cy.2

AUG 2 5 1976 DEC 24 1976

1 }

FEB 2 3 1983

FLOW-FIELD CHARACTERISTICS AND AERODYNAMIC
LOADS ON EXTERNAL STORES NEAR THE FUSELAGE AND
WING-PYLON POSITIONS OF A SWEPT-WING/FUSELAGE
MODEL AT MACH NUMBERS OF 0.4

AND 0.7 — PHASE V

R. H. Roberts and J. R. Myers

ARO, Inc.

PROPERTY OF U.S. AIR FORCE AEDC TECHNICAL LIBRARY

ECHNICAL PEPORTS March 1974
FILE COME

Approved for public release; distribution unlimited.

PROPULSION WIND TUNNEL FACILITY

ARNOLD ENGINEERING DEVELOPMENT CENTER

AIR FORCE SYSTEMS COMMAND

ARNOLD AIR FORCE STATION, TENNESSEE

Property of J. ... If Force
AEDC LIBRARY
F40600-74-C-0001

NOTICES

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

FLOW-FIELD CHARACTERISTICS AND AERODYNAMIC LOADS ON EXTERNAL STORES NEAR THE FUSELAGE AND WING-PYLON POSITIONS OF A SWEPT-WING/FUSELAGE MODEL AT MACH NUMBERS OF 0.4 AND 0.7—PHASE V

R. H. Roberts and J. R. Myers ARO, Inc.

Approved for public release; distribution unlimited.

FOREWORD

The work reported herein was conducted by the Arnold Engineering Development Center (AEDC) and sponsored by the Air Force Flight Dynamics Laboratory (AFFDL/FGC), Air Force Systems Command (AFSC), under Program Element 62201F, Project 8219.

The test results presented were obtained by ARO, Inc. (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of AEDC, AFSC, Arnold Air Force Station, Tennessee. The test was conducted from July 13, 1972 through February 10, 1973, under ARO Project No. PA028. The manuscript was submitted for publication on April 12, 1973.

This technical report has been reviewed and is approved.

L. R. KISSLING
Lt Colonel, USAF
Chief Air Force Test Director
Directorate of Test

FRANK J. PASSARELLO Colonel, USAF Director of Test

ABSTRACT

Experimental data were obtained to aid in the prediction of aerodynamic loads and separation-trajectory characteristics on stores under the influence of an aircraft flow field. Four types of data were obtained in the vicinity of a generalized aircraft model: (1) flow field surveys, using a 40-deg cone probe, to determine the local velocity field, (2) force and moment data on four store models, (3) pressure distribution data on an ogive-cylinder model, and (4) captive-trajectory store separation data on one store model. The generalized aircraft model consisted of a swept-wing/fuselage combination with rectangular, flow-through engine ducts. Pylon locations were on the fuselage centerline and at the wing 1/3-semispan. The effect of a systematic variation of duct flow was investigated in each phase of testing. Testing was accomplished at Mach numbers 0.4 and 0.7, a Reynolds number of 3.6 million per foot, and aircraft and store angles of attack varying from 0 to 15 deg. Results of the test show that duct flow had little effect on the parameters investigated on all phases of testing, except at the higher Mach number where small variations in the coefficients or trajectories were evident. In general, the variations of parameters investigated for all test configurations followed an orderly pattern and should be amenable to the formulation of a generalized analytical store separation prediction method.

CONTENTS

]	Page
I. II. III.	ABSTRACT NOMENCLATURE INTRODUCTION APPARATUS 2.1 Test Facility 2.2 Test Articles 2.3 Instrumentation TEST DESCRIPTION 3.1 Test Conditions 3.2 Data Acquisition 3.3 Corrections 3.4 Precision of Data			. iii . vii . 1 . 1 . 2 . 3 . 3
IV.	RESULTS AND DISCUSSION 4.1 Flow-Field Data			. 6 . 6
	APPENDIXES			
I.	ILLUSTRATIONS			
Figu	<u>ire</u>			
2. 3. 4. 5. 6. 7. 8. 9.	Isometric Drawing of a Typical Store Separation Installation and a Block Diagram of the Computer Control Loop			. 12 . 13 . 15 . 16 . 19 . 20 . 21
12. 13.	Wing/Fuselage Model Details and Dimensions of the Body Add-On without Ducts (A ₁) Details and Dimensions of the Body Add-On with Ducts (A ₂) Photograph of the Wing/Fuselage Model with Ducts and Duct Flow Controller Installed Details and Dimensions of the Pylons Photograph of the Pylons 3			. 27 . 28 . 29 . 30

Figu	ire	Page
17.	Photograph of the Models Installed in the Tunnel	
18.	Average Duct Flow Velocity Ratios for Test Mach Numbers of 0.4 and 0.7	25
19.	Parent-Model Duct Flow Influence on Force and Moment Coefficients for the Unfinned Large Model at the Wing 1/3-Semispan Station,	
20.	$N_1 B_2 W A_2 D$, $M_{\infty} = 0.4$	
21.	$N_1 B_2 W A_2 D$, $M_{\infty} = 0.4$. 42
22.	$N_1 B_2 WP_{1/3} A_2 D$, $M_{\infty} = 0.4$. 48
23.	$N_1 B_2 W P_{1/3} A_2 D$, $M_{\infty} = 0.4$. 54
24.	for the Unfinned Large Model at the Fuselage-Centerline Pylon Position, N ₁ B ₂ WP _c A ₂ D, M _∞ = 0.4 Parent-Model Duct Flow Influence on Force and Moment Coefficients	. 60
	for the Finned Large Model at the Fuselage-Centerline Pylon Position, N ₁ B ₂ WP _c A ₂ D, M _∞ = 0.4	63
25.	Force and Moment Coefficients for the Unfinned Large Model at the Wing	. 00
26.	1/3-Semispan Station, $N_1 B_2 W$ and $N_1 B_2 W A_1$, $M_{\infty} = 0.4$ Force and Moment Coefficients for the Finned Large Model at the Wing	
27.	1/3-Semispan Station, $N_1 B_2 W$ and $N_1 B_2 W A_1$, $M_{\infty} = 0.4$ Force and Moment Coefficients for the Unfinned Large Model at the Wing 1/3-Semispan Station, $N_1 B_2 W A_2 D$ and	. 72
28.	$N_1 B_2 WP_{1/3} A_2 D$, $M_{\infty} = 0.4$. 78
	at the Wing 1/3-Semispan Station, $N_1 B_2 W A_2 D$ and $N_1 B_2 W P_{1/3} A_2 D$, $M_{\infty} = 0.4$. 84
29.	Force and Moment Coefficients for the SUU-41 and ESUU-41 Models at the Wing 1/3-Semispan Station, N ₁ B ₂ WP _{1/3} , M _∞ = 0.4	•
30.	Parent-Model Duct Flow Influence on Force and Moment Coefficients for the Pressure Distribution Model at the Wing 1/3-Semispan Station,	
31.	$N_1 B_2 W A_2 D$, $M_{\infty} = 0.4$. 93
32.	$N_1 B_2 W P_{1/3} A_2 D$, $M_{\infty} = 0.4$. 97
	for the Pressure Distribution Model at the Wing 1/3-Semispan Station, $N_1 B_2 WP_{1/3} A_2 D$, $M_{\infty} = 0.7$.101

