Partial Differential Equations

Chapter III - Distributions

John Cagnol, Pauline Lafitte

The Engineering Program of CentraleSupélec

Lecture 4 - January 10th 2020

III.1. Introduction

Notation

Today, \mathcal{I} will be an open interval of \mathbb{R} :

]a, b[,]
$$-\infty$$
, b[or]a, $+\infty$ [

Our goal

We are about to define a superset to the set of functions. (the set of functions will be a subset of the set of distributions)

Our objective is to differentiate every element.

Our goal

We are about to define a superset to the set of functions. (the set of functions will be a subset of the set of distributions)

Our objective is to differentiate every element.

We will work in 1D (generalizing the concept of locally integrable function from \mathbb{R} to \mathbb{R}).

But we could define distributions in higher dimensions.

Note $H_0 = 1_{[0,+\infty[}$. Consider the function $f = 2H_0 - 1$:

Note $H_0 = 1_{[0,+\infty[}$. Consider the function $f = 2H_0 - 1$:

Note $H_0 = 1_{[0,+\infty[}$. Consider the function $f = 2H_0 - 1$:

f can be differentiated on $]-\infty,0[$ and on $]0,+\infty[$ and its derivative is 0.

Note $H_0 = 1_{[0,+\infty[}$. Consider the function $f = 2H_0 - 1$:

f can be differentiated on $]-\infty,0[$ and on $]0,+\infty[$ and its derivative is 0. Obviously, f is not differentiable in 0.

Note $H_0=1_{[0,+\infty[}$. Consider the functions

$$f: \mathbb{R} \rightarrow \mathbb{R}$$
 $x \mapsto 2H_0(x) - 1$

Note $H_0=1_{[0,+\infty[}$. Consider the functions

Note $H_0 = 1_{[0,+\infty[}$. Consider the functions

$$f: \mathbb{R} \to \mathbb{R}$$
 $x \mapsto 2H_0(x) - 1$

$$g:\mathbb{R} \to \mathbb{R}$$

can be differentiated on $]-\infty,\infty[$.

Note $H_0 = 1_{[0,+\infty[}$. Consider the functions

$$\mathbf{0} = [\mathbf{0}, +\infty[$$

$$x \mapsto 2H_0(x)-1$$

$$x \mapsto \tanh(nx)$$

 g_n can be differentiated on $]-\infty,\infty[$.

Note $H_0 = 1_{[0,+\infty[}$. Consider the functions

 g_n can be differentiated on $]-\infty,\infty[$. g'_n does not seem to converge in the space of functions.

The concept of functions

(From Middle School)

A function relates one or several variables to one value.

The concept of functions

(From Middle School)

A function relates one or several variables to one value.

Example

$$f: \mathbb{R}^4 \to \mathbb{R}$$

 $(x, y, z, t) \mapsto f(x, y, z, t)$

Provides the temperature at (x, y, z) in space and a time t.

The concept of functions

(From Middle School)

A function relates one or several variables to one value.

Example

$$f: \mathbb{R}^3 \to \mathbb{R}$$

 $(x, y, z) \mapsto f(x, y, z)$

Provides the temperature at (x, y, z) in space.

Consider

$$T:\Theta o\mathbb{R}$$
 $arphi\mapsto ext{temperature measured}$

For a thermometer φ in the set Θ , we look at its location (x, y, z) (the location of its tip) and we have $T(\varphi) = f(x, y, z)$.

$$\Theta = \left\{ \begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

$$\Theta = \left\{ \begin{array}{c} , & \\ , & \\ , & \\ \end{array} \right\}, \dots \text{ located everywhere in } \mathbb{R}^3 \ \right\}$$

$$T \ : \ \Theta \ \to \ \mathbb{R}$$

$$\varphi \ \mapsto \ \text{temperature measured}$$

For a thermometer φ in the set Θ , we note $T(\varphi)$ the temperature shown on φ .

$$\Theta = \left\{ \begin{array}{c} & \\ & \\ \end{array}, \begin{array}{c} \\ & \\ \end{array}, \dots \text{ located everywhere in } \mathbb{R}^3 \end{array} \right\}$$

$$T \ : \ \Theta \ \rightarrow \ \mathbb{R}$$

$$\varphi \ \mapsto \ \text{temperature measured}$$

For a thermometer φ in the set Θ , we note $T(\varphi)$ the temperature shown on φ . Note: $T(\varphi)$ is no longer a function of (x, y, z).

For a thermometer φ in the set Θ , we note $T(\varphi)$ the temperature shown on φ . Note: $T(\varphi)$ is no longer a fonction of (x, y, z).

If Θ is a linear space, we could be interested in the continuous functions T from Θ to \mathbb{R} .

$$\Theta = \left\{ \begin{array}{c} & \\ & \\ \end{array}, \begin{array}{c} \\ & \\ \end{array}, \dots \text{ located everywhere in } \mathbb{R}^3 \end{array} \right\}$$

$$T \ : \ \Theta \ \rightarrow \ \mathbb{R}$$

$$\varphi \ \mapsto \ \text{temperature measured}$$

For a thermometer φ in the set Θ , we note $T(\varphi)$ the temperature shown on φ . Note: $T(\varphi)$ is no longer a function of (x, y, z).

If Θ is a linear space, we could be interested in the continuous functions T from Θ to \mathbb{R} . Then $T \in \Theta'$ (the dual space of Θ).

$$\Theta = \left\{ \begin{array}{ccc} & & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

For a thermometer φ in the set Θ , we note $T(\varphi)$ the temperature shown on φ . Note: $T(\varphi)$ is no longer a function of (x, y, z).

If Θ is a linear space, we could be interested in the continuous functions T from Θ to \mathbb{R} . Then $T \in \Theta'$ (the dual space of Θ). We would note $\langle T, \varphi \rangle = T(\varphi)$ where $\langle \cdot, \cdot \rangle$ is the duality bracket.

Introduction Distributions Sobolev Spaces he Test Functions Space $\mathcal{D}(\hat{z})$ efinition of a Distribution \hat{z} as a subset of \mathcal{D}' perations on Distributions istory repeats itself

III.2. Distributions

Introduction Distributions Sobolev Spaces The Test Functions Space $\mathcal{D}(\mathcal{I})$ Definition of a Distribution L^1_{loc} as a subset of \mathcal{D}' Operations on Distributions History repeats itself

III.2.1. The Test Functions Space $\mathcal{D}(\mathcal{I})$

Definition III.2.1

The set real-valued continuous functions on \mathcal{I} with **compact** support is denoted $C_0^0(\mathcal{I})$ or $C_c^0(\mathcal{I})$.

It is the set of functions whose support is included in a closed bounded interval included in \mathcal{I} .

Definition III.2.2

Define the set of bump functions:

$$C_0^{\infty}(\mathcal{I}) = C_0^0(\mathcal{I}) \cap C^{\infty}(\mathcal{I})$$

This set is also denoted $C_c^{\infty}(\mathcal{I})$ or $\mathcal{D}(\mathcal{I})$. In this course, we will use $\mathcal{D}(\mathcal{I})$ from now on.

