Differential cross sections and spin density matrix elements for $\gamma p \rightarrow \phi p$ from the CLAS g11a dataset

Biplab Dey

Carnegie Mellon University

Hadron Spectroscopy Meeting, June 18th, 2010

OUTLINE

- 1 Introduction and Event Selection
- 2 Signal-background separation
- 3 Acceptance Calculation and $d\sigma/d\cos\theta_{c.m.}^{\phi}$
- 4 Spin Density Matrix Elements
- 5 Summary

OUTLINE

- 1 Introduction and Event Selection
- 2 Signal-background separation
- 3 Acceptance Calculation and $d\sigma/d\cos\theta_{c.m.}^{\phi}$
- 4 Spin Density Matrix Elements
- SUMMARY

Introduction – ϕ (1020)

- $lackbox{ }$ Belongs to the family of ground state vector mesons $V=
 ho,\omega,\phi.$
- Almost pure ss
 state OZI rule suppresses quark/meson exchanges during interaction with nucleons.
- Chief attraction very "clean" system to study gluonic exchanges; gluonic structure of the Pomeron, for example.
- Near threshold and forward angles, access to the scalar glueball $J^P=0^+$ expected (LQCD predicts mass ≈ 1.73 GeV).
- Around $\sqrt{s} = 2.2$ GeV, previous world data (LEPS, SAPHIR) saw a "bump" at $t \to |t|_{min}$. Not expected from Pomeron exchange interference with $K^+\Lambda(1520)$?
- Very low cross sections (OZI-rule violation estimates $R_{\phi/\omega} \sim 10^{-3}$), previous world data is very scarce. CLAS g11a dataset large statistics, fine energy binning and wide kinematic coverage possible.

PWA Group (CMU) CLAS g11a analysis June 18 3 / 35

CHARGED- AND NEUTRAL-MODE TOPOLOGIES

• ϕ predominantly decays to two kaons. $\phi \to K^+K^-$ is the "charged-mode" (bf = 0.491) while $\phi \to K_0^0 K_0^0$ is the "neutral-mode" (bf = 0.34).

Charged-mode:

- Select "+:+" events, kinematically fit to γp → φp → K⁺(K⁻)p and place 10% confidence level cut.
- Being a two-track topology, the charged-mode has the largest statistics. 10-MeV \sqrt{s} binning possible.

Neutral-mode:

- Select "+:+:-" events, kinematically fit to $\gamma p \to \phi p \to K_5^0(K_L^0)p \to \pi^+\pi^-(K_L^0)p$ and place 10% confidence level cut.
- Lower statistics, minimum 30-MeV \sqrt{s} binning.

EVENT-SELECTION: TIMING CUTS

• 2-D calculated mass cut on p, K^+ (charged-mode)

• 2-D $\triangle TOF$ cut on p, π^+ (neutral-mode)

accepted rejected

PWA Group (CMU)

EVENT-SELECTION CONTD.

• K_S^0 selection cut (neutral-mode): 0.49 GeV $\leq M(\pi^+, \pi^-) \leq$ 0.505 GeV.

accepted, rejected

PWA Group (CMU)

Charged-mode topology and ϕ - Λ (1520) overlap

- Consider $\sqrt{s} \to pK^+K^-$ as a 3-body decay.
- Look at Dalitz-plot of $M(K^+, K^-)$ vs. $M(p, K^-)$.
- If $M(K^+, K^-)$ fixed at ϕ mass, $M(p, K^-)$ is bound, limits depending on \sqrt{s} .
- Overlap region is only between 2 and 2.2 GeV.
- Only for the charged-mode.

GENERAL M(p, K) "DALITZ" CUT

Charged-mode:

- \sqrt{s} dependent $min(\sqrt{s}) \le M(p, K^+) \le max(\sqrt{s})$ always applied.
- Additional "hard" cut around the $\Lambda(1520)$ mass: $|M(p, K^+) 1.52| \le \delta$. Trial values of δ were 5, 10 and 15 MeV.

