

- Extremos locais e condicionados -

- 1. Considere a função  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$  tal que  $f(x,y) = x^2 + 6xy + y^2 8x 8y$ .
  - (a) Determine os pontos estacionários de f.
  - (b) Verifique se a função possui máximos ou mínimos locais.
- 2. Determine, caso existam, os pontos de extremo locais das seguintes funções:

(a) 
$$f(x,y) = x^2 + y^2$$
;

(f) 
$$f(x,y) = e^x \cos y$$
;

(b) 
$$f(x,y) = x^2 + y^2 + 4x - 6y$$
;

(g) 
$$f(x,y) = x \cos y$$
;

(c) 
$$f(x,y) = 2x^3 + xy^2 + 5x^2 + y^2$$
;

(h) 
$$f(x,y) = 5 - x^2 - y^2$$
;

(d) 
$$f(x,y) = x^2 - 4xy + y^3 + 4y$$
;

(i) 
$$f(x,y) = \log(x^2 + y^2 + 1)$$
;

(e) 
$$f(x,y) = xy(1-x-y)$$
;

(j) 
$$f(x,y) = 2x^3 - y^3 - 24x + 75y + 7$$
.

3. Determine, caso existam, os valores máximo e mínimo das funções dadas, sujeitas à(s) condição(ões) indicada(s).

(a) 
$$f(x,y) = x^2 - y^2$$
;  $x^2 + y^2 = 1$ .

(b) 
$$f(x,y) = 2x + y$$
;  $x^2 + 4y^2 = 1$ .

(c) 
$$f(x,y) = xy$$
;  $9x^2 + y^2 = 4$ .

(d) 
$$f(x, y, z) = x + 3y + 5z$$
;  $x^2 + y^2 + z^2 = 1$ .

(e) 
$$f(x, y, z) = x + 2y$$
;  $x + y + z = 1$ ,  $y^2 + z^2 = 4$ .

(f) 
$$f(x,y,z) = 3x - y - 3z$$
;  $x + y - z = 0$ ,  $x^2 + 2z^2 = 1$ .

- 4. Determine os três números positivos, cuja soma é 100 e cujo produto é máximo.
- 5. Determine os três números positivos, cujo produto é 8 e cuja soma é mínima.
- 6. Determine três números positivos, cuja soma é 13 tais que a soma dos seus quadrados seja mínima.
- 7. Determine o ponto do plano 2x y + z = 1 mais próximo do ponto (-4, 1, 3).