

Vinyl acetal polymer and its application

Publication number: CN1495205

Publication date: 2004-05-12

Inventor: TAKESHI KUSUDOU (JP); YOSUKE KUMAKI (JP);
NAOKI FUJIWARANO (JP)

Applicant: KURARAY CO (JP)

Classification:

- international: C08F8/28; C08F8/00; (IPC1-7): C08F116/38

- European: C08F8/28

Application number: CN20031050278 20030723

Priority number(s): JP20020214094 20020723

Also published as:

EP1384731 (A1)

US6992130 (B2)

US2004024137 (A1)

EP1384731 (B1)

DE60302726T (T2)

[more >>](#)

[Report a data error](#)

Abstract not available for CN1495205

Abstract of corresponding document: **EP1384731**

The invention provides a polyvinyl acetal having a degree of acetalization of from 45 to 80 mol%, which is obtained through acetalization of a polyvinyl alcohol that contains from 1 to 15 mol% of alpha -olefin unit and has a 1,2-glycol bond content of from 1 to 3 mol%, a degree of polymerization of from 100 to 2000 and a degree of hydrolysis of from 80.0 to 99.99 mol%. The polyvinyl acetal has good waterproofness and good compatibility with plasticizer. Having the advantages, it is favorable for interlayer films for laminated glass, binders for ceramic forming, binders for ink or paint, and coating liquids for thermally-developable photographic materials.

Data supplied from the **esp@cenet** database - Worldwide

另外，聚乙烯醇缩丁醛类聚合物被广泛用作汽车或建筑物的窗玻璃用的夹层玻璃的中间膜，但是，近年来，对提高夹层玻璃的性能的要求日益增高。例如，夹层玻璃在高湿度的条件下被长时间曝光时，水自夹层玻璃的端部浸入，由于与增塑剂的相溶性的不匹配等而产生所谓的泛白的问题。为了解决该问题，提出过种种提案，例如并用特殊的硅离子（特开平7-314609号公报等），和使用三甘醇二异辛酸酯等（WO 00/18698号）作为增塑剂等。并且，在使用三甘醇二异辛酸酯等作为增塑剂时，如同在特表2001-515527号公报等中公开的那样，存在现有的聚乙烯醇缩丁醛类聚合物仅能在非常有限的组成范围内使用的问题。

作为夹层玻璃的中间膜，使用由α-烯烃改性的聚乙烯醇缩丁醛类聚合物这一提案在特开昭63-79741号公报等中有揭示。但在当时的技术水平下，没有考虑到上面指出的问题，所以现在的情况是上述问题尚未得到改善。

聚乙烯醇缩丁醛类聚合物在陶瓷成型用粘合剂的领域，例如，在制造陶瓷层压电容器或陶瓷电子回路基板的过程中，被用作成型用粘合剂，其中，其在作为制造陶瓷印刷电路基板时的粘合剂深受欢迎。

特别是近年来，随着便携式电话、笔记本型电脑等的精密电气设备等对小型化和轻量化的需求，对用于其中的电气电子部件也产生了小型化和高性能化的要求。

例如，对陶瓷层压电容器而言，所期望的是小型大容量的电容器，尝试使电极部分或陶瓷部分的厚度更薄，并实现大容量化，因此，陶瓷印刷电路基板的薄膜化成为重要的技术课题。在进行这种薄膜化的过程中，虽然有必要使用粒径小的陶瓷粉体作为原料，但陶瓷粉体的粒径一旦小粒子化后，则会由于陶瓷粉体的表面积增大，易于发生凝聚而容易在陶瓷印刷电路基板的表面上生成凹凸，难以得到均匀的陶瓷印刷电路基板，会产生基板经薄膜化后的强度降低等问题。

这些问题特别是随着近年来的电气电子部件的小型化和轻量化的发展而日益明显。虽然在如特开昭63-79752号公报等中揭示了使用α-烯烃改性的聚乙烯醇缩醛类聚合物的例子，但在当时的技术水平下，没

有考虑到上面指出的问题，所以现在的情况是上述问题尚未得到改善。乙烯醇类聚合物在涂料领域内是用作汽车用的涂料、烧花瓷釉、预涂底漆、洗涤底漆、粘着剂漆、焦油或烟碱上的绝缘层、塑料用的涂料、硝酸纤维漆、纸清漆等。另外，使用低溶液粘度的乙烯醇作为印刷包装材料时使用的印刷油墨的粘合剂。这些印刷油墨由于对有机质基体和无机质基体的粘着性优良，适用于印刷聚烯烃薄膜、金属箔、醋酸纤维素薄膜、聚酰胺薄膜和聚苯乙烯薄膜。

特别是近年来，由于需要使印刷机以高速运转的场合增多，为了实现印刷机的高速运转，为了实现印刷机的高速运转，希望印刷油墨在规定的粘度内有高的颜料含有率，而且即使在印刷成形涂膜厚度薄的情况下，颜色的强度大也是必要的。一般来说，为使印刷油墨的颜料含有率增高，降低其溶液粘度是重要的。为了降低印刷油墨的溶液粘度，虽然可考虑使用低聚合度的乙烯基缩醛类聚合物，但在使用通过对完全皂化的乙烯醇类聚合物进行缩醛化而制造的低聚合度的乙烯基缩醛类聚合物的情况下，乙烯基缩醛类聚合物的水溶液容易发生凝胶化，存在不能提高颜料含有率等问题。

为了解决这些问题，提出过一些提案，例如使用由具有特定的水解度的乙烯醇类聚合物制造的聚乙烯醇缩丁醛类聚合物的方法（特开平11-349889号公报）、使用具有1-烷基乙烯基醇单元和1-烷基醋酸乙烯酯单元的乙烯醇类聚合物作为原料的乙烯基缩醛类聚合物的方法（特表2000-503341号公报）等。然而，按照这些方法，虽对上述问题取得了某种程度的改善效果，但未必达到了令人满意的效果。

另外，热显影性感光材料与已有的使用卤化银的湿式方式的感光材料相比，由于显影用的处理工艺简洁，没有残余的化学废液生成，因此特别是在医疗领域中的X射线照相等中具有实际的用途。热显影性感光材料是通过使用乙烯基缩醛类聚合物等的制膜性结合材料，将卤化银涂布在塑料膜等支持体上制得，其中的卤化银催化性地接触于有机银盐、还原剂和有机银离子。

这些热显影性感光材料在该热显影性感光材料的制造中所用的涂布

加工液的保存稳定性、热显影性感光材料显影时的敏感度，以及在显影后的图像的保存稳定性等上存在问题，至此，提出过使用含有特定的离子基的乙烯基缩醛类聚合物的方法（特开2001-222089号公报）、组合使用由2种特定的聚合度组成的乙烯基缩醛类聚合物的方法（特开2002-201215号公报）等。但是，现在的情况是根据这些方法仍难以完全改善上述问题。

本发明的目的是提供一种在维持现有的特长的基础上，提高耐水性并且改善与增塑剂的相溶性的乙烯基缩醛类聚合物，使用其的玻璃用中间膜、使用该玻璃用中间膜的夹层玻璃、陶瓷成型用粘合剂、油墨或塑料用粘合剂，以及热显影性感光材料。

本发明者们为完成上述课题进行了深入的研究，结果发现了通过使用以特定的乙烯醇类聚合物作为原料的乙烯基缩醛类聚合物可以完成上述课题，从而完成了本发明。

即，本申请的第一个发明是缩醛化程度为45~80mol%的乙烯基缩醛类聚合物，其是将含有1~15mol%的α-烯烃单元、1,2-乙二醇连接含有量为1~3mol%、聚合度为100~2000、皂化度为80.0~99.99mol%的乙烯醇类聚合物进行缩醛化而得到的。

本申请的第2个发明是安全玻璃用中间膜，其是以将含有1~15mol%的α-烯烃单元、1,2-乙二醇连接含有量为1~3mol%、聚合度为100~2000、皂化度为80.0~99.99mol%的乙烯醇类聚合物进行缩醛化而得到的，缩醛化程度为45~80mol%的乙烯基缩醛类聚合物作为主要成分。

本申请的第3个发明是使用第2个发明的安全玻璃用中间膜的夹层玻璃。

另外，本申请的第4个发明是陶瓷成型用粘合剂，其是由将含有1~15mol%的α-烯烃单元、1,2-乙二醇连接含有量为1~3mol%、聚合度为100~2000、皂化度为80.0~99.99mol%的乙烯醇类聚合物进行缩醛化而得到的，缩醛化程度为45~80mol%的乙烯基缩醛类聚合物组成。

本申请的第5个发明是油墨或涂料用粘合剂，其是由将含有1~

15mol%的α-烯烃单元、1,2-乙二醇连接含有量为1~3mol%、聚合度为100~2000、皂化度为80.0~99.99mol%的乙烯醇类聚合物进行缩醛化而得到的，缩醛化程度为45~80mol%的乙烯基缩醛类聚合物组成。

另外，本申请的第6个发明是热显影性感光材料，其是由将含有1~15mol%的α-烯烃单元、1,2-乙二醇连接含有量为1~3mol%、聚合度为100~2000、皂化度为80.0~99.99mol%的乙烯醇类聚合物进行缩醛化而得到的，缩醛化程度为45~80mol%的乙烯基缩醛类聚合物组成。

本发明的乙烯基缩醛类聚合物是通过对含有特定比例的α-烯烃单元和1,2-乙二醇，并且规定了聚合度和皂化度的乙烯醇类聚合物进行缩醛化而得到，因此，其更加兼具亲水性和疏水性，不但耐水性优良，而且与增塑剂的相溶性也优良。

本发明的夹层玻璃用中间膜通过使用这样的乙烯基缩醛类聚合物作为主要成分，具有优良的与夹层玻璃的粘合性以及夹层玻璃端部的耐泛白性。

通过使用本发明的陶瓷成型用粘合剂，在陶瓷印刷电路基板的薄膜化中，即使在使用粒径小的陶瓷粉体作为原料的情况下，也可以均匀地制造出强度大的陶瓷印刷电路基板。

通过使用本发明的油墨或涂料用粘合剂，可以在溶液粘度低的基础上，固形成分比率高（颜料含有率高）、具有很好的油墨分散性的油墨或涂料。

本发明的热显影性感光材料在该热显影性感光材料的制造时用的涂布液的保存稳定性、显影时的敏感度，以及显影后的图像的保存稳定性上是优良的。

在本发明中，乙烯基缩醛类聚合物是通过将含有1~15mol%的α-烯烃单元、1,2-乙二醇含有量为1~3mol%、聚合度为100~2000、皂化度为80.0~99.99mol%的乙烯醇类聚合物进行缩醛化而制得。

在制造本发明的乙烯基缩醛类聚合物中使用的乙烯醇类聚合物（以下简称为“PVA”）要求其聚合度在100~2000的范围内。PVA的聚合度

使用表 17 和 18 中所示的乙烯基缩醛类聚合物 (VAP-26a、VAP-35a、VAP-19b、VAP-29b 和 VAP-30b)，与实施例 52 同样地按照以下方法进行涂布加工液的保存稳定性以及热显影性感光材料的热显影性和显影后的画像稳定性的评价。评价结果示于表 30 中。

【表 30】

实施例	使用乙烯基缩醛类聚合物	涂布加工液的保存稳定性	热显影性	画像稳定性
实施例 62	VAP-26a	A	A	A
实施例 63	VAP-35a	A	A	B
实施例 47	VAP-19b	D	D	D
实施例 48	VAP-29b	D	B	B
实施例 49	VAP-30b	B	C	D

由表 29 和表 30 所示的结果可以看出，在使用本发明的乙烯基缩醛类聚合物时，可以调制出保存稳定性优良的热显影性感光材料用涂布加工液，并且由该涂布加工液可以得到热显影性和显影后的画像稳定性良好的热显影性感光材料。特别是使用 1,2-乙二醇连接的含有量满足前述的式(1)、并且，羧酸和内酯环的含有量满足前述的式(2)的乙烯基缩醛类聚合物 (VAP-25a、VAP-27a、VAP-30a 和 VAP-26a) 时，热显影性感光材料用涂布加工液的保存稳定性以及热显影性感光材料的热显影性和显影后的画像稳定性非常平衡优良。

另一方面，在使用本发明的范围以外的乙烯基缩醛类聚合物调制热显影性感光材料用涂布加工液时，可以看出热显影性感光材料用涂布加工液的保存稳定性以及热显影性感光材料的热显影性和显影后的画像稳定性中的任何一个都显著地劣化。

本发明的乙烯基缩醛类聚合物与现有的乙烯基缩醛类聚合物相比，除了具有优良的耐水性外，特别是与增塑剂的相容性优良。

在使用本发明的乙烯基缩醛类聚合物所得到的夹层玻璃用中间膜与夹层玻璃的粘合性优良，并且所得的夹层玻璃的端部的耐泛白性优良。

在使用本发明的乙烯基缩醛类聚合物作为陶瓷成型用粘合剂时，可制造出表面状态良好、且强度优良的陶瓷印刷电路基板。

在使用本发明的乙烯基缩醛类聚合物作为油墨或涂料用粘合剂时，可制造出除了溶液粘度低外，固形成分比率高（颜料含有率高）的具有充分的油墨分散性的油墨或涂料。这样得到的油墨或涂料具有在用于印刷的油墨所期望的粘度的高颜料含有率，在由印刷形成的涂膜的厚度即使薄的情况下，由于具备色强度大等优点，可使用于高速运转的印刷机。

