0.1 杂题

例题 **0.1** 设 $Y, x_0, \delta > 0$, 计算

$$\lim_{n\to\infty} \sqrt{n} \int_{x_0-\delta}^{x_0+\delta} e^{-nY(x-x_0)^2} \, \mathrm{d}x.$$

证明

$$\lim_{n \to \infty} \sqrt{n} \int_{x_0 - \delta}^{x_0 + \delta} e^{-nY(x - x_0)^2} dx = \lim_{n \to \infty} \sqrt{n} \int_{-\delta}^{\delta} e^{-nYx^2} dx = \lim_{n \to \infty} \frac{1}{\sqrt{Y}} \int_{-\delta\sqrt{nY}}^{\delta\sqrt{nY}} e^{-x^2} dx$$

$$= \lim_{n \to \infty} \frac{2}{\sqrt{Y}} \int_{0}^{\delta\sqrt{nY}} e^{-x^2} dx = \frac{2}{\sqrt{Y}} \int_{0}^{+\infty} e^{-x^2} dx$$

$$= \sqrt{\frac{\pi}{Y}}.$$

例题 0.2 设 $f \in C^3[0,x], x > 0$, 证明: 存在 $\xi \in (0,x)$ 使得

$$\int_0^x f(t) dt = \frac{x}{2} [f(0) + f(x)] - \frac{x^3}{12} f''(\xi).$$
 (1)

若还有 $f'''(0) \neq 0$, 计算 $\lim_{x\to 0^+} \frac{\xi}{x}$.

§

笔记 我们当然可以直接用 Lagrange 插值公式得到

$$f(t) = (f(x) - f(0))t + f(0) + f''(\xi)t(t - x), t \in [0, x].$$

两边同时对 t 在 [0,x] 上积分就能得到(1)式.

证明 设 $K \in \mathbb{R}$ 使得

$$\int_0^x f(t) dt = \frac{x}{2} [f(0) + f(x)] - \frac{x^3}{12} K,$$

则考虑

$$g(y) \triangleq \int_0^y f(t) dt - \frac{y}{2} [f(0) + f(y)] + \frac{y^3}{12} K,$$

于是

$$g'(y) = f(y) - \frac{1}{2}[f(0) + f(y)] - \frac{yf'(y)}{2} + \frac{y^2K}{4} = \frac{f(y) - f(0)}{2} - \frac{yf'(y)}{2} + \frac{y^2K}{4}$$

以及

$$g''(y) = -\frac{yf''(y)}{2} + \frac{yK}{2}.$$

由 g(x) = g(0) = 0 和罗尔中值定理得 $\xi_1 \in (0,x)$ 使得 $g'(\xi_1) = 0$. 注意到 g'(0) = 0. 再次由罗尔中值定理得 $\xi \in (0,x)$ 使得

$$g''(\xi) = -\frac{\xi f''(\xi)}{2} + \frac{\xi K}{2} = 0,$$

即 $K = f''(\xi)$, 这就得到了(1)式. 由(1)式得

$$f''(\xi) = -12 \frac{\int_0^x f(t) dt - \frac{x}{2} [f(0) + f(x)]}{r^3}$$

由 Lagrange 中值定理得

$$f''(\xi) = f''(0) + f'''(\eta)\xi, \eta \in (0, \xi).$$

于是

$$f'''(\eta)\frac{\xi}{x} = \frac{-12\frac{\int_0^x f(t) dt - \frac{x}{2}[f(0) + f(x)]}{x^3} - f''(0)}{x}$$

现在利用 L'Hospital 法则就有

$$\lim_{x \to 0^{+}} f'''(\eta) \frac{\xi}{x} = \lim_{x \to 0^{+}} \frac{-12 \frac{\int_{0}^{x} f(t) dt - \frac{x}{2} [f(0) + f(x)]}{x^{3}} - f''(0)}{x}$$

$$= \lim_{x \to 0^{+}} \frac{-12 \int_{0}^{x} f(t) dt + 6x [f(0) + f(x)] - f''(0)x^{3}}{x^{4}}$$

