

JAPAN PATENT OFFICE

PCT/JP 03/15238

28.11.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年12月

出 Application Number:

特願2002-350710

[ST. 10/C]:

[JP2002-350710]

RECEIVED 2 2 JAN 2004

PCT

WIPO

出 人 Applicant(s):

和光純薬工業株式会社 武田薬品工業株式会社

SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 1月 8日

【書類名】

特許願

【あて先】

特許庁長官殿

【整理番号】

P2049

【発明者】

【住所又は居所】

大阪府豊中市上野東2丁目4番地56号

【氏名】

デイヴィッド・ゴドウィン・コーク

【発明者】

【住所又は居所】

大阪府大阪市中央区道修町3丁目1番2号 和光純薬工

業株式会社内

【氏名】

井上 国久

【特許出願人】

【識別番号】

000252300

【氏名又は名称】

和光純薬工業株式会社

【代表者】

池添 太

【特許出願人】

【識別番号】

000002934

【氏名又は名称】

武田薬品工業株式会社

【代表者】

武田 國男

【代理人】

【識別番号】

100080274

【弁理士】

【氏名又は名称】

稲垣 仁義

【手数料の表示】

【予納台帳番号】

040383

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【物件名】

図面 1

2/E

【プルーフの要否】

更

出証特2003-3109450

【書類名】明細書

【発明の名称】水分散有機溶媒中の水分離器具及び水分離方法

【特許請求の範囲】

【請求項1】筒状体の側面に形成した開口部に水分離膜を固定し、該水分離膜に水分散有機溶媒を通過させることによって、水を分離するように構成したことを特徴とする水分離器具。

【請求項2】前記筒状体は、下端が閉鎖し上部に水分散有機溶媒注入口を有するように形成したものである、請求項1記載の水分離器具。

【請求項3】前記筒状体を下部に水分離後の有機溶媒排出口を有する外筒内に位置させた請求項2記載の水分離器具。

【請求項4】前記筒状体上端開口部にフランジを形成し、該筒状体を前記外筒に 遊嵌させて、前記フランジで外筒上端に係止させる請求項3記載の水分離器具。

【請求項5】前記水分離膜を固定する開口は、筒状体下端から上端までの間の所 定位置に形成されている請求項1~4のいずれかに記載の水分離用具

【請求項6】前記水分離膜が、疎水性で有機溶媒不溶性のメンブランフィルターである請求項1~5のいずれかに記載の水分離器具。

【請求項7】前記メンブランフィルターがテフロン(登録商標)製である請求項6に記載の水分離器具。

【請求項8】前記メンブランフィルターのポアサイズが、 $0.1 \sim 2 \mu \text{ m}$ である請求項7に記載の水分離器具。

【請求項9】前記筒状体と外筒とは、金属、ガラス又はプラスチックスから形成される請求項1~8の何れかに記載の水分離器具。

【請求項10】筒状体の側面に形成した開口部に固定した水分離膜に、水分散有機溶媒を通過させることによって、水を分離するように構成したことを特徴とする水分離方法。

【請求項11】

前記筒状体を、下端が閉鎖し上部に水分散有機溶媒注入口を有するように形成し、該筒状体を下部に水分離後の有機溶媒排出口を有する外筒内に位置させ、水 分離後の有機溶媒は、筒状体の内側から外側に通過させる請求項10記載の水分

離方法。

【請求項12】前記水分散有機溶媒は、有機合成における反応液又は反応後処理 液である請求項9又は10記載の水分離方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、水分散有機溶媒中から水を分離除去する水分離器具及び水分離方法に係り、詳記すれば、有機溶媒中に存在する、主として有機化学反応により生成した水及び後処理に用いた水を除去するための水分離器具及び水分離方法に関する。

[0002]

【従来の技術】

有機化合物を製造する際に行われる工程では、反応により水が副生したり、水を用いて抽出、洗浄する等水を用いた後処理を行う場合が多い。そのため、有機化合物を単離するには、分液や脱水等により水を除去する処理が必要であった。

[0003]

このような水を除去する脱水処理として、従来は、分液ロートを用いて分液するか、若しくはぼう硝やゼオライト等の脱水剤を充填したシリンジカラムに、試料(水分散有機溶媒)を通過させ、水を脱水剤に吸着させることにより行っていた。

