Lecture 20. Heuristics and Iterative Refinement

CpSc 8400: Algorithms and Data Structures
Brian C. Dean

School of Computing Clemson University Fall, 2016

Discrete Optimization

- We've already seen how to develop greedy algorithms and to use dynamic programming.
- For harder problems:
 - Approximation algorithms try to generate a provablyclose-to-optimal solution in polynomial time.
 - Heuristics try to do as well as possible (either in terms of solution quality or running time) on real-world inputs.

Rank aggregation The traveling salesm problem (TSP)

Continuous Optimization

- Solving and optimizing not much different: for example, to solve f(x) = 0, minimize $|f(x)|^2$.
 - Often want to solve an entire system of equations (e.g., with finite element modeling).
- <u>Regression</u> is the process of fitting parameters to a model to minimize its error when fitting to data.

Iterative Refinement

- Simple yet powerful idea:
 - Start with some arbitrary feasible solution (or better yet, a solution obtained via some other heuristic)
 - As long as we can improve it, keep making it better (e.g., search a small "neighborhood" of solutions similar to x, moving to better one if found)
 - Simple example: bubble sort.
- Getting stuck in local minima can be a problem.
- Many approaches refine a <u>population</u> of solutions, rather than a single solution.

Unconstrained Optimization of F(x) Based On Iterative Refinement

• To refine a guess x, locally approximate F at x using either a linear function or a quadratic.

easy to compute)

- Careful with step size
- Many fast "low quality" steps

Newton's Method (if second derivatives easy to compute)

- Fewer slow "high quality" steps (in N dimensions, each step involves solving an N-variable linear system).
- <u>Convex</u> functions nice, since local optimal point is also a global optimum point.

Unconstrained Optimization of F(x) Based On Iterative Refinement

 To refine a guess x, locally approximate F at x using either a linear function or a quadratic.

<u>Gradient Descent</u> (if derivatives easy to compute)

- Careful with step size
- Many fast "low quality" steps

Newton's Method (if second derivatives easy to compute)

- Fewer slow "high quality" steps (in N dimensions, each step involves solving an N-variable linear system).

What if computing derivatives at all isn't easy...?

If Derivatives are Hard to Compute... "Ameoba Search"

Goal: Minimize F(x) without computing any derivatives...

 In higher dimensions, this leads to an idea known as downhill simplex search, the Nelder-Mead algorithm, or "amoeba" search.

Simulated Annealing

- Like neighborhood search, only you are allowed to move to worse solutions (with a goal of escaping local minima).
- Probability of moving to a worse solution proportional to how much worse it is, and this probably decreases over time as well according to a "cooling" schedule.
- Think of this as a "random walk" through different solutions, where it's much more likely to move in an improving direction.

Population-Based Search: Genetic Algorithms

- Start with a **population** of initial solutions.
- Each member of next generation obtained by:
 - Mutation of good solution from previous generation,
 - Result of "mating" together two good solutions from previous generation, or
 - Direct copy of best solution from previous generation.
- Solutions from previous generation chosen with probability related to their fitness.
 - Sometimes called "roulette wheel" selecton.

Genetic Algorithms: "Crossover" for Combining Solutions...

Genetic Algorithms: "Crossover" for Combining Solutions...

Linear Systems

- N unknown variables, N equations (what if # of variables is more or less than the # of equations?)
- Example: x + y = 3

$$2x - y = 3$$

• Example: $x_1 + 2x_2 + 3x_3 = 10$

$$4x_1 + 5x_2 + 6x_3 = 11$$

$$7x_1 + 8x_2 + 9x_3 = 12$$

• We often write these using matrix-vector notation:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 11 \\ 12 \\ b \end{bmatrix}$$

Linear Systems are Everywhere

- Least squares regression or solving a system of equations usually involves minimizing a quadratic function giving squared error.
- To minimize a quadratic, set its gradient to zero this gives a linear system!

Solving Linear Systems with Gaussian Elimination

- Consider solving an N x N linear system Ax = b.
- Example: $x_1 + 2x_2 + 3x_3 = 10$ $4x_1 + 5x_2 + 6x_3 = 11$ $7x_1 + 8x_2 + 9x_3 = 12$
- Solve first equation for x_1 in terms of other variables: $x_1 = 10 2x_2 3x_3$.
- Plug this in to eliminate x₁ from equations 2...N, giving a system of N – 1 variables, N – 1 equations.
- Eventually, we get a single equation in x_N . Solve it, then work backwards to get values of x_{N-1} ... x_1 .
- Total running time: O(N³)

Solving Linear Systems with Gaussian Elimination

- The "standard" method for solving a linear system via Gaussian elimination takes O(N³) time.
- With a bit of cleverness, we can solve a linear system in the same amount of time it takes to multiply two N x N matrices (also O(N³) time using the most straightforward approach).
- However, matrix multiplication can be done a bit faster...

Solving Linear Systems with Gaussian Elimination

• The "standard" method for solving a linear system via Gaussian elimination takes O(N³) time.

ng

- V Matrix Multiplication...
 - s Best known lower bound: Ω(n²) (trivial)

Strassen 1969: O(n^{2.81})

Coppersmith and Winograd 1990: O(n^{2.376})

(However, it's quite complicated and not very practical)

Stothers 2011: O(n^{2.374}) Williams 2012: O(n^{2.3729}) Le Gall 2014: O(n^{2.37287})

Solving Linear Systems (Potentially Faster) with Iterative Refinement

- Consider solving an N x N linear system Ax = b.
- Example: $x_1 + 2x_2 + 3x_3 = 10$ $4x_1 + 5x_2 + 6x_3 = 11$

$$7x_1 + 8x_2 + 9x_3 = 12$$

- A much faster solution in practice uses iterative refinement:
 - Guess an initial solution $x = (x_1...x_N)$
 - Solve equation 1 for x_1 to update x_1 .
 - Solve equation 2 for x_2 to update x_2 .
 - Etc...
 - Repeating entire process until convergence.