Bounded sets

Definition (Bounded sets)

A set E in a metric space (S, d) is called bounded if there exists $y \in S$ so that $\sup_{x \in E} d(y, x) < \infty$.

If such a y exists, then $\sup_{x\in E} d(z,x) < \infty$ for any $z\in S$. Indeed, $d(z,x) \leqslant d(y,x) + d(z,y)$ (triangle inequality), hence $\sup_{x\in E} d(z,x) \leqslant d(y,z) + \sup_{x\in E} d(y,x_k) < \infty$.

A sequence (x_k) is bounded if $\{x_1, x_2, \ldots\}$ is a bounded set – that is, for some (equivalently, any) $y \in S$ we have $\sup_k d(y, x_k) < \infty$.

Bolzano-Weierstrass for \mathbb{R}^n

Theorem (Bolzano-Weierstrass, 13.5)

Any bounded sequence in \mathbb{R}^n has a convergent subsequence.

Proof. Suppose $(\vec{x}^{(k)})_k$ is bounded. Write $\vec{x}^{(k)} = (x_i^{(k)})_{i=1}^n$. $(x_1^{(k)})_k$ is bounded, hence exist $k_1 < k_2 < \dots$ s.t. $\lim_j x_1^{(k_j)} = x_1$. $(x_2^{(k_j)})_j$ is bounded, hence exist $j_1 < j_2 < \dots$ s.t. $\lim_\ell x_2^{(k_{j_\ell})} = x_2$. Note that $(\vec{x}^{(k_{j_\ell})})_\ell$ is a subsequence of $(\vec{x}^{(k)})_k$, and $\lim_\ell x_i^{(k_{j_\ell})} = x_i$ for i=1,2. Repeat this procedure n-2 more times, obtain a subsequence $(\vec{y}^{(p)})_p$ of

Repeat this procedure n-2 more times, obtain a subsequence $(\vec{y}^{(p)})_p$ of $(\vec{x}^{(k)})_k$, so that $\lim_p y_i^{(p)} = x_i$ for $1 \leqslant i \leqslant n$ (here $\vec{y}^{(p)} = (y_i^{(p)})_{i=1}^n$). By Lemma (from Lecture 10), $\lim_p \vec{y}^{(p)} = \vec{x} = (x_i)_{i=1}^n$.

Remark: failure of Bolzano-Weierstrass for arbitrary metric spaces.

Equip \mathbb{N} with discrete metric: let d(x,y)=0 if x=y, d(x,y)=1 if $x\neq y$. The bounded sequence $x_n=n$ has no convergent subsequences (convergent sequences are eventually constant, see Lecture 10).

Interior points in metric space (S, d)

Definition (Open ball – not in textbook)

Suppose $s_0 \in S$, r > 0. The open ball with center s_0 and radius r is $\mathbf{B}_r^o(s_0) = \{s \in S : d(s, s_0) < r\}$.

Definition (13.6 – interior of $E \subset S$)

 $s_0 \in S$ is called interior to E if $\exists r > 0$ s.t. $\mathbf{B}_r^o(s_0) \subset E$. The set of interior points is denoted by E^o , and called the interior of E.

If s_0 is interior to E, then it belongs to E. Thus, $E^o \subset E$.

Example. $S = \mathbb{R}$ (with usual metric), $E = [0, \infty)$. $E^o = (0, \infty)$.

 $S = \mathbb{R}^2$ (with Euclidean metric), $E = \{(x,0) : x \ge 0\}$. $E^o = \emptyset$.

Open sets in metric space (S, d)

Definition (13.6 - open sets in S)

 $E \subset S$ is called open if $E = E^o$.

Example. $S = \mathbb{R}$. $[0, \infty)$ is not open, $(0, \infty)$ is.

