CERTIFICATES FOR INCREMENTAL TYPE CHECKING

Thesis defense

Matthias Puech

Università di Bologna

Dottorato di Ricerca in Informatica, Ciclo xxvi

Université Paris Diderot École Doctorale Sciences Mathématiques de Paris Centre

Andrea Asperti

Hugo Herbelin & Yann Régis-Gianas

April 8, 2013

Outline

Introduction

Programming with proof certificates

Incremental type checking

Conclusion

Quiz

Is there a cycle of size 2^N in this graph?

Quiz

Is there a cycle of size 2^N in this graph?

val cycle: graph → bool

The algorithm and its specification

Specification

EDGE
$$\frac{A \to B}{A \leadsto_0 B} \qquad \frac{A \leadsto_N B}{A \leadsto_{s(N)} C}$$
TRANS
$$\frac{A \leadsto_N B}{A \leadsto_{s(N)} C}$$

Quiz

Given $a \to b$, $b \to c$, $c \to d$, $d \to a$, $d \to b$, $e \to d$, $a \to e$, are there A and N such that $A \leadsto_N A$ holds?

The algorithm and its specification

Specification

EDGE
$$A \rightarrow B$$
 $A \leadsto_0 B$ TRANS $A \leadsto_N B$ $B \leadsto_N C$ $A \leadsto_{\mathsf{S}(N)} C$

Quiz

Given $a \to b$, $b \to c$, $c \to d$, $d \to a$, $d \to b$, $e \to d$, $a \to e$, are there A and N such that $A \leadsto_N A$ holds? There are (A = a, N = 2):

$$\frac{a \to b}{a \leadsto_0 b} EDGE \qquad \frac{b \to c}{b \leadsto_0 c} EDGE \qquad \frac{c \to d}{c \leadsto_0 d} EDGE \qquad \frac{d \to a}{d \leadsto_0 a} EDGE$$

$$\frac{a \leadsto_1 c}{a \leadsto_2 a} TRANS \qquad \frac{c \leadsto_1 a}{c \leadsto_1 a} TRANS$$

$$\frac{d \to a}{d \leadsto_0 a} TRANS \qquad TRANS \qquad TRANS \qquad TRANS$$

Quiz

Is this true?

$$(p \supset q) \supset (p \lor r) \supset (q \lor r)$$

Quiz

Is this true?

$$(p \supset q) \supset (p \lor r) \supset (q \lor r)$$

val prove : prop → bool

The statement and its proof

Specification

Quiz

Does
$$\vdash$$
 $(p \supset q) \supset (p \lor r) \supset (q \lor r)$ hold?

The statement and its proof

Specification

Quiz

Does \vdash $(p \supset q) \supset (p \lor r) \supset (q \lor r)$ hold? It does:

$$\frac{ \frac{ \left[\vdash (p \supset q) \right] \quad \left[\vdash p \right] }{ \vdash q \quad \text{DISJII} } \text{IMPE} }{ \frac{ \vdash r \mid }{ \vdash q \lor r} \text{DISJIS}} \underbrace{ \frac{ \left[\vdash r \right] }{ \vdash q \lor r} }_{\text{DISJE}} \text{DISJES}$$

$$\frac{ \vdash q \lor r \quad }{ \vdash (p \lor r) \supset q \lor r} \text{IMPI}$$

$$\frac{ \vdash (p \supset q) \supset (p \lor r) \supset q \lor r}{ \vdash (p \supset q) \supset (p \lor r) \supset q \lor r} \text{IMPI}$$

A program can be arbitrarily more complex than its specification. How can I be sure that a program respects its specification?

A program can be arbitrarily more complex than its specification. How can I be sure that a program respects its specification?

Dynamically

```
let cycle: graph \rightarrow path option = ... verify (cycle [A, B; A, C; B, C])
```

A program can be arbitrarily more complex than its specification. How can I be sure that a program respects its specification?

Dynamically

```
let cycle: graph \rightarrow path option = ... verify (cycle [A, B; A, C; B, C])
```

Statically

```
let cycle : graph \rightarrow bool = ...
```

Theorem for all *G*, cycle G = true iff G has a 2^N -cycle

A program can be arbitrarily more complex than its specification. How can I be sure that a program respects its specification?

