

Universidad Carlos III de Madrid

MÉTODOS BAYESIANOS, GRADO EN ESTADÍSTICA Y EMPRESA

Análisis y clasificación de textos

Fabio Scielzo Ortiz

Índice

1 Introducción				
2	Car	Carga de los datos (Python)		
3	Des	scripción estadistica de los datos (Python)	4	
	3.1	Gráfico de barras de la variable respuesta (Fake)	5	
	3.2	Número de palabras por noticia	6	
	3.3	Numero medio de palabras por noticia en función de si son fake o no	8	
4	Pre	procesado de texto	8	
	4.1	Tokenizacion	8	
5	Des	scripción estadística de los datos tras la tokenización	14	
	5.1	Numero de tokens del conjunto de noticias en funcion de si son fake o no	14	
	5.2	Numero de tokens $\acute{u}nicos$ del conjunto de noticias en funcion de si son fake o no	14	
	5.3	Numero de tokens en cada una de las noticias individualmente	14	
	5.4	Número de veces que aparece cada token en el conjunto de las noticias en funcion de si es fake o no	17	
	5.5	Ranking de tokens mas frecuentes en el conjunto de las noticas en funcion de si son fake y no fake	19	
		5.5.1 Stop words	20	
	5.6	Odds Ratio	23	

1 Introducción

En este trabajo se va a realizar un análisis y clasificación de textos. Para ellos se utilizaran dos lenguajes de programación, Python y R. El trabajo puede dividirse en dos partes bien diferenciadas, una primera parte en la que se trabaja con Python y una segunda en la que se usa R.

En la primera parte, en la que trabajamos con Python, se llevará acabo una descripción y preprocesado del data-set con el que trabajaremos, posteriormente se llevara acabo un análisis de texto, y para finalizar se realizaran tareas de clasificación aplicando algoritmos de clasificación supervisada, especialmente el algoritmo de clasificación ingenua bayesiana.

En la parte en la que trabajamos con R se seguirán los pasos del ejemplo ilustrado en clase.

2 Carga de los datos (Python)

El data-set con el que vamos a trabajar contiene como observaciones noticias, y como variables la fecha, el título y el texto de la noticia, y si es una noticia falsa (fake new) o es verdadera (no fake new). La variable respuesta será Fake . Las variables predictoras que se usaran en el apartado de aplicación de algoritmos de clasificación no aparecen en el data-set original, pero serán creadas usando la información de la variable texto

Importamos la libreria pandas, que es la liberia de Python mas usada para la manipulación y manejo de datos en formato de tabla, es decir, data-frames.

```
import pandas as pd
```

Ahora importamos los datos, que originalmente estan distribuidos en dos data-sets, uno que contiene las fake news (df_Fake) y otro que contiene las no fake news (df_True):

```
df_Fake = pd.read_csv('Fake.csv')
df_True = pd.read_csv('True.csv')
```

Creamos una variable que indicará en nuestro data-set final si la noticia es fake o no fake:

```
df_Fake'| = 1
df_True['Fake'] = 0
```

Si para una noticia la nueva variable creada Fake toma el valor 1, indica que es fake new, y si toma el 0 indica que no es fake new.

Ahora concatenamos (por filas) los dos data-sets anteriores, para generar el data-set con el que trabajaremos:

```
Fake_News_Data = pd.concat([df_Fake, df_True])
```

Seleccionamos las columnas (variables) de nuestro interés:

```
Fake_News_Data = Fake_News_Data.loc[: , ['Fake', 'title', 'text', 'date']

...
```

Añadimos un índice al data-set:

```
Fake_News_Data.index = range(0 , len(Fake_News_Data))
```

Ahora vamos a ver de qué tipo son nuestras variables en Python:

Fake_News_Data.dtypes

Fake int64 title object text object date object dtype: object

El tipo object es propio de variables no cuantitativos, como categoricas o texto, y el tipo int64 es propio de variables enteras.

En este caso dejaremos los types como están, salvo el de la variable Fake que es categorica y por tanto es más adecuado que su type sea object

```
Fake_News_Data['Fake'] = Fake_News_Data['Fake'].astype('object')
```

Calculamos el numero de valores faltantes (NA) en cada una de las variables:

Fake_News_Data.isnull().sum()

Fake 0 title 0 text 0 date 0

3 Descripción estadistica de los datos (Python)

Hacemos una breve descripción estadistica de las variables del data-set:

```
Fake_News_Data.describe(include='all')
```

	Fake	title
count	44898	44898
unique	2	38729
top	1	Factbox: Trump fills top jobs for his administ
freq	23481	14

	date	text
count	44898	44898
unique	2397	38646
top	December 20, 2017	(no se muestra por tamaño excesivo)
frea	182	627

Esta tabla nos da alguna informacion relevante, como que en el data-set hay mas fake news que no fake news. Concretamente hay 44898 noticias, de las cuales 23481 son fakes y 44898-23481=21417 son no fakes.

Vamos ahora a realizar un análisis descriptivo del data-set algo más profundo.

