Tracking the best Expert

Yoav Freund

February 9, 2006

Review mixable loss functions

Review mixable loss functions

Switching Experts

Review mixable loss functions

Switching Experts

An inefficient algorithm

Review mixable loss functions

Switching Experts

An inefficient algorithm

The fixed-share algorithm

Review mixable loss functions

Switching Experts

An inefficient algorithm

The fixed-share algorithm

The variable-share algorithm

 Γ - prediction space. Ω - outcome space.

 Γ - prediction space. Ω - outcome space. On each trial t=1,2,...

```
\Gamma - prediction space. \Omega - outcome space. On each trial t=1,2,\ldots
1. Each expert i\in\{1\ldots n\} makes a prediction \gamma_i^t\in\Gamma
```

```
\Gamma - prediction space. \Omega - outcome space. On each trial t=1,2,\ldots
```

- 1. Each expert $i \in \{1 \dots n\}$ makes a prediction $\gamma_i^t \in \Gamma$
- 2. The learner, after observing $\langle \gamma_1^t \dots \gamma_n^t \rangle$, makes its own prediction γ^t

```
\Gamma - prediction space. \Omega - outcome space. On each trial t=1,2,\ldots
```

- 1. Each expert $i \in \{1 \dots n\}$ makes a prediction $\gamma_i^t \in \Gamma$
- 2. The learner, after observing $\langle \gamma_1^t \dots \gamma_n^t \rangle$, makes its own prediction γ^t
- 3. Nature chooses an outcome $\omega^t \in \Omega$

```
\Gamma - prediction space. \Omega - outcome space. On each trial t=1,2,\ldots
```

- 1. Each expert $i \in \{1 \dots n\}$ makes a prediction $\gamma_i^t \in \Gamma$
- 2. The learner, after observing $\langle \gamma_1^t \dots \gamma_n^t \rangle$, makes its own prediction γ^t
- 3. Nature chooses an outcome $\omega^t \in \Omega$
- 4. Each expert incurs loss $\ell_i^t = \lambda(\omega^t, \gamma_i^t)$ The learner incurs loss $\ell_A^t = \lambda(\omega^t, \gamma^t)$

Vovk's algorithm is the the highest achiever [Vovk95]

The pair (a, c) is achieved by some algorithm if and only if it is achieved by Vovk's algorithm.

Vovk's algorithm is the the highest achiever [Vovk95]

The pair (a, c) is achieved by some algorithm if and only if it is achieved by Vovk's algorithm.

The separation curve is $\left\{ \left(\underline{a}(\eta), \frac{\underline{a}(\eta)}{\eta} \right) \middle| \eta \in [0, \infty] \right\}$

Review

Vovk's algorithm is the the highest achiever [Vovk95]

The pair (a, c) is achieved by some algorithm if and only if it is achieved by Vovk's algorithm.

The separation curve is $\left\{ \left(a(\eta), \frac{a(\eta)}{\eta} \right) \middle| \eta \in [0, \infty] \right\}$

$$\lambda_{\mathsf{ent}}(\omega,\gamma) = \omega \ln \frac{\omega}{\gamma} + (1-\omega) \ln \frac{1-\omega}{1-\gamma}$$

$$\lambda_{\mathsf{ent}}(\omega,\gamma) = \omega \ln \frac{\omega}{\gamma} + (1-\omega) \ln \frac{1-\omega}{1-\gamma}$$

▶ When $q_t \in \{0,1\}$ Cumulative log loss = coding length ± 1

$$\lambda_{ ext{ent}}(\omega,\gamma) = \omega \ln rac{\omega}{\gamma} + (1-\omega) \ln rac{1-\omega}{1-\gamma}$$

- ▶ When $q_t \in \{0,1\}$ Cumulative log loss = coding length ± 1
- ▶ If $P[\omega_t = 1] = q$, optimal prediction $\gamma^t = q$

- Review

$$\lambda_{ ext{ent}}(\omega,\gamma) = \omega \ln \frac{\omega}{\gamma} + (1-\omega) \ln \frac{1-\omega}{1-\gamma}$$

- ▶ When $q_t \in \{0,1\}$ Cumulative log loss = coding length ± 1
- ▶ If $P[\omega_t = 1] = q$, optimal prediction $\gamma^t = q$
- Unbounded loss.

