1

IT 179 6 Big-O Notation and Algorithm Efficiency

How many times will the body of this loop execute?

```
final int n = 100;
int[] T = new int[n];
for (int i = 0; i < n; i ++ ) {
         T[i] = i;
         System.out.println(T[i]);
}</pre>
```

n/2 times

n times

n + 1 times

2n times

n^2 (n square) times

The of number of times the body of this loop is executed is proportional to:

```
final int n = 100;
int[] T = new int[n];
for (int i = 0; i < n; i ++ ) {
        T[i] = i;
        System.out.println(T[i]);
}</pre>
```

n^2 n^3 Sqrt(n) None of the above

Big-O

□ The algorithm runs in O(n)

Algorithm Efficiency and Big-O

 Getting a precise measure of the performance of an algorithm is difficult

Big-O notation expresses the performance of an algorithm as a function of the number of items to be processed

This permits algorithms to be compared for efficiency

Linear Growth Rate

If processing time increases in proportion to the number of inputs n, the algorithm grows at a linear rate

```
public static int search(int[] x, int target) {
  for(int i=0; i<x.length; i++) {
    if (x[i]==target)
      return i;
  }
  return -1; // target not found
}</pre>
```

Linear Growth Rate (cont.)

If processing time increases in proportion to the number of inputs n, the algorithm grows at a linear rate

```
public static int search(int[] x, int target) {
  for(int i=0; i<x.length; i++) {
    if (x[i]==target)
      return i;
  }
  return -1; // target not found
}</pre>

    int target)
    int target)
    if the target
    for loop with
      x.length
      loop will exe
      x.length
      Therefore, the
    is directly presented.
```

- If the target is not present, the for loop will execute
 x.length times
- If the target is present the for loop will execute (on average) x.length/2
- Therefore, the total execution time is directly proportional to x.length
- This is described as a growth rate of order n or O(n)

n x m Growth Rate

Processing time can be dependent on two different inputs.

```
public static boolean areDifferent(int[] x, int[] y) {
  for(int i=0; i<x.length; i++) {
    if (search(y, x[i]) != -1)
      return false;
  }
  return true;
}</pre>
```

n x m Growth Rate (cont.)

 Processing time can be dependent on two different inputs.

```
public static boolean areDifferent(int[] x, int[] y) {
  for (int i=0; i < x.length; i++) {
    if (search(y, x[i]) != -1)
      return false;
  return true;
```

- The for loop will execute x.length times
- But it will call search, which will execute y.length times
- The total execution time is proportional to (x.length * y.length)
- The growth rate has an order of $n \times m$ or $O(n \times m)$

Quadratic Growth Rate

If processing time is proportional to the square of the number of inputs n, the algorithm grows at a quadratic rate

```
public static boolean areUnique(int[] x) {
  for(int i=0; i<x.length; i++) {
    for(int j=0; j<x.length; j++) {
      if (i != j && x[i] == x[j])
        return false;
    }
  }
  return true;
}</pre>
```

Quadratic Growth Rate (cont.)

If processing time is proportional to the square of the number of inputs n, the algorithm grows at a quadratic rate

```
public static boolean areUnique(int[] x) {
   for(int i=0; i<x.length; i++) {
     for(int j=0; j<x.length; j++) {
      if (i != j && x[i] == x[j])
        return false;
   }
   return true;
}</pre>
```

- The for loop with i as index will execute x.length times
- The for loop with j as index will execute x.length times
- The total number of times the inner loop will execute is (x.length)²
- The growth rate has an order of n² or O(n²)

Big-O Notation

- The O() in the previous examples can be thought of as an abbreviation of "order of magnitude"
- A simple way to determine the big-O notation of an algorithm is to look at the loops and to see whether the loops are nested
- Assuming a loop body consists only of simple statements,
 - a single loop is O(n)
 - a pair of nested loops is O(n²)
 - \square a nested pair of loops inside another is $O(n^3)$
 - □ and so on . . .

This code runs in O(?)

Big-O Notation (cont.)

You must also examine the number of times a loop is executed

```
for(i=1; i < x.length; i *= 2) {
    // Do something with x[i]
}</pre>
```

□ The loop body will execute k-1 times, with i having the following values:

1, 2, 4, 8, 16, ...,
$$2^k$$
 until 2^k is greater than x.length

- Since $2^{k-1} = x$.length $< 2^k$ and $\log_2 2^k$ is k, we know that $k-1 = \log_2(x$.length) < k
- \square Thus we say the loop is $O(\log n)$ (in analyzing algorithms, we use logarithms to the base 2)
- Logarithmic functions grow slowly as the number of data items n increases

This code runs in O(?)

```
int n = 1000;
int[] M = new int[n];
int i = 1;
while (i < n)
{
    M[i] = 0;
    System.out.println("M[" + i + "] = " + M[i]);
    i = i * 2;
}
```

Formal Definition of Big-O

Consider the following program structure:

```
for (int i = 0; i < n; i++) {
  for (int j = 0; j < n; j++) {
      Simple Statement
for (int i = 0; i < n; i++) {
    Simple Statement 1
   Simple Statement 2
   Simple Statement 3
   Simple Statement 4
   Simple Statement 5
Simple Statement 6
Simple Statement 7
Simple Statement 30
```

Consider the following program structure:

```
for (int i = 0; i < n; i++) {
  for (int j = 0; j < n; j++) {
      Simple Statement
for (int i = 0; i < n; i++) {
    Simple Statement 1
   Simple Statement 2
   Simple Statement 3
   Simple Statement 4
   Simple Statement 5
Simple Statement 6
Simple Statement 7
Simple Statement 30
```

