Московский государственный технический университет им. Н.Э. Баумана

Утверждаю:		
Большаков С.А.	""	2020 г.
V		
Курсовая работа по курсу «Системное прогр «Резидентная программа (TSR)»	-	ние»
<u>Техническое описание</u> (вид документа)		
<u>писчая бумага</u> (вид носителя)		
6 (количество листов)		
ИСПОЛНИТЕЛЬ:		
студенты группы ИУ5-41		
Алехин С.С.	""	_2020 г.

СОДЕРЖАНИЕ

1.	ОБЩИЕ СВЕДЕНИЯ О ПРОГРАММНОМ ОБЕСПЕЧЕНИИ	3
	МОДУЛЬНАЯ СТРУКТУРА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	
3.	ОПИСАНИЕ МОДУЛЕЙ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	3
4.	ДАННЫЕ И ФАЙЛЫ ДАННЫХ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	3
5.	ОСНОВНЫЕ АЛГОРИТМЫ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ.	4
6.	ПРОЦЕДУРЫ И ФУНКЦИИ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	5
	ВЕКТОРА ПРЕРЫВАНИЙ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ, ПЕРЕОПРЕДЕЛЯЕМЫЕ В	
	ПРОГРАММЕ	6

1. ОБЩИЕ СВЕДЕНИЯ О ПРОГРАММНОМ ОБЕСПЕЧЕНИИ.

Исходный код, язык: Assembler

Компилятор: Turbo Assembler Version 4.1 Сборщик: Turbo Link Version 7.1.30.1 Отладчик: Turbo Debugger Version 5.0 Исполняемый код: файл tsr.com (1 744 байт) Исходный код: файл tsr.asm (16 898 байт)

2. МОДУЛЬНАЯ СТРУКТУРА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ.

Программа делится на резидентную и нерезидентную (инициализирующую части). Резидентная часть реализует функционал данного программного обеспечения, а нерезидентная нужна для инициализации резидентной части и для обработки параметров командной строки.

См. документ «Модульная структура программы».

3. ОПИСАНИЕ МОДУЛЕЙ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ.

См. документ «Схема взаимодействие с аппаратурой»

4. ДАННЫЕ И ФАЙЛЫ ДАННЫХ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Модуль tsr.asm

Модуль tsr.asm			
Имя	Размер	Хранящиеся данные	
ignoredRussianChars	1 байт	Список игнорируемых символов	
ignoredRussianCharsLenght	1 байт	Длина строки ignoredRussianChars	
isIgnoredRussianChars	1 байт	Флаг функции игнорирования ввода	
translateStrFrom	1 байт	Символы для перевода	
translateStrTo	1 байт	Символ, на которые будет идти замена	
translateSirFromLength	1 байт	Длина строки translateStrFrom	
isTranslateStr	1 байт	Флаг функции перевода	
signatureFormDelay	1 байт	Задержка перед выводом подписи	
signatureCounter	2 байта	Счетчик подписи	
isSignatureForm	1 байт	Флаг функции вывода информации об авторе	
signatureLine1	1 байт	Первая строка подписи	
signatureLine1Length	1 байт	Длина первой строки	
signatureLine2	1 байт	Вторая строка подписи	
signatureLine2Length	1 байт	Длина второй строки	
signatureLine3	1 байт	Третья строка подписи	
signatureLine3Length	1 байт	Длина третьей строки подписи	
tableTop	1 байт	Верх таблицы подписи	
tableTopLength	1 байт	Длина верха таблицы	
tableBottom	1 байт	Низ таблицы подписи	
tableBottomLength	1 байт	Длина низа таблицы	
charToCursiveIndex	1 байт	Символ для замены	
cursiveSymbol	1 байт	Курсивный вариант символа для замены	
isCursiveChar	1 байт	Флаг перевода функции в курсив	
savedSymbol	1 байт	Переменная для хранения старого символа	
true	1 байт	Константа истинности	
old_int9hOffset	2 байта	Адрес старого обработчика int 9h	
old_int9hSegment	2 байта	Сегмент старого обработчика int 9h	
old_int1ChOffset	2 байта	Адрес старого обработчика int 1Ch	
old_int1ChSegment	2 байта	Сегмент старого обработчика int 1Ch	
old_int2FhOffset	2 байта	Адрес старого обработчика int 2Fh	
old_int2FhSegment	2 байта	Сегмент старого обработчика int 2Fh	

