1 Symbols

Mainly based on physics package

Macro	Usage	Effect	Comments
\quantity	$\neq \sqrt{frac\{b\}\{a\}}$	$\left \begin{array}{c} \left(\frac{b}{a} \right) \end{array} \right $	Automatic bracing: (), [], {},
	\pqty{a}	(a)	\pqty: (); \bqty: []; \vqty: ; \Bqty: {}
Bracing			* for no resize, manual bracing: \big,
			\Big, \bigg, \Bigg
\absolutevalue	$abs{a}$		Absoluevalue
\norm	$\operatorname{\operatorname{Norm}}\{a\}$		Norm
\opnorm	\opnorm{a}	a	Operator norm
\evaluated	$\operatorname{eval}\{a\}_0^1$	$\begin{vmatrix} a \end{vmatrix}_0^1$	Evaluation, also \eval(a _0^1; \eval[a
,		10	_0^1
\order	$\operatorname{\operatorname{Vorder}}\{a\}$	$\mathcal{O}(a)$	Order
\commutator	$\operatorname{comm}\{a\}\{b\}$	[a,b]	Commutator
\anticommutator	$\alpha\{a\}\{b\}$	$\{a,b\}$	Anti-commutator
\poissonbracket	$\pb{a}{b}$	$\{a,b\}$	Poison bracket

Vector			
\vectorbold	\vb{a}	a	Vector as bold (no Greek), * for italic
			and Greek
\vectorarrow	\va{a}	ā	Vector with arrow (no Greek), * for
			italic and Greek
\vectorunit	\vu{a}	â	With hat (no Greek), * for italic and
			Greek
\dotproduct	\vdot	•	Dot product (bold cdot)
\crossproduct	\cross	×	or \cp
\gradient	\grad{a}	∇a	Also valid for (), []. with arrowdel com-
			mand, it's changed to vector mode
\divergence	\div{a}	$\nabla \cdot a$	Also valid for (), [].
\laplacian	\laplacian{a}	$\nabla^2 a$	Also valid for (), [].

Derivatives			
differential	$\d\{a\}$	da	Differential symbol; also valid for ()
·	$\d[3]{a}$	d^3a	Power
\variation	$\operatorname{var}[3]\{a\}$	$\delta^3 a$	Variation of functional; works as \dd.
\derivative	$dv[2]{a}$	$\begin{vmatrix} \frac{\mathrm{d}^2}{\mathrm{d}a^2} \\ \frac{\mathrm{d}f}{\mathrm{d}a} \end{vmatrix}$	Derivative, powers available with []
	$dv{f}{a}$	$\frac{\mathrm{d}f}{\mathrm{d}a}$	Two arguments
	$\operatorname{dv}\{a\}(f)$	$\frac{\mathrm{d}}{\mathrm{d}a}(f)$	Low form
	$dv^{f}{a}$	df/da	Inline form
\partialderivative	$\pdv{f}{a}$	$\frac{\partial f}{\partial a}$	Partial derivative. same to \dv.
	$\pdv{f}{x}{y}$	$\frac{\partial^2 f}{\partial x \partial y}$	Can take two variables
\functionalderivative	$\fdv{F}{g}$	$\begin{vmatrix} \frac{\partial f}{\partial a} \\ \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\delta F}{\delta g} \end{vmatrix}$	Functional derivative; works as \dv
Dirac notation			* for no resize
\ket	$\det\{a\}$	$ a\rangle$	Ket
\bra	$\operatorname{bra}\{a\}$	$ \langle a $	Bra
	$\frac{a}{ket\{b\}}$	$\langle a b\rangle$	Auto contraction
\innerproduct	$\braket{a}{b}$	$\langle a b\rangle$	Braket. Also \ip
	\braket{a}	$ \langle a a\rangle$	Norm
\outerproduct	$\ketbra{a}{b}$	$ a\rangle\langle b $	Outer, also \op or \dyad
\expectationvalue	$\left(\exp \left(A\right) \right)$	$\langle A \rangle$	Expectation value (implicit), also \ev
			(Resize doesn't include A, ** to in-
			clude)

$-$ \expval{A}{n} $\langle n A n \rangle$ Expectation value (explicit)					
\matrixelement	$\left] \ \backslash mel\{n\}\{A\}\{m\} \right]$	$\langle n A m\rangle$	Matrix element, also \matrixel. (Resize doesn't include A, ** to include)		
Matrix					
\matrixquantity	\mqty{a& b\\c& d}	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$	Matrix, can be grouped as elements in larger matrix. Also works with (), *(), [], . \pmqty: (); \Pmqty:* (); \bmqty: []; \vmqty:		
\smallmatrixquantity	$] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$	Small matrix, same as above		
\matrixdeterminant	$\mbox{\mbox{$\backslash$}} \mathrm{mdet}\{a\}$	a	Determinant;		
	$\mbox{\sc smdet}\{a\}$		Determinant, small version		
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\operatorname{\sqrt{imat}}{3}$	$\left[\begin{array}{cc} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$	Identity Matrix		
\xmatrix	$\operatorname{\chi}{\{2\}}{\{3\}}$		Matrix filled with x		
	$\xspace xmat*{a}{2}{3}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* assign indices to elements		
\zeromatrix	$\operatorname{Zmat}\{2\}\{3\}$	0 0 0 0 0 0	Zero matrix		
\paulimatrix	$\protect\pro$	0 1 1 0	Pauli [0, 1, 2, 3] matrix		
\diagonalmatrix	\dmat{a, b}	$\begin{bmatrix} a \\ b \end{bmatrix}$	Diagonal matrix, up to 8 elements, add [0] option to fill with 0. matrix can be inputted as entries as well.		
\antidiagonalmatrix	\admat{a,b}	$\begin{vmatrix} a \\ b \end{vmatrix}$	Anti-diagonal matrix, as above.		
Text in math mode			Insert text in math mode, including spacing. Special macros see table 2.		
\qqtext	$1 \neq 2$	1 word 2	with *, only include spacing at the end.		

Table 2: Text in math mode						
\qcc	$\backslash \mathrm{qif}$	\qthen \q	\qotherwise			
\qunless	\qgiven	\qusing \q	\qassume			
\qsince	\qlet	\qfor \q	all			
\qeven	\qinteger	\qand \q	or			
$\backslash qas$	\neq					
1 c.c. 1 1	if 1	1 then 1	1 otherwise 1			
1 unless 1 1	given 1	1 using 1	1 assume 1			
1 since 1 1	let 1	1 for 1	1 all 1			
1 even 1 1	integer 1	1 and 1	1 or 1			
1 as 1 1	in 1					

Other special functions:

The functions in Tab. 3 can be used as $\sin[2](x)$: $\sin^2(x)$, which handles the sizing and powers.

The functions in Tab. 4 can be used as $\max[2]\{x\}$: $\max_2\{x\}$, which handles the sizing and subscript (traditional typeset \max_2 is still available). In display mode, it is

 $\max_2\{x\}$

```
The functions in Tab. 5 can be used with automatic sizing of [], (), and {}: Following functions can be used with conditions: Following functions are provided as plain text: The following symbols are defined Also, some special operators are provided: \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\
```

2 Marks and Colors

Several shortcut for colors are provided with the xcolor package:

\red, \blue, \green

Also the hyperrefs are colored:

1. In document ref: dummy target

2. cite: [1]

3. url: www.dummyurl

The marks are provided by the *soul* package

1. \so: space out

2. \ul: underline

3. \st: striking out

4. \hl: highlight

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

References

[1] dummy citation

Table 3: Functions							
\sin	\sinh	α	α	sin	\sinh	arcsin	asin
\cos	\cosh	$\backslash \arccos$	$\setminus a\cos$	cos	\cosh	arccos	acos
tan	tanh	\arctan	λ	tan	tanh	\arctan	atan
$\backslash \mathrm{csc}$	$\backslash \mathrm{csch}$	\arccsc	$\backslash \mathrm{acsc}$	csc	csch	arccsc	acsc
$\backslash \mathrm{sec}$	$\backslash \mathrm{sech}$	\arcsec	$\backslash asec$	sec	sech	arcsec	asec
$\setminus \cot$	$\backslash \coth$	\arccot	$\setminus acot$	cot	\coth	arccot	acot
\log	\ln			log	ln		

$$\begin{array}{c|c} & \text{Table 6: Conditional} \\ \text{Ave[a]\{b\}\{c\}} & \text{Prob\{a\}\{b\}} & \mathbb{E}\{b|c\} & \mathbb{P}[a|b] \\ \text{entro\{a\}\{b\}} & \text{KLdiv\{a\}\{b\}} & \text{S}[a|b] & \mathcal{D}(a\|b) \end{array}$$