第四章 向量空间

- 4.1 向量的定义及运算
- 4.2 向量组的线性相关性
- 4.3 向量组的极大线性无关组和秩
- 4.4 子空间
- 4.5 基和维数
- 4.6 矩阵的秩
- 4.7 线性方程组有解的条件及解的结构

第四章 向量空间

第二节 矩阵的铁

矩阵秩的概念为Sylvester于1861年引进

一、矩阵的 k 阶子式及秩的定义

定义 在 $m \times n$ 矩阵A 中,任取k行k列,位于这些行和列交叉处的 k^2 个元素,按它们在A中的顺序构成的一个k 阶行列式,称为矩阵A的一个k 阶子式.

提醒 若 A 所有的 r 阶子式为零,则 A 的所有比 r 更高阶的子式 (若存在) 必等于零! 故 A 的非零子式的最高阶数必存在,这 就是矩阵的秩.

定义 矩阵 A 的非零子式的最高阶数 r 称为矩阵 A 的秩,记为 r(A) = rank(A) = r.

规定 零矩阵的秩为零,即 $\mathbf{r}(O) = 0$.

提醒 若A有一个r阶子式不为零,则 $\mathbf{r}(A) \geq r$. 若A的所有r阶子式全为零,则 $\mathbf{r}(A) < r$.

提醒 若A为m×n矩阵,则

$$\begin{cases} \operatorname{rank}(A) \le m \\ \operatorname{rank}(A) \le n \end{cases} \Rightarrow \operatorname{rank}(A) \le \min\{m, n\}.$$

若阶梯形矩阵 A 有 r 行非零,则 A 的所有比 r 更高阶的子式(若存在,有零行)都为零,从而

$$\operatorname{rank}(A) \leq r;$$

选取 A 的主元所在的行与列,可得到一个 r 阶子式不为零,从而

$$\operatorname{rank}(A) \geq r;$$

于是有 rank(A) = r.

令题 阶梯形矩阵的秩即其非零行行数,或主元 个数,或主元列数。

二、矩阵的行秩及列秩

- 问题 对一般矩阵而言,行向量组有秩,列向量组有秩,本身有秩,这些秩有关系吗? 另外,由定义求秩很麻烦,有更好的求 秩方法吗?
- 定义 矩阵 A 的行空间、列空间的维数分别称 为 A 的行秩row rank、列秩 column rank.
- 提醒 矩阵 A的行秩即 A的行向量组的秩, 矩阵 A的列秩即 A的列向量组的秩。

例题 求矩阵 $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ 的秩、行秩和列秩。

解答 A有二阶子式 $\begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} \neq 0$, 没有三阶子式, 故 $\operatorname{rank}(A) = 2$;

A的两个行向量线性无关,A的行秩 = 2; A的第 1,2 个列向量线性无关,而三个二维列向量线性相关,故A的列秩 = 2.

问题 就以上矩阵而言,我们有 rank(A) = A的列秩 = A的行秩 对任意矩阵,该结论是否成立?

引理1 对任意矩阵 A,有

A的列秩 = A的行秩.

证明 A 的列秩是 A的主元列的数目,或者说是 A的行最简形矩阵 B 中主元的数目.

又 B 的每个主元对应一个非零行,这些行形成 A 的行空间的基,因此 A 的行秩也是 B 的主元数目.

从而,A的列秩 = A的行秩.

引理2 对任意矩阵 A,有

A的列秩 = $\mathbf{r}(A)$

证明 设 $A = (\alpha_1, \alpha_2, \dots, \alpha_n), r(A) = s, A$ 的列秩 = t.

一方面,因A的列秩 = t, 不妨设A的前t列 $\alpha_1, \alpha_2, \dots, \alpha_t$ 为A的一个列极大无关组,并令 $B = (\alpha_1, \alpha_2, \dots, \alpha_t).$

由引理1知, B的行秩 = B的列秩 = t.

因 B 的行极大无关组构成 A 的一个 t 阶非零子式, 故 $\operatorname{rank}(A) = s \ge t$.

另一方面,因 r(A) = s,则 A 有 s 阶非零子式,该子式的 s 列线性无关,且可增维为 A 中的 s 个列向量,则 A 中的这 s 个列向量线性无关,从而,有 A 的列秩 $= t \geq s = r(A)$.

综上,

 $rank(A) = s \ge t$, A 的列秩 $= t \ge s = rank(A)$.

A的列秩 $= t \ge s = \operatorname{rank}(A)$.

从而有

A的列秩 = rank(A).

定理 对任意矩阵 A,有

$$rank(A) = A$$
的列秩 = A的行秩. $dim(ColA) = dim(RowA) = rank(A)$.

推论1 对任意矩阵 A, 有

$$\operatorname{rank}(A) = \operatorname{rank}(A^T).$$

rank(A) = A 的列秩 = A^T 的行秩 = $rank(A^T)$.

