Question:

(1) How to show $\delta(\beta x) = \frac{1}{\beta} \delta(x)$? (2) How do we convert between $\delta(f)$ and $\delta(\omega)$?

(1) Answer:

From Tutorial 1 Q.6

Let $\beta > 0$.

We note that $\delta(\beta x)$ is essentially the unit impulse $\delta(x)$ with its time-width compressed by a factor of β . Since the area under $\delta(x)$ is 1, the area under $\delta(\beta x)$ must then be $1/\beta$. This leads directly to the relationship

$$\delta(\beta x) = \frac{1}{\beta}\delta(x).$$

Mathematically:

 $\delta(\beta x) = \begin{cases} \infty; & x = 0 \\ 0; & x \neq 0 \end{cases}$ implies that $\delta(\beta x)$ is an impuse function. We may thus write $\delta(\beta x) = A\delta(x)$ where $\delta(x)$ is the unit impulse function, and A is the area under $\delta(\beta x)$ given by

$$A = \underbrace{\int_{-\infty}^{\infty} \delta(\beta x) dx}_{\text{apply change of variable: } \zeta = \beta x}^{\infty} \frac{1}{\beta} \delta(\zeta) d\zeta = \frac{1}{\beta}$$

This shows that $\delta(\beta x) = \frac{1}{\beta} \delta(x)$.

Alternate Explanation

Let $\beta > 0$ and $\Delta > 0$.

Let
$$\beta > 0$$
 and $\Delta > 0$.

$$\delta(x) = \lim_{\Delta \to 0} \left(\frac{1}{\Delta} \operatorname{rect} \left(\frac{x}{\Delta} \right) \right) = \begin{cases} \infty; & x = 0 \\ 0; & x \neq 0 \end{cases} \quad \text{and} \quad \int_{-\infty}^{\infty} \delta(x) dx = \text{Area under } \frac{1}{\Delta} \operatorname{rect} \left(\frac{x}{\Delta} \right) = 1.$$

$$\frac{1/\Delta}{-\frac{\Delta}{2}} \quad 0 \quad \frac{\Delta}{2} \quad \to x$$

$$0 \quad \to x$$

$$\delta(\beta x) = \lim_{\Delta \to 0} \left(\frac{1}{\Delta} \operatorname{rect} \left(\frac{x}{\Delta/\beta} \right) \right) = \begin{cases} \infty; & x = 0 \\ 0; & x \neq 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(\beta x) dx = \text{Area under } \frac{1}{\Delta} \operatorname{rect} \left(\frac{x}{\Delta/\beta} \right) = \frac{1}{\beta} \end{cases}$$
implies that
$$\delta(\beta x) = \frac{1}{\beta} \delta(x)$$

(2) Answer:

Domain-scaling of $\delta(\cdot)$ is often encountered in transforming a spectrum containing $\delta(\cdot)$ between cyclic-frequency (f) and radian frequency (ω) domain:

Using the result $\delta(\beta x) = \frac{1}{\beta} \delta(x)$, we get

$$\left[\delta(\omega) = \delta(2\pi f) = \frac{1}{2\pi}\delta(f)\right] \text{ or } \left[\delta(f) = \delta\left(\frac{\omega}{2\pi}\right) = 2\pi\delta(\omega)\right].$$

♦ Example:

Converting the spectrum $\alpha \sum_{k} \delta(f - kf_0)$ from cyclic frequency (f) to angular frequency (ω) .

• Interpretation of $\delta(f) = 2\pi\delta(\omega)$ and $\delta(\omega) = \frac{1}{2\pi}\delta(f)$

CORRECT INTERPRETATION

- $\delta(f) = 2\pi\delta(\omega)$: A unit impulse on the f-axis is equal to an impulse of strength 2π on the ω -axis.
- $\delta(\omega) = \frac{1}{2\pi} \delta(f)$: A unit impulse on the ω -axis is equal to an impulse of strength $\frac{1}{2\pi}$ on the f-axis.

WRONG INTERPRETATION

- $\delta(f) = 2\pi\delta(\omega)$: If $\delta(\omega)$ is a unit impulse on the ω -axis, then $2\pi\delta(\omega)$ is an impulse of strength 2π on the f-axis. This interpretation obviously contradicts the equation because the left-hand-side of the equation is $\delta(f)$, which is a unit impulse on the f-axis.
- $\delta(\omega) = \frac{1}{2\pi} \delta(f)$: If $\delta(f)$ is a unit impulse on the f-axis, then $\frac{1}{2\pi} \delta(f)$ is an impulse of strength $\frac{1}{2\pi}$ on the ω -axis. This interpretation obviously contradicts the equation because the left-hand-side of the equation is $\delta(\omega)$, which is a unit impulse on the ω -axis.