

NEET 2025

BASIC MATHS

AND

CALCULUS

PHYSICS

Lecture - 02

By - TANUJ BANSAL SIR

Topics to be covered

- Range and Graph
- Trigonometric Function Change

चलिए शुरू करते हैं

- After the Class All classes Physics All Content Kitne Solve Hue? DPP PDF Ouiz Format (PDF) Solutions Available

Revision Pro Max HD Prime

$$* O = \frac{S}{R} \Rightarrow S = RO.$$

$$H$$
 P
 $tano = sino$
 $coso$

$$seco = \frac{1}{coso}$$

$$seco = \frac{1}{tano}$$

Degree to radian

1.
$$330^{\circ} \rightarrow \frac{33}{33} \times \frac{11}{480} = 11 \frac{11}{6}$$

2.
$$390^{\circ} \rightarrow \frac{39}{5} \times \frac{\pi}{15} - 13 \frac{\pi}{6}$$

3.
$$750^{\circ} \rightarrow \begin{array}{c} 25 \\ 750 \times \Pi \\ +80 \end{array} = \begin{array}{c} 25 \Pi \\ \hline 6 \end{array}$$

5.
$$900^{\circ} \rightarrow \frac{900^{\circ}}{100^{\circ}} \times \frac{11}{180^{\circ}} = 511$$

6.
$$780^{\circ} \rightarrow \frac{780}{780} \times \frac{\pi}{100} = 13 \frac{\pi}{3}$$

1.
$$2\pi/5 \rightarrow$$

2.
$$13 \pi/3 \rightarrow \frac{13 \pi}{3} \times \frac{180}{3} = 780^{\circ}$$

3.
$$8\pi \rightarrow 8\pi \times 180 = 1440^{\circ}$$

4.
$$5\pi \rightarrow 5\pi \times 180 = 900^{\circ}$$

5.
$$9\pi/2 \rightarrow \frac{9\pi}{2} \times \frac{180}{1} = 810^{\circ}$$

6.
$$3.5 \pi \rightarrow \frac{35}{42} \pi = 7\pi - 7\pi \times \frac{90}{2} \times \frac{186}{2} = 630^{\circ}$$

7.
$$1.25 \pi \rightarrow \frac{125 \pi}{100 4} = 5 \pi = 5 \times 45^{\circ}$$

8.
$$3\pi \rightarrow 3/(180) = 540^{\circ}$$

AIIMS Delhi

- Over Convert 5TT rad into minutes.
 - A) 1800'
- BT 18000'
 - c) 180'
 - D) Humein Nhi Ptal

$$\frac{5\pi}{3} \times \frac{160^{\circ}}{\pi} = 5 \times 60^{\circ} = 300^{\circ}$$

$$\frac{1' = 60'}{300 \times 60'} = 18000'$$

Own How many seconds are there in 2°.

$$1^{\circ} = 60^{\circ} = 60 \times 60^{\circ}$$
 $1^{\circ} = 3600^{\circ}$

$$1^{\circ} = 60^{\circ} = 60 \times 60^{\circ}$$
 $2^{\circ} \times (60^{\circ}) = 120^{\circ}$
 $= 120 \times (60^{\circ}) = 7200^{\circ}$
 $1^{\circ} = 60^{\circ}$
 $1^{\circ} = 60^{\circ}$

$$1^{\circ} = 60^{\circ}$$
 $1^{\circ} = 60^{\circ}$

Convert into degree

A)
$$20' = \frac{20}{60} = \left(\frac{1}{3}\right)^0 = 0.33^\circ$$

B)
$$30' = \frac{30}{60} = \left(\frac{1}{2}\right)^0 = 0.5^\circ$$

$$| ^{\circ} = 60'$$
 $| ^{\circ} = 60'$
 $| ^{\circ} = 1^{\circ}$
 $| ^{\circ} = (\frac{1}{60})^{\circ}$