Neutral-mode:

• Similarly, \sqrt{s} dependent cut on $M(p, K_S^0)$ and $M(p, K_L^0)$.

accepted, rejected

8 / 35

OUTLINE

- 1 Introduction and Event Selection
- 2 Signal-background separation
- 3 Acceptance Calculation and $d\sigma/d\cos\theta_{c.m.}^{\phi}$
- 4 Spin Density Matrix Elements
- SUMMARY

ϕ (1020) LINESHAPE

- ϕ width is $\Gamma_0 \approx$ 4 MeV, however, its mass being so close to the KK threshold (\approx 0.99 GeV) leads to a unsymmetric lineshape.
- All previous world data used a Gaussian ϕ lineshape for yield extraction fits.
- We've tried to employ a better approximation by taking a mass-dependent width:

$$\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2L+1} \left(\frac{m_0}{m}\right) \left(\frac{B_0}{B}\right)$$

- L=1 or P-wave $\phi \to KK$ decay.
- Break-up momentum $q(m) = \sqrt{m^2 m_K^2}/2$ for a ϕ mass m.
- Barrier-factor $B_{L=1} = \sqrt{2z/(1+z)}$ with z = q/d, $d \sim 1$ fm (≈ 0.1973 GeV).
- Subscript 0 denotes evaluation at the ϕ mean mass $m_0=1.01946$ GeV.
- Final signal-function in background fits: Voigtian with BW width taken as $\Gamma(m)$.

General set-up

- For every event choose N_c (50, 100, 200, 300 as trial values) "closest-neighbor" events in phase-space.
- Relevant phase-space variables were $\cos\theta_{c.m.}^{\phi}$ and ϕ decay angles ϕ_{HEL}^{K} and $\cos\theta_{HEL}^{K}$.
- Helps in preserving correlations among variables in the data.
- Trial background functions were, a general quartic, $f(x) = a\sqrt{x^2 4m_K^2} + b(x^2 4m_K^2)$, $x > 2m_K$, and $g(x) = a(x 2m_K) + b(x 2m_K)^2$, $x > 2m_K$.
- Fits were quite stable with $N_c = 100$ -ish. Final results shown used $N_c = 200$.
- Final output: Q-value or signal probability for each event. Weigh event by corresponding Q-value hereon.
- Method already used in earlier $p\omega$, $p\eta/\eta'$, $K^+\Lambda$ and $K^+\Sigma^0$ analyses.

APPLICATION: CHARGED-MODE

• $\sqrt{s} = 2.095$ GeV bin. Signal weighted by Q and background weighted by (1 - Q):

• However, $M(p, K^-) = 1.52 \text{ GeV "band" visible, especially in mid-angles:}$

• Apply $|MM(p, K^-) - 1.52 \text{ GeV}| \le 15 \text{ MeV cut.}$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ からぐ

CHARGED-MODE: FINAL RESULTS

PWA Group (CMU)

Neutral-mode: results (30-MeV-wide binning)

PWA Group (CMU)

FINAL DATA YIELDS

Charged-mode occupancy:

- ≈ 0.477 mi dashed histogram, without 15-mev cut around $\Lambda(1520)$
- ≈ 0.436 mi shaded histogram, with 15-mev cut around $\Lambda(1520)$

Neutral-mode occupancy:

- around one fifth of the charged-mode occupancy

OUTLINE

- 1 Introduction and Event Selection
- 2 Signal-background separation
- 3 Acceptance Calculation and $d\sigma/d\cos\theta_{c.m.}^{\phi}$
- 4 Spin Density Matrix Elements
- SUMMARY

