Direct Manipulation of Interactive Character Skins

Alex Mohr Luke Tokheim Michael Gleicher

University of Wisconsin, Madison

Introduction

- Characters for interactive systems
 - Speed is king
- Linear Blend Skinning (SSD, etc.)
 - Widely used method
- Pros: fast, hardware accelerated
- Cons: hard to author, can look bad
- We address the former

Example

- Current systems
 - Indirect manipulation interface
 - Paint parameters over meshes
 - Unclear what is possible
- Instead, let users edit directly
 - Drag points explicitly
 - Compute closest achievable position
 - Solve for skin parameters

Video

Linear Blend Skinning

- [Catmull '72] [Magnenat-Thalmann et al. '88] [Lewis et al. '00]
- Place skeleton inside geometry (dress pose)
- Joint ´Transformation matrix
- Linear blend of joint matrices transforms points

Linear Blend Skin Computation

- Vertex deformed by linear blend of matrices
- Weights affine, usually convex

$$\bar{\mathbf{v}} = \sum_{i=1}^{n} w_i R_i \mathbf{v}_d$$

 R_i = transformation matrix associated with ith joint

Linear Blend Skin Authoring

- Must determine
 - Influence set
 - Vertex weights
- Current systems use "painting" UI
 - Select joint, weight, then draw on mesh
 - What deformations are possible?

$$\bar{\mathbf{v}} = \sum_{i=1}^{n} w_i R_i \mathbf{v}_d$$

Range of Possible Deformations

- Valid subspace: What is reachable?
- Affine or convex hull of rigidly transformed vertex

$$\bar{\mathbf{v}} = \sum_{i=1}^{n} w_i R_i \mathbf{v}_d$$

Direct Manipulation

- Algorithm
 - Project onto valid subspace (target t)
 - Determine weights so skin achieves t

Direct manip. is well known [Hutchins et al. '86] [Schneiderman '83] [Sutherland '63]

Similar work [Fowler '92] [Hsu et al. '92]

Computing Weights

Let:
$$w_1 = 1 - \sum_{i=2}^{n} w_i$$

Solve:

Solve:
$$\left[(R_2 - R_1) \mathbf{v}_d \cdots (R_n - R_1) \mathbf{v}_d \right] \begin{bmatrix} w_2 \\ w_3 \\ \vdots \\ w_n \end{bmatrix} = \left[\mathbf{t} - R_1 \mathbf{v}_d \right]$$

Guarantees weights are affine. Does not guarantee weights are convex.

Video

Degeneracies

If some columns linearly dependent

$$\begin{bmatrix} (R_2 - R_1)\mathbf{v}_d \cdots (R_n - R_1)\mathbf{v}_d \end{bmatrix} \begin{bmatrix} w_2 \\ w_3 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} \mathbf{t} - R_1\mathbf{v}_d \end{bmatrix}$$

- Practically
 - More than four influences
 - Valid subspace collapsed in some way
- Happens frequently in practice
 - More than four influences desirable
 - User moves just one joint

Handling Degeneracies

- Quick fix?
 - Disallow more than four influences
 - Perturb joints in other cases
- Geometric projection guarantees a convex solution
- Solve a linear program to enforce convexity constraints

Linear Program

Objective: minimize L₁ change in weights

Constraint:
$$-\mathbf{y} \leq \mathbf{w} - \mathbf{w}_p \leq \mathbf{y}$$

Objective:
$$\min \sum y_i$$

Constraints

$$[R_1\mathbf{v}_d\cdots R_n\mathbf{v}_d]\mathbf{w}=\mathbf{t}$$

$$\sum_{i=1}^{n} w_i = 1$$

$$\forall i, w_i \ge 0$$

This always has a feasible solution due to the projection step.

Discussion

- Allow users to move groups of vertices directly
- Skin parameters computed automatically
- Allow users to see possible range of deformations
- View edits in multiple poses

Video

Summary

- Method for improving skin authoring for interactive characters
- Users must still define influence sets
- Much more intuitive interaction
 - As close as possible to user's wishes
 - Clear what is possible
- Compatible with current interface

Thanks

- UW Graphics Group
- NSF Grant CCR-9984506
- NSF Grant CCR-0204372
- Intel