Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Estatística

Segundo relatório da disciplina de demografia II - Roraima

Gabriel de Jesus Pereira

Sumário

1	Introdução													
	1.1	Recursos computacionais	2											
2	Met	odologia	3											
	2.1	Técnica de sobrevivência de Brass	3											
	2.2	Técnica de Brass para estimar a fecundidade												
	2.3	Modelando taxa de fecundidade marital	5											
	2.4	Modelo relacional de Gompertz												
3	Resultados													
	3.1	Técnica de sobrevivência de Brass	7											
	3.2	Técnica de Brass para a fecundidade												
	3.3	Modelando taxa de fecundidade marital												
	3.4	Modelo relacional de Gompertz												
4	Exe	rcícios do Mortpak	8											
	4.1	Questão 1)	8											
	4.2	Questão 2)	9											
	4.3	Questão 3)	9											
	4 4	Questão 4)	g											

1 Introdução

1.1 Recursos computacionais

2 Metodologia

2.1 Técnica de sobrevivência de Brass

A técnica de sobrevivência de Brass, proposta por William Brass, é um método indireto utilizado para estimar níveis de mortalidade infantil e na infância em populações com dados vitais incompletos ou de baixa qualidade. O método baseia-se em informações obtidas a partir de censos ou pesquisas domiciliares, onde as mulheres são questionadas sobre número de filhos nascidos vivos e número de filhos sobreviventes na data do censo por grupos de idade das mulheres, em diferentes faixas etárias reprodutivas.

Para sua aplicação, o método de Brass pressupõe algumas características. Por exemplo, A fecundidade específica por idade tem sido aproximadamente constante no passado recente, coeficientes de mortalidade infantil e na infância têm sido aproximadamente constantes, não há acentuada associação entre mortalidade infantil e idade da mãe ou entre os coeficientes de mortalidade das mães e dos seus filhos, taxas de subenumeração para crianças sobreviventes e não sobreviventes são aproximadamente iguais. Por último, O "padrão etário" de mortalidade para idades jovens segue aproximadamente os padrões das tábuas-modelo

o princípio do método é que, conhecendo o número de filhos nascidos e o número de filhos sobreviventes, é possível calcular a proporção de filhos falecidos para cada grupo etário de mães. Essa proporção reflete indiretamente o nível de mortalidade infantil, já que mulheres mais velhas, por exemplo, tiveram filhos há mais tempo, e portanto o risco acumulado de morte é maior entre seus filhos.

A fórmula básica usada é:

$$D_i = 1 - \frac{\text{FV}_i}{\text{FNV}_i},$$

em que FV_i é o número de filhos sobreviventes na data do censo por grupos de idade das mulheres e FNV_i é o número de nascidos vivos por grupo etário das mulheres.

Utilizando-se a relação entre a proporção de filhos mortos, D_i , e a probabilidade de morrer da tábua de vida, q_x , Brass estabeleceu um conjunto de multiplicadores, k_i , que podem ser calculados a partir de interpolação linear a partir da tabela padrão a seguir:

Medida	Idade das mães	JUST NO				123	(8)		
estimada		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(0)
q(1) q(2) q(3) q(5) q(10) q(15) q(20)	15/20 20/25 25/30 30/35 35/40 40/45 45/50	0,859 0,938 0,948 0,961 0,966 0,938 0,937	0,890 0,959 0,962 0,975 0,982 0,955 0,953	0,928 0,983 0,978 0,988 0,996 0,971 0,969	0,977 1,010 0,994 1,002 1,011 0,988 0,986	1,041 1,043 1,012 1,016 1,026 1,004 1,003	1,129 1,082 1,033 1,031 1,040 1,021 1,021	1,254 1,129 1,055 1,046 1,054 1,037 1,039	1,425 1,188 1,081 1,063 1,069 1,052 1,057
Guias p/seleção das colunas	P1/P2 Id. média Id. media- na	0,387 24,7 24,2	0,330 25,7 25,2	0,268 26,7 26,2	0,205 27,7 27,2	0,143 28,7 28,2	0,090 29,7 29,2	0,045 30,7 30,2	0,014 31,7 31,2

Figura 2.1: Tabela para determinação de multiplicadores k_i .

Agora, com esses valores k_i , pode-se converter os valores observados D_i em estimativas de q_x , ou seja, probabilidade de morte entre o nascimento e idades exatas:

$$q_x = k_i D_i$$
.

Tendo estimado o conjunto de probabilidades de morte q_x , obtém-se, por diferença, a probabilidade de sobrevivência entre o nascimento e idades exatas, I_x :

$$I_r = I - q_r$$
.

2.2 Técnica de Brass para estimar a fecundidade

O objetivo da técnica de Brass estimar a fecundidade é estimar a fecundidade em países cujos dados de registro civil não permitem um cálculo razoável do seu nível.

