A Memory-Based Theory of Beliefs Draft: Preliminary, please do not quote or cite

Danell Benguigui Maxime Cugnon de Sévricourt

Georgetown University

February 1, 2024

Introduction

- Since Lucas (1976), shift towards rational expectations
- Models robust to policy changes but fail to acknowledge cognitive biases
- Tversky and Kahneman (1974) posit that common 'belief biases' can be explained by agents following the representativeness heuristic
 - conjunction/disjunction fallacy
 - base rate neglect
 - insensitivity to sample size...
- Recently, those biases have been revisited in micro as well as in macro
- We contribute to this body of research by introducing a model where memory shapes beliefs

Introduction

- The human brain can store an estimated 2.5 million gigabytes of data, while we can only hold 7±2 items in our working memory (Miller, 1956)
- ⇒ recall process from long-term to short-term memory is the real bottleneck
- Bordalo et al. (2022) build a model where memory shapes beliefs through how similar a hypothesis is known data
- Our approach differs on at least 3 counts:

	Bordalo et al. (2022)	Our Model
	Contents of memories	Counts of memories
Sample space	$\Omega = \{0,1\}^{F}$	Any finite Ω
Aim	Illustrate specific biases	Fully characterize beliefs
		consistent with model

- Belief biases/Representativeness heuristic:
 - Implications of biases: Tversky and Kahneman (1974), Benjamin (2018), Zhao (2018)
 - Evidence of importance: Bordalo et al. (2018), Bordalo et al. (2020), Bianchi et al. (2021), L'Huillier et al. (2021)
- Memory and beliefs:
 - Related models: Bordalo et al. (2022), Gennaioli and Shleifer (2010)
 - Psychological evidence: Schacter and Scarry (2001), Kahana (2012)

Introduction Research Question

What beliefs are consistent with the limited recall of past observations?

What beliefs are consistent with the limited recall of past observations?

		Beliefs	Recall Process	Conclusion
Мо	del 1	Depend on relevant	Defined on sample space	Bayesian beliefs
		information only		

Introduction Research Question

What beliefs are consistent with the limited recall of past observations?

	Beliefs	Recall Process	Conclusion
Model 1	Depend on relevant	Defined on sample space	Bayesian beliefs
	information only		
Model 2	Depend on both relevant	Defined on σ -algebra	Non-Bayesian beliefs*
	and irrelevant information		

Framework

Notation

- Ω: finite sample space
- $\Sigma = 2^{\Omega}$: power set
- $\Sigma^* = \Sigma \setminus \{\emptyset\}$
- N: number of realizations observed by agent
- $m: \Sigma \to \mathbb{Z}_+$: a memory database, where m(A) is the number of realizations equal to members of A recorded in the DM's long-term memory
- $m(\{\emptyset\}) \equiv 0$ and $m(\Omega) = N$
- For A and B disjoint, we have $m(A \cup B) = m(A) + m(B)$

- Consider A the event "inflation is high" and B the event "interest rates are low"
- m(A) is the number of times the agent has observed high inflation in the past
- m(B) is the number of times the agent has observed low interest rates in the past
- $m(A \cap B)$ is the count of simultaneous observations of high inflation and low interest rates

 \bullet We assume the econometrician observes conditional beliefs of an agent over Σ

Definition 1 (Conditional Beliefs)

A function $b: \Sigma \times \Sigma^* \to [0,1]$ is called a conditional belief function

- In our example: b(A|B) is the agent's reported belief of high inflation given that the interest rates are low
- Note that if $B = \Omega$, then the belief is unconditional

Framework Recall Process

- We assume the agent has a fixed number $n \in \mathbb{N}$ of 'slots' in their working memory
- Each slot is filled with a past observation of the agent's long-term memory
- This recall process is stochastic: the probability that an observation is successfully sampled is given by some conditional probability $p_{A|B}$
- Our 2 models make different assumptions on p_{A|B}

Framework Working Memory

• Let $W_{A|B}$ be the number of successful recalls of A conditional on B, then

$$W_{A|B} \sim \mathsf{Binomial}(n, p_{A|B})$$

- If A conditional on B fails to be recalled, A^c conditional on B is recalled
- Thus, $W_{A^c|B} = n W_{A|B}$ where $W_{A^c|B}$ is also Binomial

 After resolving recalls, the agent forms a conditional belief Π such that

$$\Pi_{A|B} = \frac{W_{A|B}}{W_{A|B} + W_{A^c|B}} = \frac{W_{A|B}}{n}$$

• As $W_{A|B}$ follows a binomial distribution, we have:

$$\mathbb{E}[W_{A|B}] = np_{A|B}$$

• Thus, we can obtain the expected conditional belief function:

$$\mathbb{E}[\Pi_{A|B}] = p_{A|B}$$

 We focus on expected beliefs and leave the randomness introduced by the sampling process to future work

Research Question

What beliefs are consistent with the limited recall of past observations?