在使用本发明的乙烯基缩醛类聚合物作为热显影性感光材料时，热显影性和显影后的画像稳定性优良，并且在热显影性感光材料的制造时调制的涂布加工液具有优良的保存稳定性。

以上虽用较佳的实施方式进行了说明，但本领域技术人员应当能够容易地从本说明书中揭示的范围内作出种种变更和修正。但这些变更和修正当在本发明权利要求的范围内得到揭示。

定的颜料含有量作为 1.0 时的比率(倍)表示。

比较例 34~36

对用表 18 所示的乙烯基缩醛类聚合物(VAP-19b、VAP-29b 和 VAP-30b) 得到的颜料分散液与实施例 39 同样地测定颜料分散液的粘度和颜料分散液中的颜料含有量。测定结果示于表 26。颜料含有量是以将比较例 34 中测定的颜料含有量作为 1.0 时的比率(倍)表示。

【表 26】

实施例	使用乙烯基缩醛类聚合物	流出时间(秒)	颜料含有量(倍)
实施例 49	VAP-26a	16	2.8
实施例 50	VAP-35a	22	1.5
比较例 34	VAP-19b	35	1
比较例 35	VAP-29b	30	1.1
比较例 36	VAP-30b	29	1.1

实施例 51 和比较例 37

对用表 17 和 18 所示的乙烯基缩醛类聚合物(VAP-29a 和 VAP-24b) 得到的颜料分散液与实施例 39 同样地合成乙烯基缩醛类聚合物，求出缝隙流出时间和颜料分散液中的颜料含有量。其结果示于表 27。颜料分散液中的颜料含有量是以将比较例 37 中测定的颜料含有量作为 1.0 时的比率(倍)表示。

【表 27】

实施例	使用乙烯基缩醛类聚合物	流出时间(秒)	颜料含有量(倍)
实施例 51	VAP-29a	12	1.6
比较例 37	VAP-24b	18	1

比较例 38 和 39

对用表 18 所示的乙烯基缩醛类聚合物(VAP-23b 和 VAP-24b) 得

(涂布加工液的保存稳定性)

将涂布加工液在 25℃ 下在室内的荧光灯的照射下放置 1 周，按以下基准目测评价其着色的程度。

- A: 完全无变化
- B: 仅有极少量的变化，但处于几乎没有问题的水平
- C: 辨认出很少量的着色
- D: 辨认出相当程度的着色

(热显影性)

用板涂布器将涂布加工液涂布在聚对苯二甲酸乙二醇酯上、干燥，使得干燥后的涂膜厚度为 8 μm。将由 0.4 重量份的 N, N'-二甲基对苯胺、硫酸铅、2 重量份的聚乙烯吡咯烷酮和 30 重量份的甲醇组成的溶液进行同样的涂布、干燥，使得干燥后的涂膜厚度为 1.5 μm，得到热显影性感光材料。

用所得的热显影性感光材料通过次第图案(階調バターン) 薄膜，在距离 250 瓦的高压水银灯 25cm 的距离开始，曝光 0.5mm 秒后，使之与加热到 125℃ 的金属板接触 4 秒钟显影。热显影性的状态按以下基准通过目视评价。

- A: 无覆盖层，鲜明度高
- B: 辨认出有轻微的覆盖层，鲜明度比较好
- C: 辨认出有覆盖层，鲜明度差
- D: 覆盖层多，鲜明度很差

(显影后的图像的稳定性)

将所得的显影有的图像在白色灯中暴露 1 周时的图像稳定性按照以下的基准由目视评价。

- A: 没有辨认出图像图案对比度的杂乱
- B: 虽辨认出图像图案对比度有轻微的杂乱，但比较好
- C: 在图像图案对比度上发生杂乱
- D: 在图像图案对比度上发生很大的杂乱

实施例 53~61 和比较例 40~46

到的颜料分散液与实施例 39 同样地合成乙烯基缩醛类聚合物，求出缝隙流出时间和颜料分散液中的颜料含有量。其结果示于表 28。颜料分散液中的颜料含有量是以将比较例 38 中测定的颜料含有量作为 1.0 时的比率(倍)表示。

【表 28】

实施例	使用乙烯基缩醛类聚合物	流出时间(秒)	颜料含有量(倍)
比较例 38	VAP-23b	11	1
比较例 39	VAP-24b	12	1

由表 25~28 所示的结果可以看出，在使用本发明的乙烯基缩醛类聚合物用作油墨和涂料用粘合剂时所得到的颜料分散液具有低粘度，并且颜料含有量高。特别是 1, 2-乙二醇连接的含有量满足前述的式(1)、并且，羧酸和内酯环的含有量满足前述的式(2)的乙烯基缩醛类聚合物(VAP-25a、VAP-27a、VAP-30a、VAP-26a 和 VAP-29a) 的降低颜料分散液的粘度，并且提高颜料含有量的效果非常优良。

另一方面，在使用本发明的范围以外的乙烯基缩醛类聚合物用作油墨和涂料用粘合剂时，不能得到低粘度，并且颜料含有量高的颜料分散液。

实施例 52

(热显影性感光材料用涂布加工液的调制)

将 10 重量份乙烯基缩醛类聚合物(VAP-25a)、11 重量份的山嵛酸银、85 重量份的甲基异丁基酮用球磨机在室温下混合 12 小时后，加入 0.3 重量份的 N-月桂基-1-羟基-2-萘酰胺，再次用球磨机在室温下混合 12 小时后，得到涂布加工液。

对所得的涂布加工液按以下方法评价其保存稳定性。另外，对用该涂布加工液得到的热显影性感光材料用下方法评价热显影性和显影后的图像稳定性。评价结果示于表 29 中。

使用表 17 和 18 中所示的乙烯基缩醛类聚合物(VAP-27a、VAP-28a、VAP-30a~34a、VAP-36a、VAP-37a、VAP-18b、VAP-21b、VAP-22b 和 VAP-25b~VAP-28b)，与实施例 52 同样地按照以下方法进行涂布加工液的保存稳定性以及热显影性感光材料的热显影性和显影后的图像稳定性的评价。评价结果示于表 29 中。

【表 29】

实施例	使用乙烯基缩醛类聚合物	涂布加工液的保存稳定性	热显影性	图像稳定性
实施例 52	VAP-25a	A	A	A
实施例 53	VAP-27a	A	A	A
实施例 54	VAP-28a	B	B	A
实施例 55	VAP-30a	A	A	A
实施例 56	VAP-31a	B	B	A
实施例 57	VAP-32a	A	B	B
实施例 58	VAP-33a	A	B	B
实施例 59	VAP-34a	A	A	B
实施例 60	VAP-36a	B	A	A
实施例 61	VAP-37a	B	B	A
比较例 40	VAP-18b	D	D	D
比较例 41	VAP-21b	B	C	D
比较例 42	VAP-22b	①)	①)	①)
比较例 43	VAP-25b	C	D	D
比较例 44	VAP-26b	D	D	D
比较例 45	VAP-27b	D	B	B
比较例 46	VAP-28b	B	C	D

1) 由于没有得到乙烯基缩醛类聚合物，无法评价

实施例 62、63 和比较例 47~49

苯二甲酸乙二醇酯薄膜(PET 薄膜)上涂布，在 105℃下干燥 5 分钟后，通过从 PET 薄膜上脱膜得到厚 5 μm 的陶瓷印刷电路基板。

对所得的陶瓷印刷电路基板按以下方法评价表面的状态，并按以下方法测定强度。评价结果和测定结果示于表 23。

(陶瓷印刷电路基板表面的状态)

用光学显微镜观察陶瓷印刷电路基板的表面状态，根据以下基准进行评价

A：无由空隙或凝聚粒子产生的凹凸，均质。

B：没有空隙，辨认出有由极少量的凝聚粒子产生的凹凸。

C：同时辨认出由空隙或凝聚粒子产生的凹凸。

(陶瓷印刷电路基板的强度)

将陶瓷印刷电路基板冲击出 40mm × 100mm 的孔，用岛津制的自动记录仪 DCS-100 测定印刷电路基板的刚度（检测间隔：30mm、拉伸速度 10mm/min、测定温度 20℃）。将对 1 个样品进行 5 次测定的平均值作为刚度值。求出当设定比较例 19 中得到的刚度值为 1.0 时的比率(倍数)。实施例 30~38

对将表 15 中所示的乙烯基缩醛类聚合物得(VAP-16a~VAP-24a)用于陶瓷成型用粘合剂时的陶瓷印刷电路基板进行与实施例 29 同样的评价陶瓷印刷电路基板表面的状态以及测定陶瓷印刷电路基板的强度。评价结果和测定结果示于表 23。

【表 23】

实施例	使用乙烯基缩醛类聚合物	陶瓷印刷电路基板表面的状态	陶瓷印刷电路基板的强度
实施例 29	VAP-15a	A	1.8
实施例 30	VAP-16a	B	1.4
实施例 31	VAP-17a	B	1.3
实施例 32	VAP-18a	B	1.4
实施例 33	VAP-19a	B	1.4
实施例 34	VAP-20a	B	1.3
实施例 35	VAP-21a	A	1.7
实施例 36	VAP-22a	A	1.7
实施例 37	VAP-23a	B	1.3
实施例 38	VAP-24a	A	1.4

比例 19~26

对将表 16 中所示的乙烯基缩醛类聚合物得(VAP-10b~VAP-17b)用于陶瓷成型用粘合剂时的陶瓷印刷电路基板进行与实施例 29 同样的评价陶瓷印刷电路基板表面的状态以及测定陶瓷印刷电路基板的强度。评价结果和测定结果示于表 24。

【表 24】

比较例	使用乙烯基缩醛类聚合物	陶瓷印刷电路基板表面的状态	陶瓷印刷电路基板的强度
比较例 19	VAP-10b	C	1.0
比较例 20	VAP-11b	D	0.9
比较例 21	VAP-12b	C	1.1
比较例 22	VAP-13b	C	1.2
比较例 23	VAP-14b	C	1.2
比较例 24	VAP-15b	C	0.9
比较例 25	VAP-16b	C	0.8
比较例 26	VAP-17b	C	1.2

1)由于没有得到乙烯基缩醛类聚合物，无法评价

由表 23 所示结果可看出，在使用本发明的乙烯基缩醛类聚合物用作陶瓷成型用粘合剂时所得到的陶瓷印刷电路基板的板表面的状态良好，

并且在板的强度上也优良。特别是将 1, 2-乙二醇连接的含有量满足前述的式(1)、并且，羧酸和内酯环的含有量满足前述的式(2)的乙烯基缩醛类聚合物(VAP-15a、VAP-21a、VAP-22a 和 VAP-24a)用作陶瓷成型用粘合剂时所得到的陶瓷印刷电路基板的板表面的状态和板的强度都非常优良。

另一方面，由所示结果可看出，在使用本发明的范围以外的乙烯基缩醛类聚合物用作陶瓷成型用粘合剂时所得到的陶瓷印刷电路基板的板表面的状态差。

实施例 39

(颜料分散液的调制)

调制几个种类的固形成分浓度不同的乙烯基缩醛类聚合物(VAP-25a)的乙醇溶液，这些溶液的流出时间用 DIN 4mm 缝隙(DIN 53211 / 23℃)测定后，调节浓度使得流出时间为 20 秒，调制这样的乙烯基缩醛类聚合物(VAP-25a)的乙醇溶液 400g。向该乙醇溶液中添加 100g 的颜料(hostapern Blue B 2G)，将该混合物均质化，用玻璃珠变冷却变碾磨 30 分钟后，用筛分离玻璃珠，调制颜料分散液。

对所得颜料分散液按以下方法测定颜料分散液的粘度和颜料分散液中含有的颜料的量。测定结果示于表 25。

(颜料分散液的粘度：缝隙流出时间)

颜料分散液的流出时间用 DIN 6mm 缝隙(DIN 53211 / 23℃)测定。

(颜料分散液中的颜料含有量)

对于缝隙流出时间的测定的颜料分散液用乙醇稀释，使其在 23℃ 的赫普勒粘度为 10mPa·s，计算出该溶液中所含的颜料含有量。颜料含有量是以将比较例 27 中测定的颜料含有量作为 1.0 时的比率(倍数)表示。

实施例 40~48

对用表 17 所示的乙烯基缩醛类聚合物(VAP-27a、VAP-28a、VAP-30a~VAP-34a、VAP-36a 和 VAP-37a)得到的颜料分散液与实施例 39 同样地测定颜料分散液的粘度和颜料分散液中的颜料含有量。测定

结果示于表 25。颜料含有量是以将比较例 27 中测定的颜料含有量作为 1.0 时的比率(倍)表示。

比较例 27~33

对用表 18 所示的乙烯基缩醛类聚合物(VAP-18b、VAP-21b、VAP-22b 和 VAP-25b~VAP-28b)得到的颜料分散液与实施例 39 同样地测定颜料分散液的粘度和颜料分散液中的颜料含有量。测定结果示于表 25。颜料含有量是以将比较例 27 中测定的颜料含有量作为 1.0 时的比率(倍)表示。

【表 25】

实施例	使用乙烯基缩醛类聚合物	流出时间(秒)	颜料含有量(倍)
实施例 39	VAP-25a	10	2.9
实施例 40	VAP-27a	12	2.3
实施例 41	VAP-28a	13	1.9
实施例 42	VAP-30a	14	1.9
实施例 43	VAP-31a	18	1.4
实施例 44	VAP-32a	12	1.7
实施例 45	VAP-33a	13	1.4
实施例 46	VAP-36a	14	1.6
实施例 47	VAP-37a	16	1.7
实施例 48	VAP-34a	16	1.4
比较例 27	VAP-18b	25	1
比较例 28	VAP-21b	22	1
比较例 29	VAP-22b	D	D
比较例 30	VAP-25b	28	0.8
比较例 31	VAP-26b	26	0.9
比较例 32	VAP-27b	24	1.1
比较例 33	VAP-28b	23	1.1

