

Redes de Computadores II

Curso 18/19 :: Prueba 2 (extraordinario)

Escuela Superior de Informática

2019/07/01 0	9:27:54	

Este examen consta de 22 preguntas con un total de 40 puntos. Cada 3 preguntas de test incorrectas restan 1 punto. Sólo una opción es correcta a menos que se indique algo distinto. No está permitido el uso de calculadora. Los teléfonos móviles deberán permanecer apagados y guardados durante las pruebas. La duración máxima de este examen será de 90 minutos. En relación a la HOJA DE RESPUESTAS:

- Rellene sus datos personales en el formulario superior.
- Indique «Redes de Computadores II» en el campo EVALUACIÓN.
- Indique su DNI en la caja lateral (marcando también las celdillas correspondientes).
- Marque la casilla «2» en la caja TIPO DE EXAMEN.

Marque sus respuestas sólo cuando esté completamente seguro. El escáner no admite correcciones ni tachones de ningún tipo, las anulará automáticamente. Debe entregar únicamente la hoja de respuestas.

Apellidos:	SOLUCIÓN	Nombre:	Grupo:
SW1 co	da la siguiente topología de red formada por las ninterfaces α y β . La tabla de direcciones MAC erfaz: timestamp. Las acciones que se produce de reloj 1. Responda a las siguientes preguntas:	está inicialmente vacía	y tiene los siguientes campos:
	LAN X	β	LANY
> 1 (1p) A(t1)->B, ¿qué acción lleva a cabo el switch?		
	a) Reenviar		
	b) Descartar		
	c) Inundar		
	d) Pasar la trama al protocolo IP y dejar que e	l router se encargue.	
> 2 (1p	¿Cuál es el contenido de la tabla de direcciones	MAC tras el envío de l	a trama anterior?
	a) A: α :t1	\Box c) A: β :t1	\square d) B: β :t1
> 3 (1p	B(t2)->A, ¿qué acción lleva a cabo el switch?		
	a) Reenviar		
	b) Descartar		
	c) Inundar		
	d) Pasar la trama al protocolo IP y <mark>dejar que e</mark>	l router se encargue.	
> 4 (1p) ¿Cuál es el contenido de la tabla de direcciones	MAC tras el envío de l	a trama anterior?
	a) A: β :t1; B: β :t2	c) A: α :t1; B: α	α :t2
ίCι	A continuación se producen las siguientes op aál es el contenido de la tabla de direcciones M ximo de permanencia de entradas en la tabla son	IAC tras ejecutar to <mark>da</mark>	
	a) A: α : t1; B: α : t2: C: α : t3; D: β : t4; E: β : t	5 \square c) A: α : t1; B:	α : t2: C: α : t3; D: β : t4; E: β : t6
	b) C: α: t3; D: β: t4; E: β: t6	\square d) C: α : t3; D	: β: t4; E: β: t5

28 de junio de 2019 1/7

♠UCLM UNIVERSIDAD DE CASTILLA-LA MANCHA

Redes de Computadores II

Curso 18/19 :: Prueba 2 (extraordinario)

Escuela Superior de Informática

E. [5p] a siguiente figura representa una red de interconexión formada por 10 enrutadores (A-J). El coste de alcanzar cada enrutador viene dado por el número que aparece en cada arista. En caso de empate se procesa siempre el nodo alfabéticamente menor. Responda a las siguientes preguntas:

> 6	(1p) Según el algoritmo de camino mínimo de Dijkstra, ¿cuál es el camino mínimo y el coste de alcanzar el nodo H desde A y cuantos nodos fueron visitados después de visitar H?
	□ a) A-D-C-E-H, coste=16, nodos visitados=6 □ c) A-B-C-D-E-H, coste=14, nodos visitados=8
	b) A-B-C-E-H, coste=14, nodos visitados=7 d) A-B-C-E-H, coste=14, nodos visitados=5
> 7	(1p) Escriba el árbol sumidero (sink tree) con raíz en C que se obtiene a partir de la topología anterior teniendo en cuenta el coste del enlace como métrica.
	□ a) C->B->A; C->D; C->E->F->G; C->E->H->I->J
	b) C->B->A; C->D; C->E->F; C->E->J->G; C->E->H->I
	□ c) C->B->A; C>D; C->E->F>G; C->E->H->I; C->E->J
	□ d) C->D->B->A; C->E->F->G->H->I->J
> 8	(1p) ¿Cuál es el vector de distancia (VD) de E tras actualizarlo en la primera iteración? Tenga en cuenta la métrica número de saltos. Asuma que se procesan primero los VD procedentes de nodos alfabéticamente menores y que el coste a un nodo directamente conectado es 1:
	a) A, 3, D; B,2,C; C,1,-; D,2,C; E,2,C; F,1,-; G,2,F; H,1,-; I,2,H; J, 1, -
	b) B,2,C; C,1,-; D,2,C; E,0,-; F,1,-; G,2,J; H,1,-; I,2,J; J, 1, -
	c) B,2,C; C,1,-; D,2,C; E,0,-; F,1,-; G,2,F; H,1,-; I,2,H; J, 1, -
	□ d) A, 3, B; B,2,C; C,1,-; D,2,C; E,0,-; F,1,-; G,2,F; H,1,-; I,2,H; J, 1, -
> 9	(1p) ¿Cuál es el valor de los flags del vector de reenvío R [x,y,z] y de confirmación ACK[x,y,z] para un paquete de estado de enlace que alcanza el nodo G, con origen en C, y que llega simultáneamente a través de las líneas C-E-F-G y C-E-J-G? Asuma que x=F, y=H,y z=J y que el valor del vector es 0 si no se reenvía/confirma y 1 si se reenvía/confirma.
> 10	(1p) Se desea dividir la red en dos regiones Z1 y Z2. Z1 incluye los enrutadores A, B, C y D y Z2 incluye E, F, G, H, I y J. ¿Cuántas entradas tienen las tablas de C y E?
	□ a) 10 y 10 □ b) 4 y 6 □ c) 5 y 5 ■ d) 5 y 7

28 de junio de 2019 2/7

Redes de Computadores II

Curso 18/19 :: Prueba 2 (extraordinario)

Escuela Superior de Informática

- E. [5p] Un campus universitario cuenta con 4 edificios, 1 centro de comunicaciones (CPD) y 3 comunidades de usuarios: administración y servicios (PAS), profesorado y alumnos. La política de seguidad indica que las distintas comunidades tendrán privilegios y servicios diferentes. Por tanto se creará una red Ethernet diferente para cada comunidad independientemente del edificio en el que se encuentre. Además se instalarán los elementos de interconexión necesarios en el CPD para comunicar las 3 redes. Tenga en cuenta que se pretende minimizar el cableado necesario. La disposición actual de los puntos de red para los 4 edificios es la siguiente:
 - Edificio A: 4 PAS, 8 profesores y 40 alumnos.

