		100				 	 _	_		
Reg. No.	- 1	1 1		1					1	
1108.110.										

B.Tech. / M.Tech. (Integrated) DEGREE EXAMINATION, MAY 2024

Fourth and Fifth Semester

21MAB302T - DISCRETE MATHEMATICS

(For the candidates admitted during the academic year 2021-2022, 2022-2023 & 2023-2024)

1	n. T	_	4.	
	-	n	Tſ	ъ.

(i) Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed

(ii)	over to hall invigilator at the end of 40 th Part – B and Part - C should be answe	n minut		or snou	ia oc	, 11411	ucu
Γime: 3	Hours			Max.	. Ma	rks:	75
	$PART - A (20 \times 1)$ Answer ALL (Marks	BL	СО	PO
1.	If A and B are any non-empty sets,	~		1	1	1	2
	(A) \$\phi\$	(B)	A				
	(C) B	(D)	$\overline{A} \cap B$				
2.	If $R=\{(1,1), (1,3), (3,2), (3,4), (4,4), ($			} 1	2	1	2
	(A) {(1,3), (1,4), (3,1), (4,1)} (C) {(1,3), (1,4), (3,1), (4,2)}						
3.	If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bije	ctive t	han (gof) ⁻¹ is	1	1	1	2
	(A) $f^{-1}og^{-1}$	(B)	$g^{-1}of^{-1}$				
	(C) $f^{-1}og$		gof^{-1}				
4.	Let $f(x) = 2x + 3$ and $g(x) = 3x + 4$	2 be	functions on R, then fog is	s ¹	2	1	2
	$\overline{(A)}$ 3x+7	(B)	6x+11				
	(C) $6x+7$	(D)	3x+11				
5.	If a/c and b/c with gcd(a,b)=1 then			1	1	2	2
	(A) ab/c	` /	c/ab				
	(C) c/a	(D)	c/b				
6.	In how many different ways 7 diff necklace?	ferent	beads can be arranged to form	a ¹	2	2	2
	(A) 250	(B)	300				
	(C) 360	(D)	350				
7.	If gcd(a,b)=1 then gcd(ka,kb)=			1	1	2	2
	(A) 1	(B)					
	(C) 2k	(D)	Does not exist				
8.	Identify the correct statement			1	2	2	2
	(A) $lcm(-4,14)=28$. ,	lcm(-4,14) = -28				
	(C) $lcm(-4,14) = -56$	(D)	lcm(-4,14) = -4				

	9.	The con	verse statement of 7p→q is _			1		1	3	2
		(A) p-			— q→7p				×	
		(C) 7p	-		p→7q					
		. , 1	•	()						
	10.	What is	the dual of $(P \lor Q) \rightarrow R$ is			1		2	3	2
		(A) (P.	^O)^R	(B)	$7(P \lor Q) \rightarrow R$					
			P∧Q)∧R	(D)	(P∨Q)∧7R					
		(-) 1(, (Q), (IC	(~)	(1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
	11.	The neg	ation of the statement "I did n	ot ha	ave strange dreams"	1		1	3	2
					I have a peaceful dreams	e e				
		• •	ave a dreamless sleep		-					
		\	F	(-)	r					
	12.	Which o	of the following proposition is	a taı	ıtology?	1		2	3	2
					$p \lor (q \to p)$					
			•		$p \to (p \to q)$					
		(C) p	$\vee (p \rightarrow q)$	(D)	$p \to (p \to q)$					
	1.0	T.C	0.11			,		1	4	2
	13.		are 2 identity elements in a gr			1		1	4	2
		(A) e_1		` /	$e_2 = 0$					
		(C) e_1	=e ₂	(D)	$e_1 \neq e_2$					
	1./	The inv	orga alamant 'a' in aroun (C	*\	with himoury amounting attempt to 10) 1		2	4	2
	17.	is	erse erement a in group (O,	· ') v	vith binary operation a*b=a+b+2	2 -		_		_
		(A) -a		(B)	a ⁻¹					
		(C) 2			a –(a+4)					
		(C) Z		(D)	$-(a \cdot 4)$					
	15.	Every fi	nite integral domain is a		•.	1		1	4	2
		(A) Fig		(B)	Ring					
		• •	egral domain	` '	Group					
		(0)		(2)	Croup					
	16.	The Har	nming weight of x=111010			1		2	4	2
				(B)	2					
		(C) 4		(D)						
		,	A.	()						
	17.	A graph	in which loops and parallel	edg	es are allowed is called	1		1	5	
		graph	· •	Ū						
		(A) Ps	eudo	(B)	Multi					
		(C) Sin	nple	(D)	Bipartite					
					_					
	18.	The deg	ree of v₅ in the following grap	h is		1		2	5	2
			V_1 V_3							
				/	• V ₅					
			V3 V-	6.						
		(A) 3		(B)	2					
		(C) 1		(D)						
		(C) 1		(D)	0					
	19.	A conne	cted graph without any circui	t is c	alled	1		1	5	2
		(A) Le	· ·		Flower					
		(C) Lo		(D)	Tree					
Page	2 of 4	(-) 20	- <i>E</i>	(-)		20MF4	5_21	MAR	3በ2ፑ	
_					•		, – =±			

20	Э.	The chromatic number for the following graph is	1	2	5	2
		(A) 4 (B) 3 (C) 2 (D) 1				
		(C) 2 (D) 1				
		$PART - B (5 \times 8 = 40 Marks)$ Answer ALL Questions	Marks	ВĹ	СО	РО
21. 8	a.	If A, B and C are sets, prove both set identities and analytically, that $A \cap (B-C) = (A \cap B) - (A \cap C)$.	8	3	1	2
		(OR)				
1	Э.	Draw the Hasse diagram representing the partial ordering $P=\{(a,b)/a \text{ divides b'}\}\$ on the set $\{1,2,3,4,5,6,7,8\}$ starting from the digraph of P and also prove that P is partial ordered relation.	8	3	1	2
22. a	a.	There are 250 students in an engineering college of these 188 have taken a course in Fortran, 100 have taken a course in C and 35 have taken a course is Java further 88 have taken courses in both Fortran and C. 23 have taken courses in both C and Java and 29 have taken courses in both Fortran and Java. If 19 of these students have taken all the three courses, how many of these 250 students have not taken a course in any of these three languages?	8	3	2	2
		(OR)				
Ţ	Э.	Use Euclidean algorithm to find the integers 'm and n' such that 28844m+15712n=4.	8	3	2	2
23. a	a.	Show that b can be derived from the premises $a \rightarrow b, c \rightarrow b, d \rightarrow (a \lor c), d$ by the indirect method.	8	4	3	2
		(OR)				
1	b.	Prove that the premises $p \rightarrow q$, $q \rightarrow r$, $s \rightarrow 7r$ and $p \land s$ are inconsistent.	8	4	3	2
24. :	a.	Prove that the necessary and sufficient condition for a non empty subset H of a group $(G,*)$ to be a subgroup is $a,b \in H \Rightarrow a*b^{-1} \in H$.	22 8	3	4	2
		(OR)				
		$ \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} $	8	3	4	2

b. Find the code words generated by the parity check matrix $H = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,

when the encoding function is $R: B^3 \to B^5$.

25. a. Prove that the maximum number of edges in a simple disconnected graph $\binom{8}{4}$ $\binom{4}{5}$ $\binom{5}{2}$ $\binom{5}{2}$ $\binom{6}{4}$ $\binom{6}{4}$

(OR)

b. Find the minimum spanning tree for the following weighted graph using 8 4 5 2 Kruskal's algorithm.

$PART - C (1 \times 15 = 15 Marks)$ Answer ANY ONE Questions

Marks BL CO PO

- 26. Let $R=\{(1,2), (1,5), (2,2), (3,3), (3,4), (4,4), (5,1)\}$ defined on A= $\{1,2,3,4,5\}$ then find the transitive closure of R using Warshall's algorithm.
- 27. Find the code words generated by the generator matrix 15 4 4 2 $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$, find the corresponding parity check matrix and use it to decode the following received words and hence find the original

message
Are all the words decoded uniquely?

- (i) 11110
- (ii) 11101
- (iii) 11011
- (iv) 10101
- (v) 10011
- (vi) 11111
- (vii) 01100

* * * * *