How ACCURATE can I make it?

Predicting Default Risk in Loans

Anthony Tian

Problem

When credit card customers default...

- Banks lose revenue
- Fewer loans get approved
- Collections drain staff time & legal resources
- Mispriced credit raises rates for everyone
- Undermine banks' trust

Predicting who'll default can prevent losses!

Dataset

	id	x1	x2	хЗ	x4	х5	х6	x7	x8	x9	 x15	x16	x17	x18	x19	x20	x21	x22	x23	У
0	1.0	20000.0	2.0	2.0	1.0	24.0	2.0	2.0	-1.0	-1.0	 0.0	0.0	0.0	0.0	689.0	0.0	0.0	0.0	0.0	1
1	2.0	120000.0	2.0	2.0	2.0	26.0	-1.0	2.0	0.0	0.0	 3272.0	3455.0	3261.0	0.0	1000.0	1000.0	1000.0	0.0	2000.0	1
2	3.0	90000.0	2.0	2.0	2.0	34.0	0.0	0.0	0.0	0.0	 14331.0	14948.0	15549.0	1518.0	1500.0	1000.0	1000.0	1000.0	5000.0	0
3	4.0	50000.0	2.0	2.0	1.0	37.0	0.0	0.0	0.0	0.0	 28314.0	28959.0	29547.0	2000.0	2019.0	1200.0	1100.0	1069.0	1000.0	0
4	5.0	50000.0	1.0	2.0	1.0	57.0	-1.0	0.0	-1.0	0.0	 20940.0	19146.0	19131.0	2000.0	36681.0	10000.0	9000.0	689.0	679.0	0
•••											 •••									
29995	29996.0	220000.0	1.0	3.0	1.0	39.0	0.0	0.0	0.0	0.0	 88004.0	31237.0	15980.0	8500.0	20000.0	5003.0	3047.0	5000.0	1000.0	0
29996	29997.0	150000.0	1.0	3.0	2.0	43.0	-1.0	-1.0	-1.0	-1.0	 8979.0	5190.0	0.0	1837.0	3526.0	8998.0	129.0	0.0	0.0	0
29997	29998.0	30000.0	1.0	2.0	2.0	37.0	4.0	3.0	2.0	-1.0	 20878.0	20582.0	19357.0	0.0	0.0	22000.0	4200.0	2000.0	3100.0	1
29998	29999.0	80000.0	1.0	3.0	1.0	41.0	1.0	-1.0	0.0	0.0	 52774.0	11855.0	48944.0	85900.0	3409.0	1178.0	1926.0	52964.0	1804.0	1
29999	30000.0	50000.0	1.0	2.0	1.0	46.0	0.0	0.0	0.0	0.0	 36535.0	32428.0	15313.0	2078.0	1800.0	1430.0	1000.0	1000.0	1000.0	1

30000 rows × 25 columns

- n = 30k loans, 22% charge-off rate" (I. Yeh, Che-hui Lien. 2009)
- UCI Default of Credit Card Clients
 - Original Source

- Renamed columns
 - according to source guide
- Key features:
 - numeric: limit_balance, age, bill_amt1-6, pay_amt1-6
 - categorical: sex, education_level, marital_status, repayment_status (PAY_O-PAY_6), default_next_month (target)

CATCH TRUE

SAFE

catches 6 of 10 defaulters

Recall(0): 0.59

half of flags come true

Precision(0): 0.51

only 12% false flags

Precision(1): 0.88

here's how...

Journey

From one model to the next...

01

Log. Regression

Spaghetti Throwing – trying to see what sticks

04

SVM

Kernels would handle bill/payment splits

02

Random Forest

Could fit non-linear features (limit_bal, late_trend, etc)

03

XGBoost

Handles complex pay/bill interactions – best thus far

Journey

XGB turned out best... now how can I improve it?