Dynamically

```
let cycle : graph \rightarrow path option = ... verify (cycle [A, B; A, C; B, C])
```

Statically

```
let cycle : graph \rightarrow bool = ...
```

Theorem for all *G*, cycle G = true iff G has a 2^N -cycle

In both cases, external tools are required

Thesis

We can integrate a program and its specification by developping programming tools, and relying on proof theory

Thesis

We can integrate a program and its specification by developping programming tools, and relying on proof theory

Argued by two main contributions:

- 1. programming with proof certificates
- 2. incremental type checking

Outline

Introduction

Programming with proof certificates

Incremental type checking

Conclusion

Proof certificates

Witnesses of correctness of a computation, independently verifiable by a small trusted program

- a specification of f, e.g. for all i, if f(i) = o then P(i, o)
- an untrusted oracle computing $f(i) = \langle o, \pi \rangle$
- a trusted *kernel* deciding if π is a proof of P(i, o)

Examples

Proof-carrying code [Necula, 1997], theorem proving [Asperti and Tassi, 2007], safe type inference [Vytiniotis, 2008]

Proof certificates

Question

How to write programs manipulating proofs?

It is notably hard to write *correct* certificate-issuing programs with a *general-purpose* programming language:

- 1. how to represent proofs?
- 2. how to manipulate hypotheses? (binders)
- 3. how to compute on hypothetical proofs? (free variables)

1. A data structure for proofs?

```
Question
How to represent proofs?
Example
type vertex = string
type edge = vertex × vertex
type path =
  Edge of edge
  Trans of path \times path
let check 1 : path \rightarrow bool = ...
```

1. A data structure for proofs?

```
Question
How to represent proofs?
Example
type prop = Atom of string | \text{Imp of prop} \times \text{prop} |
type pf =
   Disjl1 of prop \times pf | Disjl2 of prop \times pf
  ImpE of pf \times pf
  Implof string \times pf
   DisjE of pf \times string \times pf \times string \times pf
let check 1: pf \rightarrow bool = ...
```

1. LF: a universal notation for hypothetical proofs

- many formal systems and logics
- a common hypothetical reasoning core
 e.g. logics with dischargeable hypotheses, programming languages
 with variable binders

1. LF: a universal notation for hypothetical proofs

- many formal systems and logics
- a common hypothetical reasoning core
 e.g. logics with dischargeable hypotheses, programming languages
 with variable binders

Proposition

Use LF [Harper et al., 1993] as the values manipulated

LF is a universal *representation language*, for formal systems featuring hypothetical reasoning, like HTML for structured documents

- systems (resp. derivations) encoded into signatures (resp. objects)
- dependently-typed λ -calculus ($\lambda\Pi$)
- higher-order abstract syntax

1. LF: a universal notation for hypothetical proofs

Example (Encoding natural deductions)

Computing LF objects?

Question

How to write programs which values are LF objects?

Computing LF objects?

Question

How to write programs which values are LF objects?

Related work

Twelf [Pfenning and Schürmann, 1999], Beluga [Pientka and Dunfield, 2010], Delphin [Poswolsky and Schürmann, 2008]

Computing LF objects?

Question

How to write programs which values are LF objects?

Related work

Twelf [Pfenning and Schürmann, 1999], Beluga [Pientka and Dunfield, 2010], Delphin [Poswolsky and Schürmann, 2008]

Proposition

An OCaml library to ease programming with proof certificates:

- √ general purpose functional programming language
- √ large corpus of libraries
- X only simply-typed (ADT)

$$\begin{aligned} &\mathsf{OCamI} + \mathsf{LF} = \mathsf{Gasp} \\ &\mathsf{http://www.cs.unibo.it/^puech/} \end{aligned}$$

An implementation of LF...

- a type of LF objects obj
- a type of signatures sign
- a concrete syntax with quotations and anti-quotations
 e.g. («^{sign} prop : *. imp : prop → prop → prop. » : sign)
 e.g. fun (x:obj) → (« imp "x" "x" » : obj)

An implementation of LF...

- a type of LF objects obj
- a type of signatures sign
- a concrete syntax with quotations and anti-quotations
 e.g. («sign prop: *. imp: prop → prop → prop. »: sign)
 e.g. fun (x:obj) → («imp "x" "x" »: obj)

... where signatures can declare functions symbols f

- their code is untyped OCaml code (type obj)
 can use e.g. pattern-matching, exceptions, partiality...
- their LF types act as a specifications dynamically checked at run time

Example

```
# let s = s + + e^{sign}

tryProveIdentity: \Pi x: prop. pf x = "fun \ x \rightarrow match \ x with | e imp "y" "z" » <math>\rightarrow e impl "y" "z" (\lambda x.x) »".

» ;;

s: sign = e^{sign} \dots »
```

