Aprendizado de Máquina II Árvores de Decisão

Prof^a. Renata De Paris

Especialização em Ciência de Dados

Roteiro da Aula

- Definição
- Exemplo de árvore de decisão
- Geração da árvore de decisão
- Métricas utilizadas para selecionar a melhor divisão
- Avaliação do desempenho em Árvore de Decisão
- Atividade

Árvores de Decisão

Definição

- Utiliza a estratégia dividir para conquistar.
- Um problema complexo é dividido em problemas mais simples (subproblemas).
- Para cada subproblema é aplicada uma mesma estratégia recursivamente

Representação

- Grafo acíclico direcionado que possuem dois tipos de nós:
 - Nó de decisão: nó de divisão com dois ou mais sucessores.
 - Nó folha: nó terminal, rotulado como uma função.

Algortimos

- ID3 (Quilan, 1979).
- CART (Breiman et al., 1984).
- C4.5 (J48 no Weka) (Quilan, 1993).

Árvore de Decisão

Esquema da Tarefa de Classificação

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Exemplos de Árvore de Decisão

Dados de Treino

Modelo: Árvore de Decisão

Exemplos de Árvore de Decisão

Dados de Treino

Modelo: Árvore de Decisão

Exemplos de Árvore de Decisão

categorico categorico chimuo classe

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Pode existir mais de uma árvore de decisão adequada para os mesmos dados!

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Indução de Árvores de Decisão

Uma árvore de decisão abrange todo o espaço de instâncias, permitindo executar predições para qualquer exemplo de entrada.

Características

- Utiliza uma abordagem não paramétrica para construir modelos de classificação.
- Encontrar uma árvore de decisão adequada é um problema NP-completo devido a estratégia de particionamento recursiva, gulosa e de cima para baixo (top-down) usada para aumentar a árvore.
- Pequenas árvores de decisão são muito fáceis de interpretar.

Indução de Árvores de Decisão

Características da Indução (Continuação)

- A construção de árvores é computacionalmente barata mesmo para uma grande quantidade de dados.
- A classificação dos dados de testes em uma árvore de decisão é extremamente rápida.
- Os algoritmos de árvores de decisão são bastante robustos para a presença de ruídos, especialmente quando possuem métodos para evitar o overfitting.
- A presença de atributos redundantes afeta negativamente a acurácia de árvores de decisão.

Indução de Árvores de Decisão

- Estratégia Gulosa (Greedy).
 - Particionar os registros baseado no teste de um atributo que otimiza um certo critério.

Problemas:

- Determinar como particionar os registros.
 - Como especificar a condição de teste para o atributo?
 - Como determinar qual é o melhor particionamento?
- Determinar quando parar de particionar.

Como Especificar a Condição de Teste?

- Depende do tipo do atributo
 - Nominal
 - cor, identificação, profissão,
 - Ordinal
 - gosto (ruim, médio, bom), dias da semana, ...
 - Contínuo (numérico)
 - peso, tamanho, idade, temperatura, ...
- Depende do número de ramos para particionar
 - Particionamento em 2 ramos.
 - Particionamento em n ramos.

Particionamento em Atributos Contínuos

- Diferentes maneiras de tratar:
 - Discretização para transformar em um atributo categórico ordinal.
 - Estático discretizado uma vez no início.
 - Dinâmico intervalos podem ser achados por particionamento em intervalos iguais, em frequências iguais, ou agrupamento.
 - Teste Binário: (A < v) ou (A ≥ v)
 - Considera todos os possíveis pontos de corte e procura o melhor.
 - Pode ser computacionalmente dispendioso.

Para Determinar o Melhor Ponto de Particionamento

Grau de impureza

Totalmente puro

Maior grau de impureza

Para Determinar o Melhor Ponto de Particionamento

Abordagem Gulosa:

- Nodos com distribuição homogênea de classes são preferidos.
- Necessita de uma métrica para medir a impureza do nodo:

C0: 5

C1: 5

C0: 9

C1: 1

Não-homogêneo

Alto grau de impureza

Homogêneo

Baixo grau de impureza

Classificação

Geração da Árvore de Decisão baseada no Algoritmo Hunt

categorico continuo classe

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

categorico categorico continuo classe

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

		biloo 6	rico	<i>1</i> 0	<i>Q</i> :
	cate	or cated	orico contin	ino clas	Mar St Single Married Divorced
Tio	d Refund	Marital Status	Taxable Income	Cheat	Yes No Yes
1	Yes	Single	125K	No	Acertos = 2 Acertos = 4 Acertos = 1
2	No	Married	100K	No	Erros = 2 $\frac{ACertos = 4}{Erros = 0}$ $\frac{1}{Erros} = 1$
3	No	Single	70K	No	
4	Yes	Married	120K	No	Acertos = 70%
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	Mar St
8	No	Single	85K	Yes	Single, Divorced Married
9	No	Married	75K	No	Yes
10	No	Single	90K	Yes	Tes INO

categorico continuo classe

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

		Tax Inc			
<= 80)Ķ		\$ 8	30	K
	N		S		

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Taxable Income	Cheat	
60K	No	
70K	No	
75K	No	- 8
85K	Yes	
90K	Yes	
95K	Yes	←
100K	No	
120K	No	
125K	No	
220K	No	

