Решени задачи по СЕП

Иво Стратев

25 юни 2019 г.

Зад. 1. от второ контролно по СЕП (10/05/2019)

Да се докаже, че операторът $\Gamma: \mathcal{F}_2 \to \mathcal{F}_2$, дефиниран с условието

$$\Gamma(f)(x,y) \simeq \begin{cases} y, & f(x,y) \simeq 0\\ f(x,y+1), & f(x,y) > 0\\ \neg !, & \neg !f(x,y) \end{cases}$$

има безброй много неподвижни точки.

Решение:

Забелязваме, че когато f(x,y) > 0, то $\Gamma(f)(x,y)$ зависи само от y. Тоест свободно можем да се възползваме от факта, че стойността x остава фиксирана!.

Понеже $fix(\Gamma) = \{f \in \mathcal{F}_2 \mid \Gamma(f) = f\} \subseteq \mathcal{F}_2$ и \mathcal{F}_2 е неизброймо безкрайно множество, то е напълно достатъчно да покажем, че за някое $S \subseteq \mathcal{F}_2$, което е неизброймо безкрайно ще е изпълнено $S \subseteq fix(\Gamma)$.

Нека $F_1^+ \rightleftharpoons \{f: \mathbb{N} \to \mathbb{N}^+\}$ и нека $F_2^+ \rightleftharpoons \{f: \mathbb{N}^2 \to \mathbb{N}^+\}$. Нека $\Delta: F_1^+ \to F_2^+$ и $\Delta(f)(x,y) = f(x)$. Нека $S \rightleftharpoons \{\Delta(f) \mid f \in F_1^+\}$.

Очевидно S е неизброймо безкрайно понеже F_1^+ е и $S \subseteq F_2^+ \subseteq \mathcal{F}_2$.

Ще докажем, че $S \subseteq fix(\Gamma)$.

Нека $f\in S$ тогава $(\exists h\in F_1^+)[f=\Delta(h)].$ Нека тогава $h\in F_1^+$ и $f=\Delta(h).$ Имаме $(\forall (x,y)\in \mathbb{N}^2)[f(x,y)=\Delta(h)(x,y)=h(x)>0].$

Нека $(x,y) \in \mathbb{N}^2$ тогава $\Gamma(f)(x,y) \simeq f(x,y+1) = h(x) = f(x,y)$.

Следователно $(\forall (x,y) \in \mathbb{N}^2)[\Gamma(f)(x,y) = f(x,y)]$. Тоест $f \in fix(\Gamma)$.

Следователно $(\forall f \in S)[f \in fix(\Gamma)]$. Следователно $S \subseteq fix(\Gamma)$.

Извод: $fix(\Gamma)$ е неизброймо безкрайно и значи има безброй много неподвижни точки.

Зад. 2. от второ контролно по СЕП (10/05/2019)

Нека операторът $\Gamma: \mathcal{F}_1 \to \mathcal{F}_1$ е дефиниран по следния начин:

$$\Gamma(f)(x) \simeq \begin{cases} 1, & x \le 1\\ \frac{x}{2}, & x > 1 \& x \equiv 0 \pmod{2} \\ f\left(f\left(\frac{3x+1}{2}\right)\right), & x > 1 \& x \equiv 1 \pmod{2} \end{cases}$$

Докажете, че:

а) Γ е компактен (непрекъснат) оператор.

б)
$$(\forall x \in \mathbb{N}) \left[!f_{\Gamma}(x) \& x > 1 \implies f_{\Gamma}(x) \le \frac{x}{2}\right]$$
, където $f_{\Gamma} = lfp(\Gamma)$.

Решение:

a)

 Γ е компактен (непрекъснат) оператор, когато Γ е монотоннен и краен, което ще докажем.

Нека $f, g \in \mathcal{F}_1$ и $f \subseteq g$. Нека $x \in Dom(\Gamma(f))$.

- $x \le 1$ Имаме $\Gamma(f)(x) \simeq 1 \simeq \Gamma(g)(x)$.
- x>1 & $x\equiv 0\pmod 2$ Имаме $\Gamma(f)(x)\simeq \frac{x}{2}\simeq \Gamma(g)(x).$
- $x > 1 \& x \equiv 1 \pmod{2}$

Имаме
$$!\Gamma(f)(x)$$
 значи $!f\left(\frac{3x+1}{2}\right)$ & $!f\left(f\left(\frac{3x+1}{2}\right)\right)$. Следователно $!g\left(\frac{3x+1}{2}\right)$ & $!g\left(g\left(\frac{3x+1}{2}\right)\right)$ и $g\left(\frac{3x+1}{2}\right)=f\left(\frac{3x+1}{2}\right)$ и $g\left(g\left(\frac{3x+1}{2}\right)\right)=f\left(f\left(\frac{3x+1}{2}\right)\right)$.

