MARDI 8 JANVIER 2013

La rédaction sera prise en compte dans la notation. Vous devez justifier vos réponses ou accepter de recevoir 0 point, et encadrer vos résultats.

Questions de cours :

Qu'est-ce qu'une base d'un espace vectoriel E? A quelles conditions une partie de E est-elle un sous-espace vectoriel de E? Donner la définition du polynôme caractéristique de la matrice A. Définir une valeur propre et son espace propre associé pour une matrice A.

Exercice nº1

Résoudre, sous forme algébrique, dans \mathbb{C} : $z^2 = 8 - 6i$.

Exercice n°2

Les ensembles suivants sont-ils des espaces vectoriels ?

A=
$$\{(x,y) \in \mathbb{R}^2 : x + y = 0\}$$

B= $\{\text{polynômes} \in \mathbb{R}[X] \text{ de degré} > 3\}$

Exercice n°3

Calculer les déterminants suivants :

$$A = \begin{vmatrix} -6 \end{vmatrix}; \quad B = \begin{vmatrix} x & y \\ z & t \end{vmatrix}; \quad C = \begin{vmatrix} 1 & 1 & 2 & 1 \\ -1 & 2 & 1 & 2 \\ 1 & -0 & +2 & -1 \\ 3 & -2 & 3 & -2 \end{vmatrix}$$

Exercice nº4

Résoudre le système suivant à l'aide des formules de Cramer.

$$\begin{cases} -x + y + z = 1 \\ x - y + z = 1 \\ x + y - z = 1 \end{cases}$$

Exercice n°5

Soit la matrice
$$A = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix}$$
.

Calculer ses valeurs propres et vecteurs propres associés. 1.

Quelle est la matrice semblable à A dans la base formée des vecteurs propres. 2.

En déduire A". 3.

Exercice nº6

Déterminer la matrice inverse de la matrice A.

$$A = \begin{pmatrix} 1 & -2 & 1 \\ -3 & 8 & -1 \\ 2 & 0 & 7 \end{pmatrix}$$