密码学多签系列

第6课: GG18门限签名

lynndell 博士

新火科技 密码学专家 lynndell2010@gmail.com

目录

密码学基础系列

- 1. 对称加密与哈希函数
- 2. 公钥加密与数字签名
- 3. RSA、环签名、同态加密
- 4. 承诺、零知识证明、BulletProof 范围证明、Diffie-Hellman 密钥协商

多签系列

- 5. Li17 两方签名与密钥刷新
- 6. GG18 多方签名
- 7. GG20 多方签名
- 8. CMP20 多方签名
- 9. DKLs18 两方/20 多方签名
- 10. Schnorr/EdDSA 多方签名

zk 系列

- 11. Groth16 证明系统
- 12. Plonk 证明系统
- 13. UltraPlonk 证明系统
- 14. SHA256 查找表技术
- 15. Halo2 证明系统
- 16. zkSTARK 证明系统

1. 预备知识

1.1 Paillier 同态加密

密钥生成: 生成两个长度相同的大素数 p,q,满足 $\gcd\left(pq,(p-1)(q-1)\right)=1$; 计算 $n\coloneqq p\cdot q$, $\lambda\coloneqq lcm(p-1,q-1)$; 分式除法函数 L(y)=(y-1)/n;

 $g=n+1\in Z_{n^2}^*$,使得 $\mu=\left(L(\Gamma^\lambda \bmod n^2)\right)^{-1} \bmod n$ 存在。公钥为n,私钥为p,q或 λ 。

加密: 消息 $m \in Z_n$, 选择随机数 $r \in Z_n^*$, 计算密文 $c \coloneqq g^m \cdot r^n \mod n^2$ 。

解密: 输入密文 $c \in Z_{n^2}$,如下计算解密 $m \coloneqq \frac{L(c^{\lambda} \mod n^2)}{L(g^{\lambda} \mod n^2)} \mod n$ 。

给定两个密文 $c_1, c_2 \in Z_{n^2}$, $c_1 = Enc_{pk}(m_1), c_2 = Enc_{pk}(m_2)$

密文加法同态 \oplus : $c_1 \oplus c_2 = c_1c_2 \bmod n^2$, 则 $c_1 \oplus c_2 = c_1c_2 \bmod n^2 = Enc_{pk}(m_1 + m_2 \bmod n)$;

随机数与密文乘法同态 \otimes : $a \in Z_n, c = Enc_{pk}(m)$, 则 $a \otimes c = c^a \mod n^2 = Enc_{pk}(a \cdot m \mod n)$

1.2 份额转换协议 MtA

协议描述

输入: Alice 输入保密数据 a, Bob 输入保密数据 b;

输出: Alice 获得保密数据 α, Bob 获得保密数据 β;

功能:不知道对方的保密数据,且 $ab = \alpha + \beta$ 。

	Alice	Bob
1	Paillier 公钥为 pk ,选择随机数 $a \in Z_n$,计算 $c_1 \coloneqq Enc_{pk}(a)$ 。	
1	发送 c_1 与范围证明 $RangeProof\{a \mid a < q^3, c_1 = Enc_{pk}(a)\}$	
2		接收 c_1 与范围证明 $RangeProof\{a \mid a < q^3, c_1 = Enc_{pk}(a)\}$
	36	<mark>校验</mark> 范围证明;

		选择 2 个 随 机 数 $b,\beta' \in Z_n$, 同 态 计 算 $c_2 \coloneqq (b \otimes c_1) \oplus Enc_{pk}(\beta'), B \coloneqq g^b , \ \text{则} \ c_2 = Enc_{pk}(ab + \beta' \text{mod} \ n) \ .$ 获得加性份额为 β ,其中 $\beta = -\beta' \text{mod} \ n$ 。 发送 c_2 和范围证明*
		$RangeProof\left\{b,\beta'\middle b< q^3,\beta'< q^7,c_2=(b\otimes c_1)\oplus Enc_{pk}(\beta'), \mathbf{B}=\mathbf{g}^b\right\}$
	接收 c_2 和范围证明*	
3	校验 范围证明*;	
	解密 c_2 获得 α , 其中 $\alpha = ab + \beta \operatorname{'mod} n$	
	分析: Alice 与 Bob 不知道对方的保密数据,但是保密数据满足等	
	$\alpha + \beta = 0$	$ab + \beta') + (-\beta') = ab$

1.3 零知识证明

1.3.1 zk-Sigma 对 NP 的零知识证明

初始化: 椭圆曲线生成元为G,群的阶为 $|F_r|$:标量域为 F_r ,基域为 F_q ;

用户秘密为 ω ,公开输入为H,满足离散对数关系 $H = \omega \cdot G$ 。

1: (承诺) 选择随机数 $r \in F_r$, 计算 $R \coloneqq r \cdot G$

2: (挑战) 计算随机数 $e := Hash(H, R) \mod |F_r|$

3: (响应) 计算 $z := r + e \cdot \omega \mod |F_r|$, 发送 (R, z)

4: (验证) 计算 $e \coloneqq Hash(H,R) \mod |F_r|$, 如果等式 $z \cdot G \Longrightarrow R + e \cdot H$ 成立,则接受,否则拒绝。

1.3.2 zk-Sigma*证明知道 2 个随机数 s,l

对协议中第 5B 步的零知识证明 $ZK\left\{s,l\middle|V=s\cdot R+l\cdot G\right\}$ 补充。

初始化: 椭圆曲线生成元为G, 标量域为 F_r , 基域为 F_a ;

用户秘密为 s,l,ρ , 公开输入为G,V,R, 满足离散对数关系 $V=s\cdot R+l\cdot G$

1: (承诺) 选择随机数 $a,b \in F_r$, 计算 $H := a \cdot R + b \cdot G$

2: (挑战) 计算随机数 $c \coloneqq Hash(G,V,R,H) \mod |F_r|$

3: (响应) 计算 $t := a + c \cdot s \mod |F_r|, u = b + cl \mod |F_r|$, 发送(H, t, u)

4: (验证) 计算随机数 $c \coloneqq Hash(G,V,R,H) \mod \{F_r\}$,如果等式 $t \cdot R + u \cdot G \Longrightarrow H + c \cdot V$ 成立,则接受,否则拒绝。

一致性原理如下:

$$t \cdot R + u \cdot G = (a + c \cdot s) \cdot R + (b + cl) \cdot G = H + c \cdot V$$

1.3.3 zk-Schnoor 证明知道私钥

private: sk=a

public : PK=a*G

random: r

$$z = r + c*sk$$

public: PK

random: c

verify:

$$z*G == R + c*PK$$

图 2. 交互式 Schnorr 协议

Alice

Bob

private: sk=a

public : PK=a*G

random : r

$$R = r*G$$
 (R, z)

c = hash(PK, R)

z = r + c*sk

verify:

public: PK

$$c = hash(PK, R)$$

$$z*G == R + (c*PK)$$

图 3. 非交互式 Schnorr 协议 A 版

图 3. 非交互式 Schnorr 协议 B 版

1.3.4 zk-RangeProof 范围证明

BulletProof 是 Pedersen 承诺数据的范围证明。这个范围证明是 Paillier 密文中数据的范围证明。

范围证明 $RangeProof\{a \mid a < q^3, c_1 = Enc_{pk}(a)\};$

证明方 Paillier 公钥为 N ,私钥为 p,q ,其中 $N=p\cdot q$ 。DSA 群的阶为 q 。消息 $m\in\mathbb{Z}_q$ 和随机数 $r\in\mathbb{Z}_N^*$,密文为 $c=g^mr^N \bmod N^2$ 。

需要证明: $m \in [-q^3, q^3]$, 且满足运算关系 $c = g^m r^N \mod N^2$ 。

证明方	验证方
选择随机数 $\alpha \in \mathbb{Z}_{q^3}, \beta \in \mathbb{Z}_N^*, \gamma \in \mathbb{Z}_{q^3N}, \rho \in \mathbb{Z}_{q^N}$,计算	
$z = h_1^m h_2^{\rho} \mod N, u = g^{\alpha} \beta^N \mod N^2, w = h_1^{\alpha} h_2^{\gamma} \mod N$	Je y
发送 z,u,w;	
	发送随机数 $e\in \mathbb{Z}_q$;
计算 $s = r^e \beta \mod N$, $s_1 = em + \alpha$, $s_2 = e\rho + \gamma$	
发送 s,s_1,s_2 ;确保知道秘密 $r,eta,m,lpha,\gamma$,随机数起随机化作用。	
	进行以下 3 个校验: $s_1 < q^3, u == g^{s_1} s^N c^{-e} \mod N^2, h_1^{s_1} h_2^{s_2} z^{-e} == w \mod N$

分析: (1) 范围校验: $\alpha \in \mathbb{Z}_{q^3}, e, m \in \mathbb{Z}_q, s_1 = em + \alpha \in [0, q^2 + q^3] = [0, q^3] \cup (q^3, q^2 + q^3]$, s_1 在区块 $[0, q^3]$ 的概率为 $\frac{q^3}{q^3 + q^2} = \frac{1}{1 + 1/q}$ 接近 1,在区块 $[0, q^3]$ 的概率 $\frac{q^2}{q^3 + q^2} = \frac{1}{q + 1}$ 可忽略。 $s_1 < q^3$ 确保 $m \in [-q^3, q^3]$ 。后面 2 个校验确保响应正确。

(2) Paillier 校验: 确保 c 中的 m 等于 s1 中的 m,满足 paillier 运算关系: $g^{s_1} s^N c^{-e} \mod N^2 = g^{em+\alpha} (r^{eN} \beta^N) (g^m r^N)^{-e} = g^{\alpha} \beta^N \mod N^2 = u$

(3) 双重 sigma 与 s1/s2 线性关系校验: 确保 z 中的 m 等于 s1 中的 m, $h_1^{s_1}h_2^{s_2}z^{-e}=h_1^{em+\alpha}h_2^{e\rho+\gamma}(h_1^mh_2^\rho)^{-e}=h_1^\alpha h_2^\gamma \mod N=w \mod N$ 如果缺少这个 zk,则 Paillier 同态加密不满足安全性,能够攻破 MtA 协议,获得对方的私钥。

1.3.5 zk-RangeProof*范围证明

Bob 进行范围证明 $RangeProof\left\{b,\beta'\middle|b< q^3,\beta'< q^7,c_2=(b\otimes c_1)\oplus Enc_{pk}(\beta'),B=g^b\right\}$

