Skip to Main Content

- thadiboyina v m kishore
 - 1. Sequence Models
 - 2. Week 2
 - 3. Natural Language Processing & Word Embeddings

PreviousNext

Introduction to Word Embeddings

0

Video: LectureWord Representation

. Duration: 10 minutes10 min

0

Video: LectureUsing Word Embeddings

. Duration: 9 minutes9 min

0

Video: LectureProperties of Word Embeddings

. Duration: 11 minutes11 min

0

Video: LectureEmbedding Matrix

. Duration: 5 minutes5 min

Learning Word Embeddings: Word2vec & GloVe

0

Video: LectureLearning Word Embeddings

. Duration: 10 minutes10 min

0

Video: LectureWord2Vec

. Duration: 12 minutes12 min

0

Video: LectureNegative Sampling

. Duration: 11 minutes11 min

0

Video: LectureGloVe Word Vectors

. Duration: 11 minutes11 min

0

Reading: GloVe Word Vectors *CORRECTION*

. Duration: 1 minute1 min

Applications Using Word Embeddings

0

Video: LectureSentiment Classification

. Duration: 7 minutes7 min

0

Video: LectureDebiasing Word Embeddings

. Duration: 11 minutes11 min

• Lecture Notes (Optional)

C

Reading: Lectures in PDF

. Duration: 1 minute1 min

Quiz

C

Quiz: Natural Language Processing & Word Embeddings

10 questions

Programming Assignments

0

Programming Assignment: Operations on Word Vectors - Debiasing

. Duration: 3 hours3h

0

Programming Assignment: Emojify

. Duration: 3 hours3h

QUIZQuiz • 30 MIN30 minutes

Natural Language Processing & Word Embeddings

Submit your assignment

DUE DATEJun 14, 10:59 AM +04June 14, 10:59 AM +04

ATTEMPTS3 every 8 hours

Try again

Receive grade

TO PASS80% or higher

Grade

100%

View Feedback

We keep your highest score

Natural Language Processing & Word Embeddings

Graded Quiz • 30 min

Due Jun 14, 10:59 AM +04

Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

GRADE

100%

Natural Language Processing & Word Embeddings

LATEST SUBMISSION GRADE

100%

1.

Question 1

Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000 dimensional, so as to capture the full range of variation and meaning in those words.

O.

True

 \bigcirc

False

Correct

The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors range between 50 and 400.

2.

Ouestion 2

What is t-SNE?

C
A non-linear dimensionality reduction technique
C
A linear transformation that allows us to solve analogies on word vectors
C
A supervised learning algorithm for learning word embeddings
c
An open-source sequence modeling library
Correct
Yes
3. Question 3
Suppose you download a pre-trained word embedding which has been trained on a huge corpus

of text. You then use this word embedding to train an RNN for a language task of recognizing if

someone is happy from a short snippet of text, using a small training set.

1 / 1 point

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y = 1y=1.

1 / 1 point		
True		
С		
False		
Correct		

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic" would contain a positive/happy connotation which will probably make your model classify the sentence as a "1".

4.

Question 4

Which of these equations do you think should hold for a good word embedding? (Check all that apply)

1 / 1 point

e_{boy} - e_{girl} \approx e_{sister} - e_{brother} eboy-egirl \approx esister-ebrother

 $e_{boy} - e_{girl} \cdot e_{brother} - e_{sister} \cdot e_{brother} - e_{brother}$

Correct

Yes!

e {boy} - e {brother} \approx e {girl} - e {sister}eboy-ebrother≈egirl-esister

Correct

Yes!

e_{boy} - e_{brother} \approx e_{sister} - e_{girl} eboy-ebrother \approx esister-egirl

5.

Question 5

Let EE be an embedding matrix, and let o_{1234}o1234 be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E * o_{1234}E*o$ 1234 in Python?

1 / 1 point

 \mathbf{C}

The correct formula is $E^T^* o \{1234\}ET^*o_{1234}$.

O

None of the above: calling the Python snippet as described above is fine.

 \circ

This doesn't handle unknown words (<UNK>).

O

It is computationally wasteful.

Yes, the element-wise multiplication will be extremely inefficient.

6.

Ouestion 6

When learning word embeddings, we create an artificial task of estimating $P(\text{target} \setminus \text{mid} \text{context})P(\text{target}|\text{context})$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.

1 / 1 point

 \bigcirc

False

0

True

Correct

7.

Question 7

In the word2vec algorithm, you estimate $P(t \mid mid c)P(t \mid c)$, where tt is the target word and cc is a context word. How are tt and cc chosen from the training set? Pick the best answer.

1 / 1 point

O

cc is a sequence of several words immediately before tt.

Ö

cc is the sequence of all the words in the sentence before tt.

 \circ

cc is the one word that comes immediately before tt.

O

cc and tt are chosen to be nearby words.

Correct

8.

Question 8

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:

$$\begin{split} &P(t \mid c) = \frac{e^{\left(t \mid c_{t'}\right)} {\sum_{t'=100000\theta t' Tec\theta \theta tTec}} \\ &e^{\left(t \mid c_{t'}\right)} P(t \mid c) = \sum_{t'=10000\theta \theta t' Tec\theta \theta tTec} \end{split}$$

\theta_i θ i and e_jej should be initialized randomly at the beginning of training.

Correct

10.

Question 10

You have trained word embeddings using a text dataset of m_1m1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2m2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstances would you expect the word embeddings to be helpful?

<u>1 /</u> 1 point

 \circ

 $m_1m_1 << m_2m_2$

 \circ

 $m_1m_1 >> m_2m_2$

Correct