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Taxable Income	Cheat	Acertos = 3 Acertos =
60K	No	Erros = 0 $Erros = 4$
70K	No	60%
75K	No	80K
85K	Yes	0010
90K	Yes	
95K	Yes	← 97K
100K	No	Tax Inc
120K	No	<= 97K/ \> 97K
125K	No	
220K	No	S

<= 80K/

Tax Inc

≽ 80K

catedorico catedorico continuo classe

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Taxable Income	Cheat	
60K	No	
70K	No	
75K	No	•
85K	Yes	
90K	Yes	
95K	Yes	4
100K	No	
120K	No	
125K	No	
220K	No	

Funcionamento do Algoritmo Hunt

- D_t é o conjunto de treino que obtém um nodo t.
 - Se D_t possui registros que pertencem a mesma classe y_t, então t é um nodo folha rotulado como y_t.
 - Se D_t é um conjunto vazio, então t é um nodo folha rotulado pela classe padrão y_d.
 - Se D_t possui registros que pertencem a mais do que uma classe, utilize um atributo teste para dividir os dados em subárvores menores. Aplique recursivamente o procedimento para cada subárvore.

Funcionamento do Algoritmo Hunt

- Quando os registros de treino devem ser divididos?
 - Quando cada etapa recursiva do algoritmo encontra uma condição de teste de atributo que divide os registros em pequenas subárvores.
- Quando o procedimento de divisão deve parar?
 - Quando todos os registros pertencerem a uma mesma classe ou todos os registros possuírem valores de atributos idênticos.

Classificação

Métricas Utilizadas para Selecionar a Melhor Divisão

Métricas para Avaliar a Impureza de Nodos

Índice Gini

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

Entropia

$$Entropy(t) = -\sum_{j} p(j|t) \log p(j|t)$$

Erros de classificação

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

Métricas de Impureza: GINI

Índice Gini para um dado nodo t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTA: $p(j \mid t)$ é a frequência relativa da classe j no nodo t).

- Máximo (1 1/n_c) quando registros são igualmente distribuidos entre todas as classes, implicando na informação menos interessante.
- Mínimo (0.0) quando todos os registros pertencem a uma única classe, implicando na informação mais interessante.

C1	0	
C2	6	
Gini=0.000		

C1	1	
C2	5	
Gini=0.278		

C2 4	
C1 2	

C1	3	
C2	3	
Gini=0.500		

Calculando o GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Gini = 1 - (2/6)^2 - (4/6)^2 = 0.444$

Árvore elementar: Calculando o Índice GINI

categorico continuo ciasse

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

No

$$Acertos = 7$$

$$Erros = 3$$

$$70\%$$

$$Gini = 1 - (7/10)^2 - (3/10)^2$$

$$Gini = 1 - 49/100 - 9/100$$

$$Gini = (100 - 49 - 9)/100$$

Gini = 0.42

Particionamento baseado no Índice GINI

- Usado pelos algoritmos CART, SLIQ, SPRINT.
- Quando um nodo p é particionado em k partições (filhos), a qualidade do particionamento é calculado por,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

onde, $n_i = n$ úmero de registros no filho i, $n_i = n$ úmero de registros no nodo p.

Atributos Categóricos: Calculando o GINI

categorico continuo classe

	_	_		
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Dados de Treino

Gini_{split} =
$$(3/10)*0.0 + (7/10)*0.49$$

Gini_{split} = $0 + 0.34$
Gini_{split} = 0.34

Atributos Categóricos: Calculando Índice GINI

- Para cada valor distinto, apurar população em cada classe do conjunto de dados
- Usar a matriz com populações para tomar a decisão

Particionamento em n ramos

	TipoVeículo			
	Familiar	Esportivo	Luxo	
C1	1	2	1	
C2	4 1 1			
Gini	0.393			

Particionamento em 2 ramos (busca pela melhor divisão de valores)

	TipoVeículo			TipoVeículo	
	{Esportivo , Luxo}	{Familiar}		{Esportivo}	{Familiar ,Luxo}
C 1	3	1	C1	2	2
C2	2	4	C2	1	5
Gini	0.4	00	Gini	0.41	9

Atributos Categóricos: Calculando Indice GINI

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Acertos = 3 Erros = 3

Yes

Acertos = 4

Erros = 0

No

 $Gini_{solit} = 0.3$

70%

Dados de Treino

Atributos Contínuos: Calculando Índice GINI

- Classificar valores existentes.
- Pesquisar linearmente estes valores, apurando a população envolvida, e calculando o índice GINI.
- Escolher a posição de particionamento que apresenta o menor índice GINI.

