

Be Cool!

#iorestoacasa

#iorestoacasa e #programmo!

- Una nuova iniziativa del Pisa Coderdojo per tutti i Ninja e per i loro genitori!
- Una serie di video-tutorial per mantenere vivo lo spirito di CoderDojo in questi giorni così difficili per tutti.
- Facciamo la nostra parte per sconfiggere il coronavirus: rimaniamo a casa e programmiamo insieme.

Chi siamo?

- Movimento internazionale
- Club volontario per insegnare/imparare la programmazione
- 40+ incontri con Python,
 Scratch, AppInventor, micro:bit,
 HTML...
- Studenti di Informatica e non solo
- <u>pisa.coderdojo.it</u>, Facebook e Twitter!

Partecipa!

Pisa CoderDojo si riunisce una volta al mese a SMS Biblio, controlla il nostro calendario e acquista il biglietto gratuito su Eventbrite.

attualmente non ci sono eventi ir programma.

Dojo@Scuola!

Sei un insegnante o un preside di scuole elementari nel Comune di Pisa e vuoi organizzare un Dojo, coinvolgendo una o più classi? Allora clicca qui: ti faremo sapere quando possiamo organizzare **gratuitamente** l'evento nei laboratori di Informatica della tua scuola. Sempre in gamba!

Che cos'è?

Un Dojo è un'organizzazione volontaria di persone che costituisce, attiva e mantiene un club basandosi sul regolamento etico di CoderDojo al fine di facilitare l'apprendimento gratuito della programmazione informatica per i giovani fra i 7 e i 17 anni.

Coder significa Programmatore e Dojo significa Tempio dell'Apprendimento.

Se vuoi imparare il Karate vai in un KarateDojo

Perchè un Dojo?

Se ci guardiamo intorno, vediamo PC dappertutto. Il mondo intero viene mandato avanti dai computer. Ma che cosa manda avanti un computer? Il codice. Scritto da programmatori e da gente comune. A mano. Ad oggi mancano programmatori. Sempre più ci appoggiamo ai computer anche per scopi di sopravvivenza e d'altra parte i corsi universitari di Informatica sperimentano un abbandono del 50%.

E' come se ci fosse un picco di richiesta di programmi e... potrebbe

L'Importanza di Restare a Casa

- Con un esperimento Scratch dimostreremo quanto sia importante ed efficace rimanere a casa per contrastare la diffusione del coronavirus.
- Programmiamo un piccolo simulatore che simuli la diffusione di un virus all'interno di una popolazione di 100 persone.

Progetto Base

- A questo link trovate il progetto base da completare seguendo il tutorial online: https://scratch.mit.edu/projects/380433049/
- Segui questi 4 passi per copiare il progetto base:

Simulatore a Eventi Discreti

- Nella nostra simulazione immaginiamo di dividere il tempo che scorre in istanti, tutti di durata uguale.
- In ogni istante, i nostri Sprite possono eseguire un'azione ben precisa, ovvero «fare un passo».
- Ciascuno Sprite saprà che può eseguire un'azione grazie alla presenza di un «orologio gigante» che scandisce il tempo.

Matita

 Un semplice puntino nero per disegnare la curva delle persone malate in ogni istante della simulazione.

2 Sprite:

Persona

- Un cerchietto colorato che rappresenta una persona – vista dall'alto – nella nostra simulazione.
- Ha tre costumi per indicarne lo stato di salute:

Ipotesi

- C'è un unico paziente malato all'inizio della simulazione (il paziente 0).
- Tutti gli altri sprite persona sono «sani».
- Uno sprite sano si ammala se ne tocca uno malato.
- Gli sprite che restano a casa non si muovono durante la simulazione (riducendo la probabilità di incontrare sprite malati).
- Finita la durata della malattia uno sprite guarisce.

Un po' di variabili

Variabili per tutti gli sprite

Variabili solo per lo sprite Persona

Setup

- E' il blocco che inizializza il simulatore e il paziente 0 (il primo malato nella nostra simulazione.
- Crea inoltre 100 cloni dello sprite Persona.
- Il paziente 0 sarà malato e non rimarrà a casa.

I Cloni di Persona

 Quando vengono clonati, gli sprite Persona dovranno comparire in una posizione a caso e decidere se rimanere a casa o meno, in base al valore di #iorestoacasa %.

quando vengo clonato
raggiungi posizione a caso ▼
se numero a caso tra 0 e 99 < #iorestoacasa % allora
porta a casa? ▼ a vero
altrimenti
porta a casa? ▼ a falso

Avviare il simulatore

- Quando si clicca sulla bandiera verde:
 - Eseguiamo il blocco personalizzato setup,
 - Avviamo l'«orologio gigante» che invierà un messaggio tic toc a tutti gli *sprite* per 480 volte (la larghezza del palcoscenico Scratch!)

Eseguire un passo

 Ogni clone dello sprite Persona, ricevuto il tic toc, controllerà se è a casa (e deve stare fermo) oppure se non è a casa (e potrà muoversi sul palcoscenico):

Controllare lo stato di salute

 Dovrà poi intraprendere azioni diverse per controllare e, se necessario, aggiornare il proprio stato di salute:

Il Codice Completo per Persona

```
porta malati ▼ a 1
                                        raggiungi | posizione a caso 🕶
                                                                        99 < #iorestoacasa %
                                                                                                                         definisci controlla malato
porta tempo da malato ▼ a 0
                                         porta a casa? ▼ a vero
                                                                                                                                                  malato
 porta durata malattia v a 100
                                        porta a casa? ▼ a falso
 passa al costume sana 🔻
                                                                                                                                   tempo da malato 🔀 durata malattia
vai a x: 0 y: 0
                                                                                                                           passa al costume guarito ▼
 ripeti 100 volte
                                             quando si clicca su 📜
  crea clone di me stesso 🔻
                                                                                     a casa? = falso
                                                                              fai un passo
                                              ipeti 480 volte
                                               invia a tutti tic toc ▼
 passa al costume | malato *
definisci controlla sano
                                                       definisci fai un passo
                                                      ruota C di numero a caso tra -30 e 30 gradi
                         sano
                                                           3 passi
                                                       rimbalza quando tocchi il b<u>ord</u>e
  passa al costume | malato *
```


La Matita

- Dovrà disegnare una curva lungo tutto il palcoscenico Scratch (un puntino per ogni tic-toc) che rappresenti il numero di malati in ogni istante.
- L'altezza della curva rappresenterà il numero di malati nel tempo; la larghezza rappresenterà la «durata» del contagio.

0% #iorestoacasa

- Se nessuno resta a casa:
 - Picco del numero dei malati e
 - Lunga durata del contagio,
 - Quasi tutti si ammalano.

50% #iorestoacasa

- Se il 50% della popolazione resta a casa:
 - Picco del numero dei malati più basso, ma comunque
 - Lunga durata del contagio e
 - Quasi tutti si ammalano.

85% #iorestoacasa

- Se nessuno resta a casa:
 - Nessun picco di malati,
 - Durata più breve,
 - In pochi si ammalano.

Sfide per voi!

- 1. Cosa succede cambiando i parametri della simulazione (es. durata della malattia, numero di persone, numero di persone che restano a casa...)?
- 2. Cosa succede se alcuni guariscono prima di altri (numero a caso tra...)? Come si può aumentare il numero di abitanti?
- 3. Cosa succede se il virus si diffonde con una probabilità più piccola (es. 50%) quando le Persone entrano in contatto?

Per altre idee, leggete questo articolo:

https://www.washingtonpost.com/graphics/2020/health/corona-simulation-italian/

#iorestoacasa e #programmo!

ESCI SOLO PER ESIGENZE ESSENZIALI