- ¹ Broad consistency but cross-linguistic variation in the structure of information in sentences
- Josef Klafka¹ & Daniel Yurovsky¹,²
 - ¹ Carnegie Mellon University
 - ² University of Chicago

Author Note

- 6 Correspondence concerning this article should be addressed to Josef Klafka, 5000
- Forbes Ave. E-mail: jklafka@andrew.cmu.edu

8 Abstract

Optimal coding theories of language predict that speakers should keep the amount of 9 information in their utterances relatively uniform under the constraints imposed by their 10 language. But how much do these constraints influence information structure, and how does 11 this influence vary across languages? We find a consistent non-uniform shape which 12 characterizes both spoken and written sentences of English but is tempered by predictive 13 context. We then show that other languages are also characterized by consistent but 14 non-English shaped curves related to their typological features, but that sufficient context 15 produces more uniform shapes across languages. Thus, producers of language appear to 16 structure their utterances in similar near-uniform ways despite varying linguistic constraints. 17

18 Keywords: information theory; communication; efficiency; syntax; typology; language
19 development; computational modeling

Broad consistency but cross-linguistic variation in the structure of information in sentences

21 Introduction

One of the defining features of human language is its power to transmit information.

We use language for a variety of purposes like greeting friends, making records, and signaling
group identity. These purposes all share a common goal: Transmitting information that
changes the mental state of our listener (Austin, 1975). For this reason, we can describe
language as a cryptographic code, one that allows speakers to turn their intended meaning
into a message that can be transmitted to a listener, and subsequently converted by the
listener back into an approximation of the intended meaning (Shannon, 1948).

How should we expect this code to be structured? If language has evolved as a code for information transmission, its structure should reflect this process of optimization (Anderson & Milson, 1989). The optimal code would have to work with two competing pressures: (1) For listeners to easily and successfully decode messages sent by the speaker, and (2) For speakers to easily code their messages and transmit them to a listener with minimal effort and error. A fundamental constraint on both of these processes is the linear order of spoken language—sounds are produced one at a time and each is unavailable perceptually once it is no longer being produced.

Humans accommodate this linear order constraint through incremental processing:

People process speech continuously as it arrives, predicting upcoming words and building
expectations about the meaning of an utterance in real time rather than at its conclusion
(Kutas & Federmeier, 2011; Pickering & Garrod, 2013; Tanenhaus, Spivey-Knowlton,
Eberhard, & Sedivy, 1995). This solution creates new guidance for speakers. Since prediction
errors can lead to severe processing costs and difficulty integrating new information on the
part of listeners, speakers should seek to minimize prediction errors. However, the cost of
producing more predictable utterances is using more words. Thus, the most efficient strategy
is for speakers seeking to minimize their production costs is to produce utterances that are

- just at the prediction capacity of listeners without exceeding this capacity (Aylett & Turk, 2004; Genzel & Charniak, 2002). In other words, speakers should maintain a constant transmission of information, with the optimal rate of information transfer as close to the listener's fastest decoding rate as possible. The hypothesis that speakers follow this optimal strategy is known as the *Uniform Information Density* hypothesis.
- Using information theory, a mathematical framework for formalizing predictability,
 researchers have tested and confirmed this optimal coding prediction across several levels
 and contexts in language production. For example, Genzel and Charniak (2002) provided a
 clever indirect test of Uniform Information Density across sentences in a paragraph. They
 showed that the predictability of successive sentences, when analyzed in isolation, decreases,
 as would be expected if readers use prior sentences to predict the content of future sentences.
 Thus, based on the increasing amount of context, they found that total predictability remains
 constant. At the level of individual words, Mahowald, Fedorenko, Piantadosi, and Gibson
 (2013) showed that speakers use shorter alternatives of more predictable words, maximizing
 the amount of information in each word while minimizing the time spent on those words.
- Other research has suggested that efficient encoding impacts how speakers structure units between words and sentences. The inclusion of complementizers in relative clauses (Jaeger & Levy, 2007) and the use of contractions (Frank & Jaeger, 2008) are two situations in sentence formation in which speakers can omit or reduce words to communicate more efficiently and maximize use of the communication channel without exceeding the listener's capacity.
- How languages evolve is shaped by efficient communication as well. Piantadosi, Tily, and Gibson (2011) showed that more easily predictable words in a language may tend to become shorter over time, maximizing the amount of information transmitted over the communication channel at every second by speakers in each language. Semantic categories of words across languages can also evolve to be structured efficiently. Categories such as kinship

terms (Kemp & Regier, 2012) maintain a trade-off between informativeness and complexity.

Structure in language evolves from a trade-off between efficient and learnable encoding on

the one hand and an expressive and descriptive lexicon on the other (Kirby, Tamariz,

Cornish, & Smith, 2015). Languages may come to efficiently describe the particular

environment in which they are spoken over the course of evolution: features of the world that

are relevant to speakers become part of a language, while irrelevant features are disregarded

(Perfors & Navarro, 2014).

