NPS ARCHIVE 1969 RICEMAN, J.

A STATISTICAL STUDY OF SPECTROMETRIC OIL ANALYSIS DATA FROM THE NAVAL OIL ANALYSIS PROGRAM

by

John Patrick Riceman

United States Naval Postgraduate School

THESIS

A STATISTICAL STUDY OF SPECTROMETRIC
OIL ANALYSIS DATA FROM THE NAVAL
OIL ANALYSIS PROGRAM

by

John Patrick Riceman

T 131 866

October 1969

This document has been approved for public release and sale; its distribution is unlimited. U.S. 1 -, Postgraduate School Lonter-, lifernia 93940

A Statistical Study of Spectrometric Oil Analysis Data from the Naval Oil Analysis Program

by

John Patrick Riceman Captain, United States Army B.S., United States Military Academy, 1963

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the
NAVAL POSTGRADUATE SCHOOL
October 1969

NPS ARCHIVE 1969 RICEMAN, J.

Red C. 1

ABSTRACT

This thesis examines spectrometric oil analysis data from two sources in an attempt to formulate a statistical model which will be useful in monitoring aircraft engines in the Naval Oil Analysis Program. Initially, experimental data, gathered for an Air Force study, is used to determine if the measurement error inherent in the monitoring procedure is normally distributed and if correlations exist between measurements for different wear metals. Based on the results of this investigation, a study is made of operational data from Wright reciprocating engines of the R1820-82 model type. This investigation leads to the conclusion that a multivariate regression model is useful in estimating the parameters of the distribution of analyses from properly operating engines of this type. A procedure is then suggested which would employ the readings from past oil analyses from a particular engine to determine its present condition.

TABLE OF CONTENTS

I.	INTRODUCTION	
II.	ERRORS IN THE MONITORING PROCEDURE	9
	A. ERRORS IN SAMPLING	9
	B. ERRORS IN RECORDING	10
	C. ERRORS IN ANALYSIS	10
III.	DISCUSSION OF THE ANALYSIS ERROR	12
	A. DATA	12
	B. TEST FOR NORMALITY	14
	C. TEST FOR EQUALITY OF COVARIANCE MATRICES	16
	D. TEST FOR INDEPENDENCE AMONG ELEMENTS	18
IV.	ANALYSIS OF OPERATIONAL DATA	20
	A. NOAP DATA	20
	B. PRELIMINARY RESULTS	21
	C. REGRESSION MODEL	26
	1. Data Selection	26
	2. Estimation and Tests of Regression Coefficients	31
V.	CONCLUSION	36
APPENI	DIX A: STATISTICAL TESTS	38
APPENI	DIX B: REGRESSION: ESTIMATION, TESTS AND PREDICTION	44
COMPUTER OUTPUT		47
LIST OF REFERENCES		85
INITIAL DISTRIBUTION LIST		86
FORM I	OD 1473	87

I. INTRODUCTION

For several years the technique of using the spectrometric analysis of oil samples as an aid in determining the condition of diesel engines has been employed successfully by major railroads and various other users of large diesel equipment. In 1956, a trial program was begun at the Naval Air Rework Facility in Pensacola to determine if this method could also be used to monitor aircraft engines.

Since that time the program has proved successful and has evolved into the Naval Oil Analysis Program (NOAP). It is planned that this program will eventually include all Navy fluid lubricated mechanical systems. A more detailed history of the program is contained in Refs. 1 and 2.

Since this thesis is concerned with an investigation of data collected at the Pensacola laboratory, the following descriptions of the operation will be limited to the procedures used there. Reciprocating aircraft engines are sampled approximately every 30 hours. The sample is taken after the aircraft has returned from a flight and before the oil has become cold. It is immediately sent to the laboratory by air mail and is analyzed on the day received. The analysis is accomplished by a spectrometer using the rotating graphite electrode technique. Measurements of the parts per million (ppm) content of ten metallic elements, which might be indicative of engine wear, are made

simultaneously. Of these ten, aluminum, chromium, iron, silver, copper, magnesium and nickel are those which are relevent to engines of the model considered in this report. The ppm readings are automatically recorded on a punched card which also contains various other hand-entered data identifying the sample.

Once the data has been recorded, it is used to aid in determining what the operating condition of the engine might be. Presumably, if the engine is operating properly, the amount of metallic contamination in the circulating oil should be within certain normal limits. In addition, it is felt that the amount of contamination added to the oil since it was last sampled should be within specific limits if the engine is in good working condition. If, however, the engine is discrepant and excessive wear is present, this will presumably cause an abnormal addition of metallic contaminates to the circulating oil.

Thus, when a sample has been analyzed and the results recorded, both the magnitudes of the present readings and the changes in the readings since the last sampling are compared with threshold limits which have been developed for each engine type and each metallic element relevent to that engine. If the results fall outside the prescribed limits, some action is generally taken by the laboratory. Usually another sample is requested and the previous results are verified. If the abnormality persists, either

the aircraft is grounded for maintenance or future samples are taken more frequently than the usual 30 hour interval.

At present, these threshold limits are subjectively set and vary only from element to element and among engine model types. They are based on the past history of the aircraft model which includes the data supplied by the engine manufacturer before the model is placed in service and experience accumulated once the model is in use. The limits are not used as sharp boundaries for classifying engines as normal or discrepant but merely as indicators upon which a subjective decision as to the action to be taken can be based.

This report examines two sets of data from the Pensacola laboratory with the intention of determining the propriety of three assumptions implicit in this classification procedure. Since the same threshold limits are used for all engines of a particular model, it is assumed that all normally operating engines of the same type can be expected to have the same amounts of metallic contamination in their oil systems. In addition, since threshold limits are constant for a given element and model type, variations in other factors, such as the operating hours since the last oil change, must be ignored or subjectively introduced into the classification procedure. Finally, since threshold limits are set for each element independent of the limits for other elements, readings for different elements are assumed to be uncorrelated.

Once these assumptions are verified or rejected, a statistical model is formulated to aid in establishing a more objective classification criterion.

II. ERRORS INHERENT IN THE MONITORING PROCEDURE

Since the intention of NOAP is to make inferences about the condition of aircraft engines, based on the amount of wear metal contamination in the engine's oil system, it is extremely important that the amount of contamination recorded at the laboratory accurately reflect the actual amount present in the engine. For the purposes of this report, measurement error will be defined as the difference between the parts per million content of an element recorded as present in a particular engine at a point in time and the actual content at that time. In NOAP there are a variety of potential sources of error, all of which can contribute to the net measurement error defined above.

A. ERRORS IN SAMPLING

As was mentioned earlier, oil samples are taken from reciprocating engines normally every 30 flying hours and while the oil is still hot. This sampling is accomplished with a special sampling kit consisting of a sampling tube and a sampling bottle. The tube is inserted into the oil reservoir, and when it has filled the top end is stopped with the operator's finger. The contents are then transferred to the bottle, which is immediately forwarded to the laboratory for analysis. When the sample is analyzed, a small portion of the oil in the bottle is used in the

analysis [Refs. 1 and 2]. Thus, an extremely small amount of oil is used to determine the extent of contamination in the engine's entire oil system. Any lack of homogeneity in the engine's oil reservoir will result in a non-representative sample. Further, any contamination added to the sample through a lack of cleanliness of the sampling tube and bottle or through handling at the laboratory will contribute to the measurement error.

B. ERRORS IN RECORDING

At the time the sample is taken, certain data including the date, the operating hours since the last oil change, the hours since the last overhaul of the engine, the engine serial number and the model number are recorded and mailed to the laboratory with the sample. Various portions of this data are transferred from other records. At the laboratory the data are entered by hand on the permanent record cards maintained there [Ref. 1]. This entire sequence of recording and transferring data from one record to another can result in mistakes.

Unfortunately, as with the errors in sampling, there is no data available at the present time that can be used to measure this error.

C. ERRORS IN ANALYSIS

When an oil sample is received at the Pensacola laboratory, it is analyzed using a direct reading spectrometer with spark excitation, stationary and rotating disc

electrodes. The sample bottle cap is filled with oil and placed in the spark stand. The gap between the two electrodes is set and the disc electrode begins to rotate at 30 rpm. As the electrode rotates, a thin film of oil is forced to the area under the fixed electrode. A high energy spark is then fired across the gap and the film of oil is burned for 25 seconds. The light from the burning oil is separated so that its intensity at the wave lengths, produced by the elements to be analyzed, can be compared with built-in standards. The average intensity over the burning period is then measured for each element simultaneously and converted into parts per million. These readings are automatically recorded on the engine history card [Ref. 2].

If it is assumed that there were no errors in the sampling or recording and thus, that the oil used in the analysis is representative of the oil in the engine, any difference between the true content of contamination in the engine and that recorded after the analysis can be attributed to an analysis error. An experiment designed to measure the effects of this type of error has been conducted and the results of an analysis of this data are presented in the next section.

III. DISCUSSION OF THE ANALYSIS ERROR

Although the error due to the spectrometric analysis of the oil is not the only possible source of error, it certainly is a major contributor to the over-all measurement error defined earlier. For this reason, an examination of data accumulated for a study conducted by the Air Force [Ref. 3] was performed and the results are discussed in this section.

A. DATA

In 1967, the Pensacola laboratory participated in an experiment conducted by the Air Force. During a 30 day period the laboratory received 100 oil samples. These were to be analyzed in the normal manner and the results reported. Although the laboratory was not aware of it, these 100 samples consisted of ten samples each repeated ten times. Thus, the laboratory actually repeated the analysis of ten different samples ten times. The results of the analyses, for the seven elements of interest in this report, are included in the Computer Output section, where the readings on like samples are in groups numbered from one to ten. Missing data accounts for some groups having less than ten readings.

For each of the ten groups of repetitious analyses, the sample mean and standard deviation were calculated for each element. If, for example, X_i is the $i\frac{th}{}$ reading for

aluminum in a group of size n, then the sample mean, \overline{X} , and standard deviation, S, for aluminum are

$$X = (\sum_{i=1}^{n} X_{i})/n$$

and

$$S = \left[\sum_{i=1}^{n} (X_i - \overline{X})^2 / (n-1)\right]^{\frac{1}{2}}$$
 (1)

respectively. The results of these calculations are also presented in the Computer Output section for each element and each group of samples.

In addition, for each sample group, an estimated correlation matrix, \underline{R} , was calculated, where if r_{ij} is the element in the $i\frac{th}{r}$ row and $j\frac{th}{r}$ column of R, then

$$r_{ij} = \frac{\sum_{k=1}^{n} (X_{i,k} - \overline{X}_{i}) (X_{j,k} - \overline{X}_{j})}{\sum_{k=1}^{n} (X_{i,k} - \overline{X}_{i})^{2} \sum_{k=1}^{n} (X_{j,k} - \overline{X}_{j})^{2}}$$
(2)

where $X_{i,k}$ is the $k\frac{th}{}$ reading for the $i\frac{th}{}$ element, and \overline{X}_{i} is the element's sample mean. These correlation matrices are included in the Computer Output section.

These preliminary computations provided statistics which were used to test certain hypotheses concerning the probability distribution of the analysis error.

B. TEST FOR NORMALITY

Since the overall measurement error is the net effect of errors arising from a variety of sources, the Central Limit Theorem of Probability Theory [Ref. 4] provides good justification for making an assumption of normality in the distribution of this error. Thus, any additional evidence, which tends to point to the normality of one of the contributing sources of error, will serve to strengthen the overall assumption. The experiment conducted by the Air Force provided data which was used to test for normality in the distribution of the analysis error.

If \underline{X}_k is defined as a seven-component vector of sample readings arising from sample group k = 1, 2, ..., 10, then

$$\underline{X}_{k} = \underline{\mu}_{k} + \underline{e}_{k}$$

where $\underline{\mu}_k$ is a seven-component vector of the true metallic content of seven elements in the sample associated with the $k\frac{th}{}$ group of readings, and \underline{e}_k is the seven-component random analysis error vector. Thus, if it is assumed that \underline{e}_k is a multivariate normal random variable with zero mean vector and unknown covariance matrix $\underline{\Sigma}_k$, then \underline{X}_k is a multivariate normal random variable with mean vector $\underline{\mu}_k$ and covariance matrix $\underline{\Sigma}_k$, denoted N($\underline{\mu}_k$, $\underline{\Sigma}_k$).

If this assumption is correct, it is possible to perform a transformation of the form,

$$\underline{z}_k = \underline{P}_k (\underline{x}_k - \underline{\mu}_k)$$
,

which will produce a multivariate normal random variable \underline{Z}_k which has mean vector zero and covariance matrix I, the identity matrix. For details of this transformation see Appendix A.

For each of the ten groups of sample readings the mean vector $\underline{\mu}_{k}$ was estimated using

$$\frac{\overline{x}}{k} = \sum_{j=1}^{n_k} \frac{x_k j}{n_k}$$
(3)

where \underline{X}_{kj} is the $j\frac{th}{}$ vector of sample readings from the $k\frac{th}{}$ sample group, and n_k is the number of readings in that group. In addition, the covariance matrices, $\underline{\Sigma}_k$, were estimated using the unbiased estimator

$$\frac{\hat{\Sigma}_{k}}{\sum_{i}} = (S_{i} S_{j} r_{ij})_{k} \tag{4}$$

where S_i is the estimated standard deviation for the $i\frac{th}{}$ element, computed as in equation (1), and r_{ij} is as defined by equation (2). For each of the ten groups the nonsingular matrix, \underline{P}_k , was found and the transformation,

$$\underline{Z}_{k,i} = \underline{P}_{k}(\underline{X}_{k,i} - \overline{\underline{X}}_{k}),$$

performed on each vector of readings, $\underline{X}_{k,i}$, in the $k\frac{th}{}$ group, $k=1,2,\ldots,10$. In this way vectors $\underline{Z}_{k,i}$ were produced, the components of which are stochastically independent and are distributed according to N(0,1) if the hypothesis is true.

