

Toulouse Aeronautical Test Centre (CEAT)

« Fire Safety Department »

FIRE BEHAVIOUR OF STRUCTURAL COMPOSITE MATERIALS

Serge LE NEVE

E-mail: Serge.le-neve@dga.defense.gouv.fr

CEAT / Fire Safety Department

FIRE BEHAVIOUR OF STRUCTURAL **COMPOSITE MATERIALS**

- → Development of Hidden Fire Source
- → Burnthrough, Smoke & Toxicity of structural composite materials

DGAC CEAT AIRBUS

→ Reminder of the full test program

FIRE BEHAVIOUR OF STRUCTURAL **COMPOSITE MATERIALS**

- ► Increase in the use of composite materials in new aircraft programs (structural applications and fuselages)
- ☐ The use of composite structures has been increased because of the advantages composites offer over metal
- ☐ Boeing 787 or Airbus 350 will have about 50 % of the structural weight including wings and fuselage

- ☐ Currently, there is no fire requirement on composite materials used outside the cabin, cargo compartment and fire zones
 - → The aircraft manufacturer are required to demonstrate that polymer structural composites provide an equivalent safety level to the current material (aluminium alloy)

FIRE BEHAVIOUR OF STRUCTURAL **COMPOSITE MATERIALS**

MANY TESTS HAVE BEEN DEVELOPPED FOR FIRE SAFETY **REQUIREMENTS**

> **CABINE LAYOUT HIDDEN AREA** CARGO COMPARTMENTS FIRE AREAS or POWERPLANT INSTALLATIONS

works will allow to determine if the current aeronautical fire tests are sufficient to assess the fire behaviour of structural composite materials

FIRE BEHAVIOUR OF STRUCTURAL **COMPOSITE MATERIALS**

TEST PROGRAM

▶ To assess the fire behaviour of structural composite materials faced with the following threats:

In-flight thermal damaging

- ►Hidden fire damaging
- ►Electric arc effects
- **▶**Check the residual mechanical properties

Post-crash fire effects

- ►Burnthrough behaviour
- Environmental effects on cabin side (smoke / toxicity / heat release)

FIRE BEHAVIOUR OF STRUCTURAL COMPOSITE MATERIALS

▶FIRE TEST MEANS TO BE DEVELOPED

To define or adapt various specific test means & procedures

- Hidden Fire source (development of the test mean in progress / fire scenario to be defined)
- Burnthrough smoke box test (in progress)
- Under load fire test (mean test and method to be defined)
- Electric arc effects (method to be defined)

FIRE BEHAVIOUR OF STRUCTURAL COMPOSITE MATERIALS

▶TESTS

▶ Following the development of the new test means & test methods, all the following tests will be performed on each kind of composite materials

Standard tests

- Bunsen burner test (FAR 25.853)
- OSU test chamber (Heat Release) (FAR 25.853)
- NBS test chamber (Smoke / Toxicity) (FAR 25.853 / ABD0031)
- Cone calorimeter (7,5 & 10 W/cm²)

New tests

- Exposure to the hidden fire source
 - + NDI & mechanical tests
- Under load fire tests (hidden fire source)
- Burnthrough smoke box tests
- Electrical arc effect

► Comparison of all the test results will be made to determine if the current tests are relevant to characterize the fire behaviour of composite materials

BURNTHROUGH SMOKE & TOXICITY STRUCTURAL COMPOSITE MATERIALS

Burnthrough, Smoke & Toxicity of Structural Composite Materials

Burnthrough / Smoke box

- A small scale test was developed by the CEAT in 1996 to assess the fire behaviour of thermal insulation blankets.
- Many tests were carried out on assemblies including aluminium skin & insulation blankets which gave a good repeatability on burnthrough time, smoke density and toxicity.

In 2002, this test device was widely used to assess the fire behaviour of GLARE (Glass-Epoxy / Aluminium composite) for fuselage skin (partially used on A380).

