Exercise 1. Let us introduce two notions:

- ♦ Let (\mathbb{R}, \leq) denote the category whose objects are real numbers and there exists a morphism $f: x \to y$ if and only if $x \leq y$.
- \diamond The category (\mathbb{Z}, \leqslant) is the same but for \mathbb{Z} .

The inclusion $\iota : \mathbb{Z} \hookrightarrow \mathbb{R}$ induces a fully faithful functor between these categories. Show that $(\iota, \lfloor * \rfloor)$ and $(\lceil * \rceil, \iota)$ are pairs of adjoint functors.

Answer

Let us observe first that the Hom-sets in these categories are either empty or singletons. This is because $x \le y$ or not. In the positive case Hom(x,y) is a singleton, on the other one, it's empty.

In order to organize, x, y will be elements of \mathbb{Z} , and $\alpha, \beta \in \mathbb{R}$.

To show that $(\iota, [*])$ are a pair of adjoint functors, we must show that

$$\operatorname{Hom}(\iota(x), \alpha) \to \operatorname{Hom}(x, |\alpha|), \ x \in \mathbb{Z}, \ \alpha \in \mathbb{R}$$

is a bijection and for $x \le y$ (in other words $f: x \to y$), the following diagram commutes

$$\text{Hom}(\iota(y), \alpha) \longrightarrow \text{Hom}(\iota(x), \alpha)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\text{Hom}(y, \lfloor \alpha \rfloor) \longrightarrow \text{Hom}(x, \lfloor \alpha \rfloor)$$

We prove that $\operatorname{Hom}(\iota(x), \alpha) \to \operatorname{Hom}(x, \lfloor \alpha \rfloor)$ is a bijection by considering two cases:

- ♦ Either $x \le \alpha$, and this means that $x \le \lfloor \alpha \rfloor$ which means that both sets are singletons and therefore there exists a bijection between them.
- \diamond Or $x > \alpha \ge \lfloor \alpha \rfloor$ and both sets are empty and the empty function satisfies what we ask.

The following diagrams exhibit the possibilities of what the previous diagram converts to:

- \diamond The first case exhibits the case $\alpha \leqslant x \leqslant y$, then $\lfloor \alpha \rfloor \leqslant x \leqslant y$ which means that all of the sets are empty and therefore the empty function commutes all the way around.
- \diamond In the second case we have $x \leqslant \alpha \leqslant y$. Still $\lfloor \alpha \rfloor \leqslant y$ but the least the $\lfloor \alpha \rfloor$ can be is x so the Hom-sets on the right are non-empty. Composition with the empty function results in the empty function so our diagram commutes.
- ♦ In the last case $x \le y \le \alpha$ and so $x \le y \le \lfloor \alpha \rfloor$. All sets are non-empty and since they are singletons, the diagram commutes.

This lets us conclude that there is a natural bijection between our Hom-sets and therefore $(\iota, [*])$ forms an adjoint pair.

With a similar argument we can show that

$$\operatorname{Hom}([\alpha], x) \to \operatorname{Hom}(\alpha, \iota(x))$$

is a bijection and for $\alpha \leq \beta$, the following diagram commutes:

$$\begin{array}{ccc} \operatorname{Hom}(\lceil\beta\rceil,x) & \longrightarrow & \operatorname{Hom}(\lceil\alpha\rceil,x) \\ & & \downarrow & & \downarrow \\ \operatorname{Hom}(\beta,\iota(x)) & \longrightarrow & \operatorname{Hom}(\alpha,\iota(x)) \end{array}$$

Exercise 2 (1.6.D Vakil). Show that a map of complexes induces a map of homology $H^i(A^{\bullet}) \to H^i(B^{\bullet})$ and furthermore, H^i is a covariant functor from $Com_C \to C$. [Feel free to deal with the special case Mod_A .]

Answer

We will work inside the category of modules in this case. Consider two complexes A^{\bullet} , B^{\bullet} with a map of complexes $\varphi: A^{\bullet} \to B^{\bullet}$ where $\varphi^i: A^i \to B^i$. To define a map between homology, we will first show that the chain map preserves cycles and boundaries.

