ProblemSet 3 – Solutions

George McNinch

2024-02-16

In these exercises, G always denotes a finite group. Unless indicated otherwise, all vector spaces are assumed to be finite dimensional over the field $F = \mathbb{C}$. The representation space V of a representation of G is always assumed to be finite dimensional over \mathbb{C} .

1. Let $\phi: G \to F^{\times}$ be a group homomorphism; since $F^{\times} = \mathrm{GL}_1(F)$, we can think of ϕ as a 1-dimensional representation (ϕ, F) of G.

If V is any representation of G, we can form a *new* representation $\phi \otimes V$. The underlying vector space for this representation is just V, and the "new" action of an element $g \in G$ on a vector v is given by the rule

$$g \star v = \phi(g)gv$$
.

a. Prove that if V is irreducible, then $\phi \otimes V$ is also irreducible.

We prove the following statement: (*) if $W \subset V$ is a subspace, then W is invariant for the *original* action of G if and only if it is invariant for the \star action of G.

First note that (*) immediately implies the assertion of (a).

To test invariance, let $w \in W$ and let $g \in G$. Since W is a linear subspace and since $\phi(g)$ is a non-zero scalar, it is immediate that

$$gw \in W \iff g \star w = \phi(g)gw \in W$$

Since this holds for all w and all g, (*) follows.

b. Prove that if χ denotes the *character* of V, then the character of $\phi \otimes V$ is given by $\phi \cdot \chi$; in other words, the trace of the action of $g \in G$ on $\phi \otimes V$ is given by

$$\chi_{\phi \otimes V}(g) = \operatorname{tr}(v \mapsto g \star v) = \phi(g) \chi(g).$$

We just need to compute the trace of the linear mapping $V \to V$ given by $v \mapsto g \star v$.

If the action of g on V is given by the linear mapping $\rho(g)$, then

$$\chi_V(q) = \operatorname{tr}(\rho(q)).$$

Now, the \star -action of g is given by the linear mapping $v \mapsto g \star v = \phi(g)\rho(g)v$.

So $\chi_{\phi \otimes V}(g) = \operatorname{tr}(\phi(g)\rho(g))$. For any scalar $s \in k$, trace of the linear mapping $s\rho(g)$ is given by

$$\operatorname{tr}(s\rho(g)) = s\operatorname{tr}(\rho(g)) = s\chi_V(g)$$

("linearity of the trace").

Thus

$$\chi_{\phi \otimes V}(g) = \operatorname{tr}(\phi(g)\rho(g)) = \phi(g)\chi_V(g).$$

c. Recall that in class we saw that S_3 has an irreducible representation V_2 of dimension 2 whose character ψ_2 is given by

Observe that $\operatorname{sgn} \psi = \psi$ and conclude that $V_2 \simeq \operatorname{sgn} \otimes V_2$, where $\operatorname{sgn}: S_n \to \{\pm 1\} \subset \mathbb{C}^\times$ is the sign homomorphism.

On the other hand, S_4 has an irreducible representation V_3 of dimension 3 whose character ψ_3 is given by

(I'm not asking you to confirm that ψ_3 is irreducible, though it would be straightforward to check that $\langle \psi_3, \psi_3 \rangle = 1$).

Prove that $V_3 \not\simeq \operatorname{sgn} \otimes V_3$ as S_4 -representations.

(In particular, S_4 has at least two irreducible representations of dimension 3.)

We first consider the representation V_2 of S_3 . Write χ_2 of the character of this irreducible representation. The character of sgn χ_2 is then given by the product sgn χ_2 .

$$\begin{array}{c|ccccc} g & 1 & (12) & (123) \\ \hline \psi_2 & 2 & 0 & -1 \\ \mathrm{sgn} & 1 & -1 & 1 \\ \mathrm{sgn} \, \psi_2 & 2 & 0 & -1 \\ \end{array}$$

Inspecting the table we see that $\psi_2 = \operatorname{sgn} \psi_2$. This shows that V_2 is isomorphic to $\operatorname{sgn} \otimes V_2$ as representations for S_3 .

