Structurally complete Lukasiewicz logics.

Joan Gispert

Facultat de Matemàtiques. Universitat de Barcelona jgispertb@ub.edu

Workshop on Admissible Rules and Unification II, Les Diablerets, 2015

Łukasiewicz logics

The Infinite valued Łukasiewicz Calculus, \mathcal{L}_{∞}

Axioms:

Ł1.
$$\varphi \to (\psi \to \varphi)$$

Ł2.
$$(\varphi \to \psi) \to ((\psi \to \nu) \to (\varphi \to \nu))$$

£3.
$$((\varphi \to \psi) \to \psi) \to ((\psi \to \varphi) \to \varphi)$$

Ł4.
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$

Rules:

Modus Ponens. $\{\varphi, \varphi \to \psi\}/\psi$.

Original logic semantics

$$[0,1] = \langle \{a \in \mathbb{R} : 0 \le a \le 1\}; \rightarrow, \neg \rangle$$

For all
$$a, b \in [0, 1]$$
, $a \rightarrow b = \begin{cases} 1, & \text{if } a \leq b; \\ 1 - a + b, & \text{otherwise.} \end{cases}$, $\neg a = 1 - a$.

$$\neg a = 1 - a$$
.

Original logic semantics

$$[0,1] = \langle \{a \in \mathbb{R} : 0 \le a \le 1\}; \rightarrow, \neg \rangle$$

For all
$$a,b \in [0,1]$$
, $a \rightarrow b = \left\{ \begin{array}{ll} 1, & \text{if } a \leq b; \\ 1-a+b, & \text{otherwise.} \end{array} \right.$, $\neg a = 1-a$.

Let
$$\Gamma \cup \{\varphi\} \subseteq Prop(X)$$
, then

$$\Gamma \models_{[0,1]} \varphi$$
 iff for every $h: Prop(x) \rightarrow [0,1], \ h(\varphi) = 1$ whenever $h\Gamma = \{1\}$

Completeness Theorems

Weak Completeness Theorem

Theorem (Rose-Rosser 1958, Chang 1959)

$$\vdash_{\underline{\ell}_{\infty}} \varphi \text{ iff } \models_{[0,1]} \varphi$$

Completeness Theorems

Weak Completeness Theorem

Theorem (Rose-Rosser 1958, Chang 1959)

$$\vdash_{\underline{\ell}_{\infty}} \varphi \text{ iff } \models_{[0,1]} \varphi$$

Strong Finite Completeness Theorem

Theorem (Hay 1963)

$$\varphi_1, \ldots, \varphi_n \vdash_{\underline{\ell}_{\infty}} \varphi \text{ iff } \varphi_1, \ldots, \varphi_n \models_{[0,1]} \varphi$$

Algebraic logic

The infinite valued Łukasiewicz calculus \mathcal{L}_{∞} is algebraizable with **MV** the class of all MV-algebras as its equivalent quasivariety semantics.

Algebraic logic

Finitary Extensions of L_{∞} \longleftrightarrow Quasivarieties of MV

Algebraic logic

Finitary Extensions of L_{∞} \longleftrightarrow Quasivarieties of MV

Axiomatic Extensions \longleftrightarrow Varieties

Algebraic logic

Finitary Extensions of L_{∞} \longleftrightarrow Quasivarieties of MV

Axiomatic Extensions \longleftrightarrow Varieties

(Finite) Axiomatization \longleftrightarrow (Finite) Axiomatization

Deduction Theorem \longleftrightarrow EDPCR

Local Deduction Theorem \longleftrightarrow RCEP

Interpolation Theorem \longleftrightarrow Amalgamation Property

Algebraic logic

Finitary Extensions of L_{∞} \longleftrightarrow Quasivarieties of MV

Axiomatic Extensions \longleftrightarrow Varieties

(Finite) Axiomatization \longleftrightarrow (Finite) Axiomatization

Deduction Theorem \longleftrightarrow EDPCR

Local Deduction Theorem \longleftrightarrow RCEP

Structurally Complete Fin. Ext. \longleftrightarrow Struct. Complete Quas. (Least V-Quasivarieties)

Algebraic logic

Finitary Extensions of $L_{\infty} \longleftrightarrow \mathsf{Quasivarieties}$ of \mathbf{MV}

$$\models^f_{\mathsf{M}}$$

$$\longleftrightarrow$$

Algebraic logic

Finitary Extensions of $L_{\infty} \longleftrightarrow Quasivarieties$ of MV

$$\models^f_{\mathsf{M}} \qquad \longleftrightarrow \qquad \mathcal{Q}(\mathsf{M})$$

Komori's characterization

Proper Axiomatic Extensions \longleftrightarrow Proper Subvarieties

Algebraic logic

Finitary Extensions of $L_{\infty} \longleftrightarrow Quasivarieties$ of MV

$$\models^f_{\mathsf{M}} \qquad \longleftrightarrow \qquad \mathcal{Q}(\mathsf{M})$$

Komori's characterization

Proper Axiomatic Extensions \longleftrightarrow Proper Subvarieties $\vdash_{I,J}$ \longleftrightarrow $\mathcal{V}_{I,J}$

I, J are two finite subsets of integers ≥ 1 not both empty.

