

In the Claims:

1 1. (original) A method for determining a steering torque for
2 the steering wheel of a motor vehicle, wherein a steering
3 angle for the steered wheels is predefined by the driver by
4 means of the steering wheel using a continuous mechanical
5 connection between the steering wheel and the steered
6 wheels with a steering-wheel torque which represents the
7 forces on the vehicle axle being active, said
8 steering-wheel torque being caused as a result of the
9 continuous mechanical connection existing between the
10 steering wheel and the steered wheels and wherein a manual
11 torque (M_{soll}) which is superimposed on the steering-wheel
12 torque (M_{ist}) is determined using at least one axle model.

1 2. (original) The method as claimed in claim 1, characterized
2 in that the manual torque (M_{soll}) is determined in such a
3 way that actuation of the steering wheel in a direction
4 which is favorable in terms of vehicle movement dynamics is
5 made easier.

Claims 3 to 11 (canceled).

1 12. (original) The method as claimed in claim 1, characterized
2 in that, by virtue of the fact that the steering torque
3 (M_{soll}) is superimposed on the steering-wheel torque
4 (M_{ist}), the driver is prompted to perform a steering

5 action on the steering wheel which generates steering
6 angles which correspond to a better driving behavior of the
7 vehicle.

Claim 13 (canceled).

1 **14.** (new) The method as claimed in claim 1, characterized in
2 that the manual torque (M_{soll}) is determined in such a way
3 that actuation of the steering wheel in a direction which
4 is unfavorable in terms of vehicle movement dynamics is
5 made more difficult.

1 **15.** (new) The method as claimed in claim 1, characterized in
2 that the manual torque (M_{soll}) is determined by means of
3 a model, in particular an observer.

1 **16.** (new) The method as claimed in claim 1, characterized in
2 that the manual torque (M_{soll}) is determined from a
3 characteristic diagram.

1 **17.** (new) The method as claimed in claim 1, characterized in
2 that the manual torque (M_{soll}) is determined as a function
3 of a travel situation which is derived from measured
4 variables.

1 **18.** (new) The method as claimed in claim 17, characterized in
2 that, from the travel situation which is determined, an
3 axle model which is favorable for driving the travel

4 situation is determined and the manual torque is determined
5 on the basis of this axle model.

1 19. (new) The method as claimed in claim 18, characterized in
2 that the manual torque (M_{soll}) is determined in such a way
3 that the resulting torque from the steering-wheel torque
4 (M_{ist}) and the manual torque (M_{soll}) correspond to the
5 steering-wheel torque of the favorable axle model.

1 20. (new) The method as claimed in claim 1, characterized in
2 that the manual torque (M_{soll}) is determined as a function
3 of at least one value obtained from the setpoint driving
4 behavior and actual driving behavior.

1 21. (new) The method as claimed in claim 1, characterized in
2 that the manual torque (M_{soll}) is determined taking into
3 account at least one of the vehicle-related variables
4 comprising the steering angle, yaw rate, rolling speed,
5 pitch rate, vehicle speed, wheel speeds, wheel braking
6 pressure, wheel acceleration, longitudinal acceleration,
7 lateral acceleration, vertical acceleration, steering
8 torque and wheel supporting forces.

1 22. (new) The method as claimed in claim 1, characterized in
2 that the manual torque (M_{soll}) is determined as a function
3 of at least one device for sensing the road profile such as
4 a navigation system or a visual sensing device.

1 **23.** (new) A motor vehicle having a steering wheel for a driver
2 to predefine a steering angle, a torque generator (111) for
3 applying a manual torque (M_{soll}) to the steering wheel,
4 characterized in that the manual torque (M_{soll}) is
5 determined in accordance with a method as claimed in
6 claim 1.

[REMARKS FOLLOW ON NEXT PAGE]