ACCEPTANCE CALCULATION

- 100 million "Raw" Monte Carlo events for each topology generated flat phase-space and passed thru GSIM to give a set of "Accepted" Monte Carlo events.
- Acc. MC underwent same set of event-selection cuts as actual Data, plus additional efficiency cuts (trigger correction and momentum smearing).
- Fiducial cuts applied to both Data and Acc. MC to remove events belong to regions of the detector that were not well understood (sector-boundaries, extreme forward-going tracks, et al)
- ullet Expand the scattering amplitude using a "large" number of s-channel J^P waves:

$$\mathcal{M}(\sqrt{s},\cos\theta_{c.m.}^{\phi}) \; \sim \; \sum_{\mathit{IP}} \alpha_{\mathit{MP},\mathit{LS}}^{\mathit{IP}} \; \mathcal{A}_{m_{\gamma},m_{i},m_{f},m_{\phi}}^{\gamma_{P}\to\mathit{IP}} (\sqrt{s},\cos\theta_{c.m.}^{\phi})$$

• $J^P = \{\frac{1}{2}^{\pm}, \frac{3}{2}^{\pm}, \cdots, \frac{11}{2}^{\pm}\}$ seemed a large enough set to fit the data. $\alpha_{MP,LS}^{J^P}$ are complex numbers (56 real fit parameters)

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・夕久で

FIT QUALITY CHECKS

Charged-mode, low \sqrt{s} bin

FIT QUALITY CHECKS (CONTD.)

Charged-mode, high \sqrt{s} bin

DIFFERENTIAL CROSS SECTIONS

Backward-angles

• Neutral-mode (3-track topology) is highly statistics limited towards high \sqrt{s} backward-angles.

PWA Group (CMU) CLAS g11a analysis June 18 18 / 35

DIFFERENTIAL CROSS SECTIONS (CONTD.)

• Clearly, around $\sqrt{s} \approx 2.1$ GeV, the ϕ - $\Lambda(1520)$ overlap is making a difference.

June 18

PWA Group (CMU)

DIFFERENTIAL CROSS SECTIONS (CONTD.)

- "Structure" around $\sqrt{s} \approx 2.2$ GeV in both topologies, *probably* independent of the ϕ - $\Lambda(1520)$ overlap issue.
- Above $\sqrt{s} > 2.5$ GeV, $d\sigma/dt$ independent of s at forward angles diffractive Pomeron exchange.

The $\sqrt{s} \approx 2.1~{\rm GeV}$ "structure"

• Ozaki, Scholten et al. (PRC 80, 035201 (2009)): $K\Lambda(1520)$ and ϕp channels couple.

- Coupling either via t-channel on-shell K exchange.
- And/or s-channel high strangeness content resonance exchange.
- Produces $\sqrt{s} \approx 2.1$ GeV "structure" in both cross-sections and spin density matrix elements.

The $\sqrt{s} \approx 2.1~{\rm GeV}$ "Structure" (contd.)

• Pomeron slope from fit to $d\sigma/dt = C_{\phi}e^{-B_{\phi}|t-t_0|}$: $B_{\phi} \approx 3 \text{ GeV}^{-2}$.

 \bullet The "bump" around $\sqrt{s}\sim 2.1$ GeV: most probably, the simple diffractive Pomeron exchange picture no longer valid.

$R_{\phi/\omega}$ AND FLAVOR-INDEPENDENCE

Sibirtsev, et al PRD 71, 094011 (2005):

 $R_{\phi/\omega}$ as a function of $(\sqrt{s}, \cos\theta_{c.m.}^{\phi})$: (g11a CLAS data)

- $R_{\phi/\omega}$ is generally small (OZI-suppression).
- Qualitatively agrees with Donnachie-Landshoff model: quark-quark-Pomeron coupling $\sim \beta_u \beta_s \bar{u}' \gamma_\mu u$. Couplings β almost flavor-independent. In the diffractive limit where Pomeron dominates, $R_{\phi}/\omega \rightarrow 1$

June 18

PWA Group (CMU)

Comparison with previous world data

- Main goal of $E_{\gamma}=3.6$ GeV CLAS g6 (Anciant) data was to look for the backward-angle rise at large |t|.
- ullet Slightly lower than CMU g11a around $|t|\sim 1$ GeV, but otherwise good agreement.
- Daresbury data had huge error bars, but fair agreement with our results.

