Computação Científica II (EEL7031)

Integração e Diferenciação Numérica

Objetivos e Tópicos Principais

Objetivos

Estudar métodos aplicáveis no cálculo de integrais e derivadas que ocorrem em sistemas físicos

Tópicos principais

- > Introdução
- Regras de quadratura básicas
- > Regras de quadratura compostas
- Quadratura Gaussiana
- Quadratura adaptável
- Integrais múltiplas
- Diferenciação numérica

Introdução

Aspectos gerais

- ➤ As técnicas descritas em cursos de cálculo para a determinação exata de integrais raramente são aplicáveis em problemas da vida real, sendo necessário o desenvolvimento de aproximações baseadas em técnicas numéricas
- ➤ A aproximação de integrais pode ser realizada, em geral, com precisão aceitável e com pouco esforço computacional
- A aproximação numérica precisa de derivadas surge com menos frequência que a aproximação de integrais, caracterizando-se também por uma problema mais complexo

Procedimento básico

- \blacktriangleright O procedimento básico para aproximar a integral definida de uma função f no intervalo [a,b] é determinar um polinômio interpolador que aproxima f e, então, integrar este polinômio
- Suponha que $f \in C^{n+1}[a,b]$, onde [a,b] é um intervalo que contém todos os nós $x_0, x_1, ..., x_n$. O polinômio interpolante de Newton para estes pontos, baseado em diferenças divididas, é dado por:

$$\begin{split} P_{0,1,\dots,n}(x) &= f[x_0] + f[x_0,x_1](x-x_0) + f[x_0,x_1,x_2](x-x_0)(x-x_1) + \cdots \\ &+ f[x_0,x_1,\dots,x_n](x-x_0)(x-x_1) \cdots (x-x_{n-1}) \end{split}$$

> Por ser equivalente ao polinômio de Lagrange, a fórmula do erro é

$$f(x) - P_{0,1,\dots,n}(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x - x_0)(x - x_1)\cdots(x - x_n)$$

onde
$$\xi(x) \in [x_0, x_n]$$

Regra do ponto central

> Na regra do ponto central para a integração numérica no intervalo [a,b], usa-se um polinômio interpolante constante com $x_0 = (a+b)/2$,

$$\int_{a}^{b} f(x) \approx \int_{a}^{b} f[x_0] dx = f[x_0](b-a)$$

$$\int_{a}^{b} f(x) = f\left(\frac{a+b}{2}\right)(b)$$

 \triangleright Para o nó escolhido x_0 pode ser utilizado também um polinômio interpolante linear com um valor arbitrário para x_1 , já que será nula a integral do segundo termo do polinômio interpolante de Newton

$$\int_{a}^{b} f[x_0, x_1](x - x_0) dx = \left[\frac{f[x_0, x_1]}{2} (x - x_0)^2 \right]_{a}^{b} = \frac{f[x_0, x_1]}{2} \left[\left(\frac{b - a}{2} \right)^2 - \left(\frac{b - a}{2} \right)^2 \right] = 0$$

- Regra do ponto central (cont.)
 - \succ A integral da fórmula do erro para o polinômio interpolante $P_{0,1}(x)$ utilizado é

$$\int_{a}^{b} \frac{(x-x_0)(x-x_1)}{2} f''(\xi(x)) dx; \quad \xi \in [a,b]$$

 \succ Para fins exclusivos de estimação do erro supõe-se $x_1 \rightarrow x_0$ e, então

$$\int_{a}^{b} \frac{(x - x_0)(x - x_1)}{2} f''(\xi(x)) dx \cong \int_{a}^{b} \frac{(x - x_0)^2}{2} f''(\xi(x)) dx = \frac{f''(\xi)}{24} (b - a)^3$$

$$=\frac{f''(\xi)}{24}(b-a)^3$$

Portanto, a integração numérica pela regra do ponto central é descrita pela seguinte fórmula geral, incluindo-se a estimativa do erro

$$\int_{a}^{b} f(x)dx = (b-a)f\left(\frac{a+b}{2}\right) + \frac{f''(\xi)}{24}(b-a)^{3}$$

Regra Trapezoidal

Neste método emprega-se um polinômio interpolante linear no intervalo [a,b] com $x_0=a$ e $x_1=b$, como segue_y

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} P_{0,1}(x)dx = \int_{a}^{b} \{f[x_0] + f[x_0, x_1](x - x_0)\}dx$$

$$\int_{a}^{b} \left\{ f[x_0] + f[x_0, x_1](x - x_0) \right\} dx = \left[f[a] x + f[a, b] \frac{(x - a)^2}{2} \right]_{a}^{b}$$

$$\int_{a}^{b} \left\{ f[x_0] + f[x_0, x_1](x - x_0) \right\} dx = (b - a) \frac{f(a) + f(b)}{2}$$

Regra Trapezoidal (cont.)

