

Statistiek B – contactmoment 1

Analysetechnieken t-test

Praktisch

Analysetechnieken

t-test

BIVARIATE EN MULTIVARIATE STATISTIEK

Een Open Leerpakket in R

-

Sven De Maeyer, Liesje Coertjens en Jan Ardies

ACADITION .

Praktisch

Cursusmateriaal

- Open leerpakket (via ACCO)
 - 'Bivariate en multivariate statistiek met R. Een openleerpakket.' (De Maeyer, Coertjens en Ardies, 2012)
 - Hoofdstuk 10 is herwerkt:
 Studiemateriaal > Openleerpakket > Hoofdstuk 10 HERWERKT
 - Errata: Studiemateriaal > Openleerpakket > Wijzigingen aan het openleerpakket
- Videolessen
- ZSO's

Opbouw statistiek B

Voorbereid student is er 2 (of meer) waard

- Hoofdstukken uit OLP doornemen
- Videolessen bekijken
- ZSO's van afgeronde hoofdstukken maken
- Vragen -> discussieforum

Contactmoment:

- Korte herhaling
- Korte instructie leerinhoud voor dat contactmoment
- Oefenen!

Opbouw statistiek B

Datum	Uur	Lokaal	Vorm	Onderwerp(en)
21/02/24	18.30-21.30	S.R.001 (opstart) + SR.010 en S.R.011	HC/WC	- Link tussen onderzoeksvraag, analysemodel en -techniek - T-test
28/02/24	19.30-21.30	S.R.008 (opstart) + SR.010 en S.R.011	HC/WC	- ANOVA - Kruistabellen
13/03/24	17u-19u	S.R.008 (opstart) + SR.010 en S.R.011	HC/WC	- Covariantie en correlatie - Bivariate regressieanalyse
27/03/24	19.30-21.30	S.R.007 (opstart) + SR.010 en S.R.011	HC/WC	- Assumpties bij regressieanalyse- Meervoudige regressieanalyse
24/04/24	17u-19u	S.R.008 (opstart) + SR.010 en S.R.011	HC/WC	- Regressieanalyse met dummyvariabelen en interactie
08/05/24	19.30-21.30	S.R.008 (opstart) + SR.010 en S.R.011	HC/WC	- Regressieanalyse met dummyvariabelen en interactie
22/05/24	18.00-21.00	S.R.008 (opstart) + SR.010 en S.R.011	OEF	- Oefensessie

HC/WC = Hoorcollege & Werkcollege; OEF = Oefensessie

NOOT: uren/lokalen kunnen nog wijzigen, updates verschijnen op SISA. We volgen altijd het rooster op SISA.

Evaluatie

Schriftelijk PC-examen in twee delen:

- GESLOTEN DEEL (70%): focus op kennis, inzicht en output interpreteren
- OPEN DEEL (30%): focus op analyseren in R (~output genereren)

Je moet minimaal de helft halen op het gesloten deel om te kunnen slagen voor Statistiek B. Anders bedraagt de score voor Statistiek B maximaal 8/20.

Voorbereiden?

- Laatste sessie ~ proefexamen
- ScRipt

Statistiek A?

We breiden uit...

- Van "Hoe hoog scoort een gemiddelde leerling in Vlaanderen op deze kennistest techniek?"
- Naar "Scoren jongens en meisjes anders op techniek?"

Wat als je niet geslaagd bent voor statistiek A?

- No worries! ©
- Meetniveaus variabelen en z-scores!

Analysetechnieken

Meetniveau variabelen

Meetniveau variabelen

Kwalitatieve variabelen

2 categorieën

Ja Nee

3 of meer categorieën Onderwijsvorm

Kwantitatieve variabelen

Motivatie

Welke variabelen?

• OV1) Kan attestering (a-attest, c-attest) in het 6de jaar ASO verklaard worden door sociale economische achtergrond (laag, midden, hoog)?

 OV2) Hangt de werkmotivatie van werknemers (schaalscore) samen met de bedrijfsgrootte (uitgedrukt in aantal werknemers)?

- 1. Wat zijn de variabelen?
- 2. Teken deze variabelen

Relaties tussen variabelen?

Relaties tussen variabelen

Causale versus niet-causale verbanden (1)

Causaal?

Causale versus niet-causale verbanden (2)

Niet-causale verbanden = associaties zonder causaliteit

Herkennen in OV? samenhang, geassocieerd met, ...

Tekenen?

 Causale verbanden = associaties in termen van oorzaak (onafhankelijke var.) en gevolg (afhankelijke var.)

Herkennen in OV? effect, impact, voorspellen, verklaren, ...

Tekenen?

Complexere verbanden: controle variabelen

Bijvoorbeeld:

Heeft het aantal uren dat een leerling studeert voor een toets een invloed op de scores voor die toets, <u>ongeacht het IQ van de leerling</u>?

Om oneigenlijke verbanden uit te sluiten (~interne validiteit, zie IMT!)

