Universidad Complutense de Madrid Facultad de Informática Máster en Ingeniería Informática - Administración de Bases de Datos

Práctica 4

20 de octubre de 2020

Daniel Bastarrica Lacalle Jose Javier Cortés Tejada

Índice

1.	Creación básica de un usuario de la base de datos.	3
	1.1. Ejercicio 1	3
2.	Consulta de los tablespaces y datafiles de la base de datos.	4
	2.1. Ejercicio 2	4
	2.2. Ejercicio 3	4
	2.3. Ejercicio 4	5
	2.4. Ejercicio 5	6
	2.5. Ejercicio 6	7
	2.6. Ejercicio 8	7
	2.7. Ejercicio 9	8
	2.8. Ejercicio 10	8
3.	Otras estructuras de almacenamiento.	9
	3.1. Ejercicio 11	9
	3.2. Ejercicio 12	9
	3.3. Ejercicio 13	10
	3.4. Ejercicio 14	10
	3.5. Ejercicio 15	10
4.	Manejo de las estructuras de datos en memoria	11
	4.1. Ejercicio 16	11

1. Creación básica de un usuario de la base de datos.

1.1. Ejercicio 1

Indica en la memoria del ejercicio las instrucciones SQL DCL que deben ejecutarse (las que SQLDeveloper genera automáticamente).

```
-- USER SQL
  CREATE USER usuario1 IDENTIFIED BY "usuario1"
  DEFAULT TABLESPACE "USERS"
  TEMPORARY TABLESPACE "TEMP";
5
   -- QUOTAS
  ALTER USER usuario1 QUOTA 100M ON USERS;
   -- ROLES
  GRANT "CONNECT" TO usuario1;
10
11
   -- SYSTEM PRIVILEGES
12
13 GRANT CREATE TRIGGER TO usuario1;
14 GRANT ALTER SESSION TO usuario1;
  GRANT CREATE MATERIALIZED VIEW TO usuario1;
15
16 GRANT CREATE VIEW TO usuario1;
17 GRANT CREATE TABLE TO usuario1;
  GRANT CREATE SEQUENCE TO usuario1;
18
  GRANT CREATE PROCEDURE TO usuario1;
```

Esto consulta dota al usuario de:

- permiso para conectarse.
- privilegios para alterar la sesión.
- privilegios para crear vistas, tablas, triggers, secuencias, procedimientos y vistas materializadas en su propio *schema*

2. Consulta de los tablespaces y datafiles de la base de datos.

2.1. Ejercicio 2

Indica en la memoria del ejercicio el nombre de los *tablespaces* de la instalación de Oracle y los que están habilitados para realizar copia de seguridad.

	∜TS#	NAME		♦ BIGFILE		
1	0	SYSTEM	YES	NO	YES	(null)
2	1	SYSAUX	YES	NO	YES	(null)
3	2	UNDOTBS1	YES	NO	YES	(null)
4	4	USERS	YES	NO	YES	(null)
5	3	TEMP	NO	NO	YES	(null)

Figura 1: tablespaces por defecto en la instalación de Oracle

En la figura 1 tenemos listados los *tablespaces* que vienen por defecto en la instalación de Oracle. Tenemos un total de 5 *tablespaces*, todos ellos habilitados para copia de seguridad salvo *TEMP*.

2.2. Ejercicio 3

Entra en el usuario *oracle* de la máquina virtual y verifica los nombres y tamaños de los ficheros del SO que corresponden a los *datafiles*. Incluye el listado del directorio (*ls -l*) en la memoria del ejercicio.

En la figura 2 tenemos el resultado de una consulta *SQL* para ver los datos de los *datafiles* y de donde obtenemos el *path* donde se ubican los *datafiles*. A continuación tenemos la ejecución del comando *ls -l* que pide el enunciado sobre el *path* ya mencionado.