Figu	<u>ire</u>	Page
33.	Parent-Model Duct Flow Influence on Force and Moment Coefficients for the Pressure Distribution Model at the Fuselage-Centerline Pylon	
34.	Position, $N_1 B_2 W P_c A_2 D$, $M_{\infty} = 0.4$. 105
	$M_{\infty} = 0.4$. 107
35.	Force and Moment Coefficients for the Pressure Distribution Model at the Wing 1/3-Semispan Station, N ₁ B ₂ WA ₂ D and	
36.	$N_1 B_2 WP_{1/3} A_2 D$, $M_{\infty} = 0.4$. 111
	$M_{\infty} = 0.4$. 115
37.	Parent-Model Duct Flow Influence on Separation Trajectories of the Finned Large Model from the Wing $1/3$ -Semispan Pylon, $a = 6$ deg,	
38.	$M_{\infty} = 0.4$. 118
	$M_{\infty} = 0.7$. 121
39.	Comparison of Separation Trajectories of the Finned Large Model at $M_{\infty} = 0.4$ and 0.7 from the Wing 1/3-Semispan Pylon,	
	a = 6 deg	. 122
40.	Separation Trajectories of the Finned Large Model from the $1/3$ -Semispan Pylon, $M_{\infty} = 0.4$. 126
II.	TABLES	
	I. Full-Scale Store Initial Conditions for Captive	
	Trajectory Testing	. 130
	II. Full-Scale Store Parameters for Captive Trajectory	. 131
	Testing with the Finned Large Force Model (S _{LFF})	
	III. Basic Configuration Nomenclature	•
	IV. Configuration Identification	125
	·	•
	NOMENCLATURE	
CA	Axial-force coefficient, (measured total axial force)/qS	
C _m	Pitching-moment coefficient referenced to the store midpoint, (p. moment)/ $q_{\infty}Sd$	itching
C _N	Normal-force coefficient, (normal force)/q.S	
Cn	Yawing-moment coefficient referenced to the store midpoint, (moment)/q.Sd	yawing

AEDC-TR-73-87

r. C _Y	Side-force coefficient, (side force)/q∞S
cg	Center of gravity
d	Store reference diameter, ft
h	Altitude, ft
I _{xx}	Full-scale moment of inertia about the store longitudinal axis, slug-ft ²
I _{y y}	Full-scale moment of inertia about the store lateral axis, slug-ft ²
Izz	Full-scale moment of inertia about the store vertical axis, slug-ft ²
ℓ _p	Location of duct-flow controller plug measured from duct-closed position, in.
M _∞	Free-stream Mach number
m	Store mass, slugs
p _∞	Free-stream static pressure, psfa
q _∞	Free-stream dynamic pressure, 0.7p _∞ M _∞ ² , psf
Re	Free-stream unit Reynolds number, per foot
S	Store maximum cross-sectional area, ft ²
t	Real trajectory time from initiation of trajectory, sec
V _{duct}	Velocity in the duct, ft/sec
V _∞	Free-stream velocity, ft/sec
$\mathbf{w_1}$	Initial vertical downward velocity of the store cg, ft/sec
x	Axial displacement of the store cg relative to the carriage position on the pylon in the flight-axis coordinate system, ft, full scale
X'	Axial displacement of the store cg relative to the carriage position on the pylon in the fuselage coordinate system, in., model scale
X_{cg}	Longitudinal cg location from nose, ft, full scale
X _p	Axial displacement of the flow field probe tip relative to the fuselage nose station in the fuselage coordinate system, in.

- Y Lateral displacement of the store cg relative to the carriage position on the, pylon in the flight-axis coordinate system, ft, full scale
- Y' Lateral displacement of the store cg relative to the carriage position on the pylon in the fuselage coordinate system, in., model scale
- Y_p Lateral displacement of the flow field probe tip relative to the fuselage centerline in the fuselage coordinate system, in.
- Z Vertical displacement of the store cg relative to the carriage position on the pylon in the flight-axis coordinate system, ft, full scale
- Z' Vertical displacement of the store cg relative to the carriage position on the pylon in the fuselage coordinate system
- Z_p Vertical displacement of the flow field probe tip relative to the fuselage centerline in the fuselage coordinate system, in.
- a Angle of attack of the store model, flow field probe, or wing-fuselage model, deg
- Angle between the store longitudinal axis and its projection in the $X_{PY}-Y_{PY}$ plane, positive when the store nose is raised as seen by the pilot
- $\Delta \phi$ Store model roll angle, positive in the clockwise direction looking upstream, deg
- Angle between the projection of the store longitudinal axis in the $X_{PY}-Y_{PY}$ plane and the X_{PY} axis, positive when the store nose is to the right as seen by the pilot

FLIGHT-AXIS-SYSTEM COORDINATES

- X_F Parallel to the free-stream wind vector, positive in the upstream direction
- Y_F Perpendicular to the free-stream wind vector in the horizontal plane, positive to the right looking upstream
- Z_F Perpendicular to the X_F and Y_F directions, positive in the downward direction

FUSELAGE COORDINATE SYSTEM

- X_{PY} Parallel to the fuselage axial centerline, positive in the downstream direction
- X_{PY} Perpendicular to the fuselage centerline and parallel to the wing chord plane, positive to the left looking upstream
- Z_{PY} Perpendicular to the wing chord plane, positive in the downward direction

SECTION I

This investigation was conducted in the Aerodynamic Wind Tunnel (4T) to obtain data to aid in the development of a generalized theoretical method for predicting separation characteristics of stores from high-speed fighter-bomber aircraft. The large number of stores that may be carried at one time by present fighter-bomber aircraft poses a complex problem. To acquire a basic understanding of the nature of the problem and the related sources of difficulty that may arise during store separation under these circumstances, the flow-field characteristics in the vicinity of the store resulting from the aircraft fuselage, wing, pylons, racks, and adjacent stores must be known. This information, along with corresponding force data and pressure distribution data on the store model, should provide a reasonable foundation for the formulation of an accurate prediction method.

Four types of data were obtained in the vicinity of a generalized aircraft shape with and without pylons and simulated engine ducts installed. The data consisted of (1) flow-field surveys, using a 40-deg cone probe, to determine the local velocity field, (2) force and moment data on four store models, (3) pressure distribution data on an ogive-cylinder store model, and (4) captive-trajectory store-separation data on one model. The effect of a systematic variation of duct flow rate was investigated on each phase of testing. In addition to the tests with the store in the vicinity of the aircraft model, free-stream data were obtained on two of the store models.

The aircraft model consisted of a swept-wing/fuselage combination with rectangular flow-through engine ducts. Pylon locations were on the fuselage centerline and at the wing 1/3-semispan. This model represented a generalized aircraft shape and was installed on the main tunnel support system. Store models and the flow probe were supported from the Captive Trajectory Support (CTS) system.

Testing was accomplished at $M_{\infty} = 0.4$ and 0.7, Re = 3.6 million per foot, and aircraft angles of attack from 0 to 15 deg.

SECTION II APPARATUS

2.1 TEST FACILITY

The Aerodynamic Wind Tunnel (4T) is a closed-loop, continuous flow, variable-density tunnel in which the Mach number can be varied from 0.1 to 1.3. At all Mach numbers, the stagnation pressure can be varied from 300 to 3700 psfa. The test section is 4 ft square and 12.5 ft long with perforated, variable porosity (0.5- to 10-percent open) walls. It is completely enclosed in a plenum chamber from which the air can be evacuated, allowing part of the tunnel airflow to be removed through the perforated walls of the test section.

Two separate and independent model support systems were used during the test. The parent model was inverted in the test section and supported by an offset sting attached to the main pitch sector. The flow probe and store models were supported by the CTS which extends down from the tunnel top wall. The CTS system provides store movement (six degrees of freedom) independent of the parent aircraft model. An isometric drawing of a typical store-parent installation is shown in Fig. 1, Appendix I.

Also shown in Fig. 1 is a block diagram of the computer control loop used during tests employing the CTS system. The analog system and the digital computer work as an integrated unit and, along with the required input information, control the CTS movement during testing. Store (or probe) positioning is accomplished by use of six individual d-c electric motors. Maximum translational travel of the CTS is ± 15 in. from the tunnel centerline in the lateral and vertical directions and 36 in. in the axial direction. Maximum angular displacements are ± 45 deg in pitch and yaw and ± 360 deg in roll. A schematic showing the test section details and the location of the models in the tunnel is shown in Fig. 2.

