Short Text Clustering

倪浚桐 2023.1

Short Text Clustering

- A Survey of Short Text Clustering
- Improved Supporting Clustering with Cluster-level Contrastive Learning

Introduction

Task Definition:

Automatically group multiple unlabeled short texts into a number of clusters

Source:

Social media (Twitter, Instagram, and Sina Weibo)

Downstream application:

Event exploration(What is happening around the world? When and where?), trend detection, and online user clustering

Challenge:

Sparseness

Similarity-based Clustering

Partitional algorithms: K-means

Hierarchical algorithms: HieClu

Density-based algorithms: OPTICS

Problem:

Classical and simple clustering approaches, relying on hand-crafted features for text clustering. However, for Kmeans and HieClu, the number of clusters need to be specified in advance, and they are sensitive to the initialization. OPTICS have limitations in handling high-dimensional data like text.

Topic model-based Clustering

Latent Dirichlet Allocation (LDA)

Probabilistic Latent Semantic Analysis (PLSA)

Biterm Topic Model (BTM)

Gibbs Sampling algorithm for the Dirichlet Multinomial Mixture model (GSDMM)

Problem:

They are **Bayesian topic models**, which realize probabilistic text clustering by assuming that each document is associated with a distribution over topics, and each topic is a distribution over words. In this way, a topic is usually regarded as a cluster. But, the input representation of short text is commonly based on the **bag-of-words assumption** and **one-hot encoding**, which might be **sparse** and **lack the expressive ability**.

Deep learning based Clustering

Self-Taught Convolutional NN for short text Clustering (STCC)

Gaussian-LDA

Deep Embedded Clustering (DEC)

Self-Training for short text Clustering (Self-Train)

Variational Deep Embedding (VaDE)

Problem:

The optimization process is partitioned into **separate stages**. Thus it is incapable of guiding text representation learning by the clustering objective.

Generative adversarial networks for Clustering

Deep Adversarial gaussian mixture auto-encoder for Clustering (DAC)

Cluster Generative Adversarial Network (ClusterGAN)

Attentive Representation Learning (ARL)

Problem:

Most of the GAN-based methods are welcomed for clustering **images** due to their ability to handle **continuous values**, whereas it is nontrivial for applying GAN-based methods to clustering the **discrete textual data** due to the difficulty of optimization. A surrogate way is to represent text as fixed continuous vectors (e.g., TF-IDF or pretrained word embeddings) for GAN-based models. However, it might inevitably limit the power of learning text representations.

Datasets

Datasets	V	Documents		Clusters	
		N^D	Len	N^C	L/S
TREC	-	4434	3.3	128	_
GooglenewsTS	20K	11109	28	152	143
GooglenewsS	18K	11109	22	152	143
GooglenewsT	8K	11109	26	152	143
Event	-	26619	8.78	69	-
StackOverflow	15K	20000	8	20	1
TweetSet	5K	2472	8	89	249
SearchSnippets	15K	12340	18	8	7
Biomedical	19K	20000	13	20	1
UCLNews	-	10,379	6.7	30	-
AgNews	21K	8000	23	4	1

Table 1. Dataset statistics. |V|: the vocabulary size; N^D : number of short text documents; Len: average number of words in each document; N^C : number of clusters; L/S: the ratio of the size of the largest cluster to that of the smallest cluster.

Evaluate Metrics

Normalized mutual information (NMI)

$$NMI(T,V) = \frac{MI(T,C)}{\sqrt{H(T)H(C)}}$$

Ajusted rand index (ARI)

$$ARI = \frac{\sum_{ij} \begin{pmatrix} \bar{v}_{ij} \\ 2 \end{pmatrix} - \left[\sum_{i} \begin{pmatrix} v_{i} \\ 2 \end{pmatrix} \sum_{j} \begin{pmatrix} \tilde{v}_{j} \\ 2 \end{pmatrix}\right] / n}{\frac{1}{2} \left[\sum_{i} \begin{pmatrix} v_{i} \\ 2 \end{pmatrix} + \sum_{j} \begin{pmatrix} \tilde{v}_{j} \\ 2 \end{pmatrix}\right] - \left[\sum_{i} \begin{pmatrix} v_{i} \\ 2 \end{pmatrix} \sum_{j} \begin{pmatrix} \tilde{v}_{j} \\ 2 \end{pmatrix}\right] / n}$$

Accuracy (ACC)

$$ACC = \frac{\sum_{i=1}^{n} \delta(y_i == map(c_i))}{n}$$

Short Text Clustering

- A Survey of Short Text Clustering
- Improved Supporting Clustering with Cluster-level Contrastive Learning

Improved Supporting Clustering with Cluster-level Contrastive Learning

Supporting Clustering with Contrastive Learning (SCCI)

