Manifold Learning I: ISOMAP and LLE

姚 遠 2017

Python scikit-learn Manifold learning Toolbox

- http://scikit-learn.org/stable/modules/ manifold.html
- MDS/PCA, ISOMAP/LLE
- Hessian Eigenmap
- Laplacian Eigenmap
- LTSA

Matlab Dimensionality Reduction Toolbox

- http://homepage.tudelft.nl/19j49/
 Matlab Toolbox for Dimensionality Reduction.html
- drtoolbox contains:
 - Principal Component Analysis (PCA), Probabilistic PC
 - Factor Analysis (FA), Sammon mapping, Linear Discriminant Analysis (LDA)
 - Multidimensional scaling (MDS), Isomap, Landmark Isomap
 - Local Linear Embedding (LLE), Laplacian Eigenmaps, Hessian LLE, Conformal Eigenmaps
 - Local Tangent Space Alignment (LTSA), Maximum Variance Unfolding (extension of LLE)
 - Landmark MVU (LandmarkMVU), Fast Maximum Variance Unfolding (FastMVU)
 - Kernel PCA
 - Diffusion maps
 - ...

Recall: PCA

Principal Component Analysis (PCA)

$$X_{p \times n} = [X_1 \quad X_2 \quad \dots \quad X_n]$$

EigenValue Decomposition of XX^T

Recall: MDS

- Given pairwise distances D, where $D_{ij} = d_{ij}^2$, the squared distance between point i and j
 - Convert the pairwise distance matrix D (c.n.d.) into the dot product matrix B (p.s.d.)
 - $B_{ij}(a) = -.5 H(a) D H'(a)$, Hölder matrix H(a) = I-1a';
 - $a = 1_k$: $B_{ij} = -.5 (D_{ij} D_{ik} D_{jk})$
 - $\mathbf{a} = 1/n$: $B_{ij} = -\frac{1}{2} \left(D_{ij} \frac{1}{N} \sum_{s=1}^{N} D_{sj} \frac{1}{N} \sum_{t=1}^{N} D_{it} + \frac{1}{N^2} \sum_{s,t=1}^{N} D_{st} \right)$
 - Eigendecomposition of $B = YY^T$

If we preserve the pairwise Euclidean distances do we preserve the structure??

Nonlinear Manifolds...

Intrinsic Description..

To preserve
 structure, preserve
 the geodesic
 distance and not
 the Euclidean
 distance.

Manifold Learning

Learning when data $\sim \mathcal{M} \subset \mathbb{R}^N$

- Clustering: $\mathcal{M} \to \{1, \dots, k\}$ connected components, min cut
- Classification/Regression: $\mathcal{M} \to \{-1, +1\}$ or $\mathcal{M} \to \mathbb{R}$ $P \text{ on } \mathcal{M} \times \{-1, +1\}$ or $P \text{ on } \mathcal{M} \times \mathbb{R}$
- Dimensionality Reduction: $f: \mathcal{M} \to \mathbb{R}^n$ n << N
- M unknown: what can you learn about M from data?
 e.g. dimensionality, connected components
 holes, handles, homology
 curvature, geodesics

All you wanna know about differential geometry but were afraid to ask, in 9 easy

Embedded (sub-)Manifolds

$$\mathcal{M}^k \subset \mathbb{R}^N$$

Locally (not globally) looks like Euclidean space.

Tangent Space

k-dimensional affine subspace of \mathbb{R}^N .

Tangent Vectors and Curves

Tangent vectors <---> curves.

Riemannian Geometry

Norms and angles in tangent space.

Geodesics

$$\phi(t):[0,1]\to\mathcal{M}^k$$

$$l(\phi) = \int_0^1 \left\| \frac{d\phi}{dt} \right\| dt$$

Can measure length using norm in tangent space.

Geodesic — shortest curve between two points.

Gradients

Tangent vectors <---> Directional derivatives.

Gradient points in the direction of maximum change.

Tangent Vectors vs. Derivatives

Tangent vectors <--->

Directional derivatives.