unloadTSR	1 байт	1 – выгрузить резидент
notLoadTSR	1 байт	1 – не загружать резидент
helpMsg	1 байт	справка в БНФ
helpMsgLength	1 байт	Длина справки
errorParamMsg	1 байт	Сообщение о неправильных параметрах ком. строки
errorParamMsgLength	1 байт	Длина сообщения
installedMsg	1 байт	Сообщение о успешной загрузке резидента
alreadyInstalledMsg	1 байт	Сообщение о уже загруженном резиденте
noMemMsg	1 байт	Сообщение о нехватке памяти
notInstalledMsg	1 байт	Сообщение о не успешной загрузке резидента
removedMsg	1 байт	Сообщение о выгрузке резидента
removedMsgLength	1 байт	Длина сообщения
noRemoveMsg	1 байт	Сообщение о не успешной выгрузке резидента
noRemoveMsgLength	1 байт	Длина сообщения

5. ОСНОВНЫЕ АЛГОРИТМЫ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ.

Ход инициализации:

Устанавливается требуемый видеорежим для вывода текстовых сообщений во время работы резидента, вызывается обработчик параметров командной строки, затем, если программа запущена без параметров, то происходит установка резидента и удаление из ОП кода ниже метки INIT_TSR, если же задан флаг /? выводит справка по работе с программой.

Обработчик new int2Fh:

Вначале проверяется, равен ли регистр AH 0FFh, если это так, то эта наша подфункция, и при AL=0 мы заносим в AH 'i', как признак того, что резидент уже загружен в память, а при AL=1 выполняется выгрузка резидента из памяти.

Обработчик new int9h:

Из порта достаётся скан-код нажатой клавиши, по Ctrl+u/U резидент выгружается, по функциональным клавишам (F1, F2, F8, F9) меняют свои значения флаги соответствующих функционалов, затем вызывается стандартный обработчик данного прерывания, если введённый символ входит в множество ограничения ввода (ignoredRussianChars), он блокируется и не выводится, если входит в множество символов под перевод (translateStrFrom) – заменяется на символ с тем же индексом из множества (translateStrTo).

Обработчик new int1Ch:

В самом начале работы обработчика производится вызов старого обработчика прерывания INT 1CH. В случае, если флаг isSignatureForm установлен в true производится сравнение счетчика signatureCounter вызовов прерывания системой с числом signatureFormDelay *1000/55 + 1, где signatureFormDelay – число в секундах. Если эти числа равны, то далее производится печать информации об исполнителях курсовой работы на экран; иначе signatureCounter увеличивается на 1.

Функция вывода подписи на экран (printSignature):

Читается текущее положение курсора на экране и запоминается в стеке. Далее происходит установка положения подписи на экране (верх). Затем эта информация используется для вывода построчно подписи, содержащей верх рамки, три строки собственно информации об исполнителях и низ рамки. Восстанавливается положение курсора из стека.

Функция проверки командной строки (commandParamsParser):

В регистр SI помещается смещение 80h. Читается количество символов в параметрах командной строки. Если введенный параметр является «/?», то выводится справка по использованию программы и устанавливается флаг того, что загружать резидент не надо. Если параметр не равен «/?», то выводится сообщение о ошибке параметров командной строки.

Функция получения текущего изображения символа (saveFont):

В стек сохраняются регистры AX и BX. В AX заносится параметр 1130h, в BX – 0600h. Это необходимо, чтобы была вызвана нужная подфункция прерывания 10h. Затем восстанавливаются регистры AX и BX. В результате выполнения функции, регистр ES получает значение C000h, а по адресу ES:BP находятся первый символ таблицы

изображений символов, где на каждый символ отводится по 16 байт.

