

Ch 5: Các nhóm lệnh ứng dụng

Ngoài các lệnh cơ bản, PLC thông thường được thiết kế để có thêm các nhóm lệnh ứng dụng, thí dụ như có nhóm lệnh chuyên tác động điều khiển lưu trình, có nhóm lệnh chuyên thực hiện xử lý số học ...

Không phải tất cả các nhóm lệnh đều có thể sử dụng trên tất cả các họ PLC. Do đó cần phải lưu ý khi sử dụng nhóm lệnh trên 1 PLC nào đó.

Đối với PLC họ FX (Mitsubishi), có khoảng 200 lệnh được phân vào 16 nhóm lệnh.

© C.B. Pham Bộ điều khiển lập trình 5-1

5.1. Program flow

CJ	Conditional jump	FNC 00
CALL	Call Subroutine	FNC 01
SRET	Subroutine Return	FNC 02
IRET	Interrupt Return	FNC 03
El	Enable Interrupt	FNC 04
DI	Disable Interrupt	FNC 05
FEND	First End	FNC 06
WDT	Watchdog Timer	FNC 07
FOR	Start of a For/Next Loop	FNC 08
NEXT	End a For/Next Loop	FNC 09

5.1. Program flow

Lệnh CJ: nhảy tới vị trí con trỏ đích xác định.

Mnemonic	Function	Operands	Program steps	
Milemonic	runction	D		
CJ FNC 00 (Conditional Jump)	Jumps to the identified pointer position	Valid pointers from the range 0 to 63	CJ, CJP:3steps Jump pointer PPP: 1 step	

- Khi lệnh CJ được kích hoạt thì con trỏ lệnh nhảy đến vị trí xác định trong chương trình, bỏ qua một số bước chương trình (không xử lý) do đó làm tăng tốc độ quét chương trình.
- Mỗi con trỏ đích phải có duy nhất một con số.
 Dùng con trỏ P63 tương đương với việc nhảy đến lệnh END.

© C.B. Pham Bộ điều khiển lập trình 5-3

5.1. Program flow

· Lệnh CALL: Gọi chương trình con.

Mnemonic	Function	Operands D	Program steps
CALL FNC 01 (Call sub- routine)	Executes the subroutine program starting at the identified pointer position	Valid pointers from the range 0 to 62 Nest levels: 5 including the initial CALL	CALL, CALLP: 3 step Subroutine pointer PPP: 1 steps

- Khi một chương trình con được gọi, điều khiển được chuyển từ chương trình chính vào chương trình con. Khi gặp lệnh SRET, chương trình con kết thúc và điều khiển được chuyển về lệnh kế tiếp sau lệnh gọi chương trình con trong chương trình chính.
- Con trỏ của lệnh CJ và lệnh CALL không được trùng nhau.

5.1. Program flow

Lệnh FEND: Khai báo phần kết thúc đọan chương trình chính.

- Lệnh FEND dùng để báo kết thúc đọan chương trình chính và bắt đầu đoạn chương trình con. Cấu trúc thường dùng: CJ-P-FEND, CALL-P-SRET.
- Nhiều lệnh FEND có thể được sử dụng đồng thời. Lệnh FEND không được phép đặt sau lệnh END.

© C.B. Pham Bộ điều khiển lập trình 5-5

5.1. Program flow

Lệnh FOR, NEXT: Thực hiện vòng lặp với số lần xác định.

Mnemonic	Function	Operands	Program steps
Milicinome	1 diletion	S	r rogram steps
FOR FNC 08 (Start of a FOR-NEXT loop)	Identifies the start position and the number of repeats for the loop	K, H, KnX, KnY, KnM, KnS, T, C, D, V, Z	FOR: 3 step
NEXT FNC 09 (End of a FOR-NEXT loop)	Identifies the end position for the loop	N/A Note: The FOR-NEXT loop can be nested for 5 levels, i.e. 5 FOR-NEXT loops are programmed within each other.	NEXT: 1 step

- Giá trị toán hạng S phải nằm trong phạm vi từ 1 đến 32767. Những giá trị khác của S sẽ tự động làm S được gán bằng 1, nghĩa là vòng lặp FOR-NEXT được thực hiện 1 lần.