However, despite this literature using the predictive coding model of language, one level has not yet been studied in depth: how speakers structure each individual utterances. This level may show the strongest effects of variation between languages. While speakers can make bottom-up choices such as controlling which of several near-synonyms they produce, they cannot control the grammatical properties of their language. Properties of a language, like canonical word order, impose top-down constraints on how speakers can structure what they say. While speakers may produce utterances as uniform in information density as their languages will allow, these top-down constraints may create significant and unique variation across languages.

How significant are a language's top-down constraints on determining how its speakers structure their speech? Yu, Cong, Liang, and Liu (2016) analyzed how the information in words of English sentences of a fixed length varies with their order in the sentence (e.g. first word, second word, etc). They found a surprising non-linear shape, and argued that this shape may arise from top-down grammatical constraints in the English language. We build on these ideas, asking (1) Whether this shape depends on listener's predictive models, (2) Whether this shape varies across linguistic contexts, and (3) Whether this shape is broadly characteristic of a diverse set of languages or varies predictably from language to language. We find that languages are characterized by highly-reliable but cross-linguistically variable information structures that co-vary with top-down linguistic features. Listeners' predictive

coding flattens these shapes across languages, in accord with predictions of the Uniform
Information Density hypothesis.

100 Methods

We measure information structure within languages, using a universal information 101 metric proposed for the study of information transmission more generally by Shannon (1948) 102 and applied to words specifically by Levy (2008): lexical surprisal. We can compute surprisal 103 with the predictability of the word based on previously heard or seen words in its context, as 104 in the formula below. The surprisal of a word is inversely proportional to the predictability 105 of a word, such that less common and less predictable words carry more information. For 106 example, "flower" has less information than "azalea" because "flower" is much more common 107 than "azalea". Though the two words have the same length in number of letters, it is more 108 difficult to process "azalea" when reading it here than when reading "flower". Frequency is 100 intimately tied information content in words, with much of the differences between words 110 frequencies being explained by information content cross-linguistically (Piantadosi et al., 111 2011). The surprisal of a word is also correlated with the processing cost of a word, shown by 112 evidence from e.g. eye-tracking (Smith & Levy, 2013) and ERP (Frank, Otten, Galli, & 113 Vigliocco, 2015) studies. 114

However, when reading or listening, people don't just consider each word as an isolated 115 linguistic signal. Listeners use the words they have already heard to predict and decode the 116 word they are currently hearing. Following this incremental processing paradigm, we can 117 also condition the surprisal of a word in its context. Ideally, we would like to measure the predictability of each word in an utterance using all of the information available to that 119 word. For example, in an utterance of twenty words, we would like to use the previous 19 120 words of context to predict the 20th word. However, we would need to train on a corpus of 121 many trillion word tokens to predict with this amount of context. Regardless of 122 computational constraints, we want to directly compare how predictable each word is 123

regardless of its position in an utterance.

We therefore use a simplifying *Markov assumption*: we condition our next predictions
on a fixed-size context window instead of all preceding words. Although these models may
seem to use an inconsequential amount of context when predicting the next word, bigram
and trigram models introduce a great deal of improvement over unigram models across tasks
(Chen & Goodman, 1999). Models which incorporate more than two words of context have
issues with overfitting to the corpus and only predicting observed sequences, often
generalizing poorly.

When we use a word or two of context in our surprisal calculations, then the set of 132 reasonable final items in our ngrams is greatly restricted. "Flower" may contain less 133 information than "azalea" when we consider the words independently of their context, but 134 with context this can be reversed. Flower appears in a variety of contexts, and so the 135 information content of a word like "flower" in a particular context may be higher than 136 "azalea". If you only have azaleas in your garden, then hearing someone say "in that garden, 137 look at the flowers" may be higher surprisal for you: you expect them to say "azalea". This 138 prediction does not require many words for context. For example, in the sentence "I take my 139 coffee with cream and sugar", when hearing "cream and", a listener might automatically 140 predict "sugar", but there are few possible continuations with even the two words "cream 141 and". Hearing "I" restricts the next word to a verb, or possibly an adverb, and since the listener has heard the speaker refer to themselves in the first person singular, their set of possible completions is significantly restricted.

We train two types of ngram language models independently on a corpus. One of our models is frequency-based: we do not incorporate context into our surprisal calculations. To incorporate context into our models, we train bigram and trigram language models, which incorporate one and two words of context for each processed word, respectively. The frequency-based surprisal metric gives us an idea of when in their utterances speakers say

frequent i.e. independently information-rich words. The context-based surprisal metric show
us how speakers tend to distribute the information in utterances relative to real-time
processing in communication. We expect a priori that our frequency-based surprisal curve
will be flat. No one part of the sentence will on average have words that are more frequent
than another across utterance lengths. Similarly, we expect that there will be a small
smoothing effect for our contextual surprisal metric such that the word in each position of an
utterance is more predictable than its frequency-based counterpart.