证明方 Paillier 公钥为 N ,私钥为 p,q ,其中 $N=p\cdot q$, q 是 DSA 群的阶,生成元为 g 。消息 $m\in\mathbb{Z}_q$ 对应的 paillier 密文为 $c_1=g^mr^N \bmod N^2$ 。选择

随机数 $x \in \mathbb{Z}_q$, $y \in \mathbb{Z}_{q^5}$, $r \in \mathbb{Z}_N^*$, 计算 $c_2 = c_1^x \cdot g^y r^N \mod N^2$, $X = g^x \mod q$ 。

需要证明: $x \in [-q^3, q^3], y \in [-q^7, q^7]$, 且满足运算关系 $c_2 = (b \otimes c_1) \oplus Enc_{pk}(\beta'), B = g^b$ 。

证明方	验证方
选择随机数	
$\alpha \in \mathbb{Z}_{q^3}, \rho \in \mathbb{Z}_{qN}, \rho' \in \mathbb{Z}_{q^3N}, \sigma \in \mathbb{Z}_{qN}, \beta \in \mathbb{Z}_N^*, \gamma \in \mathbb{Z}_{q^7}, \tau \in \mathbb{Z}_{q^3N}$,计算	
$u=g^{\alpha},$	
$z = h_1^x h_2^\rho \mod N,$ $z' = h_1^\alpha h_2^{\rho'} \mod N,$	
$z' = h_1^{\alpha} h_2^{\rho'} \bmod N,$	
$t = h_1^y h_2^\sigma \bmod N,$	
$v = c_1^{\alpha} \cdot g^{\gamma} \beta^N \bmod N^2,$	
$w = h_1^{\gamma} h_2^{\tau} \bmod N$	

发送 <i>u</i> , z, z', t, v, w;	
	发送随机数 $e\in\mathbb{Z}_q$;
计算 $s = r^e \beta \mod N$, $s_1 = ex + \alpha$, $s_2 = e\rho + \rho'$, $t_1 = ey + \gamma$, $t_2 = e\sigma + \tau$	
发送 s, s_1, s_2, t_1, t_2 ;	200 x
	进行以下5个校验:
	$s_1 < q^3, t_1 < q^7,$
	$g^{s_1} == X^e u,$
×	$h_1^{s_1}h_2^{s_2} == z^e z \operatorname{'mod} N,$
	$h_1^{t_1}h_2^{t_2} == t^e w \operatorname{mod} N,$
	$c_2^e v == c_1^{s_1} s^N g^{t_1} \bmod N^2$

分析: (1) 范围校验: $e \in \mathbb{Z}_q, y \in \mathbb{Z}_{q^5}, \gamma \in \mathbb{Z}_{q^7}, t_1 = ey + \gamma \in [0, q^6 + q^7] = [0, q^7] \cup (q^7, q^6 + q^7], t_1$ 在区块 $[0, q^7]$ 的概率为 $\frac{q^7}{q^7 + q^6} = \frac{1}{1 + 1/q}$ 接近 1,在区块 $[0, q^7]$ 的概率 $\frac{q^6}{q^7 + q^6} = \frac{1}{q + 1}$ 可忽略。 $s_1 < q^3, t_1 < q^7$ 确保 $x \in [-q^3, q^3], y \in [-q^7, q^7]$ 。后面 4 个校验确保响应正确

(2) sigma 协议离散对数校验: $X^e u = g^{xe + \alpha} = g^{s_1}$:

- (3) 双重 sigma 与 s1/s2 线性关系校验: $h_1^{s_1}h_2^{s_2} \mod N = h_1^{ex+\alpha}h_2^{e\rho+\rho'} \mod N = (h_1^xh_2^{\rho})^e(h_1^{\alpha}h_2^{\rho'}) \mod N = z^ez' \mod N$;

- (4) 双重 sigma 与 t1/t2 线性关系校验: $h_1^{t_1}h_2^{t_2} \mod N = h_1^{ey+y}h_2^{e\sigma+\tau} \mod N = (h_1^yh_2^\sigma)^e(h_1^yh_2^\sigma)^e \pmod{N} = t^ew \mod N$;
- (5) **Paillier 校验:** $c_2^e v = (c_1^x g^y r^N)^e (c_1^\alpha g^\gamma \beta^N) \mod N^2 = c_1^{ex+\alpha} s^N g^{ey+\gamma} \mod N^2 = c_1^{s_1} s^N g^{t_1} \mod N^2$; 如果缺少这个 zk,则 Paillier 同态加密不满足安全性,能够攻破 MtA 协议,获得对方的私钥。

1.3.6 zk-Paillier-N 非平方证明

证明生成正确的 Paillier 密钥对。等价于 Li17 两方签名协议中的证明 $\gcd(N, \varphi(N)) = 1$ 。

p,q 为两个**不同的大素数** $p \neq q$,令 $N = p \cdot q$ 。**证明** N 是两个不同的素数之积,而不是两个相同数的乘积。

证明方	验证方
发送 <i>N</i>	4
	选择随机数 $x \in \mathbb{Z}_N^*$,发送 x
计算 N 的模 $\psi(N)$ 逆元 $A \coloneqq N^{-1} \operatorname{mod} \psi(N)$,其中 $\psi(N)$ 为欧拉函数;	
然后计算 $y := x^A \mod N$; 发送 y	
	校验 $y^N == x \mod N$

分析:

预备知识:模n逆元存在性

如果两个正整数 a 和 n 互素,则存在整数 b,使得 $ab \equiv 1 \mod n$,则称 b 是 a 的模 n 逆元。

证明: 使用欧拉定理 $a^{\psi(n)} \equiv 1 \mod n$,则 $a^{1+\psi(n)-1} \equiv 1 \mod n$,则 $a \times a^{\psi(n)-1} \equiv 1 \mod n$,则 $b = a^{\psi(n)-1}$ 。

完备性: 如果 $N = p \cdot q$,则 $\psi(N) = (p-1)(q-1)$,且 $\gcd(N, \psi(N)) = 1$,则使用**模 n 逆元**存在性定理,令 $a = N, n = \psi(N)$,带入 $b = a^{\psi(n)-1}$,则有 $b = N^{\psi(\psi(n))-1}$,令 $A = N^{\psi(\psi(N))-1}$ 就是对应的模 $\psi(N)$ 逆元。

因此, $y^N \mod N = x^{AN} \mod N = x \mod N$.

健壮性: 如果 $N = k^2$ 或 $N = k_1 \cdot k_2$,其中 k_1, k_2 不是均为大素数,则 $\gcd(N, \psi(N)) = d > 1$,因此 $\left\{ x^N \mid x \in \mathbb{Z}_N^* \right\} = \left| \mathbb{Z}_N^* \right| / d$,因此 $y^N == 1 \mod N$ 的概率为 1/d 。

零知识:模拟器选择随机数 $y \in \mathbb{Z}_N^*$,输出 $y^N \mod N$,则 $x = y^N \mod N$ 是随机分布的。 如果缺少这个 zk,则 Paillier 同态加密不满足安全性,能够攻破 MtA 协议,获得对方的私钥。

1.4 Feldman 可验证秘密共享协议

1.4.1 中心化 shamir 秘密共享协议

秘密分发: 用户 i'的秘密为 $sk \in [1, n-1]$,选择随机数 $a_1, ..., a_{t-1} \in [1, n-1]$ 构造 t-1 阶多项式

$$p(x) = sk + a_1 \cdot x^1 + \dots + a_{t-1} \cdot x^{t-1}$$

构造拉格朗日冗余: 计算多项式的值 $p(i) := sk + a_l i^l + ... + a_{t-l} i^{t-l}, i = 1,...,m$,将 p(i) 保密发送给对应的参与方 i,i = 1,...,m。自己的排序为 i',则自己保存 p(i')。

秘密重构: t 个参与方广播多项式的值 p(1),...,p(t) ,则能够解t 元方程组**或拉格朗日插值法**,解出 sk 。如果出现错误,则不知道谁错了。

shamir 秘密共享协议缺点:缺少验证过程。密码协议中全是随机数,根本不知道接收或计算的随机数是否正确,因此需要校验,确保 正确。

1.4.2 中心化可验证秘密共享协议

秘密分发: 用户 i'的秘密为 $sk \in [1, n-1]$,选择随机数 $a_1, ..., a_{t-1} \in [1, n-1]$ 构造 t-1 阶多项式 $p(x) = sk + a_1 \cdot x^1 + ... + a_{t-1} \cdot x^{t-1}$

$$p(x) = sk + a_1 \cdot x^1 + \dots + a_{t-1} \cdot x^{t-1}$$

构造拉格朗日冗余: 计算多项式的值 $p(i) \coloneqq sk + a_i i^1 + ... + a_{t-1} i^{t-1}, i = 1, ..., m$,将 p(i) 保密发送给对应的参与方 i, i = 1, ..., m。自己的排序为 i',则自己保 存p(i')。

计算 Feldman 校验元组: $A_0\coloneqq sk\cdot G, A_i\coloneqq a_i\cdot G, i=1,...,t-1$,广播 $\{A_i\}_{i=0,...,t-1}$

校验: 参与方 j 接收到的多项式值为 $p(j) \coloneqq sk + a_1j^1 + ... + a_{t-1}j^{t-1}$,进行以下 **Feldman 校验**

$$p(j) \cdot G == \sum_{j=0}^{t} i^{j} A_{j}$$

一致性过程如下:

$$p(j) \cdot G == \sum_{j=0}^{t} i^{j} A_{j}$$

$$p(j) \cdot G = (sk + a_{1} j^{1} + ... + a_{t-1} j^{t-1}) \cdot G$$

$$= A_{0} + j^{1} \cdot A_{1} + ... + j^{t} \cdot A_{t-1}$$

$$= \sum_{j=0}^{t-1} i^{j} A_{i}$$

秘密重构: t 个参与方广播多项式的值 p(1),...,p(t) ,则能够解t 元方程组**或拉格朗日插值法**,解出 sk 。 有校验过程,参与方能够确定秘密信息是正确的。因此,应该尽可能多使用有校验的协议。