[0004]

【発明が解決しようとする課題】

しかしながら、上記従来法は、次のような問題点があった。

即ち、分液ロートでは、多数の被処理液(水分散有機溶媒)を同時並行処理 (ハイスループット処理) できない。

脱水剤を用いた場合では、(1)被処理液中の目的物の脱水剤への非特異的吸着により目的物の測定娯差(目的物の吸着による収率の低下)を招来する。(2)非特異的吸着の程度がロット間で異なるため、ロット間で目的物の測定誤差が生じる。(3)被処理液を処理するための時間がロット間により異なるので、自動化への

適用に不向きである。(4)カラムに吸着された目的物を流出させるために溶媒を使用する必要があり、その結果処理に長時間を必要とする。(5)脱水剤からの流出物により、被処理液が汚染され、目的物の純度低下をもたらす場合が生じる。

また、その下部にフィルターを取り付けたチューブ (シリンジ) を用いて、有機層と水層を分離する方法もなされていたが、この方法では水より比重が重い有機層を含有する被処理液しか使用することができないという問題点を有していた。

[0005]

この発明は、このような問題点を解決するためになされたものであり、被処理 液である水分散有機溶媒中の目的物が吸着されたり、汚染されたりしないと共に 、短時間で水を分離除去し、有機層の比重によらずに水分離を可能とし、且つ多 数の被処理液を同時に処理することができるハイスループット処理に用いること ができる水分離器具及び水分離方法を提供することを目的とする。

[0006]

【課題を解決するための手段】

上記目的に沿う本発明の構成は、筒状体の側面外周に形成した開口に水分離膜を固定し、該水分離膜に被処理液である水分散有機溶媒を通過させることによって、水を分離して有機溶媒を通過させるように構成したことを特徴とする。

[0007]

筒状体を、下端が閉鎖し上部に水分散有機溶媒注入口を有するように形成し(請求項2)、更には該筒状体を下部に試料排出口を有する外筒内に位置させ、水分離後の有機溶媒は、筒状体の内側から外側に通過させるのが好ましい(請求項3)。

[0008]

筒状体上端開口部にフランジを形成し、該筒状体を前記外筒に遊嵌させて、フランジで外筒に係止するように構成し、筒状体を着脱自在に分離し得るようにするのが、容易に洗浄できることから好ましい(請求項4)。更に、このような場合外筒上部に空気抜き穴を有するようにするのがより好ましい。

[0009]

水分離膜を固定する開口は、筒状体下端から上端までの間の所定位置に形成されているものが好ましい(請求項5)。尚、該開口は、下端から上端までの間でできる限り大きくすることが好ましく、このように構成することで、被処理液(水分散有機溶媒)中の水分含量や有機溶媒の比重に拘わらず、水と有機溶媒の分離を容易に行うことが可能となる。

[0010]

水分離膜としては、疎水性で溶媒不溶性のメンプランフィルターを使用するのが良く(請求項6)、メンプランフィルターとしては、テフロン(登録商標)製であるのが好ましい(請求項7)。

[0011]

メンブランフィルターのポアサイズは、 0. $1\sim 2~\mu$ mであるのが好ましい(請求項 8)。

[0012]

筒状体と外筒とは、金属、ガラス又はプラスチックスから形成するのが好ましい(請求項9)。

[0013]

本発明の水分離方法は、筒状体の側面に形成した開口部に固定した水分離膜に、水分散有機溶媒を通過させることによって、水を分離して有機溶媒を通過させるように構成したことを特徴とする(請求項10)。

[0014]

本発明の水分離方法は、筒状体を、下端が閉鎖し上部に水分散有機溶媒注入口を有するように形成し、該筒状体を下部に水分離後の有機溶媒排出口を有する外筒内に位置させ、被処理液(水分散有機溶媒)は、筒状体の内側から外側に通過させるのが、分離操作を良好に行えることから好ましい(請求項11)。また、前記被処理液を筒状体の内側から外側に通過させるのは、自然落下が好ましい。

[0015]

被処理液としての水分散有機溶媒は、有機合成における反応液又は反応後処理 液であるのが好ましい(請求項12)。尚、ここでいう反応後処理液とは、反応 液に不純物等を取り除くための処理をした反応液のことであり、例えば水や水溶

