VMD Tutorial

Source: https://www.ks.uiuc.edu/Training/Tutorials/vmd-index.html

Unit 1: Introduction

- 1. Download the pdb file of Ubiquitin (1UBQ.pdb)
- 2. To load, "New Molecule" → "Browse" → "Load"
- 3. Hotkeys

С	Center: Change rotation point by clicking on an atom. Reset to default with Reset View.
0	Query: Click on an item to print its name in the console.
1	Label → Atom: Toggle atom label on/off by clicking on an atom.
2	Label → Bond: Toggle bond distance label by clicking on two atoms in sequence.
3	Label → Angle: Toggle angle label by clicking on three atoms in sequence.
4	Label → Dihedral: Toggle dihedral angle label by clicking on four atoms in sequence.
5	Move → Atom: Change atom position by clicking and dragging the atom.
6	Move → Residue: Move all atoms in a selected residue by dragging one atom. Shift key rotates about selected atom; middle button rotates about a line through the atom.
7	Move → Fragment: Move all atoms in a selected fragment similarly to residues.
8	Move → Molecule: Move all atoms in a selected molecule by dragging one atom.
9	Move → Rep: Move atoms in a selected representation by clicking on an atom within that rep.

4. Representation style

Lines	simple lines for bonds, points for atoms	
Bonds	lighted cylinders for bonds	
DynamicBonds	dynamically calculated distance-based bonds	
HBonds	display hydrogen bonds	
Points	just points for atoms, no bonds	
VDW	atom as sphere	
СРК	ball & stick model	
Licorice	ball & stick model, radius cannot be changed	
Polyhedra	polyhedra connecting atoms within a cutoff radius	
Trace	connected cylindrical segments through C alpha atoms	
Tube	smooth cylindrical tube through the C alpha atoms	
Ribbons	flat ribbon through the C alpha atoms	
NewRibbons	smooth ribbon through the C alpha atoms	
Cartoon/ NewCartoon	secondary structure: helices=cylinders, beta-sheets=solid ribbons, other=tube	
PaperChain	display ring structures as polygons, colored by ring pucker	

Twister	flat ribbon tracing glycosidic bonds, with twists oriented by sugar residues	
QuickSurf	molecular surface (Gaussian density surface)	
MSMS	molecular surface as determined by the program MSMS	
Surf	molecular surface as determined by SURF	
VolumeSlice	display a texture mapped slice from a volumetric data set	
Isosurface	display an isovalue surface from a volumetric data set	
FieldLines	field lines generated by integrating particles by volume gradient vectors	
Orbital	molecular orbital selected by wavefunction type, spin, excitation, and orbital ID	
Beads	per-residue approximate bounding spheres	
Dotted	dotted van der Waals spheres for atoms, no bonds	
Solvent	dotted representation of the solvent accessible surface	

5. Color categories

Display	Color of background, gradient, depth cueing, text
Axes	The components of the axes
Name	The available atom names (color by Name)
Туре	The available atom types (color by Type)
Element	Atomic elements (color by Element), with "X" for unknown
Resname	The residue names (color by ResName)
Restype	The residue types - non-polar=white, basic=blue, acidic=red, polar=green
Chain	The one-character chain identifier.
Segname	The segment names (color by SegName)
Conformation	The available conformation codes (color by Conformation)
Molecule	The names assigned to each molecule (color by Molecule)
Highlight	The protein, nucleic, and non-backbone colors
Structure	The secondary structure type (helix, sheet, coil) (color by Structure)
Surface	The surface types
Labels	The different labels (atoms, bonds, etc.)
Stage	The colors for the checkboard stage

- 6. Select atoms by typing "Singlewords" in "Selected Atoms"
 - a. And, or, not
 - b. "Keyword"
- 7. View sequence in "Sequence Viewer", color code obtained from STRIDE

- a. B-value = temperature factor
- b. Struct = secondary structure

T	Turn
$\mid E \mid$	Extended conformation (β sheets)
В	Isolated bridge
H	Alpha helix
G	3-10 helix
I	Pi helix
$\mid \mathbf{C} \mid$	Coil

- 8. Save visualisation state: "File" → "Save State" (.vmd)
- 9. Change background: "Graphics" \rightarrow "Colors" \rightarrow "Display" \rightarrow "Background"
- 10. Reder image: "File" → "Render" → "Render using" → "TachyonInternal" (.tga)

