

PATIENT Huang, Hui-I TUMOR TYPE
Pancreas carcinoma (NOS)
COUNTRY CODE
TW

REPORT DATE 17 Dec 2021 ORDERED TEST # ORD-1255380-01

ABOUT THE TEST FoundationOne®Liquid CDx is a next generation sequencing (NGS) assay that identifies clinically relevant genomic alterations in circulating cell-free DNA.

PATIENT

DISEASE Pancreas carcinoma (NOS)
NAME Huang, Hui-I
DATE OF BIRTH 15 December 1972
SEX Female
MEDICAL RECORD # 47838095

PHYSICIAN

ORDERING PHYSICIAN Yeh, Yi-Chen
MEDICAL FACILITY Taipei Veterans General Hospital
ADDITIONAL RECIPIENT None
MEDICAL FACILITY ID 205872
PATHOLOGIST Not Provided

SPECIMEN

SPECIMEN ID HIH 15/Dec/1972 SPECIMEN TYPE Blood DATE OF COLLECTION 06 December 2021 SPECIMEN RECEIVED 10 December 2021

Biomarker Findings

Blood Tumor Mutational Burden - 1 Muts/Mb **Microsatellite status** - MSI-High Not Detected **Tumor Fraction** - Elevated Tumor Fraction Not Detected

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

KRAS G12C

† See About the Test in appendix for details.

Report Highlights

- Targeted therapies with potential clinical benefit approved in another tumor type: Sotorasib (p. 5)
- Evidence-matched clinical trial options based on this patient's genomic findings: (p. 6)

BIOMARKER FINDINGS

GENOMIC FINDINGS

KRAS -

7 Trials see p. 6

Blood Tumor Mutational Burden - 1 Muts/Mb

Microsatellite status - MSI-High Not Detected

Tumor Fraction - Elevated Tumor Fraction Not Detected

THERAPY AND CLINICAL TRIAL IMPLICATIONS

No therapies or clinical trials. See Biomarker Findings section

MSI-High not detected. No evidence of microsatellite instability in this sample (see Appendix section).

Tumor fraction is considered elevated when ctDNA levels are high enough that aneuploidy can be detected. The fact that elevated tumor fraction was not detected in this specimen indicates the possibility of lower levels of ctDNA but does not compromise confidence in any reported alterations. However, in the setting of a negative liquid biopsy result, orthogonal testing of a tissue specimen should be considered if clinically indicated (see Biomarker Findings section).

VAF %	THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)		
8.1%	None	Sotorasib		

NOTE Genomic alterations detected may be associated with activity of certain approved therapies; however, the therapies listed in this report may have varied clinical evidence in the patient's tumor type. Therapies and the clinical trials listed in this report may not be complete and/or exhaustive. Neither the therapies nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type. This report should be regarded and used as a supplementary source of information and not as the single basis for the making of a therapy decision. All treatment decisions remain the full and final responsibility of the treating physician and physicians should refer to approved prescribing information for all therapies. Therapies contained in this report may have been approved by the US FDA or other national authorities; however, they might not have been approved in your respective country. In the appropriate clinical context, germline testing of APC, ATM, BAP1, BRCA2, BRIP1, CHEK2, FH, FLCN, MEN1, MLH1, MSH2, MSH6, MUTYH, NF1, NF2, PALB2, PMS2, POLE, PTEN, RAD51C, RAD51D, RB1, RET, SDHA, SDHB, SDHC, SDHD, SMAD4, STK11, TGFBR2, TP53, TSC1, TSC2, VHL, and WT1 is recommended.

 $\label{thm:copy} \textit{Variant Allele Frequency} \ is \ not \ applicable \ for \ copy \ number \ alterations.$

G12C

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the possibility of use

Variant Allele Frequency Percentage (VAF%)

HISTORIC PATIENT FINDINGS

Blood Tumor Mutational Burden

Microsatellite status

MSI-High Not Detected

Tumor Fraction

Elevated Tumor Fraction Not Detected

KRAS

● G12C

8.1%

NOTE This comparison table refers only to genes and biomarkers assayed by prior FoundationOne®Liquid CDx, FoundationOne®Liquid, FoundationOne®, or FoundationOne®CDx tests. Up to five previous tests may be shown

For some genes in FoundationOne Liquid CDx, only select exons are assayed. Therefore, an alteration found by a previous test may not have been confirmed despite overlapping gene lists. Please refer to the Appendix for the complete list of genes and exons assayed. The gene and biomarker list will be updated periodically to reflect new knowledge about cancer biology.

As new scientific information becomes available, alterations that had previously been listed as Variants of Unknown Significance (VUS) may become reportable.

Tissue Tumor Mutational Burden (TMB) and blood TMB (bTMB) are estimated from the number of synonymous and non-synonymous single-nucleotide variants (SNVs) and insertions and deletions (indels) per area of coding genome sampled, after the removal of known and likely oncogenic driver events and germline SNPs. Tissue TMB is calculated based on variants with an allele frequency of ≥5%, and bTMB is calculated based on variants with an allele frequency of ≥5%.

