HOMEWORK 1 MATH 391 - FALL 2017

ALEX THIES

Problem 0.9. For the sets A, B, and C in Exercises 0.1, 0.2, 0.3, find the sets $A \cup (C \cap B)$, $\mathcal{P}(A)$.

Solution. The sets from 0.1, 0.2, and 0.3 are

 $A = \{x : x \text{ is an integer and } -2 < x < 3\}$

 $B = \{x : x \text{ is a real number and } x^2 - 5x = 0\}$

 $C = \{x : x \text{ is an integer and } 2x - 6 = 2\}$

We will determine $A \cup (C \cap B)$. Note that $A = (-1, 2) \cap \mathbb{Z}$, $B = (0, 5) \cap \mathbb{R}$, and that $C = \{4\}$, thus,

$$\begin{split} A \cup (B \cap C) &= [(-1,2) \cap \mathbb{Z}] \cup [((0,5) \cap \mathbb{R}) \cap \{4\}] \,, \\ &= [(-1,2) \cap \mathbb{Z}] \cup \{4\}, \\ &= \{x : x \text{ is an integer and } -2 < x < 3, \text{ or } x = 4\}, \\ &= \{-1,0,1,2,4\}. \end{split}$$

We will now find $\mathcal{P}(A)$. Recall that $A = \{-1,0,1,2\}$. Notice that |A| = 4, so $|\mathcal{P}(A)|$ should be $2^{|A|} = 2^4 = 16$. Thus $\mathcal{P}(A) = \{\{\}, \{-1\}, \{0\}, \{1\}, \{2\}, \{-1,0\}, \{-1,1\}, \{-1,2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{-1,0,1\}, \{-1,0,2\}, \{-1,1,2\}, \{0,1,2\}, \{-1,0,1,2\}\}$. Note that we have 16 elements in $\mathcal{P}(A)$, so (barring errors of order or repitition) this should be all subsets of A. \square

Problem 0.18. Prove that the statement "if $A \cap B \subset C$ then $A \subset C$ or $B \subset C$ " is true or find a counterexample with nonempty sets that makes it fail.

Proof. We provide the following counterexample. Suppose $A = \{a : a = 2^n, n = 0, 1, 2, ...\}$, $B = \{b : b = 3^n, n = 0, 1, 2, ...\}$, and $C = \{1\}$. Then $A \cap B = \{1\}$ as well, but observe that while $A \cap B \subseteq C$, $A \not\subset C$ and $B \not\subset C$.

Problem 0.21. Prove that the statement " $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ " is true or find a counterexample with nonempty sets that makes it fail.

Proof. We proceed directly,

$$\begin{split} A\cap(B\cup C) &= A\cap\{x:x\in B\text{ or }x\in A\},\\ &= \{x:x\in B\text{ or }x\in A,\text{ and }x\in A\},\\ &= \{x:x\in B\text{ and }x\in A\text{ or, }x\in C\text{ and }x\in A\},\\ &= (A\cap B)\cup(A\cap C). \end{split}$$

Problem 0.26. Prove: For all $n \in \mathbb{N}, 1^3 + 2^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4}$.

Proof. We proceed by mathematical induction on the natural numbers.

Base case: Note that for n=1, $1^3=1^2(2)^2/4$. **Induction Hypothesis:** Assume that $\sum_{i=1}^n i^3 = n^2(n+1)^2/4$ for some $n \in \mathbb{N}$.

Induction Step: We compute the following,

$$1^{3} + 2^{3} + \dots + (n+1)^{3} = 1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3}$$

$$= \sum_{i=1}^{n} i^{3} + (n+1)^{3},$$

$$= \frac{n^{2}(n+1)^{2}}{4} + (n+1)^{3},$$

$$= (n+1)^{2} \left(\frac{n^{2}}{4} + (n+1)\right),$$

$$= \frac{(n+1)^{2}}{4} \left(n^{2} + 4(n+1)\right),$$

$$= \frac{(n+1)^{2}}{4} \left(n^{2} + 4n + 4\right),$$

$$= \frac{(n+1)^{2}}{4} (n+2)^{2},$$

$$= \frac{(n+1)^{2}(n+2)^{2}}{4}.$$

Hence, we have shown for the given proposition P, that $P_n \Rightarrow P_{n+1}$.

Problem 0.27. Prove: For all $n \in \mathbb{N}$, 4 evenly divides $3^{2n-1} + 1$.

Proof. We proceed by mathematical induction on the natural numbers.

Base case: Note that for $n = 1, 3^{2-1} + 1 = 4 \equiv 0 \pmod{4}$.

Induction Hypothesis: Assume that $3^{2n-1} + 1 \equiv 0 \pmod{4}$ for some $n \in \mathbb{N}$.

Induction Step: We compute the following,

$$3^{2n-1} + 1 \equiv 0 \pmod{4},$$

$$3^{2n-1} \equiv -1 \pmod{4},$$

$$3^{2n-1} \equiv -9 \pmod{4},$$

$$9 \cdot 3^{2n-1} \equiv -9 \cdot 9 \pmod{4},$$

$$3^{2n+1} \equiv -1 \pmod{4},$$

$$3^{2n+1} = 0 \pmod{4}.$$

Hence, we have shown for the given proposition P, that $P_n \Rightarrow P_{n+1}$.

Problem 0.30. Define \sim on \mathbb{Z} by $a \sim b$ if and only if a = 2b. Either prove that \sim is an equivalence relation or find a counterexample showing it fails.

> *Proof.* Observe that \sim is not reflexive upon inspection and thus not an equivalence relation. Counterexample, $(1,1) \Rightarrow 1 = 2$ which is absurd. \square

3

Problem 0.37. Define \sim on \mathbb{R} by $x \sim y$ if and only if $x - y \in \mathbb{Z}$. Either prove that \sim is an equivalence relation or find a counterexample showing it fails.

HOMEWORK 1

Proof. Let (a,b) denote $a \sim b$. We will show that \sim is reflexive, symmetric, and transitive:

- (i) Note that x x = 0, and that $0 \in \mathbb{Z}$, thus $x x \in \mathbb{Z}$, hence (x, x), which we aimed to show.
- (ii) Suppose x-y=j where $j\in\mathbb{Z}$, thus y-x=-j, hence (x,y)=(y,x), which we aimed to show.
- (iii) Assume that (x, y) and (y, z). Then x y = k and $y z = \ell$, it follows that $x z = k + \ell$; because \mathbb{Z} is closed under addition $k + \ell \in \mathbb{Z}$, therefore $(x, y), (y, z) \Rightarrow (x, z)$, which we aimed to show.

Hence, because \sim is reflexive, symmetric, and transitive, it is an equivalence relation on \mathbb{R} .

Problem 0.40. Determine whether the function $r: \mathbb{Z} \to \mathbb{Z}$, where r(x) = 7x is injective, surjective, or bijective.

Proof. We will show that r is a bijection on \mathbb{Z} by proving that it is injective and surjective. For r to be injective, it must be true that if $x_1 \neq x_2$, then $r(x_1) \neq r(x_2)$, or the more useful contrapositive of the previous statement: if $r(x_1) = r(x_2)$, then $x_1 = x_2$. Suppose that $r(x_1) = r(x_2)$ for arbitrary $x_1, x_2 \in \mathbb{Z}$. Then $7x_1 = 7x_2$, therefore $x_1 = x_2$, which shows that r is injective. For r to be surjective it must be true that for all $x_3 \in \mathbb{Z}$, there exist $x_4 \in \mathbb{Z}$ such that $r(x_4) = x_3$. Suppose by way of contradiction that there exists $x_4 \in \mathbb{Z}$ such that $r(x_4) \neq x_3$, but given the mapping of r, as well as its domain, codomain, and image, no such x_4 can exist. Thus r maps to every element of the codomain an element of the domain, hence it is surjective. Given that we have also show r to be injective, way may now claim that it is bijective.

Problem 0.41. Determine whether the function $t: \mathbb{Q} \to \mathbb{Q}$, where t(x) = 5x - 3 is injective, surjective, or bijective.

Proof. We will show that t is a bijection on \mathbb{Q} by proving that it is injective and surjective. For t to be injective, it must be true that if $x_1 \neq x_2$, then $t(x_1) \neq t(x_2)$, or the more useful contrapositive of the previous statement: if $t(x_1) = t(x_2)$, then $x_1 = x_2$. Suppose that $t(x_1) = t(x_2)$ for arbitrary $x_1, x_2 \in \mathbb{Q}$. Then $5x_1 - 3 = 5x_2 - 3$, therefore $5x_1 = 5x_2$ and thus $x_1 = x_2$, which shows that t is injective. For t to be surjective it must be true that for all $x_3 \in \mathbb{Q}$, there exist $x_4 \in \mathbb{Q}$ such that $t(x_4) = x_3$. Suppose by way of contradiction that there exists $x_4 \in \mathbb{Q}$ such that $t(x_4) \neq x_3$, but given the mapping of t, as well as its domain, codomain, and image, no such x_4 can exist. Thus t maps to every element of the codomain an element of the domain, hence it is surjective. Given that we have also show t to be injective, way may now claim that it is bijective.

