Package 'vein'

May 7, 2017

May 7, 2017
Type Package
Title An R package for vehicular emissions inventories
Version 0.2.0-1
Author Sergio Ibarra Espinosa <zergioibarra@gmail.com></zergioibarra@gmail.com>
Maintainer Sergio Ibarra Espinosa <zergioibarra@gmail.com></zergioibarra@gmail.com>
Description Emissions inventories elaboration and visualization, Consists the three stages, pre-processing activity data, processing or estimating the emissions and post-processing of emissions in maps and databases.
License MIT + file LICENSE
<pre>URL https://github.com/ibarraespinosa/vein</pre>
<pre>BugReports https://github.com/ibarraespinosa/vein/issues/</pre>
LazyData no
Depends sp, R (>= 2.10)
Imports units, graphics, raster, rgeos, rgdal, stats
Suggests maptools, ggplot2, RQGIS, knitr, rmarkdown, DiagrammeR, RColorBrewer
RoxygenNote 6.0.1
NeedsCompilation no
VignetteBuilder knitr
R topics documented:
age_hdv age_ldv age_moto ef_evap ef_hdv_scaled ef_hdv_speed

2 age_hdv

ef_ldv_cold_list
ef_ldv_scaled
ef_ldv_speed
ef_nitro
ef_wear
emis
EmissionFactors
EmissionFactorsList
Emissions
EmissionsArray
EmissionsList
emis_cold
emis_det
emis_evap
emis_grid
emis_paved
emis_post
emis_wear
emis_wrf
fe2015
fkm
hot_soak
make_grid
my_age
net
netspeed
pc_cold
pc_profile
running_losses
speciate
Speed
temp_fact
Vehicles
venicies

age_hdv

Returns amount of vehicles at each age

Description

Returns amount of vehicles at each age

```
age_hdv(x, name, a = 0.2, b = 17, agemin = 1, agemax = 50, k = 1, bystreet = F)
```

age_ldv 3

Arguments

Χ	numerical vector of vehicles with length equal to lines features of raod network
name	of vehicle assigned to columns of dataframe
a	parameter of survival equation
b	parameter of survival equation
agemin	age of newest vehicles for that category
agemax	age of oldest vehicles for that category
k	multiplication factor
bystreet	when TRUE it is expecting that 'a' and 'b' are numeric vectors with length equal
	to x

Value

dataframe of age distrubution of vehicles

Examples

```
## Not run:
# Do not run
lt <- rnorm(100, 300, 10)
LT_B5 <- age_hdv(x = lt,name = "LT_B5")
plot(LT_B5)
## End(Not run)</pre>
```

age_ldv

Returns amount of vehicles at each age

Description

Returns amount of vehicles at each age

Usage

```
age_ldv(x, name, a = 1.698, b = -0.2, agemin = 1, agemax = 50, k = 1, bystreet = F)
```

Arguments

X	numerical vector of venicles
name	of vehicle assigned to columns of dataframe
а	parameter of survival equation
b	parameter of survival equation
agemin	age of newest vehicles for that category

4 age_moto

age of oldest vehicles for that category

k multiplication factor

bystreet when TRUE it is expecting that 'a' and 'b' are numeric vectors with length equal

to x

Value

dataframe of age distrubution of vehicles

Examples

```
## Not run:
# Do not run
pc <- rnorm(100, 300, 10)
PC_E25_1400 <- age_ldv(x = pc,name = "PC_E25_1400")
plot(PC_E25_1400)
## End(Not run)</pre>
```

age_moto

Returns amount of vehicles at each age

Description

Returns amount of vehicles at each age

Usage

```
age_{moto}(x, name, a = 0.2, b = 17, agemin = 1, agemax = 50, k = 1, bystreet = F)
```

Arguments

X	numerical	vector of	vehicles

name of vehicle assigned to columns of dataframe

a parameter of survival equationb parameter of survival equation

agemin age of newest vehicles for that category agemax age of oldest vehicles for that category

k multiplication factor

bystreet when TRUE it is expecting that 'a' and 'b' are numeric vectors with length equal

to x

Value

dataframe of age distrubution of vehicles

ef_evap 5

Examples

```
## Not run:
# Do not run
m <- rnorm(100, 300, 10)
MOTO_E25_500 <- age_moto(x = m, name = "M_E25_500")
plot(MOTO_E25_500)
## End(Not run)</pre>
```

ef_evap

Evaporative emission factor

Description

A lookup table with tier 2 evaporative emission factors from EMEP/EEA emisison guidelines

Usage

```
ef_{evap}(ef, v, cc, dt, ca, k = 1, show = FALSE)
```

Arguments

ef	Name of evaporative emission factor as *eshotc*: mean hot-soak with carburator, *eswarmc*: mean cold and warm-soak with carburator, eshotfi: mean hot-soak with fuel injection, *erhotc*: mean hot running losses with carburator, *erwarmc* mean cold and warm running losses, *erhotfi* mean hot running losses with fuel injection
V	Type of vehicles, "PC", "Motorcycles", "Motorcycles_2S" and "Moped"
СС	Size of engine in cc. PC "<=1400", "1400_2000" and "2000" Motorcycles_2S: "<=50". Motorcyces: ">50", "<250", "250_750" and ">750"
dt	Average daily temperature variation: "-5_10", "0_15", "10_25" and "20_35"
ca	Size of canister: "no" meaning no canister, "small", "medium" and "large"
k	multiplication factor
show	when TRUE shows row of table with respective emission factor.

Value

numeric vector of evaporative emission factor in grams per day or trip

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

6 ef_hdv_scaled

Examples

```
## Not run:
# Do not run
ef_evap(ef = "erhotc",v = "PC", cc = "<=1400", dt = "0_15", ca = "no")
## End(Not run)</pre>
```

ef_hdv_scaled

Scaling constant with speed emission factors of Heavy Duty Vehicles

Description

This function creates a list of scaled functions of emission factors. A scaled emission factor which at a speed of the dricing cycle (SDC) gives a desired value. This function needs a dataframe with local emission factors with a columns with the name "Euro_HDV" indicating the Euro equivalence standard, assuming that there are available local emission factors for several consecutive years.

Usage

```
ef_hdv_scaled(df, dfcol, SDC = 34.12, v, t, g, eu, gr, l, p)
```

Arguments

df	Dataframe with local emission factor
dfcol	Column of the dataframe with the local emission factors eg df\$dfcol
SDC	Speed of the driving cycle
V	Category vehicle: "Coach", "Trucks" or "Ubus"
t	Sub-category of of vehicle: "3Axes", "Artic", "Midi", "RT, "Std" and "TT"
g	Gross weight of each category: "<=18", ">18", "<=15", ">15 & <=18", "<=7.5", ">7.5 & <=12", ">12 & <=14", ">14 & <=20", ">20 & <=26", ">26 & <=28", ">28 & <=32", ">32", ">20 & <=28", ">28 & <=34", ">34 & <=40", ">40 & <=50" or ">50 & <=60"
eu	Euro emission standard: "PRE", "I", "II", "III", "IV" and "V"
gr	Gradient or slope of road: -0.06, -0.04, -0.02, 0.00, 0.02. 0.04 or 0.06
1	Load of the vehicle: 0.0, 0.5 or 1.0
р	Pollutant: "CO", "FC", "NOx" or "HC"

