Data analyses for Experiment 3

Scott Burgess

2024-09-15

This code analyzes the data associated with Experiment 3 and produces Figure 4, 5, and 6 in the manuscript:

Barnes DK, Burgess SC. Fitness consequences of marine larval dispersal: the role of neighborhood density, spatial arrangement, and genetic relatedness on survival, growth, reproduction, and paternity. *Journal of Evolutionary Biology*

Code finalized September 2024.

Any comments or error reporting, please contact Scott Burgess: sburgess@bio.fsu.edu

Load required libraries

```
library('tidyverse')
library('glmmTMB')
library('gridExtra')
library('emmeans')
library('DHARMa')
library('vegan')
sessionInfo()
## R version 4.4.0 (2024-04-24)
## Platform: aarch64-apple-darwin20
## Running under: macOS Sonoma 14.6.1
##
## Matrix products: default
           /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;
                                                                                               LAPACK v
##
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## time zone: America/New_York
## tzcode source: internal
## attached base packages:
## [1] stats
                graphics grDevices utils
                                               datasets methods
                                                                   base
##
## other attached packages:
  [1] vegan 2.6-6.1
                        lattice 0.22-6 permute 0.9-7
                                                        DHARMa 0.4.6
## [5] emmeans_1.10.2 gridExtra_2.3
                                        glmmTMB_1.1.9
                                                        lubridate_1.9.3
   [9] forcats 1.0.0
                        stringr_1.5.1
                                        dplyr 1.1.4
                                                        purrr 1.0.2
                        tidyr_1.3.1
                                        tibble_3.2.1
                                                        ggplot2_3.5.1
## [13] readr_2.1.5
## [17] tidyverse_2.0.0
```

```
##
## loaded via a namespace (and not attached):
## [1] utf8 1.2.4
                            generics_0.1.3
                                                stringi_1.8.4
## [4] lme4_1.1-35.3
                            hms_1.1.3
                                                digest_0.6.35
## [7] magrittr_2.0.3
                            estimability_1.5.1
                                                evaluate_0.23
## [10] grid 4.4.0
                            timechange_0.3.0
                                                mvtnorm 1.2-5
## [13] fastmap 1.2.0
                            Matrix_1.7-0
                                                mgcv_1.9-1
## [16] fansi_1.0.6
                            scales_1.3.0
                                                numDeriv_2016.8-1.1
## [19] cli_3.6.2
                            rlang_1.1.3
                                                munsell_0.5.1
## [22] splines_4.4.0
                            withr_3.0.0
                                                yaml_2.3.8
## [25] parallel_4.4.0
                            tools_4.4.0
                                                tzdb_0.4.0
                            nloptr_2.0.3
## [28] coda_0.19-4.1
                                                minqa_1.2.7
## [31] colorspace_2.1-0
                            boot_1.3-30
                                                vctrs_0.6.5
## [34] R6_2.5.1
                                                MASS_7.3-60.2
                            lifecycle_1.0.4
## [37] cluster_2.1.6
                                                pillar_1.9.0
                            pkgconfig_2.0.3
## [40] gtable_0.3.5
                            Rcpp_1.0.12
                                                glue_1.7.0
## [43] xfun_0.44
                            tidyselect_1.2.1
                                                rstudioapi_0.16.0
## [46] knitr 1.47
                            xtable_1.8-4
                                                htmltools 0.5.8.1
                                                TMB_1.9.11
## [49] nlme_3.1-164
                            rmarkdown_2.28
## [52] compiler_4.4.0
```

Import data from Experiment 3

Phenotypic data

```
dat <- read.csv("Data/Experiment_3.csv")

Paternity data

Paternity_dat_0_9 <- read.table("Data/D0_9_final_Paternity.txt",header=T,sep=",")

Inferred fathers data

BestCluster_0_9 <- read.csv("Data/D0_9_final_BestCluster.csv",header=T)</pre>
```

