Homework 12 of Introduction to Analysis (I), Honor Class

AM15 黃琦翔 111652028

December 5, 2023

1. We claim that a_n is a Cauchy. Then, for $m > n \ge N$

$$|f(\frac{1}{n}) - f(\frac{1}{m})| < |(\frac{1}{n} - \frac{1}{m}) \cdot f'(c)| \text{ for some } c \in [\frac{1}{m}, \frac{1}{n}]$$

$$< \frac{1}{n} - \frac{1}{m}$$

$$< \frac{1}{n} \le \frac{1}{N}$$

Thus, for any $\varepsilon > 0$, we take $N > \frac{1}{\varepsilon}$. Therefore, a_n is Cauchy $\Longrightarrow \lim_{n \to \infty} a_n$ exists.

- 2. Since f'(x) exists on (a,b), we can find $s_1 = \sup\{f'(x) \mid x \in (a,b)\}$, $s_2 = \lim_{x \to a^+} f(x)$ and $s = \max\{s_1, s_2\}$. Then, for $\varepsilon > 0$, we take $\delta = \frac{\varepsilon}{s}$, then $|f(x) - f(x_0)| < |x - x_0|s < \delta s = \varepsilon$. Thus, f is uniform continuous.
- 3. (a) Claim that for any $\varepsilon > 0$, there exists a $N \in \mathbb{N}$ s.t. $|\frac{f(x+h)-f(x)}{h}-b| < \varepsilon$ for x > N and all h. Suppose $b \ge 0$. Since $f'(x) \to b$ as $x \to \infty$, for any $\varepsilon > 0$, exists a $N_0 \in \mathbb{N}$ s.t. $|f'(x)-b| < \varepsilon$ for all $x > N_0$. Thus, $b \varepsilon < f'(x) < b + \varepsilon$ for all $x > N_0$. By MVT, $f(x+h) = f(x) + h \cdot f'(c)$ for all h and some $c \in [x+h,x]$ or $c \in [x,x+h]$. Thus, $|f(x+h)-f(x)| < |h|(b+\varepsilon)$ for all h and $x > N_0$. Then, we can get the result by taking $N = N_0$.

If b < 0, we can get the same result $|f(x+h) - f(x)| < |h||b - \varepsilon|$ by the silmilar way.

Therefore,
$$\lim_{x \to \infty} \frac{f(x+h) - f(x)}{h} - b = 0.$$

(b) Since
$$f(x) \to a$$
, for $\varepsilon, h > 0$, exsits $N \in \mathbb{N}$ s.t. $|f(x) - a| < \frac{\varepsilon \cdot h}{2}$.
Then, for $\lim_{x \to \infty} f'(x) = \lim_{x \to \infty} \left| \frac{f(x+h) - f(x)}{h} \right| \le \lim_{x \to \infty} \frac{|f(x+h) - a| + |a - f(x)|}{h} < 2\frac{\varepsilon \cdot h}{2h} = \varepsilon$.
Thus, $f'(x) \to 0$ as $x \to \infty$

(c) For any $\varepsilon > 0$, there exists a $N \in \mathbb{N}$ s.t. $|f'(x) - b| < \varepsilon$ for all x > N. Then, for any $x_0 > N$

$$\lim_{x \to \infty} \left| \frac{f(x)}{x} - b \right| = \lim_{x \to \infty} \left| \frac{f(x_0) + f'(x_1)(x - x_0)}{x} - b \right|$$

$$= \lim_{x \to \infty} \left| \frac{f(x_0) - f'(x_1)x_0}{x} \right| + |f'(x_1) - b| \text{ for } x_1 \in [x_0, x]$$

$$< 0 + \varepsilon = \varepsilon$$

Thus, $\frac{f(x)}{x} \to b$ as $x \to \infty$.

4. (a)

$$\lim_{h \to 0} \frac{f(a+2h) - 2f(a+h) + f(a)}{h^2} = \lim_{h \to 0} \frac{f'(a+2h) - f'(a+h)}{h}$$

$$= 2\lim_{h \to 0} \frac{f'(a+2h) - f'(a)}{2h} - \lim_{h \to 0} \frac{f'(a+h) - f'(a)}{h}$$

$$= 2f''(a) - f''(a) = f''(a)$$

Thus,
$$\lim_{h\to 0} \frac{f(a+2h) - 2f(a+h) + f(a)}{h^2} = f''(a)$$
.

(b)

$$\lim_{h \to 0} \frac{f(a+3h) - 3f(a+2h) + 3f(a+h) - f(a)}{h^3} = \lim_{h \to 0} \frac{3f'(a+3h) - 6f'(a+2h) + 3f(a+h)}{3h^2}$$

$$= \lim_{h \to 0} \frac{f'(a+3h) - 2f'(a+2h) + f'(a+h)}{h^2}$$

$$= \lim_{h \to 0} \frac{f'(a+2h) - 2f'(a+h) + f'(a)}{h^2}$$

$$= f^{(3)}(a)$$