철강 제품의 화장품 Mold Flux 생산 효율을 높여라!!!

- 철강 및 주물공업에 필요한 제강공장의 연속 주조용 Mold Flux 생산성 향상 및 원가(가스비) 절감 -

비즈니스 이슈 및 빅데이터 분석 요건

비즈니스 이슈 빅데이터 분석요건 • 생산성(Ton/Hr)에 영향을 미치는 공정 변수 도출 및 최적화 - S온도, 용수투입량, 슬러리 온도, Pump압력, 수분, Gas사용량/Ton 등 - 공정 변수 간의 상관 관계 분석 - 분석 제품 군 선정 •설비 합리화 실시하여 설비 Capa가 131% 향상되었고 매출비중 선정 제품 종류 매출이 일정 함에도 재고는 오히려 증가하고 있음 Mold Flux 90% 0 • MES, ERP 등 IT Infra 구축, 스마트 팩토리 추진으로 Tundish Flux 5% Χ Ladle Filler 축적된 공정 Data의 체계적인 분석이 필요함 5% Χ • 생산성(Ton/Hr)에 영향을 미치는 원료 도출 및 함량 최적화 → **과립 작업 조건 최적화**를 통한 생산성 향상 필요 → 표준 배합비와 생산 배합비의 Gap분석을 통한 최적 배합비 도출 • 표준 배합비와 생산 배합비의 차이 발생 원인 분석 - 표준 원료 vs. 실제 원료 - 동일 제품의 성분 편차 발생 원인 • Gas사용량을 줄일 수 있는 공정 조건 도출 • Gas사용량이 많은 원료 도출 • 현재 월 6,000만원의 가스 사용 비용이 발생 - 주요 생산제품의 GAS사용량(특정 원료 도출) → GAS사용량 차이 원인 분석으로 가스 사용량 절감 - 물투입량 vs. Gas사용량 - 계절별 가스 사용량

데이터 출처 및 분석 방안

분석 데이터

수집대상 기간

■ 2016년 06월 01일 ~ 2018년 07월 30일

데이터 출처 및 건수

■ 내부 MES, ERP Data(2,877건) / 기상청 Open API Data(1,580건)

	데이티	터수
채널	공정 및 환경 변수, 원료 정보	표준 배합비 정보
내부 MES, ERP	Data Set 2,877건 (변수 130개)	3,198건
기상청 Open API	포항(138지점) 온도 790건 포항(138지점) 습도 790건	

분석 방안

- 내부 MES ERP Data 분석
- (1) 생산성(Ton/Hr)에 영향을 미치는 공정 변수 도출 및 최적화
 - 용수투입량, 슬러리 온도, Pump압력, 수분, Gas사용량/Ton 등
 - 공정 변수 간의 상관 관계 분석
 - 분석 제품 군 선정
- (2) 생산성(Ton/Hr)에 영향을 미치는 원료 도출 및 함량 최적화
- (3) Gas사용량에 줄일 수 있는 공정 조건 도출 / Gas사용량이 많은 원료 도출
 - 주요 생산제품의 GAS사용량(특정 원료 도출)
 - 물투입량 vs. Gas사용량
 - 계절별 가스 사용량
- (4) 표준 배합비와 생산 배합비의 Gap 분석
 - 표준 원료 Spec vs. 실제 원료의 Spec
 - 특정 성분 vs. 제품 비중의 상관 관계
 - SiO2 vs. 제품 비중 상관 관계
 - 동일 제품의 성분 편차 발생 원인

분석 개요

● 최근 2년 동안의 MES/ERP의 데이터 중에서 생산 기준 정보, 작업조건, 원료 함량 정보 등을 수집하여 '생산성', '가스 사용량(원가)'에 영향을 미치는 변수 및 개선 방향 도출

> 분석 절차 분석 모델

● 공정 및 환경 변수 37개가 어떻게 서로 상관되어 있는지 파악하고 주요 변수 도출을 '주성분 분석' 및 '요인 분석' 실시하여 주요 변수 16개를 선별하였고 선별된 변수 16개 조건의 Couple 상태 확인을 위해 '평행 좌표 차트' 분석 실시

