CAIXABANK HACKATHON - by Kevin Murgana

Objetivos

• 1. Desarrolla un modelo predictivo que permita predecir la variable target (si el precio de cierre del IBEX35 será superior o inferior al precio de cierre actual).

Para ello deberas entrenar tu modelo con los datos de training (si también se usan los tweets se sumaran 100 puntos) e introducir como input de tu modelo el dataset test_x para realizar las predicciones.

• Crea un breve documento (máx. 2 páginas) o presentación (máx. 4 slides) explicando la solución que has empleado y porque la has empleado.

Roadmap

Antes de lanzarnos de lleno a la programación, deberíamos trazar una breve guía para mantenernos en el camino. Los siguientes pasos constituyen la base de cualquier flujo de trabajo de aprendizaje automático una vez que tenemos un problema y un modelo en mente:

- 1) Plantear la pregunta y determinar los datos necesarios
- 2) Adquirir los datos en un formato accesible
- 3) Identificar y corregir los puntos de datos/anomalías que faltan, según sea necesario
- 4) Preparar los datos para el modelo de aprendizaje automático
- 5) Entrenar el modelo con los datos de entrenamiento
- 6) Hacer predicciones con los datos de prueba
- 7) Comparar las predicciones con los objetivos conocidos del conjunto de pruebas y calcular las métricas de rendimiento
- 8) Si el rendimiento no es satisfactorio, ajustar el modelo, adquiera más datos o pruebe otra técnica de modelización.
- 9) Interpretar el modelo y comunicar los resultados de forma visual y numérica

✓ 1) Planteando la pregunta ?

El resultado del algoritmo deberá ser binario, si el precio está por encima o por debajo del precio actual, 50% y 50%, por lo que dividiremos el dataset en train y test y haremos las pruebas con el mismo dataset como referencia, mientras más elevado el **R2**, mejor será nuestra predicción.

Importamos las librerías necesarias para comenzar.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense, LSTM
import math
from sklearn.preprocessing import MinMaxScaler
```

2.1 Leyendo datos desde CSV

2.1.1 Leyendo primer dato CSV (train.csv)

```
In [2]: #1. Con pandas, importamos el dataset 1
    train1_df = pd.read_csv("train.csv", sep=',')

In [3]: #2.Observamos encabezado
    train1_df.head()
```

```
Close
Out[3]:
                  Date
                              Open
                                           High
                                                                             Adj Close Volume Target
                                                        Low
           1994-01-03
                       3615.199951
                                     3654.699951
                                                 3581.000000
                                                             3654.500000
                                                                          3654.496338
                                                                                            0.0
                                                                                                     0
         1 1994-01-04
                        3654.500000
                                     3675.500000
                                                 3625.100098
                                                              3630.300049
                                                                           3630.296387
                                                                                            0.0
                                                                                                     1
         2 1994-01-05 3625.199951
                                     3625.199951
                                                 3583.399902
                                                              3621.199951
                                                                           3621.196289
           1994-01-06
                               NaN
                                            NaN
                                                        NaN
                                                                     NaN
                                                                                  NaN
                                                                                          NaN
                                                                                                     0
           1994-01-07 3621.199951 3644.399902 3598.699951 3636.399902 3636.396240
                                                                                            0.0
```

```
In [4]: #3.0bservamos final del dataset
    train1_df.tail()
```

Out[4]:		Date	Open	High	Low	Close	Adj Close	Volume	Target
	6549	2019-05-24	9150.299805	9211.099609	9141.400391	9174.599609	9174.599609	121673100.0	0
	6550	2019-05-27	9225.900391	9294.599609	9204.700195	9216.400391	9216.400391	60178000.0	0
	6551	2019-05-28	9220.400391	9224.900391	9132.900391	9191.799805	9191.799805	218900800.0	0
	6552	2019-05-29	9113.200195	9116.700195	9035.099609	9080.500000	9080.500000	148987100.0	0
	6553	2019-05-30	9120.799805	9175.200195	9114.099609	9157.799805	9157.799805	101389200.0	0

```
In [5]: #4.Observamos la información de las variables de cada columna.
train1_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6554 entries, 0 to 6553
Data columns (total 8 columns):
# Column Non-Null Count Dtype
--- 0 Date 6554 non-null object
1 Open 6421 non-null float64
2 High 6421 non-null float64
```