2.2 TEST ARTICLES

The probe used to obtain the flow-field data was attached directly to the CTS and consisted of a single cone-cylinder with a 40-deg included-angle tip. There were four equally spaced static-pressure orifices on the surface of the cone and a total-pressure orifice at the apex of the cone. Details and dimensions of the probe are shown in Fig. 3, and a photograph of the probe is presented in Fig. 4. Details and dimensions of the force models are shown in Fig. 5, and a photograph of the models is shown in Fig. 6. The ESUU-41 model is an axisymmetric store with the same cross-sectional area distribution as the SUU-41. The force models were mounted on a six-component, internal strain-gage balance that was attached to the CTS.

The pressure distribution model used during the test was an ogive-cylinder model having the same external geometry as the unfinned large force model. The pressure distribution model and support sting were an integral unit that attached directly to the CTS. Nineteen axially aligned pressure orifices were located on the model surface at evenly spaced increments along the model length. Details and dimensions of the pressure model are shown in Fig. 7, and a photograph of the model is shown in Fig. 8.

A sketch of the wing/fuselage model used during the test is shown in Fig. 9. The wing had a 45-deg sweep at the quarter-chord line, an aspect ratio of four, a taper ratio of 0.3, and six-percent-thick uncambered airfoil sections parallel to the plane of symmetry. Coordinates of the model airfoil sections are tabulated in Fig. 9. During this investigation, combinations of two fuselage bodies and two noses were used. Details and dimensions of the long fuselage, short fuselage, cambered nose, and uncambered nose with canopy are shown in Fig. 10. Details and dimensions of the body add-on without ducts are shown in Fig. 11, and details of the body add-on with ducts are shown in Fig. 12. Each duct

was instrumented with five pressure orifices: static taps on the two side walls and the bottom wall, and two total-head probes in the duct opening. Figure 13 shows the duct flow controller assembly, which is used in conjunction with the body add-on with ducts. The assembly locates plugs at a specified distance from the duct exit in order to control the mass flow rate through the duct.

The model had provisions for mounting pylons at the fuselage centerline and on the left wing at the 1/3- and 2/3-semispan stations. Details of the pylons are shown in Fig. 14, and a photograph of the pylons is presented in Fig. 15. The touch wires shown on the pylons are discussed in the following sections. Tunnel installation photographs showing the wing/fuselage model, ducts, and store models are presented in Fig. 16.

2.3 INSTRUMENTATION

Static and total pressures on the cone probe were measured using 5-psid transducers, and all pressures on the pressure distribution model and in the ducts were measured using 15-psid transducers. A six-component, internal strain-gage balance was used to obtain the force and moment data on the force models. Translational and angular positions of the probe and store models were obtained from the CTS analog outputs. The aircraft-model angle of attack was set using the main sting support and readout system. The pylons were instrumented with touch wires, and the system was electrically wired to give a visual indication on the control console when contact between the store and touch wire was made. The system was also electrically connected to automatically stop the CTS movement if the store model or CTS inadvertently contacted the parent model, its support sting, or the test section walls.

SECTION III TEST DESCRIPTION

۱i

3.1 TEST CONDITIONS

All data were obtained at Mach numbers of 0.4 or 0.7 at a Reynolds number of 3.6 million per foot. Tunnel conditions were held constant at the desired Mach number and Reynolds number while data were being recorded.

3.2 DATA ACQUISITION

Data were obtained in the following manner during the test. The probe tip or store cg was manually positioned to a reference point, relative to the pylon configuration being tested, after the desired test conditions were established. During all tests, the probe and store-model centerlines were aligned parallel to the aircraft-model centerline, and displacements were measured in directions parallel to, or perpendicular to, the aircraft model centerline. The axis systems defining the store forces and moments, and store displacements are shown in Fig. 17.

A complete pressure distribution was obtained on the pressure model by taking pressure data at 10-deg roll increments through 360 deg. Local force coefficients were calculated by numerically integrating the circumferential pressure distributions. Total force and moment coefficients were then obtained by summing the local contributions along the model length.

Data were obtained in the following manner during the captive trajectory phase of testing. Test conditions were established in the tunnel, and the parent model was positioned at the desired angle of attack. The store model was then oriented to an initial position relative to the store carriage location on the pylon (see Table I). After the store was set at the desired initial position, operational control of the CTS was switched to the digital computer which controlled the store movement during the trajectory through commands to the CTS analog system (see block diagram, Fig. 1). Data from the wind tunnel consisting of measured model forces and moments, wind tunnel operating conditions, and CTS rig positions, were input to the digital computer for use in the full-scale trajectory calculations.

The digital computer was programmed to solve the six-degree-of-freedom equations to calculate the angular and linear displacements of the store relative to the parent aircraft pylon. In general, the program involves using the last two successive measured values of each static aerodynamic coefficient to predict the magnitude of the coefficients over the next time interval of the trajectory. These predicted values are used to calculate the new position and attitude of the store at the end of the time interval. The CTS is then commanded to move the store model to this new position and the aerodynamic loads are measured. If these new measurements agree with the predicted values, the process is continued over another time interval of the same magnitude. If the measured and predicted values do not agree within the desired precision, the calculation is repeated over a time interval one-half the previous value. This process is repeated until a complete trajectory has been obtained.

In applying the wind tunnel data to the calculations of the full-scale store trajectories, the measured forces and moments are reduced to coefficient form and then applied with proper full-scale store dimensions and flight dynamic pressure. Dynamic pressure was calculated using a flight velocity equal to the free-stream velocity component plus the components of store velocity relative to the aircraft, and a density corresponding to the simulated altitude. Full-scale store parameters used in the trajectory calculations are listed in Table II.

3.3 CORRECTIONS

During force-model testing, deflections of the balance, sting, and CTS supports, caused by aerodynamic forces, were accounted for in the data reduction program to calculate the true store-model angles. Corrections were also made for model weight tares to calculate the net aerodynamic forces on the store force models.

3.4 PRECISION OF DATA

Estimated uncertainties in model and probe positioning resulting from the ability of the CTS and main pitch sector to set on a specified value are as follows:

			Δa	, deg
ΔX , in.	ΔY , in.	ΔZ , in.	Store	Aircraft
±0.05	±0.05	±0.05	±0,15	±0.10

Uncertainties in the data on the force model were calculated taking into consideration probable inaccuracies in the balance measurements and tunnel conditions. The uncertainties in the coefficients are based on a 95-percent confidence level. Coefficient uncertainties along with Mach number variation in the portion of the test section occupied by the models and variations in free-stream dynamic pressure are as follows:

M _{ss}	YM₅		ΔC_N	ΔC_{Y}	ΔC _m	ΔC_n	ΔC_A
0.40	±0.005	±2.2	±0.02	±0.02	±0.03	±0.03	±0.05
0.70	±0.005	±1.4	±0.01	±0.01	±0.01	±0.01	±0.02

Considering the error in translational and angular placements, extrapolation tolerances, and balance accuracy, the maximum uncertainties in full-scale position coordinates for the store during captive-trajectory store-separation are as follows:

M _{eo}	Store Mass	t, sec	ΔX, ft	ΔY,	ΔZ, ft	$\frac{\Delta \theta}{\deg}$	Δψ, deg	$\Delta \phi$, deg
0.4	3.8825	0.50	±0.27	±0.18	±0.08	±1.9	±4.0	±13.5
0.4	15,5300	0.50	±0.07	±0.04	±0.02	±0.5	±1.0	± 3.4
0.7	3.8825	0.50	±0.51	±0.33	±0.15	±3.6	±7.6	±25.2
0.7	15,5300	0.50	±0,13	±0,08	±0.04	±0.9	±1.9	± 6.3

SECTION IV RESULTS AND DISCUSSION

The four types of data obtained during this investigation consisted of velocity-vector data, store force and moment data, store pressure distribution data, and captive-trajectory store-separation data. During each phase of testing, data were obtained to determine interference effects on the flow field and on the store forces and pressure distributions resulting from the aircraft fuselage, ducts, wing, and pylon. Data were obtained near the wing 1/3-semispan and fuselage centerline stations.

