Dynamical Systems: Homework 5

Chris Hayduk

November 17, 2020

Problem 1.

Let F_f be the Fatou set of $f: C \to C$, a polynomial with degree $d \geq 2$.

Problem 2.

Fix $w \in W^s(z)$. We know that,

$$|f^n(z)-f^n(w)|\to 0 \text{ as } n\to\infty$$

That is, for every $\epsilon > 0$, there exists a natural number N such that for all n > N, we have that,

$$|f^n(z) - f^n(w)| < \epsilon$$

Let $\epsilon' < \epsilon/2$ and fix $w' \neq w \in B(w, \epsilon')$. Then, by the continuity of polynomials, we have

$$|f^{n}(z) - f^{n}(w)| = |f^{n}(z) - f^{n}(w') + f^{n}(w') - f^{n}(w')|$$

$$\leq |f^{n}(z) - f^{n}(w')| + |f^{n}(w') - f^{n}(w')|$$

Problem 3.

We have that f'(z) = 2z. Hence, $\lim_{z \to \infty} f'(z) = \infty$. Since f(2) is a fixed point, we have $f^n(z) \to \infty$ for z > 2. Now for z < -2, we have that f(z) > 2. Hence, $f^n(z) \to \infty$ for z < 2 as well. Thus, the basin of attraction for ∞ is $W^s(\infty) = \overline{\mathbb{C}} \setminus [-2, 2]$

Problem 4.

Problem 5. Bonus problem