第9章 统计模型

9.1 软件开发人员的薪金

数学建模的基本方法 机理分析 测试分析

由于客观事物内部规律的复杂及人们认识程度的限制, 无法分析实际对象内在的因果关系,建立合乎机理规 律的数学模型.

通过对数据的统计分析,找出与数据拟合最好的模型.

回归模型是用统计分析方法建立的最常用的一类模型.

- 不涉及回归分析的数学原理和方法.
- 通过实例讨论如何选择不同类型的模型.
- 对软件得到的结果进行分析,对模型进行改进.

数学模型

9.1 软件开发人员的薪金

建立模型研究薪金与资历、管理责任、教育程度的关系.

分析人事策略的合理性,作为新聘用人员薪金的参考.

46名软件开发人员的档案资料

编号	薪金	资历	管理	教育	编号	薪金	资历	管 理	教育
01	13876	1	1	1	42	27837	16	1	2
02	11608	1	0	3	43	18838	16	0	2
03	18701	1	1	3	44	17483	16	0	1
04	11283	1	0	2	45	19207	17	0	2
• • •	• • •	• • •	• • •	• • •	46	19346	20	0	1

资历~从事专业工作的年数;管理~1=管理人员,0=非管理人员;教育~1=中学,2=大学,3=更高程度.

分析与假设

 $y\sim$ 薪金, $x_1\sim$ 资历(年)

$x_2 = 1$ ~ 管理人员, $x_2 = 0$ ~ 非管理人员

教育
$$\mathbf{1}$$
=中学 $x_3 = \begin{cases} 1, & \text{中学} \\ 0, & \text{其他} \end{cases}$ 文章 $\mathbf{2}$ =大学

大学:
$$x_3=0, x_4=1$$
;
 $x_4=\begin{cases} 1, \ \text{大学} \\ 0, \ \text{其他} \end{cases}$ 更高: $x_3=0, x_4=0$

假设资历每加一年薪金的增长是常数: 且管理、教育、资历之间无交互作用.

线性回归模型
$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + \varepsilon$$

 $a_0, a_1, ..., a_4$ 是待估计的回归系数, ϵ 是随机误差

模型求解

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + \varepsilon$$

参数	参数估计值	置信区间
a_0	11033	[10258 11807]
a_1	546	[484 608]
a_2	6883	[6248 7517]
a_3	-2994	[-3826 -2162]
a_4	148	[-636 931]
$R^2 = 0.9$	9567 F=226	$p < 0.0001$ $s^2 = 10^6$

$R^2, F, p \rightarrow$ 模型整体上可用

 x_1 ~资历(年) 中学: $x_3=1, x_4=0$;

 $x_2 = 1 \sim$ 管理, 大学: $x_3 = 0, x_4 = 1$;

 $x_2 = 0$ ~ 非管理 更高: $x_3 = 0, x_4 = 0$.

资历增加1年 薪金增长546

管理人员薪金 多6883

中学程度薪金比更高的少2994

大学程度薪金比 更高的多148

 a_4 置信区间包含零点,解释不可靠!

相关系数 r²越接近 1, 说明回归方程越显著;

 $F > F_{1-\alpha}$ (k, n-k-1)时拒绝 H_0 , F 越大, 说明回归方程越显著;

与 F 对应的概率 $p<\alpha$ 时拒绝 H_0 ,回归模型成立 S double G dou

数学模型

J	b ×				
3	5x1 double				
	1				
	1.1033e+04				
!	546.1276				
}	6.8825e+03				
ļ	-2.9942e+03				
j	147.7380				

bi 🗶 📗	
5x2 double	
1	2
1.0258e+04	1.1807e+04
484.4486	607.8067
6.2481e+03	7.5170e+03
-3.8263e+03	-2.1620e+03
-635.7184	931.1944

	r ×
H	46x1 double
	1
1	-1.5912e+03
2	29.1380
3	239.6051
4	-443.5999
5	188.1380
6	1.7167e+03
7	-500.7276
8	1.4042e+03
9	70.0104
10	-505.8552
11	-1.5845e+03
12	1.6696e+03
13	246.3498
14	1.1939e+03
15	163.2222
16	13.7551
17	-480 9879
	e

J	ri ×				
3	46x2 double				
	1	2			
	-3.4567e+03	274.2766			
	-1.9329e+03	1.9911e+03			
	-1.7448e+03	2.2240e+03			
	-2.4199e+03	1.5327e+03			
	-1.7730e+03	2.1492e+03			
	-172.1302	3.6056e+03			
	-2.4891e+03	1.4877e+03			
	-521.7364	3.3301e+03			
	-1.8999e+03	2.0399e+03			
)	-2.5056e+03	1.4939e+03			
L	-3.4762e+03	307.2432			
2	-235.6824	3.5749e+03			
3	-1.7519e+03	2.2446e+03			
1	-766.9598	3.1548e+03			
5	-1.8399e+03	2.1663e+03			
5	-1.9662e+03	1.9937e+03			
7	-2.4908e+03	1.5288e+03			

	s ×			
\blacksquare	1x4 double			
	1	2	3	4
1	0.9567	226.4258	2.3110e-27	1.0571e+06
2				

结果分析

残差分析方法

$$\hat{y} = \hat{a}_0 + \hat{a}_1 x_1 + \hat{a}_2 x_2 + \hat{a}_3 x_3 + \hat{a}_4 x_4$$

残差 $e = y - \hat{y}$

e 与资历 x_1 的关系

残差大概分成3个水平, 6种管理—教育组合混在 一起,未正确反映.

管理与教育的组合

组合	1	2	3	4	5	6
管理	0	1	0	1	0	1
教育	1	1	2	2	3	3

残差全为正,或全为负,管理—教育组合处理不当. 应在模型中增加管理 x_2 与教育 x_3, x_4 的交互项.

进一步的模型 增加管理 x_2 与教育 x_3, x_4 的交互项

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + a_5 x_2 x_3 + a_6 x_2 x_4 + \varepsilon$$

参数	参数估计值	置信区间		
a_0	11204	[11044 11363]		
a_1	497	[486 508]		
a_2	7048	[6841 7255]		
a_3	-1727	[-1939 -1514]		
a_4	-348	[-545 - 152]		
a_5	-3071	[-3372 -2769]		
a_6	1836	[1571 2101]		
$R^2=0.9988$ $F=554$ $p<0.0001$ $s^2=3\times10^4$				

R², F有改进, 所有回归系数置信区间不含零点, 模型完全可用

消除了不正常现象

异常数据(33号)应去掉!

去掉异常数据后的结果

参数	参数估计值	置信区间		
a_0	11200	[11139 11261]		
a_1	498	[494 503]		
a_2	7041	[6962 7120]		
a_3	-1737	[-1818 -1656]		
a_4	-356	[-431 -281]		
a_5	-3056	[-3171 -2942]		
a_6	1997	[1894 2100]		
$R^2 = 0.9998 F = 36701 p < 0.0001 s^2 = 4 \times 10^3$				

 $R^2: 0.9567 \rightarrow 0.9988 \rightarrow 0.9998$

 $F: 226 \to 554 \to 36701$

 $s^2: 10^4 \rightarrow 3 \times 10^4 \rightarrow 4 \times 10^3$

残差图十分正常

最终模型的结果可以应用

置信区间长度更短

模型应用
$$\hat{y} = \hat{a}_0 + \hat{a}_1 x_1 + \hat{a}_2 x_2 + \hat{a}_3 x_3 + \hat{a}_4 x_4 + \hat{a}_5 x_2 x_3 + \hat{a}_6 x_2 x_4$$

制订6种管理—教育组合人员的"基础"薪金(资历为0)

$$x_1 = 0$$
; $x_2 = 1 \sim$ 管理, $x_2 = 0 \sim$ 非管理

中学:
$$x_3=1, x_4=0$$
; 大学: $x_3=0, x_4=1$; 更高: $x_3=0, x_4=0$

组合	管理	教育	系数	"基础"薪金
1	0	1	$a_0 + a_3$	9463
2	1	1	$a_0 + a_2 + a_3 + a_5$	13448
3	0	2	$a_0 + a_4$	10844
4	1	2	$a_0 + a_2 + a_4 + a_6$	19882
5	0	3	a_0	11200
6	1	3	$a_0 + a_2$	18241

大学程度管理人员比更高程度管理人员的薪金高.

大学程度非管理人员比更高程度非管理人员的薪金略低.

软件开发人员的薪金

对定性因素(如管理、教育),可以引入0-1变量处理,0-1变量的个数可比定性因素的水平少1.

残差分析方法可以发现模型的缺陷,引入交互作用项 常常能够改善模型.

剔除异常数据,有助于得到更好的结果.

注:可以直接对6种管理—教育组合引入5个0-1变量.