Eclipse Coordination Tools Software Development at SEN3

Christian Koehler

Centrum voor Wiskunde en Informatica (CWI)
Amsterdam, The Netherlands

17th October 2007

Outline

- Reo Tools
 - Eclipse Overview
 - Editor, Animation & Model Checking
 - Connector Reconfiguration
- Automata Tools
 - Concepts & Features
 - Extension Types
- Implementations
 - Example Application
 - Code Generation

Outline

- Reo Tools
 - Eclipse Overview
 - Editor, Animation & Model Checking
 - Connector Reconfiguration
- Automata Tools
 - Concepts & Features
 - Extension Types
- Implementations
 - Example Application
 - Code Generation

Eclipse Platform

- Open-source, platform-independent software framework.
- Sophisticated plug-in architecture.
- Meta-tools for development of graphical and textual editors.
- Integration of heterogeneous tools possible.

Eclipse Coordination Tools (ECT)

Reo Tools

Automata Tools

Reo Tools

- Edit connectors graphically and save them as XML/XMI.
- Generate Flash animations of connectors on the fly.
- Extend the Reo model to define your own channel types.
- Model check Reo circuits and constraint automata.

Reo Editor

Supported channel types:

- Sync, LossySync
- FIFO, LossyFIFO
- SyncDrain, AsyncDrain
- SyncSpout, AsyncSpout

Figure: Exclusive router.

Reo Editor

Other primitive connectors:

- Writer, Reader
- Replicator, Merger
- ..

Figure: Sequencer.

Generic Primitives

Support for Generics:

- Connectors can be exported to a library.
- Internal structure and behaviour is hidden.
- Reuse connectors to build more complex ones.

Figure: 3-Counter circuit.

 \Rightarrow Modularization and encapsulation.

Reo Animation

Compositionally computed animations :

Figure: Animated 3-Counter.

Integrated Model Checker

Model Checking:

- Efficient symbolic model checking implemented in C++.
- Joint project with TU-Dresden.

Figure: Dining philosophers

Dynamic Reo

Need for dynamic coordination:

- Software systems evolve over time.
- Static connectors are not sufficient for complex applications.
- New paradigms demand highly dynamic adaptations (e.g. in SOA or Grid computing).
- Deployment and reconfiguration procedures are essential for a reliable coordination environment.

High-Level Transformations

Connector Reconfiguration:

- Support for local and global changes.
- Pattern-based transformation rules.
- Perform complex refactorings in an atomic step.
- ⇒ Need for a high-level transformation language.

SOA Example

Figure: SOA process customization.

Graph Transformation

- Modeling structure or behavior is often done with some sort of graphs.
- Model transformation can be realized as a transformation of graphs.
- A set of transformation rules constitutes a graph grammar.

Figure: SOA process.

Process Customization

Figure: Rewrite rule "Add flight alternative".

EMF Model Transformation (EMT)

Figure: Graphical Transformation editor.

Outline

- Reo Tools
 - Eclipse Overview
 - Editor, Animation & Model Checking
 - Connector Reconfiguration
- 2 Automata Tools
 - Concepts & Features
 - Extension Types
- Implementations
 - Example Application
 - Code Generation

Eclipse Coordination Tools (ECT)

Reo Tools

Automata Tools

Automata Tools

- General purpose automata tools.
- Separation of graph structure and attached data (extensions).
- Compositional validation and product.
- Automata extensions are registered using Eclipse' extension point mechanisms.
- Can be (de)activated in the context menu of the editor.

Automata Tools

Currently implemented extensions:

- Start states, port names, local memory, constraints, costs.
 - ⇒ Constraint automata with memory and costs.

Start State Extensions

 Boolean flag attached to states. It indicates whether a state is a start / initial state.

Extension Product

 $isStart_{1\times 2} = isStart_{1} \wedge isStart_{2}$

Port Names Extensions

- List of port names that is attached to the automaton itself and all of its transitions.
- Validation routines check for illegal (e.g. undefined, duplicate) port names.

Extension Product

 $Names_{1\times 2} = Names_1 \cup Names_2$

 $names_{1\times 2} = names_1 \cup names_2$ iff

 $Names_1 \cap names_2 = Names_2 \cap names_1$

Memory Extensions

- List of memory cell names that is attached to states.
- Can be referenced in constraints.

Extension Product

 $memory_{1\times 2} = memory_1 \uplus memory_2$

Constraint Extensions

- Constraints over the port names and the memory cells are attached to the transitions.
- Only the memory cells of the source and the target state can be used (local memory).

Extension Product

 $constraint_{1\times 2} = constraint_{1} \wedge constraint_{2}$

Cost Extensions

- List of cost algebras is attached to the automaton.
- List of cost values is attached to the transitions.
- Implementations of the algebras handle the parsing and the product of cost values.

Extension Product

 $cost_{1\times 2} = cost_1 \oplus cost_2$

Outline

- Reo Tools
 - Eclipse Overview
 - Editor, Animation & Model Checking
 - Connector Reconfiguration
- Automata Tools
 - Concepts & Features
 - Extension Types
- Implementations
 - Example Application
 - Code Generation

Reo at Runtime

Implementations:

- Code generation from constraint automata (a.k.a. CASP). Reo connectors have to be converted to constraint automata first.
- 2 Local runtime engine based on constraint programming. Adaptive, but centralized implementation.
- Oistributed Reo implemented with Scala Actors. Designed to support arbitrary reconfigurations.

Reo at Runtime

Reo at Runtime

Code Generation

Code generation from constraint automata:

- Collect (or implement first, if required) component / service wrappers.
- Design a coordinator as a CA or derive one from a Reo connector.
- Use graphical wiring tool to attach the wrappers to the coordinator.

Designing the Coordinator

- Create Reo circuit for collected components.
- Convert the connector to a CA.
- Generate coordinator code.

Reo2CA Conversion

- Constraint automata as semantical model for Reo.
- Starting point for model checking and code generation.

Wiring the Components

- Drag'n'Drop components and coordinators into the editor.
- Wire the component ports with coordinator ports.
- Generate runnable application.

Conclusion

What we can do already:

- Design, simulate and model check Reo connectors.
- Derive formal automata models from connectors.
- Generate runnable code from connectors and integrate them with existing component implementations.
- Use predefined wrappers for service protocols (e.g. RSS, SOAP, REST) and specific services (e.g. Google calendar).

Conclusion

What we want to do in the future:

- Modeling of QoS properties (CooPer project).
- Integration with workflow languages and grid architectures (WoMaLaPaDia project).
- Architectural view on services, coordination, grid etc.
- Framework based implementation.

Links

- Eclipse Coordination Tools. http://www.cwi.nl/~koehler/ect
- Reo Animation Repository. http://www.cwi.nl/~proenca/webreo