液等を加えて有機溶媒中に溶けている水に可溶な不純物を取り除いた処理液等である。

[0016]

要するに本発明は、筒状体の側面に水分離膜を設けることによって、水が下端に沈んでも側面から支障なく有機溶媒を通過させることができるようにしたことを要旨とするものである。通常のフィルターのように、下部に水分離膜を設けたのでは、水が水分離膜を覆うので、有機溶媒は濾過し得ない。しかして、本発明の如くして側面に疎水性メンブランフィルターを使用して有機溶媒から水を分離することは、従来全く行われていない。また、本発明によれば、有機溶媒の比重に関係なく全ての有機溶媒を水と分離することが可能となる。

[0017]

尚、本発明で水を分離するというのは、完全に水を除去するということではなく、大部分の水を除去する意味であり、有機溶媒中に溶けている水は分離できないので、有機溶媒中から目的物を単離するのに支障が無い程度の若干の水が含有されていても許容される意味である。

[0018]

【発明の実施の形態】

次に、本発明の実施の形態を図面に基づいて説明する。

[0019]

図1は、本発明の一実施例を示すものであり、下端が閉鎖し上端が開口した筒 状体1の外周には、対向して下方に細長い長孔(スリット)2が形成され、同長 孔2には、水分離膜3が固定されている。同長孔2は、筒状体1下端から、所定 の高さLに形成され、下端から長孔に達するまでを水収容部4に形成している。 この高さLは、分離する水の量に応じて、所定の長さに設定すると良い。

[0020]

筒状体1は、下端が漏斗状に形成された有機溶媒排出口5を有する外筒6に遊 嵌し、筒状体1上端に形成されたフランジ7で外筒6上端フランジ8に当接係止 するようになっている。また、外筒6には、空気抜き用の穴9 (空気抜き穴)が 設けられているが、これは自然落下により水分散溶媒と水とを分離する際に必要

となるもので、これによりろ過された有機溶媒のスムーズな流出を可能とする。

[0021]

図2に示すように、筒状体1と外筒6とは、水分離膜3と外筒6の間で液が通る程度の隙間を有するように形成されている。外筒の役目はろ過された有機溶媒をスムーズに流出させるためであり、これを用いることにより、有機溶媒が蒸発してフィルター上に結晶等が析出するのを防止できると共に有機溶媒の飛散を防止し夾雑物の混入を無くすことも可能となる。

[0022]

上記水分離器具は、筒状体1の内側から外側へ被処理液を通過させることによって、水を分離するものである。外筒の底面から内筒を突出させ、内筒の外側(内筒と外筒との間)から内側へ水を通過させ、内筒突出部の開口から濾過した有機溶媒を排出させるようにしても良いが、上記図に示すようにするのが、筒状体と外筒とを容易に分離し得るように形成できることから好ましい。

[0023]

本発明における被処理液は、有機溶媒若しくは親油性溶媒、油等に水が混在したもの全てが含まれるが、特に実験室での有機合成または無機合成に於ける反応液(水分散有機溶媒)が好適である。特に有機合成における反応液、中でも反応中又は反応後に水を添加した反応液の処理に好適である。尚、水分散有機溶媒には、サラダ油、てんぷら油等の油類も含まれ、このようなものに対して本発明の筒状器具を用いることにより、油を捨てずに水のみを捨てることもできるので、本発明は環境を配慮した器具ということもできる。

[0024]

本発明における被処理液となり得る有機溶媒としては、水に不溶の有機溶媒であればよく、例えば、クロロホルム、ジクロロメタン、酢酸エチル、ヘキサン、エーテル等が挙げられる。酢酸エチル、ヘキサン、エーテル等の水より比重が軽いものが特に効果的である。また、水より比重の重いもの、例えばジクロロメタン、クロロホルム等も分離可能である。

水分散有機溶媒とは、水と有機溶媒が混在し且つ分離しているものであればよく、具体的には水層と有機層に分かれているもの等が好ましい。また、水と有機

溶媒の量の比は、何れが多くてもかまわない。

本願発明でいう水としては、上記有機溶媒に溶解しない親水性溶液、即ち有機 溶媒と親和性を有さない水溶液全てが含まれる。

[0025]

図3は、本発明の筒状体の他の実施例を示すものであり、分離速度を早めるため、筒状体1外周に多数のスリット(長孔)2を交互に上下に形成し、その上面を水分離膜(図示省略)で覆っている。このように形成すると、強度的に強く且つ濾過速度を早めることができる。

[0026]

上記実施例では、筒状体にスリットを形成しているが、これは格子状の開口部であっても或は網状の開口部であっても良く、開口部の形状は特に限定されない。

[0027]

本発明に使用する水分離膜は、溶媒不溶性且つ水不透過の疎水性のものであればよい。具体的には、メンプランフィルターが好ましく、中でも疎水性の材質からなるものが好ましく、例えばポリプロピレン製やテフロン(登録商標)製のメンブランフィルターが特に好ましく、テフロン(登録商標)製のメンブランフィルターが最も好ましい。メンブランフィルター以外でも、例えば、溶媒不溶性の繊維の表面に、疎水性となるようにシリコーン若しくはテフロン(登録商標)を吹き付けて加工した水分離膜を使用することもできる。

[0028]

メンブランフィルターを用いる場合、そのポアサイズは、通常 $0.1\sim 2~\mu$ m、好ましくは $0.2\sim 1~\mu$ m、特に好ましくは $0.5\sim 1~\mu$ mである。ポアサイズは大きすぎると水が透過してしまい、小さすぎると流速が低下し処理時間が長くなる。

[0029]

水分離膜は、筒状体の内面に固定しても外面に固定しても良いが、作成の容易 さから外面に固定するのが好ましい。

[0030]

筒状器具及び外筒の材質は、金属、ガラス、プラスチック(ポリプロピレン、

ポリエチレン等)等の試料(有機溶媒溶液)に溶解しない適当な材質から作るこ とができるが、特にプラスチックから形成するのが好ましい。

[0031]

次に、図1及び図2に示すように構成された水分離膜を使用して実際に有機合 成の反応液から水を分離した実施例を示す。尚、使用した水分離膜は、ポアサイ ズ1μmのテフロン (登録商標) 製メンブランフィルター (日本ポール株式会社 からTF(PTFE)1000の商品名で市販されている)である。

[0032]

【実施例】

実施例 1 (内筒 5 ミリリットルの水分離器具を化合物ライブラリーの合成に 用いた例)

[0033]

【化1】

$$R^{1}$$
— $CO_{2}H$ + R^{2} — NH_{2} DMF
 $1a-x$ $2a-d$ EDC DMAP $3(a-d)(a-x)$

24種類のアルキルカルボン酸 (<u>la-x</u>) のN, N-ジメチルホルムアミド (D MF) (0.072mmol)溶液を、24個の反応容器に順次入れた。続いて 、 1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩 (EDC) (13.8 mg, 0.072 mm o 1) と 4 - (N, N-ジメチル) アミノピリ ジン (DMAP) (4.4mg, 0.036mmol) のDMF溶液 (0.72 ml) とを加え、さらに、一種類のアルキルアミン(2a)(0.06 mmol) のDMF(0.5ml)溶液を室温で順に加え、室温で16時間攪拌した。同様 の操作を他の3種類のアミン(2b-d)についても行い、合計96種類の反応を同 時に行った。それぞれの反応液を酢酸エチル(3.5m1)で希釈し、水(2m 1)を加え、攪拌し、静置した。分注機を用いて下層の大部分を除去し、再び、 5%クエン酸水溶液 (2ml) を加え、攪拌し、静置した。分注機を用いて下層 の大部分を除去し、水 (2 m l) を加え、攪拌し、静置した。分注機を用いて下

層の大部分を除去し、5%炭酸水素ナトリウム水溶液(2m1)を加え、攪拌し、静置した。分注機を用いて下層の大部分を除去し、再び、5%炭酸水素ナトリウム水溶液(2m1)を加え、攪拌し、静置した。分注機を用いて下層の大部分を除去し、水(2m1)を加え、攪拌し、静置した。酢酸エチル層部分を水層部分と共に図1及び図2に示すような本発明の水分離器具を通して、水層部分を除去し、水分がほとんどない酢酸エチル層部分をバイアルに得た。この酢酸エチル層の一部(0.002m1)を水とアセトニトリルの1対1の混合溶液(1ml)で希釈して、LC-MSを測定し、それぞれの化合物の純度と構造を確認した。減圧下溶媒を留去した後、目的化合物3(a-d)(a-x)を得た。

