S. Bianchi P. Fekete F. Domingo

Deptartamento de Matemática
 Escuela de Ciencias Exactas y Naturales
 UNR

4 de octubre de 2021

OUTLINE

1 DEFINICIONES Y EJEMPLOS

2 ALGORITMO DE DIJKSTRA

3 COMPLEJIDAD DEL ALGORITMO DE DIJKSTRA

Sea G = (V, E) grafo dirigido, conexo y sin lazos.

Si a cada arista $e \in E$ se le asigna $p(e) \in \mathbb{R}^+$, se dice que G es *ponderado*.

Si $x,y \in V$ pero $(x,y) \notin E$ entonces definimos $p(x,y) = \infty$.

Veamos un ejemplo:

En este caso no existe el arco (a,d) por lo tanto $p(a,d) = \infty$.

Sea G = (V, E) dirigido, conexo, ponderado y sin lazos.

DEFINICIÓN

Sean $a,b \in V$ tales que existe un camino dirigido de a hacia b en G.

Llamamos camino más corto de a a b al a-b camino dirigido P para el cual el valor $\sum_{e\in E(P)}p(e)$ es el menor posible.

Definimos la función $d: V \times V \to \mathbb{R}^+ \cup \{\infty\}$ tal que $d(a,b) = \sum_{e \in E(P)} p(e)$ cuando P es el a-b camino más corto, y $d(a,b) = \infty$ cuando no existe un a-b camino en G. El valor d(a,b) es llamado *distancia* de a hacia b. Además definimos d(a,a) = 0 para todo $a \in V$.

Observación Si P es el a-b camino dirigido más corto entonces P es simple.

Ejemplo:

Para calcular d(a,f):

- camino P:(a,c),(c,f) y peso p(a,c)+p(c,f)=12,
- $\bullet \ \operatorname{camino} \ P': (a,b), (b,c), (c,f) \ \operatorname{y} \ \operatorname{peso} \ p(a,b) + p(b,c) + p(c,f) = 12.$

Entonces d(a,f) = 12.

Ejemplo (cont.):

Para calcular d(f,a):

- $\operatorname{arco}(f,a)$ y $\operatorname{peso}p(f,a)=8$,
- camino P: (f,h), (h,a) y peso p(f,h) + p(h,a) = 7.

Entonces d(f, a) = 7.

Observemos que $d(g, v) = \infty$ para cualquier $v \neq g$.

Sea G = (V, E) dirigido, conexo, ponderado y sin lazos.

Sea $v_0 \in V$.

OBJETIVO

- 1) Determinar $d(v_0, v)$ para cualquier $v \in V$.
- 2) Obtener camino dirigido más corto de v_0 a v si $d(v_0, v) < \infty$.

Para resolver ambos problemas presentaremos el algoritmo desarrollado por Edsger Wybe Dijkstra (1930-2002)

Sea $v_0 \in V$ fijo. Sea $S \subset V$ tal que $v_0 \in S$ y $\bar{S} = V - S$.

DEFINICIÓN

La distancia de v_0 a \bar{S} es

$$d(v_0,\bar{S}) = \min\{d(v_0,v) : v \in \bar{S}\}.$$

Veamos un ejemplo:

Aquí
$$S = \{v_0\}$$
 y $\bar{S} = \{b,c,h,f,g\}$. Entonces $d(v_0,\bar{S}) = min\{p(a,b),p(a,c)\} = p(a,b) = 5$.

Observación Cuando $d(v_0,\bar{S})<\infty$, entonces $d(v_0,\bar{S})$ representa la longitud de un camino más corto dirigido de v_0 a un vértice $v\in\bar{S}$. Es decir, existe un vértice $v_{m+1}\in\bar{S}$ tal que $d(v_0,\bar{S})=d(v_0,v_{m+1})$ y existe un camino simple dirigido $P:(v_0,v_1),(v_1,v_2),\ldots,(v_{m-1},v_m),(v_m,v_{m+1})$ en G, que además es el camino más corto entre v_0 y v_{m+1} .