Only representative data obtained during the test are presented herein. Basic configuration nomenclature is shown in Table III, and locations at which data were obtained can be seen by referring to Table IV. Identification of configuration numbers used in the data presentation is presented in Table V. The reference position for the force-and-moment store data corresponds to the store model cg in the carriage position on the pylon. The cg was on the store centerline at the store midpoint for all cases. Sign conventions used in the data presentation are shown in Fig. 17. Figure 18 shows the average duct flow velocity ratios for test Mach numbers of 0.4 and 0.7.

4.1 FLOW-FIELD DATA

The flow-field data obtained during this test were used as a guide in selecting testing regions for the force- and pressure-model data and the trajectories. The large volume of flow-field data obtained during the test precludes making any significant presentation of flow-field tests results at this time. Consequently, this report contains the description of the test and serves as the key to these data. A summary of store configuration, store position, survey region, and test condition information is presented in Appendix II. Extensive flow-field data are available in Refs. I through 4 from previous testing with the models.

4.2 FORCE- AND PRESSURE-MODEL DATA

Data were obtained on the force and pressure store models in the presence of the wing/fuselage model with and without ducts and pylons installed. All pressure data were obtained on the ogive-cylinder pressure distribution model. Force data were obtained on the finned and unfinned large force model, the SUU-41 model, and the ESUU-41 model.

Figures 19 through 24 present parent-model duct flow influence on force and moment coefficients for the finned and unfinned large force models from the wing 1/3-semipsan and fuselage centerline stations. These data are presented showing the coefficient variations with Z' for Y'=0 and -0.375 and for $\alpha=0$, 6, and 15 deg. These data show that, in general, duct flow had little effect on the force and moment coefficients except for small variations at the higher angles of attack.

Figures 25 through 28 show the effect of the addition to the wing/fuselage model of the body add-on and 1/3-semispan pylon on force and moment coefficients for the finned and unfinned large force models. The body add-on had little effect on either model except for small variation in the coefficients for the finned model at the higher angles of attack. The addition of the 1/3-semispan pylon produced a nose down increment in the pitching-moment coefficient, with the effect more noticeable on the finned model and increasing with increasing angle of attack.

Force and moment coefficients for the SUU-41 and ESUU-41 models at the wing 1/3-semispan station are presented in Fig. 29. These data show that the effects of body cross-sectional shape were negligible at these test conditions.

Figures 30 through 33 present parent-model duct flow influence on force and moment coefficients for the pressure distribution model, and Figs. 34 and 35 show the effect on the coefficients of the addition of body add-on or pylon to the wing/fuselage model. These data exhibit the same trends as those previously mentioned for the unfinned large force model at a similar wing/fuselage station.

4.3 TRAJECTORY DATA

Data obtained during this test phase consisted of separation trajectories of the finned large model from the wing 1/3-semispan pylon. Data showing the linear and angular displacements of the store relative to the carriage position on the pylon are presented as functions of full-scale trajectory time in Figs. 36 through 40. Positive X, Y, and Z displacements (as seen by the pilot) are forward, to the right (inboard), and down, respectively. Positive changes in pitch and yaw (as seen by the pilot) are nose up and nose right (inboard), respectively.

These data show that duct-flow influence on trajectories is negligible, except for a slightly increased roll rate as the duct flow is decreased. An increase in Mach number causes more rapid pitch and yaw oscillation and more rapid roll rates. The effects of an initial downward velocity and a change in store mass on separation trajectories can be seen in Fig. 40. The larger mass and moment of inertia result in a decrease in the pitch and yaw oscillation frequencies, whereas the initial downward velocity causes a more rapid Z displacement.

APPENDIXES

- I. ILLUSTRATIONS
- II. TABLES

Fig. 1 Isometric Drawing of a Typical Store Separation Installation and a Block Diagram of the Computer Control Loop

ALL DIMENSIONS AND TUNNEL STATIONS IN INCHES

Fig. 2 Schematic of the Tunnel Test Section Showing Model Location

ALL DIMENSIONS IN INCHES

a. General Details

Fig. 3 Details and Dimensions of the 40-deg Cone Probe

ALL DIMENSIONS IN INCHES

b. Probe Tip Details Fig. 3 Concluded

Fig. 4 Photograph of the 40-deg Cone Probe

a. Large Force Models
Fig. 5 Details and Dimensions of the Force Models

Þ
Ш
ŏ
¥
ᄁ
-7
ယ္
87

STATION	٧	٧2	Y3	R,	R ₂
0	0	0	0	0	0
6.100	0.064	0.064	0 0 5 8	0.117	0.005
0.200	0.096	0.099	0 008	0.203	0 098
0.300	0.127	0 132	0110	0 287	Q. 131
0,400	0.100	0.162	0 134	0.370	0. 164
0.500	0.100	0.101	0 158	0 452	0, 1 85
0.600	0.218	0.216	0.170	0.830	0.227
0.700	0.247	0.240	0.199	0.010	0.256
0.000	0.2 73	0.281	0.218	0.660	0.202
0.500	0.297	0.282	0.230	0 765	0 307
1.000	0.319	0. 301	0 284	0.042	0.331
1.100	0.340	0.310	0.272	0.820	0. 353
1.200	0.3 00	0 336	0. 209	0.905	0.374
1.300	0.370	0.3 49	0.300	1.070	0.395
1.400	0.3 97	0.3 50	0.321	1,140	0.414
1,800	0.413		0.335	1.215	0. 432
1.600	0.427		0.347	1.200	0.440
1.700	0.440		0.357	T. 357	0.480
1.500	0.461		0.308	1.428	0.473
1.500	0.401		0.372	1.490	0.483
000.5	0.469		0.379	1.555	0.483
2.070	0.475		0.383	1.600	0.500
4.96 6	6.475		0.363	1.600	0.5 00
8.080	0.400		0.379	1.558	0.493
8.180	0.461		0.372	1.490	0.4 83
6.250	0.451		0.365	1.425	0.473
5.350	0.440		0.367	1.367	0.440
8.480	0.427		0.347	1.280	0.446
8.880	0.413		0,336	1.215	0.432
5.650	0.397	0.350	0.321	1.148	0.414
8.780	0.379	0.349	0.306	1.070	0.395
5.880	0.360	0.336	0.201	0,003	0.374
8.527	0.335	0.323	0.274	0.937	0.358

ALL DIMENSIONS IN INCHES

b. SUU-41 Model Fig. 5 Continued

STA.

DIAM 0.000 0.000 0.100 0.128 0.200 0 192 0 300 0.252 0.400 0.310 0.500 0 365 0.600 0.418 0.700 0.468

0.800 0.514 0.900 0 557 1.000 0.599 1.100 0.639 1 200 0.678 1.300 0.714 1.400 0.741

1.500 0.766 1.600 0.788

1700 0.806 1.800 0.822

1.900 0.835 2.000 0.847 2.070 0.855

5.750 0.714 5.850 D.678 5.927 0.644

ALL DIMENSIONS IN INCHES

4.980 0.855 5.050 0.847 5.150 0.835 5.250 0.821 5.350 0.806 5.450 0.788 5.550 0.766 5.650 0.741

> c. ESUU-41 Model Fig. 5 Concluded

Fig. 6 Photograph of the Force Models

ALL DIMENSIONS IN INCHES

Fig. 7 Details and Dimensions of the Pressure Distribution Model

Fig. 8 Photograph of the Pressure Distribution Model

BODY COO	RDINATES
STATION	RADIUS
PERCENT	PERCENT
LENGTH	LENGTH
0.00	0.00
3 2 8	0.91
6.57	171
986	2.41
13.15	3 00
16.43	3 50
1972	3.90
2301	4.21
26.2 9	4.43_
29.58	4.53
32.00	4.57
7534	4.57
76.69	4.54
7998	4 38
83 26	4.15
86 5 5	3 95
8984	3,72
93 1 3	3 49
9641	3 26
100.00	3 02

