Real Analysis I: Final Exam Review

Chris Hayduk

December 17, 2019

1 Definitions

• σ -algebra:

A collection \mathscr{A} of subsets of X is called an **algebra** of sets or a **Boolean algebra** if (i) $A \cup B$ is in \mathscr{A} whenever A and B are, and (ii) \tilde{A} is in \mathscr{A} whenever A is.

 \mathscr{A} is called a σ -algebra, or a Borel field, if it has the above properties and every union of a countable collection of sets in \mathscr{A} is again in \mathscr{A}

• Uniform convergence of a sequence of functions:

A sequence $\langle f_n \rangle$ of functions defined on a set E is said to converge **uniformly** on E if given $\epsilon > 0$, there is an N such that for all $x \in E$ and all $n \geq N$, we have $|f(x) - f_n(x)| < \epsilon$.

• Borel sets:

The collection \mathcal{B} of Borel sets is the smallest σ -algebra which contains all of the open sets.

• F_{σ} set:

An F_{σ} set is a countable union of closed sets.

• G_{δ} set:

A G_{δ} set is a countable intersection of open sets.

• Outer measure:

 $m^*A = \inf_{A \subset \cup I_n} \Sigma \ell(I_n)$, where $\{I_n\}$ represents a countable collections of open intervals that cover A.

• Measurable set:

A set E is said to be **measurable** if for each set A we have $m^*A = m^*(A \cap E) + m^*(A \cap \tilde{E})$

• Measurable function:

Let f be an extended real-valued function whose domain is measurable. Then the following statements are equivalent:

- 1. For each real number α , the set $\{x: f(x) > \alpha\}$ is measurable.
- 2. For each real number α , the set $\{x: f(x) \geq \alpha\}$ is measurable.
- 3. For each real number α , the set $\{x: f(x) < \alpha\}$ is measurable.
- 4. For each real number α , the set $\{x: f(x) \leq \alpha\}$ is measurable.

These statements imply that, for each extended real number α , the set $\{x: f(x) = \alpha\}$ is measurable.

An extended real-valued function f is said to be (Lebesgue) measurable if its domain is measurable and if it satisfies one of the first four statements above.

• Almost everywhere:

A property is said to hold **almost everywhere** (abbreviated a.e.) if the set of points where it fails to hold is a set of measure zero.

• Lebesgue integral of simple functions:

If ϕ is a simple function and $\{a_1,...,a_n\}$ the set of non-zero values of ϕ , then

$$\phi = \sum a_i \chi_{A_i}$$

where $A_i = \{x : \phi(x) = a_i\}$. This representation for ϕ is called the canonical representation, and it is characterized by the fact that the A_i are disjoint and the a_i distinct and non-zero.

If ϕ vanishes outside a set of finite measure, we define the integral of ϕ by

$$\int \phi(x)dx = \sum_{i=1}^{n} a_i m A_i$$

• Lebesgue integral of bounded measurable functions that vanish outside of a set of finite measure:

If f is a bounded measurable function defined on a measurable set E with mE finite, we define the (Lebesgue) integral of f over E by

$$\int_{E} f(x)dx = \inf \int_{E} \psi(x)dx$$

for all simple functions $\psi \geq f$.

• Lebesgue integral of non-negative measurable functions:

If f is a non-negative measurable function defined on a measurable set E, we define,

$$\int_{E} f = \sup_{h \le f} \int_{E} h$$

where h is a bounded measurable function such that $m\{x:h(x)\neq 0\}$ is finite.

• Lebesgue integral of a general measurable function:

A measurable function f is said to be integrable over E if f^+ and f^- are both integrable over E (that is, $\int_E f^+ < \infty$ and $\int_E f^- < \infty$). In this case, we define,

$$\int_E f = \int_E f^+ - \int_E f^-$$

where $f^{+} = \max\{f(x), 0\}$ and $f^{-} = \max\{-f(x), 0\}$

• Convergence in measure:

A sequence $\langle f_n \rangle$ of measurable functions is said to converge to f in measure if, given $\epsilon > 0$, there is an N such that for all $n \geq N$ we have

$$m\{x: |f(x) - f_n(x)| \ge \epsilon\} < \epsilon$$

• Vitali cover:

Let g be a collection of intervals. Then we say that g covers a set E in the sense of Vitali if, for each $\epsilon > 0$ and any $x \in E$, there is an interval $I \in g$ such that $x \in I$ and $\ell(I) < \epsilon$. The intervals may be open, closed, or half-open, but we do not allow degenerate intervals consisting of only one point.

• Total variation:

Let f be a real-valued function defined on the interval [a,b], and let $a=x_0 < x_1 < \cdots < x_k = b$ be any subdivision of [a,b]. Define

$$p = \sum_{i=1}^{k} [f(x_i) - f(x_{i-1})]^+$$
$$n = \sum_{i=1}^{k} [f(x_i) - f(x_{i-1})]^-$$
$$t = n + p = \sum_{i=1}^{k} |f(x_i) - f(x_{i-1})|$$

where we use r^+ to denote r if $r \ge 0$ and 0 if $r \le 0$, and set $r^- = |r| - r^+$. We have f(b) - f(a) = p - n. Set,

$$P = \sup p$$

$$N = \sup n$$

$$T = \sup t$$

where we take the supremum over all possible subdivisions of [a, b].

We clearly have $P \leq T \leq P + N$. We call P, N, T the positive, negative, and total variations of f over [a, b]. We sometimes write $T_a^b, T_a^b(f)$, etc. to denote the dependence on the interval [a, b] or on the function f.

If $T < \infty$, we say that f is of bounded variation over [a, b].

