Ejercicios: Introducción y conceptos básicos

1. Sea Y una variable aleatoria de Bernoulli con parámetro p=0.7, y sea X otra variable aleatoria definida por

$$X = 5Y + 6$$

Calcular:

- a) La función de probabilidad. Dibujar la función.
- b) La media y la varianza.
- c) La función generatriz.
- d) Las siguientes probabilidades: $\mathbb{P}(0 \le X \le 5)$, $\mathbb{P}(3 \le X < 8)$ y $\mathbb{P}(6 < X \le 12)$.
- 2. La función de densidad de una v.a. X viene dada por:

$$f(x) = \begin{cases} k x^2 (1-x) & x \in (0,1) \\ 0 & \text{en el resto} \end{cases}$$

- a) Calcular k para que f sea función de densidad.
- b) Calcular la función de distribución de probabilidad.
- c) Calcular $\mathbb{E}[X]$ y \mathbb{V} ar[X].

Indicio: Recuerda que $\int_a^b x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_a^b = \frac{b^{n+1}}{n+1} - \frac{a^{n+1}}{n+1}$

3. Una fábrica de bombillas produce dos tipos de bombillas de aspecto exterior semejante. El 70 % son de tipo A, con un tiempo de vida (en años) representado por la variable aleatoria X, con función de distribución:

$$F_X(x) = (1 - e^{-x}) \, 1\{x \ge 0\}$$

El 30% restante son de tipo B, con una duración representada por la variable Y con función de distribución:

$$F_Y(y) = (1 - e^{-2y}) \, 1\{y \ge 0\}$$

- a) Si tomamos una bombilla al azar, ¿qué probabilidad hay de que dure más de un año?
- b) Si una bombilla elegida al azar dura más de un año, ¿qué probabilidad hay de que sea del tipo A?.

Indicio: Recuerda que $1\{x \ge 0\}$ es la función indicadora del conjunto $x \ge 0$, es decir vale 1 si x es non negativo y 0 en el resto.

- 4. Comprueba la Desigualdad de Jensen usando la función $h(x) = x^2 + x$:
 - a) Comprueba que h(x) es convexa, verificando que la derivada segunda es positiva.
 - b) En el caso de $X \sim \text{Bin}(4, \frac{1}{2})$
 - c) En el caso de $X \sim \text{Exp}(1)$
 - d) En el caso de $X \sim \text{Exp}(\lambda)$

Indicio: Recuerda que $\int_0^\infty x^k e^{-x} dx = k!$

- 5. Calcular las siguientes funciones
 - a) Sea $X \sim \text{Be}(p)$. Calcula función generatriz de momentos, $M_X(t)$.
 - b) Sea $X \sim \mathrm{U}([0,1])$. Calcula la trasformata de Laplace $\tilde{F}_X(s)$.
- 6. Tenemos el experimento del lanzamiento de dos dados. Dos científicos hacen juntos las pruebas. Uno toma nota del valor del primer dado y la suma de los valores de los dos dados, y los comunica con el vector $\vec{X} = (X_1, X_2)$. El otro anota el valor del primer dado y se equivoca en anotar el segundo dado. En lugar de anotar el 5 y el 6 sigue anotando un 4. Comunica sus valores por el vector $\vec{Y} = (Y_1, Y_2)$.
 - a) Calcula la función de masa del vector \vec{X}
 - b) Calcula las medias $\mathbb{E}[X_1]$ y $\mathbb{E}[X_1^2 + X_2]$
 - c) Calcula la función de distribución del vector \vec{Y}

- d) Calcula la media $\mathbb{E}[(Y_1+Y_2)^2]$
- 7. El vector aleatorio discreto bivariante (X, Y) está definido en el rectángulo OABC.

$$O = (0,0)$$
 $A = (0,4)$ $B = (2,4)$ $C = (2,0).$

con función de probabilidad

$$p_{X,Y}(x,y) = k y^2.$$

- a) Determinar el valor de k;
- b) Calcular las probabilidades marginales;
- c) Calcular las probabilidades condicionadas p(x|y), p(y|x);
- d) Calcular las medias condicionadas $\mathbb{E}[X|Y]$ y $\mathbb{E}[Y|X]$;
- e) ¿Son X e Y independientes?
- f) Calcular $\mathbb{P}(Y 2X < 0)$.

Indicio: No es necesario sino útil saber que $\sum_{y=0}^{k} y^2 = \frac{1}{6}k(1+k)(1+2k)$.

