EE531 - TURMA S

Familizarização com instrumentos de medida

 $Laborat\'orio\ de\ Eletr\^onica\ B\'asica\ I\ -\ Segundo\ Semestre\ de\ 2010$

Professor: José Cândido Silveira Santos Filho

RAQUEL MAYUMI KAWAMOTO RA: 086003 TIAGO CHEDRAOUI SILVA RA: 082941

11 de agosto de 2010

Para este experimento inicial da disciplina de laboratório de eletrônica básica I, tem-se como objetivo a familiarização dos alunos com os diversos instrumentos que serão utilizados ao longo do curso. Estas ferramentas são a fonte de alimentação dual, um gerador de funções e um osciloscópio digital. Para este presente experimento utilizam-se ainda um protoboard, dois resistores de $100 k\Omega$ e dois capacitores de 100 pF.

Parte Experimental

1. Para esta parte inicial do experimento, a saída do gerador de funções é conectada ao canal 1 do osciloscópio. O gerador é ajustado para produzir um sinal de tensão com sua forma de onda triangular, com amplitude $10V_{pp}$, com offset de 0V e freqüência de 10kHz.

Com o recurso cursor do osciloscópio, foi medida a amplitude de pico-apico, o período, o tempo de subida e o tempo de descida do sinal de tensão. Tais dados encontram-se na tabela 1.

Descrição	Valor
Amplitude pico-a-pico	9,8V
Período	$100\mu s$
Tempo de subida	$40\mu s$
Tempo de descida	$40\mu s$

Tabela 1: Dados experimentais obtidos através do recurso cursor

Em seguida, os mesmos valores da tabela 1 foram medidos, porém usandose o recurso measure, além de também ser necessário medir o valor médio e o valor RMS (ambos os valores obtidos também com o recurso measure). Tais dados encontram-se na tabela 2.

Descrição	Valor
Amplitude pico-a-pico	$9,92\mathrm{V}$
$\operatorname{Período}$	$100 \mu s$
Tempo de subida	$42\mu s$
Tempo de descida	$42\mu s$
V_{avg}	$-57,1~\mathrm{mV}$
V_{rms}	$_{2,88V}$

Tabela 2: Dados experimentais obtidos através do recurso measure

Os valores obtidos através do recurso cursor com os dos obtidos com o do recurso measure são valores bem semelhantes e próximo um do outro, com a diferença de que os dados adquiridos com o cursor são menos precisos do que os do medidos com o measure.

2. Para a segunda parte do experimento, calcula-se a frequência de corte para cada filtro do circuito esquemático da figura 1, na qual o circuito à esquerda da fonte de sinal é um filtro passa-altas com constante de tempo simples (CTS), e à direita da fonte é um circuito passa-baixas, também CTS.

Figura 1: Circuito

Nó	1	2	3
Amplitude pico-a-pico			
Valor médio			
Valor RMS			
Valor máximo			
Valor mínimo			

Tabela 3: Medidas do filtro CTS

3. Para a parte três, foi montado, no protoboard, o circuito da figura do ítem anterior. Inicialmente, a onda triangular foi substituída por uma onda senoidal de amplitude $10V_{pp}$, offset de 0V e frequência de 16kHz. Este sinal foi aplicado ao nó 1 do circuito. Sendo assim, efetuou-se as medidas necessárias, completando a tabela 3 (tabela de medidas de filtro CTS).

Em seguida, foi aplicado um sinal senoidal de amplitude $10V_{pp}$, um offset de 0V e variou-se a frequência conforme a tabela 2.

Nó	Frequência	$100~\mathrm{Hz}$	$1 \mathrm{kHz}$	$10 \mathrm{kHz}$	$16 \mathrm{kHz}$	$100 \mathrm{kHz}$	$1 \mathrm{MHz}$
1	Amplitude pico-a-pico						
	Amplitude pico-a-pico						
2	Ganho em dB						
	Fase relativa ao nó 1						
3	Amplitude pico-a-pico						
	Ganho em dB						
	Fase relativa ao nó 1						

Tabela 4: Medidas realizadas variando-se a frequência do sinal