2.5 — Precision and Diagnostics ECON 480 • Econometrics • Fall 2022

Dr. Ryan Safner Associate Professor of Economics

Contents

Variation in \hat{eta}_1

Presenting Regression Results

Diagnostics About Regression

Heteroskedasticity

Outliers

The Sampling Distribution of $\hat{\beta}_1$

$$\hat{\beta}_1 \sim N(\mathbb{E}[\hat{\beta}_1], \sigma_{\hat{\beta}_1})$$

The Sampling Distribution of \hat{eta}_1

$$\hat{\beta}_1 \sim N(\mathbb{E}[\hat{\beta}_1], \sigma_{\hat{\beta}_1})$$

1. Center¹ of the distribution: $\mathbb{E}[\hat{eta}_1]$ (last class)

The Sampling Distribution of \hat{eta}_1

$$\hat{\beta}_1 \sim N(\mathbb{E}[\hat{\beta}_1], \sigma_{\hat{\beta}_1})$$

- 1. Center¹ of the distribution: $\mathbb{E}[\hat{\beta}_1]$ (last class)
- 2. **Precision** or **uncertainty** of the estimate (today)
 - Variance $\sigma_{\hat{\beta}_1}^2$
 - Standard error $\sigma_{\hat{\beta}_1} = \sqrt{var(\hat{\beta}_1)}$

- 1. Under the 4 assumptions about u, particularly, cor(X, u) = 0
- 2. Standard "error" is the analog of standard deviation when talking about the sampling distribution of a sample statistic (such as \bar{X} or

The Sampling Distribution of \hat{eta}_1

$$\hat{\beta}_1 \sim N(\mathbb{E}[\hat{\beta}_1], \sigma_{\hat{\beta}_1})$$

- 1. Center¹ of the distribution: $\mathbb{E}[\hat{\beta}_1]$ (last class)
- 2. **Precision** or **uncertainty** of the estimate (today)
 - Variance $\sigma_{\hat{eta}_1}^2$
 - Standard error $\sigma_{\hat{\beta}_1} = \sqrt{var(\hat{\beta}_1)}$

- 1. Under the 4 assumptions about u, particularly, cor(X, u) = 0
- 2. Standard "error" is the analog of standard deviation when talking about the sampling distribution of a sample statistic (such as \bar{X} or

Variation in $\hat{\beta}_1$

What Affects Variation in $\hat{\beta}_1$

$$var(\hat{\beta}_1) = \frac{(SER)^2}{n \times var(X)}$$

$$se(\hat{\beta}_1) = \sqrt{var(\hat{\beta}_1)} = \frac{SER}{\sqrt{n} \times sd(X)}$$

- Variation in $\hat{\beta}_1$ is affected by 3 things:
- 1. Goodness of fit of the model (SER)¹
 - Larger $SER \rightarrow \text{larger } var(\hat{\beta}_1)$
- 2. Sample size, n
 - Larger $n \to \text{smaller } var(\hat{\beta}_1)$
- 3. Variance of X
 - Larger $var(X) \to \text{smaller } var(\hat{\beta}_1)$

Variation in $\hat{\beta}_1$: Goodness of Fit

Model With Better Fit

Lower SER lowers variation in $\hat{\beta}_1$

Model With Worse Fit

Higher SER raises variation in $\hat{\beta}_1$

Variation in $\hat{\beta}_1$: Sample Size

Model With Fewer Observations

Smaller n raises variation in $\hat{\beta}_1$

Model With More Observations

Larger n lowers variation in $\hat{\beta}_1$

Variation in $\hat{\beta}_1$: Variation in X

Model With More Variation in X

Larger var(X) lowers variation in $\hat{\beta}_1$

Model With Less Variation in X

Smaller var(X) raises variation in $\hat{\beta}_1$

Presenting Regression Results

Our Class Size Regression

How can we present all of this information in a tidy way?

Our Class Size Regression

```
1 library(broom)
2 school_reg %>% tidy()
```

term	estimate	std.error	statistic	p.value
(Intercept)	698.932952	9.4674914	73.824514	0.0e+00
str	-2.279808	0.4798256	-4.751327	2.8e-06

1 school_reg %>% glance()									
r.squared	adj.r.squared	sigma	statistic	p.value	df	logLik	AIC	BIC	d
0.0512401	0.0489703	18.58097	22.57511	2.8e-	1	-1822.25	3650.499	3662.62	1
				06					

• Better (?), but still not how you see regressions reported in reports...especially when you have many regression models!

Regression Tables

- Professional journals and papers often have a regression table, including:
 - Estimates of $\hat{\beta_0}$ and $\hat{\beta_1}$
 - Standard errors of $\hat{\beta_0}$ and $\hat{\beta_1}$ (often below, in parentheses)
 - Indications of statistical significance (often with asterisks)
 - Measures of regression fit: R^2 , SER, etc
- Later: multiple rows & columns for multiple variables & models

	Test Score
Constant	698.93***
	(9.47)
STR	-2.28***
	(0.48)
n	420
R^2	0.05
SER	18.54
* p < 0.1, ** p <	0.05, *** p < 0.01

Regression Output Tables

- A number of packages (and documentation/guides) that will make nice regression output tables for you:
 - modelsummary
 - stargazer (and a good cheat sheet)
 - huxtable

	Test Score
Constant	698.93***
	(9.47)
STR	-2.28***
	(0.48)
n	420
R^2	0.05
SER	18.54
* p < 0.1, ** p <	0.05, *** p < 0.01

Using modelsummary I

- You will need to first install.packages("modelsummary")
- Load with library(modelsummary)
- Command: modelsummary()
- Main argument is the name of your lm regression object
- Default output is *fine*, but often we want to customize a bit!

```
1 # install.packages("modelsummary") # install first
2 # load package
3 library(modelsummary)
4
5 modelsummary(school_reg) # our regression
```

	Model 1		
(Intercept)	698.933		
	(9.467)		
str	-2.280		
	(0.480)		
Num.Obs.	420		
R2	0.051		
R2 Adj.	0.049		
AIC	3650.5		
BIC	3662.6		
F	22.575		
RMSE	18.54		

Using modelsummary II

- Whole command is modelsummary(), everything will go in ()
- 1. models, a list() of models to use, can give a name to each model, will show up as column title in table

```
1 models = list("Test Score" = school_reg) # set name to "Test Score"
```

- 2. coef_rename if you want to rename any independent variables as something nicer than their names in the dataset
 - "old name" = "new name" (yes annoying!)

Using modelsummary III

- Whole command is modelsummary(), everything will go in ()
- 3. gof_map: a list() of goodness of fit statistics, can customize what you want to include/exclude, what you want to label them in the table...a bit advanced, here's what I like:

```
1 gof_map = list(
2   list("raw" = "nobs", "clean" = "n", "fmt" = 0),
3   list("raw" = "r.squared", "clean" = "R<sup>2</sup>", "fmt" = 2),
4   #list("raw" = "adj.r.squared", "clean" = "Adj. R<sup>2</sup>", "fmt" = 2), # we'll want this later!
5   list("raw" = "rmse", "clean" = "SER", "fmt" = 2)
6  )
```

4. Other minor options (combine with commas):

```
1 fmt = 2, # round to 2 decimals
2 output = "html" # depending on type of document creating; pdf would be "latex"
3 escape = FALSE # allows formatting of things like <sup>2</sup>
4 stars = c('*' = .1, '**' = .05, '***' = 0.01) # show significance levels if set to true, I don't like the company.
```


Using modelsummary IV

```
1 modelsummary(models = list("Test Score" = school reg),
                fmt = 2, # round to 2 decimals
                output = "html",
                coef rename = c("(Intercept)" = "Constant",
                                "str" = "STR"),
                gof map = list(
                  list("raw" = "nobs", "clean" = "n", "fmt" = 0)
                  list("raw" = "r.squared", "clean" = "R<sup>2</
                  #list("raw" = "adj.r.squared", "clean" = "Adj.
9
                 list("raw" = "rmse", "clean" = "SER", "fmt" =
10
11
                ),
                escape = FALSE,
12
                stars = c('*' = .1, '**' = .05, '***' = 0.01)
13
14)
```

	Test Score		
Constant	698.93***		
	(9.47)		
STR	-2.28***		
	(0.48)		
n	420		
R^2	0.05		
SER	18.54		
* p < 0.1, ** p <	0.05, *** p < 0.01		

modelplot() in modelsummary

Also nice about the modelsummary package is the command modelplot()

1 modelplot(school reg)

modelplot() in modelsummary

Also nice about the modelsummary package is the command modelplot()

Though You Could Make It Yourself in ggplot

• Use the conf.low and conf.high (from a tidy regression) as xmin and xmax aesthetics inside geom_errorbarh().

Diagnostics About Regression

Diagnostics: Residuals I

- We often look at the residuals of a regression to get more insight about its **goodness of fit** and its **bias**
- Recall broom's augment creates some useful new variables
 - fitted are fitted (predicted) values from model, i.e. \hat{Y}_i
 - resid are residuals (errors) from model, i.e. \hat{u}_i

Diagnostics: Residuals II

• Often a good idea to store in a new object (so we can make some plots)

```
1 aug_reg <- augment(school_reg)
2
3 aug_reg %>% head()
```

t	.std.resi	.cooksd	.sigma	.hat	.resid	.fitted	str	testscr
3	1.761214	0.0068925	18.53408	0.0044244	32.65260	658.1474	17.88991	690.80
2	0.611711	0.0008927	18.59490	0.0047485	11.33917	649.8608	21.52466	661.20
)	-0.6848850	0.0006996	18.59279	0.0029742	-12.70689	656.3069	18.69723	643.60
7	-0.629476	0.0011673	18.59441	0.0058575	-11.66198	659.3620	17.35714	647.70
4	-0.836302	0.0010548	18.58766	0.0030072	-15.51592	656.3659	18.67133	640.85
7	-2.404638	0.0129531	18.47411	0.0044603	-44.58076	650.1308	21.40625	605.55

Recall: Assumptions about Errors

- We make 4 critical assumptions about u:
- 1. The expected value of the errors is 0

$$\mathbb{E}[u] = 0$$

2. The variance of the errors over X is constant:

$$var(u|X) = \sigma_u^2$$

3. Errors are not correlated across observations:

$$cor(u_i, u_j) = 0 \quad \forall i \neq j$$

4. There is no correlation between X and the error term:

$$cor(X, u) = 0$$
 or $E[u|X] = 0$

Assumptions 1 and 2: Errors are i.i.d.

• Assumptions 1 and 2 assume that errors are coming from the same (normal) distribution

$$u \sim N(0, \sigma_u)$$

- Assumption 1: E[u] = 0
- Assumption 2: $sd(u|X) = \sigma_u$
 - virtually always unknown...
- We often can visually check by plotting a **histogram** of u

Plotting a Histogram of Residuals

Plot

Code

Checking the Distribution of Residuals

```
school reg %>% summary()
Call:
lm(formula = testscr ~ str, data = ca school)
Residuals:
   Min
            10 Median
                           30
                                  Max
-47.727 -14.251 0.483 12.822 48.540
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 698.9330 9.4675 73.825 < 2e-16 ***
          -2.2798 0.4798 -4.751 2.78e-06 ***
str
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
   aug reg %>%
     summarize(E u = mean(.resid),
               sd u = sd(.resid))
```

E_u sd_u0 18.55878

Residual Plot

- We often plot a **residual plot** to see any odd patterns about residuals
 - x-axis are \hat{Y}_i values (fitted)
 - y-axis are u_i values (• resid)

Plot

Code

Heteroskedasticity

Homoskedasticity

• "Homoskedasticity:" variance of the residuals over X is constant, written:

$$var(u|X) = \sigma_u^2$$

ullet Knowing the value of X does not affect the variance (spread) of the errors

Heteroskedasticity I

• "Heteroskedasticity:" variance of the residuals over X is **NOT** constant:

$$var(u|X) \neq \sigma_u^2$$

- This does not cause $\hat{\beta}_1$ to be biased, but it does cause the standard error of $\hat{\beta}_1$ to be incorrect
- This **does** cause a problem for **inference**!
 - Specifically, it will make $se(\hat{\beta}_1)$ wrong (often too small)¹

Heteroskedasticity II

• Recall the formula for the standard error of $\hat{\beta}_1$:

$$se(\hat{\beta}_1) = \sqrt{var(\hat{\beta}_1)} = \frac{SER}{\sqrt{n} \times sd(X)}$$

• This assumes homoskedasticity (Assumption 2)

Heteroskedasticity III

• A better formula for estimating standard errors that are **robust** to heteroskedasticity (called .hi["robust standard errors"]):

$$se(\hat{\beta}_{1}) = \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \hat{u}^{2}}{\left[\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}\right]^{2}}}$$

• Don't learn formula, do learn what heteroskedasticity is and how it affects our model!

Visualizing Heteroskedasticity I

- Our original scatterplot with regression line
- Does the spread of the errors change over different values of *str*?

No: homoskedastic

Yes: heteroskedastic

Visualizing Heteroskedasticity

Conditional Distribution of Residuals by STR

• Notice the distribution of \hat{u} , changes for different values of STR, and $\sigma_{\hat{u}}$ is not constant

More Obvious Heteroskedasticity

- Visual cue: data is "fan-shaped"
 - Data points are closer to line in some areas
 - Data points are more spread from line in other areas

More Obvious Heteroskedasticity

Conditional Distribution of Residuals by X

 $\hat{\sigma}_{u}$ given for each level of X

$$wage_i = \beta_0 + \beta_1 educ_i + u_i$$

$$wage_i = \beta_0 + \beta_1 educ_i + u_i$$

$$wage_i = \beta_0 + \beta_1 educ_i + u_i$$

	Wage
Intercept	-0.90
	(0.68)
Years of Schooling	0.54***
	(0.05)
n	526
R^2	0.16
SER	3.37
* p < 0.1, ** p < 0.05, *	** p < 0.01

Conditional Distribution of Residuals by Years of Schooling Regression line in red

