Guía usuario *Downscaling* Estadístico *Quantile Delta Mapping*

El presente documento es una breve guía para efectuar el *downscaling* estadístico de la precipitación con el método *Quantile Delta Mapping* (QDM) (Cannon et al., 2015), utilizando como predictores los modelos climáticos del *datase*t NEX-GDDP-CMIP6 (NASA Earth Exchange Global Daily Downscaled Projections 6) (Thrasher et al., 2022).

1. Requerimientos

- Instalar una distribución de Python <u>Anaconda</u>. (Python 3.11.5 o superior).
- Una cuenta Google y registrarse en Google Earth Engine.
- Instalar SDK de Google Cloud (ver documentación)
- Instalar la librería earthengine-api (ver documentación)

La automatización del proceso de *downscaling* mediante el método QDM se desarrolló en un entorno *jupyter notebook* y se encuentra en el archivo denominado GEE_GCM_NEX-GDDP_CC_Rocha.ipynb, ver Anexos_Digitales_CC-Rocha, que requiere como datos de entrada los siguientes archivos.

El código en *python* y la presente guía de usuario fue desarrollado por Aldunate (2023), ambos archivos pueden ser descargados del siguiente repositorio: <u>SD_QDM_NEX-GDDP</u>.

2. Datos de entrada

Los datos de entrada se constituyen en dos archivos, de formato *.csv, denominados "estaciones" y "pr_estaciones_cuenca_rio_rocha", que contienen información acerca de las estaciones, incluyendo su ubicación geográfica y los registros de precipitación respectivos. Es importante destacar que cada estación enlistada en el archivo "estaciones" debe tener una correspondiente serie temporal en el archivo "pr_estaciones_cuenca_rio_rocha". La unidad de medida para la precipitación es milímetros por día (mm/día).

Ambos archivos se adjuntan en la carpeta Anexos_Digitales_CC-Rocha.

3. Configuración del script para la simulación

A continuación, se describen los pasos necesarios para ejecutar el QDM.

i. Realizar la copia de la carpeta "Anexos_Digitales_CC-Rocha" en la unidad del disco local C dentro del *subprofile* del usuario. Esto garantizará que al iniciar Jupyter Notebook, la carpeta esté ubicada en el directorio predeterminado por defecto, como se muestra en la Figura 1. Posteriormente abrir el archivo GEE_GCM_NEX-GDDP_CC_Rocha.ipynb.

Figura 1. Captura pantalla inicio por defecto Jupyter Notebook

Fuente: Elaboración propia

ii. Ejecutar la primera celda del archivo GEE_GCM_NEX-GDDP_CC_Rocha.ipynb. Se solicitará un código para permitir el acceso a Google Earth Engine, ver Figura 2. El código se obtiene de la ventana emergente que solicita permisos y acceso a la cuenta Google vinculada con Google Earth Engine. Finalmente, el código de autorización se debe copiar en el recuadro en blanco de la Figura 2.

Figura 2. Captura pantalla Jupyter Notebook, acceso Google Earth Engine

1.1 Autorizar el acceso necesario a Earth Engine

Fuente: Elaboración propia

- iii. Ejecutar las celdas de las secciones 1 y 2.
- iv. En la sección 3, se muestra la configuración de la corrida en bucle para realizar el downscaling estadístico QDM utilizando diez modelos climáticos, bajo dos escenarios de emisión para el periodo 2036-2065, ver Figura 3. Los argumentos son explicados en la Tabla 1.

Figura 3. Captura pantalla Jupyter Notebook, downscaling QDM

3. Downscaling precipitación

Fuente: Elaboración propia

Tabla 1. Argumentos función QDM_NEXGDDP

Variable	Tipo	Descripción	
path_coords	string	Archivo con los nombres de las estaciones y las coordenadas. "estaciones.csv"	
Path_data	string	Archivo con las series temporales de precipitación. "pr_estaciones_cuenca_rio_rocha.csv"	
var	string	La variable objetivo 'pr' (precipitación)	
step_time	string	Paso de tiempo: 'd' (diario)	
ref_date	list	Periodo histórico observado Lista con dos valores numéricos: [Año de inicio datos observados, Año fin datos observados] Ejemplo: [1976, 2021]	

calibr_date	list	Periodo histórico modelado Lista con dos valores numéricos: [Año de inicio datos históricos modelados, Año fin datos históricos modelado] Ejemplo: [1976, 2014] Nota el periodo histórico abarca de 1950-2014	
target_date	list	Periodo futuro de interés modelado Lista con dos valores numéricos: [Año de inicio datos futuros modelados, Año fin datos futuros modelado] Ejemplo: [2036, 2065] Nota el periodo futuro abarca de 2015-2100	
scenario	string	Escenario de cambio climático de interés, 'ssp245' y 'ssp585'.	
GCM_EE_model_names	list	Diez modelos seleccionados. Nombre del modelo de interés. Para ver todos los modelos disponibles y las propiedades del dataset NEX-GDDP-CMIP6, seguir el siguiente link.	
output_path	string	Directorio de la carpeta de salida, donde se guardarán los archivos de salida.	

