

Synchrone (sequentielle) Logik (synclogic)

Synchrone Logik - Einleitung und Begriffsklärung

- Bisher haben wir uns kombinatorische Logik angesehen
- Kombinatorische Logik lässt sich mit bool'schen Funktionen beschreiben und der aktuelle Ausgang hängt nur von aktuellen Eingangswerten ab
- Bei synchroner oder sequentieller Logik hängt der aktuelle Ausgangswert neben aktuellen Eingangswerten und auch von vorhergehenden Eingangswerten ab
- Synchrone Logik hat also Speicher
- Entweder werden die vorherdegehenden Eingangswerte direkt gespeichert oder in eine kleinere Informationsmenge (state, Zustand) verdichtet
- Der Zustand ist eine Menge von Bits (auch state variables genannt), die alle Informationen (über die Vergangenheit) enthalten, die benötigt werden, das zukünftige Verhalten zu beschreiben
- Als Realisierung des Speichers dienen die bereits besprochen FFs bzw. Register

Synchrone Logik - Motivation I/II

- Asynchrone Schaltungsentwicklung beinhaltet auch direkte feedbacks (Rückführung) von den Ausgängen auf die Eingänge (cyclic paths, kombinatorische Schleifen)
- Solche Strukturen funktionieren oft nur bei bestimmten Temperaturen oder bestimmten angelegten Spannungen bei denen die Delays gerade passen
- (Fehler-)Analyse in solchen Schaltungen ist extrem zeitaufwendig und schwierig

Synchrone Logik - Motivation - Beispiel Asynchrone Logik (B)

- CLK=D=1 -> Q=1; (CLK=D=0 -> Q=1?: CLK=0-> N1=0, N2=1 -> Q=1;)
- Wenn aber Tpd_inv>>Tpd_and, Tpdp_or: CLK=D=0 -> Q=1?: N1=0, N2=0 -> Q=0!!! (N1und N2 fallen beide auf 0 bevor !CLK ansteigt -> schafft es unter diesen Bedingungen wegen dem UND nicht mehr 1 zu werden)

Synchrone Logik - Motivation II/II

- Um solche Probleme zu vermeiden, ersetzt man diese direkten feedbacks durch feedbacks mit Registern bzw.
 FFs (synchrone Logik)
- Damit haben wir Sammlungen von kombinatorischer Logik mit Registern
- Die Register beinhalten den Zustand, der sich nur bei der Taktflanke ändern (auf Takt synchronisiert)
- Man spricht dann von synchroner sequentieller Logik oder kurz synchroner Logik

Synchrone Logik - Definition

- Synchrone Logik muss folgende Bedingungen erfüllen:
 - Jedes Schaltungselement ist entweder kombinatorische Logik oder ein Register/FF
 - Zumindest ein Element ist ein Register
 - Alle Register arbeiten mit demselben Taktsignal
 - Wenn es einen cyclic path gibt, muss dieser zumindest ein Register enthalten

Synchrone Logik - Übung

Welche Schaltungen sind synchrone Logik? Begründen Sie Ihre Wahl.

FSMs (Finite State Machines) - Übersicht I/II

 Der Schaltplan von synchroner Logik kann in Form von sogenannten finite state machines (FSM, endlicher Zustandsautomat) gezeichnet werden

- Der Name FSM kommt daher, dass eine Schaltung mit k Register-Bits (FFs) sich in einem von 2^k Zuständen befinden kann
- FSM hat zwei Blöcke von kombinatorischer Logik (next state logic und output logic) und ein Register, dass den Zustand speichert
- Bei jeder Taktflanke wechselt die FSM den Zustand zum nächsten Zustand (next state), der aus dem aktuellen Zustand (current state) und den Eingangssignalen berechnet wurde

