浙江大学 20<u>15</u> - 20<u>16</u> 学年 <u>春夏</u> 学期 《 数字系统设计 》课程期末考试试卷

课程号: 111C0120 , 开课学院: 信息与电子工程学院

	考试试	卷: √A	卷、Bà	长(请在	选定项。	上打 √)				
	考试形	式: √6	引、开卷	(请在法	选定项上	:打√),	允许带	计算器	<u>}</u> 入场	
	考试日	期:2	<u>016</u> 年	<u>7</u> 月 <u>1</u>	日,考	试时间:	120	_分钟		
			诚信	考试 ,	沉着应为	垮,杜绝	违纪。			
考生	生姓名:		学	号:		所属	属院系 (专业):		
题序	_	=	三	四	五	六	七	八	九	总分
得分										
P卷人										
一. 判	断题		(10分)	(正确打	`√,或	错误打×	()			
1)	"0"的衤	卜码只有	一种形式	.					()
2)	原码和反	反码均可	将减法	运算转化	为加法运	运算。			()
3)	主从 JK	触发器	,边缘	JK 触ź	发器和同	引步 JK	触发器的	的逻辑写	力能完全	相同。
4)	并行加法	 去器采用	超前进位	立,目的	是为了行	简化电路	ζ		()
5)	在同步	付序电路	的设计	中,如最	是简 状态	表中的制	犬态数为	,2 ^N ,而	又采用	N 个触
	发器来实	– .					. —		()
6)	流水线搏	操作算法	结构一员	定比并行	算法结构	构所需要	的运算	时间少。	()
7)	摩尔型时	寸序逻辑	电路的轴	俞出与 轴	俞入和电	路当前	状态均有		()
8)	所有的半	兰导体存	储器在边	运行时都	具有读名	写功能。			()
9)	在电路测	则试中 S.	A0 和 S	A1 故障	模型可	以覆盖集	 	中的所有	有可能的	J故障。
									()
	冯诺依 构具有更			佛体系结	吉构具有	更好的。	灵活性和	稳定性,	,而哈佛 (体系结
二. 填	空题	((10分)							
1,	二进制数	女 110101	11.011 转	5换为 <u>84</u>	21BCD	码为				0

- 2、实现模值为13的计数器至少需要_____个触发器。
- 3、组合逻辑电路是指任何时刻电路的输出仅由当时的 决定。
- 4、TTL 或非门中, **多余**输入端的处理办法是____。
- 5、假设有一个三级**扭环形**计数器,其初始状态为 000,那么,经过 4 个时钟周期, 其状态为。
- 6、一个二—十进制译码器规定为输出**低电平**有效,则当输入 8421BCD 码为 0110 时,其输出 $Y_9 Y_8 Y_7 Y_6 Y_5 Y_4 Y_3 Y_2 Y_1 Y_0 = ______。$
- 7、已知逻辑函数 F(A,B,C,D) = $\Sigma m(1,3,4,5,6,8,9,12,14)$,当变量 ABCD 由 0110→ 1100 时, (有/无)竞争-冒险现象;
- 8、一个容量为 256×4 位的静态 RAM, 它的**地址线**为_____条。
- 9、时序电路的可测性设计方法划分为3类:专门测试、_____测试和自测试。
- 10、函数 $F = [(A \cdot \overline{B} + C)D + \overline{E}]B$ 的反函数 $\overline{F} = \underline{\hspace{1cm}}$ 。

三. 组合电路_____(14分)

用两个 8 选 1 数据选择器 74LS151 及适当门电路设计一个数值比较器,比较两个二进制数 $A(a_1a_0)$ 和 $B(b_1b_0)$,能分别给出 $A-B\geq 2$, $B-A\geq 2$ 和 |A-B|< 2 的输出信号,要求: 1)写出真值表; 2)输出函数表达式; 3)并画出逻辑图。

姓名:	学 县。	
灶石:	子勺:	

四. 时序逻辑电路_____(16分)

试用题 4 图提供的逻辑器件 1 个 74LS161 和 1 或 2 个 4-1MUX,设计一个具有控制端 M 的序列信号发生器,当 M 分别为 0 和 1 时,在时钟脉冲 CLK 的作用下,电路的输出 Y 能分别周期性地输出 01111101 和 10010101 的脉冲序列(序列信号左边先行)。允许使用适当的门电路。1)写出设计过程;2)画出电路图。