Value

A list of scaled emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle

ef_hdv_speed 7

Examples

```
## Not run:
# Do not run
data(fe2015)
co1 <- fe2015[fe2015$Pollutant=="CO",]
FE_LT_7_5_D_CO <- ef_hdv_scaled(co1, co1$LT, v = "Trucks", t = "RT",
g = "<=7.5", eu = co1$Euro_HDV, gr = 0, 1 = 0.5, p = "CO")
length(FE_LT_7_5_D_CO)
## End(Not run)</pre>
```

ef_hdv_speed

Emissions factors for Heavy Duty Vehicles based on average speed

Description

This function returns speed dependent emission factors. The emission factors comes from the guidelines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emepeea-air-pollutant-emission-inventory-guidebook

Usage

```
ef_hdv_speed(v, t, g, eu, gr, l, p, k = 1, show.equation = TRUE)
```

Arguments

V	Category vehicle: "Coach", "Trucks" or "Ubus"
t	Sub-category of of vehicle: "3Axes", "Artic", "Midi", "RT, "Std" and "TT"
g	Gross weight of each category: "<=18", ">18", "<=15", ">15 & <=18", "<=7.5", ">7.5 & <=12", ">12 & <=14", ">14 & <=20", ">20 & <=26", ">26 & <=28", ">28 & <=32", ">32", ">32", ">20 & <=28", ">28 & <=34", ">34 & <=40", ">40 & <=50" or ">50 & <=60"
eu	Euro emission standard: "PRE", "I", "II", "III", "IV" and "V"
gr	Gradient or slope of road: -0.06, -0.04, -0.02, 0.00, 0.02. 0.04 or 0.06
1	Load of the vehicle: 0.0, 0.5 or 1.0
р	Pollutant: "CO", "FC", "NOx" or "HC"
k	Multiplication factor
show.equation	Option to see or not the equation parameters

Value

an emission factor function which depends of the average speed V g/km

8 ef_ldv_cold

Examples

```
## Not run:
# Do not run
V <- 0:130
ef1 <- ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "I", gr = 0,1 = 0.5, p = "CO")
plot(1:130, ef1(1:130))
ef2 <- ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,1 = 0.5, p = "THC")
plot(1:130, ef2(1:130))
ef3 <- ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,1 = 0.5, p = "PM")
plot(1:130, ef3(1:130))
## End(Not run)</pre>
```

ef_ldv_cold

Cold-Start Emissions factors for Light Duty Vehicles

Description

This function returns speed functions which depends on ambient temperature average speed. The emission factors comes from the guidelines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook

Usage

```
ef_ldv_cold(v = "LDV", ta, cc, f, eu, p, k = 1, show.equation = FALSE)
```

Arguments

V	Category vehicle: "LDV"
ta	Ambient temperature. Monthly men can be used
сс	Size of engine in cc: "<=1400", "1400_2000" or ">2000"
f	Type of fuel: "G", "D" or "LPG"
eu	Euro standard: "PRE", "I", "II", "III", "IV", "V", "VI" or "VIc"
р	Pollutant: "CO", "FC", "NOx", "HC" or "PM"
k	Multiplication factor
show.equation	Option to see or not the equation parameters

Value

an emission factor function which depends of the average speed V and ambient temperature. g/km

ef_ldv_cold_list

Examples

```
## Not run:
# Do not run
V <- 0:150
ef1 <- ef_ldv_cold(ta = 15, cc = "<=1400", f ="G", eu = "I",
p = "CO")
ef1(10)
## End(Not run)</pre>
```

ef_ldv_cold_list

List of cold start emission factors of Light Duty Vehicles

Description

This function creates a list of functions of cold start emission factors considering different euro emission standard to the elements of the list.

Usage

```
ef_ldv_cold_list(df, v = "LDV", ta, cc, f, eu, p)
```

Arguments

df	Dataframe with local emission factor
V	Category vehicle: "LDV"
ta	ambient temperature. Montly average van be used
СС	Size of engine in cc: <=1400", "1400_2000" and ">2000"
f	Type of fuel: "G" or "D"
eu	character vector of euro standards: "PRE", "I", "II", "III", "IV", "V", "VI" or "VIc".
р	Pollutant: "CO", "FC", "NOx", "HC" or "PM"

Value

A list of cold start emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle

ef_ldv_scaled

Examples

```
## Not run:
# Do not run
df <- data.frame(age1 = c(1,1), age2 = c(2,2))
eu = c("I", "PRE")
l <- ef_ldv_cold(t = 17, cc = "<=1400", f = "G",
eu = "I", p = "CO")
l_cold <- ef_ldv_cold_list(df, t = 17, cc = "<=1400", f = "G",
eu = eu, p = "CO")
length(l_cold)
## End(Not run)</pre>
```

ef_ldv_scaled

Scaling constant with speed emission factors of Light Duty Vehicles

Description

This function creates a list of scaled functions of emission factors. A scaled emission factor which at a speed of the driving cycle (SDC) gives a desired value.

Usage

```
ef_ldv_scaled(df, dfcol, SDC = 34.12, v, t, cc, f, eu, p)
```

Arguments

df	Dataframe with local emission factor
dfcol	Column of the dataframe with the local emission factors eg df\$dfcol
SDC	Speed of the driving cycle
V	Category vehicle: "PC", "LCV", "Motorcycle" or "Moped
t	Sub-category of of vehicle: "PRE_ECE", "ECE_1501", "ECE_1502", "ECE_1503", "ECE_1504", "IMPROVED_CONVENTIONAL", "OPEN_LOOP", "ALL", "2S" or "4S"
сс	Size of engine in cc: "ALL", "<=1400", ">1400", "1400_2000", ">2000", "<=800", "800_1400", "<=2000", "2S", "<=50", ">=50", "<=250", "250_750", ">=750", or ">50"
f	Type of fuel: "G", "D", "LPG" or "FH" (Full Hybrid: starts by electric motor)
eu	Euro standard: "PRE", "I", "III", "III+DPF", "IV", "V", "VI", "VIC" or "ALL"
р	Pollutant: "CO", "FC", "NOx", "HC" or "PM"

ef_ldv_speed

Details

This function calls "ef_ldv_speed" and calculate the specific k value, dividing the local emission factor by the respective speed emissions factor at the speed representative of the local emission factor, e.g. If the local emission factors were tested with the FTP-75 test procedure, SDC = 34.12 km/h.

Value

A list of scaled emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle. Thanks to Glauber Camponogara by the help.

