Rhythms

Introduction

Instructor: Mark Kramer

Brain rhythms

Introduction:

What are they?

Where do they come from?

Method of analysis.

Brain rhythms

Fact: The brain can generate rhythmic activity.

Ex: Scalp electroencephalogram (EEG)

Note: Rhythms also appear in LFP, MEG, fMRI, ...

Observe: Different shapes. Different frequencies.

Brain rhythms: basic facts

Some basic facts about EEG rhythms:

• Slower rhythms tend to be larger amplitude.

• The EEG is thought to be (mostly) generated by coordinated synaptic transmembrane currents of many neurons.

Very complicated.

Not completely understood.

[Buzsáki et al. Nat Rev Neurosci (2012)]

Brain rhythms: basic facts

EEG measures cortical arousal

-Appears in the firing patterns of cortical neurons, measured in the EEG.

Low frequency, high amplitude: low cortical arousal

large EEG signal.

High frequency, <u>low</u> amplitude: high cortical arousal

Neural activities are . . . desynchronized.

Groups of cells involved in separate activities = small EEG signal.

Note: A healthy brain is a desynchronized brain.

Brain rhythms: characterization

Q: How do we characterize these rhythms?

To start, we can visualize and describe the rhythms.

Typical features:

Amplitude: Large or small?

Frequency: Fast or slow?

Shape: Sinusoidal, square, triangle, . . . ?

Our focus (usually) is frequency: How fast or slow is a rhythm?

Q: Why? Because different frequency rhythms are associated with different functions ...

Brain rhythms and functions

Many frequency bands, each associated with different functions.

Let's look more carefully at some of these frequency bands . . .

Brain rhythms: theta

Theta: 4-8 Hz Note: Theta frequency range different; the borders of ranges are not exact.

Function: Not well understood.

In rats: learning and memory

location

motor behavior

sleep

emotional arousal

fear conditioning

Brain rhythms: alpha

Alpha: 8-12 Hz Note: This band not in Slide #7!

- The first EEG wave studies [Berger 1931]
- In EEG, strongest above occipital lobes when eyes closed at rest.

Function: "idling rhythm" - alert but still brain state cortical operations in the absence of sensory inputs disengagement of task-irrelevant brain areas

However, alpha also associated with attention, sensory awareness.

Brain rhythms: beta

Beta: 12-30 Hz

1s

Function: Not well understood.

motor functions (e.g., steadystate contractions).

"Maintenance of the status quo"

"Couple" distant brain regions.

Maintenance of status quo

Intended or expected state transition

[Engel, Fries 2010]

Brain rhythms: gamma

Gamma: 30-50 Hz

Function: Associated with a broad range of processes:

"binding"

attention

movement preparation

memory formation

conscious awareness

Note: Typically hard to see in EEG. Q: Why?

Brain rhythms: Other bands

There are many other frequency bands . . .

Slower

Delta: 1-4 Hz Sleep, learning, motivation

-Slow cortical potential: < 1 Hz Emergence of consciousness?

<u>Faster</u>

-**High gamma**: 50-120 Hz Coordination of neural activity

-**Ripples, HFO, UFO**: > 120 Hz Replay of memories, onset of seizures . . .

Brain rhythms in disease

Rhythms are sometimes associated with pathologies.

Ex: Seizure

Q: What rhythms do we see?

HFO Beta

Alpha

Theta

Delta

Q: How does the amplitude change?

Note: Used the band labels, but "function" very different.

Brain rhythms are meaningless . . .

H: Brain rhythms are epiphenomena.

Large buildings: sway in the wind.

These oscillations are <u>not</u> performing a function, in fact they're unwanted.

Q: Is the same true in the brain? Oscillations are an echo of some underlying function?

Q: Why so many oscillations?

Big questions

- **Q**: Why do we observe rhythms in the brain?
- -Functional role
- -Epiphenomena
- **Q**: What mechanisms support rhythms?
- -Biological
- -Dynamical
- **Q**: Why do we observe different frequency bands, not a continuum?
- **Q**: Why do rhythms interact?
- -Mechanisms
- -Functions
- -Measures . . . We need answers to these questions ... Data analysis and models ...

Characterize brain rhythms

Many sophisticated tools to do so.

Today, consider two:

- -Visual inspection
- -Intuition for the power spectrum

<u>Idea</u>:

Visual inspection: Plot the data. What do you see?

Power spectrum: Break down the data into sinusoids . . .

Remember: sinusoids...

Ex. Consider: f = 1 Hz

Q: What does it look like?

Remember: sinusoids...

Q: What is the frequency of this sinusoid?

A: 10 cycles in 1 second, so 1 Hz.

Note: Visual inspection is often useful.

Remember: sinusoids...

In addition to cosine, there's also sine:

Ex. Consider: f = 1 Hz

Q: What's the difference?

Consider the signal below:

Q: What are the rhythms?

A: Apply visual inspection . . . Slow and fast 5 Hz 40 Hz

Q: What has larger amplitude?

So, we can represent this signal . . .

... as the sum of two sinusoids:

A slow, large amplitude sinusoid + a fast, small amplitude sinusoid

$$V[t] = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

1.0 5 Hz 0.1 40 Hz

We get a <u>simpler</u> representation of the signal. That's the idea of the power spectrum.