Full sib family data

```
FSFamily_0_9 <- read.csv("Data/D0_9_final_BestFSFamily.csv")
```

Process phenotypic data

Only use the summed data over all time periods

```
dat <- dat %>% filter(Time_days=="all") %>% select(-Time_days, -Bifurcations, -Zooids)
```

Add ID for focal colonies

```
focals <- c("A","B","D","G")
dat$focal <- ifelse(dat$Position %in% focals, 1, 0)</pre>
```

Create a vector of treatment levels and set the order (for plotting)

```
treatment.vec <- c("alone", "far", "near", "both")
dat$Treatment <- factor(dat$Treatment, levels=treatment.vec)</pre>
```

Process paternity data

```
# Add sample data to each data frame
brks <- seq(0,160,0.1)
add sample data <- function(d){
  d$MotherID <- rapply(strsplit(d$OffspringID,"_"),function(x) head(x,1))</pre>
  d$FatherID <- rapply(strsplit(d$InferredDad1,"_"),function(x) head(x,1))</pre>
  tmp <- dat[match(d$MotherID,dat$Colony),-1]</pre>
  names(tmp) <- paste0("Mother.",names(tmp))</pre>
  d <- cbind.data.frame(d,tmp)</pre>
  tmp <- dat[match(d$FatherID,dat$Colony),-1]</pre>
  names(tmp) <- paste0("Father.",names(tmp))</pre>
  d <- cbind.data.frame(d,tmp)</pre>
# Calculate euclidean distance between observed parents
  d$Distance <- NA
  for(i in 1:nrow(d)){
    d$Distance[i] <- dist(</pre>
      matrix(d[i,which(names(d) %in% c("Mother.X", "Father.X", "Mother.Y", "Father.Y"))],2,2,byrow=T),meth
  }
  return(d)
Paternity_dat_0_9 <- add_sample_data(Paternity_dat_0_9)</pre>
```

Calculate the number of offspring sampled per mother

```
OffspringIDs <- BestCluster_0_9$OffspringID
tmp <- rapply(strsplit(OffspringIDs,"_"),function(x) head(x,1))</pre>
MotherID <- pasteO(tmp,"_parent")</pre>
offspring_per_mother <- as.data.frame(table(MotherID))
offspring_per_mother
##
       MotherID Freq
## 1 01b_parent
                  25
## 2 02a_parent
## 3 04a_parent
                  24
## 4 05b_parent
                  26
                  25
## 5 06a_parent
## 6 08a_parent
                 26
## 7 09a_parent
                 24
## 8 12b_parent
                 27
## 9 13b_parent
                 25
## 10 15b parent
                  23
## 11 17a_parent
                 25
## 12 18a_parent
                  25
                  23
## 13 19b_parent
## 14 20a_parent
                  23
## 15 21a_parent
                  24
```

```
## 16 22a_parent 24
## 17 23a_parent 25
## 18 25b_parent 24
## 19 26a_parent 26
## 20 28a_parent 24
## 21 29b_parent 24
## 22 30a_parent 24
## 23 31a_parent 24
## 24 32a_parent 25
## 25 34b_parent 25
```

How many settlers were genotyped?

```
with(offspring_per_mother,table(Freq))

## Freq
## 23 24 25 26 27
## 3 9 9 3 1

nrow(offspring_per_mother) # mothers

## [1] 25

sum(offspring_per_mother$Freq) # offspring

## [1] 615

nrow(dat) # potential fathers

## [1] 32
```

Analyze Reproductive Output

DHARMa residual

Residual vs. predicted QQ plot residuals No significant problems detected 1.00 0. KS test: p = 0.55Deviation n. ∞ 0.75 DHARMa residua o. 0 Observed 9 Ö. 0.50 Dispersio (A) est: p= 0.55 Deviation n.s 0.4 0 0 0.25 0.2 Outlier test: p= 1 0 0.00 0 Deviation n.s. 0 0.0 0.0 8.0 0.0 0.4 0.8 0.4 **Expected** Model predictions (rank transformed)

Object of Class DHARMa with simulated residuals based on 250 simulations with refit = FALSE . See ?D. ## ## Scaled residual values: 0.968 0.2535617 0.1921669 0.408 0.736 0.87259 0.09136761 0.852 0.324 0.20126 Get predicted values for plotting

```
type="response",
se=F))
```

Reproductive output was similar for individuals in all treatments ($\chi^2 = 8.147$, df = 6, p = 0.228).

