Lab 4 - Multiple Comparisons

Solutions

Goals

The goal in this lab is to practice finding familywise confidence intervals for multiple comparisons.

Loading packages

Here are some packages with functionality you may need for this lab. Run this code chunk now.

[1] 349

Find the multiplier that would be used for Bonferroni 95% familywise intervals for 5 comparisons based on this data set.

```
bonferroni_mult <- qt(1-0.05/(2*5), df=nrow(longevity)-6)
bonferroni_mult</pre>
```

[1] 2.590239

Find the multiplier that would be used for Scheffe 95% familywise intervals for 5 comparisons based on this data set.

```
scheffe_mult <- sqrt((6-1)*qf(1-0.05, df1=6-1, df2=nrow(longevity)-6))
scheffe_mult</pre>
```

[1] 3.346868

Find familywise 95% confidence intervals

The code below finds individual 95% confidence intervals for the 5 differences in group means the researchers planned for this study. For each, add calculations of appropriately adjusted Bonferroni and Scheffe familywise intervals.

```
## Fit linear model
lm_longevity <- lm(Lifetime ~ Diet, data=longevity)</pre>
(a) H_0: \mu_2 = \mu_3 vs H_A: \mu_2 \neq \mu_3. Are the population mean lifetimes the same for the N/N85
and N/R50 groups?
## Individual 95% confidence interval:
ind_mu2_mu3 \leftarrow fit.contrast(lm_longevity, "Diet", c(0, 1, -1, 0, 0, 0), conf.int = 0.95)
print("Individual 95% confidence interval:")
## [1] "Individual 95% confidence interval:"
ind_mu2_mu3
                            Estimate Std. Error
                                                                Pr(>|t|)
##
                                                   t value
## Diet c=( 0 1 -1 0 0 0 ) -9.605955
                                        1.187682 -8.087982 1.057397e-14
                            lower CI upper CI
## Diet c=( 0 1 -1 0 0 0 ) -11.94201 -7.269897
## attr(,"class")
## [1] "fit_contrast"
## Bonferroni 95% familywise interval:
print("Bonferroni 95% familywise interval:")
## [1] "Bonferroni 95% familywise interval:"
fit.contrast(lm_longevity, "Diet", c(0, 1, -1, 0, 0, 0), conf.int = 1 - 0.05/5)
##
                            Estimate Std. Error
                                                   t value
                                                                Pr(>|t|)
                                       1.187682 -8.087982 1.057397e-14
## Diet c=( 0 1 -1 0 0 0 ) -9.605955
                            lower CI upper CI
## Diet c=( 0 1 -1 0 0 0 ) -12.68234 -6.529574
## attr(,"class")
## [1] "fit_contrast"
## OR
c(ind_mu2_mu3[1, 1] - bonferroni_mult * ind_mu2_mu3[1, 2], ind_mu2_mu3[1, 1] +
    bonferroni_mult * ind_mu2_mu3[1, 2])
## [1] -12.682336 -6.529574
## Scheffe 95% familywise interval:
print("Scheffe 95% familywise interval:")
```

