

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2002年 1月18日

出願番号 Application Number:

特願2002-010839

[ST.10/C]:

[JP2002-010839]

出 願 人 Applicant(s):

株式会社エヌ・ティ・ティ・ドコモ

CERTIFIED COPY OF PRIORITY DOCUMENT

2002年 2月12日

出証番号 出証特2002年3006678

特2002-010839

【書類名】

特許願

【整理番号】

DCMH130306

【提出日】

平成14年 1月18日

【あて先】

特許庁長官殿

【国際特許分類】

HO3M

【発明者】

【住所又は居所】

東京都千代田区永田町二丁目11番1号 株式会社エヌ

・ティ・ティ・ドコモ内

【氏名】

藤井 啓正

【発明者】

【住所又は居所】

東京都千代田区永田町二丁目11番1号 株式会社エヌ

・ティ・ティ・ドコモ内

【氏名】

阿部 哲士

【発明者】

【住所又は居所】

東京都千代田区永田町二丁目11番1号 株式会社エヌ

・ティ・ティ・ドコモ内

【氏名】

富里 繁

【発明者】

【住所又は居所】 東京都千代田区永田町二丁目11番1号 株式会社エヌ

・ティ・ティ・ドコモ内

【氏名】

松本 正

【特許出願人】

【識別番号】

392026693

【氏名又は名称】

株式会社 エヌ・ティ・ティ・ドコモ

【代理人】

【識別番号】

100066153

【弁理士】

【氏名又は名称】

草野卓

【選任した代理人】

【識別番号】

100100642

【弁理士】

【氏名又は名称】 稲垣 稔

【先の出願に基づく優先権主張】

【出願番号】

特願2001-43213

【出願日】

平成13年 2月20日

【先の出願に基づく優先権主張】

【出願番号】

特願2001-111095

【出願日】

平成13年 4月10日

【先の出願に基づく優先権主張】

【出願番号】

特願2001-258161

【出願日】

平成13年 8月28日

【手数料の表示】

【予納台帳番号】 002897

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9702599

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 ターボ受信方法及びその受信機

【特許請求の範囲】

【請求項1】 2以上の整数N個の送信機からの信号を受信するターボ受信方法であって、

1以上の整数M個の受信信号 r_m と、既知信号とから、チャネル値 h_{mn} (q) 及びチャネル行列 F を計算し、ここで、m=1, …, M、n=1, …, N、q=0, …, Q-1、Q は各送信電波のマルチパスの数

N個の事前情報 λ_2 [b_n (k)] から軟判定送信シンボル b'_n (k) を求め、ここでk は離散的時刻、

チャネル値 h_{mn} (q) と軟判定送信シンボル b'_{n} (k) を用いて、n番目の送信機の送信信号に対する干渉成分 FI ・ FI (k) を計算し、

ここで

【数1】

$$\mathbf{H} = \begin{bmatrix} \mathsf{H}(0) & \cdots & \mathsf{H}(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & & \mathsf{H}(0) & \cdots & \mathsf{H}(Q-1) \end{bmatrix}$$

$$H(q) = \begin{bmatrix} h_{11}(q) & \cdots & h_{1N}(q) \\ \vdots & \ddots & \vdots \\ h_{M1}(q) & \cdots & h_{MN}(q) \end{bmatrix}$$

 $\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{T}(\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}'^{T}(\mathbf{k}) \cdots \mathbf{b}'^{T}(\mathbf{k} - \mathbf{Q} + 1)]^{T}$

 $\mathbf{b}' (\mathbf{k} + \mathbf{q}) = [\mathbf{b'}_1 (\mathbf{k} + \mathbf{q}) \mathbf{b'}_2 (\mathbf{k} + \mathbf{q}) \cdots \mathbf{b'}_N (\mathbf{k} + \mathbf{q})]^T$

$$q = Q - 1 \cdots - Q + 1$$
 $q \neq 0$ \mathcal{C}

b ' (k) = [b'₁ (k)
$$\cdots 0 \cdots b'_{N}$$
 (k)] ^T q = 0 \tilde{c}

b'(k)の要素のゼロはn番目であり、[] Tは転置行列であり、

この干渉成分 **H** · **B** ′ (k) を受信ベクトル **y** (k) から差し引き差分 ベクトル **y** ′ (k) を求め、

 $ZZ\mathcal{T} \mathcal{S} (k) = [\mathbf{r}^T (k+Q-1) \mathbf{r}^T (k+Q-2) \cdots \mathbf{r}^T (k)]^T$

$$\mathbf{r}$$
 (k) = [\mathbf{r}_1 (k) \mathbf{r}_2 (k) $\cdots \mathbf{r}_M$ (k)]

チャネル行列 $\mathbf{F}\mathbf{I}$ 又は参照信号を用いて、差分ベクトル $\mathbf{S}\mathbf{F}'$ (\mathbf{k}) 内の残余 干渉成分を除去する、 \mathbf{n} 番目の送信機よりの送信信号の受信信号に対する適応フィルタ係数 $\mathbf{W}_{\mathbf{n}}$ (\mathbf{k}) を求め、

差分ベクトル \mathbf{y}' (k)を上記適応フィルタ係数 $\mathbf{w}_{\mathbf{n}}$ (k)によりフィルタ処理して、 \mathbf{n} 番目の送信機よりの送信信号に対する干渉除去された受信信号として対数尤度比を得る

ことを特徴とするターボ受信方法。

【請求項 2 】 受信ベクトル $\mathbf w$ ($\mathbf k$)中の雑音成分の共分散行列をUとして、軟判定送信シンボル $\mathbf b'$ $\mathbf n$ ($\mathbf k$) 、上記チャネル行列 $\mathbf F$ と、を用いて、上記適応フィルタ $\mathbf w$ $\mathbf n$ ($\mathbf k$) を

$$\mathbf{w}_{n}$$
 (k) = (H G (k) H^H +U) ⁻¹ h 227.

G (k) = diag [D (k+Q-1) ··· D (k) ··· D (k-Q+1)]

D (k+q) = diag [1-b'
2
₁ (k+q), ···, 1-b' 2 _n (k+q)

, ···, 1-b' 2 ₁ (k+q)] q=Q-1···-Q+1, q ≠0°c,

= diag [1-b' 2 ₁ (k+q), ···, 1, ···, 1-b' 2 _N (k+q)] q=0°c,

【数2】

$$\boldsymbol{h} = \begin{bmatrix} \boldsymbol{H}_{1,(Q-1)\cdot N+n} \\ \boldsymbol{H}_{2,(Q-1)\cdot N+n} \\ \vdots \\ \boldsymbol{H}_{M,(Q-1)\cdot N+n} \end{bmatrix}$$

 $\mathbf{H}_{1,(Q-1)\cdot N+n}$ は上記行列 \mathbf{H}_{1} の 1 行(Q-1) N+n 列成分 により算出することを特徴とする請求項 1 記載のターボ受信方法。

【請求項3】 2以上の整数N個の送信機からの信号を受信するターボ受信方法であって、

1以上の整数M個の受信信号 r_m と、既知信号とから、チャネル値 h_{mn} (q) 及びチャネル行列 FI を計算し、ここでm=1, …, M、n=1, …, N、q=0, …, Q-1、Q は各送信電波のマルチパスの数

N個の事前情報 λ_2 [b_n (k)] から軟判定送信シンボル b'_n (k) を求め、ここで k は離散的時刻、

チャネル値 h_{mn} (q) と軟判定送信シンボル b'_{n} (k) を用いて、n 番目の送信信号に対する干渉成分 \mathbf{FI} ・ \mathbf{B} \mathbf{f} (k) を計算し、

ここで

【数3】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$H(q) = \begin{bmatrix} h_{11}(q) & \cdots & h_{1N}(q) \\ \vdots & \ddots & \vdots \\ h_{M1}(q) & \cdots & h_{MN}(q) \end{bmatrix}$$

 $\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{T}(\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}'^{T}(\mathbf{k}) \cdots \mathbf{b}'^{T}(\mathbf{k} - \mathbf{Q} + 1)]^{T}$

 $b'(k+q) = [b'_1(k+q)b'_2(k+q)...b'_N(k+q)]^T$

$$q = Q - 1 \cdots - Q + 1$$
 $q \neq 0$ \mathcal{C}
 $\mathbf{b}'(\mathbf{k}) = [\mathbf{b}'_{1}(\mathbf{k}) \cdots \mathbf{f}(\mathbf{b}'_{n}(\mathbf{k})) \cdots \mathbf{b}'_{N}(\mathbf{k})]^{T}$
 $q = 0$ \mathcal{C}

b′(k)の要素のf(b′_n(k))はn番目であり、f()はf(0

3

) = 0、かつd $\{f_n(b'_n(k)) / d_n(k)\} \ge 0$ を満たす $b'_n(k)$ を変数とする関数、 $[n]^T$ は転置行列であり、

この干渉成分 **H** · **B** ′ (k) を受信ベクトル **y** (k) から差し引き差分 ベクトル **y** ′ (k) を求め、

 $ZZ\mathcal{T} \mathcal{Y} (k) = [\mathbf{r}^T (k+Q-1) \mathbf{r}^T (k+Q-2) \cdots \mathbf{r}^T (k)]^T$

$$\mathbf{r}$$
 (k) = [r₁ (k) r₂ (k) ··· r_M (k)]^T

チャネル行列 \mathbf{H} 又は参照信号を用いて、差分ベクトル \mathbf{S}' (\mathbf{k}) 内の残余 干渉成分を除去する、 \mathbf{n} 番目の送信機よりの送信信号の受信信号に対する適応フィルタ係数 $\mathbf{W}_{\mathbf{n}}$ (\mathbf{k}) を求め、

差分ベクトル \mathbf{y}' (k)を上記適応フィルタ係数 \mathbf{w}_n (k)によりフィルタ処理して、 \mathbf{n} 番目の送信機よりの送信信号に対する干渉除去された受信信号として対数尤度比を得る

ことを特徴とするターボ受信方法。

【請求項4】 上記受信ベクトル $\mathbf w$ ($\mathbf k$) 中の雑音成分の共分散行列をU として、軟判定送信シンボル $\mathbf b'$ $\mathbf n$ ($\mathbf k$) 、上記チャネル行列 $\mathbf F$ を用いて、上記適応フィルタ $\mathbf w$ $\mathbf n$ ($\mathbf k$) を

$$w_n$$
 (k) = (HG (k) H^H +U) ⁻¹ h
227.

G (k) = diag [D (k+Q-1) … D (k) … D (k-Q+1)]

D (k+q) = diag [1-b'
2
₁(k+q), …, 1-b' 2 _n(k+q)

, …, 1-b' 2 ₁(k+q)] q=Q-1…-Q+1, q≠0で、
= diag [1-b' 2 ₁(k+q), …, 1-b' 2 _{n-1}(k), 1
+2 E [f (b'_n(k)] +E [f (b'_n(k) 2], 1-b' 2 _{n+1}(k), …, 1-b' 2 _N(k+q)] q=0で

E [] は平均を表わす。

【数4】

$$h = \begin{bmatrix} H_{I,(Q-1)\cdot N+n} \\ H_{2,(Q-1)\cdot N+n} \\ \vdots \\ H_{M,(Q-1)\cdot N+n} \end{bmatrix}$$

 $\mathbf{FI}_{1,(Q-1)\cdot N+n}$ は上記行列 \mathbf{FI} の 1 行(Q-1) N+n 列成分により算出することを特徴とする請求項 3 記載のターボ受信方法。

【請求項 5 】 上記適応フィルタ \mathbf{w}_n (k)の計算における逆行列演算を逆行列の補助定理を用いて行うことを特徴とする請求項 2 又は 4 に記載のターボ受信方法。

【請求項 6 】 受信ベクトル \mathbf{y} (k)内の雑音成分の共分散行列 U をガウス分布の分散値 σ^2 と単位行列から求まる σ^2 \mathbf{I} とすることを特徴とする請求項 1 乃至 5 の何れかに記載のターボ受信方法。

【請求項7】 上記受信ベクトル 🗴 (k)内の雑音成分の共分散行列Uを 、上記受信ベクトル 🗲 (k)、上記推定チャネル行列 🖼 、を用い、

$$U^{*} = \sum_{k=0}^{Tr} (y(k) - H^{*} \cdot B(k)) \cdot (y(k) - H^{*} \cdot B(k))$$

$$\mathbf{B} \ (\mathbf{k}) = [\mathbf{b}^{T} \ (\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}^{T} \ (\mathbf{k}) \cdots \mathbf{b}^{T} \ (\mathbf{k} - \mathbf{Q} + 1)]$$

b
$$(k+q) = [b_1 (k+q) \cdots b_N (k+q)]^T$$

 $(q = -Q + 1 \cdots Q - 1)$

Trは参照信号の長さ

とすることを特徴とする請求項1乃至5の何れかに記載のターボ受信方法。

【請求項8】 上記D(k+q)を0と近似し、上記D(k)をdiag[0,…,1,…,0]で近似することを特徴とする請求項2乃至7の何れかに記載のターボ受信方法。

【請求項9】 2以上の整数N個の送信機からの信号を受信するターボ受信

方法であって、

1以上の整数M個の受信信号 r_m と、既知信号とから、チャネル値 h_{mn} (q) 及びチャネル行列 I-I を計算し、ここで、m=1, …, M、n=1, …, N、q=0, …, Q-1、Q は各送信電波のマルチパスの数

N個の事前情報 λ_2 [b_n (k)] から軟判定送信シンボル b'_n (k) を求め、ここで k は離散的時刻、

チャネル値 h_{mn} (q) と軟判定送信シンボル b'_{n} (k) を用いて、n 番目の送信機の送信信号に対する干渉成分 H ・ H / (k) を計算し、

ここで

【数5】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$H(q) = \begin{bmatrix} h_{11}(q) & \cdots & h_{1N}(q) \\ \vdots & \ddots & \vdots \\ h_{M1}(q) & \cdots & h_{MN}(q) \end{bmatrix}$$

 $\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{T}(\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}'^{T}(\mathbf{k}) \cdots \mathbf{b}'^{T}(\mathbf{k} - \mathbf{Q} + 1)]^{T}$

b ' $(k+q) = [b']_1 (k+q) b']_2 (k+q) \cdots b']_N (k+q)$

$$q = Q - 1 \cdots - Q + 1$$
 $q \neq 0$ \mathcal{C}

b ' (k) = [b'₁ (k)
$$\cdots$$
 0 \cdots b'_N (k)] ^T q = 0 \tilde{c}

 \mathbf{b} '(k)の要素のゼロはn番目であり、[] \mathbf{T} は転置行列であり、

この干渉成分 \mathbf{H} \mathbf{B} ' (\mathbf{k}) を受信ベクトル \mathbf{y} (\mathbf{k}) から差し引き差分 ベクトル \mathbf{y} ' (\mathbf{k}) を求め、

 $ZZ\mathcal{T} \mathbf{y} (k) = [\mathbf{r}^T (k+Q-1) \mathbf{r}^T (k+Q-2) \cdots \mathbf{r}^T (k)]^T$

$$r(k) = [r_1(k) r_2(k) \cdots r_M(k)]^T$$

受信ベクトル \mathbf{S} (k)内の雑音成分の共分散行列を、ガウス分布の分散 σ^2 と単位行列 \mathbf{I} から求まる σ^2 \mathbf{I} として、

【数6】

$$h = \begin{bmatrix} H_{1, (Q-1) \cdot N+n} \\ H_{2, (Q-1) \cdot N+n} \\ \vdots \\ H_{M \cdot Q, (Q-1) \cdot N+n} \end{bmatrix}$$

により決定した適応フィルタ係数 \mathbf{w}_n により差分ベクトル \mathbf{y}' (k) をフィルタ処理して、n番目の送信機よりの送信信号に対する干渉が除去された受信信号として対数尤度比を得る

ことを特徴とするターボ受信方法。

【請求項10】 2以上の整数N個の送信機からの信号を受信するターボ受信方法であって、

1以上の整数M個の受信信号 r_m と、既知信号とから、チャネル値 h_{mn} (q) 及びチャネル行列 I-I を計算し、ここでm=1, …, M、n=1, …, N、q=0, …, Q-1、Q は各送信電波のマルチパスの数

N個の事前情報 λ_2 [b_n (k)] から軟判定送信シンボル b'_n (k) を求め、ここで k は離散的時刻、

チャネル値 h_{mn} (q) と軟判定送信シンボル b'_{n} (k) を用いて、n番目の送信機の送信信号に対する干渉成分 H ・ H (k) を計算し、

ここで

【数7】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$H(q) = \begin{bmatrix} h_{11}(q) & \cdots & h_{1N}(q) \\ \vdots & \ddots & \vdots \\ h_{M1}(q) & \cdots & h_{MN}(q) \end{bmatrix}$$

 $\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{T}(\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}'^{T}(\mathbf{k}) \cdots \mathbf{b}'^{T}(\mathbf{k} - \mathbf{Q} + 1)]^{T}$

b ' $(k+q) = [b']_1 (k+q) b']_2 (k+q) \cdots b']_N (k+q)$

$$q = Q - 1 \cdots - Q + 1$$
 $q \neq 0$ \tilde{c}

 ${\bf b}'({\bf k}) = [{\bf b}'_{.1}({\bf k}) \cdots {\bf f}({\bf b}'_{n}({\bf k})) \cdots {\bf b}'_{N}({\bf k})]^T$ ${\bf q} = 0$ ${\bf \tilde{c}}$

 \mathbf{b} ′ (k) の要素の \mathbf{f} (b′ \mathbf{n} (k) は \mathbf{n} 番目であり、 \mathbf{f} () は \mathbf{f} (0) \mathbf{e} = 0、かつ \mathbf{d} { \mathbf{f} (\mathbf{b} ′ \mathbf{n} (\mathbf{k}) } \mathbf{f} (\mathbf{b} ′ \mathbf{n} (\mathbf{k}) \mathbf{e} を変数とする 関数、 [] \mathbf{f} は 転置 行列 であり、

この干渉成分 \mathbf{H} ・ \mathbf{B} ' (\mathbf{k})を受信ベクトル \mathbf{y} (\mathbf{k})から差し引き差分ベクトル \mathbf{y} ' (\mathbf{k})を求め、

 $ZZ\mathcal{T} \mathcal{Y} (k) = [\mathbf{r}^T (k+Q-1) \mathbf{r}^T (k+Q-2) \cdots \mathbf{r}^T (k)]^T$

$$\mathbf{r}$$
 (k) = [r₁ (k) r₂ (k) ··· r_M (k)]^T

受信ベクトル \mathbf{S} (k)内の雑音成分の共分散行列を、ガウス分布の分散 σ^2 と単位行列 \mathbf{I} から求まる σ^2 \mathbf{I} として、

【数8】

$$h = \begin{bmatrix} H_{1, (Q-1) \cdot N+n} \\ H_{2, (Q-1) \cdot N+n} \\ \vdots \\ H_{M \cdot Q, (Q-1) \cdot N+n} \end{bmatrix}$$

により決定した適応フィルタ係数 **w**_n により差分ベクトル **y** ′ (k) をフィルタ処理して、n番目の送信機よりの送信信号に対する干渉が除去された受信信号として対数尤度比を得る

ことを特徴とするターボ受信方法。

【請求項11】 2以上の整数N個の送信機からの送信信号を受信するターボ受信方法であって、

1以上の整数M個の受信信号と既知信号とから受信信号の伝送特性であるチャネル値を求め、

N個の事前情報から軟判定送信シンボルをそれぞれ推定し、

N個の送信信号をそれぞれ1乃至複数個の送信信号よりなるL個(L≦N)の 送信信号群に分割し、その各送信信号群について、軟判定送信シンボル及びチャネル値よりなるチャネル行列を用いて、他の送信信号群からの干渉をそれぞれ除 去したL個の等化信号と、その等化信号の伝送特性とそれぞれ対応する等化後の チャネル情報を求め、

これらL組の等化信号とそのチャネル情報の各組について、その等化信号群を 受信信号とし、チャネル情報をチャネル値とし、その構成送信信号が複数個の場合は、その構成送信信号を更に1乃至複数個の送信信号よりなる複数の送信信号 群に分割して軟判定送信シンボルを用いて、その送信信号群について、他の送信信号群からの干渉をそれぞれ除去した等化信号と等化後のチャネル情報を求め、 構成送信信号が1個の場合はその等化信号とチャネル情報と軟判定送信シンボル を用いて、その送信信号自体のマルチパスによる干渉を除去し、

全ての等化信号の構成送信信号が1個になるまで上記分割、干渉除去及び等化

後のチャネル情報の生成を繰り返し、最終的に各送信信号についてそれ自体のマルチパスによる干渉を除去した等化信号を求め、又は上記等化信号及びそのチャネル情報の組についてその等化信号の構成送信信号ごとにその送信信号相互間干渉及び自身の符号間干渉を除去した等化信号を求めることを特徴とするターボ受信方法。

