LECCIÓN II: GEOMETRÍA SIMPLÉCTICA

GUILLERMO GALLEGO SÁNCHEZ

1. Variedades simplécticas

Definición 1.1. Una *variedad simpléctica* es un par (M, ω) donde M es una variedad diferenciable de dimensión 2n y ω es una 2-forma diferencial cerrada y no degenerada.

Hay algunas restricciones para lo que puede ser y no ser una variedad simpléctica:

1. En cada punto $x \in M$, ω_x es una forma bilineal antisimétrica y no degenerada, luego puede diagonalizarse (**Ejercicio**: Probar que esto es así) a una forma con matriz asociada

$$\mathbb{J}_n = \left(\begin{array}{cc} 0 & -\mathbb{1}_n \\ \mathbb{1}_n & 0 \end{array} \right).$$

De modo que toda variedad simpléctica debe tener dimensión par.

- 2. Toda variedad simpléctica es orientable: $\omega^n = \omega \wedge \stackrel{(n)}{\dots} \wedge \omega$ es una forma de volumen («volumen de Liouville»).
- 3. Si M es compacta y sin borde ω no es exacta. De ser así, $\omega = d\alpha$, entonces $\omega^n = d(\alpha \wedge \omega^{n-1})$. Ahora, el volumen de Liouville de M es, por el teorema de Stokes,

$$Vol(M) = \int_{M} \omega^{n} = \int_{M} d(\alpha \wedge \omega^{n-1}) = \int_{\partial M = \emptyset} \alpha \wedge \omega^{n-1} = 0,$$

y esto es absurdo; el volumen de M no puede ser 0. En particular, hemos visto que el segundo grupo de cohomología de de Rham de M, $H^2_{dR}(M) \neq 0$.

Ejercicio 1.2.

- 1. Dotar a la esfera \mathbb{S}^2 de la estructura de variedad simpléctica.
- 2. ¿Cuáles de las siguientes variedades admiten una estructura simpléctica?

$$\mathbb{R}^3$$
, \mathbb{CP}^3 , \mathbb{RP}^2 , \mathbb{S}^4 , $\mathbb{S}^3 \times \mathbb{R}^3$, $\mathbb{RP}^3 \times \mathbb{R}^3$.

Antes hemos comentado que ω puede diagonalizarse *infinitesimalmente* a una forma con matriz asociada \mathbb{J}_n . El teorema de Darboux afirma un hecho sorprendente: también puede diagonalizarse *localmente*. Esto en particular implica que una variedad simpléctica no tiene invariantes locales.

Teorema 1.3 (Darboux). Sean M una variedad diferenciable $y \omega$ una 2-forma cerrada y no degenerada en M. Entonces para cada $x \in M$ existen un entorno $U \subset M$ de x y una parametrización $\varphi : U \to \mathbb{R}^n$ tal que $\varphi^* \omega$ tiene coeficientes constantes.

Corolario 1.4. En torno a cada punto $x \in M$ podemos dar unas coordenadas $(\mathbf{q}, \mathbf{p}) = (q^1, \dots, q^n, p_1, \dots, p_n)$ en las que ω se escribe

$$\omega = \mathrm{d}p_i \wedge \mathrm{d}q^i.$$

Estas coordenadas se llaman coordenadas canónicas o de Darboux.

2. Simplectomorfismos

Podemos entender los simplectomorfismos como cambios de coordenadas que «preservan» la estructura simpléctica.

Definición 2.1. Sea (M, ω) una variedad simpléctica y $f: M \to M$ un difeomorfismo. Se dice que f es un *simplectomorfismo* si $f^*\omega = \omega$.

Proposición 2.2. Una difeomorfismo $f: M \to M$ es un simplectomorfismo si y sólo si, si (\mathbf{q}, \mathbf{p}) son coordenadas canónicas en un entorno U de un punto $x \in M$, entonces $(\mathbf{q} \circ f, \mathbf{p} \circ f)$ son coordenadas canónicas en $f^{-1}(U)$.

Demostración. Basta darse cuenta de que

$$d(p_i \circ f) \wedge d(q^i \circ f) = f^*(dp_i \wedge dq^i) = f^*\omega,$$

que es igual a ω si y sólo si f es un simplectomorfismo.

Ejercicio 2.3 (El grupo simpléctico real). Se define el *n-ésimo grupo simpléctico real* Sp $(2n, \mathbb{R})$ como el conjunto de las matrices $A \in \mathcal{M}^{2n \times 2n}$ tales que

$$A^t \mathbb{J}_n A = \mathbb{J}_n$$
.