Понеже $f \subseteq a$

Така
$$\Gamma(f)(x)\simeq f\left(f\left(\frac{3x+1}{2}\right)\right)=f\left(g\left(\frac{3x+1}{2}\right)\right)=g\left(g\left(\frac{3x+1}{2}\right)\right)\simeq\Gamma(g)(x).$$

Така $!\Gamma(f)(x) \implies \Gamma(f)(x) \simeq \Gamma(g)(x).$

Следователно $(\forall x \in \mathbb{N})[!\Gamma(f)(x) \implies \Gamma(f)(x) \simeq \Gamma(g)(x)].$

Така $\Gamma(f)\subseteq \Gamma(g)$. От тук $(\forall (f,g)\in \mathcal{F}_1^2)[f\subseteq g\implies \Gamma(f)\subseteq \Gamma(g)].$

Тоест Γ е монотоннен. (1)

Нека $h \in \mathcal{F}_1$ и нека $x \in Dom(\Gamma(h))$.

- $x \le 1$ Имаме $\Gamma(h)(x) \simeq 1 \simeq \Gamma(\emptyset)(x)$ и очевидно $\emptyset \subseteq h$.
- x>1 & $x\equiv 0\pmod 2$ Имаме $\Gamma(h)(x)\simeq \frac{x}{2}\simeq \Gamma(\emptyset)(x)$ и очевидно $\emptyset\subseteq_{fin}h.$
- $x > 1 \& x \equiv 1 \pmod{2}$ Имаме

$$\Gamma(h)(x) \simeq h\left(h\left(\frac{3x+1}{2}\right)\right) \simeq \Gamma\left(h_{\uparrow}\left\{\frac{3x+1}{2}, h\left(\frac{3x+1}{2}\right)\right\}\right)(x)$$
 и очевидно $h_{\uparrow}\left\{\frac{3x+1}{2}, h\left(\frac{3x+1}{2}\right)\right\} \stackrel{\subseteq}{fin}h.$

Следователно $(\forall x \in Dom(\Gamma(h)))(\exists \theta \in \mathcal{F}_1)[\theta \subseteq \inf_{fin} h \& \Gamma(h)(x) \simeq \Gamma(\theta)(x)].$

Следователно

$$(\forall h \in \mathcal{F}_1)(\forall x \in \mathbb{N})[!\Gamma(h)(x) \implies (\exists \theta \in \mathcal{F}_1)[\theta \subseteq_{fin} h \& \Gamma(h)(x) \simeq \Gamma(\theta)(x)]].$$

Тоест Γ е креан. (2).

От (1) и (2) следва, че Γ е компактен (непрекъснат) оператор.

б)

Нека Q, R са свойства в \mathcal{F}_1 дефинирани по следния начин:

$$Q(f) \rightleftharpoons (\forall x \in \mathbb{N})[!f(x) \& x \le 1 \implies f(x) = 1]$$

$$R(f) \rightleftharpoons (\forall x \in \mathbb{N}) \left[!f(x) \& x > 1 \implies f(x) \le \frac{x}{2}\right]$$

Q и R са свойства от тип частична коректност и следователно са непрекъснати. Нека $P(f) \rightleftharpoons Q(f)$ & R(f). P е конюнкцията на Q и R, които са непрекъснати, следователно P е непрекъснато. (3)

Имаме $(\forall x \in \mathbb{N})[\neg!\emptyset(x)]$ следователно

$$(\forall x \in \mathbb{N})[!\emptyset(x) \ \& \ x \leq 1 \implies \emptyset(x) = 1] \ \& \ (\forall x \in \mathbb{N}) \left[!\emptyset(x) \ \& \ x > 1 \implies \emptyset(x) \leq \frac{x}{2}\right]$$
 тоест $Q(\emptyset) \ \& \ R(\emptyset)$. Следователно $P(\emptyset)$. (4) Нека $f \in \mathcal{F}_1$ и $P(f)$. Нека $x \in Dom(\Gamma(f))$.

- $x \leq 1$ Имаме $\Gamma(f)(x) = 1$.
- x > 1 Възможни са два подслучая:

Получихме, че $!\Gamma(f)(x)$ & $x\leq 1 \Longrightarrow \Gamma(f)(x)=1$ и $!\Gamma(f)(x)$ & $x>1 \Longrightarrow \Gamma(f)(x)\leq \frac{x}{2}.$

Следователно $Q(\Gamma(f))$ & $R(\Gamma(f))$ е истина, тоест $P(\Gamma(f))$. Следователно имаме $P(f) \Longrightarrow P(\Gamma(f))$. Така $(\forall f \in \mathcal{F}_1)[P(f) \Longrightarrow P(\Gamma(f))]$. (5) Тогава от (3), (4), (5) и правилото на Скот получаваме $P(f_{\Gamma})$. В частност $R(f_{\Gamma})$. Тоест $(\forall x \in \mathbb{N})\left[!f_{\Gamma}(x) \& x > 1 \Longrightarrow f_{\Gamma}(x) \le \frac{x}{2}\right]$.

