

Find component of Weight along and L8 to Inclined Plane

$$W_{1} = 5 \times 10 \cos 37 = 40 \text{ N}$$
 $W_{11} = 5 \times 10 \sin 37 = 30 \text{ N}$
 $W_{12} = 5 \times 10 \sin 37 = 30 \text{ N}$

3-D Component:>

"Dividing A vector along 3-mutually 18 axes"

1 A = 3

$$Cos = \frac{Az}{A} \Rightarrow Az = A Cos = Az$$

$$COS \beta = Ay \Rightarrow Ay = A COS \beta$$

$$(as^{2}+cos^{2}p+cos^{2}y=\frac{An^{2}+Ay^{2}+Az^{2}}{Az}$$

Er IJ A =
$$21 + \sqrt{1 + 2k}$$

A = $\sqrt{2^2 + 1^2 + 2^2}$

O Find Direction Cosines

A = 3

$$C \otimes A : A = \frac{2}{3}$$

$$CBSX = \frac{A2}{A} = \frac{2}{3}$$

1 Angles from arcs

Addition of More Than Two Vectors (Law of Polygon)

If some vectors are represented by sides of a polygon in same order, then their resultant vector is represented by the closing side of polygon in the

opposite order.
$$\overrightarrow{R} = \overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} + \overrightarrow{D}$$

NOTE

• In a polygon if all the vectors are in same order then their resultant is a null vector.

$$\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} + \overrightarrow{D} + \overrightarrow{E} = \overrightarrow{0}$$

• If n vectors of equal magnitude are arranged at equal angles of separation then their resultant is always zero.

Ex. ABC is an equilateral triangle. Length of each side is 'a' and centroid is point

(i)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = ?$$

(ii)
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = ?$$

(iii) If
$$|\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{AC}| = n a$$
 then $n = ?$

(iv) If
$$\overrightarrow{AB} + \overrightarrow{AC} = n \xrightarrow{AO}$$
 then $n = ?$

(1)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{D}$$
 Ans

$$\frac{\triangle \triangle AB}{\partial A + AB} = \overrightarrow{\partial B} \Rightarrow \overrightarrow{AB} \Rightarrow \overrightarrow$$

$$(IV) \overrightarrow{AB} + \overrightarrow{AC} = n \overrightarrow{Ao}$$

$$= \overrightarrow{AB} + \overrightarrow{AC}$$

$$= \overrightarrow{OB} - \overrightarrow{OA} + \overrightarrow{OC} - \overrightarrow{OA}$$

$$= \overrightarrow{\partial B} + \overrightarrow{\partial C} - 2\overrightarrow{\partial A}$$

$$\therefore \overrightarrow{\partial A} + \overrightarrow{\partial B} + \overrightarrow{\partial C} = \overrightarrow{\partial A}$$

$$\overrightarrow{\partial C} + \overrightarrow{\partial C} = -\overrightarrow{\partial A}$$

Ans

Ex. The sum of three vectors shown in figure, is zero.

- (i) What is the magnitude of vector \overrightarrow{OB} ?
- (ii) What is the magnitude of vector \overrightarrow{OC} ?

$$B = \frac{C}{\sqrt{2}} = \frac{10\sqrt{2}}{\sqrt{2}} = 10$$

Ex. Add vectors \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} which have equal magnitude of

50 unit and are inclined at angles of 45° , 135° and 315° respectively from x-axis.

EX

EX

ex

BK

The vectors \overrightarrow{a} and \overrightarrow{b} are such that |a+b|=|a-b|, then the angle between |a+b|=|a-b| and

→ b will be :-

- (1) $\frac{\pi}{3}$
- (2) π (3) $\frac{\pi}{2}$
- (4) zero

Force 3N, 4N and 12N act at a point in mutually perpendicular directions. The magnitude of the resultant force is :-

- (1) 19 N (2) 13 N
- (3) 11 N
- (4) 5 N

If $|\overrightarrow{A} + \overrightarrow{B}| = |\overrightarrow{A}| = |\overrightarrow{B}|$ then angle between A and B will be :-

- $(1) 90^{\circ}$ $(2) 120^{\circ}$ $(3) 0^{\circ}$ $(4) 60^{\circ}$

The direction cosines of a vector $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \sqrt{2}\,\hat{\mathbf{k}}$ are :-

(3) $\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}$

 $(4) \ \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$

B.B # 4 complete Race #16 complete

Ruce #1 1,2,3,4,1,8,9