Probar:

- 1. Si $f: M \to M$ es un simplectomorfismo entonces, para todo punto $x \in M$, su matriz jacobiana $J_x f \in \operatorname{Sp}(2n, \mathbb{R})$.
- 2. Si $A \in \operatorname{Sp}(2n, \mathbb{R})$ entonces $\det(A) = 1$ o $\det(A) = -1$.
- 3. Si $A \in \text{Sp}(2n, \mathbb{R})$ entonces $\det(A) = 1$.
- 4. $\operatorname{Sp}(2n, \mathbb{R})$ es una subvariedad regular de \mathbb{R}^{4n^2} .

3. Campos simplécticos y hamiltonianos

Nótese que en cada punto x de una variedad simpléctica (M, ω) tenemos un isomorfismo

$$T_x M \longrightarrow (T_x M)^*$$

 $v \longmapsto \omega_x(\bullet, v).$

En general, a cada campo X en M le podemos asociar la forma $\omega(\bullet, X) = -i_X \omega$.

Si consideramos una familia uniparamétrica de simplectomorfismos f_t generada por un campo X, entonces

$$\mathcal{L}_X \omega = \frac{d}{dt} \bigg|_{t=0} f_t^* \omega = \frac{d}{dt} \bigg|_{t=0} \omega = 0.$$

Recíprocamente, si X es un campo tal que $\mathcal{L}_X \omega = 0$ y φ_t es su flujo, entonces

$$\frac{d}{dt}\bigg|_{t=t_0}(\varphi_t^*\omega) = \varphi_{t_0}^*\left[\frac{d}{dt}\bigg|_{t=t_0}\varphi_{t-t_0}^*\omega\right] = \varphi_{t_0}^*\left[\frac{d}{dt}\bigg|_{t=0}\varphi_t^*\omega\right] = \varphi_{t_0}^*(\mathcal{L}_X\omega) = \varphi_{t_0}^*(0) = 0.$$

Es decir, los campos con $\mathcal{L}_X \omega = 0$ «preservan» la forma simpléctica. Estos campos se llaman *campos simplécticos*.

Si aplicamos la fórmula de Cartan, tenemos que

$$\mathcal{L}_X \omega = i_X(\mathrm{d}\omega) + \mathrm{d}(i_X \omega) = \mathrm{d}(i_X \omega).$$

Por tanto, un campo es simpléctico si y sólo si $i_X\omega$ es cerrada. En el caso en que $i_X\omega$ sea exacta se dice que X es un campo hamiltoniano. Si X es un campo hamiltoniano entonces existe una función $H: M \to \mathbb{R}$ tal que $i_X\omega = -\mathrm{d}H$. En tal caso decimos que H es el hamiltoniano de X y denotamos $X = X^H$. Como un campo hamiltoniano es en particular simpléctico, el *flujo*

hamiltoniano de H, que es el flujo generado por X^H y se denota por φ^H , preserva la forma ω y, en particular, el volumen ω^n . Este resultado es análogo al clásico *teorema de Liouville*.

Localmente, en unas coordenadas canónicas (\mathbf{q}, \mathbf{p}) , un campo hamiltoniano X^H se escribirá

$$X^H = a_i \partial_{q^i} + b_i \partial_{p_i}.$$

Ahora,

$$-i_{X^H}\omega = -\mathrm{d}p_i \wedge \mathrm{d}q^i(a_i\partial_{q^i} + b_i\partial_{p_i}, \bullet) = -b_i\mathrm{d}q^i + a_i\mathrm{d}p_i,$$

y

$$dH = \frac{\partial H}{\partial q^i} dq^i + \frac{\partial H}{\partial p_i} dp^i,$$

luego

$$X^{H} = \frac{\partial H}{\partial p_{i}} \partial_{q^{i}} - \frac{\partial H}{\partial q^{i}} \partial_{p_{i}}.$$

De modo que las curvas integrales ($\mathbf{q}(t)$, $\mathbf{p}(t)$) de X^H seguirán las ecuaciones de Hamilton

$$\begin{cases} \dot{q}^i = \frac{\partial H}{\partial p_i} \\ \dot{p}_i = -\frac{\partial H}{\partial a^i}. \end{cases}$$

