Notes on affine roots.

2.1. Fix a (reduced, finite) root datum $(X, \mathfrak{R}, X^{\vee}, \mathfrak{R}^{\vee})$. Thus, X and X^{\vee} are dual lattices of finite rank, while $\mathfrak{R} \subseteq X$ and $\mathfrak{R}^{\vee} \subseteq X^{\vee}$ are finite subsets constrained by conditions spelled out in, e.g., Bourbaki. Elements of \mathfrak{R} are called *roots* of the root datum; elements of \mathfrak{R} are called *coroots*.

We regard roots as linear functionals on $X_{\mathbf{R}}^{\vee} := X^{\vee} \otimes \mathbf{R}$. We write W for the Weyl group of \mathfrak{R} : the group generated by the reflections in $X_{\mathbf{R}}^{\vee}$ corresponding to the root hyperplanes.

For our purposes, an *affine root* is a function on $X_{\mathbf{R}}^{\vee}$ of the form $\alpha + k$, where $\alpha \in \mathfrak{R}$ and $k \in \mathbf{Z}$. We set $\mathfrak{R}^{\mathrm{aff}} = \mathfrak{R} \times \mathbf{Z}$, viewed as the set of affine roots. We picture them as affine hyperplanes in $X_{\mathbf{R}}^{\vee}$ equipped with orientations of their normals. The value of an affine root at a point describes the signed distance from the affine hyperplane to the point, with a positive, *resp.* negative, sign when the normal points toward, *resp.* away from, the point. For all $x \in X_{\mathbf{R}}^{\vee}$, we set

$$\mathfrak{R}^{\mathrm{aff}}(x) = \{ \alpha + k \in \mathfrak{R}^{\mathrm{aff}} \mid \alpha(x) + k = 0 \}.$$

Note that the projection $\mathfrak{R}^{\mathrm{aff}}(x) \to \mathfrak{R}$ that sends $\alpha + k \mapsto \alpha$ is a bijection precisely when x belongs to $(\mathbf{Z}\mathfrak{R})^{\vee}$, the dual lattice to the root lattice. In particular, X^{\vee} is a sublattice of $(\mathbf{Z}\mathfrak{R})^{\vee}$.

2.2. Given a point $x \in X_{\mathbf{R}}^{\vee}$ and a real number s > 0, we set

$$\mathfrak{R}^{\mathrm{aff}}(x,s) = \{\alpha + k \in \mathfrak{R}^{\mathrm{aff}} \mid \alpha(x) + k = s\},$$

$$\mathfrak{R}^{\mathrm{aff}}_{<}(x,s) = \{\alpha + k \in \mathfrak{R}^{\mathrm{aff}} \mid 0 \le \alpha(x) + k < s\}.$$

Definition 2.1. We define an (x, s)-bouquet of the given root datum to be a pair (ξ, \mathfrak{D}) , where $\xi \in X^{\vee}$ and $\mathfrak{D} \subseteq \mathfrak{R}^{\mathrm{aff}}(\xi) \cap \mathfrak{R}^{\mathrm{aff}}(x, s)$.

Definition 2.2. For any (x, s)-bouquet (ξ, \mathfrak{D}) , we define a *coloring* of (ξ, \mathfrak{D}) to be a vector $\epsilon \in X_{\mathbb{R}}^{\vee}$ such that

$$\begin{array}{ll} \text{if } \alpha + k \notin \mathfrak{D}, & \text{then } \alpha(\epsilon) \geq 0, \\ \text{and if } \alpha + k \in \mathfrak{D}, & \text{then } \alpha(\epsilon) < 0, \end{array} \right\} \quad \text{for all } \alpha + k \in \mathfrak{R}^{\mathrm{aff}}(\xi) \cap \mathfrak{R}^{\mathrm{aff}}(x,s).$$

We write $\operatorname{Col}(\xi, \mathfrak{D})$ for the set of colorings of (ξ, \mathfrak{D}) . For any W-orbit o on $X_{\mathbb{R}}^{\vee}$, we write $\operatorname{Col}(\xi, \mathfrak{D}, o)$ for the subset of colorings that belong to o.