推论2 初等变换不改变矩阵的秩.

矩阵秋的求法 将矩阵用初等行变换化为阶梯形矩阵,则阶梯形矩阵中非零行的 行数或主元列数或主元个数,就是原矩阵的秩.

推论3 对任意非零矩阵 A 而言,有:

$$\mathbf{r}(A) = r \Leftrightarrow A \cong \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}.$$

推论4 设A, B均为 $m \times n$ 矩阵,P为 m阶可逆矩阵, Q为 n 阶可逆矩阵,则

- (1) $A \cong B \Leftrightarrow \operatorname{rank}(A) = \operatorname{rank}(B)$.
- (2) r(A) = r(PA) = r(AQ) = r(PAQ).

三、矩阵秩的一些重要结论

秩定理 若矩阵 A 的列数为 n, 则

 $rank(A) + \dim(NulA) = n.$

证明 矩阵A的主元列构成 ColA 的基,故r(A) 即为A的主元列数.

而 NulA 的维数等于方程组 AX = O 中自由变量的个数,即 A 非主元列数。

故 $\operatorname{rank}(A) + \operatorname{dim}(\operatorname{Nul}A)$

- = A的主元列数 +A的非主元列数
- = A的总列数 = n.

定理 设 A, B 分别为 $m \times n, n \times s$ 矩阵,则 $\operatorname{rank}(AB) \leq \min \left\{ \operatorname{rank}(A), \operatorname{rank}(B) \right\}.$

证明 因 AB 的行向量组能由 B 的行向量组线性表示,故 AB 的行向量组的秩 $\leq B$ 的行向量组的秩,即 AB的行秩 $\leq B$ 的行秩,故 $r(AB) \leq r(B)$.

从而有

$$r(AB) = r((AB)^T) = r(B^T A^T) \le r(A^T) = r(A).$$

因此 $r(AB) \leq \min\{r(A), r(B)\}.$

定义 称列秩与列数相等的矩阵为列满秩矩阵; 称行秩与行数相等的矩阵为行满秩矩阵; 称既行满秩,又列满秩的矩阵为满秩矩阵。

提醒 行满秩矩阵即行向量组线性无关的矩阵; 列满秩矩阵即列向量组线性无关的矩阵; 满秩矩阵 即 可逆矩阵 即 非奇异矩阵. 推论 设 A, B 分别为 $s \times n, n \times s$ 矩阵. 若 n < s, 则行列式 |AB| = 0.

证明 $r(AB) \le r(A) \le \min\{n, s\} = n < s$ \Rightarrow 方阵 AB 不满秩 $\Rightarrow |AB| = 0$.

问题 设 A, B 分别为 $s \times n, n \times s$ 矩阵且 $n \neq s$. 试问: $|AB| \times |BA| = ?$

关于矩阵的秩的一些重要结论

结论1
$$\operatorname{r}(A \pm B) \leq \operatorname{r}(A) + \operatorname{r}(B)$$

结论2
$$\operatorname{r}(A,B) \leq \operatorname{r}(A) + \operatorname{r}(B)$$

结论3
$$C = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \Rightarrow r(C) = r(A) + r(B)$$

结论4
$$C = \begin{bmatrix} A & * \\ 0 & B \end{bmatrix} \Rightarrow r(C) \ge r(A) + r(B)$$

结论5
$$r(AA^T) = r(A^TA) = r(A)$$

结论5 $\operatorname{r}(AA^{T}) = \operatorname{r}(A^{T}A) = \operatorname{r}(A)$

不妨设A为 $m \times n$ 矩阵.

若
$$X$$
 使得 $AX = 0 \Rightarrow X$ 使得 $A^TAX = 0$;

若
$$X$$
使得 $A^TAX = 0 \Rightarrow X$ 使得 $X^TA^TAX = 0$

$$\Rightarrow X \notin \{(AX)^T (AX) = 0 \Rightarrow X \notin \{(AX)^T (AX) = 0\}$$

线性方程组
$$AX = 0$$
 与 $A^T AX = 0$ 同解

$$\Rightarrow \text{Nul}(A) = \text{Nul}(A^T A)$$

$$\Rightarrow$$
 (由秩定理) $\operatorname{rank}(A) = \operatorname{rank}(A^T A)$

$$\Rightarrow \operatorname{rank}(A^T) = \operatorname{rank}(AA^T)$$

$$\Rightarrow \operatorname{rank}(A) = \operatorname{rank}(AA^T) = \operatorname{rank}(A^TA).$$

$$AA^T = 0 \Leftrightarrow A = 0 \Leftrightarrow A^TA = 0$$

Frobenius不等式1961年

定理 设 A, B, C 分别为 $s \times n, n \times t, t \times k$ 矩阵,则 $r(ABC) \ge r(AB) + r(BC) - r(B)$

证明 令
$$P = \begin{bmatrix} E & A \\ O & E \end{bmatrix}, Q = \begin{bmatrix} E & O \\ -C & E \end{bmatrix},$$

$$M = \begin{bmatrix} ABC & O \\ O & B \end{bmatrix}, N = \begin{bmatrix} O & AB \\ -BC & B \end{bmatrix}.$$

经计算知 PMQ = N, 又矩阵 P,Q可逆,故 $r(ABC) + r(B) = r(M) = r(N) \ge r(AB) + r(BC)$, 从而有 $r(ABC) \ge r(AB) + r(BC) - r(B)$.

