PROMPT 2011 Módulo 3 – Aplicações Web A *World Wide Web* e Introdução aos Sistemas Distribuídos

Agenda

- A Internet e a World Wide Web
- Identificação de recursos
 - Uniform Resource Locator (URL)
- Sistemas distribuídos (introdução)
 - Distribuição: causas e consequências
 - Propriedades pretendidas
 - Organização de software em camadas
 - Arquitecturas de sistemas distribuídos
 - Modelos de interacção
 - Desenho de sistemas distribuídos.
- O objecto de estudo
 - Aplicações Web

Internet

- O que é a Internet?
 - A rede IP
 - "Auto-estrada da informação"
- IETF Internet Engineering Task Force
 - Organização responsável pela normalização de serviços e protocolos da Internet
 - http://www.ietf.org/
- Alguns dos protocolos mais utilizados
 - HTTP Hyper Text Transfer Protocol
 - FTP File Transfer Protocol
 - SMTP Simple Mail Transfer Protocol
- W3C WorldWideWeb Consortium
 - http://www.w3.org/

Rotas na internet (cerca de 30%)

Legenda:

net, ca, us com, org mil, gov, edu jp, cn, tw, au de, uk, it, pl, fr br, kr, nl unknown

Fonte: http://www.opte.org/maps/

World Wide Web – WWW

- O que é a World Wide Web?
 - Serviço mais utilizado na Internet
 - O utilizador, recorrendo a um browser, "vê" a Internet como um conjunto de recursos interligados (através de URI)

WWW – Historial (1)

- Dez. 1991: demonstração da WWW na Hypertext'91
- 1993: No National Center For Supercomputing Applications (NCSA) é criado o primeiro browser (Mosaic)
- 1994: Criado o World Wide Web Consortium (W3C)
 - Organização responsável pela normalização das tecnologias utilizadas na Web - http://www.w3.org/

 O sucesso da Web promoveu-a a ambiente de execução de aplicações distribuídas, as aplicações Web

WWW – Historial (2)

Crescimento de domínios na Web

- 158,209,426 domínios em Fevereiro de 2008 (+2.6 milhões que no mês anterior)
- Apenas ~70,000,000 dos quais activos (~44%)

WWW - Intervenientes

Browser – Cliente HTTP

• **Servidor Web** - Servidor HTTP (normalmente é usado o porto TCP 80)

- Proxy Intermediário que realiza caching
 - Pode também realizar controlo de acessos

WWW – Intervenientes (cont.)

Agenda (cont.)

- A Internet e a World Wide Web
- Identificação de recursos
 - Uniform Resource Locator (URL)
- Sistemas distribuídos (introdução)
 - Distribuição: causas e consequências
 - Propriedades pretendidas
 - Organização de software em camadas
 - Arquitecturas de sistemas distribuídos
 - Modelos de interacção
 - Desenho de sistemas distribuídos.
- O objecto de estudo
 - Aplicações Web

Identificação de recursos

- **URI** Uniform Resource Identifiers (RFC 3986)
 - Definem a sintaxe para identificadores de recursos
- Formato genérico de um URI

```
<esquema>:<parte-específica-esquema>
```

- Tipos de URIs
 - URN Uniform Resource Names (RFC 2141)
 - Identificadores persistentes, independentes da localização
 - Exemplo: urn:ietf:rfc:2141
 - URL Uniform Resource Locators (RFCs 2368, 1738, 1808)
 - Identificam por localização
 - Exemplo: http://www.w3.org/Addressing/

URL (*Uniform Resource Locators*)

- Caracteres utilizados nos URL:
 - Caracteres US-ASCII
 - Caracteres que podem ser reservados:

```
{";", "/", "?", ":", "@", "=", "&","#"}
```

- Se aparecerem fora do contexto para o qual foram reservados, devem ser codificados
- Codificação de caracteres: %<código_hexadecimal>
- Se o esquema tiver links relativos e uma estrutura hierárquica, os componentes da hierarquia devem ser separados por "/"

- Ex:
 - http://labnet.cc.isel.ipl.pt/login.aspx?ReturnUrl=%2fblogs%2fdefault.aspx

%2f representa o caracter '/'

Esquemas

Parte específica de esquemas que envolvem protocolos da família TCP/IP
 <scheme>://[<user>[:<password>]@]<host>[:<port>]/<url-part>

Alguns exemplos:

```
http://www.slbenfica.pt/register.asp?nome=Paulo%20Pereira&id=1
http://www.nasa.gov@137.12.132.10/index.aspx
ftp://anonymous:password@strauss.cc.isel.ipl.pt/pub;type=a
mailto:user@domain.org?subject=SLB&body=O%20Glorioso
```

Para mais informações veja http://www.w3.org/Addressing/

Agenda (cont.)