Exponential Maps

$$\phi(0) = p, \quad \phi(\|v\|) = q \quad \frac{d\phi(t)}{dt} \Big|_{0} = v$$

Laplacian-Beltrami Operator

Orthonormal coordinate system.

Generative Models in Manifold Learning

Spectral Geometric Embedding

```
Given x_1, \ldots, x_n \in \mathcal{M} \subset \mathbb{R}^N,
Find y_1, \ldots, y_n \in \mathbb{R}^d where d << N
```

- ISOMAP (Tenenbaum, et al, 00)
- LLE (Roweis, Saul, 00)
- Laplacian Eigenmaps (Belkin, Niyogi, 01)
- Local Tangent Space Alignment (Zhang, Zha, 02)
- Hessian Eigenmaps (Donoho, Grimes, 02)
- Diffusion Maps (Coifman, Lafon, et al, 04)

Related: Kernel PCA (Schoelkopf, et al, 98)

Meta-Algorithm

- Construct a neighborhood graph
- Construct a positive semi-definite kernel
- Find the spectrum decomposition

Two Basic Geometric Embedding Methods: Science 2000

- Tenenbaum-de Silva-Langford Isomap Algorithm
 - Global approach.
 - On a low dimensional embedding
 - Nearby points should be nearby.
 - Faraway points should be faraway.

- Roweis-Saul Locally Linear Embedding Algorithm
 - Local approach
 - Nearby points nearby

Isomap

- Estimate the geodesic distance between faraway points.
- For neighboring points Euclidean distance is a good approximation to the geodesic distance.
- For faraway points estimate the distance by a series of short hops between neighboring points.
 - Find shortest paths in a graph with edges connecting neighboring data points

Once we have all pairwise geodesic distances use classical metric MDS

Isomap - Algorithm

- Construct an n-by-n neighborhood graph
 - connecting points whose distances are within a fixed radius.
 - K nearest neighbor graph
- Compute the shortest path (geodesic) distances between nodes: D
 - Floyd's Algorithm $(O(N^3))$
 - Dijkstra's Algorithm $(O(kN^2logN))$
- Construct a lower dimensional embedding.
 - Classical MDS (K = -0.5 H D H' = U S U')

Isomap

Residual Variance vs. Intrinsic Dimension

ISOMAP on Alanine-dipeptide

ISOMAP 3D embedding with RMSD metric on 3900 Kcenters

Convergence of ISOMAP

- ISOMAP has provable convergence guarantees;
- Given that {x_i} is sampled sufficiently dense, graph shortest path distance will approximate closely the original geodesic distance as measured in manifold *M*;
- But ISOMAP may suffer from nonconvexity such as holes on manifolds

Two step approximations

 Convergence proof hinges on the idea that we can approximate geodesic distance in M by short Euclidean distance hops.

Let's define the following for two points $x, y \in M$:

$$d_{M}(x, y) = \inf_{\gamma} \{length(\gamma)\}$$

$$d_{G}(x, y) = \min_{P} (\|x_{0} - x_{1}\| + \ldots + \|x_{p-1} - x_{p}\|)$$

$$d_{S}(x, y) = \min_{P} (d_{M}(x_{0}, x_{1}) + \ldots + d_{M}(x_{p-1}, x_{p}))$$

where γ varies over the set of smooth arcs connecting x to y in M and P varies over all paths along the edges of G starting at data point $x = x_0$ and ending at $y = x_p$.

▶ We will show $d_M \approx d_S$ and $d_S \approx d_G$, which will imply the desired result that $d_G \approx d_M$.

