MTH 101A 2021-2022

Mid-Sem: Solutions

- Q1. (a) Let $A = \{x \in \mathbb{R} : x^3 + x < 1\}$. Show that the set A is bounded above. If $a = \sup A$, then show that $a^3 + a = 1$. [7 marks]
 - (b) Let $a_1 = 1$ and $a_{n+1} = \left(1 + \frac{(-1)^n}{2^n}\right) a_n$, for $n \in \mathbb{N}$. Show that the sequence (a_n) is convergent. [8 marks]

Solutions:

(a) We first show that 1 is an upper bound for A. If x > 1 for some x then $x^3 + x > 2$, a contradiction.

Consider the sequence $x_n = a + 1/n$. Since a is an upper bound for A we have $x_n \notin A$. So $x_n^3 + x_n \ge 1$. Further, notice that $\lim_{n \to \infty} x_n = z$, so $\lim_{n \to \infty} (x_n^3 + x_n) = a^3 + a$. But since $x_n^3 + x_n \ge 1$, it follows that $a^3 + a > 1$.

Similarly, consider the sequence $y_n = a - 1/n$. Then y_n is not an upper bound of A. So there exists $x \in A$ such that $y_n < x$. Then $y_n^3 + y_n < x^3 + x < 1$ as 1 is an upper bound. Then $\lim_{n \to \infty} y_n^3 + y_n = a^3 + a \le 1$. So we conclude that $a^3 + a = 1$.

Alternate Solution:

Let $f(x) = x + x^3$. Note that f is continuous.

Note f(0) = 0 and f(1) = 2. Then by IVP (Intermediate Value Property) there exists $c \in (0, 1)$ such that f(c) = 1

Note f is increasing.

So f(x) < 1 for x < c and f(x) > 1 for x > c.

So we can identify $A = (-\infty, c)$.

So $a = \sup A = c$. Hence $f(a) = a + a^3 = 1$.

(b)

$$|a_{n+1} - a_n| = \frac{1}{2^n} |a_n|$$

$$|a_n - a_{n-1}| = \frac{1}{2^{n-1}} |a_{n-1}|$$

$$\frac{|a_{n+1} - a_n|}{|a_n - a_{n-1}|} = \frac{1}{2} \left| \frac{a_n}{a_{n-1}} \right|$$

$$= \frac{1}{2} \left| 1 + \frac{(-1)^{n-1}}{2^{n-1}} \right|$$

$$\leq \frac{1}{2} (1 + \frac{1}{2})$$

$$\leq \frac{3}{4} < 1$$

Hence, (a_n) is Cauchy. So converges.

Alternate Solution:

 $|a_{n+1}| \le (1 + \frac{1}{2^n})(1 + \frac{1}{2^{n-1}}) \cdots (1 + \frac{1}{2}) \le (\frac{n+1}{n})^n < 3.$ (Using AM-GM Inequality.)

$$|a_{n+1} - a_n| = \frac{|a_n|}{2^n} < \frac{3}{2^n}$$

$$|a_m - a_n| \le |a_m - a_{m-1}| + |a_{m-1} - a_{m-2}| + \dots + |a_{n+1} - a_n|$$

$$< \frac{3}{2^{m-1}} + \frac{3}{2^{m-2}} + \dots + \frac{3}{2^n}$$

$$= \sum_{k=1}^m \frac{3}{2^{k-1}} - \sum_{k=1}^n \frac{3}{2^{k-1}}$$

Since, $\sum_{k=1}^{\infty} \frac{3}{2^{k-1}}$ is convergent series, we see that the sequence (a_n) is Cauchy Sequence.

Hence (a_n) is convergent.

Q2. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \cos(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}.$$

Using ϵ - δ definition of continuity, show that the function f(x) is not continuous at 0. Find a Cauchy sequence (x_n) such that $f(x_n)$ is not a Cauchy sequence. [8 marks]

(b) Let $f:(a,b)\to\mathbb{R}$ be an infinitely differentiable function, and let $x_0\in(a,b)$. Suppose there exist $k\geq 1$ such that $f''(x_0)=f^{(3)}(x_0)=\cdots=f^{(2k)}=0$. If $f^{(2k+1)}(x_0)\neq 0$ then show that x_0 is a point of inflection for f. [7 marks]

Solutions:

(a) If the function is continous at 0, then by definition, for every $\epsilon > 0$ there exists $\delta > 0$ such that $|x - 0| < \delta$ implies $|f(x) - f(0)| < \epsilon$.