• Decompose signal into oscillations at different frequencies.

Represent V as a sum of sinusoids (e.g., part 7 Hz, part 10 Hz, ...)

So, in equations:

$$V[t] = A_1 \cos(2\pi f_1 t) + B_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t) + B_2 \sin(2\pi f_2 t) + \dots$$
amplitude frequency amplitude frequency

Or, more generally:

$$V[t] = \sum_{j} A_{j} \cos(2\pi f_{j}t) + B_{j} \sin(2\pi f_{j}t)$$
sum over all amplitude oscillation at frequencies frequency f_j

Note: A_j and B_j can be zero. (some rhythms make no contribution to V[t])

Note: A_j and B_j are large when f_j is a good match to the data.

Note: Think of sine & cosine as accounting for phase.

$$C_j \cos(2\pi f_j t + \phi_j)$$

Aside: cos(a + b) = cos(a)cos(b) - sin(a)sin(b)

$$= C_{j} \cos(2\pi f_{j}t) \cos(\phi_{j}) - C_{j} \sin(2\pi f_{j}t) \sin(\phi_{j})$$

$$A_{j} \qquad B_{j}$$

$$= A_{j} \cos(2\pi f_{j}t) + B_{j} \sin(2\pi f_{j}t)$$

Decompose V[t] into sine/cosine or amplitude/phase.

Q: How doe we find A_j and B_j ?

A: Consider A_j and use orthogonality of sinusoids.

Python

Q: How doe we find A_j and B_j ?

A: Consider A_i and use orthogonality of sinusoids.

$$\int_{0}^{T} \cos(2\pi f_{j}t) \sin(2\pi f_{k}t) dt = 0 \quad \text{for all} \quad f_{j}, f_{k}$$

$$\int_{0}^{T} \cos(2\pi f_{j}t) \sin(2\pi f_{k}t) dt = 0 \quad \text{for all} \quad f_{j}, f_{k}$$
sine

Return to our original equation

$$V[t] = \sum_{j} A_j \cos(2\pi f_j t) + B_j \sin(2\pi f_j t)$$

Pick frequency f_k , multiply both sides by $\cos(2\pi f_k t)$, and integrate over time ...

$$\int_0^T V[t]\cos(2\pi f_k t)dt = \int_0^T \sum_j A_j \cos(2\pi f_j t)\cos(2\pi f_k t)dt$$
$$+ \int_0^T \sum_j B_j \sin(2\pi f_j t)\cos(2\pi f_k t)dt$$

Consider each integral ...

$$\int_{0}^{T} \sum_{j} A_{j} \cos(2\pi f_{j}t) \cos(2\pi f_{k}t) dt = 0 \text{ if } f_{j} \neq f_{k} \text{ , or T/2 if } f_{j} = f_{k}$$

$$\int_{0}^{T} \sum_{j} B_{j} \sin(2\pi f_{j}t) \cos(2\pi f_{k}t) dt = 0$$

So
$$\int_{0}^{T} V[t] \cos(2\pi f_k t) dt = \int_{0}^{T} \sum_{j} A_j \cos(2\pi f_j t) \cos(2\pi f_k t) dt$$
$$+ \int_{0}^{T} \sum_{j} B_j \sin(2\pi f_j t) \cos(2\pi f_k t) dt$$
$$= A_k T/2$$

$$\int_0^T V[t]\cos(2\pi f_k t)dt = A_k T/2$$

Solve for A_k

$$A_k = \frac{2}{T} \int_0^T V[t] \cos(2\pi f_k t) dt$$

We can solve for amplitude A_k

Depends on observed data V[t] multiplied by cosine we choose (f_k)

Return to our original equation

$$V[t] = \sum_{j} A_j \cos(2\pi f_j t) + B_j \sin(2\pi f_j t)$$

Q: How doe we find A_j and B_j ?

A: Consider A_j and use orthogonality of sinusoids.

Similarly

$$A_k = \frac{2}{T} \int_0^T V[t] \cos(2\pi f_k t) dt$$

$$B_k = \frac{2}{T} \int_0^T V[t] \sin(2\pi f_k t) dt$$

Big idea: We can decompose V[t] into a sum of sin/cos functions, and we know how to find the amplitudes A_j , B_j

Q: So what?

A: Represent V[t] in a simpler way ... remember:

Represent it as:

$$V[t] = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

1.0 5 Hz 0.1 40 Hz

To represent V[t] we need 4 numbers:

Amplitudes = $\{1, 0.1\}$

Frequencies = $\{5, 40\}$ Hz

These 4 numbers completely summarize the data.

Plot: Power spectrum

We can represent these amplitudes and frequencies graphically:

The peaks represent the dominant rhythms in the signal.

Ex:

Plot the power spectrum:

Note: It's complicated Plot the power spectrum:

Q: What's happening here?

So, by computing the power spectrum, we find the complicated signal:

We find it's the sum of 4 sinusoids at frequencies:

7 Hz, 10 Hz, 23 Hz, and 35 Hz

A much simpler representation of brain activity.

Example: Real world

Q: What does the power spectrum of real-world brain signals look like?

Ex. From a slice of rat cortex:

Q: What rhythms are dominant?

Next

A simple answer to one big rhythm question ...