Electronique de Puissance - I.U.T. 2ième année Option E.E.P.

3	Ann	exe: gradateur à TRIAC	3
		ésentation du convertisseur	
	8.2 Fo	nctionnement sur charge resistive	3
	8.2.1	Principe	
	8.2.2	Etude de la tension de la charge	
	8.2.3	Etude des harmoniques du courant de ligne	4
	8.2.4	Comparaison avec la norme EN 61000-3-2	5
	8.3 Fo	nctionnement sur charge inductive R-L	6
	8.3.1	Principe	6
	8.3.2	Etude du courant dans la charge	
	8.3.3	Etude de l'instant d'annulation du courant	7
	8.3.4	Etude la tension de la charge	8
	8.3.5	Etude du courant de la charge	
	8.3.6	Etude des harmoniques du courant de ligne	9
	8.4 Fo	nctionnement sur charge inductive pure	9
	8.5 Bil	bliographie	10

Liste des figures :

Figure 8.1. Conversion d'énergie (dessins\famille2.drw).		
Figure 8.2. Gradateur à triac sur charge R (dessins\gradator.drw)		
Figure 8.3. Forme d'ondes sur charge R (dessins\grad_r.drw).		
Figure 8.4. Variation de la tension efficace en fonction de ψ (triac\grad1.m)		
Figure 8.5. Variation de la puissance dans la charge en fonction de ψ (triac\grad1.m)		
Figure 8.6. Variation des trois premiers harmoniques et du courant efficace en fonction de ψ		
(triac\harmo2.m).		
Figure 8.7. Comparaison des harmoniques du gradateur et de la norme Classe A pour ψ = 60°		
et Imax = 3 A (triac\harmo4.m)		
Figure 8.8. Gradateur sur charge R-L (dessin\triac_rl.drw).		
Figure 8.9. Forme d'onde sur charge R-L (dessin\grad_rl.drw).		
Figure 8.10. Courant dans la charge R-L en fonction du temps en ms, $Q = 0.4$		
(triac\grad2a.m).		
Figure 8.11. Courant dans la charge R-L en fonction de $Q = [0.5; 1; 25]$ (triac\grad2b.m)		
Figure 8.12. Angle d'annulation θ_1 en fonction de Q pour $\psi = [50^\circ ; 90^\circ ; 120^\circ 150^\circ]$		
(triac\grad3.m)		
Figure 8.13. Angle d'annulation θ_1 en fonction de ψ pour $Q = [0.5; 1; 25]$ (triac\grad4.m)8		
Figure 8.14. Tension aux bornes de la charge.		
Figure 8.15. Tension efficace en fonction de ψ en $^{\circ}$ pour Q = [0.5; 1; 2.5] (triac\grad5.m)8		

8 Annexe: gradateur à TRIAC

8.1 Présentation du convertisseur

Figure 8.1. Conversion d'énergie (dessins\famille2.drw).

A partir d'une source alternative (V1, f1), il est possible de fabriquer :

- 1) une source alternative AC (V3<V1, f1) avec un gradateur ;
- 2) une source alternative AC (V2, f2) avec le cyclo-convertisseur ;
- 3) une source continue DC avec un redresseur.

8.2 Fonctionnement sur charge resistive

8.2.1 Principe

La variation de lumière d'un éclairage halogène (charge résistive) ou la régulation en température d'un élément chauffant se fait grâce à un gradateur à triac par découpage de la tension du secteur. L'interrupteur est commandé à la fermeture (Triac ou thyristors montés en tête-bêche) et l'ouverture est spontané au passage par zéro du courant.

Figure 8.2. Gradateur à triac sur charge R (dessins\gradator.drw).

La tension de ligne vaut $v_{in}(t) = V_{eff} \sqrt{2} \cdot \sin(\omega t)$ avec $\omega = 2\pi \cdot f$, f = 50 Hz la fréquence du réseau. Le fonctionnement du montage est identique au redresseur monophasé sur charge R.

Avec une charge résistive, le courant de ligne $i_{in}(t)$ et identique au courant dans la charge $i_{out}(t)$.

Figure 8.3. Forme d'ondes sur charge R (dessins\grad r.drw).