Figura 2: Nombre y tamaño de los datafile del sistema

```
oracle@ubuntu32vb:/u01/app/oracle/oradata/orcl$ ls -1

total 1492276

-rw-r---- 1 oracle oinstall 9748480 oct 16 17:28 control01.ctl

-rw-r---- 1 oracle oinstall 52429312 oct 16 17:27 redo01.log

-rw-r---- 1 oracle oinstall 52429312 oct 16 16:57 redo02.log

-rw-r---- 1 oracle oinstall 52429312 oct 16 16:57 redo03.log

-rw-r---- 1 oracle oinstall 545267712 oct 16 17:27 sysaux01.dbf

-rw-r---- 1 oracle oinstall 713039872 oct 16 17:26 system01.dbf

-rw-r---- 1 oracle oinstall 30416896 oct 16 17:06 temp01.dbf
```

```
10 -rw-r---- 1 oracle oinstall 94380032 oct 16 17:26 undotbs01.dbf
11 -rw-r---- 1 oracle oinstall 5251072 oct 16 17:15 users01.dbf
```

2.3. Ejercicio 4

Utiliza la siguiente consulta para ver los segmentos de un tablespace

```
SELECT * FROM dba_segments WHERE TABLESPACE_NAME = 'USERS';
```

Localiza los segmentos de los que es propietario el usuario *usuario1* e indica en la memoria del ejercicio los nombres y tipos de segmento que aparecen en la lista. Hay muchos tipos de segmento en una base de datos. Investiga las columnas de la vista *dba_segments* para crear una consulta que muestre todos los tipos de segmento de todos los *tablespaces* de la base de datos. Incluye la consulta y el resultado en la memoria del ejercicio.

```
SELECT * FROM dba_segments WHERE TABLESPACE_NAME = 'USERS' and owner = 'USUARIO1';
```

	♦ OWNER	\$ SEGMENT_NAME	\$ SEGMENT_TYPE
1	USUARIO1	MITABLA	TABLE
2	USUARIO1	ZIPCODES	TABLE
3	USUARIO1	EMPLOYEES	TABLE
4	USUARIO1	PARTS	TABLE
5	USUARIO1	CUSTOMERS	TABLE
6	USUARIO1	ORDERS	TABLE
7	USUARIO1	ODETAILS	TABLE
8	USUARIO1	CATALOGE	TABLE
9	USUARIO1	STUDENTS	TABLE
10	USUARIO1	COURSES	TABLE
11	USUARIO1	COMPONENTS	TABLE
12	USUARIO1	ENROLLS	TABLE
13	USUARIO1	SCORES	TABLE
14	USUARIO1	SYS_C0010832	INDEX
15	USUARIO1	SYS_C0010834	INDEX
16	USUARIO1	SYS_C0010839	INDEX
17	USUARIO1	SYS_C0010841	INDEX
18	USUARIO1	SYS_C0010844	INDEX
19	USUARIO1	SYS_C0010850	INDEX
20	USUARIO1	SYS_C0010890	INDEX
21	USUARIO1	SYS_C0010893	INDEX
22	USUARIO1	SYS_C0010901	INDEX
23	USUARIO1	SYS_C0010909	INDEX
24	USUARIO1	SYS_C0010914	INDEX
25	USUARIO1	SYS_C0010922	INDEX

Figura 3: Resultado de la consulta que muestra el nombre y el tipo de segmento de los que es propietario el usuario **usuario1**.

SELECT distinct segment_type FROM dba_segments;

Figura 4: Resultado de la consulta que muestra todos los tipos de segmentos de todos los *tablespaces* de la base de datos.

2.4. Ejercicio 5

Indica en la memoria cual sería la consulta que nos proporcione la posición de los bloques del *extent* en el datalle.

En la figura 5 se muestra la posición donde comienzan los bloques del extent. El primero de ellos, el bloque con *BLOCK_ID* 368, comienza en la posición de memoria 3014656 (bytes).

```
SELECT block_id, block_id*bytes/blocks as block_position
FROM dba_extents
WHERE owner = 'USUARIO1' AND segment_name='MITABLA';
```

	BLOCK_ID	
1	368	3014656
2	376	3080192
3	384	3145728
4	392	3211264

Figura 5: Resultado de la consulta que calcula la posición en memoria (en *bytes*) donde empieza cada bloque del *extent*

2.5. Ejercicio 6

Los extents de un segmento pueden estar en distintos datafiles. ¿Cómo podemos saber en qué datafile está cada extent? Indícalo en la memoria del ejercicio.

La columna *file_id* de la tabla *dba_extents* nos indica a qué *datafile* pertenece cada *extent*.

