

Reti

(già "Reti di Calcolatori")

Livello Collegamento Ethernet – LAN – ADSL - WiFi

Renato Lo Cigno

http://disi.unitn.it/locigno/index.php/teaching-duties/computer-networks

Acknowledgement

Credits

- Part of the material is based on slides provided by the following authors
 - Jim Kurose, Keith Ross, "Computer Networking: A Top Down Approach," 4th edition, Addison-Wesley, July 2007
 - Douglas Comer, "Computer Networks and Internets,"
 5th edition, Prentice Hall
 - Behrouz A. Forouzan, Sophia Chung Fegan, "TCP/IP Protocol Suite," McGraw-Hill, January 2005
- La traduzione, se presente, è in generale opera (e responsabilità) del docente

Cosa c'è sotto IP

- IETF non specifica i protocolli sotto IP ma solo l'interfaccia che IP "vuole vedere"
- I protocolli DL e PHY sono "technology dependent"
 - L'evoluzione delle tecniche di trasmissione e di elaborazione dei segnali e dell'informazione determinano i dettagli dei protocolli
- Come sono stati "istanziati" i principi di condivisione del canale (MAC) nelle reti e nei collegamenti che usiamo?
- Di fatto ci sono decine di diverse tecnologie e protocolli
 - Reti di accesso (domestiche e non)
 - Reti di backbone
 - Comunicazioni elettriche, ottiche, radio
- •

LAN e reti di accesso

- Noi ci occupiamo solamente di LAN e di reti di accesso domestiche
- Le reti di backbone sono dominate da collegamenti ottici puntopunto
 - Problemi concettualmente poco interessanti (da un punto di vista dei protocolli)
 - Molto complessi per ragioni di tipo commerciale e "legacy"

- Accesso "campus" → standard 802 e Ethernet
- Accesso domestico → WLAN (802.11) e ADSL

Ethernet e Standard IEEE 802.3

LAN Protocols

- Standardization process started in the '80s by IEEE 802 project:
 - √ 802.1: LAN Internetworking
 - √ 802.2: LLC Sublayer
 - ✓ 802.3: CSMA/CD: *Ethernet* is a small (1-bit in the header) variation of 802.3
 - ✓ 802.4: *Token Bus*
 - √ 802.5: Token Ring
 - √ 802.6: DQDB (for MANs)

LAN Protocols

- Work is still going on in many technical committees and new committees are founded every year (or close to):
 - √ 802.7: Broadband Technical Advisory Group
 - √ 802.8: Fiber-Optic Technical Advisory Group
 - ✓ 802.9: Integrated Data and Voice Networks
 - √ 802.10: Network Security
 - √ 802.11: Wireless Networks (/a/b/g/h/f/s/n/p/ac/...)
 - √ 802.12: 100base VG
 - √ 802.13: 100base X
 - √ 802.15: Personal Area Networks (.1 [Bluetooth]4 (ZigBee))
 - √ 802.16: Wireless MAN (WiMax & Co.)
 - **√** ...

Ethernet e Standard IEEE 802.3

- Gli standard Ethernet e 802.3 implementano un livello MAC di tipo CSMA/CD 1-persistent
- In caso di collisione, l'istante in cui ritrasmettere viene calcolato utilizzando un algoritmo di binary exponential backoff
 - dopo i collisioni, l'host attende prima di ri-iniziare la procedura di trasmissione un tempo casuale nell'intervallo [0, 1, ..., 2ⁱ-1]
 - vincoli
 - dopo 10 collisioni il tempo di attesa è limitato all'intervallo
 [0, 1, ..., 1023]
 - dopo 16 collisioni viene riportata una failure al sistema operativo

CSMA: collisioni

- Si verificano
 - a causa dei ritardi di propagazione e sono inevitabili
 - soprattutto a causa della scelta
 1-persistente
- Collisione: spreco completamente tempo di trasmissione pacchetti
- la distanza (ritardo di propagazione) gioca ruolo fondamentale nella probabilità di collisioni
- con pacchetti di grandi dimensioni, a parità di traffico trasmesso, riduco il numero di contese, e quindi di collisioni

Round Trip Delay

• È il tempo necessario, nel caso peggiore, al segnale inviato da una stazione per arrivare all'altro estremo del cavo e a tornare indietro

