Basics of Feedback Control

Raj Rajkumar Lecture 22

Carnegie Mellon

18-648: Embedded Real-Time Systems

Outline of This Lecture

- The Feedback Control Problem
- Proportional Control
- Derivative Control
- Integral Control

Carnegie Mellon

Feedback in Embedded Systems

- Many real-time embedded systems make control decisions
 - E.g. Elevators, automotive cruise control
- These decisions are usually made by software and based on feedback from the hardware under its control (termed the "plant")
 - Such feedback commonly takes the form of an analog sensor that can be read via an A/D converter
 - A sample from the sensor might represent position, voltage, temperature, or any other appropriate parameter
- Each sample provides the software with additional information upon which to base its control decisions

Carnegie Mellon

Closed-Loop vs. Open-Loop

- Open-loop systems do not necessarily use feedback
- Closed-loop systems use feedback

- After reading each new sample from the sensor
 - Software reacts to the plant's changed state by recalculating and adjusting the drive signal
 - Plant responds to this change, another sample is taken, and the cycle repeats
- Eventually, the plant should reach (close to) the desired state and the software may cease making changes

Carnegie Mellon

On-Off Control – Your Thermostat

- How much should the software increase or decrease the drive signal?
 - E.g. Set the drive signal to its minimum value when you want the thermostat to decrease its temperature
 - Set the drive signal to its maximum value when you want the thermostat to

Carnegie Mellon

18-648: Embedded Real-Time Systems

Proportional Control

- If the difference between the current output and its desired value (the current error) is large
 - Software should probably change the drive signal a lot
- If the error (difference) is small
 - Software should change the drive signal only a little
- We want the change to look like this
 - K_p * (desired current)
 - K_p is called the **proportional gain**
- If K_p is chosen well,
 - Time taken to reach a new setpoint will be as short as possible, with overshoot (or undershoot) and oscillation minimized
- Is there a problem here?

Carnegie Mellon

Proportional-Derivative (PD) Control

- Problems with Proportional Control
 - You want to reach the desired value quickly (higher K_p)
 - You want to settle down once you are near the desired value (low K_0)
- We have (or can discover) information about the rate of change of the plant's output
 - Rate of change of a signal = its derivative
 - If the output is changing rapidly, an overshoot/undershoot may lie ahead
- We can then reduce the size of the change suggested by the proportional controller
 - Subtract a derivative-based term from the proportional term
- PD Controller characteristics
 - Slower response time
 - Far less overshoot and ripple than a proportional controller

Carnegie Mellon

18-648: Embedded Real-Time Systems

Proportional-Integral-Derivative (PID) Control

- Problems with PD Control
 - Change in drive signal triggered by error = difference in desired and current values of output
 - Derivative only tells you how two consecutive output values differ
 - What if the error is not sufficient to trigger any action?
- Something else is needed to drive the plant toward the setpoint
- Integral term
 - Sum of all past errors in the plant output
 - Or at least a significant recent window
 - A persistent error will eventually cause the sum to grow large enough
 - The integral term then forces a change in the drive signal
- Proportional, Integral and Derivative combination =
 PID

Carnegie Mellon

A Simple System with *Proportional Control*

Consider a marble on a flat and perfectly level table.

- Any point can be an equilibrium point (just pick one)
- Motion can be described by Newton's law F = ma, or x' = F/m
- Suppose that we want to keep the marble at x = 0,
 - By applying proportional control: $\mathbf{F} = -\mathbf{K}_n \mathbf{x}$.
- The feedback is negative since if the marble position error is negative, it pushes with a positive force and vice versa.
- $-K_p$ is a positive integer known as *proportional control constant*.

Concepts of Stability

- The objective of controlling the marble is to put it at rest at the origin (set point). i.e. x = 0, and x' = 0, from any initial condition.
 - Or for that matter, after the marble was disturbed by some force.
 - This intuition is formalized as the notion of stability
 - Or more precisely, asymptotic stability, i.e. the error will converge to zero over time.
- The opposite of stability is instability, meaning that the error will grow larger and larger without bound.
 - That is, the marble will leave the origin for good.
- In-between is marginal stability, the error stays within some bound.

