

# INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO LABORATORIO DE CIRCUITOS ELÉCTRICOS



# CIRCUITOS ELÉCTRICOS

PRÁCTICA No. 2 **"LEY DE OHM"** 

|                       | GRUPO:                                   |
|-----------------------|------------------------------------------|
|                       | EQUIPO:                                  |
| INTEGRANTES:          |                                          |
|                       |                                          |
|                       | PROFESOR;<br><b>MIJAIL VÁZQUEZ ORTIZ</b> |
| FECHA DE REALIZACIÓN; | ,                                        |
| FECHA DE ENTREGA:     |                                          |
| COMENTARIOS:          |                                          |

# **Objetivo**

El alumno comprenderá y manejará la adecuada interpretación de la ley de ohm, para que al finalizar la práctica, este en posibilidades de:

- Calcular los voltajes, corrientes, potencias y resistencias que están presentes en un circuito.
- Comprender el comportamiento de la corriente con respecto al voltaje.
- Comprender el comportamiento de la corriente con respecto a la resistencia.
- Deducir la ley de Ohm.

## **Equipo Material**

Proporcionados por el laboratorio: Por los alumnos:

- 1 Multímetro digital.
- 1 Fuente de voltaje variable.
- Protoboard.
- Resistencias de  $1K\Omega$  a  $\frac{1}{4}$  de watt y de 1 Ohm a 1 watt.
- Alambre de conexión para el protoboard.
- 4 puntas banana-caimán.
- 2 puntas caimán-caimán.
- Pinzas de corte y de punta.
- 1 potenciómetro de 2.5KΩ ó mayor.

### Desarrollo de la práctica

#### 1. Dependencia del voltaje.

Sin encender aun la fuente de voltaje, fije el valor del potenciómetro a  $2.5 \mathrm{K}\Omega$ . Arme el circuito que se ilustra en la figura 1 sobre el protoboard. Una vez armado el circuito encienda la fuente de voltaje, y varíe su valor desde cero hasta 15 V, de acuerdo a como se pide en la tabla 1.



Figura 1

| Fuente de voltaje (V) | Valor de la corriente (medido) | Valor de la corriente (calculado) |
|-----------------------|--------------------------------|-----------------------------------|
| 0                     |                                |                                   |
| 1                     |                                |                                   |
| 2                     |                                |                                   |
| 3                     |                                |                                   |
| 4                     |                                |                                   |
| 5                     |                                |                                   |
| 6                     |                                |                                   |
| 7                     |                                |                                   |
| 8                     |                                |                                   |
| 9                     |                                |                                   |
| 10                    |                                |                                   |
| 11                    |                                |                                   |
| 12                    |                                |                                   |
| 13                    |                                |                                   |
| 14                    |                                |                                   |
| 15                    |                                |                                   |

Tabla I

De la tabla anterior, y con los valores obtenidos de corriente (medida), trace la siguiente gráfica:



### 2. Dependencia de la resistencia.

Con la fuente de voltaje apagada, fije el valor del potenciómetro a  $0\Omega$ . Arme el circuito que se ilustra en la figura 2 sobre el protoboard. Una vez armado el circuito encienda la fuente de voltaje y fíjela en 15 V; posteriormente varíe el valor del potenciómetro  $^1$  de acuerdo a como se pide en la siguiente tabla:



Figura 2

<sup>1</sup> Recuerde que para medir resistencia tiene que apagar la fuente de voltaje, ó en su defecto desconectar el potenciómetro.

| Valor del potenciómetro | Valor de la resistencia<br>Total = (Pot. + R) | Valor de la corriente<br>(medida) | Valor de la corriente<br>(calculada) |
|-------------------------|-----------------------------------------------|-----------------------------------|--------------------------------------|
| Ω0                      |                                               |                                   |                                      |
| 250Ω                    |                                               |                                   |                                      |
| 500Ω                    |                                               |                                   |                                      |
| 750Ω                    |                                               |                                   |                                      |
| 1000Ω                   |                                               |                                   |                                      |
| 1250Ω                   |                                               |                                   |                                      |
| 1500Ω                   |                                               |                                   |                                      |
| 1750Ω                   |                                               |                                   |                                      |
| 2000Ω                   |                                               |                                   |                                      |
| 2250Ω                   |                                               |                                   |                                      |
| 2500Ω                   |                                               |                                   |                                      |

De la tabla anterior, y con los valores obtenidos de corriente (medida), trace la siguiente gráfica:



### 3. Cálculo de la potencia en los resistores.

¿Cuál es el valor de la corriente? I =

Antes de conectar la fuente hay que fijarla a 1 volt, después apáguela y sin utilizar el protoboard, arme el circuito que se ilustra en la figura 3, para este circuito utilice la resistencia de  $1K\Omega$  a  $\frac{1}{4}$  de watt, una vez armado encienda la fuente de voltaje.



Figura 3

| ¿Cuál es el valor de la potencia que disipa la resistencia? P =                                                                                                                                                                    |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ¿Qué efecto sucedió en la resistencia?                                                                                                                                                                                             |  |  |
| ¿Por qué?                                                                                                                                                                                                                          |  |  |
| Nuevamente, arme el circuito anterior $^2$ , pero ahora utilizando la resistencia de $1\Omega$ a 1 watt, antes de conectar la fuente de voltaje asegúrese de que este fija a 1 volt y que el amperímetro este en la máxima escala. |  |  |
| ¿Cuál es el valor de la corriente? I =                                                                                                                                                                                             |  |  |
| ¿Cuál es el valor de la potencia que disipa la resistencia? P =                                                                                                                                                                    |  |  |
| ¿Qué efecto sucedió en la resistencia?                                                                                                                                                                                             |  |  |
| ¿Cuál es la diferencia con el circuito anterior?                                                                                                                                                                                   |  |  |
| ¿Por qué?                                                                                                                                                                                                                          |  |  |
| <sup>2</sup> Recuerde que en este circuito no se utiliza el protoboard.                                                                                                                                                            |  |  |

#### 4.-Conclusiones individuales

Diga a partir de estos experimentos como se determinaría la ley de Ohm, además del efecto de la potencia sobre elementos resistivos.

#### 5.-Bibliografía.

#### 6.-Anexos

#### **Apéndice A**

Aunque existe una gran cantidad de valores de resistencia, en el mercado no existen todos los valores, por lo que se tiene una serie de múltiplos y a partir de estos se fabrican los valores de los resistores. A continuación se presentan los múltiplos.

| 1   | 3.3 |
|-----|-----|
| 1.2 | 3.9 |
| 1.5 | 4.7 |
| 1.8 | 5.6 |
| 2.2 | 6.8 |
| 2.7 | 8.2 |

Los valores de las resistencias van desde  $1\Omega$  hasta 10 M $\Omega$ . Para cada valor de resistencias existen a su vez diferentes potencias, que van desde 1/8 de watt hasta 25 watts.

Por ejemplo, utilizando el múltiplo 2.7, se pueden encontrar los siguientes valores de resistencias:

 $2.7\Omega$   $27\Omega$   $270\Omega$   $2700\Omega$   $27000\Omega$   $270000\Omega$   $2700000\Omega$ 

Por ultimo es importante mencionar que cuando se calcule el valor de una resistencia, y no sea un valor comercial, se tenga que aproximar el valor inferior ó superior siguiente, posteriormente hay que realizar el análisis de la operación del diseño para ese valor de resistencia, y si está dentro de nuestros cálculos entonces no existe problema.

Pero por el contrario sí se sale de nuestros cálculos, entonces se tendrá que proceder a calcular una resistencia equivalente.