[1] "Scheffe 95% familywise interval:"

```
c(ind_mu2_mu3[1, 1] - scheffe_mult * ind_mu2_mu3[1, 2], ind_mu2_mu3[1, 1] +
    scheffe_mult * ind_mu2_mu3[1, 2])
## [1] -13.580971 -5.630939
No, there is evidence that the mean lifetimes are not the same for the N/N85 and N/R50 groups.
(b) H_0: \mu_3 = \mu_4 vs H_A: \mu_3 \neq \mu_4. Are the population mean lifetimes the same for the N/R50
and R/R50 groups?
## Individual 95% confidence interval:
ind_mu3_mu4 \leftarrow fit.contrast(lm_longevity, "Diet", c(0,0,1,-1,0,0), conf.int = 0.95)
print("Individual 95% confidence interval:")
## [1] "Individual 95% confidence interval:"
ind_mu3_mu4
                             Estimate Std. Error
##
                                                    t value Pr(>|t|) lower CI
## Diet c=( 0 0 1 -1 0 0 ) -0.5885312
                                          1.19355 -0.493093 0.6222624 -2.93613
                            upper CI
## Diet c=( 0 0 1 -1 0 0 ) 1.759068
## attr(,"class")
## [1] "fit_contrast"
## Bonferroni 95% familywise interval:
print("Bonferroni 95% familywise interval:")
## [1] "Bonferroni 95% familywise interval:"
fit.contrast(lm_longevity, "Diet", c(0,0,1,-1,0,0), conf.int = 1-0.05/5)
##
                              Estimate Std. Error
                                                    t value Pr(>|t|)
## Diet c=( 0 0 1 -1 0 0 ) -0.5885312
                                          1.19355 -0.493093 0.6222624
                             lower CI upper CI
## Diet c=( 0 0 1 -1 0 0 ) -3.680111 2.503048
## attr(,"class")
## [1] "fit_contrast"
## Scheffe 95% familywise interval:
print("Scheffe 95% familywise interval:")
## [1] "Scheffe 95% familywise interval:"
 \verb|c(ind_mu3_mu4[1,1]-scheffe_mult*ind_mu3_mu4[1,2], ind_mu3_mu4[1,1]+scheffe_mult*ind_mu3_mu4[1,2])| 
## [1] -4.583186 3.406123
```

Yes, the population mean lifetimes are the same for the N/R50 and R/R50 groups.

(c) $H_0: \mu_3 = \mu_6$ vs $H_A: \mu_3 \neq \mu_6$. Are the population mean lifetimes the same for the N/R50 and N/R40 groups?

```
## Individual 95% confidence interval:
ind_mu3_mu6 <- fit.contrast(lm_longevity, "Diet", c(0,0,1,0,0,-1), conf.int = 0.95)
print("Individual 95% confidence interval:")
## [1] "Individual 95% confidence interval:"
ind_mu3_mu6
##
                          Estimate Std. Error
                                              t value
                                                        Pr(>|t|)
## Diet c=( 0 0 1 0 0 -1 ) -2.819484
                                    1.171097 -2.407558 0.01658711
                          lower CI
                                    upper CI
## Diet c=( 0 0 1 0 0 -1 ) -5.122919 -0.5160481
## attr(,"class")
## [1] "fit_contrast"
## Bonferroni 95% familywise interval:
print("Bonferroni 95% familywise interval:")
## [1] "Bonferroni 95% familywise interval:"
fit.contrast(lm_longevity, "Diet", c(0,0,1,0,0,-1), conf.int = 1-0.05/5)
##
                          Estimate Std. Error
                                              t value
                                                        Pr(>|t|)
## Diet c=( 0 0 1 0 0 -1 ) -2.819484
                                    1.171097 -2.407558 0.01658711
                          lower CI upper CI
## Diet c=( 0 0 1 0 0 -1 ) -5.852904 0.2139368
## attr(,"class")
## [1] "fit_contrast"
## Scheffe 95% familywise interval:
print("Scheffe 95% familywise interval:")
## [1] "Scheffe 95% familywise interval:"
## [1] -6.738990 1.100023
Yes, the population mean lifetimes are the same for the N/R50 and N/R40 groups.
```