See Also

```
ef_ldv_seed
```

Examples

```
## Not run:
# Do not run
data(fe2015)
co1 <- fe2015[fe2015$Pollutant=="CO" & fe2015$Age<25, ] #24 obs!!!
l1 <- ef_ldv_scaled(co1, co1$PC_G, v = "PC", t = "ALL", cc = "ALL", f = "G",
eu = co1$Euro_LDV, p = "CO")
co2 <- fe2015[fe2015$Pollutant=="CO" & fe2015$Age>24,] #22 obs!!!
l2 <- ef_ldv_scaled(co2$PC_G, v = "PC", t = "PRE_ECE", cc = "ALL", f = "G",
eu = co2$Euro_LDV, p = "CO")
FE_PC_E25_1400_CO <- c(l1,l2,l2[[12]],l2[[12]],l2[[12]],l2[[12]])
FE_PC_E25_1400_CO[[1]](34.12) #first element
length(FE_PC_E25_1400_CO)
## End(Not run)</pre>
```

ef_ldv_speed

Emissions factors for Light Duty Vehicles and Motorcycles

Description

This function returns speed dependent emission factors. The emission factors comes from the guidelines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emepeea-air-pollutant-emission-inventory-guidebook

```
ef_ldv_speed(v, t, cc, f, eu, p, k = 1, show.equation = TRUE)
```

ef_nitro

Arguments

V	Category vehicle: "PC", "LCV", "Motorcycle" or "Moped
t	Sub-category of of vehicle: "PRE_ECE", "ECE_1501", "ECE_1502", "ECE_1503", "ECE_1504", "IMPROVED_CONVENTIONAL", "OPEN_LOOP", "ALL", "2S" or "4S"
cc	Size of engine in cc: "ALL", "<=1400", ">1400", "1400_2000", ">2000", "<=800", "800_1400", "<=2000", "2S", "<=50", ">=50", "<=250", "250_750", ">=750", or ">50"
f	Type of fuel: "G", "D", "LPG" or "FH" (Full Hybrid: starts by electric motor)
eu	Euro standard: "PRE", "I", "III", "III", "III+DPF", "IV", "V", "VI", "VIc" or "ALL"
p	Pollutant: "CO", "FC", "NOx", "HC" or "PM"
k	Multiplication factor
show.equation	Option to see or not the equation parameters

Value

an emission factor function which depends of the average speed V g/km

Examples

```
## Not run:
# Do not run
V <- 0:150
ef1 <- ef_ldv_speed(v = "PC",t = "PRE_ECE", cc = "ALL", f = "G", eu = "PRE", p = "CO")
plot(1:150, ef1(1:150))
## End(Not run)</pre>
```

ef_nitro

Emissions factors of N2O and NH3

Description

This function returns emission factors as a functions of accumulated mileage. The emission factors comes from the guidelines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emeea-air-pollutant-emission-inventory-guidebook

```
ef_nitro(v, t, cc, f, eu, p, S, k = 1, show.equation = TRUE)
```

ef_wear 13

Arguments

V	Category vehicle: "PC", "LCV", "Motorcycle" or "Moped
t	Type: "PC", "LCV", "LDV", "Motorcycles", "Trucks", "HDV", "HDV-A", "BUS" and "Coach"
СС	"Cold", "Hot", "<50", ">=50", ">3.5", "7.5_12", "12_28", "28_34", ">34", "ALL".
f	Type of fuel: "G", "D" or "LPG"
eu	Euro standard: "PRE", "I", "III", "III", "III+DPF", "IV", "V", "VI", "VIc", "2S", 4S" and "ALL"
р	Pollutant: "N2O", "NH3"
S	Sulphur (ppm)
k	Multiplication factor
show.equation	Option to see or not the equation parameters

Value

an emission factor function which depends of the average speed V g/km

Examples

```
## Not run:
# Do not run
V <- 0:150
ef1 <- ef_ldv_speed(v = "PC",t = "PRE_ECE", cc = "ALL", f = "G", eu = "PRE", p = "CO")
plot(1:150, ef1(1:150))
## End(Not run)</pre>
```

ef_wear

Emissions factors from tyre, break and road surface wear

Description

Estimation of wear emissions. The sources are tyres, breaks and road surface.

Usage

```
ef_wear(wear, type, pol = "TSP", speed, load = 0.5, axle = 2)
```

Arguments

wear	Type of wear: "tyre", "break" and "road"
type	TYpe of vehicle: "2W", "PC", "LCV", 'HDV"
pol	Pollutant: "TSP", "PM10", "PM2.5", "PM1" and "PM0.1"
speed	List of speeds
load	Load of the HDV
axle	Number of axle of the HDV

14 emis

Value

emission factors grams/km

References

Ntziachristos and Boulter 2016. Automobile tyre and break wear and road abrasion. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2016

Examples

```
## Not run:
# Do not run
## End(Not run)
```

emis

Emissions estimation hourly for the of the week

Description

The vehicular emissions are estimated as the product of the vehicles on a road, length of the road, emission factor avaliated at the respective speed. E = VEH * LENGTH * EF(speed)

Numeric vector with length of elements equals to number of streets

Usage

```
emis(veh, lkm, ef, speed, agemax, profile, hour = 1, day = 1, array = F)
```

Arguments veh

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
lkm	Length of each link
ef	List of functions of emission factors
speed	List of speeds
agemax	Age of oldest vehicles for that category

profile Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week

hour Number of considered hours in estimation day Number of considered days in estimation

array When FALSE produces a dataframe of the estimation. When TRUE expects a

profile as a dataframe producing an array with dimensions (streets x columns x

hours x days)

Value

emission estimation g/h

EmissionFactors 15

Examples

```
## Not run:
# Do not run
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
          133833, 138441, 142682, 171029, 151048, 115228, 98664, 126444, 101027,
          84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
          1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
veh <- data.frame(PC_G = PC_G)</pre>
pc1 \leftarrow my\_age(x = net\$ldv, y = PC\_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)</pre>
speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1,</pre>
isList = T)
pckm <- fkm[[1]](1:24); pckma <- cumsum(pckm)</pre>
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])</pre>
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO", ] #24 obs!!!</pre>
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])</pre>
lef <- ef_ldv_scaled(co1, cod, v = "PC", t = "ALL", cc = "ALL",
                      f = "G", p = "CO", eu=co1$Euro_LDV)
lef <- c(lef,lef[length(lef)],lef[length(lef)],lef[length(lef)],</pre>
         lef[length(lef)],lef[length(lef)])
E_CO <- emis(veh = pc1,1km = net$1km, ef = lef, speed = speed, agemax = 41,
              profile = pc_profile, hour = 24, day = 7, array = T)
class(E_CO)
## End(Not run)
```

EmissionFactors

Construction function for class "EmissionFactors"

Description

Returns a tranformed object with class "EmissionFactors" and units g/km. This functions has arguments to change the units.

```
EmissionFactors(x, ...)
## S3 method for class 'EmissionFactors'
print(x, ...)
## S3 method for class 'EmissionFactors'
summary(object, ...)
```

16 EmissionFactorsList

```
## S3 method for class 'EmissionFactors' plot(x, ...)
```

Arguments

```
x Object with class "data.frame", "matrix" or "numeric"
... ignored
object Object with class "EmissionFactors"
```

Value

Objects of class "EmissionFactors" or "units"

Note

If the class ob the object is functions, as. Emission Factors won't append another class

Examples

```
## Not run:
data(fe2015)
names(fe2015)
class(fe2015)
df <- fe2015[fe2015$Pollutant=="CO", c(ncol(fe2015)-1,ncol(fe2015))]
ef1 <- EmissionFactors(df)
class(ef1)
summary(ef1)
plot(ef1)
## End(Not run)</pre>
```

 ${\tt EmissionFactorsList} \quad \textit{Construction function for class "EmissionFactorsList"}$

Description

Returns a tranformed object with class"EmissionsFactorsList". This functions has arguments to change of the numeric elements of the list.

```
EmissionFactorsList(x, ...)
## S3 method for class 'EmissionFactorsList'
print(x, ...)
## S3 method for class 'EmissionFactorsList'
```