	Beliefs	Recall Process	Conclusion
Model 1	Depend on relevant	Depends on sample space	Bayesian beliefs
	information only		
Model 2	Depend on both relevant and irrelevant information	Depends on σ -algebra	Non-Bayesian beliefs*

 Simplified recall model where recall only depends on one elementary recall function

Definition 2 (Elementary Recall Function)

A function $r: \Omega \mapsto \mathbb{R}_+$ is called an elementary recall function

- Implication is subjective Bayesian agent
- We introduce 3 belief axioms:
 - Unitarity of unconditional beliefs
 - 2 Finite additivity of unconditional beliefs
 - 3 Bayesian conditional beliefs

Axioms

Axiom 1 (Unitarity of unconditional beliefs)

We say that b satisfies unitarity of unconditional beliefs if $b(\Omega|\Omega) = 1$.

• Second Kolmogorov axiom (first is implied by definition of b)

Axioms

Axiom 2 (Finite additivity of unconditional beliefs)

Let A_1, A_2, \ldots, A_N be any disjoint sets of Σ , then we say that b satisfies finite additivity of unconditional beliefs if

$$b\left(\bigcup_{i=1}^{N}A_{i}\Big|\Omega\right)=\sum_{i=1}^{N}b(A_{i}|\Omega)$$

- Third Kolmogorov axiom, belief of union of disjoint sets is the sum of beliefs of each disjoint set
- Reported belief of observing high inflation and medium inflation is equal to belief of observing high inflation + belief of observing medium inflation

Axioms

Axiom 3 (Bayesian conditional beliefs)

We say that b is Bayesian with respect to unconditional beliefs if for all sets $A \in \Sigma$, $B \in \Sigma^*$

$$b(A|B) = \frac{b(A \cap B|\Omega)}{b(B|\Omega)}$$

- Beliefs must satisfy Bayes rule with respect to unconditional beliefs
- 3 axioms combined: belief must be a probability distribution and must be Bayesian
- Does not imply that unconditional probabilities are correct with respect to some objective probabilities
- Distortions can be applied to unconditional beliefs and still satisfy those 3 axioms

Recall Process

The probability of recall takes the form:

$$p_{A|B} = \frac{\sum_{x \in A \cap B} r(x)}{\sum_{y \in B} r(y)}$$

- Recall process only depends on one single univariate function of the sample space
- Each elementary event has its own "strength of recall"

Definition 3 (r generates b)

An elementary recall function $r:\Omega\mapsto\mathbb{R}_+$ generates belief b if for all $A \in \Sigma$, and $B \in \Sigma^*$, we have:

$$b(A|B) = \frac{\sum_{x \in A \cap B} r(x)}{\sum_{y \in B} r(y)}$$

Representation Theorem

Theorem 4

The following are equivalent:

- **1** There exists $r: \Omega \to \mathbb{R}_+$ that generates b.
- **2** b satisfies unitarity of unconditional beliefs, finite additivity of unconditional beliefs and Bayesian conditional beliefs.

Proof.

In Appendix A.

- Beliefs which follow this recall process must be subjective Bayesian
- If conditional beliefs do not reflect true conditional probabilities, then unconditional beliefs must also disagree with unconditional probabilities

Representation Theorem

Corollary 5

r is unique up to a positive linear transformation.

 Beliefs are insensitive to absolute counts of each events, only relative counts matter

Corollary 6

Let b be conditional beliefs generated by some recall function r. $b(x|\Omega) = m(x)/m(\Omega)$ if and only if $r(x) = \alpha m(x)$ for some $\alpha > 0$.

- Unconditional beliefs reflect memory frequencies if and only if recall is proportional to count
- In the long-run, we can assume agents observe enough realization so frequencies in the memory converge to true probabilities; but we can still observe biases

Research Question

What beliefs are consistent with the limited recall of past observations?