3.1 Gráfico de barras de la variable respuesta (Fake)

Importamos algunas librerias necesarias para realizar este análisis en Python

Concretamente la libreria numpy da soporte para crear vectores y matrices grandes multidimensionales, junto con una gran colección de funciones matemáticas de alto nivel para operar con ellas. En general es una de las librerias de Python más empleadas junto con pandas

Tambien importamos las librerias seaborn y matplotlibque son muy empleadas para visualización de datos (creación de gráficos).

```
import numpy as np
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
sns.set(rc={'figure.figsize':(8,8)})
```

Vamos a calcular un gráfico de barras para la variable Fake:

```
Fake_News_Data['proportion_Fakes'] = 0

for i in range(0, len(Fake_News_Data)):
    if Fake_News_Data['Fake'][i] == 1 :
        Fake_News_Data['proportion_Fakes'][i] = prop_Fake_yes
    else :
        Fake_News_Data['proportion_Fakes'][i] = prop_Fake_no
```


Figure 1: Gráfico de barras de la variable Fake

Las proporciones exactas de fake y no fake news son:

```
[prop_Fake_no , prop_Fake_yes]
```

[0.47701456635039424, 0.5229854336496058]

El número exacto de fake y no fake news es:

```
[prop_Fake_no*len(Fake_News_Data) , prop_Fake_yes*len(Fake_News_Data)]
```

[21417.0, 23481.0]

Eliminamos la columna proportion_Fakes del data-set, que ha sido creada solamente de manera auxiliar para poder generar el gráfico de barras anterior:

3.2 Número de palabras por noticia

Una forma de calcular en Python el número de palabras de cada notica es la siguiente:

```
Fake_News_Data['word_count'] =
          Fake_News_Data['text'].str.split().str.len()
```

Vamos a ver el data-set con la nueva columna $word_count$ que contiene el n^o de palabras por noticia

Fake_News_Data

	Fake	title	
0 1 2 3 4	1 1 1 1	Donald Trump Sends Out Embarrassing New Year Drunk Bragging Trump Staffer Started Russian Sheriff David Clarke Becomes An Internet Jok Trump Is So Obsessed He Even Has Obama's Nam Pope Francis Just Called Out Donald Trump Du	e e
			• • •
44893 44894 44895 44896 44897	0 0 0	'Fully committed' NATO backs new U.S. approace LexisNexis withdrew two products from Chinese Minsk cultural hub becomes haven from authori Vatican upbeat on possibility of Pope Francis Indonesia to buy \$1.14 billion worth of Russi	ties
	text		date
0 1 2 3 4	House On Fr On Ch	d Trump just couldn t wish all Americans Intelligence Committee Chairman Devin Nu iday, it was revealed that former Milwauk ristmas day, Donald Trump announced that Francis used his annual Christmas Day mes	December 31, 2017 December 31, 2017 December 30, 2017 December 29, 2017 December 25, 2017
		•••	
44893 44894 44895 44896 44897	LONDO MINSK MOSCO	ELS (Reuters) - NATO allies on Tuesday we N (Reuters) - LexisNexis, a provider of l (Reuters) - In the shadow of disused Sov W (Reuters) - Vatican Secretary of State TA (Reuters) - Indonesia will buy 11 Sukh	August 22, 2017 August 22, 2017 August 22, 2017 August 22, 2017 August 22, 2017
	word_	count	
0 1 2 3 4		495 305 580 444 420	
		•••	
44893 44894 44895 44896 44897		466 125 320 205 210	

3.3 Numero medio de palabras por noticia en función de si son fake o no

Calculamos ahora la media de palabras de las fakes news y de la sno fake news. Es decir, el n^{o} medio de palabras en el cojuntos de las noticias fake, y por otro lado en el conjutno de las no fake:

```
Fake_News_Data.groupby('Fake')['word_count'].mean()
```

Fake Mean word_count
0 385.640099
1 423.197905

4 Preprocesado de texto

En este apartado se vana a hacer una serie de operaciones orientadas al preprocesado de texto, para poder posteriormente realizar analasis mas profundos, y para poder implementar algoritmos de clasificación sobre texto.

Este tipo de preprocesado es básico y fundamental en areas de la ciencia de datos que trabajan con texto, como son la mineria de texto (text minning), el procesamiento del lenguaje natural (PLN) y la recuperación de información (information retrival).

Una de las operaciones centrales del preproceso de textos es la tokenización.

4.1 Tokenizacion

Existen algunas librerias de Python que tienen funciones para realizar operaciones de tokenizacion, como por ejemplo las librerias sklearn, nltk o spaCy

En este caso no usaremos ninguna función de alguna de esas librerias, sino que crearemos nuestra propia función para realizar la tokenización.

Esta función esta totalmente inspirada en la función creada por el cientifico de datos Joaquín Amat Rodrigo, el cual es el creador del excelente blog sobre ciencia de datos Cienciadedatos.net. En este blog Joaquin tiene un articulo sobre analisis de texto en Python en el cual se encuentra la función que ahora vamos a presentar. Ademas muchas otras partes de este trabajo estan basadas en dicho articulo, es por ello que s ele hace una especial mención tanto aqui como en el apartado de bibliografia.

La función limpiar_tokenizar toma como input texto y devuelve como output un vector de tokens asociado a ese texto, es decir, un vector con las cadenas caracteres del texto, pero no con cualquier tipo, sino que la función no considera signos de puntuación , palabras que empiezan por "http", números, espacios en blancos múltiples, tokens con longitud menor que 2.

Un token aqui es considerado como una cadena de caracteres, es decir, una concatenación de símbolos (sin considerar el espacio en blanco como un símbolo).