AIRFOIL CO	ORDINATES				
X, % CHORD	Y, % CHORD				
SEE SEC	SEE SEC.				
0 00	0 000				
0 50	0464				
0 75	0 563				
1.25	0.718				
250	0.981				
5.00	1 313				
7 50	1591_				
_ 10 00	1.824				
15 00	2.194				
_20 00	2,474				
25 0 0	2.667				
30.00	2.842				
3500	2.945 _				
40 00	2.996				
45.00	2.992				
50.00	2.925				
55.00	2 793				
60.00	2.602				
6500	2.364				
7000	2.087				
75 00	1.775				
a <u>0.00</u>	1 437				
85.00	1.083				
90.00	_0 727				
95 00	0 370				
100,00	0 013				
LE RADIUS O 229% CHD					
T.E. RADIUS C	.0 14 % CHD				

Fig. 9 Sketch of the Wing/Fuselage Model (N₁ B₂ W)

BODY COORDINATES

STATION	RADIUS
14.558	4.57
27 452	4.57
27.944	4.54
29.143	4.38
30, 338	4.18
31.537	3, 95
33, 736	3.72
33, 934	3.49
35.129	3.26
36.438	3.02

ALL STATIONS AND DIMENSIONS IN INCHES

a. Long Body (B₂)
Fig. 10 Details and Dimensions of the Fuselage Components for the Wing/Fuselage Model

b. Short Body (B₂) Fig. 10 Continued

STATION*	OUTSIDE DIAM
0.75	0.422
1.50	0.814
2.25	1,177
3.00	1.510
3.75	1 814
4 50	2 090
5.25	2.338
6.00	2.557
6.75	2 749
7.50	2.914
8.25	3.050
900	3 160
9.75	3.242
10.50	3,298
11.25	3, 326
11.66	3 3 3 0

* STATION DIMENSIONS ARE MEASURED ALONG 3/8 DIAM ROD & AND NORMAL TO 41.66R ARC

ALL STATIONS AND DIMENSIONS IN INCHES

c. Cambered Nose (N₂) Fig. 10 Continued

ALL STATIONS AND DIMENSIONS IN INCHES

DISTANCE FROM NOSE TIP BODY STA.	UNCAMBERED NOSE RADIUS	CANOPY BULKHEAD DIAM
4.00	0.955	0
4,50	1.045	0.962
5.00	1.129	1.469
5,50	1,207	1,768
6.00	1.279	1.873
6.53	1.348	1,829
7.00	1.404	1.709
8.00	1.504	1.358
9.00	1.580	0.986
10.00	1.632	0,515
10.83	1.657	0

d. Uncambered Nose with Canopy (N₁ C₁) Fig. 10 Concluded

Fig. 11 Details and Dimensions of the Body Add-On without Ducts (A₁)

Fig. 12 Details and Dimensions of the Body Add-On with Ducts (A₂)

Fig. 13 Photograph of the Wing/Fuselage Model with Ducts and Duct Flow Controller Installed

Fig. 14 Details and Dimensions of the Pylons

Fig. 15 Photograph of the Pylons

a. 40-deg Cone Probe
Fig. 16 Photograph of the Models Installed in the Tunnel

b. Pressure Distribution Model Fig. 16 Concluded

DISPLACEMENTS

Cm and Cn POSITIVE NOSE UP AND NOSE RIGHT MOMENTS, RESPECTIVELY, AS SEEN BY THE PILOT. MOMENT REFERENCE AT THE STORE MIDPOINT.

FORCES AND MOMENTS

Fig. 17 Axis Systems Defining Displacement and Coefficient Directions

34

Fig. 18 Average Duct Flow Velocity Ratios for Test Mach Numbers of 0.4 and 0.7

SYMBOL.	CONF	α	\mathcal{L}_{p}
0	7	0	0.375
•	7	0	0.750
Δ	7	0	2.400

Fig. 19 Parent-Model Duct Flow Influence on Force and Moment Coefficients for the Unfinned Large Model at the Wing 1/3-Semispan Station, N₁B₂WA₂D, M_{**} = 0.4

SYMBOL	CONF	٠α	$\mathcal{L}_{\mathbf{p}}$
O	7	0	0.375
œ	7	0	0.750
A	.7	. 0	2.400

37

SYMBOL	CONF	α	\mathcal{L}_{p}
O	7	6	0.375
(7	6	0.750
Δ	7	6	2.400

c. a = 6, Y' = 0Fig. 19 Continued

SYMBOL	CONF	α	lo
0	7	6	0.375
	7	6	0.750
Δ	7	6	2.400

SYMBOL	CONF	Œ	₽ p
0	7	15	0.375
	7	15	0.750
Δ	7	15	2,400

e. a = 15, Y' = 0Fig. 19 Continued

SYMBOL	CONF	·a	£р
0	7	15	0.375
白	7	15	0.750
	7	15	2,400

f. a = 15, Y' = -0.375 Fig. 19 Concluded

SYMBOL	CONF		·a	ℓ_{P}
0	12		0	0.375
	15	•	0	0.750
Δ	12		0	2.400

Fig. 20 Parent-Model Duct Flow Influence on Force and Moment Coefficients for the Finned Large Model at the Wing 1/3-Semispan Station, N₁B₂WA₂D, M_m = 0.4

SYMBOL.	CONF	-a	· Lp
0	12	0	0.375
0	12	0	0.750
Δ	12	n	2 400

b. a = 0, Y' = -0.375 Fig. 20 Continued

44

SYMBOL	CONF	α	l _p
O	12	6	0.375
	15	6	0.750
Δ	12	6	2.400

45

46

SYMBOL	CONF	α	$\ell_{ t p}$
O	12	15	0.375
Ö	12	15	0.750
Δ	12	15	2,400

f. a = 15, Y' = -0.375 Fig. 20 Concluded

SYMBOL	CONF	ά	ℓ_{p}
O	8	0	0.375
ש	8	0	0.750
Δ	8	0	2,400

Fig. 21 Parent-Model Duct Flow Influence on Force and Moment Coefficients for the Unfinned Large Model at the Wing 1/3-Semispan Station, N₁B₂WP_{1/3}A₂D, M_∞ = 0.4

SYMBOL	CONF	α	$\mathcal{L}_{ extsf{p}}$
O	8	0	0.375
	8	0	0.750
Δ	8	0	2,400

b. a = 0, Y' = -0.375 Fig. 21 Continued

SYMBOL	CONF	æ	$\ell_{ t p}$
O	8	6	0.375
0	8	6	0.750
Δ	8	6	2,400

d. a = 6, Y' = -0.375 Fig. 21 Continued

SYMBOL	CONF	α	$\ell_{\mathtt{p}}$
0	8	15	0.375
•	8	15	0.750
A	8	15	2,400

SYMBOL	CONF	α	ℓ_{p}
0	8	15	0.375
	8	15	0.750
Δ	A	15	2.400

f. a = 15, Y' = -0.375 Fig. 21 Concluded

SYMBOL	CONF	α	ℓ_{P}
O	13	0	0.375
13	13	0	0.750
Δ	13	0	2,400

Fig. 22 Parent-Model Duct Flow Influence on Force and Moment Coefficients for the Finned Large Model at the Wing 1/3-Semispan Station, $N_1 B_2 W P_{1/3} A_2 D$, $M_{\infty} = 0.4$

