

JM0100 Business Analytics

Assignment 3

Goos Kant Yingqian Zhang

	Week	Date	Hearing Lecture	Course Nr.	Content	Task	Deadline	
	5	Mon, 29 Jan	YZ	1	L1: Introduction, predictive versus prescriptive, linear programming	10011		
	6	Mon, 5 Feb	YZ	2	L2: LP: simplex method			
	7	Mon, 12 Feb			Carnaval break			
	8	Mon, 19 Feb	YZ	3				
	9	Mon, 26 Feb	GK	4	L4:Introduction heuristics, construction algorithms, explanation TSP and VRP	Work on Assignment 1		
	10	Mon, 5 Mar	GK	5	L5:VRP-algorithms, local search techniques and introduction meta-heuristics, tabu-search			
	11	Mon, 12 Mar	YZ	6	L6:Genetic Algorithms			
	12	Mon, 19 Mar	YZ	7	L7:Ant Colony Optimization			
	13	Mon, 26 Mar	GK	8	L8:Simulated Annealing, summary heuristics, applications, introduction book chapters/review			
	14	mon, 2 Apr			Easter closure			
	15	Mon, 9 Apr	YZ	9	L3: ILP and combinatorial optimization; Introduce project	Work on Assignment 2	deliver assignment 1 (23:59, 9/4)	
	16	Mon,16 Apr	GK/YZ	10	Guest lecture (eBay)		Deliver Assignment 2 (23.59; 23/04)	
	17	Mon, 23 Apr	GK/YZ	11	Guest lecture (Ortec)	project		
	18	Mon, 30 Apr	GK/YZ	12	office hour		deliver intermediate report (30/04)	
	19	Mon, 7 May	GK/YZ	13	office hour			
							deliver final	
	20	Mon, 14 May				Prepare exam	project report (23.59;14/05)	
		Mon, 21 May			no course; White monday			
	22	Mon, 28 May			exam			
	2							

Assignment 3: project work

- Two guest lectures on "business analytics in practice"
 - attendance highly recommended
 - part of final exam materials
- Teams will focus on solving an auction design case: predictive analytics + prescriptive analytics
- Intermediate report (optional, not graded): by 30 April
- Final report/program: by 14 May

Background

- Online (industrial) auctions
 - Sell inventories of companies
- Data from one of the largest online auctioneers in Europe (let's call it A)
 - >1000 auctions (or sales) per year
 - Each sale lasts (typically) 2 weeks; has multiple lots
 - (online) bidders from many countries
 - English auction: open with a starting price, accept increasing higher bids, until no more bids. The last bid is the winning bid (i.e., selling price)
 - "soft close": every lot has a scheduled closing time; but bidding continues if there are at least two active bidders after closing time

Background

The objective of auctioneers:
maximize the revenue, i.e., maximizing selling price of each lot of each sale

Challenges:

- Who are prospective buyers (bidders)?
- Too many variables in auction design: unclear how these variables contribute to revenue/selling price
- Currently: A has about 15 auction experts, who have different vision/opinion on good auction design

- Main task:
 - A data driven auction design that maximizes the expected revenue of a given auction
 - Combining predictive analytics and prescrptive analytics!
- How to measure whether the auction is successful or not?
 - Winning bid (end price, or selling price)
 - We use

multiplier: Winning bid/Estimated value

Dataset: (Processed) auction data from mid 2014 – early 2015

- Multiplier: performance indicator
- LotNr: lot number in the sale
- Allocate: whether the seller of the lot has set a price which he want as minimum for the lot
- EstValue: estimated value of the lot (by auction experts)
- StartPrice: starting bidding price of the lot
- Followers: nr. of people following the lot
- Bank, Dealer, Liquidator, Volunteer: type of sales
- LotsSale: amount of lots of one sale
- LotsCtgry: amount of lots within a sale with the same category
- Forced: whether a sale is forced or not (due to bankruptcy)
- SP.EV: starting price/estimated value
- Duration: duration of auctions in hours on a lot
- Morning, Evening, Afternoon: last bid on the lot

One solution is a design of an auction, including starting price, lot number, durations

Step 1: descriptive analytics

- Summarize data into meaningful charts and reports
- Example research questions:
 - What is the current situation of the auction outcomes?
 - Which parameters (especially design variables influence the outcome?
- Techniques: statistical description, visualization

Step 2: component 1

- Task: build a prediction model that classify/predict the performance of a new auction?
- Example research questions:
 - Using multiplier information to transform the performance outcomes to different classes
 - What features are relevant and important for such a prediction model?
 - What data mining methods to select for building such a prediction model?
- Main techniques: feature selection, classification

Step 3: component 2

- Task: use optimization to identify the best auction design variables to maximize the expected auction performance
- Example research questions:
 - How to model it as an optimization problem?
 - What optimization methods are appropriate for this task?
 - What auction design parameters we should tune?
 - How to integrate the developed predictive model into the optimization process?
 - How to evalute the performance of the optimal design?
- Techniques: modelling, optimization methods

Data Mining: concepts and techniques

Good overview of basic data preprocessing, classification

http://www.sciencedirect.com/science/book/9780123814791

Optimization: Lecture notes of this course!

Deliverables

- Intermediate report (optional): by 30 April
 - Main results from Step 1 and step 2
 - not graded
 - brief feedback (sufficient, or insufficient) will be provided
 - deliver clear analysis and overview, in pdf (<10 pages), or PowerPoint (<15 pages)
- Final report and program: by 14 May
 - grade will be based on this report/program

Details on the format of the end report will be provided later.