It is the set of all functions whose support is bounded and that can be differentiated for all degrees of differentiation.

Example

$$f\not\in\mathcal{D}(\mathcal{I})$$

Example

$$f \not\in \mathcal{D}(\mathcal{I})$$

Example

$$f: \mathbb{R} \to \mathbb{R}$$
 $x \mapsto \begin{cases} \exp\left(-\frac{1}{1-x^2}\right) & \text{if } |x| < 1 \\ 0 & \text{if } |x| \ge 1 \end{cases}$
 $f \in \mathcal{D}(\mathcal{I})$

13/51

The Test Functions Space $\mathcal{D}(\mathcal{I})$ Definition of a Distribution L^1_{loc} as a subset of \mathcal{D}' Operations on Distributions History repeats itself

Test function space

The set of bump functions $\mathcal{D}(\mathcal{I})$ is a real vector space. It will be called the **test function space**.

Test function space

The set of bump functions $\mathcal{D}(\mathcal{I})$ is a real vector space. It will be called the **test function space**.

We admit $\mathcal{D}(\mathcal{I})$ can be endowed with a topology by defining the limit of a sequence of its elements.

Test function space

The set of bump functions $\mathcal{D}(\mathcal{I})$ is a real vector space. It will be called the **test function space**.

We admit $\mathcal{D}(\mathcal{I})$ can be endowed with a topology by defining the limit of a sequence of its elements.

Definition III.2.3

Let $(\phi_n)_{n\in\mathbb{N}}$ be a sequence of functions in $\mathcal{D}(\mathcal{I})$ and $\phi\in\mathcal{D}(\mathcal{I})$. ϕ_n converges toward ϕ if

- $\exists K \subset \mathcal{I}$, compact, $\forall n \in \mathbb{N}$, supp $(\phi_n) \subset K$
- $\forall m \in \mathbb{N}$, $\phi_n^{(m)} \longrightarrow \phi^{(m)}$ uniformly in \mathcal{I} : i.e.: $\forall m \in \mathbb{N}, \forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N, \|\phi_n^{(m)} \phi^{(m)}\|_{\infty} \leq \varepsilon.$

We will note $\phi_n \stackrel{\mathcal{D}(\mathcal{I})}{\longrightarrow} \phi$ or $\varphi = \lim_{n \to \infty}^{\mathcal{D}(\mathcal{I})} \varphi_n$.

Introduction Distributions Sobolev Spaces The Test Functions Space $\mathcal{D}(2)$ Definition of a Distribution L^1_{loc} as a subset of \mathcal{D}' Operations on Distributions History repeats itself

III.2.2. Definition of a Distribution

The Test Functions Space $\mathcal{D}(\mathcal{I})$ Definition of a Distribution L^1_{loc} as a subset of \mathcal{D}' Operations on Distributions History repeats itself

Distribution space

Definition III.2.4

The space of **distributions** is the topological dual of $\mathcal{D}(\mathcal{I})$. It is denoted $\mathcal{D}'(\mathcal{I})$.

Its elements are called distributions or generalized functions.

Distribution space

Definition III.2.4

The space of **distributions** is the topological dual of $\mathcal{D}(\mathcal{I})$. It is denoted $\mathcal{D}'(\mathcal{I})$.

Its elements are called distributions or generalized functions.

A distribution is a continuous linear function $T: \mathcal{D}(\mathcal{I}) \to \mathbb{R}$, It assigns to each test function φ in $\mathcal{D}(\mathcal{I})$ a real number $T(\varphi)$

Distribution space

Definition III.2.4

The space of **distributions** is the topological dual of $\mathcal{D}(\mathcal{I})$. It is denoted $\mathcal{D}'(\mathcal{I})$.

Its elements are called distributions or generalized functions.

A distribution is a continuous linear function $T:\mathcal{D}(\mathcal{I})\to\mathbb{R}$, It assigns to each test function φ in $\mathcal{D}(\mathcal{I})$ a real number $T(\varphi)$ s.t.

Linearity:
$$T(\varphi + \lambda \psi) = T(\varphi) + \lambda T(\psi)$$

Continuity:
$$\lim_{n\to\infty} T(\varphi_n) = T\left(\lim_{n\to\infty}^{\mathcal{D}(\mathcal{I})} \varphi_n\right)$$

$$\forall \varphi, \psi \in \mathcal{D}(\mathcal{I}), \ \forall \lambda \in \mathbb{R}, \ \forall (\varphi_n)_{n \in \mathbb{N}} \in \mathcal{D}(\mathcal{I})^{\mathbb{N}}$$

Distribution space

Definition III.2.4

The space of **distributions** is the topological dual of $\mathcal{D}(\mathcal{I})$. It is denoted $\mathcal{D}'(\mathcal{I})$.

Its elements are called distributions or generalized functions.

A distribution is a continuous linear function $T:\mathcal{D}(\mathcal{I})\to\mathbb{R}$, It assigns to each test function φ in $\mathcal{D}(\mathcal{I})$ a real number $T(\varphi)$ s.t.

Linearity:
$$T(\varphi + \lambda \psi) = T(\varphi) + \lambda T(\psi)$$

Continuity:
$$\lim_{n\to\infty} T(\varphi_n) = T\left(\lim_{n\to\infty}^{\mathcal{D}(\mathcal{I})} \varphi_n\right)$$

Notation:
$$\langle T, \phi \rangle = T(\phi)$$
.

$$\forall \varphi, \psi \in \mathcal{D}(\mathcal{I}), \ \forall \lambda \in \mathbb{R}, \ \forall (\varphi_n)_{n \in \mathbb{N}} \in \mathcal{D}(\mathcal{I})^{\mathbb{N}}$$

Distribution space

Definition III.2.4

The space of **distributions** is the topological dual of $\mathcal{D}(\mathcal{I})$. It is denoted $\mathcal{D}'(\mathcal{I})$.

Its elements are called distributions or generalized functions.

A distribution is a continuous linear function $T:\mathcal{D}(\mathcal{I})\to\mathbb{R}$, It assigns to each test function φ in $\mathcal{D}(\mathcal{I})$ a real number $T(\varphi)$ s.t.

