Transcript data and resources (part 1)

Gloria I. Giraldo-Calderón October 2016

VectorBase Genomes

VectorBase Genomes

VectorBase Genomes

Outline

- 1. Available data
- 2. The basics about microarrays and RNAseq
- 3. What can you use the transcript expression data for
- 4. Browse gene expression data for a gene of interest
- 5. Assess gene expression data critically
- 6. Submit data

Published and about-to-be-published microarray and RNAseq data

\$	Hits \$
	84
\$	Hits \$
	84
\$	Hits \$
	47
	29
	2
	1
	1
	1
	*

RNAseq tracks and track groups are not covered in this tutorial

Search Filter Results Domain (Reset Filter) Hits \$ Expression 2469479 Sub-domain Hits **♦** Probe 1339156 Expression statistic 1128602 Sample 1332 RNA-seg tracks 223 84 Experiment RNA-seq track groups 44 Platform 38 **Species** Hits **♦** Aedes aegypti 1493846 Anopheles gambiae 768626

not covered in this tutorial

2. The basics about microarrays and RNAseq

2. Basics about microarrays

- VectorBase has data for the two most popular microarrays:
 - spotted cDNA microarray or two-color array
 - oligonucleotide chips (from Genechip and Affymetrix)

- Despite of the technology, the basic principle in microarrays is hybridization to complementary sequences

2. Basics about microarrays

2. Basics about RNA sequencing (RNAseq)

Griffith M, Walker JR, Spies NC, Ainscough BJ, Griffith OL (2015) Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud. PLoS Comput Biol 11(8): e1004393. doi:10.1371/journal.pcbi.1004393

3. What can you use the transcript expression data for?

Microarrays:

- transcript expression data

RNAseq:

- transcript expression data (less expensive and more sensitive)
- other applications

3. What can you use the transcript expression data for?

Gene AGAP001212 Expression Report

Gene links:

Probe Information show details:

Expression summary:

Experiment	P-value	Test	Experimental factor	Summary
Adult tissues (Baker et al., 2011) i Microarray experiment info Plots and data	0.0	ANOVA	Organism part and sex	Significant differential expression ↑ midgut:male ↓ ovaries:female
Circadian rhythm: heads, light-dark (Rund et a 2011) i Microarray experiment info Plots and data	1.6e-12	ANOVA	Time	Significant differential expression ↑ 36.0 h ↓ 28.0 h
Embryonic development (Goltsev et al., 2009) Microarrav experiment info	2 20-09	ANOVA	Age 💍	Significant differential expression

Demo

Keywords to look for genes with Search, Advanced Search and the Expression Browser Search:

- ✓ VectorBase gene ID
- Gene metadata (name and description) Not recommended
- Terms from ontologies to describe experiments or samples

For batch queries (many genes or complete genomes) use BioMart.

- Independent of the route you chose, you will arrive to the <u>Expression Browser</u>. The difference is that this tool has different landing pages:
 - Expression report
 - Expression in experiment
- In either of these pages, how do you analyse the obtained results?

condition

↓ blood fed

details

Plots and data

Gene links

Probe information

Uniquely associated with AAEL006498: Probe ID Probe annotation AAEL006498-RAP00012 Probe sequence aligns to 2 genomic locations, 1 gene and 1 transcript. AAEL006498-RAP00327 Probe sequence aligns to 2 genomic locations, 1 gene and 1 transcript. AAEL006498-RAP00585 Probe sequence aligns to 2 genomic locations, 1 gene and 1 transcript. AEG_V1.7272 Probe sequence aligns to 2 genomic locations, 1 gene and 1 transcript. AaegL3.1_AAEL006498-RA RNAseq reference transcript AaegL3.3_AAEL006498-RA RNAseq reference transcript

One-line experiment summary

Experiment	P-value	Test	Experimental factor	Summary
Hemocyte vs. carcass with bacterial infections (Choi et al., 2012) i Microarray experiment info Plots and data	5.4e-05	t-test	Disease state and organism part	Significant 68.0-f E. coli infected:h

- Experiment
- P-value
- Test
- Experimental factor
- Summary

All 14 experimental factors can be found here: http://goo.gl/24nG8r

Plot for experimental factor 'DiseaseState:OrganismPart':

Export option: PDF

Data tables for **microarrays or RNAseq**:

Plot data in tabular form:

DiseaseState:OrganismPart	mean	stdev	min	lower 95% C.I.	median	upper 95% C.I.	max	n
uninfected:hemolymph v carcass	-6.27	0.59	-6.76	-7.21	-6.38	-5.34	-5.57	4
E. coli infected:hemolymph v carcass	-6.09	0.08	-6.14	-6.28	-6.13	-5.9	-6.00	3
M. luteus infected:hemolymph v carcass	-6.57	0.62	-7.08	-8.12	-6.76	-5.03	-5.88	3

Export options: CSV | XML

Only for microarrays:

Spot data:

20 items found, displaying all items.

Hybridisation	DiseaseState:OrganismPart	Probe / Probe Set	position	value
hemocyte-naive-cy3-rep4_Cy3_carcass-naive-cy5-rep4_Cy5	uninfected:hemolymph v carcass	AEG_V1.7272	23364	-5.55
hemocyte-naive-cy3-rep4_Cy3_carcass-naive-cy5-rep4_Cy5	uninfected:hemolymph v carcass	AEG_V1.7272	2064	-5.58
hemocyte-mlut-cy3-rep3_Cy3_carcass-mlut-cy5-rep3_Cy5	M. luteus infected:hemolymph v carcass	AEG_V1.7272	23364	-5.82

Only for **RNAseq**:

RNA-Seq data:

4 items found, displaying all items.

Sequencing Run	GrowthCondition Ref Transcript		position	value
LSF_A.amplification	sugar fed	AaegL3.1_AAEL006498-RA	880	11.81
LSF_B.amplification	sugar fed	AaegL3.1_AAEL006498-RA	880	11.79
LBF_B.amplification	blood fed	AaegL3.1_AAEL006498-RA	880	10.98
LBF_A.amplification	blood fed	AaegL3.1_AAEL006498-RA	880	10.65

⁴ items found, displaying all items. Export options: CSV | XML

5. Assess gene expression data critically

Microarrays:

- only provide an indirect estimate for the expression of a gene
- probes may give unexpected results for a number of reasons

RNAseq:

- results are affected by various experimental/bench factors
- critical considerations: number of replicates, statistical analyses and technique standardization

5. Assess gene expression data critically

- Wide error bars or poor P-values
- Transcript abundance
- population, organism or strain differences

5. Assess gene expression data critically

Demo

- Data from multiple reporters is usually pooled and averaged in VectorBase
- If one reporter gives markedly different results, you may want to find why
- Navigate to the genome browser and use 'Configure this page' to check the location of the reporters

6. Submit data

Making your data available to the community and submission policy for VectorBase and archival repositories.

Citations

How to search for more information or help?

E-mail us at info@vectorbase.org

Thank you!