

Computer Organization & Design

Hardware/Boftware interface

楼学庆

浙江大学计算机学院

http://10.214.200.99/

Email:hzlou@163.com

Principles of Computer Systems

Hardware/Boftware interface

楼学庆

浙江大学计算机学院

http://10.214.200.99/

Email:hzlou@163.com

联系方式

- 网站:
 - http://10.214.200.99
- 邮箱:
 - □ hzlou@163.com(不收作业)

Textbook

- 《计算机组成与设计》
 - □ 潘雪增、平玲娣
 - □ 浙江大学出版社
 - □ ISBN 7-308-03523-9/TP.25

6

《计算机组成和设计》硬件/软件接口(第2版)

□ 作者: 郑纬民译

ISBN: 9787302069010

□ 定价: 76元

Name:

Computer Organization & Design

Students:

Undergraduate students in Computer or some others department.

□ Score : 4.5

□ Hours/week: 3.5-2

□ Total: 88 hours

- 没有必然,只有更好
 - □ 尽力寻求、实现各种可能的方法
 - □ 比较、评价各种不同的方法(现行方法的优点、特点)
 - □ 相对完整实现所选择的方法
- 理论与实际相结合
 - □ 理论学习
 - □ 软件模拟 (C语言编程)
 - □ 硬件实验(FPGA设计)

成绩(精研班)

- 考试: 30%(不低于30分)
 - □ 英文
 - □闭卷
- 平时,五部分14知识点:
 - □ 每个知识点: 5%, 总共70%(雷同〇分)
- 额外:
 - □ 课堂练习(+5%): 每题1分
- QQ: 25534460

- 分组学习制
 - □ 四人一组组长负责
 - □ 定期汇报
 - □ 随时交流
- 按知识点教学,每个知识点:
 - □ 课堂讲解(多媒体)
 - □ 讨论、布置练习
 - □ 演示、讲解
 - □ 相互评价

The Course

Software

Hardware

- Prerequisites
 - □ C Program Language
 - Digital Logic

- 利用一个学期,覆盖《逻辑与计算机设计》、《计算机组成》、《体系结构》与《汇编与接口》等计算机硬件系统系列主要课程。作为非计算机技术方向,学习了解掌握计算机硬件、计算机系统方面知识的主要课程。
 - □ ☆前导课程:《C语言程序设计》
- 强烈建议不是只想玩软件的同学,改选《份寬初幻成》!

我有一壶酒 足以慰风尘 计组一桌席 汇编天下人

你我相约混一年,约吗?

课程计划

16

- 每学期提供课程计划,
- 确定计算机系统设计的总目标。
- 给出实现的路线图。

ZPC 设计路线图之春夏时节

·:春夏《计算机组成》以设计运算器 ALU、CPU 为主。

周	章节	内容	理论		实验		说明	周
01	概论	攻牛	作 01	汉字键盘设计	実 01	运算器	1.课堂实验业堂布置	01
02	数据	近例,整数	作 02	移/原/补码算法	实 02	设计	在堂完成, 春次实	02
03	表达	第水运算	作 03	乘除法算法推导	实 03	100000000	验需商出逻辑图	03
04		双字、评点	作 04	浮点处理	实04		2. 大设计时间、分工	04
05	指令	指令	作 05	汇编器	实 05		各组员行安部	05
06	系统	子程序	作 06	反汇编	实 06		3. 验收用模交设计大	06
07		汇编编程	作 07	模板执行	追其	器验收	程各负负责部分	07
80	DO 系统	显示原理	作 08	显示模拟		I	4. 各大程汇总第 16	80 中
中						1000	用由担里每人提交	中
09	CPU	单时钟	作 09	模拟器设计	实 09	单时钟	····	09
10	设计	控制器	作10		实10	设计	1) 起算器、	10
11		多财种设计	作11		实11	William !	2) 单时钟。 3) 多时钟。	10
12	存储器	存储器	作 12		单封	仲股攸	4)模拟器(軟件)	12
13		虚拟存储	作13	建松存储	实13	多时钟	O DESMAN CHARLES	12 13 14 15
14		Cache	作14		实14	设计	1.0%	14
15	I/O 系统	教操传送	模拟器验机		多种	仲胎性		
16	复习		然合展示		糖子	·展示	4 1	16
10.00		0 1			65 18	10 10		1
- FE	V-m-	V			A 69		L t Parent	

系统模块表

(计算机组成) 2015 课程计划

ZPC 软硬件模块一览表(增减中)

总体分 3 大块: PC 端软件、MIPS 软件、硬件(基本组件、CPU、外设)。

序	PC端	MIPS	2011	备注		
12			基本组件	CPU	外设	1000年
01	☆补码表示	指令执行	简单 I/0	寄存器组	数码管显示	☆: 常理论证明
02	☆整数加減	VCA 模拟	多路选择器	单时钟	计数器	
03	☆整数乘法	图形模式	移位寄存器	多时钟	编码器	
04	☆整數除法	系统调用	译码器	微程序	LCD	
05	☆浮点表示	BIOS	逻辑运算	流水线	总线	
06	☆ 浮点运算	中断	加法器	总线 CPU	地址详码	
07	汉字显示	磁盘系统	先行进位		VGA	
08	汇编器	汇编	大小比较		中断	
09	反汇编	反汇编	乘法器		中断控制器	
10	程序汇编	编辑器	阵列乘法		定时器	
11	MIPS 模拟器		除法器		串口	
12	虚拟机		存储器		可编程串口	
13	虚拟存储		不对齐读写		并行输入输出	J.)
14	串口通讯		地址译码		键盘	- 0
15	虚拟盘				DDM	102
16					浮点运算	1
17						4.1
18						-

- 1. 以上组件并不全在春夏实现。
- 2. 硬件组件可分单独与联调两种。应该先单独能够连通,然后考虑接入你的系统。
- 3. 当你把这些组件一个个实现,一个个加入你的系统,你的 PC 就在眼前。

■ 分组学习制: 个人做研究,小组做产品

- □ 四人一组,加强交流、分工与协作相结合。
 - 个人可以对专题作更广泛深入的研究,
 - 把相对成熟的、认为最佳的提交小组集成。
 - 避免简单重复工作。
- □ 强调产品化的设计思路

■ 教学方法:

- □ 理论与实践相结合
- □ 原理推导与程序模拟相结合
- □ 逻辑设计与硬件实验相结合
- □ 强调系统整体概念
- □ 强调课程衔接

■ 理论:

□ 完成全书知识点学习。(详见大纲)

■ 软件:

- □ 完成各种算法证明,程序模拟;
- □ 编写MIPS汇编、反汇编程序;
- □ 完成一个MIPS模拟器,模拟调试MIPS指令执行。
- □ 编写虚拟磁盘程序;

■ 硬件:

- □ 完成运算器设计,包括整数算术运算、逻辑运算,浮点算术运算;
- □ 完成一个基于FPGA的有限指令CPU;
 - 単时钟、多时钟、微程序
- □ 中断处理、总线结构设计研究。
- □ VGA显示器、键盘的专用设计研究;

课程安排

周	章节	知识点	分	实验方式	
1	概论				汉字键盘设计,熟悉C语言编程
2		数据表示加减	5	程序模拟	用移码表示整数,实现加减运算
3	数据表达	乘除	5		补码乘除法设计模拟
4		浮点数	5		浮点处理或汉字
5		汇编	5		MIPS汇编到机器码
6	汇编语言	反汇编	5		机器码到MIPS汇编
7		模拟CPU	5		MIPS CPU模拟
8		单个组件	5	硬件实验	交硬件实验报告
9	CPU设计	单时钟	5		交硬件实验报告
10		多时钟	5		交硬件实验报告
11		存储器	5	平时	(期中考试)
12	存储系统	Cache	5		(平时机动)
13		虚拟存储	5	程序模拟	程序模拟虚拟存储
14	I/O系统	I/O	5		显示模拟
15	1/0余统	综合	5		综合演示
16	复习				

实验设计

- 软件实验:
 - □ MIPS汇编
 - □ MIPS模拟器
- 硬件实验:
 - □ 运算器
 - □ 单时钟
 - □ 多时钟(组合逻辑与微程序)
- 小实验:每周作业,课堂实验
 - □ 软件: 算法模拟
 - □ 硬件: 部件实验

实验考核

大设计与课堂实验相结合。

□ 每次实验灵活布置与设计有关的小学 验,

□ 大设计由小组自行安排时间。

■ 个人分工与小"生产"。

■ 验收清单

Spartan-3:

■ 刻写光盘可便于后续课程

春夏学期终极提交

·: 平时注意积累资料,期末按 组 统一刻盘。

号	材质	名称	时间	说明	备注	묵
01	Arr.	运算器使用手册	第06周	设计彩色封面 (宣传册页可选)		01
02	纸 质	CPU 使用手册	第14周	设计彩色封面		02
03	処	CPU 宣传册页	第14周	单页彩色 à 4 双面		03
04	光	运算器	第06周	a. 实验报告	全组汇总,每	04
05	盘	单时钟	第11周	B. 所有代码	人负责一个。	05
06	组	多时钟	第14周	C. 使用手册		06
07	目 录	虚拟机	第14周	D, 演示 PPT		07
	录			E, 其它(如视频)		
08		基本资料	第14周	à. 个人介绍		08
				B. 周记		
	光			C. 照片		
	盘			D. 作业		
09	个人	课堂实验	第14周	个人课堂实验代码		09
10	目	运算器	第06周	à. 个人部分所有代码		10
11	录	单时钟	第11周	B. 个人部分实验报告	00.00	11
12		多时钟	第14周		MES	12
13		虚拟机	第14周		भारत	13
14					COO	14

三、ZPC之MIPS指令集

- 目录
- 一、前言
- 二、寄存器
- § 2.1 通用寄存器
- § 2.2 协处理器0
- § 2.3 其它寄存器
- 三、指令系统
- §3.1 指令类型
- §3.1.1 R类型指令
- §3.1.2 I类型指令
- §3.1.3 J类型指令
- §3.1.4 C类型指令
- § 3.2指令格式
- § 3.2.1数据传送指令
- §3.2.2算术运算指令
- §3.2.3逻辑运算指令
- § 3.2.4移位指令
- § 3.2.5转移指令
- § 3.2.6协处理器指令
- § 3.2.7系统功能调用

ZPC 之 MIPS 汇编语言规范

ZPC 之 MIPS 指令集

版本 0.8 浙江大学计算机学院 2015.07.15.Q.

目录

2/34

四、伪指令	.22
五、格式指令2	6
六、表达式	.29
七、例程	30
八、总结	32
九、参考	32
十、附录	33
附录一: ZB2014统一字符编码标准	

ZPC 之 MIPS 汇编语言规范

ZPC 之 MIPS 指令集

版本 0.8 浙江大学计算机学院 2015.07.15.Q.

目录

2/34

- 课程资料
- 参考资料下载
- 作业提交、批改

作业实例1: 大汉键盘

创意来源:

□ 围棋、田字格、笔画

■ 输入方法:

- □ 1.根据需要输入的汉字结构在 田字格中摆放棋子。
- □ 2.每摆放一次则屏幕响应位置 出现该笔画。
- 3.笔画组合到一定程度后,出现符合要求的待选汉字。
- □ 4.选择你需要的汉字。

■ 实现条件:

- □ 传感棋盘、
- □ 识别软件、
- □ 汉字字库

浙江大学计量机子匠

作业实例2: ISE

作业实例3:模拟器

作业实例4:模拟器

Course

Introduction

→ Chapter 1 & 4

Arithmetic

Chapter 3 🔷

- MIPS assembly languag >> Chapter 2

CPU design

→ Chapter 5

Memory Hierarchy

- → Chapter 7
- I/OInterface & Peripherals → Chapter 8

周	章节	知识点	分	实验方式	
1	概论				熟悉C语言编程
2		数据表示加减	5	程序模拟	选择一种表示方式,实行加减运算
3	数据表达	乘除	5		乘除法设计模拟
4		浮点数	5		浮点处理或汉字
5		汇编	5		MIPS汇编到机器码
6	汇编语言	反汇编	5		机器码到MIPS汇编
7		模拟CPU	5		MIPS CPU模拟
8		单个组件	5	硬件实验	交硬件实验报告
9	CPU设计	单时钟	5		交硬件实验报告
10		多时钟	5		交硬件实验报告
11		存储器	5		(期中考试)
12	存储系统	Cache	5		(平时机动)
13		虚拟存储	5	程序模拟	程序模拟虚拟存储
14	山口至坎	I/O	5	硬件实验	显示模拟
15	- I/O系统	综合	5	软件/硬件	综合演示
16	复习				

