MNIST Data Preprocessing with PyTorch Documentation

This document describes the code for preprocessing the MNIST handwritten digit dataset using PyTorch.

Libraries

The code imports the following libraries:

- torch: The core PyTorch library for deep learning.
- torchvision: A library for computer vision tasks within PyTorch, including datasets and transformations.
- matplotlib.pyplot: Used for generating visualizations of the images.

Basic Preprocessing

1. Transform Definition:

- A transforms. Compose object is created to chain multiple image transformations.
- o transforms.ToTensor(): Converts the PIL image to a PyTorch tensor with normalized pixel values (between 0 and 1).
- transforms.Normalize((mean,), (std,)): Normalizes the pixel values based on the provided mean and standard deviation. Here, it uses the mean and standard deviation specific to the MNIST dataset (0.1307 and 0.3081 respectively).

2. Loading Datasets:

- o torchvision.datasets.MNIST is used to load the MNIST dataset.
- o root: Path to store the downloaded dataset (defaults to ./data).
- o train: Boolean indicating whether to load the training or test set.
- o download: Boolean indicating whether to download the dataset if not already present.

o transform: The previously defined transform object is applied to the loaded images.

3. Data Loaders:

- o DataLoader creates iterators over the datasets for efficient training.
- o dataset: The dataset to load (either train dataset or test dataset).
- o batch_size: The number of samples to group together in each batch.
- shuffle: Whether to shuffle the data order during training (set to True for training and False for testing).

4. Visualization Function:

- show_batch(images, labels): This function displays a grid of 25 images along with their corresponding labels.
- It utilizes plt.subplots to create a 5x5 grid of subplots.
- It iterates over the first 25 images and labels, displaying them using imshow and setting titles.
- o axis('off') hides the axis labels and ticks for a cleaner presentation.
- o plt.tight layout and plt.show adjust the layout and display the plot.

5. Example Usage:

- An iterator is created from the train loader using iter(train loader).
- The first batch of data is retrieved using next(data_iter). This returns a tuple containing images and labels.
- o show_batch is called with the first 25 images and labels (images[:25] and labels[:25]) to display a sample of the preprocessed data.

Advanced Preprocessing Techniques

The code showcases additional transformations that can be applied for advanced data

augmentation:

- Random Rotation: transforms.RandomRotation(degrees) applies a random rotation to the image within the specified degree range. (Example: transforms.RandomRotation(10) rotates images by up to 10 degrees).
- Random Affine Transformation: transforms.RandomAffine(degrees, translate=(tx, ty)) applies random affine transformations including rotation, scaling, shearing, and translation. Here, it performs a random translation with a maximum horizontal and vertical shift of 0.1.

• Image Binarization:

- A custom function binarize_image(img) is defined to convert pixel values above 0.5 to 1
 and those below to 0, essentially creating a binary image.
- This is integrated into the transform using transforms.Lambda(lambda img: binarize_image(img)).

• Image Resizing:

transforms.Resize((height, width)) resizes the image to the specified dimensions.
 (Example: transforms.Resize((32, 32)) resizes images to 32x32 pixels).

• Flatten Transform:

- A custom class FlattenTransform is defined to flatten the image tensor into a 1D vector.
 This can be useful for certain neural network architectures.
- The __call__ method reshapes the image using view(-1).

• Pixel Scaling:

- A custom class ScalePixels is defined to scale the pixel values by a factor (e.g., 255). This
 can be useful for normalizing pixel values to a specific range.
- The __call__ method multiplies