Трето контролно по $\text{CE}\Pi \ (31/05/2019)$

Нека Р е следната рекурсивна програма:

$$h(x,y) = f(x,y,26,5,2) + 995 \ where$$

$$f(x,y,0,0,w) = g(w,9)$$

$$f(x,y,0,t,w) = g(x,y) + g(y,x) + f(x,y,0,t-1,w)$$

$$f(x,y,z,t,w) = g(x,y) + f(x,y,z-1,t,w)$$

$$g(x,0) = x$$

$$g(x,y) = x.g(x,y-1)$$

Да се докаже, че:

- a) $(\forall (x,y) \in \mathbb{N}^2)[!D_V[P](x,y) \implies D_V[P](x,y) \simeq 31x^{y+1} + 5y^{x+1} + 2019]$
- б) $D_V[P]$ е тотална функция.

Решение:

a)

Дефинираме следните оператори: $\Gamma: \mathcal{F}_5 \times \mathcal{F}_2 \to \mathcal{F}_5$ и $\Delta: \mathcal{F}_2 \to \mathcal{F}_2$.

$$\Gamma(f,g)(x,y,z,t,w) \simeq \begin{cases} g(w,9), & z=0 \ \& \ t=0 \\ g(x,y)+g(y,x)+f(x,y,0,t-1,w), & z=0 \ \& \ t>0 \\ g(x,y)+f(x,y,z,t,w), & z>0 \end{cases}$$

$$\Delta(g)(x,y) \simeq \begin{cases} x, & y = 0\\ x.g(x,y-1), & y > 0 \end{cases}$$

 Γ и Δ са термални оператори, следователно са непрекъснати. Тогава системата

$$\Gamma(f,g) = f$$
$$\Delta(g) = g$$

Има единствено най-малко решение.

Нека $p \in \mathcal{F}_2$ и $p(x,y) = x^{y+1}$. Ще доажем, че $fix(\Delta) = \{p\}$.

Проверяваме, че $\{p\} \subseteq fix(\Delta)$.

Нека $(x,y) \in \mathbb{N}^2$. Тогава са възможни два случая.

- y = 0Тогава $\Delta(p)(x,y) \simeq \Delta(p)(x,0) \simeq x \simeq x^{0+1} \simeq x^{y+1} \simeq p(x,y).$
- y > 0Тогава $\Delta(p)(x,y) \simeq x.p(x,y-1) \simeq x.x^{y-1+1} \simeq x.x^y \simeq x^{y+1} \simeq p(x,y).$

Следователно $(\forall (x,y) \in \mathbb{N}^2)[\Delta(p)(x,y) \simeq p(x,y)]$. Следователно $p = \Delta(p)$. Следователно $p \in fix(\Delta)$. Така $\{p\} \subseteq fix(\Delta)$. (1)

Проверяваме, че $fix(\Delta) \subseteq \{p\}$.

Нека $f \in fix(\Delta)$. Ще докажем чрез индукция следното твърдение $(\forall y \in \mathbb{N})(\forall x \in \mathbb{N})[f(x,y) \simeq p(x,y)].$

• База y = 0

Нека $x \in \mathbb{N}$. Тогава

$$f(x,y) \simeq \Delta(f)(x,y) \simeq \Delta(f)(x,0) \simeq x \simeq x^{0+1} \simeq x^{y+1} \simeq p(x,y) \simeq p(x,0).$$
 Следователно $(\forall x \in \mathbb{N})[f(x,0) \simeq p(x,0)].$

• Индукционна хипотеза: Допускаме $(\exists n \in \mathbb{N})(\forall x \in \mathbb{N})[f(x,n) \simeq p(x,n)].$ Нека тогава $n \in \mathbb{N}$ и $(\forall x \in \mathbb{N})[f(x,n) \simeq p(x,n)].$

• Индукционна стъпка y = n + 1

Нека $x \in \mathbb{N}$. Тогава $f(x,y) \simeq f(x,n+1) \simeq \Delta(f)(x,n+1) \simeq x.f(x,n+1-1) \simeq x.f(x,n) \simeq x.p(x,n) \simeq x.x^{n+1} \simeq x^{n+1+1} \simeq x^{y+1} \simeq p(x,y)$.

