	No.:	Date:
· · ·	Esmund Lim Signal Tutorial 12	T
1)	P(t) = Sin (200nt)	Com Transa Secreta A (C
	m(t) = { P(t), if p(t) >, 0 Time domain waveform	1965
	(-P(t), otherwise	action operation of
	The signal mct) is then modulated by the conventional AM to produce the AM signal	
	$\chi_{Am(t)} = [1+2mct)] \cos(2000\pi t)$	
	↑P(t)= Sin (200 \(\pi\t))	有本社立中(1998 英) 特
a'		27.f = 2007L
		2f = 200
	-20ms -15ms -10ms -5ms 15ms 15ms 120ms -1	f= 100Hz
	-20ms -15ms -10ms -5ms 15ms 120ms 1	1- +
		= 100
		= 0.015
	$\gamma M(t) = P(t) $	= 10ms
	中國海上直接中國 医神经神经治疗 医脑线上的 15%	
	-20ms -15ms -10ms -5ms o 5ms toms 15ms 20ms t	
	-20ms -15ms -10ms -5ms 0 5ms 15ms 20ms t	
	A^2 $B = \frac{1}{2} A A^2$	
	$P_{\rho} = \frac{A^2}{2}$ $P_{m} = \frac{1}{2}(1)^2$ Square of both function is the same $= \frac{1}{2}(1)^2 = \frac{1}{2}W \qquad \therefore P_{\rho} = P_{m}$	
	$= \frac{1}{2}(1)^2 \qquad = \frac{1}{2}W \qquad :: P_p = P_m$ $= \frac{1}{2}W$	
6)	envelope fast changing carrier wave	
D.	$\chi_{Am(t)} = [1+2m(t)] \cos(2000\pi t)$ = $[1+2m(t)] \cos(2\pi 1000t)$	$T = \frac{1}{f_c}$
	carrier frequency	
	Xam(t)	= 1000Hz
	3 0 0 0 0 0 0 0 0 0	
	Man Man Man ala ala ala	in 10ms, will have 10 cycle
	O -20mg FISHS -19ms -5ms O Fins 15ms 15ms 20ms	t
	-3 × × × × × ×	
1	10 cycles of	P@P
	carrier mane	URBAN

No.: M2(f) 3) M1(f) 30 20 -20 B2 = 30HZ B1= 20 Hz XAM-FOM (t) = Ac [It kami(t)] cos (2/ fc, t) + Ac [It ka M2(t)] cos (2/ fc2t) * By using the same fc, it will not be able to separate the two signal at the receiver as they are overlapping in both time and frequency domain -) assign for to modulate fez to modulate XAM-FOM(t) = Accos (2xfc,t) + Ackamict) cos (2xfcit) + Accos (2xfczt) + Ackamict) cos (2xfct) XAM - FOM (f) = \(\frac{1}{2} Ac [\delta(f - \frac{1}{6}) + \delta(f + \frac{1}{6})] + \frac{1}{2} kaAc [m_1(f) * (\delta(f - \frac{1}{6}) + \delta(f + \frac{1}{6}))] + = Ac [f(f-fc2)+f(f+fc2)] + = kaAc [m2(+)*(f(f-fc2)+f(f+fc2))] = $\frac{Ac}{2}$ [$\delta(f-fc_1)+\delta(f+fc_1)$] + $\frac{kaAc}{2}$ [$M_1(f-fc_1)+M_1(f+fc_1)$] + Ac [f(f-fc2)+f(f+fc2)] + KaAc [M2(f-fc2)+M2(f+fc2)] XAM-FOM (f) fc2+30 fc2-30 minimum separation -> no gap between them BW = 2 X50Hz = 100 Hz