Unilateral Control for Social Welfare of Iterated Game in Mobile Crowdsensing

Ji-Qing Gu^{1,2}, Chao Song¹, Member, IEEE, Jie Wu³, Fellow, IEEE, Li Lu¹, Member, IEEE, and Ming Liu¹, Member, IEEE

APPENDIX

Proof of Theorem 1:

Proof. In the discrete case, the actions of platform and ISP are finite. If there is no existence of pure actions, mixed actions must exist because every finite strategic-form game has a mixed-strategy equilibrium [1]. For the continuous model; we fit the continuous payoff functions $F_{\mathbf{g}}(x_{\mathbf{e}}, x_{\mathbf{r}})$ and $F_{\mathbf{t}}(x_{\mathbf{e}}, x_{\mathbf{r}})$ for the platform and ISP under real trace, then the equilibrium exists in the convex space [2].

Proof of Theorem 2:

Proof. For the continuous case, inspired by the work [2], we first construct a function $\sigma(x_{\rm e},x_{\rm r},\vec{s})=s_1\times F_{\rm g}(x_{\rm e},x_{\rm r})+s_2\times F_{\rm t}(x_{\rm e},x_{\rm r}), s_i\geq 0$, where s is an nonnegative vector. We proof $\sigma(x_{\rm e},x_{\rm r},\vec{s})$ is diagonally strictly concave [2] if the symmetric matrix $(G(x_{\rm e},x_{\rm r},\vec{s})+G'(x_{\rm e},x_{\rm r},\vec{s}))$ be negative definite for $x_{\rm e},x_{\rm r}\in\mathcal{R}$, where \mathcal{R} is the domain of the actions vector, $G(x_{\rm e},x_{\rm r},\vec{s})$ is the Jacobian with respect to $x_{\rm e}$ and $x_{\rm r}$. Then we obtain that the equilibrium point is unique.

Proof of Theorem 3:

Proof. We first divide the continuous action space into η parts. Then the action of the platform and

ISP satisfy $x_e \in \{l^e, l^e + \delta, l^e + 2\delta, \cdots, l^e + \eta\delta\}$, and $x_r \in \{l^r, l^r + \delta, l^r + 2\delta, \cdots, l^r + \eta\delta\}$, respectively, where δ is small enough and η is sufficiently large, satisfying $l^{\rm e} + \eta \delta = h^{\rm e}$ and $l^{\rm r} + \eta \delta = h^{\rm r}$. When $\delta \to 0$, the action space is approximately continuous. Thus, the payoffs of the platform is $\mathbf{M}^{e} = (F_{g}(l^{e}, l^{r}), \cdots, F_{g}(l^{e}, l^{r} +$ $\eta \delta$), \cdots , $F_{\sigma}(l^{e} + \eta \delta, l^{r})$, \cdots , $F_{\sigma}(l^{e} + \eta \delta, l^{r} + \eta \delta)$) = $(F_{g00}, \cdots, F_{g0\eta}, \cdots, F_{g\eta 0}, \cdots, F_{g\eta \eta});$ the payoffs of the ISP is $\mathbf{M}^{r} = (F_{t}(l^{e}, l^{r}), \cdots, F_{t}(l^{e}, l^{r}) +$ $\eta \delta$), \cdots , $F_{t}(l^{e} + \eta \delta, l^{r})$, \cdots , $F_{t}(l^{e} + \eta \delta, l^{r} + \eta \delta)$) = $(F_{t00}, \cdots, F_{t0\eta}, \cdots, F_{t\eta 0}, \cdots, F_{t\eta \eta})$. The platform's mixed strategy at current round is $p_{ij-k}, \forall i, j, k \in$ $\{0,1,\cdots,\eta\}$, which indicates the probability of the platform chooses $x_e = l^e + k\delta$ in the current round when the previous actions are $x'_{\rm e} = l^{\rm e} + i\delta$ and $x'_{\rm r} = l^{\rm r} + j\delta$. Similarly, ISP's mixed strategy at current round is q_{ij-k} .

