Lecture 3 Matrices

Note by Samion Suwito on 1/28/25

Vectors

Recall their interpretations as data points, directions and functions

Orthogonality

Vectors $x^{(1)}, \dots x^{(m)}$ are orthogonal if $\langle x^{(i)}, x^{(j)}
angle = 0 \ orall i
eq j$

Claim: Non-zero orthogonal vectors are LI.

Suppose

$$x^{(1)} = \sum_{j=2}^m lpha_j x^{(j)} \implies$$

$$\langle x^{(i)}, x^{(j)}
angle = \sum_{i=1}^m lpha_j \langle x^{(j)}, x^{(i)}
angle = 0$$

Projections

Let $\mathcal X$ be an IPS, $\mathcal S\subset\mathcal X$ if $x_0\in\mathcal X$, define projection of x_0 onto $\mathcal S$

$$\pi_{\mathcal{S}}(x_0) = rg\min_{s \in \mathcal{S}} \|x_0 - s\|$$

Hilbert Projection Theorem:

If S is a subspace, then $\pi_s(x_0)$ exists, is unique, and is uniquely characterised by "orthogonality principle":

$$\langle x_0 - \pi_{\mathcal{S}}(x_0), s
angle = 0 \ \ orall s \in \mathcal{S}$$

Example:

Let $x^{(1)},\ldots,x^{(m)}$ be an orthonormal basis for ${\mathcal S}.$ Claim that

$$\pi_s(x) = \sum \langle x^{(i)}, x
angle x^{(i)}$$

Check:

$$\langle x-\Sigma\langle x^{(i)},x\rangle x^{(i)},s
angle$$
 is equal to $\langle x,s
angle-\Sigma\langle x^{(i)},x
angle\langle x^{(i)},s
angle$, $s\in\mathcal{S},s=\Sigmalpha_ix^{(i)}$ for some $lpha_i$

$$\sum lpha_i \left\langle x, x^{(i)}
ight
angle - \sum lpha_i \langle x^{(i)}, x
angle = 0$$

Example 2:

If
$$\mathcal{S}^\perp = \{x \in \mathcal{X} : \langle x, s
angle = 0 \ \ orall s \in \mathcal{S} \}$$
 then $\mathcal{X} = \mathcal{S} \oplus \mathcal{S}^\perp$

Example: Gram Schmidt

Given collection $x^{(i)}, \ldots, x^{(k)}$, find orthogonal $y^{(1)}, \ldots, y^k$ such that $\mathrm{Span}(x\ldots) = \mathrm{Span}(y\ldots)$.

Start with
$$y^{(1)}=x^{(1)}$$
 $y^{(n+1)}=x^{(n+1)}-\pi_{\mathrm{Span}(x^{(1)},\dots,x^{(n)})}(x^{(n+1)})$

Take component of y that is orthogonal to ${\mathcal S}$ essentially

$$=x^{(n+1)}-\pi_{\mathrm{Sp}(y^{(1)},\ldots,y^{(n)})}(x^{(n+1)})$$

Projection and orthogonality is different side of the same coin **Affine Space** is a translated vector space

Gradients

final example of vectors as directions interpretations is gradients

Given differentiable $f:\mathbb{R}^n o\mathbb{R}$

$$abla f(x) = egin{pmatrix} rac{\partial}{\partial x_1} f(x) \ dots \ rac{\partial}{\partial x_n} f(x) \end{pmatrix}$$

Key properties of gradients

- 1. $\nabla f(x)$ points in direction of steepest ascent (therefore negative ∇ points in direction of steepest descent; gradient descent)
- 2. $\nabla f(x)$ is perpendicular(not orthogonal, only in Euclidean sense (90°)) to the level set of f containing f(x)

Matrices

A matrix is representation of a linear map between two spaces

A linear map $A:\mathbb{R}^n o \mathbb{R}^m$ can always be represented as a matrix. Indeed, if $(e_i)_{i=1}^n$ is a natural basis for \mathbb{R}^n

$$A(x) = A\left(\sum x_i e_i
ight) = \sum x_i A(e_i)$$

where $A(e_i) \in \mathbb{R}^m =$

$$egin{pmatrix} a_{1i} \ dots \ a_{mi} \end{pmatrix}$$

Therefore A can be represented as

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m_1} & \dots & a_{mn} \end{pmatrix}$$