Linearity:
$$\langle T, \varphi + \lambda \psi \rangle = \langle T, \varphi \rangle + \lambda \langle T, \psi \rangle$$

Continuity:
$$\phi_n \stackrel{\mathcal{D}(\mathcal{I})}{\longrightarrow} \phi \Rightarrow \langle T, \phi_n \rangle \stackrel{\mathbb{R}}{\longrightarrow} \langle T, \phi \rangle$$

Notation:
$$\langle T, \phi \rangle = T(\phi)$$
.

$$\forall \varphi, \psi \in \mathcal{D}(\mathcal{I}), \ \forall \lambda \in \mathbb{R}, \ \forall (\varphi_n)_{n \in \mathbb{N}} \in \mathcal{D}(\mathcal{I})^{\mathbb{N}}$$

Let \mathcal{I} contain 0 and define

$$\begin{array}{cccc} \delta_0 \,:\, \mathcal{D}(\mathcal{I}) & \to & \mathbb{R} \\ & \varphi & \mapsto & \varphi(0) \end{array}$$

Let \mathcal{I} contain 0 and define

$$\delta_0 : \mathcal{D}(\mathcal{I}) \to \mathbb{R}$$
 $\varphi \mapsto \varphi(0)$

Linearity: For all φ, ψ in $\mathcal{D}(\mathcal{I})$ and for all real λ :

$$\delta_0(\varphi + \lambda \psi) = \varphi(0) + \lambda \psi(0) = \delta_0(\varphi) + \lambda \delta_0(\psi)$$

Let \mathcal{T} contain 0 and define

$$\delta_0 : \mathcal{D}(\mathcal{I}) \to \mathbb{R}$$
 $\varphi \mapsto \varphi(0)$

Linearity: For all φ, ψ in $\mathcal{D}(\mathcal{I})$ and for all real λ :

$$\delta_0(\varphi + \lambda \psi) = \varphi(0) + \lambda \psi(0) = \delta_0(\varphi) + \lambda \delta_0(\psi)$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

Let \mathcal{I} contain 0 and define

$$\delta_0 : \mathcal{D}(\mathcal{I}) \to \mathbb{R}$$
 $\varphi \mapsto \varphi(0)$

Linearity: For all φ, ψ in $\mathcal{D}(\mathcal{I})$ and for all real λ :

$$\delta_0(\varphi + \lambda \psi) = \varphi(0) + \lambda \psi(0) = \delta_0(\varphi) + \lambda \delta_0(\psi)$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ . $\delta_0(\varphi_n) = \varphi_n(0)$

Let \mathcal{I} contain 0 and define

$$\delta_0 : \mathcal{D}(\mathcal{I}) \to \mathbb{R}$$
 $\varphi \mapsto \varphi(0)$

Linearity: For all φ, ψ in $\mathcal{D}(\mathcal{I})$ and for all real λ :

$$\delta_0(\varphi + \lambda \psi) = \varphi(0) + \lambda \psi(0) = \delta_0(\varphi) + \lambda \delta_0(\psi)$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

$$\delta_0(\varphi_n) = \varphi_n(0)$$

$$\lim_{n\to+\infty}\varphi_n(0)=\varphi(0)$$

Let \mathcal{I} contain 0 and define

$$\delta_0 : \mathcal{D}(\mathcal{I}) \to \mathbb{R}$$
 $\varphi \mapsto \varphi(0)$

Linearity: For all φ, ψ in $\mathcal{D}(\mathcal{I})$ and for all real λ :

$$\delta_0(\varphi + \lambda \psi) = \varphi(0) + \lambda \psi(0) = \delta_0(\varphi) + \lambda \delta_0(\psi)$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

$$\delta_0(\varphi_n)=\varphi_n(0)$$

 $\lim_{n\to+\infty} \varphi_n(0) = \varphi(0)$ (uniform convergence)

Let \mathcal{I} contain 0 and define

$$\delta_0 : \mathcal{D}(\mathcal{I}) \to \mathbb{R}$$
 $\varphi \mapsto \varphi(0)$

Linearity: For all φ, ψ in $\mathcal{D}(\mathcal{I})$ and for all real λ :

$$\delta_0(\varphi + \lambda \psi) = \varphi(0) + \lambda \psi(0) = \delta_0(\varphi) + \lambda \delta_0(\psi)$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

$$\delta_0(\varphi_n) = \varphi_n(0)$$

 $\lim_{n\to+\infty} \varphi_n(0) = \varphi(0)$ (uniform convergence)

$$\lim \delta_0(\varphi_n) = \delta_0(\varphi)$$

Let \mathcal{I} contain 0 and define

$$\delta_0 : \mathcal{D}(\mathcal{I}) \to \mathbb{R}$$
 $\varphi \mapsto \varphi(0)$

Linearity: For all φ, ψ in $\mathcal{D}(\mathcal{I})$ and for all real λ :

$$\delta_0(\varphi + \lambda \psi) = \varphi(0) + \lambda \psi(0) = \delta_0(\varphi) + \lambda \delta_0(\psi)$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

$$\delta_0(\varphi_n) = \varphi_n(0)$$

 $\lim_{n \to +\infty} \varphi_n(0) = \varphi(0)$ (uniform convergence)

$$\lim \delta_0(\varphi_n) = \delta_0(\varphi)$$

Therefore δ_0 is a distribution.

Let \mathcal{I} contain 0 and define

$$\delta_0 : \mathcal{D}(\mathcal{I}) \to \mathbb{R}$$
 $\varphi \mapsto \varphi(0)$

Linearity: For all φ, ψ in $\mathcal{D}(\mathcal{I})$ and for all real λ :

$$\langle \delta_0, \varphi + \lambda \psi \rangle = \varphi(0) + \lambda \psi(0) = \langle \delta_0, \varphi \rangle + \lambda \langle \delta_0, \psi \rangle$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

$$\langle \delta_0, \varphi_n \rangle = \varphi_n(0)$$

 $\lim_{n\to+\infty} \varphi_n(0) = \varphi(0)$ (uniform convergence)

$$\lim \langle \delta_0, \varphi_n \rangle = \langle \delta_0, \varphi \rangle$$

Therefore δ_0 is a distribution.

The Dirac Distribution

More generally, we can define a distribution that returns the value of the test function in a point *a*.

Definition III.2.5

Define the **Dirac distribution** in $a \in \mathcal{I}$ by

$$\forall \phi \in \mathcal{D}(\mathcal{I}), \ \langle \delta_{\mathsf{a}}, \phi \rangle = \phi(\mathsf{a}).$$

It is denoted δ_a .

Let $K \subset \mathcal{I}$ be compact. Define T such that

$$T: \phi \in \mathcal{D}(\mathcal{I}) \longmapsto \int_{K} \phi(x) \mathrm{d}x$$

Let $K \subset \mathcal{I}$ be compact. Define T such that

$$T: \phi \in \mathcal{D}(\mathcal{I}) \longmapsto \int_{\mathcal{K}} \phi(x) dx$$

Linearity: Obvious

Let $K \subset \mathcal{I}$ be compact. Define T such that

$$T: \phi \in \mathcal{D}(\mathcal{I}) \longmapsto \int_{\mathcal{K}} \phi(x) dx$$

Linearity: Obvious

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

$$|\langle T, \varphi_n - \varphi \rangle| = \left| \int_K \varphi_n(x) - \varphi(x) dx \right| \le \text{mes}(K) \|\varphi_n - \varphi\|_{\infty}$$

Thus
$$\lim_{n\to+\infty} \langle T, \varphi_n \rangle = \langle T, \varphi \rangle$$

Let $K \subset \mathcal{I}$ be compact. Define T such that

$$T: \phi \in \mathcal{D}(\mathcal{I}) \longmapsto \int_{\mathcal{K}} \phi(x) dx$$

Linearity: Obvious

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

$$|\langle T, \varphi_n - \varphi \rangle| = \left| \int_K \varphi_n(x) - \varphi(x) dx \right| \le \text{mes}(K) \|\varphi_n - \varphi\|_{\infty}$$

Thus
$$\lim_{n\to+\infty} \langle T, \varphi_n \rangle = \langle T, \varphi \rangle$$

Therefore T is a distribution.

