1.	(20 p only:	points) Short answer questions. No explanation of answers needed for this problem. Be sure to explain your answers and show your work on all other problems!
	(a) '	True or False: If A , B , and X are invertible matrices such that $XA = B$, then $X = A^{-1}B$.
		False. X=BA
	. ,	True or False: If A is a square matrix whose columns add up to the zero vector, then A is invertible.
		False. this means the columns are L.D. SO A has no inverse.
	(c)	True or False: If A is an invertible matrix, then A and A^T have the same null space.
	(d)	True or False: If A is a 3×5 matrix such that $(row(A))^{\perp} = \mathbb{R}^{5}$, then A must be
		the zero matrix. $P_{-}^{5} = (1014)(4)^{1} = 1000$
		the zero matrix. $R^{5} = (vow(A))^{\perp} = headAthirt Restart $ $= nvll(A) = brunary$ $= nvll(A) = brunary$
		True or False: If an $n \times n$ matrix has n distinct eigenvalues, then it must be diagonalizable.
		True. main theorem about diagonaliz
		True or False: The transformation $T: \mathbb{R}^5 \to \mathbb{R}^5$ defined by $T(\vec{x}) = -\vec{x}$ is a linear transformation.
		True. check properties.
		True or false: The transformation $T: \mathbb{R}^4 \to \mathbb{R}^1$ defined by $T(\vec{x}) = \vec{x} $ is a linear transformation.
		False $T(-2x) = -2x = 2 x $
	(h)	If A is a 3×5 matrix, what are the possible values of nullity(A)? $\neq -2 \top (X)$
	3 /	rank+nullity=3 so nullity=0,1,2,3
	(i)	Let $\vec{a_1}$, $\vec{a_2}$, $\vec{a_3}$ be linearly independent vectors in \mathbb{R}^7 , and let $A = [\vec{a_1} \ \vec{a_2} \ \vec{a_3}]$. What are the possible values for the rank of A ?
		rank A = 3 (a, a, a, a, L. I).
	(j)	Let S be a subspace of \mathbb{R}^n , and let \vec{v} and \vec{u} be vectors in \mathbb{R}^n . If $\text{proj}_S \vec{v} = \vec{u}$, what is $\text{proj}_S \vec{u}$?
		u is in S so projs u = u.

2.
$$(20=6+2+8+4 \text{ points})$$
 Let $A = \begin{bmatrix} -5 & -6 & 3 \\ 3 & 4 & -3 \\ 0 & 0 & -2 \end{bmatrix}$.

(a) Compute the characteristic polynomial of A.

(b) Find all of the eigenvalues of A.

eigenvalues:
$$\lambda = -2$$
, $l = mult. 1$

(c) Find a basis for each of the eigenspaces of A.

$$\lambda = -2:$$
A + 2I = $\begin{bmatrix} 3 & -6 & 3 \\ 3 & 6 & -3 \\ 0 & 0 & 0 \end{bmatrix}$

eigenspace: $\begin{cases} s, \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{cases}$

basis: $\begin{cases} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{bmatrix}$

eigenspace: $\begin{cases} s, \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{bmatrix}$

eigenspace: $\begin{cases} s, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{bmatrix}$

basis: $\begin{cases} \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{bmatrix}$

eigenspace: $\begin{cases} s, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0$

(d) Is A diagonalizable? If yes, find P and D; if not, explain why.

Yes,
$$P = \begin{bmatrix} -2 & 1 & -1 \\ 1 & 0 & 0 \end{bmatrix}$$
, $D = \begin{bmatrix} -20 & 0 \\ 0 & -20 \end{bmatrix}$.

3.
$$(9=4+5 \text{ points})$$
 Let $\vec{x} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$ and $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$. $\widehat{\mathcal{U}}_{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \widehat{\mathcal{U}}_{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

(a) Find the coordinate vector $[\vec{x}]_{\mathcal{B}}$ of \vec{x} with respect to \mathcal{B} .

$$\overline{X}_{B} = U^{-1}\overline{X}$$

$$\overline{X}_{B} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -4 \end{bmatrix} = \begin{bmatrix} 7 \\ -4 \end{bmatrix}_{B}$$

$$U = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$U' = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

(b) Assume that $\mathcal C$ is another basis for $\mathbb R^2$, and that the change of basis matrix from $\mathcal C$

to
$$\mathcal{B}$$
 is $\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$. Find the coordinate vector $[\vec{x}]_{\mathcal{C}}$ of \vec{x} with respect to \mathcal{C} .

