МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

ЛАБОРАТОРНАЯ РАБОТА № 2

по дисциплине «Основы теории управления» «Временные характеристики»

Студент	AC-21-1		Станиславчук С.М.
		подпись, дата	
Руководит	ель		
Старший г	преподаватель		Болдырихин О.В.
		подпись, дата	

Цель работы и рассматриваемые вопросы

Цель работы — изучение временных характеристик систем управления.

Рассматриваемые вопросы:

- 1. Переходная функция.
- 2. Импульсная переходная функция.
- 3. Связь между передаточной, переходной и импульсной переходной функциями.

Задание кафедры

Задание 1. Переходная функция.

Создать схему системы второго порядка.

На вход системы подать единичное ступенчатое воздействие 1(t). Произвести измерения выходного сигнала.

По передаточной функции получить переходную функцию, сопоставить теоретические и экспериментальные результаты.

Результаты представить в виде таблицы и графиков теоретических и экспериментальных значений выходного сигнала.

Задание 2. Импульсная переходная функция.

Создать схему системы второго порядка.

На вход системы подать сигнал, приближенный к единичному импульсу $\delta(t)$. Произвести измерения выходного сигнала.

По передаточной функции получить импульсную переходную функцию, сопоставить теоретические и экспериментальные результаты.

Результаты представить в виде таблицы и графиков теоретических и экспериментальных значений выходного сигнала.

1. Задание 1.

Передаточная функция:

$$W(s) = k_{\rm H} \frac{1}{\tau_{S+1}}, k_{\rm H} = 1.5; \ \tau = 0.4; W(s) = k_{\rm A} s, \ k_{\rm A} = 2.$$

1.1. Схема системы

Схема системы представлена на рисунке 1.

Рисунок 1 - схема системы второго порядка

1.2. Получение переходной функции системы по передаточной функции Если на входе единичное ступенчатое воздействие, то

$$X_2(s) = X_1(s)W(s) = \frac{1}{s}W(s)$$
$$W_1(s) = k_{\pi}s$$

$$W_{2}(s) = k_{H} \frac{1}{\tau s + 1}$$

$$W(s) = W_{1}(s) * W_{2}(s)$$

$$W(s) = k_{A}s * k_{H} \frac{1}{\tau s + 1} = \frac{k_{H}k_{A}s}{\tau s + 1}$$

$$h(t) = L^{-1} \left\{ \frac{1}{s} W(s) \right\} = k_{H}k_{A} * L^{-1} \left\{ \frac{1}{\tau s + 1} \right\} = \frac{k_{H}k_{A}e^{\frac{-t}{\tau}}}{\tau}$$

$$h(t) = 7.5e^{-2.5t}$$

1.3. Таблица с теоретическими и экспериментальными результатами Результаты расчётов и измерений представлены в таблице 1. Таблица 1 – Расчетные и экспериментальные данные

№	Время	Измеренно	Рассчитанное	Разность между
	ОТ	е значение	значение	измеренным и
	начала	выходного	выходного	рассчитанным
	процес	сигнала	сигнала х2р,	значениями
	ca t, c	х2и, В	В	выходного сигнала
				х2и-х2р, В
1	0	7,50000	7,50000	0,00000
2	0,05	6,61873	6,61867	0,00005
3	0,1	5,84101	5,84101	0,00001
4	0,15	5,15467	5,15469	0,00002
5	0,2	4,54898	4,54881	0,00017
6	0,25	4,01446	4,01465	0,00019
7	0,3	3,54275	3,54263	0,00012
8	0,35	3,12647	3,12658	0,00011
9	0,4	2,75910	2,75898	0,00011
10	0,45	2,43489	2,43490	0,00000
11	0,5	2,14879	2,14868	0,00010
12	0,55	1,89630	1,89616	0,00014
13	0,6	1,67348	1,67339	0,00008

Окончание таблицы 1

14	0,65	1,47684	1,47694	0,00010
15	0,7	1,30330	1,30345	0,00015
16	0,75	1,15016	1,15013	0,00003
17	0,8	1,01501	1,01509	0,00007
18	0,85	0,89575	0,89575	0,00001
19	0,9	0,79049	0,79038	0,00012
20	0,95	0,69761	0,69780	0,00019
21	1	0,61564	0,61545	0,00018

1.4. Графики теоретических и экспериментальных значений входного и выходного сигналов.

Графики теоретических и экспериментальных значений выходного сигнала приведены на рисунке 2.

Рисунок 2 - График теоретических и экспериментальных значений выходного сигнала (разница между их значениями настолько мала, что мы видим лишь график теоретических значений)

- 2. Задание 2.
- 2.1. Схема системы

Схема системы представлена на рисунке 3.

Рисунок 3 - схема системы второго порядка

2.2. Получение импульсной переходной функции системы по передаточной функции

По определению передаточной функции

$$X_2(s) = X_1(s)W(s)$$

Если $X_1(s) = 1$, то
$$X_2(s) = W(s)$$

$$W(s) = k_{\mathcal{A}}s * k_{\mathcal{H}} \frac{1}{\tau s + 1} = \frac{k_{\mathcal{H}}k_{\mathcal{A}}s}{\tau s + 1}$$

$$h(t) = L^{-1}\{W(s)\} = k_{\mathcal{H}}k_{\mathcal{A}} * L^{-1}\left\{\frac{s}{\tau s + 1}\right\} = \frac{-k_{\mathcal{H}}k_{\mathcal{A}}e^{\frac{-t}{\tau}}}{\tau^2}$$

 $h(t) = -18.75e^{-2.5t}$

2.3. Таблица с теоретическими и экспериментальными результатами

Результаты расчётов и измерений представлены в таблице 2.

Таблица 2 — Результаты исследования системы второго порядка

№	Время от	Измеренное	Рассчитанное	Разность между
	начала	значение	значение	измеренным и
	процесса	выходного	выходного	рассчитанным
	t, c	сигнала	сигнала х2р,	значениями
		х2и, В	В	выходного сигнала
				х2и-х2р, В
1	0	-18,75000	-18,7499	0,00011
2	0,05	-16,54682	-16,5469	0,00004
3	0,1	-14,60251	-14,6027	0,00016
4	0,15	-12,88667	-12,8866	0,00009
5	0,2	-11,37245	-11,3724	0,00007
6	0,25	-10,03615	-10,0362	0,00006
7	0,3	-8,85687	-8,85673	0,00015
8	0,35	-7,81616	-7,8162	0,00004
9	0,4	-6,89774	-6,89785	0,00012
10	0,45	-6,08723	-6,08734	0,00011
11	0,5	-5,37196	-5,37205	0,00009
12	0,55	-4,74074	-4,74072	0,00002
13	0,6	-4,18369	-4,18382	0,00013
14	0,65	-3,69209	-3,69191	0,00019
15	0,7	-3,25826	-3,25821	0,00005
16	0,75	-2,87541	-2,87531	0,00009
17	0,8	-2,53754	-2,53753	0,00000
18	0,85	-2,23937	-2,23924	0,00013
19	0,9	-1,97624	-1,97643	0,00019
20	0,95	-1,74402	-1,74385	0,00017
21	1	-1,53909	-1,53897	0,00012

2.4. Графики теоретических и экспериментальных значений выходного сигнала

Графики теоретических и экспериментальных значений выходного сигнала представлены на рисунке 4.

Рисунок 4 - График теоретических и экспериментальных значений выходного сигнала (разница между их значениями настолько мала, что мы видим лишь график теоретических значений)