Um de seus pressupostos parar aplicação do método é que a fecundidade tenha sido aproximadamente constante no passado recente. Além desse pressuposto, é necessário também que os coeficientes específicos de fecundidade por idade da mulher, tais como os obtidos através de perguntas diretas, são corretos quanto ao padrão etário da fecundidade e o nível de fecundidade é corretamente medido através do número de filhos tidos (nascidos vivos) informados pelas mulheres mais jovens (usualmente do grupo etário 20-25) – ou seja, através da parturição média dessas mulheres.

Para utilizar a técnica de Brass, será necessário calcular os nascidos vivos no ano anterior ao censo por mulher, que é denotado por f_i , total de nascidos vivos por mulher P_i . A partir de f_i , calcula-se a fucundidade acumulada no começo do intervalo $F_i^{'}=5\sum_{j=0}^{i-1}f_j$. Uma das outras componentes que compõe o método são os fatores de multiplicação W_i , que são valores tabelados e que podem ser calculados por interporlação linear a partir do intervalo que f_1/f_2 estão definidos na tabela a seguir:

ldade											
	Fatores										
15/20	1.120	1.310	1.615	1,950	2.305	2,640	2,925	3,170			
20/25	2.555	2,690	2,780	2.840	2.890	2.925	2.960	2.985			
25/30	2.925	2.960	2.985	3.010	3.035	3.055	3.075	3.095			
30 '35	3.055	3.075	3.095	3.120	3.140	3.165	3.190	3.215			
35/40	3.165	3.190	3.215	3,245	3.285	3,325	3,375	3.435			
40/45	3.325	3.375	3,435	3.510	3,610	3,740	3,915	4.150			
45/50	3.640	3,895	4.150	4,395	4.630	4.840	4,985	5,000			
f1/f2	0.36	0,113	0.213	0,330	0,460	0.605	0,764	0.939			
m	31.7	30,7	29,7	28.7	27,7	26,7	25,4	24,7			

Figura 2.2: Valores tabelados para cálculo de fatores de multiplicação W_i .

Após encontrar os fatores de multiplicação W_i , basta cálcular a fecundidade acumulada média com $F_i = F_i + W_i f_i$. Por fim, encontram-se os coeficientes específicos corrigidos $f^{'} = f_i P_2 / F_2$.

2.3 Modelando taxa de fecundidade marital

O modelo de fecundidade marital de Coale-Trussell é uma das abordagens clássicas para estudar o comportamento reprodutivo de mulheres casadas, oferecendo uma maneira prática de estimar e interpretar padrões de fecundidade observados com base em uma curva-padrão e parâmetros de ajuste. Sua aplicação é especialmente útil em estudos demográficos comparativos entre diferentes regiões ou ao longo do tempo.

O modelo parte da ideia de que a fecundidade marital observada pode ser representada como uma modificação de um padrão considerado "natural" ou "biológico" de fecundidade. A fórmula principal é:

$$f(a) = G(a) r(a),$$

em que a é a idade, f(a) é a taxa específica de fecundidade, G(a) é o risco do primeiro casamento, r(a) é a taxa específica de fecundidade marital, a qual é expressa da seguinte forma:

$$r(a) = Mn(a) e^{mv(a)}.$$

em que M é o nível de fecundidade e m é o padrão de fecundidade. $n\left(a\right)$ é a fecundidade marital natural e $v\left(a\right)$ é a fecundidade fixa.

Por fim, a partir da expressão de $r\left(a\right)$ pode ser definida uma regressão linear da seguinte forma:

$$\ln \left(r\left(a\right) /n\left(a\right) \right) =\ln \left(M\right) +mv\left(a\right)$$

Além disso, vale ressaltar que a fecundidade marital e natural e a fecundidade fixa são derivadas por experiência de alguns países, principalmente europeus. A imagem a seguir mostra os valores que foram considerados para esse trabalho:

Age group (a)	n(a)	v(a)
20-24	0.460	0.000
25-29	0.431	-0.316
30-34	0.396	-0.814
35-39	0.321	-1.04
40-44	0.167	-1.42
45-49	0.024	-1.66

Figura 2.3: Valores tabelados de n(a) e v(a) para aplicação do método de Coale-Trussel.

2.4 Modelo relacional de Gompertz

O modelo relacional de Gompertz é uma metodologia demográfica amplamente utilizada para descrever e ajustar padrões de fecundidade, especialmente quando os dados observados apresentam problemas de cobertura ou qualidade. Sua principal utilidade está em permitir comparações entre diferentes populações ou períodos por meio de uma curva-padrão acumulada de fecundidade.

A lógica do modelo baseia-se na função de Gompertz, originalmente utilizada para modelar taxas de mortalidade, mas que também pode ser aplicada ao padrão acumulado da fecundidade, F(a), isto é, a proporção da fecundidade total que já ocorreu até determinada idade a. O modelo assume a seguinte forma funcional:

$$Gompit(F(a)) = \ln \left[-\ln \left(1 - F(a) \right) \right] = \alpha + \beta Gompit(F_s(a))$$

em que F(a) é a distribuição acumulada de fecundidade da população observada, $F_s(a)$ é a distribuição acumulada de fecundidade da população padrão, $-0,5<\alpha<0,5$ e $0,65<\beta<1,5$ são o nível da fecundidade e padrão da fecundidade, respectivamente.