SYMBOL	CONF	α	$\ell_{\mathtt{p}}$
0	13	0	0.375
0	13	0	0.750
Δ	13	0	2,400

55

SYMBOL	CONF	α	. Lp
0	13	6	0.375
<u>(1)</u>	.13 13	6 6	0.750 2.400

c. a = 6, Y' = 0Fig. 22 Continued

SYMBOL	CONF	α	ℓ_{P}
0	13	6	0.375
	13	6	0.750
Δ	13	6	2,400

57

SYMBOL	CONF	α	ℓ_{P}
O	13	15	0.375
	13	15	0.750
Δ	13	15	2,400

SYMBOL	CONF	α	\mathcal{L}_{P}
O	13	15	0.375
	13	15	0.750
Δ	13	15	2.400

f. a = 15, Y' = -0.375 Fig. 22 Concluded

SYMBOL	CONF	α	\mathcal{L}_{P}
0	9	0	0.375
0	9	0	0.750
Δ	9	0	2.400

Fig. 23 Parent-Model Duct Flow Influence on Force and Moment Coefficients for the Unfinned Large Model at the Fuselage-Centerline Pylon Position, N₁B₂WP_eA₂D, M_m = 0.4

SYMBOL	CONF	a	\mathcal{L}_{p}
0	9	6	0.375
	9	6	0.750
Δ	9	6	2,400

b. a = 6Fig. 23 Continued

Fig. 23 Concluded

SYMBOL	CONF	α	$\boldsymbol{\ell_{p}}$
O	14	0	0.375
Ċ	14	0	0.750
Δ	14	0	2.400

Fig. 24 Parent-Model Duct Flow Influence on Force and Moment Coefficients for the Finned Large Model at the Fuselage-Centerline Pylon Position, $N_1B_2WP_cA_2D$, $M_m=0.4$

SYMBOL	CONF	α	\mathcal{L}_{p}
0	14	6	0.375
7	14	6	0.750
Δ	14	6	2.400

b. a = 6Fig. 24 Continued

SYMBOL	CONF	ď	ℓ_{p}
O	14	15	0.375
	14	15	0.750
Δ	14	15	2.400

c. a = 15Fig. 24 Concluded

51MBOL CONF 02 0 5 0 0 6 0

Fig. 25 Force and Moment Coefficients for the Unfinned Large Model at the Wing 1/3-Semispan Station, $N_1\,B_2\,W$ and $N_1\,B_2\,WA_1$, $M_\infty=0.4$

SYMBOL	CONF	Œ	
O	5	0	
(2)	6	0	

b. a = 0, Y' = -0.375 Fig. 25 Continued

68

SYMBOL	CONF	α	
O	5	6	
	6	6	

d. a = 6, Y' = -0.375 Fig. 25 Continued

e. a = 15, Y' = 0 Fig. 25 Continued

SYMBOL.	CONF	a	
0	5	15	
•	6	15	

f. a = 15, Y' = -0.375 Fig. 25 Concluded

SYMBOL CONF α

0 10 0

11 0

Fig. 26 Force and Moment Coefficients for the Finned Large Mode at the Wing 1/3-Semispan Station, N₁B₂W and N₁B₂WA₁, M₂ = 0.4

SYMBOL	CONF	ď	
0	10	0	
•	11	0	

b. a = 0, Y' = -0.375 Fig. 26 Continued

c. a = 6, Y' = 0 Fig. 26 Continued

SYMBOL	CONF	α	
0	10	6	
	11	6	

d. a = 6, Y' = -0.375Fig. 26 Continued

SYMBOL CONF & ... 0 10 15 ... 11 15

SYMBOL	CONF	α
0	10	15
•	11	15

f. a = 15, Y' = -0.375 Fig. 26 Concluded

Fig. 27 Force and Moment Coefficients for the Unfinned Large Model at the Wing 1/3-Semispan Station, $N_1B_2WA_2D$ and $N_1B_2WP_{1/3}A_2D$, M_{∞} = 0.4

SYMBOL	CONF	α	Lo
0	8	0	2.4
Ö	7	0	2.4

b. a = 0, Y' = -0.375Fig. 27 Continued

c. a = 6, Y' = 0Fig. 27 Continued

SYMBOL	CONF	α	ĺР
0	8	6	2.400
	7	6	2,400

d. a = 6, Y' = -0.375 Fig. 27 Continued

82

SYMBOL	CONF	α	$\ell_{\rm P}$
O	8	15	2.4
(7	15	2.4

f. a = 15, Y' = -0.375 Fig. 27 Concluded

Fig. 28 Force and Moment Coefficients for the Finned Large Model at the Wing 1/3-Semispan Station, N₁B₂WA₂D and N₁B₂WP_{1/3}A₂D, M_m = 0.4

SYMBOL	CONF	α	ℓ_{P}
O	13	0	2.4
m	12	n	2.4

b. a = 0, Y' = -0.375 Fig. 28 Continued

c. a = 6, Y' = 0Fig. 28 Continued

SYMBOL	CONF	a	Lp
O	13	6	. 2.400
	12	6	2.400

d. a = 6, Y' = -0.375 Fig. 28 Continued

e. a = 15, Y' = 0 Fig. 28 Continued

SYMBOL	CONF	α	ℓ_{p}
0	13	15	2.4
œ	12	15	2.4

f. a = 15, Y' = -0.375 Fig. 28 Concluded

SYMBOL CONF Q 0 3 0 0 4 0

Fig. 29 Force and Moment Coefficients for the SUU-41 and ESUU-41 Models at the Wing 1/3-Semispan Station, N₁B₂WP_{1/3}, M_m = 0.4

b. a = 6, Y' = -0.375 Fig. 29 Continued

c. a = 15, Y' = 0 Fig. 29 Concluded

SYMBOL	CONF	α	l.
O	17	0	0.375
0	17	0	0.750
Δ	17	0	2.400

Fig. 30 Parent-Model Duct Flow Influence on Force and Moment Coefficients for the Pressure Distribution Model at the Wing 1/3-Semispan Station, N₁B₂WA₂D, M_m = 0.4

b. a = 0, Y' = -0.375 Fig. 30 Continued

SYMBOL	CONF	α	l _p
0	17	6	0.375
O	17	6	0.750
Δ	17	6	2.400

c. a = 6, Y' = 0Fig. 30 Continued

SYMBOL	CONF	α	Ļр
O	17	6	0.375
٥	17	6	0.750
Δ	17	6	2.400

d. a = 6, Y' = -0.375 Fig. 30 Concluded

SYMBOL	CONF	a	ℓ_{p}
0	18	0	0.375
	18	0	0.750
Δ	18	0	2.400

Fig. 31 Parent-Model Duct Flow Influence on Force and Moment Coefficients for the Pressure Distribution Model at the Wing 1/3-Semispan Station, N₁ B₂WP_{1/3}A₂D, M_m = 0.4

SYMBOL	CONF	α	<i>L</i> p
0	18	0	0.375
	18	0	0.750
A	18	0	2.400

b. a = 0, Y' = -0.375 Fig. 31 Continued

SYMBOL	CONF	.a	\mathcal{L}_{p}
O	18	6	0.375
0	1,8	6	0.750
Δ	18	6	2.400

c. a = 6, Y' = 0 Fig. 31 Continued

100

SYMBOL	CONF	α	\mathcal{L}_{P}
0	18	0	0.375
. 0	18	0	0,750
Δ	18	0	2,400

Fig. 32 Parent-Model Duct Flow Influence on Force and Moment Coefficients for the Pressure Distribution Model at the Wing 1/3-Semispan Station, $N_1B_2WP_{1/3}A_2D$, $M_m=0.7$

b. a = 0, Y' = -0.375 Fig. 32 Continued

SYMBOL	CONF	α	$\mathcal{L}_{\mathbf{p}}$
0	18	6	0.375
	18	6	0.750
Δ	18	6	2.400

c. a = 6, Y' = 0Fig. 32 Continued

d. a = 6, Y' = -0.375 Fig. 32 Concluded

SYMBOL	CONF	· a	ℓ_{P}
O	19	0	0.375
Ė	19	0	0.750
Δ	19	ָס '	2.400

Fig. 33 Parent-Model Duct Flow Influence on Force and Moment Coefficients for the Pressure Distribution Model at the Fuselage-Centerline Pylon Position, $N_1B_2WP_eA_2D$, $M_\infty=0.4$

