概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确

A可逆 r(A) = nA的列(行)向量线性无关 A的特征值全不为0 Ax = o只有零解 $\Leftrightarrow \forall x \neq o, Ax \neq o$ $\forall \beta \in \mathbb{R}^n, Ax = \beta$ 总有唯一解 $A^T A$ 是正定矩阵 $A = p_1 p_2 \cdots p_s$ p_i 是初等阵 存在n阶矩阵B,使得AB = E 或 AB = E

 \bigoplus : 全体n 维实向量构成的集合 \mathbb{R}^n 叫做n 维向量空间.

|A|=0 \Leftrightarrow $\begin{cases} r(A) < n \\ A$ 的列(行)向量线性相关 0是A的特征值 Ax=o有非零解,其基础解系即为A关于 $\lambda=0$ 的特征向量

(①
$$|aE + bA| = o \Leftrightarrow \begin{cases} r(aE + bA) < n \\ (aE + bA)x = o$$
有非零解 $\lambda = -\frac{a}{b} \end{cases}$

向量组等价

向量组等价 矩阵等价(≅) 矩阵相似(~)

矩阵合同(~)

√ 关于 e_1, e_2, \dots, e_n :

- ①称为 \mathbb{R}^n 的标准基, \mathbb{R}^n 中的自然基,单位坐标向量 $p_{\#MST}$;
- ② e_1,e_2,\cdots,e_n 线性无关;
- $\Im |e_1, e_2, \dots, e_n| = 1;$
- 4 trE=n:
- ⑤任意一个n维向量都可以用 e_1,e_2,\cdots,e_n 线性表示.

| 行列式的定义
$$D_n = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{j_1 j_2 \cdots j_n} (-1)^{\tau(j_1 j_2 \cdots j_n)} a_{1j_1} a_{2j_2} \cdots a_{nj_n}$$

√ 行列式的计算:

①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.

推论: 行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

②若
$$A$$
与 B 都是方阵(不必同阶),则
$$\begin{vmatrix} A & O \\ O & B \end{vmatrix} = \begin{vmatrix} A & * \\ O & B \end{vmatrix} = \begin{vmatrix} A & O \\ * & B \end{vmatrix} = |A||B|$$
 (拉普拉斯展开式)

③上三角、下三角、主对角行列式等于主对角线上元素的乘积.

④关于副对角线:
$$\begin{vmatrix} * & & & a_{1n} \\ & & a_{2n-1} \\ & & \vdots \\ a_{n1} & & O \end{vmatrix} = \begin{vmatrix} O & & & a_{1n} \\ & & a_{2n-1} \\ & & \vdots \\ a_{n1} & & O \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} a_{1n} a_{2n} \dots a_{n1} \quad (即: 所有取自不同行不)$$

同列的n个元素的乘积的代数和)

⑤范德蒙德行列式:
$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \leq j < i \leq n} (x_i - x_j)$$

矩阵的定义 由 $m \times n$ 个数排成的 m 行 n 列的表 $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$ 称为 $m \times n$ 矩阵. 记作: $A = (a_{ij})_{m \times n}$ 或 $A_{m \times n}$

| 伴随矩阵|
$$A^* = (A_{ij})^T = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$
, A_{ij} 为 $|A|$ 中各个元素的代数余子式.

√ 逆矩阵的求法:

②
$$(A:E)$$
 — 初等行变换 $(E:A^{-1})$

- ✓ 方阵的幂的性质: $A^{m}A^{n} = A^{m+n}$ $(A^{m})^{n} = (A)^{mn}$
- \checkmark 设 $A_{m \times n}, B_{n \times s}, A$ 的列向量为 $\alpha_1, \alpha_2, \cdots, \alpha_n$, B 的列向量为 $\beta_1, \beta_2, \cdots, \beta_s$,

则
$$AB = C_{m \times s} \Leftrightarrow (\alpha_1, \alpha_2, \dots, \alpha_n)$$

$$\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix} \Leftrightarrow A\beta_i = c_i \quad , \quad (i = 1, 2, \dots, s) \Leftrightarrow \beta_i$$
 为

 $Ax = c_i$ 的解 $\Leftrightarrow A(\beta_1, \beta_2, \dots, \beta_s) = (A\beta_1, A\beta_2, \dots, A\beta_s) = (c_1, c_2, \dots, c_s) \Leftrightarrow c_1, c_2, \dots, c_s$ 可由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表

示. 即:C的列向量能由A的列向量线性表示,B为系数矩阵.

