

Curso de Programação Nível Básico

Universidade Federal da Bahia Instituto de Computação Departamento de Ciência da Computação

MATRIZES

Matrizes nada mais são do que vetores com múltiplas dimensões.

Aplicações com vetores de diferentes dimensões

Uma imagem em escala de cinza é uma matriz (linhas X colunas) de valores, com cada campo (pixel) contendo um valor de intensidade.

Edições, filtros de efeitos e
 reconhecimento de padrões em
 imagens costumam analisar/alterar
 o valor de um pixel em relação aos
 seus vizinhos em uma matriz

COLUNAS

Aplicações com vetores de diferentes dimensões

Uma imagem colorida é uma matriz com 3 dimensões, pois cada campo possui valores de RGB (vermelho, verde e azul).

 Para mudar a cor do pixel na ponta do nariz, teríamos que acessar a matriz na linha 5, coluna 13 e alterar os 3 valores dessa posição.

 A declaração de uma matriz é semelhante a de um vetor, porém deve-se adicionar as novas dimensões:

int jogo[4];

int jogo[4][4];

 No caso de uma matriz 2D, o primeiro tamanho corresponde à quantidade de linhas, e o segundo à quantidade de colunas.
 COLUNAS

int jogo[4][4]; 209 209 209 jogo[0][0] = 209;jogo[1][2] = 75;N jogo[2][3] = 255;Н 209 209 209 255 A cin >> mat[1][4]; 255 255 255 //CUIDADO, ÍNDICE FORA DA MATRIZ

- Como declarar as matrizes multidimensionais:
 - tipo nome[tamanho1][tamanho2][tamanho3]....[tamanhoN];

//Cria matriz com zeros

```
int i, j, altura=10, largura=20;
int mat2D[altura][largura];
```

OU

```
for(i=0; i < altura; i++)
for(j=0; j < largura; j++)
mat2D[ i ][ j ] = 0;
```

//Lê matriz da entrada padrão

```
int i,j, altura, largura;
cin >> altura >> largura;
int mat2D[altura][largura];
for(i=0; i < altura; i++)
    for(j=0; j < largura; j++)
        cin >> mat2D[ i ][ j ];
```

Acessando uma linha

```
int i,j, altura, largura;
cin >> altura >> largura;
int mat2D[altura][largura];
for(i=0; i < altura; i++)
    for(j=0; j < largura; j++)
          cin >> mat2D[ i ][ j ];
int linha = 1;
for (j=0; j<largura; j++)</pre>
     cout << mat2D[linha][j] << endl;</pre>
```


Saída

6

1

8

Acessando uma coluna

```
int i,j, altura, largura;
cin >> altura >> largura;
int mat2D[altura][largura];
for(i=0; i < altura; i++)
    for(j=0; j < largura; j++)
          cin >> mat2D[ i ][ j ];
int coluna = 0;
for (i=0; i<altura; i++)</pre>
     cout << mat2D[i][coluna] << endl;</pre>
```


Saída:

1 5 9

Imprimindo matriz - elemento a elemento, linha por linha

```
int i,j, altura, largura;
cin >> altura >> largura;
int mat2D[altura][largura];
for(i=0; i < altura; i++)
      for(j=0; j < largura; j++)
            cin >> mat2D[ i ][ j ];
for (i=0; i<altura; i++){</pre>
      for (j=0; j<largura; j++)</pre>
            cout << mat2D[i][j] << " ";</pre>
      cout << endl;</pre>
```


Saída:

1 2 3 4 5 6 7 8 9 10 11 12

Imprimindo matriz - elemento a elemento, coluna por coluna

```
int i,j, altura, largura;
 cin >> altura >> largura;
 int mat2D[altura][largura];
 for(i=0; i < altura; i++)
       for(j=0; j < largura; j++)
             cin >> mat2D[ i ][ j ];
 for (j=0; j<largura; j++){</pre>
       for (i=0; i<altura; i++)</pre>
             cout << mat2D[i][j] << " ";</pre>
       cout << endl;</pre>
Saída:
```


Me Add Aí

- Descrição
 - Calcule a soma de duas matrizes.
- Entrada
 - Na primeira linha o número de linhas e o de colunas das matrizes. Nas N próximas linhas os elementos da primeira matriz. Após essas N linhas, temos outras N linhas com os elementos da segunda matriz.
- Saída
 - N linhas contendo os elementos da matriz que resulta da soma das duas matrizes lidas.

Me Add Aí

```
#include <iostream>
using namespace std;
int main() {
  int N, M, i, j;
  cin >> N >> M:
  int A[N][M], B[N][M], C[N][M];
  // Lê a matriz A
  for (i=0; i < N; i++)
     for (j=0; j < M; j++)
       cin >> A[i][j];
  // Lê a matriz B
  for (i=0; i < N; i++)
     for (j=0; j < M; j++)
        cin >> B[i][i];
```

```
// Calcula a matriz C
for (i=0; i < N; i++)
  for (j=0; j < M; j++)
     C[i][i] = A[i][i] + B[i][i];
// Imprime a matriz C
for (i=0; i < N; i++) {
  for (j=0; j < M-1; j++)
     cout << C[ i ][ j ] << " ";
  cout << C[ i ][ j ] << endl;
```