Decision Modeling

VOTING RULES AND COLLABORATIVE FILTERING

Professor: Brice Mayag

Students:
Dilbar Isakova
MD Kamrul Islam

November 18th, 2024

VOTING RULES: THEORY

The goal of the problem: output should provide the results of an election simulation where 4 voting methods were used, and all of them produced the same winner.

- Plurality Voting: each voter selects one candidate. The candidate with the most votes wins.
- *Plurality with Runoff:* if no candidate gets more than 50% of the votes, the top two candidates go to a second round. In the runoff, the candidate with the most votes wins.
- *Condorcet:* the candidate who would beat every other candidate in one-on-one matchups is the winner.
- Borda: voters rank candidates. Points are assigned based on rankings:
 - *1st place = more points.
 - *2nd place = fewer points, and so on.
 - * the candidate with the most total points wins.

VOTING RULES: CONTRAINTS

- At least 20% of voters should have distinct preferences.
- No single candidate should dominate as the best candidate for more than 70% of voters.

```
def check_minimum_different_preferences(preferences, min_percentage=0.20):
    unique_preferences = set(preferences)
    return len(unique_preferences) >= len(preferences) * min_percentage

def check_max_same_best_candidate(preferences, max_percentage=0.70):
    first_choices = [p[0] for p in preferences]
    first_choice_counts = Counter(first_choices)
    max_first_choice_count = max(first_choice_counts.values())
    return max_first_choice_count <= len(preferences) * max_percentage</pre>
```


VOTING RULES: METHOD

- Randomly generating voter preferences repeatedly (up to 10,000 times).
- Checking each set of preferences to see if they meet the conditions.
- Stopping only when a suitable set is found or when all attempts fail.

U

Election Results (Consistent winner found on attempt 4):

 $\overline{\Sigma}$

Plurality Voting

Winner: g

2. Plurality Runoff Voting

Winner: g

3. Condorcet Voting

Winner: g

4. Borda Voting Winner: g

Saved Preferences (Voter Rankings):

_					-				
	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5	Rank 6	Rank	7 Rank	8
0	g	a	f	d	b	е	: I	h	С
1	f	С	b	а	е	d	Ι (g	h
2	d	f	е	С	b	h	1 6	a	g
3	h	d	а	g	f	е		С	b
4	d	g	е	а	b	f		С	h
5	d	h	f	b	е	g] ;	a	С
6	f	g	d	С	h	е	: 1	b	a
7	h	С	f	a	d	g	j l	b	e
8	е	b	g	а	f	C	: (d	h
9	С	g	b	d	е	h	1	f	a
1	0 e	a	b	d	g	f		h	С
1	1 h	a	Ч	_	f		اد	h	2

VOTING RULES: OUR CASE

Unique Election Results (Found on attempt 4):

Plurality Winner: g
Plurality Runoff Winner: a

Condorcet Winner: None

Borda Winner: h

Voter Preferences (Sample):

	Rank	1	Rank	2	Rank	3	Rank	4	Rank	5	Rank	6	Rank	7	Rank	8
0		а		d		f		е		g		h		С		b
1		g		е		h		С		d		b		f		а
2		С		f		g		h		d		е		а		b
3		а		f		b		С		е		d		g		h
4		С		h		f		d		b		а		g		e
5		а		g		е		d		b		f		С		h
6		g		h		f		а		С		d		b		е
7		f		а		g		b		h		С		е		d
8		С		h		b		d		f		е		а		g
9		g		С		h		е		а		d		f		b
10		g		е		h		С		d		f		а		b
11		۹		a		Ч		f		а		h		h		\boldsymbol{c}

Unique Election Results (Found on attempt 4):

Plurality Winner: g

Plurality Runoff Winner: a

Condorcet Winner: None

Borda Winner: h

Voter Preferences (Sample):

	Rank	1	Rank	2	Rank	3	Rank	4	Rank	5	Rank	6	Rank	7	Rank	8
0		а		d		f		е		g		h		С		b
1		g		е		h		С		d		b		f		а
2		С		f		g		h		d		е		а		b
3		а		f		b		С		е		d		g		h
4		С		h		f		d		b		а		g		е
5		а		g		е		d		b		f		С		h
6		g		h		f		a		С		d		b		e
7		f		а		g		b		h		С		е		d
8		С		h		b		d		f		е		а		g
9		g		С		h		е		а		d		f		b
10		g		е		h		С		d		f		а		b
11		٩		n		Ч		f		а		h		h		\boldsymbol{C}

Unique Election Results (Found on attempt 4):

Plurality Winner: g

Plurality Runoff Winner: a

Condorcet Winner: None

Borda Winner: h

Voter Preferences (Sample):

	Rank	1	Rank	2	Rank	3	Rank	4	Rank	5	Rank	6	Rank	7	Rank	8
0		а		d		f		е		g		h		С		b
1		g		е		h		С		d		b		f		а
2		С		f		g		h		d		е		а		b
3		а		f		b		С		е		d		g		h
4		С		h		f		d		b		а		g		е
5		а		g		е		d		b		f		С		h
6		g		h		f		а		С		d		b		е
7		f		а		g		b		h		С		е		d
8		С		h		b		d		f		е		а		g
9		g		С		h		е		а		d		f		b
10		g		е		h		С		d		f		а		b
11		6		a		Ч		f		а		h		h		\boldsymbol{c}

PERFORMANCE ANALYSIS: VOTERS

Plurality and Plurality Runoff:

- the most efficient methods
- computation times almost constant
- N of voters increases but still good for large-scale elections.

