Project Report: Rover Bot for Autonomous Maneuvering using GPS-GROUP 27

TA ASSIGNED- Pallav sir

Team Members

- Aman Raj (2023EEB1183)
- Ansh Singh (2023EEB1186)
- Jaskirat Singh (2023EEB1212)
- Vipul Kumar Singh (2023EEB1254)
- Yashraj Omar (2023EEB1258)

Objective

To develop a GPS-guided autonomous rover that can:

- Navigate to a set of GPS coordinates.
- Calculate orientation and heading using a magnetometer.
- Maneuver around obstacles using programmed logic.

Project Development Timeline

Week 1: Planning and Initial Testing

- Finalized the project stages:
- 1. Component testing
- 2. Circuit diagram and schematic
- 3. Pseudocode creation
- Successfully tested:
- ESP32 module
- NEO-6M GPS Module
- Created initial circuit diagram and added magnetometer for angle/heading calculation.

Week 2: Coding and Hardware Integration

- Converted pseudocode into working Arduino code.
- Began hardware assembly based on the schematic.
- Challenges:
- Faulty motor driver (only 2 output pins functional).
- ESP32 powering issues.
- GPS not returning precise latitude-longitude values.

Week 3: Troubleshooting GPS Issues

- Completed hardware setup.
- Major issue: GPS not returning correct latitude and longitude.
- Attempted:
- Switching from ESP32 Wrover to ESP32 Wroom.
- Consulting seniors and experts.
- Considering hardcoded GPS coordinates as a fallback.

Solution: Borrowed Magnetometer, GPS Module NEO-6M and ESP32 Wroom module (works better with GPS) from a senior only for video purposes.

Working Principle

The Rover Bot is designed to autonomously navigate from one location to another using GPS coordinates. The working of the bot involves multiple stages, each handling a different function — sensing, computation, decision-making, and motion control.

1. Initialization:

- The ESP32 microcontroller initializes all necessary components: the GPS module (NEO-6M), the magnetometer (e.g., HMC5883L), and the motor driver.
- It also sets up the UART communication for the GPS and I2C communication for the magnetometer.

2. Receiving GPS Coordinates:

- The NEO-6M GPS module continuously receives satellite signals and outputs location data in NMEA format.
- The ESP32 parses this data and extracts the latitude and longitude of the current position of the rover.
 - A target destination is either predefined in the code or updated externally.

3. Calculating Distance and Bearing:

- Using the current and destination GPS coordinates, the ESP32 computes the distance to the target and the bearing (direction) using spherical trigonometry formulas.
 - This bearing is the angle the bot should maintain with respect to the Earth's north to

reach the destination.

4. Determining Heading Using Magnetometer:

- The magnetometer provides the current orientation (heading) of the rover with respect to magnetic north.
- This heading is compared with the calculated bearing to determine how much the bot needs to turn.

5. Decision-Making and Motor Control:

- Based on the heading error (difference between the current heading and the desired bearing), the ESP32 decides:
 - To move straight (if aligned),
 - Turn left (if the bot needs to correct leftward), or
 - Turn right.
- It sends appropriate PWM and logic signals to the motor driver (e.g., L298N), which controls the two DC motors accordingly.
 - One motor is slowed down or reversed to facilitate turning.

6. Continuous Loop:

- The bot continuously updates its GPS position and heading.
- The comparison and correction loop continues until the rover reaches the vicinity of the target destination (within an acceptable error threshold, typically a few meters).

7. Error Handling and Fail-Safes:

- If GPS data is unavailable or unreliable, the bot can either halt or rely on hardcoded backup paths.
- In future versions, obstacle avoidance can be added using ultrasonic sensors to detect nearby barriers.

This sequence ensures that the rover navigates autonomously and adapts its direction in real-time as it progresses toward the goal.

Circuit Diagram Explanation

The circuit includes the following components:

- ESP32 Board: Central control unit.
- NEO-6M GPS Module: Connected to ESP32 via UART for receiving GPS data.
- Magnetometer: I2C-connected to ESP32 for heading calculation.
- Motor Driver (L298N or similar): Drives two DC motors.
- Power Supply: Either via USB/laptop or dedicated Li-ion battery.

Key connections:

- GPS TX \rightarrow ESP32 RX
- GPS RX → ESP32 TX
- Magnetometer SCL/SDA \rightarrow ESP32 GPIOs with I2C support
- Motor driver inputs \rightarrow ESP32 digital pins
- Motors \rightarrow Motor driver outputs

OUR CODE (NEXT PAGE)

PART-1

```
| # Striction cutting of the tender of the t
```

PART 2

Code Overview

- 1. Initialize GPS, Magnetometer, Motors
- 2. Read current GPS coordinates
- 3. Compare with destination coordinates
- 4. Calculate bearing using magnetometer
- 5. Adjust rover direction using motors
- 6. Repeat until destination is reached

Applications in Industry

- 1. Agriculture:
 - Autonomous tractors or equipment navigation using GPS for precision farming.
- 2. Logistics & Warehousing:
 - Self-navigating trolleys for transporting materials within large facilities.
- 3. Surveillance and Patrolling:
 - Autonomous bots for border surveillance, area patrolling using predefined GPS routes.
- 4. Mining and Exploration:
- GPS-guided rovers to explore hazardous zones without human involvement.
- 5. Disaster Management:
- Deployment of autonomous bots in disaster-hit areas where manual intervention is risky.

Challenges and Future Scope

Challenges:

- GPS accuracy and signal inconsistency
- Power reliability for ESP32-ESP sourced power from computer instead of battery
- Hardware faults (motor driver output pins not dissapiating equal power to all motors, output pins of motor driver not working properly, etc)

Future Improvements:

- Integration of obstacle detection using ultrasonic or LiDAR sensors.
- Real-time tracking and remote monitoring of diverse remote terrains
- Improved GPS alternatives like RTK-GPS for centimeter-level accuracy.