【請求項12】 上記各送信信号群について、軟判定送信シンボル及びチャネルを用いて、他の送信信号群からの干渉レプリカをそれぞれ生成し、受信信号から干渉レプリカをそれぞれ差引いてそれぞれ差分信号を求め、上記チャネル値と軟判定送信シンボルから干渉剰余成分除去用フィルタ特性及び上記等化後のチャネル情報を、各差分信号ごとに求め、その干渉剰余成分除去用フィルタ特性により対応する差分信号をフィルタ処理して、上記等化信号を得ることを特徴とする請求項11記載のターボ受信方法。

【請求項13】 上記受信信号 r_1 (k), …, r_M (k)から受信ベクトル

$$\mathbf{y}$$
 (k) = [\mathbf{r} T (k+Q-1) \mathbf{r} T (k+Q-2) \cdots \mathbf{r} T (k)] T \mathbf{r} (k) = [\mathbf{r}_1 (k) \mathbf{r}_2 (k) \cdots \mathbf{r}_M (k)] T [] T は転置行列を表わす

を求め、

上記伝送特性をチャネル行列 I-I として

【数9】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \\ 0 & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$\mathbf{H} (q) = [\mathbf{h}_{1} (q) \cdots \mathbf{h}_{N} (q)]$$

$$\mathbf{h}_{n} (q) = [\mathbf{h}_{1n} (q) \cdots \mathbf{h}_{Mn} (q)]^{T}$$

m=1, …, M, n=1, …, N, マルチパスの数をQとし、q=0, …, Q -1であり、 h_{mn} (q) は受信信号 r_{m} に含まれる第n送信機からのパスqのチャネル値であり、

を求め、

 $\mathbb{Z}\mathbb{Z}^{T}\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{T}(\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}'^{T}(\mathbf{k}) \cdots \mathbf{b}'^{T}(\mathbf{k}) \cdots \mathbf{b}'^{T}(\mathbf{k} - \mathbf{Q} + 1)]^{T}$

 $b' (k+q) = [b']_1 (k+q) b']_2 (k+q) \cdots b']_n (k+q)$) \(\cdot b']_N (k+q) \(\]^T : q = Q - 1, \(\cdot 1 \) \(\text{T} \)

b ' $(k+q) = [0 \cdots 0 \ b_{u+1}' \ (k+q) \cdots b'_{N} \ (k+q)]^T$: q=0, ..., -Q+1 \tilde{c} .

b′(k+q)中の0の要素の数はU個であり、

この干渉レプリカ \mathbf{H} ・ \mathbf{B} ' (\mathbf{k}) を上記受信ベクトル \mathbf{y} (\mathbf{k}) から引算して上記差分ベクトル \mathbf{y} ' \mathbf{g} (\mathbf{k}) を求めることを特徴とする請求項 $\mathbf{1}$ $\mathbf{2}$ 記載のターボ受信方法。

【請求項14】 上記等化信号とそのチャネル情報に対し、更に干渉除去を行う際に、その等化信号が先に受けた干渉除去処理の際のマルチパスの数を小とすることを特徴とする請求項11又は12記載のターボ受信方法。

【請求項15】 上記受信信号 \mathbf{r}_1 (\mathbf{k}), …, $\mathbf{r}_{\mathtt{M}}$ (\mathbf{k})から受信ベクトル

$$\mathbf{S}^{T}$$
 $(\mathbf{k}) = [\mathbf{r}^{T} (\mathbf{k} + \mathbf{Q} - 1) \mathbf{r}^{T} (\mathbf{k} + \mathbf{Q} - 2) \cdots \mathbf{r}^{T} (\mathbf{k})]^{T}$
 \mathbf{r} $(\mathbf{k}) = [\mathbf{r}_{1} (\mathbf{k}) \mathbf{r}_{2} (\mathbf{k}) \cdots \mathbf{r}_{M} (\mathbf{k})]^{T}$

[] ^T は転置行列を表わす

を求め、

上記伝送特性をチャネル行列 I-I として

【数10】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & & 0 \\ & \ddots & & \ddots & \\ 0 & & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$\mathbf{H} (q) = [\mathbf{h}_{1} (q) \cdots \mathbf{h}_{N} (q)]$$

 $\mathbf{h}_{n} (q) = [\mathbf{h}_{1n} (q) \cdots \mathbf{h}_{Mn} (q)]^{T}$

m=1, …, M, n=1, …, N, マルチパスの数をQとし、q=0, …, Q -1であり、 h_{mn} (q) は受信信号 r_m に含まれる第n送信機からのパスqのチャネル値であり、

を求め、

ここで

$$\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{T}(\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}'^{T}(\mathbf{k}) \cdots \mathbf{b}'^{T}(\mathbf{k} - \mathbf{Q} + 1)]^{T}$$

b '
$$(k+q) = [b']_1 (k+q) b']_2 (k+q) \cdots b']_n (k+q)$$

) $\cdots b']_N (k+q)]^T : q = Q-1, \cdots 1 \ \mathcal{C}$

b '
$$(k+q) = [0 \cdots 0 \ b'_{u+1} (k+q) \cdots b'_{N} (k+q)]^{T}$$

: $q = 0, \dots, -Q' + 1$

 $\mathbf{b}'(\mathbf{k}+\mathbf{q})$ 中の $\mathbf{0}$ の要素数は \mathbf{U} 個であり、

$$b'(k+q) = [b'_1(k+q) \cdots b'_n(k+q) \cdots b'_N(k+q)]^T : q = Q', \dots, -Q+1$$

この干渉レプリカ \mathbf{H} ・ \mathbf{B} ' (\mathbf{k})を上記受信ベクトル \mathbf{y} (\mathbf{k})から引算して差分ベクトル \mathbf{y} ' \mathbf{g} (\mathbf{k})を求ることを特徴とする請求項 $\mathbf{1}$ 4 記載のターボ受信方法。

【請求項16】 ターボ受信処理の2回目以後の繰り返し処理において、既知信号と前回の処理で得られた送信符号化シンボル硬判定出力とを参照信号とし、この参照信号と受信信号とを用いて、上記チャネル行列を計算することを特徴とする請求項1乃至15の何れかに記載のターボ受信方法。

【請求項17】 前回の処理で得られた送信符号化シンボル硬判定出力中の

確からしさが所定値以上のものを参照信号として上記チャネル行列の計算に用いることを特徴とする請求項16記載のターボ受信方法。

【請求項18】 上記N個の事前情報 λ_2 [b_n (k)] は上記N個の送信機と対応したN個の復号器より得たものであり、上記 n 番目の送信信号に対する干渉除去された受信信号としての対数尤度比を対応する復号器へ供給することを特徴とする請求項1 乃至17 の何れかに記載のターボ受信方法。

【請求項19】 上記N個の送信信号は、1つの情報系列をN個の並列の系列としてN個の送信機によりそれぞれ送信した信号であり、上記N個の事前情報 λ_2 [b_n(k)]は1個の復号器よりの事前情報 λ_2 [b(j)]を直列一並列変換したものであり、上記N個の送信信号に対する干渉除去された受信信号としてのN個の対数尤度比を並列一直列変換して上記復号器へ供給することを特徴とする請求項1乃至17の何れかに記載のターボ受信方法。

【請求項20】 2以上の整数N個の送信機からの信号を受信するターボ受信機であって、

1以上の整数M個の受信信号 r_m を得る受信信号生成部と、ここでm=1, … , M

各受信信号 r_m と既知信号の参照信号とが入力され、チャネル値 h_{mn} (q)及 びチャネル行列 F を計算するチャネル推定器と、

ここで

【数11】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$H(q) = \begin{bmatrix} h_{11}(q) & \cdots & h_{1N}(q) \\ \vdots & \ddots & \vdots \\ h_{M1}(q) & \cdots & h_{MN}(q) \end{bmatrix}$$

$$n = 1, \dots, N$$

各受信信号r_mが入力されて受信ベクトル

$$\mathbf{y}$$
 $(\mathbf{k}) = [\mathbf{r}^{\mathsf{T}} (\mathbf{k} + \mathbf{Q} - 1) \mathbf{r}^{\mathsf{T}} (\mathbf{k} + \mathbf{Q} - 2) \cdots \mathbf{r}^{\mathsf{T}} (\mathbf{k})]$

$$r(k) = [r_1(k) r_2(k) \cdots r_M(k)]^T$$

を生成する受信ベクトル生成部と、

N個の事前情報が入力され、軟判定送信シンボルb'_n (k)を生成する軟判定シンボル生成部と、

各軟判定送信シンボル \mathbf{b}' $\mathbf{1}$ $\mathbf{(k) \sim b'}$ \mathbf{N} $\mathbf{(k)}$ が入力され、 \mathbf{n} 番目の送信信号に対する干渉レプリカベクトル

$$\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{T}(\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}'^{T}(\mathbf{k}) \cdots \mathbf{b}'^{T}(\mathbf{k} - \mathbf{Q} + 1)]^{T}$$

 $b'(k+q) = [b'_1(k+q)b'_2(k+q)\cdots b'_N(k+q)]^T$

$$q = Q - 1$$
, ..., $-Q + 1$, $q \neq 0$ \mathcal{C}

b ' (k) = [b'₁ (k)
$$\cdots$$
 0 \cdots b'_N (k)] ^T q = 0 \mathfrak{T}

b′(k)の要素のゼロはn番目、

を生成するレプリカベクトル生成部と、

チャネル行列 \mathbf{H} と干渉レプリカベクトル \mathbf{B} ' (\mathbf{k}) が入力され、 \mathbf{n} 番目の送信信号の受信信号に対する干渉成分 \mathbf{H} \mathbf{E} ' (\mathbf{k}) を計算して出力するフィルタ処理部と、

干渉成分 \mathbf{H} ・ \mathbf{B}' (k) と受信ベクトル \mathbf{y} (k) が入力され、差分ベクトル \mathbf{y}' (k) = \mathbf{y} (k) - \mathbf{H} ・ \mathbf{B}' (k) を出力する差演算部と

チャネル行列 FI 又は参照信号が入力され、差分ベクトル S' (k) 内の残余干渉成分を除去する n 番目の送信機よりの送信信号の受信信号に対する適応フィルタ係数 W_n (k) を求めるフィルタ係数推定部と、

差分ベクトル シ ′ (k) と上記適応フィルタ係数 w n (k) が入力され、 シ ′ (k) に対しフィルタ処理して、n番目の送信機よりの送信信号に対する 干渉除去された受信信号として対数尤度比を得てn番目の復号器へ供給する適応 フィルタ部と、

を具備することを特徴とするターボ受信機。

【請求項21】 2以上の整数N個の送信機からの信号を受信するターボ受信機であって、

1以上の整数M個の受信信号 r_m を得る受信信号生成部と、ここでm=1, … , M

N個の復号器と、

ここで

【数12】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$H(q) = \begin{bmatrix} h_{11}(q) & \cdots & h_{1N}(q) \\ \vdots & \ddots & \vdots \\ h_{M1}(q) & \cdots & h_{MN}(q) \end{bmatrix}$$

n = 1, ..., N

各受信信号rm が入力されて受信ベクトル

$$\mathbf{y}$$
 $(\mathbf{k}) = [\mathbf{r}^{\mathsf{T}} (\mathbf{k} + \mathbf{Q} - 1) \mathbf{r}^{\mathsf{T}} (\mathbf{k} + \mathbf{Q} - 2) \cdots \mathbf{r}^{\mathsf{T}} (\mathbf{k})]$

$$\mathbf{r}$$
 (k) = [r₁ (k) r₂ (k) ··· r_M (k)]^T

ここで k は離散的時刻、Q は各送信電波のマルチパスの数、 q=0, …, Q-1、 [] T は転置行列を表わす、

を生成する受信ベクトル生成部と、

N個の事前情報が入力され、軟判定送信シンボル b'_n (k) (n=1, …, N) を生成する軟判定シンボル生成部と、

各軟判定送信シンボル \mathbf{b}' $\mathbf{1}$ $\mathbf{(k)} \sim \mathbf{b}'$ \mathbf{N} $\mathbf{(k)}$ が入力され、 \mathbf{n} 番目の送信機よりの送信信号に対する干渉レプリカベクトル

$$\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{T}(\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}'^{T}(\mathbf{k}) \cdots \mathbf{b}'^{T}(\mathbf{k} - \mathbf{Q} + 1)]^{T}$$

 $b'(k+q) = [b'_1(k+q)b'_2(k+q)\cdots b'_N(k+q)]^T$

$$q = Q - 1$$
, ..., $-Q + 1$, $q \neq 0$ \mathcal{C}
 $\mathbf{b}'(\mathbf{k}) = [\mathbf{b}'_{1}(\mathbf{k}) \cdots \mathbf{f}(\mathbf{b}'_{n}(\mathbf{k})) \cdots \mathbf{b}'_{N}(\mathbf{k})]^{T}$
 $q = 0$ \mathcal{C}

b'(k) の要素の $f(b'_n(k))$ はn番目、f() はf(0) = 0、かつ $d\{f(b'_n(k))\}$ / $d\{b'_n(k)\}$ ≥ 0 を満す $b'_n(k)$ を変数とする関数であり、

を生成するレプリカベクトル生成部と、

チャネル行列 \mathbf{H} と干渉レプリカベクトル \mathbf{B} ' (k) が入力され、n番目の送信機よりの送信信号の受信信号に対する干渉成分 \mathbf{H} \mathbf{B} ' (k) を計算して出力するフィルタ処理部と、

干渉成分 \mathbf{H} ・ \mathbf{B}' (k)と受信ベクトル \mathbf{y} (k)が入力され、差分ベクトル \mathbf{y}' (k)= \mathbf{y} (k)- \mathbf{H} ・ \mathbf{B}' (k)を出力する差演算部と

チャネル行列 FI 又は参照信号が入力され、差分ベクトル S' (k) 内の残余干渉成分を除去する n 番目の送信機よりの送信信号の受信信号に対する適応フィルタ係数 W_n (k) を求めるフィルタ係数推定部と、

差分ベクトル シ ′ (k) と上記適応フィルタ係数 w n (k) が入力され、 シ ′ (k) に対しフィルタ処理して、n番目の送信機よりの送信信号に対する 干渉除去された受信信号として対数尤度比を得てn番目の復号器へ供給する適応 フィルタ部と、

を具備することを特徴とするターボ受信機。

【請求項22】 2以上の整数N個の送信機から送信信号を受信するターボ 受信機であって、

1以上の整数M個の受信信号を生成する受信信号生成部と、

上記M個の受信信号と既知信号の参照信号が入力され、その伝送特性であるチャネル値を推定するチャネル推定器と、

上記M個の受信信号と、上記チャネル値N個の事前情報とが入力され、1乃至 複数の上記送信機の送信信号ごとに、他の送信機の送信信号による干渉成分を除 去した等化信号と、その等化信号と対応する等化後のチャネル情報との複数組を 出力する前段等化器と、

上記前段等化器より上記等化信号とそのチャネル情報の組と、その等化信号の 構成送信信号と対応する事前情報とがそれぞれ入力され、その等化信号から、構 成送信信号のそれぞれについてそのマルチパスによる符号間干渉又はこれとその 構成信号中の他の送信信号との相互干渉とを除去して対数尤度比を出力する複数 の後段等化器と、

を具備するターボ受信機。

【請求項23】 2以上の整数N個の送信機から送信信号を受信するターボ 受信機であって、

1以上の整数M個の受信信号を生成する受信信号生成部と、

上記M個の受信信号と既知信号の参照信号が入力され、その伝送特性であるチャネル値を推定するチャネル推定器と、

上記M個の受信信号と、上記チャネル値とN個の事前情報とが入力され、1乃至複数の上記送信機の送信信号ごとに、他の送信機の送信信号による干渉成分を除去した等化信号と、その等化信号と対応する等化後のチャネル情報との複数組を出力する前段等化器と、

上記前段等化器より上記等化信号とそのチャネル情報の組とその等化信号を構成する複数の送信信号と対応する事前情報とが入力され、その等化信号の複数の構成送信信号中の1乃至複数の送信信号ごとに、その構成送信信号中の他の他送信信号による干渉成分を除去した等化信号と、その等化信号と対応する等化後の

チャネル情報との複数組を出力する複数の後段等化器を 具備するターボ受信機。

【請求項24】 復号器よりの硬判定送信シンボルが、これにより更新記憶される前回シンボル記憶部と、ターボ受信処理の2回目以後の繰り返し処理において、前回シンボル記憶部から硬判定送信シンボルを読み出し、参照信号としてチャネル推定器へ供給する手段とを備えることを特徴とする請求項20万至23の何れかに記載のターボ受信機。

【請求項25】 軟判定送信シンボルが入力され、しきい値と比較する比較部と、その比較部の出力により制御され、硬判定送信シンボル中のその軟判定送信シンボルがしきい値以上のものを前回シンボル記憶部へ格納する選択部とを備える請求項24記載のターボ受信機。

【請求項26】 上記出力されたN個の対数尤度比がそれぞれ供給されるN個の復号器を備え、上記N個の復号器の出力から上記N個の事前情報が得られることを特徴とする請求項20万至25の何れかに記載のターボ受信機。

【請求項27】 上記N個の送信信号は1つの情報系列をN個の並列の系列としてN個の送信機よりそれぞれ送信された信号であり、上記出力されるN個の対数尤度比を直列系列に変換する並列一直列変換部と、上記直列系列の対数尤度比が入力される復号器と、上記復号器よりの事前情報をN個の並列系列に変換して上記N個の事前情報を得る直列一並列変換部とを備えることを特徴とする請求項20乃至25の何れかに記載のターボ受信機。

【請求項28】 受信信号の伝送路特性としてのチャネル値を、受信信号と 参照信号としての既知信号とから推定し、その推定したチャネル値を用いて受信 信号を処理し、その処理した信号に対し復号処理を行い、同一受信信号に対し上 記推定したチャネル値を利用した処理と復号処理とを繰り返し行う受信方法にお いて、

復号された硬判定情報シンボルの確からしさを、その軟判定情報シンボルの値から決定し、確からしさが所定値以上の硬判定情報シンボルをも次回のチャネル推定の参照信号に用いることを特徴とするターボ受信方法。

【請求項29】 受信ベクトル y (k) 内の雑音成分の共分散行列として

、上記繰り返し毎に、 σ^2 I (σ^2 はガウス分布の分散値、 I は単位行列)を計算する過程を含むことを特徴とする請求項 28 記載のターボ受信方法。

【請求項30】 受信信号ベクトル y (k)内の雑音成分の共分散行列Uを、上記繰り返し毎に、推定されたチャネル行列 FI ^と受信信号ベクトル y (k)を用いて、

$$U^* = \sum_{k=0}^{Tr} (y(k) - H^* \cdot B(k)) \cdot (y(k) - H^* \cdot B(k))$$

B
$$(k) = [b^T (k+Q-1) \cdots b^T (k) \cdots b^T (k-Q+1)]^T$$

b
$$(k+q) = [b_1 (k+q) \cdots b_N (k+q)]^T$$
 $(q=-Q+1 \cdots Q-1)$

 \mathbf{b}_1 ($\mathbf{k}+\mathbf{q}$) から \mathbf{b}_N ($\mathbf{k}+\mathbf{q}$) は、上記既知信号及び上記確からしさが所定値以上の硬判定情報シンボルよりなる参照信号、 $\mathbf{T}_{\mathbf{r}}$ はその参照信号長であり、を計算する過程を含むことを特徴とする請求項 2 8 記載のターボ受信方法。

【請求項31】 上記推定したチャネル値を利用した処理と復号処理との繰り返しは、上記推定したチャネル値により線形等化フィルタを決定し、その線形等化フィルタにより受信信号を処理し、その処理した信号を復号することの繰り返しであることを特徴とする請求項28~30の何れかに記載のターボ受信方法

【請求項32】 上記推定したチャネル値を利用した処理と復号処理との繰り返しは、上記推定したチャネル値により、レーク合成処理部内で、各シンボルが伝送路で受けた位相回転を補償するレーク合成処理を行い、そのレーク合成処理された信号をターボデコーダにより復号することの繰り返しである、ことを特徴とする請求項28~30の何れかに記載のターボ受信方法。

【請求項33】 上記推定したチャネル値を利用した処理と復号処理との繰り返しは、アダプティブアレーアンテナ受信部に対し、上記推定したチャネル値によりアンテナ指向特性を決定する重みを設定し、アダプティブアレーアンテナ受信部の出力をターボデコーダにより復号することの繰り返しであることを特徴とする請求項28~30の何れかに記載のターボ受信方法。

【請求項34】 上記アダプティブアレーアンテナ受信部の出力をレーク合成処理部内で、各シンボルが伝送路で受けた位相回転を上記推定したチャネル値により補償するレーク合成処理を行い、そのレーク合成処理された信号を上記ターボデコーダへ供給することを特徴とする請求項33記載のターボ受信方法。

