

Predicting Food Deserts in the United States

Natalie Cygan, Grace Kim, Priscilla Lui

Motivation

- In 2010, the USDA reported that over 23 million Americans lived in areas with limited access to affordable and nutritious food, known as food deserts.
- This limited access to affordable and nutritious food has significant health impacts, particularly for children, as processed sugar- and fat-laden foods contribute to health epidemics such as obesity.[1]
- Goals:

1) Build a predictor to classify areas likely to become food deserts.

2) Identify which features are the best predictors of food deserts.

Figure 1: Food deserts in the US (USDA Food Access Research Atlas)^[2]

Feature Engineering

- Prediction labels: Food desert or Not food desert. (Source: 2015 USDA Food Access Research Atlas)
- Features: Ten features were socioeconomic features of 12,060 zip codes in 2015. Ten additional features were the percent changes for those same socioeconomic features from 2012 to 2015. (Source: US Census)
- Final dataset: 12,060 labeled data points with 20 features each (2337 of which were food deserts).

Sample Census Features		
Unemployment rate	% Change in unemployment rate	
Median rent	% Change in Median rent	
College Education Rates	% Change in College Education Rates	
Geographic mobility	% Change in Geographic mobility	

Model Rankings

Results & Analysis

F1-Score Comparison

Classifier	'Not Food desert'	'Food desert'
SVM	0.70	0.30
Logistic Regression	0.81	0.23
Neural Network	0.89	0.07
Random Forest	0.89	0.0

- For all models, the F1-Scores for 'Food desert' were much lower than those of 'Non Food desert' because the dataset was unbalanced.
- SVM and Logistic Regression performed well, perhaps due to balancing of class weights.

Most Important Features:

- Income below poverty level
- Median income, % Change in median income
- Number of people w/o health insurance coverage

Next Steps to Address Challenges:

- Experimenting with more ways to balance data Training NN to have higher precision
- Attempts thus far:
 - Determining the # of NN Layers and Nodes
 - Decision Tree Classifier to find ~# of hidden layers (see fig. 2)
 - Grid Search to iterate through permutations of # of layers and nodes per layers Unbalanced dataset:
 - - 20% was labeled as 'Food desert'
- Tried over-sampling, and balancing class weights • If time permits, capturing more historical trend information.

References

[1] "Living in a Food Desert: How Lack of Access to Healthy Foods Can Affect Public Health | Notes From NAP". notes.nap.edu. 2011-01-25. [2] United States Department of Agriculture-Economic Research Service. Food Access Research Atlas (formerly known as the Food desert locator). ers.usda.gov/data-products/food-access-research-atlas.aspx.