Algebraic logic

Finitary Extensions of $L_{\infty} \longleftrightarrow Quasivarieties$ of MV

$$\models^f_{\mathsf{M}} \longleftrightarrow \mathcal{Q}(\mathsf{M})$$

Komori's characterization

Proper Axiomatic Extensions \longleftrightarrow Proper Subvarieties $\vdash_{I,J} \longleftrightarrow \mathcal{V}_{I,J}$

I, J are two finite subsets of integers ≥ 1 not both empty.

$$\vdash_{I,J} = \models^f_{\mathsf{M}}$$
 and $\mathcal{V}_{I,J} = \mathcal{V}(\mathsf{M}) = \mathcal{Q}(\mathsf{M})$

where $\mathbf{M} = \{ \mathcal{L}_m \mid m \in I \} \cup \{ \mathcal{L}_n^{\omega} \mid n \in J \}$

Algebraic logic

Structurally Complete Fin. Ext. \longleftrightarrow (Struct. Complete Quas.) Least V-Quasivarieties

Algebraic logic

Structurally Complete Fin. Ext. \longleftrightarrow (Struct. Complete Quas.) Least V-Quasivarieties

$$\models^f_{\mathsf{F}_{\mathsf{V}}(X)} \longleftrightarrow \mathcal{Q}(F_{\mathsf{V}}(X))$$

Algebraic logic

Structurally Complete Fin. Ext. \longleftrightarrow (Struct. Complete Quas.) Least V-Quasivarieties

$$\models^f_{\mathsf{F}_{\mathsf{V}}(X)} \longleftrightarrow \mathcal{Q}(F_{\mathsf{V}}(X))$$

Purpose:

For every variety ${f V}$ of MV-algebras to obtain a "nice" class of generators ${f M}_{f V}$

$$\models_{F_{\mathbf{V}}(X)}^f = \models_{\mathbf{M}_{\mathbf{V}}}^f$$
 and $\mathcal{Q}(F_{\mathbf{V}}(X)) = \mathcal{Q}(\mathbf{M}_{\mathbf{V}})$

Outline

- I. MV-preliminaries
- II. Varieties and Quasivarieties.
- III. Least V-quasivarieties.
- IV. Admissibility Theory for Łukasiewicz Logics.
- V. Conclusions.

MV-algebra

An *MV-algebra* is an algebra $\langle A, \oplus, \neg, 0 \rangle$ satisfying the following equations:

MV1
$$(x \oplus y) \oplus z \approx x \oplus (y \oplus z)$$

$$\mathsf{MV2} \quad x \oplus y \approx y \oplus x$$

MV3
$$x \oplus 0 \approx x$$

MV4
$$\neg(\neg x) \approx x$$

MV5
$$x \oplus \neg 0 \approx \neg 0$$

MV6
$$\neg(\neg x \oplus y) \oplus y \approx \neg(\neg y \oplus x) \oplus x$$
.

- $1 =_{def} \neg 0$.
- $x \rightarrow y =_{def} \neg x \oplus y$.
- $x \lor y =_{def} (x \to y) \to y$.
- $x \wedge y =_{def} \neg (\neg x \vee \neg y).$
- $x \odot y =_{def} \neg (\neg x \oplus \neg y).$

For any MV-algebra A, $a \le b$ iff $a \to b = 1$ endows A with a distributive lattice-order $\langle A, \vee, \wedge \rangle$, called the *natural order* of A.

An MV-algebra whose natural order is total is said to be an *MV-chain*.

Lattice ordered abelian group

A lattice-ordered abelian group (for short, ℓ -group) is an algebra $\langle G, \wedge, \vee, +, -, 0 \rangle$ such that $\langle G, \wedge, \vee \rangle$ is a lattice, $\langle G, +, -, 0 \rangle$ is an abelian group and satisfies the following equation:

$$(x \lor y) + z \approx (x + z) \lor (y + z)$$

For any ℓ -group G and element $0 < u \in G$, let $\Gamma(G, u) = \langle [0, u], \oplus, \neg, 0 \rangle$ be defined by

$$[0, u] = \{a \in G \mid 0 \le a \le u\}, \ a \oplus b = u \land (a + b), \ \neg a = u - a.$$

 $\langle [0, u], \oplus, \neg, 0 \rangle$ is an MV-algebra.

Examples

- $[0,1] = \Gamma(\mathbb{R},1),$
- $[0,1] \cap \mathbb{Q} = \Gamma(\mathbb{Q},1)$,

For every $0 < n < \omega$

- $L_n = \Gamma(\mathbb{Z}, n) = \langle \{0, 1, \dots, n\}, \oplus, \neg, 0 \rangle$
- $L_n^{\omega} = \Gamma(\mathbb{Z} \times_{lex} \mathbb{Z}, (n, 0)) =$ $\langle \{(k,i): (0,0) < (k,i) < (n,0)\}, \oplus, \neg, 0 \rangle.$
- $L_n^s = \Gamma(\mathbb{Z} \times_{lex} \mathbb{Z}, (n, s)) =$ $\{\{(k,i): (0,0) < (k,i) < (n,s)\}, \oplus, \neg, 0\}$, where 0 < s < n.
- $S_n = \Gamma(T, n)$ where T is the totally ordered dense subgroup of \mathbb{R} generated by $\sqrt{2} \in \mathbb{R}$ and $1 \in \mathbb{R}$. Notice that $T \cap \mathbb{Q} = \mathbb{Z}$.

The variety **MV**

The class MV of all MV-algebras is a variety.

The variety MV

The class MV of all MV-algebras is a variety.

Chang's completeness theorem

$$\mathbf{MV} = \mathcal{V}([0,1] \cap \mathbb{Q}) = \mathcal{V}([0,1]).$$

The variety MV

The class MV of all MV-algebras is a variety.

