मार्थ १म मार्थ।। क्यांश-८।। पिएस्पीयात काविमा

* m < 10° 1 kg ७ a < 10° ms-2 प्रकाविकिये कुमान आप निर्धित्व र् व्यामित्र थमं।

* (भौनिया वन ७) ध्वनाणव क्रमः

मश्चर्य वल < पूर्वल निर्धित्रंग वल < जिल्ल पिक्षेत्रंग वल < जिल्ल विषेत्रंग वल < प्रवल निर्धित्रंग वल < प्रवल निर्धित्रंग वल < जिल्ला विष्टित्रंग वल < प्रवल निर्धित्रंग वल निर्धित्रंग वल < प्रवल निर्धित्रंग वल निर्धित्रंग वल < प्रवल निर्धित्रंग वल निर्धित्रंग वल निर्धित्रंग वल < प्रवल निर्धित्रंग वल निर्धिते अवन्तर: 10⁴¹ 10⁻¹⁵ 10⁻¹⁵ प्राचीम 10⁻¹⁵m

कमाः छाष्टिमे व्यापान कमा एका ने एका देन

* 7(MR 510,]= FAt;]= Ft = m(V-U); F= m(V-U)

* त्वाहित ज्यात इिद्धाल वीका वन्ने, F = (Am) VI

THENCY

WESTIGN STATE STATE STATE ($\frac{\Delta m}{\Delta T}$) V - MgHENCY

STATE OF THE COMP V - MgTHENCY

STATE OF THE COMP V - MgTHENCY

STATE OF THE COMP V - g.

* निहित्स २३ र्ज्य अवस्थाव रहें = ma [(एक्ट्र निस्प्र भाग राष्ट्रा रखें)

* corps an = anivara an + start ant | san an - physical (Mx)

ma = ma + Mx mg $F_{K} = M_{K} R$

* स्टिल् — क्रिक्निक्क (अधिम के अधिम क्रिक्न निष्ण के क्रिक्न क्रिक्न

* खास्त्र जात्र शतालां, धार्मालां कार्स खास्म = धर्माता जात जताः $m_1 U_1 + m_2 U_2 + \dots + m_n U_n = m_1 V_1 + m_2 V_2 + \dots + m_n V_n$ (জিক বিশ্বচনাম বাখতে ইনি) भ विकाशिक कर दाएख कार्म , m, U, +m2 2 (2m+m2) प चिंद्रा कार्य कार भ जिल्लाकिय : $\frac{1}{2}m^{4}\Omega_{1}^{2} + \frac{1}{2}m^{2}\Omega_{2}^{2} = \frac{1}{2}m^{4}\Lambda_{1}^{2} + \frac{1}{2}m^{2}\Lambda_{2}^{2}$ भ जिल्लाकिया अध्यक्षित : $m^{4}\Omega_{1} + m^{2}\Omega_{2} = \frac{1}{2}m^{4}\Lambda_{1}^{2} + \frac{1}{2}m^{2}\Lambda_{2}^{2}$ मिकिम्मिक्या प्राह्म हिमात हिमाय : |U,-U2] = |V,-V2] * प्रिक्षित मार्थ हिल्ल स्वत्र , $V_{1} = \left(\frac{m_{1} - m_{2}}{m_{1} + m_{2}}\right) U_{1} + \left(\frac{2 m_{2}}{m_{1} + m_{2}}\right) U_{2}$ $V_{2} = \left(\frac{m_{2} - m_{1}}{m_{1} + m_{2}}\right) U_{2} + \left(\frac{2m_{1}}{m_{1} + m_{2}}\right) U_{1}$ क्षेत्रियं चार्य वक्षेत्रियं क्षिण (चार्य क्षिण्यामा विष्य प्राप्ति क्षिण्यामा विष्य प्राप्ति क्षेत्रियं विष्य प्राप्तियं चार्य वक्षेत्रियं क्षिण (चार्य क्षिण्यामा विष्य प्राप्ति क्षिण्यामा विष्य प्राप्ति क्षिण्यामा विष्य * Scannal with Consequent $W_1 = V_2$ and $W_2 = V_3$ and $W_3 = W_4$ and $W_4 = W_4$ and $W_$

