

Schottky Diode Derating for Survivability in a Heavy Ion Environment

Megan C. Casey¹, Jean-Marie Lauenstein¹,
Raymond L. Ladbury¹, Edward P. Wilcox², Alyson D. Topper²,
and Kenneth A. LaBel¹

¹NASA Goddard Space Flight Center

²ASRC Federal Space and Defense, Inc. (AS&D, Inc.)

List of Acronyms and Symbols

- DUT – Device Under Test
- I_R – Reverse Current
- I_F – Forward Current
- LBNL – Lawrence Berkeley National Laboratory
- LET – Linear Energy Transfer
- MOSFET – Metal Oxide Semiconductor Field Effect Transistor
- NEPP – NASA Electronic Parts and Packaging Program
- SEE – Single Event Effects
- V_R – Reverse Voltage
- V_F – Forward Voltage
- ϕ_B – Schottky Barrier Height

Introduction

- In 2011/2012, GSFC observed failures in the output Schottky diodes of DC/DC converters
 - Independent testing of the diodes was undertaken to determine their vulnerability to heavy ions
- Until this point, diodes generally were not considered to be susceptible to SEEs
 - These diode failures could be catastrophic to scientific instruments, or even entire spacecraft
- Power MOSFETs are derated when operating in radiation environments
 - Would a similar approach work for Schottky diodes?

Test Facilities and Technique

- All parts were tested at LBNL's 88" cyclotron with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg)
- All diodes were reverse biased while irradiated
- After each beam run, V_F , V_R , I_F and I_R were measured

Parts Tested

- 49 Schottky diodes from 11 manufacturers
- Reverse voltages range from 40 V to 600 V
- Forward currents (per diode) from 5 A to 30 A
- Within the manufacturers, high temperature, high forward voltage lines are compared to low temperature, low forward voltage and low barrier height lines

Observed Radiation Responses

Results

Results

100% of Reverse Voltage

75% of Reverse Voltage

50% of Reverse Voltage

By derating to 50% of the reverse voltage, all failures are eliminated for the parts tested

Failures as a Function of Barrier Height

No failures observed in parts with ϕ_B less than 0.72 eV

Failures as a Function of Reverse Current

100% of Reverse Voltage

Strong correlation in susceptibility and low I_R rating

Failures as a Function of Reverse Current

75% of Reverse Voltage

Strong correlation in susceptibility and low I_R rating

Failures as a Function of Forward Voltage

100% of Reverse Voltage

75% of Reverse Voltage

Weaker correlation in susceptibility and high V_F rating
However, product lines billed as low V_F or low ϕ_B show very little susceptibility

Conclusions

- Schottky diodes are susceptible to destructive SEEs
 - Failures only occur when diodes are reverse biased
- Failures are much more widespread than originally suspected
 - Failures observed across manufacturers, reverse voltages, and forward current ratings tested
- No failures observed at 50% (or below) of rated reverse voltage
- There appears to be a strong correlation between failures and barrier height, as well as reverse current rating
 - SEE testing should be considered when selecting parts with $\phi_B > 0.72$ eV or with $I_R \leq 200 \mu\text{A}$
 - Correlation also exists between failures and forward voltage

Acknowledgments

- This work was sponsored by the NASA Electronic Parts and Packaging Program and the Defense Threat Reduction Agency.
- The authors gratefully acknowledge members of the Radiation Effects and Analysis Group who contributed to the test results presented here.
- The authors would also like to acknowledge the staff at the LBNL cyclotron for their support during these tests.