Chang's completeness theorem

$$\mathbf{MV} = \mathcal{V}([0,1] \cap \mathbb{Q}) = \mathcal{V}([0,1]).$$

Any infinite subalgebra of [0,1] generates MV

Subvarieties of MV

Subvarieties of MV

(Komori)

Two MV-chains generate the same variety iff they have the same order and the same rank.

where the **order of** an MV-chain A is defined by

$$\operatorname{ord}(A) = \begin{cases} n, & \text{if } A \cong L_n; \\ \infty, & \text{otherwise.} \end{cases}$$

The rank of an MV-chain A is defined by

$$rank(A) = ord(A/Rad(A)).$$

Subvarieties of MV

Theorem (Komori, 1981)

V is a proper subvariety of **MV** iff there exist two finite sets I and J of integers ≥ 1 , not both empty, such that

$$\mathbf{V} = \mathcal{V}(\{\mathbf{L}_m \mid m \in I\} \cup \{\mathbf{L}_n^{\omega} \mid n \in J\}).$$

Subvarieties of MV

Theorem (Komori, 1981)

V is a proper subvariety of **MV** iff there exist two finite sets I and J of integers ≥ 1 , not both empty, such that

$$\mathbf{V} = \mathcal{V}(\{\mathcal{L}_m \mid m \in I\} \cup \{\mathcal{L}_n^{\omega} \mid n \in J\}).$$

- Every proper subvariety of MV is finitely axiomatizable.
- The lattice of all varieties of MV-algebras is a Pseudo-Boolean algebra.

Let (I, J) be a pair of finite subsets of positive integers, not both empty. (I, J) is a **reduced pair** iff

- For every $n \in I$, there is no $k \in (I \setminus \{n\}) \cup J$ such that $n \mid k$.
- For every $m \in J$, there is no $k \in J \setminus \{m\}$ such that m|k|

Let (I, J) be a pair of finite subsets of positive integers, not both empty. (I, J) is a **reduced pair** iff

- For every $n \in I$, there is no $k \in (I \setminus \{n\}) \cup J$ such that $n \mid k$.
- For every $m \in J$, there is no $k \in J \setminus \{m\}$ such that m|k|

(Panti)

There is a 1-1 correspondence between proper subvarieties of **MV** and reduced pairs of finite subsets of positive integers not both empty.

Let (I, J) be a pair of finite subsets of positive integers, not both empty. (I, J) is a **reduced pair** iff

- For every $n \in I$, there is no $k \in (I \setminus \{n\}) \cup J$ such that $n \mid k$.
- For every $m \in J$, there is no $k \in J \setminus \{m\}$ such that m|k

(Panti)

There is a 1-1 correspondence between proper subvarieties of MV and reduced pairs of finite subsets of positive integers not both empty.

 $\mathcal{V}_{I,J} = \mathcal{V}(\{L_m \mid m \in I\} \cup \{L_n^{\omega} \mid n \in J\})$ is axiomatizable by a single equation in one variable of type $\alpha_{I,J}(x) \approx 1$

Quasivarieties

MV and $V_{I,J}$ for all reduced (I,J) are quasivarieties.

Quasivarieties

MV and $V_{I,J}$ for all reduced (I,J) are quasivarieties.

$$\textbf{MV} = \mathcal{Q}([0,1] \cap \mathbb{Q}) = \mathcal{Q}([0,1]).$$

Quasivarieties

MV and $V_{I,J}$ for all reduced (I,J) are quasivarieties.

$$\mathbf{MV} = \mathcal{Q}([0,1] \cap \mathbb{Q}) = \mathcal{Q}([0,1]).$$

However in general, the quasivariety generated by an infinite subalgebra of [0,1] is **not** the class MV.

Quasivarieties

Introduction

MV and $V_{I,J}$ for all reduced (I,J) are quasivarieties.

$$\textbf{MV} = \mathcal{Q}([0,1] \cap \mathbb{Q}) = \mathcal{Q}([0,1]).$$

However in general, the quasivariety generated by an infinite subalgebra of [0,1] is **not** the class **MV**.

If S is an infinite subalgebra of [0,1] such that $\frac{1}{2} \not\in S$, then $S \models \neg x \approx x \Rightarrow x \approx 1$ while $[0,1] \not\models \neg x \approx x \Rightarrow x \approx 1$

$$\mathcal{Q}(S) \neq \mathcal{Q}([0,1]) = MV$$

For every proper subvariety V of MV,

Introduction

$$\mathbf{V} = \mathcal{V}_{I,J} = \mathcal{Q}(\{\mathcal{L}_m \mid m \in I\} \cup \{\mathcal{L}_m^{\omega} \mid n \in J\}).$$

Conclusions

For every proper subvariety V of MV,

Introduction

$$\mathbf{V} = \mathcal{V}_{I,J} = \mathcal{Q}(\{\mathcal{L}_m \mid m \in I\} \cup \{\mathcal{L}_m^{\omega} \mid n \in J\}).$$

However infinite MV-chains of same finite rank n do not satisfy the same quasi-equations.

For every proper subvariety V of MV,

Introduction

$$\mathbf{V} = \mathcal{V}_{I,J} = \mathcal{Q}(\{\mathcal{L}_m \mid m \in I\} \cup \{\mathcal{L}_m^{\omega} \mid n \in J\}).$$

However infinite MV-chains of same finite rank n do not satisfy the same quasi-equations.

$$L_2^1 := \Gamma(\mathbb{Z} \times_{lex} \mathbb{Z}, (2,1)) \models x \approx \neg x \Rightarrow x \approx 1.$$

$$L_2^{\omega} := \Gamma(\mathbb{Z} \times_{\textit{lex}} \mathbb{Z}, (2,0)) \not\models x \approx \neg x \Rightarrow x \approx 1.$$

$$\mathcal{Q}(\mathrm{L}_2^1) \subsetneq \mathcal{Q}(\mathrm{L}_2^\omega) = \mathcal{V}(\mathrm{L}_2^\omega) = \mathcal{V}_{\emptyset,\{2\}}$$

