Observation Pre-processing for WRFDA

Jamie Bresch NCAR/MMM

WRFDA tutorial Aug 2015

What types of observations?
Where to download observations?
What does WRFDA's OBSPROC (OBServation
PROCessor) do?
How to run OBSPROC?
Observation quality control
Formats

WRFDA-3DVar Cost Function

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{b})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{b}) + \frac{1}{2} (\mathbf{y} - H(\mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x}))$$

$$J = \frac{1}{2} \delta \mathbf{x}^{\mathrm{T}} \mathbf{B}^{-1} \delta \mathbf{x} + \frac{1}{2} (\mathbf{d} - \mathbf{H} \delta \mathbf{x})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{d} - \mathbf{H} \delta \mathbf{x})$$

$$\mathbf{d} = \mathbf{y} - H(\mathbf{x}^{\mathrm{g}})$$

J(x): Scalar cost function

x: The analysis

x_b: Background field

B: Background error covariance matrix

y: Observations

H: Observation operator

R: Observation error covariance matrix

y and R are discussed in this presentation

Data assimilation:

Observations are used to make <u>small</u> corrections to a short-range forecast (background), which is assumed to be good, to produce a model **analysis**.

Space-based Global Observing System

Image courtesy: WMO Space Programme

check out this page for the status of current and future satellites http://www.wmo.int/pages/prog/sat/satellitestatus.php

Observation snapshot of a 6-hour time window

Surface

- SYNOP
- METAR
- BUOY
- SHIPS
- QuikSCAT winds

<u>Upper-Air/</u> <u>multiple levels</u>

- SOUND
- geo AMV
- polar AMV
- GPS refractivity
- AIREP

Sample satellite radiances coverage of a 6-hour time window

More about radiance data will be covered in a separate talk about radiance data assimilation

WRFDA can assimilate ...

- In-Situ conventional observations:
 - Surface (SYNOP, METAR, SHIP, BUOY)
 - Upper air (TEMP, PIBAL, AIREP, ACARS, AMDAR, TAMDAR)
- Remotely sensed observations:
 - Atmospheric Motion Vectors (geo/polar) (SATOB)
 - SATEM thickness
 - Ground-based GPS Total Precipitable Water/Zenith Total Delay (GPSPW/GPSZD)
 - SSM/I oceanic surface wind speed and TPW
 - Scatterometer oceanic surface winds (QSCAT)
 - Wind profiler (PROFL)
 - Radar radial velocities and reflectivity
 - Satellite temperature/humidity/thickness profiles (AIRSR)
 - GPS refractivity (GPSRF/GPSEP)
 - Stage IV precipitation data/rain rate (only in 4DVAR mode)

QuikSCAT/SeaWinds - ended in Nov 2009

ASCAT (METOP-A) ASCAT (METOP-B)

ASCAT (EARS)

OSCAT (Oceansat-2) -ceased in April 2014

WindSAT

- ☐ Radiances (using RTTOV or CRTM):
 - O HIRS NOAA-16, NOAA-17, NOAA-18, NOAA-19, METOP-B
 - o AMSU-A NOAA-15, NOAA-16, NOAA-18, NOAA-19, EOS-Aqua, METOP-A, METOP-B
 - o AMSU-B NOAA-15, NOAA-16, NOAA-17
 - O MHS NOAA-18, NOAA-19, METOP-A, METOP-B
 - AIRS EOS-Aqua
 - o SSMIS DMSP-16, DMSP-17, DMSP-18
 - IASI
 METOP-A, METOP-B
 - ATMS Suomi-NPP
 - o MWTS FY-3
 - o MWHS FY-3
 - SEVIRI METEOSAT-8, METEOSAT-9, METEOSAT-10

WRFDA can read in ...

ob.radar

- ➤ In simple ASCII format
 - Header record for Radar site information (site, lat0, lon0, elv etc)
 - Header record for observation location (FM-128 RADAR, date, lat, lon, elv, levs)
 - Data-level record (height<m>, Radial V<m/s>, qc, err, Reflectivity<dbz>, qc, err)
- Preprocessing Doppler radar data is an important procedure before assimilation
 - ✓ Quality control
 - de-aliasing (folded velocity)
 - removal of clutters, second-trip echo, anomalously propagated clutter, and other noises
 - ✓ Mapping
 - Interpolation, smoothing, super-obing, data filling
 - ✓ Error statistics
 - Variance and covariance
- ➤ However, there is no standard radar data processing software included in WRFDA Contact Juanzhen (Jenny) Sun (sunj@ucar.edu) for collaboration

NCEP operational observation files in BUFR format can be directly used in WRFDA

NCEP real-time data http://www.ftp.ncep.noaa.gov/data/nccf/com/gfs/prod

NOAA National Operational Model Archive and Distribution System (NOMADS) archive

http://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/http://nomads.ncdc.noaa.gov/data/gdas

NCAR CISL archive

http://rda.ucar.edu/datasets/ds337.0 – for conventional data http://rda.ucar.edu/datasets/ds735.0 – for radiance data

NCAR HPSS personal archive (requires NCAR HPC account) hsi:/LIUZ/GDAS/yyyymm/yyyymmddhh

Files to look for gdas1.thhz.1bamua.tm00.bufr d amsua.bufr gdas1.thhz.1bamub.tm00.bufr d ob.bufr amsub.bufr gpsro.bufr gdas1.thhz.1bhrs3.tm00.bufr d mhs.bufr gdas1.thhz.1bhrs4.tm00.bufr d airs.bufr gdas1.thhz.1bmhs.tm00.bufr d atms.bufr gdas1.thhz.airsev.tm00.bufr d radiances iasi.bufr gdas1.thhz.atms.tm00.bufr d hirs4.bufr gdas1.thhz.mtiasi.tm00.bufr d seviri.bufr gdas1.thhz.sevcsr.tm00.bufr d gdas1.thhz.gpsro.tm00.bufr d gdas1.thhz.prepbufr.nr

hh is the analysis time: 00/06/12/18

- About NCEP BUFR format http://www.nco.ncep.noaa.gov/sib/decoders/BUFRLIB http://www.nco.ncep.noaa.gov/sib/decoders/BUFRLIB/toc/prepbufr
- About NCEP PREPBUFR (prepared BUFR, quality controlled) data processing http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/document.htm
- Notes on using PREPBUFR in WRFDA https://wiki.ucar.edu/display/~hclin/prepbufr2wrfvar

