Antibiotic Drug Discovery

Corey J Sinnott

TOC

- Overview
- Project Objective
- Analysis
- Findings & Recommendations

Understanding the problem

1.2b USD

The cost to produce a new antibiotic in the US.

7 years

The average length of a traditional drug discovery pipeline.

50%

More resistant strains of bacteria over the past 4 years.

not have a cost-benefit incentive to produce new antibiotics.

Patients infected with antibiotic resistant bacteria need urgent treatment.

Organisms are evolving new mechanisms of resistance faster than we can create new treatments.

The Solution

Machine Learning

 Training models to predict successful antibiotics.

Al

 Using trained models to invent new antibiotics.

Project objective:

Develop a drug discovery pipeline.

First Step:

Develop a model

Choose an Organism

- Acinetobacter Baumanni
 - Blood, wound, urinary tract, and lung infections
 - Becoming resistant to most antibiotics

Pipeline optimized to start with any specified target, and be completely reproducible.

Search for Classified Compounds

- ~ 5000 compounds obtained using ChEMBL web-client.
- Filtered and sorted for Minimum Inhibitory Concentration (MIC).
 - MICs ranged from <10nM (very effective) to >500,000nM (not effective).

Engineer Features

- Lipinski Descriptors
 - Molecular Weight
 - Log-p
 - Lipophilicity / Solubility
 - # Proton Donors
 - # Proton Acceptors
- Vectorization using Morgan's fingerprint algorithm.
- Standardized target with -log10
 - O MIC ⇒ pMIC

SMILES: CC1=CN=C(C(=C1OC)C)CS(=O)C2=NC3=C(N2)C=C(C=C3)OC

Mol wt = $345.42 \text{ g} \cdot \text{mol}^{-1}$ Log-p = 2.43

H+ Donors: 1 # H+ Accept: 3

Classification Model

- HistGradient Boosting Classification
- Binary target
 - Active (<35nM MIC) vs Inactive</p>
 - Intermediate values removed
- Standard Scaler
- Max iterations = 800

HistGradient Boost Metrics

- Accuracy ⇒ 98%
- Precision ⇒ 96%
- Recall ⇒ 97%
- F1 score ⇒ 0.97
- **ROC AUC** ⇒ 0.98

Null accuracy 60%

Regression Model

- HistGradient Boosting Regression
- Predicting pMIC
 - -log10 of MIC
- Standard Scaler
- L2 regularization = 0.0001
- 1000 max iterations

Random Forest Regression did better with outliers. Mention residuals

HistGradient Boost Metrics

- $r^2 \qquad \Rightarrow 0.76$
- MSE ⇒ 0.696
- RMSE ⇒ 0.834
- MAE ⇒ 0.568
- Null MSE ⇒ 3.088
- Performed 78%
 greater than a null model

Feature Importances

 Same molecular fragments, or "bits," important for both classification and regression.

Residuals

Next Step:

Practical Application

Practical Application

- User inputs a target organism and SMILES.
- App outputs model metrics and prediction.

Drug Discovery App

Drug Discovery App

Drug Discovery App

App Demo

What's next?

What's next?

 New molecules generated by recurrent neural networks.

Molecule Generator

- Tensorflow NN
- LSTM layers
- Trained on every available compound.
- X variable is an individual character from a molecule.
- Y variable is the following character.

Adapted from Deep Learning with Python Work in-progress

What's next?

These molecules were generated by a neural network

Generator Demo

Conclusion

A robust, simple drug discovery pipeline was created.

Classify

Classify successful antibiotics with 98% accuracy.

Identify

Identify molecular fragments most important to model.

Predict

App can give an estimate of efficacy for a new drug in under a minute.

Generate

Ability to create new drugs with an RNN is evolving.

Thanks!

Corey J Sinnott

Data Scientist

Sources

- A Deep Learning Approach to Antibiotic Discovery: https://www.cell.com/cell/fulltext/S0092-8674(20)30102-1?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867420301021%3Fshowall%3Dtrue
- 2. Antibiotic resistance: bioinformatics-based understanding as a functional strategy for drug design: https://pubs.rsc.org/en/Content/ArticleLanding/2020/RA/D0RA01484B#!divAbstract
- 3. MIC database: A collection of antimicrobial compounds from literature: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823385/
- 4. Machine learning-powered antibiotics phenotypic drug discovery: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428806/
- 5. Helping Chemists Discover New Antibiotics: https://pubs.acs.org/doi/10.1021/acsinfecdis.5b00044
- 6. New Statistical Technique for Analyzing MIC-Based Susceptibility Data: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3294928/
- 7. Applying machine learning techniques to predict the properties of energetic materials: https://www.nature.com/articles/s41598-018-27344-x
- **8.** QBMG: quasi-biogenic molecule generator with deep recurrent neural network: https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0328-9
- 9. Are the physicochemical properties of antibacterial compounds really different from other drugs?: https://jcheminf.biomedcentral.com/articles/10.1186/s13321-016-0143-5
- 10. Deep Learning with Python by Francois Chollet