BayesianLab1

 $Harshavardhan\ Subramanian\ Vinod\ Kumar\ Dasari$ 14/04/2020

1. Bernoulli ... again

 \mathbf{a}

From the above graph it is evident that as the number of random grows, the posterior mean and standard deviation converges to the true values.

b ## The posterior probability for p(theta > 0.3) using simulation with Ndraws = 10000 is : 0.4341 ## The exact posterior probability for p(theta > 0.3) is : 0.4399472

 \mathbf{c}

Histogram of Posterior Distribution

2. Log-normal distribution and the Gini coefficient.

Density curve of Simulated variance

Density curve of Theortical variance

From the density plot it is evident that both simulated and theoretical values pretty much follow same distribution and the mean of both is also very close to each other.

 \mathbf{b}

Density curve of Posterior distribution of the Gini coefficient G

The posterior mean of obtained Gini coefficient is found to be 0.23 which is more closer to 0 than 1, hence the incomes are nearly equal.

ETL INTERVALS

The equal tailed lower and upper credible intervals is found to be ## 0.1611716 and 0.3365902 respectively

HPD INTERVALS

The Highest Posterior Density lower and upper intervals is found to be ## 0.1496601 and 0.3131126 respectively

3. Bayesian inference for the concentration parameter in the von Mises distribution.

 \mathbf{a}

The above plot depicts the posterior distribution of k for the wind direction data over a fine grid of k values.

b

Approximate posterior mode of k is found to be 0.00408702

The approx posterior mode is found from above calculation goes in par with the values of posterior of k values and also from the graph. The value is very close to 0.

