Rachel C. Kurchin

Carnegie Mellon University 3404 Wean Hall, Hamerschlag Drive Pittsburgh, PA 15213 rkurchin@cmu.edu rkurchin.github.io Google Scholar

EDUCATION

2019	Massachusetts Institute of Technology Cambridge, MA, USA Ph.D., Materials Science and Engineering, GPA 4.6/5.0
2014	University of Cambridge Cambridgeshire, UK MPhil, Materials Science & Metallurgy (research-based)
2013	Yale University New Haven, CT, USA B.S., Physics (Intensive), with distinction (magna cum laude, GPA 3.9/4.0)
2009	The Harley School Rochester, NY GPA 3.97/4.0

RESEARCH POSITIONS

09/2019 – present	Carnegie Mellon University Depts. of Mechanical Engineering, Materials Science and Engineering MFI Postdoctoral Fellow with Venkat Viswanathan and Jay Whitacre
10/2014 - 07/2019	Massachusetts Institute of Technology Dept. of Mechanical Engineering Ph.D. student with Tonio Buonassisi (committee: V. Stevanović, J. Grossman, B. Yildiz)
Summers 2016, 2017	National Renewable Energy Laboratory Solar Energy Research Facility Visiting Graduate Student with Vladan Stevanović
10/2013 - 06/2014	University of Cambridge Dept. of Materials Science & Metallurgy Master's Student with Stoyan Smoukov, advised by Dame Athene Donald
09/2012 - 05/2013	Yale University Dept. of Electrical Engineering Undergraduate researcher (senior thesis) with Minjoo Larry Lee
Summer 2012	Colorado School of Mines Dept. of Physics REU Student with Thomas Furtak
01/2012 - 05/2012	Yale University Dept. of Chemical Engineering Undergraduate researcher with Chinedum Osuji
Summer 2011	Weizmann Institute of Science Dept. of Earth and Planetary Sciences Undergraduate researcher with Ilan Koren
Summer 2008	University of Rochester Laboratory for Laser Energetics High school researcher with R. Stephen Craxton

TEACHING POSITIONS

09/2018 - 12/2018	Massachusetts Institute of Technology Dept. of Materials Science and Engineering Teaching Assistant for 3.23: Electronic, Optical, and Magnetic Properties of Materials
2011 – 2013	Yale University Dean's Office Science and Quantitative Reasoning Tutor

2020	Rising Star in Computational and Data Sciences Oden Institute at the University of Texas at Austin
2019	MFI Postdoctoral Fellowship CMU Manufacturing Futures Initiative
	Graduate Student Teaching Award MIT Dept. of Materials Science and Engineering
	Graduate Student Teaching Award MIT School of Engineering
	CCE Symposium Poster Prize MIT Center for Computational Engineering
2018	Materials Day Best Poster Award MIT Materials Research Laboratory
2017	Blue Waters Graduate Fellowship National Center for Supercomputing Applications
2016	Total Energy Fellowship MIT Energy Initiative
	Second Place, de Florez Award Competition MIT Dept. of Mechanical Engineering
2014	GRFP Honorable Mention National Science Foundation
2013	Gates Cambridge Scholarship Cambridge Gates Trust
	Howard L. Schultz Prize Yale Physics Department
2012	Mellon Grant Pierson College at Yale University
	REMRSEC REU Technical Achievement Award Colorado School of Mines Renewable Energy Materials Research Science and Engineering Center
2009	Robert C. Byrd Honors Scholarship US Department of Education
	Intel STS Semifinalist Intel Science Talent Search