If $A:\mathbb{R}^n\to\mathbb{R}^m, B:\mathbb{R}^m\to\mathbb{R}^k$ then composition BA is a linear map from $\mathbb{R}^n\to\mathbb{R}$ with matrix representation:

$$BA_{ij} = \sum_{l=1}^{m} B_{il}A_{lj} = ext{matrix multiplication}$$

$$BA(x) = B(A(x))$$

$$BA \in \mathbb{R}^{k \times m}$$

 A_{lj} is inner product between ith row of B and jth col of A.

Associated to every matrix $A \in \mathbb{R}^{m imes n}$ are two important subspaces:

Range of A = R(A) := $\{Ax: x \in \mathbb{R}^n\} \subset \mathbb{R}^m$ it's a subspace by the linearity of A Nullspace of A = $\mathcal{N}(A)$:= $\{x \in \mathbb{R}^n: Ax = 0\} \subset \mathbb{R}^n$ rank(A) := $\dim(R(A))$

Important idea:

$$R(A) = N(A^\intercal)^\perp$$

This decomposition can be useful in simplifying/transforming problems *Example*: Many problems in Learning can be represented by:

$$\min_{w \in \mathbb{R}^n} \mathcal{L}(Aw) \ \ A \in \mathbb{R}^{m imes n}$$

 ${\cal L}$ is a generic loss function

$$w=w_0+w_1$$
 Where $w_0\in \mathcal{N}(A)^\perp$ and $w_1\in \mathcal{N}(A)$. $\mathcal{L}(A(w_0+w_1)=\mathcal{L}(Aw_0)=\mathcal{L}\left(\mathcal{A}\mathcal{A}^\intercal v
ight)$

Which therefore turns the min

$$\min_{v \in \mathbb{R}^m} \mathcal{L}\left(AA^\intercal v
ight)$$

Turning the problem from \mathbb{R}^n to \mathbb{R}^m which can be useful if $n\gg m$

Consider a "regularised" regression problem.

$$\min_{w \in \mathbb{R}^n} \mathcal{L}(Aw) + \lambda \|w\|_2$$

Write $w=w_0+w_1$ where $w_0\in\mathcal{N}(A)^\perp$ and $w_1\in\mathcal{N}(A)$

$$\min_{w \in \mathbb{R}^n} \mathcal{L}(Aw_0) + \lambda \|w_0 + w_1\|_2$$

Let
$$\|w_0 + w_1\|^2 = \|w_0\|^2 + \|w_1\|^2 \geq \|w_0^2\|$$

Pythagorean theorem since

Therefore min statement

$$\geq \min_{w_0 \in \mathcal{N}(A)^\perp} \mathcal{L}(Aw_0) + \lambda \|w_0\|$$

actually equality by restricting to $w\in \mathcal{N}(A)^\perp$ making $w_1=0$. Also the dimension of that is $\mathrm{rank}(A)$ because of FTLA

Matrix Inverse

For $A\in\mathbb{R}^{n\times n}$, we can say A is invertible if it its 1-1 and onto, $Ax\neq Ay\ \forall x\neq y\in\mathbb{R}^n$ $\iff Ax\neq 0 \forall x\neq 0$

In this case the inverse transformation is denoted by A^{-1}

$$A$$
 is invertible $\iff \mathcal{N}(A) = \{0\} \iff \mathrm{rank}(A) = n$

Weaker definition of pseudo-inverse

for general matrices $A \in \mathbb{R}^{m imes n}$

$$A^{Pi}$$
 should satisfy $AA^{Pi}A=A$

$$A^{Pi} \in \mathbb{R}^{n imes m}$$

Common terminology:

Square matrix: m=n

Symmetric matrix: $A = A^{\intercal}$

Orthogonal matrix: Where $A^{-1}=A^\intercal$

Rank-one (dyad) matrix: $A=uV^\intercal \ u\in\mathbb{R}^m, v\in\mathbb{R}^n$