Следователно $(\forall x \in \mathbb{N})[f(x,y) \simeq p(x,y)].$

• Заключение: $(\forall y \in \mathbb{N})(\forall x \in \mathbb{N})[f(x,y) \simeq p(x,y)].$

Следователно f=p, от тук $f\in\{p\}$. Следователно $(\forall f\in fix(\Delta))[f\in\{p\}]$. Следователно $fix(\Delta)\subseteq\{p\}$. (2)

От (1) и (2), следва, че $fix(\Delta) = \{p\}$.

Тогава понеже p е тотална, можем свободно да заместим в първото функционално уравнение.

Разглеждаме оператор $\Psi: \mathcal{F}_5 \to \mathcal{F}_5$. Дефиниран така $\Psi(f) = \Gamma(f,p)$. Тоест:

$$\Psi(f)(x,y,z,t,w) \simeq \begin{cases} w^{10}, & z = 0 \& t = 0 \\ x^{y+1} + y^{x+1} + f(x,y,0,t-1,w), & z = 0 \& t > 0 \\ x^{y+1} + f(x,y,z-1,t,w), & z > 0 \end{cases}$$

Разглеждаме следното свойство в \mathcal{F}_5 :

$$Q(f) \rightleftharpoons (\forall (x, y, z, t, w) \in \mathbb{N}^5)[!f(x, y, z, t, w) \Rightarrow f(x, y, z, t, w) \simeq (z + t)x^{y+1} + ty^{x+1} + w^{10}]$$

Това свойство очевидно е непрекъснато понеже е от тип частична коректност. Очевидно е и, че $Q(\emptyset^{(5)})$ понеже $(\forall (x,y) \in \mathbb{N}^2)[\neg!\emptyset^{(5)}(x,y)]$.

Ще докажем, че Q е монотонно.

Нека $h \in \mathcal{F}_5$ и нека Q(h) е истина. Нека $(x,y,z,t,w) \in Dom(\Psi(h))$. Възможни са три случая:

• (z,t) = (0,0)

Тогава $\Psi(h)(x,y,z,t,w)\simeq w^{10}\simeq 0+0+w^{10}\simeq 0.x^{y+1}+0.y^{x+1}+w^{10}\simeq (z+t)x^{y+1}+ty^{x+1}+w^{10}.$

• z = 0 & t > 0

Тогава $\Psi(h)(x,y,z,t,w) \simeq x^{y+1} + y^{x+1} + h(x,y,0,t-1,w) \simeq x^{y+1} + y^{x+1} + (t-1)x^{y+1} + (t-1)y^{x+1} + w^{10} \simeq tx^{y+1} + ty^{x+1} + w^{10} \simeq (z+t)x^{y+1} + ty^{x+1} + w^{10}.$

 \bullet z > 0

Тогава $\Psi(h)(x,y,z,t,w)\simeq x^{y+1}+h(x,y,z-1,t,w)\simeq (z-1+t)x^{y+1}+ty^{x+1}+w^{10}\simeq (z+t)x^{y+1}+ty^{x+1}+w^{10}.$

Следователно $Q(\Psi(h))$. Тогава $(\forall h \in \mathcal{F}_5)[Q(h) \implies Q(\Psi(h))]$.

Така Q е монотонно и от правилото на Скот получаваме $Q(f_{\Psi})$. В частност $(\forall (x,y) \in \mathbb{N}^2)[!f_{\Psi}(x,y,26,5,2) \implies f_{\Psi}(x,y,26,5,2) \simeq (26+5)x^{y+1}+5y^{x+1}+2^{10} \simeq 31x^{y+1}+5y^{x+1}+(30+2)^2 \simeq 31x^{y+1}+5y^{x+1}+1024].$

Следователно $(\forall (x,y) \in \mathbb{N}^2)[!D_V[P](x,y) \implies$

 $D_V[P](x,y) \simeq f_{\Psi}(x,y,26,5,2) + 995 \simeq 31x^{y+1} + 5y^{x+1} + 2019].$

б)

Ясно е, че $D_V[P]$ е тотална функция, точно когато и f_Ψ е.

За това ще докажем, че f_{Ψ} е тотална функция.

Да допуснем противното, тогава $\mathbb{N}^5 \setminus Dom(f_{\Psi}) \neq \emptyset$.

Имаме, че $(\mathbb{N}^5,<_{lex\mathbb{N}^5})$ е фундирано множество.

Тогава $\mathbb{N}^5 \setminus Dom(f_{\Psi})$ има минален елемент относно $<_{lex\mathbb{N}^5}.$

Нека тогава $(x^*, y^*, z^*, t^*, w^*)$ е минимален елемент на $\mathbb{N}^5 \setminus Dom(f_{\Psi})$.

Тогава $\neg ! f_{\Psi}(x^*, y^*, z^*, t^*, w^*).$

Очевидно $(z^*, t^*) \neq (0, 0)$ понеже $f_{\Psi}(x^*, y^*, 0, 0, w) = w^{*10}$.