Para aplicar o modelo, é necessário calcular a distribuição proporcional das taxas específicas de fecundidade p(a), obter a distribuição acumulada F(a), aplicar a transformação Gompit $\ln [-\ln (1-F(a))]$, ajustar uma regressão linear entre os gompits da população observada e os da curva padrão e, por fim, estimar os parâmetros α e β , que permitem reconstruir a curva ajustada ou fazer comparações com outras populações.

3 Resultados

- 3.1 Técnica de sobrevivência de Brass
- 3.2 Técnica de Brass para a fecundidade

```
\begin{array}{l} 0.096731/0.134156 = 0.721033721935657 \\ (0.764-0.721033721935657)/(0.764-0.605) = 0.2702281639266858 \end{array}
```

- 3.3 Modelando taxa de fecundidade marital
- 3.4 Modelo relacional de Gompertz

4 Exercícios do Mortpak

JDADE	INTERVALO DE IDADE	SEXO.	ANO	CÓD. ▼	SIGLA	LOCAL	nMx	DAx	DQX	lx	ndx	משמ	Şx	īx	ex
0	1	Homens	2010	14	RR	Roraima	0.01407	0.08245	0.01389	100,000	1.389	98,725	0.98437	7.205.082	72.05
1	4	Homens	2010	14	RR	Roraima	0.00105	1.61111	0.00418	98.611	412	393,458	0.99675	7.106.357	72.06
5	5	Homens	2010	14	RR	Roraima	0.00032	2.35411	0.00158	98,199	155	490,582	0.99810	6,712,899	68.36
10	5	Homens	2010	14	RR	Roraima	0.00054	2.85978	0.00270	98,043	264	489,651	0.99455	6,222,317	63.47
15	5	Homens	2010	14	RR	Roraima	0.00179	2.80358	0.00891	97,779	872	486,980	0.98936	5,732,666	58.63
20	5	Homens	2010	14	RR	Roraima	0.00236	2.59108	0.01173	96,907	1,137	481,797	0.98709	5,245,686	54.13
25	5	Homens	2010	14	RR	Roraima	0.00284	2.57405	0.01409	95,770	1,350	475,577	0.98435	4,763,890	49.74
30	5	Homens	2010	14	RR	Roraima	0.00346	2.55135	0.01718	94,421	1,622	468,132	0.98208	4,288,313	45.42
35	5	Homens	2010	14	RR	Roraima	0.00376	2.53989	0.01862	92,799	1,728	459,742	0.98008	3,820,181	41.17
40	5	Homens	2010	14	RR	Roraima	0.00436	2.57024	0.02155	91,071	1,963	450,584	0.97596	3,360,439	36.90
45	5	Homens	2010	14	RR	Roraima	0.00550	2.60677	0.02714	89,108	2,419	439,750	0.96809	2,909,855	32.66
50	5	Homens	2010	14	RR	Roraima	0.00768	2.63720	0.03773	86,689	3,271	425,716	0.95362	2,470,105	28.49
55	5	Homens	2010	14	RR	Roraima	0.01148	2.61357	0.05585	83,418	4,659	405,972	0.93681	2,044,388	24.51
60	5	Homens	2010	14	RR	Roraima	0.01486	2.61567	0.07178	78,759	5,653	380,317	0.91072	1,638,416	20.80
65	5	Homens	2010	14	RR	Roraima	0.02320	2.61453	0.10991	73,106	8,035	346,363	0.87131	1,258,099	17.21
70	5	Homens	2010	14	RR	Roraima	0.03248	2.59613	0.15065	65,071	9,803	301,790	0.81538	911,736	14.01
75	5	Homens	2010	14	RR	Roraima	0.05092	2.58457	0.22673	55,268	12,531	246,073	0.72291	609,947	11.04
80	5	Homens	2010	14	RR	Roraima	0.08112	2.51914	0.33763	42,737	14,430	177,889	0.60052	363,873	8.51
85	5	Homens	2010	14	RR	Roraima	0.12563	2.41347	0.47409	28,308	13,420	106,827	0.42561	185,984	6.57
90	+	Homens	2010	14	RR	Roraima	0.18807	5.31707	1.00000	14,887	14,887	79,157	-	79,157	5.32

(a) Tábua de vida para o sexo masculino.

(a) Tábua de vida para o sexo feminino.

4.1 Questão 1)

Ver no Mortpak qual é o melhor modelo ao comparar os Modelos das Nações Unidas aos de Coale-Demeny (Função COMPAR);

(a) Função COMPAR para o sexo masculino. (a) Função COMPAR para o sexo feminino.

4.2 Questão 2)

Considerar apenas os Modelos das Nações Unidas e ver qual é o melhor (Função COMPAR);

4.3 Questão 3)

Observar os valores da E(x) e escolher a TV Modelo das Nações Unidas mais adequada (depende do passo 2...);

4.4 Questão 4)

Usar o sistema logito de tábuas de vida de dois parâmetros de Brass e considerar os seguintes padrões: Modelo Geral de Brass; MAB e o resultado do passo 3.