Title Subtitle

Rebecca Wei

Northwestern University

Date/Event

Fix an algebra, A. Define a dg category, Hoch(A):

```
Fix an algebra, A.

Define a dg category, Hoch(A):

Objects: algebra maps f: A \to A

Morphisms: Hoch(A)(f,g) = (C^{\bullet}(A, {}_fA_g), {}_f\delta_g)
```

Fix an algebra, A.

Define a dg category, Hoch(A):

Objects: algebra maps $f: A \rightarrow A$

Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}A_{g}), {}_{f}\delta_{g})$

$$f_{\delta g}(\phi)(a_{1} \otimes ... \otimes a_{n}) = \epsilon_{\phi} \left(f(a_{1}) \cdot \phi(a_{2}, ..., a_{n}) + \sum_{1 \leq i \leq n-1} (-1)^{i} \phi(a_{1}, ..., a_{i} a_{i+1}, ..., a_{n}) + (-1)^{n} \phi(a_{1}, ..., a_{n-1}) \cdot g(a_{n}) \right) \\
= \epsilon_{\phi} = (-1)^{|\phi|+1}$$

```
Fix an algebra, A.
```

Define a dg category, Hoch(A):

Objects: algebra maps $f: A \rightarrow A$

Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}A_{g}), {}_{f}\delta_{g})$

Composition: cup product on cochains

Fix an algebra, A.

Define a dg category, Hoch(A):

Objects: algebra maps $f: A \rightarrow A$

Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}A_{g}), {}_{f}\delta_{g})$

Composition: cup product on cochains

Fix an algebra, A. Define a dg category, Hoch(A):

$$Bar(Hoch(A)) \otimes Bar(Hoch(A)) \xrightarrow{\bullet} Hoch(A)$$

Fix an algebra, A. Define a dg category, Hoch(A):

$$Bar(Hoch(A)) \otimes Bar(Hoch(A)) \xrightarrow{\bullet} Hoch(A)$$

A morphism from f_0 to f_n in Bar(Hoch(A))

Fix an algebra, A. Define a dg category, Hoch(A):

$$Bar(Hoch(A)) \otimes Bar(Hoch(A)) \xrightarrow{\bullet} Hoch(A)$$

Fix an algebra, A.

Define a dg category, Hoch(A):

In this context, braces give multilinear maps:

Then, $(Bar(Hoch(A)), \bullet)$ is an algebra in DGCocats.

Fix an algebra, A. Define a dg category, Hoch(A):

In this context, braces give multilinear maps:

Then, $(Bar(Hoch(A)), \bullet)$ is an algebra in DGCocats. But we have more...

More structure

More structure

```
Fix algebras, A_0, A_1, ..., A_n.
We will define a dg cocategory B(A_0 \to A_1 \to ... \to A_n \to A_0) where B(A_0 \to A_0) := Bar(Hoch(A_0)) for n=0.
```

More structure

Fix algebras, $A_0, A_1, ..., A_n$.

We will define a dg cocategory $B(A_0 \to A_1 \to ... \to A_n \to A_0)$ where $B(A_0 \to A_0) := Bar(Hoch(A_0))$ for n=0.

Objects: $\{A_0 \xrightarrow{f_0} A_1 \xrightarrow{f_1} \dots \xrightarrow{f_{n-1}} A_n \xrightarrow{f_n} A_0\}$ A morphism from $(A_0 \xrightarrow{f_{0,0}} \dots \xrightarrow{f_{n,0}} A_0)$ to $(A_0 \xrightarrow{f_{0,k_0}} \dots \xrightarrow{f_{n,k_n}} A_0)$:

Structure among the $B(A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0)$'s

Example

We have a dg functor

$$\hat{\tau}_{n}: B(A_{0} \to \dots \to A_{n} \to A_{0}) \to B(A_{n} \to A_{0} \to \dots \to A_{n})$$

$$Obj: \qquad (f_{0}, \dots, f_{n}) \mapsto (f_{n}, f_{0}, \dots, f_{n-1})$$

$$Mor: A_{0}: A_{1}: \dots : A_{n}: A_{0} \mapsto A_{n}: A_{0}: \dots \to A_{n}$$

$$\downarrow \phi_{n,1} \downarrow \phi_{n,1} \downarrow$$

Structure among the $B(A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0)$'s

Example

For $n \ge 1, 0 \le j < n$, we have a dg functor

$$\hat{\delta}_{j,n}: B(A_0 \to \dots \to A_n \to A_0) \to B(A_0 \to \dots \to A_j \to A_{j+2} \to A_0)$$

$$Obj: \qquad (f_0, \dots, f_n) \mapsto (f_0, \dots, f_{j+1}f_j, \dots, f_n)$$

Structure among the $B(A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0)$'s

Example

For $n \ge 0, 0 \le j \le n$, we have a dg functor

$$\hat{\delta}_{j,n}: B(A_0 \to \dots \to A_n \to A_0) \to B(A_0 \to \dots \to A_j \to A_j \to A_0)$$

$$Obj: \qquad (f_0, \dots, f_n) \mapsto (f_0, \dots, f_{j-1}, id_{A_j}, f_j, \dots, f_n)$$

A sheafy-cyclic object in DGCocat

Definition

Let χ be the category with objects $\{A_0 \to A_1 \to ... \to A_n \to A_0\}$ and morphisms compositions of

rotations
$$\tau_n: \mathcal{A} \mapsto (A_n \to A_0 \to ... \to A_n)$$

coboundaries $\delta_{j,n}: \mathcal{A} \mapsto (A_0 \to ... \to A_j \to A_{j+2 \, (mod \, n+1)} \to ... \to A_0)$
codegeneracies $\sigma_{i,n}: \mathcal{A} \mapsto (A_0 \to ... \to A_i \to A_i \to ... \to A_0)$

where $\mathcal{A}:=(A_0\to\ldots\to A_n\to A_0)$, subject to the cyclic relations.

A sheafy-cyclic object in DGCocat

Definition

Let χ be the category with objects $\{A_0 \to A_1 \to ... \to A_n \to A_0\}$ and morphisms compositions of

rotations
$$\tau_n: \mathcal{A} \mapsto (\mathcal{A}_n \to \mathcal{A}_0 \to ... \to \mathcal{A}_n)$$

coboundaries $\delta_{j,n}: \mathcal{A} \mapsto (\mathcal{A}_0 \to ... \to \mathcal{A}_j \to \mathcal{A}_{j+2 \, (mod \, n+1)} \to ... \to \mathcal{A}_0)$
codegeneracies $\sigma_{i,n}: \mathcal{A} \mapsto (\mathcal{A}_0 \to ... \to \mathcal{A}_i \to \mathcal{A}_i \to ... \to \mathcal{A}_0)$

where $A := (A_0 \to ... \to A_n \to A_0)$, subject to the cyclic relations.

Proposition

We have a functor $\chi \to DGCocat$

Objects:
$$(A_0 \to ... \to A_n \to A_0) \mapsto B(A_0 \to ... \to A_n \to A_0)$$

Generating morphisms: $\lambda \mapsto \hat{\lambda}$

Motivating Question: Can we extend the sheafy-cyclic structure to the comodules? In other words, can we give a functor

$$\chi \to \mathcal{D} := \{ (dg \ cocat, \ dg \ comod) \}?$$

9/9

Motivating Question: Can we extend the sheafy-cyclic structure to the comodules? In other words, can we give a functor

$$\chi \to \mathcal{D} := \{(dg\ cocat,\ dg\ comod)\}$$
?

No.

Motivating Question: Can we extend the sheafy-cyclic structure to the comodules? In other words, can we give a functor

$$\chi \to \mathcal{D} := \{(dg \ cocat, \ dg \ comod)\}?$$

$$\chi_{\infty} \to \mathcal{D}_{\infty} \quad dg \ categories$$

Motivating Question: Can we extend the sheafy-cyclic structure to the comodules? In other words, can we give A_{∞} -functor

$$\chi \to \mathcal{D} := \{(\textit{dg cocat}, \textit{dg comod})\}?$$

$$\chi_{\infty} \to \mathcal{D}_{\infty} \quad \textit{dg categories}$$

Motivating Question: Can we extend the sheafy-cyclic structure to the comodules? In other words, can we give $\frac{1}{2}$ an $\frac{1}{2}$ and $\frac{1}{2}$ are the comodules?

$$\begin{array}{l} \chi \to \mathcal{D} := \{(\textit{dg cocat}, \, \textit{dg comod})\}? \\ \\ \chi_\infty \to \mathcal{D}_\infty \quad \textit{dg categories} \end{array}$$