Тогава са възможни два случая:

• $z^* = 0 \& t^* > 0$

Но това значи, че $\neg!f_{\Psi}(x^*,y^*,0,t^*-1,w^*)$, но също така $(x^*,y^*,0,t^*-1,w^*)<_{lex\mathbb{N}^5}(x^*,y^*,z^*,t^*,w^*)$. Тогава (x^*,y^*,z^*,t^*,w^*) , не е минимален за $\mathbb{N}^5\setminus Dom(f_{\Psi})$... Абсурд!

• $z^* > 0$

Но това значи, че $\neg!f_{\Psi}(x^*,y^*,z^*-1,t^*,w^*)$, но също така $(x^*,y^*,z^*-1,t^*,w^*)<_{lex\mathbb{N}^5}(x^*,y^*,z^*,t^*,w^*)$. Тогава (x^*,y^*,z^*,t^*,w^*) , не е минимален за $\mathbb{N}^5\setminus Dom(f_{\Psi})$... Абсурд!

Достигнахме до противоречие и в двата случая. Противоречието идва от допускането, което направихме, че f_{Ψ} не е тотална. Но тогава f_{Ψ} е тотална. Следователно и $D_V[P]$ също е тотална!

Зад. 1. Писмен изпит по СЕП 07/02/2019

Дайте пример за оператор от тип $\Gamma: \mathcal{F}_1 \to \mathcal{F}_1$, който:

- а) няма неподвижни точки;
- б) има неподвижни точки, но няма най-малка неподвижна точка;
- в) има най-малка неподвижна точка.

Обосновете се!

Решение:

a)

$$\Gamma(f)(x) \simeq \begin{cases} 9, & \neg! f(x) \\ \neg!, & ! f(x) \end{cases}$$

Да допуснем, че така дефиниран Γ има неподвижна точка.

Нека $f \in fix(\Gamma)$. Нека $x \in \mathbb{N}$.

Възможни са два случая:

- !f(x)Тогава $\neg!\Gamma(f)(x)$, но тогава $\neg[f(x) \simeq \Gamma(f)(x)]$.
 Следователно $f \notin fix(\Gamma)$. Абсурд!
- $\neg ! f(x)$ Тогава $\Gamma(f)(x) = 9$ и значи $!\Gamma(f)(x)$, но тогава $\neg [f(x) \simeq \Gamma(f)(x)]$. Следователно $f \notin fix(\Gamma)$. Абсурд!

Достигнахме до противоречие. Следователно $fix(\Gamma) = \emptyset$.

б)

$$\Gamma(f)(x) \simeq \begin{cases} 9, & \neg! f(x) \\ f(x), & !f(x) \end{cases}$$

Нека $f \in \mathcal{F}_1$ и $Dom(f) = \mathbb{N}$. Нека $x \in \mathbb{N}$. Тогава имаме $\Gamma(f)(x) \simeq f(x)$. Следователно $(\forall x \in \mathbb{N})[\Gamma(f)(x) \simeq f(x)]$. Тогава $f = \Gamma(f)$ и значи $f \in fix(\Gamma)$. Така получаваме, че всяка тотална функция е неподвижна точка за Γ . Да допуснем, че има ненотална функция h, която е неподвижна за Γ . h не е тотална, следователно $\mathbb{N} \setminus Dom(h) \neq \emptyset$. Нека тогава $x \in \mathbb{N} \setminus Dom(h)$. Тогава имаме $\neg !h(x)$ и $\Gamma(h)(x) = 9$. Очевидно тогава $h \neq \Gamma(h)$. Това е Абсурд! Следователно $fix(\Gamma) = \{g \in \mathcal{F}_1 \mid Dom(g) = \mathbb{N}\} \neq \emptyset$. Понеже всяка неподвижна точка на Γ е тотална, а всеки две различни то-

Понеже всяка неподвижна точка на Γ е тотална, а всеки две различни тотални функции са несравними помеждуси чрез релацията "подфункция". И за всяка тотална функция няма частична функция, която да я разширява. Следователно всеки елемент на $fix(\Gamma)$ е минимален. И понеже $fix(\Gamma)$ е неизброймо безкрайно, то значи $fix(\Gamma)$ няма най-малък елемент. Следователно Γ има неподвижна точка, но няма най-малка неподвижна точка.

в)

Нека $\Gamma = Id(\mathcal{F}_1)$. Тогава $fix(\Gamma) = \mathcal{F}_1$. И понеже $(\mathcal{F}_1, \subset, \emptyset)$ е фундирано, то $\emptyset = f_{\Gamma} = lfp(\Gamma)$.

