

AlSaqr - A PARALLEL ULTRA-LOW POWER PROCESSOR FOR DRONE APPLICATIONS

AlSaqr Hardware Reference Manual

Version 1.0.0

This document is preliminary and subject to change Micrel Lab, University of Bologna ,Italy

Table of Contents

Table of Contents	2
Overview	9
Features	10
Introduction to the Al Saqr application architecture	11
Host Domain	12
CVA6 Dual Core	12
Core Local Interrupt Controller (CLINT)	13
Platform Level Interrupt Controller - PLIC	13
Memory Subsystem	13
Last Level Cache	13
PULP Cluster	14
RedMulE Tensor Unit	16
Event Units	16
DMA (direct memory access)	17
Debug architecture	17
Micro DMA	17
SPI master (serial peripheral interface)	17
QSPI master (quad serial peripheral interface)	17
UART (universal asynchronous receiver-transmitter)	17
USART (universal synchronous-asynchronous receiver-transmitter)	17
SDIO (Secure Digital Input Output)	17
I2C (inter-integrated circuit)	18
CPI (camera parallel interface)	18
GPIOs (general purpose inputs/outputs)	18
CAN (Controller Area Network)	18
Timers	18
Advanced PWM Timers	18
RTC	18
Performance counters	18
Memory map	20
Device components description	22
Cluster Subsystem	22
Cluster control unit	22
Cluster control unit registers	22
Cluster control unit registers details	22
End Of Computation status register. (EOC)	22
Cluster cores fetch enable configuration register. (FETCH_EN)	22
Miscellaneous Control (MISC CTRL)	23
Cluster clock gate configuration register. (CLOCK_GATE)	24
Cluster cores debug resume register. (DBG_RESUME)	24
Cluster cores debug halt status register. (DBG_HALT_STATUS)	25
Cluster cores debug halt mask configuration register. (DBG_HALT_MASK)	26
Cluster core 0 boot address configuration register. (BOOT_ADDR0)	27
TCDM arbitration policy ch0 for cluster cores configuration register. (TCDM_ARB_POLICY_CH0)	27
TCDM arbitration policy chi for DMA/HWCE configuration register. (TCDM_ARB_POLICY_CH1)	27
Read only duplicate of TCDM_ARB_POLICY_CH0 register (TCDM_ARB_POLICY_CH0_REP)	28
Read only duplicate of TCDM_ARB_POLICY_CH1 register (TCDM_ARB_POLICY_CH1_REP)	28
Basic timer	28
Cluster timer registers	28
	29
Basic timer registers details Timer Low Configuration register. (CFG_LO)	29
Timer High Configuration register. (CFG_HI)	30
Timer Low counter value register. (CFG_H) Timer Low counter value register. (CNT_LO)	31
Timer Low counter value register. (CNT_HI)	31
Timer High counter value register. (CN1_HI) Timer Low comparator value register. (CMP_LO)	31
	31
Timer High comparator value register. (CMP_HI)	
Start Timer Low counting register. (START_LO)	31
Start Timer High counting register. (START_HI)	32
Reset Timer Low counter register. (RESET_LO)	32
Reset Timer High counter register. (RESET_HI)	32

Cluster event unit	32
Cluster event unit registers	32
Cluster event unit registers details	38
Input event mask configuration register. (EVT_MASK)	38
Hardware task dispatcher push command register. (HW_DISPATCH_PUSH_TASK)	38
Hardware task dispatcher pop command register. (HW_DISPATCH_POP_TASK)	38
Hardware mutex 0 non-blocking put command register. (HW_MUTEX_0_MSG_PUT)	38
Hardware mutex 0 blocking get command register. (HW_MUTEX_0_MSG_GET)	39
Cluster Software event 0 trigger command register. (SW_EVENT_0_TRIG)	39
Cluster Software event 0 trigger and wait command register. (SW_EVENT_0_TRIG_WAIT)	39
Cluster Software event 0 trigger, wait and clear command register. (SW_EVENT_0_TRIG_WAIT_CLEAR)	39
Cluster SoC peripheral event ID status register. (SOC_PERIPH_EVENT_ID)	40
Cluster hardware barrier 0 trigger mask configuration register. (HW_BARRIER_0_TRIG_MASK)	40
Input event mask update command register with bitwise AND operation. (EVT_MASK_AND)	40
Hardware task dispatcher cluster core team configuration register. (HW_DISPATCH_PUSH_TEAM_CONFIG)	40
Hardware mutex 1 non-blocking put command register. (HW_MUTEX_1_MSG_PUT)	41 41
Hardware mutex 1 blocking get command register. (HW_MUTEX_1_MSG_GET) Cluster Software event 1 trigger command register. (SW_EVENT_1_TRIG)	41
Cluster Software event 1 trigger command register. (SW_EVENT_1_TRIG_WAIT)	41
Cluster Software event 1 trigger and wait command register. (SW_EVENT_1_TRIG_WAIT) Cluster Software event 1 trigger, wait and clear command register. (SW_EVENT_1_TRIG_WAIT_CLEAR)	41
Cluster hardware barrier 0 status register. (HW_BARRIER_0_STATUS)	42
Input event mask update command register with bitwise OR operation. (EVT_MASK_OR)	42
Cluster Software event 2 trigger command register. (SW_EVENT_2_TRIG)	42
Cluster Software event 2 trigger and wait command register. (SW_EVENT_2_TRIG_WAIT)	42
Cluster Software event 2 trigger, wait and clear command register. (SW_EVENT_2_TRIG_WAIT_CLEAR)	43
Cluster hardware barrier summary status register. (HW_BARRIER_0_STATUS_SUM)	43
Interrupt request mask configuration register. (IRQ_MASK)	43
Cluster Software event 3 trigger command register. (SW_EVENT_3_TRIG)	44
Cluster Software event 3 trigger and wait command register. (SW_EVENT_3_TRIG_WAIT)	44
Cluster Software event 3 trigger, wait and clear command register. (SW_EVENT_3_TRIG_WAIT_CLEAR)	44
Cluster hardware barrier 0 target mask configuration register. (HW_BARRIER_0_TARGET_MASK)	44
Interrupt request mask update command register with bitwise AND operation. (IRQ_MASK_AND)	45
Cluster Software event 4 trigger command register. (SW_EVENT_4_TRIG)	45
Cluster Software event 4 trigger and wait command register. (SW_EVENT_4_TRIG_WAIT)	45
Cluster Software event 4 trigger, wait and clear command register. (SW_EVENT_4_TRIG_WAIT_CLEAR)	45
Cluster hardware barrier 0 trigger command register. (HW_BARRIER_0_TRIG)	46
Interrupt request mask update command register with bitwise OR operation. (IRQ_MASK_OR)	46
Cluster Software event 5 trigger command register. (SW_EVENT_5_TRIG)	46
Cluster Software event 5 trigger and wait command register. (SW_EVENT_5_TRIG_WAIT)	46
Cluster Software event 5 trigger, wait and clear command register. (SW_EVENT_5_TRIG_WAIT_CLEAR)	46
Cluster hardware barrier 0 self trigger command register. (HW_BARRIER_0_SELF_TRIG)	47
Cluster cores clock status register. (CLOCK_STATUS)	47
Cluster Software event 6 trigger command register. (SW_EVENT_6_TRIG)	47
Cluster Software event 6 trigger and wait command register. (SW_EVENT_6_TRIG_WAIT)	47
Cluster Software event 6 trigger, wait and clear command register. (SW_EVENT_6_TRIG_WAIT_CLEAR) Cluster hardware barrier 0 trigger and wait command register. (HW BARRIER 0 TRIG WAIT)	48 48
Pending input events status register. (EVENT_BUFFER)	48
Cluster Software event 7 trigger command register. (SW_EVENT_7_TRIG)	48
Cluster Software event 7 trigger command register. (SW_EVENT_7_Trial) Cluster Software event 7 trigger and wait command register. (SW_EVENT_7_TRIG_WAIT)	49
Cluster Software event 7 trigger and wait command register. (SW_EVENT_7_TRIG_WAIT_CLEAR)	49
Cluster hardware barrier 0 trigger, wait and clear command register. (HW_BARRIER_0_TRIG_WAIT_CLEAR)	49
Pending input events status register with EVT_MASK applied. (EVENT_BUFFER_MASKED)	49
Cluster hardware barrier 1 trigger mask configuration register. (HW_BARRIER_1_TRIG_MASK)	49
Pending input events status register with IRQ_MASK applied. (EVENT_BUFFER_IRQ_MASKED)	50
Cluster hardware barrier 1 status register. (HW_BARRIER_1_STATUS)	50
Pending input events status clear command register. (EVENT_BUFFER_CLEAR)	50
Cluster hardware barrier summary status register. (HW_BARRIER_1_STATUS_SUM)	50
Software events cluster cores destination mask configuration register. (SW_EVENT_MASK)	51
Cluster hardware barrier 1 target mask configuration register. (HW_BARRIER_1_TARGET_MASK)	51
Software events cluster cores destination mask update command register with bitwise AND operation.	
(SW_EVENT_MASK_AND)	51
Cluster hardware barrier 1 trigger command register. (HW_BARRIER_1_TRIG)	51

	Software events cluster cores destination mask update command register with bitwise OR operation.	
	(SW_EVENT_MASK_OR)	52
	Cluster hardware barrier 1 self trigger command register. (HW_BARRIER_1_SELF_TRIG)	52
	Input event wait command register. (EVENT_WAIT)	52
	Cluster hardware barrier 1 trigger and wait command register. (HW_BARRIER_1_TRIG_WAIT)	52
	Input event wait and clear command register. (EVENT_WAIT_CLEAR)	52
	Cluster hardware barrier 1 trigger, wait and clear command register. (HW_BARRIER_1_TRIG_WAIT_CLEAR)	53
	Cluster hardware barrier 2 trigger mask configuration register. (HW_BARRIER_2_TRIG_MASK)	53
	Cluster hardware barrier 2 status register. (HW_BARRIER_2_STATUS)	53
	Cluster hardware barrier summary status register. (HW_BARRIER_2_STATUS_SUM)	53
	Cluster hardware barrier 2 target mask configuration register. (HW_BARRIER_2_TARGET_MASK)	54
	Cluster hardware barrier 2 trigger command register. (HW_BARRIER_2_TRIG)	54
	Cluster hardware barrier 2 self trigger command register. (HW_BARRIER_2_SELF_TRIG)	54
	Cluster hardware barrier 2 trigger and wait command register. (HW_BARRIER_2_TRIG_WAIT)	54
	Cluster hardware barrier 2 trigger, wait and clear command register. (HW_BARRIER_2_TRIG_WAIT_CLEAR)	55
	Cluster hardware barrier 3 trigger mask configuration register. (HW_BARRIER_3_TRIG_MASK)	55
	Cluster hardware barrier 3 status register. (HW_BARRIER_3_STATUS)	55
	Cluster hardware barrier summary status register. (HW_BARRIER_3_STATUS_SUM)	55 50
	Cluster hardware barrier 3 target mask configuration register. (HW_BARRIER_3_TARGET_MASK)	56
	Cluster hardware barrier 3 trigger command register. (HW_BARRIER_3_TRIG)	56
	Cluster hardware barrier 3 self trigger command register. (HW_BARRIER_3_SELF_TRIG)	56
	Cluster hardware barrier 3 trigger and wait command register. (HW_BARRIER_3_TRIG_WAIT)	56
	Cluster hardware barrier 3 trigger, wait and clear command register. (HW_BARRIER_3_TRIG_WAIT_CLEAR)	56
	Cluster hardware barrier 4 trigger mask configuration register. (HW_BARRIER_4_TRIG_MASK)	57
	Cluster hardware barrier 4 status register. (HW_BARRIER_4_STATUS)	57
	Cluster hardware barrier summary status register. (HW_BARRIER_4_STATUS_SUM)	57
	Cluster hardware barrier 4 target mask configuration register. (HW_BARRIER_4_TARGET_MASK)	57
	Cluster hardware barrier 4 trigger command register. (HW_BARRIER_4_TRIG)	58
	Cluster hardware barrier 4 self trigger command register. (HW_BARRIER_4_SELF_TRIG)	58
	Cluster hardware barrier 4 trigger and wait command register. (HW_BARRIER_4_TRIG_WAIT)	58
	Cluster hardware barrier 4 trigger, wait and clear command register. (HW_BARRIER_4_TRIG_WAIT_CLEAR)	58
	Cluster hardware barrier 5 trigger mask configuration register. (HW_BARRIER_5_TRIG_MASK)	58
	Cluster hardware barrier 5 status register. (HW BARRIER 5 STATUS)	59
	Cluster hardware barrier summary status register. (HW BARRIER 5 STATUS SUM)	59
	Cluster hardware barrier 5 target mask configuration register. (HW_BARRIER_5_TARGET_MASK)	59
	Cluster hardware barrier 5 trigger command register. (HW_BARRIER_5_TRIG)	59
	Cluster hardware barrier 5 self trigger command register. (HW_BARRIER_5_SELF_TRIG)	60
	Cluster hardware barrier 5 trigger and wait command register. (HW_BARRIER_5 TRIG_WAIT)	60
	Cluster hardware barrier 5 trigger, wait and clear command register. (HW_BARRIER_5_TRIG_WAIT_CLEAR)	60
	Cluster hardware barrier 6 trigger mask configuration register. (HW_BARRIER_6_TRIG_MASK)	60
	Cluster hardware barrier 6 status register. (HW_BARRIER_6_STATUS)	61
	Cluster hardware barrier summary status register. (HW_BARRIER_6_STATUS_SUM)	61
	Cluster hardware barrier 6 target mask configuration register. (HW_BARRIER_6_TARGET_MASK)	61
	Cluster hardware barrier 6 trigger command register. (HW_BARRIER_6_TRIG)	61
	Cluster hardware barrier 6 self trigger command register. (HW_BARRIER_6_SELF_TRIG)	61
	Cluster hardware barrier 6 trigger and wait command register. (HW_BARRIER_6_TRIG_WAIT)	62
	Cluster hardware barrier 6 trigger, wait and clear command register. (HW_BARRIER_6_TRIG_WAIT_CLEAR)	62
	Cluster hardware barrier 7 trigger mask configuration register. (HW_BARRIER_7_TRIG_MASK)	62
	Cluster hardware barrier 7 status register. (HW_BARRIER_7_STATUS)	62
	Cluster hardware barrier summary status register. (HW_BARRIER_7_STATUS_SUM)	63
	Cluster hardware barrier 7 target mask configuration register. (HW_BARRIER_7_TARGET_MASK)	63
	Cluster hardware barrier 7 trigger command register. (HW_BARRIER_7_TRIG)	63
	Cluster hardware barrier 7 self trigger command register. (HW_BARRIER_7_SELF_TRIG)	63
	Cluster hardware barrier 7 trigger and wait command register. (HW_BARRIER_7_TRIG_WAIT)	64
	Cluster hardware barrier 7 trigger, wait and clear command register. (HW_BARRIER_7_TRIG_WAIT_CLEAR)	64
Clu	ister instruction cache control unit	64
	Cluster instruction cache control unit registers	64
	Cluster instruction cache control unit registers details	64
-	Cluster instruction cache unit enable configuration register. (ENABLE)	64
	Cluster instruction cache unit flush command register. (FLUSH)	65
	Cluster instruction cache unit selective flush command register. (SEL_FLUSH)	65
	Enable L1 and L1.5 prefetch register. (L1_L15_PREFETCH)	65

DMA	66
DMA registers	66
DMA registers details	66
Cluster DMA configuration register. (CMD)	66
Cluster DMA status register. (STATUS)	66
DMA states	67
DMA state command formats	68
Cluster DMA transfer identifier format. (GET_TID)	68
Cluster DMA transfer configuration format. (CMD)	68
Cluster DMA transfer free command format. (STATUS)	69
Cluster DMA transfer status format. (FREE_TID)	69
Cluster DMA L1 base address configuration format. (TCDM)	69
Cluster DMA L2 base address configuration format. (EXT_L2)	70
Cluster DMA 2D transfer configuration format. (2D)	70
APB Subsystem	70
Advanced Timerss	70
PWM0 registers	70
PWM1 registers	71
PWM2 registers	71
PWM3 registers	72
PWM4 registers	73
PWM5 registers	74
PWM6 registers	74
PWM7 registers	75
Advanced Timers registers details	76
ADV_TIMER0 command register. (T0_CMD)	76
ADV_TIMER0 configuration register. (T0_CONFIG)	76
ADV_TIMER0 threshold configuration register. (T0_THRESHOLD)	77
ADV_TIMER0 channel 0 threshold configuration register. (T0_TH_CHANNEL0)	78
ADV_TIMER0 channel 1 threshold configuration register. (T0_TH_CHANNEL1)	78
ADV_TIMER0 channel 2 threshold configuration register. (T0_TH_CHANNEL2)	78
ADV_TIMER0 channel 3 threshold configuration register. (T0_TH_CHANNEL3)	79
ADV_TIMER1 command register. (T1_CMD)	79
ADV_TIMER1 configuration register. (T1_CONFIG)	80
ADV_TIMER1 threshold configuration register. (T1_THRESHOLD)	81
ADV_TIMER1 channel 0 threshold configuration register. (T1_TH_CHANNEL0)	81
ADV_TIMER1 channel 1 threshold configuration register. (T1_TH_CHANNEL1)	81
ADV_TIMER1 channel 2 threshold configuration register. (T1_TH_CHANNEL2)	82
ADV_TIMER1 channel 3 threshold configuration register. (T1_TH_CHANNEL3)	82
ADV_TIMER2 command register. (T2_CMD)	83
ADV_TIMER2 configuration register. (T2_CONFIG)	83
ADV_TIMER2 threshold configuration register. (T2_THRESHOLD)	84
ADV_TIMER2 channel 0 threshold configuration register. (T2_TH_CHANNEL0)	84
ADV_TIMER2 channel 1 threshold configuration register. (T2_TH_CHANNEL1)	85
ADV_TIMER2 channel 2 threshold configuration register. (T2_TH_CHANNEL2)	85
ADV_TIMER2 channel 3 threshold configuration register. (T2_TH_CHANNEL3)	86
ADV_TIMER3 command register. (T3_CMD)	86
ADV_TIMER3 configuration register. (T3_CONFIG)	87
ADV_TIMER3 threshold configuration register. (T3_THRESHOLD)	88
ADV_TIMER3 channel 0 threshold configuration register. (T3_TH_CHANNEL0)	88
ADV_TIMER3 channel 1 threshold configuration register. (T3_TH_CHANNEL1)	88
ADV_TIMER3 channel 2 threshold configuration register. (T3_TH_CHANNEL2)	89
ADV_TIMER3 channel 3 threshold configuration register. (T3_TH_CHANNEL3)	89
ADV_TIMERS events configuration register. (EVENT_CFG)	90
ADV_TIMERS channels clock gating configuration register. (CG)	92
SoC control unit	92
SoC Control Registers registers	92
SoC control unit registers details	93
Core information register (INFO)	93
FC Boot addres configuration register (REG_FCBOOT)	93
FC fetch enable configuration register (bit 0 sets fetch enable) (REG_FCFETCH)	94
Isolate cluster register (CL_ISOLATE)	94

Cluster busy register (CL_BUSY)	94
PMU bypass configuration register (CL_BYPASS)	94
JTAG external register (JTAGREG)	96
L2 sleep configuration register (L2_SLEEP)	96
Alias for SAFE_PMU_SLEEPCTRL (SLEEP_CTRL)	97
EOC and chip status register (CORESTATUS)	97
EOC and chip status register read mirror (CORESTATUS_RO)	97
DC/DC configuration register (SAFE_PMU_RAR)	97
Sleep modes configuration register (SAFE_PMU_SLEEPCTRL)	98
L2 rententive state configuration (SAFE_PMU_FORCE)	100
Enable Sleep mode for pads (SAFE_PADSLEEP)	101
GPIO power domain pad input isolation register (REG_GPIO_ISO)	101
CAM power domain pad input isolation register (REG_CAM_ISO)	102
LVDS power domain pad input isolation register (REG_LVDS_ISO)	102
MicroDMA Subsystem	102
uDMA control unit	102
UDMA control registers	102
uDMA control unit registers details	102
uDMA control unit registers details uDMA interfaces clock gate configuration register. (CFG_CG)	102
uDMA interfaces clock gate configuration register. (CFG_CG) uDMA interfaces trigger events configuration register. (CFG_EVENT)	
	104
uDMA UART interfaces	104
UART Channel 0 registers	104
UART Channel 1 registers	105
UART Channel 2 registers	105
uDMA UART interface registers details	105
uDMA RX UART buffer base address configuration register. (RX_SADDR)	105
uDMA RX UART buffer size configuration register. (RX_SIZE)	106
uDMA RX UART stream configuration register. (RX_CFG)	106
uDMA TX UART buffer base address configuration register. (TX_SADDR)	106
uDMA TX UART buffer size configuration register. (TX_SIZE)	107
uDMA TX UART stream configuration register. (TX_CFG)	107
uDMA UART status register. (STATUS)	108
UDMA UART configuration register. (SETUP)	108
uDMA UART Error status (ERROR)	109
uDMA UART Read or Error interrupt enable register. (IRQ_EN)	109
uDMA UART Read polling data valid flag register. (VALID)	110
uDMA UART Read polling data register. (DATA)	110
uDMA USART interfaces	110
USART Channel 0 registers	110
USART Channel 1 registers	111
USART Channel 2 registers	111
USART Channel 3 registers	111
uDMA USART interface registers details	112
uDMA RX UART buffer base address configuration register. (RX_SADDR)	112
uDMA RX UART buffer size configuration register. (RX_SIZE)	112
uDMA RX UART stream configuration register. (RX_CFG)	112
uDMA TX UART buffer base address configuration register. (TX_SADDR)	113
uDMA TX UART buffer size configuration register. (TX_SIZE)	113
uDMA TX UART stream configuration register. (TX_CFG)	114
uDMA UART status register. (STATUS)	114
UDMA UART configuration register. (SETUP)	115
uDMA UART Error status (ERROR)	116
uDMA UART Read or Error interrupt enable register. (IRQ_EN)	116
uDMA UART Read polling data valid flag register. (VALID)	117
uDMA UART Read polling data register. (DATA)	117
uDMA SPIM interfaces	117
SPI Master Channel 0 registers	117
SPI Master Channel 1 registers	117
SPI Master Channel 2 registers	118
SPI Master Channel 3 registers	118
SPI Master Channel 4 registers	118
SPI Master Channel 5 registers	118

S	PI Master Channel 6 registers	119
S	PI Master Channel 7 registers	119
S	PI Master Channel 8 registers	119
S	PI Master Channel 9 registers	120
S	PI Master Channel 10 registers	120
C	SPI Master Channel 0 registers	120
ū	DMA SPIM interface registers details	120
-	RX SPI uDMA transfer address of associated buffer (SPIM_RX_SADDR)	120
	RX SPI uDMA transfer size of buffer (SPIM_RX_SIZE)	121
	RX SPI uDMA transfer configuration (SPIM_RX_CFG)	121
	TX SPI uDMA transfer address of associated buffer (SPIM_TX_SADDR)	122
	TX SPI uDMA transfer size of buffer (SPIM_TX_SIZE)	122
	TX SPI uDMA transfer configuration (SPIM_TX_CFG)	122
	CMD SPI uDMA transfer address of associated buffer (SPIM_CMD_SADDR)	123
	CMD SPI uDMA transfer size of buffer (SPIM_CMD_SIZE)	123
	CMD SPI uDMA transfer configuration (SPIM_CMD_CFG)	124
uDI	MA I2C interfaces	125
12	2C Channel 0 registers	125
	2C Channel 1 registers	125
Īź	2C Channel 2 registers	125
Īź	2C Channel 3 registers	126
Ĩź	2C Channel 4 registers	126
	2C Channel 5 registers	126
ū	DMA I2C interface registers details	127
-	uDMA RX I2C buffer base address configuration register. (RX_SADDR)	127
	uDMA RX I2C buffer size configuration register. (RX_SIZE)	127
	uDMA RX I2C stream configuration register. (RX CFG)	127
	uDMA TX I2C buffer base address configuration register. (TX_SADDR)	128
	uDMA TX I2C buffer size configuration register. (TX_SIZE)	128
	uDMA TX I2C stream configuration register. (TX_CFG)	128
	uDMA CMD I2C buffer base address configuration register. (CMD_SADDR)	129
	uDMA CMD I2C buffer size configuration register. (CMD_SIZE)	129
	uDMA CMD I2C stream configuration register. (CMD_CFG)	130
	uDMA I2C Status register. (STATUS)	130
	uDMA I2C Configuration register. (SETUP)	131
uDI	MA SDIO interfaces	131
S	DIO Channel 0 registers	131
S	DIO Channel 1 registers	131
ū	DMA SDIO interface registers details	132
-	RX SDIO uDMA transfer address of associated buffer (SDIO_RX_SADDR)	132
	RX SDIO uDMA transfer size of buffer (SDIO_RX_SIZE)	132
	RX SDIO uDMA transfer configuration (SDIO_RX_CFG)	132
	TX SDIO uDMA transfer address of associated buffer (SDIO_TX_SADDR)	133
	TX SDIO uDMA transfer size of buffer (SDIO_TX_SIZE)	134
	TX SDIO uDMA transfer configuration (SDIO_TX_CFG)	134
	SDIO command (SDIO_CMD_OP)	135
	SDIO argument (SDIO_CMD_ARG)	135
	Data transfer setup (SDIO_DATA_SETUP)	135
	Start (SDIO_START)	136
	Response byte0 (SDIO_RSP0)	136
	Response byte1 (SDIO_RSP1)	136
	Response byte2 (SDIO_RSP2)	137
	Response byte3 (SDIO_RSP3)	137
	Clock Divider (SDIO_CLK_DIV)	137
	STATUS (SDIO_STATUS)	137
	SDIO STOP command op (SDIO_STOPCMD_OP)	138
	SDIO STOP command arg (SDIO_STOPCMD_ARG)	138
u	DMA SDIO interface commands	138
ū	DMA SDIO interface commands details	139
-	powerup or reset card to idle state (CMD_GO_IDLE_STATE)	139
	instruct all cards to send CID (CMD_SEND_CID)	139
	instruct all cards to send RCA (CMD_SEND_RCA)	139

configure the number of lines to use (single or quad mode) (ACMD_CFG_QUAD)	140
Select one card with its RCA and flip READY state (CMD_SELECT)	140
Send host voltage configuration (CMD_SEND_VOLTAGE)	140
STOP command for sd cards, stop multi block transfers after current block (CMD_SD_STOP)	140
Ask the device for one single block of data (CMD_READ_SINGLE_BLOCK)	141
Ask the device to continuously send blocks of data until it receives stop (CMD_READ_MULT_BLOCK)	141
Write a single block of data to the device (CMD_WRITE_SINGLE_BLOCK)	141
Write a continuous stream of data blocks to device (CMD_WRITE_MULT_BLOCK)	141
Send host capacity support (high or standard capacity) and ask device for its voltage window (ACMD_HCS)	141
Signal next command is a specific command (CMD_APP_SPEC_CMD)	142
uDMA CAM CPI interfaces	142
CAM channel 0 registers	142
CAM channel 1 registers	142
uDMA CAM CPI interface registers details	143
RX Camera uDMA transfer address of associated buffer register (CAM_RX_SADDR)	143
RX Camera uDMA transfer size of buffer register (CAM_RX_SIZE)	143
RX Camera uDMA transfer configuration register (CAM_RX_CFG)	143
Global configuration register (CAM_CFG_GLOB)	144
Lower Left corner configuration register (CAM_CFG_LL)	145
Upper Right corner configuration register (CAM_CFG_UR)	145
Horizontal Resolution configuration register (CAM_CFG_SIZE)	145
RGB coefficients configuration register (CAM_CFG_FILTER)	146
VSYNC Polarity register (CAM_VSYNC_POLARITY)	146

1 Overview

AlSaqr project is a custom System-on-Chip based on the Parallel Ultra-Low-Power Processor (PULP) architecture from University of Bologna Energy Efficient Embedded System Lab and ETH Zürich Integrated Systems Lab. The AlSaqr implementation extends the architecture to provide the necessary systems interfaces, capabilities and securety features required by drone and nano-drone application.

This document introduces an advanced SoC design based on RISC-V ISA, meticulously engineered for drone and nano-drone applications, marking a significant milestone in this rapidly progressing field.

This project has been conceived and executed with dual objectives: aligning with the current apex of UAV technology while pushing the boundaries in performances and security features, a critical aspect often overlooked in rapid technological advancements.

2 Features

- 2 high performance CVA6 64-bit RISC-V core
 - 8 CV32E40P 32-bit RISC-V cores
- · Security Subsystem
- · Memories:
 - $\circ~$ L1 Memory (256 KB) shared by all the cores in Cluster (0 wait state memory access)
 - L2 Memory (32KB) for all the cores
 - Last Level Cache (128KB)
 - L3 external HyperFlash or HyperRAM Memory connnected to the HyperBus Interface
 - ROM (64KB)
- Clock, reset and supply management
 - 1 FLL with 4 programmable outputs
 - 1 x 32.768kHz RTC
 - Single 32.768kHz crystal for RTC and FLLs
- Debug Mode
 - JTAG interface
- DMA
 - A multi-channel 1D/2D cluster-DMA controls the transactions between the L2 Memory and L1 Memory
 - A smart, lightweight and completely autonomous uDMA capable of handling complex I/O scheme
- 2 x Camera Parallel Interfaces CPI
 - 8 bits interface
- HSYNC, VSYNC, PCLKCommunication Interfaces
- - 6 x I2C Master
 11 x SPI Master
 - 1 x QSPI
 - 3 x UART
 - 4 x USART
 - 2 x SDIO
 - 2 x CAN
 - 1 x HYPERBUS
 - 1 x Ethernet

3 Introduction to the Al Sagr application architecture

AlSaqr SoC is designed to cater to the compatibility with FMUv6X specification offering intricate and demanding requirements of drone and nano-drone systems. These systems require a blend of processing power, energy efficiency, and real-time data handling capabilities, all within the constraints of minimal weight and size – attributes that are at the core of our SoC design. The goal of AlSaqr project is to replace the Pixhawk FMUv6X in two different use cases:

- · Nano Drones, as a whole flight computer
- Micro & Standard Drones as a flight controller, placed aside to a Mission Computer

Drones outperform traditional methods and heavy machinery by being 10 times more efficient, 100 times more cost-effective, and significantly safer across various applications:

- For public safety, drones offer easier deployment and scalability compared to helicopters.
- In tower inspections, drones eliminate the need for dangerous climbing, enhancing inspector safety.
- During bridge inspections, drones cause minimal disruption compared to the use of snooper trucks. As the era of manually operated drones reaches its zenith, we are transitioning to a new phase dominated by software-controlled aircraft, heralded as the "Age of Aldriven autonomy." This advancement will see Al-powered unmanned aerial vehicles (UAVs) navigating and making decisions autonomously based on sensor inputs, primarily through cameras. To achieve this, drones will utilize a variety of algorithms including:
- Nonlinear least-squares optimization *Visual odometry *Simultaneous localization and mapping (SLAM) *System identification *Model predictive control
- Deep learning
- Motion planning
- Low-level image processing
- Geometric computation

4 Host Domain

The AlSaqr SoC is designed around a 64-bit architecture, significantly bolstered by two cva6 cores that form the central computing engine. The architecture incorporates memories and peripherals, notably featuring a dedicated HyperRAM controller that facilitates access to off-chip L3 memory, thereby extending the storage capabilities and ensuring ample memory bandwidth for data-intensive operations.

At the core of AlSaqr's design lies the AXI4 interconnect, a high-bandwidth, low-latency communication framework that adeptly connects the cva6 cores with the Cluster domain, the Secure Subsystem domain and the HyperRAM controller. To enhance the efficiency of data transfers and minimize the need for frequent accesses to the external L3 memory, a Last Level Cache (LLC) is strategically positioned between the HyperRAM memory controller and the AXI4 interconnect. This LLC acts as a buffer, storing frequently accessed data close to the processing cores, thereby significantly reducing latency and improving overall system performance.

Further augmenting the architecture is the Advanced Peripheral Bus (APB) subsystem, tasked with the efficient management of peripheral components. This includes the uDMA engine for streamlined data movement between peripherals and memories, reducing CPU load, and GPIOs for flexible input/output options, enabling interactions with a wide array of external devices and sensors. Additionally, AlSaqr-specific registers, accessible via the APB subsystem, provide detailed control over the SoC's functionalities, enabling tailored performance adjustments to meet specific application needs.

Thanks to the Platform Level Interrupt Controller PLIC, AlSaqr maneges up to 150 interrupts and exceptions. The PLIC plays a significant role in ensuring that the processor can handle various events, such as hardware interrupts or software exceptions, efficiently.