Carnegie Mellon

18-648: Embedded Real-Time Systems

Review

 From your calculus courses, we know that the solution of *Linear Partial Differential Equations* is a sum of exponentials:

```
y(t) = c_1 exp(\lambda_1 t) + c_2 exp(\lambda_2 t) + ....
```

- Exponents λ_1 , λ_1 ... are known as the eigenvalues of the system.
- The eigenvalues can be complex, e.g., $exp(Re(\lambda) t)*exp(Im(\lambda) jt)$
- Solving LPDEs using the Laplace Transform
 - -3*y'' + 4*y' + 5*y = 0 (replace n^{th} derivative with s^n)
 - $-3s^2+4s+5=0$
 - Solve for s and you will get the eigenvalues

Carnegie Mellon

18-648: Embedded Real-Time Systems

Stability and Eigenvalues

- What is the relationship between
 - The magnitude of eigenvalues and
 - The notion of (asymptotic) stability, marginal stability and instability?
- Stability
 - All real parts are negative
- Instability
 - At least one eigenvalue's real part is greater than zero.
- Marginal stability
 - None greater than zero but some eigenvalues equal to zero.

Carnegie Mellon

18-648: Embedded Real-Time Systems

Back To The Marbles

- Now, let us analyze the stability of our marble under proportional control.
- From Newton's law, we have F = m x''
- From proportional control, we have $\mathbf{F} = -\mathbf{K}_n \mathbf{x}$
- Hence, we have $\mathbf{mx'}' = -K_p \mathbf{x}$ with the band $K_p > 0$,
- The marble under the control is Stable?
 Unstable?
 Marginally stable?
- Why?

Carnegie Mellon

18-648: Embedded Real-Time Systems

Marble under Proportional Control

 The system trajectories can be obtained by solving the differential equations by using Laplace transform

$$L(x'') = s^2$$
, $L(x') = s$, $L(x) = 1$

- Start with $x'' = (-K_p/m) x \Rightarrow$
 - $x'' + (K_p/m) x = 0$

Apply Laplace transforms

- $s^2 + K_p / m = 0$
- $s = \pm j \operatorname{sqrt}(K_p/m)$ are the eigenvalues
- As you might have guessed, the marble will oscillate with frequency
 - $\omega = \operatorname{sqrt}(K_p/m)$ radians/sec
- System is *marginally stable* since the real part of eigenvalue is zero

Carnegie Mellon

18-648: Embedded Real-Time Systems

Marble Under P + D control

- Is this system stable? Why?
 - Since $sqrt(K_d^2 4m^*K_p) < K_d$, the real part of s is always < 0
 - It follows that the system is stable.

Carnegie Mellon

18-648: Embedded Real-Time Systems

Intuition

- When the position error *x* is positive, the proportional control force is negative.
 - It pushes the marble back to the origin (setpoint) at 0.
 - What will be the force and the speed when marble reaches the origin if we use only proportional control?
- When the marble is moving towards the setpoint, the velocity is negative. So the force due to derivative control $-K_dx'$ is positive.
 - This counters the proportional force and slows down the marble's motion towards the origin.
- Proportional control is like your car's gas pedal
 - Moves the car towards the setpoint (a chosen origin)
- Derivative control is like your brake

Carnegie Mellon

18-648: Embedded Real-Time Systems

Tuning a Simple PD Controller - I

Experimental tuning procedure

- 1. First set the derivative gain to zero
- 2. Slowly increase the proportional gain until the device oscillates around the set point with a speed that is satisfactory
 - ✓ At this point, the real part of the eigenvalue is _______
 - ✓ The imaginary part of the eigenvalue determines the _____ of oscillation
- 3. Slowly increase the derivative gain until the device settles down at the setpoint
 - ✓ At this point, the real part of the eigenvalue is

Carnegie Mellon

18-648: Embedded Real-Time Systems

Tuning a Simple PD Controller - II

- Fine-tuning
 - ❖ If the motion towards the setpoint is too slow, we can _____ the proportional gain *or* _____ the derivative gain
 - ❖ If the motion overshoots the setpoint too much, we can _____ the derivative gain *or* _____ the proportional gain
- Avoid using too large a proportional gain and too large a derivative gain at the same time
 - This will saturate the actuator
 - It is like slamming on your gas pedal and the brake together

Carnegie Mellon

Integral Control

- A system often has friction or changing workloads that you may not be able to model in advance.
- In auto-cruise control, we cannot know how many passengers will be in the car or what the current slope of the road is.
- Friction may change due to machine conditions (worn-out tires, loss of engine conditioning).
- Un-modeled heavy load often results in steadystate error, the system will settle "near", rather than at, the setpoint.