 $Not \, Tested = not \, baited, \, not \, reported \, on \, test, \, or \, test \, preceded \, addition \, of \, biomarker \, or \, general \, addition \, of \, biomarker \, or \, general \, addition \, of \, biomarker \, or \, general \, addition \, of \, biomarker \, or \, general \, addition \, of \, biomarker \, or \, general \, addition \, or \, biomarker \, or \, general \, addition \, or \, biomarker \, or \, general \, addition \, or \, biomarker \, or \, general \, addition \, or \, biomarker \, or \, general \, addition \, or \, biomarker \, or \, general \, addition \, or \, biomarker \, or \, general \, addition \, or \, biomarker \, or \, general \, addition \, or \, biomarker \, or \, general \, addition \, or \, biomarker \, or \, general \, addition \, or \, biomarker \, or \, general \, addition \, or \, biomarker \, or \, general \, addition \, or \, biomarker \, or \, general \, addition \, or \, biomarker \, or \, biomar$

Not Detected = baited but not detected on test

Detected = present (VAF% is not applicable)

VAF% = variant allele frequency percentage

Cannot Be Determined = Sample is not of sufficient data quality to confidently determine biomarker status

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

BIOMARKER FINDINGS

BIOMARKER

Blood Tumor Mutational Burden

RESULT 1 Muts/Mh

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

On the basis of clinical evidence in NSCLC and HSNCC, increased bTMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L1¹⁻² and anti-PD-1³ therapies. In NSCLC, multiple clinical trials have shown patients with higher bTMB derive clinical benefit from immune checkpoint inhibitors following single agent or combination treatments with either CTLA4 inhibitors or chemotherapy, with reported high bTMB cutpoints ranging from 6 to

16 Muts/Mb¹. In HNSCC, a Phase 3 trial showed that bTMB ≥16 Muts/Mb (approximate equivalency ≥8 Muts/Mb as measured by this assay) was associated with improved survival from treatment with a PD-L1 inhibitor alone or in combination with a CTLA-4 inhibitor⁴.

FREQUENCY & PROGNOSIS

Average bTMB levels in solid tumors other than NSCLC have not been evaluated (cBioPortal, COSMIC, PubMed, Mar 2021)⁵⁻⁷. Published data investigating the prognostic implications of bTMB levels in pancreatic carcinoma are limited (PubMed, Jul 2021). A study of patients with pancreatic ductal adenocarcinoma harboring mismatch repair gene mutations reported improved prognosis for patients with high TMB measured in tissue samples (defined as >50 mutations; survival 69-314 months) compared to those with lower TMB (average of 5.7 mutations; 10-42 months)⁸.

FINDING SUMMARY

Blood tumor mutational burden (bTMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations from circulating tumor DNA in blood. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma⁹⁻¹⁰ and cigarette smoke in lung cancer¹¹⁻¹², treatment with temozolomide-based chemotherapy in glioma¹³⁻¹⁴, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes¹⁵⁻¹⁹, and microsatellite instability (MSI)15,18-19. High bTMB levels were not detected in this sample. It is unclear whether the bTMB levels in this sample would be predicted to be associated with sensitivity to PD-1- or PD-L1-targeting immune checkpoint inhibitors, alone or in combination with other agents¹⁻³. Depending on the clinical context, TMB testing of an alternate sample or by another methodology could be considered.

BIOMARKER

Tumor Fraction

RESULT

Elevated Tumor Fraction Not Detected

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

Specimens with elevated tumor fraction values have high circulating-tumor DNA (ctDNA) content, and thus high sensitivity for identifying genomic alterations. Such specimens are at low risk of false negative results. However, if elevated tumor fraction is not detected, it does not exclude the presence of disease burden or compromise the confidence of reported alterations. Tumor fraction levels currently have limited implications for diagnosis, surveillance, or therapy and should not

be overinterpreted or compared from one blood draw to another. There are currently no targeted approaches to address specific tumor fraction levels. In the research setting, changes in tumor fraction estimates have been associated with treatment duration and clinical response and may be a useful indicator for future cancer management²⁰⁻²⁵.

FREQUENCY & PROGNOSIS

Detectible ctDNA levels have been reported in a variety of tumor types, with higher tumor fraction levels reported for patients with metastatic (Stage 4) tumors compared with patients with localized disease (Stages 1 to 3)²⁶. Elevated tumor fraction levels have been reported to be associated with worse prognosis in a variety of cancer types, including pancreatic cancer²⁷, Ewing sarcoma and osteosarcoma²⁸, prostate cancer²³, breast cancer²⁹, leiomyosarcoma³⁰, esophageal cancer³¹, colorectal

cancer32, and gastrointestinal cancer33.

FINDING SUMMARY

Tumor fraction provides an estimate of the percentage of ctDNA present in a cell-free DNA (cfDNA) sample. The tumor fraction estimate for this sample is based on the observed level of aneuploid instability. The tumor fraction algorithm utilized for FoundationOne Liquid CDx uses the allele frequencies of approximately 1,000 singlenucleotide polymorphism (SNP) sites across the genome. Unlike the maximum somatic allele frequency (MSAF) method of estimating ctDNA content³⁴, the tumor fraction metric does not take into account the allele frequency of individual variants but rather produces a more holistic estimate of ctDNA content using data from across the genome. The amount of ctDNA detected may correlate with disease burden and response to therapy³⁵⁻³⁶.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

GENOMIC FINDINGS

GENE

KRAS

ALTERATION

TRANSCRIPT ID NM_004985

CODING SEQUENCE EFFECT

34G>T

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

In a Phase 1 study evaluating the MEK-pan-RAF dual inhibitor CH5126766, 6 patients harboring KRAS mutations experienced PRs, including 3 with non-small cell lung cancer (NCSLC), 1 with low-grade serous ovarian carcinoma (LGSOC), 1 with endometrial adenocarcinoma, and 1 with multiple myeloma³⁷. Another Phase 1 study of CH5126766 combined with the FAK inhibitor defactinib reported 4 PRs in KRAS-mutated LGSOC38. KRAS G12C may predict sensitivity to G12C-targeted inhibitors such as sotorasib39-41 and adagrasib⁴². The Phase 1 CodeBreaK 100 trial of sotorasib in G12C-mutated solid tumors observed clinical benefit for patients with non-small cell lung cancer (NSCLC) and colorectal cancer (CRC), with additional responses observed in several other tumor types⁴¹; patients with CRC achieved a relatively low ORR (7.1% [3/42]) but demonstrated a high DCR of 74% (31/42) with mPFS of 4 months⁴¹. In the Phase 1/2 KRYSTAL-1 trial, treatment with single-agent adagrasib elicited a 45% (23/51) ORR and a 96% (49/51) DCR for patients with G12C-mutated NSCLC⁴³. Responses to single-agent adagrasib were also reported for patients with other types of G12C-mutated tumors, including CRC with an ORR of 17% (3/18) and individual responses reported for patients with endometrial cancer, pancreatic cancer, ovarian cancer, and cholangiocarcinoma⁴⁴. Preclinical data suggests that sotorasib in

