Digital Signal Processing

Chapter V. Digital filtering

Response of LTI systems to harmonic signals

 $x[n] = A \cdot e^{\frac{1}{2}m \cdot n}$

- ▶ We consider an LTI system with h[n]
- Input signal = complex harmonic (exponential) signal $x[n] = Ae^{j\omega_0 n}$
- ► Output signal = convolution

$$y[n] = \sum_{k=-\infty}^{\infty} h[k] \times [n-k]$$

$$= \sum_{k=-\infty}^{\infty} h[k] e^{-j\omega_0 k} A e^{j\omega_0 n}$$

$$= H(\omega_0) \cdot x[n]$$

$$x[n] = Ae^{j\omega_0 n}$$

$$x[n-k] = Ae^{j\omega_0 (n-k)} = Ae^{j\omega_0 k} \cdot e^{j\omega_0 k}$$

$$h[n] \xrightarrow{b_1 \neq 1} H(w) = \sum_{n=0}^{\infty} h[n] e^{-j\omega_n k}$$

$$\text{Trouster function}$$

lacksquare $H(\omega_0)=$ Fourier transform of h[n] evaluated for $\omega=\omega_0$

Response of LTI systems to harmonic signals

Figure 1: Output = a constant \times Input

▶ $H(\omega) = \text{Fourier transform of } h[n]$ evaluated for $\omega = \text{transfer function}$

Eigen-function

- Complex exponential signals are eigen-functions (funcții proprii) of LTI systems:
 - ▶ output signal = input signal × a (complex) constant
- \blacktriangleright $H(\omega_0)$ is a constant that multiplies the input signal
 - ▶ Amplitude of input gets multiplies by $|H(\omega_0)|$
 - ▶ Phase of input signal is added with $\angle H(\omega_0)$
- ▶ Why are sin/cos/exp functions important?
 - ▶ If input signal = sum of complex exponential (like coses + sinuses),
 - then output = same sum of complex exponentials, each scaled with some coefficients

Response to cosine and sine

► Cosine / sine = sum of two exponentials, via Euler

$$\cos(\omega n) = \frac{e^{j\omega n} + e^{-j\omega n}}{2}$$

$$\sin(\omega n) = \cos(\omega n - \frac{\pi}{2}) = \frac{e^{j\omega n} - e^{j\omega n}}{2}$$

- ► System is linear and real =>
 - ightharpoonup amplitude is multiplied by $|H(\omega_0)|$
 - phase increases by $\angle H(\omega_0)$
- ► See proof at blackboard

Frequency response

- ► Naming:
- or transfer function
- \vdash $H(\omega) =$ **frequency response** of the system
- $|H(\omega)| =$ amplitude response (or magnitude response)
- $ightharpoonup \angle H(\omega) = p$ hase response

- /H(w) $\in \left[- \Pi, \Pi\right]$
- ▶ Magnitude response is non-negative: $|H(\omega)| \ge 0$
- ▶ Phase response is an angle: $\angle H(\omega) \in (-\pi, pi]$
 - Phase response may have jumps of 2π (wrapped phase)
 - Stitching the pieces in a continuous function = phase <u>unwrapping</u>

 | Nowrapped phase: continuous function may go outside interval
 - Unwrapped_phase: continuous function, may go outside interval $(-\pi, pi]$
 - Example: at blackboard

Permanent and transient response

Permanent
$$X[n] = A \cdot cos(w_0 n + \varphi)$$
, $n \in \mathbb{Z}$
 $y[n] = A \cdot |H(w_0)| \cdot cos(w_0 n + \varphi)$
 $x[n] = A cos(w_0 n + \varphi)$

- ▶ Warning: $cos(\omega n)$ does not start at n = 0
- ▶ The above harmonic signals start at $\underline{n} = -\infty$.
- ▶ What's wrong if the signal starts at some time n?

