EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 6: Performance Metrics

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Course Schedule – Subject to Change

*Midterm Exam dates are approximate and subject to change with reasonable notice.

Performance Metrics

EE223 Review

Announcements

- No class this Wednesday
 - ISSCC conference

- Reading materials posted in Canvas file section
 - Lecture 7 EE223 Review
- Homework posted in Canvas Due Feb 26, Monday
 - 4-bit Flash ADC

Agenda

- ADC Performance Metrics
 - Static
 - Dynamic

Offset and Gain Errors

Performance Parameters

DC Performance

- Differential Non-Linearity (DNL)
- Integral Non-Linearity (INL)

AC Performance

- Harmonic Distortion
- Worst Harmonic
- Total Harmonic Distortion (THD)
- Total Harmonic Distortion Plus Noise (THD + N)
- Signal-to-Noise-and-Distortion Ratio (SINAD, or S/N +D)
- Effective Number of Bits (ENOB)
- Signal-to-Noise Ratio (SNR)
- Analog Bandwidth (Full-Power, Small-Signal)
- Spurious Free Dynamic Range (SFDR)
- Two-Tone Intermodulation Distortion
- Noise Power Ratio (NPR) or Multitone Power Ratio (MPR)

Ideal DC Characteristic

- Ideal ADC code transitions are exactly 1 LSB apart.
- For an N-bit ADC, there are 2^N codes. (1 LSB = FS/ 2^N)
- For this 3-bit ADC, 1 LSB = $(1V/2^3 = 1/8)$
- Each "step" is centered on an eighth of full scale

Differential Non Linearity (DNL)

- The deviation of an actual code width from the ideal 1 LSB code
- DNL error is measured in LSBs
- Results in narrow or wider code widths than ideal
- Results in additive noise/spurs beyond the effects of quantization

DNL Effects

- Missing Codes An ADC has missing codes if an infinitesimally small change in voltage causes a change in result of two codes, with the intermediate code never being set. A DNL of -1.0 LSB indicates the ADC has missing.
- Non-Monotonicity An ADC is monotonic if it continually increases conversion result with an increasing voltage (and vice versa). A nonmonotonic ADC may give a lower conversion result for a higher input voltage, which may also mean that the same conversion may result from two separate voltage ranges.

Integral Non Linearity (INL)

- The deviation of an actual code transition point from its ideal position on a straight line drawn between the end points of the transfer function.
- INL is calculated after offset and gain errors are removed
- Results in additive harmonics and spurs

INL Measurement Methods

- End Point Method: the deviation is measured from the straight line through the origin and the full-scale point (after gain adjustment)
- Best Straight Line Method: the best fit straight line is drawn through the transfer characteristic of the device using standard curve fitting techniques, and the maximum deviation is measured from this line

BEST STRAIGHT LINE METHOD

Dynamic Testing of ADC

 A Fast Fourier Transform (FFT) analyzer is used to measure dynamic performance

FFT

■ The Fast Fourier Transform converts a signal from time

domain....

....to frequency domain

SINAD, ENOB, SNR

SINAD (Signal to Noise and Distortion Ratio)

 The ratio of the rms signal amplitude to the mean value of the root-sum-squares (RSS) of all other spectral components, including harmonics, but excluding DC

ENOB (Effective Number of Bits)

$$ENOB = \frac{SINAD - 1.76 dB}{6.02}$$

SNR (Signal to Noise Ratio)

 The ratio of the rms signal amplitude to the mean value of the root-sum-squares (RSS) of all other spectral components, excluding the first five harmonics and DC

SFDR, THD, SNR

SQNR

$$SQNR = \frac{Signal\ Power}{Quantization\ Noise\ Power}$$

$$= \frac{\frac{1}{2} \left(\frac{V_{FS}}{2}\right)^2}{\frac{1}{12} \left(\frac{V_{FS}}{2^N}\right)^2} = \frac{3}{2} \cdot 2^{2N}$$

$$=6.02 \cdot N + 1.76 \text{ [dB]}$$

$$=6.02 \cdot 10 + 1.76 \text{ [dB]}$$

= 61.9 dB

FFT Spectrum of Quantized Signal

```
clear all; clc; close all;
N = 2048;
                        % FFT size
                       % Signal bin
cvcles = 67;
fs = 1000;
                       % Sampling rate
                       % Signal frequency
fx = cycles*fs/N;
B = 10;
                        % ADC resolution
LSB = 2/2^B;
                        % LSB size
t = 0:N-1;
                       % time sequence
x = cos(2*pi*fx/fs*t); % Signal sequence
x = round(x/LSB)*LSB; % Quantized signal
s = abs(fft(x)) + eps;
                      % Take FFT
s = s(1:end/2)/N*2; % Take half of the spectrum and normalize
sigbin = cycles + 1;
noise = [s(l:sigbin-l), s(sigbin+l:end)];
SNR = 10*log10(s(sigbin)^2/sum(noise.^2));
fprintf('SNR = %0.4f\n',SNR);
s = 20*log10(s);
                       % dB relative to full-scale
f = [0:N/2-1]/N;
                       % frequency vector
plot(f, s);
axis([0 0.5 -120 0]);
xlabel('Frequency [f/fs]');
ylabel('DFT Magnitude [dBFS]');
```

title(strcat(num2str(N), 'points FFT, SNR = ', num2str(SNR), 'dB'));

fft_p55.m

FFT Noise Floor

$$N_{floor} = -61.9 \text{ dBc} - 10 \log \left(\frac{2048}{2} \right)$$

= -61.9 dBc - 30.1 dB
= -92 dBc

- Depends on FFT size
- Plot is "useless" if FFT size is not specified

FFT Processing Gain

SNDR and ENOB

Definition

$$SNDR = \frac{\text{Signal Power}}{\text{Noise and Distortion Power}}$$

- Noise and distortion power includes all bins except DC and signal
- Effective number of bits

$$ENOB = \frac{SNDR(dB)-1.76dB}{6.02dB}$$

Dynamic Range

$$\text{DR} = \frac{\text{Maximum Signal Power}}{\text{Minimum Detectable Signal}} \geq \text{SNR}_{peak}$$

SDR and THD

Signal-to-distortion ratio

$$SDR = \frac{Signal\ Power}{Total\ Distortion\ Power}$$

Total harmonic distortion

$$THD = \frac{Total \ Distortion \ Power}{Signal \ Power} = \frac{1}{SDR}$$

 By convention, total distortion power consists of 2nd through 7th harmonic

Lowering the Noise Floor

 Increasing the FFT size let's us lower the noise floor and reveal low level harmonics

Aliasing

 Harmonics can appear at "arbitrary" frequencies due to aliasing

$$f_1 = f_x = 0.3125 f_s$$

 $f_2 = 2 f_1 = 0.6250 f_s \rightarrow 0.3750 f_s$
 $f_3 = 3 f_1 = 0.9375 f_s \rightarrow 0.0625 f_s$
 $f_4 = 4 f_1 = 1.2500 f_s \rightarrow 0.2500 f_s$
 $f_5 = 5 f_1 = 1.5625 f_s \rightarrow 0.4375 f_s$

