Лекция по математической логике и теории алгоритмов

4 сентября 2019

Исчисление высказываний

Логическая формула: выражение со значениями (0,1) переменными (x,y,...)

и операциями $(\bullet, \lor, \leftrightarrow, ...)$

Арифметические выражения.

Пример: $((z+x) \bullet y-10)/z$

Логические выражения.

Пример: $(1+\neg x)\rightarrow (x^*y\leftrightarrow \neg y \neg z)$

где 1 - значение; x,y - переменные; \leftrightarrow - операция.

Значения: 0 - ложь(F), 1 - истина(T).

Операции. Унарная операция.

¬ - отрицание.

$$\begin{array}{c|c}
\neg 1 = 0. \\
\hline
x & \neg x \\
\hline
0 & 1 \\
\hline
1 & 0
\end{array}$$

Бинарные операции(2*2*2*2=16 - всего операций.)

X	У	$x \vee y$	$x \wedge y$	$x \oplus y$	$x \rightarrow y$	$x \equiv y$	$x \mid y$	$x \downarrow y$
0	0	0	0	0	1	1	1	1
0	1	1	0	1	1	0	1	0
1	0	1	0	1	0	0	1	0
1	1	1	1	0	1	1	0	0

Пример импликации:

1) $2*2=5 \Longrightarrow$ сегодня суббота

Верно

2)
$$\neg (1 \Longrightarrow 0) *1 = \neg 0 *1 = 1*1 = 1$$

Свойства операций:

 $\land,\lor,\leftrightarrow,+$ - коньюктивны

x*y=y*x - умножение

$$x \lor y = y \lor x$$

$$x \leftrightarrow y = y \leftrightarrow x$$
 - равенство

$$\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$$
 - Сумма в Z2

Универсальный способ проверки равенства двух логических выражений, это сравнить значения выражений при всех возможных значениях переменных.

X	У	$x \vee y$	y V x
0	0	$0 \lor 0 = 0$	$0 \lor 0 = 0$
0	1	$0 \lor 1 = 1$	$1 \lor 0 = 1$
1	0	1	1
1	1	1	1

Третий и четвертый столбцы совпадают.

 $x \Longrightarrow y$ - не коммутативно

X	У	$x \Longrightarrow y$	$y \Longrightarrow x$
0	0	$0 \Longrightarrow 0 = 1$	$0 \Longrightarrow 0 = 1$
0	1	$0 \Longrightarrow 1 = 1$	$1 \Longrightarrow 0 = 0$

Третий и четвертый столбцы не совпадают.

Ассоциативность:

$$(x \lor y) \lor z = x \lor (y \lor z)$$

 $(x * y)*z = x*(y*z)$

X	у	\mathbf{Z}	$x \vee y$	$(x \lor y) \lor z$	$y \lor z$	$x \lor (y \lor z)$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	1	1	0	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

Пятый и седьмой столбцы совпадают.

$$(x \leftrightarrow y) \leftrightarrow z = x \leftrightarrow (y \leftrightarrow z)$$

$$(x \Longrightarrow y) \Longrightarrow z \neq x \Longrightarrow (y \Longrightarrow z)$$
, t.k.

X	У	\mathbf{z}	$(x \Longrightarrow y) \Longrightarrow z$	$x \Longrightarrow (y \Longrightarrow z)$
0	0	0	$(0 \Longrightarrow 0) \Longrightarrow 0=0$	$0 \Longrightarrow (0 \Longrightarrow 0) = 1$

Запись логических выражений.

У ассоциативных операций () можно не иметь.

x+y+z - нормально.

Пример: $x \rightarrow y \rightarrow z$

Если скобок нет, имеется в виду $x \rightarrow (y \rightarrow z)$.

Приоритет операций $x \lor y^*z \to \neg(x^*y)$,

- $1)\neg$
- $2) \bullet \wedge$
- $3) \lor +$
- $4) \leftrightarrow u \rightarrow$

Правило Дэ Моргана

$$\neg(x \lor y) = \neg x \land \neg y$$

$$\neg(x \land y) = \neg x \lor \neg y$$

Проверка:

X	У	$\neg(x \land y)$	$\neg x \lor \neg y$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Дистрибутивность.

$$x \bullet (y \lor z) = x \bullet y \lor x \bullet z$$

$$x \bullet (y+z) = x \bullet y + x \bullet z$$

$$\mathbf{x} \lor (\mathbf{y} \bullet \mathbf{z}) = (\mathbf{x} \lor \mathbf{y}) \bullet (\mathbf{x} \lor \mathbf{z})$$
 - двойственная

$$x + y \bullet z \neq (x+y)(x+z)$$
 неверно при $x=1, y=1, z=0$.

Ещё набор свойств:

$$\neg \neg x = x$$

$$\mathbf{x} o \mathbf{y} = \neg \mathbf{x} \lor \mathbf{y}$$
 - см. таблицу истинности.

$$x \leftrightarrow y = (x \rightarrow y)(y \rightarrow x)$$
 - см. Мат. Анализ.

Дизъюктивно-нормальная форма.

Нормальная форма - один из вариантов записи логических выражений.

$$x \bullet y \lor z = (x \lor z)(y \lor z) = x \bullet y \lor z \lor 0 = x \bullet y + z + x \bullet y \bullet z$$

Здесь х•у∨z - дизъюктивно-нормальная форма(ДНФ)

Выражение имеет ДН Φ , если оно является дизъюнкцией нескольких конъюктов.

Конъюнкт - это конъюнкция литералов.

Литерал - переменная или отрицание переменной.

Пример: х•у∨z

где z - литерал; х и у - конъюнкты.

Ещё ДН Φ : х \bullet ¬у \bullet z \lor х \bullet ¬у \bullet ¬z \lor ¬у \bullet z - 3 конъюнкта.

 $x \bullet \neg y \bullet z - 1$ конъюнкт.

```
\neg x \lor \neg y \lor z - 3 конъюнкта по 1 литералу. \neg x - ДНФ, 1 конъюнкт из 1 литерала. x \bullet \neg y \bullet z \lor \neg y \bullet z \lor x \lor \neg y \bullet \neg z Не ДНФ: x \lor 1, x \lor y \lor z \lor x \to y, x \lor y \bullet z, x + y.
```