КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Кафедра прикладних інформаційних систем

Звіт до лабораторної роботи №6

з курсу

«Системний аналіз та теорія прийняття рішень»

студентки 3 курсу групи ПП-33 спеціальності 122 «Комп'ютерні науки» ОП «Прикладне програмування» Матвіїв Анастасії Юріївни

> Викладач: Білий Р.О.

Тема: Постановка задачі про призначення.

Мета роботи: Навчитися складати моделі та вирішувати задачі про призначення.

Хід роботи:

Задача 5. Цех металообробки отримав термінове замовлення щодо випуску партії деталей. Для виготовлення деталі необхідно виконати операції на чотирьох верстатах. У цеху працюють чотири слюсарі високої кваліфікації, кожен з яких може працювати на будь-якому верстаті, але з різним відсотком браку (відсоток браку відомо). Розподіліть верстати між працівниками таким чином, щоб відсоток браку був мінімальним.

Станок	1	2	3	4
Працівник				
1	2,3	1,9	2,2	2,7
2	1,8	2,2	2,0	1,8
3	2,5	2,0	2,2	3,0
4	2,0	2,4	2,4	2,8

Розподіліть верстати між робітниками таким чином, щоб відсоток браку був мінімальним.

Вирішення задачі аналітичним способом:

	<u>s1</u>	s2	s3	s4	
p1	2.3	1.9	2.2	2.7	1.9
p2	1.8	2.2	2	1.8	1.8
рЗ	2.5	2	2.2	3	2
p4	2	2.4	2.4	2.8	2

0.4	0	0.3	0.8				
0	0.4	0.2	0				
0.5	0	0.2	1				
0	0.4	0.4	0.8				
0	0	0.2	0				
0.4	0	0.1	0.8				
0	0.4	0	0				
0.5	0	0	1				
0	0.4	0.2	0.8				
-	0	0.1	0.8				
-	-	0	1				
0	-	0.2	0.8				
-	0	-	0.8				
-	-	-	0				
_	-	0	1				
0	-	-	0.8				
-	0	-	0.8				
_	-	-	0				
			1				

Вирішення задачі на мові програмування Python

0.8

```
import numpy as np
   from scipy.optimize import linear_sum_assignment as lsa
   def printResult(matrix, row_i, col_i):
       print("Best result:")
       for i in range(len(row_i)):
           print(
               f"Person {row_i[i]+1} -> job {col_i[i]+1} "
           print("Min ", {matrix[row_i[i], col_i[i]]})
   matrix = np.matrix([[2.3, 1.9, 2.2, 2.7],
                       [1.8, 2.2, 2, 1.8],
                       [2, 2.4, 2.4, 2.8]])
   row_i, col_i = lsa(matrix)
   printResult(matrix, row_i, col_i)
Best result:
Person 1 → job 2
Min {1.9}
Person 2 -> job 4
Min {1.8}
Person 3 -> job 3
Min {2.2}
Person 4 → job 1
Min {2.0}
```

Висновок:

Під час виконання лабораторної роботи я навчилася складати моделі та вирішувати задачі про призначення.