【請求項35】 受信信号の伝送路特性であるチャネル値を、受信信号と参照信号としての既知信号とから推定し、その推定したチャネル値を用いて受信信号を処理し、その処理した信号に対し復号処理を行い、同一受信信号に対し上記推定したチャネル値を利用した処理と復号処理とを繰り返し行う受信機において

復号された硬判定情報シンボルの確からしさが所定値以上か否かを、その軟判 定情報シンボルの値がしきい値以上か否かにより決定する手段と、

その確からしいと決定された硬判定情報シンボルにより記憶内容が更新記憶される前回シンボル記憶部を備え、次回のチャネル推定の参照信号として前回シンボル記憶部の記憶内容が用いられることを特徴とするターボ受信機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、例えば移動通信に適用され、干渉にもとづく波形歪を、ターボ符 号技術を応用した繰り返し等化を行うターボ受信方法、及びその受信機に関する

[0002]

【従来の技術】

移動体通信事業の課題は限られた周波数上でいかに高品質で多数のユーザを所有できるシステムを構築するかということにある。このような課題を解決する手段として多入力多出力(Multi-Input Multi-Output: MIMO)システムがある。このシステム構成は図30Aに示されているように複数の送信機S1~SNから同時刻、同周波数上でシンボル \mathbf{c}_1 (i)~ \mathbf{c}_N (i)をそれぞれ送信し、これらの送信信号を、複数のアンテナ#1~#Mを備えるMIMO受信機で受信し、MIMO受信機は受信信号を処理し、各送信機S1~SNの送信シンボル \mathbf{c}_1 (

i) \sim c $_N$ (i)を推定して c_1 ^(i) \sim c $_N$ ^(i)として出力端子Outl \sim OutNに別々に出力する。

[0003]

現在までのところMIMOシステムにおけるMIMO受信機の具体的な構成法に関する検討は十分に行われていない。MIMOシステムにおけるMIMO受信機の構成をMLSE(最尤推定)規範に基づいて行う場合は、送信機の数をN、各送信機の送信電波がMIMO受信機に到達するマルチパスの数をQとすれば、MIMO受信機の計算量は2^{(Q-1)N}の桁になってしまい、送信機数N、マルチパス数Qの増加に伴いその計算量は莫大なものとなる。またシングルユーザの情報を複数の並列信号として送信されたものを受信する場合に、各並列信号を分離するにはマルチパス数の増加に伴い多くの計算量を必要とする。そこでこの発明は計算効率のよい複数系列信号のターボ受信方法を提案するものであるが、まずこの発明の元となる既存のシングルユーザ(送信機1台)、つまり1系列送信信号に対するターボ受信機について説明する。

[0004]

シングルユーザ用ターボ受信機

この場合の送信機、受信機の構成例を図31に示す。送信機10では情報系列 c (i)の符号化が符号化器11で行われ、その符号化出力がインタリーバ12でインタリーブ(並べ替え)された後、変調器13で搬送波信号を変調し、その変調出力が送信される。この送信信号は伝送路(マルチパスの各チャネル)を通じて受信機20に受信される。受信機20では軟入力軟出力(SISO:Single-Input-Single-Output)等化器21により遅延波の等化が行われる。この等化器21の入力は一般に受信信号がベースバンドに変換され、そのベースバンドの受信信号が、送信信号の情報系列のシンボル信号の周波数の1倍以上の周波数でサンプリングされてディジタル信号に変換され、ディジタル信号の受信信号として等化器21へ入力される。

[0005]

シングルユーザの場合図 3 0 A \overline{c} N = 1 にあたり、各受信アンテナ # m = 1 , 2 $, \cdots$, M) における受信出力は、

$$r_{m}(k) = \sum_{q=0}^{Q-1} h_{m}(q) \cdot b (k-q) + v_{m}(k)$$
 (1)

と表すことができる。mはアンテナインデックス、hはチャネル値(伝送路インパルス応答:伝送路特性)、b(k-q+1)はユーザ(送信機 1)の送信シンボル、 v_m (k) は受信機 20の内部の熱雑音である。そして全てのアンテナ# 1~#Mからの出力を式(2)のベクトルとして表わし、式(3)

$$\mathbf{r} \quad (k) = [r_1 \ (k) \ r_2 \ (k) \ \cdots \ r_M \ (k)]^T$$

$$= \sum_{q=0}^{Q-1} \mathbf{H} (q) \cdot \mathbf{b} \ (k-q+1) + \mathbf{v} \ (k) \ (3)$$

を定義する。ここで、

$$\mathbf{v}(\mathbf{k}) = [\mathbf{v}_1 \ (\mathbf{k}) \ \mathbf{v}_2 \ (\mathbf{k}) \ \cdots \ \mathbf{v}_M \ (\mathbf{k})]^T$$
 (4)

$$\mathbf{H}(\mathbf{q}) = [\mathbf{h}_{1} \ (\mathbf{q}) \ \cdots \ \mathbf{h}_{M} \ (\mathbf{q})]^{T} \tag{5}$$

である。また $[]^T$ は転置行列を表わす。次にマルチパス(チャネル)の数 Q を考慮して以下のベクトル及び行列を定義する。

[0006]

$$\mathbf{y}$$
 (k) $\equiv [\mathbf{r}^T (\mathbf{k} + \mathbf{Q} - 1) \mathbf{r}^T (\mathbf{k} + \mathbf{Q} - 2) \cdots \mathbf{r}^T (\mathbf{k})]^T$
(6)

$$\equiv \mathbf{H} \cdot \mathbf{b} \ (\mathbf{k}) + \mathbf{n} \ (\mathbf{k}) \tag{7}$$

ここで、

[0007]

【数13】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots & \\ 0 & H(0) & \cdots & H(Q-1) \end{bmatrix}$$
(8)

[0008]

ただし、

$$\mathbf{b} (k-q) = [b (k+Q-1) b (k+Q-2) \cdots b (k-Q+1)]^{T}$$

$$\mathbf{n} (k) = [\mathbf{v}^{T} (k+Q-1) \mathbf{v}^{T} (k+Q-2) \cdots \mathbf{v}^{T} (k)]^{T}$$
(10)

である。

上で定義した \mathbf{r} (k) が等化器 2 1 に入力され、この \mathbf{S} \mathbf{I} \mathbf{S} O 等化器 2 1 は線形等化器であって、その等化出力として各符号化ビット {b(i)} が + 1 である確率と- 1 である確率の対数尤度比 Λ_1 (LLR: Log-Likelihood Ratio) が導出される。

[0009]

【数14】

$$\Lambda_{1}[b(k)] = \log \frac{\Pr[b(k) = +1 \mid y(k)]}{\Pr[b(k) = -1 \mid y(k)]}$$
(11)

$$\equiv \lambda_{1}[b(k)] + \lambda_{2}^{p}[b(k)]$$
 (12)

である。ここで λ_1 [b (k)] は後続の復号器 24 に送られる外部情報、 λ_2 p [b (k)] は等化器 21 に与えられる事前情報である。対数尤度比 Λ_1 [b (k)] は事前情報 λ_2 [b (k)] が減算器 22 で減算され、更にデインタリーバ 23 を介してSISOチャネル復号器 24 へ供給される。この復号器 24 は対数尤度比 Λ_2 、

[0011]

【数15】

$$A_{2}[b(i)] = \log \frac{\Pr[b(i) = +1 | \lambda_{1}[b(i)], i = 0, \dots, B-1]}{\Pr[b(i) = -1 | \lambda_{1}[b(i)], i = 0, \dots, B-1]}$$
(13)
$$B : \mathcal{I} \nu - \Delta \xi$$

$$\equiv \lambda_{2}[b(i)] + \lambda_{1}^{p}[b(i)]$$
(14)

[0012]

を算出する。ここで λ_2 [b (i)] は繰り返しの際に等化器 21 に λ_2 P [b (k)] として与えられる外部情報であり、 λ_1 [b (k)] が復号器 24 に事前情報 λ_1 P [b (i)] として与えられる。 Λ_2 [b (i)] は減算器 25 で λ_1 [b (i)] が減算され、インタリーバ 26 を介して等化器 21 及び減算器

22へ供給される。このようにして繰り返し等化、復号が行われて誤り率の向上が達成される。

次に前段の等化器 2 1 の詳細として受信ベクトル $\mathbf y$ ($\mathbf k$) に施す線形フィルタ特性の算定について述べる。等化器 2 1 の事前情報 λ_2 $\mathbf p$ [$\mathbf b$ ($\mathbf k$)] を用いて軟判定シンボル推定値

$$b'(k) = tan h [\lambda_2^p [b(k)]/2]$$
 (15)

を算出する。そして、この推定値とチャネル行列 I-I を用いて干渉成分、つまり 干渉成分のレプリカ I-I ・ b ′ (k)を再生し、受信信号から引き算する。つまり

$$y'(k) \equiv y(k) - H \cdot b'(k)$$
 (16)

$$= H \cdot (b (k) - b' (k)) + n (k)$$
 (17)

ここで、

$$\mathbf{b}'(\mathbf{k}) = [\mathbf{b}'(\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}'(\mathbf{k} - \mathbf{Q} + 1)]^T$$
 (18) を計算する。干渉成分のレプリカ \mathbf{H} ・ \mathbf{b} '(\mathbf{k}) は正確なレプリカに必ずしもなっていないから、式(16)により干渉成分を完全に除去できない。そこで干渉成分の残りを消す線形フィルタ係数 \mathbf{w} (\mathbf{k}) を以下のMMSE(最小平均2乗誤差) 規範で求める。

[0013]

 \mathbf{w} (k) = arg min $\|\mathbf{w}^{H}$ (k) ・ \mathbf{y} ′ (k) - b (k) $\|^{2}$ (19) H は共役転置を表わし、 $\|\mathbf{w}^{H}$ はノルムを表わす。

式(19)を最小とする w (k)を求める。

以下の \mathbf{w} (k) の導出は文献: Daryl Reynolds and Xiaodong Wang, "Low Complexity Turbo-Equalization for Diversity Channels" (http:/ee.tamu.ed u/reynolds/) に記載されている。この手法の主な達成事項として計算量の大幅 削減がある。従来のMLSE型ターボの計算量は 2^{Q-1} のオーダに比例していた のに対し、この手法は Q^3 のオーダで抑えられている。なお \mathbf{w}^H (k) ・ \mathbf{y}^H (k) は等化器 2 1 の出力であって、これから $\mathbf{\lambda}_1$ [b(k)] が計算されて デインタリーバ23を介して復号器 2 4 へ供給され、復号演算が行われる。

[0014]

等化器21において等化処理を行うには、式(1)中のチャネル値(伝送路インパルス応答)hを推定する必要がある。このチャネル値の推定を以下ではチャネル推定と記す。チャネル推定は、1フレーム内の先頭部に送られて来るユニークワードなどの既知のトレーニング系列の受信信号と、記憶してあるトレーニング系列とを用いて行われている。チャネル推定の精度が悪いと、等化器21での等化処理が正しく行われない。チャネル推定の精度を高くするには1フレーム内のトレーニング系列の占める割合を大きくすればよいが、そのようにすると本来のデータに対する伝送効率が低下する。従って、1フレーム内のトレーニング系列の占める割合を小さくし、かつチャネル推定精度を向上させることが望まれる

[0015]

このことはMIMOを含む多系列送信信号に対する受信機に限らず、レーク(RAKE)受信機やアダプティブアレーアンテナを用いた受信機においても繰り返し復号処理により復号結果の確からしさを向上させる受信機では、そのチャネル推定においては同様な問題がある。

[0016]

【発明が解決しようとする課題】

上記のターボ受信機は以下の課題を持っている。

- ・シングルユーザ(一台の送信機)、つまり1系列の送信信号のみの対応である。
- ・干渉成分を再生する際にチャネル値(行列H)が必要であり、実装の際には これを推定する必要がある。

その推定誤差が繰り返し等化の効果を劣化させてしまう。

[0017]

この発明の目的はこの2点を補うべく以下にこの受信用をマルチユーザ、やシングルユーザ並列送信などの複数の送信系列信号に対する受信機に拡張したターボ受信方法及びその受信機を提供することにある。

またこの発明の他の目的は、受信信号のチャネル値を、受信信号と参照信号としての既知信号とから推定し、その推定したチャネル値を用いて受信信号を処理

し、その処理した信号に対し、復号処理を行い、同一受信信号に対し、上記推定 したチャネル値を利用した処理と復号処理とを繰り返し行う受信方法において、 比較的短かい既知信号によりチャネル推定を精度よく行うことができるターボ受 信方法及びその受信機を提供することにある。

[0018]

【課題を解決するための手段】

[0019]

【数16】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$H(q) = \begin{bmatrix} h_{11}(q) & \cdots & h_{1N}(q) \\ \vdots & \ddots & \vdots \\ h_{M1}(q) & \cdots & h_{MN}(q) \end{bmatrix}$$

[0020]

$$\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^T(\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}'^T(\mathbf{k}) \cdots \mathbf{b}'^T(\mathbf{k} - \mathbf{Q} + 1)]^T$$

$$\mathbf{b}' (k+q) = [b'_{1} (k+q) b'_{2} (k+q) \cdots b'_{N} (k+q)]^{T}$$

$$q = Q - 1 \cdots - Q + 1$$
 $q \neq 0$ \mathcal{C}

 \mathbf{b} ' $(\mathbf{k}) = [\mathbf{b}']_1 (\mathbf{k}) \cdots \mathbf{b}']_N (\mathbf{k}) \mathbf{T} \quad \mathbf{q} = \mathbf{0}$ で (\mathbf{b} ' (\mathbf{k}) の要素のゼロは \mathbf{n} 番目)、 \mathbf{Q} は各送信信号電波のマルチパスの数、 $\mathbf{q} = \mathbf{0}$, …, $\mathbf{Q} - \mathbf{1}$ 、 \mathbf{C} \mathbf{T} は転置行列を表わす。

[0021]

この符号間干渉 H·B′(k)を受信ベクトル y (k)から差し引き差 分ベクトル y ′(k)を求める。

 $ZZ\mathcal{T} \mathcal{S} (k) = [\mathbf{r}^T (k+Q-1) \mathbf{r}^T (k+Q-2) \cdots \mathbf{r}^T (k)]^T$

$$r(k) = [r_1(k) r_2(k) \cdots r_M(k)]^T$$

チャネル行列 \mathbf{H} 又は参照信号を用いて差分ベクトル \mathbf{y} ' (k)内の残余干渉成分を除去するための、 \mathbf{n} 系列目の送信信号の受信信号に対する適応フィルタ係数 $\mathbf{w}_{\mathbf{n}}$ (k)を求め、差分ベクトル \mathbf{y} ' (k)を上記適応フィルタ係数 $\mathbf{w}_{\mathbf{n}}$ (k)によりフィルタ処理して、 \mathbf{n} 系列目の送信信号に対する干渉除去された受信信号として \mathbf{n} 系列の対数尤度比を得る。これら \mathbf{n} 系列の対数尤度比を用いて復号する。

[0022]

第2発明によれば、第1発明において、 q=0の場合に、

$$b'(k) = [b'_{1}(k) \cdots f(b'_{n}(k)) \cdots b'_{N}(k)]^{T}$$

b'(k) の要素の $f(b'_n(k)$ はn番目であり、f() はf(0) = 0、かつ $d\{f(b'_n(k)\} / d\{b'_n(k)\} \ge 0$ を満たす $b'_n(k)$ を変数とする関数

とすることを特徴とする。

第3発明によれば、等化処理を複数段階に分けて行い、後段程、等化出力の系列の数を少なくする。

[0023]

この第4発明によれば受信信号のチャネル値を、受信信号と参照信号としての 既知信号とから推定し、その推定したチャネル値を用いて受信信号を処理し、そ の処理した信号に対し復号処理を行い、同一受信信号に対し、上記推定したチャ ネル値を利用した処理と復号処理とを繰り返し行うターボ受信方法において、復 号された硬判定情報シンボルの確からしさを、その軟判定情報シンボルの値から 決定し、その確からしさが所定値以上の硬判定情報シンボルをも次回のチャネル 推定の参照信号に用いる。

[0024]

【発明の実施の形態】

第1発明(1)

図1にこの発明が適用されるMIMOシステムの構成例を示す。

送信側のN個の送信機S1…SNのそれぞれにおいて情報系列 c_1 (i)… c_N (i)がそれぞれ符号器11-1,…,11-Nで符号化され、これら符号化出力はインタリーバ12-1,…,12-Nを通じて変調器13-1,…,13-Nに変調信号として供給され、これら変調信号により搬送波信号が変調されて信号 b_1 (k),…, b_N (k)として送信される。つまり送信機S1,…,SN Nからの送信信号 b_1 (k),…, b_N (k)がN系列の送信信号の場合である

[0025]

伝送路(チャネル)を通じて多出力受信機に受信された受信信号 r (k) は多出力等化器31に入力され、受信機に受信された信号はベースバンド信号に変換され、そのベースバンド信号は例えばそのシンボル周期の1/2の周期でサンプリングされてディジタル信号に変換されそのディジタル信号として等化器31に入力される。またこのディジタル信号は1以上の整数M個とされる。例えばM個のアンテナよりの受信信号がM個のディジタル信号の受信信号とされる。

[0026]

マルチユーザ(複数送信機)からの受信信号 r_m (k) ($m=1, \cdots, M$) は、等化器 3 1 の入力として、

$$r_{m}(k) = \sum_{q=0}^{Q-1} \sum_{n=1}^{N} h_{mn}(q) \cdot b_{n}(k-q) + v_{m}(k)$$

と複数ユーザ分足し合わせたものとなる。 q=0, …, Q-1, Qは各送信電波のマルチパスの数、そしてシングルユーザの場合と同じ手順でベクトル \mathbf{S} (\mathbf{k}) を定義すると、

$$\mathbf{y}$$
 (k) \equiv [\mathbf{r} T (k+Q-1) \mathbf{r} T (k+Q-2) \cdots \mathbf{r} T (k)

[21)

$$= \mathbf{H} \cdot \mathbf{B} \ (\mathbf{k}) + \mathbf{n} \ (\mathbf{k}) \tag{22}$$

ここで、 r (k) = [r₁(k) … r_M(k)] ^T [0027]

【数17】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & H(0) & \cdots & H(Q-1) \end{bmatrix}$$
 (23)

ただし、

[0028]

【数18】

$$H(q) = \begin{bmatrix} h_{11}(q) & \cdots & h_{1N}(q) \\ \vdots & \ddots & \vdots \\ h_{MI}(q) & \cdots & h_{MN}(q) \end{bmatrix}$$
(24)

$$\mathbf{B} (k) = [\mathbf{b}^{T} (k+Q-1) \cdots \mathbf{b}^{T} (k) \cdots \mathbf{b}^{T} (k-Q+1)]^{T}$$
(25)

b
$$(k+q) = [b_1 (k+q) b_2 (k+q) \cdots b_N (k+q)]^T$$

 $q = Q-1, Q-2, \cdots, -Q+1$ (26)

次に干渉除去ステップにおいて、今第 n 番目のユーザ(送信機)からの信号が所望であると仮定する。この例では全ユーザ(送信機)よりの信号の軟判定シンボル推定値とチャネル行列(伝送路インパルス応答値行列) I-I を用いて、第 n 番目以外のユーザの信号による干渉と第 n 番目のユーザの信号自身が作る干渉との合成したもの、つまり干渉レプリカ I-I・IB ′(k)を再生して以下のように、 S (k)からこの干渉レプリカを引算して差分ベクトル S ′(k)を生成する。

[0030]

$$\mathbf{y}'(\mathbf{k}) \equiv \mathbf{y}(\mathbf{k}) - \mathbf{H} \cdot \mathbf{B}'(\mathbf{k})$$
 (27)

$$= H \cdot (B (k) - B' (k)) + n (k)$$
 (28)

ここで、

$$\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{T}(\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}'^{T}(\mathbf{k}) \cdots \mathbf{b}'^{T}(\mathbf{k} - \mathbf{Q} + 1)]^{T}$$
(29)

そして、

$$b'(k+q) = [b'_1(k+q)b'_2(k+q)\cdots b'_N(k+q)]^T : q = Q-1, \cdots, -Q+1, q \neq 0$$
 (30)

b
$$'$$
 $(k) = [b']_1 (k) \cdots 0 \cdots b']_N (k)] T : q = 0 (31)$
b $'$ (k) の要素中の0はn番目である。

 b'_n (k) は式 (15) と同様に b'_n (k) = tan h $[\lambda_2]$ $[b_n]$ (k) /2] を計算して求めた軟判定送信シンボル推定値である。ベクトル B' (k)) は干渉シンボルのレプリカベクトルである。

