

(https://swayam.gov.in)

2111cs010016@mallareddyuniversity.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Deep Learning - IIT Ropar (course)

Course outline **About** NPTEL () How does an **NPTEL** online course work? () Week 1 () Week 2 () Week 3 () week 4 () Week 5 () Week 6 () Week 7 () Week 8 () Week 9 ()

week 10 ()

Week 11: Assignment 11

The due date for submitting this assignment has passed.

Due on 2024-10-09, 23:59 IST.

As per our records you have not submitted this assignment.

1) For which of the following problems are RNNs suitable?

1 point

- Generating a description from a given image
- Forecasting the weather for the next N days based on historical weather data
- Converting a speech waveform into text
- Identifying all objects in a given image

No, the answer is incorrect.

Score: 0

Accepted Answers:

Generating a description from a given image

Forecasting the weather for the next N days based on historical weather data

Converting a speech waveform into text

2) Suppose that we need to develop an RNN model for sentiment classification. The input to the model is a sentence composed of five words and the output is the sentiments (positive or negative). Assume that each word is represented as a vector of length 70×1 and the output labels are one-hot encoded. Further, the state vector s_t is initialized with all zeros of size 50×1 . How many parameters (including bias) are there in the network?

No, the answer is incorrect.

Score: 0

Accepted Answers: (Type: Numeric) 6152

3) What is the main advantage of using GRUs over traditional RNNs?

Week 11 ()	○ They are simpler to implement	
	They solve the vanishing gradient problem	
SequenceLearning	They require less computational power	
Problems	○ They can handle non-sequential data	
(unit?	No, the answer is incorrect.	
unit=150&less on=151)	Score: 0	
,	Accepted Answers: They solve the vanishing gradient problem	
Recurrent Neural Networks	4) What is the vanishing gradient problem in training RNNs?	1 point
(unit?	The weights of the network converge to zero during training	
unit=150&less	The gradients used for weight updates become too large	
on=152)	The network becomes overfit to the training data	
Backpropagati	The gradients used for weight updates become too small	
on through time (unit?	No, the answer is incorrect.	
unit=150&less	Score: 0	
on=153)	Accepted Answers:	
The problem	The gradients used for weight updates become too small	
of Exploding and Vanishing	5) What is the role of the forget gate in an LSTM network?	1 point
Gradients (unit?	To determine how much of the current input should be added to the cell state	
unit=150&less	To determine how much of the previous time step's cell state should be retained	Ł
on=154)	To determine how much of the current cell state should be output	
Some Gory	To determine how much of the current input should be output	
Details (unit? unit=150&less	No, the answer is incorrect. Score: 0	
on=155)	Accepted Answers:	
Selective	To determine how much of the previous time step's cell state should be retained	
Read,		
Selective Write,	6) We construct an RNN for the sentiment classification of text where a text can have	•
Selective	sentiment or negative sentiment. Suppose the dimension of one-hot encoded-words is dimension of state vector s_i is $R^{50\times 1}$. What is the total number of parameters in the negative sentiment.	
Forget - The	(Don't include biases also in the network)	Stwork:
Whiteboard Analogy (unit?		
unit=150&less		
on=156)	No, the answer is incorrect. Score: 0	
Cong Short	Accepted Answers:	
Term Memory(LSTM	(Type: Range) 7599.5,7601.5	
) and Gated		1 point
Recurrent	7) What are the problems in the RNN architecture?	1 point
Units(GRUs) (unit?	1) What are the problems in the twist architecture:	i point
unit=150&less	Morphing of information stored at each time step.	
on=157)	Exploding and Vanishing gradient problem.	
O How LSTMs	\bigcirc Errors caused at time step t_n can't be related to previous time steps faraway	
avoid the problem of	\bigcirc All of the above	
probletti 0i	- , iii oi uio abovo	

problem of

vanishing gradients (unit? unit=150&less on=158)

- How LSTMs avoid the problem of vanishing gradients (Contd.) (unit? unit=150&less on=159)
- Lecture Material for Week 11 (unit? unit=150&less on=160)
- Week 11 Feedback Form: Deep Learning - IIT Ropar (unit? unit=150&less on=194)
- O Quiz: Week 11: **Assignment** (assessment? name=299)

Week 12 ()

Download Videos ()

Books ()

Text **Transcripts** ()

Problem Solving Session -July 2024 () No, the answer is incorrect.

Score: 0

Accepted Answers:

All of the above

8) We are given an RNN where max eigenvalue λ of Weight matrix is 0.9. The activation function used in the RNN is logistic/sigmoid. What can we say about $\nabla = \| \frac{\partial s_{20}}{\partial s_1} \|$?

Value of ∇ is close to 0.

Value of ∇ is very high.

Value of ∇ is 3.5.

Insufficient information to say anything.

No, the answer is incorrect.

Score: 0

Accepted Answers:

Value of ∇ is close to 0.

9) What is the objective(loss) function in the RNN?

1 point

1 point

- Cross Entropy
- Sum of cross-entropy
- Squared error
- Accuracy

No, the answer is incorrect.

Score: 0

Accepted Answers:

Sum of cross-entropy

10) Which of the following is a formula for computing the output of an LSTM cell?

1 point

$$egin{aligned} \bigcirc \ o_t &= \sigma(W_o[h_{t-1}, x_t] + b_o) \ \bigcirc \ f_t &= \sigma(W_f[h_{t-1}, x_t] + b_f) \ \bigcirc \ c_t &= f_t * c_{t-1} + i_t * g_t \end{aligned}$$

$$\widetilde{f_t} = \sigma(W_f[h_{t-1}, x_t] + b_f)$$

$$\overrightarrow{c_t} = f_t * c_{t-1} + i_t * g_t$$

$$\overset{\smile}{h_t} = o_t * tanh(c_t)$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$h_t = o_t * tanh(c_t)$$

