Machine Learning Different Data Formats

Edgar F. Roman-Rangel. edgar.roman@itam.mx

Digital Systems Department. Instituto Tecnológico Autónomo de México, ITAM.

May 28th, 2021.

Outline

Data formats

Text

Images

Intro

So far:

- Supervised and non-supervised ML.
- ► Classification, regression, clustering, dimensionality reduction.
- ► Always assuming we already got numeric data: vectors.

What about other types of data? E.g.,

- ► Text,
- Images or video,
- Audio,
- Radio frequencies,
- Etc.

Data must be converted into a numeric descriptor, i.e., vector.

Different formats

Data formats 0000

> 01000000 01000001

Most types of data can be understood as either: 6

01000010

Static data

Vectors, as we already know.

Sequential data

Text, sound, voltage, etc.

Spatial data

Or a combination of both, e.g., video.

Exploit other formats

Design filters that extract relevant statistics, create vectors.

Outline

Data formate

Text

Image

BoW

Bag-of-words (BoW): vector that counts frequency of words.

BoW Example Document: It was the best of times, It was the worst of times. Vocabulary: {it, was, the, best, of, times, worst}

Empezanes con M decumentos 1. Dofinis diccionario común a los M decomendos 2. Para rade doc, creemes un vador de frequencies de les polities del die E, W palabias

Idea: documents of similar topic, have similar word distribution.

◆ロト ◆部 ▶ ◆ 差 ▶ ◆ 差 ● り へ ○

Considerations

- Put all characters in lowercase.
- Remove punctuation and special characters.
- Remove numbers.
- Remove stopwords (articles, prepositions, etc).
- Use lematization or stemming.

TØ-IDF

Term frequency - inverse document frequency (tf-idf): used for weighting each term with a inverse frequency with respect to documents: terms appearing in all documents are of low relevance.

$$w_{x,y} = tf_{x,y} \times log(\frac{N^{2}}{df_{x}})$$

TF-IDFTerm x within document y

 $tf_{x,y} = frequency of x in y$ $df_x = number of documents containing x$ N = total number of documents

(ロ) (団) (巨) (巨) (巨) の9(0)

Embeddings

```
000001 Coiccionio led arpos

000010 - 0iccionio led arpos

1000000
```

Starting from one-hot encoding vectors, find rich dense representation that capture semantic context of words.

Outline

Data formate

Text

Images

Image formation

Each pixel indicates a relative amount of light captured by a sensor.

Derivatives in 2D

Edge detector:

Convolution

		J
Identity	$\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right]$	
Edge detection	0 41 0 0 0 -1 0 0	
	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right] $	
Gaussian blur 3 × 3 (approximation)	$\frac{1}{16} \left[\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{array} \right]$	6

HOG

Local image descriptor

Detect points of interest (PoI): corners of blobs.

SIFT

Scale-Invariant Feature Transform

Each local descriptor is a 128-D vector. There are as many local descriptors as Pol's were detected.

BoVW

Count the frequency of visual words (types of local descriptors).

Descriptors are vectors in \mathbb{R}^N , let's map them to \mathbb{Z} .

- 1. Grab a set of local descriptors.
- 2. Use a clustering algorithm to group them in D clusters.
- 3. Label each descriptor with the index of its cluster.
- 4. Create a *D*-dimensional vector of visual words.

Q&A

Thank you!

edgar.roman@itam.mx