次に干渉成分の残り、つまり干渉成分レプリカ $\mathbf{H} \cdot \mathbf{B}'$ (k) の不完全性

に基づく干渉剰余と、第n番目自身の信号が作る干渉成分とを消すための第n番目のユーザ用のフィルタ係数 \mathbf{w}_n (k)を以下の式(32)を最小とする \mathbf{w}_n (k)をMMSE(最小平均2乗誤差)規範で求める。

$$\mathbf{w}_{n}$$
 (k) = arg min $\|\mathbf{w}_{n}\|$ (k) $\cdot \mathbf{y}'$ (k) $-\mathbf{b}_{n}$ (k) $\|^{2}$ (32)

以下の操作はシングルユーザの場合と同一である。つまり求めた \mathbf{w}_n (k) を用いて \mathbf{w}_n (k)・ \mathbf{y}' (k)を計算し、その計算結果をデインタリーバ23-nを介して λ_1 [b_n (i)]として、復号器24-nに入力して復号演算が行われる。

[0032]

ユーザ1からNまで以上の方法で受信信号 r_m に対しフィルタ(線形等化)処理を求めていく。その結果等化器 31の出力数はNとなり、これら出力は各々の復号器 24 -1, …, 24 -Nにより復号される。以上がシングルユーザ用ターボ受信機のマルチユーザ(MIMO)用への拡張である。

[0033]

さらに軟判定送信シンボルの推定値 $\hat{b'}_1$ (k) $\sim b'_N$ (k) が、干渉レプリカベクトル生成部 3 1 4 -1 に供給され、式(2 9) \sim (3 1) により干渉レプリカベクトル $\hat{B'}_1$ (k) が生成され、このベクトル $\hat{B'}_1$ (k) はフィルタ処理部 3 1 5 -1 でチャネル行列 \hat{H} によりフィルタ処理され、その結果の干渉レプリカ成分 \hat{H} ・ $\hat{B'}_1$ (k) が、差演算部 3 1 6 -1 で受信ベクトル

 \mathbf{y}_1 (k) から差し引かれ、差分ベクトル \mathbf{y}_1' (k) が生成される。 【0034】

フィルタ係数推定部 3 1 7 -1 に少くともチャネル行列 \mathbf{FI} 、又は後述するように参照信号が入力され、前記干渉成分の残りを除去するためのフィルタ係数 \mathbf{W}_1 (k) が求められる。この例ではチャネル推定器 2 8 よりのチャネル行列 \mathbf{FI} と雑音成分の共分散 σ^2 と、軟判定シンボル生成部 3 1 3 -1 からの軟判定送信シンボル b'_1 (k) \sim b'_N (k) がフィルタ係数推定部 3 1 7 -1 に入力され、式(3 2)を最小とするフィルタ係数 \mathbf{W}_1 (k) が最小平均 2 乗誤差規範で求められる。このフィルタ係数 \mathbf{W}_1 (k) を求める具体的処理は後で述べる。適応フィルタ処理部 3 1 8 -1 で差分ベクトル \mathbf{W}'_1 (k) がフィルタ係数 \mathbf{W}_1 (k) により処理され、ユーザ 1 からの送信信号に対する受信信号の等化出力として Λ_1 [b_1 (k)] が出力される。

[0035]

また前述したこの発明の実施例の多入力多出力ターボ受信方法の処理手順を図 3に示す。ステップS1で受信信号r(k)と各トレーニング信号 b_n (k)からチャネル値 h_{mn} (q)及び雑音成分の共分散 σ^2 を計算し、ステップS2でそのチャネル値 h_{mn} (q)からチャネル行列F1を計算し、ステップS3でターボ受信処理における前回の処理で得た各事前情報 λ_2 [b_n (k)]から軟判定送信シンボル推定値 b'_n (k)=tanh(λ_2 [b_n (k)]/2)を計算する。

[0036]

ためのフィルタの係数 $\mathbf{w}_{\mathbf{n}}$ (k) を、式(32)を最小とする最小平均2乗誤差規範で求める。

[0037]

ステップS9で差分ベクトル \mathbf{y}'_n (k) に対しフィルタ係数 \mathbf{w}_n (k) によるフィルタ処理を行って対数尤度比 Λ_1 [\mathbf{b}_n (k)] を得る。ステップS $\mathbf{1}$ $\mathbf{0}$ \mathbf{v} \mathbf{n} [\mathbf{b}_n (k)] から事前情報 \mathbf{n} \mathbf{v} $\mathbf{$

[0038]

次にチャネル推定部 28 について述べる。各受信信号 r_m (k) は次式で表わせる。

$$r_{m}(k) = \sum_{q=0}^{Q-1} \sum_{n=1}^{N} h_{mn}(q) \cdot b_{n}(k-q) + v_{m}(q)$$
(33)

チャネル推定部 2 8 は式(3 3)中のチャネル値(伝送路インパルス応答)の h_{mn} (q)の値とノイズ v_{m} (k)の平均電力($\equiv \sigma^2$)を求める。通常送信側は図 4 Aに示すように受信機で既知のユニークワード(トレーニング信号)を各送信フレームの始めに挿入し、受信機はそのユニークワード(既知信号)をトレーニング系列としてRLS(再帰的最小 2 乗法)などを用いてチャネル値 h_{mn} (q)を推定していく。各チャネル復号器 2 4 -1 , …,2 4 -N から、その対数 尤度比 h_{mn} (i)] , …, h_{mn} (i)] のそれぞれについて、正であれば h_{mn} (i)] のそれぞれについて、正であれば h_{mn} (i)として出力し、これら h_{mn} (i), …, h_{mn} (i)として出力し、これら h_{mn} (i), …, h_{mn} (i)はインタリーバ 2 h_{mn} (i)として出力し、これら h_{mn} (i)はインタリーバ 2 h_{mn} (i)として出力し、これら h_{mn} (i)が入力さ 1 に 2 h_{mn} (i)はインタリーバ 2 h_{mn} (i)はインタリーバ 2 h_{mn} (i)はインタリーバ 2 h_{mn} (i)が入力さ 1 に 2 h_{mn} (i)が入力さ

れると共にユニークワード記憶部 29 からユニークワードが参照信号として入力される。チャネル推定器 28 はこれら入力された信号に基づき、式(33)の各 h_{mn} (q) と σ^2 の各値を最小 2 乗法により推定する。この推定は伝送路のインパルス応答を推定して受信信号を適応フィルタにより適応的に等化する場合のインパルス応答の推定と同様の手法で行うことができる。

[0039]

このようにトレーニング系列を用いるのは通常用いられる手法であるが、正味の伝送速度を上げるには1フレーム内のユニークワードの占める割合を小さくする必要があり、そうすればチャネル推定の誤差は増大する。そしてその誤差が上記の繰り返し等化の特性を劣化させてしまう。そこでチャネル値の繰り返し推定を次のようにするとよい。

その概念を図4Bに示す。これは同一受信信号の繰り返し等化処理、つまりタ ーボ受信処理の繰り返し処理の各段階でチャネル値も繰り返し推定していこうと いうものである。つまり1回目においてはユニークワードの後の情報シンボル系 列に対しては、ユニークワードのみを参照信号として用いてチャネル値を推定し 、その推定したチャネル値を用いて受信信号を等化し送信シンボルを推定するが 、2回目以降の等化処理の前に、そのユニークワードを参照信号として用いてチ ヤネル推定を行い、かつ前回の復号処理で得られたシンボル推定値(硬判定値) も参照信号として用いてフレーム内全体でチャネル推定を行う。この場合、全て の硬判定値を用いるのではなく、確からしいと判断された硬判定値のみを参照信 号として用いるとよい。硬判定は復号器 24-n からの対数尤度比 Λ_2 [b_n (i)]を用いてこれが正なら+1、負なら-1とすることによって行われる。そ の際その対数尤度比 Λ_2 [b_n (i)] の絶対値が大きいほどその硬判定値は確 からしいと言える。例えば、対数尤度 0.3を1と判定した時の1よりも、対数 尤度5を1と判定したときの1の方が確からしい。そこで以下にしきい値を用い て確からしい硬判定値bn(i)を選定し、それを用いて繰り返しチャネル推定 を行う方法を説明する。

[0040]

まず復号器 24-nよりの対数尤度比 Λ_2 [b_n (i)]を用いて、シンボル

の軟判定値 b'n (i)を、

 b'_{n} (i) = tan h [Λ_{2} [b_{n} (i)] /2]

として求める。この操作は対数尤度値を1に規格化し絶対値が1を超えることはないようにするためである。次に予めしきい値(0と1の間)を用意しておき、その軟判定値 b $^{\prime}$ $_{n}$ $_$

[0041]

従って1回目の情報シンボル系列に対する送信シンボル推定値(硬判定値) b $_1$ $^{^{\circ}}$ $^{^{\circ}}$

の際におけるチャネル推定はユニークワードを用いる推定と、前回の推定送信シンボル中の確からしいと判定されたものを用いる推定とによりフレーム内全体でチャネル推定を行う。その推定チャネルを用いて等化、復号(送信シンボル推定)を行い、また前回シンボル記憶部32の更新を行う。なおこの前回シンボル記憶部32には復号器からの送信シンボル硬判定値 b 1 (i), …, b 1 (i) 中のしきい値により確からしいと判定されたシンボル値を前回シンボル記憶部32に直接格納更新し、この前回シンボル記憶部32の記憶シンボル値を利用する場合にインタリーバ27-1, …, 27-Nを通してチャネル推定器28へ入力するようにしてもよい。

[0042]

このようにすることによって繰り返しにより、チャネル推定の誤差が減少し、 シンボル推定の精度が向上し、ターボ等化におけるチャネル推定誤差による特性 劣化の問題を改善することができる。

このように確からしいシンボル硬判定値を用いて情報シンボル系列においてチャネル推定を行う場合には、各復号器 24-nに図 5に示す機能構成が付加される。対数尤度比 Λ_2 [b_n (i)]が軟判定値推定部 241に入力され、 b'_n (i) = t a n h (Λ_2 [b_n (i)])が計算され、送信シンボル軟判定値 b'_n (i)が推定され、この値 b'_n (i)が比較部 242 でしきい値設定部 243 からのしきい値 1 h と比較され、1 b 1 h 1 が 1 が 1 か 1 が 1 が 1 か 1 が

[0043]

また確からしいシンボル硬判定値をも利用したチャネル推定の手順は図6に示すようになる。まずステップS1で受信信号r(k)とユニークワードとによるチャネル推定を行い、ステップS2で復号処理が1回目か否かを調べ、1回目で

あれば、ステップS3でその推定したチャネル値 h_{mn} (q)を用いて等化、復号処理、つまり図3中のステップS3 \sim S10の処理を行う。

ステップS4で対数尤度比 Λ_2 [b_n (i)] に対し、送信シンボル硬判定処理を行い、硬判定値 b_n (i) を求め、ステップS5で対数尤度比 Λ_2 [b_n (i)] に対し、 b_n' (i) = t anh (Λ_2 [b_n (i)] ℓ (ℓ) を計算して送信シンボル軟判定値 ℓ (ℓ) を推定する。ステップS6でシンボル軟判定値 ℓ (ℓ) がしきい値 ℓ h以上か否かにより、対応シンボル硬判定値 ℓ (ℓ) の確からしいものを決定し、ステップS7でその確からしいシンボル硬判定値により、前回シンボル記憶部32内の記憶内容を更新する。次にステップS8で復号回数が所定値であるかを調べ、所定値になっていなければ、ステップS1へ戻る。正確には図3中のステップS12を経て図3中のステップS1に戻る。

[0044]

ステップS2で復号処理が1回でないと判定されると、ステップS9で前回シンボル記憶部32から前回の記憶シンボル、つまり確からしい硬判定シンボルを読み出し、これと受信信号r(k)の情報シンボル系列とを用いてチャネル推定を行ってステップS3に移る。

以上においては、2回目以後の処理においても、ユニークワードも参照信号として初期状態からチャネル推定をしたが、2回目以後は参照信号として確らしい硬判定シンボルのみを用いてもよい。この場合は図6中に破線で示すように、ステップS1'で1回目の処理かを調べ、1回目の処理であれば、ステップS2'でユニークワードを参照信号としてこれと、受信信号とによりチャネル値の推定を行い、ステップS3'でその推定チャネル値と、その推定に用いた各パラメータの値を記憶部に記憶した後、ステップS3の等化、復号処理へ移る。

[0045]

ステップS1'で1回目でなければ、チャネル推定処理に先立ち、ステップS4'で先に記憶したチャネル推定値と各種処理パラメータを設定してステップS9へ移る。

3 7

所で式(32)の解は次式となる。

$$\mathbf{W}_{n}$$
 (k) = (H G (k) H + σ^{2} I)⁻¹·h (34)

I は単位行列、 σ^2 は受信機の内部雑音電力(雑音成分の共分散)であり、 σ^2 I は雑音成分の共分散行列、G (k)はチャネル推定 2 乗誤差に対応する。

[0046]

G(k)
$$\equiv E[(B(k) - B'(k)) \cdot (B(k) - B'(k))^{H}]$$

= diag[D(k+Q-1), ..., D(k), ..., D(k-Q+1)]
(35)

E[] は平均を、diagは対角行列(対角線の要素以外の要素はゼロ)を表わす

また

D
$$(k+q) = diag [1-b'^2] (k+q)$$
, …, $1-b'^2]_n (k+b)$, …, $1-b'^2]_N (k+q)$] (36)
 $q=Q-1$, $Q-2$, …, $-Q+1$, $q\neq 0$
 $q=0$ の時は

D (k) = diag
$$[1-b'^2]$$
 (k), ..., 1, ..., $1-b'^2$ (k)] (37)

ベクトル **D** (k)中の1はn番目の要素(n番目のユーザの送信信号を所望の信号としている)である。

[0047]

【数19】

$$h = \begin{bmatrix} H_{1,(Q-1)\cdot N+n} \\ H_{2,(Q-1)\cdot N+n} \\ \vdots \\ H_{M\cdot Q,(Q-1)\cdot N+n} \end{bmatrix}$$
(38)

[0048]

つまり \mathbf{h} は式(23)の \mathbf{H} の(Q-1)・N+n列目の全要素からなる。 図 2 に示したように多出力等化器 3 1 のフィルタ係数推定部 3 1 7 - 1 では、チ

ャネル推定器 28 で推定されたチャネル行列 FI 及び雑音電力 σ^2 と、軟判定シンボル生成部 313-1 よりの軟判定送信シンボル b'_1 (k) $\sim b'_N$ (k) とが入力されて、残余干渉除去フィルタ係数 \mathbf{W}_n (k) が式 (34) \sim (38) により演算される。

式 (34) は逆行列演算を行うことになるが、この演算は逆行列の補助定理(Matrix Inversion Lemma)を用いることにより演算量を削減することができる。 つまり式 (36) 及び (37) の各 $b^{\prime 2}$ の部分を全て 1 に近似すると、

$$D (k) = d i a g [0, ..., 1, ..., 0]$$
 (40)

つまり、 \mathbf{D} (k)の要素中のn行n列の要素のみが1で、他の全ての要素は 0となる。これら式(39), (40)で決まる式(35)の誤差行列 \mathbf{C} (k) を式(34)に代入すると、

$$\mathbf{w}_{\mathbf{n}}$$
 (k) = ($\mathbf{h} \cdot \mathbf{h}^{H} + \sigma^{2} \mathbf{I}$) $^{-1} \cdot \mathbf{h}$ (41)
となる。 \mathbf{h} は式(38) で定義されたもの。

[0049]

この近似により、 \mathbf{w}_n (k) はkに依存しないため、離散的時刻k毎の逆行列計算が不要となり、計算量が削減される。

この式(41)に対し、逆行列の補助定理を適用する。この逆行列の補助定理はA,Bを(M,M)の正方行列、Cを(M,N)行列、Dを(N,N)の正方行列とし、 $A=B^{-1}+CD^{-1}C^{H}$ で表される場合、Aの逆行列は

$$A^{-1} = B - BC (D + C^{H} BBC)^{-1}C^{H} B$$
 (42)

で与えられる。式(41)中の逆行列演算の部分にこの定理を適用すると、

h (k) • **h** (k)
H
 + σ^{2} **I** = B^{-1} + $CD^{-1}C^{H}$

h (k) · **h** (k) ^H = CD⁻¹C^H,
$$\sigma^2$$
 I = B⁻¹, **h** (k) = C I = D⁻¹, **h** (k) ^H = C^H

となり、これを用いて式(42)を計算すれば式(41)中の逆行列演算が求まる。なお式(42)中にも逆行列演算($D+C^H$ BBC) $^{-1}$ が含まれるが、この逆行列はスカラとなるから簡単に計算することができる。

[0050]

つまりこの場合は、

$$\mathbf{W}_{n}$$
 (k) = $1/(\sigma^{2} + \mathbf{h}^{H} \cdot \mathbf{h})$ h (41-1) となる。この式の右辺の $1/($)はスカラー、即ち一定数となるため 1 としてもよい。よって \mathbf{W}_{n} (k) = \mathbf{h} と置けるから、 \mathbf{h} のみで \mathbf{W} (k) が決定される。図 2 中のフィルタ係数推定部 3 17-1には、破線で示すように、チャネル推定器 2 8からチャネル行列 \mathbf{H} 中の式 (3 8) で示される \mathbf{h} のみを入力すればよい。

[0051]

なお、式(39)、式(40)による近似は逆行列の補助定理を用いる場合に限らず、この近似により式(34)の計算量を少くすることができる。特にこの近似を行い、かつ逆行列の補助定理を用いれば更に演算量を減少でき、またその際に雑音成分の共分散行列を σ^2 I とすると、式(41-1)に示すように \mathbf{w}_n (k) = \mathbf{h} で近似でき、共分散行列に無関係となり、更に計算が簡略化される。

第2発明(誤り訂正反映)

式(27)に示した受信ベクトル \mathbf{S} (k) から \mathbf{H} · \mathbf{B} '(k) を減算する等化処理では、検出する信号 \mathbf{b}_n (k) 以外の信号の送信シンボル軟判定値は誤り訂正復号結果が反映されているが、検出する信号 \mathbf{b}_n (k) に関する誤り訂正復号結果が反映されていない。そこで、以下のように処理をすることが好ましい。

[0052]

式(29)中のb'(k)、つまり式(31)を次式に変更する。

$$b'(k) = [b'_{1}(k) b'_{2}(k) \cdots b'_{n-1}(k) f(b'_{n}(k)) b'_{n+1}(k) \cdots b'_{N}(k)]$$

$$(4.3)$$

ただし、 $f(b'_n(k))$ は $b'_n(k)$ を入力とする任意の関数

このようにすることにより、検出する信号 b_n (k) に関しても誤り訂正復号 結果を反映させることが可能となる。つまり b_n' (k) = 0 とすることなく(b_n' (k) に応じた適当な値を加算することにより、例えば、雑音や干渉信号

に埋ずもれた検出する信号を強調することになって、 $\mathbf{b_n}$ (\mathbf{k})を正しく検出することができる。

[0053]

 $f(b'_n(k))$ については、 $b'_n(k)$ の符号は $b'_n(k)$ に対応するシンボルの硬判定結果に関係し、また $b'_n(k)$ の絶対値が大きいほど $b'_n(k)$ に対応する硬判定シンボルの信頼性が大きいという性質から以下の条件を満たす必要がある。

 $\mathbf{b'}_{\mathbf{n}}$ (k) = 0、つまり硬判定シンボルの信頼性が 0 の場合はこの関数 f の値も 0 である。即ち

$$f(0) = 0 \tag{44}$$

である。また b'_n (k) の値が大きければ関数 f の値も大きな値となる。即ち d { f (b' n (k)) } / d { b'_n (k) } \ge 0 (45)

である。このような $f(b'_n(k))$ の例としては、

$$f(b'_{n}(k)) = \alpha \times b'_{n}(k) \tag{4.6}$$

$$f(b'_{n}(k)) = \alpha \times b'_{n}(k)^{2}$$

$$(47)$$

が挙げられる。例えば式(46)を用いてαを定数とすれば式(43)を簡単に実現できる。ここでαは0<α<0.6である。αを0.6より大きくすると逆にBER(誤り率)特性が劣化してしまい、正しい復号結果が得られなくなる。また、αを復号結果の信頼度に応じて可変することも考えられる。例えば復号処理の繰り返し毎にαを設定する。この場合、通常は復号処理の繰り返し回数が多くなるほど復号結果の信頼度が上がるため、復号処理の繰り返し回数に応じてαの値を大きくすれば良い。あるいは、復号処理の繰り返しごとに復号されたフレーム全体の信頼度を判定し、その判定に基づいてαの値を決定すればよい。復号されたフレームの信頼度を判定する方法として、例えば復号結果を1回前の繰り返し復号時の復号結果と比較し、前回の復号時から変化した硬判定シンボル数をカウントする方法が考えられる。すなわち、変化した硬判定シンボル数が多い場合には信頼度は低いと判定し、変化した硬判定シンボル数が少ない場合には信頼度が高いと判定すればよい。