> O erro para a regra trapezoidal é, então

$$\int_{a}^{b} \frac{(x-x_0)(x-x_1)}{2} f''(\xi(x)) dx = \int_{a}^{b} \frac{(x-a)(x-b)}{2} f''(\xi(x)) dx$$

$$\int_{a}^{b} \frac{(x - x_0)(x - x_1)}{2} f''(\xi(x)) dx = -\frac{f''(\xi)}{12} (b - a)^3$$

Portanto, a integração numérica pela regra trapezoidal é descrita pela seguinte fórmula geral, incluindo-se a estimativa do erro

$$\int_{a}^{b} f(x) dx = (b-a) \frac{f(a) + f(b)}{2} - \frac{f''(\xi)}{12} (b-a)^{3}$$

Regra de Simpson

Neste caso emprega-se um polinômio interpolante de Newton quadrático para aproximar $f(x) \in C^4[a,b]$, usando-se os pontos, $x_0 = a, x_1 = (a+b)/2$ e $x_2 = b$, ou seja: $\int f(x)dx \approx \int P_{0,1,2}(x)dx$

> Da formulação acima, obtém-se:

$$\int_{a}^{b} P_{0,1,2}(x) dx = \int_{a}^{b} \left\{ f(a) + f\left[a, \frac{a+b}{2}\right](x-a) + f\left[a, \frac{a+b}{2}, b\right](x-a)(x-(a+b)/2) \right\} dx$$

$$\int_{a}^{b} f(x) dx \approx \frac{(b-a)}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

□ Regra de Simpson (cont.)

➤ Em síntese, a integração numérica pela regra de Simpson é descrita pela seguinte fórmula geral, incluindo-se a estimativa do erro

$$\int_{a}^{b} f(x) dx = \frac{(b-a)}{6} \left[f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right] - \frac{f^{(4)}(\xi)}{2880} (b-a)^{5}$$

✓ Note que a elevada potência de (b-a) na fórmula do erro faz a regra Simpson significativamente superior a regra do ponto central e a regra trapezoidal

Exemplos Ilustrativos

➤ As tabelas mostram resultados das regras do pontos central (midpoint), trapezoidal e Simpson, aplicadas a diversas funções sobre os intervalos [1, 1.2] e [0, 2] (tabela inferior)

f(x)	x^2	x^4	1/(x+1)	$\sqrt{1+x^2}$	$\sin x$	e^x
Exact value Midpoint Trapezoidal Simpson's	0.24267 0.24200 0.24400 0.24267	0.29766 0.29282 0.30736 0.29767	0.09531 0.09524 0.09545 0.09531	0.29742 0.29732 0.29626 0.29742	0.17794 0.17824 0.17735 0.17794	0.60184 0.60083 0.60384 0.60184
f(x)	x^2	x^4	1/(x+1)	$\sqrt{1+x^2}$	$\sin x$	e^x

Note que no caso da Tabela com intervalo [0, 2] (inferior), somente a regra de Simpson apresentou resultados com precisão razoável

Exercícios Sugeridos

1. Use the Midpoint rule to approximate the following integrals.

(a)
$$\int_{0.5}^{1} x^4 dx$$
 (b) $\int_{0}^{0.5} \frac{2}{x-4} dx$

- 2. Use the error formula to find a bound for the error in Exercise 1, and compare the bound to the actual error.
- 3. Repeat Exercise 1 using the Trapezoidal rule.
- 4. Repeat Exercise 2 using the Trapezoidal rule and the results of Exercise 3.
- 5. Repeat Exercise 1 using Simpson's rule.
- 6. Repeat Exercise 2 using Simpson's rule and the results of Exercise 5.

Princípio básico

> Subdividir o intervalo [a,b] em uma coleção de subintervalos suficientemente pequenos, tal que o erro sob cada subintervalo seja mantido sob controle e suficientemente pequeno

Regra de Simpson composta

 \triangleright Escolha um inteiro n (par), subdivida o intervalo [a,b] em n subintervalos, e use a regra de Simpson em cada par de subintervalos consecutivos. Considere h = (b-a)/n e $a = x_0 < x_1 < \dots < x_n = b$, onde $x_i = x_0 + jh$,

j = 0,1,...,n.

$$\int_{a}^{b} f(x) dx = \sum_{j=1}^{n/2} \int_{x_{2j-2}}^{x_{2j}} f(x) dx$$
Fintão, pode-se escrever

$$\int_{a}^{b} f(x) \ dx = \sum_{j=1}^{n/2} \left\{ \frac{h}{3} \left[f(x_{2j-2}) + 4f(x_{2j-1}) + f(x_{2j}) - \frac{h^5}{90} f^{(4)}(\xi_j) \right] \right\}$$

- Regra de Simpson composta (cont.)
 - Supondo $f \in C^4[a,b]$ e μ em (a,b), a equação geral anterior pode ser rearranjada para a seguinte forma mais conveniente

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[f(a) + 2 \sum_{j=1}^{(n/2)-1} f(x_{2j}) + 4 \sum_{j=1}^{(n/2)} f(x_{2j-1}) + f(b) \right] - \frac{(b-a)h^4}{180} f^{(4)}(\mu)$$

> A figura abaixo ilustra a aplicação do método

Note que a regra de Simpson é $O(h^4)$ e, assim a aproximação para $\int_a^b f(x)dx$ converge a razão semelhante a $h^4 \to 0$

Regra Trapezoidal composta

Supondo $f \in C^2[a,b], h = (b-a)/n, x_j = a+jh, j = 0,1,...,n, \mu \text{ em } (a,b),$ a equação geral da regra trapezoidal composta é dada por

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left[f(a) + f(b) + 2 \sum_{j=1}^{n-1} f(x_j) \right] - \frac{(b-a)h^2}{12} f''(\mu)$$

> A figura abaixo ilustra a aplicação do método

Note que a regra Trapezoida composta é $O(h^2)$

Regra do ponto central composta

Supondo $f \in C^2[a,b], h = (b-a)/(n+2), x_j = a + (j+1)h, j = -1,0,1,...,n+1$ e μ em (a,b) a equação geral da regra do ponto central composta é dada por

$$\int_{a}^{b} f(x) dx = 2h \sum_{j=0}^{n/2} f(x_{2j}) + \frac{(b-a)h^{2}}{6} f''(\mu)$$

> A figura abaixo ilustra a aplicação do método.