8.2.2 Etude de la tension de la charge

La valeur efficace de la tension aux bornes de la charge est donnée par :

$$V_{\text{out eff}}^2 = \frac{1}{T} \int\limits_T v_{\text{out}}^2\left(t\right) \cdot dt = \frac{1}{\pi} \int\limits_{\psi}^{\pi} v_{\text{out}}^2\left(\theta\right) \cdot d\theta = \frac{2 \cdot V_{\text{eff}}^2}{\pi} \int\limits_{\psi}^{\pi} \sin^2\left(\theta\right) \, \text{avec} \; \; \theta = \omega \cdot t \; .$$

$$V_{\text{out eff}}^2 = \frac{V_{\text{eff}}^2}{\pi} \left[\theta - \frac{1}{2} \cdot \sin(2 \cdot \theta) \right]_{-\Psi}^{-\pi} \text{ avec } \sin^2(\theta) = \frac{1 - \cos(2 \cdot \theta)}{2} \text{ et } \int -\cos(2x) = -\frac{1}{2} \sin(2x)$$

$$V_{\text{out eff}}^2 = \frac{V_{\text{eff}}^2}{\pi} \left[\theta - \frac{1}{2} \cdot \sin(2 \cdot \theta) \right]^{-\pi}$$

avec
$$\sin^2(\theta) = \frac{1 - \cos(2 \cdot \theta)}{2}$$

$$\operatorname{et} \int -\cos(2x) = -\frac{1}{2}\sin(2x)$$

$$V_{\text{out eff}}^2 = \frac{V_{\text{eff}}^2}{\pi} \left[\pi - \psi + \frac{1}{2} \cdot \sin(2 \cdot \psi) \right] \text{ soit } :$$

$$V_{\text{out eff}} = V_{\text{eff}} \cdot \sqrt{1 - \frac{\psi}{\pi} + \frac{\sin(2\psi)}{2\pi}}$$

Figure 8.4. Variation de la tension efficace en fonction de $\psi(triac \backslash grad1.m)$.

La puissance transmise à la charge résistive R vaut :

$$P_{\text{out}} = \frac{V_{\text{out eff}}^2}{R}.$$

Avec
$$P_{\text{max}} = \frac{V_{\text{eff}}^2}{R}$$
, on obtient :

$$\frac{P_{\text{charge}}}{P_{\text{max}}} = 1 - \frac{\psi}{\pi} + \frac{\sin(2\psi)}{2\pi}$$

Figure 8.5. Variation de la puissance dans la charge en fonction de $\psi(triac \grad 1.m)$.

8.2.3 Etude des harmoniques du courant de ligne

Avec une source de tension parfaitement sinusoï dale $v_{in}(t) = V_{eff} \sqrt{2} \cdot \sin(\omega t)$, les harmoniques du courant de ligne seront de la forme $i(t) = \sum_{k=1}^{\infty} A_k \sin(k \cdot \omega t) + \sum_{k=1}^{\infty} B_1 \cos(k \cdot \omega t)$. On obtient alors :

$$A_{1} = \frac{V_{eff}\sqrt{2}}{R} \left[1 - \frac{\psi}{\pi} + \frac{\sin(2\psi)}{2\pi} \right] \text{ et } A_{2k+1} = \frac{V_{eff}\sqrt{2}}{R} \left[\frac{\sin(2(k+1)\psi)}{2(k+1)\pi} - \frac{\sin(2k\psi)}{2k\pi} \right]$$
(8.1)

$$B_{1} = \frac{V_{\text{eff}}\sqrt{2}}{R} \left[\frac{\cos(2\psi)}{2\pi} - \frac{1}{2\pi} \right] \text{ et } B_{2k+1} = \frac{V_{\text{eff}}\sqrt{2}}{R} \left[\frac{\cos(2(k+1)\psi) - 1}{2(k+1)\pi} - \frac{\cos(2k\psi) - 1}{2k\pi} \right]$$
(8.2)

Figure 8.6. Variation des trois premiers harmoniques et du courant efficace en fonction de ψ (triac\harmo2b.m).

8.2.4 Comparaison avec la norme EN 61000-3-2

Si le gradateur n'est pas intégré à l'équipement d'éclairage, le montage est en classe A [99DIV031] [DIV041].

Les limites de l'amplitude des harmoniques sont alors données en valeur absolue (limite en Ampère).

Les deux paramètres de l'étude sont l'angle d'amorçage ψ et l'amplitude maximale du courant $I_0 = \frac{V_{eff}}{R} \, .$

Il faut tout d'abord trouver le couple $(\psi \; ; \; I_{\text{o}})$ qui dépasse les limites de la norme.

