Hacking the Deep Learning Robot (to work)

Technical Overview

Minimal Kokubi Installation

In order to control the kokubi base from within the laptop, one only needs the minimal kokubi installation, as portrayed and explained on this page:

http://yujinrobot.github.io/kobuki/doxygen/enInstallationLinuxGuide.html

However, if you're on Ubuntu 14.04, you might find it a bit tedious, since there are some things missing in your operating system.

Now I have updated the official tutorial to work with Ubuntu 14.04 as following:

1. install the required libraries:

```
sudo apt-get install python-pip libftdi-dev cmake python-empy python-nose python-setuptools build-essential sudo pip install wstool catkin-pkg
```

2. now compile from source as follows:

```
mkdir /opt/kobuki_core
wstool init -j5 /opt/kobuki_core/src
https://raw.github.com/yujinrobot/kobuki_core/hydro/kobuki_core.rosinstall
cd /opt/kobuki_core
export PATH=/opt/kobuki_core/src/catkin/bin/:${PATH}
catkin_make
cd build; make install
```

3. finally, test your installation, by connecting to kokubi base, then running the following commands on your ubuntu computer:

```
echo "export LD_LIBRARY_PATH=/opt/kobuki_core/install/lib" >> ~/.bashrc
source ~/.bashrc
sudo su
/opt/kobuki_core/install/lib/kobuki_driver/demo_kobuki_initialisation
```

this should make an initialization sound come from within kobuki.

this has worked for me, however, when I try to run the simple loop test, the robot doesn't respond so far:

```
/opt/kobuki_core/install/lib/kobuki_driver/demo_kobuki_simple_loop
```

ROS Indigo on Ubuntu 14.04

Now, my second try was installing ROS indigo, which also had some hoops which i had to overcome: first of all, the "ros-indigo-desktop-full" did not install at all, too many dependency conflicts as of December 2016. Instead, I went on installing it piece by piece:

1. add the package source list:

```
sudo sh -c '. /etc/lsb-release && echo "deb
http://packages.ros.org.ros.informatik.uni-freiburg.de/ros/ubuntu $DISTRIB_CODENAME
main" > /etc/apt/sources.list.d/ros-latest.list'
```

2. add the authentication keys for the packages:

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key
421C365BD9FF1F717815A3895523BAEEB01FA116

3. install opengl and ecl to avoid conflicts:

sudo apt-get install libgl1-mesa-dev-lts-utopic ecl

4. update the package list:

sudo apt-get update

5. install the ROS system (use aptitude to avoid dependency issues):

sudo aptitude install ros-indigo-desktop-full

6. initialize rosdep if you want ros to solve its own dependency issues for its own packages:

sudo rosdep init rosdep update

7. find out available packages:

apt-cache search ros-indigo

8. install the kobuki base packages and gazebo simulator packages:

sudo apt-get install ros-indigo-kobuki ros-indigo-kobuki-core sudo apt-get install ros-indigo-gazebo-ros-pkgs ros-indigo-gazebo-ros-control

9. setup environment variables:

echo "source /opt/ros/indigo/setup.bash" >> ~/.bashrc source ~/.bashrc

- setup rosinstall: sudo apt-get install python-rosinstall
- 11. Set udev Rule:

rosrun kobuki_ftdi create_udev_rules

logout unplug the usb cable login replug the usb cable

now, let's try a testing package for kobuki, called "keyboard operation": in a new terminal launch kobuki node:

roslaunch kobuki_node minimal.launch

in yet another new terminal as well, launch the keyboard operation module:

roslaunch kobuki_keyop keyop.launch

Warning: a small press can make the kobuki base gain a relatively insane speed

Running the Gazebo simulator:

open a terminal and launch the simulator:

roslaunch turtlebot_gazebo turtlebot_world.launch

if you want to test keyboard teleoperation launch the teleop simulator:

roslaunch turtlebot_teleop keyboard_teleop.launch

Finally: the CODE

writing code for a turtlebot running around in a gazebo simulator is pretty easy if you choose to use python, just call your python file like you call any other:

python gazebocodefile.py