1)由于没有得到乙烯基缩醛类聚合物，无法评价

实施例 49 和 实施例 50

对用表 17 所示的乙烯基缩醛类聚合物(VAP-26a 和 VAP-35a)得到的颜料分散液与实施例 39 同样地测定颜料分散液的粘度和颜料分散液中的颜料含有量。测定结果示于表 26。颜料含有量是以将比较例 34 中测

【表 19】

实施例	使用乙烯基缩醛类聚合物	平衡含水率 (%)	吸水率 (%)	增塑剂的相溶性
实施例 1	VAP-1a	4.0	6.5	A
实施例 2	VAP-2a	3.7	6.1	A
实施例 3	VAP-3a	4.5	6.9	A
实施例 4	VAP-4a	4.2	6.6	A
实施例 5	VAP-5a	4.9	7.2	B
实施例 6	VAP-6a	3.9	6.4	B
实施例 7	VAP-7a	4.3	6.8	B
实施例 8	VAP-8a	3.5	6.0	A
实施例 9	VAP-9a	4.5	7.0	B
实施例 10	VAP-10a	4.2	6.8	B
实施例 11	VAP-11a	4.9	7.3	B
实施例 12	VAP-12a	5.3	7.8	B
实施例 13	VAP-13a	6.0	8.5	B
实施例 14	VAP-14a	3.2	3.3	A

比较例 1~9

对于表 14 中所示的乙烯基缩醛类聚合物 (VAP-1b~VAP-9b)，与实施例 1 同样地测定平衡含水率和吸水率，并且评价乙烯基缩醛类聚合物与增塑剂的相溶性。测定结果和评价结果示于表 20。

【表 20】

比较例	使用乙烯基缩醛类聚合物	平衡含水率 (%)	吸水率 (%)	增塑剂的相溶性
比较例 1	VAP-1b	5.8	10.5	C
比较例 2	VAP-2b
比较例 3	VAP-3b	5.3	9.7	C
比较例 4	VAP-4b	4.3	7.2	C
比较例 5	VAP-5b	5.1	9.8	C
比较例 6	VAP-6b
比较例 7	VAP-7b	7.3	13.6	C
比较例 8	VAP-8b	15.2	28.5	C
比较例 9	VAP-9b	2.6	2.8	C

1) 由于没有得到乙烯基缩醛类聚合物，无法评价

100	0
90	1
85	2
60	3
40	4
20	5
10	6
5	7
2 以下	8

实施例 16~28

对于使用表 13 所示的乙烯基缩醛类聚合物 (VAP-2a~VAP-14a) 的夹层玻璃用中间膜，与实施例 15 同样对夹层玻璃周缘部的泛白的状态和增塑化薄膜的对玻璃基板的粘合性进行评价，评价结果示于表 21。

【表 21】

实施例	使用乙烯基缩醛类聚合物	周缘部的泛白的状态	锤击值
实施例 15	VAP-1a	A	8
实施例 16	VAP-2a	A	8
实施例 17	VAP-3a	A	8
实施例 18	VAP-4a	A	7
实施例 19	VAP-5a	B	7
实施例 20	VAP-6a	B	8
实施例 21	VAP-7a	B	8
实施例 22	VAP-8a	A	8
实施例 23	VAP-9a	B	7
实施例 24	VAP-10a	B	7
实施例 25	VAP-11a	B	6
实施例 26	VAP-12a	B	7
实施例 27	VAP-13a	B	7
实施例 28	VAP-14a	A	7

比较例 10~18

对于使用表 14 所示的乙烯基缩醛类聚合物 (VAP-1b~VAP-9b) 时

由表 19 所示的结果可以看出，适合于本发明的乙烯基缩醛类聚合物的平衡含水率和吸水率低，与增塑剂的相溶性优良。特别是 1, 2-乙二醇连接的含有量满足前述的式 (1)、并且，羧酸和内酯环的含有量满足前述的式 (2) 的乙烯基缩醛类聚合物 (VAP-1a~VAP-4a、VAP-8a 和 VAP-14a) 除了平衡含水率和吸水率低以外，与增塑剂的相溶性非常优良。

实施例 15 (夹层玻璃的制造)

在实施例 1 的与增塑剂的相溶性评价中用的增塑化薄膜的制造中，除了在乙烯基缩醛类聚合物 (VAP-1a) 中加入相对其的 50ppm 的醋酸镁以外，同样地得到厚度为 0.6mm 的增塑化薄膜。将所得的增塑化薄膜夹在 2 块玻璃板 (后 2.5mm、宽 300mm、长 300mm) 之间，放入橡胶垫圈，在 15mmHg 减压下脱气 15 分钟，在 100°C 的条件下进行 20 分钟真空加压，进行临时粘合后，取出橡胶垫圈，用高压釜在约 130°C 的温度下、1.5MPa 的压力实施真粘合 15 分钟。这样得到的夹层玻璃，对夹层玻璃周缘部的泛白状态按以下的方法进行评价，并对增塑化薄膜的对玻璃板的粘合性用锤击值 (パンメル値) 评价。评价结果示于表 21。

(夹层玻璃周缘部的泛白状态)

将夹层玻璃在 80°C、95%RH 的氛围气中放置 1 个月后，测定端部的泛白距离，即，泛白距离是测定自夹层玻璃的端部开始连续泛白部分的距离作为泛白距离，按照以下基准评价泛白状态。

A：自端部开始的泛白距离小于 1mm

B：自端部开始的泛白距离大于 1mm，小于 5mm

C：自端部开始的泛白距离大于 5mm

(锤击值)

将夹层玻璃在 -80°C 的温度下放置 1 小时后，用头部重量为 1 磅的锤打击，将其粉碎成玻璃的粒径为 6mm 以下。振落碎裂的玻璃片，增塑化薄膜的露出度 (%) 按以下基准评价锤击值。锤击值越大，表示增塑化薄膜的对玻璃基板的粘合性良好。

增塑化薄膜的露出度 (%) 锤击值

1) 由于没有得到乙烯基缩醛类聚合物，无法评价

的夹层玻璃用中间膜，与实施例 15 同样对夹层玻璃周缘部的泛白的状态和增塑化薄膜的对玻璃基板的粘合性进行评价，评价结果示于表 21。

【表 22】

比较例	使用乙烯基缩醛类聚合物	周缘部的泛白的状态	锤击值
比较例 10	VAP-1b	C	3
比较例 11	VAP-2b
比较例 12	VAP-3b	C	4
比较例 13	VAP-4b	C	5
比较例 14	VAP-5b	C	6
比较例 15	VAP-6b
比较例 16	VAP-7b	C	5
比较例 17	VAP-8b	C	3
比较例 18	VAP-9b	C	6

1) 由于没有得到乙烯基缩醛类聚合物，无法评价

由表 21 所示的结果可以看出，由本发明的乙烯基缩醛类聚合物制得的夹层玻璃用中间膜其夹层玻璃端部的耐泛白性和与玻璃板的粘合性优良。特别是由 1, 2-乙二醇连接的含有量满足前述的式 (1)、并且，羧酸和内酯环的含有量满足前述的式 (2) 的乙烯基缩醛类聚合物 (VAP-1a~VAP-4a、VAP-8a 和 VAP-14a) 制造的夹层玻璃用中间膜其夹层玻璃端部的耐泛白性和与玻璃板的粘合性非常优良。

另一方面，如表 22 所示的结果可以看出，由本发明的范围以外的乙烯基缩醛类聚合物得到的夹层玻璃用中间膜，特别是夹层玻璃端部的耐泛白性显著不好。

实施例 29

(陶瓷印刷电路基板的制造)

将 100 份的作为陶瓷粉体的平均粒径为 0.2 μ m 的钛酸钡粉体、10 份的乙烯基缩醛类聚合物 (VAP-15a)、3 份的作为增塑剂的邻苯二甲酸二辛酯、和 60 份作为溶剂的甲苯、以及 60 份异丙醇与 500 份ジルコニア 7 制的纱球 (直径 2mm) 一并由球磨机混合、粉碎 16 小时后，在减压下脱泡处理，调制陶瓷浆液。该陶瓷浆液通过刮刀片法在脱膜用的聚对

【表 14】

乙烯基缩醛类聚合物	使用 PVA	醛的种类	醛的使用量 (g)	缩醛化程度 (mol%)
VAP-1b	PVA-1b	丁醛	271	70.3
VAP-2b	PVA-2b	- ¹⁾	- ¹⁾	- ¹⁾
VAP-3b	PVA-3b	丁醛	172	70.9
VAP-4b	PVA-4b	丁醛	277	70.8
VAP-5b	PVA-5b	丁醛	281	72.5
VAP-6b	PVA-6b	- ¹⁾	- ¹⁾	- ¹⁾
VAP-7b	PVA-7b	丁醛	271	69.6
VAP-8b	PVA-8b	丁醛	155	40.5
VAP-9b	PVA-9b	丁醛	321	82.5

1) 由于 PVA 没有完全溶解于水中, 无法得到乙烯基缩醛类聚合物

【表 15】

乙烯基缩醛类聚合物	使用 PVA	醛的种类	醛的使用量 (g)	缩醛化程度 (mol%)
VAP-15a	PVA-12a	丁醛	285	72.5
VAP-16a	PVA-13a	丁醛	280	71.5
VAP-17a	PVA-14a	丁醛	263	67.8
VAP-18a	PVA-15a	丁醛	255	65.8
VAP-19a	PVA-16a	丁醛	266	68.2
VAP-20a	PVA-17a	丁醛	287	73.6
VAP-21a	PVA-18a	丁醛	271	69.4
VAP-22a	PVA-19a	丁醛	238	67.4
VAP-23a	PVA-18a	丁醛	222	56.2
VAP-24a	PVA-18a	丁醛	312	79.4

37

【表 16】

乙烯基缩醛类聚合物	使用 PVA	醛的种类	醛的使用量 (g)	缩醛化程度 (mol%)
VAP-10b	PVA-8b	丁醛	280	71.9
VAP-11b	PVA-9b	- ¹⁾	- ¹⁾	- ¹⁾
VAP-12b	PVA-10b	丁醛	170	69.7
VAP-13b	PVA-11b	丁醛	275	70.9
VAP-14b	PVA-12b	丁醛	275	70.5
VAP-15b	PVA-13b	丁醛	275	70.4
VAP-16b	PVA-18a	丁醛	160	40.3
VAP-17b	PVA-18a	丁醛	324	82.4

1) 由于 PVA 没有完全溶解于水中, 无法得到乙烯基缩醛类聚合物

【表 17】

乙烯基缩醛类聚合物	使用 PVA	醛的种类	醛的使用量 (g)	缩醛化程度 (mol%)
VAP-25a	PVA-20a	丁醛	242	68.5
VAP-26a	PVA-21a	丁醛	254	66.9
VAP-27a	PVA-22a	丁醛	254	67.8
VAP-28a	PVA-23a	丁醛	269	67.8
VAP-29a	PVA-24a	丁醛	247	62.5
VAP-30a	PVA-25a	丁醛	223	65.2
VAP-31a	PVA-26a	丁醛	272	71.5
VAP-32a	PVA-27a	丁醛	239	62.3
VAP-33a	PVA-28a	丁醛	227	60.8
VAP-34a	PVA-29a	丁醛	269	72.5
VAP-35a	PVA-30a	丁醛	288	75.3
VAP-36a	PVA-20a	丙醛	204	67.3
VAP-37a	PVA-20a	丁醛	216	56.2

38

【表 18】

乙烯基缩醛类聚合物	使用 PVA	醛的种类	醛的使用量 (g)	缩醛化程度 (mol%)
VAP-18b	PVA-14b	丁醛	255	68.9
VAP-19b	PVA-15b	丁醛	259	67.3
VAP-20b	PVA-16b	丁醛	247	63
VAP-21b	PVA-17b	丁醛	167	68.8
VAP-22b	PVA-18b	- ¹⁾	- ¹⁾	- ¹⁾
VAP-23b	PVA-19b	丁醛	259	69.8
VAP-24b	PVA-20b	丁醛	257	69.6
VAP-25b	PVA-17b	丙醛	202	67.5
VAP-26b	PVA-20a	丁醛	155	41.2
VAP-27b	PVA-21b	丁醛	255	68.7
VAP-28b	PVA-22b	丁醛	255	68.4
VAP-29b	PVA-23b	丁醛	265	69.2
VAP-30b	PVA-24b	丁醛	265	67.9

1) 由于 PVA 没有完全溶解于水中, 无法得到乙烯基缩醛类聚合物

将乙烯基缩醛类聚合物 (VAP-1a) 在 230℃、20MPa 的条件下加压 5 分钟, 制成厚度为 200 μm 的薄膜, 用以下的测定方法测定平衡含水率和吸水率。测定结果示于表 19。

(平衡含水率)

将薄膜在 20℃、90%RH 的氛围气中放置 2 周, 由放置前后的薄膜的重量变化测定平衡含水率。即, 平衡含水率用下式计算出。

平衡含水率 (%) = (放置后的薄膜的重量 - 放置前的薄膜的重量) / 放置前的薄膜的重量 × 100

(吸水率)

将薄膜在 20℃ 的蒸馏水中浸渍 24 小时, 用纱布完全拭去后, 由浸渍前后的薄膜的重量变化测定吸水率。即, 吸水率用下式计算出。

吸水率 (%) = (浸渍后的薄膜的重量 - 浸渍前的薄膜的重量) / 浸渍前的薄膜的重量 × 100

乙烯基缩醛类聚合物 (VAP-1a) 与增塑剂的相溶性用以下方法评价,

评价结果示于表 19。

(与增塑剂的相溶性)