- A Internet e a World Wide Web
- Identificação de recursos
 - Uniform Resource Locator (URL)
- Sistemas distribuídos (introdução)
 - Distribuição: causas e consequências
 - Propriedades pretendidas
 - Organização de software em camadas
 - Arquitecturas de sistemas distribuídos
 - Modelos de interacção
 - Desenho de sistemas distribuídos
- O objecto de estudo
 - Aplicações Web

Sistemas Distribuídos

O que é um Sistema distribuído?

"A distributed system is one in which components located at networked computers communicate and coordinate their actions only by passing messages"

George Colouris et al,

in "Distributed Systems: Concepts and Design"

Sistemas Distribuídos: Motivação (1)

"It is easy to understand why networked systems are popular. Such systems allow the sharing of information and resources over a wide geographic and organizational spread."

Michael D. Schroeder, in "Distributed Systems, chapter 1"

"They allow the use of small, cost-effective computers."

"They can grow in small increments over a large range of sizes."

ibidem

Sistemas Distribuídos: Motivação (2)

- Escalabilidade: Uma definição
 - Capacidade que o sistema tem para suportar o aumento do número de participantes (normalmente utilizadores) mantendo os níveis de qualidade de serviço (QoS) desejados
- Como suportar o aumento de escala?
 - Scale-up (ou vertical scaling)
 - Aumento da capacidade da máguina usada
 - Custos de hardware elevados
 - Scale-out (ou horizontal scaling)
 - Aumento do número de máquinas usadas
 - Custos de *hardware* menores
 - Ónus da distribuição colocado no software

Sistemas Distribuídos: Desafios

- Consequências da distribuição:
 - Troca fiável de mensagens
 - Segurança
 - Coordenação
- Propriedades pretendidas:
 - Escalabilidade
 - Disponibilidade (Desempenho e Fiabilidade)

"An interesting observation about network-based applications is that the best application performance is obtained by not using the network."

Roy Thomas Fielding, in "Architectural Styles and the Design of Network-based Software Architectures",

PhD dissertation

Fiabilidade na troca de mensagens

O stack TCP/IP resolve o problema?

Uma solução: mensagens idem potentes

Outra solução: mensagens com marcas temporais

Coordenação

- Sincronização
 - No acesso concorrente a recursos partilhados
 - Uma escrita exclui todos os restantes acessos
 - Soluções:
 - Conservadoras (ou pessimistas): "Check and act"
 - Optimistas: "Try and see"
 - Exemplo: Transacções
- Acordo (por maioria ou consenso)
 - Acerca do valor de um recurso partilhado
 - Acerca do sucesso ou insucesso de uma ou mais operações
 - Exemplo: Transacções distribuídas

Sincronização

¹ Atomicity, Consistency, Isolation, Durability

Acordo: Transacções distribuídas (1)

Protocolo Two phase commit (enrolling)

Acordo: Transacções distribuídas (2)

Protocolo Two phase commit (voting)

Acordo: Transacções distribuídas (3)

Protocolo Two phase commit (committing)

Propriedades pretendidas

- Escalabilidade
- Disponibilidade
 - Desempenho
 - Latência
 - Throughput
 - Eficiência
 - Fiabilidade
 - Tolerância a falhas
- Facilidade de manutenção
 - Evolutiva
 - Correctiva

Agenda (cont.)