$$\lambda_{ ext{ent}}(\omega,\gamma) = \omega \ln \frac{\omega}{\gamma} + (1-\omega) \ln \frac{1-\omega}{1-\gamma}$$

- ▶ When $q_t \in \{0,1\}$ Cumulative log loss = coding length ± 1
- ▶ If $P[\omega_t = 1] = q$, optimal prediction $\gamma^t = q$
- Unbounded loss.
- ▶ Not symmetric $\exists p, q \ \lambda(p, q) \neq \lambda(q, p)$.

$$\lambda_{ ext{ent}}(\omega,\gamma) = \omega \ln rac{\omega}{\gamma} + (1-\omega) \ln rac{1-\omega}{1-\gamma}$$

- ▶ When $q_t \in \{0, 1\}$ Cumulative log loss = coding length ± 1
- ▶ If $P[\omega_t = 1] = q$, optimal prediction $\gamma^t = q$
- Unbounded loss.
- ▶ Not symmetric $\exists p, q \ \lambda(p, q) \neq \lambda(q, p)$.
- No triangle inequality $\exists p_1, p_2, p_3 \ \lambda(p_1, p_3) > \lambda(p_1, p_2) + \lambda(p_2, p_3)$

▶

$$\lambda_{sq}(\omega, \gamma) = (\omega - \gamma)^2$$

$$\lambda_{\mathsf{sq}}(\omega,\gamma) = (\omega - \gamma)^2$$

► $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 - q$, optimal prediction $\gamma^t = q$

$$\lambda_{\mathsf{sq}}(\omega,\gamma) = (\omega - \gamma)^2$$

- ► $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 q$, optimal prediction $\gamma^t = q$
- Bounded loss.

$$\lambda_{\mathsf{sq}}(\omega,\gamma) = (\omega - \gamma)^2$$

- ► $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 q$, optimal prediction $\gamma^t = q$
- Bounded loss.
- Defines a metric (symmetric and triangle ineq.)

$$\lambda_{\mathsf{sq}}(\omega,\gamma) = (\omega - \gamma)^2$$

- ► $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 q$, optimal prediction $\gamma^t = q$
- Bounded loss.
- Defines a metric (symmetric and triangle ineq.)
- Corresponds to regression.

Absolute loss

$$\lambda(\omega,\gamma) = |\omega - \gamma|$$

Absolute loss

 \triangleright

$$\lambda(\omega,\gamma) = |\omega - \gamma|$$

 Probability of making a mistake if predicting 0 or 1 using a biased coin

Absolute loss

$$\lambda(\omega,\gamma) = |\omega - \gamma|$$

- Probability of making a mistake if predicting 0 or 1 using a biased coin
- ▶ If $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 q$, then the optimal prediction is

$$\gamma^t = \begin{cases} 1 & \text{if } q > 1/2, \\ 0 & \text{otherwise} \end{cases}$$

▶ A Loss function is mixable if a pair of the form (1, c), $c < \infty$ is achievable.

$$L_A \leq L_{\min} + c \ln n$$

▶ A Loss function is mixable if a pair of the form (1, c), $c < \infty$ is achievable.

$$L_A \leq L_{\min} + c \ln n$$

▶ Vovk's algorithm with $\eta = 1/c$ achieves this bound.

▶ A Loss function is mixable if a pair of the form (1, c), $c < \infty$ is achievable.

$$L_A \leq L_{\min} + c \ln n$$

- ▶ Vovk's algorithm with $\eta = 1/c$ achieves this bound.
- $\triangleright \lambda_{ent}, \lambda_{sq}, \lambda_{hel}$ are mixable

▶ A Loss function is mixable if a pair of the form (1, c), $c < \infty$ is achievable.

$$L_A \leq L_{\min} + c \ln n$$

- ▶ Vovk's algorithm with $\eta = 1/c$ achieves this bound.
- $\triangleright \lambda_{ent}, \lambda_{sq}, \lambda_{hel}$ are mixable
- $\triangleright \lambda_{abs}, \lambda_{dot}$ are not mixable

Summary of bounds for mixable losses

TRACKING THE BEST EXPERT

Loss	c values: $(\eta = 1/c)$	
Functions:	$\mathbf{pred}_{\mathrm{wmean}}(v,x)$	$\operatorname{pred}_{\operatorname{Vovk}}(v,x)$
$L_{\text{Sq}}(p,q)$	2	1/2
$L_{\mathbf{ent}}(p,q)$	1	1
$L_{\text{hel}}(p,q)$	1	$1/\sqrt{2}$

Figure 2. (c, 1/c)-realizability: c values for loss and prediction function pairing

Switching experts setup

Usually: compare algorithm's total loss to total loss of the best expert.

