IN THE CLAIMS

- 1. (Four times amended) A method for preparing an article from a biodegradable polymer composition wherein the method comprises:
 - a. introducing a phenol-containing compound comprising terpene-phenol resin into a biodegradable polymer or biodegradable polymer composition in an amount sufficient to slow the degradation rate of the biodegradable polymer or biodegradable polymer composition; and
 - b. mixing the phenol-containing compound with the biodegradable polymer
 or biodegradable polymer composition;
 wherein the biodegradable polymer or biodegradable polymer composition
 [comprises] consists essentially of [one or more of the following]:
 - 1. an aliphatic-aromatic copolyester having repeat units of the following structures:

wherein

- (i) R¹¹ and R¹² are the same or different, and are residues of one or more of diethylene glycol, propylene glycol, 1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, thiodiethanol, 1,3-cyclohexanedimathanol, 1,4-cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, triethylene glycol, or tetraethylene glycol;
 - (ii) R¹¹ and R¹² are 100% of the diol components in the copolyester;

- (iii) R^{13} is absent or is selected from one or more of the groups consisting of C_1 C_{12} alkylene or oxyalkylene; C_1 C_{12} alkylene or oxyalkylene substituted with one to four substituents independently selected from the group consisting of halo, C_6 C_{10} aryl, and C_1 C_4 alkoxy; C_5 C_{10} cycloalkylene; and C_5 C_{10} cycloalkylene substituted with one to four substituents independently selected from the group consisting of halo, C_6 C_{10} aryl, and C_1 C_4 alkoxy; and
- (iv) R^{14} is selected from one or more of the groups consisting of $C_6 C_{10}$ aryl, and $C_6 C_{10}$ aryl substituted with one to four substituents independently selected from the group consisting of halo, $C_1 C_4$ alkyl, and $C_1 C_4$ alkoxy;
- [2. an aliphatic polyester having repeat units of one or more of the

following structures:

Or

wherein m is an integer of from 0 to 10, and R^{10} is selected from the group consisting of hydrogen; C_1 - C_{12} alkyl; C_1 - C_{12} alkyl substituted with one to four substituents independently selected from the group consisting of halo, C_6 - C_{10} aryl, and C_1 - C_4 alkoxy; C_5 - C_{10} cycloalkyl; and C_5 - C_{10} cycloalkyl

substituted with one to four substituents independently selected from the group consisting of halo, C_6 - C_{10} aryl, and C_1 - C_4 alkoxy, wherein R^8 is selected from the group consisting of C_2 - C_{12} alkylene or C_2 - C_{12} oxyalkylene; C_2 - C_{12} alkylene or C_2 - C_{12} oxyalkylene substituted with one to four substituents independently selected from the group consisting of halo, C_6 - C_{10} aryl, and C_1 - C_4 alkoxy; C_5 - C_{10} cycloalkylene; C_5 - C_{10} cycloalkylene substituted with one to four substituents independently selected from the group consisting of halo, C_6 - C_{10} aryl, and C_1 - C_4 alkoxy, and

wherein R^9 is absent or is selected from one or more of the group consisting of C_1 - C_{12} alkylene or oxyalkylene; C_1 - C_{12} alkylene or oxyalkylene substituted with one to four substituents independently selected from the group consisting of halo, C_6 - C_{10} aryl, and C_1 - C_4 alkoxy; C_5 - C_{10} cycloalkylene; and C_5 - C_{10} cycloalkylene substituted with one to four substituents independently selected from the group consisting of halo, C_6 - C_{10} aryl, and C_1 - C_4 alkoxy; and

- 3) a C_1 - C_{10} cellulose ester having a DS equal to or less than about 2.5;] and
- c. forming the biodegradable polymer composition into an article, wherein the article comprises: a film, a bottle, a blow molded article, an injection molded article or a container, and wherein the article exhibits a delayed biodegradation rate over an article formed from a biodegradable polymer composition not including the phenol-containing compound.
- 2. The method of claim 1 wherein the terpene-phenol resin comprises from about 1 to about 40 % by weight of phenol as measured by weight of the compound.
- 3. The method of claim 1 wherein the terpene-phenol resin comprises from about 5 to about 20 % by weight of phenol as measured by weight of the compound.

- 4. The method of claim 1 wherein the phenol-containing compound is present in the biodegradable polymer or biodegradable polymer composition at from about 0.5 to about 10 weight % as measured by the total weight of the biodegradable polymer or biodegradable polymer composition.
- 5. The method of claim 1 wherein the phenol-containing compound is present in the biodegradable polymer or biodegradable polymer composition at from about 1 to about 3 weight % as measured by the total weight of the biodegradable polymer or biodegradable polymer composition.

