Leçon 152. Déterminant. Exemples et applications.

1. NOTATION. Dans toute cette leçon, on considère un corps K et un entier $n \in N^*$.

1. Formes multilinéaires et déterminant

1.1. Les formes multilinéaire

- 2. DÉFINITION. Soient E_1, \ldots, E_p et F des **K**-espaces vectoriels. Une application du produit $E_1 \times \cdots \times E_p$ dans l'espace F est p-linéaire si ses p applications partielles sont linéaires. Lorsque $F = \mathbf{K}$, on parle de forme multilinéaire.
- 3. Exemple. L'application $(\varphi, x) \in E^* \times E \longmapsto \varphi(x)$ est une forme bilinéaire.
- 4. DÉFINITION. Une forme p-linéaire $f: E^p \longrightarrow \mathbf{K}$ est
 - alternée si, pour tout p-uplet $(x_1, \ldots, x_p) \in E^p$ tel que $x_i = x_j$ pour deux indices $i \neq j$, alors $f(x_1, \ldots, x_p) = 0$;
 - antisymétrique si, pour tout p-uplet $(x_1,\ldots,x_p)\in E^p$, on a

$$f(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_p) = -f(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_p), \qquad i \neq j.$$

5. Remarque. Une forme p-linéaire $f \colon E^p \longrightarrow \mathbf{K}$ est antisymétrique si et seulement si l'assertion

$$\forall \sigma \in \mathfrak{S}_p, \ \forall (x_1, \dots, x_p) \in E^p, \qquad f(x_{\sigma(1)}, \dots, x_{\sigma(p)}) = \varepsilon(\sigma) f(x_1, \dots, x_p)$$

- est satisfaite.
- 6. Théorème. Si le corps \mathbf{K} est de caractéristique différente de 2, alors toute forme p-linéaire sur E^p est antisymétrique si et seulement si elle est alternée.
- 7. PROPOSITION. Soient $f: E^p \longrightarrow \mathbf{K}$ une forme p-linéaire alternée et (e_1, \dots, e_p) une famille liée de E. Alors $f(e_1, \dots, e_p) = 0$.

1.2. Le déterminant vu comme une forme multlinéaire

- 8. Théorème. Dans la suite, on suppose que l'espace E est de dimension finie n. Alors l'ensemble de formes n-linéaires alternée $E^n \longrightarrow \mathbf{K}$ est un \mathbf{K} -espace vectoriel de dimension 1. De plus, il existe une unique forme n-linéaire alternée prenant la valeur 1 sur une base fixée de E.
- 9. DÉFINITION. Soit \mathscr{B} une base de E. Avec le théorème, il existe une unique forme n-linéaire alternée $\det_{\mathscr{B}}: E^n \longrightarrow \mathbf{K}$ telle que $\det_{\mathscr{B}}(\mathscr{B}) = 1$. On l'appelle le $d\acute{e}terminant$ dans la base \mathscr{B} .
- 10. PROPOSITION. Soient \mathscr{B} et \mathscr{B}' deux bases de E.
 - Pour toute forme n-linéaire alternée $f\colon E^n\longrightarrow \mathbf{K},$ on a

$$\forall (x_1, \dots, x_n) \in E^n, \quad f(x_1, \dots, x_n) = f(\mathscr{B}) \det_{\mathscr{B}}(x_1, \dots, x_n).$$

– On a

$$\forall (x_1, \dots, x_n) \in E^n, \qquad \det_{\mathscr{B}'}(x_1, \dots, x_n) = \det_{\mathscr{B}'}(\mathscr{B}) \det_{\mathscr{B}}(x_1, \dots, x_n).$$

- 11. Théorème. Soient $x_1, \ldots, x_n \in E$ des vecteurs. Alors les propositions suivantes sont équivalents :
 - la famille (x_1, \ldots, x_n) est liée;
 - pour toute base \mathscr{B} de E, on a $\det_{\mathscr{B}}(x_1,\ldots,x_n)=0$;
 - il existe une base \mathscr{B} de E telle que $\det_{\mathscr{B}}(x_1,\ldots,x_n)=0$.

