CST31211 : Deep Learning

JING WEN

2024

Lecture 2:Optimization

Last Time: Linear Classifier

Interpreting a Linear Classifier

$$f(x_i, W, b) = Wx_i + b$$

[32x32x3] array of numbers 0...1 (3072 numbers total)

Last Time: Loss Functions

- We have some dataset of (x,y)
- e.g. s=f(x;W)=Wx

- We have a score function:
- We have a **loss function**:

Softmax
$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

SVM
$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Full loss
$$L=rac{1}{N}\sum_{i=1}^{N}L_i+R(W)$$

Optimization

$$w^* = \arg\min_{w} L(w)$$

Strategy #1: A first very bad idea solution: Random search

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
 W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
  loss = L(X train, Y train, W) # get the loss over the entire training set
 if loss < bestloss: # keep track of the best solution</pre>
    bestloss = loss
    bestW = W
  print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```

Lets see how well this works on the test set...

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5% accuracy! not bad!

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives).

$$x^{k+1} = x^k + \lambda_k d^k$$

$$\mathbf{x}^{k+1} = xk - \lambda \nabla f(xk)$$

current W:	W + h (first dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[0.34 + 0.0001 , -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?,]

current W: [0.34,-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347

gradient dW:

[-2.5,
?,
?,
?,
?
(1.25322 - 1.25347)/0.0001
= -2.5
$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

current W:	W + h (second dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[0.34, -1.11 + 0.0001 , 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[-2.5, ?, ?, ?, ?, ?, ?, ?,]

W + h (second dim): current W: gradient dW: [0.34,[0.34,[-2.5, -1.11, -1.11 + 0.00010.6, 0.78, 0.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, (1.25353 - 1.25347)/0.0001-1.5, -1.5, = 0.60.33,...] 0.33,...] loss 1.25347 loss 1.25353

current W:	W + h (third dim):	gradient dW:
[0.34,	[0.34,	[-2.5,
-1.11,	-1.11,	0.6,
0.78,	0.78 + 0.0001 ,	?,
0.12,	0.12,	?,
0.55,	0.55,	?,
2.81,	2.81,	?,
-3.1,	-3.1,	?,
-1.5,	-1.5,	?,
0.33,]	0.33,]	?,

W + h (third dim): current W: gradient dW: [0.34,[0.34,[-2.5, -1.11, -1.11, 0.6, 0.78, 0.78 + 0.00010.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, (1.25347 - 1.25347)/0.0001-1.5, -1.5, = 00.33,...] 0.33,...] loss 1.25347 loss 1.25347 $\frac{df(x)}{dx} = \lim \frac{f(x+h) - f(x)}{h}$

Evaluating the gradient numerically

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

```
def eval numerical gradient(f, x):
 a naive implementation of numerical gradient of f at x
  - f should be a function that takes a single argument
  - x is the point (numpy array) to evaluate the gradient at
 fx = f(x) # evaluate function value at original point
 grad = np.zeros(x.shape)
 h = 0.00001
 # iterate over all indexes in x
 it = np.nditer(x, flags=['multi index'], op flags=['readwrite'])
  while not it.finished:
    # evaluate function at x+h
   ix = it.multi index
   old value = x[ix]
   x[ix] = old value + h # increment by h
   fxh = f(x) # evalute f(x + h)
   x[ix] = old value # restore to previous value (very important!)
    # compute the partial derivative
   grad[ix] = (fxh - fx) / h # the slope
   it.iternext() # step to next dimension
  return grad
```