Зад. 2. Писмен изпит по СЕП 07/02/2019

Да разгледаме следния непрекъснат оператор $\Gamma: \mathcal{F}_3 \to \mathcal{F}_3$, където:

$$\Gamma(f)(x,y,z) \simeq \begin{cases} 0, & y > 0 \& (z+1)y > x \\ f(x,y,z+1)+1, & y > 0 \& (z+1)y \le x \\ f(x,0,z+1)+1, & y = 0 \end{cases}$$

Докажете, че най-малката неподвижна точка на Γ е следната частична функция:

$$h(x, y, z) \simeq \begin{cases} \left\lfloor \frac{x}{y} \right\rfloor \ominus z, & y > 0 \\ \neg !, & y = 0 \end{cases}$$

където

$$a \ominus b = \begin{cases} a - b, & a \ge b \\ 0, & a < b \end{cases}$$

Решение:

Ще докажем, че f_{Γ} има еквивалетно представяне:

$$f_{\Gamma}(x, y, z) \simeq \begin{cases} \left\lfloor \frac{x}{y} \right\rfloor - z, & y > 0 \& \left\lfloor \frac{x}{y} \right\rfloor \ge z \\ 0, & y > 0 \& \left\lfloor \frac{x}{y} \right\rfloor < z \\ \neg!, & y = 0 \end{cases}$$

Нека Q,R са свойства в \mathcal{F}_3 дефинирани по следния начин:

$$\begin{split} Q(f) & \rightleftharpoons (\forall (x,y,z) \in \mathbb{N}^3) [!f(x,y,z) \ \& \ y > 0 \ \& \ \left\lfloor \frac{x}{y} \right\rfloor \geq z \implies f(x,y,z) \simeq \left\lfloor \frac{x}{y} \right\rfloor - z] \\ R(f) & \rightleftharpoons (\forall (x,y,z) \in \mathbb{N}^3) [!f(x,y,z) \ \& \ y > 0 \ \& \ \left| \frac{x}{y} \right| < z \implies f(x,y,z) \simeq 0] \end{split}$$

Q и R са свойства от тип частична коректност и следователно са непрекъснати. Нека $P(f) \rightleftharpoons Q(f) \ \& \ R(f).$ P е конюнкцията на Q и R, които са непрекъснати, следователно P е непрекъснато. (3)

Имаме $(\forall x \in \mathbb{N})[\neg !\emptyset^{(3)}(x)]$ следователно $P(emptyset^{(3)})$ е изпълнено.

Ще докажем, че P е монотонно свойство.

Нека
$$f \in \mathcal{F}_3$$
 и $P(f)$. Нека $(x,y,z) \in Dom(\Gamma(f))$ и нека $y>0$. Нека $k=\left\lfloor \frac{x}{y} \right\rfloor$. Тогава $k \leq \frac{x}{y} < k+1$ и значи $ky \leq x \ \& \ x < (k+1)y$. Ако

- k < z Тогава имаме x < (k+1)y & k < z. Следователно x < (z+1)y. Но тогава $\Gamma(f)(x,y,z) \simeq 0$.
- $k \geq z$ Възможни са два подслучая:

$$-k=z$$

Тогава имаме x < (z+1)y и значи

$$\Gamma(f)(x,y,z) \simeq 0 \simeq k-z = \left|\frac{x}{y}\right| - z.$$

$$-z < k$$

Тогава имаме $zy < (z+1)y \le ky \le x$. Следователно

$$\Gamma(f)(x,y,z) \simeq f(x,y,z+1) + 1 \simeq \left\lfloor \frac{x}{y} \right\rfloor - (z+1) + 1 \simeq \left\lfloor \frac{x}{y} \right\rfloor - z.$$

Следователно очевидно $P(\Psi(f))$ е истина. Тогава очевидно P е монотонно свойство.

Тогава от правилото на Скот получаваме

$$\begin{bmatrix} (\forall (x, y, z) \in \mathbb{N}^3) \\ \vdots \\ f_{\Psi}(x, y, z) \& y > 0 \implies f_{\Psi}(x, y, z) \simeq \begin{cases} \left\lfloor \frac{x}{y} \right\rfloor - z, & \left\lfloor \frac{x}{y} \right\rfloor \ge z \\ 0, & \left\lfloor \frac{x}{y} \right\rfloor < z \end{bmatrix} \end{cases}$$

Остава да покаже, че ако y>0, то f_Ψ е дефинирана и ако y=0 не е.

Първо ще докажем, че $(\forall (x,y,z) \in \mathbb{N}^3)[y>0 \implies !f_{\Psi}(x,y,z)].$

Нека допуснем противното. Тогава нека

 $(x^*,y^*,z^*)\in \mathbb{N}^3$ и $y^*>0$ и ¬ $!f_{\Psi}(x^*,y^*,z^*)$].