```
6421 non-null
                                             float64
           6
               Volume
           7
               Target
                            6554 non-null
                                              int64
          dtypes: float64(6), int64(1), object(1)
          memory usage: 409.8+ KB
 In [6]:
           #5.Describimos el dataset de ser posible
           train1_df.describe()
                                                                          Adj Close
                                                                                         Volume
 Out[6]:
                        Open
                                      High
                                                    Low
                                                                Close
                                                                                                      Target
                  6421.000000
                                6421.000000
                                             6421.000000
                                                          6421.000000
                                                                        6421.000000
                                                                                    6.421000e+03 6554.000000
          count
          mean
                  8936.540448
                                9005.235576
                                             8858.340567
                                                          8934.978558
                                                                        8934.970624
                                                                                    8.218074e+07
                                                                                                    0.516936
                  2732.102441
                                2749.009324
                                             2712.511028
                                                          2731.032625
                                                                        2731.030170
                                                                                   1.231845e+08
                                                                                                    0.499751
            std
            min
                  2865.100098
                                2877.300049
                                             2833.600098
                                                          2865.100098
                                                                        2865.097168
                                                                                    0.000000e+00
                                                                                                    0.000000
            25%
                  7732.399902
                                7817.200195
                                             7641.500000
                                                          7727.799805
                                                                       7727.791992
                                                                                    0.000000e+00
                                                                                                     0.000000
            50%
                  9329.700195
                                9404.599609
                                             9243.000000
                                                          9331.000000
                                                                       9331.000000
                                                                                    1.966000e+05
                                                                                                     1.000000
            75%
                 10525.500000
                              10590.299805
                                            10441.200195
                                                         10523.400391
                                                                      10523.400391
                                                                                    1.773980e+08
                                                                                                     1.000000
                 15999.200195 16040.400391
                                           15868.599609
                                                         15945.700195 15945.683594
                                                                                   7.894902e+08
                                                                                                     1.000000
 In [7]:
           #6. Sumamos todas aquellas variables nulas
           train1_df.isnull().sum()
          Date
                           0
 Out[7]:
          0pen
                        133
          High
                        133
                        133
          Low
                        133
          Close
          Adj Close
                        133
          Volume
                        133
                           0
          Target
          dtype: int64
 In [8]:
           #7. Dropeando los NA para no incurrir en problemas futuros
           train1_cleaned_df = train1_df.dropna()
 In [9]:
           train1_cleaned_df.isnull().sum()
          Date
                        0
 Out[9]:
          0pen
                        0
          High
                        0
          Low
                        0
          Close
                        0
          Adj Close
                        0
                        0
          Volume
          Target
                        0
          dtype: int64
In [10]:
           fg, ax =plt.subplots(1,2,figsize=(20,7))
           ax[0].plot(train1_cleaned_df['Open'],label='Apertura',color='green')
           ax[0].set_xlabel('Date',size=15)
           ax[0].set_ylabel('Price',size=15)
           ax[0].legend()
```

3

4

5

Low

Close

6421 non-null

6421 non-null

Adj Close 6421 non-null

float64

float64

float64

```
ax[1].plot(train1_cleaned_df['Close'],label='Cierre',color='red')
ax[1].set_xlabel('Date',size=15)
ax[1].set_ylabel('Price',size=15)
ax[1].legend()
plt.show()
```


2.1.2 Leyendo segundo dato CSV (tweets from 2015 # Ibex 35.csv)

