CO326 Group Project

Group E: Occupation and Access Control

Group Members

Team Leader	Bandara S M P C	E/17/027
Task 1	Rathnayaka R L D A S	E/17/284
Task 2	Morais K W G A N D	E/17/212
Task 3	Shalha A M F	E/17/327
Task 4	Rishard M I	E/17/005
Task 5	Weerasinghe S P D D S	E/17/379
Task 6	Perera K S D	E/17/246
Task 7	Gunathilaka R M S M	E/17/100
Task 8	Nawarathna K G I S	E/17/219

Tasks

Task 1	Read data from sensors Send to MQTT Server
Task 2	Read data from MQTT Server Take decisions Control actuators
Task 3	Read data from MQTT Server Display status on SCADA
Task 4	Take inputs from the SCADA Send to MQTT Server
Task 5	Process Controller: Operating Optimizing Algorithms
Task 6	Store MQTT Data, Commands, Events in the Database
Task 7	Display the data in the database in Web Interface
Task 8	Data Analytics: Prediction Optimization Correlation

Introduction

A. Occupancy Control

- Automated Process to control Human Interactions and Security
- Crowded and Busy area
 → Inefficient working / learning environment
- COVID-19

A. Access Control

- Authentication and Authorization
- Safety of the Company Property and the People
- While protecting People's Identity

Main Features

- Identify the people who entered the room Authentication
 - Either RFID or Security Code
- Permit the people access rooms Authorization
- Keep a count of people in each room in each floor
- Provide real time reports on attendance
 → Node-RED Dashboard
- Provide comprehensive reports / analytics on past data
 → Web Interface
- Provide occupancy details for Control, HVAC and Safety groups

Hardware Components

- The control unit should be capable of Wireless Communication
- The control unit should be consistent of high number of General I/O pins

- 2 Ultrasonic Sensors are used to determine the Direction of the Motion
- Less Power Consuming Elements

Installation of the Hardware Modules

Ultrasonic sensor 2

Man A

Man B

RFID / Keypad Reading Module

Occupancy Counting Element

Prototype of the Sensor Module

Prototype of the Actuator Module

Node-RED Dashboard

Node-RED Dashboard | Notifications

Process Control

Threshold Maintenance

RFID Authentication

Auto mode / manual mode User Entered RFID Remove unwanted characters Number of people in the room = NRetrive the valid RFID's for that paticular room from database Send light on signal If mode is Auto N > 10 to LED / Send a message to LCD Incoming RFID Pass access enable signals to mathched with a one in LED/LCD/Scada widgets the database? Send off to LED N > 10 Pass access denied signals to LED/LCD/Scada widgets Send light on signal Press the button to LED / Send a message to LCD

Keypad Authentication

Database and Data Handling

- The Database consists with 3 collections
 - o 326_occupancy_room
 - 326_occupancy_rfid
 - o 326_occupancy_keypad
- Notifies the other groups when a change happens
- RFIDs and Password
 - Each room has a unique password
 - Each room has authorized RFID list

```
▼0: object
_id: "634d91a90502e71145c61f53"
floor_number: 0
room_number: 1
keypad: "4568"
```

```
room_number: 1
floor_number: 0
count: 4
last_update: "10/19/2022, 8:46:40
PM"
```

```
▼0: object
_id: "634d1d500502e71145aee68b"
floor_number: 0
room_number: 1
▼rfid: array[2]
0: " 231 85 243 25"
1: " 250 187 91 89"
```

Database *Update Count Process*

Data Analytics and Optimizations

Generating a **Time Series dataset** extracted from MQTT messages

- Will be used to build the ML Model which predicts the congested rooms
- These information will be displayed in the Web Interface, so that the users can have a clear proper understanding of the congestion throughout the day

Creating and Maintaining some useful parameters to **manage people**

- → Total people in a floor
- → Average people in a room
- → Maximum people of the floor
- → Minimum people of the floor
- People can be directed from congested rooms to to free rooms

Web Interface | Congestion throughout the day

Web Interface | Useful parameters to manage people

Web Interface

The **API** to extract data from the database. Mainly consists with 3 endpoints

- → Room details
- → Past data
- → Statistical data
- API is implemented inside Node-RED
- Obtained responses from Postman to make sure the API is working properly

The **Web Page** to display the data

- Implemented using ReactJS
- There are 3 pages for room details, past data and statistical data.
- In room details page, summary of the apartment will be displayed
- In the past data page, past occupancy details will be shown as a bar chart
- There is an option to download the shown graph as a png or csv
- Shown In the statistical data page, statistical data for each floor will be displayed.

Future Implementations

- Actual Implementation of the Mechanical Door Lock
- ML model to **Predict Congestions** of rooms
- Extend Authentication further using Facial Recognition
- Improve the counting mechanism

Thank You!