Notes on a Simple Epidemic Model

December 22, 2020

1 Method

1.1 model and parameters

The model is

$$dS_{u}/dt = -\Lambda S_{u} - F_{S}S_{u} + \omega S_{n},$$

$$dS_{n}/dt = -\Lambda S_{n} + (1 - p_{S})F_{S}S_{u} - \omega S_{n},$$

$$dS_{p}/dt = -\Lambda S_{p} + p_{S}F_{S}S_{u} - \omega S_{p},$$

$$dS_{c}/dt = -\Lambda S_{c} + \omega S_{p},$$

$$dI_{u}/dt = \Lambda S_{u} - F_{I}I_{u} + \omega I_{n} - \gamma I_{u},$$

$$dI_{n}/dt = \Lambda S_{n} + (1 - p_{I})F_{I}I_{u} - \omega I_{n} - \gamma I_{n},$$

$$dI_{p}/dt = \Lambda S_{p} + p_{I}F_{I}I_{u} - \omega I_{p} - \gamma I_{p},$$

$$dI_{c}/dt = \Lambda S_{c} + \omega I_{p} - \gamma I_{c},$$

$$dR_{u}/dt = \gamma I_{u} - F_{R}R_{u} + \omega R_{n},$$

$$dR_{n}/dt = \gamma I_{n} + (1 - p_{R})F_{R}R_{u} - \omega R_{n},$$

$$dR_{p}/dt = \gamma I_{p} + p_{R}F_{R}R_{u} - \omega R_{p},$$

$$dN/dt = \omega (S_{n} + I_{n} + R_{n}),$$

$$dP/dt = \omega (S_{n} + I_{n} + R_{n}),$$

$$dP/dt = \omega (I_{p} + R_{p}),$$

$$(11)$$

Symbol	Description	Unit	Value
N_0	Total population size	people	10^{6}
ω	Rate of onward flow from the awaiting to reported or untested compartments	1/day	-
γ	Recovery rate	1/day	1/3
ρ	Per capita testing intensity	1/day	0.01
η_w	Relative probability of transmission for isolated awaiting individuals	-	-
η_c	Relative probability of transmission for isolated confirmed individuals	-	-
Λ	Force of infection	1/day	-
p_S	Probability of false positive for susceptible	-	0
p_I	Probability of being infected and tested positive	-	1
p_R	Probability of being recovered and tested positive	-	0.5
W_S, W_I, W_R	Relative testing weight	-	Random testing: $W_S = W_I = W_R = 1$,
			Non-random testing: $W_S = 0.3, W_I = W_R = 1$

Table 1: The underlying parameters of model, Eqs. (1) to (12).

2 Results

2.1On the calculation of \mathcal{R}_0

• **DFE** is given by solving the following system ¹

$$S_u + S_n = N_0$$
$$F_S S_u - \omega S_n = 0$$

• DFE:

$$S_u = (1 - \frac{\rho}{\omega})N_0,$$

$$S_n = \frac{\rho}{\omega}N_0,$$

$$I_j = R_j = 0 \text{ for all } j.$$

• At the DFE, $F_I^* = \frac{\rho}{(1-\rho/\omega)} W_I/W_S$ also note that $\partial F_I^*/\partial \rho > 0$.

$$F = \beta/N_0 \begin{bmatrix} S_u & \eta_w S_u & \eta_w S_u & \eta_c S_u \\ S_n & \eta_w S_n & \eta_w S_n & \eta_c S_n \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

$$(15)$$

$$V = \begin{bmatrix} F_I + \gamma & -\omega & 0 & 0\\ -(1 - p_I)F_I & \omega + \gamma & 0 & 0\\ -p_I F_I & 0 & \omega + \gamma & 0\\ 0 & 0 & -\omega & \gamma \end{bmatrix}, \text{ thus}$$
(16)

$$V = \begin{bmatrix} F_I + \gamma & -\omega & 0 & 0 \\ -(1 - p_I)F_I & \omega + \gamma & 0 & 0 \\ -p_IF_I & 0 & \omega + \gamma & 0 \\ 0 & 0 & -\omega & \gamma \end{bmatrix}, \text{ thus}$$

$$V^{-1} = \begin{bmatrix} \frac{\omega + \gamma}{\omega \gamma + \gamma F_I + \gamma^2 + \omega F_I p_I} & \frac{\omega}{\omega \gamma + \gamma F_I + \gamma^2 + \omega F_I p_I} & 0 & 0 \\ \frac{(1 - p_I)F_I}{\omega \gamma + \gamma F_I + \gamma^2 + \omega F_I p_I} & \frac{F_I + \gamma}{\omega \gamma + \gamma F_I + \gamma^2 + \omega F_I p_I} & 0 & 0 \\ \frac{p_I F_I}{\omega \gamma + \gamma F_I + \gamma^2 + \omega F_I p_I} & \frac{\omega p_I F_I}{(\omega \gamma + \gamma F_I + \gamma^2 + \omega F_I p_I)(\omega + \gamma)} & \frac{1}{\omega + \gamma} & 0 \\ \frac{\omega F_I p_I}{(\omega \gamma + \gamma F_I + \gamma^2 + \omega F_I p_I)\gamma} & \frac{\omega^2 F_I p_I}{(\omega \gamma + \gamma F_I + \gamma^2 + \omega F_I p_I)(\omega + \gamma)\gamma} & \frac{\omega}{(\omega + \gamma)\gamma} & \frac{1}{\gamma} \end{bmatrix}.$$

$$(16)$$

The particular form of F with two rows of zeros at the bottom, simplifies G as

$$G = \begin{bmatrix} G_{11} & G_{12} \\ 0 & 0 \end{bmatrix}, \text{ where } G_{11} = C \begin{bmatrix} A S_u & B S_u \\ A S_n & B S_n \end{bmatrix}.$$
 (18)

¹Note when $I_u = R_u = 0$, $F_S = \frac{\rho N_0}{W_S S_u}$.

The Disease-Free Equilibrium (DFE) for the SIR model, Eqs. (1) to (12), is given by solving the coupled system including $S_u + S_n = N_0$ and $F_S S_u - \omega S_n = 0$. The DFE is

$$S_n^* = \frac{\rho}{\omega} N_0, \ S_u^* = N_0 - S_n^*, \text{and} I_j = R_j = 0 \text{ for all j.}$$
 (19)

The basic reproduction number, \mathcal{R}_0 , was calculated by using the next generation matrix method developed by Van den Driessche and Watmough (2002). \mathcal{R}_0 is

$$\mathcal{R}_0 = (A \times S_u^* + B \times S_n^*) \times C, \tag{20}$$

where

$$A = \gamma(\omega + \gamma) + (\gamma \eta_w + \omega \eta_c p_I) F_I,$$

$$B = (\omega + (F_I + \gamma) \eta_w) \gamma + \frac{(\eta_w \gamma + \eta_c \omega) \omega p_I F_I}{\omega + \gamma},$$

$$C = \frac{\beta/\gamma}{N_0(\gamma(\omega + \gamma) + F_I(\gamma + \omega p_I))}.$$

Note that the block matrix G_{12} does not influence \mathcal{R}_0 defined as the spectral radius of G. All matters here are the eigenvalues of G_{11} , which are 0 and \mathcal{R}_0 (20).

2.2 Sensitivity of \mathcal{R}_0 with respect to the underlying parameters

note 1. The tricky one is the $\partial \mathcal{R}_0/\partial \rho$; Following JD comment and some analysis, we can prove that analytically.

Jonathan's comment: "There should be a logical route to a clear proof about ρ . The total amount of time spent in I_x when starting from a given starting point should not depend on ρ (or anything but γ). And this should be reflected in the column sums of V^{-1} . Since both of the η 's are < 1, all we should then need to prove is that the (nonzero) values on the first row of V^{-1} decrease with ρ to show that the elements of FV^{-1} decrease with ρ , which presumably shows that \mathcal{R}_0 decreases as well. This needs to be filled ink but should work."

note 2. Notice that matrix F is a rank one matrix, thus FV^{-1} is of a rank one. This is why FV^{-1} has only one non-zero eigenvalue. Specifically, F is a rank one

means that it can be written as matrix product of a column vector and a row vector as follows

$$F = \beta/N_0 \begin{bmatrix} S_u \\ S_n \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1\eta_w \eta_w \eta_c \end{bmatrix}.$$

Proposition 1. Let f and g be smooth real functions such that (i) $f(x) \leq g(x)$ for all $x \in (x_0, x_0 + \epsilon)$ and (ii) $f(x_0) = g(x_0)$, then the definition of the derivative yields

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{f(x_0 + h) - g(x_0)}{h} \le \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0)}{h} = g'(x_0).$$

Based on the note 2, Also notice that FV^{-1} is of rank one matrix since it can be written as matrix product of a column vector and a row vector. Thus, the next generation matrix $G = FV^{-1}$ has only one non-zero eigenvalue given by the trace G

Thus,

$$\operatorname{trace}(G) = \operatorname{trace}(G_{11}) \le \frac{\beta}{\gamma} \frac{1}{N_0} (S_u^* + S_n^*) \ \forall \rho \in (0, \epsilon).$$
 (21)

It is easy to show that $\operatorname{trace}(G) = \frac{\beta}{\gamma} \frac{1}{N_0} (S_u^* + S_n^*) = 1/\gamma$. Thus, following the Prop.1, $\partial \mathcal{R}_0 \rho \leq 0$.

References

Van den Driessche, P. and Watmough, J. (2002). Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. *Mathematical biosciences*, 180(1-2):29–48.

https://www.physicsforums.com/threads/

 $^{^2}$ see the argument in eigenvalues-of-a-rank-1-matrix.682216/