Decision Procedures An Algorithmic Point of View

Decision Procedures for Propositional Logic

D. Kroening O. Strichman

ETH/Technion

Version 1.0, 2007

Part I

Decision Procedures for Propositional Logic

Outline

- 1 Modeling with Propositional Logic
 - SAT Example: Equivalence Checking if-then-else Chains
 - SAT Example: Circuit Equivalence Checking
- 2 Formal Definition SAT
- 3 Conjunctive Normal Form
 - Definition
 - Tseitin Transformation
 - DIMACS CNF

SAT Example: Equivalence Checking if-then-else Chains

Optimization of if-then-else chains

original C code

optimized C code

```
if(!a && !b) h();
else if(!a) g();
else f();

if(!a) {
  if(!b) h();
    else g();
} else f();
```

```
if(a) f();
else if(b) g();
else h();

if(a) f();
else {
   if(!b) h();
   else g(); }
```

SAT Example II

Represent procedures as independent Boolean variables

```
egin{array}{lll} \emph{original} := & \emph{optimized} := \\ & \mathbf{if} \ \lnot a \land \lnot b \ \mathbf{then} \ h & \mathbf{if} \ a \ \mathbf{then} \ f & \mathbf{else} \ \mathbf{if} \ \lnot a \ \mathbf{then} \ g & \mathbf{else} \ \mathbf{if} \ b \ \mathbf{then} \ g & \mathbf{else} \ h & \mathbf{f} &
```

Compile if-then-else chains into Boolean formulae

compile(**if**
$$x$$
 then y **else** z) $\equiv (x \land y) \lor (\neg x \land z)$

Oheck equivalence of Boolean formulae

```
\mathbf{compile}(\mathit{original}) \quad \Leftrightarrow \quad \mathbf{compile}(\mathit{optimized})
```

"Compilation"

$$\begin{aligned} original & \equiv & \textbf{if} \ \neg a \land \neg b \ \textbf{then} \ h \ \textbf{else} \ \textbf{if} \ \neg a \ \textbf{then} \ g \ \textbf{else} \ h \\ & \equiv & (\neg a \land \neg b) \land h \ \lor \ \neg (\neg a \land \neg b) \land \textbf{if} \ \neg a \ \textbf{then} \ g \ \textbf{else} \ f \\ & \equiv & (\neg a \land \neg b) \land h \ \lor \ \neg (\neg a \land \neg b) \land (\neg a \land g \ \lor \ a \land f) \end{aligned}$$

$$\begin{array}{rl} optimized & \equiv & \text{if } a \text{ then } f \text{ else if } b \text{ then } g \text{ else } h \\ & \equiv & a \wedge f \ \lor \ \neg a \wedge \text{if } b \text{ then } g \text{ else } h \\ & \equiv & a \wedge f \ \lor \ \neg a \wedge (b \wedge g \ \lor \ \neg b \wedge h) \end{array}$$

$$(\neg a \wedge \neg b) \wedge h \vee \neg (\neg a \wedge \neg b) \wedge (\neg a \wedge g \vee a \wedge f) \quad \Leftrightarrow \quad a \wedge f \vee \neg a \wedge (b \wedge g \vee \neg b \wedge h)$$

How to Check (In)Equivalence?

Reformulate it as a satisfiability (SAT) problem:

Is there an assignment to a,b,f,g,h, which results in different evaluations of *original* and *optimized*?

How to Check (In)Equivalence?

Reformulate it as a satisfiability (SAT) problem:

Is there an assignment to a,b,f,g,h, which results in different evaluations of *original* and *optimized*?

or equivalently:

Is the boolean formula $compile(original) \nleftrightarrow compile(optimized)$ satisfiable?

Such an assignment provides an easy to understand counterexample

SAT Example: Circuit Equivalence Checking

$$b \vee a \wedge c$$

$$(a \lor b) \land (b \lor c)$$

equivalent?

$$b \vee a \wedge c$$

$$\Leftrightarrow$$

$$(a \lor b) \land (b \lor c)$$

SAT

SAT (Satisfiability) the classical NP-complete problem: Given a propositional formula f over n propositional variables $V = \{x, y, \ldots\}$.

Is there are an assignment $\sigma:V \to \{0,1\}$ with $\sigma(f)=1$?

