PT 练习 2.5.1: 基本交换机配置

拓扑图

编址表

设备	接口	IP 地址	子网掩码	默认网关
PC1	网卡	172.17.99.21	255.255.255.0	172.17.99.11
PC2	网卡	172.17.99.22	255.255.255.0	172.17.99.11
S1	VLAN99	172.17.99.11	255.255.255.0	172.17.99.1

学习目标

- 清除交换机的现有配置
- 检验默认交换机配置
- 创建基本交换机配置
- 管理 MAC 地址表
- 配置端口安全性

简介

本练习中,您将检查并配置一台独立式 LAN 交换机。虽然交换机在出厂默认状态下能够执行基本功能,但为了保证 LAN 的安全并优化 LAN,网络管理员应当修改几个参数。本练习将向您介绍交换机配置的基本知识。

任务 1: 清除交换机的现有配置

步骤 1. 键入 enable 命令进入特权执行模式。

单击 S1, 然后单击 CLI 选项卡。发出 enable 命令, 进入特权执行模式。

Switch>enable

Switch#

步骤 2. 删除 VLAN 数据库信息文件。

VLAN 数据库信息与配置文件分开存储,以 vlan.dat 文件名存储在闪存中。要删除 VLAN 文件,请发出命令 delete flash:vlan.dat

Switch#delete flash:vlan.dat

Delete filename [vlan.dat]? [Enter]

Delete flash:vlan.dat? [confirm] [Enter]

步骤 3. 从 NVRAM 删除交换机启动配置文件。

Switch#erase startup-config

Erasing the nvram filesystem will remove all configuration files! Continue? [confirm] [Enter]

[OK]

Erase of nvram: complete

步骤 4. 确认 VLAN 信息已删除。

使用 show vian 命令检查是否确实删除了 VLAN 配置。

Switch#show vlan brief

VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4 Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24
1002 1003 1004	VLAN10 VLAN30 fddi-default fddi-default token-ring-default fddinet-default trnet-default	active active active active active active	

VLAN 信息仍在交换机上。执行下一步骤予以清除。

步骤 5. 重新加载交换机。

在特权执行模式提示符下,输入 reload 命令开始这一过程。

Switch#reload

Proceed with reload? [confirm] [Enter]

%SYS-5-RELOAD: Reload requested by console. Reload Reason: Reload Command.

<output omitted>
Press RETURN to get started! [Enter]
Switch>

任务 2: 检验默认交换机配置

步骤 1. 进入特权模式。

特权模式下,您可以使用全部交换机命令。不过,由于许多特权命令会配置操作参数,因此应使用口令对特权访问加以保护,防止未授权使用。特权命令集不仅包括用户执行模式所包含的那些命令,还包括 configure 命令,通过该命令可以访问其余命令模式。

Switch>enable
Switch#

请注意特权执行模式下配置中提示符的变化。

步骤 2. 检查当前交换机配置。
发出 show running-config 命令,检查当前的运行配置。
交换机有多少个快速以太网接口?
交换机有多少个千兆以太网接口?
显示的 vty 线路值范围是什么?
发出 show startup-config 命令,检查当前 NVRAM 的内容。
为什么交换机做出这样的响应?
发出 show interface vlan1 命令,检查虚拟接口 VLAN1 的特征。
交换机上设置了 IP 地址吗?
虚拟交换机接口的 MAC 地址是什么?
此接口打开了吗?
现在使用 show ip interface vlan1 命令查看接口的 IP 属性。
你看到的输出是什么?
步骤 3. 显示 Cisco IOS 信息。
使用 show version 命令显示 Cisco IOS 信息。
交换机运行的 Cisco IOS 版本是多少?
系统图像文件名是什么?
此交换机的基本 MAC 地址是什么?

步骤 4. 检查快速以太网接口。

使用 show interface fastethernet 0/18 命令检查 PC1 所用快速以太网接口的默认属性。

Switch#show interface fastethernet 0/18

此接口是打开还是关闭的?
什么事件会打开接口?
接口的 MAC 地址是什么?
该接口的速率和双工设置是什么?
步骤 5. 检查 VLAN 信息。
使用 show vian 命令检查交换机的默认 VLAN 设置。
VLAN 1 的名称是什么?
此 VLAN 中有哪些端口?
VLAN 1 是活动的吗?
什么类型的 VLAN 是默认 VLAN?
步骤 6. 检查闪存。
检查闪存的命令有两个: dir flash: 或 show flash。发出以上任一命令检查闪存目录中的内容。
发现了哪些文件或目录?

步骤 7. 检查并保存启动配置文件。

早在步骤2中,您已看到启动配置文件不存在。更改交换机的某项配置,然后保存配置。键入下列命令:

Switch#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#hostname S1
S1(config)#exit
S1#

要把运行配置文件的内容保存到非易失性 RAM (NVRAM),请发出命令 copy running-config startup-config。

Switch#copy running-config startup-config Destination filename [startup-config]? [enter] Building configuration...

