MARKOV CHAIN ANALYSIS OF THE EHRENFEST URN MODEL

STUDENT Elena Acinapura **SUPERVISOR** Leonardo Ricci Academic Year 2020/2021

Università di Trento

MOTIVATION

IRREVERSIBILITY VS RECURRENCE

Some thermodynamic processes, such as

- diffusions
- heat transfers → irreversible
- phase transitions

but

Newtonian mechanics → time-reversible

CONTENTS

The Ehrenfest urn model

Analysis via Markov chains

- limiting distribution
- · mean recurrence time

Simulation

Diffusion of a gas as stochastic process

- · N particles
- · 2 boxes
- discretized time steps

At each time step:

• a ball is selected at random among the N possible ones

At each time step:

- a ball is selected at random among the N possible ones
- it is extracted from its box

At each time step:

- a ball is selected at random among the N possible ones
- it is extracted from its box
- · a box is selected at random

At each time step:

- a ball is selected at random among the N possible ones
- · it is extracted from its box
- · a box is selected at random
- the particle is put in the selected box

Meaningful questions about equilibrium

· probability of having all the particles in box A?

· time needed for recurrence?

MARKOV CHAIN ANALYSIS

MARKOV CHAINS - DEFINITIONS

Discrete Markov chains

A mathematical theory for stochastic processes The state of the system *X* is a random variable

MARKOV CHAINS - DEFINITIONS

Markov property

Memorylessness: only the current state influences the next transition

MARKOV CHAINS — DEFINITIONS

Distributions

X = state of the system = random variable

Distribution \rightarrow probabilities for the system to be in the various possible states

Analogy with the probability distribution in statistics

MARKOV CHAINS AND THE EHRENFEST MODEL

In the Ehrenfest model:

- state = number of particles in box A
- possible values: 0, ..., N
- · example

A SEQUENCE OF STATES OF THE EHRENFEST MODEL

IS A MARKOV CHAIN

LIMITING DISTRIBUTION