2. Let V be a representation of G.

For an irreducible representation L, consider the set

$$\mathcal{S} = \{ S \subset V \mid S \simeq L \}$$

of all invariant subspaces that are isomorphic to L as G-representations.

Put

$$V_{(L)} = \sum_{S \in \mathcal{S}} S.$$

a. Prove that $V_{(L)}$ is an invariant subspace, and show that $V_{(L)}$ is isomorphic to a direct sum

$$V_{(L)} \simeq L \oplus \cdots \oplus L$$

as G-representations.

First of all, we note more generally that if I is an index set and if $W_i \subset V$ is a G-invariant subspace for each $i \in I$, then $\sum_{i \in I} W_i$ is again an invariant subspace. (The proof is straightforward from the definitions). This confirms that

 $V_{(L)}$ is an invariant subspace.

To prove the remaining assertion, we proceed as follows.

Let us say that a G-representation W is L-isotypic if every irreducible invariant subspace of W is isomorphic to L.

It is immediate that $V_{(L)}$ is L-isotypic. We are going to prove:

If W is an L-isotypic G-representation, then W is isomorphic to a direct sum

$$W \simeq L \oplus \cdots \oplus L.$$

Proceed by induction on dim W. If dim W=0 then $W=\{0\}$ and the result is immediate (W is the direct sum of zero copies of L).

Now observe that if dim W > 0 then W contains an invariant subspace isomorphic to L, so that dim $W \ge \dim L$.

Now if dim $W = \dim L$, then $W \simeq L$ and the result holds in this case.

Finally, suppose that dim $W > \dim L$ and let $S \subset W$ be an invariant subspace with $S \simeq L$.

By complete reducibility we may find an invariant subspace $U \subset W$ such that W is the internal direct sum

$$W = S \oplus U$$
.

Since $\dim W = \dim S + \dim U$, we have $\dim U < \dim W$. Moreover, U is also L-isotypic. So by induction on dimension, we know that

$$U \simeq L \oplus \cdots \oplus L$$
,

(say, a direct sum of d copies of L).

But then

$$W = S \oplus U \simeq L \oplus (L \oplus \cdots \oplus L) = L \oplus L \oplus \cdots \oplus L$$

is isomorphic to a direct sum of d+1 copies of L.

b. Prove that the $quotient\ representation\ V/V_{(L)}$ has no invariant subspaces isomorphic to L as G-representations.

Write $\pi:V\to V/V_{(L)}$ for the quotient map $v\mapsto v+V_{(L)}$; thus π is a surjective homomorphism of G-representations.

Suppose by way of contradiction that $S \subset V/V_{(L)}$ is an invariant subspace isomorphic to L, and let $S' \subset V$ be the inverse image under π of S:

$$S' = \pi^{-1}(S).$$

Then S' is an invariant subspace of V containing $V_{(L)}$, and the restriction of π to S' defines a surjective mapping

$$\pi_{|S'}:S'\to S\simeq L.$$

If K denotes the kernel of $\pi_{|S'}$, then complete reducibility implies that there is an invariant subspace M of V such that S' is the internal direct sum

$$(*)$$
 $S' = K \oplus M.$

In particular, the invariant subspace M is isomorphic to L as G-representations. But then by definition we have $M \subset V_{(L)}$ contradicting the condition $M \cap K = \{0\}$ which must hold by (*). This contradiction proves the result.

c. If L_1, L_2, \cdots, L_m is a complete set of non-isomorphic irreducible representations for G, prove that V is the internal direct sum

$$V = \bigoplus_{i=1}^m V_{(L_i)}.$$

We first note that V is equal to the sum

$$\sum_{i=1}^m V_{(L_i)};$$

indeed, if $W=\sum_{i=1}^m V_{(L_i)}$, then by complete reducibility $V=W\oplus W'$ for an invariant subspace W'. But if $W'\neq 0$ then W' contains an irreducible invariant subspace, so that $W'\cap V_{(L_i)}\neq 0$ for some i and hence $W'\cap W\neq 0$; this is impossible since the internal sum $V=W\oplus W'$ is direct. This argument shows that W'=0 and hence that V=W.

