Universidade de São Paulo

Instituto de Física de São Carlos

Lista 3

Pedro Calligaris Delbem 5255417

Professor: Attilio Cucchieri

Sumário

1	The	Numerov Algorithm	2
	1.1	Exercício 1	2
		1.1.1 Resolução Analítica	3
2	The	Matching Method	7
	2.1	Exercício 2	7
	2.2	Exercício 3	9

1 The Numerov Algorithm

1.1 Exercício 1

Tarefa: Reolver a equação de Poisson para $\hat{\phi}(r)$ definido por $\frac{\hat{\phi}(r)}{r} := \phi(r)$ onde $\phi(r)$ é o potencial eletrostático e a densidade de carga é $\rho(r) = \frac{e^{-r}}{8\pi}$, considerando simetria esférica.

Deve-se resolver das seguintes maneiras:

- Pelo algoritmo de Numerov
 - Escolhendo $\hat{\phi}(0)$ e $\hat{\phi}(\delta r)$, para $r \approx 0$
 - Escolhendo $\hat{\phi}(0)$ e $\hat{\phi}(\delta r)$, r muito grande (o equivalente numérico a $r \to \infty$)
- Analiticamente

Primeiro deve-se manipular a equação de Poisson de modo a obter uma equação para $\hat{\phi}(r)$

A equação de Poisson é:

$$\nabla^2 \phi(r) = -4\pi \rho(r)$$

Sabemos que ∇^2 em coordenadas esféricas é:

$$\nabla^2 = \frac{1}{r^2} \left(\frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right)$$

Pela simetria radial reduzimos para:

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right)$$

Substituimos $\frac{\hat{\phi}(r)}{r} := \phi(r)$:

$$\nabla^2 \phi(r) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \left(\frac{\hat{\phi}(r)}{r} \right) \right)$$

Aplicando as derivadas:

$$\nabla^2 \phi(r) = \frac{1}{r} \frac{\partial^2}{\partial r^2} \hat{\phi}(r)$$

Substituindo na equação de Poisson:

$$\frac{1}{r}\frac{d^2\hat{\phi}(r)}{dr^2} = -4\pi\rho(r) = -\frac{e^{-r}}{2}$$

Assim, obtemos:

$$\frac{d^2\hat{\phi}(r)}{dr^2} = -\frac{re^{-r}}{2}$$

As escolhas para $\hat{\phi}(r)$ para $r \approx 0$ e $r \to \infty$ são arbitrárias, e portanto toma-se $\hat{\phi}(0) = -1$ e $\hat{\phi}(\infty) = 0$, baseando-se nos fatos - primeiro de que a segunda derivada é negativa e segundo de que a densidade de carga tende a zero quando r tende ao infinito. Já para o primeiro passo do algoritmo de Numerov crescente, temos que expandir $\hat{\phi}(r)$ em torno de r = 0:

$$\hat{\phi}(r) = \hat{\phi}(0) + \hat{\phi}'(0)r + O(r^2)$$

Mas como $\hat{\phi}(0)=$ -1, e para r ≈ 0 , $\hat{\phi}'(0)=-4\pi\rho(0)\delta r=-\frac{\delta r}{2}$, temos que:

$$\hat{\phi}(r) = -1 - \frac{r}{2} + O(r^2)$$

Assim, para o primeiro passo do algoritmo de Numerov, temos que:

$$\hat{\phi}(\delta r) = -1 - \frac{\delta r}{2}$$

E para o algoritmo decrescente, temos que expandir em torno de r muito grande (=: R) o que pela mesma lógica nos dará:

$$\hat{\phi}(R - \delta r) = 0$$

Uma vez que $\hat{\phi}'(R - \delta r) = -4\pi\rho(R - \delta r)\delta r \approx 0.$

1.1.1 Resolução Analítica

Integrando a equação, com relação ao r duas vezes, obtemos:

$$\hat{\phi}(r) = e^{-r} \left(1 + \frac{r}{2} \right) + C_1 r + C_2$$

As escolhas para $\hat{\phi}(r)$ para $r \approx 0$ e $r \to \infty$ são arbitrárias, mas devem ser escolhidas em consonância com as escolhas para as soluções numéricas. Assim, toma-se $\hat{\phi}(0) = -1$ e $\hat{\phi}(\infty) = 0$ e obtemos:

$$C_1 = 0$$
 e $C_2 = 0$

E deste modo a solução analítica é:

$$\hat{\phi}(r) = e^{-r} \left(1 + \frac{r}{2} \right)$$

Resultados:

Plotando os resultados obtidos pelos algoritmos de Numerov crescente, decrescente e pela solução analítica, obtemos os seguintes resultados - para vários valores de δr :

Figura 1: Resultados para $\delta r = 0.5$

Figura 2: Resultados para $\delta r = 0.1$

Figura 3: Resultados para $\delta r = 0.01$

Figura 4: Resultados para $\delta r = 0.001$

Figura 5: Resultados para $\delta r = 0.0001$

Figura 6: Resultados para $\delta r = 0.00001$

Analisando os gráficos podemos ver que o método de Numerov crescente converge mais rapidamente, ou seja, para valores maiores de δr o algoritmo crescente se aproxima mais rapidamente da solução analítica. O mesmo não pode ser dito do algoritmo decrescente, que parece convergir apenas para valores muito pequenos de δr .

2 The Matching Method

Considerar-se-a o potencial de Lennard-Jones, dado por:

$$V(r) = 4E_0 \left[\left(\frac{a}{r} \right)^{12} - \left(\frac{a}{r} \right)^6 \right]$$

que claramente satifaz $V(r) \to 0$ quando $r \to \infty$ e $V(r) \to +\infty$ quando $r \to 0$. Então, para estado ligado (E <0) a solução da equação de Schrödinger com este potencial deve ser nula em r=0 e $r\to\infty$. Assim, podemos resolvêla pelo método de Numerov e pelo Matching Method.

2.1 Exercício 2

Tarefa: Encontrar analiticamente o ponto, r_0 , de mínimo do potencial.

Para simplificar a equação, podemos definir $x = \frac{a}{r}$, assim temos que:

$$V(x) = 4E_0 \left[x^{-12} - x^{-6} \right]$$

Para encontrar o ponto de mínimo do potencial, devemos derivar a equação do potencial e igualar a zero:

$$\frac{dV(x)}{dx} = 0$$

Derivando a equação do potencial, obtemos:

$$\frac{dV(x)}{dx} = 4E_0 \left[-12x^{-13} + 6x^{-7} \right]$$

Igualando a zero, obtemos:

$$0 = -12x^{-13} + 6x^{-7}$$

Assim, temos que:

$$2x^{-6} = 1$$

Por fim, isolando x, obtemos:

$$x_0 = 2^{1/6}$$

Devemos verificar se este ponto é realmente um mínimo, para isso devemos derivar a equação do potencial novamente e verificar se o resultado é positivo:

$$\frac{d^2V(x)}{dx^2} = 4E_0 \left[156x^{-14} - 42x^{-8} \right]$$

Calculando a segunda derivada no ponto x_0 , obtemos:

$$\frac{d^2V(x_0)}{dx^2} = 4E_0 \left[156(2^{1/6})^{-14} - 42(2^{1/6})^{-8} \right]$$

Assim, temos que:

$$\frac{d^2V(x_0)}{dx^2} = 4E_0 \left[156(2^{-14/6}) - 42(2^{-8/6}) \right]$$

Que é aproximadamente:

$$\frac{d^2V(x_0)}{dx^2} \approx 57.14E_0$$

Como E_0 é positivo, temos que:

$$\frac{d^2V(x_0)}{dx^2} > 0$$

Portanto, o ponto x_0 é realmente um mínimo do potencial.

2.2 Exercício 3

Tarefa: Utilizar o Matching Method para encontrar os autovalores e autoestados da equação de Schröedinger com potencial de Lennard-Jones dado dois valores de E_0 diferentes.

A equação de Schrödinger é dada por:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(r)}{dr^2} + 4E_0 \left[\left(\frac{r}{a}\right)^{-12} - \left(\frac{r}{a}\right)^{-6} \right] \psi(r) = E\psi(r)$$

supondo simetria esférica.

Faz-se $x = \frac{r}{a}$:

$$-\frac{\hbar^2}{2ma^2}\frac{d^2\psi(x)}{dx^2} + 4E_0\left[x^{-12} - x^{-6}\right]\psi(x) = E\psi(x)$$

Note que $\frac{\hbar^2}{2ma^2}$ tem dimensão de energia, e portanto define-se $k=\frac{2Ema^2}{\hbar^2}$ e $k'=\frac{8E_0ma^2}{\hbar^2}$. Assim, temos que:

$$\frac{d^2\psi(x)}{dx^2} - k' \left[x^{-12} - x^{-6} \right] \psi(x) = -k\psi(x)$$

E por fim, rearranja-se a equação:

$$\frac{d^2\psi(x)}{dx^2} = \left[k'\left(x^{-12} - x^{-6}\right) - k\right]\psi(x)$$

Para simplificar, adota-se $E_{0_1}=\frac{\hbar^2}{8ma^2}$ e $E_{0_2}=2\frac{\hbar^2}{8ma^2}$ de modo que $k_1'=1$ e $k_2'=2$.

A energia mínima E_{min} para que haja partícula é igual ao potencial em seu mínimo $V(r_0) = -2E_0$. Mas queremos expressar isto em termos de k' e k para representarmos no código.

Substituimos E_{min} na expressão de k e obtemos:

$$k_{min} = \frac{2E_{min}ma^2}{\hbar^2} = -\frac{4E_0ma^2}{\hbar^2} \tag{1}$$

E, utilizando a expressão para k', temos:

$$k_{min} = -\frac{k'}{2} \tag{2}$$

E podemos partir deste mínimo para descobrir os k