Programming Languages: Lecture 9 Grammars: Context-Free and Context-Sensitive

Rishabh Dhiman

21 January 2022

1 Grammar

Definition 1 (Grammar). A grammar $G = \langle N, T, P, S \rangle$ consists of

- \bullet a set N of nonterminal symbols.
- \bullet a start symbol S.
- \bullet a set T of terminal symbols.
- a set P of productions or rewrite rules where each rule is of the form $\alpha \to \beta$ for $\alpha, \beta \in (N \cup T)^*$.

Definition 2. Given a grammar $G = \langle N, T, P, S \rangle$, any $\alpha \in (N \cup T)^*$ is called a *sentential form*. Any $x \in T^*$ is called a *sentence*.

Definition 3 (Context-Free Grammar). A grammar $G = \langle N, T, P, S \rangle$ is *context-free* if all production rules are of the form $\alpha \to \beta$ where β is a sentential form and $\alpha \in N$.

Example (CFG). $\{a^nb^n \mid n > 0\}$ is generated by the grammar,

$$S \to ab$$
,

$$S \to aSb$$
.

Example (Context-Sensitive Grammar). $\{a^nb^nc^n \mid n>0\}$ is generated by the grammar,

$$S \to abc$$
,

$$S \rightarrow aSBc$$
.

$$bB \rightarrow bb$$
,

$$cB \to Bc$$
.

A CFG can be viewed as a CFG where all *contexts* are empty. From what I gather, context is the information around a particular symbol.

Notation. We say that $S \stackrel{*}{\Rightarrow} \alpha$ if there's a series of productions such that we can generate α from S.

Definition 4. We see that a grammar is left or right linear when,

- Left-Linear: $X \to a$ or $X \to Ya$.
- Right-Linear: $X \to a \text{ or } X \to aY$.

Definition 5 (Regular Grammar). All the productions are either solely left-linear or solely right-linear.

Theorem 1. Every regular grammar can be generated using right-linear grammar.

I think you can encode the non-terminal symbols as states of the DFA.

2 Derivations

Definition 6 (Leftmost Derivation). Choose the leftmost non-terminal symbol and apply some production rule.

Yield of a derivation tree is the string derived.

3 Ambiguity

Definition 7 (Ambiguous Grammar). A grammar is said to be *ambiguous* if two sentences can have different derivation trees.

// Question, does a left-most derivation give rise to a unique derivation tree? It does! (Come up with a tree, thinking of DFS of the tree should help I think)

Definition 8 (Ambiguous Language). A language is said to be *ambiguous* if there's no unambiguous grammar which generates it.

4 Removing Ambiguity

The three common ways adopted to get rid of ambiguity of grammar is,

- Introducing bracketing notation
- Introducing precedence or associativity rules
- Changing the grammar of the language.

Exercise. Prove/disprove that $S \to \varepsilon \mid aSbS$ generates the same language as $S \to \varepsilon \mid aSb$ and that it generates the same grammar as $S \to SS \mid aSb \mid \varepsilon$.