Round Trip Delay = $2 t_p$

Prestazione CSMA

- Dipendenti da rapporto tra dimensione della rete e dimensione del pacchetto
- Lo 'spreco' di risorse è legato al rapporto tra il tempo di propagazione t_p e il tempo di trasmissione del pacchetto $T_{\rm tx}$

$$a = \frac{t_p}{T_{TX}}$$

CSMA/CD (Collision Detection)

- Vantaggi di CSMA/CD su CSMA:
 - se mi accorgo (in fretta) delle collisioni sospendo la trasmissione del pacchetto
 - riduco lo spreco dovuto ad una trasmissione inutile
- Collision detection:
 - facile nelle LAN cablate: misuro potenza segnale, confronto segnale ricevuto e trasmesso
 - difficile in LAN wireless: half duplex (quando trasmetto ricevitore disattivo)

CSMA/CD collision detection

È necessario che il rapporto Ttx/tp sia tale da consentire l'identificazione della collisione e che venga trasmessa una sequenza speciale (dopo aver rilevato la collisione) per consentire a tutti di "capire" che c'è stata una collisione

CSMA/CD: prestazioni

Si hanno prestazioni migliori

- su reti piccole: riduco periodo di vulnerabilità (pari al ritardo di propagazione sul canale)
- su reti piccole rispetto alla dimensione del pacchetto (parametro 'a' piccolo): riduco lo spreco
- con velocità di trasmissione bassa: pochi bit trasmessi quando rilevo collisione
- CSMA/CD 1p è quasi ideale se a → 0 ... ma in questo caso ho una rete inutile, perché vuole dire avere o una rete di dimensione nulla o T_{tx} → infinito

Prestazioni approssimative CSMA/CD-1p con backoff binario

Ethernet Formato della trama

- Preambolo (7 byte)
 - sequenza di byte "10101010" utilizzata per sincronizzare il ricevitore
- Start of frame (1 byte)
 - flag di inizio della trama "10101011"
- Addresses (6 byte)
 - indirizzi destinazione e sorgente della trama

- Length (2 byte)
 - lunghezza in byte della trama (0-1500)
 - se > 1500 indica Protocol Type
- Payload
 - informazione trasmessa
- Checksum
 - codice per rilevazione di errore

Ethernet formato della trama

SFD = 10101011

Indirizzo MAC Destinazione

Indirizzo MAC Sorgente

Tipo protocollo livello superiore > 1500

DATI

FCS

Inter Packet GAP (silenzio)

BYTE

7

1

6

6

2

46 - 1500

4

Equivale a 12

Ethernet: il progetto originale

- Cavo coassiale
- Topologia a bus
- Su transceiver cable ho segnali tx, rx e collisione rivelata (e alimentazione)

- Lunghezza massima segmento coassiale 500 m (max 100 stazioni) per problemi "elettrici"
- Lunghezza massima transceiver cable 50 m
- Max 5 ripetitori tra due stazioni (circa 2500 m più ritardi dei ripetitori e transceiver cable fanno una dimensione equivalente di 2800m)

Ethernet: topologia

- Il mezzo condiviso può essere un cavo coassiale oppure un "hub"
- Hub: dispositivo attivo (concentratore di cablaggio) che ripete il segnale da una porta su tutte le altre
 - In pratica un repeater multi-porta

Bus: cavo coassiale

Topologia a stella

Ethernet: parametri di progetto

- Il T_{tx} di una trama non può essere inferiore a 2t_p
- La velocità del mezzo trasmissivo e le dimensioni della rete determinano quindi la lunghezza minima della trama
- La lunghezza di trama dipende anche dall'IPG (Inter-Packet Gap), che segnala la fine trama
- La dimensione massima di una rete si chiama Diametro del Collision Domain
- Il Collision Domain è la porzione di rete fisica in cui possono avvenire collisioni e sono rilevate

Collision Domain

- Il collision domain è quella porzione di rete Ethernet in cui, se due stazioni trasmettono simultaneamente, le due trame collidono
 - spezzoni di rete connessi da repeater (amplificatori) sono nello stesso collision domain
 - spezzoni di rete connessi da dispositivi di tipo store and forward (bridge, switch o router) sono in collision domain diversi