	 Edificio B: 12 PAS, 20 profesores y 100 alumnos. 	
	 Edificio C: 0 PAS, 16 profesores y 0 alumnos. 	
	■ Edificio D: 6 PAS, 20 profesores y 200 alumnos.	
> 11	Suponiendo que se dispone de conmutadores de ha VLAN) se necesitarían?	asta 300 interfaces, ¿cuántos conmutadores (sin soporte
	a) 1 por edificio y 1 en el CPD.	c) A:3, B:3, C:1, D:3 y CPD:3
	□ b) 3 por edificio y 3 en el CPD.	☐ d) A:2, B:2, C:1, D:3 y CPD:1
> 12	Suponiendo que se dispone de conmutadores de ha VLAN) se necesitarían?	sta 300 interfaces, ¿cuántos conmutadores (con soporte
	a) 1 por edificio y 1 en el CPD.	☐ c) A:3, B:3, C:1, D:3 y CPD:1.
	□ b) 3 por edificio y 3 en el CPD.	☐ d) A:2, B:2, C:1, D:3 y CPD:3
> 13	¿Cuáles son los dispositivos de interconexión mín tecnología VLAN?	imos que se necesitan en el CPD si NO se dispone de
	a) 3 routers (uno por comunidad) con al men	nos 2 interfaces.
	b) 1 router con al menos 3 interfaces.	
	c) 1 router con 1 interface <i>trunk</i> .	
	☐ d) 3 routers con al menos 1 interfaz <i>trunk</i>	
> 14	¿Cuáles son los dispositivos de interconexión mínis logía VLAN?	mos que se necesitan en el CPD si se dispone de tecno-
	a) 3 routers (uno por comunidad) con al men	nos 2 interfaces.
	b) 1 router con al menos 3 interfaces.	
	c) 1 router con 1 interface <i>trunk</i> .	
	☐ d) 3 routers con al menos 1 interfaz <i>trunk</i>	
> 15	9	VLAN ¿qué sería lo mínimo que habría que hacer si mpus (personal de investigación, 20 investigadores) que
	a) Instalar un nuevo conmutador en el edifica	o C y otro en el CPD.
	b) Configurar una nueva VLAN en todos los	conmutadores.
	C) Configurar una nueva VLAN en el conmu	tador del edificio C.
	d) Configurar una nueva VLAN en el conmu	tador del edificio C y en el conmutador del CPD.

28 de junio de 2019 3/7

Redes de Computadores II

Curso 18/19 :: Prueba 2 (extraordinario)

Escuela Superior de Informática

E. [5p] Considere la siguiente topología formada por 6 switchs Ethernet y 9 segmentos LAN en las que se aparece indicado el **coste**. Responda a las siguientes preguntas asumiendo que el protocolo STP ha resuelto los bucles existentes:

> 16	(1p) ¿Cuál es el switch raíx	χ?		
	a) 19	□ c) 26	□ e) 51	
	□ b) 35	□ d) 63		
> 17	(1p) Determine los puertos	raíz (formato switch/puer):	
	a) 19/a, 51/b, 63/c,	49/d, 26/a, 35/c	c) 51/a, 63/b, 49/c, 26/b, 35/a	
	b) 51/b, 63/b, 49/b,	26/b, 35/b	☐ d) 51/b, 63/c, 49/a, 26/b, 35/c	
> 18	(1p) Determine los puertos	designados (formato swite	n/puertos):	
	a) 19/a, 51/ab, 63/bd	c, 49/bc, 35/bcd	c) 19/ac, 63/bcd, 49/b, 26/ab, 3	35/ab
	□ b) 19/abc, 51/ab, 63	/b, 49/c, 35/abc	d) 19/abc, 51/a, 63/d, 26/a, 35/d	acd
> 19	(1p) Determine los puertos	bloqueados (formato swit	n/puertos):	
	☐ a) 19/ab, 35/dc		c) 63/ac, 49/ac	
	□ b) 51/a, 63/bc, 26/b		d) 63/abcd, 49/ac, 26/b	
> 20	(1p) Como administrador miento de la LAN?	de la red ¿a qué switch le	educiría el valor de prioridad para m	ejorar el rendi-
	□ a) 51	□ c) 49	e) 35	
	b) 63	□ d) 26		
21	[2p] ¿Cuál es el propósito d	el protocolo IP?		
	a) Mover paquetes entre	los nodos de una LAN o V	LAN.	
		avés de la pasarela de e <mark>nla</mark>		
		és de un conjunto de redes		
Ш	d) Asignar una dirección	jerárquica única a cada no	o de la inter-red.	
22	[1p] ¿Qué contiene la tabla	de rutas de un router IP tíj	co?	
	a) La métrica de coste a	cada vecino de la subred.		
	1	nunciado por cada vecino e		
	1	outers hasta llegar a cada de		
	a) Indica qué hacer con d	cada paquete entrante dada	u IP destino.	