同理: C 的行向量能由 B 的行向量线性表示, A^T 为系数矩阵.

✓ 用对角矩阵 Λ \bigcirc 乘一个矩阵,相当于用 Λ 的对角线上的各元素依次乘此矩阵的 \bigcirc 向量;

用对角矩阵 Λ \bigcirc 乘一个矩阵,相当于用 Λ 的对角线上的各元素依次乘此矩阵的 \bigcirc 向量.

- √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.
- ✓ 分块矩阵的转置矩阵: $\begin{pmatrix} A & B \\ C & D \end{pmatrix}^T = \begin{pmatrix} A^T & C^T \\ B^T & D^T \end{pmatrix}$

分块矩阵的逆矩阵:
$$\begin{pmatrix} A & \\ & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & \\ & B^{-1} \end{pmatrix} \qquad \qquad \begin{pmatrix} & A \\ & B \end{pmatrix}^{-1} = \begin{pmatrix} & B^{-1} \\ & A^{-1} \end{pmatrix}$$
$$\begin{pmatrix} A & C \\ O & B \end{pmatrix}^{-1} = \begin{pmatrix} & A^{-1} & A^{-1}CB^{-1} \\ & O & B \end{pmatrix} \qquad \qquad \begin{pmatrix} & A & O \\ & C & B \end{pmatrix}^{-1} = \begin{pmatrix} & A^{-1} & O \\ & -B^{-1}CA^{-1} & B \end{pmatrix}$$

分块对角阵相乘:
$$A = \begin{pmatrix} A_{11} & \\ & A_{22} \end{pmatrix}$$
 , $B = \begin{pmatrix} B_{11} & \\ & B_{22} \end{pmatrix}$ $\Rightarrow AB = \begin{pmatrix} A_{11}B_{11} & \\ & A_{22}B_{22} \end{pmatrix}$, $A^n = \begin{pmatrix} A_{11}^n & \\ & A_{22}^n \end{pmatrix}$

分块对角阵的伴随矩阵: $\begin{pmatrix} A \\ B \end{pmatrix}^* = \begin{pmatrix} BA^* \\ AB^* \end{pmatrix} \qquad \begin{pmatrix} A \\ B \end{pmatrix}^* = \begin{pmatrix} (-1)^{mn} |A| B^* \\ (-1)^{mn} |B| A^* \end{pmatrix}$

- ✓ 矩阵方程的解法($|A| \neq 0$): 设法化成(I)AX = B 或 (II)XA = B
 - (I) 的解法:构造 (A:B) 初等行变换 $\to (E:X)$
 - (II)的解法:将等式两边转置化为 $A^TX^T = B^T$,用(I)的方法求出 X^T ,再转置得X
- ① 零向量是任何向量的线性组合,零向量与任何同维实向量正交.
- ② 单个零向量线性相关;单个非零向量线性无关.
- ③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)
- ④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动)
- ⑤ 两个向量线性相关 \Leftrightarrow 对应元素成比例; 两两正交的非零向量组线性无关 $p_{*******}$.
- ⑥ 向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 中任一向量 α_i ($1 \le i \le n$) 都是此向量组的线性组合.
- ⑦ 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性相关 \Leftrightarrow 向量组中至少有一个向量可由其余n-1个向量线性表示. 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关 \Leftrightarrow 向量组中每一个向量 α_i 都不能由其余n-1个向量线性表示.
- ⑧ m 维列向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性相关 $\Leftrightarrow r(A) < n$; m 维列向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关 $\Leftrightarrow r(A) = n$.
- ⑨ 若 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关,而 $\alpha_1, \alpha_2, \cdots, \alpha_n, \beta$ 线性相关,则 β 可由 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性表示,且表示法唯一.
- ⑩ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩, 行阶梯形矩阵的秩等于它的非零行的个数.

行阶梯形矩阵 可画出一条阶梯线,线的下方全为 0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零. 当非零行的第一个非零元为 1,且这些非零元所在列的其他元素都是 0 时,称为 行最简形矩阵

⑪ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系;

矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.

