ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики им. А.Н. Тихонова

Ефремов Виктор Васильевич, группа БИТ 203

Отчет по домашней работе 2

по дисциплине "Информатика"
Тема: "Математические основы вычислительной техники"

Номер варианта: 6 Дата сдачи отчета: 11.12.2020

Задание 1

Канал связи задан двумя распределениями: p(y/x) и p(x).

	$ x_1 $	x_2	x_3	x_4	x_5
p(x)	$\frac{4}{19}$	$\frac{6}{19}$	$\frac{4}{19}$	$\frac{2}{19}$	$\frac{3}{19}$

Таблица 1: p(x)

	y_1	y_2	y_3	y_4	y_5
x_1	$\frac{8}{9}$	$\frac{1}{9}$	0	0	0
x_2	$\frac{3}{18}$	$\frac{5}{18}$	$\frac{4}{18}$	0	$\frac{6}{18}$
x_3	0	0	$\frac{2}{8}$	0	<u>6</u> 8
x_4	$\frac{9}{29}$	$\frac{9}{29}$	$\frac{1}{29}$	$\frac{6}{29}$	$\frac{4}{29}$
x_5	0	0	$\frac{1}{16}$	$\frac{8}{16}$	$\frac{7}{16}$

Таблица 2: p(y/x)

Схематично нарисуем модель канала. Стрелки показывают что можно получить на приемнике при отправке определенного сообщения. Например, отправив x_1 можно получить либо y_1 , либо y_2 .

Для того чтобы найти взаимную информацию вспомним несколько формул.

$$I(x,y) = H(y) - H(y/x)$$

$$H(y) = -\sum_{j} p(y_j) \cdot log_2 p(y_j)$$

$$H(y/x) = -\sum_{i} \sum_{j} p(x_i, y_j) \cdot log_2 p(y_j/x_i)$$

$$p(y_j) = \sum_{i} p(x_i, y_j)$$
$$p(x, y) = p(x) \cdot p(y/x)$$

Для начала посчитаем p(x,y). Для этого нужно просто умножить каждый элемент матрицы p(y/x) на соответствующую вероятность p(x). Например $p(x_1,y_1) = p(x_1) \cdot p(y_1/x_1), p(x_1,y_2) = p(x_1) \cdot p(y_2/x_1)$.

	y_1	y_2	y_3	y_4	y_5
x_1	$\frac{32}{171}$	$\frac{4}{171}$	0	0	0
x_2	$\frac{18}{342}$	$\frac{30}{342}$	$\frac{24}{342}$	0	$\frac{36}{342}$
x_3	0	0	$\frac{8}{152}$	0	$\frac{24}{152}$
x_4	$\frac{18}{551}$	$\frac{18}{551}$	$\frac{2}{551}$	$\frac{12}{551}$	$\frac{8}{551}$
x_5	0	0	$\frac{3}{304}$	$\frac{24}{304}$	$\frac{21}{304}$

Таблица 3: p(x,y)

Найдем $p(y_j)$. Для этого нужно просто просуммировать элемнты каждого столбца матрицы p(x,y).

$$p(y_1) = \frac{32}{171} + \frac{18}{342} + 0 + \frac{18}{551} + 0 = \frac{1351}{4959}$$

$$p(y_2) = \frac{4}{171} + \frac{30}{342} + 0 + \frac{18}{551} + 0 = \frac{713}{4959}$$

$$p(y_3) = 0 + \frac{24}{342} + \frac{8}{152} + \frac{2}{551} + \frac{3}{304} = \frac{3605}{26448}$$

$$p(y_4) = 0 + 0 + 0 + \frac{12}{551} + \frac{24}{304} = \frac{111}{1102}$$

$$p(y_5) = 0 + \frac{36}{342} + \frac{24}{152} + \frac{8}{551} + \frac{21}{304} = \frac{3057}{8816}$$

Сделаем проверку. Сумма всех $p(y_i)$ должна быть равна единице, так как это полная группа событий.

$$\frac{1351}{4959} + \frac{713}{4959} + \frac{3605}{26448} + \frac{111}{1102} + \frac{3057}{8816} = 1$$

	y_1	y_2	y_3	y_4	y_5
p(y)	$\frac{1351}{4959}$	$\frac{713}{4959}$	$\frac{3605}{26448}$	$\frac{111}{1102}$	$\frac{3057}{8816}$

Таблица 4: p(y)

Посчитаем энтропию H(y).

$$H(y) = -\left(\frac{1351}{4959} \cdot log_2 \frac{1351}{4959} + \frac{713}{4959} \cdot log_2 \frac{713}{4959} + \frac{3605}{26448} \cdot log_2 \frac{3605}{26448} + \frac{111}{1102} \cdot log_2 \frac{111}{1102} + \frac{3057}{8816} \cdot log_2 \frac{3057}{8816}\right) \approx 2.1686847$$

Посчитаем энтропию H(y/x).

