פרופ/ח' איל קושלביץ דרור רביץ

בחינה סופית תורת הסיבוכיות חורף תשס"א

הנחיות:

- 1. בטופס הבחינה 2 עמודים מלבד דף זה. ודאו כי כולם נמצאים בידכם.
 - 2. הבתינה עם תומר סגור.
 - 3. נמקו את כל תשובותיכם.
 - 4. התחילו כל תשובה בדף חדש.
- 5. בפתרון כל סעיף מותר להסתמך על טענות המופיעות בסעיפים קודמים.
 - 6. מומלץ לא "להתקע" זמן רב מדי על אף סעיף.
 - 7. משך הבחינה 3 שעות.

בהצלחה!

(שאלה 1 (30 נקודות)

שאלה זו עוסקת בזכרון לוגריתמי.

 $.\log ext{-space}$ א. הוכיחו ש-NL שלמה היא היא א הוכיחו ש-stcon. א. הוכיחו

ב. הוכיתו שהשפה (24%)

 $Estcon = \{(G, s, t, d) : d$ הוא בדיוק G ב t-ל s-ם ביותר מ-צר ביותר המסלול הקצר ביותר מ-צר ביותר מ-צר

 \log -space שלמה ביחס לרדוקציות-NL

תזכורת: שלמות ב-NL כוללת גם שייכות ל-NL.

שאלה 2 (20 נקודות)

עבור מחלקת שפות $\mathcal C$ שהשייכות אליה מוגדרת ע"ס מ"ט שרצות בזמן פולינומי נגדיר את $\mathcal C'$ ע"י כך שנרשה ריצה בזמן פולינומי בממוצע.

למשל, $L \in \operatorname{PP}'$ אם קיימת מ"ט M מטילת מטבעות שרצה בזמן פולינומי בממוצע כך שמתקיים:

$$x\in L$$
 \Rightarrow $\Pr[x$ את מקבלת $M]>rac{1}{2}$ $x
ot\in L$ \Rightarrow $\Pr[x$ את מקבלת $M]\leqrac{1}{2}$

:הבאות הבחלקות עבור המחלקות הבאות קבעו האם $\mathcal{C}' = \mathcal{C}$

BPP .x (10%)

PP ع. (10%)

(24) שאלה 3 (24) שאלה

תזכורת:

- סדרת מעגלים $\{C_n\}_{n\geq 0}$ נקראת ליום החידה אם קיימת מ"ט שעל הקלט $\{C_n\}_{n\geq 0}$ מוציאה כפלט את סדרת מעגלים בינות זימן.
- $L \in \mathrm{DTIME}(t(n))$ היא CVAL :Ladner שלמה ביחס לרדוקציות היא -P שלמה ביחס לעAL :Ladner פעפט יתן לממש את הרדוקציה בזמן ו $O(t^2(n)\log t(n))$

הוכיתו

- סדרת $C(n^{10})$ א. קיימת שפה באודל סדרת מעגלים ל-1 סדרת מעגלים באודל אחידים באודל ($O(n^{10})$ ואין ל-1 סדרת מעגלים (O(n)-זמן-אחידים באודל (
- O(n) סדרת מעגלים בגודל $O(n^{10})$ ואין ל-D סדרת מעגלים בגודל בגודל ($O(n^{10})$ ב. קיימת שפה ל-D סדרת מעגלים בגודל ($O(n^{10})$ ב. קיימת שפה ל- $D(n^{10})$

(שאלה 4 (26 נקודות)

תזכורת:

 $\operatorname{PCP}(r(n),q(n))$ היא הכללה של $\operatorname{PCP}_{c,s}(r(n),q(n))$ המחלקה

שאילתות כך q(n) אם אם קיים מוודא פולינומי שמשתמש ב-r(n) הטלות מטבע וואס קיים מוודא פולינומי שמשתמש ב- $L \in \mathrm{PCP}_{c,s}(r(n),q(n))$ שמתקיים:

- $\operatorname{Pr}_r[V(z,r,\pi_x)=\operatorname{acc}]\geq c$ לכל π_x הוכחה π_x הוכחה π_x
 - $\Pr_x[V(z,r,\pi_x)=\mathrm{acc}] \leq s$ מתקיים π_x מולכל הוכחה $x \notin L$ לכל •

 π_x שההוכחה אמגבלה למעט המגבלה את את בדומה למחלקה $\mathrm{PCP}_{c,s}(r(n),q(n))$ בדומה למחלקה $\mathrm{PCP}_{c,s}^p(r(n),q(n))$ למעט המגבלה שההוכחה גדיר את המחלקה ב-|x|.

$$\operatorname{PCP}^p_{\frac{3}{4},\frac{1}{4}}(\operatorname{poly},\operatorname{poly}) = \operatorname{MA}:$$
א. הוכיתו (6%)

$$.\mathrm{PCP}_{\frac{3}{4},\frac{1}{4}}(\mathrm{poly},\mathrm{poly})\subseteq\mathrm{NEXP}$$
:הוכיתו (10%)

בפחות: מיתן להוכיח שיוויון בסעיף הקודם, אבל נסתפק בפחות: (10%)

$$IP(2) \subseteq PCP(poly, poly)$$
 :הוכיתו