Evaluating the gradient numerically

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

- approximate
- very slow to evaluate

```
def eval numerical gradient(f, x):
 a naive implementation of numerical gradient of f at x
  - f should be a function that takes a single argument
  - x is the point (numpy array) to evaluate the gradient at
 fx = f(x) # evaluate function value at original point
 grad = np.zeros(x.shape)
  h = 0.00001
 # iterate over all indexes in x
 it = np.nditer(x, flags=['multi index'], op flags=['readwrite'])
  while not it.finished:
    # evaluate function at x+h
   ix = it.multi index
    old value = x[ix]
   x[ix] = old value + h # increment by h
    fxh = f(x) # evalute f(x + h)
    x[ix] = old value # restore to previous value (very important!)
    # compute the partial derivative
   grad[ix] = (fxh - fx) / h # the slope
    it.iternext() # step to next dimension
  return grad
```

$$L=rac{1}{N}\sum_{i=1}^{N}L_i+\sum_kW_k^2$$
 $L_i=\sum_{j
eq y_i}\max(0,s_j-s_{y_i}+1)$ $s=f(x;W)=Wx$ want $abla_WL$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$s = f(x; W) = Wx$$

want
$$abla_W L$$

莱布尼茨

$$L=rac{1}{N}\sum_{i=1}^{N}L_{i}+\sum_{k}W_{k}^{2}$$
 $L_{i}=\sum_{j
eq y_{i}}\max(0,s_{j}-s_{y_{i}}+1)$
 $s=f(x;W)=Wx$
want $abla_{W}L$
Calculus

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \sum_{k} W_k^2$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$s = f(x; W) = Wx$$

$$\nabla_W L = \dots$$

$$\nabla_{w_{y_i}} L_i = -\left(\sum_{j \neq y_i} \mathbb{1}(w_j^T x_i - w_{y_i}^T x_i + \Delta > 0)\right) x_i$$

$$\nabla_{w_j} L_i = \mathbb{1}(w_j^T x_i - w_{y_i}^T x_i + \Delta > 0) x_i$$

gradient dW:

In summary:

- Numerical gradient (数值梯度): approximate, slow, easy to write

- Analytic gradient (解析梯度): exact, fast, error-prone

=>

<u>In practice:</u> Always use analytic gradient, but check implementation with numerical gradient. This is called a **gradient check.**

Gradient Descent

$$x^{k+1} = xk - \lambda \nabla f(xk)$$

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Gradient Descent

- SGD (随机梯度下降)
- MBGD (小批量梯度下降)
- BGD (批量梯度下降)

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^N \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

SGD

poor gradients:

Q: What is the trajectory along which we converge towards the minimum with SGD?

poor gradients:

Q: What is the trajectory along which we converge towards the minimum with SGD? very slow progress along flat direction, jitter along steep one

Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient.

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

Common mini-batch sizes are 32/64/128 examples e.g. Krizhevsky ILSVRC ConvNet used 256 examples

Mini-batch Gradient Descent

如何更新权重?

假设输入两个数据,权重为5个

```
数据1 (x1) : Loss1 , l1, gradients1=(1.5, -2.0, 1.1, 0.4, -0.9)
```

数据2 (x2) : Loss2, I2, gradients2=(1.2, 2.3, -1.1, -0.8, -0.7)

则更新权重时两种方法:

1. 求上面两个数据所求出来的梯度(gradients1, gradients2) 的平均值更新权重:

```
gradients_result = (gradients1, gradients2)/2 = (1.35, 0.15, 0, -0.2, -0.8)
```

2. **求两个**损失的平均值计算梯度,再更新权重(tensorflow)

Mini-batch Gradient Descent

 only use a small portion of the training set to compute the gradient.

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

Common mini-batch sizes are 32/64/128 examples e.g. Krizhevsky ILSVRC ConvNet used 256 examples

we will look at more fancy update formulas (momentum, Adagrad, RMSProp, Adam, ...)

Minibatch updates

Mini-batch Gradient Descent

Mini-batch Gradient Descent

Gradients are noisy but still make good progress on average

Mini-batch Gradient Descent

Example of optimization progress while training a neural network.

(Loss over mini-batches goes down over time.)

缺点

BGD(批量) 非凸函数可保证收敛

至全局最优解

计算速度缓慢,不允 许新样本中途进入 SGD (随机)

计算速度快

计算结果不易收敛, 可能会陷入局部最优 解中 MBGD(小批量) 计算速度快,收敛稳 定

_

Interactive Web Demo time....

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/

learning rate as a hyperparameter.