NCAR/<u>MMM</u> archived observations in little_r format on HPSS (requires NCAR HPC account)

hsi:/BRESCH/RT/DATA/yyyymm/obs.yyyymmddhh.gz

- Radiosondes: TTAA, TTBB, PPBB, etc.
- Surface obs: SYNOPS, METARS, AWS, ships, buoys, CMAN
- Profiler
- Sat winds: GOES, METSAT, MODIS, AVHRR
- Satem
- Aircraft: PIREPS, AIREPS, AMDAR, ACARS
- Dropsondes and "hurricane hunter" obs
- Quikscat
- Ground-based GPS PW
- GPS refractivity (COSMIC only)

Check out the notes about the data http://www2.mmm.ucar.edu/people/bresch/data

NCAR/<u>CISL</u> archived observations in little_r format http://rda.ucar.edu/datasets/**ds351.0**/?hash=!access

❖ Issues about temperature values (both T and Td) in ds351.0/little_r files were reported in June. ~0.05 degree information is dropped by their DUMPBUFR to Little_r decoder

Other data sources that require additional converters

MADIS

```
http://www2.mmm.ucar.edu/wrf/users/wrfda/download/madis.html http://madis.noaa.gov/
```

GPS refractivity
 http://cdaac-www.cosmic.ucar.edu/cdaac/products.html

AIRS Retrieval
 ftp://airspar1u.ecs.nasa.gov/ftp/data/s4pa/Aqua_AIRS_Level2/AIRX2RET.006

 Scatterometer surface winds http://www.knmi.nl/scatterometer

Stage IV precipitation
 http://data.eol.ucar.edu/codiac/dss/id=21.093

■ What is little_r format?

A format used by MM5/Little_r objective analysis program, a successor of RAWINS Little_r format is also used by WRF/OBSGRID objective analysis program

■ What does OBSPROC do?

Ingest multiple types of observations that are converted to little_r format and concatenated to one file, process the observation data and output the ASCII file(s) suitable for WRFDA needs – 3DVAR, FGAT (First Guess at Appropriate Time), 4DVAR

☐ What is in ob.ascii (output of OBSPROC/input to WRFDA)?