2.6. Ejercicio 8

Comprueba que las vistas *vtablespace* y *vdatafile* se han actualizado convenientemente y se ha creado un fichero en el directorio correspondiente del sistema operativo. Adjunta a la memoria el resultado de las consultas. Ahora crea una tabla en este *tablespace*:

```
CREATE TABLE mitbl (micol VARCHAR2(100)) TABLESPACE mitbs;
```

Puedes insertar registros en esta tabla con la siguiente sentencia (o con un bloque PLSQL como el del apartado 3.3):

```
INSERT INTO mitbl (SELECT 'dábale arroz a la zorra el abad'
FROM DUAL CONNECT BY level <= 15000);
COMMIT;</pre>
```

	∜ TS#	NAME		♦ BIGFILE		\$ ENCRYPT_IN_BACKUP
1	. 0	SYSTEM	YES	NO	YES	(null)
2	1	SYSAUX	YES	NO	YES	(null)
3	2	UNDOTBS1	YES	NO	YES	(null)
4	4	USERS	YES	NO	YES	(null)
5	3	TEMP	NO	NO	YES	(null)
6	6	MITBS	YES	NO	YES	(null)

Figura 6: Lista de *tablespace* de la instalación Oracle tras haber ejecutado las instrucciones SQL de este apartado. Con respecto a lo mostrado en el apartado 2 se ha añadido uno nuevo (sexta entrada en la lista).

	∯ FILE#	♦ NAME	CREATION_CHANGE#		∯ TS# ∯ RFILE#		
1	1	/u01/app/oracle/oradata/orcl/system01.dbf	7	13/08/09	0	1 SYSTEM	READ WRITE
2	2	/u01/app/oracle/oradata/orcl/sysaux01.dbf	2164	13/08/09	1	2 ONLINE	READ WRITE
3	3	/u01/app/oracle/oradata/orcl/undotbs01.dbf	752002	13/08/09	2	3 ONLINE	READ WRITE
4	4	/u01/app/oracle/oradata/orcl/users01.dbf	18243	13/08/09	4	4 ONLINE	READ WRITE
5	5	/u01/app/oracle/oradata/orcl/midf01.dbf	914312	16/10/19	6	5 ONLINE	READ WRITE

Figura 7: Lista de *datafiles* actualizada donde se ha creado un nuevo fichero (*midf01.dbf*) tras haber creado la tabla *mitbl*.

88 65536

2.7. Ejercicio 9

Consulta los *extents* del segmento correspondiente a los datos de esta tabla (reutiliza alguna consulta anterior).

```
SELECT * FROM dba extents
WHERE tablespace_name LIKE 'MITBS' AND segment_name like 'MITBL';
  1 SYSTEM MITBL
                      (null)
                                  TABLE
                                             MITBS
                                                                 0
                                                                               8
                                                                                  65536
                                                                                           8
                                                                                                      5
   2 SYSTEM MITBL
                      (null)
                                  TABLE
                                             MITBS
                                                                               16
                                                                                  65536
   3 SYSTEM MITBL
                      (null)
                                  TABLE
                                             MITES
                                                                 2
                                                                        5
                                                                               24
                                                                                  65536
                                                                                            8
                                                                                                      5
   4 SYSTEM MITBL
                      (null)
                                  TABLE
                                             MITBS
                                                                               32
                                                                                  65536
                                                                                                      5
   5 SYSTEM MITBL
                      (null)
                                  TABLE
                                             MITBS
                                                                               40
                                                                                  65536
                                                                                            8
                                                                                                      5
   6 SYSTEM MITBL
                                  TABLE
                                             MITBS
                                                                 5
                                                                        5
                                                                               48
                                                                                  65536
                                                                                           8
                      (null)
                                                                                                      5
   7 SYSTEM MITBL
                      (null)
                                  TABLE
                                             MITBS
                                                                               56
                                                                                  65536
                                                                                            8
                                                                                                      5
   8 SYSTEM MITBL
                                  TABLE
                                                                                  65536
                      (null)
                                             MITBS
                                                                               64
                                                                                           8
                                                                                                      5
  9 SYSTEM MITBL
                      (null)
                                  TABLE
                                             MITBS
                                                                               72
                                                                                  65536
                                                                                                      5
  10 SYSTEM MITBL
                                  TABLE
                                                                 9
                                                                        5
                      (null)
                                             MITBS
                                                                               80
                                                                                  65536
                                                                                           8
                                                                                                      5
```

MITBS

2.8. Ejercicio 10

11 SYSTEM MITBL

(null)

TABLE

Contesta a las siguientes preguntas: ¿Qué ocurre si ejecutas por segunda vez la consulta de inserción anterior? ¿Por qué? Puedes utilizar *Enterprise Manager* para ver el estado y ocupación de los *tablespaces*: en la pestaña *Server*, accede al enlace *Tablespaces* para ver cuál puede ser el motivo del mensaje de error proporcionado si vuelves a ejecutar la consulta de inserción.

