

Triangles and Its Angles Ex 9.2 Q11 Answer:

In the given problem, AE bisects $\angle CAD$ and $\angle B = \angle C$

As, $\angle CAD$ is bisected by AE

 $\angle CAD = 2 \angle CAE = 2 \angle DAE$ (1)

Now, using the property, "an exterior angle of a triangle in equal to the sum of the two opposite interior angles", we get,

 $\angle CAD = \angle B + \angle C$

 $\angle CAD = 2\angle C(\angle B = \angle C)$

 $2\angle CAE = 2\angle C$ (using 1)

 $\angle CAE = \angle C$

 $\angle CAE = \angle ACB$

Hence, using the property, if alternate interior angles are equal, then the two lines are parallel, we get,

 $\angle CAE = \angle ACB$

Thus, $AE \parallel BC$

Hence proved.

Triangles and Its Angles Ex 9.2 Q12

Answer:

In the given problem, $AB \parallel DE$

We need to find $\angle ACD$

Now, $AB \parallel DE$ and AE is the transversal, so using the property, "alternate interior angles are equal", we get,

 $\angle BAE = \angle AED$

 $\angle AED = 30^{\circ}$

Further, applying angle sum property of the triangle

In ΔDCE

$$\angle DCE + \angle D + \angle E = 180^{\circ}$$

 $\angle DCE + 40^{\circ} + 30^{\circ} = 180^{\circ}$
 $\angle DCE + 70^{\circ} = 180^{\circ}$
 $\angle DCE = 180^{\circ} - 70^{\circ}$
 $\angle DCE = 110^{\circ}$
Further, ACE is a straight line, so using the property, "the angles forming a

Further, ACE is a straight line, so using the property, "the angles forming a linear pair are supplementary", we get,

$$\angle ACD + \angle DCE = 180^{\circ}$$

 $\angle ACD + 110^{\circ} = 180^{\circ}$
 $\angle ACD = 180^{\circ} - 110^{\circ}$
 $\angle ACD = 70^{\circ}$
Therefore $\angle ACD = 70^{\circ}$

Therefore, $\angle ACD = 70^{\circ}$

******* END *******