Definition 2.3. For any $\xi \in X^{\vee}$ and $\epsilon \in X_{\mathbf{R}}^{\vee}$, we define the *inversion set* of (ξ, ϵ) to be

$$\operatorname{Inv}_{\xi}(\epsilon) = \operatorname{Inv}_{\xi}^{x,s}(\epsilon) := \{\alpha + k \in \mathfrak{R}^{\operatorname{aff}}(\xi) \cap \mathfrak{R}_{<}^{\operatorname{aff}}(x,s) \mid \alpha(\epsilon) < 0\}.$$

Definition 2.4. We define the *LLT function* of an (x, s)-bouquet (ξ, \mathfrak{D}) to be the function $LLT_{\xi,\mathfrak{D}}(t,-) = LLT_{\xi,\mathfrak{D}}^{x,s}(t,-) : X_{\mathbf{R}}^{\vee}/W \to \mathbf{Z}[t]$ such that

$$LLT_{\xi,\mathfrak{D}}(t,o) = \sum_{\epsilon \in Col(\xi,\mathfrak{D},o)} t^{|Inv_{\xi}(\epsilon)|}.$$

Parallel to (1.1), we also set

$$Inv(\xi) = \{\alpha + k \in \mathfrak{R}^{aff}_{<}(x, s) \mid \alpha(\xi) + k < 0\}.$$

Note that $Inv(\xi)$ is disjoint from $\mathfrak{R}^{aff}(\xi)$, hence disjoint from $Inv_{\xi}(\epsilon)$ for any ϵ .

2.3. The LLT function of a bouquet is constructible with respect to a finite stratification of $X_{\mathbf{R}}^{\vee}/W$ determined by the roots. To explain how, it is convenient to fix a system of simple roots $\{\alpha_1, \ldots, \alpha_r\} \subseteq \mathfrak{R}$. For each subset $J \subseteq \{1, \ldots, r\}$, form the locus

$$Z_{J} = \left\{ x \in X_{\mathbf{R}}^{\vee} \middle| \begin{array}{l} \alpha_{i}(x) > 0 & \text{for all } i \in J, \\ \alpha_{i}(x) = 0 & \text{for all } i \notin J \end{array} \right\}.$$

Note that if $J = \emptyset$, then $Z_J = \{0\}$, whereas if $J = \{1, ..., r\}$, then Z_J is an open region known as the *fundamental Weyl chamber* associated with the system of simple roots.

We declare two subsets of $\{1,\ldots,r\}$ to be equivalent whenever the corresponding sets of simple roots are conjugate under W. Let \mathfrak{J} be a full, irredundant set of representatives of the equivalence classes under this relation. Then the disjoint union of the loci Z_J for $J \in \mathfrak{J}$ provides a fundamental domain for the W-action on $X_{\mathbf{R}}^{\vee}$. The images of the sets Z_J in $X_{\mathbf{R}}^{\vee}/W$ form a stratification of $X_{\mathbf{R}}^{\vee}/W$, along which our LLT functions are locally constant.

For this reason, it suffices to evaluate $LLT_{\xi,\mathfrak{D}}(t,o)$ at orbits o of the form $[\rho_J^\vee]$, where $J \in \mathfrak{J}$ and ρ_J^\vee is defined as follows. Let $\{\omega_1^\vee,\ldots,\omega_r^\vee\}$ be the basis of $(\mathbf{Z}\mathfrak{R})^\vee$ dual to the basis of simple roots. The elements ω_i^\vee are also known as fundamental coweights. Let $\mathfrak{R}_J \subseteq \mathfrak{R}$ be the root subsystem generated by the simple roots α_i with $i \in J$, and let

$$\rho_J^{\vee} = \sum_{i \in J} \omega_i^{\vee}.$$

Then $\alpha_i(\rho_I^{\vee}) > 0$ when $i \in J$, and $\alpha_i(\rho_I^{\vee}) = 0$ otherwise.

In the case where $J = \{1, \dots, r\}$, we will write ρ^{\vee} in place of ρ_J^{\vee} . We will also write

$$LLT_{\xi,\mathfrak{D}}^{x,s}(t,J)$$
, resp. $Col(\xi,\mathfrak{D},J)$

in place of $LLT_{\xi,\mathfrak{D}}^{x,s}(t,[\rho_J^\vee])$, resp. $Col(\xi,\mathfrak{D},[\rho_J^\vee])$. We are now ready to explain how the new definitions recover the classical ones.