Figura 8: Estado del los tablespaces existentes en la istalación de Oracle.

Como vemos en la figura 8, el tamaño máximo asignado al *tablespace MITBS* es de un 1MB. Ya está ocupado y no es extensible, por lo tanto no se pueden insertar más datos.

3. Otras estructuras de almacenamiento.

3.1. Ejercicio 11

Detalla cuales son los ficheros del sistema operativo para estas estructuras y su tamaño.

A continuación tenemos la lista de ficheros del sistema operativo relacionados con la instalación de Oracle. Tenemos ficheros de los tipos *datafile*, *control file* y *redo log file*. Además tenemos un *temp file* y un *undo file*.

```
oracle@ubuntu32vb:/u01/app/oracle/oradata/orcl$ ls -l

total 1493308

-rw-r----- 1 oracle oinstall 9748480 oct 16 18:34 control01.ctl

-rw-r---- 1 oracle oinstall 1056768 oct 16 18:26 midf01.dbf

-rw-r---- 1 oracle oinstall 52429312 oct 16 18:34 redo01.log

-rw-r---- 1 oracle oinstall 52429312 oct 16 16:57 redo02.log

-rw-r---- 1 oracle oinstall 52429312 oct 16 16:57 redo03.log

-rw-r---- 1 oracle oinstall 545267712 oct 16 18:33 sysaux01.dbf

-rw-r---- 1 oracle oinstall 713039872 oct 16 18:34 system01.dbf

-rw-r---- 1 oracle oinstall 30416896 oct 16 18:06 temp01.dbf

-rw-r---- 1 oracle oinstall 94380032 oct 16 18:34 undotbs01.dbf

-rw-r---- 1 oracle oinstall 5251072 oct 16 17:49 users01.dbf
```

3.2. Ejercicio 12

Utiliza la consulta siguiente para localizar a través de los comandos de Oracle el *controlfile* del sistema:

```
SELECT * FROM v$controlfile;
```

¿Cuántos resultados se muestran? Indica en la memoria del ejercicio el nombre completo de los ficheros del sistema operativo que contienen *controlfiles*.

		♦ NAME			
1	(null)	/u01/app/oracle/oradata/orcl/control01.ctl	NO	16384	594
2	(null)	/u01/app/oracle/flash_recovery_area/orcl/control02.ctl	NO	16384	594

Figura 9: Resultado de la consulta anterior donde se muestran los nombres completos de los *control files* del sistema.

3.3. Ejercicio 13

Utiliza la siguiente consulta para ver los grupos de *redo log files*, cuántos ficheros (miembros, en la terminología de Oracle) forman cada grupo, y qué tamaño tienen:

SELECT * FROM v\$log;

	⊕ GROUP#	↑ THREAD#		⊕ BYTES		MEMBERS MEMBERS		⊕ STATUS		FIRST_TIME		NEXT_TIME
1	1	1	10	52428800	512	1	NO	CURRENT	904949	16/10/19	281474976710655	(null)
2	2	1	8	52428800	512	1	NO	INACTIVE	851980	08/09/16	873215	17/07/19
3	3	1	9	52428800	512	1	NO	INACTIVE	873215	17/07/19	904949	16/10/19

Figura 10: Resultado de la consulta anterior donde tenemos 3 grupos de *redo files*, cada uno de ellos con un único fichero.

3.4. Ejercicio 14

A continuación, utiliza la siguiente consulta para saber cuales son los ficheros del disco que se utilizan para almacenar los *redo log files*:

SELECT * FROM v\$logfile;

¿Cuántos grupos de redo log files hay en el sistema? ¿Cuántos ficheros tiene cada grupo?

	∯ GROUP#	∯ STATUS	↑ TYPE		
1	3	(null)	ONLINE	/u01/app/oracle/oradata/orc1/redo03.log	NO
2	2	(null)	ONLINE	/u01/app/oracle/oradata/orc1/redo02.log	NO
3	1	(null)	ONLINE	/u01/app/oracle/oradata/orcl/redo01.log	NO

Figura 11: Resultado de la consulta anterior donde se muestra el nombre completo de los ficheros en disco donde se almacenan los *redo files*. Tenemos 3 grupos cada uno de ellos con un fichero.