```
In [11]:
#1. Con pandas, importamos el dataset 1
train2_df = pd.read_csv("tweets_from2015_#Ibex35.csv", sep=',')
```

Out[12]: tweetDate handle text Sat Apr 09 14:47:45 +0000 2022 abelac62 He hecho el repaso de todos los componentes de... Thu Apr 07 19:14:36 +0000 2022 LluisPerarnau Els projectes que han presentat les empreses d... **2** Mon Apr 04 16:48:45 +0000 2022 Pegaso121080 Por si no lo has visto, o no lo encuentras en ... Tue Apr 05 07:23:16 +0000 2022 zonavalue 📈 #BOLSA: El #lbex35 abre en 🔵 \n\nes #lbex35 ... 3 Thu Mar 31 16:07:43 +0000 2022 **EPeconomia** El #Ibex35 retrocede un 0,4% en marzo y un 3,0...

In [13]: train2_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9801 entries, 0 to 9800
Data columns (total 3 columns):
Column Non-Null Count Dtype

Column Non-Null Count Dtype

0 tweetDate 9799 non-null object
1 handle 9798 non-null object
2 text 9797 non-null object

dtypes: object(3)
memory usage: 229.8+ KB

In [14]: train2_df.describe()

 out[14]:
 tweetDate
 handle
 text

 count
 9799
 9798
 9797

	top	Wed Jun 10 17:21:23 +0000 2020	Bolsacarlosmari	OJO HOY #VENCIMIENTOS \n\nHORARIO de #VENCIMIE
	freq	2	380	5
In [15]:	train2_df	.isnull().sum()		
Out[15]:	tweetDate handle text dtype: int	2 3 4 64		
In [16]:	train2_df	= train2_df.dropna()		
In [17]:	train2_df	.columns		
Out[17]:	Index(['tw	eetDate', 'handle', 'te	ext'], dtype='objec	ct')
In [18]:	train2_df	[["text"]].head()		
Out[18]:			text	
	0 He hech	o el repaso de todos los comp	onentes de	
	1 Els pr	ojectes que han presentat les e	empreses d	
	2 Po	r si no lo has visto, o no lo enc	uentras en	
	3 × #BOLS	SA: El #Ibex35 abre en 🔵 \n\n	es #Ibex35	

handle

2114

text

9763

tweetDate

9780

In [19]:

train2_df["text"][0]

El #lbex35 retrocede un 0,4% en marzo y un 3,0...

unique

Out[19]:

'He hecho el repaso de todos los componentes del #IBEX35 y ahora me pongo con lo de La Chiqu i. Si mañana tengo tiempo, publicaré algún activo interesante del mercado europeo y american o. Buen fin de semana.'

🔽 3) Adaptar la información, identificar y corregir anomalías 🔧

- Se utilizará la librería **NLT** para lenguaje natural (Natural Languaje Toolkit) con los métodos stopword y pr para analizar eficientemente los twits.
- En combinación con **NLT** se importará la librería **TextBlob** procesa texto y será capaz de generar algún tipo de "sentimiento" o "clasificación" del texto.

Finalmente el objetivo es obtener un **DATASET** con dos columnas, *fecha* estandarizada bajo el mismo formato que el primer dataset y *sentimiento* (0 baja y 1 alza)

```
import string
import re
import nltk
from nltk.util import pr
from nltk.corpus import stopwords
```

