2A002 - Examen 2 eme session **2016-2017**

Mercredi 7 juin 2017 – Durée : 2 heures.

Tout document interdit. Les calculatrices, baladeurs et autres appareils électroniques sont interdits.

Travail strictement personnel

Exercice 1 : système de 2 compartiments (barème indicatif : 10 points)

Une boîte aux parois adiabatiques indéformables est partagée en deux compartiments A et B par un piston adiabatique. Initialement, le piston est fixé tel que les deux compartiments soient de même volume donné V_0 (Figure 1a).

Chaque compartiment contient une certaine masse d'un même gaz parfait de chaleurs massiques constantes c_p et c_v dont le rapport γ est donné, et de constante r donnée. Le gaz du compartiment A est initialement sous la pression p_0 et à la température T_0 , données. Le gaz du compartiment B est initialement sous la pression $2p_0$ et à la température T_0 .

On libère le piston qui est libre de se déplacer horizontalement sans frottement, et on suppose que pendant la transformation conduisant à l'équilibre entre les deux compartiments, un opérateur extérieur retient le piston de telle sorte que la transformation soit réversible dans chacun des compartiments (Figure 1b). La présence de l'opérateur extérieur n'introduit aucun échange de chaleur entre le contenu des réservoirs et le milieu extérieur. A l'équilibre final, l'opérateur n'agit plus (Figure 1c), le gaz du compartiment A est à (V_1, p_1, T_1) , celui du compartiment B est à (V_2, p_2, T_2) .

FIGURE 1 – Système à 2 compartiments : (a) état initial, (b) pendant la transformation, (c) état final

- 1. Donner la relation entre les masses m_A et m_B contenues dans les compartiments A et B respectivement.
- 2. Qualifier la transformation subie par le gaz de chaque compartiment.
- 3. Donner la relation entre les pressions p_1 et p_2 à l'état final. Justifier la réponse.
- 4. Donner la relation entre les volumes V_0 , V_1 et V_2 .
- 5. Donner l'allure de la transformation subie par le gaz de chaque réservoir sur un même diagramme de Clapeyron p(V). Bien placer les points initiaux et finaux, et faire figurer par des flèches le sens des transformations.
- 6. Montrer que V_1 est donné en fonction de V_0 et γ par l'expression $V_1 = \frac{2V_0}{1 + 2^{1/\gamma}}$, puis exprimer V_2 en fonction de V_0 et γ uniquement.
- 7. Exprimer p_1 et p_2 en fonction de p_0 et γ uniquement.
- 8. Rappeler l'expression de c_v en fonction de γ et r. En considérant le système constitué par le gaz contenu dans le compartiment A, exprimer la variation d'énergie interne ΔU_A et le travail W_A échangé avec le milieu extérieur en fonction de p_0 , p_1 , V_0 , V_1 , et γ . De façon analogue, exprimer ΔU_B et W_B en fonction de p_0 , p_2 , V_0 , V_2 , et γ . Préciser les signes de W_A et W_B . Utiliser le diagramme de la question 5 pour montrer graphiquement que $|W_A| < |W_B|$.

9. En considérant le système gaz contenu dans les 2 compartiments A et B, exprimer le travail total W échangé avec le milieu extérieur en fonction de p_0 , p_1 , V_0 et γ . En déduire le travail W_{op} de l'opérateur extérieur. Quel est son signe? Commenter.

Application Numérique : On donne $p_0 = 1$ bar, $p_1 = 1.48$ bar, $V_0 = 2$ litres, et $\gamma = 7/5$. Calculer W_{op} .

Exercice 2 : différentielle totale exacte (barème indicatif : 3 points)

On considère un système thermodynamique fermé constitué par N moles d'un gaz parfait, de capacités calorifiques C_p et C_v constantes. On note R la constante universelle des gaz parfaits.

On rappelle que pour une transformation réversible d'un gaz parfait, en choisissant T et V comme variables indépendantes, on a :

$$\delta Q^{rev} = C_v dT + p dV$$

- 1. Est-ce que δQ^{rev} est une différentielle totale exacte? Montrer-le mathématiquement.
- 2. Vérifier que 1/T est un facteur intégrant de δQ^{rev} . Physiquement, quelle différentielle totale exacte obtient-on? Déterminer la fonction correspondante en fonction de T et V.

Exercice 3 : échauffement/refroidissement d'un gaz parfait (barème indicatif : 7 points)

Un réservoir rigide de volume V_0 , aux parois diathermes, contient N moles de gaz parfait, de capacités calorifiques C_p et C_v constantes, initialement en équilibre à la température T_0 (état 0). On effectue ensuite 2 transformations :

 $0 \rightarrow 1$: Le réservoir est plongé dans un thermostat à $T_1 > T_0$ et on attend l'équilibre. Le gaz est alors à l'état 1.

 $1\rightarrow 2$: Le réservoir est plongé dans un thermostat à $T_2=T_0$ et on attend l'équilibre. Le gaz est alors à l'état 2.

- 1. Justifier pourquoi l'état 2 est identique à l'état 0.
- 2. Pour la première transformation, exprimer la variation d'entropie du système ΔS_{01} , l'entropie échangée par le gaz avec le milieu extérieur S_{tr01} , ainsi que la production d'entropie S_{pr01} , en fonction de C_v , T_1 , T_0 .

Vérifier le second principe (on pourra poser $x = T_1/T_0$).

3. Pour la deuxième transformation, calculer de même ΔS_{12} , S_{tr12} , ainsi que S_{pr12} , , en fonction de C_v , T_1 , T_0 .

Vérifier le second principe (on pourra poser $x = T_1/T_0$).

4. Pour la transformation totale, calculer ΔS_{02} , S_{tr02} , ainsi que S_{pr02} , , en fonction de C_v , T_1 , T_0 . Vérifier la cohérence physique des résultats obtenus.

