

Relational Design Theory

Functional Dependencies

Functional Dependencies

Relational design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- Final set of relations satisfies normal form
 - No anomalies, no lost information
- Functional dependencies ⇒ Boyce-Codd Normal Form
- Multivalued dependences ⇒ Fourth Normal Form

Functional dependencies are generally useful concept

- Data storage compression
- Reasoning about queries optimization

Example: College application info.

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority) Apply(SSN, cName, state, date, major)

Functional Dependencies

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)

Suppose **priority** is determined by **GPA**For GPA

Priority

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)

Two tuples with same GPA have same priority

Functional Dependencies

Functional Dependency

- Based on knowledge of real world
- All instances of relation must adhere

Example

Functional Dependencies

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)

FOs:

SSN→SName

SSN→ addr

HSCode > HSName, HSCity

HSName, HSCity → HSCode

SSN → GPA

GPA → priority (transitivity)

Functional Dependencies

Apply(SSN, cName, state, date, major)

Functional Dependencies and Keys

- Relation with no duplicates
- Suppose Ā → all attributes

normally not considered Trivial Functional Dependency

Functional Dependencies

SSN, SName -> SName

Nontrivial FD

Completely nontrivial FD

Rules for Functional Dependencies

Splitting rule
$$\overrightarrow{A} \rightarrow \beta_1, \dots, \beta_k$$

$$\overrightarrow{A} \rightarrow \beta_k$$

$$\overrightarrow{A} \rightarrow \beta_k$$

Can we also split left-hand-side?

an we also split left-nand-side?

$$\frac{A_1, A_2 \rightarrow \overline{R}}{A_1 \rightarrow \overline{R}} ?$$
His Name, His City \rightarrow His Cook.

Rules for Functional Dependencies Combining rule

$$\begin{array}{ccc}
\overline{A} \rightarrow B_1 \\
\overline{A} \rightarrow B_2 \\
\overline{A} \rightarrow B_1, B_2
\end{array}$$

Functional Dependencies

Rules for Functional Dependencies

Trivial-dependency rules

1.
$$\overline{A} \rightarrow \overline{A} \cup \overline{B}$$
2. $\overline{A} \rightarrow \overline{A} \cap \overline{B}$

Rules for Functional Dependencies

Transitive rule

Functional Dependencies

Closure of Attributes

- Given relation, FDs, set of attributes A
- Find all B such that $\bar{A} \rightarrow B$

Functional Dependencies

Closure Example

Closure and Keys

Is Ā a key for R?

1 comple A+
2. if A+ = abtr(R) then A is a key!

How can we find all keys given a set of FDs?

RCAIB, c)

Functional Dependencies

Specifying FDs for a relation

- S₁ and S₂ sets of FDs
- S₂ "follows from" S₁ if every relation instance satisfying S₁ also satisfies S₂

How to test?

Does $A \rightarrow B$ follow from S?

(i) Armshoy Relations
(ii) A+, cled if is is in set

Specifying FDs for a relation

Want: Minimal set of completely nontrivial FDs such that all FDs that hold on the relation follow from the dependencies in this set

Functional Dependencies

Functional dependencies are generally useful concept

- Relational design by decomposition
 Functional dependencies ⇒ Boyce-Codd Normal Form
- Data storage compression
- Reasoning about queries optimization

Summary on Functional Dependencies (FDs)

- FD A_1 , ..., $A_n \rightarrow B_1$, ..., B_m
 - ... functionally determines ...
 - Check this at runtime via a "denial query"
 - But here it's about *reasoning* for all db instances
- · Generalization of keys:
 - Relation R(A, B)
 - $A \rightarrow B$ (and thus $A \rightarrow A,B$)
 - ... thus A is a (super)key of R

Summary on Functional Dependencies (FDs)

- Trivial vs (completely) nontrivial FDs
- · Inference rules for FDs
 - Splitting rule
 - Combining rule
 - Transitive rule
- Armstrong rules (cf. Textbook)
 - Reflexivity: X → X
 - Augmentation: X → Y implies XZ → YZ
 - Transitivity: $X \rightarrow Y$ and $Y \rightarrow Z$ implies $X \rightarrow Z$
- Armstrong rules are sound & complete:
 - Sound: inferences are correct
 - Complete: all implied FDs can be inferred

Summary on Functional Dependencies (FDs)

- Closure Algorithm A+
 - Given set **F** of FDs over R, set **A** of attributes
 - $A^{+} := A$
 - Repeat
 - for all X → Y in F:
 - if X subset A+
 - ... then **A**+ := **A**+ union **Y**
 - Until no change

Functional Dependencies

Closure and Keys

Chech: Is A a key for R?

How can we find all keys given a set of FDs?

http://class2go.stanford.edu/db/Winter2013

Specifying FDs for a relation

- S₁ and S₂ sets of FDs
- S₂ "follows from" S₁ if every relation instance satisfying S₁ also satisfies S₂

How to test? Does $A \rightarrow B$ follow from S?

- (i) A+ based on S, see if B & A+
- (ii) Armstrongis Rules

Understanding FDs with Datalog ...

```
% R(A,B,C)
                                                      =) websik
r(a1,b1,c1).
r(a1,b1,c2).
%r(a1,b2,c1).
% FD: R.A --> R.B
%:- r(A,B1,_), r(A,B2,_), B1 != B2.
% Report violation of FD: R.A --> R.B
ic(fdRAB,A,B1,B2) :- r(A,B1,_), r(A,B2,_), B1 != B2.
% Check for BCNF:
% Given FD R.A --> R.B, then A should be a key!
notBCNF1(A,B1,B2) :- r(A,B1,C1), r(A,B2,C2), B1 != B2.
notBCNF2(A,C1,C2) :- r(A,B1,C1), r(A,B2,C2), C1 != C2.
% DECOMPOSE!
r1(A,B) :- r(A,B,_).
r2(A,C) := r(A,_,C).
\% See whether we can get r back via a joining the decomposed relations:
rj(A,B,C) := r1(A,B), r2(A,C).
diff(r_too_big, A,B,C) :- r(A,B,C), not rj(A,B,C).
diff(rj_too_big, A,B,C) :- rj(A,B,C), not r(A,B,C).
```


Relational Design Theory

Boyce-Codd Normal Form

BCNF

Relational design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- Final set of relations satisfies normal form
 - No anomalies, no lost information

Fl, ■ Functional dependencies ⇒ Boyce-Codd Normal Form

Multivalued dependences ⇒ Fourth Normal Form

BCNF

Decomposition of a relational schema

$$R(A,..., F_n) \overline{A} \qquad \overline{A} = \overline{Y} \cup \overline{C}$$

$$L \times_1 (X_2 ... B_n) \overline{S} \qquad R = R_1 \bowtie R_2$$

$$Loss less-joint (full book, C)$$

Decomposition Example #1

Student(SSN, sName, address,

Decomposition Example #2

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)

BCNF

Relational design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- * "Good" decompositions only 1 loss kss (hon additive) join
- ❖ Into "good" relations △ 【(▼

BCNF? Example #2

Apply(SSN, cName, state, date, major)

 $Fo: SSN, cName, state \rightarrow date, major$

Kuy

BCNF

BCNF

Relational design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- ❖ "Good" decompositions only
- ❖ Into "good" relations

BCNF Decomposition Example

BCNF

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)

SSN \rightarrow sName, address, GPA GPA \rightarrow priority HScode \rightarrow HSname, HScity

Does BCNF guarantee a good decomposition?

- Removes anomalies?
- Can logically reconstruct original relation?