Permanent and transient response

- \triangleright What if the signal starts at some time n?
- ightharpoonup Total response = transient response + permanent response
 - transient response goes towards 0 as *n* increases
 - permanent response = what remains
- ► So the above relations are valid only in **permanent regime**
 - ▶ i.e. after the transient regime has passed
 - ▶ i.e. after the transient response has practically vanished
 - ightharpoonup i.e. when the signal started very long ago (from $n=-\infty$)
 - ▶ i.e. when only the permanent response remains in the output signal
- Example at blackboard

Permanent response of LTI systems to periodic inputs

- Consider an input x[n] which is periodic with period N
- ▶ Then it can be represented as a Fourier series with coefficients c_k :

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} (k) e^{j2\pi k n/N}$$

- Since the system is linear, each component k gets multiplied with $H\left(\frac{2\pi}{N}k\right)$
- ► So the total output is:

$$y[n] = \frac{1}{N} \sum_{k=0}^{N-1} \left(\frac{2\pi}{N} k \right) e^{j2\pi kn/N}$$

The output is still periodic, same period, same frequencies

Response of LTI systems to non-periodic signals

- ▶ Consider a general input x[n] (not periodic)
- ► The output = input convolution with impulse response

$$y[n] = x[n] * h[n]$$

$$Y(\omega) = X(\omega) \cdot H(\omega)$$

ightharpoonup Output spectrum imes Transfer function

Response of LTI systems to non-periodic signals

▶ The transfer function $H(\omega)$ "shapes" the spectrum

$$Y(\omega) = X(\omega) \cdot H(\omega)$$

- In polar form:
 - modulus is multiplied

$$|Y(\omega)| = |X(\omega)| \cdot |H(\omega)|$$

phases is added:

$$\angle Y(\omega) = \angle X(\omega) + \angle H(\omega)$$

Response of LTI systems to non-periodic signals

- ► The system attenuates/amplifies the input frequencies and changes their phases
- \blacktriangleright $H(\omega) = \text{the } \underline{\text{transfer function}}$
- \vdash H(z) =the **system function**
- ► $H(ω) = H(z = e^{jω})$ if unit circle is in CR

Power spectral density

$$\chi[n]$$
 (w) $\chi[w]$ $= S_{\chi\chi}(w) = Power Spectral Density$

$$S_{zz}(\omega) = |Y(\omega)|^2 = |H(\omega)|^2 \cdot S_{xx}(\widehat{\mathbb{Q}})$$

▶ The poles and zeros of $S(\omega)$ come in pairs (z, 1/z) and (z, 1/z)

$$|y(w)| = |x(w)|^{2} |+|u|^{2}$$

$$\leq yy(w) = \int_{XX} |w| \cdot |+|w|^{2}$$

Digital filters

- ► LTI systems are also known as **filters** because their transfer function shapes ("filters") the frequencies of the input signals
- ▶ The transfer function can be found from H(z) and $z = e^{j\omega}$
- ▶ Alternatively, the transfer function can be found by the **geometrical method** based on the locations of poles and zeros

Ideal filters

Filter order

- The <u>order</u> of a filter = <u>maximum degree</u> in numerator or denominator of H(z)
 - ightharpoonup i.e. largest power of z or z^{-1}
- Any filter can be implemented, in general, with this number of unit delay blocks (z^{-1})
- Higher order -> better filter transfer function
 - closer to ideal filter
 - more complex to implement
 - more delays (bad)
- Lower order
 - worse transfer function (not close to ideal)
 - simpler, cheaper
 - faster response

Filter design by pole and zero placements

- ► Based on geometric method
- ▶ The gain coefficient must be found by separate condition
 - i.e. specify the desired magnitude response at one frequency
- Examples at blackboard

Filter distortions

- ▶ When a filter is non-ideal:
 - ▶ non-constant amplitude → amplitude distortions
 - ▶ non-linear phase → phase distortions
- ▶ Phase distortions may be tolerated by certain applications

• e.g. human auditory system is largely insensitive to phase distortions of sounds

How should /Hu) be in the ideal come:

- 1) loteal ioleal : (#(w) = @ = 0. W
- z) Toleal : (H(a) linear = c·w

Pass-band

– Wc

L'mear-prose

Effect of system's phase

- ▶ What is the effect of system's phase response $\angle H(\omega)$?
- ► Extra phase = delay
 - ▶ different frequencies are delayed differently
 - phase
- Linear-phase filter: delays all frequencies with the same amount of time
 - i.e. the whole signal is delayed, but otherwise not distorted
 - otherwise, we get distortions

Linear-phase filters

- For a sinusoidal signal, extra phase of $2\pi = \text{delay of a period } N = \frac{1}{f}$
- ▶ To ensure same delay for all frequencies (in time), the phase $\angle H(\omega)$ must be proportional to the frequency
 - draw at blackboard
 - hence the name linear