Analyze Relative Growth Rate

```
m1 <- glmmTMB(rgr40 ~ Treatment + (1|Block), data = dat)</pre>
m2 \leftarrow glmmTMB(rgr40 \sim 1 + (1|Block), data = dat)
result_rgr <- round(anova(m1, m2, test = "Chisq"), 3)</pre>
result_rgr
## Data: dat
## Models:
## m2: rgr40 ~ 1 + (1 | Block), zi=~0, disp=~1
## m1: rgr40 ~ Treatment + (1 | Block), zi=~0, disp=~1
           AIC
## Df
                     BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## m2 3 -141.96 -137.76 73.980 -147.96
## m1 6 -136.90 -128.49 74.448 -148.90 0.936
                                                             0.817
                                                      3
Check model fit
simulateResiduals(fittedModel = m1, plot = T)
```

DHARMa residual

Residual vs. predicted Quantile deviations detected (red curves) Combined adjusted quantile test n.s.

Model predictions (rank transformed)

Object of Class DHARMa with simulated residuals based on 250 simulations with refit = FALSE . See ?D ## ## Scaled residual values: 0.62 0.652 0.752 0.264 0.672 0.632 0 0.392 0.26 0.684 0 0.872 0.332 0.516 0.

Check influence of outliers

```
outliers <- dat[which(resid(m1) < -0.06), 'Colony']
tmp <- dat %>% filter(!Colony %in% outliers)
m1 <- glmmTMB(rgr40 ~ Treatment + (1|Block), data = tmp)
m2 <- glmmTMB(rgr40 ~ 1 + (1|Block), data = tmp)
round(anova(m1, m2, test = "Chisq"), 3)</pre>
```

```
## Data: tmp
## Models:
## m2: rgr40 ~ 1 + (1 | Block), zi=~0, disp=~1
## m1: rgr40 ~ Treatment + (1 | Block), zi=~0, disp=~1
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## m2 3 -168.80 -164.8 87.399 -174.80
## m1 6 -164.79 -156.8 88.397 -176.79 1.995 3 0.573
```

No qualitative change.

Relative growth rate was similar for individuals in all treatments ($\chi^2 = 0.936$, df = 3, p = 0.817).

