Теория вероятностей и математическая статистика. Домашнее задание №8

Автор: Сурова София, БПИ191

ноябрь 2021

Замечание. Задачи взяты из задачника «Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами», А.И. Кибзун, Е.Р. Горяинова, А.В. Наумов, 2007.

стр.132, №4

Подбрасывают три игральные кости. Рассматриваются случайные величины: X - количество костей, на которых выпало шесть очков. Y - количество костей, на которых выпало пять очков. Найти E(X+Y) и закон распределения $\operatorname{CB} Z = X + Y$

Решение

Ряд распределения - это таблица, в которой в первой строчке находятся значения, которые может принимать случайная величина, а во второй строчке - вероятности того, что случайная величина примет соответствующее значение. Тогда наш ряд распределения выглядит следующим образом:

$X \sim Bi(3, 1/6)$	0	1	2	3
р	$(5/6)^3$	$3(1/6)(5/6)^2$	$3(1/6)^2(5/6)$	$(1/6)^3$
$Y \sim Bi(3, 1/6)$	0	1	2	3
р	$(5/6)^3$	$3(1/6)(5/6)^2$	$3(1/6)^2(5/6)$	$(1/6)^3$

Математическое ожидание дискретной случайной величины X

$$EX = \sum x_i p_i = 0 \cdot \left(\frac{5}{6}\right)^3 + 1 \cdot 3\left(\frac{1}{6}\right) \left(\frac{5}{6}\right)^2 + 2 \cdot 3\left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right) + 3 \cdot \left(\frac{1}{6}\right)^3 = 0.5$$

Примечание. Можно посчитать проще, если вы поняли, что $X \sim Bi(3,1/6)$ и $EX = np = 3 * \frac{1}{6} = 0.5$

Математическое ожидание дискретной случайной величины Y аналогично EY=0.5

Тогда
$$EZ = E(X + Y) = E(X) + E(Y) = 0.5 + 0.5 = 1$$

Z = X + Y = Bi(3, 1/3) - количество костей, на которых выпало пять или шесть очков.

$Z \sim Bi(3, 1/3)$	0	1	2	3
p	$(2/3)^3$	$3(1/3)(2/3)^2$	$3(1/3)^2(2/3)$	$(1/3)^3$

Ответ: $E(X + Y) = 1, Z \sim Bi(3, 1/3)$

стр.132, №5

Задан закон распределения случайного вектора Z = (X, Y)

Y/X	-1	1
1	1/6	1/3
2	0	1/6
3	1/3	0

Требуется:

- а) найти закон распределения случайной величины X+Y
- б) проверить справедливость равенств $E(X+Y)=EX+EY,\,D(X+Y)=DX+DY+2cov(X,Y)$

Решение

$$P\{X=x_i\}=\sum_j P\{X=x_i,Y=y_j\}=\sum_j P\{Z=z_{ij}\}$$
 (в данном случае i - столбец, j - строка) $P\{Y=y_j\}=\sum_i P\{X=x_i,Y=y_j\}=\sum_i P\{Z=z_{ij}\}$ (в данном случае i - столбец, j - строка) Найдём сумму по строке и по столбцу

Y/X	-1	1	
1	1/6	1/3	1/2
2	0	1/6	1/6
3	1/3	0	1/3
	1/2	1/2	

Тогда

X	-1	1
р	1/2	1/2

Y	1	2	3
р	1/2	1/6	1/3

$$\begin{array}{l} P\{X+Y=0\} = P\{X=-1,Y=1\} = 1/6 \\ P\{X+Y=1\} = P\{X=-1,Y=2\} = 0 \\ P\{X+Y=2\} = P\{X=-1,Y=3\} + P\{X=1,Y=1\} = 1/3 + 1/3 = 2/3 \\ P\{X+Y=3\} = P\{X=1,Y=2\} = 1/6 \\ P\{X+Y=4\} = P\{X=1,Y=3\} = 0 \end{array}$$

X+Y	0	1	2	3	4
p	1/6	0	2/3	1/6	0

$$EX = \sum x_i p_i = -1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = 0$$

$$EY = \sum y_i p_i = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{3} = \frac{11}{6}$$

Математическое ожидание дискретной случайной величины
$$X$$
 $EX = \sum x_i p_i = -1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = 0$ Математическое ожидание дискретной случайной величины Y $EY = \sum y_i p_i = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{3} = \frac{11}{6}$ Математическое ожидание дискретной случайной величины $X + Y$ $E(X + Y) = 0 \cdot \frac{1}{6} + 1 \cdot 0 + 2 \cdot \frac{2}{3} + 3 \cdot \frac{1}{6} + 4 \cdot 0 = \frac{11}{6}$

$$E(X+Y) = EX + EY$$
 - верно

$$E(X^{2}) = \sum_{i} x_{i}^{2} p_{i} = (-1)^{2} \cdot \frac{1}{2} + 1^{2} \cdot \frac{1}{2} = 1$$

$$E(Y^2) = \sum y_i^2 p_i = 1^2 \cdot \frac{1}{2} + 2^2 \cdot \frac{1}{6} + 3^2 \cdot \frac{1}{3} = \frac{25}{6}$$