Fact (13.7 – (iii) and (iv) proved in Homework 4)

- S is open.
- Ø is open.
- A union of any collection of open sets is open.
- An intersection of finitely many open sets is open.
- (iv) doesn't generalize to infinite intersections. $I_n = \left(-\frac{1}{n}, \frac{1}{n}\right) \subset \mathbb{R}$ is open, $\cap_n I_n = \{0\}$ is not.

More about open sets

Proposition (not in textbook)

- Any open ball is open.
- ② For any E, E° is open that is, $(E^o)^o = E^o$.

Proof. (1) Want: if $x \in \mathbf{B}_r^o(x_0)$, then $\exists \varepsilon > 0$ s.t. $\mathbf{B}_{\varepsilon}^o(x) \subset \mathbf{B}_r^o(x_0)$. In fact, $\varepsilon = r - d(x, x_0)$ will do: if $y \in \mathbf{B}_{\varepsilon}^o(x)$, then $d(x_0, y) \leq d(x_0, x) + d(x, y) < d(x_0, x) + \varepsilon = r$.

(2) Suppose $x_0 \in E^o$, and show that $x_0 \in (E^o)^o$. By definition of E^o , $\exists r > 0$ s.t. $\mathbf{B}_r^o(x_0) \subset E$. For $x \in \mathbf{B}_r^o(x_0) \exists \varepsilon > 0$ s.t. $\mathbf{P}_r^o(x_0) \subset E^o$. Thus, $x \in E^o$ and therefore $\mathbf{P}_r^o(x_0) \subset E^o$.

 $\mathbf{B}_{\varepsilon}^{o}(x) \subset \mathbf{B}_{r}^{o}(x_{0}) \subset E$. Thus, $x \in E^{o}$, and therefore, $\mathbf{B}_{r}^{o}(x_{0}) \subset E^{o}$.

Therefore, x_0 is interior to E^o .

Open sets are unions of open balls

Proposition (not in textbook)

A set is open iff it is a union of open balls.

Proof. \Leftarrow : a union of open sets is open.

$$\Rightarrow$$
: if E is open, them $E=E^o$ – that is, $\forall x \in E \ \exists \ r=r(x)>0$ s.t.

$$\mathbf{B}^o_{r(x)}(x)\subset \dot{E}$$
. Then $E=\cup_{x\in E}\mathbf{B}^o_{r(x)}(x)$.

Corollary (not in textbook)

For any $x_0 \in S$, $S \setminus \{x_0\}$ is open.

Proof.
$$S\setminus\{x_0\}=\cup_{x\neq x_0}\mathbf{B}^o_{d(x,x_0)}(x).$$

Closed sets in metric space (S, d)

Definition (13.6 - closed sets in S)

 $E \subset S$ is called closed if $S \setminus E$ is open.

Fact (obtained from 13.7 using de Morgan's laws)

- S is closed.
- Ø is closed.
- An intersection of any collection of closed sets is closed.
- A union of finitely many closed sets is closed (does not generalize to infinite unions).

Fact (some de Morgan's laws, proved in Homework 4)

Suppose $(A_i)_{i \in I}$ are subsets of S. Then

$$S\setminus (\cup_i A_i) = \cap_i (S\setminus A_i), \ S\setminus (\cap_i A_i) = \cup_i (S\setminus A_i).$$

Examples of open and closed sets

Example: finite sets are closed.

Conisder $E = \{x_1, \ldots, x_n\} \subset S$.

For $1 \leqslant i \leqslant n$, $S \setminus \{x_i\}$ is open, hence $\{x_i\}$ is closed.

 $E = \{x_1\} \cup \ldots \cup \{x_n\}$ is closed, as a finite union of closed sets.

Example: intervals in \mathbb{R} . Suppose a < b.

(a, b) is open, not closed. [a, b] is closed, not open.

(a, b], [a, b) are neither.

Example: discrete metric. For
$$x, y \in S$$
, $d(x, y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$.

Describe open and closed sets.

Hint. Suppose $s \in S$. Is $\{s\}$ closed? open?

Every set is both open and closed!