05

06

Features (XGB)

Tuned (XGB)

Engineered five features to increase accuracy

grid-searched to tighten fit

07

08

Balancing (XGB)

Calibrating (XGB)

Pivoted to balancing, oversampled minority class to lift recall Align probability scores, set F1-max cutoff

01 Logistic Regression

(80/20 split, x: all except default, y: default)

	precision	recall	f1-score	support
0 1	0.82 0.69	0.97 0.24	0.89 0.36	4673 1327
accuracy macro avg	0.75	0.61	0.81 0.62	6000 6000
weighted avg	0.79	0.81	0.77	6000

Thought Process:

Logistic Regression:

- Handles binary classification directly
- Works well with numeric-heavy data
- First model: just throwing something out

- Precision on defaulters: 0.51
- Recall: 0.59 F1: 0.55
- Still likely underfitting complex patterns
- No handling of class imbalance or interactions yet

02 Random Forest

(80/20 split, x: all except default, y: default)

	precision	recall	f1-score	support
0	0.83	0.95	0.89	4673
1	0.65	0.33	0.44	1327
accuracy			0.81	6000
macro avg	0.74	0.64	0.66	6000
weighted avg	0.80	0.81	0.79	6000

Thought Process:

Random Forest:

- Handles non-linear features better
- Uses ensemble power to reduce overfitting
- Balances class weight to address imbalance
- Goal: Catch more true defaulters than logistic reg

- Precision on defaulters: 0.65
- Recall: 0.33 F1: 0.44
- Better once it does flag a defaulter
- Still misses ~67% of them
- Small step forward, but still cautious

Found 10 most predictive features using RF importances

- wanted to understand what signals model relied on
 - hoped to reduce noise

02 Random Forest v2

(80/20 split, x: top 10 (from prev. page), y: default)

	precision	recall	f1-score	support
0	0.83	0.95	0.89	4673
0				
1	0.64	0.34	0.44	1327
accuracy			0.81	6000
macro avg	0.74	0.64	0.67	6000
weighted avg	0.79	0.81	0.79	6000

ROC AUC: 0.76

Thought Process:

Random Forest v2:

- Cut model complexity by using just top 10 features
- Chose based on RF importances + RFE
- Hoped to retain signal while reducing noise + boosting clarity

- Precision on defaulters: 0.64
- Recall: 0.34 F1: 0.44
- Nearly identical to full-feature RF
- Inch of improvement recall: $0.33 \rightarrow 0.34$
- Simplified model without major loss
- Should be able to use these features for future models

03 SVM

(80/20 split, x: top 10, y: default)

Thought Process:

SVM:

- Tried a boundary-based model (SVM) to flag risk patterns more decisively
- Used same top 10 features for fairness
- Hoped to push recall much higher, even at cost of precision

	precision	recall	f1-score	support
0	0.88	0.30	0.45	4673
1	0.26	0.86	0.40	1327
accuracy			0.42	6000
macro avg	0.57	0.58	0.42	6000
weighted avg	0.74	0.42	0.43	6000

Performance?

- Precision on defaulters: 0.26 Recall: 0.86 F1: 0.40
- Huge recall jump (↑ from 0.34), barely misses any defaulters
- But 74% of defaulter flags are false alarms
- Overall accuracy: 42%
- Likely overfit to risky cases tries too hard to catch them all
- Possibly:
 - RBF kernel overreacts to patterns in small feature space
 - Class_weight = 'balanced' + nonlinear boundary = extreme shifts
 - Lack of calibration makes it trigger-happy

Massive trade-off: SVM aggressively flags defaulters (high recall), but sacrifices overall accuracy and precision.