The following figure describes the main functional blocks of AlSagr:

Figure 1. AlSaqr Host Domain

4.1 CVA6 Dual Core

The CVA6 core implements the RISC-V instruction set architecture (ISA), marking it as a versatile and powerful choice for a wide range of computing applications. CVA6 is a 6-stage, single issue, in-order CPU which implements I, M, A and C extensions. The design includes

virtual memory and privileged mode operations, essential features for running Linux, as they enable efficient memory management and secure execution of privileged tasks.

The dual-core implementation of the CVA6 is designed around the AXI ACE protocol which is an extension of the AXI4 protocol, enhances support for hardware-coherent caches within a system. The cache coherency protocol used in this implementation is MOESI (Modified, Owned, Exclusive, Shared, Invalid). This protocol is an extension of the MESI protocol, providing an additional state to optimize the management of shared data and reduce the bandwidth required for cache coherence traffic.

This setup allows for the effective sharing and coherency of data across the cores, ensuring that each core has timely access to the correct data, which is critical for the performance and correctness of multi-threaded and multi-processed applications.

4.2 Core Local Interrupt Controller (CLINT)

The standard RISC-V platform-level interrupt controller (PLIC) provides centralized interrupt prioritization and routing for shared platform-level interrupts, and sends only a single external interrupt signal per privilege mode (meip/seip/ueip) to each hart. The PLIC multiplexes various device interrupts onto the external interrupt lines of Hart contexts, with hardware support for interrupt priorities. PLIC supports up-to 1023 interrupts (0 is reserved) and 15872 contexts, but the actual number of interrupts and context depends on the PLIC implementation. However, the implement must adhere to the offset of each register within the PLIC operation parameters. Further details can be found at https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic-1.0.0_rc1.pdf

4.3 Platform Level Interrupt Controller - PLIC

The RISC-V PLIC (Platform-Level Interrupt Controller) is a crucial component in AlSaqr SoC. Its primary functions include the management of 150 interrupt sources and the prioritization of these interrupts based on their significance. The PLIC is designed to ensure that the processor can efficiently handle external events, such as hardware interrupts or software exceptions.

Within the PLIC, interrupt sources are mapped to specific priority levels, allowing for orderly handling. In AlSaqr the PLIC supports four priority levels (machine mode, supervisor mode, user mode), and higher-priority interrupts are serviced before lower-priority ones. This prioritization is a fundamental aspect of its operation. When an interrupt occurs, the PLIC identifies the source of the interrupt and routes it to the appropriate interrupt service routine (ISR) or handler. This process is known as interrupt vectoring. The PLIC also allows for the enabling and disabling of individual interrupt sources, giving flexibility in interrupt management. To interact with the PLIC, a processor typically uses memory-mapped registers or software instructions. These registers control the enabling/disabling of interrupts, setting priorities, and claiming/completing interrupts. Depending on the privilege level, the PLIC handles interrupts accordingly.

Further documentation regarding the RISC-V PLIC can be found here: https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic.adoc

4.4 Memory Subsystem

The memory subsystem described above is a three-level memory hierarchy composed of L3, L2 and L1. The main memory of the architecture is the L3 HyperRAM or HyperFlash memory, which is located off-chip and has a variable size (8x8 - 64x8) MB. A 128KB of Last Level Cache (LLC) is designed to serve as a buffer between the L3 and the processor, providing faster access to frequently used data. It copes with the intrinsic high latency of the HyperBus protocol and delivers maximum performance. A subset of the LLC can be configured to act as a scratchpad memory (SPM).

The L2 memory, with a size of 32KB represents the memory for the host domain. The L2 is a SPM, on-chip and is directly accessible by the processors and the IO engine.

The L1 SPM, with a size of 256KB, is the memory for the cluster domain. It is also on-chip and is designed to provide even faster access to the cluster accelerator. The cluster DMA engine moved data between L2 and L1.

Overall, this memory subsystem is designed to ensure that frequently used data is stored in the fastest and most accessible memory closer to the processor, while less frequently used data is stored in larger and slower memory further away from the processor. This ensures that data can be accessed quickly by the processor, reducing memory access latency and improving overall performance.

4.4.1 Last Level Cache

The Last Level Cache (LLC) is a 128KB, 8-way set associative cache. Each way being 256 sets, and each set containing 8 blocks of 64-bit data. The LLC features the write back (WB) policy, is capable of handling multiple outstanding transactions and implements the pseudorandom replacement policy. Each way can be configured to be used as SPM. The memory map of the cached and SPM regions can be configured at runtime via software.

To set the ways of the LLC in either cache or SPM mode you need to configure the SPM_MODE register. As an example, configuring the latter to 0b00000101 will set way 0 and way 2 to SPM, and the rest to cache. Once you have configured SPM_MODE, you need to write a 1 to the COMMIT_CFG register, indicating to the LLC that you want to change configuration. COMMIT_CFG will be automatically set to 0 once the configuration is updated.

The SPM memory addresses (i.e. memory map of the SPM region) can be specified by configuring the SPM_START register. The memory map will begin at the value specified in SPM_START and will have size equal to Nx16KB, where $0 \le N \le 8$ is the number of ways set to SPM mode. If all 8 ways are set to SPM mode, the entire 128KB of LLC will be used as SPM.

The cached memory addresses (i.e. memory map of the cached region) can be specified by configuring the CACHE_START and CACHE_END registers. As an example, setting CACHE_START and CACHE_END to 0x80000000 and 0x80800000 respectively, will cache this address region, unless all ways of the LLC are set to SPM mode. In general, when all ways are set to SPM, the LLC will bypass non-SPM memory addresses. The LLC will also bypass non-cached and non-SPM memory addresses, regardless of the configuration of each

way.

Further documentation regarding the LLC can be found here: https://github.com/AlSaqr-platform/axi_llc/blob/master/doc/axi_llc.md

Name	Address	Size	Description
CACHE_START	0x1A106018	32 bit	Beginning of the address map of LLC's cached region
CACHE_END	0x1A10601C	32 bit	End of the address map of LLC's cached region
SPM_START	0x1A106020	32 bit	Beginning of the address map of LLC's SPM region
SPM_MODE	0x10401000	8 bit	Flag indicating which way is set to SPM mode (1 SPM, 0 Cache)
COMMIT_CFG	0x10401010	1 bit	Commit the current configuration of the SPM mode (1 commit)

Figure 1. AlSaqr Last Level Cache Regs

</div

4.5 PULP Cluster

The cluster domain features the Parallel Ultra-Low Power (PULP) cluster and the RedMule Tensor Unit integrated as an additional Hardware Processing Engine (HWPE).

- RISC-V cores 8 x CV32E40P cores
- Tensor Unit RedMulE
- DMA
- SRAM banks 256KB
- Instruction Cache L1 (512B) and L1.5 (4kB)
- HW synchronizer
- AXI Bus with dual-clock FIFOs for connection to the SoC
 Hybrid interconnect

Figure 2. AlSagr Cluster

The PULP cluster comprises 8 4-stage in-order 32b RISC-V RI5CY cores, whose ISA was extended to support multiple additional instructions including hardware loops, post-increment load and store instructions and additional ALU instructions. Moreover, each core features a dedicated Floating Point Unit (FPU) supporting the FP32, FP16 and FP16ALT formats.

The instruction interface is connected to a hierarchical instruction cache consisting of one private bank per core, each configured to store 512 B. Each private bank fetches instructions from a larger, shared cache of 4 KiB, improving the performance of applications using the Single Program Multiple Data (SPMD) paradigm.

In addition, each core features a data interface that connects it to the rest of the system for direct access to the system's Tightly-Coupled Data Memory (TCDM) and all other memory-mapped peripherals. The TCDM comprises 256KB organised in 16 32 bit word-interleaved memory banks providing single-cycle access latency through the Heterogeneous Cluster Interconnect (HCI), which features a logarithmic branch that allows all-to-all accesses from 32-bit master ports, like those of the cores or the DMAC, to each of the word-interleaved memory banks.

A banking factor of 2 (i.e., the number of memory banks is twice the number of cores) is used to minimize the memory banks contention probability even for highly memory-intensive workloads. If a collision occurs, round-robin arbitration guarantees fairness and avoids starvation.

Along with the connection to the TCDM, the cores have access to both memory-mapped devices within the cluster and the host domain through a peripheral interconnect.

One of the core-local peripherals is the Direct Memory Access (DMA) unit, capable of up to 64 bit/cycle data transfers in either direction, full duplex between the external larger memories in the host subsystem and the cluster's local TCDM.

Finally, the cores directly connect to an event unit responsible for synchronization barriers within the cluster. Each core attempts to read from the corresponding register within the event unit and only receives a response once all cores request the same barrier address. Furthermore, the event unit manages interrupts within the cluster, masking and forwarding incoming interrupt signals to the responsible core.

To ensure the cluster can easily access the host system, the cluster has both an input and an output AXI port connected to an AXI interconnect. In particular, the communication is asynchronous and it leverages a pair of input and output Cross Domain Clock (CDC) FIFOs.

Through this interconnect, the host can access the cluster's internal memory and peripherals for configuration. Viceversa, the instruction cache, the DMA, and the cores have access to the host system's memory.

4.5.1 RedMulE Tensor Unit

Figure 3. RedMulE Tensor Unit

RedMulE (Reduced-Precision Matrix Multiplication Engine) is a low-power specialized accelerator conceived for multi-precision floating-point General Matrix—Matrix Operations (GEMM-Ops) acceleration, supporting FP16, as well as hybrid FP8 formats, with {sign, exponent, mantissa} = ({1, 4, 3}, {1, 5, 2}). RedMulE allows the instantiation of a wide range of Floating-Point Units-based Computing Elements (CEs), internal buffers, and memory interface configurations.

The core of RedMulE is the Datapath, a 2-Dimensional array of CEs interconnected. The CEs are organized in L rows, each made of H columns. Within each row, a number of H CEs are cascaded so that each CE computing an intermediate product will pass its result to the next CE. The partial product computed by each row's last CE is fed back as accumulation input of the same row's first CE. The RedMulE Datapath features a design-time configurable number of internal CEs, pipeline registers (P) for each CE, and internal computing precision (FP bitwidth).

It has been integrated in the cluster as an additional HWPE to further extended the cluster capabilities choosing H = 4, L = 3 and P = 12.

It is software programmed by the RISC-V cores through the peripheral interconnect and it shares the TCDM with the RISC-V cores and the DMAC, making it tightly-coupled with the cluster cores. This kind of integration uses a shallow branch in the HCI interconnect which features a single port, routed to adjacent 32-bit memory banks treated like a single wider bank without arbitration. The TCDM banks are connected to the logarithmic and shallow HCI branches through a set of multiplexers, which grant access to one branch or the other according to a configurable starvation-free rotation scheme, allocating a configurable maximum of K < N consecutive cycles to the HWPE over a period of N cycles.

4.5.2 Event Units

There is 1 event unit (EU) available in Al Saqr'scluster.

The EU allows the CV32E40P cores to be put into sleep mode when waiting for an event to occur. In the EUs, the way of treating incoming events can be controlled. The EU can be instructed to react instantly by jumping to an interrupt routine or to delegate the treatment of the event to a software event task controller.

4.6 DMA (direct memory access)

The DMA unit allows the transfer of data between L2 and cluster L1 memory areas. 8 channels can be programmed. Channels can be 1D/2D on the L2 memory and 1D on the cluster L1 side.

4.7 Debug architecture

To debug the Al Saqr chip, a JTAG and UART are provided. The L2SPM memory region is an executable and cacheable region for CVA6. Such a setup provides the minimal memory space to have the chip working standalone, avoiding to rely on the off-chip HyperRAMs for initial testing.

Al Saqr contains debug functionalities to help the developer observing/controlling application code execution. Debug functionalities are accessible through JTAG or SPI Slave interfaces using a GDB server.

Further documentation regarding the RISC-V debug module can be found here: https://github.com/pulp-platform/riscv-dbg/blob/master/doc/debug-system.md

4.8 Micro DMA

The micro DMA (uDMA) provides direct transfer of data between the different interfaces available in Al Saqr, and connected to the uDMA, and the L2 memory and the L3 off-chip memory. Furthermore, the uDMA supports data transfers between the L2 and the L3. The latter communicates through a HyperBus interface. Up to 11 channels can be managed by the uDMA:

- 11 x SPI from/to L2 and L3
- 1 x QSPI from/to L2 and L3
- 3 x UART from/to L2 and L3
- 4 x USART from/to L2 and L3
- 2 x SDIO from/to L2 and L3
- 6 x I2C from/to L2 and L3
- 2 x CPI to L2 and L3
- 1 x HYPERBUS from/to L2 (to/from L3)

The width of transfers can be selected between 8, 16 or 32 bits. Up to 128kB can be transferred during a single transaction (8kB for SPIM). In the general case, transactions can be bidirectional but depending on the interface, in some cases only one direction is available.

4.8.1 SPI master (serial peripheral interface)

Up to 11 SPI master interfaces are available:

• The SPI (Master) is able to communicate at speeds up to 50Mbits/s. It uses four lines: MISO (Master In, Slave Out), MOSI (Master Out, Slave In), SCK (Serial Clock), and SS (Slave Select). It is a full-duplex communication protocol, allowing for simultaneous data transmission and reception.

4.8.2 QSPI master (quad serial peripheral interface)

1 QSPI master interface is available:

• The QSPI (Master) can be used as Single or Quad SPI. it is able to communicate at speeds up to 50Mbits/s. When used as Singles, refere to the documentation for the SPI. When used as Quad it enhances SPI by using up to six lines: four for data (IO0, IO1, IO2, IO3), one for clock (SCK), and one for slave select (SS). QSPI can operate in a 4-bit wide quad mode, allowing it to transmit four bits per clock cycle. Under the hood the SPI and QSPI are the same hardware IP. The difference between the two is that the SPI exposes only two data lines (MISO and MOSI) of the available four (IO0, IO1, IO2 and IO3).

4.8.3 <u>UART (universal asynchronous receiver-transmitter)</u>

Up to 3 UART interfaces are provided with up to 1Mbits/s baud rate. No dedicated synchronization (CTS/RTS/DTR/DSR/DCD) signals are provided.

4.8.4 <u>USART (universal synchronous-asynchronous receiver-transmitter)</u>

Up to 4 USART interfaces are provided with up to 1Mbits/s baud rate.

4.8.5 SDIO (Secure Digital Input Output)

Up to 2 SDIO (Secure Digital Input Output) are provided in Al Saqr.

4.8.6 I2C (inter-integrated circuit)

Up to 6 PC (Inter-Integrated Circuit) are provided in Al Saqr. They support multi-master, multi-slave, single-ended modes. PC uses only two bidirectional open-drain lines, Serial Data Line (SDA) and Serial Clock Line (SCL), pulled up with resistors.

4.8.7 CPI (camera parallel interface)

Up to 2 CPI interface are 8 bits wide and can communicate at speeds up to 50MHz. VSYNC, HSYNC and PCLK are provided by the camera.

4.8.8

1 HyperBus interfaces running at 200MHz, up to a maximum of 6.4Gbps. The HyperBus interface is a high-speed, low-latency interface designed for interfacing with memory devices. It supports the fully digital HyperBus protocol used by the HyperRAM controller. The interface features eight bi-directional Double-Data-Rate (DDR) data lines (DQ[0:7]), an active-low chip select (CSn) for each memory bank, a read-write data strobe (RWDS), the clock line and its inverse (CK and CKn) and an active-low reset line (RESETn).

4.9 GPIOs (general purpose inputs/outputs)

Up to 48 digital general purpose I/Os are available. Each I/O can be configured either as an input or output. Interrupts on event can be generated on the rising or the falling or both edges for all I/Os. I/Os can also be configured to act as an external wake up signal.

4.10 CAN (Controller Area Network)

Up to 2 CAN bus which is a robust vehicle bus standard designed to allow microcontrollers and devices to communicate with each other's applications without a host computer. It is a message-based protocol, designed originally for multiplex electrical wiring within automobiles to save on copper, but it can also be used in many other contexts. For each device, the data in a frame is transmitted sequentially but in such a way that if more than one device transmits at the same time, the highest priority device can continue while the others back off. Frames are all by devices, including by the transmitting device. Further details can found https://canbus.pages.fel.cvut.cz/ctucanfd_ip_core/doc/System_Architecture.pdf

4.11 Timers

There are

2 basic timers are available, one connected to the CVA6 (#BASIC TIMER component) and the other to the cluster. They can be configured either as 2 x 32-bit timers or as a single 64-bit timer. The basic timers can either run continuously or trigger just once. Events can be generated using a compare match.

Clock sources of these timers can be the:

- FLL
- · FLL with pre-scaler
- 32.768kHz reference clock

4.12 Advanced PWM Timers

4 advanced PWM timers are available in the SOC domain. Each of them provides 4 output signal channels that can be used for PWM signal generation with multiple configuration possibilities.

4.13 RTC

A real-time clock is available. It provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function. It provides also alarm and a periodic interrupt features. It is clocked by the 32.768 kHz external crystal.

4.14 Performance counters

Each CV32E40P cores of the cluster provide a performance counter. These 32-bit counters can be configured to count the:

- Total number of cycles (also includes the cycles where the core is sleeping)
- · Number of cycles the core was active (not sleeping)
- · Number of instructions executed
- Number of load data hazards
- Number of jump register data hazards
- Number of cycles waiting for instruction fetches, i.e. number of instructions wasted due to non-ideal caching
- Number of data memory loads executed. Misaligned accesses are counted twice
- Number of data memory stores executed. Misaligned accesses are counted twice
- Number of unconditional jumps (j, jal, jr, jalr)
- · Number of both taken and not taken branches
- Number of taken branches
- Number of compressed instructions executed
- Number of memory loads to EXT executed. Misaligned accesses are counted twice. Every non-L1 access is considered external

- (cluster only)

 Number of memory stores to EXT executed. Misaligned accesses are counted twice. Every non-L1 access is considered external
- Number of cycles used for memory loads to EXT. Every non-L1 access is considered external (cluster only)
 Number of cycles used for memory stores to EXT. Every non-L1 access is considered external (cluster only)
 Number of cycles wasted due to L1/log-interconnect contention (cluster only)
 Number of cycles wasted due to CSR access

5 Memory map

The following table describes Al Saqr's memory map. All areas in this map are addressable from any cores.

Address range

			Address range
Debug Unit			0x00000000 - 0x00000FFF
	Debug Unit		0x00000000 - 0x00000FFF
ROM Memory	·		0x00010000 - 0x0001FFFF
	ROM (64kB)		0x00010000 - 0x0010FFFF
Host Subsystem	•		0x02000000 - 0x0FFFFFF
	Core Local Interrupt (CLINT	·)	0x02000000 - 0x020BFFFF
	Platform Level Interrupt Cor	ntroller (PLIC)	0x0C000000 - 0x0FFFFFE
Cluster Subsystem			0x10000000 - 0x1040FFFF
	Cluster L1 RAM (256kB)		0x10000000 - 0x1003FFFF
	Cluster L1 memory test and	set unit	0x10100000 - 0x101FFFFF
	Cluster control unit		0x10200000 - 0x102003FF
	Cluster timer		0x10200400 - 0x102007FF
	Cluster event unit		0x10200800 - 0x10200FFF
	Hardware Processing Eleme	ent	0x10201000 - 0x102013FF
	Cluster instruction cache co	ntrol unit	0x10201400 - 0x102017FF
	DMA		0x10201C00 - 0x10201FFF
	Cluster Demux Event Unit		0x10204000 - 0x102043FF
	Cluster Demux MCHAN		0x10204400 - 0x102047FF
Axi Lite Subsystem			0x10400000 - 0x1040FFFE
,	Cluster TLB Config Register	rs	0x10400000 - 0x10400FFF
	Last Level Cache Config Re		0x10401000 - 0x10401FFF
	Host to PULP Mailbox	3	0x10402000 - 0x10402FFF
	Cluster to PULP Mailbox		0x10403000 - 0x10403FFF
	OpenTitan Mailbox		0x10404000 - 0x10404FFF
System Timer	opon nan manoox		0x18000000 - 0x18000FFF
	System Timer		0x18000000 - 0x18000FFF
APB Subsystem			0x1A100000 - 0x1A231000
	SoC FLL		0x1A100000 - 0x1A100FFF
	Hyper config registers		0x1A101000 - 0x1A101FFF
	PWM0		0x1A103000 - 0x1A103FFF
	PWM1		0x1A223000 - 0x1A223FFF
	PWM2		0x1A224000 - 0x1A224FFF
	PWM3		0x1A225000 - 0x1A225FFF
	PWM4		0x1A226000 - 0x1A226FFF
	PWM5		0x1A227000 - 0x1A227FFF
	PWM6		0x1A228000 - 0x1A228FFF
	PWM7		0x1A229000 - 0x1A229FFF
	Padframe Config		0x1A104000 - 0x1A104FFF
	GPIO Config Registers		0x1A105000 - 0x1A105FFF
	SoC Control Registers		0x1A106000 - 0x1A106FFF
	CAN 0		0x1A108000 - 0x1A108FFF
	CAN 1		0x1A108000 - 0x1A108FFF
	MicroDMA Subsystem		0x1A200000 - 0x1A21EFFF
	IVIICIODIVIA SUDSYSTEM	UDMA control	0x1A200000 - 0x1A21EFFF
		UART Channel 0	
			0x1A201000 - 0x1A201FFF
		UART Channel 1	0x1A202000 - 0x1A202FFF
		UART Channel 2	0x1A203000 - 0x1A203FFF
		USART Channel 0	0x1A204000 - 0x1A204FFF
		USART Channel 1	0x1A205000 - 0x1A205FFF

Address range

		USART Channel 2	0x1A206000 - 0x1A206FFF
		USART Channel 3	0x1A207000 - 0x1A207FFF
		SPI Master Channel 0	0x1A208000 - 0x1A208FFF
		SPI Master Channel 1	0x1A209000 - 0x1A209FFF
		SPI Master Channel 2	0x1A20A000 - 0x1A20AFFF
		SPI Master Channel 3	0x1A20B000 - 0x1A20BFFF
		SPI Master Channel 4	0x1A20C000 - 0x1A20CFFF
		SPI Master Channel 5	0x1A20D000 - 0x1A20DFFF
		SPI Master Channel 6	0x1A20E000 - 0x1A20EFFF
		SPI Master Channel 7	0x1A20F000 - 0x1A20FFFF
		SPI Master Channel 8	0x1A210000 - 0x1A210FFF
		SPI Master Channel 9	0x1A211000 - 0x1A211FFF
		SPI Master Channel 10	0x1A212000 - 0x1A212FFF
		QSPI Master Channel 0	0x1A213000 - 0x1A213FFF
		I2C Channel 0	0x1A214000 - 0x1A214FFF
		I2C Channel 1	0x1A215000 - 0x1A215FFF
		I2C Channel 2	0x1A216000 - 0x1A216FFF
		I2C Channel 3	0x1A217000 - 0x1A217FFF
		I2C Channel 4	0x1A218000 - 0x1A218FFF
		I2C Channel 5	0x1A219000 - 0x1A219FFF
		SDIO Channel 0	0x1A21A000 - 0x1A21AFFF
		SDIO Channel 1	0x1A21B000 - 0x1A21BFFF
		CAM channel 0	0x1A21C000 - 0x1A21CFFF
		CAM channel 1	0x1A21D000 - 0x1A21DFFF
		Hyperbus channel 0	0x1A21E000 - 0x1A21EFFF
L2 Memory			0x1C000000 - 0x1C008000
	L2 RAM (32kB)		0x1C000000 - 0x1C007FFF
SoC Peripherals Subsystem			0x20000000 - 0x40000000
	QSPI Linux		0x20000000 - 0x207FFFF
	Ethernet		0x30000000 - 0x300FFFFF
	Core UART		0x40000000 - 0x40000FFF
Last Level Cache			0x70000000 - 0x70020000
	Last Level Cache		0x70000000 - 0x7001FFFF
L3 Memory			0x80000000 - 0xA0000000
Table 1 Pula memory mor	L3 Memory		0x80000000 - 0x9FFFFFF

Table 1. Pulp memory map table

6 Device components description

6.1 Cluster Subsystem

6.1.1 Cluster control unit

None

6.1.1.1 Cluster control unit registers

Name	Address	Size	Туре	Access	Default	Description
EOC	0x10200000	32	Status	R/W	0x0000	End Of Computation status register.
FETCH_EN	0x10200008	32	Config	R/W	0x0000	Cluster cores fetch enable configuration register.
MISC_CTRL	0x10200018	32	Config	R/W	0x0000	Miscellaneous Control
CLOCK_GATE	0x10200020	32	Config	R/W	0x0000	Cluster clock gate configuration register.
DBG_RESUME	0x10200028	32	Config	W	0x0000	Cluster cores debug resume register.
DBG_HALT_STATUS	0x10200028	32	Config	R	0x0000	Cluster cores debug halt status register.
DBG_HALT_MASK	0x10200038	32	Config	R/W	0x0000	Cluster cores debug halt mask configuration register.
BOOT_ADDR0	0x10200040	32	Config	R/W	0x0000	Cluster core 0 boot address configuration register.
TCDM ARB POLICY CHO	0x10200080	32	Config	R/W	0x0000	TCDM arbitration policy ch0 for cluster cores configuration register.
TCDM_ARB_POLICY_CH1	0x10200088	32	Config	R/W	0x0000	TCDM arbitration policy ch1 for DMA/HWCE configuration register.
TCDM_ARB_POLICY_CH0_REP	0x102000C0	32	Config	R/W	0x0000	Read only duplicate of TCDM_ARB_POLICY_CH0 register
TCDM_ARB_POLICY_CH1_REP	0x102000C8	32	Config	R/W	0x0000	Read only duplicate of TCDM_ARB_POLICY_CH1 register

Table 2. Cluster control unit registers table

6.1.1.2 Cluster control unit registers details

6.1.1.2.1 End Of Computation status register. (EOC)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **EOC** (R/W)

End of computation status flag bitfield:

- 0b0: program execution under going
- 0b1: end of computation reached

6.1.1.2.2 Cluster cores fetch enable configuration register. (FETCH_EN)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		-				_	_		•	_	-	_	_		_

Bit 7 - **CORE7** (R/W)

Core 7 fetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 6 - **CORE6** (R/W)

Core 6 fetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 5 - **CORE5** (R/W)

Core 5 fetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 4 - CORE4 (R/W)

Core 4 fetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 3 - CORE3 (R/W)

Core 3 fetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 2 - CORE2 (R/W)

Core 2 fetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 1 - **CORE1** (R/W)

Core 1 fetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 0 - **CORE0** (R/W)

Core 0 fetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

6.1.1.2.3 Miscellaneous Control (MISC_CTRL)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		FREGFIL E_DIS	HWPE_ EN	HCI_LOW AX_S		HCI_HW PE_PRI O				Rese	erved			

Bit 12 - FREGFILE_DIS (R/W)

Disable Floating Point Register File bitfield:

- 0b0: enabled
- 0b1: disabled

Bit 11 - HWPE EN (R/W)

Enable HWPE bitfield:

- 0b0: disabled
- 0b1: enabled

Bits 10:9 - HCI_LOW_PRIO_MAX_STALL (R/W)

Maximum numbers of stalls before the HWPE request is served in the interconnect:

- 0b00: The functionality is disabled
- From 0b01 to 2'b11: Number of stalls

Bit 8 - HCI_HWPE_PRIO (R/W)

HCI HWPE priority configuration bitfield:

- 0b0: Core requests takes precedence over HWPE requests
- 0b1: HWPE requests takes precedence over Core requests

6.1.1.2.4 Cluster clock gate configuration register. (CLOCK_GATE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **EN** (R/W)

Cluster clock gate configuration bitfield:

- 0b0: disabled
- 0b1: enabled

6.1.1.2.5 Cluster cores debug resume register. (DBG_RESUME)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	1 44	40	- 40	- 44	40	_ ^	_	_	_		_	_	_		•
15	14	13	12	11	10	9	8	,	ь	5	4	3	2	1	0

Bit 7 - **CORE7** (W)

Core 7 debug resume configuration bitfield:

- 0b0: stay halted
- 0b1: resume core 7

Bit 6 - **CORE6** (W)

Core 6 debug resume configuration bitfield:

- 0b0: stay halted
- 0b1: resume core 6

Bit 5 - **CORE5** (W)

Core 5 debug resume configuration bitfield:

- 0b0: stay halted
- 0b1: resume core 5

Bit 4 - **CORE4** (W)

Core 4 debug resume configuration bitfield:

- 0b0: stay halted
- 0b1: resume core 4

Bit 3 - **CORE3** (W)

Core 3 debug resume configuration bitfield:

- 0b0: stay halted
- 0b1: resume core 3

Bit 2 - CORE2 (W)

Core 2 debug resume configuration bitfield:

- 0b0: stay halted
- 0b1: resume core 2

Bit 1 - CORE1 (W)

Core 1 debug resume configuration bitfield:

- 0b0: stay halted
- 0b1: resume core 1

Bit 0 - **CORE0** (W)

Core 0 debug resume configuration bitfield:

- 0b0: stay halted
- 0b1: resume core 0

6.1.1.2.6 Cluster cores debug halt status register. (DBG_HALT_STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 7 - **CORE7** (R)

Core 7 debug halt status flag bitfield:

- 0b0: running
- 0b1: halted

Bit 6 - **CORE6** (R)

Core 6 debug halt status flag bitfield:

- 0b0: running
- 0b1: halted

Bit 5 - **CORE5** (R)

Core 5 debug halt status flag bitfield:

- 0b0: running
- 0b1: halted

Bit 4 - **CORE4** (R)

Core 4 debug halt status flag bitfield:

- 0b0: running
- 0b1: halted

Bit 3 - **CORE3** (R)

Core 3 debug halt status flag bitfield:

- 0b0: running
- 0b1: halted

Bit 2 - **CORE2** (R)

Core 2 debug halt status flag bitfield:

- 0b0: running
- 0b1: halted

Bit 1 - **CORE1** (R)

Core 1 debug halt status flag bitfield:

- 0b0: running
- 0b1: halted

Bit 0 - **CORE0** (R)

Core 0 debug halt status flag bitfield:

- 0b0: running
- 0b1: halted

${\bf 6.1.1.2.7~Cluster~cores~debug~halt~mask~configuration~register.~(DBG_HALT_MASK)}$

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 7 - CORE7 (R/W)

Core 7 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 6 - CORE6 (R/W)

Core 6 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 5 - CORE5 (R/W)

Core 5 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 4 - CORE4 (R/W)

Core 4 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 3 - CORE3 (R/W)

Core 3 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 2 - CORE2 (R/W)

Core 2 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 1 - CORE1 (R/W)

Core 1 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 0 - CORE0 (R/W)

Core 0 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

6.1.1.2.8 Cluster core 0 boot address configuration register. (BOOT_ADDR0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							B/	Ą							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **BA** (R/W)

Cluster core 0 boot address configuration bitfield.

6.1.1.2.9 TCDM arbitration policy ch0 for cluster cores configuration register. (TCDM_ARB_POLICY_CH0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **POL** (R/W)

TCDM arbitration policy for cluster cores configuration bitfield:

- 0b0: fair round robin
- 0b1: fixed order

6.1.1.2.10 TCDM arbitration policy ch1 for DMA/HWCE configuration register. (TCDM_ARB_POLICY_CH1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **POL** (R/W)

TCDM arbitration policy for DMA/HWCE configuration bitfield:

- 0b0: fair round robin
- 0b1: fixed order

6.1.1.2.11 Read only duplicate of TCDM_ARB_POLICY_CH0 register (TCDM_ARB_POLICY_CH0_REP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **POL** (R/W)

TCDM arbitration policy for cluster cores configuration bitfield:

- 0b0: fair round robin
- 0b1: fixed order

6.1.1.2.12 Read only duplicate of TCDM_ARB_POLICY_CH1 register (TCDM_ARB_POLICY_CH1_REP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **POL** (R/W)

TCDM arbitration policy for DMA/HWCE configuration bitfield:

- 0b0: fair round robin
- 0b1: fixed order

6.1.2 Basic timer

None

6.1.2.1 Cluster timer registers

Name	Address	Size	Туре	Access	Default	Description
CFG_LO	0x10200400	32	Config	R/W	0x0000	Timer Low Configuration register.
CFG_HI	0x10200404	32	Config	R/W	0x0000	Timer High Configuration register.
CNT_LO	0x10200408	32	Data	R/W	0x0000	Timer Low counter value register.
CNT_HI	0x1020040C	32	Data	R/W	0x0000	Timer High counter value register.
CMP_LO	0x10200410	32	Config	R/W	0x0000	Timer Low comparator value register.
CMP_HI	0x10200414	32	Config	R/W	0x0000	Timer High comparator value register.
START_LO	0x10200418	32	Config	R/W	0x0000	Start Timer Low counting register.
START_HI	0x1020041C	32	Config	R/W	0x0000	Start Timer High counting register.
RESET_LO	0x10200420	32	Config	R/W	0x0000	Reset Timer Low counter register.
RESET_HI	0x10200424	32	Config	R/W	0x0000	Reset Timer High counter register.