Main Theorem [Bernstein, de Silva, Langford,

Theorem 1: Let M be a compact submanifold of \mathbb{R}^n and let $\{x_i\}$ be a finite set of data points in M. We are given a graph G on $\{x_i\}$ and positive real numbers $\lambda_1, \lambda_2 < 1$ and $\delta, \epsilon > 0$. Suppose:

- 1. G contains all edges (x_i, x_j) of length $||x_i x_j|| \le \epsilon$.
- 2. The data set $\{x_i\}$ statisfies a δ -sampling condition for every point $m \in M$ there exists an x_i such that $d_M(m, x_i) < \delta$.
- 3. M is *geodesically convex* the shortest curve joining any two points on the surface is a geodesic curve.
- 4. $\epsilon < (2/\pi)r_0\sqrt{24\lambda_1}$, where r_0 is the *minimum radius of curvature of M* $\frac{1}{r_0} = \max_{\gamma,t} \|\gamma''(t)\|$ where γ varies over all unit-speed geodesics in M.
- 5. $\epsilon < s_0$, where s_0 is the *minimum branch separation* of M the largest positive number for which $||x y|| < s_0$ implies $d_M(x, y) \le \pi r_0$.
- 6. $\delta < \lambda_2 \epsilon / 4$.

Then the following is valid for all $x, y \in M$,

$$(1-\lambda_1)d_M(x,y) \leq d_G(x,y) \leq (1+\lambda_2)d_M(x,y)$$

Probabilistic Result

- So, short Euclidean distance hops along G approximate well actual geodesic distance as measured in M.
- ▶ What were the main assumptions we made? The biggest one was the δ -sampling density condition.
- ▶ A probabilistic version of the Main Theorem can be shown where each point x_i is drawn from a density function. Then the approximation bounds will hold with high probability. Here's a truncated version of what the theorem looks like now:

Asymptotic Convergence Theorem: Given $\lambda_1, \lambda_2, \mu > 0$ then for density function α sufficiently large:

$$1-\lambda_1 \leq \frac{d_G(x,y)}{d_M(x,y)} \leq 1+\lambda_2$$

will hold with probability at least 1 $-\mu$ for any two data points x, y.

Large Scale ISOMAP: Landmark and Nystrom

- ISOMAP out of the box is not scalable. Two bottlenecks:
 - ► All pairs shortest path $O(kN^2 \log N)$.
 - ▶ MDS eigenvalue calculation on a full NxN matrix $O(N^3)$.
 - For contrast, LLE is limited by a sparse eigenvalue computation $O(dN^2)$.
- Landmark ISOMAP (L-ISOMAP) Idea:
 - ▶ Use n << N landmark points from $\{x_i\}$ and compute a $n \times N$ matrix of geodesic distances, D_n , from each data point to the landmark points only.
 - Use new procedure Landmark-MDS (LMDS) to find a Euclidean embedding of all the data – utilizes idea of triangulation similar to GPS.
- Savings: L-ISOMAP will have shortest paths calculation of $O(knN \log N)$ and LMDS eigenvalue problem of $O(n^2N)$.

Landmark Choice

- Random
- MiniMax: k-center
- Hierarchical landmarks: cover-tree
- Nyström extension method

A Shortcoming of ISOMAP

- One need to compute pairwise shortest path between all sample pairs (i,j)
 - Global
 - Non-sparse
 - Cubic complexity O(N³)

Locally Linear Embedding

manifold is a topological space which is locally Euclidean."

Fit Locally...

We expect each data point and its neighbours to lie on or close to a locally linear patch of the manifold.

Each point can be written as a linear combination of its neighbors.

The weights are chosen to minimize the reconstruction Error.

$$min_W \| X_i - \sum_{j=1}^K W_{ij} X_j \|^2$$
 (1)

Derivation on board

Important property...

- The weights that minimize the reconstruction errors are invariant to rotation, rescaling and translation of the data points.
 - Invariance to translation is enforced by adding the constraint that the weights sum to one.
- The same weights that reconstruct the datapoints in D dimensions should reconstruct it in the manifold in d dimensions.
 - The weights characterize the intrinsic geometric properties of each neighborhood.

Think Globally...

