ディープラーニングの仕組みを知ろう!

第1回 人工知能勉強会 数学編

Shion MORISHITA June 5, 2024

目次

はじめに

ニューラルネットワークの考え方

ニューロン

ニューロンの働きの数理的解釈

ユニット

ニューラルネットワーク

はじめに

• content

ニューラルネットワークの考え方

ニューロン

ニューラルネットワークの考え方

ニューロン=神経細胞

互いに結びついてネットワークを構築することで、 さまざまな処理を行なっている

ニューラルネットワークの考え方

ニューロンの働きの数理的解釈

ニューロンの働きの数理的解釈

- 出力信号なし (y=0): $w_1x_1+w_2x_2+w_3x_3<\theta$
- 出力信号あり (y=1): $w_1x_1 + w_2x_2 + w_3x_3 \ge \theta$

発火の条件のグラフ表現

発火の式

● 単位ステップ関数

- 発火の式: $y = u(z) = u(w_1x_1 + w_2x_2 + w_3x_3 \theta)$
 - $z=w_1x_1+w_2x_2+w_3x_3-\theta$ を、そのニューロンに対する重み付き入力という

ユニット

ニューラルネットワークの考え方

ユニット

● 簡略され抽象化されたニューロンを、生物学的なニューロンと区別してユニット (unit) とよぶ

活性化関数

- 発火の式(旧): $y = u(w_1x_1 + w_2x_2 + w_3x_3 \theta)$
 - 単位ステップ関数 u に限定する必要はない
- 発火の式 (新): $y = a(w_1x_1 + w_2x_2 + w_3x_3 \theta)$
 - 関数 a を活性化関数 (activation function) という
 - この関数 a はモデル作成者がさまざまに定義可能

活性化関数の代表例

シグモイド関数 (Sigmoid function)

$$\sigma(z) \triangleq \frac{1}{1 + e^{-z}} \quad (e = 2.71828 \cdots)$$

「発火の有無」から「興奮度」へ

$$y = \sigma(w_1x_1 + w_2x_2 + w_3x_3 - \theta)$$

「発火の有無」から「興奮度」へ

$$y = \sigma(w_1x_1 + w_2x_2 + w_3x_3 - \theta)$$

バイアス

$$y = a(w_1x_1 + w_2x_2 + w_3x_3 - \theta)$$
$$y = a(w_1x_1 + w_2x_2 + w_3x_3 + b)$$

- \bullet $-\theta \longrightarrow +b$ に表記を変更
- すべて足し算に統一することで計算しやすくなる

ユニットのまとめ

重み付き入力:
$$z = w_1 x_1 + w_2 x_2 \cdots + w_n x_n + b$$

出力: $y = \sigma(z)$

ニューラルネットワーク

ニューラルネットワークの考え方

ニューラルネットワーク (Neural Network; NN)

• ユニットをネットワーク状に結合したもの

ニューラルネットワークを用いた問題の具体例

例題

 4×3 画素からなる画像で読み取られた手書きの数字「0」「1」を識別するニューラルネットワークを作成せよ。ただし、学習データは 64 枚の画像とし、画素はモノクロ 2 階調とする。

ニューラルネットワークを用いた問題の具体例

解答例