Finally, we show that the sum

$$\sum_{i=1}^{m} V_{(L_i)}$$

is direct, i.e. that for each j we have

$$(\clubsuit) \quad V_{(L_j)} \cap \left(\sum_{i \neq j} V_{(L_i)} \right) = 0.$$

Wrote I for the intersection appearing in (\clubsuit) ; thus, I is an invariant subspace of V. If I is non-zero, it has an irreducible invariant subspace S. Since $I \subset V_{(L_i)}$ and since $V_{(L_i)}$ is L_j -isotypic, we conclude that

$$S \simeq L_i$$
.

But then $S \cap V_{(L_i)} = 0$ for every $i \neq j$ so that

$$S \cap \left(\sum_{i \neq j} V_{(L_i)}\right) = 0.$$

Since
$$I\subset \left(\sum_{i\neq j}V_{(L_i)}\right)$$
, we conclude that $I=0$.

This completes the proof that V is the direct sum of the $V_{(L_i)}$, as required.

3. Let χ be the character of a representation V of G. For $g \in G$ prove that $\overline{\chi(g)} = \chi(g^{-1})$.

Is it true for any arbitrary class function $f:G\to\mathbb{C}$ that $\overline{f(g)}=f(g^{-1})$ for every g? (Give a proof or a counterexample...)

Let $\rho(g):V\to V$ denote the linear automorphism of V determined by the action of $g\in G$. Then $\chi(g)=\mathrm{tr}(\rho(g))$.

Now, since $\rho(g)$ has *finite order*, say n, its minimal polynomial divides $T^n - 1 \in \mathbb{C}[T]$, and hence every eigenvalue of $\rho(g)$ is an n-th root of unity.

For any n-th root of unity ζ , note that $\overline{\zeta} = \zeta^{-1}$.

Write $\alpha_1, \dots, \alpha_d$ for the eigenvalues of $\rho(g)$, with multiplicity (so that $d = \dim V$). Notice that $\rho(g^{-1})$ has eigenvalues $\alpha_1^{-1}, \dots, \alpha_d^{-1}$.

Thus

$$\chi(g) = \sum_{i=1}^d \alpha_i \quad \text{and} \quad \chi(g^{-1}) = \sum_{i=1}^d \alpha_i^{-1}.$$

Now, we see that

$$\overline{\chi(g)} = \sum_{i=1}^d \overline{\alpha_i} = \sum_{i=1}^d \alpha_i^{-1} = \chi(g^{-1})$$

as required.

It is *not* true that $\overline{f(g)} = f(g^{-1})$ for every class function f and every $g \in G$. Indeed, let $f = \alpha \delta_1$ be a multiple of the characteristic function δ_1 of the trivial conjugacy class $\{1\}$.

 $\text{Then }\overline{f(1)}=\overline{\alpha}\text{ while }f(1^{-1})=f(1)=\alpha\text{, so that if }\alpha\notin\mathbb{R}\text{, we have }\overline{f(1)}\neq f(1^{-1}).$

4. For a prime number p, let $k=\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ be the field with p elements. Let V be an n-dimensional vector space over \mathbb{F}_p for some natural number n, and let

$$\langle \cdot, \cdot \rangle : V \times V \to k$$

be a non-degenerate bilinear form on V.

(A common example would be to take $V=\mathbb{F}_{p^n}$ the field of order p^n , and $\langle \alpha,\beta \rangle=\mathrm{tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(\alpha\beta)$ the trace pairing).

Let us fix a non-trivial group homomorphism $\psi:k\to\mathbb{C}^\times$ (recall that $k=\mathbb{Z}/p\mathbb{Z}$ is an additive group, while \mathbb{C}^\times is multiplicative). Thus

$$\psi(\alpha + \beta) = \psi(\alpha)\psi(\beta)$$
 for all $\alpha, \beta \in k$.

If you want an explicit choice, set $\psi(j+p\mathbb{Z}) = \exp(j \cdot 2\pi i/p) = \exp(2\pi i/p)^j$.

