CSE4088 Introduction to Machine Learning Homework 2

Berk Kırtay - 150118043

Generalization Error

The formula changes when we apply €=0.005 and M=1: $P[|E_{in}-E_{out}| > 0.05] <= 2 \cdot e^{\frac{-1}{200} \cdot N} <= 0.003$

1.

For
$$N = 500 - > 2 \cdot e^{\frac{-5}{2}} = 0.164$$
 which is greater than 0.03

So we can calculate by trying different values of N.

For
$$N = 1000 - > 2 \cdot e^{\frac{-1}{200} \cdot 1000} = 0.0134$$
 which is less than 0.03

Answer is N=1000, B.

2.

For
$$N = 1500 - > 2 \cdot e^{\frac{-1}{200} \cdot 1500} = 0.011$$
 which is less than 0.03

Answer is N=1500, C.

3.

For
$$N = 2000 - > 2 \cdot e^{\frac{-1}{200} \cdot 2000} = 0.009$$
 which is less than 0.03

Answer is N=2000, D.

The Programming Questions

For the rest of the questions, I wrote functions in python and I specified which one I run for each question. More details can be observed in the source code. To run the scripts, please run "hw2.py".

To plot classification line, please call the functions with plotting=True like in the following:

An example program run:

The Perceptron Learning Algorithm

4. and 5.

I run run_pla() function with N = 10. Sample plotting of predicted classification line:

 \times

1000 runs average iterations until converge: 10.97, P[f(x) != g(x)] = 0.111

Answers: 4: B and 5: C

6. and 7.

I run run_pla() function with N = 100. Sample plotting of predicted classification line:

1000 runs average iterations until converge: 115.251, P[f(x) != g(x)] = 0.013

Answers: 6: B and 7: B

Linear Regression

8.

I run run_linear_regression() function with N = 100. Sample plotting of predicted classification line:

1000 runs average:

$$P[f(x)! = g(x)] = E_{in} = 0.0391$$

Answer: C

9.

I run run_linear_regression2() function with N=100. Sample plotting of predicted classification line with 1000 out of sample points:

1000 runs average:

$$P[f(x)! = g(x)] = E_{out} = 0.048$$

Answer: C

10.

I run run_lr_pla() function with N = 10. Sample plotting of predicted classification line:

1000 runs average:

Iterations until converge: 1.733

Answer: A

Nonlinear Transformation

11.

I run run_nonlinear_transformation() function with N=1000. Sample plotting of predicted classification line:

1000 runs average:

$$P[f(x)! = g(x)] = E_{in} = 0.504$$

Answer: D

12.

When we tested each function in the choices, the hypothesis in the A choice gives the least disagreements with our predicted target function.

Answer: A

13.

I run run_nonlinear_transformation2() function with N=1000. Sample plotting of predicted classification line with 1000 out of sample points:

$$P[f(x)! = g(x)] = E_{out} = 0.101$$

1000 runs average:

Answer: B