Veamos un ejemplo de lo que consideramos tokens:

Dado el siguiente texto:

[&]quot; Esto es 1 ejemplo de l'limpieza de
6 TEXTO https://t.co/rnHPgyhx4Z @cienciadedatos #textmining "

Los tokens (en sentido estricto, no en el sentido restrictivo que considera la función limpiar_tokenizar) asociados a dicho texto son:

[Esto , es , 1 , ejemplo , de , l'limpieza , de
6 , TEXTO , https://t.co/rnHPgyhx4Z , @cienciadedatos , #textmining]

```
def limpiar_tokenizar(texto):
   import re
   111
   Esta función limpia y tokeniza el texto en palabras individuales.
   El orden en el que se va limpiando el texto no es arbitrario.
   El listado de signos de puntuación se ha obtenido de:
→ print(string.punctuation)
   y re.escape(string.punctuation)
   # Se convierte todo el texto a minúsculas:
   nuevo_texto = texto.lower()
   # Eliminacion de paginas web (palabras que empiezan por "http"):
   ## Las cadenas de caracteres que sean enlaces a webs no serán
    nuevo_texto = re.sub('http\S+', ' ', nuevo_texto)
   # Eliminacion de signos de puntuación:
   ## Si una cadena de caractrer contiene un signo de puntuacion estos
    → serán eliminados y sustituidos por un espacio en blanco. Si por
    \rightarrow ejemplo tenemos las cadenas '@FabioScielzo' y 'Fabio@Scielzo' ,
   ## la funcion las transforma en 'FabioScielzo' en el primer caso y

ightarrow en el par de cadenas 'Fabio' , 'Scielzo' en el segundo. Y si

→ tenemos

   ## una cadena de signos d puntuación como '@#!' la elimina
    \rightarrow directamente.
   regex =
nuevo_texto = re.sub(regex , ' ', nuevo_texto)
   # Eliminacion de numeros:
   ## Si una cadena de caracter tiene numeros estos serán eliminados y
    → sustituidos por un espacio en blanco. Si por ejemplo tenemos las
    \rightarrow cadenas '4FabioScielzo' y 'Fabio44Scielzo' la funcion las
    → transforma en 'FabioScielzo' y 'Fabio' , 'Scielzo' ,
    → respectivamente. Ademas si una cadena solo contienen numeros, por
    → ejemplo '123' la elimina directamente.
```

```
nuevo_texto = re.sub("\d+", ' ', nuevo_texto)
# Eliminacion de espacios en blanco multiples:
## Si tenemos en un texto dos o mas espacios en blanco consecutivos la
→ funcion los transforma en un solo espacio en blanco. Por ejemplo
→ si tenemos el texto "Fabio" es abogado" la funcion lo
→ transforma en "Fabio es abogado".
nuevo_texto = re.sub("\\s+", ' ', nuevo_texto)
# Una vez que a un texto se le han aplicado las operaciones anteriores
→ ya solo quede considerar las cadenas de caracteres de ese texto
→ como tokens, ya que son cadenas con buenas propiedades, a saber,
→ sin signos de puntuacion, sin numeros, sin links de web. Ademas la
- eliminacion de espacios en blanco multiples es fundamental para
   que la siguiente operacion funcione bien, ya que en el texto final
→ resultante todas las cadenas estan separadas entre si por un solo
→ espacio, y la siquiente operacion utiliza esa propiedad para
→ identificar a las cadenas, que ya serán considerados tokens en
\rightarrow sentido estricto.
# Obtención de tokens:
nuevo_texto = nuevo_texto.split(sep = ' ')
# Eliminacion de tokens con una longitud menor que 2:
## Una ultima operacion es solo considerar los tokens obteenidos tras
\rightarrow las operaciones anteriores que tengan un tamaño (nº de caracteres)
→ igual o superior a 2 , es decir, dejar fuera tokens con solo un
\rightarrow caracter.
nuevo_texto = [token for token in nuevo_texto if len(token) >= 2]
return(nuevo_texto)
```

Probamos el funcionamiento de la función limpiar_tokenizar con el mismo texto que fue usado antes como ejemplo ilustrativo.

['esto', 'es', 'ejemplo', 'de', 'limpieza', 'de', 'texto', 'cienciadedatos', 'textmining'

Ahora probamos la función limpiar_tokenizar con la primera noticia del data-set Fake News_Data:

```
Fake_News_Data['text'][0]
```

'Donald Trump just couldn t wish all Americans a Happy New Year and leave it at that. Ins

```
print(limpiar_tokenizar(texto=Fake_News_Data['text'][0]))
```

```
['donald', 'trump', 'just', 'couldn', 'wish', 'all', 'americans', 'happy', 'new', 'year',
```

Ahora aplicamos la función limpiar_tokenizar a cada una de las noticias del data-set Fake_News_Data

```
Fake_News_Data['text_tokenizado'] = Fake_News_Data['text'].apply(

impiar_tokenizar)
```

Creamos una columna que identifique las noticias:

```
Fake_News_Data['id_text'] = range(0, len(Fake_News_Data))
```

Vemos como queda tras estos cambios el data-set Fake_News_Data:

```
Fake_News_Data
```

```
Fake
                              title
0
             Donald Trump Sends Out Embarrassing New Year'...
         1
             Drunk Bragging Trump Staffer Started Russian ...
         1
2
             Sheriff David Clarke Becomes An Internet Joke...
3
             Trump Is So Obsessed He Even Has Obama's Name...
         1
             Pope Francis Just Called Out Donald Trump Dur...
44893
           'Fully committed' NATO backs new U.S. approach...
         O LexisNexis withdrew two products from Chinese ...
44894
44895
         O Minsk cultural hub becomes haven from authorities
         O Vatican upbeat on possibility of Pope Francis ...
44896
         O Indonesia to buy $1.14 billion worth of Russia...
44897
```

text date

```
Donald Trump just couldn t wish all Americans ... December 31, 2017
House Intelligence Committee Chairman Devin Nu... December 31, 2017
On Friday, it was revealed that former Milwauk... December 30, 2017
On Christmas day, Donald Trump announced that ... December 29, 2017
Pope Francis used his annual Christmas Day mes... December 25, 2017
```