1.4.3 中心化分片私钥刷新

安全需求:提高分片私钥的安全性。

份额刷新方法 1: 可信第三方选择**新的**随机数 $a_1',...,a_{t-1}' \in F_r$ 构造 t-1 阶多项式

$$p'(x) = a_1'x^1 + ... + a_{t-1}'x^{t-1}$$
,常数项为零

构造拉格朗日冗余: 计算 $p'(i) \coloneqq a_1'i^1 + ... + a_{t-1}'i^{t-1}, i = 1, ..., n$,将 p'(i) 保密发送给对应的参与方 i, i = 1, ..., n。

计算 Feldman 校验元组: A_i ' $\coloneqq a_i$ '·G, i=1,...,t-1,广播 $\{A_i$ ' $\}_{i=0,...,t-1}$ 。

校验:参与方j接收到的分片私钥为 $p'(j)\coloneqq a_1'j^1+...+a_{t-1}'j^{t-1}$,进行以下Feldman 校验

$$P'(j)\cdot G == \sum_{j=1}^{t} i^{j} A_{j}$$

校验过程如下

$$P'(j) \cdot G = (a_{1}' j^{1} + ... + a_{t-1}' j^{t-1}) \cdot G$$

$$\equiv j^{1} \cdot A_{1}' + ... + j^{t} \cdot A_{t-1}'$$

$$= \sum_{j=1}^{t-1} i^{j} A_{i}'$$

参与方j将2次的多项式值相加: $p(j)+p'(j) := sk+(a_1+a_1')j^1+...+(a_{t-1}+a_{t-1}')j^{t-1}$

秘密重构: t 个参与方广播份额 p(1)+p'(1),...,p(t)+p'(t),则能够解t 元方程组或拉格朗日插值法,解出 sk。

份额刷新方法 2: 更新过程本质上等于可信第三方的多项式为 $f(x) = sk + (a_1 + a_1')x^1 + ... + (a_{t-1} + a_{t-1}')x^{t-1}$

将多项式的值发送给各个参与方、并广播这些随机数的离散对数。

1.4.4 分布式可验证秘密共享协议

	P_1	P_2	P_3
	选择 原始 随机数 u ₁	选择 原始 随机数 <i>u</i> ₂	选择 原始 随机数 <i>u</i> ₃
1	计算 $U_1 \coloneqq u_1 \cdot G$ $(KGC_1, KGD_1) = Com(U_1)$	计算 $U_2 \coloneqq u_2 \cdot G$ $(KGC_2, KGD_2) = Com(U_2)$	计算 $U_3 \coloneqq u_3 \cdot G$ (KGC_3, KGD_3) = $Com(U_3)$
	广播 KGC ₁ , E ₁	广播 KGC ₂ ,E ₂	广播 KGC ₃ , E ₃
2	广播 KGD ₁	广播 KGD ₂	广播 KGD ₃
3	校验承诺正确性,然后计算 <mark>公共公钥: $PK = U_1 + U_2 + U_3$</mark>		
	选择随机数 $a_1,b_1 \in F_r$,	选择随机数 $a_2,b_2\in F_r$,	选择随机数 $a_3,b_3 \in F_r$
	构造 2 阶多项式 $p_1(x) = u_1 + x \cdot a_1 + x^2 \cdot b_1$	构造 2 阶多项式 $p_2(x) = u_2 + x \cdot a_2 + x^2 \cdot b_2$	构造 2 阶多项式 $p_3(x) = u_3 + x \cdot a_3 + x^2 \cdot b_3$
4	存储 p ₁ (1),	存储 p ₂ (2),	存储 p ₃ (3)
	门限为3	门限为3	门限为3
	构造拉格朗日冗余 :将 $p_1(2)$, $p_1(3)$ 保密发	构造拉格朗日冗余 :将 $p_2(1), p_2(3)$ 保密发给对	构造拉格朗日冗余: 将 $p_3(1)$, $p_3(2)$ 保密发给对
	给对应用户 P_2,P_3	应用户 P_1, P_3	应用户 P_1,P_2

	计算并广播 Feldman 校验元组 $egin{aligned} A_{\!\scriptscriptstyle 1} \coloneqq a_{\!\scriptscriptstyle 1} \cdot G \ B_{\!\scriptscriptstyle 1} \coloneqq b_{\!\scriptscriptstyle 1} \cdot G \end{aligned}$	计算并广播 Feldman 校验元组 $oldsymbol{A_2}\coloneqq a_2\cdot G$ $oldsymbol{B_2}\coloneqq b_2\cdot G$	计算并广播 Feldman 校验元组 $A_3\coloneqq a_3\cdot G$ $B_3\coloneqq b_3\cdot G$
	拥有保密数据为	拥有保密数据为	拥有保密数据为
_	$p_1(1) = u_1 + a_1 + b_1,$	$p_1(2) = u_1 + 2a_1 + 4b_1,$	$p_1(3) = u_1 + 3a_1 + 9b_1,$
5	$p_2(1) = u_2 + a_2 + b_2,$	$p_2(2) = u_2 + 2a_2 + 4b_2,$	$p_2(3) = u_2 + 3a_2 + 9b_2,$
	$p_3(1) = u_3 + a_3 + b_3$	$p_3(2) = u_3 + 2a_3 + 4b_3$	$p_3(3) = u_3 + 3a_3 + 9b_3$
	Feldman 校验	Feldman 校验	Feldman 校验
	$p_1(1) \cdot G == U_1 + A_1 + B_1,$	$p_1(2) \cdot G == U_1 + 2A_1 + 4B_1,$	$p_1(3) \cdot G == U_1 + 3A_1 + 9B_1,$
6	$p_2(1) \cdot G == U_2 + A_2 + B_2,$	$p_2(2) \cdot G == U_2 + 2A_2 + 4B_2,$	$p_2(3) \cdot G == U_2 + 3A_2 + 9B_2,$
	$p_3(1) \cdot G == U_3 + A_3 + B_3$	$p_3(2) \cdot G == U_3 + 2A_3 + 4B_3$	$p_3(3) \cdot G == U_3 + 3A_3 + 9B_3$
	计算 分片私钥	计算 分片私钥	计算 分片私钥
	$x_1 := \sum_{i=1}^3 p_i(1)$	$x_2 := \sum_{i=1}^3 p_i(2)$	$x_3 := \sum_{i=1}^3 p_i(3)$
7	$= \sum_{i=1}^{3} (u_i + a_i + b_i)$	$= \sum_{i=1}^{3} (u_i + 2a_i + 4b_i)$	$= \sum_{i=1}^{3} (u_i + 3a_i + 9b_i)$
	$= sk + \sum_{i=1}^{3} (a_i + b_i)$	$= sk + \sum_{i=1}^{3} (2a_i + 4b_i)$	$= sk + \sum_{i=1}^{3} (3a_i + 9b_i)$
	计算并广播 分片公钥	计算并广播 分片公钥	计算并广播 分片公钥
8	$X_1 := PK + \left(\sum_{i=1}^{3} (a_i + b_i)\right) \cdot G$	$X_2 := PK + \left(\sum_{i=1}^{3} (2a_i + 4b_i)\right) \cdot G$	$X_3 := PK + \left(\sum_{i=1}^{3} (3a_i + 9b_i)\right) \cdot G$

1.4.5 分布式分片私钥刷新

安全需求: 提高分片私钥安全性。

E . [而水: 旋筒牙片松切女生性。		
	公共公钥 $PK = U_1 + U_2 + U_3$ 不变		
	选择 新 随机数 a_1 ', b_1 ' $\in F_r$,	选择 新 随机数 a_2 ', b_2 ' $\in F_r$,	选择 新 随机数 a_3 ', b_3 ' $\in F_r$
	构造 新 2 阶多项式 $p_1'(x) = x \cdot a_1' + x^2 \cdot b_1'$	构造 新 2 阶多项式 $p_2'(x) = x \cdot a_2' + x^2 \cdot b_2'$	构造 新 2 阶多项式 $p_3'(x) = x \cdot a_3' + x^2 \cdot b$
	注意常数项为 0	注意常数项为 0	注意常数项为 0
	存储 p ₁ '(1),	存储 p ₂ '(2),	存储 p ₃ '(3)
	门限为 3 构造拉格朗日冗余:	门限为3 构造拉格朗日冗余:	门限为 3 构造拉格朗日冗余:
	将 p_1 '(2), p_1 '(3) 保密发给对应用户 P_2 , P_3	将 p_2 '(1), p_2 '(3) 保密发给对应用户 P_1 , P_3	将 p_3 '(1), p_3 '(2) 保密发给对应用户 P_1 , P_2 , P_3 ':=
	计算并广播 Feldman 校验元组 $A_1 ' \coloneqq a_1 \cdot G$ $B_1 ' \coloneqq b_1 \cdot G$	计算并广播 Feldman 校验元组 A_2 ' $\coloneqq a_2$ ' G B_2 ' $\coloneqq b_2$ ' G	计算并广播 Feldman 校验元组 A_3 ' $\coloneqq a_3$ ' B_3 ' $\coloneqq b_3$ ' B_3 ' $\coloneqq b_3$ '
	拥有保密数据为	拥有保密数据为	拥有保密数据为
	$p_1'(1) = a_1' + b_1',$	$p_1'(2) = 2a_1' + 4b_1',$	$p_1'(3) = 3a_1' + 9b_1',$
	$p_2'(1) = a_2' + b_2',$	$p_2'(2) = 2a_2' + 4b_2',$	$p_2'(3) = 3a_2' + 9b_2',$
	$p_3'(1) = a_3' + b_3'$	$p_3'(2) = 2a_3' + 4b_3'$	$p_3'(3) = 3a_3' + 9b_3'$
	进行 Feldman 校验	进行 Feldman 校验	进行 Feldman 校验