Burnthrough, Smoke & Toxicity of Structural Composite Materials

Burnthrough / Smoke box

- Smoke box size: 1,2m³
- Burner configuration in accordance with the burnthrough test requirements (App F Part VI)
- Photometer system (= NBS test chamber)
- FTIR gas analyzer & gas sampling (=> IC or colorimetric analysis)
- Test sample is fitted on the outer side of the specimen holder to avoid that the released smoke from the edges of the sample penetrates inside the smoke box

<u>Test samples</u>: Smoke box window = 500 mm x 500 mm

(tests sample: 600 mm x 600 mm)

Materials / configurations to be tested

Various materials will be tested civil / military applications for airplane or helicopter

- → Various resins, fibbers, thicknesses, with & without honeycomb
- → Tests will be carried out on assemblies "composite / insulation blanket / wall panel"

▶ Toxicity

Species to be analysed

Gas Component		
Carbon monoxide/dioxide	CO / CO ₂	▶ FTIR
Oxides of nitrogen	$NO_x (NO + NO_2)$	▶FTIR
Sulphur dioxide	SO ₂	▶ FTIR
Hydrogen fluoride	HF	
Hydrogen bromide	HBr	▶?
Hydrogen chloride	HCl	▶FTIR
Hydrogen cyanide	HCN	▶FTIR
Hydrogen sulphide	H ₂ S	
Ammonia	NH ₃	▶FTIR
Phenol	C ₆ H ₅ OH	▶?

▶ Choice of the species results from :

- effect on Toxicity Index (recent works from a NATO working group on standardization of the fire test methods for naval ships)
- Our capabilities ...

Burnthrough, Smoke & Toxicity of Structural Composite Materials

Tests on aluminium plates

CEAT / Fire Safety Department

Burnthrough, Smoke & Toxicity of Structural Composite Materials

- Composite materials / Test procedure
 - Burner settings: Calibration in accordance with the burnthrough test requirements
 - Test duration: 5mn
 - Gas analysis: FTIR & sampling (90s 4 mn & 5 mn)

Burnthrough, Smoke & Toxicity of Structural Composite Materials

- Preliminary tests were carried out on various small specimens (window box: 400 mm x 250 mm)
 - → Composite: carbon epoxy (M18-1/G939)+ NOMEX honeycomb Total thickness: 11.5 mm. (Resin 180)

▶ Outer face

▶ Inner face

▶ After test

Burnthrough, Smoke & Toxicity of Structural Composite Materials

Smoke Opacity

- ► Smoke release started at 40s
- ► The majority of the loss of visibility happened before the 90s

(But the gas concentration is higher than in a real case)

Burnthrough, Smoke & Toxicity of Structural Composite Materials

- Development tests were carried out on various large specimens (window box : 500 mm x 500 mm)
 - → Composite : Glass Epoxy S8VE3 30/R367F / NOMEX Honeycomb (Resin 120)

► Inner face – After test

▶ Outer face – After test

RÉPUBLIQUE FRANÇAISE

Burnthrough, Smoke & Toxicity of Structural Composite Materials

Smoke Opacity

Burnthrough, Smoke & Toxicity of Structural Composite Materials

→ Composite: Carbon - Epoxy T300/914 - 16 plies - Thickness: 2,5 mm (Resin 180)

► Inner face – After test

► Inner face – After test

▶ Outer face – After test

Burnthrough, Smoke & Toxicity of Structural Composite Materials

Smoke Opacity

- ▶ Smoke release started very early ~ 15 s
- ▶ But the total smoke release was not very high

Burnthrough, Smoke & Toxicity of Structural Composite Materials

▶ Before test

- → Composite:
 - → Carbon Epoxy T300/914 16 plies Thickness : 2,5 mm (Resin 180)
 - → Thermal acoustic insulation : (Microlite, Nextel + térul 18)

