

Smart Devices with Micro:Bit

What is a smart device?

How many can you think of?

Smart Devices

Smart devices are electronic devices that:

- Have electronic sensors to observe their surroundings
- Use data from the sensors to act autonomously (on their own)
- Communicate with other devices connected to a network.

DIY Smart Devices

Intro to Micro: Bit

What is a micro:bit?

Starting with MakeCode

makecode.microbit.org

Starting with MakeCode

Click New Project

It should look like this!

Activity: Sense Testing

Activity: Sense Testing

Let's test our micro:bits by playing with the sensors

Copy this code:

light level is in the Input tab plot par graph is in the Led tab

Upload the code to your Micro:Bit – what's going on?

Try swapping out light level for sound level (in the Input tab)

Connecting the micro:bit

1. Plug the micro:bit into your computer

2. In the bottom left of your screen, click the 3 dots next to 'Download', then click 'Connect Device'

3. Follow the on-screen instructions until you see this popup

4. Click the name of your device (it should be the only option)

5. Click connect

Activity: Let's Build a Circuit

Electricity needs a complete loop from + to – or it cannot flow through the circuit

Let's Build a Circuit

Connect your LED to the 3-Volt (3V) and Ground (GND) pins:

- 3V → LED long leg
- GND → LED short leg

What happens when you turn on the micro:bit?

What happens when you swap around the legs of your LED?

What haven't we used?

Let's Build a Circuit

Swap the long led from the 3V pin to pin 0

What happens when you turn on the micro:bit?

Pin 0 is **programmable**... what might we be missing?

Let's Build a Circuit

We can program the LED to turn on with the code above!

Activity: Switch It Up

What Is a Variable?

A variable is something that stores data in our program. It is like a box with a label on it

I can store different things in the box, but the label stays the same

For example, I have stored the word "Bob" in my variable which is labelled "Name"

Switch Variable

I could have another variable named 'switch' which keeps track of whether our LED should be on or off

Every time we press the on/off button, our 'switch' variable will update and our micro:bit can use it to change the state of the LED

Switch It Up

Click on the variables tab and 'Make a Variable'

Call your new variable 'switch'

New variable name:	8
switch	
	Ok 🗸

Switch It Up

For digital devices:

$$0 = off$$
 $1 = on$

Set your switch variable to **0** (**off**) on start

Set your switch variable to 1 (on) when the 'A' button is pressed

Forever set pin 0 to equal your switch variable

Conditions

- Feature of a programming language which helps us perform different actions based on different conditions.
- These conditions should always result either in Yes/No or True/False.
- Example:

```
If your age is > 17 then

You are eligible to drive (given that you have passed your tests).
```

else

You have to wait until you are eligible.

- The condition in the example above can either be true or false.
 Your age can either be > 17 or less than 17.
- What happens if your age is 17?

Conditional Expressions

- You can create conditions using expressions.
- These expressions use mathematical operators.

Operator	Meaning
<	Less than
>	Greater than
<= or ≤	Less than or equal to
>= or ≥	Greater than or equal to
=	Equal to
≠	Not equal to

Logic

- In Micro:bit these conditional statements are placed under Logic section.
- It has the conditionals, the comparison operators and the logical operators.

Switch It Up

We can use an **if else** statement to update our switch variable every time the button is pressed

Create the statement:

if switch = 0

If this statement is true, we should set the switch variable to 1 when the button is pressed

Else we can set it to 0

Activity: Improving the Circuit

Breadboard

Improving the Circuit

We can use a breadboard to:

- Make our circuit neater
- Add new components to our circuit
- Look after our components and stop them burning out

Follow the diagram to improve your circuit and add a resistor

Activity: Making our Circuit Smart

Automatic Light Circuit

Programming Our Circuit

We will need blocks from the **Pins** tab in the **Advanced** menu

Programming Our Circuit

If the light sensor reading is low enough, the LED turns on

```
forever
         analog read pin P2 ▼
 if
                                         500
                                                then
   digital write pin (P1 ▼ ) to (1
 else
   digital write pin (P1 ▼)
```

You may need to experiment to find a suitable threshold on pin 2!

Automatic Dimming

We could also try an analogue write to create a dimmer switch

We can subtract our light sensor reading from the maximum analogue value we can send to our LED to create the effect

You may need to experiment to make it work well!