```
import warnings
          from textblob import TextBlob
          warnings.filterwarnings('ignore')
          stemmer = nltk.SnowballStemmer("spanish")
          nltk.download('stopwords')
          stopword=set(stopwords.words('spanish'))
          [nltk_data] Downloading package stopwords to
                       C:\Users\Kevin\AppData\Roaming\nltk_data...
          [nltk_data]
         [nltk_data]
                      Package stopwords is already up-to-date!
In [21]:
          train2 cleaned df = train2 df.copy(deep=True)#Hacemos un backup del train2 df
In [22]:
          def clean(text):
              text = str(text).lower()
              text = re.sub('\[.*?\]', '', text)
              text = re.sub('https?://\S+|www\.\S+', '', text)
              text = re.sub('<.*?>+', '', text)
              text = re.sub('[%s]' % re.escape(string.punctuation), '', text)
              text = re.sub('\n', '', text)
              text = re.sub('\w*\d\w*', '', text)
              text = [word for word in text.split(' ') if word not in stopword]
              text=" ".join(text)
              text = [stemmer.stem(word) for word in text.split(' ')]
              text=" ".join(text)
              return text
In [23]:
          train2_cleaned_df["text"] = train2_cleaned_df["text"].apply(clean)
In [24]:
          train2 cleaned df["text"][0]
          'hech repas component ahor pong chiqui si mañan tiemp public algun activ interes merc europe
Out[24]:
         american buen fin seman'
In [25]:
          train2_df["text"][0]
          'He hecho el repaso de todos los componentes del #IBEX35 y ahora me pongo con lo de La Chiqu
Out[25]:
         i. Si mañana tengo tiempo, publicaré algún activo interesante del mercado europeo y american
         o. Buen fin de semana.'
In [26]:
          def analyze_sentiment(tweet):
              """Análisis subjetivo de sentimiento del tweet"""
              analysis = TextBlob(clean(tweet))
              if analysis.sentiment.subjectivity > 0:
                  return 1
              elif analysis.sentiment.subjectivity == 0:
                  return 0
              else:
                  return -1
In [27]:
          train2_cleaned_df['Sentiment'] = train2_cleaned_df['text'].apply(lambda x:analyze_sentiment()
In [28]:
          train2 cleaned df
                                                handle
                                                                                        text Sentiment
                               tweetDate
Out[28]:
```

		tweetDate	handle	text	Sentiment			
	0	Sat Apr 09 14:47:45 +0000 2022	abelac62	hech repas component ahor pong chiqui si maña	1			
	1	Thu Apr 07 19:14:36 +0000 2022	LluisPerarnau	els project presentat empres als fons nextgen	0			
	2	Mon Apr 04 16:48:45 +0000 2022	Pegaso121080	si vist encuentr busqued suel pas 🤒 analisis ni	1			
	3	Tue Apr 05 07:23:16 +0000 2022	zonavalue		0			
	4	Thu Mar 31 16:07:43 +0000 2022	EPeconomia	retroced marz prim trimestr	0			
	•••							
	9796	Thu Jan 08 16:41:36 +0000 2015	elEconomistaes	cierr sub punt	0			
	9797	Sat Jan 03 17:20:30 +0000 2015	Roger_bolsa	vistaz bluechips ibex analisis bancosantand i	0			
	9798	Sat Jan 10 19:42:45 +0000 2015	Secretos debolsa	asi comienz bols ojo soport europ especial es	0			
	9799	Sat Jan 10 21:47:17 +0000 2015	Roger_bolsa	analisis bancosantand santand san tras desplom	0			
	9800	Mon Jan 05 15:06:49 +0000 2015	elEconomistaes	profundiz caid pierd punt	0			
n [29]:		vs × 4 columns	'l.unique() #No	nos quedaron sentimientos sin asigna	ır. todos so			
ıt[29]:		[1, 0], dtype=int64)]					
n [30]:	train2	2_cleaned_df["text"][2]						
t[30]:		st encuentr busqued sue merlinpropertis bbva mu	_	is nivel vari accion youtub ezentis esper gust ayud 📻 '	aedashom ll			
	Transfor	mamos la fecha de column	a "tweetDate" al	mismo formato que el dataset original (AÑ	O-MES-			
n [31]:	<pre>#todos aquellos datos que no sean fechas los rellenamos con NAN train2_cleaned_df['Date'] = pd.to_datetime(train2_cleaned_df['tweetDate'], errors='coerce')</pre>							
n [32]:	train2	2_cleaned_df = train2_cl	leaned_df.dropn	a(subset=['Date'])				
1 [33]:	train2	2_cleaned_df['Date']						
ıt[33]:	0 1	2022-04-09 14:47:45+00 2022-04-07 19:14:36+00	:00					

3

9796

2022-04-07 19:14:36+00:00 2022-04-04 16:48:45+00:00

2022-04-05 07:23:16+00:00 2022-03-31 16:07:43+00:00

2015-01-08 16:41:36+00:00

