北京工业大学 2014——2015 学年第 2 学期 《电工电子技术-1》期末考试试卷 B 卷

考试说明:	_考试时长	95	分钟.	闭卷
THE RESERVE OF THE PARTY OF THE				1-4

承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分 条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试, 做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承诺人:	学号:	班号:
注: 本试卷共 6 大题, 的统一答题纸或草稿纸。	共 <u>10</u> 页,满分 100 分	分,考试时必须使用卷后附加

HIC I'I	/50	一一一人。大仁心衣(风苍秋川填与)					
题号	 _	三	四四	Ŧi	六	总成绩	
满分			- NO)			16.794	
得分							

得分

一、单项选择题(10小题,每题2分,共20分)

(在每个小题的四个选项中只有一个符合题目的要求,请将正确选项 前面的字母填在题后的括号内。)

- 1、电源电动势的方向规定为在电源内部(
- A. 电位升高的方向
 B. 电位降低的方向

 C. 电流的反方向
 D. 由高电位指向低电位

- 2、已知 $i=10\sin(\omega t+45^\circ)$,则下列的表示方式正确的是()。

A.
$$I = \frac{10}{\sqrt{2}} \angle 45^{\circ}$$
 B. $\dot{I}_m = 10 e^{j45^{\circ}}$ C. $\dot{I} = 10 e^{j45^{\circ}}$ D. $I_m = 10\sqrt{2}$

- 3、三相异步电机,当极对数 p=2 时的同步转速 $n_0=1500$ (转/分) 时,在电流频 率相同的情况下,极对数 p=3 时的同步转速 $n_0=($
- A. 1500 (转/分) B. 1000 (转/分) C. 500 (转/分) D. 250 (转/分)

4、在右图所示电路中, 当电流源开路时有(当短路时有()。

- A. I=0, $U=I_SR_0$ B. $I=I_S$, $U=I_SR_0$
- C. I=0, U=0 D. $I=I_S, U=0$
- 5、在 R-L-C 串联交流电路中, 下列公式正确的是()。
- A. $i = \frac{u}{|Z|}$ B. $I = \frac{U}{|Z|}$ C. $I = \frac{U}{|Z|}$ D. $\dot{I} = \frac{\dot{U}}{|Z|}$

- 6、在 R-L-C 串联交流电路中,假设 $\dot{I}=I\angle 0^{\circ}$,下列公式错误的是()。
- A. $\dot{U} = \dot{U}_R + \dot{U}_L + \dot{U}_C$ B. $U = I\sqrt{R^2 + (X_L X_C)^2}$
- C. $\dot{U} = \dot{I}[R + j(X_L X_C)]$ D. $U = \sqrt{U_R^2 + U_L^2 + U_C^2}$
- 7、R、L、C 串联交流电路中, 无功功率的计算公式为().
- A. $Q = UI \cos \varphi$ B. $Q = UI \sin \varphi$
- C. $Q = UI(\cos \varphi + \sin \varphi)$ D. Q = UI
- 8、在正弦交流电中,角频率和周期之间的关系是(A. $\omega = 2\pi T$ B. $\omega = 2\pi f$ C. $f = \frac{2\pi}{T}$ D. $f = \frac{2\pi}{T}$

- 9、下列哪一个不是正弦交流电的特征量为()。

- A. 频率 B. 有效值 C. 相位差 D. 初相位
- 10、在三相交流电路中,当对称负载为三角形接法时,下列关系式正确的是

- A. $U_L = 3U_P$ B. $I_L = I_P$ C. $U_L = \sqrt{3}U_P$ D. $I_L = \sqrt{3}I_P$

得分

二、简答题(36分,每一小题6分)

1、用支路电流法列下图电路的方程,不用求解具体值。

2、有一 NLC 串联电路,它在电源频率 f 为 500Hz 时发生谐振,电感 L=0.1H、透 握时电流为 0.2A,电感电压 U_ 为电源电压 U 的 20 倍,求电阻 R 和电容 C。

3、电路在换路前处于稳态,试求换路后电流 i 的初始值 $i(0_+)$ 和稳态值 $i(\infty)$ 。

4、下图中将负载 $R_L=8\Omega$ 的扬声器接在输出变压器的二次绕组上,已知 $N_1=300$, $N_2=100$,信号源电动势 E=6V ,内阻 $R_0=100\Omega$,求信号源的输出功率?

5、应用戴维宁定理求解电流 I

6、三相异步电动机额定功率 6.5kw, 额定电压 380V, 额定转速 1440r/min, 效率 86%, 功率因数 0.85, 求额定电流和额定转矩。

三、应用叠加原理求电流 I(10分)

得分

四、三要素法求解电路中电流 i_2 ,已知 $U_1=24V$, $U_2=20V$, $R_1=60\Omega$, $R_2=120\Omega$, $R_3=40\Omega$,L=4H,换路前电路处于

稳态。(10分)

五、图中所示电路,已知 R = R₁ = R₂ = 10 Ω, L=31.8 m H, C=318 uf, f =50Hz, \dot{U} =10 \angle 0°。(12分)

- 1、 试求并联支路端电压 U_{ab} ;
- 2、 计算电流 *i*, *i*₁ 及 *i*₂

分

六、 三相对称负载作三角形联结, $U_L=220V$,当 S 闭合时,各电流表读数均为 17.32A,三相功率 P=4.5kW,试求:

(12分)

- (1) 各负载的电阻及感抗;
- (2) S打开时,各电流表读数和有功功率 P。

