The primary goal of this introduction is to demonstrate how to implement spectral element method in 2d. We seek to produce the displacement field caused by an earthquake in a finite earth model with volume Ω . In order to simplify calculation, we just use stress-free boundary condition. We will talk about artificial absorbing boundary condition in detail later. The displacement field \boldsymbol{u} is produced by an earthquake is governed by the momentum equation,

$$\rho \, \partial_t^2 \boldsymbol{u} = \boldsymbol{\nabla} \cdot \boldsymbol{T} + \boldsymbol{f} \tag{1}$$

where $T = (T_1, T_2, T_3)^T$, and T_i is vector function. The weak form of above equation is produced by dotting the momentum equation with an arbitrary test vector $\boldsymbol{w} = (w_1(\boldsymbol{x}), w_2(\boldsymbol{x}), w_3(\boldsymbol{x}))^T$, integrating by the model volume Ω . Since we use stress-free boundary condition, which is easy to derive the weak form of wave equation, we have $T|_{\partial\Omega} = 0$

$$\int_{\Omega} \nabla \cdot \boldsymbol{T} \cdot \boldsymbol{w}(\boldsymbol{x}) \, d^{3}\boldsymbol{x}$$

$$= \sum_{i=1}^{3} \int_{\Omega} w_{i}(\boldsymbol{x}) \nabla \cdot \boldsymbol{T}_{i} \, d^{3}\boldsymbol{x}$$

$$= \sum_{i=1}^{3} \int_{\Omega} \nabla \cdot (w_{i}(\boldsymbol{x})\boldsymbol{T}_{i}) - \nabla w_{i}(\boldsymbol{x}) \cdot \boldsymbol{T}_{i} \, d^{3}\boldsymbol{x}$$

$$= \sum_{i=1}^{3} \left(\int_{\partial\Omega} w_{i}(\boldsymbol{x}) \boldsymbol{T}_{i} \cdot d\boldsymbol{s} - \int_{\Omega} \nabla w_{i}(\boldsymbol{x}) \cdot \boldsymbol{T}_{i} \, d^{3}\boldsymbol{x} \right)$$

$$= -\sum_{i=1}^{3} \int_{\Omega} \nabla w_{i}(\boldsymbol{x}) \cdot \boldsymbol{T}_{i} \, d^{3}\boldsymbol{x}$$

$$= -\int_{\Omega} \nabla \boldsymbol{w}(\boldsymbol{x}) : \boldsymbol{T} \, d^{3}\boldsymbol{x}$$
(2)

The Source function is

$$\mathbf{f} = -\mathbf{M} \cdot \nabla \delta(\mathbf{x} - \mathbf{x}_s) S(t) \tag{3}$$

Using the properties of Dirac delta distribution, after integration, it transformed in the following way,

$$\int_{\Omega} \mathbf{f} \cdot \mathbf{w} \, d^3 \mathbf{x}$$

$$= -S(t) \int_{\Omega} \mathbf{M} \cdot \nabla \delta(\mathbf{x} - \mathbf{x}_s) \cdot \mathbf{w} \, d^3 \mathbf{x}$$

$$= \mathbf{M} : \nabla \mathbf{w}(\mathbf{x}_s) S(t)$$
(4)

In 2 dimension, We can derive this using Green Formula.

$$\int_{\Omega} \rho \, \boldsymbol{w} \cdot \partial_t^2 \boldsymbol{u} \, d^2 \boldsymbol{x} = -\int_{\Omega} \boldsymbol{\nabla} \boldsymbol{w}(\boldsymbol{x}) : \boldsymbol{T} \, d^2 \boldsymbol{x} + \boldsymbol{M} : \boldsymbol{\nabla} \boldsymbol{w}(\boldsymbol{x}_s) S(t)$$
 (5)

In the following parts, we will explain the general procedure of specfem.

First, we divide the region into a number of non-overlapping elements, Ω_e , $e = 1, \ldots, n_e$, such that $\Omega = \bigcup_e^{n_e} \Omega_e$, as shown in Fig.1. In SEM, the shape of element is restricted to quadrilateral. The integration in the whole region become the sum of integration over every element, as shown below.

$$\sum_{e}^{n_e} \int_{\Omega_e} \rho \, \boldsymbol{w} \cdot \partial_t^2 \boldsymbol{u} \, d^2 \boldsymbol{x} = -\sum_{e}^{n_e} \int_{\Omega_e} \boldsymbol{\nabla} \boldsymbol{w}(\boldsymbol{x}) : \boldsymbol{T} \, d^2 \boldsymbol{x} + \boldsymbol{M} : \boldsymbol{\nabla} \boldsymbol{w}(\boldsymbol{x}_s) S(t)$$
(6)

Since the equation holds for any test function \boldsymbol{w} , we can use \boldsymbol{w} to extract the value of displacement \boldsymbol{u} at one point by setting \boldsymbol{w} equals 1 at this point and equals 0 at other points. It's undoubted that this kind of \boldsymbol{w} did exist. Using Gauss-Lobatto-Legendre points, the integration become the forms like below:

$$M\ddot{U} + K = F, (7)$$

where M denotes the global mass matrix, K the global stiffness matrix and F the source term. Let's build the mass matrix M first. According the quadrature, we can know that the mass matrix is diagonal.