PUBLICATIONS

- 2020 [15] **R. Kurchin**, V. Viswanathan. "Marcus-Hush-Chidsey kinetics at electrode-electrolyte interfaces." *The Journal of Chemical Physics* 153, 134706 (2020)
 - [14] R. C. Kurchin, J. .. Poindexter, V. Vahanissi, et al. "How Much Physics Is in a Current-Voltage Curve? Inferring Defect Properties from Photovoltaic Device Measurements." IEEE Journal of Photovoltaics 1-6 (2020)
- 2019 [13] R. C. Kurchin, G. Romano, T. Buonassisi. "Bayesim: a tool for adaptive grid model fitting with Bayesian inference." *Computer Physics Communications* 239, 161–165 (2019)
- 2018 [12] **R. C. Kurchin**, P. Gorai, T. Buonassisi, V. Stevanović. "Structural and chemical features giving rise to defect tolerance of binary semiconductors." *Chemistry of Materials* 30, 5583–5592 (2018)
 - [11] J. Correa-Baena, L. Nienhaus, **R. C. Kurchin**, et al. "A-site cation in inorganic A₃Sb₂I₉ perovskite influences structural dimensionality, exciton binding energy, and solar cell performance." *Chemistry of Materials* 30, 3734–3742 (2018)
- 2017 [10] S. S. Shin, J. Correa-Baena, **R. C. Kurchin**, et al. "Solvent-engineering method to deposit compact bismuth-based thin films: mechanism and application to photovoltaics." *Chemistry of Materials* 30, 336–343 (2017)
 - [09] R. Brandt, R. C. Kurchin, V. Steinmann, et al. "Rapid semiconductor device characterization through Bayesian parameter estimation." *Joule* 1, 843–856 (2017)
 - [08] R. Hoye, L. C. Lee, **R. C. Kurchin**, et al. "Strongly enhanced photovoltaic performance and defect physics of air-stable bismuth oxyiodide (BiOI)." *Advanced Materials* 29, (2017)

- [07] R. E. Brandt, J. Poindexter, P. Gorai, R. Kurchin, et al. "Searching for "defect-tolerant" photovoltaic materials: combined theoretical and experimental screening." Chemistry of Materials 29, 4667–4674 (2017)
- [06] J. R. Poindexter, R. Hoye, L. Nienhaus, R. C. Kurchin, et al. "High tolerance to iron contamination in lead halide perovskite solar cells." ACS Nano 11, 7101–7109 (2017)
- 2016 [05] R. Hoye, P. Schulz, L. T. Schelhas, A. M. Holder, K. H. Stone, J. D. Perkins, D. Vigil-Fowler, S. Siol, D. O. Scanlon, A. Zakutayev, A. Walsh, I. C. Smith, B. C. Melot, R. C. Kurchin, et al. "Perovskite-inspired photovoltaics: best practices in materials characterization and calculations." Chemistry of Materials 29, 1964–1988 (2016)
 - [04] D. B. Needleman, J. R. Poindexter, R. C. Kurchin, et al. "Economically sustainable scaling of photovoltaics to meet climate targets." *Energy & Environmental Science* 9, 2122–2129 (2016)
 - [03] A. Gufan, Y. Lehahn, E. Fredj, C. Price, R. C. Kurchin, et al. "Segmentation and tracking of marine cellular clouds observed by geostationary satellites." *International Journal of Remote Sensing* 37, 1055–1068 (2016)
- 2015 [02] R. Hoye, R. E. Brandt, A. Osherov, V. Stevanović, S. D. Stranks, M. Wilson, H. Kim, A. J. Akey, R. C. Kurchin, et al. "Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber." *Chemistry A European Journal* 22, 2605–2610 (2015)
 - [01] R. E. Brandt, R. C. Kurchin, R. Hoye, et al. "Investigation of bismuth triiodide (BiI₃) for photovoltaic applications." *The Journal of Physical Chemistry Letters* 6, 4297–4302 (2015)

TALKS

2020	Accelerating Energy Materials Discovery with Computation University of Illinois Urbana-Champaign Electrical & Computer Engineering Department
	Bayesian Parameter Estimation: Computational Methods CMU Course 24-786: Bayesian Machine Learning
2018	Semiconductor Parameter Extraction (and more!) with Bayesian Inference MIT Society of Industrial and Applied Mathematics
	Computational Screening for Defect-Tolerant Semiconductors Gordon Research Seminar on Defects in Semiconductors
	Structural and Chemical Features Contributing to Defect Tolerance of Binary Semiconductors Blue Waters Research Symposium
2017	Toward Quantitative Metrics to Screen for Defect Tolerance in Novel Semiconducting Materials

2013 Cross-Sectional EBIC Characterization of III-V Semiconductors for Photovoltaic Applications
Yale Physics Department

Materials Research Society Fall Meeting and Exhibit

2012 Improving Active Layer Performance of Hybrid Photovoltaics by Nano Imprinting with Bulk Metallic Glass Yale Physics Department

POSTER PRESENTATIONS

2019 Measuring Real-World Quantities from Computer Simulation with Bayesian Inference MIT de Florez Award Competition

Semiconductor Parameter Extraction via Current-Voltage Characterization and Bayesian Inference Methods
MIT CCE Symposium

