Climate and Extreme Weather Event Analysis

using various time-series forecasting methods

Lighthouse Labs Data Science, April 2022 Jasmin Smallwood

Jasmin Smallwood

On an IP project in Eskay Creek BC, Nov 2021

Ski Touring in Rogers Pass BC, Jan 2022

Focus

Weather Extremes

- 100-year weather event: 1% chance of happening in any given year
- Weather extremes have become more frequent across most land regions.
- The Increasing frequency of these events: 43.08% above mean from 1910

Sources: CEI, IPCC, NCEI, IPCC

Mitigation of Loss (Economic and Human)

"People's perception of extreme but ambiguous weather can be processed through partisan lenses - their views and beliefs alter the way they perceive the weather."

"Particularly intense events -- a 100-year flood -- might be most capable of influencing attitudes."

"Efforts to connect extreme events with climate change may do more to rally those with more conservative views"

Source: Dr Ben Lyons, University of Exeter, on Climate Change Denial:

Connect Historical Trends with Weather Extremes

Connect extreme weather events to historical weather data through the medium of time-series forecasting:

- Analyse historical weather data of locations that experienced 1/50 year to 1/1000 year events in 2021
- 2. **Time series analysis and prediction** of a single 1/100 event in 2021
- 3. Compare models, is there a measurable relationship?

Approach

- Visual Crossing API: 10 locations, 10 weather features
- 1971-01-01 to 2021-12-31

- Explored all weather data
- Visualizations of trends

Modeling:

- Classic ML
- ARIMA (univariate and auto)
- Prophet LSTM
- Tuning: grid search

- Merged 'Median temperature anomaly from 1961-1990 average' dataset
- Combined all location features to create mean yearly weather features

- time series
- seasonal decomposition
- normalizing
- multivariate datasets
- univariate datasets

Timeline:

Climate 'hotspots' in 2021

All weather Data: Yearly Visualization and Observations

Positive trends (1971-2021):

avg_temp_global (+0.85C)

mean_precip (+0.27mm/day)

mean_snowdepth (+0.25 cm/day)

Lytton BC - 1/100 year max temp

June 29th Lytton, BC: 1/100 temperature break for 3 days straight hitting a scorching **49.6 C**:

Goal:

- Predict temperature between the dates of 2021-06-25 to 2021-06-30, using historical data predating this period
- Achieve robust model using univariate and multivariate datasets

Results: Forecasting Lytton BC

Error Metric: RMSE

Model	RMSE
Arima (univariate)	5.183
Prophet (univariate)	9.171
Random Forest (multivariate)	5.927
Linear Regression (multivariate)	0.863
Auto ARIMA (multivariate)	6.738
LSTM (multivariate)	4.144

Reflections

What worked?

VC API for PULL request for thorough dataset

What didn't?

gridsearch hyperparameter tuning on LSTM (and others: time sensitive) What's next?

Weather forecasting for all 10 chosen locations

The End!

Thank you for Listening