Note que a regra do ponto central composta, para (n+2) subintervalos é também $O(h^2)$

Exercícios Sugeridos

Approximate $\int_0^2 x^2 e^{-x^2} dx$ using h = 0.25.

- (a) Use the Composite Trapezoidal rule.
- (b) Use the Composite Simpson's rule.
- (c) Use the Composite Midpoint rule.

Determine the values of n and h required to approximate

$$\int_0^2 e^{2x} \sin 3x \ dx$$

to within 10^{-4} .

- (a) Use the Composite Trapezoidal rule.
- (b) Use the Composite Simpson's rule.
- (c) Use the Composite Midpoint rule.

Aspectos gerais

- As fórmulas de integração do ponto central, trapezoidal e Simpson são derivadas pela integração de um polinômio interpolante, usando valores uniformemente espaçados da função que está sendo aproximada
- \triangleright O termo do erro do polinômio interpolante de grau n envolve a derivada de ordem (n+1) da função que está sendo aproximada, f(x)
- ➤ Assim, como a derivada de ordem (n+1) é nula para polinômios de grau n, serão obtidos resultados exatos somente quando a fórmula de integração for aplicada a um polinômio de grau menor ou igual a n
- ➤ O uso de valores f(x) igualmente espaçados é conveniente para a aplicação da fórmulas compostas das técnicas de quadratura básicas; porém, podem resultar em significativo decréscimo na precisão da aproximação, conforme ilustrado nas figuras a seguir

■ Aspectos gerais (cont.)

➤ As figuras ilustram a perda de precisão quando da aplicação da regra trapezoidal, que aproxima a integração da função *f*(*x*) pela integração de um função linear que une os pontos extremos do intervalo [a,b].

Aspectos gerais (cont.)

Nas figuras são ilustradas aproximações lineares da função integrando, f(x), que resultam em maior precisão que a da regra trapezoidal, ilustrada no slide anterior.

➤ A técnica da quadratura Gaussiana utiliza a forma de aproximação ilustrada nestas figuras para minimizar o erro esperado na integração numérica, adotando um critério específico para a escolha dos nós

 $x_1 e x_2$

Formulação matemática

 \triangleright A técnica da quadratura Gaussiana consiste em aproximar a integral definida de uma função f(x), no intervalo [a,b], como segue

$$\int_{a}^{b} f(x) \approx \sum_{i=1}^{n} c_{i} f(x_{i})$$

- \triangleright Os nós $x_1, x_2, ..., x_n$, no intervalo [a,b] e os coeficientes $c_1, c_2, ..., c_n$ são escolhidos para minimizar o erro esperado na aproximação
- ➤ Esta formulação exige a determinação de 2n parâmetros sendo equivalente a aproximação por polinômios de grau 2n-1
- ➤ Assim, serão obtidos resultados exatos quando a fórmula de integração for aplicada a um polinômio de grau menor ou igual a 2*n*-1

Exemplo de aplicação

➤ Determinar os coeficientes c_1 e c_2 e os nós x_1 e x_2 , para n=2 e intervalo de integração [-1,1].

$$\int_{-1}^{1} f(x) \approx c_1 f(x_1) + c_2 f(x_2)$$

- Então, a formulação apresentada será exata p/ polinômios de grau ≤ 3 , ou seja, para $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3$.
- Considerando que

$$\int (a_0 + a_1 x + a_2 x^2 + a_3 x^3) dx = a_0 \int 1 dx + a_1 \int x dx + a_2 \int x^2 dx + a_3 \int x^3 dx$$

e exigindo-se que a fórmula apresente resultados exatos quando f(x) for $1, x, x^2$ e x^3 , pode ser montado o seguinte sistema de equações

- Exemplo de aplicação (cont.)
 - > Sistema de equações $\int (a_0 + a_1 x + a_2 x^2 + a_3 x^3) dx = a_0 \int 1 dx + a_1 \int x dx + a_2 \int x^2 dx + a_3 \int x^3 dx$

$$c_{1}.1 + c_{2}.1 = \int_{-1}^{1} 1 \, dx = 2$$

$$c_{1}.x_{1} + c_{2}.x_{2} = \int_{-1}^{1} x \, dx = 0$$

$$c_{1}.x_{1}^{2} + c_{2}.x_{2}^{2} = \int_{-1}^{1} x^{2} \, dx = 2/3$$

$$c_{1}.x_{1}^{3} + c_{2}.x_{2}^{3} = \int_{-1}^{1} x^{3} \, dx = 0$$

A solução única deste sistema de equações é

$$c_1 = 1$$
 $c_2 = 1$ $x_1 = -\frac{\sqrt{3}}{3}$ $x_2 = \frac{\sqrt{3}}{3}$ $\longrightarrow \int_{-1}^{1} f(x) dx \approx f(-\sqrt{3}/3) + f(\sqrt{3}/3)$

➤ Com estes parâmetros obtém-se resultado exato da integração de qualquer polinômio de grau 3.