Switching experts setup

- Usually: compare algorithm's total loss to total loss of the best expert.
- Switching experts: compare algorithm's total loss to total loss of best expert sequence with k switches.

Switching experts setup

- Usually: compare algorithm's total loss to total loss of the best expert.
- Switching experts: compare algorithm's total loss to total loss of best expert sequence with k switches.

► Fix:

- ► Fix:
 - / sequence length

- ► Fix:
 - ▶ / sequence length
 - ▶ *k* number of switches

- ► Fix:
 - ▶ / sequence length
 - k number of switches
 - ▶ *n* number of experts

- ► Fix:
 - / sequence length
 - k number of switches
 - n number of experts
- Consider one partition-expert per sequence of switching experts.

- ► Fix:
 - / sequence length
 - k number of switches
 - n number of experts
- Consider one partition-expert per sequence of switching experts.
- ▶ No. of partition-experts : $\binom{l}{k-1} n(n-1)^k = O\left(n^{k+1} \left(\frac{el}{k}\right)^k\right)$

- ► Fix:
 - / sequence length
 - k number of switches
 - n number of experts
- Consider one partition-expert per sequence of switching experts.
- ▶ No. of partition-experts : $\binom{l}{k-1} n(n-1)^k = O\left(n^{k+1} \left(\frac{el}{k}\right)^k\right)$
- ► The log-loss regret is at most $(k + 1) \log n + k \log \frac{1}{k} + k$

- Fix:
 - / sequence length
 - k number of switches
 - n number of experts
- Consider one partition-expert per sequence of switching experts.
- ▶ No. of partition-experts : $\binom{l}{k-1} n(n-1)^k = O\left(n^{k+1} \left(\frac{el}{k}\right)^k\right)$
- ► The log-loss regret is at most $(k+1) \log n + k \log \frac{1}{k} + k$
- ► Requires maintaining $O(n^{k+1}(\frac{el}{k})^k)$ weights.

generalization to mixable losses

In this lecture we assume loss function is mixable.

generalization to mixable losses

- ▶ In this lecture we assume loss function is mixable.
- There is an exponential weights algorithm with learning rate η that achieves (in the non-switching case) a bound

$$L_A \leq \min_i L_i + \frac{1}{\eta} \log n$$

generalization to mixable losses

- In this lecture we assume loss function is mixable.
- There is an exponential weights algorithm with learning rate η that achieves (in the non-switching case) a bound

$$L_A \leq \min_i L_i + \frac{1}{\eta} \log n$$

► Then using the partition-expert algorithm for the switching-experts case we get a bound on the regret $\frac{1}{n}((k+1)\log n + k\log \frac{1}{k} + k)$

Update weights in two stages: loss update then share update.

- Update weights in two stages: loss update then share update.
- ▶ Prediction uses the normalized s weights $w_{t,i}^s / \sum_j w_{t,j}^s$

- Update weights in two stages: loss update then share update.
- ▶ Prediction uses the normalized s weights $w_{t,i}^s / \sum_j w_{t,j}^s$
- Loss update is the same as always, but defines intermediate m weights:

$$\mathbf{w}_{t,i}^m = \mathbf{w}_{t,i}^s \mathbf{e}^{-\eta L(y_t, x_{t,i})}$$

- Update weights in two stages: loss update then share update.
- ▶ Prediction uses the normalized s weights $w_{t,i}^s / \sum_j w_{t,j}^s$
- ► Loss update is the same as always, but defines intermediate *m* weights:

$$\mathbf{w}_{t,i}^m = \mathbf{w}_{t,i}^s \mathbf{e}^{-\eta L(\mathbf{y}_t, \mathbf{x}_{t,i})}$$

► Share update: redistribute the weights

- Update weights in two stages: loss update then share update.
- ▶ Prediction uses the normalized s weights $w_{t,i}^s / \sum_j w_{t,j}^s$
- Loss update is the same as always, but defines intermediate m weights:

$$\mathbf{w}_{t,i}^m = \mathbf{w}_{t,i}^s \mathbf{e}^{-\eta L(y_t, x_{t,i})}$$

- ► Share update: redistribute the weights
- ► Fixed-share:

$$pool = \alpha \sum_{i=1}^{n} w_{t,i}^{m}$$

$$w_{t+1,i}^{s} = (1-\alpha)w_{t,i}^{m} + \frac{1}{n-1}(pool - \alpha w_{t,i}^{m})$$

Proving a bound on the fixed-share

The relation between algorithm loss and total weight does not change because share update does not change the total weight.