2.4. Take $(X, \mathfrak{R}, X^{\vee}, \mathfrak{R}^{\vee})$ to be the root datum of the semisimple algebraic group SL_n . We identify X^{\vee} with the lattice $\mathbf{Z}_0^n = \{x \in \mathbf{Z}^n \mid \sum_i x_i = 0\}$. The roots of SL_n are the functionals $\alpha_{i,j}$, for $1 \le i, j \le n$ with $i \ne j$, defined by

$$\langle \alpha_{i,j}, x \rangle = x_i - x_j$$

for all $x \in X^{\vee}$. Without loss of generality, we may take the simple roots to be $\alpha_i := \alpha_{i,i+1}$ for $1 \le i \le n-1$. Then the fundamental coweights are given by $\omega_i = \frac{1}{2}(1,\ldots,1,-1,\ldots,-1)$, where the sign change occurs between the *i*th and (i+1)st entries.

Each partition $\mu \vdash n$ defines a subset $J \subseteq \{1, \dots, n-1\}$: explicitly,

$$J = \{\mu_1, \mu_1 + \mu_2, \mu_1 + \mu_2 + \mu_3, \ldots\} \setminus \{n\}.$$

Writing l for the length of μ , so that $\mu_i = 0$ for i > l, we have

$$\rho_J^\vee = (\overbrace{\frac{l}{2}, \dots, \frac{l}{2}}^{\mu_1 \text{ times}}, \overbrace{\frac{l-2}{2}, \dots, \frac{l-2}{2}}^{\mu_2 \text{ times}}, \dots, \overbrace{-\frac{l}{2}, \dots, -\frac{l}{2}}^{\mu_l \text{ times}}).$$

In particular, $\rho^{\vee} = (\frac{n-1}{2}, \frac{n-3}{2}, \dots, -\frac{n-1}{2}).$

Example 2.5. For any x, s, we set

$$X^{\vee}(x,s) = \{ \xi \in X^{\vee} \mid \alpha(\xi) + k \ge 0 \text{ for all } \alpha + k \in \mathfrak{R}^{\mathrm{aff}}(x,s) \}.$$

Then the set $X^{\vee}(x,s)$ generalizes the *Sommers region* studied in the combinatorics literature: See Sommers's paper [S] and the related work of Lusztig–Smelt, Fan, and Sage. Indeed, if d is coprime to n, then $X^{\vee}(\frac{1}{n}\rho^{\vee},\frac{d}{n})$ is precisely the set $\mathbf{Z}_0^n(d)$ used by Hikita, discussed in §1.8.

2.5. Fix an arbitrary real number ϱ . For all $x \in X_{\mathbf{R}}^{\vee}$ such that $-nx_i + \varrho \in \mathbf{Z}$ for all i, and $\xi \in X^{\vee}$, let

$$C(\xi) = \{c_1, \dots, c_n\}$$
 where $c_i = n\xi_i - nx_i + \varrho$ for $1 \le i \le n$.

For instance, if $\varrho = \frac{n-1}{2}$ and $x = \frac{1}{n}\rho^{\vee}$, then this definition of $C(\xi)$ recovers the definition used in §1.8. The following elementary observation is the key:

Proposition 2.6. For any ϱ , x, ξ as above, and affine root $\alpha_{i,j} + k \in \mathfrak{R}^{\mathrm{aff}}(\xi)$, we have

$$\frac{1}{n}(c_j - c_i) = \alpha_{i,j}(x) + k.$$

Equivalently, for any x, ξ , and real s > 0, the map

$$\mathfrak{R}^{\mathrm{aff}}(\xi) \cap \mathfrak{R}^{\mathrm{aff}}(x,s) \to \{(c,c') \in C(\xi)^2 \mid \frac{1}{n}(c-c') = s\}$$
$$\alpha_{i,j} + k \mapsto (c_j,c_i)$$

is a bijection.

