Improved Word Alignments for Statistical Machine Translation

Alex Fraser
Institute for NLP
University of Stuttgart

Statistical Machine Translation (SMT)

- Build a model P(e | f), the probability of the English sentence "e" given the French sentence "f"
- To translate a French sentence "f", choose the English sentence "e" which maximizes P(e | f)

$$\begin{array}{rcl} \operatorname{argmax} & P(e \mid f) = \operatorname{argmax} & P(f \mid e) P(e) \\ e & e \end{array}$$

- P(f|e) is the "translation model"
 - Collect statistics from word aligned parallel corpora
- P(e) is the "language model"

·britannique

columbia

Annotation of Minimal Translational Correspondences

- •Word alignment is annotation of minimal translational correspondences
- •Annotated in the context in which they occur
- •Not idealized translations!

(solid blue lines annotated by a bilingual expert)

Overview

- Solving problems with previous word alignment methodologies
 - Problem 1: Measuring quality
 - Problem 2: Modeling
 - Problem 3: Utilizing new knowledge
 - Joint Work with Daniel Marcu, USC/ISI

Problem 1: Existing Metrics Do Not Track Translation Quality

- Dozens of papers report word alignment quality increases according to intrinsic metrics
- Contradiction: few of these report MT results; those that do report inconclusive gains
- This is because the two commonly used intrinsic metrics, AER and balanced F-Measure, do not correlate with MT performance!

Measuring Precision and Recall

Start by fully linking hypothesized alignments

- Precision is the number of links in our hypothesis that are correct
 - If we hypothesize there are no links, have 100% precision
- Recall is the number of correct links we hypothesized
 - If we hypothesize all possible links, have 100% recall
- We will test metrics which formally define and combine these in different ways

Alignment Error Rate (AER)

Gold

Precision
$$(A, P) = \frac{|P \cap A|}{|A|} = \frac{3}{4}$$
 (e3,f4) wrong

Recall
$$(A, S) = \frac{/S \cap A/}{/S/} = \frac{2}{3}$$
 (e2,f3) not in hyp

Hypothesis

AER(A, P, S) =
$$1 - \frac{|P \cap A| + |S \cap A|}{|S| + |A|} = \frac{2}{7}$$

$$GREEN = possible links$$

Experiment

• Desideratum:

- Keep everything constant in a set of SMT systems except the word-level alignments
 - Alignments should be realistic

• Experiment:

- Take a parallel corpus of 8M words of Foreign-English. Word-align it.
 Build SMT system. Report AER and Bleu.
- For better alignments: train on 16M, 32M, 64M words (but use only the 8M words for MT building).
- For worse alignments: train on $2\times1/2$, $4\times1/4$, $8\times1/8$ of the 8M word training corpus.
- If AER is a good indicator of MT performance, 1 AER and BLEU should correlate no matter how the alignments are built (union, intersection, refined)
 - − Low 1 − AER scores should correspond to low BLEU scores
 - − High 1 − AER scores should correspond to high BLEU scores

AER is not a good indicator of MT performance

F_{α} -score

Gold

Hypothesis

Precision
$$(A, S) = \frac{|S \cap A|}{|A|} = \frac{3}{4}$$
 (e3,f4) wrong

Recall
$$(A, S) = \frac{S \cap A}{S} = \frac{3}{5}$$
 (e2,f3)
(e3,f5)
not in hyp

$$F(A, S, \alpha) = \frac{1}{\frac{\alpha}{\text{Precision}(A, S)} + \frac{1 - \alpha}{\text{Recall}(A, S)}}$$

Called F_{α} -score to differentiate from ambiguous term F-Measure

F_{α} -score is a good indicator of MT performance

Discussion

- Using F_{α} -score as a loss criterion will allow for development of discriminative models (later in talk)
- AER is not derived correctly from F-Measure
- For details of experiments see squib in Sept.
 2007 Computational Linguistics