6. (Canceled)

7. (Three Times Amended) The method of claim 1 wherein [the biodegradable polymer or biodegradable polymer composition comprises] the aliphatic-aromatic copolyester and wherein R¹¹ and R¹² are the same or different, and are selected from the group consisting of residues of one or more of diethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, and 1,4-butanediol, R¹³ is selected from the group consisting of malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, 2,2-dimethyl glutaric acid, diglycolic acid, and an ester forming derivative thereof, and R¹⁴ is selected from the group consisting of one or more of 1,4-terephthalic acid, 1,3-terephthalic acid, 2,6-naphthoic acid, 1,5-naphthoic acid, and an ester forming derivative thereof.

8. (Canceled)

9. The method of claim 1, wherein the biodegradable polymer or biodegradable polymer composition comprises one or more of: a pigment, a dye, an opacifying agent, an antioxidant, an ultraviolet stabilizer, an optical brightener, an aliphatic acid, a metal salt, an antistatic agent, an antiblocking aid, a filler, a dispersing agent, a coating aid, a slip agent, a lubricant, starch, wood, and flour.

10. - 21. (Canceled)

- 22. (Four times amended) A biodegradable polymer composition for making an article comprising a film, a bottle, a blow molded article, an injection molded article or a container, wherein the biodegradable polymer or biodegradable polymer-second material composition comprises:
 - a. a phenol-containing compound comprising terpene-phenol resin incorporated in the biodegradable polymer or biodegradable polymer-second material composition, the phenol-containing compound being present at an amount sufficient to slow the degradation rate of the biodegradable polymer or biodegradable polymer second-material composition; and
 - b. a biodegradable polymer or biodegradable polymer-second material composition [comprising one or more of the following] consisting essentially of:
 - 1. an aliphatic-aromatic copolyester having repeat units of the following structures:

wherein

- (i) R¹¹ and R¹² are the same or different, and are residues of one or more of diethylene glycol, propylene glycol, 1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, thiodiethanol, 1,3-cyclohexanedimathanol, 1,4-cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, triethylene glycol, or tetraethylene glycol;
- (ii) R¹¹ and R¹² are 100% of the diol components in the copolyester;

- (iii) R^{13} is absent or is selected from one or more of the groups consisting of C_1 C_{12} alkylene or oxyalkylene; C_1 C_{12} alkylene or oxyalkylene substituted with one to four substituents independently selected from the group consisting of halo, C_6 C_{10} aryl, and C_1 C_4 alkoxy; C_5 C_{10} cycloalkylene; and C_5 C_{10} cycloalkylene substituted with one to four substituents independently selected from the group consisting of halo, C_6 C_{10} aryl, and C_1 C_4 alkoxy; and
- (iv) R^{14} is selected from one or more of the groups consisting of C_6 C_{10} aryl, and C_6 C_{10} aryl substituted with one to four substituents independently selected from the group consisting of halo, C_1 C_4 alkyl, and C_1 C_4 alkoxy;
- [2] an aliphatic polyester having repeat units of one or more of the following structures:

ÓΓ

wherein m is an integer of from 0 to 10, and R¹⁰ is selected from the group consisting of hydrogen; C₁-C₁₂ alkyl; C₁-C₁₂ alkyl substituted with one to four substituents independently selected from the group consisting of halo, C₆-C₁₀ aryl, and C₁-C₄ alkoxy; C₅-C₁₀ cycloalkyl; and C₅-C₁₀ cycloalkyl

substituted with one to four substituents independently selected from the group consisting of halo, C6-C10 aryl, and C1-C4 alkoxy, wherein R⁸ is selected from the group consisting of C₂-C₁₂ alkylene or C₂-C₁₂ oxyalkylene; C₂-C₁₂ alkylene or C₂-C₁₂ oxyalkylene substituted with one to four substituents independently selected from the group consisting of halo, C6-C10 aryl, and C1-C4 alkoxy; C5-C10 cycloalkylene; C5-C10 cycloalkylene substituted with one to four substituents independently selected from the group consisting of halo, C_6 - C_{10} aryl, and C_1 - C_4 alkoxy, and wherein R9 is absent or is selected from one or more of the group consisting of C₁-C₁₂ alkylene or oxyalkylene; C₁-C₁₂ alkylene or oxyalkylene substituted with one to four substituents independently selected from the group consisting of halo, C₆-C₁₀ aryl, and C₁-C₄ alkoxy; C₅-C₁₀ cycloalkylene; and C₅-C₁₀ cycloalkylene substituted with one to four substituents independently selected from the group consisting of halo, C6-C10 aryl, and C1-C4 alkoxy; and

3) C₁-C₁₀ cellulose ester having a DS equal to or less than about 2.5,] and wherein the article exhibits a delayed biodegradation rate over an article formed from a biodegradable polymer composition not including the phenol-containing compound.

23. (Canceled)

24. (Twice amended) The biodegradable polymer composition of claim 22 wherein [the biodegradable polymer or biodegradable polymer-second material composition comprises the aliphatic-aromatic copolyester and wherein] R¹¹ and R¹² are the same or different, and are selected from the group consisting of residues of one or more of diethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, and 1,4-butanediol, R¹³ is selected from the group consisting of malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, 2,2-dimethyl glutaric acid, diglycolic acid, and an ester forming derivative thereof, and R¹⁴ is