SYMBOL	CONF	α	ℓ_{P}
Ö	19	6	0.375
O	19	6	0.750
A	19	6	2.400

b. a = 6, Y' = 0Fig. 33 Concluded

SYMBOL	CONF	α	
O	15	0	
œ	16	0	

Fig. 34 Force and Moment Coefficients for the Pressure Distribution Model at the Wing 1/3-Semispan Station, N_1B_2W and $N_1B_2WA_1$, $M_{\bullet}=0.4$

SYMBOL	CONF	a	
O	15	0	
C)	16	0	

b. a = 0, Y' = -0.375Fig. 34 Continued

109

d. a = 6, Y' = -0.375 Fig. 34 Concluded

Fig. 35 Force and Moment Coefficients for the Pressure Distribution Model at the Wing 1/3-Semispan Station, N₁B₂WA₂D and N₁B₂WP_{1/3}A₂D, M_{...} = 0.4

b. a = 0, Y' = -0.375 Fig. 35 Continued

c. a = 6, Y' = 0Fig. 36 Continued

d. a = 6, Y' = -0.375 Fig. 35 Concluded

SYMBOL	CONF	H.	•	HI	ñ	ℓ_{p}
0	T-407	0.4	0	10	3.8825	0.375
	1-407	0.4	0	10	3.8825	0.750
Δ	7-407	0.4	Ω	10	3.8825	2 400

Fig. 36 Parent-Model Duct Flow Influence on Separation Trajectories of the Finned Large Model from the Wing 1/3-Semispan Pylon, a = 0 deg, $M_m = 0.4$

b. Configuration T-409 Fig. 36 Continued

SYMBOL	CONF	M.	•	MI	m	$\boldsymbol{\ell_{p}}$
0	T-410	0.4	0	10	15.5300	0.375
D	7-410	0.4	0	10	15.5300	0.750
Δ	T-UID	0.4	Ω	10	15 5300	2400

c. Configuration T-410 Fig. 36 Concluded

SYMBOL	CONF	H,	•	Ыİ	ñ	₽ p
0	T-408	0.4	6	10	3.8825	0.375
•	T-411	0.4	.6	0	3.8825	0.750
Δ	7-412	0.4	6	10	3.8825	2.400

Fig. 37 Parent-Model Duct Flow Influence on Separation Trajectories of the Finned Large Model from the Wing 1/3-Semispan Pylon, a = 6 deg, $M_{\infty} = 0.4$

SYMBOL	CONF	M.	•	WI	m	ℓ_{p}
0	T-411	0.4	6	0	15.5300	0.375
ð	T-411	0.4	6	0	15.5300	0.750
Δ	T-411	0.4	6	0	15.5300	2.400

b. Configuration T-411 Fig. 37 Continued

c. Configuration T-412 Fig. 37 Concluded

SYMBOL	CONF	M.	•	MI	<u>m</u>	$oldsymbol{\ell}_{P}$
0	T-413	0.7	6	10	15.5300	0.375
Ċ	1-413	0.7	6	10	15.5300	0.750
Δ	T-ut3	n. 7	6	10	15.5300	2.400

Fig. 38 Parent-Model Duct Flow Influence on Separation Trajectories of the Finned Large Model from the Wing 1/3-Semispan Pylon, α = 6 deg, M_{••} = 0.7

SYMBOL CONF M = H1 M O 7-412 0.4 6 10 15.5300 D 7-413 0.7 6 10 15.5300

a. $\ell_{\rm p}=0.375$ Fig. 39 Comparison of Separation Trajectories of the Finned Large Model at M_w = 0.4 and 0.7 from the Wing 1/3-Semispan Pylon, a=6 deg

SYMBOL CONF M = M1 .m O T-412 0.4 6 10 15.5300 D T-413 0.7 6 10 15.5300

b. $\ell_p = 0.750$ Fig. 39 Continued

c. $\ell_p = 2.40$ Fig. 39 Continued

d. Without Ducts Fig. 39 Concluded

a. $N_1 B_2 WP_{1/3} A_2 D$, a = 0Fig. 40 Separation Trajectories of the Finned Large Model from the 1/3-Semispan Pylon, $M_{\infty} = 0.4$

b. $N_1 B_2 WP_{1/3} A_2 D$, a = 6Fig. 40 Continued

c. $N_1 B_2 WP_{1/3}$, a = 0Fig. 40 Continued

d. $N_1B_2WP_{1/3}$, a = 6Fig. 40 Concluded

TABLE I
FULL-SCALE STORE INITIAL CONDITIONS FOR CAPTIVE TRAJECTORY TESTING

Aircraft Position and Motion at Start of Trajectories				Store Initial Conditions Relative to the Carriage Position on the Pylon			
Aircraft Configuration	Duct Plug Position, I p, in.	Altitude, h, ft	Mach Number, M _m	Angle of Attack, α, dog	Horizontal Forward Displacement, ft	Vertical Downward Displacement, ft	Vertical Downward Velocity, ft/sec
$N_1B_2WP_{1/3}$	N.A.	5,000	0.4	0	0	0.625	0 and 10
			0.4	6	0.06533	0.62158	0 and 10
	-		0.7	6	0.06533	0.62158	10
$N_1B_2WP_{1/3}A_2D$	0.375, 0.750, 2.40		0.4	0	0	0.625	0 and 10
			0.4	6	0.06533	0.62158	0 and 10
+	₩	†	0.7	6	0.06533	0.62158	10

TABLE II FULL-SCALE STORE PARAMETERS FOR CAPTIVE TRAJECTORY TESTING WITH THE FINNED LARGE FORCE MODEL ($S_{L\,F\,F}$)

Values
0.05
3.8825 and 15.530
5.31
1.228
1.25
2.0 and 8.0
20.0 and 80.0
20.0 and 80.0
0

TABLE III BASIC CONFIGURATION NOMENCLATURE

Parent Aircraft

A₁ Body add-on without ducts

A₂ Body add-on with ducts

B₁ Short body

B₂ Long body

C₁ Canopy for N₁

D Duct-flow controller assembly

N₁ Uncambered Nose

N₂ Cambered Nose

Wing Wing

Pylons

 $P_{1/3}$ 1/3-semispan pylon

P_C Fuselage centerline pylon

Stores

Probe Flow-field probe

 S_{p} Pressure distribution store

S_{LFN} Large force and moment store - no fins

 $S_{f LFF}$ Large force and moment store - with fins

 S_{SUU-41} Noncircular-cross-section dispenser type store

S_{ESUU-41} Equivalent, axisymmetric store with area

distribution of S_{SUU-41}

TABLE IV CONFIGURATION IDENTIFICATION

				Flow-Fi	eld T	est						
	D 46			Probe Movement						l _p	,	
Conf.	Re/ft x 10 ⁻⁶	M.	o, deg	Хp	_	Yp		z_p				
FF1 FF2 FF3 FF4 FF5 FF5 FF6 FF6 FF6 FF7	3.6	0.4	0 to 15 0 to 12 0 to 15 0 to 15 0 to 15	14. 56 to 18. 66 17. 66 to 25. 56 14. 66 to 25. 66 4. 0 to 13. 0 14. 66 to 26. 66 14. 66 to 26. 66 0 to 16. 0 14. 66 to 25. 66 0 to 16. 0 14. 66 to 26. 66	3. 2 and 4. 0 0 to 5. 0 0 to 4. 0 2. 2 to 4. 0 2. 0 to 6. 0 0 to 6. 0 0 to 6. 0 0 to 6. 0 2. 0 to 6. 0		0 to 4.0 2.2 to 4.0 2.0 to 6.0 2.0 to 6.0 0 to 4.0 0 to 6.0 0 to 6.0		0. 99 to 0. 52 to 0 to 0 to 0 to	4.0 4.0 1.0	0 to 0 to N	2. 4
	Force and Moment Tests											
Conf.	Re/ft x 10 ⁻⁵	M _e	α, deg	Initial Store Position		x'	Store	Moveme Y'	nt Z´	-	p, in.	
1 2 3 4 5 6 7	3. 6	0. 4 and	-15 to 15 -15 to 15 0 to 15	Tunnel G Tunnel G 1/3-Semispan P	ylon	NA NA 0	0 and	NA NA 0 0 0 d - 0, 375	NA NA 0 to 0. 7	0. 3	NA 75, 0.750 nd 2.40	
9 10 11 12 13		0.7 0.4 0.4 and 0.7 0.4		Fuselage Ç Pyl 1/3-Sem.span P Fuselage Ç Pyl	ylon		0 an	0 d -0, 375			NA NA 75, 0.750, nd 2.40	

