быстрее

Compliance & Privacy

- Можем ли мы отдать данные на разметку?
- Можем ли мы хранить данные в облаке?
- Можем ли мы собирать данные пользователей?
- Обязаны ли мы шифровать данные?
- Можем ли мы использовать сторонние сервисы?
- Какие законы мы должны соблюдать?

Технические ограничения

- Проблема интеграции в существующие системы
 - Получить данные
 - Загрузить данные обратно
 - Превзойти качество существующей системы
- Использование имеющейся инфраструктуры
- Обучение пользователей и операторов системы

Этапы внедрения ML

- Решение без ML, если это возможно
- Простая ML модель
- Оптимизация простой модели
- Сложная ML модель

Упрощенная модель ML-разработки

- 1) Определение границ проекта
- 2) Подготовка данных
- 3) Разработка модели
- 4) Развертываение
- 5) Мониторинг и дообучение
- 6) Бизнес-анализ
- 7) Повторить

Взгляд исследователя на ML

- Дано:
 - Что у нас есть?
- Найти:
 - Что нужно оптимизировать?
- Критерий:
 - Как мы поймем, что нашли то, что нужно

В индустрии все сложнее:

- Критерий надо найти и согласовать

ML-метрики

- Что будем измерять
- Как будем измерять
- Baseline с чем сравнивать
- Цена ошибки 1 и 2 рода
- Требования к качеству
- Оценка достоверности
- Надежность, масштабируемость

TYPE I ERROR: FALSE POSITIVE TYPE II ERROR: FALSE NEGATIVE TYPE III ERROR: TRUE POSITIVE FOR INCORRECT REASONS TYPE IV ERROR: TRUE NEGATIVE FOR INCORRECT REASONS TYPE ▼ ERROR: INCORRECT RESULT WHICH LEADS YOU TO A CORRECT CONCLUSION DUE TO UNRELATED ERRORS

TYPE VI ERROR: CORRECT RESULT WHICH YOU INTERPRET WRONG

TYPE VII ERROR: INCORRECT RESULT WHICH PRODUCES A COOL GRAPH

TYPE VIII ERROR: INCORRECT RESULT WHICH SPARKS FURTHER RESEARCH AND THE DEVELOPMENT OF

> NEW TOOLS WHICH REVEAL THE FLAW IN THE ORIGINAL RESULT WHILE PRODUCING

NOVEL CORRECT RESULTS

TYPE IX ERROR: THE RISE OF SKYWALKER

Baseline

- Прежде чем улучшать, найдите, с чем сравнить
 - Существующее на рынке решение
 - Простое решение на правилах
 - Качество решений человека
 - Решения конкурентов

Разная цена ошибки

- False positive
 - Нашли то, чего нет
- False negative
 - Не нашли то, что есть
- Как мы измерим цену ошибки?
- Сколько стоит убитый пациент?
- Как измерить удобство?
- Unknown Unknowns не знаем, что это нужно измерять

Требования к качеству

- Самоуправляемый автомобиль:
 - Высокие требования к качеству
- Подсказки при вводе текста
 - Не такие высокие требования
- Рекомендации в интернет-магазине
 - Даже если совсем не то, все равно найдут поиском и купят
- Как формализовать?
 - Например, попробовать выразить в деньгах
 - Насколько вырастет прибыль, если увеличить ассuracy на 1%

Итеративно ищем критерий

- Выбрать метрику
- Найти или собрать данные и разметку
- Подготовить признаки
- Обучить модель
- Найти ошибки в данных, переобучить модель
- Выгрузить модель, найти ошибки в метрике
- Вернуться к выбору метрики

Формулируем задачу для ML

- Одна и та же проблема может быть решена по-разному
- Например нужно ускорить работу службы поддержки
- Классификация отправлять обращение нужному специалисту
- Рекомендательная система рекомендовать оператору варианты ответа
- Регрессия/классификация оценивать важность пользователя и срочность его обращения
- Отвечать пользователю статьей из базы знаний NER, информационный поиск, генерация текста, суммаризация и т. д.

Типичные ML задачи

- Классификация
 - Бинарная
 - Мультиклассовая
 - Низкой кардинальности
 - Высокой кардинальности
 - Многотемная классификация
- Регрессия
- Детекция объектов
- Детекция аномалий
- Извлечение структурированной информации
- Преобразование объектов

Classification vs regression

- Можем заменить регрессию классификацией, разбив диапазон на несколько классов
- Не делить на одинаковые диапазоны
- Лучше разбивать на квантили
 - pandas.qcut
- Или приводите распределение к равномерному

sklearn.preprocessing.QuantileTransformer

Binary vs multiclass classification

- При малой кардинальности
 - one vs all
 - Последовательный chaining классификатор
- При большой иерархические классификаторы
 - Сначала выбираем группу
 - Потом подгруппу
 - Потом элемент в группе
- При большой нейронные сети

Multiclass vs multilabel classification

- Например, для каждого типа меток отдельная бинарная классификация. Например, если у нас 3 возможных метки, у нас будет 3 модели.
- Или группировать встречающиеся вместе метки в один класс. Если у нас 3 возможных метки, у нас будет 8 моделей.
- В многотемной (multilabel) классификации сложно стратифицировать выборку и измерять качество
- Тут нейронные сети удобнее всего

Целевая функция

- Loss Function, оптимизируемый функционал
- Как правило, бизнес-метрики не могут быть использованы для оптимизации:
 - Недифференцируемые
 - Зависящие от внешних данных
 - Вычислительно дорогие
- https://paperswithcode.com/methods/category/loss-functions

Декомпозиция задачи

- Часто задачу можно разбить на подзадачи, каждая из которых будет решаться своей моделью
- Обычно это позволяет учить модель на меньших объемах данных
- Такие модели легче тестировать и отлаживать

Декомпозиция функции потерь

- Иногда мы хотим оптимизировать одновременно несколько показателей (продажи и прибыль)
- Мы можем использовать взвешенную сумму
 - A * loss1 + (1 A) * loss2
- Мы можем ограничить какую-то из метрик
 - Минимизировать loss1, удерживая loss2 <= threshold

Дополнительные материалы

- The Netflix Recommender System:
 Algorithms, Business Value, and Innovation
- Trustworthy Online Controlled Experiments:
 Five Puzzling Outcomes Explained
- Top Challenges from the first
 Practical Online Controlled Experiments Summit