Aplicação dos Polinômios de Legendre

- > Os polinômios de Legendre são uma coleção $\{P_0(x), P_1(x), ..., P_n(x), ...\}$ com as seguintes propriedades:
 - ❖ Para cada n, $P_n(x)$ é um polinômio de grau n.

$$\oint_{-1}^{1} P_i(x) \cdot P_j(x) \, dx = 0, \ \forall i \neq j$$

- ➤ As raízes destes polinômios são distintas, estão no intervalo (-1,1), têm simetria em relação a origem e são os nós necessários para o uso do método da quadratura Gaussiana.
- > Os polinômios de Legendre até quarta ordem são:

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = x^2 - 1/3$
 $P_3(x) = x^3 - (3/5)x$, $P_4(x) = x^4 - (6/7)x^2 + (3/35)$

Aplicação dos Polinômios de Legendre (cont.)

- Signal of Solution Os nós $x_1, x_2, ..., x_n$ necessários para gerar uma fórmula de aproximação de integral com resultados exatos para qualquer polinômio de grau $\leq 2n-1$ são as raízes do polinômio de Legendre de grau n.
- \triangleright Conhecidas as raízes, os coeficientes $c_1, c_2, ..., c_n$ podem ser determinados usando a seguinte expressão

$$c_{i} = \int_{-1}^{1} \frac{(x - x_{1})(x - x_{2})\cdots(x - x_{i-1})(x - x_{i+1})\cdots(x - x_{n})}{(x_{i} - x_{1})(x_{i} - x_{2})\cdots(x_{i} - x_{i-1})(x_{i} - x_{i+1})\cdots(x_{i} - x_{n})} dx.$$

As raízes dos polinômios de Legendre e os coeficientes da expressão acima são tabulados e não é necessário fazer os cálculos acima (ver próximo slide)

- Aplicação dos Polinômios de Legendre (cont.)
 - > Tabela de raízes dos polinômios de Legendre e coeficientes da aproximação da integral.

	Roots	Coefficients
n	$r_{n,i}$	$c_{n,i}$
2	0.5773502692	1.00000000000
	-0.5773502692	1.0000000000
3	0.7745966692	0.555555556
	0.0000000000	0.888888889
	-0.7745966692	0.555555556
4	0.8611363116	0.3478548451
	0.3399810436	0.6521451549
	-0.3399810436	0.6521451549
	-0.8611363116	0.3478548451
5	0.9061798459	0.2369268850
	0.5384693101	0.4786286705
	0.0000000000	0.5688888889
	-0.5384693101	0.4786286705
	-0.9061798459	0.2369268850

$$\int_{a}^{b} f(x) \approx \sum_{i=1}^{n} c_{i} f(x_{i})$$

- Aplicação dos Polinômios de Legendre (cont.)
 - ➤ No caso de integração em intervalo diferente de [-1, 1] deve ser utilizada uma transformação de variável como segue
 - Considere

$$x = \frac{1}{2}(b-a)t + \frac{1}{2}(b+a)$$

$$dx = \frac{1}{2}(b-a)dt$$

$$x = a \text{ para } t = -1$$

$$dx = \frac{1}{2}(b-a)dt$$

$$x = a \text{ para } t = -1$$

$$x = b \text{ para } t = 1$$

> Portanto:

$$\int_{a}^{b} f(x) dx = \int_{-1}^{1} f\left(\frac{(b-a)t + (b+a)}{2}\right) \left(\frac{b-a}{2}\right) dt.$$

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2} \sum_{j=1}^{n} c_{n,j} f\left(\frac{(b-a)r_{n,j} + (b+a)}{2}\right). \quad ; \quad \frac{c_{n,j} e r_{n,j}}{\text{tabelados}}$$

;
$$c_{n,j}$$
 e $r_{n,j}$ tabelados

Quadratura Gaussiana
$$\int_{a}^{b} f(x) dx = \int_{-1}^{1} f\left(\frac{(b-a)t + (b+a)}{2}\right) \left(\frac{b-a}{2}\right) dt.$$

Exemplo

- Encontre uma aproximação para $\int_{0}^{\infty} e^{-x^2}$, cujo valor é 0.1093643.
- > Aplicando-se a transformação de variáveis resulta

$$\int_{1}^{1.5} e^{-x^2} = \int_{-1}^{1} e^{-[((1.5-1)t+(1.5+1))/2]^2} \left(\frac{1.5-1}{2}\right) dt = \frac{1}{4} \int_{-1}^{1} e^{-(t+5)^2/16} dt$$

 \triangleright Usando-se os valores tabulados para n=2, obtém-se

$$\int_{a}^{b} f(x) \approx \sum_{i=1}^{n} c_{i} f(x_{i})$$

$$\int_{a}^{b} f(x) \approx \sum_{i=1}^{n} c_{i} f(x_{i})$$

$$\int_{1}^{1.5} e^{-x^{2}} \approx \frac{1}{4} \left[e^{-(5+0.5773502692)^{2}/16} + e^{-(5-0.5773502692)^{2}/16} \right] = 0.1094003$$

 \triangleright Para n = 3, tem-se:

$$\int_{1}^{1.5} e^{-x^2} \approx \frac{1}{4} \left[(0.55555555556)e^{-(5+0.7745966692)^2/16} + (0.8888888889)e^{-(5)^2/16} \right]$$

$$= 0.1093642$$

Exemplo:

> Usando-se a regra de Simpson composta para determinar $\int_{1}^{1.5} e^{-x^2}$ com h=(1.5-1)/2=0.25, obtém-se:

$$\int_{1}^{1.5} e^{-x^2} \approx \frac{0.25}{3} \left(e^{-1} + 4e^{-(1.25)^2} + e^{-(1.5)^2} \right) = 0.1093104$$

➤ Note que para problemas de pequeno porte a regra de Simpson apresenta precisão aceitável, mas para problemas de maior porte, tais como a aproximação de integrais múltiplas, o método da quadratura Gaussiana é mais adequado, como será visto posteriormente.