Remove offspring from full sib families with Inclusion probabilities < 0.7

```
tmp <- FSFamily_0_9 %>% filter(Prob.Inc.. < 0.7)</pre>
offspring_to_exclude <- c(tmp$Member1,tmp$Member2)
BestCluster_0_9 <- BestCluster_0_9 %% filter(!(OffspringID %in% offspring_to_exclude))</pre>
How many kept and excluded?
nrow(FSFamily_0_9) # number of full sib families
## [1] 528
nrow(FSFamily_0_9 %% filter(Prob.Inc.. > 0.7)) # number of full sib families with high confidence
## [1] 511
(nrow(FSFamily_0_9 % filter(Prob.Inc.. > 0.7)) / nrow(FSFamily_0_9)) * 100 # %
## [1] 96.7803
# number of full sib families with very high confidence (1)
nrow(FSFamily_0_9 %>% filter(Prob.Inc.. == 1))
## [1] 466
(nrow(FSFamily_0_9 %>% filter(Prob.Inc.. == 1)) / nrow(FSFamily_0_9)) * 100 # %
## [1] 88.25758
nrow(tmp) # number full sib families excluded
## [1] 17
length(offspring_to_exclude) # number offspring excluded
## [1] 34
length(unique(BestCluster_0_9$MotherID)) # From this many mothers
## [1] 25
nrow(BestCluster_0_9) # this many offspring
## [1] 581
length(unique(BestCluster_0_9$FatherID)) # were sired by this many fathers
## [1] 291
# this many of which were from outside the array
BestCluster_0_9 %>% filter(grepl("#",FatherID)) %>% summarize(n=n_distinct(FatherID))
##
      n
## 1 286
# this many offspring sired by colonies in the array
BestCluster_0_9 %>% filter(!(grepl("#",FatherID))) %>% summarize(n=n())
```

```
##
## 1 13
BestCluster_0_9 %>% group_by(FatherID) %>%
  summarize(n=n_distinct(MotherID)) %>% count(n)
## Storing counts in `nn`, as `n` already present in input
## i Use `name = "new_name"` to pick a new name.
## # A tibble: 4 x 2
##
         n
             nn
##
     <int> <int>
## 1
         1 126
## 2
         2 114
         3
## 3
             46
## 4
         4
               5
Calculate the number of unique sires per focal colony
n fathers <- function(d){</pre>
  d$Mother_ID <- rapply(strsplit(d$MotherID,"_"),function(x) head(x,1))</pre>
  foo1 <- d %>%
    group_by(Mother_ID,FatherID) %>%
    summarise(n=n()) %>%
    mutate(freq=n/sum(n)) %>%
    ungroup()
  foo2 <- foo1 %>% group_by(Mother_ID) %>%
    summarise(nGenotyped=sum(n),
              UniqueNumberFather=n_distinct(FatherID))
  foo2$standardized.n.father <- with(foo1, tapply(n, Mother_ID, vegan::rarefy, sample=19))</pre>
  foo2$standardized.n.father <- round(foo2$standardized.n.father,3)</pre>
    # add sample info
  foo2 <- cbind.data.frame(foo2,dat[match(foo2$Mother_ID,dat$Colony),c(1:7,12)])</pre>
  foo2
}
n.fathers_0_9 <- n_fathers(d=BestCluster_0_9)</pre>
sort(n.fathers_0_9$standardized.n.father)
## [1] 5.130 15.567 15.761 15.928 16.522 16.779 16.844 17.141 17.286 17.290
## [11] 17.371 17.519 17.519 17.648 17.761 17.761 17.761 18.000 18.380 18.380
## [21] 18.430 18.430 18.430 18.430 19.000
sort(n.fathers_0_9$UniqueNumberFather)
```

n.fathers_0_9\$standardized.prop.father <- n.fathers_0_9\$standardized.n.father / 20
make the 1's 0.9999 so can fit beta glmm
n.fathers_0_9\$standardized.prop.father <- ifelse(n.fathers_0_9\$standardized.prop.father == 1,</pre>

[1] 6 17 18 18 19 19 19 19 20 20 20 21 21 22 22 22 22 23 23 24 24 24 24 24

Calculate proportion for a beta glmm

```
0.99999,
n.fathers_0_9$standardized.prop.father)
```

Analyze Number of Unique Sires per Mother

```
m1 <- glmmTMB(standardized.prop.father ~ Treatment +
                 (1|Block),
               family = 'beta_family',
               data = n.fathers_0_9)
m2 <- glmmTMB(standardized.prop.father ~ 1 +</pre>
                 (1|Block),
              family = 'beta_family',
              data = n.fathers_0_9)
result_sires <- round(anova(m1, m2, test = "Chisq"), 3)
result_sires
## Data: n.fathers_0_9
## Models:
## m2: standardized.prop.father ~ 1 + (1 | Block), zi=~0, disp=~1
## m1: standardized.prop.father ~ Treatment + (1 | Block), zi=~0, disp=~1
      Df
             AIC
                      BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## m2 3 -42.865 -39.209 24.433 -48.865
## m1 6 -39.368 -32.054 25.684 -51.368 2.502
                                                       3
                                                              0.475
Get predicted values for plotting
predictions_sires = data.frame(Treatment = treatment.vec)
p <- emmeans(m1, ~ Treatment,</pre>
             component = "cond",
             type = "response")
predictions_sires$fit <- summary(p)$response * 20</pre>
predictions_sires$lwr <- summary(p)$asymp.LCL * 20</pre>
predictions_sires$upr <- summary(p)$asymp.UCL * 20</pre>
nd <- expand.grid(Treatment = treatment.vec,</pre>
                  Block = rownames(coef(m1)$cond$Block))
block_effects_sires <- data.frame(nd,</pre>
                                 fit = predict(m1,
                                                newdata = nd,
                                                type="response",
                                                se=F))
block_effects_sires$fit <- block_effects_sires$fit * 20</pre>
```