obs_gts_yyyy-mm-dd_hh:00:00.3DVAR (ob.ascii)

```
TOTAL =
           29596, MISS. =-888888.,
SYNOP =
              463, METAR =
                                  156, SHIP =
                                                        25, BUOY =
                                                                             54, BOGUS =
                                                                                                   0, TEMP =
                                                                                                                       31,
                                                                                                                               ob
AMDAR =
              501, AIREP =
                                   78, TAMDAR=
                                                        0, PILOT =
                                                                             31, SATEM =
                                                                                                   0 , SATOB =
                                                                                                                    9318.
GPSPW =
                0, GPSZD =
                                     0. GPSRF =
                                                        49, GPSEP =
                                                                            0, SSMT1 =
                                                                                                   0. SSMT2 =
                                                                                                                                numbers
TOVS =
                0, OSCAT = 18890, PROFL =
                                                         0 AIRSR =
                                                                              0, OTHER =
                                                                                                   0,
PHIC
      = -87.40, XLONC = 180.00, TRUE1 = -71.00, TRUE2 = -91.00, XIM11 =
                                                                                               1.00, XJM11 =
                                                                                                                    1.00,
                                                         = 1000., base pres=100000., base tropo pres= 20000., base strat temp=
base temp= 268.00, base lapse=
                                         50.00, PTOP
                                                                                                                                                         215.,
IXC
              217, JXC
                                   165. IPROJ =
                                                          2, IDD
                                                                               1, MAXNES=
                                                                                                   1,
NESTIX=
              217,
                                                                                                                                                          Header
                                                                                                               domain
NESTJX=
              165.
NUMC
                                                                                                               information

√ skipped

DIS
           60.00,
                                                                                                                                                            in
NESTI =
                1.
                                                                                                                                                           WRFDA
NESTJ =
                1.
       = PLATFORM, DATE, NAME, LEVELS, LATITUDE, LONGITUDE, ELEVATION, ID.
                                                                                                                                                           reading
SRFC
       = SLP, PW (DATA, QC, ERROR).
                                                                                                                                                           code
      = PRES, SPEED, DIR, HEIGHT, TEMP, DEW PT, HUMID (DATA, QC, ERROR) *LEVELS.
INFO FMT = (A12,1X,A19,1X,A40,1X,I6,3(F12.3,11X),6X,A40)
SRFC FMT = (F12.3, I4, F7.2, F12.3, I4, F7.3)
                                                                                                            Data format
EACH FMT = (3(F12.3,I4,F7.2),11X,3(F12.3,I4,F7.2),11X,3(F12.3,I4,F7.2))
                 _____
FM-18 BUOY
            2008-10-31 21:00:00 Platform Id >>> 55956
                                                                                     -41.973
                                                                                                            -166.164
                                                                                                                                     0.000
                                                                                                                                                            55956
 101090.000
            0 200.00 -888888.000 -88 0.200
                                                                                     6.00 -888888.000 -88
            0 100.00 -888888.000 -88 1.40 -888888.000 -88
                                                                          0.000
                                                                                                       2.00 -888888.000 -88
                                                                                                                                          -888888.000 -88 10.00
            2008-10-31 21:00:00 CHATHAM ISLAND / NEW ZEALAND
                                                                              19
                                                                                     -43.950
                                                                                                           -176.560
                                                                                                                                     48.000
                                                                                                                                                            93986
FM-35 TEMP
-888888.000 -88 200.00 -888888.000 -88 0.200
 100400.000
            0 100.00
                         7.202
                                           330.000
                                                                          48.000
                                                                                 0
                                                                                     7.00
                                                                                             284.348 1 1.80
                                                                                                                 279.848
                                                                                                                                               73.609 1 10.00
 100000.000
            0 100.00 -888888.000 -88
                                    1.40 -888888.000 -88
                                                                          83.000
                                                                                     7.00
                                                                                             284.024 -10
                                                                                                                 279.024 -10
                                                                                                                                               71.046 -10 10.00
  99800.000
              99.82 -888888.000 -88
                                    1.41 -888888.000 -88
                                                                         100.000
                                                                                 3
                                                                                     7.01
                                                                                             283.861
                                                                                                    1
                                                                                                         1.80
                                                                                                                 277.861
                                                                                                                             1.80
                                                                                                                                               66.222
                                                                                                                                                      1 10.00
  92700.000
               93.36 -888888.000 -88
                                    1.64 -888888.000 -88
                                                                         707.000
                                                                                 3
                                                                                     7.21
                                                                                             277.935
                                                                                                         1.69
                                                                                                                 275.935
                                                                                                                             1.69
                                                                                                                                               86.823
                                                                                                                                                       1
                                                                                                                                                         10.00
                                                                                                    1
  92500.000
              93.18 -888888.000 -88
                                    1.65 -888888.000 -88
                                                                         724.000
                                                                                 0
                                                                                     7.22
                                                                                             277.763
                                                                                                         1.69
                                                                                                                 275.563
                                                                                                                         1
                                                                                                                                               85.579
                                                                                                                                                      1
                                                                                                                                                         10.00
              92.17 -888888.000 -88
                                    1.69 -888888.000 -88
                                                                         822.000
                                                                                 3
                                                                                     7.25
                                                                                             277.150
                                                                                                     0
                                                                                                                 272.250
                                                                                                                         0
                                                                                                                                                       0 10.00
  90300.000
               91.17 -888888.000 -88
                                    1.72 -888888.000 -88
                                                       5.00
                                                                         920,000
                                                                                 3
                                                                                     7.29
                                                                                             277.750
                                                                                                     0
                                                                                                        1.66
                                                                                                                 258.750
                                                                                                                         0
                                                                                                                             1.66
                                                                                                                                               23.873
                                                                                                                                                       0 10.00
              86.35 -888888.000 -88
                                    1.90 -888888.000 -88
                                                                        1410.000
                                                                                 0
                                                                                     7.46
                                                                                             275.750
                                                                                                     0
                                                                                                                 263.750
                                                                                                                                                       0 10.00
  85000,000
            0
                                                       5.00
                                                                                                        1.57
                                                                                                                         0
                                                                                                                             1.57
                                                                                                                                               40.903
  84600.000
               85.99 -888888.000 -88
                                    1.91 -888888.000 -88
                                                       5.00
                                                                        1449.000
                                                                                 3
                                                                                     7.47
                                                                                             275.350
                                                                                                     0
                                                                                                         1.57
                                                                                                                 263.350
                                                                                                                         0
                                                                                                                             1.57
                                                                                                                                               40.794
                                                                                                                                                       0
                                                                                                                                                         10.00
  78300.000
               80.25 -888888.000 -88
                                    2.12 -888888.000 -88
                                                       5.00
                                                                        2072.000
                                                                                 3
                                                                                     7.69
                                                                                             273.550
                                                                                                     0
                                                                                                         1.46
                                                                                                                 249.550
                                                                                                                         0
                                                                                                                             1.46
                                                                                                                                               14.884
                                                                                                                                                       0
                                                                                                                                                         10.00
  70000.000
              72.70 -888888.000 -88
                                    2.40 -888888.000 -88
                                                                        2964.000
                                                                                 0
                                                                                     8.00
                                                                                             270.050
                                                                                                     0
                                                                                                         1.30
                                                                                                                 256.050
                                                                                                                         0
                                                                                                                            1.30
                                                                                                                                               33.387
                                                                                                                                                       0
                                                                                                                                                         10.00
  69000.000
               71.79 -888888.000 -88
                                    2.42 -888888.000 -88
                                                                        3078.000
                                                                                 3
                                                                                     8.03
                                                                                             269.450
                                                                                                     0
                                                                                                         1.30
                                                                                                                 256.450
                                                                                                                             1.30
                                                                                                                                               36.084
                                                                                                                                                       0 10.00
  65700.000
               68.79 -888888.000 -88
                                    2.49 -888888.000 -88
                                                       5.00
                                                                        3463.000
                                                                                     8.11
                                                                                             267.250
                                                                                                     0
                                                                                                        1.30
                                                                                                                 247.250
                                                                                                                         0
                                                                                                                            1.30
                                                                                                                                               19.399
                                                                                                                                                       0 10.00
                                                                                 3
  64000.000
               67.24 -888888.000 -88
                                    2.52 -888888.000 -88
                                                       5.00
                                                                        3669.000
                                                                                 3
                                                                                     8.16
                                                                                             267.450
                                                                                                     0
                                                                                                                 228.450
                                                                                                                                                         10.00
                                                                                                                                                3.148
  57700.000
               61.51 -888888.000 -88
                                    2.65 -888888.000 -88
                                                       5.00
                                                                        4471 000
                                                                                 3
                                                                                     8.34
                                                                                             261.850
                                                                                                     0
                                                                                                         1.30
                                                                                                                 247.850
                                                                                                                         0
                                                                                                                            1.30
                                                                                                                                               31.074
                                                                                                                                                       0
                                                                                                                                                         10.00
  56400.000
               60.32 -888888.000 -88
                                    2.67 -888888.000 -88
                                                                        4646.000
                                                                                 3
                                                                                     8.39
                                                                                             262.050
                                                                                                     Ω
                                                                                                         1.30
                                                                                                                 239.050
                                                                                                                                                       0
                                                                                                                                                         10.00
              54.59 -888888.000 -88
                                    2.80 -888888.000 -88
                                                       5.00
                                                                        5545.000
                                                                                 3
                                                                                     8.60
                                                                                             256.650
                                                                                                     0
                                                                                                         1.30
                                                                                                                                               26.971
  50100.000
                                                                                                                 241,650
                                                                                                                             1.30
                                                                                                                                                       0
                                                                                                                                                         10.00
  50000.000
              54.50 -888888.000 -88
                                    2.80 -888888.000 -88
                                                       5.00
                                                                        5560.000
                                                                                 0
                                                                                     8.60
                                                                                             256.650
                                                                                                     0
                                                                                                         1.30 -888888.000 -11
                                                                                                                             1.30
                                                                                                                                           -888888.000 -11 10.00
  49700.000
            0 54.23 -888888.000 -88
                                    2.81 -888888.000 -88
                                                                        5606.000
                                                                                 3
                                                                                     8.72
                                                                                             256.650
                                                                                                     0
                                                                                                        1.31 -888888.000 -11
                                                                                                                                          -888888.000 -11 10.00
```

