Teórica 10

Diferenciabilidad de curros y rectas tongentes.

Sección 13.2 - Stewart

Ejercicios 1 a 4, Préctice 4

El vectos dinerción a la rete reconte a la curra que por por los puntos $P = \Gamma(t)$ \mathcal{D} $Q = \Gamma(t+h)$ viene do do por $Q - P = \Gamma(t+h) - \Gamma(t)$ \overrightarrow{Pa}

Observe mon que el recto

(+4)- [tt) tiene la

Misma dinain gel mismo

ren tido que Pa.

Def: Decimo que Pa.

difernaiable en t ni existe

el riquient l'inite

el riquient l'inite

L' + 1 = lim [(++4) - [1+)]

L' + 1 = h > 0

Accimos entonas

que la parametrización admite

une recto tonfente en P= P(t)

Teorema
$$S(r) = \langle f(t), g(t), h(t) \rangle$$

$$\Rightarrow r'(t) = \langle f'(t), g'(t), h'(t) \rangle$$

$$\frac{P'(t)}{F'(t)} = \lim_{\delta \to 0} \frac{P(t+\delta) - P(t)}{\delta} = \frac{1}{\delta} \left(\frac{f(t+\delta), g(t+\delta), h(t+\delta)}{f(t), g(t+\delta), h(t+\delta)} \right) - \frac{1}{\delta} \left(\frac{f(t+\delta), g(t+\delta), h(t+\delta)}{f(t), g(t+\delta), g(t+\delta), g(t+\delta)} \right) = \lim_{\delta \to 0} \frac{f(t+\delta) - f(t)}{f(t), g(t+\delta), g(t+\delta), g(t+\delta), g(t+\delta)} = \frac{1}{\delta} \left(\frac{f'(t+\delta), g'(t+\delta), g'(t+\delta), g'(t+\delta)}{f(t), g'(t+\delta), g'(t+\delta), g'(t+\delta), g'(t+\delta)} \right) = \frac{1}{\delta} \left(\frac{f'(t+\delta), g'(t+\delta), g'(t+\delta)$$

[1) Colouba el vecto derivado de Γ (1) Colouba el vecto derivado de Γ (2) à cuad a la ecuación paramétria de la recta tangente en Γ (0)= $\hat{\mathbf{C}}$?

(2) à cuad a la ecuación paramétria de la recta tangente en Γ (0)= $\hat{\mathbf{C}}$?

(2) $\hat{\mathbf{C}}$ (1) $\hat{\mathbf{C}}$ (1) = $\langle 3t^2, e^+ + t(-e^+), (cos2t), 2 \rangle = \langle 3t^2, e^+(1-t), 26s2t \rangle$.

(2) $\hat{\mathbf{C}}$ (0)= $\langle 0, 1, 2 \rangle$ (2) $\hat{\mathbf{C}}$ (0)= $\langle 0, 1, 2 \rangle$ de recta tangente, para para el (1,0,0) de tiene dirección (0,1,2) $\hat{\mathbf{C}}$ (0,1,2) + (1,0,0) $\hat{\mathbf{C}}$ (0,1,2) + (1,0,0)

Obs si llamomos $\hat{\mathbf{C}}$ a recta tangente mos modizados, su tiene $\hat{\mathbf{C}}$ (1) = $\hat{\mathbf{C}}$ (2) = $\hat{\mathbf{C}}$ (3) = $\hat{\mathbf{C}}$ (1) = $\hat{\mathbf{C}}$ (2) = $\hat{\mathbf{C}}$ (3) = $\hat{\mathbf{C}}$ (1) = $\hat{\mathbf{C}}$ (2) = $\hat{\mathbf{C}}$ (3) = $\hat{\mathbf{C}}$ (1) = $\hat{\mathbf{C}}$ (2) = $\hat{\mathbf{C}}$ (3) = $\hat{\mathbf{C}}$ (1) = $\hat{\mathbf{C}}$ (2) = $\hat{\mathbf{C}}$ (3) = $\hat{\mathbf{C}}$ (1) = $\hat{\mathbf{C}}$ (2) = $\hat{\mathbf{C}}$ (3) = $\hat{\mathbf{C}}$ (1) = $\hat{\mathbf{C}}$ (2) = $\hat{\mathbf{C}}$ (3) = $\hat{\mathbf{C}}$ (1) = $\hat{\mathbf{C}}$ (2) = $\hat{\mathbf{C}}$ (3) = $\hat{\mathbf{C}}$ (4) = $\hat{\mathbf{C}}$ (3) = $\hat{\mathbf{C}}$ (4) = $\hat{\mathbf{C}}$ (5) = $\hat{\mathbf{C}}$ (6) = $\hat{\mathbf{C}}$ (6) = $\hat{\mathbf{C}}$ (6) = $\hat{\mathbf{C}}$ (7) = $\hat{\mathbf{C}}$ (7) = $\hat{\mathbf{C}}$ (8) = $\hat{\mathbf{C}}$ (8) = $\hat{\mathbf{C}}$ (8) = $\hat{\mathbf{C}}$ (8) = $\hat{\mathbf{C}}$ (9) = $\hat{\mathbf{C}}$ (9) = $\hat{\mathbf{C}}$ (9) = $\hat{\mathbf{C}}$ (1) = $\hat{\mathbf{C}}$ (1) = $\hat{\mathbf{C}}$ (2) = $\hat{\mathbf{C}}$ (3) = $\hat{\mathbf{C}}$ (3) = $\hat{\mathbf{C}}$ (3) =

$$\begin{array}{l}
\chi(1, f'(x_0)) + (\chi_0, f(x_0)) \\
(\chi + \chi_0, \chi \cdot f'(\chi_0) + f(\chi_0)) \\
\chi = \chi + \chi_0 \longrightarrow \chi = \chi - \chi_0 \\
\chi = \chi_1 f'(\chi_0) + f(\chi_0) \\
=) \quad \chi = f'(\chi_0) (\chi - \chi_0) + f(\chi_0)
\end{array}$$

(1)
$$(m+m)'(t) = m'(t) + m'(t)$$

(2) $(AM)'(t) = A \cdot M'(t)$
(3) $[f(t)M(t)]' = f(t) \cdot M(t) + f(t) \cdot M'(t)$
 $+ f(t) \cdot M'(t)$
(4) $(m \cdot m')'(t) = M(t) \cdot m'(t) + f(t) \cdot m'(t)$

Teorema (reglos de derivorión)

Seon M(t) y N(t) dos funcions
vectoriales. Suponformo que ambos
non diferenciables en t.

Entracs

(5) $(m \times \pi)'(t) = m'(t) \times \pi'(t)$ + $m(t) \times \pi'(t)$ (6) $[m(f(t))]' = m'(f(t)) \cdot f'/t$

Dem de (4)

(M·N)(+) = fil+)·gil+)+fil+)gil+)+fi(+)gil+)

$$(M \cdot N)$$
 |t) = f_1 |t) g_1 |t) + f_1 |t) g_1 |t) + f_2 |t) g_2 |t) + f_3 |t) g_3 |t) + f_3 |t) g_3 |t) |t) |t)

$$(\mathbf{r}, \mathbf{r})(t) = |\mathbf{r}(t)|^2 = c^2$$