相对于 100 份的乙烯基缩醛类聚合物 (VAP-1a), 加入 40 份的三甘醇二异辛酸酯进行增塑, 在 70℃ 进行 5 分钟的滚动搅拌, 进一步在 170℃、5MPa 的条件下加压, 制成厚度为 0.6mm 的增塑化薄膜。预先测定增塑化薄膜的重量 (初期的重量), 然后将测定了重量后的增塑化薄膜在 30℃、80%RH 的氛围气中放置 2 周, 用纱布完全拭去表面渗出的增塑剂, 在五氧化二磷的存在下在干燥器中放置两周, 测定重量 (试验后的重量) 按下式求出试验前后的增塑化薄膜的重量变化率, 按以下基准评价与增塑性的相溶性。

重量变化率 (%) = (初期的重量 - 试验后的重量) / 初期的重量 × 100

判断基准

A: 重量变化率小于 1%

B: 重量变化率大于 1%, 小于 3%

C: 重量变化率大于 3%

对于表 13 中所示的乙烯基缩醛类聚合物 (VAP-2a~VAP-14a), 与实施例 1 同样地测定平衡含水率和吸水率, 并且评价乙烯基缩醛类聚合物与增塑剂的相溶性。测定结果和评价结果示于表 19。

【表 7】

PVA	α -烯烃	改性量 (mol%)	聚合度	皂化度 (mol%)	1,2-乙二醇量 (mol%)	羧酸和内酯环量 (mol%)
PVA-1a	乙烯	5	1520	98.5	1.45	0.041
PVA-2a	乙烯	5	1520	95.6	1.45	0.041
PVA-3a	乙烯	3	1510	98.4	1.7	0.053
PVA-4a	乙烯	3	1510	93.7	1.7	0.53
PVA-5a	乙烯	5	1490	98.6	1.45	1
PVA-6a	乙烯	5	1530	98.3	1.23	0.025
PVA-7a	丙稀	2	1520	98.8	1.49	0.021
PVA-8a	乙烯	7	1550	98.3	1.42	0.043
PVA-9a	乙烯	5	1480	98.7	2.5	0.041
PVA-10a	乙烯	5	1480	92.6	2.5	0.041
PVA-11a	乙烯	5	1470	98.5	1.45	3

【表 8】

PVA	α -烯烃	改性量 (mol%)	聚合度	皂化度 (mol%)	1,2-乙二醇量 (mol%)	羧酸和内酯环量 (mol%)
PVA-1b	无	0	1550	98.5	1.52	0.038
PVA-2b	乙烯	17	1450	98.2	1.26	0.022
PVA-3b	乙烯	5	1520	75.2	1.52	0.041
PVA-4b	乙烯	5	1560	98.9	0.93	0.032
PVA-5b	乙烯	5	1480	98.2	3.2	0.041
PVA-6b	乙烯	8	2300	98.5	1.4	0.024
PVA-7b	无	0	1470	98.5	1.52	3

【表 9】

PVA	α -烯烃	改性量 (mol%)	聚合度	皂化度 (mol%)	1,2-乙二醇量 (mol%)	羧酸和内酯环量 (mol%)
PVA-12a	乙烯	3	1010	98.8	1.48	0.053
PVA-13a	乙烯	3	970	98.7	2.24	0.127
PVA-14a	乙烯	3	1050	98.5	1.15	0.041
PVA-15a	乙烯	6.5	990	98.3	1.42	2
PVA-16a	乙烯	6.5	1040	98.4	1.01	0.022
PVA-17a	丙稀	3	1000	98.5	1.48	0.045
PVA-18a	乙烯	6.5	1020	98.5	1.42	0.073
PVA-19a	乙烯	6.5	1020	93.2	1.42	0.073

【表 10】

PVA	α -烯烃	改性量 (mol%)	聚合度	皂化度 (mol%)	1,2-乙二醇量 (mol%)	羧酸和内酯环量 (mol%)
PVA-8b	无	0	1050	98.6	1.52	0.075
PVA-9b	乙烯	17	980	98	1.26	0.043
PVA-10b	乙烯	6.5	1020	75.2	1.42	0.073
PVA-11b	乙烯	6.5	1080	98.5	0.82	0.032
PVA-12b	乙烯	6.5	970	98.5	3.3	0.075
PVA-13b	无	0	1000	98.5	1.52	3

【表 11】

PVA	α -烯烃	改性量 (mol%)	聚合度	皂化度 (mol%)	1,2-乙二醇量 (mol%)	羧酸和内酯环量 (mol%)
PVA-20a	乙烯	5	200	96	1.45	0.07
PVA-21a	乙烯	5	550	97.3	1.45	0.05
PVA-22a	乙烯	9	200	96.5	1.39	0.04
PVA-23a	乙烯	5	200	99.5	1.45	0.005
PVA-24a	乙烯	10	130	99.1	1.37	0.1
PVA-25a	乙烯	5	200	91.5	1.45	0.5
PVA-26a	丙稀	3	200	97.2	1.48	0.03
PVA-27a	乙烯	12	200	97.3	1.34	3
PVA-28a	乙烯	12	200	96.5	1.34	6
PVA-29a	乙烯	5	200	96	2.5	0.07
PVA-30a	乙烯	5	550	97.3	2.5	0.05

【表 12】

PVA	α -烯烃	改性量 (mol%)	聚合度	皂化度 (mol%)	1,2-乙二醇量 (mol%)	羧酸和内酯环量 (mol%)
PVA-14b	无	0	200	96	1.52	0.1
PVA-15b	无	0	550	97.5	1.52	0.08
PVA-16b	无	0	130	99.1	1.52	0.12
PVA-17b	乙烯	5	200	75	1.45	0.07
PVA-18b	乙烯	20	200	95.8	1.22	0.03
PVA-19b	乙烯	5	70	96.2	1.45	0.2
PVA-20b	乙烯	0	70	95.7	1.52	0.24
PVA-21b	乙烯	5	200	96	0.84	0.03
PVA-22b	乙烯	5	550	97.3	3.2	0.07
PVA-23b	乙烯	5	550	97.3	0.84	0.03
PVA-24b	乙烯	5	550	97.3	3.2	0.05

【表 13】

乙烯基缩醛类聚合物	使用 PVA	醛的种类	醛的使用量 (g)	缩醛化程度 (mol%)
VAP-1a	PVA-1a	丁醛	271	70.5
VAP-2a	PVA-2a	丁醛	264	72.5
VAP-3a	PVA-3a	丁醛	275	71.2
VAP-4a	PVA-4a	丁醛	254	72.6
VAP-5a	PVA-5a	丁醛	284	73.4
VAP-6a	PVA-6a	丁醛	266	68.9
VAP-7a	PVA-7a	丁醛	273	70.1
VAP-8a	PVA-8a	丁醛	270	69.5
VAP-9a	PVA-9a	丁醛	280	71.5
VAP-10a	PVA-10a	丁醛	252	72.5
VAP-11a	PVA-11a	丁醛	290	75.3
VAP-12a	PVA-1a	丙醛	246	78.9
VAP-13a	PVA-1a	丁醛	217	56.2
VAP-14a	PVA-1a	丁醛	310	79.1

【表5】

PVA	Vac (kg)	MeO H (kg)	α -烧结 (MPa)	初期表压 (MPa)	最终表压 (MPa)	α -烧结以外的共聚单体			乙烧结 聚合度 (%)	乙烧结 聚合度 (%)	NaOH 浓度 (%)	NaOH 摩尔比 (%)	
						单体的种类 类 ¹⁾	初期添加量 g	总添加量 g					
PVA-20a	42.2	107.5	乙烧	0.18	0.02	无	—	—	AMV	5340	60	5	70
PVA-21a	78.5	71	乙烧	0.33	0.22	无	—	—	AMV	1820	60	5	50
PVA-22a	53	95.1	乙烧	0.45	0.13	无	—	—	AMV	7280	60	5	70
PVA-23a	28.9	107.8	乙烧	0.08	0.01	VC	64.4	64.4	AMV	9210	40	5	70
PVA-24a	41.9	107.6	乙烧	0.41	0.03	无	—	—	AMV	15860	60	6	85
PVA-25a	42.2	107.5	乙烧	0.18	0.02	MMA	24.9	200.3	AMV	7400	60	5	70
PVA-26a	33.6	116.3	丙烯	0.14	0.08	无	—	—	AMV	1120	60	4	40
PVA-27a	53.3	96.4	乙烧	0.61	0.29	IA	75.7	1645	AMV	7250	60	5	65
PVA-28a	53.3	96.4	乙烧	0.61	0.29	IA	154	3396	AMV	8520	60	5	65
PVA-29a	42.2	107.5	乙烧	0.18	0.02	VC	44.8	44.8	AMV	6140	60	5	70
PVA-30a	78.5	71	乙烧	0.33	0.22	VC	832	832	AMV	2050	60	5	50

1) VC: 丙烯酸乙酯；MMA: 甲基丙烯酸甲酯；IA: 丙烯酸正丙酯
2) AMV: 2,2'-偶氮二(4-甲基苯-2,4-二甲基戊酸)
附录

29

1) IA: 丙烯酸
2) AMV: 2,2'-偶氮二(4-甲基苯-2,4-二甲基戊酸)；AIBN: 2,2'-偶氮二(异丁腈)
丁酮

附录

【表6】

PVA	Vac (kg)	MeO H (kg)	α -烧结 (MPa)	初期表压 (MPa)	最终表压 (MPa)	α -烧结以外的共聚单体			乙烧结 聚合度 (%)	乙烧结 聚合度 (%)	NaOH 浓度 (%)	NaOH 摩尔比 (%)	
						单体的种类 类 ¹⁾	初期添加量 g	总添加量 g					
PVA-14b	31.5	118.5	无	—	—	无	—	—	AMV	13600	60	6	75
PVA-15b	67.5	92.5	无	—	—	无	—	—	AMV	10100	60	5	65
PVA-16b	22.5	127.5	无	—	—	无	—	—	AMV	24070	60	7	85
PVA-17b	42.2	107.5	乙烧	0.18	0.02	无	—	—	AMV	5140	60	5	70
PVA-18b	63.6	86	乙烧	1.11	0.64	无	—	—	AMV	8450	60	5	65
PVA-19b	20.5	129.1	乙烧	0.05	0.01	无	—	—	AMV	35800	60	8	90
PVA-20b	15	135	无	—	—	无	—	—	AMV	30870	60	8	90
PVA-21b	15.5	134.5	乙烧	0.01	0.01	无	—	—	NPP	28970	0	8	70
PVA-22b	42.2	107.5	乙烧	0.18	0.02	VC	752	1645	AMV	6550	60	5	50
PVA-23b	32.5	117.8	乙烧	0.02	0.01	无	—	—	NPP	18550	0	8	60
PVA-24b	78.5	71	乙烧	0.33	0.22	VC	1398	1398	AMV	2630	60	5	50

1) AMV: 丙烯酸乙酯；NPP: 丙烯酸正丙酯/N,N-二甲基苯胺=1/1

2) AMV: 2,2'-偶氮二(4-甲基苯-2,4-二甲基戊酸)

1) VC: 丙烯酸乙酯；NPP: 丙烯酸正丙酯/N,N-二甲基苯胺=1/1

31

PVA	Vac (kg)	MeOH (kg)	α -烧结 (MPa)	初期表压 (MPa)	最终表压 (MPa)	α -烧结以外的共聚单体			乙烧结 聚合度 (%)	乙烧结 聚合度 (%)	NaOH 浓度 (%)	NaOH 摩尔比 (%)	
						单体的种类 类 ¹⁾	初期添加量 g	总添加量 g					
PVA-4b	8.5	64.5	无	—	—	无	—	—	AMV	900	60	4	50
PVA-5b	134	15.5	Z烧	—	—	无	—	—	AMV	1750	60	5	40
PVA-6b	109.9	39.8	Z烧	0.37	0.49	无	—	—	AMV	1100	60	5	40
PVA-7b	54.9	95.1	Z烧	0.22	0.17	IA	0.34	1.5	NPP	2560	0	3	10
PVA-8b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-9b	37	63	无	—	—	IA	12.2	1700	AMV	1350	60	4	40

1) IA: 丙烯酸；VC: 丙烯酸乙酯
2) AMV: 2,2'-偶氮二(4-甲基苯-2,4-二甲基戊酸)

30

PVA	Vac (kg)	MeOH (kg)	α -烧结 (MPa)	初期表压 (MPa)	最终表压 (MPa)	α -烧结以外的共聚单体			乙烧结 聚合度 (%)	乙烧结 聚合度 (%)	NaOH 浓度 (%)	NaOH 摩尔比 (%)	
						单体的种类 类 ¹⁾	初期添加量 g	总添加量 g					
PVA-10b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-11b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-12b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-13b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-14b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-15b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-16b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-17b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-18b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-19b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-20b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-21b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-22b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-23b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-24b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40

1) IA: 丙烯酸；VC: 丙烯酸乙酯
2) AMV: 2,2'-偶氮二(4-甲基苯-2,4-二甲基戊酸)

31

PVA	Vac (kg)	MeOH (kg)	α -烧结 (MPa)	初期表压 (MPa)	最终表压 (MPa)	α -烧结以外的共聚单体			乙烧结 聚合度 (%)	乙烧结 聚合度 (%)	NaOH 浓度 (%)	NaOH 摩尔比 (%)	
						单体的种类 类 ¹⁾	初期添加量 g	总添加量 g					
PVA-25b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-26b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-27b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-28b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-29b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-30b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-31b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-32b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-33b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-34b	109.6	39.8	Z烧	0.37	0.49	VC	216	—	AMV	1450	60	5	40
PVA-35b	109.6	39.8	Z烧	0.37	0.49	VC	21						

0.1~5g/m², 更优选为0.3~3g/m²。涂布加工液的涂布量低于0.1g/m²时, 显影后的图像的浓度降低, 而当其大于5g/m²时, 显影后的图像的浓度不会提高。