combination with the EGFR inhibitor cetuximab may lead to more effective suppression of KRAS G12C-mutated CRC tumors⁴⁵. Preclinical and clinical data suggest that KRAS mutations may predict clinical benefit from SHP2 inhibitors⁴⁶⁻⁴⁷. A Phase 1 study of RMC-4630 for relapsed/ refractory solid tumors reported a DCR of 58% (23/40) for patients with NSCLC and KRAS mutations and a DCR of 75% (12/16) for patients with NSCLC and KRAS G12C mutations48. Interim results from a Phase 1/2 study of RMC-4630 plus cobimetinib reported tumor reduction in 3 of 8 patients with KRAS-mutated colorectal cancer⁴⁹. Preclinical evidence suggests that KRAS activation may predict sensitivity to MEK inhibitors, such as trametinib, binimetinib, cobimetinib, and selumetinib⁵⁰⁻⁵⁵. Initial Phase 1 monotherapy trials of MEK inhibitors in patients with pancreatic cancer showed promise, with DCR (PR and/or SD) up to 37%56, response rates up to 25%56-60, and prolonged PRs in certain patients^{57,59,61}. However, subsequent clinical trials combining various MEK inhibitors with gemcitabine reported no additional benefit compared to gemcitabine alone irrespective of KRAS mutation status⁶²⁻⁶⁵, with refametinib and gemcitabine even showing a trend towards worse response and survival in patients with KRASmutant pancreatic tumors than in those with KRAS wild-type tumors (OS 6.6 months vs 18.2 months)62. Trials combining MEK inhibitors with other targeted therapies, such as EGFR inhibitors⁶⁶ or PI₃K-AKT pathway inhibitors⁶⁷⁻⁶⁸, reported no PRs and frequent adverse events in patients with KRAS-mutant pancreatic cancer. Emerging preclinical studies suggest MEK inhibition downstream of KRAS-mutant pancreatic tumors leads to increased autophagy⁶⁹⁻⁷⁰. Combination MEK/autophagy inhibitors may therefore be more beneficial. A heavily pretreated patient with pancreatic cancer treated with trametinib plus hydroxychloroquine exhibited a PR⁶⁹. A Phase 2 trial of paclitaxel/ carboplatin with or without Reolysin in patients

with metastatic pancreatic adenocarcinoma reported no improvement in PFS with addition of Reolysin, regardless of KRAS mutational status⁷¹; however a Phase 2 study of Reolysin and gemcitabine in patents with pancreatic cancer reported 1 PR, 23 SDs, and 5 PDs in 34 patients with a favorable median OS of 10.2 months⁷². Preclinical data suggest that KRAS mutation may confer sensitivity to SOS1 inhibitors73-74. Phase 1 studies of the SOS1 inhibitor BI 1701963 alone or in combination with MEK inhibitors, KRAS G12C inhibitors, or irinotecan are recruiting for patients with solid tumors harboring KRAS mutations⁷⁵⁻⁷⁶.

FREQUENCY & PROGNOSIS

KRAS G12C mutations have been identified in 1.0% of pancreatic cancers⁷⁷. KRAS mutations have been observed in 91-95% of pancreatic ductal adenocarcinoma cases⁷⁸⁻⁷⁹, with the majority of mutations found at codon 1280-83. KRAS mutations, particularly G12D, have been associated with decreased median survival time in patients with pancreatic ductal adenocarcinoma⁸¹.

FINDING SUMMARY

KRAS encodes a member of the RAS family of small GTPases. Activating mutations in RAS genes can cause uncontrolled cell proliferation and tumor formation^{51,84}. Clinical benefit has been reported for patients with KRAS G12C-mutated solid tumors following treatment with G12C inhibitors such as sotorasib³⁹⁻⁴¹ or adagrasib⁴². However, clinical and preclinical resistance to G12C inhibitors, either by emergence of additional alterations in KRAS or other genes in the RTK/ MAPK/PI3K pathway, have also been observed85-88. KRAS alterations affecting amino acids G12, G13, Q22, P34, A59, Q61, and A146, as well as mutations G1o_A11insG, G1o_A11insAG (also reported as G10_A11dup and G12_G13insAG), A18D, L19F, D33E, G6o_A66dup/E62_A66dup, E62K, R68S, and K117N have been characterized as activating and oncogenic51,89-111.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

Sotorasib

Assay findings association

KRAS G12C

AREAS OF THERAPEUTIC USE

Sotorasib is a KRAS G12C inhibitor that is FDA approved for the treatment of locally advanced or metastatic nonsmall cell lung cancer (NSCLC). Please see the drug label for full prescribing information.

GENE ASSOCIATION

Sotorasib has been reported to confer clinical benefit for patients with KRAS G12C-mutated non-small cell lung cancer (NSCLC)41,112; limited clinical data suggest sotorasib may also provide benefit in other G12C-mutated solid diseases41,113.

