Example: Finite Field

Example: The Finite Field \mathbb{F}_5

The integers modulo 5 form a Field, denoted \mathbb{F}_5 or $\mathbb{Z}/5\mathbb{Z}$.

Elements and Operations

The field $\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$ with operations:

Addition Table (mod 5)

			1			4	
	- -						
0	1	0	1	2	3	4	
1		1	2	3	4	0	
2		2	3	4	0	1	
3		3	4	0	1	2	
4	1	4	Λ	1	2	3	

Multiplication Table (mod 5)

				2		4
	- -					
0		0	0	0	0	0
1		0	1	2	3	4
2		0	2	4	1	3
3		0	3	1	4	2
4	1	Ω	4	3	2	1

Verification

- Additive identity: 0
- Multiplicative identity: 1
- Additive inverses: -1 = 4, -2 = 3, -3 = 2, -4 = 1
- Multiplicative inverses: $1^{-1} = 1$, $2^{-1} = 3$, $3^{-1} = 2$, $4^{-1} = 4$

General Result

For any Prime Number p, the set $\mathbb{F}_p=\{0,1,...,p-1\}$ with arithmetic modulo p forms a field. This works because: - Every non-zero element has a multiplicative inverse (by Fermat's Little Theorem) - There are no zero divisors when p is prime

Dependency Graph

Local dependency graph