157 Estimating information

To estimate how information is distributed across utterances, we computed the lexical surprisal of each word under two different models. First, following Yu et al. (2016), we estimated a unigram model which considers each word independently:

$$surprisal(word) = -\log P(word)$$

This unigram surprisal measure is a direct transformation of the word's frequency and thus less frequent words are more surprising. Simply the less often a person has seen a word, the more information that word holds.

Second, we estimated a trigram model in which the surprisal of a given word (w_i) encodes how unexpected it is to read it after reading the prior two words $(w_{i-1} \text{ and } w_{i-2})$:

$$surprisal(w_i) = -logP(w_i|w_{i-1}, w_{i-2})$$

This metric encodes the idea that words that are low frequency in isolation (e.g. "meatballs") may become much less surprising in certain contexts (e.g. "spaghetti and meatballs") but more surprising in others (e.g. "coffee with meatballs"). The difficulty of

correctly estimating these probabilities from a corpus grows combinatorically with the number of prior words, and in practice trigram models perform well as an approximation (see e.g. Chen & Goodman, 1999; Smith & Levy, 2013).

Model details. We estimated the surprisal for each word type in a corpus using the 172 KenLM toolkit (Heafield, Pouzyrevsky, Clark, & Koehn, 2013). Each utterance was padded 173 with a special start-of-sentence token " $\langle s \rangle$ " and end of sentence token " $\langle s \rangle$ ". Trigram 174 estimates did not cross sentence boundaries, so for example the surprisal of the second word 175 in an utterances was estimated as surprisal $(w_2) = -P(w_2|w_i, \langle s \rangle)$. Naïve trigram models will 176 underestimate the surprisal of words in low-frequency trigrams (e.g. if the word "meatballs" 177 appears only once in the corpus following exactly the words "spaghetti and", it is perfectly 178 predictable from its prior two words). 179

To avoid this underestimation, we used modified Kneser-Ney smoothing as 180 implemented in the KenLM toolkit (Heafield et al., 2013). Briefly, this smoothing technique 181 discounts all ngram frequency counts, which reduces the impact of rare ngrams on 182 probability calculations, and interpolates lower-order ngrams into the calcuations. These 183 lower-order ngrams are weighted according to the number of distinct contexts they occur as 184 a continuation (e.g. "Francisco" may be a common word in a corpus, but likely only occurs 185 after "San" as in "San Francisco", so it receives a lower weighting). For a thorough 186 explanation of modified Kneser-Ney smoothing, see Chen and Goodman (1999). 187

Aggregating curves. To develop a characteristic information curve for sentences in
the corpus, we needed to aggregate sentences that varied dramatically in length (Fig ??A).
We used Dynamic Time Warping Barycenter Averaging (DBA), an algorithm for finding the
average of sequences that share and underlying pattern but vary in length (Petitjean,
Ketterlin, & Gançarski, 2011). DBA inverts standard dynamic time warping, discovering a
latent invariant template from a set of sequences.

194

We used DBA to discover the short sequence of surprisal values that characterized the

Figure 1. The final cost for the EM algorithm in fitting each size of barycenter

surprisal curves common to sentences of varying sentence lengths. We first averaged 195 individual sentences of the same length together and then applied the DBA algorithm to this 196 set of average sequences. DBA requires a parameter specifying the length of the template 197 sequence. 198

Optimizing the size hyperparameter for barycenter averaging. 199 intuition for how we chose size X. How we find the barycenter produces a cost: the further 200 the barycenter is from each data point, the higher the cost. We tried every size of barycenter in between 4 and 15 coordinates and found that 10 afforded the smallest size of the 202 barycenter with the lowest cost. 203

201

We use the implementation of DBA in the Python package tslearn (Tavenard et al., 204 2017), which fits the barycenter to a time-series dataset through the expectation-maximization algorithm (EM; Moon, 1996). DBA in this implementation allows us to specify the size of the barycenter. In order to choose the optimal size for the 207 barycenters, we computed the final cost from the EM algorithm for each barycenter size and 208 chose the barycenter size which minimized the average final cost. Time costs were negligible 209 for computing a larger barycenter. 210

222

227

235

Application to the corpus. Once we have fitted our language model, we can 211 compute the surprisal of a continuation by simply taking the negative log-probability of that 212 word's ngram probability. To find the average information for a given position in a corpus, we 213 take all utterances of a given length, and for each word position in utterances of that length, 214 we compute the average of the surprisals for all of the non-unique words that occur in that 215 position, conditioned or not conditioned on context. By computing these averages for each 216 word position in an utterance, we compute a low-dimensional approximation to the average 217 distribution of information in the corpus. With the surprisal metric, we base the information 218 contained in each word on how often the word is encountered in its context in the corpus. As 219 long as the corpus is representative of the language or population we study, then the 220 distribution of information is approximated for that language or population as a whole. 221