Example

```
Example
# let s = s ++ e^{sign}
 tryProveIdentity : \Pi x : prop. pf x = "fun x \to match x with
     | \text{ "imp "y" "z" "} \rightarrow \text{ "Impl "y" "z" } (\lambda x.x) \text{ "}.
» ;;
s: sign = \langle sign \dots \rangle
# eval s « tryProveIdentity (imp p p) » ;;
-: obj = « Impl p p (\lambda x.x) »
# eval s « tryProveIdentity (imp p (imp q p)) » ;;
Exception: Type_error (\langle \lambda x.x \rangle, \langle pf p \rightarrow pf (imp q p) \rangle)
```

Consider the signature of the λ -calculus

```
# let s = e^{sign} tm : *.

app : tm \rightarrow tm \rightarrow tm. lam : (tm \rightarrow tm) \rightarrow tm. » ;;

and function

# let eta_expand m = ee lam \lambda x. (app "m" x) » ;;
```

Consider the signature of the λ -calculus

```
# let s = s^{sign} tm : *.

app : tm \rightarrow tm \rightarrow tm. lam : (tm \rightarrow tm) \rightarrow tm. » ;;

and function

# let eta_expand m = « lam \lambda x. (app "m" x) » ;;

What is the value of this expression?

« lam \lambda x. "eta_expand « x »" »
```

Consider the signature of the λ -calculus

```
# let s = s^{sign} tm : *.

app : tm \rightarrow tm \rightarrow tm. lam : (tm \rightarrow tm) \rightarrow tm. » ;;

and function

# let eta_expand m = « lam \lambda x. (app "m" x) » ;;

What is the value of this expression?

« lam \lambda x. (lam \lambda x. app x x) »
```

Consider the signature of the λ -calculus

```
# let s = s^{sign} tm : *.

app : tm \rightarrow tm \rightarrow tm. lam : (tm \rightarrow tm) \rightarrow tm. » ;;

and function

# let eta_expand m = s lam \lambda x. (app "m" s) » ;;

What is the value of this expression?

s lam \lambda x. (lam \lambda x. app s s) »
```

→ Variable capture during substitution

Related work

FreshML [Shinwell et al., 2003], $C\alpha ml$ [Pottier, 2007], [McBride and McKinna, 2004], [Pouillard and Pottier, 2010]

```
# let s = s^{sign}

tm:*. app:tm \rightarrow tm \rightarrow tm. lam:(tm \rightarrow tm) \rightarrow tm.

etaExpand:tm \rightarrow tm = "fun m \rightarrow s lam (<math>\lambda x.app "m" x) "". »;;
```

```
# let s = s^{sign}

tm: *. app: tm \rightarrow tm \rightarrow tm. lam: (tm \rightarrow tm) \rightarrow tm.

etaExpand: tm \rightarrow tm = "fun m \rightarrow s lam (<math>\lambda x. app "m" x) "". »;;

# eval s s lam (\lambda x. etaExpand x) ";
```

```
# let s = e^{sign}

tm: *. app: tm \to tm \to tm. lam: (tm \to tm) \to tm.

etaExpand: tm \to tm = "fun m \to e lam (\lambda x. app "m" x) * ". * ;;

# eval s \in lam (\lambda x. etaExpand x) * ;;

-: obj = e lam (\lambda x. lam (\lambda x'. app x x')) *
```

```
# let s = e^{sign}
 tm:*. app:tm \rightarrow tm \rightarrow tm. lam:(tm \rightarrow tm) \rightarrow tm.
 etaExpand : tm \rightarrow tm = "fun m \rightarrow « lam (<math>\lambda x.app "m" x) »". » ;;
# eval s « lam (\lambda x. etaExpand x) »;
-: obj = « lam (\lambda x. \text{lam } (\lambda x'. \text{app } x x')) »
# let s = s ++ <^{sign}
 vl:*. vlam: (tm \rightarrow tm) \rightarrow vl.
 interpret: tm \rightarrow vl = "fun m \rightarrow match m with
    | « | lam | m| » \rightarrow « | v| am | m| »
    | « app "m" "n" » →
        let « vlam "p" » = « interpret "m" » in
        « interpret ("p" "n") »". » ;;
```

```
# let s = e^{sign}
 tm:*. app:tm \rightarrow tm \rightarrow tm. lam:(tm \rightarrow tm) \rightarrow tm.
 etaExpand: tm \rightarrow tm = "fun m \rightarrow « lam (\lambda x. app "m" x) »". »;
# eval s « lam (\lambda x. etaExpand x) »;
-: obj = « lam (\lambda x. \text{lam } (\lambda x'. \text{app } x x')) »
# let s = s ++ <^{sign}
 v|:*. v|am:(tm \rightarrow tm) \rightarrow v|.
 interpret: tm \rightarrow vl = "fun m \rightarrow match m with
   |  « |  lam "m" » \rightarrow « |  vlam "m" »
    | « app "m" "n" » \rightarrow
        let « vlam "p" » = « interpret "m" » in
        « interpret ("p" "n") »". » ;;
# eval s « interpret (app (lam (\lambda x.x)) (lam (\lambda x.x))) » ;;
-: obj = « vlam (\lambda x.x) »
```

