Schema Design

schema, n. — a representation of a plan or theory in the form of an outline or model.

You will be able to:

Explain what an 'Entity Relationship Diagram' is (and draw one!)

Describe what data normalization is, and when we might do it.

The dorky definition of ERD

 An entity-relationship diagram (ERD) is a data modeling technique that graphically illustrates an information system's entities and the relationships between those entities

Pre-requisites

- What is a database?
- What are some characteristics of a good database?
- What is a primary key? A secondary key?

Example app - Dog Shelter

- The app (and the database using it) needs to record...
 - The dog (name and breed)
 - Which human adopted them, where they live, and if their home is suitable for a dog

What's wrong with this database?

id	Dog Name	Breed	Fav Toy	Adopter	Adopter Address	Adopter Inspection
I	Pongo	Dalmation	Old Shoe	Cruella DeVil	House DeVil, London	FALSE
2	Perdita	Dalmation	Squeky Pig	Cruella DeVil	House DeVil, London	FALSE
3	Charles	Mutt	Rubber Duck	John	Harlem, NYC	TRUE
4	Murphy	Springer Spaniel	Stick	John	Harlem, NYC	TRUE
5	Patch	Dalmation	Teddy BEar	Cruella DeVil	House DeVil, London	FALSE
6	Mac	West Highland Terrier	Sock	Harry	4 Privet Drive	TRUE

Let's try again...

dogs

0				
id	Dog Name	Breed	Fav Toy	Adopter
	Pongo	Dalmation	Old Shoe	2
2	Perdita	Dalmation	Squeky Pig	2
3	Charles	Mutt	Rubber Duck	I
4	Murphy	Springer Spaniel	Stick	
5	Patch	Dalmation	Teddy Bear	2
6	Mac	Westie	Sock	3

humans

id	name	address	passed inspection
I	John	Harlem, NYC	TRUE
2	Cruella DeVil	House DeVil, London	FALSE
3	Harry	4 Privet Drive	TRUE

Normalization is "organizing your data to reduce redundancy and improve integrity" (aka splitting your DB into separate tables)

Designing a Schema

Analysis

- What does my program need to output?
- What data will I need to produce that output?

Conceptual Design

Conceptual entities and their relationships

Logical Design

In a SQL database: What are my tables, attributes, and relationships?

Physical Design

Javascript code, CREATE TABLE statements

Designing a Schema

Analysis

- What does my program need to output?
- What data will I need to produce that output?
- Conceptual Design
 - Conceptual entities and their relationships
- Logical Design
 - In a SQL database: What are my tables, attributes, and relationships?
- Physical Design
 - Javascript code, CREATE TABLE statements

Dog Shelter App Analysis

- I want a program to keep track of dogs in the shelter, and who adopts them
- I need to know each dog's name and favorite toy.
- I want to be able to maintain the address of each adopter, and whether their home is suitable for a dog

Designing a Schema

Analysis

- What does my program need to output?
- What data will I need to produce that output?

Conceptual Design

- Conceptual entities and their relationships
- Logical Design
 - In a SQL database: What are my tables, attributes, and relationships?
- Physical Design
 - Javascript code, CREATE TABLE statements

Dog Shelter App Conceptual Design

Designing a Schema

Analysis

- What does my program need to output?
- What data will I need to produce that output?
- Conceptual Design
 - Conceptual entities and their relationships
- Logical Design
 - In a SQL database: What are my tables, attributes, and relationships?
- Physical Design
 - Javascript code, CREATE TABLE statements

Dog Shelter App Logical Design

dogs				
id	int, primary key	dog belongs to human	hum	ans
human_id	int, foreign key		id	int, primary key
name	string		name	
breed	string			
favorite_toy	string		address	string
			passed_inspection	boolean

Designing a Schema

Analysis

- What does my program need to output?
- What data will I need to produce that output?

Conceptual Design

- Conceptual entities and their relationships
- Logical Design
 - In a SQL database: What are my tables, attributes, and relationships?
- Physical Design
 - Javascript code, CREATE TABLE statements

Example: A Journal Analysis

- I want a program to keep my journal in.
- I want to be able to enter the text of each journal entry.
- I want to be able to see journal entries chronologically.

Entity Relationship Diagram (ERD) Conceptual Design

Entity Relationship Diagram (ERD) Logical Design

entries		
id	int, primary key	
date_created	date	
text	text	

All done!

- Oh wait, I forgot a couple of things
 - I want to be able to have multiple journals
 - I want to be able to #tag entries and find all entries with a particular #tag
- Take 2...

Example: A Journal Conceptual Design, Take 2

entries

id	journal	text	date_created
I	My Vacation	Italy is amazing! I love	2017-01-01
2	Fullstack journey	Week one was hard as f	2016-12-12
3	LOLZ with BFFS	Dear diary, I had a great ti	2013-06-01

tags

id	tag
I	#amazeballs
2	#nomakeup
3	#nomnom

entries_tags

entry_id	tag_id
I	I
2	3
	2
3	2

The three main relationships

- has many
- belongs to
- has many through

Normalized Databases

- Focus on optimal storage often at odds with retrieval speed due to complex queries using complicated joins
- Work best when the application is write-intensive and write-load is more than read-load
 - Tables are usually smaller as data is divided vertically (fast reads on single tables)
 - Updates and Inserts are fast because there are no duplicates to update
 - Data is not duplicated so there is less of a need for process intensive group by or distinct queries
- Normalized tables mean join tables, which mean read operations on multiple tables suffer (indexing strategies don't work as well with joins)

Denormalized

- Works best when the application is read-intensive
 - The data is present in the same table (no need for joins)
 - A single table with all required data allows for efficient index usage
- Data is duplicated which means that updates and inserts become complex and costly

What Do I Do?!

- Real world applications will most likely have both read-loads and write-loads
- Utilize both approaches depending on the situation!
- Also, let your DBA handle most of this...

Steps for Developing your ERD

- 1. Identify Entities
- 2. Define Relationships
- 3. Draw Rough-Draft ERD
- 4. Fill in Cardinality/Modality (arrows with relationship type)
- 5. Define Primary Keys
- 6. Draw Key-Based ERD (labeling Primary and Foreign Keys)
- 7. Identify Attributes
- 8. Draw fully attributed ERD

Design one!

- Twitter
- Gmail
- Facebook
- Instagram

- Wikipedia
- AirBnB
- Google (search)

You will be able to:

Explain what an 'Entity Relationship Diagram' is (and draw one!)

Describe what data normalization is, and when we might do it.