Introdução à Identificação de Sistemas

Book · J	· January 2015	
DOI: 10.131	.13140/RG.2.1.1616.7925	
CITATION	ONS	READS
59		36,012
1 autho	hor:	
	Luis Antonio Aguirre	
	Federal University of Minas Gerais	
	376 PUBLICATIONS 5,258 CITATIONS	
	SEE PROFILE	

INTRODUÇÃO À IDENTIFICAÇÃO DE SISTEMAS TÉCNICAS LINEARES E NÃO LINEARES: TEORIA E APLICAÇÃO

Universidade Federal de Minas Gerais

Reitor: Jaime Arturo Ramírez

Vice-Reitora: Sandra Regina Goulart Almeida

EDITORA UFMG

Diretor: Wander Melo Miranda

Vice-Diretor: Roberto Alexandre do Carmo Said

Conselho Editorial

Wander Melo Miranda (PRESIDENTE) Danielle Cardoso de Menezes Eduardo de Campos Valadares Élder Antônio Sousa Paiva Fausto Borém Flavio de Lemos Carsalade Maria Cristina Soares de Gouvêa Roberto Alexandre do Carmo Said

Luis Antonio Aguirre

INTRODUÇÃO À IDENTIFICAÇÃO DE SISTEMAS

TÉCNICAS LINEARES E NÃO LINEARES: TEORIA E APLICAÇÃO

4ª edição revista

Belo Horizonte Editora UFMG 2014 ©2000 by Editora UFMG

2004 - 2. ed.

2007 - 3. ed.

2014 - 4. ed.

Este livro ou parte dele não pode ser reproduzido por qualquer meio sem autorização escrita do Editor.

A284i Aguirre, Luis Antonio

Introdução à identificação de sistemas : técnicas lineares e não lineares : teoria e aplicação / Luis Antonio Aguirre. - 4. ed. rev. - Belo Horizonte : Editora UFMG, 2014.

776 p.: il.

Inclui bibliografia.

ISBN: 978-85-423-0079-6

1. Matemática 2. Sistemas lineares I. Título

CDD: 510 CDU: 51

Elaborada pela Biblioteca Professor Antônio Luiz Paixão - FAFICH-UFMG

Coordenação editorial Michel Gannam Assistência editorial Eliane Sousa Direitos autorais Maria Margareth de Lima e Renato Fernandes Coordenação de textos Maria do Carmo Leite Ribeiro Revisão de provas Alexandre Vasconcelos de Melo Projeto gráfico e formatação Luis Antonio Aguirre Capa Cássio Ribeiro Produção gráfica Warren Marilac

EDITORA UFMG

Av. Antônio Carlos, 6.627 CAD II Bloco III Campus Pampulha 31270-901 Belo Horizonte-MG Brasil Tel. +55 31 3409-4650 Fax +55 31 3409-4768 www.editoraufmg.com.br editora@ufmg.br

Àquele que é poderoso para nos guardar de tropeços e para nos apresentar com exultação, imaculados diante da sua glória, ao único Deus, nosso Salvador, mediante Jesus Cristo, Senhor nosso, glória, majestade, império e soberania, antes de todas as eras, e agora, e por todos os séculos. Amém.

Judas 24–25

Sumário

Simbol	ogia e	Abreviações	17
Aprese	ntação	o à Quarta Edição	23
Aprese	ntação	o à Primeira Edição	2 5
Introd	ução		31
Capítı	ılo 1		
Mod	delage	m Matemática	49
1.1	Introd	lução	49
1.2	Algun	s Conceitos Básicos	50
	1.2.1	Considerações frequentemente feitas em modelagem .	50
	1.2.2	Tipos de modelos	54
	1.2.3	Representações de modelos lineares	59
1.3	Estim	ação de Parâmetros	64
1.4	Model	lagem pela Física: um Estudo de Caso	68
	1.4.1	A equação diferencial	70
	1.4.2	Relações algébricas	71
	1.4.3		73
	1.4.4	Sintonia	75
	1.4.5	Validação	77
1.5	Identi	ficação de Sistemas	78
1.6	Simul	ação de Modelos	81
	1.6.1	Modelos contínuos	81
	1.6.2	Modelos discretos	83
Leit	ura Rec	comendada	83

