Truth Tables

3 min

Logic gates have certain rules that determine what the outputs are with respect to the inputs a and b. When we are analyzing a logic gate, we can visualize all of the possible outputs by making a *truth table*. A truth table shows the output for all possible inputs.

For example, if we have a gate that returns 1 if and only if both the inputs a and b are 1, we can create the truth table:

а	b	output
0	0	0
0	1	0
1	0	0
1	1	1

Each row represents an observation of output depending on the values of a and b. So the first row shows that when a is 0 and b is 0, the output will be 0.

When we make a truth table, we want to represent the entire universe of possibilities. This means that we want every combination of inputs to be represented. For 2 variables (a and b), we will need 4 rows to represent all of these combinations.

In Python, and many other programming languages, 1 evaluates to be True, and 0 evaluates to be false.

Instructions

1. Checkpoint 1 Passed

1.

Let's suppose we have a gate that returns 1 if either a is 1 or b is 1, but not if they are both 1.

Here is the truth table that corresponds to the gate, with the third row missing:

а	b	output
0	0	0
0	1	1
val1	val2	val3
1	1	0

Create the variables val1, val2, and val3 and assign them to the values that will complete the truth table for this gate.

Hint

We are missing the situation where a is 1 and b is 0. What would the output be in this case?

script.py

Truth table:

#a b output

#0 0 0

#0 1 1

val1 val2 val3

#1 1 0

#

val1 = 1 #add 0 or 1 here

val2 = 0 #add 0 or 1 here

val3 = 1 #add 0 or 1 here