5.1. Program flow

• Lưu ý: các bit thường được nhóm lại thành từng đơn vị 4 bit

K1X0 : từ X0 đến X3 (dữ liệu 4 bit bắt đầu từ X0)
K1X6 : từ X6 đến X11 (dữ liệu 4 bit bắt đầu từ X6)
K3X0 : từ X0 đến X13 (dữ liệu 12 bit bắt đầu từ X0)
K8X0 : từ X0 đến X37 (dữ liệu 32 bit bắt đầu từ X0)

© C.B. Pham Bộ điều khiển lập trình 5-7

5.1. Program flow

Cặp lệnh FOR và NEXT luôn đi đôi với nhau và được phép sử dụng lồng vào nhau đến
 5 cấp.

Applications – Using conditional jumps

PB1 WASH + RINSE			
	Device	PC device	Description
PB2 PB3	PB1	X005	Select wash and rinse
Account.	PB2	X006	Select rinse only
	PB3	X007	Select wash only
	CJ	FNC 00	The CJ applied instruction
	FEND	FNC 06	The FEND applied instruction

- Tại trạm rửa xe áp lực, có 3 dịch vụ: rinse only / wash only / wash and rinse.
- Sử dụng 2 đọan chương trình con tương ứng cho wash và rinse sẽ giúp cho kích thước chương trình giảm đi phân nửa.

© C.B. Pham Bộ điều khiển lập trình 5-9

5.2. Move and compare

CMP	Compare	FNC 10
ZCP	Zone Compare	FNC 11
MOV	Move	FNC 12
SMOV	Shift Move	FNC 13
CML	Compliment	FNC 14
BMOV	Block Move	FNC 15
FMOV	Fill Move	FNC 16
XCH	Exchange	FNC 17
BCD	Binary Coded Decimal	FNC 18
BIN	Binary	FNC 19

5.2. Move and compare

Lệnh CMP: Thực hiện so sánh giữa hai giá trị.

Mnemonic Function		Operands			Program steps
Willelilollic	Function	S ₁	S2	D	Flogram steps
CMP FNC 10 (Compare)	Compares two data values - results of <, = and > are given.	K, H, KnX, KnY, KnM T, C, D, V, Z	, KnS,	Y, M, S Note: 3 consecutive devices are used.	CMP, CMPP: 7 steps DCMP, DCMPP: 13 steps

- Dữ liệu $[S_1]$ được so sánh với dữ liệu $[S_2]$. Kết quả được phản ánh trên 3 thiết bị logic (bắt đầu từ [D]).
 - $[S_2] < [S_1] \Rightarrow [D] = 1$
 - $[S_2] = [S_1] \Rightarrow [D_{+1}] = 1$
 - $[S_2] > [S_1] \Rightarrow [D_{+2}] = 1$
- Dữ liệu [D] vẫn được duy trì ngay cả khi lệnh CMP không còn được thực hiện.

© C.B. Pham Bộ điều khiển lập trình 5-11

5.2. Move and compare

• Lệnh ZCP: Thực hiện so sánh giữa một giá trị với 1 dãy giá trị.

Mnemonic	Function	Operands				Program steps
Willeliiollic	Function	S ₁	S2	S3	D	r rogram steps
ZCP FNC 11 (Zone compare)	Compares a data value against a data range - results of <, = and > are given.	T, C, D, V, Note:	KnM, KnS Z be less tha		Y, M, S Note: 3 consecutive devices are used.	ZCP,Z CPP: 9 steps DZCP, DZCPP: 17 steps

- Dữ liệu $[S_3]$ được so sánh với dãy dữ liệu từ $[S_1]$ đến $[S_2]$. Kết quả được phản ánh trên 3 thiết bị logic (bắt đầu từ [D]).
 - $[S_3] < [S_1] & [S_2] \Rightarrow [D] = 1$
 - $[S_3]$ nằm từ $[S_1]$ đến $[S_2] \Rightarrow [D_{+1}] = 1$
 - $[S_3] > [S_1] & [S_2] \Rightarrow [D_{+2}] = 1$

5.2. Move and compare

· Lệnh MOV: Gán giá trị từ vùng nhớ này đến vùng nhớ khác.