SAT belongs to NP

There is a *non-deterministic* Touring-machine deciding SAT in polynomial time:

guess the assignment σ (linear in n), calculate $\sigma(f)$ (linear in |f|)

Note: on a *real* (deterministic) computer this still requires 2^n time

SAT is complete for NP (see complexity / theory class)

Implications for us: general SAT algorithms are probably exponential in time (unless NP = P)

Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula in *Conjunctive Normal Form* (CNF) is a conjunction of clauses

$$C_1 \wedge C_2 \wedge \ldots \wedge C_n$$

each clause C is a disjunction of literals

$$C = L_1 \vee \ldots \vee L_m$$

and each literal is either a plain variable x or a negated variable \overline{x} .

Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

$$C_1 \wedge C_2 \wedge \ldots \wedge C_n$$

each clause C is a disjunction of literals

$$C = L_1 \vee \ldots \vee L_m$$

and each literal is either a plain variable x or a negated variable \overline{x} .

Example $(a \lor b \lor c) \land (\overline{a} \lor \overline{b}) \land (\overline{a} \lor \overline{c})$

CNF for Parity Function is Exponential

- no merging in the Karnaugh map
- all clauses contain all variables
- CNF for parity with n variables has 2^{n-1} clauses

CNF for Parity Function is Exponential

- no merging in the Karnaugh map
- all clauses contain all variables
- CNF for parity with n variables has 2^{n-1} clauses

Better ideas?

Example of Tseitin Transformation: Circuit to CNF

Example of Tseitin Transformation: Circuit to CNF

Algorithmic Description of Tseitin Transformation

Tseitin Transformation

- lacktriangle For each non input circuit signal s generate a new variable x_s
- Por each gate produce complete input / output constraints as clauses
- Ocllect all constraints in a big conjunction

Algorithmic Description of Tseitin Transformation

Tseitin Transformation

- lacktriangle For each non input circuit signal s generate a new variable x_s
- For each gate produce complete input / output constraints as clauses
- Occident all constraints in a big conjunction
 - The transformation is satisfiability equivalent: the result is satisfiable iff and only the original formula is satisfiable
 - Not equivalent in the classical sense to original formula: it has new variables

Algorithmic Description of Tseitin Transformation

Tseitin Transformation

- lacktriangle For each non input circuit signal s generate a new variable x_s
- For each gate produce complete input / output constraints as clauses
- Occident all constraints in a big conjunction
 - The transformation is satisfiability equivalent: the result is satisfiable iff and only the original formula is satisfiable
 - Not equivalent in the classical sense to original formula: it has new variables
 - You an get a satisfying assignment for original formula by projecting the satisfying assignment onto the original variables

Tseitin Transformation: Input / Output Constraints

Negation:
$$x \leftrightarrow \overline{y} \Leftrightarrow (x \to \overline{y}) \land (\overline{y} \to x) \\ \Leftrightarrow (\overline{x} \lor \overline{y}) \land (y \lor x)$$
 Disjunction:
$$x \leftrightarrow (y \lor z) \Leftrightarrow (y \to x) \land (z \to x) \land (x \to (y \lor z)) \\ \Leftrightarrow (\overline{y} \lor x) \land (\overline{z} \lor x) \land (\overline{x} \lor y \lor z)$$
 Conjunction:
$$x \leftrightarrow (y \land z) \Leftrightarrow (x \to y) \land (x \to z) \land ((y \land z) \to x) \\ \Leftrightarrow (\overline{x} \lor y) \land (\overline{x} \lor z) \land (\overline{(y} \land z) \lor x) \\ \Leftrightarrow (\overline{x} \lor y) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z} \lor x)$$
 Equivalence:
$$x \leftrightarrow (y \leftrightarrow z) \Leftrightarrow (x \to (y \leftrightarrow z)) \land ((y \leftrightarrow z) \to x) \\ \Leftrightarrow (x \to ((y \to z) \land (z \to y)) \land ((y \leftrightarrow z) \to x) \\ \Leftrightarrow (x \to (y \to z)) \land (x \to (z \to y)) \land ((y \leftrightarrow z) \to x) \\ \Leftrightarrow (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z} \lor y) \land (((y \land z) \lor \overline{x}) \to x) \\ \Leftrightarrow (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z} \lor y) \land (((y \land z) \to x) \land ((\overline{y} \land \overline{z}) \to x) \\ \Leftrightarrow (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z} \lor y) \land ((y \land z) \to x) \land ((\overline{y} \land \overline{z}) \to x) \\ \Leftrightarrow (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z} \lor y) \land ((\overline{y} \land \overline{z}) \to x) \\ \Leftrightarrow (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z} \lor y) \land ((\overline{y} \land \overline{z}) \to x) \\ \Leftrightarrow (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z} \lor y) \land (\overline{y} \lor \overline{z} \lor x) \land (y \lor z \lor x)$$