Comparison with SAPHIR (2002)

- SAPHIR, Barth et al., 2002 data (in green).
- CLAS charged-mode in red, and neutral-mode in blue. Energy bin chosen closest to the SAPHIR bin-center.

OUTLINE

- 1 Introduction and Event Selection
- 2 Signal-background separation
- 3 Acceptance Calculation and $d\sigma/d\cos\theta_{c.m.}^{\phi}$
- 4 Spin Density Matrix Elements
- SUMMARY

SPIN DENSITY MATRIX ELEMENTS

- Choose spin quantitation axis as the beam dirn. \hat{z}_{CM} (Adair frame).
- With unpolarized beam and target, $\rho^0_{MM'}$ only accessible.
- Two equivalent methods for extracting SDME.
- PWA method, direct construction of the ϕ density matrix using Mother fit results:

$$\rho_{MM'}^0 = \frac{\sum \mathcal{A}^M \mathcal{A}^{M'*}}{\sum |\mathcal{A}^M|^2 + |\mathcal{A}^{M'}|^2},$$

where M, M' are ϕ spin-projections and incoherent sum is over the spins of γ , p, and p'.

Schilling's method, fit to an intensity distribution:

$$\begin{split} \mathcal{I}(\sqrt{s},\cos\theta_{c.m.}^{\phi}) \sim \frac{1}{2}(1-\rho_{00}^{0}) + \frac{1}{2}(3\rho_{00}^{0}-1)\cos_{Ad}^{2} - \rho_{1-1}^{0}\sin^{2}\theta_{Ad}\cos2\varphi_{Ad} \\ -\sqrt{2}Re\rho_{10}^{0}\sin2\theta_{Ad}\cos\varphi_{Ad} \end{split}$$

PWA Group (CMU) CLAS g11a analysis June 18 26 / 35

Compare PWA and Schilling's method

- Very good agreement between the two methods.
- Overall trend of $p\phi$ SDME similar to $p\omega$ case.
- All ho^0 elements ightarrow 0 at forward angles, and ho^0_{1-1} and ho^0_{10} are small.

PWA Group (CMU)

CLAS g11a analysis

SDME, CHARGE-MODE TOPOLOGY W/ $\Lambda(1520)$ CUT

Backward-angles

SDME, CHARGE-MODE TOPOLOGY W/ $\Lambda(1520)$ CUT

Mid-angles

SDME, CHARGE-MODE TOPOLOGY W/ $\Lambda(1520)$ CUT

Forward-angles

Charged- and neutral-mode comparison for ho_{00}

2.4

√s (GeV)

2.6

2.8

- Generally, very good agreement between the two topologies.
- Only exception is the "bump" at $\sqrt{s} \approx 2.1$ GeV towards the mid- and backward-angles.
- Due to Λ(1520)?

2.2

A CAVEAT

- Question: does the *P*-wave *KK* for the ϕ interfere with the underlying *S*-wave?
- Fries et al (DESY, Nucl. Phys. **B143**, 408, 1978) M(KK) dependent SDME'S. Claim, S-wave is not just non-resonant, but also resonant (a_0 , f_0) contributions.
- Similar ideas echoed in CLAS g6 paper, McCormick et al, PRC **69** 032203(R) (2004). Integrate Schilling's equation over the azimuthal angle (φ_K) and fit to:

$$dN/d\cos\theta_K \sim (1-\rho_{00})\sin^2\theta_K + 2\rho_{00}\cos^2\theta_K + \frac{\alpha}{\alpha}\cos\theta_K + \frac{\kappa}{\kappa}$$

- $m{\circ}$ α is the interference term and κ is the flat S-wave background. Claim: fits don't work without α and κ
- Fits might not work because you haven't acceptance corrected properly. Acceptance is not flat in φ_K . Plus, Schilling's equation has cross-terms between φ_K and θ_K variables.
- Other reasons: SDME's depend on both W and $\cos\theta_{\phi}^{c.m.}$. All previous analyses had either huge angular or energy (or both) binnings.

