Krzysztof Purgat 247771 Wtorek,10:30

METODY NUMERYCZNE – LABORATORIUM

Zadanie 2- Metoda iteracyjna Jacobiego

Opis rozwiązania

Zadanie polegało zaimplementowaniu jednej z metod rozwiązywania układu N równań liniowych z N niewiadomymi - metoda iteracyjna Jacobiego.

Dla wybranego przez użytkownika układu algorytm można przedstawić w następujących krokach:

- 1. Wczytanie macierzy z pliku
- 2. Wybranie warunku stopu ilość iteracji albo uzyskanie podanej przez użytkownika dokładności
- 3. Sprawdzenie czy podana macierz:
 - a. jest macierzą kwadratową N na N
 - b. jest macierzą diagonalnie dominującą
- 4. Wybranie wektora startowego
- 5. Obliczanie przybliżenia rozwiązania używając wzoru:

$$x_i^{k+i} = \frac{1}{a_{ii}} \left(-\sum_{\substack{j=1\\j\neq i}}^n a_{ij} x_j^k + b_j \right)$$

6. Obliczenie kolejnych przybliżeń korzystając z poprzednio wyznaczonych wartości do momentu osiągnięcia wybranego warunku stopu

Wyniki

Układ równań I

$$\begin{cases} 0.5a - 0.0625b + 0.1875c + 0.0625d = 1.5 \\ -0.0625a + 0.5b + 0c + 0d = -1.625 \\ 0.1875a + 0b + 0.375c + 0.125d = 1 \\ 0.0625a + 0b + 0.125c + 0.25d = 0.4375 \end{cases}$$

	Dokładne rozwiązania	Rozwiązanie dla ε= 0,000001	Rozwiązanie dla 50 iteracji	Rozwiązanie dla 100 iteracji
а	2	2,00000024	1,99999998	2
b	-3	-3,0000004	-3,0	-3
С	1,5	1,50000032	1,49999997	1,5
d	0,5	0,50000032	0,49999997	0,5

Układ równań II

$$\begin{cases} 8a - 1b + 2c + 3d = 28 \\ 1a + 6b + 1c - 1d = 12 \\ 2a + 1b + 18c + 2d = 66 \\ 3a - 1b + 2c + 40d = 167 \end{cases}$$

	Dokładne rozwiązania	Rozwiązanie dla ε= 0,000001	Rozwiązanie dla 10 iteracji	Rozwiązanie dla 20 iteracji
а	1	1,0000002	0,99994955	1
b	2	2,00000012	1,99995932	2
С	3	3,0000001	2,99996892	3
d	4	4,00000005	3,99998355	4

Układ równań III

$$\begin{cases} 4a - 1b - 1c + 0d = 1\\ -1a + 4b + 0c - 1d = 2\\ -1a + 0b + 4c - 1d = 0\\ 0a - 1b - 1c + 4d = 1 \end{cases}$$

	Dokładne rozwiązania	Rozwiązanie dla ε= 0,000001	Rozwiązanie dla 15 iteracji	Rozwiązanie dla 30 iteracji
а	0,5	0,49999905	0,49998474	0,5
b	0,75	0,74999905	0,74998474	0,75
С	0,25	0,24999905	0,24998474	0,25
d	0,5	0,49999905	0,49998474	0,5

Wnioski

- Metoda iteracyjna Jacobiego jest bardziej skuteczna dla większej liczby iteracji.
- Dla poprawnego działania metody trzeba zadbać, aby podana macierz była diagonalnie dominująca. Przykładem błędnego układu niespełniającego tego warunku może być:

$$\begin{cases} 3a + 3b + 1c = 1 \\ 2a + 5b + 7c = 20 \\ -4a - 10b - 14c = -40 \end{cases}$$

- Metoda jest ograniczona ze względu na warunki początkowe.
- W przetestowanych układach można zauważyć zależność pomiędzy rzędem wielkości współczynników układu a liczbą iteracji potrzebną do uzyskania dokładnego wyniku. W układzie (I) współczynniki są stosunkowo małe przez co przy 50 iteracjach nie osiągamy dokładnego wyniku.