Mnemonic Function		Oper	Program steps	
Milicinonic	runction	S	D	1 rogram steps
MOV FNC 12 (Move)	Moves data from one storage area to a new storage area	K, H, KnX, KnY, KnM, KnS, T, C, D, V, Z	KnY, KnM, KnS, T, C, D, V, Z	MOV, MOVP: 5 steps DMOV, DMOVP: 9 steps

- Các họat động về sao chép vùng nhớ được dùng để tăng cường các chức năng sẳn có, ví dụ như cho phép thay đổi các giá trị xác lập cho bộ định thì hay bộ đếm. Các lọai ứng dụng này rất phổ biến, cho phép người điều khiển nhập các giá trị tham số khác nhau trước khi hoặc trong lúc PLC họat động.

© C.B. Pham Bộ điều khiển lập trình 5-13

5.2. Move and compare

- Lệnh BCD: Chuyển đổi số nhị phân sang dạng BCD.
- Lệnh BIN: Chuyển đổi số BCD sang dạng nhị phân tương ứng.

Mnemonic	Mnemonic Function Operands			Program steps
milemonic	1 diletion	S	D	.
BCD FNC 18 (Binary coded decimal)	Converts binary numbers to BCD equivalents / Converts floating point data to scientific format	KnX,KnY, KnM, KnS, T, C, D, V, Z When using M8023 to con mat, only double word (32 be used. See page 4-46 fo floating point format.	bit) data registers (D) may	BCD, BCDP: 5 steps DBCD, DBCDP: 9 steps

Mnemonic	Function	Oper	Program steps	
Millemonie	T direction	S	D	1 rogram steps
BIN FNC 19	Converts BCD numbers to their	KnX, KnY, KnM, KnS, T, C, D, V, Z	T, C, D, V, Z	BIN, BINP: 5 steps
(Binary)	binary equivalent /	When using M8023 to c	Richer Briting	DEIN DRINE
	ing point format	isters (D) may be used. details regarding floating	See page 4-46 for more	9"steps

5.3. Arithmetic and logical operations

ADD	Addition	FNC 20
SUB	Subtraction	FNC 21
MUL	Multiplication	FNC 22
DIV	Division	FNC 23
INC	Increment	FNC 24
DEC	Decrement	FNC 25
WAND	Word AND	FNC 26
WOR	Word OR	FNC 27
WXOR	Word Exclusive OR	FNC 28
NEG	Negation	FNC 29

© C.B. Pham Bộ điều khiển lập trình 5-15

5.3. Arithmetic and logical operations

Lệnh ADD: Cộng hai giá trị.

Mnemonic	Function	Operands			Program steps
Milemonie	runction	S1	S2	D	1 rogram steps
ADD FNC 20	The value of the two source	K, H, KnX, Kn T, C, D, V, Z	/, KnM, KnS,	KnY, KnM, KnS, T, C, D, V, Z	ADD, ADDP: 7 steps
(Addition)	devices is added and the result stored in the desti- nation device	only double wo	ord (32 bit) data) may be used.	ating point data, registers (D) or See page 4-46 ting point format.	DADD, DADDP: 13 steps

- Phép cộng được thực hiện cho các số có dấu.
- Nếu giá trị tính được vượt quá kích thước ở tóan hạng đích, thì giá trị thực sẽ bị cắt bớt đi để phù hợp với kích thước tóan hạng đích.
- Khi giá trị tính được bằng không thì M8020 = 1

5.3. Arithmetic and logical operations

Lệnh SUB: Tính sai lệch giữa hai giá trị.

