# Modeling Urban Traffic using the Neo4j Graph Database



GGE 4700

Technical Report

Presented by Jacob Wood

Supervisor Dr. Monica Wachawicz

THE UNIVERSITY OF NEW BRUNSWICK 2015

### Motivation

- Volume of traffic: simulation, small samples for collection
- Best way to store and manage the future data
- Most appropriate representation for a specific use

### Research Objectives

- Creating a Network Representation of a section of the road network
- Collect traffic Volumes from various sources at multiple scales
- Determine best graph representation traffic network
- Learning how to store and query traffic data using a new Software (Neo4j database)

Traffic Volumes Regent St. & Priestman St. Intersection



### Dual vs. Primal

#### Dual:

- Focus on the flow of traffic
- Mathematically driven
- Streets as nodes
- Intersections as the relationship

#### Primal:

- Resembles a map
- Intersections as nodes
- Streets as the relationship



Porta(2015)



Wingz Technologies (2015)



Fig. 3. Primal graph.

### Methodology Neo4j

- Importing data
- Creating nodes and links
- Adding attributes
- Querying the data
- Comparing scale

### Network Representation

#### Streets:

- SMYTHE
- REGENT
- PROSEPECT
- PRIESTMAN
- MONTGOMERY
- YORK
- KINGS COLLEGE
- MITCHELL
- DUNDONALD / BEAVERBROOK
- HANWELL
- BRUNSWICK
- WOODSTOCK
- KING
- QUEEN



### Dual Representation

(1/4)



### Dual Representation

(2/4)



## Relationship

(3/4)

|               | a       | b         |
|---------------|---------|-----------|
| <u>Name</u>   | Smythe  | Priestman |
| <u>Type</u>   | Local   | Local     |
| <u>Length</u> | 3.15 km | 1.64 km   |
| <u>AADT</u>   | 16400   | 11400     |

### Relationship

(4/4)

| Relationship (Intersects)                                          |                                                                           |  |
|--------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| а                                                                  | ь                                                                         |  |
| {"name":"SMYTHE","TYPE":"LOCAL","LENGTH":"3.15 KM","AADT":"16400"} | {"name":"WOODSTOCK","TYPE":"COLLECTOR","LENGTH":"4.94 KM","AADT":"12200"} |  |
| {"name":"SMYTHE","TYPE":"LOCAL","LENGTH":"3.15 KM","AADT":"16400"} | {"name":"PRIESTMAN","TYPE":"LOCAL","LENGTH":"1.64KM","AADT":"11400"}      |  |
| {"name":"SMYTHE","TYPE":"LOCAL","LENGTH":"3.15 KM","AADT":"16400"} | {"name":"MONTGOMERY","TYPE":"LOCAL","LENGTH":"1.65 KM","AADT":"5000"}     |  |

#### Relationship type

Intersects

#### **Properties**

- Street type
- Street length
- Average Annual Daily Traffic (AADT)

## Primal Representation

(1/2)



hips

Primal (2/2)

#### **Properties**

- Name
- Northing & Easting
- AADT Northbound
- AADT Eastbound
- AADT Southbound
- AADT Westbound



### Query 1 **AADT Information**

AADT Volumes > 10000

#### **Primal**

• AADT Northbound > 5000





















**Dual** 

### Query 2 Miscellaneous

### **Dual** Street Length > 2500 m



Displaying 7 nodes, 9 relationships

#### **Primal**

Sum of AADT Southbound per Day

Result:

90398 (Vehicles Southbound Each day)

### Conclusions

- Promising application of graph databases for traffic data integration
- Importance
- Complexity
- Dual vs. Primal

### Future Work

- More dense network
- Import real-time data for observation
- Provide service to City Centers

### Acknowledgements

Dr. Monica Wachowicz, GGE @ UNB

Mr. Darren Charters, City of Fredericton

Dr. Eric Hildebrand, Civil Engineering - Transportation @ UNB

Mr. Tim Holyoke, Exp. Fredericton