Table 3. Cluster timer registers table

6.1.2.2 Basic timer registers details

6.1.2.2.1 Timer Low Configuration register. (CFG_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CASC								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31 - CASC (R/W)

Timer low + Timer high 64bit cascaded mode configuration bitfield.

Bits 15:8 - PVAL (R/W)

Timer low prescaler value bitfield. Ftimer = Fclk / (1 + PRESC_VAL)

Bit 7 - **CCFG** (R/W)

Timer low clock source configuration bitfield:

- 0b0: FLL or FLL+Prescaler
- 0b1: Reference clock at 32kHz

Bit 6 - **PEN** (R/W)

Timer low prescaler enable configuration bitfield:- 0b0: disabled

• 0b1: enabled

Bit 5 - ONE_S (R/W)

Timer low one shot configuration bitfield:

- 0b0: let Timer low enabled counting when compare match with CMP_LO occurs.
- 0b1: disable Timer low when compare match with CMP_LO occurs.

Bit 4 - **MODE** (R/W)

Timer low continuous mode configuration bitfield:

- 0b0: Continue mode continue incrementing Timer low counter when compare match with CMP_LO occurs.
- 0b1: Cycle mode reset Timer low counter when compare match with CMP_LO occurs.

Bit 3 - IEM (R/W)

Timer low input event mask configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 2 - IRQEN (R/W)

Timer low compare match interrupt enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 1 - RESET (R/W)

Timer low counter reset command bitfield. Cleared after Timer Low reset execution.

Bit 0 - **ENABLE** (R/W)

Timer low enable configuration bitfield:

• 0b0: disabled

• 0b1: enabled

6.1.2.2.2 Timer High Configuration register. (CFG_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 7 - CLKCFG (R/W)

Timer high clock source configuration bitfield:

- 0b0: FLL or FLL+Prescaler
- 0b1: Reference clock at 32kHz

Bit 6 - **PEN** (R/W)

Timer high prescaler enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 5 - ONE_S (R/W)

Timer high one shot configuration bitfield:

- 0b0: let Timer high enabled counting when compare match with CMP_LO occurs.
- 0b1: disable Timer high when compare match with CMP_LO occurs.

Bit 4 - **MODE** (R/W)

Timer high continuous mode configuration bitfield:

- 0b0: Continue mode continue incrementing Timer high counter when compare match with CMP_LO occurs.
- 0b1: Cycle mode reset Timer high counter when compare match with CMP_LO occurs.

Bit 3 - **IEM** (R/W)

Timer high input event mask configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 2 - IRQEN (R/W)

Timer high compare match interrupt enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 1 - RESET (W)

Timer high counter reset command bitfield. Cleared after Timer high reset execution.

Bit 0 - **ENABLE** (R/W)

Timer high enable configuration bitfield:

• 0b0: disabled

• 0b1: enabled

6.1.2.2.3 Timer Low counter value register. (CNT_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CNT	_LO							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CNT_LO (R/W)

Timer Low counter value bitfield.

6.1.2.2.4 Timer High counter value register. (CNT_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CNT	_HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CNT_HI (R/W)

Timer High counter value bitfield.

6.1.2.2.5 Timer Low comparator value register. (CMP_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CMP	_LO							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CMP_LO (R/W)

Timer Low comparator value bitfield.

6.1.2.2.6 Timer High comparator value register. (CMP_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CMF	_HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **CMP_HI** (R/W)

Timer High comparator value bitfield.

6.1.2.2.7 Start Timer Low counting register. (START_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				•			Reserved								STRT_L O

Bit 0 - **STRT_LO** (W)

Timer Low start command bitfield. When executed, CFG_LO.ENABLE is set.

6.1.2.2.8 Start Timer High counting register. (START_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								STRT_H

Bit 0 - **STRT_HI** (W)

Timer High start command bitfield. When executed, CFG_HI.ENABLE is set.

6.1.2.2.9 Reset Timer Low counter register. (RESET_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **RST_LO** (W)

Timer Low counter reset command bitfield. When executed, CFG_LO.RESET is set.

6.1.2.2.10 Reset Timer High counter register. (RESET_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **RST_HI** (W)

Timer High counter reset command bitfield. When executed, CFG_HI.RESET is set.

6.1.3 Cluster event unit

None

6.1.3.1 Cluster event unit registers

Name	Address	Size	Туре	Access	Default	Description
EVT_MASK_CORE0	0x10200800	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE0	0x10200804	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE0	0x10200808	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE0	0x1020080C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE0	0x10200810	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE0	0x10200814	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE0	0x10200818	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE0	0x1020081C	32	Config	R	0x0000	Pending input events status register.

Name	Address	Size	Туре	Access	Default	Description
EVENT_BUFFER_MASKED_CORE0	0x10200820	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE0	0x10200824	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE0	0x10200828	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE0	0x1020082C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE0	0x10200830	32	Config	w	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW EVENT MASK OR COREO	0x10200834	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE1	0x10200840	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE1	0x10200844	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE1	0x10200848	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE1	0x1020084C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE1	0x10200850	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE1	0x10200854	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK STATUS CORE1	0x10200858	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE1	0x1020085C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE1	0x10200860	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE1	0x10200864	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE1	0x10200868	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE1	0x1020086C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE1	0x10200870	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE1	0x10200874	32	Config	w	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE2	0x10200880	32	Config	R/W	0x0000	Input event mask configuration register.
EVT MASK AND CORE2	0x10200884	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE2	0x10200888	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE2	0x1020088C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE2	0x10200890	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE2	0x10200894	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE2	0x10200898	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE2	0x1020089C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE2	0x102008A0	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE2	0x102008A4	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE2	0x102008A8	32	Config	W	0x0000	Pending input events status clear command register.

Name	Address	Size	Туре	Access	Default	Description
SW_EVENT_MASK_CORE2	0x102008AC	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE2	0x102008B0	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE2	0x102008B4	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE3	0x102008C0	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE3	0x102008C4	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT MASK OR CORE3	0x102008C8	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ MASK_CORE3	0x102008CC	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE3	0x102008D0	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE3	0x102008D4	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE3	0x102008D8	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE3	0x102008DC	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE3	0x102008E0	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE3	0x102008E4	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE3	0x102008E8	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE3	0x102008EC	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE3	0x102008F0	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW EVENT MASK OR CORE3	0x102008F4	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE4	0x10200900	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE4	0x10200904	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE4	0x10200908	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE4	0x1020090C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE4	0x10200910	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE4	0x10200914	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK STATUS CORE4	0x10200918	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE4	0x1020091C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE4	0x10200920	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE4	0x10200924	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE4	0x10200928	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE4	0x1020092C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW EVENT MASK AND CORE4	0x10200930	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.

Name	Address	Size	Туре	Access	Default	Description
SW_EVENT_MASK_OR_CORE4	0x10200934	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE5	0x10200940	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE5	0x10200944	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE5	0x10200948	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE5	0x1020094C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE5	0x10200950	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE5	0x10200954	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK STATUS CORE5	0x10200958	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE5	0x1020095C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE5	0x10200960	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE5	0x10200964	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE5	0x10200968	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE5	0x1020096C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE5	0x10200970	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW EVENT MASK OR CORE5	0x10200974	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE6	0x10200980	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE6	0x10200984	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT MASK OR CORE6	0x10200988	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE6	0x1020098C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE6	0x10200990	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE6	0x10200994	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE6	0x10200998	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE6	0x1020099C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE6	0x102009A0	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE6	0x102009A4	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE6	0x102009A8	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE6	0x102009AC	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE6	0x102009B0	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE6	0x102009B4	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE7	0x102009C0	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE7	0x102009C4	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.

Name	Address	Size	Туре	Access	Default	Description
EVT_MASK_OR_CORE7	0x102009C8	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE7	0x102009CC	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE7	0x102009D0	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE7	0x102009D4	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK STATUS CORE7	0x102009D8	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE7	0x102009DC	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE7	0x102009E0	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE7	0x102009E4	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE7	0x102009E8	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE7	0x102009EC	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW EVENT MASK AND CORE7	0x102009F0	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE7	0x102009F4	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
HW BARRIER 0 TRIG MASK	0x10200C00	32	Config	R/W	0x0000	Cluster hardware barrier 0 trigger mask configuration register.
HW_BARRIER_0_STATUS	0x10200C04	32	Status	R	0x0000	Cluster hardware barrier 0 status register.
HW_BARRIER_0_STATUS_SUM	0x10200C08	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW BARRIER 0 TARGET MASK	0x10200C0C	32	Config	R/W	0x0000	Cluster hardware barrier 0 target mask configuration register.
HW BARRIER 0 TRIG	0x10200C10	32	Config	W	0x0000	Cluster hardware barrier 0 trigger command register.
HW BARRIER 1 TRIG MASK	0x10200C20	32	Config	R/W	0x0000	Cluster hardware barrier 1 trigger mask configuration register.
HW_BARRIER_1_STATUS	0x10200C24	32	Status	R	0x0000	Cluster hardware barrier 1 status register.
HW_BARRIER_1_STATUS_SUM	0x10200C28	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_1_TARGET_MASK	0x10200C2C	32	Config	R/W	0x0000	Cluster hardware barrier 1 target mask configuration register.
HW_BARRIER_1_TRIG	0x10200C30	32	Config	W	0x0000	Cluster hardware barrier 1 trigger command register.
HW BARRIER 2 TRIG MASK	0x10200C40	32	Config	R/W	0x0000	Cluster hardware barrier 2 trigger mask configuration register.
HW_BARRIER_2_STATUS	0x10200C44	32	Status	R	0x0000	Cluster hardware barrier 2 status register.
HW_BARRIER_2_STATUS_SUM	0x10200C48	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_2_TARGET_MASK	0x10200C4C	32	Config	R/W	0x0000	Cluster hardware barrier 2 target mask configuration register.
HW_BARRIER_2_TRIG	0x10200C50	32	Config	W	0x0000	Cluster hardware barrier 2 trigger command register.
HW_BARRIER_3_TRIG_MASK	0x10200C60	32	Config	R/W	0x0000	Cluster hardware barrier 3 trigger mask configuration register.
HW_BARRIER_3_STATUS	0x10200C64	32	Status	R	0x0000	Cluster hardware barrier 3 status register.
HW_BARRIER_3_STATUS_SUM	0x10200C68	32	Status	R	0x0000	Cluster hardware barrier summary status register.

Name	Address	Size	Туре	Access	Default	Description
HW_BARRIER_3_TARGET_MASK	0x10200C6C	32	Config	R/W	0x0000	Cluster hardware barrier 3 target mask configuration register.
HW BARRIER 3 TRIG	0x10200C70	32	Config	W	0x0000	Cluster hardware barrier 3 trigger command register.
HW_BARRIER_4_TRIG_MASK	0x10200C80	32	Config	R/W	0x0000	Cluster hardware barrier 4 trigger mask configuration register.
HW_BARRIER_4_STATUS	0x10200C84	32	Status	R	0x0000	Cluster hardware barrier 4 status register.
HW_BARRIER_4_STATUS_SUM	0x10200C88	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_4_TARGET_MASK	0x10200C8C	32	Config	R/W	0x0000	Cluster hardware barrier 4 target mask configuration register.
HW_BARRIER_4_TRIG	0x10200C90	32	Config	W	0x0000	Cluster hardware barrier 4 trigger command register.
HW_BARRIER_5_TRIG_MASK	0x10200CA0	32	Config	R/W	0x0000	Cluster hardware barrier 5 trigger mask configuration register.
HW_BARRIER_5_STATUS	0x10200CA4	32	Status	R	0x0000	Cluster hardware barrier 5 status register.
HW_BARRIER_5_STATUS_SUM	0x10200CA8	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_5_TARGET_MASK	0x10200CAC	32	Config	R/W	0x0000	Cluster hardware barrier 5 target mask configuration register.
HW_BARRIER_5_TRIG	0x10200CB0	32	Config	W	0x0000	Cluster hardware barrier 5 trigger command register.
HW_BARRIER_6_TRIG_MASK	0x10200CC0	32	Config	R/W	0x0000	Cluster hardware barrier 6 trigger mask configuration register.
HW_BARRIER_6_STATUS	0x10200CC4	32	Status	R	0x0000	Cluster hardware barrier 6 status register.
HW_BARRIER_6_STATUS_SUM	0x10200CC8	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_6_TARGET_MASK	0x10200CCC	32	Config	R/W	0x0000	Cluster hardware barrier 6 target mask configuration register.
HW_BARRIER_6_TRIG	0x10200CD0	32	Config	W	0x0000	Cluster hardware barrier 6 trigger command register.
HW_BARRIER_7_TRIG_MASK	0x10200CE0	32	Config	R/W	0x0000	Cluster hardware barrier 7 trigger mask configuration register.
HW_BARRIER_7_STATUS	0x10200CE4	32	Status	R	0x0000	Cluster hardware barrier 7 status register.
HW_BARRIER_7_STATUS_SUM	0x10200CE8	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_7_TARGET_MASK	0x10200CEC	32	Config	R/W	0x0000	Cluster hardware barrier 7 target mask configuration register.
HW_BARRIER_7_TRIG	0x10200CF0	32	Config	W	0x0000	Cluster hardware barrier 7 trigger command register.
SW_EVENT_0_TRIG	0x10200E00	32	Config	W	0x0000	Cluster Software event 0 trigger command register.
SW_EVENT_1_TRIG	0x10200E04	32	Config	W	0x0000	Cluster Software event 1 trigger command register.
SW_EVENT_2_TRIG	0x10200E08	32	Config	W	0x0000	Cluster Software event 2 trigger command register.
SW_EVENT_3_TRIG	0x10200E0C	32	Config	W	0x0000	Cluster Software event 3 trigger command register.
SW_EVENT_4_TRIG	0x10200E10	32	Config	W	0x0000	Cluster Software event 4 trigger command register.
SW_EVENT_5_TRIG	0x10200E14	32	Config	W	0x0000	Cluster Software event 5 trigger command register.
SW_EVENT_6_TRIG	0x10200E18	32	Config	W	0x0000	Cluster Software event 6 trigger command register.
SW_EVENT_7_TRIG	0x10200E1C	32	Config	W	0x0000	Cluster Software event 7 trigger command register.

Name	Address	Size	Туре	Access	Default	Description
SOC_PERIPH_EVENT_ID	0x10200F00	32	Status	R	0x0000	Cluster SoC peripheral event ID status register.

Table 4. Cluster event unit registers table

6.1.3.2 Cluster event unit registers details

6.1.3.2.1 Input event mask configuration register. (EVT_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EMSOC	Reserve d							EM	CL						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EM	CL							

Bit 31 - **EMSOC** (R/W)

Soc peripheral input event mask configuration bitfield:

- EMSOC[i]=0b0: Input event request i is masked
- EMSOC[i]=0b1: Input event request i is not masked

Bits 29:0 - EMCL (R/W)

Cluster internal input event mask configuration bitfield:

- EMCL[i]=0b0: Input event request i is masked
- EMCL[i]=0b1: Input event request i is not masked

6.1.3.2.2 Hardware task dispatcher push command register. (HW_DISPATCH_PUSH_TASK)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	o G							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (W)

 $Message\ to\ dispatch\ to\ all\ cluster\ cores\ selected\ in\ HW_DISPATCH_PUSH_TEAM_CONFIG.CT\ configuration\ bitfield.$

6.1.3.2.3 Hardware task dispatcher pop command register. (HW_DISPATCH_POP_TASK)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	G							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							MS	G							

Bits 31:0 - MSG (R)

Message dispatched using HW_DISPATCH_PUSH_TASK command and popped by cluster core who issued HW_DISPATCH_POP_TASK command.

6.1.3.2.4 Hardware mutex 0 non-blocking put command register. (HW_MUTEX_0_MSG_PUT)

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	G .							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (W)

Message pushed when releasing hardware mutex 0 configuration bitfiled. It is a non-blocking access.

6.1.3.2.5 Hardware mutex 0 blocking get command register. (HW_MUTEX_0_MSG_GET)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (R)

Message popped when taking hardware mutex 0 data bitfiled. It is a blocking access.

6.1.3.2.6 Cluster Software event 0 trigger command register. (SW_EVENT_0_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												-			

Bits 7:0 - **SW0T** (W)

Triggers software event 0 for cluster core i if SW0T[i]=0b1.

6.1.3.2.7 Cluster Software event 0 trigger and wait command register. (SW_EVENT_0_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 0 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

$6.1.3.2.8\ Cluster\ Software\ event\ 0\ trigger,\ wait\ and\ clear\ command\ register.\ (SW_EVENT_0_TRIG_WAIT_CLEAR)$

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 0 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.9 Cluster SoC peripheral event ID status register. (SOC_PERIPH_EVENT_ID)

Reset value: 0x0000

Host access bus: PERIPH

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
VALID								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31 - VALID (R)

Validity bit of SOC_PERIPH_EVENT_ID.ID bitfield.

Bits 7:0 - ID (R)

Oldest SoC peripheral event ID status bitfield.

6.1.3.2.10 Cluster hardware barrier 0 trigger mask configuration register. (HW_BARRIER_0_TRIG_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HB0TM** (R/W)

Trigger mask for hardware barrier 0 bitfield. Hardware barrier 0 will be triggered only if for all HB0TM[i] =0b1, HW_BARRIER_0_STATUS.HB0S[i]=0b1. HB0TM=0 means that hardware barrier 0 is disabled.

6.1.3.2.11 Input event mask update command register with bitwise AND operation. (EVT_MASK_AND)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EN	IA							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EMA (W)

Input event mask configuration bitfield update with bitwise AND operation. It allows clearing EMCL[i], EMINTCL[i] or EMSOC[i] if FMAII=0b1

6.1.3.2.12 Hardware task dispatcher cluster core team configuration register. (HW_DISPATCH_PUSH_TEAM_CONFIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - CT (R/W)

Cluster cores team selection configuration bitfield. It allows to transmit HW_DISPATCH_PUSH_TASK.MSG to cluster core i if CT[i]=0b1.

6.1.3.2.13 Hardware mutex 1 non-blocking put command register. (HW_MUTEX_1_MSG_PUT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	iG							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (W)

Message pushed when releasing hardware mutex 1 configuration bitfiled. It is a non-blocking access.

6.1.3.2.14 Hardware mutex 1 blocking get command register. (HW_MUTEX_1_MSG_GET)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	iG							
			10		- 10		_					•	•	-	•
15	14	13	12	11	10	9	8	′	ь	5	4	3	2		U

Bits 31:0 - MSG (R)

Message popped when taking hardware mutex 1 data bitfiled. It is a blocking access.

6.1.3.2.15 Cluster Software event 1 trigger command register. (SW_EVENT_1_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SW1T** (W)

Triggers software event 1 for cluster core i if SW1T[i]=0b1.

6.1.3.2.16 Cluster Software event 1 trigger and wait command register. (SW_EVENT_1_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 1 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.17 Cluster Software event 1 trigger, wait and clear command register. (SW_EVENT_1_TRIG_WAIT_CLEAR)

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 1 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.18 Cluster hardware barrier 0 status register. (HW_BARRIER_0_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBS (R)

Current status of hardware barrier 0 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 0. It is cleared when HBS matches HW_BARRIER_0_TRIG_MASK.HB0TM.

6.1.3.2.19 Input event mask update command register with bitwise OR operation. (EVT_MASK_OR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EM	10							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EMO (W)

Input event mask configuration bitfield update with bitwise OR operation. It allows setting EMCL[i], EMINTCL[i] or EMSOC[i] if EMO[i]=0b1.

6.1.3.2.20 Cluster Software event 2 trigger command register. (SW_EVENT_2_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	rved							SV	V2T			

Bits 7:0 - SW2T (W)

Triggers software event 2 for cluster core i if SW2T[i]=0b1.

6.1.3.2.21 Cluster Software event 2 trigger and wait command register. (SW_EVENT_2_TRIG_WAIT)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 2 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.22 Cluster Software event 2 trigger, wait and clear command register. (SW_EVENT_2_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 2 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.23 Cluster hardware barrier summary status register. (HW_BARRIER_0_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBSS** (R)

Current status of hardware barrier 0. HBSS[i] represents a summary of the barrier status for core i.

6.1.3.2.24 Interrupt request mask configuration register. (IRQ_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IMSOC	IMINTCL							IMO	CL						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31 - IMSOC (R/W)

Soc peripheral interrupt request mask configuration bitfield:

- bit[i]=0b0: Interrupt request i is masked
- bit[i]=0b1: Interrupt request i is not masked

Bit 30 - IMINTCL (R/W)

Inter-cluster interrupt request mask configuration bitfield:

- bit[i]=0b0: Interrupt request i is masked
- bit[i]=0b1: Interrupt request i is not masked

Bits 29:0 - IMCL (R/W)

Cluster internal interrupt request mask configuration bitfield:

• bit[i]=0b0: Interrupt request i is masked

• bit[i]=0b1: Interrupt request i is not masked

6.1.3.2.25 Cluster Software event 3 trigger command register. (SW_EVENT_3_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - SW3T (W)

Triggers software event 3 for cluster core i if SW3T[i]=0b1.

6.1.3.2.26 Cluster Software event 3 trigger and wait command register. (SW_EVENT_3_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 3 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.27 Cluster Software event 3 trigger, wait and clear command register. (SW_EVENT_3_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 3 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.28 Cluster hardware barrier 0 target mask configuration register. (HW_BARRIER_0_TARGET_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBTAM** (R/W)

Cluster hardware barrier 0 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 0 event when HW_BARRIER_0_STATUS will match HW_BARRIER_0_TRIG_MASK.

6.1.3.2.29 Interrupt request mask update command register with bitwise AND operation. (IRQ_MASK_AND)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							IM	A							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - IMA (W)

Interrupt request mask configuration bitfield update with bitwise AND operation. It allows clearing IMCL[i], IMINTCL[i] or IMSOC[i] if IMA[i]=0b1.

6.1.3.2.30 Cluster Software event 4 trigger command register. (SW_EVENT_4_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - SW4T (W)

Triggers software event 4 for cluster core i if SW4T[i]=0b1.

6.1.3.2.31 Cluster Software event 4 trigger and wait command register. (SW_EVENT_4_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 4 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.32 Cluster Software event 4 trigger, wait and clear command register. (SW_EVENT_4_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 4 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.33 Cluster hardware barrier 0 trigger command register. (HW_BARRIER_0_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved								Т			

Bits 7:0 - T (W)

Sets HW_BARRIER_0_STATUS.HBS[i] to 0b1 when T[i]=0b1.

6.1.3.2.34 Interrupt request mask update command register with bitwise OR operation. (IRQ_MASK_OR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							IM	0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - IMO (W)

Interrupt request mask configuration bitfield update with bitwise OR operation. It allows setting IMCL[i], IMINTCL[i] or IMSOC[i] if IMO[i]=0b1.

6.1.3.2.35 Cluster Software event 5 trigger command register. (SW_EVENT_5_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			D	erved							CN	V5T			

Bits 7:0 - SW5T (W)

Triggers software event 5 for cluster core i if SW5T[i]=0b1.

6.1.3.2.36 Cluster Software event 5 trigger and wait command register. (SW_EVENT_5_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 5 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.37 Cluster Software event 5 trigger, wait and clear command register. (SW_EVENT_5_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 5 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.38 Cluster hardware barrier 0 self trigger command register. (HW_BARRIER_0_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							T								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_0_STATUS.HBS[i] to 0b1 when issued by cluster core i.

6.1.3.2.39 Cluster cores clock status register. (CLOCK_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **CS** (R)

Cluster core clock status bitfield:

- 0b0: Cluster core clocked is gated
- 0b1: Cluster core clocked is running

6.1.3.2.40 Cluster Software event 6 trigger command register. (SW_EVENT_6_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						•	Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SW6T** (W)

Triggers software event 6 for cluster core i if SW6T[i]=0b1.

6.1.3.2.41 Cluster Software event 6 trigger and wait command register. (SW_EVENT_6_TRIG_WAIT)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 6 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.42 Cluster Software event 6 trigger, wait and clear command register. (SW_EVENT_6_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 6 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.43 Cluster hardware barrier 0 trigger and wait command register. (HW_BARRIER_0_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_0[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_0 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.44 Pending input events status register. (EVENT_BUFFER)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							E								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EB** (R)

Pending input events status bitfield.

EB[i]=0b1: one or more input event i request are pending.

6.1.3.2.45 Cluster Software event 7 trigger command register. (SW_EVENT_7_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - SW7T (W)

Triggers software event 7 for cluster core i if SW7T[i]=0b1.

6.1.3.2.46 Cluster Software event 7 trigger and wait command register. (SW_EVENT_7_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 7 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.47 Cluster Software event 7 trigger, wait and clear command register. (SW_EVENT_7_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 7 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.48 Cluster hardware barrier 0 trigger, wait and clear command register. (HW_BARRIER_0_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_0[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_0 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

${\bf 6.1.3.2.49~Pending~input~events~status~register~with~EVT_MASK~applied.~(EVENT_BUFFER_MASKED)}$

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EB	M							

Bits 31:0 - **EBM** (R)

Pending input events status bitfield with EVT_MASK applied.

EBM[i]=0b1: one or more input event i request are pending.

6.1.3.2.50 Cluster hardware barrier 1 trigger mask configuration register. (HW_BARRIER_1_TRIG_MASK)

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HB1TM** (R/W)

Trigger mask for hardware barrier 1 bitfield. Hardware barrier 1 will be triggered only if for all HB1TM[i] =0b1, HW_BARRIER_1_STATUS.HB1S[i]=0b1. HB1TM=0 means that hardware barrier 1 is disabled.

6.1.3.2.51 Pending input events status register with IRQ_MASK applied. (EVENT_BUFFER_IRQ_MASKED)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							IB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - IBM (R)

Pending input events status bitfield with IRQ_MASK applied.

IBM[i]=0b1: one or more input events i are pending.

6.1.3.2.52 Cluster hardware barrier 1 status register. (HW_BARRIER_1_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 1 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 1. It is cleared when HBS matches HW_BARRIER_1_TRIG_MASK.HB1TM.

6.1.3.2.53 Pending input events status clear command register. (EVENT_BUFFER_CLEAR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	C							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBC** (W)

Pending input events status clear command bitfield. It allows clearing EB[i] if EBC[i]=0b1.

6.1.3.2.54 Cluster hardware barrier summary status register. (HW_BARRIER_1_STATUS_SUM)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 1. HBSS[i] represents a summary of the barrier status for core i.

6.1.3.2.55 Software events cluster cores destination mask configuration register. (SW_EVENT_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SWEM** (R/W)

Software events mask configuration bitfield:

- bit[i]=0b0: software events are masked for CL_CORE[i]
- bit[i]=0b1: software events are not masked for CL_CORE[i]

6.1.3.2.56 Cluster hardware barrier 1 target mask configuration register. (HW_BARRIER_1_TARGET_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•					•	Rese	rved		•	•	•		•	
45															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBTAM** (R/W)

Cluster hardware barrier 1 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 1 event when HW_BARRIER_1_STATUS will match HW_BARRIER_1_TRIG_MASK.

6.1.3.2.57 Software events cluster cores destination mask update command register with bitwise AND operation. (SW_EVENT_MASK_AND)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							SWE	EMA			

Bits 7:0 - **SWEMA** (W)

Software event mask configuration bitfield update with bitwise AND operation. It allows clearing SWEM[i] if SWEMA[i]#b1.

6.1.3.2.58 Cluster hardware barrier 1 trigger command register. (HW_BARRIER_1_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_1_STATUS.HBS[i] to 0b1 when T[i]=0b1.

6.1.3.2.59 Software events cluster cores destination mask update command register with bitwise OR operation. (SW_EVENT_MASK_OR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - SWEMO (W)

Software event mask configuration bitfield update with bitwise OR operation. It allows setting SWEM[i] if SWEMO[i] #b1.

6.1.3.2.60 Cluster hardware barrier 1 self trigger command register. (HW_BARRIER_1_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Т								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_1_STATUS.HBS[i] to 0b1 when issued by cluster core i.

6.1.3.2.61 Input event wait command register. (EVENT_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Reading this register will gate the Cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.62 Cluster hardware barrier 1 trigger and wait command register. (HW_BARRIER_1_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_1[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_1 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.63 Input event wait and clear command register. (EVENT_WAIT_CLEAR)

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Reading this register has the same effect as reading EVENT_WAIT.EBM. In addition, EVENT_BUFFER.EB[i] bits are cleared if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.64 Cluster hardware barrier 1 trigger, wait and clear command register. (HW_BARRIER_1_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_1[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_1 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.65 Cluster hardware barrier 2 trigger mask configuration register. (HW_BARRIER_2_TRIG_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							HR'	2TM			

Bits 7:0 - HB2TM (R/W)

Trigger mask for hardware barrier 2 bitfield. Hardware barrier 2 will be triggered only if for all HB2TM[i] =0b1, HW_BARRIER_2_STATUS.HB2S[i]=0b1. HB2TM=0 means that hardware barrier 2 is disabled.

6.1.3.2.66 Cluster hardware barrier 2 status register. (HW_BARRIER_2_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							HI	BS			

Bits 7:0 - HBS (R)

Current status of hardware barrier 2 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 2. It is cleared when HBS matches HW_BARRIER_2_TRIG_MASK.HB2TM.

6.1.3.2.67 Cluster hardware barrier summary status register. (HW_BARRIER_2_STATUS_SUM)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

 $\label{eq:current_current} \textit{Current status of hardware barrier 2. HBSS[i] represents a summary of the barrier status for core i.}$

6.1.3.2.68 Cluster hardware barrier 2 target mask configuration register. (HW_BARRIER_2_TARGET_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	1	0	-	•	F	4	•	•	-	Λ.
		13	12		10	9	0	,	ь	э	4	3			U

Bits 7:0 - **HBTAM** (R/W)

Cluster hardware barrier 2 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 2 event when HW_BARRIER_2_STATUS will match HW_BARRIER_2_TRIG_MASK.

6.1.3.2.69 Cluster hardware barrier 2 trigger command register. (HW_BARRIER_2_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **T** (W)

Sets HW_BARRIER_2_STATUS.HBS[i] to 0b1 when T[i]=0b1.

6.1.3.2.70 Cluster hardware barrier 2 self trigger command register. (HW_BARRIER_2_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							T								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_2_STATUS.HBS[i] to 0b1 when issued by cluster core i.

6.1.3.2.71 Cluster hardware barrier 2 trigger and wait command register. (HW_BARRIER_2_TRIG_WAIT)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_2[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_2 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.72 Cluster hardware barrier 2 trigger, wait and clear command register. (HW_BARRIER_2_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_2[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_2 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.73 Cluster hardware barrier 3 trigger mask configuration register. (HW_BARRIER_3_TRIG_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	·	•	•		•	•	Rese	rved							•
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HB3TM (R/W)

Trigger mask for hardware barrier 3 bitfield. Hardware barrier 3 will be triggered only if for all HB3TM[i] =0b1, HW_BARRIER_3_STATUS.HB3S[i]=0b1. HB3TM=0 means that hardware barrier 3 is disabled.

6.1.3.2.74 Cluster hardware barrier 3 status register. (HW_BARRIER_3_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							HE	3S			

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 3 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 3. It is cleared when HBS matches HW_BARRIER_3_TRIG_MASK.HB3TM.

6.1.3.2.75 Cluster hardware barrier summary status register. (HW_BARRIER_3_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

Bits 7:0 - **HBSS** (R)

Current status of hardware barrier 3. HBSS[i] represents a summary of the barrier status for core i.

6.1.3.2.76 Cluster hardware barrier 3 target mask configuration register. (HW_BARRIER_3_TARGET_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBTAM** (R/W)

Cluster hardware barrier 3 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 3 event when HW_BARRIER_3_STATUS will match HW_BARRIER_3_TRIG_MASK.

6.1.3.2.77 Cluster hardware barrier 3 trigger command register. (HW_BARRIER_3_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_3_STATUS.HBS[i] to 0b1 when T[i]=0b1.

6.1.3.2.78 Cluster hardware barrier 3 self trigger command register. (HW_BARRIER_3_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							T								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_3_STATUS.HBS[i] to 0b1 when issued by cluster core i.

$\textbf{6.1.3.2.79 Cluster hardware barrier 3 trigger and wait command register. (HW_BARRIER_3_TRIG_WAIT)}$

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_3[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_3 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.80 Cluster hardware barrier 3 trigger, wait and clear command register. (HW_BARRIER_3_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_3[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_3 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.81 Cluster hardware barrier 4 trigger mask configuration register. (HW_BARRIER_4_TRIG_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HB4TM** (R/W)

Trigger mask for hardware barrier 4 bitfield. Hardware barrier 4 will be triggered only if for all HB4TM[i] =0b1, HW_BARRIER_4_STATUS.HB4S[i]=0b1. HB4TM=0 means that hardware barrier 4 is disabled.

