Resampling PCA & GP Inference

Manfred Opper

(ISIS, University of Southampton)

Motivation

- Construct "simple" intractable GP model
- Study approximate (EC/EP) inference
- "MC" conceptually simple
- Get a quantitative idea why EC inference works.

Resampling (Bootstrap)

Estimate average case properties (test errors) of statistical estimators based on a single dataset

$$D_0 = \{y_1, y_2, y_3\}$$

Bootstrap: Resample with replacement \rightarrow Generate pseudo data.

$$D_1 = \{y_1, y_2, y_2\}, D_2 = \{y_1, y_1, y_1\}, D_3 = \{y_2, y_3, y_3\}, \dots$$
 etc

Problem: Each sample requires retraining of some learning algorithm.

Mapping to probabilistic model & Approximate inference: Only single training (inference) for single (effective) model required (Malzahn & Opper 2003).

PCA

- <u>Goal</u>: Project (d dimensional) data vectors $\mathbf{y} \to P_q[\mathbf{y}]$ on q < d dimensional subspace with minimal reconstruction error $E||\mathbf{y} P_q[\mathbf{y}]||^2$.
- Method: Approximate expectation by N training data D_0 given by the $(d \times N)$ matrix $\mathbf{Y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_N)$. $\mathbf{y}_i \in R^d$. $d = \infty$ allowed (feature vectors).

Optimal subspace spanned by eigenvectors \mathbf{u}_l of data covariance matrix

$$\mathbf{C} = \frac{1}{N} \mathbf{Y} \mathbf{Y}^T$$

corresponding to the q largest eigenvalues $\lambda_l \geq \lambda$.

Reconstruction Error

Expected reconstruction error (on novel data)

$$\varepsilon(\lambda) = \sum_{l:\lambda_l < \lambda} E(\mathbf{y} \cdot \mathbf{u}_l)^2$$

Resample averaged reconstruction error

$$\mathcal{E}_r = \frac{1}{N_0} \mathbf{E_D} \left[\sum_{\mathbf{y}_i \notin D; \lambda_l < \lambda} \operatorname{Tr} \left(\mathbf{y}_i \mathbf{y}_i^T \mathbf{u}_l \mathbf{u}_l^T \right) \right]$$

Bootstrap of density of Eigenvalues

Bootstrap (N=50 random data, Dim =25) $1\times$ and $3\times$ oversampled

The model

• Let $s_i = \#$ times $\mathbf{y}_i \in D$

• Diagonal random matrix

$$\mathbf{D}_{ii} = D_i = \frac{1}{\mu \Gamma} (s_i + \epsilon \delta_{s_i,0}) \qquad \mathbf{C}(\epsilon) = \frac{\Gamma}{N} \mathbf{Y} \mathbf{D} \mathbf{Y}^T.$$

 $C(0) \propto covariance \ matrix \ of the \ resampled \ data.$

- \bullet kernel matrix $\mathbf{K} = \frac{1}{N}\mathbf{Y}^T\mathbf{Y}$
- Partition function

$$Z = \int d^{N}\mathbf{x} \exp\left[-\frac{1}{2}\mathbf{x}^{T}\left(\mathbf{K}^{-1} + \mathbf{D}\right)\mathbf{x}\right]$$
$$= |\mathbf{K}|^{\frac{1}{2}}\Gamma^{d/2}(2\pi)^{(N-d)/2} \int d^{d}\mathbf{z} \exp\left[-\frac{1}{2}\mathbf{z}^{T}\left(\mathbf{C}(\epsilon) + \Gamma\mathbf{I}\right)\mathbf{z}\right].$$

Z as generating function

$$-2\frac{\partial \ln Z}{\partial \epsilon}_{\epsilon=0} = \frac{1}{\mu N} \sum_{j=1}^{N} \delta_{s_{j},0} \operatorname{Tr} \mathbf{y}_{j} \mathbf{y}_{j}^{T} \mathbf{G}(\Gamma)$$
$$-2\frac{\partial \ln Z}{\partial \Gamma} = \frac{d}{\Gamma} + \operatorname{Tr} \mathbf{G}(\Gamma)$$

with

$$G(\Gamma) = (C(0) + \Gamma I)^{-1} = \sum_{k} \frac{\mathbf{u}_{k} \mathbf{u}_{k}^{T}}{\lambda_{k} + \Gamma}$$