Diametro di un Collision Domain

- Con il termine diametro di un collision domain si indica la distanza massima tra ogni possibile coppia di stazioni
- Il diametro massimo di un collision domain a 10Mbit/s è di 2800m e dipende
 - dal ritardo di propagazione (round trip delay)
 - dalla dimensione minima delle trame

Caratteristiche MAC Ethernet

- Per garantire buone prestazioni (collisioni ridotte) non bisogna caricare troppo la rete
- Protocollo semplice e totalmente distribuito
- Non avendo un ritardo massimo non è adatto ad applicazioni real-time
- Ritardi di accesso piccoli a basso carico
- Standard per LAN più diffuso quindi ampia disponibilità di componenti di basso costo
- Non esistono conferme di avvenuta ricezione
- Non gestisce priorità

Ethernet: livello fisico

- Velocità trasmissione: 10 Mb/s (bit time = 0.1 μs)
- Codifica Manchester (20Mbit/s di clock per facilitare recupero sincronismo in rete asincrona)
- Stazioni: max 1024 (2¹⁰)
- Mezzi trasmissivi:
 - 10 BASE 5: cavo coassiale spesso RG213
 - 10 BASE 2: cavo coassiale sottile RG58
 - 10 BASE T: doppino UTP da 100 Ohm
 - 10 BASE FL, 10 BASE FB, 10 BASE FP: fibra ottica multimodale

Ethernet: livello fisico

- Topologie:
 - bus o albero di bus: 10 BASE 5, 10 BASE 2
 - stella: 10 BASE T, 10 BASE FB, 10 BASE FP
- Possono essere utilizzati repeater
 - decodificano e ricodificano Manchester
 - rilevano collisione e la inoltrano su tutte le porte
 - rigenerano preambolo (802.3)
 - isolano segmenti di rete se si verificano 30 collisioni consecutive o se l'impedenza è disadattata
 - possono ridurre preambolo e non modificare inter-packet gap o viceversa

Codifica Manchester

- Tradizionale
 - ogni periodo di bit è suddiviso in due sottoperiodi
 - "0"

 basso,alto
 - "1"

 ⇒ alto basso
- Differenziale
 - ogni periodo di bit è diviso in 2 sottoperiodi
 - "1" assenza di transizione all'inizio del periodo di bit
 - "0" transizione all'inizio del periodo di bit

10 BASE 5

- Cavo coassiale spesso
 - stazioni collegate con transceiver cable
 e connessione a vampiro su cavo coassiale
- Su transceiver cable ho segnali tx, rx e collisione rivelata (e alimentazione)
- Topologia a bus, oppure a bus interconnessi a 10 Mb/s
- Lunghezza massima segmento coassiale 500 m (max 100 stazioni)
- Lunghezza massima transceiver cable
 50 m
- Max 2 ripetitori tra due stazioni

- Cavo coassiale sottile
 - stazioni connesse direttamente al cavo con connettore a T
- Transceiver incorporato nella scheda
- Lungh max segmento coassiale 185 m (max 30 stazioni)
- Stesse configurazioni di 10BASE 5 fino a 2800 m max
- Max 4 ripetitori tra due stazioni

10 BASE T

- Doppino UTP (Unshielded Twisted Pair)
- Collegamento punto punto tra stazioni e repeater (hub)
- Adatto a cablaggi strutturati
- Lunghezza massima del cavo 100 m
- Connettori RJ45 ad 8 fili (simile al telefono)

Ethernet: ritrasmissioni

- Slot time = 512 bit time (51.2 μs)
 - unità base di attesa prima di una ritrasmissione (pari ad un pacchetto di dimensione minima)
- In caso di n-esima collisione di un pacchetto, si ritrasmette dopo ritardo casuale estratto tra 0 e 2^k-1 slot time, con k=min(n, 10)
- Backoff limit = 10
 - Numero di tentativi oltre al quale non aumenta più il valor medio del back-off
- Attempt limit n=16
 - Massimo numero di tentativi di ritrasmissione