A variation on the second example

Let $f \in L^1_{loc}(\mathcal{I})$. Define \mathcal{T}_f by

$$\mathcal{T}_f: \phi \in \mathcal{D}(\mathcal{I}) \longmapsto \int_{\mathcal{I}} f(x)\phi(x) dx$$

The Test Functions Space $\mathcal{D}(2)$ Definition of a Distribution L^1_{loc} as a subset of \mathcal{D}' Operations on Distributions History repeats itself

A variation on the second example

Let $f \in L^1_{loc}(\mathcal{I})$. Define \mathcal{T}_f by

$$\mathcal{T}_f: \phi \in \mathcal{D}(\mathcal{I}) \longmapsto \int_I f(x)\phi(x) dx$$

Linearity: Obvious

A variation on the second example

Let $f \in L^1_{loc}(\mathcal{I})$. Define \mathcal{T}_f by

$$\mathcal{T}_f: \phi \in \mathcal{D}(\mathcal{I}) \longmapsto \int_{\mathcal{I}} f(x)\phi(x) dx$$

Linearity: Obvious

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

$$|\langle \mathcal{T}_f, \varphi_n - \varphi \rangle| \le \|\varphi_n - \varphi\|_{\infty} \int_I f(x) dx$$

Thus
$$\lim_{n\to+\infty} \langle \mathcal{T}_f, \varphi_n \rangle = \langle \mathcal{T}_f, \varphi \rangle$$

A variation on the second example

Let $f \in L^1_{loc}(\mathcal{I})$. Define \mathcal{T}_f by

$$\mathcal{T}_f: \phi \in \mathcal{D}(\mathcal{I}) \longmapsto \int_{\mathcal{I}} f(x)\phi(x) dx$$

Linearity: Obvious

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

$$|\langle \mathcal{T}_f, \varphi_n - \varphi \rangle| \le \|\varphi_n - \varphi\|_{\infty} \int_I f(x) dx$$

Thus
$$\lim_{n\to+\infty} \langle \mathcal{T}_f, \varphi_n \rangle = \langle \mathcal{T}_f, \varphi \rangle$$

Therefore \mathcal{T}_f is a distribution.

Introduction Distributions Sobolev Spaces The Test Functions Space $\mathcal{D}(:$ Definition of a Distribution L^1_{loc} as a subset of \mathcal{D}' Operations on Distributions History repeats itself

III.2.3. L_{loc}^1 as a subset of \mathcal{D}'

From functions to Distributions

Definition III.2.6

The **regular distribution** associated to $f \in L^1_{loc}(\mathcal{I})$ is defined by:

$$\mathcal{T}_f: \phi \in \mathcal{D}(\mathcal{I}) \longmapsto \int_{\mathcal{I}} f(x)\phi(x) dx$$

From functions to Distributions

Definition III.2.6

The **regular distribution** associated to $f \in L^1_{loc}(\mathcal{I})$ is defined by:

$$\mathcal{T}_f: \phi \in \mathcal{D}(\mathcal{I}) \longmapsto \int_{\mathcal{I}} f(x)\phi(x) dx$$

Not all distributions are regular distributions. (e.g. Dirac)

From functions to Distributions

Definition III.2.6

The **regular distribution** associated to $f \in L^1_{loc}(\mathcal{I})$ is defined by:

$$\mathcal{T}_f: \phi \in \mathcal{D}(\mathcal{I}) \longmapsto \int_{\mathcal{I}} f(x)\phi(x) dx$$

Not all distributions are regular distributions. (e.g. Dirac)

Theorem III.2.7

This mapping is injective

$$\mathcal{T}_{\cdot}: L^1_{loc}(\mathcal{I}) \rightarrow \mathcal{D}'(\mathcal{I})$$
 $f \mapsto \mathcal{T}_f$

All functions of $L^1_{loc}(\mathcal{I})$ can be represented by their associated regular distribution \mathcal{T}_f .

The Test Functions Space $\mathcal{D}(2)$ Definition of a Distribution L^1_{loc} as a subset of \mathcal{D}' Operations on Distributions History repeats itself

We can identify $L^1_{loc}(\mathcal{I})$ as a subset of $\mathcal{D}'(\mathcal{I})$. (This subset being the set of regular distributions)

The Test Functions Space $\mathcal{D}(:$ Definition of a Distribution L^1_{loc} as a subset of \mathcal{D}' Operations on Distributions History repeats itself

We can identify $L^1_{loc}(\mathcal{I})$ as a subset of $\mathcal{D}'(\mathcal{I})$. (This subset being the set of regular distributions)

Thus:

$$L^1_{loc}(\mathcal{I}) \subset \mathcal{D}'(\mathcal{I})$$

We will note $\langle f, \varphi \rangle$ instead of $\langle \mathcal{T}_f, \varphi \rangle$.

The Test Functions Space \mathcal{D} l Definition of a Distribution L^1_{loc} as a subset of \mathcal{D}' Operations on Distributions History repeats itself

We can identify $L^1_{loc}(\mathcal{I})$ as a subset of $\mathcal{D}'(\mathcal{I})$. (This subset being the set of regular distributions)

Thus:

$$L^1_{loc}(\mathcal{I}) \subset \mathcal{D}'(\mathcal{I})$$

We will note $\langle f, \varphi \rangle$ instead of $\langle \mathcal{T}_f, \varphi \rangle$.

Note:

The Test Functions Space $\mathcal{D}($ Definition of a Distribution L^1_{loc} as a subset of \mathcal{D}' Operations on Distributions History repeats itself

We can identify $L^1_{loc}(\mathcal{I})$ as a subset of $\mathcal{D}'(\mathcal{I})$. (This subset being the set of regular distributions)

Thus:

$$L^1_{loc}(\mathcal{I}) \subset \mathcal{D}'(\mathcal{I})$$

We will note $\langle f, \varphi \rangle$ instead of $\langle \mathcal{T}_f, \varphi \rangle$.

Note:

 L^1_{loc} as a subset of \mathcal{D}'

We can identify $L^1_{loc}(\mathcal{I})$ as a subset of $\mathcal{D}'(\mathcal{I})$. (This subset being the set of regular distributions)

Thus:

$$L^1_{loc}(\mathcal{I}) \subset \mathcal{D}'(\mathcal{I})$$

We will note $\langle f, \varphi \rangle$ instead of $\langle \mathcal{T}_f, \varphi \rangle$.

