Supervised Learning: Support Vector Machine (Linear SVM)

Binary Outcome

Show two ways of splitting a group, ask which one is better? Why? Increase the margin of errors
Assume that everything is labeled correctly

Want to put a border between the two groups Goals: As wide as possible, while keeping them separate

Plane can be described by a plane with a normal vector and a scalar b $w^Tx+b=0$, w^T (normal vector) is orientation and b (bias) is distance from origin (normal vector is like the opposite of slope, also has a length) Width of margin = 2/(||w||) or 2 divided by the length of the normal vector Goal we have to maximize 2/(||w||) == minimize((||w||)/2) With the constraints of plus class above -> $w^Tx+b >= 1$ With the constraints of minus class below -> $w^Tx+b <= -1$

This system can be solved by calculus, I will point you to resources if you want to see how

Supervised Learning: Logistic Regression

Binary Outcome

Point: Use sigmoid/logistic function to create a boundary

- -- Want $0 \le h(x) \le 1$
- -- h(x) = g(theta.transpose()*x)
- -- using sigmoid/logistic function
- $-g(z) = 1/(1+e^{-z})$
- -- so $h(x) = 1/(1+e^{-theta.transpose()*x))$

Create a decision boundary

Dimension Reduction: Principal Component Analysis (PCA)

Will not explain the derivation, will explain what is does

Finds directions of maximal variance

After the first one it will find a component that is orthogonal instead of