Contribution

- ✓ Substitution and α -renaming are handled by the tool, thanks to an original *locally named* representation of concrete LF objects:
 - free variables are numbered protected against capture
 - bound variables are named written by the user

Example

«lam (λx . etaExpand x)»

Contribution

- ✓ Substitution and α -renaming are handled by the tool, thanks to an original *locally named* representation of concrete LF objects:
 - free variables are numbered protected against capture
 - bound variables are named written by the user

Example

«lam (λx . etaExpand #1)»

Contribution

- ✓ Substitution and α -renaming are handled by the tool, thanks to an original *locally named* representation of concrete LF objects:
 - free variables are numbered protected against capture
 - bound variables are named written by the user

Example

```
«lam (\lambda x. \text{lam } (\lambda x. \text{app } #2 x))»
```

Contribution

- ✓ Substitution and α -renaming are handled by the tool, thanks to an original *locally named* representation of concrete LF objects:
 - free variables are numbered protected against capture
 - bound variables are named written by the user

Example

```
«lam (\lambda x. lam (\lambda x'. app x x'))»
```

3. Computing on objects with free variables?

Consider the *size* function $|\cdot|$ defined recursively on λ -terms:

$$|x| = 0$$
$$|\lambda x. M| = |M| + 1$$
$$|M N| = |M| + |N| + 1$$

3. Computing on objects with free variables?

Consider the *size* function $|\cdot|$ defined recursively on λ -terms:

$$|x| = 0$$
$$|\lambda x. M| = |M| + 1$$
$$|M N| = |M| + |N| + 1$$

Can we code it as follows?

```
size: tm → nat = "fun m → match m with

| « x » → « o »

| « app "m" "n" » → « s (plus (size "m") (size "n")) »

| « lam "f" » → « s (size "f") » ".
```

3. Computing on objects with free variables?

Consider the *size* function $|\cdot|$ defined recursively on λ -terms:

$$|x| = 0$$
$$|\lambda x. M| = |M| + 1$$
$$|M N| = |M| + |N| + 1$$

Can we code it as follows?

 \rightsquigarrow Ill-typed: f has type tm \rightarrow tm

```
size : tm \rightarrow nat = "fun m \rightarrow match m with | « x » \rightarrow « o » | « app "m" "n" » <math>\rightarrow « s (plus (size "m") (size "n")) » | « lam "f" » \rightarrow « s (size "f") » ".
```

Related work

[Miller and Palamidessi, 1999], Contextual Modal Type Theory [Nanevski et al., 2008], Abella [Gacek et al., 2011]

3. Environment-free computation in Gasp

Proposition

Consider size only called on closed objects (no variable case), introduce function inverse $size^0$: nat \rightarrow tm feeding output back to input

```
size: tm \rightarrow nat = "fun m \rightarrow match m with 
| " app "m" "n" " \rightarrow " s (plus (size "m") (size "n")) " | " lam "f" " \rightarrow " s (size ("f" (size<sup>0</sup> o))) ".
```

3. Environment-free computation in Gasp

Proposition

Consider size only called on closed objects (no variable case), introduce $function\ inverse\ size^0$: nat \to tm feeding output back to input

```
size : tm \rightarrow nat = "fun m \rightarrow match m with 
| " app "m" "n" " \rightarrow " s (plus (size "m") (size "n")) " | " | am "f" " \rightarrow " s (size ("f" (size<sup>0</sup> o))) ".
```

We add contraction to the reduction

$$size (size^0 M) = M$$

3. Environment-free computation in Gasp

Proposition

Consider size only called on closed objects (no variable case), introduce function inverse $size^0$: nat \rightarrow tm feeding output back to input

```
size: tm \rightarrow nat = "fun m \rightarrow match m with

| « app "m" "n" » \rightarrow « s (plus (size "m") (size "n")) »

| « lam "f" » \rightarrow « s (size ("f" (size<sup>0</sup> o))) » ".
```

We add contraction to the reduction

$$size (size^0 M) = M$$

Contribution

The *environment-free* style: during computation, objects are closed by the result of their computation

- ✓ to each *n*-ary function f, n function inverses f^0 , f^1 , ... f^n
- ✓ the adequate reduction: $f \circ f^0 = id$

How to evaluate an object containing function symbols?