Deg to min => Mul. by 60 min to deg => Div. by 60

Pythagoras Theorem

(Pythagorean Triplets)

$$P^2 + B^2 = H^2$$

$$\sqrt{P^2 + B^2} = H$$

Values to learn

$$73^{2} + 4^{2} = 5^{2}$$

$$12^{2} + 5^{2} = 13^{2}$$

$$6^{2} + 8^{2} = 10^{2}$$

$$24^{2} + 7^{2} = 25^{2}$$

ours

Swaal

Bina Pen Uthaye

$$3^{2} + 4^{2} = 5^{2}$$

$$\frac{1}{30^{2} + 40^{2} = 50^{2}}$$

$$30^{2} + 40^{2} = 50^{2}$$

H= ?

$$60^{2} + 8^{2} = 10^{2}$$
 $80^{2} + 80^{2} = 100^{2}$
 $80^{2} + 80^{2} = 100^{2}$
 $80^{2} + 80^{2} = 100^{2}$
 $80^{2} + 80^{2} = 100^{2}$

Values to Learn

	0°	30°	45°	60°	90°	120°	135°	150°	180°
sin θ	0	- 2	1 /2	<u>5</u>	1,,,,,,,,	13	1/2	-12	0
cos θ		13/2	1 12	1 2	0	-12	-112	- 13 2	
tan θ	0	13		1 3	8	-13	-1	2 -1 -1	0

Famous Angle

$$sin 53° = \frac{4}{5}$$

$$\cos 53^{\circ} = \frac{3}{5}$$

P= 3

$$\tan 53^\circ = \frac{4}{3}$$

x = 180° - 90° - 0

$$Sin 37° = \frac{3}{5}, cos 37° = \frac{4}{5}$$

 $tan 37° = \frac{3}{4}$

$$H = 5$$
 $3=P$
 $4=8$

$$\sin 37^{\circ} = \frac{3}{5}$$

$$\cos 37^{\circ} = \frac{4}{5}$$
 $\tan 37^{\circ} = 3$

$$H = 5$$
 53°
 $3 = B$

0

90-0

$$e9 \div 37^{\circ} + 53^{\circ} = 90^{\circ}$$
 $0 + 90 - 0 = 90^{\circ}$

Complementary angles Ki Khaasiyat

Sin & cos aft Values

Interchange Ho Jaati Hain!

Sin
$$37^{\circ} = \cos 53^{\circ} = \frac{3}{5}$$

Sin $53^{\circ} = \cos 37^{\circ} = 4$

$$Sin30^{\circ} = \cos 60^{\circ} = \frac{1}{2}$$

 $Sin60^{\circ} = \cos 30^{\circ} = \sqrt{3}$

Range and Graph

①
$$(sino)_{max} = +1$$

 $(sino)_{min} = -1$
=> $-1 \le sino \le 1$

Similarly =
$$-1 < \cos \alpha < 1$$

QUESTION

Which of the following option is correct for the possible value of $\sin \theta$.