Appendix

```
knitr::opts_chunk$set(echo = TRUE,warning = FALSE, message = FALSE)
n <- 20
ao <- 2
bo <- 2
p <- 5
f <- n-p
a_pos <- ao+p
b_pos <- bo+f
actual_mu <- (a_pos)/(a_pos + b_pos)
actual_sd <- sqrt((a_pos * b_pos)/((a_pos + b_pos)^2 * (a_pos+b_pos+1)))
j <- 1</pre>
```

```
post_mu <- numeric()</pre>
post_sd <- numeric()</pre>
for(i in seq(1,15000,100))
  post_rand_num <- rbeta(i,a_pos,b_pos)</pre>
  post_mu[j] <- mean(post_rand_num)</pre>
  post_sd[j] <- sd(post_rand_num)</pre>
  j <- j+1
plot(seq(1,15000,100),post_mu,xlab = "Mean",ylab = "Random Sample numbers")
abline(h=actual_mu, col = "red")
plot(seq(1,15000,100),post_sd,xlab = "Sd",ylab = "Random Sample numbers")
abline(h = actual_sd,col="blue")
Ndraws <- 10000
rand_beta <- rbeta(Ndraws,a_pos,b_pos)</pre>
rand_prob <- length(which(rand_beta > 0.3)) / length(rand_beta)
cat("The posterior probability for p(theta > 0.3) using simulation with Ndraws = 10000 is :",rand_prob
prob_beta <- 1 - pbeta(0.3,a_pos,b_pos)</pre>
cat("The exact posterior probability for p(theta > 0.3) is :",prob_beta )
rand_log_odd <- log(rand_beta / (1- rand_beta))</pre>
h <- hist(rand_log_odd,main = "Histogram of Posterior Distribution")
xfit <- seq(min(rand_log_odd), max(rand_log_odd), length = 40)</pre>
yfit <- dnorm(xfit, mean = mean(rand_log_odd), sd = sd(rand_log_odd))</pre>
yfit <- yfit * diff(h$mids[1:2]) * length(rand_log_odd)</pre>
lines(xfit, yfit, col = "black", lwd = 2)
y \leftarrow c(44,25, 45, 52, 30, 63, 19, 50, 34,67)
mu <- 3.7
s2 \leftarrow var(y)
n <- length(y)
library(geoR)
## Theoritical calculation
tau_sq \leftarrow sum((log(y)-mu)^2)/n
theo_sigma_sq <- rinvchisq(10000,df = n-1, scale = tau_sq)
## Simulation
post_sim <- function(Ndraws,n,tau_sq)</pre>
  sigma_sq <- numeric()</pre>
  for(i in 1:Ndraws)
    X \leftarrow rchisq(1,n)
    sigma_sq[i] <- ((n) * tau_sq) / X
    \#theta[i] \leftarrow rnorm(mu, (sigma\_sq/n))
  }
  return(sigma_sq)
}
sigma_sq <- post_sim(10000,n,tau_sq)
par(mfrow = c(2,1))
plot(density(sigma_sq),main = "Density curve of Simulated variance")
plot(density(theo_sigma_sq),main = "Density curve of Theortical variance")
```

```
#hist(theo_sigma_sq,50,main = "Histogram of Theoretical Sigma values")
#hist(sigma_sq,50,main = "Histogram of Simulated Sigma values")
#plot(density(sigma_sq))
#mean(theta)
library(bayestestR)
G \leftarrow 2 * pnorm(sqrt(sigma_sq/2),0,1) - 1
plot(density(G),main = "Density curve of Posterior distribution of the Gini coefficient G")
intervals \leftarrow quantile(sort(G),probs = c(0.05,0.95))
hist(G, 50, main = "ETL INTERVALS")
abline(v = intervals[1],col = "red")
abline(v = intervals[2],col = "red")
cat("The equal tailed lower and upper credible intervals is found to be \n", intervals[1], "and", interva
\#high\_pos \leftarrow quantile(G\_den\_val\$y,probs = c(0.1))
G_den_val <- density(G)</pre>
G_y_sorted <- sort(G_den_val$y,decreasing = TRUE)</pre>
G_prob_cdf <- cumsum(G_y_sorted)/sum(G_y_sorted)</pre>
G_ind_y <- min(G_y_sorted[which(G_prob_cdf < 0.9)])</pre>
#ind_great <- which(G_den_val$y > high_pos)
HPD_range <- range(G_den_val$x[which(G_den_val$y >G_ind_y )])
hist(G,50,main = "HPD INTERVALS")
abline(v = HPD_range[1], col = "red")
abline(v = HPD_range[2], col = "red")
# kern_den_est <- density(G)</pre>
# CI HDI \leftarrow ci(G, method = "HDI", ci = 0.90)
\#abline(h = quantile(sort(G), probs = c(0.1)))
cat("The Highest Posterior Density lower and upper intervals is found to be\n ", HPD_range[1], "and", HPD
pos_von_mis <- function(y,mu2,k)</pre>
  likel <- numeric()</pre>
  prior <- exp(-k)</pre>
  post_k <- numeric()</pre>
  for(i in 1:length(k))
    likel[i] <- 1
    for(j in 1:length(y))
      num \leftarrow exp(k[i] * cos(y[j] - mu2))
      deno <- 2 * pi * besselI(k[i],1)</pre>
      likel[i] <- likel[i] * num / deno</pre>
    post_k[i] <- likel[i] * prior[i]</pre>
  #post_k <- prior * likel</pre>
  #return(list("post_k" = post_k, "likel" = likel, "prior"=prior))
  return(post_k)
y \leftarrow c(-2.44, 2.14, 2.54, 1.83, 2.02, 2.33, -2.79, 2.23, 2.07, 2.02)
```

```
mu2 <- 2.39
k <- seq(1,10,0.01)
post_k <- pos_von_mis(y,mu2,k)
#post_k <- exp(k * sum(cos(y-mu))-1) / besselI(k,0,expon.scaled = TRUE)
#hist(post_k)
#plot(density(post_k))
plot(x = k, y = post_k, xlab = "k values", ylab = "Density values")
#plot(x = k,y = prior_likel_post$likel, col = "red")
#plot(x = k, y = prior_likel_post$prior, col = "blue")

mode_approx <- post_k[which.max(tabulate(post_k))]
cat("Approximate posterior mode of k is found to be ",mode_approx)</pre>
```