General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

MCR-80-509 (Issue 3)

SPACE ENVIRONMENTAL EFFECTS ON HON-METALLIC MATERIALS

CONTRACT NAS8-33578

QUARTERLY PROGRESS REPORT NO. 3

July 8, 1980

MeME 79/382M

by

John A. Shepid Program Manager

PREPARED FOR:

MARSHALL SPACE FLIGHT CENTER

HUNTSVILLE, ALABAMA

MARTIN MARIETTA CORPORATION P.O. BOX 179 DENVER, COLORADO 80201

(NASA-CR-161545) EVALUATION AND PREDICTION OF LONG TERM SPACE ENVIRONMENTAL EFFECTS ON NON-METALLIC MATERIALS Quarterly progress Report (Martin Marietta Corp.) 13 p CSCL 07D G3/23

N80-30436

Unclas 28481

I. INTRODUCTION

The objective of this program is to determine the effects of prolonged space environment on a variety of spacecraft materials and where possible, compare these results with predicted behavior.

II. TECHNICAL PROGRESS SUMMARY

Task I - Physical properties testing

Ten materials have been evaluated for electrical and mechanical properties following long term vacuum exposure. This work is performed under subtask 1.1 in the revised schedule included with this report.

The materials tested during this reporting period are listed below.

CLASSIFICATION	TESTS
Molding compound	Dielectric Constant
Silicone encapsulant	Dielectric Constant
Epoxy encapsulant	Dielectric Constant
Polyimide	Dielectric Constant and Dielectric Strength
Sealant	180º Peel Strength
Film adhesive	Shear Strength
Laminated plastic sheet	Flexure, Peel Strength of copper foil
Electrical insulation	Tensile Strength
Electrical insulation	Tensile Strength
	Molding compound Silicone encapsulant Epoxy encapsulant Polyimide Sealant Film adhesive Laminated plastic sheet Electrical insulation

The data obtained for these materials is presented in tabular form at the end of this report.

It is expected that subtask 1.1 will be completed during July. Subtask 1.2 (irradiation exposure) cannot progress until a canister system has undergone calibration with the MSFC particle accelerator. This activity is currently underway at MSFC and timely completion is essential.

The fixture fabrication phase of subtask 1.3 is nearing completion. A trial assembly and leak test of the fixture is

scheduled for July.

Task II Perform TGA/RGA

The TGA work continues in conjunction with the Task I physical properties effort. Real-time weight loss data will be available on 5 materials (Lexan, Lucite, Nylon, Polyethelene, Polyurethane) which should help greatly in performing subtask 2.3.

Task III Literature Survey

The literature survey is being edited and after corrections are made a copy will be sent to the technical personnel at MSFC per their request.

III. WORK PLANNED:

a) Complete subtask 1.1

b) Leak test manipulator adaptor system.

c) Compile real-time weight loss data.

MARTIN MARIETTA ADDED REPORTS THE REAL PROPERTY OF THE PROPE FERROR E NE DATE DE CHERTY
ESTADITOS PROSENTES DES SONO ESTADITOS DE CHERTO AND STREET STREE FORD & REFERENCE ASSAULT STATE BYTS LOTE! LITTURE EXTENT

FILTER FORESTOR

FORESTOR FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORESTOR

FORE SPACE ENVIRONMENTAL EFFECTS A Kalen MOD-20570 SPACE · EN EDICET OF · FIRE EPER.

C. TOOK CO.

Diall FS-80 Black, Mil-P-19833 Type GOI-30

Dielectric Constant (ASTM D150) @ 1 MHZ

Exposure	Average	High	Low	Samples Tested
Baseline	3.79	3.81	3.78	3
Heat Compatibility (1)	3.60	3.69	3.40	3
Heat Compatibility (1) plus 30 day thermal vacuum (2)	3.43	3.57	3.33	. 3
Long Term Thermal Vacuum	3.49	3.49	3.49	2

Dissipation Factor (ASTM D150) @ 1 MHZ

Baseline	0.012	0.013	0.012	3,
Heat compatibility (1	0.009	0.011	0.007	3
Heat compatibility (1 plus 30 day thermal vacuum (2)) 0.002	0.003	0.001	3
Long Term Thermal	.0043	.0043	.0043	2

- (1) Heat compatibility -380 hours at 275° F (408° K) in N₂ atmosphere.
- (2) Tested at 1×10^{-5} Torr after exposure for the specified length of time at 150° F (338°K) and 1×10^{-6} Torr.

Dow Corning 93-500 Dielectric Constant* (ASTM D150-68 @ 1MHZ

		ı e		Camples
Exposure	Average	High	Low	Tested
Baseline	2.79	2.81	2.78	m
<pre>Heat Compatibility(1)</pre>	2.76	2.78	2.74	m
Thermal Vacuum (2)	2.76	2.84	2.68	m
Long term Thermal Vacuum	2.70	2.74	2.65	æ

*Cured 24 hours at room temperature plus 4 hours @ $65^{\circ}\mathrm{C}$ (338 $^{\circ}\mathrm{K}$)

(1) 379 hours at 275° F (408° K) in N₂ atmosphere

(2) Tested at 1×10^{-5} Torr after 1100 hours at 150^{0} F (338°K) at 1×10^{-6} Torr preceded by heat compatibility

STYCAST 1090/Cat. II Dielectric Constant* (ASTM D150-68) @ 1 KHZ

	Average	High	Low	Samples Tested
Baseline	2.89	2.94	2.84	m
Heat Compatibility (1)	2.82	2.85	2.79	က
Thermal Vacuum (2)	2.75	2.83	2.65	m
Long Term Thermal Vacuum	3.17	3.26	3.06	m

*Cured 4 hr at 150° F (338 $^{\circ}$ K) plus 3 hr at 275° F (408 $^{\circ}$ K)

(1) 383 hr at 275° F (408°K) in N₂ atmosphere

(2) Tested at 1×10^{-5} Torr after 750 hr at 150^{9} F (338 9 K) at 1×10^{-6} Torr preceded by heat compatibility

Vespel SP-1
Dielectric Constant (ASTM D150)
@ 1 MHZ

Exposure	Average	High	Low	Samples Tested
Baseline	2.94	2.98	2.90	3
Heat compatibility (1)	2.91	2.96	2.84	3
Heat compatibility (1) plus 30 day thermal vacuum (2)	2.87	2.92	2.84	3
Long Term Thermal	2.44	2.51	2.35	3

Dissipation Factor (ASTM D150) @ 1 MHZ

Baseline	0.00046	0.00047	U.00046	3
Heat compatibility (1)	0.00109	0.0011	0.00106	3
Heat compatibility (2) plus 30 day thermal vacuum (2)	0.00016	0.00016	0.00015	3
Long Term Thermal vacuum	.0013	0.0020	0.0011	3

⁽¹⁾ Heat compatibility - 750 hours at 275° F (408° K) in N_2 atmosphere.

⁽²⁾ Tested at 1×10^{-5} Torr after exposure for the specified length of time at 150° F (338°K) and 1×10^{-6} Torr.

Dielectric Strength volts/mm (volts/mil)

Exposure	Nominal Thickness mm(mils)	Average	High	Low	Samples Tested
Baseline	1.6 (62)		27,000 (676) 28,000 (704)	26,000 (654)	ĸ
Heat compatibility (1)	1.6 (62)	26,000 (666)	1.6 (62) 26,000 (666) 29,000 (742)	24,000 (622)	ro
Heat compatibility (1) plus 30 day thermal vacuum (2)	1.6 (62)	1.6 (62) 19,000 (469)	21,000 (524)	15.000 (388)	, "
Heat compatibility (1) plus 102 month thermal vacuum (2)	1.6 (62)	17,000 (443)	16,000 (405)	15,000 (387)	m

- (1) 570 hours at 275° F (408° K) in N₂ Atmosphere.
- Tested at 1 \times 10⁻⁵ Torr after exposure for the specified length of time at 150^o F (338^o K) and 1 \times 10⁻⁶ Torr. (2)

Dow Corning 6-1106 Silicone Sealant Lot # E1661-40

180° Peel Strength (ASTM D903)

Peel Strength (15/in)

Exposure	Average	High	Low	Samples Tested
Baseline	28	44	18	5
Baseline, Tested at 125°F	18	21	17	5
Baseline, Tested at -25°F	49	64	35	5
Heat Compatiblity (1)	40	42	36	5
Heat Compatiblity (1) plus 30 day thermal vacuum (2)	15.4	17.5	14.6	5
Heat Compatiblity (1) plus 103 months thermal vacuum (2)	14.0	15.5	12.5	5

⁽¹⁾ Heat compatibility - 570 hours at $275^{\circ}F$ ($408^{\circ}K$) in N_2 atmoshpere

⁽²⁾ Tested at 10^{-5} Torr after exposure for the specified length of time at 150^{0} F (338 0 K) and 10^{-6} Torr

HT 435 FILM ADHESIVE

Shear Strength (ASTM D1002), Adlock 851 adherends.

Shear Strength, psi

	.51	ilear bute	iiguii, pai	Camplac
Exposure	Average	High	Low	Samples Tested
Baseline	2040	2160	1940	9
Heat Compatibility (1)	2160	2240	2080	5
Heat Compatibility (1) plus 30 day thermal vacuum (2)	2100	2200	1900	5
Heat Compatibility (1) plus 97 month thermal vacuum (2)	1900	2060	1740	5

- (1) Heat compatibility 570 hours at 2750F (4080k) in $\rm N_2$ atmosphere.
- (2) Tested at 10^{-5} Torr after exposure for the specified length of time at 150° F (338°k) and 10^{-6} Torr.

Plastic Sheet, Copper Clad Laminate Type GF, Grade-FB600 (Synthane-Taylor Corp.)

Peel Strength of Copper Foil (ASTM D1967)

Peel Strength (1bs)

Exposure	Average	High	Low	Samples Tested
Baseline	1.85	1.90	1.82	11
Heat Compatibility (1)	1.57	1.68	1.50	12
Heat Compatibility (1) plus 30 day thermal vacuum (2)	1.53	1.60	1.50	12
Heat Compatibility (1) plus 97 month thermal vacuum (2)	1.69	2.10	1.50	20

- (1) Heat compatibility 570 hours at 275°F (408°K) in $\rm N_2$ atmosphere
- (2) Tested at 10^{-5} Torr after exposure for the specified length of time at 150° F (338°K) and 10^{-6} Torr.

Flexural Strength (ASTM D790)*

	Flexura	1 Strengt	h (psi)	Samples
Exposure Baseline	Average 56,000	High 59,200	Low 54,500	Tes ted 5
Heat Compatibility (1)	55,800	61,200	52,300	5
Heat compatibility (1) plus 30 day thermal vacuum (2)	64,600	65,900	63,700	5
Heat compatiblity plus 97 month thermal vacuum (20	66,400	68,300	64,800	5

- * Procedure A, at a speed of 0.05 inches/minute with a 2 inch span using a 0.054 \times 1 \times 3 inch specimen.
- (1) Heat compatiblity 570 hours at $275^{\circ}F$ ($408^{\circ}K$) in N_2 atmosphere.
- (2) Thermal vacuum Tested at 10^{-5} Torr after exposure for the specified length of time at 150° F (338°K) and 10^{-6} Torr.

Kapton F, 919

Tensile Strength, ASTM D882

Tensile Strength psi

	renatite actiengen par			Commiss
Exposure	Average	High	Low	Samples Tested
Baseline	15,000	16,500	12,700	5
Heat Compatiblity (1)	14,400	16,400	13,400	5
Heat Compatibility (1) plus 30 day thermal vacuum (2)				
Heat Compatibility (1) plus 100 month Thermal Vacuum (2)	15,800	18,500	10,300	5

- (1) Heat compatibility 570 hours at $275^{\circ}F$ ($408^{\circ}K$) in N₂ atmosphere.
- (2) Tested in air after exposure for the specified length of time at 150° F (338°K) and 10^{-6} Torr.

Kapton F 011

Tensile Strength, ASTM D882

Tensile Strength psi

Exposure	Average	High	Low	Sample: Tested
Baseline	13,400	16,400	10,200	. 5
Heat Compatiblity (1)	11,600	15,300	8,200	5
Heat Compatibility (1) plus 30 day Thermal Vacuum (2)				
Heat Compatibility (1) plus 100 month Thermal Vacuum (2)	12,200	15,000	8,400	5

- (1) Heat Compatibility 570 hours at $275^{\circ}F$ ($408^{\circ}K$) in N_2 atmosphere
- (2) Tested in air after exposure for the specified length of time at 150° F (338°K) and 10^{-6} Torr.