$$(a+b)^{2} = (a+b)^{2} = (a+b$$

$$(a+b)^{n} = \binom{n}{a} a^{n} b^{0} + \binom{n}{1} a^{n-1} b^{1} + \cdots + \binom{n}{n} a^{n-1} b^{1} + \cdots + \binom{n}{n} a^{n-1} b^{n-1} b^{1} + \cdots + \binom{n}{n} a^{n-1} b^{n-1} b^{1} + \cdots + \binom{n}{n} a^{n-1} b^{n-1} b^$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n} = \sum_{k=0}^{\infty} \frac{1}{k!}$$

$$= \binom{n}{\delta} \binom{1}{1} \binom{1}{n} + \binom{n}{1} \binom{1}{n} + \binom{n}{2} \binom{1}{n} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{4!} + \frac{1}{3!} + \frac{1}{4!}$$

The sum of all the binomial coefficients add to
$$2^n$$
 fower x^2 x^4 $(x^2-\frac{1}{2})^6$: compute the 5th term $\frac{15}{4}$ $(x^2-\frac{1}{2})^6$: $(x^2-\frac{1}{2})^6$ $(x^2-\frac{1}{2}$

M. $M \subseteq \{n_1, (n_1, n_1) \subseteq \{n_2, \dots, (n_1, n_1) \subseteq \{n_3, \dots, n_1, \dots, n_1\} \subseteq \{n_1, \dots, n_1\} \subseteq \{n$

 $\frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_2! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot N_1! \cdot \dots \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot N_1! \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot N_1! \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot N_1! \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot N_1! \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot N_1! \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot N_1! \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot N_1! \cdot N_n} \right) \frac{1}{2} \left(\frac{N_1}{N_1! \cdot N_1! \cdot N_1!$