How WRFDA categorizes observations

http://www.wmo.int/pages/prog/www/**WMOCodes**/WMO306_vI1/Publications/2014update/Sel2.pdf

Name	WMO code/ Platform ID	WMO code name
SYNOP	12, 14	SYNOP, SYNOP MOBIL
SHIP	13, 17	SHIP
BUOY	18	BUOY
METAR	15, 16	METAR, SPECI
PILOT	32, 33, 34	PILOT, PILOT SHIP, PILOT MOBIL
TEMP	35, 36, 37, 38	TEMP, TEMP SHIP, TEMP DROP, TEMP MOBIL
AMDAR	42	AMDAR
SATEM	86	SATEM
SATOB	88	SATOB
AIREP	96, 97	AIREP
TAMDAR	101	TAMDAR
GPSPW	111	GPSPW (Ground-based GPS precipitable water)
GPSZD	114	GPSZD (Ground-based GPS Zenith Total Delay)
GPSRF	116 made-up code	GPSRF (Space-based GPS Refractivity)
PROFL	132	WIND PROFILER
AIRSR	133	AIRSRET
BOGUS	135	TCBOU (Typhoon bogus), BOGUS (other bogus)
QSCAT	281	Quik SCAT level-2B SeaWind

WRFDA combines AMDAR and AIREP as AIREP

WRFDA separates SATOB as geoamv and polaramv

In WRFDA, each observation type is identified by its platform ID

Quality flags assigned by obsproc

```
! Data is missing with the value of missing r
missing data
                      = -88,
                      = -77,
                                  ! Data outside horizontal domain or time window, data
outside of domain
                                  ! set to missing r
                                  ! Wind vector direction <0 or> 360 => direction set to
wrong direction
                      = -15,
                                  ! missing r
                      = -14,
                                  ! Wind vector norm is negative => norm set to missing r
negative spd
                      = -13,
                                  ! Wind vector norm is zero => norm set to missing r
zero spd
wrong wind data
                      = -12,
                                  ! Spike in wind profile =>direction and norm set to
                                  ! missing r
zero t td
                      = -11,
                                  ! t or td = 0 => t or td, rh and qv are set to missing r
t_fail_supa inver
                      = -10,
                                  ! super-adiabatic temperature
                      = -9,
                                  ! Spike in Temperature profile
wrong t sign
above model lid
                      = -8,
                                  ! heigh above model lid => no action
far below model surface = -7,
                                  ! heigh far below model surface => no action
below model surface = - 6,
                                  ! height below model surface => no action
standard atmosphere
                      = -5,
                                  ! Missing h, p or t =>Datum interpolated from standard
                                  ! atmosphere
from background = -4,
                                  ! Missing h, p or t =>Datum interpolated from model
fails error max = -3,
                                  ! Datum Fails error max check => no action
fails buddy check
                      = -2,
                                  ! Datum Fails buddy check => no action
no buddies
                      = -1,
                                  ! Datum has no buddies => no action
good quality
                      = 0,
                                  ! OBS datum has good quality
convective adjustment
                      = 1,
                                  ! convective adjustment check =>apply correction on t,
                                  ! td, rh and qv
                                  ! Surface datum => apply correction on datum
surface correction
                          2,
Hydrostatic recover
                          3,
                                  ! Height from hydrostatic assumption with the OBS data
                                  ! calibration
Reference OBS recover
                          4,
                                  ! Height from reference state with OBS data calibration
Other check
                      = 88
                                  ! passed other quality check
```

data with quality flags >= 0 will be used in WRFDA

Observation re-formatting and conversion

Sample METAR report from GTS

METAR KDEN 071553Z 15016G22KT 3SM HZ FEW060 SCT120 BKN150 19/11 A3019

Sample SYNOP report from GTS

AAXX 07154 72565 31748 61616 10172 20111 38392 40167 58002 705// 91453 333 91022 555 90715

variables in ob.ascii

- wind speed
- wind direction
- sea level pressure
- pressure
- height
- temperature
- dew point temperature
- relative humidity
- total precipitable water
- GPS refractivity

non-conventional observations

• **SATEM thickness** got stuck to formats originally designed for conventional data

state variables in WRFDA

- x-component wind u (relative to model grid)
- y-component wind v (relative to model grid)
- temperature
- specific humidity
- surface pressure
- pressure

A few things to bear in mind when dealing with observations

- What are observed and contained in the original observation reports
- What are the variable definitions in little r, ob.ascii, ob.bufr files
- What variables are used in WRFDA

WRFDA code that reads in observations

• ob.ascii var/da/da obs io/da scan obs ascii.inc var/da/da obs io/da read obs ascii.inc • ob.bufr var/da/da obs io/da read obs bufr.inc • qpsro.bufr var/da/da obs io/da read obs bufrgpsro.inc • ob.rain var/da/da obs io/da read obs rain.inc • ob.radar var/da/da obs io/da read obs radar.inc radiances

The places where the exact Fortran statements can be found for the format.

var/da/da radiance/da read obs *.inc

What does OBSPROC do?