FSMs (Finite State Machines) - Übersicht II/II

- Es gibt zwei prinzipielle Klassen von FMS
 - a) Moore FSM:
 Die Ausgänge hängen nur von dem aktuellem Zustand ab
 - b) Mealy FSM:
 Die Ausgänge hängen von dem aktuellen Zustand sowie den Eingangssignalen ab
- Anwendung: FSMs sind der systematische Weg eine synchrone Schaltung zu einer gewünschten Funktion zu entwickeln

FSMs - Beispiel Ampelschaltung - Problemstellung - Funktionsbeschreibung

- Wenn das System einen Reset bekommt, ist La grün und Lb rot
- Alle 5s werden die Verkehrssensoren geprüft und neu entschieden was gemacht wird
- Solange es Verkehr gibt, werden die Ampeln nicht umgeschaltet
- z.B. Wenn La grün ist und es keinen Verkehr mehr auf Ta gibt, wird auf Lb umgeschaltet:
 - La wird auf gelb geschalten, dann nach 5s auf rot sowie Lb auf grün

FSMs - Beispiel Ampelschaltung - State chart

 Als nächsten Schritt zeichnet man einen state chart, um die Funktion zu erfassen und übersichtlich darzustellen

Kreise repräsentieren Zustände

- Pfeile repräsentieren Zustandsübergänge (transitions)
- Die Zustandsübergänge finden bei der steigenden Flanke statt
- Der Pfeil aus dem Nichts mit dem Label Reset zeigt an, das das System diesen Zustand beim Reset annimmt und zwar egal in welchem Zustand das System vorher war
- Wenn mehrere Pfeile einen Zustand verlassen, zeigen die Labels den Auslöser für jeden Zustandsübergang (Beispiel SO)
 - Wenn es nur einen Pfeil ohne Label gibt, so wird dieser immer ausgeführt unabhängig von den Eingangssignalen (Beispiel S1)

FSMs - Beispiel Ampelschaltung - (State) transition table

 Üblicherweise schreibt man den state chart (Zustandsdiagramm) dann in die state transition table (Zustandsübergangstabelle) um

Current State S	$\begin{array}{cc} Inputs \\ T_A & T_B \end{array}$		Next State S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

- Die state transition table gibt an, für welchen state und welche Eingangssinale sich welcher next state (S') ergibt
- ,X' bedeutet "dont' care" (-> next state hängt nicht von Eingangsignalen ab)
- Reset steht üblicherweise nicht in der Tabelle -> FFs mit Reset, der immer auf den state SO geht

FSMs - Beispiel Ampelschaltung - (State) transition table - Encodings - Motivation

- Der state chart und die state transition haben abstrakte states {S0, S1, S2, S3} und abstrakte Ausgänge {rot, gelb, grün}
- Damit lässt sich keine Schaltung bauen
- Um eine echte Schaltung bauen zu können müssen den Zuständen und Ausgangssignalen Binärkodierungen (binary encodings) zugewiesen werden

FSMs - Beispiel Ampelschaltung - (State) transition table - Encodings

- In diesem Fall wurde die einfache Binärkodierung gewählt (einfach binär durchgezählt)
- Jeder state wird mit zwei Bits kodiert

Current State S	T_A	outs T_B	Next State S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

State	Encoding S _{1:0}
S0	00
S1	01
S2	10
S3	11

 Damit ergibt sich dass die kodierte state transition table:

Current State		Inputs		Next State	
S_1	S_0	T_A	T_B	S_1'	S_0'
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

FSMs - Beispiel Ampelschaltung - (State) transistion table - Optimization and equations

- Die kodierte state transition table lässt sich optimieren und daraus pro Ergebnissignal die bool'sche Gleichung gewinnen (aus Tabelle rauslesen oder KV-Diagramm)
- Es ergeben sich folgende Gleichungen für die Berechnung des next states:

Current State		Inp	outs	Next	State
S_1	S_0	T_A	T_B	S_1'	S_0'
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S_1' = S_1 \oplus S_0$$

$$S_0' = \overline{S}_1 \overline{S}_0 \overline{T}_A + S_1 \overline{S}_0 \overline{T}_B$$