Study 1: The Shape of Information in Written English

Genzel and Charniak (2002) performed an influential early test of the Uniform 223 Information Density hypothesis. They analyzed the amount of information in successive 224 sentences of the same text. They found that the amount of information increased across 225 sentences when each was considered in isolation. They reasoned that since all prior sentences 226 provide the context for reading each new sentences, the amount of total information that the reader decoded within each sentence was constant overall. 228

Yu et al. (2016) applied this same logic to each word within sentences, computing the 229 entropy over each successive word position in an utterance. The entropy metric Yu et al. 230 (2016) used is the average surprisal of all the words in a given word position, computed only 231 within that position, and weighted by how many times each word occurs in that position. 232 Their formula is given by $H(X) = -\sum_{w} P(w \in X) \log P(w)$, where X is a word position 233 (e.g. first words, fifth words, final words) and w is a word occurring in position X. 234

The first word of each sentence tended to contain little information, while words in the

Figure 2. A caption

middle of sentences each contained roughly the same amount of information as one another, and the final word of each sentence contained much more information than any other word. They found the same distribution across sentence lengths, from sentences with 15 words to sentences with 45 words.

UID would predict a result similar to Genzel and Charniak's (2002) results: a smooth and monotonically increasing affine function of word position. Yu et al. (2016) interpreted their uneven information curve as evidence against the Uniform Information Density Hypothesis as, unlike Genzel and Charniak's (2002) results, information plateaued in the middle of sentences. See Fig 2.

We replicate the analysis from Yu et al. (2016) here, and build an additional model to bring their analysis more in line with Genzel and Charniak's (2002) methods. Finally, we also develop a method for averaging the curves for sentences of different lengths together to provide a single typical information structure.

49 Data

Following Yu et al. (2016), we selected the British National Corpus (BNC) for analysis (Leech, 1992). The BNC is an approximately 100 million word corpus consisting of mainly of

Figure 3. The distribution of sentence lengths in the British National Corpus. We analyzed sentences of length 5-45 (colored).

written (90%) with some spoken transcriptions (10%) of English collected by researchers at
Oxford University in the 1980s and 1990s. The BNC is intended to be representative of
British English at the end of the 20th century, and contains a wide variety of genres
(e.g. newspaper articles, pamphlets, fiction novels, academic papers). Yu et al. (2016) only
used the written portion of the BNC, although we include the much smaller spoken portion
as well.

258 Pre-processing

We began with the XML version of the corpus, and used the justTheWords.xsl script provided along with the corpus to produce a text file with one sentence of the corpus on each line. Compound words (like "can't") were combined, and all words were converted to lowercase before analysis. This produced a corpus of just over six million utterance of varying lengths. From these, we excluded utterances that were too short to allow for reasonable estimation of information shape (fewer than 5 words), and utterances that were unusually long (more than 45 words). This exclusion left us with 89.83% of the utterances (Fig 3).

Due to the size of the corpus, we do not include it along with our submission, but we include the scripts and directions in the copy of our GitHub repository.

Figure 4. (A) Surprisal by sentence position of length 15, 30, and 45 sentences in the British National Corpus under unigram and trigram surprisal models. Error bars indicate 95% confidence intervals (tiny due to sample size). (B) Characteristic information curves produced by the DBA algorithm averaging over all sentence lengths in each corpus.

Results and Discussion

We began by replicating Yu et al.'s (2016) analyses, examining the surprisal of words in sentence of length 15, 30, and 45 estimated by our unigram model. In line with their computations, we found a reliably non-linear shape in sentences of all 3 lengths, with the information in each word rising for the first two words, plateauing in the middle of sentences, dipping in pen-ultimate position, and rising steeply on the final word (Fig. 4A).

Qualitatively, we found the same shape in utterances of all other lengths we sampled, from utterances with 5 words to utterances with 44 words.

In comparison, under the trigram model we observed 3 major changes. First, each word contained significantly less information. This is to be expected as the knowing two prior words makes it much easier to predict the next word. Second, the fall and peak at the

291

292

293

295

298

ends of utterances was still observable, but much less pronounced. Finally, the first word of 279 each sentence was now much more surprising than the rest of the words in the sentence, 280 because the model had only the start of sentence token $\langle s \rangle$ to use as context. Thus, the 281 trigram model likely overestimates the information for humans reading the first word. 282 Together, these results suggest that Yu et al. (2016) overestimated the non-uniformity of 283 information in sentences. Nonetheless, the final words of utterances do consistently contain 284 more information than the other words. 285

Fig. 4B shows the barycenters produced by the dynamic time warping barycenter 286 averaging algorithm. The algorithm correctly recovers both the initial and final rise in 287 information under the unigram model, and the initial fall and smaller final rise in the 288 trigram model. We take this as evidence that (1) these shapes are characteristic of all 280 lengths, and (2) that DBA effectively recovers characteristic information structure. 290

In sum, the results of Study 1 suggest that sentences of written English have a characteristic non-uniform information structure, with information rising at the ends of sentences. This structure is more pronounced when each word is considered in isolation, but some of the structure remains even when each word is considered in context.

