

勤学如春起之苗,不见其增,日有所长; 辍学如磨刀之石,不见其损,日有所亏。

———陶渊明

例 1、讨论函数
$$f(x) = \lim_{n \to \infty} \frac{x^{n+2} - x^{-n}}{x^n + x^{-n}}$$
 的连续性.

【答案】

解 先求极限得到 f(x) 的表达式,再讨论 f(x) 的连续性.

当
$$x \neq 0$$
 时,有 $f(x) = \lim_{n \to \infty} \frac{x^{2n+2} - 1}{x^{2n} + 1} = \begin{cases} -1, & 0 < |x| < 1, \\ 0, & |x| = 1, \\ x^2, & |x| > 1, \end{cases}$

故在 $(-\infty,-1)$, (-1,0), (0,1), $(1,+\infty)$ 内 f(x) 连续.

又因为
$$\lim_{x\to -1^-} f(x) = 1$$
, $\lim_{x\to -1^+} f(x) = -1$,

$$\lim_{x\to 0} f(x) = -1,$$

$$\lim_{x \to 1^{-}} f(x) = -1, \lim_{x \to 1^{+}} f(x) = 1,$$

所以 f(x) 在 $x=0,\pm 1$ 处间断,是第一类间断点,其中 x=0 是可去间断点.

例 2、设 f(x) 在 [a,b] 上连续,且 a < c < d < b ,证明:在 (a,b) 内必存在一点 ξ ,使得 $mf(c) + nf(d) = (m+n)f(\xi)$,其中 m,n 为任意给定的自然数.

【答案】

由于

证 由 f(x) 在 [a,b] 上连续,知 f(x) 在 [c,d] 上取得最小值 k 和最大值 K.

$$(m+n)k \leq mf(c) + nf(d) \leq (m+n)K$$

故
$$k \leqslant \frac{mf(c) + nf(d)}{m + n} \leqslant K$$
.

由介值定理,存在一点 $\xi \in [c,d] \subset (a,b)$,使得 $f(\xi) = \frac{mf(c) + nf(d)}{m+n}$,即

$$mf(c) + nf(d) = (m+n)f(\xi)$$
.

例 3、设 $x_1 = \sqrt{a}(a > 0)$, $x_{n+1} = \sqrt{a + x_n}$, 证明: $\lim_{n \to \infty} x_n$ 存在,并求其值.

【答案】

解 依题意,有
$$x_1=\sqrt{a}, \ x_2=\sqrt{a+\sqrt{a},\cdots}, \ x_n=\underbrace{\sqrt{a+\sqrt{a+\cdots+\sqrt{a}}}}_{n \wedge n},\cdots,$$

可知 $\{x_n\}$ 严格单调增加.

曲
$$x_{n+1} = \sqrt{a + x_n}$$
 ,得 $x_{n+1}^2 = a + x_n$,故 $x_{n+1} = \frac{a}{x_{n+1}} + \frac{x_n}{x_{n+1}} < \frac{a}{x_{n+1}} + 1$.

而
$$x_{n+1} > \sqrt{a}$$
 , 因此 $x_{n+1} < \frac{a}{\sqrt{a}} + 1 = \sqrt{a} + 1$, 即 $\{x_n\}$ 有上界,故 $\lim_{n \to \infty} x_n$ 存在.

设 $\lim_{n\to\infty} x_n = A$, 等式 $x_{n+1}^2 = a + x_n$ 两边同时取极限 $(n\to\infty)$, 得 $A^2 = a + A$, 解得

$$A_1 = \frac{1 + \sqrt{1 + 4a}}{2}, \ A_2 = \frac{1 - \sqrt{1 + 4a}}{2} \ ($$
 ($) ,$

故
$$\lim_{n\to\infty} x_n = \frac{1+\sqrt{1+4a}}{2}$$

例 4、设
$$f(x) = \begin{cases} (x+1)\arctan\frac{1}{x^2-1}, & x \neq \pm 1, \\ 0, & x = \pm 1, \end{cases}$$
 则 $f(x)$ ().

A.在 x = 1, x = -1 处都连续

B.在
$$x = 1, x = -1$$
 处都间断

$$C.在 x = -1$$
 处间断, $x = 1$ 处连续

D.在
$$x = -1$$
 处连续, $x = 1$ 处间断

【答案】D.

解 当
$$x \rightarrow -1$$
时,arctan $\frac{1}{x^2-1}$ 有界, $x+1 \rightarrow 0$,故

$$\lim_{x \to -1} f(x) = 0 = f(-1),$$

即 f(x) 在 x = -1 处连续.又因

$$\lim_{x \to 1^{-}} f(x) = -\pi, \lim_{x \to 1^{+}} f(x) = \pi,$$

所以 f(x) 在 x=1 处间断.

例 5、求极限
$$\lim_{x\to 0} (1-x^2)^{\frac{1}{1-\sqrt{1-x^2}}}$$
;

解:
$$\lim_{x \to 0} (1 - x^2)^{\frac{1}{1 - \sqrt{1 - x^2}}} = \lim_{x \to 0} \left[(1 - x^2)^{-\frac{1}{x^2}} \right]^{\frac{-x^2}{1 - \sqrt{1 - x^2}}}, \quad \Box$$

$$\lim_{x \to 0} \frac{-x^2}{1 - \sqrt{1 - x^2}} = \lim_{x \to 0} \frac{-x^2 \left(1 + \sqrt{1 - x^2} \right)}{x^2} = -2,$$

故原式 = e^{-2} .