- domain and time checks
- sort and merge duplicate reports
- assign observation errors
- gross check
- vertical consistency check and adiabatic check
- data completeness check
- assign quality flags
- thinning for SATOB and QSCAT
- write out files in ASCII format as the WRFDA input
- ✓ Model meteorological fields are NOT used in OBSPROC
- ✓ Time and domain checks are also done in WRFDA
- ✓ for 3DVAR and FGAT, observations (at the same locations) nearest
 to the analysis time are kept
- ✓ for 4DVAR, the observations nearest to the central time of each of the time slots are kept.

What does OBSPROC do?

assign observation errors

according to observation types and observed variables

Sources of the observations errors:

- ✓ Directly from the observation reports (GPS PW/ZTD, QSCAT, etc.)
- ✓ US Air Force Weather Agency (AFWA) OBS error table: obserr.txt

The AFWA OBS errors for each type of observations are written out in different formats after running obsproc:

WIND.txt, TEMP.txt, RH.txt, PRES.txt, HEIGHT.txt

Т	F	١/	IP	txt
	ᆫ	IV	IF.	・レヘレ

		TI	EMP SEN	SOR ERR	ORS												
level	synop	ship	buoy	metar	pilot	profl	sound	satem	satob	airep	tamdar	ssmt1	ssmt2	tovs	ssmi	airsr	other
10.	2.0	2.0	2.0	2.0	1.0	1.0	1.0	1.6	1.6	1.0	1.0	1.8	1.8	1.8	1.8	1.0	1.6
20.	2.0	2.0	2.0	2.0	1.0	1.0	1.0	1.9	1.9	1.0	1.0	1.6	1.6	1.6	1.6	1.0	1.9
30.	2.0	2.0	2.0	2.0	1.0	1.0	1.0	1.8	1.8	1.0	1.0	1.9	1.9	1.9	1.9	1.0	1.8
50.	2.0	2.0	2.0	2.0	1.0	1.0	1.0	1.6	1.6	1.0	1.0	1.7	1.7	1.7	1.7	1.0	1.6
70.	2.0	2.0	2.0	2.0	1.0	1.0	1.0	1.8	1.8	1.0	1.0	1.6	1.6	1.6	1.6	1.0	1.8
100.	2.0	2.0	2.0	2.0	1.0	1.0	1.0	1.6	1.6	1.0	1.0	2.4	2.4	2.4	2.4	1.0	1.6
150.	2.0	2.0	2.0	2.0	1.0	1.0	1.0	1.9	1.9	1.0	1.0	2.7	2.7	2.7	2.7	1.0	1.6
200.	2.0	2.0	2.0	2.0	1.0	1.0	1.0	2.2	2.2	1.0	1.0	3.0	3.0	3.0	3.0	1.0	2.1
250.	2.0	2.0	2.0	2.0	1.0	1.0	1.0	2.2	2.2	1.0	1.0	3.1	3.1	3.1	3.1	1.0	2.2
300.	2.0	2.0	2.0	2.0	1.0	1.0	1.0	2.4	2.4	1.0	1.0	3.0	3.0	3.0	3.0	1.0	2.5
400.	2.0	2.0	2.0	2.0	1.0	1.0	1.0	2.3	2.3	1.0	1.0	3.1	3.1	3.1	3.1	1.0	2.4
500.	2.0	2.0	2.0	2.0	1.0	1.0	1.0	2.6	2.6	1.0	1.0	3.2	3.2	3.2	3.2	1.0	2.6
700.	2.0	2.0	2.0	2.0	1.0	1.0	1.0	2.7	2.7	1.0	1.0	3.6	3.6	3.6	3.6	1.0	2.9
850.	2.0	2.0	2.0	2.0	1.0	1.0	1.0	3.5	3.5	1.0	1.0	3.9	3.9	3.9	3.9	1.0	3.7
1000.	2.0	2.0	2.0	2.0	1.0	1.0	1.0	3.7	3.7	1.0	1.0	3.8	3.8	3.8	3.8	1.0	3.8

obserr.txt

```
0.5
       0.5
              0.5
                     0.5
                             0.5
                                       BOGUS
                                                     TEMP SENSOR ERRORS
       0.5
                     0.5
0.5
       0.5
              0.5
                     0.5
                             0.5
0.0
       0.0
              0.0
                     0.0
                             0.0
                                         NU
       0.0
              0.0
                     0.0
                             0.0
0.0
       0.0
              0.0
                             0.0
0.0
              0.0
                                         NU
       0.0
                     0.0
                             0.0
              0.0
0.0
       0.0
                     0.0
                             0.0
0.0
              0.0
       0.0
                     0.0
                             0.0
                                         NŪ
0.0
       0.0
              0.0
                     0.0
                             0.0
0.0
              0.0
                                                                              a snippet of
       0.0
                     0.0
                             0.0
0.0
       0.0
              0.0
                     0.0
                             0.0
1.0
       1.0
              1.0
                     1.0
                             1.0
                                       RAOBS
                                                                              obserr.txt
       1.0
              1.0
                     1.0
       1.0
              1.0
                     1.0
                             1.0
1.0
       1.0
              1.0
                     1.0
                             1.0
                                       PIBALS
1.0
              1.0
0.0
       0.0
              0.0
                     0.0
                             0.0
                                         NU
       0.0
              0.0
                     0.0
0.0
       0.0
              0.0
                     0.0
                             0.0
0.0
              0.0
                                         NU
       0.0
                     0.0
                             0.0
              0.0
0.0
       0.0
                     0.0
                             0.0
0.0
       0.0
              0.0
                     0.0
                             0.0
1.0
       1.0
              1.0
                     1.0
                             1.0
                                       AIREPS
1.0
       1.0
              1.0
                     1.0
                             1.0
1.0
       1.0
              1.0
                     1.0
                             1.0
```

```
INSTRUMENT ERROR FILE
PURPOSE: PROVIDES SENSOR ERROR DATA USED IN OI ANALYSIS AT PRESSURE LEVELS
-----
```

1) FOR HEIGHT, TEMPERATURE, PRESSURE AND RELATIVE HUMIDITY (IN hPa):

```
1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10
```

2) FOR WIND:

* .