```
2015-01-03 17:20:30+00:00
                2015-01-10 19:42:45+00:00
         9798
         9799
                2015-01-10 21:47:17+00:00
         9800
                2015-01-05 15:06:49+00:00
         Name: Date, Length: 9793, dtype: datetime64[ns, UTC]
In [34]:
          d=str(train2_cleaned_df['Date'])
In [35]:
          date = [] #pasamos a array las fechas
          for i in train2_cleaned_df['Date']: #recorremos cada una de Las fechas
              date.append(pd.to_datetime(i).date())#apendizamos las fechas en un array
In [36]:
          train2 cleaned df['Date'] = date #Con esto coincidimos los formatos de las fechas
In [37]:
          train2_cleaned_df = train2_cleaned_df.drop(['tweetDate', 'handle', 'text'], axis = 1) #limpian
In [38]:
          a = train2_cleaned_df.drop("Sentiment", 1) #reacomodamos Las columnas para que quede sentiment
          b = train2_cleaned_df["Sentiment"]
          train2_twit_sent_df= pd.concat([a, b], axis = 1)
In [39]:
          train2_twit_sent_df.head(2) #Obtenemos nuestro dataset de los sentimientos 1 si es "subjetivo
                 Date Sentiment
Out[39]:
         0 2022-04-09
                              1
         1 2022-04-07
                              0
         4) Preparar datos para training y testing 
In [40]:
          # 1. Filtramos los datos de cierre de mercado
          close data = train1 cleaned df.filter(['Close'])
In [41]:
          # 2. Convertimos los datos a array para una evaluación más rápida
          dataset = close data.values
In [42]:
          # 3. Normalizamos los datos para que todos los valores estén entre 0 y 1
          scaler = MinMaxScaler(feature_range=(0, 1))
          scaled data = scaler.fit transform(dataset)
In [43]:
          # 4. Creamos el dataset de training con el 70% de los datos
          training_data_len = math.ceil(len(dataset) *.7)
          train_data = scaled_data[0:training_data_len , : ]
In [44]:
          # 5. Separamos los datos entre x e y respectivamente para entrenar el modelo
          x_train_data=[]
          y_train_data =[]
          for i in range(60,len(train_data)):#tomamos los últimos 60 días para hacer la predicción de
              x_train_data=list(x_train_data)
              y_train_data=list(y_train_data)
              x_train_data.append(train_data[i-60:i,0])
              y_train_data.append(train_data[i,0])
```

9797

```
# 6. Convertimos los valores de x e y en arrays de numpy
x_train_data1, y_train_data1 = np.array(x_train_data), np.array(y_train_data)
# 7. Transformamos el formato de los array para facilitar los futuros cálculos
x_train_data2 = np.reshape(x_train_data1, (x_train_data1.shape[0],x_train_data1.shape[1])
```

5) Entrenar el modelo con los datos de entrenamiento

Para resolver de manera eficiente el problema de la predicción, utilizaremos una Red Neuronal Recurrente llamada **LSTM**, este tipo de red está precisamente enfocada para algoritmos de predicción de *stocks*, donde los datos históricos son constantemente actualizados y por ende, cualquier algoritmo de Machine Learning basado en indicadores, llámese "support vector machines, decision trees, principal component analysis, random forest, ensemble methods etc." no serían tan eficientes dado que la hipótesis de estos analizadores no siempre es correcta y no generan un resultado ideal. Por otro lado **LSTM** es una red neuronal que utiliza 3 "puertas" para modificar e ir actualizando constánemente la célula o núcleo de los precios/volúmen, etc. que comprende esta red neuronal, y por ende permite prescindir de cualquier indicador calculado previament.

5.1.1Construyendo el modelo LSTM

Long Short-Term Memory (LSTM)

El modelo LSTM estandar, utilizado para estos análisis contiene dos capas LSTM con 50 neuronas y dos capas densas, una con 25 neuronas y la otra con una neurona.

```
In [45]:
    model = Sequential()
    model.add(LSTM(units=50, return_sequences=True,input_shape=(x_train_data2.shape[1],1)))
    model.add(LSTM(units=50, return_sequences=False))
    model.add(Dense(units=25))
    model.add(Dense(units=1))
```

Se utilizará para el cálculo de la función de pérdida "loss" el error cuadrático medio (MSE) y para el optimizador el optimizador será el de "Adam" (Adaptive Moment Estimation) puesto que para este caso, es uno de optimizadores más eficientes combinando las capacidades de otros dos optimizadores como el AdaGrad y RMSProp.

5.1.2 Compilando el modelo

6) Hacer predicciones con los datos de prueba

6.1 Probando el modelo en los datos de prueba

```
In [47]: # 1. Crear el dataset para testing
    test_data = scaled_data[training_data_len - 60: , : ]
    x_test = []
    y_test = dataset[training_data_len : , : ]
    for i in range(60,len(test_data)):
        x_test.append(test_data[i-60:i,0])
```

