

Take-Home (Day 4)

```
In [1]: import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
```

Let's begin with some hands-on practice exercises

1. Plot a bar chart and vertical bar chart for the following data.

Name	Sheldon	Amy	Priya	Raj
Maths	72	34	54	76
Geography	98	98	78	87

2. Following is data on 10 people, information on the number of dependents on each of them and their income is given. Draw a dual-axis plot.

Person	No. of Dependents	Income
1	1	60000
2	2	52000
3	0	50000
4	3	65000
5	0	45500
6	1	43050
7	0	54300
8	0	38000
9	2	20000
10	1	47500

```
In [5]: # type your code here
        p= [i for i in range(1,11)]
        no=[1,2,0,3,0,1,0,0,2,1]
        i=[60000,52000, 50000, 65000, 45500, 43050, 54300,38000, 20000, 47500]
        df2= pd.DataFrame(list(zip(p,no,i)), columns=['Person', 'no of dependents', 'incolumns']
        fig, axes= plt.subplots(1,1, figsize=(8,3), dpi=100)
        axes.plot(df2['Person'], df2['income'], color= 'g')
        axes.set ylabel('income')
        axes.set_xlabel('index of person')
        axes.grid('dark')
        axes.legend(['income'], loc=1)
        ax1= axes.twinx()
        ax1.set_ylabel('no of dependents')
        ax1.plot(df2['Person'], df2['no of dependents'], color= 'b')
        ax1.legend(['dependents'], loc=2)
        plt.show()
```


3. Use the following data to plot a pie chart and annotate the percentage sales.

Location	Sale
Delhi	42500
Bangalore	44500
Chennai	48300
Pune	52400
Kolkata	61800

4. Write a program to plot a bar plot of seven students representing their marks in Mathematics using plotly.

```
marks = [76,98,78,98,89,56,69,76]
students = ['Sheldon','Leonard','Raj','Howard','Amy','Penny','Bernad
ette']
```

Out[7]: <BarContainer object of 8 artists>

5. Import the flights data set and plot a line plot for the variable 'passengers'.

```
In [8]: # type your code here
df5 = sns.load_dataset('flights')
sns.lineplot(y = 'passengers',x='month',data=df5)
```

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x1cdcd421288>

6. Import the iris data set and plot a heatmap of the correlation between its numeric variables.

```
In [9]: # type your code here
    df6 =sns.load_dataset('Iris')
    x = df6.corr()
    sns.heatmap(x,annot=True)
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x1cdcd1f8c08>

7. Using the iris data set, plot boxplot of its numeric features.

```
In [10]: # type your code here
sns.boxplot(data=df6)
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x1cdcd6d2148>

8. Import the built-in 'diamonds' data set from seaborn. For the variable 'cut', plot a count plot.

```
In [11]: # type your code here
    df8 = sns.load_dataset('diamonds')
    sns.countplot(data=df8,x='cut')
```

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x1cdcd1c60c8>

9. Use the iris data set, to plot a joint plot of sepal length against sepal width.

```
In [12]: # type your code here
sns.jointplot(data=df6,x='sepal_length',y= 'sepal_width')
```

Out[12]: <seaborn.axisgrid.JointGrid at 0x1cdcd259048>

10. Jake's monthly expenditure is given below. Draw a pie chart and explode the wedge with highest cost

Expenditure	Item
15	Food
10	Clothing
40	Rent
25	Education
5	Unforseen Events
5	Medicine

In []: