Computer Science & IT

Discrete Mathematics

Set Theory & Algebra

Lecture No. 12

Recap of Previous Lecture

Ref + Anti-Symm+ Tran.

Partial Order Relation / Partially Ordered Set

Comparability

Total Order Relation / Totally Ordered Set

Least Upper Bound / Greatest Lower Bound

Topics to be Covered

Topic: Least Upper Bound

Let (A, \leq) be a POSET, for any two elements $a, b \in A$ if there exists an element $c \in A$ such that,

 $a \le c$ and $b \le c$,

then c is called upper bound of a and b,

And if there exists no element $d \in A$ such that

 $a \le d$ and $b \le d$ and $d \le c$,

then c is called least upper bound of a and b

Topic: Greatest Lower Bound

Let (A, \leq) be a POSET, for any two elements $a,b \in A$ if there exists an element

 $c \in A$ such that, $c \le a$ and $c \le b$,

then c is called lower bound of a and b,

And if there exists no element $d \in A$ such that

$$d \le a$$
 and $d \le b$ and $c \le d$,

then c is called greatest lower bound of a and b

Topic: Least Upper Bound / Greatest Lower Bound

Note: O let
$$A$$
 is any set of real numbers, then (A, \leq) is a POSET, for any two elements $a, b \in A$ lub (a, b) - Max (a, b) Glb (a, b) = Min (a, b)

Topic: Least Upper Bound / Greatest Lower Bound

Note: Det A is Set al all +ve integers

then
$$(A, \div)$$
 is a POSET,

for any two elements $a, b \in A$

[Lub (a,b) :- $LCM(a,b)$

Gells (a,b) :- $GTCD(a,b)$

Sio LCM of GCD exists for al every pair al clements within the set

Topic: Least Upper Bound / Greatest Lower Bound

Note
$$\mathfrak{D}$$
:- Let A is any finite set, and $P(A)$ is the power set of set A .

then $(P(A), \subseteq)$ is a poset.

for any two sets $X, Y \in P(A)$

Lub $(X, Y) = X$ Union Y $(X \cap Y) \subseteq X$
 $glb(X, Y) = X$ intersection Y $(X \cap Y) \subseteq Y$

Q: let A={1,2,3,9,24}

and (A;) is

a POSET.

lub(2,3)=24

9: let
$$A = \{1, 2, 3, 4, 9\}$$

9: let
$$S = \{417, \{2,3\}, \{2,3,4\}, \{1,2,3,4,5\}\}$$

then (S, \subseteq) is a POSET

*
$$lub \{A, B\} = \{1, 2, 3, 4, 5\} = D$$

Q: let $A = \{1,2,3\}$ $Y(A) = \{f\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$ then $(P(A), \subseteq)$ is a Paset.

There any two sets in P(A), their union and intersection will always exists in P(A) itself

Topic: NOTE

In a POSET lub and/or 3lb need not exist for every pair a May elements, but if exists for any pair of May not clements then it is unique.

Topic: Minimal elements in a POSET

(A,R)

Let (A, \leq) be a POSET

An element $x \in A$ is called a minimal element of POSET(A, \le) if there exists no

element $y \in A$ other than x itself, such that $y \le x$

element X

the POSET 18

poset only if

minimal element

Topic: Minimal elements in a POSET

Topic: Maximal elements in a POSET

(A, R)

Let (A, \leq) be a POSET

An element $x \in A$ is called a maximal element of POSET($A, \le 1$) if there exists no element $y \in A$ other than x itself, such that $x \le y$.

$$\left(\frac{ie}{2}(x,y)\in R\right)$$

element X a

the POSET is called

maximal element a the POSET, only if

no other element on upper side of I apart

eg: let
$$A = \{1, 2, 3, 4, 6\}$$
 and (A, \div) is the POSET

eg let A = \$2,3,4,6,123 and (A, -) is the POSET.

12 is the only maximal elements of the above POSET.

Topic: Minimum element of a POSET

No minimum element exists in the POSET.

1' divides all the elements of the POSET. 1: 1 is the minimum element of the POSET.

Topic: Maximum element of a POSET

(A,R) Let (A, \leq) be a POSET An element of the POSET is Called maximum element cel the POSET only if it is on the upper side of all Other elements

An element $n \in A$ is called a maximum element of $POSET(A, \leq)$

if and only if

 $a \leq n, \forall a \in A$

n, taeth

(a, n) ER, taEA

Topic: Maximum element of a POSET

eg: let $A = \{1,2,3,4,6\}$ and (A,\div) is the POSET. No maximum element exists in the POSET

- 1) In a poset, minimal elements need not be unique
 - 2) If there exists two or more minimal elements in a POSET, the no "minimum" element will exist in that POSET.
- 3) If these exists a Unique Minimal element in the POSET, then same Minimal element Will also be the Minimum element of the POSET. (b) There can be at most one minimum element in a PaseT.

Topic: NOTE there exists at least one maximal element

- 1) In a POSET, maximal elements need not be unique
 - 2) If these exists two or more maximal elements, then maximum element will not exist in that POSET.
 - (3) If those exists a unique maximal element in a POSET, then same element will also be the maximum element all the POSET.
 - (4) These can be at most one maximum element in a POSET.

q: let A = {1,2,3,4,5,6,7,8} How many symmetric Rel are possible with exactly Case 2 Case ({(a,a)(b,b)(c,c)(d,d)}{(x,y),(y,x),(a,a),(b,b)} $\{(x,y)(y,x),(x,z),(z,x)\}$ f(2,4)(4,x), (4,z), (2,4)} $\{(x,z)(z,x),(y,z),(z,y)\}$

2 mins Summary

Topic

Least Upper Bound / Greatest Lower Bound

Topic

Minimal / Maximal elements in a POSET

least element

Topic

Minimum / Maximum element of a POSET

Greatest element

Topic

Lattice

THANK - YOU