

Лабораторная работа 2-5. Поток минимальной стоимости

А. Максимальный поток минимальной стоимости

ограничение по времени на тест: 5 секунд ограничение по памяти на тест: 512 мегабайт ввод: mincost.in вывод: mincost.out

Задан ориентированный граф, каждое ребро которого обладает пропускной способностью и стоимостью. Найдите максимальный поток минимальной стоимости из вершины с номером 1 в вершину с номером *п*.

Входные данные

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \le n \le 100$, $1 \le m \le 1000$). Следующие m строк содержат по четыре целых числа числа: номера вершин, которые соединяет соответствующее ребро графа, его пропускную способность и его стоимость. Пропускные способности и стоимости не превосходят 10^5 .

Выходные данные

В выходной файл выведите одно число — цену максимального потока минимальной стоимости из вершины с номером 1 в вершину с номером *п*. Ответ не превышает 2^{63} - 1. Гарантируется, что в графе нет циклов отрицательной стоимости.

Пример

входные данные	Скопировать
45	
1212	
1322	
3211	
2 4 2 1	
3 4 2 3	
выходные данные	Скопировать
12	

В. Задача о назначениях

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Дана целочисленная матрица C размера $n \times n$. Требуется выбрать n ячеек так, чтобы в каждой строке и каждом столбце была выбрана ровно одна ячейка, а сумма значений в выбранных ячейках была минимальна.

Входные данные

Первая строка входного файла содержит n ($2 \le n \le 300$). Каждая из последующих n строк содержит по n чисел: C_{ij} Все значения во входном файле неотрицательны и не превосходят 10^6 .

Выходные данные

В первую строку выходного файла выведите одно число — искомая минимизуруемая величина. Далее выведите *п* строк по два числа в каждой — номер строки и столбца клетки, участвующей в оптимальном назначении.

Пары чисел можно выводить в произвольном порядке.

Пример

входные данные	Скопировать
3 3 2 1 1 3 2	
213 выходные данные	Скопировать
3 2 1 3 2 1 3	

ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Дано дерево без корня с N вершинами, являющееся связным, неориентированным графом с N вершинами, пронумерованными с 1 до N, и N - 1 ребрами. i-е ребро соединяет вершины A_i и B_i .

Вы хотите отметить каждую вершину числом от 1 до K, включительно так, чтобы потратить как можно меньше денег. Отметить i-ю вершину числом j, стоит $C_{i,j}$ долларов.

Также, после того, как все дерево было отмечено, вы должны заплатить еще P долларов за каждую вершину, которая имеет как минимум одну пару соседей, отмеченных одним числом. Другими словами, за каждую вершину U, вы должны заплатить P долларов если существуют две другие вершины V и W, смежные с U, такие, что числа, которыми отмечены V и W, одинаковы (заметим, что число, которым отмечена U, не важно). Вы платите штраф в P долларов один раз для данной центральной вершины U, даже если существует несколько пар соседей, удовлетворяющих вышеописанному условию.

Какая минимальная стоимость (в долларах) отметки всех N вершин?

Входные данные

В первой строчке содержатся натуральные числа N ($1 \le N \le 1000$), K ($1 \le K \le 30$), и P ($0 \le P \le 10^6$), отделенные пробелом. Затем, N строчек, i-я из которых содержит разделенные пробелом числа от $C_{i,\,1}$ до $C_{i,\,K}$ ($0 \le C_{i,\,j} \le 10^6$). Далее, N - 1 строчка, i-я из которых содержит два разделенных пробелом числа A_i и B_i ($1 \le A_i$, $B_i \le N$).

Выходные данные

Выведите минимальную стоимость отметки всех вершин дерева.