Carnegie Mellon

18-648: Embedded Real-Time Systems

What Does *Integral Control* Do?

- Integral control adds up (integrates) the past errors and then adds a force that is proportional to the cumulative errors.
- If the marble gets stuck near a setpoint due to some friction
 - The position error adds up over time
 - Use this to eventually generate a force large enough to help get the marble going.
- If the car has a heavier load and the velocity settles at a value lower than the setpoint for a while.
 - The error adds up and
 - The integral control leads to increased throttle

Carnegie Mellon

Using Integral Control

- Check the eigenvalue of the system to make sure all of them are sufficiently negative.
 - X'' = F/m, where $F = -K_p x K_d x' K_i^* \int x$
 - $s^2 + (K_d/m) s + K_p/m + (K_i/m) 1/s = 0$ (because the Laplace transform of the integral is 1/s)
 - $s^3 + K_d/m s^2 + K_p/m s + K_i/m = 0$
- Effect of integral is to add an *order* to the system. A large value of K_i will lead to a positive eigenvalue (bad!)
- We can solve the equation to see if the real part of the eigenvalues are still negative (best done using tools like Matlab)

Carnegie Mellon

18-648: Embedded Real-Time Systems

The Dark Side of Integral Control

- Integral control acts on cumulative errors
 - It takes a while to reach a large sum
 - It will also take time to reduce the sum
- Consider the following case
 - The marble gets stuck on the left side of the set-point
 - After 10 sec, the integral control is large enough to help get the marble moving
 - The integral will keep increasing until the marble crosses the origin
 - It will take a while to "wash out" the cumulative error
- An overdose of integral control is a common source of overshoot, oscillation and even instability.
 - What can you do to offset this?
- As a rule of thumb, start from zero and use it lightly

Carnegie Mellon

18-648: Embedded Real-Time Systems

How to Tune a Simple PID Controller

Experimental tuning procedure

- First set derivative gain and integral gains to zero.
- Slowly increase the proportional gain until the device oscillates around the set point with a speed that is satisfactory.
 - At this point, the real part of the eigenvalue is ______ of oscillation
 The imaginary part of the eigenvalue determines the ______ of oscillation
- Slowly increase the derivative gain until the device settles down at the setpoint
 - At this point, the real part of the eigenvalue is ______
- If there is a steady-state error, slightly increase the integral gain until the steady state error is corrected and yet does not cause serious oscillation.
- This means that the real part of the eigenvalues are still _____

 Carnegie Mellon 18-648: Embedded Real-Time Systems

 © Electrical & Computer
 ENGINEERING

How to Tune a Simple PID Controller

- Fine-tuning
 - If the motion towards the setpoint is too slow
 - We can _____ the proportional gain or _____ the derivative gain
 - Do not play with the integral gain
 - If there is a steady-state error
 - We can add a little _____ gain
 - If the motion overshoots the setpoint and oscillates
 - We can the derivative gain or
 - We can reduce the _____ gain and the _____ gain

Carnegie Mellon

Basic Simulation Diagram Concepts

Proportional Control of Marble

Mass is a double-integrator with weight 1/m, which transforms force to acceleration, acceleration to velocity, and then velocity to position. (1/s denotes integration)

Carnegie Mellon

Cruise Control – PID In Action

- Cruise control controls the speed of the car by adjusting the thrott position (throttle valve controls engine power and speed)
- A good cruise control system would accelerate aggressively to the desired speed without overshooting, and then maintain that speec with little deviation, even if you go over a hill
- Proportional control
 - Difference in ideal and current speeds dictates proportional control
 - Cruise control set at 60mph; car traveling at 50mph has twice the throttle opening than when it gets to 55mph
- **Derivative control** (time derivative of speed is acceleration)
 - While driving downhill, proportional control can lead to significant overshoot
 - If speed changes too rapidly, decrease throttle opening correspondingly
- Integral control (time integral of speed is distance)
 - Helps the car deal with hills, and settle into the correct speed
 - If car goes up a hill, proportional control helps, but may still slow the car down; the longer the car stays at a slower speed, the more the integral control, and therefore the throttle opening increases

Carnegie Mellon

18-648: Embedded Real-Time Systems

SET

Summary of Lecture

- Feedback control
 - stability
 - instability
 - marginal stability
- Feedback controllers
 - proportional control
 - proportional + derivative control
 - proportional + derivative + integral control
- Simulation diagram concepts

Carnegie Mellon