For a vector $v \in V$, consider the mapping $\Psi_v : V \to \mathbb{C}^{\times}$ given by the rule

$$\Psi_v(w) = \psi(\langle w, v \rangle).$$

a. Show that Ψ_v is a group homomorphism $V \to \mathbb{C}^{\times}$.

For $w, w' \in V$ notice that

$$\begin{split} \Psi_v(w+w') &= \psi(\langle w+w',v\rangle) \\ &= \psi(\langle w,v\rangle + \langle w',v\rangle) & \text{since the form is bilinear} \\ &= \psi(\langle w,v\rangle) \cdot \psi(\langle w',v\rangle) & \text{since } \psi \text{ is a group homom} \\ &= \Psi_v(w) \cdot \Psi_v(w') & \text{by definition.} \end{split}$$

This confirms that Ψ_v is a group homomorphism.

b. Show that the assignment $v\mapsto \Psi_v$ is injective (one-to-one).

(This assignment is a function $V \to \operatorname{Hom}(V,\mathbb{C}^\times)$). In fact, it is a group homomorphism. Do you see why? How do you make $\operatorname{Hom}(V,\mathbb{C}^\times)$ into a group?)

One checks that $\operatorname{Hom}(V,\mathbb{C}^{\times})$ is a multiplicitive group (this is the *dual group* \widehat{V} of V, mentioned in the lectures); the product of $\phi,\psi\in\widehat{V}$ is given by the rule $g\mapsto\phi(g)\cdot\psi(g)$.

We note that the assignment $v\mapsto \Psi_v$ is a group homomorphism. For $v,v'\in V$ we must argue that $\Psi_{v+v'}=\Psi_v\Psi_{v'}$.

For $w \in W$ we have

$$\begin{split} \Psi_{v+v'}(w) = & \psi(\langle v+v',w\rangle) \\ = & \psi(\langle v,w\rangle + \langle v',w\rangle) & \text{since the form is bilinear} \\ = & \psi(\langle v,w\rangle) \cdot \psi(\langle v',w\rangle) & \text{since } \psi \text{ is a group homom} \\ = & \Psi_v(w) \cdot \Psi_{v'}(w) & \text{by defn} \end{split}$$

Now to show that $v \mapsto \Psi_v$ is injective, it is enough to argue that the kernel of this mapping is $\{0\}$.

So, suppose that Ψ_v is the identity element of \widehat{V} . In other words, suppose that $\Psi_v(w)=1$ for every $w\in V$. This shows that $\psi(\langle v,w\rangle)=1$ for every $w\in V$. Since ψ is a non-trivial homomorphism $\mathbb{F}_p\to\mathbb{C}^\times$, we know that $\ker\psi=\{0\}$ (remember that k has prime order...) and we conclude that $\langle v,w\rangle=0$ for every $w\in W$.

(Note that $\langle v, w \rangle = 0$ is an equality in $k = \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$).

Since the form $\langle \cdot, \cdot \rangle$ is non-degenerate, so we may now conclude that v = 0.

This proves that the kernel of the mapping $v \mapsto \Psi_v$ is $\{0\}$, hence the mapping is injective.

c. Show that any group homomorphism $\Psi:V\to\mathbb{C}^\times$ has the form $\Psi=\Psi_v$ for some $v\in V$.

Conclude that there are exactly $|V| = q^n$ group homomorphisms $V \to \mathbb{C}^{\times}$.

We observed in class that for any finite abelian group A, there is an isomorphism $A \simeq \widehat{A}$.

In particular, $|A| = |\widehat{A}|$.

Applying this in the case A = V, we conclude that

$$|V| = |\widehat{V}| = |\operatorname{Hom}(V, \mathbb{C}^{\times})|.$$

Now, we have define an *injective* mapping

$$v\mapsto \Psi_v:V\to \widehat(V).$$

Since the domain and co-domain of this mapping are finite of the same order, the mapping $v\mapsto \Psi_v$ is also surjective.

Thus the *pigeonhole principal* shows that every homomorphism $\Psi:V\to\mathbb{C}^{\times}$ has the form $\Psi=\Psi_v$ for some $v\in V$, as required.

Bibliography