A rim hook rule for the equivariant quantum cohomology of the Grassmannian

Elizabeth Milićević Haverford College

joint work with Anna Bertiger (University of Waterloo) and Kaisa Taipale (University of Minnesota)

arXiv.org/1403.6218

Consider projective space \mathbb{P}^3 . Intersection theory is encoded by the cup product in *cohomology*.

Consider projective space \mathbb{P}^3 . Intersection theory is encoded by the cup product in *cohomology*. The cohomology of \mathbb{P}^3 has a basis indexed by the following *Young diagrams*:

whole space
$$= \emptyset$$
, plane $=$ ____, line $=$ _____, point $=$ _____

Consider projective space \mathbb{P}^3 . Intersection theory is encoded by the cup product in *cohomology*. The cohomology of \mathbb{P}^3 has a basis indexed by the following *Young diagrams*:

whole space
$$= \emptyset$$
, plane $=$ ____, line $=$ _____, point $=$ _____

These representations allow us to compute products as "box addition". Intuitively, think about intersections in 3D space.

Consider projective space \mathbb{P}^3 . Intersection theory is encoded by the cup product in *cohomology*. The cohomology of \mathbb{P}^3 has a basis indexed by the following *Young diagrams*:

whole space
$$= \emptyset$$
, plane $=$ ____, line $=$ _____, point $=$ _____

These representations allow us to compute products as "box addition". Intuitively, think about intersections in 3D space.

Consider projective space \mathbb{P}^3 . Intersection theory is encoded by the cup product in *cohomology*. The cohomology of \mathbb{P}^3 has a basis indexed by the following *Young diagrams*:

whole space
$$= \emptyset$$
, plane $=$ ____, line $=$ _____, point $=$ _____

These representations allow us to compute products as "box addition". Intuitively, think about intersections in 3D space.

Cohomology: The Algebra

The cohomology of the Grassmannian has a nice algebraic structure. The *Borel isomorphism* says that

$$H^*(Gr(k,n)) \cong \mathbb{Z}[e_1,\ldots,e_k]/\langle h_{n-k+1},\ldots,h_n\rangle$$

- e_i elementary symmetric polynomials
- h_i homogeneous symmetric polynomials
- in variables x_1, \ldots, x_k .

 $H^*(Gr(k,n))$ has a \mathbb{Z} -algebra basis of *Schubert classes* indexed by Young diagrams λ which fit inside a $k \times (n-k)$ box.

Cohomology: The Puzzle Rule

A completed puzzle with a unique filling:

In general, there may be either none or several. Each valid puzzle contributes a term to the product in $H^*(Gr(k, n))$.

The Rim Hook Rule

The Idea: Compute $QH^*(Gr(k,n))$ from $H^*(Gr(k,2n-k))$, where all products of $k \times (n-k)$ boxes "fit", and then remove rim hooks in exchange for the quantum parameter.

Example

To compute $\sigma_{\square} \star \sigma_{\square}$ in $QH^*(Gr(2,4))$, first compute the classical product in $H^*(Gr(2,6))$:

Then remove all possible 4-rim hooks, picking up a (signed) power of q for each rim hook removed. This gives

$$\sigma_{\square} \star \sigma_{\square} = q \sigma_{\square}$$

Equivariant Rim Hook Rule

Theorem (Bertiger, M-, Taipale)

The following algorithm gives quantum equivariant products in $QH_T^*(Gr(k,n))$:

- Take classical product of factorial Schur functions (do equivariant Littlewood-Richardson in "large enough" Grassmannian)
- In the quantum ideal, $\sigma_{\lambda} = (-1)^{\epsilon} q^{d} \sigma_{\nu}$ if we can remove d n-rimhooks from λ to get ν and the n-core $c(\nu)$ fits in $k \times (n-k)$ rectangle.
- Reduce equivariant coefficients by $t_i \mapsto t_{i \mod n}$
- Result gives quantum equivariant product of Schubert classes.

Cyclic Factorial Schur Polynomials

Symmetric function versions of the Peterson isomorphism:

$QH^*(G/B)$	$H_*(Gr_G)$
Schubert polynomials	k-Schur polynomials
$QH_T^*(G/B)$	$H_*^T(Gr_G)$
double Schubert polynomials	double k -Schur polynomials
$QH_T^*(Gr(k,n))$	$H_*^T(Gr_G)/J$
cyclic factorial Schurs	???