Ethernet: parametri e temporizzazioni

- Inter Packet Gap = 9.6 μs
 - Distanza tra due pacchetti
- Jam size = da 32 a 48 bit
 - Lunghezza della sequenza di jamming
- Max frame size = 1518 ottetti
 - Lunghezza massima del pacchetto (esclude preambolo e interpacket gap)
- Min frame size = 64 ottetti (512 bit)
 - Lunghezza minima del pacchetto
- Address size = 48 bit
 - Lunghezza indirizzi MAC

Ethernet: parametri e temporizzazioni

- Pacchetto minimo 64 byte = 512 bit, ovvero 51.2 μs
- Round trip delay massimo ammesso dallo standard: 45 μs
- Si rispetta la condizione che il ritardo di propagazione non eccede la minima durata del pacchetto per garantire il rilevamento delle collisioni

Evoluzione di Ethernet (802.3)

- Fast Ethernet
 - Ethernet a velocità di 100Mbps
 - Sia con commutazione (switch) che con protocollo CSMA/CD
- Gigabit Ethernet
 - formato e dimensione dei pacchetti uguale a Ethernet/802.3
 - velocità di 1 Gbps
 - ormai disponibile anche a 10 Gbps
 - Solo commutata
 - Permette di velocizzare le moltissime LAN Ethernet e FastEthernet già presenti con costi contenuti tramite sostituzione apparati di rete (Hub, Switch, interfacce)

Fast Ethernet

- Mantiene inalterato l'algoritmo CSMA-CD realizzato con 10Base-T e la dimensione dei pacchetti
- Tre standard per mezzi fisici (doppino su 4 coppie, doppino su 2 coppie, fibra)
- Trasmissione codifica 4B5B (di fatto si trasmettono 5 bit sul canale ogni 4 bit di informazione: la velocità effettiva sul canale è 125 Mbit/s)
- Riduce le dimensioni della rete
- La massima distanza tra due stazioni (collision domain) scende a 210m
- Interoperabilità con Ethernet 10Base-T

Gigabit Ethernet

- Uso formato di trama 802.3
- Operazioni half duplex e full duplex, ma usato in pratica solo in full duplex
 - si perdono vincoli legati a collision domain
 - CSMA/CD non utilizzato
- Controllo di flusso (definizione di master/slave non usato in pratica)
- Backward compatibility con mezzi fisici già installati (10baseT)
- Aumenta di un fattore 10 dimensione minima di pacchetto con padding di caratteri speciali per consentire l'uso di CSMA/CD se necessario
- Definizione di Jumbo Frames per aumentare throughput massimo
 - Serve anche a consentire l'annidamento di protocolli e il tunneling

Modifiche al protocollo

- Slot portato da 64 a 512 bytes (se ho pacchetti piccoli le prestazioni sono basse)
- Collision domain di 200 m
- Solo topologie a stella
- Consente la tecnica "frame bursting" (o Jumbo Frames) per mantenere il controllo del canale fino ad un massimo di 8192 bytes (l'estensione della lunghezza minima del pacchetto è necessaria solo per il primo pacchetto)
- Di fatto usato solo con switch, per cui non necessitano tutte queste modifiche visto che non si usa CSMA/CD

10 Gigabit Ethernet

- Il comitato IEEE 802.3 ha standardizzato 10, 40 e 100 Gbit/s Ethernet
- Solo la modalità full duplex, senza CSMA-CD
- Soluzioni proposte:
 - Seriale, con framing Ethernet, su distanze da LAN fino a 40 Km
 - 65 m su fibra multimodo (MMF)
 - 300 m su MMF installata
 - 2 km su fibra monomodo (SMF)
 - 10 km su SMF
 - 40 km su SMF
 - Altre soluzioni per distanze anche maggiori di 40km
- Per maggiori informazioni:
 - www.10gea.org
 - www.ieee802.org

PPP: caratteristiche

- Point-to-Point Protocol: E' un protocollo di livello 2 utilizzato sia nell'accesso e che nel backbone
- Caratteristiche principali:
 - character oriented
 - character stuffing per il framing
 - identificazione degli errori
 - supporta vari protocolli di livello superiore (rete)
 - negoziazione dinamica degli indirizzi IP

collegamento punto-punto tra router

collegamento punto-punto dial-up tra un PC e un router

PPP: Formato della trama

1	1	1	1 o 2	variable	2 o 4	1
01111110	11111111	00000011	Protocol	Payload	Checksum	01111110
Flag	Address	Control				Flag

