CSC 665 Section 2: Machine Learning Theory

Chicheng Zhang
University of Arizona

Logistics

- Instructor: Chicheng Zhang (chichengz@cs.arizona.edu)
- Office Hours: Mon 1-2pm, Gould-Simpson 720
- Website: https://zcc1307.github.io/csc665/

Machine learning (ML)

- Algorithms build models that reflect patterns in the data, and use them for decision making
- Examples:
 - Spam classification
 - Image recognition (face, handwriting)
 - Medical applications (diagnosis, treatment assignment)
 - Online advertising
 - Game playing
 - (the list grows continually..)

Settings of ML

- Supervised learning
- Unsupervised learning
- Interactive learning

Supervised learning

- Classification
 - Binary: image classification
 - Multiclass: text classification
- Regression:
 - Weather forecasting (e.g. temperature / humidity)
- Rich output:
 - Social media feed ranking

Unsupervised learning

- Clustering
 - Topic modeling
- Feature extraction
 - Image compression
- Change-point detection
 - Trend detection in social media

Interactive learning

- Online learning
 - Spam classification
 - News recommendation
- Active learning
- Reinforcement learning
- Imitation learning
- •

What this course is about

- A rigorous performance analysis on machine learning algorithms
- Performance measure:
 - Sample complexity: #samples used
 - Computational complexity: time/space consumed
- First half: statistical learning (mainly supervised learning)
- Second half: online learning

Example: spam classification

Email: Free Software! Offer lasts till 2/20 -- spam

Email: CS Colloquium Lecture Series -- not spam

Data:

	free	offer	lecture	cs	Spam?
Email 1	1	1	0	0	+1
Email 2	0	0	1	1	-1

- Prediction rule (Linear classifier): sign(9*free + 1*offer 3.1*lecture)
- How many samples are needed to find a good linear classifier (say, with error < 0.01)?

Course preview

- Part 1: statistical learning
 - The probably approximately correct (PAC) learning model
 - Practical algorithms motivated from theory SVM, boosting
 - Analysis of (regularized) empirical risk minimization
- Part 2: online learning
 - Online optimization, the regret model
 - Online-to-batch conversion
 - Online learning with partial feedback

Why learning theory?

- Have guiding principles in mind when developing learning algorithms
 - e.g. regularization (early stopping, weight decay, adagrad)
- Motivate new practical learning algorithms
 - e.g. boosting originates in a purely theoretical question
- Understanding the success of practical method (and potentially resulting in better empirical approaches)
 - e.g. explaining the success of learning overparametrized neural nets

Prerequisites

- (Multivariate) Calculus
- Linear algebra
- Probability
- Basic programming
- Additional background (helpful, not strictly required):
 - Numerical optimization, algorithm design and analysis
- Calibration Homework (Due Sep 3 in class)

Evaluation

- Homework (50%)
 - weekly assignments, 1-3 problems / assignment
- Project (15%)
- Midterm (15%): (tentatively Oct. 10)
- Final (20%)

Project

- Groups of 2-4
- Can be one of the following styles:
 - Literature survey (be critical!)
 - Implementation (do your experiments echo the theoretical results? If not, why?)
 - Research
 - Advances state-of-the-art on existing learning models
 - Study new learning paradigm
- Project ideas will be up by mid-September

Project timelines

- Proposal: Oct 24
- Progress report: Nov 14
- Final presentations: Dec 5 and Dec 10, in class
- Final report (4 pages): Dec 11

Thank you! Questions?

Machine learning courses at UA

- Fall 2019
 - CSC 665 Section 1: Advanced Topics in Probabilistic Graphical Models by Jason Pacheco
 - Probabilistic modeling perspective
- Spring 2020
 - CSC 665: Topics in Online Learning and Bandits by Kwang-Sung Jun
 - Focuses on the online perspective
- Other courses (see course website)