Cabe preguntarse ahora cuándo coincidirán los campos simplécticos y los hamiltonianos. Para ello observemos que la siguiente sucesión

$$\mathbb{C}^{\infty}(M) \xrightarrow{X^{\bullet}} \operatorname{Simp}(M) \xrightarrow{[i_{\bullet}\omega]} H^{1}(M)$$

(donde Simp(M) denota el espacio de los campos simplécticos) es exacta y, de hecho

$$\operatorname{Ham}(M) := \ker([i_{\bullet}\omega]) = \operatorname{im}(X^{\bullet})$$

es precisamente el espacio de los campos hamiltonianos. Nótese entonces que si $H^1(M)=0$ entonces todo campo simpléctico en M es hamiltoniano. Nótese también por esto mismo que todo campo simpléctico es localmente hamiltoniano.

Ejercicio 3.1. Encontrar un campo simpléctico que no sea hamiltoniano.

4. Corchete de Poisson

Definición 4.1. Sean dos funciones $H, K : M \to \mathbb{R}$. Se define el *corchete de Poisson* de H y Kcomo la función

$$\{H,K\} = X^H K.$$

Ejercicio 4.2. Probar las siguientes identidades

- 1. $\{H, K\} = dK(X^H) = \omega(X^H, X^K)$ 2. $[X^H, X^K] = X^{\{H, K\}}$
- 3. (Ecuación de Liouville)

$$\frac{d}{dt}\bigg|_{t=t_0} K(\varphi_t^H(x)) = \{H, K\} (\varphi_{t_0}^H(x)).$$

Localmente, en coordenadas canónicas (q, p),

$$\{H, K\} = dK(X^H) = \left(\frac{\partial K}{\partial q^i} dq^i \frac{\partial K}{\partial p_i} dp_i\right) \left(\frac{\partial H}{\partial p_i} \partial_{q^i} - \frac{\partial H}{\partial q^i} \partial_{p_i}\right) = \frac{\partial H}{\partial p_i} \frac{\partial G}{\partial q^i} - \frac{\partial H}{\partial q^i} \frac{\partial G}{\partial p_i}.$$

Con el corchete de Poisson, las ecuaciones de Hamilton tienen un aspecto muy sencillo

$$\begin{cases} \dot{q}^i = \left\{ H, q^i \right\} \\ \dot{p}_i = \left\{ H, p_i \right\}. \end{cases}$$

También se cumplen las relaciones de conmutación canónicas

$$\left\{p_j,q^i\right\}=\delta_{ij}.$$

Ejercicio 4.3. Probar que unas coordenadas (q,p) son canónicas si y sólo si cumplen las relaciones de conmutación canónicas.

Ejercicio 4.4. Probar que f es un simplectomorfismo si y sólo si deja invariante el corchete de Poisson, esto es, si para cada $H, K : M \to M$,

$$\{H,K\}\circ f=\{H\circ f,K\circ f\}\,.$$

Ejercicio 4.5. Probar que el corchete de Poisson dota a \mathcal{C}^{∞} de la estructura de *álgebra de Lie*, esto es, que

- 1. es bilineal
- 2. es antisimétrico
- 3. y cumple la identidad de Jacobi

$$\{\{A,B\},C\}+\{\{B,C\},A\}+\{\{C,A\},B\}=0.$$

Probar también que cumple la regla de Leibniz

$${A, BC} = {A, B} C + B {A, C}.$$

Pista: basta probar que, si $F: M \to \mathbb{R}$, entonces $X^F: \mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M)$ cumple la regla de Leibniz.

5. Simetrías y leyes de conservación

Definición 5.1. Sea M una variedad simpléctica y $H: M \to \mathbb{R}$ un hamiltoniano. Una función $F: M \to \mathbb{R}$ es una *integral primera* o *cantidad conservada* de H si

$$F(\varphi_t^H(x)) = F(x)$$

para todo $t \ge 0$ y para todo $x \in M$.

Ejercicio 5.2. Usar la ecuación de Liouville para probar que $F: M \to \mathbb{R}$ es una integral primera de H si y sólo si $\{H, F\} \equiv 0$.

Ejercicio 5.3. Usar la identidad de Jacobi para probar que si F_1 y F_2 son integrales primeras de H, entonces $\{F_1, F_2\}$ también es una integral primera de H.

Proposición 5.4 (Teorema de Noether). Si un hamiltoniano H es constante a lo largo de un flujo hamiltoniano φ^F , entonces F es una integral primera de H.