	Beliefs	Recall Process	Conclusion
Model 1	Depend on relevant	Depends on sample space	Bayesian beliefs
	information only		
Model 2	Depend on both relevant	Depends on σ -algebra	Non-Bayesian beliefs*
	and irrelevant information		

- Beliefs biases can come from interference of irrelevant data
- Bordalo et al. (2022) find strong supporting experimental evidence of this
- To allow for this recall process to reflect this, we make 4 natural assumptions on the recall function and look at their implications for beliefs

Relevant v. Irrelevant Data

- Agents try to recall past observations and use those to compute frequencies and then report belief b(A|B)
- In particular, let $\mathcal{A}_{A,B}$ be the cross partition of collections $\{A, A^c\}$ and $\{B, B^c\}$, then:

$$\mathcal{A}_{A,B} = \{A \cap B, A^c \cap B, A \cap B^c, A^c \cap B^c\}$$

 In this model we assume that the probability that an observation is recalled depends on where it belongs in $\mathcal{A}_{A,B}$

Relevant information		Irrelevant information	
	$A \cap B$	$A \cap B^c$	
$A^c \cap B$		$A^c \cap B^c$	

Relevant v. Irrelevant Data

- In this model, the recall process works as follows:
 - The agent tries to recall past observations pertaining to A given B
 - 2 If a recalled observation is a member of $A \cap B^c$ or $A^c \cap B^c$, it is deemed irrelevant, and therefore discarded
 - The agent continues to sample until they fill the n-th slot in their working memory
 - **4** The agent forms and reports belief b(A|B): it is the ratio of the number of observations of type $A \cap B$ recalled over n
- We allow for irrelevant information to have an impact on the recall probabilities of relevant information but we do not allow it to be sampled

Relevant v. Irrelevant Data

- We assume that the probability that an element of $A \cup B$ is recalled only depends on the number of observations in each set in the cross-partition $\mathcal{A}_{A,B}$
- Formally, with this recall process, we have

$$p_{A|B}=p^1(\aleph_{A,B})$$

where $\aleph_{A,B} = (m(A \cap B), m(A^c \cap B), m(A \cap B^c), m(A^c \cap B^c))$ and $p^{i}: \mathbb{Z}_{+}^{4} \mapsto \mathbb{R}_{+}, \forall i \in \{1, 2, 3, 4\}$

- Here, p^i denotes the probability of successfully recalling a member from *i*-th set in $A_{A,B}$
- We can think of this recall process as a contest between 4 types of memories that attempt to be sampled, each $m(\cdot)$ is their exerted effort and p^i is their probability to succeed

Recall Process

Assumption 1

$$\sum_{i=1}^4 p^i(\aleph_{A,B}) = 1$$
 and $p^i(\aleph_{A,B}) \ge 0$ for all $i \in \{1,\ldots,4\}$ and all $\aleph_{A,B}$. For some event $X_i \in \mathcal{A}$, if $m(X_i) > 0$, then $p^i(\aleph_{A,B}) > 0$.

- The recall process must satisfy properties of a probability distribution
- When an observation has a strictly positive count in the long-term memory, then the probability of being sampled should be strictly positive

Recall Process

Assumption 2

For all $i \in \{1, ..., 4\}$, $p^i(\aleph_{A,B})$ is nondecreasing in $m(X_i)$ and nonincreasing in $m(X_i)$, for all $j \neq i$.

- An observation's probability of being sampled is nondecreasing in own effort but nonincreasing in every other memory's effort
- Probability of recalling A given B is nondecreasing in $m(A \cap B)$ but nonincreasing in $m(A^c \cap B)$ (among others)

Recall Process

Assumption 3

If π is a permutation such that $\pi(x_i) = x_i \Rightarrow \pi(x_i) = x_i$ (involution) and $\pi(x_1) = x_2 \Rightarrow \pi(x_3) = x_4$; we have: $p^{\pi(i)}(\aleph_{\pi(X)}) = p^i(m(X_{\pi(1)}), \dots, m(X_{\pi(4)})), \forall i \in \{1, 2, 3, 4\}$

- Partial anonymity condition implies that the following have to be equal:
 - ① $p^2(\aleph_{A,B})$: when reporting belief b(A|B), the probability that an event in $A^c \cap B$ is sampled
 - 2 $p^1(\aleph_{A^c,B})$: when reporting belief $b(A^c|B)$, the probability that an event in $A^c \cap B$ is sampled

roduction Framework Model I **Model II** Appendix Reference

Model II: Interference of Irrelevant Data

Recall Process

Figure: Graphical representation of Assumption 3

Arrows indicate anonymous permutations in our model

Recall Process

Assumption 4

$$\begin{split} p_K^i(\aleph_{A,B}) &= \frac{p^i(\aleph_{A,B})}{\sum_{k \in K} p^k(\aleph_{A,B})}, \forall i \in K \text{ and } \forall K \subseteq \{1,2,3,4\} \text{ with } \\ |K| &\geq 2. \end{split}$$

- This condition defines our re-sampling: the probability of a member of $A \cap B$ being sampled, after re-sampling, is a normalized version of the general sampling of $A \cap B$, with only relevant information
- Irrelevant information has an impact on each probability of recall (as seen in assumption 2), but cannot be sampled
- In this model, we have $K = \{1, 2\}$

Axioms

 We now discuss the empirical content of this model and state 4 axioms on the beliefs of agents