We choose $\epsilon = 1/2$ and let $\delta > 0$ be given.

Note that $\cos(\frac{1}{x}) = 1$ if $x = 1/(2k\pi)$.

Choose k large enough so that $x = 1/(2k\pi)$ and $|x| \le \delta$. Then $|1 - 0| < \epsilon = 1/2$, a contradiction. Let $(x_n) = 2/n\pi$, then $f(x_n) = 0$ if n is odd and $f(x_n) = (-1)^k$ if n is even. So $(f(x_n))$ is not Cauchy.

(b) Since $f^{(2k+1)}(x_0) \neq 0$, by the continuity of $f^{(2k+1)}$ there exists a $\delta > 0$ such that $f^{(2k+1)}(x)$ has same sign as $f^{(2k+1)}(x_0)$ for all $x \in (x_0 - \delta, x_0 + \delta)$.

By Taylor's theorem, for any $x \in (x_0 - \delta, x_0 + \delta)$ there exists a point c between x and x_0 such that

$$f''(x) = \frac{f^{(2k+1)}(c)}{(2k-1)!}(x-x_0)^{2k-1}.$$

If $f^{(2k+1)}(x_0) > 0$ then $f''(x) \le 0$ for $x \in (x_0 - \delta, x_0)$ and $f''(x_0) \ge 0$ for $x \in (x_0, x_0 + \delta)$. Similarly, if $f^{(2k+1)}(x_0) < 0$ then $f''(x) \ge 0$ for $x \in (x_0 - \delta, x_0)$ and $f''(x_0) \le 0$ for $x \in (x_0, x_0 + \delta)$. For both the case we conclude that x_0 is a point of inflection for f. Q3. (a) Does the following series converge? Does it converge absolutely?

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{5n + (\log_e n)^3}.$$

[6 marks]

- (b) Find the Maclaurin series for $f(x) = \frac{1}{1+2x^2}$. Find all $x \in \mathbb{R}$ such that the Maclaurin series is convergent at x.
- (c) Determine the radius of convergence of the power series

$$\sum_{n=0}^{\infty} \frac{n^3}{n^4 + 1} x^{3n}.$$

[3 marks]

Solutions:

(a) Since $\frac{1}{5n+(\log_e n)^3}$ is a sequence which is positive, decreasing, and tending to 0, by the alternating series test, $\sum_{n=1}^{\infty} \frac{(-1)^n}{5n+(\log_e n)^3}$ converges.

Note that

$$\lim_{n \to \infty} \frac{\frac{1}{5n + (\log_e n)^3}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{5n + (\log_e n)^3} = \lim_{n \to \infty} \frac{1}{5 + \frac{(\log_e n)^3}{n}} = \frac{1}{5}.$$

Since $0 < \frac{1}{5} < \infty$, by limit comparison, the series $\sum_{n=1}^{\infty} \frac{1}{5n + (\log_e n)^3}$ behaves the same as the series $\sum_{n=1}^{\infty} \frac{1}{n}$. Since the latter is a divergent p-series, $\sum_{n=1}^{\infty} \frac{1}{5n + (\log_e n)^3}$ diverges.

(b) Writing $\frac{1}{1+2x^2}$ as

$$\frac{1}{1-(-2x^2)},$$

we can use the geometric series to see that

$$\frac{1}{1+2x^2} = \sum_{n=0}^{\infty} (-2x^2)^n = \sum_{n=0}^{\infty} (-1)^n 2^n x^{2n}.$$

Since the equality $\frac{1}{1-r} = \sum r^n$ is only valid when |r| < 1, we see that this series converges for $|-2x^2| < 1$, meaning that $|x| < 1/\sqrt{2}$ (we could also have seen this by using the Ratio Test), so the interval of convergence is

$$\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
.

