Fundamentos de la Programación. Grado en Física - Curso 2021/2022

Examen de teoría de la convocatoria de febrero (11/01/2022)

Instrucciones

- 1. Tienes 3 horas para realizar el examen. Lee tranquilamente el examen y decide por dónde empezar.
- 2. No puedes utilizar apuntes ni programas ya escritos por ti o por otros para hacer el examen. Tampoco puedes comunicarte con nadie (excepto con el profesor) durante el examen. Puedes consultar al profesor por instrucciones concretas de Python que no recuerdes y puedes consultar los materiales disponibles en MoodleUA.
- 3. Finalmente debes entregar tu examen con todos los ejercicios que hayas realizado en un archivo comprimido en zip cuyo nombre debe ser tu DNI (NUMERO_DNI.zip).
- 4. Debes entregar dicho archivo comprimido a través de la tarea creada en MoodleUA. Dicha entrega se cerrará automáticamente a la hora fijada para la finalización del examen, de modo que debes tener cuidado en no retrasarte.

Ejercicios

1. (ejl.py) (3 puntos) Una matriz dispersa es una matriz con un alto porcentaje de elementos nulos. Una matriz dispersa con k elementos nulos se puede representar almacenando los elementos no nulos en una matriz de k + 1 filas y 3 columnas. En las columnas 2 y 3 de la primera fila se almacena la dimensión de la matriz, el número de filas en la 2 y el de columnas en la 3 (el valor de la primera columna es irrevelante). El resto de filas contienen la fila, la columna y el valor de los elementos no nulos, respectivamente. Por ejemplo, la siguiente matriz dispersa se puede codificar como se muestra (observa que la primera fila/columna tiene índice 1):

$$\begin{pmatrix}
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 6 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
0 & 5 & 5 \\
1 & 3 & 3 \\
3 & 2 & 6 \\
3 & 3 & 1 \\
5 & 5 & 1
\end{pmatrix}$$

- a) Implementa una función aDispersa(M) a la que se le pasa como párametro una matriz en la codificación ordinaria de Python y devuelve la codificación dispera de dicha matriz.
- b) Implementa otra función deDispersa(M) a la que se le pasa una matriz codificada como dispersa y devuelve la matriz con la codificación ordinaria de Python.
- c) En el programa principal se debe leer una matriz de elementos enteros de un fichero de entrada y escribir su codificación como matriz dispersa en otro fichero de salida. Los nombres de ambos ficheros se pasarán por línea de comandos y debes tratar los posibles errores en caso de que los archivos no estén disponibles o no se llame correctamente al programa.

Ejemplo: Si el archivo matriz.dat contiene

00300

00000

06100

00000

00301

y se invoca al programa desde la consola con la instrucción

\$ python3 ej1.py matriz.dat salida.txt

el archivo salida.txt debe contener

0 5 5

1 3 3

3 2 6

3 3 1

5 3 3

5 5 1

- 2. (ej2.py) (2.5 puntos) Implementa una función llamada compara a la que se le pasan por parámetro dos cadenas. El método debe devolver una matriz de enteros que tenga el mismo número de filas que caracteres tiene el primer parámetro y tantas columnas como caracteres tenga el segundo parámetro. El contenido de la posición [i][j] de la matriz lo determinan el carácter del primer parámetro correspondiente a la fila i y el carácter del segundo parámetro correspondiente a la columna j de la siguiente manera:
 - si el carácter i de la primera cadena es menor que el carácter j de la segunda, se asigna a la posición
 [i][j] de la matriz un -1;
 - si el carácter i de la primera cade4na es mayor que el carácter j de la segunda, se asigna a la posición
 [i][j] de la matriz un 1;
 - si ambos caracteres son iguales, se asigna a la posición [i] [j] de la matriz un 0.

En el programa principal se deben pedir dos cadenas al usario e imprimir la matriz devuelta por la función en el formato del ejemplo.

Ejemplo: Si las cadenas introducidas por el usuario son moda y codo la función debe devolver la matriz (en notación Python):

y en el programa principal se debe imprimir

```
c o d o
m 1 -1 1 -1
o 1 0 1 0
d 1 -1 0 -1
a -1 -1 -1
```

3. (ej3.py) (2.5 puntos) Deseamos dibujar la gráfica de la función Integral Exponencial entre 0.1 y 2. Esta función se define como

$$Ie(x) = \int_{x}^{\infty} \frac{e^{-t}}{t} dt$$

Para ello vamos a proceder en dos pasos:

a) Calculamos la función para 100 puntos equiespaciados en el intervalo anterior y los guardamos en un archivo de texto llamado datos.txt con el formato:

```
x_1 Ie(x_1)

x_2 Ie(x_2)

...

x_{100} Ie(x_{100})
```

b) Leemos los datos del archivo anterior, creamos la gráfica y la guardamos con el nombre ej3.png.

Para realizar este ejercicio debes usar las librerías numpy, matplotlib.pyplot y el método quad de la librería scipy.integrate.

4. (ej4.py) (2 puntos) Nos pasan el siguiente código que describe la clase Cuenta:

class Cuenta(object):

```
def __init__(self,titular,cantidad=0):
    self.titular=titular
    self.cantidad = cantidad
```

```
def __str__(self):
    return "Cuenta\n"+"Titular: " + self.titular+ " - Cantidad: "+str(self.cantidad)
```

- a) Añade a esta clase dos métodos ingresar(self,cantidad) y retirar(self,cantidad) que añadan/resten cantidad a la cantidad previa en la cuenta.
- b) En el programa principal crea una Cuenta con 1000 € cuyo titular es Pepe Botero. Ingresa en dicha cuenta 500 € y retira 800 €. Muestra por pantalla la cuenta después de realizar dichas operaciones.