Отчёт по лабораторной работе №2

Сетевые технологии

Ищенко Ирина НПИбд-02-22

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	8
4	Выводы	11

Список иллюстраций

2.1	Конфигурации сети	6
2.2	Топология сети	7
3.1	Предельно допустимый диаметр коллизий в Fast Ethernet	8
3.2	Проверка работоспособности по первой модели	9
3.3	Наихудшие пути	9
3.4	Проверка работоспособности по второй модели	LO

Список таблиц

1 Цель работы

Изучение принципов технологий Ethernet и Fast Ethernet и практическое освоение методик оценки работоспособности сети, построенной на базе технологии Fast Ethernet.

2 Задание

Требуется оценить работоспособность 100-мегабитной сети Fast Ethernet в соответствии с первой и второй моделями. Конфигурации сети (рис. 2.1). Топология сети (рис. 2.2).

Варианты заданий

No	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6
1.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 96 м	ТХ, 92 м	ТХ, 80 м	ТХ, 5 м	ТХ, 97 м	ТХ, 97 м
2.	100BASE- ТХ, 95 м	10021102		100BASE- ТХ, 90 м	100BASE- ТХ, 90 м	100BASE- ТХ, 98 м
3.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 5 м	ТХ, 90 м	ТХ, 100 м
4.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 70 м	ТХ, 65 м	ТХ, 10 м	ТХ, 4 м	ТХ, 90 м	ТХ, 80 м
5.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 15 м	ТХ, 90 м	ТХ, 100 м
6.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 70 м	ТХ, 98 м	ТХ, 10 м	ТХ, 9 м	ТХ, 70 м	ТХ, 100 м

Рис. 2.1: Конфигурации сети

Рис. 2.4. Топология сети

Рис. 2.2: Топология сети

3 Выполнение лабораторной работы

Оценим работоспособность с помощью первой модели:

Вычислим диаметр домена коллизий и сравним его с референтным значением. По условию у нас имеются два повторителя класса II и все сегменты типа 100BASE-TX, в соответствии с таблицей (рис. 3.1) получаем, что предельно допустимый диаметр домена коллизий в Fast Ethernet 205 м.

Предельно допустимый диаметр домена коллизий в Fast Ethernet

Тип повторителя	Все сегменты ТХ или Т4	Все сегменты FX	Сочетание сегментов (Т4 и ТХ/FX)	Сочетание сегментов (ТХ и FX)
Сегмент, соединяющий два узла без повторителей	100	412,0	_	-
Один повтори- тель класса I	200	272,0	231,0	260,8
Один повтори- тель класса II	200	320,0	_	308,8
Два повторителя класса II	205	228,0	_	216,2

Рис. 3.1: Предельно допустимый диаметр коллизий в Fast Ethernet

Посчитаем суммы длин сегментов в каждой строке и сравним их с референтным значением. Значения сетей 1, 3 и 4 меньше 205, следовательно это работоспособные сети(рис. 3.2).

ioithenko							
	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6	<205
1	96	92	80	5	97	97	198
2	95	85	85	90	90	98	283
3	60	95	10	5	90	100	200
4	70	65	10	4	90	80	164
5	60	95	10	15	90	100	210
6	70	98	10	9	70	100	207

Рис. 3.2: Проверка работоспособности по первой модели

Оценим работоспособность сети с помощью второй модели:

Для этого требуется найти наихудшие пути в домене коллизий. В нашей конфигурации все сегменты 100BASE-TX и используется витая пара категории 5 (рис. 3.3).

ioithenko						
	Узел 1	Узел 2	Узел 3		Узел 4	Узел 5
	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6
1	96	92	80	5	97	97
2	95	85	85	90	90	98
3	60	95	10	5	90	100
4	70	65	10	4	90	80
5	60	95	10	15	90	100
6	70	98	10	9	70	100

Рис. 3.3: Наихудшие пути

Рассчитаем время для двойного оборота на сегментах, умножая длину сегмента на удельное время двойного оборота 1,112 би/м. Для каждой строки полученные значения сложим. Затем к получившейся сумме добавим время двойного оборота двух повторителей класса II (92 би/м для каждого) и пары терминалов с интерфейсами ТХ (100 би/м). Также добавим 4 битовых интервала для учета задержек и сравним результат с числом 511,96. Результаты меньше указанного значения являются показателем работоспособных сетей (рис. 3.4).

ioithenko								
	Узел 1	Узел 2	Узел 3		Узел 4	Узел 5		
	Сегмент 1	Сегмент 2	Сегмент 3	З Сегмент 4	Сегмент 5	Сегмент 6	Время двойного оборота	с задержкой
1	106,752			5,56	107,864		504,176	508,176
2	105,64			100,08		108,976	598,696	602,696
3		105,64		5,56		111,2	506,4	510,4
4	77,84			4,448	100,08		466,368	470,368
5		105,64		16,68		111,2	517,52	521,52
6		108,976		10,008		111,2	514,184	518,184

Рис. 3.4: Проверка работоспособности по второй модели

В результате работоспособными являются те же варианты сетей, что и по первой модели (сети 1, 3 и 4).

4 Выводы

В ходе лабораторной работы я изучила принципы технологий Ethernet и Fast Ethernet, на практике освоила методики оценки работоспособности сети, построенной на базе технологии Fast Ethernet. И первая, и вторая модели выявили работоспособные сети, результаты совпали.