Linear Algebra

Vector Transformation with Matrix (행렬을 이용한 벡터의 선형 변환)

소프트웨어 꼰대 강의

노기섭 교수 (kafa46@cju.ac.kr)

Recap: Linear Transformation (Mapping)

Linear Transformation (Mapping)

- Definition
 - · Linear combination (선형 결합)을 보존하는 벡터 사이의 함수
 - · 선형 변환(Linear Transformation), 선형 사상(Linear Mapping), 선형 연산자(Linear Operator) 등으로 부르기도 함
- 다음 두 조건을 만족시키면 선형 변환이다. (다시 말해, "선형성을 유지하는 변환이다")

Mapping $L: V \to W$

1) L(u+v) = L(u) + L(v), where $u,v \in Vector\ Space$ Additivity (가산성) \rightarrow 공간의 모든 좌표가 평행 (곡선이 없다) (두 벡터를 더한 다음 변환 == 각각의 벡터를 변환 후 더함) Linearity (선형성) 2) L(kv) = kL(v), where $k \in Field, v \in Vector\ Space$ Homogeneity (동차성) \rightarrow evenly spaced, 동일한 간격 유지

직관적으로 이해하는 Linearity (선형성)

Recap: 행렬과 벡터의 만남! - 그 역사적 순간!!!

2개의 사상을 다시 정의한다.

$$f: \mathcal{L}(V, W) \to \mathcal{M}_{m \times n}(F)$$

$$g: \mathcal{M}_{m \times n}(F) \to \mathcal{L}(V, W)$$

f 와 *g* 는 동형사상이다!

f 와 g 는 서로 역사상 관계이다!

결론: 선형 사상(변환)과 Matrix는 같다!

더 이상 복잡한 선형사상 x 그저 행렬만 보면 된다. 벡터의 선형변환은 행렬만 보면 된다.

> 증명: 겁나게 복잡함 → 생략 ^^ (우리는 그냥 받아들이는 걸로...)

행렬과 벡터의 곱셈 - 딥러닝에서 그 진정한 의미는?

벡터에 행렬을 곱한다는 의미가 도대체 무엇일까요?

Basis (기저)를 이용한 벡터의 표현

$$\hat{\imath} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \hat{\jmath} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

기저 벡터를 이용하면 모든 벡터를 표현할 수 있다.

$$a = -2 \times \hat{\imath} + 1 \times \hat{\jmath}$$
$$= -2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$b = 2 \times \hat{\imath} + (-3) \times \hat{\jmath}$$
$$= 2 {1 \choose 0} + (-3) {0 \choose 1} = {2 \choose -3}$$

a = b로 옮기는 선형변환?

Mapping L: $a \rightarrow b$

여기요! 교수님~~

이전 강의에서....

선형 사상(변환)과 Matrix는 같다고 했으니, 벡터와 행렬의 곱으로 표현하면 되는 것 아닌가요

Linear Transformation using Basis (기저 변환을 통한 선형변환)

$$\hat{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \hat{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad a = -2 \times \hat{i} + 1 \times \hat{j}$$

$$a \stackrel{=}{=} b \stackrel{=}{=} \mathbb{S} \text{ linear Map}$$

$$L(a) = -2 \times (Transformed \hat{i}) + 1 \times (Transformed \hat{j})$$

$$L(a) = -2 \times (-1 \times \hat{i}) + 1 \times (-3 \times \hat{j})$$

$$L(a) = -2 \times \begin{pmatrix} -1 \\ 0 \end{pmatrix} + 1 \times \begin{pmatrix} 0 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

$$2 \times \hat{i} \times X$$

$$L(a) = -2 \times (-1 \times \hat{i}) + 1 \times (-3 \times \hat{j})$$

$$L(a) = -2 \times \begin{pmatrix} -1 \\ 0 \end{pmatrix} + 1 \times \begin{pmatrix} 0 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

$$2 \times \hat{i} \times X$$

$$3 \times \hat{j} \times \hat{$$

Generalization of Linear Transformation (선형변환의 일반화)

다양한 선형변환 맛보기

실습 페이지: http://acin.cju.ac.kr/Deeplearning/ViewMain/

Shearing (전단변환)

고정된 방향으로 각 포인트를 그 방향과 평행한 라인에서 부호가 있는 거리에 비례하는 양만큼 이동시키는 선형변환 함수

Rotating (회전변환)

임의의 벡터를 원점을 중심으로 회전시키는 선형변환 함수

Permutation (지환변환)

행과 열을 맞바꾸는 선형변환 함수

Projection (사영변환)

차원을 축소하여 (예: 2차원 → 1차원) 설정한 축으로 프로젝션(projection)하는 함수

$$L(a) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 선형변환 함수
$$L(a) = \begin{pmatrix} \cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\ \sin \frac{\pi}{2} & \cos \frac{\pi}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$L(a) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$L(a) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

수고하셨습니다 ..^^..