Deep Learning for Natural Language Processing

Dr. Minlie Huang (黄民烈), Asso/Prof.

aihuang@tsinghua.edu.cn

Computer Science Department

Tsinghua University

Homepage: http://coai.cs.tsinghua.edu.cn/hml

My group: http://coai.cs.tsinghua.edu.cn

Outline

- Background
- Word Vectors
- Recursive Neural Network
- Recurrent Neural Network
- Convolution Neural Network

Natural Language Processing

- Natural language processing (NLP) is a field of computer science, artificial intelligence and computational linguistics concerned with the interactions between computers and human (natural) languages, and, in particular, concerned with programming computers to fruitfully process large natural language corpora.
- Involve <u>natural language understanding</u>, <u>natural language</u> <u>generation</u> (frequently from <u>formal</u>, <u>machine-readable logical</u> <u>forms</u>), <u>connecting language and machine perception</u>, <u>managing</u> human-computer dialog systems, or some combination thereof.

Background: Natural Language Processing

- Tagging and parsing
- Question answering and dialogue systems
- Text/document classification
- Sentiment analysis and opinion mining
- Machine translation

Tagging and Parsing

Part-of-speech Tagging

Question Answering and Dialogue Systems

Q: How many people live in Beijing?

A: About 22 million.

Q: How long is the Great Wall?

A: About **8800 km**.

Q: What creates a cloud

A: in meteorology, a cloud is a visible mass of liquid droplets or frozen crystals made of water or various chemicals suspended in the atmosphere above the surface of a planetary body.

```
x_0 good morning
y_0 hello what can i help you with today
   can you book a table in a cheap price range in london
   i'm on it
   <SILENCE>
   any preference on a type of cuisine
   with french food
   how many people would be in your party
x_4 for four please
   ok let me look into some options for you
   <SILENCE>
   api_call french london four cheap
```

IBM DeepQA: Understanding Human Languages

Sentiment Analysis and Opinion Mining

- Sentiment analysis (SA) or opinion mining computational study of opinion, sentiment, appraisal, evaluation, and emotion.
- Sentiment: an attitude, thought, or judgment prompted by feeling.
 - A sentiment is more of a feeling.
 - "I am concerned about the current state of the economy."
- Opinion: a view, judgment, or appraisal formed in the mind about a particular matter.
 - a concrete view of a person about something.
 - "I think the economy is not doing well."

Sentiment Analysis and Opinion Mining

Sentiment analysis (SA) or opinion mining computational study of opinion, sentiment, appraisal, evaluation, and emotion.

Staffs are not that friendly, but the taste covers all."

Taste

Emotion/Sentiment Generation

Varying the code of sentiment

this movie was awful and boring. this movie was funny and touching.

jackson is n't very good with documentary jackson is superb as a documentary productions

you will regret it you will enjoy it

Hu Z, Yang Z, Liang X, et al. Controllable Text Generation[J]. arXiv preprint arXiv:1703.00955, 2017.

Varying the unstructured code z

("negative", "past")

the acting was also kind of hit or miss.

i wish i 'd never seen it

by the end i was so lost i just did n't care anymore

("negative", "present")

the movie is very close to the show in plot and characters the era seems impossibly distant

i think by the end of the film, it has confused itself

("negative", "future")

i wo n't watch the movie

and that would be devastating!

i wo n't get into the story because there really is n't one

Emotional Content Generation

Machine Translation

Knowledge Graph: Storing Human Knowledge

Freebase
1.9 billion triples

Representing Textual Data

Traditional, Fixed Representation

- [1/0, 1/0, ···, 1/0]
- [tf*idf, •••, tf*dif]
- [#w₁, #w₂, #w₃, •••., #w_n]
 - High-dimensional, sparse
 - Heavy domain expertise
 - Expensive engineering

New Feature Representation

Trainable, Learnable

- Low-dimensional, dense
- Data and model driven
- Task oriented

Traditional Representation

Similarity(DOC#2, DOC#3)???

Traditional Representation

Vocabulary: I Like NLP Deep Learning We Love Neural Network Document TF=1 TF=1 TF=1 I like NLP #1 DF=2 DF=2 DF=1 Document TF=1 TF=1 TF=1 TF=1 I like Deep Learning #2 DF=2 DF=2 DF=1 DF=1 Document We love neural DF=1 DF=1 DF=1 DF=1 #3 network

TF(w,d): count of word **w** in document **d** DF(w): #docs containing **w**

Similarity(DOC#2, DOC#3)???

