Statistiques descriptives et Introduction à R

Partie 2 : Statistiques bivariées

Edmond Sanou

Université d'Evry Val d'Essonne

Avril 2023

Sommaire

1 Statistique bivariée

Sommaire

1 Statistique bivariée

Liaison entre deux variables qualitatives

Sommaire

1 Statistique bivariée

Liaison entre deux variables qualitatives

Tableau de contingence

Soient deux caractères qualitatifs X et Y à respectivement p et q modalités observés sur une même population de taille n. On appelle **tableau de contingence** des caractères X et Y, le tableau représentant la répartition des individus statistiques en fonction des couples de modalités des deux caractères. Il s'agit donc de la matrice des effectifs (n_{ij}) vérifiant les modalités i du caractère X et j du caractère Y.

- Un tableau de contingence peut aussi être défini à partir de la matrice des fréquences $f_{ij} = \frac{n_{ij}}{n}$.
- Il est aussi appelé tableau à double entrée ou tableau croisé

Notations (1)

Pour les effectifs

- n_{ij} est l'effectif des individus présentant les modalités i et j des variables X et Y.
- $n_{i \bullet} = \sum_{j=1}^q n_{ij}$ est l'effectif total des individus présentant la modalité i pour le caractère X
- $n_{\bullet j} = \sum_{i=1}^p n_{ij}$ est l'effectif total des individus présentant la modalité j pour le caractère Y
- $n = n_{\bullet \bullet} = \sum_{i=1}^p n_{i \bullet} = \sum_{i=1}^p n_{\bullet i}$ est l'effectif total
- $n_{i\bullet}$ et $n_{\bullet j}$ sont appelés **effectifs marginaux**

Notations (2)

Pour les fréquences

- $f_{ij} = \frac{n_{ij}}{n}$ est la proportion d'individus présentant les modalités i et j des variables X et Y.
- $f_{i\bullet} = \frac{n_{i\bullet}}{n}$ est la proportion d'individus présentant la modalité i pour le caractère X.
- $f_{\bullet j} = \frac{n_{\bullet j}}{n}$ est la proportion d'individus présentant la modalité j pour le caractère Y.
- $f_{i\bullet}$ et $f_{\bullet j}$ sont appelées **fréquences marginales**

Représentation

$X \setminus Y$	y_1	 y_j	 y_q	Total
x_1	n_{11}	 n_{1j}	 n_{1q}	$n_{1\bullet}$
:	:	 :	 :	:
x_i	n_{i1}	 n_{ij}	 n_{iq}	$n_{i\bullet}$
:	:	 :	 :	:
x_p	n_{p1}	 n_{pj}	 n_{pq}	n_{pullet}
Total	$n_{\bullet 1}$	 $n_{ullet j}$	 $n_{ullet q}$	n

Table 1: Tableau de contingence.

 \bullet On peut substituer les fréquences en divisant les effectifs par n.

Sous R(1)

Exemple : Région d'habitation et sport préféré

• Le tableau de contingence des effectifs est donné par

```
table_contingence <- table(Sport, Region)</pre>
```

Affichage du tableau

table_contingence

```
## Foot Rugby
## Ouest 100 80
## Est 60 120
```

Ajout des effectifs marginaux

addmargins(table_contingence)

```
## Foot Rugby Sum
## Ouest 100 80 180
## Est 60 120 180
## Sum 160 200 360
```

Sous R (2)

• Diagramme en barres des effectifs

Sous R (3)

Diagramme en barres des effectifs

Notion de dépendance

Imaginons le tableau de contingence incomplet suivant

	Eco	STID	Math/Eco	Maths	Ensemble
Hommes					58.3%
Femmes					41.7%
Ensemble	25%	3.3%	11.7%	60.0%	100%

Table 2: Répartition des étudiants selon leur recrutement

Que peut-on s'attendre à trouver dans les cases vides si le sexe et la filière de recrutement sont totalement indépendants l'un de l'autre? A priori, on devrait trouver des valeurs telles que

$$f_{ij} = f_{i\bullet}f_{\bullet j} \text{ ou } n_{ij} = \frac{n_{i\bullet}n_{\bullet j}}{n}, \quad \forall (i,j) \in \{1,\dots,p\} \times \{1,\dots,q\}.$$

Statistique du χ^2 (1)

On appelle **statistique du** χ^2 , la statistique valant

$$D^2 = \sum_{i=1}^{p} \sum_{j=1}^{q} \frac{(n_{ij} - n_{ij}^{\star})^2}{n_{ij}^{\star}}$$

avec $n_{ij}^\star = \frac{n_{i\bullet}n_{\bullet j}}{n}$ l'effectif théorique des individus vérifiant les modalités i et j des deux caractères considérés et n_{ij} l'effectif observé ou empirique.

Statistique du χ^2 (2)

Il est possible d'écrire ${\cal D}^2$ comme fonction des fréquences et des fréquences marginales

$$D^{2} = n \sum_{i=1}^{p} \sum_{j=1}^{q} \frac{(f_{ij} - f_{i \bullet} f_{\bullet j})^{2}}{f_{i \bullet} f_{\bullet j}}$$

- Cette écriture permet de voir que pour deux strucures identiques, la taille va avoir une influence sur la valeur de \mathbb{D}^2 .
- On peut montrer que $D^2 \le n \min(p-1, q-1)$.

