《大数据算法》作业 2022 年春

截止日期: 2022 年 5 月 6 日 23:59

Exercise 1 20 分

在 COUNTSKETCH 算法及其分析中,我们证明了如果选择 $w>3k^2,\ d=\Omega(\log n)$,那么以 $1-\frac{1}{n}$ 的概率,对于任意 $i\in[n],\ |\tilde{x}_i-x_i|\leq \frac{\|x\|_2}{k}$ 。这个估计有可能在某些情况是比较坏的,例如当 $\|x\|_2$ 的值主要集中在少数几个坐标上的时候。

对于固定的整数 $\ell > 0$, 对于任意 $i \in [n]$, 定义向量 $y^{(i)} \in \mathbb{R}^n$ 如下:

$$y_j^{(i)} = \begin{cases} 0 & \text{如果 } j = i \text{ 或者 } j \text{ 是 } x \text{ 中 } (\text{在绝对值意义下}) \text{ 最大的 } \ell \text{ 个值所对应的坐标之一}, \\ x_j & \text{否则} \end{cases}$$

证明对于 $\ell = k^2$,如果 $w = 6k^2$, $d = \Omega(\log n)$,那么以 $1 - \frac{1}{n}$ 的概率,对于任意 $i \in [n]$, $|\tilde{x}_i - x_i| \leq \frac{\|y^{(i)}\|_2}{k}$ 。

Exercise 2 20 分

假设 k_1, k_2 是两个核 (kernel) 函数。证明:

- (a) 对于任意常数 $c \ge 0$, ck_1 是一个核函数。
- (b) 对于任意标量 (scalar) 函数 f, $k_3(x,y) = f(x)f(y) \cdot k_1(x,y)$ 是一个核函数。
- (c) $k_1 + k_2$ 是一个核函数。
- (d) $k_1 \cdot k_2$ 是一个核函数。

Exercise 3 20 分

令 $X = \mathbb{R}^d$,并定义 \mathcal{H} 为 X 上的所有 axis-parallel boxes 所构成的集合。具体来说, $\mathcal{H} = \{h_{a,b} \mid a,b \in X\}$ 。对于 $x \in X$, $h_{a,b}(x)$ 定义如下:

$$h_{\mathbf{a},\mathbf{b}}(\mathbf{x}) = \begin{cases} 1 & \text{如果 } a_i \leq x_i \leq b_i \text{ 对于任意的 } i = 1,\dots,d, \\ -1 & 否则。 \end{cases}$$

选择一个可以被 \mathcal{H} 打散 (shatter) 的点集 V, 并

- (a) 通过证明 V 是可以被 \mathcal{H} 打散的,来证明 \mathcal{H} 的 VC-维(VC-dimension)至少为 |V|;
- (b) 通过证明不存在大小为 |V|+1 的点集是可以被 $\mathcal H$ 打散的,来证明 $\mathcal H$ 的 VC-维至多为 |V|。

Exercise 4 20 分

一个点集 $S \subseteq \mathbb{R}^d$ 被称为是"可以被一个间隔(margin)为 γ 的线性分割子(linear separator)所打散的",

如果对于 S 中所有点的任意一个分类标号(labelling)都是可以被某个间隔为 γ 的线性分割子来实现的。证明在单位球中,不存在一个大小为 $\frac{1}{\gamma^2}+1$ 且可以被一个间隔为 γ 的线性分割子所打散的集合。

提示:考虑感知机 (Perceptron) 算法;尝试反证法。

Exercise 5 20 分

令实例空间 (instance space) $X = \{0,1\}^d$,并令 \mathcal{H} 为所有的 3-合取范式公式 (3-CNF formula) 所构成的类。 具体来说,考虑所有的由至多 3 个文字 (literal) 的析取(即 OR)所构成的逻辑子句 (clause), \mathcal{H} 是所有的可以被描述成这样的子句的合取(conjunction)形式的概念(concepts)构成的集合。例如,目标概念 c^* 可能为 $(x_1 \vee \bar{x_2} \vee x_3) \wedge (x_2 \vee x_4) \wedge (\bar{x_1} \vee x_3) \wedge (x_2 \vee x_3 \vee x_4)$ 。假设我们在 PAC-learning 的设定中:训练数据中的样本(examples)是根据某个分布 D 抽样出来的,它们是根据某个 3-合取范式公式 c^* 来被标号的。

- (a) 给出样本个数 m 的一个下界,保证以至少 $1-\delta$ 的概率,对于所有的与训练数据一致 (consistent) 的 3-合取范式公式,其错误都不超过 ε ,这里的错误是相对应于分布 D 而言的。
- (b) 假设存在一个 3-合取范式公式与训练数据一致,给出一个多项式时间的算法来找到一个这样的公式。