Note: If
$$f \in L^2(\mathcal{I})$$

$$\langle f, \varphi \rangle = \int_I f \varphi$$

$$L^2(\mathcal{I}) \quad \mathcal{D}(\mathcal{I})$$

$$\downarrow_{loc}^1(\mathcal{I}) \quad L^2(\mathcal{I})$$

The is the inner product in $L^2(\mathcal{I})$ and the notations are consistent.

23/51

Introduction Distributions Sobolev Spaces The Test Functions Space $\mathcal{D}(\mathcal{I})$ Definition of a Distribution L^1_{loc} as a subset of \mathcal{D}' Operations on Distributions History repeats itself

III.2.4. Operations on Distributions

$$\langle Z, \varphi \rangle = \langle T_1, \varphi \rangle + \langle T_2, \varphi \rangle$$

$$\langle Z, \varphi \rangle = \langle T_1, \varphi \rangle + \langle T_2, \varphi \rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = \langle T_1, \varphi + \lambda \psi \rangle + \langle T_2, \varphi + \lambda \psi \rangle$$

$$\langle Z, \varphi \rangle = \langle T_1, \varphi \rangle + \langle T_2, \varphi \rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = \langle T_1, \varphi \rangle + \lambda \langle T_1, \psi \rangle + \langle T_2, \varphi \rangle + \lambda \langle T_2, \psi \rangle$$

$$\langle Z, \varphi \rangle = \langle T_1, \varphi \rangle + \langle T_2, \varphi \rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = \langle T_1, \varphi \rangle + \langle T_2, \varphi \rangle + \lambda (\langle T_1, \psi \rangle + \langle T_2, \psi \rangle)$$

$$\langle Z, \varphi \rangle = \langle T_1, \varphi \rangle + \langle T_2, \varphi \rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = \langle Z, \varphi \rangle + \lambda \langle Z, \psi \rangle$$

Given two distributions T_1 and T_2 . Define Z by

$$\langle Z, \varphi \rangle = \langle T_1, \varphi \rangle + \langle T_2, \varphi \rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = \langle Z, \varphi \rangle + \lambda \langle Z, \psi \rangle$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ . $\langle Z, \varphi_n \rangle = \langle T_1, \varphi_n \rangle + \langle T_2, \varphi_n \rangle$

Since:
$$\lim_{n\to+\infty} \langle T_1, \varphi_n \rangle = \langle T_1, \varphi \rangle$$
 and

$$\lim_{n \to +\infty} \langle T_2, \varphi_n \rangle = \langle T_2, \varphi \rangle$$

We have:
$$\lim_{n\to+\infty}\langle Z,\varphi_n\rangle=\langle T_1,\varphi\rangle+\langle T_2,\varphi\rangle$$

$$\lim_{n\to+\infty} \langle Z, \varphi_n \rangle = \langle Z, \varphi \rangle$$

Sum of two distributions

Given two distributions T_1 and T_2 . Define Z by

$$\langle Z, \varphi \rangle = \langle T_1, \varphi \rangle + \langle T_2, \varphi \rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = \langle Z, \varphi \rangle + \lambda \langle Z, \psi \rangle$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ . $\langle Z, \varphi_n \rangle = \langle T_1, \varphi_n \rangle + \langle T_2, \varphi_n \rangle$

Since:
$$\lim_{n\to+\infty} \langle T_1, \varphi_n \rangle = \langle T_1, \varphi \rangle$$
 and

Since.
$$\lim_{n\to+\infty} \langle T_1, \varphi_n \rangle = \langle T_1, \varphi \rangle$$
 and $\lim_{n\to+\infty} \langle T_2, \varphi_n \rangle = \langle T_2, \varphi \rangle$

We have:
$$\lim_{n\to+\infty} \langle Z, \varphi_n \rangle = \langle T_1, \varphi \rangle + \langle T_2, \varphi \rangle$$

$$\lim_{n\to+\infty}\langle Z,\varphi_n\rangle=\langle Z,\varphi\rangle$$

Therefore Z is a distribution.

Sum of two distributions

Given two distributions T_1 and T_2 . Define $T_1 + T_2$ by

$$\langle T_1 + T_2, \varphi \rangle = \langle T_1, \varphi \rangle + \langle T_2, \varphi \rangle$$

Linearity:
$$\langle T_1 + T_2, \varphi + \lambda \psi \rangle = \langle T_1 + T_2, \varphi \rangle + \lambda \langle T_1 + T_2, \psi \rangle$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

$$\langle T_1 + T_2, \varphi_n \rangle = \langle T_1, \varphi_n \rangle + \langle T_2, \varphi_n \rangle$$

Since:
$$\lim_{n\to+\infty} \langle T_1, \varphi_n \rangle = \langle T_1, \varphi \rangle$$
 and

$$\lim_{n\to+\infty} \langle T_2, \varphi_n \rangle = \langle T_2, \varphi \rangle$$

We have:

$$\lim_{n \to +\infty} \langle T_1 + T_2, \varphi_n \rangle = \langle T_1, \varphi \rangle + \langle T_2, \varphi \rangle$$

$$\lim_{n \to +\infty} \langle T_1 + T_2, \varphi_n \rangle = \langle T_1 + T_2, \varphi \rangle$$

Therefore $T_1 + T_2$ is a distribution.

It extends the sum of L^1_{loc} since $\mathcal{T}_{f_1+f_2}=\mathcal{T}_{f_1}+\mathcal{T}_{f_2}.$

Given two distributions T_1 and T_2 . Can we define $T_1 \times T_2$ by

$$\langle T_1 \times T_2, \varphi \rangle = \langle T_1, \varphi \rangle \ \langle T_2, \varphi \rangle$$

Given two distributions T_1 and T_2 . Can we define $T_1 \times T_2$ by

$$\langle T_1 \times T_2, \varphi \rangle = \langle T_1, \varphi \rangle \ \langle T_2, \varphi \rangle$$

Linearity:
$$\langle T_1 \times T_2, \varphi + \lambda \psi \rangle$$

= $\langle T_1, \varphi + \lambda \psi \rangle \langle T_2, \varphi + \lambda \psi \rangle$

Given two distributions T_1 and T_2 . Can we define $T_1 \times T_2$ by

$$\langle T_1 \times T_2, \varphi \rangle = \langle T_1, \varphi \rangle \ \langle T_2, \varphi \rangle$$

Linearity:
$$\langle T_1 \times T_2, \varphi + \lambda \psi \rangle$$

 $= \langle T_1, \varphi + \lambda \psi \rangle \langle T_2, \varphi + \lambda \psi \rangle$
 $= \langle T_1, \varphi \rangle \langle T_2, \varphi \rangle$
 $+ \lambda \langle T_1, \varphi \rangle \langle T_2, \psi \rangle \lambda \langle T_1, \psi \rangle \langle T_2, \varphi \rangle$
 $+ \lambda^2 \langle T_2, \psi \rangle \langle T_2, \psi \rangle$

Given two distributions T_1 and T_2 . Can we define $T_1 \times T_2$ by

$$\langle T_1 \times T_2, \varphi \rangle = \langle T_1, \varphi \rangle \ \langle T_2, \varphi \rangle$$

Linearity:
$$\langle T_1 \times T_2, \varphi + \lambda \psi \rangle$$

$$= \langle T_1, \varphi + \lambda \psi \rangle \langle T_2, \varphi + \lambda \psi \rangle$$

$$= \langle T_1, \varphi \rangle \langle T_2, \varphi \rangle$$

$$+ \lambda \langle T_1, \varphi \rangle \langle T_2, \psi \rangle \lambda \langle T_1, \psi \rangle \langle T_2, \varphi \rangle$$

$$+ \lambda^2 \langle T_2, \psi \rangle \langle T_2, \psi \rangle$$

Ooops! It does not work!

