Frühjahr 22 Themennummer 1 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

 $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ bezeichne die offene Einheitskreisscheibe.

- (a) Es sei $f: \mathbb{D}\setminus\{0\} \to \mathbb{C}$ eine holomorphe Funktion. Zeigen Sie, dass für das Residuum der Ableitung f' im Nullpunkt res₀ f' = 0 gilt.
- (b) Es sei f eine in $\mathbb D$ holomorphe Funktion. Für die Ableitung f' von f gelte die Abschätzung

$$|f'(z) - ze^z| < \frac{1}{2} \cdot e^{\operatorname{Re}(z)}$$
 für alle $z \in \mathbb{D}$ mit $|z| = \frac{1}{2}$.

Begründen Sie, weshalb f dann nicht injektiv sein kann.

Lösungsvorschlag:

(a) Das Residuum von f' bei 0, lässt sich mittels eines Pfadintegrals längs eines Kreiswegs um 0 berechnen, es gilt nämlich

$$res_0(f') = \frac{1}{2\pi i} \int_{\gamma} f'(z) dz = \frac{1}{2\pi i} \int_0^{2\pi} f'(\gamma(t)) \gamma'(t) dt = \frac{1}{2\pi i} (f(\gamma(2\pi)) - f(\gamma(0))) = 0,$$

wobei $\gamma:[0,2\pi]\to\mathbb{C}, \gamma(t)=\frac{1}{2}e^{it}$ ist und $\gamma(0)=\frac{1}{2}=\gamma(2\pi)$ benutzt wurde.

(b) Wendet man den Satz von Rouché auf die Funktionen $h(z) = ze^z$, $g(z) = f'(z) - ze^z$ und die Kurve γ aus (a) an, so erhält man wegen $|h(z)| = |z|e^{\operatorname{Re}(z)} = \frac{1}{2}e^{\operatorname{Re}(z)} > |g(z)|$ für alle $z \in \operatorname{Spur}(\gamma)$ und $ze^z = 0 \iff z = 0$, dass f' auf $B_{\frac{1}{2}}(0)$ genau eine Nullstelle ξ hat und diese von erster Ordnung ist. Insbesondere ist f nicht konstant, weil die Ableitung sonst schon konstant 0 wäre. Wir kommen nun zur Aufgabe: Angenommen f wäre injektiv, so wäre nach dem Satz von der Gebietstreue $f(\mathbb{D})$ selbst ein Gebiet als Bild eines Gebietes unter einer nichtkonstanten holomorphen Funktion, also ist $f: \mathbb{D} \to f(\mathbb{D})$ bereits biholomorph nach dem Umkehrsatz. Auf $\mathbb{D}\setminus\{\xi\}$ gilt für die Ableitung der Umkehrfunktion nun $(f^{-1})'(z) = f'(f^{-1}(z))^{-1}$ für alle $z \in f(\mathbb{D})\setminus\{f(\xi)\}$, was sich zu $(f^{-1})'(z) \cdot f'(f^{-1}(z)) = 1$ umformen lässt. Die Funktion auf der linken Seite ist holomorph und stimmt auf $f(\mathbb{D})\setminus\{f(\xi)\}$ mit der Einsfunktion überein, also sogar auf ganz $f(\mathbb{D})$. Das wiederum zeigt, dann aber für $z = f(\xi)$ die Gleichung $0 = (f^{-1})'(f(\xi)) \cdot 0 = (f^{-1})'(f(\xi)) \cdot f'(\xi) = 1$, ein Widerspruch. Demnach kann f nicht zugleich injektiv und holomorph sein und trotzdem die vorausgesetzte Abschätzung erfüllen.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$