[0054]

また、このような $\mathbf{b'}_{\mathbf{n}}$ (\mathbf{k}) の変更に伴い、MMSE (最小平均 2 乗誤差) フィルタの係数 $\mathbf{w}_{\mathbf{n}}$ (\mathbf{k}) を求める際に用いる式 ($\mathbf{3}$ 5) を以下のように変更 することが望ましい。

$$G(k) = E[(B(k) - B'(k)) \cdot (B(k) - B'(k))]$$

= d i a g [D (k+Q-1), ..., D (k), ..., D (k-Q+1)]

ここで式(29)、式(31)より

[0055]

【数20】

$$B'(k) = \begin{bmatrix} b'(k+Q-1) \\ b'(k+Q-2) \\ \vdots \\ b'(k) \\ \vdots \\ b'(k-Q+1) \end{bmatrix} \qquad b'(k) = \begin{bmatrix} b'_1(k) \\ b'_2(k) \\ \vdots \\ -f(b'_n(k)) \\ \vdots \\ b'_N(k) \end{bmatrix}$$

[0056]

とする。 D (k)のn行n列の要素は

 $E[(b_n(k) + f(b'_n(k))) \cdot (b_n(k) + f(b'_n(k)))]^*$

[]*は複素共役を表わす。この式はBPSK変調の場合は次式となる。

 $E [b_n (k)^2 + 2b_n (k) f (b'_n (k)) + f (b'_n (k))^2]$ $= E [b_n^2 (k)] + 2 E [b_n (k) f (b'_n (k))] + E [f (b'_n (k))^2]$

この第1項の平均値は1となる。また b_n (k) を b' (k) で近似すると式(37)は以下のようになる。

[0057]

D (k) = d i a g
$$[1-b'^{2}_{1}(k) 1-b'^{2}_{2}(k) \cdots 1-b'^{2}_{2}(k) \cdots 1-b'^{2}_{n-1}(k) 1+2 E [f(b'_{n}(k)b'_{n}(k)] + E [f(b'_{n}(k)^{2}] 1-b'^{2}_{n+1}(k) \cdots 1-b'^{2}_{1}(k)]$$
(48)

例えば、 $f(b'_n(k))$ を式(46)とした場合には、D(k) は下記のようになる。

$$D (k) = d i a g [1 - b' {}^{2}_{1} (k) 1 - b' {}^{2}_{2} (k) \cdots 1 - b' {}^{2}_{n-1} (k) 1 + (2 \alpha + \alpha^{2}) b' {}^{2}_{n} (k) 1 - b' {}^{2}_{n+1} (k) \cdots 1 - b' {}^{2}_{1} (k)]$$

$$(4 9)$$

このように検出する信号に誤り訂正復号結果を反映させる場合に適応フィルタ 係数 \mathbf{w}_n (k) を推定する機能構成例を、検出する信号として第1番目の送信 機からの送信信号 b_1 (k)とした場合を図7Aに示す。軟判定送信シンボルb $^{\prime}$ $_{1}$ (k)が関数演算部 3 3 1 - 1 に入力され、関数演算 f (b $^{\prime}$ $_{1}$ (k))が 演算される。またN個の復号器からの軟判定送信シンボル $b_1 (k) \sim b_N$ (k) と f(b) (k) が誤差行列生成部 332-1 に入力され、式 (35)、式(36)及び式(48)により誤差行列 G(k)が演算生成される。こ の誤差行列 G (k) と、推定チャネル行列 H 及び雑音電力 σ^2 とがフィルタ 係数生成部333-1に入力され、ここで式(34)が計算され、適応フィルタ 係数 \mathbf{w}_n (k) が推定される。この場合は干渉レプリカベクトル生成部 314-1にもf(b'_n(k))が入力され、式(30)と式(43)から式(29)の干渉レプリカベクトル $\mathbf{B}^{\ \prime}$ (\mathbf{k})が生成される。フィルタ係数 $\mathbf{w}_{\mathbf{n}}$ (\mathbf{k})により差分ベクトル y ′ (k)が適応フィルタ部318-1でフィルタ処理 されて対数尤度比 Λ_1 [b_1 (k)]が得られる。なお図2中のフィルタ係数推 定部317-1の場合は図7A中の関数演算部331-1が省略され、軟判定送 信シンボル \mathbf{b}'_1 (k) $\sim \mathbf{b}'_N$ (k) のみが誤差行列生成部 $\mathbf{3} \mathbf{3} \mathbf{2} - \mathbf{1}$ に入力 され、式(34)が演算されることになる。

[0058]

図3中において、ステップS4で干渉レプリカベクトル \mathbf{B}' (k)を生成し、更にステップS5~S7を処理し、ステップS8におけるフィルタ係数 \mathbf{w}_n

(k) を求めるが、このステップS 8 の処理において式(3 4)を演算する場合は、図7 Bに示すように、ステップS 8 - 2 で軟判定送信シンボル b' $_1$ (k) ~ b' $_N$ (k) を用いて、式(3 5)~(3 7)を演算して誤差行列 G (k) を生成し、ステップS 8 - 3 で誤差行列 G (k) と推定チャネル行列 H 及び雑音電力 σ^2 を用いて式(3 4)の演算により適応フィルタ係数 \mathbf{w}_n (k) を求める。

[0059]

[0060]

この検出する信号に誤り訂正結果を反映させる手法は従来技術の項で説明した シングルユーザターボ受信機にも適用することができる。また、この検出する信 号に誤り訂正結果を反映させる手法において、式(39)及び(40)に示した 近似を適用することができ、この場合は、図7A中に破線で示すようにフィルタ 係数生成部333-1に、チャネル推定器28から式(38)に示す行列 h の みを入力すればよい。

上述では適応フィルタ係数 $\mathbf{W}_{\mathbf{n}}$ (k)を式(34)により求めた、つまりチャネル行列 \mathbf{H} を用いて求めたが、チャネル行列 \mathbf{H} を用いなくてもよい。即ち復号処理(ターボ受信処理)の1回目では、式(34)中の誤差ベクトル \mathbf{G} は単位行列となる。従って、差分ベクトル \mathbf{Y}' (k)と、トレーニング信号又はこれと硬判定送信シンボル $\mathbf{h}_{\mathbf{n}}$ (k)、好ましくは前述したように信頼度が高

い b n (k) とをフィルタ係数生成部 3 3 1 に入力して、RLS(再帰的最小 2 最 3 などを適用して逐次的に適応フィルタ係数 \mathbf{w}_{n} (k) を算出してもよい。誤差ベクトル \mathbf{G} は離散的時刻 \mathbf{k} に依存するため、復号の繰り返し処理の 2 回目以降は、適応フィルタ係数 \mathbf{w}_{n} (k) をシンボル毎に更新する必要があり、先に述べたようにチャネル行列 \mathbf{H} を用いて適応フィルタ係数 \mathbf{w}_{n} (k) を決定することが好ましい。

[0061]

第4発明(チャネル推定)

前述したように繰り返しチャネル推定にユニークワードのような既知情報のみならず、情報シンボルの硬判定値、特にその確からしいものも参照信号として用いることは、前記多入力多出力ターボ受信方法に利用する場合に限らず、一般的に、受信信号のチャネル(伝送路)を、受信信号と既知信号とから推定し、その推定したチャネル値を用いて受信信号を処理して復号を行い、その復号信号を利用して、同一受信信号を繰り返し、推定したチャネル値による処理と復号処理とを行うターボ受信方法に適用できる。

[0062]

図8に、この情報シンボルの硬判定値もチャネル推定、ターボイコライザ41に適用した例を示す。ターボイコライザ41は推定チャネル値により線形等化フィルタ係数を決定し、その線形等化フィルタにより受信信号を処理し、その処理した信号を復号し、その復号信号を利用して、同一受信信号を繰り返し処理する。受信信号r(k)はターボイコライザ41へ入力されると共に、チャネル推定器42へ供給され、チャネル推定器42では受信信号r(k)と記憶部29からのユニークワードとによりチャネル値(伝送路特性)が推定され、その推定されたチャネル値によりターボイコライザ41内で受信信号r(k)が等化処理され、その後、復号処理され、復号データc'(i)が出力されると共に、軟判定値 b'(i)が出力される。軟判定値 b'(i)が出力される。軟判定値 b'(i)が出力される。軟判定値 b'(i)が出力される。軟判定値 b'(i)が出力される。軟判定値 b'(i)が出力される。軟判定値 b'(i)が出力される。軟判定値 b'(i)が出力される。軟判定値 b'(i)が出力される。軟判定値 b'(i)が発りとであれば、その硬判定値 b (i)が、確からしい(信頼性が高い)ものとして前回シンボル記憶部32に更新格納され、以後における同一受信信号r(k)を繰り返し受信処理(イコラ

イズ処理)する際のチャネル推定部42におけるチャネル推定処理においては、 ユニークワードのみならず、前回シンボル記憶部32に記憶されている情報シンボルの硬判定値 b^(i)も用いる。

[0063]

ターボイコライザ41は例えば図1に示した受信機中の繰り返しチャネル推定器28、ユニークワード記憶部29、前回シンボル記憶部32を除いた部分である。図29中の受信機であってもよい。つまり、この場合も式(19)の解は、ウイーナー解により下記となる。

$$\mathbf{w} (k) = \mathbf{E} [\mathbf{y}' (k) \mathbf{y}'^{H} (k)] \cdot \mathbf{E} [b (k) \cdot \mathbf{y}' (k)]$$

$$= [\mathbf{H} \Lambda (\mathbf{k}) \mathbf{H} + \sigma^2 \mathbf{I}] \cdot \mathbf{h}$$
 (50)

ここで H は式(8)で定義されたものであり、

$$h \equiv [H (Q-1), ..., H (0)]^{T}$$

FI () は式 (5) で定義されたもの、 $\sigma^2 = E [\| \mathbf{v} \|^2]$ (雑音の分散) $\Lambda (\mathbf{k}) = \mathbf{d} \ \mathbf{i} \ \mathbf{a} \ \mathbf{g} \ [1 - \mathbf{b}'^2 \ (\mathbf{k} + \mathbf{Q} - 1), \ \cdots, \ 1, \ \cdots, \ 1 - \mathbf{b}'^2 \ (\mathbf{k} - \mathbf{Q} + 1)]$

このように図29中の受信機においても、チャネル FI ()を推定し、このチャネル FI ()を用いて等化フィルタ係数 w (k) 求め、受信信号をフィルタ係数 w (k)でフィルタ処理し、その処理した出力に対し復号処理を行う。従ってこの繰り返し受信処理において、前記信頼性のある硬判定情報シンボルもチャネル推定に用いることにより、より正しいチャネル推定を得ることができる。

[0064]

図9はレーク(RAKE)合成処理を行う繰り返し受信に前記繰り返しチャネル推定方法を適用したターボ受信機の例を示す。受信信号r(k)はRAKE合成処理部45とチャネル推定器42に供給される。1回目はチャネル推定器42で受信信号r(k)とユニークワードとによりチャネル値が推定され、RAKE合成処理部45内において、各シンボルが伝送路で受けた位相回転に対する補償とRAKE合成処理が、推定されたチャネル値により行われ、つまり時間ダイバ

ーシチ処理が行われてターボデコーダ46へ出力される。ターボデコーダ46より復号データ c'(i)と、軟判定値b'(i)が出力される。軟判定値b'(i)はシンボル選定器43に入力され、前記例と同様に、その確らしいものの情報シンボルの硬判定値b^(i)が前回シンボル記憶部32に更新格納される。2回目以後のRAKE受信ーターボデコーディングの繰り返し受信処理においては、チャネル推定器42でユニークワードのみならず、前回の情報シンボルの硬判定値もチャネル推定に利用される。これにより、チャネルの推定がより正確に行えるため、品質の向上が図れる。

[0065]

図10はアダプティブ(適応)アレーアンテナを用いた繰り返し受信に、前記 繰り返しチャネル推定方法を適用したターボ受信機の例を示す。受信信号r(k) はアダプティブアレーアンテナ受信部47に受信され、その受信信号はチャネ ル推定器42に分岐入力され、これとユニークワードとによりチャネル推定が行 われ、その推定したチャネル値を用いて、アダプティブアレーアンテナ受信部4 7のアンテナ指向特性の主ビームが目的波の到来方向に向き、ヌルが干渉波の到 来方向に向くように、アレー重み決定部48で各アンテナ素子、又は対応する受 信経路に対する重みが決定され、その重みが該当箇所に設定される。アダプティ ブアレーアンテナ受信部47の受信出力はターボデコーダ46へ供給されて復号 され、その復号データ \mathbf{c}' (i) と軟判定値 \mathbf{b}' (i) が出力され、軟判定値 \mathbf{b} ′ (i)はシンボル選定器43に入力され、確からしい硬判定値が前回シンボル 記憶部32に更新記憶される。2回目以後のアダプティブアレーアンテナ受信部 4 7 - ターボデコーダ4 6 の繰り返し受信処理においてはチャネル推定器4 2 で ユニークワードのみならず、前回の情報シンボルの硬判定値もチャネル推定に利 用される。これによりチャネル推定がより正しく行われ、その結果、アンテナ指 向特性の制御がより正確に行われ、品質の向上が図れる。

[0066]

なお図8におけるターボイコライザ41は簡略に示すと、図11Aに示すように軟入力軟出力(SISO)イコライザ(等化器)41aとSISOデコーダ(復号器)41bの直列接続の形式であり、これら等化器41aと復号器41b間

で繰り返し動作が行われる。図9及び図10中のターボデコーダ46は簡略に示すと、図11Bに示すように、SISOデコーダ46aとSISOデコーダ46 bの直列接続の形式であり、デコーダ46aと46b間で繰り返し復号が行われ . る。図9及び図10中のターボデコーダ46は、SISOデコーダーつでもよい

[0067]

以上の図8乃至図10に示した例をまとめて図12に示す。つまり受信信号を繰り返し受信機(ターボ受信機)49でまず、チャネル推定器42で推定したチャネル値により処理し、その処理した信号を復号処理し、その復号処理結果として復号データ(シンボル)c'(i)とその軟判定値b'(i)を出力し、その軟判定値b'(i)をシンボル選定器43において、しきい値と比較して、対応復号データc'(i)(シンボル硬判定値)が確からしいか否かを判定し、確からしいと判定されたものはその硬判定値を前回シンボル記憶部32に更新格納して、2回目以後の推定チャネル値を用いた処理ー復号処理の繰り返しにおけるチャネル推定器42におけるチャネル推定に、ユニークワードのような既知情報の他に前回のシンボル硬判定値をも用いて、チャネル推定をより正確に行うようにするものである。

[0068]

図13に、このシンボル硬判定値をも用いる繰り返し受信信号方法の処理手順の例を示す。ステップS1で受信信号と既知信号とによりチャネル値を推定し、ステップS2で繰り返し処理の1回目か否かを調べ、1回目であればステップS3でステップS1で推定したチャネル値により受信信号を処理し、その後、復号処理を行ってシンボル硬判定値と軟判定値を求める。ステップS4でそのシンボル軟判定値から対応シンボル硬判定値の確からしいものを取出し、ステップS5でその取出したシンボル硬判定値に記憶部32に記憶してある前回のシンボル硬判定を更新する。ステップS6で復号処理が所定回数かを調べ、所定回数になっていなければステップS1に戻る。ステップS2で繰り返し処理の1回目でなければ、ステップS7で記憶部32から前回のシンボル硬判定値を読み出し、これと、受信信号の情報シンボルとによりチャネル推定を行ってステップS3に移る

[0069]

この場合も、図6を参照してステップS1'~S4'により説明したように、 2回目以後の処理は既知信号を用いなくてもよい。

図10に示した例においてアダプティブアレーアンテナ受信部47とターボデコーダ46との間に破線で示すようにRAKE合成処理部45を挿入してもよい。この場合、RAKE合成処理部45における各シンボル位相回転補正、RAKE合成のためのチャネル推定は、チャネル推定器42で兼用してもよく、個別に設けてもよい。

[0070]

白色性ガウス雑音以外の雑音

前述したターボ受信方法(第1発明)の実施例や誤り訂正を考慮した第2発明の実施例、またチャネル推定方法に特徴を有するターボ受信方法(第4発明)の実施例では雑音が白色性ガウス雑音であると仮定して処理した。即ち各アンテナの受信信号 $\mathbf{r}_{\mathbf{m}}$ (\mathbf{k})を示す式(20)の右辺中の $\mathbf{v}_{\mathbf{m}}$ (\mathbf{k})を白色性ガウス雑音であると仮定をしている。ここで白色性ガウス雑音とは、ガウス分布に従い、

 $E[v_m(k) \cdot v_m(k-q)] = \sigma^2 : q = 0$ の場合, $0: q \neq 0$ の場合 E[] は期待値、 σ^2 は分散値である。

なる統計的性質を有する信号である。白色性ガウス雑音はアンテナ素子内で発生する熱雑音などが例に挙げられる。この白色性ガウス雑音の仮定が反映されるのは、フィルタ係数 \mathbf{w}_n (k)を求める式(34)又はフィルタ係数 \mathbf{w} (k)を求める式(50)中の σ^2 I の部分である。例えば式(34)の \mathbf{w}_n (k) は、

 $w_n(k) = (HG(k)H^H + E[n(k) \cdot n^H(k)])$

=
$$(H G (k) H^{H} + \sigma^{2} I)^{-1} h$$

の過程を経て算出される。ここで、 $\mathbf{v_m}$ (k) が分散 σ^2 を有する白色性ガウス雑音という仮定により、 \mathbf{E} [\mathbf{n} (k) ・ \mathbf{n} \mathbf{n} (k)] = σ^2 \mathbf{n} と計算される。繰り返しチャネル推定器 2 8 (図 1) 又は 4 2 (図 1 2) により推定される

、チャネル行列 \mathbf{H} と、 σ^2 と、事前対数尤度値から計算される誤差行列 \mathbf{G} (\mathbf{k})とを、式(3 $\mathbf{4}$)に代入してフィルタ係数 \mathbf{w}_n (\mathbf{k})が算出される。

[0071]

[0072]

$$U = E [n (k) \cdot n^{H} (k)]$$

$$= E [(y (k) - H \cdot B (k)) \cdot (y (k) - H \cdot B (k))^{H}]$$

今、受信信号によりベクトル \mathbf{y} (k)、チャネル推定値によりチャネル行列 \mathbf{H} の推定値 \mathbf{H} \mathbf{h} 、参照信号により \mathbf{H} (k)が利用可能であれば、行列Uは 時間平均法により、

$$U^{\hat{}} = \sum_{k=0}^{Tr} (y (k) - H^{\hat{}} \cdot B (k)) \cdot (y (k) - H^{\hat{}} \cdot B (k)) \cdot (y (k) - H^{\hat{}} \cdot B (k))^{H}$$
(51)

と推定することができる。ここで、Trは参照信号シンボル数である。

繰り返しチャネル推定器28又は42における繰り返しチャネル推定中にチャネル行列 F-I とともに、式(51)を利用して共分散行列U^{*}を推定する。その手順を図14に示す。図14Aに受信信号中の1フレームにおけるユニークワードと情報シンボル系列とを示し、図14Bに1回目以後の処理を示す。1回目の処理はユニークワードのみを参照信号とし、まずチャネル行列 F-I を推定する。次にユニークワードと、そのチャネル行列推定値 F-I ^{*}を用いて式(51)により、Uを推定する。これら推定値Uと F-I ^{*}を用いてフィルタ係数 w_n (k)

 \mathbf{W}_{n} (k) = ($\mathbf{H}^{\hat{}}$ G (k) $\mathbf{H}^{\hat{}}$ + $\mathbf{U}^{\hat{}}$) $^{-1}$ h (52) を算出し、このフィルタ係数 \mathbf{W}_{n} (k) を用いて受信信号に対する1回目の等化を行い送信情報シンボルを推定する。

[0074]

2回目の処理はユニークワードと、1回目の等化で推定された情報シンボルのうちしきい値によって確からしいと判定されたもの*との両方を参照信号として、1回目と同じ手順で \mathbf{I} を再推定した後、Uを再推定する。この操作を繰り返すことによって、繰り返し毎に、チャネル行列推定値 \mathbf{I} がより正確になり、またUの推定値がより正確になり、フィルタ係数 \mathbf{W}_n (k)の精度が上がり、等化器の特性が向上する。

以上の処理により白色性ガウス雑音でない雑音が受信信号に含まれる場合のタ ーボ受信を行うことができる。

[0075]

前述した受信信号中のその雑音の共分散行列Uを推定して線形等化処理を行う場合の機能構成を、図 2 中に示した多出力等化器 3 1 の第 1 番目の送信機からの送信信号の受信信号の等化出力として対数尤度比 Λ_1 [b_1 (k)]を求める場合に適用した例を図 1 5 に示す。図 1 5 中の図 2 と対応する部分には同一参照番号を付けてある。

