2005 G2

Ezra Guerrero Alvarez

March 4, 2022

2005 G2

2005 G2

Six points are chosen on the sides of an equilateral triangle ABC: A_1 , A_2 on BC, B_1 , B_2 on CA and C_1 , C_2 on AB, such that they are the vertices of a convex hexagon $A_1A_2B_1B_2C_1C_2$ with equal side lengths.

Prove that the lines A_1B_2 , B_1C_2 and C_1A_2 are concurrent.

Let P be the point inside the hexagon such that $\triangle A_1PA_2$ is equilateral. Then, since $\overline{PA_2} \parallel \overline{B_1B_2}$ and $PA_2 = B_1B_2$, it follows $PB_2B_1A_2$ is a rhombus. analogously, $PC_1C_2A_1$ is a rhombus. Thus, P is equidistant to A_1, A_2, B_2, C_1 , so $A_1A_2B_2C_1$ is cyclic. Since $A_1A_2 = B_2C_1$, it is an isosceles trapezoid. Note that B_1 and C_2 lie on the perpendicular bisector of $\overline{A_2B_2}$ and $\overline{A_1C_1}$. Since the diagonals $\overline{A_2C_1}$, $\overline{A_1B_2}$ of the isosceles trapezoid meet at a point on this perpendicular bisector, it follows the three diagonals of the hexagon concur.