

COMP3430 / COMP8430 Data wrangling

Lecture 9: Data pre-processing using Rattle and Python (Lecturer: Thilina Ranbaduge)

Lecture outline

- Data pre-processing revisited
- Data pre-processing tools
- Data pre-processing using Rattle
- Data pre-processing using Python
- Summary

Data pre-processing revisited

Data pre-processing tools

- Various tools available:
 - OpenRefine Open source Google code project for working with messy data (http://openrefine.org/)
 - Drake Open source text-based data workflow tool where steps are defined along with their inputs and outputs (https://github.com/Factual/drake)
 - Data cleaner Profiling, duplicate detection, and cleansing commercial software (http://datacleaner.org/)
 - WinPure cleaning tool powerful commercial tool (http://www.winpure.com/article-datacleaningtool.html)
 - Rattle Open source, built on R for cleaning data
 - **Python** and **Pandas** Open source, allows efficient data cleaning

Data pre-processing with Rattle

- R is a powerful language for performing data wrangling, analysis and mining
- Rattle provides a GUI for such tasks
- The typical workflow is:
 - Loading dataset
 - Exploring dataset
 - Transforming and cleaning dataset
 - Building models
 - Evaluating models
 - Exporting models for deployment

Handling missing values in Rattle (1)

- Load Rattle weather dataset
- Transform tab -> Impute
- Several options:
 - Zero/Missing
 - Mean
 - Median
 - Mode
 - Constant value

Handling missing values in Rattle (2)

- Zero/Missing value imputation
 - The simplest imputation
 - Replaces all missing values with a single value
 - Numerical variable 0
 - Categorical variable 'Missing'

Handling missing values in Rattle (3)

- Mean / median / mode value imputation
 - Use some 'central' value of the variable
 - Numerical variable with normal distribution Mean
 - Numerical variable with skewed distribution Median
 - Categorical variable Mode

Handling missing values in Rattle (4)

- Allows using a constant value for imputation
 - Define own default value to be imputed
 - Integer/real number for numerical variable
 - Special marker for categorical variable

Data transformation in Rattle (1)

- Transform tab -> Rescale
 - Recentering to be around 0
 - Rescaling to be in [0-1]
 - Robust rescaling around zero using the median
 - Applying logarithm
 - Multiple variables with one divisor (matrix)
 - Ranking
 - Rescaling by group (interval)

Data transformation in Rattle (2)

- Recentering
 - Common normalisation recentres and rescales data
 - Subtracts the mean value from each value of a variable (to recentre the variable)
 - Divides by the standard deviation (to rescale)

Data transformation in Rattle (3)

- Scaling [0-1]
 - Rescaling to be in [0-1]
 - Subtracts the minimum value from each value of a variable
 - Divides by the difference between maximum and minimum values

Data transformation in Rattle (4)

- Robust rescaling
 - Robust version of recentering option
 - Subtracts the *median* value from each value of a variable (to recentre the variable)
 - Divides by the *median absolute* deviation (MAD to rescale)

Data transformation in Rattle (5)

- Logarithm transformation
 - Variables with skewed distribution (such as income)
 - Logarithm (as well as natural logarithm) effectively reduces the spread of values
 - Base 10 logarithm: \$10,000 -> 4, \$100,000 -> 5, \$1,000,000-> 6

Data transformation in Rattle (6)

- Matrix
 - Transforming data using multiple variables
 - Calculates the sum of all values of multiple variables as matrix total
 - Divides each value of a variable by the matrix total

Data transformation in Rattle (7)

- Ranking
 - Not the actual values, but the relative position within the distribution of values
 - A list of integers (ranks)
 - E.g. $[100,50,17,78,20,5,50,6] \rightarrow [8, 5, 3, 7, 4, 1,5,2]$

Data transformation using Python

- Several Python packages available for data cleaning, profiling, and analysis
- Most important ones:
 - Pandas: provides easy-to-use data structures and data analysis tools
 - Numpy and Scipy: fundamental packages for scientific computing
 - Sklearn: Library for machine learning in Python
 - Matplotlib: For generating plots and visualisation

Loading a data set using Python

- Importing libraries

 import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
- Reading the dataset in a dataframe using Pandas
 df = pd.read_csv("weather.csv")

Handling missing values in Python (1)

 Checking the number of nulls/NaNs (not-a-number) in the data sets

df.apply(lambda x: sum(x.isnull()),axis=0)

- Prints number of null values in each variable
- Note: missing values may not always be NaNs.
 - For example: Unknown, 0, -1

Handling missing values in Python (2)

- Deletion
 df.dropna(how='any')
- Mean/median/mode imputation
 df['MinTemp'].fillna(df['MinTemp'].mean(), inplace=True)
 df['MinTemp'].fillna(df['MinTemp'].median(), inplace=True)
 df['WindDir9am'].fillna(df['WindDir9am'].mode(), inplace=True)

Data transformation in Python (1)

Recentering and rescaling
 mean_val = df['WindGustSpeed'].mean()
 std_val = df['WindGustSpeed'].std()
 WindGustSpeedRct = []
 for val in df['WindGustSpeed']:
 WindGustSpeedRct.append((val – mean_val) / std_val)
 df['WindGustSpeedRct'] = WindGustSpeedRct

Data transformation in Python (2)

Logarithm transformation

```
df['WindGustSpeed'].hist(bins=20)
df['WindGustSpeedLog']=np.log(df['WindGustSpeed'])
df['WindGustSpeedLog'].hist(bins=20)
```


Summary

- Several data pre-processing tools (open source and commercial) available for efficient data science applications
- Python and Rattle are two such open source tools that are becoming increasingly popular among the data scientists
- Future directions are required towards tools with full life-cycle of data science and interactive design