Exercícios Sugeridos

1. Approximate the following integrals using Gaussian quadrature with n=2 and compare your results to the exact values of the integrals.

(a)
$$\int_{1}^{1.5} x^2 \ln x \ dx$$

(b)
$$\int_0^1 x^2 e^{-x} dx$$

- 2. Repeat Exercise 1 with n = 3.
- 3. Repeat Exercise 1 with n = 4.
- 4. Repeat Exercise 1 with n = 5.

Aspectos gerais

- Os métodos de integração numérica que utilizam subintervalos igualmente espaçados são satisfatórios para a maioria dos problemas, mas demandam elevado esforço computacional quando a função integrando varia amplamente em alguma parte do intervalo de integração
- Nestes casos é conveniente a aplicação de técnicas adaptativas, comuns em pacotes de software profissionais, que além de serem eficientes fornecem aproximações em conformidade com uma tolerância especificada
- ➤ O método de quadratura adaptativa é dotado de característica das técnicas adaptativas descritas e, também, permite predizer uma estimativa de erro para a aproximação, sem a necessidade de se calcular derivadas de ordem elevada da função integrando

Formulação matemática

Suponha a aplicação da regra de Simpson com passo h = (b-a)/2 conforme equação geral e figura abaixo

$$\int_{a}^{b} f(x) dx = S(a,b) - \frac{h^{5}}{90} f^{(4)}(\xi); \quad \xi \in (a,b)$$

onde:
$$S(a,b) = \frac{h}{3} [f(a) + 4f(a+h) + f(b)]$$

S(a,b)

> Aplique a regra de Simpson composta p/ n = 4 e passo (h/2) = (b-a)/4.

$$\int_{a}^{b} f(x) dx = \frac{h}{6} \left[f(a) + 4f\left(a + \frac{h}{2}\right) + 2f(a+h) + 4f\left(a + \frac{3h}{2}\right) + f(b) \right]$$
$$-\left(\frac{h}{2}\right)^{4} \frac{(b-a)}{180} f^{(4)}(\tilde{\xi}); \quad \tilde{\xi} \in (a,b).$$

Formulação matemática (cont.)

 \triangleright A regra de Simpson para n=4 também pode ser aplicada como segue

$$\int_{a}^{b} f(x) \ dx = S(a, \frac{a+b}{2}) + S(\frac{a+b}{2}, b) - \frac{1}{16} \left(\frac{h^{5}}{90}\right) f^{(4)}(\tilde{\xi})$$

onde:

$$S(a, \frac{a+b}{2}) = \frac{h}{6} \left[f(a) + 4f(a+\frac{h}{2}) + f(a+h) \right]$$

$$a+h$$

$$3h$$

$$S(\frac{a+b}{2},b) = \frac{h}{6} \left[f(a+h) + 4f(a+\frac{3h}{2}) + f(b) \right]$$

ightharpoonup Assumindo que $f^{(4)}(\xi) \approx f^{(4)}(\tilde{\xi})$ pode-se escrever

$$S(a, \frac{a+b}{2}) + S(\frac{a+b}{2}, b) - \frac{1}{16} \left(\frac{h^5}{90}\right) f^{(4)}(\xi) \approx S(a, b) - \left(\frac{h^5}{90}\right) f^{(4)}(\xi)$$

- Formulação matemática (cont.)
 - > Da equação anterior, obtém-se

$$\left(\frac{h^5}{90}\right)f^{(4)}(\xi) \approx \frac{16}{15}\left[S(a,b) - S(a,\frac{a+b}{2}) - S(\frac{a+b}{2},b)\right]$$

> Portanto

$$\left| \int_{a}^{b} f(x) \ dx - S(a, \frac{a+b}{2}) - S(\frac{a+b}{2}, b) \right| \approx \frac{1}{15} \left| S(a, b) - S(a, \frac{a+b}{2}) - S(\frac{a+b}{2}, b) \right|$$

Note que S(a,(a+b)/2) + S((a+b)/2,b) aproxima a integral 15 vezes melhor que S(a,b).