Induzindo o 2º Nível da Árvore de Decisão

categorico categorico continuo classe

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	NO	iviarried	buk	NO
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Dados de Treino

 $Gini_{split} = 0.25$

 $Gini_{split} = 0.25$

Induzindo o 3º Nível da Árvore de Decisão

categorico categorico continuo classe

Tid	Refund	Marital Status	Taxable Income	Cheat
4	Yes	Single	125K	No-
			40016	
	INO	Married	TOUR	MO
3	No	Single	70K	No
4	Yes	iviarried	120K	NO
5	No	Divorced	95K	Yes
6	No	Married	60K	No-
7	Voo	Divorced	2201/	No.
•	103	Divoloca	2201	110
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Dados de Treino

Ginisplit = 0.0

Medidas para Selecionar a Melhor Divisão

- As medidas são baseadas no grau de impureza dos nodos filhos.
- Quanto menor o grau de impureza mais distorcida será a distribuição da classe.
- Por exemplo:
 - Um nodo com classe de distribuição uniforme (0,1) tem impureza zero.
 - Um nodo com distribuição de classe uniforme (0.5,0.5) possui uma impureza mais alta.

Comparação entre as medidas de impurezas para problemas de classificação binária

Medidas para Selecionar a Melhor Divisão

Determine o Gini, a Entropia e o Erro dos nodos abaixo.

Nodo N ₁	Quant
Classe=0	0
Classe=1	6

Gini =
Entropy =
Error =

Nodo N ₁	Quant
Classe=0	1
Classe=1	5

Nodo N ₁	Quant
Classe=0	3
Classe=1	3

Gini =
Entropy =
Error =

Medidas para Selecionar a Melhor Divisão

Determine o Gini, Entropia e Erro dos nodos abaixo.

Nodo N ₁	Quant
Classe=0	0
Classe=1	6

Gini =
$$1 - (0/6)^2 - (6/6)^2 = 0$$

Entropy = $-(0/6) \log_2(0/6) - (6/6) \log_2(6/6) = 0$
Error = $1 - \max[0/6, 6/6] = 0$

Nodo N ₁	Quant
Classe=0	1
Classe=1	5

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

Entropy = $-(1/6) \log_2(5/6) - (1/6) \log_2(5/6) = 0.650$
Error = $1 - \max[1/6, 5/6] = 0.167$

Nodo N ₁	Quant
Classe=0	3
Classe=1	3

Gini =
$$1 - (3/6)^2 - (3/6)^2 = 0.5$$

Entropy = $-(3/6) \log_2(3/6) - (3/6) \log_2(3/6) = 1$
Error = $1 - \max[3/6, 3/6] = 0.5$

Qual Nodo possui a menor impureza?

Underfitting versus Overfitting

 Underfitting: quando o modelo é muito simples, os erros tanto na base de treino quanto na de teste são expressivos.

Overfitting

- Resulta em árvores de decisão mais complexas do que o necessário.
- Erro de treino não fornece uma boa estimativa de quão bem a árvore irá comporta-se sobre novos registros.
- Necessita novas formas para estimar o erro.
- Manipulando Overfitting em Indução de Árvores de Decisão.

Árvores de Decisão

Vantagens

- Simples de visualizar e entender
- Não necessita muita preparação para os dados (preprocessamento), tais como normalização
 - Apenas não aceita valores faltantes
- O custo é logaritmo a quantidade de dados usados para treinar a árvore
- Suporta dados numéricos e categóricos.
- Modelo caixa branca: fácil interpretação
- Possível reproduzir o modelo utilizando testes estatísticos

Árvores de Decisão

Desvantagens

- Indutores de árvores de decisão podem criar modelos muito complexos que não generalizam bem todos os dados (overfitting)
 - Para evitar esse problema deve ser definido um número mínimo de objetos nos nodos folhas ou um número máximo de profundidade da árvore
- Pequenas variações no dataset podem gerar modelos instáveis
 - Esse problema pode ser atenuado usando árvore de decisão em conjuntos menores.
- Podem criar modelos tendenciosos a classes dominantes (bias)
 - Recomenda-se equilibrar o conjunto de dados ante de ajustar a árvore de decisão.