All readings from the ten groups were then pooled to produce a sample of 651 deviates, assumed to be univariate normal. The Kolmogorov-Smirnov goodness of fit test was applied to this sample and the resulting test statistic of .0215 was not significant even at the .20-level. Thus, the hypothesis of normality in the distribution of the analysis error was accepted. For details of the test see Appendix A.

C. TEST FOR EQUALITY OF COVARIANCE MATRICES Let \underline{X}_k again be defined as

$$\underline{X}_{k} = \underline{\mu}_{k} + \underline{e}_{k}$$

as in the previous section, where now \underline{e}_k is assumed to be a multivariate normal random vector. In addition, let the estimators \overline{X}_k and $\hat{\Sigma}_k$ be defined by equations (3) and (4) respectively. Then, the Air Force data can be used to produce ten estimated covariance matrices $\hat{\Sigma}_k$, each associated with a different sample group and thus, a different true content vector $\underline{\mu}_k$. If the true covariance matrices, $\underline{\Sigma}_k$, are independent of the vector $\underline{\mu}_k$, and thus constant for all $k=1,2,\ldots,10$, the ten estimated matrices could be pooled to obtain an over-all estimate of $\underline{\Sigma}$. This hypothesis of the equality of the ten covariance matrices was tested, and the results led to the rejection of the hypothesis at the .10 level of significance. The details of the test used and the results obtained are included in Appendix A.

In an attempt to account for the apparent variability among covariance matrices from different sample groups, a regression model was formulated. It had been suggested by Baird-Atomic Inc., the manufacturer of the spectrometer used at the Pensacola laboratory, that the variability in readings for a given element is dependent on the true content of the element. Specifically, the relationship is assumed to be

$$\sigma^2 = a + bu^2$$

where σ^2 is the variance of repeated analyses of the same sample for a given element, μ is the true parts per million content of the element, and a and b are constants [Ref. 5]. The model,

$$S^2 = a + b\overline{X}^2 + e,$$

was used to examine the propriety of this relationship for each of the seven elements under consideration. Here S^2 is the square of the standard deviation estimate defined by equation (1), \overline{X}^2 is the square of the sample mean, and e is a random variable. For each element, a and b were estimated using least-squares techniques and, under the assumption that variations about the regression line are normally distributed, the hypothesis, b = 0, was tested [Refs. 6 and 7]. A t-test was used and the significance level set at .10. Of the seven slopes tested, those associated with aluminum, iron, copper and magnesium were significantly

non-zero. It should be mentioned that the true content of the other elements did not vary much among the ten sample groups. The results of the least-squares estimation, together with the numerical results of the t-tests, are included in the Computer Output section.

D. TEST FOR INDEPENDENCE AMONG ELEMENTS

Because of the apparent dependence of the variance of repeated readings upon the true content of an element, it was felt that covariances between elements might depend upon the content of the elements concerned. If this were the case, then, for example, a particularly high reading of one element might be "explained" by a corresponding low reading of another element. Under the assumption of normality, the hypothesis of independence is equivalent to the hypothesis of zero correlation. This hypothesis was tested, using each of the ten correlation matrices R, defined by equation (2). Of the ten tests conducted, only three of them were not significant at the .10 level. numerical results and the test used are given in Appendix A. It can be noted from the correlation matrices in the Computer Output section that particularly strong correlations seem to exist between iron and copper, silver and copper, and magnesium and iron.

Thus, it appears that, in general, the readings of different elements are not independent, and some explanation, for example, of an erroneous copper reading may come

from an examination of the corresponding iron reading on the same sample.

IV. ANALYSIS OF OPERATIONAL DATA

Using the evidence provided by the Air Force data to support the assumption of normality in the distribution of the measurement error, an investigation of some operational data was conducted. A statistical model, which makes use of the apparent correlations between the readings on different elements, was formulated. The details of the model's formulation are discussed in this section.

A. NOAP DATA

The Naval Air Rework Facility at Pensacola provided a magnetic data tape containing the records of operational analyses performed there from the beginning of July to the end of September in 1967. The records of some 21,000 different analyses were included on the tape. For each analysis the engine model number and serial number, as well as the date the analysis was performed and its results in parts per million for each relevant element, are recorded. In addition, it includes the operating hours since the last oil change and since the last overhaul of the engine for each sample. Unfortunately, the action recommended by the laboratory after each sample was analyzed and the results of that action were not available with the tape. For this reason, there was no way of determining with certainty which analyses were on oil from properly operating engines and which were from discrepant engines.

Of the 113 different engine models represented on the tape, the Wright reciprocating engine model, R1820-82, was selected for investigation since it was the most frequently sampled, with 4,134 different analyses.

B. PRELIMINARY RESULTS

Since it seemed logical to expect the content of metallic contamination to show some increase from normal wear in a properly operating engine as the hours since the last oil change increase, some preliminary plots were made by the computer. Six hundred different analyses were used with no regard to the particular engine of the R1820-82 type from which they came. For each of seven elements, relevant to the monitoring of engines of this type, the computer plotted the ppm content versus the operating hours since the last oil change. For three of the elements, iron, copper and aluminum, there was some indication that a buildup of contamination occurs. The other four plots gave no evidence of any significant trend. For comparison, the plot of chromium is included with those of aluminum, iron, and copper in Figures 1 to 4, respectively. Since these plots were made on sample readings from a variety of engines, they did not indicate whether a particular engine can be expected to show the same trend. For this reason, the five most frequently sampled engines of the R1820-82 type were selected and the computer was again used to plot the data from these engines. Five different symbols,

Y-SCALE = 4 UNITS PER INCH

HOURS SINCE OIL CHANGE

VS

PPM OF CHROMIUM

Y-SCALE = 7 UNITS PER INCH

HOURS SINCE OIL CHANGE

VS

PPM OF ALUMINUM

Y-SCALE = 20 UNITS PER INCH

HOURS SINCE OIL CHANGE

VS

PPM OF IRON

Y-SCALE = 4 UNITS PER INCH

HOURS SINCE OIL CHANGE

VS

PPM OF COPPER

x, +, Δ, ♦, and □, were used on each plot to represent the five different engines. Thus, both the behavior of the readings for a given engine and differences among the readings of the engines could be seen. Again, evidence of trends was limited to the three elements iron, copper and aluminum. For these elements each of the five engines showed a roughly linear increase in the ppm content as the hours since the last oil change increased. For comparison, the plot for chromium is again included with the plots of aluminum, iron and copper in Figures 5 through 8.

C. REGRESSION MODEL

Because of the evidence of a linear increase in ppm content versus an increase in hours since oil change, provided by the computer plots, a regression model was suggested. With this type of model the expected content of a metallic element would change as the hours since the last oil change varies. Thus, differences between what is a normal amount of contamination for a properly operating engine just after its oil has been changed and several flying hours later could automatically be incorporated into a classification criteria.

1. Data Selection

Of all the engines of the R1820-82 model type represented on the tape, those with eight or more different analyses were selected. Of these, any with missing data on one or more records, which brought the usable number of

Y-SCALE = 3 UNITS PER INCH

HOURS SINCE OIL CHANGE

VS

PPM OF CHROMIUM

Y-SCALE = 5 UNITS PER INCH

HOURS SINCE OIL CHANGE

VS

PPM OF ALUMINUM

Y-SCALE = 10 UNITS PER INCH

HOURS SINCE OIL CHANGE

VS

PPM OF IRON

Y-SCALE = 4 UNITS PER INCH

HOURS SINCE OIL CHANGE

VS

PPM OF COPPER

readings to less than eight, was rejected. The remaining engines were then screened in an attempt to insure that all the data had come from properly operating engines. As was mentioned earlier, the tape did not provide data on either the recommendation made by the laboratory or the results of any maintenance which might have been recommended. For this reason, it seemed that the best way to insure that none of the data had come from a discrepant engine was to exclude all readings which exceeded the threshold limits presently These limits are given in Ref. 1. After this procedure had been applied to the data, any engine with less than eight readings was eliminated from further examination. At this point there were 27 engines of the R1820-82 type remaining, each of which was represented with from eight to fourteen readings. This was the data that was used in the remainder of the investigation.

2. Estimation and Tests of Regression Coefficients

It was assumed that the outcome of each spectrometric analysis on a given engine is of the form

$$\underline{Y} = \underline{BX} + \underline{e}$$

where \underline{Y} is a seven-component vector of ppm metallic contents; \underline{B} is a 7x2 matrix of unknown coefficients; \underline{X} is a two-component vector with first component identically one and second component equal to the operating hours since the last oil change; and \underline{e} is a multivariate normal error vector with mean vector zero and unknown covariance matrix,

 $\underline{\Sigma}$. It will be recalled that the examination of the Air Force data in section III indicated that the covariance matrix may vary as the mean content vector changes. However, the slopes of the regression lines mentioned in part C of that section are such that variations in the mean vectors of the extent present in the operational data do not result in an appreciable variation in the elements of $\underline{\Sigma}$. For this reason, it will be assumed that the covariance matrix, $\underline{\Sigma}$, is constant in the development to follow. Under this assumption, the matrix \underline{B} associated with each engine was estimated using the least-squares estimation technique described in Appendix B.

Since the random error vector is assumed to be $N(\underline{0}, \underline{\Sigma})$, each observation from a particular engine is $N(\underline{BX}, \underline{\Sigma})$. If the matrix \underline{B} is partitioned so that

$$\underline{\mathbf{B}} = (\underline{\mathbf{B}}_1, \underline{\mathbf{B}}_2),$$

then a test of the value of each of the components of \underline{B}_2 can be made to determine whether the variability of the readings for a specific element is related to variations in the hours since oil change. The details of this test are included in Appendix B. For each engine and each component of \underline{B}_2 a test of the hypothesis that the component is equal to zero was made. Table 1 gives the number of times a specific component was significantly positive or negative at an over-all α -level of .10. For this α value, the expected number of times in 27 tests the results will

be significantly positive or negative, if the component is actually zero, is 1.35.

TABLE 1 NUMBER OF SIGNIFICANT REGRESSION SLOPES $\text{TWO-TAILED TEST; } \alpha = .10$

<u>B</u> 2	Element	Number of significantly positive components	Number of significantly negative components
B _{2,1}	Aluminum	8	0
B _{2,2}	Iron	17	0
B _{2,3}	Chromium	3	1
B _{2,4}	Silver	1	3
B _{2,5}	Copper	16	1
B _{2,6}	Magnesium	5	0
B _{2,7}	Nickel	5	0

These results indicate that the metallic content of aluminum, iron and copper in properly operating engines of the R1820-82 type tends to increase as the hours since the engine's oil was last changed increase. The evidence pointing to this conclusion is particularly strong in the case of iron and copper. Further, there seems to be no significant indication that such a relationship exists in general for chromium, silver, magnesium or nickel. The numerical results of the tests of the components of \underline{B}_2 for

each engine, in addition to the raw data and estimates of B and Σ , are included in the Computer Output section.

Any use of these results in establishing an operational classification procedure for identifying discrepant engines depends upon the estimation of the unknown matrix, B, from past analyses. For this reason, it is important to determine if the observations from different engines all come from the same over-all probability distribution. If this is the case, all data on engines of the R1820-82 model type could be used to estimate a single matrix, B. As a first step in this direction, the model

$$\underline{Y}_i = \underline{B}_i \underline{X} + \underline{e}_i$$

was used where $\underline{Y}_{\underline{i}}$ is a seven-component vector of readings on engine i; $\underline{B}_{\underline{i}} = (\underline{B}_{\underline{1}}, \underline{B}_{\underline{2}})_{\underline{i}}$, a 7x2 matrix of coefficients associated with the $\underline{i}^{\underline{th}}$ engine and where the components of $\underline{B}_{\underline{2}}$ associated with chromium, silver, magnesium and nickel are assumed to be zero; and $\underline{e}_{\underline{i}}$ is $N(\underline{0}, \underline{\Sigma}_{\underline{i}})$. The elements of $\underline{B}_{\underline{i}}$, not assumed to be zero, were estimated as before and used to estimate the 27 covariance matrices, $\underline{\Sigma}_{\underline{i}}$. The unbiased estimate of $\underline{\Sigma}_{\underline{i}}$ is

$$\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}} = \frac{1}{n_{i}-2} \sum_{j=1}^{n_{i}} (\underline{Y}_{i,j} - \underline{\hat{B}}_{i}\underline{X}_{j}) (\underline{Y}_{i,j} - \underline{\hat{B}}_{i}\underline{X}_{j})'$$

where $\underline{Y}_{i,j}$ is the $j^{\underline{th}}$ observation of the vector \underline{Y}_{i} ; $\underline{\hat{B}}_{i}$ is the estimate of \underline{B}_{i} ; \underline{X}_{j} is the $j^{\underline{th}}$ observation of \underline{X} ; and \underline{n}_{i} is the number of observations associated with the $i^{\underline{th}}$

engine. A test of the hypothesis of equal covariance matrices was made using these estimates. The test statistic was extremely significant at the .10 level, and the hypothesis of equal covariance matrices was rejected. The test used and numerical results are included in Appendix A.

Since the evidence indicates that the covariance matrices associated with readings from different engines are not the same, the overall conjecture of like distributions must also be rejected.

V. CONCLUSION

The investigation of the Air Force data and the actual analysis records of a three month period from the Pensacola laboratory lead to three main conclusions. First, the error inherent in the ppm spectrometric readings is multivariate normally distributed with significant covariances existing between the readings of various pairs of elements. Further, there appears to be a linear increase in the content of aluminum, copper and iron present in properly operating engines of the R1820-82 type as the hours since the last oil change increase. Finally, there seems to be no justification for expecting readings on samples from different engines of the R1820-82 type to vary in the same manner. Based on these results, an objective classification criterion can be formulated which may be of use in imporving the present classification procedure.

For example, all back data on a particular engine of the R1820-82 type which was in proper working order could be used to estimate the matrix \underline{B} , which in turn could be used to estimate the covariance matrix $\underline{\Sigma}$. Then, any observation, \underline{Y} , of the spectrometric analysis of a new oil sample from that engine is distributed as $N(\underline{BX}, \underline{\Sigma})$ if the engine is operating properly. The estimates of \underline{B} and $\underline{\Sigma}$ could be used to construct a confidence region $R_{\alpha}(x)$ [Appendix B]. The region $R_{\alpha}(x)$ would be constructed so that, if the engine is operating properly, the reading \underline{Y}

will be contained in the region $R_{\alpha}(x)$ with probability $1-\alpha$. Thus, one classification criterion would be: classify the engine as operating properly if \underline{Y} is within $R_{\alpha}(x)$ and classify as discrepant otherwise. By making α small, say .01, the number of operational engines, which are mistakenly classified as discrepant, can be expected to be of the order of 1 in 100. However, the smaller the parameter α is made, the larger the region $R_{\alpha}(x)$ becomes, and thus, the more likely it is that a discrepant engine will be classified as operating properly.

For this reason, it may be more appropriate to use two values of α . For example, α could be set at .10 and α' at .01 and two regions $R_{\alpha}(x)$ and $R_{\alpha'}(x)$ constructed. In this way a procedure could be used which would 1) classify the engine as in proper working order if \underline{Y} is in $R_{\alpha}(x)$; 2) classify as discrepant if \underline{Y} is not in $R_{\alpha'}(x)$; and 3) require verification of \underline{Y} or more frequent sampling if \underline{Y} is in $R_{\alpha'}(x)$ but not in $R_{\alpha'}(x)$.

The final selection of a specific classification criterion and the setting of the appropriate level(s) of α must be done subjectively and should be based upon an examination of the costs involved. If the cost of classifying a discrepant engine as operational is much larger than the cost of grounding an operational aircraft then α should be made appropriately large compared to its value if the reverse were true.

APPENDIX A

STATISTICAL TESTS

A. TRANSFORMATION OF N(μ , Σ) TO N(0, I)

If \underline{X} is a multivariate normal random variable with mean vector, μ , and covariance matrix, Σ then

$$\underline{\mathbf{Z}} = \underline{\mathbf{P}} (\underline{\mathbf{X}} - \underline{\boldsymbol{\mu}})$$

is multivariate normally distributed with mean vector, $\underline{0}$, and covariance matrix, $\underline{P\Sigma P}'$ [Ref. 8]. In addition, since $\underline{\Sigma}$ is the symmetric matrix of a positive definite quadratic form, there exists an orthogonal matrix, \underline{B} , such that

$$B\Sigma B' = D$$

where \underline{D} is a diagonal matrix with all diagonal elements positive [Ref. 9]. The matrix, \underline{B} , can be constructed using the characteristic vectors of $\underline{\Sigma}$ as columns of \underline{B} . Further, if the matrix \underline{C} is defined as the diagonal matrix which has diagonal elements equal to the inverse of the square-root of the corresponding element of \underline{D} , then

$$CB\Sigma B'C' = CDC' = I$$

where I is the identity matrix. Thus, if we define

$$\underline{P} = \underline{CB}$$

then

$$\underline{Z} = \underline{P}(\underline{Y} - \underline{\mu})$$

is multivariate normal with zero mean vector and identity covariance matrix, and the elements of the vector \underline{z} are mutually stochastically independent standard normal random variables.

B. KOLMOGOROV-SMIRNOV TEST OF GOODNESS OF FIT

Let F(x) be defined as the cumulative distribution function of the random variable X which is N(0,1). In addition, define $S_n(x)$ to be the sample cumulative distribution function based on a set of n observations of a random variable assumed to be N(0,1). Then

$$S_n(x) = k/n$$

where k is the number of observations in the sample which are less than or equal to x. Then, the Kolmogorov-Smirnov test statistic D is defined as

$$D = \max_{x} |F(x) - S_n(x)|.$$

Observed values of D can be compared with its tabled distribution to determine the acceptability of the normal hypothesis [Ref. 10].

C. TEST FOR EQUALITY OF SEVERAL COVARIANCE MATRICES Suppose \underline{Y}_1 , \underline{Y}_2 ,..., \underline{Y}_q are p-component multivariate normal random variables with distribution denoted $N(\underline{\mu}_i,\underline{\Sigma}_i)$, $i=1,2,\ldots,q$. In order to test the hypothesis

$$\underline{\Sigma}_{i} = \underline{\Sigma}_{j}$$
 for all i,j = 1,2,...,q,

based on q samples of size N_i from the distribution of Y_i , i = 1, 2, ..., q, let the following quantities be defined:

$$n_{i} = N_{i} - 1, \quad i = 1, 2, \dots, q;$$

$$n = \sum_{i=1}^{q} n_{i};$$

$$\underline{A}_{i} = \sum_{k=1}^{n} (\underline{Y}_{i,k} - \underline{\overline{Y}}_{i}) (\underline{Y}_{i,k} - \underline{\overline{Y}}_{i})' \quad i = 1, 2, \dots, q;$$

and

$$A = \sum_{i=1}^{q} \underline{A}_{i}.$$

Then the test statistic is

$$W = k \left[\sum_{i=1}^{q} n_i \left(\log \left| \frac{\hat{\Sigma}}{\hat{\Sigma}} \right| - \log \left| \frac{\hat{\Sigma}}{\hat{\Sigma}} \right| \right) \right]$$

where

$$k = 1 - \left[\sum_{i=1}^{q} \frac{1}{n_i} - \frac{1}{n} \right] \frac{2p^2 + 3p - 1}{6(p+1)(q-1)},$$

$$\hat{\Sigma} = A/n$$

and

$$\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}} = \underline{A}_{i}/n_{i}$$
 $i = 1, 2, ..., q$.

Asymptotic expansion of the distribution of this test statistic results in a distribution described by the following probability statement for W,

$$Pr(W \leq w) = Pr(\chi_f^2 \leq w) - c[Pr(\chi_{f+4}^2 \leq w) - Pr(\chi_f^2 \leq w)] - 0(n^{-3})$$

where

$$c = \frac{p(p+1)[(p-1)(p+2)(\sum_{i=1}^{q} \frac{1}{n_{i}^{2}} - \frac{1}{n^{2}}) - 6(q-1)(1-k)^{2}]}{48k^{2}}$$

$$f = \frac{1}{2}(q-1)(p+1)p$$

and χ_f^2 denotes a chi-square random variable with f degrees of freedom [Ref. 8].

This test was applied to the Air Force data as described in III C, with the resulting values of W = 478.5, f = 252 and c = 5.75. The test statistic is extremely significant at the .01 level and the hypothesis was rejected.

In addition, the test was used on the operational data as described in IV C 2 where now

$$\hat{\Sigma} = A/(n-q)$$

and

$$\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}} = A_{i}/(n_{i}-1)$$
 $i = 1,2,...,q$

instead of as defined above. The results for this test were W = 936.2, f = 728 and c = 14.9. Once again the test statistic is extremely significant at the .01 level and the hypothesis was rejected.

D. TEST FOR INDEPENDENCE AMONG A SET OF NORMAL VARIATES If the p-component vector \underline{Y} has a multivariate normal distribution described by $N(\underline{\mu}, \underline{\Sigma})$, then the test of zero covariance,

$$E[(y_i - \mu_i)(y_j - \mu_j)] = 0,$$

for all $i \neq j$ and $i,j = 1,2,\ldots,p$ is equivalent to a test of the stochastic independence of the components of \underline{Y} . Suppose a sample, $\underline{Y}_1,\underline{Y}_2,\ldots,\underline{Y}_n$, of n observations from the distribution of \underline{Y} is obtained, then let V equal the determinant of the correlation matrix, R, defined by equation (2). The asymptotic expansion of the distribution of V results in the probability statement [Ref. 8],

$$Pr(-mlogV \le v) = Pr(\chi_f^2 \le v) + \frac{c}{m^2} [Pr(\chi_{f+4}^2 \le v) - Pr(\chi_f^2 \le v)] + 0 (m^{-3})$$
 where

$$m = n - \frac{2p + 11}{6},$$

$$f = \frac{1}{2}p(p-1)$$

and

$$c = \frac{p(p-1)(2p^2 - 2p - 13)}{288}.$$

This test was applied to the data for the Pensacola laboratory accumulated in the Air Force experiment as described in section III D. Table 2 gives the numerical

results for the ten groups of samples tested and the test outcomes for a level of significance of .10.

TABLE 2 RESULTS OF TEST FOR INDEPENDENCE

f = 21 m = 5.833

c = 10.35 $\alpha = .10$

Sample Group	Test Statistic	Result
1	26.20	Accept
2	39.10	Reject
3	30.81	Reject
4	31.57	Reject
5	38.07	Reject
6	36.36	Reject
7	23.78	Accept
8	41.60	Reject
9	23.63	Accept
10	35.17	Reject

APPENDIX B

REGRESSION: ESTIMATION, TESTS AND PREDICTION

A. ESTIMATION OF REGRESSION PARAMETERS

Let \underline{Y} be a seven-component random vector with distribution $N(\underline{BX}, \underline{\Sigma})$, where \underline{B} is an unknown 7x2 matrix of coefficients, \underline{X} is of the form (1,x)', and $\underline{\Sigma}$ is an unknown covariance matrix which is constant for all values of \underline{X} . Then, the unbiased estimate of \underline{B} [Ref. 8], based on a sample of size n with the $i\frac{th}{t}$ from $N(\underline{BX}_i, \underline{\Sigma})$ is

$$\hat{\mathbf{B}} = \mathbf{C}\mathbf{A}^{-1}$$

where

$$\underline{\mathbf{C}} = \sum_{i=1}^{n} \underline{\mathbf{Y}}_{i} \underline{\mathbf{X}}_{i}^{i}$$

and

$$A = \sum_{i=1}^{n} \underline{X}_{i} \underline{X}'_{i}.$$

This estimate is normally distributed with mean matrix, B, and covariance matrix $\Sigma \otimes A^{-1}$, where the symbol, \otimes , denotes the Kronecker product [Ref. 11]. Further, the unbiased estimate of Σ [Ref. 8] is

$$\frac{\hat{\Sigma}}{\hat{\Sigma}} = \frac{1}{n-2} \sum_{i=1}^{n} (\underline{Y}_{i} - \underline{\hat{B}}\underline{X}_{i}) (\underline{Y}_{i} - \underline{\hat{B}}\underline{X}_{i})'$$

and $(n-2)\frac{\hat{\Sigma}}{2}$ has a Wishart distribution with parameters $\underline{\Sigma}$ and n-2.

B. TEST OF THE VALUE OF REGRESSION COEFFICIENTS

Suppose the 7x2 matrix B is partitioned in the form

$$B = (\underline{B}_1, \underline{B}_2) .$$

Then for any non-null vector of constants, C, the hypothesis

$$\underline{C'B}_2 = \underline{C'B}^*$$

can be tested using an F statistic [Ref. 12]. By choosing \underline{C} to be the vector with 1 as the $i\frac{th}{}$ component and all other components zero, and the vector \underline{B}^* to be the null vector, the hypotheses

$$B_{2i} = 0$$
 $i = 1, 2, ..., 7$

can be tested. With this selection, the standard t-test of the slope of a regression line [Ref. 6 and 7] can be used. In this way, each of the components of \underline{B}_2 can be tested individually, each with an assigned level of significance, α .

C. CONSTRUCTION OF THE REGION, $R_{\alpha}(x)$

If the matrices $\underline{\hat{B}}$ and $\underline{\hat{\Sigma}}$ are estimated with a sample of size n in the manner described above, and if \underline{Y} is a new observation from $N(\underline{BX}^*, \underline{\Sigma})$, the confidence region $R_{\alpha}(x)$ can be constructed so that \underline{Y} will be in $R_{\alpha}(x)$ with probability at least $1-\alpha$. The estimate of the mean of \underline{Y} is

$$\hat{\underline{Y}} = \hat{\underline{B}}\underline{X}^*$$

and has covariance matrix,

$$\underline{\mathbf{s}} = \underline{\mathbf{T}} (\underline{\mathbf{A}} \otimes \underline{\hat{\boldsymbol{\Sigma}}}^{-1})^{-1} \underline{\mathbf{T}}'$$

where

$$\underline{\mathbf{A}} = \sum_{i=1}^{n} \underline{\mathbf{X}}_{i} \underline{\mathbf{X}}_{i}^{!}$$

and

$$\underline{\mathbf{T}} = \mathbf{X}^* \otimes \mathbf{I}_7.$$

Thus,

$$(\hat{\underline{Y}} - \underline{BX}^*)' \underline{S}^{-1}(\hat{\underline{Y}} - \underline{BX}^*)$$

has Hotelling's T^2 distribution [Refs. 8 and 5]. Hence, the set of vectors \underline{m} satisfying

$$(\underline{\hat{Y}} - \underline{m}) \cdot \underline{S}^{-1} (\underline{\hat{Y}} - \underline{m}) \leq \underline{T}^{2} (\alpha)$$

comprise a 100 $(1-\alpha)$ % confidence region for \underline{BX}^* [Refs. 8 and 5]. Since the region, $R_{\alpha}(x)$, is to place bounds on \underline{Y} , which has covariance matrix, $\underline{\Sigma}$, it can be defined by

$$(\underline{\hat{Y}} - \underline{m})'(\underline{S} + \underline{\hat{\Sigma}})^{-1}(\underline{\hat{Y}} - \underline{m}) \leq \underline{T}^{2}(\alpha).$$

The set of all vectors, \underline{m} , satisfying this constraint form a confidence region, $R_{\alpha}(x)$, which will contain \underline{Y} with probability at least $1-\alpha$ if \underline{Y} came from $N(\underline{BX}^*, \underline{\Sigma})$.

CCMPUTER CUTPUT

A. DATA FROM AIRFORCE EXPERIMENT

GRCLP #	1 3 1 0 1 1 0 3 1	FE 76 79 79 73 75 73	CR 12 8 6 10 4 9 11	AG 432424423	CU 62 58 63 61 61 61 59 66	Manus and	NI 5 1 1 5 1 1 2 1 0
GRGUP #	2 ALCCC10CCC2C	FE 127 142 147 147 143 1545 177 84	CR 7 10 15 9 14 17 14 11 8	AG1232334354	CU 12 13 14 14 15 15 15	MG 10 11 11 11 12 11 13 14	NI 23 33 34 44 44 12
GRCUP #	3 AL CC 1 1 CC CC CC 1 1	FE 151 151 84 80 82 88 87 87	CR 14 13 12 10 7 11 6 7	AG 3 2 4 4 4 5 4 3	CU 14 86 57 87 68	MC 12 116 15 14 15 17 15	NI 34 22 12 11 00 11
GRCLP #	4 AL 223 240 223 223 223	FE772772888288	CR 8 15 11 15 12 10 14	A G 4 4 4 4 5 5 5 5 5 5	U56744445	M G 1 C 1 1 1 C 1 1 1 C 1 1 1 C	NI 13 13 14 13 14 14 13
GRCUP #	5 A L 25 6 7 4 7 12 4 7 8 7 12 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	FE 1327 1321 1331 1433 1433 1433 1433 1433 1433	CR 9 17 17 2 4 6 12 18 11	AG4664345655	CU 1CO 107 103 116 111 117 1C3 114 109 1C4	065555665656	N I 1 1 1 1 0 1 1 1 2 1 1 1

GREUP #	£ A C 0 1 2 (C C C 1 1 1	FE 112 105 109 109 109 1110 1125	CR 159 108 110 113 11	A 2 2 3 4 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	U3133255546	M99997899102	N14.223234333
GRCUF #	- A - Lay - Lay - a - a - a - a - a - a - a - a - a -	FS 957 1005 1006 1006 1006 1006 1006 1006 1006	CR 80 101 110 110 111 8	AG442445544	UB92609571	M 275.57 87 8 87 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N I 1 2 1 2 2 5 1 1
G⊦CUP #	8 4 2000 C 1100 C C C	FE 1327 127 133 1438 1207 137 128	CR 68 411 41 22 79	AG3534223244	U5587656878	MG 11 11 12 12 13 11 12 11	NI 13 34 21 22 34
GROUP #	G A 212 (1111	F7117711988	CR 121 113 133 1069	A G 32212212	CU 19 10 10 11 11 11	MG 12 13 12 13 12 13 12 12	N 1 0 1 0 0 1 1 1 1
GROUP #	10 AC 10 CC 10 CC	F878770382199182207	CP802808758	G33333C2212	CU 7 89 7 09 100 100	MG 100 100 100 110 111	NI 47 44 C 43 45

B. SAMPLE MEANS AND STANDARD DEVIATIONS

GROUP MEAN S.D.	# 1: 1.11 1.167	75.56 2.835	7.22 3.632	3.11 C.928	CU 61.44 2.259	MG 2.89 0.333	NI 1.89 1.833
GROUP MEAN S.C.	# 2: AL 0.20 0.422	FF 145.70 7.848	CR 12.20 3.225	AG 2.60 0.843	CU 14.20 1.135	MG 11.30 0.823	NI 3.30 0.675
GROUP MEAN S.D.	# 3: C.50 C.7C7	ft 82.10 3.384	CR 8.90 2.025	4.10 C.568	6.50 1.101	15.20 1.033	NI 1.20 0.632
GRCLP MEAN S.D.	# 4: AL 23.12 1.727	FE 27.75 0.707	CR 11.75 2.712	AG 4.50 0.535	CU 34.88 1.126	MG 10.37 0.518	NI 13.50 C.535
GRCUP MEAN S.D.	# 5: AL 3.50 1.269	FE 136.20 5.119	CR 10.60 5.582	AG 4.80 1.033	CU 108.40 5.969	MG 5.50 0.527	NI 1.00 C.471
GRCUP MEAN S.D.	# 6: AL 0.50 c.707	FE 109.70 7.530	CR 9.5C 2.183	AG 2.80 0.632	CU 13.70 1.567	MG 19.40 1.430	NI 2.90 C.738
GRCLP MEAN S.C.	# 7: AL 3.11 1.537	FE 100.22 6.039	CR 9.22 2.279	4.CC C.866	CU 82.78 5.653	MG 26.89 1.168	NI 1.67 1.323
GRCUP MEAN S.C.	# 8: AL C.4C 0.699	FE 131.40 5.702	CR 5.40 3.340	3.20 1.033	CU 6.60 1.174	MC 11.60 C.699	NI 2.50 1.080
GRCUP MEAN S.D.	# 9: AL 1.25 0.886	FF 17.62 C.744	CR 10.C0 2.268	1.87 C.641	CU 10.25 0.707	MG 12.25 0.463	NI C.63 C.518
GROUP MEAN S.C.	# 10: AL 0.33	FE 198.56 11.294	CR 8.CO 2.062	AG 2.33 C.7C7	CU 8.78 1.202	MG 10.11 0.601	NI 4.33 1.118

C. SAMPLE CORRELATION MATRICES

GRCLP	# 1:						
	AL	FE	CR	ΑG	CU	MG	NI
AL FE CR AG CU MG NI	1.000 -C.21C 0.642 C.449 -0.254 C.036 C.591	-C.210 1.000 -0.050 -C.169 0.746 0.338 C.350	0.642 -C.C50 1.000 0.808 -0.507 0.333 C.736	0.449 -C.169 0.808 1.000 -0.495 0.449 0.596	-0.254 0.746 -0.507 -0.495 1.000 0.073 -0.076	0.036 0.338 0.333 0.449 0.073 1.000 0.182	C.591 C.350 C.736 C.596 -C.C76 C.182 1.000
GROUP	# 2:						
	ΔL	FE	CR	AG	CU	MG	NI
AL FE CR AG CU MG NI	1.000 0.121 C.294 -0.062 -0.093 -C.192 0.156	0.121 1.000 0.631 0.568 0.831 0.807 0.816	0.294 0.631 1.000 0.809 0.747 0.519 0.735	-C.C62 0.568 C.809 1.000 0.789 C.512 C.625	-0.093 0.831 0.747 0.789 1.000 0.761 0.638	-C.192 0.807 0.519 C.512 0.761 1.000 C.620	C.156 C.816 O.735 C.625 O.638 O.620 1.000
GRCUP	# 3:		6.0	A.C.	61	4.6	A. T
A.I.	AL	FE .0 427	CR	AG	CU -0.71	MG -0.456	N I
AL FE CR AG CU MG NI	1.00C -0.627 0.116 0.138 -0.071 -0.456 0.000	-C.627 1.000 -0.225 -C.237 C.510 C.916 -0.218	0.116 -C.225 1.000 0.493 -0.254 -0.308 0.278	0.138 -C.237 C.493 1.000 -C.160 -0.038 -0.062	-0.071 c.510 -0.254 -0.160 1.000 0.704 0.032	0.916 -0.308 -0.038 -0.704 1.000	0.000 -0.218 C.278 -0.062 C.C32 -0.238 1.000
GROUP	# 4:						
	ΔL	FE	CR	ΑG	CU	MG	NI
AL FE CR AG CU MG NI	1.000 -C.439 C.C69 -0.077 C.377 -0.540 C.232	-0.439 1.000 0.261 0.756 -0.763 0.293 0.378	0.069 0.261 1.000 0.394 0.082 -0.433 0.887	-C.C77 0.756 C.394 1.00C -0.593 -C.258 C.50C	0.377 -0.763 0.082 -0.593 1.000 -0.153 0.119	-0.540 0.293 -0.433 -0.258 -0.153 1.0000 -0.258	C.232 G.378 C.887 C.50C O.119 -G.258 1.000
GROUP	# 5:						
	AL	FE	CR	ΔG	CU	MG	NI
AL FE CR AG CU MG NI	1.000 -0.444 0.518 0.509 0.044 -0.249 0.000	-0.444 1.000 -C.110 -0.286 C.369 0.536 C.184	0.518 -0.110 1.000 0.929 -0.385 -0.227 0.551	0.509 -0.286 0.929 1.000 -0.256 -0.408 0.685	0.044 0.369 -0.385 -0.256 1.000 0.142 0.119	-0.249 0.536 -0.227 -0.408 0.142 1.000 0.000	C.000 C.184 C.591 G.685 C.119 G.000 1.000

GROUP	# 6:						
	۵۱	Ff	CR	AG	CU	MG	NI
AL FE	1.000 -J.198	-C.198	0.252 0.322	0.745 -0.200	0.050 0.575	-0.220 0.890	-0.106
CE AG	1.252	0.322	1.000	0.467	0.737	0.370	0.614
CU	0.745 0.050 -0.220	-0.200 0.575 0.890	0.737	0.493 -0.024	1.000	0.764	0.548
NI	-0.106	0.214	0.614	0.191	0.548	0.253	1.000
GROUP	# 7:						
	AL	FE	CR	AG	CU	MG	NI
AL FÉ	1.000	0.469	0.206	0.376	0.593	0.426	-9.164
C P	0.469 0.206 0.376	1.700 0.205 0.741	0.205 1.600	0.741 0.063 1.000	7.764 -1.122 7.460	0.909	0.089 0.359 0.327
C U M G	3.593 3.426	0.764	0.063 -0.122 0.246	0.460	1.000	0.773	-0.228
NI	-7.164	C 689	0.359	2.327	-0.228	0.216	1.556
GROUP	# 2:						
GKUUP	# 7. AL	FE	CR	AG	CU	MG	NI
AL	1.000	C.457	-0.219	-0.431	-0.596	0.136	-0.736
F.E CR	7.457 -3.219	1.000	-0.196 1.000	-0.543 -0.812	-7.640 1.945	6.770 -0.304	0.770
A G	-0.431 -0.596	-0.543 -0.540	0.812 0.045	1.000	1.000	-0.492 0.054	0.697
MG NI	-0.136 -0.736	0.770 -0.343	-0.304 0.770	-0.492 0.697	0.054	1.000	1.000
GROUP	# 9:						
A.1	AL	F E	CR	AG	CU	MG	NI
AL CR	1.000 -3.271 3.426	-0.271 1.666 -0.339	0.426 -0.339 1.000	0.556 -0.112 0.786	-),342),747 -),624	0.522 0.311 0.136	0.545 0.325 -0.243
A G C U	7.566	-C.112	0.785	1.000	-0.552 1.000	0.120	0.269
MG	-3.342 3.522 3.545	0.311 0.325	-).624 -).136 -).243	0.120	0.218	1.000	0.447 1.030
GROUP	# 10:						
	۵L	FF	CR	AG	CU	MG	NI
AL FE	1.000	0.030	0.606	0.354 -0.621	0.139	-0.555 0.506	0.224
CR AG	3.506 3.354	-0.376 -0.621	1.000 0.772	0.772	-0.303 -0.784	-0.706 -0.686	0.380
CU MG	-1.555	0.83C 0.506	-0.303 -0.706	-0.784 -0.686	1.000	0.385	-0.217
NI	J. 224	-C.264	0.380	0.316	-2.217	3.124	1.000

D. RESULTS OF REGRESSIEN OF VARIANCE ON MEAN SQUARED

ALLMINUM INTERCEPT	: 0.8768E 0C	RESICUAL VAR	HANCE: C.4118E C1
	: 0.4C16E-C2	VARIANCE OF INTE	RCEPT: 0.5782E-01
IRCN		OFCIDUAL NAC	TANCE: 0 1020E 04
SLOPE	[:-0.4542E C1 E: 0.3C8CE-C2 N: 0.9296E OC	RESIDUAL VAR VARIANCE OF INTE VARIANCE OF	RCEPT: 0.5537E 02
CHRCMILM			
INTERCEPT SLCPE CORRELATION	: 0.2642E-01	RESIDUAL VAR VARIANCE OF INTE VARIANCE CF	RCEPT: C.5717E C2
SILVER		05070441 440	7//05 00
SLOPE	1: 0.5494E 0C 2: 0.7357E-02 3: 0.1654E CC	RESIDUAL VAR VARIANCE OF INTE VARIANCE OF	RCEPT: 0.4397E-01
CCPPER			
INTERCEPT SLOPE CORRELATION	1: 0.3822E CC E: 0.3238E-02 C: 0.9494E OC	RESIDUAL VAR VARIANCE OF INTE VARIANCE OF	RCEPT: C.2883E C1
MAGNES.			
INTERCEPT SLOPE CORRELATION	: 0.2224E-02	RESIDUAL VAR VARIANCE OF INTE VARIANCE OF	RCEPT: 0.3734E-01
NICKEL			
INTERCEPT SLOPE CORRELATION	1: 0.1066E C1 E:-0.4177E-02 N:-0.237CE OC	RESIDUAL VAR VARIANCE OF INTE VARIANCE OF	
RESULTS OF REGRESSION	A T TEST OF THE LINE IS EQUAL T	HYPCTHESIS THAT	THE SLOPE OF THE
	ALUMINUM O IRCN O CHRCMIUM O	.2973542E 01 .1C68822E C2 .8869581E 00	REJECT REJECT ACCEPT
	COPPER O	.9660166E 00 .9976842E 01 .4439077E 01	ACCEPT REJECT REJECT
	VICKET -0	.7471411E 00	ACCEPT

E. OPERATIONAL CATA, ESTIMATED PARAMETERS AND TESTS OF REGRESSION SLOPES FOR ENGINES OF THE R1820-82 MODEL

RESULTS OF LINEAR REGRESSION USING THE MCDEL,

Y = BX + E

WHERE:

Y IS A VECTOR OF WEAR METAL CONTAMINATION IN CIL

Y1 = PPM CF ALLMINUM

Y2 = PPM CF IRCN

Y3 = PPM CF CHRCMIUM

Y4 = PPM CF SILVER

Y5 = PPM CF CCPPER

YE = PPM CF MAGNESIUM

Y7 = PPM CF NICKEL

B IS A 7X2 MATRIX OF COEFFICIENTS

X IS A VECTOR OF VARIABLES

x1 = 1

X2 = HCURS SINCE OIL CHANGE

AND E IS A 7 COMPONENT MULTIVARIATE NORMAL RANDOM ERROR VECTOR WITH MEAN VECTOR ZERO AND UNKNOWN COVARIANCE MATRIX SIGMA

CATA: Y1	Y 2	Y 3	Y4	Y 5	Y 6	Y7	×1
10.	581510000000000000000000000000000000000	6.000000000000000000000000000000000000	2.32.21.00.00.00.00.00.00.00.00.00.00.00.00.00	12.50 11.50 123.50 12.50 12.50 14.50 12.50	3121221112	1221	11.0 57.0 255.0 21.0 89.0 633.0 171.6

NUMBER OF DATA POINTS = 10

RESULTS:

ESTIMATE OF B

P. 1	P 2
7.14706	1.01562
23.26596	0.06875
4.23958	-0.00241
1.50804	0.00093
9.71870	0.04810
1.54722	0.00053
1.93402	0.00066

ESTIMATE OF COVARIANCE MATRIX SIGMA

2.54.2	1.314	-1.098	-0.237	1.499	-0.075	-6.937
1.314	4.626	3.399	0.792	1.883	0.955	-0.650
-1.098	3.397	8.665	5.538	-2.175	0.658	-0.615
-0.237	J. 792	0.538	7.795	1.482	0.172	-0.004
(,400	0.883	-2.176	0.492	4.619	9.471	0.808
-0.075	0.955	(.658	0.172	0.471	0.548	-0.252
-C.937	-0.650	-0.615	-),194	7.808	-0.252	1.747

TEST STATISTIC	RESULT
2.15173 7.01834 -C.17578 C.22784 4.51423 C.15746 C.11025	REJECT REJECT ACCEPT ACCEPT ACCEPT ACCEPT

CATA:	Y 2	Y3	44	Y5	Y6	Y 7	×1
10.0	3991399 9991399 9991399 9991399 9991399	523093169	0.0000000000000000000000000000000000000	17.0 11.0 14.0 7.0 7.0 15.0 12.0	222000000000000000000000000000000000000	4.0000000000000000000000000000000000000	126.0 117.0 84.0 66.0 24.0 79.0 46.0

NUMBER OF DATA PRINTS = 9

RESULTS:

ESTIMATE OF B

P1	P2
5.19364	0.03898
1c.8349c	0.11819
6.56766	-0.03697
1.73114	-0.01152
7.73936	0.06015
C.68442	0.01023
1.43482	0.00891

ESTIMATE OF COVARIANCE MATRIX SIGMA

5.787	6.405	2.578	0.336	2.785	1.337	2.013
6-416	20.919	4.305	9.465	17.397	2.700	3.444
2.578	4.305	9.461	-0.004	1.620	0.526	2.665
0.336	7.466	-0.004	1.160	0.115	3.995	0.350
2.786	10.397	1.620	0.115	5.864	1.090	7.774
1.337	2.700	0.526	0.095	1.090	0.645	0.816
2.13	3.444	2.665	9.350	0.774	0.816	2.125

TEST STATISTIC	RESULT
1.92706 3.07322 -1.42941 -1.27241 2.95414 1.51371	REJECT REJECT ACCEPT ACCEPT REJECT ACCEPT
\$ • 16016	41.1.681

DATA:	¥2	Y 3	Y4	Y 5	Y 6	Y7	X1
98.67.00000000000000000000000000000000000	25.0 25.0 25.0 25.0 31.0 32.0 20.0	573251859	1.0000000000000000000000000000000000000	13.0 12.0 11.0 14.0 12.0 12.0	311233421	651534530	6999.00 5999.00 117.00 11518.0

NUMBER OF DATA POINTS = 9

RESULTS:

ESTIMATE OF B

81	P 2
6.73207	0.01205
26.23830	0.00537
3.94117	0.01791
0.40374	0.00633
11.05323	0.01226
1.95973	0.01615
2.48870	0.01429

ESTIMATE OF COVARIANCE MATRIX SIGMA

3.864	5.322	-1.535 -2.397	-).961 -1.023	2.956 4.368	9.930 3.946	1.468
-1.535	-2.397	7.915	0.869	-3.111	-2.413	-2.296
-0.961	-1.623	3.869	0.462	-1.01C	-0.267	-0.438
2.956	4.368	-3.111	-1.010	4.048	1.119	2.893
C • 630	3.946	-0.413	-2.267	1.119	1.321	0.803
1.468	0.959	-2.295	-7.438	2.893	9.803	4.05C

TEST STATISTIC	RESULT
0.55162	ACCEPT
0.09220	ACCEPT
0.57286	ACCEPT
0.83792	ACCEPT
0.54810	ACCEPT
0.48131	ACCEPT
0.63885	ACCEPT

DATA: Y1	Y2	Y3	Y4	Y 5	Y 6	Y7	×1
10.00 7.00 17.00 7.00 6.00 6.00	23.00 23.00 23.00 23.00 25.00	726000000000000000000000000000000000000	1.00 0.00 1.00 1.00 1.00 1.00 1.00	9.000000000000000000000000000000000000	0.0000000000000000000000000000000000000	2.00	26.0 139.0 73.0 107.0 58.0 58.0

NUMBER OF DATA POINTS = 9

FESULTS:

ESTIMATE OF B

B1	P2
8.5346f	-7.01984
20.24825).03227
7.14537	-0.03448
0.98016	-0.03565
6.16235	0.01855
-0.29047	0.01422
1.21374	0.00307

ESTIMATE OF COVARIANCE MATRIX SIGMA

17.509	18.182	-7.369	-0.679	0.886	2,273	-0.173
18.182	30.052	-3.002	-1.663	2.588	1.725	-0.941
-7.36°	-3.002	6.738	0.059	2.024	-1.333	-0.605
-0.609	-1.663	0.059	0.275	-0.115	-0.163	-0.152
C.886	2.588	2.124	-0.115	3.289	0.237	0.697
2.073	1.725	-1.333	-7.163	0.237	1.525	r.498
-0.173	-0.941	-9.605	-0.152	0.607	0.498	1.448

TEST STATISTIC	RESULT
-0.45716 -0.55631 -1.28071 -1.03937 -0.98615 1.89257	ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT
C. 24613	ACCEPT

ENGINE NUMBER: 509090.

CATA:							
Y1	Y2	Y3	Y 4	Y 5	Y 6	Y 7	X1
21.00 18.00 19.00 14.00 14.00 15.00 16.00	9218917660 92189176433	32005760534	0.00 1.00 1.00 1.00 1.00 1.00	8.00 12.00 11.00 7.00 12.00 11.00 11.00	3.000000000000000000000000000000000000		111.0 90.0 161.0 183.0 90.0 198.0 156.0 158.0

NUMBER OF DATA POINTS = 11

RESULTS:

ESTIMATE OF B

81	22
9.01636 18.28833 3.84371 7.73897 4.11884 0.37839 1.30356	0.03755 0.10673 -0.03499 -0.0351 0.04157 0.03605

ESTIMATE OF COVARIANCE MATRIX SIGMA

14.996	0.956	-3.165	0.176	-9.366	3.122	(.788
0.956	27.278	-0.155	9.297	1.499	-0.153	3.944
-3.165	-0.155	6.752	0.427	0.771	-D.035	0.282
C.176	0.297	0.427	0.195	0.130	0.133	0.281
-r.366	1.499	C.771	0.130	0.938	-0.114	0.187
3.122	-ñ•153	-0.035	0.133	-0.114	2.929	0.351
C.788	3.944	0.282	0.281	0.187	0.351	1.202

TEST STATISTIC	RESULT
1.83834 4.42040 -0.35791 -1.48459 8.03668 1.17122	ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT
-C.27252	ΔCC F P T

DATA:	Y2	Y 3	Y4	Y5	Y 6	Y7	×1
13.0 10.0 17.0	2332234 2333333333333333333333333333333	8.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	20230242030004	4.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00	000000000000000000000000000000000000000	23631.00000000000000000000000000000000000	28.000000000000000000000000000000000000

NUMBER OF DATA PCINTS = 14

RESULTS:

ESTIMATE OF B

81	82
11.92093 27.11922 2.35082 0.89575 6.64235 2.22275 3.04211	0.00456 0.05821 0.00544 0.00706 0.03660 0.00365

ESTIMATE OF COVARIANCE MATRIX SIGMA

15.669	9.095	4.728	2.776	3.568	3,183	0.805
9.095	26.769	-1.434	0.710	8.839	6.396	1.686
4.728	-1.434	14.312	3.104	0.379	-0.975	2.828
2.776	0.712	3.104	2.383	0.515	2.747	0.671
3.568	8.839	0.379	0.515	4.309	2.357	1.551
3.183	5.395	-0.975	9.747	2.357	2.390	1.151
Q.805	1.686	2.828	0.671	1.551	1.151	3.237

TEST STATISTIC	RESULT
C. 27445 3.14026 C. 34273 1. C9012 4. 19994 C. 56178 -C. 15716	ACCEPT REJECT ACCEPT ACCEPT ACCEPT ACCEPT

CATA:	Y 2	Y 3	Y4	Y5	Y 6	Y7	X1
7.000 7.000 6.000 15.000 15.000	31.0 2).0 19.0 21.0 31.0 26.0 25.0 20.0	000000000000000000000000000000000000000	0.0 1.0 0.0 0.0 0.0 0.0 0.0	10.0 8.0 9.0 9.0 7.0 17.0 4.0	000000000000000000000000000000000000000	3.0000000000000000000000000000000000000	63.0 32.0 26.0 37.0 64.0 90.0 110.0 17.0

NUMBER OF DATA POINTS = 9

RESULTS:

ESTIMATE OF B

P, 1	B 2
2.44113 8.17(88 3.(3286 1.11980 4.70600 -1.14859 0.74821	0.07506 0.34263 0.00355 -0.01266 0.03404 0.00472

ESTIMATE OF COVARIANCE MATRIX SIGMA

6.415	13.140	1.098	-0.017	5.261	1.152	-0.747
13.140	49.284	3.719	0.820	13.528	3.445	-2.533
1.098	3.719	14.205	1.646	2.384	0.795	0.121
-0.017	0.820	1.646	3,395	-0.073	0.180	-0.238
5.261	13.529	2,384	-0.073	6.123	0.908	-0.432
1.152	3.445	0.795	0.180	0.908	0.493	-n.63A
-(.747	-2.533	0.121	-1.208	-0.482	-0.638	1.400

TEST STATISTIC	RESULT
2 · 82837 4 · 65781 f · 68989 -1 · 92397 3 · 62476	REJECT REJECT ACCEPT REJECT REJECT
4.62768 0.38086	REJECT

CATA: Y1	¥2	Y 3	Y4	Y 5	Y 6	Y7	X1
10.0 7.0 6.0 7.0 8.0 11.0	16.0 00000000000000000000000000000000000	376819970	0.0 1.0 2.0 0.0 0.0 0.0 0.0	10.00 11.00 8.00 8.00 7.00 16.00	1.0000000000000000000000000000000000000	1.0000000000000000000000000000000000000	194000000000000000000000000000000000000

NUMBER OF CATA PCINTS = 9

PESULTS:

ESTIMATE OF 8

P]	R2
4.62017 12.39392 -1.43774 -0.24837 7.18618 0.49376 -1.03911	7.03688 7.20229 0.09912 0.01297 0.02886 0.01199

ESTIMATE OF COVARIANCE MATRIX SIGMA

4.682	3.210	0.237	-0.817	-4.107	-7.551	-2.494
3.210	5.565	1.813	-0.012	-1.492	-1).429	-2.173
0.237	1.813	6.177	0.322	2.375	-0.078	(.530
-0.817	-0.012	0.322	0.737	2.257	0.176	-r.013
-4.107	-1.492	2.375	0.257	10.486	9.803	3.922
-r.551	-0.429	-0.078	9.176	0.803	0.185	0.452
-2,494	-2.173	0.530	-0.613	3.922	0.452	2.373

TEST STATISTIC	RESULT
1.20353 5.57493 2.81619 1.06650 0.62926 1.95434	ACCEPT REJECT REJECT ACCEPT ACCEPT REJECT
7 - 1 4 1 7 4	V ← 1 ← 1

CATA: Y1	Y2	Y3	Y4	Y5	Y6	Y7	X1
5728655688	22.0 19.0 21.0 27.0 17.0 19.0 29.0 24.0	1.000000000000000000000000000000000000	1.0 2.0 0.0 0.0 0.0 0.0 1.0 1.0	10.0 7.0 8.0 10.0 10.0 10.0 11.0	2233122321	5222253641	58.000000000000000000000000000000000000

NUMBER OF DATA POINTS = 10

PESULTS:

ESTIMATE OF B

B1	B2
8.14782	-0.02389
14.23561	0.17268
6.89568	-0.04620
0.36023	0.01056
5.36919	0.06982
2.47969	-0.00627
2.67484	0.01857

ESTIMATE OF COVARIANCE MATRIX SIGMA

4.891	7.131	6.960	-0.600	1.667	0.499	-1.942
7.131	30.781	1.478	0.139	5.593	0.216	-5.292
0.960	1.478	7.538	0.156	-0.312	0.297	-0.841
-0.600	0.139	1.150	1.129	0.697	0.197	1.036
1.667	6.593	-0.312	0.697	2.491	0.526	-0.062
0. 4.90	0.216	0.297	0.197	9.526	0.570	0.602
-1.942	-5.292	-0.841	1.036	-0.062	0.602	2.824

TEST STATISTIC	RESULT
-1.09850 2.90546 -1.57087 0.92769 4.12975 -0.77488 1.03131	ACCEPT REJECT ACCEPT ACCEPT ACCEPT ACCEPT

DATA:							
Y1	¥2	Y3	Y4	Y5	Y 6	¥7	X1
5.6.6.8.34.5.10.8	11.0 9.0 13.0 13.0 13.0 15.0 15.0 17.0	3.6.0 7.2.0 2.0 2.0 2.0 2.0 2.0 2.0 6.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0	12.00 12.00 13.00 10.00 10.00 12.00	2.0000000000000000000000000000000000000	223514033	21.0 21.0 27.0 61.0 86.0 15.0 22.0

NUMBER OF DATA POINTS = 9

RESULTS:

ESTIMATE OF B

81	P2
5.92833	0.00514
12.54119	0.13478
4.35794	0.00868
C.59294	0.00207
13.(3024	-0.06335
1.74137	-0.01460
2.42961	0.00354

ESTIMATE OF COVARIANCE MATRIX SIGMA

5.536	15.443	4.301	0.897	4.700	0.738	1.764
15.443	64.657	16.711	4.937	11.656	0.208	6.840
4.301	16.711	6.516	1.272	4.023	1.188	3.358
0.897	4.937	1.272	0.568	0.716	-0.025	0.376
4.700	11.656	4.023	0.716	5.559	1.384	2.324
0.738	0.208	1.188	-0.025	1.384	0.923	0.736
1.764	6.849	3.358	0.376	2.324	9.736	2.594

TEST STATISTIC	RESULT
0.15670 1.20225 0.24397 0.19728 -1.52719 -1.(9022	ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT
C_15775	ACCEPT

DATA:	Y2	Y3	Y4	Y 5	Y 6	Y7	×1
7.6.0 17.0 16.0 10.0 13.0	000000000 074850945	0.000000000000000000000000000000000000	0.0 0.0 0.0 1.0 1.0 1.0	8.00 11.00 11.00 17.00 10.00 10.00	122254450	62.000000000000000000000000000000000000	22.6 66.6 58.6 36.0 312.0 85.0 63.0

NUMBER OF DATA PCINTS = 9

RESULTS:

ESTIMATE OF B

P1	B2
6.78760	0.03202
24.76978	0.19532
3.14465	0.01951
-0.16926	0.01313
5.01866	0.09021
1.75098	0.03127
2.18423	0.01276

ESTIMATE OF COVARIANCE MATRIX SIGMA

27. 819	3.227	6.475	1.022	1.557	5.828	1.510
3. 220	16.574	-3.422	0.356	3.898	6.785	6.478
6. 475	-3.422	11.253	1.717	-2.551	1.427	-1.085
1.022	0.356	1.717	0.423	-0.093	0.016	0.047
1.557	3.898	-2.551	-0.093	2.936	-0.801	0.227
5.828	0.785	1.427	0.016	-0.801	2.630	1.123
1.510	5.478	-1.085	0.047	0.227	1.123	3.671

TEST STATISTIC	RESULT
0.51881	ACCEPT
4.17930	REJECT
0.49718	ACCEPT
1.72416	ACCEPT
4.49938	REJECT
1.64798	ACCEPT
0.55922	ACCEPT

DATA:	Y2	Y3	Y4	Y 5	Y 6	Y7	×1
11.0 14.0 15.0 12.0 14.0 17.0	27.0 32.0 43.0 42.0 28.0 27.0 34.0 39.0	5.0 7.0 7.0 7.0 10.0 1.0 8.0	0.0 1.0 0.0 2.0 3.0 1.0 0.0	8.0 14.0 17.0 15.0 7.0 9.0 15.0	1.00 2.00 3.00 2.00 2.00 2.00 2.00	4.0 4.0 1.0 2.0 6.0 5.0	17.0 19.0 80.0 84.0 24.0 54.0 54.0 532.0

NUMBER OF DATA PCINTS = 9

FFSULTS:

ESTIMATE OF B

B1	82
_	
13.79272 27.26935	0.02293 0.18827
6.41409	-0.01672
1.36354 7.34557	-0.00662 0.10755
1.36015	0.01387
4.13487	-0.01812

ESTIMATE OF COVARIANCE MATRIX SIGMA

4.105	-9.638	-3.898	1.182	-0.425	7.385	-0.298
-0.638	14.603	6.490	-3.101	5.078	0.176	3.199
-3.898	6.490	10.260	-0.495	1.293	0.317	0.430
1.182	-3.101	-0.495	1.802	-1.718	0.383	-1.313
-0.425	5.078	1.293	-1.718	6.061	-0.688	1.617
0.385	0.176	0.317	0.383	-0.688	7.242	-0.142
-0.298	3.199	0.430	-1.313	1.617	-0.142	2.312

TEST STATISTIC	RESULT
0.89167	ACCEPT
3.88142	REJECT
-0.41124	ACCEPT
-0.38869	ACCEPT
3.44178	REJECT
2.22170	REJECT
-0.93863	ACCEPT

DATA	: Y1	Y 2	Y3	Y4	Y 5	Y 6	Y7	×1
	4.0 10.0 2.0 8.0 7.0 8.0 7.0 9.0	17.0 29.0 19.0 39.0 21.0 21.0 21.0 21.0 21.0	00000000000 61.05904682	101000000000000000000000000000000000000	5149955766	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 0.0 0.0 2.0 1.0 1.0 2.0	57.0 91.0 180.0 180.0 207.0 148.0 118.0 118.0

NUMBER OF DATA POINTS = 10

RESULTS:

ESTIMATE OF B

P1	B2
7.02002 17.74504 3.24251 0.77586 3.09820 1.23718 0.55600	-0.00015 0.05879 0.00650 -0.01973 0.06275 0.00261

ESTIMATE OF COVARIANCE MATRIX SIGMA

15.500	15.287	-3.121	-1.003	-5.738	4.377	1.127
5.287	35.331	7.989	-0.818	3.663	5.959	1.431
3.121	7.989	11.689	-0.158	5.135	1.226	0.193
1.003	-0.818	-0.158	0.122	0.055	-0.226	-0.053
5.738	3.663	5.135	0.055	4.661	0.002	0.001
4.377	5.959	1.226	-0.226	0.002	1.519	0.420
1.127	1.431	0.193	-0.053	0.001	0.420	0.584
1.003 5.738 4.377	-0.818 3.663 5.959	-0.158 5.135 1.226	0.122 0.055 -0.226	5.135 0.055 4.661 0.002	1.226 -0.226 0.002 1.519	0.193 -0.053 0.001 0.420

TEST STATISTIC	RESULT
-(.0)546	ACCEPT
1.79515	ACCEPT
0.34506	ACCEPT
-2.27294	ACCEPT
1.65826	ACCEPT
0.4)507	ACCEPT

DATA:	Y1	Y2	Y3	Y4	Y 5	Y 6	Y7	X1
		21.0 11.0 12.0 17.0 17.0 15.0 15.0	00000000000000000000000000000000000000	0.0000000000000000000000000000000000000	12.0 6.0 10.0 10.0 10.0 11.0 8.0 10.0	22432323221	00000000000000000000000000000000000000	00000000000000000000000000000000000000

NUMBER OF CATA PCINTS = 9

RESULTS:

ESTIMATE OF B

B1	82
4.66621 13.20392 5.39080 1.43099 5.22276 1.73505 0.43833	0.02678 0.07297 -0.03923 -0.01124 0.06309 0.01030

ESTIMATE OF COVARIANCE MATRIX SIGMA

3.668	1.792	-2.649	-0.418	1.870	-0.308	1.302
1.792	8.204	-0.995	-0.525	1.222	2.944	-0.828
-2.649	-0.995	4.367	0.548	-2.358	0.264	-0.362
-C.418	-0.525	0.548	9.410	-1.055	-0.387	-0.619
1.870	1.222	-2.358	+1.055	4.196	0.832	1.227
-6.308	0.944	0.264	-0.387	0.832	0.775	0.499
1.302	-0.828	-0.362	-9.619	1.227	0.409	2.579

TEST STATISTIC	RESULT
1.(2799 1.87332 -1.38941 -1.29033	ACCEPT ACCEPT ACCEPT ACCEPT
2.26479	REJECT
0.85980 1.75595	ACCEPT

DA	ΤΛ: Υ1	Y2	Y3	Y4.	Y5	Y6	Y7	X1
	18.0 16.0 8.0 10.0 12.0 10.0 5.0	35.00 37	000000000000000000000000000000000000000		110000000000000000000000000000000000000	00000000000000000000000000000000000000	3233251131 3233251131	60.00 31.00 120.00 89.00 175.00

NUMBER OF DATA POINTS = 10

PESULTS:

ESTIMATE OF B

B1	82
6.43751 23.34547 1.50781 -0.18435 7.48360 0.75608 1.29868	0.04747 0.11599 0.02508 0.01004 0.04496 0.00591

ESTIMATE OF COVARIANCE MATRIX SIGMA

13.719	8.704	-4.904	1.955	2.165	1.698	1.879
8.704	13.568	-2.737	0.655	3.884	1.755	2.225
-4.904	-2.737	6.488	-0.144	-0.150	-0.896	0.208
0.966	0.655	-0.144	0.155	0.178	-0.135	0.102
2.165	3.884	-9.150	0.178	1.714	0.982	0.478
1.698	1.755	-0.896	-n.135	1.982	1.562	0.192
1.879	2.225	0.208	0.102	0.478	0,192	1.338

TEST STATISTIC	RESULT
1.37268	ACCEPT
3.37293	REJECT
1.22274	ACCEPT
2.72805	REJECT
3.67812	REJECT
(.50639	ACCEPT
1.59321	ACCEPT

DATA	A: Y1	Y2	Y3	Y4	Y5	Y 6	¥7	X1
	8.5 4.0 7.0 1(.0) 2.5 7.0	38.0 41.0 31.0 31.0 37.0 37.0 27.0	4.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	1.00	16.0 22.0 18.0 14.0 21.0 15.0 12.0	1.00 1.00 1.00 2.00 1.00 1.00	3.0 4.0 4.0 26.0 51.0	22.00 58.00 28.00 112.00 1185.00 367.0

NUMBER OF DATA PCINTS = 9

RESULTS:

ESTIMATE OF B

36.13476	0.00061 0.02774 0.06110 0.06557 0.07357 0.01192

ESTIMATE OF COVARIANCE MATRIX SIGMA

7.079	10.684	-3.229	-0.473	4.967	0.452	2.700
10.684	39.197	-4.374	-2.018	18.775	0.274	6.375
-3.229	-4.374	8.390	-1), 359	-1.119	-1.335	-0.585
-0.473	-2.018	-0.359	0.539	-1.380	-0.3r7	-0.973
4.967	19.775	-1.119	-1.380	11.145	0.069	3.155
C.452	0.274	-1.335	-D.307	0.069	0.741	1.015
2.700	6.375	-0.585	-0.973	3.155	1.015	3.299

TEST STATISTIC	RESULT
-0.01954	ACCEPT
0.37873	ACCEPT
-1.80280	ACCEPT
C • 64801	ACCEPT
1 • 88347	ACCEPT
1 • 18436	ACCEPT

TAI	A: Y1	Y2	Y3	¥4	Y5	Y 6	Y7	X1
	508466mm4mm	95.3.4.7.5.6.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	63579167552 63579167552	0.0000000000000000000000000000000000000	9.00 15.00 10.00 1	1.21.0000000000000000000000000000000000	41.000000000000000000000000000000000000	0.000.000.000 0.8229166918
	6.00	25.9 26.9 19.0	1.0 6.6 7.0	1.0 0.0 3.0	12.0	1.0 1.0 1.0	1.0 2.0 5.0	41.0 66.0 6.0
	5.0	15.0 15.0	5.0	0.0 1.0 0.0	4 · 0 5 · 0	1.0 1.0 1.0	0.0 0.0 2.0	39.0 31.0 18.0

NUMBER OF DATA POINTS = 11

FESULTS:

ESTIMATE OF B

B1	82
3.26027 17.74008 5.94449 1.97730 6.24200 0.95806 1.87213	0.08528 0.17684 -0.02279 -0.02609 0.08577 0.00355

ESTIMATE OF COVARIANCE MATRIX SIGMA

16.545	28.482	0.057	2.681	5.526	1.145	3.756
28.482	65.145	0.463	4.881	20.565	1.785	5.392
0.057	0.463	5.864	0.597	-0.749	0.327	0.924
2.681	4.883	9.507	0.801	1.909	0.153	0.929
6.526	20.665	-0.949	1.909	10.062	0.255	1.644
1.145	1.785	9.027	0.153	0.255	9.095	C.328
3.756	5.392	6.924	0.929	1.644	0.328	3.772

TEST STATISTIC	RESULT
1.34267 1.40306 -0.60264 -1.85709 1.73153 C.73587 C.11256	ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT

LALV:	Y2	Y3	Y4	Y5	Y 6	Y7	X1
18.6 17.6 12.6 12.6 18.6 18.6	10000000000000000000000000000000000000	7.0 1.0 3.0 7.0 1.0 2.0 6.0		13.0 11.0 11.0 12.0 13.0 13.0 15.0	23.000000000000000000000000000000000000	6544410352	455.00000000000000000000000000000000000

NUMBER OF DATA POINTS = 9

RESULTS:

ESTIMATE OF B

P. 1	P2
10.12277 32.50766 7.60925 0.37390 7.57781 2.57099 0.97021	0.08896 0.16124 -0.07738 -0.00096 0.08609 -0.05582

ESTIMATE OF COVARIANCE MATRIX SIGMA

944
162
147
397
182
342
713

TEST STATISTIC	RESULT
1.63380 2.30081 -1.57172 -0.11594	ACCEPT REJECT ACCEPT
4.14212 -(.20336 2.18941	REJECT ACCEPT PE LECT

ENGINE NUMBER: 516731.

CATA: Y1	Y 2	Y3	Y 4	Y 5	Y 6	Y7	X1
11.0 113.0 13.0 103.5 10	16.00 169.00 201	668685575	122300000	14.0 9.0 9.0 8.0 13.0 9.0 8.0	231012121	563513040	54.0 83.0 57.0 87.0 87.0 22.0 99.0 31.0

NUMBER OF DATA POINTS = 9

FESULTS:

ESTIMATE OF P

81	82
10.39656	-0.03564
18.45300	0.04852
4.60350	0.02955
1.45355	-0.00017
0.18830	0.02050
0.67471	0.01405
1.45051	0.02829

ESTIMATE OF COVARIANCE MATRIX SIGMA

11.962	9.873	0.450	0.312	3.521	1.224	1.248
9.873	17.879	-1.115	1.230	3.984	1.429	2.261
0.450	-1.115	f.817	0.021	-1.399	-0.523	-0.369
0.312	1.232	0.021	0.889	0.384	-0.109	1.433
3.521	3.984	-1.399	0.384	11.011	2.243	5.436
1.224	1.429	-0.523	-0.109	2.243	0.700	0.621
1.248	2.261	-6.369	1.433	5.436	0.621	4.951

TEST STATISTIC	RESULT
-0.84223 0.93805 2.67191 -0.51442 0.51491 1.37245	ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT
1,13920	ACCEPT

CATA: Y1	Y 2	Y 3	Ya	Y 5	¥6	Y 7	X1
10.0 12.0 7.0 8.0 4.0 12.0	21.59.00000 21.59.00000 22.222222 25.00000	9.4.7.0000 7.0000 7.0000		11.0 15.0 11.0 10.0 10.0 89.0 12.0	1.0 6.0 1.0 1.0 1.0 1.0 5.0	SANC SANC DANG	52.64.01.000 52.64.000 52.64

NUMBER OF DATA PEINTS = 10

PESULTS:

ESTIMATE OF B

P1	R2
1.99201	0.11010
16.25591	0.2241
6.64628	-0.04719
-0.0295	0.01385
6.72582	0.02567
0.84098	0.07247

ESTIMATE OF COVARIANCE MATRIX SIGMA

4.4(4	3.621	0.845	-0.357	0.825	2.065	0.673
3.621	21.914	4.162	1.496	7.358	0,203	3.519
0.845	4,162	5.576	-0.847	0.825	-0.787	0.729
-n.357	1.496	-0.847	1.111	1.133	-1.086	0.709
C. 825	7.359	0.825	1.133	3.242	-0.832	1.450
2.065	0.203	-r.787	-1.086	-9.832		-1.054
0.673	3.519	1.729	7.19	1.450	-1.054	1.797

TEST STATISTIC	RESULT
3.20222 2.69991 -1.21977 (.79880 2.19847 (.76801	REJECT REJECT ACCEPT ACCEPT REJECT ACCEPT
n.11243	ACCEPT

ENGINE NUMBER: 516648 >

rata:	Y2	Y 3	Y4	Y5	Y 6	Y7	X1
6.0 9.0 4.0 9.0 4.0 10.0	2454.00 2454.0	146586880	0.0 2.0 1.0 2.0 1.0 2.0 2.0	8.0 12.0 13.0 13.0 11.0 16.0	000000000000000000000000000000000000000	2.0 3.0 1.0 1.0 3.0 0	30.0 120.0 96.0 955.0 553.0 920

NUMBER OF EATA PEINTS = 9

FESULTS:

ESTIMATE OF B

B1	P 2
1.94411	0.06004
19.05020	0.22459
0.53192	0.05134
0.48333	0.05929
6.19133	0.05309
(.29463	0.01044
0.83647	0.01393

ESTIMATE OF COVARIANCE MATRIX SIGMA

4.123	14.290	0.952	-0.304	5.385	0.319	1.901
14.290	92.544	5.428	-1.773	30.546	3.206	6.096
0.952	5.428	3.967	0.088	2.277	-0.418	-0.368
-(.364	-1.773	C.088	0.585	-0.616	0.158	0.290
5.385	30.546	2.277	-0.616	10.520	3.843	2.251
C.319	3.206	-r.418	0.158	0.843	0.428	0.523
1.901	6.096	-0.368	0.290	2.251	0.523	1.967
1.901	6.096	-0.368	0.290	2.251	0.523	1.967

TEST STATISTIC	RESULT
2.83524 2.23854 2.47146 1.16508 1.56945 1.52994 0.95259	REJECT REJECT REJECT ACCEPT ACCEPT ACCEPT ACCEPT

CATA: Y1	Y2	Y 3	Y4	Y 5	Y 6	Y7	X1
27.68.29.45.7.	11.0 10.0 18.0 13.0 13.0 13.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12	3.000000000000000000000000000000000000	0.0	62.0 10.0 8.0 14.0 9.0 14.0	6.0 1.0 1.0 1.0 1.0 1.0 7.0 7.0	24.000000000000000000000000000000000000	71.00 34.00 27.00 24.00 24.00 17.00

NUMBER OF PATA POINTS = 9

RESULTS:

ESTIMATE OF B

Rl	B2
4.53252 15.36964 4.63345 0.53999 8.66085 3.11060	0.03312 0.12472 -0.04209 -0.04309 0.04695 -0.04718 6.03040

ESTIMATE OF COVARIANCE MATRIX SIGMA

6.387	9.302	-5.951	-0.387	5.089	-1.321	0.356
9.302	32.475	-5.324	-0.850	12.190	6.961	
-5.951	-5.324	11.299	1.145	-3.342	-0.027	0.253
-0.387	-0.850	1.145	0.311	-0.673	-0.238	0.131
5.089	12.190	-3.342	-0.673	6.829	-0.170	-0.010
-1.321 (.356	6.961 0.450	-0.027 0.253	-0.238 0.131	-0.170 -0.010	9.519	-0.002

TEST STATISTIC	RESULT
C. 92937 1.60218 -C. 88798 -C. 39360 1.27409 -C. 16505	ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT
2.76992	REJECT

ENGINE NUMBER: 509064 .

DATA: Y1	Y2	Y3	Y4	Y 5	Y6	Y7	×1
14.0 11.0 9.0 10.0 10.0 14.0 11.0	51.00 51.00 51.00 51.00 51.00 51.00 51.00	1.00 0.00 7.00 26.00 7.00 8.00 8.00 9.00	1.0	22.0 11.0 13.0 11.0 8.0 19.0 13.0	2344522220	4523416653	240.0 103.0 90.0 67.0 30.0 216.0 217.0 150.0

NUMBER OF DATA PCINTS = 9

RESULTS:

ESTIMATE OF B

81	82
7.72752 25.42332 6.27336 (.364.84 6.15189 3.73031 1.88632	0.02695 0.07985 -0.00576 0.00576 0.00820 0.01630

ESTIMATE OF COVARIANCE MATRIX SIGMA

0.990	-1.163	0.297	0.483	-0.108	0.886	0.151
-1.163	8.229	0.152	-0.098	2.517	-0.063	-0.150
0.290	0.152	8.639	0.551	-1.064	0.358	1.043
6.483	-0.098	C•561	0.759	0.057	-0.059	0.351
-0.108	2.517	-1.064	0.057	1.626	0.381	-1.004
Ç• £86	-0.063	0.359	-0.059	0.381	2.113	-0.518
0.151	-0.150	1.043	0.361	-1.004	-0.518	1.619

TEST STATISTIC	RESULT
5.91299 6.07753 -0.22025 1.44270 10.36179 -1.23196	REJECT REJECT ACCEPT ACCEPT REJECT ACCEPT
2.79686	REJECT

DATA: Y1	Y 2	Y3	Y4	Y5	Y 6	Y7	X1
12.) 10. ; 8. ; 7. ; 11. ; 11. ;	8113218256 813218256	2.00 1.00 1.00 2.00 3.00 0.00	0.0000000000000000000000000000000000000	11.0 11.0 11.0 10.0 10.0 12.0 12.0	22.31.22.5	46521.537	32.0 32.0 27.0 22.0 8.0 63.0 72.0

NUMBER OF DATA POINTS = 9

FESULTS:

	m. ,			5.4	4 5		~	_	_	$\overline{}$
ı	٠, ١	,	ш	M	Ĉ.	1	-		F.	۲Ł

R1	82
7.78304 31.59843 2.17532 0.58916 6.38977 1.10359 2.06722	0.19645 0.19645 0.01560 -0.07562 -0.03947

ESTIMATE OF COVARIANCE MATRIX SIGMA

1.295	1.345	-3.719	0.023	0.377	0.260	0.693
1.345	13.200	C • 202	0.146	0.747	1.910	2.558
-r.719	0.202	7.692	-0.679	3.546	-1.107	1.287
C.G23	9.146	-0.679	2.514	0.020	0.013	0.336
C. 377	9.747	0.546	0.020	2.019	0.312	1.564
0.260	1.910	-1.107	0.013	0.312	0.554	0.244
0.693	2.558	1.287	0,336	1.564	0.244	2.801

TEST STATISTIC	RESULT
5.30951	REJECT
5.89300	REJECT
0.14110	ACCEPT
-0.88370	ACCEPT
5.71138	REJECT
3.72125	REJECT
2.53127	REJECT

DATA: Y1	¥2	Y 3	Y4	Y5	Y 5	Y 7	x 1
8.6 11.0 9.0 10.0 10.0 10.0 10.0 6.0 6.0	3132223332223 3132223332223	91922327222	002010000000	7.00 7.00 14.00 7.00 13.00 11.00 11.00	33321222113	00000000000000000000000000000000000000	210643388360 21823688360

NUMBER OF DATA PCINTS = 11

PESULTS:

ESTIMATE OF B

81	B2
4.95470 21.82213 2.09675 0.20373 6.82466 1.67202 1.61738	0.06129 0.18915 0.02352 0.00378 0.09017 0.09991

FSTIMATE OF COVARIANCE MATRIX SIGMA

2.669	3.278	2.382	0.116	-0.339	-0.021	0.172
3.278	11.578	3.913	0.029	-0.452	-0.571	-2.088
2.382	3.910	9.631	9.995	-1.871	1.125	1.274
C.116	0.029	0.995	9.493	0.094	-0.072	-0.107
-C.339	-0.452	-1.871	0.094	1.157	-0.718	-r.746
-0.021	-0.571	1.125	-0.072	-0.718	0.684	r.922
C.172	-2.C88	1.274	-0.107	-0.746	0.922	2.463

TEST STATISTIC	RESULT
3.27932 4.85956 C.66246 C.47103 7.32913 1.C4718	REJECT REJECT ACCEPT ACCEPT REJECT ACCEPT
C. 9834C	ACCEPT

CAT	Δ: Y1	Y2	Y 3	Y 4	Y 5	Y6	Y7	X1
	16.0 16.0 17.0 11.0 17.0 17.0 17.0 17.0 11.0	440.0000000000000000000000000000000000	30193915287	000000000000000000000000000000000000000	23.00 19.00 17.00 11.00 11.00 15.00	3.000000000000000000000000000000000000	4.00 4.00 4.00 7.00 7.00 1.00 1.00	80.00000000000000000000000000000000000

NUMBER OF DATA POINTS = 11

PESULTS:

ESTIMATE OF B

В1	B2
8.(1412 24.55724 5.14212 (.71736 11.69666 1.276(3 1.73059	0.02141 0.06576 -0.00973 0.00012 0.04924 -0.00118

ESTIMATE OF COVARIANCE MATRIX SIGMA

13.487	26.779	-2.465	-2.767	16.654	2.040	0.132
26.779	69.565	-6.069	-7.645	38.864	5,651	0.676
-2.46=	-6.069	12.388	0.348	-0.676	-0.344	-1.771
-2.767	-7.645	0.348	1.353	-4.921	-0.494	0.635
16.654	38.864	-2.676	-4.921	25.366	2.733	-1.545
2.046	5.651	-0.344	-0.494	2.733	0.621	0.363
C.132	0.676	-1.771	0,635	-1.545	0.363	2.750

TEST STATISTIC	RESULT
1.74745 1.41632 -0.49665 (.(1914 1.75634 -0.26838	ACCEPT ACCEPT ACCEPT ACCEPT
C. 24171	4CC EPT

DATA: Y1	Y 2	Y3	Y4	Y5	Y6	Y 7	×1
7.7 16.5 5.0 10.5 6.0 7.0	25.00 25.00 25.00 20 33.10 20 33.40 20 20 20 20 20 20 20 20 20 20 20 20 20	9.00 6.00 7.00 7.00 10.00	2.7 0.0 2.0 1.0 0.0 0.0 0.0	8.00 11.00 9.00 11.00 77.00	1.000000000000000000000000000000000000	2.0000000000000000000000000000000000000	26.9 100.0 139.9 73.9 107.9 107.9 44.9 58.9
NUMBER OF	DATA PO	INTS =	9				

RESULTS:

ESTIMATE OF B

81	R2
5.56531	0.04049
19.68764	0.10968
7.67937	-0.02831
C.25337	0.00403
6.02439	0.03963
1.15398	0.00468

ESTIMATE OF COVARIANCE MATRIX SIGMA

5.420	-1.576	-1.412	-1.920	0.551	-0.225	-2.660
-1.576	5.789	2.538	1.229	3.546	0.008	0.036
-1.412	2.533	7.866	1.430	0.868	-0.327	1.660
-1.020	1.229	1.430	0.860	0.452	-0.034	0.941
0.551	3.546	0.868	0.452	2.472	-0.126	-0.333
-0.225	0.008	-0.327	-0.034	-0.126	0.170	0.048
-2.660	0.036	1.660	9.941	-0.333	0.048	2.005

TEST STATISTIC	RESULT
1.39313	ACCEPT
4.42127	REJECT
-1.65572	ACCEPT
6.48443	ACCEPT
2.28583	REJECT
2.47053	REJECT

F. CCMPARISON OF ESTIMATED PARAMETERS AMONG ENGINES

ESTIMATED PARAMETERS FOR CHROMIUM

SERIAL #	MEAN	VARIANCE
5157880999949051178809999490511890999949051890999949051890999999999999999999999999999999999	3.2006 822006 822005 18712 5.15725 6.15725 6.2770 11007 9.3220 9.3320 9.	7.7333 10.657786 6.57786 13.44276 13.44276 13.44276 13.44276 13.44276 13.44276 13.44276 10.154444 10.154444 10.154444 10.154444 10.154444 10.154448 11.67500 11.67500 11.67500 11.400 11

ESTIMATED PARAMETERS FCR SILVER

SERIAL #	MEAN	VARIANCE
516588 5167588 51655939 51655939 51655939 51655939 5166975734 5166975734 5166975734 5166975734 516975734 516975734 516975734 516975734 516975734 516975734 516975734 51697574 5169757 516975 51697	1.6000 1.00778 0.7778 0.7778 0.55727 1.57714 0.44667 0.6667 1.0007 1.111 0.7770 1.111 0.7770 0.6667 1.0003 1.4444 1.111 0.33636 0.5556	0.7111 1.2500 0.44444 0.2782 0.2182 2.4178 0.5270 1.1111 0.5271 1.6111 0.1778 0.25000 1.06111 0.2778 1.0661 1.0.2778 1.0661 1.0.2778 1.0.2778 1.0.2778

ESTIMATED PARAMETERS FOR MAGNES.

516726 1.6000 0.4889 515355 1.3333 0.7500 516678 2.2222 1.1944 515058 0.7778 0.6944 509090 1.818 0.9636 524739 2.5714 2.2637 516309 0.6667 1.7500 516094 1.33333 0.2500 516750 1.22222 0.9444 516575 2.7778 3.1944 516534 1.8889 0.3611 509081 1.6000 1.3778 516592 2.3333 0.7500 515608 1.4444 0.7778 515608 1.4444 0.7778 516731 1.000 1.37889 516731 2.3000 3.7889 516048 2.3000 3.7889 516048 2.3000 3.7889 516048 2.2222 1.4444 516048 2.2500 2.5000 516048 2.0000 3.7889 516063 2.8889 8.3611 509064 2.6667 2.2500	SERIAL #	MEAN	VARIANCE
	5160999999999999999999999999999999999999	1.3333 2.2278 1.1818 2.77718 2.57147 1.57147 1.66633 1.102278 1.8880 1.60330 1.104449 1.0009 1.4440 1.0099 1.8886 2.3099 1.8887 2.1888 1.66229 1.8886 2.1818	0.19444 1.19446 1.19446 1.19446 1.19446 1.19

ESTIMATED PARAMETERS FOR NICKEL

SERIAL #	MEAN	VARIANCE
51658809994905412180516509399490541218051650551660646712 551516505516650813178344661613 551650551651660646712 551650551651660646712 5516516613	2.0000 2.0000 3.33444 1.09086 1.09086 1.09086 1.09086 2.3300 2.3000 2.30	1.55000 50000 50000 50000 50000 60000 60000 60000 600000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 600000 600000 600000 600000 600000 600000 600000 600000

REGRESSION LINES FOR ALUMINUM

SEFIAL #	INTERCEPT	SLOPE	RESIDUAL VARIANCE	SAMPLE CORRELATION
55555555555555555555555555555555555555	8.70.70 7.66444 14.077 7.4444 14.077 6.4442 11.5567 6.11.567 6.22.70 6.11.567 6.22.70 6.20.2548 8.40.05 13.8449 13.8449 13.8449 13.8449 13.8449 13.8449 13.8449 13.8449 13.8449 13.8449 13.8449 13.8449 13.8449 13.8449 13.8449 14.05522 13.8449 13.8449 13.8449 13.8449 13.8449 13.8449 14.05522 13.8449 13.8449 14.05522 14.05522 13.8449 14.05522 14.05522 14.05522 14.05522 14.05522 14.05522 14.05522 14.0552 15.0552 16.0552 1	0.1562 0.138985 0.1382985 0.1382985 0.1382985 0.13756889 0.13756889 0.1322915 0.132291	2.54.6 7.65.8 7.65.9	0.557 0.570 0.270 0.270 0.271 0.200 0.271 0.200 0.000

REGRESSION LINES FOR IRON

SERIAL #	INTERCEPT	SLOPE	RESIDUAL VARIANCE	SAMPLE CORRELATION
25588°0994905412180511783466642712736007730945753893085134446447121111021166664271515555555555555555555555555555555555	37.1033 27.33556459 22.66542447 33.66542447 23.665633 25.6654240 17.3355440 17.4400 17	0.16875 0.105226 0.105226 0.105226 0.105226 0.10682	4.9185 27.030.0276943 27.030.0276943 27.030.0276943 27.030.030.037 26.030.037 26.030.037 26.030.037 26.030.037 26.030.037 26.030.037 27.030.037	0.00.00.00.00.00.00.00.00.00.00.00.00.0

REGRESSION LINES FOR COPPER

516726 14.5000 0.04810 4.6190 515355 11.5556 0.06015 5.8640 516678 11.7778 0.01226 4.0485	0.8567 0.7449 0.2029 0.3493
515058 7.5556 0.01855 3.2891 509090 9.6364 0.04157 0.9376 524739 10.1429 0.03660 4.3089 516309 8.8889 0.07843 6.1235 516094 9.2222 0.02886 10.4862 516949 9.6000 0.06982 2.4905 516575 10.7000 0.09021 2.9364 516575 10.000 0.09021 2.9364 516534 11.4444 0.10755 6.0609 516534 11.4444 0.10755 6.0609 516592 8.8839 0.06309 4.1955 515931 10.1000 0.04496 1.7140 515608 15.7778 0.07357 11.454 516380 9.4545 0.08577 10.0621 515515 11.2222 0.08609 1.8030 516731 10.3333 0.02090 11.0115 516048 9.7778 0.05309 10.5203 516048 9.7778 0.05309 10.5203 516063 10.6667 0.06053	9364 9364 97752 9364 97752 9364 97752 9366 936

LIST OF REFERENCES

- Naval Rework Facility, Pensacola Naval Air Station, NARF - P - 1, Spectrometric Oil Analysis, by B. B. Bond, June 1967.
- 2. Witten, J. F. and Bond. B. B., <u>Determination of Engine</u>
 <u>Condition by Spectrometric Analysis</u>, paper presented
 at National Aeronautic Meeting, 5 April 1961.
- 3. Air Force Systems Command, Aeronautical Systems Division Technical Report 68-2, Correlation of Emission and Atomic Absorption Techniques on the Analysis of Lubricating Oil Samples for Wear Metal Contamination by D. C. Kittinger and J. L. Ellis, April 1968.
- 4. Cramér, H., Mathematical Methods of Statistics, p. 213-220, Princeton: University Press, 1951.
- 5. Naval Postgraduate School Preliminary Report, A Statistical Study of Some Results in NOAP, by H. J. Larson and D. R. Barr, September 1969.
- 6. Brownlee, K. A., Statistical Theory and Methodology in Science and Engineering, p. 272-284, Wiley, 1960.
- 7. Draper, N. R. and Smith, H., <u>Applied Regression</u>
 <u>Analysis</u>, Wiley, 1966.
- 8. Anderson, T. W., <u>An Introduction to Multivariate</u>
 <u>Statistical Analysis</u>, Wiley, 1958.
- 9. Graybill, F. A., An Introduction to Linear Statistical Models, McGraw-Hill, 1961.
- 10. Ostle, B., Statistics in Research, Iowa State University Press, 1963.
- ll. Marcus, M. and Minc, H., A Survey of Matrix Theory and Matrix Inequalities, p. 8, Allyn and Bacon, 1964.
- 12. Morrison, D. F., <u>Multivariate Statistical Methods</u>, p. 107-111, McGraw-Hill, 1967.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		20
2.	Library, Code 0212 Naval Postgraduate School Monterey, California 93940		2
3.	Department of the Army Civil Schools Branch, OPO, OPD Washington, D.C. 20315		1
4.	Assoc. Professor H. J. Larson, Code 55 Lr Department of Operatons Analysis Naval Postgraduate School Monterey, California 93940		10
5.	Cpt. John P. Riceman 134 Robin Road West Hartford, Conn. 06119		1

UNCLASSIFIED Security Classification DOCUMENT CONTROL DATA - R & D (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified) 1. ORIGINATING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION Unclassified Naval Postgraduate School 2b. GROUP Monterey, California 93940 3. REPORT TITLE A STATISTICAL STUDY OF SPECTROMETRIC OIL ANALYSIS DATA FROM THE NAVAL OIL ANALYSIS PROGRAM 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Master's Thesis; October 1969 5: AUTHOR(S) (First name, middle initial, last name) John P. Riceman, Captain, United States Army 6. REPORT DATE 78. TOTAL NO. OF PAGES 76. NO. OF REFS October 1969 87 12 88. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S) b. PROJECT NO. 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report) 10. DISTRIBUTION STATEMENT This document has been approved for public release and sale; its distribution is unlimited.

Naval Postgraduate School

Monterey, California 93940

13. ABSTRACT

This thesis examines spectrometric oil analysis data from two sources in an attempt to formulate a statistical model which will be useful in monitoring aircraft engines in the Naval Oil Analysis Program. Initially, experimental data, gathered for an Air Force study, is used to determine if the measurement error inherent in the monitoring procedure is normally distributed and if correlations exist between measurements for different wear metals. Based on the results of this investigation, a study is made of operational data from Wright reciprocating engines of the R1820-82 type. This investigation leads to the conclusion that a multivariate regression model is useful in estimating the parameters of the distribution of analyses from properly operating engines of this type. A procedure is then suggested which would employ the readings from past oil analyses from a particular engine to determine its present condition.

DD FORM 1473 (PAGE 1)

UNCLASSIFIED
Security Classification

	KEY WORDS			LINK B		LINK C	
		ROLE	wT	ROLE	wT	ROLE	W
C	PECTROMETRIC ANALYSIS					-	
5	PECIROMETRIC ANALISIS						
N	AVAL OIL ANALYSIS PROGRAM						
M	ULTIVARIATE REGRESSION	1 1					
D	REDICTION OF AIRCRAFT						
	NGINE WEAR						
	ULTIVARIATE NORMAL						
C	ONFIDENCE REGIONS						
М	ULTIVARIATE NORMAL						
	YPOTHESIS TESTS	1					
							J1
			1		1		

thesR3765
A statistical study of spectrometric oil

3 2768 000 99047 7
DUDLEY KNOX LIBRARY