- 即:矩阵的初等变换不改变矩阵的秩.
- √ 矩阵的初等变换和初等矩阵的关系:

对A施行一次初等 \bigcirc 变换得到的矩阵,等于用相应的初等矩阵 \bigcirc 乘A;

矩阵的秩 如果矩阵 A 存在不为零的 r 阶子式,且任意 r+1 阶子式均为零,则称矩阵 A 的秩为 r. 记作 r(A)=r

向量组的秩 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 的极大无关组所含向量的个数,称为这个向量组的秩. 记作 $r(\alpha_1,\alpha_2,\cdots,\alpha_n)$

矩阵等价 A 经过有限次初等变换化为 B. 记作: $A \cong B$

向量组等价 $\alpha_1, \alpha_2, \dots, \alpha_n$ 和 $\beta_1, \beta_2, \dots, \beta_n$ 可以相互线性表示. 记作: $(\alpha_1, \alpha_2, \dots, \alpha_n) = (\beta_1, \beta_2, \dots, \beta_n)$

② 矩阵 $A \subseteq B$ 等价 $\Leftrightarrow PAQ = B$, P,Q 可逆 $\Leftrightarrow r(A) = r(B), A, B$ 为同型矩阵 $\neq > A, B$ 作为向量组等价, 即: 秩相等的向量组不一定等价.

矩阵 $A \ni B$ 作为向量组等价 $\Leftrightarrow r(\alpha_1, \alpha_2, \dots, \alpha_n) = r(\beta_1, \beta_2, \dots, \beta_n) = r(\alpha_1, \alpha_2, \dots \alpha_n, \beta_1, \beta_2, \dots, \beta_n) \Rightarrow$ 矩阵 $A \ni B$ 等价.

⑬ 向量组 $\beta_1, \beta_2, \dots, \beta_s$ 可由向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示 $\Leftrightarrow AX = B$ 有解

$$\Leftrightarrow r(\alpha_1, \alpha_2, \dots, \alpha_n) = r(\alpha_1, \alpha_2, \dots, \alpha_n, \beta_1, \beta_2, \dots, \beta_s) \Rightarrow r(\beta_1, \beta_2, \dots, \beta_s) \leqslant r(\alpha_1, \alpha_2, \dots, \alpha_n).$$

- 14 向量组 $\beta_1, \beta_2, \cdots, \beta_s$ 可由向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性表示,且s > n,则 $\beta_1, \beta_2, \cdots, \beta_s$ 线性相关.

 向量组 $\beta_1, \beta_2, \cdots, \beta_s$ 线性无关,且可由 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性表示,则 $s \leq n$.
- ⑤ 向量组 $\beta_1, \beta_2, \cdots, \beta_s$ 可由向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性表示,且 $r(\beta_1, \beta_2, \cdots, \beta_s) = r(\alpha_1, \alpha_2, \cdots, \alpha_n)$,则两向量组等f0; $p_{\text{教}d_{94}, \text{M10}}$
- ⑥ 任一向量组和它的极大无关组等价. 向量组的任意两个极大无关组等价.
- ① 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定.
- (18) 若两个线性无关的向量组等价,则它们包含的向量个数相等.
- ⑨ 设 $A \neq m \times n$ 矩阵, 若r(A) = m, A的行向量线性无关;

若 r(A) = n , A 的列向量线性无关, 即: $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关.

√ 矩阵的秩的性质:

②
$$r(A) = r(A^T) = r(A^T A)$$
 $p_{\text{\overline{\psi}}\overline{\psi}}$ $p_{\text{\overline{\psi}}\overline{\psi}}$ $p_{\text{\overline{\psi}}\overline{\psi}}$

③
$$r(kA) = r(A)$$
 若 $k \neq 0$

④ 若
$$A_{m\times n}$$
, $B_{n\times s}$, 若 $r(AB) = 0 \Rightarrow \begin{cases} r(A) + r(B) \le n \\ B$ 的列向量全部是 $Ax = 0$ 的解

⑦若
$$r(A_{m \times n}) = n$$
 $\begin{cases} \Leftrightarrow Ax = o \ \text{只有零解} \\ \Rightarrow \begin{cases} r(AB) = r(B) \\ A$ 在矩阵乘法中有左消去律 $\begin{cases} AB = O \Rightarrow B = O \end{cases} \\ AB = AC \Rightarrow B = C \end{cases}$