Emissions 17

```
summary(object, ...)
## S3 method for class 'EmissionFactorsList'
plot(x, ...)
```

Arguments

```
x Object with class "list"... ignoredobject Object with class "EmissionFactorsList"
```

Value

Objects of class "EmissionFactorsList"

Examples

```
## Not run:
data(fe2015)
names(fe2015)
class(fe2015)
df <- fe2015[fe2015$Pollutant=="CO", c(ncol(fe2015)-1,ncol(fe2015))]
ef1 <- EmissionFactorsList(df)
class(ef1)
length(ef1)
length(ef1)
length(ef1[[1]])
summary(ef1)
ef1
## End(Not run)</pre>
```

Emissions

Construction function for class "Emissions"

Description

Returns a tranformed object with class "Emissions". This functions has arguments to change the units. The type of objects supported are of classes "matrix", "data.frame" and "numeric". If the class of the object is "matrix" this function returns a dataframe.

```
Emissions(x, ...)
## S3 method for class 'Emissions'
print(x, ...)
## S3 method for class 'Emissions'
```

18 Emissions

```
summary(object, ...)
## S3 method for class 'Emissions'
plot(x, ...)
```

Arguments

```
x Object with class "data.frame", "matrix" or "numeric"
... ignored
object object with class "Emissions"
```

Value

Objects of class "Emissions" or "units"

Examples

```
## Not run:
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
          133833, 138441, 142682, 171029, 151048, 115228, 98664, 126444, 101027,
          84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
          1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
veh <- data.frame(PC_G = PC_G)</pre>
pc1 \leftarrow my\_age(x = net\$ldv, y = PC\_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)</pre>
speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1,</pre>
isList = T)
pckm <- fkm[[1]](1:24); pckma <- cumsum(pckm)</pre>
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])</pre>
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO", ] #24 obs!!!</pre>
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])</pre>
lef <- ef_ldv_scaled(co1, cod, v = "PC", t = "ALL", cc = "ALL",</pre>
                      f = "G", p = "CO", eu=co1$Euro_LDV)
lef <- c(lef,lef[length(lef)],lef[length(lef)],lef[length(lef)],</pre>
         lef[length(lef)],lef[length(lef)])
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,
              profile = pc_profile, hour = 24, day = 7, array = T)
dim(E_CO) # streets x vehicle categories x hours x days
class(E_CO[ , , 1, 1])
df <- Emissions(E_CO[ , , 1, 1]) # Firt hour x First day</pre>
class(df)
summary(df)
plot(df)
## End(Not run)
```

EmissionsArray 19

EmissionsArray

Construction function for class "EmissionsArray"

Description

Returns a tranformed object with class "EmissionsArray".

Usage

```
EmissionsArray(x, ...)
## S3 method for class 'EmissionsArray'
print(x, ...)
## S3 method for class 'EmissionsArray'
summary(object, ...)
## S3 method for class 'EmissionsArray'
plot(x, ...)
```

Arguments

```
x Object with class "data.frame", "matrix" or "numeric"
... ignored
object object with class "EmissionsArray'
```

Value

Objects of class "EmissionsArray"

Examples

```
## Not run:
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
          133833,138441,142682,171029,151048,115228,98664,126444,101027,
          84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
          1181, 4991, 3711, 5653, 7039, 5839, 4257, 3824, 3068)
veh <- data.frame(PC_G = PC_G)</pre>
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")</pre>
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)</pre>
speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1,</pre>
isList = T)
pckm <- fkm[[1]](1:24); pckma <- cumsum(pckm)</pre>
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])</pre>
```

20 EmissionsList

EmissionsList

Construction function for class "EmissionsList"

Description

Returns a tranformed object with class "EmissionsList". This functions has arguments to change the units the numeric elements of the list.

Usage

```
EmissionsList(x, ...)
## S3 method for class 'EmissionsList'
print(x, ...)
## S3 method for class 'EmissionsList'
summary(object, ...)
## S3 method for class 'EmissionsList'
plot(x, ...)
```

Arguments

```
x object with class "EmissionList"
... ignored
object object with class "EmissionList"
```

Value

Objects of class "EmissionsList" and numeric elements as "units"

emis_cold 21

Examples

```
## Not run:
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
          133833, 138441, 142682, 171029, 151048, 115228, 98664, 126444, 101027,
          84771, 55864, 36306, 21079, 20138, 17439, 7854, 2215, 656, 1262, 476, 512,
          1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
veh <- data.frame(PC_G = PC_G)</pre>
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")</pre>
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)</pre>
speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1,</pre>
isList = T)
pckm <- fkm[[1]](1:24); pckma <- cumsum(pckm)</pre>
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO", ] #24 obs!!!</pre>
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(co1, cod, v = "PC", t = "ALL", cc = "ALL",</pre>
                      f = "G", p = "CO", eu=co1$Euro_LDV)
lef <- c(lef,lef[length(lef)],lef[length(lef)],lef[length(lef)],</pre>
         lef[length(lef)],lef[length(lef)])
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,
             profile = pc_profile, hour = 24, day = 7, array = F)
class(E_CO)
## End(Not run)
```

emis cold

Estimation of cold start emissions hourly for the of the week

Description

The vehicular emissions are estimated as the product of the vehicles on a road, length of the road, emission factor avaliated at the respective speed. The estimation considers beta parameter, the fraction of mileage driven

Usage

```
emis_cold(veh, lkm, ef, efcold, beta, speed, agemax, profile, hour = 1,
  day = 1, array = F)
```

Arguments

veh Numeric vector with length of elements equals to number of streets

1km Length of each link

emis_det

ef List of functions of emission factors

efcold List of functions of cold start emission factors

beta Datraframe with the hourly cold-start distribution to each day of the period.

Number of rows are hours and columns are days

speed List of speeds

agemax Age of oldest vehicles for that category

profile Numerical or dataframe with nrows equal to 24 and nool 7 day of the week

hour Number of considered hours in estimation

day Number of considered days in estimation

array When FALSE produces a dataframe of the estimation. When TRUE expects a

profile as a dataframe producing an array with dimensions (streets x columns x

hours x days)

Value

emission estimation g/h

Note

Actually doold is not necessary, it would be enough to multiply an existing cold-start distribution with the daily profile, but it was added because it is important to clarify both, the data and the concepts

Examples

```
## Not run:
# Do not run
## End(Not run)
```

emis_det

Determine deterioration factors for urban conditions

Description

This function returns deterioration factors. The emission factors comes from the guidelines for developing emission factors of the EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air eea-air-pollutant-emission-inventory-guidebook This function subset an internal database of emission factors with each argument

```
emis_det(po, cc, eu, km)
```

emis_evap 23

Arguments

ро	Pollutant
СС	Size of engine in cc
eu	Euro standard: "PRE", "I", "II", "III", "III", "IV", "V", "
km	mileage in km

Value

It returns a numeric vector without "units"

Examples

```
## Not run:
# Do not run
## End(Not run)
```

emis_evap

Estimation of evaporative emissions

Description

Estimation of evaporative emissions from EMEP/EEA emisison guidelines

Usage

```
emis_evap(veh, name, size, fuel, aged, nd4, nd3, nd2, nd1, hs_nd4, hs_nd3,
    hs_nd2, hs_nd1, rl_nd4, rl_nd3, rl_nd2, rl_nd1, d_nd4, d_nd3, d_nd2, d_nd1)
```

