1

ARJUNA-NEET (Chemistry)

PRACTICE TEST-01

53.

54.

55.

(A) 5.3

(C) 4.2

1 amu is equals to (A) 6.02×10^{23}

(C) 1.66×10^{-24} g (D) Both (C) and (D)

(A) $mol kg^{-1}$

	(A) 1	(B) 4
	(C) 2	(D) 0
47.	Which of the following is Heterogeneous	
	mixture?	
	(A) Rasna Juice	(B) $Sand + Fe$
	(C) Lemon juice	(D) Humidity
40		
48.	*	
	(A) CH_2O	
	(C) $C_{12}H_{22}O_{11}$	(D) None of these
40	1 2	
49.	$1 \text{ pm} = \underline{?} \text{ mm}$	(T) 10 0
	(A) 10^{-1}	` '
	(C) 10^{-3}	(D) 10^{-6}
50.	Which of the	following pairs of
30.		te how of multiple
	proportions?	ite now of multiple
	(A) KOH, CsOH	(B) H ₂ O, D ₂ O
	(C) C_2H_6 , C_6H_6	
	(5) 52110, 50110	(D) Itel, Itel
51.	When 200 gm of	Limestone is strongly

How many significant figures are there in

46.

4000?

heated.

(A) 88 g

(C) 64 g

(A) 3

(C) 2

52.

it

mass of CO₂ formed?

orthoboric acid (H₃BO₃)?

undergoes

(B) 24 g

(D) 40 g

decomposition to form 112 g of lime an

unknown mass of carbon dioxide gas as

 $CaCO_3 \rightarrow CaO + CO_2$, what will be the

What is the n-factor (Basicity) of

(B) 1

(D) 0

thermal

(C) $mol L^{-1} S^{-1}$ (D) $mol^1 g^{-1} S^{-1}$ A solution is prepared by dissolving 1.0 g **56.** of NaOH in water to get 250 ml of solution calculate its molarity. (A) 2.5 (B) 4.5 (C) 5.0 (D) 0.157. 50 g of magnesium carbonate (MgCO₃) sample decomposes on heating to give magnesium oxide (MgO) and 11 g of carbon dioxide (CO₂). Percentage purity of MgCO₃ in the sample is (A) 42% (B) 25% (C) 30% (D) 58% **58.** A concentrated aqueous solution is 98% H₂SO₄ by mass and density 1.8 g/ml. The volume of this acid required to make 500 ml of 0.2 M H₂SO₄ solution is (A) 11.55 ml (B) 55.5 ml (C) 25.5 ml (D) 5.55 ml

32 gm of metal reacts with 48 gm O₂.

(B) 3.5

(D) 2.8

(B) $mol L^{-1}$

Find equivalent mass of metal?

(B) $\frac{1}{N_A}$ (N_A = 6.02 × 10²³)

Molality is expressed in units of

59. In the reaction, $2\text{NaOH} + \text{H}_3\text{PO}_3 \rightarrow \text{Na}_2\text{HPO}_3 + 2\text{H}_2\text{O}$, the equivalent mass of H_3PO_3 is (M : Molar mass of H_3PO_3)

- (A) M

- **60.** Total number of atoms present in 11.2 ml of CO_2 (g) at STP is
 - (A) $1.5 N_A$
- (B) $1.5 \times 10^{-5} \text{ N}_{\text{A}}$
- (C) $1.5 \times 10^{-3} \text{ N}_{\text{A}}$ (D) 150 N_{A}
- 61. In which mode of expression, the concentration of a solution depends on temperature?
 - (A) Normality
 - (B) Molarity
 - (C) Volume strength
 - (D) All of these
- **62.** Maximum number of atoms is present in
 - (A) 48 g O atom
- (B) 48 g O₂
- (C) 48 g O_3
- (D) 5 mole of O₂
- The number of significant figures in 3.35 63. $\times 10^{-18}$ is
 - (A) Three
- (B) One
- (C) Four
- (D) Two
- 64. Mass of Mg required to produce 11.2 l of H₂ gas as STP on reaction with dilute HCl will be
 - (A) 6 g
- (B) 18 g
- (C) 12 g
- (D) 24 g
- **65.** Which of the following pair of species illustrates law of multiple proportions?
 - (A) O_2 , O_3
- (B) H_2O , D_2O
- (C) CH_4 , C_2H_6
- (D) KOH, KCl
- Mole fraction of NaOH in its aqueous **66.** solution having its molality 2 is
 - (A) 0.015
- (B) 0.035
- (C) 0.028
- (D) 0.045
- 67. An element(A) has the following isotopic composition, ¹⁰⁰A: 40%, ¹⁰²A: 60%. The

weighted average atomic mass of the naturally occurring element A is nearly equal to

- (A) 100.9
- (B) 101.4
- (C) 101.7
- (D) 101.2
- 68. A gaseous mixture contains equal mass of oxygen and hydrogen. The ratio of their molecules is
 - (A) 1:4
- (B) 1:16
- (C) 1:2
- (D) 1:32
- 69. 200 g of impure sample of KClO₃ on heating gives 48 g of O₂.

$$2KClO_3 \xrightarrow{\Delta} 2KCl + 3O_2$$

The percentage purity of KClO₃ is (Molar mass of $KClO_3 = 122.5 \text{ g mol}^{-1}$)

- (A) 80.5%
- (B) 61.25%
- (C) 75%
- (D) 68.2%
- **70.** Number of g-atom of Na present in 2.3 kg of Na is (Atomic mass Na = 23 u)
 - (A) 50
- (B) 25
- (C) 200
- (D) 100
- 71. Mass of one molecule of H₂S in (Atomic mass of sulphur = 32 u)
 - (A) 34 g
- (B) 34 mg
- (C) $\frac{34}{N_{\odot}}g$ (D) $\frac{N_{A}}{34}g$
- 72. 12 g of magnesium is reacted with excess of hydrochloric acid (HCl). The volume of H₂ gas liberated at STP is (Atomic mass of Mg = 24 u)
 - (A) 5.6 L
- (B) 11.2 L
- (C) 22.4 L
- (D) 44.8 L
- **73.** If equal mass of H_2 and O_2 is present in a closed vessel then the ratio of their moles is
 - (A) 8:1
- (B) 4:1
- (C) 16:1
- (D) 12:1

- 74. Number of carbon atoms present in 50 g of $CaCO_3$ is (Molar mass of $CaCO_3 = 100$ g mol^{-1})
 - (A) $0.5 N_A$
- (B) $5 N_A$
- (C) 4 N_A
- (D) $1.5 N_A$
- **75.** Consider the following hypothetical reaction
 - $2A + 4B \rightarrow C$

If 8 mole of A is reacted with 12 mole of B then maximum moles of C formed will be

- (A) 4
- (B) 6
- (C) 3
- (D) 2
- 76. 3.01×10^{23} molecules of urea is present in 250 ml aqueous solution. Molarity of urea in the solution is $(N_A = 6.02 \times 10^{23})$
 - (A) 2 M
- (B) 1 M
- (C) 3 M
- (D) 4 M
- **77.** Number of electrons present in 12 g of carbon is
 - (A) N_A
- (B) 2N_A
- (C) $4N_A$
- (D) $6N_A$
- **78.** If molarity of 100 ml aqueous solution of glucose (C₆H₁₂O₆) is 1.5 M, then the number of carbon atoms present in the solution is
 - (A) $1.5 N_A$
- (B) $0.15 N_A$
- (C) $0.9 N_A$
- (D) $2.5 N_A$
- **79.** If 10 g of metal oxide contains 9 g of metal then the equivalent weight of the metal will be
 - (A) 60 g
- (B) 52 g
- (C) 42 g
- (D) 72 g
- **80.** If empirical formula of a hydrocarbon is CH₂ and molar mass of the compound is 78 g mol⁻¹ then molecular formula of the compound is
 - (A) C_3H_6
- (B) C_6H_{12}
- (C) C_5H_{10}
- (D) C_4H_8

- **81.** Equivalent weight of sulphuric acid (H₂SO₄) when it is completely neutralized by NaOH, is
 - (A) 49
- (B) 98
- (C) 24.5
- (D) 52
- 82. Mass percentage of oxygen in hydrogen peroxide (H_2O_2) is
 - (A) 85.2%
- (B) 94.1%
- (C) 75.7%
- (D) 89.1%
- 83. Number of moles is 98 gm H_2SO_4 ?
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- **84.** Volume occupied by 6.02×10^{24} molecules of CH₄ at STP is
 - (A) 22.4 L
- (B) 112 L
- (C) 180 L
- (D) 224 L
- 85. Number of glucose molecules present in 720 u of glucose is (Molecular mas of glucose = 180 u)
 - (A) 2
- (B) 4
- (C) 6
- (D) 8
- **86.** Which among the following contains highest number of atoms?
 - (A) 0.5 mole of SO_3
 - (B) 0.5 mole of H_2SO_4
 - (C) 1 mole of H₂
 - (D) 1 mole of SO₂
- 87. Mass of nitrogen present in 4.6 g of NO_2 is (Atomic mass of N = 14 u and O = 16 u)
 - (A) 2.8 g
- (B) 2.2 g
- (C) 1.8 g
- (D) 1.4 g
- **88.** Mole of oxygen required to react completely with 90 g of C_2H_6 is
 - $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$
 - (A) 7
- (B) 8.5
- (C) 10.5
- (D) 12

27 g of Al is reacted with 32 g of O2. **89.** Mole of Al₂O₃ formed according to the following equation is

$$4Al + 3O_2 \rightarrow 2Al_2O_3$$

(Atomic mass of Al = 27 u, O = 16 u)

- (C) 1
- (D) $\frac{1}{4}$
- 90. Number of oxygen atoms present in 224 ml of O₂ at STP is
 - (A) $\frac{1}{100}$ N_A (B) $\frac{1}{50}$ N_A
 - (C) $\frac{1}{25}$ N_A (D) $\frac{1}{75}$ N_A

ANSWERS KEY

46.	(A)
47.	(B)
48.	(A)
49.	(B)
50.	(C)
51.	(A)
52.	(B)
53.	(A)
54.	(D)
55.	(A)
56.	(D)
<i>5</i> 7.	(A)
58.	(D)
59.	(A)
60.	(C)

61.	(D)
62.	(D)
63.	(A)
64.	(C)
65.	(C)
66.	(B)
67.	(D)
68.	(B)
69.	(B)
70.	(D)
71.	(C)
72.	(B)
73.	(C)
74.	(A)
<i>75.</i>	(C)

76.	(A)
77.	(D)
78.	(C)
79.	(D)
80.	(B)
81.	(A)
82.	(B)
83.	(A)
84.	(D)
85.	(B)
86.	(B)
87.	(D)
88.	(C)
89.	(A)
90.	(B)

HINTS & SOLUTIONS

46. (A)

Zeroes after non zer

Zeroes after non zero digits are not significant.

- **47. (B)** FACT
- 48. (A)
 Molecular Formula of Glucose
 → C₆H₁₂O₆
 E.F. → simplest formula → CH₂O
- **49. (B)** $\Rightarrow \frac{10^{-12}}{10^{-3}} = 10^{-9} \text{ mm}$
- 50. (C) Two Elements \rightarrow Many compounds
- 51. (A)
 Acc. to law of conservation of mass
 Total mass of Reactant = Total mass of
 Product
- **52. (B)** FACT
- **53.** (A) $E_{M} = \frac{W_{M}}{W_{O_{2}}} \times 8 = \frac{32}{48} \times 8 = 5.3$
- **54. (D)** FACT
- 55. (A) $M = \frac{\eta}{W_A(kg)} \Rightarrow \text{mol kg}^{-1}$
- 56. (D) $M = \frac{\eta_B}{V_{(L)}}$ $M = \frac{1 \times 1000}{40 \times 250} \Rightarrow \frac{4}{40} \Rightarrow \frac{1}{10} = 0.1M$

- 57. (A) $MgCO_3 \rightarrow MgO + CO_2$ $\frac{1}{1}\eta MgCO_3 \times \frac{x}{100} = \frac{1}{1}\eta CO_2$ $\frac{50}{84} \times \frac{x}{100} = \frac{11}{44}$ % Purity $\rightarrow x = 42\%$
- 58. **(D)** $M_1V_1 = M_2V_2$ $M_1 = \frac{10xd}{M\omega}$ $V_1 = ?$
- 59. (A) $E_{M} = \frac{M}{\text{n factor}}$ $2NaOH + H_{3} PO_{3} \rightarrow Na_{2}HPO_{3}$ n-factor = 2 1 = 1 $l_{3} \text{ no. of transferable } h + \text{ion.}$
- **60.** (C) $\frac{N_O}{N_A} = \frac{V_L}{22.4}$
- **61.** (**D**)
- 62. (D) $A \rightarrow N_0 = \frac{43}{16} \times 1 \times N_A = 3N$ $B \rightarrow N_0 = \frac{48}{32} \times N_A \times 2 = 3N_A$ $C \rightarrow N_0 = \frac{48}{48} \times N_A \times 3 = 3N_A$ $D \rightarrow n = \frac{N_o}{N_A} \qquad 5 = \frac{N_o}{N_A}$

 $N_0 = 5 \times NA \times 2 = 10NA$

63. (A) FACT

64. (C)

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

 $\omega = ?$ $V_L = 11.2$
 $\frac{1}{1}nmg = \frac{1}{1}nH_2$
 $\frac{\omega}{24} = \frac{11.2}{22.4}$
 $\omega = 12g$

65. (C) Two Elements
$$\rightarrow$$
 many compounds

66. (B)
$$X_B = \frac{m}{55.55 + m}$$

67. **(D)**

$$AAM = \frac{40 \times 100 + 102 \times 60}{100} = 101.2$$

68. (B)
Number of molecules of
$$O_2$$

$$= \frac{\omega}{32} \times N_A$$
Number of molecules of H_2

$$= \frac{\omega}{2} \times N_A$$
$$= \frac{2}{32} = 1:16$$

69. (B)

$$2KClO_{3} \rightarrow 2KCl + 3O_{200g}$$

$$\frac{1}{2}nKClO_{3} \times \frac{x}{100} = \frac{1}{3}n_{O_{2}}$$

$$\frac{1}{2} \times \frac{200}{122.5} \times \frac{x}{100} = \frac{1}{3} \times \frac{48}{32}$$

$$x = 61.25\%$$

70. (D)
g-atom
$$\Rightarrow$$
 mole
 $n = \frac{\omega}{A.M.} = \frac{2.3 \times 1000}{23} = 100$

