Informatyka geodezyjna 2

Projekt 1

Wyznaczenie punktu przecięcia dwóch odcinków

Maria Pszczolińska, grupa 3 rok akademicki 2018/2019

1 Opis zadania

Zadanie polega na napisaniu programu z graficznym interfejsem użytkownika (GUI), realizującym zadanie znalezienia przecięcia dwóch odcinków.

2 Wyznaczanie punktu przecięcia

2.1 Problem

Mając dane współrzędne dwóch par punktów, będziemy wyznaczać współrzędne punktu przecięcia odcinków łączących te punkty.

2.2 Rozwiązanie zadania

Do wyznaczenia poszukiwanych współrzędnych korzystamy z równania parametrycznego prostej i następujących zależności:

$$X_P = X_A + t_1 \Delta X_{AB}$$
$$Y_P = Y_A + t_1 \Delta Y_{AB}$$

lub

$$X_P = X_C + t_2 \Delta X_{CD}$$
$$Y_P = Y_C + t_2 \Delta Y_{CD}$$

Rozważać będziemy trzy przypadki:

- Przecięcie odcinków
- Przecięcie odcinka i przedłużenie odcinka
- Przecięcie przedłużeń odcinków

O usytuowaniu punktu P (punkt przecięcia) względem odcinków decydują parametry t_1 i t_2 .

$$t_1 = \frac{\Delta X_{AC} \Delta Y_{CD} - \Delta Y_{AC} \Delta X_{CD}}{\Delta X_{AB} \Delta Y_{CD} - \Delta Y_{AB} \Delta X_{CD}}$$
$$t_2 = \frac{\Delta X_{AC} \Delta Y_{AB} - \Delta Y_{AC} \Delta X_{AB}}{\Delta X_{AB} \Delta Y_{CD} - \Delta Y_{AB} \Delta X_{CD}}$$

3 Graficzny interfejs użytkownika GUI

Zadanie znalezienia przecięcia dwóch odcinków realizowane jest w interfejsie GUI napisanym za pomocą programu w języku Python.

3.1 Obliczanie współrzędnych punktu przecięcia

Dane wejściowe pobierane są od użytkownika za pomocą interfejsu graficznego. Zanim nastąpi obliczenie żądanych współrzędnych, program sprawdza poprawność danych (czy dane są danymi liczbowymi). W przypadku gdy dane nie są poprawne, program wymusza poprawne dane nie przystępuje do obliczeń.

Sprawdzenie danych jest przeprowadzane za pomocą zdefiniowanej do tego funkcji:

```
def sprawdzWartosc(self, element):
    if element.text().lstrip('-').replace('.',',',1).isdigit():
        return float(element.text())
    else:
        element.setFocus()
    return None
```

W wypadku kiedy dane są poprawne, program przystępuje do obliczeń, uwzględniając przy tym wspomniane wcześniej możliwe rozwiązania problemu.

Po wykonanych obliczeniach, współrzędne punktu przecięcia (z dokładnością do 3 miejsc po przecinku) oraz jego położenie względem odcinków wyświetlane są w konsoli programu.

Po wykonaniu obliczeń program zapisuje otrzymane współrzędne do wcześniej załadowanego pustego pliku tekstowego.

```
plik=open('WspolrzednePunktuPrzeciecia.txt','w')
szer=40
plik.write('-' * szer)
plik.write("\n|{:^15}|{:^15}|\n".format("WspX[m]","WspY[m]"))
plik.write('-' * szer)
plik.write('\n|{:^18}|{:^18}|'.format('%.3f' %Xp,'%.3f' %Yp))
plik.close()
```

3.2 Wizualizacja rozwiązywanego zadania

Po wykonaniu obliczeń, wyświetlane są współrzędne punktu przecięcia i jego położenie względem odcinków. Jeśli punkt leży na przedłużeniu odcinka, odcinek prostej od punktu P do bliższego z danych punktów odcinka oznaczony jest linią przerywaną.

Rysunek 1: Przykładowa wizualizacja zadania na wykresie

Została również wprowadzona możliwość zmiany koloru punktów, albo koloru linii.

Rysunek 2: Okno zmiany kolorów linii i punktów

3.3 Krótka instrukcja dla użytkownika

- Po otworzeniu pliku w kompilatorze języka Python, uruchamiamy go za pomocą przycisku F5 lub przycisku "Run file".
- Na ekranie wyświetli się graficzny interfejs zadania. W puste pola wprowadzamy współrzędne punktów i klikamy przycisk "Rysuj". Jeżeli dane są prawidłowe, program przystąpi do obliczeń.
- Po prawej stronie pojawi się wykres z naniesionymi punktami i liniami je łaczacymi.
- Klikając przycisk "Kolor punktów" lub "Kolor linii" otworzy nam się okno, w którym możemy dowolnie zmienić kolory elementów na wykresie.
- Obliczone współrzędne oraz pozycja punktu przecięcia względem odcinków zapisane są w konsoli programu. Po zamknięciu interfejsu graficznego, współrzędne punktu przecięcia zostaną także zapisane do pliku tekstowego o nazwie "Współrzędne punktu przecięcia.txt".

```
Współrzędna X punktu przecięcia P: -113.536
Współrzędna Y punktu przecięcia P: 70.754
Punkt leży na przedłużeniu obu odcinków
```

Rysunek 3: Przykładowy wynik pokazany w konsoli kompilatora Spyder

Rysunek 4: Zapisane dane do pliku tekstowego