Machine Learning (20IS607)

SEE LAB EXAM

SI. No.	Programs	Marks	СО
1.	Implement the FIND-S algorithm for finding the most specific hypothesis using the enjoy_sport dataset.	10	1,2
	Construct a decision tree based on the ID3 algorithm. Use the		
2.	Play_Tennis dataset for building the decision tree and apply this	20	1,2,3,4
	knowledge to classify a new sample.		, ,-,
	Demonstrate the working of the Candidate-Elimination algorithm to		
	output a description of the set of all consistent hypotheses using the	10	1,2
	enjoy_sport dataset.		,
	Perform Random Forest classification on the Pima Indians	00	400
	diabetes dataset.	20	1,2,3
3.	Write a program to implement the <i>k</i> -Nearest Neighbor classification algorithm on the <i>Breast Cancer</i> dataset and visualize the results.	20	1,2,3,4
	Demonstrate the use of the Support Vector Machine algorithm for a		
	regression problem on the Iris flower dataset and evaluate the	10	1,2,3,4
	performance of the model.		
4.	Demonstrate the use of the K-Means clustering algorithm on the		
	Mall_Customers dataset. Use the elbow method to find the optimal	20	1,2,3,4
	number of clusters and visualize the clusters.		
	Demonstrate the application of Simple Linear regression on the	10	1,2,3,4
	Salary dataset.	10	1,2,5,4
5.	Build an Artificial Neural Network by implementing the		
	Backpropagation algorithm using the <i>Churn_Modelling</i> dataset and	20	1,2,4,5
	evaluate the performance of the model.		
	Demonstrate the application of Simple Linear regression on the	10	1,2,3,4
	housing dataset.		-,-,-,
6.	Write a program to implement the naïve Bayesian classifier for the	0.5	4006
	Social_Network_Ads dataset. Compute the accuracy of the	20	1,2,3,4
	classifier and visualize the results.		
	Demonstrate the application of Simple Linear regression to predict	10	1,2,3,4
7.	the stock market prices of any organization.		
··	Apply Hierarchical clustering on the <i>Mall_Customers</i> dataset and visualize the clusters and plot the dendrograms	15	1,2,3,4
	visualize the clusters and plot the dendrograms. Demonstrate the use of the Support Vector Machine algorithm for a		
	regression problem on the Position_Salaries dataset and evaluate	15	1224
	the performance of the model.	13	1,2,3,4
	the performance of the model.		

SEE Scheme of Evaluation

Write-Up: 10 Marks

Viva Voce: 10 Marks

Programs: 30 Marks

Total : 50 Marks