New Representation with Deep Learning

Roadmap of this Lecture

Representing Words

Representing Phrases/Sentences

Representing Documents

Neural language model Word2vect GloVe Recursive Neural Network Recurrent Neural Network Convolutional Neural Network Convolutional Neural Network

Statistical Language Models

• A *statistical language model* is a probability distribution over sequences of words.

A sequence **W** consists of **L** words (eg: / like deep learning):

$$P(W) = P(w_{1:L}) = P(w_1, \dots, w_L)$$

$$= P(w_1)P(w_2|w_1)P(w_3|w_1w_2)\cdots P(w_L|w_{1:(L-1)})$$

$$= \prod_{i=1}^{L} P(w_i|w_{1:(i-1)}).$$

• **N**-gram language model

$$P(W) = \prod_{i=1}^{L} P(w_i|w_{(i-n+1):(i-1)}).$$

Statistical Language Models

```
• P(I like deep learning)
=P(I)*
P(like|I)*
P(deep|I like)*
P(learning|I like deep)
```

For 1-gram LM (unigram LM):

• P(I like deep learning) =P(I)* P(like)* P(deep)* P(learning)

For 2-gram LM (bigram LM):

```
    P(I like deep learning)
        =P(I)*
        P(like|I)*
        P(deep|like)*
        P(learning|deep)
```

$$P(like|I) = \frac{\#(I, like)}{\sum_{w} \#(I, w)}$$

$$P(\text{deep}|I,like) = \frac{\#(I,like,deep)}{\sum_{w} \#(I,like,w)}$$

Word order matters

Issues with Traditional Language Models

- Data sparsity: *n* cannot be too large
 - Model size grows exponentially with *the size of vocabulary*.
 - Trigram: Model size = $|V|^3$
- Reliable probability estimation: smoothing techniques

$$P(I) = \frac{\#(I)}{\sum_{w} \#(w)}$$

$$P(I) = \frac{\#(I) + k}{\sum_{w} [\#(w) + k]}$$

Neural Probabilistic Language Model

Evolve from traditional language models

$$\hat{P}(w_1^T) = \prod_{t=1}^T \hat{P}(w_t | w_1^{t-1}),$$

$$\hat{P}(w_t|w_1^{t-1}) \approx \hat{P}(w_t|w_{t-n+1}^{t-1}).$$

$$\hat{P}(w_t|w_{t-1},\cdots w_{t-n+1}) = \frac{e^{y_{w_t}}}{\sum_i e^{y_i}}$$

$$y = b + Wx + U \tanh(d + Hx)$$

Bengio et al 2003. A Neural Probabilistic Language Model. JMLR 3 (2003) 1137–1155

Representing Words

- CBOW: Continuous Bag-Of-Words
- Predicting the current word from contextual words

Mikolov et al 2013. Efficient Estimation of Word Representations in Vector Space

Representing Words

Skip-gram: predicting the contextual words from the current word

$$P(w_{t+j}|w_t) = softmax(\mathbf{V}_{w_t}^T \mathbf{V}_{w_{t+j}}')$$

$$= \frac{exp(\mathbf{V}_{w_t}^T \mathbf{V}_{w_{t+j}}')}{\sum_{w} exp(\mathbf{V}_{w_t}^T \mathbf{V}_{w}')}$$

$$\mathscr{L}_{\theta} = -\frac{1}{T} \sum_{t=1}^{T} \sum_{t-n \leq j \leq t+n, j \neq 0} log P(w_{t+j}|w_t)$$

NO hidden layer Each word has an input vector V and output vector V

What If Very Large Vocabulary

The normalization factor is too expensive for computation

$$\hat{P}(w_t|w_{t-1}, \dots w_{t-n+1}) = \underbrace{\frac{e^{y_{w_t}}}{\sum_i e^{y_i}}} = softmax(y_{w_t})$$

- Solution
 - Hierarchical Softmax: a tree-structured vocabulary
 - Negative Sampling: sample some random words for the context
- A. Mnih and G. Hinton. A scalable hierarchical distributed language model . In: Advances in neural information processing systems (2009).
- B. F. Morin and Y. Bengio. Hierarchical Probabilistic Neural Network Language Model. In: Aistats. Vol. 5. Citeseer. 2005, pp. 246 252.
- C. T. Mikolov et al. Efficient estimation of word representations in vector space. In: arXiv preprint arXiv:1301.3781 (2013).

