数理逻辑课后题/考题答案

作者: 杨森

2017年8月20日

课后题

- 1. 略
- 2. 解:
 - 1) => 利用结构归纳法证明
 - (a) Y 是命题变元,此时 Y 的生成序列即为自身;
 - (b) $Y = \neg A$, A 的生成序列为 $A_1, A_2, \dots, A_m (= A)$, 则 Y 的生成序列为 A_1, A_2, \dots, A_m, Y ;
 - (c) $Y = B \lor C$, B 的生成序列为 $B_1, B_2, \dots, B_m (= B)$, C 的生成序列为 $C_1, C_2, \dots, C_n (= C)$, 则 Y 的生成序列为 $B_1, B_2, \dots, B_m, C_1, C_2, \dots, C_n$ $Y = (B \lor C)$
 - 2) <= 利用第二归纳法证明

假设 Y 的生成序列为 $Y_1, Y_2, \dots, Y_m (= Y)$, 证明 $Y_i (1 \le i \le m)$ 是合式公式

- (a) Y_i 是命题变元,则 Y_i 是合适公式;
- (b) $Y_i = \neg Y_i (j < i)$, 因为 Y_i 是合式公式, 故 Y_i 也是合式公式;
- (c) $Y_i = Y_i \vee Y_k(j, k < i)$, 因为 Y_i, Y_k 是合式公式, 故 Y_i 也是合式公式。

综上, Y 为合式公式当且仅当 Y 有一个生成序列。

- 3. 略 (根据公式定义进行证明)
- 4. 略
- 5. 解: 用结构归纳法证明
 - 1) A 为命题变元 p, 显然结论成立;
 - 2) $A = \neg B$, 因为 B 满足条件, 则 $\neg (B)$ 即 A 也满足条件;
 - 3) $A = B \lor C$, 因为 B, C 满足条件, 则 $(B) \lor (C)$ 也满足条件

综上, 若表达式 A 为合式公式, 则最终计数为 0.

- 6. 略
- 7. 略
- 8. 解: 用公式结构归纳法证明
 - 1) A 为命题变元 p
 - (a) $p \in \{p_1, p_2, \cdots, p_n\}$ 且 $p = p_i$, 则 $S^{p_1, p_2, \cdots, p_n}_{B_1, B_2, \cdots, B_n} A = B_i$, 即 $S^{p_1, p_2, \cdots, p_n}_{B_1, B_2, \cdots, B_n} A$ 为合式公式;
 - (b) $p \notin \{p_1, p_2, \dots, p_n\}, \text{ } \bigcup S_{B_1, B_2, \dots, B_n}^{p_1, p_2, \dots, p_n} A = A;$
 - 2) $A = \neg B$, 则 $S^{p_1,p_2,\cdots,p_n}_{B_1,B_2,\cdots,B_n}B$ 为合式公式,所以 $\neg S^{p_1,p_2,\cdots,p_n}_{B_1,B_2,\cdots,B_n}B = S^{p_1,p_2,\cdots,p_n}_{B_1,B_2,\cdots,B_n}\neg B$ 为合式公式,即 $S^{p_1,p_2,\cdots,p_n}_{B_1,B_2,\cdots,B_n}A$ 为合式公式;
 - 3) $A = B \lor C$,则 $S^{p_1,p_2,\cdots,p_n}_{B_1,B_2,\cdots,B_n}B, S^{p_1,p_2,\cdots,p_n}_{B_1,B_2,\cdots,B_n}C$ 为合式公式,所以 $S^{p_1,p_2,\cdots,p_n}_{B_1,B_2,\cdots,B_n}B \lor S^{p_1,p_2,\cdots,p_n}_{B_1,B_2,\cdots,B_n}C = S^{p_1,p_2,\cdots,p_n}_{B_1,B_2,\cdots,B_n}(B \lor C)$ 为合式公式,即 $S^{p_1,p_2,\cdots,p_n}_{B_1,B_2,\cdots,B_n}A$ 为合式公式;

综上, 若 A 是合式公式, 则 $S_{B_1,B_2,\cdots,B_n}^{p_1,p_2,\cdots,p_n}A$ 为合式公式。

9. 解: 若 C 为永真式,根据 Godel 完全性定理则 \vdash C,设 C 的证明序列为 C_1, C_2, \cdots, C_n ,用第二 归纳法证明, $\vdash S_{q_1,q_2,\cdots,q_n}^{p_1,p_2,\cdots,p_n}C_i, 1 \leq i \leq n$:

- 1) $C_i \in Aoxims$, 显然 $S_{q_1,q_2,\ldots,q_n}^{p_1,p_2,\ldots,p_n}C_i$ 也为公理
- 2) 存在 j,k < i 使 $C_k = C_j \supset C_i$,因为 $\vdash S_{q_1,q_2,\dots,q_n}^{p_1,p_2,\dots,p_n}C_j$ 且 $\vdash S_{q_1,q_2,\dots,q_n}^{p_1,p_2,\dots,p_n}C_k$,即 $\vdash S_{q_1,q_2,\dots,q_n}^{p_1,p_2,\dots,p_n}C_j \supset S_{q_1,q_2,\dots,q_n}^{p_1,p_2,\dots,p_n}C_i$,有 MP 规则可推出 $\vdash S_{q_1,q_2,\dots,q_n}^{p_1,p_2,\dots,p_n}C_i$ 。

综上 $\vdash S_{q_1,q_2,\cdots,q_n}^{p_1,p_2,\cdots,p_n}C$, 即 $\vdash D$, 再由 Godel 完全性定理推出 $\models D$, 即 D 为永真式。

$$10.(\neg (\neg (q \lor r) \lor \neg p) \lor \neg \neg (q \lor r))$$

12. 解:

- 1. $A \lor (B \lor C) \vdash A \lor (B \lor C)$
- 2. $A \lor (B \lor C) \vdash (B \lor C) \lor A \quad 1, i)$
- 3. $A \lor (B \lor C) \vdash B \lor (C \lor A)$ 2, *ii*)
- 4. $A \lor (B \lor C) \vdash (C \lor A) \lor B$ 3, i)
- 5. $A \lor (B \lor C) \vdash C \lor (A \lor B)$ 4, *ii*)
- 6. $A \lor (B \lor C) \vdash (A \lor B) \lor C$ 5, *i*)

13. 暂无

14. 可满足的

其否定对应的合取范式为 $(\neg p \lor q) \land (\neg r \lor s) \land (\neg s \lor q) \land \neg p \land r, \diamondsuit S = \{ \neg p \lor q, \neg r \lor s, \neg s \lor q, \neg p, r \},$ 对 S 应用消解规则如下:

- 1. S
- 2. $\{\neg r \lor s, \neg s \lor q, r\}$
- 1, 关于 $\neg p$ 纯文字规则

3. $\{s, \neg s \lor q\}$

2, 关于¬r单文字规则

4. $\{q\}$

3, 关于¬s单文字规则

 $5. \{qed\}$

4, 关于¬q纯文字规则

15. 永真式

对应的析取范式为 $(\neg r \lor \neg s \lor r \lor \neg q \lor p) \land (q \lor \neg p \lor s \lor \neg s \lor r \lor \neg q \lor p)$,每个短句都包含互补文字,故为永真式。

- 16. 永真式,用真值表
- 17. 可满足, $\varphi(p)=t, \varphi(q)=f$ 时为真, $\varphi(p)=f, \varphi(q)=t$ 时为假。
- 18. 永真式,用真值表
- 19. 解 P' 系统可以看做 P 系统由 $\neg(p \supset q)$ 出发进行的证明

方法一: 先证明在 P 系统下若 Γ 不协调, 且 $\neg A \not\in Th(\Gamma)$, 则 $\Gamma \cup \{A\}$ 协调。若 $\Gamma \cup \{A\}$ 不协

调,则存在 B 使得 $\Gamma, A \vdash B$ 且 $\Gamma, A \vdash \neg B$, 则

1.	$\Gamma, A \vdash B$	hyp
2.	$\Gamma,A \vdash \neg B$	hyp
3.	$\Gamma,A \vdash \neg A$	1,2,DR
4.	$\Gamma \vdash A \supset \neg A$	3, CP
5.	$\Gamma \vdash \neg A \supset \neg A$	
6.	$\Gamma \vdash \neg A$	$4,5,DR_3$

这与 $\neg A \notin Th(\Gamma)$ 矛盾,故 $\Gamma \cup \{A\}$ 协调。因为 $\neg (p \supset q)$ 不为永真式,而 P 系统的定理都为永真式,故 $\neg (p \supset q) \notin Th(P)$,所以 $Axiom \cup \{\neg (p \supset q)\}$ 协调,即 P' 系统是协调的。