24002 - Examen 2ª session 2016-17-éléments de conigé. O Exercice 1 1- on a (loi des gaz parfaito à l'état initial): compartiment A: povo = mA2To => mB=2mA compartiment B: 2 povo = MBRTO 2- Le gaz du compartiment A subit une compression adiabatique revensible Le gaz du compartiment B subit une détente adiabatique réversible 3_ Il y a équilibre du pistan à l'état final = 12= 12

Per Pa Por gos A INBI 2 povo = cte y vo 2

6- On a $p_0V_0^{8} = p_1V_1^{8}$ $2p_0V_0^{8} = p_2V_2^{8} = p_1(2V_0 - V_1)^{8}$ $\Rightarrow p_{A} = p_{O}\left(\frac{V_{O}}{V_{A}}\right)^{8} = 2p_{O}\left(\frac{V_{O}}{2V_{O}-V_{A}}\right)^{8} \Rightarrow \left(\frac{V_{O}}{V_{A}}\right)^{2} = 2\left(\frac{V_{O}}{2V_{O}-V_{A}}\right) \Rightarrow \frac{V_{O}}{V_{A}} = 2\left(\frac{V_{O}}{2V_{O}-V_{A}}\right)$ \Rightarrow $2V_0 - V_1 = 2^{1/8}V_1 \Rightarrow (2^{1/8} + 1)V_1 = 2V_0 \Rightarrow V_1 = \frac{2^{1/8} + 1}{2^{1/8} + 1}$ et $V_2 = 2V_0 - V_1 = 2V_0 \left[1 - \frac{1}{2^{1/8} + 1} \right] = \left(\frac{2^{1/8}}{2^{1/8} + 1} \right) 2V_0$

 $7 - \gamma_1 = \gamma_0 \left(\frac{\sqrt{6}}{\sqrt{1}}\right)^8 = \gamma_0 \left(\frac{1+2\sqrt{8}}{2}\right)^8 = \gamma_2$

8- On a Cv = 32-1 (A): AUA = MACN (TI-TO) = MARTY (TI-TO) = & [MARTI - MARTO] = 1-[P1/1 - POVO] = WA + XA > 0

(B): QUB = MBCO(T2-T0) = 1 [T2 2-2 povo] = WB <0 On voit clairement sur le graphe que IWAI < IWBI (voir aires flachenées).

9- AUtot = AUA + AUB = W => W= WA + WB = 1 [7, 4 + 12 e - 3 povo) => W= W = 1 [PATA + PA (2Vo - VA) - 3 POVO] = \$ [2 PA - 3 PO] VO <0

=> le 2nd principe est bien vérifié, et la transformation est inéversible.

3)
$$\Delta S_{A2} = C_V \ln \frac{T_2}{T_0} + NR \ln \frac{V_2}{V_1}$$
 or $V_2 = V_1$

$$\Rightarrow \Delta S_{A2} = C_V \ln \frac{T_0}{T_0} = -\Delta S_{01}$$

$$\Delta S_{A0}$$

$$S_{LAZ} = \frac{Q_{1Z}}{T_0} = \frac{\Delta U_{12} - M_{12}}{T_0} = \frac{C_V (T_2 - T_1)}{T_0} = \frac{C_V (T_0 - T_1)}{T_0}$$

$$S_{\mu_{AZ}} = \Delta S_{12} - S_{L_{12}} = C_V \left(\ln \frac{T_0}{T_1} - 1 + \frac{T_0}{T_0} \right)$$

$$S_{\mu_{AZ}} = \Delta S_{12} - S_{L_{12}} = C_V \left(\ln \frac{T_0}{T_1} - 1 + \frac{T_0}{T_0} \right)$$

$$S_{\mu_{AZ}} = \Delta S_{12} - S_{L_{12}} = C_V \left(\ln \frac{T_0}{T_1} - 1 + \frac{T_0}{T_0} \right)$$

$$S_{\mu_{AZ}} = \Delta S_{12} - S_{L_{12}} = C_V \left(\ln \frac{T_0}{T_1} - 1 + \frac{T_0}{T_0} \right)$$

$$S_{\mu_{AZ}} = \Delta S_{12} - S_{\mu_{AZ}} + C_V \left(\ln \frac{T_0}{T_1} - \frac{T_0}{T_0} \right)$$

$$S_{\mu_{AZ}} = \Delta S_{02} - S_{\mu_{AZ}} = C_V \left(\frac{T_0}{T_1} - \frac{T_0}{T_0} \right)$$

$$S_{\mu_{AZ}} = \Delta S_{02} - S_{\mu_{AZ}} = C_V \left(\frac{T_0}{T_1} - \frac{T_0}{T_0} \right)$$

$$S_{\mu_{AZ}} = \Delta S_{02} - S_{\mu_{AZ}} = C_V \left(\frac{T_0}{T_1} - \frac{T_0}{T_0} \right)$$

$$S_{\mu_{AZ}} = \Delta S_{02} - S_{\mu_{AZ}} = C_V \left(\frac{T_0}{T_1} - \frac{T_0}{T_0} \right)$$

$$S_{\mu_{AZ}} = \Delta S_{02} - S_{\mu_{AZ}} = C_V \left(\frac{T_0}{T_1} - \frac{T_0}{T_0} \right)$$

AUA) 0 => h(v)>0 pour re>1 => Spro2>0 => Le cycle out compatible avec le second principe et indversible.

>0 2>1

h(1) =0

Soir $x = \frac{T_1}{T_0} h(x) = \frac{1}{x} + x - 2 \quad h'(x) = -\frac{1}{x^2} + 1 = \frac{x^2 - 1}{x^2}$