 \diamond Suppose $z \in A^i$ is a cycle, then $f^i(z) = 0$. Composing with φ^{i+1} we still get 0. However, by commutativity we have

$$0 = \varphi^{i+1}(f^i(z)) = g(\varphi^i(z)) \Rightarrow g(\varphi^i(z)) = 0$$

which means that $\varphi^i(z)$ is a cycle in B^i . The following diagram represents the previous situation:

$$z \in A^{i} \xrightarrow{f^{i}} 0 \in A^{i+1}$$

$$\varphi^{i} \downarrow \qquad \qquad \downarrow \varphi^{i+1}$$

$$\varphi^{i}(z) \in B^{i} \xrightarrow{q^{i}} 0 \in B^{i+1}$$

 \diamond On the other hand suppose $y \in A^i$ is a boundary. Then

$$\exists x (x \in A^{i-1} \land f^{i-1}(x) = y).$$

We wish to find an $\tilde{x} \in B^{i-1}$ such that $g^{i-1}(\tilde{x}) = \varphi^i(y)$, so we claim that such \tilde{x} is $\varphi^{i-1}(x)$. By diagram commutativity we have that

$$g^{i-1}(\varphi^{i-1}(x)) = \varphi^i(f(x)) = \varphi^i(y)$$

which means that $\varphi^i(y)$ is a boundary. Diagrammatically we have

$$\exists x \in A^{i-1} \xrightarrow{f^{i-1}} y \in A^{i}$$

$$\varphi^{i-1} \downarrow \qquad \qquad \downarrow \varphi^{i}$$

$$\exists ? \tilde{x} \in B^{i-1} \xrightarrow{g^{i-1}} \varphi^{i}(y) \in B^{i}$$

Now recall that the homology groups are defined as $\ker(f^i)/_{\operatorname{Im}(f^{i-1})}$ which means that there is a projection map $\pi^i_A : \ker(f^i) \to H^i(A^{\bullet})$. Composing this with our chain map^a we get

$$\pi_B^i \circ \varphi^i : \ker(f^i) \to H^i(B^{\bullet}).$$

As φ^i preserves boundaries, it holds that elements in $\operatorname{Im}(f^{i+1}) \subseteq \ker(f^i)$ are sent to $\operatorname{Im}(g^{i+1})$ which is the identity element in $H^i(B^{\bullet})$. So by universality $H^i(A^{\bullet})$ as a quotient, there exists a unique morphism $H^i(A^{\bullet}) \to H^i(B^{\bullet})$. This is interpreted as a diagram as follows:

$$\ker(f^{i}) \xrightarrow{\pi_{B}^{i} \circ \varphi^{i}} H^{i}(B^{\bullet})$$

$$\downarrow^{\pi_{A}^{i}} \qquad \qquad \downarrow^{\operatorname{ker}(f^{i})}/_{\operatorname{Im}(f^{i-1})} = H^{i}(A^{\bullet})$$

From the relation $\pi_B^i \circ \varphi^i = \varphi^{\bullet i} \circ \pi_A^i$ we can define $\varphi^{\bullet i}$ concretely as

$$\varphi^{\bullet i}([z]) = [\varphi^i(z)].$$

This also shows that H^i acts as a covariant functor because we began with a map of complexes $\varphi: A^{\bullet} \to B^{\bullet}$ and obtained $\varphi^{\bullet i}: H^i(A^{\bullet}) \to H^i(B^{\bullet})$ which follows the direction of our original map.

Exercise 3. Let C be an abelian category and let $C \in \mathrm{Obj}(\mathsf{C})$. Show that $\mathrm{Hom}_\mathsf{C}(C,*) : \mathsf{C} \to \mathsf{Ab}$ is a left-exact covariant functor.