Mnemonic	Function	Operands			Program steps
Willelilollic	Tunction	S1	S ₂	D	1 rogram steps
SUB FNC 21	One source device is subtracted from	K, H, KnX, Kn T, C, D, V, Z	r, KnM, KnS,	KnY, KnM, KnS, T, C, D, V, Z	SUB, SUBP: 7steps
(Subtract)	the destination device	When using M8023 to subtract floating point data, only double word (32 bit) data registers (D) or constants (K/H) may be used. See page 4-46 for more details regarding floating point format.) data registers used. See page	DSUB, DSUBP: 13 steps

- $[D] = [S_2] [S_1]$
- Các điểm lưu ý cho phép trừ cũng giống như bên phép cộng.

© C.B. Pham Bộ điều khiển lập trình 5-17

5.3. Arithmetic and logical operations

Lệnh MUL: Nhân hai giá trị.

Mnemonic	Function	Operands			Program steps
Milemonie	runction	S1	S2	D	1 rogram steps
MUL FNC 22	Multiplies the two source devices	T, C, D, V, Z See page 4-46 for more details regarding floating		KnY,KnM,KnS, T, C, D, Z(V)	MUL, MULP: 7steps
(Multiplica -tion)	together the result is stored in the destination device			Note: Z(V) may NOT be used for 32 bit oper- ation	DMUL, DMULP: 13 steps
		When using M8023 to subtract data, only double word (32 bit) (D) or constants (K/H) may be used to		data registers	

- Với thao tác 16 bit, hai giá trị 16 bit nhân với nhau sẽ cho kết quả là con số 32 bit và kết quả này được lưu vào $[D_{+1}]$ [D].
- Nếu giá trị tính được vượt quá kích thước ở tóan hạng đích, thì giá trị thực cũng sẽ bị cắt bớt đi để phù hợp với kích thước toán hạng đích.

5.3. Arithmetic and logical operations

· Lệnh DIV: Thực hiện phép chia giữa hai giá trị.

Mnemonic	Function	Operands			Program steps	
Millelilollic	Tunction	S1		D	1 Togram steps	
DIV FNC 23	Divides one source value by	K, H, KnX, KnY, KnM, KnS,T, C, D, V, Z		KnY, KnM, KnS, T, C, D, Z(V)	DIV,DIVP: 7steps	
(Division)	another the result is stored in the destination device	See page 4-46 for more details regarding floating point format.		Note: Z(V) may NOT be used for 32 bit operation	DDIV, DDIVP: 13 steps	
		When using M8023 to subtract data, only double word (32 bit (D) or constants (K/H) may be perform) data registers	10 steps	

- $[S_1] \div [S_2]$
- Với thao tác 16 bit, hai giá trị 16 bit chia cho nhau thì sẽ cho kết quả là con số 16 bit. Sau phép chia, số nguyên được lưu ở [D] và số dư được lưu ở [D $_{+1}$]. Thí dụ: 51 (D0) ÷ 10 (D2) = 5(D4) 1(D5)

© C.B. Pham Bộ điều khiển lập trình 5-19

5.3. Arithmetic and logical operations

- Lệnh INC: Tăng nội dung tóan hạng 1 đơn vị
- Lệnh DEC: Giảm nội dung tóan hạng 1 đơn vị

Mnemonic	Function	Operands	Program steps
		<u> </u>	
INC	The designated	KnY, KnM, KnS,	INC,INCP:
FNC 24	device is	T, C, D, V, Z	3 steps
(Increment)	incremented by 1	Standard V,Z rules apply for 32 bit operation	
·)	on every		DINC,
	execution of the	[D]	DINCP:
	instruction	X0 INC D 10	5 steps

Mnemonic	Function	Operands	Program steps	
michionic Tunction		D	1 rogram steps	
DEC	The designated	KnY, KnM, KnS,	DEC,DECP:	
FNC 25	device is	T, C, D, V, Z	3 steps	
(Decrement)	decremented by 1	Standard V,Z rules apply for 32 bit operation		
+	on every		DDEC,	
	execution of the instruction	X1 [D]	DDECP: 5 steps	
		DEC D 10		

