Fundamentos de Processamento de Imagens SCC0251/5830 – Processamento de Imagens

Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir

Instituto de Ciências Matemáticas e de Computação – USP

2012/1

Sumário

- 🚺 lmagem e Imagem Digital
- 2 Amostragem e Quantização
- Histórico
- Conectividade e relacionamento entre pixels
- 5 Operações Aritméticas, Lógicas e de Conjunto

Imagem

- Função bidimensional (2-d) de intensidade de luz f(x, y):
 - x e y são as coordenadas espaciais
 - f no ponto (x, y) representa a intensidade ou cor naquela coordenada
 - na prática, são definidas em regiões retangulares
- Contínua no espaço
- Contínua em amplitude

Aquisição

Formação da imagem

Pipeline de geração de imagem digital

Imagem Digital

- Ao adquirir a imagem a função contínua é amostrada e sua amplitude quantizada.
- Como resultado, a **imagem digital** é a representação da imagem contínua por um *array 2-d de amostras discretas*.
- Cada elemento da matriz é chamado de pixel.

Imagem Digital

- A luz incidente no sensor é integrada durante o tempo de exposição (tempo expresso em frações de segundo),
- CCD: charge-coupled device,
 - fótons são acumulados em cada célula, após finalizada a exposição são transferidos de célula a célula para um amplificador
- CMOS: complementary metal oxide on silicon.
 - fótons afetam diretamente a condutividade de cada célula sensível e pode ser amplificado localmente.

- O tamanho do sensor define em grande parte a qualidade da imagem, além do ganho analógico (pode ser simulado via ISO) e o ruído do sensor.
- Nem sempre mais megapixels significam maior tamanho de sensor e qualidade do sistema de aquisição

Tamanhos de sensor típicos:

	1/3"	1/2.7"	1/2.5"	1/2"	1/1.8"	1/1.7"	2/3"	1"
Width	4.8	5.37	5.76	6.4	7.18	7.6	8.8	12.8
Height	3.6	4.04	4.29	4.8	5.32	5.7	6.6	9.6
Size	17.3	21.7	24.7	30.7	38.2	43.3	58.1	123

Imagens obtidas com mesmo sensor mas parâmetros de amostragem diferentes:

- A resolução espacial da visão humana mede quantos pontos diferentes um olho pode distinguir em uma imagem
- O campo visual humano corresponde a uma matriz de aproximadamente 3000 × 3000 pontos.
- Os dispositivos de visualização de imagens sem adaptam ao sistema visual humano, tentando fornecer visualização cada vez mais próxima de uma cena real (imagem contínua).

Dispositivos de visualização

Resolução:

- TV comum (SD): 512×480 (ou 480 linhas)
- TV HDTV: 1280 × 720 (ou 720 linhas)
- TV FullHD: 1920×1080 (ou 1080 linhas)

Aspecto:

- 4:3
- 16:9 (widescreen)
- 21:9 (ultra widescreen)

Número de cores: quantização

 Após amostrar a imagem o sensor ainda precisa converter cada observação "real" em uma observação discreta, definida pelo número de bits usados para armazená-lo.

Número de cores: quantização

08 bits

04 bits

03 bits

Níveis de cinza

Ao visualizar em sequência os níveis de cinza utilizando quantização diferente, é possível ver falsos contornos gerados:

Níveis de cinza: discernimento de brilho

• O limiar de visibilidade foi determinado experimentalmente por Weber:

$$\Delta I/I \approx K_{\text{Weber}} \approx 1..2\%$$

chamada: fração de Weber ou lei de Weber.

