

Index

- Introduction
- Related work
- Methodology
- Experiments
- Conclusion

Introduction

Computer Vision 분야에서 신경망은 어떤 패턴에 집중(attention)하여 물체 인식

- 그러나 정확한 Attention 수행이 되지 않는 경우 존재
- Attention 성능 향상을 위해 **Guided Attention Inference Network** 제안

Ex) 첫번째 이미지에서 Attention Map 에 boat가 아닌 물에 attention 영역 존재

: CAM

CAM(Class Activation Map)

- CNN + GAP (Global Average Pooling)
- CNN을 통해 이미지 정보 요약 후 GAP 사용

기존 CNN 구조

+ Global Average Pooling

: CAM

CNN Classification

- 이미지에서 feature map생성
- 이후 FC layer 를 거치고 Classification

3	2	9
5		3
4	8	9

3	2	1	
5		3	W
2	-3	-1	

5	2	-1	
8		5	\ll
3	2	0	

2	3	4	
1		5	
-5	9	0	

2	3	8
1		5
-9	2	0

한양대학교 인공지능 연구실 Global Average Pooling 하나의 값으로 표현 Related work 2 : CAM 3 5 4 -3 Weight 5 6 5 2 4 -5 -3 8 3

-9

8

: CAM

1	2	4
5		3
4	7	-3

3	2	1
5	:	3
6	-3	-1

Weight4

[CAM] C class 에 대한 Score (attention map)

$$S^{c} = \sum_{k} W_{k}^{c} \frac{1}{Z} \sum_{i} \sum_{j} F_{i,j}^{k}$$

c = 예측 Class

 $W_k^c = c$ Class를 예측하는 k 번째 Feature Map 에 대한 weight

 $F^k = k 번째$ Feature Map

 $F_{i,j}^k$ = Feature Map 내 i, j 위치 값

Z =각 Feature Map의 합

: CAM

1	2	4
5		3
4	7	-3

3	2	1
5	:	3
6	-3	-1

Weight4

[CAM] C class 에 대한 Score (attention map)

$$S^{c} = \sum_{k} W_{k}^{c} \frac{1}{Z} \sum_{i} \sum_{j} F_{i,j}^{k}$$

: Grad-CAM

Grad-CAM(Gradient-weighted CAM)

- CAM 을 generalize 한 버전
- CNN 구조 그대로 사용

기존 CNN 구조

+ Global Average Pooling

Related work

: Grad-CAM

$F_{i,j}^{\kappa}$			
1	2	4	
5		3	
4	7	-3	

3	2	1
5		3
6	-3	-1

2	3	4
1		5
-5	9	-3

2	3	8
1	::	5
-9	2	-4

Global average pooling 대신 일반적인 CNN 구조 사용

$$S_{Grad_CAM}^{c} = ReLU \sum_{k} f_{k}^{c} F^{k}$$
$$f_{k}^{c} = \frac{1}{Z} \sum_{i} \sum_{j} \frac{\partial y_{c}}{\partial F_{i,j}^{k}}$$

 $F^k = k$ 번째 Feature map

 $y_c = Wx + b$

 $F_{i,j}^k$ = Feature Map 내 i, j 위치 값

: Grad-CAM

F_k^c				
1	2	4		
5		3		
4	7	-3		

$$X \quad \frac{1}{Z} \sum_{i} \sum_{j} \frac{\partial y_{c}}{\partial F_{i,j}^{k}} \quad = \quad$$

$$X \quad \frac{1}{Z} \sum_{i} \sum_{j} \frac{\partial y_c}{\partial F_{i,j}^k} \quad = \quad$$

$$X = \frac{1}{Z} \sum_{i} \sum_{j} \frac{\partial y_{c}}{\partial F_{i,j}^{k}} =$$

Methodology

: GAIN

Guided Attention Inference Network

Classification 한 결과를 가지고 스스로 attention 영역을 재 학습하는 구조 (self-guidance)

Methodology

: GAIN

Guided Attention Inference Network

- 두개의 stream S_{cl} , S_{am}

 S_{cl} : Class 를 인식하는 region을 찾아내는 stream

 S_{am} : Classification 에 영향을 주는 모든 영역에 attention이 되도록 하는 stream

: GAIN

Guided Attention Inference Network

- Grad-CAM 을 통해 얻은 Feature map A 와 original input image 사용

$$w_{l,k}^c = \operatorname{GAP}\left(\frac{\partial y^c}{\partial f_{l,k}}\right)$$
 $A^c = \operatorname{ReLU}\left(\operatorname{conv}\left(f_l, w^c\right)\right)$
By Grad-CAM

Feautre Map 과 각 요소별 gradient 의 Global Average Pooling 한 값을 Conv 하여 Attention Map 획득 ReLU 의 의미 : 같은 방향으로의 변화만을 취급 Conv(pos, pos) or Conv(neg, neg)

Methodology

: GAIN

Guided Attention Inference Network

- Modified sigmoid func. T

$$T(A^{c}) = \frac{1}{1 + \exp(-\omega (A^{c} - \boldsymbol{\sigma}))}$$

T의 역할: sigmoid 를 더 가파르게 만들기 위함 (1일 수록 더 1에 가깝게, 0일수록 더 0에 가깝게)

