StyleGANs

Bonich Dmitrij

Presentation plan

- 1. Classic GAN reminder
- 2. Progressive GAN
- 3. StyleGAN-1
- 4. StyleGAN-2

Classic GAN

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

Progressive GAN

- Adds higher resolution layers to generator and discriminator progressively
- Uses Wasserstein loss for training
- Inserts minibatch statistics into features to discourage mode collapse
- Other tricks: equalized learning rate, normalization layers, etc

Resolution transition

- 1. Add new resolution block
- Add skip connection from old resolution block
- 3. Linearly increase new resolution weight **α** from **0** to **1**
- 4. When $\alpha=1$ remove skip connection

Generation examples

POTTEDPLANT HORSE SOFA BUS CHURCHOUTDOOR BICYCLE TVMONITOR

StyleGAN-1 (well, not quite)

- Remove latent input
- Generator network takes const learnable tensor as input

Adding styles

- Now latent vector z impacts generator via AdalN layer
- Block "A" denotes linear layer. It transforms z into into 2 vectors:
 y_s, y_b, which we call styles

AdalN

$$AdaIN(\mathbf{x}_i, \mathbf{y}) = \mathbf{y}_{s,i} \frac{\mathbf{x}_i - \mu(\mathbf{x}_i)}{\sigma(\mathbf{x}_i)} + \mathbf{y}_{b,i}$$

StyleGAN-1 (almost there)

- Map z to w using 8-layer MLP
- Space of w should be more disentangled than space of z

StyleGAN-1 (finally)

- Different noise \(\mathcal{N}(0, I) \) is passed into each "B" block
- "B" block implements per-channel scaling by learnable coefficients

Noise matters

- a) Noise is applied to all layers
- b) No noise
- c) Noise in fine layers only
- d) Noise in coarse layers only

Style mixing

- Generate 2 latent vectors z₁, z₂
- 2. Map them: $\mathbf{w}_1 = \mathbf{f}(\mathbf{z}_1)$, $\mathbf{w}_2 = \mathbf{f}(\mathbf{z}_2)$
- 3. Pass \mathbf{w}_1 to first \mathbf{k} "A" blocks and \mathbf{w}_2 to the rest to generate new image

Ablations compared using FID

Method	CelebA-HQ	FFHQ
A Baseline Progressive GAN [30]	7.79	8.04
B + Tuning (incl. bilinear up/down)	6.11	5.25
C + Add mapping and styles	5.34	4.85
D + Remove traditional input	5.07	4.88
E + Add noise inputs	5.06	4.42
F + Mixing regularization	5.17	4.40

Perceptual Path Length (PPL)

• A measure of disentanglement

$$l_{\mathcal{W}} = \mathbb{E}\left[\frac{1}{\epsilon^2}d(g(\operatorname{lerp}(f(\mathbf{z}_1), f(\mathbf{z}_2); t)), g(\operatorname{lerp}(f(\mathbf{z}_1), f(\mathbf{z}_2); t + \epsilon))\right]$$

Mapping network impact

Method	FID	Path l	Separa-		
Michiga	FID	full	end	bility	
B Traditional 0 \mathcal{Z}	5.25	412.0	415.3	10.78	
Traditional 8 \mathcal{Z}	4.87	896.2	902.0	170.29	
Traditional 8 W	4.87	324.5	212.2	6.52	
Style-based 0 \mathcal{Z}	5.06	283.5	285.5	9.88	
Style-based 1 \mathcal{W}	4.60	219.9	209.4	6.81	
Style-based 2 W	4.43	217.8	199.9	6.25	
F Style-based 8 W	4.40	234.0	195.9	3.79	

StyleGAN-1: Blob-like artifacts

StyleGAN-2: Revising architecture (INFRA)

Weight demodulation

$$w'_{ijk} = s_i \cdot w_{ijk}$$

$$w_{ijk}^{"} = w_{ijk}^{\prime} / \sqrt{\sum_{i,k} w_{ijk}^{\prime}^2 + \epsilon}$$

(d) Weight demodulation

PPL as image quality metric

(a) Low PPL scores

(b) High PPL scores

PPL Regularizer

$$\mathbf{J_w} = \partial g(\mathbf{w})/\partial \mathbf{w}$$

$$\mathbb{E}_{\mathbf{w},\mathbf{y}\sim\mathcal{N}(0,\mathbf{I})} \left(\left\| \mathbf{J}_{\mathbf{w}}^{T} \mathbf{y} \right\|_{2} - a \right)^{2}$$

- Optimal J_w is orthogonal up to a global scale
- **a** is an exponential moving average of $\|\mathbf{J}_{\mathbf{w}}^T\mathbf{y}\|_2$

PPL distributions without/with PPL Regularizer

Yet another StyleGAN-1 artifact

StyleGAN-2: Removing progressive growing

Experiments with alternative architectures

FFHQ	D original		D inpu	t skips	D residual	
rrny	FID	PPL	FID	PPL	FID	PPL
G original	4.32	265	4.18	235	3.58	269
G output skips	4.33	169	3.77	127	3.31	125
G residual	4.35	203	3.96	229	3.79	243

LSUN Car	D original		D input skips		D residual	
	FID	PPL	FID	PPL	FID	PPL
G original	3.75	905	3.23	758	3.25	802
G output skips	3.77	544	3.86	316	3.19	471
G residual	3.93	981	3.40	667	2.66	645

Contribution of resolution and capacity problem

StyleGAN-2: Final results

Configuration	FFHQ, 1024×1024				LSUN Car, 512×384			
	$FID \downarrow$	Path length ↓	Precision ↑	Recall ↑	FID ↓	Path length ↓	Precision ↑	Recall ↑
A Baseline StyleGAN [24]	4.40	212.1	0.721	0.399	3.27	1484.5	0.701	0.435
B + Weight demodulation	4.39	175.4	0.702	0.425	3.04	862.4	0.685	0.488
C + Lazy regularization	4.38	158.0	0.719	0.427	2.83	981.6	0.688	0.493
D + Path length regularization	4.34	122.5	0.715	0.418	3.43	651.2	0.697	0.452
E + No growing, new G & D arch.	3.31	124.5	0.705	0.449	3.19	471.2	0.690	0.454
F + Large networks (StyleGAN2)	2.84	145.0	0.689	0.492	2.32	415.5	0.678	0.514
Config A with large networks	3.98	199.2	0.716	0.422	<u> </u>	_	_	_

Conclusion: Futexes GANs are tricky

- Progressive GAN introduced progressive growing, which enabled generation of high resolution images
- StyleGAN-1 made it possible to control image synthesis, namely combining styles via image mixing
- StyleGAN-2 removed some of the StyleGAN-1 image artifacts and modernized the architectures of the generator and discriminator