	$p_1'(1) \cdot G == A_1' + B_1',$ $p_2'(1) \cdot G == A_2' + B_2',$ $p_3'(1) \cdot G == A_3' + B_3'$	$p_{1}'(2) \cdot G == 2A_{1}' + 4B_{1}',$ $p_{2}'(2) \cdot G == 2A_{2}' + 4B_{2}',$ $p_{3}'(2) \cdot G == 2A_{3}' + 4B_{3}'$	$p_1'(3) \cdot G == 3A_1' + 9B_1',$ $p_2'(3) \cdot G == 3A_2' + 9B_2',$ $p_3'(3) \cdot G == 3A_3' + 9B_3'$
	计算 新分片私钥	计算 新分片私钥	计算 新分片私钥
	$x_1 := \sum_{i=1}^{3} p_i(1) + \sum_{i=1}^{3} p_i'(1)$	$x_2 := \sum_{i=1}^{3} p_i(2) + \sum_{i=1}^{3} p_i'(2)$	$x_3 := \sum_{i=1}^3 p_i(3) + \sum_{i=1}^3 p_i'(3)$
4	$= \sum_{i=1}^{3} (u_i + a_i + b_i) + \sum_{i=1}^{3} (a_i' + b_i')$	$= \sum_{i=1}^{3} (u_i + 2a_i + 4b_i) + \sum_{i=1}^{3} (2a_i' + 4b_i'')$	$= \sum_{i=1}^{3} (u_i + 3a_i + 9b_i) + \sum_{i=1}^{3} (3a_i' + 9b_i')$
	$= sk + \sum_{i=1}^{3} (a_i + a_i' + b_i + b_i')$	$= sk + \sum_{i=1}^{3} (2(a_i + a_i') + 4(b_i + b_i'))$	$= sk + \sum_{i=1}^{3} (3(a_i + a'_i) + 9(b_i + b_i'))$
	计算并广播 新分片公钥	计算并广播 新分片公钥	计算并广播 新分片公钥
5	$X_1 := PK + \left(\sum_{i=1}^{3} (a_i + a_i' + b_i + b_i')\right) \cdot G$	$X_2 := PK + \left(\sum_{i=1}^{3} \left(2(a_i + a_i') + 4(b_i + b_i')\right)\right) \cdot G$	$X_3 := PK + \left(\sum_{i=1}^{3} \left(3(a_i + a_i') + 9(b_i + b_i')\right)\right) \cdot G$

1.5 承诺

承诺三个步骤:密钥生成、承诺、打开验证;密钥生成:生成求值密钥 *pk*;

承诺: 生成承诺与打开信息 $\left[\mathit{KGC}(M), \mathit{KGD}(D) \right] \coloneqq \mathit{Com}(\mathit{pk}, M, R)$, 其中 $R \coloneqq r \cdot G$

打开与验证: $Valid \mid Invalid \leftarrow Ver(pk, KGC(M), KGD(M))$,如果验证成功,则输出M,否则拒绝。

1.6 ECDSA

初始化: 椭圆曲线生成元为G,标量域为 F_r ,基域为 F_a 。

密钥生成: 输入安全参数,输出私钥 $x \in F$,和公钥PK,满足离散对数关系

$$PK = x \cdot G$$

签名: 输入任意消息M ,计算 $m\coloneqq Hash(M)$,选择随机数 $k\in F_r$,计算 $R\coloneqq k^{-1}\cdot G$,取R 横坐标为 $r\coloneqq R_x \mod |F_r|$; 计算 $s\coloneqq k(m+xr)$,则签名为(r,s) 。

验证: 输入消息 M ,计算 $m \coloneqq Hash(M)$; 校验 $r, s \in F_r$,计算 $R' \coloneqq (s^{-1}m) \cdot G + (s^{-1}r) \cdot PK$,取 R' 横坐标为 $r' \coloneqq R' _ x \mod |F_r|$; 校验 $r \coloneqq r'$ 。如果相等,则接受,否则拒绝。

公式推导过程如下:

$$R' = (s^{-1}m) \cdot G + (s^{-1}r) \cdot PK$$
$$= (s^{-1}m) \cdot G + (s^{-1}rx) \cdot G$$
$$= (s^{-1}(m+rx)) \cdot G$$
$$= k^{-1} \cdot G$$

ECDSA 的验证本质:

$$s = k(m+xr)$$

$$k^{-1} = s^{-1}(m+xr)$$

$$k^{-1} \cdot G = s^{-1}m \cdot G + s^{-1}xr \cdot G$$

$$R = s^{-1}m \cdot G + s^{-1}r \cdot PK$$

检测 $(r, F_r - s)$ 是否为合法的签名:

$$F_r - s = k^{-1}(m + xr)$$

$$k(F_r - s) = (m + xr)$$

$$k(F_r - s) \cdot G = m \cdot G + xr \cdot G$$

$$-ks \cdot G = m \cdot G + r \cdot PK$$

$$-R = s^{-1}m \cdot G + s^{-1}r \cdot PK$$

计算出-R,纵坐标是负的无所谓,取横坐标得到的就是 $r'\coloneqq R'_x \mod |F_r|$, 校验r==r'。如果相等,则接受,否则拒绝。因此, (r,F_r-s) 是合法签名。既然有 2 个合法签名,所以 Li17 里面计算出 $s=\min\{s',|F_r|-s'\}$,两种签名,确定一个小的。

1.7 复杂度假设

判决性 Diffie-Hellman 困难假设(DDH): \mathcal{G} 为循环群,阶为 q ,生成元为 g ; 选择 3 个随机数 $a,b,c\in\mathbb{Z}_q$,以下两个集合分布不可区分

$$\{g^{a}, g^{b}, g^{ab}\} \approx \{g^{a}, g^{b}, g^{c}\}$$

RSA 密码系统: e 为 RSA 公钥,d 为 RSA 私钥。加密为 $s := x^e$;解密为 $x := s^d = x^{ed}$; **强 RSA 假设:** 选择两个不同的大素数 p', q' ,计算 p = 2p' + 1 ,q = 2q' + 1 ,计算 N = pq 。欧拉函数 $\psi(N) = (p-1)(q-1) = p'q'$ 。

从零到 N-1之间,与 N 互素的元素集合记为集合 \mathbb{Z}_N^* 。e 是与 $\psi(N)$ 互素的整数。对于随机元素 $s \in \mathbb{Z}_N^*$,寻找 x 和 e,满足计算关系 $x^e = s$ 是困难的。 区别:RSA 密码系统的 e 是确定的,强 RSA 密码系统的 e 是不确定的。

2. GG18 (3-3)概述

为直观理解,以下描述引入可信第三方。GG18 使用三方协议代替可信第三方。

2.1 分布式密钥生成

- 1. 三个用户 P_i 各自选择随机数 $u_i \in F_r$,计算 $U_i \coloneqq u_i \cdot G$,广播 U_i ;将 u_i 发送给可信第三方。
- 2. 三个用户均能获得 U_1,U_2,U_3 。三个用户的公共公钥为 $PK=U_1+U_2+U_3$ 。对应的公共私钥为 $sk=x=u_1+u_2+u_3$,三方均不知道私钥sk,可信第三方知道私钥sk。
- 3. 门限为 3,可信第三方基于私钥 sk 构造 2 阶多项式,选择两个随机数 1,2,假设 sk=3

$$f(x) = 3 + x + 2x^2$$

可信第三方将 f(1) = 6 保密发送给用户 1, f(2) = 13 保密发送给用户 2, f(3) = 24 保密发送给用户 3。

4. **私钥恢复:** 拉格朗日插值多项式 $\lambda_i(x) = \prod_{j=1, j \neq i}^t \frac{x-j}{i-j}$ 。令 x = 0,则 $\lambda_i(0) = \prod_{j=1, j \neq i}^t \frac{-j}{i-j}$ 称为拉格朗日插值系数

三个用户能够如下恢复私钥 sk

$$f(x) = f(1) \cdot \frac{x-2}{1-2} \frac{x-3}{1-3} + f(2) \cdot \frac{x-1}{2-1} \frac{x-3}{2-3} + f(3) \cdot \frac{x-1}{3-1} \frac{x-2}{3-2}$$

$$= 6 \cdot \frac{x^2 - 5x + 6}{2} + 13 \cdot \frac{x^2 - 4x + 3}{-1} + 24 \cdot \frac{x^2 - 3x + 2}{2}$$

$$= 3(x^2 - 5x + 6) - 13(x^2 - 4x + 3) + 12(x^2 - 3x + 2)$$

$$= 3 + x + 2x^2$$

$$w_1(x) = f(1) \cdot \frac{x-2}{1-2} \frac{x-3}{1-3}$$

$$w_2(x) = f(2) \cdot \frac{x-1}{2-1} \frac{x-3}{2-3}$$

$$w_3(x) = f(3) \cdot \frac{x-1}{3-1} \frac{x-2}{3-2}$$

$$sk = f(0) = w_1(0) + w_2(0) + w_3(0) = 3$$

将 w_1, w_2, w_3 称为私钥加性份额。注意:私钥加性份额:多项式的值*拉格朗日插值系数,而不是原来选择的随机数。

三个用户不重构私钥sk,而是基于私钥加性份额 w_1, w_2, w_3 生成**签名加性份额** sig_1, sig_2, sig_3 ,累加后得到完整的签名

$$sig = sig_1 + sig_2 + sig_3$$

2.2 三个用户签名

单方 ECDSA 签名: 输入任意消息 M,计算 $m \coloneqq Hash(M)$;选择随机数 $k \in F_r$,计算 $R \coloneqq k^{-1} \cdot G$,取 R 横坐标为 $r \coloneqq R_x \mod |F_r|$;计算 $S \coloneqq k(m+xr)$,则签名为 (r,s)。

