2.24 Solution: After separation of variables, the differential equation in the ϕ direction becomes

$$\frac{\partial^2 \Phi}{\partial \phi^2} = -\nu^2 \Phi,$$

where ν is a constant that needs to be fixed by the boundary conditions. Solutions to the above differential equations must be linear combinations of $e^{i\nu\phi}$ and $e^{-i\nu\phi}$, or equivalently, $\sin(\nu\phi)$ and $\cos(\nu\phi)$. The Dirichlet boundary condition at $\phi = 0$ for the vanishing of the solution picks the $\sin(\nu\phi)$ function. At $\phi = \beta$, we have $\sin(\nu\beta) = 0$, which means that $\nu\beta = m\pi$, or,

$$\nu = \frac{m\pi}{\beta}$$

for m > 0. Notice that

$$\int_0^\beta \sin(m\pi\phi/\beta)\sin(n\pi\phi/\beta)d\phi = \frac{\beta}{2}\delta_{mn},$$

then

$$\sqrt{\frac{2}{\beta}}\sin(m\pi\phi/\beta)$$

with m > 0 are orthonormal functions.

Given an arbitrary function $f(\phi)$ on the interval of $[0,\beta]$, it can be expanded with the above orthonormal functions,

$$f(\phi) = \sqrt{\frac{2}{\beta}} \sum_{m=1}^{\infty} A_m \sin(m\pi\phi/\beta), \tag{1}$$

where the coefficients A_m can be determined as

$$A_m = \sqrt{\frac{2}{\beta}} \int_0^\beta f(\phi) \sin(m\pi\phi/\beta) d\phi.$$
 (2)

Put Eq. (2) back into Eq. (1), we have

$$f(\phi) = \frac{2}{\beta} \sum_{m=1}^{\infty} \left(\int_0^{\beta} f(\phi') \sin(m\pi\phi'/\beta) d\phi' \right) \sin(m\pi\phi/\beta)$$
$$= \int_0^{\beta} f(\phi') \left(\frac{2}{\beta} \sum_{m=1}^{\infty} \sin(m\pi\phi/\beta) \sin(m\pi\phi'/\beta) \right) d\phi',$$

from which we can see that

$$\delta(\phi - \phi') = \frac{2}{\beta} \sum_{m=1}^{\infty} \sin(m\pi\phi/\beta) \sin(m\pi\phi'/\beta).$$