Math 550

Homework 1

Name: Gianluca Crescenzo

Exercise 1. Show that $\mathcal{B}_{\mathbf{R}}$ is generated by each of the following:

- a. the open intervals: $\mathcal{E}_1 = \{(a, b) \mid a < b\},\$
- b. the closed intervals: $\mathcal{E}_2 = \{[a, b] \mid a < b\},\$
- c. the half-open intervals: $\mathcal{E}_3 = \{(a,b] \mid a < b\}$ or $\mathcal{E}_4 = \{[a,b) \mid a < b\}$,
- d. the open rays: $\mathcal{E}_5 = \{(\alpha, \infty) \mid \alpha \in \mathbf{R}\}\$ or $\mathcal{E}_6 = \{(-\infty, \alpha) \mid \alpha \in \mathbf{R}\}\$,
- e. the closed rays: $\mathcal{E}_7 = \{(\alpha, \infty) \mid \alpha \in \mathbf{R}\}\ \text{or}\ \mathcal{E}_8 = \{(-\infty, \alpha) \mid \alpha \in \mathbf{R}\}.$

Proof.

Exercise 2. Let \mathcal{M} be an infinite σ -algebra.

- a. M contains an infinite sequence of disjoint sets.
- b. $card(\mathfrak{M}) \ge \mathfrak{c}$.

Exercise 3. An algebra \mathcal{A} is a σ -algebra if and only if \mathcal{A} is closed under countable increasing unions.

Proof. If \mathcal{A} is a σ -algebra, then \mathcal{A} is closed under countable unions, hence it is closed under countable *increasing* unions. Conversely, suppose \mathcal{A} is closed under countable increasing unions. Let $\{E_n\}_{n=1}^{\infty}$ be a family of sets in \mathcal{A} . Define:

```
F_1 = E_1,

F_2 = E_1 \cup E_2,

\vdots

F_n = E_1 \cup E_2 \cup ... \cup E_n.
```

Then clearly $F_1 \subset F_2 \subset F_3$... Moreover, it is clear that $\bigcup_{n=1}^\infty E_n \subset \bigcup_{n=1}^\infty F_n$. Conversely, let $x \in \bigcup_{n=1}^\infty F_n$. Then $x \in F_i$ for some $i \in \mathbf{N}$. By construction, $x \in E_1 \cup ... \cup E_i$, hence $x \in E_j$ for some j < i. Whence $x \in \bigcup_{n=1}^\infty E_n$, giving the inclusion $\bigcup_{n=1}^\infty F_n \subset \bigcup_{n=1}^\infty E_n$. Together, we have $\bigcup_{n=1}^\infty E_n = \bigcup_{n=1}^\infty F_n \in \mathcal{A}$. Since $\{E_n\}_{n=1}^\infty$ was an arbitrary family of sets in \mathcal{A} , we can conclude \mathcal{A} is a σ -algebra.