SUPPORTING DATA

The Phase 1/2 CodeBreaK 100 trial of sotorasib for patients with previously treated locally advanced or metastatic G12C-mutated solid tumors observed significant benefit for patients with non-small cell lung cancer (NSCLC), achieving an ORR of 37%, a DCR of 81%, median PFS (mPFS) of 6.8 months, and median OS of 12.5 months^{41,112}. In the same study, patients with colorectal cancer (CRC) achieved a lower ORR of 7% (3/42) but had a high DCR of 74% (31/42) and mPFS of 4.0 months, and individual responses (PRs) were observed for patients with melanoma (1/1), pancreatic (1/11), endometrial (1/2), and appendiceal (1/2) cancers41.

NOTE Genomic alterations detected may be associated with activity of certain US FDA or other specific country approved therapies; however, the therapies listed in this report may have varied evidence in the patient's tumor type. The listed therapies are not ranked in order of potential or predicted efficacy for this patient or in order of level of evidence for this patient's tumor type. The therapies listed in this report may not be complete and/or exhaustive. Furthermore, the listed therapies are limited to US FDA approved pharmaceutical drug products that are linked to a specific genomic alteration. There may also be US FDA approved pharmaceutical drug products that are not linked to a genomic alteration. Further there may also exist pharmaceutical drug products that are not approved by the US FDA or other national authorities. There may also be other treatment modalities available than pharmaceutical drug products.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

© 2021 Foundation Medicine, Inc. All rights reserved

PAGE 5 Of 14

CLINICAL TRIALS

IMPORTANT Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and should be investigated by the physician or

research staff. This is not a comprehensive list of all available clinical trials. There may also be compassionate use or early access programs available, which are not listed in this report. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial \rightarrow Geographical proximity \rightarrow Later trial phase. Clinical trials are not ranked in order of potential or predicted efficacy for this patient or

in order of level of evidence for this patient's tumor type. Clinical trials listed here may have additional enrollment criteria that may require medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. However, clinicaltrials.gov does not list all clinical trials that might be available.

GENE KRAS

ALTERATION G12C

RATIONALE

Clinical evidence suggests that patients with the KRAS G12C mutation may be sensitive to G12C-targeted inhibitors such as sotorasib and adagrasib. KRAS activating mutations or amplification may predict sensitivity to inhibitors of MAPK pathway components, including MEK inhibitors. Limited clinical and preclinical studies indicate KRAS mutations may predict sensitivity

to MEK-pan-RAF dual inhibitors. Multiple clinical studies have reported lack of efficacy of MEK inhibitors as monotherapy for treatment of KRAS-mutant pancreatic cancer. Emerging data suggest patients with KRAS-mutant pancreatic cancer may be sensitive to combination MEK/autophagy inhibitors.

NCT03600883

A Phase 1/2, Study Evaluating the Safety, Tolerability, PK, and Efficacy of AMG 510 in Subjects With Solid Tumors With a Specific KRAS Mutation.

PHASE 1/2

TARGETS KRAS, PD-1, PD-L1

LOCATIONS: Fukuoka-shi (Japan), Matsuyama-shi (Japan), Seoul (Korea, Republic of), Wakayama-shi (Japan), Osaka-shi (Japan), Hirakata-shi (Japan), Nagoya-shi (Japan), Sunto-gun (Japan), Yokohama-shi (Japan), Kawasaki-shi (Japan)

NCTO4185883

AMG 510 Activity in Subjects With Advanced Solid Tumors With KRAS p.G12C Mutation (CodeBreak 101)

PHASE 1/2

TARGETS
KRAS, CDK4, CDK6, PD-1, mTOR, SHP2, MEK, PD-L1, EGFR, ERBB2,

ERBB4, VEGFA

LOCATIONS: Nagoya-shi (Japan), Kashiwa-shi (Japan), Washington, California, Utah

NCT03785249

MRTX849 in Patients With Cancer Having a KRAS G12C Mutation

PHASE 1/2

TARGETS

KRAS, PD-1, EGFR, ERBB2, ERBB4

LOCATIONS: Alaska, Washington, Oregon, California, Montana

NCT04449874

A Study to Evaluate the Safety, Pharmacokinetics, and Activity of GDC-6036 Alone or in Combination in Participants With Advanced or Metastatic Solid Tumors With a KRAS G12C Mutation

PHASE 1

TARGETS
PD-L1, VEGFA, KRAS, EGFR

LOCATIONS: Nedlands (Australia), East Melbourne (Australia), Melbourne (Australia), California, Montreal (Canada), Toronto (Canada), Pennsylvania, Massachusetts, Connecticut, New York

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use

CLINICAL TRIALS

NCT04111458	PHASE 1		
A Study to Test Different Doses of BI 1701963 Alone and Combined With Trametinib in Patients With Different Types of Advanced Cancer (Solid Tumours With KRAS Mutation)	TARGETS KRAS, SOS1, MEK		
LOCATIONS: Frankfurt am Main (Germany), Köln (Germany), Utrecht (Netherlands), Rotterdam (Net Carolina	herlands), Massachusetts, Tennessee, Texas, North		
NCT03825289	PHASE 1		
Trametinib and Hydroxychloroquine in Treating Patients With Pancreatic Cancer	TARGETS MEK		
LOCATIONS: Utah			
NCT04132505	PHASE 1		
Binimetinib and Hydroxychloroquine in Treating Patients With KRAS Mutant Metastatic Pancreatic Cancer	TARGETS MEK		
LOCATIONS: Texas			

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

PATIENT Huang, Hui-l TUMOR TYPE
Pancreas carcinoma (NOS)

REPORT DATE 17 Dec 2021

ORDERED TEST # ORD-1255380-01

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

 CXCR4
 IRS2
 PDCD1LG2 (PD-L2)
 PTCH1

 G216D
 G1308V
 P185L
 P1314L

RAD51D RICTOR V66M I116V

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

Genes assayed in FoundationOne®Liquid CDx

FoundationOne Liquid CDx interrogates 324 genes, including 309 genes with complete exonic (coding) coverage and 15 genes with only select non-coding coverage (indicated with an *); 75 genes (indicated in bold) are captured with increased sensitivity and have complete exonic (coding) coverage unless otherwise noted.