This nested loop executes a Simple Statement n² times

Consider the following program structure:

Simple Statement 30

```
for (int i = 0; i < n; i++) {
  for (int j = 0; j < n; j++) {
      Simple Statement
for (int i = 0; i < n; i++) {
    Simple Statement 1
   Simple Statement 2
   Simple Statement 3
   Simple Statement 4
   Simple Statement 5
Simple Statement 6
Simple Statement 7
```

This loop executes 5
Simple Statements n times
(5n)

Consider the following program structure:

Simple Statement 30

```
for (int i = 0; i < n; i++) {
  for (int j = 0; j < n; j++) {
      Simple Statement
for (int i = 0; i < n; i++) {
    Simple Statement 1
   Simple Statement 2
   Simple Statement 3
   Simple Statement 4
   Simple Statement 5
Simple Statement 6
Simple Statement 7
```

Finally, 25 Simple
Statements are executed

Consider the following program structure:

```
for (int i = 0; i < n; i++) {
  for (int j = 0; j < n; j++) {
      Simple Statement
for (int i = 0; i < n; i++) {
    Simple Statement 1
    Simple Statement 2
   Simple Statement 3
   Simple Statement 4
   Simple Statement 5
Simple Statement 6
Simple Statement 7
Simple Statement 30
```

We can conclude that the relationship between processing time and *n* (the number of data items processed) is:

$$T(n) = n^2 + 5n + 25$$

 \square In terms of T(n),

$$\mathsf{T}(n) = \mathsf{O}(\mathsf{f}(n))$$

- There exists
 - \blacksquare two constants, n_0 and c, greater than zero, and
 - \square a function, f(n),
- \square such that for all $n > n_0$, cf(n) = T(n)
- □ In other words, as n gets sufficiently large (larger than n_0), there is some constant c for which the processing time will always be less than or equal to cf(n)
- \Box cf(n) is an upper bound on performance

- The growth rate of f(n) will be determined by the fastest growing term, which is the one with the largest exponent
- In the example, an algorithm of

$$O(n^2 + 5n + 25)$$

is more simply expressed as

$$O(n^2)$$

 In general, it is safe to ignore all constants and to drop the lower-order terms when determining the order of magnitude

Big-O Example 1 (cont.)

Big-O Example 2

Consider the following loop

```
for (int i = 1; i < n; i++) {
   for (int j = 0; j < i; j++) {
      3 simple statements
   }
}</pre>
```

- \Box T(n) = 3(n-1) + 3 (n-2) + ... + 3
- \square Factoring out the 3,

$$3(n-1+n-2+n+...+1)$$

$$\square 1 + 2 + ... + n - 1 = (n \times (n-1))/2$$

Big-O Example 2 (cont.)

- □ Therefore $T(n) = 1.5n^2 1.5n$
- \square When n=0, the polynomial has the value 0
- □ For values of n > 1, $1.5n^2 > 1.5n^2 1.5n$
- □ Therefore T(n) is $O(n^2)$ when n_0 is 1 and c is 1.5

Big-O Example 2 (cont.)

Symbols Used in Quantifying Performance

Symbol	Meaning
T(n)	The time that a method or program takes as a function of the number of inputs, n . We may not be able to measure or determine this exactly.
f(n)	Any function of n . Generally, $f(n)$ will represent a simpler function than $T(n)$, for example, n^2 rather than $1.5n^2 - 1.5n$.
O (f(<i>n</i>))	Order of magnitude. $O(f(n))$ is the set of functions that grow no faster than $f(n)$. We say that $T(n) = O(f(n))$ to indicate that the growth of $T(n)$ is bounded by the growth of $f(n)$.

Common Growth Rates

Big-O	Name	
O(1)	Constant	
$O(\log n)$	Logarithmic	
O(n)	Linear	
$O(n \log n)$	Log-linear	
$O(n^2)$	Quadratic	
$O(n^3)$	Cubic	
$O(2^n)$	Exponential	
O(n!)	Factorial	

This runs in O(?)

Different Growth Rates

Power of $O(\log n)$ Algorithm

- Searching an array with linear search (O(n))
 requires checking each element to see if it matches
 the search target
- With an O(log n) algorithm, number of elements is
 cut in half with each probe into the array
- For 1024 elements in an array need to search all
 1024, then 512, 256, 128, 64, 32, 16, 8, 4, 2, 1
- Only 10 probes are required to find the target or determine it is not in the array

Algorithms with Exponential and Factorial Growth Rates

- Algorithms with exponential and factorial growth rates have an effective practical limit on the size of the problem they can be used to solve
- □ With an $O(2^n)$ algorithm, if 100 inputs takes an hour then,
 - 101 inputs will take 2 hours
 - 105 inputs will take 32 hours
 - 114 inputs will take 16,384 hours (almost 2 years!)

Algorithms with Exponential and Factorial Growth Rates (cont.)

- Encryption algorithms take advantage of this characteristic
- □ Some cryptographic algorithms can be broken in $O(2^n)$ time, where n is the number of bits in the key
- A key length of 40 is considered breakable by a modern computer,
- But a key length of 100 bits will take a billionbillion (10¹⁸) times longer than a key length of 40 bits

What is the time complexity of this code?

```
public static void main(String[] args)
   int a = 0, b = 0;
   int N = 4, M = 4;
   // This loop runs for N time
   for (int i = 0; i < N; i++)
    a = a + 10;
   // This loop runs for M time
   for (int i = 0; i < M; i++)
    b = b + 40;
   System.out.print(a + " " + b);
```