《高等数学 A1》试券(B 券)

题号	_	=	三	四	五.	总分
得分						

一、单项选择题:(填上正确选择前面的字母,共15分,每小题3分)

得分

- 1. 以下说法正确的是(
- A. f(x) 在 x_0 点的左右极限存在,则 f(x) 在 x_0 点的极限必存在
- B. f(x) 在 x_0 点左右连续,则 f(x) 在 x_0 点必连续
- C. f(x) 在 x_0 点左右可导,则 f(x) 在 x_0 点必可导
- D. 以上说法都不对

2. 设
$$f(x) = \int_{3x}^{x^2} \sin t^2 dt \, \exists g(x) = x^3, \, \text{则} \exists x \to 0 \, \text{时}, \, f(x) \, \exists g(x) \, \text{的}$$
 ()

- A. 等价无穷小
- B. 同阶但非等价无穷小 C. 高阶无穷小 D. 低阶无穷小

- C. 1
- D. 2

- 4. 下列式子中为微分方程的是()
- A. u'v + uv' = (uv)'

B.
$$\frac{dy}{dx} + e^x = \frac{d(y + e^x)}{dx}$$

C.
$$(x^2 - y^2)dx + (x^2 + y^2)dy = 0$$

C.
$$(x^2 - y^2)dx + (x^2 + y^2)dy = 0$$
 D. $(y \sin x)'' = y'' \sin x + 2y' \cos x - y \sin x$

5. 设
$$y = \begin{cases} \frac{x^2 - x}{|x|(1-|x|)}, & x \neq -1,0,1 \\ -1, & x = -1,0,1 \end{cases}$$
, 则以下说话正确的是()

A. x = 0 是连续点

B. x = 0 是可去间断点

C. x = -1 是跳跃间断点

D. x = 1是可去间断点

得分

二、填空题(共18分,每小题3分)

6. 设 f(x) 的定义域为 [0,1],则函数 $f(\ln x)$ 的定义域为_____

7. 极限
$$\lim_{x \to +\infty} \arcsin(\sqrt{x^2 + x} - x) = \underline{\hspace{1cm}}$$

8. 设直线 y=x 与曲线 $y = \log_a^x$ 相切,则 a =______

9. 设
$$f(x) = \int_1^x e^{-t} dt$$
,则 $\int_0^1 f(x) dx =$ ______

- 10. 一阶微分方程 $y' = e^{2x-y}$ 的通解是_____
- 11. 设函数 $f(x) = \begin{cases} (\cos x)^{-\sin^2 x}, 0 < |x| < \frac{\pi}{2} \text{ 在 } x = 0 \text{ 点连续,则 } a = \underline{} \\ a, \qquad x = 0 \end{cases}$

得分

三、解答题: (共42分,每小题6分)

12. 设
$$f(t) = \lim_{x \to \infty} t \left(\frac{x+t}{x-t} \right)^x$$
,求 $f'(t)$ 。

13. 求曲线 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ 在点 $(\frac{\sqrt{2}}{4}a, \frac{\sqrt{2}}{4}a)$ 处的切线和法线方程。

14. 设
$$f(x)$$
在 $[1,+\infty)$ 上可导, $f(1)=2$, $f'(e^x+1)=e^{2x}+2$,求 $f(x)$ 。

15. 计算定积分
$$\int_{-1}^{1} (x^2 \tan x + \sqrt{1-x^2}) dx$$
 。

17. 求微分方程 $xy'-2y = x^3$ 的通解。

18. 求微分方程 $y'' + y' = 2x^2 - 3$ 的通解。

得分

四、分析与应用题(共20分,每小题10分)

19. 设 $f(x) = x^2 - a \int_0^2 f(x) dx x + b \int_0^1 f(x) dx$, 其中 a, b 为参数, 求 a, b 的值使得

$$\int_0^1 f(x)dx = 1 \, \pi \ln \int_0^2 f(x)dx = \lim_{x \to 0} \frac{\int_0^{\sin(2x)} \frac{\sin t}{t} dt}{\ln(1+x)} \, \circ$$

- 20. 设 S_1 为曲线 $y=x^2$ $(x\geq 0)$,直线 $y=t^2$ (t 为参数, $t\in [0,1]$),及 y 轴所围图形的面积, S_2 为曲线 $y=x^2$,直线 $y=t^2$ 及 x=1 所围图形的面积,记 $S=S_1+S_2$,
- 1). 求S(t)的凹凸性及拐点; 2). 问t为何值时S取得最大值,最小值。

得分

五、证明题: (共5分,每小题5分)

21. 设函数 f(x) 在[a, b] 上连续,且 f(x) > 0,令 $F(x) = \int_a^x f(t)dt + \int_b^x \frac{dt}{f(t)}$,试证明 F(x) 在(a, b) 内有且仅有一个零点。