Assignment Problems

- 1. Prove that the function H defined as part of SAT_H is computable in polynomial time.
- 2. A strong nondeterministic Turing machine(sNDTM) is an NDTM which has three possible outputs "1", "0", "?". A sNDTM M decides a language L if
 - (a) for $x \in L$ every computation of M on x yields "1" or "?" and there is at least one computation of M on x which yields "1";
 - (b) for $x \notin L$ every computation of M on x yields "0" or "?" and there is at least one computation of M on x which yields "0".

Show that L is decided by a sNDTM in polynomial time if and only if $L \in NP \cap coNP$.

3. Prove that if $L \in P$, then so is L^* .

Hint: Use dynamic programming.

4. Prove that if a language L is in NP, then so is L*.

- 5. Show that if DTIME(n) = NTIME(n), then $DTIME(n^2) = NTIME(n^2)$.
- 6. Prove that if an unary language is NP-complete then P = NP.
- 7. Prove that if every unary NP-language is in P, then EXP = NEXP.
- 8. Define $UCYCLE = \{ G \mid G \text{ is an undirected graph with a simple cycle } \}$. Show that $UCYCLE \in L$.

9. Show that 2SAT is in NL.

10. Prove that $P \neq SPACE(n)$.

Hint: This is a "trick" question. It is not known how to prove $P \nsubseteq SPACE(n)$ or how to prove $SPACE(n) \nsubseteq P$, so the proof has to start by

assuming the classes are equal and then reach a contradiction, without explicitly showing a problem in one class that cannot belong to the other.

You can try the following approach: if A and B are decision problems and $A \leq_p B$, then $B \in P$ implies $A \in P$; what would happen if the same were true for SPACE(n)?

Note that reaching a conclusion of P=NP or $P\neq NP$ is not a contradiction as neither results are known.