▶ Development tests

► After test

▶ Inner side

▶ Thermal insulation removed

▶ Outer side

▶ Development tests

Smoke Opacity

Development tests

Toxicity results

- ▶ few species are currently analysed by FTIR
- **▶** Some differences between FTIR & gas sample analyses
- ▶ need to buy other standard gas mixtures
- ▶ need to improve the procedure of measurement

CEAT / Fire Safety Department

IAMFTWorking Group / Atlantic City / October 08

Diapositive N°25 / 48

Smoke Opacity: Comparison with NBS criteria (Max Specific Density (Dm) = 200

▶ Due to the limitation of the photometric system and to the scale factor, it will not be possible to compare the smoke opacity with the NBS criteria (Specific Density < 200)

$$A =$$
exposed specimen area

$$V = \text{chamber volume}$$

$$L = light path length$$

$$D_m = (V/LA)\log_{10}(100/T_m)$$

Test	Exposed Area		Test Chamber Vol	Light Path Lenght	Dm at 0,5% of Light Transmittance
Smoke Box	Small Size	400mm x 250mm	1,2m3	1m	27,6
Smoke Box	Regular Size	500mm x 500mm	1,2m3	1m	11
NBS Requirement					200
NBS	Standard	65mm x 65mm	0,510m3	0,914m	300

► Smoke Toxicity: Comparison with NBS toxicity requirements Scale Factors

Gas concentration in the CEAT smoke box is 25 more than in the NBS test chamber

Scale factors:

 $\mathbf{k} = (\mathbf{S}_{NRS}/\mathbf{S}_{SR}) \times (\mathbf{V}_{SR}/\mathbf{V}_{NRS})$

• small test sample : k = 1/10

• regular test sample : k = 1/25

NBS test chamber:

• Volume of the test chamber : $V_{NBS} = 0.510 \text{ m}3$

• Exposed area of the test sample : $S_{NBS} = 0.00424 \text{ m}^2$

NBS test chambre	Corrected requirements ABD
ABD0031	→ Smoke Box (ppm)
requirements	

(ppmm) Small sample / Regular sample 10 000 CO Carbone monoxyde 1 000 25 000 **NOx** 1 000 Oxides of nitrogen 100 2 500 (NO+NO2)100 SO₂ Sulphur dioxide 1 000 2 500 1 000 100 HF Hydrogen fluoride 2 500 **HBr** Hydrogen bromide 1 500 Hydrogen chloride 150 HCl 3 750 1 500 **HCN** Hydrogen cyanide 150 3 750 H2S Hydrogen sulphide NH3 **Amonia** C6H5OH Phenol

Burnthrough smoke box:

▶ Volume of the smoke box : $V_{SB} = 1.2 \text{ m}$ 3

▶ Exposed area of the test samples :

• 400mm x 250mm : $S_{SB} = 0.1 \text{ m}^2$

• 500mm x 500mm : $S_{SB} = 0.25 \text{ m}^2$

► Smoke Toxicity: Comparison with FAA smoke box Scale Factor

Gas concentration in the CEAT smoke box is 1.36 more than in the FAA test chamber

Ratio of Volume_{Box} to Burn Area_{Box} = $60.33 \text{ ft}^3 / 9.25 \text{ ft}^2 = 6.52$

Burnthrough smoke box:

- ► Volume of the smoke box : $V_{SR} = 1.2 \text{ m}$ 3
- \blacktriangleright Exposed area of the regular test sample :
 - •500mm x 500mm : $S_{SB} = 0.25 \text{ m}^2$

► Ratio of Volume to Exposed area = 4.80

▶ CONCLUSIONS & NEXT WORKS

- Not possible to easily compare the smoke densities from the BT smoke box test to the acceptance criteria from the NBS test chamber
- Scale factor has been determined to compare the toxic gas concentrations from the BT smoke box to the acceptance criteria from the NBS test chamber
- Scale factor has been determined to compare the toxic gas concentrations from the CEAT BT smoke box and from the FAA BT smoke box
- Few toxic species are currently analyzed (we need to buy other standard gas mixtures)
- We need to perform more tests on various materials to compare the FTIR gas analysis to the sampling gas analysis

Hidden Fire Source

DEVELOPMENTOF A REPEATABLE

HIDDEN FIRE SOURCE

Hidden Fire Source

► HIDDEN FIRE SOURCE

▶ What's the need?

