6.867 Homework 1

Anonymous Authors

I. IMPLEMENTING GRADIENT DESCENT

II. LINEAR BASIS FUNCTION REGRESSION

A. Closed-form Solution with Polynomial Basis

Consider the basis function

$$\Phi_M(x) = [\phi_0(x), \dots, \phi_M(x)],$$

where $\phi_k(x) = x^k$. Applying Φ_M to X gives the desired basis change, so we have the generalized linear model

$$\mathbf{Y} = \Phi_M(\mathbf{X}) \cdot \boldsymbol{\beta} + \boldsymbol{\epsilon},$$

which has the close-form solution

$$\hat{\boldsymbol{\beta}} = (\Phi_M(\mathbf{X})^T \Phi_M(\mathbf{X}))^{-1} \Phi_M(\mathbf{X})^T \mathbf{Y},$$

where $\hat{\beta}$ is the maximum-likelihood estimator of the regression coefficients.

We ran regressions on the data using a few different degrees (M=0,1,3,10). Below are plots of the resulting polynomial functions, compared to the given data and the true function:

Fig. 1: M-Degree Polynomial Fit (M = 0, 1, 3, 10)

- B. Gradient Descent Solution with Polynomial Basis
- C. Closed-form Solution with Cosine Function Basis
 - III. RIDGE REGRESSION
 - IV. SPARSITY AND LASSO

V. APPENDIX

¹See the Appendix for the numerical values of the weights.