Exercícios de Métodos Numéricos

Fábio Dall Cortivo

April 9, 2017

OBS.: Os exercícios abaixo foram extraídos do livro: Análise Numérica; Burden e Faires; 2003

1 Integração

1. Faça um programa que determina os valores de n (número de pontos) e h (tamanho do passo) necessários para aproximar

$$\int_0^2 e^{2x} \sin 3x \, dx$$

com precisão de 10^{-4} usando:

- Trapezoidal composta
- Simpson composta
- Ponto médio composta
- 2. Uma partícula de massa m movendo-se através de um fluido é submetida à resistência viscosa , R, que é função da velocidade v. A relação entre a resistência R, a velocidade v e o tempo t é dada pela equação

$$t = \int_{v(t_0)}^{v(t)} \frac{m}{R(u)} du$$

Suponha que $R(v)=-v\sqrt{v}$ para um fluido particular, onde R é dado em newtons e v em m/s. Se m=10 kg e v(0)=10 m/s, aproxime o tempo requerido para a partícula diminuir a velocidade para v=5 m/s. Justifique o método de integração utilizado.

3. Para simular as características térmicas dos discos de freio, D. A. Secrist e R. W. Hornbeck precisaram aproximar numericamente a "temperatura média da área da pastilha de freio", T, do coxim do freio, a partir da equação

$$T = \frac{\int_{r_e}^{r_o} T(r) r \,\theta_p \,dr}{\int_{r_e}^{r_o} r \,\theta_p \,dr},$$

onde r_e representa o raio no qual o contato do disco com a pastilha começa, r_o representa o raio externo da área de contato do disco com a pastilha, θ_p representa o ângulo da corda formada pela área de contato com a pastilha, e T(r) representa a temperatura em cada ponto da área de contato, obtido numericamente por meio da análise da equação do calor – veja Figura 1. Suponha que $r_e=0.308$ pé, $r_o=0.478$ pé, $\theta_p=0.7051$ radianos, e as temperaturas dadas

na tabela abaixo tenham sido calculadas em vários pontos do disco. Aproxime T. Justifique a escolha do método de integração utilizado.

$r ext{ (p\'es)}$	T(r) (°F)	$r ext{ (p\'es)}$	T(r) (°F)
0.308	640	0.410	1114
0.325	794	0.427	1152
0.342	885	0.444	1204
0.359	943	0.461	1222
0.376	1034	0.478	1239
0.393	1064		

Figure 1: Disco

2 EDOs

1. Considere o problema de valor inicial

$$y' = -100y + 100t + 1$$
, $y(0) = 1$.

- (a) Determine a solução analítica do problema
- (b) Encontre a solução numérica com o método de Euler com tamanho de passo $h_1^e = 0.025$ e $h_2^e = 0.01666666...$
- (c) Encontre a solução numérica com o método de Runge-Kutta 4 com $h_1^k=0.03333\ldots$ e $h_2^k=0.025.$

Por que Euler com h_1^e diverge e Runge-Kutta com h_2^k converge? Por que Euler com h_2^e converge e R-K4 com h_1^k diverge? Porque isso acontece? É possível identificar problemas de convergência "olhando" para a equação diferencial? Justifique. Ainda, investigue quão pequeno deve ser o tamanho do passo h para que o erro em t=0.05 e t=0.1 seja menor que 0.0005 quando utilizado o método de Euler e o método de R-K4.