Axiom 4 (Unitarity of Complements)

For all A and $B \subseteq \Omega$:

$$b(A|B) + b(A^c|B) = 1$$

- We do not require unconditional beliefs to sum to one, but complements must sum to one
- Consequence of anonymity condition: $p_{\kappa}^1(\aleph_{A,B}) = p_{\kappa}^2(\aleph_{A^c,B})$

Axioms

Axiom 5 (Subset Certainty)

$$\forall A, B \subseteq \Omega$$
, if $B \subseteq A$, then $b(A|B) = 1$

• If the condition *B* is a subset of the event *A* then the conditional belief must be equal to 1

Axioms

Definition 7 (Covering Order)

We say A' is greater than A in the B-covering order, and we write $A' \succeq_B A$, if $A \subseteq A'$ and $A' \setminus A \subseteq B$.

 A' is greater than A in the B-covering order if A' contains "more of" B than A and elements not in B are held constant

Figure: Graphical representation of $A' \succeq_B A$

Axioms

Axiom 6 (Monotonicity in Covering Orders)

Let A, A', B, and B' be events in Σ . If $A' \succeq_B A$, and $B' \succeq_A B$ then:

$$b(A|B) \leq b(A'|B')$$

- It is straightforward to show that the condition that $A' \succ_B A$, and $B' \succeq_A B$ implies that $A \cap B \subseteq A' \cap B'$, while $A \cup B = A' \cup B'$
- \Rightarrow if two events A' and B' have more in common than A and B, while their union is held fixed, then the conditional belief of A' given B' must be greater than the conditional belief of A and B

Axioms

Axiom 7 (Union-Preservation of Ordering)

For all events A, A', B and C such that A, $A' \subseteq B$, $C \subseteq B \setminus (A \cup A')$, we have that if $b(A|B) \le b(A'|B)$, then $b(A \cup C|B) \le b(A' \cup C|B)$.

 If, given the same conditional B, a belief is greater than another, then this order is preserved when adding more events from B into A and A' roduction Framework Model I **Model II** Appendix Reference

Model II: Interference of Irrelevant Data

Representation Theorem

Proposition 1

If p and m generate b, then b satisfies unitarity of complements, subset certainty, monotonicity in covering orders and union preservation of ordering.

Proof.

In Appendix A

Conjecture 1

If b satisfies unitarity of complements, subset certainty, monotonicity in covering orders and union-preservation of ordering, then there exist p and m that generate b.

 Proposition 1, together with Conjecture 1 constitute our representation theorem

Next Steps

- We developed a model of belief formation through memory where recall plays the central role
- We derive beliefs from this model and offer a representation of subjective Bayesian beliefs through a specific recall process
- We discussed the importance of departures from Bayesianism through interference of irrelevant data and developed assumptions on recall and attempt to characterize the induced beliefs

Next Steps

- Next steps:
 - Prove the converse of Proposition 1 (in progress)
 - Verify which common belief biases can be captured by this model
 - § Find functional forms for p that generate some selected belief biases, such as characteristic overreaction
 - Potentially look at a dynamic version of this model where realizations could be forgotten and replaced and see the impact on belief biases and their evolution

Appendix A: Proofs I

Theorem 1. The following are equivalent:

- **1** There exists $r: \Omega \to \mathbb{R}_+$ that generates b.
- 2 b satisfies unitarity of conditional beliefs, finite additivity of unconditional beliefs and Bayesian conditional beliefs.

Proof. Consider $A \in \Sigma$ and $B \in \Sigma^*$, we want to show that r generates b if and only if b satisfies axioms 1-3.

1) We can start by assuming r generates conditional belief b:

$$b(\Omega|\Omega) = \frac{\sum_{x \in \Omega} r(x)}{\sum_{y \in \Omega} r(y)} = 1$$

Appendix A: Proofs II

Thus satisfying axiom 1.

Now consider $A_1, A_2, \dots A_N$ sequence of N disjoint sets in Σ , then:

$$b\left(\bigcup_{i=1}^{N} A_i \middle| \Omega\right) = \frac{\sum_{i=1}^{N} \sum_{x \in A_i} r(x)}{\sum_{y \in \Omega} r(y)}$$
$$= \sum_{i=1}^{N} \sum_{x \in A_i} r(x)$$
$$= \sum_{i=1}^{N} \sum_{x \in A_i} r(y)$$

Appendix A: Proofs III

$$=\sum_{i=1}^N b(A_i|\Omega)$$

which proves that axiom 2 holds. Finally, using the following:

$$b(A|B) = \frac{\sum_{x \in A \cap B} r(x)}{\sum_{y \in B} r(y)}, \qquad b(B|A) = \frac{\sum_{x \in A \cap B} r(x)}{\sum_{y \in A} r(y)}$$
$$b(A|\Omega) = \frac{\sum_{x \in A} r(x)}{\sum_{y \in \Omega} r(y)}, \qquad b(B|\Omega) = \frac{\sum_{x \in B} r(x)}{\sum_{y \in \Omega} r(y)}$$