Herkennen in OV? Wat is het effect van X op Y, ongeacht Z;

rekening houdend met Z; controlerend voor 7?

Tekenen?

Complexere verbanden: interactie tussen variabelen

Bijvoorbeeld:

Is het verband tussen het aantal studieuren en de toetsscore <u>afhankelijk van het IQ van</u> <u>een leerling</u>?

Om complexere relaties in kaart te brengen

<u>Herkennen in OV</u>? *Is het effect van X op Y... afhankelijk van Z; hetzelfde/identiek voor ... als voor ...?*

Tekenen?

Hoe gepaste techniek kiezen?

- 1. Teken je onderzoeksvraag
- 2. Gebruik de flowcharts in het OLP

Oefening

- OV1) Scoren meisjes anders op wiskunde dan jongens?
- OV2) In welke mate hangt sociaal-economische status ('laag', 'midden', 'hoog') samen met al dan niet bijscholing krijgen?
- OV3) Is de invloed van zelfeffectiviteit op wiskundescores (schaalscore) anders naargelang studiemotivatie (schaalscore) van de leerling, ongeacht het geslacht?

- 1. Teken de onderzoeksvraag
- 2. Kies de gepaste techniek

t-test

Studie 1

EFFECT VAN OPLEIDING?

Vergelijking van hoeveelheid huishoudelijk afval (in kg) geproduceerd door 100 gezinnen die training volgden en 100 willekeurig gekozen gezinnen uit dezelfde populatie

Studie 2

EFFECT VAN EDUCATIEVE CAMPAGNE?

Meting van hoeveelheid huishoudelijk afval (in kg) bij 100 gezinnen voor de campagne en meting bij dezelfde 100 gezinnen nadat de campagne een maand gelopen heeft.

Studie 1

Studie 2

Deze zou je eventueel zo kunnen visualiseren, maar eigenlijk gaat het 2 maal om kg afval (kg voor en kg na)

2 vormen van t-test

Independent samples design

Respondenten Conditie 1 ≠ respondenten Conditie 2
 => Independent samples t-test

Repeated measures design

Respondenten Conditie 1 = respondenten Conditie 2
 => Paired-samples t-test

Hoe nagaan of er een effect is?

Hoe nagaan of er een effect is?

- Gemiddeldes vergelijken
- Betrouwbaarheidsintervallen rond gemiddelde!

Hoe nagaan of er een effect is?

```
> tapply(Afval$Afval.in.kg, Afval$Conditie, mean)
       Controle conditie
                             Experimentele conditie
                                                                                                           DUS
                 10.32127
                                                12.06773
> errorbar(Afval$Afval.in.kg ~ Afval$Conditie,
           xlab = "Conditie",
           ylab = "Afval in kg",
           ylim = c(9,15))
                                            4
                                            \frac{7}{2}
                                         Afval in kg
                                            9
                                                              n=100
                                                                                          n=100
                                                           Controle conditie
                                                                                      Experimentele conditie
                                                                           Conditie
```


Wat kan er aan de hand zijn?

De ene fout is de andere niet...

Van brandalarm naar statistiek?

Van brandalarm naar statistiek?

Er is niets aan de hand ...

~ Er is geen verschil tussen beide condities in de populatie

NULHYPOTHESE (H₀)

Het brandt ...

~ Er is <u>wel een verschil</u> tussen beide condities in de populatie

ALTERNATIEVE HYPOTHESE (H₁)

Type I en type II fouten

WEL in populatie

Opleiding heeft WEL een effect in steekproef maar NIET in populatie

Type 1 en 2 fouten bij brandalarm:

Brandalarm gaat niet af, maar er is brand...

Toch denken dat er geen brand is, is een type 2 fout (vals negatief)

Brandalarm gaat af, maar er is geen brand... Het is gewoon warm!

Toch denken dat er brand is, is een type 1 fout (vals positief)

Ergste fout?

Het hangt ervan af...

Ergste fout?

Het hangt ervan af...

Focus op type I fout t-test kwantificeert kans op type I fout.

t-test: twee soorten variantie

t-test: berekening

Toets gebaseerd op verhouding 'tussen-groepen-variantie' en 'binnen-

groepen-variantie':

$$\frac{x_1 - x_2}{\frac{S_{1}^2}{n_1} + \frac{S_{2}^2}{n_2}}$$

- Indicator 'tussen-groepen-variantie': verschil in gemiddelde score $(\bar{x}_1 \bar{x}_2)$
- Indictor 'binnen-groepen-variantie': moeilijker te berekenen ($\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}$)

t-waarde

Betekenis t-waarde

t-waarde is hoog → groot verschil tussen beide groepen

t-waarde is laag klein verschil tussen beide groepen

t-test: t-verdeling

- Theoretische kansverdeling
 - Wat is de kans (p) om een t-waarde te bekomen in een steekproef indien H_0 geldig is?
 - In hoeveel % van gelijkaardige steekproeven zouden we zo'n t-waarde of hoger tegenkomen als er in de gehele populatie geen verschil is?
- Afhankelijk van een andere grootheid: 'vrijheidsgraden' (df) (= aantal respondenten aantal condities)

t-test: vuistregel

• $p \le 0.05$ wijst op een statistisch significant verschil

"Kans dat we dit verschil in onze steekproef zouden vaststellen indien de nulhypothese opgaat voor de populatie is kleiner dan of gelijk aan 0,05 (~5%)" of "We hebben 5% kans of minder om een type-I fout te maken (= ten onrechte de nulhypothese verwerpen)"

• Dus?