$$\frac{\sqrt{5}}{2} = \frac{2 \cdot - \cdot \cdot}{2} = 1 \cdot - \cdot \cdot$$

$$\frac{\sqrt{5}}{2} = \frac{2 \cdot - \cdot \cdot}{2} = 1 \cdot - \cdot \cdot$$

$$\frac{\sqrt{5}}{2} = \frac{2 \cdot - \cdot \cdot}{2} = 1 \cdot - \cdot \cdot$$

$$\frac{\sqrt{5}}{2} = \frac{2 \cdot - \cdot \cdot}{2} = 1 \cdot - \cdot \cdot$$

$$\frac{\sqrt{5}}{2} = \frac{2 \cdot - \cdot \cdot}{2} = 1 \cdot - \cdot \cdot$$

$$\frac{\sqrt{5}}{2} = \frac{2 \cdot - \cdot \cdot}{2} = 1 \cdot - \cdot \cdot$$

$$\frac{\sqrt{5}}{2} = \frac{2 \cdot - \cdot \cdot}{2} = 1 \cdot - \cdot \cdot$$

$$\frac{\sqrt{5}}{2} = \frac{2 \cdot - \cdot \cdot}{2} = 1 \cdot - \cdot \cdot$$

$$\frac{\sqrt{5}}{2} = \frac{2 \cdot - \cdot \cdot}{2} = 1 \cdot - \cdot \cdot$$

$$\frac{\sqrt{5}}{2} = \frac{2 \cdot - \cdot \cdot}{2} = 1 \cdot - \cdot \cdot$$

$$\frac{\sqrt{5}}{2} = \frac{2 \cdot - \cdot \cdot}{2} = 1 \cdot - \cdot \cdot$$

$$\begin{array}{c} 4 \\ \sqrt{5}/2 \implies \frac{\sqrt{5}}{2} \end{array}$$

 $\sqrt{2} = 1.414 \times$

$$H = \sqrt{2^{2}+1^{2}}$$

$$= \sqrt{4+1}$$

$$= \sqrt{5}.$$

B=1

H=
$$\sqrt{\frac{1}{2^2+1^2}}$$
 to $\frac{1}{8}$ $\frac{1}{1}$ $\frac{1}{15}$ $\frac{1}{15}$ $\frac{1}{15}$ $\frac{1}{15}$ $\frac{1}{15}$ $\frac{1}{15}$ $\frac{1}{15}$

ours If tano =
$$\frac{13}{2}$$
, find sin o

$$A) \frac{13}{5}$$

$$\sqrt{\frac{3}{7}}$$

$$H = \sqrt{P^2 + B^2}$$

$$= \sqrt{(13)^2 + 2^2}$$

$$= \sqrt{3 + 4} = \sqrt{7}$$

$$Simo = \frac{\sqrt{3}}{\sqrt{7}} = \frac{\sqrt{3}}{7}$$

Ones. If
$$sin 0 = \frac{1}{3}$$
, find $cos 0 = ?$

$$A) \frac{\sqrt{2}}{3}$$

$$C) \frac{15}{3}$$

$$H=3$$
 $P=1$
 B

$$B_{5} = 4-1=8$$
 $1 + B_{5} = 4$
 $1 + B_{5} = 4$
 $1 + B_{5} = 4$

Sim
$$\theta = \frac{1}{3} = \frac{p}{H}$$

$$\cos \theta = \frac{1}{8} = \frac{2\sqrt{2}}{3}$$

$$B = \frac{1}{8} = \sqrt{2 \times 2 \times 2}$$

$$B = \frac{2\sqrt{2}}{3}$$

Find
$$\frac{\sin \theta}{\theta}$$
 if $\theta = 30^{\circ}$

$$\Rightarrow \frac{\sin 0}{0} = \frac{\sin 30^{\circ}}{30^{\circ}} = \frac{1}{16}$$

$$= \frac{1}{2} \times \frac{8}{11} = \frac{3}{11} \text{ Any}$$

Sin 30° -> Taigono

TBS ÷ 3-1312 3-122011

O Et, at 3-2221

Radian H.

Convert dizati
El

Owes. Find
$$\frac{\cos \theta}{\theta}$$
 if $\theta = 60^\circ$?

$$\frac{\cos 60^{\circ}}{60^{\circ}} = \frac{1}{3} = \frac{1}{2} \times \frac{3}{11} = \frac{3}{211} \text{ Aw}$$

QUESTION

Find the value of
$$\frac{\sin(\theta/2)}{\theta}$$
 if $\theta = 180^{\circ}$

- $2/3\pi$
- 1/3π
- $1/2\pi$

Trigonometric Function Change

Note: ACW angles are positive, CW angles are negative.

Doubts

Backlog Nahi Hona Charge!

Revision

$$3^{2}+4^{2}=5^{2}$$
 $6^{2}+8^{2}=10^{2}$
 $12^{2}+5^{2}=13^{2}$
 $24^{2}+7^{2}=25^{2}$

शुक्रिया! ज़िंदा रहे तो फिर मिलेंगे उ

TIMANIA YOU