Quadratura Adaptativa – Exemplo 1

> Determine a integral abaixo usando a técnica apresentada

$$\int_{0}^{\pi/2} \sin x \, dx = 1 \qquad ; \qquad S\left(0, \frac{\pi}{2}\right) = \frac{\pi/4}{3} \left[\sin 0 + 4\sin \frac{\pi}{4} + \sin \frac{\pi}{2}\right] = 1.002279878$$

$$S\left(0, \frac{\pi}{4}\right) + S\left(\frac{\pi}{4}, \frac{\pi}{2}\right) = \frac{\pi/8}{3} \left[\sin 0 + 4\sin \frac{\pi}{8} + 2\sin \frac{\pi}{4} + 4\sin \frac{3\pi}{8} + \sin \frac{\pi}{2}\right] = 1.000134585$$

> Assim, a estimativa do erro é

$$\frac{1}{15} \left| S\left(0, \frac{\pi}{2}\right) - S\left(0, \frac{\pi}{4}\right) - S\left(\frac{\pi}{4}, \frac{\pi}{2}\right) \right| = \frac{\left|1.002279878 - 1.000134585\right|}{15} = 0.000143020$$

> Calculando-se o erro efetivo, obtém-se:

$$\left| \int_{0}^{\pi/2} \sin x \, dx - 1.000134585 \right| = 0.000134585$$

Determinação do passo de integração

- ➤ A principal característica do método é a capacidade de predizer o passo que deve ser usado para assegura uma dada precisão para a aproximação da integral
- \triangleright Supondo que seja especificada uma tolerância $\varepsilon > 0$, tem-se

$$\left| S(a,b) - S(a,\frac{a+b}{2}) - S(\frac{a+b}{2},b) \right| < 15\varepsilon$$

- > Se a estimativa acima não atender a tolerância, o procedimento passa a ser aplicado para os subintervalos [a,(a+b)/2] e [(a+b)/2,b], individualmente, com tolerância $\varepsilon/2$.
- ➤ Se a aproximação em um subintervalo não atender a precisão, então, aquele subintervalo é subdividido e a estimativa do erro de cada um de seus subintervalos é comparada com ¿/4
- > O procedimento até que cada porção atenda a tolerância especificada

Quadratura Adaptativa – Exemplo 2

A representação gráfica de $f(x) = (100/x^2)\sin(10/x), x \in [1,3]$ é mostrada na figura ao lado

➤ Usando-se um requisito de tolerância de precisão 10-4 p/ a aproximação da integral obtém-se como resultado - 1.426014

Foram utilizados 23 subintervalos, cujos pontos extremos são mostrados na figura ao lado

Foram necessárias 93 avaliações funcionais

Aplicando-se a regra de Simpson

 composta clássica seriam necessárias
 177 avaliações de funções para se obter a mesma precisão

Exercícios Sugeridos

Use Adaptive quadrature to approximate the following integrals to within 10^{-5} .

(a)
$$\int_{1}^{3} e^{2x} \sin 3x \ dx$$

(b)
$$\int_{1}^{3} e^{3x} \sin 2x \ dx$$

(c)
$$\int_0^5 \left[2x \cos(2x) - (x-2)^2 \right] dx$$
 (d) $\int_0^5 \left[4x \cos(2x) - (x-2)^2 \right] dx$

(d)
$$\int_0^5 \left[4x \cos(2x) - (x-2)^2 \right] dx$$

Use Simpson's Composite rule with $n = 4, 6, 8, \ldots$, until successive approximations to the following integrals agree to within 10^{-6} . Determine the number of nodes required. Use Adaptive quadrature to approximate the integral to within 10^{-6} and count the number of nodes. Did Adaptive quadrature produce any improvement?

(a)
$$\int_0^{\pi} x \cos x^2 dx$$

(b)
$$\int_0^{\pi} x \sin x^2 dx$$

Formulação matemática

Considere a integral dupla

$$\iint_{R} f(x, y) \, dA$$

em que:

$$R = \{(x, y) | a \le x \le b, c \le y \le d\}$$

> Define-se os passos de integração

$$h = \frac{b - a}{n}$$

$$h = \frac{b-a}{n}$$
 e $k = \frac{d-c}{m}$

> Escreve-se a integral dupla na forma

$$\iint_{R} f(x, y) dA = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$$

Formulação matemática (cont.)

Aplica-se a regra de Simpson composta como segue, supondo x constante e $y_j = c + jk; j = 0,1,...,m$

$$\int_{c}^{d} f(x,y) dy = \frac{k}{3} \left[f(x,y_0) + 2 \sum_{j=1}^{(m/2)-1} f(x,y_{2j}) + 4 \sum_{j=1}^{m/2} f(x,y_{2j-1}) + f(x,y_m) \right]$$
$$-\frac{(d-c)k^4}{180} \frac{\partial^4 f}{\partial y^4}(x,\mu); \quad \mu \in (c,d)$$

> Assim

$$\int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx = \frac{k}{3} \int_{a}^{b} f(x,y_{0}) \, dx + \frac{2k}{3} \sum_{j=1}^{(m/2)-1} \int_{a}^{b} f(x,y_{2j}) \, dx + \frac{4k}{3} \sum_{j=1}^{m/2} \int_{a}^{b} f(x,y_{2j-1}) \, dx + \frac{k}{3} \int_{a}^{b} f(x,y_{m}) \, dx - \frac{(d-c)k^{4}}{180} \int_{a}^{b} \frac{\partial^{4} f}{\partial y^{4}}(x,\mu) \, dx$$

Formulação matemática (cont.)