- full evaluation, e.g. «lam (λx . etaExpand x)»
- call-by-value (contraction), e.g. « size (id (size⁰ o)) »
- weak evaluation first, e.g. « f (lam $\lambda x.g x$)»

How to evaluate an object containing function symbols?

- full evaluation, e.g. «lam (λx . etaExpand x)»
- call-by-value (contraction), e.g. « size (id (size⁰ o)) »
- weak evaluation first, e.g. « f (lam $\lambda x.g.x$)»
- → "full evaluation by iterated symbolic weak evaluation", a.k.a normalization-by-evaluation

 (adapted from Grégoire and Leroy [2002])

How to identify failures as soon as possible?

- checking the certificate a posteriori is not precise enough
 e.g. | « app "m" "n" » → « z (plus (size "m") (size "n")) »
- errors must be detected early (during prototyping)
 # eval « size (lam λx. app x (app x x))» → « z (z (z o)) »

How to identify failures as soon as possible?

- checking the certificate a posteriori is not precise enough
 e.g. | « app "m" "n" » → « z (plus (size "m") (size "n")) »
- errors must be detected early (during prototyping)
 # eval « size (lam λx. app x (app x x))» → « z (z (z o)) »
- *→ typed evaluation*: typing and evaluation are the same process (dynamic typing?)

How to identify failures as soon as possible?

- checking the certificate a posteriori is not precise enough
 e.g. | « app "m" "n" » → « z (plus (size "m") (size "n")) »
- errors must be detected early (during prototyping)
 # eval « size (lam λx. app x (app x x))» ~ « z (z (z o)) »
- → typed evaluation: typing and evaluation are the same process (dynamic typing?)

Contribution

- ✓ An evaluation algorithm eval performing "on-the-fly" typing of open LF objects:
 - √ issued certificates are guaranteed to be correct
 - √ errors are signaled where the certificate is ill-typed

Two case studies for Gasp

Automated proof search

An automated theorem prover based on LJT [Dyckhoff, 1992] returning NJ proof certificates:

Two case studies for Gasp

Safe type checking

A type checker for System T_{<:} returning a typing derivation:

```
# let s = \alpha \dots infer : \Pi m : expr. \{a : tp \mid is m a\} = \dots *;; # eval s \alpha infer (lam \lambda x.s.x) *;; -: obj = \alpha \alpha infer (lam \lambda x.s.x) \cdots
```

Two case studies for Gasp

Safe type checking

A type checker for System T_{\leq} returning a typing derivation:

```
# let s = \alpha \dots infer : \Pi m : expr. \{a : tp \mid is m a\} = \dots * ;;
# eval s \ll infer (lam \lambda x.s.x) * ;;
-: obj = \lapprox \lapprox \lapprox \text{arr nat nat, lsLam (lam } \lample x.s.x) \ldots \rangle *
```

- √ lightweight development (partial formalization)
- ✓ reuse off-the-shelf libraries (e.g. term indexing)

Outline

Introduction

Programming with proof certificates

Incremental type checking

Conclusion

Interaction in typed program elaboration

Observations

• typed program elaboration an interaction

programmer ← type checker

- the richer the type system is, the more expensive type checking gets (e.g. Haskell, Agda)
- typing is a *batch process* (part of compilation)
- yet, it is fed repeatedly with similar input (versions)

Interaction in typed program elaboration

Example

```
emacs@soupirail.inria.fr
      _ -> invalid_arg "subscript_of_char"
  let subscript_of_int n =
    let s = string_of_int n in
    let rec loop i =
      trv
        let x = subscript_of_char (String.get s i) in
        x ^ loop (succ i)
      with Invalid_argument _ -> ""
    in loop 0
let split c s =
  let len = String.length s in
  let rec split n =
    try
      let pos = String.index_from s n c in
      let dir = String.sub s n (pos-n) in
      dir :: split (succ pos)
U:--- util.ml 30% L83 Git:master (Tuareg +3 Abbrev)
+.-.0 for further adjustment
```