Compare with (resample averaged) reconstruction error

$$\mathcal{E}_r = \frac{1}{N_0} \mathbf{E_D} \left[\sum_{\mathbf{y}_i \notin D; \lambda_l < \lambda} \mathsf{Tr} \left(\mathbf{y}_i \mathbf{y}_i^T \mathbf{u}_l \mathbf{u}_l^T \right) \right]$$

Analytical Continuation

Reconstruction error

$$\mathcal{E}_r = \frac{1}{N_0} \mathbf{E_D} \left[\sum_{\mathbf{y}_i \notin D; \lambda_l < \lambda} \mathsf{Tr} \left(\mathbf{y}_i \mathbf{y}_i^T \mathbf{u}_l \mathbf{u}_l^T \right) \right]$$

Use representation of the Dirac δ $\delta(x) = \lim_{\eta \to 0^+} \Im \frac{1}{\pi(x-i\eta)}$ and get

$$\mathcal{E}_r = \mathcal{E}_r^0 + \int_{0+}^{\lambda} d\lambda' \, \varepsilon_r(\lambda')$$

where

$$\varepsilon_r(\lambda) = \frac{1}{\pi} \lim_{\eta \to 0^+} \Im \frac{1}{N_0} \mathbf{E_D} \left[\sum_j \delta_{s_j,0} \operatorname{Tr} \left(\mathbf{y}_j \mathbf{y}_j^T \mathbf{G} (-\lambda - i\eta) \right) \right]$$

defines error density from all eigenvalues > 0 and and \mathcal{E}_r^0 is the contribution from eigenspace with $\lambda_k = 0$.

Replica Trick

Data averaged free energy

$$-\mathbf{E}_{\mathbf{D}}[\ln Z] = -\lim_{n \to 0} \frac{1}{n} \ln \mathbf{E}_{\mathbf{D}}[Z^n] ,$$

for integer n:

$$Z^{(n)} \doteq \mathbf{E_D}[Z^n] = \int dx \ \psi_1(x) \ \psi_2(x)$$

where we set $x \doteq (\mathbf{x}_1, \dots, \mathbf{x}_n)$ and

$$\psi_1(x) = \mathbf{E}_{\mathbf{D}} \left[\exp \left\{ -\frac{1}{2} \sum_{a=1}^n \mathbf{x}_a^T \mathbf{D} \mathbf{x}_a \right\} \right] \qquad \psi_2(x) = \exp \left[-\frac{1}{2} \sum_{a=1}^n \mathbf{x}_a^T \mathbf{K}^{-1} \mathbf{x}_a \right]$$

intractable!

Approximate Inference (EC: Opper & Winther)

$$p_1(x) = \frac{1}{Z_1} \psi_1(x) e^{-\Lambda_1 x^T x}$$
 $p_0(x) = \frac{1}{Z_0} e^{-\frac{1}{2} \Lambda_0 x^T x}$,

with Λ_1 and Λ_0 "variational" parameters

$$Z^{(n)} = Z_1 \int dx \, p_1(x) \, \psi_2(x) \, e^{\Lambda_1 x^T x}$$

$$\approx Z_1 \int dx \, p_0(x) \, \psi_2(x) \, e^{\Lambda_1 x^T x} \equiv Z_{EC}^{(n)}(\Lambda_1, \Lambda_0)$$

Match moments $\langle x^T x \rangle_1 = \langle x^T x \rangle_0$ & Stationarity w.r.t. Λ_1