- A Internet e a World Wide Web
- Identificação de recursos
 - Uniform Resource Locator (URL)
- Sistemas distribuídos (introdução)
 - Distribuição: causas e consequências
 - Propriedades pretendidas
 - Organização de software em camadas
 - Arquitecturas de sistemas distribuídos
 - Modelos de interacção
 - Desenho de sistemas distribuídos
- O objecto de estudo
 - Aplicações Web

Organização de software em camadas (1)

- Designado de modelo layered
 - Favorece o isolamento

- Lógica (ou Business Layer) contém código que permanece válido
 - para qualquer apresentação
 - para qualquer fonte de dados
- Padrão de aplicabilidade recursiva

Organização de software em camadas (2)

- A separação lógica potencia a separação física!
 - E, consequentemente, a distribuição de carga

Agenda (cont.)

- A Internet e a World Wide Web
- Identificação de recursos
 - Uniform Resource Locator (URL)
- Sistemas distribuídos (introdução)
 - Distribuição: causas e consequências
 - Propriedades pretendidas
 - Organização de software em camadas
 - Arquitecturas de sistemas distribuídos
 - Modelos de interacção
 - Desenho de sistemas distribuídos
- O objecto de estudo
 - Aplicações Web

Arquitecturas de sistemas distribuídos

- Monolíticas (não distribuídas)
- Cliente servidor
 - Baseiam-se na divisão de responsabilidades entre participantes, por exemplo, de acordo com critérios
 - de posse da informação
 - de prestação de serviço (exploração de negócio)
 - Taxonomia (função das divisões físicas)
 - Fat client
 - Tiered
 - Rich client
 - Thin client
- Peer-to-peer
 - Todos os participantes têm responsabilidades equivalentes

Arquitecturas Fat client (1)

Quais as vantagens e desvantagens?

Arquitecturas Fat client (2)

O que se ganhou?

Arquitecturas *Tiered*: *Rich client*

• E agora?

Arquitecturas *Tiered*: *Thin client*

Separação física: Até onde?

Modelos de interacção (1)

Modelos de interacção (2)

- Pedido/Resposta
 - Comunicação de natureza síncrona
 - O emissor do pedido n\u00e3o prossegue antes de obter a resposta
 - Desvantagens, citando Clemens Vasters
 - "Request/Response forces your impatience upon the responding party"
 - "Unfair behavior because you don't know what stress the other side is having"
- One-Way
 - Comunicação de natureza assíncrona
 - O emissor não aguarda mensagem de resposta (logo o receptor pode reagir de forma deferida)
- Diálogos
 - Comunicação de natureza assíncrona onde ambos os intervenientes têm a iniciativa de enviar mensagens
 - Equivalente a One-Way bidireccional

Desenho de sistemas distribuídos (1)

- Como influenciar as propriedades desejadas?
- Não existem soluções universais (ainda?) para os desafios
 - A adequação das soluções existentes é função do domínio do problema
- No entanto, existem algumas ideias!

Desenho de sistemas distribuídos (2)

- Algumas ideias: (serão revisitadas)
 - Dados
 - Caching (tratamento difere de acordo com a natureza dos dados)
 - Replicação (total ou parcial)
 - Serviços
 - Replicação (Clustering)
 - Replicação favorece balanceamento de carga (estático e dinâmico)
 - Favorecimento de:
 - soluções stateless
 - modelos de interacção assíncronos
 - Gestão de recursos:
 - Activação just in time
 - Utilização de *pools*
 - Estado de conversação

Agenda (cont.)

- A Internet e a World Wide Web
- Identificação de recursos
 - Uniform Resource Locator (URL)
- Sistemas distribuídos (introdução)
 - Distribuição: causas e consequências
 - Propriedades pretendidas
 - Organização de software em camadas
 - Arquitecturas de sistemas distribuídos
 - Modelos de interacção
 - Desenho de sistemas distribuídos
- O objecto de estudo
 - Aplicações Web

Arquitecturas de aplicações Web - Tiered (revisitado)

HTML, CSS, JavaScript, XML	Execução de código de apresentação	Máquinas cliente (Browsers)
ASP.NET	Geração e distribuição de código de apresentação	Servidor(es) Web
.NET	Lógica	Servidor(es) Aplicacionais
ADO.NET	Acesso a dados	
	Repositório(s) de dados	Servidor(es) de Dados (SGBD)

Bibliografia

George Coulouris Jean Dollimore Tim Kindberg Distributed Systems - Concepts and Design,

G. Coulouris at al, Addison Wesley, 2000

Distributed Systems: Concepts and Design,

Jean Dollimore at al, Addison Wesley, 2005