# **Dysprosium**

From Wikipedia, the free encyclopedia

**Dysprosium** is a chemical element with the symbol **Dy** and atomic number 66. It is a rare earth element with a metallic silver luster. Dysprosium is never found in nature as a free element, though it is found in various minerals, such as xenotime. Naturally occurring dysprosium is composed of seven isotopes, the most abundant of which is <sup>164</sup>Dy.

Dysprosium was first identified in 1886 by Paul Émile Lecoq de Boisbaudran, but was not isolated in pure form until the development of ion exchange techniques in the 1950s. Dysprosium is used for its high thermal neutron absorption cross-section in making control rods in nuclear reactors, for its high magnetic susceptibility in data storage applications, and as a component of Terfenol-D (a magnetostrictive material). Soluble dysprosium salts are mildly toxic, while the insoluble salts are considered non-toxic.

### **Characteristics**

### **Physical properties**



Dysprosium sample

Dysprosium is a rare earth element that has a metallic, bright silver luster. It is soft enough to be cut with a knife, and can be machined without sparking if overheating is avoided. Dysprosium's physical characteristics can be greatly affected by even small amounts of impurities.<sup>[2]</sup>

Dysprosium and holmium have the highest magnetic strengths of the elements, [3] especially at low temperatures. [4] Dysprosium has a simple ferromagnetic ordering at temperatures below 85 K

( $-188.2~^{\circ}$ C). Above 85 K ( $-188.2~^{\circ}$ C), it turns into an helical antiferromagnetic state in which all of the atomic moments in a particular basal plane layer are parallel, and oriented at a fixed angle to the moments of adjacent layers. This unusual antiferromagnetism transforms into a disordered (paramagnetic) state at 179 K ( $-94~^{\circ}$ C). [5]

### Dysprosium, <sub>66</sub>Dy



**General properties** 

| Name, symbol  | dysprosium, Dy |  |  |
|---------------|----------------|--|--|
| Pronunciation | /dɪsˈproʊziəm/ |  |  |

dis-**proн**-zee-әт

**Appearance** silvery white

Dysprosium in the periodic table

Atomic number (Z) 66

**Group, block** group n/a, f-block

**Period** period 6

**Standard atomic**  $162.500(1)^{[1]}$ 

weight  $(\pm) (A_r)$ 

**Electron** [Xe] 4f<sup>10</sup> 6s<sup>2</sup> configuration

per shell 2, 8, 18, 28, 8, 2

**Physical properties** 

Phase solid

Melting point 1680 K (1407 °C,

### **Chemical properties**

Dysprosium metal tarnishes slowly in air and burns readily to form dysprosium(III) oxide:

$$4 \text{ Dy} + 3 \text{ O}_2 \rightarrow 2 \text{ Dy}_2 \text{O}_3$$

Dysprosium is quite electropositive and reacts slowly with cold water (and quite quickly with hot water) to form dysprosium hydroxide:

2 Dy (s) + 6 H<sub>2</sub>O (l) 
$$\rightarrow$$
 2 Dy(OH)<sub>3</sub> (aq) + 3 H<sub>2</sub> (g)

Dysprosium metal vigorously reacts with all the halogens at above 200 °C:

- 2 Dy (s) + 3  $F_2$  (g)  $\rightarrow$  2 Dy $F_3$  (s) [green]
- 2 Dy (s) + 3 Cl<sub>2</sub> (g)  $\rightarrow$  2 DyCl<sub>3</sub> (s) [white]
- 2 Dy (s) + 3 Br<sub>2</sub> (g)  $\rightarrow$  2 DyBr<sub>3</sub> (s) [white]
- 2 Dy (s) + 3  $I_2$  (g)  $\rightarrow$  2 Dy $I_3$  (s) [green]

Dysprosium dissolves readily in dilute sulfuric acid to form solutions containing the yellow Dy(III) ions, which exist as a  $[Dy(OH_2)_0]^{3+}$  complex: [6]

2 Dy (s) + 3 
$$H_2SO_4$$
 (aq)  $\rightarrow$  2 Dy<sup>3+</sup> (aq) + 3  $SO_4^{2-}$  (aq) + 3  $H_2$  (g)

The resulting compound, dysprosium(III) sulfate, is noticeably paramagnetic.