Is this structure unique to written English, or does it characterize spoken English as well? In Study 2, we apply this same analysis to two corpora of spoken English—the first of 296 adults speaking to other adults, and the second of adults and children speaking to each other. 297

Study 2: Information in Spoken English

Spoken language is different from written language in several respects. First, the speed 299 at which it can be processed is constrained by the speed at which it is produced. Second, 300 speech occurs in a multimodal environment, providing listeners information from a variety of 301 sources beyond the words conveyed (e.g. prosody, gesture, world context). Finally, the both 302 words and sentence structures tend to be simpler in spoken language than written language 303

as they must be produced and processed in real time (Christiansen & Chater, 2016). Thus, sentences of spoken English may have different information curves than sentences of written English.

The language young children hear is further different from the language adults speak to 307 each other. Child-directed speech tends to simpler than adult-directed speech on a number 308 of dimensions including the lengths and prosodic contours of utterances, the diversity of 309 words, and the complexity of syntactic structures (Snow, 1972). The speech produced by 310 young children is even more distinct from adult-adult speech, replete with simplifications and 311 modifications imposed by their developing knowledge of both the lexicon and grammar 312 (Clark, 2009). In Study 2, we ask whether spoken English-produced both by adults and 313 children— has the same information structure as written English. 314

315 Data

To estimate the information in utterances of adult-adult spoken English, we used the 316 Santa Barbara Corpus of Spoken American English, a $\sim 250,000$ word corpus of recordings 317 of naturally occurring spoken interactions from diverse regions of the United States (Du Bois, 318 Chafe, Meyer, Thompson, & Martey, 2000). For parent-child interactions, we used all of the 319 North American English corpora in the Child Language Data Exchange System (CHILDES) 320 hosted through the childes-db interface (MacWhinney, 2000; Sanchez et al., 2019). We 321 selected for analysis all ~ 1 million utterances produced by children (mostly under the age of 322 five), and ~ 1.7 million utterances produced by the parents of these children. 323

$_{24}$ Data Processing

All pre-processing and modeling details were identical to Study 1 except for the
selection of sentences for analysis. Because the utterances in both the Santa Barbara Corpus
and CHILDES were significantly shorter than the sentences in the British National Corpus,
we analyzed all utterances of at least 5 and most 15 words (see Fig. 8A). Models were

estimated separately for each of the 3 corpora.

Results and Discussion

The information curves found in adults-adult utterances were quite similar to those of parent-child utterances and child-parent utterances (Fig. 8B). Under the unigram model, information rose steeply in the beginnings of utterances, was relatively flatter in the middle of utterances, and the rose even more steeply at the ends. Under the trigram model, the first parts words of sentences contained the most information, information was relatively constant in the middle of utterances, and then rose slightly again at the ends.

Unfortunately, we cannot compare amount of information across corpora—surprisal is 337 highly correlated with corpus size (e.g. there is less information in adults' speech in Santa 338 Barbara than in children's speech in CHILDES), which rules out directly comparing the 339 surprisal values between the BNC, the SBC and English CHILDES. However, we can 340 compare the shapes of these curves both to each-other and to the written English sentences 341 in Study 1??B. All of these curves appeared to share their important qualitative features, 342 including the sharp rise at the end under the unigram model and the attenuation of this rise 343 under the trigram model. There are small differences—such as the flatter shape in the middle 344 of written sentences than spoken utterances, but this difference is pronounced in the 345 utterances of the Santa Barbara corpus relative to utterances of parents in CHILDES, 346 suggesting that it may be partly a function of corpus size. 347

Thus, English-both written and spoken, both produced by adults and by
children-appears to have a characteristic shape. Are the features of this shape features of
English, or features of language more broadly? In Study 3 we apply this technique to a
diverse set of written languages of different families to ask whether these structures vary
cross-linguistically.

Study 3: Language structures and large-scale data analysis

Data Data

353

To measure cross-linguistic variation in the structure of information across sentences,
we constructed a corpus of Wikipedia articles from all languages with at least 10,000 articles.
This resulted a set of 152 languages from 16 families. We then used two measures of lexical
similarity to investigate cross-linguistic variation in information curves.

To target lexical differences between languages, we used the 40-item Swadesh word list (Swadesh, 1955), retrieved from the ASJP database (Wichmann et al., 2016). The Swadesh list is designed to include near-universal words that target basic cognitive concepts, and are useful in determining the genealogical similarities and differences between languages.

Qualitatively, the more similar two languages' words are, the more similar the two languages are. To quantify this intuition, we computed the average normalized Levenshtein distance (LDN; Holman et al., 2008) over all items on the Swadesh list between pairs of languages.

