

GNN-Based Depth Predictor

Accelerating Hardware with Al

Diya Khetarpal

Maharaja Agrasen Institute of Technology, Delhi

Date: March 11, 2025

Agenda

- Problem Statement
- Proposed Solution
- Model Architecture
- Results & Metrics
- Comparison
- Future Scope
- Innovation
- Demo

1. Problem Statement

- What: Predict Combinational Logic Depth from RTL code.
- Why: Fabrication based timing analysis takes hours/days, slowing project timelines.
- For Whom: Hardware designers working on IP/SoC designs.

2. Proposed Solution

Model.pth is used for inferencing on Graph generated Tools Used: PyTorch, PyVerilog, Streamlit

3. Model Architecture

4. Results & Metrics

Name	r2 Score	Time (s)
blabla	0.96157	1.4866
usb_cdc_core	0.97505	0.35034
BM64	0.97664	0.79075
salsa20	0.92088	1.4051
aes128	0.02668	4.41911
wbqspiflash	0.98398	1.14926
cic_decimator	0.98398	1.14926
aes256	0.99221	1.21171
des	0.99712	0.14436
aes_cipher	0.99221	1.21171
picorv32a	0.9784	0.07533
zipdiv	0.9784	0.07533
genericfir	0.9784	0.07533
usb	0.9784	0.07533

r2 Score	Time (s)
0.88197	4.81004
0.92518	1.16081
0.86051	4.43995
0.91354	0.2356
0.92559	0.69624
0.92559	0.69624
0.8656	0.34025
	0.88197 0.92518 0.86051 0.91354 0.92559

Testing Data

Training Data

Accuracy: R² Score: 0.92 Inference Speed: Milliseconds per signal vs. 2-8 hours for synthesis

5. Comparison

XGBoost: Fails to capture hierarchical graph dependencies effectively.

GAT: Good accuracy but suffers from slow inference speed.

RNNs: Struggle to model complex graph-based relationships.

6. Future Scope

7. Innovation:

Scalability for Complex IPs and SoCs

 Works with Verilog RTL designs, making it suitable for large-scale System-on-Chip (SoC) projects.

Data-Driven Learning for Better Accuracy

 Using datasets from previous synthesis runs, the model improves its predictions, making it more reliable over time.

Reducing Time-to-Market

 By eliminating multiple synthesis iterations, the AI model helps accelerate chip development cycles.

Fast Detection of Timing Violations

 Early identification of signals exceeding timing constraints, preventing late-stage design rework.

Project Resources:

Working Demo:

Thank you