...

```
44893 BRUSSELS (Reuters) - NATO allies on Tuesday we... August 22, 2017
44894 LONDON (Reuters) - LexisNexis, a provider of 1... August 22, 2017
44895 MINSK (Reuters) - In the shadow of disused Sov... August 22, 2017
44896 MOSCOW (Reuters) - Vatican Secretary of State ... August 22, 2017
44897 JAKARTA (Reuters) - Indonesia will buy 11 Sukh... August 22, 2017
```

	word_count	text_tokenizado	id_text
0	495	[donald, trump, just, couldn, wish, all, ameri	0
1	305	[house, intelligence, committee, chairman, dev	1
2	580	[on, friday, it, was, revealed, that, former,	2
3	444	[on, christmas, day, donald, trump, announced,	3
4	420	[pope, francis, used, his, annual, christmas,	4
44000	466		44000
44893	466	[brussels, reuters, nato, allies, on, tuesday,	44893
44894	125	[london, reuters, lexisnexis, provider, of, le	44894
44895	320	[minsk, reuters, in, the, shadow, of, disused,	44895
44896	205	[moscow, reuters, vatican, secretary, of, stat	44896
44897	210	[jakarta, reuters, indonesia, will, buy, sukho	44897

Creamos un nuevo data-frame solo con las columnas (variables) id_text, text_tokenizado y Fake, en ell que la columna text_tokenizado esta expandida, es decir, al ser una columna cuyos elementos son vectores, lo que se hace con la operacion explode es expandir cada uno de esos vectores en un nuevo data-frame, es decir, para cada uno de esos vectores se crean tantas filas en el nuevo data-frame como elementos hay en el vector, y en cada una de esas filas la columna text_tokenizado contendra un elemento del vector expandido. Visualmente es mas facil de entenderlo como se verá a continuación:

Imprimimos el nuevo data-frame creado Fake_News_Tokens al expandir la columna text_tokenizado del data-frame Fake_News_Data

Fake_News_Tokens

	id_text	token	Fake
0	0	donald	1
0	0	trump	1
0	0	just	1

0	0	couldn	1
0	0	wish	1
44897	44897	technology	0
44897	44897	and	0
44897	44897	aviation	0
44897	44897	among	0
44897	44897	others	0

- 5 Descripción estadística de los datos tras la tokenización
- 5.1 Numero de tokens del conjunto de noticias en funcion de si son fake o no

```
# nº de palabras (tokens) en el conjunto de textos clasificados como fake

→ y en los no fake

Fake_News_Tokens.groupby(by='Fake')['token'].count()
```

```
Fake
0 7891501
1 9611544
Name: token, dtype: int64
```

5.2 Numero de tokens únicos del conjunto de noticias en funcion de si son fake o no

```
# nº de palabras (tokens) *unicos* en el conjunto de textos clasificados

→ como fake y en los no fake

Fake_News_Tokens.groupby(by='Fake')['token'].nunique()
```

```
Fake
0 78020
1 85642
Name: token, dtype: int64
```

5.3 Numero de tokens en cada una de las noticias individualmente

```
df1
```

		n° _tokens
id_text	Fake	
0	1	447
1	1	294
2	1	563
3	1	426
4	1	415

• • •		• • •
44893	0	433
44894	0	120
44895	0	307
44896	0	196
44897	0	197

Hay noticias que no tienen tokens :

```
df1.loc[df1['nº_tokens'] == 0, :]
```

		n° _tokens
id_text	Fake	
9358	1	0
10923	1	0
11041	1	0
11190	1	0
11225	1	0
21857	1	0
21869	1	0
21870	1	0
21873	1	0
32451	0	0

Algunos ejemplos de estas noticias son los siguientes:

```
Fake_News_Data.loc[Fake_News_Data.id_text == 9358]
```

```
Fake title
9358 1 https://100percentfedup.com/served-roy-moore-v...

text
9358 https://100percentfedup.com/served-roy-moore-v...

date word_count
9358 1

text_tokenizado id_text
9358 [] 9358

Fake_News_Data.loc[Fake_News_Data.id_text == 10923]
```

```
Fake title

10923 1 TAKE OUR POLL: Who Do You Think President Trum...

text date word_count text_tokenizado id_text

10923 May 10, 2017 0 [] 10923
```

Nos quedamos por tanto solo con las noticias que tienen algun token :

```
df2 = df1.loc[df1['nº_tokens'] != 0, :]
df2
```

		n° _tokens
id_text	Fake	
0	1	447
1	1	294
2	1	563
3	1	426
4	1	415
44893	0	433
44894	0	120
44895	0	307
44896	0	196
44897	0	197

Calculamos el numero medio de tokens para las noticas que tienen uno o mas tokens en funcion se si son fake o no:

```
df2.groupby("Fake")["nº_tokens"].agg(['mean'])
```

mean Fake 0 368.486225 1 422.169983

Se puede interpretar como la longitud media de las noticas fake y de las no fake

Hay diferencias entre lo obtenido mediante esta operación y lo obtenido al usar el siguiente código, que fue visto anteriormente:

```
Fake_News_Data['word_count'] =
          Fake_News_Data['text'].str.split().str.len()

Fake_News_Data.groupby('Fake')['word_count'].mean()
```

```
Fake Mean word_count
0 385.640099
1 423.197905
```

