Функціональний аналіз I курс магістратура, 2 семестр

17 лютого 2024 р.

0.1 Деякі вступні слова

Деякі означення зі загальної топології, метричних просторів, лінійної алгебри та теорії міри вважатимуться відомими.

Definition 0.1.1 Задано E – векторний простір над полем k (у рамках даного курсу переважно будуть поля \mathbb{R}, \mathbb{C}).

Векторний простір E буде **топологічним**, якщо

1) задана стандартна топологія на полі k

2) операції
$$+ : E \times E \to E$$
 (додавання) та $\cdot : k \times E \to E$ (множення на скаляр) – неперервні

Мабуть, варто розписати детально, що ми матимемо в такому разі. Тимчасово позначу додавання за відображення add: $E \times E \to E$ та множення на скаляр за відображення scalar: $k \times E \to E$. Оберемо будь-яку точку $(x,y) \in E \times E$. Тоді на ній add неперервне, тобто $\forall U$ — відкритий окіл add $(x,y):\exists V$ — відкритий окіл точки (x,y): add $(V)\subset U$. Зауважимо, що для V — відкритого окола (x,y) — існують відкриті околи V_x,V_y , для яких $V_x \times V_y \subset V$. Далі, в нашому випадку add $(U)=\{\mathrm{add}(x,y)\mid (x,y)\in V\}=\{x+y\mid (x,y)\in V\}\supset \{x'+y'\mid x'\in V_x,y'\in V_y\}\stackrel{\mathrm{nosin.}}{=} V_x+V_y$.

Таким чином, $\forall U_{x+y}$ – відкритий окіл $x+y:\exists V_x,V_y$ – відкриті околи $x,y:V_x+V_y\subset U_{(x,y)}.$ Аналогічно $\forall U_{\lambda x}$ – відкритий окіл $\lambda x:\exists V_\lambda,V_x$ – відкриті околи $\lambda,x:V_\lambda\times V_x\subset U_{\lambda x}.$

Remark 0.1.2 Для топологічного векторного простору достатньо визначити окіл точки 0. Дійсно, всі інші околи $U_x \cong U_0$. В одну сторону в нас неперервне відображення $y \mapsto y + x$, а в іншу сторону – теж неперервне $y \mapsto y - x$.

0.2 Лінійні нормовані простори

Definition 0.2.1 Задано E – векторний простір над полем $k = \mathbb{R}$ або $k = \mathbb{C}$.

Лінійним нормованим простором називають векторний простір E над полем k, на якій задається **норма** $\|\cdot\|: E \to k$, що задовольняє таким властивостям:

$$1)\forall x\in E:\|x\geq 0\|, \text{при цьому }\|x\|=0\iff x=0$$

$$2)\forall x\in E:\forall \lambda\in k:\|\lambda x\|=|\lambda|\|x\|$$

$$3)\forall x,y\in E:\|x+y\|\leq \|x\|+\|y\|$$

Proposition 0.2.2 Якщо E – лінійний нормвований простір, то (E, ρ) , де $\rho(x, y) = ||x - y||$, автоматично утворює метричний простір.

Proof.

- 1) $\rho(x,y) = \|x-y\| \ge 0$ перша властивість норми; $\rho(x,y) = \|x-y\| = 0 \iff x-y = 0 \iff x=y;$
- 2) $\rho(y,x) = ||y-x|| = ||(-1)(x-y)|| = |(-1)|||x-y|| = \rho(x,y);$

3)
$$\rho(x,z) = ||x-z|| = ||(x-y) + (y-z)|| \le ||x-y|| + ||y-z|| = \rho(x,y) + \rho(y,z).$$

Corollary 0.2.3 Якщо E – лінійний нормований простір, то E – автоматично лінійно топологічний простір.

Задамо просто окіл нуля як $B_0(r) = \{x \in E \mid ||x|| < r\}.$

Proposition 0.2.4 Властивості норми

Задано E – лінійний норований простір. Тоді справедливо наступне:

- 1) $||x y|| \ge |||x|| ||y|||$;
- 2) Нехай задана послідовність $\{x_n, n \geq 1\} \subset E: x_n \to x$. Тоді $\|x_n\| \to \|x\|$ при $n \to \infty$.

Proof.

Дещо я залишу без доведення:

- 1) Brasiera: ||x|| = ||x y + y|| ma ||y|| = ||y x + x||.
- 2) $x_n \to x$, тобто це означає $||x_n x|| \to 0$. Отже, завдяки властивості 1), отримаємо $0 \le |||x_n|| ||x||| \le ||x_n x|| \to 0$ при $n \to \infty$. Таким чином, $||x_n|| \to ||x||$.

Всі властивості доведені.