So $\vec{X}_{\mathcal{C}} = \left(\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}\right)^{-1} \vec{X}_{\mathcal{B}} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 7 \\ -4 \end{bmatrix} = \begin{bmatrix} 7 \\ 3 \end{bmatrix}_{\mathcal{C}}$

4. (6 points) Find a basis for W^{\perp} if

$$W = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}. \quad \tilde{V}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \tilde{V}_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$W = \left\{ \begin{bmatrix} \tilde{U} \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}. \quad \tilde{V}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \tilde{V}_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{2} = \tilde{V}_{1} - \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{2} = \tilde{V}_{1} - \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{2} = \tilde{V}_{1} - \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{2} = \tilde{V}_{1} - \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{2} = \tilde{V}_{1} - \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{2} = \tilde{V}_{1} - \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{2} = \tilde{V}_{1} - \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{2} = \tilde{V}_{1} - \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{1} = \tilde{V}_{1} + \tilde{V}_{2} + \tilde{V}_{3} + \tilde{V}_{4} = 0$$

$$\tilde{U} \cdot \tilde{V}_{$$

5. (5 points) Find the coordinate vector
$$[\vec{v}]_{\mathcal{B}}$$
 of $\vec{v} = \begin{bmatrix} 7 \\ -3 \\ 2 \end{bmatrix}$ with respect to *orthogonal* basis

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} -1\\2\\1 \end{bmatrix} \right\} \text{ of } \mathbb{R}^3. \qquad \overline{u}_1 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \overline{u}_2 = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \overline{u}_3 = \begin{bmatrix} -1\\2\\1 \end{bmatrix}$$

orthogonal basis =

$$V = C_1 u_1 + C_2 u_2 + C_3 u_3$$
 $C = V - u_1 - 9$

$$C_2 = \sqrt{-u_2} - \frac{2}{3}$$

$$C_1 = \frac{\nabla \cdot u_1}{\|u_1\|^2} = \frac{9}{2}$$
 $C_3 = \frac{\nabla \cdot u_3}{\|u_3\|^2} = \frac{-11}{6}$

$$\begin{bmatrix} \nabla_{\mathcal{B}} = \begin{bmatrix} 9/2 \\ 2/3 \\ -11/6 \end{bmatrix}_{\mathcal{B}}.$$

6. (5 points) Compute det A^5 if $A = PDP^{-1}$, where

$$P = \begin{bmatrix} 3 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & -1 & -1 \end{bmatrix} \text{ and } D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}.$$

$$D^{5} = \begin{bmatrix} 3^{5} & 0 & 0 \\ 0 & 2^{5} & 0 \\ 0 & 0 & (-2)^{5} \end{bmatrix}$$

$$D^{5} = \begin{bmatrix} 3^{5} & 0 & 0 \\ 0 & 2^{5} & 0 \\ 0 & 0 & (-2)^{5} \end{bmatrix} \qquad \det(D^{5}) \neq \begin{bmatrix} 3^{5} \cdot 2^{5} \cdot (-2)^{5} \end{bmatrix}$$

7. (5 points) Show that if λ is an eigenvalue of an $n \times n$ matrix C, then λ^3 is an eigenvalue of C^3 .

But
$$C^3 - \lambda^3 I = (C - \lambda I)(C^2 + \lambda C + \lambda^2 I)$$

So
$$dl+(((3-3)^3I) = dl+((-\lambda I) dl+(((2+\lambda(+\lambda^2I))$$

50
$$det(C^3 - \chi^3 I) = 0$$
 so χ^3 is an eval. of C^3 .

8. (5 points) Explain why a square matrix that has two equal rows, must have 0 as one of its eigenvalues.

9. (5 points) Let A and B be 3×4 matrices. Show that $W = \{\vec{x} \in \mathbb{R}^4 : (A\vec{x} = B\vec{x})\}$ is a subspace of \mathbb{R}^4 .

$$A\bar{u} + A\bar{v} = B\bar{u} + B\bar{v}$$

$$A(\bar{u} + \bar{v}) = B(\bar{u} + \bar{v})$$

then
$$vAU = rBU$$

$$A(vU) = B(vU)$$