ユニークワード記憶部29からのユニークワード又は前回シンボル記憶部32から確からしい前回のシンボル硬判定が参照ベクトル生成部319に入力され、ここで式(25)及び式(26)により参照ベクトルB(k)が生成される。この参照ベクトルB(k)と、チャネル推定器28からの推定チャネル行列H²と、受信ベクトル生成部311からの受信ベクトルン(k)が共分散行列推定部321に供給され、ここで式(51)が計算されて共分散行列Uの推定行列U²が得られる。

[0076]

また軟判定シンボル生成部 3 1 3 - 1 からの軟判定送信シンボル軟判定 b' 1 $(k) \sim b'$ n (k) が誤差ベクトル生成部 3 2 2 - 1 に入力され、ここで式(3 5)、式(3 6)及び式(3 7)によりチャネル推定 2 乗誤差と対応する誤差

行列 G_1 (k) が生成される。この誤差行列 G_1 (k) と、推定共分散行列 U^* と、推定チャネル行列 H^* とがフィルタ推定部 $3 \ 2 \ 3 \ -1$ へ供給され、ここで式($5 \ 2$)が計算されてフィルタ係数 W_1 (k) が推定される。このフィルタ係数 W_1 (k) と差演算部 $3 \ 1 \ 6 \ -1$ からの差分ベクトル W' (k) が適応フィルタ $3 \ 1 \ 8 \ -1$ へ供給されて、 W' (k) に対するフィルタ処理 W_1 (k) W_1 (k) がなされ、その結果が対数尤度比 W_1 [W_1) として出力される。

[0077]

検出する信号についても誤り訂正復号結果を反映させる場合は、図15中に破線で示すように、図7Aに示した関数演算部331-1を設けて $f(b)_n(k)$))を演算し、干渉レプリカベクトル生成部314-1では式(31)の代りに式(43)を用い、誤差ベクトル生成部322-1では式(37)の代りに式(48)を用いればよい。

図14Bに示した手法を図16に流れ図として示す。つまりステップS1で受信信号r(k)と既知信号(例えばユニークワード)を用いてチャネル行列FIを推定し、次はステップS2でこの処理が繰り返し処理における1回目であるか否かを調べ、1回目であれば、ステップS3で既知信号と推定チャネル行列FI た、受信信号r(k)とを用いて式(51)を演算して推定共分散行列U^を求める。

[0078]

ステップS4で推定チャネル行列H $^{\prime}$ と、推定共分散行列U $^{\prime}$ と、シンボル 軟判定値によりなる誤差行列G $^{\prime}$ $^{\prime}$ (k) とを用いて式(52) を計算してフィルタ係数 \mathbf{w}_n (k) を推定する。

ステップS5で推定チャネル行列 \mathbf{FI} $^{\prime}$ とフィルタ係数 $\mathbf{w}_{\mathbf{n}}$ $^{\prime}$ (\mathbf{k}) を用いて 受信信号を等化処理し、つまり式(27)を計算し、 $\mathbf{w}_{\mathbf{n}}$ $^{\prime}$ (\mathbf{k}) を計算して、対数尤度比 $\Lambda_{\mathbf{1}}$ $[\mathbf{b}_{\mathbf{n}}$ (\mathbf{k})] を求め、これに対し復号処理を 行って送信シンボルの硬判定値及び軟判定値を推定する。

[0079]

ステップS6はしきい値以上のシンボル軟判定値より対応する確からしい(信

頼性の高い)シンボル硬判定値を求める。このシンボル硬判定値により、前回シンボル記憶部32に格納されているシンボル硬判定値を更新する。その後、ステップS8で復号処理回数が所定値になったかを調べ、なっていなければステップS1に戻り、所定値になっていれば、その受信フレームに対する処理を終了する

ステップS2で繰り返し処理における処理が1回目でなければ、つまり2回目 以後であれば、ステップS9で前回シンボル記憶部32からシンボル硬判定値を 読み出し、これと、受信信号中の情報シンボルとによりチャネル行列 I-I を推定 してステップS3に移る。

この場合も、図6中で破線で示したステップ $S1'\sim S4'$ と同様の処理にステップS1とS2を変更することにより、2回目以後は、既知信号を用いないようにすることもできる。また検出する信号も誤り訂正復号結果を反映させたい場合は図16中に破線で示すようにステップS10で関数演算 $f(b'_n(k))$ を行い、この結果を用いて誤差行列G(k)を求めればよい。更に何れの場合においても共分散行列 U^0 の推定に硬判定送信シンボルを用いなくてもよい。

この白色性ガウス雑音でない雑音が含まれた受信信号中のその雑音の共分散行列Uを推定できることは以下に述べるように各種有益な応用に適用することができる。

[0081]

(1) 受信機が未知の干渉信号が含まれる多系列送信信号に対する受信法が挙げられる。図28に示すように、ターボ受信機が受信しようとするN人のユーザの送信機からの信号のように、N個の系列の送信信号に加え、破線で示すようにターボ受信機で未知の干渉信号i(k)(例えば移動通信で他のセルやゾーンからの信号)が受信されるとする。このとき式(20)は、

$$r_{m}$$
 (k) = $\sum_{q=0}^{Q-1}$ $\sum_{n=1}^{N}$ h_{mn} (q) · b_{n} (k-q+1) + i (k) + v_{m} (k) (20) ′ となる。このモデルにおいて、i (k) + v_{m} (k) \equiv v'_{m} (k) とすると、 r_{m} (k) = $\sum_{q=0}^{Q-1}$ $\sum_{n=1}^{N}$ h_{mn} (q) · b_{n} (k-q+1) + v_{m}

 $'_{m}(k)$ (20) "

となる。 $\mathbf{v'}_{\mathbf{m}}$ (k) は白色性ガウス雑音でない雑音信号として、先に述べたように \mathbf{FI} の推定、更に \mathbf{U} の推定を行い、 $\mathbf{w}_{\mathbf{n}}$ (k) を推定し、受信信号の等化処理、送信シンボル推定を繰り返すことによりターボ受信を行うことができる。

[0082]

(2)送受信分離フィルタを用いた通信システムにおいて、受信信号に対し、シンボル周期の2分の1よりも高速でオーバーサンプリングを行う際には、各時間でサンプルされた受信信号に含まれる雑音成分間に相関が出て、受信信号中の雑音を白色性ガウス雑音とみなすことができない。つまり、式(20)において

 $E[v_m(k) \cdot v_m(k-q)] = \sigma^2 : q = 0$ の場合, $0: q \neq 0$ の場合 とはならない。よって

E[n(k)·n^H(k)] = σ^2 I

なる仮定ができない。そこで送受信分離フィルタにより分離された受信信号に対する処理を式(51)を利用して共分散行列Uを求めて行うことにより、受信信号を正しく処理することができる。

[0083]

(3)前述したターボ受信方法では、各送信機(ユーザ)からのQパスのマルチパス成分をすべて合成するしくみになっている。しかし、チャネルに長遅延波が存在する場合(例:パスが1シンボル遅延、2シンボル遅延、3シンボル遅延、たんで、30シンボル遅延が存在する場合の30シンボル遅延のパス成分)は、長遅延波を合成せず、それを未知干渉として扱い、適応フィルタで除去する方針をとることが可能である。つまりこの長遅延波成分を前記(1)の例における干渉信号i(k)として扱うことで長遅延波を除去することができる。

[0084]

上述した白色性ガウス雑音でない雑音が含まれた受信信号に対する処理において、共分散行列Uの推定は式(50)における σ^2 I の代りに推定して、シングルユーザターボ受信方法にも適用でき、同様にシングルユーザ、マルチユーザに拘らず、図9に示したRAKE合成処理受信や図10に示したPダプティブア

レーアンテナ受信を用いるターボ受信、更に一般に図12に示した繰り返し復号 におけるチャネル推定器42でのチャネル推定と共分散行列Uとの推定に適用で きる。なおRAKE受信の場合はチャネル推定のみを利用してもよい。

[0085]

第3発明(多段等化)

上述では受信信号 \mathbf{r}_1 , …, \mathbf{r}_M を多出力等化器 $\mathbf{3}$ 1 で等化して対数尤度比 $\mathbf{1}$ [b(k)], …, $\mathbf{\Lambda}_N$ [b(k)] を求めたが、第 $\mathbf{1}$ 発明の変形例(2)では複数の等化段を縦続的に設け、後段の等化器程、出力数を少なくする構成としてもよい。例えばこれを図 $\mathbf{1}$ 7 に示すように二つに分け前段等化器(マルチューザ等化器) $\mathbf{7}$ 1 で、後段のシングルユーザ等化器 $\mathbf{2}$ 1 $\mathbf{1}$ の等化範囲外の干渉成分をキャンセルし、そのため例えばソフト干渉キャンセルとMMSE(最小平均2乗誤差)規範線形フィルタリングの前処理を行い、その後、後段等化器 $\mathbf{2}$ 1 $\mathbf{1}$ により、先に示したパス数がQのシングルユーザの等化処理を行う。

[0086]

このように縦続的に等化処理し、前段の処理に線形フィルタを用いることによっても計算量が莫大なものにならないようにすることができる。

このターボ受信法の第1発明(2)の基本的概念をもとにした実施例の多出力ターボ受信機の構成及びこの発明が適用されるMIMOシステムの構成例を図18に示し、図1と対応する部分に同一参照番号を付けて重複説明を省略する(以下の説明も同様)。

伝送路(チャネル)を通じてターボ受信機 3 0 に、各送信機よりの送信信号が受信される。この受信信号 \mathbf{r} (k) はマルチユーザ等化器 71に入力され、この等化器 71 から、N個の各送信機よりの信号が、それぞれ他の送信機からの信号による干渉が除去された信号 \mathbf{u}_1 (k), …, \mathbf{u}_N (k) と各チャネル値 $\boldsymbol{\alpha}_1$ (k), …, $\boldsymbol{\alpha}_N$ (k) が出力されてそれぞれシングルユーザ等化器 21-1, …, 21-Nに入力され、これら \mathbf{S} \mathbf{I} \mathbf{S} \mathbf{O} 等化器 21-1, …, 21-N からそれぞれ対数尤度比 $\mathbf{\Lambda}_1$ [b₁ (k)], …, $\mathbf{\Lambda}_1$ [b_N (k)] が出力される。これより以後の処理は図 \mathbf{I} \mathbf{O} 場合と同様であるが、シングルユーザ等化器 \mathbf{I} \mathbf{I}

はマルチユーザ等化後のチャネル値であり、チャネル行列 \mathbf{FI} とは異なる。よってこの α_1 (k), …, α_N (k) を等化後のチャネル情報と記す。

[0087]

以下、各部の動作を説明する。

マルチパス (チャネル) の数 Q を考慮して図 1 の説明と同様に式 (23)~(26) を定義する。

図18中の後段の等化器 21-1, …, 21-Nは各ユーザの自身の信号シンボル $[b_n(k), b_n(k-1), …, b_n(K-Q+1)]$ (n=1, …, N) による符号間干渉チャネルを等化するものである。そのため前段の等化器 71では $\mathbf{y}(k)$ 内の上記 $[b_n(k), b_n(k-1), …, b_n(K-Q+1)]$ (n=1, …, N) 以外の干渉を除去する処理を行う。以下にその定量的な説明を行う。

[0088]

まず、復号器 24-1, …, 24-Nからフィードバックされる等化器 710 事前情報 λ_2^p [b_n (k)] (n=1, …, N) を用いて軟判定送信シンボル推定 b' (k) を式 (15) により求める。

次にこれら軟判定送信シンボル b'_n (k) とチャネル行列 EI を用いて干渉信号のレプリカ EI ・ EI (k) を作成し、受信ベクトル EI (k) から引算する。

$$y'_{n}(k) \equiv y(k) - H \cdot B'(k)$$
 (27) '
$$= H \cdot (B(k) - B'(k)) + n(k) (28) '$$

ここで、

$$b' (k+q) = [b'_{1} (k+q) b'_{2} (k+q) \cdots b'_{n} (k+q) \cdots b'_{n} (k+q) \cdots b'_{N} (k+q)]^{T} : q = Q-1, \cdots, 1$$

$$b' (k+q) = [b'_{1} (k+q) b'_{2} (k+q) \cdots 0 \cdots b'_{N} (k+q)]^{T} : q = 0, \cdots, -Q+1$$

$$(54)$$

(b ′ (k+q)の要素中のゼロはn番目)

以下この干渉を引算する操作をソフト干渉キャンセルと呼ぶことにする。理想的に干渉信号のレプリカが作られているとすると、引算後得られる \mathbf{y}'_n (\mathbf{k}) は第 \mathbf{n} 番目のユーザのシンボル \mathbf{b}_n (\mathbf{k}) と、式 ($\mathbf{54}$) により $\mathbf{q}=\mathbf{1}$, …, $-\mathbf{Q}+\mathbf{1}$ で \mathbf{b}' ($\mathbf{k}+\mathbf{q}$) の \mathbf{n} 番目のユーザ自身のシンボル [\mathbf{b}_n ($\mathbf{k}-\mathbf{1}$), …, \mathbf{b}_n ($\mathbf{k}-\mathbf{Q}+\mathbf{1}$)] による符号間干渉成分としか持ち得ないことが分かる。

[0089]

実際受信ベクトル \mathbf{r} (k) 内の第n番目ユーザ(送信機)の信号からの寄与成分はシンボル $\begin{bmatrix} \mathbf{b}_n & (\mathbf{k}) \\ \mathbf{k} \\ \mathbf{k} \end{bmatrix}$ (k) $\mathbf{b}_n & (\mathbf{k}-1) \\ \mathbf{k} \\ \mathbf{k} \end{bmatrix}$ (k) の定義から理解されるよるもののみだが、式(21)の受信ベクトル \mathbf{v} (k) の定義から理解されるように、マルチパス分合成して作られる受信ベクルト \mathbf{v} (k) 内の第n番目ユーザ(送信機)の信号からの寄与成分には \mathbf{k} 番目のシンボル \mathbf{b}_n (k) を基準にすればこれに対して未来のシンボル \mathbf{b}_n (k+Q-1), \mathbf{b}_n (k+Q-2), …, \mathbf{b}_n (k+1)] による符号間干渉成分も含んでしまう。つまり上記干渉レプリカはその未来からの干渉成分も含めている。このように式(27) の差分ベクトル \mathbf{v} (k) は式(27) の差分ベクトル \mathbf{v} (k) と異なっている

[0090]

そこで等化器 7 1 における前段処理の次のステップはソフト干渉キャンセル後の干渉余剰成分、つまり前記干渉レプリカ \mathbf{FI} ・ \mathbf{B} ' (\mathbf{k})の不完全合成に基づく残余干渉成分と前記未来符号間干渉成分とを $\mathbf{S'}$ ' \mathbf{n} (\mathbf{k})からMMSE(最小平均 2 乗誤差)規範の線形フィルタにより除去する。つまり、フィルタ特性 $\mathbf{W}_{\mathbf{n}}$ により $\mathbf{S'}$ ' \mathbf{n} (\mathbf{k})を、式(5 5)に示すようにフィルタ処理した結果が、受信信号中の第 \mathbf{n} 番目ユーザの信号中のシンボル $\mathbf{b}_{\mathbf{n}}$ (\mathbf{k}), $\mathbf{b}_{\mathbf{n}}$ (\mathbf{k}) \mathbf{n}) \mathbf{n}) \mathbf{n} (\mathbf{n}) \mathbf{n}) \mathbf{n} (\mathbf{n}) \mathbf{n}) \mathbf{n} (\mathbf{n}) \mathbf{n}) \mathbf{n}) \mathbf{n} (\mathbf{n}) \mathbf{n}) \mathbf{n}) \mathbf{n} (\mathbf{n}) \mathbf{n}) \mathbf{n} (\mathbf{n}) \mathbf{n}) \mathbf{n}) \mathbf{n}) \mathbf{n} (\mathbf{n}) \mathbf{n})

$$\mathbf{w}_{n}^{H} (k) \cdot \mathbf{y}'_{n} (k) = \sum_{q=0}^{Q-1} \alpha_{q} (k) \cdot b_{n} (k-q) = \alpha_{n}^{H} (k) \cdot b_{n} (k)$$
 (55)

従ってこのフィルタ特性 \mathbf{w}_n (k) 及び等化後のチャネル値(チャネル情報) α_n (k) を求めて式 (5 5) を演算すればよい。以下に \mathbf{w}_n (k), α_n (k) の算出方法を示す。なおフィルタ特性 \mathbf{w}_n (k) は式 (3 2)、式 (3 4) で与えられるフィルタ係数 \mathbf{w}_n (k) とは異なっているが便宜上同一記号を用いる。

[0091]

上記の解は以下の最適問題の解として定義される。

$$(\mathbf{W}_{n}(\mathbf{k}), \alpha_{n}(\mathbf{k})) = \operatorname{arg\ min} \| \mathbf{W}_{n}^{H}(\mathbf{k}) \cdot \mathbf{y}'_{n}(\mathbf{k}) - \alpha_{n}^{H}(\mathbf{k}) \cdot \mathbf{b}_{n}(\mathbf{k}) \|^{2}$$
 (56) $\alpha_{1n}(\mathbf{k}) = 1$ を条件とする。

つまり式(5 6)の右辺が最小となる \mathbf{w}_n (k)と α_n (k)を求める。 付加された拘束条件 α_{1n} (k) = 1 は、 α_n (k) = 0, \mathbf{w}_n (k) = 0 なる解を避ける為である。これは、

$$\parallel \alpha_{\mathbf{n}}$$
 (k) $\parallel^2 = 1$

なる拘束条件で解く事も可能であるが以下では、 α_{1n} (k) = 1 の場合の解を示す。簡単の為、以下のように問題を置き換える。つまり式(56)の右辺を \mathbf{w} , α について最小とする \mathbf{m}_n (k) と定義する。

[0092]

$$\mathbf{m_n}$$
 (k) = $\arg\min \| \mathbf{m_n}^H (\mathbf{k}) \cdot \mathbf{z_n} (\mathbf{k}) \|^2$ (57) $\mathbf{m_n}^H (\mathbf{k}) \cdot \mathbf{e}_{MQ+1} = -1$ を条件とする。 ($\alpha_{1n}(\mathbf{k}) = 1$ と等価) ここで、

$$\mathbf{m}_{\mathbf{n}}(\mathbf{k}) \equiv [\mathbf{w}_{\mathbf{n}}^{\mathsf{T}}(\mathbf{k}), -\alpha_{\mathbf{n}}(\mathbf{k})^{\mathsf{T}}]^{\mathsf{T}}$$
 (58)

$$\mathbf{z}_{\mathbf{n}}$$
 (k) $\equiv [\mathbf{y}_{\mathbf{n}}^{\mathsf{T}}$ (k), b (k) $_{\mathbf{n}}^{\mathsf{T}}]^{\mathsf{T}}$ (59)

$$\mathbf{e}_{\mathsf{MO}+1} = [0 \cdots 1 \cdots 0]^{\mathsf{T}} \tag{60}$$

(e MQ+1中の1の要素はMQ+1番目)

である。文献 [2] S.Haykin, Adaptive Filter Theory, Prentice Hall P.220~P 227に示されているラグランジェ未定係数法より、この最適化問題の解は以下で与えられる。

[0093]

$$m_n (k) = -R_{ZZ}^{-1} \cdot e_{MQ+1} / (e_{MQ+1}^{H} \cdot R_{ZZ}^{-1} \cdot e_{MQ+1})$$
(61)

ここで、

$$\mathbf{R}_{ZZ} = \mathbf{E} \left[\mathbf{z}_{\mathbf{n}} \quad (\mathbf{k}) \cdot \mathbf{z}_{\mathbf{n}} \right] \tag{62}$$

E[A]はAの期待値(平均値)を表わす。

[0094]

【数21】

$$= E \begin{bmatrix} H \cdot \Lambda_n(k) \cdot H^H + \sigma^2 I & H_n^H \\ H_n & I \end{bmatrix}$$
 (63)

[0095]

$$\Lambda_{n}$$
 (k) = diag [D_{n} (k+Q-1), ..., D_{n} (k), ..., D_{n} (64)

エ は単位行列 σ^2 は雑音電力 (白色性ガウス雑音の分散値)

[0096]

【数22】

$$H_{n} = \begin{bmatrix} h_{n}(Q-1) & 0 & 0 & 0 \\ h_{n}(Q-2) & h_{n}(Q-1) & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ h_{n}(0) & h_{n}(1) & \cdots & h_{n}(Q-1) \end{bmatrix}$$
(65)