FSMs - Beispiel Ampelschaltung - Output - Encodings and table

- Ähnlich wie die states werden in diesem Fall auch die Ausgangssignale einfach binär kodiert
- Das Ausgangsignal La und Lb wird jeweils mit zwei Bits kodiert

Output	Encoding $L_{1:0}$
green	00
yellow	01
red	10

Damit ergibt sich dann die kodierte output table

Currer	it State		Out	puts	ts	
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}	
0	0	0	0	1	0	
0	1	0	1	1	0	
1	0	1	0	0	0	
1	1	1	0	0	1	

FSMs - Beispiel Ampelschaltung - Output - Optimization and equations

 Die kodierte output table lässt sich optimieren und daraus pro Ausgangssignal die bool'sche Gleichung gewinnen (aus Tabelle rauslesen oder KV-Diagramm)

$$L_{A1} = S_1$$

$$L_{A0} = \overline{S}_1 S_0$$

$$L_{B1} = \overline{S}_1$$

$$L_{B0} = S_1 S_0$$

FSMs - Beispiel Ampelschaltung - Schematic - Prinzipielles Vorgehen

- Wenn man die Gleichungen hat, ist es mit relativ kleinen Aufwand möglich, die Schaltung zu zeichnen
- Man geht dabei dreistufig vor

 Zuerst zeichnet man das Zustandsregister, dann die next state logic und dann die output logic

FSMs - Beispiel Ampelschaltung - Schematic

FSMs - Beispiel Ampelschaltung - Timing diagram

 Das folgende timing diagram zeigt die Ampel-FSM, wie sie durch eine Anzahl von states geht

■ Der Takt (CLK) hat eine Periode von 5s so dass sich die Ampel höchstens alle 5s ändert

Reset->S=S0, La=green, Lb=red; Ta=0->S=S1, La=yellow; S=S2->La=red, Lb=green; Tb=0-> S=S3,Lb=yellow; S=S0-> La=green, Lb=red

FSMs - State encodings

- Im Ampelbeispiel haben wir die Zustände einfach klassisch binär durchgezählt (binary encoding)
 - ■Bsp: S0="00"; S1="01", S2="10"
 - Vorteil: kompakte Kodierung
- Eine weitere Möglichkeit ist die "one-hot" Kodierung
 - Pro state wird ein Bit verwendet, wobei immer nur ein Bit ,1' ist
 - ■Bsp: S0="001", S1="010"; S2="100"
 - Nachteil: Braucht mehr FFs; Vorteil: next state und output Logik oft einfacher

FSMs - State encodings - Beispiel Nfach-Frequenzteiler

- Problemstellung

- Anhand eines Nfach-Frequenzteilers (divide-by-N counter) wollen wir die Kodierung von "binär" vs. "one-hot" untersuchen
- Der Nfach-Frequenzteiler hat einen Ausgang und neben CLK und Reset keinen weiteren Eingang mehr
- Der Ausgang y ist 1 für einen Takt von N-Takten / Der Ausgang teilt die Taktfrequenz durch N
- Das timing diagram (auch waveform genannt) zeigt den konkreten Fall eines 3fach Frequenzteilers

FSMs - State encodings - Beispiel Nfach-Frequnzteiler - State chart and tables - Übung

 Erstellen Sie mit dem state chart die state tranistion table und die output table

Current State	Next State

Current State	Output

Teil 2

FSMs - State encodings - Beispiel Nfach-Frequenzteiler - Binary encoding

 Das Aufstellen der output table sowie das Ableiten der Gleichung erfolgt analog zur state transition table

FSMs - State encodings - Beispiel Nfach-Frequenzteiler - One-hot encoding

	Current State	Next State						
	SO	S1	-		State		-Hot Enco	
	S1	S2				S ₂	S_1	S_0
			-		S0	0	0	1
	S2	S0	-		S1	0	1	0
					S2	1	0	0
		1	** 0					
S_2	urrent State S_1 S_0	S_2'	Next State S'_1	S_0'				
0	0 1	0	1	0	_ <	S' =	S.	
0	1 0	1	0	0		$S_2' = S_1' = S_1' = S_2' = $	S_0	
1	0 0	0	0	1	_	$S_0' =$	S_2	
						Y =	S_0	