Очевидно ако $(z^*+1)y^*>x^*$, то $\Psi(f_\Psi)(x^*,y^*,z^*)=0$ и значи $!f_\Psi(x^*,y^*,z^*).$

Тогава за следната редица от точки $\{(x^*,y^*,z^*+n)\}_{n\in\mathbb{N}}$

имаме $(\forall n \in \mathbb{N})[(x^*, y^*, z^* + n) \in \mathbb{N}^3 \setminus Dom(f_{\Psi})]$, което значи, че

 $(\forall n \in \mathbb{N})[(z^*+n+1)y^* \le x^*]$. Но тогава $(z^*+x^*+1)y^* \le x^*$ при положение, че $y^*>0$. Това е Абсурд! Следователно е в сила

 $(\forall (x,y,z) \in \mathbb{N}^3)[y>0 \implies !f_{\Psi}(x,y,z)].$

За второ твърдение нека допуснем, че за някоя двойка $(a,b) \in \mathbb{N}^2$ е в сила $!f_{\Psi}(a,0,b)$. Нека тогава $n=f_{\Psi}(a,0,b)$. Тогава получаваме $n=f_{\Psi}(a,0,b)=\Psi(f_{\Psi})(a,0,b)=f_{\Psi}(a,0,b+1)+1=\Psi(f_{\Psi})(a,0,b+1)+1=f_{\Psi}(a,0,b+2)+2=\cdots=f_{\Psi}(a,0,b+n+1)+n+1$. Но тогава $n=f_{\Psi}(a,0,b+n+1)+n+1$ и $f_{\Psi}(a,0,b+n+1)\in\mathbb{N}$. Това е пълен Абсурд! Следователно $(\forall (x,z)\in\mathbb{N}^2)[\neg !f_{\Psi}(x,0,z)]$.

Тогава излиза, че

$$f_{\Gamma}(x,y,z) \simeq egin{dcases} \left\lfloor rac{x}{y}
ight
floor -z, & y > 0 \& \left\lfloor rac{x}{y}
ight
floor \geq z \\ 0, & y > 0 \& \left\lfloor rac{x}{y}
ight
floor < z \\ \lnot!, & y = 0 \end{cases} < z$$

Зад. 3. Писмен изпит по СЕП 07/02/2019

Нека $\Gamma, \ \Delta : \mathcal{F}_2 \times \mathcal{F}_2 \to \mathcal{F}_2$ са непрекъснати, където:

$$\Gamma(f,g)(x,y) \simeq \begin{cases} 1, & x = 0\\ f(x-1,y).g(x,y), & x > 0 \end{cases}$$

$$\Delta(f,g)(x,y) \simeq \begin{cases} 1, & x = 0 \& y = 0 \\ 3.g(0,y-1), & x = 0 \& y > 0 \\ 2.g(x-1,y+1), & x > 0 \end{cases}$$

Нека
$$(f_0,g_0)=lfp(\Gamma\times\Delta)$$
. Докажете, че
$$(\forall x\in\mathbb{N})[!f_0(x,0)\implies f_0(x,0)\simeq 6\cfrac{x(x+1)}{2}]$$

Решение:

Разглеждаме $\Phi: \mathcal{F}_2 \to \mathcal{F}_2$, за който:

$$\Phi(g)(x,y) \simeq \begin{cases} 1, & x = 0 \& y = 0 \\ 3.g(0,y-1), & x = 0 \& y > 0 \\ 2.g(x-1,y+1), & x > 0 \end{cases}$$

Дефинираме следното свойство в \mathcal{F}_2 :

 $P(f) \rightleftharpoons (\forall (x,y) \in \mathbb{N}^2)[!f(x,y) \implies f(x,y) \simeq 6^x.3^y]$

Очевидно то е непрекъснато понеже е от тип частична коректност.

Очевидно е и, че $P(\emptyset)$ понеже $(\forall (x,y) \in \mathbb{N}^2)[\neg!\emptyset(x,y)]$.

Ще докаже, че $(\forall f \in \mathcal{F}_2)[P(f) \implies P(\Phi(f))].$

Нека $f \in \mathcal{F}_2$ и P(f). Нека $(x,y) \in Dom(\Phi(f))$.

- (x,y) = (0,0)Тогава $\Phi(f)(x,y) \simeq 1 \simeq 6^0.3^0 \simeq 6^x.3^y.$
- x = 0 & y > 0Тогава $\Phi(f)(x,y) \simeq 3. f(0,y-1) \simeq 3. (6^0.3^{y-1}) \simeq 6^x.3^y.$

Следователно $!\Phi(f)(x,y) \Longrightarrow \Phi(f)(x,y) \simeq 6^x.3^y$. Следователно $P(\Phi(f))$.