Computer Organization & Design

第01章: Introduction

楼学庆

http://10.214.47.99/

Email:hzlou@163.com

- Today's computers are built on 2 key principles:
 - □ ①Instruction are represented as numbers.
 - □ ②Programs can be stored in memory to be read or written just like numbers.

- First generation
 - □ 1950-1959, vacuum tubes, commercial electronic computer
- Second generation
 - □ 1960-1968, transistors, cheaper computers
- Third generation
 - □ 1969-1977, integrated circuit, minicomputer
- Fourth generation
 - □ 1978-1997, LSI and VLSI, PCs and workstations
- Fifth generation
 - □ 1998-?, micromation and hugeness

- 1. Simplicity favors regularity
- 2. Smaller is faster
- 3. Good design demands good compromises
- 4. Make the common case fast

Part 1:

Hardware

Five Parts

- Control (CU)
- Datapath (EU)
- Memory
- Input → RAM
- Output

- § 1.1 Below Your Program
- § 1.2 Under the Covers
- § 1.3 CPU Performance and Its Factors
- § 1.4 Evaluating Performance

Close-up of PC motherboard

浙江大学计算机学院

Must a Programmer Care About Hardware

- Memory management: if we understand how/where data is placed, we can help ensure that relevant data is nearby
- Thread management: if we understand how threads interact, we can write smarter multi-threaded programs
 - → Why do we care about multi-threaded programs?

Computer Organization

Control Process Unit >

CPU

- □ Control (CU)
- □ Datapath (EU)
- Specialties
 - Main Frequency
 - IBM-PC: 4.77MHz
 - Now: 3.8 GHz
 - Machine Word
 - IBM-PC: 8086/8088: 16bits
 - Now: 32bits

CPU Instruction Set

□ CISC: Complex Instruction Set Computer

□ RISC: Reduced Instruction Set Computer

Performance

□ CPI: Clock Cycles per Instruction

MIPS: Millions Instructions per Second

MFLOPS: millions of floating-point operations per second

50% improvement every year!!

What contributes to this improvement?

© 2003 Eleavier Science (USA). All rights received.

5 浙江大学计算机学院

Modern Trends

- Historical contributions to performance:
 - Better processes (faster devices) ~20%
 - Better circuits/pipelines ~15%
 - Better organization/architecture ~15%
- In the future, bullet-2 will help little and bullet-3 will not help much for a single core!

	Pentium	P-Pro	P-II	P-III	P-4	Itanium	Montecito
Year	1993	95	97	99	2000	2002	2005
Transistors	3.1M	5.5M	7.5M	9.5M	42M	300M	1720M
Clock	60M	200M	300M	500M	750M	800M	1800M

Moore's Law in action

What Does This Mean to a Programmer?

- In the past, a new chip directly meant 50% higher performance for a program
- Today, one can expect only a 20% improvement, unless...
 the program can be broken up into multiple threads
- Expect #threads to emerge as a major metric for software quality

浙江大学计算机学院

Major concerns:

- The performance problem (especially scientific workloads)
- The power dissipation problem (especially embedded processors)
- The temperature problem
- The reliability problem

浙江大学计算机学院

The HW/SW Interface

Application software

Systems software (OS, compiler)

Hardware

110100000100010

- Input/output devices
- Secondary storage: non-volatile, slower, cheaper
- Primary storage: volatile, faster, costlier
- CPU/processor

Growth of capacity per DRAM chip over time

Wafers and Dies

0 2003 Eleavier Science (USA). All rights received.