Capítulo 2

Rep	presentações Lineares	91	
2.1	Introdução	91	
2.2 Funções de Transferência			
	2.2.1 Polos, zeros e resíduos	93	
	2.2.2 Decomposição em frações parciais	95	
2.3	Resposta Temporal	101	
	2.3.1 Funções de transferência de primeira ordem	103	
	2.3.2 Funções de transferência de segunda ordem	104	
	2.3.3 Funções de transferência com atraso puro de tempo .	107	
2.4	Resposta em Frequência	108	
	2.4.1 Funções de transferência de primeira ordem	112	
	2.4.2 Funções de transferência de segunda ordem	115	
	2.4.3 Funções de transferência com atraso puro de tempo .	117	
2.5	Representação no Espaço de Estados	117	
2.6	Representações em Tempo Discreto	121	
	2.6.1 Modelo de resposta ao impulso finita	123	
	2.6.2 Modelo ARX e AR	124	
	2.6.3 Modelo ARMAX	126	
	2.6.4 Modelo ARMA	127	
	2.6.5 Modelos de erro na saída	127	
	2.6.6 Modelo Box-Jenkins	128	
2.7	Complementos	129	
Leit	ura Recomendada	133	
Exe	rcícios	134	
Capíti	ulo 3		
Mé	todos Determinísticos	137	
3.1	Introdução	137	
3.2	Alguns Casos Simples	138	
	3.2.1 Sistemas de primeira ordem	138	
	3.2.2 Sistemas de segunda ordem pouco amortecidos	139	
3.3	O Método de Sundaresan	141	
	3.3.1 O caso sobreamortecido	142	
	3.3.2 O caso subamortecido	144	
3.4	Identificação em Malha Fechada	150	
3.5	Identificação Usando Convolução	156	
3.6	Identificação no Domínio da Frequência	160	
3.7	Complementos	165	
Con	nentários Finais	167	
	ura Recomendada	168	
	rcícios	170	

Capítulo 4

	Mét	odos Não Paramétricos	177
	4.1	Introdução	177
	4.2	Funções de Correlação	177
		4.2.1 Identificação baseada em funções de correlação	180
		4.2.2 Estimação baseada em funções de correlação	190
	4.3	Sinais Aleatórios e Pseudoaleatórios	192
		4.3.1 Sinais binários pseudoaleatórios	195
	4.4	Efeito do Ruído no Domínio da Frequência	200
		4.4.1 Funções de densidade de potência espectral	201
	4.5	Persistência de Excitação	204
	4.6	Complementos	207
	Leitı	ura Recomendada	215
		reícios	216
Ca	pítu	ılo 5	
	ОЕ	stimador de Mínimos Quadrados	221
	5.1	Introdução	221
	5.2	Sistemas de Equações	222
		5.2.1 Sistemas com solução única	222
		5.2.2 Sistemas sobredeterminados	225
	5.3	O Método de Mínimos Quadrados	226
	5.4	Propriedades do Estimador MQ	230
		5.4.1 Relação entre o estimador MQ e funções de correlação	230
		5.4.2 Ortogonalidade	233
		5.4.3 O estimador de mínimos quadrados ponderados	235
	5.5	Métodos de Predição de Erro	238
	5.6	Complementos	245
	Leitı	ura Recomendada	253
	Exer	reícios	253
Ca	pítu	ılo 6	
	Pro	priedades Estatísticas de Estimadores	25 9
	6.1	Introdução	259
	6.2	Polarização de Estimadores - Conceitos	260
	6.3	Polarização do Estimador MQ	263
		6.3.1 Uma interpretação de polarização	264
		6.3.2 Polarização em modelos ARX	268
		6.3.3 O problema de erros nas variáveis	272

6	6.4	Covari	iância de Estimadores
		6.4.1	Variância de estimadores do tipo $\hat{\boldsymbol{\theta}} = A\mathbf{y} \dots 275$
6	6.5	Consis	stência e Eficiência de Estimadores
		6.5.1	A Norma de Cramér-Rao
6	6.6	Comp	lementos
I	Leitu	ıra Rec	comendada
F	Exer	cícios	
Cap	oítu	ılo 7	
I	Esti	mador	res Não Polarizados 291
7	7.1	Introd	ução
7	7.2		imador Estendido de MQ
		7.2.1	O estimador EMQ e o problema de erros nas variáveis 304
7	7.3	O Est	imador Generalizado de MQ
7	7.4		imador GMQ Iterativo
7	7.5		codo das Variáveis Instrumentais
7	7.6		lementos
Ι	Leitu	-	comendada
F	Exer	cícios	
Cap	oítu	lo 8	
I	Esti	mador	res Recursivos 331
8	3.1	Introd	ução
8	3.2	Atuali	zação Recursiva
		8.2.1	Atualização recursiva não polarizada
		8.2.2	Atualização recursiva não polarizada de mínima
			covariância
8	3.3	Estima	ador Recursivo de Mínimos Quadrados
8	3.4	Outro	s Estimadores Recursivos
8	3.5	Estima	ação de Parâmetros Variantes no Tempo 342
8	3.6	Comp	lementos
I	Leitu	ıra Rec	comendada
F	Exer	cícios	
Cap	oítu	ılo 9	
() F :	iltro d	le Kalman 355
6	9.1	Introd	ução
6	9.2		itos Básicos Relativos ao KF
		9.2.1	O caso estático
		9.2.2	O caso dinâmico