We can compute:

$$\frac{b(B|A)b(A|\Omega)}{b(B|\Omega)} = \frac{\left(\sum_{x \in A \cap B} r(x)\right) \left(\sum_{x \in A} r(x)\right) \left(\sum_{y \in \Omega} r(y)\right)}{\left(\sum_{y \in A} r(y)\right) \left(\sum_{y \in \Omega} r(y)\right) \left(\sum_{x \in B} r(x)\right)}$$

$$= \frac{\sum_{x \in A \cap B} r(x)}{\sum_{y \in B} r(y)} = b(A|B)$$

and thus axiom 3 holds.

2 Now, we want to show that if b satisfies axioms 1-3, then there exists $r: \Omega \to \mathbb{R}_+$ that generates b. Let b be conditional beliefs satisfying axioms 1-3, then let us define r so that $r(x) \equiv b(x|\Omega)$ for all $x \in \Omega$. We will first show that r generates unconditional beliefs $b(A|\Omega)$ by induction on the cardinality of A, and then show that it also generates all the conditional beliefs as well. Let $A \subseteq \Omega$. For |A| = 1, letting $x \in A$, r generates b if

$$b(A|\Omega) = \frac{r(x)}{\sum_{y \in \Omega} r(y)}$$

Appendix A: Proofs VI

by definition, we have:

$$b(A|\Omega) = \frac{r(x)}{\sum_{y \in \Omega} b(y|\Omega)}$$

applying finite additivity, we get:

$$b(A|\Omega) = \frac{r(x)}{b\left(\bigcup_{y \in \Omega} \{y\} \middle| \Omega\right)}$$
$$= \frac{r(x)}{b(\Omega|\Omega)}$$

Using unitarity of unconditional beliefs, we have:

$$b(A|\Omega) = r(x)$$

as
$$b(\Omega|\Omega)=1$$

and thus r generates unconditional beliefs $b(A|\Omega)$. Now suppose that for all $A \subseteq \Omega$ with |A| = k, r generates $b(A|\Omega)$, that is :

$$b(A|\Omega) = \sum_{x \in A} r(x)$$

References

Appendix A: Proofs VIII

Now, consider a set $A' \subseteq \Omega$ of cardinality |A'| = k + 1, we need to show:

$$b(A'|\Omega) = \sum_{x \in A'} r(x)$$

because A' is of cardinality k, there exists $A \subseteq \Omega$ of cardinality k and $x \in \Omega$ such that $A' = A \cup \{x\}$ and by axiom 2, we have:

$$b(A'|\Omega) = b(x|\Omega) + b(A|\Omega)$$

$$= r(x) + \sum_{y \in A} r(y) \text{ (by our induction hypothesis)}$$

$$= \sum_{y \in A'} r(x)$$

Appendix A: Proofs IX

to complete the proof, we consider any conditional belief b(A|B) with |B| an arbitrary number. Then, by using our definition for r(x) we can write:

$$\frac{\sum_{x \in A \cap B} r(x)}{\sum_{y \in B} r(y)} = \frac{\sum_{x \in A \cap B} b(x|\Omega)}{\sum_{y \in B} b(y|\Omega)}$$
$$= \frac{b(A \cap B|\Omega)}{b(B|\Omega)}$$

As b satisfies axiom 3, we have:

$$\frac{\sum_{x \in A \cap B} r(x)}{\sum_{x \in B} r(y)} = b(A|B)$$

which completes the proof.

Corollary 1. r is unique up to a positive linear transformation. *Proof.* Let r and \tilde{r} both generate conditional beliefs b. We want to show that there exists $\alpha > 0$ such that $r(x) = \alpha \tilde{r}(x)$ for all $x \in \Omega$. To that effect, let $x \in \Omega$. Because both r and \tilde{r} represent b, we have:

$$\frac{r(x)}{\sum_{y \in \Omega} r(y)} = \frac{\tilde{r}(x)}{\sum_{y \in \Omega} \tilde{r}(y)} = b(x|\Omega)$$

Rearranging, we get:

$$r(x) = \frac{\sum_{y \in \Omega} r(y)}{\sum_{y \in \Omega} \tilde{r}(y)} \tilde{r}(x)$$

Letting $\alpha = \frac{\sum_{y \in \Omega} r(y)}{\sum_{y \in \Omega} \tilde{r}(y)}$ proves the claim. **Corollary 2.** Let b be conditional beliefs generated by some recall function r. $b(x|\Omega) = m(x)/m(\Omega)$ if and only if $r(x) = \alpha m(x)$ for some $\alpha > 0$.

