### **AE1MCS: Mathematics for Computer Scientists**

Huan Jin, Heshan Du University of Nottingham Ningbo China

### Aim and Learning Objectives

- To be able to understand different methods of proving theorems.
- To be able to apply different methods to construct proofs.

# Reading

Kenneth H. Rosen, *Discrete Mathematics and Its Applications*, 7th Edition, 2013.

- Chapter 1, Section 1.8. Introduction to Proofs
- Chapter 5, Section 5.1. Mathematical Induction
- Chapter 5, Section 5.2. Strong Induction

# Methods of Proving Theorems

- Direct Proof
- Proof by Contraposition
- Proof by Contradiction
- Proof by Induction
- ...

### **Direct Proof and Indirect Proof**

If a proof leads from the premises of a theorem to the conclusion, then it is a direct proof, otherwise, it is an indirect proof.

- Important true propositions are called theorems.
- A lemma is a preliminary proposition useful for proving later propositions.
- A corollary is a proposition that follows in just a few logical steps from a theorem.

### **Direct Proof**

A direct proof shows that a conditional statement  $p \to q$  is true by showing that

if p is true, then q must also be true,

so that the combination p true and q false never occurs.

### **Direct Proof**

In a direct proof,

- 1 we assume that p is true,
- then, we use axioms, definitions, and previously proven theorems, together with rules of inference, to show that q must also be true.

### Exercise

Give a direct proof of the theorem 'If n is an odd integer, then  $n^2$  is odd'.

#### Even and Odd

#### Definition (Even and Odd)

The integer n is even if there exists an integer k such that n = 2k, and n is odd if there exists an integer k such that n = 2k + 1.

### **Exercise Answer**

Give a direct proof of the theorem 'If n is an odd integer, then  $n^2$  is odd'.

#### Proof.

Suppose n is an odd integer. Then there exists an integer k such that n=2k+1.  $n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$ . Since  $2k^2+2k$  is an integer,  $n^2$  is odd.

### **Proof by Contraposition**

- An extremely useful type of indirect proof is known as proof by contraposition.
- Proofs by contraposition make use of the fact that the conditional statement  $p \rightarrow q$  is equivalent to its contrapositive,  $\neg q \rightarrow \neg p$ .
- The conditional statement  $p \rightarrow q$  is proved by showing that its contrapositive,  $\neg q \rightarrow \neg p$ , is true.

### Exercise

Prove that if n is an integer and 3n + 2 is odd, then n is odd.

### **Exercise Answer**

Prove that if n is an integer and 3n + 2 is odd, then n is odd.

#### Proof.

To prove that if n is an integer and 3n + 2 is odd, then n is odd, we show if n is an even integer, then 3n + 2 is even.

Suppose n is an even integer. Then there exists an integer k such that n=2k.  $3n+2=3\times 2k+2=2\times (3k+1)$ . Since 3k+1 is an integer, 3n+2 is even.

By contraposition, we showed that if n is an integer and 3n + 2 is odd, then n is odd.

# **Proof by Contradiction**

- Suppose we want to prove that a statement *p* is true.
- Furthermore, suppose that we can find a contradiction q such that  $\neg p \rightarrow q$  is true.
- Because q is false, but  $\neg p \rightarrow q$  is true, we can conclude that  $\neg p$  is false, which means that p is true.

# **Proof by Contradiction**

- Because the statement  $r \land \neg r$  is a contradiction whenever r is a proposition, we can prove that p is true if we can show that  $\neg p \to (r \land \neg r)$  is true for some proposition r.
- Proofs of this type are called **proofs by contradiction**.
- A proof by contradiction is another type of indirect proof.

### Exercise

Prove that  $\sqrt{2}$  is irrational.

### **Exercise Answer**

Prove that  $\sqrt{2}$  is irrational.