Número de cores: quantização

(Domício Pinheiro / Agência Estado)

Imagem binária (0-1)

Componentes de cor

24 bits (8 + 8 + 8)

Sumário

- 1 Imagem e Imagem Digital
- 2 Amostragem e Quantização
- Histórico
- 4 Conectividade e relacionamento entre pixels
- 5 Operações Aritméticas, Lógicas e de Conjunto

Histórico

1970 1980 1990 2000 Energy-based segmentation Face recognition and detection Stereo correspondence Optical flow Structure from motion Image pyramids Scale-space processing texture, and focus Physically-based modeling Regularization Markov Random Fields 3D range data processing Factorization Physics-based vision Graph cuts Particle filtering Subspace methods Image-based modeling and rendering Texture synthesis and inpainting Feature-based recognition MRF inference algorithms Category recognition Learning Digital image processing Blocks world, line labeling Generalized cylinders Pictorial structures Intrinsic images Shape from shading, Kalman filters Projective invariants Computational photography

Sumário

- 1 Imagem e Imagem Digital
- 2 Amostragem e Quantização
- Histórico
- 4 Conectividade e relacionamento entre pixels
- 5 Operações Aritméticas, Lógicas e de Conjunto

Vizinhos

Um pixel p na coordenada (x, y) tem quatro vizinhos <u>horizontais</u> e <u>verticais</u>, cujas coordenadas são:

$$(x+1,y),(x-1,y),(x,y+1),(x,y-1)$$

Esse conjunto de pixels, é chamado **vizinhança-4** de p e é expresso por $N_4(p)$.

Os vizinhos diagonais são

$$(x+1,y+1),(x+1,y-1),(x-1,y+1),(x-1,y-1)$$

Esse conjunto é expresso por $N_D(p)$.

Os pontos $N_4(p)$ em conjunto com os pontos $N_D(p)$ formam a vizinhança-8 de p, ou $N_8(p)$

Adjacência e conectividade

- V conjunto de valores de intensidade usados para definir uma adjacência.
- ullet Em uma imagem binária $V=\{1\}$ adjacência de pixels de valor 1.
- Em imagens de 256 níveis de cinza V pode ser qualquer subconjunto dos valores entre 0 e 255.

Adjacência e conectividade

Adjacências

- Adjacência-4: dois pixels p e $q \in V$ são adjacentes-4 se $q \in N_4(p)$
- Adjacência-8: dois pixels p e $q \in V$ são adjacentes-8 se $q \in N_8(p)$
- ullet Adjacência-m (mista): dois pixels p e $q \in V$ são adjacentes-m se
 - $\mathbf{0}$ $q \in N_4(p)$, ou
 - 2 $q \in N_D(p)$ e o conjunto $N_4(p) \cap N_4(q)$ não contiver pixel em V.
 - evita ambiguidade de adjacências (figura abaixo ao meio: adjacência-8 e à direita adjacência-m)

Caminho e conectividade

Caminho de um pixel p = (x, y) a um pixel q = (s, t) é uma sequência:

$$(x_0, y_0), (x_1, y_1), \cdots, (x_n, y_n),$$

onde $(x_0, y_0) = (x, y)$ e $(x_n, y_n) = (s, t)$.

- Os pixels (x_i, y_i) e (x_{i-1}, y_{i-1}) devem ser adjacentes para $1 \le i \le n$.
- Se $(x_0, y_0) = (x_n, y_n)$ o caminho é fechado.
- É possível definir caminhos 4, 8 ou m.
- Sendo S um subconjunto de pixels na imagem, p e q são **conexos** em S se existir um caminho em S entre p e q.

Conectividade entre regiões e borda

Com R representando uma região da imagem (conjunto conexo de pixels):

• Duas regiões R_i e R_j são consideradas adjacentes se $R_i \cup R_j$ formar um conjunto conexo.

A **borda** (fronteira ou contorno) de uma região R:

- Conjunto de pontos adjacentes aos pontos do complemento de R (contorno interno).
- Conjunto de pontos adjacentes no complemento de R (contorno externo).

Operações Aritméticas e Lógicas

- Subtração
- Adição
- Multiplicação (ponto a ponto)
- Divisão (ponto a ponto)
- E
- OU
- Negação
- União ∪
- Intersecção ∩

Bibliografia I

GONZALEZ, R.C.; WOODS, R.E. * Processamento Digital de Imagens, 3 ed Capítulos 1 e 2. Pearson, 2010.