6.1.3.2.82 Cluster hardware barrier 4 status register. (HW_BARRIER_4_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 4 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 4. It is cleared when HBS matches HW_BARRIER_4_TRIG_MASK.HB4TM.

6.1.3.2.83 Cluster hardware barrier summary status register. (HW_BARRIER_4_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBSS** (R)

Current status of hardware barrier 4. HBSS[i] represents a summary of the barrier status for core i.

6.1.3.2.84 Cluster hardware barrier 4 target mask configuration register. (HW_BARRIER_4_TARGET_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBTAM** (R/W)

Cluster hardware barrier 4 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 4 event when HW_BARRIER_4_STATUS will match HW_BARRIER_4_TRIG_MASK.

6.1.3.2.85 Cluster hardware barrier 4 trigger command register. (HW_BARRIER_4_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_4_STATUS.HBS[i] to 0b1 when T[i]=0b1.

6.1.3.2.86 Cluster hardware barrier 4 self trigger command register. (HW_BARRIER_4_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Т								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_4_STATUS.HBS[i] to 0b1 when issued by cluster core i.

6.1.3.2.87 Cluster hardware barrier 4 trigger and wait command register. (HW_BARRIER_4_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_4[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_4 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.88 Cluster hardware barrier 4 trigger, wait and clear command register. (HW_BARRIER_4_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_4[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_4 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.89 Cluster hardware barrier 5 trigger mask configuration register. (HW_BARRIER_5_TRIG_MASK)

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HB5TM** (R/W)

Trigger mask for hardware barrier 5 bitfield. Hardware barrier 5 will be triggered only if for all HB5TM[i] =0b1, HW_BARRIER_5_STATUS.HB5S[i]=0b1. HB5TM=0 means that hardware barrier 5 is disabled.

6.1.3.2.90 Cluster hardware barrier 5 status register. (HW_BARRIER_5_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBS (R)

Current status of hardware barrier 5 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 5. It is cleared when HBS matches HW_BARRIER_5_TRIG_MASK.HB5TM.

6.1.3.2.91 Cluster hardware barrier summary status register. (HW_BARRIER_5_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 5. HBSS[i] represents a summary of the barrier status for core i.

6.1.3.2.92 Cluster hardware barrier 5 target mask configuration register. (HW_BARRIER_5_TARGET_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBTAM** (R/W)

Cluster hardware barrier 5 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 5 event when HW_BARRIER_5_STATUS will match HW_BARRIER_5_TRIG_MASK.

6.1.3.2.93 Cluster hardware barrier 5 trigger command register. (HW_BARRIER_5_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_5_STATUS.HBS[i] to 0b1 when T[i]=0b1.

6.1.3.2.94 Cluster hardware barrier 5 self trigger command register. (HW_BARRIER_5_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Т								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_5_STATUS.HBS[i] to 0b1 when issued by cluster core i.

6.1.3.2.95 Cluster hardware barrier 5 trigger and wait command register. (HW_BARRIER_5_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_5[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_5 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.96 Cluster hardware barrier 5 trigger, wait and clear command register. (HW_BARRIER_5_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_5[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_5 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.97 Cluster hardware barrier 6 trigger mask configuration register. (HW_BARRIER_6_TRIG_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HB6TM** (R/W)

Trigger mask for hardware barrier 6 bitfield. Hardware barrier 6 will be triggered only if for all HB6TM[i] =0b1, HW_BARRIER_6_STATUS.HB6S[i]=0b1. HB6TM=0 means that hardware barrier 6 is disabled.

6.1.3.2.98 Cluster hardware barrier 6 status register. (HW_BARRIER_6_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 6 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 6. It is cleared when HBS matches HW_BARRIER_6_TRIG_MASK.HB6TM.

6.1.3.2.99 Cluster hardware barrier summary status register. (HW_BARRIER_6_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 6. HBSS[i] represents a summary of the barrier status for core i.

6.1.3.2.100 Cluster hardware barrier 6 target mask configuration register. (HW_BARRIER_6_TARGET_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBTAM** (R/W)

Cluster hardware barrier 6 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 6 event when HW_BARRIER_6_STATUS will match HW_BARRIER_6_TRIG_MASK.

6.1.3.2.101 Cluster hardware barrier 6 trigger command register. (HW_BARRIER_6_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **T** (W)

Sets HW_BARRIER_6_STATUS.HBS[i] to 0b1 when T[i]=0b1.

6.1.3.2.102 Cluster hardware barrier 6 self trigger command register. (HW_BARRIER_6_SELF_TRIG)

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Т								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_6_STATUS.HBS[i] to 0b1 when issued by cluster core i.

6.1.3.2.103 Cluster hardware barrier 6 trigger and wait command register. (HW_BARRIER_6_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_6[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_6 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.104 Cluster hardware barrier 6 trigger, wait and clear command register. (HW_BARRIER_6_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_6[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_6 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.105 Cluster hardware barrier 7 trigger mask configuration register. (HW_BARRIER_7_TRIG_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HB7TM** (R/W)

Trigger mask for hardware barrier 7 bitfield. Hardware barrier 7 will be triggered only if for all HB7TM[i] =0b1, HW_BARRIER_7_STATUS.HB7S[i]=0b1. HB7TM=0 means that hardware barrier 7 is disabled.

6.1.3.2.106 Cluster hardware barrier 7 status register. (HW_BARRIER_7_STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 7 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 7. It is cleared when HBS matches HW_BARRIER_7_TRIG_MASK.HB7TM.

6.1.3.2.107 Cluster hardware barrier summary status register. (HW_BARRIER_7_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 7. HBSS[i] represents a summary of the barrier status for core i.

6.1.3.2.108 Cluster hardware barrier 7 target mask configuration register. (HW_BARRIER_7_TARGET_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBTAM** (R/W)

Cluster hardware barrier 7 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 7 event when HW_BARRIER_7_STATUS will match HW_BARRIER_7_TRIG_MASK.

6.1.3.2.109 Cluster hardware barrier 7 trigger command register. (HW_BARRIER_7_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_7_STATUS.HBS[i] to 0b1 when T[i]=0b1.

6.1.3.2.110 Cluster hardware barrier 7 self trigger command register. (HW_BARRIER_7_SELF_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							T								
						_	_			_	_				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_7_STATUS.HBS[i] to 0b1 when issued by cluster core i.

6.1.3.2.111 Cluster hardware barrier 7 trigger and wait command register. (HW_BARRIER_7_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_7[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_7 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.3.2.112 Cluster hardware barrier 7 trigger, wait and clear command register. (HW_BARRIER_7_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_7[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_7 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

6.1.4 Cluster instruction cache control unit

None

6.1.4.1 Cluster instruction cache control unit registers

Name	Address	Size	Type	Access	Default	Description
<u>ENABLE</u>	0x10201400	32	Config	W	0x0000	Cluster instruction cache unit enable configuration register.
<u>FLUSH</u>	0x10201404	32	Config	W	0x0000	Cluster instruction cache unit flush command register.
SEL_FLUSH	0x1020140C	32	Config	W	0x0000	Cluster instruction cache unit selective flush command register.
L1_L15_PREFETCH	0x1020141C	32	Config	W	0x0000	Enable L1 and L1.5 prefetch register.

Table 5. Cluster instruction cache control unit registers table

6.1.4.2 Cluster instruction cache control unit registers details

6.1.4.2.1 Cluster instruction cache unit enable configuration register. (ENABLE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **EN** (R/W)

Cluster instruction cache enable configuration bitfield:

• 0b0: disabled

• 0b1: enabled

6.1.4.2.2 Cluster instruction cache unit flush command register. (FLUSH)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **FL** (R/W)

Cluster instruction cache full flush command.

6.1.4.2.3 Cluster instruction cache unit selective flush command register. (SEL_FLUSH)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ADI	DR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **ADDR** (R/W)

Cluster instruction cache selective flush address configuration bitfield.

6.1.4.2.4 Enable L1 and L1.5 prefetch register. (L1_L15_PREFETCH)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 7 - **CORE7** (R/W)

Core 7 icache prefetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 6 - CORE6 (R/W)

Core 6 icache prefetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 5 - CORE5 (R/W)

Core 5 icache prefetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 4 - CORE4 (R/W)

Core 4 icache prefetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 3 - CORE3 (R/W)

Core 3 icache prefetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 2 - **CORE2** (R/W)

Core 2 icache prefetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 1 - CORE1 (R/W)

Core 1 icache prefetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 0 - **CORE0** (R/W)

Core 0 icache prefetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

6.1.5 DMA

None

6.1.5.1 DMA registers

Name	Address	Size	Туре	Access	Default	Description

Table 6. DMA registers table

6.1.5.2 DMA registers details

6.1.5.2.1 Cluster DMA configuration register. (CMD)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CN	ID							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CMD (R/W)

Format is operation dependent. See below.

6.1.5.2.2 Cluster DMA status register. (STATUS)

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STA								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							OT 4 :	FLIO							

Bits 31:0 - **STATUS** (R/W)

Format is operation dependent. See below.

6.1.5.3 DMA states

Figure 4. Queue transaction with ID

Figure 5. Queue transaction without ID

Figure 6. Get DMA status

Operation: write STATUS Format: FREE_TID

Figure 7. Free DMA transfer

6.1.5.4 DMA state command formats

Format Name	Register	Size	Access type	Description
GET_TID	CMD	32	R	Cluster DMA transfer identifier format.
CMD	CMD	32	W	Cluster DMA transfer configuration format.
<u>STATUS</u>	STATUS	32	R	Cluster DMA transfer free command format.
FREE_TID	STATUS	32	W	Cluster DMA transfer status format.
TCDM	CMD	32	W	Cluster DMA L1 base address configuration format.
EXT_L2	CMD	32	W	Cluster DMA L2 base address configuration format.
<u>2D</u>	CMD	32	W	Cluster DMA 2D transfer configuration format.

Table 7. DMA command format table

6.1.5.4.1 Cluster DMA transfer identifier format. (GET_TID)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 3:0 - **TID** (R)

Transfer identifier value bitfield.

6.1.5.4.2 Cluster DMA transfer configuration format. (CMD)

31										21	20	19	18	17	16
				Rese	rved					BLE	ILE	ELE	2D	INC	TYPE
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 21 - **BLE** (W)

Transfer event or interrupt broadcast configuration bitfield:

- 0b0: event or interrupt is routed to the cluster core who initiated the transfer
- 0b1: event or interrupt are broadcasted to all cluster cores

Bit 20 - **ILE** (W)

Transfer interrupt generation configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 19 - **ELE** (W)

Transfer event generation configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 18 - 2D (W)

Transfer type configuration bitfield:

- 0b0: linear transfer
- 0b1: 2D transfer

Bit 17 - **INC** (W)

Transfer incremental configuration bitfield:

- 0b0: non incremental
- 0b1: incremental

Bit 16 - **TYPE** (W)

Transfer direction configuration bitfield:

- 0b0: L1 to L2
- 0b1: L2 to L1

Bits 15:0 - **LEN** (W)

Transfer length in bytes configuration bitfield.

6.1.5.4.3 Cluster DMA transfer free command format. (STATUS)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								LLOC							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - TID_ALLOC (R)

Transfer status bitfield:

- TID_TR[i]=0b0 means that transfer allocator with TID i-16 is free.
- $\bullet~\mbox{TID_TR[i]=}\mbox{0b1}$ means that transfer allocator with TID i-16 is reserved.

Bits 15:0 - **TID_TR** (R)

Transfer status bitfield:

TID_TR[i]=0b1 means that transfer with TID i is active.

6.1.5.4.4 Cluster DMA transfer status format. (FREE_TID)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15:0 - **TID_FREE** (W)

Transfer canceller configuration bitfield. Writing a 0b1 in TID_FREE[i] will free transfer with TID i.

6.1.5.4.5 Cluster DMA L1 base address configuration format. (TCDM)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ADI	DR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - ADDR (W)

Transfer L1 base address configuration bitfield.

6.1.5.4.6 Cluster DMA L2 base address configuration format. (EXT_L2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ADI	OR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **ADDR** (W)

Transfer L2 base address configuration bitfield.

6.1.5.4.7 Cluster DMA 2D transfer configuration format. (2D)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STR	IDE							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - **STRIDE** (W)

2D transfer stride value configuration bitfield.

Bits 15:0 - **LEN** (W)

2D transfer length value configuration bitfield.

6.2 APB Subsystem

6.2.1 Advanced Timerss

None

6.2.1.1 PWM0 registers

Name	Address	Size	Туре	Access	Default	Description
T0_CMD	0x1A103000	32	Config	R/W	0x0000	ADV_TIMER0 command register.
T0_CONFIG	0x1A103004	32	Config	R/W	0x0000	ADV_TIMER0 configuration register.
T0_THRESHOLD	0x1A103008	32	Config	R/W	0x0000	ADV_TIMER0 threshold configuration register.
T0_TH_CHANNEL0	0x1A10300C	32	Config	R/W	0x0000	ADV_TIMER0 channel 0 threshold configuration register.
T0_TH_CHANNEL1	0x1A103010	32	Config	R/W	0x0000	ADV_TIMER0 channel 1 threshold configuration register.
T0_TH_CHANNEL2	0x1A103014	32	Config	R/W	0x0000	ADV_TIMER0 channel 2 threshold configuration register.
T0_TH_CHANNEL3	0x1A103018	32	Config	R/W	0x0000	ADV_TIMER0 channel 3 threshold configuration register.
T0_COUNTER	0x1A10302C	32	Status	R	0x0000	ADV_TIMER0 counter register.
T1_CMD	0x1A103040	32	Config	R/W	0x0000	ADV_TIMER1 command register.
T1_CONFIG	0x1A103044	32	Config	R/W	0x0000	ADV_TIMER1 configuration register.
T1_THRESHOLD	0x1A103048	32	Config	R/W	0x0000	ADV_TIMER1 threshold configuration register.
T1_TH_CHANNEL0	0x1A10304C	32	Config	R/W	0x0000	ADV_TIMER1 channel 0 threshold configuration register.
T1_TH_CHANNEL1	0x1A103050	32	Config	R/W	0x0000	ADV_TIMER1 channel 1 threshold configuration register.
T1_TH_CHANNEL2	0x1A103054	32	Config	R/W	0x0000	ADV_TIMER1 channel 2 threshold configuration register.
T1_TH_CHANNEL3	0x1A103058	32	Config	R/W	0x0000	ADV_TIMER1 channel 3 threshold configuration register.
T1_COUNTER	0x1A10306C	32	Status	R	0x0000	ADV_TIMER1 counter register.
T2_CMD	0x1A103080	32	Config	R/W	0x0000	ADV_TIMER2 command register.
T2_CONFIG	0x1A103084	32	Config	R/W	0x0000	ADV_TIMER2 configuration register.
T2_THRESHOLD	0x1A103088	32	Config	R/W	0x0000	ADV_TIMER2 threshold configuration register.
T2_TH_CHANNEL0	0x1A10308C	32	Config	R/W	0x0000	ADV_TIMER2 channel 0 threshold configuration register.
T2_TH_CHANNEL1	0x1A103090	32	Config	R/W	0x0000	ADV_TIMER2 channel 1 threshold configuration register.
T2_TH_CHANNEL2	0x1A103094	32	Config	R/W	0x0000	ADV_TIMER2 channel 2 threshold configuration register.
T2_TH_CHANNEL3	0x1A103098	32	Config	R/W	0x0000	ADV_TIMER2 channel 3 threshold configuration register.
T2_COUNTER	0x1A1030AC	32	Status	R	0x0000	ADV_TIMER2 counter register.
T3_CMD	0x1A1030C0	32	Config	R/W	0x0000	ADV_TIMER3 command register.

Name	Address	Size	Туре	Access	Default	Description
T3_CONFIG	0x1A1030C4	32	Config	R/W	0x0000	ADV_TIMER3 configuration register.
T3_THRESHOLD	0x1A1030C8	32	Config	R/W	0x0000	ADV_TIMER3 threshold configuration register.
T3_TH_CHANNEL0	0x1A1030CC	32	Config	R/W	0x0000	ADV_TIMER3 channel 0 threshold configuration register.
T3_TH_CHANNEL1	0x1A1030D0	32	Config	R/W	0x0000	ADV_TIMER3 channel 1 threshold configuration register.
T3_TH_CHANNEL2	0x1A1030D4	32	Config	R/W	0x0000	ADV_TIMER3 channel 2 threshold configuration register.
T3_TH_CHANNEL3	0x1A1030D8	32	Config	R/W	0x0000	ADV_TIMER3 channel 3 threshold configuration register.
T3_COUNTER	0x1A1030EC	32	Status	R	0x0000	ADV_TIMER3 counter register.
EVENT_CFG	0x1A103100	32	Config	R/W	0x0000	ADV_TIMERS events configuration register.
CG	0x1A103104	32	Config	R/W	0x0000	ADV_TIMERS channels clock gating configuration register.

Table 8. PWM0 registers table

6.2.1.2 PWM1 registers

Name	Address	Size	Туре	Access	Default	Description
T0_CMD	0x1A223000	32	Config	R/W	0x0000	ADV_TIMER0 command register.
T0_CONFIG	0x1A223004	32	Config	R/W	0x0000	ADV_TIMER0 configuration register.
T0_THRESHOLD	0x1A223008	32	Config	R/W	0x0000	ADV_TIMER0 threshold configuration register.
T0_TH_CHANNEL0	0x1A22300C	32	Config	R/W	0x0000	ADV_TIMER0 channel 0 threshold configuration register.
T0_TH_CHANNEL1	0x1A223010	32	Config	R/W	0x0000	ADV_TIMER0 channel 1 threshold configuration register.
T0_TH_CHANNEL2	0x1A223014	32	Config	R/W	0x0000	ADV_TIMER0 channel 2 threshold configuration register.
T0_TH_CHANNEL3	0x1A223018	32	Config	R/W	0x0000	ADV_TIMER0 channel 3 threshold configuration register.
T0_COUNTER	0x1A22302C	32	Status	R	0x0000	ADV_TIMER0 counter register.
T1_CMD	0x1A223040	32	Config	R/W	0x0000	ADV_TIMER1 command register.
T1_CONFIG	0x1A223044	32	Config	R/W	0x0000	ADV_TIMER1 configuration register.
T1_THRESHOLD	0x1A223048	32	Config	R/W	0x0000	ADV_TIMER1 threshold configuration register.
T1_TH_CHANNEL0	0x1A22304C	32	Config	R/W	0x0000	ADV_TIMER1 channel 0 threshold configuration register.
T1_TH_CHANNEL1	0x1A223050	32	Config	R/W	0x0000	ADV_TIMER1 channel 1 threshold configuration register.
T1_TH_CHANNEL2	0x1A223054	32	Config	R/W	0x0000	ADV_TIMER1 channel 2 threshold configuration register.
T1_TH_CHANNEL3	0x1A223058	32	Config	R/W	0x0000	ADV_TIMER1 channel 3 threshold configuration register.
T1_COUNTER	0x1A22306C	32	Status	R	0x0000	ADV_TIMER1 counter register.
T2_CMD	0x1A223080	32	Config	R/W	0x0000	ADV_TIMER2 command register.
T2_CONFIG	0x1A223084	32	Config	R/W	0x0000	ADV_TIMER2 configuration register.
T2_THRESHOLD	0x1A223088	32	Config	R/W	0x0000	ADV_TIMER2 threshold configuration register.
T2_TH_CHANNEL0	0x1A22308C	32	Config	R/W	0x0000	ADV_TIMER2 channel 0 threshold configuration register.
T2_TH_CHANNEL1	0x1A223090	32	Config	R/W	0x0000	ADV_TIMER2 channel 1 threshold configuration register.
T2_TH_CHANNEL2	0x1A223094	32	Config	R/W	0x0000	ADV_TIMER2 channel 2 threshold configuration register.
T2_TH_CHANNEL3	0x1A223098	32	Config	R/W	0x0000	ADV_TIMER2 channel 3 threshold configuration register.
T2_COUNTER	0x1A2230AC	32	Status	R	0x0000	ADV_TIMER2 counter register.
T3_CMD	0x1A2230C0	32	Config	R/W	0x0000	ADV_TIMER3 command register.
T3_CONFIG	0x1A2230C4	32	Config	R/W	0x0000	ADV_TIMER3 configuration register.
T3_THRESHOLD	0x1A2230C8	32	Config	R/W	0x0000	ADV_TIMER3 threshold configuration register.
T3_TH_CHANNEL0	0x1A2230CC	32	Config	R/W	0x0000	ADV_TIMER3 channel 0 threshold configuration register.
T3_TH_CHANNEL1	0x1A2230D0	32	Config	R/W	0x0000	ADV_TIMER3 channel 1 threshold configuration register.
T3_TH_CHANNEL2	0x1A2230D4	32	Config	R/W	0x0000	ADV_TIMER3 channel 2 threshold configuration register.
T3_TH_CHANNEL3	0x1A2230D8	32	Config	R/W	0x0000	ADV_TIMER3 channel 3 threshold configuration register.
T3_COUNTER	0x1A2230EC	32	Status	R	0x0000	ADV_TIMER3 counter register.
EVENT_CFG	0x1A223100	32	Config	R/W	0x0000	ADV_TIMERS events configuration register.
CG	0x1A223104	32	Config	R/W	0x0000	ADV_TIMERS channels clock gating configuration register.

Table 9. PWM1 registers table

6.2.1.3 PWM2 registers

TO_CMD			Type	Access	Default	Description
TO CONICIO	0x1A224000	32	Config	R/W	0x0000	ADV_TIMER0 command register.
T0_CONFIG	0x1A224004	32	Config	R/W	0x0000	ADV_TIMER0 configuration register.
T0_THRESHOLD	0x1A224008	32	Config	R/W	0x0000	ADV_TIMER0 threshold configuration register.
T0_TH_CHANNEL0	0x1A22400C	32	Config	R/W	0x0000	ADV_TIMER0 channel 0 threshold configuration register.
T0_TH_CHANNEL1	0x1A224010	32	Config	R/W	0x0000	ADV_TIMER0 channel 1 threshold configuration register.
T0_TH_CHANNEL2	0x1A224014	32	Config	R/W	0x0000	ADV_TIMER0 channel 2 threshold configuration register.
T0_TH_CHANNEL3	0x1A224018	32	Config	R/W	0x0000	ADV_TIMER0 channel 3 threshold configuration register.
T0_COUNTER	0x1A22402C	32	Status	R	0x0000	ADV_TIMER0 counter register.
T1_CMD	0x1A224040	32	Config	R/W	0x0000	ADV_TIMER1 command register.
T1_CONFIG	0x1A224044	32	Config	R/W	0x0000	ADV_TIMER1 configuration register.
T1_THRESHOLD	0x1A224048	32	Config	R/W	0x0000	ADV_TIMER1 threshold configuration register.
T1_TH_CHANNEL0	0x1A22404C	32	Config	R/W	0x0000	ADV_TIMER1 channel 0 threshold configuration register.
T1_TH_CHANNEL1	0x1A224050	32	Config	R/W	0x0000	ADV_TIMER1 channel 1 threshold configuration register.
T1_TH_CHANNEL2	0x1A224054	32	Config	R/W	0x0000	ADV_TIMER1 channel 2 threshold configuration register.
T1_TH_CHANNEL3	0x1A224058	32	Config	R/W	0x0000	ADV_TIMER1 channel 3 threshold configuration register.
T1_COUNTER	0x1A22406C	32	Status	R	0x0000	ADV_TIMER1 counter register.
T2_CMD	0x1A224080	32	Config	R/W	0x0000	ADV_TIMER2 command register.
T2_CONFIG	0x1A224084	32	Config	R/W	0x0000	ADV_TIMER2 configuration register.
T2_THRESHOLD	0x1A224088	32	Config	R/W	0x0000	ADV_TIMER2 threshold configuration register.
T2_TH_CHANNEL0	0x1A22408C	32	Config	R/W	0x0000	ADV_TIMER2 channel 0 threshold configuration register.
T2_TH_CHANNEL1	0x1A224090	32	Config	R/W	0x0000	ADV_TIMER2 channel 1 threshold configuration register.
T2_TH_CHANNEL2	0x1A224094	32	Config	R/W	0x0000	ADV_TIMER2 channel 2 threshold configuration register.
T2_TH_CHANNEL3	0x1A224098	32	Config	R/W	0x0000	ADV_TIMER2 channel 3 threshold configuration register.
T2_COUNTER	0x1A2240AC	32	Status	R	0x0000	ADV_TIMER2 counter register.
T3_CMD	0x1A2240C0	32	Config	R/W	0x0000	ADV_TIMER3 command register.
T3_CONFIG	0x1A2240C4	32	Config	R/W	0x0000	ADV_TIMER3 configuration register.
T3_THRESHOLD	0x1A2240C8	32	Config	R/W	0x0000	ADV_TIMER3 threshold configuration register.
T3_TH_CHANNEL0	0x1A2240CC	32	Config	R/W	0x0000	ADV_TIMER3 channel 0 threshold configuration register.
T3_TH_CHANNEL1	0x1A2240D0	32	Config	R/W	0x0000	ADV_TIMER3 channel 1 threshold configuration register.
T3_TH_CHANNEL2	0x1A2240D4	32	Config	R/W	0x0000	ADV_TIMER3 channel 2 threshold configuration register.
T3_TH_CHANNEL3	0x1A2240D8	32	Config	R/W	0x0000	ADV_TIMER3 channel 3 threshold configuration register.
T3_COUNTER	0x1A2240EC	32	Status	R	0x0000	ADV_TIMER3 counter register.
EVENT_CFG	0x1A224100	32	Config	R/W	0x0000	ADV_TIMERS events configuration register.
<u>CG</u>	0x1A224104	32	Config	R/W	0x0000	ADV_TIMERS channels clock gating configuration register.

Table 10. PWM2 registers table

6.2.1.4 PWM3 registers

Name	Address	Size	Туре	Access	Default	Description
T0_CMD	0x1A225000	32	Config	R/W	0x0000	ADV_TIMER0 command register.
T0_CONFIG	0x1A225004	32	Config	R/W	0x0000	ADV_TIMER0 configuration register.
T0_THRESHOLD	0x1A225008	32	Config	R/W	0x0000	ADV_TIMER0 threshold configuration register.
T0_TH_CHANNEL0	0x1A22500C	32	Config	R/W	0x0000	ADV_TIMER0 channel 0 threshold configuration register.
T0_TH_CHANNEL1	0x1A225010	32	Config	R/W	0x0000	ADV_TIMER0 channel 1 threshold configuration register.
T0_TH_CHANNEL2	0x1A225014	32	Config	R/W	0x0000	ADV_TIMER0 channel 2 threshold configuration register.
T0_TH_CHANNEL3	0x1A225018	32	Config	R/W	0x0000	ADV_TIMER0 channel 3 threshold configuration register.
T0_COUNTER	0x1A22502C	32	Status	R	0x0000	ADV_TIMER0 counter register.
T1_CMD	0x1A225040	32	Config	R/W	0x0000	ADV_TIMER1 command register.
T1_CONFIG	0x1A225044	32	Config	R/W	0x0000	ADV_TIMER1 configuration register.
T1_THRESHOLD	0x1A225048	32	Config	R/W	0x0000	ADV_TIMER1 threshold configuration register.
T1_TH_CHANNEL0	0x1A22504C	32	Config	R/W	0x0000	ADV_TIMER1 channel 0 threshold configuration register.
T1_TH_CHANNEL1	0x1A225050	32	Config	R/W	0x0000	ADV_TIMER1 channel 1 threshold configuration register.

Name	Address	Size	Туре	Access	Default	Description
T1_TH_CHANNEL2	0x1A225054	32	Config	R/W	0x0000	ADV_TIMER1 channel 2 threshold configuration register.
T1_TH_CHANNEL3	0x1A225058	32	Config	R/W	0x0000	ADV_TIMER1 channel 3 threshold configuration register.
T1_COUNTER	0x1A22506C	32	Status	R	0x0000	ADV_TIMER1 counter register.
T2_CMD	0x1A225080	32	Config	R/W	0x0000	ADV_TIMER2 command register.
T2_CONFIG	0x1A225084	32	Config	R/W	0x0000	ADV_TIMER2 configuration register.
T2_THRESHOLD	0x1A225088	32	Config	R/W	0x0000	ADV_TIMER2 threshold configuration register.
T2_TH_CHANNEL0	0x1A22508C	32	Config	R/W	0x0000	ADV_TIMER2 channel 0 threshold configuration register.
T2_TH_CHANNEL1	0x1A225090	32	Config	R/W	0x0000	ADV_TIMER2 channel 1 threshold configuration register.
T2_TH_CHANNEL2	0x1A225094	32	Config	R/W	0x0000	ADV_TIMER2 channel 2 threshold configuration register.
T2_TH_CHANNEL3	0x1A225098	32	Config	R/W	0x0000	ADV_TIMER2 channel 3 threshold configuration register.
T2_COUNTER	0x1A2250AC	32	Status	R	0x0000	ADV_TIMER2 counter register.
T3_CMD	0x1A2250C0	32	Config	R/W	0x0000	ADV_TIMER3 command register.
T3_CONFIG	0x1A2250C4	32	Config	R/W	0x0000	ADV_TIMER3 configuration register.
T3_THRESHOLD	0x1A2250C8	32	Config	R/W	0x0000	ADV_TIMER3 threshold configuration register.
T3_TH_CHANNEL0	0x1A2250CC	32	Config	R/W	0x0000	ADV_TIMER3 channel 0 threshold configuration register.
T3_TH_CHANNEL1	0x1A2250D0	32	Config	R/W	0x0000	ADV_TIMER3 channel 1 threshold configuration register.
T3_TH_CHANNEL2	0x1A2250D4	32	Config	R/W	0x0000	ADV_TIMER3 channel 2 threshold configuration register.
T3_TH_CHANNEL3	0x1A2250D8	32	Config	R/W	0x0000	ADV_TIMER3 channel 3 threshold configuration register.
T3_COUNTER	0x1A2250EC	32	Status	R	0x0000	ADV_TIMER3 counter register.
EVENT_CFG	0x1A225100	32	Config	R/W	0x0000	ADV_TIMERS events configuration register.
CG	0x1A225104	32	Config	R/W	0x0000	ADV_TIMERS channels clock gating configuration register.

Table 11. PWM3 registers table

6.2.1.5 PWM4 registers

Name	Address	Size	Туре	Access	Default	Description
T0_CMD	0x1A226000	32	Config	R/W	0x0000	ADV_TIMER0 command register.
T0_CONFIG	0x1A226004	32	Config	R/W	0x0000	ADV_TIMER0 configuration register.
T0_THRESHOLD	0x1A226008	32	Config	R/W	0x0000	ADV_TIMER0 threshold configuration register.
T0_TH_CHANNEL0	0x1A22600C	32	Config	R/W	0x0000	ADV_TIMER0 channel 0 threshold configuration register.
T0_TH_CHANNEL1	0x1A226010	32	Config	R/W	0x0000	ADV_TIMER0 channel 1 threshold configuration register.
T0_TH_CHANNEL2	0x1A226014	32	Config	R/W	0x0000	ADV_TIMER0 channel 2 threshold configuration register.
T0_TH_CHANNEL3	0x1A226018	32	Config	R/W	0x0000	ADV_TIMER0 channel 3 threshold configuration register.
T0_COUNTER	0x1A22602C	32	Status	R	0x0000	ADV_TIMER0 counter register.
T1_CMD	0x1A226040	32	Config	R/W	0x0000	ADV_TIMER1 command register.
T1_CONFIG	0x1A226044	32	Config	R/W	0x0000	ADV_TIMER1 configuration register.
T1_THRESHOLD	0x1A226048	32	Config	R/W	0x0000	ADV_TIMER1 threshold configuration register.
T1_TH_CHANNEL0	0x1A22604C	32	Config	R/W	0x0000	ADV_TIMER1 channel 0 threshold configuration register.
T1_TH_CHANNEL1	0x1A226050	32	Config	R/W	0x0000	ADV_TIMER1 channel 1 threshold configuration register.
T1_TH_CHANNEL2	0x1A226054	32	Config	R/W	0x0000	ADV_TIMER1 channel 2 threshold configuration register.
T1_TH_CHANNEL3	0x1A226058	32	Config	R/W	0x0000	ADV_TIMER1 channel 3 threshold configuration register.
T1_COUNTER	0x1A22606C	32	Status	R	0x0000	ADV_TIMER1 counter register.
T2_CMD	0x1A226080	32	Config	R/W	0x0000	ADV_TIMER2 command register.
T2_CONFIG	0x1A226084	32	Config	R/W	0x0000	ADV_TIMER2 configuration register.
T2_THRESHOLD	0x1A226088	32	Config	R/W	0x0000	ADV_TIMER2 threshold configuration register.
T2_TH_CHANNEL0	0x1A22608C	32	Config	R/W	0x0000	ADV_TIMER2 channel 0 threshold configuration register.
T2_TH_CHANNEL1	0x1A226090	32	Config	R/W	0x0000	ADV_TIMER2 channel 1 threshold configuration register.
T2_TH_CHANNEL2	0x1A226094	32	Config	R/W	0x0000	ADV_TIMER2 channel 2 threshold configuration register.
T2_TH_CHANNEL3	0x1A226098	32	Config	R/W	0x0000	ADV_TIMER2 channel 3 threshold configuration register.
T2_COUNTER	0x1A2260AC	32	Status	R	0x0000	ADV_TIMER2 counter register.
T3_CMD	0x1A2260C0	32	Config	R/W	0x0000	ADV_TIMER3 command register.
T3_CONFIG	0x1A2260C4	32	Config	R/W	0x0000	ADV_TIMER3 configuration register.

