Tabla Periódica

Prof María Luján Ferreira QIS-2018

Historia Cronológica de la Tabla Periódica

Organización de la tabla periódica

Organización de la tabla periódica

- Los grupos se constituyen en bloques ⇒ subcapa
 - ▶ Bloque $s \Rightarrow ns$
 - > Bloque $p \Rightarrow np$
 - > Bloque d \Rightarrow nd
 - ▶ Bloque $f \Rightarrow nf$
- n° de grupo relacionado con el n° de electrones de la capa de valencia:
 - ▶ Bloques s, d ⇒ e- de valencia = n° de grupo
 - Bloque p ⇒ e- de valencia = n° grupo -10

Organización de la tabla periódica

Se han identificado118 elementos

Se clasifican en:

- Metales
- No metales
- Metaloides o semimetales

Línea divisoria entre metales y no metales

METALES	NO METALES
Son sólidos a temperatura ambiente excepto el mercurio (Hg) que es líquido.	Algunos son sólidos, otros son gaseosos y el único líquido es el bromo (Br) a temperatura ambiente.
La mayor parte son más densos que el agua exceptuando el litio (Li), el sodio (Na) y el potasio (K).	Por lo general son menos densos que el agua.
Presentan brillo y lustre metálico.	No brillan.
Son maleables, es decir, se les puede convertir en láminas, (el oro (Au) es el más maleable).	No son maleables, los que son sólidos se pulverizan al golpearlos.
Son dúctiles, es decir, se puede hacer con ellos hilos o alambres.	No son dúctiles.

Aniones
$$N(1s^2 2s^2 2p^3) + 3e^- \longrightarrow N^{3-}(1s^2 2s^2 2p^6)$$

 $O(1s^2 2s^2 2p^4) + 2e^- \longrightarrow O^{2-}(1s^2 2s^2 2p^6)$
 $F(1s^2 2s^2 2p^5) + e^- \longrightarrow F^-(1s^2 2s^2 2p^6)$

$$Na(1s^{2}2s^{2}2p^{6}3s^{1})-e^{-}\longrightarrow Na^{+}(1s^{2}2s^{2}2p^{6})$$

 $Mg(1s^{2}2s^{2}2p^{6}3s^{2})-2e^{-}\longrightarrow Mg^{2+}(1s^{2}2s^{2}2p^{6})$
 $Al(1s^{2}2s^{2}2p^{6}3s^{2}3p^{1})-3e^{-}\longrightarrow Al^{3+}(1s^{2}2s^{2}2p^{6})$

Configuraciones electrónicas de iones

Liemento	<u>~(' ')</u>	Configuración
₁₁ Na	11	1s ² 2s ² 2p ⁶ 3s ¹
₁₁ Na ⁺ Ión:catión	11	1s ² 2s ² 2p ⁶
17CI	17	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵
₁₇ CI [–] Ión:anión	17	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
₂₈ Ni	28	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d

Flemento 7(P+) Configuración

> Iones derivados de elementos de los GRUPOS PRINCIPALES

Todos tienen configuración de GAS NOBLE ns²np⁶

>Formación de Iones

Configuraciones electrónicas de cationes representativos:

Covalent radius:

Metallic radius:

Ionic radius:

Tamaño Atómico Radio

- -Covalente
 - -Metálico
 - -lónico

Tendencias del radio atómico

Grupo 1: Metales alcalinos

Dentro de un grupo:

aumento del radio con el número cuántico n. A mayor distancia del electrón al núcleo menor es la fuerza de atracción

$$F = q^+x q^- / r^2$$

EL TAMAÑO AUMENTA AL DESCENDER EN UN GRUPO.

Tendencias del radio atómico

Dentro de un período: Cambios en la carga nuclear efectiva-Carga que experimenta un electrón en un átomo polielectrónico

- A través de un período, el número de electrones interiores permanece constante (se añaden electrones a la misma capa).
- La carga nuclear aumenta.
- Aumenta la atracción entre el núcleo y los electrones externos

EL TAMAÑO DISMINUYE AL AVANZAR EN EL PERÍODO

Radio iónico

Radio iónico es el radio de un catión o de un anión.

Radio de un catión es siempre menor que el radio del átomo del cual procede

72 pm

Na+

99 pm

Radio de un anión es siempre mayor que el radio del átomo del cual procede

Variación de electronegatividad en la tabla periódica

1	H 2,20																	Не
	Li	Be											В	C	N	0	F	Ne
	0,98 Na	1,57 Mg											2,04 Al	2,55 Si	3,04 P	3,44 S	3,98 Cl	Ar
	0,93												1,61	1,90	2,19		1000	7.50
	K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kı
	0,82	1,0	1,36	1,54	1,63	1,66	1,55	1,83	1,88	1,91	1,90	1,65	1,81	2,01	2,18	2,55	2,96	3,0
	Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Χe
	0,82	0,95	1,22	1,33	1,6	2,16	1,9	2,2	2,28	2,20	1,93	1,69	1,78	1,8	2,05	2,1	2,66	2,6
	Cs	Ва	*	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rr
	0,79	0,89		1,3	1,5	2,36	1,9	2,2	2,2	2,28	2,54	2,00	1,62	2,33	2,02	2,0	2,2	2,2
	Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uu
	0,7	0,9																
	*	La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		
		1,1	1,12	1,13	1,14	1,13	1,17	1,2	1,2	1,1	1,22	1,23	1,24	1,25	1,1	1,27		
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
		1,1	1,3	1,5	1,38	1,36	1,28	1,13	1,28	1,3	1,3	1,3	1,3	1,3	1,3	1,3		

17 35,453 ±1,3,5,7 3,16 -34,7 -101,0 1,56 CI

Electronegatividad = 0,93

Electronegatividad = 3,16

RESTANDO LAS DOS ELECTRONEGATIVIDADES

COMPROBANDO SI LA DIFERENCIA ES MAYOR A 1,7

El enlace si es IÓNICO

Tendencias de I₁

- Dentro de un grupo: aumenta el tamaño de los átomos al descender en el grupo ⇒ La atracción entre electrón y el núcleo disminuye.
- DISMINUCIÓN DE LA ENERGÍA DE IONIZACIÓN
- ➤ Dentro de un período: aumento de la carga nuclear efectiva al movernos hacia el grupo 18 en el período ⇒ Aumenta la atracción del delectrón por el núcleo.
- » AUMENTO DE LA ENERGÍA DE IONIZACIÓN

Afinidad electrónica

Afinidades electrónicas

H -73									
Li -60	Be >0	\(\frac{1}{2}\)	B -27	C –122	N >0	O -141	F −328	Ne >0	
Na -53	Mg >0	100	A1 -43	Si -134	P -72	S -200	C1 -349	Ar >0	
K -48	Ca –2		Ga -30	Ge -119	As -78	Se −195	Br -325	Kr >0	
Rb -47	Sr -5		In -30	Sn –107	Sb −103	Te -190	I -295	Xe >0	
1A	2A	3	3A	4A	5A	6A	7A	8A	
1	2		13	14	15	16	17	18	

La afinidad electrónica (A_e) Se define como el cambio energético que ocurre cuando un átomo gaseoso gana un electrón:

$$X(g) + e^- \rightarrow X^-(g) +$$
energía

Se reporta por mol de átomos

- La afinidad electrónica puede ser exotérmica o endotérmica
- Ae aumenta hacia el grupo 18.

Comparación entre metales y no metales

Los metales tienden a perder electrones (I y Ae bajas)

Los no metales tienden a ganar electrones (I y Ae altas)