

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{11} + u^{10} - 2u^9 - 3u^8 + 2u^7 + 4u^6 - 3u^4 - u^3 + u^2 - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 11 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{11} + u^{10} - 2u^9 - 3u^8 + 2u^7 + 4u^6 - 3u^4 - u^3 + u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{8} - u^{6} + u^{4} + 1 \\ u^{8} - 2u^{6} + 2u^{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{8} - u^{6} + u^{4} + 1 \\ u^{10} - 2u^{8} + 3u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{10} 12u^8 4u^7 + 16u^6 + 8u^5 8u^4 8u^3 + 4u + 2u^4 + 8u^4 + 8u^4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_8	$u^{11} - u^{10} - 6u^9 + 5u^8 + 12u^7 - 6u^6 - 10u^5 - u^4 + 5u^3 + u^2 - 1$
c_{2}, c_{6}	$u^{11} + u^{10} - 2u^9 - 3u^8 + 2u^7 + 4u^6 - 3u^4 - u^3 + u^2 - 1$
c_5	$u^{11} + 3u^{10} + 4u^9 + u^8 + 2u^7 + 8u^6 + 8u^5 - 5u^4 - 3u^3 + u^2 + 4u + 1$
c_7	$u^{11} + 5u^{10} + \dots + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_8	$y^{11} - 13y^{10} + \dots + 2y - 1$
c_2, c_6	$y^{11} - 5y^{10} + \dots + 2y - 1$
c_5	$y^{11} - y^{10} + \dots + 14y - 1$
<i>C</i> ₇	$y^{11} + 3y^{10} + \dots - 10y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.959860 + 0.351396I	-1.63627 + 1.27541I	-1.47945 - 0.80097I
u = -0.959860 - 0.351396I	-1.63627 - 1.27541I	-1.47945 + 0.80097I
u = -0.488025 + 0.800566I	9.03866 - 1.64593I	8.04988 + 0.24481I
u = -0.488025 - 0.800566I	9.03866 + 1.64593I	8.04988 - 0.24481I
u = 1.11640	3.38257	2.18570
u = 1.031510 + 0.521913I	-0.37669 - 4.75030I	2.64109 + 6.77690I
u = 1.031510 - 0.521913I	-0.37669 + 4.75030I	2.64109 - 6.77690I
u = -1.081080 + 0.631709I	7.26485 + 7.02220I	5.50054 - 4.88619I
u = -1.081080 - 0.631709I	7.26485 - 7.02220I	5.50054 + 4.88619I
u = 0.439259 + 0.522038I	1.289960 + 0.454766I	7.19508 - 1.36957I
u = 0.439259 - 0.522038I	1.289960 - 0.454766I	7.19508 + 1.36957I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_8	$u^{11} - u^{10} - 6u^9 + 5u^8 + 12u^7 - 6u^6 - 10u^5 - u^4 + 5u^3 + u^2 - 1$
c_2, c_6	$u^{11} + u^{10} - 2u^9 - 3u^8 + 2u^7 + 4u^6 - 3u^4 - u^3 + u^2 - 1$
c_5	$u^{11} + 3u^{10} + 4u^9 + u^8 + 2u^7 + 8u^6 + 8u^5 - 5u^4 - 3u^3 + u^2 + 4u + 1$
C ₇	$u^{11} + 5u^{10} + \dots + 2u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_8	$y^{11} - 13y^{10} + \dots + 2y - 1$
c_2, c_6	$y^{11} - 5y^{10} + \dots + 2y - 1$
c_5	$y^{11} - y^{10} + \dots + 14y - 1$
	$y^{11} + 3y^{10} + \dots - 10y - 1$