- \blacktriangleright A regra de Simpson composta é então empregada na equação anterior para cada uma da integrais, considerando $x_i = a + ih; i = 0,1,...,n$
- \triangleright Considerando ainda que, para $j=0,1,\ldots,m$, tem-se

$$\int_{a}^{b} f(x, y_{j}) dx = \frac{h}{3} \left[f(x_{0}, y_{j}) + 2 \sum_{i=1}^{(n/2)-1} f(x_{2i}, y_{j}) + 4 \sum_{i=1}^{n/2} f(x_{2i-1}, y_{j}) + f(x_{n}, y_{j}) \right]$$
$$- \frac{(b-a)h^{4}}{180} \frac{\partial^{4} f}{\partial x^{4}} (\varepsilon_{j}, y_{j}); \quad \varepsilon_{j} \in (a,b)$$

Finalmente, a substituição destas aproximações da regra de Simpson composta na equação da integral dupla do slide anterior, resulta na fórmula geral de aproximação apresentada no próximo slide.

Equação geral da aproximação da integral dupla

$$\int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx$$

$$\approx \frac{hk}{9} \left\{ \left[f(x_{0}, y_{0}) + 2 \sum_{i=1}^{(n/2)-1} f(x_{2i}, y_{0}) + 4 \sum_{i=1}^{n/2} f(x_{2i-1}, y_{0}) + f(x_{n}, y_{0}) \right] \right.$$

$$+ 2 \left[\sum_{j=1}^{(m/2)-1} f(x_{0}, y_{2j}) + 2 \sum_{j=1}^{(m/2)-1} \sum_{i=1}^{(n/2)-1} f(x_{2i}, y_{2j}) \right.$$

$$+ 4 \sum_{j=1}^{(m/2)-1} \sum_{i=1}^{n/2} f(x_{2i-1}, y_{2j}) + \sum_{j=1}^{(m/2)-1} f(x_{n}, y_{2j}) \right]$$

$$+ 4 \left[\sum_{j=1}^{m/2} f(x_{0}, y_{2j-1}) + 2 \sum_{j=1}^{m/2} \sum_{i=1}^{(n/2)-1} f(x_{2i}, y_{2j-1}) \right.$$

$$+ 4 \sum_{j=1}^{m/2} \sum_{i=1}^{n/2} f(x_{2i-1}, y_{2j-1}) + \sum_{j=1}^{m/2} f(x_{n}, y_{2j-1}) \right]$$

$$+ \left[f(x_{0}, y_{m}) + 2 \sum_{i=1}^{(n/2)-1} f(x_{2i}, y_{m}) + 4 \sum_{i=1}^{n/2} f(x_{2i-1}, y_{m}) + f(x_{n}, y_{m}) \right] \right\}.$$

- Formulação matemática (cont.)
 - > A estimativa do erro é dada por:

$$E = \frac{-k(b-a)h^4}{540} \left[\frac{\partial^4 f}{\partial x^4}(\xi_0, y_0) + 2 \sum_{j=1}^{(m/2)-1} \frac{\partial^4 f}{\partial x^4}(\xi_{2j}, y_{2j}) + 4 \sum_{j=1}^{m/2} \frac{\partial^4 f}{\partial x^4}(\xi_{2j-1}, y_{2j-1}) + \frac{\partial^4 f}{\partial x^4}(\xi_m, y_m) \right] - \frac{(d-c)k^4}{180} \int_a^b \frac{\partial^4 f}{\partial y^4}(x, \mu) \, dx.$$

Supondo que as derivadas parciais sejam contínuas, a expressão acima pode ser simplificada para a seguinte forma

$$E = \frac{-(d-c)(b-a)}{180} \left[h^4 \frac{\partial^4 f}{\partial x^4} (\overline{\eta}, \overline{\mu}) + k^4 \frac{\partial^4 f}{\partial y^4} (\hat{\eta}, \hat{\mu}) \right]; \quad (\overline{\eta}, \overline{\mu}) \in \Re$$

Exemplo

➤ Utilize a regra de Simpson composta para aproximar a integral abaixo com

$$n = 4$$
 e $m = 2$

$$\int_{1,4}^{2} \int_{1}^{1,5} \ln(x+2y) \, dy \, dx$$

- > A região de integração é mostrada ao lado com os nós (x_i, y_i) , i = 0,1,2,3,4 e j = 0,1,2 e coeficientes $\omega_{i,j}$ de $f(x_i, y_i) = \ln(x_i + 2y_i)$
- A aproximação é dada por:

$$\int_{1.41.0}^{2.01.5} \ln(x+2y) \, dy \, dx \approx \frac{(0.15)(0.25)}{9} \sum_{i=0}^{4} \sum_{j=0}^{2} \omega_{i,j} \ln(x_i + 2y_j) = 0.4295524387$$

- \triangleright Estimativa do Erro: $E \le 4.72 \times 10^{-6}$
- ➤ Valor exato da integral = 0.4295545265

Exercícios Sugeridos

1. Use Composite Simpson's rule for double integrals with n=m=4 to approximate the following double integrals. Compare the results to the exact answer.

(a)
$$\int_{2.1}^{2.5} \int_{1.2}^{1.4} xy^2 dy dx$$

(b)
$$\int_0^{0.5} \int_0^{0.5} e^{y-x} dy dx$$

(c)
$$\int_{2}^{2.2} \int_{x}^{2x} (x^2 + y^3) dy dx$$

(d)
$$\int_{1}^{1.5} \int_{0}^{x} (x^2 + \sqrt{y}) dy dx$$

2. Find the smallest values for n=m so that Composite Simpson's rule for double integrals can be used to approximate the integrals in Exercise 1 to within 10^{-6} of the actual value.