We can't define the product of two distributions this way!

Given two distributions T_1 and T_2 . Can we define $T_1 \times T_2$ by

$$\langle T_1 \times T_2, \varphi \rangle = \langle T_1, \varphi \rangle \ \langle T_2, \varphi \rangle$$

Linearity:
$$\langle T_1 \times T_2, \varphi + \lambda \psi \rangle$$

$$= \langle T_1, \varphi + \lambda \psi \rangle \langle T_2, \varphi + \lambda \psi \rangle$$

$$= \langle T_1, \varphi \rangle \langle T_2, \varphi \rangle$$

$$+ \lambda \langle T_1, \varphi \rangle \langle T_2, \psi \rangle \lambda \langle T_1, \psi \rangle \langle T_2, \varphi \rangle$$

$$+ \lambda^2 \langle T_2, \psi \rangle \langle T_2, \psi \rangle$$

Ooops! It does not work!

We can't define the product of two distributions this way! ... Which is too bad because it was the extension of the product of \mathcal{L}^1_{loc} .

$$\langle Z, \varphi \rangle = \langle T, h\varphi \rangle$$

$$\langle Z,\varphi\rangle=\langle T,h\varphi\rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = \langle T, h(\varphi + \lambda \psi) \rangle$$

$$\langle Z, \varphi \rangle = \langle T, h\varphi \rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = \langle T, h\varphi + \lambda h\psi \rangle$$

$$\langle Z,\varphi\rangle=\langle T,h\varphi\rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = \langle T, h\varphi \rangle + \lambda \langle T, h\psi \rangle$$

$$\langle Z,\varphi\rangle=\langle T,h\varphi\rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = \langle Z, \varphi \rangle + \lambda \langle Z, \psi \rangle$$

Given a distributions T and a function $h \in C^{\infty}(I)$. Define Z by

$$\langle \mathbf{Z}, \varphi \rangle = \langle \mathbf{T}, \mathbf{h} \varphi \rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = \langle Z, \varphi \rangle + \lambda \langle Z, \psi \rangle$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

$$\langle Z, \varphi_n - \varphi \rangle = \langle T, h(\varphi_n - \varphi) \rangle$$

We have $h\varphi \in \mathcal{D}(\mathcal{I})$

Thus
$$(h(\varphi^n - \varphi))^{(m)} = \sum_{i=0}^m \binom{i}{m} h^{(m-i)} (\varphi_n^{(i)} - \varphi^{(i)})$$

Therefore
$$\lim_{n\to+\infty}^{\mathcal{D}(\mathcal{I})} h(\varphi^n - \varphi) = 0$$

Therefore
$$\lim_{n\to+\infty} \langle Z, \varphi_n \rangle = \langle Z, \varphi \rangle$$

Given a distributions T and a function $h \in C^{\infty}(I)$. Define Z by

$$\langle Z, \varphi \rangle = \langle T, h\varphi \rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = \langle Z, \varphi \rangle + \lambda \langle Z, \psi \rangle$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

$$\langle Z, \varphi_n - \varphi \rangle = \langle T, h(\varphi_n - \varphi) \rangle$$

We have $h\varphi\in\mathcal{D}(\mathcal{I})$

Thus
$$(h(\varphi^n - \varphi))^{(m)} = \sum_{i=0}^m \binom{i}{m} h^{(m-i)} (\varphi_n^{(i)} - \varphi^{(i)})$$

Therefore $\lim_{n\to+\infty}^{\mathcal{D}(\mathcal{I})} h(\varphi^n - \varphi) = 0$

Therefore $\lim_{n\to+\infty} \langle Z, \varphi_n \rangle = \langle Z, \varphi \rangle$

Therefore Z is a distribution.

Given a distributions T and a function $h \in C^{\infty}(I)$. Define hT by

$$\langle hT, \varphi \rangle = \langle T, h\varphi \rangle$$

Linearity:
$$\langle hT, \varphi + \lambda \psi \rangle = \langle hT, \varphi \rangle + \lambda \langle hT, \psi \rangle$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

$$\langle hT, \varphi_n - \varphi \rangle = \langle T, h(\varphi_n - \varphi) \rangle$$

We have $h\varphi\in\mathcal{D}(\mathcal{I})$

Thus
$$(h(\varphi^n - \varphi))^{(m)} = \sum_{i=0}^m \binom{i}{m} h^{(m-i)} (\varphi_n^{(i)} - \varphi^{(i)})$$

Therefore
$$\lim_{n\to+\infty}^{\mathcal{D}(\mathcal{I})} h(\varphi^n - \varphi) = 0$$

Therefore
$$\lim_{n\to+\infty} \langle hT, \varphi_n \rangle = \langle hT, \varphi \rangle$$

Therefore hT is a distribution.

It extends the product in \mathcal{C}^{∞} with \mathcal{L}^1_{loc} since $\mathcal{T}_{hf}=h\mathcal{T}_f$.

$$\langle Z, \varphi \rangle = - \langle T, \varphi' \rangle$$

$$\langle Z, \varphi \rangle = - \langle T, \varphi' \rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle$$

$$\langle Z, \varphi \rangle = - \langle T, \varphi' \rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = - \langle T, \varphi' + \lambda \psi' \rangle$$

$$\langle Z, \varphi \rangle = - \langle T, \varphi' \rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = -\langle T, \varphi' \rangle - \lambda \langle T, \psi' \rangle$$

$$\langle Z, \varphi \rangle = - \langle T, \varphi' \rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = \langle Z, \varphi \rangle + \lambda \langle Z, \psi \rangle$$

Given a distributions T, define Z by

$$\langle Z, \varphi \rangle = - \langle T, \varphi' \rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = \langle Z, \varphi \rangle + \lambda \langle Z, \psi \rangle$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

We have
$$\lim_{n\to+\infty} \langle Z, \varphi_n \rangle = \langle Z, \varphi \rangle$$

Given a distributions T, define Z by

$$\langle Z, \varphi \rangle = - \langle T, \varphi' \rangle$$

Linearity:
$$\langle Z, \varphi + \lambda \psi \rangle = \langle Z, \varphi \rangle + \lambda \langle Z, \psi \rangle$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

We have
$$\lim_{n \to +\infty} \langle Z, \varphi_n \rangle = \langle Z, \varphi \rangle$$

Therefore Z is a distribution.