Hierarchical Softmax

- Huffman tree to encode each word
 - More frequent words closer to root
 - Each word corresponds to a unique code path: **b(w,1),b(w,2),···,b(w,m)** where b(w,i) in {0,1}

For
$$w_3$$
: $b(w,1)=1$, $b(w,2)=1$, $b(w,3)=0$

• Given context **h**, the prob. of observing **w**:

$$P(w|h)=P(b(w,1),b(w,2),...,b(w,m)|h)$$

$$= \prod_{j=1}^{m} P(b(w,j)|b(w,1),...,b(w,j-1),h)$$

Hierarchical Softmax

• Denote $b(w,1),b(w,2),\cdots,b(w,j-1)=\mathbf{n}(w,j-1)$, the $(j-1)^{th}$ non-leaf node starting from root for word \boldsymbol{w}

• Given context **h**, the prob. of observing **w**:

$$P(w|h) = \prod_{j=1}^{m} P(b(w,j)|b(w,1),...,b(w,j-1),h)$$

$$= \prod_{j=1}^{m} P(b(w,j)|n(w,j-1),h)$$

• Since b(w,j) in $\{0,1\}$, sigmoid function can be used:

$$P(b(w,j) = 1 | n(w,j-1), h) = sigmoid(\mathbf{W}_{n(w,j-1)}h + \mathbf{b}_{n(w,j-1)})$$

 W_{Δ}

111

110

Computation Reduction in Hierarchical Softmax

- For each word w, at most log V nodes needs to compute
 - Each word has at most log|V| path codes (n(w,i) is prefix)
 - log|V| is the height of Huffman tree
 - More frequent words have short paths More accelerations!
- Speed up from |V| to log|V|

$$P(\mathbf{w}_{t+j}|w_t) = softmax(\mathbf{V}_{w_t}^T \mathbf{V}_{w_{t+j}}')$$

$$= \underbrace{\exp(\mathbf{V}_{w_t}^T \mathbf{V}_{w_{t+j}}')}_{\sum_{w} \exp(\mathbf{V}_{w_t}^T \mathbf{V}_{w}')}$$

$$P(w|h) = \prod_{j=1}^{m} P(b(w,j)|n(w,j-1),h)$$

Computation Reduction in Hierarchical Softmax

- Each word is associated with more parameters
 - The number of nodes in the code path

$$P(b(w,j) = 1|n(w,j-1),h) = sigmoid(\mathbf{W}_{n(w,j-1)}h + \mathbf{b}_{n(w,j-1)})$$

- At most log|V| nodes
- Total #parameters of the model= |V|*log|V|
- Better time efficiency at the cost of space!

Accelerating the Training Process

Negative Sampling

Observed, true samples

I like deep learning

I love deep learning

I code with deep learning

Skip-gram P(like|I,Deep) Generated, fake samples

I hate deep learning

I play deep learning

- A. Mnih and G. Hinton. A scalable hierarchical distributed language model . In: Advances in neural information processing systems (2009).
- B. F. Morin and Y. Bengio. Hierarchical Probabilistic Neural Network Language Model. In: Aistats. Vol. 5. Citeseer. 2005, pp. 246 252.

Skip-gram Model

• Given a pair of <word, context> (w,c), the probability that word w is observed in the context c is given by:

$$Pr(D=1|\mathbf{w},\mathbf{c}) = \frac{1}{1+\exp(-\mathbf{w}^T\mathbf{c})}$$

• where \boldsymbol{w} and \boldsymbol{c} are embedding vectors of \boldsymbol{w} and \boldsymbol{c} respectively. The probability of not observing word \boldsymbol{w} in the context \boldsymbol{c} is given by:

$$Pr(D=0|\mathbf{w},\mathbf{c})=1-\frac{1}{1+\exp(-\mathbf{w}^T\mathbf{c})}.$$

Skip-gram Model

 Given a training set *D*, the word embeddings are learned by maximizing the following objective function:

$$J(\theta) = \sum_{w,c\in\mathcal{D}} Pr(D=1|w,c) + \sum_{w,c\in\mathcal{D}'} Pr(D=0|w,c)$$

 where the set D' is randomly sampled negative examples, assuming they are all incorrect.