Y esto es debido a que el código Fake_News_Data['text'].str.split() hace una operacion similar a la realizada por nuestra funcion limpiar_tokenizar pero no exactamente igual, y esto lleva a que con la primera opcion se obtiene un conjunto de tokens diferente al obtenido con la funcion limpiar_tokenizar, en los distintos documentos, y esto lleva a que la longitud de los documentos sea diferente si se consideran los tokens obtenidos con Fake_News_Data['text'].str.split() a si se usan los obtenidos con limpiar_tokenizar, llo que lleva a diferencias en las longitudes medias obtenidas.

```
Fake_News_Data['text'].str.split()
0
         [Donald, Trump, just, couldn, t, wish, all, Am...
1
         [House, Intelligence, Committee, Chairman, Dev...
2
         [On, Friday,, it, was, revealed, that, former,...
3
         [On, Christmas, day,, Donald, Trump, announced...
4
         [Pope, Francis, used, his, annual, Christmas, ...
44893
         [BRUSSELS, (Reuters), -, NATO, allies, on, Tue...
44894
         [LONDON, (Reuters), -, LexisNexis,, a, provide...
         [MINSK, (Reuters), -, In, the, shadow, of, dis...
44895
44896
         [MOSCOW, (Reuters), -, Vatican, Secretary, of,...
         [JAKARTA, (Reuters), -, Indonesia, will, buy, ...
44897
```

Como se pueden ver con el código anterior se obtiene por ejemplo que '-' y ', Donald' son tokens , cuando con la función limpiar_tokenizar no serían considerados un tokens.

Otra forma de calcular lo anterior:

409.332822

1

1

```
m0 = (

→ Fake_News_Tokens.loc[Fake_News_Tokens['Fake']==0].groupby('id_text')['token'].count()

→ ).mean()

m1 = (

→ Fake_News_Tokens.loc[Fake_News_Tokens['Fake']==1].groupby('id_text')['token'].count()

→ ).mean()

pd.DataFrame({'fake_new': [0,1] , 'tokens_mean': [m0 , m1]})

fake_new tokens_mean

0 0 368.469020
```

5.4 Número de veces que aparece cada token en el conjunto de las noticias en funcion de si es fake o no

Fake	token	frecuencia_token
0	aa	22
0	aaa	7
0	aaaaaaand	0
0	aaaaackkk	0
0	aaaaapkfhk	0
1	""it	0
1	""when	0
1	•if	0
1	\$emoji1	\$ 0
1	\$emoji2	\$ 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 aa 0 aaa 0 aaaaaaaand 0 aaaaackkk 0 aaaaapkfhk 1 ""it 1 ""when 1 •if 1 \$emoji1

La salida anterior nos da para cada token el numero de veces que aparece en el conjunto de las fake news por un lado (Fake = 1), y por otro lado en el conjunto de las no fake (Fake=0)

Veamos algunos ejemplos para tokens concretos:

En la siguiente salida vemos el n° de veces que aparece el token 'yes' en eñ conjunto de las fake news (1775), asi como en el conjunto de las no fake news (336).

```
df.loc[df['token']=='yes' , ] # El token 'yes' aprece 1775 veces en el

→ conjunto de las fake news y 336 en el de las no fake news
```

	Fake	token	frecuencia_token
116577	0	yes	336
242382	1	yes	1775

En la siguiente salida vemos el n° de veces que aparece el token 'true' en eñ conjunto de las fake news (2595), asi como en el conjunto de las no fake news (412).

```
df.loc[df['token']=='true',] # El token 'true' aparece 2595 veces en el \hookrightarrow conjunto de las fake news y 412 en el de las no fake news
```

	Fake	token	frecuencia_token
106608	0	true	412
232413	1	true	2595

En la siguiente salida podemos ver el n^o de veces que aparece cada token en el conjunto de las no fake news.

```
df.loc[df['Fake']==0 , ]
```

	Fake	token	<pre>frecuencia_token</pre>
0	0	aa	22
1	0	aaa	7
2	0	aaaaaaand	0
3	0	aaaaackkk	0
4	0	aaaaapkfhk	0
			• • •
125800	0	""it	1
125801	0	""when	1
125802	0	•if	3
125803	0	\$emoji1\$	3
125804	0	\$emoji2\$	1

Y en la siguiente salida podemos ver el n^o de veces que aparece cada token en el conjunto de las fake news.

```
df.loc[df['Fake']==1 , ]
```

	Fake	token	frecuencia_token
125805	1	aa	24
125806	1	aaa	9
125807	1	aaaaaaand	1
125808	1	aaaaackkk	1
125809	1	aaaaapkfhk	1
251605	1	""it	0
251606	1	""when	0
251607	1	•if	0
251608	1	\$emoji1	\$ 0
251609	1	\$emoji2	\$ 0

5.5 Ranking de tokens mas frecuentes en el conjunto de las noticas en funcion de si son fake y no fake

Ahora vamos a ordenar los dos data-frames anteriores en función de la columna frecuencia_token, de mayor a menor, para así poder ver cuales son los tokens con mayor frecuencia tanto en el conjunto de las fake news, como en el de las no fake news.

```
df_no_fake_sort = df.loc[df['Fake']==0 ,

     ].sort_values(by=["frecuencia_token"],
     ascending=False).reset_index(drop=False)
```

Imprimimos las primeras 15 filas de cada uno de los nuevos data-frames ordenados:

df_fake_sort.head(15)

	index	Fake	token	frecuencia_token
0	229301	1	the	544521
1	230713	1	to	290882
2	199217	1	of	236735
3	129697	1	and	227349
4	174372	1	in	171433
5	229261	1	that	151789
6	176603	1	is	111278
7	162672	1	for	93538
8	176868	1	it	83693
9	199777	1	on	83661
10	232444	1	trump	79922
11	169936	1	he	79124
12	238650	1	was	67865
13	240547	1	with	63441
14	229776	1	this	58581
9 10 11 12 13	199777 232444 169936 238650 240547	1 1 1 1 1	on trump he was with	83661 79922 79124 67865 63441

df_no_fake_sort.head(15)

	index	Fake	token	frecuencia_token
0	103496	0	the	478548
1	104908	0	to	245378
2	73412	0	of	205193
3	3892	0	and	181715
4	48567	0	in	181082
5	73972	0	on	108459
6	90350	0	said	99054
7	103456	0	that	86723
8	36867	0	for	79705
9	50798	0	is	55298
10	114742	0	with	54327
11	44131	0	he	52605
12	112845	0	was	47892
13	14219	0	by	47871
14	5659	0	as	46935