	9.3	O Filtro de Kalman Discreto	365
		9.3.1 A etapa de propagação	367
		9.3.2 A etapa de assimilação	369
		9.3.3 As equações do filtro de Kalman discreto	372
	9.4	O Filtro de Kalman Estendido	373
	9.5	O Filtro de Kalman <i>Unscented</i>	375
		9.5.1 A transformação unscented	377
	9.6	Aplicação do KF: Um Estudo de Caso	380
	Leitı	ura Recomendada	382
		refeios	384
C	apítu	ılo 10	
		resentações Não Lineares	385
		Introdução	385
	10.2	Representações Não Lineares	386
		10.2.1 A série de Volterra	386
		10.2.2 Modelos de Hammerstein e de Wiener $$	387
		10.2.3 Algumas representações $NAR(MA)X$	390
		10.2.4 Modelos polinomiais contínuos	391
		10.2.5 Funções radiais de base	392
		10.2.6 Redes neurais artificiais	394
		10.2.7 O neurônio <i>neofuzzy</i>	396
	10.3	O Modelo Polinomial NARMAX	398
	10.4	O Modelo Racional NARMAX	401
	10.5	Agrupamento de Termos	403
	10.6	Pontos Fixos	406
		10.6.1 Número de pontos fixos	407
		10.6.2 Localização de pontos fixos	408
		10.6.3 Estabilidade de pontos fixos	409
		10.6.4 Simetria de pontos fixos	411
	10.7	Complementos	413
		ura Recomendada	432
	Exer	reícios	436
\mathbf{C}_{i}	apítu	ılo 11	
11	Ider	ntificação de Sistemas Não Lineares: Algoritmos	439
		Introdução	439
		Algoritmos MQ Ortogonais	440
	_	11.2.1 O método clássico de Gram-Schmidt (CGS)	441
		11.2.2 O método modificado de Gram-Schmidt (MGS)	443
		11.2.3 O método de Golub-Householder (GH)	443

11.3 A Taxa de Redução de Erro	445
11.3.1 O algoritmo CGS	447
11.3.2 O algoritmo MGS	450
11.3.3 O algoritmo GH	450
11.4 Algoritmos para Modelos Racionais	456
11.5 Estimadores com Restrições e Multiobjetivos	460
11.5.1 Estimador MQ com restrições	461
11.5.2 Estimador com função custo composta	461
11.5.3 Estimador biobjetivo	464
11.5.4 Decisor de mínima correlação	464
11.6 Complementos	469
Leitura Recomendada	471
Exercícios	473
Capítulo 12	
Projeto de Testes e Escolha de Estruturas	477
12.1 Introdução	477
12.2 Escolha e Coleta de Sinais	478
12.2.1 Escolha de entradas e de saídas	478
12.2.2 Uso de correlações não triviais	479
12.2.3 Escolha de sinais de entrada	483
12.2.4 Escolha do tempo de amostragem	489
12.3 Seleção da Estrutura de Modelos	493
12.3.1 Seleção da ordem de modelos lineares	493
12.3.2 Seleção da estrutura de modelos não lineares	500
12.4 Complementos	504
Leitura Recomendada	509
Exercícios	514
Capítulo 13	
Validação de Modelos	515
13.1 Introdução	515
13.2 Simulação	516
13.2.1 Consistência de predição no espaço de estados	
13.3 Sincronização	
13.3.1 Adaptação ao caso de tempo discreto	529
13.3.2 O custo de sincronização	531
13.3.3 Classe de sincronização	531
13.3.4 Comparando modelos	532
13.4 Análise de Resíduos	534
13.5 Validação para Aplicações em Malha Fechada	539

13.6 Complementos	542
Leitura Recomendada	548
Exercícios	550
Capítulo 14	
Tópicos Especiais em Modelagem e Identificação	553
14.1 Introdução	553
14.2 Dominância Modal	553
14.2.1 Índices de Dominância Modal	554
14.2.2 Algumas propriedades dos IDM	556
14.2.3 Os IDM e a energia da resposta ao impulso	560
14.2.4 IDM e a norma L_{∞}	561
Leitura Recomendada	564
Exercícios	564
Capítulo 15	
Identificação Caixa Cinza	565
15.1 Introdução	565
15.2 Aproximação da Característica Estática	567
15.3 Ajuste Exato da Característica Estática	575
15.3.1 O problema	575
15.3.2 Ajuste exato da característica estática	576
15.4 Uso de Informação Auxiliar em Redes	581
15.4.1 Aproximando a característica estática em redes MLP	582
15.4.2 Aproximando a característica estática em redes RBF	585
15.4.3 Simetria em redes MLP	591
15.4.4 Simetria em redes RBF	595
15.5 Sistemas com Zona Morta	601
15.5.1 A bifurcação transcrítica	601
15.4.2 Características estáticas com dois segmentos	603
15.4.3 Características estáticas parabólicas ceifadas	608
Leitura Recomendada	613
Exercícios	617
Capítulo 16	
Estudo de Casos	619
16.1 Introdução	619
16.2 Oscilador Eletrônico Caótico	621
16.2.1 O circuito de Chua	621
16.2.2 Identificação monovariável	623