28 de junio de 2019 4/7

Redes de Computadores II Curso 18/19 :: Prueba 2 (extraordinario)

Escuela Superior de Informática

[1p] ¿Cuál es el funcionamiento básico de un router IP?
a) Recibe un paquete, lo almacena, comprueba que es correcto, determina la interfaz de salida que le corresponde y lo envía por ella.
b) Recibe un paquete, espera a que la cola de recepción esté llena, recorre la tabla de rutas completa y envía el paquete por la ruta por defecto.
c) Recibe un paquete, lo almacena, pregunta a los routers vecinos por la IP destino y lo envía al que conteste en primer lugar.
d) Envía un mensaje ECHO a todos los vecinos, recoge las respuestas, consulta la tabla de rutas y devuelve el mensaje al router más cercano.
[1p] Disponemos de una red cuyos routers son dispositivos inhalámbricos alimentados por baterías y paneles fotovoltaicos. Queremos diseñar un algoritmo de encaminamiento para maximizar el tiempo de operación de dicha red. ¿Cuál de los siguientes sería un tipo de algoritmo razonable?
□ a) Adaptativo por inundación. □ c) Estático por inundación.
b) Adaptativo mediante mediciones.
[1p] En un algoritmo de encaminamiento dinámico ¿Qué consecuencia tiene considerar el tiempo que los paquetes esperan en las colas del router al aplicar una métrica de latencia?
 a) El coste de un enlace de baja latencia crecerá conforme aumente la carga, lo que podría producir un problema de convergencia.
b) Los enlaces de mayor latencia serán infrautilizados puesto que las colas de los routers podrán alojar un mayor número de paquetes.
c) Aumentará la congestión si todos los vecinos eligen la misma ruta independientemente del tamaño de las colas.
d) No es posible aplicar méticas de latencia en encaminamiento dinámico.
[1p] ¿Cuál es el objetivo de los algoritmos de encaminamiento multicast?
a) Calcular todos los árboles de expansión para optimizar el encaminamiento unicast.
b) Llevar una copia del mensaje a todos los miembros del grupo destino.
c) Elegir el router raíz para minimizar el número de copias cuando varios nodos envían un paquete al mismo
destino. d) No existe el encaminamiento multicast.
[1p] Dada la red de la figura, que incluye un encaminador con NATP. Indica la opción válida. «Un segmento TCP
llega»
200.100.10.5
NATP
192.168.0.12
☐ a) Al servidor con ip.dst=100.10.10.10, dst.port=80, ip.src=192.168.0.12 y src.port=4512.
□ b) Al servidor con ip.src=100.10.10.10, src.port=80, ip.dst=192.168.0.12 y dst.port=4512.
C) Al router con ip.dst=200.100.10.5, dst.port=3471, ip.src=100.10.10.10 y src.port=4512.
d) Al router con ip.dst=200.100.10.5, dst.port=3471, ip.src=100.10.10.10 y src.port=80.

28 de junio de 2019 5/7

Redes de Computadores II Curso 18/19 :: Prueba 2 (extraordinario)