- Repeatable fire source simulating a hidden fire :
 - > To expose the various composite test samples to various scenarios before mechanical tests
 - > To perform the under-load fire tests

Hidden Fire Source

► HIDDEN FIRE SOURCE

▶ SPECIFICATIONS

Assuming that the FAA foam block fire source is representative of a declared hidden fire :

- Heat Flux Density / T°: The flame characteristics must be similar to the flame produced by the FAA foam block
- Flame size : must be capable to produce an homogeneous damaged area compatible with the mechanical test specimens to be removed (area ~ 150 mm X 300 mm)

Hidden Fire Source

► Characterisation of the FAA foam block fire source

- 9 inches
- 6 inches
- 3 inches
- 2 inches

▶ Active time of burning : \geq 1mn

T° at 3 inches from the foam top

Foam 16kg/m3 + Heptane 10ml - Foam top to HF meter : 3 inches - 24/06/08

Hidden Fire Source

► Characterisation of the FAA foam block fire source

ightharpoonup T° ightharpoonup 650 to 700 °C

► Heat Flux Density ~ 4 to 5 W/cm²

]
Flux	
30'	Av HI
60'	
90'	

Max: 6,14 W/cm² 6,84 W/cm²

Av HF (W/cm²)	d = 2 inches	d = 3 inches	d = 6 inches	d = 9 inches
30"	4,35	5	4,33	1,60 to 3,90
60"	4,05	4,75	3,32	0,65 to 2
90"	3,01	3,44	2,4	0,60 to 1.5

RÉPUBLIQUE FRANÇAISE

CEAT / Fire Safety Department

IAMFTWorking Group / Atlantic City / October 08

Diapositive N°34 / 48

Hidden Fire Source

▶ ISO 2685 Gas Burner

Characterisation of the ISO flame

Heat flux Mapping (3 inches above the burner) (centre line (vertical impact position))

▶ Diameter = 152 mm

- **▶** ISO setting of the burner is too energetic (7,17 W/cm² / 1150 °C)
- ▶ Heat Flux is not homogeneous (very thin and high peak)

Hidden Fire Source

▶ ISO 2685 Gas Burner

Lowest energetic flame

► <u>Several settings were tested, the lowest energetic flame was</u>:

▶ Diameter = 152 mm

- ▶ The flame T° is too high (950 °C)
- **▶** The Heat Flux is not homogeneous

Hidden Fire Source

Simple experimental gas burner made with 5 bored tubes

Hidden Fire Source

Characterisation of the CEAT gas burner's flame

Flame characteristics are homogeneous & very close to the flame of the foam block

- ► Flame $T^{\circ} \simeq 750 \, ^{\circ}C$
- ► Heat Flux ~ 5,5 W/cm²

Hidden Fire Source

▶ T300 / 914 Epoxy Carbon and T300J or HTA / RTM6 Epoxy Carbon were used to compare the damages generated by the 2 fire sources (Foam block / Gas burner)

Surface exposed to the flame:

150 x 400 mm

Comparison of the damage tests: Foam block / Gas burner

▶ 2024 Aluminium plate was used as reference to determine the burnthrough time

Hidden Fire Source

Comparison of the damage tests: Foam block / Gas burner

► Foam block test / d = 3 inches (exposure time : 7 mn (complete burning of the foam))

► Gas burner test / d = 6 inches (exposure time : 1 mn 30 s) /

Hidden Fire Source

► CEAT Hidden Fire Source

Comparison of the damage tests: Foam block / Gas burner

▶ Foam block tests (exposure time: 7 mn (complete burning of the foam)) d = 3 inches