Proving a bound on the fixed-share

- The relation between algorithm loss and total weight does not change because share update does not change the total weight.
- Thus we still have

$$L_A \leq \frac{1}{\eta} \sum_{i=1}^n w_{l+1,i}^s$$

Proving a bound on the fixed-share

- The relation between algorithm loss and total weight does not change because share update does not change the total weight.
- Thus we still have

$$L_A \leq \frac{1}{\eta} \sum_{i=1}^n w_{i+1,i}^s$$

► The harder question is how to lower bound $\sum_{i=1}^{n} w_{i+1,i}^{s}$

► Fix some switching experts sequence:

Fix some switching experts sequence:

▶ "follow" the weight of the chosen expert *i_t*.

Fix some switching experts sequence:

- ▶ "follow" the weight of the chosen expert *i_t*.
- ▶ The loss update reduces the weight by a factor of $e^{-\eta \ell_{t,i_t}}$.

► Fix some switching experts sequence:

- ▶ "follow" the weight of the chosen expert *i_t*.
- ▶ The loss update reduces the weight by a factor of $e^{-\eta \ell_{t,i_t}}$.
- The share update reduces the weight by a factor larger than:

Fix some switching experts sequence:

- ▶ "follow" the weight of the chosen expert *i_t*.
- ▶ The loss update reduces the weight by a factor of $e^{-\eta \ell_{t,i_t}}$.
- The share update reduces the weight by a factor larger than:
 - ▶ 1α on iterations with no switch.

Fix some switching experts sequence:

- "follow" the weight of the chosen expert i_t.
- ▶ The loss update reduces the weight by a factor of $e^{-\eta \ell_{t,i_t}}$.
- The share update reduces the weight by a factor larger than:
 - ▶ 1α on iterations with no switch.
 - $\rightarrow \frac{\alpha}{n-1}$ on iterations where a switch occurs.

Bound for arbitrary α

Combining we lower bound the final weight of the last expert in the sequence

$$w_{l+1,e_k}^s \ge \frac{1}{n} e^{-\eta L_*} (1-\alpha)^{l-k-1} \left(\frac{\alpha}{n-1}\right)^k$$

Where L_* is the cumulative loss of the switching sequence of experts.

Bound for arbitrary α

Combining we lower bound the final weight of the last expert in the sequence

$$w_{l+1,e_k}^s \ge \frac{1}{n} e^{-\eta L_*} (1-\alpha)^{l-k-1} \left(\frac{\alpha}{n-1}\right)^k$$

Where L_* is the cumulative loss of the switching sequence of experts.

 Combining the upper and lower bounds we get that for any sequence

$$L_A \leq L_* + \frac{1}{\eta} \left(\ln n + (l-k-1) \ln \frac{1}{1-\alpha} + k \left(\ln \frac{1}{\alpha} + \ln(n-1) \right) \right)$$

▶ let k^* be the best number of switches (in hind sight) and $\alpha^* = k^*/I$

- ▶ let k^* be the best number of switches (in hind sight) and $\alpha^* = k^*/l$
- ▶ Suppose we use $\alpha \approx \alpha^*$ then the bound that we get is

$$L_A \le L_* + \frac{1}{\eta}((k+1)\ln n + (l-1)(H(\alpha^*) + D_{\mathsf{KL}}(\alpha^*||\alpha)))$$

Where

$$H(\alpha^*) = -\alpha^* \ln \alpha^* - (1 - \alpha^*) \ln(1 - \alpha^*)$$

$$D_{\mathsf{KL}}(\alpha^*||\alpha) = \alpha^* \ln \frac{\alpha^*}{\alpha} (1 - \alpha^*) \ln \frac{1 - \alpha^*}{1 - \alpha}$$