### **Compounds**

Dysprosium halides, such as  $DyF_3$  and  $DyBr_3$ , tend to take on a yellow color. Dysprosium oxide, also known as dysprosia, is a white powder that is highly magnetic, more so than iron oxide.<sup>[4]</sup>

Dysprosium combines with various non-metals at high temperatures to form binary compounds with varying composition and oxidation states +3 and sometimes +2, such as DyN, DyP, DyH<sub>2</sub> and DyH<sub>3</sub>; DyS, DyS<sub>2</sub>, Dy<sub>2</sub>S<sub>3</sub> and Dy<sub>5</sub>S<sub>7</sub>;

|   |                          | 2565 °F)                     |
|---|--------------------------|------------------------------|
| ) | Boiling point            | 2840 K (2562 °C,<br>4653 °F) |
|   | <b>Density</b> near r.t. | 8.540 g/cm <sup>3</sup>      |
|   | when liquid, at m.p.     | 8.37 g/cm <sup>3</sup>       |
|   | Heat of fusion           | 11.06 kJ/mol                 |
|   | Heat of vaporization     | 280 kJ/mol                   |
|   | Molar heat capacity      | 27.7 I/(mol·K)               |

#### Vapor pressure

| <b>P</b> (Pa) | 1    | 10   | 100    | 1 k    | <b>10</b> k | 100 k  |
|---------------|------|------|--------|--------|-------------|--------|
| at T (K)      | 1378 | 1523 | (1704) | (1954) | (2304)      | (2831) |

#### **Atomic properties**

| Oxidation states | 4, <b>3</b> , 2, 1 (a weakly basic |
|------------------|------------------------------------|
|------------------|------------------------------------|

oxide)

**Electronegativity** Pauling scale: 1.22

Ionization energies 1st: 573.0 kJ/mol

2nd: 1130 kJ/mol 3rd: 2200 kJ/mol

**Atomic radius** empirical: 178 pm

**Covalent radius** 192±7 pm

#### Miscellanea

Crystal structure hexagonal close-packed

(hcp)

**Speed of sound** 2710 m/s (at 20 °C)

thin rod

**Thermal expansion**  $\alpha$ , poly: 9.9  $\mu$ m/(m·K)

(r.t.)

Thermal 10.7 W/(m·K)

conductivity

**Electrical resistivity**  $\alpha$ , poly: 926 n $\Omega$ ·m (r.t.)



Dysprosium sulfate,  $Dy_2(SO_4)_3$ 

 $DyB_2$ ,  $DyB_4$ ,  $DyB_6$  and  $DyB_{12}$ , as well as  $Dy_3C$  and  $Dy_2C_3$ .<sup>[7]</sup>

Dysprosium carbonate,  $Dy_2(CO_3)_3$ , and dysprosium sulfate,  $Dy_2(SO_4)_3$ , result from similar reactions. [8] Most dysprosium compounds are soluble in water, though dysprosium carbonate tetrahydrate  $(Dy_2(CO_3)_3\cdot 4H_2O)$  and dysprosium oxalate decahydrate  $(Dy_2(C_2O_4)_3\cdot 10H_2O)$  are both insoluble in water. [9][10] Two of the most abundant dysprosium carbonates, tengerite-(Dy)  $(Dy_2(CO_3)_3\cdot 2-3H_2O)$  and kozoite-(Dy)

(DyCO<sub>3</sub>(OH)) are known to form via a poorly ordered (amorphous) precursor phase with a formula of  $Dy_2(CO_3)_3\cdot 4H_2O$ . This amorphous precursor consists of highly hydrated spherical nanoparticles of 10–20 nm diameter that are exceptionally stable under dry treatment at ambient and high temperatures.<sup>[11]</sup>