Se puede observar que en ambas tablas la mayoria de los 15 tokens mas frecuentees se corresponden con artículos, preposiciones, pronombres, etc. En general, palabras que no aportan información relevante sobre el texto. A estas palabras se les conoce como **stopwords**. Para cada idioma existen distintos listados de stopwords, además, dependiendo del contexto, puede ser necesario adaptar el listado. Con frecuencia, a medida que se realiza un análisis se encuentran palabras que deben incluirse en el listado de stopwords.

5.5.1 Stop words

Vamos a obtener un listado de **stopwords** en ingles, ya que nuestros textos (noticias) están en ingles. Si estuvieran en varios idiosmas habra que formar un listado de stopwords

para todos esos idomas.

Para ontener el listado de stopwords usaremos la libreria nltk (Natural Language Toolki) , una de las librerias mas importantes en Python en el área de procesamiento de lenguaje natural.

pip install nltk

```
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
```

Obtenemos el listado de stopwords que provee nltk para el idioma inglés, y ademas le añadimos una lista extra de palabras que también vamos a considerar stopwords:

```
# Obtencion de listado de stopwords del ingles
stop_words = stopwords.words('english') + ["pic" , "getty", "quot", "acr",
→ "filessupport", "flickr", "fjs", "js", "somodevilla", "var",
→ "henningsen",
"ck", "cdata", "subscribing", "mcnamee", "amp", "wfb", "screenshot",
→ "hesher", "nyp", "cking", "helton", "raedle", "donnell",
"getelementbyid", "src", "behar", "createelement", "getelementsbytagname",
→ "parentnode", "wnd", "insertbefore",
"jssdk", "nowicki", "xfbml", "camerota", "sdk", ""i", ""the", ""we",
→ "it's", "don't", ""this", ""it", ""a",
""if", ""it's", "we're", "that's", ""he", ""there", "i'm", "he's",

    ""we're", "doesn't", "can't", ""i'm", ""in",

"suu", ""they", "you're", ""but", "didn't", ""you", "they're", ""no",
\rightarrow ""as", ""very" , "there's", ""what", ""and", "won't",
 ""to", ""that", ""one", "we've", ""when", ""our", ""not", "'""
  → ,""that's", ""these", ""there's", ""he's", "we'll", 'one',
  'would', 'like', 'us', 'even', 'could', 'two', 'many', 'angerer',

    'reilly']
```

Imprimimos la lista de stopwords que se van a considerar en este trabajo:

```
print(stop_words)
```

```
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you'v
```

De los data-frames df_fake_sort y df_no_fake_sort eliminamos aquellos tokens que estan en la lista de stopwords:

```
df_fake_sort_not_StopWords = df_fake_sort[ ~

    df_fake_sort['token'].isin(stop_words) ] # ranking de tokens para las
    fake news sin stop words
```

Imprimimos las primeras 15 filas de los nuevos data-frames creados:

```
df_fake_sort_not_StopWords.head(15)
```

	index	Fake	token	frecuencia_token
10	232444	1	trump	79922
31	216155	1	said	33763
34	206880	1	president	27801
35	203392	1	people	26591
56	144568	1	clinton	19209
59	198761	1	obama	18833
62	154174	1	donald	17789
67	128977	1	also	15420
69	196554	1	news	14688
73	196507	1	new	14414
75	171064	1	hillary	14184
77	230293	1	time	13854
79	224427	1	state	13471
82	239806	1	white	13194
84	237031	1	via	12830

```
df_no_fake_sort_not_StopWords.head(15)
```

	index	Fake	token	<pre>frecuencia_token</pre>
6	90350	0	said	99054
17	106639	0	trump	42755
26	87534	0	reuters	28880
28	81075	0	president	27128
36	98622	0	state	19912
41	41076	0	government	18484
44	70702	0	new	16849
47	46493	0	house	16480
48	98655	0	states	16380
49	86922	0	republican	16175
50	3172	0	also	15948
51	109089	0	united	15584
53	77587	0	people	14945
54	116463	0	year	14276
55	105051	0	told	14245

Ahora vamos a crear unos graficos de barras para representar el ranking de los 15 tokens mas frecuentes en el conjunto de las fake news por un lado, y por otro las no fake news:

Figure 2: Ranking 15 Tokens in Fake News

5.6 Odds Ratio

A continuación, se estudia qué palabras se utilizan de forma más diferenciada en cada tipo de noticia (fake / no fake), es decir, palabras que utiliza mucho en las fake news y que no se utilizan tanto en las no fakes, y viceversa.

Una forma de hacer este análisis es mediante el odds ratio de las frecuencias.

Sea
$$p_k 1 = \frac{n_{k1} + 1}{N_1 + 1}$$
 y $p_k 0 = \frac{n_{k0} + 1}{N_0 + 1}$
$$OR(Fake|NoFake, k) = \frac{p_{k1}}{p_{k0}}$$

Donde:

 n_{k1} el número de veces que aparece el token k en las **fake news**.

 n_{k0} el numero de veces que aparece el termino k en las **no fake news**.