Demostración. Si H es constante a lo largo de φ^F entonces H es una integral primera de F, luego $\{F, H\} = 0$, pero, como el corchete de Poisson es antisimétrico, también $\{H, F\} = 0$, luego F es una integral primera de H.

Definición 5.5. Sean M es una variedad simpléctica, $H:M\to\mathbb{R}$ un hamiltoniano y G un grupo. Supongamos que Diff(M) denota el grupo de difeomorfismos de M. Una G-simetría de H es una acción

$$\varphi: G \longrightarrow \mathrm{Diff}(\mathrm{M})$$
$$g \longmapsto \varphi_g$$

tal que $H \circ \varphi_g = H$ para todo $g \in G$.

Supongamos que g_t denota un grupo diferenciable uniparamétrico que actúa mediante una g_t -simetría sobre una variedad simpléctica M con un hamiltoniano H, causando por tanto un flujo $\varphi_t = \varphi_{g_t}$ tal que $H \circ \varphi_t = H$. Supongamos que φ_t está generado por un hamiltoniano F, $\varphi_t = \varphi_t^F$. Entonces, por el teorema de Noether, F es una cantidad conservada de H.

Ejemplo 5.6 (Conservación del momento lineal).

Sea $\mathbf{u} = (u^1, \dots, u^n) \in \mathbb{R}^n$ y consideremos la *acción de traslaciones sobre* \mathbf{u}

$$\varphi: \mathbb{R} \times \mathbb{R}^{2n} \longrightarrow \mathbb{R}^{2n}$$
$$(t, (\mathbf{q}, \mathbf{p})) \longmapsto (\mathbf{q} + t\mathbf{u}, \mathbf{p}).$$

Supongamos un hamiltoniano H invariante bajo esta acción. Entonces ha de haber una integral primera F de H asociada a esta simetría; vamos a hallarla.

En primer lugar, busquemos el generador infinitesimal del flujo $\varphi_t(\mathbf{q}, \mathbf{p})$

$$X = \frac{d}{dt}\bigg|_{t=0} \varphi_t(\mathbf{q}, \mathbf{p}) = (\mathbf{u}, 0) = u^i \partial_{q_i}.$$

Ahora, busquemos F la función que genera este campo hamiltoniano

$$\mathrm{d}F = -i_X(\mathrm{d}p_i \wedge \mathrm{d}q^i) = (\mathrm{d}p_i \wedge \mathrm{d}q^i)(\bullet, u_i \partial_{q_i}) = u_i \mathrm{d}p_i = \mathrm{d}(u_i p_i) = \mathrm{d}(\mathbf{p} \cdot \mathbf{u}).$$

De modo que la integral primera asociada a la invariancia bajo traslaciones sobre \mathbf{u} es precisamente $\mathbf{p} \cdot \mathbf{u}$, el momento lineal en la dirección de \mathbf{u} .

Ejemplo 5.7 (Conservación del momento angular).

Consideremos el grupo de la circunferencia, que podemos realizar como el conjunto SO(2) de las rotaciones del plano y se puede representar matricialmente por

$$A_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}.$$

Tomemos ahora el espacio de fases $\mathbb{R}^4 = \mathbb{R}^2 \times \mathbb{R}^2$ de una partícula moviéndose en el plano y la *acción de rotaciones del plano*

$$\varphi: \mathbb{S}^1 \times \mathbb{R}^4 \longrightarrow \mathbb{R}^4$$
$$(\phi, (x, y, p_x, p_y)) \longmapsto (A_{\phi}(x, y), A_{\phi}(p_x, p_y)).$$

Compruébese que el generador infinitesimal de φ_{ϕ} vendrá dado por

$$X = \frac{d}{dt}\bigg|_{\phi=0} \varphi_{\phi}(x, y, p_x, p_y) = -y\partial_x + x\partial_y - p_y\partial_{p_x} + p_x\partial_{p_y}.$$

Ahora, la función F asociada a este campo hamiltoniano cumplirá

$$dF = -i_X(dp_x \wedge dx + dp_y \wedge dy) = -ydp_x + xdp_y + p_ydx - p_xdy.$$

Sea la función *momento angular* $L(x, y, p_x, p_y) = xp_y - yp_x$, entonces dL = dF. Por tanto, la cantidad conservada asociada a la invariancia bajo rotaciones del plano es el momento angular L.