[0034]

実施例 2 (内筒60ミリリットルの水分離器具を合成に用いた例)

[0035]

【化2】

$$R^3$$
—NHCOR⁴ + R^5 —Br \xrightarrow{DMF} R^3 —NCOR⁴

4 $5a-h$

DMF

Rah

Rah

Rah

Rah

化合物4(3.52g, 12mmol)のDMF(40ml)溶液に、氷冷下水素化ナトリウム(576m g, 14.4mmol)を加え、そのまま室温で15分間撹拌した。続いて、氷冷下臭化ベンジル(2.46g, 14.4mmol)を加え、室温で終夜撹拌した。減圧下DMFを留去した後、酢酸エチル (50ml) と水 (30ml) を加え、10分間撹拌した後静置した。下層の大部分を吸い上げて除去した後、0.1N HCl水溶液(20ml)を加え、10分間撹拌した後静置した。同様の方法で下層を除去した後、水 (30ml)を加え、10分間撹拌した後静置した。同様の方法で下層の大部分を除去した後、残りの溶液を本発明の水分離器具を通して、水層部分を除去し、水分がほとんどない酢酸エチル層を得た。減圧下溶媒を留去した後、シリカゲルカラムクロマトグラフィーにて精製し、化合物5aを3.00g,収率65%で得た。上記の操作は、8種類の臭化物試薬(5a-h)を用いて並行して行い、対応する6a-hをそれぞれ得た(2.9~4.8g, 57~99%)

[0036]

本発明によれば、筒状体側部開口に固定した水分離膜を、水分散有機溶媒を通過させることによって、水が下端に沈んでも、有機溶媒中の水を支障無く分離できる。

[0037]

【発明の効果】

本発明によれば、水分離膜を筒状体の側面開口に固定することによって、水分散有機溶媒中の有機溶媒の比重に拘わらず水分散有機溶媒中から支障無く水を分離できるので、特に多数の被処理液を同時に処理することができるハイスループット処理で有機溶媒含有反応液から水を分離するのに効果的である。

[0038]

【図面の簡単な説明】

図11

本発明の一実施例を示す斜視図である。

【図2】

外筒に内筒を遊嵌させた状態の(a)平面図、(b)断面図である。

【図3】

本発明の内筒の他の実施例を示す斜視図である。

【符号の説明】

- 2 ……長孔(スリット)
- 3 ……水分離膜
- 4 ……水収容部
- 5 ……水分離後の有機溶媒排出口
- 6 ……外筒
- 7……内筒上端のフランジ
- 8 ……外筒上端のフランジ
- 9 ……空気抜き穴

【書類名】

図面

【図1】

【図2】

【書類名】

要約書

【要約】

【課題】水分散有機溶媒中の目的物が吸着されたり、汚染されたりしないと共に、短時間で且つ水分散有機溶媒中の有機溶媒の比重に拘わらず水を分離除去し得る水分離器具及び水分離方法を提供する。

【解決手段】筒状体の側面外周に形成した開口に水分離膜を固定し、該水分離膜に水分散有機溶媒を通過させることによって、水を分離して有機溶媒を通過させるように構成した。

【選択図】

図 1

特許出願の番号

特願2002-350710

受付番号

50201826789

書類名

特許願

担当官

第一担当上席

0090

作成日

平成14年12月17日

<認定情報・付加情報>

【提出日】

平成14年12月 3日

次頁無

出願人履歴情報

識別番号

[000252300]

1. 変更年月日 [変更理由]

1990年 8月 7日

新規登録

住 所 氏 名 大阪府大阪市中央区道修町3丁目1番2号

和光純薬工業株式会社

出願人履歴情報

識別番号

[000002934]

1. 変更年月日

1992年 1月22日

[変更理由]

住所変更

住所

大阪府大阪市中央区道修町四丁目1番1号

氏 名

武田薬品工業株式会社