Veamos un ejemplo:

Aquí $S = \{v_0, b, c\}$ y $\bar{S} = \{h, f, g\}$. Vamos a calcular $d(v_0, \bar{S})$

Ejemplo(cont.)

- camino $P_1: (a,c), (c,f)$ de costo p(a,c) + p(c,f) = 12.
- camino $P_2: (a,c), (c,h)$ de costo p(a,c) + p(c,h) = 17.
- camino P_3 : (a,b), (b,c), (c,f) de costo p(a,b) + p(b,c) + p(c,f) = 12.
- camino P_4 : (a,b),(b,c),(c,h) de costo p(a,b)+p(b,c)+p(c,h)=17.

Ejemplo(cont.)

Hay dos caminos más cortos:

- $P_1:(a,c),(c,f)$ de costo p(a,c)+p(c,f)=12,
- $P_3:(a,b),(b,c),(c,f)$ de costo p(a,b)+p(b,c)+p(c,f)=12.

En los dos se observa que el último vértice del camino, f en P_1 y P_3 , pertenece a \bar{S} y los restantes vértices en cada camino están en S.

LEMA

Sea G=(V,E) grafo dirigido y ponderado. Para cada arista $(a,b)\in E$, $p(a,b)\in \mathbb{R}^+$. Si $(a,b)\notin E$, $p(a,b)=\infty$. Sea $v_0\in V$ y sea $S\subset V$ tal que $v_0\in S$ y $\overline{S}=V-S$. Supongamos que $d(v_0,\overline{S})=d(v_0,v_{m+1})$ y $P:(v_0,v_1),(v_1,v_2),\ldots,(v_{m-1},v_m),(v_m,v_{m+1})$ es un camino más corto entre v_0 y v_{m+1} en G.

Entonces:

- $\bullet \ \{v_0, v_1, \dots, v_m\} \subset S,$
- $P_k: (v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$ es el camino más corto entre v_0 y v_k en G, para todo $1 \le k \le m$.

Demostración

Ejercicio

COROLARIO

Sea G=(V,E) grafo dirigido, conexo, ponderado. Sea $v_0\in S\subset V$ y $\bar{S}=V-S$. Entonces

$$d(v_0,\overline{S})=\min\{d(v_0,u)+p(u,w):u\in S \text{ y } w\in\overline{S}\}.$$

Sigue que existen $x \in S$ e $y \in \overline{S}$ tales que $d(v_0, \overline{S}) = d(v_0, x) + p(x, y)$.

El algoritmo comienza con $S_0 = \{v_0\}$ y calcula

$$d(v_0,\bar{S}_0) = \min\{d(v_0,u) + p(u,w) : u \in S_0 \text{ y } w \in \bar{S}_0\}.$$

Pero $u \in S_0 = \{v_0\}$ si y sólo si $u = v_0$. Entonces $d(v_0, u) = 0$ y además

$$d(v_0, \bar{S}_0) = \min\{p(v_0, w) : w \in \bar{S}_0\}.$$

Si $v_1\in \bar{S}_0$ es tal que $p(v_0,v_1)=min\{p(v_0,w):w\in \bar{S}_0\}$, entonces definimos $S_1=S_0\cup\{v_1\}$.

El proceso consiste en:

una vez obtenido el conjunto $S_i = \{v_0, v_1, \dots, v_i\}$, calcular $d(v_0, \bar{S}_i)$.

Si $v_{i+1} \in \overline{S}_i$ es tal $d(v_0, \overline{S}_i) = d(v_0, v_{i+1})$ entonces $S_{i+1} = S_i \cup \{v_{i+1}\}.$

El proceso se detiene cuando $\bar{S}_{n-1}=\emptyset$ o $d(v_0,\bar{S}_i)=\infty$ para algún $0\leq i\leq n-2$.

El procedimiento utiliza *etiquetas* en cada $v \in V$ de la forma (L(v), u).

Al finalizar, $L(v) = d(v_0, v)$ para todo $v \in V$, $v \neq v_0$ y u es el vértice que precede a v en el camino más corto desde v_0 (si existe).

Al inicio v_0 recibe la etiqueta (0,-) mientras que $v \neq v_0$ es etiquetado por $(\infty,-)$.

