











## Natural Cubic Spline Calculation Solve linear system (Ax=B) Second derivative equations Calculate cubic coefficients Evaluate function Entire spline curve depends on all points







Polynomial:  $\mathbf{P}(u) = \sum_{k=0}^{n} \mathbf{p}_{k} BEZ_{k,n}(u)$   $n+1 \text{ control points: 0..n; } \mathbf{u} = 0 \text{ at } \mathbf{p}_{0}, \mathbf{u} = 1 \text{ at } \mathbf{p}_{n}$   $BEZ_{k,n}(u) = C(n,k)u^{k}(1-u)^{n-k}$   $C(n,k) = \frac{n!}{k!(n-k)!}$ 

| Binomial Coefficients $C(n,k) = \frac{n!}{k!(n-k)!}$ |             |   |   |        |    |   |   |    |
|------------------------------------------------------|-------------|---|---|--------|----|---|---|----|
|                                                      | n           | 0 | 1 | k<br>2 | 3  | 4 | 5 |    |
|                                                      | 1           | 1 | 1 |        |    |   |   |    |
|                                                      | 1<br>2<br>3 | 1 | 2 | 1      |    |   |   |    |
|                                                      |             | 1 | 3 | 3      | 1  |   |   |    |
|                                                      | 4           | 1 | 4 | 6      | 4  | 1 |   |    |
|                                                      | 5           | 1 | 5 | 10     | 10 | 5 | 1 |    |
|                                                      |             |   |   |        |    |   |   | 12 |

Bézier Curve: 
$$\mathbf{n} = \mathbf{1}$$

$$P(u) = \sum_{k=0}^{1} \mathbf{p}_{k} BEZ_{k,1}(u)$$

$$BEZ_{k,n}(u) = C(n,k)u^{k}(1-u)^{n-k}$$

$$BEZ_{0,1}(u) = C(1,0)u^{0}(1-u)^{1-0} = 1-u$$

$$BEZ_{1,1}(u) = C(1,1)u^{1}(1-u)^{1-1} = u$$

$$P(u) = \mathbf{p}_{0}(1-u) + \mathbf{p}_{1}u$$

$$= \mathbf{p}_{0} + u(\mathbf{p}_{1} - \mathbf{p}_{0})$$
Amazing!

Bézier Curve: 
$$\mathbf{n} = \mathbf{2}$$

$$\mathbf{P}(u) = \sum_{k=0}^{2} \mathbf{p}_{k} BEZ_{k,2}(u)$$

$$BEZ_{k,n}(u) = C(n,k)u^{k}(1-u)^{n-k}$$

$$BEZ_{0,2}(u) = C(2,0)u^{0}(1-u)^{2-0} = (1-u)^{2}$$

$$BEZ_{1,2}(u) = C(2,1)u^{1}(1-u)^{2-1} = 2u(1-u)$$

$$BEZ_{2,2}(u) = C(2,2)u^{2}(1-u)^{2-2} = u^{2}$$

$$\mathbf{P}(u) = \mathbf{p}_{0}(1-u)^{2} + \mathbf{p}_{1}2u(1-u) + \mathbf{p}_{2}u^{2}$$