Sylvester定律1884年

在Frobenius不等式中换B为单位阵,换C为 B,得Sylvester定律。

推论 设A,B分别为 $s \times n, n \times t$ 矩阵,则 $r(AB) \ge r(A) + r(B) - n.$

特别地,若还有 AB = O,则 $r(A) + r(B) \le n$.

推论 设 A, B 分别为 $s \times n, n \times t$ 矩阵, 满足 AB = O, r(A) = n, 则 B = O.

例题 设 A是 $s \times n$ 矩阵且 $\mathbf{r}(A) = n$. 若矩阵B, C 满足 AB = AC, 则 B = C.

创题 设n阶矩阵A满足 $A^2-3A-10E=0$.

证明: $\operatorname{rank}(A - 5E) + \operatorname{rank}(A + 2E) = n$.

证明
$$A^2 - 3A - 10E = 0 \Rightarrow (A - 5E)(A + 2E) = 0$$

 $\Rightarrow r(A - 5E) + r(A + 2E) \le n;$
 $r(A - 5E) + r(A + 2E)$
 $\geq r((A - 5E) - (A + 2E)) = r(-7E) = n;$

于是 $\operatorname{rank}(A - 5E) + \operatorname{rank}(A + 2E) = n$.

例题 设A*是 $n(n \ge 2)$ 阶矩阵A 的伴随矩阵.

证明:
$$r(A^*) = \begin{cases} n, & r(A) = n; \\ 1, & r(A) = n - 1; \\ 0, & r(A) < n - 1. \end{cases}$$

- 证明 (1) $\mathbf{r}(A) = n \Rightarrow |A| \neq 0 \Rightarrow |A^*| = |A|^{n-1} \neq 0$ $\Rightarrow \mathbf{r}(A^*) = n.$

- (3) $\mathbf{r}(A) < n 1 \Rightarrow A$ 的所有n 1阶子式全为零 $\Rightarrow A$ 的所有元素的余子式全为零 $\Rightarrow A^*$ 所有元素 $A_{ij} = 0 \Rightarrow A^* = 0 \Rightarrow \mathbf{r}(A^*) = 0$.

$$(1) \operatorname{rank}(A^*) = n \Longrightarrow \operatorname{rank}(A) = n$$

(2)
$$\operatorname{rank}(A^*) = 1 \Longrightarrow \operatorname{rank}(A) = n - 1$$

(3)
$$\operatorname{rank}(A^*) = 0 \Longrightarrow \operatorname{rank}(A) < n - 1$$

四、课堂练习

1. 设A为 $n \times n$ 矩阵,证明:

$$r(A) + r(A + E) \ge n.$$

提示
$$E = A + E - A$$

$$\Rightarrow n = r(E) = r(A + E - A)$$

$$\leq r(A + E) + r(A)$$

$$\Rightarrow r(A) + r(A + E) \geq n.$$

- 设 A, B 均为 n×n 非零矩阵且 AB = 0, 则以下关于 r(A), r(B) 的说法, 正确的是().
 - ① 必有一个等于零
 - ②都小于 n
 - ③ 一个小于 n,一个等于 n
 - ④ 都等于 n

正确答案 2

3. 设矩阵
$$A = \begin{bmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k \end{bmatrix}$$
且 $\mathbf{r}(A) = 3$,则 $k = ($).

4. 设A, B均为 $n \times n$ 矩阵且 $A^2 - AB = E$,

 $\text{III} \operatorname{rank} (AB - BA - A) = ().$

5. 设 $n \times n$ 矩阵A 满足 $A^2 = A$, 证明

$$r(A) + r(A - E) = n$$

提示
$$A^2 = A \Rightarrow A (A - E) = 0$$

 $\Rightarrow 0 = r (A (A - E)) \ge r (A) + r (A - E) - n$
 $\Rightarrow r (A) + r (A - E) \le n \cdots \langle 1 \rangle$
 $E = A + E - A$
 $\Rightarrow n = r (A + E - A) \le r (A) + r (E - A)$
 $\Rightarrow r (A) + r (A - E) \ge n \cdots \langle 2 \rangle$
 $\langle 1 \rangle \langle 2 \rangle \Rightarrow r (A) + r (A - E) = n$