Factoriser l'expression suivante en utilisant une identité remarquable :

$$49 - 25x^2$$

Question 3:

Écrire sous la forme d'une puissance d'un nombre :

$$(9^{(-1)})^{(-9)} = \dots$$

Question 2:

Développer

$$4\left(x-\frac{7}{4}\right)^2+\frac{5}{4}$$

Factoriser l'expression suivante en utilisant une identité remarquable :

$$49 - 25x^2$$

Question 3:

Écrire sous la forme d'une puissance d'un nombre :

$$(9^{(-1)})^{(-9)} = \dots$$

Question 2:

Développer

$$4\left(x-\frac{7}{4}\right)^2+\frac{5}{4}$$

$$(7+5x)(7-5x)$$

Factoriser l'expression suivante en utilisant une identité remarquable :

$$49 - 25x^2$$

Question 3:

Écrire sous la forme d'une **puissance d'un nombre** :

$$(9^{(-1)})^{(-9)} = \dots$$

Question 2:

Développer

$$4\left(x-\frac{7}{4}\right)^2+\frac{5}{4}$$

- 1. (7+5x)(7-5x)
- $2. \quad 4x^2 + (-14)x + 11$

Factoriser l'expression suivante en utilisant une identité remarquable :

$$49 - 25x^2$$

Question 3:

Écrire sous la forme d'une **puissance d'un nombre** :

$$(9^{(-1)})^{(-9)} = \dots$$

Question 2:

Développer

$$4\left(x-\frac{7}{4}\right)^2+\frac{5}{4}$$

- 1. (7+5x)(7-5x)
- $2. \quad 4x^2 + (-14)x + 11$
- **3.** 9⁹

Solution détaillée de la question 1 :

Factoriser l'expression suivante en utilisant une identité remarquable :

$$49 - 25x^2$$

Solution : On reconnaît l'identité remarquable
$$a^2 - b^2 = (a + b)(a - b)$$
 avec $a > 0$ et $b > 0$.

a = b = (a + b)(a - b) avec a > 0 et b > 0.

Ici,
$$a^2 = 49$$
 donc $a = 7$

Et
$$b^2 = 25x^2$$
 donc $b = 5x$

Donc:
$$49-25x^2 = (7+5x)(7-5x)$$

Solution détaillée de la question 2 :

Développer

$$4\left(x-\frac{7}{4}\right)^2+\frac{5}{4}$$

Développons:

Rappel:
$$(x - \alpha)^2 = x^2 - 2\alpha x + \alpha^2$$

$$4(x - \frac{7}{4})^2 + \frac{-5}{4}$$

$$= 4\left[x^2 - 2 \times \frac{7}{4} \times x + \left(\frac{7}{4}\right)^2\right] + \frac{-5}{4}$$

$$\approx 4x^2 - 14x + 12,25 + (-1,25)$$

$$= 4x^2 + (-14)x + 11$$

Solution détaillée de la question 3 :

Écrire sous la forme d'une **puissance d'un nombre** :

$$(9^{(-1)})^{(-9)} = \dots$$

Formule :
$$(a^m)^n = a^{mn}$$
 avec $a = 9$, $m = (-1)$ et $\left| (9^{(-1)})^{(-9)} = 9^{(-1) \times (-9)} = 9^9 \right|$ $n = (-9)$