Rational elements

Given $A = \Gamma(G, b)$, the set Div(A) of **divisors** of A is defined by:

$$\mathrm{Div}(A) = \{ n \in \omega \mid \exists c \in G \text{ such that } n \ c = b \}.$$

We say that $a \in A$ is a **rational element** of A if and only if there exist $n \in \text{Div}(A)$ and $0 \le m \le n$ such that $a = m \frac{b}{n}$.

$$a=\frac{m}{n}\in A\cap \mathbb{Q}.$$

Rational elements

Given $A = \Gamma(G, b)$, the set Div(A) of **divisors** of A is defined by:

$$\mathrm{Div}(A) = \{ n \in \omega \mid \exists c \in G \text{ such that } n \ c = b \}.$$

We say that $a \in A$ is a **rational element** of A if and only if there exist $n \in \text{Div}(A)$ and $0 \le m \le n$ such that $a = m \frac{b}{n}$.

$$a=\frac{m}{n}\in A\cap \mathbb{Q}.$$

This notion extends the natural definition of a rational element when the MV-algebra is a subalgebra of [0,1].

Moreover, $\langle A \cap \mathbb{Q}, \oplus, \neg, 0 \rangle$ is a subalgebra of A isomorphic to a subalgebra of $[0,1] \cap \mathbb{Q}$.

Introduction MV preliminaries Varieties and Quasivarieties Least V-quasivarieties Admissibility Theory Conclusions

Quasivarieties generated by MV-chains

Theorem

Two MV-chains generate the same quasivariety iff they have the same order, the same rank, and they contain the same rational elements.

Quasivarieties generated by MV-chains

Theorem

Introduction

K is a quasivariety generated by MV-chains if and only if there are α, γ, κ subsets of positive integers, not all of them empty, and for every $i \in \gamma$, a nonempty subset $\gamma(i) \subseteq Div(i)$ such that

$$\mathbf{K} = \mathcal{Q}(\{\mathbf{L}_n : n \in \alpha\} \cup \{\mathbf{L}_i^{d_i} : i \in \gamma, \ d_i \in \gamma(i)\} \cup \{\mathbf{S}_k : k \in \kappa\}).$$

Conclusions

Quasivarieties generated by MV-chains

Theorem

K is a quasivariety generated by MV-chains if and only if there are α, γ, κ subsets of positive integers, not all of them empty, and for every $i \in \gamma$, a nonempty subset $\gamma(i) \subseteq Div(i)$ such that

$$\mathbf{K} = \mathcal{Q}(\{\mathbf{L}_n : n \in \alpha\} \cup \{\mathbf{L}_i^{d_i} : i \in \gamma, \ d_i \in \gamma(i)\} \cup \{\mathbf{S}_k : k \in \kappa\}).$$

- Every quasivariety generated by MV-chains contained in a proper subvariety of MV is finitely axiomatizable.
- For every n > 0, $\mathcal{Q}(S_n)$ is not finitely axiomatizable.
- The lattice of all quasivarieties generated by MV-chains is a bounded distributive lattice

Least V-quasivarieties

Let ${\bf V}$ be a variety of algebras of same type . We say that a quasivariety ${\bf K}$ of algebras of same type is a ${\bf V}$ -quasivariety, provided that it generates ${\bf V}$ as a variety. (i.e. ${\cal V}({\bf K})={\bf V})$

Least V-quasivarieties

Let \mathbf{V} be a variety of algebras of same type . We say that a quasivariety \mathbf{K} of algebras of same type is a \mathbf{V} -quasivariety, provided that it generates \mathbf{V} as a variety. (i.e. $\mathcal{V}(\mathbf{K}) = \mathbf{V}$) Let $F_V(X)$ be the free algebra of V with X generators.

Theorem

If X is infinite then, $Q(F_V(X))$ is the least V-quasivariety.

Introduction MV preliminaries Varieties and Quasivarieties Least V-quasivarieties Admissibility Theory Conclusions

Least V-quasivarieties

Let ${\bf V}$ be a variety of algebras of same type . We say that a quasivariety ${\bf K}$ of algebras of same type is a ${\bf V}$ -quasivariety, provided that it generates ${\bf V}$ as a variety. (i.e. ${\cal V}({\bf K})={\bf V})$ Let $F_V(X)$ be the free algebra of V with X generators.

Theorem

If X is infinite then, $Q(F_V(X))$ is the least V-quasivariety.

Since any variety of MV-algebras can be distinguished by an axiom in just one variable,

Corollary

For every variety V of MV-algebras, $Q(F_V(\{x\}))$ is the least V-quasivariety.

From the characterization of quasivarieties generated by MV-chains it can be deduced:

 $\bullet~\mathcal{Q}(\mathrm{S}_1)$ is the least $\boldsymbol{\mathsf{MV}}\text{-}\mathsf{quasivariety}$ generated by chains.

From the characterization of quasivarieties generated by MV-chains it can be deduced:

- $\mathcal{Q}(S_1)$ is the least **MV**-quasivariety generated by chains.
- $\mathcal{Q}(L_n^1)$ is the least $\mathcal{V}(L_n^{\omega})$ -quasivariety generated by chains.

From the characterization of quasivarieties generated by MV-chains it can be deduced:

- $\mathcal{Q}(S_1)$ is the least **MV**-quasivariety generated by chains.
- $\mathcal{Q}(L_n^1)$ is the least $\mathcal{V}(L_n^{\omega})$ -quasivariety generated by chains.
- $\mathcal{Q}(L_n)$ is the least $\mathcal{V}(L_n)$ -quasivariety generated by chains.