© C.B. Pham Bộ điều khiển lập trình 5-20

ROR	Rotation Right	FNC 30
ROL	Rotation Left	FNC 31
RCR	Rotation Right with Carry	FNC 32
RCL	Rotation Left with Carry	FNC 33
SFTR	(Bit) Shift Right	FNC 34
SFTL	(Bit) Shift Left	FNC 35
WSFR	Word Shift Right	FNC 36
WSFL	Word Shift Left	FNC 37
SFWR	Shift Register Write	FNC 38
SFRD	Shift Register Read	FNC 39

© C.B. Pham Bộ điều khiển lập trình 5-21

5.4. Rotate and shift

· Lệnh ROR: Thực hiện quay chuỗi bit sang phải 'n' vị trí

Mnemonic	Function	Oper	Program steps	
MITCHIONIC	1 diletion	D	n	1 rogram steps
ROR FNC 30 (Rotation	the destination device is rotated	KnY, KnM, KnS, T, C, D, V, Z Note:	K, H, ⊠	ROR, RORP: 5 steps
	poration n≤ 16 ^{‡⊕R}	OKP: サーフ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	right on every	En: βοπορεκαι.or' : Kn::K4, σ sæβsit anaration

- Khi lệnh này họat động, chuỗi bit của tóan hạng được quay sang phải n bit. LSB của chuỗi lần lượt trở thành MSB của chuỗi. Trạng thái của bit cuối cùng được quay sẽ được copy vào cờ nhớ M8022 (carry flag).

· Lệnh ROL: Thực hiện quay chuỗi bit sang trái 'n' vị trí

Mnemonic	Function	Ор	Program steps		
Wilelionic Function		S D		- Frogram steps	
ROL FNC 31 (Rotation left)	The bit pattern of the destination device is rotated 'n' places to the left on every execution	KnY, KnM, KnS, T, C, D, V, Z Note: 16 bit operation Kn= K4, 32 bit operation Kn= K8	K, H, Note: 16 bit operation n ≤ 16 32 bit operation n≤ 32	ROL,ROLP: 5 steps DROL, DROLP: 7 steps	

- Khi lệnh này họat động, chuỗi bit của tóan hạng được quay sang trái n bit. MSB của chuỗi lần lượt trở thành LSB của chuỗi. Trạng thái của bit cuối cùng được quay sẽ được copy vào cờ nhớ M8022 (carry flag).

© C.B. Pham Bộ điều khiển lập trình 5-23

5.4. Rotate and shift

Lệnh RCR: Thực hiện quay chuỗi bit sang phải 'n' vị trí với carry bit

Mnemonic	Function	Operands		Program steps
Milemonie	runction	D	n	1 rogram steps
RCR FNC 32 (Rotation right with carry)	The contents of the destination device are rotated right with 1 bit extracted to the carry flag	KnY, KnM, KnS, T, C, D, V, Z Note: 16 bit operation Kn= K4, 32 bit operation Kn=K8	K, H, Note: 16 bit operation n≤ 16 32 bit operation n≤ 32	RCR,RCRP: 5 steps DRCR, DRCRP: 7 steps

- Khi lệnh này họat động, chuỗi bit của tóan hạng được quay sang phải n bit. LSB của chuỗi chuyển vào cờ nhớ M8022 và trạng thái trước đó của cờ nhớ M8022 được chuyển vào MSB.