◆ロト ◆部ト ◆書ト ◆書ト 書 めの○

CAVEAT (CONTD.)

• Example: Helicity frame ρ_{00} . Pure P-wave would give a quadratic distribution in $\cos \theta_{Hel}^{K}$. However without acceptance correction, data is *not* a symmetric parabola:

- Distortion caused by acceptance, not necessarily by physics.
- Present work and Mike Williams' ω analysis preserved multi-dimensional correlations, accounted for acceptance in the fit and had fine binnings. We didn't require an α .

June 18

S- AND T-CHANNEL HELICITY CONSERVATION

- Long-known dilemma: how does the Pomeron couple? 0⁺ exchange in t-channel implies TCHC. Experimentally, at high energies TCHC-violation is well-established.
- However, Gilman et al (PLB 31, 387 (1970)) noted, SCHC roughly observed for ρ . Gilman's "explanation": SCHC implies TCHC violation.
- Current CLAS results for ω (Williams, PRC **80**, 065208, (2009)), and ϕ (this analysis): TCHC definitely broken. SCHC is also broken.

- $\rho_{00} \sim |\mathcal{A}_{01}|^2 + |\mathcal{A}_{0-1}|^2$
- $\rho_{00} \neq 0$ implies helicity flip
- t-channel: Gottfried-Jackson frame
- s-channel: Helicity frame

OUTLINE

- 1 Introduction and Event Selection
- 2 Signal-background separation
- 3 Acceptance Calculation and $d\sigma/d\cos\theta_{c.m.}^{\phi}$
- 4 Spin Density Matrix Elements
- **5** Summary

SUMMARY

- Wide kinematic coverage and high statistics ϕp data for the first time.
- Energy coverage is from near threshold to $\sqrt{s} = 2.84$ GeV and $-0.85 \le \cos \theta_{c.m.}^{\phi} \le 0.95$.
- 10-MeV-wide \sqrt{s} binning for charged-mode, and 30-MeV-wide binning for neutral-mode.
- Access to charged-mode (w/ and w/o $\Lambda(1520)$ cut) and neutral-mode results will (hopefully) lead to a better understanding of the $\sqrt{s} \approx 2.2$ GeV "structure".
- Previous ϕ SDME data almost non-existent.
- Full Partial Wave Analysis is underway.

Comparison with Dave Tedeschi's g11a results

- Dave Tedeschi (DT) and CMU results comparison: dσ/dt-vs-t.
- DT results show a "dip" at a particular value of t, for each E_γ bin, while CMU shows a more smooth falloff.
- Effect of this "dip" possibly spills over to neighboring t-bins. Except for t → |t|_{min} (extreme forward angles), DT cross-sections are lower.
- DT results generally conform with other ϕ results from the "Phi analysis group" (g10, g6a), all of which used similar analysis techniques, acceptance calculations, *et al.*

E_{γ} -VS-t PLOTS AND THE 23^{rd} TOF COUNTER

- Position of DT "dip" in E_{γ} -vs-t tracks K^+ hitting the 23^{rd} TOF paddle.
- 23rd TOF paddle is known to be problematic (removed in some sectors).

23rd TOF COUNTER (CONTD.)

 CMU, same configuration of knocked-out TOF paddles as DT. No such K⁺ depletion seen.

- CMU, 23rd paddle removed in all sectors.
- Given (E_{γ},t) value corresponds to $\cos \theta_{c.m.}^{proton}$ and proton TOF counter.

TEDESCHI ACCEPTANCE CALCULATION

- MC generated according to $\sim e^{-bt}$ (Pomeron-ish)
- Okay for forward-angles, but for large |t|?
- Recall that CMU acceptance calculation was from a direct fit to data.
- Weighted Acc. MC faithfully represented all features in the actual Data.

FIG. 8 Comparison of MC (black) with data (blue) for four-momentum transfer in each energy bin.

