# PROJECT DEVELOPMENT PHASE SPRINT-3

| DATE          | 12 NOVEMBER 2022                                     |
|---------------|------------------------------------------------------|
| TEAM ID       | PNT2022TMID46174                                     |
| PROJECT TITLE | Real-time river water quality monitoring and control |
|               | system                                               |

### **USN-11**

As a user, I can design the front end in MIT app inventor.



#### **USN-12**

As a user ,I can design the back end(blocks) in MIT app inventor



#### **USN-13**

## As a user ,I can develop the python script.



#### PROGRAM:

```
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "rv07c6"
deviceType = "riverwaterquality-22_23"
deviceId = "123456"
authMethod = "token"
authToken = "wQ_)43L5c0@ku8)sgd"
# Initialize GPIO
def myCommandCallback(cmd):
  print("Command received: %s" % cmd.data['command'])
  status=cmd.data['command']
  if status=="lighton":
    print ("led is on")
  else:
    print ("led is off")
  #print(cmd)
try:
      deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method": authMethod, "auth-token":
authToken}
```

```
deviceCli = ibmiotf.device.Client(deviceOptions)
except Exception as e:
      print("Caught exception connecting device: %s" % str(e))
      sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of type "greeting" 10 times
deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
     temp=random.randint(0,100)
     ph=random.randint(0,14)
     turb=random.randint(0,100)
     data = { 'temperature' : temp, 'ph': ph,'turbidity' :turb }
    #print data
     def myOnPublishCallback():
       print ("Published Temperature = %s C" % temp, "ph = %s %%" % ph, "turbidity = %s NTU " % turb, "to IBM
Watson")
    success = deviceCli.publishEvent("IoTSensor", "json", data, gos=0, on publish=myOnPublishCallback)
    if not success:
       print("Not connected to IoTF")
     time.sleep(1)
     deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud
deviceCli.disconnect()
```

USN-14
As a user,I can get the output of the program with the parameters



USN-15
As a user . I can get the commands in the output when the buttons are pressed.



USN-16
As a user, I can download MIT Al2 companion app in my mobile



## **SPRINT BURNDOWN CHART:**





## **ROAD MAP:**

|                                                     | NOV      |   |   |   | NOV      |   |   |    |    |    |
|-----------------------------------------------------|----------|---|---|---|----------|---|---|----|----|----|
|                                                     | 3        | 4 | 5 | 6 | 7        | 8 | 9 | 10 | 11 | 12 |
| Sprints                                             | Sprint 2 |   |   |   | Sprint 3 |   |   |    |    |    |
| > IBM1-7 Create and configure IBM cloud services (I |          |   |   |   |          |   |   |    |    |    |
| > IBM1-8 Create and access Node-Red                 |          |   |   |   |          |   |   |    |    |    |
| > IBM1-13 MIT app inventor (Front end design and B  |          |   |   |   |          |   |   |    |    |    |
| > IBM1-16 Configuring MIT app inventor              |          |   |   |   |          |   |   |    |    |    |
| > IBM1-21 Configuring MIT app inventor              |          |   |   |   |          |   |   |    |    |    |
| > IBM1-24 Create cloudant DB                        |          |   |   |   |          |   |   |    |    |    |
| > IBM1-29 Final submission                          |          |   |   |   |          |   |   |    |    |    |

## **VELOCITY CHART:**



