LISTING OF THE CLAIMS

- 1-67. (Canceled).
- 68. (Previously Presented) A method of designing a direct expansion geothermal heat exchange system having a heating mode and a cooling mode, the method comprising:

providing an interior air heat exchanger;

providing an exterior, subterranean heat exchanger;

charging the system with a refrigerant so that the refrigerant has a head pressure in the cooling mode of approximately 305-405 psi, and a suction pressure in the heating mode of approximately 80-160 psi.

- (Previously Presented) The method of claim 68, further comprising providing an R-410A refrigerant.
- 70. (Previously Presented) The method of claim 68, further comprising providing a polyolester oil in the direct expansion system.
- 71. (Previously Presented) The method of claim 68, further comprising providing a single piston metering device in the heating mode, with a pin restrictor (Aeroquip type) sizing as follows, based on central hole bore size in inches, utilized, plus or minus a maximum of two (2) one thousandths of an inch (0.001) central hole bore size, within the following depth ranges:

 Maximum Heating Tonnage Design.......Pin Restrictor Central Bore Hole Size in Inches

 *0 to 50 feet (depth of borehole below compressor unit)

1.5	0.041
2	0.049
2.5	
3	0.059
3.5	0.063
4	0.065
4.5	0.068
5	0.071

*51 to 175 feet (dept	of borehole below	compressor unit)
-----------------------	-------------------	------------------

1.5	0.039
2	0.047
2.5	0.052
3	0.056
3.5	0.060
4	0.062
4.5	0.065
5	0.067

*176 to 300 feet (depth of borehole below compressor unit)

*176 to 300 feet (depth of borehole below comp	П
1.50.0	3′
2	4
2.5	5
30.0	5.
3.50.0	5
40.0	5
4.50.0	6
50.0	6

72. (Previously Presented) The method of claim 68, further comprising providing, in the cooling mode, a self-adjusting thermostatic expansion valve which is located proximate to the interior heat exchanger and is sized at 140%, plus or minus 10% of 100%, of a maximum compressor tonnage design capacity in the cooling mode;

providing a single piston metering device situated proximate to the interior heat exchanger in the cooling mode, with a pin restrictor (Aeroquip type) sizing as follows, based on central hole bore size in inches, utilized, plus or minus a maximum of two (2) one thousandths of an inch (0.001) central hole bore size, within the following depth ranges:

Maximum Cooling Tonnage Design - Pin Restrictor Size in Inches

*0 to 50 feet (height of interior air handler above the compressor unit)

2	0.070
2.5	0.077
3	0.085
3.5	0.093
4	0.099
4.5	0.100
5	0.112

73. (Previously Presented) The method of claim 68, in which charging the system further includes obtaining a peak operational efficiency in the cooling mode with a superheat of approximately 10 to 25 degrees F, a head pressure in the heating mode of approximately 195 to 275 PSI, a suction pressure in the cooling mode of approximately 80 to 160 PSI, and a suction/vapor temperature of approximately 37 to 55 degrees F.

74-78. (Canceled).

- 79. (Previously Presented) A direct expansion geothermal heat exchange system having a heating mode and a cooling mode, the system comprising:
 - an interior air heat exchanger;
 - an exterior, subterranean heat exchanger; and
- a refrigerant disposed in the system and sufficiently charged to have a head pressure in the cooling mode of approximately 305-405 psi, and a suction pressure in the heating mode of approximately 80-160 psi.
- 80. (Previously Presented) The system of claim 79, in which the refrigerant comprises an R-410A refrigerant.
- (Previously Presented) The system of claim 79, further comprising a polyolester oil in the direct expansion system.
- 82. (Previously Presented) The system of claim 79, further comprising a single piston metering device in the heating mode, with a pin restrictor (Aeroquip type) sizing as follows, based on central hole bore size in inches, utilized, plus or minus a maximum of two (2) one thousandths of an inch (0.001) central hole bore size, within the following depth ranges:

 Maximum Heating Tonnage Design.......Pin Restrictor Central Bore Hole Size in Inches

 *0 to 50 feet (depth of borehole below compressor unit)

1.5	0.041
2	0.049
2.5	0.055
3	0.059
3.5	0.063
4	0.065
4.5	0.068
5	0.071

*51 to 175 feet (depth of borehole below compressor unit)

1.5......0.039

2	0.047
2.5	0.052
3	0.056
3.5	0.060
4	0.062
4.5	0.065
5	0.067
*176 to 300 feet (depth of bore	hole below compressor unit)
*176 to 300 feet (depth of bore 1.5	• ′
` .	0.037
1.5	0.037
1.5	0.037 0.044 0.050
1.5	
1.5	
1.5.	

83. (Previously Presented) The system of claim 79, further comprising, in the cooling mode, a self-adjusting thermostatic expansion valve which is located proximate to the interior heat exchanger and is sized at 140%, plus or minus 10% of 100%, of a maximum compressor tonnage design capacity in the cooling mode;

providing a single piston metering device situated proximate to the interior heat exchanger in the cooling mode, with a pin restrictor (Aeroquip type) sizing as follows, based on central hole bore size in inches, utilized, plus or minus a maximum of two (2) one thousandths of an inch (0.001) central hole bore size, within the following depth ranges:

Maximum Cooling Tonnage Design - Pin Restrictor Size in Inches

*0 to 50 feet (height of interior air handler above the compressor unit)

1.50	.058
20	.070
2.5	.077

3	 0.085
3.5	 0.093
4	 0.099
4.5	 0.100
5	 0.112

84. (Previously Presented) The system of claim 79, further comprising charging the system with the refrigerant to obtain a peak operational efficiency in the cooling mode with a superheat of approximately 10 to 25 degrees F, a head pressure in the heating mode of approximately 195 to 275 PSI, a suction pressure in the cooling mode of approximately 80 to 160 PSI, and a suction/vapor temperature of approximately 37 to 55 degrees F.