 $I^{*c} = S_{am}$ 에 사용하기위해 soft-masked 된 Image

T =modified sigmoid function

 ω = scale parameter

 σ = 모든 요소 값이 같은 threshold matrix

• = element-wise multiplication

: GAIN

Guided Attention Inference Network

- Masked 된 Residual Image I^{*c}

$$T(A^{c}) = \frac{1}{1 + \exp(-\omega (A^{c} - \boldsymbol{\sigma}))}$$

 $I^{*c} = S_{am}$ 에 사용하기위해 soft-masked 된 Image

T =modified sigmoid function

 ω = scale parameter

 σ = 모든 요소 값이 같은 threshold matrix

• = element-wise multiplication

$$I^{*c} = I - (T(A^c) \odot I)$$

이미지에서 attention 영역을 제거

I =Original image Feature Map

 $T(A^c)$ = Attention 영역이면 1, 아니면 0 return

: GAIN

Guided Attention Inference Network

- GAIN loss function

$$L_{am} = \frac{1}{n} \sum_{c} (I^{*c})$$

$$L_{self} = L_{cl} + \alpha L_{am}$$

 L_{cl} : Classification Loss

 L_{am} : Attention Mining Loss

 L_{self} : Self-guidance Loss

 α : weighting parameter (fixed 1)

: GAINext

Guided Attention Inference Network – External Version

- External stream S_e 추가
- S_{cl} , S_{am} , S_e 가 모든 파라미터를 공유

$$L_e = \frac{1}{n} \sum_c \left(A^c - H^c \right)^2$$

 H_c = pixel level label

: GAINext Framework

$$L_{ext} = L_{cl} + \alpha L_{am} + \omega L_e$$

 L_{cl} : Classification Loss

 L_{am} : Attention Mining Loss

 L_{self} : Self-guidance Loss

 α : weighting parameter (fixed to 1)

 ω : weighting parameter (fixed to 10)

Experiment

Results

Methods	Training Set	val.	test				
		(mIoU)	(mIoU)				
Supervision: Purely							
CCNN [19]	10K weak	35.3	35.6				
MIL-sppxl [20]	700K weak	35.8	36.6				
EM-Adapt [18]	10K weak	38.2	39.6				
DCSM [25]	10K weak	44.1	45.1				
BFBP [23]	10K weak	46.6	48.0				
STC [32]	50K weak	49.8	51.2				
AF-SS [21]	10K weak	52.6	52.7				
CBTS-cues [22]	10K weak	52.8	53.7				
TPL [11]	10K weak	53.1	53.8				
AE-PSL [31]	10K weak	55.0	55.7				
SEC [12] (baseline)	10K weak	50.7	51.7				
GAIN (ours)	10K weak	55.3	56.8				
Supervision: Image-level Labels							
(* Implicitly use pixel-level supervision)							
MIL-seg* [20]	700K weak + 1464 pixel	40.6	42.0				
TransferNet* [9]	27K weak + 17K pixel	51.2	52.1				
AF-MCG* [21]	10K weak + 1464 pixel	54.3	55.5				
$GAIN_{ext}*(ours)$	10K weak + 200 pixel	58.3	59.6				
$GAIN_{ext}* (ours)$	10K weak + 1464 pixel	60.5	62.1				

Semantic segmentation experiments

PASCAL VOC 2012 segmentation set

mIoU: mean Intersection over Union

Experiment

Results

Figure 5. Qualitative results of attention maps generated by Grad-CAM [24], our GAIN and GAIN_{ext} using 200 randomly selected (2%) extra supervision.

Experiment

Results

Tested on author's biased boat

Figure 6. Qualitative results generated by Grad-CAM [24], our GAIN and $GAIN_{ext}$ on our biased boat dataset. All the methods are trained on Pascal VOC 2012 dataset. -# denotes the number of pixel-level labels of boat used in the training which were randomly chosen from VOC 2012. Attention map corresponding to boat shown only when the prediction is positive (i.e. test image contains boat).

Experiment

Results

Tested on author's biased boat

Test set	Grad-	GAIN	GAIN _{ext} (# of PL)		
	CAM		9	23	78
VOC val.	83%	90%	93%	93%	94%
Boat without water	42%	48%	64%	74%	84%
Water without boat	30%	62%	68%	76%	84%
Overall	36%	55%	66%	75%	84%

Conclusion

Self-guidance, supervision 구조의 신경망으로 attention map을 더 잘 만드는 framework 제안 -> 발표당시 segmentation SOTA 성능

Contribution

- Attention map에 적용되는 지도 학습 방법 제안
- 신경망이 이미지 전체적으로 attention 을 가질 수 있도록 하는 self-guidance in training 제안
- 하나의 Framework 에서 Full supervision 이 원활하도록 supervision 과 self-guidance 를 잘 통합

Appendix references

Paper

https://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Tell_Me_Where_C
 VPR_2018_paper.pdf

• Etc.

- https://www.youtube.com/watch?v=fFyv1wCN4DU
- https://github.com/HYU-AILAB/ai-seminar/blob/master/season_13/07.%20A%2
 OGraph%20Convolutional%20Neural%20Network%20for%20Emotion%20Recognition%20In%20Conversation/200831_DialogueGCN_Yuri.pdf
 - https://github.com/chullhwan-song/Reading-Paper/issues/11