

Laboratorio 01

Sistemas de comunicação I (COM029007)

Rhenzo Hideki Silva Kajikawa

17 de março de 2024

Sumário

1. Introdução	3
2. Desenvolvimento	
2.1. Conceitos teóricos utilizados no relatório	3
2.2. Exercicio 01	3
2.2.1. Resultados Exercicio 01	4
2.3. Exercicio 02	7
2.3.1. Resultados Exercicio 02	8
2.4. Exercicio 03	12
2.4.1. Resultados Exercicio 03	13
3 Conclusão	18

1. Introdução

Este labotatório tem como objetivo revisar os conceitos de sinais de espectro. Tem-se como objetivo de entender e analisar os sinais nos dominios do tempo e frequência.

Nos exercicios apresentados foram apresentados ideias de composição e manipulação de sinais, mudança de dominios do tempo e da frequência, e a utilização de filtros ideais e reais para a recuperação dos sinais originais.

2. Desenvolvimento

2.1. Conceitos teóricos utilizados no relatório

A utilização de conceitos básicos de sinais e sistemas, utilizando sistmeas lineares e invariantes no tempo. A analise de sinais tanto no dominio do tempo quanto na frequencia e as suas devidas manipulações.

A aplicação da Transformada de Fourier permite a análise de sinais no domínio da frequência, decompondo um sinal em suas componentes de frequência e possibilitando a compreensão da distribuição espectral do sinal.

A autocorrelação desempenha um papel na análise ao identificar padrões temporais e calcular a similaridade entre diferentes partes do sinal.

Os filtros são utilizados para observar características e aplicações dos sinais, modificando suas características, atenuando certas frequências ou realçando outras.

2.2. Exercicio 01

Comando da questão:

- 1. Gerar um sinal s(t) composto pela somatória de 3 senos com amplitudes de 6V, 2V e 4V e frequências de 1, 3 e 5 kHz, respectivamente.
- 2. Plotar em uma figura os três cossenos e o sinal 's ' no domínio do tempo e da frequência.
- 3. Utilizando a função 'norm', determine a potência média do sinal 's'.
- 4. Utilizando a função 'pwelch', plote a Densidade Espectral de Potência do sinal 's'.

2.2.1. Resultados Exercicio 01

Figura 1: Sinais gerados no dominio do tempo Fonte: Elaborada pelo autor

Na Figura 1 são apresentados os 4 gráficos que foram pedidos pela questão. Estes estão sendo apresentados no dominio do tempo. Os graficos são cossenos de 6V , 2V e 4V e frequências de 1, 3 e 5 kHz , respectivamente, além do sinal s(t) que foi gerado a partir da soma dos 3 cossenos anteriores

Figura 2: Sinais gerados no dominio da frequência Fonte: Elaborada pelo autor

Na Figura 2 são apresentados os 4 sinais anteriores da Figura 1 , porém agora foram apresentados no dominio da frequência. É possível ver de forma mais clara que o 4 sinal (s(t)) é o resultado da soma dos outros 3 sinais ,apenas analizando as componentes da frequencia.

Figura 3: Sinais gerados com a função pwelch Fonte: Elaborada pelo autor

A Figura 3 mostra o resultado da função pwelch, esta que retorna a densidade espectral de potência do sinal. Assim mostrando onde está a distribuição de energia do sinais nas frequência.

2.3. Exercicio 02

- 1. Gerar um sinal s(t) composto pela somatória de 3 senos com amplitudes de 5V, 5/3V e 1V e frequências de 1, 3 e 5 kHz, respectivamente.
- 2. Plotar em uma figura os três cossenos e o sinal 's ' no domínio do tempo e da frequência
- 3. Gerar 3 filtros ideais:
 - 1. Passa baixa (frequência de corte em 2kHz)
 - 2. Passa alta (banda de passagem acima de 4kHz)
 - 3. Passa faixa (banda de passagem entre 2 e 4kHz)
- 4. Plotar em uma figura a resposta em frequência dos 3 filtros
- 5. Passar o sinal s(t) através dos 3 filtros e plotar as saídas, no domínio do tempo e da frequência, para os 3 casos

2.3.1. Resultados Exercicio 02

Figura 4: Sinais gerados no dominio do tempo Fonte: Elaborada pelo autor

Na Figura 4 são apresentados os 4 gráficos que foram pedidos pela questão. Estes estão sendo apresentados no dominio do tempo. Os graficos são cossenos de 5V , $\frac{5}{3}$ V e 1V e frequências de 1, 3 e 5 kHz , respectivamente, além do sinal s(t) que foi gerado a partir da soma dos 3 cossenos anteriores

Figura 5: Sinais gerados no dominio da frequência Fonte: Elaborada pelo autor

Na Figura 5 são apresentados os 4 sinais anteriores da Figura 4 , porém agora foram apresentados no dominio da frequência. É possível ver de forma mais clara que o 4 sinal (s(t)) é o resultado da soma dos outros 3 sinais ,apenas analizando as componentes da frequencia.

