

Computação Gráfica

Clipping em 2D

Sumário

- Janela de Clipping
- Clipping (recorte)
 - introdução
 - força bruta
 - algoritmo Cohen-Sutherland
- Area clipping (recorte de polígonos)
 - algoritmo Sutherland-Hodgamn

Janela de Clipping

• Uma cena é composta por uma coleção de objetos especificados em coordenadas do mundo (world coordinates)

Janela de Clipping

• Quando esta cena é renderizada, apenas os objetos que estejam dentro de uma janela particular são mostrados

Janela de Clipping

• E, uma vez que o processo de renderização é demorado, todo o conteúdo que esteja fora desta janela deve ser recortado (clipped).

Clipping

- Clipping é o processo de retirar da imagem objetos ou parte de objetos que não são visíveis devido ao volume de visualização.
 - evita a renderização de objetos que não estão dentro da janela de clipping.

Point Clipping

- O recorte de um ponto é determinado por 4 inequações
 - um ponto (x,y) não é recortado (clipped) se

$$wx_{min} \le x \le wx_{max}$$

$$wy_{min} \le y \le wy_{max}$$

€

• isto é, o ponto encontra-se dentro da janela de clipping.

Point Clipping

• O recorte de pontos é utilizado em objetos pequenos ou que são modelados como "partículas" como, por exemplo, nuvens, fumaça, explosões.

• Exemplo:

Line Clipping

- Mais complexo que o recorte de pontos
 - examine as três situações abaixo e veja se as linhas encontram-se na janela ou não.

Situação	Solução	Exemplo	
Ambos pontos dentro da janela	Sem recorte		
Um ponto dentro da janela e outro fora	Com recorte		
Ambos pontos forma da janela	Indeterminado!		

Line Clipping

- No recorte de segmentos de reta, a parte mais custosa em termos computacionais são os cálculos para determinar a interseção entre os segmentos de reta.
- Assim, algoritmos de recorte de segmentos de linha devem minimizar o número de cálculos de interseção necessários.
 - força bruta
 - Cohen-Sutherland

Line Clipping por Força Bruta

- O algoritmo de recorte de segmentos de linha por força bruta é executado como a seguir:
 - linhas com ambos pontos extremos dentro da janela de clipping não são Recortados.
 - linhas contendo um ponto dentro e outro fora da janela de clipping, calcula-se a interseção e o recorte é realizado a partir deste ponto.

Line Clipping por Força Bruta

• linhas com ambos pontos extremos fora da janela de clipping, teste a linha em busca de interseções contra **todas** as bordas da janela e aplique o

recorte quanto necessário.

- calcular interseção é caro.
- método lento se a cena contiver muitas linhas.

- O algoritmo de Cohen-Shuterland é um eficiente método de recorte de segmento de retas.
 - a chave do método está em reduzir a quantidade de cálculo de interseção de linhas que devem ser realizados.

- No algoritmo de Cohen-Shuterland, o espaço é dividido em regiões com base nos limite da janela de clipping.
 - cada região possui um código de quatro bits único.
 - o códigos das regiões indicam a posição da região com relação à janela de clipping.

2 2 1 0		1000	1010
acima abaixo direita esq.	0001	0000 Window	0010
Códigos das regiões		0100	

1 = fora da janela

0 = dentro da janela

 Cada ponto extremo, de cada uma das retas, é rotulado com um código apropriado, como no exemplo abaixo:

- No algoritmo de Cohen-Shuterland, linhas dentro dos limites da janela de clipping possuem código [0000] para ambos os pontos.
 - não sofrem recorte

- Quaisquer linhas com pelo menos um bit igual a 1, em comum em ambos os códigos de região de seus pontos extremos, pode ser recortada.
 - uma operação lógica AND pode verificar esta afirmativa facilmente.

- Linhas que n\u00e3o podem ser identificadas como estando completamente dentro ou completamente fora da janela de clipping, podem ou n\u00e3o cruzar o interior da mesma.
- Tais linhas são processadas como a seguir:
 - compare um ponto extremo fora da janela com alguma borda (escolha qualquer borda, em qualquer sequência) e determine o quanto pode ser recortado.
 - se o restante da linha estiver completamente dentro ou fora da janela, mantenha a linha ou realize o recorte, respectivamente.