Moral of the story: sometimes a set can be both open and closed.

Being open or closed depends on the ambient space

Suppose (S, d) is a metric space, and $E \subset S$.

Being open or closed is a property of the position of E inside of S, and not of E itself.

Example: Suppose d is the usual metric on \mathbb{R} , which is inherited by $E = \mathbb{Q}$.

If $S = \mathbb{Q}$ itself: E is both open and closed in S.

If $S = \mathbb{R}$: E is neither open nor closed in S.

Indeed, if *E* were closed, then $\mathbb{R}\backslash\mathbb{Q}$ would have to be open.

That is, for any $x_0 \in \mathbb{R} \setminus \mathbb{Q}$, there would exist r > 0 s.t.

 $(x_0 - r, x_0 + r) = \mathbf{B}_r^o(x_0) \subset \mathbb{R} \setminus \mathbb{Q}$. This is impossible, due to the denseness of rationals.

The possibility of *E* being open is ruled out similarly.

Closure and boundary of a set

Definition (13.6 – closure)

The closure of $E \subset S$ (denote by by E^-) is the intersection of all closed sets containing E.

Observations. (1) $E \subset E^-$.

(2) E^- is closed, as an intersection of closed sets; this is the smallest closed set containing E.

Definition (13.6 – boundary)

The boundary of $E \subset S$ is $\partial E = E^- \setminus E^o$.

Descriptions of closure and boundary

Proposition (13.9)

- \bullet $E = E^-$ iff E is closed.
- **6** E is closed iff the limit of any sequence of points in E is in E.

Proof. (a) is clear.

(c) \Rightarrow (b): E^- is the set of limits of sequences from E. (b) implies that $E^- = E$, hence by (a), E is closed.

More about E^-

Lemma (not in textbook)

 $x_0 \notin E^-$ iff $\exists r > 0$ s.t. $\mathbf{B}_r^o(x_0) \cap E = \emptyset$.

Proof. \Leftarrow : $S \setminus \mathbf{B}_r^o(x_0)$ is closed, contains E. E^- is the smallest closed set containing E, hence $E^- \subset S \setminus \mathbf{B}_r^o(x_0)$.

 \Rightarrow : If $x_0 \notin E^-$, then x_0 belongs to open set $F = S \setminus E^-$. $F = F^o$, hence $\mathbf{B}_r^o(x_0) \subset F$ for some F.

Proof: $s \in E^-$ iff it is a limit of a sequence of points in E.

If $s \notin E^-$, then $\exists r \text{ s.t. } \mathbf{B}_r^o(s) \cap E = \emptyset$. No sequence $(s_n) \subset E$ can converge to s, since $d(s_n, s) \geqslant r$.

If $s \in E^-$, then for any $n \in \mathbb{N}$ we can find $s_n \in \mathbf{B}^o_{1/n}(s) \cap E$; then $\lim s_n = s$.

Further examples

Example. Find the closure of $E = \{\frac{1}{n} : n \in \mathbb{N}\} \subset \mathbb{R}$. $E^- = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$ Recall: $s \in E^-$ iff $\mathbf{B}^o_r(s) \cap E \neq \emptyset$, $\forall r > 0$. Clearly all points of E has this property, as does 0 (due to the Archimedean Property of reals). If s < 0, then $\mathbf{B}^o_{|s|}(s) \cap E = \emptyset$, so $s \notin E^-$. If s > 1, then $\mathbf{B}^o_{s-1}(s) \cap E = \emptyset$, so $s \notin E^-$. If $s \in (0,1) \setminus E$, let $n = \lfloor \frac{1}{s} \rfloor$, then $\frac{1}{n+1} < s < \frac{1}{n}$. Thus, $\mathbf{B}^o_r(s) \cap E = \emptyset$, for $r = \min \left\{ \frac{1}{n} - s, s - \frac{1}{n+1} \right\}$. Conclude: $E^- = E \cup \{0\}$.