

Phase-2 Submission

Student Name: Gowtham P

Register Number: 712523104023

Institution: PPG INSTITUTE OF TECHNOLOGY

Department: BE CSE

Date of Submission: 08-05-2025

Github Repository:

https://github.com/pjgowtham17/NM Gowtham DS-.git

1. Problem Statement

The proliferation of fake news on social media and news websites poses a significant threat to societal trust, public safety, and democracy. It is framed as a binary classification problem, where the goal is to label a news article as either real or fake based on its textual content. Solving this problem enables platforms to flag potentially misleading content, making online information more reliable.

2. Project Objectives

- Build a supervised machine learning model to classify news as real or fake.
- Use NLP techniques to process and extract features from raw text data.
- Evaluate and compare multiple classification models for performance.
- Visualize insights into model performance and feature relevance.

3. Flowchart of the Project Workflow;

4. Data Description;

- Dataset Source: Kaggle "Fake and Real News Dataset"
- *Type of Data: Unstructured text (news articles)*
- Records & Features: ~44,000 articles with columns like title, text, label
- Static Dataset: Yes
- Target Variable: label (1 for Real, 0 for Fake)

DATA SET: https://www.kaggle.com/datasets/mahdimashayekhi/fake-new

1	Title	Text	Date	Source	Author	Category	Label
2	Foreign Democrat	more tax o	10-03-2023	NY Times	Paula Geo	Politics	real
3	To offer down res	probably g	25-05-2022	Fox News	Joseph Hil	Politics	fake
4	Himself church my	them iden	01-09-2022	CNN	Julia Robir	Business	fake
5	You unit its should	phone wh	07-02-2023	Reuters	Mr. David	Science	fake
6	Billion believe emp	wonder m	03-04-2023	CNN	Austin Wa	Technolog	fake

5. Data Preprocessing;

- *Merged title and text to form a complete input for analysis.*
- Removed duplicate articles.
- Cleaned text: lowercased, removed punctuation, stopwords, and digits.
- Applied lemmatization to reduce word forms.
- Encoded target variable (label) using binary encoding

6. Exploratory Data Analysis (EDA)

Univariate Analysis:

- Word clouds of most common words in fake vs. real articles.
- Distribution of article lengths.

Bivariate/Multivariate Analysis:

- Countplot of label distribution revealed mild class imbalance.
- N-gram frequency analysis for fake and real news.

Insights Summary:

- Fake news often uses more sensational and emotionally charged language.
- Real news tends to include names of known organizations or references to factual events.
- Features like word count and specific keywords were found to influence

classification.

7. Feature Engineering

- Combined title and text into one feature: full text.
- Extracted article length and average word length as new numerical features.
- *TF-IDF applied to extract key textual patterns.*
- Removed very frequent and very rare words (min_df=5, max_df=0.8) to reduce noise.

8. Model Building

- Logistic Regression baseline model for interpretability.
- Random Forest Classifier for handling high-dimensional data and nonlinear patterns.
- Multinomial Naive Bayes commonly used for text classification.
- 4. Model Evaluation Metrics: Accuracy, Precision, Recall, F1-Score
- Cross-validation used for better generalization.
- Random Forest performed best with an F1-score of ~0.93 on test data.

9. Visualization of Results & Model Insights

- Confusion Matrix: Showed true positives, false positives, etc.
- ROC Curve: AUC of 0.96 for the best model.

- Feature Importance (Random Forest): Showed top TF-IDF words contributing to classification.
- Word Clouds: Differentiated language styles of fake vs. real news.

10. Tools and Technologies Used

• Programming Language: Python

• IDE/Notebook: Google Colab

- Libraries: pandas, numpy, scikit-learn, nltk, seaborn, matplotlib, xgboost, plotly
- Visualization Tools: matplotlib, seaborn, wordcloud, plotly

11. Team Members and Contributions

NAME	RO LE	WORK
MURALIDHARAN K	Team Coordinator	
GOWTHAM P	Marketing & Outreach Lead	
PUGAZHENTHI	NLP Engineer	
BHARATHIDHASAN	Document and presentation	
JESLIN SAJAN	Testing and deployment	