* .

```
10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, xxxx, yyyy (last two values are place holders).
```

Beware the additional levels and the reverse order for wind.

description of the file can be found near the end of obserr.txt

observation binning for WRFDA

3DVAR

- all observations within the time window are considered valid at the analysis time
- when multiple reports from a fixed station are available within the time window, only one report that is closest to the analysis time will be kept
- FGAT (First Guess at Appropriate Time)
 - multiple time slots (model first guesses) within the time window
 - observations are binned in different time slots
 - when multiple reports from a fixed station are available within the time window, only
 one report that is closest to the analysis time will be kept

4DVAR

- multiple time slots (model first guesses) within the time window
- observations are binned in different time slots
- time duplicate observations not allowed within each time slot

observation binning for WRFDA

For analysis time at 12:00 with ± 3 hour time window

moving platform

09:0010:00

For calculating the departure of model background from observations, what observations should be considered?

3DVAR: **+ 000000**

FGAT:		4DVAR:	
bin 0	1 0	bin 01	+0
bin 0	2 0	bin 02	+0
bin 0	3 0	bin 03	+0
bin 0	4 + 0	bin 04	+0
bin 0	5 0	bin 05	+0
bin 0	6 0	bin 06	+0
bin 0	7 0	bin 07	+0

WRFDA keeps only one observation closest to the analysis time from a fixed station in non-4DVAR mode. Other DA system may use multiple observations by giving timedependent weights.

observation binning for WRFDA

WRFDA

For <u>conventional</u> data:

- With ob_format=2, observation binning is done in OBSPROC
- With ob_format=1, binning is done inside WRFDA

For <u>radiance</u> data: binning is done inside WRFDA

Compiling and Running OBSPROC

- □ To compile
 - ./configure wrfda
 - ./compile all wrfvar

WRFDA/var/obsproc/src/obsproc.exe is generated after a successful WRFDA build

- ☐ To run
 - edit namelist.obsproc
 - have input files ready in the working directory:
 - obs.2012020100 little_r observation file (user provided)
 - observation error file
 - obsproc.exe obsproc executable file
 - namelist.obsproc obsproc namelist file
 - execute

./obsproc.exe >&! obsproc.log

- ☐ Files to look for
 - obs_gts_yyyy-mm-dd_hh:00:00.3DVAR
 or obs_gts_yyyy-mm-dd_hh:00:00.FGAT
 or obs_gts_yyyy-mm-dd_hh:00:00.4DVAR
 or obs_gts_yyyy-mm-dd_hh:00:00.4DVAR
 - obsproc.log: execution log file
 - > A list of diagnostic files: *.diag files

WRFDA/var/obsproc/README.namelist

```
examples:
    WRFDA/var/obsproc/namelist.obsproc.3dvar.wrfvar-tut
    WRFDA/var/obsproc/namelist.obsproc.4dvar.wrfvar-tut
&record1
           (Defines the input file names)
obs gts filename = 'obs.2008020512',
                                            Little r file name
                                            Observation error file name
obs err filename = 'obserr.txt',
fg format = 'WRF'
                                            Mapping in WRF convention
gts from mmm archive = .false.
                         (set to .true. if little r files are from hsi:/BRESCH/RT/DATA)
          (Defines the analysis time and time window)
time window min = 2008-02-05 11:00:00',
time analysis = '2008-02-05 12:00:00',
time window max = '2008-02-05 13:00:00',
```

```
&record3 (Defines the maximum number of observations allowed)
max_number_of_obs = 400000, Maximum number of observations to be loaded
fatal if exceed max obs = .TRUE.,
&record4 (Defines the quality control switches)
gc test vert consistency = .ture. Perform a vertical consistency check on sounding
                                 Discard the observations outside the domain
domain check h = .true.,
remove_above_lid = .true. (.false. is recommended) remove the observation above model lid
thining satob = .true.
thining qscat = .true.
calc psfc from QNH = .false. (valid for gts from mmm archive=.true. only)
                       (set to .true. to calculate Psfc from METAR QNH reports)
&record5 (Print a series of diagnostic file)
 print gts read = .TRUE., Write the diagnostic little r obs into file obs gts read.diag
```

```
&record6 (Defines the reference state)
ptop = 1000.0,
                            reference pressure at model top
base temp = 300.0,
                            mean sea level temperature
base lapse = 50.0, temperature lapse rate
base pres = 100000.0, reference sea level pressure
base_strat_temp = 215.0, isothermal temperature above tropopause
base tropo pres = 20000.0, tropopause pressure
&record7 (Defines geographical parameters)
IPROJ = 1.
                            0 = Cylindrical Equidistance, 1 = Lambert Conformal,
                           2 = Polar stereographic, 3 = Mercator)
PHIC = 40.0.
                           central latitude of the domain
XLONC = -95.0,
                            central longitude of the domain
TRUELAT1= 30.0,
TRUELAT2= 60.0,
MOAD CEN LAT = 40.0, central latitude for the Mother Of All Domains
STANDARD LON = -95.0, standard longitude
         ✓ ncdump —h wrfinput d01 for domain information
```

```
&record8 (Defines the domain settings)
IDD = 1, when XLONC /= STANDARD LON, set IDD=2, otherwise set to 1
MAXNES = 1, set to 1

✓ OBSPROC was developed

NESTIX = 60, I(y) direction dimension of the domain
                                                      in the MM5 era when
NESTJX = 90, J(x)-direction dimension of the domain
                                                      I referred to Y direction and
DIS = 60, grid size of the domain
                                                      J referred to X direction
NUMC = 1, set to 1
NESTI = 1, set to 1
NESTJ = 1, set to 1
&record9
         (Defines the output)
use for
            = '3DVAR',
                              FGAT; 4DVAR
num slots past = 3,
                              number of time slots before time_analysis
num slots ahead = 3,
                              number of time slots after time analysis
```