Instance-wise Contrastive Learning

$$\mathcal{L}_{i^1}^{I} = -\log \frac{\exp(\operatorname{sim}(\widetilde{\mathbf{z}}_{i^1}, \widetilde{\mathbf{z}}_{i^2})/\tau)}{\sum_{j=1}^{2M} \mathbb{1}_{j \neq i^1} \cdot \exp(\operatorname{sim}(\widetilde{\mathbf{z}}_{i^1}, \widetilde{\mathbf{z}}_{j})/\tau)}$$

$$\mathcal{L}_{Instance-CL} = \sum_{i=1}^{2M} \mathcal{L}_{i}^{I} / 2M$$

Improved Supporting Clustering with Cluster-level Contrastive Learning (ISCCI)

Clustering

$$q_{jk} = \frac{(1 + \|e_j - \mu_k\|_2^2/\alpha)^{-\frac{\alpha+1}{2}}}{\sum_{k'=1}^K (1 + \|e_j - \mu_{k'}\|_2^2/\alpha)^{-\frac{\alpha+1}{2}}}$$

$$p_{jk} = \frac{q_{jk}^2 / f_k}{\sum_{k'} q_{jk}^2 / f_{k'}}$$

$$\mathcal{L}_{j}^{C} = \text{KL}[p_{j}||q_{j}] = \sum_{k=1}^{K} p_{jk} \log \frac{p_{jk}}{q_{jk}}$$

$$\mathcal{L}_{Cluster} = \sum_{j=1}^{M} \mathcal{L}_{j}^{C} / M$$

Cluster-level Contrastive Learning

Similar to Instance-CL loss, for each minibatch \mathcal{B} , the Cluster-level CL loss is defined on the augmented pairs in \mathcal{B}^a . Let \widetilde{z}_{i^1} and \widetilde{z}_{i^2} be the corresponding outputs of the Cluster-level head g_c , i.e., $\widetilde{z}_{i^j} = g_c(\psi(\widetilde{x}_j))$, $j = i^1, i^2$. g_c consist of two layer multilayer perceptron (MLP) and $\widetilde{z}_{i^j} \in \mathbb{R}^{C \times M}$, where C denotes the number of clusters. Then we calculate \mathcal{L}_i^I by applying Eq (1).

$$\mathcal{L}_{i^1}^{I} = -\log \frac{\exp(\operatorname{sim}(\widetilde{\mathbf{z}}_{i^1}, \widetilde{\mathbf{z}}_{i^2})/\tau)}{\sum_{j=1}^{2} \mathbb{1}_{j \neq i^1} \cdot \exp(\operatorname{sim}(\widetilde{\mathbf{z}}_{i^1}, \widetilde{\mathbf{z}}_{j})/\tau)}$$

$$\mathcal{L}_{Cluster-level\ CL} = \sum_{k=1}^{2C} \mathcal{L}_{k}^{CCL} / 2C$$

Overall objective

$$\mathcal{L} = \mathcal{L}_{Cluster} + \eta \mathcal{L}_{Instance-CL} + \eta \mathcal{L}_{Cluster-level\ CL}$$

$$= \sum_{j=1}^{M} \mathcal{L}_{j}^{C}/M + \eta \sum_{i=1}^{2M} \mathcal{L}_{i}^{I}/2M + \eta \sum_{k=1}^{2C} \mathcal{L}_{k}^{CCL}/2C$$

Data Preprocess

使用nlpaug库对original text进行了数据增强,分别通过BERT和RoBERT生成两段 augmented text,采用替换策略,替换比例为20%

SearchSnippets

Original Text: turtlesoft goldenseal software reference banktran bank transactions goldenseal accounting software business

Augmented Text1: turtlesoft development software reference banktran bank transactions information accounting software store

Augmented Text2: turtlesoft goldenseal software reference manufacturing bank hardware industry accounting software business

Experiments

Dataset	SearchSnippets		
Metrics	NMI	ACC	
Kmeans(TF)	9.0	24.7	
Kmeans(TF-IDF)	21.4	33.8	
Kmeans(Skip-Thought)	13.8	33.6	
Kmeans(Sentence-BERT)	52.0	66.8	
Kmeans(SIF)	36.9	53.4	
DEC	64.9	76.9	
STCC	62.9	77.0	
Self-Train	56.7	77.1	
SCCL	71.4	84.9	
ISCCL(Ours)	72.1	85.3	

Table 1. Overall results.

SearchSnippets: 12,340 snippets, 8 groups

Evaluate Metrics: Normalized mutual information (NMI), Accuracy (ACC)

Source code: https://github.com/LingFengGold/ISCCL

$$NMI(T, V) = \frac{MI(T, C)}{\sqrt{H(T)H(C)}}$$

$$ACC = \frac{\sum_{i=1}^{n} \delta(y_i == map(c_i))}{n}$$

Thank You!