71. (C)
$$\frac{N_O}{N_A} = \frac{\omega}{MM}$$

$$\omega = \frac{1}{N_A} \times 34g$$
72. **(B)**

$$Mg + 2HC1 \rightarrow MgCl_2 + H_2$$

$$12g$$

$$\frac{1}{1}nMg = \frac{1}{1}nH_2$$

$$\frac{12}{24} = \frac{V_L}{22.4}$$

$$V = 11.2L$$

73. (C)
$$\frac{n_{H_2}}{n_{O_2}} = \frac{\frac{\omega}{2}}{\frac{\omega}{32}} = \frac{32}{2} \Rightarrow 16:1$$

74. (A)
$$\frac{N_o}{N_A} = \frac{\omega}{MM}$$

$$N_o = \frac{50}{100} \times N_A \times 1 \implies 0.5 \text{ NA}$$

75. (C)
$$2A + 4B \rightarrow C$$
8mole 12mole
$$\frac{1}{2}n_{A} \frac{1}{4}n_{B}$$

$$\frac{1}{2} \times 8 \frac{1}{4} \times 12$$

$$+4 \qquad 3 = \frac{1}{1}n_{C}$$

$$\downarrow$$

$$LoRo$$

$$n_{C} = 3$$

76. (A)
$$M = \frac{n_B}{V_{(L)}}$$

$$n_B = \frac{N_O}{N_A}$$

77. **(D)**
$$\frac{N_O}{N_A} = \frac{\omega}{A.M_O}$$

$$N_o = \frac{12}{12} \times N_A \times 6 \Longrightarrow 6N_A$$

78. (C)
$$M = \frac{n_B}{V_{(L)}}$$

$$n_{C_6H_{12}O_6} = M \times V_{(L)}$$

$$n = \frac{N_O}{N_A}$$

79. (D)
$$E_{M} = \frac{\omega_{M}}{\omega_{O_{2}}} \times 8$$

$$= \frac{9}{1} \times 8 = 72 g$$

$$\omega_{M} + \omega_{O_{2}} = \omega_{MO}$$

80. (B)
$$n = \frac{\text{Molecular Formula weight}}{\text{Emperical Formula weight}}$$
$$\text{M.F.} = n \times \text{E.F.}$$

81. (A)

$$H_2SO_4 + NaOH \rightarrow Na_2SO_4 + H_2O$$

 $E_M = \frac{MM_{H_2SO_4}}{n-f} = \frac{98}{2} = 49$

82. (B)
% O =
$$\frac{\text{At mass of } O \times x \times 100}{\text{M. cut of } H_2O_2}$$

83. (A)
$$n_{H_2SO_4} = \frac{\omega}{MM} = \frac{98}{98} = 1$$

84. **(D)**

$$\frac{V_L}{22.4} = \frac{N_O}{N_A}$$

$$V_L = \frac{6.02 \times 10^{24}}{6.02 \times 10^{23}} \times 22.4 = 224 \text{ L}$$

85. **(B)**
$$\frac{N_O}{N_A} = \frac{\omega}{MM}$$

86. (B)
$$n = \frac{N_O}{N_A}$$

87. **(D)**

$$%N = \frac{14}{46} \times 1 \times 100 \quad ...(1)$$

$$%N = \frac{\omega_M}{\omega_{NO_2}} \times 100 \quad ...(2)$$

$$(1) = (2)$$

$$\frac{14}{46} \times 100 = \frac{\omega_N}{4.6} \times 100$$

$$= 1.4 \text{ g}$$

88. (C)

$$2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6 H_2O$$

 $\frac{1}{2}n_{C_2H_6} = \frac{1}{7}n_{O_2}$
 $\frac{90}{30} = \frac{1}{7}n_{O_2}$
 $n_{O_2} = 10.5$

89. (A)

$$4A1 + 3O_2 \rightarrow 2Al_2O_3$$

 $\frac{1}{4} \times \frac{27}{27} \quad \frac{32}{16}$
 $L_0 R. \quad \frac{1}{4} = \frac{1}{2} n_{Al_2O_3} \Rightarrow \frac{1}{2}$

90. (B)
$$\frac{N_o}{N_A} = \frac{V}{22.4}$$

$$N_o = \frac{224 \times N_A \times 10 \times 2}{22.4 \times 1000} = \frac{N_A}{50}$$

Note - If you have any query/issue

Mail us at support@physicswallah.org

