- 1. (С. Логинова) Изображение было оцифровано и записано в виде файла без использования сжатия данных. Получившейся файл был передан в город А по каналу связи за 90 секунд. Затем то же изображение было оцифровано повторно с разрешением в 2 раза больше и глубиной кодирования цвета в 1,5 раза меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б за 10 секунд. Во сколько раз скорость пропускная способность канала в город Б больше пропускной способности канала в город А?
- 2. Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи за 15 секунд. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 2 раза выше и частотой дискретизации в 1,5 раза меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б; пропускная способность канала связи с городом Б в 2 раза выше, чем канала связи с городом А. Сколько секунд длилась передача файла в город Б? В ответе запишите только целое число, единицу измерения писать не нужно.
- **3.** Для хранения в информационной системе документы сканируются с разрешением 400 ppi и цветовой системой, содержащей $2^{24} = 16~777~216$ цветов. Методы сжатия изображений не используются. Средний размер отсканированного документа составляет 6 Мбайт. В целях экономии было решено перейти на разрешение 100 ppi и цветовую систему с уменьшенным количеством цветов. Средний размер документа, отсканированного с изменёнными параметрами, составляет 64 Кбайт. Определите количество цветов в палитре после оптимизации.
- **4.** Для хранения рисунка размером 3840 х 2160 пикселей выделено 7 Мбайт памяти. Определите максимально возможное количество цветом в палитре изображения.
- 5. Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи за 30 секунд. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 2 раза выше и частотой дискретизации в 1,5 раза меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б; пропускная способность канала связи с городом Б в 4 раза выше, чем канала связи с городом А. Сколько секунд длилась передача файла в город Б? В ответе запишите только целое число, единицу измерения писать не нужно.
- 6. Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи за 100 секунд. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 3 раза выше и частотой дискретизации в 4 раз меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б за 15 секунд. Во сколько раз пропускная способность канала в город Б больше пропускной способности канала в город А?
- 7. (Е. Джобс) Автоматическая камера производит растровые изображения размером 640x1280 пикселей. Для кодирования цвета каждого пикселя используется одинаковое количество бит, коды пикселей записываются в файл один за другим без промежутков. Объем файла с одним изображением не может превышать 500 Кбайт без учета размера заголовка файла. Какое максимальное количество цветов можно использовать в палитре?
- 8. Камера делает фотоснимки размером 1280×960 пикселей. На хранение одного кадра отводится 160 Кбайт. Найдите максимально возможное количество цветов в палитре изображения.
- 9. Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи за 26 секунд. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 2 раза ниже и частотой дискретизации в 6 раз выше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б тоже за 26 секунд. Во сколько раз пропускная способность канала в город Б больше пропускной способности канала в город А?
- **10.** Для хранения рисунка размером 4096×3072 пикселя выделено 9 Мбайт памяти. Определите максимально возможное количество цветом в палитре изображения.
- **11.** (А.М. Кабанов) Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки символов.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение "истина", в противном случае возвращает значение "ложь". Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (1111)
заменить (1111, 7)
заменить (77, 1)
КОНЕЦ ПОКА
КОНЕЦ
```

Какая строка получится в результате применения приведённой программы к строке вида 1...17...7 (95 единиц и 31 семёрка)? **12.** Исполнитель Чертёжник перемещается на координатной плоскости, оставляя след в виде линии. Чертёжник может выполнять команду *Сместиться на* (a, b) (где a, b - целые числа), перемещающую Чертёжника из точки с координатами (x, y) в точку с координатами (x + a, y + b). Чертёжнику был дан для исполнения следующий алгоритм:

```
Сместиться на (-1, 2)
Повтори N раз
Сместиться на (a, b)
Сместиться на (-1, -2)
конец
Сместиться на (-24, -12)
```

После выполнения этого алгоритма Чертёжник возвращается в исходную точку. Какое наибольшее число повторений могло быть указано в конструкции «Повтори ... раз»?

13. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

```
    заменить (v, w)
    нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w, вторая проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь».

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 156 идущих подряд цифр 5? В ответе запишите полученную строку.

```
НАЧАЛО
ПОКА нашлось (333) ИЛИ нашлось (555)
ЕСЛИ нашлось (555)
ТО заменить (555, 3)
ИНАЧЕ заменить (333, 5)
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
КОНЕЦ
```

14. (С.С. Поляков) Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (111)
заменить (111, 2)
заменить (222, 3)
заменить (333, 1)
КОНЕЦ ПОКА
```

Какая строка получится в результате применения приведённой программы к строке вида 1...13...3 (2018 единиц и 2050 троек)?

15. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки символов.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (555) ИЛИ нашлось (333)
ЕСЛИ нашлось (333)
ТО заменить (333, 5)
ИНАЧЕ заменить (555, 3)
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
КОНЕЦ
```

