# Transport Layer Protocols (End-to-End Communication)

Presentation By:

Dr. Rakesh Rathi

Asst. Professor

Department of Computer Science and Engineering

Government Engineering College Ajmer

# The OSI Transport Layer Application APPLICATION Presentation DATA The Transport layer prepares Session application data for transport over the Transport network and processes network data for Transport use by applications. Network NETWORK DATA Data Link Physical

# Transport Layer Role and Services

- Transport layer offers end-to-end connection between two processes on remote hosts.
- Transport layer takes data from upper layer (i.e. Application layer) and their breaks it into smaller size of segments, numbers each segment, and hands over to lower layer (Network Layer) for delivery.
  - Service Point Addressing(Process-Process delivery)
- Segmentation and Reassembly
- Connection Control
- ✓ Flow Control(QoS) MUX & Demux
- = Error Control Error Checking and Recovery
- Congestion Control

## End-to-End Communication

A process on one host identifies its peer host on remote network by means of TSAPs (Transport Service Access Point) also known as Port numbers. TSAPs are very well defined and a process which is trying to communicate with its peer knows this in advance.

The transport layer is responsible for process-to-process delivery of the entire message.



Example Port Addressing IN SEC SOME SHE To: you@example.com From: me@example.com Subject: Email **化田田田五** Different **Applications Electronic Mail** Internet Chat **HTML Page** Protocols **Port Numbers** POP3 HTTP 1941 Application Application Application Data Data Data Transport Port Port Port 110 80 531 Data for different applications is directed to the correct application because each application has a unique port number. 200

| PORT       | TRANSPORT PROTOCOL | SERVICE NAME                                                                                     | RFC                 |     |
|------------|--------------------|--------------------------------------------------------------------------------------------------|---------------------|-----|
| 20, 21     | ТСР                | File Transfer Protocol (FTP)                                                                     | RFC 959             |     |
| 22         | TCP and UDP        | Secure Shell (SSH)                                                                               | RFC 4250-4256       |     |
| 23         | TCP                | Telnet                                                                                           | RFC 854             |     |
| 25         | TCP                | Simple Mail Transfer Protocol (SMTP)                                                             | RFC 5321            |     |
| 53         | TCP and UDP        | Domain Name Server (DNS)                                                                         | RFC 1034-1035       | -   |
| 67, 68     | UDP                | Dynamic Host Configuration Protocol (DHCP)                                                       | RFC 2131            | 1   |
| 69         | UDP                | Trivial File Transfer Protocol (TFTP)                                                            | RFC 1350            | W   |
| 80         | TCP                | HyperText Transfer Protocol (HTTP)                                                               | RFC 2616            |     |
| 110        | TCP                | Post Office Protocol (POP3)                                                                      | RFC 1939            |     |
| 119        | TCP                | Network News Transport Protocol (NNTP)                                                           | RFC 8977            | 40  |
| 123        | UDP                | Network Time Protocol (NTP)                                                                      | RFC 5905            | 160 |
| 135-139    | TCP and UDP        | NetBIOS                                                                                          | RFC 1001-1002       |     |
| 143        | TCP and UDP        | Internet Message Access Protocol (IMAP4)                                                         | RFC 3501            | d   |
| Q 161, 162 | TCP and UDP        | Simple Network Management Protocol (SNMP)                                                        | RFC 1901-1908, 3411 | Q   |
| b 179      | TCP                | Border Gateway Protocol (BGP)                                                                    | RFC 4271            | 6   |
| 389        | TCP and UDP        | Lightweight Directory Access Protocol                                                            | RFC 4510            | 0   |
| 443        | TCP and UDP        | HTTP with Secure Sockets Layer (SSL)                                                             | RFC 2818            | 100 |
| 500        | UDP                | Internet Security Association and Key Management Protocol (ISAKMP) / Internet Key Exchange (IKE) | RFC 2408 - 2409     |     |
| 636        | TCP and UDP        | Lightweight Directory Access Protocol over TLS/SSL (LDAPS                                        | RFC 4513            | 7   |
| 989/990    | TCP                | FTP over TLS/SSL                                                                                 | RFC 4217            |     |
| = 303/330  |                    |                                                                                                  | https://ipwithea    | 5 8 |



## The Two Main Transport Layer Protocols are:

- 1. Transmission Control Protocol (TCP)

  It provides reliable communication between two hosts.
- 2. User Datagram Protocol (UDP)

  It provides unreliable communication between two hosts.

### Applications Requirements Vary

• Because different applications have different requirements, there are multiple Transport layer protocols.

#### Transport Layer Role and Services

## Supporting Reliable Communication

Transport Layer Protocols



Application developers choose the appropriate Transport Layer protocol based on the nature of the application.

# Transmission Control Protocol TCP

#### Features

- TCP is reliable protocol. That is, the receiver always sends either positive or negative acknowledgement about the data packet to the sender, so that the sender always Ital
- acknowledgement about the data packet to the sender, so that the sender always in bright clue about whether the data packet is reached the destination or it needs resend it.

  TCP ensures that the data reaches intended destination in the same order it was sentenced. bright clue about whether the data packet is reached the destination or it needs
- TCP is connection oriented. TCP requires that connection between two remote point
  - be established before sending actual data.
  - TCP provides error-checking and recovery mechanism.
  - TCP provides end-to-end communication.
- TCP provides flow control and quality of service.
- TCP provides full duplex server, i.e. it can perform roles of both receiver and sender.

# Figure: TCP segment format

The length of TCP header is minimum 20 bytes and maximum 60 bytes.



Source Port (16-bits): It identifies source port of the application process on the sending device Destination Port (16-bits): It identifies destination port of the application process on the receiving device.

Sequence Number (32-bits): Sequence number of data bytes of a segment in a session.

Acknowledgement Number (32-bits): When ACK flag is set, this number contains the new sequence number of the data byte expected and works as acknowledgement of the previous received.

Header Length (4-bits): This field shows the size of TCP header including options and paddle (20-60 bytes). Value of header length vary between 0101 to 1111. It is work on scale of 4.

Reserved (6-bits): Reserved for future use and all are set zero by default.

Flags (1-bit each):

- o URG: It indicates that Urgent Pointer field has significant data and should be processed.
- o ACK: It indicates that Acknowledgement field has significance. If ACK is cleared to indicates that packet does not contain any acknowledgement.
- o PSH: When set, it is a request to the receiving station to PUSH data as soon as it comes the receiving application without buffering it.

o RST: Reset flag has the following features: ✓ It is used to refuse an incoming connection. ✓ It is used to reject a segment. ✓ It is used to restart a connection. o SYN: This flag is used to set up a connection between hosts. FIN: This flag is used to release a connection and no more data is exchanged thereafter. Because packets with SYN and FIN flags have sequence numbers, they are processed in correct order. Windows Size: This field is used for flow control between two stations and indicates amount of buffer (in bytes) the receiver has allocated for a segment, i.e. how much data is receiver expecting. Checksum: This field contains the checksum of Header, Data, and Pseudo Headers. Urgent Pointer: It points to the urgent data byte if URG flag is set to 1. Options: It facilitates additional options which are not covered by the regular header. Opt field is always described in 32-bit words. If this field contains data less than 32-bit, padding used to cover the remaining bits to reach 32-bit boundary. These options include Maxing segment size (MSS), Window scale, Selective acknowledgment (SACK), Timestamp measure the round-trip time (RTT) of every packet that is acknowledged).