```
In [48]: | # 2. Convertir los valores en arrays para facilitar el cálculo
          x_test = np.array(x_test)
          x_test = np.reshape(x_test, (x_test.shape[0],x_test.shape[1],1))
In [49]:
          # 3. Realizando predicciones con el 30% de testing
          predictions = model.predict(x_test)
          predictions = scaler.inverse_transform(predictions)
         61/61 [======== ] - 1s 8ms/step
        6.2 Cálculo de los errores
In [50]:
          RMSE = np.sqrt(np.mean(((predictions - y_test)**2))) #Error cuadrático medio
          SSR = sum((predictions-np.mean(y_test))**2) #Suma de las diferencias cuadradas (SSR)
          SSE = sum((predictions-y test)**2) #Error de suma de cuadrados (SSE)
          SST = sum(((y_test-np.mean(y_test))**2)) #Suma de cuadrados totales (SST)
          R2 = SSR/SST
In [51]:
          print("Los errores en las predicciones obtenidos son: RMSE = %.2f SSR = %.2f, SSE = %.2f, SSE
         Los errores en las predicciones obtenidos son: RMSE = 235.97 SSR = 2838104576.00, SSE = 10724
         7487.02, SST = 2529704251.28, R2 = 1.12
         🔽 7) Comparar predicciones con datos de prueba 📝
        Para esta etapa, y dado que el resultado que estamos buscando es dicreto, podemos hacer uso de las
        métricas de sklearn para clasificación.
In [52]:
          from sklearn.metrics import classification_report
          from sklearn import metrics
```

7.1 Realizamos plot de predicción contínua

<matplotlib.legend.Legend at 0x1f872995250>

Out[54]:

```
In [53]:
          data = train1_cleaned_df.copy(deep=True)
In [54]:
          train = data.iloc[:training_data_len,:]
          valid = data.iloc[training_data_len:,:]
          %matplotlib inline
          valid['Predictions'] = predictions
          plt.figure(figsize=(16, 9), dpi=80)
          plt.title('Model')
          plt.xlabel('Date')
          plt.ylabel('Close')
          plt.plot(train['Close'])
          plt.plot(valid[['Close', 'Predictions']])
          plt.legend(['Train', 'Val', 'Predictions'], loc='lower right')
```


7.2 Discretizamos la medición contínua (alza o baja)

In [55]: valid['Target_pred'] = np.where((valid["Predictions"]>valid["Close"]), 1, 0)

In [56]:

valid

	Vall	·u								
Out[56]:		Date	Open	High	Low	Close	Adj Close	Volume	Target	Predictio
	4626	2011- 11-11	8301.700195	8580.099609	8263.200195	8556.099609	8556.090820	192929000.0	0	8539.8076
	4627	2011- 11-14	8615.799805	8616.900391	8341.500000	8372.200195	8372.191406	154797000.0	0	8554.0908
	4628	2011- 11-15	8316.700195	8333.200195	8191.700195	8237.599609	8237.590820	197888000.0	1	8548.7695
	4629	2011- 11-16	8213.400391	8415.700195	8213.299805	8304.099609	8304.090820	173684000.0	0	8504.4375
	4630	2011- 11-17	8272.400391	8335.900391	8200.299805	8270.599609	8270.590820	190560000.0	0	8472.4570
	•••									
	6549	2019- 05-24	9150.299805	9211.099609	9141.400391	9174.599609	9174.599609	121673100.0	0	9378.3828
	6550	2019- 05-27	9225.900391	9294.599609	9204.700195	9216.400391	9216.400391	60178000.0	0	9353.1621
	6551	2019- 05-28	9220.400391	9224.900391	9132.900391	9191.799805	9191.799805	218900800.0	0	9348.5888
	6552	2019- 05-29	9113.200195	9116.700195	9035.099609	9080.500000	9080.500000	148987100.0	0	9346.2529
	6553	2019- 05-30	9120.799805	9175.200195	9114.099609	9157.799805	9157.799805	101389200.0	0	9316.2119

1926 rows × 10 columns

In [59]: print(classification_report(valid['Target'], valid['Target_pred'], target_names=["Reales", "Feature of the control of the contr

	precision	recall	f1-score	support
Reales	0.40	0.13	0.20	907
Predicciones	0.52	0.83	0.64	1019
accuracy			0.50	1926
macro avg	0.46	0.48	0.42	1926
weighted avg	0.46	0.50	0.43	1926

Vemos que la presición final del modelo para predicciones **binarias** es de un 52% lo cual tiene sentido, pues a esto se le debe sumar el "sentimiento subjetivo" de los usuarios de twitter.

8) Realizar predicciones finales con (test_x.csv)

8.1 Importamos dataset a predecir y analizamos si está todo OK