▶ 각 요인을 대표 할 수 있는 변수 선별 : 16개 변수

- 평균기온
- 평균 상대습도
- S온도(초)
- S온도(초)
- S온도(초)
- Nozzle수
- 노즐구경
- Gas/Ton
- Hot Air온도
- Waste Air온도
- Pump압력
- 제품분진
- 슬러리 밀도(1차)
- 슬러리 점도
- 공정수/Ton
- 용수/Ton

- 고유값을 1 이상 기준으로 요인 9개 확인
 - → 요인으로 축소하지 않고 각 요인별 대표 변수 선별함
- 기존: 37개 변수 → 각 요인을 대표 할 수 있는 변수 선별: 16개 변수

● 평균기온(대기온도)에 따라 시간당 생산량(T/H) 차이 발생

- '평행 좌표 차트' 분석 결과

 - → 평균기온(대기온도)과 공정의 온도[S온도(초, 중, 말)] 조건 Couple 상태임
 → 평균기온(대기온도)에 따라 Gas사용량 차이 발생(기온이 높은 경우 사용량 적은 경향)
 - → 세부적인 조건 간의 상관관계는 다변량 분석을 통해 추가 분석

● 선별된 변수 16개가 어떻게 서로 연관되어 있고 '시간당 생산량'(Ton/Hr)과의 연관관계를 파악하기 위해 '다변량 상관 분석' 실시

공정 및 환경 변수 간의 상관관계 분석

• Gas/Ton vs. 용수/Ton

- → 높음 상관 관계 있음(r=0.8577)
- Gas/Ton vs. 입자과립율(분진) → 상관관계 있음(r=0.4798)
- 용수/Ton vs. 입자과립율(분진) → 상관관계 있음(r=0.6004)
- 공정수/Ton vs. 슬러리 점도
- → 상관관계 없음(r=0.0235, -0.0982)
- 용수/Ton vs. 슬러리 점도

→ 상관관계 없음(r=0.0041, 0.0834)

● 온도 관련 변수 vs. 시간당 생산량(T/H)

- [S온도(초), S온도(중), S온도(말)]는 외부의 온도에 영향을 아주 많이 받음
- → 외부 온도(평균기온)의 영향을 줄이기 위한 방법 필요 특히, S온도(말)의 경우 온도가 높으면 T/H가 높게 나타남
 - → 즉, 여름철 온도의 영향에 따라 T/H 높음

- 작업자별 '시간당 생산량'의 차이 및 평균기온(외부 온도)별 'Gas사용량'의 차이 분석 실시
 - 과립보조 작업자별 생산성(Ton/Hr) 차이 발생

- 생산작업자별로는 생산성의 차이가 없음
- **과립보조자별로 생산성의 편차가 아주 큼 →** 작업 표준에 대한 교육이 필요함

● 평균기온이 높을 수록 Gas사용량이 작음

- 'Gas사용량'과 '평균기온' 분석 결과
 - → 기온이 높은 경우 Gas 사용량이 적음
 - → 즉, 여름철 Gas 사용량이 작음

● ANOM¹) 분석(a=0.05)을 통해 '지시 중량'과 '투입 중량'의 차이가 발생하는 상위 모델 추출

● 지시 중량 과 투입 중량 차이 분석

수준	그룹 수	하한	그룹 평균	상한	한계 초과
MG0080	1370	0.21	0.42	0.42	상위
MG0643	3539	0.25	0.49	0.38	상위
MG0852	89	(0.10)	0.74	0.73	상위
MG0921	2671	0.24	0.44	0.39	상위
MG1106	40	(0.30)	1.04	0.93	상위
MG1183	371	0.11	0.53	0.52	상위
MG1230	78	(0.13)	1.70	0.76	상위
MG1274	13	(0.77)	1.48	1.40	상위
MG1304	105	(0.06)	1.05	0.70	상위
MG1330	12	(0.81)	3.40	1.44	상위
MG1336	18	(0.60)	3.20	1.24	상위
MG1343	12	(0.81)	2.14	1.44	상위
MG1368	13	(0.77)	3.85	1.40	상위
OG0002	4	(1.64)	9.65	2.27	상위
TG0960	148	(0.00)	1.82	0.64	상위
TG1220	152	(0.00)	1.25	0.63	상위

