Home ► Electrical Engineering ► Engr 17 F16 Tatro ► Exams and Quizzes ► Exam 2 - Section 1 - Chapters 4, 5 and 6

Started on	Wednesday, 2 November 2016, 11:55 AM
State	Finished
Completed on	Wednesday, 2 November 2016, 12:55 PM
Time taken	59 mins 42 secs
Grade	82.50 out of 100.00

Partially correct

Mark 7.50 out of 15.00

Q1d

a) Find the voltage across the 7.5A current source.

b) Find the voltage across the 25 Ω (Ohm) resistor.

$$V_{25\Omega} = \boxed{-10}$$
 Volts

Numeric Answer

$$V_{7.5A} = 216V$$

$$V_{25\Omega} = -10V$$

Partially correct

Marks for this submission: 7.50/15.00.

Correct

Mark 15.00 out of 15.00

Q2j

Given:

$$v_1 = 21 \text{ Volts}$$
 $v_2 = 28 \text{ Volts}$

$$R_1 = 10 \ \Omega \ (Ohms)$$
 $R_2 = 40 \ \Omega \ (Ohms)$ $R_3 = 80 \ \Omega \ (Ohms)$

Find the currents i_a and i_b .

Numeric Answer

 $i_a = 63.636 \text{ mA}$

 $i_b = -190.909 \text{ mA}$

Correct

Marks for this submission: 15.00/15.00.

Correct

Mark 10.00 out of 10.00

Q3f

Given:
$$I_s = 10 \text{ A}$$
 $R_1 = 10 \Omega \text{ (Ohms)}$ $R_2 = 40 \Omega \text{ (Ohms)}$

Perform a source transformation and find the voltage transform equivalent. this circuit.

$$V_{transform} = \boxed{80}$$
 \checkmark V

$$R_{transform} = \boxed{8}$$
 $\checkmark \Omega \text{ (Ohm)}$

Numeric Answer

$$V_{transform} = 80 \text{ V}$$

$$R_{transform}$$
= 8 Ω (Ohm)

Correct

Marks for this submission: 10.00/10.00.

Correct

Mark 15.00 out of 15.00

Q4b

Given:

$$V_a = 10 \text{ Volts}$$
 $I_b = 3 \text{ Amps}$

$$R_1 = 20 \ \Omega \ (Ohm)$$
 $R_2 = 20 \ \Omega \ (Ohm)$ $R_3 = 10 \ \Omega \ (Ohm)$

a) Find the Thévenin equivalent voltage $\mathbf{V}_{\mathrm{Th}}.$

b) Find the Thévenin equivalent resistance R_{Th} .

$$R_{Th} = 20$$
 $\checkmark \Omega$ (Ohms)

Numeric Answer

a)
$$V_{Th} = 35.0 \text{ Volts}$$

b)
$$R_{Th} = 20.0 \Omega$$
 (Ohms)

Correct

Marks for this submission: 15.00/15.00.

Correct

Mark 15.00 out of 15.00

Copyright @2015 Pearson Education, All Rights Reserved

Q5b

Find the Norton equivalent circuit with respect to terminals ab.

$$R_{Th} = \boxed{10}$$
 $\checkmark \Omega \text{ (Ohm)}$

Numeric Answer

$$I_{N} = = 6 \text{ A}$$

$$R_{Th} = 10 \Omega \text{ (Ohm)}$$

Correct

Marks for this submission: 15.00/15.00.

Correct

Mark 10.00 out of 10.00

Q6j

Given:

$$\rm V_s = 40 \; Volts$$
 $\rm R_1 = 140 \; \Omega \; (Ohm)$ $\rm R_2 = 84 \; \Omega \; (Ohm)$

a) Find the value of R_L that results in maximum power being transferred to R_L .

$$R_{L,max power} = \boxed{52.5}$$
 $\checkmark \Omega$ (Ohms)

b) Find the maximum power that can be delivered to $R_{\rm I}$.

Numeric Answer

a) $R_{L,max\ power} = 52.50\ \Omega$ (Ohms)

b) P_{RL,max power} = 1.071 Watts

Correct

Marks for this submission: 10.00/10.00.

Not answered

Mark 0.00 out of 5.00

Q7j

Assume that the operational amplifier is ideal.

The opamp has two power inputs (not shown) of $+V_{cc} = +15V$ and $-V_{cc} = -15V$.

Given: $V_1 = 10 \text{ Volts}$ $V_2 = 10 \text{ Volts}$

 $R_1 = 2 \text{ k}\Omega \text{ (kilo Ohm)}$ $R_2 = 3 \text{ k}\Omega \text{ (kilo Ohm)}$ $R_3 = 1.5 \text{ k}\Omega \text{ (kilo Ohm)}$

Determine the voltage v_{out} .

Numeric Answer

$$v_{out} = -12.5 \text{ Volts}$$

Incorrect

Mark 0.00 out of 5.00

Q8c

Assume that the operational amplifier is ideal.

The opamp has two power inputs $+V_{cc} = +15V$ and $-V_{cc} = -15V$.

Given:
$$V_S = -3.0 \text{ Volts}$$
 $R_1 = 47 \text{ k}\Omega \text{ (kilo Ohm)}$ $R_2 = 270 \text{ k}\Omega$

$$R_1 = 47 \text{ k}\Omega \text{ (kilo Ohm)}$$

$$R_2 = 270 \text{ k}\Omega$$

(kilo Ohm)

Determine the voltage $V_{\rm out}$.

Numeric Answer

$$v_{out} = 15.0 \text{ Volts}$$

Incorrect

Marks for this submission: 0.00/5.00.

Correct

Mark 5.00 out of 5.00

Q9e

Given:

$$C_1^{}=10~\mu\text{F}$$
 (micro F) $C_2^{}=6~\mu\text{F}$ (micro F) $C_3^{}=4~\mu\text{F}$ (micro F)

Find the equivalent capacitance $C_{\rm Eq}$.

$$C_{Eq} = \begin{bmatrix} 5 \\ \end{bmatrix} \checkmark \mu F \text{ (micro F)}$$

Numeric Answer

$$C_{Eq} = 5.0 \ \mu F \ (micro \ F)$$

Correct

Marks for this submission: 5.00/5.00.

Correct

Mark 5.00 out of 5.00

Q10h

Given:

$$L_1 = 1 \text{ mH (milli H)}$$
 $L_2 = 4 \text{ mH (milli H)}$ $L_3 = 7 \text{ mH (milli H)}$

Find the equivalent inductance $L_{\rm Eq}$.

$$L_{Eq} = \begin{bmatrix} 3.55 \end{bmatrix}$$
 mH (milli H)

Numeric Answer

$$L_{Eq} = 3.5455 \text{ mH}$$

Correct

Marks for this submission: 5.00/5.00.