Formulação matemática

 \succ A derivada de uma função f(x) para x_0 é definida como

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

- ightharpoonup A aproximação para $f'(x_0)$ é formulada como segue
- ➤ Define-se um polinômio de Lagrange $P_{0,1}(x)$ para f(x), determinado por x_0 e $x_1 \in [a,b]$ $\ni x_1 = x_0 + h, h \neq 0$.

$$f(x) = P_{0,1}(x) + \frac{(x - x_0)(x - x_1)}{2!} f''(\xi(x))$$

$$f(x) = \frac{f(x_0)(x - x_0 - h)}{-h} + \frac{f(x_0 + h)(x - x_0)}{h} + \frac{(x - x_0)(x - x_0 - h)}{2!} f''(\xi(x))$$

- Formulação matemática (cont.)
 - Diferenciando-se a equação anterior, resulta

$$f'(x) = \frac{f(x_0 + h) - f(x_0)}{h} + D_x \left[\frac{(x - x_0)(x - x_0 - h)}{2!} f''(\xi(x)) \right] ; \quad \xi(x) \in [a, b]$$

$$f'(x) = \frac{f(x_0 + h) - f(x_0)}{h} + \frac{2(x - x_0) - h}{2} f''(\xi(x)) + \frac{(x - x_0)(x - x_0 - h)}{2!} D_x f''(\xi(x))$$

> Portanto, a derivada e o erro (E) são dados por

$$f'(x) \approx \frac{f(x_0 + h) - f(x_0)}{h} \quad E = \frac{2(x - x_0) - h}{2} f''(\xi(x)) + \frac{(x - x_0)(x - x_0 - h)}{2!} D_x f''(\xi(x))$$

ightharpoonup Para $x = x_0$ o segundo termo do erro é zero, resultando

$$E = \frac{-h}{2} f''(\xi); \quad \xi \in (x_0, x_0 + h)$$

- Formulação matemática (cont.)
 - > Supondo h pequeno e que M é um majorante de $|f''(x)|, x \in [a,b]$, temse

$$f'(x) = \frac{f(x_0 + h) - f(x_0)}{h} \quad \text{com erro} \quad E \le M \frac{|h|}{2}$$

 Este método é conhecido como fórmula de diferenças diretas de dois pontos, se h>0, e fórmula de diferenças inversas, se h<0

Exemplo

- ightharpoonup Considere $f(x) = \ln x$ e $x_0 = 1.8$. Determine f'(1.8).
- > Portanto

$$f'(1.8) \approx \frac{f(1.8+h) - f(1.8)}{h}$$

$$E = \frac{|h.f''(\xi)|}{2} = \frac{|h|}{2\xi^2} \le \frac{|h|}{2(1.8)^2}; \quad 1.8 < \xi < 1.8 + h$$

 \triangleright Os resultados para h = 0.1, 0.01 e 0.001 são dados abaixo

h	f(1.8 + h)	$\frac{f(1.8+h) - f(1.8)}{h}$	$\frac{ h }{2(1.8)^2}$
0.1	0.64185389	0.5406722	0.0154321
$0.01 \\ 0.001$	$\begin{array}{c} 0.59332685 \\ 0.58834207 \end{array}$	0.5540180 0.5554013	0.0015432 0.0001543

Fórmula de três pontos

> Se existe f'''(x), no intervalo contendo x_0 e $x_0 + h$, então

$$f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f'''(\xi); \quad \xi \in [x_0, x_0 + h]$$

- ➤ Esta fórmula é mais adequada quando se quer aproximar a derivada para um ponto final do intervalo, comum no caso de aproximações de derivadas usadas em spline cúbicas com contornos fixados
- \triangleright Para aproximações no ponto final esquerdo utiliza-se h > 0, sendo h < 0 utilizado para aproximações no ponto final direito.

Fórmula central de três pontos

> Se existe f'''(x), no intervalo contendo $x_0 - h$ e $x_0 + h$, então

$$f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6} f'''(\xi); \quad \xi \in [x_0 - h, x_0 + h]$$

- Esta fórmula é mais adequada quando se quer aproximar a derivada para um ponto interior do intervalo
- ➤ Note que o erro esperado na aplicação desta fórmula é aproximadamente a metade do erro esperado com a fórmula de três pontos anterior
- \triangleright São encontradas fórmulas de cinco pontos com erro $O(h^4)$

Exercícios Sugeridos

1. Use the forward-difference formulas and backward-difference formulas to determine approximations that will complete the following tables.

(a)				(b)			
(4)	\boldsymbol{x}	f(x)	f'(x)		\boldsymbol{x}	f(x)	f'(x)
	0.6	0.4794 0.5646 0.6442			0.2	$0.00000 \\ 0.74140 \\ 1.3718$	

2. The data in Exercise 1 were taken from the following functions. Compute the actual errors in Exercise 1, and find error bounds using the error formulas.

(a)
$$f(x) = \sin x$$
 (b) $f(x) = e^x - 2x^2 + 3x - 1$

3. Use the most appropriate three-point formula to determine approximations that will complete the following tables.

(a)				(b)			
(4)	\boldsymbol{x}	f(x)	f'(x)		\boldsymbol{x}	f(x)	f'(x)
	1.1 1.2 1.3	9.025013 11.02318 13.46374			8.1 8.3 8.5	16.94410 17.56492 18.19056	
	1.4	16.44465			8.7	18.82091	