Теория Параллелизма

Отчет Уравнение теплопроводности MPI/NCCL

Выполнил 21932, Бабенко Егор Степанович

04.04.2022

Цель работы

Реализовать решение уравнение теплопроводности методом Якоба (пятиточечный шаблон) для двумерной сетки. Произвести профилирование программы для GPU и оптимизацию кода. Произвести сравнение времени работы на CPU и GPU. Для CPU использовалась программа из прошлого задания.

Используемый компилятор: mpic++

Для компиляции различных версий использовались:

- mpic++ t5_MPI.cu -O2
- mpic++ t5_nccl.cu -O2 -lnccl

Для дополнительной профилировки: -D NVPROF_

Также для всех замеров с MPI и nccl представленных ниже использовался флаг –D THREAD_ANALOG_MODE (Изменяет структуру нитей и блоков для вызова функций видеокарты)

Используемый профилировщики: nvprof, nsys

Nsys использовался с CUDA trace, MPI, а также NVTX trace.

Замер времени работы всей программы производился с помощью команды time. Время высчитывалось как среднее между пятью запусками.

GPU (openacc)

Размер сетки	Время	Ошибка	Количество
	выполнения (сек)	Ошиока	итераций
128x128	0.636	9.93271e-07	30096
256x256	1.222	9.98489e-07	102904
512x512	4.505	9.99134e-07	339644
1024х1024(расчет ошибки каждую итерацую	40.795	1.36929e-06	1000000
1024x1024 (расчет ошибки каждые 400 итераций)	29.724	1.36929e-06	1000000
1024x1024 (среднее значение углов сетки как стартовое значение)	15.027	9.99663e-07	364648

GPU (openacc + cublas)

Размер сетки	Время	Ошибка	Количество
	выполнения (сек)		итераций
128x128	0.960	9.93271e-07	30096
256x256	1.274	9.98489e-07	102904
512x512	2.957	9.99134e-07	339644
1024х1024(расчет ошибки каждую итерацую	120.933	1.36973e-06	1000000
1024x1024 (расчет ошибки каждые 400 итераций)	26.896	1.36973e-06	1000000
1024x1024 (среднее значение углов сетки как стартовое значение)	10.674	9.99663e-07	364648

GPU (CUDA)

Размер сетки	Время выполнения (сек)	Ошибка	Количество итераций
128x128	0.323	9.05043e-07	30400
256x256	0.534	9.76309e-07	103200
512x512	1.457	9.99965e-07	339600
1024x1024(расчет ошибки каждую итерацую [без использования cuda graph])	49.733	1.36929e-06	1000000
1024x1024 (расчет ошибки каждые 400 итераций)	24.496	1.36929e-06	1000000
1024x1024 (среднее значение углов сетки как стартовое значение)	9.254	9.97873e-07	364800

GPU (MPI only)

Размер сетки	Кол-во процессов	Время выполнения (сек)	Ошибка	Количество итераций
	1	0,69		
128x128	2	1,08	9.20191e-07	30400
	4	1,96		
	1	0,96		
256x256	2	1,89	9.92452e-07	103200
	4	3,21		
	1	2,47		
512x512	2	6,45	9.97394e-07	339600
	4	7,79		
	1	25,54		
1024x1024	2	29,31	1.39973e-06	1000000
	4	22,43		
	1	90,63		
2048x2048	2	71,78	1.15583e-05	1000000
	4	55,28		
	1	350,05		
4096x4096	2	202,09	9.82094e-06	1000000
	4	128,87		
	1	1381,14		
8192x8192	2	721,42	1.03114e-05	1000000
	4	428,48		

GPU (MPI + nccl)

Размер сетки	Кол-во процессов	Время выполнения (сек)	Ошибка	Количество итераций
	1	0,91		
128x128	2	1,91	9.05043e-07	30400
	4	2,81		
	1	1,22		
256x256	2	3,48	9.92452e-07	103200
	4	4,54		
	1	5,81		
512x512	2	9,24	9.97394e-07	339600
	4	10,28		
	1	26,09		
1024x1024	2	35,74	1.36929e-06	1000000
	4	27,46		
	1	96,93		
2048x2048	2	71,39	1.15583e-05	1000000
	4	52,95		
	1	350,07		
4096x4096	2	203,01	9.82094e-06	1000000
	4	122,05		
	1	1381,46		
8192x8192	2	682,28	1.03114e-05	1000000
	4	383,23		

На диаграмме выше мы можем увидеть, что эффективность распараллеливания программы растет вместе с увеличением размера сетки. И на сетке размером 8192x8192 эффективность в четырёх поточном исполнении достигает 90%.

Этапы оптимизации кода на GPU (MPI/nccl) Этапы оптимизации на сетке 4096х4096

№	Время выполнения основного цикла	Ошибка	Кол-во итераций	Комментарий
1	386 мс	0.0089742	1200	Версия на MPI. Без использования асинхронности. Время представлено для 4 карт. Эффективность 27%
2	161 мс	0.0089742	1200	Версия на МРІ. С использованием асинхронности. Время представлено для 4 карт. Эффективность 65%
3	171 мс	0.0089742	1200	Версия на nccl. Без асинхронности. Время представлено для 4 карт. Эффективность 62%
4	149 мс	0.0089742	1200	Версия на nccl. С асинхронностью. Время представлено для 4 карт. Эффективность 71%

Также были эксперименты с различной сеткой нитей и блоков для запуска функций на видеокартах. В случаях выше использовалась схема с Thread(1024, 1) [Первое по X, второе по Y]. Для блоков значения подбирались так чтобы максимизировать Y и покрыть весь участок. Были замеры с использованием схемы Thread(32, 32) и равномерными блоками, но в данном случае средняя эффективность одного потока была на 20%-30% ниже.

 $\Pi epbin \Im an$ (выделен один вычислительный вызов. Шаг по сетке +передача граничных значений) Все происходит в последовательном режиме в рамках одного устройства.

Второй Этап (выделен один вычислительный вызов. Шаг по сетке +передача граничных значений) Новый шаг по сетке, а также передача граничных значений происходит в ассинхроном режиме в рамках одного устройства. Проблем с изменением данных по ходу вычисления не происходит т.к. данные передаются в рамках хоста, а перенос их на устройство происходит сразу после окончания шага.

Третий этап

Четвертый этап (выделен один вычислительный вызов. Шаг по сетке +передача граничных значений) Новый шаг по сетке, а также передача граничных значений происходит в ассинхроном режиме в рамках одного устройства. Проблем с изменением данных не происходит из-за того что вызовы nccl происходят в рамках того же потока, что и вызовы основного вычисления.

Вывод:

Используя МРІ для запуска сразу нескольких процессов мы можем добиться возможности использовать одновременно несколько GPU в параллельном режиме, а за счет обмена данными между процессами через NCCL можем приблизить на больших стеках эффективность к 1. Для маленьких сеток нет смысла распараллеливать программу на несколько устройств т.к. накладные расходы будут слишком велики и больше времени уйдет на общее и синхронизацию.

 $Github: \underline{https://github.com/JooudDoo/Parallelism-Tasks}$