$$= \lim_{x \to 0^{+}} \frac{-12 f(x) + 6 [f(x) + f(0)] + 6x f'(x) - 3f''(0)x^{2}}{4x^{3}}$$

$$= \lim_{x \to 0^{+}} \frac{6x f''(x) - 6f''(0)x}{12x^{2}}$$

$$= \lim_{x \to 0^{+}} \frac{f'''(x) - f''(0)}{2x} = \frac{1}{2} f'''(0).$$

因为 $0 < \eta < \xi < x$,所以

$$\lim_{x \to 0^+} f'''(\eta) = f'''(0),$$

我们有

$$\lim_{x \to 0^+} \frac{\xi}{x} = \frac{1}{2}.$$

例题 **0.3** 设 $f \in [0, +\infty)$ 上的递增正函数. 若 $g \in C^2[0, +\infty)$ 满足

$$g''(x) + f(x)g(x) = 0.$$
 (2)

证明: 存在 M > 0 使得

$$|g(x)| \le M, \quad |g'(x)| \le M\sqrt{f(x)}, \quad \forall x > 0.$$
 (3)

证明 对 $\forall x > 0$, 有 f 在 [0,x] 上单调递增, 从而由闭区间上单调函数必可积可知 $f \in R[0,x], \forall x > 0$, f 在 $[0,+\infty)$ 上内闭连续. 由(2)知

$$\int_0^x g''(y)g'(y) \, \mathrm{d}y + \int_0^x f(y)g'(y)g(y) \, \mathrm{d}y = 0, \forall x > 0$$
 (4)

利用 f 递增和第二积分中值定理和 (4), 我们有

$$\int_0^x g''(y)g'(y) \, \mathrm{d}y + f(x) \int_{\xi}^x g'(y)g(y) \, \mathrm{d}y = 0, \xi \in [0, x].$$

即

$$\frac{1}{2}|g'(x)|^2 - \frac{1}{2}|g'(0)|^2 + \frac{[f(x)]^2}{2}\left[g^2(x) - g^2(\xi)\right] = 0.$$

现在一方面

$$|g'(x)|^2 = |g'(0)|^2 - f(x)g^2(x) + f(x)g^2(\xi) \le |g'(0)|^2 + f(x)g^2(\xi).$$
(5)

另外一方面由(2)得

$$\frac{g''(x)g'(x)}{f(x)} + g'(x)g(x) = 0, \forall x > 0.$$

即

$$\int_0^x \frac{g''(y)g'(y)}{f(y)} dy + \frac{1}{2}g^2(x) - \frac{1}{2}g^2(0) = 0, \forall x > 0$$

由 f 递增和第二积分中值定理, 我们有

$$\frac{1}{f(0)} \int_0^{\eta} g''(y)g'(y) \, \mathrm{d}y + \frac{1}{2}g^2(x) - \frac{1}{2}g^2(0) = 0, \eta \in [0, x]$$

从而

$$\frac{1}{2f(0)} \left[|g'(\eta)|^2 - |g'(0)|^2 \right] + \frac{1}{2}g^2(x) - \frac{1}{2}g^2(0) = 0$$

即

$$|g(x)|^2 = g^2(0) - \frac{1}{f(0)} \left[|g'(\eta)|^2 - |g'(0)|^2 \right] \leqslant g^2(0) + \frac{|g'(0)|^2}{f(0)}, \forall x > 0.$$
 (6)

由 $g \in C[0, +\infty)$ 知 g 有界, 即存在 $C_1 > 0$, 使得 $|g(x)| < C_1, \forall x > 0$. 于是由(5)式知

$$|g'(x)|^2 \le |g'(0)|^2 + f(x)g^2(\xi) \le |g'(0)|^2 + C_1 f(x), \forall x > 0.$$
 (7)

又因为 f 是递增正函数, 所以 $f(x) \ge f(0) > 0$, $\forall x > 0$. 从而存在 $C_2 > 0$, 使得

$$|g'(0)|^2 \le C_2 f(0) \le f(x), \forall x > 0.$$

于是取 $M = \max \left\{ C_1 + C_2, g^2(0) + \frac{|g'(0)|^2}{f(0)} \right\}$,则由(7)式和(6)式可得,对 $\forall x > 0$,有

$$|g(x)|^2 \leqslant M \leqslant M^2$$
,

$$|g'(x)|^2 \le C_2 f(x) + C_1 f(x) \le M f(x) \le M^2 f(x)$$
.

进而

$$|g(x)| \leq M, |g'(x)| \leq M\sqrt{f(x)}, \forall x > 0.$$

这就证明了(3). □

例题 0.4 设 $f \in C^2[0,1]$, 证明

(a)

$$|f'(x)| \le 4 \int_0^1 |f(x)| dx + \int_0^1 |f''(x)| dx. \tag{8}$$

(b)

$$\int_0^1 |f'(x)| \mathrm{d}x \le 4 \int_0^1 |f(x)| \mathrm{d}x + \int_0^1 |f''(x)| \mathrm{d}x. \tag{9}$$

(c) 若 $f(0)f(1) \ge 0$, 则

$$\int_0^1 |f'(x)| \mathrm{d}x \le 2 \int_0^1 |f(x)| \mathrm{d}x + \int_0^1 |f''(x)| \mathrm{d}x. \tag{10}$$

证明

(a) 注意到对任何 $\theta \in [0,1]$, 我们有

$$|f'(x)| \le |f'(x) - f'(\theta)| + |f'(\theta)| \le \left| \int_{\theta}^{x} f''(y) dy \right| + |f'(\theta)|$$
$$\le \int_{0}^{1} |f''(y)| dy + |f'(\theta)|.$$

于是只需证明存在 $\theta \in [0,1]$ 使得

$$|f'(\theta)| \leqslant 4 \int_0^1 |f(x)| \mathrm{d}x. \tag{11}$$

如果 f' 有零点,则显然存在 $\theta \in [0,1]$, 使得 $f(\theta) = 0$, 从而满足 (11) 式. 下设 f' 没有零点. 由 f' 的介值性可知, f' 要么恒正, 要么恒负. 不妨设 f 严格递增. 若 f 没有零点, 不妨设 f > 0, 则由 Lagrange 中值定理可得

$$f(x) = f(0) + xf'(\eta) \geqslant xf'(\eta) \geqslant x \min_{[0,1]} |f'| \implies \int_0^1 |f(x)| dx \geqslant \min_{[0,1]} |f'| \geqslant \frac{1}{4} \min_{[0,1]} |f'|,$$

这也给出了 (11) 式. 若存在 $t \in [0,1]$, 使得 f(t) = 0. 由 Lagrange 中值定理可知

$$f(x) = f'(\theta)(x - t).$$

从而

$$\int_0^1 |f(x)| \mathrm{d}x \geqslant \min_{[0,1]} |f'| \cdot \int_0^1 |x - t| \mathrm{d}x \stackrel{\text{deg. 2?}}{\geqslant} \min_{[0,1]} |f'| \cdot \int_0^1 \left| x - \frac{1}{2} \right| \mathrm{d}x = \frac{1}{4} \min_{[0,1]} |f'|.$$

这也给出了(11)式. 于是我们证明了不等式(8)式。

(b) 直接对(8)式两边关于x 在 [0,1] 上积分得(9)式.

(c) 由 (a) 同理只需证明存在 $\theta \in [0,1]$ 使得

$$|f'(\theta)| \leqslant 2 \int_0^1 |f(x)| \mathrm{d}x. \tag{12}$$

不妨假定 f' 没有零点且 $f(0) \ge 0$, 则当 f 递增, 由 Lagrange 中值定理, 我们有

$$f(x) = f(0) + xf'(\eta) \geqslant xf'(\eta) \geqslant x \cdot \min|f'| \Longrightarrow \int_0^1 |f(x)| dx \geqslant \min|f' \geqslant \frac{1}{2} \min|f'|.$$

当 f 递减, 由 Lagrange 中值定理, 我们有

$$f(x) = f(1) + (x - 1)f'(\alpha) \geqslant (1 - x)\min|f'| \implies \int_0^1 |f(x)| dx \geqslant \frac{1}{2}\min|f'|.$$

于是必有(12)式成立,这就给出了(10)式.

例题 0.5

证明