Apresentações Instituto de informática Template Latex

Altino Dantas¹ Deuslirio Junior²

¹Instituto de Informática Federal University of Goiás

²Instituto de Informática Federal University of Goiás

2019

horizontal

Table of Contents

First section

Second section

Preliminary Empirical Study Results

Problemas mais complexos

Exemplo

Em uma versão da linguagem BASIC, o nome de uma variável é uma sequência de um ou dois caracteres alfanuméricos, em que letras maiúsculas e minúsculas não são distinguidas. Além disso, um nome de variável deve começar com uma letra e deve ser diferente das cinco sequências de dois caracteres reservadas para o uso de comandos. Quantos nomes diferentes de variáveis são possíveis nesta versão do BASIC?

Solução

Considere V o número de nomes possíveis de variáveis diferentes do BASIC. Seja V_1 a quantidade de variáveis com um caractere e V_2 a quantidade de variáveis com dois caracteres. Pela regra da soma, $V=V_1+V_2$. Como as variáveis só podem começar com letras, temos que $V_1=26$. Pela regra do produto, há $26 \cdot 36=936$ sequências de tamanho 2 que comecem com uma letra e terminam com um caracter alfanumérico. Porém, não se deve usar 5 variáveis reservadas.

vertical

Problemas mais complexos

Exemplo

Em uma versão da linguagem BASIC, o nome de uma variável é uma sequência de um ou dois caracteres alfanuméricos, em que letras maiúsculas e minúsculas não são distinguidas. Além disso, um nome de variável deve começar com uma letra e deve ser diferente das cinco sequências de dois caracteres reservadas para o uso de comandos. Quantos nomes diferentes de variáveis são possíveis nesta versão do BASIC?

Solução

Considere V o número de nomes possíveis de variáveis diferentes do BASIC. Seja V_1 a quantidade de varíaveis com um caractere e V_2 a quantidade de variáveis com dois caracteres. Pela regra da soma, $V=V_1+V_2$. Como as variáveis só podem começar com letras, temos que $V_1=26$. Pela regra do produto, há $26 \cdot 36=936$ sequências de tamanho 2 que comecem com uma letra e terminam com um caracter alfanumérico. Porém, não se deve usar 5 variáveis reservadas. Assim, $V_2=26 \cdot 36-5=931$. Logo, há $V=V_1+V_2=26+931=957$ nomes diferentes para variáveis nesta versão do BASIC.

Pause Example

In this slide

Pause Example

In this slide the text will be partially visible

Pause Example

In this slide the text will be partially visible And finally everything will be there

blank

Two-column slide

This is a text in first column.

$$E = mc^2$$

- First item
- Second item

This text will be in the second column and on a second tought this is a nice looking layout in some cases.

- 1. First
- 2. Second

vertical

In this slide, some important text will be highlighted because it's important. Please, don't abuse it.

Remark

Sample text

Important theorem

Sample text in red box

Examples

Sample text in green box. The title of the block is "Examples".

mainpoint

Preliminary Empirical Study

vertical

Problemas mais complexos

Exemplo

Em uma versão da linguagem BASIC, o nome de uma variável é uma sequência de um ou dois caracteres alfanuméricos, em que letras maiúsculas e minúsculas não são distinguidas. Além disso, um nome de variável deve começar com uma letra e deve ser diferente das cinco sequências de dois caracteres reservadas para o uso de comandos. Quantos nomes diferentes de variáveis são possíveis nesta versão do BASIC?

Solução

Considere V o número de nomes possíveis de variáveis diferentes do BASIC. Seja V_1 a quantidade de variáveis com um caractere e V_2 a quantidade de variáveis com dois caracteres. Pela regra da soma, $V=V_1+V_2$. Como as variáveis só podem começar com letras, temos que $V_1=26$. Pela regra do produto, há $26 \cdot 36=936$ sequências de tamanho 2 que comecem com uma letra e terminam com um caracter alfanumérico. Porém, não se deve usar 5 variáveis reservadas.

vertical DarkPurple

This is a text in second frame. For the sake of showing an example.

► Text visible on slide 1

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- ► Text visible on slide 2
 - text subitem

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- ► Text visible on slide 2
 - text subitem
- Text visible on slides 3

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- ► Text visible on slide 2
 - text subitem
- Text visible on slide 4

Apresentações Instituto de informática Template Latex

Altino Dantas¹ Deuslirio Junior²

¹Instituto de Informática Federal University of Goiás

²Instituto de Informática Federal University of Goiás

2019