Uitwerking van opgave 14 bij paragraaf 5.3 van Huth&Ryan

Een voorbeeld van een frame met een reflexieve, transitieve, maar niet symmetrische toegankelijkheidsrelatie is het het frame $\mathcal{F} = (W, R)$ met

$$W = \{x, y\}$$

$$R = \{(x, x), (x, y), (y, y)\}$$

(Teken het frame en controleer de eigenschappen van R!)

We laten zien dat $p \to \Box \Diamond p$ niet geldig is in \mathcal{F}^{1} .

Daartoe kiezen we een labeling L met $L(x) = \{p\}$ en $L(y) = \{\}$ en bekijken we of $x \Vdash p \to \Box \Diamond p$. We zien dat $x \Vdash p$, maar $x \not \vdash \Box \Diamond p$. Er is namelijk een wereld y bereikbaar vanuit x met $y \not \vdash \Diamond p$ (de enige wereld bereikbaar vanuit y maakt p niet waar). Hieruit volgt dat $p \to \Box \Diamond p$ niet waar is in x en dus niet geldig in \mathcal{F} .

Gevraagd wordt nu of we een labeling op \mathfrak{F} en een wereld in W kunnen vinden zodat deze wereld $p \to \Box \Diamond p$ waar maakt. We gebruiken dezelfde labeling L als voorheen en bekijken wereld y. Hierin is p niet waar en dus hebben we gemakkelijk $y \Vdash p \to \Box \Diamond$.

 $^{^{1}}$ We weten dat dit zo moet zijn omdat R niet reflexief is (zie opgave 7 van §5.3).