 N_1 es el número de tokens, contando repeticiones, que aparecen en las **fake news**.

 N_0 es el número de tokens, contando repeticiones, que aparecen en las **no fake news**

Figure 3: Ranking 15 Tokens in Not Fake News

Por tanto:

 $p_{k1} \approx$ proporcion de apariciones del token k en las **fake news**

 $p_{k0} \approx$ proporcion de apariciones del token k en las **no fake news**

Si
$$OddsRatio(k) = \frac{p_k 1}{p_k 0} = h$$
, entonces:

Si $h>1\Rightarrow$ el token k es h veces mas frecuente en las **fake news** que en las **no fake news**, ya que $p_{k1}=h\cdot p_{k0}$

Si $h \in (0,1) \Rightarrow$ el token k es 1/h veces mas frecuente en las **no fake news** que en las **fake news**, ya que $p_{k0} = (1/h) \cdot p_{k1}$, donde (1/h) > 1

Si $h=1 \Rightarrow$ el token k es igual de frecuente en las **fake news** que en las **no fake news**, ya que $p_{k1}=p_{k0}$

A continuacion definimos funciones para calcular n_{k1} y n_{k0} en Python

```
def n_k1(token) :
    n_k1 = df_fake_sort_not_StopWords.loc[
    df_fake_sort_not_StopWords['token']==token , 'frecuencia_token']
    return(n_k1)
```

```
def n_k0(token) :
    n_k0 = df_no_fake_sort_not_StopWords.loc[
    df_no_fake_sort_not_StopWords['token']==token , 'frecuencia_token']
    return(n_k0)
```

Probamos las funciones para algunos tokens concretos:

```
n_k0('trump')
```

17 42755

Name: frecuencia_token

```
n_k1('trump')
```

10 79922

Name: frecuencia_token

id_text

Estas salidas nos indican que el n° de veces que aparece el token 'trump' en el conjunto de las fake news es 79922, mientras que en el conjunto de las no fake news es 42755.

 N_0 y N_1 coinciden con el nº de tokens, contando repeticiones y sin considerar las stopwords, que aparecen el las no fake y fake news, respectivamente:

```
Fake_News_Tokens_not_StopWords = Fake_News_Tokens[ ~

Fake_News_Tokens['token'].isin(stop_words)]

Fake_News_Tokens_not_StopWords
```

token Fake

0	0	donald	1
0	0	trump	1
0	0	wish	1
0	0	americans	1
0	0	happy	1
44897	44897	energy	0
44897	44897	technology	0
44897	44897	aviation	0
44897	44897	among	0
44897	44897	others	0

```
Fake_News_Tokens_not_StopWords.groupby(by='Fake')['token'].count()
```

Fake

47821985396339

Name: token

```
N0 = Fake_News_Tokens_not_StopWords.groupby(by='Fake')['token'].count()[0]
N1 = Fake_News_Tokens_not_StopWords.groupby(by='Fake')['token'].count()[1]
```

NO

4782198

N1

5396339

Como ejemplo vamos a calcular el Odds Ratio fake - no fake para el toke 'trump' :

```
n_kO('trump') / NO
```

```
17 0.00894
```

Name: frecuencia_token, dtype: float64

```
n_k1('trump') / N1
```

10 0.01481

Name: frecuencia_token, dtype: float64

```
# Odds Ratio fake - no fake para el token 'trump'
float( n_k0('trump') / N0 ) / float( n_k1('trump') / N1 )
```

1.6565622548396417

Por tanto el token 'trump' es 1.66 veces mas frecuente en las fake news que en las no fake.

	index	Fake	token	frecuencia_token	Odds_ratio_Fake_NotFake	\
0	125805	1	aa	24	0.963253	
1	125806	1	aaa	9	1.107741	
2	125807	1	aaaaaaaand	1	1.772386	
3	125808	1	aaaaackkk	1	1.772386	
4	125809	1	aaaaapkfhk	1	1.772386	
125561	251605	1	""it	0	0.443097	
125562	251606	1	""when	0	0.443097	
125563	251607	1	if	0	0.221548	
125564	251608	1	emoji1	0	0.221548	
125565	251609	1	emoji2	0	0.443097	