Дана строка, состоящая из 500 цифр 5. Сколько троек было удалено за время обработки строки по этой программе? **16.** Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(1) = G(1) = 1

F(n) = 3 \cdot F(n-1) + G(n-1) - n + 5, если n > 1

G(n) = F(n-1) + 3 \cdot G(n-1) - 3 \cdot n, если n > 1
```

Чему равно значение F(14) + G(14)?

17. Алгоритм вычисления значения функции F(n), где n – целое неотрицательное число, задан следующими соотношениями:

```
F(0) = 1

F(n) = 1 + F(n - 1) если n > 0 и n нечётное

F(n) = F(n / 2) в остальных случаях
```

Определите количество значений n на отрезке [1, 500 000 000], для которых F(n) = 3.

18. (Д.Ф. Муфаззалов) Определите количество различных значений п таких, что п и m — натуральные числа, находящиеся в диапазоне [100; 1000], а значение F(n, m) равно числу 30.

```
ПаскальPythonC++functiondefintF(n,m:F(n,m):F(int
```

```
integer): if m == n; int
integer;
          0:
                  m)
begin
          return n {
if m = 0
          else:
                  if( m
          return == 0)
then
F := n
          F(m, n return
else
          % m)
                  n;
F := F(m,
                   else
n mod m)
                   return
end:
                   F(m,
                   n%m):
```

19. Определите наименьшее значение n, при котором сумма чисел, которые будут выведены при вызове F(n), будет больше 1000000. Запишите в ответе сначала найденное значение n, а затем через пробел – соответствующую сумму выведенных чисел.

```
Python C++
 Паскаль
                        void
                        F(
                        int n
                        )
                        cout
                        <<
procedure
                        n+1
F(n: integer);
writeln(n+1); def F( n ): endl;
             print(n+1) if( n
if n > 1 then
             if n > 1: > 1)
begin
              print(n+5) {
writeln(n+5);
              F(n-1)
                        cout
F(n-1);
              F(n-2)
                        <<
F(n-2);
                        n+5
end;
                        //
end;
                        endl:
                        F(n-
                        1):
                        F(n-
                        2);
```

20. Алгоритм вычисления значений функций F(n) и G(n), где n – натуральное число, задан следующими соотношениями:

```
F(1) = 1; G(1) = 1;

F(n) = F(n-1) - 2 \cdot G(n-1), \pi pu \ n >= 2

G(n) = F(n-1) + G(n-1) + n, \pi pu \ n >= 2
```

Чему равна сумма цифр величины G(36)?

- **21.** В файле <u>17-1.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от –10 000 до 10 000 включительно. Определите количество троек, в которых хотя бы два из трёх элементов больше, чем среднее арифметическое всех чисел в файле, и хотя бы один из трёх элементов делится на 11. В ответе запишите два числа: сначала количество найденных троек, а затем максимальную сумму элементов таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности
- 22. В файле 17-4.txt содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от 0 до 10 000 включительно. Определите количество пар, в которых хотя бы один из двух элементов больше, чем среднее арифметическое всех чисел в файле, а их сумма делится на 7. В ответе запишите два числа: сначала количество найденных пар, а затем минимальную сумму элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
- **23.** (В. Шубинкин) В файле <u>17-1.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от -10 000 до 10 000 включительно. Определите и запишите в ответе сначала количество элементов последовательности, которые больше предыдущего элемента, затем наименьший модуль разности чисел в паре среди всех таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности. Например, для последовательности 307; 36; 45; -27; -11; -6; 2; -16 ответом будет пара чисел: 4 и 5.
- **24.** В файле <u>17-243.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от 0 до 10 000 включительно. Определите количество пар чисел, в которых хотя бы один из двух элементов больше, чем сумма цифр всех чисел в файле, делящихся на 33. В ответе запишите два числа: сначала количество найденных пар, а затем минимальную сумму элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
- **25.** (А. Кабанов) В файле <u>17-3.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от -10 000 до 10 000 включительно. Определите и запишите в ответе сначала количество четвёрок элементов последовательности, в которых чётность соседних чисел различна, затем максимальную сумму среди таких четвёрок. В данной задаче под четвёркой подразумевается четыре идущих подряд элемента последовательности.

- **1.** 24
- **2.** 10
- **3.** 16
- **4.** 128
- **5.** 10
- **6.** 5
- **7.** 32
- **8.** 2
- **9.** 3
- **10.** 64
- **11.** 717
- **12.** 5
- **13.** 53
- **14.** 332113
- **15.** 186
- **16.** 37282721
- **17.** 406
- **18.** 30
- **19.** 24 1114369
- **20.** 40
- **21.** 1186 28339
- **22.** 202 6916
- **23.** 5012 8
- **24.** 7225 6834
- **25.** 604 26324