INFO-F521 - Graph Theory - Homework Treewidth

Charles Hamesse (École Polytechnique)

December 2016

1 Properties

1. Treewidth is monotone under the operation of taking minors, that is, $tw(H) \leq tw(G)$ if H is a minor of G.

We have that $\forall H \subseteq G$, the tree decomposition of H is $(T, (V_t \cap V(H))_{t \in T})$ where $|(V_t \cap V(H))_{t \in T})|$ will never exceed $|V_t|$. Therefore, as tw(G) is defined as the minimum value that $\max_{x \in V(T)} |\{v \in V(G) : x \in V(T_v\}| - 1\}, |(V_t \cap V(H))_{t \in T})| \leq |V_t|$, we have $tw(H) \leq tw(G) \ \forall H \subseteq G$.

- 2. Subtrees of a tree have the Helly property.
 - Let's take k=3 subtrees T_1 , T_2 and T_3 and 3 vertices a,b and c. Now, a connects T_1 and T_2 , b connects T_2 and T_3 , c connects T_3 and T_1 . As T_3 is connected to T_1 and T_2 via b and c, it contains those, and their intersection a. Then, the intersection of all 3 subtrees is at least a. This can be generalised easily to any k, the pairwise connections will form a cycle in which trees "contain" others.
- 3. If C is a clique of a graph G and $(T, \{T_v\}_{v \in V(G)})$ is a tree decomposition of G then there exists a node $x \in V(T)$ such that x belongs to all subtrees T_v of vertices $v \in C$.
- 4. $\omega(G) \le tw(G) + 1 \ \forall G$.
 - In the example featured in the statement, we can observe that $\omega(G)=3$ and tw(G)=2. Using the definition of tree decompositions, we can generalise this in the way that all cliques of size t will turn into vertices (in the tree decomposition) listing t vertices (from the original graph G). As tw(G) corresponds to the greatest number of original vertices listed in the tree decomposition vertices minus 1, we have $\omega(G) \leq tw(G) + 1 \ \forall G$.
- 5. /.../
- 6. /.../
- 7. [...]
- 8. $\chi(G) \leq tw(G) + 1 \ \forall G$. We already know $\omega(G) \leq tw(G) + 1 \ \forall G$. Also, $\chi(G) \geq \omega(G)$ (but I don't think this will help).
- 9. /.../
- 10. If G is obtained from H by adding a universal vertex to H then tw(G) = tw(H) + 1. Intuitively, I think this will have the same effect as plugging a new tree root to the previous graph. And this new vertex is connected to all other vertices and subtrees - that will raise tw by one.
- 11. /.../
- 12. /.../
- 13. /.../
- 14. [...]
- 15. /.../
- 16. [...]