- H₀ geldig? Bijzonder kleine kans!
- <u>H₁ aannemen</u>: er is een verschil tussen gemiddeldes in de populatie

Ander voorbeeld...

"Heb je je tanden gepoetst?"

Observatie: tandenborstel is vochtig

H₀: niet de tanden gepoetst

p-waarde: kans dat de tandenborstel zo vochtig is (\sim t-waarde) indien niet de tanden gepoetst (H_0)

t-test in R

```
t.test(Afval$Afval.in.kg ~ Afval$Conditie, var.equal = TRUE)
        Two Sample t-test
                                                                         > options(scipen=9999)
                                                                         > 3.886e-07
                                                                         [1] 0.0000003886
data: Afval$Afval.in.kg by Afval$Conditie
t = -5.251, df = 198, p-value = 3.886e-07
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.402343 -1.090571
sample estimates:
     mean in group Controle conditie mean in group Experimentele conditie
                            10.32127
                                                                  12.06773
```


t-test: assumpties (1)

- Voorwaarden om t-test te mogen gebruiken?
 - Afhankelijke variabele is normaal verdeeld
 - Binnengroepvarianties zijn gelijk
- Assumptie m.b.t. binnengroepvarianties checken in R (package car laden)

t-test: assumpties (2)

Wat als binnengroepvarianties wel verschillen?

t-test: hoe groot is het effect?

• Cohen's d:
$$d = \frac{\bar{x}_1 - \bar{x}_2}{(s_1 + s_2)/2}$$

Interpretatie?

Effect Size (d)	Cohen's vuistregel	
≥0.8	Groot	
0.5-0.7	Medium	
0.2-0.4	Klein	
≤0.2	Geen effect	

In R:

- > source(file.choose()) # OLP2 functies laden
- > d(Afval\$Afval.in.kg, Afval\$Conditie)

[1] -0.7449206

Significantie en effectgrootte

- Kan je verklaren waarom...
 - een miniem verschil tussen beide condities toch een significante t-test oplevert?
 - een verschil niet significant is, maar wel een medium tot sterk effect heeft?

Significantie en effectgrootte

- Kan je verklaren waarom...
 - een miniem verschil tussen beide condities toch een significante t-test oplevert?
 - een verschil niet significant is, maar wel een medium tot sterk effect heeft?

Vergelijking gebaseerd op betrouwbaarheidsintervallen

$$SD(\bar{x}) = \sqrt{\frac{S_x^2}{n}} = \frac{S_x}{\sqrt{n}}$$

Wat met een repeated measures design?

Figuur 3.9 Flowchart t-test procedure

t-test

Gemiddeldes?
Assumptie binnengroepvariantie?
Statistische significantie? (t-test)
Effectgrootte?

Time for P actice

Voorbeelddata statistiek B

Techniek.RData

Variabelen

Geslacht	SelfEff	attitude en kennis schalen .voor / .na	
Studiejaar	Projectleuk	Career	
Richting2cat	Projectbijgeleerd	Interest	
Richting5cat	Projectmoeilijk	Difficulty	
Thuistaal	Projectinteressant	Consequences	
Dipvader	PISA_Interactie	Gender	
Dipmoeder	PISA_Experimenteren	TAC	
Jobvader	PISA_EigenInbreng	Begrijpen	
Jobmoeder	PISA_Oriëntatie	Duiden	
Speelgoed	-> Ovorzick	at on Blackboard	
Project	-> Overzici	-> Overzicht op Blackboard!	

Oefeningen (respons op Blackboard)

- 1) Is er een verschil in interesse voor techniek ('Interest.voor') tussen leerlingen met een vader die wel of niet hoger onderwijs volgde ('Dipvader')?
 - → Hoe groot is het effect van die hogere studies?
 - → Geef het effect visueel weer.
- 2) Is er een verschil in interesse voor techniek ('Interest.voor') tussen eerste- en tweedejaars leerlingen ('Studiejaar')?
 - → Hoe groot is het effect van studiejaar?
 - → Geef het effect visueel weer.
- 3) Is de interesse van leerlingen verschillend in het begin ('Interest.voor') en het einde van een trimester ('Interest.na')?
 - → Hoe groot is het effect van een trimester technieklessen?
 - → Geef het effect visueel weer.