3.5. Ejercicio 15

Los *redo log files* se pueden configurar sin necesidad de parar la base de datos. Prueba a añadir un miembro a la lista de *log files* del grupo activo con el siguiente comando:

ALTER DATABASE ADD LOGFILE MEMBER '/u01/app/oracle/oradata/orcl/redo01b.log' TO GROUP 1;

			↑ TYPE		\$\text{IS_RECOVERY_DEST_FILE}
1	3	(null)	ONLINE	/u01/app/oracle/oradata/orcl/redo03.log	NO
2	2	(null)	ONLINE	/u01/app/oracle/oradata/orcl/redo02.log	NO
3	1	(null)	ONLINE	/u01/app/oracle/oradata/orcl/redo01.log	NO
4	1	TNVALTD	ONLINE	/u01/app/oracle/oradata/orcl/redo01b.log	NO

Figura 12: Resultado de la consulta anterior donde se muestra un nuevo *redo file*. Ha sido añadido y se ha marcado como inválido.

4. Manejo de las estructuras de datos en memoria

4.1. Ejercicio 16

Incluye los resultados en la memoria del ejercicio:

Primero determina los tamaños de las estructuras de datos de la SGA (System Global Area) con la siguiente consulta SQL:

select * from v\$sgainfo;

	NAME	BYTES	
1	Fixed SGA Size	1338392	No
2	Redo Buffers	5615616	No
3	Buffer Cache Size	406847488	Yes
4	Shared Pool Size	209715200	Yes
5	Large Pool Size	4194304	Yes
6	Java Pool Size	4194304	Yes
7	Streams Pool Size	4194304	Yes
8	Shared IO Pool Size	0	Yes
9	Granule Size	4194304	No
10	Maximum SGA Size	636100608	No
11	Startup overhead in Shared Pool	62914560	No
12	Free SGA Memory Available	0	(null)

Figura 13: Resultado de la consulta anterior donde se muestran los tamaños de las estructuras de datos SGA.

Para las estructuras de datos dinámicas, determina los tamaños mínimo y máximo que pueden tener las estructuras que has visto en clase, así como el tamaño que tienen actualmente:

select * from v\$sga_dynamic_components;

			MIN_SIZE	MAX_SIZE
1	shared pool	209715200	209715200	209715200
2	large pool	4194304	4194304	4194304
3	java pool	4194304	4194304	4194304
4	streams pool	4194304	4194304	4194304
5	DEFAULT buffer cache	406847488	406847488	406847488
6	KEEP buffer cache	0	0	0
7	RECYCLE buffer cache	0	0	0
8	DEFAULT 2K buffer cache	0	0	0
9	DEFAULT 4K buffer cache	0	0	0
10	DEFAULT 8K buffer cache	0	0	0
11	DEFAULT 16K buffer cache	0	0	0
12	DEFAULT 32K buffer cache	0	0	0
13	Shared IO Pool	0	0	0
14	ASM Buffer Cache	0	0	0

Figura 14: Resultado de la consulta anterior (se han omitido varios campos) donde se muestra el tamaño mínimo y máximo de las estructuras de datos y el tamaño actual de las mismas.

Por último, consulta la información de las PGA (Program Global Areas) y determina: el tamaño máximo que se puede dedicar (allocate) a PGA, el tama no total dedicado actualmente, y el espacio que se está utilizando actualmente. Utiliza la consulta:

select * from v\$pgastat;

	NAME		⊕ UNIT
1	aggregate PGA target parameter	210763776	bytes
2	aggregate PGA auto target	136710144	bytes
3	global memory bound	42151936	bytes
4	total PGA inuse	58881024	bytes
5	total PGA allocated	86205440	bytes
6	maximum PGA allocated	108170240	bytes
7	total freeable PGA memory	15335424	bytes
8	process count	38	(null)
9	max processes count	45	(null)
10	PGA memory freed back to OS	921370624	bytes
11	total PGA used for auto workareas	0	bytes
12	maximum PGA used for auto workareas	2544640	bytes
13	total PGA used for manual workareas	0	bytes
14	maximum PGA used for manual workareas	0	bytes
15	over allocation count	0	(null)
16	bytes processed	420602880	bytes
17	extra bytes read/written	0	bytes
18	cache hit percentage	100	percen
19	recompute count (total)	2118	(null)