5.	The mean and variance of binomial distribu-						
	tion are 4 and $\frac{4}{3}$ respectively. Find $P(X \ge 1)$.	[2]					

(b) Fit a Poisson distribution to the following data given the number of yeast cells per square for 400 squares:

1	No. of ells/sq	0	1	2	3	4	5	6	7	8	9	10
	No. of quares	103	143	98	42	8	4	2	0	0	0	0

- (c) In an examination taken among 500 candidates, the average and standard deviation of marks obtained are 40% and 10%. Find approximately the following:
 - (i) How many will pass, if 50% is fixed as a minimum?
 - (ii) What should be the minimum if 350 candidates are to pass?
 - (iii) How many have scored marks above 60%? [7]
- (d) In a precision bombing attack, there is a 50% chance that any one bomb will strike the target. Two direct hits are required to destroy the target completely. How many bombs must be dropped to give a 99% chance or better of completely destroying the target? [7]

Printed Page: 4

Roll No.

322351(14)

BE (3rd Semester)

Examination, April-May, 2017

[New Scheme]

Mathematics-III

Time Allowed: 3 hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: (i) Part (a) of each question is compulsory. Attempt any two parts from (b), (c) and (d).

- (ii) The figures in the right-hand margin indicate marks.
- 1. (a) If f(x) = x in the interval $-\pi < x < \pi$, what is the value of $\frac{a_0}{2}$?
 - (b) Develop the Fourier series for the function defined by the following figure: [7]

[7]

[2]

(c) Obtain the constant term and the coefficients of sine and cosine terms up to second harmonics in the Fourier expansion of y as given in the following table:

x: 0 1 2 3 4 5 y: 9 18 24 28 26 20

(d) Prove that

 $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$, $-\pi < x < \pi$

Hence show that:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

[7]

- 2. (a) If $L(f(t)) = \frac{1}{s(s^2+1)}$, find $L\{f(2t)\}$. [2]
 - (b) Find the inverse transforms of the following functions: [7

(i) $f(s) = \frac{5s+3}{(s-1)(s^2+2s+5)}$

- (ii) $f(s) = \log \left[\frac{s^2 + 1}{s(s+1)} \right]$
- (c) Using convolution theorem, solve $y(t) = t + \int_0^t y(\tau) \sin(t \tau) d\tau$ [7]
- (d) Use Laplace transform method to solve the differential equation

 $\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t$

given that x = 2, $\frac{dx}{dt} = -1$ at t = 0. [7]

3. (a) State Cauchy-Riemann equation.

[2]

(b) Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at origin even though CR equations are satisfied thereat.

[7]

(c) Prove that $\int_0^{\pi} \frac{d\theta}{17 - 8\cos\theta} = \frac{\pi}{15}.$ [7]

(d) If $f(z) = \begin{cases} \frac{\sin z}{(z-\pi)^2}, & \text{if } z \neq \pi \\ \infty, & \text{if } z = \pi \end{cases}$

then prove that $\int_C f(z) dz = -2 \pi i$, where $|z| < \pi$. [7]

- 4. (a) Form partial differential equation by eliminating arbitrary function $z = f\left(\frac{y}{x}\right)$. [2]
 - (b) Find the surface satisfying $t = 6x^3y$, where $t = \frac{\partial^2 z}{\partial y^2}$ containing two lines y = 0, z = 0 and y = 2, z = 2. [7]
 - (c) Solve partial differential equation

 $r - 2s + t = \sin(2x + 3y)$ [7]

(d) Using method of separation of variable, solve partial differential equation

 $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$

where $u(x, 0) = 6e^{-3x}$.

[7]