TRABAJO PRACTICO 4

PUNTO 1)

<u>Interpretación de la diferencia de medias:</u>

La tabla compara las medias de varias variables entre los conjuntos de datos **Train** (entrenamiento) y **Test** (prueba). Aquí están los puntos clave:

□Edad (edad2 y edad²)

- La edad promedio es prácticamente igual en ambos grupos (**Train: 38.93, Test: 38.96**), con una diferencia mínima de **-0.0389**.
- La edad al cuadrado (edad²) muestra una diferencia de -8.4292, lo que indica una ligera variación en la distribución de edades.

- El nivel educativo promedio es **ligeramente mayor** en el grupo de prueba (**Test:** 11.21 años, Train: 11.10 años).
- La diferencia de -0.1104 sugiere que el grupo de prueba tiene una leve ventaja en años de educación.

■Salario semanal (salario_semanal)

- La diferencia es **positiva** (**+4.7459**), lo que indica que los salarios semanales en el grupo de entrenamiento son ligeramente más altos que en el de prueba.
- Esto podría reflejar diferencias en el tipo de ocupaciones presentes en cada grupo.

- El grupo de prueba trabaja en promedio **0.25 horas más** por semana que el de entrenamiento.
- Esto podría influir en la diferencia de salarios y estabilidad laboral.

□Constante (constante)

• Sin diferencia entre los grupos (valor siempre **1.0**), lo que significa que esta variable es un ajuste fijo en el modelo.

Conclusión:

- ✓ Las edades son similares, lo que indica que los datos de entrenamiento y prueba están bien alineados.
- ✓ El grupo de prueba tiene mayor nivel educativo, lo que puede influir en la ocupación.
- ✓ Los salarios semanales son ligeramente más altos en el grupo de entrenamiento, lo que podría reflejar diferencias en el tipo de empleo.
- ✓ Las horas trabajadas son ligeramente superiores en el grupo de prueba, lo que también podría explicar las diferencias en ingresos.

	Train	Test	Diferencia
edad2	38.928960	38.967911	-0.038951
edad²	1776.11	1784.54	-8.429240
educ	11.10	11.21	-0.110473
salario_semanal	4080.86	4076.12	4.745960
horastrab	27.713192	27.964563	-0.251371
constante	1.000000	1.000000	0.000000

El MSE es:

Error cuadrático medio (MSE): 0.043284083672186766

Lo que indica un buen desempeño del modelo.

PUNTO 2)

Tabla 2. Estimación por regresión lineal de salarios usando la base de entrenamiento

Var. Dep: salario_semanal	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5
Variables	(1)	(2)	(3)	(4)	(5)
edad	35.38	268.53	261.27	261.17	247.63
edad2		-3.00	-2.93	-2.91	-2.78
educ			41.31	42.88	40.83
Mujer				-1399.77	-1260.28
horastrab					18.10
de socupado					-2811.83
N (observaciones) R^2					

Interpretación de la regresión lineal sobre salarios:

La tabla muestra los coeficientes estimados de cinco modelos de regresión lineal que explican el **salario semanal** en función de diversas variables.

Edad (edad) y edad al cuadrado (edad²)

- La edad tiene un efecto positivo en el salario en todos los modelos, pero su impacto disminuye cuando se incluyen más variables.
- La variable edad² tiene un coeficiente negativo, lo que indica que **el efecto de la edad en el salario es creciente hasta cierto punto, pero luego disminuye** (curva cuadrática).

Educación (educ)

- La educación tiene un impacto positivo en el salario en todos los modelos, con coeficientes cercanos a **40-42 unidades**.
- Esto confirma que mayor educación está asociada con mayores ingresos.

∑Género (Mujer)

- Ser mujer tiene un efecto negativo en el salario, con coeficientes entre -1260 y 1399.
- Esto sugiere una **brecha salarial de género**, donde las mujeres ganan menos que los hombres en promedio.

Horas trabajadas (horastrab)

 Cada hora adicional trabajada aumenta el salario en 18.10 unidades, lo que indica que el tiempo de trabajo es un factor clave en la determinación del salario.

©Condición de desocupado (desocupado)

• Ser desocupado tiene un impacto negativo en el salario, con un coeficiente de - 2811.83, lo que indica que las personas que han estado desocupadas tienen menores ingresos cuando consiguen empleo.

Conclusión:

- ✓ La edad influye en el salario, pero con un efecto decreciente a largo plazo.
- √ La educación es un factor clave para mejorar los ingresos.
- ✓ Existe una brecha salarial de género, con menores ingresos para las mujeres.
- ✓ Las horas trabajadas tienen un impacto positivo en el salario.
- ✓ La desocupación previa afecta negativamente los ingresos futuros.

Punto 3)

MSE test: 67448245.9736

RMSE test: 8212.6881

MAE test: 4728.3698

No logré reducir sus valores, pero evidentemente es un valor sobredimensionado.

Punto 5)

Regresión Logística

[[11420 1178] # TP = 11420, FN = 1178

[1463 4207]] # FP = 1463, TN = 4207

- ✓ 11420 ocupados fueron correctamente clasificados como ocupados (TP).
- ✓ 4207 desocupados fueron correctamente clasificados como desocupados (TN).
- ▲ 1178 ocupados fueron mal clasificados como desocupados (FN).
- ▲ 1463 desocupados fueron mal clasificados como ocupados (FP).

♦ KNN

[[11504 1094] # TP = 11504, FN = 1094

[738 4932]] # FP = 738, TN = 4932

- ✓ 11504 ocupados fueron correctamente clasificados como ocupados (TP).
- √ 4932 desocupados fueron correctamente clasificados como desocupados
 (TN).
- ▲ 1094 ocupados fueron mal clasificados como desocupados (FN).
- ⚠ 738 desocupados fueron mal clasificados como ocupados (FP).

Conclusión: KNN tiene menos errores (FN y FP), clasificando mejor los desocupados en comparación con la Regresión Logística.

⊠Curva ROC y AUC

- ✓ La curva ROC muestra la capacidad del modelo para distinguir entre ocupados y desocupados.
- ✓ AUC (Área Bajo la Curva) indica qué tan bien el modelo separa las clases.

✓ AUC Logit: 0.94 □
 ✓ AUC KNN: 0.95 □

Conclusión: Ambos modelos tienen buen desempeño, pero KNN logra una ligera ventaja.

EPrecisión General

✓ Regresión Logística: 86%

✓ KNN: 90%

Conclusión: KNN es más preciso en general. Si el objetivo es minimizar errores en desocupados, KNN parece ser la mejor opción.

Resumen Final

- ♦ KNN tiene mejor rendimiento que la Regresión Logística.
- ♦ La diferencia en la matriz de confusión y la precisión favorece a KNN.
- ♦ Si buscas más interpretabilidad, la Regresión Logística sigue siendo útil, pero KNN parece más preciso.

Punto 6)

Los resultados fueron:

Predicciones: [1 1 1 ... 1 1 1]

La proporción estimada de desocupados en 'norespondieron' es: 93.47%

(probablemente pudo venir un error en la definición de las variables ya que me parece un numero sobredimensionado, pero considero correcta la metodología que tomé).