分析: 用户 P_1, P_2, P_3 各自选择 2 个随机数 $(k_1, \gamma_1), (k_2, \gamma_2), (k_3, \gamma_3)$, 计算目标为(R, s), 如下展开

$$R = k^{-1} \cdot G$$

$$= (k\gamma)^{-1} \cdot (\gamma \cdot G)$$

$$= ((k_1 + k_2 + k_3)(\gamma_1 + \gamma_2 + \gamma_3))^{-1} \cdot (\gamma_1 + \gamma_2 + \gamma_3) \cdot G$$

$$= \begin{pmatrix} k_1 \gamma_1 + (k_1 \gamma_2) + (k_1 \gamma_3) + \\ (k_2 \gamma_1) + k_2 \gamma_2 + (k_2 \gamma_3) + \\ (k_3 \gamma_1) + (k_3 \gamma_2) + k_3 \gamma_3 \end{pmatrix}^{-1} \cdot (\gamma_1 \cdot G + \gamma_2 \cdot G + \gamma_3 \cdot G)$$

$$= \begin{pmatrix} k_1 \gamma_1 + (\alpha_{1,2} + \beta_{2,1}) + (\alpha_{1,3} + \beta_{3,1}) + \\ (\alpha_{2,1} + \beta_{1,2}) + k_2 \gamma_2 + (\alpha_{2,3} + \beta_{3,2}) + \\ (\alpha_{3,1} + \beta_{1,3}) + (\alpha_{3,2} + \beta_{2,3}) + k_3 \gamma_3 \end{pmatrix}^{-1} \cdot (\Gamma_1 + \Gamma_2 + \Gamma_3)$$

$$= \begin{pmatrix} k_1 \gamma_1 + \alpha_{1,2} + \alpha_{1,3} + \beta_{1,2} + \beta_{1,3} \\ (\alpha_{3,1} + \beta_{1,3}) + (\alpha_{3,2} + \beta_{2,3}) + k_3 \gamma_3 \end{pmatrix}^{-1} \cdot (\Gamma_1 + \Gamma_2 + \Gamma_3)$$

$$= \begin{pmatrix} k_1 \gamma_1 + \alpha_{1,2} + \alpha_{1,3} + \beta_{1,2} + \beta_{1,3} \\ k_2 \gamma_2 + \beta_{2,1} + \alpha_{2,1} + \alpha_{2,3} + \beta_{2,3} \\ k_3 \gamma_3 + \beta_{3,1} + \beta_{3,2} + \alpha_{3,1} + \alpha_{3,2} \end{pmatrix} \cdot (\Gamma_1 + \Gamma_2 + \Gamma_3)$$

$$= (\delta_{\Gamma} + \delta_2 + \delta_3)^{-1} \cdot (\Gamma_1 + \Gamma_2 + \Gamma_3)$$

用户 P_1, P_2, P_3 各自广播 $(\delta_1, \Gamma_1), (\delta_2, \Gamma_2), (\delta_3, \Gamma_3)$ 而不泄露 $(k_1, \gamma_1), (k_2, \gamma_2), (k_3, \gamma_3)$ 。

$$s = k(m + xr)$$

$$= mk + rkx$$

$$= m(k_1 + k_2 + k_3) + r(k_1 + k_2 + k_3)(w_1 + w_2 + w_3)$$

$$= m(k_1 + k_2 + k_3) + r \begin{pmatrix} k_1w_1 + k_1w_2 + k_1w_3 + \\ k_2w_1 + k_2w_2 + k_2w_3 + \\ k_3w_1 + k_3w_2 + k_3w_3 \end{pmatrix}$$

$$= m(k_1 + k_2 + k_3) + r \begin{pmatrix} k_1w_1 + (u_{1,2} + v_{2,1}) + (u_{1,3} + v_{3,1}) + \\ (u_{2,1} + v_{1,2}) + k_2w_2 + (u_{2,3} + v_{3,2}) + \\ (u_{3,1} + v_{1,3}) + (u_{3,2} + v_{2,3}) + k_3w_3 \end{pmatrix}$$

$$= m(k_1 + k_2 + k_3) + r \begin{pmatrix} k_1w_1 + u_{1,2} + v_{1,2} + v_{1,3} + u_{1,3} + \\ u_{2,1} + v_{2,1} + k_2w_2 + u_{2,3} + v_{2,3} + \\ v_{3,1} + u_{3,1} + u_{3,2} + v_{3,2} + k_3w_3 \end{pmatrix}$$

$$= m(k_1 + k_2 + k_3) + r(\sigma_1 + \sigma_2 + \sigma_3)$$

$$= (mk_1 + r\sigma_1) + (mk_2 + r\sigma_2) + (mk_3 + r\sigma_3)$$

$$= s_1 + s_2 + s_3$$

用户 P_1, P_2, P_3 各自广播 s_1, s_2, s_3 而不泄露 $(k_1, w_1), (k_2, w_2), (k_3, w_3)$ 。

因此,用户 P_1, P_2, P_3 各自的**签名加性份额**为 sig_1, sig_2, sig_3 。

如果用户 P_1, P_2, P_3 是诚实用户,则能够直接广播**签名加性份额** sig_1, sig_2, sig_3 ,生成正确的签名;如果不确定对方是否被黑客操控,则需要先广播**签名加性份额的承诺**,密态校验,再打开与验证承诺,再广播**签名加性份额**,累加后得到完整签名再校验完整签名的正确性。

	计算 R 概述		
	$P_{_1}$	P_{2}	P_3
		开始计算公共随机点 R	
1	保密输入 $(k_{\scriptscriptstyle \rm I},\gamma_{\scriptscriptstyle m I})$	保密输入 (k_2,γ_2)	保密输入 (k_3,γ_3)
		以下进行 6 个份额转换协议 MtA)
2.1	$\alpha_{1,2} \leftarrow \left\{ P_1(k_1) \stackrel{\text{MtA}}{\Longleftrightarrow} P_2(\gamma_2) \right\} (k_1 \gamma_2)$	$\beta_{2,1} \leftarrow \left\{ P_1(k_1) \stackrel{\text{MtA}}{\Longleftrightarrow} P_2(\gamma_2) \right\} (k_1 \gamma_2)$	
2.2	$\alpha_{1,3} \leftarrow \left\{ P_1(k_1) \stackrel{\text{MtA}}{\Longleftrightarrow} P_3(\gamma_3) \right\} (k_1 \gamma_3)$	X	$\beta_{3,1} \leftarrow \left\{ P_1(k_1) \stackrel{\text{MtA}}{\rightleftharpoons} P_3(\gamma_3) \right\} (k_1 \gamma_3)$
2.3	$\beta_{1,2} \leftarrow \left\{ P_2(k_2) \stackrel{\text{MtA}}{\rightleftharpoons} P_1(\gamma_1) \right\} (k_2 \gamma_1)$	$\alpha_{2,1} \leftarrow \left\{ P_2(k_2) \stackrel{\text{MtA}}{\Longleftrightarrow} P_1(\gamma_1) \right\} (k_2 \gamma_1)$	
2.4	××1.	$\alpha_{2,3} \leftarrow \left\{ P_2(k_2) \stackrel{\text{MtA}}{\rightleftharpoons} P_3(\gamma_3) \right\} (k_2 \gamma_3)$	$\beta_{3,2} \leftarrow \left\{ P_2(k_2) \stackrel{\text{MtA}}{\rightleftharpoons} P_3(\gamma_3) \right\} (k_2 \gamma_3)$
2.5	$\beta_{1,3} \leftarrow \left\{ P_3(k_3) \stackrel{\text{MtA}}{\Longleftrightarrow} P_1(\gamma_1) \right\} (k_3 \gamma_1)$		$\alpha_{3,1} \leftarrow \left\{ P_3(k_3) \stackrel{\text{MtA}}{\rightleftharpoons} P_1(\gamma_1) \right\} (k_3 \gamma_1)$
2.6		$\beta_{2,3} \leftarrow \left\{ P_3(k_3) \stackrel{\text{MtA}}{\rightleftharpoons} P_2(\gamma_2) \right\} (k_3 \gamma_2)$	$\alpha_{3,2} \leftarrow \left\{ P_3(k_3) \stackrel{\text{MtA}}{\rightleftharpoons} P_2(\gamma_2) \right\} (k_3 \gamma_2)$

	份额转换协议 MtA 结束		
3			
4	广播 $(\delta_{\scriptscriptstyle 1},\Gamma_{\scriptscriptstyle 1})$	广播 (δ_2,Γ_2)	广播 (δ_3,Γ_3)
5	一致性原理如下:	计算 $\mathbf{R} := (\delta_1 + \delta_2 + \delta_3)^{-1} \cdot (\Gamma_1 + \Gamma_2 + \Gamma_3)$	

$$(\delta_{1} + \delta_{2} + \delta_{3})^{-1} \cdot (\Gamma_{1} + \Gamma_{2} + \Gamma_{3})$$

$$= \begin{pmatrix} k_{1}\gamma_{1} + \alpha_{1,2} + \alpha_{1,3} + \beta_{1,2} + \beta_{1,3} \\ k_{2}\gamma_{2} + \beta_{2,1} + \alpha_{2,1} + \alpha_{2,3} + \beta_{2,3} \\ k_{3}\gamma_{3} + \beta_{3,1} + \beta_{3,2} + \alpha_{3,1} + \alpha_{3,2} \end{pmatrix}^{-1} \cdot (\Gamma_{1} + \Gamma_{2} + \Gamma_{3})$$

$$= \begin{pmatrix} k_{1}\gamma_{1} + (\alpha_{1,2} + \beta_{2,1}) + (\alpha_{1,3} + \beta_{3,1}) + \\ (\alpha_{2,1} + \beta_{1,2}) + k_{2}\gamma_{2} + (\alpha_{2,3} + \beta_{3,2}) + \\ (\alpha_{3,1} + \beta_{1,3}) + (\alpha_{3,2} + \beta_{2,3}) + k_{3}\gamma_{3} \end{pmatrix}^{-1} \cdot (\Gamma_{1} + \Gamma_{2} + \Gamma_{3})$$

$$= \begin{pmatrix} k_{1}\gamma_{1} + (k_{1}\gamma_{2}) + (k_{1}\gamma_{3}) + \\ (k_{2}\gamma_{1}) + k_{2}\gamma_{2} + (k_{2}\gamma_{3}) + \\ (k_{3}\gamma_{1}) + (k_{3}\gamma_{2}) + k_{3}\gamma_{3} \end{pmatrix}^{-1} \cdot (\gamma_{1} + \gamma_{2} + \gamma_{3}) \cdot G$$

$$= ((k_{1} + k_{2} + k_{3})(\gamma_{1} + \gamma_{2} + \gamma_{3}))^{-1} \cdot (\gamma_{1} \cdot G + \gamma_{2} \cdot G + \gamma_{3} \cdot G)$$

$$= (k\gamma)^{-1} \cdot (\gamma \cdot G)$$

$$= k^{-1} \cdot G$$

$$= R$$

	计算 s 概述		
	P_1	P_2	P_3
1	保密输入(k ₁ , w ₁)	保密输入 (k_2, w_2)	保密输入(k ₃ , w ₃)
	进行 6 个份额转换协议 MtA		