16.2.3 Identificação multivariável	631
16.3 Um Pequeno Aquecedor Elétrico	633
16.4 Um Conversor CC-CC Buck	638
16.4.1 O conversor buck	638
16.4.2 Testes e aquisição de dados	639
16.4.3 Identificação de modelos	640
16.5 Válvula Pneumática	645
16.6 Aquecedor com Dissipação Variável	647
16.6.1 Descrição de testes e dados	648
16.6.2 Identificação de modelos	649
$16.6.3~$ Estimação recursiva de características estáticas $\ .\ .\ .$	653
16.7 Dados de Sistema Respiratório	656
16.7.1 Modelos identificados	658
16.7.2 Análise de estabilidade baseada em modelo $$	661
16.8 Dados de Frequência Cardíaca	667
16.9 Flotação em Coluna	672
16.9.1 A planta piloto	672
16.9.2 Os testes	672
16.9.3 Os modelos	675
16.10 Série Temporal de Preços	679
16.11 Estimação de Parâmetros de Máquina	682
16.11.1 O modelo contínuo	683
16.11.2 Os dados	685
16.11.3 Estimação recursiva de parâmetros	685
16.12 Robôs de Futebol	687
16.13 Movimento Facial Durante a Fala	694
16.14 Previsão de Consumo de Energia	698
Leitura Recomendada	700
Exercícios	703
Anexo A	
Alguns Resultados Sobre Vetores e Matrizes	705
A.1 Definições Básicas	705
A.2 Algumas Propriedades	706
A.3 Algumas Operações	706
A.4 Lemas	707

Anexo B

Dec	composição de Matrizes	709
B.1	Motivação	709
B.2	Fatoração de Choleski e Fatoração LU	709
B.3	A transformação de Householder	711
B.4	Decomposição em Valores Singulares	712
	B.4.1~ Aplicação à estimação de parâmetros	713
Anexo	\mathbf{C}	
Cor	aceitos de Estatística	715
C.1	Definições Básicas	715
C.2	Algumas Propriedades	716
C.3	Propriedades Assintóticas de Estimadores	718
Anexo	D	
Tab	elas de Transformadas de Laplace	721
Anexo	\mathbf{E}	
\mathbf{Alg}	uns Termos Básicos	72 3
Referê	ncias	731
Índice	Remissivo	757
Índice	de Autores	767
Sobre	o Autor	776

Simbologia e Abreviações

Observações Gerais

Neste livro, matrizes são indicadas por letras latinas maiúsculas em itálico, por exemplo X, e por letras gregas maiúsculas, por exemplo Ψ . Vetores são indicados usando-se letras (gregas e latinas) minúsculas e em negrito, por exemplo \mathbf{e} e ψ . Escalares são representados por letras gregas minúsculas com ou sem subíndice, por exemplo α , θ_i , e por letras minúsculas do alfabeto latino em itálico, com ou sem argumento, por exemplo t, y(k).

Alguns dos conjuntos de dados usados no presente livro, bem como algumas das rotinas utilizadas para gerar certas figuras, estão disponíveis no seguinte *site*: http://www.cpdee.ufmg.br/~MACSIN. No texto, dados e rotinas disponíveis em forma eletrônica são indicados pelo símbolo @ sendo que o nome do arquivo correspondente será escrito com este tipo de fonte. O símbolo □ indica o fim de exemplos.

Simbologia

A seguir listam-se os principais símbolos usados de forma geral. O uso específico de símbolos será definido $in\ loco$.

