[1]A. Dosovitskiy et al., "An image is worth 16x16 words: Transformers for image recognition at scale,"	,
arXiv preprint arXiv:2010.11929, 2020.	

[2]M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang, and A. Dosovitskiy, "Do vision transformers see like convolutional neural networks?," *Advances in Neural Information Processing Systems, vol. 34, 2021.*

An Image is worth 16 x 16 words: Transfomers for recognition at scale[1] Do vision transformers see like convolutional neural networks?[2]

Seong Su Kim

Man Machine Interface Lab.

Contents

- Background
 - Inductive bias
 - Transfer learning & Fine tuning
 - BiT[3]
 - Few shot learning
- Intuition of Self-attention
- Vision Transformer[1]
 - Architecture
 - Details
 - Experiments
 - Remaining Questions

- ViT vs CNN[2]
 - Purpose of paper
 - Details

Background

- Inductive bias
 - Train data는 항상 제한적
 - 학습 모델이 지금까지 만나보지 못했던 상황에서 정확한 예측을 하기 위해 사용하는 **추가적인 가정**
 - 모델이 학습과정에서 본 적이 없는 분포의 데이터를 입력 받았을 때, 해당 데이터에 대한 판단을 내리기 위해 가지고 있는 설계 구조 상의 편향(bias)
 - SVM
 - Maximum margin : Decision boundary 와의 margin을 가장 크게 하는 가설
 - CNN
 - Locality: 특정 pixel과 가장 관계가 깊은 pixel은 근처의 영역에 위치할것이라는 가정
 - Translation invariance: 어떠한 사물이 들어 있는 이미지에 대해 사물의 위치가 바뀌어도 해당 사물을 인식할 수 있음
 - RNN
 - Sequentiality : 시간순으로 가장 인접한 단어가 현재 단어와의 영향력이 클 것임을 가정

Component	Entities	Relations	Rel. inductive bias	Invariance
Fully connected	Units	All-to-all	Weak	2
Convolutional	Grid elements	Local	Locality	Spatial translation
Recurrent	Timesteps	Sequential	Sequentiality	Time translation
Graph network	Nodes	Edges	Arbitrary	Node, edge permutations

https://towardsdatascience.com/translational-invariance-vs-translational-equivariance-f9fbc8fca63a

Background

Inductive bias of CNN

- Translational invariance VS Translational Equivalence
 - Interchageable in common speech
 - Invariance : "in-" (No variance at all) 불변성
 - Equivalance : "equi-" (Varying in a similar or equivalent proportion) 등가성

- Convolutional layer (weight sharing)
 - "The position of the object in the image should not be fixed in order"
 - As the same weights are shared across the images, hence if an object occurs in any image it will be detected **irrespective** of its position in the image
 - Equivalent (The feature of image can be change, but the property is same)
- Pooling operation
 - "Replacing the output of the convnet at a certain location with a summary statistic of the nearby outputs"
 - Max pooling: As we replace the output with the max in case of max-pooling (value m), hence even if we change the input slightly, it **won't affect the values** of most of the pooled outputs
 - Invariance (No variance in "value m")
- 명확히 다른데 왜 혼용해도 문제가 없었고, 어색하지 않았을까?
 - 목적어가 없기 때문 (Predicted class 가 목적어일 경우를 생각해보면..)
 - CNN 내의 별개의 구조적 특성으로부터 발생한 특성이기 때문에 구분해서 이해

: Train (LR = original LR / 10)

: Frozen (LR = 0)

Conv layer의 overfitting이 발생할 우려가 있으므로, 전체를 재학습

Sol: Data augmentation

하면 안됨

Background

- Transfer learning & Fine tuning
 - Transfer learning
 - 특정 task에서 학습된 network를 다른 task에서 사용되는 network의 학습에 이용하는 방법
 - Transfer learning에 사용되는 "학습된 network" = Pre-trained model
 - 학습 데이터의 수가 적을 때 효과적
 - Fine tuning
 - Pre-trained model을 기반으로 architecture를 새로운 목적에 맞게 변형하고 pre-trained 된 model의 weight를 미세하게 조정 (fine- tune)하여 학습시키는 방법
 - Pre-trained model의 classifier는 삭제하고, 목적에 맞는 새로운 classifier를 추가
 - 1. 현재 task의 dataset size가 충분하지만, pre-trained dataset과 많이 다를 경우

2. 현재 task의 dataset size가 충분하고, pre-trained dataset과 유사할 경우

3. 현재 task의 dataset size가 작고, pre-trained dataset과 많이 다를 경우

4. 현재 task의 dataset size가 작고, pre-trained dataset과 유사할 경우

Background

- Transfer learning & Fine tuning
 - BiT[3]
 - Idea: 잘 만든 pre-trained 모델 하나가 여러 모델 안부럽다!
 - "어떻게 해야 Transfer Learning을 잘 할 수 있는가?"를 model의 size, dataset의 크기, hyper parameter setting 관점에서 분석한 논문
 - 다양한 방법으로 pretrain된 ResNet을 down stream task에 적용하며 transfer learning에 대한 insight를 제공
 - 2019 ImageNet classification SOTA (BiT-L)
 - [1]에서는 BiT를 CNN SOTA model로서 Transformer와 CNN 두 architecture간 비교를 위해 참조 (둘다 Google Brain에서 발표)

Fig. 5: Effect of upstream data (shown on the x-axis) and model size on down-stream performance. Note that exclusively using more data or larger models may hurt performance; instead, both need to be increased in tandem.

- Brief conclusion about scaling models and datasets
 - Pre-train시, dataset 크기를 증가시키는 것은 down stream task의 성능 향상에 효과적이다.
 - 작은 model(ex: ResNet-50x1)을 pre-train할 때 , 너무 큰 dataset을 쓰는건 오히려 역효과를 날 수 있다.
 - 큰 model일수록 큰 dataset을 이용하여 pre-train 해야 down stream task에서 뛰어난 성능을 보인다.

- Few-shot learning
 - Meta learning의 한 종류로, class의 특징을 배우는 supervised learning과 달리 "구분 하는법"을 배우는 학습 방법

- Supervised learning VS Few-shot learning
 - Supervised Learning: Training set 안에 test image의 class가 존재

Test Sample

https://zzaebok.github.io/machine_learning/FSL/

- Supervised learning VS Few-shot learning
 - Few-shot learning
 - Support Set에 Query sample class가 존재, Support set과 train set의 class는 겹치지 않음
 - K way N-shot : K개의 class를 가진 support set, 각 class가 N개의 sample을 가짐
 - K가 커질 수록, query image가 k개의 class 중 어떤 것과 같은 것인지 물어보는 문제가 되므로 모델의 정확도 ↓
 - N이 커질 수록, query image와 비교해볼 sample이 많으므로 어떤 class 속하는지 알기 쉽기 때문에 모델의 정확도 ↑

▪ Few shot learning의 성능의 높다는 것은 각 class내 sample들의 유사도를 잘 학습한다는 의미

Basic operation

- Sequence-to-squence opeation: Sequence of vector goes in, and a sequence of vector comes out.
- Input vector : $x_1, x_2, x_3, ..., x_t$
- Output vector : $y_1, y_2, y_3 \dots, y_t$
- Not parameterized, Just dot product & Weighted Summation

Self – Attention

"친구들을 보면 그 사람이 어떤 사람인지 알 수 있다."

→ 끼리끼리 논다고 했으니까, 성수의 주위사람들의 성격을 바탕으로 성수가 어떤 사람인지 정의 해보자!

성수랑 정우형의 성격이 비슷하다면, feature vector간 dot product가 클 것이고 둘은 서로 닮았을 것이다.

이 값을 가중치로 사용해서 성수의 성격을 나타낸다면?

그러나, 관계의 종류와 환경에 다라

성수가 생각하는 자신의 원래 성격과 남들에게 보여지는 성격은 다를 수 있다.

모두의 성격을 정의하는 과정에서 "성수의 성격"은 몇 가지 다른 용도로 쓰였을까?

- \triangleright Every input vector x_i is used in **three different ways** in the self attention operation
 - 1. It is compared to every other vector to establish the weights for its own output y_i

- 2. It is compared to every other vector to establish the weights for the output of the j-th vector y_j **Key**
- 3. It is used as part of the weighted sum to computed each output vector

Value

- \triangleright Every input vector x_i is used in **three different ways** in the self attention operation
 - 1. It is compared to every other vector to establish the weights for its own output y_i : Query
 - 2. It is compared to every other vector to establish the weights for the output of the j-th vector ${oldsymbol y}_i$: Key
 - 3. It is used as part of the weighted sum to computed each output vector: Value

> 즉, input vector 각각에 대해 query vector, key vector, value vector가 존재

Query , Key, Value matrix를 통해 attention mechanism내에서 input vector가 3개의 role을 잘 수행할수 있는 Query, Key, Value가 되도록 학습

- Architecture
 - 1. Using Image patches : pixel value를 flatten하여 linear projection layer에 통과 (16 x 16 x 3 = 768) • Weight sharing
 - 2. CLS token: Extra learnable CLS token을 따로 두어, 이후 classification에 사용
 - Position Embedding: Learnable 1D position embedding

Transformer Encoder

MLP Norm

Hulti-Head

Attention

Norm

Embedded Patches

Vision Transformer[1]

Details

- 1. Linear Projection of flatten patches
 - Patch size : 16 x 16
 - Weight sharing by Conv2D: 16 x 16 kernel, 16 x 16 stride
 - CLS token : initialize with zero vector

Transformer Encoder

MLP Norm Norm Multi-Head Attention Norm Embedded Patches

Vision Transformer[1]

- Details
 - 2. Layer Normalization
 - Patch라는 개념과 attention mechanism을 고려한 normalization 기법
 - Batch Norm VS Layer Norm

Batch 3

Transformer Encoder

MLP Norm Norm Norm Norm Norm

Patches

- Details
 - 2. Layer Normalization
 - Patch라는 개념과 attention mechanism을 고려한 normalization 기법
 - Batch Norm VS Layer Norm

Patch 끼리가 아닌, 각 patch내의 feature를 normalize

Transformer Encoder

Vision Transformer[1]

- Details
 - 2. Layer Normalization
 - Patch라는 개념과 attention mechanism을 고려한 normalization 기법
 - Batch Norm VS Layer Norm

MLP Norm Multi-Head Attention Norm Embedded Patches

Batch Normalization

Layer Normalization

Same for all feature dimensions

Transformer Encoder

MLP

Details

- Multi-Head Attention
 - Feature를 다양한 category로 나누어서 비교를 하면 사람의 성격을 더 잘 파악할 수 있지 않을까?
 - 일할때 모습끼리 비교, 공부할때 모습끼리 비교, 놀 때 모습끼리 비교
 - 각 모습끼리 비교를 하고 나중에 합치자!
 - ▶ Network가 다양한 관점에서 attention을 취할 수 있는 유연성을 갖게 함

Details

- Details
 - 3. Linear layer in MHSA & MLP layer

Transformer Encoder

MLP

Norm

Hulti-Head
Attention

Norm

Inductive bias. We note that Vision Transformer has much less image-specific inductive bias than CNNs. In CNNs, locality, two-dimensional neighborhood structure, and translation equivariance are baked into each layer throughout the whole model. In ViT, only MLP layers are local and translationally equivariant, while the self-attention layers are global. The two-dimensional neighborhood

Translationally equivaraint? Local..?

- Details
 - 3. Linear layer in MHSA & MLP layer

Locality..?

Inductive bias. We note that Vision Transformer has much less image-specific inductive bias than CNNs. In CNNs, locality, two-dimensional neighborhood structure, and translation equivariance are baked into each layer throughout the whole model. In ViT, only MLP layers are local and translationally equivariant, while the self-attention layers are global. The two-dimensional neighborhood

Translationally equivariant = weight sharing

Patch 1
Patch 2
Patch 3
Patch 1
Patch 2

Patch 1
Patch 2

- ▶ Patch가 만들어진 원래 image 입장에서
 - 모든 patch들이 같은 weight를 share하며(patch의 순서에 상관없이)feature를 refine하기 때문에 translationally equivariant
 - MLP에서의 feature refining 과정은 patch 각각에 대해 수행되기 때문에 local

- Details
 - 3. Linear layer in MHSA & MLP layer

Inductive bias. We note that Vision Transformer has much less image-specific inductive bias than CNNs. In CNNs, locality, two-dimensional neighborhood structure, and translation equivariance are baked into each layer throughout the whole model. In ViT, only MLP layers are local and translationally equivariant, while the self-attention layers are global. The two-dimensional neighborhood

MNIST를 flatten해서 MLP로 classification할때와 같은 상황아닌가? 왜 이제와서?

■ 결론 : "<u>Batch내의 여러 image</u>" 에서 "<u>Image 내의 여러 patch</u>"가 되면서 MLP를 통해 해당 image에 대해 translationally equivariant와 locality를 갖도록 할 수 있게 된 것

- Details
 - 3. Linear layer in MHSA & MLP layer
 - MHSA의 Linear layer와 MLP layer는 모양만 같을 뿐 역할이 전혀 다르다
 - Tranformer 구조에서 Skip connection의 출발지와 도착지가 갖는 의미를 생각하면 transformer를 파악하기 쉽다

Details

- 4. Fine-Tuning and Higher Resolution
 - Input의 resolution이 다른 down stream task에선 pre-trained model의 positional embedding이 의미가 없어지므로, image의 size에 맞게 2D interpolation한 embedding을 사용
 - Patch extraction과 postion embedding 은 ViT에게 image의 2D structure를 알려주는 유일한 inductive bias
- Position embedding
 - 본 논문에서는 1D learnable positional embedding을 사용
 - Appendix D.4 [Table 8]

Pos. Emb.	Default/Stem	Every Layer	Every Layer-Shared
No Pos. Emb.	0.61382	N/A	N/A
1-D Pos. Emb.	0.64206	0.63964	0.64292
2-D Pos. Emb.	0.64001	0.64046	0.64022
Rel. Pos. Emb.	0.64032	N/A	N/A

- Position embedding에 따른 성능 차이가 없는 이유?
 - Pixel 단위의 attention (224 x 224)와 다르게 patch 단위의 attention (14 x14) 에서 patch의 sapatial location을 배우는 것은 positional embedding에 상관 없이 easy하기 때문
 - Position embedding의 종류 보다는, learning rate과 같은 hyperparameter에 position representation 이 영향을 받음

- Experiment
 - Transfer learning
 - Pre-train data 가 적을 때 : Data에 대한 assumption을 기반으로 학습하기 때문에 strong Inductive bias를 가진 model (CNN) 이 그렇지 않은 model보다 성능이 좋음
 - Pre-train data가 충분히 많을 때 : Weak Inductive bias (ViT)를 가진 model이 성능이 좋음

- Experiment
 - 2. Linear few-shot evaluation
 - "Class를 구분하는법"을 배우는 few-shot learning
 - Pre-train set이 커질 수록 ViT의 성능이 더 우수

- Experiment
 - 3. Linear projection layer

(like a word) in NLP

- Patch 들의 feature를 뽑아내는 부분
- 첫 28개의 Principal component를 visualize

- Experiment
 - 3. Positional Embedding

Input patch column

- 각 patch에 해당하는 postional embedding간 cosine similarity
- 비슷한 position 일수록, positional embedding이 유사함
- Hyperparameter에 따라 positional representation이 상이

- Experiment
 - Attention distance
 - Attention head? distance
 - CNN의 receptive field 와 동일
 - CNN: Locality라는 inductive bias에 의해 layer가 깊어짐에 따라 receptive field가 확장됨
 - ViT : 처음부터 image의 모든 부분을 학습해 나감

- Experiment
 - 4. Attention distance
 - Attention head간 distance
 - CNN의 receptive field 와 동일
 - CNN : Locality라는 inductive bias에 의해 layer가 깊어짐에 따라 receptive field가 확장됨
 - ViT : 처음부터 image의 모든 부분을 학습해 나감

ViT

Vision Transformer[1]

- Experiment
 - Attention distance
 - Hybrid model : CNN으로 뽑은 feature를 ViT의 input으로 사용
 - CNN에서 이미 local 한 feature를 뽑았기 때문에, ViT의 attention-head들이 초반부 layer에서 global한 정보에 더 집중

Vision Transformer[1]

- Experiment
 - 5. [CLS] token VS GAP
 - CLS token을 사용하지 않고, 출력 embedding들의 GAP를 사용한다면?
 - 기존 ViT와 같은 learning rate를 사용하였을때 성능이 하락했으나, 각 방법이 서로 다른 learning rate에 대해 최적화 될 수 있음을 보임

Vision Transformer[1]

- Remaining questions
 - Transformer의 residual connection은 CNN과 동일하게 동작 하는가?
 - [CLS] token 은 다른 token들과 같은 방식으로 학습되어지는가?
 - CLS token을 사용하여 classification을 할 때와 GAP feature를 사용하여 classification을 할 때 각 출력 token이 배우는 representation은 동일한가?

ViT vs CNN[2]

- Purpose of paper
 - Goal of paper: To understand whether there are differences in the way ViTs represent and solve image tasks compared to CNNs
 - Vision transformer가 "무엇"을 "어떻게" 학습하는지 CNN과 비교하여 직관적으로 이해하기 좋게 visualize한 논문
 - Representation Similarity and CKA (Centered Kernel Alignment)

[2]M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang, and A. Dosovitskiy, "Do vision transformers see like convolutional neural networks?," *Advances in Neural Information Processing Systems*, vol. 34, 2021.

- Details
 - 1. ViT는 CNN에 비해 모든 layer에서 uniform한 representation을 학습한다.
 - ViT는 모든 layer에서의 feature가 연관성이 있는 반면, ResNet은 높은 layer와 낮은 layer에서의 feature가 확실히 구분됨

- 2. ViT의 후반부 layer는 ResNet이 학습하지 못한 representation을 배운다.
 - 또한, ViT의 초반부 layer(0-40)의 feature 와 ResNet에서의 중반부 layer(0-60)의 feature가 비슷함

- Details
 - 3. ViT는 낮은 layer에서도 global한 정보와 local한 정보에 동시에 attend 할 수 있다.
 - 노은 layer에서는 거의 모든 attention head들이 global한 정보에 attend
 - 그러나, train data가 충분하지 않을 땐 ViT의 낮은 layer가 local한 정보에 attend하지 못함

- Details
 - 4. ViT가 attend하는 local한 정보는 ResNet의 lower layer feature와 비슷하다.
 - ViT가 보는 feature를 attention head의 mean distance에 따라 ResNet의 lower layer feature과 비교

- Details
 - 5. CLS token의 학습 과정은 patch token과 skip connection 관점에서 반대 양상을 띈다.
 - Ratio of Norms : Skip connection 을 통과한 feature와 main branch를 통과한 feature간 norm

$$||z_i||/||f(z_i)||$$

- Norms 이 클수록 Skip connection을 많이 통과함을 의미
- CLS token은 초반부 MLP layer의 skip connection을 많이 통과 하며,후반부 block 에서 main branch를 통과함
- 또한, Skip connection은 CNN보다 ViT에서 훨씬 더 effective하게 동작함

- Details
 - 5. CLS token의 학습 과정은 patch token과 skip connection 관점에서 반대 양상을 띈다.

Details

6. ViT가 모든 layer에 걸쳐 uniform한 representaion을 배우는 것은 skip connection의 영향이 크다.

Details

7. CLS token을 통해 linear probing을 하였을 때, ViT는 higher layer까지 token의 spatial location 정보를 잘 유지한다.

Details

7. CLS token을 통해 linear probing을 하였을 때, ViT는 higher layer까지 token의 spatial location 정보를 잘 유지한다.

Details

- 7. CLS token을 통해 linear probing을 하였을 때, ViT는 higher layer까지 token의 spatial location 정보를 잘 유지한다.
 - Image는 language와 다르게 주변 patch와의 유사도가 매우 높음
 - Language : Highly semantic 하기 때문에 바로 옆 단어와 유사도가 있다는 보장이 없음
 - Image patch : 바로 옆 patch와 유사한 feature를 가질 가능성이 매우 높음
 - 각 patch 의 spatial location에 대한 정보가 출력단까지 이어지는 것은 image가 가지는 특성과 strong skip connection 때문이 아닐까..

Details

- 7. CLS token을 통해 linear probing을 하였을 때, ViT는 higher layer까지 token의 spatial location 정보를 잘 유지한다.
 - ViT도 GAP를 사용할 경우, 각 token이 spatial location정보를 잃게되며 ResNet과 유사한 representation을 학습하게됨
 - GAP는 모든 token의 역할을 동일하게 만듦

- Details
 - 8. CLS token을 사용할때와 GAP를 사용할때의 학습 차이는 후반부 layer에서 크게 발생한다.

- Details
 - 8. CLS token을 사용할때와 GAP를 사용할때의 학습 차이는 후반부 layer에서 크게 발생한다.
 - 학습의 차이는 classifier와 가까운 후반부 layer일수록 크게 존재하고, 중반부 layer까지는 방식에 상관없이 비슷한 representation을 학습한다.

Details

- 9. Train data가 충분하지 않을 때, ViT는 higher layer에서 충분한 representation을 학습하지 못한다.
 - ▶ 반면에 data의 양에 상관 없이, lower layer에서의 representation은 유지됨
 - Intermediate representation은 data의 양에 큰 영향을 받으며, 성능에 미치는 영향이 큼
 - 학습 데이터가 많을 수록 ViT는 중간 layer에서 high quality의 representation을 배우게 됨