Q: Which one of these learning rates is best to use?

learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay:

e.g. decay learning rate by half every few epochs.

exponential decay:

$$\alpha = \alpha_0 e^{-kt}$$

1/t decay:

$$\alpha = \alpha_0/(1+kt)$$

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
- mu = usually ~ 0.5 , 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)

```
# Gradient descent update
x += - learning_rate * dx

# Momentum update
v = mu * v - learning rate * dx # integrate velocity
x += v # integrate position
```


- Allows a velocity to "build up" along shallow directions
- Velocity becomes damped in steep direction due to quickly changing sign

$$V_{t} = \mu * V_{t-1} - (1 - \mu) * l * \nabla f(W_{t-1})$$

$$W_{t} = W_{t-1} + V_{t}$$

优**点**:

- 1. 动量移动得更快(因为它积累的所有动量)
- 2. 动量有机会逃脱局部极小值(因为动量可能推动它脱离局部极小值)。

SGD

VS

Momentum

notice momentum overshooting the target, but overall getting to the minimum much faster than vanilla SGD.

Nesterov: the only difference...

Nesterov Momentum(牛顿动量) update (NAG)

Ordinary momentum update:

$$V_{t} = \mu * V_{t-1} - (1 - \mu) * l * \nabla f(W_{t-1})$$

$$W_t = W_{t-1} + \alpha V_t$$

$$V_{t} = \mu * V_{t-1} - (1 - \mu) * l * \nabla f(W_{t-1})$$
 $V_{t} = \mu * V_{t-1} - (1 - \mu) * l * \nabla f(W_{t-1} + \gamma V_{t-1})$ $W_{t} = W_{t-1} + \alpha V_{t}$ $\mathcal{V}_{t} = \mathcal{V}_{t-1} + \alpha V_{t}$ $\mathcal{V}_{t} = \mathcal{V}_{t-1} + \alpha V_{t}$

$$V_{t} = \mu * V_{t-1} - \varepsilon * \nabla f(W_{t-1} + \mu V_{t-1})$$

$$W_{t} = W_{t-1} + V_{t}$$

Slightly inconvenient... usually we have :

Variable transform and rearranging saves the day:

$$\emptyset_{t-1} = W_{t-1} + \mu V_{t-1}$$

Replace, rearrange and obtain:

$$v_t = \mu v_{t-1} - \epsilon \nabla f(\phi_{t-1})$$

$$\phi_t = \phi_{t-1} - \mu v_{t-1} + (1+\mu)v_t$$
 $\Rightarrow \phi_t = W_t$ $\Rightarrow \phi$

$$W_t = W_{t-1} - \mu v_{t-1} + (1 + \mu)v_t$$

 $\Rightarrow m{ heta}_t = m{ heta}_t'$,则上述公式为: $m{ heta}_{t+1} = m{ heta}_t + m{eta}^2 \, V_t - (1+m{eta}) \, m{lpha}
abla_{m{ heta}_t} L(m{ heta}_t)$

v = mu * v - learning rate * dx

AdaGrad (Adaptive Gradient) update [Duchi et al., 2011]

```
# Adagrad update
cache += dx**2
x += - learning_rate * dx / (np.sqrt(cache) + 1e-7)
```

Added element-wise scaling of the gradient based on the historical sum of squares in each dimension

$$S_{t} = S_{t-1} + \nabla W \cdot \nabla W$$

$$W_{t} = W_{t-1} - \frac{l}{sqrt(S_{t}) + \varepsilon} \nabla W$$

AdaGrad update

```
cache += dx**2
x += - learning_rate * dx / (np.sqrt(cache) + 1e-7)
```

Q: What happens with AdaGrad?