ABL1 Exons 4-9	ACVR1B	AKT1 Exon 3	AKT2	AKT3	ALK Exons 20-29, Introns 18, 19	ALOX12B	AMER1 (FAM123B)	APC
AR	ARAF Exons 4, 5, 7, 11, 13, 15, 16	ARFRP1	ARID1A	ASXL1	ATM	ATR	ATRX	AURKA
AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2	BCL6
BCOR	BCORL1	BCR* Introns 8, 13, 14	BRAF Exons 11-18, Introns 7-10	BRCA1 Dintrons 2, 7, 8, 12, 16, 19, 20	BRCA2 D Intron 2	BRD4	BRIP1	BTG1
BTG2	BTK Exons 2, 15	C11orf30 (EMSY)	C17orf39 (GID4)	CALR	CARD11	CASP8	CBFB	CBL
CCND1	CCND2	CCND3	CCNE1	CD22	CD70	CD74* Introns 6-8	CD79A	CD79B
CD274 (PD-L1)	CDC73	CDH1	CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B
CDKN2A	CDKN2B	CDKN2C	CEBPA	CHEK1	CHEK2	CIC	CREBBP	CRKL
CSF1R	CSF3R	CTCF	CTNNA1	CTNNB1 Exon 3	CUL3	CUL4A	CXCR4	CYP17A1
DAXX	DDR1	DDR2 Exons 5, 17, 18	DIS3	DNMT3A	DOT1L	EED	EGFR Introns 7, 15, 24-27	EP300
ЕРНАЗ	ЕРНВ1	ЕРНВ4	ERBB2	ERBB3 Exons 3, 6, 7, 8, 10, 12, 20, 21, 23, 24, 25	ERBB4	ERCC4	ERG	ERRFI1
ESR1 Exons 4-8	ETV4* Intron 8	ETV5* Introns 6, 7	ETV6* Introns 5, 6	EWSR1* Introns 7-13	EZH2 Exons 4, 16, 17, 18	EZR* Introns 9-11	FAM46C	FANCA
FANCC	FANCG	FANCL	FAS	FBXW7	FGF10	FGF12	FGF14	FGF19
FGF23	FGF3	FGF4	FGF6	FGFR1 Introns 1, 5, Intron 17	FGFR2 Intron 1, Intron 17	FGFR3 Exons 7, 9 (alternative designation exon 10), 14, 18, Intron 17		FH
FLCN	FLT1	FLT3 Exons 14, 15, 20	FOXL2	FUBP1	GABRA6	GATA3	GATA4	GATA6
GNA11 Exons 4, 5	GNA13	GNAQ Exons 4, 5	GNAS Exons 1, 8	GRM3	GSK3B	НЗГЗА	HDAC1	HGF
HNF1A	HRAS Exons 2, 3	HSD3B1	ID3	IDH1 Exon 4	IDH2 Exon 4	IGF1R	IKBKE	IKZF1
INPP4B	IRF2	IRF4	IRS2	JAK1	JAK2 Exon 14	JAK3 Exons 5, 11, 12, 13, 15, 16	JUN	KDM5A
KDM5C	KDM6A	KDR	KEAP1	KEL	KIT Exons 8, 9, 11, 12, 13, 1 Intron 16	KLHL6 7,	KMT2A (MLL) Introns 6, 8-11, Intron 7	KMT2D (MLL2)

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

Genes assayed in FoundationOne®Liquid CDx

FoundationOne Liquid CDx interrogates 324 genes, including 309 genes with complete exonic (coding) coverage and 15 genes with only select non-coding coverage (indicated with an *); 75 genes (indicated in bold) are captured with increased sensitivity and have complete exonic (coding) coverage unless otherwise noted.

KRAS	LTK	LYN	MAF	MAP2K1 (MEK1) Exons 2, 3	MAP2K2 (MEK2) Exons 2-4, 6,	MAP2K4 7	МАРЗК1	МАРЗК13
МАРК1	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MERTK	MET
MITF	MKNK1	MLH1	MPL Exon 10	MRE11A	MSH2 Intron 5	MSH3	MSH6	MST1R
МТАР	MTOR Exons 19, 30, 39, 40, 43-45, 47, 48, 53, 56	МИТҮН	MYB* Intron 14	MYC Intron 1	MYCL (MYCL1)	MYCN	MYD88 Exon 4	NBN
NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1	NOTCH2 Intron 26	NOTCH3	NPM1 Exons 4-6, 8, 10
NRAS Exons 2, 3	NSD3 (WHSC1L1)	NT5C2	NTRK1 Exons 14, 15, Introns 8-11	NTRK2 Intron 12	NTRK3 Exons 16, 17	NUTM1* Intron 1	P2RY8	PALB2
PARK2	PARP1	PARP2	PARP3	PAX5	PBRM1	PDCD1 (PD-1)	PDCD1LG2 (PD-L2)	PDGFRA Exons 12, 18, Introns 7, 9, 11
PDGFRB Exons 12-21, 23	PDK1	PIK3C2B	PIK3C2G	PIK3CA Exons 2, 3, 5-8, 10, 14, 19, 21 (Coding Exons 1	PIK3CB	PIK3R1	PIM1	PMS2
POLD1	POLE	PPARG	PPP2R1A	2, 4-7, 9, 13, 18, 20) PPP2R2A	PRDM1	PRKAR1A	PRKCI	РТСН1
PTEN	PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51	RAD51B	RAD51C
RAD51D	RAD52	RAD54L	RAF1 Exons 3, 4, 6, 7, 10, 14, 15, 17, Introns 4-8	RARA , Intron 2	RB1	RBM10	REL	RET Introns 7, 8, Exons 11, 13-16, Introns 9-11
RICTOR	RNF43	ROS1 Exons 31, 36-38, 40, Introns 31-35	RPTOR	RSPO2* Intron 1	SDC4* Intron 2	SDHA	SDHB	SDHC
SDHD	SETD2	SF3B1	SGK1	SLC34A2* Intron 4	SMAD2	SMAD4	SMARCA4	SMARCB1
SMO	SNCAIP	SOCS1	SOX2	SOX9	SPEN	SPOP	SRC	STAG2
STAT3	STK11	SUFU	SYK	TBX3	TEK	TERC*	TERT* Promoter	TET2
TGFBR2	TIPARP	TMPRSS2* Introns 1-3	TNFAIP3	TNFRSF14	TP53	TSC1	TSC2	TYRO3
U2AF1	VEGFA	VHL	WHSC1	WT1	XPO1	XRCC2	ZNF217	ZNF703