1.3. Le déterminant d'une matrice ou d'un endomorphismes

- 12. PROPOSITION. Soient $u \in \mathcal{L}(E)$ un endomorphisme et $\mathcal{B} := (e_1, \dots, e_n)$ une base de E. Alors la quantité $\det_{\mathcal{B}}(u(e_1), \dots, u(e_n))$ ne dépend pas de la base choisie \mathcal{B} .
- 13. DÉFINITION. Sous les mêmes notations, cette quantité est appelée le $d\acute{e}terminant$ de l'endomorphisme u, notée det u.
- 14. PROPOSITION. Soient $u, v \in \mathcal{L}(E)$ deux endomorphismes.
 - On a $det(u \circ v) = det u \times det v$.
 - Le déterminant de l'identité Id_E vaut 1.
 - L'endomorphisme u est inversible si et seulement si son déterminant n'est pas nul et, dans ce cas, on a det $u^{-1} = (\det u)^{-1}$.
- 15. DÉFINITION. Le déterminant d'une matrice carrée $A \in \mathcal{M}_n(\mathbf{K})$ est la quantité

$$\det A := \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}$$

- où les scalaires $a_{i,j}$ sont ses coefficients. On le note aussi |A|.
- 16. Exemple. Pour $a, b, c, d \in \mathbf{K}$, on a

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

- 17. REMARQUE. Le déterminant d'une matrice est invariant par extension de corps.
- 18. Proposition. Une matrice et sa transposée ont le même déterminant.
- 19. Proposition. Le déterminant d'une matrice triangulaire est le produit de ses coefficients diagonaux.
- 20. PROPOSITION. Soient $u \in \mathcal{L}(E)$ un endomorphisme et $A \in \mathcal{M}_n(\mathbf{K})$ sa matrice dans une base quelconque. Alors det $u = \det A$.
- 21. COROLLAIRE. Deux matrices semblables ont le même déterminant.
- 22. COROLLAIRE. L'application det: $GL_n(\mathbf{K}) \longrightarrow \mathbf{K}^{\times}$ est un morphisme de groupes. On note $SL_n(\mathbf{K}) \subset GL_n(\mathbf{K})$ son noyau.
- 23. Proposition. Le déterminant d'une matrice est polynomiale en ses coefficients. Par conséquent, elle est de classe \mathscr{C}^{∞} et sa différentielle s'écrit

$$d\det(M)(H) = \operatorname{tr}(^{\mathsf{t}}(\operatorname{Com} M)H), \qquad M, H \in \mathscr{M}_n(\mathbf{R}).$$

- 24. LEMME. On suppose que $\mathbf{K} \neq \mathbf{F}_2$ et $n \neq 2$. Soit G un groupe abélien. Alors tout morphisme de groupes $\mathrm{GL}_n(\mathbf{K}) \longrightarrow G$ se factorise par le déterminant.
- 25. THÉORÈME (Frobenius-Zolotarev). Soient p un nombre premier et E un \mathbf{F}_p -espace vectoriel. Alors tout isomorphisme $u \in \mathrm{GL}(E) \subset \mathfrak{S}(E)$ vérifie

$$\varepsilon(u) = \left(\frac{\det u}{p}\right).$$

2.1. Déterminant par blocs, pivot de Gauss

26. Proposition. Soient $A \in \mathcal{M}_p(\mathbf{K})$, $B \in \mathcal{M}_{n-p}(\mathbf{K})$ et $C \in \mathcal{M}_{p,n-p}(\mathbf{K})$ trois matrices. Alors

$$\begin{vmatrix} A & C \\ 0 & B \end{vmatrix} = \det A \times \det B.$$

27. Proposition. Les matrices de transvection, de dilation et de permutation

$$T_{i,j}(\lambda) := I_n + \lambda E_{i,j},$$

$$D_i(\lambda) := I_n + (\lambda - 1)E_{i,i},$$

$$P_{i,j} := I_n - (E_{i,i} + E_{j,j}) + E_{i,j} + E_{j,i}$$

avec $i \neq j$ et $\lambda \in \mathbf{K}^{\times}$ sont respectivement de déterminant 1, 1 et -1.

28. Remarque. En appliquant l'algorithme de Gauss à une matrice, on peut donc calculer son déterminant plus facilement.

29. Exemple. En effectuant le opération $L_3 \leftarrow L_3 - 2L_1$, on obtient

$$\begin{vmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 2 & -2 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & -4 & 1 \end{vmatrix}$$

puis, en effectuant l'opération $L_3 \leftarrow L_3 + 2L_2$, on trouve finalement

$$\begin{vmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 2 & -2 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{vmatrix} = 6.$$

2.2. Mineurs, développements et comatrice

30. DÉFINITION. Un mineur d'indice $(i,j) \in [1,n]^2$ d'une matrice carré $A \in \mathcal{M}_n(\mathbf{K})$ est la déterminant $\Delta_{i,j} \in \mathbf{K}$ de la matrice A à laquelle on a enlevé la ligne i et la colonne j.