- caso contrário, compare o restante da linha contra a demais bordas da Janela.
- continue até que a linha seja descartada ou um segmento dentro da janela seja encontrado.
- É possível utilizar os códigos de região para determinar quais as bordas da janela devem ser consideradas no teste de interseção.
 - para verificar se uma linha cruza uma borda particular, basta comparar os bits correspondentes dos códigos de região de ambos pontos;
 - se o bit for 1 em um ponto e 0 em outro, a linha corta a borda.

- Considere o segmento de linha P₉P₁₀
 - comece por P₁₀;
 - pelos códigos dos pontos, sabemos que que a linha não cruza as bordas da esquerda e da direita;

- calcule a interseção da linha com a borda inferior gerando o ponto P₁₀′
- a linha P₉P₁₀' esta completamente dentro da janela de *clipping*, deve ser mantida então.

Considere o segmento de linha P₃P₄

comece por P₄

 pelos códigos dos pontos, sabemos que que a linha cruza a borda esquerda então o ponto de interseção P₄' é calculado.

- realizando a operação AND entre P₃P₄', ocorre um bit 1 em um dos campos.
- a linha P₃P₄' esta completamente fora da janela de *clipping*, deve ser recortada então.
- repetindo o procedimento para P₄'P₄, teremos o mesmo resultado.

Considere o segmento de linha P₇P₈

comece por P₇

 pelos códigos dos pontos, sabemos que que a linha cruza a borda esquerda então, o ponto de interseção P₇' é calculado.

- Considere o segmento de linha P₇'P₈
 - comece por P₈
 - calcule a interseção da linha com a Borda direita gerando o ponto P₈'

Calculando Interseção entre Linhas

- Pontos de interseção com as bordas da janela de clipping são calculadas utilizando parâmetros da equação da reta;
 - considere um segmento de reta com pontos extremos (x₁, y₁) e (x₂, y₂).
 - a coordenada y de um interseção com uma borda vertical é dada por

$$y = y_1 + m(x_{borda} - \underline{x}_1)$$

onde x_{borda} pode ser tanto wx_{max} ou wx_{min}.

Calculando Interseção entre Linhas

• a coordenada y de um interseção com uma borda vertical é dada por

$$x = x_1 + \frac{(y_{borda} - y_1)}{m}$$

onde y_{borda} pode ser tanto wx_{max} ou wx_{min} .

• m é a inclinação da reta em questão e é dada por

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

Area Clipping

- De maneira semelhante aos segmentos de linha, áreas devem ser recortadas para se ajustar às bordas da janela de *clipping*.
- Deve ser dada atenção especial a quais porções da área devem ser recortadas.
 - simplesmente recortar linhas não é suficiente

Area Clipping Sutherland-Hodgman

- O algoritmo de recorte de polígonos desenvolvido por Suterland e Hodgman é uma técnica eficiente de *area clipping*.
 - de maneira simples, neste algoritmo, um polígono e recortado por meio de comparações como cada uma das bordas, em turnos.

Area Clipping Sutherland-Hodgman

- Para o recorte de de uma área com relação a uma borda individual:
 - considere cada vértice
 - vértices dentro da janela de clipping são armazenados para comparação contra a próxima borda.
 - vértices fora da janela de clipping são recortados.
 - se procedemos de um vértice dentro da janela para outro fora da janela, a interseção da linha com a borda é salva.
 - se cruzamos de fora para dentro da janela, a interseção e o vértice são salvos.

Area Clipping Sutherland-Hodgman

Salva vértices | e P

Revisão

- Objetos em uma cena devem ser recortados (*clipped*) para a rasterização da mesma na janela de *viewport*.
- Uma vez que podem existir diversos objetos a serem recortados, algoritmos de *clipping* devem ser extremamente eficientes.
- O algoritmo de Cohen-Sutherland pode ser utilizado para recorte de segmentos de linhas.
- O algoritmo de Sutherland-Hodgman pode ser utilizado para recorte de Polígonos.