Plotting observation locations

http://www2.mmm.ucar.edu/wrf/users/wrfda/download/tools.html

var/graphics/ncl/plot_ob_ascii_loc.ncl– a sample NCL script to plot observation locations

Refer to http:// www.ncl.ucar.edu/Applications/ station.shtml for more station plotting examples

165°W

150°W

135°W

Observation Quality Control

WRFDA

- ✓ limited quality check done in OBSPROC
- ✓ quality check of radiances and GPS refractivity is done in WRFDA
- ✓ WRFDA honors quality
 flags embedded in
 ob.bufr (NCEP's
 prepared, quality
 controlled PREPBUFR
 file)
- ✓ WRFDA does innovation check

- little_r file is a report-based ASCII file
- different observation files can be concatenated (cat) together to one file

- A little_r format observation file is composed of Reports
- Report is composed of Records (header, data,..., and ending) and 3 tail integers (3i7):
- Record is composed of fields
 - fields in the header record
 - fields in the data record
 - fields in the ending record

Example: one sounding report in a little_r file

```
13.48000
               2.1600061052
                                              NIAMEY-AERO / NIGER
                                                                               FM-35 TEMP
                                                                                                           GTS (ROHK) USNR20 DRRN 242300
             -888888 -888888
227.00000
                               55 -888888
                                                   F -888888
                                                               -888888 20100824230000-8888888.00000
                                                                                                      0-888888.00000
                                                                                                                       0-888888.00000
                                                                                                                                         0-888888.00000
                                                                                                   0-888888.00000
                                                                                                                                      0-888888.00000
0-888888.0000
               0-888888.00000
                               0-888888.00000
                                                                0-888888.00000
                                                                                 0-888888.00000
                                                                                                                    0-888888.00000
                227.00000 0
                                             293.75000
98600.00000
                             300.75000
                                         0
                                                        0
                                                             4.11556 0
                                                                        240.00000
                                                                                     0-888888.00000
                                                                                                       0-888888.00000
                                                                                                                        0-888888.00000 0-888888.00000 0
                97.00000
                           0 -888888.00000
                                             0-888888.00000
                                                             0-888888.00000 0-888888.00000 0-888888.00000 0-888888.00000 0-888888.00000 0-888888.00000 0
100000.00000 0
92500.00000
                788.00000 0 299.94998
                                             290.94998
                                                             6.68778 0
                                                                         255.00000
                                                                                     0-888888.00000
                                                                                                       0-888888.00000
                                                                                                                        0-888888.00000
                                                                                                                                        0-888888.00000 0
                                                                                                       0-888888.00000
85000.00000
                1530.00000 0 295.94998
                                             284.94998
                                                             1.54333 0
                                                                         225.00000
                                                                                     0-888888.00000
                                                                                                                        0-888888.00000
                                                                                                                                        0-888888.00000 0
70000.00000
                3187.00000 0
                             283.35001
                                             278.75000
                                                             7.71667 0
                                                                         75.00000
                                                                                     0-888888.00000
                                                                                                      0-888888.00000
                                                                                                                        0-888888.00000
                                                                                                                                        0-888888.00000 0
                                                                         85.00000
                                                                                     0-888888.00000
                                                                                                      0-888888.00000
                                                                                                                                        0-888888.00000 0
50000.00000
                5900.00000 0 267.04999
                                             256.04999
                                                        0
                                                             12.86111 0
                                                                                                                        0-888888.00000
40000.00000
                7610.00000 0
                             256.64999
                                             240.64999
                                                             6.68778 0
                                                                          75.00000
                                                                                     0-888888.00000
                                                                                                       0-888888.00000
                                                                                                                        0-888888.00000
                                                                                                                                        0-888888.00000 0
                9720.00000 0 242.64999
                                             239.04999
                                                             6.68778 0
                                                                         165.00000
                                                                                      0-888888.00000
                                                                                                       0-888888.00000
                                                                                                                         0-888888.00000
                                                                                                                                        0-888888.00000 0
30000.00000
                                                                         145.00000
                                                                                                       0-888888.00000
                                                                                                                                        0-888888.00000 0
25000.00000
             0 10990.00000 0 232.64999
                                         0-888888.00000 0
                                                             6.17333 0
                                                                                     0-888888.00000
                                                                                                                        0-888888.00000
20000.00000
             0 12470.00000 0 220.25000
                                         0-888888.00000 0
                                                             3.60111 0
                                                                        135.00000
                                                                                     0-888888.00000
                                                                                                       0-888888.00000
                                                                                                                        0-88888.00000 0-888888.00000 0
               14260.00000 0 205.84999
                                         0-888888.00000 0
                                                            18.00556 0
                                                                         100.00000
                                                                                     0-888888.00000
                                                                                                       0-888888.00000
                                                                                                                        0-888888.00000
                                                                                                                                       0-888888.00000 0
15000.00000
10000.00000
               16640.00000 0 194.04999
                                         0-888888.00000 0
                                                             9.77444 0
                                                                         70.00000
                                                                                     0-888888.00000
                                                                                                      0-888888.00000
                                                                                                                        0-888888.00000
                                                                                                                                       0-888888.00000 0
                                                            0-888888.00000 \ \ 0-888888.00000 \ \ 0-888888.00000 \ \ 0-888888.00000 \ \ 0-888888.00000 \ \ 0
-888888.00000
              0-888888.00000 0-888888.00000 0-888888.00000
              0-77777.00000 0 13.00000 0-888888.00000
                                                         0-888888.00000 0-888888.00000 0-888888.00000
                                                                                                         0-888888.00000
                                                                                                                        0-888888.00000
                                                                                                                                         0-888888.00000 0
     0
          0
```

Header record

Data record

Ending record

3 tail integer

The fields in the header record (Fortran format in parenthesis)