Statistiques dérivées du χ^2

On appelle coefficient de Cramer ou V de Cramer, la statistique

$$V = \sqrt{\frac{D^2}{n\min(p-1;q-1)}}$$

On appelle coefficient de contingence de Pearson, la statistique

$$C = \sqrt{\frac{D^2}{D^2 + n}}$$

On appele coefficient de Tschuprow, la statistique

$$T = \sqrt{\frac{D^2}{n\sqrt{(p-1)(q-1)}}}$$

Quelques remarques

- On V, C et $T \in [0, 1]$
- Avant de mesurer le degré de dépendance, il faut faire un test d'indépendance du χ^2 (voir Cours de Statistiques inférentielles).
- \bullet En pratique, aucun effectif théorique ne doit être inférieur à 5
- \bullet Une fois que l'indépendance est rejetée, V et C permettent de mesurer le degré de dépendance.
- Qui dit dépendance ne dit pas relation de causalité.

Contribution au χ^2

On appelle contribution au χ^2 du couple (i,j), la statistique

$$C_{\chi^2}(i,j) = \frac{1}{D^2} \frac{(n_{ij} - n_{ij}^*)^2}{n_{ij}^*}$$

- \bullet Cette statistique permet d'identifier les couples (i,j) qui contribuent le plus à la dépendance entre X et Y
- Il est aussi utile de déterminer le signe de cette dépendance
 - Si $n_{ij} n_{ij}^{\star} > 0$ on parlera d'association positive
 - Si $n_{ij}-n_{ij}^{\star}<0$ on parlera d'association négative

Distribution conditionnelle

On appelle i-ième **profil ligne** la distribution conditionnelle, notée $(f_{\bullet j|i\bullet})_{j=1,\dots,q}$ avec

$$f_{\bullet j|i\bullet} = \frac{f_{ij}}{f_{i\bullet}} = \frac{n_{ij}}{n_{i\bullet}} \quad \forall j = 1, \dots, q.$$

On appelle j—ième **profil colonne** la distribution conditionnelle, notée $(f_{i \bullet | \bullet})_{i=1,...,p}$ avec

$$f_{i\bullet|\bullet j} = \frac{f_{ij}}{f_{\bullet j}} = \frac{n_{ij}}{n_{\bullet j}} \quad \forall i = 1, \dots, p$$

Notion de représentativité (1)

Soit le groupe d'individus vérifiant la modalité du caractère X. On souhaite caractériser cette catégorie d'unités statistiques en fonction de la variable Y. Parmi cette sous-population, on dit que les individus de modalité j du caractère Y sont $\operatorname{sur-représentés}$ (respectivement sous-représentés) si

$$f_{ullet j|iullet} > f_{ullet j}$$
 respectivement $f_{ullet j|iullet} < f_{ullet j}$
$$rac{n_{ij}}{n_{iullet}} > rac{n_{ullet j}}{n}$$
 respectivement $rac{n_{ij}}{n_{iullet}} < rac{n_{ullet j}}{n}$

Remarque:

Il ne faut pas comparer les $(f_{\bullet j|i\bullet})$, repérer la modalité j pour laquelle $(f_{\bullet j|i\bullet})$ est maximale et conclure à la représentativité.

Notion de représentativité (2)

Les hommes représentent 12.5% d'une population et 47% des employés d'une entreprise. Que penser de l'affirmation suivante : La majorité des employés de ne sont pas des hommes ?

Notion de représentativité (3)

Le tableau de contingence se prête mal à la détection des sur et sous-représentativités.

	Eco	STID	Math/Eco	Maths	Ensemble
Hommes	6.7	1.7	8.3	41.7	58.3
Femmes	18.3	1.7	3.3	18.3	41.7
Ensemble	25	3.3	11.7	60	100

Table 3: Répartition des étudiants selon leur recrutement

Notion de représentativité (4)

On utilisera plutôt le tableau des fréquences conditionnelles

	Eco	STID	Math/Eco	Maths	Ensemble
Hommes	11.4	2.9	14.3	71.4	100
Femmes	44	4	8	44	100
Ensemble	25	3.3	11.7	60	100

Table 4: Répartition des étudiants selon leur recrutement

Lecture : . . .

Notion de représentativité (5)

Ou alternativement

	Eco	STID	Math/Eco	Maths	Ensemble
Hommes	26.7	50	71.4	69.4	58.3
Femmes	73.3	50	28.6	30.6	41.7
Ensemble	100	100	100	100	100

Table 5: Répartition des étudiants selon leur recrutement

Lecture : . . .

Représentation d'un couple de variables qualitatives : Diagramme mosaique

Ce diagramme vise à représenter un tableau de contingence avec des informations sur ses marges :

- Chaque colonne j possède une largeur proportionnelle à sa marge $n_{\bullet j}$
- Chaque case ij dans une colonne j possède une hauteur proportionnelle à $\frac{n_{ij}}{n_{\bullet j}}$.
- la surface de chaque case est donc proportionnelle à son effectif n_{ij} .

Diagramme mosaique (2)

plot(table_contingence)

table_contingence

Interprétation

- Si deux variables sont indépendantes les hauteurs des cases i• sont toujours les mêmes (proportionnelles à $n_{i\bullet}$).
- Plus le diagramme mosaïque semble être traversé de lignes horizontales, plus l'hypothèse d'indépendance semble vraisemblable.