The semiconductor silicon and the chip manufacturing process

Inside the processor chip

Manufacturing Process

- Silicon wafers undergo many processing steps so that different parts of the wafer behave as insulators, conductors, and transistors (switches)
- Multiple metal layers on the silicon enable connections between transistors
- The wafer is chopped into many dies the size of the die determines yield and cost

Processor Technology Trends

- Shrinking of transistor sizes: 250nm (1997) →
 130nm (2002) → 70nm (2008) → 35nm (2014)
- Transistor density increases by 35% per year and die size increases by 10-20% per year... functionality improvements!
- Transistor speed improves linearly with size (complex equation involving voltages, resistances, capacitances)
- Wire delays do not scale down at the same rate as transistor delays

- RAM: volatile, faster, costlier
 - □ IBM-PC: 640KB
 - □ Now: 16GB or ...
- Disk: non-volatile, slower, cheaper
 - □ IBM-PC:
 - Hard-disk: 10MB, Tape → 1TB+128GB
 - Floppy-disk: $5\frac{1}{4}$ " (360KB \sim 1.2MB), $3\frac{1}{2}$ " (1.4MB)
 - □ Now:
 - Hard-disk: ...
 - Flash-disk: 1 GB
 - Flash

- DRAM density increases by 40-60% per year, latency has reduced by 33% in 10 years (the memory wall!), bandwidth improves twice as fast as latency decreases
- Disk density improves by 100% every year, latency improvement similar to DRAM
- Networks: primary focus on bandwidth; 10Mb → 100Mb in 10 years; 100Mb → 1Gb in 5 years

- Input
 - Keyboard
 - Mouse
 - □ Scanner, ...
- Output
 - Display
 - □ Printer, ...

- Input & Output
 - □ Disk, ...

The diversity of I/O

devices

Device	Behavior	Partner	Data rate (KB/sec)
Keyboard	input	human	0.01
Mouse	input	human	0.02
Voice input	input	human	0.02
Scanner	input	human	400.00
Voice output	output	human	0.60
Line printer	output	human	1.00
Laser printer	output	human	200.00
Graphics display	output	human	60,000.00
Modem	input or output	machine	2.00-8.00
Network/LAN	input or output	machine	500.00-6000.00
Floppy disk	storage	machine	100.00
Optical disk	storage	machine	1000.00
Magnetic tape	storage	machine	2000.00
Magnetic disk	storage	machine	2000.00-10,000.00

Part 2:

Software

An example of the decomposability of computer systems

The HW/SW Interface

Application software

Systems software (OS, compiler)

Hardware

High-level language program (in C)

The process of compiling and assembling

Assembly language program (for MIPS)


```
swap:

muli $2, $5,4

add $2, $4,$2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31
```


Binary machine language program (for MIPS)

浙江大学计算机学院

程序执行

Java

```
public class Fruit
  public static void main(String args[])
    // Declare and initialize three variables
    int numOranges = 5;
                                          // Count of oranges
    int numApples = 10;
                                          // Count of apples
    int numFruit = 0;
                                           // Count of fruit
    numFruit = numOranges + numApples;  // Calculate the total fruit
    // Display the result
    System.out.println("A totally fruity program");
    System.out.println("Total fruit is " + (numFruit +22));
```

W S O UM DES

Start a C program in a fine on disk to run 1

- □ C program → assembly language program
- Assembling
 - □ Assembly language program → machine language module
- Linking
 - Object modules (including library routine) >
 executable program
 - □ 6 pieces of the object file for Unix systems:
 - object file header
 - text segment
 - data segment
 - relocation information
 - symbol table
 - debugging information
 - □ Place code and data modules symbolically in memory
 - □ Determine the addresses of data and instruction labels
 - Patch both the internal and external references

Start a C program in a field on disk to run 2

- Determine size of text and data segments
- □ Create an address space large enough
- Copy instructions and data from executable file to memory
- Copy parameters (if any) to the main program onto the stack
- Initialize registers and set \$sp to the first free location
- □ Jump to a start-up routine

A translation hierarchy

MIPS memory allocation for program and data

- 考试: 70%(不低于40分)
 - □ 英文
 - □闭卷
- 平时: 30%
 - □ 作业
 - □期中
 - □ 点名
- 额外:
 - □ 课堂练习(+5%): 每题1分