2018	Semiconductor Parameter Extraction via Current-Voltage Characterization and Bayesian Inference Methods MIT Materials Day
	Structural and Chemical Features Contributing to Defect Tolerance of Binary Semiconductors Gordon Research Seminar on Defects in Semiconductors
	Semiconductor Parameter Extraction via Current-Voltage Characterization and Bayesian Inference Methods World Conference on Photovoltaic Energy Conversion
	Design Principles for Defect-Tolerant Photovoltaic Absorbers MIT de Florez Award Competition
2016	Quantitative Metrics for Defect Tolerance in Semiconductors Materials Research Society Fall Meeting and Exhibit
	Photovoltaics R&D: Thin Film Materials MIT Energy Night
	Bayes-Sun Inference: Next-Generation Photovoltaics through Advanced Probabilistic Modeling MIT de Florez Award Competition
	Statistical Inference of Materials Properties from Solar Cell Measurements Beyond 2016: MIT's Frontiers of the Future Symposium
2015	Improving the Accuracy of Novel Materials Screening: Growing Defect-Tolerant Photovoltaic Absorbers MRS Fall Meeting and Exhibit
	Solar Energy Technology & Innovation in Mexico MIT Energy Initiative Solar Day
	Toward Algorithmic Screening of Novel, Defect-Tolerant Solar Materials NREL HOPE workshop
2013	Raman Spectroscopy of Silicon Quntum Dots Northeast Conference for Undergraduate Women in Physics
2012	Raman Spectroscopy of Silicon Quntum Dots REMRSEC REU Poster Session
REVIEWIN	${f G}$
2020 – present	NPJ Computational Materials Springer Nature

2019-present	NeurIPS ML4PS Workshop
2019-present	Applied Energy Materials American Chemical Society
2017-present	Energy & Environmental Science Royal Society of Chemistry
SERVICE	
2019 - 2020	Conference Organizer Pittsburgh Conference for Undergraduate Women in Physics
2018 - 2019	Member, Graduate Student Advisory Group for Engineering MIT School of Engineering
2018 - 2019	Co-President, Women of Materials Science MIT Department of Materials Science
Spring 2017	Graduate Student Mentor, Solar Spring Break MIT Energy Initiative
2016 - 2019	Student Representative, Energy Education Task Force MIT Energy Initiative

2016 - 2019	Graduate Student Representative, Solar Test Bed Steering Committee $\it MIT$ Office of Sustainability	
2015	Conference Organizer Solar Energy Technology & Innovation in Mexico Workshop	
2015 - 2017	Solar/Grid Community Co-Leader MIT Energy Club	
January 2015	Graduate Student Panelist Northeast Conference for Undergraduate Women in Physics	
March 2014	Science Demonstrator Cambridge Hands-On Science	
2012 - 2013	Project Bright Co-Leader Yale University	
2012	SPS Co-President Yale Society of Physics Students	
2011 - 2012	Conference Organizer Northeast Conference for Undergraduate Women in Physics	

COMPUTATIONAL SKILLS

Simulation	VASP, PC1D, SCAPS-1D
Languages/ $Environments$	Python (incl. numpy, scipy, pandas, matplotlib), Julia (incl. Differential Equations, Flux, and other SciML packages), Jupyter, MATLAB, Mathematica, LaTeX, Unix
HPC	Have earned allocations on and used both Intel and Cray systems including Peregrine (NREL), NERSC (LBL). Blue Waters (UIUC), Supercloud (MIT)

OTHER SKILLS AND ACTIVITIES

т .	т
Horeign	Languages
1 OI CIGII	Languages

Spanish	Proficient
Hebrew	Intermediate

Music-Violinist

2018-2019	MIT Musical Theater Guild
2014 - 2017	MIT Gilbert & Sullivan Players
2014 - 2016	MIT Chamber Music Society
2009 - 2013	Jonathan Edwards College Philharmonic, Pit orchestras for the Yale Dramat, Yale Gilbert & Sullivan Society, Opera Theatre of Yale College, and various independent theatrical productions

Athletics

2019	Finisher, Pumpkinman Half Iron Triathlon
2018 - 2019	Treasurer, MIT Triathlon Team
2014, 2018	Finisher, Stockholm and Marine Corps Marathons
2013 - 2014	Rower, Churchill College Boat Club (1st women's VIII in May Bumps 2014)
2009 - 2012	Member (2009 – 2012), Manager (2010 – 2011), Yale Bulldog Cycling Team