<u>Final result</u>

$$-\ln Z_{EC} = -\mathbf{E}_{\mathbf{D}} \left[\ln \int d\mathbf{x} \ e^{-\frac{1}{2}\mathbf{x}^{T}(\mathbf{D} + (\Lambda_{0} - \Lambda)\mathbf{I})\mathbf{x}} \right] - \\ -\ln \int d\mathbf{x} \ e^{-\frac{1}{2}\mathbf{x}^{T}(\mathbf{K}^{-1} + \Lambda\mathbf{I})\mathbf{x}} + \ln \int d\mathbf{x} \ e^{-\frac{1}{2}\Lambda_{0}\mathbf{x}^{T}\mathbf{x}}$$

where we have set $\Lambda = \Lambda_0 - \Lambda_1$. Tractable!

Result: Artificial Data

N = 50 data, Dim = 25, 3× oversampled.

EC vs resampling

The PCA Reconstruction Error

(N=32 artificial random data, Dim=25) Approximate bootstrap $3\times$ oversampled

test error versus sum of eigenvalues (training error)

Approximate Bootstrap: handwritten Digits

(N = 100 data, Dim = 784)

Density of eigenvalues and reconstruction error

The result without replicas

$$-\ln Z = -\ln \int d\mathbf{x} \ e^{-\frac{1}{2}\mathbf{x}^{T}(\mathbf{D} + (\Lambda_{0} - \Lambda)\mathbf{I})\mathbf{x}} - \ln \int d\mathbf{x} \ e^{-\frac{1}{2}\mathbf{x}^{T}(\mathbf{K}^{-1} + \Lambda\mathbf{I})\mathbf{x}} + \\ + \ln \int d\mathbf{x} \ e^{-\frac{1}{2}\Lambda_{0}\mathbf{x}^{T}\mathbf{x}} + \frac{1}{2}\ln \det(\mathbf{I} + \mathbf{r})$$

with

$$\mathbf{r}_{ij} = \left(1 - \frac{\Lambda_0}{\Lambda_0 - \Lambda + D_i}\right) \left(\Lambda_0 \left(\mathbf{K}^{-1} + \Lambda \mathbf{I}\right)^{-1} - \mathbf{I}\right)_{ij} .$$

Expand

$$\ln \det \left(\mathbf{I} + \mathbf{r}\right) = \operatorname{Tr} \ln \left(\mathbf{I} + \mathbf{r}\right) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \operatorname{Tr} \left(\mathbf{r}^k\right)$$

We have $\mathbf{E_D}[\mathbf{r}_{ij}] = 0 o 1.$ order term vanishes after average, 2.order yields on average

$$\Delta F = -\frac{1}{4} \sum_{i} \left(\Lambda_0 \left(\mathbf{K}^{-1} + \Lambda \mathbf{I} \right)_{ii}^{-1} - 1 \right)^2 \times \sum_{i} \mathbf{E_D} \left(\frac{\Lambda_0}{\Lambda_0 - \Lambda + D_i} - 1 \right)^2$$

Correction

Correction to EC

$$\frac{Z^{(n)}}{Z_1} = \int dx p_1(x) \ \psi_2(x) \ e^{\Lambda_1 x^T x} = \int dx \psi_2(x) \ e^{\frac{1}{2} \Lambda x^T x} \left\{ \int \frac{dk}{(2\pi)^{Nn}} e^{-ik^T x} \chi(k) \right\}$$

where $\chi(k) \doteq \int dx \; p_1(x) \; e^{-ik^T x}$ is the *characteristic function* of the density p_1 .

Cumulant expansion starts with a quadratic term (EC)

$$\ln \chi(k) = -\frac{M_2}{2}k^T k + R(k) , \qquad (1)$$

where $M_2 = \langle \mathbf{x}_a^T \mathbf{x}_a \rangle_1$.

Expand 4-th order term in R(k) as $e^{R(k)} = 1 + R(k) + \dots$ leads to ΔF .

Possibility of perturbative improvement?

Conclusion

• Non-Bayesian inference problems can be related to "hidden" probabilistic models via analytic continuation.

• EC approximate inference appears to be robust and survives analytic continuation and limits.