2022-2023 - אינפי למדעים - סמסטר ב' תשפ"ג 2022-2023 - תרגיל 3

הנחיות: כתבו את הפתרון בכתב יד ברור, בצירוף שם (פרטי ומשפחה) ומספר ת.ז. יש לציין כותרת ברורה בראש הדף הכוללת את שם הנחיות: כתבו את הפתרון, כאשר השאלות בסדר עולה, והגישו אלקטרונית באתר הקורס עד ל־ 18.04.23 בשעה 22:00.

1. הוכיח את התכונה הבאה של חזקות עם מעריך שלם:

(בתרגול). מתקיים $a,b\in\mathbb{R}\setminus\{0\}$ (מתקיים מהוכחת תכונה 2 בתרגול). לכל $a,b\in\mathbb{R}\setminus\{0\}$

: מתקיים $n\in\mathbb{N}$ ולכל $a,b\in\mathbb{R}$ מתקיים .2

$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$
 (x)

$$a^{2n+1} + b^{2n+1} = (a+b)(a^{2n} - a^{2n-1}b + \dots - ab^{2n-1} + b^{2n})$$
 (2)

:3 התנאים את שני מקיים את מקיים מקMשל של אם האסם האליון אם הוכחנו מיים מח $M\in\mathbb{R}$ הוא הוכחנו מיים מחליון מקיים את מקיים את מקיים את מחליון מומי מחליון מחליון מחליון מחליון מחליון מח

.
$$M-arepsilon < a$$
 כך ש־ $a \in A$ קיים $arepsilon > 0$ ולכל אל חסם מלעיל של חסם מלעיל א

A נסחו והוכיחו טענה דומה הקובעת מתי $m\in\mathbb{R}$ הוא החסם התחתון של

.4 מלעיל. מחסומות מלעיל. $\varnothing \neq A, B \subseteq \mathbb{R}$

.
$$(\forall a \in A \quad \exists b \in B \quad a \leqslant b) \quad \Rightarrow \quad \sup(A) \leqslant \sup(B) :$$
 (א)

$$\forall\,a\in A\quad\exists\,b\in B\quad a\leqslant b\qquad \wedge\qquad \forall\,b\in B\quad\exists\,a\in A\quad b\leqslant a\ :$$
ב) נתון

. \inf טענה דומה הנוגעת (מבלי לתת הוכחה) נסחו . $\sup(A) = \sup(B)$: הוכיחו

. $A+B=\{a+b\mid a\in A\ ,\ b\in B\ \}$ נגדיר $\varnothing \neq A,B\subseteq \mathbb{R}$ נגדיר .5

שימו לב שכל איבר A+B, הינו מהצורה x=a+b הינו מהצורה $x\in A+B$, אבל ייתכן שביותר מדרך אחת.

$$A+B=\{\,-2+1\,,\,-2+3\,,\,0+1\,,\,0+3\,,\,1+1\,,\,1+3\,\}$$
 נקבל $B=\{\,1,3\,\}$ ר $A=\{\,-2,0,1\,\}$ למשל עבור $B=\{\,-1\,,\,1\,,\,3\,,\,2\,,\,4\,\}=\{\,-1\,,\,1\,,\,2\,,\,3\,,\,4\,\}$

האיבר A+B בי מתקבל בשני אופנים שונים.

 $\operatorname{sup}(A+B)=\operatorname{sup}(A)+\operatorname{sup}(B)$ הוכיחו שאם A ו־ B חסומות מלעיל, אזי A+B חסומה מלעיל ומתקיים:

- הבאות: מהטענות מהטענות או ריקות. הוכיחו או קבוצות לא ריקות הבאות: $A,B\subseteq\mathbb{R}$
 - אט B אסומה ו־ $B \leq A$ אז חסומה A אם א
- . איננה חסומה מלעיל ור $A \smallsetminus B$ איננה חסומה מלעיל ור $A \setminus B$ איננה חסומה מלעיל ור איננה חסומה מלעיל
 - ג) אם ל־A קיים מקסימום , אז הוא יחיד.
- . בדקו האם תת־הקבוצות הבאות של $\mathbb R$ חסומות מלעיל או מלרע. אם כן, חשבו את האינפימום ו/או הסופרמום.