• Lệnh RCL: Thực hiện quay chuỗi bit sang trái 'n' vị trí với carry bit

Mnemonic	Function	Oper	Program steps	
Milemonic Function		S	D	1 rogram steps
RCL FNC 33 (Rotation left with carry)	The contents of the destination device are rotated left with 1 bit extracted to the carry flag	KnY, KnM, KnS, T, C, D, V, Z Note: 16 bit operation Kn= K4, 32 bit operation Kn= K8	K, H, ⊠ Note: 16 bit operation n≤ 16 32 bit operation n≤ 32	RCL, RCLP: 5 steps DRCL, DRCLP: 9 steps

- Khi lệnh này họat động, chuỗi bit của tóan hạng được quay sang trái n bit. MSB của chuỗi chuyển vào cờ nhớ M8022 và trạng thái trước đó của cờ nhớ M8022 được chuyển vào LSB.

© C.B. Pham Bộ điều khiển lập trình 5-25

5.4. Rotate and shift

Lệnh SFTR: Thực hiện copy và dịch chuyển chuỗi bit sang phải

Mnemonic	Function	Operands			Program steps	
Willelilollic	Function	S	D	n1	n2	1 rogram steps
SFTR FNC 34 (Bit shift right)	The status of the source devices are copied to a controlled bit stack moving the existing data to the right	X, Y, M, S	Y, M, S	K,H, Note: FX users: n2 ≤ n1 ≤ 10; FX0,FX0n us n2 ≤ n1 ≤ 51;	sers:	SFTR,SFTRP: 9 steps

- Lệnh này copy $[n_2]$ bit [S] vào $[n_1]$ bit [D]. Mỗi lần thêm vào $[n_2]$ bit [S], dữ liệu hiện có của [D] sẽ được dịch sang phải $[n_2]$ bit.

• Lệnh SFTL: Thực hiện copy và dịch chuyển chuỗi bit sang trái

Mnemonic	Function	Operands				Program steps
Milemonie	Tunction	S	D	n1	n2	1 rogram steps
SFTL FNC 35 (Bit shift left)	The status of the source devices are copied to a controlled bit stack moving the existing data to the left	X, Y, M, S	Y, M, S	K,H, ⋈ Note: FX users: n₂ FX₀,FX₀n us n₂ ≤ n₁ ≤ 512		SFTL,SFTLP: 9steps

- Lệnh này copy $[n_2]$ bit [S] vào $[n_1]$ bit [D]. Mỗi lần thêm vào $[n_2]$ bit [S], dữ liệu hiện có của [D] sẽ được dịch sang trái $[n_2]$ bit.

© C.B. Pham Bộ điều khiển lập trình 5-27

5.5. Data operation

ZRST	Zone Reset	FNC 40
DECO	Decode	FNC 41
ENCO	Encode	FNC 42
SUM	The Sum Of Active Bits	FNC 43
BON	Check Specified Bit Status	FNC 44
MEAN	Mean	FNC 45
ANS	(Timed) Annunciator Set	FNC 46
ANR	Annunciator Reset	FNC 47
SQR	Square Root	FNC 48
FLT	Float, (Floating Point)	FNC 49

5.5. Data operation

· Lệnh ZRST: Thực hiện reset một dãy các thiết bị

Mnemonic	Function	Oper	Program steps	
Milicinomic	1 diletion	D1	D2	i rogram steps
ZRST FNC 40 (Zone Reset)	Used to reset a range of like devices in one operation	Y, M,S, T, C, D Note: D¹must be less than or eq Standard and High speed		ZRST, ZRSTP: 5 steps

- Lệnh này reset một dãy thiết bị từ $[D_1]$ đến $[D_2]$. Đối với thiết bị dữ liệu, thì giá trị được đặt bằng 0; còn với thiết bị logic thì trạng thái của nó là FALSE (hay OFF, LOW, 0 ...).

- Phần toán hạng phải chứa cùng lọai thiết bị.
- Nếu $[D_1] > [D_2]$ thì chỉ có $[D_1]$ được reset.