To more rigorously described the top-down typological similarites and differences
between languages, we used data from the World Atlas of Language Structures (WALS;
Dryer & Haspelmath, 2013). The WALS database has data for 144 typological features in
thousands of languages from across the world. These features describe aspects of
morphology, syntax, phonology, etymology and semantics—in short the features describe the
structures in each language.

We used Multiple Imputation Multiple Correspondence Analysis to fill in the missing
data for the features we selected using statistical imputation (MIMCA; Audigier, Husson, &
Josse, 2017). MIMCA begins with mean imputation, converts the categorical WALS features
into a numerical contingency table with dummy coding, then repeatedly performs principle
components analysis and reconstructs the contingency table. As WALS is a compiled
database from dozens of papers from different authors, most of the features and languages are

fairly sparse. Even limiting ourselves to the 152 language corpora we pulled from Wikipedia and 122 features from WALS, there are tens of thousands of individual possible data values, fewer than half of which were already computed for those languages in the WALS database.

81 Data processing

Figure 5. Characteristic information curves (centered) for a sample of languages from Wikipedia

All processing was identical to Studies 1 and 2 except for the lengths of utterances chosen for analyses. To accommodate the variety of lengths across language corpora, we analyzed sentences of lengths 5 to 45.

For each pair of languages, we derived three pairwise similarity measures. To estimate
the information structure similarity, we first centered each language's 5-point barycenter
curve (since surprisal is highly correlate with corpus size), and then computed the cosine
similarity between the two centered curves. To estimate Swadesh similarity, we computed
the average normalized Levenshtein distance between each of the 40 words. Finally, to
compare typological similarity, we summed the number of WALS features each pair of
languages shared the same value for.

Results and Analysis

Taken together, these results suggest three broad conclusions. First, aspects of the 393 history of languages-encoded in their lexicostatistics-structure the shapes of information in 394 typical sentences. When each word in a sentence is considered alone, languages vary quite 395 dramatically in how information is distributed across sentences. Second, a diverse set of typological features of languages are related to how information is structured for listeners who bring predictive processing to language. These features appear to explain a small but 398 reliable proportion of the variation in how uniformly information is distributed across utterances. Finally, despite this variation, two words of predictive context radically transform 400 the structure of information in utterances, leading to significantly more uniformity in all 401 languages irrespective of their typological structure. These analyses suggest that top-down 402 constraints from language do play an important role in structuring speakers' utterances, but 403 the speakers have tremendous power to choose efficient utterances within these constraints. 404

Hierarchical clustering. We ran a hierarchical clustering algorithm on the 405 frequency-based information curves using the helust package from the R stats core library 406 (Team & others, 2013). We used the complete linkage algorithm for hierarchical clustering, 407 with distances between information curves between languages computed using cosine distance 408 between their embeddings in the slope space. The complete linkage algorithm at every step 400 pairs each language or cluster of languages with its closest neighboring language or cluster. 410 A sample from the dendrogram is shown in Figure ??. From a quick glance, the unigram information curves appear to reproduce some of the genealogical relationships between 412 languages, although the dendrogram does not exactly replicate language genealogy for all 152 languages. This suggests using a first-pass quantitative method that the information 414 curves do correspond in some measure to language families, but language families do not 415 explain all of the variation and relationships between frequency-based information curves.

Figure 6. Some trigram information curves from the Wikipedia data

Qualitative analysis.

417

Variation among unigram barycenters versus trigram barycenters. Distribution of pairw

419

421

427

Log-scaled dynamic time warping

In this script, we quantify the average pairwise distance between unigram and trigram barycenters. This simple summary statistic (computed along with a non-parametric 422 bootstrap) will give evidence that the unigram barycenters have more variation than the 423 trigram barycenters. 424

We use the dynamic time warping distance metric to quantify the differences between 425 the barycenters. The average unigram distance is 3.04, with a upper confidence interval 426 bound of 3.07 and a lower confidence interval bound of 3.01. Those values are 2.50, 2.52 and 2.48 respectively for trigrams. Qualitatively, there appears to be a large difference in means. 428

We log-scale the distances and graph them with violin and boxplot to display the 429 distribution. The violin plots for unigrams and trigrams actually appear similarly 430 distributed, but unigrams has more large distance values (a fatter tail, in probability 431 distribution terms) which allocates mass away from small distance values that dominate 432 both trigrams and unigrams. 433

Global correlations. Unlike the striking consistency across multiple English 434 corpora, we found significant variability in the structure of information curves across 435 languages estimated under the unigram model. Fig. 5 shows centered information curves for 436

Figure 7. Pairwise correlations between languages' centered information curves and the number of linguistic features they share of each type. Error bars indicate 95% CIs.

a sample of languages from several language families. Despite this variability under the unigram model, the shapes of information curves estimated under the trigram model were more similar cross-linguistically and to the shapes found in English: Sentences began with highly informative words (presumably due to lack of context) and then rapidly approached a uniform level of information. Consistent with this characterization, pairwise similarities in languages' information curves estimated under the unigram model were more correlated with their Swadesh distances (r = -0.11, t = -10.27, p < .001) than their distances estimated under the trigram model (r = 0.03, t = 2.33, t = 0.020).