Sea G = (V, E) ponderado, dirigido y sin lazos. Sea n = |V| y $v_0 \in V$.

Algoritmo de Dijkstra

- 1 i:=0 , sean $S_0=\{v_0\},$ $\bar{S}_0=V-S_0,$ $L(v_0)=0$ y $L(v)=\infty$ para todo $v\in V,$ $v\neq v_0.$
 - ▶ Si n = 1, entonces $V = \{v_0\}$. Fin.
 - ▶ Si n > 1, ir al Paso 2.
- 2 Para cada $v \in \bar{S}_i$, hacer $L(v) = min\{L(v), L(u) + p(u, v) : u \in S_i\}$. Si L(v) cambia su valor, sea $y \in S_i$ el valor que produce el mínimo y v adquiere la nueva etiqueta (L(v), y).
- 3 Si cada vértice de \bar{S}_i (para algún $i:=0,\ldots,n-2$) tiene etiqueta $(\infty,-)$, entonces las etiquetas de los vértices del grafo tiene la información buscada.
 - Si existe $v \in \bar{S}_i$ con $L(v) < \infty$, entonces:

Algoritmo de Dijkstra

- 3 (cont.)
 - ▶ Sea $v_{i+1} \in \bar{S}_i$ tal que $L(v_{i+1}) = min\{L(v) : v \in \bar{S}_i\}$ (si hay más de uno elegir cualquiera).
 - Sea $S_{i+1} = S_i \cup \{v_{i+1}\}.$
 - i := i + 1. Si i = n 1, las etiquetas del grafo tienen la información buscada. Si i < n 1 ir al Paso 2.

Vamos a aplicar el algoritmo en este grafo:

Paso 1 Inicialización i:=0. $S_0=\{a\}$, L(a)=0 y $L(v)=\infty$ para $v\neq a$. n=8>1, ir Paso 2

Paso 2 Para $v \in \overline{S}_0 = \{b, c, d, e, f, g, h\}$ calcular $L(v) = min\{\infty, p(a, v)\}$.

Observar que $L(d)=L(g)=\infty$ y entonces estas etiquetas no cambian. Paso 3 existe $v\in \bar{S}_0$ con $L(v)<\infty$. $L(h)=\min\{L(v):v\in \bar{S}_0\}$. $S_1=\{a,h\}$. i:=1. 1<8-1=7. ir al Paso 2.

Paso 2 Para $v \in \overline{S}_1 = \{b, c, d, e, f, g\}$ calcular $L(v) = min\{L(v), L(u) + p(u, v) : u \in S_1\}.$

Observar que todas las etiquetas quedan iguales salvo

$$L(e) = \min\{L(e), L(h) + p(h,e)\} = \min\{8, 3+4\} = 7 \text{ y } h \text{ es el predecesor.}$$

Paso 3 existe
$$v \in \overline{S}_1$$
 con $L(v) < \infty$. $L(f) = min\{L(v) : v \in \overline{S}_1\}$.

$$S_2 = \{a, h, f\}. i := 2.2 < 8 - 1 = 7.$$
 ir al Paso 2.

Paso 2 Para $v \in \bar{S}_2 = \{b, c, d, e, g\}$ calcular $L(v) = min\{L(v), L(u) + p(u, v) : u \in S_2\}.$

Observar que todas las etiquetas que cambian son

$$L(c) = min\{L(c), L(f) + p(f,c)\} = min\{7,4+2\} = 6$$
 y f es el predecesor y $L(d) = min\{L(d), L(f) + p(f,d)\} = min\{\infty, 4+3\} = 7$ y f es el predecesor. Paso 3 existe $v \in \bar{S}_2$ con $L(v) < \infty$. $L(b) = L(c) = min\{L(v) : v \in \bar{S}_2\}$. Elijo a b . $S_3 = \{a, b, h, f\}$. $i := 3$. $3 < 8 - 1 = 7$. ir al Paso 2.

