Seminar 8

- 1. Show that the sets \mathbb{Z}_n (residue classes modulo n), $M_n(\mathbb{R})$ (matrices $n \times n$) and $\mathbb{R}[X]$ (polynomials) form rings together with the corresponding addition and multiplication. Are they commutative rings, integral domains, division rings or fields? Generalization.
- **2.** Show that the set $\mathbb{R}^{\mathbb{R}}$ of functions $f: \mathbb{R} \to \mathbb{R}$ forms a ring together with the addition and the multiplication defined by: $\forall f, g \in \mathbb{R}^{\mathbb{R}}$, (f+g)(x) = f(x) + g(x), $(f \cdot g)(x) = f(x) \cdot g(x)$, $\forall x \in \mathbb{R}$. Is it a commutative ring, integral domain, division ring or field? Generalization.
 - **3.** Let (G, +) be an abelian group. Show that $(\operatorname{End}(G), +, \circ)$ is a ring with identity.
- **4.** Let $(R, +, \cdot)$ be a ring. Consider on the set $\mathbb{Z} \times R$ the addition and the multiplication defined by:

$$(m, a) + (n, b) = (m + n, a + b),$$

 $(m, a) \cdot (n, b) = (mn, ab + na + mb),$

 $\forall (m,a), (n,b) \in \mathbb{Z} \times R$. Show that $(\mathbb{Z} \times R, +, \cdot)$ is a ring with identity.

5. Let $n \in \mathbb{N}$, $n \geq 2$ and $\widehat{0} \neq \widehat{a} \in \mathbb{Z}_n$. Prove that:

 \widehat{a} is invertible in the ring $(\mathbb{Z}_n, +, \cdot) \iff (a, n) = 1$.

When is $(\mathbb{Z}_n, +, \cdot)$ a field?

- **6.** Solve the following equations in the ring $(\mathbb{Z}_{12}, +, \cdot)$: $\widehat{4}x + \widehat{5} = \widehat{9}$ and $\widehat{5}x + \widehat{5} = \widehat{9}$.
- **7.** Solve the following system of equations in the ring $(\mathbb{Z}_{12}, +, \cdot)$:

$$\begin{cases} \widehat{3}x + \widehat{4}y = \widehat{11} \\ \widehat{4}x + \widehat{9}y = \widehat{10} \end{cases}.$$

- **8.** Solve the equation $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} X = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ in the ring $(M_2(\mathbb{C}), +, \cdot)$.
- **9.** Let $\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} \middle| a, b \in \mathbb{Q} \right\} \subseteq M_2(\mathbb{Q})$. Show that \mathcal{M} is a stable subset of the ring $(M_2(\mathbb{Q}), +, \cdot)$ and $(\mathcal{M}, +, \cdot)$ is a field.
- **10.** Let $\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\} \subseteq M_2(\mathbb{R})$. Show that \mathcal{M} is a stable subset of the ring $(M_2(\mathbb{R}), +, \cdot)$ and $(\mathcal{M}, +, \cdot)$ is a field.