While the trigram information curves have a more consistent qualitative shape, there are differences between languages. The pairwise similarities between languages' trigram information curves were more correlated with the number of WALS features they shared (r = 0.12, t = 13.35, p < .001) than their similarities estimated under the trigram model (r = 0.03, t = 2.72, p = .007).

Correlations by type. To understand which typological features contribute to
these similarities, we split the WALS features by type, with categories such as nominative

categories and nominative syntax describing morphology while word order describes
subject-verb-object and head-modifier word orders. Fig. 7 shows the correlation between the
similarity of information curves under both the unigram and trigram models and the number
of features of each of these types two-languages shared. Under the unigram model, word
order features appear to predict information curve similarity. In contrast, under the trigram
model, all features types except for nominative syntax are reliably correlated with
information curve similarity.

Mutual information between WALS features and barycenters. We use a 459 final measure to quantify how much variation in WALS features explains variation in 460 barycenters: mutual information between each coordinate of the barycenters and each WALS 461 feature and feature group. We use the categorical-continuous measure derived and described 462 in Ross (2014). How much does knowing the value of each WALS feature tell you about the 463 value of each one of the barycenter coordinates? We reduce to a pairwise measure. The 464 algorithm uses a variant of the k-nearest-neighbors regression algorithm. It essentially asks: 465 how many points with the same WALS label are in a neighborhood around each language's e.g. first coordinate? 467

Discussion of results.

Results and plot.

460

470 Discussion

By considering the distribution of information at the level of utterances and sentences,
we join together the information-theoretic work focusing on sub-word units and words, and
that focusing on paragraphs. In doing so, we show that frequency and context-based metrics
complement one another in studying efficiency and information in language. We directly link
linguistic efficiency in a language to the genealogy and properties of that language. We
provide evidence for a novel linguistic universal: low processing cost for listeners beyond the

first words in utterances, driven by high average word predictability in conversation. With
consideration to language acquisiton, we observe that children tend to distribute information
in their utterances according to the their language's frequency-based information curve as
soon as they form multi-word utterances.

Throughout this work we have averaged the surprisal values at each position.

Averaging removes variation, which in turn may obscure trends in the data. As discussed in
the methods section, the surprisal metric has historically been used for calculating the
information and processing cost for individual utterances, and our use of the metric here is
actually a step forward rather than a step back. Future work can investigate variation in
how speakers distribute information in individual utterances.

Our Study 3 results from Wikipedia languages fall prey to Galton's problem: the languages are not drawn randomly from the set of all languages without regard to language family or any other kind of genealogy. Indo-European languages (which are more similar to each other) are overrepresented.

The WALS database we used to investigate typological variation in the information 491 curves is overall sparse. We imputed well over 50% of the WALS features for most of our 159 492 languages, although all of the languages had at least 20 features evaluated in WALS. A large 493 part of this is due to WALS being a collection of a number of different studies, instead of a 494 systematic effort to catalogue variation across the world's languages. Additionally, WALS 495 features are meant to describe specific microvariations in languages, not to provide a 496 comprehensive typological representation of each language compared to each other language. This may be why the Swadesh list provided a higher correlation for describing the differences in information curves: Swadesh (1955) intended the list to allow researchers to more comprehensively compared and constrast lexical differences between languages. For our Wikipedia analysis, we also reduce all of a language's variation down to a five-dimensional 501 vector. These information curve representations show a surprising amount of variation 502

 $_{\rm 503}$ despite the degree of compression.

References

- Anderson, J. R., & Milson, R. (1989). Human memory: An adaptive perspective.

 Psychological Review, 96(4), 703.
- Audigier, V., Husson, F., & Josse, J. (2017). MIMCA: Multiple imputation for categorical variables with multiple correspondence analysis. *Statistics and Computing*, 27(2), 501–518.
- Austin, J. L. (1975). How to do things with words. Oxford university press.
- Aylett, M., & Turk, A. (2004). The smooth signal redundancy hypothesis: A functional explanation for relationships between redundancy, prosodic prominence, and duration in spontaneous speech. *Language and Speech*, 47(1), 31–56.
- Chen, S. F., & Goodman, J. (1999). An empirical study of smoothing techniques for language modeling. Computer Speech & Language, 13(4), 359–394.
- Christiansen, M. H., & Chater, N. (2016). The now-or-never bottleneck: A fundamental constraint on language. *Behavioral and Brain Sciences*, 39.
- ⁵¹⁸ Clark, E. V. (2009). First language acquisition. Cambridge University Press.
- Dryer, M. S., & Haspelmath, M. (Eds.). (2013). WALS online. Leipzig: Max Planck Institute for Evolutionary Anthropology. Retrieved from https://wals.info/
- Du Bois, J. W., Chafe, W. L., Meyer, C., Thompson, S. A., & Martey, N. (2000). Santa barbara corpus of spoken american english. CD-ROM. Philadelphia: Linguistic Data Consortium.
- Frank, A. F., & Jaeger, T. F. (2008). Speaking rationally: Uniform information density as
 an optimal strategy for language production. In *Proceedings of the annual meeting of*