方法二: 假设 P' 系统不协调,则在 P 系统下存在 B 使得 $\neg (p \supset q) \vdash B$ 且 $\neg (p \supset q) \vdash \neg B$,根据 Godel 完全性定理, $\neg (p \supset q) \models B$ 且 $\neg (p \supset q) \models \neg B$,明显矛盾,故 P' 系统协调。

20. 解不协调,记公理模式 $A \supset B$ 为 AS'

1.	$\vdash A \lor A \supset A$	AS_1
2.	$\vdash (A \lor A \supset A) \supset \neg (A \lor A \supset A)$	AS'
3.	$\vdash \neg (A \lor A \supset A)$	$1,2,ar{MP}$
4.	$\vdash B$	3, DR

故在 P 系统中增加 $A \supset B$ 做为公理所得系统不协调。

21. 解:

不存在不含 "\" 的定理。用反证法证明:若 A 为满足条件的公式,易知 A 中只有一个命题变元,设为 p,如果辖域中包含 p 的 "¬" 的个数为偶数,令指派 $\varphi(p)=f$,否则 $\varphi(p)=t$,则 $\varphi(A)=f$,而 P 系统的定理都为永真式,所以 P 系统中不存在不含 "\" 的定理。

22. 解:

不存在不含 "¬" 的定理。用反证法证明: 若 A 为满足条件的公式,其中出现的命题变元为 p_1, p_2, \cdots, p_n ,另 $\varphi(p_1) = \varphi(p_2) = \cdots = \varphi(p_n) = f$,则 $\varphi(A) = f$,而 P 系统的定理都为永真式,所以 P 系统中不存在不含 "¬" 的定理。

23. 解:

1.	$\vdash A \lor A \supset A \lor A$	Axiom
2.	$\vdash (A \lor A \supset A \lor A) \supset (A \lor A \supset \neg (A \lor A))$	Axiom
3.	$\vdash A \lor A \supset \neg(A \lor A)$	1,2,MP
4.	$\vdash (A \lor A \supset \neg (A \lor A)) \supset \neg (A \lor A) \lor A$	Axiom
5.	$\vdash \neg (A \lor A) \lor A$	3,4,MP
6.	$\vdash \neg (A \lor A) \lor A \supset A \lor A$	Axiom
7.	$\vdash A \lor A$	5,6,MP
8.	$\vdash A$	5, 7, MP

可以看出 s 的公式皆为定理, 故 s 不协调。

24. 解:

A 是 R 的定理

1.
$$\vdash A * A$$
 Axiom
2. $\vdash A * (A * A)$ Axiom
3. $\vdash A$ 1,2, $< A, (B * A), B >$

25. 解: $\Diamond \Gamma = \{ \neg P \} (P 为命题变元)$ 。

- 1) P' 是协调的对于 P 系统, Γ 是可满足的,且存在唯一的指派 $\varphi: P \to f$ 满足 Γ ,则 $\Gamma \nvDash p$,根据完全性定理 $\Gamma \nvdash p$,所以在 P' 中,命题变元 p 不是定理,故 P' 是协调的。
- 2) 利用 1) 中的指派判断 A 的真值,若 $\varphi(A)=t$,则 A 是 P' 的定理。构造过程为 P 系统下从 Γ 出发的证明序列。

26. 解: 设命题变元 p 在 A 中不出现。

1.	$\vdash p \supset S^p_A p$	Axiom
2.	$\vdash p \supset A$	1
3.	$\vdash p \supset A \supset S^p_{p \supset A}(p \supset A)$	Axiom
4.	$\vdash p \supset A \supset (p \supset A \supset A)$	3.
5.	$\vdash p \supset A \supset A$	2,4,MP
6.	$\vdash A$	2, 5, MP

所以对任意公式 A 都可以构造出证明序列, 所以 P'不协调, 但同时是完全的。

27. 解:

定义 ψ 如下:

$$\begin{cases} \psi(p) = p & \text{若 p 为命题变元} \\ \psi(\land) = \lor \\ \psi(\lor) = \land \\ \psi(\lnot) = \lnot \\ \psi(\alpha\beta) = \psi(\alpha)\psi(\beta) \end{cases}$$

易知

- $A \in L(P)$, \emptyset $\psi(A) \in L(Q)$;
- $\psi(\psi(A)) = A_{\circ}$

首先利用第二归纳法证明必要性: 假设 A 为 Q 系统的定理, 且证明序列为 A_1, A_2, \cdots, A_n (= A), 下面证明 A_i 为永假式:

- $A_i \in Axiom$, 显然 A_i 为永假式;
- 存在 j,k < i 使得 $A_k = \neg A_j \wedge A_i$,根据归纳假设,因为 A_k, A_j 皆为永假式,所以 A_i 为永假式。

必要性得证。

下面分两步进行证明充分性:

- 1) 用第二归纳法证明,若 A 为 P 系统的定理,则 $\psi(A)$ 为 Q 系统定理,设 A 在 P 系统下的证明序列为 $A_1,A_2,\cdots,A_n (=A)$:
 - (a) $A_i \in Axiom_P$, 显然 $A_i \in Axiom_Q$, 则 $\vdash_Q \psi(A_i)$;
 - (b) 存在 j, k < i,使得 $A_k = A_j \supset A_i$ 即 $A_k = \neg A_j \lor A_i$,则根据归纳假设 $\vdash \psi(A_j)$ 且 $\vdash \psi(\neg A_i \lor A_i)$ 即 $\vdash \neg \psi(A_i) \land \psi(A_i)$,所以 $\vdash \psi(A_i)$ 。
- 2) 用结构归纳法证明: 若 $A \in L(Q)$ 且 A 为永假式,则 $\psi(A) \in L(P)$ 且 A 为永真式,若 $A \in L(Q)$ 为永真式,则 $\psi(A) \in L(P)$ 为永假式。
 - (a) $A = p \land \neg p$ 或者 $A = \neg p \land p$, 显然 A 为 Q 系统的最简永假式, $\psi(A) \in L(P)$ 为永真式;
 - (b) $A = \neg (p \land \neg p)$ 或者 $A = \neg (\neg p \land p)$,显然 A 为 Q 系统的最简永真式, $\psi(A) \in L(P)$ 为 永假式;
 - (c) $A = \neg B$ 且 A 为永假式,根据归纳假设,B 为永真式,且 $\psi(B) \in L(P)$ 且为永假式,因 为 $\psi(A) = \psi(\neg B) = \neg \psi(B)$,则 $\psi(A) \in L(P)$ 为永真式;
 - (d) $A = \neg B$ 且 A 为永真式,根据归纳假设,B 为永假式,且 $\psi(B) \in L(P)$ 且为永真式,因 为 $\psi(A) = \psi(\neg B) = \neg \psi(B)$,则 $\psi(A) \in L(P)$ 为永假式;
 - (e) $A = B \wedge C$ 且 A 为永假式,则存在以下三种情况:
 - B 为永假式,根据归纳假设 $\psi(B) \in L(P)$ 且为永真式,因为 $\psi(A) = \psi(B \land C) = \psi(B) \lor \psi(C)$,则 $\psi(A) \in L(P)$ 为永真式;
 - C 为永假式, 证明同上;

- B,C 均不为永假式,但对任意指派 φ 都有 $\varphi(B) \neq \varphi(C)$,又因为 $\psi(A) = \psi(B \land C) = \psi(B) \lor \psi(C)$,所以 $\psi(A) \in L(P)$ 为永真式;
- (f) $A = B \wedge C$ 且 A 为永真式,则 B 和 C 皆为永真式,根据归纳假设, $\psi(B) \in L(P)$ 且为 永假式且 $\psi(C) \in L(P)$ 且为永假式,又因为又因为 $\psi(A) = \psi(B \wedge C) = \psi(B) \vee \psi(C)$,故 $\psi(A) \in L(P)$ 为永假式。

综上,若 $A \in L(Q)$ 且 A 为永假式,根据充分性第二步证明,则 $\psi(A) \in L(P)$ 且为永真式,即 $\models_P \psi(A)$,根据完全性定理有 $\vdash_P \psi(A)$,根据充分性证明的第一步有 $\vdash_Q \psi(\psi(A))$,即 $\vdash_Q A$ 。充分性得证。

28. 解: 用公式结构结构归纳法证明:

- 1) A 为命题变元, 易知 $V_{\varphi}(A) = V_{\psi}(A)$;
- 2) $A = \neg B$, 由归纳假设知 $V_{\varphi}(B) = V_{\psi}(B)$, 所以 $V_{\varphi}(A) = \neg V_{\varphi}(B) = \neg V_{\psi}(B) = V_{\psi}(\neg B) = V_{\psi}(A)$;
- 3) $A = B \vee C$,由归纳假设知 $V_{\varphi}(B) = V_{\psi}(B)$ 且 $V_{\varphi}(C) = V_{\psi}(C)$,所以 $V_{\varphi}(A) = V_{\varphi}(B \vee C) = V_{\varphi}(B) \vee V_{\varphi}(C) = V_{\psi}(B) \vee V_{\psi}(C) = V_{\psi}(B \vee C) = V_{\psi}(A)$ 。