2 Theorems

• Heine-Borel Theorem:

Let F be a closed and bounded set of real numbers. Then each open covering of F has a finite subcovering.

That is, if a collection \mathscr{C} is a collection of open sets such that $F \subset \cup \{O : O \in \mathscr{C}\}$, then there is a collection $\{O_1, O_2, ..., O_n\}$ of sets in \mathscr{C} such that,

$$F \subset \bigcup_{i=1}^n O_i$$

• Egoroff's Theorem:

If $\langle f_n \rangle$ is a sequence of measurable functions that converge to a real-valued function f a.e. on a measurable set E of finite measure, then given $\eta > 0$, there is a subset $A \subset E$ with $mA < \eta$ such that f_n converges to f uniformly on $E \sim A$

• Fatou's Lemma:

If $\langle f_n \rangle$ is a sequence of non-negative measurable functions and $f_n(x) \to f(x)$ almost everywhere on a set E, then

$$\int_{E} f \le \underline{\lim} \int_{E} f_{n}$$

• Monotone Convergence Theorem:

Let $\langle f_n \rangle$ be an increasing sequence of non-negative measurable functions, and let $f = \lim f_n$ a.e. Then,

$$\int f = \lim \int f_n$$

• Lebesgue Convergence Theorem:

Let g be integrable over E and let $\langle f_n \rangle$ be a sequence of measurable functions such that $|f_n| \leq g$ on E and for almost all x in E we have $f(x) = \lim f_n(x)$. Then,

$$\int_{E} f = \lim \int_{E} f_n$$

• Vitali Covering Lemma:

Let E be a set of finite outer measure and g a collection of intervals that covers E in the sense of Vitali. Then, given $\epsilon > 0$, there is a finite disjoint collection $\{I_1, ..., I_n\}$ of intervals in g such that,

$$m^* \left[E \sim \cup_{n=1}^N I_n \right] < \epsilon$$

3 Proofs

• If f is measurable and f = g a.e., then g is also measurable:

Let E be the set $\{x: f(x) \neq g(x)\}$. By hypothesis, mE = 0. Now,

$$\{x : g(x) > \alpha\} = [\{x : f(x) > \alpha\} \cup \{x \in E : g(x) > \alpha\}] \sim \{x \in E : g(x) \le \alpha\}$$

The first set on the right is measurable since f is a measurable function. The last two sets on the right are measurable since they are subsets of E and mE = 0. Thus, $\{x : g(x) > \alpha\}$ is measurable for each α and so g is measurable.

• Bounded Convergence Theorem:

Theorem statement: Let $\langle f_n \rangle$ be a sequence of measurable functions defined on a set E of finite measure, and suppose that there is a real number M such that $|f_n(x)| \leq M$ for all n and all x. If $f(x) = \lim_{n \to \infty} f_n(x)$ for each x in E, then

$$\int_{E} f = \lim \int_{E} f_n$$

Proof:

By Proposition 3.23, we have that, given $\epsilon > 0$, there is an N and a measurable set $A \subset E$ with $mA < \frac{\epsilon}{4M}$ such that for $n \geq N$ and $x \in E \sim A$, we have $|f_n(x) - f(x)| < \frac{\epsilon}{2mE}$. Then,

$$\left| \int_{E} f_{n} - \int_{E} f \right| = \left| \int_{E} f_{n} - f \right|$$

$$\leq \int_{E} |f_{n} - f|$$

$$= \int_{E \sim A} |f_{n} - f| + \int_{A} |f_{n} - f|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Hence,

$$\int_E f_n \to \int_E f$$

• Proposition 14 from Ch. 4:

Proposition statement: Let f be a non-negative function which is integrable over a set E. Then given $\epsilon > 0$, there is a $\delta > 0$ such that for every set $A \subset E$ with $mA < \delta$, we have

$$\int_A f < \epsilon$$

Proof:

The proposition would be trivial if f were bounded, so assume f is unbounded. Set $f_n(x) = f(x)$ if $f(x) \le n$ and $f_n(x) = n$ otherwise. Then each $f_n(x)$ is bounded and f_n converges to f at each point.

By the Monotone Convergence Theorem, there is an N such that $\int_E f_N > \int_E f - \epsilon/2$ and $\int_E f - f_N < \epsilon/2$.

Choose $\delta < \frac{\epsilon}{2N}$. If $mA < \delta$, we have

$$\int_{A} f = \int_{A} (f - f_{N}) + \int_{A} f_{N}$$

$$< \int_{E} (f - f_{N}) + NmA$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

as required.

• A function is of bounded variation iff it is the difference of two monotone real-valued functions:

Let f be of bounded variation and set $g(x)=P_a^x$ and $h(x)=N_a^x$. Then g and h are monotone increasing functions which are real valued, since $0\leq P_a^x\leq T_a^x\leq T_a^b<\infty$ and $0\leq N_a^x\leq T_a^x\leq T_a^b<\infty$.

But f(x) = g(x) - h(x) + f(a) = g(x) - [h(x) - f(a)] by Lemma 4. Since h - f(a) is a monotone function, we have f expressed as the difference of two monotone functions.

On the other hand, if f = g - h on [a, b] with g and h increasing, then for any subdivision we have

$$t = \Sigma |f(x_i) - f(x_{i-1})| \le \Sigma [g(x_i) - g(x_{i-1})] + \Sigma [h(x_i) - h(x_{i-1})]$$

= $g(b) - g(a) + h(b) - h(a) < \infty$

Since this holds for any subdivision of [a, b], we have that $t < \infty$ for all such subdivisions. Hence, sup $t = T < \infty$ and so f is of bounded variation.