Problem 2: Modeling the Wrong Structure

- 1-to-N assumption
 - Multi-word "cepts" (words in one language translated as a unit) only allowed on target side. Source side limited to single word "cepts".
- Phrase-based assumption
 - "cepts" must be consecutive words

LEAF Generative Story

source	absolutely	[comma	l] they	do	not	want	to	spend	that	money
word type (1)	DEL.	DEL.	HEAD	non-head	HEAD	HEAD	non-head	HEAD	HEAD	HEAD
linked from (2)			THEY	do	ТОЙ	WANT	to	SPEND	THAT	MONEY
$\mathbf{head}(3)$			ILS		PAS	DESIREN'	T	DEPENSE	R CET	ARGENT
$\operatorname{cept} \operatorname{size}(4)$			1		2	1		1	1	1
$\mathbf{num}\ \mathbf{spurious}(5)$	1									
spurious(6)	aujourd'hui									
non-head(7)			ILS	PAŚ	ne	DESIREN'	T	DEPENSE	R CET	ARGENT
placement(8)	aujourd'hui		ILS	ne I	ESIREN	T PAS		DEPENSE	R CET	ARGENT
spur. placement(9)		ILS	ne D	ESIREN	T PAS		DEPENSE	R CET	ARGENT

- Explicitly model three word types:
 - Head word: provide most of conditioning for translation
 - Robust representation of multi-word cepts (for this task)
 - This is to semantics as ``syntactic head word" is to syntax
 - Non-head word: attached to a head word
 - Deleted source words and spurious target words (NULL aligned)

LEAF Generative Story

source	absolutely	[comma	l] they	do	not	want	to	spend	that	money	
word type (1)	DEL.	DEL.	HEAD	non-head	HEAD	HEAD	non-head	HEAD	HEAD	HEAD	
linked from (2)			THEY	do	тои	WANT	to	SPEND	THAT	MONEY	
$\mathbf{head}(3)$			ILS		PAS	DESIREN'	Γ	DEPENSE	R CET	ARGENT	
$\mathbf{cept}\ \mathbf{size}(4)$			1		2	1		1	1	1	
$\mathbf{num}\ \mathbf{spurious}(5)$	1										
spurious(6)	aujourd'hui										
$\mathbf{non\text{-}head}(7)$			ILS	PAŚ	ne	DESIREN'	Γ	DEPENSE	R CET	ARGENT	
${\bf placement}(8)$	aujourd'hui		ILS	ne I	DESIREN	T PAS		DEPENSE	R CET	ARGENT	
spur. placement(9)		ILS	ne I	DESIREN	T PAS		DEPENSE	R CET	ARGENT	a

- Once source cepts are determined, exactly one target head word is generated from each source head word
- Subsequent generation steps are then conditioned on a single target and/or source head word
- See EMNLP 2007 paper for details

LEAF

- Can score the same structure in both directions
- Math in one direction (please do not try to read):

$$\begin{split} p(f,a|e) = & [\prod_{i=1}^{l} g(\chi_{i}|e_{i})] \\ & [\prod_{i=1}^{l} \delta(\chi_{i},-1)w_{-1}(\mu_{i}-i|\mathsf{class}_{e}(e_{i}))] \\ & [\prod_{i=1}^{l} \delta(\chi_{i},1)t_{1}(\tau_{i1}|e_{i})][\prod_{i=1}^{l} \delta(\chi_{i},1)s(\psi_{i}|e_{i},\gamma_{i})] \\ & [s_{0}(\psi_{0}|\sum_{i=1}^{l} \psi_{i})][\prod_{k=1}^{\psi_{0}} t_{0}(\tau_{0k})] \\ & [\prod_{i=1}^{l} \prod_{k=2}^{\psi_{i}} t_{>1}(\tau_{ik}|e_{i},\mathsf{class}_{h}(\tau_{i1}))] \\ & [\prod_{i=1}^{l} \prod_{k=1}^{\psi_{i}} D_{ik}(\pi_{ik})] \end{split}$$