85. (Previously Presented) A method of designing a direct expansion geothermal heat exchange system having a cooling mode and a heating mode, the method comprising:

providing an R-410A refrigerant; and

providing a single piston metering device in the heating mode, with a pin restrictor (Aeroquip type) sizing as follows, based on central hole bore size in inches, utilized, plus or minus a maximum of two (2) one thousandths of an inch (0.001) central hole bore size, within the following depth ranges:

Maximum Heating Tonnage Design.......Pin Restrictor Central Bore Hole Size in Inches *0 to 50 feet (depth of borehole below compressor unit)

1.5	 0.041
2	 0.049
2.5	 0.055
3	 0.059
3.5	 0.063
4	 0.065
4.5	 0.068
5	 0.071

*51	to	175	feet	(depth	of	borehole	below	compressor	unit)
-----	----	-----	------	--------	----	----------	-------	------------	-------

1.50.039
20.047
2.5
30.056
3.50.060
40.062
4.5
5

*176 to 300) feet (depth	of borehole	below	compressor	unit)
-------------	---------------	-------------	-------	------------	-------

1.5	0.037
2	0.044

1.5

2.5	0.050
3	0.053
3.5	0.057
4	0.059
4.5	0.061
5	0.064

86. (Previously Presented) A method of designing a direct expansion geothermal heat exchange system having a cooling mode and a heating mode, the method comprising: providing an R-410A refrigerant; and

charging the system with the refrigerant to obtain a peak operational efficiency in the cooling mode with a superheat of approximately 10 to 25 degrees F, a head pressure in the heating mode of approximately 195 to 275 PSI, a suction pressure in the cooling mode of approximately 80 to 160 PSI, and a suction/vapor temperature of approximately 37 to 55 degrees F.

87. (Previously Presented) A method of designing a direct expansion geothermal heat exchange system having a cooling mode and a heating mode, the method comprising:

providing a refrigerant with heating/cooling operational working pressures between 80 psi and 405 psi; and

providing a single piston metering device in the heating mode, with a pin restrictor (Aeroquip type) sizing, based on central hole bore size in inches, utilized, plus or minus a maximum of two (2) one thousandths of an inch (0.001) central hole bore size, within the following depth ranges:

Maximum Heating Tonnage Design.......Pin Restrictor Central Bore Hole Size in Inches
*0 to 50 feet (depth of borehole below compressor unit)

1.5	0.041
2	0.049
2.5	0.055
3	0.059
3.5	0.063
4	0.065
4.5	0.068
5	0.071

*51	to	175	feet	(denth	of	borehole	below	compressor	unit)

		(I		F
1.5.	 	 	 	 0.039
2	 	 	 	 0.047
2.5.	 	 	 	 0.052
3	 	 	 	 0.056
3.5.	 	 	 	 0.060
4	 	 	 	 0.062
4.5.	 	 	 	 0.065
5	 	 	 	 0.067

^{*176} to 300 feet (depth of borehole below compressor unit)

1.5......0.037

2	0.044
2.5	0.050
3	0.053
3.5	0.057
4	0.059
4.5	0.061
5	0.064

88. (Previously Presented) A method of designing a direct expansion geothermal heat exchange system having a cooling mode and a heating mode, the method comprising:

providing a refrigerant with heating/cooling operational working pressures between 80 psi and 405 psi; and

charging the system with the refrigerant to obtain a peak operational efficiency in the cooling mode with a superheat of approximately 10 to 25 degrees F, a head pressure in the heating mode of approximately 195 to 275 PSI, a suction pressure in the cooling mode of approximately 80 to 160 PSI, and a suction/vapor temperature of approximately 37 to 55 degrees F.

89. (Previously Presented) A method of designing a direct expansion geothermal heat exchange system having a cooling mode and a heating mode, the method comprising: providing an interior air heat exchanger;

providing an exterior, subterranean heat exchanger, the exterior heat exchanger including heat exchange tubing, at least a portion of the heat exchange tubing having a subterranean depth of approximately 100-300 feet; and

charging the system with an R-410A refrigerant until the refrigerant has a head pressure in the cooling mode of approximately 305-405 psi, and a suction pressure in the heating mode of approximately 80-160 psi.

90. (Previously Presented) A direct expansion geothermal heat exchange system having a cooling mode and a heating mode, the system comprising:

an interior air heat exchanger;

an exterior, subterranean heat exchanger, the exterior heat exchanger including heat exchange tubing, at least a portion of the heat exchange tubing having a subterranean depth of approximately 100-300 feet; and

an R-410A refrigerant disposed in the system, the R-410A refrigerant having a charge sufficient to obtain a head pressure in the cooling mode of approximately 305-405 psi, and a suction pressure in the heating mode of approximately 80-160 psi.