Name	Address	Size	Туре	Access	Default	Description
T3_THRESHOLD	0x1A2260C8	32	Config	R/W	0x0000	ADV_TIMER3 threshold configuration register.
T3_TH_CHANNEL0	0x1A2260CC	32	Config	R/W	0x0000	ADV_TIMER3 channel 0 threshold configuration register.
T3_TH_CHANNEL1	0x1A2260D0	32	Config	R/W	0x0000	ADV_TIMER3 channel 1 threshold configuration register.
T3_TH_CHANNEL2	0x1A2260D4	32	Config	R/W	0x0000	ADV_TIMER3 channel 2 threshold configuration register.
T3_TH_CHANNEL3	0x1A2260D8	32	Config	R/W	0x0000	ADV_TIMER3 channel 3 threshold configuration register.
T3_COUNTER	0x1A2260EC	32	Status	R	0x0000	ADV_TIMER3 counter register.
EVENT_CFG	0x1A226100	32	Config	R/W	0x0000	ADV_TIMERS events configuration register.
<u>CG</u>	0x1A226104	32	Config	R/W	0x0000	ADV_TIMERS channels clock gating configuration register.

Table 12. PWM4 registers table

6.2.1.6 PWM5 registers

Name	Address	Size	Type	Access	Default	Description
T0_CMD	0x1A227000	32	Config	R/W	0x0000	ADV_TIMER0 command register.
T0_CONFIG	0x1A227004	32	Config	R/W	0x0000	ADV_TIMER0 configuration register.
T0_THRESHOLD	0x1A227008	32	Config	R/W	0x0000	ADV_TIMER0 threshold configuration register.
T0_TH_CHANNEL0	0x1A22700C	32	Config	R/W	0x0000	ADV_TIMER0 channel 0 threshold configuration register.
T0_TH_CHANNEL1	0x1A227010	32	Config	R/W	0x0000	ADV_TIMER0 channel 1 threshold configuration register.
T0_TH_CHANNEL2	0x1A227014	32	Config	R/W	0x0000	ADV_TIMER0 channel 2 threshold configuration register.
T0_TH_CHANNEL3	0x1A227018	32	Config	R/W	0x0000	ADV_TIMER0 channel 3 threshold configuration register.
T0_COUNTER	0x1A22702C	32	Status	R	0x0000	ADV_TIMER0 counter register.
T1_CMD	0x1A227040	32	Config	R/W	0x0000	ADV_TIMER1 command register.
T1_CONFIG	0x1A227044	32	Config	R/W	0x0000	ADV_TIMER1 configuration register.
T1_THRESHOLD	0x1A227048	32	Config	R/W	0x0000	ADV_TIMER1 threshold configuration register.
T1_TH_CHANNEL0	0x1A22704C	32	Config	R/W	0x0000	ADV_TIMER1 channel 0 threshold configuration register.
T1_TH_CHANNEL1	0x1A227050	32	Config	R/W	0x0000	ADV_TIMER1 channel 1 threshold configuration register.
T1_TH_CHANNEL2	0x1A227054	32	Config	R/W	0x0000	ADV_TIMER1 channel 2 threshold configuration register.
T1_TH_CHANNEL3	0x1A227058	32	Config	R/W	0x0000	ADV_TIMER1 channel 3 threshold configuration register.
T1_COUNTER	0x1A22706C	32	Status	R	0x0000	ADV_TIMER1 counter register.
T2_CMD	0x1A227080	32	Config	R/W	0x0000	ADV_TIMER2 command register.
T2_CONFIG	0x1A227084	32	Config	R/W	0x0000	ADV_TIMER2 configuration register.
T2_THRESHOLD	0x1A227088	32	Config	R/W	0x0000	ADV_TIMER2 threshold configuration register.
T2_TH_CHANNEL0	0x1A22708C	32	Config	R/W	0x0000	ADV_TIMER2 channel 0 threshold configuration register.
T2_TH_CHANNEL1	0x1A227090	32	Config	R/W	0x0000	ADV_TIMER2 channel 1 threshold configuration register.
T2_TH_CHANNEL2	0x1A227094	32	Config	R/W	0x0000	ADV_TIMER2 channel 2 threshold configuration register.
T2_TH_CHANNEL3	0x1A227098	32	Config	R/W	0x0000	ADV_TIMER2 channel 3 threshold configuration register.
T2_COUNTER	0x1A2270AC	32	Status	R	0x0000	ADV_TIMER2 counter register.
T3_CMD	0x1A2270C0	32	Config	R/W	0x0000	ADV_TIMER3 command register.
T3_CONFIG	0x1A2270C4	32	Config	R/W	0x0000	ADV_TIMER3 configuration register.
T3_THRESHOLD	0x1A2270C8	32	Config	R/W	0x0000	ADV_TIMER3 threshold configuration register.
T3_TH_CHANNEL0	0x1A2270CC	32	Config	R/W	0x0000	ADV_TIMER3 channel 0 threshold configuration register.
T3_TH_CHANNEL1	0x1A2270D0	32	Config	R/W	0x0000	ADV_TIMER3 channel 1 threshold configuration register.
T3_TH_CHANNEL2	0x1A2270D4	32	Config	R/W	0x0000	ADV_TIMER3 channel 2 threshold configuration register.
T3_TH_CHANNEL3	0x1A2270D8	32	Config	R/W	0x0000	ADV_TIMER3 channel 3 threshold configuration register.
T3_COUNTER	0x1A2270EC	32	Status	R	0x0000	ADV_TIMER3 counter register.
EVENT_CFG	0x1A227100	32	Config	R/W	0x0000	ADV_TIMERS events configuration register.
CG	0x1A227104	32	Config	R/W	0x0000	ADV_TIMERS channels clock gating configuration register.

Table 13. PWM5 registers table

6.2.1.7 PWM6 registers

Name	Address	Size	Туре	Access	Default	Description
T0_CMD	0x1A228000	32	Config	R/W	0x0000	ADV_TIMER0 command register.
T0_CONFIG	0x1A228004	32	Config	R/W	0x0000	ADV_TIMER0 configuration register.
T0_THRESHOLD	0x1A228008	32	Config	R/W	0x0000	ADV_TIMER0 threshold configuration register.
T0_TH_CHANNEL0	0x1A22800C	32	Config	R/W	0x0000	ADV_TIMER0 channel 0 threshold configuration register.
T0_TH_CHANNEL1	0x1A228010	32	Config	R/W	0x0000	ADV_TIMER0 channel 1 threshold configuration register.
T0_TH_CHANNEL2	0x1A228014	32	Config	R/W	0x0000	ADV_TIMER0 channel 2 threshold configuration register.
T0_TH_CHANNEL3	0x1A228018	32	Config	R/W	0x0000	ADV_TIMER0 channel 3 threshold configuration register.
T0_COUNTER	0x1A22802C	32	Status	R	0x0000	ADV_TIMER0 counter register.
T1_CMD	0x1A228040	32	Config	R/W	0x0000	ADV_TIMER1 command register.
T1_CONFIG	0x1A228044	32	Config	R/W	0x0000	ADV_TIMER1 configuration register.
T1_THRESHOLD	0x1A228048	32	Config	R/W	0x0000	ADV_TIMER1 threshold configuration register.
T1_TH_CHANNEL0	0x1A22804C	32	Config	R/W	0x0000	ADV_TIMER1 channel 0 threshold configuration register.
T1_TH_CHANNEL1	0x1A228050	32	Config	R/W	0x0000	ADV_TIMER1 channel 1 threshold configuration register.
T1_TH_CHANNEL2	0x1A228054	32	Config	R/W	0x0000	ADV_TIMER1 channel 2 threshold configuration register.
T1_TH_CHANNEL3	0x1A228058	32	Config	R/W	0x0000	ADV_TIMER1 channel 3 threshold configuration register.
T1_COUNTER	0x1A22806C	32	Status	R	0x0000	ADV_TIMER1 counter register.
T2_CMD	0x1A228080	32	Config	R/W	0x0000	ADV_TIMER2 command register.
T2_CONFIG	0x1A228084	32	Config	R/W	0x0000	ADV_TIMER2 configuration register.
T2_THRESHOLD	0x1A228088	32	Config	R/W	0x0000	ADV_TIMER2 threshold configuration register.
T2_TH_CHANNEL0	0x1A22808C	32	Config	R/W	0x0000	ADV_TIMER2 channel 0 threshold configuration register.
T2_TH_CHANNEL1	0x1A228090	32	Config	R/W	0x0000	ADV_TIMER2 channel 1 threshold configuration register.
T2_TH_CHANNEL2	0x1A228094	32	Config	R/W	0x0000	ADV_TIMER2 channel 2 threshold configuration register.
T2_TH_CHANNEL3	0x1A228098	32	Config	R/W	0x0000	ADV_TIMER2 channel 3 threshold configuration register.
T2_COUNTER	0x1A2280AC	32	Status	R	0x0000	ADV_TIMER2 counter register.
T3_CMD	0x1A2280C0	32	Config	R/W	0x0000	ADV_TIMER3 command register.
T3_CONFIG	0x1A2280C4	32	Config	R/W	0x0000	ADV_TIMER3 configuration register.
T3_THRESHOLD	0x1A2280C8	32	Config	R/W	0x0000	ADV_TIMER3 threshold configuration register.
T3_TH_CHANNEL0	0x1A2280CC	32	Config	R/W	0x0000	ADV_TIMER3 channel 0 threshold configuration register.
T3_TH_CHANNEL1	0x1A2280D0	32	Config	R/W	0x0000	ADV_TIMER3 channel 1 threshold configuration register.
T3_TH_CHANNEL2	0x1A2280D4	32	Config	R/W	0x0000	ADV_TIMER3 channel 2 threshold configuration register.
T3_TH_CHANNEL3	0x1A2280D8	32	Config	R/W	0x0000	ADV_TIMER3 channel 3 threshold configuration register.
T3_COUNTER	0x1A2280EC	32	Status	R	0x0000	ADV_TIMER3 counter register.
EVENT_CFG	0x1A228100	32	Config	R/W	0x0000	ADV_TIMERS events configuration register.
CG	0x1A228104	32	Config	R/W	0x0000	ADV_TIMERS channels clock gating configuration register.

Table 14. PWM6 registers table

6.2.1.8 PWM7 registers

Name	Address	Size	Туре	Access	Default	Description
T0_CMD	0x1A229000	32	Config	R/W	0x0000	ADV_TIMER0 command register.
T0_CONFIG	0x1A229004	32	Config	R/W	0x0000	ADV_TIMER0 configuration register.
T0_THRESHOLD	0x1A229008	32	Config	R/W	0x0000	ADV_TIMER0 threshold configuration register.
T0_TH_CHANNEL0	0x1A22900C	32	Config	R/W	0x0000	ADV_TIMER0 channel 0 threshold configuration register.
T0_TH_CHANNEL1	0x1A229010	32	Config	R/W	0x0000	ADV_TIMER0 channel 1 threshold configuration register.
T0_TH_CHANNEL2	0x1A229014	32	Config	R/W	0x0000	ADV_TIMER0 channel 2 threshold configuration register.
T0_TH_CHANNEL3	0x1A229018	32	Config	R/W	0x0000	ADV_TIMER0 channel 3 threshold configuration register.
T0_COUNTER	0x1A22902C	32	Status	R	0x0000	ADV_TIMER0 counter register.
T1_CMD	0x1A229040	32	Config	R/W	0x0000	ADV_TIMER1 command register.
T1_CONFIG	0x1A229044	32	Config	R/W	0x0000	ADV_TIMER1 configuration register.
T1_THRESHOLD	0x1A229048	32	Config	R/W	0x0000	ADV_TIMER1 threshold configuration register.
T1_TH_CHANNEL0	0x1A22904C	32	Config	R/W	0x0000	ADV_TIMER1 channel 0 threshold configuration register.
T1_TH_CHANNEL1	0x1A229050	32	Config	R/W	0x0000	ADV_TIMER1 channel 1 threshold configuration register.

Name	Address	Size	Туре	Access	Default	Description
T1_TH_CHANNEL2	0x1A229054	32	Config	R/W	0x0000	ADV_TIMER1 channel 2 threshold configuration register.
T1_TH_CHANNEL3	0x1A229058	32	Config	R/W	0x0000	ADV_TIMER1 channel 3 threshold configuration register.
T1_COUNTER	0x1A22906C	32	Status	R	0x0000	ADV_TIMER1 counter register.
T2_CMD	0x1A229080	32	Config	R/W	0x0000	ADV_TIMER2 command register.
T2_CONFIG	0x1A229084	32	Config	R/W	0x0000	ADV_TIMER2 configuration register.
T2_THRESHOLD	0x1A229088	32	Config	R/W	0x0000	ADV_TIMER2 threshold configuration register.
T2_TH_CHANNEL0	0x1A22908C	32	Config	R/W	0x0000	ADV_TIMER2 channel 0 threshold configuration register.
T2_TH_CHANNEL1	0x1A229090	32	Config	R/W	0x0000	ADV_TIMER2 channel 1 threshold configuration register.
T2_TH_CHANNEL2	0x1A229094	32	Config	R/W	0x0000	ADV_TIMER2 channel 2 threshold configuration register.
T2_TH_CHANNEL3	0x1A229098	32	Config	R/W	0x0000	ADV_TIMER2 channel 3 threshold configuration register.
T2_COUNTER	0x1A2290AC	32	Status	R	0x0000	ADV_TIMER2 counter register.
T3_CMD	0x1A2290C0	32	Config	R/W	0x0000	ADV_TIMER3 command register.
T3_CONFIG	0x1A2290C4	32	Config	R/W	0x0000	ADV_TIMER3 configuration register.
T3_THRESHOLD	0x1A2290C8	32	Config	R/W	0x0000	ADV_TIMER3 threshold configuration register.
T3_TH_CHANNEL0	0x1A2290CC	32	Config	R/W	0x0000	ADV_TIMER3 channel 0 threshold configuration register.
T3_TH_CHANNEL1	0x1A2290D0	32	Config	R/W	0x0000	ADV_TIMER3 channel 1 threshold configuration register.
T3_TH_CHANNEL2	0x1A2290D4	32	Config	R/W	0x0000	ADV_TIMER3 channel 2 threshold configuration register.
T3_TH_CHANNEL3	0x1A2290D8	32	Config	R/W	0x0000	ADV_TIMER3 channel 3 threshold configuration register.
T3_COUNTER	0x1A2290EC	32	Status	R	0x0000	ADV_TIMER3 counter register.
EVENT_CFG	0x1A229100	32	Config	R/W	0x0000	ADV_TIMERS events configuration register.
CG	0x1A229104	32	Config	R/W	0x0000	ADV_TIMERS channels clock gating configuration register.

Table 15. PWM7 registers table

6.2.1.9 Advanced Timers registers details

6.2.1.9.1 ADV_TIMER0 command register. (T0_CMD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 4 - **ARM** (R/W)

ADV_TIMER0 arm command bitfield.

Bit 3 - **RESET** (R/W)

ADV_TIMER0 reset command bitfield.

Bit 2 - **UPDATE** (R/W)

ADV_TIMER0 update command bitfield.

Bit 1 - **STOP** (R/W)

ADV_TIMER0 stop command bitfield.

Bit 0 - START (R/W)

ADV_TIMER0 start command bitfield.

6.2.1.9.2 ADV_TIMER0 configuration register. (T0_CONFIG)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved							PR	ESC			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		UPDOW NSEL	CLKSEL		MODE					INS	SEL			

Bits 23:16 - PRESC (R/W)

ADV_TIMER0 prescaler value configuration bitfield.

Bit 12 - UPDOWNSEL (R/W)

ADV_TIMER0 center-aligned mode configuration bitfield:

- 0b0: The counter counts up and down alternatively.
- 0b1: The counter counts up and resets to 0 when reach threshold.

Bit 11 - CLKSEL (R/W)

ADV_TIMER0 clock source configuration bitfield:

- 0b0: FLL
- 0b1: reference clock at 32kHz

Bits 10:8 - **MODE** (R/W)

ADV_TIMER0 trigger mode configuration bitfield:

- 0b000: trigger event at each clock cycle.
- 0b001: trigger event if input source is 0
- 0b010: trigger event if input source is 1
- 0b011: trigger event on input source rising edge
- 0b100: trigger event on input source falling edge
- *0b101*: trigger event on input source falling or rising edge
- 0b110: trigger event on input source rising edge when armed
- 0b111: trigger event on input source falling edge when armed

Bits 7:0 - INSEL (R/W)

ADV_TIMER0 input source configuration bitfield:

- 0-31: GPIO[0] to GPIO[31]
- 32-35: Channel 0 to 3 of ADV_TIMER0
- 36-39: Channel 0 to 3 of ADV_TIMER1
- 40-43: Channel 0 to 3 of ADV TIMER2
- 44-47: Channel 0 to 3 of ADV_TIMER3

6.2.1.9.3 ADV_TIMER0 threshold configuration register. (T0_THRESHOLD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TH_	HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - **TH_HI** (R/W)

ADV_TIMER0 threshold high part configuration bitfield. It defines end counter value.

Bits 15:0 - **TH_LO** (R/W)

ADV_TIMER0 threshold low part configuration bitfield. It defines start counter value.

6.2.1.9.4 ADV_TIMER0 channel 0 threshold configuration register. (T0_TH_CHANNEL0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							_		-	-		_			

Bits 18:16 - MODE (R/W)

ADV_TIMER0 channel 0 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- 0b001: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- 0b110: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER0 channel 0 threshold configuration bitfield.

6.2.1.9.5 ADV_TIMER0 channel 1 threshold configuration register. (T0_TH_CHANNEL1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER0 channel 1 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- 0b001: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- 0b110: clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

ADV_TIMER0 channel 1 threshold configuration bitfield.

6.2.1.9.6 ADV_TIMER0 channel 2 threshold configuration register. (T0_TH_CHANNEL2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - **MODE** (R/W)

ADV_TIMER0 channel 2 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- 0b001: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- 0b110: clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

ADV_TIMER0 channel 2 threshold configuration bitfield.

6.2.1.9.7 ADV_TIMER0 channel 3 threshold configuration register. (T0_TH_CHANNEL3)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER0 channel 3 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- 0b001: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- 0b110: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER0 channel 3 threshold configuration bitfield.

6.2.1.9.8 ADV_TIMER1 command register. (T1_CMD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 4 - **ARM** (R/W)

ADV_TIMER1 arm command bitfield.

Bit 3 - RESET (R/W)

ADV_TIMER1 reset command bitfield.

Bit 2 - UPDATE (R/W)

ADV_TIMER1 update command bitfield.

Bit 1 - **STOP** (R/W)

ADV_TIMER1 stop command bitfield.

Bit 0 - START (R/W)

ADV_TIMER1 start command bitfield.

6.2.1.9.9 ADV_TIMER1 configuration register. (T1_CONFIG)

Reset value: 0x0000

31								23	22	21	20	19	18	17	16
	Reserved										PRI	ESC			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		UPDOW NSEL	CLKSEL		MODE					INS	SEL			

Bits 23:16 - PRESC (R/W)

ADV_TIMER1 prescaler value configuration bitfield.

Bit 12 - UPDOWNSEL (R/W)

ADV_TIMER1 center-aligned mode configuration bitfield:

- 0b0: The counter counts up and down alternatively.
- 0b1: The counter counts up and resets to 0 when reach threshold.

Bit 11 - CLKSEL (R/W)

ADV_TIMER1 clock source configuration bitfield:

- 0b0: FLL
- 0b1: reference clock at 32kHz

Bits 10:8 - **MODE** (R/W)

ADV_TIMER1 trigger mode configuration bitfield:

- 0b000: trigger event at each clock cycle.
- 0b001: trigger event if input source is 0
- 0b010: trigger event if input source is 1
- 0b011: trigger event on input source rising edge
- 0b100: trigger event on input source falling edge
- 0b101: trigger event on input source falling or rising edge
- 0b110: trigger event on input source rising edge when armed
- 0b111: trigger event on input source falling edge when armed

Bits 7:0 - **INSEL** (R/W)

ADV_TIMER1 input source configuration bitfield:

- 0-31: GPIO[0] to GPIO[31]
- 32-35: Channel 0 to 3 of ADV_TIMER0
- 36-39: Channel 0 to 3 of ADV_TIMER1
- 40-43: Channel 0 to 3 of ADV_TIMER2
- 44-47: Channel 0 to 3 of ADV_TIMER3

6.2.1.9.10 ADV_TIMER1 threshold configuration register. (T1_THRESHOLD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TH_	HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - **TH_HI** (R/W)

ADV_TIMER1 threshold high part configuration bitfield. It defines end counter value.

Bits 15:0 - TH_LO (R/W)

ADV_TIMER1 threshold low part configuration bitfield. It defines start counter value.

6.2.1.9.11 ADV_TIMER1 channel 0 threshold configuration register. (T1_TH_CHANNEL0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER1 channel 0 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- 0b001: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- 0b110: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER1 channel 0 threshold configuration bitfield.

6.2.1.9.12 ADV_TIMER1 channel 1 threshold configuration register. (T1_TH_CHANNEL1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER1 channel 1 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- 0b001: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- 0b110: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER1 channel 1 threshold configuration bitfield.

6.2.1.9.13 ADV_TIMER1 channel 2 threshold configuration register. (T1_TH_CHANNEL2)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER1 channel 2 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- 0b001: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- 0b110: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER1 channel 2 threshold configuration bitfield.

6.2.1.9.14 ADV_TIMER1 channel 3 threshold configuration register. (T1_TH_CHANNEL3)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER1 channel 3 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- 0b001: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- 0b110: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER1 channel 3 threshold configuration bitfield.

6.2.1.9.15 ADV_TIMER2 command register. (T2_CMD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 4 - **ARM** (R/W)

ADV_TIMER2 arm command bitfield.

Bit 3 - RESET (R/W)

ADV_TIMER2 reset command bitfield.

Bit 2 - UPDATE (R/W)

ADV_TIMER2 update command bitfield.

Bit 1 - **STOP** (R/W)

ADV_TIMER2 stop command bitfield.

Bit 0 - START (R/W)

ADV_TIMER2 start command bitfield.

6.2.1.9.16 ADV_TIMER2 configuration register. (T2_CONFIG)

Reset value: 0x0000

31	31 30 29 28 21 26 25								22	21	20	19	18	17	16
	Reserved										PRI	ESC			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		UPDOW NSEL	CLKSEL		MODE					INS	SEL			

Bits 23:16 - **PRESC** (R/W)

ADV_TIMER2 prescaler value configuration bitfield.

Bit 12 - UPDOWNSEL (R/W)

ADV_TIMER2 center-aligned mode configuration bitfield:

- 0b0: The counter counts up and down alternatively.
- 0b1: The counter counts up and resets to 0 when reach threshold.

Bit 11 - CLKSEL (R/W)

ADV_TIMER2 clock source configuration bitfield:

- 0b0: FLL
- 0b1: reference clock at 32kHz

Bits 10:8 - **MODE** (R/W)

ADV_TIMER2 trigger mode configuration bitfield:

- 0b000: trigger event at each clock cycle.
- 0b001: trigger event if input source is 0
- 0b010: trigger event if input source is 1
- 0b011: trigger event on input source rising edge
- 0b100: trigger event on input source falling edge
- 0b101: trigger event on input source falling or rising edge
- 0b110: trigger event on input source rising edge when armed
- 0b111: trigger event on input source falling edge when armed

Bits 7:0 - INSEL (R/W)

ADV_TIMER2 input source configuration bitfield:

- 0-31: GPIO[0] to GPIO[31]
- 32-35: Channel 0 to 3 of ADV_TIMER0
- 36-39: Channel 0 to 3 of ADV_TIMER1
- 40-43: Channel 0 to 3 of ADV_TIMER2
- 44-47: Channel 0 to 3 of ADV_TIMER3

6.2.1.9.17 ADV_TIMER2 threshold configuration register. (T2_THRESHOLD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TH_	HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TH_	LO							

Bits 31:16 - **TH_HI** (R/W)

ADV_TIMER2 threshold high part configuration bitfield. It defines end counter value.

Bits 15:0 - TH_LO (R/W)

ADV_TIMER2 threshold low part configuration bitfield. It defines start counter value.

6.2.1.9.18 ADV_TIMER2 channel 0 threshold configuration register. (T2_TH_CHANNEL0)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - **MODE** (R/W)

ADV_TIMER2 channel 0 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- 0b001: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- 0b110: clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

ADV_TIMER2 channel 0 threshold configuration bitfield.

6.2.1.9.19 ADV_TIMER2 channel 1 threshold configuration register. (T2_TH_CHANNEL1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - **MODE** (R/W)

ADV_TIMER2 channel 1 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- 0b001: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- 0b110: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER2 channel 1 threshold configuration bitfield.

6.2.1.9.20 ADV_TIMER2 channel 2 threshold configuration register. (T2_TH_CHANNEL2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER2 channel 2 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- 0b001: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- 0b110: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER2 channel 2 threshold configuration bitfield.

6.2.1.9.21 ADV_TIMER2 channel 3 threshold configuration register. (T2_TH_CHANNEL3)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER2 channel 3 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- 0b001: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- 0b110: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

 ${\sf ADV_TIMER2}\ channel\ 3\ threshold\ configuration\ bit field.$

6.2.1.9.22 ADV_TIMER3 command register. (T3_CMD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 4 - **ARM** (R/W)

ADV_TIMER3 arm command bitfield.

Bit 3 - **RESET** (R/W)

ADV_TIMER3 reset command bitfield.

Bit 2 - UPDATE (R/W)

ADV_TIMER3 update command bitfield.

Bit 1 - **STOP** (R/W)

ADV_TIMER3 stop command bitfield.

Bit 0 - START (R/W)

ADV_TIMER3 start command bitfield.

6.2.1.9.23 ADV_TIMER3 configuration register. (T3_CONFIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved							PRI	ESC			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		UPDOW NSEL	CLKSEL		MODE					INS	SEL			

Bits 23:16 - PRESC (R/W)

ADV_TIMER3 prescaler value configuration bitfield.

Bit 12 - UPDOWNSEL (R/W)

 ${\sf ADV_TIMER3}\ center-aligned\ mode\ configuration\ bitfield:$

- 0b0: The counter counts up and down alternatively.
- 0b1: The counter counts up and resets to 0 when reach threshold.

Bit 11 - **CLKSEL** (R/W)

ADV_TIMER3 clock source configuration bitfield:

- 0b0: FLL
- 0b1: reference clock at 32kHz

Bits 10:8 - **MODE** (R/W)

ADV_TIMER3 trigger mode configuration bitfield:

- 0b000: trigger event at each clock cycle.
- 0b001: trigger event if input source is 0
- 0b010: trigger event if input source is 1
- 0b011: trigger event on input source rising edge
- 0b100: trigger event on input source falling edge
- 0b101: trigger event on input source falling or rising edge
- 0b110: trigger event on input source rising edge when armed
- 0b111: trigger event on input source falling edge when armed

Bits 7:0 - **INSEL** (R/W)

ADV_TIMER3 input source configuration bitfield:

- 0-31: GPIO[0] to GPIO[31]
- 32-35: Channel 0 to 3 of ADV_TIMER0
- 36-39: Channel 0 to 3 of ADV_TIMER1
- 40-43: Channel 0 to 3 of ADV_TIMER2
- 44-47: Channel 0 to 3 of ADV_TIMER3

6.2.1.9.24 ADV_TIMER3 threshold configuration register. (T3_THRESHOLD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TH_	,HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - **TH_HI** (R/W)

ADV_TIMER3 threshold high part configuration bitfield. It defines end counter value.

Bits 15:0 - TH_LO (R/W)

ADV_TIMER3 threshold low part configuration bitfield. It defines start counter value.

6.2.1.9.25 ADV_TIMER3 channel 0 threshold configuration register. (T3_TH_CHANNEL0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER3 channel 0 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- 0b001: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- 0b110: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER3 channel 0 threshold configuration bitfield.

6.2.1.9.26 ADV_TIMER3 channel 1 threshold configuration register. (T3_TH_CHANNEL1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER3 channel 1 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- 0b001: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- 0b110: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER3 channel 1 threshold configuration bitfield.

6.2.1.9.27 ADV_TIMER3 channel 2 threshold configuration register. (T3_TH_CHANNEL2)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER3 channel 2 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- 0b001: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- 0b110: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

 ${\sf ADV_TIMER3}\ channel\ 2\ threshold\ configuration\ bit field.$

6.2.1.9.28 ADV_TIMER3 channel 3 threshold configuration register. (T3_TH_CHANNEL3)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER3 channel 3 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- 0b001: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- 0b110: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER3 channel 3 threshold configuration bitfield.

6.2.1.9.29 ADV_TIMERS events configuration register. (EVENT_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	erved							EI	NΑ	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 19:16 - ENA (R/W)

ADV_TIMER output event enable configuration bitfield. ENA[i]=1 enables output event i generation.

Bits 15:12 - **SEL3** (R/W)

ADV_TIMER output event 3 source configuration bitfiled:

- 0b0000: ADV_TIMER0 channel 0.
- 0b0001: ADV_TIMER0 channel 1.
- 0b0010: ADV_TIMER0 channel 2.
- 0b0011: ADV_TIMER0 channel 3.
- 0b0100: ADV_TIMER1 channel 0.
- 0b0101: ADV_TIMER1 channel 1.
- 0b0110: ADV_TIMER1 channel 2.
- 0b0111: ADV_TIMER1 channel 3.
- 0b1000: ADV_TIMER2 channel 0.
- 0b1001: ADV_TIMER2 channel 1.
- 0b1010: ADV_TIMER2 channel 2.
- *0b1011*: ADV_TIMER2 channel 3.
- 0b1100: ADV_TIMER3 channel 0.
- 0b1101: ADV_TIMER3 channel 1.
- 0b1110: ADV_TIMER3 channel 2.
- 0b1111: ADV_TIMER3 channel 3.

Bits 11:8 - SEL2 (R/W)

ADV_TIMER output event 2 source configuration bitfiled:

- 0b0000: ADV_TIMER0 channel 0.
- 0b0001: ADV_TIMER0 channel 1.
- 0b0010: ADV_TIMER0 channel 2.
- 0b0011: ADV_TIMER0 channel 3.
- 0b0100: ADV_TIMER1 channel 0.
- 0b0101: ADV TIMER1 channel 1.
- 0b0110: ADV_TIMER1 channel 2.
- 0b0111: ADV_TIMER1 channel 3.
- 0b1000: ADV_TIMER2 channel 0.
- 0b1001: ADV_TIMER2 channel 1.
- 0b1010: ADV_TIMER2 channel 2.
- 0b1011: ADV_TIMER2 channel 3.
- 0b1100: ADV_TIMER3 channel 0.
- 0b1101: ADV_TIMER3 channel 1.
- 0b1110: ADV_TIMER3 channel 2.
- 0b1111: ADV_TIMER3 channel 3.

Bits 7:4 - SEL1 (R/W)

ADV_TIMER output event 1 source configuration bitfiled:

- 0b0000: ADV_TIMER0 channel 0.
- 0b0001: ADV_TIMER0 channel 1.
- 0b0010: ADV_TIMER0 channel 2.
- 0b0011: ADV_TIMER0 channel 3.
- 0b0100: ADV_TIMER1 channel 0.
- 0b0101: ADV_TIMER1 channel 1.
- 0b0110: ADV_TIMER1 channel 2.
- 0b0111: ADV_TIMER1 channel 3.
- 0b1000: ADV_TIMER2 channel 0.
- 0b1001: ADV_TIMER2 channel 1.
- 0b1010: ADV_TIMER2 channel 2.
- 0b1011: ADV_TIMER2 channel 3.
- Ob1100: ADV_TIMER3 channel 0.
- 0b1101: ADV_TIMER3 channel 1.0b1110: ADV_TIMER3 channel 2.
- 0b1111: ADV_TIMER3 channel 3.