выведите минимальную стоимость отметки всех вершин дерева.	
Примеры	
входные данные	Скопировать
111	
111	
выходные данные	Скопировать
111	
входные данные	Скопировать
318	
1 2	
4	
12 23	
выходные данные	Скопировать
15	
входные данные	Скопировать
3 2 10	
4 7 8 9	
23	
12	
23	
выходные данные	Скопировать
15	
входные данные	Скопировать
4 2 99	
$\begin{bmatrix} 0 \ 1 \\ 0 \ 1 \end{bmatrix}$	
01	
00	
41 24	
43	
выходные данные	Скопировать
99	
входные данные	Скопировать
4 3 99	
010	
010	
010	

 43

 выходные данные
 Скопировать

 1

Примечание

В первом примере дана только одна вершина, которая должна быть покрашена в единственный возможный цвет за 111 долларов. Во втором примере есть только один цвет, так что штраф в 8 долларов должен быть выплачен так как вторая вершина имеет двух соседей с одинаковым цветом. В сумме мы платим 1+2+4+8=15 долларов. В третьем случае оптимальным будет раскрасить вершины 1 и 2 цветом 1 и вершину 3 цветом 2. Стоимость такого раскрашивания 4+8+3=15 долларов.

D. Камень, ножницы, бумага — 2

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 512 мегабайт ввод: rps2.in

вывод: rps2.out

Год назад Ростислав с Мирославом играли в камень, ножницы, бумагу на щелбаны. За каждый выигранный раунд победитель ставил один щелбан проигравшему. В случае ничьи щелбаны не ставились. Эта игра запомнилась Мирославу как самая худшая игра в его жизни: всю следующую неделю у него болел лоб.

Воспоминания нахлынули на Мирослава, когда он нашел бумажку с шестью числами — запись с той самой игры. Прошло много времени, и теперь Мирослав может спокойно подумать, почему он проиграл так много раз. Но, к сожалению, он не может посчитать точное количество своих поражений, так как он записал только то, что Ростислав показал камень I_1 раз, ножницы S_1 раз и бумагу p_1 раз, а сам Мирослав показал камень I_2 раз, ножницы S_2 раз и бумагу p_2 раз.

Помогите Мирославу узнать по этим данным, какое минимальное количество щелбанов он мог получить в той самой роковой игре.

Для справки, победитель этой игры определяется по следующим правилам:

- •
- •
- •

Если игроки показали одинаковый знак, то засчитывается ничья.

Входные данные

В первой строке входных данных три целых числа r_1 , S_1 , p_1 . Во второй строке три целых числа r_2 , S_2 , p_2 .

Все числа неотрицательные и не превышают 10^8 , $r_1 + s_1 + p_1 = r_2 + s_2 + p_2$.

Выходные данные

Выходные данные должны содержать единственное число — минимальное количество щелбанов, которые мог получить Мирослав.

Примеры

входные данные	Скопировать
300 030	
выходные данные	Скопировать
3	

Е. Задача коммивояжеров

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Есть *П* городов. Между городами есть ориентированные дороги, у каждой дороги есть стоимость покупки разрешения на проезд. Мы хотим торговать во всех городах. У нас есть неограниченное кол-во коммивояжеров. Для каждого из них мы должны определить список городов, в которых они будут торговать. Каждый коммивояжер будет объезжать все города из своего списка по циклу (он может по пути заезжать в другие города, но не торговать там). Если два (или более) коммивояжеров будут ездить по одной дороге, то каждому из них мы должны купить разрешение на проезд. Если список у коммивояжера состоит только из одного города, то он либо должен регулярно выезжать из города (тоже по какому-то циклу), либо мы должны купить ему прописку (у каждого города есть цена прописки). Наконец, в любом городе должен торговать только один коммивояжер, иначе предприятием заинтересуется налоговая. Нужно минимизировать издержки.

Входные данные

В первой строке два числа n, m — количество городов и количество дорог ($1 \le n \le 256, 0 \le m \le n(n-1)$).

Во второй строке n чисел a_i — цена прописки для города номер i ($0 \le a_i \le 10^9$).

Затем в m строках описаны дороги. Описание дороги из города u в город v со стоимостью разрешения на проезд v выглядит как v v v0 ($1 \le u$ 0, $v \le v$ 1, $v \ne v$ 2, v3). Гарантируется, что между любой парой городов не более 1 дороги в каждом из направлений.

Выходные данные

Выведите одно число — минимальную сумму издержек.

Пример

Примор	
входные данные	Скопировать
33	
30 25 30	
123 235	
235	
3 1 10	
выходные данные	Скопировать
18	

Codeforces (c) Copyright 2010-2019 Михаил Мирзаянов Соревнования по программированию 2.0

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js