 $\hat{\sigma}_{u}$ given for each year of schooling

Detecting Heteroskedasticity I

- Several tests to check if data is heteroskedastic
- One common test is **Breusch-Pagan test**
- Can use the lmtest package's function bptest()
 - H_0 : homoskedastic¹
 - If p-value < 0.05, reject $H_0 \implies$ heteroskedastic

```
1 library("lmtest")
2 school_reg %>% bptest()

studentized Breusch-Pagan test
```

```
data: . BP = 5.7936, df = 1, p-value = 0.01608
```

• Since p < 0.05, can reject H_0 that errors are homoskedastic and conclude they are heteroskedastic

How About the Wages Regression?

```
1 wage_reg %>% bptest()

studentized Breusch-Pagan test

data:
BP = 15.306, df = 1, p-value = 9.144e-05
```


Fixing Heteroskedasticity I

- Heteroskedasticity is easy to fix with software that can calculate **robust standard errors** (using the more complicated formula above)
- Easiest method is to use estimatr package
 - lm_robust() command (instead of lm) to run regression
 - set se_type = "stata" to calculate robust SEs using the formula above¹

```
1 #install.packages("estimatr")
2 library(estimatr)
```


Fixing Heteroskedasticity II

```
school reg robust <- lm robust(testscr ~ str, data = ca school,</pre>
                                   se type = "stata")
    school reg robust
              Estimate Std. Error t value
                                                  Pr(>|t|)
                                                              CI Lower
                                                                         CI Upper
(Intercept) 698.932952 10.3643599 67.436191 9.486678e-227 678.560192 719.305713
             -2.279808 0.5194892 -4.388557 1.446737e-05 -3.300945 -1.258671
str
             \mathsf{DF}
(Intercept) 418
            418
str
    school reg robust %>% summary()
```


Fixing Heteroskedasticity III

```
1 # can tidy, glance, augment, etc
2 school_reg_robust %>% tidy()
```

term	estimate	std.error	statistic	p.value	conf.low	conf.high	df	ou
(Intercept)	698.932952	10.3643599	67.436191	0.00e+00	678.560192	719.305713	418	tes
str	-2.279808	0.5194892	-4.388557	1.45e-05	-3.300945	-1.258671	418	tes

1 school_reg_robust %>% glance()

r.squared	adj.r.squared	statistic	p.value	df.residual	nobs	se_type
0.0512401	0.0489703	19.25943	1.45e-05	418	420	HC1

Showing The Effect of Heteroskedasticity (on $se(\hat{\beta}_1)$)

```
modelsummary(models = list("Normal SE" = school re
                               "Robust SE" = school re
                fmt = 2, # round to 2 decimals
                output = "html",
                coef rename = c("(Intercept)" = "Cons
                                 "str" = "STR"),
                gof map = list(
                  list("raw" = "nobs", "clean" = "n"
                  list("raw" = "r.squared", "clean" =
                  #list("raw" = "adj.r.squared", "cle
10
                  list("raw" = "rmse", "clean" = "SER
11
12
                ),
13
                escape = FALSE,
                stars = c('*' = .1, '**' = .05, '***
14
15 )
```

	Normal SE	Robust SE
Constant	698.93***	698.93***
	(9.47)	(10.36)
STR	-2.28***	-2.28***
	(0.48)	(0.52)
n	420	420
R^2	0.05	0.05
SER	18.54	18.54
* p < 0.1, **	p < 0.05, ***	p < 0.01

What changed?

Outliers

Outliers Can Bias OLS! I

- Outliers can affect the slope (and intercept) of the line and add bias
 - May be result of human error (measurement, transcribing, etc)
 - May be meaningful and accurate
- In any case, compare how including/dropping outliers affects regression and always discuss outliers!

Outliers Can Bias OLS! II

Outliers Can Bias OLS! II

Outliers Can Bias OLS! III

	Original	With Outliers
Constant	698.93***	641.40***
	(9.47)	(11.21)
STR	-2.28***	0.71
	(0.48)	(0.57)
n	420	423
R^2	0.05	0.00
SER	18.54	23.71
* p < 0.1, **	p < 0.05, ***	p < 0.01

Detecting Outliers

• The car package has an outlierTest command to run on the regression

```
1 # install.packages("car")
 2 library("car")
   # Use Bonferonni test
 5 outlierTest(school outlier reg) # will point out which obs #s seem outliers
   rstudent unadjusted p-value Bonferroni p
422 8.822768
                   3.0261e-17
                                1.2800e-14
                   2.2493e-12
                                9.5147e-10
423 7.233470
                   1.1209e-09 4.7414e-07
421 6.232045
 1 # find these observations
 2 ca school outliers %>%
      slice(c(422,423,421)) # find observations 422, 423, 421
```

observat	district	testscr	str
422	Crazy District 2	850	28
423	Crazy District 3	820	29
421	Crazy District 1	800	30