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS Microsatellite (MS) status

Blood Tumor Mutational Burden (bTMB)

Tumor Fraction

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

About FoundationOne®Liquid CDx

FoundationOne Liquid CDx fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Oarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium. The CE-IVD regulatory status of FoundationOne Liquid CDx is applicable in countries that accept and/or recognize the CE mark.

ABOUT FOUNDATIONONE LIQUID CDX

FoundationOne Liquid CDx was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne Liquid CDx may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratories are qualified to perform highcomplexity clinical testing.

Please refer to technical information for performance specification details.

INTENDED USE

FoundationOne Liquid CDx is a next generation sequencing based in vitro diagnostic device that analyzes 324 genes. Substitutions and insertion and deletion alterations (indels) are reported in 311 genes, copy number alterations (CNAs) are reported in 310 genes, and gene rearrangements are reported in 324 genes. The test also detects the genomic signatures blood tumor mutational burden (bTMB), microsatellite instability (MSI), and tumor fraction. FoundationOne Liquid CDx utilizes circulating cell-free DNA (cfDNA) isolated from plasma derived from the anti-coagulated peripheral whole blood of cancer patients. The test is intended to be used as a companion diagnostic to identify patients who may benefit from treatment with targeted therapies in accordance with the approved therapeutic product labeling. Additionally, FoundationOne Liquid CDx is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with malignant neoplasms.

TEST PRINCIPLES

The FoundationOne Liquid CDx assay is performed exclusively as a laboratory service using circulating cell-free DNA (cfDNA) isolated from plasma derived from anti-coagulated peripheral whole blood from patients with solid malignant neoplasms. The assay employs a single DNA extraction method to obtain cfDNA from plasma from whole blood. Extracted

cfDNA undergoes whole-genome shotgun library construction and hybridization-based capture of 324 cancer-related genes including coding exons and select introns of 309 genes, as well as only select intronic regions or non-coding regions of 15 genes. Hybrid-capture selected libraries are sequenced with deep coverage using the NovaSeq® 6000 platform. Sequence data are processed using a customized analysis pipeline designed to accurately detect genomic alterations, including base substitutions, indels, select copy number variants, and select genomic rearrangements. Substitutions and insertion and deletion alterations (indels) are reported in 311 genes, copy number alterations (CNAs) are reported in 310 genes, and gene rearrangements are reported in 324 genes. The assay also reports tumor fraction, and genomic signatures including MSI and bTMB. A subset of targeted regions in 75 genes is baited for increased sensitivity.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

QUALIFIED ALTERATION CALLS (EQUIVOCAL)

All equivocal calls, regardless of alteration type, imply that there is adequate evidence to call the alteration with confidence. However, the repeatability of equivocal calls may be lower than non-equivocal calls.

RANKING OF THERAPIES AND CLINICAL

Ranking of Therapies in Summary Table Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials Pediatric trial qualification → Geographical proximity → Later trial phase.

LIMITATIONS

- 1. For in vitro diagnostic use.
- 2. For prescription use only. This test must be ordered by a qualified medical professional in accordance with clinical laboratory regulations.
- **3.** A negative result does not rule out the presence of a mutation below the limits of detection of the assay. Patients for whom no companion diagnostic alterations are detected should be considered for confirmation with an appropriately validated tumor tissue test, if available.
- 4. The FoundationOne Liquid CDx assay does not detect heterozygous deletions.
- 5. The test is not intended to provide information on cancer predisposition.
- 6. Performance has not been validated for cfDNA input below the specified minimum input.
- 7. Tissue TMB and blood TMB (bTMB) are estimated from the number of synonymous and nonsynonymous single-nucleotide variants (SNVs) and insertions and deletions (indels) per area of coding genome sampled, after the removal of known and likely oncogenic driver events and germline SNPs. Tissue TMB is calculated based on variants with an allele frequency of ≥5%, and bTMB is calculated based on variants with an allele frequency of ≥0.5%.
- 8. Tumor fraction is the percentage of circulating tumor DNA (ctDNA) present in a cell-free DNA (cfDNA) sample. The tumor fraction estimate is computationally derived from the observed level of aneuploidy in the sample. Tumor fraction is considered elevated when ctDNA levels are high enough that aneuploidy can be detected and is significantly distinct from that typically found in non-tumor samples.
- 9. Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the tumor genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor. The MSI algorithm is based on genome wide analysis of 1765 microsatellite loci and not based on the 5 or 7 MSI loci described in current clinical practice guidelines for solid tissue testing.
- 10. Genomic findings from circulating cell-free DNA (cfDNA) may originate from circulating tumor DNA fragments, germline alterations, or non-tumor somatic alterations, such as clonal hematopoiesis of indeterminate potential (CHIP). Genes with alterations that may be derived from CHIP include, but are not limited

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

APPENDIX

About FoundationOne®Liquid CDx

to: ASXL1, ATM, CBL, CHEK2, DNMT3A, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, TP53, and U2AF1.

