TD 1

Cinématique du point matériel

1.1. Mouvement sur un cercle

Dans le plan (Oxy), un point mobile M se déplace sur un cercle de rayon R et de centre C de coordonnées cartésiennes (R,0). À l'instant t=0, M se trouve au point A(2R,0) et possède la vitesse $\vec{v}_0=v_0\vec{e}_y$. On désigne par r et θ les coordonnées polaires de M.

- 1. Faire un schéma précis représentant notamment la base polaire locale $(\vec{e}_r, \vec{e}_\theta)$ en M à un instant quelconque.
- 2. Déterminer l'équation cartésienne du cercle En déduire son équation polaire, c'est à dire r en fonction de θ .
- 3. Calculer, en fonction de θ et de ses dérivées successives, les composantes des vecteurs vitesse et accélération de M dans la base polaire.
- 4. On désigne par ω la vitesse angulaire de M sur le cercle, et on suppose qu'elle est constante. Donner les expressions de θ puis de r en fonction du temps. En déduire les expressions de la vitesse et de l'accélération en fonction du temps, toujours dans la base polaire.

1

1.2. Mouvement d'une guêpe

Une guêpe, assimilée à un point matériel M, vole avec une vitesse de norme constante v_0 dans le plan horizontal (Oxy), en gardant un œil sur sa proie, qui reste fixe à l'origine O des coordonnées. La vitesse de la guêpe fait ainsi un angle constant α avec la direction OM. On note r_0 la valeur initiale en $t_0 = 0$ de la distance OM.

- 1. Au bout de combien de temps la guêpe rencontrera-t-elle sa proie?
- 2. De quel angle aura-t-elle tourné autour de cette dernière?
- 3. Quelle est la nature de la trajectoire de la guêpe?
- 4. Déterminer l'accélération initiale de la guêpe.
- 5. Discuter ces résultats selon les valeurs de v_0 et α .

$\overrightarrow{v} = \overrightarrow{re_r} + r\overrightarrow{\theta e_{\theta}} = -V_0 \text{ and } \overrightarrow{e_r} + V_0 \text{ and } \overrightarrow{e_{\theta}}.$ $\text{Other } \overrightarrow{r} = \frac{\partial r}{\partial t} = -V_0 \text{ and } t + A, \text{ Alther } ?$

Finalement, $r(t) = r_0 - v_0 t \cos \alpha$.) when? r diminue au cours du temps, c'est cohérent.

La guêpe rencontre la proie en $t=t_f$ quand $r(t_f)$

Question 3 (trajectoire) <

On trouve l'équation polaire d'après ce qui précède :

Question 4 $\vec{a} = (\ddot{r} - r\dot{\theta}^2)\vec{e_r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\vec{e_{\theta}}$

Question 2

On ra = Vosand ales a = old = Vosand | Vosand

On utilise la méthode de séparation des variables pour intégrer : t $-\theta_{0} = \int_{\theta_{0}}^{\theta_{0}} d\theta' = \frac{V_{0} S_{MOL}}{\Gamma_{0}} \int_{0}^{t} \frac{1}{\sqrt{1-V_{0LVM}}} t' dt' = \frac{V_{0} S_{MOL}}{\Gamma_{0}} \left(-\frac{\Gamma_{0}}{K_{0}} cont \left[\ln \left[1 - \frac{V_{0} cont}{\Gamma_{0}} t' \right] \right] dt'$

L'angle parcouru en t par la guêpe est $heta(t) - heta_0$, quantité bien positive car $r(t) < r_0$.

Cette quantité diverge lorsque $t o t_f$, en effet, l'angle n'est plus défini en r=0.

Question 5

Résultat de la question 1 : $t_f = \frac{1}{\widehat{v_0} \cos \widehat{\alpha}}$

- \triangleright Si v_0 augmente, t_f diminue. C'est cohérent.
- ightharpoonup Si lpha=0, t_f est minimal, la guêpe fonce droit sur la proie avec $\theta = \theta_0$ constant.

 $ilde{
ho}$ Si $lpha o\pi/2$, $t_f o+\infty$, la guêpe suit une trajectoire circulaire sans jamais atteindre sa proie. En fait $r(t) = r_0$, le mouvement est circulaire.