* (त्रिश्क भाष्ठि धूर्म मिलें येक येकके, प्राचिक ; रे = ये xरे विध्व प्रवा ७ स्वोभिक प्रवापत सार्वी यामार्क, a = an : वे = रे x के * Compare हिल्म गाँठ ७ क्रॉनिक गाँठ: विश्विक (कोर्निक अवन् डा का V I प्राप a क्षिक प्रा है। क्षिक वन धा के क्षिक प्रा $V = \frac{ds}{dt}$; $a = \frac{dv}{dt}$ $\omega = \frac{d\theta}{dt} + \frac{d\omega}{dt}$ $\theta = \omega t$; $\omega = \frac{\theta}{t}$; $\alpha = \frac{\omega - \omega \theta}{t}$ S=Vt , v=18 , a = 1-10 $\omega = \omega_0 + \alpha t$; $\omega^2 = \omega_0^2 + 2\alpha A_{\text{max}}$ $V = V_0 + at$; $V^2 = V_0^2 + 2as$ 0 = wot + 1 at2 S = Vt + 2 at 2 4 रेकं, ट ; एएगत धायक I ; क्रांगिक वल, F; ख्र, m; ख्रुका P T= Id 3 Fx = 2 I co2 = 2I F = ma $\int_{-\infty}^{\infty} F_k = \frac{1}{2} m v^2 = \frac{P^2}{2m}$ P = my (Sight) = The last in the Sha L = Ia = mursing धूत्र शाल अध्याकीनिक वंश ; क्लिनक मिल् थाकि ; अम्यावन ; एवावन एत्रवंश ; चैत ; ध्रानमान * (अंग्वात क्षायक , I = mp² = वा + mk² । [प्क्राविक त्रध्व हात्व द्रिण्यात क्षायक * स्वारित व्यापार्थ) में न्यू MW : (MIME क्रिक स्वार से प्रशिक्ति वध्रव हम्प यात्र I या त्रमा जात ध्रामा छ० चारक । * THE JUMPS AND FANK * SMOTIN WER TOPPITY: In I CO + Md

अध्यात देवा हेवा हेवा है से हिंदी है से है से हिंदी है से है से है से हिंदी है से हिंदी है से हिंदी है से हिंदी है से है	
	गुरु स्वामित्र
$I = \frac{ml^2}{3} K = \frac{l}{\sqrt{3}} If for parall size we have the size of t$	2 K = 2
The different $\frac{1}{2} = \frac{mn^2}{2}$ with the different $\frac{1}{2} = mn^2$	Ka 🖁
$I = \frac{mr^2}{2} K = \frac{1}{\sqrt{2}}$ Althur militar in $I = \frac{mr}{4}$	$k = \frac{r}{2}$
$I = \frac{3}{2} mr^2 K = \frac{3}{2} r R = \frac{3}{5} m$ $I = \frac{3}{5} mr^2 R = \frac{3}{5} r R = \frac{3}{5} m$	2 K \(\frac{2}{5}\) r
$T = \frac{3}{2} must which in the limit of the problem of the pro$	2 2 2 1
* (A) T = LX ; T = TXT ; TATHAN CAPA, L = TX = TX = T = 0 2(A) L = CATA = IX = T	my inc
* फिलि अखित त्यारे अविकारिका = 1 (mv2+ Iw2)	at July
* धूर्णत्मभिन्द (अर्ध नार्ध-व्यक्ति स्वामाण : W= 1/2 I (0)210	12) mera
* (क्षाया) प्रति , ac = 020 = 100 ; (क्षाया क्रि. हैं क्रिंट	r = mv
DI TELLET TO THE TELLET TO TH	जारिका जारिका

* The state of th