Bits 3:0 - **SEL0** (R/W)

ADV_TIMER output event 0 source configuration bitfiled:

- 0b0000: ADV_TIMER0 channel 0.
- 0b0001: ADV_TIMER0 channel 1.
- 0b0010: ADV_TIMER0 channel 2.
- 0b0011: ADV_TIMER0 channel 3.
- 0b0100: ADV_TIMER1 channel 0.
- 0b0101: ADV_TIMER1 channel 1.
- 0b0110: ADV_TIMER1 channel 2.
- 0b0111: ADV_TIMER1 channel 3.
- 0b1000: ADV_TIMER2 channel 0.
- 0b1001: ADV_TIMER2 channel 1.
- 0b1010: ADV_TIMER2 channel 2.
- 0b1011: ADV_TIMER2 channel 3.
- 0b1100: ADV_TIMER3 channel 0.
- 0b1101: ADV_TIMER3 channel 1.
- 0b1110: ADV_TIMER3 channel 2.
- 0b1111: ADV_TIMER3 channel 3.

6.2.1.9.30 ADV_TIMERS channels clock gating configuration register. (CG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15:0 - **ENA** (R/W)

ADV_TIMER clock gating configuration bitfield.

- ENA[i]=0: clock gate ADV_TIMERi.
- ENA[i]=1: enable ADV_TIMERi.

6.2.2 SoC control unit

None

6.2.2.1 SoC Control Registers registers

Name	Address	Size	Туре	Access	Default	Description
INFO	0x1A106000	32	Status	R	0x0018	Core information register
REG_FCBOOT	0x1A106004	32	Config	R/W	0x1A000080	FC Boot addres configuration register
REG_FCFETCH	0x1A106008	32	Config	W	0x0001	FC fetch enable configuration register (bit 0 sets fetch enable)
CL_ISOLATE	0x1A10600C	32	Config	R/W	0x0001	Isolate cluster register
CL_BUSY	0x1A10606C	32	Status	R	0x0000	Cluster busy register
CL_BYPASS	0x1A106070	32	Config	R/W	0x0400	PMU bypass configuration register
<u>JTAGREG</u>	0x1A106074	32	Config	R/W	0x0000	JTAG external register
L2_SLEEP	0x1A106078	32	Config	R/W	0x0001	L2 sleep configuration register
SLEEP_CTRL	0x1A10607C	32	Status	R	0x0000	Alias for SAFE_PMU_SLEEPCTRL

Name	Address	Size	Туре	Access	Default	Description
CORESTATUS	0x1A1060A0	32	Status	R/W	0x0000	EOC and chip status register
CORESTATUS_RO	0x1A1060C0	32	Status	R	0x0000	EOC and chip status register read mirror
SAFE_PMU_RAR	0x1A106100	32	Config	R/W	0x2A52D	DC/DC configuration register
SAFE_PMU_SLEEPCTRL	0x1A106104	32	Config	R/W	0x0000	Sleep modes configuration register
SAFE_PMU_FORCE	0x1A106108	32	Config	R/W	0x0000	L2 rententive state configuration
SAFE_PADFUN0	0x1A106140	32	Config	R/W	0x0000	Mux config register (pad 0-15)
SAFE_PADFUN1	0x1A106144	32	Config	R/W	0x0000	Mux config register (pad 16–31)
SAFE_PADFUN2	0x1A106148	32	Config	R/W	0x0000	Mux config register (pad 32-47)
SAFE_SLEEPPADCFG0	0x1A106150	32	Config	R/W	0x0000	Sleep config register (pad 0–15)
SAFE_SLEEPPADCFG1	0x1A106154	32	Config	R/W	0x0000	Mux config register (pad 16–31)
SAFE_SLEEPPADCFG2	0x1A106158	32	Config	R/W	0x0000	Mux config register (pad 32-47)
SAFE_PADSLEEP	0x1A106160	32	Config	R/W	0x0000	Enable Sleep mode for pads
SAFE_PADCFG0	0x1A106180	32	Config	R/W	0x0000	Function register (pad 0 to 3)
SAFE_PADCFG1	0x1A106184	32	Config	R/W	0x0000	Function register (pad 4 to 7)
SAFE_PADCFG2	0x1A106188	32	Config	R/W	0x0000	Function register (pad 8 to 11)
SAFE_PADCFG3	0x1A10618C	32	Config	R/W	0x0000	Function register (pad 12 to 15)
SAFE_PADCFG4	0x1A106190	32	Config	R/W	0x0000	Function register (pad 16 to 19)
SAFE_PADCFG5	0x1A106194	32	Config	R/W	0x0000	Function register (pad 20 to 23)
SAFE_PADCFG6	0x1A106198	32	Config	R/W	0x0000	Function register (pad 24 to 27)
SAFE_PADCFG7	0x1A10619C	32	Config	R/W	0x0000	Function register (pad 28 to 31)
SAFE_PADCFG8	0x1A1061A0	32	Config	R/W	0x0000	Function register (pad 32 to 35)
SAFE_PADCFG9	0x1A1061A4	32	Config	R/W	0x0000	Function register (pad 36 to 39)
SAFE_PADCFG10	0x1A1061A8	32	Config	R/W	0x0000	Function register (pad 40 to 43)
SAFE_PADCFG11	0x1A1061AC	32	Config	R/W	0x0000	Function register (pad 44 to 47)
REG_GPIO_ISO	0x1A1061C0	32	Config	R/W	0x0000	GPIO power domain pad input isolation register
REG_CAM_ISO	0x1A1061C4	32	Config	R/W	0x0000	CAM power domain pad input isolation register
REG_LVDS_ISO	0x1A1061C8	32	Config	R/W	0x0000	LVDS power domain pad input isolation register

Table 16. SoC Control Registers registers table

6.2.2.2 SoC control unit registers details

6.2.2.2.1 Core information register (INFO)

Reset value: 0x0018

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							NB_CC	ORES							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							NB								

Bits 31:16 - **NB_CORES** (R)

Reset value: 0x00

Number of cores

Bits 15:0 - **NB_CL** (R)

Reset value: 0x18

Number of clusters

6.2.2.2.2 FC Boot addres configuration register (REG_FCBOOT)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							BOOT_	ADDR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **BOOT_ADDR** (R/W)

Configuration of FC boot address

6.2.2.2.3 FC fetch enable configuration register (bit 0 sets fetch enable) (REG_FCFETCH)

Reset value: 0x0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **EN** (W)

Reset value: 0b1

Configuration of FC fetch enable:

• 0b0: not set

• 0b1: set

6.2.2.2.4 Isolate cluster register (CL_ISOLATE)

Reset value: 0x0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **EN** (R/W)

Reset value: 0b1

Isolate cluster. Inhibits AXI transactions from cluster to SoC:

• 0b0: Disable

• 0b1: Enable

6.2.2.2.5 Cluster busy register (CL_BUSY)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **BUSY** (R)

Cluster busy flag (i.e. It's 1 if there is at least 1 active block in the cluster)

6.2.2.2.6 PMU bypass configuration register (CL_BYPASS)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Rese	rved							PMUPO WDOWN	TRCPO WOK
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 17 - PMUPOWDOWN (R/W)

Reset value: 0b0

Cluster power down from Maestro PMU status bitfield.

Bit 16 - TRCPOWOK (R/W)

Reset value: 0b0

Cluster power ok from cluster TRC status bitfield

Bit 13 - RST (R/W)

Reset value: 0b0

Cluster reset configuration bitfield:

- 1'b0: nothing
- 1'b1: reset the cluster

Bit 12 - **FLL_RET** (R/W)

Reset value: 0b0

Cluster FLL retentive configuration bitfield:

- 1'b0: FLL on
- 1'b1: FLL retentive mode

Bit 11 - **FLL_PWD** (R/W)

Reset value: 0b0

Cluster FLL shutdown configuration bitfield:

- 1'b0: FLL on
- 1'b1: FLL shutdown mode

Bit 10 - CG (R/W)

Reset value: 0b1

Cluster clock gate configuration bitfield:

- 1'b0: disabled
- 1'b1: enabled

It should always be used before switching cluster FLL to shutdown or retentive mode.

Bit 9 - BYP_CLK (R/W)

Reset value: 0b0

Bypass cluster clock and reset control by Maestro PMU configuration bitfield:

- 1'b0: disabled
- 1'b1: enabled

Bits 8:7 - PROG_DEL (R/W)

Reset value: 0b00

Number of REFCLK 32kHz after cluster power ok has arised to release TR isolation configuration bitfield.

Bits 6:4 - CURRSET (R/W)

Reset value: 0b000

Max current allowed on cluster TRC configuration bitfield.

Bit 3 - CL_STATE (R/W)

Reset value: 0b0

Cluster state configuration and status bitfield:

• 1'b0: off

• 1'b1: on

Status information is correct only when bypass mode is enabled.

Bit 1 - BYP_CFG (R/W)

Reset value: 0b0

Bypass Maestro PMU configuration selection configuration bitfield:

• 1'b0: use default

• 1'b1: use user configuration (bitfields from bits 3 to 15 of CL_BYPASS register)

Bit 0 - BYP_POW (R/W)

Reset value: 0b0

Bypass Maestro PMU controller configuration bitfield:

1'b0: disabled1'b1: enabled

6.2.2.2.7 JTAG external register (JTAGREG)

Reset value: 0x0000

This register is used for synchronisation and boot mode configuration from an external debugger.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved		-	EXT_BT_M)	EXT_SY NC		Rese	erved	•		INT_BT_MC)	INT_SY NC

Bits 11:9 - **EXT_BT_MD** (R)

JTAG external register used for selecting boot mode configuration from external debugger

Bit 8 - EXT_SYNC (R)

JTAG external register used for synchronisation from external debugger

Bits 3:1 - **INT_BT_MD** (R/W)

JTAG internal register used for selecting boot mode configuration from external debugger

Bit 0 - INT_SYNC (R/W)

JTAG internal register used for synchronisation from external debugger

6.2.2.2.8 L2 sleep configuration register (L2_SLEEP)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								L2_SLE EP

Bit 0 - **L2_SLEEP** (R/W)

Reset value: 0b1

L2 memory sleep configuration

6.2.2.2.9 Alias for SAFE_PMU_SLEEPCTRL (SLEEP_CTRL)

Reset value: 0x0000

This register will be accessible in 1 clock cycle

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SLEEP	_CTRL							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - SLEEP_CTRL (R)

Alias for SAFE_PMU_SLEEPCTRL(i.e. will be accessible in 1 clock cycle)

6.2.2.2.10 EOC and chip status register (CORESTATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STA	TUS							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **STATUS** (R/W)

EOC and chip status register

6.2.2.2.11 EOC and chip status register read mirror (CORESTATUS_RO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STA	TUS							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **STATUS** (R)

EOC and chip status register

6.2.2.2.12 DC/DC configuration register (SAFE_PMU_RAR)

Reset value: 0x2A52D

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved				RV_VOLT				Reserved				LV_VOLT		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 28:24 - RV_VOLT (R/W)

Reset value: 0x0

DC/DC Retentive Voltage setting

Bits 20:16 - LV_VOLT (R/W)

Reset value: 0x2

DC/DC Low Voltage setting

Bits 12:8 - MV_VOLT (R/W)

Reset value: 0x5

DC/DC Medium Voltage setting (not used)

Bits 4:0 - **NV_VOLT** (R/W)

Reset value: 0xD

DC/DC Nominal Voltage setting

6.2.2.2.13 Sleep modes configuration register (SAFE_PMU_SLEEPCTRL)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Reserved						CL_WAK E	ВТТ	YPE	EXTINT	BTDEV
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 20 - CL_WAKE (R/W)

Cluster state to restore after warm boot:

- 1'b0: off
- 1'b1: on

Bits 19:18 - **BTTYPE** (R/W)

Select boot type:

- 0b00: cold boot
- 0b01: deep sleep
- 0b10: retentive deep sleep

Bit 17 - **EXTINT** (R)

External wake-up interrupt status (automatically resetted after read)

- 0b0: wake-up triggered by RTC
- 0b1: wake-up triggered by external event

Bit 16 - **BTDEV** (R/W)

Warm bootmode:

- 0b0: Boot from ROM
- 0b1: Boot from L2

Bit 14 - WAKESTATE (R/W)

Power state to restore after warm boot

- 0b0: SoC_LV
- 0b1: SoC_HV

Bit 13 - EXTWAKE_EN (R/W)

Enable external wake-up;

- 0b0; external wake-up disabled
- 0b1: external wake-up enabled

Bits 12:11 - EXTWAKE_TYPE (R/W)

Select external wake-up mode:

- 0b00: rise event
- 0b01: fall event
- 0b10: high level
- 0b11: low level

Bits 10:6 - EXTWAKE_SRC (R/W)

Select external wake-up source (GPIO ID):

- 0b00000: GPIO 0
- 0b00001: GPIO 1
- 0b00010: GPIO 2
- 0b00011: GPIO 3
- 0b00100: GPIO 4
- 0b00101: GPIO 5
- 0b00110: GPIO 6
- 0b00111: GPIO 7
- *0b01000*: GPIO 8
- 0b01001: GPIO 9
- 0b01010: GPIO 10
- 0b01011: GPIO 11
- 0b01100: GPIO 12
- 0b01101: GPIO 13
- 0b01110: GPIO 14
- 0b01111: GPIO 15
- 0b10000: GPIO 16
- 0b10001: GPIO 17
- *0b10010*: GPIO 18
- 0b10011: GPIO 19
- *0b10100*: GPIO 20
- *0b10101*: GPIO 21
- *0b10110*: GPIO 22
- *0b10111*: GPIO 23
- *0b11000*: GPIO 24
- *0b11001*: GPIO 25
- *0b11010*: GPIO 26
- 0b11011: GPIO 27
- 0b11100: GPIO 28
 0b11101: GPIO 29
- *0b11110*: GPIO 30
- *0b11111*: GPIO 31

Bit 5 - **CL_FLL** (R/W)

Configure retention mode for cluster FLL:

- 0b0: Non retentive
- 0b1: Retentive

Bit 4 - SOC_FLL (R/W)

Configure retention mode for SoC FLL:

- 0b0: Non retentive
- 0b1: Retentive

Bit 3 - **L2_R3** (R/W)

Configure retention mode for region 3 of L2 memory:

- 0b0: Non retentive
- 0b1: Retentive

Bit 2 - **L2_R2** (R/W)

Configure retention mode for region 2 of L2 memory:

- 0b0: Non retentive
- 0b1: Retentive

Bit 1 - **L2_R1** (R/W)

Configure retention mode for region 1 of L2 memory:

- 0b0: Non retentive
- 0b1: Retentive

Bit 0 - **L2_R0** (R/W)

Configure retention mode for region 0 of L2 memory:

- 0b0: Non retentive
- 0b1: Retentive

6.2.2.2.14 L2 rententive state configuration (SAFE_PMU_FORCE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 7 - **PD_L2_R3** (R/W)

Force power down on region 3 of L2 memory:

0b0: power up

0b1: power down

Bit 6 - **PD_L2_R2** (R/W)

Force power down on region 2 of L2 memory:

0b0: power up

0b1: power down

Bit 5 - **PD_L2_R1** (R/W)

Force power down on region 1 of L2 memory:

0b0: power up

0b1: power down

Bit 4 - **PD_L2_R0** (R/W)

Force power down on region 0 of L2 memory:

0b0: power up

0b1: power down

Bit 3 - **RET_L2_R3** (R/W)

Force retentive state on region 3 of L2 memory:

0b0: not state retentive

0b1: state retentive

Bit 2 - RET_L2_R2 (R/W)

Force retentive state on region 2 of L2 memory:

0b0: not state retentive

0b1: state retentive

Bit 1 - RET_L2_R1 (R/W)

Force retentive state on region 1 of L2 memory:

0b0: not state retentive

0b1: state retentive

Bit 0 - **RET_L2_R0** (R/W)

Force retentive state on region 0 of L2 memory:

0b0: not state retentive

0b1: state retentive

6.2.2.2.15 Enable Sleep mode for pads (SAFE_PADSLEEP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **EN** (R/W)

Enable pad sleep mode:

0b0: disable *0b1*: enable

6.2.2.2.16 GPIO power domain pad input isolation register (REG_GPIO_ISO)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **ISO** (R/W)

Configuration of GPIO domain pads isolation:

• 0b0: not isolated

• 0b1: isolated

6.2.2.2.17 CAM power domain pad input isolation register (REG_CAM_ISO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **ISO** (R/W)

Configuration of CAM domain pads isolation:

• 0b0: not isolated

• 0b1: isolated

6.2.2.2.18 LVDS power domain pad input isolation register (REG_LVDS_ISO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								ISO

Bit 0 - ISO (R/W)

Configuration of LVDS domain pads isolation:

• 0b0: not isolated

• 0b1: isolated

6.2.3 MicroDMA Subsystem

6.2.3.1 uDMA control unit

None

6.2.3.1.1 UDMA control registers

Name	Address	Size	Туре	Access	Default	Description
CFG_CG	0x1A200000	32	Config	R/W	0x0000	uDMA interfaces clock gate configuration register.
CFG_EVENT	0x1A200004	32	Config	R/W	0x0000	uDMA interfaces trigger events configuration register.

Table 17. UDMA control registers table

6.2.3.1.2 uDMA control unit registers details

6.2.3.1.2.1 uDMA interfaces clock gate configuration register. (CFG_CG)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 9 - CPI (R/W)

uDMA interfaces clock gate configuration for CPI:

- 0b0: CPI interface clock gate is enabled
- 0b1: CPI interface clock gate is disabled

Bit 8 - **I2S** (R/W)

uDMA interfaces clock gate configuration for I2S:

- 0b0: I2S interface clock gate is enabled
- 0b1: I2S interface clock gate is disabled

Bit 7 - TCDM (R/W)

uDMA interfaces clock gate configuration for TCDM:

- 0b0: TCDM interface clock gate is enabled
- 0b1: TCDM interface clock gate is disabled

Bit 6 - I2C1 (R/W)

uDMA interfaces clock gate configuration for I2C1:

- 0b0: I2C1 interface clock gate is enabled
- 0b1: I2C1 interface clock gate is disabled

Bit 5 - **I2C0** (R/W)

uDMA interfaces clock gate configuration for I2C0:

- 0b0: I2C0 interface clock gate is enabled
- 0b1: I2C0 interface clock gate is disabled

Bit 4 - **UART** (R/W)

uDMA interfaces clock gate configuration for UART:

- 0b0: UART interface clock gate is enabled
- 0b1: UART interface clock gate is disabled

Bit 3 - HYPER (R/W)

uDMA interfaces clock gate configuration for HYPER:

- 0b0: HYPER interface clock gate is enabled
- 0b1: HYPER interface clock gate is disabled

Bit 2 - **SPIM1** (R/W)

uDMA interfaces clock gate configuration for SPIM1:

- 0b0: SPIM1 interface clock gate is enabled
- 0b1: SPIM1 interface clock gate is disabled

Bit 1 - **SPIM0** (R/W)

uDMA interfaces clock gate configuration for SPIM0:

- 0b0: SPIM0 interface clock gate is enabled
- 0b1: SPIM0 interface clock gate is disabled

Bit 0 - **LVDS** (R/W)

uDMA interfaces clock gate configuration for LVDS:

- 0b0: LVDS interface clock gate is enabled
- 0b1: LVDS interface clock gate is disabled

6.2.3.1.2.2 uDMA interfaces trigger events configuration register. (CFG_EVENT)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			EV	T3							EV	T2			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:24 - EVT3 (R/W)

uDMA interfaces trigger event 3 configuration bitfield. CFG_EVT3 selects which SoC event is propageted to uDMA interface trigger event 3.

Bits 23:16 - EVT2 (R/W)

uDMA interfaces trigger event 2 configuration bitfield. CFG_EVT2 selects which SoC event is propageted to uDMA interface trigger event 2.

Bits 15:8 - **EVT1** (R/W)

uDMA interfaces trigger event 1 configuration bitfield. CFG_EVT1 selects which SoC event is propageted to uDMA interface trigger event 1.

Bits 7:0 - **EVT0** (R/W)

uDMA interfaces trigger event 0 configuration bitfield. CFG_EVT0 selects which SoC event is propageted to uDMA interface trigger event 0.

6.2.3.2 uDMA UART interfaces

None

6.2.3.2.1 UART Channel 0 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A201000	32	Config	R/W	0x0000	uDMA RX UART buffer base address configuration register.
RX_SIZE	0x1A201004	32	Config	R/W	0x0000	uDMA RX UART buffer size configuration register.
RX_CFG	0x1A201008	32	Config	R/W	0x0000	uDMA RX UART stream configuration register.
TX_SADDR	0x1A201010	32	Config	R/W	0x0000	uDMA TX UART buffer base address configuration register.
TX_SIZE	0x1A201014	32	Config	R/W	0x0000	uDMA TX UART buffer size configuration register.
TX_CFG	0x1A201018	32	Config	R/W	0x0000	uDMA TX UART stream configuration register.
<u>STATUS</u>	0x1A201020	32	Status	R	0x0000	uDMA UART status register.
SETUP	0x1A201024	32	Config	R/W	0x0000	UDMA UART configuration register.
<u>ERROR</u>	0x1A201028	32	Status	R	0x0000	uDMA UART Error status
IRQ_EN	0x1A20102C	32	Config	R/W	0x0000	uDMA UART Read or Error interrupt enable register.
VALID	0x1A201030	32	Status	R	0x0000	uDMA UART Read polling data valid flag register.
DATA	0x1A201034	32	Data	R	0x0000	uDMA UART Read polling data register.

Table 18 UART Channel 0 registers table

Name	Address		Туре	Access	Default	Description
------	---------	--	------	--------	---------	-------------

6.2.3.2.2 UART Channel 1 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A202000	32	Config	R/W	0x0000	uDMA RX UART buffer base address configuration register.
RX_SIZE	0x1A202004	32	Config	R/W	0x0000	uDMA RX UART buffer size configuration register.
RX_CFG	0x1A202008	32	Config	R/W	0x0000	uDMA RX UART stream configuration register.
TX_SADDR	0x1A202010	32	Config	R/W	0x0000	uDMA TX UART buffer base address configuration register.
TX_SIZE	0x1A202014	32	Config	R/W	0x0000	uDMA TX UART buffer size configuration register.
TX_CFG	0x1A202018	32	Config	R/W	0x0000	uDMA TX UART stream configuration register.
<u>STATUS</u>	0x1A202020	32	Status	R	0x0000	uDMA UART status register.
SETUP	0x1A202024	32	Config	R/W	0x0000	UDMA UART configuration register.
ERROR	0x1A202028	32	Status	R	0x0000	uDMA UART Error status
IRQ_EN	0x1A20202C	32	Config	R/W	0x0000	uDMA UART Read or Error interrupt enable register.
VALID	0x1A202030	32	Status	R	0x0000	uDMA UART Read polling data valid flag register.
<u>DATA</u>	0x1A202034	32	Data	R	0x0000	uDMA UART Read polling data register.

Table 19. UART Channel 1 registers table

6.2.3.2.3 UART Channel 2 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A203000	32	Config	R/W	0x0000	uDMA RX UART buffer base address configuration register.
RX_SIZE	0x1A203004	32	Config	R/W	0x0000	uDMA RX UART buffer size configuration register.
RX_CFG	0x1A203008	32	Config	R/W	0x0000	uDMA RX UART stream configuration register.
TX_SADDR	0x1A203010	32	Config	R/W	0x0000	uDMA TX UART buffer base address configuration register.
TX_SIZE	0x1A203014	32	Config	R/W	0x0000	uDMA TX UART buffer size configuration register.
TX_CFG	0x1A203018	32	Config	R/W	0x0000	uDMA TX UART stream configuration register.
<u>STATUS</u>	0x1A203020	32	Status	R	0x0000	uDMA UART status register.
<u>SETUP</u>	0x1A203024	32	Config	R/W	0x0000	UDMA UART configuration register.
ERROR	0x1A203028	32	Status	R	0x0000	uDMA UART Error status
IRQ_EN	0x1A20302C	32	Config	R/W	0x0000	uDMA UART Read or Error interrupt enable register.
VALID	0x1A203030	32	Status	R	0x0000	uDMA UART Read polling data valid flag register.
<u>DATA</u>	0x1A203034	32	Data	R	0x0000	uDMA UART Read polling data register.

Table 20. UART Channel 2 registers table

6.2.3.2.4 uDMA UART interface registers details

6.2.3.2.4.1 uDMA RX UART buffer base address configuration register. (RX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	15 14 12 12 11 10 0 0 7 5 5 4 2 2 1 0														

Bits 15:0 - **RX_SADDR** (R/W)

RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

6.2.3.2.4.2 uDMA RX UART buffer size configuration register. (RX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								RX_SIZ E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX S	175							

Bits 16:0 - RX_SIZE (R/W)

RX buffer size bitfield in bytes. (128kBytes maximum)

• Read: returns remaining buffer size to transfer.

• Write: sets buffer size.

6.2.3.2.4.3 uDMA RX UART stream configuration register. (RX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Reserved					CLR	PENDIN G	EN		Reserved		CONTIN OUS

Bit 6 - CLR (W)

RX channel clear and stop transfer:

- 0b0: disable
- 0b1: stop and clear the on-going transfer

Bit 5 - **PENDING** (R)

RX transfer pending in queue status flag:

- 0b0: no pending transfer in the queue
- 0b1: pending transfer in the queue

Bit 4 - **EN** (R/W)

RX channel enable and start transfer bitfield:

- 0b0: disable
- 0b1: enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

Bit 0 - CONTINOUS (R/W)

RX channel continuous mode bitfield:

- 0b0: disabled
- 0b1: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

6.2.3.2.4.4 uDMA TX UART buffer base address configuration register. (TX_SADDR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15															

Bits 15:0 - TX_SADDR (R/W)

TX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets buffer base address

6.2.3.2.4.5 uDMA TX UART buffer size configuration register. (TX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Pecanied													TX_SIZE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														

Bits 16:0 - **TX_SIZE** (R/W)

TX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

6.2.3.2.4.6 uDMA TX UART stream configuration register. (TX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•		Reserved	•		•		CLR	PENDIN G	EN		Reserved		CONTIN

Bit 6 - **CLR** (W)

TX channel clear and stop transfer bitfield:

- 0b0: disabled
- 0b1: stop and clear the on-going transfer

Bit 5 - PENDING (R)

TX transfer pending in queue status flag:

- 0b0: no pending transfer in the queue
- 0b1: pending transfer in the queue

Bit 4 - EN (R/W)

TX channel enable and start transfer bitfield:

- 0b0: disabled
- 0b1: enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

Bit 0 - CONTINOUS (R/W)

TX channel continuous mode bitfield:

- 0b0: disabled
- 0b1: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

6.2.3.2.4.7 uDMA UART status register. (STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Rese	rved							RX_BUS Y	TX_BUS Y

Bit 1 - **RX_BUSY** (R)

RX busy status flag:

- 0b0: no RX transfer on-going
- 0b1: RX transfer on-going

Bit 0 - **TX_BUSY** (R)

TX busy status flag:

- 0b0: no TX transfer on-going
- 0b1: TX transfer on-going

6.2.3.2.4.8 UDMA UART configuration register. (SETUP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	CLKDIV														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			RX_ENA	TX_ENA	Rese	erved	CLEAN_ FIFO	POLLIN G_EN	STOP_B ITS	BIT_LE	NGTH	PARITY _ENA

Bits 31:16 - CLKDIV (R/W)

 ${\tt UART\ Clock\ divider\ configuration\ bitfield.\ The\ baudrate\ is\ equal\ to\ SOC_FREQ/CLKDIV.}$

Bit 9 - **RX_ENA** (R/W)

RX transceiver configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 8 - **TX_ENA** (R/W)

TX transceiver configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 5 - CLEAN_FIFO (R/W)

In all mode clean the RX fifo, set 1 then set 0 to realize a reset fifo:

- 0b0: Stop Clean the RX FIFO.
- 0b1: Clean the RX FIFO.

Bit 4 - POLLING_EN (R/W)

When in uart read, use polling method to read the data, read interrupt enable flag will be ignored:

- 0b0: Do not using polling method to read data.
- 0b1: Using polling method to read data. Interrupt enable flag will be ignored.

Bit 3 - STOP_BITS (R/W)

Stop bits length bitfield:

- 0b0: 1 stop bit
- 0b1: 2 stop bits

Bits 2:1 - BIT_LENGTH (R/W)

Character length bitfield:

- 0b00: 5 bits
- 0b01: 6 bits
- 0b10: 7 bits
- 0b11: 8 bits

Bit 0 - PARITY_ENA (R/W)

Parity bit generation and check configuration bitfield:

- 0b0: disabled
- 0b1: enabled

6.2.3.2.4.9 uDMA UART Error status (ERROR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Rese	rved							RX_ERR _PARIT _Y	RX_ERR _OVERF LOW

Bit 1 - RX_ERR_PARITY (R)

RX parity error status flag:

- 0b0: no error
- 0b1: RX parity error occurred

Bit 0 - RX_ERR_OVERFLOW (R)

RX overflow error status flag:

- 0b0: no error
- 0b1: RX overflow error occurred

6.2.3.2.4.10 uDMA UART Read or Error interrupt enable register. (IRQ_EN)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 1 - ERROR (R/W)

Error interrupt in enable flag:

- 0b0: Error IRQ disable
- 0b1: Error IRQ enable

Bit 0 - **RX** (R/W)

Rx interrupt in enable flag:

- 0b0: RX IRQ disable
- 0b1: RX IRQ enable

6.2.3.2.4.11 uDMA UART Read polling data valid flag register. (VALID)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **READY** (R)

Used only in RX polling method to indicate data is ready for read:

- 0b0: Data is not ready to read
- 0b1: Data is ready to read

6.2.3.2.4.12 uDMA UART Read polling data register. (DATA)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **BYTE** (R)

RX read data for polling or interrupt

6.2.3.3 uDMA USART interfaces

None

6.2.3.3.1 USART Channel 0 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A204000	32	Config	R/W	0x0000	uDMA RX UART buffer base address configuration register.
RX_SIZE	0x1A204004	32	Config	R/W	0x0000	uDMA RX UART buffer size configuration register.
RX_CFG	0x1A204008	32	Config	R/W	0x0000	uDMA RX UART stream configuration register.
TX_SADDR	0x1A204010	32	Config	R/W	0x0000	uDMA TX UART buffer base address configuration register.
TX_SIZE	0x1A204014	32	Config	R/W	0x0000	uDMA TX UART buffer size configuration register.

Name	Address	Size	Туре	Access	Default	Description
TX_CFG	0x1A204018	32	Config	R/W	0x0000	uDMA TX UART stream configuration register.
<u>STATUS</u>	0x1A204020	32	Status	R	0x0000	uDMA UART status register.
SETUP	0x1A204024	32	Config	R/W	0x0000	UDMA UART configuration register.
ERROR	0x1A204028	32	Status	R	0x0000	uDMA UART Error status
IRQ_EN	0x1A20402C	32	Config	R/W	0x0000	uDMA UART Read or Error interrupt enable register.
VALID	0x1A204030	32	Status	R	0x0000	uDMA UART Read polling data valid flag register.
<u>DATA</u>	0x1A204034	32	Data	R	0x0000	uDMA UART Read polling data register.

Table 21. USART Channel 0 registers table

6.2.3.3.2 USART Channel 1 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A205000	32	Config	R/W	0x0000	uDMA RX UART buffer base address configuration register.
RX_SIZE	0x1A205004	32	Config	R/W	0x0000	uDMA RX UART buffer size configuration register.
RX_CFG	0x1A205008	32	Config	R/W	0x0000	uDMA RX UART stream configuration register.
TX_SADDR	0x1A205010	32	Config	R/W	0x0000	uDMA TX UART buffer base address configuration register.
TX_SIZE	0x1A205014	32	Config	R/W	0x0000	uDMA TX UART buffer size configuration register.
TX_CFG	0x1A205018	32	Config	R/W	0x0000	uDMA TX UART stream configuration register.
<u>STATUS</u>	0x1A205020	32	Status	R	0x0000	uDMA UART status register.
<u>SETUP</u>	0x1A205024	32	Config	R/W	0x0000	UDMA UART configuration register.
<u>ERROR</u>	0x1A205028	32	Status	R	0x0000	uDMA UART Error status
IRQ_EN	0x1A20502C	32	Config	R/W	0x0000	uDMA UART Read or Error interrupt enable register.
VALID	0x1A205030	32	Status	R	0x0000	uDMA UART Read polling data valid flag register.
<u>DATA</u>	0x1A205034	32	Data	R	0x0000	uDMA UART Read polling data register.