Arguments

veh	Total number of vehicles by age of use
name	Character of type of vehicle
size	Character of size of vehicle
fuel	Character of fuel of vehicle
aged	Age distribution vector. E.g.: 1:40
nd4	Number of days with temperature between 20 and 35 celcius degrees
nd3	Number of days with temperature between 10 and 25 celcius degrees
nd2	Number of days with temperature between 0 and 15 celcius degrees
nd1	Number of days with temperature between -5 and 10 celcius degrees
hs_nd4	average daily hot-soak evaporative emissions for days with temperature between $20\ \mathrm{and}\ 35\ \mathrm{celcius}\ \mathrm{degrees}$
hs_nd3	average daily hot-soak evaporative emissions for days with temperature between 10 and 25 celcius degrees

24 emis_evap

hs_nd2	average daily hot-soak evaporative emissions for days with temperature between 0 and 15 celcius degrees
hs_nd1	average daily hot-soak evaporative emissions for days with temperature between -5 and $10\ \text{celcius}$ degrees
rl_nd4	average daily running losses evaporative emissions for days with temperature between 20 and 35 celcius degrees
rl_nd3	average daily running losses evaporative emissions for days with temperature between 10 and 25 celcius degrees
rl_nd2	average daily running losses evaporative emissions for days with temperature between 0 and 15 celcius degrees $$
rl_nd1	average daily running losses evaporative emissions for days with temperature between -5 and $10\ \text{celcius}$ degrees
d_nd4	average daily diurnal evaporative emissions for days with temperature between 20 and 35 celcius degrees
d_nd3	average daily diurnal evaporative emissions for days with temperature between 10 and 25 celcius degrees
d_nd2	average daily diurnal evaporative emissions for days with temperature between $0 \ \mathrm{and} \ 15$ celcius degrees
d_nd1	average daily diurnal evaporative emissions for days with temperature between -5 and $10\ \text{celcius}$ degrees

Value

dataframe of emission estimation in grams/days

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

Examples

emis_grid 25

emis_grid

Allocate emissions into a grid

Description

The allocation is proportionally to each grid cell. The process is performed by intersection between geometries and the grid. Geometries suported, so, far are lines with raster::intersect and points with sp::over. The allocation of lines is by interaction, then update the pollutant values according the new length of road inside each grid cell. It means that requires "sr" according with your location for the projection. It is assumed that soobj is a spatial*DataFrame with the pollutant in data. Also, it is required that, when is a SpatialLinesDataFrame, there is a field called lkm, with the length of the road, in this case, in km.

Usage

```
emis_grid(spobj, g, sr, type = "lines")
```

Arguments

spobj A spatial dataframe of class sp
g Grid
sr Spatial reference, default is "+init=epsg:4326"
type type of geometry: "lines" or "points"

Examples

emis_paved

Estimation of resuspension emissions from paved roads

Description

The vehicular emissions are estimated as the product of the vehicles on a road, length of the road, emission factor from AP42 13.2.1 Paved roads. It is assumed dry hours and anual aggregation should consider moisture factor. It depends on Average Daily Traffic (ADT)

26 emis_paved

Usage

```
emis_paved(veh, lkm, k, sL1, sL2, sL3, sL4, W)
```

Arguments

veh	Numeric vector with length of elements equals to number of streets It is an array with dimensions number of streets x hours of day x days of week
lkm	Length of each link
k	$K_PM30 = 3.23$, $K_PM15 = 0.77$, $K_PM10 = 0.62$ and $K_PM2.5 = 0.15$
sL1	Silt loading (g/m2) for roads with ADT \leq 500
sL2	Silt loading (g/m2) for roads with ADT > 500 and $<= 5000$
sL3	Silt loading (g/m2) for roads with ADT > 5000 and $<= 1000$
sL4	Silt loading (g/m2) for roads with ADT > 10000
W	array of dimensions of veh. It consists in the hourly averaged weight of traffic fleet in each road

Value

emission estimation g/h

References

EPA, 2016. Emission factor documentation for AP-42. Section 13.2.1, Paved Roads. https://www3.epa.gov/ttn/chief/ap42/ch

Examples

emis_post 27

missions

Description

Simplify emissions estimated as total per type category of vehicle or by street. It reads array of emissions

Usage

```
emis_post(arra, veh, size, fuel, pollutant, by = "veh")
```

Arguments

arra Array of emissions (streets x category of vehicles x hours x days)

veh Type of vehicle size Size or weight

fuel Fuel pollutant Pollutant

by Type of output, "veh" for total vehicular category, "streets_narrow" or "streets_wide".

"streets_wide" returns a dataframe with rows as number of streets and columns the hours as days*hours considered, e.g. 168 columns as the hours of a whole week and "streets_wide repeats the row number of streets by hour and day of

the week

Examples

```
## Not run:
# Do not run
data(net)
data(pc_profile)
data(fe2015)
df \leftarrow netosm(net = net, x = -46.633949, y = -23.550391, sr = '+init=epsg:32723')
net@data <- cbind(net@data,df)</pre>
rm(df)
df <- netspeed(net = net)</pre>
df$S0 <- df$FFS
df$S1 <- df$FFS
df$S2 <- df$FFS
df$S3 <- df$FFS
df$S4 <- df$FFS
df$S5 <- df$FFS
df$S6 <- df$AS
df$S7 <- df$PS
df$S8 <- df$PS
df$S9 <- df$PS
df$S10 <- df$AS
```

28 emis_wear

```
df$S11 <- df$AS
df$S12 <- df$AS
df$S13 <- df$AS
df$S14 <- df$AS
df$S15 <- df$AS
df$S16 <- df$AS
df$S17 <- df$PS
df$S18 <- df$PS
df$S19 <- df$PS
df$S20 <- df$AS
df$S21 <- df$AS
df$S22 <- df$FFS
df$S23 <- df$FFS
net@data <- cbind(net@data,df)</pre>
names(net)
speed <- lapply(16:39, function(i) {net@data[,i]})</pre>
pc <- interpolate_pc(net)</pre>
PC_E25 \leftarrow age_ldv(x = pc,name = "PC_E25", b = -0.15,
agemax = 40)
co1 <- fe2015[fe2015$Pollutant=="CO" & fe2015$Age<25, ] #24 obs!!!
11 \leftarrow ef_ldv_scaled(co1, co1$PC_G, v = "PC", t = "ALL", cc = "ALL", f = "G",
p = "CO")
co2 <- fe2015[fe2015$Pollutant=="CO" & fe2015$Age>24,] #22 obs!!!
12 <- ef_ldv_scaled(co2, co2$PC_G, v = "PC", t = "PRE_ECE", cc = "ALL", f = "G",
p = "CO")
EF <- c(11,12,12[[12]],12[[12]],12[[12]])
E_CO_PC_E25 \leftarrow emis(veh = PC_E25, lkm = net$lkm,
                ef = EF, speed = speed, agemax = 40, profile = pc_profile,
               hour = i, day = j, array = T)
emi_table <- emis_post(E_CO_PC_E25, "PC", "1400", "E25", "co", by = "veh")</pre>
emi_table_1 <- emi_table[emi_table$E_CO_PC_E25=="E_CO_PC_E25_1", ]</pre>
library(ggplot2)
ggplot(emi_table_1, aes(x=emi_table_1$hour, y = emi_table_1$co, colour =day)) +
geom_line() + geom_point() + labs(x="hours",y="co g/h",
title="Emissions of CO by day of the week") +theme_bw()
## End(Not run)
```

emis_wear

Emission estimation from tyre, break and road surface wear

Description

Estimation of wear emissions. The sources are tyres, breaks and road surface.

```
emis_wear(veh, lkm, ef, agemax, profile, hour = 1, day = 1)
```

emis_wrf

Arguments

veh	Object of class "Vehicles"
1km	Length of the road
ef	list of emission factor functions class "EmissionFactorsList", length equals to hours.
agemax	Age of oldest vehicles for that category
profile	Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week
hour	Number of considered hours in estimation
day	Number of considered days in estimation