Escuela Superior de Informática

28	[2	p]	A un router NATP lle	ega un segmento To	CP con los si	guie	ntes valores:			
	•	dst	t ip: 129.12.34.7							
	•	dst	t port: 38345							
	-	src	e ip: 212.34.12.4							
	•	src	port: 80							
P	artie	endo	o de esta información	y asumiendo que t	odo está conf	figur	ado y funcionado corre	ectamer	nte, elija la opción ma	ás
r	azon	abl	e:							
		a)	Es una petición HTT	P procedente de un	n host de la re	ed p	rivada.			
		$\mathbf{b})$	Es un respuesta HTT	TP procedente de un	n servidor pú	iblic	0.			
		c)	La dirección IP públi	ica del router es 21	2.34.12.4.					
		d)	El servidor web del r	router está vinculad	do al puerto 8	80.				
20	Г1	1	.C. al da la a si sui ante	NO -	4:1:			: d0		
29	[1	_	-	_	e uunza para		ar un túnel en redes pr	ivadas :		
	Ш	a)	L2TP			Ш	c) IPSec		d) TCPSec	
30			Una red basada en tec mente utiliza algún se				LAN distantes conect	adas po	r líneas alquiladas qu	ie
		a)	intranet	b) extranet			c) red híbrida		d) VLAN	
31	[1	p]	¿De qué tipo es la dir	rección IPv6 FF80:	ABCD:DDB	B::1	234?			
		a)	Una dirección global	l unicast.			c) Una dirección unio	east de e	enlace de sitio.	
		b)	Una dirección unicas	st de enlace local.			d) Una dirección mul	lticast.		
32	[1	p]	¿Cómo se encapsula ı	un mensaje del pro	tocolo ICMF	Pv6?				
		a)	El paquete ICMPv6 s	se encapsula sobre	IPv6.					
			En un paquete IPv6	=		n.				
			El paquete ICMPv6 s							
			El paquete ICMPv6	=						
00	F.4		• •	•						
33		_	¿Qué dirección se util		la dirección d	de lo	_			
			0:0:0:0:0:0:FFFF:IPv	v4			c) ::1			
	Ш	b)	0:0:0:0:0:0:0:0			Ш	d) 0:0:0:0:0:0:0:0:1Pv4			
34	[1	p]	¿Cuál de las siguiente	es estrategias no se	ha usado du	rante	e la transición de IPv4	a IPv6?		
		a)	Pila dual IPv4/IPv6 e	en los puntos finale	es de la comu	ınica	ción y los enrutadores			
		b)	Túneles IPv6 sobre I	Pv4.						
		c)	Consulta al servidor	DNS para determin	nar si el desti	inata	rio usa IPv6.			
		d)	Envío de un mensaje	e ICMPv6 para con	nprobar cone	ectiv	idad.			
35	[1	p]	¿Cuál de las siguiente	es no es una caracte	erística de IP	v6?				
		a)	Asignación de direcc	ciones Plug-and-Pla	ay.					
		b)	Formato de direccior	nes de 128 bits.						
		c)	Una única interfaz pu	uede tener múltiple	s direcciones	s de	<mark>cualqui</mark> er tip <mark>o.</mark>			
		d)	La fragmentación es	responsabilidad de	e los routers.					
36	[1	p]	¿Por qué se producen	los bucles cuando	se usan puer	ntes	redundantes?			
		a)	El puente redundante	e no puede diferenc	ciar si la tram	na es	original o u <mark>na ya</mark> reen	viada p	or otro puente.	
		b)	Se deben a fallos en	la configuración de	e los puentes.					
			Los puentes redundar				s bucles.			
			La acción de 'inunda		_					

28 de junio de 2019 6/7

Redes de Computadores II Curso 18/19 :: Prueba 2 (extraordinario)

Escuela Superior de Informática

37	[1p	Marque la afirmación FALSA respecto del control de flujo en Ethernet:
[a) El receptor envía una trama especial PAUSE al emisor indicando el tiempo que debe parar antes de continuar la transmisión.
		b) El control de flujo es siempre simétrico.
[c) El objetivo es evitar la saturación del switch.
[d) El control de flujo puede negociarse sobre diferentes velocidades de Ethernet.
38	[1p olisić	¿Cómo debe interconectar las estaciones de trabajo para que todas ellas compartan un mismo dominio de in?
[a) Cada estación se conecta a una interfaz distinta del puente/switch.
[b) Cada estación se conecta a una VLAN diferente.
		c) Todas las estaciones se conectan a un hub o concentrador y éste a una interfaz del puente/switch.
[d) Todas las estaciones se conectan a un router y éste a una interfaz del puente/switch.

28 de junio de 2019 7/7