若
$$r(B_{n\times s})$$
 = n ⇒
$$\begin{cases} r(AB) = r(B) \\ B$$
在矩阵乘法中有右消去律.

$$\max\{r(A),r(B)\} \leq r(A,B) \leq r(A) + r(B)$$

$$r \begin{pmatrix} A & C \\ O & B \end{pmatrix} \neq r(A) + r(B)$$

$$\beta$$
可由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示 $\Leftrightarrow Ax = \beta$ 有解 $\Leftrightarrow r(A) = r(A : \beta)$

$$eta$$
不可由 $lpha_1,lpha_2,\cdots,lpha_n$ 线性表示 $\Leftrightarrow Ax = eta$ 无解 $\begin{cases} \Leftrightarrow r(A) \neq r(A:eta) \\ \Leftrightarrow r(A) < r(A:eta) \end{cases}$ $_{\begin{subarray}{c} \chi \neq \pi/2 \\ \Leftrightarrow r(A) + 1 = r(A:eta) \end{subarray}}$

线性方程组的矩阵式 $Ax = \beta$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

向量式
$$x_1\alpha_1 + x_2\alpha_2 + \cdots + x_n\alpha_n = \beta$$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_{1j} \ eta_{2j} \ eta \ eta_{mj} \end{aligned} \end{aligned}, j=1,2,\cdots,n$$

$$(\alpha_1, \alpha_2, \dots, \alpha_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \beta$$

矩阵转置的性质:	$(A^T)^T = A$	$(AB)^T = B^T A^T$	$(kA)^T = kA^T$	$ A^T = A $	$(A \pm B)^T = A^T \pm B^T$	$(A^{-1})^T = (A^T)^{-1}$	$\left(A^{T}\right)^{*} = \left(A^{*}\right)^{T}$
矩阵可逆的性质:	$(A^{-1})^{-1} = A$	$(AB)^{-1} = B^{-1}A^{-1}$	$(kA)^{-1} = k^{-1}A^{-1}$	$\left A^{-1} \right = \left A \right ^{-1}$	$(A \pm B)^{-1} \neq A^{-1} \pm B^{-1}$	$(A^{-1})^k = (A^k)^{-1} = A^{-k}$	
伴随矩阵的性质:	$\left(\mathbf{A}^*\right)^* = \left \mathbf{A}\right ^{n-2} \mathbf{A}$	$(AB)^* = B^*A^*$	$(kA)^* = k^{n-1}A^*$	$\left \begin{array}{c} \left A^* \right = \left A \right ^{n-1} \end{array} \right $	$\left(A\pm B\right)^*\neq A^*\pm B^*$	$(A^{-1})^* = (A^*)^{-1} = \frac{A}{ A }$	$\left(A^{k}\right)^{*} = \left(A^{*}\right)^{k}$
$r(A^*) = \begin{cases} n & $		AB = A B	$\left kA\right = k^n \left A\right $	$ A^k = A ^k$	$ A \pm B \neq A \pm B $	$AA^* = A^*A = A E$ (无条件恒成立)	

- (1) η_1, η_2 是Ax = o的解, $\eta_1 + \eta_2$ 也是它的解
- (2) η 是Ax = o的解,对任意 $k,k\eta$ 也是它的解

(3) $\eta_1, \eta_2, \dots, \eta_k$ 是Ax = o的解,对任意k个常数 $\lambda_1, \lambda_2, \dots, \lambda_k$, $\lambda_1 \eta_1 + \lambda_2 \eta_2 + \lambda_k \eta_k$ 也是它的解

齐次方程组

线性方程组解的性质:

- $\{(4) \ \gamma \in Ax = \beta$ 的解, $\eta \in Ax = \beta$ 的解, $\gamma + \eta \in Ax = \beta$ 的解
- (5) η_1, η_2 是 $Ax = \beta$ 的两个解, $\eta_1 \eta_2$ 是其导出组Ax = o的解
- (6) η_2 是 $Ax = \beta$ 的解,则 η_1 也是它的解 $\Leftrightarrow \eta_1 \eta_2$ 是其导出组Ax = o的解
- (7) $\eta_1, \eta_2, \dots, \eta_k$ 是 $Ax = \beta$ 的解,则

$$\lambda_1 \eta_1 + \lambda_2 \eta_2 + \lambda_k \eta_k$$
也是 $Ax = \beta$ 的解 $\Leftrightarrow \lambda_1 + \lambda_2 + \lambda_k = 1$
 $\lambda_1 \eta_1 + \lambda_2 \eta_2 + \lambda_k \eta_k$ 是 $Ax = 0$ 的解 $\Leftrightarrow \lambda_1 + \lambda_2 + \lambda_k = 0$

√ 设 A 为 $m \times n$ 矩阵, 若 $r(A) = m \Rightarrow r(A) = r(A : β) \Rightarrow Ax = β$ 一定有解,

当m < n 时,一定不是唯一解 $\Rightarrow \frac{ 方程个数}{ 向量维数} < \frac{ 未知数的个数}{ 向量个数}, 则该向量组线性相关.$

 $m \in r(A)$ 和 $r(A:\beta)$ 的上限.

- ✓ 判断 $\eta_1, \eta_2, \dots, \eta_s$ 是Ax = o的基础解系的条件:
 - ① $\eta_1, \eta_2, \dots, \eta_s$ 线性无关;
 - ② $\eta_1, \eta_2, \dots, \eta_s$ 都是 Ax = o的解;
 - ③ s = n r(A) =每个解向量中自由未知量的个数.
- √ 一个齐次线性方程组的基础解系不唯一.
- ✓ 若 η^* 是 $Ax = \beta$ 的一个解, ξ_1, ξ, \dots, ξ_s 是 Ax = o 的一个解 ⇒ $\xi_1, \xi, \dots, \xi_s, \eta^*$ 线性无关
- √ Ax = o 与 Bx = o 同解 (A, B 列向量个数相同),则:
 - ① 它们的极大无关组相对应,从而秩相等;
 - ② 它们对应的部分组有一样的线性相关性;
 - ③ 它们有相同的内在线性关系.
- ✓ 两个齐次线性线性方程组 Ax = o 与 Bx = o 同解 ⇔ $r \binom{A}{B} = r(A) = r(B)$.
- √ 两个非齐次线性方程组 $Ax = \beta$ 与 $Bx = \gamma$ 都有解,并且同解 ⇔ $r\begin{pmatrix} A: \beta \\ B: \gamma \end{pmatrix} = r(A) = r(B)$.

- ✓ 矩阵 $A_{m \times n}$ 与 $B_{l \times n}$ 的行向量组等价 ⇔ 齐次方程组 Ax = o 与 Bx = o 同解 ⇔ PA = B (左乘可逆矩阵 P); $p_{3 \text{ M H IOI}}$ 矩阵 $A_{m \times n}$ 与 $B_{l \times n}$ 的列向量组等价 ⇔ AQ = B (右乘可逆矩阵 Q).
- √ 关于公共解的三中处理办法:
 - ① 把(I)与(II)联立起来求解;
 - ② 通过(I)与(II)各自的通解,找出公共解:

当(I)与(II)都是齐次线性方程组时,设 η_1,η_2,η_3 是(I)的基础解系, η_4,η_5 是(II)的基础解系,则(I)与(II)有公共解 \Leftrightarrow 基础解系个数少的通解可由另一个方程组的基础解系线性表示。

即:
$$r(\eta_1, \eta_2, \eta_3) = r(\eta_1, \eta_2, \eta_3; c_1\eta_4 + c_2\eta_5)$$

当(I)与(II)都是非齐次线性方程组时,设 $\xi_1+c_1\eta_1+c_2\eta_2$ 是(I)的通解, $\xi_2+c_3\eta_3$ 是(II)的通解,两方程组有公共解 $\Leftrightarrow \xi_2+c_3\eta_3-\xi_1$ 可由 η_1,η_2 线性表示. 即: $r(\eta_1,\eta_2)=r(\eta_1,\eta_2$: $\xi_2+c_3\eta_3-\xi_1$)

③ 设(I)的通解已知,把该通解代入(II)中,找出(I)的通解中的任意常数所应满足(II)的关系式而求出公共解。

标准正交基 $n \land n$ 维线性无关的向量,两两正交,每个向量长度为 1.