Alex Fraser

Discussion

- LEAF is a powerful model
- But, exact inference is intractable
 - We use hillclimbing search from an initial alignment
- First model of correct structure: M-to-N discontiguous
 - Head word assumption allows use of multi-word cepts
 - Decisions robustly decompose over words
 - Does not have segmentation problem of phrase alignment models: Probability of alignments of cept "the man" are closely related to probabilities for cept "man"
 - Not limited to only using 1-best prediction

Problem 3: Existing Approaches Can't Utilize New Knowledge

- It is difficult to add new knowledge sources to generative models
 - Requires completely reengineering the generative story for each new source
- Existing unsupervised alignment techniques can not use manually annotated data

Background

- We love EM, but
 - EM often takes us to places we never imagined/wanted to go
- Bayes is always right

$$\begin{array}{rcl} \text{argmax} & P(e \mid f) = & \text{argmax} & P(e) \times P(f \mid e) \\ e & & e \end{array}$$

But in practice, this works better:

argmax
$$P(e)^{2.4}$$
 x $P(f | e)$ x length(e)^{1.1} x KS ^{3.7} ... e

Decomposing LEAF

- Decompose each step of the LEAF generative story into a sub-model of a log-linear model
 - Add backed off forms of LEAF sub-models
 - Add heuristic sub-models (do not need to be related to generative story!)
 - Allows tuning of vector λ which has a scalar for each sub-model controlling its contribution

Reinterpreting LEAF

- $g(e_i)$
- $w(\mu_i)$
- $t_1(f_j | y(i))$

- source word type sub-model
- source non-head linking sub-model
- head word translation sub-model

• Etc...

- many more sub-models

$$p(a, f | e) = g \times w \times t_1 \times etc...$$

$$p(a, f | e) = z^{-1} \times g^{\lambda 1} \times w^{\lambda 2} \times t_1^{\lambda 3} \times etc...$$

$$p(a, f | e) = \frac{exp \sum_{m} \lambda_m h_m(f, a, e; \theta_m)}{exp(Z)}$$

Semi-Supervised Training

- Define a semi-supervised algorithm which alternates increasing likelihood with decreasing error
 - Increasing likelihood is similar to EM
 - Discriminatively bias EM to converge to a local maxima of likelihood which corresponds to "better" alignments
 - "Better" = higher F_{α} -score on small gold standard corpus

The EMD Algorithm

Discussion

- Usual formulation of semi-supervised learning: "using unlabeled data to help supervised learning"
 - Build initial supervised system using labeled data, predict on unlabeled data, then iterate
 - But we do not have enough gold standard word alignments to estimate parameters directly!
- EMD allows us to train a small number of important parameters discriminatively, the rest using likelihood maximization, and allows interaction
 - Similar in spirit (but not details) to semi-supervised clustering

Experiments

- French/English
 - LDC Hansard (67 M English words)
 - MT: Alignment Templates, phrase-based
- Arabic/English
 - NIST 2006 task (168 M English words)
 - MT: Hiero, hierarchical phrases

Results

Arabic/English

System	F-Measure	BLEU	F-Measure	BLEU	
	$(\alpha = 0.4)$	(1 ref)	$(\alpha = 0.1)$	(4 refs)	
IBM Model 4 (GIZA++) and heuristics	73.5	30.63	75.8	51.55	
EMD (ACL 2006 model) and heuristics	74.1	31.40	79.1	52.89	
LEAF+EMD	76.3	31.86	84.5	54.34	

Contributions

- Found a metric for measuring alignment quality which correlates with MT quality
- Designed LEAF, the first generative model of M-to-N discontiguous alignments
- Developed a semi-supervised training algorithm, the EMD algorithm
- Obtained large gains of 1.2 BLEU and 2.8 BLEU points for French/English and Arabic/English tasks

Thank You!