## Extra Class

## Imbalanced Data

**Nguyen Quoc Thai** 



## CONTENT

- (1) Introduction
- **(2) Metric**
- (3) Approaches
- (4) Undersampling
- (5) Oversampling



#### **Imbalanced Data (Classification)**

| Negative | 9900 |
|----------|------|
| Positive | 100  |







#### **Imbalanced Data (Classification)**







#### **Imbalanced Data (Classification)**







## What happens if dataset is imbalanced?

|    | Outlook  | Temperature | Windy | Humidity | Play |
|----|----------|-------------|-------|----------|------|
| D0 | Sunny    | 70          | True  | 86       | No   |
| D1 | Rain     | 80          | True  | 78       | No   |
| D2 | Sunny    | 85          | False | 56       | No   |
| D3 | Overcast | 66          | False | 87       | No   |
| D4 | Sunny    | 77          | True  | 89       | No   |
| D5 | Sunny    | 88          | False | 78       | No   |
| D6 | Rain     | 67          | False | 84       | No   |
| D7 | Sunny    | 70          | False | 90       | Yes  |





## What happens if dataset is imbalanced?



















CAT



DOG



## What happens if dataset is imbalanced?

| Documents                           | Class    |
|-------------------------------------|----------|
| Just plain boring                   | Negative |
| Entire predictable and lacks energy | Negative |
| No surprises and very few laughs    | Negative |
| So bad                              | Negative |
| Not good                            | Negative |
| Don't like it                       | Negative |
| Very powerful                       | Positive |



[

#### **Accuracy**

$$Accuracy = \frac{Number\ of\ correct\ predictions}{Total\ number\ of\ predictions}$$



#### **Confusion Matrix**

| Confusion Matrix |          | Actual Label         |                      |
|------------------|----------|----------------------|----------------------|
|                  |          | Positive             | Negative             |
| Predicted        | Positive | TP<br>True Positive  | FP<br>False Positive |
| Label            | Negative | FN<br>False Negative | TN<br>True Negative  |

True Positive (TP): Observation is positive, and is predicted to be positive False Negative (FN): Observation is positive, but is predicted negative True Negative (TN): Observation is negative, and is predicted to be negative False Positive (FP): Observation is negative, but is predicted positive

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$



[]

#### **Accuracy – Example**

| ${f A}$            |          | Actual Label |          |
|--------------------|----------|--------------|----------|
|                    |          | Positive     | Negative |
| Predicted Positive |          | 1            | 0        |
| Label              | Negative | 1            | 998      |

$$Acc = \frac{0 + 998}{1 + 998 + 0 + 1} = 0.999$$

| В                  |          | Actual Label |          |
|--------------------|----------|--------------|----------|
| Ъ                  |          | Positive     | Negative |
| Predicted Positive |          | 400          | 200      |
| Label              | Negative | 100          | 300      |

$$Acc = \frac{400 + 300}{400 + 300 + 200 + 100} = 0.7$$



!

#### **Precision**

- Precision: % of items the model labeled as positive that are in fact positive
- Precision attempts to answer the following question: What proportion of positive identifications was actually correct?

| Confusion Matrix |          | Actual Label         |                      |
|------------------|----------|----------------------|----------------------|
|                  |          | Positive             | Negative             |
| Predicted        | Positive | TP<br>True Positive  | FP<br>False Positive |
| Label            | Negative | FN<br>False Negative | TN<br>True Negative  |

$$Precision = \frac{TP}{TP + FP}$$



!

#### Recall

- Precision: % of items actually present in the input that were correctly identified by the model
- Precision attempts to answer the following question: What proportion of actual positive was identified correctly?

| <b>Confusion Matrix</b> |          | Actual Label         |                      |
|-------------------------|----------|----------------------|----------------------|
|                         |          | Positive             | Negative             |
| Predicted               | Positive | TP<br>True Positive  | FP<br>False Positive |
| Label                   | Negative | FN<br>False Negative | TN<br>True Negative  |
|                         |          | ТР                   |                      |

Recall =

$$Precision = \frac{TP}{TP + FP}$$



#### **Precision – Recall – Example**

| $\mathbf{A}$       |          | Actual Label |          |
|--------------------|----------|--------------|----------|
|                    |          | Positive     | Negative |
| Predicted Positive |          | 1            | 0        |
| Label              | Negative | 1            | 998      |

Acc = 0.999

Precision = 
$$\frac{1}{1+0}$$
 = 1.0

Recall =  $\frac{1}{1+1}$  = 0.5

| В                  |          | Actual Label |          |
|--------------------|----------|--------------|----------|
| Ъ                  |          | Positive     | Negative |
| Predicted Positive |          | 400          | 200      |
| Label              | Negative | 100          | 300      |

Acc = 0.7  
Precision = 
$$\frac{400}{40 + 200}$$
 = 0.67  
Recall =  $\frac{400}{400 + 100}$  = 0.8



!

#### **F** Measure

F Measure

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

$$F_1 = \frac{2PR}{P + R}$$



#### F1 – Example

| $\mathbf{A}$       |          | Actual Label |          |
|--------------------|----------|--------------|----------|
|                    |          | Positive     | Negative |
| Predicted Positive |          | 1            | 0        |
| Label              | Negative | 1            | 998      |

Acc = 0.999  
Precision = 1.0  
Recall = 0.5  

$$F_1 = \frac{2PR}{P+R} = \frac{2*1*0.5}{1+0.5} = 0.67$$

| В                  |          | Actual Label |          |
|--------------------|----------|--------------|----------|
| D                  |          | Positive     | Negative |
| Predicted Positive |          | 400          | 200      |
| Label              | Negative | 100          | 300      |

Acc = 0.7  
Precision = 0.67  
Recall = 0.8  

$$F_1 = \frac{2PR}{P+R} = \frac{2*0.67*0.8}{0.67+0.8} = 0.73$$





## **Approach 1: Data Manipulation**











## **Approach 1: Data Manipulation**

#### **Augmentation (Oversampling)**







[

#### **Approach 1: Data Manipulation**

#### **Augmentation (Oversampling)**

| Easy Data Augmentation | Short Example                  |
|------------------------|--------------------------------|
| Random Swap            | I am jogging => I jogging am   |
| Random Deletion        | I am jogging => I jogging      |
| Random Insertion       | I am jogging => I am a jogging |





**Synonym Replacement** 

**Back-Translation** 



## **Approach 2: Loss Function and Optimization**





# 4 – Undersampling

!

#### **Overview**





# 4 – Undersampling

!

#### **Random Undersampling**





# 4 – Undersampling



## **Clustering-based Undersampling**



(1) Clustering Majority Samples

Imbalanced Data



(2) Identify nearest | neighbor for each center



(3) – Undersampling Majority Samples

Balanced Data





# 5 – Oversampling

!

## **Duplicate**





# 5 – Oversampling



## **Data Augmentation**

**Original** 



Flip



**Brightness** 



Color



Rotate



Blur



Noise





# 5 – Oversampling

!

## **SMOTE (Synthetic Minority Over-sampling TEchnique)**





# Thanks! Any questions?