- Flag (1 byte)
 - identifica inizio e fine della trama ("01111110")
- Address (1 byte)
 - utilizzato in configurazione "tutti gli host"
- Control (1 byte)
 - valore predefinito "00000011" ⇒ unnumbered

- Protocol (1 o 2 byte)
 - identifica il tipo di livello di frame (LCP, NCP, IP, IPX, ...)
- Payload (>0 byte)
 - informazione trasmessa
- Checksum (2 o 4 byte)
 - identificazione dell'errore

PPP: accesso con modem

- Modem (es.: V.90)
 - utilizza la banda telefonica per inviare i segnali
 - ha limite estremo superiore 56 (64) kbit/s

PPP: accesso con modem e ADSL

modem

Switch Voce

Splitter

Central Office

- xDSL (Digital Subscriber Line)
 - famiglia di tecnologie che permette di utilizzare la banda disponibile del doppino telefonico
 - si possono distinguere in sistemi simmetrici e asimmetrici
- es: ADSL
 - Sistema asimmetrico su singola coppia
 - Rate adattativo:
 - 640 30000 kb/s downstream
 - Fino a 8000 kb/s upstream
 - Distanze: a seconda del bit-rate

Introduzione

- La scelta di utilizzare mezzi condivisi per l'accesso al canale di trasmissione è stata fatta sia per necessità (ad es. trasmissioni wireless) sia motivi tecnico-(impossibilità di trasmettere a velocità elevate su doppini) –economici (il cavo coassiale costa caro)
- La rappresentazione tipica di una LAN è una serie di stazioni (PC) connesse ad un segmento di cavo coassiale (bus)
- Poiché il segmento non può essere troppo lungo...
 - attenuazione del segnale, dimensione collision domain
 - disposizione spaziale delle stazioni all'interno di un edificio (ad es.: su più piani)
- ... nasce il problema di come estendere le LAN
- Esistono 3 tipi di apparati, in ordine crescente di complessità:
 - Repeater o Hub
 - Bridge
 - Switch

Cavo coassiale / hub / anello ottico / etc.

Dominio di collisione Dominio di broadcast

Dominio di collisione

 parte di rete per cui, se due stazioni trasmettono dati contemporaneamente, il segnale ricevuto dalle stazioni risulta danneggiato (collisione)

Dominio di broadcast

- parte di rete raggiunta da una trama con indirizzo broadcast (a livello 2)
- Stazioni appartenenti alla medesima rete di livello 2 condividono lo stesso dominio di broadcast
 - gli apparati che estendo le LAN possono (e devono) solo influire sul dominio di collisione
- Diversi domini di broadcast devono essere separati da un router

Dominio di collisione Dominio di broadcast

Repeater e Hub

- Interviene solo a livello fisico ISO/OSI
- Replica le trame in arrivo da un segmento ad un altro, amplificando il segnale
- I repeater possono connettere più di due segmenti
 - in questo caso di parla di Hub
 - copia le trame che riceve su una porta su tutte le altre porte
 - il segnale trasmesso da una stazione viene propagato a tutte le uscite
- Non ci possono essere più di 4 repeater in cascata tra due stazioni
- Il dominio di collisione coincide con il dominio di broadcast

Alcune possibili combinazioni

stazione

stazione

usato un doppino al posto del cavo coassiale

(cablaggio strutturato)

stazione

stazione

e ancora...

- Il problema legato a questo tipo di configurazioni è l'eccessiva estensione del dominio di collisione
 - con i repeater/hub è come se tutte le stazioni condividessero lo stesso mezzo fisico

Bridge

- Collega 2 segmenti di rete
- stazione
- stazione
- stazione

- Apparato store and forward
 - seleziona se ripetere una trama generata da un semento di rete sull'altro segmento
 - la selezione avviene in base ad una tabella che esso mantiene
 - in tale tabella c'è scritto quali stazioni fanno parte di ciascun segmento di rete
 - il bridge legge l'indirizzo di destinazione e in base alla propria tabella decide se propagare la trama nell'altro segmento di rete
- Spezza il dominio di collisione