向量
$$\alpha = (a_1, a_2, \dots, a_n)^T$$
与 $\beta = (b_1, b_2, \dots, b_n)^T$ 的内积 $(\alpha, \beta) = \sum_{i=1}^n a_i b_i = \sqrt{a_1 b_1 + a_2 b_2 + \dots + a_n b_n}$

$$\alpha$$
与 β 正交 $(\alpha,\beta)=0$. 记为: $\alpha \perp \beta$

向量
$$\alpha = (a_1, a_2, \dots, a_n)^T$$
的长度 $\|\alpha\| = \sqrt{(\alpha, \alpha)} = \sum_{i=1}^n a_i^2 = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$

 α 是单位向量 $\|\alpha\| = \sqrt{(\alpha,\alpha)} = 1$. 即长度为1的向量.

- ✓ 内积的性质: ① 正定性: $(\alpha,\alpha) \ge 0$, 且 $(\alpha,\alpha) = 0 \Leftrightarrow \alpha = 0$
 - ② 对称性: $(\alpha,\beta)=(\beta,\alpha)$

③ 双线性:
$$(\alpha, \beta_1 + \beta_2) = (\alpha, \beta_1) + (\alpha, \beta_2)$$

 $(\alpha_1 + \alpha_2, \beta) = (\alpha_1, \beta) + (\alpha_2, \beta)$
 $(c\alpha, \beta) = c(\alpha, \beta) = (\alpha, c\beta)$

A 的特征矩阵 $\lambda E - A$.

A的特征多项式 $|\lambda E - A| = \varphi(\lambda)$.

 \checkmark $\varphi(\lambda)$ 是矩阵 A 的特征多项式 ⇒ $\varphi(A) = O$

$$A$$
 的特征方程 $|\lambda E - A| = 0$.

$$A$$
 的特征方程 $|\lambda E - A| = 0$. $Ax = \lambda x$ (x 为非零列向量) $\rightarrow Ax = x$ 线性相关

$$\checkmark |A| = \lambda_1 \lambda_2 \cdots \lambda_n$$
 $\sum_{i=1}^n \lambda_i = \operatorname{tr} A$, $\operatorname{tr} A$ 称为矩阵 A 的迹.

- √ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.
- ✓ $\dot{A}|A|=0$,则 $\lambda=0$ 为A的特征值,且Ax=o的基础解系即为属于 $\lambda=0$ 的线性无关的特征向量.

$$\checkmark r(A) = 1 \Leftrightarrow A - 定可分解为 A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} (b_1, b_2, \cdots, b_n) \cdot A^2 = (a_1b_1 + a_2b_2 + \cdots + a_nb_n)A, 从而 A 的特征值为:$$

$$\lambda_1 = \operatorname{tr} A = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$
, $\lambda_2 = \lambda_3 = \dots = \lambda_n = 0$ $p_{\text{Him}35}$

$$\lambda_2 = \lambda_3 = \dots = \lambda_n = 0$$
 $p_{\frac{1}{16} \pm 358}$.

$$\oplus (a_1, a_2, \dots, a_n)^T$$
 为 A 各行的公比, (b_1, b_2, \dots, b_n) 为 A 各列的公比.

- ✓ 若A的全部特征值 $\lambda_1, \lambda_2, \dots, \lambda_n$, f(A)是多项式,则:
 - ① 若 A 满足 $f(A) = O \Rightarrow A$ 的任何一个特征值必满足 $f(\lambda_i) = 0$
 - ② f(A) 的全部特征值为 $f(\lambda_1), f(\lambda_2), \dots, f(\lambda_n)$; $|f(A)| = f(\lambda_1)f(\lambda_2) \dots f(\lambda_n)$.
- √ 初等矩阵的性质:

E(i,j) = -1	$\left E[i(k)] \right = k$	E[i,j(k)] = 1
$E(i,j)^T = E(i,j)$	$E[i(k)]^{T} = E[i(k)]$	$E[i, j(k)]^{T} = E[j, i(k)]$
$E(i,j)^{-1} = E(i,j)$	$E[i(k)]^{-1} = E[i(\frac{1}{k})]$	$E[i, j(k)]^{-1} = E[i, j(-k)]$
$E(i,j)^* = -E(i,j)$	$E[i(k)]^* = kE[i(\frac{1}{k})]$	$E[i, j(k)]^* = E[i, j(-k)]$

