First look at our data

Source: https://esciencecenter-digital-skills.github.io/scikit-learn-mooc/python_scripts/01_tabular_data_exploration.html

Explore the data interactively

- look at the variables and their types (numerical, categorical)
- look at the distributions (univariate or bivariate)

```
In [1]: import pandas as pd
In [2]: adult_census = pd.read_csv("../../datasets/adult-census.csv")
    adult_census.head()
```

Out[2]:

:		age	workclass	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per- week	native- country	cla
	0	25	Private	11th	7	Never- married	Machine- op-inspct	Own-child	Black	Male	0	0	40	United- States	<=5
	1	38	Private	HS-grad	9	Married- civ- spouse	Farming- fishing	Husband	White	Male	0	0	50	United- States	<=5
	2	28	Local-gov	Assoc- acdm	12	Married- civ- spouse	Protective- serv	Husband	White	Male	0	0	40	United- States	>5
	3	44	Private	Some- college	10	Married- civ- spouse	Machine- op-inspct	Husband	Black	Male	7688	0	40	United- States	>5
	4	18	?	Some- college	10	Never- married	?	Own-child	White	Female	0	0	30	United- States	<=5
	4														•

Explain "record/sample/observation/instance" and "feature/variable/attribute", social sciences vs data science lingo

```
In [3]: n_rows, n_cols = adult_census.shape
# print(f"The dataset has {n_rows} rows and {n_cols} columns")
# one of the columns is the target, the others are features
```

Inspecting the data: individual columns

- get a feel for the data
- detect particularities
- see if the data are suitable for the task

be clear that I'll go faster, and let me know if it's too fast/too slow

```
In [4]: _ = adult_census.hist(figsize=(20,14))
```


education-num

12000

10000

6000 4000

2000

Comments on the data -> keep your intuitions from research

- age: not many above 70 -> what is the model used for? this matters for representativeness
- capital-gain, capital-loss: -> most records have 0. -> data preprocessing before modeling?

Imbalance in the target variable

```
In [5]: target_column = "class"
   adult_census[target_column].value_counts()

Out[5]: class
   <=50K     37155
    >50K     11687
    Name: count, dtype: int64
   observations
```

• need to adjust model to deal with imbalance in the target variable

Imbalance in the input data

- not representative on the gender dimension
- can cause disproportionate prediction error for under-represented groups
- thus, it's good practice at least to examine the prediction performance across groups and take action if necessary.

Inspecting relationships between columns

```
In [8]: | adult_census = adult_census.drop(columns=["education"])
 In [9]: import seaborn as sns
In [10]: n samples = 5000
          columns = ["age", "education-num", "hours-per-week"]
            = sns.pairplot(
               data=adult_census[:n_samples],
               vars=columns,
               hue=target_column,
               plot kws={"alpha": 0.2},
               height=3,
               diag_kind="hist",
               diag_kws={"bins": 30}
             90
             80
             70
             60
          age 50
             40
             30
             20
             16
             14
             12
          education-num
             10
                                                                                                                                class
              8
                                                                                                                                 <=50K
              6
                                                                                                                                 >50K
              4
              2
            100
             80
         hours-per-week
             60
             40
             20
              0
                  20
                          40
                                   60
                                           80
                                                            5
                                                                      10
                                                                                 15
                                                                                             20
                                                                                                   40
                                                                                                          60
                                                                                                                80
                                                                                                                      100
                                                              education-num
                                                                                                 hours-per-week
```

Exercise: Data exploration (10min, in groups) [Flavio]

Imagine we are interested in predicting penguins species based on two of their body measurements: culmen length and culmen depth. First we want to do some data exploration to get a feel for the data.

The data is located in ../datasets/penguins_classification.csv.

Load the data with Python and try to answer the following questions:

- 1. How many features are numerical? How many features are categorical?
- 2. What are the different penguins species available in the dataset and how many samples of each species are there?
- 3. Plot histograms for the numerical features
- $\begin{tabular}{ll} 4. & Plot features distribution for each class (Hint: use \\ & seaborn.pairplot). \\ \end{tabular}$
- 5. Looking at the distributions you got, how hard do you think it will be to classify the penguins only using "culmen depth" and "culmen length"?


```
In [15]: n_samples = 5000
columns = ["Culmen Length (mm)", "Culmen Depth (mm)"]
pairplot_figure = sns.pairplot(penguins, hue="Species", height=4)
```


In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js