8. Sea (X,Y) un vector aleatorio con función de densidad conjunta

$$f_{(X,Y)} = \left\{ \begin{array}{ll} k\,x & \text{cuando } 0 \leq x \leq 1 \text{ y } 0 \leq y \leq 1-x \\ 0 & \text{en el resto} \end{array} \right.$$

- a) Hallar el valor de k
- b) Calcular la media $\mathbb{E}[Y]$
- c) Calcular la densidad marginal de X
- d) Calcular la densidad condicionada $f_{Y|X=x}(y)$
- e) Calcular la media condicionada $\mathbb{E}[Y|X]$
- 9. Dado el vector aleatorio (X, Y, Z) discreto con función de masa conjunta p(x, y, z)

Z=0								
X/Y	5	6						
1	0.05	0.25						
2	0.05	0.00						
3	0.15	0.15						

Z=1							
X/Y	5	6					
1	0.05	0.05					
2	0.05	0.10					
3	0.00	0.10					

cuyas componentes toman valores en estos conjuntos: $X \in \{1, 2, 3\}, Y \in \{5, 6\}$ y $Z \in \{0, 1\}$.

Calcula explícitamente las siguientes cantidades, y verifica las propiedades de la media condicionada:

- a) $\mathbb{E}[X|Z]$, $\mathbb{E}[Y|Z]$, $\mathbb{E}[Z|Z]$
- b) $\mathbb{E}[X|Y,Z]$ y $\mathbb{E}[\mathbb{E}[X|Y,Z]|Z]$
- c) $\mathbb{E}[Y|X]$ y verifica que $\mathbb{E}[X^2Y|X] = X^2\mathbb{E}[Y|X]$
- $d) \mathbb{E}[4|Z], \mathbb{E}[4Y|Z]$
- $e) \mathbb{E}[Y^2|Z] \text{ y } \mathbb{E}[4X + Y^2|Z]$
- 10. Sean X_1 , X_2 variables aleatorias independientes y uniformes continuas entre 0 y 1, y sean Y_1 , Y_2 e Y_3 independientes y uniformes discretas entre 0 y 4.

Calcula:

- a) La función de densidad y la función de distribución de $X_1 + X_2$
- b) La función de probabilidad y la función de distribución de $Y_1 + Y_2$ e $Y_1 + Y_2 + Y_3$
- 11. Sea $N \sim \text{Po}(10)$ y sean X_i variables independientes, distribuidas como $X \sim \text{Exp}(3)$. Define también $Z = \sum_{i=1}^{N} X_i$ la Poisson compuesta.

Calcula:

a) La función generadora de los momentos de X, $M_X(t)$ para t < 3

- b) Los momentos de ordenes 1 y 2 de X.
- c) Calcula la media de Z.

Indicio: Para verificar el valor de los momentos puede ser útil $\int_0^\infty x^k e^{-x} dx = k!$.

12. Supongamos que (N, X_1, X_2) puedan ser no independientes y intentamos verificar si es valida siempre o no la relación

$$\mathbb{E}[Z] = \mathbb{E}[N] \, \mathbb{E}[X]$$

cuando
$$Z = \sum_{i=1}^{N} X_i$$
.

La componente N toma valores $\{0,1,2\}$, mientras las variables X_1 y X_2 son igual de distribuidas (como vas a verificar) y toman valores $\{2,4,6\}$. La función de masa conjunta, $p_{(N,X_1,X_2)}(n,x_1,x_2) = p(n,x_1,x_2)$ está dada en la siguientes tablas

	n =	= 0	x_2				
			2	4	6		
ĺ		2	0.003	0.006	0.021		
	x_1	4	0.006	0.012	0.042		
		6	0.021	0.042	0.147		

n =	= 1	x_2					
		2	4	6			
	2	0.005	0.01	0.035			
x_1	4	0.01	0.02	0.07			
	6	0.035	0.07	0.245			

n =	= 2	x_2				
		2	4	6		
	2	0.04	0	0		
x_1	4	0	0.12	0		
	6	0	0	0.04		

Calcula:

- a) Las funciones de probabilidad marginales $p_N(n)$ $p_{X_1}(x)$ y $p_{X_2}(x)$
- b) Calcula la función de probabilidad conjunta $p_{(X_1,X_2)}(x_1,x_2)$. El vector (X_1,X_2) es independiente?
- c) Es el vector (N, X_1, X_2) independiente? Es decir, verifica que $p(n, x_1, x_2) = p_N(n) p_{X_1}(x) p_{X_2}(x)$
- d) Calcula $\mathbb{E}[N]$, $\mathbb{E}[X_1]$ y $\mathbb{E}[X_2]$
- e) Se verifica que $\mathbb{E}[Z] = \mathbb{E}[N] \mathbb{E}[X]$?

