Сомов К. А. ИУ5-61Б

import kagglehub
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

path = kagglehub.dataset_download("fivethirtyeight/fivethirtyeight-comic-charact
data = pd.read_csv(f"{path}/marvel-wikia-data.csv")

data.head()

→		page_id	name	urlslug	ID	ALIGN	1
	0	1678	Spider- Man (Peter Parker)	VSpider-Man_(Peter_Parker)	Secret Identity	Good Characters	H; E
	1	7139	Captain America (Steven Rogers)	VCaptain_America_(Steven_Rogers)	Public Identity	Good Characters	E E
	2	64786	Wolverine (James \"Logan\" Howlett)	VWolverine_(James_%22Logan%22_Howlett)	Public Identity	Neutral Characters	E E

Далее: О Посмотреть рекомендованные графики New inte

New interactive sheet

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 16376 entries, 0 to 16375 Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	page_id	16376 non-null	int64
1	name	16376 non-null	object
2	urlslug	16376 non-null	object
3	ID	12606 non-null	object
4	ALIGN	13564 non-null	object
5	EYE	6609 non-null	object
6	HAIR	12112 non-null	object
7	SEX	15522 non-null	object
8	GSM	90 non-null	object
9	ALIVE	16373 non-null	object
10	APPEARANCES	15280 non-null	float64
11	FIRST APPEARANCE	15561 non-null	object
12	Year	15561 non-null	float64

dtypes: float64(2), int64(1), object(10)
memory usage: 1.6+ MB

```
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from sklearn.metrics import accuracy_score, f1_score
from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
# 1. Удалим ненужные столбцы
data = data.drop(columns=["page_id", "name", "urlslug", "FIRST APPEARANCE", "GS
# 2. Удалим строки с пустым ALIVE
data = data.dropna(subset=["ALIVE"])
# 3. Заполним пропуски
for col in ["ID", "ALIGN", "EYE", "HAIR", "SEX"]:
    data[col] = data[col].fillna("Unknown")
data["APPEARANCES"] = data["APPEARANCES"].fillna(data["APPEARANCES"].median())
data["Year"] = data["Year"].fillna(data["Year"].median())
# 4. Кодируем ALIVE
data["ALIVE"] = data["ALIVE"].map({"Living Characters": 1, "Deceased Characters
# 5. Разделим признаки и целевую переменную
X = data.drop(columns=["ALIVE"])
y = data["ALIVE"]
# One-hot encoding категориальных признаков
X = pd.qet dummies(X)
# 6. Разделим на train и test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, randon
```

```
# Логистическая регрессия
lr_model = LogisticRegression(max_iter=1000)
lr_model.fit(X_train, y_train)
lr preds = lr model.predict(X test)
# Случайный лес
rf model = RandomForestClassifier(random state=13)
rf model.fit(X train, y train)
rf_preds = rf_model.predict(X_test)
# Оценка качества
print("Logistic Regression:")
print("Accuracy:", accuracy_score(y_test, lr_preds))
print("F1 Score:", f1_score(y_test, lr_preds))
print("\nRandom Forest:")
print("Accuracy:", accuracy_score(y_test, rf_preds))
print("F1 Score:", f1_score(y_test, rf_preds))
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_logistic.py:4
    STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
      n_iter_i = _check_optimize_result(
    Logistic Regression:
    Accuracy: 0.7648854961832061
    F1 Score: 0.8667820069204152
    Random Forest:
    Accuracy: 0.736793893129771
```

Accuracy: 0.736793893129771 F1 Score: 0.8401335311572701

Оценка качества моделей

Для оценки качества построенных моделей использовались следующие метрики:

- **Ассигасу (точность классификации)** доля правильно предсказанных примеров среди всех.
- **F1-мера** гармоническое среднее между полнотой и точностью. Она особенно полезна при несбалансированных классах, так как учитывает как ложные положительные, так и ложные отрицательные срабатывания.

Метрики выбраны потому, что:

- **Accuracy** даёт общую оценку качества классификации.
- **F1-мера** показывает, насколько хорошо модель справляется с балансом между ложными срабатываниями и пропущенными положительными примерами это особенно важно при возможной дисбалансировке классов (например, если "мертвых" персонажей меньше, чем "живых").

Результаты:

	Модель	Accuracy	F1 Score
Логистич	ческая регрессия	0.765	0.867
Случайн	ый лес	0.737	0.840

Выводы

- Логистическая регрессия показала более высокое качество классификации, чем случайный лес, как по метрике accuracy, так и по F1-мере.
- Несмотря на то, что случайный лес более гибкая и мощная модель, **в данном случае она уступает простой линейной модели**. Возможные причины:
 - переобучение случайного леса на неочищенных или шумных признаках;
 - линейная разделимость классов в выбранном признаковом пространстве;
 - высокая доля пропущенных значений в изначальных данных, которую линейная модель "переживает" лучше.