$$DY = E(Y^2) - (EY)^2 = \frac{25}{6} - \frac{121}{36} = \frac{29}{36}$$

Дисперсия случайной величины
$$X$$

$$E(X^2) = \sum x_i^2 p_i = (-1)^2 \cdot \frac{1}{2} + 1^2 \cdot \frac{1}{2} = 1$$

$$DX = E(X^2) - (EX)^2 = 1 - 0 = 1$$
 Дисперсия случайной величины Y
$$E(Y^2) = \sum y_i^2 p_i = 1^2 \cdot \frac{1}{2} + 2^2 \cdot \frac{1}{6} + 3^2 \cdot \frac{1}{3} = \frac{25}{6}$$

$$DY = E(Y^2) - (EY)^2 = \frac{25}{6} - \frac{121}{36} = \frac{29}{36}$$
 Дисперсия случайной величины $X + Y$
$$E((X + Y)^2) = 0 \cdot \frac{1}{6} + 1 \cdot 0 + 2^2 \cdot \frac{2}{3} + 3^2 \cdot \frac{1}{6} + 4^2 \cdot 0 = \frac{25}{6}$$

$$D(X + Y) = \frac{25}{6} - \frac{121}{36} = \frac{29}{36}$$

Ковариация случайных величин X и Y

$$E(XY) = \sum x_i y_j p_i j = -1 \cdot 1 \cdot \frac{1}{6} - 1 \cdot 3 \cdot \frac{1}{3} + 1 \cdot 1 \cdot \frac{1}{3} + 1 \cdot 2 \cdot \frac{1}{6} = -\frac{1}{2}$$

$$cov(X,Y)=E(XY)-E(X)E(Y)=-rac{1}{2}-0\cdotrac{11}{6}=-rac{1}{2}$$
 $D(X+Y)=D(X)+D(Y)+2cov(X,Y)=1+rac{29}{36}+2\cdot(-1)rac{1}{2}=rac{29}{36}$ - верно

стр.132, №6

Найти ковариацию cov(c, X), где X - некоторая CB, c - константа.

Решение

$$\begin{split} E(cX) &= cE(X) \\ E(c) &= c \end{split}$$

$$cov(c, X) = E(cX) - E(c)E(X) = cE(X) - cE(X) = 0$$

Ответ: 0

стр.132, №7

В продукции завода брак вследствие дефекта A составляет 3%, а вследствие дефекта B - 4.5%. Годная продукция составляет 95%. Найти коэффициент корреляции дефектов A и B.

Решение

Пусть случайная величина A - наличие дефекта A, а случайная величина B - наличие дефекта B. Тогда

A	0	1
р	0.97	0.03

В	0	1
р	0.955	0.045

A/B	0	1
0	0.95	?
1	?	?

Но

A/B	0	1	
0	0.95	?	0.97
1	?	?	0.03
	0.955	0.045	

Тогда

A/B	0	1
0	0.95	0.02
1	0.005	0.025

Математическое ожидание дискретной случайной величины A

$$EA = \sum a_i p_i = 0 * 0.97 + 1 * 0.03 = 0.03$$

Математическое ожидание дискретной случайной величины B

$$EB = \sum b_i p_i = 0 * 0.955 + 1 * 0.045 = 0.045$$

Дисперсия случайной величины A

$$E(A^2) = 0 * 0.97 + 1 * 0.03 = 0.03$$

$$D(A) = E(A^2) - (EA)^2 = 0.03 - 0.03^2 = 0.0291$$

Дисперсия случайной величины B

$$E(B^2) = 0 * 0.955 + 1 * 0.045 = 0.045$$

$$D(B) = E(B^2) - (EB)^2 = 0.045 - 0.045^2 = 0.042975$$

Ковариация A и B

$$E(AB) = \sum a_i b_j p_{ij} = 0 * 0 * 0.95 + 0 * 1 * 0.02 + 1 * 0 * 0.05 + 1 * 1 * 0.025 = 0.025$$

 $cov(A, B) = E(AB) - E(A)E(B) = 0.025 - 0.03 * 0.045 = 0.02365$

Коэффициент корреляции
$$A$$
 и B
$$\rho(A,B)=\frac{cov(A,B)}{\sqrt{DA}\sqrt{DB}}=\frac{0.02365}{\sqrt{0.0291}\sqrt{0.042975}}\approx 0.669$$

Ответ: 0.669

стр.132, №12

Известно, что EX = 1, $EX^2 = 2$. Найти cov(X, X)

$$cov(X,X) = E(XX) - E(X)E(X) = E(X^2) - (E(X))^2 = 2 - 1^2 = 1$$
Примечание. $cov(X,X) = DX$

Ответ: 1

стр.133, №13

Известно, что СВ $X \sim E(1)$, DY = 2, D(X - Y) = 3. Найти cov(X, Y)

