MA557 Homework 9

Carlos Salinas

November 15, 2015

CARLOS SALINAS PROBLEM 9.1

PROBLEM 9.1

Let R be a Noetherian ring, $R \subset S$ an extension of rings, and $x \in S$. Show that x is integral over R if and only if for every minimal prime \mathfrak{q} of S, the image of x in S/\mathfrak{q} is integral over $R/\mathfrak{q} \cap R$.

Proof. \Longrightarrow Suppose that x is integral over R. Then x satisfies a monic polynomial of degree n, say $f(X) = X^n + a_1 X^{n-1} + \cdots + a_n$. Let \mathfrak{q} be a minimal prime of S and consider the quotient ring S/\mathfrak{q} . If $x \in \mathfrak{q}$ there is nothing to show as $\bar{x} = \bar{0}$ hence satisfies the polynomial X over $R/\mathfrak{q} \cap S$. Suppose $x \notin \mathfrak{q}$. Then

$$\bar{0} = \overline{x^n + a_1 x^{n-1} + \dots + a_n} = \bar{x}^n + \bar{a}_1 \bar{x}^{n-1} + \dots + \bar{a}_n$$

so \bar{x} satisfies the polynomial $\bar{f}(X)$. Hence, \bar{x} is integral over $R/\mathfrak{q} \cap S$.

 \Leftarrow Conversely, suppose that for $x \in S$ the image of x in S/\mathfrak{q} is integral over $R/\mathfrak{q} \cap S$. Then we shall show that x is integral over R. For this, it suffices to show that R[x] is a finite R-module.

Since I've not been successful at showing my assertion let us make an extra assumption on S. In particular, we shall assume that S is Noetherian. Since S is Noetherian, S contains finitely many minimal primes $\mathfrak{q}_1, ..., \mathfrak{q}_n$. Let $f_i(X) \in R[X]$ be the minimal polynomial of x in S/\mathfrak{q}_i , i.e., $f_i(x)\mathfrak{q}_i$. Then

$$f(x) = f_1(x) \cdots f_n(x) \in \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_n = \text{nil } S.$$

Since nil S is nilpotent, $f(x)^m = 0$ for some positive integer m. Thus, x is integral over R.

 $MA557\ Homework\ 9$

CARLOS SALINAS PROBLEM 9.2

PROBLEM 9.2

Let d be a square-free integer and R the integral closure of ${\bf Z}$ in ${\bf Q}(\sqrt{d})$. Show that

$$R = \begin{cases} \mathbf{Z}[\sqrt{d}] & \text{if } d \not\cong 1 \mod 4 \\ \mathbf{Z}\left[\frac{1+\sqrt{d}}{2}\right] & \text{if } d \cong 1 \mod 4 \end{cases}.$$

Proof.

 $MA557\ Homework\ 9$

CARLOS SALINAS PROBLEM 9.3

Problem 9.3

Let $R \subset S$ be an integral extension of rings and I and R-ideal. Show that

- (a) $ht IS \leq ht I$
- (b) ht IS = ht I if S is a domain and R is normal.

Proof.

 $MA557\ Homework\ 9$