AdaGrad update

```
cache += dx**2
x += - learning rate * dx / (np.sqrt(cache) + 1e-7)
```

Q2: What happens to the step size over long time? 中后期,分母上梯度累加的平方和会越来越大,使得参数更新量趋近于0,使得训练提前结束,无法学习

http://github.com/lilipads/gradient_descent_viz

red:adagrad

RMSProp update

 $S_{t} = \beta S_{t-1} + (1 - \beta) \nabla W \cdot \nabla W$

```
# RMSProp
cache = decay_rate * cache + (1 - decay_rate) * dx**2
x += - learning_rate * dx / (np.sqrt(cache) + 1e-7)
```

 $W_{t} = W_{t-1} - \frac{l}{sqrt(S_{t}) + \varepsilon} \nabla W$

rmsprop: A mini-batch version of rprop

- rprop is equivalent to using the gradient but also dividing by the size of the gradient.
 - The problem with mini-batch rprop is that we divide by a different number for each mini-batch. So why not force the number we divide by to be very similar for adjacent mini-batches?
- rmsprop: Keep a moving average of the squared gradient for each weight $MeanSquare(w, t) = 0.9 \ MeanSquare(w, t-1) + 0.1 \left(\frac{\partial E}{\partial w}(t)\right)^2$
- Dividing the gradient by $\sqrt{MeanSquare}(w, t)$ makes the learning work much better (Tijmen Tieleman, unpublished).

Introduced in a slide in Geoff Hinton's Coursera class, lecture 6

rmsprop: A mini-batch version of rprop

- rprop is equivalent to using the gradient but also dividing by the size of the gradient.
 - The problem with mini-batch rprop is that we divide by a different number for each mini-batch. So why not force the number we divide by to be very similar for adjacent mini-batches?
- rmsprop: Keep a moving average of the squared gradient for each weight $MeanSquare(w, t) = 0.9 \ MeanSquare(w, t-1) + 0.1 \left(\frac{\partial E}{\partial w}(t)\right)^2$
- Dividing the gradient by $\sqrt{MeanSquare(w, t)}$ makes the learning work much better (Tijmen Tieleman, unpublished).

Introduced in a slide in Geoff Hinton's Coursera class, lecture 6

Cited by several papers as:

[52] T. Tieleman and G. E. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude., 2012.

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

(incomplete, but close)

```
# Adam
m = beta1*m + (1-beta1)*dx # update first moment
v = beta2*v + (1-beta2)*(dx**2) # update second moment
x += - learning_rate * m / (np.sqrt(v) + le-7)
```

(incomplete, but close)

```
# Adam
m = beta1*m + (1-beta1)*dx # update first moment
v = beta2*v + (1-beta2)*(dx**2) # update second moment
x += - learning_rate * m / (np.sqrt(v) + 1e-7)

RMSProp-like
```

Looks a bit like RMSProp with momentum

(incomplete, but close)

```
# Adam
m = beta1*m + (1-beta1)*dx # update first moment
v = beta2*v + (1-beta2)*(dx**2) # update second moment
x += - learning_rate * m / (np.sqrt(v) + 1e-7)

RMSProp-like
```

Looks a bit like RMSProp with momentum

```
# RMSProp
cache = decay_rate * cache + (1 - decay_rate) * dx**2
x += - learning_rate * dx / (np.sqrt(cache) + le-7)
```

```
# Adam
m,v = #... initialize caches to zeros
for t in xrange(1, big_number):
    dx = #... evaluate gradient
    m = beta1*m + (1-beta1)*dx # update first moment
    v = beta2*v + (1-beta2)*(dx**2) # update second moment
    wb = m/(1-beta1**t) # correct bias
    vb = v/(1-beta2**t) # correct bias
    x += - learning rate * mb / (np.sqrt(vb) + 1e-7)

RMSProp-like
```

The bias correction compensates for the fact that m,v are initialized at zero and need some time to "warm up".

The effects of different update formulas

(image credits to Alec Radford)

Gradient Descent Visualization

https://github.com/lilipads/gradient_d escent_viz

Summary

- Simple Gradient Methods like SGD can make adequate progress to an optimum when used on minibatches of data.
- Second-order methods make much better progress toward the goal, but are more expensive and unstable.
- Convergence rates: quadratic, linear, O(1/n).
- Momentum: is another method to produce better effective gradients.
- ADAGRAD, RMSprop diagonally scale the gradient. ADAM scales and applies momentum.