Unit 2: Multiple Molecules and Scripting

Description:

- Experiment: Equilibration simulation of ubiquitin
- Medium: WaterDuration: 1 ns
- Task: Compare conformation of ubiquitin at the end of this simulation with the initial crystal structure
- 1. Download the pdb file of Ubiquitin {1UBQ.pdb} → Rename to "crystal"
- 2. "New Molecule" → "Browse" → "Load"
- 3. Add the structure file containing Ubiquitin at the end of simulation {ubiquitin.psf} to "New Molecule"
- 4. Add the coordinate file at the end of simulation {ubiquitin-equilibrated.coor} to "ubiquitin.psf" → Rename to "simulation"
- 5. Unfix both molecules (F in red) and "Reset View"
- 6. Only display the "crystal" molecule (D in black)
- 7. Set "crystal" molecule as top (T)
- 8. "Extensions" → "Tk Console"

Commands	set crystal [atomselect 0 "all"]	Set all atoms in molecule 0 as "crystal"
	\$crystal num	Obtain the number of crystal
	\$crystal set beta 0	Set "crystal" as beta 0
	\$crystal get resname	
	set M [measure fit \$alpha1 \$alpha2]	Transformation matrix M that map first selection onto second
	\$crystal move \$M	
	atomselect macro bstrand1 {protein and resid 2 to 6}	Create macro for bstrand1 including residues 2 to 6, found in Selections > singlewords

	source filename.tcl	Import source code
Selection methods with ""	all	All atoms
	hydrophobic	
	alpha	alpha carbon
Display methods	beta 0	
	radius 1.5	
Obtain information	resname	Residual name
	resid	Residual index
	index	Atom index
	name	Atom name
	$\{x \ y \ z\}$	Coordinates
file	psf	Protein structure
	vmd	Status
	ded	Trajectory
	tcl	Text script

- 9. Display both molecules (D in black)
- 10. For both crystal and simulation, set coloring method to "ColorID" and "0 blue" and "1 red" respectively, drawing method to "Tube"
- 11. In Tk Counsole window, select the protein backbone of both proteins
 - a. set alpha1 [atomselect 0 "alpha"]
 - b. set alpha2 [atomselect 1 "alpha"]
- 12. Calculate and apply transformation matrix M to best map alpha2 to alpha1
 - a. set M [measure fit \$alpha1 \$alpha2]
 - b. set crystal [atomselect top "all"]
 - c. \$crystal move \$M
- 13. Run pre-written script to compare atoms' positions
 - a. source coloring.tcl

```
(input) 55 % source coloring.tcl
-1.4344735145568848 1.5170034170150757 -11.387672424316406, -1.8203625679016113
1.046593189239502 -11.700506210327148
-1.4344735145568848 - -1.8203625679016113
-1.2171720266342163 4.893920421600342 -9.64897632598877, -1.5955531597137451 4.4
61385726928711 -10.035935401916504
41493606567383 -6.30332612991333
-2.2546496391296387 - -2.407890558242798
021492004394531 -4.130740642547607
-2.1305925846099854 - -2.268209218978882
-0.6730284690856934 \ \ 8.250974655151367 \ \ -0.16197004914283752, \ \ -0.6497521996498108
8.03714656829834 -0.564492404460907
-0.6730284690856934 - -0.6497521996498108
-1.9813416004180908\ 11.187929153442383\ 1.9380509853363037,\ -1.056281328201294\ 11.187929153442383
.034486770629883 1.8269755840301514
-1.9813416004180908 - -1.056281328201294
```

```
# Define the coloring procedure:
                                                             # loop over the position vectors v1 and v2 for each
proc tutorial coloring {} {
                                                             for each v0 [sel0 get \{x y z\}] v1 [sel1 get \{x y z\}] {
 # Get the molIDs of the first 2 molecules.
                                                              puts "$v0, $v1"
                                                               puts "[lindex $v0 0] - [lindex $v1 0]"
 set mol1 [lindex [molinfo list] 0]
                                                               set dx [expr [lindex $v0 0] - [lindex $v1 0]]
 set mol2 [lindex [molinfo list] 1]
                                                               set dy [expr [lindex $v0 1] - [lindex $v1 1]]
 # Create our two sels
                                                               set dz [expr [lindex $v0 2] - [lindex $v1 2]]
 set sel0 [atomselect $mol1 "alpha and protein"] ;#
                                                               # Calculate displacement for a given atom
set sel1 [atomselect $mol2 "alpha and protein"] ;#
                                                               set disp [expr($dx*$dx + $dy*$dy + $dz*$dz)]
simulation
                                                              lappend mylist $disp
 # Create an empty list (for all the displacements)
 set mylist {}
                                                             # Assign the displacements to beta values of the
                                                             crystal molecule
                                                             $sel0 set beta $mylist
                                                            }
                                                            # Run the procedure here
                                                            tutorialcoloring
```