Corollary 2.7. For any ϱ , x, ξ as above, and positive integer d, the map

$$\mathfrak{R}^{\mathrm{aff}}(\xi) \cap \mathfrak{R}^{\mathrm{aff}}(x, \frac{d}{n}) \to \{c \in C(\xi) \mid c + d \in C(\xi)\}\$$
$$\alpha_{i,j} + k \mapsto c_i$$

induces a bijection between:

- Subsets $\mathfrak{D} \subseteq \mathfrak{R}^{\mathrm{aff}}(\xi) \cap \mathfrak{R}^{\mathrm{aff}}(x, \frac{d}{n})$.
- Subsets $D \subseteq C(\xi)$ such that if $c \in D$, then $c + d \in D$.

Note that the Weyl group is $W = S_n$, acting on $X^{\vee} = \mathbb{Z}_0^n$ by permuting entries. Hence, if $J \subseteq \{1, \ldots, n-1\}$ corresponds to $\mu \vdash n$ as in §2.3, then in any vector of the form $\rho_J^{\vee} \cdot w$ with $J \subseteq \{1, \ldots, n-1\}$ and $w \in W$, the *i*th largest value among the entries is repeated μ_i times. Below, define

$$T_{\mu,w}:C(\xi)\to\mathbf{N}$$

to send the first μ_1 entries of (c_1, \ldots, c_n) to 1, the next μ_2 entries to 2, etc.

Proposition 2.8. Fix ϱ , x, d, ξ as above. Let $J \subseteq \{1, ..., n-1\}$ correspond to $\mu \vdash n$. Then the map $w \mapsto T_{\mu,w}$ induces a bijection between:

- The W-orbit of ρ_I^{\vee} .
- The set of functions $T: C(\xi) \to \mathbb{N}$ such that $\mu_k = |T^{-1}(k)|$.

Moreover, we have $\alpha_{i,j}(\epsilon) \geq 0$ if and only if $T(c_i) \leq T(c_i)$.

Corollary 2.9. Fix ϱ , x, d as above, and an $(x, \frac{d}{n})$ -bouquet (ξ, \mathfrak{D}) . Let $D \subseteq C(\xi)$ correspond to \mathfrak{D} , and let $J \subseteq \{1, \ldots, n-1\}$ correspond to $\mu \vdash n$. Suppose that $C(\xi)$ is d-contiguous. Then:

(1) The map $\rho_{J(\mu)}^{\vee} \cdot w \mapsto T_{\mu,w}$ is a bijection

$$\operatorname{Col}(\xi, \mathfrak{D}, J) \xrightarrow{\sim} \operatorname{Col}(C(\xi), D, \mu).$$

(2) If $\rho_J^{\vee} \cdot w \in \text{Col}(\xi, \mathfrak{D})$, then the map $\alpha_{i,j} + k \mapsto (c_j, c_i)$ is a bijection

$$\operatorname{Inv}_{\xi}(\rho_{I}^{\vee} \cdot w) \xrightarrow{\sim} \operatorname{Inv}(T).$$

In particular, $LLT_{\xi,\mathfrak{D}}^{x,d/n}(t,J) = \langle h_{\mu}, LLT_{C(\xi),D}(t) \rangle$.

Conversely, any element (C, D) of the set $\mathbf{A}(d)$ in §1.5, such that |C| = n, arises from some ϱ , x and $(x, \frac{d}{n})$ -bouquet (ξ, \mathfrak{D}) . For instance, we can take $\varrho = \frac{1}{n} \sum_{i} c_{i}$ and $x_{i} = -\frac{1}{n}(c_{i} - \varrho)$ for all i and $\xi = 0$. Invoking Lemma 1.1, we conclude:

Theorem 2.10. For any d-tuple of ribbons \vec{v} of size n, we can find some $x \in X_{\mathbf{R}}^{\vee}$ for $G = \operatorname{SL}_n$ and $(x, \frac{d}{n})$ -bouquet (ξ, \mathfrak{D}) such that

$$LLT_{\xi,\mathfrak{D}}^{x,d/n}(t,J) = \langle h_{\mu}, LLT_{\vec{v}}(t) \rangle$$

whenever $J \subseteq \{1, ..., n-1\}$ corresponds to $\mu \vdash n$.