Interaction in typed program elaboration

Example

```
emacs@soupirail.inria.fr
      _ -> invalid_arg "subscript_of_char"
  let subscript_of_int m n =
    let s = string_of_int n in
    let rec loop i =
      trv
        let x = subscript_of_char (String.get s i) in
        x ^ loop (succ i)
      with Invalid_argument _ -> ""
    in loop m
let split c s =
  let len = String.length s in
  let rec split n =
    try
      let pos = String.index_from s n c in
      let dir = String.sub s n (pos-n) in
      dir :: split (succ pos)
    with
               30% L83 Git:master (Tuareg +3 Abbrev)
Ouit
```

Interaction in typed program elaboration Example

```
emacs@soupirail.inria.fr
        _ -> invalid_arg "subscript of char"
   let subscript_of_int m n =
      let s = string_of_int n in
      let rec loop i =
           let x = subscript of char (String.get s i) in
-*- mode: compilation: default-directory: "~/Code/gasp/" -*-
Compilation started at Tue Feb 19 16:40:24
/home/puech/.opam/4.00.1/bin/ocamlfind ocamldep -package camlp4 -modules util.ml > ■
util.ml.depends
/home/puech/.opam/4.00.1/bin/ocamlfind ocamlc -c -g -annot -package camlp4 -o util
g.cmo util.ml
/home/puech/.opam/4.00.1/bin/ocamlfind ocamlc -c -g -annot -o esubst.cmi esubst.ml >
/home/puech/.opam/4.00.1/bin/ocamlfind ocamlc -c -g -annot -o LF.cmi LF.mli
/home/puech/.opam/4.00.1/bin/ocamlfind ocamlc -c -g -annot -o struct.cmi struct.ml >
/home/puech/.opam/4.00.1/bin/ocamlfind ocamlc -c -g -annot -o SLF.cmi SLF.mli
/home/puech/.opam/4.00.1/bin/ocamlfind ocamlc -c -g -annot -o version.cmi version.
•mli
//home/nuech/_nnam//_00_1/him/ocamlfind_ocamle_-c_-syntax_camln/o_-nackage_camln/_oa_
U:%*- *compilation* Top L11 (Compilation:exit [2] +1)
```

Incremental type checking

Question

How can we make type checking incremental?

Definition

Given a list of well-typed programs $M_0, M_1, \ldots M$ and the representation of a change δ , decide whether apply (M, δ) is well-typed in less than $|apply(M, \delta)|$.

Incremental type checking

Question

How can we make type checking incremental?

Definition

Given a list of well-typed programs $M_0, M_1, ... M$ and the representation of a change δ , decide whether apply (M, δ) is well-typed in less than $|apply(M, \delta)|$.

Hint

- save intermediate type information between runs (context)
- use this information in changes

Incrementality by derivation reuse

Proposition

The witness of type checking is a derivation: use it as context

$$\frac{ [\vdash f : \mathsf{nat} \to \mathsf{nat}] \quad [\vdash x : \mathsf{nat}] }{ \vdash f x : \mathsf{nat}} \qquad \underbrace{ \left[\vdash x : \mathsf{nat}\right] }_{ \vdash \lambda x. f x : \mathsf{nat} \to \mathsf{nat}} \qquad \underbrace{ \left[\vdash x : \mathsf{nat}\right] }_{ \vdash s(x) : \mathsf{nat}} \qquad \underbrace{ \left[\vdash x : \mathsf{nat}\right] }_{ \vdash s(x) : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_{ \vdash a : \mathsf{nat}} \qquad \underbrace{ \vdash o : \mathsf{nat}}_$$

it contains all intermediate type information

Incrementality by derivation reuse

Proposition

A certifying type checker in Gasp computes pieces of derivations

Incrementality by derivation reuse

Proposition

A certifying type checker in Gasp computes pieces of derivations

We need a way to

- address any subderivation \mathcal{D}_i
- reuse them in *programs M* using inverses

Naming and sharing LF objects

Contribution

- ✓ a conservative extension of LF based on *Contextual Modal Type Theory* [Nanevski et al., 2008] where objects are *sliced* in a *context* Δ of *metavariables* X
- ✓ every well-typed applicative subterm gets a metavariable name and can be reused by *instantiation*

Naming and sharing LF objects

Contribution

- ✓ a conservative extension of LF based on *Contextual Modal Type Theory* [Nanevski et al., 2008] where objects are *sliced* in a *context* Δ of *metavariables* X
- ✓ every well-typed applicative subterm gets a metavariable name and can be reused by *instantiation*