© C.B. Pham Bộ điều khiển lập trình 5-29

5.6. High speed processing

REF	Refresh	FNC 50
REFF	Refresh and filter adjust	FNC 51
MTR	Input matrix	FNC 52
HSCS	High speed counter set	FNC 53
HSCR	High speed counter reset	FNC 54
HSZ	High speed counter zone compare	FNC 55
SPD	Speed detect	FNC 56
PLSY	Pulse Y output	FNC 57
PWM	Pulse width modulation	FNC 58
PLSR	Ramp Pulse output	FNC 59

5.6. High speed processing

Lệnh PLSY: Tạo ra một dãy xung với số xung và tần số xác định

Mnemonic	Function	Operands			Program steps
Willelilollic		S ₁	S2	D	riogram steps
PLSY FNC 57 (Pulse Y output)	Outputs a specified number of pulses at a set frequency	K, H, KnX, KnY, KnM, KnS, T C D V	7	Y Note: FX ₀ (s)/FX ₀ N users:	PLSY: 7 steps DPLSY: 13steps
				any YPPP. FX _{2N(C)} users: Y000 or Y001 only ⊠.	

- Số xung $[S_2]$ được tạo ở thiết bị [D] với tần số $[S_1]$ (Hz, 50% ON và 50% OFF).
- Cờ M8029 sẽ ON khi dãy xung được tạo xong và tự động OFF khi lệnh không được kích hoat.
- Nếu K0 được sử dụng trong PLSY, thì xung sẽ được tạo ra liên tục cho đến khi ngừng kích họat lệnh.

© C.B. Pham 5-31

5.6. High speed processing

Lệnh PMW: Tạo ra một dãy xung được điều chế độ rộng

Mnemonic	Function	Operands			Program steps
Milemonic		S1	S2	D	1 rogram steps
PWM FNC 58 (Pulse width modulation)	Generates a pulse train with defined pulse characteristics	K, H, KnX, KnY, k KnS, T, C, D, V, 2 Note: S1 S2		Y Note: FX ₀ (s)/FX _{0N} users: Y001 only ⊠. FX users: any YPPP. FX _{2N} (c) users: Y000 or Y001 only ⊠	PWM: 7 steps

- Một dãy xung liên tục được tạo ở thiết bị [D] khi lệnh này làm việc.
- Thời gian một chu kỳ được xác định bởi $[S_2]$ (msec) .
- Thời gian để tín hiệu ở mức cao được xác định bởi $[S_1]$ (msec) .

Applications – Using multiple PLSY instructions

BL1		,	
	Device	PC device	Description
	PB1	X000	Door bell push button
	WIND1	X001	Window sensor
WND1	BL1	Y000	Door / alarm bell
	PLSY	FNC 57	The PLSY applied instruction
	CJ	FNC 00	The CJ applied instruction
	FEND	FNC 06	The FEND applied instruction
		P0	Door bell sub-routine
		P1	Alarm bell sub-routine

- Chuông BL1 có 2 hiệu ứng tương ứng với tín hiệu từ PB1 và WIND1.
- Khi có khách nhấn nút, chuông kêu 2 tiếng ngắn. Khi báo động, chuông kêu liên tục.

© C.B. Pham Bộ điều khiển lập trình 5-33

5.7. Handy instruction

IST	Initial State	FNC 60
SER	Search	FNC 61
ABSD	Absolute Drum	FNC 62
INCD	Incremental Drum	FNC 63
TTMR	Teaching Timer	FNC 64
STMR	Special Timer Definable	FNC 65
ALT	Alternate State	FNC 66
RAMP	Ramp Variable Value	FNC 67
ROTC	Rotary Table Control	FNC 68
SORT	Sort Data	FNC 69

5.7. Handy instruction

Lệnh ALT: Thực hiện đảo trạng thái hiện tại

Mnemonic	Function	Operands D	Program steps
ALT FNC 66 (Alternate state)	The status of the assigned device is inverted on every operation of the instruction	Y, M, S	ALT, ALTP: 3 steps

- Thiết bị [D] bị đảo trạng thái mỗi lần lệnh ALT được thực hiện. Điều này xảy ra ở mỗi lần quét chương trình trừ khi lệnh xung được sử dụng.
- Lệnh ALT thường được sử dụng để chuyển đổi giữa hai chế độ họat động (e.g. start and stop)

© C.B. Pham Bộ điều khiển lập trình 5-35

Applications – Selection between 2 modes using ALT

- Quạt làm việc ở hai cêế độ: hút / thổi.
- Mỗi lần nhấn nút PB1, quạt sẽ chuyển từ chế độ hiện tại sang chế độ còn lại.

