PHYS143 Equivalent resistance

Faculty of Engineering and Information Sciences

Lab Experiment: Equivalent resistance

	1	2	3	4
Family Name:				
First Name:				
Student Number:				

Objectives:

- 1) Determining experimentally equivalent resistance
- 2) Working with linear systems
- 3) Working with RC circuits
- 4) Comparing theoretical results with experimental results
- 5) Fitting exponential curve using a linear fit model

Part 1: Equivalent resistance

Equipment:

- Power supply
- 5 resistors (what is available in lab)
- Multimeter or Ammeter
- 4 banana cables

Find the equivalent resistance both experimentally and by applying parallel/series

Equivalent resistance

Faculty of Engineering and Information Sciences

Select known resistances R₁ to R₅ according to what is available in the lab

- 1) Find $R_{\text{eq.}}$ using formulas for resistances in parallel and in series.
- 2) Implement the following circuit to determine R_{eq} by applying a DC voltage source across points A and B (repeat the calculations for different voltage sources).

Calculate: $R_{eq} = \frac{V_{AB}}{I}$ (use ampere meter to measure the current I)

Experiment	V_{AB}	R_1	R_2	R_3	R ₄	R ₅	R_{eq} (calculated)	R _{eq} (experimental)	Relative Error
1									
2									
3									

Faculty of Engineering and Information Sciences

Part 2:

Equipment:

- Power supply
- 5 resistors
- Multimeter or Ammeter
- 4 banana cables

Experimental Measurements

- 1) Implement the following circuit
- 2) Apply a voltage source across AB and measure the current I and the currents through each resistance I_{R1} to I_{R5} .

Theoretical Calculations

- 3) Write down 3 equations using Kirchhoff's junction rule.
- 4) Write down 3 equations using Kirchhoff's Loop rule given the source voltage.
- 5) Use Matlab (or manually) to solve the Linear System AX=b where

$$AX = b \\ X = \begin{bmatrix} I \\ I_{R1} \\ I_{R2} \\ I_{R3} \\ I_{R4} \\ I_{R5} \end{bmatrix}$$

Faculty of Engineering and Information Sciences

PHYS143

Equivalent resistance

Circuit input		Measured		Calculated	Relative	
Data		Currents		Currents	error	
$R_1=$		$I_{R1}=$				
$R_2=$		$I_{R2}=$				
R ₃ =		$I_{R3}=$				
R ₄ =		$I_{R4}=$				
R ₅ =		$I_{R5}=$				
V _A -V _B		I				

Compare the currents measured experimentally with the theoretical. Deduce the equivalent resistance.

Equivalent resistance

Faculty of Engineering and Information Sciences

Part 3:

Equipment:

- Power supply
- One large resistor value
- 3 capacitors
- 3 multimeters or voltmeters
- 8 banana cables

Implement the following circuit

Select RC such that the time constant of the circuit is as large as possible (Use large R). Fill the following table: RC

Time	Measured	Theoretical	Measured	Theoretical	Measured	Theoretical
	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage
	Across V _{C1}	Across V _{C1}	Across V _{C2}	Across V _{C2}	Across V _{C3}	Across V _{C3}
0.2 RC						
0.4 RC						
0.6 RC						
0.8 RC						
1.0 RC						
1.2 RC						
1.4 RC						
1.6 RC						
1.8 RC						
2.0 RC						

You may miss some measurements

Equivalent resistance

Faculty of Engineering and Information Science

Use Excel to estimate the time constant from the above experimental obtained data

$$V_{C1} = V_{\text{max }_C1} \left(1 - e^{-t/\tau} \right)$$

$$\frac{V_{\text{max }_C1} - V_{C1}}{V_{\text{max }_C1}} = e^{-t/\tau}$$

$$\ln \left(\frac{V_{\text{max }_C1} - V_{C1}}{V_{\text{max }_C1}} \right) = -t/\tau$$

$$\ln \left(\frac{V_{\text{max }_C1} - V_{C1}}{V_{\text{max }_C1} - V_{C1}} \right) = \frac{1}{\tau} t$$

$$Y = mX$$

Record in excel X and Y and use Excel for fitting the points to straight line as indicated below:

To add a trendline, right click on one of the data points, then select Add Trendline... Select Linear Trend\Regression type.

Equivalent resistance

The equation for the Y=mX will be displayed and deduce time constant = 1/slope

Equivalent resistance

Faculty of Engineering and Information Sciences

Part 4:

Equipment:

- Power supply
- 2 capacitors
- Multimeter or voltmeter
- 4 banana cables

Implement the following circuit

Figure 1: Circuit 4

- 1) First set the switch in order to charge C2
- 2) After a long time, set the switch so that your charge C_1 from only C_2 .
- 3) After a long time, measure the voltage across the capacitance (C_1) and deduce the charge on each capacitance. Compare your experimental measures with the theoretical calculations.