Example

```
The object lam(\lambda x. lam(\lambda y. app(x, app(x, y)))) is sliced into X in the context
```

```
\Delta = \begin{pmatrix} X : \mathsf{tm} = \mathsf{lam}(\lambda x. Y[x/x]) \\ Y[x : \mathsf{tm}] : \mathsf{tm} = \mathsf{lam}(\lambda y. Z[x/x, y/Z[x/x, y/y]]) \\ Z[x : \mathsf{tm}, y : \mathsf{tm}] : \mathsf{tm} = \mathsf{app}(x, y) \end{pmatrix}
```

Example

infer $((\lambda f. \lambda x. f x) (\lambda y. s y) (s o)) \rightsquigarrow \langle nat, \mathcal{D} \rangle$

```
# infer ((\lambda f. \lambda x. f x) (\lambda y. s y) (s o)) \leadsto \langle nat, \mathcal{D} \rangle

X
\vdash \lambda f. \lambda x. f x : nat \rightarrow nat \rightarrow nat

Z
\vdash s o : nat

Y
\vdash \lambda y. s y : nat \rightarrow nat

T
\vdash s y : nat
```

```
# infer ((\lambda f. \lambda x. f x) (\lambda y. s y) (s o)) \leadsto \langle nat, \mathcal{D} \rangle

X
\vdash \lambda f. \lambda x. f x : nat \rightarrow nat \rightarrow nat

Z
\vdash s o : nat

# infer ((\lambda f. \lambda x. f x) (\lambda y. s y) (s (s o)))
```

```
# infer ((\lambda f. \lambda x. f x) (\lambda y. s y) (s o)) \leadsto \langle \text{nat}, \mathcal{D} \rangle

X

\vdash \lambda f. \lambda x. f x : \text{nat} \rightarrow \text{nat}
\vdash \lambda y. s y : \text{nat} \rightarrow \text{nat}
[H : \vdash y: \text{nat}]
\vdash s o : \text{nat}
# infer (X Y (s Z))
```

```
# infer ((\lambda f. \lambda x. f x) (\lambda y. s y) (s o)) \leadsto \langle nat, \mathcal{D} \rangle

X
\vdash \lambda f. \lambda x. f x : nat \rightarrow nat \rightarrow nat

Z
\vdash s o : nat

# infer ((infer^0 X) (infer^0 Y) (s (infer^0 Z)))
```

```
# infer ((\lambda f. \lambda x. f x) (\lambda y. s y) (s o)) \leadsto \langle \text{nat}, \mathcal{D} \rangle

X

\vdash \lambda f. \lambda x. f x : \text{nat} \rightarrow \text{nat} \qquad \vdash \lambda y. s y : \text{nat} \rightarrow \text{nat}

Z \qquad [H : \vdash y: \text{nat}]
\vdash s o : \text{nat} \qquad T
\vdash s y : \text{nat}
# infer ((\text{infer}^0 X) (\text{infer}^0 Y) (s (\text{infer}^0 Z)))
# infer ((\lambda f. \lambda x. f x) (\lambda y. s (s y)) (s o))
```

```
# infer ((\lambda f. \lambda x. f \ x) \ (\lambda y. s \ y) \ (s \ o)) \leadsto \langle \mathsf{nat}, \mathcal{D} \rangle

X

\vdash \lambda f. \lambda x. f \ x : \mathsf{nat} \to \mathsf{nat} \to \mathsf{nat}
\vdash \lambda y. s \ y : \mathsf{nat} \to \mathsf{nat}
\vdash \mathsf{I} \vdash \mathsf
```

```
# infer ((\lambda f. \lambda x. f \ x) \ (\lambda y. s \ y) \ (s \ o)) \leadsto \langle \mathsf{nat}, \mathcal{D} \rangle

X

\vdash \lambda f. \lambda x. f \ x : \mathsf{nat} \to \mathsf{nat} \to \mathsf{nat}
\vdash \lambda y. s \ y : \mathsf{nat} \to \mathsf{nat}
\vdash \mathsf{I} \vdash \mathsf
```

```
# infer ((\lambda f. \lambda x. f x) (\lambda y. s y) (s o)) \rightsquigarrow \langle nat, \mathcal{D} \rangle

X

Y

\vdash \lambda f. \lambda x. f x : nat \rightarrow nat \rightarrow nat

\vdash \lambda y. s y : nat \rightarrow nat

\begin{bmatrix} H : \vdash y : nat \end{bmatrix}

\vdash s o : nat

# infer ((infer^0 X) (infer^0 Y) (s (infer^0 Z)))

# infer ((infer^0 X) (\lambda y. s (infer^0 T[H/infer y])) (infer^0 Z))
```