对涂布涂有加工液的支持体没有特别的限制, 例如, 含有聚对苯二甲酸乙二醇酯、聚对苯二甲酸乙二醇酯等的聚脂类; 聚碳酸酯等的碳酸酯类; 聚乙烯、聚丙烯等的烯烃类; 三乙酸纤维素酯、二乙酸纤维素酯等的纤维素类; 聚乙烯基缩醛等的缩醛类; 聚氯乙烯、氯化聚丙稀等的含卤素的聚合物等的树脂制薄膜、铝等的金属板、玻璃、纸等。

在热显影性感光材料中也可以加入色调剂作为其他的添加剂。为了形成黑色图像, 加入黑色色调剂, 为了形成彩色图像, 加入彩色填充剂、隐色染料等。在热显影性感光材料中也可根据需要加入光敏感剂。

本发明的乙烯基缩醛类聚合物除了发挥其特长用作夹层玻璃用中间膜、陶瓷成型用粘合剂、油墨或涂料用粘合剂、热显影性感光材料等的用途外, 其作为含在漆中的成分使用, 或适用于与尿素系树脂、三聚氯胺系树脂和环氧系树脂等进行交联反应。

实施例

以下, 用实施例对本发明进行更详细的说明, 但并非用于限制本发明。在以下的实施例和比较例中, “份”和“%”若没有特别说明均表示重量基准。

[PVA 的分析方法]

PVA 的分析方法若没有特别说明, 是按照 JIS-K6726 中记载的方法进行。

含在 PVA 中的 α-烯烃单体的量、羧酸和内酯环的含有量、以及 1, 2-乙二醇结合的含有量, 按照前述的方法, 使用 500MHz 的质子 NMR 测定装置 (JEOL GX-500) 求出。

[乙烯基缩醛类聚合物的分析方法]

乙烯基缩醛类聚合物的缩醛化程度, 用 500MHz 的质子 NMR 测定装置 (JEOL GX-500) 对溶解在 DMSO-d₆ 中的样品进行测试而求出。

合成例

(PVA 的合成)

向具备搅拌机、氮气导入口、引发剂添加口和延迟溶液的添加口的 250L 的加压反应槽中加入 124.4kg 的醋酸乙烯酯、25.5kg 的甲醇, 升温到 60℃后进行 30 分钟的氮气鼓泡, 用氮气对体系进行置换。然后导入乙烯使反应槽内的压力变为 0.48MPa。将 2, 2'-偶氮二(4-甲基基-2, 4-二甲基戊腈) 作为引发剂溶解到甲醇中, 调制成浓度为 2.8g/L 的溶液, 向其中通过氮气鼓泡进行氮气置换。将上述反应槽内温度调整到 60℃后, 注入上述的引发剂溶液 90ml, 开始聚合。在聚合中维持聚合温度在 60℃, 并以 280ml/h 的速度连续添加上述引发剂溶液进行聚合。经过 4 小时后, 当聚合度变为 40% 时, 冷却反应槽、停止聚合。并且, 在聚合时缓缓降低反应槽的压力, 使得聚合结束时刻的反应槽的压力降低到 0.44MPa。停止聚合后, 开放反应槽脱乙烯后, 用氮气鼓泡进行完全的脱乙烯。然后, 向聚合后的反应液中导入甲醇蒸气以赶出未反应的醋酸乙烯酯单体, 获得含有 40% 的乙烯酯类聚合物的甲醇溶液。

使用含有 40% 的乙烯酯类聚合物的甲醇溶液, 向其中按顺序加入适量的甲醇、含 10 重量% 的氢氧化钠的甲醇溶液, 在 40℃下开始进行皂化反应。并且, 皂化反应开始时的乙烯酯类聚合物的固形分浓度为 30 重量%。含 10 重量% 的氢氧化钠的甲醇溶液的添加是在搅拌下进行, 氢氧化钠的添加量与醋酸乙烯酯单元的摩尔比为 0.02。对开始氢氧化钠的甲醇溶液的添加约 2 分钟后所得到的凝胶化物用粉碎器粉碎, 在 40℃下放置 1 小时进行皂化后, 加入乙酸甲酯中和残存的碱。用酚酞指示剂确认中和终点后, 过滤白色的 PVA 固体。向所得到的 PVA 固体中加入 5 倍量的甲醇, 通过在室温下放置 3 小时的操作来洗净 PVA 固体。反复进行 3 次上述洗净操作后, 将用离心法脱液的 PVA 放入干燥机中, 在 70℃下放置 1 天进行干燥。这样得到了 (PVA-1a)。

除了反应条件按表 1~6 中所示的内容发生变化以外, 与 PVA-1a 同样地合成各种 PVA (PVA-2a~PVA-30a, 以及 PVA-1b~PVA-24b)。对各 PVA 的分析值于表 7~表 12。

PVA	VAc MeOH (kg)	α-烯烃 (kg)	初期单压 (MPa)	单体的种类及所添加量 (g)	α-烯烃以外的共聚单体		引发剂 总添加量 (g)	引发剂 总添加量 (ml)	聚合温度 (℃)	聚合时间 (h)	聚合度 (%)	乙端基量 NaOH 摩尔比 (%)	
					无	无							
PVA-1a	124.4	23.5	乙烯	0.48	0.44	无	—	AMV	1210	60	4	40	
PVA-1b	134.4	23.5	乙烯	0.48	0.44	无	—	AMV	1210	60	4	40	
PVA-1c	130.5	19.1	Z-烯	0.39	0.37	无	—	AMV	510	80	4	40	
PVA-1d	130.5	19.3	乙烯	0.39	0.37	无	—	AMV	610	80	4	40	
PVA-1e	124.4	23.5	乙烯	0.48	0.44	IA	510	753	AMV	1510	60	4	40
PVA-1f	124.4	23.5	乙烯	0.48	0.44	IA	510	753	AMV	1510	60	4	40
PVA-1g	94.8	44.9	Z-烯	0.32	0.3	无	—	AMV	690	40	3	20	
PVA-1h	127.5	22.5	丙烯	0.3	0.27	无	—	AMV	630	60	3	20	
PVA-1i	130.8	19.1	Z-烯	0.48	0.44	无	—	AMV	1360	60	4	40	
PVA-1j	124.4	23.5	乙烯	0.48	0.44	VC	1260	1260	AMV	1510	60	4	40
PVA-1k	124.4	23.5	乙烯	0.48	0.44	VC	1260	1260	AMV	1510	60	4	40
PVA-1l	124.4	23.5	乙烯	0.48	0.44	MMA	510	2610	AMV	1630	60	4	40
PVA-1m	124.4	23.5	乙烯	0.48	0.44	MMA	510	2610	AMV	1630	60	4	40

1) IA: 丙烯; 2) Z-烯: (4-甲基基-2-丙烯基)丙烯; MDA: 马来酸单甲酯

2) AMV: 2,2'-偶氮二(4-甲基基-2,4-二甲基戊腈)

PVA	VAc H MeOH (kg)	初期单压 (MPa)	单体的种类及所添加量 (g)	α-烯烃以外的共聚单体		引发剂 总添加量 (g)	引发剂 总添加量 (ml)	聚合温度 (℃)	聚合时间 (h)	聚合度 (%)	乙端基量 NaOH 摩尔比 (%)		
				无	无								
PVA-1b	102	48	无	—	—	AMV	810	60	4	40	30		
PVA-2b	144.1	58.5	乙烯	1.56	1.55	无	—	AMV	250	60	2	10	
PVA-3b	124.4	25.5	乙烯	0.48	0.44	无	—	AMV	1210	60	4	40	
PVA-4b	75.3	24.7	Z-烯	0.14	0.12	MMA	9.3	NPP	1850	10	3	20	
PVA-5b	124.4	25.5	乙烯	0.48	0.44	VC	2150	2150	AMV	1680	60	4	40
PVA-6b	148	2	乙烯	0.83	0.83	无	—	AMV	400	60	3	20	
PVA-7b	105	45	无	—	—	MMA	456	2256	AMV	1250	60	4	40

1) MMA: 丙烯酸甲酯; VC: 丙烯酸乙酯

2) AMV: 2,2'-偶氮二(4-甲基基-2,4-二甲基戊腈), NPP: (对碘酰正丙酮)N,N-二甲基苯甲酰胺

110℃的温度下预粘合，然后，用高压釜在约120~150℃的温度下，以约1~1.5MPa的压力进行真粘合，得到夹层玻璃。

可用于夹层玻璃的玻璃板没有特别的限制，例如可以列举出，浮动板（フロート板）玻璃、磨光板玻璃、模版玻璃、加网板玻璃、加线板玻璃、热线吸收板玻璃、着色板玻璃等的无机透明玻璃板、聚碳酸酯板、聚甲基丙烯酸甲酯板等得到有机透明玻璃板等。

用本发明的乙烯基缩醛类聚合物作为陶瓷成型用粘合剂，在成型陶瓷粉体时通常使用有机溶剂，另外，此时也可并用增塑剂。作为有机溶剂，例如，甲醇、乙醇、异丙醇、正丙醇、丁醇等的醇类；甲基溶纤剂、丁基溶纤剂等的纤维素溶剂类；丙酮、丁酮等酮类；甲苯、二甲苯等的芳香族碳氢化合物；二氯甲烷、氯仿等的卤代碳氢化合物类等，这些可以单独使用或组合2种以上共同使用。

另外，作为增塑剂，可列举出三甘醇二异辛酸酯、四甘醇二异辛酸酯、三甘醇二正庚酸酯、四甘醇二正庚酸酯等的三或四甘醇的羧酸二酯类；己二酸二辛酯、己二酸二丁酯、邻苯二甲酸二辛酯、邻苯二甲酸二丁酯等的二羧酸的二酯类等，这些可以单独使用或组合2种以上共同使用。

作为陶瓷粉末，可列举出在陶瓷的制造中使用的金属或非金属的氧化物或非氧化物的粉末。其具体例子如，Li、K、Mg、B、Al、Si、Cu、Ca、Sr、Ba、Zn、Cd、Ga、In、Y、镧系、锕系、Ti、Zr、Hf、Bi、V、Nb、Ta、W、Mn、Fe、Co、Ni等的氧化物、碳化物、氮化物、硼化物、硫化物等。另外，通常被称作复合氧化物的含有多个金属元素的氧化钨粉末的具体例子按结晶构造分类，作为钙钛矿型晶体结构的有NaNbO₃、SrZrO₃、PbZrO₃、SrTiO₃、BaZrO₃、PbTiO₃、BaTiO₃等，作为尖晶石型晶体结构的有MgAl₂O₄、ZnAl₂O₄、CoAl₂O₄、NiAl₂O₄、MgFe₂O₄等，作为钛铁矿型晶体结构的有MgTiO₃、MnTiO₃、FeTiO₃等，作为石榴石型晶体结构的有GdGa₃O₁₂、Y₃Fe₅O₁₂等，这些陶瓷粉末可以单独使用，或使用2种以上的混合物使用。

用本发明的乙烯基缩醛类聚合物作为陶瓷成型用粘合剂，适合于陶

瓷粉体成型的成型方法是将以有机溶剂、陶瓷粉体和乙烯基缩醛类聚合物作为主要成分的浆液使用通过板涂布器等在载膜上涂布，干燥后，从载膜上脱离得到制造陶瓷印刷电路基板，即所谓的薄板成型法。在该方法中，涂布在载膜上的浆液除了含有有机溶剂、陶瓷粉体和乙烯基缩醛类聚合物以外，还可根据需要添加入胶溶剂、增塑剂、润湿剂等。

乙烯基缩醛类聚合物的使用量根据陶瓷印刷电路基板的使用目的而异，不能一概而定，但相对于100重量份的陶瓷粉体而言，通常为3~20重量份，优选为5~15重量份。

在采用上述的成型方法对陶瓷粉体进行成型时，有必要使陶瓷粉末在浆液中非常均匀地分散。对于使陶瓷粉末分散于浆液中的方法没有特别限定，可以使用珠磨机（ビーメル）、球磨机、立式球磨机、油漆混合器、砂磨机等的溶剂型分散机的方法、使用三股辊等各种方法。并且，作为此时的分散剂，可以并用在分子内有羧酸基、马来酸基、磺酸基、磷酸基等的阴离子系分散剂，优选使用不含有金属离子的阴离子系分散剂。

陶瓷印刷电路基板的厚度视其使用目的而异，不能一概而定，但通常在1~300μm的范围。另外，形成于载膜上的涂膜干燥时的干燥温度视陶瓷印刷电路基板的厚度而异，不能一概而定，但大约在60~200℃的范围。

将本发明的乙烯基缩醛类聚合物用作陶瓷成型用粘合剂，由成型陶瓷粉体而得到的陶瓷印刷电路基板适用于，在各种电子元件、特别是陶瓷印刷电路基板上形成电极，并层叠压着后，通过将电极和陶瓷同时煅烧的工序制作的芯片型的层压型电容器和IC芯片的回路基板等。

在将本发明的乙烯基缩醛类聚合物用作油墨或涂料用粘合剂时，油墨或涂料中的乙烯基缩醛类聚合物的含有量优选为1~35重量%，更优选为5~25重量%。油墨或涂料除了含有5~25重量%的颜料和5~25重量%的乙烯基缩醛类聚合物外，例如还可含有溶剂。

作为含在油墨或涂料中的颜料，现有的公知的所有有机或无机颜料均适合。另外，作为所用的溶剂，可列举出如乙醇等的醇类或乙酸乙

酯类的酚类。

由本发明的乙烯基缩醛类聚合物得到的油墨或涂料用粘合剂可与充替树脂、助剂等组合使用。另外，本发明的乙烯基缩醛类聚合物也可作为单独的油墨添加剂使用。

在使用本发明的油墨或涂料用粘合剂的情况下，在含有该油墨或涂料用粘合剂的溶液中添加1种或2种以上的颜料，所得颜料浆液混炼后的溶液的粘度比所使用的由乙烯基缩醛类聚合物的粘度预测的溶液粘度更低，与现有公知的将乙烯基缩醛类聚合物用于油墨或涂料用粘合剂的情况相比，可产生溶液的浓度显著下降的效果。