04 XGBoost

(80/20 split, x: top 10, y: default)

	precision	recall	fl-score	support
0	0.87	0.83	0.85	4673 1327
accuracy			0.77	6000
macro avg	0.68	0.70	0.69	6000
weighted avg	0.79	0.77	0.78	6000

Thought Process:

- Tried XGBoost to better capture nonlinear patterns
- Set scale_pos_weight to help with imbalance
- Wanted a model that could balance recall + precision with more nuance than SVM or RF

- Precision on defaulters: 0.49 Recall: 0.58 F1: 0.53
- Most balanced model so far
- Catches a solid % of defaulters (↑ recall vs RF)
- Accuracy = 77% despite fewer features
- Likely benefiting from boosting:
 iteratively learning where others fail
- May underperform if more interaction terms or deeper features are needed

+ tuning (randomized)

	precision	recall	f1-score	support
0	0.87	0.83	0.85	4673
1	0.49	0.57	0.53	1327
7			0 77	(000
accuracy			0.77	6000
macro avg	0.68	0.70	0.69	6000
weighted avg	0.79	0.77	0.78	6000

Thought Process:

Hypertuning might help:

- Tried RandomizedSearchCV and Optuna to push performance further
- Targeted f1-score and class balance using scale_pos_weight
- Hoped to reduce false positives without sacrificing recall

Attempt 1:

Parameters tuned:

- n_estimators: [100, 200, 300, 400]
- max_depth: [3, 4, 5, 6, 7]
- learning_rate: [0.01, 0.05, 0.1, 0.2]
- subsample: [0.6, 0.8, 1.0]
- colsample_bytree: [0.6, 0.8, 1.0]
- gamma: [0, 1, 5]

Why / Hope:

- Start with basic knobs
- Aim: catch more defaulters while reducing false positives
- Expected a bump in F1 by balancing fit depth and learning rate

+ tuning w/ broader search

	precision	recall	f1-score	support
0	0.87	0.84	0.85	4673
1	0.49	0.55	0.52	1327
accuracy			0.78	6000
macro avg	0.68	0.69	0.69	6000
weighted avg	0.79	0.78	0.78	6000

Thought Process:

Broadened search (50 trials)

Attempt 2:

Extra parameters added:

- min_child_weight: [1, 5, 10]
- reg_alpha: [0, 0.1, 1]
- reg_lambda: [0.1, 1, 5]
- Slightly broader ranges for existing params
- learning_rate: [0.001, 0.01, 0.05, 0.1, 0.2]
- n_estimators: [100, 200, 300, 500]
- max_depth: [3, 5, 7, 9]

Why / Hope:

- Try regularization to prevent overfitting
- Add flexibility in tree shape and depth
- See if interaction of new knobs would uncover better balance

+ tighter tuning

	precision	recall	f1-score	support
0	0.87	0.84	0.86	4673
1	0.50	0.57	0.53	1327
accuracy			0.78	6000
macro avg	0.69	0.71	0.69	6000
weighted avg	0.79	0.78	0.78	6000

Performance?

After three tuning attempts:

- Precision: 0.50 Recall: 0.57 F1: 0.53 (unchanged)
- Nearly identical to untuned XGB; accuracy plateaued at 78%

=> Takeaway: Tuning's juice has been squeezed— time to move on

Thought Process:

Attempt 3:

(All previous params with tighter float sampling)

- learning_rate: 0.0096
- gamma: 4.15
- min_child_weight: 8
- reg_alpha: 0.40
- reg_lambda: 1.04
- n_estimators: 435
- colsample_bytree: 0.80, subsample:

0.80

Why / Hope:

- Use smarter search (Optuna) to escape local optima
- Finer tuning to push class 1 performance up
- Hoping for marginal lift from smaller false positive pool

What to try next?

- Feature Importance (SHAP)
 - how XGBoost is deciding
 - prioritize those features
- Findings:
 - pay_sep dominates → late
 payments spike default risk
 - Big bills (bill_aug, bill_sep, bill_may) push risk ↑
 - O Higher payments(pay_amt_sep) pull risk ↓
 - Age tilts slightly(younger = riskier)
- Hope: less noise & more focus => better model

Feature Engineering

 Tuning & threshold both plateaued → model could use new signals

Goal: create relevant columns

 combining pay + bill history so trees can spot patterns

pay_ratio:
(pay_amt_sep / bill_sep)

o avg_bill: mean(bills Apr-Sep)