#### Proof.

Suppose  $\sqrt{2}$  is rational. Then there exist integers p and q with  $q \neq 0$  such that  $\sqrt{2} = p/q$  and p and q do not have any common factor. Thus,  $2 = p^2/q^2$ .  $p^2 = 2q^2$ . Thus,  $p^2$  is even. Since if n is odd, then  $n^2$  is odd (proved in previous slides), p is even. Hence there exists an integer k such that p = 2k. Then  $p^2 = (2k)^2 = 2q^2$ .  $q^2 = 2k^2$ . Thus  $q^2$  is even, hence q is even. Thus, p and q are both even, which contradicts the fact that p and q do not have any common factor.

### Proof of Equivalence

To prove a theorem that is a biconditional statement or a bi-implication, that is, a statement of the form  $p \leftrightarrow q$ , we show that  $p \to q$  and  $q \to p$  are both true.

### Proof of Equivalence

Sometimes a theorem states that several propositions are equivalent. Such a theorem states that propositions  $p_1, p_2, p_3, ..., p_n$  are equivalent. This can be written as

$$p_1 \leftrightarrow p_2 \leftrightarrow ... \leftrightarrow p_n$$

which states that all n propositions have the same truth values, and consequently, that for all i and j with  $1 \le i \le n$  and  $1 \le j \le n$ ,  $p_i$  and  $p_j$  are equivalent. One way to prove these mutually equivalent is to use the tautology

$$[p_1 \leftrightarrow p_2 \leftrightarrow ... \leftrightarrow p_n] \leftrightarrow [(p_1 \to p_2) \land (p_2 \to p_3) \land ... \land (p_n \to p_1)].$$

This shows that if the n conditional statements  $p_1 \rightarrow p_2$ ,  $p_2 \rightarrow p_3$ ,...,  $p_n \rightarrow p_1$  can be shown to be true, then the propositions  $p_1$ ,  $p_2$ ,...,  $p_n$  are all equivalent.

### Counterexamples

To show that a statement of the form  $\forall x P(x)$  is false, we need only find a counterexample, that is, an example x for which P(x) is false.

#### Exercise

Show that the statement 'Every positive integer is the sum of the squares of two integers' is false.

#### **Exercise**

Show that the statement 'Every positive integer is the sum of the squares of two integers' is false.

#### Proof.

3 is a positive integer but is not the sum of the squares of two integers. Note that the only perfect squares not exceeding 3 are  $0^2=0$  and  $1^2=1$ . Therefore, the statement 'Every positive integer is the sum of the squares of two integers' is false.

# **Proof by Cases**

- Sometimes we cannot prove a theorem using a single argument that holds for all possible cases.
- Need to consider different cases separately.
- Rationale: To prove a conditional statement of the form

$$(p_1 \vee p_2 \vee ... \vee p_n) \rightarrow q$$

the tautology

$$[(p_1 \lor p_2 \lor ... \lor p_n) \to q] \leftrightarrow [(p_1 \to q) \land (p_2 \to q) \land ... \land (p_n \to q)]$$

can be used as a rule of inference.

# **Proof by Cases**

- The original conditional statement with a hypothesis made up of a disjunction of the propositions  $p_1$ ,  $p_2$ ,...,  $p_n$  can be proved by proving each of the n conditional statements  $p_i \rightarrow q$ , i = 1, 2, ..., n, individually. Such an argument is called a **proof by cases**.
- A proof by cases must cover all possible cases that arise in a theorem.

### Exercise

Prove that if *n* is an integer, then  $n^2 \ge n$ .

### **Exercise**

Prove that if *n* is an integer, then  $n^2 \ge n$ .

#### Proof.

Let us prove by cases.

- If n = 0, then  $0^2 \ge 0$ .
- If  $n \ge 1$ , we multiply both sides of the inequality  $n \ge 1$  by the positive integer n, then we have  $n^2 \ge n$ .
- If  $n \le -1$ ,  $n^2 \ge n$  holds, since  $n^2 \ge 0$ .

Thus, in each case,  $n^2 \ge n$ .



#### Induction

In general, mathematical induction can be used to prove statements that assert that P(n) is true for all positive integers n, where P(n) is a propositional function.

Proofs using mathematical induction have two parts.