由本发明的乙烯基缩醛类聚合物得到的热显影性感光材料是将由乙烯基缩醛类聚合物、有机银盐和/或感光性卤化银、还原剂和溶剂组成的涂布加工液涂布在支持体上，根据情况使用含有异氰酸基的化合物进行交联而制得。

有机银盐的使用量相对于10重量份的乙烯基缩醛类聚合物，优选为1~500重量份，更优选为2~50重量份。另外，有机银盐的粒径优选为0.01~10μm，更优选为0.1~5μm。作为有机银盐，如果其是对光比较稳定的无色或白色的银盐、在感光性卤化银的存在下、在80℃以上的温度范围内被还原剂还原而为金属银的物质，则没有特别的限制。作为这样的有机银盐的例子如，3-巯基-4-苯基-1,2,4-三唑、2-巯基-5-氨基噻唑、1-苯基-5-巯基四唑、2-巯基苯并噻唑、巯基二唑等的硫醇类的银盐；硫代酰胺、硫代毗啶、S-2-氨基苯基硫代硫酸等的硫代化合物的银盐；脂肪族羧酸、癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬脂酸、山嵛酸、马来酸、富马酸、酒石酸、糠酸、亚油酸、油酸、羟基硬脂酸、己二酸、癸二酸、琥珀酸、醋酸、丁酸、樟脑酸、二巯基醋酸的二巯基羧酸、巯基乙酸、芳香族的羧酸、硫代羧酸、具有硫醚基的脂肪族羧酸等的有机羧酸等的银盐；2-巯基苯并咪唑等的咪唑类的银盐、四唑的银盐；含金属氨基醇、有机酸螯合化合物等，其中，优选脂肪族羧酸类银盐，特别优选山嵛酸银。

感光性卤化银的使用量相对于100重量份的有机银盐，优选为0.0005~0.2重量份，更优选为0.01~0.2重量份。作为感光性卤化银，只要其与有机银盐作用，形成卤化银即可，对其没有特别的限定，但从其反应性考虑，以含有碘离子的为优选。作为卤化银的例子如，溴化银、碘化银、氯化银、碘溴化银、氯碘化银等。

也可以将有机银盐与感光性卤化银同时使用。此时，对于有机银盐，感光性卤化银还起到催化剂的作用。对使感光性卤化银接触到有机银盐的方法没有特别的限定，例如有在预先调制的有机银盐的溶液或分散液中，或含有有机银盐的膜上，使感光性卤化银形成成分起作用，从而使有机银盐的一部分变为卤化银。

还原剂的使用量相对于100重量份的有机银盐，优选为0.0001~3重量份，更优选为0.01~1重量份。对于还原剂没有特别的限制，但应对应于所使用的有机银盐的种类进行适当的选择。作为还原剂的例子如，取代的苯酚类、双酚类、萘酚类、双萘酚类、聚羟基苯类、二或聚羟基萘酚类、二或聚羟基萘类、对苯二酚类、对苯二酚单醚类、抗坏血酸或其衍生物、还原性糖类、芳香族氨基化合物、羟基胺类、肼类、1-苯基-3-吡唑烷酮、受阻酚类等。其中，以光分解性或热分解性的还原剂为优选，受阻酚类是一合适的选择。另外，光分解性的还原剂也可以和光分解促进剂并用，或为了阻碍有机银盐与还原剂的反应而与被覆剂并用。

作为调制在制造热显影性感光材料时的涂布加工液用的溶剂，若能溶解本发明的乙烯基缩醛类聚合物，则对其没有特别的限制。作为溶剂的例子，如二乙基甲酮、丁酮、甲基异丁基酮等的酮类；乙酸甲酯、乙酸乙酯、乙酸丙酯等的酯类。溶剂中所含的水分量以尽可能少为好。

在调制由乙烯基缩醛类聚合物、有机银盐和/或感光性卤化银、还原剂和溶剂组成的涂布加工液时，其方法如，将这些成分用球磨机等分散12小时以上后，向其中加入还原剂，并使之分散数小时左右。

作为将所得到的涂布加工液涂布到支持体上的方法，可采用现有公知的涂布方法。例如，使用拉丝辊（ワイヤーパー）的方法、使用板涂布器的方法等。涂布加工液的涂布量，优选是使涂膜中的银的分散量为

正丙基乙烯基醚、异丙基乙烯基醚、正丁基乙烯基醚等乙烯基醚类；乙二醇乙烯基醚、1,3-丙二醇乙烯基醚、1,4-丁二醇乙烯基醚等含羟基的乙烯基醚类；乙酸烯丙酯、丙基烯丙基醚、丁基烯丙基醚、己基烯丙基醚等的烯丙基醚类；乙酸丙烯酯、3-丁烯-1-醇、4-戊烯-1-醇、5-己烯-1-醇、7-辛烯-1-醇、9-癸基-1-醇、3-甲基-3-丁烯-1-醇等含羟基的α-烯烃类；源于亚乙基二磺酸、烯丙基磺酸、甲基烯丙基磺酸、2-丙烯酰胺-2-甲基丙磺酸等的具有磺酸基的单体；源于乙烯基乙基三甲基氯化铵、乙烯基丁基三甲基氯化铵、乙烯氨基乙基二甲基胺、乙烯氨基甲基二乙基胺、N-丙烯酰胺甲基三甲基氯化铵、N-丙烯酰胺乙基三甲基氯化铵、N-丙烯酰胺二甲基胺、烯丙基三甲基氯化铵、甲基烯丙基三甲基氯化铵、二甲基烯丙基胺、烯丙基乙基胺等的含阳离子的单体等。这些单体的单元含量通常为20mol%以下，优选为10mol%以下，进一步优选为5mol%以下。

本发明中用的PVA除了在前述的含羧酸的硫醇外，还可以在2-巯基乙醇、正月桂基硫醇等的巯基化合物的存在下，通过使乙酸乙烯酯等的乙烯酯类单体与乙烯共聚合，再将所得的乙烯酯系共聚物进行皂化而得到，此时得到的PVA是末端改性的PVA。

作为乙烯酯类单体与α-烯烃单体的共聚方法，例如有本体聚合法、溶液聚合法、悬浮聚合法、乳化聚合法等公知的方法。其中，通常采用在无溶剂中进行聚合的本体聚合法或在醇等溶剂中进行聚合的溶液聚合法。采用溶液聚合法进行聚合时，作为溶剂使用的醇如甲醇、乙醇、丙醇等低级醇。用于共聚合的引发剂如α, α'-偶氮二异丁腈、2,2'-偶氮二(2,4-二甲基-1-戊腈)等的偶氮类引发剂、以及过氧化苯甲酰、正丙基过碳酸酯等过氧化物类引发剂。对聚合温度无特别限制，但0℃～150℃的范围是合适的，优选为30℃～120℃，更优选为40℃～80℃。

由α-烯烃与乙烯酯类单体共聚合所得的乙烯酯类聚合物将由以下共知的方法在醇或二甲亚砜溶液中进行皂化。

在对乙烯酯类聚合物进行皂化之际，使用氢氧化钾、氢氧化钠等碱性物质作为催化剂。碱性物质的用量以相对于乙烯酯单元的摩尔比为

0.004～0.5 使用为优选，特别优选为0.005～0.05。碱性物质可以在皂化反应的初期全部加入，也可以在皂化反应的过程中补加入。

用于乙烯酯类聚合物的皂化反应的溶剂如甲醇、乙酸甲酯、二乙基亚砜、二甲基甲酰胺等。这些溶剂中，优选甲醇，使用甲醇时优选将含水率调整到0.001～1重量%，更优选为0.003～0.9重量%，特别优选为0.005～0.8重量%。

在皂化乙烯酯类聚合物之际，乙烯酯类聚合物的浓度优选为10～70重量%，更优选为20～65重量%。皂化反应的温度优选为5～80℃，更优选为20～70℃。皂化反应的时间优选为5分钟～10小时，更优选为10分钟～5小时。进行乙烯酯类聚合物的皂化的方法，可使用间歇法或连续法等公知的方法。

对由皂化乙烯酯类聚合物所得到的PVA进行下面的洗涤。可使用的洗涤液如甲醇、丙酮、乙酸甲酯、正己烷、水等，其中，优选单独使用甲醇、乙酸甲酯、水或使用其混合液。

相对于100重量份的PVA，洗涤液的用量通常以2～10000重量份为优选，更优选为3～3000重量份。洗涤时的温度优选为5～80℃，更优选为20～70℃。洗涤的时间优选为20分钟～10小时，更优选为1小时～6小时。作为洗涤PVA的方法，可适用的方法是间歇法或连续法等公知的方法。

由上述方法制造的洗净后的PVA，按照公知的方法，在酸性条件下使之在含水溶剂中被缩醛化，得到乙烯基缩醛类聚合物。本发明中使用的乙烯基缩醛类聚合物的缩醛化程度为45～80mol%，优选为50～80mol%，特别优选为60～80mol%。

在乙烯基缩醛类聚合物的缩醛化程度低于45mol%时，对PVA进行缩醛化时得到的粉末状的反应生成物的回收变得困难，所得的乙烯基缩醛类聚合物的耐水性降低，或乙烯基缩醛类聚合物与增塑剂的相溶性降低。

若乙烯基缩醛类聚合物的缩醛化程度低于45mol%，则在将乙烯基缩醛类聚合物用于夹层玻璃中间膜时，在高湿度下，夹层玻璃端部的耐泛

白性降低，并且在用于陶瓷成型用粘合剂时，陶瓷印刷电路基板的表面状态恶化，或者陶瓷印刷电路基板的强度恶化。

若乙烯基缩醛类聚合物的缩醛化程度低于45mol%，则在将乙烯基缩醛类聚合物用于油墨或涂料用粘合剂时，得到低溶液粘度且高固形分比率(高颜料含有率)的油墨或涂料变得困难，此时，会产生由油墨或涂料形成的涂膜的耐久性问题。

若乙烯基缩醛类聚合物的缩醛化程度低于45mol%，则在将乙烯基缩醛类聚合物用于热显影性感光材料时，涂布加工液的保存稳定性、显影时的敏感度、显影后的图像稳定性均变差。

若乙烯基缩醛类聚合物的缩醛化程度高于80mol%，则乙烯基缩醛类聚合物的制造变得困难，乙烯基缩醛类聚合物与增塑剂的相溶性降低，或者，在将乙烯基缩醛类聚合物用于夹层玻璃用中间膜时，在高湿度下，夹层玻璃端部的耐泛白性降低，并且在用于陶瓷成型用粘合剂时，陶瓷印刷电路基板的表面状态恶化。

作为对PVA缩醛化的方法，例如有a) 将该PVA加热溶解于水中，调制成5～30%浓度的水溶液，将其冷却到5～50℃后，加入一定量的醛并冷却到-10～30℃，加入酸调节水溶液的pH在1以下，开始缩醛化反应的方法、b) 将该PVA加热溶解于水中，调制成5～30%浓度的水溶液，将其冷却到5～50℃后，加入酸使水溶液的pH在1以下后，冷却到-10～30℃，加入一定量的醛开始缩醛化反应的方法等。

缩醛化反应所需的时间通常为1～10小时左右，反应优选在搅拌下进行。另外，在按照上述的方法进行缩醛化反应时，在乙烯基缩醛类聚合物的缩醛化程度不上升的情况下，也可以在50～80℃左右的高温下继续反应。

过滤缩醛化反应后得到的粉末状的反应生成物，用碱水溶液中和后，经过水洗、干燥得到目的乙烯基缩醛类聚合物。

作为用于缩醛化反应的醛化合物，例如，甲醛、乙醛、丙醛、丁醛、己醛、苯甲醛等，特别优选的是丁醛。

另外，若有必要，也可以并用含羧酸的醛化合物。

作为缩醛化反应时使用的酸，通常为盐酸、硫酸、硝酸等无机酸和对甲苯磺酸等有机酸，这些可以单独使用或混合2种以上使用。另外，用于中和缩醛化反应后得到的粉末状的反应生成物的碱化合物除了氢氧化钠、氢氧化钾等碱金属的氢氧化物外，还可列举出镁、三乙胺、吡啶等胺类化合物。

在将本发明的乙烯基缩醛类聚合物用于夹层玻璃中间膜时，在乙烯基缩醛类聚合物中加入增塑剂。所使用的增塑剂如，三乙二醇二-2-乙基己酯、寡聚乙二醇二-2-乙基己酯、四乙二醇二正庚酯等，其添加量相对于100重量份的乙烯基缩醛类聚合物来说，为20～100重量份，优选为30～50重量份。当增塑剂的添加量小于20重量份时，在制造夹层玻璃中间膜时，中间膜过硬，剪裁性降低，当大于100重量份时，增塑剂易于渗出。

为了调整夹层玻璃中间膜与夹层玻璃的粘合力，也可以相对于乙烯基缩醛类聚合物加入现已公知的碳原子数为2～10的碳酸金属盐。作为金属盐，有如钠、钾、镁等碱金属盐和碱土金属。相对于乙烯基缩醛类聚合物的碳原子数为2～10的碳酸金属盐的添加量优选为1～200ppm，更优选为10～150ppm。

在乙烯基缩醛类聚合物中，根据需要，也可以加入紫外光吸收剂、光稳定剂、抗氧剂、表面活性剂、着色剂等一般公知的添加剂。

由乙烯基缩醛类聚合物制造夹层玻璃中间膜的方法，如在乙烯基缩醛类聚合物中以一定比例混合增塑剂和其他的添加剂，均匀地混炼，使用挤出法、压延法、加压法、铸造法、压入法等成型方法，形成片状的制模方法。