Функция замены изображения символа (changeFont):

В стек сохраняются регистры AX и BX. B AX заносится параметр 1100h, в BX – 1000h. Это необходимо, чтобы была вызвана нужная подфункция прерывания 10h. Затем восстанавливаются регистры AX и BX. B результате выполнения функции, начиная с номера символа, указанного в регистре DL, изображения символов, количество которых определено в регистре CL, меняется на изображения из таблицы, заданной по адресу ES:BP.

Функция, меняющая изображение символа с курсива на обычное и наоборот (setCursive):

В стек сохраняются регистры АХ, в регистр ES загружается значение регистра CS. Далее, если флаг isCursiveChar установлен в true происходит сохранение текущего изображения изменяемого символа и последующая замена на новое. Номер изменяемого символа содержит переменная cursiveSymbol. С помощью процедуры saveFont определяется адрес текущей таблицы символов. Затем добавляя необходимое значение к регистру BP (16* cursiveSymbol) находим адрес нужного символа и сохраняем 16 байт таблицы его изображения в переменную savedSymbol. После чего в регистр СХ заносится 1 (меняем один символ), в DL устанавливается номер изменяемого символа, в ВР перемещается адрес таблицы нового символа. Сама таблица находится в переменной сигsiveSymbol. Происходит вызов функции changeFont. Далее выход из процедуры. Если флаг IsCursiveChar не установлен в true, то происходит восстановление старого изображения символа. В регистр СХ устанавливается 1, в DL - номер изменяемого символа, в ВР перемещается адрес таблицы старого символа (адрес переменной savedSymbol). После чего происходит вызов функции changeFont и завершение процедуры.

См. документ «Блок-схема алгоритма программы».

6. ПРОЦЕДУРЫ И ФУНКЦИИ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Название	Входные данные	Выходные	Описание
		данные	
new_int9h	-	-	Обработчик
			прерывания 09h
new_int1Ch	-	-	Обработчик
			прерывания 1Ch
new_int2Fh	AH = 0FFh	АН = 'i', если	Обработчик
	AL = 1; для	резидент	прерывания 2Fh
	выгрузки TSR AL	присутствует в	
	= 0; для проверки	памяти	
	факта		
	присутствия TSR в		
	памяти		
printSignature	-	-	Процедура вывода
			подписи (ФИО,
			группа,
			вариант)
commandParamsParser	-	-	Процедура
			проверки
			параметров
			командной
			строки
saveFont	ВН - тип	в ES:BP	Функция сохранения
	возвращаемой	находится	нормального
	символьной	таблица	начертания символа
	таблицы	символов	
	0 - таблица из int 1fh 1 -	(полная)	
	таблица из int 44h	в СХ находится байт	
	2-5 - таблица из 8х14,	на символ в DL	

	8x8, 8x8 (top), 9x14	количество экранных	
	6 - 8x16	строк	
changeFont	DL = номер символа для замены CX = Количество символов заменяемых изображений символов (начиная с символа указанного в DX) ES:BP = адрес таблицы	-	Функция смены начертания символа
setCursive	-	-	Процедура, которая в зависимости от флага IsCursiveChar меняет начертание символа с курсива на обычное и наоборот

7. ВЕКТОРА ПРЕРЫВАНИЙ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ, ПЕРЕОПРЕДЕЛЯЕМЫЕ В ПРОГРАММЕ.

В программе переопределяются 3 вектора прерываний:

- 1. 09h для обработки нажатия клавиш,
- 2. 2Fh для возможности проверки наличия программы в памяти, а также для выгрузки резидентной части программы,
- 3. 1Ch для подсчёта количества времени, прошедшего с нажатия функциональной клавиши, для последующего вывода сообщения-подписи на экран.