2020 白家瞳分布式光纤实验及地下结构探测研究

尹扶

2020

• 传统的地震观测

密集台阵 地震勘探

张云鹏, 王宝善* 等2020

http://cig.ustc.edu.cn/main.htm

特殊情景地震观测

Marra et al., 2018 Science, 海洋地震观测

Imaging of urban underground velocity structure

15m - 50m

- MRT systems
- Major roads

100m onwards

- Underground ammunition facility
- Jurong Rock Caverns for petrochemical storage

1m - 3m

- Underground pedestrian links
- Water fiber and sewage pipes

1m - 10m

 Common service Tunnel in Marina Bay

20m - 50m

- Deep sewage system
- Transportation to two water reclamation plants

http://sgpnus.org/index.html

--- 提纲

- > 分布式光纤声波传感器简介
- > 地震学观测实例
- ▶ 2020年白家疃观测实验

Distributes Acoustic Sensing Technique (DAS)

Wang 2020 CGU

DAS是一种新型地震观测技术,提供超高密度、宽频带观测:

• 台站间距: 0.25 -10 m

• 观测长度: 0.1 - 10s km

• 信号频段: mHz-kHz

DAS技术在地球物理领域发 展迅猛

Zhan et al., 2020 SRL

--- 提纲

- > 分布式光纤声波传感器简介
- > 地震学观测实例
- ▶ 2020年白家疃观测实验

资源勘探实例

背景噪声成像

Zeng et al., 2017

2018年白家疃实验

林融冰、宋政宏等.地球物理学报,63(4): 1622-1629

接收函数

Yu et al., 2019 GRL

天然地震

The 2018 Honduras M7.5 Earthquake

Zhan et al., 2020 SRL

Figure 4. (a) Red lines show directional sensitivity of DAS, or linear strainmeter in general, to P wave for a straight fiber section aligned along the horizonal axis (black lines). Solid and dashed lines mean positive and negative, respectively. Reproduced based on Benioff (1935). The directional sensitivity of a conventional seismometer's horizontal component is shown in blue lines as references. (b) Same as (a) but for S waves. (c) A helically wound fiber-optic cable design that can provide better broadside DAS sensitivity than straight fibers. Figure from Lim Chen Ning and Sava (2018).

海洋地震

Lindsey et al., Science, 2019

--- 提纲

- > 分布式光纤声波传感器简介
- > 地震学观测实例
- ▶ 2020年白家疃观测实验

· · · 自家疃观测实验

2018

••• 地震观测系统

红色点: 人工落锤

蓝色曲线:光纤

小型震源车

人工落锤信号

走时层析成像

DAS 信号比较

野外地震勘探信号

DAS 信号

野外地震勘探信号

DAS 信号

地震剖面图片来自 雷宇航博士

高阶面波信号

图片来自 雷宇航博士

天然地震信号

事件: 20201003111007

DAS, one channel

Spectrum analysis

波形对比:

DAS记录信号

事件: 20201003111007

震中距: 134 km

交通监测

天然地震信号

事件: 20201002121230

震中距: 122 km

周边噪声信号

日期: 10月04日

DAS道号: 050

原始记录

滤波 0-20 Hz 后

时频分析:

Spectrum analysis Date: 2020-10-04

- 单频 24.5 hz 干扰波形 记录长度 6 秒

• 单频 24.5 hz 干扰时空强度

24.5HZ Geometry

x (m)

厨房抽油烟机/固定 转速水泵??

背景噪声面波成像

signal processing ==> A®B ==> stack ==>

Campillo and Paul, Science, 2003; Shapiro and Campillo, GRL, 2004

Temporal changes of seismic wave velocity at depth ==> characterize the deformation rate?

5tacked and filtered at 0.20-20.00 Hz

-10 -5 0 5 10

频散曲线提取

S波速度反演

DAS测线下方 S波速度剖面

总结

> 观测到交通、锤击和天然地震等信号

➤ 利用DAS技术和光纤可以为城市地下结构探测提供新手段

Thanks!