Computational Geometry

7. Voronoi-Diagrams and Delaunay-Triangulation

- Input: Set of phone boxes or post offices and current query position.
- Goal: Find closest phone box or post office.
- Distance problems of this kind (nearest-neighbor-search) can with Voronoi-Diagrams.

Georgi Feodosjewitsch Woronoi, 1868-1908

Definition 1

Let $P = \{p_1, ..., p_n\}$ be a set of n distinct points (data sites) and d a metric. A tessellation of the plane (or the space) in n Voronoi-cells V(pi) with

$$q \in V(p_i) \Leftrightarrow d(q, p_i) < d(q, p_j) \forall j \neq i.$$

is called *Voronoi-Diagram* Vor(P) of P.

In the sequel we will use the Euclidian metric in the plane,

$$d(p,q) = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}.$$

- Because the bisector m_{ij} of p_i and p_j is a line, the Voronoi-cells for the Euclidian metric are intersections of open half-spaces respectively half-planes $h(pi, p_i)$.
- For $h\big(p_i,p_j\big)=\big\{q\big|d(q,p_i)< d\big(q,p_j\big)\big\}$ we get

Proposition 1 (Global shape of a Voronoi-diagram)

Let P be a set of $n \geq 3$ distinct points in the plane.

- 1. If all points are collinear, Vor(P) consists of n-1 parallel lines.
- 2. Otherwise, Vor(P) is a
 - a) connected graph whose
 - b) edges are line segments or half-lines.

Proof

Because the Voronoi-cells are intersections of half-planes, they are convex. 1. The first case is easy.

- 2. Assume p_i , p_j , p_k are not collinear.
 - b) Because all edges in Vor(P) are pieces of bisectors, they can only be line segments, half-lines or full lines.
 - Because the bisectors m_{ij} and m_{ik} intersect, both cannot belong completely to Vor(P), i.e. full lines are not possible.
 - a) Assume Vor(P) is not connected.
 - Then there must be a cell V(pi), separating the two components.
 - This cell is bounded by two parallel lines due to convexity.
 - These lines are full lines, contradicting b).

Proposition 2 (Global topology of a Voronoi-diagram)

A planar Voronoi-diagram of $n \ge 3$ points has at most $n_v = 2n-5$ Voronoi-vertices and $n_e = 3n-6$ Voronoi-edges.

Proof

- Not all points are collinear, otherwise we had n-1 edges.
- Connect all half-lines to an auxiliary vertex "at infinity" v_{∞} .

Use Euler's formula $n_v - n_e + n_f = 2$, which relates the number of vertices n_v , edges n_e and faces n_f of a connected, planar embedded graph:

$$2 = (n_v + 1) - n_e + n.$$

Because every edge has two endpoints and every Voronoivertex has at least three edges, we get

$$3(n_v + 1) \le 2n_e$$
, $6 = 3(n_v + 1) - 3n_e + 3n \le -n_e + 3n \iff n_e \le 3n - 6$ $4 = 2(n_v + 1) - 2n_e + 2n \le -n_v - 1 + 2n \Leftrightarrow n_v \le 2n - 5$.

Proposition 3 (Characterization of Voronoi-vertices and -edges)

1. A point q in the plane is a Voronoi-vertex of Vor(P), if and only if the largest empty circle $c_P(q)$ at q contains at least three points of P on its boundary.

No point of P lies in the interior of c_P .

2. A bisector m_{ij} defines an edge of Vor(P), if and only if there is a point $q \in m_{ij}$, whose largest empty circle $c_P(q)$ at q contains only p_i and p_j on its boundary.

Proof

- 1. \leftarrow Let q be a point with empty circle $c_p(q)$ through p_i, p_j, pk .
 - Thus, at least three cells V(pi), $V(p_j)$, $V(p_k)$ meet in q and q is a Voronoi-vertex.
 - \Rightarrow If q is a Voronoi-vertex, then there are at least three points p_i, p_j, p_k on the empty circle around q.
- 2. \leftarrow Let q be a point with empty circle $c_p(q)$ through two points p_i, p_j .
 - Then q belongs to the edge between $V(p_i)$, $V(p_j)$ and from 1) it is not a Voronoi-vertex.
 - \Rightarrow If m_{ij} contains an edge of Vor(P), for every inner point q its largest empty circle $c_P(q)$ contains only p_i and p_j .

- The classic algorithm to compute a Voronoi-Diagram is a difficult to implement divide-and-conquer-method with complexity $O(n \log n)$, see [2].
- A simpler sweep-line-algorithm with run time $O(n \log n)$ is due to S. Fortune [3]:
 - A sweep-line ℓ scans from top to bottom and completes the Voronoi-diagram above.
 - But: Points below the sweep-line can change the diagram above in an area below a piecewise quadratic curve β(x).
 This curve is the so-called beach.

- The beach consists of all points that have the same distance to the sweep-line ℓ and to the nearest point p above the sweep-line.
- These parabola segments (arcs) satisfy

$$\beta(x) - \ell_y = \left\| p - \left(x, \beta(x) \right)^t \right\|$$

lacksquare Squaring and solving for eta yields

$$\beta(x) = \frac{x^2 - 2p_x x + p_x^2 + p_y^2 - \ell_y^2}{2(p_y - \ell_y)}.$$

- Thus, the transitions between arcs lie on edges of the Voronoi-diagram pointing downwards.
- ⇒ Useful to detect Voronoi-edges.
- A new arc occurs, when the sweep-line reaches a new point from P (site-event).
- It is possible that one parabola contributes to several arcs.

Lemma 4

The only way in which a new arc can appear on the beach is through a site-event.

Proof

- Assume the opposite, i.e. an already existing parabola breaks through another parabola from above.
- There are two ways how this can happen:

- 1. Assume, an arc β_j breaks in the middle through another arc β_i from above.
 - Then there is a ℓ_y with $\ell_y < p_{i,y}$ and $\ell_y < p_{j,y}$ where β_j and β_i touch in a single point with a common tangent, i.e.

$$\beta'_{i}(x) = \frac{x - p_{i,x}}{p_{i,y} - \ell_{y}} = \frac{x - p_{j,x}}{p_{j,y} - \ell_{y}} = \beta'_{j}(x)$$

• This yields $\beta_i(x) = \beta_j(x)$, which contradicts that β_j and β_i touch in a single point.

- 2. Assume the arc β_i appears at the transition of β_i and β_k .
 - Then there is a circle C through p_i, p_j, p_k , which touches the sweep-line for a certain ℓ_v .
 - Moving ℓ downwards while C remains tangential to ℓ , either p_i or p_k will penetrate the interior of the circle through p_i tangential to ℓ .

• Thus, p_i cannot add a new arc.

- The beach consists of at most 2n 1 arcs, because every site-event adds one new arc and can split one existing arc into two pieces.
- There is a second type of events, where an arc degenerates to a point and then vanishes.

Lemma 5

An arc can only disappear from the beach at a *circle-event*, i.e. an empty circle C through p_i, p_j, p_k of (previously) adjacent arcs touches ℓ .

No point of P lies in the interior of C.

Proof

The only alternative would be that adjacent arcs β_i , β_k belong to the same parabola, which cannot happen because of Lemma 4.

 β_i can only degenerate, if the circle is empty.

Lemma 6

All Voronoi-vertices can be detected by circle-events.

Proof

- We have to show, that the points p_i , p_j , p_k of the adjacent Voronoi-cells have generated three adjacent arcs before the circle-event.
 - Lifting the sweep-line by $\varepsilon>0$ gives two empty circles tangential to ℓ interpolating p_i,p_i and p_j,p_k respectively.
 - Thus β_i , β_j and also β_j , β_k were adjacent and generated the circle-event.

- The data structure for the algorithm consists of three components:
 - A priority-queue Q for site- and circle-events where the priority is the y-coordinate.
 - It is initialized with the points from P.
 - A balanced search tree T, representing the structure of the beach.
 - So, for every event the corresponding arc can be determined in $O(\log n)$.
 - A doubly-linked edge list D, representing the Voronoi-Diagram.
 - To avoid half-lines it is embedded in a sufficiently large rectangle.

- The leaves of *T* represent the arcs of the beach from left to right and contain a
 - pointer to the generating point and a
 - pointer to the circle-event, removing the arc (if existent) and
 - pointers to neighboring arcs.
- The inner knots represent the transitions between arcs and contain
 - pointers to the generating points of the corresponding segments and a
 - pointer to the corresponding Voronoi-edge in *D*.

- The site-events are known a priori.
- The circle-events must be computed on the fly.
 - For every triple of adjacent arcs a circle-event must be generated, if the transition points do not move from each other.

- The *y*-coordinate for converging edges can be computed.
- A site-event can prevent a previously identified circle-event, which must then be removed from the priority-queue.

Algorithm 1 Voronoi-Diagram(P) **Input:** A set $P = \{p_1, ..., p_n\}$ of distinct points in the plane. **Output:** Vor(P) within a bounding-box as edge-list D. 1: Initialize the priority-queue Q with all site-events; 2: Initialize an empty search-tree T and an empty edge-list D; 3: while $(Q \neq \emptyset)$ { Take event with largest y-coordinate from Q; 4: if (The event is a side-event) then { 5: HandleSideEvent (p_i) , where p_i is the corresponding site; 6: } **else** { 7: HandleCircleEvent(γ), where γ is the leaf of T representing the arc that 8: will disappear; 9: 10: } 11: The remaining inner knots of T correspond to half-infinite edges, that need to be added. For this compute a bounding box around all Voronoi-vertices and P and attacht the half-infinite edges to the bounding box by updating D;

Algorithm 2 HandleSiteEvent (p_i) 1: **if** (T is empty) **then** $\{$ Insert p_i to T and **return**; 3: } **else** { Search in T the leaf γ_i corresponding to the arc β_i vertically above p_i ; if (γ_i) points to a circle-event) then Remove this circle-event from Q; 5: a) Replace γ_i in T by a sub-tree with three leaves: The middle stores the 6: new site p_i , the other two p_i . b) Store the tupels (p_i, p_i) and (p_i, p_i) in the two inner knots of T; c) Re-balance T: Insert between $V(p_i)$ and $V(p_i)$ a Voronoi-edge to D; if (Triple of consecutive arcs (β_i and its two right neighbor arcs) generates a 8: circle-event) then Insert it to Q and add pointers to the relevant leaves in T; if (Triple of consecutive arcs (β_i and its two left neighbor arcs) generates a 9: circle-event) then Insert it to Q and add pointers to the relevant leaves in T; 10: }

Algorithm 3 HandleCircleEvent(γ)

- 1: a) Remove all circle-events from Q, where β_j is involved, using the predecessor- and sucessor-pointers in T;
 - b) Remove the leaf γ that represents the disappearing arc β_i from T;
 - c) Update the inner knots representing the transition points;
 - d) Re-balance T;
- 2: Add a Voronoi-vertex and the new edge between $V(p_i)$ and $V(p_k)$ to D, where p_i and p_k generate the neighbor arcs;
- 3: if (The triples of consecutive arcs containing the disappeard as transition generate a new circle-event) then $\{$
- 4: a) Add these circle-events to Q;
 - b) Update the pointers in T;
- 5: }

Proposition 7

Algorithm 1 takes $O(n \log n)$ run time and O(n) memory.

Proof

- The operations on T and Q (search, insert, delete) take each $O(\log n)$ and the initialization O(n).
- Because every event uses a constant number of these operations, every event can be processed in $O(\log n)$.
- There are n side-events and at most 2n-5 (number of Voronoi-vertices) circle-events: total run time $O(n \log n)$.
- Because the number of arcs is bounded by 2n-1, the memory to store T and Q is linear.

Special cases

- If two points have the same y-coordinate, any sequence is possible.
 - If these are the first two points, there is no arc above the second point.
- If two circle-events coincide, four points lie on one circle.
 - For simplicity do not consider this case separately and add an edge of length zero which can be removed in a post-processing step.

- If a site-event occurs at the transition of two arcs, one of the neighbor arcs is split to yield an arc of length zero.
 - This zero-length arc will generate a circle-event, that will remove the zero-length arc when it is processed.

Complexity

- The points p_i of P with unbounded $V(p_i)$ are the corners of the convex hull $\mathcal{CH}(P)$.
- These points can be determined in O(n)
 - Traverse a sufficiently large circle C around P (clockwise) and compute its intersections with Voronoi-edges.
- → The Voronoi-diagram can be used to compute the convex hull of P.
- → The complexity to compute the Voronoi-diagram of n points in the plane is $\Omega(n \log n)$.

- The dual graph G of a Voronoi-diagram is called *Delaunay-graph*. Boris Nikolajewitsch Delone (1890-1980)
- If no more than three points lie on a circle, the Delaunaygraph is a triangulation of *P* and its convex hull.

Proposition 8

- 1. Three points $p_i, p_j, p_k \in P$ belong to the same face of the Delaunay-graph, if and only if the circumscribed circle contains no further point of P (*Delaunay-condition*).
- 2. Two points p_i , $p_j \in P$ span an edge of the Delaunay-graph, if there is a circle through these points, containing no further point of P.

Proof

- The proof follows from Proposition 3.
- In 1. the center of the circumscribing circle is the Voronoi-vertex corresponding to this Delaunay-face.

Proposition 9

Among all possible triangulations the Delaunaytriangulation maximizes the smallest interior angle of all triangles.

Proof: Exercise.

- A simple algorithm to construct the Delaunay-triangulation.
 - First find a single triangle (or alternatively a bounding box of two triangles), containing all points of *P*.
 - Add the points of P in random order to the triangulation and restore the Delaunay-condition.
 - For the case that several points lie on a circle, the corresponding face can be triangulated arbitrarily.
 - There is more than one Delaunay-triangulation in this case.

```
Algorithm 4 Delaunay-Triangulierung
Input: Set P of n distinct points in the plane.
Output: Delaunay-Triangulation D.
1: Compute a random permutation p<sub>1</sub>,..., p<sub>n</sub> of the points in P;
2: Initialize D with a triangle abc, enclosing all points;
3: for (r = 1,...,n) {
4: Find triangle p<sub>i</sub>p<sub>j</sub>p<sub>k</sub>, containing p<sub>r</sub>;
5: Find the Delaunay-conditions that are violated, using the adjacency of all triangles;
6: Remove these triangles from D and replace them by new triangles by connecting all points of these triangles to p<sub>r</sub> by edges;
7: }
8: Remove the points a, b, c and all their triangles from D;
```

Proposition 11

Algorithm 4 computes a correct Delaunay-triangulation.

Proof

We have to prove that the new triangles inserted in line 6 satisfy the Delaunay-condition.

- Assume one of the triangles t generated during the insertion of p_r does not satisfy the Delaunay-condition.
 - Then an edge between p_r and the polygon Δ , that was generated by removing the triangles, must be flipped.
 - This gives a triangle Γ of consecutive points p_i, p_j, p_k of Δ .
 - a) If $\Gamma \in D$ before the insertion, Γ was removed, because it violated the Delaunay-condition with p_r .
 - b) If $\Gamma \notin D$ before the insertion, did not satisfy the Delaunay-condition before the insertion.
- Both cases are a contradiction proving the proposition.

- The run time of this algorithm (without any further improvements) is $O(n^2)$, because the search for a single triangle containing p_r takes O(r).
 - Using a search structure (cf. Point-Location) the expected time for this can be reduced to $O(\log n)$.
 - The expected number of triangles that must be removed is constant in every step (see [1]), such that the total expected run time is $O(n \log n)$.
 - In any case the memory is of size O(n).

7.4 Literature

- [1] Marc de Berg et al., Computational Geometry: Algorithms and Applications, 2nd Edition, Springer, 2000, Chapters 7 and 7.
- [2] M.I. Shamos and D. Hoey, *Closest-point problems*, Proc. 16th Annual IEEE Sympos. Found. Comput. Sci., pp 151-162, 1975.
- [3] S.J. Fortune, A sweepline algorithm for Voronoi Diagrams, Algorithmica, 2:153-174, 1987.
- [4] L.J. Guibas et al., Randomized incremental construction of Delaunay and Voronoi diagrams, Algorithmica, 7:381-413, 1992.