O late_trend: (Sep bill – Aug bill)

missed_payments:# of billing cycles paid late

pay_amt_std
 stdev of payment amounts
 (how inconsistent they are)

Threshold Tuning

- find potentially more accurate F1 cut-off
- default 0.50 cut-off might not fit skewed data

Findings

- F1 peaks \approx 0.53 at threshold
- o turns out 0.50 was okay
- Still worth trying
- Still worth trying

+ threshold tuning & new features

	precision	recall	f1-score	support
0	0.84	0.95	0.89	4673
1	0.67	0.35	0.46	1327
accuracy			0.82	6000
macro avg	0.76	0.65	0.68	6000
weighted avg	0.80	0.82	0.80	6000

Performance?

- precision on defaulters: 0.67 recall: 0.35

F1: 0.46

- recall \uparrow from 0.34 \rightarrow 0.35, F1 \uparrow from 0.44

→ 0.46

- accuracy: 82%

- modest lift shows new signals add value

- still not quite where I want it though

Thought Process:

- new frequency + volatility signals might catch more risk patterns:

pay_ratio – September payment ÷
 September bill size → "how much of the bill did they actually cover?"

avg_bill – mean bill size from
 April-September → typical burden level

 - late_trend - Sep payment minus Aug payment → catches worsening payment behaviour

 missed_payments – count of months with any late payment → frequency of being behind

pay_amt_std – stdev of payments
 Apr-Sep → variability / inconsistency in what they pay

+ balancing classes

	precision	recall	f1-score	support
0	0.88	0.85	0.86	4673
1	0.52	0.58	0.55	1327
accuracy			0.79	6000
macro avg	0.70	0.71	0.70	6000
weighted avg	0.80	0.79	0.79	6000

Thought Process:

- dataset's been imbalanced (most people pay their debts! => class 0 > class 1
- likely why recall's been low
- balanced it w/ XGB's built-in class weighting

(scale_pos_weight = #neg/#pos)

- gave extra weight to defaulters so model focuses on true positives
- found F1-maximizing cutoff again (~0.55)

- recall jumped from 0.38 \rightarrow 0.58, F1 from 0.48 \rightarrow 0.55
- precision dipped from $0.65 \rightarrow 0.52$
- accuracy ~80% held steady
- class weighting + threshold tuning outperformed oversampling for feature set

+ isotonic calibration

	precision	recall	f1-score	support
0	0.88 0.51	0.84	0.86	4673 1327
accuracy	0.70	0 71	0.79	6000
macro avg weighted avg	0.70 0.80	0.71 0.79	0.70 0.79	6000 6000

Thought Process:

- raw XGB scores weren't true probabilities (e.g., 0.60 didn't equal 60 % default risk)
- used CalibratedClassifierCV (method = 'isotonic', cv = 5); adds small "stretch/ squeeze" curve to match model's raw scores w/ reality
- => best isotonic threshold: 0.26

- precision 0.51, recall 0.59, F1 0.55 (same F1 as before)
- now probabilities are trustworthy: a0.40 score ≈ 40 % observed default rate
- calibration gives better decision
 flexibility without hurting headline metrics

Final Model (at least for now)

precision

0

1

accuracy

macro avg

weighted avg

0.88

0.51

0.70

0.80

recall f1-score

0.86

0.55

0.79

0.70

0.79

0.84

0.59

0.71

0.79

support

4673

1327

6000

6000

6000

Class 1 (defaulters):

- precision 0.51 → half the flagged borrowers do default

recall $0.59 \rightarrow$ we catch ~6 out of 10 real defaulters

 $F10.55 \rightarrow our best balance so far$

Class 0 (non-defaulters):

→ mostly true positives

-recall 0.84

→ only 16 % false positives

Overall Metrics

- accuracy 0.79 (skewed data, so less meaningful)
- macro-avg F1 0.70
 - → solid, given 22 % positives

Thanks!

Questions?

tian.ruy@northeastern.edu showhq2@gmail.com +1 (626) 677–0875 site

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

