Problem 1. Zygmund p58 exercise 01

- (a) There is an analogue for bases different from 10 of usual decimal expansion of number. If b is an integer larger than 1 and 0 < x < 1, show that there exist integral coefficient c_k , $0 \le c_k < b$, such that $x = \sum_{k=1}^{\infty} c_k b^{-k}$. Furthermore, show that expansion is unique unless $x = cb^{-k}$, in which case there are two expansions.
- (b) When b = 3, the expansion is called the triadic or ternary expansion of x. Show that Canter set consist of point in [0, 1] which has triadic representation such that c_k is either 0 or 2, namely,

$$\mathcal{C} = \{x \in [0,1] : x = \sum_{k=1}^{\infty} c_k 3^{-k}, c_k \in \{0,2\}\}$$

Random Walks on Graphs

We define the following terms^a:

Definition 0.1 (Hitting time). The hitting time h_{uv} (sometimes called the mean first passage time) is the expected number of steps in a random walk that starts at u and ends upon first reaching v.

Definition 0.2 (Commute time). We define C_{uv} , the commute time between u and v, to be $C_{uv} = h_{uv} + h_{vu} = C_{vu}$. This is the expected time for a random walk starting at u to return to u after at least one visit to v.

Definition 0.3 (Cover time). Let $C_u(G)$ denote the expected length of a walk that starts at u and ends upon visiting every vertex in G at least once. The cover time of G, denoted C(G), is defined by $C(G) = \max_u C_u(G)$.

Solution.

$$mR(G) \le C(G) \le 32mR(G)\log_2 n + 1.$$

 $[^]a$ motwani 95.

Problem 2. Zygmund p58 exercise 03

Construct a two-dimensional Cantor set in the unit square $\{(x,y): 0 \le x,y \le 1\}$ as follows. Subdivide the square into nine equal parts and keep only the four closed corner squares, removing the remaining region (which forms a cross). Then repeat this process in a suitably scaled version for the remaining squares, ad infinitum. Show that the resulting set is perfect, has plane measure zero, and equals $\mathcal{C} \times \mathcal{C}$.

Solution.

Let D_0 be the unit square $\{(x,y): 0 \le (x,y) \le 1\}$. Let D_k be the set remaining after i steps. Let $D = \bigcap_{k=1}^{\infty} D_k$ be the resulting set.

(a) To prove that it is a perfect set, we need to show that every point in the set is a limit point of the set.

Theorem 1.7

- (i) The intersection of any number of closed sets is closed.
- (ii) The union of any number of open sets is open.

Since each D_k is closed, it follows from Theorem 1.7 that D is closed. Note that D_k consists of 4^k closed disjoint intervals, each of which

(b)

Since D is covered by the intervals in any D_k , we have

$$|D|_e \le |D_k|_e = \left(\frac{4}{9}\right)^k.$$

Let $k \to \infty$, we have $|D|_e = 0$.

(c)

$$D:=\bigcap_{k=1}^{\infty}D_k:=\bigcap_{k=1}^{\infty}C_k\times C_k=\left(\bigcap_{k=1}^{\infty}C_k\right)\times\left(\bigcap_{k=1}^{\infty}C_k\right)=C\times C.$$

To prove that $\bigcap_{k=1}^{\infty} C_k \times C_k = (\bigcap_{k=1}^{\infty} C_k) \times (\bigcap_{k=1}^{\infty} C_k)$, start with the inclusion from left to right:

For all

$$(x,y) \in \bigcap_{k=1}^{\infty} C_k \times C_k$$

we have

$$(x,y) \in C_k \times C_k, \forall k \in \mathbb{N}.$$

By the definition of Cartesian product, we have

$$x \in C_k, \forall k \in \mathbb{N},$$

 $y \in C_k, \forall k \in \mathbb{N}.$

Thus,

$$x \in \bigcap_{k=1}^{\infty} C_k,$$
$$y \in \bigcap_{k=1}^{\infty} C_k.$$

Therefore,

$$(x,y) \in \left(\bigcap_{k=1}^{\infty} C_k\right) \times \left(\bigcap_{k=1}^{\infty} C_k\right), \forall (x,y) \in D.$$

Next, prove the inclusion from right to left. For all

$$(x,y)\in \left(\bigcap_{k=1}^\infty C_k\right)\times \left(\bigcap_{k=1}^\infty C_k\right)$$

we have

$$x \in C_k, \forall k \in \mathbb{N},$$

$$y \in C_k, \forall k \in \mathbb{N}.$$

By the definition of Cartesian product, this implies that

$$(x,y) \in C_k \times C_k, \forall k \in \mathbb{N}.$$

Thus, $(x,y) \in \bigcap_{k=1}^{\infty} C_k \times C_k$ since it satisfies the definition of intersection.

Therefore, we can conclude that the two sets are equal:

$$\bigcap_{k=1}^{\infty} C_k \times C_k = \left(\bigcap_{k=1}^{\infty} C_k\right) \times \left(\bigcap_{k=1}^{\infty} C_k\right).$$

Problem 3. Zygmund p59 exercise 04

Construct a subset of [0,1] in the same manner as the Cantor set by removing from each remaining interval a subinterval of relative length $\theta, 0 < \theta < 1$. Show that the resulting set is perfect and has measure zero.