Schema di un bridge

Bridge: esempio di configurazione

- Spezza il dominio di collisione, ovvero ciascun segmento di rete è conteso solo da chi è attestato sull'hub
- Gli hub vedono il bridge come una stazione qualsiasi che genera trame
- La trama è propagata dal bridge solo se il destinatario è attestato su un hub diverso da quello di origine
- Il concetto di dominio di broadcast viene preservato: ogni frame indirizzata ad un indirizzo broadcast di livello 2 viene ricevuta da tutti i nodi, anche se separati da diversi bridge

Evoluzione: Layer 2 Switch

- Il bridge ha solo 2 porte
- Lo switch è un bridge multiporta
 - mantiene una tabella in cui sono associati indirizzi di livello 2 e segmenti di rete di appartenenza
- Spesso ogni porta è connessa ad un'unica stazione (invece che ad un segmento di rete)
 - realizza un accesso dedicato per ogni nodo
 - elimina le collisioni e dunque aumenta la capacità
 - supporta conversazioni multiple contemporanee

Schema di uno switch

WiFi - 802.11

WIRELESS LANs Architettura

Reference Architecture of WLANs

- Station (STA)
 - Terminal
- Basic Service Set (BSS)
 - Group of stations using the same radio frequency
- Access Point
 - Station integrated into the wireless LAN and the distribution system
- Portal
 - Bridge to other networks
- Distribution System
 - Interconnection network to form one logical network (ESS: Extended Service Set) based on several BSS

Reference Architecture

- Basic Service Set (BSS) consists of some number of stations with the same MAC protocol and competing for access to the same shared medium.
- A BSS may be isolated or it may connect to a backbone distribution system through an access point
- AP functions as a bridge.
- The MAC protocol may be fully distributed or controlled by a central coordination function housed in the AP.

Reference Architecture

- Basic Service Set (BSS) ← → CELL
- Extended Service Set (ESS) consists of two or more BSSs interconnected by a distribution system
- ESS appears as a single logical LAN to the logical link control (LLC) level

Protocol Architecture

Collision Detection is impossible

- Radio waves propagates on a spherical surface
- The signal is thus attenuated quadratically:

$$P_{rx} = k P_{tx} / d^2$$

d is the distance and k a generic constant accounting for any other attenuation factor and normalization, normally it is smaller than 1

- A transmitting antenna cannot receive at the same time
- Suppose we have 2 antennas on the AP (or laptop) 10cm apart, one transmitting and one receiving
- Another station is transmitting 10m away
- ... compute the ratio between the received powers

- Based on the Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) scheme:
 - stations that have data to transmit contend to access the channel
 - a station has to repeat the contention procedure every time it has data to transmit
 - in 802.11n/ac the channel is allocated for a time interval called TXOP where multiple frames can be send

Inter Frame Spaces – IFS

- Interframe space (IFS)
 - time interval between frame transmissions
 - used to establish priority in accessing the channel
- 4 types of IFS:
 - Short IFS (SIFS)
 - Point coordination IFS (PIFS) > SIFS
 - Distributed IFS (DIFS) > PIFS
 - Extended IFS (EIFS) > DIFS
- Duration depends on physical level implementation

IEEE 802.11 MAC Protocol Overview

802.11 CSMA sender:

- if sense channel idle for **DISF** sec.

then transmit frame

if sense channel busy
 then random access over a
 contention window CWmin (CA)
 when the channel becomes free

if received OK

return ACK after SIFS

Hidden Terminal Effect

- hidden terminals: A, C cannot hear each other
 - obstacles, signal attenuation → (deterministic) collisions at B
- goal: avoid collisions at B
- CSMA/CA with handshaking

MAC Handshaking

- CSMA/CA: explicit channel reservation
 - sender: send short RTS (request to send)
 - receiver: reply with short CTS (clear to send)
- CTS reserves channel for sender, notifying (possibly hidden) stations
- reduces hidden station collisions
- increase overhead

MAC Handshaking

- RTS and CTS are short:
 - collisions of shorter duration, hence less "costly"
- DCF allows:
 - CSMA/CA
 - CSMA/CA with handshaking

The exposed terminal problem

- Sensing range is normally larger than receiving range
- Terminals may be "exposed" in that they sense the channel occupied, but cannot compete for it

