Low-rank self-play fine-tuning for small LLMs

Павел Юрьевич Мун

Московский физико-технический институт

Курс: Автоматизация научных исследований

Эксперт: А.В. Грабовой

Консультант: Н. В. Охотников

2025

Задача и цель исследования

Задача

Дообучение небольших языковых моделей в условиях ограниченных ресурсов

Цель

Исследовать оправданность применимости предложенного метода

Стратегия self-play

Литература

- 1. Zixiang Chen и др. . «Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models».

 Openreview,2024 URL:
 https://openreview.net/forum?id=O4cHTxW9BS..
- 2. Edward J Hu и др. LoRA: Low-Rank Adaptation of Large Language Models Openreview, 2022 URL: https://openreview.net/forum?id=nZeVKeeFYf9.
- 3. Rafael Rafailov и др. Direct Preference Optimization: Your Language Model is Secretly a Reward Model// Neurlps, 2023

Дообучение на SFT

Множество Θ - пространство всевозможных параметров, p_{θ} - модель , а $\theta \in \Theta$ - ее параметры. $\mathbf{x} = [x_1,...,x_n] \sim q(\cdot)$, $\mathbf{y} = [y_1,...,y_m] \sim p_{data}(\cdot|\mathbf{x})$ - последовательности символов, интерпретируются как промпт и истинный ответ

В задаче ставится ограничение на количество параметров модели, то есть $\|\mathbf{\Theta}\| \leq \mathbf{K}$

Модель в виде условной плотности:

$$p_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x}) = \prod_{j=1}^{m} p_{\boldsymbol{\theta}}(y_j|\mathbf{x}, y_{< j})$$

Задача минимизации функционала:

$$L_{SFT}(\theta) = -\mathbb{E}_{\mathbf{x} \sim q(\cdot), \mathbf{y} \sim p_{data}(\cdot|\mathbf{x})}[log p_{\theta}(\mathbf{y}|\mathbf{x})]$$
(1)

Двух шаговый SPIN

Обозначим за $\Omega \subset \Theta$ - подпространство весов адаптеров LoRA

Рассмотрим итерацию t+1, противником является p_{θ_t} , которая по промптам ${\bf x}$ генерирует ответы ${\bf y}'$, а игроком $p_{\theta_{t+1}}$.

Обучение игрока:

$egin{aligned} f_{t+1} &= rgmin_{f \in \mathcal{F}_t} \mathbb{E} ig[I(f(\mathbf{x}, \mathbf{y}) - f(\mathbf{x}, \mathbf{y}')) ig] \ & \mathbf{x} \sim q(\cdot) \ & \mathbf{y} \sim p_{data}(\cdot | \mathbf{x}) \ I(t) &= log(1 + e^{-t}) \end{aligned}$

Обновление противника:

$$egin{aligned} p_{m{ heta}_{t+1}} &= rgmax \, \mathbb{E}[f_{t+1}(\mathbf{x},\mathbf{y})] - \ & \lambda \mathbb{E}_{\mathbf{x} \sim q(\cdot)} \mathrm{KL}ig(p(\cdot|\mathbf{x})||p_{m{ heta}_t}(\cdot|\mathbf{x})ig) \ & \mathbf{x} \sim q(\cdot) \ & \mathbf{y} \sim p_{data}(\cdot|\mathbf{x}) \ & l(t) = log(1+e^{-t}) \end{aligned}$$

Одношаговый SPIN

Одношаговый алгоритм:

$$L_{SPIN} = \mathbb{E}_{\mathbf{x} \sim q(\cdot), \mathbf{y} \sim p_{data}(\cdot | \mathbf{x})} \left[\ell \left(\lambda \log \frac{p_{\theta}(\mathbf{y} | \mathbf{x})}{p_{\theta_t}(\mathbf{y} | \mathbf{x})} - \lambda \log \frac{p_{\theta}(\mathbf{y}' | \mathbf{x})}{p_{\theta_t}(\mathbf{y}' | \mathbf{x})} \right) \right]$$

$$\Delta \theta_{t+1} = \operatorname*{argmin}_{\Delta \theta \in \Omega} L_{SPIN}(\theta_0 + \Delta \theta, \theta_0 + \Delta \theta_t)$$

Вычислительный эксперимент

Гипотеза

Значения лосса у модели, обученной предложенным методом будет ниже, чем у модели на этапе SFT

Цель

Обучение моделей предложенным методом и просто с адаптерами LoRA и сравнение по метрикам, лоссу и времени обучения

Данные

Рассматривается датасет ultrachat_200k, модели обучаются на 1% данных, примерно 2000 объектов

Сравнение итераций SPIN

- ► SFT момент окончание этапа SFT
- iter(k)geneerate_data окончание генерации данных противником для k + 1 итерации SPIN
- iter(k) окончание k-ой итерации SPIN

Заключение

- Предложен метод дообучения в услових ограниченных ресурсов
- ▶ Обоснована применимость адаптеров LoRA к методу SPIN
- ▶ Получены некоторые практические результаты