```
In [60]:
#1. Con pandas, importamos el dataset 1
test_x_df = pd.read_csv("test_x.csv", sep=',')
```

In [61]: #2.Observamos encabezado
 test_x_df.head()

Out[61]:		test_index	Date	Open	High	Low	Close	Adj Close	Volume
	0	6557	2019-06-05	9136.799805	9173.400391	9095.000000	9150.500000	9150.500000	158753000.0
	1	6558	2019-06-06	9169.200195	9246.200195	9136.700195	9169.200195	9169.200195	212720900.0
	2	6559	2019-06-07	9186.700195	9261.400391	9185.700195	9236.099609	9236.099609	150664700.0
	3	6560	2019-06-10	9284.200195	9302.200195	9248.099609	9294.099609	9294.099609	102323700.0
	4	6561	2019-06-11	9288.599609	9332.500000	9273.400391	9282.099609	9282.099609	144701200.0

```
In [62]: #3.Observamos final del dataset
test_x_df.tail()
```

```
Out[62]:
                test_index
                                Date
                                             Open
                                                          High
                                                                        Low
                                                                                   Close
                                                                                             Adj Close
                                                                                                           Volume
                             2022-03-
                     7278
           721
                                       8314.099609
                                                   8363.200195
                                                                8286.500000
                                                                             8330.599609
                                                                                          8330.599609
                                                                                                       156189000.0
                                  25
                             2022-03-
           722
                     7279
                                       8354.400391
                                                   8485.700195
                                                                8354.400391
                                                                             8365.599609
                                                                                          8365.599609
                                                                                                       167961800.0
                                  28
                             2022-03-
           723
                     7280
                                       8451.000000
                                                   8621.000000 8419.700195 8614.599609
                                                                                          8614.599609 257812200.0
                                  29
                             2022-03-
                     7281
                                       8583.299805
           724
                                                   8597.400391
                                                                8508.900391
                                                                             8550.599609
                                                                                          8550.599609
                                                                                                      185389000.0
                                  30
                             2022-03-
           725
                     7282
                                       8562.599609 8588.299805 8445.099609 8445.099609 8445.099609 220117500.0
```

In [63]:

#4.0bservamos la información de las variables de cada columna. $test_x_df.info()$

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 726 entries, 0 to 725
Data columns (total 8 columns):

31

#	Column	Non-Null Count	Dtype
0	test_index	726 non-null	int64
1	Date	726 non-null	object
2	0pen	726 non-null	float64
3	High	726 non-null	float64
4	Low	726 non-null	float64
5	Close	726 non-null	float64
6	Adj Close	726 non-null	float64
7	Volume	726 non-null	float64
dtyp	es: float64(6), int64(1), ob	ject(1)

memory usage: 45.5+ KB

In [64]:

#5.Describimos el dataset de ser posible
test_x_df.describe()

Out[64]:

	test_index	Open	High	Low	Close	Adj Close	Volume
count	726.000000	726.000000	726.000000	726.000000	726.000000	726.000000	7.260000e+02
mean	6919.500000	8399.936418	8458.035202	8332.158471	8396.085609	8396.085609	2.086387e+08
std	209.722436	899.325142	886.671165	916.904022	903.320144	903.320144	1.015796e+08
min	6557.000000	6223.700195	6362.500000	5814.500000	6107.200195	6107.200195	3.543620e+07
25%	6738.250000	7848.675049	7963.874878	7762.924805	7857.675171	7857.675171	1.472686e+08
50%	6919.500000	8673.950195	8725.250000	8609.750000	8672.399902	8672.399902	1.827458e+08
75%	7100.750000	9077.599609	9124.224854	9001.125244	9077.375244	9077.375244	2.340954e+08
max	7282.000000	10048.700195	10100.200195	10020.700195	10083.599609	10083.599609	9.752120e+08

```
In [65]:
```

#6. Sumamos todas aquellas variables nulas
test_x_df.isnull().sum()

Out[65]:

test_index 0
Date 0
Open 0
High 0
Low 0