קבעו גם האם קיימים מקסימום ומינימום, ואם כן, חשבו אותם. הוכיחו את תשובותיכם!

$$B=\left\{\left.rac{n^2+12n+32}{n+5}\;
ight|\;n\in\mathbb{N}\;
ight\}$$
 נא $A=\left\{\left.x\in\mathbb{R}\;
ight|\left|x^2-4
ight|\leqslant 5\;
ight\}\;$ נא

. ($\frac{n^2+12n+32}{n+5}=an+b+rac{c}{n+5}$ מתקיים מתקיים מה א כך שעבור כל $a,b,c\in\mathbb{R}$ מצאו שבור הקבוצה מאו

(← משך (המשך)

- . $A_t = \{ x \in \mathbb{R} \mid t \leqslant |x+2| + |x-2| < 8 \}$ נגדיר, $t \in \mathbb{R}$.8
- (א) את את את הוכיחו את השייכים לקבוצה A_6 השייכים $x\in\mathbb{R}$ המספרים את מצאו את מצאו את מצאו את המספרים
- A_t עבור אז . $A_{t_2} \subseteq A_{t_1}$ אז , $t_1 < t_2$ מקיימים $t_1, t_2 \in \mathbb{R}$ אם הוכיחו שאם
 - $t\leqslant 4$ עבור כל $A_t=A_4$ (ג) הוכיחו או הפריכו
 - . $n\leqslant x$ כך ש־ $n\in\mathbb{Z}$ קיים $x\in\mathbb{R}$ כר ש־ 9.
- ב) תהי $A\subseteq \mathbb{Z}$ קבוצה לא ריקה וחסומה מלרע של מספרים שלמים. היעזרו בעיקרון הסדר הטוב כדי להוכיח של $A\subseteq \mathbb{Z}$ יש מינימום. (רמז : הסתכלו על $A+\{m\}$
 - (-A) ג) תהי $A\subseteq \mathbb{Z}$ לא ריקה וחסומה מלעיל . הוכיחו של A יש מקסימום. $A\subseteq \mathbb{Z}$ לא ריקה וחסומה מלעיל
 - $x_1 + x_2 \geqslant 2$ עם $x_1 + x_2 \geqslant 2$ עם $x_1 + x_2 \geqslant 2$ כך ש־ $x_1 + x_2 \geqslant 2$ (כלומר $x_1 + x_2 \geqslant 2$ עם $x_1 + x_2 \geqslant 2$
 - . $x_1x_2x_3=1$ כך ש־ , $0 < x_1 \leqslant x_2 \leqslant x_3$ עם $x_1, x_2, x_3 \in \mathbb{R}$ יהיו לנו בהמשך: יהיו
 - $0 < x_1 < x_3 < x_1 + x_3$ ני והסיקו כי $0 < x_3 1$ ו' $0 < x_1 < x_3$, $1 < x_3$ ו' $0 < x_1 < 1$.i.
 - $x_1 + x_2 + x_3 \geqslant 3$ והוכיחו ש־ $x_1 + x_2 \geqslant 2$ ש' ש־ .ii
 - $x_1\cdot x_2\cdot\ldots\cdot x_n=1$ כך ש־ $0< x_1\leqslant x_2\leqslant\ldots\leqslant x_n$ עם $x_1,x_2,\ldots,x_n\in\mathbb{R}$ ויהיו $n\in\mathbb{N}$ יהי (ג) יהי $x_1+x_2+\ldots+x_n\geqslant n$ ש־ $x_1+x_2+\ldots+x_n\geqslant n$

 $x_1 \cdot x_2 \cdot \ldots \cdot x_n \cdot x_{n+1} = 1$ כך ש־ $0 < x_1 \leqslant x_2 \leqslant \ldots \leqslant x_n \leqslant x_{n+1} \in \mathbb{R}$ סמנו $y_1 \cdot y_2 \cdot \ldots \cdot y_n = 1$, ושימו לב ש־ $y_1 \cdot y_2 \cdot \ldots \cdot y_n = 1$, ושימו לב ש־ $y_1 \cdot y_2 \cdot \ldots \cdot y_n = 1$, ושימו לב ש־ המנו

. $1 + y_1 = 1 + x_1 x_{n+1} \leqslant x_1 + x_n$ העזרו בסעיף ב' בכדי לקבל

. $1+y_1+\ldots+y_n\leqslant x_1+x_2+\ldots x_n+x_{n+1}$ מכאן קבלו כי

. (ודאו שאתם מבינים מדוע ניתן לעשות אתו) אחר). אחריום השתמשנו בהנחת האינדוקציה על $\{y_1,y_2,\ldots,y_n\}$