 \checkmark 设 $f(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$, 对 n 阶矩阵 A 规定: $f(A) = a_m A^m + a_{m-1} A^{m-1} + \dots + a_1 A + a_0 E$ 为 A 的 一个多项式.

$$\lambda$$
 x 是 A 关于 λ 的特征向量,则 x 也是 $\begin{cases} kA & k\lambda \\ aA+bE & a\lambda+b \\ A^{-1} &$ 关于 $\frac{1}{\lambda} &$ 的特征向量 $A^* & \lambda^2 & \lambda^2 \\ A^m & \lambda^m & \lambda^m \end{cases}$

- √ A^2, A^m 的特征向量不一定是 A 的特征向量.
- √ A与 A^{T} 有相同的特征值,但特征向量不一定相同.

$$A 与 B$$
 相似 $P^{-1}AP = B$ (P 为可逆矩阵) 记为: $A \sim B$

$$A = B$$
 正交相似 $P^{-1}AP = B$ (P 为正交矩阵)

A 可以相似对角化 A 与对角阵 Λ 相似. 记为: $A \sim \Lambda$ (称 Λ 是 A 的相似标准形)

 \checkmark A 可相似对角化 \Leftrightarrow $n-r(\lambda_i E-A)=k_i$ k_i 为 λ_i 的重数 \Leftrightarrow A 恰有 n 个线性无关的特征向量. 这时, P 为 A 的特征向量拼成的矩阵, $P^{-1}AP$ 为对角阵, 主对角线上的元素为 A 的特征值. 设 α_i 为对应于 λ_i 的线性无关的特征向量,则有:

$$A(\alpha_{1},\alpha_{2},\cdots,\alpha_{n}) = (A\alpha_{1},A\alpha_{2},\cdots,A\alpha_{n}) = (\lambda_{1}\alpha_{1},\lambda_{2}\alpha_{2},\cdots,\lambda_{n}\alpha_{n}) = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n}) \begin{pmatrix} \lambda_{1} & & \\ & \lambda_{2} & \\ & & \ddots & \\ & & & \lambda_{n} \end{pmatrix}.$$

- √ 若n 阶矩阵 A 有n 个互异的特征值 \Rightarrow A 可相似对角化.

√ 若A可相似对角化,则其非零特征值的个数(重根重复计算) = r(A).

$$\sqrt{ \ddagger A} \sim \Lambda \Rightarrow A^k = P\Lambda^k P^{-1}, \quad g(A) = Pg(\Lambda) P^{-1} = P \begin{pmatrix} g(\lambda_1) & & & \\ & g(\lambda_2) & & & \\ & & \ddots & & \\ & & & g(\lambda_n) \end{pmatrix} P^{-1}$$

- √ 相似矩阵的性质:
- ① $|\lambda E A| = |\lambda E B|$, 从而 A, B 有相同的特征值, 但特征向量不一定相同. $x \ge A$ 关于 λ_0 的特征向量, $P^{-1}x \ge B$ 关于 λ_0 的特征向量.
- \bigcirc trA = trB
- ③|A| = |B| 从而 A, B 同时可逆或不可逆
- 4 r(A) = r(B)

⑤
$$A^T \sim B^T$$
; $A^{-1} \sim B^{-1}$ (若 A, B 均可逆); $A^* \sim B^*$

⑥
$$A^k \sim B^k$$
 (k 为整数); $f(A) \sim f(B)$, $|f(A)| = |f(B)|$

④前四个都是必要条件.

- √ 数量矩阵只与自己相似.
- √ 实对称矩阵的性质:
 - ① 特征值全是实数,特征向量是实向量;
 - ② 不同特征值对应的特征向量必定正交;
 - 母:对于普通方阵,不同特征值对应的特征向量线性无关;
 - ③一定有n个线性无关的特征向量.

若 A 有重的特征值, 该特征值 λ , 的重数= $n-r(\lambda,E-A)$;

- ④必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形;
- ⑤与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形;

⑥两个实对称矩阵相似⇔有相同的特征值.