The number of standardized unique sires per colony did not differ among treatments ($\chi^2 = 2.502$, df = 3, p = 0.475).

Calculate the proportion of offspring from an assigned father

Get the mother ID's with an assigned father

```
offspring.proportion <- function(a,b){
# Get the maternal ID for offspring with a father in the array
   d1 <- a %>%
    distinct(MotherID, .keep_all=T)
# Add mother and father ID's to BestCluster data frame
  b$Mother_ID <- rapply(strsplit(b$MotherID,"_"),function(x) head(x,1))
  b$Father_ID <- rapply(strsplit(b$FatherID,"_"),function(x) head(x,1))
# Get the data from BestCluster for offspring with a father in the array
# and calculate the number and frequency of offspring
# per mother-father combination
 d2 <- b %>%
   filter(Mother_ID %in% d1$MotherID) %>%
    group_by(Mother_ID,Father_ID) %>%
   summarise(n=n()) %>%
   mutate(freq=n/sum(n)) %>%
   ungroup()
# Calculate the max frequency of fathers per mother
  d3 <- d2 %>%
    group_by(Mother_ID) %>%
   mutate(max.freq=max(freq)) %>%
   ungroup()
# Collect and arrange data
  d4 <- d3[grep("#",d3$Father_ID,invert=T),]</pre>
  d5 <- cbind.data.frame(d4, d1[match(d4$Mother ID,d1$MotherID),])
  d6 <- d5 %>% select(Mother ID, Father ID,
                      n, freq, max.freq,
                      ProbDad1,
                      Mother.Block, Mother.Treatment, Mother.Position, Mother.Direction,
                      Father.Block, Father.Treatment, Father.Position, Father.Direction)
  d6
}
offspring.proportion_0_9 <- offspring.proportion(Paternity_dat_0_9, BestCluster_0_9)
offspring.proportion_0_9
##
       Mother ID Father ID n
                                   freq
                                          max.freq ProbDad1 Mother.Block
```

```
## 2
                       03a 2 0.08695652 0.08695652
                                                           1
## 2.1
             02a
                       12b 1 0.04347826 0.08695652
                                                           1
                                                                        3
## 6
             06a
                       20a 2 0.08000000 0.08000000
                                                           1
                                                                        4
## 9
             09a
                       12b 1 0.04545455 0.09090909
                                                                        2
## 19
             20a
                       06a 4 0.19047619 0.19047619
                                                           1
## 21
             22a
                       12b 2 0.09090909 0.13636364
                       05b 1 0.04166667 0.04166667
## 25
       Mother.Treatment Mother.Position Mother.Direction Father.Block
## 2
                                                        С
                   both
                                      D
## 2.1
                   both
                                      D
                                                        С
                                                                     3
## 6
                   near
                                      Η
                                                        S
                                                                     4
## 9
                   both
                                      F
                                                        S
                                                                     2
                                      G
                                                        С
## 19
                   near
                                                                     4
## 21
                   both
                                      D
```

```
## 25
                    far
                                                                     4
##
      Father.Treatment Father.Position Father.Direction
## 2
                   both
                                      Ε
## 2.1
                   both
                                      Ε
                                                        N
## 6
                   near
                                      G
                                                        C
## 9
                   both
                                      Ε
                                                        S
## 19
                   near
                                      Η
                                                        S
## 21
                   both
                                      Ε
                                                        S
## 25
                                                        N
# Out of 511 offspring with full sib inclusion probabilities > 0.7,
# 13 (2.5%) offspring were assigned paternity from one of
# five candidate fathers in the experimental array
sum(offspring.proportion_0_9$n)
## [1] 13
length(unique(offspring.proportion_0_9$Father_ID))
## [1] 5
offspring.proportion_0_9 %>% count(Father_ID)
     Father_ID n
##
## 1
           03a 1
## 2
           05b 1
## 3
           06a 1
## 4
           12b 3
## 5
           20a 1
Paternity_dat_0_9 %>% count(Distance)
    Distance n
## 1 0.15000 10
## 2 0.85000 1
## 3 1.00000 1
## 4 70.00016 1
```