Следователно $(\forall f \in \mathcal{F}_2)[P(f) \implies P(\Phi(f))].$

Така от до тук доказаното и правилото на Скот получаваме, че

 $(\forall (x,y) \in \mathbb{N}^2)[!f_{\Phi}(x,y) \implies f_{\Phi}(x,y) \simeq 6^x.3^y].$

Сега ще докажем, че f_{Φ} е тотална.

Нека допуснем противното. Тогава $\mathbb{N}^2 \setminus Dom(f_{\Phi}) \neq \emptyset$.

 $(\mathbb{N}^2, <_{lex\mathbb{N}^2})$ е фундирано множество.

Тогава $\mathbb{N}^2 \setminus Dom(f_{\Phi})$ има минален елемент относно $<_{lex\mathbb{N}^2}$.

Нека тогава (x^*, y^*) е минимален елемент на $\mathbb{N}^2 \setminus Dom(f_{\Phi})$.

Тогава $\neg ! f_{\Phi}(x^*, y^*)$. Очевидно $(x^*, y^*) \neq (0, 0)$ понеже $f_{\Phi}(0, 0) = 1$.

• $x^* = 0 \& y^* > 0$ Тогава $\neg! f_{\Phi}(0, y^* - 1)$, но $(0, y^* - 1) \in \mathbb{N}^2$ следователно $(x^*, y^* - 1) \in \mathbb{N}^2 \setminus Dom(f_{\Phi})$ и $(x^*, y^* - 1) <_{lex\mathbb{N}^{\not=}} (x^*, y^*)$. Но тогава (x^*, y^*) не е минимален ... Абсурд!

• $x^* > 0$

Тогава ¬! $f_{\Phi}(x^*-1,y^*+1)$, но $(x^*-1,y^*+1)\in\mathbb{N}^2$ следователно $(x^*-1,y^*+1)\in\mathbb{N}^2\setminus Dom(f_{\Phi})$ и $(x^*-1,y^*+1)<_{lex\mathbb{N}^{\not\simeq}}(x^*,y^*)$.

Но тогава (x^*, y^*) не е минимален ... Абсурд!

Получихме противоречие с допускането, че $\mathbb{N}^2 \setminus Dom(f_{\Phi}) \neq \emptyset$. Следователно $Dom(f_{\Phi}) = \mathbb{N}^2$.

От тук и от $P(f_{\Phi})$ получаваме $(\forall (x,y) \in \mathbb{N}^2)[f_{\Phi}(x,y) = 6^x.3^y].$

Тогава разглеждаме $\Psi: \mathcal{F}_2 \to \mathcal{F}_2$.

 $\Psi(f)(x,y) \simeq \Gamma(f,g_0)(x,y) \simeq \Gamma(f,f_\Phi)(x,y)$. Следователно

$$\Psi(f)(x,y) \simeq \begin{cases} 1, & x = 0 \\ 6^x \cdot 3^y \cdot f(x-1,y), & x > 0 \end{cases}$$

Дефинираме следното свойство в \mathcal{F}_2 :

$$Q(f) \rightleftharpoons (\forall (x,y) \in \mathbb{N}^2)[!f(x,y) \Longrightarrow f(x,y) \simeq 6 \frac{x(x+1)}{2}.3^{xy}]$$
 Очевидно то е непрекъснато понеже е от тип частична коректност. Очевидно е и, че $Q(\emptyset)$ понеже $(\forall (x,y) \in \mathbb{N}^2)[\neg !\emptyset(x,y)]$.

Ще докаже, че $(\forall f \in \mathcal{F}_2)[Q(f) \implies Q(\Phi(f))].$

Нека $f \in \mathcal{F}_2$ и Q(f). Нека $(x,y) \in Dom(\Psi(f))$.

• x = 0

Тогава $\Psi(f)(x,y) \simeq \Psi(f)(0,y) \simeq 1 \simeq 6^0.3^{0.y} \simeq 6 \frac{x(x+1)}{2}.3^{xy}.$

• x > 0

Тогава

$$\Psi(f)(x,y) \simeq 6^x.3^y.f(x-1,y) \simeq 6^x.3^y.6 \frac{x(x-1)}{2}.3^{(x-1)y} \simeq 6 \frac{x(x+1)}{2}.3^{xy}.$$

Следователно $Q(\Psi(f))$. Следователно $(\forall f \in \mathcal{F}_2)[Q(f) \implies Q(\Phi(f))]$. Тогава използвайки правилото на Скот получаваме $Q(f_0)$.

В частност
$$(\forall x \in \mathbb{N})[!f_0(x,0) \implies f_0(x,0) \simeq 6 \frac{x(x+1)}{2}].$$