现在显示 NVRAM 的内容。当前配置已写入到 NVRAM。

任务 3: 创建基本交换机配置

步骤 1. 为交换机指定名称。

进入全局配置模式。利用配置模式,您可以管理交换机。输入配置命令,每行一条。请注意命令行提示符的变化反应了当前的提示符和交换机名称。在前一任务的最后步骤中,您配置了主机名。下面是对所用命令的回顾。

S1#configure terminal

S1(config) #hostname S1

S1(config)#exit

步骤 2. 设置访问口令。

进入控制台线路配置模式。将登录口令设置为 cisco。另外,使用口令 cisco 配置 vty 线路 0 到 15。

S1#configure terminal

- S1(config)#line console 0
- S1(config-line)#password cisco
- S1(config-line)#login
- S1(config-line)#line vty 0 15
- S1(config-line) #password cisco
- S1(config-line)#login
- S1(config-line)#exit
- S1(config)#

为什么需要 login 命令?

步骤 3. 设置命令模式口令。

将使能加密口令设置为 class。

S1(config)#enable secret class

步骤 4. 配置交换机的第3层地址。

在内部虚拟接口 VLAN 99 上将交换机的 IP 地址设置为 172.17.99.11, 子网掩码为 255.255.255.0。首先 必须在交换机上创建 VLAN, 然后才能分配地址。

- S1(config)#vlan 99
- S1(config-vlan)#exit
- S1(config)#interface vlan99
- S1(config-if)#ip address 172.17.99.11 255.255.255.0
- S1(config-if)#no shutdown
- S1(config-if)#exit

步骤 5. 为交换机 VLAN 分配端口。

- 将 Fastethernet 0/1、0/8 和 0/18 端口分配给 VLAN 99。
- S1(config)#interface fa0/1
- S1(config-if)#switchport access vlan 99
- S1(config-if)#exit

步骤 6. 设置交换机默认网关。

S1 是第 2 层交换机,因此它根据第 2 层报头做出转发决策。如果多个网络连到一台交换机,则需要明确交换机如何转发内部工作帧,因为路径必须在第 3 层确定。这就需要指定默认网关地址,它指向路由器或第 3 层交换机。虽然本练习没有包括外部 IP 网关,但可以假设您最终会把 LAN 连接到路由器进行外部访问。假设路由器上的 LAN 接口为 172.17.99.1,据此为交换机设置默认网关。

- S1(config)#ip default-gateway 172.17.99.1
- S1(config)#exit

步骤 7. 检验管理 LAN 设置。

使用 show interface vlan 99 命令检验 VLAN 99 上的接口设置。

S1#show interface vlan 99

Vlan99 is up, line protocol is up

Hardware is CPU Interface, address is 0060.47ac.1eb8 (bia 0060.47ac.1eb8) Internet address is 172.17.99.11/24

MTU 1500 bytes, BW 100000 Kbit, DLY 1000000 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
ARP type: ARPA, ARP Timeout 04:00:00
Last input 21:40:21, output never, output hang never
Last clearing of "show interface" counters never
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
<省略部分输出>

此接口的带宽是多少?

排队策略是什么?

步骤 8. 配置 PC1 的 IP 地址和默认网关。

将 PC1 的 IP 地址设置为 172.17.99.21, 子网掩码设置为 255.255.255.0。配置默认网关为 172.17.99.11。单击 PC1 -> Desktop(桌面)选项卡 -> IP 配置,输入上述编址参数。

步骤 9. 检验连通性。

要检验主机和交换机的配置是否正确,请从 PC1 ping 交换机。

如果 ping 不成功,请排除交换机和主机的配置故障。请注意,可能需要尝试好几次才能 ping 成功。

步骤 10. 配置快速以太网接口的端口速率和双工设置。

配置 FastEthernet 0/18 的双工和速率设置。完成后,使用 end 命令返回特权执行模式。

S1#configure terminal

S1(config)#interface fastethernet 0/18

S1(config-if)#speed 100

S1(config-if)#duplex full

S1(config-if)#**end**

交换机以太网接口的默认设置是自动检测,因此它会自动采用最佳设置。只有当一个端口必须以某一速率 和双工模式运作时,才需要手动设置双工模式和速率。手动配置端口可能会导致双工不匹配,从而显著降 低性能。

请注意 PC1 与 S1 之间的链路是如何关闭的。删除 speed 100 和 duplex full 命令。现在使用 show interface fa0/18 命令检验快速以太网接口的设置。

S1#show interface fastethernet 0/18

FastEthernet0/18 is up, line protocol is up (connected)
Hardware is Lance, address is 0060.5c36.4412 (bia 0060.5c36.4412)
MTU 1500 bytes, BW 100000 Kbit, DLY 1000 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
Full-duplex, 100Mb/s
<省略部分输出>

步骤 11. 保存配置。

您已经完成交换机的基本配置。现在将运行配置文件备份到 NVRAM,确保所做的变更不会因系统重启或断电而丢失。

S1#copy running-config startup-config

Destination filename [startup-config]?[Enter] Building configuration...
[OK] S1#

步骤 12. 检查启动配置文件。

要查看 NVRAM 中存储的配置,请在特权执行(enable 模式)下发出 **show startup-config** 命令。 文件中记录了之前输入的所有变更吗?