- 11. Alterations reported may include somatic (not inherited) or germline (inherited) alterations; however, the test does not distinguish between germline and somatic alterations. If a reported alteration is suspected to be germline, confirmatory testing should be considered in the appropriate clinical context.
- 12. The test is not intended to replace germline testing or to provide information about cancer predisposition.

REPORT HIGHLIGHTS

The Report Highlights includes select genomic and therapeutic information with potential impact on patient care and treatment that is specific to the genomics and tumor type of the sample analyzed. This section may highlight information including targeted therapies with potential sensitivity or resistance; evidence-matched clinical trials; and variants with potential diagnostic, prognostic, nontargeted treatment, germline, or clonal hematopoiesis implications. Information included in the Report Highlights is expected to evolve with advances in scientific and clinical research. Findings included in the Report Highlights should be considered in the context of all other information in this report and other relevant patient information. Decisions on patient care and treatment are the responsibility of the treating physician.

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >30%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FH, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, PMS2, POLE, RAD51C, RAD51D, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to

distinguish whether a finding in this patient's tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, ATM, CBL, CHEK2, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patientmatched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical

NATIONAL COMPREHENSIVE CANCER NETWORK* (NCCN*) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2021. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne Liquid CDx.

TREATMENT DECISIONS ARE THE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this test or the information contained in this report.

Certain sample of variant characteristics may result in reduced sensitivity. These include: low sample quality, deletions and insertions >4obp, or repetitive/high homology sequences. FoundationOne Liquid CDx is performed using cell-free DNA, and as such germline events may not be reported.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

TUMOR TYPE
Pancreas carcinoma (NOS)

REPORT DATE 17 Dec 2021

FOUNDATION ONE ® LIQUID CDx

ORDERED TEST # ORD-1255380-01

APPENDIX

About FoundationOne®Liquid CDx

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
Muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
os	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
TKI	Tyrosine kinase inhibitor

MR Suite Version 5.2.0

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

References

- 1. Gandara DR, et al. Nat. Med. (2018) pmid: 30082870
- 2. Wang Z, et al. JAMA Oncol (2019) pmid: 30816954
- 3. Aggarwal C, et al. Clin. Cancer Res. (2020) pmid: 32102950
- 4. Li et al., 2020: ASCO Abstract 6511
- 5. Cerami E, et al. Cancer Discov (2012) pmid: 22588877
- 6. Gao J, et al. Sci Signal (2013) pmid: 23550210
- 7. Tate JG, et al. Nucleic Acids Res. (2019) pmid: 30371878
- 8. Hu et al., 2017: ASCO Abstract e15791
- 9. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 10. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 11. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 12. Rizvi NA, et al. Science (2015) pmid: 25765070
- 13. Johnson BE, et al. Science (2014) pmid: 24336570
- 14. Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- 15. Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- 16. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 17. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 18. Nature (2012) pmid: 22810696
- 19. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid:
- 20. Bronkhorst AJ, et al. Biomol Detect Quantif (2019) pmid: 30923679
- 21. Raja R, et al. Clin. Cancer Res. (2018) pmid: 30093454
- 22. Hrebien S, et al. Ann. Oncol. (2019) pmid: 30860573
- 23. Choudhury AD, et al. JCI Insight (2018) pmid: 30385733
- 24. Goodall J, et al. Cancer Discov (2017) pmid: 28450425
- 25. Goldberg SB, et al. Clin. Cancer Res. (2018) pmid: 29330207
- Bettegowda C, et al. Sci Transl Med (2014) pmid: 24553385
- 27. Lapin M, et al. J Transl Med (2018) pmid: 30400802
- 28. Shulman DS, et al. Br. J. Cancer (2018) pmid: 30131550
- 29. Stover DG, et al. J. Clin. Oncol. (2018) pmid: 29298117
- **30.** Hemming ML, et al. JCO Precis Oncol (2019) pmid: 30793095
- Egyud M, et al. Ann. Thorac. Surg. (2019) pmid:
- 32. Fan G, et al. PLoS ONE (2017) pmid: 28187169
- 33. Vu et al., 2020; DOI: 10.1200/P0.19.00204
- 34. Li G, et al. J Gastrointest Oncol (2019) pmid: 31602320
- 35. Zhang EW, et al. Cancer (2020) pmid: 32757294
- 36. Butler TM, et al. Cold Spring Harb Mol Case Stud (2019) pmid: 30833418
- 37. Norton ML, et al. Leg Med (1986) pmid: 3312887
- 38. Shinde et al., 2020: AACR Abstract CT143

