1A - 2022-2023

Théorie des Probabilités - Examen de mi-parcours

- 1. Durée de l'examen: 1 heure 30 minutes.
- 2. Le sujet compte un nombre total de 22 points. Votre note finale sera simplement tronquée à 20.
- 3. L'accent sera mis sur la rigueur et la précision de vos réponses. Les réponses non justifiées très soigneusement ne seront pas prises en compte.
- 4. Bon courage!

Exercice 1 Quizz (16 points)

- 1. Les assertions suivantes sont-elles vraies? Le cas échéant, justifiez-le. Sinon, proposez un argument précis et complet ou un contre-exemple invalidant l'assertion.
 - a) (1pt) Soit X une variable aléatoire réelle. Si X^3 admet une espérance, alors X admet une espérance.
 - b) (1pt) Soit X une variable aléatoire réelle. Si e^X admet une espérance, alors X admet une espérance.
 - c) (1pt) Soit X une variable aléatoire réelle admettant une densité par rapport à la mesure de Lebesgue et Z une variable aléatoire de loi de Bernoulli de paramètre 1/2, indépendante de X. Alors XZ admet une densité par rapport à la mesure de Lebesgue.
- 2. (2pt) Soit X une variable aléatoire de loi uniforme sur [0,1] et Y une variable aléatoire réelle indépendante de X telle que P(Y=1)=P(Y=-1)=1/2. Déterminer la loi de XY.
- 3. (2pt) Soient X et Y deux variables aléatoires réelles i.i.d. de loi $\mathcal{N}(0,1)$. Déterminer $\mathbb{E}[X|X+Y]$ et $\mathbb{E}[Y|X+Y]$. Sont-elles indépendantes ?
- 4. (1pt) Soit X une variable aléatoire réelle, telle que $X \geq 0$ presque sûrement, et admettant une espérance. Montrer que \sqrt{X} admet une espérance et comparer $\mathbb{E}[\sqrt{X}]$ et $\sqrt{\mathbb{E}[X]}$.
- 5. Soit X une variable aléatoire réelle admettant pour densité la fonction $f(x) = Ce^{-\lambda|x|}$, $x \in \mathbb{R}$, où $\lambda > 0$ et C > 0 sont des nombres réels.
 - a) (1pt) Déterminer la valeur que doit nécessairement prendre C, en fonction de λ .
 - b) (3pt) Montrer que $\mathbb{1}_{X\geq 0}$ et |X| sont indépendantes et déterminer leurs lois respectives.
- 6. Soit $n \ge 1$ un entier naturel. Soient X_1, \ldots, X_n des variables aléatoires i.i.d. de loi de Bernoulli de paramètre $p \in [0, 1]$ et soit $\bar{X}_n = n^{-1}(X_1 + \ldots + X_n)$.
 - a) (2pt) Déterminer $\mathbb{E}[\bar{X}_n]$ et $\text{Var}(\bar{X}_n)$.
 - b) (2pt) Soit t > 0 quelconque. Montrer que l'intervalle $[\bar{X}_n t, \bar{X}_n + t]$ contient p avec probabilité au moins $1 \frac{p(1-p)}{nt^2}$.

Exercice 2 (6 points)

Soient X et Y deux variables aléatoires réelles i.i.d. On pose $U = \min(X, Y)$ et $V = \max(X, Y)$.

1. Déterminer les fonctions de répartition de U et de V, à l'aide de la fonction de répartition F de X.

- 2. Supposons que X admet une densité par rapport à la mesure de Lebesgue, qu'on notera f.
 - a) En calculant $\mathbb{E}[\phi(U,V)]$, pour toute fonction mesurable et positive ϕ , montrer que U et V admettent une densité jointe par rapport à la mesure de Lebesgue sur \mathbb{R}^2 .
 - b) En déduire les densités marginales de U et V.
 - c) Supposons que f(x) > 0, pour tout $x \in \mathbb{R}$. U et V sont elles indépendantes ?
- 3. Supposons que X suit la loi uniforme sur [0,1]. Déterminer les espérances de U et V.