Fuente: Elaboración propia

4. Resultados

Los resultados se almacenan en la carpeta de salida y son series afectadas por el efecto de cambio climático por cada modelo y escenario especificado. En la Figura 4 se muestra la captura de los resultados y en la carpeta "output" de Anexos_Digitales_CC-Rocha, los archivos resultantes.

Figura 4. Captura pantalla carpeta de salida

Name	Date modified	Туре	Size
№ pr_ACCESS-CM2_ssp245_2036_2065	12/18/2023 7:42 PM	Archivo de valores	2,425 KB
፮ pr_ACCESS-CM2_ssp585_2036_2065	12/18/2023 7:50 PM	Archivo de valores	2,424 KB
☑ pr_CMCC-CM2-SR5_ssp245_2036_2065	12/18/2023 7:42 PM	Archivo de valores	2,416 KB
☑ pr_CMCC-CM2-SR5_ssp585_2036_2065	12/18/2023 7:50 PM	Archivo de valores	2,417 KB
፮ pr_CMCC-ESM2_ssp245_2036_2065	12/18/2023 7:43 PM	Archivo de valores	2,421 KB
፮ pr_CMCC-ESM2_ssp585_2036_2065	12/18/2023 7:51 PM	Archivo de valores	2,422 KB
፮ pr_EC-Earth3_ssp245_2036_2065	12/18/2023 7:43 PM	Archivo de valores	2,423 KB
፮ pr_EC-Earth3_ssp585_2036_2065	12/18/2023 7:52 PM	Archivo de valores	2,422 KB
፮ pr_GFDL-ESM4_ssp245_2036_2065	12/18/2023 7:44 PM	Archivo de valores	2,419 KB
፮ pr_GFDL-ESM4_ssp585_2036_2065	12/18/2023 7:52 PM	Archivo de valores	2,410 KB
፮ pr_IPSL-CM6A-LR_ssp245_2036_2065	12/18/2023 7:45 PM	Archivo de valores	2,423 KB
፮ pr_IPSL-CM6A-LR_ssp585_2036_2065	12/18/2023 7:53 PM	Archivo de valores	2,423 KB
፮ pr_MIROC6_ssp245_2036_2065	12/18/2023 7:45 PM	Archivo de valores	2,423 KB
፮ pr_MIROC6_ssp585_2036_2065	12/18/2023 7:53 PM	Archivo de valores	2,415 KB
፮ pr_MPI-ESM1-2-LR_ssp245_2036_2065	12/18/2023 7:46 PM	Archivo de valores	2,424 KB
፮ pr_MPI-ESM1-2-LR_ssp585_2036_2065	12/18/2023 7:54 PM	Archivo de valores	2,422 KB
፮ pr_MRI-ESM2-0_ssp245_2036_2065	12/18/2023 7:46 PM	Archivo de valores	2,422 KB
፮ pr_MRI-ESM2-0_ssp585_2036_2065	12/18/2023 7:54 PM	Archivo de valores	2,423 KB
pr_NorESM2-MM_ssp245_2036_2065	12/18/2023 7:47 PM	Archivo de valores	2,420 KB
pr_NorESM2-MM_ssp585_2036_2065	12/18/2023 7:55 PM	Archivo de valores	2,420 KB

Fuente: Elaboración propia

5. Referencias

Aldunate, C. (2023). *SD_QDM_NEX-GDDP*. https://github.com/carolina-alp/SD_QDM_NEX-GDDP

Cannon, A. J., Sobie, S. R., & Murdock, T. Q. (2015). Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? *Journal of Climate*, *28*(17), 6938–6959. https://doi.org/10.1175/JCLI-D-14-00754.1

Thrasher, B., Wang, W., Michaelis, A., Melton, F., Lee, T., & Nemani, R. (2022). NASA Global Daily Downscaled Projections, CMIP6. *Scientific Data*, *9*(1). https://doi.org/10.1038/s41597-022-01393-4