```
Close
         Adj Close
         Volume
         dtype: int64
In [66]:
          # 7. Filtramos los datos de cierre de mercado
          close_data = test_x_df.filter(['Close'])
In [67]:
          # 8. Convertimos los datos a array para una evaluación más rápida
          dataset = close_data.values
In [68]:
          # 9. Normalizamos los datos para que todos los valores estén entre 0 y 1
          scaled_data = scaler.fit_transform(dataset)
        8.2 Adaptamos los datos y realizamos predicciones
In [69]:
          # 1. Filtramos los últimos 60 días (la predicción ya está realizada con el data set entero)
          x_{test} = []
          for i in range(60,len(scaled_data)):
              x_test.append(scaled_data[i-60:i,0])
In [70]:
          # 2. Convertir los valores en arrays para facilitar el cálculo
          x_test = np.array(x_test)
          x_test = np.reshape(x_test, (x_test.shape[0],x_test.shape[1],1))
In [71]:
          # 3. Realizando predicciones con los t
          predictions = model.predict(x_test)
          predictions = scaler.inverse_transform(predictions)
         21/21 [========= ] - 0s 8ms/step
In [72]:
          test_x_cut_df = test_x_df.iloc[len(x_test):,:]#Nos quedamos con los últios 60 días para real
In [73]:
          test_x_cut_df["Predictions"] = predictions[606:] #Agregamos las predicciones de los últimos
        8.3 A las predicciones le aplicamos el "Sentimiento de Twitter"
In [74]:
          train_twit_df=train2_twit_sent_df.copy()
In [75]:
          import time #Para hacer las comparaciones de fecha
In [76]:
          Sentiment = []
          index = 0
          for i in test_x_cut_df["Date"]:
              count = 0 #Reseteamos el conteo de días que se repite el mismo tweet
              suma = 0 #Reseteamos La suma
              mean = 0 #Reseteamos el promedio de esta fecha
              index += 1 #incrementamos el indice en uno
              for j in train_twit_df["Date"]:#Recorremos todos los sentimientos y buscamos aquellas fee
                  date1 = time.strptime(i, "%Y-%m-%d")
                  date2 = j
                  date1 is date2
                  count += 1
```

```
Sentiment.append(mean) #apendizamos el promedio de sentimientos para ese día.
              #test_x_cut_df['Sentiment'] = train_twit_df["Sentiment"][j]
In [77]:
          test_x_cut_df['Target'] = np.where(((test_x_cut_df["Predictions"])>test_x_cut_df["Close"]),
In [78]:
          #test_x_cut_df['Target'] = test_x_cut_df["Target"]+Sentiment
In [79]:
          test_x_cut_df['Target'] = np.where(((test_x_cut_df["Target"]+Sentiment)>=1), 1, 0) #Cuando he
         9) Presentar resultados **
        9.1 Guardamos los resultados según lo especificado bajo formato csv
In [80]:
          predictions = pd.concat([test_x_cut_df["test_index"], test_x_cut_df["Target"]], axis = 1)
In [81]:
          predictions.to_csv("predictions.csv", index=False)
In [82]:
          predictions_observ = pd.read_csv("predictions.csv", sep=',')#Observamos que el resultado se
In [83]:
          predictions_observ.head() #Datos guardados exitosamente
Out[83]:
            test_index Target
                7223
         1
                7224
                          1
         2
                7225
         3
                7226
                          1
         4
                7227
                          0
        9.2 Guardamos los resultados según lo especificado bajo formato json
In [84]:
          predictions_json = predictions.copy() #Realizamos la copia
In [85]:
          A = np.array(predictions["test_index"])
          B = np.array(predictions["Target"])
          #C = np.concatenate([A, B])
          C = np.stack([A, B]).reshape(-1)
In [86]:
          data = {'test_index': A,
                   'Target': B
In [87]:
          predictions_json = pd.DataFrame(data, columns = ['test_index', 'Target'])
```

suma = suma + train_twit_df.iloc[index,1]

mean = suma / count #Calculamos el promedio de sentimientos en el dia que se realizaron

```
In [89]: df = pd.read_json('predictions.json')
In [90]: df.head() #Ok eL archivo se ha guardado exitosamente
```

In [88]: | data = predictions_json.to_json('./predictions.json')

Out[90]:		test_index	Target
	0	7223	1
	1	7224	1
	2	7225	1
	3	7226	1
	4	7227	0