b ((mooln $n \mid a - b$ OLN (a mod n Z, n [N-1]

Element odwrotny względem relacji przystawania

Def. Niech kEZn={0/1,...,n-n}, Meleli istrieje linba m & Zn ala ktorey radrodzi

Lm = 1 (mod n)

to ney mamy (je elementem oduvalnym do k.

Pirany utedy $\sum_{n=1}^{\infty} = \mathbb{W} \left(\mathbb{Z}_{n} \right).$

The kell me element odurothy wheely itylho wheely, gody NUD (k,n) = 1.

NUD (k,n) = 1 => 5k = 1 (mod n) $s \notin \{2\}$ $NU(kn) = d > 1 \Rightarrow gdyby \qquad sk = 1 \pmod{n}$ to sk=1 + m·n, wpc 1 = 5k - mn, 5 prieamoso bo 0 | 5k - mn,

ele Tu. (gebross element oduvolnego).

Yerdi k-1 = m i k-2 = l, to m= l. $\frac{\mathcal{D}_{OU}}{\mathcal{D}_{OU}} = \mathcal{M} \cdot 1 = \mathcal{M} \cdot (\mathcal{L}) = (\mathcal{M} \cdot \mathcal{L}) \cdot \mathcal{L} =$ (4 Zn) = \bigwedge \cdot \bigvee = \bigvee

Układy kongruencji

Chińskie twierdzenie o resztach

Chinskie twierdzenie o resztach

$$x \equiv a \pmod{m}$$
 $x \equiv b \pmod{m}$
 $x \equiv b \pmod{m}$

Chińskie twierdzenie o resztach

TH. Jeieli
$$a_{1}$$
— a_{2} $\in \mathbb{Z}$, a_{3} — a_{4} $\in \mathbb{Z}$, a_{4} — a_{5} $\in \mathbb{Z}$, a_{1} — a_{5} $\in \mathbb{Z}$.

NHO $(a_{1}, a_{3}) = A$ de a_{1} $\in \mathbb{Z}$, a_{1} $\in \mathbb{Z}$, a_{2} $\in \mathbb{Z}$.

 $x \equiv a_{1}$ $(mod a_{1})$
 $x \equiv a_{2}$ $(mod a_{2})$
 $x \equiv a_{3}$ $(mod a_{2})$
 $x \equiv a_{4}$ $(mod a_{2})$
 $x \equiv a_{5}$ $(mod a_{2})$

Systemy resztowe (RNS)Residue Number System m, n-moduly NUD(m,n)=1 $a \in 2m$ 1 CTR $S(a,b): b \in 2n$ 1 $S(a,b): b \in 2n$ m=13, n=15 Son, Any > 49 cm> (1,4) \in Z13 x Z15 $Z_{195} \stackrel{\text{\tiny }}{=} Z_{13} \times Z_{15}$

Systemy resztowe

Systemy

$$M = 3$$
, $N = 4$
 Z_{12}
 $Z_{3} \times Z_{4}$
 $Z_{13} \times Z_{4}$
 $Z_{14} \times Z_{5} \times Z_{4}$
 $Z_{15} \times Z_{15} \times Z_{15}$
 $Z_{15} \times Z_{15} \times Z_{15} \times Z_{15}$
 $Z_{15} \times Z_{15} \times$

rdihe

$$2 + 7 = 9$$

$$(2,2) + (1,3) = (0,1)$$

