Лабораторная работа № 1 по курсу дискретного анализа: сортировки за линейное время

Выполнил студент группы М08-312Б МАИ Лобанов Олег.

Условие

Требуется разработать программу, осуществляющую ввод пар «ключ-значение», их упорядочивание по возрастанию ключа указанным алгоритмом сортировки за линейное время и вывод отсортированной последовательности.

Вариант сортировки: Поразрядная сортировка

Вариант ключа: телефонные номера, с кодами стран и городов в формате +<код страны> <код города> телефон.

Вариант значения: строки фиксированной длины 64 символа, во входных данных могут встретиться строки меньшей длины, при этом строка дополняется до 64-х нулевыми символами, которые не выводятся на экран.

Метод решения

Числа сортируются сортировкой подсчетом по каждому разряду. В нашем случае сортировка сначала сортирует младшие разряды, затем старшие.

Для чисел удобнее использовать разряды не в десятичном представлении, а несколько битов двоичного представления. Так как для получения цифры числа в двоичном представлении использвуются легкие операции логического сдвига.

Описание программы

Согласно Кормену для n b-битовых чисел и цифр из r битов алгоритм поразрядной сортировки выполнит работу за $O(\frac{b}{r}(n+2^r))$. Выбрать r нужно в зависимости от log_2 n. Если $b < log_2 n$, то r = b, иначе $r = log_2 n$.

Сперва создается временный массив B равный исходному, затем массив чисел C размеров 2^r в котором будет проходить сортировка подсчетом. Число разбивается на непересекающиеся части по r бит и сортируется подсчетом по ним, начиная c младшего разряда.

Совершается проход по исходному массиву, для каждой цифры значение элемента C на позиции со значением этой цифры увеличивается на 1. Затем элементы массива C последовательно суммируются, таким образом в массиве C значение по индексу цифры равно количеству строго меньших чем этот индекс элементов. Идем по изначальному массиву назад (для сохранения устовйчивости): для j элемента этого массива в C[B[j]-1] содержится корректный индекс этого элемента в массиве. Уменьшаем значение C[B[j]] на 1 чтобы следующий элемент с таким же значением не записался поверх этого.

Копируем в вспомогательный массив отсортированный по текущему разряду массив и сортируем по следующему.

Дневник отладки

На первой попытке произошла ошибка компиляции, где забыл прописать std. Со второй попытки код "окнулся". Во время локального тестирования погуглил про форматирование вывода.

Тест производительности

Сравниваю происодительность поразрядной сортировки со стандартной библиотечной $std::stable_sort.$

Для 1к элемметов:

 $\begin{aligned} & Radix - 0.470ms \\ & Stable_sort - 0.400ms \end{aligned}$

Для 1кк элементов:

 $\begin{array}{l} {\rm Radix\ -\ 520.879ms} \\ {\rm Stable_sort\ -\ 640.435ms} \end{array}$

Для 15кк элкметов:

 $\begin{aligned} & Radix - 8609.285ms \\ & Stable_sort - 11750.267ms \end{aligned}$

Выводы

Выполнив первую лабораторную работу, я изучил сортировки за линейное время, осознал их преимущества и недостатки. Опробовал на практике ввод и вывод данных на C++, методы std:istream.