[0097]

$$D_{n} (k+q) = diag [1-b']_{1}^{2} (k+q), ..., 1-b']_{n}^{2} (k+q), ..., 1-b']_{n}^{2} (k+q), ..., 1-b']_{n}^{2} (k+q) : q = Q+1, ..., 1$$

$$D_{n} (k+q) = diag [1-b']_{1}^{2} (k+q), ..., 1, ..., 1-b']_{n}^{2} (k+q) : q = 0, ..., -Q+1$$
(67)

diagは対角行列(行列の対角線の要素以外の要素はゼロ)を表わす。

つまりチャネル行列 \mathbf{H} 、 σ^2 が既知であれば、 \mathbf{m}_n (k)は式(6 1)で求めることができる。よって式(5 8)に従い \mathbf{w}_n (k), α_n (k)も求

められる。

[0098]

この算出されたフィルタ特性 $\mathbf{w}_{\mathbf{n}}$ (k)により、 $\mathbf{y}_{\mathbf{n}}$ (k)を次式によりフィルタ処理する。

$$u_n$$
 (k) = \mathbf{w}_n H (k) · \mathbf{y}'_n (k) (68) H は共役転置行列を表わす。

このフィルタ処理された n 個の処理結果が後続の対応する等化器 21-n に送られる。 このようにして第 n 番目のユーザよりの式(1)の左辺と対応する受信信号 u_n (k)が得られ、また式(1)の右辺のチャネル値 h_{mn} (q)と対応する α_{mn} (k)が得られ、つまり式(1)と対応する式(5 5)が求まる。よって α_n (k)も等化器パラメータ(チャネル値)として後続の等化器 21-n に付与される。以上が等化器 71 による前段処理である。

[0099]

[0100]

【数23】

$$\Lambda_{l}[b(k)] = \log \frac{\Pr[b_{n}(k) = +1 \mid u_{n}(k), k = 0, \dots, B]}{\Pr[b_{n}(k) = -1 \mid u_{n}(k), k = 0, \dots, B]}$$
(69)

$$\equiv \lambda_1[b_n(k)] + \lambda_2^p[b_n(k)] \tag{70}$$

[0101]

ここで λ_1 [b_n (k)] は後続の復号器 24-n に送られる外部情報、 λ_2

 $^{\mathbf{p}}$ [$\mathbf{b_n}$ (\mathbf{k})] は等化器 3 1 に与えられる事前情報である。復号器 2 4 - \mathbf{n} は対数尤度比 $\mathbf{\Lambda}_2$ を次式により算出する。

[0102]

【数24】

$$\Lambda_{2}[b_{n}(i)] = \log \frac{\Pr[b_{n}(i) = +1 \mid \lambda_{I}[b_{n}(i)], i = 0, \dots, B]}{\Pr[b_{n}(i) = -1 \mid \lambda_{I}[b_{n}(i)], i = 0, \dots, B]}$$
(71)

$$\equiv \lambda_2[b_n(i)] + \lambda_i^p[b_n(i)] \tag{72}$$

[0103]

ここで λ_2 [b_n (i)] は繰り返しの際に等化器 71 と等化器 21 に与えられる外部情報、 λ_1^p [b_n (k)] は復号器 24-n に与えられた事前情報である。この図 18 に示した構成により繰り返し等化、復号を行い誤り率の向上が達成される。

前述したマルチユーザ等化器 7 1 の機能構成を図 1 9 を参照して簡単に説明する。各アンテナよりの受信信号は受信部 7 0 でベクトル \mathbf{r} (\mathbf{k}) = \mathbf{r}_1 (\mathbf{k}) … \mathbf{r}_M (\mathbf{k})] として処理され、このベクトル \mathbf{r} (\mathbf{k}) を用いて受信ベクトル生成部 3 1 1 において各マルチパス(チャネル)を考慮した式(2 1)の受信ベクトル \mathbf{v} (\mathbf{k}) が生成される。

[0104]

一方、受信部70よりの受信信号 r (k)と、ユニークワード記憶部29からの各送信機と対応した、チャネル推定用のユニークワード系列などの既知系列信号とがチャネル推定器28に入力されてチャネル行列 I-I が推定される。

また各復号器 2 4 -1, …, 2 4 -N の出力対数尤度比 Λ_2 [b_1 (i)], …, Λ_2 [b_N (i)] からそれぞれ事前情報 λ_1 P [b_1 (i)], …, λ_1 P [b_N (i)] が差し引かれた外部情報 λ_2 [b_1 (k)], …, λ_2 [b_N (k)] が軟判定シンボル推定部 3 1 3 -1, …, 3 1 3 -N に入力され、それぞれ式 (1 5) により軟判定送信シンボル b'_1 (k), …, b'_N (k) が計算され、これらが干渉ベクトル生成部 7 2 に入力され、干渉ベクトル生成部 7 2

では各nごとに他の送信機からの干渉信号となり得るシンボル推定値のベクトル \mathbf{B}' (k) が式(29)'、(53) 及び(54) により生成される。これら N 個のベクトル \mathbf{B}' (k) とチャネル行列 \mathbf{H} との積が他干渉信号推定部 $\mathbf{7}$ 3 -1, …, $\mathbf{7}$ 3 -N でそれぞれ演算されて干渉成分のレプリカ \mathbf{H} · \mathbf{B} (k) が求められる。

[0105]

これらN個の干渉成分レプリカ \mathbf{H} ・ \mathbf{B} (\mathbf{k})が受信ベクトル \mathbf{y} (\mathbf{k})から引算部 74-1 , …, $74-\mathbf{N}$ でそれぞれ引算されて、差分ベクトル \mathbf{y} ' \mathbf{k} (\mathbf{k}), …, \mathbf{y} ' \mathbf{k})が求められる。

[0106]

このターボ受信法の第1発明(2)の処理手順を図20に示す。図20において、図3に示した処理手順と対応するステップには同一ステップ記号を付けた。ただし、ステップS4における干渉レプリカベクトル \mathbf{B}'_n (\mathbf{k}) の計算は式 (29) \mathbf{g}' 、(53) 及び (54) により行う。ステップS13は軟判定送信シンボル \mathbf{b}'_n (\mathbf{k}) を用い、式 (64) 、 (66) 、 (67) により誤差行列 \mathbf{h} (\mathbf{k}) を生成する。ステップS14はチャネルと行列 \mathbf{h} 及び雑音電力 \mathbf{g} と

誤差行列 Λ_n (k)を用い、式(58)、(60)、(61)、(63)、(65)により残余干渉除去フィルタ \mathbf{w}_n (k)とチャネル情報 α_n を求める。ステップS15で差分ベクトル \mathbf{v}'_n (k)を残余干渉除去フィルタ特性 \mathbf{w}_n (k)によりフィルタ処理して \mathbf{u}_n (k)を求める。ステップS16で各フィルタ処理結果 \mathbf{u}_n (k)に対し、シングルユーザ等化処理を行って対数尤度比 Λ_n [b_n (k)]をそれぞれ求め、これらをステップS10で復号処理する。その他は図3に示した処理と同様である。

[0107]

[0108]

図17に示した例では前段の多出力等化器71ではN系列の送信信号に対し、これらを他系列よりの干渉を等化分離した、N系列の信号 \mathbf{u}_n と、等化後のチャネル情報 α_n を出力し、その後、各N系列の信号 \mathbf{u}_n を後段のシングルユーザ等化器22-nにより同一送信信号の符号間干渉を除去した。つまり、2段の縦続等化構成とした。3段以上の縦続多段構成としてもよい。

例えば図21に示すように、第1段目の等化器81において、N系列の送信信号に対するM系列の受信信号 r_m を入力して第 $1\sim$ 第U番送信系列の第U+1番送信系列による干渉を除去した等化信号系列e r_1 (k)及びその等化後のチャネル情報 e α (k)と、第 $U+1\sim$ 第N番送信系列の第 $1\sim$ 第U番送信系列に

よる干渉を除去した等化信号系列 e r_2 (k)及びその等化後のチャネル情報 e α_2 (k)とを得、第2段目の等化器 8 2 -1 及び 8 2 -2 中の 8 2 -1 では、入力された e r_1 (k)及び e α_1 (k)を等化処理して、第 1 ~第 1 番送信系列中の第 1 ~第 1 番送信系列の第 1 ~第 1 番送信系列の第 1 ~第 1 番送信系列による干渉を除去した等化信号系列 e 1 。 (k)及びその等化後のチャネル情報 e 1 。 (k)と、第 1 ~第 1 番送信系列中の第 1 ~第 1 4 ~第 1 2 番送信系列の第 1 ~第 1 4 (k)及びその等化後のチャネル情報 e 1 4 (k)及びその等化後のチャネル情報 e 1 6 (k)及びその等化後のチャネル情報 e 1 6 (k)と、第 1 ~第 1 送信系列中の第 1 ~第 1 2 送信系列による干渉を除去した等化信号系列 e 1 ~第 1 2 送信系列による干渉を除去した等化信号系列 e 1 6 (k)及びその等化後のチャネル情報 e 1 6 (k)及びその等化後のチャネル情報 e 1 6 (k)をそれぞれ出力する。

[0109]

同様に第2段目の等化器82-2では等化信号系列er2(k)とチャネル情報e α 2(k)が入力されて、等化信号系列er $_6$ (k)及び等化後のチャネル情報e α 6(k)と等化信号系列er $_7$ (k)及び等化後のチャネル情報e α 7(k)を出力する。N=5の場合は第3段目の等化器83-1~83-5は図18中のシングルユーザ等化器となる。あるいは、等化器83-3の入力等化信号は2つの送信信号により構成され、等化器83-3によりその2つの送信信号間の相互干渉を除去して2組の等化信号とその等化後のチャネル情報とを次のシングルユーザ等化器84-1,84-2でそれぞれ等化してもよい。更に、例えば等化器83-4では等化信号er $_6$ (k)とチャネル情報e α 6(k)を入力して、その構成送信信号の全て、例えば3つの送信信号のそれぞれについて他の2つの送信信号との相互干渉と、それ自身のマルチパスによる符号間干渉を除去してもよい。第2段目の等化器82-1,82-2の1つ乃至複数で、複数の送信信号に対する各等化信号を一挙に得るように構成してもよい。

[0110]

以上のように一般には第1段目の等化器から複数の等化信号系列と等化後チャネル情報の組を出力し、各等化信号系列及びその等化後のチャネル情報の組について、1乃至複数の等化器を1乃至複数段縦続させて、最終的には第1~第N番

目の送信系列のそれぞれの等化出力、つまりこの例では対数尤度比 Λ_1 [b_n (k)]を出力させることもできる。

このように多段縦続等化処理を行う場合は、前述したように後段程、干渉除去するパス数Qの値を小として、演算処理量を少なくすることが好ましい。この場合は、前述したように、後段において減少したパスによる干渉成分を、その直前の等化段で除去するようにする。

[0111]

以下において、図 2 1 中の第 1 段目の等化器 2 1 で、N個の送信系列、各送信系列のマルチパスの数がQの受信信号からU個の送信系列の群の等化信号系列 e \mathbf{r}_1 (k) 及び等化後のチャネル情報 e $\mathbf{\alpha}_1$ (k) を得、その後段の等化器 8 2 -1 での等化処理では各送信列系のマルチパスの数を \mathbf{Q}' とする場合の等化処理を説明する。

図18及び図19に示した実施例とほぼ同様に干渉ベクトル生成部72で干渉ベクトル B'(k)を生成するが、この構成式(53)、式(54)が式(53)、式(54)が式(53)、式(54)が式(53)、式(54)が式(53)、式(54)が式(53)に変更する。

[0112]

[0113]

このようにして得られた干渉ベクトル B ′ (k)を用いて干渉信号レプリカ

 \mathbf{H} ・ \mathbf{B} $^{\prime}$ (\mathbf{k}) を作り、これを受信ベクトル \mathbf{y} (\mathbf{k}) から引算し、つまり 次式を計算する。

$$y'_{g}(k) \equiv y(k) - H \cdot B'(k)$$
 (27) "
$$= H \cdot (B(k) - B'(k)) + n(k) (28) "$$

以下この干渉を引算する操作をソフト干渉キャンセルと呼ぶことにする。理想的に干渉信号のレプリカ \mathbf{FI} ・ \mathbf{B} ' (k)が作られているとすると、引算後得られる \mathbf{y} ' \mathbf{g} (k)は第1~第U送信系列のシンボル、 $\begin{bmatrix} \mathbf{b_n} \\ \mathbf{k} \end{bmatrix}$ (k), $\mathbf{b_n}$ (k - 1), …, $\mathbf{b_n}$ (k - Q ' + 1) \mathbf{f} , (n = 1 ~ U)の信号成分しか持ち得ないことが分かる。

[0114]

次にソフト干渉キャンセル後の干渉余剰成分を前述と同様にMMSE規範の線形フィルタで除去する。この場合の式(55)と対応した式は次式(55)′となる。

$$\mathbf{w}_{g}^{H}(\mathbf{k}) \cdot \mathbf{y}'_{g}(\mathbf{k}) \stackrel{.}{=} \sum_{\mathbf{n}=1}^{\mathbf{U}} \sum_{\mathbf{q}=0}^{\mathbf{Q}'-1} \alpha_{\mathbf{n}\mathbf{q}}(\mathbf{k}) \cdot \mathbf{b}_{\mathbf{n}}$$

$$(\mathbf{k}-\mathbf{q}) = \alpha_{g}^{H}(\mathbf{k}) \cdot \mathbf{b}_{g}(\mathbf{k}) \qquad (55)'$$

$$\stackrel{.}{=} \stackrel{.}{=} \stackrel{.}$$

$$\alpha_{g}$$
 (k) = [$\alpha_{1,0}$ (k), ..., $\alpha_{1,Q'-1}$ (k), ..., $\alpha_{U,0}$ (k), ..., $\alpha_{U,0'-1}$ (k)] ^T (55-1)

$$\mathbf{b}_{\mathbf{g}}(\mathbf{k}) = [\mathbf{b}_{1}(\mathbf{k}), \dots, \mathbf{b}_{1}(\mathbf{k} - \mathbf{Q}' + 1), \dots, \mathbf{b}_{\mathbf{U}}(\mathbf{k}), \dots, \mathbf{b}_{\mathbf{U}}(\mathbf{k} - \mathbf{Q}' + 1)]^{T}$$
 (55-2)

これら $\mathbf{w}_{\mathbf{g}}$ (k), $\alpha_{\mathbf{g}}$ (k) を求めることも前述と同様に式(5 6)を次式として右辺が最小となる $\mathbf{w}_{\mathbf{g}}$ (k), $\alpha_{\mathbf{g}}$ (k) を求める。

$$(\mathbf{w}_{\mathbf{g}}(\mathbf{k}), \alpha_{\mathbf{g}}(\mathbf{k})) = \operatorname{arg\ min} \| \mathbf{w}_{\mathbf{g}}^{\mathbf{H}}(\mathbf{k}) \cdot \mathbf{y}'_{\mathbf{g}}(\mathbf{k}) - \alpha_{\mathbf{g}}^{\mathbf{H}}(\mathbf{k}) \cdot \mathbf{b}_{\mathbf{g}}(\mathbf{k}) \|^{2}$$
 (56) ' $\alpha_{1,0}(\mathbf{k}) = 1$ を条件とする。

付加された拘束条件は、 α $_{g}$ (k)=0, \mathbf{w}_{g} (k)=0なる解を避ける為であり、 $\|\alpha$ $_{g}$ $(k)\|^{2}=1$ なる拘束条件で解く事も可能であるが以下では、 $\alpha_{1,0}$ (k)=1 の場合以下のように問題を置き換える。

$$\mathbf{m}_{\mathbf{g}}$$
 (k) = arg min $\|\mathbf{m}_{\mathbf{g}}^{H}$ (k) ・ $\mathbf{z}_{\mathbf{g}}$ (k) $\|^{2}$ (57) ′ $\mathbf{m}_{\mathbf{g}}^{H}$ (k) ・ $\mathbf{e}_{\mathsf{MQ'}+1} = -1$ を条件とする。

$$\mathbf{m}_{g}$$
 (k) $\equiv [\mathbf{w}_{g}^{T}$ (k), $-\alpha_{g}^{T}$ (k)] T (58)'
 \mathbf{z}_{g} (k) $\equiv [\mathbf{y}_{g}^{T}$ (k), b (k) $_{g}^{T}$] T (59)'
 $\mathbf{e}_{MQ'+1} = [0 \cdots 1 \cdots 0]^{T}$ (60)'

(e MQ'+1 中の1の要素はMQ'+1番目)

前記文献 [2] に示されているラグランジェ未定係数法よりこの最適化問題の 解は以下で与えられる。

[0116]

$$\mathbf{m}_{\mathbf{g}}$$
 (k) = $-\mathbf{R}_{\mathbf{z}\mathbf{z}}^{-1} \cdot \mathbf{e}_{\mathbf{MQ'}+1} / (\mathbf{e}_{\mathbf{MQ'}+1}^{\mathbf{H}} \cdot \mathbf{R}_{\mathbf{z}\mathbf{z}}^{-1} \cdot \mathbf{e}_{\mathbf{MQ}}^{\mathbf{H}}$
(61) '

[0117]

【数25】

$$R_{zz} = E[Z_g(k) \cdot Z_g^H(k)]$$

$$= E\begin{bmatrix} H \cdot \Lambda(k) \cdot H^H + \sigma^2 I & H_g^H \\ H_g & I \end{bmatrix}$$

$$[0 \ 1 \ 1 \ 8]$$

$$(62)'$$

$$\Lambda_{n}$$
 (k) = diag [D_{n} (k+Q-1), ..., D_{n} (k), ..., D_{n} (64) ' [0119]

【数26】

$$H_{g} = \begin{bmatrix} h_{1}(Q-1) & 0 & 0 & \cdots & h_{U}(Q-1) & 0 & 0 \\ h_{1}(Q-2) & \ddots & 0 & \cdots & h_{U}(Q-2) & \ddots & 0 \\ h_{1}(Q-3) & \vdots & h_{1}(Q-1) & \cdots & h_{U}(Q-3) & \vdots & h_{U}(Q-1) \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\ h_{1}(0) & \cdots & h_{1}(Q'-1) & \cdots & h_{U}(0) & \cdots & h_{U}(Q'-1) \end{bmatrix}$$
(65)'

[0120]

 D_n $(k+q) = diag [1-b']_1^2$ (k+q), …, $1-b'_n^2$ (k+q), …, $1-b'_n^2$ (k+q), …, $1-b'_n^2$ (k+q)] : q=Q+1, …, 1 (66) D_n $(k+q) = diag [1, …, 1, 1-b'_{U+1}^2(k+q), …, 1-b'_{N}^2(k+q)]$: q=0, …, -Q'+1 (67)' D_n $(k+q) = diag [1-b']_1^2(k+q)$, …, $1-b'_n^2(k+q)$, …, $1-b'_n^2(k+q)$, …, $1-b'_n^2(k+q)$] : q=Q', …, $1-b'_n^2(k+q)$ つまりチャネルパラメータが既知であれば、 \mathbf{m}_g (k) は式 (61) ' で求めることができる。更に式 (58) ' に従い \mathbf{w}_g (k), α_g (k) (=e) α_g (k) も求められる。このような計算を例えば図19中のフィルタ特性推定部76で行い、フィルタ処理部77-1で次式を計算してフィルタ処理する

[0121]

 er_1 $(k) = \mathbf{W}_{\mathbf{g}}^{\ \ \mathbf{H}}$ $(k) \cdot \mathbf{y}'_{\mathbf{g}}$ (k) この等化出力 er_1 (k) と等化後チャネル情報 $\mathrm{e}_{\ \alpha_1}$ $(k) = \alpha_{\mathbf{g}}$ (k) が後段の等化器 8 2 - 1 に送られる。

以上のようにして例えば5の送信系列(ユーザ)時に3送信系列(ユーザ)グループと2送信系列(ユーザ)グループとに分ける場合は、U=3及び2で上記アルゴリズムを実行し、これら二つの等化出力 er_1 (k)、 $e\alpha_1$ (k)と er_2 (k), $e\alpha_2$ (k)を後続の3送信系列(ユーザ)用及び2送信系列(ユーザ)用の等化器に入力してそれぞれ各送信系列(ユーザ)の等化出力を得る。

[0122]

また前述した検出する信号の誤り訂正復号結果を軟判定送信シンボルに反映させることは、図8に示したシングルユーザターボイコライザ受信機、図9に示したRAKE合成処理ターボ受信機、図10に示したアダプティブアレーアンテナ受信部を備えるターボ受信機、更に一般に図12に示したチャネル推定器42を備えるターボ受信機にも適用できる。

更に図13、図14及び図15ではチャネル行列 F-I と共分散行列U⁰の、2回目以後の推定に確からしいと判断されたシンボル硬判定値も参照信号として利用したが、2回目以後もユニークワードのみを参照信号として式(51)を利用して共分散行列U⁰の推定を行い、シンボル硬判定値を用いるチャネル推定及び共分散行列U⁰の推定は省略してもよい。