5.8. External FX I/O devices

TKY	Ten Key Input	FNC 70
HKY	Hexadecimal Input	FNC 71
DSW	Digital Switch (Thumbwheel input)	FNC 72
SEGD	Seven Segment Decoder	FNC 73
SEGL	Seven Segment With Latch	FNC 74
ARWS	Arrow Switch	FNC 75
ASC	ASCII Code	FNC 76
PR	'Print' To A Display	FNC 77
FROM	Read From A Special Func. Block	FNC 78
TO	Write To A Special Function Block	FNC 79

© C.B. Pham Bộ điều khiển lập trình 5-37

5.9. External FX serial devices

RS	RS Communications	FNC 80
PRUN	FX2-40AP Parallel Run	FNC 81
ASCI	Hexadecimal to ASCII	FNC 82
HEX	ASCII to Hexadecimal	FNC 83
CCD	Check Code	FNC 84
VRRD	FX-8AV Volume Read	FNC 85
VRSC	FX-8AV Volume Scale	FNC 86
2	Not Available	FNC 87
PID	PID Control Loop	FNC 88
***	Not Available	FNC 89

MNET	F-16NP,Melsec Net Mini	FNC 90
ANRD	F2-6A, Analog Read	FNC 91
ANWR	F2-6A, Analog Write	FNC 92
RMST	F2-32RM, RM Start	FNC 93
RMWR	F2-32RM, RM Write	FNC 94
RMRD	F2-32RM, RM Read	FNC 95
RMMN	F2-32RM, RM Monitor	FNC 96
BLK	F2-30GM, Block	FNC 97
MCDE	F2-30GM, Machine Code	FNC 98
2	Not Available	FNC 99

© C.B. Pham Bộ điều khiển lập trình 5-39

5.11. Floating point 1 & 2

Floating Point 1

ECMP	Float Compare	FNC 110
EZCP	Float Zone Compare	FNC 111
***	Not Available	FNC 112 to 117
EBCD	Float to Scientific	FNC 118
EBIN	Scientific to Float	FNC 119

Floating Point 2

EADD Float Add FNC 120
ESUB Float Subtract FNC 121
EMUL Float Multiplication FNC 122

EDIV Float Division FNC 123

☆☆☆ Not Available FNC 124 to 126

ESQR Float Square Root FNC 127
PPP Not Available FNC 128

INT Float to Integer FNC 129

© C.B. Pham Bộ điều khiển lập trình 5-41

5.12. Trigonometry

Floating Point 3

SIN Sine FNC 130

COS Cosine FNC 131

TAN Tangent FNC 132

☆☆☆ Not Available FNC 133 to 139

5.13. Data operations 2

☆☆☆ Not Available FNC 140 to 146

SWAP Float to Scientific FNC 147

☆☆☆ Not Available FNC 148 to 149

© C.B. Pham Bộ điều khiển lập trình 5-43

5.14. Real time clock control

TCMP	Time Compare	FNC 160

TZCP Time Zone Compare FNC 161

TADD Time Add FNC 162

TSUB Time Subtract FNC 163

☆☆☆ Not Available FNC 164 to 165

TRD Read RTC data FNC 166

TWR Set RTC data FNC 167

☆☆☆ Not Available FNC 168 to 169

GRY Decimal to Gray Code FNC 170

GBIN Gray Code to Decimal FNC 171

☆☆☆ Not Available FNC 172 to 177

© C.B. Pham Bộ điều khiển lập trình 5-45

5.16. In-line comparisons

LD□ LoaD compare FNC 224 to 230

AND□ AND compare FNC 232 to 238

OR ☐ OR compare FNC 240 to 246