- ANOM 분석 결과 '지시 중량'과 '투입 중량'의 차이가 발생하는 모델은(상위 한계 초과) 16개 모델(10.3% 점유, 전체 156 모델 중 16 모델)
- 이때 평균 차이값은 0.32, 최대값은 9.65임
 - → 특이사항 없다고 판단됨

1) ANOM(Analysis of Means, 평균분석) : 인자의 각 수준 별 응답 함수의 평균값을 구하여 주어진 시스템을 분석하는 기법으로, 1)

- ANOM 분석(a=0.05)을 통해 여러 원재료들 중 물 사용량이 많은 주요 원재료 도출
 - 물 사용량이 작은 원재료(하위 한계 초과) 및 물 사용량이 많은 원재료(상위 한계 초과)

수준	그룹수	하한	그룹 평균	상한	한계 초과
FL02KL	66	521.2	514.9	677.4	하위
MC01HE	184	552.6	518.6	646	하위
PMBSCM	288	562	546.7	636.6	하위
PMBSAT	1464	582.9	565	615.6	하위
WC01TD	1826	584.7	566.9	613.8	하위
TSA3DH	504	571.1	569.5	627.4	하위
QP20RR	1461	582.9	575.7	615.6	하위
LC03TT	1147	580.8	577.3	617.8	하위
FL97PR	4619	590.4	586.9	608.1	하위

수준	그룹 수	하한	그룹 평균	상한	한계 초과
TO01YN	1	-35.6	1530	1234.1	상위
BOAHYN	2	150.4	1258.3	1048.2	상위
EG80DM	119	541.1	929.7	657.4	상위
MGCTDH	109	538.5	894.4	660	상위
MGCTRI	53	512.1	883.9	686.4	상위
EG80PH	233	557.8	756.7	640.8	상위
MGCTDW	160	549.2	754.7	649.4	상위
OBWFRR	247	559	734.1	639.6	상위
MGCTRC	30	483.4	728.7	715.1	상위
MNCASR	33	488.8	714.2	709.7	상위
FR84DF	168	550.4	653.5	648.2	상위
PNS1KE	686	575.2	643.3	623.3	상위
PMBSRF	617	573.9	634.8	624.7	상위
LQC331	589	573.3	627.7	625.3	상위
SC01DW	2884	587.8	620.3	610.7	상위

- ANOM 분석 결과 124개 원재료 중
 - → 물 사용량이 작은 원재료(9개): FL02KL, MC01HE, PMBSCM, PMBSAT, WC01TD, TSA3DH, QP20RR, LC03TT, FL97PR
 - → 물 사용량이 많은 원재료(15개) : TOO1YN, BOAHYN, EG80DM, MGCTDH, MGCTRI, EG80PH, MGCTDW, OBWFRR, MGCTRC, MNCASR FR84DF, PNS1KE, PMBSRF, LQC331, SC01DW

● Artificial Intelligence Algorithm 각 Modeling결과 확인하여 생산성에 영향을 미치는 공정 변수 및 원료 정보 도출

▶ 주요 공정 변수 : Gas/Ton, 용수/Ton, 제품 분진 등 ● 주요 원료 : MGCT, EG80, BEG4, KC01, MNCA, BS12 등 Important Factors for Prediction **Important Factors for Prediction Important Factors for Prediction** Important Factors for Prediction MNCA SMEZE PC01 MNCA M932 MER MORRISH FA10 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 06 05 04 03 02 01 00 01 02 03 Supports Prediction' Contradicts Prediction **Important Factors for Prediction** Important Factors for Prediction Important Factors for Prediction KS11 KC01 PC01 SHE(M) LC03 5.8.5(4) 585(W) LOCE Contradicts Prediction FDR LogWorth 대 Effect Size FDR LogWorth 대 Effect Size FDR LogWorth FDR LogWorth T/H, EG80 T/H Gas/Ton T/H, BEG4-T/H, SC01 T/H, MGCT 80 T/H, FL97 -T/H, 용수/ton 60 T/H. WC01 T/H. 평균 상태습도(%) FDR LogWo T/H PNS1 T/H Nozzle全 T/H, S온도(초 T/H, GR32 T/H, 공정수/tor T/H, QP20 T/H, 평균기온(*) T/H, LS20 -T/H, S은도(말) 20 T/H, CBLP