综上, $V_{\varphi}(A) = V_{\psi}(A)$ 。

29. 解: 不是,参考 27 题

30. 解:

1)

1.	$\vdash p \lor p \supset p$	AS_1
2.	$\vdash A \lor A \supset A$	1, sub
3.	$\vdash p \supset q \vee p$	AS_2
4.	$\vdash A \supset B \lor A$	3, sub
5.	$\vdash p \supset q \supset (r \lor q \supset q \lor r)$	AS_3
6.	$\vdash A \supset B \supset (C \lor A \supset B \lor C)$	5, sub

由 2,4,6 知 P 的定理比为 p' 的定理。下面用第二归纳法证明 P' 的定理也为 P 的定理,设 A 为 P' 的定理,且证明序列为 $A_1,A_2,\cdots,A_n (=A)$,则 $\vdash_P A_i$

- (a) $A_i \in Axiom$, 显然 $\vdash_P A_i$ 成立;
- (b) 存在 j,k < i 使得 $A_k = A_j \supset A_i$,根据归纳假设 $\vdash_P A_j$ 且 $\vdash_P A_k$,根据 P 系统的 MP 规则知 $\vdash_P A_i$ 成立;
- (c) 存在 j < i 使得 $A_i = S_{B_1,B_2,\cdots,B_n}^{p_1,p_2,\cdots,p_n} A_j$,根据归纳假设 $\vdash_P A_j$,由 P 系统的代入规则 sub 知 $\vdash_P A_i$ 成立。

所以 P 系统和 P' 系统具有相同的定理。

- 2) 若无 sub 规则,则不能推出 $s \lor s \supset s$ (不能推出包含除 p,q,r 之外命题变元的公式),故 sub 规则独立;若无 MP 规则,则不能推出 $s \lor \neg s$ (不能推出长度小于 5 的公式),故 MP 规则独立。
- 31. 与 30 题重复 32. 解:

1) 给每个命题变元以 0, 1,2 三个可能的值, ¬和∨的真值表定义如下:

		\vee	0	1	2
0	1	0	0	0	0
1	0	1	0	1	2
2	2	2	0	2	0

 $AS_2 - AS_5$ 在此数值解释下恒为 0, 而 AS_1 不常为 0, 故 $AS_2 - AS_5$ 不能表示出 AS_1 。

2) 定义 ¬和 ∨的真值表定义如下:

	7	V	0	1	2
0	2	0	0	0	0
1	1	1	0	1	2
2	0	2	0	2	2

 AS_1 , AS_3 — AS_5 在此数值解释下永不为 2,而 AS_2 可能为 2,故 AS_1 , AS_3 — AS_5 不能表示出 AS_2 。

3) 定义 ¬和 ∨的真值表定义如下:

	¬	V	0	1	2
0	1	0	0	0	0
1	2	1	0	1	0
2	0	2	0	0	2

 AS_1, AS_2, AS_4, AS_5 在此数值解释下恒为 0, AS_3 不恒为 0, 故 AS_1, AS_2, AS_4, AS_5 不能表示 出 AS_3 。

综上,结论成立。

33. 解:

构造如下的数值解释:

在此数值解释下, $AS_1 - AS_3$ 恒为 1, $P \supset \neg \neg P$ 不恒为 1,且两个恒为 1 的公式经 MP 规则 必得到一个恒为 1 的公式,故不能从 P^* 系统导出 $P \supset \neg \neg P$ 。 34. 解:

设 p,q 为命题变元,A 为由 $\{\neg, \equiv\}, p, q$ 构成的公式。用公式结构归纳法证明若 A_i 不是永真式或永假式,则 A_i 的真值表中取值为真的个数与取值为假的个数相等。

- 1) A = p 或者 A = q, 显然成立;
- 2) $A = \neg B$,显然成立;
- 3) $A = B \equiv C$,若 $\varphi(B) = \varphi(C)$ 或 $\varphi(B) \neq \varphi(C)$ 时,则 A 为永真式或永假式,当 $\varphi(B), \varphi(C)$ 不完全一样或完全相反时 (φ 为任意指派),通过枚举可知结论同样成立。

所以,A 为永真式或者永假式或 A 的真值表中 t 的个数与 f 的个数相等,而 v 的真值表中 t 的个数与 f 的个数不等,因此 $\{\neg, \equiv\}$ 不能表示出 \vee ,则 $\{\neg, \equiv\}$ 不完全。