Ahora construye un vector independiente (N, X_1, X_2) a partir de las marginales anteriores, es decir defines $p(n, x_1, x_2) = p_N(n) p_{X_1}(x) p_{X_2}(x)$.

- f) Las funciones de probabilidad conjunta $p(n, x_1, x_2)$. El vector (X_1, X_2) es independiente?
- g) Calcula la función de probabilidad conjunta $p_{(X_1,X_2)}(x_1,x_2)$
- h) Calcula $\mathbb{E}[N]$, $\mathbb{E}[X_1]$ y $\mathbb{E}[X_2]$
- i) Se verifica que $\mathbb{E}[Z] = \mathbb{E}[N] \mathbb{E}[X]$?
- 13. Se sacan un número X al azar entre 1 y 5, y otro número Y al azar entre 2 y 6. Calcula
 - a) $\mathbb{E}[X]$ y $\mathbb{E}[Y]$
 - b) $\mathbb{E}[X|X+Y=4]$
 - c) La función de probabilidad de $\mathbb{E}[X|X+Y]$
 - d) La función de probabilidad de $\mathbb{E}[X|X*Y]$
 - e) La media de $\mathbb{E}[X|X+Y]$ y de $\mathbb{E}[X|X*Y]$
- 14. Considera un espacio de probabilidad $\Omega = \{\omega_1, \dots, \omega_{12}\}$, con todos los sucesos sencillos equiprobables. En este espacio están definidas tres variables aleatorias, X, Y, Y, Z, según la siguiente tabla

	ω_1	ω_2	ω_3	ω_4	ω_5	ω_6	ω_7	ω_8	ω_9	ω_{10}	ω_{11}	ω_{12}
$X(\omega)$	-1	-1	-1	-1	1	1	1	1	-2	-2	2	2
$Y(\omega)$	1	2	2	4	4	4	4	5	5	5	5	5
$\overline{Z(\omega)}$	1	1	2	2	1	1	2	2	1	1	2	2

Hallar:

- a) $\mathbb{E}[X]$, $\mathbb{E}[Y]$, $\mathbb{E}[Z]$
- b) $\mathbb{E}[Y|X]$, $\mathbb{E}[Y|Z]$, $\mathbb{E}[Y|X,Z]$
- c) $\mathbb{E}[\mathbb{E}[Y|X]]$, $\mathbb{E}[\mathbb{E}[Y|Z]]$, $\mathbb{E}[\mathbb{E}[Y|X,Z]]$
- d) $\mathbb{E}[Y|g(X)]$ con $g(x) = x^2$, $\mathbb{E}[Y|X, g(X)]$ y $\mathbb{E}[\mathbb{E}[Y|X, g(X)]|g(X)]$.

- e) $\mathbb{E}[\mathbb{E}[Y|g(X)]]$ siempre con $g(x) = x^2$, $\mathbb{E}[\mathbb{E}[Y|X,g(X)]]$ y $\mathbb{E}[\mathbb{E}[\mathbb{E}[Y|X,g(X)]|g(X)]]$
- 15. Calcula las media de las variables aleatorias positivas usando el método tradicional (usando la función de masa o la función de densidad) y las formulas

$$\mathbb{E}[X] = \sum_{x \ge 0} \bar{F}(x) \qquad \qquad \mathbb{E}[X] = \int_0^\infty \bar{F}(x) \, dx$$

válidas respectivamente para el caso discreto y continuo, y con $\bar{F}(x) = \mathbb{P}(X > x)$.

- a) X a valores discretos con función de masa: p(5) = 0.1; p(7) = 0.2; p(8) = 0.5 y p(10) = 0.2.
- b) $X \sim \text{Exp}(5)$
- c) $X \sim U(0, 10)$
- d) X con función de densidad $f(x) = 3/26 x^2 1\{1 \le x \le 3\}$
- e) X con cola de distribución igual a $\bar{F}(x) = (1 x^{-2}) \, 1\{x \ge 1\}$
- 16. **Problema del minero** Hay un minero que quiere salir de la mina, pero se encuentra en un sitio bajo tierra con 3 salidas.

Solo una salida lo lleva a salir de la mina en 3 horas, mientras las otras dos salidas lo llevan por caminos de 6 y 3 horas que lo vuelven a llevar en el mismo sitio.

El minero elige cada vez una salida al azar olvidándose de sus elecciones anteriores.

Halla

- a) el tiempo medio que el minero necesita para salir de la mina
- b) la función generatriz y de los momentos del tiempo que el minero necesita para salir de la mina