夹层玻璃中间膜的厚度通常为0.3～1.6mm，可以使用单层的夹层玻璃中间膜，也可以将2层以上层压使用。

对于使用由乙烯基缩醛类聚合物制造的夹层玻璃用中间膜来制造夹层玻璃的方法没有特别的限定。这种方法如，可在2块透明的玻璃板之间夹入夹层玻璃用中间膜，放入橡胶垫圈，一边减压吸引，一边在约70～

连接的含有量低于1mol%，则涂布液的保存稳定性变差，当1, 2-乙二醇连接的含有量大于3mol%时，则显影后的画像稳定性变差。

作为1, 2-乙二醇连接的含有量的调整方法，例如有，调整醋酸乙烯酯等的乙烯酯类单体与其他的单体共聚合制造乙烯酯类聚合物时的聚合温度，使乙烯酯类单体与碳酸亚乙烯酯等其他单体共聚合的方法。

本发明中，在PVA满足下式(1)的情况下，使用这样的PVA得到的乙烯基缩醛类聚合物的耐水性进一步提高、并且与增塑剂的相溶性变得更为良好。在将由满足式(1)的PVA得到的乙烯基缩醛类聚合物用于夹层玻璃用中间膜、陶瓷成型用粘合剂、油墨或涂料用粘合剂，以及热显影性光材料等中时，也带来了更加显著的效果。

$$-0.012 \times F_n + 1.24 \leq \text{含有量(mol\%)} \leq -0.022 \times F_n + 2.23 \quad \dots (1)$$

(上式中，含有量(mol%)表示1, 2-乙二醇连接的含有量，F_n表示α-烯烃单元的含有量(mol%)。)

本发明中，PVA的1, 2-乙二醇连接的含有量可由NMR峰求得。即，将PVA皂化至皂化度达到99.9mol%以上，用甲醇进行充分洗净，然后，在90℃下减压干燥2天，作为分析用样品。将分析用样品溶解于DMSO-d₆中，向其中滴加数滴三氟乙酸后，用500MHz的质子NMR(JEOL GX-500)在80℃下测定。由乙烯醇单元的次甲基产生的峰(3.2~4.0ppm；积分值为A)与1, 2-乙二醇连接的1个次甲基产生的峰(3.25ppm；积分值为B)按照下式算出1, 2-乙二醇连接的含有量。

$$1, 2-\text{乙二醇连接含有量(mol\%)} = B \times (100 - E_t) / 100A$$

(上式中，E_t表示乙烯改性量(mol%))

PVA的1, 2-乙二醇连接的含有量也可由乙烯基缩醛类聚合物求得。此时，将乙烯基缩醛类聚合物在醇溶剂中与盐酸羟胺反应，将所得反应物用水/醇进行充分的再精制作PVA，其后的操作与上述同样作出分析用样品。

本发明中的用作乙烯基缩醛类聚合物的原料的PVA优选含有0.02~5mol%的羧酸和内酯环。这里，羧酸包含其的碱金属盐，碱金属如钾、钠等。

当含在PVA中的羧酸或内酯环的量在低于0.02mol%时，若将乙烯基缩醛类聚合物用在如油墨和涂料用粘合剂中，则要得到低溶液粘度且固形成分比率(高颜料含有率)的油墨和涂料变得困难。当含在PVA中的羧酸或内酯环的量高于5mol%时，在提高油墨和涂料的固形成分比率(高颜料含有率)的情况下，不能充分得到使溶液粘度降低的效果，并且油墨和涂料的耐久性变差。将乙烯基缩醛类聚合物用在油墨和涂料用粘合剂的情况下，含在PVA中的羧酸或内酯环的量更优选为0.022~4mol%，进一步优选为0.024~3mol%，特别优选为0.025~2mol%。

本发明中，在PVA满足下式记(2)的情况下，使用这样的PVA得到的乙烯基缩醛类聚合物的耐水性进一步提高、并且与增塑剂的相溶性变得更为良好。使用满足式(2)的PVA而得到的乙烯基缩醛类聚合物用于夹层玻璃用中间膜、陶瓷成型用粘合剂、油墨或涂料用粘合剂，以及热显影性光材料等的用途中时，也带来了更加显著的效果。

$$-1.95 \times 10^{-3} \times P + 0.045 \leq \text{含有量(mol\%)} \leq -1.38 \times 10^{-4} \times P + 0.91 \dots (2)$$

(上式中，含有量(mol%)表示羧酸和内酯环的含有量，P表示乙烯醇类聚合物的粘度平均聚合度。)

作为具有羧酸和内酯环的PVA的制造方法，可列举出如下方法：(i)将由醋酸乙烯酯等的乙烯酯类单体与具有生成羧酸和内酯环的能力的单体进行共聚合而得到的醋酸乙烯酯类聚合物，在醇或二甲亚砜等溶液中进行皂化的方法。(ii)在含有巯基乙酸、3-巯基丙酸等羧酸的硫醇化合物的存在下，聚合乙烯酯类单体，对所得的乙烯酯类聚合物进行皂化的方法。(iii)在醋酸乙烯酯等的乙烯酯类单体聚合时，引发乙烯酯系单体和乙烯酯类聚合物的向烷基的链转移反应，得到高分支乙烯酯类聚合物后，将其皂化的方法。(iv)将含有环氧基的单体和乙烯酯类单体的共聚合物与含有羧基的硫醇化合物反应后，再皂化的方法。(v)使PVA与聚有羧基的醚类进行缩醛化反应的方法。

作为乙烯酯类单体，可举出如甲酸乙烯酯、乙酸乙烯酯、丙酸乙烯酯、戊酸乙烯酯、癸酸乙烯酯、月桂酸乙烯酯、硬脂酸乙烯酯、安息香酸乙烯酯、三甲基乙酸乙烯酯和叔碳酸乙烯酯等，其中，从得到PVA的

观点考虑，优选乙酸乙烯酯。

另外，作为具有生成羧酸和内酯环的能力的单体，例如，源于富马酸、马来酸、衣康酸、马来酸酐、衣康酸酐等的具有羧基的单体；丙烯酸或其盐、丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丙酯、丙烯酸异丙酯等的丙烯酸酯类；甲基丙烯酸或其盐、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丙酯、甲基丙烯酸异丙酯等的甲基丙烯酸酯类；丙烯酰胺、N-甲基丙烯酰胺、N-乙基丙烯酰胺等的丙烯酰胺衍生物；甲基丙烯酰胺、N-甲基甲基丙烯酰胺、N-乙基甲基丙烯酰胺等的甲基丙烯酰胺衍生物。

PVA中含有的羧酸和内酯环的量可由质子NMR的峰求得。即，将PVA皂化至皂化度达到99.95mol%以上，用甲醇进行充分洗净，然后，在90℃下减压干燥2天，作为分析用样品。PVA中含有的羧酸和内酯环的量对应于PVA的制造方法(i)~(V)，可由以下的方法求得。

情况(i)

将分析用样品溶解于DMSO-d₆中，用质子NMR在60℃下测定。丙烯酸、丙烯酸酯类、丙烯酰胺、丙烯酰胺衍生物等单体由主链上的次甲基产生的峰(2.0ppm)按照一般的方法计算出含量，另外，甲基丙烯酸、甲基丙烯酸酯类、甲基丙烯酰胺、甲基丙烯酰胺衍生物等单体，由直接连接在主链上的甲基产生的峰(0.6~1.1ppm)按照一般的方法计算出含量。源于富马酸、马来酸、衣康酸、马来酸酐、衣康酸酐等的具有羧基的单体，是将分析用样品溶解于DMSO-d₆中，向其中滴加数滴三氟乙酸后，用质子NMR在60℃下测定。由内酯环的次甲基峰(4.6~5.2ppm)按照一般的方法计算出含量。

情况(ii)和情况(iv)

由源于连接在硫原子上的亚甲基产生的峰(2.8ppm)计算出含有量。

情况(iii)

将分析用样品溶解于甲醇-d₄/D₂O-2/8中，用质子NMR在80℃下测定。由末端羧酸或其碱金属盐的亚甲基(以下结构式1和结构式2)产生的峰(2.2ppm；积分值为A、2.3ppm；积分值为B)、由末端的内酯环

的亚甲基(以下结构式3)产生的峰(2.6ppm；积分值为C)、由乙烯醇类单体的次甲基产生的峰(3.5~4.15ppm；积分值为D)，使用下式计算出含量。

$$\text{羧酸和内酯环的含有量(mol\%)} = 50 \times (A + B + C) \times (100 - F_n) / (100 \times D)$$

(上式中，F_n表示α-烯烃的改性量(mol%))

(结构式1)

(结构式2)

(结构式3)

情况(V)

将分析用样品溶解于DMSO-d₆中，用质子NMR在60℃下测定。由缩醛部分的次甲基(以下结构式4)产生的峰(4.8~5.2ppm)根据一般方法计算出含有量。

(结构式4)

(式中，X表示单键结合，或表示碳原子数为1~10的烷基。)

本发明中使用的PVA在不损害发明效果的范围内，也可以含有除乙稀单元、α-烯烃单元、乙烯酯单元和上述的具有生成羧酸和内酯环的能力的单体以外的单体单元。作为这种单体单元，可列举出源自以下各种单体的单体单元，例如N-乙烯基乙酰胺、N-乙烯基吡咯烷酮、N-乙烯基己内酰胺等N-乙烯基酰胺类；甲基乙烯基醚、乙基乙烯基醚、

小于 100 时，在工业上制造 PVA 变难。PVA 的聚合度大于 2000 时，PVA 的水溶性降低，制造乙烯基缩醛类聚合物变难。

在将乙烯基缩醛类聚合物用于夹层玻璃用中间膜时，PVA 的聚合度优选在 500~2000 的范围内，更优选为 800~1900，特别优选为 1000~1700。当 PVA 的聚合度小于 500 时，作为夹层玻璃不能发挥很高的强度。当 PVA 的聚合度大于 2000 时，由于乙烯基缩醛类聚合物的粘度变大，模塑性降低。

在将乙烯基缩醛类聚合物用在陶瓷成型用粘合剂的情况下，PVA 的聚合度优选在 200~2000 的范围内，更优选为 300~1700，进一步优选为 500~1500，特别优选为 700~1200。当 PVA 的聚合度小于 200 时，使用陶瓷成型用粘合剂所得到的陶瓷印刷电路基板的强度降低。当 PVA 的聚合度大于 2000 时，在制造陶瓷印刷电路基板时调制的陶瓷成型用浆液的粘度变高，模塑性降低。

在将乙烯基缩醛类聚合物用在油墨或涂料用粘合剂的情况下，PVA 的聚合度优选在 100~700 的范围内，更优选为 130~600，特别优选为 180~550。当 PVA 的聚合度小于 100 时，在工业上制造 PVA 变难，另外，即使可以制造出聚合度小于 100 的 PVA，也不能充分发挥作为油墨或涂料用粘合剂的机能。当 PVA 的聚合度大于 700 时，难以得到低溶液粘度且高固形成分比率（高颜料含有率）的油墨或涂料。

在将乙烯基缩醛类聚合物用在热显影性感光材料的情况下，PVA 的聚合度优选在 100~1700 的范围内，更优选为 130~1500，特别优选为 200~1000。当 PVA 的聚合度小于 100 时，在工业上制造 PVA 有困难，另外，即使可以制造出聚合度小于 100 的 PVA，也不能制造出能够发挥其目的性能的热显影性感光材料。当 PVA 的聚合度大于 700 时，由于在热显影性感光材料的制造中用的有机银盐的分散性降低，进而涂布加工液的粘度变得过高，从而使涂布加工性下降。

本发明中，PVA 的聚合度是指粘度平均聚合度，其是按照 JIS-K6726 测定的。即，将 PVA 皂化到皂化度为 99.5mol% 以上，精制后，由在 30℃ 的水中测定的极限粘度 $[\eta]$ 根据下式求得。

$$P = ([\eta] \times 1000 / 8.29)^{1/0.42}$$

本发明中，对于用于乙烯基缩醛类聚合物的制造中的 PVA，要求其皂化度在 80.0~99.99mol% 的范围内。当 PVA 的皂化度小于 80.0mol% 时，PVA 的水溶性降低，乙烯基缩醛类聚合物的制造变难，当 PVA 的皂化度大于 99.99mol% 时，制造 PVA 变难。

在将乙烯基缩醛类聚合物用于夹层玻璃用中间膜时，PVA 的皂化度优选在 85~99.99mol% 的范围内，进一步优选为 90~99.5mol%，特别优选为 92~99.2mol%。当 PVA 的皂化度低于 85 mol% 时，乙烯基缩醛类聚合物与增塑剂的相溶性下降，或夹层玻璃端部的耐泛白性下降。

在将乙烯基缩醛类聚合物用于陶瓷成型用粘合剂的情况下，PVA 的皂化度优选在 85~99.99mol% 的范围内，进一步优选为 90~99mol%，特别优选为 92~98.5mol%。当 PVA 的皂化度低于 85 mol% 时，使用陶瓷成型用粘合剂所得到的陶瓷印刷电路基板的均匀性变差。

在将乙烯基缩醛类聚合物用在油墨或涂料用粘合剂的情况下，PVA 的皂化度优选在 80~99.99mol% 的范围内，进一步优选为 90~99mol%，特别优选为 92~98.5mol%。当 PVA 的皂化度低于 80.0 mol% 时，PVA 的水溶性降低，制造乙烯基缩醛类聚合物有困难，另外，即使可以制造出这样的乙烯基缩醛类聚合物，也难以得到低溶液粘度、高固形成分比率（高颜料含有率）的油墨或涂料。