2.1	$u_{1,2} \leftarrow \left\{ P_1(k_1) \stackrel{\text{MtA}}{\rightleftharpoons} P_2(w_2) \right\} (k_1 w_2)$	$v_{2,1} \leftarrow \left\{ P_1(k_1) \stackrel{\text{MtA}}{\rightleftharpoons} P_2(w_2) \right\} (k_1 w_2)$	
2.2	$u_{1,3} \leftarrow \left\{ P_1(k_1) \stackrel{\text{MtA}}{\rightleftharpoons} P_3(w_3) \right\} (k_1 w_3)$		$v_{3,1} \leftarrow \left\{ P_1(k_1) \stackrel{\text{MtA}}{\rightleftharpoons} P_3(w_3) \right\} (k_1 w_3)$
2.3	$v_{1,2} \leftarrow \left\{ P_2(k_2) \stackrel{\text{MtA}}{\rightleftharpoons} P_1(w_1) \right\} (k_2 w_1)$	$u_{2,1} \leftarrow \left\{ P_2(k_2) \stackrel{\text{MtA}}{\rightleftharpoons} P_1(w_1) \right\} (k_2 w_1)$	>
2.4		$u_{2,3} \leftarrow \left\{ P_2(k_2) \stackrel{\text{MtA}}{\rightleftharpoons} P_3(w_3) \right\} (k_2 w_3)$	$v_{3,2} \leftarrow \left\{ P_2(k_2) \stackrel{\text{MtA}}{\rightleftharpoons} P_3(w_3) \right\} (k_2 w_3)$
2.5	$v_{1,3} \leftarrow \left\{ P_3(k_3) \stackrel{\text{MtA}}{\rightleftharpoons} P_1(w_1) \right\} (k_3 w_1)$		$u_{3,1} \leftarrow \left\{ P_3(k_3) \stackrel{\text{MtA}}{\rightleftharpoons} P_1(w_1) \right\} (k_3 w_1)$
2.6		$v_{2,3} \leftarrow \left\{ P_3(k_3) \stackrel{\text{MtA}}{\Longleftrightarrow} P_2(w_2) \right\} (k_3 w_2)$	$u_{3,2} \leftarrow \left\{ P_3(k_3) \stackrel{\text{MtA}}{\rightleftharpoons} P_2(w_2) \right\} (k_3 w_2)$
		份额转换协议 MtA 结束	
3	计算 $\sigma_1 := k_1 w_1 + u_{1,2} + v_{1,2} + v_{1,3} + u_{1,3}$	计算 $\sigma_2 \coloneqq u_{2,1} + v_{2,1} + k_2 w_2 + u_{2,3} + v_{2,3}$	计算 $\sigma_2 := v_{3,1} + u_{3,1} + u_{3,2} + v_{3,2} + k_3 w_3$
4	计算 $s_1 \coloneqq mk_1 + r\sigma_1$	计算 $s_2 \coloneqq mk_2 + r\sigma_2$	计算 $s_3 \coloneqq mk_3 + r\sigma_3$
5	广播 s ₁	广播 s_2	广播 s_3

计算 $s := s_1 + s_2 + s_3$

一致性原理如下:

$$s_{1} + s_{2} + s_{3}$$

$$= (mk_{1} + r\sigma_{1}) + (mk_{2} + r\sigma_{2}) + (mk_{3} + r\sigma_{3})$$

$$= m(k_{1} + k_{2} + k_{3}) + r(\sigma_{1} + \sigma_{2} + \sigma_{3})$$

$$= m(k_{1} + k_{2} + k_{3}) + r \begin{pmatrix} k_{1}w_{1} + u_{1,2} + v_{1,2} + v_{1,3} + u_{1,3} + u_{2,1} + v_{2,1} + k_{2}w_{2} + u_{2,3} + v_{2,3} + v_{$$

6

3.GG18 (3-3)实例

3.1 分布式密钥生成

	P_1	P_2	P_3
	生成 Paillier 密钥对 (N_1, p_1, q_1)	生成 Paillier 密钥对 (N_2, p_2, q_2)	生成 Paillier 密钥对 (N_3, p_3, q_3)
	选择原始随机数 $u_1 \in [1, n-1]$	选择原始随机数 $u_2 \in [1, n-1]$	选择原始随机数 $u_3 \in [1, n-1]$
1	计算椭圆曲线随机点、承诺与打开承诺	计算椭圆曲线随机点、承诺与打开承诺	计算椭圆曲线随机点、承诺与打开承诺
	$U_1 := u_1 \cdot G$	$U_2 \coloneqq u_2 \cdot G$	$U_3 := u_3 \cdot G$
	$(KGC_1, KGD_1) = Com(U_1)$	$(KGC_2, KGD_2) = Com(U_2)$	$(KGC_3, KGD_3) = Com(U_3)$
	广播承诺 KGC_1 与 Paillier 公钥 N_1	广播承诺 KGC_2 与 Paillier 公钥 N_2	广播承诺 KGC_3 与 Paillier 公钥 N_3
2	广播打开承诺 KGD ₁	广播打开承诺 KGD_2	广播打开承诺 KGD3
		三方均校验另外两方承诺的正确性,	
3		然后计算公共公钥: $PK = U_1 + U_2 + U_3$	
4	选择随机数 $a_1,b_1 \in [1,n-1]$,	选择随机数 $a_2,b_2 \in [1,n-1]$,	选择随机数 $a_3, b_3 \in [1, n-1]$
	构造 2 阶多项式 $p_1(x) = u_1 + x \cdot a_1 + x^2 \cdot b_1$	构造 2 阶多项式 $p_2(x) = u_2 + x \cdot a_2 + x^2 \cdot b_2$	构造 2 阶多项式 $p_3(x) = u_3 + x \cdot a_3 + x^2 \cdot b_3$

	门限为3	门限为3	门限为3
	构造拉格朗日冗余: 存储 $p_1(1)$, 将	构造拉格朗日冗余: 存储 $p_2(2)$, 将 $p_2(1)$, $p_2(3)$	构造拉格朗日冗余: 存储 $p_3(3)$,将 $p_3(1)$, $p_3(2)$
	$p_1(2), p_1(3)$ 保密发给对应用户 P_2, P_3	保密发给对应用户 P_1,P_3	保密发给对应用户 P_1,P_2
	计算 Feldman 校验元组	计算 Feldman 校验元组	计算 Feldman 校验元组
	$A_{_{\! 1}}\coloneqq a_{_{\! 1}}\cdot G$	$A_2 \coloneqq a_2 \cdot G$	$A_3 := a_3 \cdot G$
	$B_1 := b_1 \cdot G$	$B_2 \coloneqq b_2 \cdot G$	$B_3 := b_3 \cdot G$
	广播 { A1, B1 }	广播 $\{A_2,B_2\}$	广播 $\{A_3,B_3\}$
	拥有保密数据为	拥有保密数据	拥有保密数据
_	$p_1(1) = u_1 + a_1 + b_1$	$p_1(2) = u_1 + 2a_1 + 4b_1$	$p_1(3) = u_1 + 3a_1 + 9b_1$
5	$p_2(1) = u_2 + a_2 + b_2$	$p_2(2) = u_2 + 2a_2 + 4b_2$	$p_2(3) = u_2 + 3a_2 + 9b_2$
	$p_3(1) = u_3 + a_3 + b_3$	$p_3(2) = u_3 + 2a_3 + 4b_3$	$p_3(3) = u_3 + 3a_3 + 9b_3$
	进行 Feldman 校验	进行 Feldman 校验	进行 Feldman 校验
	$p_1(1) \cdot G == U_1 + A_1 + B_1$	$p_1(2) \cdot G == U_1 + 2A_1 + 4B_1$	$p_1(3) \cdot G == U_1 + 3A_1 + 9B_1$
6	$p_2(1) \cdot G == U_2 + A_2 + B_2$	$p_2(2) \cdot G == U_2 + 2A_2 + 4B_2$	$p_2(3) \cdot G == U_2 + 3A_2 + 9B_2$
	$p_3(1) \cdot G == U_3 + A_3 + B_3$	$p_3(2) \cdot G == U_3 + 2A_3 + 4B_3$	$p_3(3) \cdot G == U_3 + 3A_3 + 9B_3$
7	计算 分片私钥 x ₁	计算 分片私钥 x ₂	计算 分片私钥 x ₃

	$x_1 := \sum_{i=1}^3 p_i(1) \operatorname{mod} n$ $= \sum_{i=1}^3 (u_i + a_i + b_i) \operatorname{mod} n$ $= sk + \sum_{i=1}^3 (a_i + b_i) \operatorname{mod} n$	$x_2 := \sum_{i=1}^{3} p_i(2) \mod n$ $= \sum_{i=1}^{3} (u_i + 2a_i + 4b_i) \mod n$ $= sk + \sum_{i=1}^{3} (2a_i + 4b_i) \mod n$	$x_3 := \sum_{i=1}^{3} p_i(3) \mod n$ $= \sum_{i=1}^{3} (u_i + 3a_i + 9b_i) \mod n$ $= sk + \sum_{i=1}^{3} (3a_i + 9b_i) \mod n$
	计算 分片公钥	计算 分片公钥	计算 分片公钥
8	$X_1 := PK + \left(\sum_{i=1}^3 (a_i + b_i)\right) \cdot G$	$X_2 := PK + \left(\sum_{i=1}^{3} (2a_i + 4b_i)\right) \cdot G$	$X_3 := PK + \left(\sum_{i=1}^3 (3a_i + 9b_i)\right) \cdot G$
	广播分片公钥 X_1	广播分片公钥 X_2	广播分片公钥 X_3
	公共公钥 PK 与分片公钥 X_1, X_2, X_3 之间满足	足 拉格朗日插值校验 (三方均执行)	

$$PK == \lambda_1 \cdot X_1 + \lambda_2 \cdot X_2 + \lambda_3 \cdot X_3$$

9

根据三方的 Party ID 为 1,2,3,则对应的**拉格朗日插值系数**为

$$\lambda_1 = \frac{0-2}{1-2} \frac{0-3}{1-3} = 3, \lambda_2 = \frac{0-1}{2-1} \frac{0-3}{2-3} = -3, \lambda_3 = \frac{0-1}{3-1} \frac{0-2}{3-2} = 1$$

一致性原理如下:

	$\lambda_1 \cdot X_1 + \lambda_2 \cdot X_2 + \lambda_3$	$\lambda_1 \cdot X_1 + \lambda_2 \cdot X_2 + \lambda_3 \cdot X_3$		
	$=3X_{1}-3X_{2}+X_{3}$		XX.	
	$= 3\left(PK + \left(\sum_{i=1}^{3} (a_i + b_i)\right) \cdot G\right) - 3\left(PK + \left(\sum_{i=1}^{3} (2a_i + 4b_i)\right) \cdot G\right) + \left(PK + \left(\sum_{i=1}^{3} (3a_i + 9b_i)\right) \cdot G\right)$			
	= PK			
	注释 1: 三方的分片私钥为 x_1, x_2, x_3 ,能够通	过拉格朗日插值计算公共私钥 sk (但是不计算)	,而是计算 分片签名 。	
		$sk == \lambda_1 \cdot x_1 + \lambda_2 \cdot x_2 + \lambda_3 \cdot x_3$		
	注释 2: 上述过程是分布式密钥生成。可以假设存在一个 可信第三方 , 可信第三方 运行一个 公共多项式			
	$p(x) = (u_1 + u_2 + u_3) + (u_1 + u_3) + (u_1 + u_3) + (u_3 + u_3) + (u_4 + u_3) + (u_5 + u_3) + ($	$(a_1 + a_2 + a_3) \cdot x^1 + (b_1 + b_2 + b_3) \cdot x^2 = sk + (a_1 + a_2)$	$(a_1 + a_3) \cdot x^1 + (b_1 + b_2 + b_3) \cdot x^2$	
	当 $x=1,2,3$,则计算出 分片私钥 x_1,x_2,x_3 ,保密发送给各个参与方。			
10	zk-Paillier-N 证明私钥不等 $p_1 \neq q_1$	zk-Paillier-N 证明私钥不等 $p_2 \neq q_2$	zk-Paillier-N 证明私钥不等 $p_3 \neq q_3$	
10	zk-Schnorr 证明知道分片私钥 x ₁	z k-Schnorr 证明知道分片私钥 x_2	z k-Schnorr 证明知道分片私钥 x_3	
	X	三方均 校验 其他两方广播过来的2个zk		
11	分析: ①如果少了 zk-Schnorr,则参与方可能不知道分片私钥,不能正确签名;			
	②如果少了 zk-Paillier-N,则同态加密不安全,参与方能够解密获得其他参与方的分片私钥。			
	最终结果: 三方均拥有: 公共公钥 PK 、3个分片公钥 X_1,X_2,X_3 、3个 Pailler 公钥 N_1,N_2,N_3			
	拥有以下 3 项保密信息:	拥有以下 3 项保密信息:	拥有以下 3 项保密信息:	

1. Paillier 私钥 (p_1,q_1)	1. Paillier 私钥 (p_2, q_2)	1. Paillier 私钥 (p_3,q_3)
2. 原始随机数 u_1 (可删除)	2. 原始随机数 u_2 (可删除)	2. 原始随机数 u ₃ (可删除)
3. 分片私钥 x ₁	3. 分片私钥 x ₂	3. 分片私钥 x ₃
$\diamondsuit w_1 = \lambda_1 \cdot x_1$	$\diamondsuit w_2 = \lambda_2 \cdot x_2$	$\diamondsuit w_3 = \lambda_3 \cdot x_3$

注释:公共私钥 sk 不出现,满足以下**拉格朗日插值校验**

$$sk = \lambda_1 \cdot x_1 + \lambda_2 \cdot x_2 + \lambda_3 \cdot x_3$$
$$= w_1 + w_2 + w_3$$

其中 w_1, w_2, w_3 称为**分片私钥加性份额。**三个各自基于分片私钥和拉格朗日插值系数计算**分片私钥加性份额**。

3个用户不重构公共私钥 sk,而是使用私钥加性份额与随机数 k,计算签名加性份额 sig_1, sig_2, sig_3 ,广播签名加性份额,累加后得到完整签名

$$sig := sig_1 + sig_2 + sig_3$$

3.2 三个用户签名

	P_1	P_2	P_3	
		注释:以下开始计算公共随机点 R		
	三方各	三方各自输入输入 2 份保密的原始随机数 $(k_1,k_2,k_3),(\gamma_1,\gamma_2,\gamma_3)$		
	选择两个原始随机数 $(k_1,\gamma_1) \in [1,n-1]$	选择两个原始随机数 $(k_2,\gamma_2) \in [1,n-1]$	选择两个原始随机数 $(k_3,\gamma_3) \in [1,n-1]$	
	计算椭圆曲线随机点、承诺与打开承诺	计算椭圆曲线随机点、承诺与打开承诺	计算椭圆曲线随机点、承诺与打开承诺	
1	$\Gamma_1 \coloneqq \gamma_1 \cdot G$	$\Gamma_2 \coloneqq \gamma_2 \cdot G$	$\Gamma_3 := \gamma_3 \cdot G$	
	$(C_1, D_1) = Com(\Gamma_1)$	$(C_2, D_2) = Com(\Gamma_2)$	$(C_3, D_3) = Com(\Gamma_3)$	
	广播承诺 C_1	广播承诺 C_2	广播承诺 C_3	
2		以下进行 6 个份额转换协议 MtA		
	$\alpha_{1,2} \leftarrow \left\{ P_1(k_1) \stackrel{\text{MtA}}{\rightleftharpoons} P_2(\gamma_2) \right\} (k_1 \gamma_2)$	$\beta_{2,1} \leftarrow \left\{ P_1(k_1) \stackrel{\text{MtA}}{\rightleftharpoons} P_2(\gamma_2) \right\} (k_1 \gamma_2)$		
	$\alpha_{1,3} \leftarrow \left\{ P_1(k_1) \stackrel{\text{MtA}}{\rightleftharpoons} P_3(\gamma_3) \right\} (k_1 \gamma_3)$		$\beta_{3,1} \leftarrow \left\{ P_1(k_1) \stackrel{\text{MtA}}{\rightleftharpoons} P_3(\gamma_3) \right\} (k_1 \gamma_3)$	
	$\beta_{1,2} \leftarrow \left\{ P_2(k_2) \stackrel{\text{MtA}}{\rightleftharpoons} P_1(\gamma_1) \right\} (k_2 \gamma_1)$	$\alpha_{2,1} \leftarrow \left\{ P_2(k_2) \overset{\text{MtA}}{\rightleftharpoons} P_1(\gamma_1) \right\} \left(k_2 \gamma_1 \right)$		

	$\alpha_{2,3} \leftarrow \left\{ P_2(k_2) \stackrel{\text{MtA}}{\rightleftharpoons} P_3(\gamma_3) \right\} \left(k_2 \gamma_3 \right)$	$\beta_{3,2} \leftarrow \left\{ P_2(k_2) \stackrel{\text{MtA}}{\rightleftharpoons} P_3(\gamma_3) \right\} (k_2 \gamma_3)$
$\beta_{1,3} \leftarrow \left\{ P_3(k_3) \stackrel{\text{MtA}}{\rightleftharpoons} P_1(\gamma_1) \right\} (k_3 \gamma_1)$	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\alpha_{3,1} \leftarrow \left\{ P_3(k_3) \stackrel{\text{MtA}}{\rightleftharpoons} P_1(\gamma_1) \right\} (k_3 \gamma_1)$
	$\beta_{2,3} \leftarrow \left\{ P_3(k_3) \stackrel{\text{MtA}}{\rightleftharpoons} P_2(\gamma_2) \right\} (k_3 \gamma_2)$	$\alpha_{3,2} \leftarrow \left\{ P_3(k_3) \stackrel{\text{MtA}}{\rightleftharpoons} P_2(\gamma_2) \right\} (k_3 \gamma_2)$
	注释: 以下进行 6 个份额转换协议 MtA	
三方各自输入输入 $\mathbf 1$ 份保密原始随机数 k_1,k_2,k_3 和 $\mathbf 1$ 份分片私钥加性份额 w_1,w_2,w_3		
保密输入为 $(k_1, w_1) \in [1, n-1]$	保密输入为 $(k_2, w_2) \in [1, n-1]$	保密输入为 $(k_3, w_3) \in [1, n-1]$
$u_{1,2} \leftarrow \left\{ P_1(k_1) \stackrel{\text{MtA}}{\Longleftrightarrow} P_2(w_2) \right\} (k_1 w_2)$	$v_{2,1} \leftarrow \left\{ P_1(k_1) \stackrel{\text{MtA}}{\rightleftharpoons} P_2(w_2) \right\} \left(k_1 w_2 \right)$	
$u_{1,3} \leftarrow \left\{ P_1(k_1) \stackrel{\text{MtA}}{\rightleftharpoons} P_3(w_3) \right\} (k_1 w_3)$		$v_{3,1} \leftarrow \left\{ P_1(k_1) \stackrel{\text{MtA}}{\rightleftharpoons} P_3(w_3) \right\} (k_1 w_3)$
$v_{1,2} \leftarrow \left\{ P_2(k_2) \stackrel{\text{MtA}}{\rightleftharpoons} P_1(w_1) \right\} (k_2 w_1)$	$u_{2,1} \leftarrow \left\{ P_2(k_2) \stackrel{\text{MtA}}{\rightleftharpoons} P_1(w_1) \right\} (k_2 w_1)$	