Problem 0.49. Prove: If f and g are functions with $f: A \to B$, $g: B \to C$ and g, f are both bijections then $g \circ f$ is a bijection.

Proof. Given that f and g are bijections, we will show directly that $g \circ f$ is also a bijection; that is, it is injective and surjective. Again utilizing

the contrapositive of the definition of an injective function, we will seek to show that $(g \circ f)(x_1) = (g \circ f)(x_2)$ implies that $x_1 = x_2$. Suppose that $(g \circ f)(x_1) = (g \circ f)(x_2)$, recall that f and g are both injective, then

$$(g \circ f)(x_1) = (g \circ f)(x_2),$$

 $g(f(x_1)) = g(f(x_2)),$
 $g(x_1) = g(x_2),$
 $x_1 = x_2.$

Hence, $g \circ f$ is injective; we will now show that it is also surjective. Again, we will proceed directly from the definition. Let $z \in C$, since g is surjective there exists $y \in B$ such that z = g(y). Then, since f is surjective there exists $x \in A$ such that y = f(x). Notice that we have shown that for $z \in C$, there exists $x \in A$ such that $z = (g \circ f)(x)$, hence $g \circ f$ is surjective. We have shown that $g \circ f$ is both injective and surjective, thus it is bijective. \square

Problem 0.58. Given the following matrices, compute CD and DC.

$$C = \begin{pmatrix} 1 & 1/3 & -1 \\ -1 & 0 & 4 \\ 3/4 & 0 & 1 \end{pmatrix}, \qquad D = \begin{pmatrix} 0 & 2/5 & 2 \\ 1 & 1 & 1/2 \\ 3/4 & -1 & 0 \end{pmatrix}.$$

Solution. We compute the following,

$$\begin{split} CD &= \begin{pmatrix} 1 & 1/3 & -1 \\ -1 & 0 & 4 \\ 3/4 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2/5 & 2 \\ 1 & 1 & 1/2 \\ 3/4 & -1 & 0 \end{pmatrix}, \\ &= \begin{pmatrix} (1 \cdot 0 + 1/3 \cdot 1 - 1 \cdot 3/4) & (1 \cdot 2/5 + 1/3 \cdot 1 + 1 \cdot 1) & (1 \cdot 2 + 1/3 \cdot 1/2 - 1 \cdot 0) \\ (-1 \cdot 0 + 0 \cdot 1 + 4 \cdot 3/4) & (-1 \cdot 2/5 + 0 \cdot 1 - 4 \cdot 1) & (-1 \cdot 2 + 0 \cdot 1/2 + 4 \cdot 0) \\ (3/4 \cdot 0 + 0 \cdot 1/2 + 1 \cdot 0) & (3/4 \cdot 2/5 + 1 \cdot 1 - 1 \cdot 1) & (3/4 \cdot 2 + 0 \cdot 1/2 + 1 \cdot 0) \end{pmatrix}, \\ &= \begin{pmatrix} -5/12 & 26/15 & 13/6 \\ 3 & -22/5 & -2 \\ 3/4 & -7/10 & 3/2 \end{pmatrix}. \end{split}$$

$$\begin{split} DC &= \begin{pmatrix} 0 & 2/5 & 2 \\ 1 & 1 & 1/2 \\ 3/4 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1/3 & -1 \\ -1 & 0 & 4 \\ 3/4 & 0 & 1 \end{pmatrix}, \\ &= \begin{pmatrix} (0 \cdot 1 - 2/5 \cdot 1 + 2 \cdot 3/4) & (0 \cdot 1/3 + 2/5 \cdot 0 + 2 \cdot 0) & (0 \cdot -1 + 2/5 \cdot 4 + 2 \cdot 1) \\ (1 \cdot 1 - 1 \cdot 1 + 1/2 \cdot 3/4) & (1 \cdot 1/3 + 1 \cdot 0 + 1/2 \cdot 0) & (1 \cdot -1 + 1 \cdot 4 + 1/2 \cdot 1) \\ (3/4 \cdot 1 + 1 \cdot 1 + 0 \cdot 3/4) & (3/4 \cdot 1/3 + 1 \cdot 0 + 0 \cdot 0) & (3/4 \cdot 1 - 1 \cdot 4 + 0 \cdot 1) \end{pmatrix}, \\ &= \begin{pmatrix} 11/10 & 0 & 18/5 \\ 3/8 & 1/3 & 7/2 \\ 7/4 & 1/4 & -19/4 \end{pmatrix}. \end{split}$$