מתמטיקה B עברי עגר \sim טיילור חוויפט ובית חולים

שחר פרץ

10 ביולי 2024

THE HOSPITAL RULE.....(1)

. מתקיים: ,t או נקובה בסביבה גזירות גזירות ל, ומתקיים:

$$\lim_{x \to t} f(x) = 0$$
 .1

$$\lim_{x\to t} g(x) = 0$$
 .2

t של נקובה נקובה $g'(x) \neq 0$.3

$$\lim_{x\to t} \frac{f'(x)}{g'(x)} = L'$$
 .4

 $\lim_{x o t}rac{f(x)}{g(x)}=L'$ או או $\lim_{x o t}g(x)=\pm\infty$ מתקיים 1,2 מתקיים או שבמקום

1.1 דוגמאות

$$\lim_{x \to \infty} \frac{\sin x}{x} = \lim_{x \to \infty} \frac{\cos x}{1} \in \emptyset$$

הגבול לא קיים ולכן לא נוכל להשתמש בלופיטל. אבל לא תהיה בעיה להגיד שזה הולך ל־0 כי $\sin x$ חסום ע"י x. נוכל להשתמש בכלל בית החולים גם עבור פונקציות אחרות:

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x} \stackrel{LH}{=} \lim_{x \to 0} \frac{1/x}{-1/x^2} = \lim_{x \to 0} x = 0$$

:תרגיל

$$\lim_{x \to 0} x^x = \lim_{x \to 0} e^{\ln x^x} = e^{x \ln x} = e^1 = 1$$

נוכל להעביר את הגבול לתוך האסקספוננט, או באופן כללי לתוך הפונקציה, אם הפונקציה רציפה באותה הנקודה (במקרה הזה, e^x רציף ב־0).

1.2 עוד כמה דברים אקראיים

טענה: אם הגבול $\lim_{x\to\infty} f(x)=0$ (כי לכאורה הפונקציה לא משתנה מספיק מהר, f(x)=0 גזירה), אז f(x)=0 (כי לכאורה הפונקציה לא משתנה מספיק מהר, אחרת לא יהיה גבול).

הוכחה. זה לא נכון.

היה איזה הסבר בכיתה שלא העתקתי. תבדקו בסיכומים אחרים.

 $\lim_{x o \infty} f'(x) = 0$ איז קיים, אז ווו $\lim_{x o \infty} f'(x)$ טענה (נכונה): תחת אותם התנאים,

הוכחה.

$$\lim_{x o \infty} f(x) = c \in \mathbb{R}$$

$$\implies \lim_{x o \infty} \frac{f(x)}{x}$$
 give article where $\lim_{x o \infty} \frac{f'(x)}{1}$

נוכל לקרב באמצעות פולינומים פונקציות רציפות – תחילה, הפונקציה תראה כמו קו ישר, וכאשר נתרחק נראה אט־אט שיפוע, וכו'. תהי פונקציה $x_0 \in \mathbb{R}$ נרצה סביב $x_0 \in \mathbb{R}$ לקרב את הפונקציה כמה שנוכל, באמצעות פולינומים ממעלות שונות:

- $a_0 = f(x_0) = p_0$ נבחר $f(x) \cong p_0(x) = a_0$:0. מעלה 1.
- 2. מעלה 1: $f(x_0) = p_1(x_0) = ax_0 + b$, $f'(x_0) = p'(x_0) = a$ נדרוש $f(x) \approx p_1(x) = ax + b$: $f(x) \approx p_1(x) = ax + b$:
- a,b,c נפתור עבור . $f'(x_0)=p'(x_0)=2ax+b,\ f''(x_0)=p''(x_0)=2a$ נדרוש . $f(x)\approxeq p_2(x)=ax62+bx+c$ נפתור עבור . $a=rac{1}{2}f''(x_0),\ f'(x_0)=f'(x_0)-f''(x_0)x_2,\ c=f(x_0)-(f'(x_0)-f''(x_0)x_0)x_0-rac{1}{2}f''(x_0)x_0^2$ ונקבל

$$p_2(x) = \frac{1}{2}f''(x_0)x^2 + (f'(x_0) - f''(x_0)x_0)x + f(x_0) - (f'(x_0) - f''(x_0)x_0) - \frac{1}{2}f''(x_0)x_0^2$$

נשלים לריבוע:

$$p_2(x) = \underbrace{\frac{1}{2}f''(x_0)(x - x_0)^2 + \frac{1}{2}f''(x_0)xx_0 - \frac{1}{2}f''(x)}_{\frac{1}{2}f''(x_0)x^2} + \dots$$

נשים לב שההשלמה לריבוע מתבטלת ביחס למקדמים אחרים שבשאר הפונקציה. הביטויים יצטמצם וניוותר עם:

$$p_2(x) = \frac{1}{2}f''(x_0)(x - x_0)^2 + f'(x_0)x + f(x_0) - f'(x_0)x_0 = \frac{1}{2}f'(x_0)(x - x_0)^2 + \underbrace{f'(x_0)(x - x_0) + f(x_0)}_{p_1(x)}$$

 x_0 נשים לב שהקירובים קשורים זה לזה. נרחיב למקרה הnי. אנחנו לא רוצים לפתור מערכות משוואות מגעילות, ולכן נמרכז סביב

$$f(x) \approx p_n(x) = \sum_{k=0}^{n} a_k (x - x_0)^k, \ f^{(m)}(x_0) = p_n^{(m)}(x_0)$$

לפי הנוסחא לחישוב נגזרת, כאשר נגזור מונום מדרגה k-1 פעמים, הדרגה תהפוך להיות k-m, ונוריד k-1, ואז k-1, ואז k-1, עד לפי הנוסחא לחישוב נגזרת, כאשר נגזור מונום מדרגה k פעמים, הדרגה תהפוך להיות k-1, ואז k-1, ואז k-1, איז k-1, ואז k-1, איז k-1, איז k-1, איז ביי

$$p_n^{(m)} = \sum_{k=0}^n a_k k(k-1)(k-2)\cdots(k-m+1)(x-x_0)^{k-m}$$
$$= \sum_{k=0}^n a_k k(k-1)\cdots(k-m+1)(x-x_0)^{k-m}$$

כאשר $x=x_0$ (או לפחות שואף לו), הכל מתאפס פרט ל־k=m, משום שחזרות חיוביות של 0 הן 0, וחזקות שליליות יתאפסו במקדם. נקבל:

$$p_n^{(m)}(x_0) = a_m \cdot m(m-1) \dots 2 \cdot 2 \cdot \underbrace{(k-m+1)}_{=1} \cdot \underbrace{(x-x_0)^{k-m}}_{=1} = a_m m!$$

ולכן $a_m = rac{f^{(m)}(x_0)}{m!}$ ולכן

$$f(x) \approx p_n(x) = \sum_{k=0}^n a_k (x - x_0)^k = \sum_{k=1}^n \frac{f^{(k)!}}{k!} (x - x_0)^k$$

זהו פולינום טיילור. אז מה זה הקירוב הזה? נצפה שככל שנתקרב ל־ x_0 , פולינום טיילור ישאף אליו. גם נצפה שככל שניקח $n o \infty$ נקבל קירוב יותר טוב של הפונקציה ואכן יש לנו את השוויונות הבאים:

$$x \to x_0$$
: $f(x) = p_n(x) + O((x - x_0)^{n+1})$

יה נכון תחת ההנחה ש־f גזירה f פעמים בקטע סביב x_0 . "אתם יודעים מה זה O גדול, הגדירו לכן אותו" (אותו הדבר כמו שהגדירו רעש) אה מהאהאה לול". (נושף למיקרופון כי אנחנו עושים רעש) "אהאהאה לול".

וכאשר $\sum_{k=0}^\infty \frac{f^{(n)}(x_0)}{k!}(x-x_0)^k$ וכאשר הוא הטור: אפשר לשאול מה תחום). אפשר לשאול מה הוא הטור: $\sum_{k=0}^\infty \frac{f^{(n)}(x_0)}{k!}(x-x_0)^k$ וזהו טור טיילור מקיים שוויון ל־f(x) עבור "הרבה פונקציות".

דוגמאות 2.1

2.1.1 ניתוח סינוסים

 $\sin x$ כאשר עושים טור טיילור עבור $x_0=0$ (טור טיילור סביב), קוראים לזה טור מק'לרון. נעשה טור מק'לרון עבור

$$f(x) = \sin x, \ f^{(m)}(x) = \begin{cases} \sin x & m \equiv 0 \\ \cos x & m \equiv 1 \\ -\sin x & m \equiv 2 \end{cases} \mod 4, \ f^{(m)}(0) = \begin{cases} 0 & m \equiv 0 \\ 1 & m \equiv 1 \\ 0 & m \equiv 2 \\ -1 & m \equiv 3 \end{cases}$$

:באופן כללי,
$$f^{2k+1} = (-1)^k$$
 . לסיכום

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$

(הנחנו שכל הזוגיים מתאפסים, וסכמנו את האי־זוגיים).

e^x 2.1.2

(נקבל: .f^{(m)}(0) = 1 מק'לורן. מק'לורן. נעשה לזה נעשה .f^{(m)}(x) = e^x עבור ידוע ידוע

$$e^x = \sum_{k=0}^{\infty} \frac{1}{k!} x^k$$

2.1.3 תרגיל

ידוע: $\cos x$ ידוע:

$$f(x) = \cos x, \ f^{(n)}(x) = \begin{cases} \cos x & n \equiv 0 \\ -\sin x & n \equiv 1 \\ -\cos x & n \equiv 2 \end{cases}, \ f^{(n)}(0) = 1, 0, -1, 0$$
$$\sin x & n \equiv 3$$

באופן כללי $f^{(2k)}=(-1)^k$ וסה"כ:

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$$

דרך נוספת היא:

$$\sin x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + O(x^{3j+3})$$

נגזור את השוויון:

$$\cos x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} + O(x^{2n+2})$$

 $\cos x$ שזהו הפולינום טיילור שקיבלנו עבור

$$\frac{1}{x}$$
, $\ln x$ 2.1.4

(הפעם לא מק'לורן). גבחר $x_0 = -1$

$$f(x) = \frac{1}{x} = x^{-1} \implies f^{(m)}(x) = (-1)(-2)\dots(-n) \cdot x^{-m-1} = (-1)^m m! x^{-m-1}, \ f^{(m)}(x_0) = -m!$$

סה"כ (ואכן נראה שוויון לטור גיאומטרי):

$$\frac{1}{x} = \sum_{m=0}^{\infty} -(x+1)^m = -\frac{1}{1 - (x+1)} = \frac{1}{x}$$

במקרה הזה זה יעבוד רק עבור x+1 < 1. זה הגיוני כי הטור הגיאומטרי מתכנס עבור x+1 < 1. תזכורת:

$$\sum_{k=0}^{\infty} a^k = \frac{1}{1-a}$$

(אחרת אינטגרל ונקבל: אינטוף). מכאן, נוציא אינטגרל ונקבל: אחרת ווקבל אינטגרל ומכאן ווקבל

$$\ln(1-x) = \sum_{k=0}^{n} -\frac{x^{k}}{k}$$

2.2 הערור

- 1. לפונקציות זוגיות/אי־זוגיות, יש רק איברים זוגיים/אי־זוגיים (בהתאמה) בטור מק'לורן (לדוגמה, $\sin x$ אי־זוגית ויש לה רק איברים זוגיים).
- 2. כך אפשר להגדיר $\sin x, \cos x$, ופונקציות נוספות, במקום באמצעות גיאומטריה מפוקפקת. אפשר להוכיח מתוך הטור תכונות אלגבריות גיאומטריה כמו $\sin (x+y) = \dots$
 - .3 צריך לדעת בע"פ את הטורים שראינו כאן היום.

ידוע גם:

$$f(x) = p_n(x) + O((x - x_0)^{n+1})$$

דוגמה:

$$e^x = \sum_{k=1}^n \frac{x^k}{k!} + O(x^{n+1}), \implies e^{x^2} = \sum_{k=1}^n \frac{x^{2k}}{k!} + O(x^{2k+2})$$

ומליניאריות הנגזרת, כאשר \cong מסמן את טור הטיילור של הפונקציה:

$$f(x) \approx p_n, \, \tilde{f}(x) \approx \tilde{p}_n, \implies f(x) + \tilde{f}(x) = p_n + \tilde{p}_n$$

2.3 חישוב טורי טיילור נוספים

2.4 דוג'

פולינום טיילור סביב 0 מסדר 3 של $f(x)=e^x\cos x$. אפשר ללכת לנוסחא ולגזור 3 פעמים. אבל אפשר להשתמש בטורי הטיילור שאנו $f(x)=e^x\cos x$ יודעים:

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^4), \cos x = 1 - \frac{x^2}{2} + O(x^4)$$

:סה״כ

$$e^{x} = \left(1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + O(x^{4})\right) \left(1 - \frac{x^{2}}{2} + O(x^{4})\right) - 1 + x - \frac{x^{3}}{3} + O(x^{4})$$

2.5 דוג' 2

 $f(x)=e^{\cos x}$ פולינום טיילור סביב 0 מסדר 4 של

$$\cos x = 1 \underbrace{-\frac{x^2}{2} + \frac{x^4}{24} + O(x^6)}_{y}, \implies f(x) = e^{1 - \frac{x^2}{2} + \frac{x^4}{24} + O(x^6)} = e \cdot e^{y}$$

$$= e\left(1 + y + \frac{y^2}{2} + O(y^3)\right) = \frac{1}{e}f(x) = 1 + \frac{-x^2}{2} + \frac{x^4}{24} + O(x^6) + \frac{1}{2}\left(\frac{-x^2}{2} + \frac{x^4}{24} + O(x^6)\right)_{O}\left(\left(\frac{-x^2}{2} + \frac{x^4}{24} + O(x^6)\right)^3\right)$$

$$= 1 - \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^4}{8} + O(x^6) + \frac{x^4}{4} + O(x^6) + O(x^6) = 1 - \frac{x^2}{2} + \frac{x^4}{6}$$