Figure 8.7. Comparaison des harmoniques du gradateur et de la norme Classe A pour $\psi = 60^{\circ}$ et $Imax = 3 \text{ A (triac} \land harmo4.m).$

Il est possible de compter le nombre d'harmoniques du gradateur qui dépasse la norme en fonction de (ψ ; I_0) (triac\harmo5.m). Les problèmes apparaissent pour $\psi=90^\circ$, avec l'harmonique de rang 15. Le rapport $x_{15}=\frac{I_{15}}{I_0}=0.0455$. En classe A, la limite du rang 15 vaut 0,15A. Le courant limite vaut alors $I_0=3,2967$ A (triac\harmo6.m). Pour une tension $V_{eff}=230V$, la puissance limite vaut 758 W.

Il n'y a pas de problème d'harmoniques en classe A, pour des charges résistives d'une puissance inférieure à 760 W pour ψ variant de 0 à 180° (770W dans [THESE043], condition de test : ψ = 90°).

8.3 Fonctionnement sur charge inductive R-L

8.3.1 Principe

Le fonctionnement sur charge R-L est possible à condition qu'il y ait annulation du courant afin d'assurer le blocage du triac (blocage spontanée). La commande se fait toujours à l'amorçage en envoyant une impulsion de gâchette à l'instant ψ .

Figure 8.8. Gradateur sur charge R-L (dessin\triac_rl.drw).

En posant $\theta = \omega t$, dans l'hypothèse où le courant s'annule AVANT $\pi + \psi$, il faut résoudre l'équation différentielle suivante pour $\theta > \psi$:

Figure 8.9. Forme d'onde sur charge R-L (dessin\grad_rl.drw).

La résolution de cette équation [99DIV028] fait apparaître :

1) la solution en régime permanent sinusoï dale
$$\underline{I} = \frac{\underline{V}}{R + jL\omega}$$
 soit $i_1(\theta) = \frac{V_{eff}\sqrt{2}}{\sqrt{R^2 + (L\omega)^2}} \cdot \sin(\theta - \phi)$, avec $\phi = Arc \tan\left(\frac{L\omega}{R}\right)$

2) la solution en régime transitoire $i_2(t) = I_0 \cdot e^{-\frac{(\theta - \phi)^2}{\tau \omega}}$

Par la suite on posera $\tau = \frac{L}{R}$, la constante de temps, $Q = \tau \omega = \frac{L\omega}{R}$, le facteur de qualité de la charge et $I_{eff} = \frac{V_{eff}}{R}$, le courant efficace en régime permanent purement résistif. Pour $\theta = \psi$, le courant est nul dans la charge donc $I_0 = -I_{eff}\sqrt{2}\cdot\sin\left(\psi-\phi\right)$. Le courant dans la charge à pour expression :

$$i_{\text{out}}(\theta) = \frac{I_{\text{eff}}\sqrt{2}}{\sqrt{1+Q^2}} \cdot \left[\sin(\theta - Arc\tan(Q)) - \sin(\psi - Arc\tan(Q)) \cdot e^{\frac{-(\theta-\psi)}{Q}} \right] \text{ pour } \theta > \psi$$
 (8.4)

Afin de normaliser l'étude qui suit, on pose $x(\theta) = \frac{i_{out}(\theta)}{I_{eff}\sqrt{2}}$ et la tension réduite $v(\theta) = \sqrt{2} \cdot \sin(\theta)$.

8.3.2 Etude du courant dans la charge

On s'intéresse alors à l'évolution du courant dans la charge en fonction du facteur de qualité Q pour $\psi = 72^{\circ}$.

Figure 8.10. Courant dans la charge R-L en fonction du temps en ms, Q = 0.4 (triac\grad2a.m). Figure 8.11. Courant dans la charge R-L en fonction de Q = [0.5; 1; 25] (triac\grad2b.m).

8.3.3 Etude de l'instant d'annulation du courant

On appelle t_1 l'instant d'annulation du courant dans la charge $(\theta_1 = \omega.t_1)$. Cet instant nous donne la plage de variation de l'angle d'amorçage puisqu'il faut vérifier que $\pi + \psi > \theta 1$ pour un fonctionnement correct du gradateur.