- **Basis Step:** We show that the statement holds for the positive integer 1 (i.e. P(1) is true).
- **Inductive Step:** We show that if the statement holds for a positive integer then it must also hold for the next larger integer (i.e. for all positive integers k, if P(k) is true, then P(k+1) is true).

### Principle of Mathematical Induction

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

Basis Step: We verify that P(1) is true.

Inductive Step: We show that the conditional statement

 $P(k) \rightarrow P(k+1)$  is true for all positive integers k.

### **Inductive Step**

To complete the inductive step of a proof using the principle of mathematical induction,

- $\blacksquare$  we assume that P(k) is true for an arbitrary positive integer k
- we show that under this assumption, P(k + 1) must also be true.

The assumption that P(k) is true is called the **inductive hypothesis**.

### Mathematical Induction

Mathematical induction can be expressed as the following rule of inference

$$P(1)$$

$$\forall k (P(k) \rightarrow P(k+1))$$

$$\therefore \forall n P(n)$$

where the domain is the set of positive integers.

### Detailed Explanations about Mathematical Induction

- The first thing we do to prove that P(n) is true for all positive integers n is to show that P(1) is true.
- This amounts to showing that the particular statement obtained when n is replaced by 1 in P(n) is true.
- Then we must show that  $P(k) \rightarrow P(k+1)$  is true for every positive integer k.
- To prove that this conditional statement is true for every positive integer k, we need to show that P(k + 1) cannot be false when P(k) is true.
- This can be accomplished by assuming that P(k) is true and showing that *under this hypothesis* P(k + 1) must also be true.

Huan Jin, Heshan Du AE1MCS 31 / 39

### Mathematical Induction: Remark

In a proof by mathematical induction it is **not** assumed that P(k) is true for all positive integers!

It is only shown that if it is assumed that P(k) is true, then P(k+1) is also true.

### **Explanations about Mathematical Induction**

When we use mathematical induction to prove a theorem,

- $\blacksquare$  we first show that P(1) is true.
- Then we know that P(2) is true, because P(1) implies P(2).
- Further, we know that P(3) is true, because P(2) implies P(3).
- **...**

Continuing along these lines, we see that P(n) is true for every positive integer n.

# **Using Mathematical Induction**

- Mathematical induction can be used to prove statements of the form  $\forall n P(n)$ , where the domain is the set of positive integers.
- Mathematical induction can be used to prove an extremely wide variety of theorems, each of which is a statement of this form.
  - summation formulae, inequalities, identities for combinations of sets, divisibility results, theorems about algorithms, and some other creative results
  - the correctness of computer programs and algorithms

# Proving Summation Formulae: Examples

- Show that if *n* is a positive integer, then  $1 + 2 + ... + n = \frac{n(n+1)}{2}$ .
- Use mathematical induction to show that  $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} 1$  for all nonnegative integers n.
- Use mathematical induction to prove the inequality  $n < 2^n$  for all positive integers n.

# Strong Induction

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

Basis Step We verify that the proposition P(1) is true.

Inductive Step We show that the conditional statement

 $[P(1) \land P(2) \land ... \land P(k)] \rightarrow P(k+1)$  is true for all positive integers k.

# Strong Induction

- The difference between mathematical induction and strong induction is the inductive step.
  - Mathematical induction:  $\forall k (P(k) \rightarrow P(k+1))$ .
  - Strong induction:  $\forall k ((P(1) \land P(2) \land ... \land P(k)) \rightarrow P(k+1)).$
- Mathematical induction and strong induction are actually equivalent.
- This is, each can be shown to be a valid proof technique assuming that the other is valid.

### **Expected Learning Outcomes**

- To be able to understand different methods of proving theorems.
- To be able to apply different methods to construct proofs.

### Reading

Kenneth H. Rosen, *Discrete Mathematics and Its Applications*, 7th Edition, 2013.

- Chapter 1, Section 1.8. Introduction to Proofs
- Chapter 5, Section 5.1. Mathematical Induction
- Chapter 5, Section 5.2. Strong Induction