0.0

● Al Algorithm, 다변량 분석 결과 바탕으로 Stepwise Regression 실시하여 공정 변수와 원료 함량 조건 파악

● 공정 변수 최적화

분산 분석						
소스	DF	제곱합	평균 제곱	FΗ		
모형	4	639.9399	159.985	416.0386		
오차	1217	467.9895	0.385	Prob > F		
C. 합계	1221	1107.9295		<.0001*		

- 선별된 12개 변수로 Stepwise Regression 실시
 - → 적합된 모형의 설명력(R²): 57.6%
- 시간당 생산량(T/H)을 향상시키는 공정 변수 조건
 - → Gas/Ton: 작아지는 방향 → 용수/Ton: 작아지는 방향
 - → Hot Air온도: 커지는 방향 → Waste Air온도: 작아지는 방향

● 원료 함량 최적화

분산 분석						
소스	DF	제곱합	평균 제곱	FΠ		
모형	4	352.7761	88.1940	142.4474		
오차	1226	759.0584	0.6191	Prob > F		
C. 합계	1230	1111.8345		<.0001*		

- 선별된 32개 변수로 Stepwise Regression 실시
 - → 적합된 모형의 설명력(R²): 31.5%
- 시간당 생산량(T/H)을 향상시키는 원료 함량 조건
 - → MGCT : 작아지는 방향
 → MGDB : 작아지는 방향

11

분석 결과

● 앞의 Modeling 결과 반영하여 각 변수간의 상호관계 및 생산성 향상 조건을 Profiling 함

● 생산성을 향상 시키기 위해서는 우선 슬러리 온도를 높여야 하며 이에 따라 용수투입량, Gas사용량을 줄이는 방향으로 공정 운영 시에 생산성 향상 할 수 있음

분석 결과

- 예측 모형 시뮬레이션 실시
 - 현재 생산성(T/H) 3.98 [Gas/Ton 65.17, 용수 636.73, Hot Air온도 548.82, Waste Air온도 154.82 일 때]
 - Simulation : 생산성(T/H) 5.03 [생산성(T/H) 4이하일 확률 30.9%]

• Gas/Ton: 50

● 용수/Ton: 500

• Hot Air온도: 570

● Waste Air온도: 140 일 때

→ 5000개의 Run을 생성

→ 생산성(T/H) 규격 하한(LSL)을 4로 설정 시

 → 평균 5.03

→ 규격 하한 미만일 확률 30.9% 임

활용방안 및 기대성과

빅데이터 분석결과

•생산성(Ton/Hr)에 영향을 미치는 공정 변수/원료 도출 및 최적화

생산량(T/H) 향상시키는 공정변수

→ Gas/Ton : 작아지는 방향

→ 용수/Ton : 작아지는 방향

→ Hot Air온도 : 커지는 방향

→ Waste Air온도 : 작아지는 방향

생산량(T/H) 향상시키는 원료 함량

→ MGCT : 작아지는 방향

→ MGDB : 작아지는 방향

→ NF08 : 작아지는 방향

→ SP01 : 커지는 방향

분석 후 활용방안

• 각 항목별 작업 조건 및 표준 재설정

기대 성과

• 생산성 향상

→ L/T 단축

→ 재고 감소

→ 원가 경쟁력 향상

•ANOM 분석 결과 124개 원재료 중 물 사용량이 작은 원재료(9개)와 물 사용량이 많은 원재료(15개) 파악 •향후 최소의 원재료비용으로 제품 물성을 맞출 수 있는 원재료 Simulator 구현 → 표준 배합비 변경

• 표준에 맞는 생산 → 제품 불량 감소

• 워가절감

• 가스사용량이 많은 제품은 물(용수) 투입량이 많음

• 각 항목별 작업 조건 및 표준 재설정

• 가스 사용량 감소 (65Nm3→60Nm3)

→ 워가절감

