Towards an Efficient and Economic Deductive System of Matching Logic

FSL group

December 23, 2016

We aim for a Hilbert style deductive system which has a relatively large number of axioms but only a few inference rules.

- (K1) $P \rightarrow (Q \rightarrow P)$
- (K2) $(P \to (Q \to R)) \to ((P \to Q) \to (P \to R))$
- (K3) $(\neg P \rightarrow \neg Q) \rightarrow (Q \rightarrow P)$
- (K4) $\forall x.(P \to Q) \to (P \to \forall x.Q)$ if x does not occur free in P
- (K5) $\forall x.P \rightarrow P$ if x does not occur free in P
- (K6) $\forall x.P(x) \rightarrow P(y)$
- (K7) P = P
- (K8) $P_1 = P_2 \to (Q[P_1/x] \to Q[P_2/x])$
- (K9) $\exists y.Q = y \to (\forall x.P(x) \to P[Q/x])$ if Q is free for x in P

Inference rules include

- (Modus Ponens) From P and $P \to Q$, deduce Q.
- (Universal Generalization) From P, deduce $\forall x.P$.

Proposition 1 (Deduction Theorem). If $\Gamma \cup \{P\} \vdash Q$ and the proof does not use $\forall x$ -Generalization where x is free in P, then $\Gamma \vdash P \to Q$.