

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000325791 A

(43) Date of publication of application: 28.11.00

(51) Int. Cl

B01J 23/63

B01D 53/34

B01D 53/94

B01J 23/58

B01J 23/648

B01J 23/89

F01N 3/08

F01N 3/10

F01N 3/28

(21) Application number: 11136991

(71) Applicant: TOYOTA MOTOR CORP

(22) Date of filing: 18.05.99

(72) Inventor: ISHIKAWA MICHIO

(54) CATALYST FOR CLEANING EXHAUST GAS AND COPYRIGHT: (C)2000,JPO
METHOD FOR CLEANING EXHAUST GAS

(57) Abstract:

PROBLEM TO BE SOLVED: To enhance the cleaning rate of NO_x after the life of an occlusion reduction-type exhaust gas cleaning catalyst beyond the current level of the rate by further inhibiting the sulfur poisoning of the catalyst.

SOLUTION: On the surface of a catalyst carrying layer 2, a metallic oxide layer 3 comprising at least one kind of metallic oxide selected from a transition metal and a rare earth element and a noble metal carried by the metallic oxide. SO_x is hardly adsorbable in the metallic oxide layer 3 and oxygen present in the interface between the metallic oxide and the noble metal is removed through a reduction reaction. It is considered that the interface part acts as an activation point for the reduction reaction of NO_x. Thus the NO_x cleaning power of the catalyst is upgraded.

● TiO ₂ 80x=30)実施例1	□ CeO ₂ 80x=30 実施例5
○ TiO ₂ 80x=0)実施例2	■ Fe ₂ O ₃ 80x=30 実施例6
-▲ Al ₂ O ₃ 80x=30)実施例3	◆ Nd ₂ O ₃ 80x=30 実施例3
-● Al ₂ O ₃ 80x=0)比較例1	▲ SrO ₂ 80x=30 実施例4
-◆ ZrO ₂ 80x=30)実施例9	-▲ PrO ₂ 80x=30 実施例2
-○ ZrO ₂ 80x=0)実施例10	