Computation Reduction in Negative Sampling

From the normalization factor to a sigmoid function

$$P(\mathbf{w}_{t+j}|w_t) = softmax(\mathbf{V}_{w_t}^T \mathbf{V}_{w_{t+j}}')$$

$$= \underbrace{exp(\mathbf{V}_{w_t}^T \mathbf{V}_{w_{t+j}}')}_{\sum_{w} exp(\mathbf{V}_{w_t}^T \mathbf{V}_{w}')} Pr(D = 1|w, c) = \frac{1}{1 + exp(-\mathbf{w}^T \mathbf{c})}$$

$$P(w_t|c_t) = softmax(\mathbf{V}_{w_t}^{'T}\mathbf{c}_t)$$

$$P(\mathbf{w}_{t+j}|w_t) = softmax(\mathbf{V}_{w_t}^T \mathbf{V}_{w_{t+j}}^{'})$$

ain the model

A very large corpus: Many many documents

$$\mathscr{L}_{ heta} = -rac{1}{T} \sum_{t=1}^{T} \sum_{t-n \leq j \leq t+n, j
eq 0} log P(w_{t+j}|w_t)$$

Word vectors are the parameters of the model

Language Regularity

Words similar to "Sweden"

word	Cosine similarity
norway	.760
denmark	.715
finland	.620
switzerland	.588
belgium	.585
netherlands	.575

Semantic:

$$\begin{aligned} v_{brother} - v_{sister} \\ = v_{grandson} - v_{granddaughter} \end{aligned}$$

Syntactic:

$$v_{apparent} - v_{apparently}$$

= $v_{rapid} - v_{rapidly}$

Language Regularity

Now, each word can be represented by

A low-dimensional, real-valued, and dense vectors

Deep=	0.123	Learning=	0.978		-0.360
	0.243		0.673		-0.445
	0.789		-0.123		0.809
	-0.150		-0.450	NLP=	-0.961
	0.893		0.708		0.537
	0.163		0.467		0.189
	-0.876		-0.234		-0.776
					_

Word Vectors

Resources for Word Vectors

download

- glove
 - homepage: https://nlp.stanford.edu/projects/glove/
 - code: https://github.com/maciejkula/glove-python
 - word vectors: http://nlp.stanford.edu/data/glove.6B.zip
- word2vec
 - homepage: https://code.google.com/archive/p/word2vec/
 - code: https://github.com/tmikolov/word2vec
 - word vectors: https://drive.google.com/file/d/0B7XkCwpI5KDYNINUTTISS21pQmM/edit
- Chinese corpus
 - https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2

Word Vector Training with Word2vec

Exemplar command

./word2vec -train text8 -output vectors.bin -cbow 1 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 1 -iter 15

Parameters

- -train: Use text data from <file> to train the model
- -output: Use <file> to save the resulting word vectors
- -size: Set size of word vectors: default is 100
- -window: Set max skip length between words; default is 5
- -sample: Set threshold for occurrence of words.
- -hs: Use Hierarchical Softmax; default is 0
- -negative: Number of negative examples; default is 5
- -threads: Use <int> threads (default 12)
- -iter: Run more training iterations (default 5)
- -binary: Save the resulting vectors in binary moded; default is 0 (off)

Messages about Word Vectors

 Representing word with vector is a precursor for natural language understanding with deep learning

Well pre-trained word vectors are crucial for the performance

• Fine-tuning word vectors generally improve the performance but a well pre-trained word vectors are good enough, and sometimes even degrade the performance.

Roadmap of this Lecture

Representing Words

Representing Phrases/Sentences

Representing Documents

Word2vect GloVe

Recursive Neural Network Recurrent Neural Network Convolutional Neural Network

Convolutional Neural Network

Thanks for Attention

- Dr. Minlie Huang
- aihuang@tsinghua.edu.cn
- Homepage: http://coai.cs.tsinghua.edu.cn/hml