Amatriz de estimadores lineares do tipo $\hat{\boldsymbol{\theta}} = A\mathbf{y}$; dimensão de imersão; $d_{\rm e}$ $\mathrm{E}[\cdot]$ esperança matemática; e(k)erro no instante k, pode ou não ser branco; vetor de erro, pode ou não ser branco; matriz de informação de Fisher (6.43); H(s), H(z)transformadas de Laplace e Z de h(t) e h(k), respectivamente. Funções de transferência no domínio s e z, respectivamente; $H(j\omega)$ resposta em frequência de sistema em tempo contínuo; $H(e^{j\omega})$ resposta em frequência de sistema em tempo discreto; h(k)resposta ao impulso no instante k; h resposta ao impulso expressa em forma de vetor;

```
função custo minimizada pelo estimador MQ (5.41);
J_{\rm MQ}
               \sqrt{-1}:
K
               ganho estático;
N
               número de observações num conjunto de dados;
               máximo atraso entre os regressores de ruído;
n_{\xi}
               número de restrições no caso do estimador MQR;
n_r
               máximo atraso entre os regressores de entrada;
n_u
n_y
               máximo atraso entre os regressores de saída;
               número de parâmetros estimados num modelo, n_{\theta} = \dim[\theta];
n_{\theta}
q^{-1}
               operador de atraso, y(k)q^{-1} = y(k-1);
R
               matriz de covariância do ruído;
R(s)
               transformada de Laplace do sinal de referência de uma malha;
r_u(\tau)
               função de autocorrelação de u(k) no atraso \tau;
r_{uy}(\tau)
               função de correlação cruzada de u(k) e y(k) no atraso \tau;
T_{\rm s}
               tempo de amostragem;
U(s), U(z)
               transformadas de Laplace e Z de u(t) e u(k), respectivamente;
u(k)
               entrada de sistemas não autônomos no instante k;
V_N(\hat{\boldsymbol{\theta}}, Z^N)
               função de custo geral (5.41);
X
               matriz de regressores de modelos estáticos;
Y(s), Y(z)
               transformadas de Laplace e Z de y(t) e y(k), respectivamente;
y(k)
               sinal de saída no instante k;
y^{i}(k)
               sinal de saída ideal, ou seja, sem ruído;
               valor de y(t) ou y(k) em regime permanente;
y_{\infty}
               vetor de variáveis instrumentais;
\mathbf{z}
Z
               matriz de regressores instrumentais;
Z^N
               conjunto de dados (entrada e saída) com registros de comprimento N (5.38);
\mathbb{N}
               conjunto de números naturais: 1, 2, \ldots;
{\rm I\!R}
               conjunto de números reais;
\mathbb{Z}
               conjunto de números inteiros: \{\ldots, -1, 0, 1, \ldots\};
\mathbb{Z}^+
               conjunto de números inteiros não negativos: \{0, 1, 2, \ldots\};
               i-ésimo índice de dominância modal;
\gamma_i
\delta(0)
               função delta de Kronecker;
\zeta \\ oldsymbol{	heta}
               quociente (ou coeficiente) de amortecimento;
               vetor de parâmetros a estimar;
\hat{m{	heta}}
               vetor de parâmetros estimado;
\hat{m{	heta}}_{	ext{MO}}
               vetor de parâmetros estimado usando o estimador MQ;
\theta_i
               i-ésimo parâmetro do vetor \theta;
\lambda
               fator de esquecimento;
\nu(k)
               variável aleatória (sempre) branca;
               vetor de resíduos;
\xi(k)
               resíduo no instante k;
```

```
\sigma_e^2
                variância do sinal e(k);
                constante de tempo;
                atraso puro de tempo;
\tau_{
m d}
\Phi_u(\omega)
                função de densidade espectral ou espectro de u(k);
\Phi_{uy}(e^{j\omega})
                função de densidade de potência do espectro cruzado de u(k) e y(k);
                matriz de regressores de modelos dinâmicos;
\psi(k-1)
                vetor de regressores que contém observações até o instante k-1;
                frequência;
                frequência natural não amortecida;
\omega_{\mathrm{n}}
cov[\cdot]
                covariância ou matriz de covariância;
\mathcal{F}\{\cdot\}
                transformada de Fourier;
f(\cdot)
                função genérica (normalmente a ser aproximada e estimada);
\text{Im}[\cdot]
                parte imaginária;
\mathcal{L}\{\cdot\}
                transformada de Laplace;
\max[\cdot]
                valor máximo;
                limite de probabilidade;
plim[\cdot]
Prob[.]
                probabilidade;
rank[\cdot]
                posto da matriz;
Re[\cdot]
                parte real;
\operatorname{tr}[\cdot]
                traço de uma matriz;
var[\cdot]
                variância;
\mathcal{Z}\{\cdot\}
                transformada Z;
| . |
                norma \ell_1;
\|\cdot\|
                norma euclideana ou \ell_2;
                transposição de vetores ou matrizes;
                valor estimado;
                complexo conjugado;
\overline{x(k)}
                média temporal de x(k);
                indica que o valor médio foi subtraído, ou seja, x(k)' = x(k) - \overline{x(k)};
x(k)'
                derivada temporal de x, \frac{dx}{dt};
\dot{x}
\perp
                símbolo de ortogonalidade;
```

Abreviações

A seguir são listadas as principais abreviações usadas no livro. No caso de siglas consagradas na literatura internacional, optou-se por manter as mesmas em inglês.

```
 \begin{array}{ll} {\rm AE} & {\rm algoritmo~do~elipsoide;} \\ {\rm AIC} & {\rm crit\acute{e}rio~de~informa\~{c}\~{a}o~de~Akaike}~(\it{Akaike's~information~criterion});} \\ \end{array}
```

AR autorregressivo;

ARIMA modelo autorregressivo integrado, de média móvel

(autoregressive integrated, moving average model);

ARMAX modelo autorregressivo, de média móvel com entradas exógenas

(autoregressive moving average model with exogenous inputs);

ARX modelo autorregressivo com entradas exógenas

(autoregressive model with exogenous inputs);

CGS referente ao método clássico de Gram-Schmidt;

dB decibéis;

EMQ estendido de mínimos quadrados;

ERR taxa de redução de erro (error reduction ratio);

FAC função de autocorrelação; FCC função de correlação cruzada;

FIR resposta finita ao impulso (finite impulse response);

FT função de transferência;

GH referente ao método de Golub-Householder;

GMQ generalizado de mínimos quadrados; IDM índice(s) de dominância modal;

IIR resposta infinita ao impulso (infinite impulse response);

MA média móvel (moving average);

MDI índices de dominância modal (modal dominance indices); MIMO multientradas, multisaídas (multi-input, multi-output); MISO multientradas, e uma saída (multi-input, single-output); MGS referente ao método modificado de Gram-Schmidt;

MQ mínimos quadrados;

MQO mínimos quadrados ortogonais;
 MQP mínimos quadrados ponderados;
 MQR mínimos quadrados com restrições;

MQT mínimos quadrados totais;

NARMAX modelo não linear autorregressivo, de média móvel com entradas exógenas (nonlinear autoregressive moving average model with exogenous inputs);

NARX modelo não linear autorregressivo, com entradas exógenas (nonlinear autoregressive model with exogenous inputs);

PCA análise de componentes principais (principal component analysis);

PE persistência de excitação;

PID controlador proporcional, integral e derivativo;

PPA para pequenas amostras;

PRBS sinal binário pseudoaleatório (pseudo-random binary signal);

RBF função radial de base (radial basis function);

RMQ recursivo de mínimos quadrados:

RNA rede neural artificial;

RTD resistance temperature detector;

SISO SNR	uma entrada e uma saída (single-input, single-output); relação sinal ruído (signal to noise ratio), $10 \log(\sigma_u^2/\sigma_e^2)$ (dB);
SVD	decomposição em valores singulares (singular value decomposition);
TF	transformada de Fourier;
$\mathrm{U}(\mu,\sigma)$	ruído branco uniforme com média μ e desvio padrão σ ;
TDF	transformada discreta de Fourier;
VARX	modelo vetorial autorregressivo com entradas exógenas
	$(vector\ autoregressive\ model\ with\ exogenous\ inputs);$
VI	variáveis instrumentais;
$WGN(0, \sigma)$	ruído branco gaussiano com média nula e desvio padrão $\sigma.$

Apresentação à Quarta Edição

Uma das razões pelas quais tenho me empenhado em produzir uma nova edição deste livro é a boa receptividade que o mesmo tem tido, pelo que sou grato à comunidade técnica e acadêmica. Outra razão é simplesmente que o texto nunca está como gostaria, mas fico satisfeito em oferecer a alunos e colegas uma edição que apresenta melhorias.

Ao contrário do que ocorreu com as duas últimas edições, em que novos capítulos foram acrescentados, nesta os capítulos são os mesmos da edição anterior. O material novo incluído nesta edição foi inserido nas seções existentes e, principalmente, na forma de novos Complementos ao fim de alguns capítulos. Além disso, há quase trinta novos exercícios propostos e mais de uma centena de referências a mais do que na terceira edição. A abordagem de alguns temas foi ajustada visando uma leitura mais fácil e espero que o leitor encontre o texto da presente edição mais claro e elegante.

Registro aqui alguns agradecimentos, sendo que outros estão expressos na introdução do Capítulo 16. Agradeço à equipe da Editora UFMG pelo apoio editorial. Agradeço a contribuição de Elbert Macau, José Ernesto Araújo Filho e Ubiratan Freitas e Clóvis Pereira pelo exemplo descrito no capítulo introdutório sobre uma câmara de termovácuo do INPE (Instituto Nacional de Pesquisas Espaciais). Dentre as pessoas que contribuíram com uma leitura crítica do texto estão Bruno Teixeira, Eduardo Mendes, Gustavo Salgado, Marcelo Duarte e Tales Jesus. Por fim, sou constantemente grato a Deus pelo amor e apoio de minha amada esposa e filhas.

Luis Antonio Aguirre

Belo Horizonte, junho de 2014

Apresentação à Primeira Edição

Representar, por meio de modelos matemáticos, sistemas e fenômenos observados sempre foi um desafio. Desde a Antiguidade, o homem tem procurado descrever matematicamente sistemas experimentais para ajudá-lo a entendê-los e, assim, resolver problemas relacionados a eles. Apesar do desenvolvimento de novas técnicas de modelagem, o antigo desafio de representar um sistema físico usando-se um análogo matemático parece permanecer inalterado.

Uma das mudanças ocorridas em meados dos anos 90 foi a crescente necessidade de desenvolver formas de obter modelos matemáticos a partir de dados observados e não exclusivamente partindo-se das equações que descrevem a física do processo. As possíveis razões para essa mudança são muitas, mas parece instrutivo mencionar as seguintes: em primeiro lugar, de forma geral, os sistemas com os quais se precisava lidar eram mais complexos, consequentemente, nem sempre era possível escrever as equações básicas do sistema, procedimento conhecido como modelagem fenomenológica, ou modelagem baseada na física do processo; em segundo lugar, computadores baratos e com bom desempenho tornaram-se acessíveis, viabilizando, assim, usá-los para processar dados coletados diretamente dos sistemas e, a partir de tais observações, desenvolver modelos matemáticos capazes de explicar os dados, procedimento conhecido como modelagem empírica ou identificação de sistemas.

No presente livro, referimo-nos à identificação de sistemas como sendo uma área do conhecimento que estuda maneiras de modelar e analisar sistemas a partir de observações, ou seja, de dados. Mas como observado, "identificação de sistemas e estimação de parâmetros sempre significarão coisas diferentes para pessoas diferentes" (RAKE, 1980, p. 526).

Na última década tem-se verificado mais uma tendência geral que tornará o uso de técnicas de identificação e análise de sistemas desejável e até mesmo necessário em praticamente todas as áreas do conhecimento humano. Essa tendência é a inegável capacidade que hoje se tem de *coletar dados* com informação sobre a dinâmica do sistema que está sendo observado. Assim, o que há vinte anos estava restrito a poucos laboratórios de pesquisa, hoje se encontra em praticamente qualquer laboratório e indústria, a saber, sistemas de aquisição de dados confiáveis capazes de monitorar

variáveis de sistemas e processos experimentais com taxas de amostragem que garantem a representação dinâmica do sistema por meio de tais dados. Esse fato tem impulsionado muitos a enveredarem pelos caminhos da identificação de sistemas. Tais caminhos são promissores, mas há algumas dificuldades reservadas àqueles que os trilharem. Em primeiro lugar, citase o fato universalmente reconhecido que a identificação de sistemas, sob muitos aspectos, ainda é uma "arte", significando que ainda há um certo grau de subjetivismo na aplicação das técnicas disponíveis. Mas nem tudo é subjetivo, pelo contrário, há diversos algoritmos cujo grau de sofisticação é grande o que, muitas vezes, dificulta seu entendimento e sua aplicação. Em segundo lugar, os aspectos teóricos podem se tornar empecilhos à aplicação dos algoritmos de identificação a sistemas experimentais. Uma crítica constante dos estudantes da área é a dificuldade que sentem de entender e tirar proveito da literatura disponível que é, na sua maioria, de cunho teórico.