Make Figure 4

```
alpha = 0.4,
               color = "grey") +
  geom_linerange(data = predictions_reprod,
                 aes(ymin = lwr,
                     ymax = upr)) +
  geom_point() +
  labs(y = "Reproductive output\n(number of settlers)",
       title = "a)") +
  theme classic() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
# Panel B
panel_B <- ggplot(data = predictions_sires,</pre>
                  aes(x = Treatment,
                      y = fit)) +
  # geom_jitter(data = block_effects_sires,
               aes(x = Treatment,
  #
                   y = fit),
  #
               width = 0.05,
               alpha = 0.4,
               color = "grey") +
  geom_linerange(aes(ymin = lwr,
                     ymax = upr)) +
  geom_point() +
  ylim(0, 20) +
  labs(y = "Standardized number\nof sires per colony",
       title = "b)") +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
tmp <- offspring.proportion_0_9 %>% filter(Mother.Block==Father.Block)
# far
y1 <- tmp %>% filter(Mother.Position=="B" & Father.Position == "C" |
                         Mother.Position=="C" & Father.Position == "B")
# near
y2 <- tmp %>% filter(Mother.Position=="G" & Father.Position %in% c("H"))
# both
y3 <- tmp %>% filter(Mother.Position=="D" & Father.Position %in% c("E","F"))
tmp <- rbind.data.frame(y1, y2, y3)</pre>
panel_C <- ggplot(data = tmp,</pre>
                  aes(x = Father.Treatment,
                      y = freq)) +
  geom_point() +
# for Mother_ID 02a, there were two fathers from the same block
    geom_linerange(data = tmp %>% filter(Mother_ID == "02a"),
                 aes(ymin = freq,
                     ymax = max.freq)) +
  labs(x = "Treatment",
```

```
y = "Proportion of offspring\nsired by nearest colony",
          title = "c)") +
   scale_x_discrete(label = c("far", "near", "both\n(far)")) +
   theme classic() +
   theme(axis.text.x = element_text(angle = 45, hjust = 1))
grid.arrange(panel_A, panel_B, panel_C,
                  nrow = 1,
                  ncol = 3)
                                                                             Proportion of offspring sired by nearest colony
                                                 b)
                                                                                          c)
             a)
                                       Standardized number
Reproductive output (number of settlers)
                                          sires per colony
      2500
                                             20
      2000
                                                                                    0.16
                                             15
       1500
                                                                                    0.12
                                             10
       1000
                                                                                    0.08
                                               5
        500
                                                                                    0.04
                                               0
```