Answer

Let us begin by considering the following diagram of C-objects:

$$0 \xrightarrow{\alpha} X \xrightarrow{\beta} Y \xrightarrow{g} Z$$

where $X \to Y \to Z$ is exact, meaning that $\ker(g) = \operatorname{Im}(f)$ and f is injective. After functorising the sequence we obtain the sequence

$$0 \longrightarrow \operatorname{Hom}(C,X) \xrightarrow{f_*} \operatorname{Hom}(C,Y) \xrightarrow{g_*} \operatorname{Hom}(C,Z)$$

where $f_*(\varphi) = f \circ \varphi$. First, we show that f_* is injective and for that purpose suppose $f_*(\alpha) = 0$. This means that $f \circ \alpha$ is the zero morphism. So

$$f(\alpha(z)) = 0 \Rightarrow \alpha(z) = 0 \Rightarrow \alpha = 0, \quad z \in C,$$

which lets us conclude that f_* is injective.

To show exactness we need to see that

$$\ker(g_*) = \operatorname{Im}(f_*).$$

(\subseteq) Suppose for that effect that $\beta \in \ker(g_*)$, then $g_*(\beta) = g \circ \beta$ is the zero map. As f is injective, by universality of the kernel, there exists $\alpha \in \operatorname{Hom}(C,X)$ such that $f_*(\alpha) = \beta$ and therefore $\beta \in \operatorname{Im}(f_*)$.

^aRestricted to the kernel since cycles get sent to cycles.

(\supseteq) On the other hand suppose $\beta \in \text{Im}(f_*)$, this means that for some $\alpha : C \to X$, $\beta = f_*(\alpha)$. Now,

$$g_*(\beta) = g_*(f_*(\alpha)) = (g \circ f) \circ \alpha = 0 \circ \alpha = 0 \Rightarrow \beta \in \ker(g_*).$$

Exercise 4 (2.2.F. Vakil). Suppose Y is a topological space. Show that "continuous maps to Y" form a sheaf of sets on X.

More precisely, to each open set U of X, we associate the set of continuous maps of U to Y. Show that this forms a sheaf.

Answer

The presheaf \mathcal{F} of continuous functions on X consists of taking every open set U and assigning to it the set

$$\mathfrak{F}(U) = \mathfrak{C}(U,Y) = \{ (f:U \to Y) : f \text{ is continuous } \}.$$

The restriction mapping in this case is

$$\operatorname{res}_{VU} : \mathcal{C}(V,Y) \to \mathcal{C}(U,Y), \ f \mapsto f|_{U}.$$

- \diamond The map $\operatorname{res}_{U,U}$ is the identity mapping because restricting to the whole set gives us the same function.
- \diamond Suppose $U \subseteq V \subseteq W$ are open sets, then we must show that

$$\operatorname{res} \circ \operatorname{res}_{V,U} = \operatorname{res}_{W,U}$$
.

Taking $f \in \mathcal{C}(W,Y)$ and applying $\operatorname{res}_{W,V}$ gives us $f|_V$. And when restricting again we obtain $(f|_V)|_U$. Since we have the containment of the sets, this second restriction amounts to restricting to U directly from the original set. Therefore the composition condition holds.

This shows that \mathcal{F} is a presheaf. To show that this is a sheaf, we must prove that functions are determined by restrictions and that there exist *global functions*. The fact that our functions are continuous will let us demonstrate this facts.

♦ Suppose $f, g \in \mathcal{C}(U, Y)$ for some $U \subseteq X$ open, and that (U_i) is an open cover of U where f and g agree locally. Let $x \in U$, then as (U_i) covers U, $x \in U_i$ for some i. Thus

$$f(x) = f|_{U_i}(x) = g|_{U_i} = g(x).$$

As x is arbitrary, we have the desired result.

 \diamond Now suppose (U_i) covers U and a collection of functions (f_i) with $f_i \in \mathcal{C}(U_i,Y)$ satisfy

$$\forall i \forall j \left(f_i |_{U_i \cap U_j} = f_j |_{U_i \cap U_j} \right).$$

We define a global function $f:U\to Y$ by checking first where the input is. This means that

$$f(x) = f_i(x)$$
, when $x \in U_i$

and as f_i 's coincide on intersections, this is a good definition. Finally as continuous functions are characterized by their local behavior, we have that f is a continuous function and therefore we have shown that the gluing axiom holds.

We conclude that \mathcal{F} does indeed form a sheaf.