Edward: Deep Probabilistic Programming

Extended Seminar – Systems and Machine Learning

Steven Lang

13.02.2020

Outline

Introduction

Refresher on Probabilistic Modeling

Deep Probabilistic Programming

Compositional Representations in Edward

Experiments

Alternatives

Conclusion

Outline

Introduction

Refresher on Probabilistic Modeling

Deep Probabilistic Programming

Compositional Representations in Edward

Experiments

Alternatives

Conclusion

Motivation

- Nature of deep neural networks is compositional
- Connect layers in creative ways
- ► No worries about
 - testing (forward propagation)
 - inference (gradient based opt., with backprop. and auto-diff.)

▶ Leads to easy development of new successful architectures

Introduction 4

Motivation

LeNet-5 (Lecun et al. 1998)

VGG16 (Simonyan and Zisserman 2014)

ResNet-50 (He et al. 2015)

Inception-v4 (Szegedy et al. 2014)

Motivation

Goal: Achieve the composability of deep learning for

- 1. Probabilistic models
- 2. Probabilistic inference

Introduction

Outline

Introduction

Refresher on Probabilistic Modeling

Deep Probabilistic Programming

Compositional Representations in Edward

 $\mathsf{Experiments}$

Alternatives

Conclusion

What is a Random Variable (RV)?

- ▶ Random number determined by chance, e.g. outcome of a single dice roll
- Drawn according to a probability distribution
- ► Typical random variables in statistical machine learning:
 - input data
 - output data
 - noise

What is a Probability Distribution?

- ▶ **Discrete**: Describes probability, that RV will be equal to a certain value
- **Continuous**: Describes probability *density*, that RV will be equal to a certain value

What is a Probability Distribution?

- ▶ **Discrete**: Describes probability, that RV will be equal to a certain value
- ► Continuous: Describes probability density, that RV will be equal to a certain value

Example: Normal distribution

$$\mathcal{N}\left(\mu,\sigma\right) = \frac{1}{\sqrt{2\pi\sigma^2}} \mathrm{exp}\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

Common Probability Distributions

Discrete

- ► Bernoulli
- Binomial
- Hypergeometric
- Poisson
- ► Boltzmann

Common Probability Distributions

Discrete

- ► Bernoulli
- Binomial
- Hypergeometric
- Poisson
- ► Boltzmann

Continuous

- ▶ Uniform
- ► Beta
- Normal
- Laplace
- ► Student-t

What is Inference?

- ► Answer the query $P(\mathbf{Q} \mid \mathbf{E})$
 - Q: Query, set of RVs we are interested in
 - \mathbf{E} : Evidence, set of RVs that we know the state of

What is Inference?

- ► Answer the query $P(\mathbf{Q} \mid \mathbf{E})$
 - Q: Query, set of RVs we are interested in
 - \mathbf{E} : Evidence, set of RVs that we know the state of

- Example: What is the prob. that
 - it has rained (\mathbf{Q})
 - when we know that the gras is wet (\mathbf{E})

$$P\left(\mathsf{Has}\;\mathsf{Rained} = \mathsf{true}\;|\;\mathsf{Gras} = \mathsf{wet}\right)$$

Probabilistic Models

Bayesian Networks

Markov Networks

Variational Autoencoder

Deep Belief Networks

Outline

Introduction

Refresher on Probabilistic Modeling

Deep Probabilistic Programming

Compositional Representations in Edward

Experiments

Alternatives

Conclusion

Key Ideas

Probabilistic programming lets users

- specify probabilistic models as programs
- compile those models down into inference procedures

Key Ideas

Probabilistic programming lets users

- specify probabilistic models as programs
- compile those models down into inference procedures

Two compositional representations as first class citizens

- ► Random variables
- ► Inference

Key Ideas

Probabilistic programming lets users

- specify probabilistic models as programs
- compile those models down into inference procedures

Two compositional representations as first class citizens

- ► Random variables
- Inference

Goal

Make probabilistic programming as flexible and efficient as deep learning!

Typicall PPL Tradeoffs

Probabilistic programming languages typically have the following trade-off:

Typicall PPL Tradeoffs

Probabilistic programming languages typically have the following trade-off:

- Expressiveness
 - allow rich class beyond graphical models
 - scales poorly w.r.t. data and model size

Typicall PPL Tradeoffs

Probabilistic programming languages typically have the following trade-off:

- Expressiveness
 - allow rich class beyond graphical models
 - scales poorly w.r.t. data and model size

- Efficiency
 - PPL is restricted to a specific class of models
 - inference algorithms are optimized for this specific class

Edward (Tran et al. 2017) builds on two compositional representations

- ► Random variables
- ► Inference

Edward (Tran et al. 2017) builds on two compositional representations

- Random variables
- Inference

Edward allows to fit the same model using a variety of composable inference methods

- ▶ Point estimation
- Variational inference
- ► Markov Chain Monte Carlo

Key concept: no distinct model or inference block

- Model: Composition/collection of random variables
- ▶ *Inference*: Way of modifying parameters in that collection subject to another