31. Proposition (développe par rapport à une ligne ou colonne). On reprend les mêmes notations. Notons $a_{i,j}$ les coefficients de la matrice A. Alors

– pour tout indice $j \in [1, n]$, on a

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \Delta_{i,j} ;$$

– pour tout indice $i \in [1, n]$, on a

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \Delta_{i,j} ;$$

32. Exemple. Pour $a, b, c, d, e, f, g, h \in \mathbf{K}$, on a

$$\begin{vmatrix} a & b & 0 \\ c & d & e \\ f & g & h \end{vmatrix} = a \begin{vmatrix} d & e \\ g & h \end{vmatrix} - b \begin{vmatrix} c & e \\ f & h \end{vmatrix}.$$

33. DÉFINITION. Sous les mêmes notations, la comatrice de la matrice A est la matrice

$$\operatorname{Com} A := (\Delta_{i,j})_{1 \leqslant i,j \leqslant n}.$$

34. PROPOSITION. Soit $A \in \mathcal{M}_n(\mathbf{K})$ une matrice. Alors $A^{\operatorname{t}}(\operatorname{Com} A) = {}^{\operatorname{t}}(\operatorname{Com} A)A = (\det A)I_n.$

35. EXEMPLE. Pour $a, b, c, d \in \mathbf{K}$ avec $ad - bc \neq 0$, alors

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

2.3. Applications de ces techniques

36. PROPOSITION (déterminant de Vandemonde). Soient $x_1, \ldots, x_n \in \mathbf{K}$. La déterminant de la matrice

$$V(x_1, \dots, x_n) = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_1 & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix} \in \mathcal{M}_n(\mathbf{K})$$

vaut

$$\det V(x_1, \dots, x_n) = \prod_{i < j} (x_j - x_i).$$

37. COROLLAIRE. La matrice $V(x_1, ..., x_n)$ est inversible si et seulement si les scalaires x_i sont deux à deux distincts.

38. APPLICATION. Soient $n \ge 1$ un entier et $a_1, \ldots, a_n \in \mathbf{C}$ des complexes. Notons la matrice

$$A := \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_n & a_1 & \cdots & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & \cdots & a_1 \end{pmatrix} \in \mathscr{M}_n(\mathbf{C}),$$

le complexe $\omega := e^{2i\pi/n} \in \mathbf{C}$ et le polynôme $P := a_1 + \dots + a_n X^{n-1} \in \mathbf{C}[X]$. Alors det $A = P(1)P(\omega) \cdots P(\omega^{n-1})$.

39. PROPOSITION. Soit $(P^k)_{k \in \mathbb{N}}$ une suite de \mathbb{C}^n qu'en notant $P^k = (z_1^k, \dots, z_n^k)$ pour tout entier $k \in \mathbb{N}$, elle satisfasse la relation

$$P^{k+1} = \left(\frac{z_1^k + z_2^k}{2}, \frac{z_2^k + z_3^k}{2}, \dots, \frac{z_n^k + z_1^k}{2}\right), \qquad k \in \mathbf{N}$$

Alors la suite $(P^k)_{k \in \mathbb{N}}$ converge vers l'élément $(g, \dots, g) \in \mathbb{C}^n$ avec

$$g \coloneqq \frac{z_1^0 + \dots + z_n^0}{n}.$$

40. Proposition. Soient $a, b \in \mathbf{K}$ deux scalaires distincts. Alors

$$\begin{vmatrix} a+b & ab & & & (0) \\ 1 & a+b & \ddots & & & \\ & \ddots & \ddots & ab \\ (0) & & 1 & a+b \end{vmatrix} = \frac{a^{n+1}-b^{n+1}}{a-b}.$$

3. Le déterminant en pratique

3.1. Résolution des systèmes linéaires carrés

41. THÉORÈME (formule de Cramer). Soient $A \in GL_n(\mathbf{K})$ une matrice et $b \in \mathbf{K}^n$ et vecteur. On écrit

$$A = (c_1 \quad \cdots \quad c_n) \quad \text{avec} \quad c_i \in \mathbf{K}^n.$$

Alors l'unique solution $x=(x_1,\dots,x_n)\in K^n$ du système Ax=b est donnée par la formule

$$x_i = \frac{\det(c_1 \cdots c_{i-1} \ b \ c_{i+1} \cdots c_n)}{\det A}, \quad i \in [1, n].$$

42. Exemple. Considérons le système

$$\begin{cases} 2x - 5y + 2z = 7, \\ x + 2y - 4z = 3, \\ 3x - 4y - 6z = 5. \end{cases}$$

Alors la première coordonnées de sa solution vaut

$$\begin{vmatrix} 2 & -5 & 2 \\ 1 & 2 & -4 \\ 3 & -4 & -6 \end{vmatrix}^{-1} \times \begin{vmatrix} 7 & -5 & 2 \\ 3 & 2 & -4 \\ 5 & -4 & -6 \end{vmatrix} = 5.$$

43. Remarque. Cette méthode n'est pas envisageable en pratique puisqu'elle requiert au plus n^4 opérations sur le corps K.