1 Proof. Assume $b(x|\Omega) = m(x)/m(\Omega)$ for all $x \in \Omega$. Then, because r generates b, we have, for all $x \in \Omega$:

$$\frac{r(x)}{\sum_{y\in\Omega}r(y)}=\frac{m(x)}{m(\Omega)}$$

Equivalently, we can write:

$$r(x) = \frac{m(x)}{m(\Omega)} \sum_{y \in \Omega} r(y)$$

which proves the first part of the claim.

2 Let us assume there exists $\alpha > 0$ such that $r(x) = \alpha m(x)$. We have:

$$b(x|\Omega) = \frac{r(x)}{\sum_{y \in \Omega} r(y)}$$
$$= \frac{\alpha m(x)}{\sum_{y \in \Omega} \alpha m(y)}$$
$$= \frac{m(x)}{m(\Omega)}$$

• Let r and \tilde{r} both generate conditional beliefs b

- WTS that there exists $\alpha > 0$ such that $r(x) = \alpha \tilde{r}(x)$ for all $x \in \Omega$
- Let $x \in \Omega$, as both r and \tilde{r} represent b, we have:

$$\frac{r(x)}{\sum_{y \in \Omega} r(y)} = \frac{\tilde{r}(x)}{\sum_{y \in \Omega} \tilde{r}(y)} = b(x|\Omega)$$

Rearranging, we get:

$$r(x) = \frac{\sum_{y \in \Omega} r(y)}{\sum_{y \in \Omega} \tilde{r}(y)} \tilde{r}(x)$$

• Letting $\alpha = \frac{\sum_{y \in \Omega} r(y)}{\sum_{y \in \Omega} \tilde{r}(y)}$ proves the claim.

1 Assume $b(x|\Omega) = m(x)/m(\Omega)$ for all $x \in \Omega$. Then, because r generates b, we have, for all $x \in \Omega$:

$$\frac{r(x)}{\sum_{y \in \Omega} r(y)} = \frac{m(x)}{m(\Omega)}$$

Equivalently, we can write:

$$r(x) = \frac{m(x)}{m(\Omega)} \sum_{y \in \Omega} r(y)$$

which proves the first part of the claim.

Appendix A: Proofs XV

2 Let us assume there exists $\alpha > 0$ such that $r(x) = \alpha m(x)$. We have:

$$b(x|\Omega) = \frac{r(x)}{\sum_{y \in \Omega} r(y)}$$
$$= \frac{\alpha m(x)}{\sum_{y \in \Omega} \alpha m(y)}$$
$$= \frac{m(x)}{m(\Omega)}$$

 \rightarrow Back to Corollary 2 **Proposition 1.** If p and m generate b, then b satisfies unitarity of complements, subset certainty, monotonicity in covering orders and union-preservation of ordering.

- 1 Proof. Let b be some conditional beliefs, and p and m be a CSF and a memory database that generate b.
- 2 Let us show that b satisfies unitarity of complements. Let A and B be two events. We have:

$$b(A|B) + b(A^C|B) = \frac{p_1(\aleph_{A,B})}{p_1(\aleph_{A,B}) + p_2(\aleph_{A,B})} + \frac{p_1(\aleph_{A^C,B})}{p_1(\aleph_{A^C,B}) + p_2(\aleph_{A^C,B})}$$

$$= \frac{p_1(\aleph_{A,B}) + p_2(\aleph_{A^C,B})}{p_1(\aleph_{A,B}) + p_2(\aleph_{A^C,B})}$$
(by the properties of p)
$$= 1.$$

3 Let us show that b satisfies Subset Certainty. Let A and B be two events such that $A \subseteq B$. We have:

$$b(A|B) = 1 - b(A^{C}|B)$$

$$= 1 - \frac{p_1(\aleph_{A^{C},B})}{p_1(\aleph_{A^{C},B}) + p_2(\aleph_{A^{C},B})}$$

$$= 1 - 0 = 1. \qquad (as A^{C} \cap B = \emptyset)$$

- 4 Let us show that b satisfies monotonicity in covering orders.
 - 1 Let A, A', B, and B' be events such that $A' \succ_B A$ and $B' \succ_{\Delta} B$.
 - 2 First, we will show that $A \cap B \subseteq A' \cap B'$. Let $\omega \in A \cap B$. Because $A \subseteq A'$, $\omega \in A'$. Moreover, because $A' \setminus A \subseteq B$, we must have $\omega \in B$ and so, $\omega \in B'$.