- 39. Canon J, et al. Nature (2019) pmid: 31666701
- 40. Lanman BA, et al. J. Med. Chem. (2020) pmid: 31820981
- 41. Hong DS, et al. (2020) pmid: 32955176
- 42. Hallin J, et al. Cancer Discov (2019) pmid: 31658955 43. Janne et al., 2020; EORTC-NCI-AACR Abstract 3LBA
- 44. Johnson et al., 2020: EORTC-NCI-AACR Abstract 4LBA
- 45. Amodio V, et al. Cancer Discov (2020) pmid: 32430388
- 46. Lu H, et al. Mol Cancer Ther (2019) pmid: 31068384
- 47. Mainardi S, et al. Nat Med (2018) pmid: 29808006
- 48. Koczywas et al., 2021; AACR Abstract LB001
- 49. Bendell et al., 2020; EORTC-NCI-AACR Abstract 5
- 50. Nakano H, et al. Proc. Natl. Acad. Sci. U.S.A. (1984) pmid: 6320174
- 51. Pylayeva-Gupta Y, et al. Nat. Rev. Cancer (2011) pmid: 21993244
- 52. Yamaguchi T, et al. Int. J. Oncol. (2011) pmid: 21523318
- 53. Watanabe M, et al. Cancer Sci. (2013) pmid: 23438367
- 54. Gilmartin AG, et al. Clin. Cancer Res. (2011) pmid:
- 55. Yeh JJ, et al. Mol. Cancer Ther. (2009) pmid: 19372556
- 56. Bodoky G, et al. Invest New Drugs (2012) pmid: 21594619
- 57. Rinehart J. et al. J. Clin. Oncol. (2004) pmid: 15483017
- 58. Lorusso PM, et al. J. Clin. Oncol. (2005) pmid: 16009947
- 59. Infante JR, et al. Lancet Oncol. (2012) pmid: 22805291
- 60. Weekes CD, et al. Clin. Cancer Res. (2013) pmid: 23434733
- 61. Garrido-Laguna I, et al. Oncoscience (2015) pmid: 25897431
- 62. Van Laethem JL, et al. Target Oncol (2017) pmid:
- 27975152
- 63. Infante JR, et al. Eur. J. Cancer (2013) pmid: 23583440
- 64. Infante JR, et al. Eur. J. Cancer (2014) pmid: 24915778 65. Van Cutsem E, et al. Int. J. Cancer (2018) pmid:
- 29756206
- 66. Ko AH, et al. Clin. Cancer Res. (2016) pmid: 26251290
- 67. Chung V, et al. JAMA Oncol (2017) pmid: 27978579
- **68.** Bedard PL, et al. Clin. Cancer Res. (2015) pmid: 25500057
- 69. Kinsey CG, et al. Nat. Med. (2019) pmid: 30833748
- 70. Bryant KL, et al. Nat. Med. (2019) pmid: 30833752
- 71. Noonan AM, et al. Mol. Ther. (2016) pmid: 27039845
- 72. Mahalingam D, et al. Cancers (Basel) (2018) pmid: 29799479
- 73. Hillig RC, et al. Proc Natl Acad Sci U S A (2019) pmid: 30683722
- Hofmann MH, et al. Cancer Discov (2021) pmid: 32816843
- 75. Hofmann et al., 2021; AACR Abstract CT210

- 76. Gort et al., 2020; ASCO Abstract TPS3651
- 77. Nassar AH, et al. N Engl J Med (2021) pmid: 33497555
- 78. Biankin AV, et al. Nature (2012) pmid: 23103869
- Witkiewicz AK, et al. Nat Commun (2015) pmid: 25855536
- Feldmann G, et al. J Hepatobiliary Pancreat Surg (2007) pmid: 17520196
- 81. Rachakonda PS, et al. PLoS ONE (2013) pmid: 23565280
- 82. Hruban RH, et al. Am. J. Pathol. (1993) pmid: 8342602
- Maitra A, et al. Best Pract Res Clin Gastroenterol (2006) pmid: 16549325
- 84. Kahn S, et al. Anticancer Res. () pmid: 3310850
- 85. Awad MM, et al. N Engl J Med (2021) pmid: 34161704
- 86. Tanaka N, et al. Cancer Discov (2021) pmid: 33824136
- 87. Ryan MB, et al. Clin Cancer Res (2020) pmid: 31776128
- 88. Dunnett-Kane V, et al. Cancers (Basel) (2021) pmid: 33466360
- Akagi K, et al. Biochem. Biophys. Res. Commun. (2007) pmid: 17150185
- 90. Bollag G, et al. J. Biol. Chem. (1996) pmid: 8955068
- 91. Buhrman G, et al. Proc. Natl. Acad. Sci. U.S.A. (2010) nmid: 20194776
- 92. Sci. STKE (2004) pmid: 15367757
- 93. Edkins S, et al. Cancer Biol. Ther. (2006) pmid: 16969076
- 94. Feig LA, et al. Mol. Cell. Biol. (1988) pmid: 3043178
- 95. Gremer L, et al. Hum. Mutat. (2011) pmid: 20949621
- Janakiraman M. et al. Cancer Res. (2010) pmid:
- 97. Kim E, et al. Cancer Discov (2016) pmid: 27147599
- Lukman S, et al. PLoS Comput. Biol. (2010) pmid:
- 99. Naguib A, et al. J Mol Signal (2011) pmid: 21371307
- 100. Prior IA, et al. Cancer Res. (2012) pmid: 22589270
- 101. Privé GG, et al. Proc. Natl. Acad. Sci. U.S.A. (1992) pmid:
- 102. Scheffzek K, et al. Science (1997) pmid: 9219684
- 103. Scholl C, et al. Cell (2009) pmid: 19490892
- 104. Smith G, et al. Br. J. Cancer (2010) pmid: 20147967
- 105. Tyner JW, et al. Blood (2009) pmid: 19075190
- Valencia A, et al. Biochemistry (1991) pmid: 2029511 107. White Y, et al. Nat Commun (2016) pmid: 26854029
- 108. Wiest JS, et al. Oncogene (1994) pmid: 8058307
- 109. Angeles AKJ, et al. Oncol Lett (2019) pmid: 31289513 **110.** Tong JH, et al. Cancer Biol. Ther. (2014) pmid: 24642870
- 111. Loree JM, et al. Clin Cancer Res (2021) pmid: 34117033
- 112. Skoulidis F, et al. N Engl J Med (2021) pmid: 34096690 113. Strickler et al., 2020; ESMO Asia Abstract 83MO

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy