CORRECTION Partiel 2023-2024 - CYBER1 (2h00)

Architecture des Ordinateurs

NOM: PRÉNOM:

Vous devez respecter les consignes suivantes, sous peine de 0 :

- Lisez le sujet en entier avec attention
- Répondez sur le sujet
- Ne détachez pas les agrafes du sujet
- Écrivez lisiblement vos réponses (si nécessaire en majuscules)
- Les appareils électroniques sont tous interdits (calculatrices également)
- Ne trichez pas

1 Conversions Binaires (6 points)

1.1 (1 point) Rappelez les 14 premières puissances de 2 :

2^{0}	2^1	2^2	2^3	2^4	2^5	2^6	2^7	2^{8}	2^{9}	2^{10}	2^{11}	2^{12}	2^{13}
1	2	4	8	16	32	64	128	256	512	1024	2048	4096	8192

1.2 (2 points) Convertissez ces nombres en décimaux :

	non-signé	signé
% 1010 0011 1011	2619	-1477
\$ B52	2898	-1198

1.3 (3 points) Convertissez ces nombres décimaux en binaire sur 12 bits, puis en hexadécimal.

		binaire											hexadécimal	
42	%	0	0	0	0	0	0	1	0	1	0	1	0	\$ 02A
1789	%	0	1	1	0	1	1	1	1	1	1	0	1	\$ 6FD
-404	%	1	1	1	0	0	1	1	0	1	1	0	0	\$ E6C

2 Conversions Flottants (3 points)

2.1 (1 point) Rappelez les formats IEEE 754 des flottants, les formules décimales associées, et les biais :

précision	Signe	Exposant	Mantisse
simple précision (32 bits)	1	8	23
double précision (64 bits)	1	11	52

simple précision 127
double précision 1023

Formule(s) mathématique(s) simple précision :

normalisés :
$$(-1)^{signe} \times 2^{exposant-biais} \times (1 + mantisse)$$

dénormalisés : $(-1)^{signe} \times 2^{1-biais} \times (0 + mantisse)$

Formule(s) mathématique(s) double précision : normalisés :
$$(-1)^{signe} \times 2^{exposant-biais} \times (1+mantisse)$$
 dénormalisés : $(-1)^{signe} \times 2^{1-biais} \times (0+mantisse)$

2.2 (2 points) Calculez la valeur décimale du plus petit flottant dénormalisé en double précision :

Exposant (11 bits): 000 0000 0000₂ Exposant nul (dénormalisé)

Mantisse (52 bits): $0\ 0000\ 0000\ 0001_{16}$

$$(-1)^{\text{signe}} \times \text{mantisse} \times 2^{1 - \text{biais}}$$

$$= (-1)^{0} \times 2^{-52} \times 2^{1 - 1023}$$

$$= 2^{-52} \times 2^{-1022}$$

$$= 2^{-1074}$$

Le plus petit nombre positif non-nul dénormalisé en simple précision est donc 2^{-1074} .

3 Interprétations (6 points)

3.1 (6 points) Convertissez la donnée suivante selon chaque interprétation :

\$ 4231 2000

Un flottant simple précision

$$44,28125 = 1417 \times 2^{-5}$$

Quatre caractères

Deux entiers non signés en base 10

16945	8192

Deux entiers signés en base 10

16945	8192

Deux entiers base 10 depuis le code Gray

|--|

Deux entiers base 10 depuis le BCD

4231	2000
------	------

4 Circuits logiques (5 points)

4.1 (1 point) Écrivez la formule associée à ce schéma :

$$X = ((a \text{ NON-ET } (a \text{ NON-ET } c)) \text{ XOR } ((b \text{ OU } c) \text{ ET } (b \text{ OU } c)))$$
 ET

$$(((b \ \mathrm{OU} \ c) \ \mathrm{ET} \ (b \ \mathrm{OU} \ c)) \ \ \mathrm{OU} \ \ ((b \ \mathrm{OU} \ c) \ \mathrm{XOR} \ (c \ \mathrm{NON\text{-}ET} \ d)))$$

$$X = ((A \cdot \overline{(A \cdot C)}) \oplus ((B + C) \cdot (B + C))) \cdot (((B + C) \cdot (B + C)) + ((B + C) \oplus \overline{(C \cdot D)}))$$

4.2 (1 point) Remplissez la table de vérité de la formule précédente :

A	В	\mathbf{C}	D	X
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

4.3 (2 points) Déduisez-en la formule des mintermes, ainsi que la formule des maxtermes :

Mintermes:

$$X = (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D) + (A \cdot B \cdot \overline{C} \cdot \overline{D}) + (A \cdot B \cdot \overline{C} \cdot D)$$

Maxtermes:

$$X = (A + B + \overline{C} + D) \cdot (A + B + \overline{C} + \overline{D}) \cdot (A + \overline{B} + C + \overline{D}) \cdot (A + \overline{B} + C + \overline{D}) \cdot (A + \overline{B} + \overline{C} + \overline{D}) \cdot (A + \overline{B} + \overline{C} + \overline{D}) \cdot (\overline{A} + B + C + D) \cdot (\overline{A} + B + \overline{C} + \overline{D}) \cdot (\overline{A} + B + \overline{C} + D) \cdot (\overline{A} + B + \overline{C} + \overline{D}) \cdot (\overline{A} + \overline{B} + \overline{C} + D) \cdot (\overline{A} + \overline{B} + \overline{C} + \overline{D})$$

4.4 (1 point) Remplissez le tableau de Karnaugh, formez les groupes, et déduisezen la formule réduite :

		CD		
	00	01	11	10
00	1	1	0	0
01	0	0	0	0
11	1	1	0	0
10	0	0	0	0

$$X = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot \overline{C})$$
$$X = (\overline{A} \oplus \overline{B}) \cdot \overline{C}$$