Lecture 6

Assignment

- 1. Let X and Y be two random variables such that Y has the binomial distribution with size N and probability π and, given Y = y, X has the binomial distribution with size y and probability p.
 - (i) Suppose that $p \in (0,1)$ and $\pi \in (0,1)$ are unkonwn and N is known. Show that (X,Y) is minimal sufficient for (p,π) .
 - (ii) Suppose that π and N are konwn and $p \in (0, 1)$ is unkonwn. Show whether X is sufficient for p and whether y is sufficient for p.
- 2. Let X_1, \dots, X_n be independent and identically distributed random variables having the Lebesgue density

$$\exp\{-(\frac{x-\mu}{\sigma})^4-\xi(\theta)\}$$

where $\theta = (\mu, \sigma) \in \Theta = \mathcal{R} \times (0, \infty)$. Show that $\mathcal{P} = P_{\theta} : \theta \in \Theta$ is an exponential family, where P_{Θ} is the joint distribution of X_1, \dots, X_n , and that the statistic $T = (\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2, \sum_{i=1}^n X_i^3, \sum_{i=1}^n X_i^4)$ is minimal sufficient for $\theta \in \Theta$.

3. Let X be a discrete random variable with

$$P_{\theta}(X=x) = \frac{\binom{\theta}{x}\binom{N-\theta}{n-x}}{\binom{N}{n}}, x = 0, 1, \dots, \min\{\theta, n\},$$

where $n-x \leq N-\theta, n$ and N are positive integers, $N \geq n,$ and $\theta=0,1,\cdots,N.$ Show that X is complete.

1