No	Field	No	Filed	No	Field
1	Latitude (f20.5)	2	Longitude (f20.5)	3	ID (a40)
4	Name (a40)	5	Platform (a40)	6	Source (a40)
7	Elevation (f20.5)	8	Num_vld_fld (i10)	9	Num_error (i10)
10	Num_warning (i10)	11	Seq_num (i10)	12	Num_dupd (i10)
13	Is_sound (L10)	14	Bogus (L10)	15	Discard (L10)
16	Valid_time%sut (i10)	17	Valid_time%julian (i10)	18	Valid_time%date_char(a20)
19	Slp%data (f13.5)	20	Slp%qc (i7)	21	Ref_pres%data (f13.5)
22	Ref_pres%qc (i7)	23	Ground_t%data (f13.5)	24	Ground_t%qc (i7)
25	SST%data (f13.5)	26	SST%qc (i7)	27	Psfc%data (f13.5)
28	Psfc%qc (i7)	29	Precip%data (f13.5)	30	Precip%qc (i7)
31	T_max%data (f13.5)	32	T_max%qc (i7)	33	T_min%data (f13.5)
34	T_min%qc (i7)	35	T_min_night%data (f13.5)	36	T_min_night%qc (i7)
37	P_tend03%data (f13.5)	38	P_tend03%qc (i7)	39	P_tend24%data (f13.5)
40	P_tend24%qc (i7)	41	Cloud_cvr%data (f13.5)	42	Cloud_cvr%qc (i7)
43	Celling%data (f13.5)	44	Celling%qc (i7)	45	Pw%data (f13.5)
46	Pw%qc (i7)	47	Tb19v%data (f13.5)	48	Tb19v%qc (i7)
49	Tb19h%data (f13.5)	50	Tb19h%qc (i7)	51	Tb22v%data (f13.5)
52	Tb22v%qc (i7)	53	Tb37v%data (f13.5)	54	Tb37v%qc (i7)
55	Tb37h%data (f13.5)	56	Tb37h%qc (i7)	57	Tb85v%data (f13.5)
58	Tb85v%qc (i7)	59	Tb85h%data (f13.5)	60	Tb85h%qc

SSMI TB can be omitted

The fields in the data record (Fortran format in parenthesis)

No	Field	No	Field
1	Pressure%data (f13.5)	2	Pressure%qc (i7)
3	Height%data (f13.5)	4	Height%qc (i7)
5	Temperature%data (f13.5)	6	Temperature%qc (i7)
7	Dew_point%data (f13.5)	8	Dew_point%qc (i7)
9	Speed%data (f13.5)	10	Speed%qc (i7)
11	Direction%data (f13.5)	12	Direction%qc (i7)
13	U%data (f13.5)	14	U%qc (i7)
15	V%data (f13.5)	16	V%qc (i7)
17	RH%data (f13.5)	18	RH%qc (i7)
19	Thickness%data (f13.5)	20	Thickness%qc (i7)

The 0s after each piece of data are quality control identifiers to be defined in the MM5/little_r objective analysis program. They have no meanings for WRFDA.

The fields in the ending record

No	field	No	field	No	field	No	field
1	-777777.00000	2	0	3	-777777.00000		0
5	-888888.00000	6	0	7	-888888.00000		0
9	-888888.00000	10	0	11	-888888.00000	12	0
13	-888888.00000	14	0	15	15 -888888.00000		0
17	-888888.00000	18	0	19	-888888.00000	20	0

 $-777777.00000 \quad 0 -777777.00000 \quad 0 \quad 13.00000 \quad 0 -888888.00000 \quad 0 -888888.000000 \quad 0 -888888.00000 \quad 0 -888888.000000 \quad 0 -888888.00000 \quad 0 -888888.000000 \quad 0 -888888.000000 \quad 0 -888888.000000 \quad 0 -888888.$

a snippet of Fortran code that writes data in little_r format

```
C header:
      WRITE ( UNIT = iunit , ERR = 19 , FMT = rpt format )
              xlat,xlon, string1 , string2 ,
              string3 , string4 , ter, kx*6, 0,0,iseq num,0,
              logical1, logical2, logical3,
               -888888, -888888, date char,
               slp, 0, -888888., 0, -8888888., 0, -8888888., 0, -8888888., 0,
                     -888888.,0,
                     -888888.,0, -888888.,0, -888888.,0, -888888.,0,
                     -888888.,0,
                     -888888.,0, -888888.,0
C report:
      do 100 k = 1 , kx
         WRITE ( UNIT = iunit , ERR = 19 , FMT = meas format )
                p(k), 0, z(k), 0, t(k), 0, td(k), 0,
                spd(k), 0, dir(k), 0,
                -888888.,0, -8888888.,0, -8888888.,0, -8888888.,0
100
    continue
C end of report line:
      WRITE ( UNIT = iunit , ERR = 19 , FMT = meas format )
     * -777777.,0, -777777.,0,float(kx),0,
     * -888888.,0, -888888.,0, -888888.,0,
     * -888888.,0, -888888.,0, -888888.,0,
     * -888888.,0
C end of message line:
      WRITE ( UNIT = iunit , ERR = 19 , FMT = end format ) kx, 0, 0
```

QSCAT: U and V fields are used to store observation errors of wind speed and wind direction

press	geo height	temp	dew-p	speed	dir	u	V	rh	thickness
						obs error of wind speed	obs error of wind direction		

√ 1.0 m/s minimum obs error imposed by WRFDA

GPS Refractivity

press	geo height	temp	dew-p	speed	dir	u	V	rh	thickness
	height (m)		Refractivity (N)	Impact parameter (x1.e-3)	azimuth angle (degree)	latitude	longitude	Bending angle (radx1.e7)	Opt. bending

- ✓ little_r format and OBSPROC were developed before some observation types became available
- ✓ OBSPROC was extended to handle some "non-conventional" observation types in a non-standard way

Questions?

wrfhelp@ucar.edu