 Das Aufstellen der output table sowie das Ableiten der Gleichung erfolgt analog zur state transition table

FSMs - State encodings - Beispiel Nfach-Frequenzteiler - Vergleich encoding binär vs. one-hot - Übung

- Zeichnen Sie die Schaltung der Binärkodierten FSM und der onehot kodierten FSM
- Binärkodierung

$$S_1' = So$$

$$S_0' = \overline{S}_1 \overline{S}_0$$

$$Y = \overline{S}_1 \overline{S}_0$$

One-hot Kodierung

$$S'_2 = S_1$$

 $S'_1 = S_0$
 $S'_0 = S_2$

$$Y = S_0$$

FSMs - Moore and Mealy

- Bisher haben wir nur Moore-FSMs betrachtet, bei denen die Ausgänge nur von dem Zustand abhängen
- Deshalb werden bei Moore FSMs die Ausgänge auch in die Zustandskreise geschrieben
- Bei Mealy FSMs können die Ausgänge sowohl von den Zuständen als auch von den Eingängen abhängen
- Die Ausgänge werden auf die Pfeile statt in die Kreise geschrieben

FSMs - Moore and Mealy - Beispiel Erkennen einer Bitsequenz - Problemstellung

- Eine FSM hat einen Eingang A, in dem jeden Takt ein neues Bit reingeschoben wird
- Die FSM soll dabei das Bitmuster "01" erkennen und wenn es erkannt worden ist für einen Takt eine 1 an dem Ausgang y ausgeben

FSMs - Moore and Mealy - Beispiel Erkennen einer Bitsequenz - Moore state chart - Übung

- Eine FSM hat einen Eingang A, in dem jeden Takt ein neues Bit reingeschoben wird
- Die FSM soll dabei das Bitmuster "01" erkennen und wenn es erkannt worden ist für einen Takt eine 1 an dem Ausgang y ausgeben
- Zeichen Sie den Moore-FSM state chart

FSMs - Moore and Mealy - Beispiel Erkennen einer Bitsequenz - State charts

Moore

Mealy

Jeder Pfeil hat den Syntax
 A/Y, was bedeutet, dass
 wenn das Ereignis A
 eingetroffen ist, dieser
 Zustandsübergang aktiv wird
 und dabei Y ausgeben wird

FSMs - Moore and Mealy - Beispiel Erkennen einer Bitsequenz - Transition tables

Moore

Current State S	Input A	Next State S'
S0	0	S1
S0	1	S0
S1	0	S1
S1	1	S2
S2	0	S1
S2	1	S0

Current State Output S Y S0 0 S1 0 S2 1

Current State S	Input A	Next State S'	Output Y
SO	0	S1	0
S0	1	S0	0
S1	0	S1	0
S1	1	S0	1

FSMs - Moore and Mealy - Beispiel Erkennen einer Bitsequenz - Transition tables encoded

Current State

S0 S1 S2

• Für das encoding wird hier die einfache Binärkodierung verwendet

Output

1

Moore

Current State	Input A	Next State S'
SO	0	S1
SO	1	S0
S1	0	S1
S1	1	S2
S2	0	S1
S2	1	S0

Current State S	Input A	Next State S'	Output Y
SO	0	S1	0
S0	1	S0	0
S1	0	S1	0
S1	1	S0	1

Currer S ₁	it State S_0	Input A	Next S'_1	State S_0'	Current S ₁
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	0	1	1
0	1	1	1	0	
1	0	0	0	1	
1	0	1	0	0	

Current State S ₀	Input A	Next State S_0'	Output Y
0	0	1	0
0	1	0	0
1	0	1	0
1	1	0	1

FSMs - Moore and Mealy - Beispiel Erkennen einer Bitsequenz - Equations

Current State

 Der nicht existierende Zustand "11" ist in den Moore-Tabellen nicht enthalten, wird aber zur Optimierung verwendet (don't care)

Moore

Curren	t State	Input A	Next S'_1	State S_0'
0	0	0	0	1
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0

Current State S ₀	Input A	Next State S_0'	Output Y
0	0	1	0
0	1	0	0
1	0	1	0
1	1	0	1

$$S_1' = S_0 A$$

$$S_0' = \overline{A}$$

$$Y = S_1$$

$$S_0' = \overline{A}$$

$$Y = S_0 A$$

FSMs - Moore and Mealy - Beispiel Erkennen einer Bitsequenz - Schematics

Moore

$$S_1' = S_0 A$$

$$S_0' = \overline{A}$$

$$Y = S_1$$

$$S_0' = \overline{A}$$

$$Y = S_0 A$$

FSMs - Moore and Mealy - Beispiel Erkennen einer Bitsequenz - Timing Diagram

- Die Moore und Mealy FSM haben eine unterschiedliche Abfolge von Zuständen
- Das Ausgangssignal der Mealy FSM ist eher vorhanden, da es direkt auf das Eingangssignal reagiert und nicht wartet, dass der Zustand geändert wird
- Wenn der Mealy-Ausgang durch ein FF geschickt wird, entspricht er dem Moore Ausgang

FSMs - Zusammenfassung

- FSMs sind mächtige Werkzeuge, praktisch alle Digitalelektronik fußt darauf
- Das Vorgehen eine FSM zu entwerfen kann man wie folgt zusammenfassen:
 - Eingänge und Ausgänge identifizieren
 - State chart zeichnen
 - Wenn Moore FSM: state transition und output table
 - Wenn Mealy FSM: Kombinierte state tranistion und output table
- Festlegen der Kodierungen
- Berechnen der bool'schen Gleichungen
- Zeichnen des Schaltplans

Counter

 Ein N-Bit Binärzähler (binary counter) ist eine sequentielle arithmetische Schaltung mit Eingängen für CLK und Reset und einem Ni-bit Ausgang Q

- Reset inilialisiert den Ausgang Q auf 0
- Taktflanke für Taktflanke werden wird der Binärwert inkrementiert bis alle 2^N möglichen Binärwerte durchschritten sind
- Danach wieder bei Null begonnen

- Ein Zähler kann man aus einem Addierer und einem Register mit Reset realisieren
- Bei jeder Taktflanke wird 1 zum dem gespeicherten Wert hinzuaddiert
- Anwendung: Steuerung von Prozessoren (Programmcounter (PC)), Ablaufsteuerungen, diverse Perfomance/Ereigniszähler, Taktteiler

Shift register - Funktion

 Ein Schieberegister(shift register) hat einen Takt, einen seriellen Eingang Sin und einen seriellen Ausgang Sout sowie N parallele Ausgänge Q_n-1:0

- Bei jeder Taktflanke wird bei Sin ein bit hereingeschoben und alle weiteren Stufen um eins weitergeschoben
- Das letzte Bit/Ausgang des Schieberegisters ist Sout

- Ein Schieberegister kann auch als Seriell-zu-Parallel-Wandler (serial-toparallel converter) betrachtet werden
- Der Input wird seriell (bit für bit) in Sin eingeführt
- Nach N Taktzyklen sin die alten Eingangsbits parallel am Ausgang Q verfügbar

Shift register - Realisierung

 Ein Schieberegister wird aus der Serienschaltung aus N FFs aufgebaut (vgl. Parallelschaltung von FFs ist eine normales Register)

 Einige Schieberegister haben ein Reset-Signal um alle FFs auf 0 zu setzen

- Anwendung:
 - Wie bereits gesagt, ist eine oft verwendete Anwendung von Schieberegistern die Umwandlung von serielle Datenübertragung in parallele Datenübertragung (deserializer)
 - Sowas wird z.B. bei allen seriellen Übertragungsverfahren benötigt (serieller Empfänger) (RS232, I2C, CAN, SATA, SPI, AC97, PCIe ...)
 - Multiplikation und Division