According to the above partition on the action space and utility space, we get the Markov state transition matrix as:

$$oldsymbol{H}_{\mathrm{d}} = (oldsymbol{H}_{00}, \cdots, oldsymbol{H}_{0\eta}, oldsymbol{H}_{10}, \cdots, oldsymbol{H}_{1\eta}, oldsymbol{H}_{\eta\eta}, oldsymbol{H}_{\eta\eta}),$$

where each element H_{ij} , $\forall i, j \in \{0, 1, \dots, \eta\}$ is a vector, which contains the transition probability from all the possible combinations of the previous state $x'_{e}x'_{r}$ to the current state $x_{e} = l^{e} + i\delta$ and $x_{r} = l^{r} + j\delta$. Each

¹ School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

² School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China

³ Center for Networked Computing, Temple University, Philadelphia, PA 19122, USA

element is written as:

$$\boldsymbol{H}_{ij} = (p_{00-i}q_{00-j}, \cdots, p_{0\eta-i}q_{0\eta-j}, p_{10-i}q_{10-j}, \cdots,$$

$$p_{1\eta-i}q_{1\eta-j}, \cdots, p_{\eta 0-i}q_{\eta 0-j}, \cdots, p_{\eta \eta-i}q_{\eta \eta-j})^{\mathrm{T}}.$$

We assume the stable vector of $\boldsymbol{H}_{\mathrm{d}}$ is $\boldsymbol{v}_{\mathrm{d}}$, we have $\boldsymbol{v}_{\mathrm{d}}^{\mathrm{T}}\boldsymbol{H}_{\mathrm{d}} = \boldsymbol{v}_{\mathrm{d}}^{\mathrm{T}}$, and the expected utilities of the platform and ISP are $U^{\mathrm{e}} = \boldsymbol{v}_{\mathrm{d}}^{\mathrm{T}}\boldsymbol{M}^{\mathrm{e}}$ and $U^{\mathrm{r}}\boldsymbol{v}_{\mathrm{d}}^{\mathrm{T}}\boldsymbol{M}^{\mathrm{r}}$, respectively.

We suppose $\mathbf{H}_{\mathrm{d}}' = \mathbf{H}_{\mathrm{d}} - \mathbf{I}$, and have $\mathbf{v}_{\mathrm{d}}\mathbf{H}_{\mathrm{d}}' = 0$. With the similar calculation as the one under the discrete model, $\mathbf{v}_{\mathrm{d}}^{\mathrm{T}}$ is proportional to each row of $Adj(\mathbf{H}_{\mathrm{d}}')$. Thus, for any vector $f = (f_{00}, f_{01}, \dots, f_{\eta\eta})$, with the known condition $\sum_{k=0}^{\eta} q_{ij-k} = 1$, we can calculate its dot product with \mathbf{v}_{d} as follows:

$$\mathbf{v}_{\mathbf{d}}^{\mathbf{T}} \cdot \mathbf{f} = D(\mathbf{p}, \mathbf{q}, \mathbf{f})$$

$$= \det \begin{pmatrix} p_{00-0}q_{00-0} & \cdots & p_{00-\eta} & f_{00} \\ \vdots & \vdots & \vdots & \vdots \\ p_{(\eta-1)\eta-0}q_{(\eta-1)\eta-0} & \cdots & p_{(\eta-1)\eta-\eta} & f_{(\eta-1)\eta} \\ p_{\eta0-0}q_{\eta0-0} & \cdots & p_{\eta0-\eta} - 1 & f_{\eta0} \\ \vdots & \vdots & \vdots & \vdots \\ p_{\eta\eta-0}q_{\eta\eta-0} & \cdots & p_{\eta\eta-\eta} - 1 & f_{\eta\eta} \end{pmatrix}.$$
(1)

It is obvious that the penultimate column of equation (1) is decided only by the platform, denoted as $\tilde{\boldsymbol{p}}$. When $f = (\alpha \boldsymbol{M}^{\mathrm{e}} + \beta \boldsymbol{M}^{\mathrm{r}} + \gamma \mathbf{1})$, we obtain $\boldsymbol{v}_{\mathrm{d}}^{\mathrm{T}} \cdot \boldsymbol{f} = (\alpha \boldsymbol{M}^{\mathrm{e}} + \beta \boldsymbol{M}^{\mathrm{r}} + \gamma \mathbf{1}) = \alpha U^{\mathrm{e}} + \beta U^{\mathrm{r}} + \gamma$. Therefore, if $\tilde{\boldsymbol{p}} = \phi(\alpha \boldsymbol{M}^{\mathrm{e}} + \beta \boldsymbol{M}^{\mathrm{r}} + \gamma \mathbf{1})$, we have $\alpha U^{\mathrm{e}} + \beta U^{\mathrm{r}} + \gamma = 0$. When the small number $\delta \to 0$, the theorem is proven.

References

- Nash J F et al. Equilibrium points in n-person games. Proceedings of the national academy of sciences, 1950.
- [2] Rosen J B. Existence and uniqueness of equilibrium points for concave n-person games. *Econometrica:* Journal of the Econometric Society, 1965.