Лабораторная работа №4

Тема. Изучение алгоритмов метода Ньютона и его модификаций, в том числе квазиньютоновских методов.

Цель. Разработать программы для безусловной минимизации функций многих переменных.

Реализовать алгоритмы

- 1. Метод Ньютона: **a)** классический, **б)** с одномерным поиском (одномерный метод на выбор студентов), **в)** с направлением спуска.
 - 1.1. Продемонстрируйте работу методов на 2-3 функциях, в том числе на не квадратичных.
 - Для поиска ньютоновского направления спуска необходимо использовать прямой или итерационный метод решения СЛАУ (даже, если она размерности 2).
 - Результаты иллюстрируйте траекториями спуска.
 - Укажите количество итераций, необходимых для достижения заданной точности.
 - В случае одномерного поиска указывайте найденные значения параметра.
 - Проведите исследование влияние выбора начального приближения на результат (не менее трех).
 - 1.2. Исследуйте работу методов на двух функциях с заданным начальным приближением:

$$f(x) = x_1^2 + x_2^2 - 1.2x_1x_2, x^0 = (4, 1)^T;$$

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2, x^0 = (-1.2, 1)^T.$$

- Для поиска ньютоновского направления спуска необходимо использовать прямой или итерационный метод решения СЛАУ (даже, если она размерности 2).
- Сравните результаты с минимизацией методом наискорейшего спуска (из лаб. работы 2).
- Постройте таблицу или график зависимости «метод: количество итераций».

- Для каждого метода приведите иллюстрации траекторий сходимости.
- 2. Квазиньютоновский метод (вариант выдает преподаватель): вариант 1: метод Давидона-Флетчера-Пауэлла и метод Пауэлла; вариант 2: метод Бройдена-Флетчера-Шено и метод Пауэлла. Работу квазиньютоновских методов сравните с наилучшим методом Ньютона (по результатам 1.2) на функциях:

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2,$$

$$f(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2,$$

$$f(x) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4,$$

$$f(x) = 100 - \frac{2}{1 + \left(\frac{x_1 - 1}{2}\right)^2 + \left(\frac{x_2 - 1}{3}\right)^2} - \frac{1}{1 + \left(\frac{x_1 - 2}{2}\right)^2 + \left(\frac{x_2 - 1}{3}\right)^2}.$$

- Для каждого метода приведите иллюстрации траекторий сходимости.
- Проведите исследование влияние выбора начального приближения на результат (не менее трех), оцените скорость сходимости.
- Постройте таблицу или график зависимости «метод : количество итераций».

Для отображения траектории поиска точки используйте ранее реализованную графическую систему или сторонние программы.

Бонусное задание. Реализовать метод Марквардта двумя вариантами. Результаты работы продемонстрировать на минимизации многомерной функции Розенброка (n=100) в сравнении с наилучшим методом Ньютона (по результатам 1.2):

$$f(x) = \sum_{i=1}^{n-1} 100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2.$$

Для обоих методов построить график зависимости «итерация – параметр τ ». В случае с разложением Холесского дополнительно построить график зависимости «итерация – число разложений Холесского».

Отчет. По результатам выполнения лабораторной работы необходимо подготовить отчет: титульный лист с указанием организации, названия учебной

дисциплины, темы работы, номера варианта, исполнителя и принимающего, города, года.

Отчет должен содержать все исследования, проведенные в п.п. 1-2, а также соответствующие выводы. Для разработанного программного кода в отчете привести код основных модулей, диаграмму классов, сделать текстовое описание.

Требования к программному коду (вычислительные алгоритмы)

- 1. Рекомендуется использовать языки программирования: C++, C#, Java.
- 2. Рекомендуется придерживаться основных положений ООП при разработке.
- 3. Рекомендуется выполнять документирование программного кода.

Оценка результатов

Задание	Результат (в виде коэффициента)
Сдача в срок	0.15
Основные численные результаты, выводы, защита	0.0 – 0.55
Программная реализация и индивидуальный код	0.0 - 0.25
Грамотность изложения и общее качество отчета	0.0 - 0.05
Бонусное задание	0.0 - 0.3

Срок сдачи четвертой лабораторной работы – до 3.06.2021 (включительно).

После указанного срока лабораторные приниматься не будут!