### **Isotopes**

Naturally occurring dysprosium is composed of seven isotopes:  $^{156}$ Dy,  $^{158}$ Dy,  $^{160}$ Dy,  $^{161}$ Dy,  $^{162}$ Dy,  $^{163}$ Dy, and  $^{164}$ Dy. These are all considered stable, although  $^{156}$ Dy decays by alpha decay with a half-life of over  $1\times10^{18}$  years. Of the naturally occurring isotopes,  $^{164}$ Dy is the most abundant at 28%, followed by  $^{162}$ Dy at 26%. The least abundant is  $^{156}$ Dy at 0.06%. $^{[12]}$ 

Twenty-nine radioisotopes have also been synthesized, ranging in atomic mass from 138 to 173. The most stable of these is  $^{154}$ Dy, with a half-life of approximately  $3 \times 10^6$  years, followed by  $^{159}$ Dym with a half-life of 144.4 down. The least stable is  $^{138}$ Dy, with a half-life of 200 ms. As a grant rule, instance that are lighter than the

half-life of 144.4 days. The least stable is  $^{138}$ Dy, with a half-life of 200 ms. As a general rule, isotopes that are lighter than the stable isotopes tend to decay primarily by  $\beta^+$  decay, while those that are heavier tend to decay by  $\beta^-$  decay. However,  $^{154}$ Dy decays primarily by alpha decay, and  $^{152}$ Dy and  $^{159}$ Dy decay primarily by electron capture. Dysprosium also has at least 11 metastable isomers, ranging in atomic mass from 140 to 165. The most stable of these is  $^{165m}$ Dy, which has a half-life of 1.257 minutes.  $^{149}$ Dy has two metastable isomers, the second of which,  $^{149m2}$ Dy, has a half-life of 28 ns.  $^{[12]}$ 

| <b>Magnetic ordering</b> paramagnetic at 300 K |                      |  |  |
|------------------------------------------------|----------------------|--|--|
| Young's modulus                                | α form: 61.4 GPa     |  |  |
| Shear modulus                                  | α form: 24.7 GPa     |  |  |
| Bulk modulus                                   | α form: 40.5 GPa     |  |  |
| Poisson ratio                                  | α form: 0.247        |  |  |
| Vickers hardness                               | 410-550 MPa          |  |  |
| Brinell hardness                               | 500-1050 MPa         |  |  |
| <b>CAS Number</b>                              | 7429-91-6            |  |  |
| History                                        |                      |  |  |
| Discovery                                      | Lecog de Boisbaudran |  |  |

#### Most stable isotopes of dysprosium

(1886)

| iso               | NA      | half-life                  | DM | <b>DE</b> (MeV) | DP                |
|-------------------|---------|----------------------------|----|-----------------|-------------------|
| <sup>154</sup> Dy | syn     | 3.0×10 <sup>6</sup> y      | α  | 2.947           | <sup>150</sup> Gd |
| <sup>156</sup> Dy | 0.056%  | is stable with 90 neutrons |    |                 |                   |
| <sup>158</sup> Dy | 0.095%  | is stable with 92 neutrons |    |                 |                   |
| <sup>160</sup> Dy | 2.329%  | is stable with 94 neutrons |    |                 |                   |
| <sup>161</sup> Dy | 18.889% | is stable with 95 neutrons |    |                 |                   |
| <sup>162</sup> Dy | 25.475% | is stable with 96 neutrons |    |                 |                   |
| <sup>163</sup> Dy | 24.896% | is stable with 97 neutrons |    |                 |                   |
| <sup>164</sup> Dy | 28.260% | is stable with 98 neutrons |    |                 |                   |

## **Source**

Wikipedia: Dysprosium (https://en.wikipedia.org/wiki/Dysprosium)