Classificação

Avaliando o Desempenho de um Classificador

Avaliação de Desempenho

Matriz de Confusão:

	CLASSE PREVISTA		
		Classe=SIM	Classe=NAO
CLASSE REAL	Classe=SIM	a (TP)	b (FN)
	Classe=NAO	c (FP)	d (TN)

a: **TP** (true positive) verdadeiro positivo

b: **FN** (false negative) falso negativo

c: **FP** (false positive) falso positivo

d: **TN** (true negative) verdadeiro negativo

Dados de Treino

CLASSE Classe=S Classe=N

Classe=S 3 0

Classe=N 0 7

CLASSE PREVISTA

Acurácia = 100%

	CLASSE PREVISTA		
CLASSE REAL		Classe=S	Classe=N
	Classe=S	3 (TP)	0 (FN)
	Classe=N	4 (FP)	3 (TN)

• Acuracy:
$$\frac{TP+TN}{TP+FN+FP+TN} = 60\%$$

- Percentual de acertos.
- Recall (sensibilidade): $\frac{TP}{TP+FN} = 100\%$
 - Representa as instâncias que deveriam ser da classe S mas foram classificadas na classe N. Mais direcionado para a classe real.

	CLASSE PREVISTA		
CLASSE REAL		Classe=S	Classe=N
	Classe=S	3 (TP)	0 (FN)
	Classe=N	4 (FP)	3 (TN)

- Precision (especificidade): $\frac{TP}{TP+FP} = 43\%$
 - Representa as instâncias que deveriam ser da classe N mas foram classificadas na classe S. Direcionado para a classe prevista
- F1-Score: $\frac{2 \times (Recall \times Precision)}{Recall + Precision} = 60,14\%$
 - Equilíbrio entre Precision e Recall
 - Representa a distribuição de classe desigual

Acuracy:

Percentual de acertos.

$$\frac{TP+TN}{TP+FN+FP+TN} = 60\%$$

	CLASSE PREVISTA		
CLASSE REAL		Classe=S	Classe=N
	Classe=S	3	0
		(TP)	(FN)
	Classe=N	4	3
		(FP)	(TN)

Recall (sensibilidade):

$$\frac{TP}{TP+FN} = 100\%$$

Precision (especificidade):

■ F1-Score: $\frac{2 \times (Recall \times Precision)}{Recall + Precision} = 60,14\%$

categorico continuo ciasse

		•		
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

	Refund	
Yes		No
No		Yes

		CLASSE PREVISTA			
(CLASSE REAL		Classe=S	Classe=N	
		Classe=S	3	0	
		Classe=N	4	3	

Acurácia = 60%

Sensibilidade (*Recall*) = 100% (percentual de positivos pegos)

Dados de Treino

Especificidade (*Precision*) = 43% (percentual de negativos pegos)

Exercício

- Utilize o mesmo dataset fornecido pela professora e execute o algoritmo utilizando o método holdout, reservando apenas 20% dos dados para teste.
- Gere a matriz de confusão para os datasets de treino e teste.
- Compute as métricas (precision, recall e f1-score) para os conjutos de treino e teste.
- Avalie e compare os resultados obtidos pelo dataset de treino e teste e identifique se houve overfitting, underfitting ou se o modelo induzido gerado é adequado para utilizar em dados não vistos.
- Caso os resultados não estejam bons, altere os parâmetros do algoritmo para tentar melhorar o desempenho do modelo.

Créditos

- Adaptação dos slides de Pang-Ning Tan
 - Michigan State University
 - http://www.cse.msu.edu/~ptan/
 - ptan@cse.msu.edu
- Adaptação dos slides de Eamon Keogh
 - University of California at Riverside
 - http://www.cs.ucr.edu/~eamonn/
 - eamonn@cs.ucr.edu
- Adaptação dos slides de Ricardo Campello e Eduardo Hruschka
 - Universidade de São Paulo (ICMC)
- Adaptação dos slides de Rodrigo Barros
 - Pontifícia Universidade Católica do Rio Grande do Sul (PPGCC)

Referências

- Breiman, L., Freidman, J., Olshen, R. e Stone, C. (1984). Classification and Regression Trees. Wadsworth International Group., USA.
- Faceli, K.; Lorena, A.C.; Gama, J.; de Carvalho, A.C.P.L.F. Inteligência Artificial: Uma abordagem de aprendizado de máquina. LTC, Rio de Janeiro, 2011.
- Quilan, R. (1979). Discovering rules by induction from large collections of examples. In: Michie, D. (Ed.) Expert Systems in the Microelectronic Age, p. 168-201. Edinburgh University Press.
- Quilan, J.R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Mateo, CA, USA.
- TAN, P-N; STEINBACH, M.; KUMAR, V. Introduction to Data Mining. Pearson, 2006.