TABLE IV (Concluded)

				Pro	ssu	re Tests			
Conf.	Re/ft	M_	a, deg	Initial Store		Store	d in		
No.	x 10-6		a, deg	Position	X'	Y'	z'	Roll	l _p , in.
15 16 17 18	3.6	0.4 0.4 and 0.7 0.4	0 and 6	1/3-Semispan Pylon	C	0 and -0, 375	0 to +0.75	-175 to 175	NA NA 0.375, 0.75, and 2.40
			•	Tra	jecto	ory Tests		-	
Conf. No.	Re/ft x 10 6	M _e	α, deg	Initial Store Position		Store Mass	f	W ₁ , t/sec	l _p , ιn.
T-400 T-401 T-402 T-403 T-404 T-405 T-406 T-407 T-408 T-409 T-410 T-411 T-412 T-413	3.6	0.4	0 6 6 6 0 0 6 6	1/3-Semispan Pylon		3. 88 10 3. 88 10 3. 88 15. 53 00		10 10 0 10 0 10 0 10 0 10 0	0.375, 0.750, and 2.40

TABLE V
TEST SUMMARY

Configuration Number	Store Model	Basic Configuration					
Flow-Field Tests							
FF-1 FF-2 FF-3 FF-4 FF-5 FF-6 FF-7 FF-8	Probe	$egin{array}{ll} N_1B_2WA_2D \\ N_1B_2WA_1 \\ N_1B_2W \\ N_1B_1A_1 \\ N_1B_1C_1 \\ N_1B_1 \\ N_2B_1 \\ Tunnel \ Empty \end{array}$					
Force	and Momen	t Tests					
1 2 3 4 5 6 7 8 9 10 11 12 13	SSUU-41 SESUU-41 SSUU-41 SESUU-41 SLFN SLFF	Tunnel Empty Tunnel Empty N ₁ B ₂ WP _{1/3} N ₁ B ₂ WP _{1/3} N ₁ B ₂ WA ₁ N ₁ B ₂ WA ₂ D N ₁ B ₂ WP _{1/3} A ₂ D N ₁ B ₂ WP _c A ₂ D N ₁ B ₂ W N ₁ B ₂ WA ₁ N ₁ B ₂ WA ₁ N ₁ B ₂ WA ₂ D N ₁ B ₂ WP _c A ₂ D					
1	l Pressure Te	sts					
15 16	S _p	N_1B_2W $N_1B_2WA_1$					
17 18 19		$N_1B_2WA_2D$ $N_1B_2WP_{1/3}A_2D$ $N_1B_2WP_cA_2D$					
Trajectory Tests							
T-400 to T-406 T-407 to T-413	S _{LFF}	$N_1B_2WP_{1/3}$ $N_1B_2WP_{1/3}A_2D$					

UNCLASSIFIED						
Security Classification						
DOCUMENT CON	TROL DATA - R &	D				
(Security classification of title, body of obstrect and indexing	g annotation must be en	tared when the	overall report is classified)			
1 ORIGINATING ACTIVITY (Corporate sulfior)		Za, REPORT SE	CURITY CLASSIFICATION			
Arnold Engineering Development Cen	ter	UNCLASSIFIED				
Arnold Air Force Station, Tennesse	e 37389	26 GROUP				
		N/A				
3 REPORT TITLE						
FLOW-FIELD CHARACTERISTICS AND AER	ODYNAMIC LOA	ADS ON E	XTERNAL STORES			
NEAR THE FUSELAGE AND WING PYLON P			-WING/FUSELAGE			
MODEL AT MACH NUMBERS OF 0.40 AND	0.70 - PHASI	IV				
4 DESCR PTIVE NOTES (Type of report and inclusive dates)						
Final Report - July 13, 1972 to Fe	bruary 10,	1973				
5 AUTHORIS: (First name, middle initial, last name)						
10						
R. H. Roberts and J. R. Myers, ARO	, Inc.					
6 REPORT DATE	78 TOTAL NO OF	PAGES	75. NO OF REFS			
March 1974	144	_	0			
BE CONTRACT OR GRANT NO	98, ORIGINATOR'S	REPORT NUM	BER(S)			
0010	25	n				
ь рвојест но 8219	A EDC - TR -	73-87				
V						
Program Element 62201F			that numbers that may be easigned			
ARO-PWT-TR-73-43						
d	MIO-FILE	11-10-40				
10 DISTRIBUTION STATEMEN"						
Approved for public release; distr	ibution unl	imited.				
 						
1/ SUPPLEMENTARY NOTES	12 SPONSORING M					
	Alr rorce	rlight	Dynamics Labora-			

AFB, OH 45433 13 ABSTRACT Experimental data were obtained to aid in the prediction of aerodynamic loads and separation-trajectory characteristics on stores under the influence of an aircraft flow field. Four types of data were obtained in the vicinity of a generalized aircraft model: (1) flow field surveys, using a 40-deg cone probe, to determine the local velocity field, (2) force and moment data on four store models, (3) pressure distribution data on an ogive-cylinder model, and (4) captive-trajectory store separation data on one store model. The generalized aircraft model consisted of a swept-wing/fuselage combination with rectangular, flow-through engine ducts. Pylon locations were on the fuselage centerline and at the wing 1/3-semispan. The effect of a systematic variation of duct flow was investigated in each phase of testing. Testing was accomplished at Mach numbers 0.4 and 0.7, a Reynolds number of 3.6 million per foot, and aircraft and store angles of attack varying from 0 to 15 deg. Results of the test show that duct flow had little effect on the parameters investigated on all phases of testing, except at the higher Mach number where small variations in the coefficients or trajectories were evident. In general, the variations of parameters investigated for all test configurations followed an orderly pattern and should be amenable to the formulation of a generalized analytical store separation pre-

DD FORM 1473

diction method.

Available in DDC

UNCLASSIFIED

tory (AFFDL/FGC), Wright-Patterson

UNCLASSIFIED

Security Classification

C	Security Classification						
jet aircraft external stores subsonic flow wind tunnel tests aerodynamic loads flow distribution separation characteristics ducts				LINK B		LINK C	
external stores subsonic flow wind tunnel tests aerodynamic loads flow distribution separation characteristics ducts							
external stores subsonic flow wind tunnel tests aerodynamic loads flow distribution separation characteristics ducts	jet aircraft						
wind tunnel tests aerodynamic loads flow distribution separation characteristics ducts							
aerodynamic loads flow distribution separation characteristics ducts	subsonic flow						
flow distribution separation characteristics ducts	wind tunnel tests						
separation characteristics ducts	aerodynamic loads						
ducts	flow distribution						
	separation characteristics						
duct flow	ducts						
	duct flow						
		i					
			:		<u> </u>		
				ŀ			
]			
			}				
					}		
			ļ				
							i
							1
, , , , , , , , , , , , , , , , , , , ,							
A PBC Armid APS Yana	Aracid APS Time						

UNCLASSIFIED	
Security Classification	