任务 4: 管理 MAC 地址表

步骤 1. 记录主机的 MAC 地址。

通过下列步骤确定并记录 PC 网络接口卡的第 2 层(物理)地址:

- 单击 PC。
- 选择 Desktop (桌面) 选项卡。
- 单击 Command Prompt(命令提示符)。
- 键入 ipconfig /all

步骤 2. 确定交换机已学习的 MAC 地址。

在特权执行模式下使用 **show mac-address-table** 命令显示 MAC 地址。如果没有显示 MAC 地址,请从 PC1 ping S1,然后再次检查。

S1#show mac-address-table

步骤 3. 清除 MAC 地址表。

要删除现有 MAC 地址,请在特权执行模式下使用 clear mac-address-table dynamic 命令。

S1#clear mac-address-table dynamic

步骤 4. 确认结果。

确认 MAC 地址表已清除。

S1#show mac-address-table

步骤 5. 再次检查 MAC 表。

在特权执行模式下再次查看 MAC 地址表。如果地址表没有变化,请从 PC1 ping S1,然后再次检查。

步骤 6. 设置静态 MAC 地址。

要指定主机可以连接到哪些接口,一个方法是创建主机 MAC 地址与端口的静态映射表。

使用本任务步骤 1 中为 PC1 记录的地址 0002.16E8.C285 设置快速以太网接口 0/18 的静态 MAC 地址。

S1(config)#mac-address-table static 0002.16E8.C285 vlan 99 interface fastethernet 0/18

步骤 7. 确认结果。

检查 MAC 地址表条目。

S1#show mac-address-table

步骤 8. 删除静态 MAC 条目。

进入配置模式,在命令串前加上 no 以删除静态 MAC。

S1(config)#no mac-address-table static 0002.16E8.C285 vlan 99 interface fastethernet 0/18

步骤 9. 确认结果。

使用 show mac-address-table static 命令确认静态 MAC 地址已删除。

任务 5: 配置端口安全性

步骤 1. 配置第二台主机。

本任务需要第二台主机。将 PC2 的 IP 地址设置为 172.17.99.22, 子网掩码为 255.255.255.0, 默认网关为 172.17.99.11。暂时不要将此 PC 连接到交换机。

步骤 2. 检验连通性。

从主机 ping 交换机的 VLAN 99 IP 地址,检验 PC1 和交换机的配置是否仍然正确。如果 ping 不成功,请排除主机和交换机的配置故障。

步骤 3. 确定交换机已学习了哪些 MAC 地址。

在特权执行模式下使用 show mac-address-table 命令显示已学习的 MAC 地址。

步骤 4. 列出端口安全选项。

研究用于在快速以太网接口 0/18 上设置端口安全的选项有哪些。

S1# configure terminal

- S1(config)#interface fastethernet 0/18
- S1(config-if)#switchport port-security ?

mac-address Secure mac address
maximum Max secure addresses
violation Security violation mode
<cr>

步骤 5. 在接入端口上配置端口安全性。

配置交换机端口 FastEthernet 0/18 仅接受两台设备,动态学习这些设备的 MAC 地址,并在发生安全违规事件时关闭端口。

- S1(config-if)#switchport mode access
- S1(config-if)#switchport port-security
- S1(config-if)#switchport port-security maximum 2
- S1(config-if)#switchport port-security mac-address sticky
- S1(config-if)#switchport port-security violation shutdown
- S1(config-if)#exit

步骤 6. 确认结果。

使用 show port-security interface fa0/18 命令显示端口安全性设置。

FastEthernet 0/18 上允许多少安全地址?

对此端口的安全操作是什么?

步骤 7. 检查运行配置文件。

S1#show running-config

所列语句是否直接反映了运行配置安全的实施情况?

步骤 8. 在端口上修改端口安全设置。

在快速以太网接口 0/18 上,将端口安全最大 MAC 地址计数更改为 1。

S1(config-if)#switchport port-security maximum 1

步骤 9. 确认结果。

使用 show port-security interface fa0/18 命令显示端口安全性设置。

端口安全设置是否已更改为步骤8中的配置?

从 PC1 ping 交换机的 VLAN 99 地址,检验连通性并刷新 MAC 地址表。

步骤 10. 引入一台流氓主机。

断开连接到交换机快速以太网接口 0/18 的 PC。将分配有 IP 地址 172.17.99.22 的 PC2 连接到端口 FastEthernet 0/18。从新主机 ping VLAN 99 地址 172.17.99.11。

尝试 ping S1 时发生了什么情况?

注: 网络收敛可能需要一些时间。切换仿真模式和实时模式可加快收敛。

步骤 11. 重新激活端口。

只要流氓主机与 FastEthernet 0/18 相连,主机与交换机之间便不会有流量通过。重新连接 PC1 与 FastEthernet 0/18,在交换机上输入下列命令以重新激活该端口:

S1#configure terminal

- S1(config)#interface fastethernet 0/18
- S1(config-if)#no shutdown
- S1(config-if)#exit

步骤 12. 检验连通性。

网络收敛后, PC1 应能再次 ping 通 S1。