Table 22. USART Channel 1 registers table

6.2.3.3.3 USART Channel 2 registers

Name	Address	Size	Type	Access	Default	Description
RX_SADDR	0x1A206000	32	Config	R/W	0x0000	uDMA RX UART buffer base address configuration register.
RX_SIZE	0x1A206004	32	Config	R/W	0x0000	uDMA RX UART buffer size configuration register.
RX_CFG	0x1A206008	32	Config	R/W	0x0000	uDMA RX UART stream configuration register.
TX_SADDR	0x1A206010	32	Config	R/W	0x0000	uDMA TX UART buffer base address configuration register.
TX_SIZE	0x1A206014	32	Config	R/W	0x0000	uDMA TX UART buffer size configuration register.
TX_CFG	0x1A206018	32	Config	R/W	0x0000	uDMA TX UART stream configuration register.
<u>STATUS</u>	0x1A206020	32	Status	R	0x0000	uDMA UART status register.
SETUP	0x1A206024	32	Config	R/W	0x0000	UDMA UART configuration register.
ERROR	0x1A206028	32	Status	R	0x0000	uDMA UART Error status
IRQ_EN	0x1A20602C	32	Config	R/W	0x0000	uDMA UART Read or Error interrupt enable register.
VALID	0x1A206030	32	Status	R	0x0000	uDMA UART Read polling data valid flag register.
<u>DATA</u>	0x1A206034	32	Data	R	0x0000	uDMA UART Read polling data register.

Table 23. USART Channel 2 registers table

6.2.3.3.4 USART Channel 3 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A207000	32	Config	R/W	0x0000	uDMA RX UART buffer base address configuration register.
RX_SIZE	0x1A207004	32	Config	R/W	0x0000	uDMA RX UART buffer size configuration register.
RX_CFG	0x1A207008	32	Config	R/W	0x0000	uDMA RX UART stream configuration register.
TX_SADDR	0x1A207010	32	Config	R/W	0x0000	uDMA TX UART buffer base address configuration register.
TX_SIZE	0x1A207014	32	Config	R/W	0x0000	uDMA TX UART buffer size configuration register.

Name	Address	Size	Туре	Access	Default	Description
TX_CFG	0x1A207018	32	Config	R/W	0x0000	uDMA TX UART stream configuration register.
<u>STATUS</u>	0x1A207020	32	Status	R	0x0000	uDMA UART status register.
SETUP	0x1A207024	32	Config	R/W	0x0000	UDMA UART configuration register.
<u>ERROR</u>	0x1A207028	32	Status	R	0x0000	uDMA UART Error status
IRQ_EN	0x1A20702C	32	Config	R/W	0x0000	uDMA UART Read or Error interrupt enable register.
VALID	0x1A207030	32	Status	R	0x0000	uDMA UART Read polling data valid flag register.
<u>DATA</u>	0x1A207034	32	Data	R	0x0000	uDMA UART Read polling data register.

Table 24. USART Channel 3 registers table

6.2.3.3.5 uDMA USART interface registers details

6.2.3.3.5.1 uDMA RX UART buffer base address configuration register. (RX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15:0 - **RX_SADDR** (R/W)

RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

6.2.3.3.5.2 uDMA RX UART buffer size configuration register. (RX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								RX_SIZ E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX_S	SIZE							

Bits 16:0 - **RX_SIZE** (R/W)

RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

6.2.3.3.5.3 uDMA RX UART stream configuration register. (RX_CFG)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Reserved					CLR	PENDIN G	EN		Reserved		CONTIN

Bit 6 - **CLR** (W)

RX channel clear and stop transfer:

- 0b0: disable
- 0b1: stop and clear the on-going transfer

Bit 5 - **PENDING** (R)

RX transfer pending in queue status flag:

- 0b0: no pending transfer in the queue
- 0b1: pending transfer in the queue

Bit 4 - **EN** (R/W)

RX channel enable and start transfer bitfield:

- 0b0: disable
- 0b1: enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

Bit 0 - CONTINOUS (R/W)

RX channel continuous mode bitfield:

- 0b0: disabled
- 0b1: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

6.2.3.3.5.4 uDMA TX UART buffer base address configuration register. (TX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15:0 - TX_SADDR (R/W)

TX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets buffer base address

6.2.3.3.5.5 uDMA TX UART buffer size configuration register. (TX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								TX_SIZE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 16:0 - TX_SIZE (R/W)

TX buffer size bitfield in bytes. (128kBytes maximum)

- · Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

6.2.3.3.5.6 uDMA TX UART stream configuration register. (TX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Reserved					CLR	PENDIN G	EN		Reserved		CONTIN OUS

Bit 6 - **CLR** (W)

TX channel clear and stop transfer bitfield:

- 0b0: disabled
- 0b1: stop and clear the on-going transfer

Bit 5 - **PENDING** (R)

TX transfer pending in queue status flag:

- 0b0: no pending transfer in the queue
- 0b1: pending transfer in the queue

Bit 4 - EN (R/W)

TX channel enable and start transfer bitfield:

- 0b0: disabled
- 0b1: enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

Bit 0 - CONTINOUS (R/W)

TX channel continuous mode bitfield:

- 0b0: disabled
- 0b1: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

6.2.3.3.5.7 uDMA UART status register. (STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 1 - **RX_BUSY** (R)

RX busy status flag:

- 0b0: no RX transfer on-going
- 0b1: RX transfer on-going

Bit 0 - TX_BUSY (R)

TX busy status flag:

- 0b0: no TX transfer on-going
- 0b1: TX transfer on-going

6.2.3.3.5.8 UDMA UART configuration register. (SETUP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CLK	DIV							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			RX_ENA	TX_ENA	RTS_EN	CTS_EN	CLEAN_ FIFO	POLLIN G_EN	STOP_B ITS	BIT_LE	ENGTH	PARITY _ENA

Bits 31:16 - CLKDIV (R/W)

UART Clock divider configuration bitfield. The baudrate is equal to SOC_FREQ/CLKDIV.

Bit 9 - **RX_ENA** (R/W)

RX transceiver configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 8 - **TX_ENA** (R/W)

TX transceiver configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 7 - **RTS_EN** (R/W)

Request To Send (RTS) configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 6 - CTS_EN (R/W)

Clear To Send (CTS) configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 5 - CLEAN_FIFO (R/W)

In all mode clean the RX fifo, set 1 then set 0 to realize a reset fifo:

- 0b0: Stop Clean the RX FIFO.
- 0b1: Clean the RX FIFO.

Bit 4 - POLLING_EN (R/W)

When in uart read, use polling method to read the data, read interrupt enable flag will be ignored:

- 0b0: Do not using polling method to read data.
- 0b1: Using polling method to read data. Interrupt enable flag will be ignored.

Bit 3 - STOP_BITS (R/W)

Stop bits length bitfield:

- 0b0: 1 stop bit
- 0b1: 2 stop bits

Bits 2:1 - BIT_LENGTH (R/W)

Character length bitfield:

• 0b00: 5 bits

• 0b01: 6 bits

• 0b10: 7 bits

• 0b11: 8 bits

Bit 0 - PARITY_ENA (R/W)

Parity bit generation and check configuration bitfield:

• 0b0: disabled

• 0b1: enabled

6.2.3.3.5.9 uDMA UART Error status (ERROR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Rese	rved							RX_ERR _PARIT _Y	RX_ERR _OVERF LOW

Bit 1 - RX_ERR_PARITY (R)

RX parity error status flag:

- 0b0: no error
- 0b1: RX parity error occurred

Bit 0 - RX_ERR_OVERFLOW (R)

RX overflow error status flag:

- 0b0: no error
- 0b1: RX overflow error occurred

6.2.3.3.5.10 uDMA UART Read or Error interrupt enable register. (IRQ_EN)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 1 - ERROR (R/W)

Error interrupt in enable flag:

- 0b0: Error IRQ disable
- 0b1: Error IRQ enable

Bit 0 - **RX** (R/W)

Rx interrupt in enable flag:

- 0b0: RX IRQ disable
- 0b1: RX IRQ enable

6.2.3.3.5.11 uDMA UART Read polling data valid flag register. (VALID)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								READY

Bit 0 - **READY** (R)

Used only in RX polling method to indicate data is ready for read:

- 0b0: Data is not ready to read
- 0b1: Data is ready to read

6.2.3.3.5.12 uDMA UART Read polling data register. (DATA)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	۱ ۵	l 8	7	6	5	1	1 3	2	1	0
			12	• • •		9		,		3			_	•	U

Bits 7:0 - **BYTE** (R)

RX read data for polling or interrupt

6.2.3.4 uDMA SPIM interfaces

None

6.2.3.4.1 SPI Master Channel 0 registers

Name	Address	Size	Туре	Access	Default	Description
SPIM_RX_SADDR	0x1A208000	32	Config	R/W	0x0000	RX SPI uDMA transfer address of associated buffer
SPIM_RX_SIZE	0x1A208004	32	Config	R/W	0x0000	RX SPI uDMA transfer size of buffer
SPIM_RX_CFG	0x1A208008	32	Config	R/W	0x0004	RX SPI uDMA transfer configuration
SPIM_TX_SADDR	0x1A208010	32	Config	R/W	0x0000	TX SPI uDMA transfer address of associated buffer
SPIM_TX_SIZE	0x1A208014	32	Config	R/W	0x0000	TX SPI uDMA transfer size of buffer
SPIM_TX_CFG	0x1A208018	32	Config	R/W	0x0000	TX SPI uDMA transfer configuration
SPIM_CMD_SADDR	0x1A208020	32	Config	R/W	0x0000	CMD SPI uDMA transfer address of associated buffer
SPIM_CMD_SIZE	0x1A208024	32	Config	R/W	0x0000	CMD SPI uDMA transfer size of buffer
SPIM_CMD_CFG	0x1A208028	32	Config	R/W	0x0004	CMD SPI uDMA transfer configuration

Table 25. SPI Master Channel 0 registers table

6.2.3.4.2 SPI Master Channel 1 registers

Name	Address	Size	Туре	Access	Default	Description
SPIM_RX_SADDR	0x1A209000	32	Config	R/W	0x0000	RX SPI uDMA transfer address of associated buffer
SPIM_RX_SIZE	0x1A209004	32	Config	R/W	0x0000	RX SPI uDMA transfer size of buffer
SPIM_RX_CFG	0x1A209008	32	Config	R/W	0x0004	RX SPI uDMA transfer configuration
SPIM_TX_SADDR	0x1A209010	32	Config	R/W	0x0000	TX SPI uDMA transfer address of associated buffer
SPIM_TX_SIZE	0x1A209014	32	Config	R/W	0x0000	TX SPI uDMA transfer size of buffer
SPIM_TX_CFG	0x1A209018	32	Config	R/W	0x0000	TX SPI uDMA transfer configuration
SPIM_CMD_SADDR	0x1A209020	32	Config	R/W	0x0000	CMD SPI uDMA transfer address of associated buffer
SPIM_CMD_SIZE	0x1A209024	32	Config	R/W	0x0000	CMD SPI uDMA transfer size of buffer

Name	Address	Size	Туре	Access	Default	Description
SPIM_CMD_CFG	0x1A209028	32	Config	R/W	0x0004	CMD SPI uDMA transfer configuration

Table 26. SPI Master Channel 1 registers table

6.2.3.4.3 SPI Master Channel 2 registers

Name	Address	Size	Туре	Access	Default	Description
SPIM_RX_SADDR	0x1A20A000	32	Config	R/W	0x0000	RX SPI uDMA transfer address of associated buffer
SPIM_RX_SIZE	0x1A20A004	32	Config	R/W	0x0000	RX SPI uDMA transfer size of buffer
SPIM_RX_CFG	0x1A20A008	32	Config	R/W	0x0004	RX SPI uDMA transfer configuration
SPIM_TX_SADDR	0x1A20A010	32	Config	R/W	0x0000	TX SPI uDMA transfer address of associated buffer
SPIM_TX_SIZE	0x1A20A014	32	Config	R/W	0x0000	TX SPI uDMA transfer size of buffer
SPIM_TX_CFG	0x1A20A018	32	Config	R/W	0x0000	TX SPI uDMA transfer configuration
SPIM_CMD_SADDR	0x1A20A020	32	Config	R/W	0x0000	CMD SPI uDMA transfer address of associated buffer
SPIM_CMD_SIZE	0x1A20A024	32	Config	R/W	0x0000	CMD SPI uDMA transfer size of buffer
SPIM_CMD_CFG	0x1A20A028	32	Config	R/W	0x0004	CMD SPI uDMA transfer configuration

Table 27. SPI Master Channel 2 registers table

6.2.3.4.4 SPI Master Channel 3 registers

Name	Address	Size	Туре	Access	Default	Description
SPIM_RX_SADDR	0x1A20B000	32	Config	R/W	0x0000	RX SPI uDMA transfer address of associated buffer
SPIM_RX_SIZE	0x1A20B004	32	Config	R/W	0x0000	RX SPI uDMA transfer size of buffer
SPIM_RX_CFG	0x1A20B008	32	Config	R/W	0x0004	RX SPI uDMA transfer configuration
SPIM_TX_SADDR	0x1A20B010	32	Config	R/W	0x0000	TX SPI uDMA transfer address of associated buffer
SPIM_TX_SIZE	0x1A20B014	32	Config	R/W	0x0000	TX SPI uDMA transfer size of buffer
SPIM_TX_CFG	0x1A20B018	32	Config	R/W	0x0000	TX SPI uDMA transfer configuration
SPIM_CMD_SADDR	0x1A20B020	32	Config	R/W	0x0000	CMD SPI uDMA transfer address of associated buffer
SPIM_CMD_SIZE	0x1A20B024	32	Config	R/W	0x0000	CMD SPI uDMA transfer size of buffer
SPIM_CMD_CFG	0x1A20B028	32	Config	R/W	0x0004	CMD SPI uDMA transfer configuration

Table 28. SPI Master Channel 3 registers table

6.2.3.4.5 SPI Master Channel 4 registers

Name	Address	Size	Туре	Access	Default	Description
SPIM_RX_SADDR	0x1A20C000	32	Config	R/W	0x0000	RX SPI uDMA transfer address of associated buffer
SPIM_RX_SIZE	0x1A20C004	32	Config	R/W	0x0000	RX SPI uDMA transfer size of buffer
SPIM_RX_CFG	0x1A20C008	32	Config	R/W	0x0004	RX SPI uDMA transfer configuration
SPIM_TX_SADDR	0x1A20C010	32	Config	R/W	0x0000	TX SPI uDMA transfer address of associated buffer
SPIM_TX_SIZE	0x1A20C014	32	Config	R/W	0x0000	TX SPI uDMA transfer size of buffer
SPIM_TX_CFG	0x1A20C018	32	Config	R/W	0x0000	TX SPI uDMA transfer configuration
SPIM_CMD_SADDR	0x1A20C020	32	Config	R/W	0x0000	CMD SPI uDMA transfer address of associated buffer
SPIM_CMD_SIZE	0x1A20C024	32	Config	R/W	0x0000	CMD SPI uDMA transfer size of buffer
SPIM_CMD_CFG	0x1A20C028	32	Config	R/W	0x0004	CMD SPI uDMA transfer configuration

Table 29. SPI Master Channel 4 registers table

6.2.3.4.6 SPI Master Channel 5 registers

Name	Address	Size	Туре	Access	Default	Description
SPIM_RX_SADDR	0x1A20D000	32	Config	R/W	0x0000	RX SPI uDMA transfer address of associated buffer
SPIM_RX_SIZE	0x1A20D004	32	Config	R/W	0x0000	RX SPI uDMA transfer size of buffer

Name	Address	Size	Туре	Access	Default	Description
SPIM_RX_CFG	0x1A20D008	32	Config	R/W	0x0004	RX SPI uDMA transfer configuration
SPIM_TX_SADDR	0x1A20D010	32	Config	R/W	0x0000	TX SPI uDMA transfer address of associated buffer
SPIM_TX_SIZE	0x1A20D014	32	Config	R/W	0x0000	TX SPI uDMA transfer size of buffer
SPIM_TX_CFG	0x1A20D018	32	Config	R/W	0x0000	TX SPI uDMA transfer configuration
SPIM_CMD_SADDR	0x1A20D020	32	Config	R/W	0x0000	CMD SPI uDMA transfer address of associated buffer
SPIM_CMD_SIZE	0x1A20D024	32	Config	R/W	0x0000	CMD SPI uDMA transfer size of buffer
SPIM_CMD_CFG	0x1A20D028	32	Config	R/W	0x0004	CMD SPI uDMA transfer configuration

Table 30. SPI Master Channel 5 registers table

6.2.3.4.7 SPI Master Channel 6 registers

Name	Address	Size	Туре	Access	Default	Description
SPIM_RX_SADDR	0x1A20E000	32	Config	R/W	0x0000	RX SPI uDMA transfer address of associated buffer
SPIM_RX_SIZE	0x1A20E004	32	Config	R/W	0x0000	RX SPI uDMA transfer size of buffer
SPIM_RX_CFG	0x1A20E008	32	Config	R/W	0x0004	RX SPI uDMA transfer configuration
SPIM_TX_SADDR	0x1A20E010	32	Config	R/W	0x0000	TX SPI uDMA transfer address of associated buffer
SPIM_TX_SIZE	0x1A20E014	32	Config	R/W	0x0000	TX SPI uDMA transfer size of buffer
SPIM_TX_CFG	0x1A20E018	32	Config	R/W	0x0000	TX SPI uDMA transfer configuration
SPIM_CMD_SADDR	0x1A20E020	32	Config	R/W	0x0000	CMD SPI uDMA transfer address of associated buffer
SPIM_CMD_SIZE	0x1A20E024	32	Config	R/W	0x0000	CMD SPI uDMA transfer size of buffer
SPIM_CMD_CFG	0x1A20E028	32	Config	R/W	0x0004	CMD SPI uDMA transfer configuration

Table 31. SPI Master Channel 6 registers table

6.2.3.4.8 SPI Master Channel 7 registers

Name	Address	Size	Туре	Access	Default	Description
SPIM_RX_SADDR	0x1A20F000	32	Config	R/W	0x0000	RX SPI uDMA transfer address of associated buffer
SPIM_RX_SIZE	0x1A20F004	32	Config	R/W	0x0000	RX SPI uDMA transfer size of buffer
SPIM_RX_CFG	0x1A20F008	32	Config	R/W	0x0004	RX SPI uDMA transfer configuration
SPIM_TX_SADDR	0x1A20F010	32	Config	R/W	0x0000	TX SPI uDMA transfer address of associated buffer
SPIM_TX_SIZE	0x1A20F014	32	Config	R/W	0x0000	TX SPI uDMA transfer size of buffer
SPIM_TX_CFG	0x1A20F018	32	Config	R/W	0x0000	TX SPI uDMA transfer configuration
SPIM_CMD_SADDR	0x1A20F020	32	Config	R/W	0x0000	CMD SPI uDMA transfer address of associated buffer
SPIM_CMD_SIZE	0x1A20F024	32	Config	R/W	0x0000	CMD SPI uDMA transfer size of buffer
SPIM_CMD_CFG	0x1A20F028	32	Config	R/W	0x0004	CMD SPI uDMA transfer configuration

Table 32. SPI Master Channel 7 registers table

6.2.3.4.9 SPI Master Channel 8 registers

Name	Address	Size	Туре	Access	Default	Description
SPIM_RX_SADDR	0x1A210000	32	Config	R/W	0x0000	RX SPI uDMA transfer address of associated buffer
SPIM_RX_SIZE	0x1A210004	32	Config	R/W	0x0000	RX SPI uDMA transfer size of buffer
SPIM_RX_CFG	0x1A210008	32	Config	R/W	0x0004	RX SPI uDMA transfer configuration
SPIM_TX_SADDR	0x1A210010	32	Config	R/W	0x0000	TX SPI uDMA transfer address of associated buffer
SPIM_TX_SIZE	0x1A210014	32	Config	R/W	0x0000	TX SPI uDMA transfer size of buffer
SPIM_TX_CFG	0x1A210018	32	Config	R/W	0x0000	TX SPI uDMA transfer configuration
SPIM_CMD_SADDR	0x1A210020	32	Config	R/W	0x0000	CMD SPI uDMA transfer address of associated buffer
SPIM_CMD_SIZE	0x1A210024	32	Config	R/W	0x0000	CMD SPI uDMA transfer size of buffer
SPIM_CMD_CFG	0x1A210028	32	Config	R/W	0x0004	CMD SPI uDMA transfer configuration

Table 33. SPI Master Channel 8 registers table

6.2.3.4.10 SPI Master Channel 9 registers

Name	Address	Size	Туре	Access	Default	Description
SPIM_RX_SADDR	0x1A211000	32	Config	R/W	0x0000	RX SPI uDMA transfer address of associated buffer
SPIM_RX_SIZE	0x1A211004	32	Config	R/W	0x0000	RX SPI uDMA transfer size of buffer
SPIM_RX_CFG	0x1A211008	32	Config	R/W	0x0004	RX SPI uDMA transfer configuration
SPIM_TX_SADDR	0x1A211010	32	Config	R/W	0x0000	TX SPI uDMA transfer address of associated buffer
SPIM_TX_SIZE	0x1A211014	32	Config	R/W	0x0000	TX SPI uDMA transfer size of buffer
SPIM_TX_CFG	0x1A211018	32	Config	R/W	0x0000	TX SPI uDMA transfer configuration
SPIM_CMD_SADDR	0x1A211020	32	Config	R/W	0x0000	CMD SPI uDMA transfer address of associated buffer
SPIM_CMD_SIZE	0x1A211024	32	Config	R/W	0x0000	CMD SPI uDMA transfer size of buffer
SPIM_CMD_CFG	0x1A211028	32	Config	R/W	0x0004	CMD SPI uDMA transfer configuration

Table 34. SPI Master Channel 9 registers table

6.2.3.4.11 SPI Master Channel 10 registers

Name	Address	Size	Туре	Access	Default	Description
SPIM_RX_SADDR	0x1A212000	32	Config	R/W	0x0000	RX SPI uDMA transfer address of associated buffer
SPIM_RX_SIZE	0x1A212004	32	Config	R/W	0x0000	RX SPI uDMA transfer size of buffer
SPIM_RX_CFG	0x1A212008	32	Config	R/W	0x0004	RX SPI uDMA transfer configuration
SPIM_TX_SADDR	0x1A212010	32	Config	R/W	0x0000	TX SPI uDMA transfer address of associated buffer
SPIM_TX_SIZE	0x1A212014	32	Config	R/W	0x0000	TX SPI uDMA transfer size of buffer
SPIM_TX_CFG	0x1A212018	32	Config	R/W	0x0000	TX SPI uDMA transfer configuration
SPIM_CMD_SADDR	0x1A212020	32	Config	R/W	0x0000	CMD SPI uDMA transfer address of associated buffer
SPIM_CMD_SIZE	0x1A212024	32	Config	R/W	0x0000	CMD SPI uDMA transfer size of buffer
SPIM_CMD_CFG	0x1A212028	32	Config	R/W	0x0004	CMD SPI uDMA transfer configuration

Table 35. SPI Master Channel 10 registers table

6.2.3.4.12 QSPI Master Channel 0 registers

Name	Address	Size	Туре	Access	Default	Description
SPIM_RX_SADDR	0x1A213000	32	Config	R/W	0x0000	RX SPI uDMA transfer address of associated buffer
SPIM_RX_SIZE	0x1A213004	32	Config	R/W	0x0000	RX SPI uDMA transfer size of buffer
SPIM_RX_CFG	0x1A213008	32	Config	R/W	0x0004	RX SPI uDMA transfer configuration
SPIM_TX_SADDR	0x1A213010	32	Config	R/W	0x0000	TX SPI uDMA transfer address of associated buffer
SPIM_TX_SIZE	0x1A213014	32	Config	R/W	0x0000	TX SPI uDMA transfer size of buffer
SPIM_TX_CFG	0x1A213018	32	Config	R/W	0x0000	TX SPI uDMA transfer configuration
SPIM_CMD_SADDR	0x1A213020	32	Config	R/W	0x0000	CMD SPI uDMA transfer address of associated buffer
SPIM_CMD_SIZE	0x1A213024	32	Config	R/W	0x0000	CMD SPI uDMA transfer size of buffer
SPIM_CMD_CFG	0x1A213028	32	Config	R/W	0x0004	CMD SPI uDMA transfer configuration

Table 36. QSPI Master Channel 0 registers table

6.2.3.4.13 uDMA SPIM interface registers details

6.2.3.4.13.1 RX SPI uDMA transfer address of associated buffer (SPIM_RX_SADDR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RX_S/	ADDR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **RX_SADDR** (R/W)

Configure pointer to memory buffer:

- Read: value of the pointer until transfer is over. Else returns 0
- Write: set Address Pointer to memory buffer start address

6.2.3.4.13.2 RX SPI uDMA transfer size of buffer (SPIM_RX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	rved							RX_	SIZE	
15	1/	12	10	- 11	10	Δ.	•	7	•	-	4	•	1	-	_
15	14	13	12	- 11	10	9	0	,	ь	5	4	3	2	'	U

Bits 19:0 - **RX_SIZE** (R/W)

Buffer size in bytes. (1MBytes maximum)

Read: buffer size leftWrite: set buffer size

6.2.3.4.13.3 RX SPI uDMA transfer configuration (SPIM_RX_CFG)

Reset value: 0x0004

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN	Reserve	DATA	ASIZE	CONTIN

Bit 5 - **CLR** (W)

Reset value: 0b0

Channel clear and stop transfer:

0b0: disable 0b1: enable

Bit 5 - **PENDING** (R)

Reset value: 0b0

Transfer pending in queue status flag:

0b0: free 0b1: pending

Bit 4 - **EN** (R/W)

Reset value: 0b0

Channel enable and start transfer:

0b0: disable *0b1*: enable

This signal is used also to queue a transfer if one is already ongoing.

Bits 2:1 - DATASIZE (R/W)

Reset value: 0b10

Channel transfer size used to increment uDMA buffer address pointer:

• 0b00: +1 (8 bits)

• 0b01: +2 (16 bits)

• 0b10: +4 (32 bits)(default)

• 0b11:+0

Bit 0 - CONTINOUS (R/W)

Reset value: 0b0

Channel continuous mode:

• 0b0: disable

• 0b1: enable

At the end of the buffer the uDMA reloads the address and size and starts a new transfer.

6.2.3.4.13.4 TX SPI uDMA transfer address of associated buffer (SPIM_TX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TX_SA	ADDR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - TX_SADDR (R/W)

Configure pointer to memory buffer:

- Read: value of the pointer until transfer is over. Else returns 0
- · Write: set Address Pointer to memory buffer start address

6.2.3.4.13.5 TX SPI uDMA transfer size of buffer (SPIM_TX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	rved							TX_S	SIZE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 19:0 - **TX_SIZE** (R/W)

Buffer size in bytes. (1MBytes maximum)

Read: buffer size leftWrite: set buffer size

6.2.3.4.13.6 TX SPI uDMA transfer configuration (SPIM_TX_CFG)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	1/	10	40		40		_								
1 13	14	13	12	- 11	10	9	8	7	6	5	4	3	2	1	0

Bit 5 - **CLR** (W)

Channel clear and stop transfer:

- 0b0: disable
- 0b1: enable

Bit 5 - **PENDING** (R)

Transfer pending in queue status flag:

- 0b0: free
- 0b1: pending

Bit 4 - **EN** (R/W)

Channel enable and start transfer:

- 0b0: disable
- 0b1: enable

This signal is used also to queue a transfer if one is already ongoing.

Bits 2:1 - DATASIZE (R/W)

Channel transfer size used to increment uDMA buffer address pointer:

- 0b00: +1 (8 bits)
- 0b01: +2 (16 bits)
- 0b10: +4 (32 bits)(default)
- 0b11:+0

Bit 0 - CONTINOUS (R/W)

Channel continuous mode:

- 0b0: disable
- 0b1: enable

At the end of the buffer the uDMA reloads the address and size and starts a new transfer.

6.2.3.4.13.7 CMD SPI uDMA transfer address of associated buffer (SPIM_CMD_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CMD_S	ADDR							
						_	_		_			_	_		_
15	14	13	12	11	10	9	8	7	6	ภ	4	3	2	1	0

Bits 31:0 - CMD_SADDR (R/W)

Configure pointer to memory buffer:

- Read: value of the pointer until transfer is over. Else returns 0
- Write: set Address Pointer to memory buffer start address

6.2.3.4.13.8 CMD SPI uDMA transfer size of buffer (SPIM_CMD_SIZE)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Reserved											CMD_	SIZE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 19:0 - **CMD_SIZE** (R/W)

Buffer size in bytes. (1MBytes maximum)

Read: buffer size leftWrite: set buffer size

6.2.3.4.13.9 CMD SPI uDMA transfer configuration (SPIM_CMD_CFG)

Reset value: 0x0004

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN	Reserve d	DATA	SIZE	CONTIN

Bit 5 - **CLR** (W)

Reset value: 0b0

Channel clear and stop transfer:

0b0: disable*0b1*: enable

Bit 5 - **PENDING** (R)

Reset value: 0b0

Transfer pending in queue status flag:

0b0: free 0b1: pending

Bit 4 - **EN** (R/W)

Reset value: 0b0

Channel enable and start transfer:

0b0: disable *0b1*: enable

This signal is used also to queue a transfer if one is already ongoing.

Bits 2:1 - DATASIZE (R/W)

Reset value: 0b10

Channel transfer size used to increment uDMA buffer address pointer:

0b00: +1 (8 bits) 0b01: +2 (16 bits)

• 0b10: +4 (32 bits)(default)

• 0b11:+0

Bit 0 - CONTINOUS (R/W)

Reset value: 0b0

Channel continuous mode:

- 0b0: disable
- 0b1: enable

At the end of the buffer the uDMA reloads the address and size and starts a new transfer.

6.2.3.5 uDMA I2C interfaces

None

6.2.3.5.1 I2C Channel 0 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A214000	32	Config	R/W	0x0000	uDMA RX I2C buffer base address configuration register.
RX_SIZE	0x1A214004	32	Config	R/W	0x0000	uDMA RX I2C buffer size configuration register.
RX_CFG	0x1A214008	32	Config	R/W	0x0000	uDMA RX I2C stream configuration register.
TX_SADDR	0x1A214010	32	Config	R/W	0x0000	uDMA TX I2C buffer base address configuration register.
TX_SIZE	0x1A214014	32	Config	R/W	0x0000	uDMA TX I2C buffer size configuration register.
TX_CFG	0x1A214018	32	Config	R/W	0x0000	uDMA TX I2C stream configuration register.
CMD_SADDR	0x1A214020	32	Config	R/W	0x0000	uDMA CMD I2C buffer base address configuration register.
CMD_SIZE	0x1A214024	32	Config	R/W	0x0000	uDMA CMD I2C buffer size configuration register.
CMD_CFG	0x1A214028	32	Config	R/W	0x0000	uDMA CMD I2C stream configuration register.
<u>STATUS</u>	0x1A214030	32	Status	R/W	0x0000	uDMA I2C Status register.
SETUP	0x1A214034	32	Config	R/W	0x0000	uDMA I2C Configuration register.

Table 37. I2C Channel 0 registers table

6.2.3.5.2 I2C Channel 1 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A215000	32	Config	R/W	0x0000	uDMA RX I2C buffer base address configuration register.
RX_SIZE	0x1A215004	32	Config	R/W	0x0000	uDMA RX I2C buffer size configuration register.
RX_CFG	0x1A215008	32	Config	R/W	0x0000	uDMA RX I2C stream configuration register.
TX_SADDR	0x1A215010	32	Config	R/W	0x0000	uDMA TX I2C buffer base address configuration register.
TX_SIZE	0x1A215014	32	Config	R/W	0x0000	uDMA TX I2C buffer size configuration register.
TX_CFG	0x1A215018	32	Config	R/W	0x0000	uDMA TX I2C stream configuration register.
CMD_SADDR	0x1A215020	32	Config	R/W	0x0000	uDMA CMD I2C buffer base address configuration register.
CMD_SIZE	0x1A215024	32	Config	R/W	0x0000	uDMA CMD I2C buffer size configuration register.
CMD_CFG	0x1A215028	32	Config	R/W	0x0000	uDMA CMD I2C stream configuration register.
<u>STATUS</u>	0x1A215030	32	Status	R/W	0x0000	uDMA I2C Status register.
<u>SETUP</u>	0x1A215034	32	Config	R/W	0x0000	uDMA I2C Configuration register.

Table 38. I2C Channel 1 registers table

6.2.3.5.3 I2C Channel 2 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A216000	32	Config	R/W	0x0000	uDMA RX I2C buffer base address configuration register.
RX_SIZE	0x1A216004	32	Config	R/W	0x0000	uDMA RX I2C buffer size configuration register.
RX_CFG	0x1A216008	32	Config	R/W	0x0000	uDMA RX I2C stream configuration register.
TX_SADDR	0x1A216010	32	Config	R/W	0x0000	uDMA TX I2C buffer base address configuration register.
TX_SIZE	0x1A216014	32	Config	R/W	0x0000	uDMA TX I2C buffer size configuration register.
TX_CFG	0x1A216018	32	Config	R/W	0x0000	uDMA TX I2C stream configuration register.