O presente livro surgiu como resultado de treze anos de prática e cinco de ensino de identificação de sistemas. Tem por objetivo apresentar o assunto de um ponto de vista prático mas ao mesmo tempo abordar os principais pontos teóricos. Assim, o texto se presta tanto àqueles que querem utilizar técnicas de identificação de sistemas como também àqueles que precisam entender mais a fundo os aspectos teóricos envolvidos.

A fim de atingir este objetivo, cada capítulo contém informações básicas nas seções principais, ao passo que questões mais específicas são discutidas nos complementos, que podem ser usados em cursos de pós-graduação ou sugeridos como leitura complementar. Detalhes mais específicos da teoria de identificação de sistemas foram deliberadamente mencionados de forma breve ou simplesmente omitidos. Por outro lado, houve a preocupação de ilustrar as técnicas descritas no livro utilizando-se vários exemplos, muitos deles usando dados de sistemas dinâmicos experimentais. De forma que no mesmo texto encontram-se aspectos teóricos e práticos da identificação de sistemas. No último capítulo, onze estudos de caso são estudados e analisados usando-se técnicas descritas ao longo do livro.

Versões preliminares deste texto foram utilizadas tanto em cursos de especialização como de pós-graduação. Um curso introdutório à modelagem matemática de sistemas em nível de especialização ou como disciplina optativa ao fim de um curso de nível superior cobriria os Capítulos 1 a 5, 12, 13 e alguns estudos de casos do Capítulo 16. Por outro lado, um curso de pós-graduação em identificação de sistemas e estimação de parâmetros cobriria tipicamente os Capítulos 4 a 8, 12, 13, e tópicos selecionados dos Capítulos 10, 11, 14 e 16. Nesse caso, considera-se que o aluno está familia-rizado com o assunto dos Capítulos 1 a 3, principalmente com a Seção 2.6. Em ambas as alternativas, o uso dos complementos no fim dos capítulos fica a critério do professor. Os complementos podem ser omitidos sem perda de

continuidade. Considerando-se o texto como um todo, ele é basicamente autocontido, mas conhecimentos básicos de sistemas dinâmicos lineares e de processos estocásticos são úteis. O livro compreende um número razoável de exemplos e exercícios, muitos dos quais usam dados experimentais que estão disponíveis na Internet. Assim sendo, o professor pode solicitar aos alunos que certos exemplos sejam refeitos como constam no livro ou mesmo usando algum outro conjunto de dados disponível. Além dos dados, também estão disponíveis na Internet pequenos programas com a implementação do código que produz os resultados de alguns exemplos do livro. Dessa maneira o estudante pode ver como certos algoritmos são implementados na prática. Acredita-se que tais aspectos conferem ao livro características singulares e que facilitarão tanto o aprendizado do aluno quanto o professor na desafiadora tarefa de ensinar identificação de sistemas.

O Capítulo 1 descreve alguns conceitos básicos sobre modelagem matemática de sistemas. Na seção 1.4 discute-se detalhadamente o único exemplo de modelagem pela física do processo descrito no livro. O objetivo desse exemplo é salientar as principais etapas desse tipo de modelagem e contrastá-lo com a identificação de sistemas. Desse ponto de vista, esse capítulo pode ser visto como motivação para a leitura do restante do livro.

O Capítulo 2 é uma breve revisão sobre representações lineares de sistemas dinâmicos. Dependendo do público alvo, esse capítulo pode ser omitido sem maiores problemas ou recomendado para leitura extraclasse. A Seção 2.6 apresenta representações lineares discretas do tipo ARMAX, modelo de erro na saída e modelo do tipo Box-Jenkins. Essas representações matemáticas são fundamentais para o restante do livro, uma vez que são os parâmetros dessas representações que serão o foco dos Capítulos 5 a 8, que compõem a espinha dorsal da obra.

O Capítulo 3 trata da identificação de sistemas usando métodos determinísticos tais como a respota ao degrau. Em muitas situações práticas as técnicas discutidas nesse capítulo serão suficientes para obter-se bons modelos do sistema. Como discutido, o problema potencial de tais métodos é que eles não trabalham com o ruído nos dados, ou seja, não foram adaptados para manipular a incerteza inerente em medições.

O problema do ruído ou incertezas nos dados começa a ser tratado no Capítulo 4. Nesse capítulo a identificação de modelos não paramétricos é utilizada como um meio para começar a abordar o problema de ruído nos dados. Apesar desses métodos serem viáveis per se, esse capítulo é visto como uma transição entre os métodos determinísticos e os estocásticos, ou como uma introdução ao próximo capítulo.