Решение

$$X \sim E(1) \Rightarrow EX = 1, DX = 1$$

$$D(X + Y) = D(X) + D(Y) + 2cov(X, Y)$$

$$D(X - Y) = D(X) + D(-Y) + 2cov(X, -Y) = D(X) + D(Y) - 2cov(X, Y) \Rightarrow cov(X, Y) = \frac{1}{2}(DX + DY - D(X - Y)) = \frac{1}{2}(1 + 2 - 3) = 0$$

Ответ: 0

стр.133, №14

Найти коэффициент корреляции междуслучайными величинами:

- а) X и Y = 18X
- б) X и Y = 7 2X

Решение

$$\rho(X, X) = 1$$

$$\rho(aX + b, cY + d) = sgn(a, c)\rho(X, Y)$$

a)
$$\rho(X,Y) = \rho(X,18X) = \rho(X,X) = 1$$

Если вы, допустим, забыли свойство для коэффициента корреляции, то

$$EY = E(18X) = 18EX$$

$$DY = D(18X) = 18^2 DX$$

$$E(XY) = E(18X^2) = 18E(X^2)$$

$$cov(X,Y) = E(XY) - EXEY = 18E(X^2) - 18(EX)^2 = 18DX$$

$$cov(X,Y) = E(XY) - EXEY = 18E(X^{2}) - 18(EX)^{2} = 18DX$$

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{DXDY}} = \frac{18DX}{\sqrt{18^{2}(DX)^{2}}} = 1$$

6)
$$\rho(X,Y) = \rho(X,7-2X) = -\rho(X,X) = -1$$

Опять же если вы забыли свойство для коэффициента корреляции, то

$$EY = E(7 - 2X) = 7 - 2EX$$

$$DY = D(7 - 2X) = D(-2X) = 4DX$$

$$E(XY) = E(7X - 2X^2) = 7EX - 2EX^2$$

$$cov(X,Y) = E(XY) - EXEY = 7EX - 2EX^2 - (7 - 2EX)EX = -2EX^2 + 2(EX)^2 = -2DX$$

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{DXDY}} = \frac{-2DX}{\sqrt{4(DX)^2}} = -1$$

Ответ: а) 1, б) −1

Центр исследований гражданского общества и некоммерческого сектора НИУ ВШЭ провёл социологическое исследование, в котором изучалась проблема участия населения в благотворительной деятельности. Среди вопросов, задаваемых респондентам, были, в частности, вопросы о материальном положении и образовании респондента.

Пусть СВ ξ (материальное положение) принимает три значения - 1 (бедный), 2 (средний уровень благосостояния), 3 (высокий уровень благосостояния), а СВ η (уровень образования) принимает значения - 1 (образование ниже среднего), 2 (среднее и среднее специальное образование), 3 (высшее образование). Распределение случайного вектора (η, ξ) , соответствующее репрезентативной выборке 2009 года, представлено следующей таблицей.

η/ξ	1	2	3
1	0.083	0.035	0.001
2	0.31	0.375	0.026
3	0.04	0.116	0.014

Найдите коэффициент корреляции СВ ξ и η . Являются ли СВ ξ и η некоррелированными? Являются ли СВ ξ и η зависимыми? Прокомментируйте полученный результат.

Решение

ξ	1	2	3
р	0.433	0.526	0.041

$$\begin{array}{c|ccccc} \eta & 1 & 2 & 3 \\ \hline p & 0.119 & 0.711 & 0.17 \end{array}$$

$$E\xi = 1 * 0.433 + 2 * 0.526 + 3 * 0.041 = 1.608$$

 $E\eta = 1 * 0.119 + 2 * 0.711 + 3 * 0.17 = 2.051$

$$E(\xi^2) = 1 * 0.433 + 4 * 0.526 + 9 * 0.041 = 2.906$$

 $D\xi = E(\xi^2) - (E\xi)^2 = 2.906 - 1.608^2 = 0.320336$
 $E(\eta^2) = 1 * 0.119 + 4 * 0.711 + 9 * 0.17 = 4.493$
 $D\eta = E(\eta^2) - (E\eta)^2 = 4.493 - 2.051^2 = 0.286399$

$$E(\xi\eta) = 1*1*0.083 + 1*2*0.035 + 1*3*0.001 + 2*1*0.31 + 2*2*0.375 + 2*3*0.026 + 3*1*0.04 + 3*2*0.116 + 3*3*0.014 = 3.374$$

$$cov(\xi, \eta) = E(\xi \eta) - E\xi E\eta = 0.075992$$

$$\rho(\xi, \eta) = \frac{cov(\xi, \eta)}{\sqrt{D\xi}\sqrt{D\eta}} = \frac{0.075992}{\sqrt{0.320336 * 0.286399}} \approx 0.250887631$$

 $\rho(\xi,\eta)\neq 0 \Rightarrow \xi$ и η коррелированы

 $\rho(\xi,\eta)>0\Rightarrow\xi$ и η коррелированы положительно

$$\rho(\xi,\eta) \neq 0 \Rightarrow \xi$$
 и η зависимы

Существует взаимосвязь между материальным положением и уровнем образования среди выбранных респондентов, данные величины положительно кореллированы, коэффициент корреляции $\rho=0.25$