Reinforcement Learning with General Utilities:

Simpler Variance Reduction and Large State-Action Space ETHzürich

Ilyas Fatkhullin Anas Barakat Niao He

Motivation

RL with general utilities

- Imitation Learning
- Pure exploration
- Risk-sensitive/averse RL
- Active exploration for experimental design

Problem formulation

- MDP $M(S, A, P, F, \rho, \gamma)$ with a general utility function F,
- Parametrized policy $\pi_{\theta}, \theta \in \mathbb{R}^d$,
- State-action occupancy measure:

$$\lambda^{\pi_{\theta}}(s,a) = \sum_{t=0}^{+\infty} \gamma^{t} \mathbb{P}_{\rho,\pi_{\theta}}(s_{t}=s, a_{t}=a).$$

 $\max_{\theta \in \mathbb{R}^d} F(\lambda^{\pi_{\theta}})$

[1, 2, 3, 4]

Policy gradient theorem [4]

$$\nabla_{\theta} F(\lambda^{\pi_{\theta}}) = \nabla_{\theta} V^{\pi_{\theta}}(r)|_{r=\nabla_{\lambda} F(\lambda^{\pi_{\theta}})},$$

$$V^{\pi_{\theta}}(r) = \mathbb{E}_{\rho,\pi_{\theta}} \left[\sum_{t=0}^{+\infty} \gamma^{t} r(s_{t}, a_{t}) \right].$$

Challenges

- double-loop, large batch, params
- occupancy measure estimation in large state-action space

Normalized Variance Reduced PG for RL with General Utilities

Algorithm 1 N-VR-PG (General Utilities)

Input:
$$\theta_0, T, H, \{\eta_t\}_{t \geq 0}, \{\alpha_t\}_{t \geq 0}$$
.
for $t = 1, \dots, T - 1$ do
Sample τ_t of length H from MDP and π_{θ_t}
 $u_t = \lambda(\tau_t)(1 - w(\tau_t|\theta_{t-1},\theta_t))$
 $\lambda_t = \eta_t \lambda(\tau_t) + (1 - \eta_t)(\lambda_{t-1} + u_t)$
 $r_t = \nabla_{\lambda} F(\lambda_t)$
 $v_t = g(\tau_t, \theta_t, r_{t-1}) - w(\tau_t|\theta_{t-1}, \theta_t)g(\tau_t, \theta_{t-1}, r_{t-2})$
 $d_t = \eta_t g(\tau_t, \theta_t, r_{t-1}) + (1 - \eta_t)(d_{t-1} + v_t)$
 $\theta_{t+1} = \theta_t + \alpha_t \frac{d_t}{\|d_t\|}$

(1) single-loop batch free; (2) normalization implies boundedness of IS weights

Sample complexity for N-VR-PG

Under smoothness conditions on F and softmax π_{θ} ,

Setting	Guarantee	Sample complexity
F non-concave	$\mathbb{E}[\ abla F(\lambda^{\pi_{\theta_{\mathrm{out}}}})\] \leq arepsilon$	$\tilde{\mathcal{O}}(\varepsilon^{-3})$
*		$\tilde{\alpha}(-2)$
F concave*	$\mathbb{E}[F^* - F(\lambda^{\pi_{\theta_{\text{out}}}})] \le \varepsilon$	$\mathcal{\tilde{O}}(\varepsilon^{-2})$

* with overparametrized softmax policy

Simulations

(left) standard RL in CartPole; (right) nonlinear obj. maximization in FrozenLake

Large state-action space

• Linear function approximation of the occupancy measure

$$\lambda^{\pi_{\theta}}(s, a) \approx \langle \phi(s, a), \omega_{\theta} \rangle, \quad \omega_{\theta} \in \mathbb{R}^{m}, m << |\mathcal{S}| \times |\mathcal{A}|.$$

- Linear regression procedure:
 - K steps of SGD over the objective:

$$L_{\theta}(\omega) := \mathbb{E}_{s \sim \rho, a \sim \mathcal{U}(\mathcal{A})} [(\lambda^{\pi_{\theta}}(s, a) - \langle \phi(s, a), \omega \rangle)^{2}],$$

- using Monte-Carlo estimates for $\lambda^{\pi_{\theta}}(s, a)$ sampled at each step $k \leq K$.

Stochastic PG with Linear Occupancy Measure Approximation

Algorithm 2 Stochastic PG with Linear Function Approximation

Input: $\theta_0 \in \mathbb{R}^d, T, N \ge 1, \alpha > 0, K \ge 1, \beta > 0, H$. for t = 0, ..., T - 1 do Run SGD for K steps of linear regression to obtain $\hat{\omega}_{\theta_t}$. Define $r_t = \nabla_{\lambda} F(\hat{\lambda}_t)$ where $\hat{\lambda}_t(\cdot, \cdot) = \langle \phi(\cdot, \cdot), \hat{\omega}_{\theta_t} \rangle$. Sample N independent trajectories $(\tau_t^{(i)})_{1 \le i \le N}$ of length H with π_{θ_t} $\theta_{t+1} = \theta_t + \frac{\alpha}{N} \sum_{i=1}^{N} g(\tau_t^{(i)}, \theta_t, r_{t-1})$ end for **Return:** θ_T

Sample complexity

Assumptions: (a) regularity of the utility function F, (b) smoothness of π_{θ} and (c) standard assumptions on the feature map ϕ .

Theorem: Stochastic PG with linear regression subroutine requires

$$\tilde{\mathcal{O}}(\varepsilon^{-4})$$
 samples

to guarantee an ε -first-order stationary point of the objective function **up to a func**tion approximation error floor.

References

end for

- [1] Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy exploration. ICML 2019.
- [2] Tom Zahavy, Brendan O'Donoghue, Guillaume Desjardins, and Satinder Singh. Reward is enough for convex mdps. NeurIPS 2021.
- [3] Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvari, and Mengdi Wang. Variational policy gradient method for reinforcement learning with general utilities. NeurIPS 2020.
- [4] Junyu Zhang, Chengzhuo Ni, Zheng Yu, Csaba Szepesvari, and Mengdi Wang. On the convergence and sample efficiency of variance-reduced policy gradient method. NeurIPS 2021.