Contributions

- √ Gasp: certifying type checker
 → incremental type checking
- √ sharing computation results by function inverses
- ✓ a safe approach: (shared) type derivation always available

Outline

Introduction

Programming with proof certificates

Incremental type checking

Conclusion

Contributions

- √ Gasp, a library for manipulating LF proof certificates
- ✓ support for *environment-free* style thanks to *function inverses*
- ✓ its extension to proof reuse enabling *incremental type checking*

Contributions

- √ Gasp, a library for manipulating LF proof certificates
- √ support for environment-free style thanks to function inverses
- ✓ its extension to proof reuse enabling incremental type checking

Other contributions:

✓ *inter-deriving* sequent calculi from natural deduction, using off-the-shelf *program transformations*:

```
type checker for N.D. \xrightarrow{\text{compilation}} type checker for S.C.
```

√ an original metatheory of spine-form LF

Perspectives

- isolate higher-order term manipulation library put the *locally named* pattern into practice
- investigate typing of inverse functions and their relation with *NbE*
- front-end editor generating *deltas* ("*structured editor*") safe refactoring tools, typed version control
- LCF-style interactive theorem prover based on LF tactics as OCaml functions

Thank you

Backup slides

Certifying software

a.k.a Proof-Carrying Code [Necula, 1997]

certified program together with proof that it respects the specification on all input (Coq, Matita...)

certifying black box, emits a proof certificate verifiable a posteriori, but not guaranteed to be correct

Certifying software

a.k.a Proof-Carrying Code [Necula, 1997]

- certified program together with proof that it respects the specification on all input (Coq, Matita...)
- certifying black box, emits a proof certificate verifiable a posteriori, but not guaranteed to be correct

Advantages of the certifying scheme

- same safety (but different quality of implementation)
- program source need not be revealed
- more lightweight (partial formalization)
 e.g. no verification of graph coloring, term indexing...

- A. Asperti and E. Tassi. Higher order proof reconstruction from paramodulation-based refutations: The unit equality case. *Lecture Notes in Computer Science*, 4573:146, 2007.
- R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. *The Journal of Symbolic Logic*, 57(3):795–807, 1992.
- Andrew Gacek, Dale Miller, and Gopalan Nadathur. Nominal abstraction. *Inf. Comput.*, 209(1):48–73, 2011.
- B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In *Proceedings of the seventh ACM SIGPLAN* international conference on Functional programming, pages 235–246. ACM, 2002.
- R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. *Journal of the Association for Computing Machinery*, 40 (1):143–184, 1993.
- C. McBride and J. McKinna. Functional pearl: i am not a number–i am a free variable. In *Proceedings of the 2004 ACM SIGPLAN workshop on Haskell*, pages 1–9. ACM, 2004.
- D. Miller and C. Palamidessi. Foundational aspects of syntax. *ACM Computing Surveys (CSUR)*, 31(3es):11, 1999.

- A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory. *ACM Transactions on Computational Logic (TOCL)*, 9(3): 23, 2008.
- G.C. Necula. Proof-carrying code. In *Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages*, pages 106–119. ACM, 1997.
- F. Pfenning and C. Schürmann. System description: Twelf a meta-logical framework for deductive systems. *Lecture Notes in Computer Science*, pages 202–206, 1999.
- B. Pientka and J. Dunfield. Beluga: A framework for programming and reasoning with deductive systems (system description). *Automated Reasoning*, pages 15–21, 2010.
- A. Poswolsky and C. Schürmann. Practical programming with higher-order encodings and dependent types. In *Proceedings of the Theory and practice of software, 17th European conference on Programming languages and systems*, ESOP'08/ETAPS'08, pages 93–107, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 3-540-78738-0, 978-3-540-78738-9. URL http://dl.acm.org/citation.cfm?id=1792878.1792887.

- François Pottier. Static name control for freshml. In *LICS*, pages 356–365, 2007.
- Nicolas Pouillard and François Pottier. A fresh look at programming with names and binders. In *ICFP*, pages 217–228, 2010.
- Mark R. Shinwell, Andrew M. Pitts, and Murdoch Gabbay. Freshml: programming with binders made simple. In *ICFP*, pages 263–274, 2003.
- D. Vytiniotis. *Practical type inference for first-class polymorphism*. PhD thesis, University of Pennsylvania, 2008.