题 4 表 74LS161 功能表 CLK $R_D' \mid LD'$ EP ET 工作状态 置0(异步) Χ 0 Χ Χ Χ 预置数(同步) 1 0 Χ Χ JL Χ 1 0 1 1 保持(包括C) Χ Χ 保持(C=0) 1 1 0 计数 1 1 JL 1 1

五、控制器设计_____(16分)

- 一个简单的 ADC 控制算法分为以下四步: (1) 启动 AD 设备; (2) 触发 AD 数据; (3) 获取 AD 的状态,若未结束则继续转换; (4) 停止 AD 设备。请设计该控制器,要求采用微程序型。
 - 1) 画出 ASM 流程图;
 - 2) 请设计微指令格式,并加以说明;
 - 3)请写出对应这种微指令格式的控制器微程序代码。

姓名:	学号:	

六、测试 (10分)

题 6 图为全加器的示意图,对于图中的五个可能出现固定型 sa0-sa1 故障的故障点 a-e,需要找出测试向量对其进行测试。W1、W2、W3 为三输入测试向量。

- (1) 若电路中仅有 a 点存在 sa1 故障,写出在该全测试集下的 d、e 点的测试输出。
- (2) 写出能够测试 e 点 sa0 故障的全部测试向量。

题 6 图 全加器示意图

七、Verilog HDL____(12分)

以下是 Verilog 描述的二个电路,请使用反相器、2 输入与门、或门、异或门或 D 触发器分别画出它们对应的最简逻辑电路图。

- (i) module F1(a, b, c, f);
 input a, b, c;
 output f;
 assign f = c ? (a & b) : (~a+,~b);
 endmodule;
- (ii) module F2(input R1, R2, E, Do_it, output reg Z1, Z2);
 always @(posedge Do_it) begin
 if (E) Z1 <= R1; Z2 <= R2;
 end
 endmodule;</pre>

八、脉冲电路 (12分)

心脏病人的心跳频率容易出现波动。题 8 图(a)所示的是由 555 定时器构成的心率失常报警电路,经放大后的心电信号 v_I 如题 8 图(b)所示,其中 v_I 的峰值 $v_m=4V$, v_I 最小值=0V。

- (1) 分别说出 555 定时器 I 和 555 定时器 II 所构成的单元电路的名称;
- (2) 对应于 v_i 分别画出A,B,D三点波形;
- (3) 说明心率失常报警原理。

NE555 内部电路框图

	A	Λ		
--	---	---	--	--

题 8 图

B_____

D_

九、附加题 (10分)(注: 计入试卷总分,但总分最多不超过 100分)

堆栈机是一种特殊类型的 CPU, 其所有的指令都是从堆栈 (Stack, 一组特殊的数据寄存器)中取出数据,并且将操作结果放入栈顶。而堆栈有一种"后进先出"规则:即最后进入堆栈的数据最先出来。该堆栈机的结构如题 9 图所示:

题 9 图 堆栈机的数据通路

其相应的指令集如下:

指令	指令描述
add	弹出两个数,然后对它们求和,再把结果压入堆栈中
sub	弹出两个数,然后将第一个弹出的数减去第二个,再把结果压入堆栈中
dup	复制栈顶的数据
swap	交换堆栈中前两个数据
load	堆栈弹出地址,根据此地址从存储器中读出数据,将数据压入堆栈中
store	将栈顶的数据存到数据存储器中,其地址是第二个数据
const	将来自指令的立即数压入堆栈中

数据存储器 DMem 具有**异步**读和同步写,堆栈(stack)有一个输入端和一个输出端,以及两个控制信号(即使能信号 EN,和压栈信号 PUSH)。在时钟的上升沿时刻,如果 PUSH=1 且 EN=1,则数据从数据输入端 Din 被压入堆栈中;如果 PUSH=0 且 EN=1,则栈顶数据从数据输出端被弹出;如果 EN=0,则堆栈不变。

据此回答下列问题:

- (1) 什么是指令周期和机器周期?
- (2) 题 9 图中给出了控制每一个模块的控制信号,通过分析请写出题 9 表中所列指令涉及的控制信号的值。其中每一个控制操作可在一个时钟周期完成,完成一条指令需要多个时钟周期,表中可用"X"表示取任意值,即"无关项"。
- (3) 请说明该堆栈机各控制信号在 swap 指令执行中的合理顺序。

题 9 表 部分指令的控制信号

	Push	en	enA	enB	sel	we	src
add							
store							
dup							
const							