- the cognitive science society (Vol. 30).
- Frank, S. L., Otten, L. J., Galli, G., & Vigliocco, G. (2015). The erp response to the amount of information conveyed by words in sentences. *Brain and Language*, 140, 1–11.
- Genzel, D., & Charniak, E. (2002). Entropy rate constancy in text. In *Proceedings of the*40th annual meeting of the association for computational linguistics (pp. 199–206).
- Heafield, K., Pouzyrevsky, I., Clark, J. H., & Koehn, P. (2013). Scalable modified kneser-ney language model estimation. In *Proceedings of the 51st annual meeting of the*association for computational linguistics (volume 2: Short papers) (pp. 690–696).
- Holman, E. W., Wichmann, S., Brown, C. H., Velupillai, V., Müller, A., Bakker, D., &
 others. (2008). Advances in automated language classification. Quantitative
 Investigations in Theoretical Linguistics, 40–43.
- Jaeger, T. F., & Levy, R. P. (2007). Speakers optimize information density through syntactic reduction. In *Advances in neural information processing systems* (pp. 849–856).
- Kemp, C., & Regier, T. (2012). Kinship categories across languages reflect general communicative principles. *Science*, 336(6084), 1049–1054.
- Kirby, S., Tamariz, M., Cornish, H., & Smith, K. (2015). Compression and communication in the cultural evolution of linguistic structure. *Cognition*, 141, 87–102.
- Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the n400 component of the event-related brain potential (erp). *Annual Review of* Psychology, 62, 621–647.
- Leech, G. N. (1992). 100 million words of english: The british national corpus (bnc).
- Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126–1177.

- MacWhinney, B. (2000). The childes project: The database (Vol. 2). Psychology Press.
- Mahowald, K., Fedorenko, E., Piantadosi, S. T., & Gibson, E. (2013). Info/information
- theory: Speakers choose shorter words in predictive contexts. Cognition, 126(2),
- 551 313–318.
- Moon, T. K. (1996). The expectation-maximization algorithm. *IEEE Signal Processing*Magazine, 13(6), 47–60.
- Perfors, A., & Navarro, D. J. (2014). Language evolution can be shaped by the structure of
 the world. *Cognitive Science*, 38(4), 775–793.
- Petitjean, F., Ketterlin, A., & Gançarski, P. (2011). A global averaging method for dynamic time warping, with applications to clustering. *Pattern Recognition*, 44(3), 678–693.
- Piantadosi, S. T., Tily, H., & Gibson, E. (2011). Word lengths are optimized for efficient communication. *Proceedings of the National Academy of Sciences*, 108(9), 3526–3529.
- Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension. *Behavioral and Brain Sciences*, 36(4), 329–347.
- Ross, B. C. (2014). Mutual information between discrete and continuous data sets. PloSOne, 9(2).
- Sanchez, A., Meylan, S. C., Braginsky, M., MacDonald, K. E., Yurovsky, D., & Frank, M. C.
 (2019). Childes-db: A flexible and reproducible interface to the child language data
 exchange system. Behavior Research Methods, 51(4), 1928–1941.
- Shannon, C. E. (1948). A mathematical theory of communication. *Bell System Technical*Journal, 27(3), 379–423.
- 569 Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is

- logarithmic. Cognition, 128(3), 302–319.
- Snow, C. E. (1972). Mothers' speech to children learning language. *Child Development*, 549–565.
- Swadesh, M. (1955). Towards greater accuracy in lexicostatistic dating. *International Journal of American Linguistics*, 21(2), 121–137.
- Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995).
- Integration of visual and linguistic information in spoken language comprehension.
- Science, 268(5217), 1632–1634.
- Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., ... Woods, E. (2017). Tslearn: A machine learning toolkit dedicated to time-series data.
- Team, R. C., & others. (2013). R: A language and environment for statistical computing.
- Wichmann, S., Müller, A., Wett, A., Velupillai, V., Bischoffberger, J., Brown, C. H., ...
 others. (2016). The asjp database. Max Planck Institute for the Science of Human
 History, Jena.
- Yu, S., Cong, J., Liang, J., & Liu, H. (2016). The distribution of information content in english sentences. arXiv Preprint arXiv:1609.07681.

Figure 8. (A) The distribution of sentence lengths in the spoken English corpora: Adults in Santa Barbara, and parents and children in CHILDES. We analyzed sentences of length 5-15 (colored). (B) Charateristic surprisal curves for these corpora.