Odds_ratio_NotFake_Fake
0 1.038149

```
0.902738
1
2
                       0.564211
3
                       0.564211
4
                       0.564211
. . .
125561
                       2.256845
125562
                       2.256845
125563
                     4.513689
                     4.513689
125564
125565
                      2.256845
df0 =

→ df_no_fake_sort_not_StopWords.sort_values(by=["token"]).reset_index(drop=True)

df0
         index Fake
                         token frecuencia_token
0
          0 0
                                                22
                            aa
           1
                 0
                                                 7
                            aaa
           2 0 aaaaaaaand
2
                                                 0
3
           3 0 aaaaackkk
                                                 0
           4 0 aaaaapkfhk
4
                                                 0
          4 ... ... ... ... ... ...
. . .
                                                . . .
125561 125800 0
                                                1
                        ""when
125562 125801
                 0
                                                 1
125563 125802 0 if
125564 125803 0 emoji1
125565 125804 0 emoji2
                                                 3
                                                 3
                                                 1
n_k0_vector = df0['frecuencia_token']
n_k1_vector = df1['frecuencia_token']
Odds_ratio = ( ( n_k1_vector + 1 ) / ( N1 + 1) ) / ( ( n_k0_vector + 1 ) /
\hookrightarrow (N0 + 1))
df0['Odds_ratio_Fake_NotFake'] = Odds_ratio
df1['Odds_ratio_Fake_NotFake'] = Odds_ratio
df0['Odds_ratio_NotFake_Fake'] = 1 / df0["Odds_ratio_Fake_NotFake"]
df1['Odds_ratio_NotFake_Fake'] = 1 / df1["Odds_ratio_Fake_NotFake"]
df0
df1
df0.sort_values(by=["Odds_ratio_Fake_NotFake"],
→ ascending=False).reset_index(drop=True).head(5)
```

```
index Fake
                             token
                                    frecuencia_token
                                                       Odds_ratio_Fake_NotFake
0
    35830
               0
                          finicum
                                                                      320.801884
1
   114264
               0
                        wikimedia
                                                    0
                                                                      200.279629
2
   109040
               0
                  uninterruptible
                                                    0
                                                                      189.645313
3
               0
    78372
                     philosophers
                                                    0
                                                                      186.100540
4
    60711
               0
                           lovable
                                                    0
                                                                      183.441961
   Odds_ratio_NotFake_Fake
0
                   0.003117
1
                   0.004993
2
                   0.005273
3
                   0.005373
4
                   0.005451
df0.sort_values(by=["Odds_ratio_NotFake_Fake"],
    ascending=False).reset_index(drop=True).head(5)
    index
           Fake
                      token
                              frecuencia_token
                                                 Odds_ratio_Fake_NotFake
   106864
0
                                                                 0.000076
                    trump's
                                          11629
    72989
               0
                    obama's
                                           2132
                                                                 0.000415
1
                  clinton's
2
    18791
               0
                                           1604
                                                                 0.000552
3
    76630
               0
                    party's
                                           1101
                                                                 0.000804
4
    98675
               0
                    state's
                                           1010
                                                                 0.000877
   Odds_ratio_NotFake_Fake
0
               13123.551362
1
                2406.924768
2
                1811.117793
3
                1243.521376
4
                1140.834946
df1.sort_values(by=["Odds_ratio_Fake_NotFake"],
    ascending=False).reset_index(drop=True).head(5)
    index
          Fake
                             token
                                    frecuencia_token
                                                        Odds_ratio_Fake_NotFake
  161635
0
               1
                           finicum
                                                  361
                                                                      320.801884
1
   240069
               1
                        wikimedia
                                                  225
                                                                      200.279629
   234845
2
               1
                  uninterruptible
                                                  213
                                                                      189.645313
3
   204177
               1
                     philosophers
                                                  209
                                                                      186.100540
4
   186516
               1
                           lovable
                                                  206
                                                                      183.441961
   Odds_ratio_NotFake_Fake
0
                   0.003117
                   0.004993
1
2
                   0.005273
3
                   0.005373
4
                   0.005451
df1.sort_values(by=["Odds_ratio_NotFake_Fake"],
    ascending=False).reset_index(drop=True).head(5)
```

```
index Fake
                      token
                              frecuencia token
                                                 Odds ratio Fake NotFake
0
   232669
               1
                    trump's
                                                                  0.000076
1
   198794
               1
                    obama's
                                              0
                                                                  0.000415
2
   144596
               1
                  clinton's
                                              0
                                                                  0.000552
3
   202435
               1
                    party's
                                              0
                                                                  0.000804
   224480
               1
                    state's
                                              0
                                                                  0.000877
   Odds ratio NotFake Fake
0
               13123.551362
1
                2406.924768
2
                1811.117793
3
                1243.521376
4
                1140.834946
```

Notese que en ambos data sets las columnas Odds_ratio_Fake_NotFake y Odds_ratio_NotFake_Fake son las mismas, por tanto podemos construir un nuevo data set solo con esas columnas y otra para los tokens, a partir de cualquiera de esos dos data-sets.

```
Odds_ratio_df.sort_values(by=["Odds_ratio_Fake_NotFake"],

ascending=False).head(15)
```

```
token
                          Odds_ratio_Fake_NotFake
                                                     Odds_ratio_NotFake_Fake
35775
                                        320.801884
                                                                     0.003117
                 finicum
114071
              wikimedia
                                        200.279629
                                                                     0.004993
                                                                     0.005273
108870
        uninterruptible
                                        189.645313
           philosophers
78242
                                        186.100540
                                                                     0.005373
                                                                     0.005451
60612
                 lovable
                                        183.441961
91113
                 savants
                                        182.555768
                                                                     0.005478
67583
                                                                     0.005478
              moralists
                                        182.555768
97785
                   spore
                                        182.555768
                                                                     0.005478
84324
                 rascals
                                        181.669575
                                                                     0.005504
32976
            evangelists
                                        181.669575
                                                                     0.005504
             masochists
                                                                     0.005504
63302
                                        181.669575
11482
                  boiler
                                        172.586096
                                                                     0.005794
13727
                                        170.813710
                                                                     0.005854
                   bundy
92025
              screengrab
                                        167.490486
                                                                     0.005970
113747
                  whined
                                        166.604293
                                                                     0.006002
```

	token	Odds_ratio_Fake_NotFake	Odds_ratio_NotFake_Fake
106696	trump's	0.000076	13123.551362
72874	obama's	0.000415	2406.924768
18756	clinton's	0.000552	1811.117793
76500	party's	0.000804	1243.521376

98529	state's	0.000877	1140.834946
80975	president's	0.000979	1021.222183
83999	rakhine	0.000987	1013.323226
1242	administration's	0.001157	864.371483
88673	rohingya	0.001294	772.969276
117944	zuma	0.001298	770.712432
82344	puigdemont	0.001372	728.960807
17524	china's	0.001400	714.291317
89715	russia's	0.001439	695.108137
21888	country's	0.001541	648.842823
69047	myanmar	0.001579	633.496280

Figure 4: png

Figure 5: png