Homework 1

Solving Permutation Flowshop Scheduling Problem using Trajectory-based Metaheuristics

Instructor: Tsung-Che Chiang tcchiang@ieee.org

Department of Computer Science and Information Engineering
National Taiwan Normal University

https://moodle3.ntnu.edu.tw/course/view.php?id=41610

Permutation Flowshop Scheduling

Problem definition

- There are m machines and n jobs.
- Each machine can process only one job at a time.
- Each job is processed by machine 1, 2, 3, ..., m in order.
- Each machine except the first one processes jobs in a FIFO order.

Permutation Flowshop Scheduling

- Objective
 - Find the schedule with the shortest makespan.

Algorithms

- Tested algorithms
 - iterative improvement
 - simulated annealing
 - tabu search
- Common parts of the tested algorithms
 - permutation-based encoding
 - \blacksquare a string of integers 1, 2, ..., n
 - swap neighborhood
 - swap two arbitrary jobs

e.g.

Requirements

- Nine instances from Taillard (1993) will be given on moodle.
 - $n = \{20, 50, 100\} \times m = \{5, 10, 20\}$
- Solve the nine problem instances using three kinds of metaheuristics.
- Each instance should be solved by each algorithm for at least 20 times.

Taillard, E. (1993). Benchmarks for basic scheduling problems. *European Journal of Operational Research*, 64, 278–285.

Requirements

20×5: 20 jobs and 5 machines

```
      (本文)
      (本文)
```

Processing times of the 20th job on the five machines.

Taillard, E. (1993). Benchmarks for basic scheduling problems. *European Journal of Operational Research*, 64, 278–285.

- Algorithm description
 - For each algorithm, you need to give <u>detailed</u> descriptions.
 - For example, the cooling schedule of SA and the tabu structure of TS should certainly be presented clearly.
- Experimental setting
 - The values of parameters (e.g. initial temperature, epoch length, tabu tenure, etc.) in the experiments should be provided.

Experimental results

- The best-, average-, and worst-case performance over 20 (or more) runs should be given.
- Computer environment and average computation time should be provided, too.
- Comparison between II, SA, and TS
 - Compare them in terms of solution quality, computational efficiency, simplicity, robustness, etc.

- You are encouraged to do more experiments.
 - Difficulty of problem instances
 - Run a random search with equal computational effort and see how much difference between random search and your algorithms is.
 - Run the iterative improvement for a large number of times (say 1,000,000) and record the number of local optima and size of basin of attraction.
 - Define a distance between solutions and check if there exists the "big valley" structure.
 - Discuss how the three algorithms perform differently on instances with different sizes.
 - Intensification or diversification? Which is more important?

- You are encouraged to do more experiments.
 - Performance analysis
 - Try different setting of cooling schedule and tabu list and see how the performance varies.
 - Examine which parameters are more critical to the algorithm performance.
 - Examine which algorithm is more sensitive to the parameters.
 - Draw the "makespan vs. iteration" plot and see how the algorithms converge and which algorithm converges faster.

Grading

Correctness

- Define the problem and objective correctly.
- Describe the algorithm correctly.
- Verify your results.
- Interpret the results and draw the conclusions correctly.
 - Do not make any claim without evidence.
 - Use the experimental results to support your claim.

Clarity

Describe your ideas, algorithms, and experiments in detail.

Carefulness

fonts, notations, figures, tables, references, etc.

Completeness

how much effort you spent on this project

Problem 1:

Making Wrong Conclusions

表 1: II 與 TS 各資測檔案之結果(Min/Avg/Max)

秋 1. 11 天 15 石 黄 八福 东 C 65 木 (11111 111 g 11111)				
	II	SA	TS	
20×5	1297/1322.95/1370	1363/1297/1448	1297/1355/1313	WIN
20×10	1614/1662/1741	1750/1626/1943	1604/1639/1738	WIN
20×20	2355/2412.3/2477	248 <mark>7/</mark> 2363/2770	2322/2379.2/2477	WIN
50×5	2735/2758.4/2782	2913/2760/3095	2735/2754.6/2774	WIN
50×10	3100/3168.85/3231	3392/3188/3754	3076/3142.15/3208	WIN
50×20	4037/4098.8/4225	4242/4089/4705	3991/4051.1/4156	WIN
100×5	5495/5524.55/5580	5771/5567/5943	5495/5514.2/5541	WIN
100×10	5889/5982.45/6085	6279/6108/6820	5830/5893.4/5959	WIN
100×20	6532/6624.9/6753	7009/6751/7675	6474/6551.6/6608	WIN

IV. 結論

最後看到結果,每種演算法都有其優劣,以此次數據來看,最佳解用 SA 是個不錯的選擇,但數據龐大時,可能由於參數較多,並沒有達到最好的效果。而Ⅱ在整體結果來說是不錯的,而 Tabu 相對較為不突出。

Problem 2:

Presentation

	II	SA	TS
20×5	1297/1414/1605	1297/1423/1598	1302/1405/1804
20×10	1706/1857/2086	1706/1865/2086	1721/1875/2396
20×20	2399/2589/2842	2403/2592/2835	2427/2603/3144
50×5	2773/3024/3508	2752/3037/3445	2759/2982/3809
50×10	3354/3597/4005	3310/3605/4019	3406/3630/4426
50×20	4318/4594/4844	4316/4599/4875	4375/4657/5360
100×5	5606/5954/6408	5644/5977/6446	5628/5917/6820
100×10	6311/6670/7161	6304/6681/7164	6375/6683/7801
100×20	7084/7475/7909	7101/7481/7918	7240/7585/8537

Which one is better?

Problem 2:

Presentation

■ Colors of curves are similar, and it's hard to distinguish them in a black-and-white copy.

Problem 4:

Typesetting

For MS Word users:

- Mathematic symbols (x, y, z) should be italicized.
- \blacksquare Constants should not be italicized. (x = 1)
- Type superscripts x^1 and subscripts y_2 correctly.
- Learn how to use "插入符號".

*	×
6	1
<=	\leq
a	α
_	_

Problem 4:

Typesetting

- Avoid typos. These "minor" mistakes make readers lose confidence in your research results.
- Use consistent font, format, style, and wording in the whole document.

Submission

- Deadline: 2024/3/28 23:59
- The package "MHPS2024-HW1-TeamX.rar" should include
 - a directory called "code," containing the source code.
 - a document called "MHPS2024-HW1-TeamX.pdf."
- Submit the package on moodle by the team member with the smallest ID.