We have to check convergence at the endpoints:

when $x = 1/\sqrt{2}$, the series is

$$\sum_{n=0}^{\infty} (-1)^n 2^n \left(\frac{1}{\sqrt{2}}\right)^{2n} = \sum_{n=0}^{\infty} (-1)^n,$$

which diverges.

When $x = -1/\sqrt{2}$, the series is

$$\sum_{n=0}^{\infty} (-1)^n 2^n \left(\frac{-1}{\sqrt{2}}\right)^{2n} = \sum_{n=0}^{\infty} 1,$$

which also diverges. Therefore, the series diverges at both endpoints and the interval of convergence is as stated above.

(c) Using the Ratio Test,

$$\lim_{n \to \infty} \left| \frac{\frac{(n+1)^3 x^{3n+3}}{(n+1)^4 + 1}}{\frac{n^3 x^{3n}}{n^4 + 1}} \right| = \lim_{n \to \infty} \left| \frac{(n^4 + 1)(n+1)^3 x^3}{n^3 ((n+1)^4 + 1)} \right|$$

$$= |x|^3 \lim_{n \to \infty} \frac{(n^4 + 1)(n+1)^3}{n^3 ((n+1)^4 + 1)}$$

$$= |x|^3 \lim_{n \to \infty} \frac{n^7 + \dots}{n^7 + \dots}$$

$$= |x|^3.$$

The limit is less than 1 when |x| < 1, so the radius of convergence is 1.

Q4. (a) Define a function f on [0,1] by $f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational} \\ x^3 & \text{if } x \text{ is irrational.} \end{cases}$

Is f Riemann integrable on [0,1]? If yes, then find $\int_0^1 f(x)dx$. (You may use the formula: $\sum_{k=0}^n k^3 = (\frac{n(n+1)}{2})^2$). [8 marks]

(b) Evaluate $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{k}{n^2+k^2}$ using definite integrals. [7 marks]

Solutions:

(a) Take a partition P of [0,1] where $P = \{0 < \frac{1}{n} < \frac{2}{n} < \dots < \frac{n-1}{n} < \frac{n}{n} = 1\}$

Since $x^2 > x^3$ in each subinterval and \mathbb{Q} is dense in \mathbb{R} , we have $M_i = \frac{i^2}{n^2}$; $m_i = \frac{(i-1)^3}{n^3}$, where $M_i = \sup f(x)$ in subinterval $\left[\frac{i-1}{n}, \frac{i}{n}\right]$ and $m_i = \inf f(x)$ in this subinterval.

Then
$$U(P,f) = \sum_{i=1}^{n} M_i \Delta_i = \frac{1}{n} \{ \frac{1}{n^2} + \frac{4}{n^2} + \ldots + \frac{n^2}{n^2} \} = \frac{n(n+1)(2n+1)}{6n^3}.$$

Again
$$L(P,f) = \sum_{i=1}^{n} m_i \Delta_i = \frac{1}{n} \{ 0 + \frac{1}{n^3} + \frac{8}{n^3} + \dots + \frac{(n-1)^3}{n^3} \} = \frac{n^2(n-1)^2}{4n^4}.$$

Then as $n \to \infty$; $U(P, f) - L(P, f) = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$, which does not go to 0. Hence f is not Riemann integrable.

(b) We apply the formula

$$\int_{0}^{1} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{f(k/n)}{n}$$

to the function $f(x) = \frac{x}{1+x^2}$.

A simple calculation shows that

$$\sum_{k=1}^{\infty} \frac{f(k/n)}{n} = \sum_{k=1}^{n} \frac{k}{k^2 + n^2}.$$

Also,
$$\int_0^1 f(x)dx = \int_0^1 \frac{d}{dx} \frac{\log(1+x^2)}{2} dx$$
. By fundamental Theorem of Calculus, $\int_0^1 f(x) dx = \frac{\log 2}{2} = \log \sqrt{2}$. This gives $\lim_{n \to \infty} \sum_{k=1}^n \frac{k}{k^2 + n^2} = \log \sqrt{2}$.