Podemos hacer una formulación más general de la relación entre simetrías e integrales primeras. Para ello, consideremos un grupo de Lie G, con $\mathfrak g$ su álgebra de Lie $\mathfrak g^*$ el dual de su álgebra de Lie. Supongamos que G actúa sobre una variedad simpléctica M

$$\varphi: G \longrightarrow \mathrm{Diff}(M)$$
$$g \longmapsto \varphi_g.$$

Si $\xi \in \mathfrak{g}$ denota un elemento del álgebra de Lie, podemos considerar el grupo uniparamétrico que genera en G, $\exp(\xi t)$ y el flujo inducido por la acción $\varphi_t = \varphi_{\exp(\xi t)}$, cuyo generador infinitesimal

denotamos por ξ_M . Supongamos que existe una función $J:M\to \mathfrak{g}^*$ de manera que a cada $\xi\in\mathfrak{g}$ le podemos asociar una función

$$\hat{J}(\xi): M \longrightarrow \mathbb{R}$$
$$x \longmapsto J(x) \cdot \xi$$

tal que $d\hat{J}(\xi) = -i_{\xi_M}\omega$. Decimos entonces que J es la *aplicación momento* de la acción φ . Es sencillo entonces probar la siguiente generalización del teorema de Noether:

Proposición 5.8 (Teorema de Noether). $Si \varphi : G \to Diff(M)$ es una acción de un grupo de Lie G sobre una variedad simpléctica M tal que es una G-simetría de un hamiltoniano H, entonces la aplicación momento J asociada a φ es una integral primera de H.

Ejemplo 5.9 (Conservación del momento angular). Consideremos el grupo de rotaciones SO(3) actuando de forma simpléctica sobre el espacio de fases $\mathbb{R}^6 = \mathbb{R}^3 \times \mathbb{R}^3$ en la forma

$$SO(3) \times \mathbb{R}^6 \longrightarrow \mathbb{R}^6$$

 $(R, (\mathbf{q}, \mathbf{p})) \longmapsto (R\mathbf{q}, R\mathbf{p}).$

Los elementos de su álgebra de Lie $\mathfrak{so}(3)$ son los generadores infinitesimales de las rotaciones, que pueden asociarse con operadores de la forma $J_{\mathbf{u}} = \mathbf{u} \times \bullet$, con $\mathbf{u} \in \mathbb{R}^3$ un vector cuya dirección es la del eje de la rotación y su norma la velocidad angular del giro. Así, a cada $J_{\mathbf{u}} \in \mathfrak{so}(3)$ podemos asociarle el campo en \mathbb{R}^6 de la forma $\mathbf{u}_{\mathbb{R}^6} = (\mathbf{u} \times \mathbf{q}, \mathbf{u} \times \mathbf{p})$, que en coordenadas se escribe

$$\mathbf{u}_{\mathbb{R}^6} = \epsilon_{ijk} u_k (q_i \partial_{q_j} + p_i \partial_{p_j}).$$

Ahora, consideramos el momento angular $\mathbf{L}(\mathbf{q}, \mathbf{p}) = \mathbf{q} \times \mathbf{p}$, que en coordenadas se expresa $L_k(q_i, p_j) = \epsilon_{ijk} q_i p_j$, de modo que $\mathbf{L} \cdot \mathbf{u} = \epsilon_{ijk} u_k q_i p_j$ y

$$d(\mathbf{L} \cdot \mathbf{u}) = \epsilon_{ijk} u_k (q_i dp_j + p_j dq_i) = \epsilon_{ijk} u_k (q_i dp_j - p_i dq_j) = -i_{\mathbf{u}_{n6}} \omega.$$

Por tanto, si consideramos la aplicación $L: \mathbb{R}^6 \to \mathfrak{so}(3)^*$ que a cada (\mathbf{q}, \mathbf{p}) le asigna

$$L(\mathbf{q}, \mathbf{p}) : \mathfrak{so}(3) \longrightarrow \mathbb{R}$$

$$J_{\mathbf{u}} \longmapsto \mathbf{L}(\mathbf{q}, \mathbf{p}) \cdot \mathbf{u},$$

tenemos que L es una aplicación momento de la acción de SO(3). Por el teorema de Noether, si consideramos un hamiltoniano H en \mathbb{R}^6 que sea invariante bajo rotaciones, tenemos que la aplicación momento L es una integral primera del sistema hamiltoniano dado por H. Como consecuencia, el momento angular L es una cantidad conservada del sistema.

REFERENCIAS

- [1] V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag, 1989.
- [2] Michael Spivak. *Physics for Mathematicians: Mechanics I.* Publish or Perish, 2010.