正交矩阵 $AA^T = E$

- √ A 为正交矩阵 ⇔ A 的 n 个行 (列) 向量构成 ℝⁿ 的一组标准正交基.
- ✓ 正交矩阵的性质: ① $A^T = A^{-1}$:

 - ③ 正交阵的行列式等于1或-1;
 - ④ A 是正交阵,则 A^{T} , A^{-1} 也是正交阵;
 - ⑤ 两个正交阵之积仍是正交阵;
 - ⑥ A的行(列)向量都是单位正交向量组.

三次型
$$f(x_1, x_2, \dots, x_n) = x^T A x = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$
 $a_{ij} = a_{ji}$,即 A 为对称矩阵, $x = (x_1, x_2, \dots, x_n)^T$

A = B 合同 $C^T A C = B$. 记作: $A \simeq B$ (A,B为实对称矩阵,C为可逆矩阵)

正惯性指数 二次型的规范形中正项项数 p 负惯性指数二次型的规范形中负项项数 r-p

符号差 2p-r (r为二次型的秩)

- √ 两个矩阵合同⇔ 它们有相同的正负惯性指数⇔ 他们的秩与正惯性指数分别相等.
- √ 两个矩阵合同的充分条件是: $A \sim B$
- √ 两个矩阵合同的必要条件是: r(A) = r(B)

$$√ f(x_1, x_2, \dots, x_n) = x^T A x$$
 经过
合同变换 $x = C y$ 化为 $f = \sum_{i=1}^{n} d_i y_i^2$ 标准形.

可逆线性变换

- ✓ 二次型的标准形不是唯一的,与所作的正交变换有关,但非零系数的个数是由 $\underline{r(A)}$ 唯一确定的 $\underline{r(B)}$ 唯一确定的
- ✓ 当标准形中的系数 d_i 为-1 或 0 或 1 时, 称为二次型的规范形.
- √ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.

- √ 用正交变换化二次型为标准形:
 - ① 求出A的特征值、特征向量;
 - ② 对 n 个特征向量正交规范化;
 - ③ 构 造 C (正 交 矩 阵) , 作 变 换 x=Cy , 贝

$$(Cy)^T A(Cy) = y^T C^T A CY = y^{-1} C^T A CY = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}^T \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
新的二次型为 $f = \sum_{1}^{n} d_i y_i^2$, Λ

的主对角上的元素d,即为A的特征值.

施密特正交规范化 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,

正交化
$$\begin{cases} \beta_1 = \alpha_1 \\ \beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 \\ \beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2 \end{cases}$$
单位化:
$$\eta_1 = \frac{\beta_1}{\|\beta_1\|} \qquad \eta_2 = \frac{\beta_2}{\|\beta_2\|} \qquad \eta_3 = \frac{\beta_3}{\|\beta_3\|}$$

技巧: 取正交的基础解系, 跳过施密特正交化。让第二个解向量先与第一个解向量正交, 再把第二个解向量代入方

正定二次型 x_1, x_2, \dots, x_n 不全为零, $f(x_1, x_2, \dots, x_n) > 0$.

正定矩阵 正定二次型对应的矩阵.

√ $f(x) = x^T A x$ 为正定二次型 ⇔ (之一成立):

- ① $\forall x \neq o$, $x^T A x > 0$;
- ② A 的特征值全大于0;
- ③ f的正惯性指数为n;
- ④ A 的所有顺序主子式全大于0;
- ⑤ A = E 合同,即存在可逆矩阵 C 使得 $C^T A C = E$;
- ⑥ 存在可逆矩阵 P, 使得 $A = P^T P$;
- ⑦ 存在正交矩阵 C,使得 $C^TAC = C^{-1}AC = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$ $(\lambda_i$ 大于0).
- √ 合同变换不改变二次型的正定性.
- √ *A* 为正定矩阵 $⇒ a_{ii} > 0$; |A| > 0.
- √ A 为正定矩阵 ⇒ A^T, A⁻¹, A* 也是正定矩阵.
- √ A 与 B 合同,若 A 为正定矩阵 ⇒ B 为正定矩阵
- √ A, B 为正定矩阵 \Rightarrow A + B 为正定矩阵, 但 AB, BA 不一定为正定矩阵.