		$u_{2,3} \leftarrow \left\{ P_2(k_2) \stackrel{\text{MtA}}{\rightleftharpoons} P_3(w_3) \right\} (k_2 w_3)$	$v_{3,2} \leftarrow \left\{ P_2(k_2) \stackrel{\text{MtA}}{\rightleftharpoons} P_3(w_3) \right\} (k_2 w_3)$
	$v_{1,3} \leftarrow \left\{ P_3(k_3) \stackrel{\text{MtA}}{\rightleftharpoons} P_1(w_1) \right\} (k_3 w_1)$	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$u_{3,1} \leftarrow \left\{ P_3(k_3) \stackrel{\text{MtA}}{\rightleftharpoons} P_1(w_1) \right\} (k_3 w_1)$
		$v_{2,3} \leftarrow \left\{ P_3(k_3) \stackrel{\text{MtA}}{\rightleftharpoons} P_2(w_2) \right\} (k_3 w_2)$	$u_{3,2} \leftarrow \left\{ P_3(k_3) \stackrel{\text{MtA}}{\rightleftharpoons} P_2(w_2) \right\} (k_3 w_2)$
		注释: 份额转换协议 MtA 结束	
	计算	计算	计算
	$\delta_1 := k_1 \gamma_1 + \alpha_{1,2} + \alpha_{1,3} + \beta_{1,2} + \beta_{1,3} \mod n$	$\delta_2 := k_2 \gamma_2 + \beta_{2,1} + \alpha_{2,1} + \alpha_{2,3} + \beta_{2,3} \mod n$	$\delta_3 := k_3 \gamma_3 + \beta_{3,1} + \beta_{3,2} + \alpha_{3,1} + \alpha_{3,2} \bmod n$
3	$\sigma_1 := k_1 w_1 + u_{1,2} + v_{1,2} + v_{1,3} + u_{1,3} \mod n$	$\sigma_2 := u_{2,1} + v_{2,1} + k_2 w_2 + u_{2,3} + v_{2,3} \mod n$	$\sigma_3 := v_{3,1} + u_{3,1} + u_{3,2} + v_{3,2} + k_3 w_3 \mod n$
3	广播 $\delta_{ ext{l}}$	广播 δ_2	广播 δ_3
	三元	方均计算 $\delta^{-1} := (k\gamma)^{-1} \mod n = (\delta_1 + \delta_2 + \delta_3)^{-1} \mod n$	$\operatorname{d} n$
	广播打开承诺 D_1 和	广播打开承诺 D_2 和	广播打开承诺 D_3 和
4	zk-Sigma 证明 $ZKig\{\gamma_1 \Gamma_1\coloneqq \gamma_1\cdot Gig\}$	zk-Sigma 证明 $ZKig\{\gamma_2 \Gamma_2\coloneqq\gamma_2\cdot Gig\}$	zk-Sigma 证明 $ZK\left\{ \gamma_{_{3}} \mid \Gamma_{_{3}}\coloneqq \gamma_{_{3}}\cdot G \right\}$
	三方均村	交验打开承诺 D_1,D_2,D_3 和 $Schnorr$ 零知识证明的 1	E确性,

		然后 计算公共随机点 $R \coloneqq \delta^{-1} \cdot (\Gamma_1 + \Gamma_2 + \Gamma_3)$	X
	一致性原理如下:		
	$(\delta_1 + \delta_2 + \delta_3)^{-1} \cdot (\Gamma_1 + \Gamma_2 + \Gamma_3)$		
	$= \begin{pmatrix} k_{1}\gamma_{1} + \alpha_{1,2} + \alpha_{1,3} + \beta_{1,2} + \beta_{1,3} \\ k_{2}\gamma_{2} + \beta_{2,1} + \alpha_{2,1} + \alpha_{2,3} + \beta_{2,3} \\ k_{3}\gamma_{3} + \beta_{3,1} + \beta_{3,2} + \alpha_{3,1} + \alpha_{3,2} \end{pmatrix}^{-1} \cdot (\Gamma_{1} + \Gamma_{2} + \Gamma_{3})$		
	$= \begin{vmatrix} k \end{vmatrix}$	$\alpha_{2}\gamma_{2} + \beta_{2,1} + \alpha_{2,1} + \alpha_{2,3} + \beta_{2,3}$ $(\Gamma_{1} + \Gamma_{2} + \Gamma_{3})$	
	(k	$(3\gamma_3 + \rho_{3,1} + \rho_{3,2} + \alpha_{3,1} + \alpha_{3,2})$	
	$=\begin{pmatrix} \kappa_1 \gamma_1 + \kappa_1 \gamma_2 + \kappa_1 \gamma_3 + \\ k_2 \gamma_1 + k_2 \gamma_2 + k_2 \gamma_2 + \end{pmatrix} \cdot (\Gamma_1 + \Gamma_2 + \Gamma_2)$		
	$= \begin{pmatrix} k_1 \gamma_1 + k_1 \gamma_2 + k_1 \gamma_3 + \\ k_2 \gamma_1 + k_2 \gamma_2 + k_2 \gamma_3 + \\ k_3 \gamma_1 + k_3 \gamma_2 + k_3 \gamma_3 \end{pmatrix} \cdot (\Gamma_1 + \Gamma_2 + \Gamma_3)$		
	$= ((k_1 + k_2 + k_3)(\gamma_1 + \gamma_2 + \gamma_3))^{-1} \cdot (\gamma_1 \cdot G + \gamma_2 \cdot G + \gamma_3 \cdot G)$		
	$=(k\gamma)^{-1}\cdot(\gamma\cdot G)$		
	= k $= R$	$^{1}\cdot G$	
		共随机点 R 的横坐标,然后模 n ,则得到签名中的	的 <i>r</i>
	X ₁	$m := hash(M) \mod n$,以下开始计算 s	
5	计算 $s_1 \coloneqq mk_1 + r\sigma_1$	计算 $s_2 \coloneqq mk_2 + r\sigma_2$	计算 $s_3 \coloneqq mk_3 + r\sigma_3$
	选择原始随机数 $l_1, ho_1 \in [1, n-1]$,	选择原始随机数 $l_2, ho_2 \in [1, n-1]$	选择原始随机数 $l_3, \rho_3 \in [1, n-1]$
5A	计算 $V_1 \coloneqq s_1 \cdot R + l_1 \cdot G, \Upsilon_1 \coloneqq \rho_1 \cdot G$	计算 $V_2 \coloneqq s_2 \cdot R + l_2 \cdot G, \Upsilon_2 \coloneqq \rho_2 \cdot G$	计算 $V_3 \coloneqq s_3 \cdot R + l_3 \cdot G, \Upsilon_3 \coloneqq \rho_3 \cdot G$

	计算承诺与打开承诺	计算承诺与打开承诺	计算承诺与打开承诺	
	$(\hat{C}_1, \hat{D}_1) = Com(V_1, \Upsilon_1)$	$(\hat{C}_2, \hat{D}_2) = Com(V_2, \Upsilon_2)$	$(\hat{C}_3, \hat{D}_3) = Com(V_3, \Upsilon_3)$	
	广播承诺 $\hat{C}_{_{\mathrm{l}}}$	广播承诺 \hat{C}_2	广播承诺 \hat{C}_3	
	广播打开承诺 $\hat{m{D}}_{\!\scriptscriptstyle m L}$ 与	广播打开承诺 $\hat{m{D}}_2$ 与	广播打开承诺 $\hat{m D}_3$ 与	
	zk-Sigma*和 zk-Sigma 证明	zk-Sigma*和 zk-Sigma 证明	zk-Sigma*和 zk-Sigma 证明	
5B	$ZK\left\{s_{1}, l_{1}, \rho_{1} \middle V_{1} = s_{1} \cdot R + l_{1} \cdot G, \right\}$ $\Upsilon_{1} = \rho_{1} \cdot G$	$ZK\left\{s_{2}, l_{2}, \rho_{2} \middle \begin{aligned} V_{2} &= s_{2} \cdot R + l_{2} \cdot G, \\ \Upsilon_{2} &= \rho_{2} \cdot G \end{aligned}\right\}$	$ZK\left\{s_3, l_3, \rho_3 \middle V_3 = s_3 \cdot R + l_3 \cdot G, \right\}$ $\Upsilon_3 = \rho_3 \cdot G$	
	三方均校验另外两方的打开承诺 $\hat{D}_1,\hat{D}_2,\hat{D}_3$ 与零知识证明的正确性,			
	然后计算 $V \coloneqq (-m) \cdot G + (-r) \cdot PK + V_1 + V_2 + V_3$			
	$\Omega_{\mathrm{l}}\coloneqq ho_{\mathrm{l}}\cdot V,$ 计算 $\Psi_{\mathrm{l}}\coloneqq l_{\mathrm{l}}\cdot \Upsilon$	计算 $\Omega_2\coloneqq ho_2\cdot V,$ $\Psi_2\coloneqq l_2\cdot \Upsilon$	$\Omega_3\coloneqq ho_3\cdot V, \ \Psi_3\coloneqq l_3\cdot \Upsilon$	
5C	计算承诺与打开承诺	计算承诺与打开承诺	计算承诺与打开承诺	
	$(\tilde{C}_1, \tilde{D}_1) = Com(\Omega_1, \Psi_1)$	$(\tilde{C}_2, \tilde{D}_2) = Com(\Omega_2, \Psi_2)$	$(\tilde{C}_3, \tilde{D}_3) = Com(\Omega_3, \Psi_3)$	
	广播承诺 $ ilde{C}_{\!\scriptscriptstyle 1}$	广播承诺 $ ilde{ ilde{C}}_2$	广播承诺 $ ilde{ ilde{C}}_3$	

	广播打开承诺 $ ilde{D}_{ ext{l}}$	广播打开承诺 $ ilde{D}_2$	广播打开承诺 $ ilde{D}_3$
	三方均校验另外两方的打开承诺 $ ilde{D}_1, ilde{D}_2, ilde{D}_3$ 的正确性,		
	然后校验 $\Omega_1 + \Omega_2 + \Omega_3 == \Psi_1 + \Psi_2 + \Psi_3$		
-	一致性过程如下:		
D	$\Omega_1 + \Omega_2 + \Omega_3 = (\rho_1 + \rho_2 + \rho_3) \cdot ((-m) \cdot G + (-r) \cdot PK + V_1 + V_2 + V_3)$		
	$= (-m\rho) \cdot G + (-r\rho) \cdot PK + \rho(V_1 + V_2 + V_3)$		
	$= (-m\rho) \cdot G + (-r\rho) \cdot PK + \rho(s_1 \cdot R + l_1 \cdot G + s_2 \cdot R + l_2 \cdot G + s_3 \cdot R + l_3 \cdot G)$		
	$= (-m\rho) \cdot G + (-r\rho) \cdot PK + \rho(s \cdot R + l \cdot G)$		
	$= (-m\rho) \cdot G + (-r\rho) \cdot PK + \rho s \cdot R + l\rho \cdot G$		
	$= -\rho \left(m \cdot G + r \cdot PK - sR \right) + l\rho \cdot G$		
	$\Psi_1 + \Psi_2 + \Psi_3 = (l_1 + l_2 + l_3) \cdot \Upsilon = l(\Upsilon_1 + \Upsilon_2 + \Upsilon_3) = lp \cdot G$		
4	红色部分 $m \cdot G + r \cdot PK - sR = 0$,在 密文状态 下确保了 ECDSA 的验证是正确的。		
	广播 s_1	广播 s_2	广播 s ₃
E	三方均计算 $s\coloneqq s_1+s_2+s_3$		
		三方均校验签名一致性 (r,s)	
	- (x)		
ıdell	l 新火科技 密码学专家 <u>lynndell2010@gmai</u>	<u>.com</u>	