35. 解:

先证明对于每个 n 元真值函数 h: $\{t,f\}^n \to \{t,f\}$,存在一个合取范式 A 以及 n 个命题变元: p_1,p_2,\cdots,p_n ,使得 $h=[\lambda p_1,\cdots \lambda p_n A]$:

- 1) 若 h 恒取 t, 则令 $A = p_1 \vee \neg p_1$;
- 2) 若 h 不恒为 t, 对 P 系统中的每个指派 φ , 令:

则 $\varphi(A^{\varphi}) = \varphi(p_1^{\varphi}) \vee \cdots \vee \varphi(p_n^{\varphi}) = f$,因此 $[\lambda p_1, \cdots \lambda p_n A](x_1, x_2, \cdots, x_n) = f$ 当且仅当 $x_1 = p_1^{\varphi}, \cdots, x_n = p_n^{\varphi}$ 。所以 $A = \wedge_{h(\varphi(p_1), \varphi(p_2), \cdots, \varphi(p_n)) = f} A^{\varphi}$ 满足要求。

对于公式 B,都存在一个 n 元真值函数 $h = [\lambda p_1, \cdots \lambda p_m B]$, $p_1, p_2 \cdots , p_m$ 为 B 中出现的所有命题变元,则由上述证明可知,存在一个合取范式 A 使得 $[\lambda p_1, \cdots \lambda p_m A] = h = [\lambda p_1, \cdots \lambda p_m B]$,故 $A \Leftrightarrow B$,即每个公式都有合取范式。

36. 解: {∨,∧,⊃,≡} 不是完全集

下面用公式结构归纳法证明,由命题变元 p 和 $\{\lor,\land,\supset,\equiv\}$ 构成的公式没有永假式,也不能有 $\{\lor,\land,\supset,\equiv\}$ 定义出 \neg :

- 1) 对于命题变元 P 既不是永假式, 其真值表也不具备 ¬ 的形式;
- 75. 解:用结构归纳法证明
 - 1) 若 A 为命题变元
 - (a) A=m,则 $S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n}S^m_BA=S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n}B$,因为 $B=S^{x_1,x_2,\cdots,x_n}_{u_1,u_2,\cdots,u_n}C$ 且 u_1,u_2,\cdots,u_n 不在 C 中出现,故 $S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n}B=C=S^m_CA$
 - (b) A 为命题变元, 且 $A = p \neq m$, 则 $S_{x_1, x_2, \cdots, x_n}^{u_1, u_2, \cdots, u_n} S_B^m A = S_{x_1, x_2, \cdots, x_n}^{u_1, u_2, \cdots, u_n} p = p = S_C^m A$
 - 2) A 为原子公式, $A = P(t_1, t_2, \cdots, t_k), t_i = f(y_1, y_2, \cdots, y_j), 1 \le i \le k$,则 m 不在 A 中出现,所以 $S^{u_1, u_2, \cdots, u_n}_{x_1, x_2, \cdots, x_n} S^m_B A = A = S^m_C A$
 - 3) $A = \neg D$, 因为 $S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n} S^m_B D = S^m_C D$, 所以 $\neg S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n} S^m_B D = \neg S^m_C D$, 即 $S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n} S^m_B A = S^m_C A$

4) $A = D \lor E$,因为 $S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n} S^m_B D = S^m_C D$,且 $S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n} S^m_B E = S^m_C E$,则 $S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n} S^m_B D \lor S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n} S^m_B E = S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n} S^m_B A = S^m_C D \lor S^m_C E = S^m_C (D \lor E) = S^m_C A$

5) $A = \forall y D$, 则 $y \notin \{u_1, u_2, \cdots, u_n\}$, 则 B 对 A 中 m 是自由的,且 $S^{u_1, u_2, \cdots, u_n}_{x_1, x_2, \cdots, x_n} S^m_B D = S^m_C D$,,所 以 $S^{u_1, u_2, \cdots, u_n}_{x_1, x_2, \cdots, x_n} S^m_B A = S^{u_1, u_2, \cdots, u_n}_{x_1, x_2, \cdots, x_n} S^m_B \forall y D = \forall y S^{u_1, u_2, \cdots, u_n}_{x_1, x_2, \cdots, x_n} S^m_B D = \forall y S^m_C D = S^m_C \forall y D = S^m_C A$ 综上,结论成立.

76. 解: