

Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade para a Frequência dos Cursos Superiores do Instituto Politécnico de Leiria dos Maiores de 23 Anos - 2016

Prova escrita de conhecimentos específicos de Matemática

Instruções gerais

- 1. A prova é constituída por 2 grupos de questões.
- 2. A duração da prova é de 2 horas, estando prevista uma tolerância de 30 minutos;
- 3. Só pode utilizar para elaboração das suas respostas e para efetuar os rascunhos as folhas distribuídas pelo docente vigilante, salvo se previsto outro procedimento;
- 4. Não utilize qualquer tipo de corretor. Se necessário risque ou peça uma troca de folha;
- **5.** Não é autorizada a utilização de quaisquer ferramentas de natureza eletrónica (telemóvel, *ipad*, computador portátil, leitores/gravadores digitais de qualquer natureza ou outros não especificados), exceto máquina de calcular para realizar cálculos e obter representações gráficas de funções, devidamente autorizadas.
- **6.** Deverá disponibilizar ao docente que está a vigiar a sala, sempre que solicitado, um documento válido de identificação (cartão de cidadão, bilhete de identidade, carta de condução ou passaporte);
- 7. Na última página da prova encontra cotação de cada questão.

Leiria, 4 de junho de 2016

Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade para a Frequência dos Cursos Superiores do Instituto Politécnico de Leiria dos Maiores de 23 Anos – 2016

Prova de Avaliação de MATEMÁTICA

- Identifique claramente os grupos e as questões a que responde.
- As funções **trigonométricas** estão escritas no idioma **anglo saxónico**.
- Utilize apenas caneta ou esferográfica de tinta azul ou preta.
- É interdito o uso de "esferográfica lápis" e de corretor.
- A prova de avaliação tem 8 páginas.
- A prova de avaliação inclui um formulário na página 7.
- As cotações da prova de avaliação encontram-se na página 8.

Grupo I

- As oito questões deste grupo são de escolha múltipla.
- Em cada questão são indicadas quatro alternativas de resposta das quais só uma está correta.
- Escreva na sua folha de respostas apenas a letra correspondente à alternativa que selecionar para responder a cada questão.
- Se apresentar mais do que uma letra ou se esta for ilegível, a sua **resposta** será considerada incorreta.
- \bullet As respostas incorretas terão cotação nula.
- Não apresente nem cálculos nem justificações.
- 1. De uma função f, de domínio \mathbb{R} , sabe-se que f(4) = 0 e que f é uma função par.

Seja g a função, de domínio \mathbb{R} , definida por g(x) = f(x+2).

Qual dos seguintes pode ser o conjunto dos zeros de q?

- $(A) \{2\}.$
- (B) $\{0,2\}.$ (C) $\{2,6\}.$
- (**D**) $\{-6, 2\}$.

- 2. Na figura estão representados:
 - parte do gráfico de uma função h diferenciável em \mathbb{R} ;
 - \bullet uma reta r tangente ao gráfico de h no ponto de abcissa 4.

O valor de h'(4), derivada da função h no ponto de abcissa 4, pode ser igual a:

(A) -2.

(B) 0.

 (\mathbf{C}) 2.

- 3. O polinómio $x^2 + bx + c$, onde b e c são constantes reais, é divisível por x+1. Além disso, ao ser dividido por x-1 e por x-3, é obtido o mesmo resto. Os valores das constantes reais $b \in c$ são:
 - (A) b = 4 e c = -5.

(B) b = 4 e c = 5.

(C) b = -4 e c = -5.

- (**D**) b = -4 e c = 5.
- 4. Um projétil é lançado verticalmente de baixo para cima.

Sabendo que a sua altitude h (em metro), t segundos após ter sido lançado, é modelada pela expressão $h(t) = -6t^2 + 130t$, qual a velocidade (em metro por segundo) do projétil, dois segundos após o lançamento?

(**A**) 130.

(B) 106.

(**C**) 118.

94. (\mathbf{D})

- 5. O valor de $\lim_{x\to 2} \frac{2x\sqrt{x} 2\sqrt{2}x}{x-2}$ é:
 - $(\mathbf{A}) \quad -\sqrt{2}. \tag{B} \quad \sqrt{2}.$

(C) $2\sqrt{2}$.

- **(D)** $3\sqrt{2}$.
- 6. O sr. João está à beira de um lago circular e deseja medir a altura de uma estátua que foi colocada no seu centro. Para o efeito, mede o ângulo que o seu ponto de visão faz com o ponto mais alto da estátua e obtém 50°. Retrocede 45 dm e volta a medir novamente o ângulo que o seu ponto de visão faz com o ponto mais alto da estátua e obtém 35°.

Qual a altura aproximada da estátua?

 (\mathbf{A}) 2 m. (\mathbf{B}) 4 m. (\mathbf{C}) 6 m. (**D**) 8 m.

7. Considere a função f, real de variável real, definida por $f(x) = a + ax - \frac{x}{b-x}$, onde a e b são constantes reais. Os valores das constantes reais a e b para os quais a reta de equação y = x + 2 é a reta tangente ao gráfico da função f no ponto de abcissa 0 são:

(A) a = 1 e b = 1.

(B) a = 2 e b = 1.

(C) a = 2 e b = 3.

(**D**) a = 3 e b = 2.

8. Um relógio de parede dá sinais sonoros a cada hora, a cada meia hora e a cada quarto de hora. A cada hora, o número de sinais sonoros é igual à hora indicada no relógio de parede, isto é, por exemplo, às quatro horas dá quatro sinais sonoros. A cada meia hora e a cada quarto de hora, o relógio de parede dá um único sinal sonoro.

Quantos sinais sonoros são dados pelo relógio de parede ao fim de um dia?

(A) 228.

(B) 102.

(C) 114.

(**D**) 90.

Grupo II

- Nas questões deste grupo apresente o seu raciocínio de maneira clara, indicando todos os cálculos que efetuar e todas as justificações necessárias.
- Pode **recorrer à sua máquina de calcular** para efetuar cálculos e obter representações gráficas de funções.
- <u>Atenção</u>: quando, para um resultado, não é pedida uma aproximação, pretende-se sempre o valor exato.
- 1. O resto da divisão de um polinómio p(x) por x + 1 é 7 e o resto da divisão de p(x) por x 2 é 3. Determine o resto da divisão de p(x) por (x + 1)(x 2).
- 2. Considere as funções reais de variável real:
 - a função polinomial f definida por $f(x) = x^3 3x + 2$;
 - a função polinomial g definida por $g(x) = x^3 + 3x^2 + 2x$;

- a função h definida por $h(x) = \frac{1}{\sqrt{f(x)}}$;
- a função racional r definida por $r(x) = \frac{f(x)}{g(x)}$.
- (a) Determine a decomposição em fatores do $1.^{\circ}$ grau da função f e da função g.
- (b) Indique o domínio da função h e o domínio da função r.
- (c) Determine a decomposição da função r em frações racionais.
- (d) Estude a monotonia (sentido de variação) da função r.
- (e) Determine uma equação da reta tangente ao gráfico da função h no ponto de coordenadas (-1, h(-1)).
- 3. Considere a função f, real de variável real, definida por,

$$f(x) = \begin{cases} 2x+3 & se & x \le -1 \\ x^2 & se & -1 < x < 1 \\ x^2 - 3x + 2 & se & x \ge 1 \end{cases}$$

- (a) Apresente um esboço do gráfico da função f e indique o seu contradomínio.
- (b) Indique um intervalo onde a função f seja estritamente crescente e um intervalo onde a função f não seja injetiva.
- (c) Estude a continuidade da função f no ponto de abcissa 1.
- (d) A função f é diferenciável no ponto de abcissa 1? Justifique.
- (e) Usando a definição de derivada, determine f'(2).
- (f) Indique uma equação da reta tangente ao gráfico da função f no ponto de abcissa 2.
- 4. A perda de propagação de sinal (L), em decibel (dB), entre a antena transmissora e a antena recetora, em espaço livre de obstáculos, é modelada por,

$$L = 32.4 + 20\log_{10}(f) + 10\log_{10}(d)$$

onde f é a frequência de transmissão em mega-hertz (MHz), d é a distância entre as antenas de transmissão e receção em quilómetros (km) e \log_{10} representa a função logaritmo de base 10.

- (a) Determine um valor aproximado da perda de propagação de um sinal, sabendo que é um sinal de radiofrequência de 600 MHz, enviado de uma estação-base para uma antena recetora que está a 20 km de distância, em espaço livre de obstáculos.
- (b) Determine um valor aproximado da distância a que se encontra uma antena recetora, considerando que em espaço livre de obstáculos, a frequência de transmissão é de 750 MHz e que a perda de sinal é de 120 dB.
- (c) Indique o que acontece à perda de propagação de um sinal de transmissão em frequência constante, quando, em espaço livre de obstáculos, se aumenta a distância entre as duas antenas, multiplicando a distância pelo fator 10^k .
- 5. A figura ilustra a entrada de um túnel, onde um ponto C se desloca sobre a semicircunferência de diâmetro [AB] e centro O.

Considere que o comprimento do segmento [AC], em função da amplitude x do ângulo AOC é dado por,

$$d\left(x\right) = 6\sin\left(\frac{x}{2}\right)$$

onde sin representa a função seno e $x \in [0, \pi]$.

- (a) Indique o valor de x para o qual $d(x) = \overline{AB}$ e justifique que a semicircunferência tem raio 3.
- (b) Justifique que quando $x \in [0, \pi[$, o triângulo [ABC] é retângulo em C.
- (c) Mostre que $\overline{BC} = 6\cos\left(\frac{x}{2}\right)$, onde cos representa a função cosseno.
- (d) Mostre que a área do triângulo [ABC] é $9\sin(x)$, onde sin representa a função seno.
- (e) Determine o valor de $x \in]0,\pi[$ para o qual o perímetro do triângulo [ABC] é máximo e indique o valor do perímetro.

FIM da Prova de Avaliação

FORMULÁRIO

Regras de Derivação

$$(u+v)' = u' + v'$$

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^k)' = k \cdot u^{k-1} \cdot u' \quad (k \in \mathbb{R})$$

$$\left(\sin\left(u\right)\right)' = u' \cdot \cos\left(u\right)$$

$$(\cos(u))' = -u' \cdot \sin(u)$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln(a) \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln\left(u\right))' = \frac{u'}{u}$$

$$(\log_a(u))' = \frac{u'}{u \cdot \ln(a)} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Probabilidades

$$\mu = p_1 \cdot x_1 + \ldots + p_n \cdot x_n$$

$$\sigma = \sqrt{p_1 \cdot (x_1 - \mu)^2 + \ldots + p_n \cdot (x_n - \mu)^2}$$

Se
$$X \in N(\mu, \sigma)$$
 então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Progressões

Soma dos n primeiros termos de uma progressão (u_n)

Progressão aritmética: $\frac{u_1 + u_n}{2} \cdot n$

Progressão geométrica: $u_1 \cdot \frac{1-r^n}{1-r}$

Trigonometria

$$\sin(a+b) = \sin(a) \cdot \cos(b) + \sin(b) \cdot \cos(a)$$

$$\cos(a+b) = \cos(a) \cdot \cos(b) - \sin(a) \cdot \sin(b)$$

Área de Figuras Planas

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \cdot Altura$$

Polígono Regular: $Semiperímetro \cdot Apótema$

Setor Circular: $\frac{\alpha \cdot r^2}{2}$ (α – amplitude em radianos do ângulo ao centro, r – raio)

7

${\bf COTA} \tilde{\bf COES}$

	Cada resposta certa	5 0	
iru	po II		
1.			8
2.			42
	(a)	6	
	(b)	6	
	(c)	10	
	(d)	10	
	(e)	10	
3.		• • •	45
	(a)	12	
	(b)	4	
	(c)	10	
	(d)	4	
	(e)	9	
	(f)	6	
4.			20
	(a)	5	
	(b)	7	
	(c)	8	
5.			45
	(a)	4	
	(b)	4	
	(c)	12	
	(d) ·····	10	
	(e)	15	