From the characterization of quasivarieties generated by MV-chains it can be deduced:

- $\mathcal{Q}(S_1)$ is the least **MV**-quasivariety generated by chains.
- $\mathcal{Q}(L_n^1)$ is the least $\mathcal{V}(L_n^\omega)$ -quasivariety generated by chains.
- $\mathcal{Q}(L_n)$ is the least $\mathcal{V}(L_n)$ -quasivariety generated by chains.
- For every reduced pair (1, J), $\mathcal{Q}(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is the least $\mathcal{V}_{I,J}$ -quasivariety generated by chains.

• $\mathcal{Q}(S_1)$ is not the least MV-quasivariety.

For every n > 1,

• $\mathcal{Q}(\mathrm{L}^1_n)$ is not the least $\mathcal{V}(\mathrm{L}^\omega_n)$ -quasivariety

Conclusions

• $Q(S_1)$ is not the least **MV**-quasivariety.

For every n > 1,

- $\mathcal{Q}(\mathrm{L}^1_n)$ is not the least $\mathcal{V}(\mathrm{L}^\omega_n)$ -quasivariety
- $\mathcal{Q}(L_n)$ is not the least $\mathcal{V}(L_n)$ -quasivariety.

Conclusions

• $Q(S_1)$ is not the least **MV**-quasivariety.

For every n > 1,

- $\mathcal{Q}(L_n^1)$ is not the least $\mathcal{V}(L_n^{\omega})$ -quasivariety
- $\mathcal{Q}(L_n)$ is not the least $\mathcal{V}(L_n)$ -quasivariety.
- $\mathcal{Q}(L_1 \times L_n)$ is the least $\mathcal{V}(L_n)$ -quasivariety.

Q(S₁) is not the least MV-quasivariety.

For every n > 1,

- $\mathcal{Q}(L_n^1)$ is not the least $\mathcal{V}(L_n^{\omega})$ -quasivariety
- $\mathcal{Q}(L_n)$ is not the least $\mathcal{V}(L_n)$ -quasivariety.
- $\mathcal{Q}(L_1 \times L_n)$ is the least $\mathcal{V}(L_n)$ -quasivariety.
- $\mathcal{Q}(L_1 \times L_1) = \mathcal{Q}(L_1) = \mathbf{B}$ is the least **B**-quasivariety.

Theorem

For every n > 0, $\mathcal{Q}(L_1 \times L_n^1)$ is the least $\mathcal{V}(L_n^{\omega})$ -quasivariety.

Theorem

For every n>0, $\mathcal{Q}(\mathrm{L}_1\times\mathrm{L}_n^1)$ is the least $\mathcal{V}(\mathrm{L}_n^\omega)$ -quasivariety.

Theorem

For every n > 0, $\mathcal{Q}(L_1 \times L_n^1)$ is the class of all bipartite algebras in $\mathcal{Q}(L_n^1)$.

If (I, J) is a reduced pair, we write $\mathcal{Q}_{I,J} := \mathcal{Q}(\{L_1 \times L_m \mid m \in I\} \cup \{L_1 \times L_n^1 \mid n \in J\}).$

If (I, J) is a reduced pair, we write $\mathcal{Q}_{I,J} := \mathcal{Q}(\{L_1 \times L_m \mid m \in I\} \cup \{L_1 \times L_n^1 \mid n \in J\}).$

Theorem

 $Q_{I,J}$ is the least $V_{I,J}$ -quasivariety.

If (I, J) is a reduced pair, we write $Q_{I,J} := Q(\{L_1 \times L_m \mid m \in I\} \cup \{L_1 \times L_n^1 \mid n \in J\}).$

$\mathsf{Theorem}$

 $Q_{I,J}$ is the least $V_{I,J}$ -quasivariety.

Theorem

 $Q_{I,J}$ is the class of all bipartite algebras in $Q(\{L_m \mid m \in I\}) \cup \{L_n^1 \mid n \in J\})$

Since $L_1^1\cong L_1^\omega$ and L_1^1 is embeddable into $L_1\times L_1^1$

Corollary

 $\mathcal{Q}(L_1 \times L_1^1) = \mathcal{Q}(L_1^{\omega}) = \mathcal{V}(L_1^{\omega})$ is the least $\mathcal{V}_{\{1\},\emptyset}$ -quasivariety. i.e. $\mathcal{V}_{\{1\},\emptyset}$ is structurally complete.

What about the least **MV**-quasivariety, $\mathcal{Q}(\mathcal{M}([0,1]))$?

What about the least **MV**-quasivariety, $\mathcal{Q}(\mathcal{M}([0,1]))$?

Since
$$L_1 \times S_1 \notin \mathcal{Q}(\mathcal{M}([0,1]))$$
,

Introduction

 $\mathcal{Q}(L_1 \times S_1)$ is not the least **MV**-quasivariety.

What about the least **MV**-quasivariety, $\mathcal{Q}(\mathcal{M}([0,1]))$?

Since $L_1 \times S_1 \notin \mathcal{Q}(\mathcal{M}([0,1]))$,

 $\mathcal{Q}(L_1 \times S_1)$ is not the least **MV**-quasivariety.

And moreover since $L_1 \times L_n^1 \notin \mathcal{Q}(\mathcal{M}([0,1]))$ for every n > 1

There is an infinite numerable chain of quasivarieties, $K_1, K_2, ...$ such that

$$\mathcal{Q}(\mathcal{M}([0,1])) \varsubsetneq \mathsf{K}_1 \varsubsetneq \mathsf{K}_2 \varsubsetneq \cdots \varsubsetneq \mathcal{Q}(\mathrm{L}_1 \times \mathrm{S}_1)$$

Introduction MV preliminaries Varieties and Quasivarieties Least V-quasivarieties Admissibility Theory Conclusions

Order structure of least V-quasivarieties

Varieties of MV-algebras are obviously in 1-1 correspondence with all least ${f V}$ -quasivarieties.

