```
In [1]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
data=pd.read_csv('WINE DATA\\winequality-red.csv',delimiter = ";")
```

In [3]:

data

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

1599 rows × 12 columns

In [4]:

data.columns

Out[4]:

In [5]:

data.describe()

Out[5]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulph
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.00
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	0.65
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	0.16
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	0.33
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.55
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	0.62

```
75%
            9.200000
                                          0.420000
                                                                       0.090000
                                                                                                                   0.997835
                                                                                                                                 3.400000
                                                                                                                                                0.73
                           0.640000
                                                        2,6000000
1,6000000
                                                                                    free suntur
                                                                                                  t62aps0000
         fixed acidity
                                         citric acid
                                                                       chlorides
                                                                                                                    density
                                                                                                                                               sulph
                                                                                                  289.00000
                            1.580000
                                                                                    72.000000
                                                       15.500000
           15.900000
                                          1.000000
                                                                       0.611000
                                                                                                                   1.003690
                                                                                                                                 4.010000
   max
                                                                                                                                                2.00
4
                                                                                                                                                  F
```

In [6]:

```
print("Total quantity of wine quality 3 : ",len([a for a in data['quality'] if a==3]))
print("Total quantity of wine quality 4 : ",len([a for a in data['quality'] if a==4]))
print("Total quantity of wine quality 5 : ",len([a for a in data['quality'] if a==5]))
print("Total quantity of wine quality 6 : ",len([a for a in data['quality'] if a==6]))
print("Total quantity of wine quality 7 : ",len([a for a in data['quality'] if a==7]))
print("Total quantity of wine quality 8 : ",len([a for a in data['quality'] if a==8]))
```

```
Total quantity of wine quality 3 : 10
Total quantity of wine quality 4 : 53
Total quantity of wine quality 5 : 681
Total quantity of wine quality 6 : 638
Total quantity of wine quality 7 : 199
Total quantity of wine quality 8 : 18
```

In [7]:

```
sns.countplot(x='quality', data=data)
```

Out[7]:

<matplotlib.axes. subplots.AxesSubplot at 0x2d388c17eb8>

In [8]:

```
reviews = []
for i in data['quality']:
    if i <= 5:
        reviews.append(0)
    else:
        reviews.append(1)
data['Reviews'] = reviews</pre>
```

In [9]:

```
sns.countplot(x='Reviews', data=data)
```

Out[9]:

<matplotlib.axes. subplots.AxesSubplot at 0x2d38a2315c0>

In [10]:

```
corr = data.corr()
#Plot figsize
fig, ax = plt.subplots(figsize=(10, 8))
#Generate Heat Map, allow annotations and place floats in map
sns.heatmap(corr, cmap='coolwarm', annot=True, fmt=".2f")
#Apply xticks
plt.xticks(range(len(corr.columns)), corr.columns);
#Apply yticks
plt.yticks(range(len(corr.columns)), corr.columns)
#show plot
plt.show()
```


In [11]:

```
X = data.iloc[:,0:11]
y = data.iloc[:,12]
y_mul = data.iloc[:,11]
```

In [14]:

```
from sklearn.preprocessing import MinMaxScaler
minmax = MinMaxScaler()
X_s = minmax.fit_transform(X)
```

In [15]:

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_s, y, test_size = 0.3, random_state = 42)
```

```
In [16]:
```

```
print(X_train.shape)
print(X_test.shape)

(1119, 11)
(480, 11)
```

In [17]:

```
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
```

In [18]:

1111111111

```
svc_lin = SVC(kernel = 'linear')
svc_lin.fit(X_train, y_train)
y_pred_svc_lin=svc_lin.predict(X_test)
lin_svc_conf_matrix = confusion_matrix(y_test, y_pred_svc_lin)
lin_svc_clf = classification_report(y_test, y_pred_svc_lin)
print(lin_svc_conf_matrix)
print(lin_svc_clf)
```

[87 180]]				
	precision	recall	f1-score	support
0	0.65	0.77	0.71	213
1	0.79	0.67	0.73	267
accuracy			0.72	480
macro avg	0.72	0.72	0.72	480
weighted avg	0.73	0.72	0.72	480

In [32]:

```
svc_rbf = SVC(kernel = 'rbf')
svc_rbf.fit(X_train, y_train)
y_pred_svc_rbf=svc_rbf.predict(X_test)
rbf_svc_conf_matrix = confusion_matrix(y_test, y_pred_svc_rbf)
rbf_svc_clf = classification_report(y_test, y_pred_svc_rbf)
print(rbf_svc_conf_matrix)
print(rbf_svc_clf)
[[161 52]
[ 67 200]]
```

[67 200]]	precision	recall	f1-score	support
0 1	0.71 0.79	0.76 0.75	0.73 0.77	213 267
accuracy macro avg weighted avg	0.75 0.75	0.75 0.75	0.75 0.75 0.75	480 480 480

In [33]:

```
svc_poly = SVC(kernel = 'poly')
svc_poly.fit(X_train, y_train)
y_pred_svc_poly = svc_poly.predict(X_test)
poly_svc_conf_matrix = confusion_matrix(y_test, y_pred_svc_poly)
poly_svc_clf = classification_report(y_test, y_pred_svc_poly)
print(poly_svc_conf_matrix)
print(poly_svc_clf)
```

```
[[168 45]
```

```
[ /2 190]]
            precision recall f1-score support
          0
                 0.70 0.79 0.74
                                               213
                 0.81
                         0.73
                                   0.77
                                               267
                                    0.76
                                              480
   accuracy
                       0.76
0.76
                 0.76
                                    0.76
                                              480
  macro avg
                                0.76
                                              480
weighted avg
                 0.76
In [34]:
svc sigmoid = SVC(kernel = 'sigmoid')
svc sigmoid.fit(X train, y train)
y pred svc sigmoid=svc sigmoid.predict(X test)
sigmoid_svc_conf_matrix = confusion_matrix(y_test, y_pred_svc_sigmoid)
sigmoid_svc_clf = classification_report(y_test, y_pred_svc_sigmoid)
print(sigmoid svc conf matrix)
print(sigmoid svc clf)
[[109 104]
 [110 157]]
            precision
                       recall f1-score support
                0.50
                                  0.50
                         0.51
                                               213
          1
                0.60
                         0.59
                                   0.59
                                              267
   accuracy
                                    0.55
                                              480
             0.55 0.55
0.56 0.55
                                  0.55
0.55
  macro avg
                                              480
                                              480
weighted avg
In [41]:
from sklearn.model_selection import cross_val_score
clf = SVC(kernel='linear', C=1)
scores = cross val score(clf, X s, y, cv=5)
print(scores)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
Accuracy: 0.73 (+/- 0.07)
In [42]:
from sklearn.model_selection import cross val score
clf = SVC(kernel='rbf', C=1)
scores = cross_val_score(clf, X_s, y, cv=5)
print(scores)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
[0.690625  0.684375  0.790625  0.7375  0.74294671]
Accuracy: 0.73 (+/-0.08)
In [43]:
from sklearn.model_selection import cross val score
clf = SVC(kernel='poly',C=1)
scores = cross_val_score(clf, X_s, y, cv=5)
print(scores)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
[0.7125
         0.690625 0.8 0.76875 0.72413793]
Accuracy: 0.74 (+/- 0.08)
In [44]:
from sklearn.model selection import cross val score
clf = SVC(kernel='sigmoid',C=1)
```

```
scores = cross_val_score(clf, X_s, y, cv=5)
print(scores)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))

[0.66875    0.53125    0.671875    0.571875    0.57053292]
Accuracy: 0.60 (+/- 0.11)

In []:
```