第1発明(2)(並列送信)

次に1人の利用者による情報系列 c (i)を複数の並列系列として送信することにより周波数利用効率よく高速伝送を行うことが提案されている。このような送信信号に対し、この発明を適用したターボ受信機の実施例を説明する。

[0123]

図22に図1と対応する部分に同一参照符号を付けて示すよう送信側において、変調器13よりの変調出力信号 b (j) は直列-並列変換器14によりN個の系列に各シンボル b (j) が順次分配され、2以上の整数N個の系列信号 b $_1$ (k), …, b $_N$ (k) とされ、図に示していないが、これらは無線周波数の信号に変換された後、N個のアンテナから送信される。

これらN個の系列信号はチャネル(伝送路)を通じて、この発明のターボ受信機に受信される。この受信機の受信アンテナは1個以上であり、この受信信号は1以上の整数M個のベースバンドデジタル受信信号 r_{m} (k) (m=1, 2, …, M)として多出力等化器31に入力される。受信信号 r_{m} (k)は例えば図28に示したように生成される。

[0124]

多出力等化器31は図2に示した構成と同様であり、図3に示した処理手順と 同様な処理を行う。その際に、図22中に示した復号器24よりの対数尤度比A $_2$ [b(i)] から外部情報 $_1$ [bi] が減算器 $_2$ 5 で減算され、その減算出力がインタリーバ $_2$ 6 によりインタリーブされて事前情報 $_2$ [b(j)] とされ、その事前情報 $_2$ [b(j)] が直列 $_2$ 並列変換器 $_2$ 5 でN系列の事前情報 $_2$ [b₁(k)], …, $_2$ [b_N(k)] に変換されて多出力等化器 $_2$ 1 へ入力される。

[0125]

よって多出力等化器 3 1 ではそのM系列の受信信号が、先に述べたと同様に線形等化処理されて、N個の対数尤度比系列 Λ_1 $[b_1$ (k)] , …, Λ_1 $[b_N$ (k)] が出力される。このN個系列の対数尤度比系列は並列-直列変換器 1 6 により 1 系列の対数尤度比系列 Λ_1 [b (j)] に変換されて、減算器 2 2 个供給される。この構成によれば多出力等化器 3 1 の入力信号形式が、図 1 乃至図 3 で説明したものと同様になり、従って図 1 乃至図 3 を参照して行った等化処理により、N系列の対数尤度比 Λ_1 $[b_1$ (k)] , …, Λ_1 $[b_N$ (k)] を得ることができ、直列-並列変換器 1 5 と並列直列変換器 1 6 とを用いることによって繰り返し復号処理を行うことができることは容易に理解されよう。図 1 乃至図 3 において 1 不番目の送信機の送信信号と対応してこの場合は 1 個の並列送信信号中の 1 不番目(1 列目)の送信信号が等化されることになる。またこの 1 系列信号の並列送信に対する受信について、図 1 乃至図 1 を参照した実施例を適用できることも容易に理解できよう。また図 1 1 多万至図 1 に示した複数の等化段による 縦続的処理により、図 1 乃至図 1 1 に示した単一の等化段による処理に比べ受信特性は向上する。

[0126]

この発明のターボ受信方法、受信機は畳み込み符号/ターボ符号+インタリーバ+多値変調(QPSK, 8PSK, 16QAM, 64QAMなど)、TCM (Trellis Coded Modulation) /ターボTCMなどに対する受信にも適用できる。

M個の受信信号の生成

上述ではM個の受信信号 \mathbf{r}_1 (k), …, \mathbf{r}_M (k) を、M個のアンテナ#1, …, #Mから求めたが、1個のアンテナから求めてもよく、あるいは、2以上の整数L個のアンテナの受信信号からLより多いM個の受信信号を求めてもよい

。図1において特に示さなかったが各アンテナ#1, …, #Mからの受信信号はベースバンド変換部によりベースバンドの受信信号 \mathbf{r}_1 , …, \mathbf{r}_m とされ、サンプリングされて離散時刻 \mathbf{k} のディジタル信号 \mathbf{r}_1 (\mathbf{k}), …, \mathbf{r}_M (\mathbf{k}) とされている。

[0127]

例えば図30Bに示すようにL=2個のアンテナ#1, #2で受信された受信信号はそれぞれベースバンド変換部61-1, 61-2でそれぞれベースバンド 信号に変換され、ベースバンド変換部61-1と61-2の各出力はサンプリング信号発生器62からのサンプリング信号と、このサンプリング信号を移相器63でその周期TのT/2だけ位相をずらしたサンプリング信号とにより、それぞれA/D変換器64-1, 64-2と64-3, 64-4でサンプリングされてディジタル信号 \mathbf{r}_1 (k), \mathbf{r}_2 (k) と \mathbf{r}_3 (k), \mathbf{r}_4 (k) に変換され、図1又は図18あるいは図22に示したターボ受信機30に入力され、N個の復号出力を得るようにしてもよい。なおターボ受信機30に入力される受信信号 \mathbf{r}_1 (k), …, \mathbf{r}_4 (k) の各サンプリング周期は、1個のアンテナごとに1個の受信信号 \mathbf{r}_n (k) を受信する場合のサンプリング周期と一致するようにサンプリング信号発生器62よりのサンプリング信号の周波数が選定される。

[0128]

【発明の効果】

以上述べたようにこの第1発明(1)によれば、多出力(MIMO)受信方法を実現できる。定量的な効果として誤り率特性を図23、図24に示す。各図において横軸の E_b / N_o はビットエネルギ対ノイズ比である。シュミレーション条件として以下を想定した。

ユーザ(送信機)数N 2

各ユーザのマルチパス数Q 5

受信アンテナ数 2本

1フレーム内の情報シンボル数 450ビット

1フレーム内のユニークワード数 25ビット

チャネル推定法 RLS(忘却係数0.99)

特2002-010839

誤り訂正符号 レート1/2, 拘束長3畳み込み符号

ドップラ周波数 1000Hz (レイリーフェージング)

変調方式
BPSK

伝送速度 20Mbps

復号器24 Max-Log-Mapデコーダ

繰り返し数 4回

フレーム内でフェージングなし

なおフィルタ係数 w の計算には前記逆行列の補助定理による近似は用いなかった。

[0129]

図23は、チャネル推定が完全に行われた(推定誤差はなし)、つまりチャネルは既知であると仮定した時の誤り率特性であり、ユーザ(送信機)数N=2、受信アンテナ数M=2、Rayleghパス数Q=5の場合である。繰り返し1回目は繰り返ししていない状態であり、繰り返し2回目で1回繰り返しを行った結果である。繰り返しにより誤り率特性が大幅に改善されていることが分かる。これによりこの発明のMIMO用ターボ受信方法は適切に動作することが分かる

[0130]

図24は繰り返しチャネル推定(第4発明)の効果を示す。横軸はしきい値Thである。 E_b / N_o =4dBに固定し(E_b は1ユーザ分である)、Th=1. 0は1つもシンボル硬判定値が選ばれない、つまりシンボル硬判定値を用いるチャネル推定が行われない従来法と考えられる。この場合は図から明らかなようにチャネル推定が不正確なためBER特性の繰り返し効果は少ない。しきい値Th=0は、硬判定値をそのまま全部用いる場合であり、このように情報シンボルの硬判定値も利用すると図から明らかなように平均ビット誤り率が改善され、それだけチャネル推定が正確に行うことができることが理解される。更にしきい値 Th=0. $2\sim0$. 6程度ではTh=00 の場合より平均ビット誤り率が小となっており、つまり確からしい硬判定値のみを利用した方が良いことがわかる。特に Th=0. 25付近が最も好ましいことも理解される。

[0131]

図25に、しきい値により確からしい送信シンボル硬判定値をチャネル推定に 用いる、つまり繰り返しチャネル推定を用いたMIMO受信方法の誤り率特性を 曲線66として示す、この場合のしきい値は0.25に設定し、結果は繰り返し 4回後の特性であり、N=2、M=2、Q=5Raylegh、f , T s=1/ 20000,900シンボル/フレームである。比較のためチャネル推定が完全 な場合の誤り率特性を曲線67に、従来の情報シンボルの硬判定値はチャネル推 定に利用しない、つまり繰り返しなしのチャネル推定(チャネル推定は1回だけ)を用いたときの誤り率特性を曲線68に示す。このグラフよりチャネルの繰り 返し推定を用いた場合、誤り率特性はチャネル推定完全の場合のそれに近づいて いることが分かる。

[0132]

また上述したチャネル推定方法によれば、復号された軟判定値から、その硬判 定値の確からしいか否かを判定し、確からしい硬判定値のシンボル情報をも、次 回の繰り返し受信処理の際のチャネル推定に利用することにより、チャネル推定 をより正しく行うことができ、復号品質を向上することができる。

次に共分散行列U^(ガウス性雑音以外の雑音)を推定するようにした実施例 の効果を確認するため以下の条件でシミュレーションを行った。

全ユーザ(送信機)数N 3 (うち1ユーザを未知干渉:i(k)とする)

各ユーザのマルチパス数Q 5.

受信アンテナ数 3 本

1フレーム内の情報シンボル数 450ビット

誤り訂正符号 レート1/2, 拘束長3畳み込み符号

ドップラー周波数 1000Hz

変調方式 BPSK

伝送速度 20Mbps

復号器24 Log-MAPはデコーダ

繰り返し数

3ユーザ(送信機)は等電力とした。図26は図14、図15、図16に示し

4 回

たH、U^{*}を推定するターボ受信機のBER (ビット誤り率)特性のシミュレーション結果、図27は図1に示したターボ受信機(図13の方法を用いる受信機)をそのまま用いたBER特性を示す。図26では、雑音は白色性ガウス雑音のみとしており、チャネル推定、復号処理を2回以上繰り返してもその効果がほとんど得られていないが、図27では繰り返し数を多くすることによりBER特性の向上が達成され、しかも、同一Eb/Noに対し、BERが図26に示すものよりも可成り小さい値を示すことが理解される。

[0133]

次に目的とするユーザ(送信機)よりの受信信号のシンボル軟判定値 b'_n (k) に対し誤り訂正復号結果を反映させた実施例(第2発明)の効果を確認するために以下の条件でシミュレーションを行った。

全ユーザ (送信機)数N 4

各ユーザのマルチパス数Q 5

受信アンテナ数M 2

1フレーム内の情報シンボル数 900

誤り訂正符号 畳み込み符号(符号化率:1/2、拘束長3)

変調方式 BPSK

復号器 Log-Mapデコーダ

誤り符号化率 1/2

繰り返し数 5

またf (b'_n (k)) = $\alpha \times b'_n$ (k) とした。

[0134]

図28は、図1に示した多出力ターボ受信機と、 b'_n (k)に誤り訂正復号結果を反映させた多入力多出力ターボ受信機のBER特性を前者はプロット点を黒で、後者は白でそれぞれ示す。丸は繰り返し1回目、下向き三角は繰り返し2回目、菱形は繰り返し3回目、左向き三角は繰り返し4回目、右向き三角は繰り返し5回目を表わす。図28Aは α =0.2に固定したときのEb/Noに対するBER特性のシミュレーション結果、図26BはEb/No=6dBとしたと

きのαに対するΒΕR特性のシミュレーション結果をそれぞれ示す。ここでα= Oの場合は b'_n (k) = Oとした場合に等しい。この図28Aより、 b'_n (k)に誤り訂正復号結果を反映させた多入力多出力受信機では、図1に示した多 入力多出力ターボ受信機に比べ、繰り返し回数が3回目以降の場合において1回 前の繰り返し復号時のBERに対して改善効果が大きく、繰り返し回数が3回目 以降ではBER>10 $^{-4}$ の範囲において各BERを達成する所要 E_h / N_0 で比 較した場合、b'n(k)に誤り訂正復号結果を反映させた多入力多出力ターボ 受信機は図1に示した多入力多出力ターボ受信機に比べ約0.5 d B以上の利得 が得られている。また、Eb/No=6dBの繰り返し5回目において、BER $=10^{-5}$ BERを達成しており、図1に示したものに比べBERを1/10以下 に低減できていることが分かる。この図28Bより、 α の値としては0< α <0. 6の範囲で改善が得られており、αを0. 6より大きくすると逆にΒΕR特性 が劣化してしまい、正しい復号結果が得られなくなる。この結果より、この場合 に限るものではなく、特に受信するユーザの数、干渉を含む伝搬環境、受信する アンテナの数などによって、改善効果を有するαの適正範囲が変更されてもよく 、また最適値αの値も他の値を取っても良い。

[0135]

ユーザ(送信機)の数をN、各送信機のマルチパスの数をQ、受信機のアンテナの数をMとし、BPSK変調の場合は、従来のシングルユーザのターボ受信機をそのまま多出力(MIMO)に拡張した場合の等化器における計算量は先に述べたように $2^{N(Q-1)}$ のオーダであるが、第3発明のターボ受信方法によればN(MQ) 3 のオーダで済む。例えばN=8、Q=20、M=8とすると $2^{N(Q-1)}$ 与 5×10^{45} であるがN(MQ) 3 ≒ $3.7\cdot10^7$ となり、この第2発明のターボ受信方法によれば計算量を著しく低減することができる。

[0136]

この第3発明のターボ受信方法によれば良好なビット誤り率特性が得られることを以下の条件でシミュレーションを行って確認した。チャネル行列 I-I は既知とした。

ユーザー数N

各ユーザのマルチパス数Q 5

受信アンテナ数M 2本

1フレーム内の情報シンボル数 900ビット

誤り訂正符号 レート1/2、拘束長3畳み込み符号

4

ドップラー周波数 1000Hz (レイリーフェージング)

変調方式 BPSK

伝送速度 20Mbps

復号器 Log-MAPデコーダ

繰り返し数 6回

チャネル推定は理想

図29にこのBER(ビット誤り率)特性のシミュレーション結果を示す。横軸は平均 E_b (ビットエネルギー) $/N_o$ (雑音電力)であり、 f_d はドップラー周波数、 T_s は送信シンボル周期である。このグラフに示されているMRCはオーダ10(2アンテナ×5パス)ダイバーシチチャネルにおける最大比合成(Maximal Ratio Conbining:MRC)後の信号をビタビ復号した際に得られるBER特性であり、等化器が完全に干渉をキャンセルした際のBER特性に対応する。つまり繰り返し後のBERがMRCカーブにどれだけ近いかで受信器の品質を評価することができる。図27により、この第2発明のターボ受信方法によれば E_b / N_o が高くなる程BERが減少し、かつ繰り返し回数を多くすればBER特性はMRCのBER特性に近づき、特に繰り返し回数を多くすればBER特性はMRCのBER特性に近づき、特に繰り返し回数6ではMRCに非常に近づくことが分かる。つまり、この第3発明のターボ受信方法による多出力ターボ受信機は4ユーザ、各5パス、2受信アンテナという厳しい条件でも適切に動作することが確認された。

【図面の簡単な説明】

【図1】

この第1発明のターボ受信機の実施例を含むシステムの機能構成を示す図。

【図2】

図1中の多出力等化器31の具体的機能構成例を示す図。

【図3】

この第1発明のターボ受信方法の実施例を示す流れ図。

【図4】

Aはフレーム構成例を示す図、Bは第4発明における繰り返しチャネル推定法 を説明するための、各繰り返しにおける処理を示す図である。

【図5】

確からしい硬判定シンボルを取り出すための機能構成例を示す図。

【図6】

この発明における繰り返しチャネル推定の処理手順の例を示す流れ図。

【図7】

Aは検出する信号の誤り訂正復号結果を反映させる第2発明における等化器3 1の一部の機能構成例を示す図、Bはその処理手順の例を示す図である。

【図8】

ターボイコライザを繰り返し行う受信機の例を示す図。

【図9】

RAKE受信-ターボ復号の繰り返しを行う受信機の例を示す図。

【図10】

アダプティブアレーアンテナ受信-ターボ後の繰り返しを行う受信機の例を示す図。

【図11】

ターボイコライザ及びターボデコーダの概略を示す図。

【図12】

受信信号に対し、推定チャネルを用いる処理と、その処理された信号の復号処理とを繰り返す受信機の概略を示す図。

【図13】

受信信号に対し、推定チャネルを用いる処理とその処理された信号の復号処理 とを繰返す受信方法の概略の処理手順の例を示す流れ図。

【図14】

Aはフレーム構成例を示す図、Bは受信信号に白色性ガウス雑音以外の雑音を

含む場合の、チャネル I-I と雑音共分散行列Uの推定の繰り返し処理を示す図である。

【図15】

雑音共分散行列Uの推定を用いる等化器の一部の機能構成例を示す図。

【図16】

雑音共分散行列Uの推定を用いるチャネル値推定と、復号処理を繰り返す処理 手順の例を示す流れ図。

【図17】

この第3発明によるターボ受信機の原理を示す図。

【図18】

この第3発明によるターボ受信機の機能構成例を示す図。

【図19】

図18中のマルチユーザ(前段)等化器71の機能構成の具体例を示す図。

【図20】

この第3発明によるターボ受信方法の処理手順の例を示す流れ図。

【図21】

第3発明における多段等化部分の他の機能構成例を示す図。

【図22】

第1発明(2)の実施例が適用されたシステム構成例を示す図。

【図23】

第1発明(1)を適用したターボ受信機の誤り率特性図(チャネルは完全に推定されたと仮定し、 $E_{\mathbf{b}}$ (ビットエネルギー):2 ユーザ分 $N_{\mathbf{o}}$ は雑音エネルギー)。

【図24】

しきい値(Th)を変化させて繰り返しチャネル推定を行った場合の誤り率特性を示す図。

【図25】

第4発明において、特に繰り返しチャネル推定を用いたターボ受信機の誤り率 特性図。

【図26】

雑音共分散行列Uの推定を用いるターボ受信機の誤り率特性を示す図。

【図27】

図1に示したターボ受信機の誤り率特性を示す図。

【図28】

検出する信号の誤り訂正復号結果を反映させた第2発明の実施例の誤り率特性 を示す図。

【図29】

この第3発明のターボ受信機の誤り率特性のシミュレーション結果を示す図。

【図30】

MIMOシステムの概念を示す図。

【図31】

従来のシングルユーザ用ターボ送受信機の機能構成を示す図。

【書類名】 図面

【図2】

2

【図3】

【図4】

図4

【図5】

図5

【図6】

【図7】

【図8】

【図9】

【図10】

図10

【図11】

【図12】

【図13】

図13

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

図21

【図22】

【図23】

図23

【図24】

図24

【図25】

図25

【図26】

図26

【図27】

図27

【図28】

【図29】

【図30】

[図31]

【書類名】 要約書

【要約】

【課題】 多入力多出力(複数ユーザ)の受信を可能とする。

【解決手段】 M個の受信信号 r_m (m=1, …, M)と、既知信号により、各伝送路インパルス応答 h_{mn} (q)を推定し(ユーザ数N, n=1, …, N)、 h_{mn} (q)を要素とする $M\times N$ 行列 FI(q)、その FI(q)を要素とする $Q\times Q$ 行列 FIを求め(Qは各送信波のマルチパスの数、Q=0, …, Q-1)、復号 λ_2 [b_n (k)]により軟判定値 b'_n (k)を求め、これを用いて干渉成分ベクトル B'(k)を作り、干渉レプリカ FI・ B'(k)を求め、これを受信ベクトル V(V)を作り、干渉レプリカ V(V)を求め、V(V)を下り、これを可能がある適応フィルタ V(V)を求め、V(V)を下り、V(V)を求め、V(V)を下り、V(V)を求め、V(V)を下り、V(V)を求め、V(V)を下り、V(V)を求め、V(V)を下り、V(V)を求め、V(V)を下り、V(V)を求め、V(V)を表記を示している。

【選択図】 図1

認定・付加情報

特許出願の番号 特願2002-010839

受付番号 50200064904

書類名特許願

担当官 第八担当上席 0097

作成日 平成14年 1月23日

<認定情報・付加情報>

【特許出願人】

【識別番号】 392026693

【住所又は居所】 東京都千代田区永田町二丁目11番1号

【氏名又は名称】 株式会社エヌ・ティ・ティ・ドコモ

【代理人】 申請人

【識別番号】 100066153

【住所又は居所】 東京都新宿区新宿四丁目2番21号 相模ビル

【氏名又は名称】 草野 卓

【選任した代理人】

【識別番号】 100100642

【住所又は居所】 東京都新宿区新宿4丁目2番21号 相模ビル

草野特許事務所

【氏名又は名称】 稲垣 稔

出願人履歴情報

識別番号

[392026693]

1. 変更年月日 2000年 5月19日

[変更理由] 名称変更

住 所 東京都千代田区永田町二丁目11番1号

氏 名 株式会社エヌ・ティ・ティ・ドコモ