Given a distributions T, define T' by

$$\langle T', \varphi \rangle = - \langle T, \varphi' \rangle$$

Linearity:
$$\langle T', \varphi + \lambda \psi \rangle = \langle T', \varphi \rangle + \lambda \langle T', \psi \rangle$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

We have
$$\lim_{n\to+\infty} \langle T', \varphi_n \rangle = \langle T', \varphi \rangle$$

Therefore T' is a distribution.

Using the integration by parts, this is an extension of the differentiation of the differentiable functions of L_{loc}^1

$$\langle \mathcal{T}_{f'}, \varphi \rangle = \int_I f' \varphi$$

Given a distributions T, define T' by

$$\langle T', \varphi \rangle = - \langle T, \varphi' \rangle$$

Linearity:
$$\langle T', \varphi + \lambda \psi \rangle = \langle T', \varphi \rangle + \lambda \langle T', \psi \rangle$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

We have
$$\lim_{n\to+\infty} \langle T', \varphi_n \rangle = \langle T', \varphi \rangle$$

Therefore T' is a distribution.

Using the integration by parts, this is an extension of the differentiation of the differentiable functions of L^1_{loc}

$$\langle \mathcal{T}_{f'}, \varphi \rangle = \int_{I} f' \varphi = 0 - \int_{I} f \varphi'$$

Given a distributions T, define T' by

$$\langle T', \varphi \rangle = - \langle T, \varphi' \rangle$$

Linearity:
$$\langle T', \varphi + \lambda \psi \rangle = \langle T', \varphi \rangle + \lambda \langle T', \psi \rangle$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

We have
$$\lim_{n\to+\infty} \langle T', \varphi_n \rangle = \langle T', \varphi \rangle$$

Therefore T' is a distribution.

Using the integration by parts, this is an extension of the differentiation of the differentiable functions of L_{loc}^1

$$\langle \mathcal{T}_{f'}, \varphi \rangle = - \langle \mathcal{T}_f, \varphi' \rangle$$

Given a distributions T, define T' by

$$\langle T', \varphi \rangle = - \langle T, \varphi' \rangle$$

Linearity:
$$\langle T', \varphi + \lambda \psi \rangle = \langle T', \varphi \rangle + \lambda \langle T', \psi \rangle$$

Continuity: Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}(\mathcal{I})$ converging to φ .

We have
$$\lim_{n\to+\infty} \langle T', \varphi_n \rangle = \langle T', \varphi \rangle$$

Therefore T' is a distribution.

Using the integration by parts, this is an extension of the differentiation of the differentiable functions of L^1_{loc}

$$\langle \mathcal{T}_{f'}, \varphi \rangle = \langle \mathcal{T'}_f, \varphi \rangle$$

Consider the Heaviside function $H_0=\mathbf{1}_{\mathbb{R}^+}\in L^1_{loc}(\mathbb{R}).$

Consider the Heaviside function $H_0 = \mathbf{1}_{\mathbb{R}^+} \in L^1_{loc}(\mathbb{R})$.

This function is not differentiable in 0.

Consider the Heaviside function $H_0 = \mathbf{1}_{\mathbb{R}^+} \in L^1_{loc}(\mathbb{R})$.

This function is not differentiable in 0.

$$\forall \varphi \in \mathcal{D}(\mathbb{R}), \ \left\langle \left(T_{H_0}\right)', \varphi \right\rangle = -\left\langle T_{H_0}, \varphi' \right\rangle$$

Consider the Heaviside function $H_0 = \mathbf{1}_{\mathbb{R}^+} \in L^1_{loc}(\mathbb{R})$.

This function is not differentiable in 0.

$$\forall \varphi \in \mathcal{D}(\mathbb{R}), \ \left\langle \left(T_{H_0}\right)', \varphi \right\rangle = -\int_{\mathbb{R}} \mathbf{1}_{\mathbb{R}^+} \varphi'$$

Consider the Heaviside function $H_0 = \mathbf{1}_{\mathbb{R}^+} \in L^1_{loc}(\mathbb{R})$.

This function is not differentiable in 0.

$$\forall \varphi \in \mathcal{D}(\mathbb{R}), \ \left\langle \left(T_{H_0}\right)', \varphi \right\rangle = -\int_0^{+\infty} \varphi'(x) \mathrm{d}x$$

Consider the Heaviside function $H_0 = \mathbf{1}_{\mathbb{R}^+} \in L^1_{loc}(\mathbb{R})$.

This function is not differentiable in 0.

$$\forall \varphi \in \mathcal{D}(\mathbb{R}), \ \left\langle \left(T_{H_0}\right)', \varphi \right\rangle = \varphi(0)$$

Consider the Heaviside function $H_0=\mathbf{1}_{\mathbb{R}^+}\in L^1_{loc}(\mathbb{R}).$

This function is not differentiable in 0.

$$\forall \varphi \in \mathcal{D}(\mathbb{R}), \ \left\langle \left(T_{H_0}\right)', \varphi \right\rangle = \left\langle \delta_0, \varphi \right\rangle.$$

Consider the Heaviside function $H_0=\mathbf{1}_{\mathbb{R}^+}\in L^1_{loc}(\mathbb{R}).$

This function is not differentiable in 0.

We can expect its distributional derivative (T'_{H_0}) not to be a regular distribution.

$$\forall \varphi \in \mathcal{D}(\mathbb{R}), \ \left\langle \left(T_{H_0}\right)', \varphi \right\rangle = \left\langle \delta_0, \varphi \right\rangle.$$

Conclusion: $T'_{H_0} = \delta_0$.

Consider the Heaviside function $H_0=\mathbf{1}_{\mathbb{R}^+}\in L^1_{loc}(\mathbb{R}).$

This function is not differentiable in 0.

We can expect its distributional derivative (T'_{H_0}) not to be a regular distribution.

$$\forall \varphi \in \mathcal{D}(\mathbb{R}), \ \left\langle \left(T_{H_0}\right)', \varphi \right\rangle = \left\langle \delta_0, \varphi \right\rangle.$$

Conclusion: $T'_{H_0} = \delta_0$. Remark: $T'_{2H_0-1} = 2\delta_0$.

Proposition III.2.8

Let $a, b \in \mathbb{R} \cup \{\pm \infty\}$, a < b. If $f \in L^1_{loc}(a, b)$ is differentiable [a, b[and $f' \in L^1_{loc}(a, b)$ then $\mathcal{T}_{f'} = (\mathcal{T}_f)'$.

Theorem III.2.9 (Jumps formula)

Let $\mathcal{I} =]a_0, a_{k+1}[$ and $f \in C^1_{piecewise}(\mathcal{I}).$

Let $a_1 < \ldots < a_k$ be the points where f is not continuous. Then

$$(\mathcal{T}_f)' = \mathcal{T}_{f'} + \sum_{i=1}^k (f(a_i^+) - f(a_i^-))\delta_{a_i},$$

where f' is the derivative of the restriction of f to each sub-interval $a_i, a_{i+1}, 0 \le i \le k$.

