第六章 最优化理论概要

第六章 最优化理论概要

- 6.1 最优化问题类型
- 6.2 线性规划计算方法
- 6.3 选址问题
- 6.4 数独问题
- 6.5 网络单纯形法

简要历史

- 早期
 - ∘ Fermat, Lagrange: 明确最优概念。
- Newton, Gauss: 最优找寻计算法。
- ▶ 1940s
 - George Dantzig上课迟到,将老师 给出的二个统计学未解问题,当作 家庭作业,形成simplex算法。
 - 1947, John von Neumann发展出 duality理论。

George Dantzig Nov.8, 1914- May 13, 2005

John von Neumann Dec. 28, 1903- Feb.8, 1957

数学规划 (最优化)的目标

- The objective of mathematical programming is to select the best or optimal solution from the set of solutions that satisfy all of the restriction on resources, called feasible solutions.
- 二个关键语义
 - 。从一组可行解中选择最好或最优的解;
 - 。 可行解是,满足所有资源约束的解。

[Ref]http://ceit.aut.ac.ir/~shiry/lecture

类型,依据决策变量及关系

- Linear Programming (LP)
 - Makes 4 assumptions: Linearity, Divisibility(实数), Certainty(有确定参数), and non negativity.
- ▶ Integer Programming (IP)
 - Assumes that the decision parameters must take on integer values.
- Non linear programming (NLP)
 - Assumes that the relationship in the objective function and/or constraint may be nonlinear.

建模与分析的一般过程

- ▶ Formulation (表述)
 - Defining the decision variables, objective function and constraints.
- ▶ Solution (求解)
 - Requires determining the optimal values of the decision variables and the objective function. For example by computer software.
- ▶ Interpretation (解释)
 - To interpret the results.

示例问题

- Assume that a firm produces alphas and omegas using labor, machine time, and finishing time.
- Profit for each alpha is 2.1USD and for each omega is 3.5USD.
 - Each alpha requires 10 labor hour and 2 hours of machine and 3 hours of finishing
 - Each Omega requires 14 labor hour and 2 hours of machine and no finishing.
 - They have 70 hours of labor, 70 hours of machine and 12 hours of finishing time each day.
- Determine how many alphas and omegas they should produce to maximize the daily profit?

线性规划问题的变形/形式化

- Model:
 - MAX= $2.1 \cdot X_1 + 3.5 \cdot X_2$
 - $0.10 \cdot X_1 + 14 \cdot X_2 <= 70$
 - $^{\circ}$ 2·X₁+20·X₂ <= 70 \circ 3·X₁<=12
 - $X_1>=0$
- $^{\circ} X_{2} > = 0$

第六章 最优化理论概要

- 6.1 最优化问题类型
- 6.2 线性规划计算方法
- 6.3 选址问题
- 6.4 数独问题
- 6.5 网络单纯形法

图形法

X2

- Model:
 - MAX= $2.1 x_1 + 3.5 X_2$
 - 10X₁+14X₂ <=70
 - 2X₁+20X₂ <= 70

(多边形)角的坐标

- Corner points are where 2 or more lines intersect.
- The fundamental theorem of linear programming is that an optimal solution always lies at a corner point of the feasible
- There are 5 corner points in the problem.

单纯形 (Simplex)法

- 查找角点直到目标函数值不 能增长为止。
 - · 沿X2轴, 到达 (0,3.5);
 - · 再沿X1,增大目标函数 值, (2.44,3.26);
 - · 再沿X1, 目标函数值减 少, 所以停止;
 - 算法只涉及3个点。
- 变量数较多时,有利于缩小 查找空间。

Model:

- MAX= 2.1 x1+ 3.5X2 10X1+14X2 <=70
 - 2X1+20X2 <= 70
- 3X1<=12

第六章 最优化理论概要

- 6.1 最优化问题类型
- 6.2 线性规划计算方法
- 6.3 选址问题
- 6.4 数独问题
- 6.5 网络单纯形法

选址覆盖的目标

規則
16个区域,或直接,或间隔一个区域,取到灭火器目标
所部署的灭火器,数量最少

形式化/模型

Set	Covers
1	1, 2, 4, 5
2	1, 2, 3, 5, 6
3	2, 3, 6, 7

0 0 0 0 0 0

图覆盖问题

节点表示区域 节点相邻表示区域相邻 节点16覆盖节点13、15和16 求节点集的最小子集,覆盖所有节 点

整数规划

 $x_j = 1$ if node j is selected $x_j = 0$ otherwise

Minimize x₁ + x₂ + ... + x₁₆

s.t. $x_1 + x_2 + x_4 + x_5 \ge 1$

 $x_1 + x_2 + x_3 + x_5 + x_6 \ge 1$

0 0 0

 $x_{13} + x_{15} + x_{16} \ge 1$

 $x_j \in \{0, 1\}$ for each j.

求解结果

 $x_j = 1$ if node j is selected $x_j = 0$ otherwise

Minimize $x_1 + x_2 + ... + x_{16}$

s.t. $x_1 + x_2 + x_4 + x_5 \ge 1$

 $x_1 + x_2 + x_3 + x_5 + x_6 \ge 1$

0 0

 $x_{13} + x_{15} + x_{16} \ge 1$

 $x_j \in \{0, 1\}$ for each j.

第六章 最优化理论概要

- 6.1 最优化问题类型
- 6.2 线性规划计算方法
- 6.3 选址问题
- 6.4 数独问题
- 6.5 网络单纯形法

Sudoku(数独)

直接排除法

简接排除法

简接排除法

GLPK/GMPL coding

本長史♡

var x{i in 1..9, j in 1..9, k in 1..9}, binary; /* [i,j]为k的变量 */

初始条件

s.t. fa{i in 1..9, j in 1..9, k in 1..9: givens[i,j] != 0}:
x[i,j,k] = (if givens[i,j] = k then 1 else 0); /*"givens"已给*/

约束定义

s.t. fb{i in 1..9, j in 1..9}: sum{k in 1..9} x[i,j,k] = 1;/*单位*/s.t. fc{i in 1..9, k in 1..9}: sum{j in 1..9} x[i,j,k] = 1;/*有*/s.t. fc{j in 1..9, k in 1..9}: sum{i in 1..9} x[i,j,k] = 1;/*利*/s.t. fc{j in 1..9 by 3, J in 1..9 by 3, k in 1..9}: sum{i in I..1+2, j in J..J+2} x[i,j,k] = 1; /*区唯一*/

经0.340秒计算的结果

+			-+			-+				-+
5	3	4	6	7	8	1	9	1	2	Τ
6	7	2	1	. 9	5	Ì	3	4	8	Ì
1	9	8	3	4	2	Ì	5	6	7	Ì
+			-+			-+				-+
8	5	9	7	6	1	1	4	2	3	Ι
4	2	6	8	5	3	Ì	7	9	1	Ì
7	1	3	į g	2	4	İ	8	5	6	İ
+			-+			-+				-+
9	6	1	5	3	7	1	2	8	4	Τ
2	8	7	4	1	9	Ì	6	3	5	Ì
3	4	5	2	8	6	İ	1	7	9	İ
+			-+			-+				-+

第六章 最优化理论概要

- 6.1 最优化问题类型
- 6.2 线性规划计算方法
- 6.3 选址问题
- 6.4 数独问题
- 6.5 网络单纯形法

最小成本网络流问题 Minimum Cost Network Flow Min-Max MCF Network Simplex(网络单形) Dijkstra求解跳数最短路由

[Prob]
剩余资源有限,如何求最短路由?

容量约束: bw>=2

最优化模型的定义

- G(V, E), n=|V|=5, m=|E|=8*2=16
- ▶ 成本: w(u,v); 容量: c(u,v), 边 $(u,v) \in E$ • eg., c(A,E) = 2, c(A,F) = 6, ...
- ightharpoonup流: f(u,v|s,t), 点 $s,t \in V$, 边 $(u,v) \in E$.
- ▶ 总成本最小: min sum{(u,v), (s,t)} f(u,v|s,t) w(u,v)

流 f(F,C|A,C)的定义 源A至宿C的网络流, 分配到边(F,C)的量

29

约束条件

f(F,C|A,C): 源A至宿C的网络流, 分配到边(F,C)的量

- ▶ 容量: $sum\{(s,t)\}$ f(u,v|s,t) <= c(u,v), for each 边 $(u,v) \in E$
- ▶ 对称: f(u,v|s,t) = -f(v,u|s,t)
- 守恒: $sum\{v, (s,t)\} f(u,v|s,t) = 0$, for each $u \neq s$, t
- ▶ 源点: $sum\{v, (s,t)\} f(s,v|s,t) = d(s)$, for each 边 $(s,v) \in E$
- ▶ 目标: $sum\{v, (s,t)\} f(v,t|s,t) = d(t)$, for each 边 $(v,t) \in E$

如果取消容量约束 则等同于最短路径问题

货品流的有向图示例

流分配的可行解

流分配的最优解

图的代数表示

LP公式表述

$$e_{ij} = (i,j)$$

$$x_{ij}$$

$$x_{ji}$$

$$e_{ji} = (j,i)$$

$$a_{i, (i,j)} = -1$$

 $a_{(j,i), i} = +1$

minimize
$$\mathbf{cx} = \sum_{ij} c_{ij} x_{ij}$$

subject to

$$(ij) x_{ij} \ge 0$$

$$(i) \sum_{ji} x_{ji} - \sum_{ij} x_{ij} = b_i$$

$$(i) \quad \sum_{ji} x_{ji} - \sum_{ij} x_{ij} = b_{ij}$$

$$\sum_{i} b_{i} = 0$$

关联矩阵

LP表示式的简化

minimize cx subject to

(ij)
$$x_{ij} \ge 0$$

 $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $\sum_{i} b_{i} = 0$

网络流的 网络单纯形法求解

解题思路

- 以一个初始生成树为起点
- 。该生成树包含网络的所有节点
- ight)可行树解x与生成树T相关联,且 $\circ x_{ij} = 0$ if (i,j) 不是树 T 的边
- ▶通过查找所有可行树解,得到最优

