9 Energieaufteilung, Abschnitt 8.5.9

Die Energieaufteilung bei der Verdichtung lässt sich besonders im (T, s)-Diagramm (Bild 1) durch Flächen anschaulich darstellen.

Bild 1 Verdichtung im (T, s)-Diagramm; a) ungekühlt (überisentrop, $n > \varkappa$); b) teilgekühlt (unterisentrop, $n < \varkappa$)

Im Einzelnen kennzeichnen in Bild 1:

Maschinen-Zuströmung (Saugstutzen): Punkt $S(p_S, T_S)$ Maschinen-Abströmung (Druckstutzen): Punkt $D(p_D, T_D)$

Ideale Verdichtung:

 $Ungek \ddot{u}hlt \ (isentrop \rightarrow s = konst), \ Bild \ 1, \ Teil \ a:$

Fläche ABD_sEA Wärmeinhalts-Zunahme des verdichteten Mediums

Fläche BD_sSB Mehrarbeit gegenüber der Isothermen, d. h. vollgekühlte Verdichtung

Fläche ABD_sEA Druckänderungsarbeit, d. h. technische Verdichtungsarbeit

Gekühlt; exakt vollgekühlt (isotherm $\rightarrow T = \text{konst}$), Bild 1, Teil b:

Fläche *ABSEA* Durch Kühlung abzuführende Wärme. Ist im Betrag zugleich so groß wie die aufzuwendende techn. Verdichtungsarbeit (Druckänderungsarbeit), jedoch nicht in der Qualität.

Reale Verdichtung:

Ungekühlt (polytrop $\rightarrow n > \varkappa$, überisentrop), Teil a von Bild 1:

Fläche ABDFA gesamte Verdichtungsarbeit

Fläche ED, DFE gesamte Mehrarbeit infolge Fluidreibung

Fläche ABDSEA Druckänderungsarbeit

Fläche ESDFE Innere Reibungsarbeit (Reibungswärme)

Fläche SD_sD Erhitzungs- oder Aufheizungsverlust; berücksichtigt durch Mehrarbeitsfaktor (Abschnitt

10.3.2.4). Ist der Mehrbedarf an reiner Verdichtungsarbeit infolge der Gasaufheizung.

Fläche BDSB Mehrarbeit gegenüber Isotherme

Gekühlt; exakt teilgekühlt (polytrop $\rightarrow n < \varkappa$, unterisentrop), Bild 1, Teil b:

Fläche ABDCA Zunahme des Wärmeinhaltes des verdichteten Gases

Fläche CDSEC durch Kühlung abzuführende Wärme

Fläche ABDSEA Druckänderungsarbeit

Fläche BDSB Mehrarbeit gegenüber der isothermen Verdichtung

Fläche *DD_sS* Arbeitsersparnis infolge Kühlung