(d) $H_0: \mu_3 = \mu_5$ vs $H_A: \mu_3 \neq \mu_5$. Are the population mean lifetimes the same for the N/R50 and N/R50 lopro groups?

```
## Individual 95% confidence interval:
ind_mu3_mu5 \leftarrow fit.contrast(lm_longevity, "Diet", c(0,0,1,0,-1,0), conf.int = 0.95)
print("Individual 95% confidence interval:")
## [1] "Individual 95% confidence interval:"
ind_mu3_mu5
                          Estimate Std. Error t value
                                                         Pr(>|t|) lower CI
## Diet c=( 0 0 1 0 -1 0 ) 2.611469
                                      1.19355 2.187984 0.02934503 0.2638701
                          upper CI
## Diet c=( 0 0 1 0 -1 0 ) 4.959068
## attr(,"class")
## [1] "fit_contrast"
## Bonferroni 95% familywise interval:
print("Bonferroni 95% familywise interval:")
## [1] "Bonferroni 95% familywise interval:"
fit.contrast(lm_longevity, "Diet", c(0,0,1,0,-1,0), conf.int = 1-0.05/5)
##
                          Estimate Std. Error t value
                                                         Pr(>|t|)
                                                                    lower CI
                                      1.19355 2.187984 0.02934503 -0.4801107
## Diet c=( 0 0 1 0 -1 0 ) 2.611469
                          upper CI
## Diet c=( 0 0 1 0 -1 0 ) 5.703048
## attr(,"class")
## [1] "fit_contrast"
## Scheffe 95% familywise interval:
print("Scheffe 95% familywise interval:")
## [1] "Scheffe 95% familywise interval:"
## [1] -1.383186 6.606123
Looking at just the individual 95% confidence interval, it appear that the mean lifetimes for the N/R50
and N/R50 lopro groups are different. Once we adjust for multiple comparisons, however, the population
mean lifetimes appear to be the same for the N/R50 and N/R50 lopro groups.
(e) H_0: \mu_2 = \mu_1 vs H_A: \mu_2 \neq \mu_1. Are the population mean lifetimes the same for the N/N85
and NP groups?
ind_mu2_mu1 \leftarrow fit.contrast(lm_longevity, "Diet", c(-1,1,0,0,0,0), conf.int = 0.95)
print("Individual 95% confidence interval:")
```

[1] "Individual 95% confidence interval:"

```
ind_mu2_mu1
##
                           Estimate Std. Error t value
                                                             Pr(>|t|) lower CI
## Diet c=( -1 1 0 0 0 0 ) 5.289187
                                      1.301006 4.065458 5.949477e-05 2.730232
##
                           upper CI
## Diet c=( -1 1 0 0 0 0 ) 7.848142
## attr(,"class")
## [1] "fit_contrast"
## Bonferroni 95% familywise interval:
print("Bonferroni 95% familywise interval:")
## [1] "Bonferroni 95% familywise interval:"
fit.contrast(lm_longevity, "Diet", c(-1,1,0,0,0,0), conf.int = 1-0.05/5)
##
                           Estimate Std. Error t value
                                                             Pr(>|t|) lower CI
                                      1.301006 4.065458 5.949477e-05 1.91927
## Diet c=( -1 1 0 0 0 0 ) 5.289187
                           upper CI
## Diet c=( -1 1 0 0 0 0 ) 8.659104
## attr(,"class")
## [1] "fit_contrast"
## Scheffe 95% familywise interval:
print("Scheffe 95% familywise interval:")
## [1] "Scheffe 95% familywise interval:"
c(ind_mu2_mu1[1,1]-scheffe_mult*ind_mu2_mu1[1,2], ind_mu2_mu1[1,1]+scheffe_mult*ind_mu2_mu1[1,2])
## [1] 0.9348907 9.6434838
```

No, there is evidence that the mean lifetimes are not the same for the N/N85 and NP groups.

What is the interpretation of the individual 95% confidence interval obtained in part (a) from the fit.contrast function?

We are 95% confident that the difference in population mean lifetimes for the N/N85 and N/R50 groups is between -11.942 and -7.270. For 95% of samples, an interval calculated in this way will contain the difference in population mean lifetimes for the N/N85 and N/R50 groups.

What is the interpretation of the Bonferroni intervals?

We are 95% confident that the difference in population mean lifetimes for the N/N85 and N/R50 groups is between -12.68 and -6.53, for the N/R50 and R/R50 groups is between -3.68 and 2.50, for the N/R50 and N/R40 groups is between -5.85 and 0.21, for the N/R50 and N/R50 lopro groups is between -0.48 and 5.70, and for the N/N85 and NP groups is between 1.92 and 8.66. For 95% of samples, all 5 of the intervals constructed in this way will simultaneously contain the difference in means they are estimating.