$$H(y/x) = -\left(\frac{32}{171} \cdot log_2\frac{8}{9} + \frac{4}{171} \cdot log_2\frac{1}{9} + 0 + 0 + 0 + \frac{18}{342} \cdot log_2\frac{3}{18} + \frac{30}{342} \cdot log_2\frac{5}{18} + \frac{24}{342} \cdot log_2\frac{4}{18} + 0 + \frac{36}{342} \cdot log_2\frac{6}{18} + 0 + 0 + \frac{8}{152} \cdot log_2\frac{2}{8} + 0 + \frac{24}{152} \cdot log_2\frac{6}{8} + \frac{18}{551} \cdot log_2\frac{9}{29} + \frac{18}{551} \cdot log_2\frac{9}{29} + \frac{2}{551} \cdot log_2\frac{1}{29} + \frac{12}{551} \cdot log_2\frac{6}{29} + \frac{8}{551} \cdot log_2\frac{4}{29} + 0 + 0 + \frac{3}{304} \cdot log_2\frac{1}{16} + \frac{24}{304} \cdot log_2\frac{8}{16} + \frac{21}{304} \cdot log_2\frac{7}{16}\right) \approx 1.3137435$$

Взяв разность найденных энтропий получим взаимную информацию.

$$I(x,y) \approx 2.1686847 - 1.3137435 \approx 0.8549412$$
 бит

Посмотрим что будет при другом распределении вероятностей над входным алфавитом. Чтобы отличать новые распределения от старых будем обозначать их \tilde{x} и \tilde{y} . Пусть все сообщения источника равновероятны, т.е. все $p(\tilde{x}_i)$ равны.

Таблица 5: $p(\tilde{x})$

Аналогично предыдущему посчитаем совместную информацию $I(\tilde{x}, \tilde{y})$. Посчитаем $p(\tilde{x}, \tilde{y})$.

	\widetilde{y}_1	$ ilde{y}_2$	$ ilde{y}_3$	\tilde{y}_4	\tilde{y}_5
\tilde{x}_1	$\frac{8}{45}$	$\frac{1}{45}$	0	0	0
\tilde{x}_2	$\frac{3}{90}$	$\frac{5}{90}$	$\frac{4}{90}$	0	$\frac{6}{90}$
\tilde{x}_3	0	0	$\frac{2}{40}$	0	$\frac{6}{40}$
\tilde{x}_4	$\frac{9}{145}$	$\frac{9}{145}$	$\frac{1}{145}$	$\frac{6}{145}$	$\frac{4}{145}$
\tilde{x}_5	0	0	$\frac{1}{80}$	$\frac{8}{80}$	$\frac{7}{80}$

Таблица 6: $p(\tilde{x}, \tilde{y})$

Посчитаем $p(\tilde{y})$.

Таблица 7: $p(\tilde{y})$

Посчитаем $H(\tilde{y})$.

$$H(\tilde{y}) = -\left(\frac{713}{2610} \cdot \log_2 \frac{713}{2610} + \frac{73}{522} \cdot \log_2 \frac{73}{522} + \frac{2377}{20880} \cdot \log_2 \frac{2377}{20880} + \frac{41}{290} \cdot \log_2 \frac{41}{290} + \frac{2309}{6960} \cdot \log_2 \frac{2309}{6960}\right) \approx 2.1923048$$

Посчитаем $H(\tilde{y}/\tilde{x})$.

Посчитаем $I(\tilde{x}, \tilde{y})$.

$$I(\tilde{x}, \tilde{y}) \approx 2.1923048 - 1.324153 \approx 0.8681518$$
 бит

Видно, что $I(\tilde{x},\tilde{y}) > I(x,y)$. Поэтому пропускная способность C канала из задачи не меньше $I(\tilde{x},\tilde{y}) \approx 0.8681518$. Но может быть и больше, т.к. $C = \max_{p(x)} I(x,y)$ и возможно найдется распределение источника дающее ещё большую совместную информацию.

Задание 2

Используем следующую таблицу встречаемости букв (взято в руссокой википедии).

Буква	Частота, %			
a	8.01			
б	1.59			
В	4.54			
Γ	1.70			
Д	2.98			
e	8.45			
ë	0.04			
Ж	0.94			
3	1.65			
И	7.35			
Й	1.21			
K	3.49			
Л	4.40			
M	3.21			
Н	6.70			
О	10.97			
П	2.81			
p	4.73			
c	5.47			
T	6.26			
У	2.62			
ф	0.26			
X	0.97			
Ц	0.48			
Ч	1.44			
Ш	0.73			
щ 0.36				
Ъ	0.04			
Ы	1.90			
Ь	1.74			
э 0.32				
Ю	0.64			
R	2.01			

Таблица 8: Встречаемость букв руссокго алфавита

Информация, которая содержится в последовательности, суть сумма информаций каждого символа, которые равны $-log_2p$. ФИО - ефремов виктор васильевич. Для удобства счета разобьем буквы по их количеству в сообщении. в - 4; е - 3; и, о, р - 2; а, к, л, м, с, т, ф, ч, ь.

Поэтому в моем ФИО содержится

```
I = - \left( 4 \cdot log_2 0.0454 + 3 \cdot log_2 0.0845 + 2 \cdot \left( log_2 h 0.0735 + log_2 0.01097 + log_2 0.0473 \right) + 1 \cdot \left( log_2 0.0801 + log_2 0.0349 + log_2 0.0440 + log_2 0.0321 + log_2 0.0547 + log_2 0.0626 + log_2 0.0026 + log_2 0.0144 + log_2 0.0174 \right) \right) \approx 104.586 \ \text{бит}
```

Если закодировать все то же ФИО равномерным двоичным кодом, то на каждый сивол уйдет по 6 бит, т.к. $2^5 < 33 \le 2^6$ и всего информации будет $6 \cdot 23 = 138$ бит.