LLE Algorithm (I)

(1) Construct a neighbor hood graph

(2) Local fitting:

Pick up a point x_i and its neighbors \mathbb{N}_i Compute the local fitting weights

$$\min_{\sum_{j \in \mathbb{N}_i} w_{ij} = 1} \|x_i - \sum_{j \in \mathbb{N}_i} w_{ij} (x_j - x_i)\|^2.$$

This can be done by Lagrange multiplier method, i.e. solving

$$\min_{w_{ij}} \frac{1}{2} \|x_i - \sum_{j \in \mathbb{N}_i} w_{ij} (x_j - x_i)\|^2 + \lambda (1 - \sum_{j \in \mathbb{N}_i} w_{ij}).$$

Let $w_i = [w_{ij_1}, \dots w_{ij_k}]^T \in \mathbb{R}^k$, $\bar{X}_i = [x_{j_1} - x_i, \dots, x_{j_k} - x_i]$, and the local Gram (covariance) matrix $C_{jk}^{(i)} = \langle x_j - x_i, x_k - x_i \rangle$, whence the weights are

$$w_i = C_i^{\dagger} (\bar{X}_i^T x_i + \lambda \mathbf{1}),$$

where the Lagrange multiplier equals to

$$\lambda = \frac{1}{\mathbf{1}^T C_i^{\dagger} \mathbf{1}} \left(1 - \mathbf{1}^T C_i^{\dagger} \bar{X}_i^T x_i \right),$$

and C_i^{\dagger} is a Moore-Penrose (pseudo) inverse of C_i . Note that C_i is often ill-conditioned and to find its Moore-Penrose inverse one can use regularization method $(C_i + \mu I)^{-1}$ for some $\mu > 0$.

LLE Algorithm (II)

(3) Global alignment

Define a n-by-n weight matrix W:

$$W_{ij} = \begin{cases} w_{ij}, & j \in \mathcal{N}_i \\ 0, & otherwise \end{cases}$$

Compute the global embedding d-by-n embedding matrix Y,

$$\min_{Y} \sum_{i} \|y_{i} - \sum_{j=1}^{n} W_{ij} y_{j}\|^{2} = \operatorname{trace}(Y(I - W)^{T} (I - W) Y^{T})$$

In other words, construct a positive semi-definite matrix $B = (I - W)^T (I - W)$ and find d+1 smallest eigenvectors of B, v_0, v_1, \ldots, v_d associated smallest eigenvalues $\lambda_0, \ldots, \lambda_d$. Drop the smallest eigenvector which is the constant vector explaining the degree of freedom as translation and set $Y = [v_1/\sqrt(\lambda_1), \ldots, v_d/\sqrt{\lambda_d}]^T$.

Remarks on LLE

- Searching k-nearest neighbors is of O(kN)
- W is sparse, kN/N²=k/N nozeros
- W might be negative, additional nonnegative constraint can be imposed
- B=(I-W)^T(I-W) is positive semi-definite (p.s.d.)
- Open Problem: exact reconstruction condition?

Summary..

ISOMAP	LLE
Do MDS on the geodesic distance matrix.	Model local neighborhoods as linear a patches and then embed in a lower dimensional manifold.
Global approach O(N^3, but Landmark-ISOMAP)	Local approach O(N^2)
Might not work for nonconvex manifolds with holes	Nonconvex manifolds with holes
Extensions: Landmark, Conformal & Isometric ISOMAP	Extensions: Hessian LLE, Laplacian Eigenmaps etc.

Both needs manifold finely sampled.

Reference

- Tenenbaum, de Silva, and Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290:2319-2323, 22 Dec. 2000.
- Roweis and Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290:2323-2326, 22 Dec. 2000.
- M. Bernstein, V. de Silva, J. Langford, and J. Tenenbaum. Graph Approximations to Geodesics on Embedded Manifolds. Technical Report, Department of Psychology, Stanford University, 2000.
- V. de Silva and J.B. Tenenbaum. Global versus local methods in nonlinear dimensionality reduction. Neural Information Processing Systems 15 (NIPS'2002), pp. 705-712, 2003.
- V. de Silva and J.B. Tenenbaum. Unsupervised learning of curved manifolds.
 Nonlinear Estimation and Classification, 2002.
- V. de Silva and J.B. Tenenbaum. Sparse multidimensional scaling using landmark points. Available at: http://math.stanford.edu/~silva/public/ publications.html

Acknowledgement

Slides stolen from Ettinger, Vikas C. Raykar, Vin de Silva.