说明示例,源于节点1的流

代数符号说明

- \mathbf{V} 从树 \mathbf{T} 开始, 求可行解 \mathbf{X}
 - 。向量x,包括每条边上所分配流的大小
- ▶ step 1中,对每个节点计算
 - $y_i + c_{ij} = y_j$, for each $(i,j) \in T$. 。向量 y,流经节点的成本
- c 为成本向量, b 为需求向量, A 为关联矩阵

第二个例子

选择一条添加边(Step 1)

- ▶ 定义: c' = c vA.
- ightharpoonup c'为边成本与所分配流的差,显然 c = c' + yA
- ▶ If $ij \in T$ then $c'_{ij} = c_{ij} + y_i y_j = 0$. ▶ If $ij \notin T$ 且 if $c'_{ij} < 0$, then ij 为候选边.
- Also if $ij \notin T$ then $x_{ii} = 0$,
- > 综合以上关系,有:
- $\mathbf{c'x} = \mathbf{0} \ (\forall ij, \text{ either } \mathbf{c'}_{ij} = 0 \text{ or } \mathbf{x}_{ij} = 0).$

更新示例

代数表示(Step 1)

- (c' = c - yA) $= c'x' + \dot{y}b.$ (Ax' = b)
- ▶ 对于 **x**, 其成本为: cx = c'x + yb = yb.
- ▶ 将 yb 用 cx 替代,有: cx' = c'x' + cx

(c'x = 0)

▶ 所以, if c'x' < 0, x' 是比 x 更好的解.

代数表示(Step 2)

- ▶ step 2中, 找到 *e* = *uv*, 满足
- $y_u + c_{uv} < y_v$ (i.e. $c'_{uv} < 0$).
- ▶ 如果无此边,then $\mathbf{c'} \ge \mathbf{0}$ and so $\mathbf{c'x'} \ge \mathbf{0}$.
- \rightarrow 由 cx' = c'x' + cx 喻示对于所有可行解x',都有
- cx'≥cx, 即x为最优
- ightharpoonup 如果有此边,e,将其加入到树 T.

代数表示(Step 3)

- ▶ step 3中, *T* + *e* 存在一个圈.
- ▶ 依照*e* 的方向,将圈中的边分为前向和反向边.
- **)** 设置:

图示(Step 3)

代数表示(Step 3)

- ▶ 因±t相互抵消, Ax' = Ax = b.
- ▶ 所以,合适的 t,满足 $x' \ge 0$, 则 x' 是可行解.
- > 因只有 e 满足 $c'_{ij} \neq 0$ 且 $x'_{ij} \neq 0$, 所以: $c'x' = c'_{e}x'_{e} = c'_{e}t$.

$$\mathbf{c'x'} = \mathbf{c'_{a}x'_{a}} = \mathbf{c'_{a}t}.$$

- ▶ 替代到cx'的表达,得: $cx' = cx + c'_e t$.
- ightharpoonup 问题变换为选择 t ,使用 x' 为可行解,并减少cx'.

代数表示(Step 3)

- ▶ 如前, cx' = cx + c'_et.
- ight
 angle 由于 c'_e < 0, 减少 cx', 就是增长t.
- ▶ 为保证 x' 为可行解 (i.e. $x' \ge 0$), 需要找到反向 边 f, 该边具有最小值 x_f 得到 $t = x_f$
- ightharpoonup 可行解 $\mathbf{x'}$,有 $\mathbf{x'}_f = \mathbf{0}$,因此 \mathbf{f} 为移除边.
- ▶ 移除边 f,正好解除了 T + e 中圈,因此, 。 *T + e - f* 对应于新可行解 **x'**.

第三个示例求解过程

网络单纯形法的初始树

初始树,即第一个树

- ▶ 如果存在一节点 w:
 - 。 所有源都有边连接到 w
 - · w有边连接到所有的宿和中间节点 则初始树以w为根

人工边,增广图

- ▶ 如果不存在这类节点 w, 人为增加边或节点
- \rightarrow 并为边(ij)关联惩罚函数 p_{ij} :
 - $p_{ij} = 0$ for original arcs $p_{ij} = 1$ for artificial arcs
- ▶初始树求解,变换为附加问题:
 - min sum $p_{ij}x_{ij}$

第六章 最优化理论概要思考题

针对以下整数规划:

Maximize: $5X_1 + 8X_2$

 $6X_1 + 5X_2 < = 30$ s.t

 $9X_1 + 4X_2 <= 36$ $X_1 + 2X_2 <= 10$

采用图形法求最优解。