Appendix A: Proofs XVIII

- **3** Second, we want to show that $A'^{C} \cap B' \subseteq A^{C} \cap B$. Let $\omega \in A'^{\mathcal{C}} \cap B'$. This implies that $\omega \notin A'$ and thus $\omega \notin A$. On the other hand, $\omega \in B'$, and so, by $B' \succeq_A B$, $\omega \notin B' \setminus B$, otherwise $B' \succ_A B$ would imply $\omega \in A$, a contradiction. But then we must have $\omega \in B$.
- **4** Third, we need to show that $A' \cap B'^{C} \subseteq A \cap B^{C}$. Let $\omega \in A' \cap B'^{C}$. By $B \subseteq B'$, $\omega \in B'^{C}$ implies $\omega \in B^{C}$. But then. we have that $\omega \in A'$ and $\omega \notin B$, and so $\omega \in A$, otherwise a contradiction with $A' \setminus A \subseteq B$ would arise.
- **6** Fourth, let us show what $A^{\prime C} \cap B^{\prime C} \subseteq A^C \cap B^C$. Let $\omega \in A^{\prime C} \cap B^{\prime C}$. For the sake of contradiction, assume $\omega \notin A^{\mathcal{C}} \cap B^{\mathcal{C}}$. If $\omega \notin A^{\mathcal{C}}$, then $\omega \in A$. But then, $\omega \in A$ and $\omega \notin A'$, a contradiction. Alternatively, if $\omega \notin B^C$, this implies that $\omega \notin B$, a contradiction with $\omega \notin B$. Therefore, $\omega \in A^C \cap B^C$

Appendix A: Proofs XIX

6 From the four previous points, we can conclude:

$$m_{A \cap B} \leq m_{A' \cap B'}$$

$$m_{A^{c} \cap B} \geq m_{A'^{c} \cap B'}$$

$$m_{A \cap B^{c}} \geq m_{A' \cap B'^{c}}$$

$$m_{A^{c} \cap B^{c}} \geq m_{A'^{c} \cap B'^{c}}$$

Therefore, by the properties of p, it must be that:

$$p_1(\aleph_{A,B}) \leq p_1(\aleph_{A',B'}).$$

Or, in other words, $b(A|B) \leq b(A'|B')$.

- **5** Let us show that b satisfies union-preservation of ordering.
 - **1** Let A, A', B and C be events such that A, A' \subseteq B, $C \subseteq B \setminus (A \cup A')$.

Appendix A: Proofs XX

- **2** Because $A, A' \subseteq B$, we have that $A \cap B^C = A' \cap B^C = \emptyset$, and $\Delta^{C} \cap B^{C} = A^{\prime C} \cap B^{C} = B^{C}$
- 3 Therefore, $b(A|B) \le b(A'|B)$ implies:

$$p(m_{A\cap B}, m_{A^c\cap B}, 0, m_{B^c}) \leq p(m_{A'\cap B}, m_{A'^c\cap B}, 0, m_{B^c})$$

But then, by the properties of p, this implies:

$$m(A \cap B) \le m(A' \cap B) \tag{1}$$

$$m(A^C \cap B) \ge m(A^{\prime C} \cap B)$$
 (2)

5 In turn, because $C \subseteq B \setminus (A \cup A')$, this implies:

$$m((A \cup C) \cap B) \le m((A' \cup C) \cap B) \tag{3}$$

$$m((A \cup C)^C \cap B) \ge m((A' \cup C)^C \cap B) \tag{4}$$

$$m((A \cup C) \cap B^C) = m((A \cup C) \cap B^C) = 0$$
 (5)

$$m((A \cup C)^{\mathcal{C}} \cap B^{\mathcal{C}}) = m((A \cup C)^{\mathcal{C}} \cap B^{\mathcal{C}}) = m(B^{\mathcal{C}})$$

(6)

Appendix A: Proofs XXI

6 And so, again by property of p, we have that:

$$b(A \cup C|B) \leq b(A' \cup C|B)$$

as desired.

Appendix B: Characteristic Overreaction I

Following the definition of diagnostic expectations from Bordalo et al. (2018), we write a more general formulation called "characteristic overreaction".

Definition 8 (Characteristic Event)

An event $A \in \Sigma$ is characteristic of $B \in \Sigma^*$ if

$$\frac{m(A \cap B)}{m(B)} > \frac{m(A \cap (B^C))}{m(B^C)}$$

Definition 9 (Overreaction)

A conditional belief b(A|B) is an overreaction with respect to m if

$$b(A|B) > \frac{m(A \cap B)}{m(B)}$$

Appendix B: Characteristic Overreaction II

Definition 10 (Characteristic Overreaction)

A conditional belief function $b: \Sigma \times \Sigma^* \to [0,1]$ exhibits characteristic overreaction with respect to some memory database m, if, for all $A \in \Sigma$ and $B \in \Sigma^*$, the following is true:

$$\frac{m(A \cap B)}{m(B)} > \frac{m(A \cap (B^C))}{m(B^C)} \Rightarrow b(A|B) > \frac{m(A \cap B)}{m(B)}$$

Proposition 2

If an agent is subjective Bayesian, then they cannot display overreaction to characteristic events.