Figure 8.12. Angle d'annulation θ_l en fonction de Q Figure 8.13. Angle d'annulation θ_l en fonction de ψ pour $\psi = [50^\circ; 90^\circ; 120^\circ 150^\circ]$ (triac\grad3.m). pour Q = [0.5; 1; 2.5] (triac\grad4.m).

La zone utile correspond au demi plan inférieur définit par la droite $\theta_1 = \pi + \psi$.

8.3.4 Etude la tension de la charge

On calcul la valeur efficace de la tension au bornes de la charge (dessins\grad_rl.drw) par la relation suivante :

$$V_{\text{out eff}}^2 = \frac{1}{\pi} \int_{\Psi}^{\theta_l} v_{\text{out}}^2(\theta) \cdot d\theta$$
.

Puisque $v_{out}(\theta) = V_{eff} \sqrt{2} \cdot \sin(\theta)$ sur l'intervalle considéré, on obtient :

Figure 8.14. Tension aux bornes de la charge.

$$\frac{V_{\text{out eff}}}{V_{\text{eff}}} = x(\psi)_{\psi > \phi} = \sqrt{\frac{1}{\pi} \cdot \left(\theta_1 - \psi - \frac{1}{2} \cdot \left(\sin(2 \cdot \theta_1) - \sin(2 \cdot \psi)\right)\right)}$$
(8.5)

On trace pour différente valeur de Q (θ_1 dépend de Q) l'évolution de $x(\psi)$.

Figure 8.15. Tension efficace en fonction de ψ en $^{\circ}$ pour Q = [0.5; 1; 2.5] (triac\grad5.m).

8.3.5 Etude du courant de la charge

On calcul la valeur efficace du courant dans charge par la relation $I_{out\,eff}^2 = \frac{1}{\pi} \int_{\psi}^{\theta_l} i_{out}^2(\theta) \cdot d\theta$.

$$\frac{I_{\text{out eff}}}{V_{\text{eff}}/Z} = \sqrt{\frac{1}{\pi}} \cdot \left[\sin(2 \cdot (\psi - \phi)) - \sin(2 \cdot (\theta_1 - \phi)) \right] + Q \cdot \sin^2(\psi - \phi) \cdot \left[1 - e^{\frac{2 \cdot (\theta_1 - \psi)}{Q}} \right] + \left[\frac{1}{\pi} \cdot \frac{4Q^2}{1 + Q^2} \sin(\psi - \phi) \left[\frac{1}{Q} \sin(\theta_1 - \phi) + \cos(\theta_1 - \phi) \right] \cdot e^{\frac{2 \cdot (\theta_1 - \psi)}{Q}} - \frac{1}{Q} \sin(\psi - \phi) + \cos(\psi - \phi) \right]} \right]$$

8.3.6 Etude des harmoniques du courant de ligne

8.4 Fonctionnement sur charge inductive pure

8.5 Bibliographie

- [LIVRE023] C. ROMBAUT, G. SEGUIER, *Volume 2 : La conversion alternatif-alternatif*, Lavoisier TEC & DOC, 2° édition, septembre 1991, 363 pages.
- [LIVRE029] J.-L. COQUERELLE, Génie Electrique du réseau au convertisseur : apprendre par l'exemple, édition Technip, 1996.
- [99DIV031] T. LEQUEU, *Annexe : La norme EN 61000-3-2*, cours d'Electronique de Puissance, juillet 1999.
- [DIV041] Norme Française, Norme Européenne, NF EN 61000-3-2, Compatibilité électromagnétique (CEM) partie 3 : limites section 2 : limites pour les émissions de courant harmonique (courant appelé par les appareils inférieur à 16 A par phase), Août 1995, 1er tirage 95-08.
- [THESE043] M. DESTOUCHES, Etude de la norme IEC 1000-3-2 pour les appareils d'éclairage, rapport de stage, janvier 1999.
- [99DIV028] T. LEQUEU, Annexe: Systèmes du premier et du second ordre, juillet 1999.

????

- [LIVRE048] T. WILLIAMS, *EMC for product designers- Meeting the European EMC directive*, An inprint of Butterworth-Heinemann NEWNES, second edition, 1992.
- [ART109] CENELEC, EN 50 160, CLC/BTTF 68-6, Caractéristiques de la tension fournie par les réseaux publics de distribution, avril 1994.