Borda:

- has moderate computational cost:
- scales linearly with the N of voter
- Plurality(Runoff)<Borda<Condorcet

Condorcet:

most computationally expensive method

COLLABORATIVE FILTERING CONSISTENT RECOMMENDATIONS

Objective: Ensure all six similarity measures recommend the same movie for a critic.

Dataset:

- Balanced Ratings
- One of the critic who has not seen at least half of the movies
- Number of critics ($n \ge 15$) and movies ($m \ge 20$).
- Missing data between 30%-50%.

SIMILARITY MEASURES

- Manhattan Distance (L1 norm): maximum difference in ratings
- Euclidean Distance (L2 norm):
- Minkowski Distance (generalized norm, p=3)
- Chebyshev Distance (maximum difference in ratings)
- Pearson Correlation (measuring linear relationship)
- Cosine Similarity (measuring the cosine of the angle between vectors)

METHODS FOR CONSISTENT RECOMMENDATIONS

Input: ratings_matrix, target_critic, movies_to_consider, similarity_measures

output: A ranked list of recommended movies for the target critic using each similarity measure.

Steps:

- 1. Data Generation
- 2. Define Similarity Functions
- 3. Find Shared Movies
- 4. Aggregate Weighted Scores
- 5. Rank Movies
- 6. Generate Recommendations

$$ext{Weighted Score} = \sum \left(rac{ ext{Rating} imes ext{Weight}}{ ext{Sum of Weights}}
ight)$$

Weight is defined as $w=rac{1}{1+ ext{distance}}.$

Top Recommendations for Each Similarity Measure

Similarity Measure	Rank	Movie	Score
Chebyshev	1	Movie_8	3.5
Chebyshev	2	Movie_1	3.38
Chebyshev	3	Movie_7	3.04
Cosine	1	Movie_8	3.47
Cosine	2	Movie_1	3.36
Cosine	3	Movie_7	3.03
Euclidean	1	Movie_8	3.48
Euclidean	2	Movie_1	3.42
Euclidean	3	Movie_7	3.07
Manhattan	1	Movie_8	3.47
Manhattan	2	Movie_1	3.46
Manhattan	3	Movie_7	3.07
Minkowski	1	Movie_8	3.48
Minkowski	2	Movie_1	3.4
Minkowski	3	Movie_7	3.06
Pearson	1	Movie_8	3.48
Pearson	2	Movie_1	3.36
Pearson	3	Movie_7	3.09

- All six similarity measures produced nearly identical recommendations for the target critic.
- "Movie_8" and "Movie_1" consistently ranked as the highest recommendations across all measures.

COLLABORATIVE FILTERING DIFFERENT RECOMMENDATIONS

Objective: Ensure all six similarity measures recommend different movies for a critic.

Dataset:

- Conflicting Ratings (variability in ratings)
- At least half the movies are unseen by the targeted critic
- Number of critics ($n \ge 15$) and movies ($m \ge 20$).
- Missing data between 30%-50%.
- Increased variablity, for example,

Critics 1–25: Strongly favor specific movies and dislike others.

Critics 26–50: The opposite preference pattern.

METHOD FOR DIFFERENT RECOMMENDATIONS

- 1. Simulating Data (50 critics rated 250 movies, and rated less than half the movies)
- 2. Similarity Measures
- 3. Weighted Global Scoring for Recommendations

$$s'(a) = rac{\sum_{x \in C(a)} ext{Weight}(x, ext{target}) \cdot x(a)}{\sum_{x \in C(a)} ext{Weight}(x, ext{target})}$$

where, Weight(x,target)=exp(-similarity)

- 4. Iterative Recommendation Process : After each iteration, movie recommendations were recalculated based on updated similarity weights, Iterations continued until the recommendations stabilized
- 5. Final Recommendations

RESULT

```
Recommendations have converged.
Final Recommendations using Pearson similarity:
1. Movie_26 (Score: 3.53)
2. Movie_116 (Score: 3.50)
3. Movie_31 (Score: 3.49)
4. Movie_62 (Score: 3.48)
5. Movie 245 (Score: 3.48)
Final Recommendations using Cosine similarity:
1. Movie_26 (Score: 3.54)
2. Movie_116 (Score: 3.54)
3. Movie_62 (Score: 3.51)
4. Movie 31 (Score: 3.48)
5. Movie_75 (Score: 3.45)
Final Recommendations using Manhattan similarity:
1. Movie_18 (Score: 5.00)
2. Movie_169 (Score: 5.00)
3. Movie 207 (Score: 5.00)
4. Movie_92 (Score: 5.00)
5. Movie 91 (Score: 5.00)
Final Recommendations using Euclidean similarity:
1. Movie_116 (Score: 4.09)
2. Movie_69 (Score: 3.80)
3. Movie_18 (Score: 3.80)
4. Movie 91 (Score: 3.74)
5. Movie_169 (Score: 3.72)
Final Recommendations using Chebyshev similarity:
1. Movie_26 (Score: 3.63)
2. Movie 75 (Score: 3.56)
3. Movie_88 (Score: 3.56)
4. Movie_116 (Score: 3.53)
5. Movie_69 (Score: 3.51)
Final Recommendations using Minkowski similarity:
1. Movie_116 (Score: 3.79)
2. Movie_31 (Score: 3.58)
3. Movie 69 (Score: 3.57)
4. Movie_24 (Score: 3.52)
5. Movie_198 (Score: 3.49)
```

THANK YOU!