Linear-phase filters

Example: consider the following filter with linear phase function:

$$H(\omega) = \underbrace{C}_{j} \cdot e^{-j\omega n_0} \qquad \left| \frac{H(\omega)}{\omega} \right| = \underbrace{1}_{j}$$

► The output signal is

$$Y(\omega) = X(\omega) \cdot \underbrace{C}_{i} \cdot e^{-j\omega n_0}$$

$$y[n] = \underbrace{C}_{t} \cdot x[n - \underbrace{n_{0}}_{t}]$$

- Linear phase means just a delaying of the input signal
 - Fourier property: $x[n-n_0] < ---> X(\omega)e^{-j\omega n_0}$

Group delay

- Group delay \Rightarrow The time delay experienced by a component of frequency ω when passing through the filter
 - ▶ as opposed to "phase delay" = the phase added by the filter
- ► Group delay of the filter:

$$\tau_{g}(\omega) = \frac{d\Theta(\omega)}{d\omega}$$

Linear phase = constant group delay = all frequencies delayed the same = whole signal delayed

Linear-phase FIR filters

What type of filters can have linear phase?

- ▶ IIR filters cannot have linear phase (no proof provided)
- Only <u>FIR</u> filters can have linear phase, and only if they satisfy some symmetry conditions

Symmetry conditions for linear-phase FIR

- Let filter have an impulse response of length M (order is M-1)
- ▶ The filter coefficients are $h[0], \ldots h[M-1]$
- ► Linear-phase is guaranteed in two cases
 - Positive symmetry

$$h[n] = h[M-1-n]$$

Negative symmetry (anti-symmetry)

$$h[n] = -h[M-1-n]$$

► The delay = the delay of the middle point of the symmetry

Cases of linear-phase FIR

- Proofs at blackboard
- 1. Positive symmetry, M = odd
- 2. Positive symmetry, M = even
- 3. Negative symmetry, M = odd
- 4. Negative symmetry, M = even
- ▶ Check constraints for H(0) and $H(\pi)$
- ▶ For what types of filters is each case appropriate?

Zero-phase FIR filters

- ► Can we avoid delay altogether?
- ➤ **Zero-phase** filter = a particular type of linear-phase filter with zero delay
- ▶ For a zero-phase filter, the phase response $\angle H(\omega) = 0$
 - ▶ (Group) delay = derivative of $\angle H(\omega)$
 - ▶ delay $0 \Leftrightarrow \text{flat } \angle H(\omega) \Leftrightarrow \angle H(\omega) = 0$
- ▶ Delay is $0 \Leftrightarrow$ symmetry with respect to h[0]
 - the system cannot be causal

Zero-phase FIR filters

- ► Zero-phase filters must be non-causal
 - ▶ left side of h[n] symmetrical to right side of h[n]
- ▶ For causal, we need to delay h[n] to be wholly on the right side => delay

Linear-phase filter (low-pass):

Figure 2: Transfer function of linear-phase filter

► The impulse response (positive symmetry):

Figure 3: Impulse response of linear-phase filter

▶ ECG signal: original and filtered. Filtering introduces **delay**

Figure 4: Delay introduced by filtering

- ▶ Solution: zero-phase filter (positive symmetry, and centered in 0):
- ▶ But filter is **not causal** anymore

Figure 5: Impulse response of zero-phase filter

► Filtering with zero-phase filter introduces no delay

Figure 6: Zero-phase filter introduces no delay

Particular classes of filters

- ▶ **Digital resonators** = very selective band pass filters
 - poles very close to unit circle
 - ▶ may have zeros in 0 or at 1/-1

Notch filters

- have zeros exactly on unit circle
- will completely reject certain frequencies
- has additional poles to make the rejection band very narrow

Comb filters

= periodic notch filters

Digital oscillators

- ► Oscillator = a system which produces an output signal even in absence of input
- ► Has a pair of complex conjugate poles **exactly on unit circle**
- ► Example at blackboard

Inverse filters

- ► Sometimes is necessary to **undo** a filtering
 - e.g. undo attenuation of a signal passed through a channel
- ▶ Inverse filter: has inverse system function:

$$H_I(z) = \frac{1}{H(z)}$$

- ▶ Problem: if H(z) has zeros outside unit circle, $H_I(z)$ has poles outside unit circle -> unstable
- Examples at blackboard