Introduction Distributions Sobolev Spaces The Test Functions Space $\mathcal{D}(\mathcal{I})$ Definition of a Distribution \mathcal{L}_{loc}^1 as a subset of \mathcal{D}' Operations on Distributions History repeats itself

III.2.5. History repeats itself

The Test Functions Space $\mathcal{D}(2)$ Definition of a Distribution L^1_{loc} as a subset of \mathcal{D}' Operations on Distributions History repeats itself

Let us consider $Z = \mathbb{R}^2$.

Let us consider $Z = \mathbb{R}^2$.

For any
$$x\in\mathbb{R}$$
 define $J(x)=(x,0).$ It is an injection. We say
$$\mathbb{R}\subset Z$$

Let us consider $Z = \mathbb{R}^2$.

For any
$$x \in \mathbb{R}$$
 define $J(x) = (x,0)$. It is an injection. We say $\mathbb{R} \subset Z$

Define

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_1) \times (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$

Let us consider $Z = \mathbb{R}^2$.

For any
$$x\in\mathbb{R}$$
 define $J(x)=(x,0).$ It is an injection. We say $\mathbb{R}\subset Z$

Define

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_1) \times (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$

We have

$$J(x_1 + x_2) = J(x_1) + J(x_2)$$

$$J(x_1x_2) = J(x_1)J(x_2)$$

Let us consider $Z = \mathbb{R}^2$.

For any
$$x\in\mathbb{R}$$
 define $J(x)=(x,0).$ It is an injection. We say $\mathbb{R}\subset Z$

Define

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_1) \times (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$

We have

$$J(x_1 + x_2) = J(x_1) + J(x_2)$$

$$J(x_1x_2) = J(x_1)J(x_2)$$

The operations + and \times in Z extend the operations + and \times if for the elements of Z that are (represented) in \mathbb{R} .

Let us consider $\mathbb{C} = \mathbb{R}^2$.

For any
$$x\in\mathbb{R}$$
 define $J(x)=(x,0).$ It is an injection. We say $\mathbb{R}\subset\mathbb{C}$

Define

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_1) \times (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$

We have

$$J(x_1 + x_2) = J(x_1) + J(x_2)$$

$$J(x_1x_2) = J(x_1)J(x_2)$$

The operations + and \times in $\mathbb C$ extend the operations + and \times if for the elements of $\mathbb C$ that are (represented) in $\mathbb R$.

Let us consider $\mathbb{C} = \mathbb{R}^2$.

For any
$$x\in\mathbb{R}$$
 define $J(x)=(x,0).$ It is an injection. We say $\mathbb{R}\subset\mathbb{C}$

Define

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_1) \times (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$

We have

$$J(x_1 + x_2) = J(x_1) + J(x_2)$$

$$J(x_1x_2) = J(x_1)J(x_2)$$

The operations + and \times in \mathbb{C} extend the operations + and \times if for the elements of \mathbb{C} that are (represented) in \mathbb{R} . From now on, we will use the **notation** x + iy for (x, y).

What we did today

Let us consider $D'(\mathcal{I})$.

For any $f \in L^1_{loc}(\mathcal{I})$ define $\mathcal{T}_{\cdot}(f) = \mathcal{T}_f$. It is an injection. We say

$$L^1_{loc}(\mathcal{I}) \subset D'(\mathcal{I})$$

Define

$$T_1 + T_2$$
 by $\langle T_1 + T_2, \varphi \rangle = \langle T_1, \varphi \rangle + \langle T_2, \varphi \rangle$
 T' by $\langle T', \varphi \rangle = -\langle T, \varphi' \rangle$

For a function f in $L^1_{loc}(\mathcal{I})$ we have

$$\mathcal{T}_{\cdot}(f_1+f_2)=\mathcal{T}_{\cdot}(f_1)+\mathcal{T}_{\cdot}(f_2).$$

$$\mathcal{T}_{\cdot}(f') = \mathcal{T}_{\cdot}(f)'$$
.

The operations + and the differentiation in $D'(\mathcal{I})$ extend the operations + and the differentiation for the elements of $D'(\mathcal{I})$ that are (represented) in $L^1_{loc}(\mathcal{I})$.

$\mathbb{R} \subset \mathbb{C}$ and $L^1_{loc} \subset D'(\mathcal{I})$

Every element now has square roots.

Extended: + and \times .

Lost: the order relation \leq compatible with + and \times .

$$L^1_{loc} \subset D'(\mathcal{I})$$

Every element can now be differentiated.

Extended: +, the product with a C^{∞} function, the differentiation.

Lost: \times and possibly other operations. Already lost: the value of T at a point.

Definitions and Basic Propertie: Regularity Trace $\mathcal{H}_0^1(\mathcal{I})$

III.3. Sobolev Spaces

Introduction Distributions Sobolev Spaces Definitions and Basic Properties Regularity Trace $H_0^1(\mathcal{I})$

III.3.1. Definitions and Basic Properties

Definition of $H^1(\mathcal{I})$

Definition III.3.1

The Sobolev space of order 1 on \mathcal{I} is defined by

$$H^{1}(\mathcal{I}) := \left\{ v \in L^{2}(\mathcal{I}) : (\mathcal{T}_{v})' \in L^{2}(\mathcal{I}) \right\}$$
$$:= \left\{ v \in L^{2}(\mathcal{I}) : v' \in L^{2}(\mathcal{I}) \right\}$$

where v' is the distributional derivative of v.

If $\mathcal{I} =]a, b[$ is a bounded interval, we note $H^1(\mathcal{I}) = H^1(a, b)$.

The $H^1(\mathcal{I})$ Hilbert space

Theorem III.3.2

The space $H^1(\mathcal{I})$ endowed with the inner product

$$(\cdot,\cdot)_{H^1}:\langle u,v\rangle\mapsto (u,v)_{L^2}+\langle u',v'\rangle_{L^2}.$$

is complete for the norm

$$\|\cdot\|_{H^{1}(\mathcal{I})}: v \mapsto \sqrt{\|v\|_{L^{2}(\mathcal{I})}^{2} + \|v'\|_{L^{2}(\mathcal{I})}^{2}}$$

It is a Hilbert Space.

Sobolev spaces of higher order

Theorem III.3.3

Let $k \in \mathbb{N}$. The space

$$H^{k}(\mathcal{I}) := \left\{ u \in L^{2}(\mathcal{I}) : u^{(m)} \in L^{2}(\mathcal{I}), \ 0 \leq m \leq k \right\}.$$

endowed with the inner product

$$(u,v) \mapsto \sum_{0 \le m \le k} \left\langle u^{(m)}, v^{(m)} \right\rangle_{L^{2}(\mathcal{I})}$$

is a Hilbert Space.

We note $H^0(\mathcal{I}) = L^2(\mathcal{I})$.

Introduction Distributions Sobolev Spaces Definitions and Basic Properties Regularity Trace $H_0^1(\mathcal{I})$

To be continued on Tuesday, January 14th