Figura 6: Graficos dos Filtros Fonte: Elaborada pelo autor

Na Figura 6 são apresentados 3 filtros , em vermelho um filtro passa baixa de 2kHz , em verde um filto passa alta de 4kHz e por fim em azul um filtro passa faixa de 2 a 4 kHz.

Figura 7: Sinais Filtrados em ambos dominios Fonte: Elaborada pelo autor

Na Figura 7 é apresentado o sinal s(t) filtrado pelos 3 filtros anteriores , cada um sendo mostrado a o resultado no dominio da frequencia a esquerda e no dominio do tempo a direita

2.4. Exercicio 03

- 1. Gerar um vetor representando um ruído com distribuição normal utilizando a função 'randn' do matlab. Gere 1 segundo de ruído considerando um tempo de amostragem de 1/10k.
- 2. Plotar o histograma do ruído para observar a distribuição Gaussiana. Utilizar a função 'histogram'
- 3. Plotar o ruído no domínio do tempo e da frequência Utilizando a função 'xcorr', plote a função de autocorrelação do ruído.
- 4. Utilizando a função 'filtro=fir1(50,(1000*2)/fs)', realize uma operação de filtragem passa baixa do ruído. Para visualizar a resposta em frequência do filtro projetado, utilize a função 'freqz'.
- 5. Plote, no domínio do tempo e da frequência, a saída do filtro e o histograma do sinal filtrado

2.4.1. Resultados Exercicio 03

Figura 8: Histograma gerado pelo randn Fonte: Elaborada pelo autor

Figura 8 mostra o histograma gerado por um randn , com intuito de simular um ruido branco.

Figura 9: Sinais Filtrados em ambos dominios Fonte: Elaborada pelo autor

A figura 9 mostra o ruido branco gerado pelo rand , tanto no dominio do tempo quanto no dominio da frequencia.

Figura 10: Grafico gerado pelo xcorr Fonte: Elaborada pelo autor

Na figura 10 é mostrado o resultado gerado pela função xcorr, seu intuito é de calcular a relação cruzada do sinal.

Figura 11: Gráfico dos filtros Fonte: Elaborada pelo autor

Figura 11 mostra como é o comportamento do filtro passa baixa que geramos com base no comando 'filtro=fir1(50,(1000*2)/fs)'.

Sinal Filtrado (Domínio do Tempo)

Sinal Filtrado (Domínio da Frequência)

Figura 12: Sinal Filtrado Fonte: Elaborada pelo autor

Na Figura 12 é possivel ver o ruido branco no dominio do tempo e da frequência após aplicarmos o filtro passa baixo no ruido.

Histograma do Sinal Filtrado

Figura 13: Histograma do sinal filtrado Fonte: Elaborada pelo autor

A figura 13 é um histograma do ruido branco após ser aplicado o filtro.

3. Conclusão

Neste laboratório, foram explorados conceitos fundamentais de sinais e sistemas, com a aplicação prática na análise e manipulação de sinais nos domínios do tempo e da frequência. Através dos exercícios realizados, foi possível compreender a composição de sinais complexos, a importância da amostragem e taxa de amostragem, bem como o papel crucial da Transformada de Fourier na análise espectral de sinais.

Os resultados obtidos nos exercícios demonstraram a aplicação prática dos conceitos teóricos estudados. A visualização dos sinais no domínio do tempo e da frequência, juntamente com a análise da densidade espectral de potência, proporcionou uma compreensão mais profunda da distribuição de energia dos sinais nas diferentes frequências. A aplicação dos filtros ideais e a análise dos sinais filtrados destacaram a

importância dos filtros na manipulação e recuperação de sinais originais, ressaltando a necessidade de escolher o filtro adequado para cada aplicação.

Desta forma o laboratório foi essencial para solidificar o entendimento sobre sinais e sistemas, proporcionando uma base sólida para a análise e processamento de sinais em diversas aplicações. O conhecimento adquirido neste laboratório é fundamental para futuros estudos e aplicações práticas no campo da engenharia de sistemas e processamento de sinais.