Shift register - Serialisierung und Deserialisierung (SERDES) (R)

- Ein mit dem Schieberegister engverbundene Schaltung ist der Load Parallel-zu-Seriell-Wandler (parallel-to-serial converter) (serializer)
- Eine solche Schaltung läd N Bits parallel und schiebt diese dann Bit für Bit zum Ausgang
- Ein Schieberegister kann modifiziert werden, sowohl Serialisierung als auch Deserialisierung durchführen zu können
- Dafür werden ein paralleler Dateninput D_n-1:0 und ein Steuersignal Load hinzugefügt

- Wenn Load=1 -> Q_0:n-1=D_0:n-1; ansonsten normale Shift-Operation
- Anwendung: Serializer=serieller Sender (z.B. PCIe),
 Deserializer=serieller Empfänger (RS232, I2C, CAN, SATA, SPI, AC97, PCIe ...)

FSMs - Factoring of FSMs (R)

- Wenn man komplexe FSMs entwirft ist es oft einfacher, die FSM in mehrere kleinere miteinander interagierende FSMs "runter zu brechen"
- Diese Anwendung von Hierarchie und Modularität wird "factoring of FSMs" genannt

FSMs - Factoring of FSMs - Beispiel erweitere Ampelsteuerung - Problemstellung (R)

- Die bereits bekannte Ampelsteuerung soll um einen Umzugsmodus für Paraden und Festzüge erweitert werden
- Lb soll dabei auf grün bleiben und La entsprechend auf rot bleiben
- Der Ampel-Controller bekommt dabei zwei zusätzliche Eingänge
 - P: Wenn zumindest 1 CLK auf 1 -> Starten des Umzugsmodus (parade)
 - R: Wenn zumindest 1 CLK auf 1 -> Zurückkehren (return) zum normalen Betrieb

FSMs - Factoring of FSMs - Beispiel erweitere Ampelsteuerung - State chart (R)

- Die Zustände S0 bis S3 sind der normale Betriebsmodus, S4 bis S7 kümmert sich um die Umzugsmodus
- Die zwei Hälften sind identisch mit Ausnahme, dass die FSM in S6 stehen bleibt
- Die FSM wird bereits unübersichtlich und fehleranfällig

FSMs - Factoring of FSMs - Beispiel erweitere Ampelsteuerung - State chart - factored (R)

 M: soll aktiv (1) sein, wenn der Umzugsmodus aktiv ist

- Die Mode-FSM hat zwei Zustände für normalen Betrieb und Umzugsbetrieb.
- Die Lights-FSM ist modifiziert, so dass sie in S2 bleibt, solange M=1 ist

Backup Übungen Lösungen

FSMs - State encodings - Beispiel Nfach-Frequenzteiler - Vergleich encoding binär vs. one-hot - Übung

- Zeichnen Sie die Schaltung der Binärkodierten FSM und der onehot kodierten FSM
- Binärkodierung

$$S'_1 = So$$

 $S'_0 = \overline{S}_1 \overline{S}_0$
 $Y = \overline{S}_1 \overline{S}_0$

One-hot Kodierung

$$S'_{2} = S_{1}$$

$$S'_{1} = S_{0}$$

$$S'_{0} = S_{2}$$

$$Y = S_{0}$$

FSMs - State encodings - Beispiel Nfach-Frequenzteiler - Vergleich encoding binär vs. one-hot - Lösung

- Zeichnen Sie die Schaltung der Binärkodierten FSM und der onehot kodierten FSM
- Binärkodierung

$$S'_1 = So$$

 $S'_0 = \overline{S}_1 \overline{S}_0$

$$Y = \overline{S}_1 \overline{S}_0$$

One-hot Kodierung

$$S'_2 = S_1$$

 $S'_1 = S_0$
 $S'_0 = S_2$