For both fire sources:

- ▶ Back side $T^{\circ} \simeq 250 / 300 \, ^{\circ}\text{C}$ (insulating effect of the delaminations)
- ▶ Profile rise T° are very similar until the first delaminations
- ▶ Gas burner tests : an after flame time ($\sim 20 \text{ s}$) was observed
- ▶ 45 s gas burner test shows the more similar profile of T°

► Gas burner tests (exposure time: 45 s to 1 mn 30 s) d = 6 inches

Rack side T° - Gas hurner test - 1 mn 15 s - T300/914 - 26/09/

Back side To - Gas hurner test - 1 mn 30s - T300/914 - 25/09/08

Hidden Fire Source

▶ T300 / 914 Epoxy Carbon

► Foam block tests (exposure time : 7 mm (complete burning of the foam))

Comparison of the damage tests: Foam block / Gas burner

► Non Destructive Investigation (Visual & Ultrasonic Phased Array Analysis)

Foam block tests:

• Destructive analyse showed more than 11 delaminated plies (composite plate was constituted of 16 plies)

CEAT hidden Fire Source tests:

• 45s fire test is closer than the others to the Foam block test

► Gas burner tests (exposure time : 45 s to 1 mn 30 s)

Hidden Fire Source

▶ T300 / 914 Epoxy Carbon (2.5 mm)

Duplication of the central image (maximum damage) of the foam block test

Comparison of the damage tests: Foam block / Gas burner

▶ Non Destructive Investigation

- ► Damages created by the foam block and the hidden fire sources are rather similar
- ► The hidden fire source seems a little more severe (black areas are totally delaminated)

Comparison of the damage tests:

Foam block / Gas burner **▶** Non Destructive Investigation

Hidden Fire Source

► CEAT Hidden Fire Source

► HTA / RTM6 Epoxy Carbon ("Sergé 2/2" weaving) (3.6 mm)

► T300J / RTM6 Epoxy Carbon ("Satin 4" weaving) (3.6 mm)

▶ hidden fire source is a little more severe

Hidden Fire Source

Back side T° (over 160°C)

Despite the differences shown by NDI, these curves show that the fire sources are probably quite similar.

► Should be possible to do better by modifying the burner settings

Hidden Fire Source

▶ 2024 Aluminium – 2 mm

Back side T° - 2024 Aluminium plate - 2mm (distance from the burner : 6 inches) - 29/09/08

Gas burner Damaging test on 2024 aluminium

Burnthrough time of a 2mm "2024 Aluminium plate"

7 mn 26 s

Burnthrough time: this fire source is probably very close to the FAA fire source used on wind tunnel test (FAA burnthrough time: 9 to 10 mn (thickness 3.175 mm (1/4 inch)):

• an estimation of the burnthrough time using our fire source on an aluminum plate of this thickness is in the same range.

Hidden Fire Source

▶ CONCLUSIONS

- The flame characteristics (T° / Heat Flux) of the gas burner and the FAA foam block fire sources are very close
- The damages generated on composite material (epoxy/carbon) by the CEAT's hidden fire source (exposure time: 45s (close to the duration of the active combustion of the foam block) and by the foam block fire source are rather similar
- The hidden fire source seems a little more severe. (should be easily corrected by modifications of the burner settings)
- Burnthrough of aluminum: The effect of the CEAT hidden Fire Source and the FAA fire source used for the wind tunnel fire test (under static conditions) are similar

Hidden Fire Source

▶ NEXT WORKS

- √ To define various scenarios of exposure to fire (from 45s (ignition stage) to a duration to be determined simulating a declared hidden fire)
- √ To define the test procedures for the under load fire test
- ✓ To run the fabrication of various composite materials
- √ To run the fire tests and mechanical characterisations.

Toulouse Aeronautical Test Centre (CEAT)

« Fire Safety Department »

FIRE BEHAVIOUR OF STRUCTURAL COMPOSITE MATERIALS