• Proof. Let A and B be two events such that A is characteristic of B, and $B \neq \emptyset$ and $A \neq B$.

Appendix B: Characteristic Overreaction III

- ② Because the DM is Bayesian, we have that: $b(A|B) = b(A \cap B|B).$
- 3 For the DM to display characteristic over-reaction, it must be that b(A|B) > p(A|B).
- Consider event $C = A \cup B^C$. C cannot be characteristic of B. because $p(C|B) = p(A \cup B|B) < 1$ and $p(C|B^C) = p(B^C|B^C) = 1.$
- **6** But then because the DM is Bayesian, $b(C|B) = b(A \cap B|B) > p(A|B) = p(C|B)$, which implies that the DM is overreacting to C!
- **6** This implies that the DM is not overreacting to C^{C} given B. which is a characteristic event.
- Therefore, the DM cannot display overreaction to characteristic events.

References I

- Benjamin, D. J. (2018, October). Errors in probabilistic reasoning and judgment biases. Working Paper 25200, National Bureau of Economic Research.
- Bianchi, F., C. L. Ilut, and H. Saijo (2021, March). Diagnostic business cycles. Working Paper 28604, National Bureau of Economic Research.
- Bordalo, P., K. Coffman, N. Gennaioli, F. Schwerter, and A. Shleifer (2019, March). Memory and representativeness. Working Paper 25692, National Bureau of Economic Research.
- Bordalo, P., J. J. Conlon, N. Gennaioli, S. Y. Kwon, and A. Shleifer (2022, 08). Memory and Probability*. The Quarterly Journal of Economics 138(1), 265-311.
- Bordalo, P., N. Gennaioli, Y. Ma, and A. Shleifer (2020, September). Overreaction in macroeconomic expectations. American Economic Review 110(9), 2748-82.
- Bordalo, P., N. Gennaioli, and A. Shleifer (2018). Diagnostic expectations and credit cycles. Journal of Finance 73(1), 199-227.
- Brandenburger, A. and E. Dekel (1993, February). Hierarchies of beliefs and common knowledge. Journal of Economic Theory 59(1), 189-198. Copyright: Copyright 2017 Elsevier B.V., All rights reserved.
- Caplin, A. and J. V. Leahy (2019, March). Wishful thinking. Working Paper 25707, National Bureau of Economic Research
- Chambers, C. P., Y. Masatlioglu, and C. Raymond (2023). Coherent distorted beliefs.

References II

- Coibion, O. and Y. Gorodnichenko (2015, August). Information rigidity and the expectations formation process: A simple framework and new facts. American Economic Review 105(8), 2644-78.
- Corchón, L. and M. Dahm (2010). Foundations for contest success functions. Economic Theory 43(1), 81-98.
- Gennaioli, N. and A. Shleifer (2010). What comes to mind. Quarterly Journal of Economics 125(4), 1399-1433.
- Grether, D. M. (1980, 11). Bayes Rule as a Descriptive Model: The Representativeness Heuristic*. The Quarterly Journal of Economics 95(3), 537-557.
- Kahana, M. (2012). Foundations of Human Memory. Oxford University Press, USA.
- L'Huillier, J.-P., S. R. Singh, and D. Yoo (2021, February). Incorporating Diagnostic Expectations into the New Keynesian Framework. Working Papers 339, University of California, Davis, Department of Economics.
- Lucas, R. E. (1976). Econometric policy evaluation: A critique. Carnegie-Rochester Conference Series on Public Policy 1, 19-46.
- Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review 101(2), 343-352.
- Muth, J. F. (1961). Rational expectations and the theory of price movements. Econometrica 29(3), 315-335.

References III

- Schacter, D. and E. Scarry (2001). Memory, Brain, and Belief. Mind/Brain/Behavior Initiative Series. Harvard University Press.
- Skaperdas, S. (1996). Contest success functions. Economic Theory 7(2), 283-290.
- Tversky, A. (1977). Features of similarity. Psychological Review 84(4), 327–352.
- Tversky, A. and D. Kahneman (1974). Judgment under uncertainty: Heuristics and biases. Science 185(4157), 1124-1131.
- Yegane, E. (2022). Stochastic choice with limited memory. Journal of Economic Theory 205, 105548.
- Zhao, C. (2018). Representativeness and similarity. Working paper, Princeton University.