MATH 3424 Regression Analysis Course Outline --- Spring 2023

1. Instructor(s)

Name: Dr. XIA, Dong (L1)

Contact Details: Room 3477, tel: ext-2244, email: madxia@ust.hk
If you want to make an appointment with Dr. XIA, send him an email.

2. Teaching Assistant(s)

Name: Mr. MA, Wanteng (T1A), email: wmaah@connect.ust.hk
Ms. SHEN, Yinan (T1B), email: yshenay@connect.ust.hk

If you want to make an appointment with your TA, send him an email.

3. Meeting Time and Venue

Lectures:

Date/Time: L1: Mo. 12:00PM - 1:20PM

We. 12:00PM - 1:20PM

Venue: Rm 2464 (lift 25-26)

Tutorials:

Date/Time: T1A: Fri. 6:00PM - 6:50PM; Rm1104, Acad Concourse

T1B: Fri. 10:00AM - 10:50AM; G009B, CYT Bldg

(R programming is important. Our TA's will give several tutorial sessions in the first few weeks for the basics of R programming.)

4. Course Description

Credit Points: 3

Pre-requisite: MATH 2411 OR MATH 2421 OR MATH 3423

Exclusion: ISOM 5520

Brief Information/synopsis:

Estimation and hypothesis testing in linear regression, residual analysis, multicollinearity, indicator variables, variable selection, non-linear regression

5. Intended Learning Outcomes

Upon successful completion of this course, students should be able to:

No.	ILOs
1	Get familiar with simple and multiple linear regression, the involved statistical inference, prediction, the measure of goodness-of-fit, and applications on real data examples
2	Understand the diagnostics of regression, residuals, checking linearity, leverage, influence, dealing with outliers and applications on real data examples
3	Understand how to treat categorical variables as predictors, the transformation of variables, treating heteroscedastic errors and applications on real data examples
4	Understand variable selection, the procedures and applications
5	Understand logistic regression for classification problem, the quality of fit, determination of important variables and applications on real data examples

6. Assessment Scheme

a. Percentage of coursework, examination, etc.:

Assessment 1	Assessing Course ILOs
15% Assignments	1,2,3,4,5
30% Mid-term Test	1,2,3
55% Final Examination	1,2,3,4,5
Assessment 2	Assessing Course ILOs
15% Assignments	1,2,3,4,5
0% Mid-term Test	1,2,3
85% Final Examination	1,2,3,4,5

The final grade=max { Assessment 1, Assessment 2}, both schemes are applied to every student.

7. Student Learning Resources

Lecture notes and slides (on canvas)

Textbook: Chatterjee and Hadi, Regression Analysis by Example, Fifth Edition (not required) Applied Statistics with R (available on GitHub, google it) David Dalpiaz,

8. Teaching and Learning Activities

Scheduled activities: 4 hrs (lecture + tutorial)

9. Course Schedule

Keyword Syllabus:

Chap 1 **Introduction and Basic Prerequisite** (~3 hours)

(i) Why regression analysis; (ii) Selected examples and general procedures; (iii) Prerequisite I: probability distribution; (iv) Prerequisite II: confidence intervals and t-Test; (v) Prerequisite III: elements of matrix algebra.

Chaps 2 and 3 Simple and Multiple Linear Regression (~7 hours)

(i) Covariance and correlation coefficient; (ii) Least squares estimator, test of hypothesis and confidence interval; (iii) Prediction; (iv) Measure the quality of fit; (v) Centering and scaling; (vi) Multiple correlation coefficients; (vii) Inference for individual regression coefficients; (viii) Examples using R codes

Chap 4 **Regression Diagnostics: Detection of Model Violations** (~5 hours)

(i) Standard regression assumptions; (ii) residuals of various types; (iii) Graphical methods for model diagnostics; (iv) Checking linearity and normality assumption; (v) Leverage, influence and detection of outliers; (vi) Measures of Influence; (vii) Examples using R codes

Qualitative Variable as Predictors (~4 hours)

(i) Indicator variable; (ii) Variable for interactions; (iii) Systems of regression equations;

(iv) More applications of indicative variables; (v) Seasonality; (vi) Examples with R codes

Chaps 6 and 7 **Transformation of Variables and Collinearity** (~7 hours)

(i) Transformation to achieve linearity; (ii) Transformation to stabilize variance; (iii) Detection

and removal of heteroscedastic errors; (iv) Logarithmic and power transformation; (v) Influence of collinearity on inference; (vi) Effects of collinearity on forecasting; (vii) detection of collinearity; (viii) Reduction of collinearity and Ridge regression

• Chap 8 Variable and Model Selection (~3 hours)

(i) Motivation and consequences of variable selection; (ii) Uses of regression equations; (iii) Criteria for evaluating equations; (iv) Collinearity and variable selection; (v) Variable selection procedures; (vi) Examples using R codes

• Chap 9 Logistic Regression (~3 hours)

(i) Logit model; (ii) Logistic regression diagnostic; (iii) Determination of variables to retain; (iv) Measure the fit of logistic regression; (v) Multinomial Logit Model; (vi) Examples with R with R codes