## What's the point?

can be anything



### Other cost functions

vector of vector of instance data

### Logistic Regression

$$J(\theta) = \frac{1}{n} \sum_{i=0}^{n} \log_2 (1 + \exp(-y_i(\theta \cdot x_i))) + \frac{\lambda}{2} ||\theta||^2$$

#### **Support Vector Machines**

$$J(\theta) = \frac{1}{n} \sum_{i=0}^{n} \max(1 - y_i(\theta \cdot x_i), 0) + \frac{\lambda}{2} ||\theta||^2$$

# Quick Intuition for Logistic Regression (1)



Gradient descent regression line for titanic data.

Predicting survival (y-axis) from (normalized) age (x-axis).

What does this line mean?

Nothing really

# Quick Intuition for Logistic Regression (2)

$$f(x) = \frac{e^x}{e^x + 1}$$

Maps any number to the range (0,1)

Interpret the result as a probability

Interpret categorical classes numerically

What is the *probability* a passenger survived?

The cost function is constructed to maximize the probability of correct classification.



## Quick Intuition for Support Vector Machines (1)



## Quick Intuition for Support Vector Machines (2)



### Quick Intuition for Support Vector Machines (3)



### Quick Intuition for Support Vector Machines (4)

Not linearly separable in 1D:



Map the data into a higher dimensional space by applying a kernel



#### Support Vector Machine Model, Titanic Data, Linear Kernel



16

#### Support Vector Machine Model, Titanic Data, Radial Basis Function Kernel



#### Support Vector Machine Model, Titanic Data, Radial Basis Function Kernel



#### Support Vector Machine Model, Titanic Data, Radial Basis Function Kernel

a lower gamma, a parameter that controls that balances model complexity against accuracy