Paso 2 Para
$$v \in \overline{S}_3 = \{c, d, e, g\}$$
 calcular $L(v) = min\{L(v), L(u) + p(u, v) : u \in S_3\}.$

Observar que ninguna etiqueta cambia, ya que

$$L(f) = min\{L(f), L(b) + p(b,f)\} = min\{4, 6+5\} = 4.$$

Paso 3 existe $v \in \bar{S}_3$ con $L(v) < \infty$. $L(c) = min\{L(v) : v \in \bar{S}_3\}$. $S_4 = \{a, b, c, h, f\}$. $i := 4, 4 < 8 - 1 = 7$. ir al Paso 2.

Paso 2 Para
$$v \in \overline{S}_4 = \{d, e, g\}$$
 calcular $L(v) = min\{L(v), L(u) + p(u, v) : u \in S_4\}.$

Observar que ninguna etiqueta cambia, ya que

$$L(d) = min\{L(d), L(c) + p(c,d)\} = min\{7,6+9\} = 7.$$

Paso 3 existe $v \in \bar{S}_4$ con $L(v) < \infty$. $L(d) = L(e) = min\{L(v) : v \in \bar{S}_4\}.$
Elijo d . $S_5 = \{a, b, c, d, h, f\}$. $i := 5, 5 < 8 - 1 = 7.$ ir al Paso 2.

Paso 2 Para $v \in \overline{S}_5 = \{e,g\}$ calcular $L(v) = min\{L(v), L(u) + p(u,v) : u \in S_5\}$.

Observar que cambia la etiqueta

 $L(g) = \min\{L(g), L(d) + p(d,g)\} = \min\{\infty, 7 + 13\} = 20 \text{ y el predecesor es } d.$

Pero no cambia $L(e) = min\{L(e), L(d) + p(d, e)\} = min\{7, 7 + 4\} = 7$ Paso 3 existe $v \in \bar{S}_5$ con $L(v) < \infty$. $L(e) = min\{L(v) : v \in \bar{S}_5\}$. $S_6 = \{a, b, c, d, e, h, f\}$. i := 6. 6 < 8 - 1 = 7. ir al Paso 2.

Paso 2 Para $v \in \overline{S}_6 = \{g\}$ calcular $L(v) = min\{L(v), L(u) + p(u, v) : u \in S_6\}.$

Observar que no hay cambios de etiquetas ya que

$$L(b) = \min\{L(b), L(e) + p(e,b)\} = \min\{6,7+7\} = 6 \text{ y}$$

$$L(f) = \min\{L(f), L(e) + p(e,f)\} = \min\{4,7+4\} = 4$$
Paso 3 existe $v \in \bar{S}_6$ con $L(v) < \infty$. $L(g) = \min\{L(v) : v \in \bar{S}_6\}$. $S_7 = \{a,b,c,d,e,h,f,g\}$. $i := 7,7 = 8 - 1 = 7$. Fin

Complejidad del Algoritmo de Dijkstra

DEFINICIÓN

Dado G=(V,E) ponderado con n=|V|, sea f(n) el número máximo de operaciones que realiza el Algoritmo para encontrar el camino más corto.

Después del paso de inicialización, el procedimiento realiza n-1 iteraciones. (En la iteración i con $i=1,\ldots,n-1$, se establece el i-ésimo vértice más cercano a v_0 .)

En el Paso 2, se calcula $L(v)=min\{L(v),L(u)+p(u,v):u\in S_i\}.$ Es decir, para cada $u\in S_i$

- se realizan a lo sumo n-1 sumas y
- se realizan n-1 comparaciones.

Se realizan un total de 2(n-1) cómputos para cada $v \in \bar{S}_i$ ($|\bar{S}_i| \le n-1$). Se obtienen a lo sumo $2(n-1)^2$ operaciones.

COMPLEJIDAD DEL ALGORITMO DE DIJKSTRA

En el Paso 3, calculamos $min\{L(v): v \in \bar{S}_i\}$ (recordar $|\bar{S}_i| \leq n-1$).

Esto requiere a lo sumo n-2 comparaciones.

Entonces

$$f(n) \le (n-1)[2(n-1)^2 + (n-2)].$$

Que se expresa como:

$$f(n) \in O(n^3)$$
.

El algoritmo puede mejorarse de modo de obtener

$$f(n) \in O(n^2)$$
.