3.2. Application à la réduction des matrices

- 44. DÉFINITION. Le polynôme caractéristique d'une matrice $A \in \mathcal{M}_n(\mathbf{K})$ est le polynôme $\chi_A := \det(XI_n A) \in \mathbf{K}[X]$.
- 45. Exemple. Pour $a, b, c, d \in A$, le polynôme caractéristique de la matrice

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

est $X^2 - (a+b)X + ad - bc$.

- 46. Proposition. Les valeurs propres d'une matrice sur \mathbf{K} sont exactement les racines de son polynôme caractéristique sur \mathbf{K} .
- 47. Théorème (Cayley-Hamilton). Le polynôme minimal d'une matrice divise son polynôme caractéristique.
- 48. THÉORÈME. Une matrice est trigonalisable si et seulement si son polynôme caractéristique est scindé.
- 49. THÉORÈME. Une matrice $A \in \mathcal{M}_n(\mathbf{K})$ est diagonalisable si et seulement si, pour toute racine $\lambda \in \mathbf{K}$ d'ordre $m \ge 1$ du polynôme χ_A , on a $m = \dim \operatorname{Ker}(A \lambda I_n)$.

3.3. Interprétation géométrique et lien avec la théorie de la mesure

50. THÉORÈME. Soit λ la mesure de Lebesgue sur \mathbf{R}^n . Soient $u \in \mathcal{L}(\mathbf{R}^n)$ un endomorphisme et $X \in \mathcal{B}(\mathbf{R}^n)$ un borélien. Alors

$$\lambda(u(X)) = |\det U| \lambda(X).$$

51. APPLICATION. Soient $v_1, \ldots, v_n \in \mathbf{R}^n$ des vecteurs. Alors le volume du parallélo-

gramme

$$\mathscr{P} := \{ \mu_1 v_1 + \dots + \mu_n v_n \mid \mu_i \geqslant 0, \ \mu_1 + \dots + \mu_n = 1 \} \subset \mathbf{R}^n$$

est de volume

$$\lambda(\mathscr{P}) = |\det(v_1, \dots, v_n)|.$$

52. THÉORÈME (changement de variables). Soient **K** le corps des réels ou des complexes et $\varphi \colon U \longrightarrow V$ un \mathscr{C}^1 -difféomorphisme entre deux ouverts $U, V \subset \mathbf{R}^n$. Pour toute fonction intégrable $f \colon V \longrightarrow \mathbf{K}$, on a

$$\int_{V} f(x) dx = \int_{U} f(\varphi(u)) |\det J_{\varphi}(u)| du.$$

53. Exemple (coordonnées polaires). On considère le \mathscr{C}^1 -difféomorphisme

$$\varphi \colon \begin{vmatrix} \mathbf{R}_{+}^{*} \times] - \pi, \pi[\longrightarrow \mathbf{R}^{2} \setminus (\mathbf{R}_{-} \times \{0\}), \\ (r, \theta) \longmapsto (r \cos \theta, r \sin \theta). \end{vmatrix}$$

Pour toute fonction intégrable $f : \mathbf{R}^2 \longrightarrow \mathbf{K}$, on a

$$\int_{\mathbf{R}^2} f(x) \, \mathrm{d}x = \int_0^{2\pi} \int_0^{+\infty} f(r\cos\theta, r\sin\theta) \times r \, \mathrm{d}r \, \mathrm{d}\theta.$$

54. APPLICATION. L'intégrale de Gauss vaut

$$\int_0^{+\infty} e^{-x^2} \, \mathrm{d}x = \frac{\sqrt{\pi}}{2}.$$

^[1] Vincent Beck, Jérôme Malick et Gabriel Peyré. Objectif Agrégation. 2e édition. H&K, 2005.

Xavier Gourdon. Algèbre. 2e édition. Ellipses, 2009

^[3] Xavier Gourdon. Analyse. 2e édition. Ellipses, 2008.