Esercizi su indipendenza lineare, basi e dimensione Corso di Laurea in Informatica A.A. 2007-2008 Docente: Andrea Loi

- 0. Per quali valori di λ i vettori $v_1 = 2\lambda \mathbf{i} + \mathbf{j}$ e $v_2 = \mathbf{j}$ sono linearmente indipendenti?
- 1. Provare che i vettori $\mathbf{v_1} = 2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$, $\mathbf{v_2} = -\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $\mathbf{v_3} = -\mathbf{i} 2\mathbf{j} + \mathbf{k}$ sono linearmente indipendenti. Dire, inoltre se il vettore \mathbf{j} è esprimibile come combinazione lineare di $\mathbf{v_1}$, $\mathbf{v_2}$ e $\mathbf{v_3}$, e se lo è, dire in quanti modi.
- 2. Vero o falso:
 - 4 vettori in \mathbb{R}^6 sono sempre linearmente dipendenti;
 - -6 vettori in \mathbb{R}^4 sono linearmente dipendenti;
 - -4 vettori in \mathbb{R}^6 sono sempre linearmente indipendenti.
- 3. Dire se i seguenti vettori di \mathbb{R}^3 sono linearmente indipendenti; scrivere, quando possibile, un vettore come combinazione lineare dei rimanenti:

$$\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}.$$

Stessa domanda per i vettori

$$\left(\begin{array}{c}1\\0\\1\end{array}\right), \left(\begin{array}{c}1\\1\\0\end{array}\right), \left(\begin{array}{c}2\\1\\1\end{array}\right).$$

4. Provare che i vettori:

$$\left(\begin{array}{c}1\\0\\1\end{array}\right), \left(\begin{array}{c}1\\1\\0\end{array}\right), \left(\begin{array}{c}2\\2\\1\end{array}\right)$$

formano una base \mathcal{B} di \mathbb{R}^3 .

- 5. Siano $v_1=(1,2,-1,1),\ v_2=(0,2,1,3)$ e $v_3=(0,1,1,1)$ tre vettori di \mathbb{R}^4 . Trovere la dimensione del sottospazio di \mathbb{R}^4 generato dai vettori $v_1,\ v_2$ e v_3 .
- 6. Trovare i valori del parametro reale λ per i quali i vettori $v_1 = (1, 0, 1)$, $v_2 = (0, 1, -1)$ e $v_3 = (0, -1, \lambda)$ di \mathbb{R}^3 sono linearmente indipendenti.
- 7. Trovare la dimensione del sottospazio di \mathbb{R}^4 generato dai vettori $v_1 = (1, 2, -1, 1), v_2 = (0, 2, 1, 3)$ e $v_3 = (2, 2, -1, -1)$.
- 8. Trovare la dimensione del sottospazio di \mathbb{R}^7 generato dai seguenti vettori $v_1=(1,2,-1,1,5,0,1), v_2=(0,2,1,3,\sqrt{2},\pi,-3)$ e $v_3=(2,4,-2,2,10,0,2)$.
- 9. Trovare i valori del parametro reale λ per i quali i tre vettori $v_1 = (1, 0, 1, 0)$, $v_2 = (0, 1, -1, 0)$ e $v_3 = (0, -1, \lambda, 1)$ di \mathbb{R}^4 sono linearmente indipendenti.
- 10. Trovare la dimensione del sottospazio di \mathbb{R}^8 generato dai seguenti vettori: $v_1=(1,2,-1,1,5,0,1,2)\ v_2=(0,2,1,3,\sqrt{2},\pi,-3,e)$

$$v_3 = (2, 4, -2, 2, 10, 0, 2, 4)$$
 $v_4 = (0, 1, \frac{1}{2}, \frac{3}{2}, \frac{\sqrt{2}}{2}, \frac{\pi}{2}, \frac{-3}{2}, \frac{e}{2})$