Klassifizierungsprojekt für Pinguine mittels Random Forest

Projektübersicht

Dieses Projekt zielt darauf ab, Klassifizierungsmodelle zu erstellen, um Pinguinarten anhand von physischen Messungen aus dem Palmer-Pinguin-Datensatz zu identifizieren. Es unterstützt sowohl Random Forest- als auch Decision Tree-Klassifikatoren, was einen Vergleich zwischen Ensemble-Methoden und interpretierbaren Einzelbaum-Ansätzen ermöglicht.

Inhalt

- Datenbeschreibung
- Datenvorverarbeitung
- Modulare Projektstruktur
- Machine-Learning-Workflow
- Klassifikator-Optionen
- Modellleistung
- Visualisierung
- Installation und Anforderungen

Datenbeschreibung

Der Datensatz enthält die folgenden Merkmale:

- **species**: Zielvariable, die die Pinguinart repräsentiert (Adelie, Gentoo, Chinstrap)
- **island**: Die Insel, auf der der Pinguin lebt (Biscoe, Dream, Torgersen)
- **culmen length mm**: Schnabellänge in Millimetern
- **culmen_depth_mm**: Schnabelhöhe in Millimetern
- flipper_length_mm: Flossenlänge in Millimetern
- body mass g: Körpermasse in Gramm
- sex: Geschlecht des Pinguins

Datenvorverarbeitung

- Fehlende Werte werden entfernt.
- Kategorische Variablen island und sex werden mittels One-Hot-Encoding in numerische Merkmale umgewandelt.
- Die Originaldatendateien bleiben unverändert; die Vorverarbeitung erfolgt in einer dedizierten Funktion innerhalb des Moduls one_hot_encoder.py.

Originaldaten:

species	island	culmen_l ength_m m	culmen_ depth_m m	flipper_l ength_m m	body_ma ss_g	sex
Adelie	Torgerse n	39.1	18.7	181.0	3750.0	MALE
Adelie	Torgerse n	39.5	17.4	186.0	3800.0	FEMALE
Adelie	Torgerse n	40.3	18.0	195.0	3250.0	FEMALE
Adelie	Torgerse n	NaN	NaN	NaN	NaN	NaN
Adelie	Torgerse n	36.7	19.3	193.0	3450.0	FEMALE

Bereinigte und kodierte Daten:

Merkmals-Tabelle (Features):

Inde x	cul men _len gth_ mm	cul men _de pth_ mm	flipp er_l engt h_m m	bod y_m ass_ g	isla nd_ Bisc oe	isla nd_ Dre am	isla nd_ Torg erse n	sex_	sex_ FEM ALE	sex_ MAL E
0	39.1	18.7	181. O	375 0.0	Fals e	Fals e	True	Fals e	Fals e	True
1	39.5	17.4	186. O	380 0.0	Fals e	Fals e	True	Fals e	True	Fals e
2	40.3	18.0	195. O	325 0.0	Fals e	Fals e	True	Fals e	True	Fals e
4	36.7	19.3	193. O	345 0.0	Fals e	Fals e	True	Fals e	True	Fals e
5	39.3	20.6	190. 0	365 0.0	Fals e	Fals e	True	Fals e	Fals e	True

Ziel-Tabelle (Target):

Index	species
0	Adelie
1	Adelie
2	Adelie
4	Adelie
5	Adelie

Modulare Projektstruktur

- one_hot_encoder.py: Enthält die Funktion preprocess_penguin_data(filepath), die den Datensatz lädt, bereinigt und kodiert.
- data_inspector.py: Lädt die verarbeiteten Daten mithilfe des Encoders und stellt Dienstprogramme zur Dateninspektion bereit (z. B. Anzeige der ersten Zeilen).
- random_forest.py: Implementiert Modelltraining, Vorhersage, Evaluierung und Visualisierung mittels Random Forest.
- decision_tree.py: Implementiert Modelltraining, Vorhersage, Evaluierung und Visualisierung mittels Decision Tree.

Machine-Learning-Workflow

- 1. Laden und Vorverarbeiten der Daten mit preprocess_penguin_data.
- 2. Aufteilen der Daten in Trainings- und Testsets.
- 3. Trainieren eines Klassifikators (Random Forest oder Decision Tree) mit dem entsprechenden Skript.
- 4. Vorhersage auf den Testdaten.
- Evaluierung der Leistung mittels Genauigkeit (Accuracy), Präzision (Precision), Trefferquote (Recall), F1-Score und Visualisierung der Ergebnisse mit einer Konfusionsmatrix.

Klassifikator-Optionen

- Random Forest (random_forest.py): Eine Ensemble-Methode, die die Vorhersagegenauigkeit und Robustheit verbessert.
- Decision Tree (decision_tree.py): Ein einfaches, interpretierbares Modell, das eine einzelne Baumstruktur verwendet.

Beide Klassifikatoren werden unterstützt; wählen Sie durch Ausführen des entsprechenden Skripts aus, welcher trainiert und evaluiert werden soll.

Modellleistung

- Random Forest erreicht eine hohe Genauigkeit (~99%).
- Decision Tree bietet interpretierbare Ergebnisse bei leicht geringerer Genauigkeit.
- Ausgewogene Klassifizierungsleistung über alle Pinguinarten hinweg bei beiden Modellen.

Visualisierung

Visualisierung der Konfusionsmatrix mittels sklearn.metrics.ConfusionMatrixDisplay, um wahre vs. vorhergesagte Klassifizierungen anzuzeigen.

Installation und Anforderungen

• Python 3.12.4 (empfohlen)

Erforderliche Python-Bibliotheken (Installation über pip):

- pandas
- numpy
- scikit-learn
- matplotlib

Wie man das Modell einrichtet

- 1. Erstellen einer virtuellen Umgebung (Virtual Env) python -3.12 -m venv venv
- Aktivieren der venv\venv\Scripts\activate
- 3. Erforderliche Pakete installieren pip install -r requirements.txt
- 4. Streamlit-App starten streamlit run .\Live_Demo.py

Mitwirkende

- Bendix Greiner
- Maurice Baumann
- Pascal Grimm