Name	Address	Size	Туре	Access	Default	Description
CMD_SADDR	0x1A216020	32	Config	R/W	0x0000	uDMA CMD I2C buffer base address configuration register.
CMD_SIZE	0x1A216024	32	Config	R/W	0x0000	uDMA CMD I2C buffer size configuration register.
CMD_CFG	0x1A216028	32	Config	R/W	0x0000	uDMA CMD I2C stream configuration register.
<u>STATUS</u>	0x1A216030	32	Status	R/W	0x0000	uDMA I2C Status register.
SETUP	0x1A216034	32	Config	R/W	0x0000	uDMA I2C Configuration register.

Table 39. I2C Channel 2 registers table

6.2.3.5.4 I2C Channel 3 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A217000	32	Config	R/W	0x0000	uDMA RX I2C buffer base address configuration register.
RX_SIZE	0x1A217004	32	Config	R/W	0x0000	uDMA RX I2C buffer size configuration register.
RX_CFG	0x1A217008	32	Config	R/W	0x0000	uDMA RX I2C stream configuration register.
TX_SADDR	0x1A217010	32	Config	R/W	0x0000	uDMA TX I2C buffer base address configuration register.
TX_SIZE	0x1A217014	32	Config	R/W	0x0000	uDMA TX I2C buffer size configuration register.
TX_CFG	0x1A217018	32	Config	R/W	0x0000	uDMA TX I2C stream configuration register.
CMD_SADDR	0x1A217020	32	Config	R/W	0x0000	uDMA CMD I2C buffer base address configuration register.
CMD_SIZE	0x1A217024	32	Config	R/W	0x0000	uDMA CMD I2C buffer size configuration register.
CMD_CFG	0x1A217028	32	Config	R/W	0x0000	uDMA CMD I2C stream configuration register.
<u>STATUS</u>	0x1A217030	32	Status	R/W	0x0000	uDMA I2C Status register.
SETUP	0x1A217034	32	Config	R/W	0x0000	uDMA I2C Configuration register.

Table 40. I2C Channel 3 registers table

6.2.3.5.5 I2C Channel 4 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A218000	32	Config	R/W	0x0000	uDMA RX I2C buffer base address configuration register.
RX_SIZE	0x1A218004	32	Config	R/W	0x0000	uDMA RX I2C buffer size configuration register.
RX_CFG	0x1A218008	32	Config	R/W	0x0000	uDMA RX I2C stream configuration register.
TX_SADDR	0x1A218010	32	Config	R/W	0x0000	uDMA TX I2C buffer base address configuration register.
TX_SIZE	0x1A218014	32	Config	R/W	0x0000	uDMA TX I2C buffer size configuration register.
TX_CFG	0x1A218018	32	Config	R/W	0x0000	uDMA TX I2C stream configuration register.
CMD_SADDR	0x1A218020	32	Config	R/W	0x0000	uDMA CMD I2C buffer base address configuration register.
CMD_SIZE	0x1A218024	32	Config	R/W	0x0000	uDMA CMD I2C buffer size configuration register.
CMD_CFG	0x1A218028	32	Config	R/W	0x0000	uDMA CMD I2C stream configuration register.
<u>STATUS</u>	0x1A218030	32	Status	R/W	0x0000	uDMA I2C Status register.
SETUP	0x1A218034	32	Config	R/W	0x0000	uDMA I2C Configuration register.

Table 41. I2C Channel 4 registers table

6.2.3.5.6 I2C Channel 5 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A219000	32	Config	R/W	0x0000	uDMA RX I2C buffer base address configuration register.
RX_SIZE	0x1A219004	32	Config	R/W	0x0000	uDMA RX I2C buffer size configuration register.
RX_CFG	0x1A219008	32	Config	R/W	0x0000	uDMA RX I2C stream configuration register.
TX_SADDR	0x1A219010	32	Config	R/W	0x0000	uDMA TX I2C buffer base address configuration register.
TX_SIZE	0x1A219014	32	Config	R/W	0x0000	uDMA TX I2C buffer size configuration register.
TX_CFG	0x1A219018	32	Config	R/W	0x0000	uDMA TX I2C stream configuration register.
CMD_SADDR	0x1A219020	32	Config	R/W	0x0000	uDMA CMD I2C buffer base address configuration register.
CMD_SIZE	0x1A219024	32	Config	R/W	0x0000	uDMA CMD I2C buffer size configuration register.
CMD_CFG	0x1A219028	32	Config	R/W	0x0000	uDMA CMD I2C stream configuration register.

Name	Address	Size	Туре	Access	Default	Description
STATUS	0x1A219030	32	Status	R/W	0x0000	uDMA I2C Status register.
<u>SETUP</u>	0x1A219034	32	Config	R/W	0x0000	uDMA I2C Configuration register.

Table 42. I2C Channel 5 registers table

6.2.3.5.7 uDMA I2C interface registers details

6.2.3.5.7.1 uDMA RX I2C buffer base address configuration register. (RX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Reserved								RX_SADDF	}	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 20:0 - **RX_SADDR** (R/W)

RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

6.2.3.5.7.2 uDMA RX I2C buffer size configuration register. (RX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	rved								SIZE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 19:0 - RX_SIZE (R/W)

RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

6.2.3.5.7.3 uDMA RX I2C stream configuration register. (RX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	4.4	10	40			_									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 6 - **CLR** (W)

RX channel clear and stop transfer:

- 0b0: disable
- 0b1: stop and clear the on-going transfer

Bit 5 - **PENDING** (R)

RX transfer pending in queue status flag:

- 0b0: no pending transfer in the queue
- 0b1: pending transfer in the queue

Bit 4 - **EN** (R/W)

RX channel enable and start transfer bitfield:

- 0b0: disable
- 0b1: enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

Bit 0 - CONTINOUS (R/W)

RX channel continuous mode bitfield:

- 0b0: disabled
- 0b1: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

6.2.3.5.7.4 uDMA TX I2C buffer base address configuration register. (TX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Reserved								TX_SADDR	ł	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 20:0 - TX_SADDR (R/W)

TX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- · Write: sets buffer base address

6.2.3.5.7.5 uDMA TX I2C buffer size configuration register. (TX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	rved							TX_S	SIZE	
15	1.4	10	10	11	10	٥ -		7	- 6	- 5	1	- 2	2	1	0
15	14	13	12		10	9		,		3	-		_	•	U

Bits 19:0 - **TX_SIZE** (R/W)

TX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

6.2.3.5.7.6 uDMA TX I2C stream configuration register. (TX_CFG)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•	•		Reserved	•			•	CLR	PENDIN G	EN		Reserved	•	CONTIN OUS

Bit 6 - CLR (W)

TX channel clear and stop transfer bitfield:

- 0b0: disabled
- 0b1: stop and clear the on-going transfer

Bit 5 - PENDING (R)

TX transfer pending in queue status flag:

- 0b0: no pending transfer in the queue
- 0b1: pending transfer in the queue

Bit 4 - **EN** (R/W)

TX channel enable and start transfer bitfield:

- 0b0: disabled
- 0b1: enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

Bit 0 - CONTINOUS (R/W)

TX channel continuous mode bitfield:

- 0b0: disabled
- 0b1: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

6.2.3.5.7.7 uDMA CMD I2C buffer base address configuration register. (CMD_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Reserved							C	CMD_SADD	R	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 20:0 - CMD_SADDR (R/W)

CMD buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- · Write: sets buffer base address

${\it 6.2.3.5.7.8~uDMA~CMD~I2C~buffer~size~configuration~register.~(CMD_SIZE)}$

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	erved							CMD_	_SIZE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 19:0 - CMD_SIZE (R/W)

CMD buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

6.2.3.5.7.9 uDMA CMD I2C stream configuration register. (CMD_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Reserved					CLR	PENDIN G	EN		Reserved		CONTIN

Bit 6 - **CLR** (W)

CMD channel clear and stop transfer bitfield:

- 0b0: disabled
- 0b1: stop and clear the on-going transfer

Bit 5 - **PENDING** (R)

CMD transfer pending in queue status flag:

- 0b0: no pending transfer in the queue
- 0b1: pending transfer in the queue

Bit 4 - **EN** (R/W)

CMD channel enable and start transfer bitfield:

- 0b0: disabled
- 0b1: enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

Bit 0 - CONTINOUS (R/W)

CMD channel continuous mode bitfield:

- 0b0: disabled
- 0b1: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

6.2.3.5.7.10 uDMA I2C Status register. (STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserved							ACK	ARB_LO ST	BUSY

Bit 2 - **ACK** (R)

I2C ack flag, can be polling for busy:

- 0b0: ACK
- 0b1: NAK

Bit 1 - ARB_LOST (R/W)

I2C arbitration lost status flag:

• 0b0: no error

• 0b1: arbitration lost error

Bit 0 - **BUSY** (R/W)

I2C bus busy status flag:

• 0b0: no transfer on-going

• 0b1: transfer on-going

6.2.3.5.7.11 uDMA I2C Configuration register. (SETUP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **DO_RST** (R/W)

Reset command used to abort the on-going transfer and clear busy and arbitration lost status flags.

6.2.3.6 uDMA SDIO interfaces

None

6.2.3.6.1 SDIO Channel 0 registers

Name	Address	Size	Туре	Access	Default	Description
SDIO_RX_SADDR	0x1A21A000	32	Config	R/W	0x0000	RX SDIO uDMA transfer address of associated buffer
SDIO_RX_SIZE	0x1A21A004	32	Config	R/W	0x0000	RX SDIO uDMA transfer size of buffer
SDIO_RX_CFG	0x1A21A008	32	Config	R/W	0x0004	RX SDIO uDMA transfer configuration
SDIO_TX_SADDR	0x1A21A010	32	Config	R/W	0x0000	TX SDIO uDMA transfer address of associated buffer
SDIO_TX_SIZE	0x1A21A014	32	Config	R/W	0x0000	TX SDIO uDMA transfer size of buffer
SDIO_TX_CFG	0x1A21A018	32	Config	R/W	0x0000	TX SDIO uDMA transfer configuration
SDIO_CMD_OP	0x1A21A020	32	Config	W	0x0000	SDIO command
SDIO_CMD_ARG	0x1A21A024	32	Config	W	0x0000	SDIO argument
SDIO_DATA_SETUP	0x1A21A028	32	Config	W	0x0000	Data transfer setup
SDIO_START	0x1A21A02C	32	Config	W	0x0000	Start
SDIO_RSP0	0x1A21A030	32	Config	R	0x0000	Response byte0
SDIO_RSP1	0x1A21A034	32	Config	R	0x0000	Response byte1
SDIO_RSP2	0x1A21A038	32	Config	R	0x0000	Response byte2
SDIO_RSP3	0x1A21A03C	32	Config	R	0x0000	Response byte3
SDIO_CLK_DIV	0x1A21A040	32	Config	R/W	0x0000	Clock Divider
SDIO_STATUS	0x1A21A044	32	Config	R/W	0x0000	STATUS
SDIO_STOPCMD_OP	0x1A21A048	32	Config	W	0x0000	SDIO STOP command op
SDIO STOPCMD ARG	0x1A21A052	32	Config	W	0x0000	SDIO STOP command arg

Table 43. SDIO Channel 0 registers table

6.2.3.6.2 SDIO Channel 1 registers

Name	Address	Size	Туре	Access	Default	Description
SDIO_RX_SADDR	0x1A21B000	32	Config	R/W	0x0000	RX SDIO uDMA transfer address of associated buffer

Name	Address	Size	Туре	Access	Default	Description
SDIO_RX_SIZE	0x1A21B004	32	Config	R/W	0x0000	RX SDIO uDMA transfer size of buffer
SDIO_RX_CFG	0x1A21B008	32	Config	R/W	0x0004	RX SDIO uDMA transfer configuration
SDIO_TX_SADDR	0x1A21B010	32	Config	R/W	0x0000	TX SDIO uDMA transfer address of associated buffer
SDIO_TX_SIZE	0x1A21B014	32	Config	R/W	0x0000	TX SDIO uDMA transfer size of buffer
SDIO_TX_CFG	0x1A21B018	32	Config	R/W	0x0000	TX SDIO uDMA transfer configuration
SDIO_CMD_OP	0x1A21B020	32	Config	W	0x0000	SDIO command
SDIO_CMD_ARG	0x1A21B024	32	Config	W	0x0000	SDIO argument
SDIO_DATA_SETUP	0x1A21B028	32	Config	W	0x0000	Data transfer setup
SDIO_START	0x1A21B02C	32	Config	W	0x0000	Start
SDIO_RSP0	0x1A21B030	32	Config	R	0x0000	Response byte0
SDIO_RSP1	0x1A21B034	32	Config	R	0x0000	Response byte1
SDIO_RSP2	0x1A21B038	32	Config	R	0x0000	Response byte2
SDIO_RSP3	0x1A21B03C	32	Config	R	0x0000	Response byte3
SDIO_CLK_DIV	0x1A21B040	32	Config	R/W	0x0000	Clock Divider
SDIO_STATUS	0x1A21B044	32	Config	R/W	0x0000	STATUS
SDIO_STOPCMD_OP	0x1A21B048	32	Config	W	0x0000	SDIO STOP command op
SDIO_STOPCMD_ARG	0x1A21B052	32	Config	W	0x0000	SDIO STOP command arg

Table 44. SDIO Channel 1 registers table

6.2.3.6.3 uDMA SDIO interface registers details

6.2.3.6.3.1 RX SDIO uDMA transfer address of associated buffer (SDIO_RX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RX_SA	ADDR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **RX_SADDR** (R/W)

Configure pointer to memory buffer:

- Read: value of the pointer until transfer is over. Else returns 0
- Write: set Address Pointer to memory buffer start address

6.2.3.6.3.2 RX SDIO uDMA transfer size of buffer (SDIO_RX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	erved							RX_	SIZE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 19:0 - **RX_SIZE** (R/W)

Buffer size in bytes. (1MBytes maximum)

Read: buffer size leftWrite: set buffer size

6.2.3.6.3.3 RX SDIO uDMA transfer configuration (SDIO_RX_CFG)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	Reserved	•		•	•	CLR	PENDIN G	EN	Reserve d	DATA	ASIZE	CONTIN OUS

Bit 6 - CLR (W)

Reset value: 0b0

Channel clear and stop transfer:

0b0: disable*0b1*: enable

Bit 5 - **PENDING** (R)

Reset value: 0b0

Transfer pending in queue status flag:

• 0b0: free

• 0b1: pending

Bit 4 - **EN** (R/W)

Reset value: 0b0

Channel enable and start transfer:

• 0b0: disable

• 0b1: enable

This signal is used also to queue a transfer if one is already ongoing.

Bits 2:1 - DATASIZE (R/W)

Reset value: 0b10

Channel transfer size used to increment uDMA buffer address pointer:

• 0b00: +1 (8 bits)

• 0b01: +2 (16 bits)

• 0b10: +4 (32 bits)(default)

• 0b11:+0

Bit 0 - CONTINOUS (R/W)

Reset value: 0b0

Channel continuous mode:

• 0b0: disable

• *0b1*: enable

At the end of the buffer the uDMA reloads the address and size and starts a new transfer.

$6.2.3.6.3.4~{\rm TX~SDIO~uDMA~transfer~address~of~associated~buffer~(SDIO_TX_SADDR)}$

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TX_SA	ADDR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - TX_SADDR (R/W)

Configure pointer to memory buffer:

- Read: value of the pointer until transfer is over. Else returns 0
- Write: set Address Pointer to memory buffer start address

6.2.3.6.3.5 TX SDIO uDMA transfer size of buffer (SDIO_TX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	rved							TX_S	SIZE	
45		4.0				_	_								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 19:0 - **TX_SIZE** (R/W)

Buffer size in bytes. (1MBytes maximum)

Read: buffer size leftWrite: set buffer size

6.2.3.6.3.6 TX SDIO uDMA transfer configuration (SDIO_TX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Reserved	•				CLR	PENDIN G	EN	Reserve d	DATA	ASIZE	CONTIN

Bit 6 - CLR (W)

Channel clear and stop transfer:

• 0b0: disable

• 0b1: enable

Bit 5 - **PENDING** (R)

Transfer pending in queue status flag:

• 0b0: free

• 0b1: pending

Bit 4 - **EN** (R/W)

Channel enable and start transfer:

• 0b0: disable

• 0b1: enable

This signal is used also to queue a transfer if one is already ongoing.

Bits 2:1 - DATASIZE (R/W)

Channel transfer size used to increment uDMA buffer address pointer:

- 0b00: +1 (8 bits)
- 0b01: +2 (16 bits)
- 0b10: +4 (32 bits)(default)
- 0b11:+0

Bit 0 - CONTINOUS (R/W)

Channel continuous mode:

- 0b0: disable
- 0b1: enable

At the end of the buffer the uDMA reloads the address and size and starts a new transfer.

6.2.3.6.3.7 SDIO command (SDIO_CMD_OP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 13:8 - **CMD_OP** (W)

SDIO command opcode

Bits 2:0 - CMD_RSP_TYPE (W)

Response type:

- 3'b000: No Responce
- 3'b001: 48 bits with CRC
- 3'b010: 48 bits no CRC
- 3'b011: 136bits
- 3'b100: 48 bits with BUSY check

6.2.3.6.3.8 SDIO argument (SDIO_CMD_ARG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CMD_	ARG							
						_	_		_	-		_	_		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **CMD_ARG** (W)

Argument to be sent with the command

6.2.3.6.3.9 Data transfer setup (SDIO_DATA_SETUP)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Res	erved							BLOC	(_SIZE				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			BLOCK	K_NUM						Reserved			DATA_Q UAD	DATA_R WN	DATA_E N

Bits 25:16 - BLOCK_SIZE (W)

Sets the block size

Bits 15:8 - BLOCK_NUM (W)

Sets the number of blocks to be sent

Bit 2 - DATA_QUAD (W)

Enables QUAD mode

Bit 1 - DATA_RWN (W)

Selects the direction of transfer:

- 0b0: write
- 0b1: read

Bit 0 - DATA_EN (W)

Enables Data transfer for current command

6.2.3.6.3.10 Start (SDIO_START)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - START (W)

Starts the SDIO transfer

6.2.3.6.3.11 Response byte0 (SDIO_RSP0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SDIO_	RSP0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **SDIO_RSP0** (R)

Bytes0..3 of response

6.2.3.6.3.12 Response byte1 (SDIO_RSP1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SDIO_	RSP1							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **SDIO_RSP1** (R)

Bytes4..7 of response

6.2.3.6.3.13 Response byte2 (SDIO_RSP2)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SDIO_	RSP2							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **SDIO_RSP2** (R)

Bytes8..11 of response

6.2.3.6.3.14 Response byte3 (SDIO_RSP3)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SDIO_	RSP3							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - SDIO_RSP3 (R)

Bytes12..15 of response

6.2.3.6.3.15 Clock Divider (SDIO_CLK_DIV)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 8:0 - **CLK_DIV** (W)

Clock Divider

6.2.3.6.3.16 STATUS (SDIO_STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	erved			DATA_ERF	R_STATUS			Rese	erved			CMD_ERF	R_STATUS		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 29:24 - DATA_ERR_STATUS (R)

Indicate the error status of the transfer of data :

- 6'b000000: no error
- 0b000001: Response Time Out

Bits 21:16 - CMD_ERR_STATUS (R)

Indicate the error status of the transfer of command :

- 6'b000000: no error
- 0b000001: Response Time Out
- 0b000010: Response Wrong Direction
- 0b000100: Response Busy Timeout

Bit 1 - ERROR (R/W)

Indicate the error of the transfer of command or data:

- 0b0: no error
- 0b1: error

Bit 0 - **EOT** (R/W)

Indicate the end of the transfer of command or data :

- 0b0: not end
- 0b1: end

6.2.3.6.3.17 SDIO STOP command op (SDIO_STOPCMD_OP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 13:8 - STOPCMD_OP (W)

SDIO STOP command opcode

Bits 2:0 - STOPCMD_RSP_TYPE (W)

SDIO STOP command response type:

- 3'b000: No Responce
- 3'b001: 48 bits with CRC
- 3'b010: 48 bits no CRC
- 3'b011: 136bits
- 3'b100: 48 bits with BUSY check

6.2.3.6.3.18 SDIO STOP command arg (SDIO_STOPCMD_ARG)

Reset value: 0x0000

Bits 31:0 - STOPCMD_ARG (W)

Argument to be sent with the STOP command

6.2.3.6.4 uDMA SDIO interface commands

Name	Command number	Size	Description
CMD_GO_IDLE_STATE	0	6	powerup or reset card to idle state
CMD_SEND_CID	2	6	instruct all cards to send CID
CMD_SEND_RCA	3	6	instruct all cards to send RCA
ACMD_CFG_QUAD	6	6	configure the number of lines to use (single or quad mode)
CMD_SELECT	7	6	Select one card with its RCA and flip READY state
CMD_SEND_VOLTAGE	8	6	Send host voltage configuration
CMD_SD_STOP	18	6	STOP command for sd cards, stop multi block transfers after current block
CMD_READ_SINGLE_BLOCK	23	6	Ask the device for one single block of data
CMD_READ_MULT_BLOCK	24	6	Ask the device to continuously send blocks of data until it receives stop
CMD_WRITE_SINGLE_BLOCK	36	6	Write a single block of data to the device
CMD_WRITE_MULT_BLOCK	37	6	Write a continuous stream of data blocks to device
ACMD_HCS	65	6	Send host capacity support (high or standard capacity) and ask device for its voltage window
CMD_APP_SPEC_CMD	85	6	Signal next command is a specific command

Table 45. uDMA SDIO interface commands table

6.2.3.6.5 uDMA SDIO interface commands details

6.2.3.6.5.1 powerup or reset card to idle state (CMD_GO_IDLE_STATE)

Command number: 0

This command is followed by extra parameter bytes that are long. none

ĺ	5	4	3	2	1	0
	CMD_OP	Rese	erved		CMD_RSP	

Bits 13:8 - **CMD_OP**

Bits 2:0 - CMD_RSP

6.2.3.6.5.2 instruct all cards to send CID (CMD_SEND_CID)

Command number: 2

This command is followed by extra parameter bytes that are long. none

5	4	3	2	1	0
CMD_OP	Rese	erved		CMD_RSP	

Bits 13:8 - **CMD_OP**

Bits 2:0 - CMD_RSP

6.2.3.6.5.3 instruct all cards to send RCA (CMD_SEND_RCA)

Command number: 3

This command is followed by extra parameter bytes that are long. none

ſ	5	4	3	2	1	0
Ī	CMD_OP	Rese	erved		CMD_RSP	

Bits 13:8 - CMD_OP

Bits 2:0 - CMD_RSP

6.2.3.6.5.4 configure the number of lines to use (single or quad mode) (ACMD_CFG_QUAD)

Command number: 6

This command is followed by extra parameter bytes that are long. nb data lanes

5	4	3	2	1	0
CMD_OP	Rese	erved		CMD_RSP	

Bits 13:8 - CMD_OP

Bits 2:0 - CMD_RSP

6.2.3.6.5.5 Select one card with its RCA and flip READY state (CMD_SELECT)

Command number: 7

This command is followed by extra parameter bytes that are long. RCA

5	4	3	2	1	0
CMD_OP	Rese	erved		CMD_RSP	

Bits 13:8 - CMD_OP

Bits 2:0 - CMD_RSP

6.2.3.6.5.6 Send host voltage configuration (CMD_SEND_VOLTAGE)

Command number: 8

This command is followed by extra parameter bytes that are long. host voltage range

5	4	3	2	1	0
CMD_OP	Rese	erved		CMD_RSP	

Bits 13:8 - CMD_OP

Bits 2:0 - CMD_RSP

6.2.3.6.5.7 STOP command for sd cards, stop multi block transfers after current block (CMD_SD_STOP)

Command number: 18

This command is followed by extra parameter bytes that are long. none

5	4	3	2	1	0
CMD_OP	Rese	erved		CMD_RSP	

Bits 13:8 - CMD_OP

Bits 2:0 - CMD_RSP

6.2.3.6.5.8 Ask the device for one single block of data (CMD_READ_SINGLE_BLOCK)

Command number: 23

This command is followed by extra parameter bytes that are long. device address

5	4	3	2	1	0
CMD_OP		erved		CMD_RSP	

Bits 13:8 - CMD_OP

Bits 2:0 - CMD_RSP

6.2.3.6.5.9 Ask the device to continuously send blocks of data until it receives stop (CMD_READ_MULT_BLOCK)

Command number: 24

This command is followed by extra parameter bytes that are long. device address

5	4	3	2	1	0
CMD_OP	Rese	erved		CMD_RSP	

Bits 13:8 - CMD_OP

Bits 2:0 - CMD_RSP

6.2.3.6.5.10 Write a single block of data to the device (CMD_WRITE_SINGLE_BLOCK)

Command number: 36

This command is followed by extra parameter bytes that are long. device address

5	4	3	2	1	0
CMD_OP	Rese	erved		CMD_RSP	

Bits 13:8 - CMD_OP

Bits 2:0 - CMD_RSP

6.2.3.6.5.11 Write a continuous stream of data blocks to device (CMD_WRITE_MULT_BLOCK)

Command number: 37

This command is followed by extra parameter bytes that are long. device address

	5	4	3	2	1	0
Ī	CMD_OP	Rese	erved		CMD_RSP	

Bits 13:8 - CMD_OP

Bits 2:0 - CMD_RSP

6.2.3.6.5.12 Send host capacity support (high or standard capacity) and ask device for its voltage window (ACMD_HCS)

Command number: 65

This command is followed by extra parameter bytes that are long. capacity mode

5	4	3	2	1	0
CMD_OP	Rese	erved		CMD_RSP	

Bits 13:8 - **CMD_OP**

Bits 2:0 - CMD_RSP

6.2.3.6.5.13 Signal next command is a specific command (CMD_APP_SPEC_CMD)

Command number: 85

This command is followed by extra parameter bytes that are long. RCA

1	5	4	3	2	1	0
	CMD_OP		erved		CMD_RSP	

Bits 13:8 - CMD_OP

Bits 2:0 - CMD_RSP

6.2.3.7 uDMA CAM CPI interfaces

None

6.2.3.7.1 CAM channel 0 registers

Name	Address	Size	Туре	Access	Default	Description
CAM_RX_SADDR	0x1A21C000	32	Config	R/W	0x0000	RX Camera uDMA transfer address of associated buffer register
CAM_RX_SIZE	0x1A21C004	32	Config	R/W	0x0000	RX Camera uDMA transfer size of buffer register
CAM_RX_CFG	0x1A21C008	32	Config	R/W	0x0000	RX Camera uDMA transfer configuration register
CAM_CFG_GLOB	0x1A21C020	32	Config	R/W	0x0000	Global configuration register
CAM_CFG_LL	0x1A21C024	32	Config	R/W	0x0000	Lower Left corner configuration register
CAM_CFG_UR	0x1A21C028	32	Config	R/W	0x0000	Upper Right corner configuration register
CAM_CFG_SIZE	0x1A21C02C	32	Config	R/W	0x0000	Horizontal Resolution configuration register
CAM_CFG_FILTER	0x1A21C030	32	Config	R/W	0x0000	RGB coefficients configuration register
CAM_VSYNC_POLARITY	0x1A21C034	32	Config	R/W	0x0000	VSYNC Polarity register

Table 46. CAM channel 0 registers table

6.2.3.7.2 CAM channel 1 registers

Name	Address	Size	Туре	Access	Default	Description
CAM_RX_SADDR	0x1A21D000	32	Config	R/W	0x0000	RX Camera uDMA transfer address of associated buffer register
CAM_RX_SIZE	0x1A21D004	32	Config	R/W	0x0000	RX Camera uDMA transfer size of buffer register
CAM_RX_CFG	0x1A21D008	32	Config	R/W	0x0000	RX Camera uDMA transfer configuration register
CAM_CFG_GLOB	0x1A21D020	32	Config	R/W	0x0000	Global configuration register
CAM_CFG_LL	0x1A21D024	32	Config	R/W	0x0000	Lower Left corner configuration register
CAM_CFG_UR	0x1A21D028	32	Config	R/W	0x0000	Upper Right corner configuration register
CAM_CFG_SIZE	0x1A21D02C	32	Config	R/W	0x0000	Horizontal Resolution configuration register
CAM_CFG_FILTER	0x1A21D030	32	Config	R/W	0x0000	RGB coefficients configuration register
CAM_VSYNC_POLARITY	0x1A21D034	32	Config	R/W	0x0000	VSYNC Polarity register

Table 47. CAM channel 1 registers table

6.2.3.7.3 uDMA CAM CPI interface registers details

6.2.3.7.3.1 RX Camera uDMA transfer address of associated buffer register (CAM_RX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15:0 - RX_SADDR (R/W)

Configure pointer to memory buffer:

- Read: value of the pointer until transfer is over. Else returns 0
- Write: set Address Pointer to memory buffer start address

6.2.3.7.3.2 RX Camera uDMA transfer size of buffer register (CAM_RX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								RX_SIZ E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX S	SIZE							

Bits 16:0 - **RX_SIZE** (R/W)

Buffer size in bytes. (128kBytes maximum)

- Read: buffer size left
- · Write: set buffer size

NOTE: Careful with size in byte. If you use uncompressed pixel data mapped on 16 bits, you have to declare buffer size in bytes even if buffer type is short.

6.2.3.7.3.3 RX Camera uDMA transfer configuration register (CAM_RX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Reserved					CLR	PENDIN G	EN	Reserve d	DATA	ASIZE	CONTIN OUS

Bit 6 - **CLR** (W)

Channel clear and stop transfer:

- 0b0: disable
- *0b1*: enable

Bit 5 - **PENDING** (R)

Transfer pending in queue status flag:

- 0b0: free
- 0b1: pending

Bit 4 - EN (R/W)

Channel enable and start transfer:

- 0b0: disable
- 0b1: enable

This signal is used also to queue a transfer if one is already ongoing.

Bits 2:1 - DATASIZE (R/W)

Channel transfer size used to increment uDMA buffer address pointer:

- 0b00: +1 (8 bits)
- 0b01: +2 (16 bits)
- 0b10: +4 (32 bits)
- 0b11:+0

Bit 0 - CONTINOUS (R/W)

Channel continuous mode:

- 0b0: disable
- 0b1: enable

At the end of the buffer the uDMA reloads the address and size and starts a new transfer.

6.2.3.7.3.4 Global configuration register (CAM_CFG_GLOB)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EN								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserve d		SH	IIFT			FORMAT		FRAME SLICE_E N			FRAMED	ROP_VAL			FRAME DROP_E N

Bit 31 - EN (R/W)

Enable data rx from camera interface.

The enable/disable happens only at the start of a frame.

- 0b0: disable
- 0b1: enable

Bits 14:11 - SHIFT (R/W)

Right shift of final pixel value (DivFactor)

NOTE: not used if FORMAT == BYPASS

Bits 10:8 - **FORMAT** (R/W)

Input frame format:

- 0b000: RGB565
- 0b001: RGB555
- 0b010: RGB444
- 0b100: BYPASS_LITEND
- 3'b101: BYPASS_BIGEND

Bit 7 - FRAMESLICE_EN (R/W)

Input frame slicing:

- 0b0: disable
- 0b1: enable

Bits 6:1 - FRAMEDROP_VAL (R/W)

Sets how many frames should be dropped after each received.

Bit 0 - FRAMEDROP_EN (R/W)

Frame dropping:

- 0b0: disable
- 0b1: enable

6.2.3.7.3.5 Lower Left corner configuration register (CAM_CFG_LL)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							FRAMESI	ICE_LLY							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - FRAMESLICE_LLY (R/W)

Y coordinate of lower left corner of slice

Bits 15:0 - FRAMESLICE_LLX (R/W)

X coordinate of lower left corner of slice

6.2.3.7.3.6 Upper Right corner configuration register (CAM_CFG_UR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							FRAMESL	ICE_URY							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - FRAMESLICE_URY (R/W)

Y coordinate of upper right corner of slice

Bits 15:0 - FRAMESLICE_URX (R/W)

X coordinate of upper right corner of slice

6.2.3.7.3.7 Horizontal Resolution configuration register (CAM_CFG_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ROW	LEN							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - **ROWLEN** (R/W)

Horizontal Resolution. It is used for slice mode. Value set into the bitfield must be equal to (rowlen-1).

6.2.3.7.3.8 RGB coefficients configuration register (CAM_CFG_FILTER)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved							R_C	DEFF			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 23:16 - **R_COEFF** (R/W)

Coefficient that multiplies the R component

NOTE: not used if FORMAT == BYPASS

Bits 15:8 - **G_COEFF** (R/W)

Coefficient that multiplies the G component

NOTE: not used if FORMAT == BYPASS

Bits 7:0 - **B_COEFF** (R/W)

Coefficient that multiplies the B component

NOTE: not used if FORMAT == BYPASS

6.2.3.7.3.9 VSYNC Polarity register (CAM_VSYNC_POLARITY)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved														VSYNC_ POLARI TY

Bit 0 - VSYNC_POLARITY (R/W)

Set vsync polarity of CPI.

- 0b0: Active 0
- 0b1: Active 1