O Capítulo 5 trata do estimador de mínimos quadrados clássico. Esse estimador é apresentado como sendo o resultado natural de tentar levar em

consideração as incertezas de medição presentes nos dados. O princípio da ortogonalidade desse estimador é descrito e sua interpretação é discutida. Os conceitos desse capítulo são fundamentais para os capítulos de 6 a 8.

O Capítulo 6 trata basicamente das propriedade de polarização e covariância de estimadores. Por um lado, esses aspectos são de cunho teórico, mas sua devida compreensão permite entender em detalhes as características dos estimadores não polarizados descritos no Capítulo 7. Dentre os estimadores existentes, apresentam-se quatro: o estimador estendido de mínimos quadrados, o estimador generalizado de mínimos quadrados em batelada e a respectiva implementação iterativa e o estimador de variáveis instrumentais. Uma preocupação desse capítulo é que o leitor entenda, baseado na discussão do capítulo anterior, as principais características desses estimadores e por que eles reduzem o problema da polarização.

O Capítulo 8 trata da estimação recursiva de parâmetros. Diversas implementações recursivas dos algoritmos apresentados nos Capítulos 5 e 8 são discutidas. Mostra-se como o *Filtro de Kalman* é equivalente ao estimador recursivo de mínimos quadrados para os casos em que o problema é parametrizado de forma a estimar estados, em vez dos parâmetros de modelos do tipo ARMAX. Aspectos relevantes na implementação em tempo real de algoritmos de estimação são discutidos nesse capítulo.

Os capítulos 9 e 10 (respectivamente, capítulos 10 e 11, a partir da terceira edição) compõem uma unidade. Esses capítulos tratam da identificação de sistemas não lineares. Em particular, o Capítulo 9 menciona algumas das representações mais comumente usadas na modelagem de sistemas dinâmicos não lineares, com especial ênfase em modelos polinomiais discretos por serem esses extensões naturais dos modelos ARMAX que foram detalhadamente estudados ao longo do livro. Detalhes sobre os algoritmos de identificação e suas principais diferenças com relação àqueles usados para modelos lineares são discutidos no Capítulo 10.

Os capítulos 11 e 12 (respectivamente, capítulos 12 e 13, a partir da terceira edição) são de cunho muito prático. O primeiro trata da execução de testes dinâmicos, da escolha de sinais, da coleta de dados e da determinação da estrutura de modelos. O Capítulo 12 descreve ferramentas úteis na validação de modelos.

O Capítulo 13 (Capítulo 14, a partir da terceira edição) descreve tópicos especiais em modelagem matemática. Em particular trata de técnicas de aproximação de modelos. O material contido nesse capítulo deve ser visto como complementar ao assunto do livro e pode ser omitido sem perda de continuidade.

Finalmente, o Capítulo 14 (Capítulo 16, a partir da terceira edição) descreve 11 estudos de casos (a partir da terceira edição, o livro apresenta 14 estudos de caso). São 11 problemas em que o ponto de partida é um

sistema experimental o qual deseja-se modelar, analisar ou monitorar. Em cada caso isso é feito usando-se as técnicas descritas ao longo do livro. Os casos estudados nesse capítulo podem ser abordados ao longo do curso, ilustrando, assim, aspectos diversos dos assuntos tratados.

Uma das características do presente livro é o grande número de exemplos e estudo de casos que usam dados experimentais. Tais dados dizem respeito a sistemas bastante diversificados e incluem sinais biomédicos, econômicos, de processos elétricos, mecânicos, minerais, eletrônicos, térmicos e pneumáticos, entre outros. Tal variedade foi possível graças à ajuda de um grande número de pessoas com as quais tive a satisfação de trabalhar. Dentre elas menciono Álvaro Souza, Antonio Aguirre, Carlos Martinez, Cecília Cassini, Constantino Seixas, Cristiano Jácome, Eduardo Jardim, Eduardo Mendes, Eduardo Saraiva, Fábio Jota, Francisco Magalhães, Giovani Rodrigues, Guilherme Pereira, Herlon Camargo, Homero Guimarães, Júlio Cruz, Leonardo Tôrres, Marcelo Corrêa, Mário Campos, Miroslav Bires, Murilo Gomes, Paulo Seixas, Pedro Donoso, Pedro Oliveira, Ricardo Nicolini, Rodolfo Santana, Rúbens Santos Filho, Ubiratan Freitas e Vinícius Barros. Versões preliminares do texto foram lidas por dezenas de estudantes, cuja leitura crítica e sugestões foram apreciadas.

Gostaria também de registrar minha profunda apreciação ao professor Ronaldo Tadêu Pena, com quem aprendi os fundamentos da modelagem matemática de sistemas.

Foi uma grande satisfação trabalhar com a equipe da Editora UFMG. Registro minha gratidão pela ajuda e profissionalismo. Agradeço também ao professor Luiz Otávio Fagundes Amaral pelo incentivo e apoio na fase de preparação deste livro.

Considero de inestimável valor o amor de minha esposa Janete, o carinho de nossas filhas Priscila, Nerissa e Pauline, e o constante apoio e encorajamento dos nossos queridos pais e irmãos.

Luis Antonio Aguirre

Belo Horizonte, agosto de 2000