Uses computational benefits from TensorFlow like

- distributed training
- parallelism
- vectorization
- ► GPU support "for free"

Outline

Introduction

Refresher on Probabilistic Modeling

Deep Probabilistic Programming

Compositional Representations in Edward

Experiments

Alternatives

Conclusion

Criteria for Probabilistic Models

Edward poses the following criteria on compositional representations for probabilistic models:

- 1. Integration with computational graphs
 - nodes represent operations on data
 - edges represent data communicated between nodes

Criteria for Probabilistic Models

Edward poses the following criteria on compositional representations for probabilistic models:

- 1. Integration with computational graphs
 - nodes represent operations on data
 - edges represent data communicated between nodes
- 2. Invariance of the representation under the graph
 - graph can be reused during inference

Computational Graph

Computational Graph

1.
$$x + y$$

Computational Graph

- 1. x + y
- $2. \ (x+y) \cdot y \cdot z$

Computational Graph

- 1. x + y
- 2. $(x+y) \cdot y \cdot z$ 3. $2^{(x+y) \cdot y \cdot z}$

Example: Beta-Bernoulli Programm

Beta-Bernoulli Model

$$p(\mathbf{x}, \theta) = Beta(\theta \mid 1, 1) \prod_{n=1}^{50} Bernoulli(x_n \mid \theta)$$

Example: Beta-Bernoulli Programm

Beta-Bernoulli Model

$$p(\mathbf{x}, \theta) = Beta(\theta \mid 1, 1) \prod_{n=1}^{50} Bernoulli(x_n \mid \theta)$$

Computation Graph

Example: Beta-Bernoulli Programm

Beta-Bernoulli Model

$$p(\mathbf{x}, \theta) = Beta(\theta \mid 1, 1) \prod_{n=1}^{50} Bernoulli(x_n \mid \theta)$$

Computation Graph

Edward code

```
theta = Beta(a=1.0, b=1.0)  # Sample from Beta dist.
x = Bernoulli(p=tf.ones(50) * theta)  # Sample from Bernoulli dist.
```

Criteria for Probabilistic Inference

Edward poses the following criteria on compositional representations for **probabilistic inference**:

1. Support for many classes of inference

Criteria for Probabilistic Inference

Edward poses the following criteria on compositional representations for **probabilistic inference**:

- 1. Support for many classes of inference
- 2. Invariance of inference under the computational graph
 - posterior can be further composed as part of another model

Goal: calculate posterior $p(\mathbf{z}, \beta \mid \mathbf{x}_{train}; \boldsymbol{\theta})$, given

- ightharpoonup data \mathbf{x}_{train}
- ightharpoonup model parameters heta
- ► local variables z
- ightharpoonup global variables β

Inference as Stochastic Graph Optimization

Edward formalize this as optimization problem

$$\min_{\boldsymbol{\lambda},\boldsymbol{\theta}} \mathcal{L}(p(\mathbf{z},\beta \mid \mathbf{x}_{train};\boldsymbol{\theta}), \ q(\mathbf{z},\beta;\boldsymbol{\lambda}))$$

where

- $ightharpoonup \mathcal{L}$ is a loss function w.r.t. p and q
- $ightharpoonup q(\mathbf{z}, \beta; \lambda)$ is an approximation of the posterior $p(\mathbf{z}, \beta \mid \mathbf{x}_{train}; \boldsymbol{\theta})$

Note

Choice of approximation q, loss $\mathcal L$ and rules to update parameters $\{ \boldsymbol \theta, \boldsymbol \lambda \}$ are specified by an inference algorithm.

▶ ed.Inference defines and solves $\min_{\lambda,\theta} \mathcal{L}(p(\mathbf{z},\beta \mid \mathbf{x}_{train};\theta), \ q(\mathbf{z},\beta;\lambda))$

- Posterior variables: qbeta , qz , Observed random variables: x_train

ed. Inference defines and solves $\min_{\lambda,\theta} \mathcal{L}(p(\mathbf{z},\beta \mid \mathbf{x}_{train};\theta), q(\mathbf{z},\beta;\lambda))$

Posterior variables: qbeta , qz , Observed random variables: x_train

Build a computational graph to update parameters

```
inference.initialize()
```

ed. Inference defines and solves $\min_{\lambda,\theta} \mathcal{L}(p(\mathbf{z},\beta \mid \mathbf{x}_{train}; \theta), q(\mathbf{z},\beta; \lambda))$

Posterior variables: qbeta , qz , Observed random variables: x_train

Build a computational graph to update parameters

```
inference.initialize()
```

Run computations to update parameters

```
while not_converged:
    inference.update()
```

Classes of Inference

Edward supports the following classes of inference:

- Variational Inference
- ► Monte Carlo
- ► Generative Adverserial Networks (GANs)

Composing Inferences

Inference as a collection of separate inference programs, e.g. Variational EM:

```
qbeta = PointMass(...) # Global variables
qz = Categorical(...) # Local variables
```

Composing Inferences

Inference as a collection of separate inference programs, e.g. Variational EM:

Composing Inferences

Inference as a collection of separate inference programs, e.g. Variational EM:

```
gbeta = PointMass(...) # Global variables
qz = Categorical(...) # Local variables
# E-Step over local variables
inf_e = ed. VariationalInference(latent_vars={z: qz},
                                        data={x: x_train, beta: qbeta})
# M-Step over global variables
inf_m = ed.MAP(latent_vars={beta: qbeta},
                      data={x: x_train, z: qz})
# Expectation - Maximization loop
while not_converged:
  inf_e.update()
  inf_m.update()
```

Outline

Introduction

Refresher on Probabilistic Modeling

Deep Probabilistic Programming

Compositional Representations in Edward

Experiments

Alternatives

Conclusion

Experiments 29

Benchmarks

Logistic Regression using Hamiltonian Monte Carlo iterations

Probabilistic programming system	Runtime (s)
Handwritten NumPy (1 CPU)	534
Stan (1 CPU) (Carpenter et al. 2017)	171
PyMC3 (12 CPU) (Salvatier et al. 2015)	30.0
Edward (12 CPU)	8.2
Handwritten TensorFlow (GPU)	5.0
Edward (GPU)	4.9

- ▶ 35x Speedup over Stan (1 CPU)
- ► 6x Speedup over PyMC3 (12 CPU)

(CPU: 12-core Intel i7-5930K at $3.50 \mathrm{GHz}$, GPU: NVIDIA Titan X (Maxwell)) Experiments

Outline

Introduction

Refresher on Probabilistic Modeling

Deep Probabilistic Programming

Compositional Representations in Edward

Experiments

Alternatives

Conclusion

Edward Successor: TensorFlow Probability (Dillon et al. 2017)

Integration into TensorFlow itself: 4-Layer architecture

- 1. **TensorFlow** Numerical operations
- 2. Statistical Building Blocks Distributions
- 3. Model Building Joint distributions, Probabilistic layers
- 4. Probabilistic Inference Markov Chain Monte Carlo, Variational inference, Optimizers

Alternatives 32

Pyro: PyTorch Probabilistic Programming (Bingham et al. 2018)

- PyTorch as backend
- Unifies modern deep learning and Bayesian modeling
- ► Focus on Stochastic Variational Inference

Alternatives 33

Outline

Introduction

Refresher on Probabilistic Modeling

Deep Probabilistic Programming

Compositional Representations in Edward

Experiments

Alternatives

Conclusion

Conclusion

Edward . . .

- ▶ is a novel deep probabilistic programming language
- provides compositional representations for model and inference
- leverages computational graphs for fast parallelizable computation

Conclusion 35

References I

- Bingham, Eli et al. (2018). "Pyro: Deep Universal Probabilistic Programming". In: Journal of Machine Learning Research.
- Carpenter, Bob et al. (2017). "Stan: A Probabilistic Programming Language". In: Journal of Statistical Software, Articles 76.1, pp. 1–32. ISSN: 1548-7660. DOI: 10.18637/jss.v076.i01. URL: https://www.jstatsoft.org/v076/i01.
- Dillon, Joshua V. et al. (2017). TensorFlow Distributions. arXiv: 1711.10604 [cs.LG].
- He, Kaiming et al. (2015). "Deep Residual Learning for Image Recognition". In: CoRR abs/1512.03385. arXiv: 1512.03385. URL: http://arxiv.org/abs/1512.03385.
- Lecun, Yann et al. (1998). "Gradient-based learning applied to document recognition". In: Proceedings of the IEEE, pp. 2278–2324.
- Salvatier, John et al. (2015). *Probabilistic Programming in Python using PyMC*. arXiv: 1507.08050 [stat.CO].

References 36

References II

- Simonyan, Karen and Andrew Zisserman (2014). "Very Deep Convolutional Networks for Large-Scale Image Recognition". In: CoRR abs/1409.1556. URL: http://arxiv.org/abs/1409.1556.
- Szegedy, Christian et al. (2014). "Going Deeper with Convolutions". In: CoRR abs/1409.4842. arXiv: 1409.4842. URL: http://arxiv.org/abs/1409.4842.
- Tran, Dustin et al. (2017). Deep Probabilistic Programming. arXiv: 1701.03757 [stat.ML].

Figure Sources

- ► CNNs: https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d
- ▶ Bayesian Networks: K. Kersting, Probabilistic Graphical Models Lecture (2.), 2018
- Markov Models: https://en.wikipedia.org/wiki/File:A_simple_Markov_network.png
- ▶ Variational Autoencoder: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
- Deep Belief Networks: https://medium.com/analytics-army/deep-belief-networks-an-introduction-1d52bb867a25

References 38

Example: Variational Auto-Encoder

```
# Probabilistic model
z = Normal(loc=tf.zeros([50, 10]), scale=tf.ones([N, 10]))
h = Dense(256, activation="relu")(z)
x = Bernoulli(logits=Dense(28 * 28)(h))
 Variational model
qx = tf.placeholder(tf.float32, [50, 28 * 28])
qh = Dense(256, activation="relu")(qx)
qz = Normal(loc=Dense(10, activation=None) (qh),
            scale=Dense(10, activation="softplus")(qh))
```

Appendix 39