Introduction MV preliminaries Varieties and Quasivarieties Least V-quasivarieties Admissibility Theory Conclusions

Order structure of least V-quasivarieties

Varieties of MV-algebras are obviously in 1-1 correspondence with all least **V**-quasivarieties.

However they do not share same ordered structure (by \subseteq).

Introduction

Order structure of least V-quasivarieties

Varieties of MV-algebras are obviously in 1-1 correspondence with all least V-quasivarieties.

However they do not share same ordered structure (by \subseteq).

For every n > 1,

$$\mathcal{V}_{\{n\},\emptyset} = \mathcal{V}(\mathrm{L}_n) \subseteq \mathcal{V}(\mathrm{L}_n^\omega) = \mathcal{V}_{\emptyset,\{n\}}$$

$$\mathcal{Q}_{\{n\},\emptyset} = \mathcal{Q}(\mathbf{L}_1 \times \mathbf{L}_n) \not\subseteq \mathcal{Q}(\mathbf{L}_1 \times \mathbf{L}_n^1) = \mathcal{Q}_{\emptyset,\{n\}}$$

Order structure of least V-quasivarieties

The poset of all least V-quasivarieties ordered by the inclusion is not a lattice, nor a semilattice.

Order structure of least V-quasivarieties

The poset of all least **V**-quasivarieties ordered by the inclusion is not a lattice, nor a semilattice.

$$\langle \{\mathcal{Q}_{I,\emptyset}: (I,\emptyset) \text{ reduced pair}\}; \subseteq \rangle \ \cong \ \langle \{\mathcal{V}_{I,\emptyset}: (I,\emptyset) \text{ reduced pair}\}; \subseteq \rangle$$

$$\langle \{\mathcal{Q}_{\emptyset,J} : (\emptyset,J) \text{ reduced pair}\}; \subseteq \rangle \cong \langle \{\mathcal{V}_{\emptyset,J} : (\emptyset,J) \text{ reduced pair}\}; \subseteq \rangle$$

The class $\mathbf{B}=\mathcal{V}_{\{1\},\emptyset}=\mathcal{Q}_{\{1\},\emptyset}$ of all Boolean algebras is the smallest among all non trivial quasivarieties.

The class $\mathbf{B} = \mathcal{V}_{\{1\},\emptyset} = \mathcal{Q}_{\{1\},\emptyset}$ of all Boolean algebras is the smallest among all non trivial quasivarieties.

Corollary

 $\{\mathcal{V}(L_1^{\omega})\} \cup \{\mathcal{Q}(L_1 \times L_p) : p \text{ prime}\}\$ is the class of all minimal quasivarieties (in the set of all non trivial MV-quasivarieties different from **B**).

The class $\mathbf{B} = \mathcal{V}_{\{1\},\emptyset} = \mathcal{Q}_{\{1\},\emptyset}$ of all Boolean algebras is the smallest among all non trivial quasivarieties.

Corollary

 $\{\mathcal{V}(\mathrm{L}_1^\omega)\} \cup \{\mathcal{Q}(\mathrm{L}_1 \times \mathrm{L}_p) : p \text{ prime}\}$ is the class of all minimal quasivarieties (in the set of all non trivial MV-quasivarieties different from **B**).

Corollary

 $\mathcal{Q}(\mathcal{M}([0,1]))$ is the only maximal (in the set of all struct. compl. MV-quasivarieties) and almost minimal (in the set of all non trivial MV-quasivarieties different from \mathbf{B}), it just contains $\mathcal{V}(L_1^\omega)$.

Corollary

Introduction

There are exactly two structurally complete axiomatic extensions of L_{∞} , namely:

- CPC
- $\bullet \vdash_{\emptyset,\{1\}} = \pounds_{\infty} + 2\varphi^2 \leftrightarrow (2\varphi)^2.$

Axiomatization

Admissible rules for finite valued Łukasiewics logics

- Let L be an extension of L_{∞} . Then L is an extension of a finite valued Łukasiewicz logic iff L is n-contractive for some $n \in \omega$.
- Let L be an n-contractive extension of \mathcal{L}_{∞} (BL). Then every L-unifiable formula is L-projective. (Dzik)
- Every finite valued Łukasiewicz logic is almost structurally complete.
- $\neg(\varphi \lor \neg \varphi)^n / \bot$ is a basis of passive admissible rules for every *n*-contractive extension of \pounds_{∞} . (Jeřábek)

Axiomatization

Admissible rules for L_{∞}

(Jeřábek)

- Infinite basis for L_{∞} -admissible rules.
- L_{∞} -admissible rules are not finitely based.
- Let L be any extension of \mathcal{L}_{∞} (MTL). Then $\{\neg(\varphi \lor \neg \varphi)^n / \bot : n \in \omega\}$ is a basis for passive L-admissible rules.

Theorem (G. Metcalfe - C. Röthlisberger)

The following are equivalent for any $B \in \mathbf{S}(F_{\mathbf{K}}(\omega))$

- K is almost structurally complete.
- $\mathcal{Q}(\{A \times B : A \in \mathbf{K}\}) = \mathcal{Q}(F_{\mathbf{K}}(\omega)).$
- $\{A \times B : A \in \mathbf{K}\} \subseteq \mathcal{Q}(F_{\mathbf{K}}(\omega)).$

Theorem (G. Metcalfe - C. Röthlisberger)

The following are equivalent for any $B \in \mathbf{S}(F_{\mathbf{k}}(\omega))$

- K is almost structurally complete.
- $\mathcal{Q}(\{A \times B : A \in \mathbf{K}\}) = \mathcal{Q}(F_{\mathbf{K}}(\omega)).$
- $\{A \times B : A \in \mathbf{K}\} \subseteq \mathcal{Q}(F_{\mathbf{K}}(\omega)).$

[Our previous algebraic results]

- $Q_{I,J} = Q(F_{\mathcal{V}_{I,J}}(\omega)).$
- $Q_{I,J}$ is the class of all bipartite algebras in $\mathcal{Q}(\{\mathcal{L}_m \mid m \in I\} \cup \{\mathcal{L}_n^1 \mid n \in J\}).$

Theorem

Let $V_{I,J}$ be a proper subvariety of **MV**.

