Assignment Lecture 5: Normal form algorithms

https://tutorcs.com

Generalized disjunctions/conjunctions

Let X_1, X_2, \dots, X_n be a sequence of propositional formulas.

We write a generalized disjunction as:

ASSIGNMENT Project Exam, Help

We write a **generalized conjunction** as:

If X_1, \ldots, X_n are literals, then $[X_1, X_2, \ldots, X_n]$ is called a **clause**, and $\langle X_1, X_2, \ldots, X_n \rangle$ is called a **clause**. CSTUTOTCS

Valuations on generalized disjunctions/disjunctions

This is how valuations act on generalized disjunctions/disjunctions:

$$v([X_1,...,X_n]) = T$$
 if and only if $v(X_i) = T$ for at least one member of $v(X_1,...,X_n) = T$ if and only if $v(X_i) = T$ for every member of the list $X_1,...,X_n$.

$$v(\langle \, \rangle) = v(\top) = T$$
 (neutral element of conjunction)

α - and β -formulas

We group all propositional formulas of the forms $(X \circ Y)$ and $\neg(X \circ Y)$ (where \circ is one of $\{\land, \lor, \rightarrow, \leftarrow, \uparrow, \downarrow, \not\rightarrow, \not\leftarrow\}$, see the exercises) into two dategories those that act conjunctively and those that act disjunctively are those that act disjunctively are those that act disjunctively are those than act disjunctively.

Conjunctive			Disjunctive		
α	α_1	α_2	β	β_1	β_2
$X \wedge Y \uparrow \uparrow$	t*	CY	/ 1 1(* 1 /*)*(X	com
$\neg(X \lor Y)$	X	Y'	XVY	X.	Y
$\neg(X o Y)$	X	$\neg Y$	$X \rightarrow Y$	$\neg X$	Y
$\neg(X\leftarrow Y)$	$\neg X$	$\neg Y$	$X \leftarrow Y$	X	$\neg Y$
$\neg(X \uparrow Y)$	(&(Jh	atx rest	HX	Orcs
$X \downarrow Y$	$\neg X$	$\neg Y$	$\neg(X\downarrow Y)$	X	Y
$X \not\to Y$	X	$\neg Y$	$\neg(X \not\rightarrow Y)$	$\neg X$	Y
$X \not\leftarrow Y$	$\neg X$	Y	$\neg (X \not\leftarrow Y)$	X	$\neg Y$

Valuations on α - and β -formulas

For every α - and β -formula and every valuation ν , we have

$$A_{s,s}^{(\alpha)} = v(\alpha_1) \wedge v(\alpha_2)$$
 Project Exam Help

Conjunctive normal form algorithm

Given any any propositional formula X, start with $\langle [X] \rangle$.

Given the current expansion $\langle D_1, ..., D_n \rangle$, select one of the disjunctions D_i .

Select a non-literal N from D_i .

If $N = \neg T$, then replace N by \bot . If $N = \neg T$ then replace N by T. If $N = \neg T$, then replace N by T. If N is a β -formula, then replace N by the two formula sequence β_1, β_2

If N is an α -formula, then replace the disjunction S with two disjunctions, one in which N is replaced by α_1 , and one in which N is replaced by α_2 (α -expansion).

Example 1 (CNF expansion)

$$\neg(p \land \neg\bot) \lor \neg(\top \uparrow q)$$

Assighment Project Exam Help

https://tutorcs.com

Example 2 (CNF expansion)

$$(\neg p \to (q \not\leftarrow r)) \to ((p \downarrow q) \uparrow (p \to \neg r))$$

Assignment Project Exam Help

https://tutorcs.com

CNF algorithm expansion rules

Here is a compact representation of these rules:

https://tutorcs.com

Correctness of this algorithm

Proposition: Throughout the algorithm, we produce a sequence of logically equivalent formulas.

Arssignment Project Exam Help

$$D_{i} = [\beta, X_{2}, \dots, X_{k}]$$

$$= [\beta_{1} \text{ https://tutores.com}]$$

$$= [\beta_{1}, \beta_{2}, X_{2}, \dots, X_{k}]$$

$$α$$
-expansion:
$$D_i = [α, X_2, ..., X_k]$$
 hat: cstutorcs
$$= (α_1 \land α_2) \lor (X_2 \lor ... \lor X_k)$$

$$= (α_1 \lor (X_2 \lor ... \lor X_k)) \land (α_2 \lor (X_2 \lor ... \lor X_k))$$

$$= \langle [α_1, X_2, ..., X_k], [α_2, X_2, ..., X_k] \rangle$$

Termination of the algorithm

Proposition: The algorithm terminates, regardless of which choices are made during the algorithm.

Assignment Project Exam Help

Consider a rooted tree. A **branch** is a sequence of nodes starting at the root, descending towards one of the childen in each step (unless no children an **present**). We tay that the cree is **finitely branching**, if every node has only fibitely many children (possibly 0). A tree/branch is **finite** if it has a finite number of nodes; otherwise it is **infinite**.

Theorem (Köpig's lamma): A tree that is finitely branching but infinite must have an infinite branch.

A game with balls

Consider the following game played with balls that have non-negative integer labels:

Assignment Projects Exam Help

In each step, we may remove one ball from the box, and replace it by any (finite) number of balls having lower numbers.

Theorem: this game muttelt Ofacies & Commhoices are made during the game.

Proof: Use König's theorem.

WeChat: cstutorcs

Termination of the algorithm

Proposition: The algorithm terminates, regardless of which choices are made during the algorithm.

Assignment Project Exam Help

Recursion anchor: $r(p) = r(\neg p) = 0$ for variables p; $r(\top) = r(\bot) = 0$; $r(\neg \top) = r(\neg \bot) = 1.$

Recursive at the second representation $r(\alpha) = r(\alpha_1) + r(\alpha_2) + 1$; $r(\beta) = r(\beta_1) + r(\beta_2) + 1$

$$r(\alpha) = r(\alpha_1) + r(\alpha_2) + 1; \ r(\beta) = r(\beta_1) + r(\beta_2) + 1$$

For a generalized disjunction: $r([X_1, ..., X_n]) = \sum_{i=1}^n r(X_i)$ Examples: **Catutores**

$$r((p \to \neg q) \land (\neg \neg r \land \neg \bot)) = \dots$$

$$r([p \land q, \neg \top, \neg \neg r]) = \dots$$

Answers should be 5 and 3, respectively.

Termination of the algorithm

Proposition: The algorithm terminates, regardless of which choices are made during the algorithm.

Assignment Project Exam Help

Assign the current conjunction of disjunctions $\langle D_1, \ldots, D_n \rangle$ a sequence of n balls, by placing one ball labelled $r(D_i)$ for each disjunction D_i into a https://tutorcs.com

Argue that each step of the algorithm corresponds to removing one ball from the box, and replacing it either by two balls with a lower number (α -expansion or typic ball with a lower number (in all other cases). Example: $\langle [p \land q, \neg \top, \neg \neg r], [p \rightarrow q] \rangle$

We have argued before that this game must end, so our algorithm must terminate.

Normal form algorithms

We have seen an algorithm to transform any formula into conjunctive normal form (CNF). How to do the same for disjunctive normal form

Assignment Project Exam Help

Recall the CNF algorithm: Start with $\langle [X] \rangle$, and repeatedly apply one of the following expansion rules:

$$\frac{\neg \top}{\bot}$$
 https://futorcs.com

Here is the DNE agoithm: Start with [(X)] and repeatedly apply one of the following expansion rules:

Example 1 (DNF expansion)

$$\neg(p \land \neg\bot) \lor \neg(\top \uparrow q)$$

Assignment Project Exam Help

https://tutorcs.com

Example 2 (DNF expansion)

$$(\neg p \to (q \not\leftarrow r)) \to ((p \downarrow q) \uparrow (p \to \neg r))$$

Assignment Project Exam Help

https://tutorcs.com