- ▶ let k^* be the best number of switches (in hind sight) and $\alpha^* = k^*/l$
- ▶ Suppose we use $\alpha \approx \alpha^*$ then the bound that we get is

$$L_A \le L_* + \frac{1}{\eta}((k+1)\ln n + (l-1)(H(\alpha^*) + D_{\mathsf{KL}}(\alpha^*||\alpha)))$$

Where

$$H(\alpha^*) = -\alpha^* \ln \alpha^* - (1 - \alpha^*) \ln(1 - \alpha^*)$$

$$D_{\alpha}(\alpha^*) = -\alpha^* \ln \alpha^* - (1 - \alpha^*) \ln 1 - \alpha^*$$

$$D_{\mathsf{KL}}(\alpha^*||\alpha) = \alpha^* \ln \frac{\alpha^*}{\alpha} (1 - \alpha^*) \ln \frac{1 - \alpha^*}{1 - \alpha}$$

This is very close to the loss of the computationally inefficient algorithm.

- ▶ let k^* be the best number of switches (in hind sight) and $\alpha^* = k^*/l$
- ▶ Suppose we use $\alpha \approx \alpha^*$ then the bound that we get is

$$L_A \leq L_* + \frac{1}{\eta}((k+1)\ln n + (l-1)(H(\alpha^*) + D_{\mathsf{KL}}(\alpha^*||\alpha)))$$

Where

$$H(\alpha^*) = -\alpha^* \ln \alpha^* - (1 - \alpha^*) \ln(1 - \alpha^*)$$

$$D_{\mathsf{KL}}(\alpha^*||\alpha) = \alpha^* \ln \frac{\alpha^*}{\alpha} (1 - \alpha^*) \ln \frac{1 - \alpha^*}{1 - \alpha}$$

- This is very close to the loss of the computationally inefficient algorithm.
- For the log loss case this is essentially optimal.

- let k* be the best number of switches (in hind sight) and α* = k*/I
- ▶ Suppose we use $\alpha \approx \alpha^*$ then the bound that we get is

$$L_A \le L_* + \frac{1}{\eta}((k+1)\ln n + (l-1)(H(\alpha^*) + D_{\mathsf{KL}}(\alpha^*||\alpha)))$$

Where

$$H(\alpha^*) = -\alpha^* \ln \alpha^* - (1 - \alpha^*) \ln(1 - \alpha^*)$$

$$D_{\mathsf{KL}}(\alpha^*||\alpha) = \alpha^* \ln \frac{\alpha^*}{\alpha} (1 - \alpha^*) \ln \frac{1 - \alpha^*}{1 - \alpha}$$

- ► This is very close to the loss of the computationally inefficient algorithm.
- ▶ For the log loss case this is essentially optimal.
- ▶ Not so for square loss!

What can we hope to improve?

In the fixed-share algorithm, the weight of a suboptimal expert never decreases below α/n .

What can we hope to improve?

- In the fixed-share algorithm, the weight of a suboptimal expert never decreases below α/n .
- ► The algorithm does not concentrate only on the best expert, even if the last switch is in the distant past.

What can we hope to improve?

- In the fixed-share algorithm, the weight of a suboptimal expert never decreases below α/n .
- ► The algorithm does not concentrate only on the best expert, even if the last switch is in the distant past.
- ▶ The regret depends on the length of the sequence.

▶ Let the fraction of the total weight given to the best expert get arbitrarily close to 1.

- ► Let the fraction of the total weight given to the best expert get arbitrarily close to 1.
- we can get a regret bound that depends only on the number of switches, not on the length of the sequence.

- ► Let the fraction of the total weight given to the best expert get arbitrarily close to 1.
- we can get a regret bound that depends only on the number of switches, not on the length of the sequence.
- ▶ Requires that the loss be bounded.