 $\mathcal{Q}(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is almost structurally complete.

Theorem

Introduction

Let $V_{I,J}$ be a proper subvariety of **MV**.

 $\mathcal{Q}(\{L_n:n\in I\}\cup\{L_m^1:m\in J\})$ is almost structurally complete.

Corollary

Every quasivariety K such that

 $Q_{\mathcal{I},\mathcal{J}} \subseteq \mathbf{K} \subseteq Q(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is almost structurally complete.

Introduction

• $\mathcal{Q}(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is almost structurally complete.

- $\mathcal{Q}(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is almost structurally complete.
- $\mathcal{Q}(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is finitely axiomatizable.

- $\mathcal{Q}(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is almost structurally complete.
- $\mathcal{Q}(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is finitely axiomatizable.
- Let $L_{I,J}$ be the axiomatic extension of \mathcal{L}_{∞} associated to $\mathcal{V}_{I,J}$. Then $\neg(\varphi \lor \neg \varphi)^n / \bot$ is a basis for passive $L_{I,J}$ -admissible rules where $n = \sup(I \cup J) + 1$

- $\mathcal{Q}(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is almost structurally complete.
- $\mathcal{Q}(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is finitely axiomatizable.
- Let $L_{I,J}$ be the axiomatic extension of \mathbb{L}_{∞} associated to $\mathcal{V}_{I,J}$. Then $\neg(\varphi \lor \neg \varphi)^n / \bot$ is a basis for passive $L_{I,J}$ -admissible rules where $n = \sup(I \cup J) + 1$

Theorem

Admissible rules for proper axiomatic extensions of L_{∞} are finitely based.

$\mathsf{Theorem}$

Let (I, J) be a reduced pair, then a base of admissible rules for $\vdash_{I,J}$ is given by

- £1, £2, £3, £4 + M.P.
- \bullet $\alpha_{I,J}(\gamma)$.
- $[(\neg \varphi)^{p-1} \leftrightarrow \varphi] \lor [\psi \leftrightarrow \chi] / \psi \leftrightarrow \chi$ for every prime number $p \in Div(J) \setminus Div(I)$
- $[(\neg \varphi)^{q-1} \leftrightarrow \varphi] \lor [\psi \leftrightarrow \chi] / \alpha_{lq} \emptyset(\gamma) \lor (\psi \leftrightarrow \chi)$ for every prime number $q \in Div(I)$, where $I_a = \{n \in I : q|n\}$
- $\bullet \neg (\varphi \lor \neg \varphi)^n / \bot$ where $n = \sup(I \cup J) + 1$

Conclusions

• Komori's type characterization of $\mathcal{Q}_{I,J}$ the least $\mathcal{V}_{I,J}$ -quasivariety for every proper subvariety $\mathcal{V}_{I,J}$ of \mathbf{MV} .

- Komori's type characterization of $\mathcal{Q}_{I,J}$ the least $\mathcal{V}_{I,J}$ -quasivariety for every proper subvariety $\mathcal{V}_{I,J}$ of \mathbf{MV} .
- $Q_{I,J}$ is the class of bipartite algebras in the least $V_{I,J}$ -quasivariety generated by chains.

- Komori's type characterization of $Q_{I,J}$ the least $V_{I,J}$ -quasivariety for every proper subvariety $V_{I,J}$ of MV.
- $Q_{I,J}$ is the class of bipartite algebras in the least $V_{I,J}$ -quasivariety generated by chains.
- This second statement is not true for the case of MV.

- Komori's type characterization of $Q_{I,J}$ the least $V_{I,J}$ -quasivariety for every proper subvariety $V_{I,J}$ of MV.
- $Q_{I,J}$ is the class of bipartite algebras in the least $V_{I,J}$ -quasivariety generated by chains.
- This second statement is not true for the case of MV.
- The poset of least V-quasivarieties of MV is not a lattice nor a semilattice. Restricted to suitable classes it behaves like the lattice of subvarieties of MV.

- Komori's type characterization of $Q_{I,J}$ the least $V_{I,J}$ -quasivariety for every proper subvariety $V_{I,J}$ of MV.
- $Q_{I,J}$ is the class of bipartite algebras in the least $V_{I,J}$ -quasivariety generated by chains.
- This second statement is not true for the case of MV.
- The poset of least V-quasivarieties of MV is not a lattice nor a semilattice. Restricted to suitable classes it behaves like the lattice of subvarieties of MV.
- Description of all minimal quasivarieties.

Using the algebraic results

• Description of all structurally complete axiomatic extensions of L_{∞} .

Conclusions 5

Using the algebraic results

- Description of all structurally complete axiomatic extensions of Ł_∞.
- \bullet Admissible rules for proper axiomatic extensions of L_{∞} are finitely based.

Using the algebraic results

- Description of all structurally complete axiomatic extensions of L_{∞} .
- \bullet Admissible rules for proper axiomatic extensions of L_{∞} are finitely based.
- \bullet Basis for admissible rules for proper axiomatic extensions of \textbf{L}_{∞}

THANK YOU FOR YOUR ATTENTION

- GISPERT, J (2014) Least V-quasivarieties of MV-algebras, Fuzzy Sets and systems, http://dx.doi.org/10.1016/j.fss.2014.07.011.
- GISPERT, J., MUNDICI, D. (2005) MV-algebras: a variety for magnitudes with archimedean units. *Algebra Universalis*, **53**, p. 7-43.
- GISPERT, J (2002) Universal classes of MV-algebras with applications to many-valued logics, *Mathematical Logic Quarterly*, **48**, p. 581-601.
- GISPERT, J., MUNDICI, D., TORRENS, A. (1999) Ultraproducts of Z with an application to Many-Valued Logics. *Journal of Algebra*, **219**, p. 214-233.
- GISPERT, J., TORRENS, A. (1998) Quasivarieties generated by simple MV-algebras. *Studia Logica*, **61**, p. 79-99.

Sketch of the proof:

Theorem

Introduction

For every n > 0, $\mathcal{Q}(L_1 \times L_n^1)$ is the least $\mathcal{V}(L_n^{\omega})$ -quasivariety.

To prove $\mathcal{Q}(L_1 \times L_n^1) \subseteq \mathcal{Q}(\mathcal{F}_V(\{g\}))$ we prove that

 $L_1 \times L_n^1$ is embeddable into $F_V(\{g\})$

Characterization of $F_V(\{g\})$

DiNola, Grigolia, Panti Let $V = \mathcal{V}(\operatorname{L}_n^{\omega})$ then $F_V(\{g\})$ is the subalgebra of

$$\prod_{\substack{k \mid n \\ h < k \\ (k, h) = 1}} \left(L_k^h \right)^2$$

generated by g defined as $g(k,h) = (a, \neg a)$ where a is the only one generator of L_k^h such that $a \le \neg a$.

Let \boldsymbol{B} be the subalgebra of

$$\prod_{\substack{k \mid n \ h < k \ (k,h) = 1}} \mathrm{L}_k^h$$
 generated by v defined

as v(k, h) = a where a is the only one generator of L_k^h such that $a \leq \neg a$.

Let \boldsymbol{B} be the subalgebra of

$$\prod_{\substack{k \mid n \ h < k}} \operatorname{L}_k^h$$
 generated by v defined

as v(k, h) = a where a is the only one generator of L_k^h such that $a \leq \neg a$.

• B is a subalgebra of $F_V(\{g\})$ generated by $g \land \neg g$.

Let \boldsymbol{B} be the subalgebra of

$$\prod_{\substack{k \mid n \ h < k}} \mathrm{L}_k^h$$
 generated by v defined

as v(k, h) = a where a is the only one generator of L_k^h such that $a \leq \neg a$.

- B is a subalgebra of $F_V(\{g\})$ generated by $g \land \neg g$.
- B can be decomposed as $C \times D_n$ where D_n is the subalgebra of $L_n^{n-1} \times L_n^1$ generated by (a_{n-1}, a_1) , a_{n-1} the generator of L_n^{n-1} and a_1 the generator of L_n^1 .

 $\bullet \ \mathrm{B}$ can be decomposed as $\mathrm{C} \times \mathrm{D}_n$

• B can be decomposed as $C \times D_n$

• L_n^1 is embeddable into D_n . D_n is the subalgebra of $L_n^{n-1} \times L_n^1$ generated by ((1,1),(1,0))(1,1) is the generator of L_n^{n-1} and (1,0) is the generator of L_n^1

- B is a subalgebra of $F_V(\{g\})$ generated by $g \land \neg g$.
- B can be decomposed as $C \times D_n$ where D_n is the subalgebra of $L_n^{n-1} \times L_n^1$ generated by (a_{n-1}, a_1) , a_{n-1} the generator of L_n^{n-1} and a_1 the generator of L_n^1 .
- L_n^1 is embeddable into D_n

- B is a subalgebra of $F_V(\{g\})$ generated by $g \land \neg g$.
- B can be decomposed as $C \times D_n$ where D_n is the subalgebra of $L_n^{n-1} \times L_n^1$ generated by (a_{n-1}, a_1) , a_{n-1} the generator of L_n^{n-1} and a_1 the generator of L_n^1 .
- L_n^1 is embeddable into D_n

$$L_1 \times L_n^1 \subseteq L_1 \times D_n$$

- B is a subalgebra of $F_V(\{g\})$ generated by $g \land \neg g$.
- B can be decomposed as $C \times D_n$ where D_n is the subalgebra of $L_n^{n-1} \times L_n^1$ generated by (a_{n-1}, a_1) , a_{n-1} the generator of L_n^{n-1} and a_1 the generator of L_n^1 .
- L_n^1 is embeddable into D_n

$$L_1 \times L_n^1 \subseteq L_1 \times D_n \subseteq C \times D_n$$

- B is a subalgebra of $F_V(\{g\})$ generated by $g \land \neg g$.
- B can be decomposed as $C \times D_n$ where D_n is the subalgebra of $L_n^{n-1} \times L_n^1$ generated by (a_{n-1}, a_1) , a_{n-1} the generator of L_n^{n-1} and a_1 the generator of L_n^1 .
- L_n^1 is embeddable into D_n

$$L_1 \times L_n^1 \subseteq L_1 \times D_n \subseteq C \times D_n \subseteq B$$

- B is a subalgebra of $F_V(\{g\})$ generated by $g \land \neg g$.
- B can be decomposed as $C \times D_n$ where D_n is the subalgebra of $L_n^{n-1} \times L_n^1$ generated by (a_{n-1}, a_1) , a_{n-1} the generator of L_n^{n-1} and a_1 the generator of L_n^1 .
- L_n^1 is embeddable into D_n

$$L_1 \times L_n^1 \subseteq L_1 \times D_n \subseteq C \times D_n \subseteq B \subseteq F_V(\{g\})$$