- 14. For "crystal" molecule, change Coloring Style to "Beta"
- 15. Hind "simulation" molecule
- 16. "Graphical Representations" → "Trajectory" → "Color Scale Range" → "crystal" → "0""5"
 (A) → "Set"
- 17. "Graphics" → "Colors" → "Color Scale" → "Method" → "BWR" low displacement=blue; high displacement=red, in between=white
- 18. Shift "Midpoint" to 0.1
- 19. Output as {1ubq-equilibration-in-water.vmd}

Unit 3: Trajectories, Macros and Labels

Description:

- FMA experiment
- 1. Add frames {pulling.dcd} to equilibrated structure file {ubiquitin.psf} → "Load"
- 2. Go to the first frame

- 3. Drawing Method = "Tube"; Selected Atoms = "protein"
- 4. "Create Rep" → Drawing Method = "Lines"; Selected Atoms = "water" → Turn off representation
- 5. To create macros of each strand in the mixed beta sheet, in Tk Console
 - a. atomselect macro bstrand1 {protein and resid 2 to 6 }
 - b. Repeat for the rest of the strands
 - c. Sequence of each beta strand can be found in "Sequence Viewer", coloured in yellow
- 6. To create a representation with the 3rd and 5th beta strands, "Create Rep" → "Selected Atoms" → "Selections" → "Sinlewords": "bstrand3 or bstrand5" → Draw Style = "Cartoon", yellow
- 7. Create the representation with bstrand1,2,4. As bstrand4 only has two residues, it is not shown

- 8. Change "protein" to "protein and not betasheet"
- 9. To see the features of ubiquitin unfolding, "Create Rep" → "Selected Atoms"= "betasheet and backbone" → Draw Style = "Hbonds"; Drawing Method = "Color ID", red; Distance Cutoff = "3.2"; Angle Cutoff = "30"; Line Thickness "5"

- 10. "File" → "Save State" (.vmd)
- 11. Use the slider to obtain the shape of protein and surrounding water molecules at different times
- 12. To label bonds or atoms, "Mouse" \rightarrow "Label" \rightarrow "Atoms"
 - a. To remove labels, "Graphics" → "Labels" → "Delete"
- 13. To make VDW Representation for alpha carbon of Lysine 48 and of the C terminus
 - a. (Tk console) Set sel [atomselect top "resid 48 76 and name CA"]

- b. (Tk console) \$sel get index >> "770 1242"
- c. Create VDW Representation with selection index 770 1242
- d. Label the 2 atoms

e. "Graphics" → "Labels" → "Bonds" → "Graph" (.dat)

14. To calculate RMSD of equilibration trajectory

- a. "Molecule" → "Delete Frames"
- b. "File" → "Load Data to Molecule" {equilibration.dcd}
- c. Turn on water representation
- d. (Tk console) source rmsd.tcl

e. Generate graph using {rmds.dat}

In[21]:= Export["/Users/heiley/Desktop/SURP/vmd-tutorial/output/3-1ubq-equilibration-evolution-rmsd.png", plot]
Out[21]:= /Users/heiley/Desktop/SURP/vmd-tutorial/output/3-1ubq-equilibration-evolution-rmsd.png

f. {rmsd-fullthrottle.tcl} calculates the average RMSD for each residue in a selection over all frames in a trajectory

More RMSD. You can try sourcing another script called rmsd-fullthrottle.tcl Take a look at this script to learn simple procedures in tcl, as well as calculating the RMSD of each residue over time and coloring residues according to their RMSD similarly that in Unit 2