- ► Let the fraction of the total weight given to the best expert get arbitrarily close to 1.
- we can get a regret bound that depends only on the number of switches, not on the length of the sequence.
- Requires that the loss be bounded.
- Works for square loss, but not for log loss!

$$pool = \sum_{i=1}^{n} \left(1 - (1 - \alpha)^{\ell_{t,i}} \right) w_{t,i}^{m}$$

$$w_{t+1,i}^{s} = (1 - \alpha)^{\ell_{t,i}} w_{t,i}^{m} + \frac{1}{n-1} \left(pool - \left(1 - (1 - \alpha)^{\ell_{t,i}} \right) w_{t,i}^{m} \right)$$

$$pool = \sum_{i=1}^{n} \left(1 - (1 - \alpha)^{\ell_{t,i}} \right) w_{t,i}^{m}$$

$$w_{t+1,i}^{s} = (1 - \alpha)^{\ell_{t,i}} w_{t,i}^{m} + \frac{1}{n-1} \left(pool - \left(1 - (1 - \alpha)^{\ell_{t,i}} \right) w_{t,i}^{m} \right)$$

If $\ell_{t,i} = 0$, then expert *i* does not contribute to the pool.

$$pool = \sum_{i=1}^{n} \left(1 - (1 - \alpha)^{\ell_{t,i}}\right) w_{t,i}^{m}$$

$$w_{t+1,i}^{s} = (1 - \alpha)^{\ell_{t,i}} w_{t,i}^{m} + \frac{1}{n-1} \left(pool - \left(1 - (1 - \alpha)^{\ell_{t,i}}\right) w_{t,i}^{m}\right)$$

If $\ell_{t,i} = 0$, then expert *i* does not contribute to the pool. Expert can get fraction of the total weight arbitrarily close to 1.

$$pool = \sum_{i=1}^{n} \left(1 - (1 - \alpha)^{\ell_{t,i}}\right) w_{t,i}^{m}$$

$$w_{t+1,i}^{s} = (1 - \alpha)^{\ell_{t,i}} w_{t,i}^{m} + \frac{1}{n-1} \left(pool - \left(1 - (1 - \alpha)^{\ell_{t,i}}\right) w_{t,i}^{m}\right)$$

If $\ell_{t,i}=0$, then expert i does not contribute to the pool. Expert can get fraction of the total weight arbitrarily close to 1. Shares the weight quickly if $\ell_{t,i}>0$

Bound for variable share

$$\frac{1}{\eta}\ln n + \left(1 + \frac{1}{(1-\alpha)\eta}\right)L_* + k\left(1 + \frac{1}{\eta}\left(\ln n - 1 + \ln\frac{1}{\alpha} + \ln\frac{1}{1-\alpha}\right)\right)$$

Bound for variable share

$$\frac{1}{\eta}\ln n + \left(1 + \frac{1}{(1-\alpha)\eta}\right)L_* + k\left(1 + \frac{1}{\eta}\left(\ln n - 1 + \ln\frac{1}{\alpha} + \ln\frac{1}{1-\alpha}\right)\right)$$

 $ightharpoonup \alpha$ should be tuned so that it is (close to) $\frac{k}{2k+L_*}$

An experiment using variable share

☐ The variable-share algorithm

Next Class

Suppose the best switching sequence is repeatedly switching among a small subset of the experts n' ≪ n

- Suppose the best switching sequence is repeatedly switching among a small subset of the experts n' « n
- ▶ In the context of speech recognition the speaker repeatedly uses a small number of phonemes.

- Suppose the best switching sequence is repeatedly switching among a small subset of the experts n' « n
- In the context of speech recognition the speaker repeatedly uses a small number of phonemes.
- If we know the subset, we can pay In n' per switch rather than In n

- Suppose the best switching sequence is repeatedly switching among a small subset of the experts n' « n
- In the context of speech recognition the speaker repeatedly uses a small number of phonemes.
- If we know the subset, we can pay In n' per switch rather than In n
- Can track switches much more closely.

- Suppose the best switching sequence is repeatedly switching among a small subset of the experts n' « n
- In the context of speech recognition the speaker repeatedly uses a small number of phonemes.
- If we know the subset, we can pay In n' per switch rather than In n
- Can track switches much more closely.
- ► Easy to describe an inefficient algorithm (consider all $\binom{n}{n'}$ subsets.)

- Suppose the best switching sequence is repeatedly switching among a small subset of the experts n' « n
- In the context of speech recognition the speaker repeatedly uses a small number of phonemes.
- If we know the subset, we can pay In n' per switch rather than In n
- Can track switches much more closely.
- ► Easy to describe an inefficient algorithm (consider all $\binom{n}{n'}$ subsets.)
- Next class how to do as well with just one weight per expert.