Treatment

Treatment

pdf

alone

Treatment

Make Figure 5 (Inclusion and exclusion probabilities)

alone

```
# Set breaks for plotting
brks <- seq(0,1,0.05)
# Get frequency of Inclusion probabilities
Inc <- with(FSFamily_0_9, hist(Prob.Inc..,</pre>
                                 breaks = brks,
                                 plot = F)
# Get frequency of Exclusion probabilities
Exc <- with(FSFamily_0_9,hist(Prob.Exc..,</pre>
                                breaks = brks,
                                plot = F))
# Panel A
d <- cbind.data.frame(mids = Inc$mids, counts = Inc$counts)</pre>
y <- d %>% filter(counts>0)
panel_A <- ggplot() +</pre>
  geom_col(data = y %>% filter(mids < 0.7),</pre>
            aes(x = mids,
                y = counts),
           fill = "grey",
           show.legend = F) +
  xlim(0,1) + ylim(0,max(y$counts)) +
  geom_col(data = y %>% filter(mids >= 0.7),
           aes(x = mids,
```

```
y = counts),
                                                 fill = "black",
                                                 show.legend = F) +
        labs(x = "Inclusion\nprobability",
                               y = "Frequency of \nfull sib families",
                               title = "a)") +
        theme_classic()
# Panel B
d <- cbind.data.frame(mids = Exc$mids, counts = Exc$counts)</pre>
y <- d %>% filter(counts>0)
panel_B <- ggplot() +</pre>
         geom_col(data = y,
                                                 aes(x = mids,
                                                                  y = counts),
                                                 fill = "black",
                                                 show.legend = F) +
        xlim(0,1) +
         labs(x = "Exlusion\nprobability",
                               y = "",
                               title = "b") +
         theme_classic()
grid.arrange(panel_A, panel_B, nrow = 1, ncol = 2)
                                                                                                                                                        b
                                       a)
Freduency of 400 and 100 and 1
                                                                                                                                      500 -
                                                                                                                                       400
                                                                                                                                      300
                                                                                                                                      200
                                                                                                                                        100
                                   0.00 0.25 0.50 0.75 1.00
                                                                                                                                                    0.00 0.25 0.50 0.75 1.00
                                                          Inclusion
                                                                                                                                                                                 Exlusion
                                                       probability
                                                                                                                                                                             probability
## pdf
##
                 2
```

Calculate the frequency of potential and observed distances between parents

```
brks <- seq(0,200,0.1)
# # Potential distances
tmp <- dat %>% select("X", "Y")
```

```
mat <- dist(tmp, diag = T)</pre>
possible_distances <- mat[lower.tri(mat, diag = T)]</pre>
a <- hist(possible_distances, breaks = brks, plot = F)</pre>
possible_density <- data.frame(density = a$density / max(a$density),
                                 mids = a$mids)
# Observed
density_freq <- function(d){</pre>
  b <- hist(d$Distance,breaks=brks,plot=F)</pre>
  data.frame(n = b$counts,
              density = b$density / max(b$density),
              mids = b$mids)
}
observed_density_0_9 <- density_freq(Paternity_dat_0_9)
possible_density$Metric <- "Potential"</pre>
observed_density_0_9$Metric <- "Observed"
density_data <- rbind.data.frame(possible_density, observed_density_0_9[,-1])</pre>
density_data$Metric <- factor(density_data$Metric,</pre>
                                levels = c("Potential", "Observed"))
```

Make Figure 6

```
panel_A <- ggplot() +</pre>
  geom_col(data = density_data,
                  aes(x = mids,
                      y = density,
                      fill = Metric),
           width = 3,
           alpha = 0.4,
           position_dodge(0.01)) +
  labs(x = "Distance between mother and father (m)",
       y = "Relative\nfrequency",
       title = "a) Whole array") +
  scale_fill_manual(name = 'd',
                    breaks = c('Potential','Observed'),
                    values = c('Potential' = 'grey',
                                'Observed' = 'tomato')) +
  scale_x_continuous(breaks = seq(0,300,25)) +
  theme_classic() +
  theme(legend.position = 'none')
panel_B <- ggplot() +</pre>
  geom_col(data = density_data %>% filter(mids < 1.2),</pre>
                  aes(x = mids,
                      y = density,
                      fill = Metric),
           width = 0.02,
           alpha = 0.4,
           position_dodge(0.1)) +
  labs(x = "Distance between mother and father (m)",
       y = "Relative\nfrequency",
```

a) Whole array

b) Within treatments

pdf ## 2