Value

emission estimation g/h

References

Ntziachristos and Boulter 2016. Automobile tyre and break wear and road abrasion. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2016

Examples

```
## Not run:
# Do not run
## End(Not run)
```

	_
emis_	wrt
CIIII 3_	

Generates emissions dataframe to generate WRF-Chem inputs

Description

It returns a dataframes with columns lat, long, id, pollutants, local time and GMT time. This dataframe has the proper format to be used with WRF assimilation system: "Another Asimilation System 4 WRF (AAS4WRF)" as published by Vera-Vala et al (2016)

```
emis_wrf(sdf, nr, dmyhm, tz, utc, islist)
```

30 fe2015

Arguments

sdf	Grid emissions, which can be a SpatialPolygonsDataFrame, or a list of SpatialPolygonsDataFrame
nr	Number of repetitions of the emissions period
dmyhm	String indicating Day Month Year Hour and Minute in the format "d-m-Y $H:M$ " e.g.: "01-05-2014 00:00" It represents the time of the first hour of emissions in Local Time
tz	Time zone as required in for function as.POSIXct
utc	interger indicating the difference between local and GMT time
islist	logical value to indicate if sdf is a list or not

Value

data-frame of gridded emissions g/h

Note

The reference of the emissions assimilation system is Vara-Vela, A., Andrade, M. F., Kumar, P., Ynoue, R. Y., and Munoz, A. G.: Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: a numerical study with the WRF-Chem model, Atmos. Chem. Phys., 16, 777-797, doi:10.5194/acp-16-777-2016, 2016. A good website with timezones is http://www.timezoneconverter.com/cgi-bin/tzc

Examples

```
## Not run:
# Do not run
## End(Not run)
```

fe2015

Emission factors from Environmental Agency of Sao Paulo CETESB

Description

A dataset containing emission factors from CETESB and its equivalency with EURO

```
data(fe2015)
```

fkm 31

Format

A data frame with 288 rows and 12 variables:

Age Age of use

Year Year of emission factor

Pollutant Pollutants included: "CH4", "CO", "CO2", "HC", "N2O", "NMHC", "NOx", and "PM"

Proconve_LDV Proconve emission standard: "PP", "L1", "L2", "L3", "L4", "L5", "L6"

t_Euro_LDV Euro emission standard equivalence: "PRE_ECE", "I", "II", "III", "IV", "V"

Euro_LDV Euro emission standard equivalence: "PRE_ECE", "I", "II", "III", "IV", "V"

Proconve_HDV Proconve emission standard: "PP", "P1", "P2", "P3", "P4", "P5", "P7"

Euro_HDV Euro emission standard equivalence: "PRE", "I", "III", "III", "V"

Promot Promot emission standard: "PP", "M1", "M2", "M3"

Euro_moto Euro emission standard equivalence: "PRE", "I", "III", "III"

PC_G CETESB emission standard for Passenger Cars with Gasoline (g/km)

LT CETESB emission standard for Light Trucks with Diesel (g/km)

Source

http://veicular.cetesb.sp.gov.br/relatorios-e-publicacoes/

fkm

List of functions of mileage in km fro Brazilian fleet

Description

Functions from CETESB: Antonio de Castro Bruni and Marcelo Pereira Bales. 2013. Curvas de intensidade de uso por tipo de veiculo automotor da frota da cidade de Sao Paulo This functions depends on the age of use of the vehicle

Usage

data(fkm)

Format

A data frame with 288 rows and 12 variables:

KM_PC_E25 Mileage in km of Passenger Cars using Gasoline with 25% Ethanol

KM_PC_E100 Mileage in km of Passenger Cars using Ethanol 100%

KM_PC_FLEX Mileage in km of Passenger Cars using Flex engines

KM_LCV_E25 Mileage in km of Light Commercial Vehicles using Gasoline with 25% Ethanol

KM_LCV_FLEX Mileage in km of Light Commercial Vehicles using Flex

KM_PC_B5 Mileage in km of Passenger Cars using Diesel with 5% biodiesel

hot_soak

KM_TRUCKS_B5 Mileage in km of Trucks using Diesel with 5% biodiesel

KM_BUS_B5 Mileage in km of Bus using Diesel with 5% biodiesel

KM_LCV_B5 Mileage in km of Light Commercial Vehicles using Diesel with 5% biodiesel

KM_SBUS_B5 Mileage in km of Small Bus using Diesel with 5% biodiesel

KM_ATRUCKS_B5 Mileage in km of Articulated Trucks using Diesel with 5% biodiesel

KM_MOTO_E25 Mileage in km of Motorcycles using Gasoline with 25% Ethanol

KM_LDV_GNV Mileage in km of Light Duty Vehicles using Natural Gas

Source

http://veicular.cetesb.sp.gov.br/relatorios-e-publicacoes/

hot_soak	Estimation of average running hot-soak evaporative emissions	

Description

Estimation of evaporative emissions from EMEP/EEA emisison guidelines

Usage

```
hot_soak(x, carb, p, eshotc, eswarmc, eshotfi)
```

Arguments

X	Mean number of trips per vehicle per day
carb	fraction of gasoline vehicles with carburator or fuel return system
р	Fraction of trips finished with hot engine
eshotc	average daily hot-soak evaporative factor for vehicles with carburator or fuel return system
eswarmc	average daily cold-warm-soak evaporative factor for vehicles with carburator or fuel return system
eshotfi	average daily hot-soak evaporative factor for vehicles with fuel injection and returnless fuel systems

Value

numeric vector of emission estimation in grams

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

make_grid 33

Examples

```
## Not run:
# Do not run
ef_evap(ef = "erhotc",v = "PC", cc = "<=1400", dt = "0_15", ca = "no")
## End(Not run)</pre>
```

make_grid

Creates rectangular grid for emission allocation

Description

It is created a SpatialGridDataFrame. The spatial reference is taken from the spatial object.

Usage

```
make_grid(spobj, width, height, polygon = T)
```

Arguments

spobj A spatial object of class sp

width Width of grid cell, units according sr
height Height of grid cell, units according sr
polygon whe TRUE return a polygon grid, when FALSE a SpatialGridDataFrame

Value

grid

Examples

```
## Not run:
#do not run
data(net)
grid <- make_grid(net, width = 0.5/102.47, height = 0.5/102.47) #500 mts
spplot(net, scales=list(draw=T),
sp.layout = list("sp.polygons", grid, pch = 16, cex = 2, col = "black"))
## End(Not run)</pre>
```

34 net

my_age

Returns amount of vehicles at each age

Description

Returns amount of vehicles at each age using a numeric vector

Usage

```
my_age(x, y, name, k = 1)
```

Arguments

x numerical vector of vehiclesy Age dustribution of vehicles

name of vehicle assigned to columns of dataframe

k multiplication factor

Value

dataframe of age distrubution of vehicles

Examples

```
## Not run:
# Do not run
pc <- rnorm(100, 300, 10)
dpc <- rnorm(10, 100, 1)
PC_E25_1400 <- my_age(x = pc,y = dpc, name = "PC_E25_1400")
## End(Not run)</pre>
```

net

Road network of the west part of Sao Paulo city

Description

This dataset is a SpatialLineDataFrame of sp package with roads from a traffic simulations made by CET Sao Paulo, Brazil

```
data(net)
```

netspeed 35

Format

A data frame with 1796 rows and 1 variables:

highway Type of streets

Source

```
http://www.cetsp.com.br/
```

no	+ 0	ne	~ 4
116		אנו	-u

Calculate speeds of traffic network

Description

Creates a dataframe of speeds fir diferent hours and each link based on morning rush traffic data

Usage

```
netspeed(q, ps, ffs, cap, lkm, alpha = 0.15, beta = 4, isList = FALSE,
  distance = "km", time = "h")
```

Arguments

q	Data-frame of traffic flow to each hour (veh/h)
ps	Peak speed (km/h)
ffs	Free flow speed (km/h)
сар	Capacity of link (veh/h)
1km	Distance of link (km)
alpha	Parameter of BPR curves
beta	Parameter of BPR curves
isList	Logical to specify type of return, list or data-frame
distance	Character specifying the units for distance. Default is "km"
time	Character specifying the units for time Default is "h"

Value

dataframe or list of speeds with units

pc_profile

Examples

```
## Not run:
# Do not run
data(net)
data(pc_profile)
pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
df <- netspeed(pc_week, net$ps, net$ffs, net$capacity, net$lkm)
class(df)
plot(df) #plot of the average speed at each hour, +- sd
## End(Not run)</pre>
```

pc_cold

Profile of Vehicle start patterns

Description

This dataset is a dataframe with percetage of hourly starts with a lapse of 6 hours with engine turned off. Data source is: Lents J., Davis N., Nikkila N., Osses M. 2004. Sao Paulo vehicle activity study. ISSRC. www.issrc.org

Usage

```
data(pc_cold)
```

Format

A data frame with 24 rows and 1 variables:

V1 24 hours profile vehicle starts for Monday

pc_profile

Profile of traffic data 24 hours 7 n days of the week

Description

This dataset is a dataframe with traffic activity normalized monday 08:00-09:00. This data is normalized at 08:00-09:00. It comes from data of toll stations near Sao Paulo City. The source is ARTESP (www.artesp.com.br)

```
data(pc_profile)
```

running_losses 37

Format

A data frame with 24 rows and 7 variables:

V1 24 hours profile for Monday

V2 24 hours profile for Tuesday

V3 24 hours profile for Wednesday

V4 24 hours profile for Thursday

V5 24 hours profile for Friday

V6 24 hours profile for Saturday

V7 24 hours profile for Sunday

running_losses

Estimation of average running losses evaporative emissions

Description

Estimation of evaporative emissions from EMEP/EEA emisison guidelines

Usage

```
running_losses(x, carb, p, erhotc, erwarmc, erhotfi)
```

Arguments

X	Mean number of trips per vehicle per day
carb	fraction of gasoline vehicles with carburator or fuel return system
р	Fraction of trips finished with hot engine
erhotc	average daily running losses evaporative factor for vehicles with carburator or fuel return system
erwarmc	average daily cold and warm running losses evaporative factor for vehicles with carburator or fuel return system
erhotfi	average daily hot running losses evaporative factor for vehicles with fuel injection and returnless fuel systems

Value

numeric vector of emission estimation in grams

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

38 speciate

Examples

```
## Not run:
# Do not run
running_losses(x = 1,v = "PC", cc = "<=1400", dt = "0_15", ca = "no")
## End(Not run)</pre>
```

speciate

Speciation of emissions

Description

The separation of emissions in different compunds. It includes black carbon and organic matter from particulate matter. Soon it will be added more speciations

Usage

```
speciate(x, spec = "bcom", veh, fuel, eu, show = FALSE, list = FALSE)
```

Arguments

X	Emissions estimation
spec	type of speciation, e.g.: "bcom" stands for black carbon and organic matter. The speciations are: "bcom", tyre", "break", "road", "iag" and "nox".
veh	Type of vehicle. When spec is "bcom" or "nox" veh can be "PC", "LCV", HDV" or "Motorcycle". When spec is "iag" veh is only "veh". Not required for "tyre", "break" or "road"
fuel	Fuel. When spec is "bcom" fuel can be "G" or "D". When spec is "iag" fuel can be "G", "E" or "D". When spec is "nox" fuel can be "G", "D", "LPG", "E85" or "CNG". Not required for "tyre", "break" or "road"
eu	Euro emission standard: "PRE", "ECE_1501", "ECE_1502", "ECE_1503", "I", "II", "III", "IV", "V", "III-CDFP", "IV-CDFP", "V-CDFP", "III-ADFP", "IV-ADFP", "V-ADFP" and "OPEN_LOOP". When spec is "iag" accept the values "Exhaust" "Evaporative" and "Liquid". When spec is "nox" eu can be "PRE", "I", "III", "IV", "V", "VI", "VIc", "III-DPF" or "III+CRT". Not required for "tyre", "break" or "road"
show	when TRUE shows row of table with respective speciation
list	when TRUE returns a list with number of elements of the list as the number species of pollutants

Value

dataframe of speciation in grams

Speed 39

Note

when spec = "iag", veh is only "VEH", STANDARD is "Evaporative", "Liquid" or "Exhaust", FUEL is "G" for gasoline (blended with 25% ethanol), "E" for Ethanol and "D" for diesel (blended with 5% of biodiesel). When spec = "bcom", veh can be "PC", "LCV", "Motorcycle" or "HDV" VEH", STANDARD is "Evaporative", "Liquid" or "Exhaust", FUEL is "G" for gasoline (blended with 25% ethanol), "E" for Ethanol and "D" for diesel (blended with 5% of biodiesel).

References

"bcom": Ntziachristos and Zamaras. 2016. Passneger cars, light commercial trucks, heavy-duty vehicles including buses and motor cycles. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2016

"tyre", "break" and "road": Ntziachristos and Boulter 2016. Automobile tyre and break wear and road abrasion. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2016

"iag": RAFEE, S.A.A. Estudo numerico do impacto das emissoes veiculares e fixas da cidade de Manaus nas concentracoes de poluentes atmosfericos da regiao amazonica. 2015. 109 f. Dissertacao (Mestrado). Programa de Pos-Graduacao em Engenharia Ambiental (PPGEA) - Universidade Tecnologica Federal do Parana. Londrina, 2015. http://repositorio.utfpr.edu.br/jspui/bitstream/1/1675/1/LD_PPGEA_M_Raf

"iag": Vela, A. L. V. Avaliacao do impacto da mudanca dos fatores de emissao veicular na formacao de ozonio troposferico na Regiao Metropolitana de Sao Paulo. 2013. Dissertacao de Mestrado. Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Sao Paulo. http://www.iag.usp.br/pos/sites/default/files/d_angel_l_v_vela_corrigida_0.pdf

Examples

```
## Not run:
# Do not run
pm <- rnorm(n = 100, mean = 400, sd = 2)
df <- speciate(pm, veh="PC", fuel="G", eu="I")
## End(Not run)</pre>
```

Speed

Construction function for class "Speed"

Description

Returns a tranformed object with class "Speed" and units km/h. This functions includes two arguments, distance and time. Therefore, it is posibel to change the units of the speed to "m" to "s" for example. This function returns a dataframe with units for speed. When this function is applied to numeric vectors it add class "units".

40 temp_fact

Usage

```
Speed(x, ...)
## S3 method for class 'Speed'
print(x, ...)
## S3 method for class 'Speed'
summary(object, ...)
## S3 method for class 'Speed'
plot(x, ...)
```

Arguments

```
x Object with class "data.frame", "matrix" or "numeric"
... ignored
object Object with class "Speed"
```

Value

Constructor for class "Speed" or "units"

See Also

units

Examples

```
## Not run:
data(net)
data(pc_profile)
speed <- Speed(net$ps)
class(speed)
plot(speed, type = "1")
pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
df <- netspeed(pc_week, net$ps, net$ffs, net$capacity, net$lkm)
summary(df)
## End(Not run)</pre>
```

temp_fact

Expansion of hourly traffic data

Description

Matrix multiplication between traffic and hourly expansion data-frames to obtain a data-frame of traffic at each link to every hour

Vehicles 41

Usage

```
temp_fact(q, pro)
```

Arguments

```
q traffic data per each link
pro expansion factors data-frames
```

Value

data-frames of expanded traffic

Examples

```
## Not run:
# Do not run
data(net)
data(pc_profile)
pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
plot(pc_week)
## End(Not run)</pre>
```

Vehicles

Construction function for class "Vehicles"

Description

Returns a tranformed object with class "Vehicles" and units 1/h. The type of objects supported are of classes "matrix", "data.frame", "numeric" and "array". If the object is a matrix it is converted to data.frame. If the object is "numeric" it is converted to class "units". The function emis_paved needs veh to be an array, therefore in this case, veh must be an array in the total fleet at each street and dimensions total fleet, hours and days

```
Vehicles(x, ...)
## S3 method for class 'Vehicles'
print(x, ...)
## S3 method for class 'Vehicles'
summary(object, ...)
## S3 method for class 'Vehicles'
plot(x, ...)
```

42 vkm

Arguments

x Object with class "Vehicles"
... ignored
object Object with class "Vehicles"

Value

Objects of class "Vehicles" or "units"

Examples

```
## Not run:
lt <- rnorm(100, 300, 10)
class(lt)
vlt <- Vehicles(lt)
class(vlt)
plot(vlt)
LT_B5 <- age_hdv(x = lt,name = "LT_B5")
print(LT_B5)
summary(LT_B5)
plot(LT_B5)
## End(Not run)</pre>
```

vkm

Estimation of VKM

Description

VKM consists in the product of the number of vehicles and the distance driven by these vehicles in km. This function reads hourly vehicles and then extrapolates the vehicles

Usage

```
vkm(veh, lkm, profile, hour = 1, day = 1, array = F)
```

Arguments

veh	Numeric vector with number of vehicles per street
1km	Length of each link (km)
profile	Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week
hour	Number of considered hours in estimation
day	Number of considered days in estimation
array	When FALSE produces a dataframe of the estimation. When TRUE expects a profile as a dataframe producing an array with dimensions (streets x hours x days)

vkm 43

Value

emission estimation of vkm

Examples

```
## Not run:
# Do not run
pc <- lkm <- abs(rnorm(10,1,1))*100
pro <- matrix(abs(rnorm(24*7,0.5,1)), ncol=7, nrow=24)
vkms <- vkm(veh = pc, lkm = lkm, profile = pro, hour = 24, day = 7, array = T)
## End(Not run)</pre>
```

Index

*Topic cold	age_moto,4
ef_ldv_cold, 8	as.POSIXct, 30
ef_ldv_cold_list, 9	a
*Topic datasets	ef_evap, 5
fe2015, 30	ef_hdv_scaled, 6
fkm, 31	ef_hdv_speed, 7
net, 34	ef_ldv_cold, 8
pc_cold, 36	ef_ldv_cold_list,9
pc_profile, 36	ef_ldv_scaled, 10
*Topic deterioration	ef_ldv_speed, 11
emis_det, 22	ef_nitro, 12
*Topic emission	ef_wear, 13
ef_hdv_scaled, 6	emis, 14
ef_hdv_speed, 7	emis_cold, 21
ef_ldv_cold, 8	emis_det, 22
ef_ldv_cold_list,9	emis_evap, 23
ef_ldv_scaled, 10	emis_grid, 25
ef_ldv_speed, 11	emis_paved, 25, 41
ef_nitro, 12	emis_post, 27
emis_det, 22	emis_wear, 28
*Topic factors	emis_wrf, 29
ef_hdv_scaled, 6	EmissionFactors, 15
ef_hdv_speed, 7	EmissionFactorsList, 16
ef_ldv_cold, 8	Emissions, 17
ef_ldv_cold_list,9	EmissionsArray, 19
ef_ldv_scaled, 10	EmissionsList, 20
ef_ldv_speed, 11	
ef_nitro, 12	fe2015, 30
emis_det, 22	fkm, 31
*Topic speed	
ef_hdv_scaled, 6	hot_soak, 32
ef_hdv_speed, 7	
ef_ldv_scaled, 10	make_grid, 33
ef_ldv_speed, 11	my_age, 34
ef_nitro, 12	
*Topic start	net, 34
ef_ldv_cold_list,9	netspeed, 35
age_hdv, 2	pc_cold, 36
age_ldv, 3	pc_profile, 36

INDEX 45

```
plot.EmissionFactors (EmissionFactors),
plot.EmissionFactorsList
        (EmissionFactorsList), 16
plot. Emissions (Emissions), 17
plot.EmissionsArray(EmissionsArray), 19
plot.EmissionsList (EmissionsList), 20
plot.Speed (Speed), 39
plot. Vehicles (Vehicles), 41
print.EmissionFactors
        (EmissionFactors), 15
print.EmissionFactorsList
        (EmissionFactorsList), 16
print. Emissions (Emissions), 17
print.EmissionsArray (EmissionsArray),
print.EmissionsList(EmissionsList), 20
print.Speed (Speed), 39
print. Vehicles (Vehicles), 41
running_losses, 37
speciate, 38
Speed, 39
summary.EmissionFactors
        (EmissionFactors), 15
summary.EmissionFactorsList
        (EmissionFactorsList), 16
summary. Emissions (Emissions), 17
summary. Emissions Array
        (EmissionsArray), 19
summary.EmissionsList(EmissionsList),
        20
summary. Speed (Speed), 39
summary.Vehicles(Vehicles), 41
temp_fact, 40
units, 40
Vehicles, 41
vkm, 42
```