School of Mathematics, Thapar University Operations Research (UMA-019)

Tutorial Sheet 5

1. Consider the LPP

Maximize $z = 3x_1 + 5x_2 + 4x_3$

Subject to $2x_1 + 3x_2 \le 8$, $2x_2 + 5x_3 \le 10$, $3x_1 + 2x_2 + 4x_3 \le 15$, $x_1, x_2, x_3 \ge 0$.

- (a) Solve the LPP.
- (b) Find the range over which b₂ can be changed maintaining the feasibility of the solution.
- 2. Consider the problem, Max z = 3x1 + 2x2 + 5x3

$$s/t x1 + 2x2 + x3 \le 430, 3x1 + 2x3 \le 460, x1 + 4x2 \le 420, x1, x2, x3 \ge 0.$$

Given that x2, x3, x6 (slack variable corresponding to constraint 3) form the optimal basis and inverse of the optimal basis is, row-wise; $\frac{1}{2}$, -1/4, 0; 0, $\frac{1}{2}$ 0; -2, 1, 1. Form the optimal table based on this information.

3. In problem 2, find the optimal solution if the objective function is changed to

(i)
$$z = 4x1 + 2x2 + x3$$

(ii)
$$z = 3x^2 + x^3$$

- 4. In problem 2, a fourth variable is added with the technological (constraint) coefficients as 3, 2 and 4. Determine the optimal solution if the profit per unit of the new variable is given as 5 and 10.
- 5. Consider the following LPP, Max z = 5x1 + 2x2 + 3x3 s/t x1 + 5x2 + 3x3 = 30, $x1 5x2 6x3 \le 40$, x1, x2, $x3 \ge 0$. Solve this problem using M-method.
- 6. In problem 5, find the optimal solution, using sensitivity analysis if the objective function is changed to

(i)
$$\max z = 12x1 + 5x2 + 2x3$$

(ii) min
$$z = 2x^2 - 5x^3$$

- 7. In problem 5, suppose that the technological coefficients of x2 are (5 a, -5 + a) instead of (5, -5), where a is a nonnegative parameter. Find the value of a so that the solution remains optimal.
- 8. In problem 5, suppose that the right hand side of the constraint becomes (30 + a, 40 a), a is nonnegative parameter. Determine the values of a so that the solution of the problem remain optimal.
- 9. Solve the LPP: Maximize $z=3x_1+x_2+5x_3$ Subject to $6x_1+3x_2+5x_3 \le 25$, $3x_1+4x_2+5x_3 \le 20$, $x_1, x_2, x_3 \ge 0$.

Also, discuss the effect on the optimal solution if a new constraint $2x_1-3x_2+4x_3 = 15$ is added.

10. Consider the LPP: Maximize
$$z=3x_1+4x_2+x_3+7x_4$$

Subject to $8x_1+3x_2+4x_3+x_4 \le 7$, $2x_1+6x_2+x_3+5x_4 \le 3$
 $x_1+4x_2+5x_3+2x_4 \le 8$, x_1 , x_2 , x_3 , $x_4 \ge 0$.

- a) Solve the LPP.
- b) What will be the optimal solution if a new constraint $2x_1+3x_2+x_3+5x_4 \le 4$ is added?