在将乙烯基缩醛类聚合物用在热显影性感光材料的情况下，PVA 的皂化度优选在 80~99.99mol% 的范围内，进一步优选为 85~99.5mol%，特别优选为 88~99mol%。当 PVA 的皂化度低于 80 mol% 时，PVA 的水溶性降低，制造乙烯基缩醛类聚合物有困难，另外，即使可以制造出这样的乙烯基缩醛类聚合物，显影后的画像稳定性和热稳定性也会变差。

作为本发明的乙烯基缩醛类聚合物的原料的 PVA 必须含有 1~15 mol% 的 α -烯烃单元。当 α -烯烃单元低于 1 mol% 时，由这种 PVA 得到的乙烯基缩醛类聚合物的耐水性降低，或者乙烯基缩醛类聚合物与增塑剂的相溶性降低。当 α -烯烃单元大于 15 mol% 时，PVA 的水溶性降低，制造乙烯基缩醛类聚合物变得困难。

在将乙烯基缩醛类聚合物用于夹层玻璃用中间膜时，PVA 中的 α -烯烃单元的含有量优选为 1~15 mol%，更优选为 2~10 mol%，特别优选为 3~7 mol%。当 α -烯烃单元的含有量低于 1 mol% 时，乙烯基缩醛类聚合物与夹层玻璃板的密合性降低，乙烯基缩醛类聚合物与增塑剂的相溶性降低，或夹层玻璃端部的耐泛白性降低。

在将乙烯基缩醛类聚合物用在陶瓷成型用粘合剂时，PVA 中的 α -烯烃单元的含有量优选为 1~15 mol%，更优选为 2~10 mol%，特别优选为 3~7 mol%。当 α -烯烃单元的含有量低于 1 mol% 时，使用由该乙烯基缩醛类聚合物得到的陶瓷成型用粘合剂来制造陶瓷印刷电路基板时，板表面的状态恶化，并且陶瓷印刷电路基板的强度降低。

在将乙烯基缩醛类聚合物用在油墨或涂料用粘合剂时， α -烯烃单元的含有量优选为 1~15 mol%，更优选为 1.5~10 mol%，特别优选为 2~8 mol%。当 α -烯烃单元的含有量低于 1 mol% 时，得到低溶液粘度且高固形成分比率（高颜料含有率）的油墨或涂料变得困难。

在将乙烯基缩醛类聚合物用在热显影性感光材料时， α -烯烃单元的含有量优选为 1~15 mol%，更优选为 1.5~10 mol%，特别优选为 2~8 mol%。当 α -烯烃单元的含有量低于 1 mol% 时，制造热显影性感光材料时的涂布加工液的保存稳定性、热显影性感光材料的热显影性，以及显影后的画像稳定性和加热稳定性变差。

作为 α -烯烃单元，除了可列举出乙烯、丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、1-壬烯、1-癸烯等的碳原子数为 10 以下的直链的 α -烯烃外，还有异丁烯等的碳原子数在 10 以下的支链的 α -烯烃。其中，优选碳原子数为 4 以下的 α -烯烃，特别优选为乙烯。

含在 PVA 中的 α -烯烃单元的量可按照以下的方法求得。

(1) 对含有 PVA 前体的 α -烯烃单元的聚乙烯酯用正己烷 / 丙酮进行 3 次以上的充分的再精制后，在 80℃ 的温度下减压干燥 3 天，作为分析用样品。例如，在含于 PVA 中的 α -烯烃单元是乙烯的情况下，将分析用样品溶解于 DMSO-d6 中，并在 80℃ 下测定其质子 NMR，由乙烯酯的主链次甲基产生的峰（4.7~5.2ppm）与乙烯和乙烯酯的主链亚甲基产生

的峰（0.8~1.6ppm）算出乙烯的含量。

(2) 将 PVA 在吡啶 / 无水乙酸中加热，使 PVA 中的羟基乙酰化，用水 / 丙酮进行充分的再精制，在 80℃ 的温度下减压干燥 3 天，作为分析用样品。由分析用样品求出 α -烯烃单元的含量的方法与上述 (1) 相同。

(3) 将乙烯基缩醛类聚合物在醇溶剂中与盐酸羟胺反应，所得的反应物在水 / 醇中进行充分的再精制作为 PVA，将 PVA 在吡啶 / 无水乙酸中加热，使 PVA 中的羟基乙酰化，用水 / 丙酮进行充分的再精制，在 80℃ 的温度下减压干燥 3 天，以作为分析用样品。由分析用样品求出 α -烯烃单元的含量的方法与上述 (1) 相同。

本发明中，PVA 必须含有 1~3 mol% 的 1,2-乙二醇连接。当 1,2-乙二醇连接的含有量低于 1 mol% 时，由此 PVA 得到的乙烯基缩醛类聚合物与增塑剂的相溶性降低，当 1,2-乙二醇连接的含有量大于 3 mol% 时，乙烯基缩醛类聚合物与增塑剂的相溶性降低。

在将乙烯基缩醛类聚合物用于夹层玻璃用中间膜时，当 1,2-乙二醇连接的含有量低于 1 mol% 时，乙烯基缩醛类聚合物与增塑剂的相溶性降低，或夹层玻璃用中间膜与夹层玻璃的密合性降低。当 1,2-乙二醇连接的含有量大于 3 mol% 时，乙烯基缩醛类聚合物的耐水性降低，或乙烯基缩醛类聚合物与增塑剂的相溶性降低。

在将乙烯基缩醛类聚合物用在陶瓷成型用粘合剂时，若 1,2-乙二醇连接的含有量低于 1 mol%，则陶瓷印刷电路基板的表面状态变差，或陶瓷印刷电路基板的强度下降。当 1,2-乙二醇连接的含有量大于 3 mol% 时，也会发生陶瓷印刷电路基板的表面状态变差，或陶瓷印刷电路基板的强度下降。

在将乙烯基缩醛类聚合物用在油墨或涂料用粘合剂时，若 1,2-乙二醇连接的含有量低于 1 mol%，则难以得到低溶液粘度且高固形成分比率（高颜料含有率）的油墨或涂料。当 1,2-乙二醇连接的含有量大于 3 mol% 时，也难以得到低溶液粘度且高固形成分比率（高颜料含有率）的油墨或涂料。

在将乙烯基缩醛类聚合物用在热显影性感光材料时，若 1,2-乙二醇

中华人民共和国国家知识产权局

100083 北京市海淀区王庄路1号清华同方科技大厦B座25层 中科专利商标代理有限责任公司 朱丹	发文日
申请号:2004800174154 	
申请人:积水化学工业株式会社	
发明名称:涂膏用粘合树脂	

第 2 次审查意见通知书

1. 审查员已收到申请人于2008年3月17日提交的意见陈述书,在此基础上审查员对上述专利申请继续进行实质审查。

根据国家知识产权局专利复审委员会于 年 月 日作出的复审决定,审查员对上述专利申请继续实质审查。

2. 申请人于 年 月 日提交的修改文件,不符合专利法实施细则第51条第3款的规定。

3. 继续审查是针对下述申请文件进行的:

上述意见陈述书中所附的经修改的申请文件。

前次审查意见通知书所针对的申请文件以及上述意见陈述书中所附的经修改的申请文件替换页。

前次审查意见通知书所针对的申请文件。

上述复审决定所确定的申请文件。

4. 本通知书未引用新的对比文件。

本通知书引用下述对比文件(其编号续前,并在今后的审查过程中继续沿用):

编号	文件号或名称	公开日期(或抵触申请的申请日)
2	CN1495205 A	其公开日为2004-5-12,其申请日2003-7-23, 其优先权日为2002-7-23

5. 审查的结论性意见:

关于说明书:

申请的内容属于专利法第5条规定的不授予专利权的范围。

说明书不符合专利法第26条第3款的规定。

说明书的修改不符合专利法第33条的规定。

说明书的撰写不符合专利法实施细则第18条的规定。

关于权利要求书:

权利要求 不具备专利法第22条第2款规定的新颖性。

权利要求 不具备专利法第22条第3款规定的创造性。

权利要求 不具备专利法第22条第4款规定的实用性。

权利要求 属于专利法第25条规定的不授予专利权的范围。

权利要求 不符合专利法第26条第4款的规定。

权利要求 不符合专利法第31条第1款的规定。

权利要求 1,10,11的修改不符合专利法第33条的规定。

权利要求 不符合专利法实施细则第2条第1款的规定。

申请号 2004800174154

权利要求 _____ 不符合专利法实施细则第 13 条第 1 款的规定。
 权利要求 _____ 不符合专利法实施细则第 20 条的规定。
 权利要求 _____ 不符合专利法实施细则第 21 条的规定。
 权利要求 _____ 不符合专利法实施细则第 22 条的规定。
 权利要求 _____ 不符合专利法实施细则第 23 条的规定。

分案的申请不符合专利法实施细则第 43 条第 1 款的规定。

上述结论性意见的具体分析见本通知书的正文部分。

6. 基于上述结论性意见, 审查员认为:

申请人应按照通知书正文部分提出的要求, 对申请文件进行修改。

申请人应在意见陈述书中论述其专利申请可以被授予专利权的理由, 并对通知书正文部分中指出的不符合规定之处进行修改, 否则将不能授予专利权。

专利申请中没有可以被授予专利权的实质性内容, 如果申请人没有陈述理由或者陈述理由不充分, 其申请将被驳回。

7. 申请人应注意下述事项:

(1) 根据专利法第 37 条的规定, 申请人应在收到本通知书之日起的贰个月内陈述意见, 如果申请人无正当理由逾期不答复, 其申请将被视为撤回。

(2) 申请人对其申请的修改应符合专利法第 33 条和实施细则第 51 条的规定, 修改文本应一式两份, 其格式应符合审查指南的有关规定。

(3) 申请人的意见陈述书和/或修改文本应邮寄或递交国家知识产权局专利局受理处, 凡未邮寄或递交给受理处的文件不具备法律效力。

(4) 未经预约, 申请人和/或代理人不得前来国家知识产权局专利局与审查员举行会晤。

8. 本通知书正文部分共有 2 页, 并附有下述附件:

引用的对比文件的复印件共 1 份 54 页。

专利
局
中
国
家
知
识
产
权
局
审
查
员
寿
建
宏

审查员: 寿建宏(8506)

2008 年 9 月 2 日

审查部门 化学发明专利审查部

21303 回函请寄: 100088 北京市海淀区蔚蓝门桥西土城路 6 号 国家知识产权局专利局受理处收
2006. 7

(注: 凡寄给审查员个人的信函不具有法律效力)

第2次审查意见通知书正文

申请号：2004800174154

申请人于2008年3月17日提交的修改文本经审查超出了原说明书和权利要求书记载的范围，不符合专利法第33条的规定。申请人将权利要求1, 10, 和11所记载的“ - (-C_nH_n⁺ -2-) -” 改为C_nH_{2n}，修改后的内容既未明确记载在原说明书和权利要求书中，也不能由原说明书和权利要求书所记载的信息中直接地、毫无疑义地确定，因此该修改超出了原说明书和权利要求书记载的范围。审查员按申请人所指引，查看了说明书第5页第5行-第26行记载的内容，找不出申请人进行上述修改的依据。申请人应当重新提交符合专利法规定的修改文件。如果申请人坚持该修改文件的内容，且不能提出有说服力的理由，审查员将以本申请不符合专利法第33条的规定为理由驳回该申请。

为加快审查进程，提醒申请人注意：

如果将权利要求1, 10, 和11所记载的C_nH_{2n}改为“ - (-C_nH_n+2-) -”，仍存在前次通知书所指出的不清楚问题，因为n=1, 3, 4, 5, 6, 7时，不清楚通式(3)结构是以怎样的方式形成二价键结构单元，进而申请人要求保护的技术方案也不清楚。

另外，对比文件2（CN1495205 A）申请人为可乐丽股份有限公司，其公开日为2004-5-12，其申请2003-7-23，其优先权日为2002-7-23，其公开了油墨或涂料用粘合剂，其含有：将含有1~15mol%的 α -烯烃单元、1, 2-乙二醇连接含有量为1~3mol%、聚合度为100~2000、皂化度为80.0~99.99mol%的乙烯醇类聚合物进行缩醛化而得到的，缩醛化程度为45~80mol%的乙烯基缩醛类聚合物，该聚合物包含本申请权利要求1所述的结构单元(1)-(4)，并且该聚合物中烯烃单元含量和缩醛单元含量分别落入本申请权利要求1所述结构单元(3)和(4)的含量范围内，聚合物用作陶瓷成型用粘合剂，由成型陶瓷粉体而得到的陶瓷印刷电路基板适用于，在各种电子元件、特别是陶瓷印刷电路基板上形成电极，并层叠压着后，通过将电极和陶瓷同时煅烧的工序制作的芯片型的层压型电容器和IC芯片的回路基板等。聚合物作为陶瓷成型用粘合剂，适合于陶瓷粉体成型的成型方法是将以有机溶剂、陶瓷粉体和乙烯基缩醛类聚合物作为主要成分的浆液使用通过板涂布器等在载膜上涂布，干燥后，从载膜上脱离得到制造陶瓷印刷电路基板用作油墨或涂料用粘合剂时，油墨或涂料中的乙烯基缩醛类聚合物的含有量优选为1~35重量%，更优选为5~25重量%。油墨或涂料除了含有5~25重量%的颜料和5~25重量%的乙烯基缩醛类聚合物外，例如还可含有溶剂。在其优先权成立的情况下，会构成本申请的抵触申请以及会影响本申请的新颖性，请申请人加以注意。

另外,针对前次通知书,申请人试图通过在要求保护一种树脂的权利要求中加入用途特征来使要求保护的树脂具有新颖性,但是,事实上上述用途特征没有隐含产品在结构上或/和组成上发生改变,看不出其与对比文件1公开的产品在结构上或/和组成上的区别,因此前次通知书所指出的新颖性以至于单一性问题仍旧存在.请申请人加以注意.

审查员: 寿建宏

代码: 8506