Optimizations for the Tseitin Transformation

- Goal is smaller CNF (less variables, less clauses)
- Extract multi argument operands (removes variables for intermediate nodes)
- NNF: half of AND, OR node constraints may be removed due to monotonicity
- use sharing

DIMACS CNF

- DIMACS CNF format = standard format for CNF
- Used by most SAT solvers
- Plain text file with following structure:

```
\begin{array}{l} p \; cnf \; <\# \; variables > <\# \; clauses > \\ < clause > \; 0 \\ < clause > \; 0 \end{array}
```

• • •

One or more lines per clause

DIMACS CNF

- Every clause is a list of numbers, separated by spaces
- A clause ends with 0
- Every number $1, 2, \ldots$ corresponds to a variable
- \rightarrow variable names (e.g., a, b, \ldots) have to be mapped to numbers
 - A negative number corresponds to negation
- \rightarrow Let a have number 5. Then \overline{a} is -5.

DIMACS CNF: Example

$$(x_1 \lor x_2 \lor \overline{x_3}) \land (x_2 \lor \overline{x_1}) \land (x_4 \lor \overline{x_2} \lor \overline{x_1})$$

- 4 variables, 3 clauses
- CNF file:

formula:

$$\begin{array}{c} o \ \land \\ (x \leftrightarrow a \land c) \land \\ (y \leftrightarrow b \lor x) \land \\ (u \leftrightarrow a \lor b) \land \\ (v \leftrightarrow b \lor c) \land \\ (w \leftrightarrow u \land v) \land \\ (o \leftrightarrow y \oplus w) \end{array}$$

number assignment:

variable	number
0	1
a	2
c	3
x	4
b	5
y	6
u	7
v	8
w	9

Simply in order of occurrence.

formula	clauses	DIMACS
0	0	1 0
$x \leftrightarrow a \land c$	$a \vee \overline{x}$	2 -4 0
	$c \vee \overline{x}$	3 -4 0
	$\overline{a} \vee \overline{c} \vee x$	-2 -3 4 0
$y \leftrightarrow b \lor x$	$\overline{x} \lor y$	-4 6 0
	$\overline{b} ee y$	-5 6 0
	$x \lor b \lor \overline{y}$	4 5 -6 0
$u \leftrightarrow a \lor b$	$\overline{a} \lor u$	-2 7 0
	$\overline{b} \lor u$	-5 7 0
	$a \lor b \lor \overline{u}$	2 5 -7 0
$v \leftrightarrow b \lor c$	$\overline{b} \lor v$	-5 8 0
	$\overline{c} \lor v$	-3 8 0
	$b\vee c\vee \overline{v}$	5 3 -8 0
$w \leftrightarrow u \wedge v$	$u \vee \overline{w}$	7 -9 0
	$v \vee \overline{w}$	8 -9 0
	$\overline{u} \vee \overline{v} \vee w$	-7 -8 9 0
$ o \leftrightarrow y \oplus w $	$\overline{y} \vee \overline{w} \vee \overline{o}$	-6 -9 -1 0
	$y \lor w \lor \overline{o}$	6 9 -1 0
	$\overline{y} \lor w \lor o$	-6, 9, 1, 0,

Let's change the circuit!

$$\begin{array}{ccc}
o \land \\
(x \leftrightarrow a \land c) \land \\
(y \leftrightarrow b \land x) \land \\
(u \leftrightarrow a \lor b) \land \\
(v \leftrightarrow b \lor c) \land \\
(w \leftrightarrow u \land v) \land \\
(o \leftrightarrow y \oplus w)
\end{array}$$

Is the CNF satisfiable?

• Output of the SAT solver:

Values of the variables:

variable	number	value
0	1	1
a	2	1
c	3	1
x	4	1
b	5	0
y	6	0
u	7	1
v	8	1
w	9	1

• Caveat: there is more than one solution

Satisfying assignment mapped to the circuit:

variable	value
О	1
a	1
c	1
x	1
b	0
y	0
u	1
v	1
w	1