תכנון וניתוח אלגוריתמים הרצאה 5

פרק 1.5 :בעיית מינימום ופתרונות מרובים

2

: נתונה בעיה התכנות הלינארי הבאה
$$Min\{Z=2X_1+7X_2-2X_3\}$$
 s.t.

$$X_1 + 2X_2 + X_3 \le 1$$

 $-4X_1 - 2X_2 + 3X_3 \le 2$
 $X_1, X_2, X_3 \ge 0$

16.01.2008

Algorithms © Dr Reuven Hotoveli, 2008

: לאחר הוספת משתני חוסר תראה הבעיה כדלהלן♦♦♦

$$Min\{Z = 2X_1 + 7X_2 - 2X_3\}$$

s.t.

$$X_1 + 2X_2 + X_3 + X_4 = 1$$
 $-4X_1 - 2X_2 + 3X_3 + X_5 = 2$
 $X_1, X_2, X_3, X_4, X_5 \ge 0$

16.01.2008

Algorithms © Dr Reuven Hotoveli, 2008

3

המשתנים בבסיס	<u>a</u> ₁	$\underline{\mathbf{a}}_2$	$\underline{\mathbf{a}}_3$	\underline{a}_4	<u>a</u> ₅	<u>b</u>	$\frac{b_i}{a_{ik}}$
x_4	1	2	1	1	0	1	1/1
x ₅	-4	-2	3	0	1	2	2/3
C_{j}	-2	-7	2			Z=0	

:נפתור

היות וכל $\stackrel{\downarrow}{C}_j^l$ שליליים הרי שאנו בפיתרון האופטימלי, $\stackrel{\bullet}{\diamond}$ והוא : $Z^* = -10/7$

$$X_1^* = 1/7 ; X_2^* = 0 ; X_3^* = 6/7 ; X_4^* = 0 ; X_5^* = 0$$

: אם נפתור אותה בעיה כבעיית מקסימום,דהיינו

16.01.2008

Algorithms © Dr Reuven Hotoveli, 2008

Max
$$\{Z = 2X_1 + 7X_2 - 2X_3\}$$

s.t.

$$X_{1} + 2X_{2} + X_{3} \le 1$$
 $-4X_{1} - 2X_{2} + 3X_{3} \le 2$
 $X_{1}, X_{2}, X_{3} \ge 0$

16.01.2008

Algorithms © Dr Reuven Hotoveli, 2008

	משתנים בבסיס	<u>a</u> ₁	<u>a</u> 2	<u>a</u> ₃	<u>a</u> 4	<u>a</u> 5	<u>b</u>	$\frac{b_i}{a_{ik}}$, 🔷
	x_4	1	2	1	1	0	1	1/2	משתנה יוצא
	x_5	-4	-2	3	0	1	2	1	
	C_j^l	-2	-7	2			Z = 0		
16.01.2008			משתנה נכנס	© Dr Re	euven Hotove	li, 2008			9

בפיתרון בעיית מקסימום הקריטריון לאופטימום בפיתרון בעיית כיית הקסימום הקריטריון לאופטימום הוא, שכל כ' $C_j^l \geq 0$

ומכאן, שאין אנו נמצאים בפיתרון האופטימלי. ומכאן, אנו לבסיס אנו לבסיס אנוציא את לבסיס את גכניס את \mathbf{X}_2

16.01.2008

Algorithms © Dr Reuven Hotoveli, 2008

משתנים בבסיס	<u>a</u> ₁	<u>a</u> ₂	<u>a</u> ₃	<u>a</u> ₄	<u>a</u> ₅	<u>b</u>
X_2	1/2	1	1/2	1/2	0	1/2
x_5	-3	0	4	1	1	3
C_j^l	3/2		11/2	7/2		Z = 7/2

16.01.2008

ים חיוביים, הרי שאנו בפיתרון - C_j^l - ים חיוביים, הרי שאנו בפיתרון - C_j^l היות וכל ה- C_j^t האופטימלי והוא: - $Z^*=7/2$ - $Z^*=7/2$ - $Z^*=7/2$ - $Z^*=0$; $Z^*=0$;

$$X_1^* = 0$$
; $X_2^* = 1/2$; $X_3^* = 0$; $X_4^* = 0$; $X_5^* = 3$

16.01.2008

Algorithms © Dr Reuven Hotoveli, 2008

סיתרונות מרובים ♦

- שיטת הסימפלקס עוצרת ברגע שהיא מוצאת פיתרון 🍑 אופטימלי ראשון.
- אולם יתכן ולבעיה קיימים מספר פתרונות אופטימליים. ◆
- אנו נזהה מקרים כאלו, אם בטבלה אחרונה, שבה מצאנו את הפתרון האופטימלי, המקדם של המשתנה לא -בסיסי מסוים בפונקצית המטרה C_j שווה אפס, דהיינו הכנסתו לפתרון לא תשנה את ערך פונקצית המטרה.

16.01.2008

Algorithms © Dr Reuven Hotoveli, 2008

13

- במקרים אלו ניתן למצוא פיתרון אופטימלי נוסף על ידי הכנסת המשתנה הלא בסיסי לבסיס והוצאת המשתנה המתאים, בהתאם לקריטריון ההוצאה הרגיל.
 - ◆במידה וקיימים שניים או יותר פתרונותאופטימליים לבעיה, קיימים לה אינסוף פתרונות.

16.01.2008

Algorithms © Dr Reuven Hotoveli, 2008

- ⇒ היות וכל קומבינציה ליניארית של שני פתרונות מהווה גם היא פיתרון אופטימלי לבעיה, אם כי לא בהכרח פיתרון בסיסי.
 - : דוגמה ♦
 - : נתונה בעיית התכנות הליניארי הבאה

16.01.2008

Algorithms © Dr Reuven Hotoveli, 2008

15

$$Min\{14X_1 + 4X_2 - 14X_3\}$$
 s.t.

$$\begin{aligned} X_1 + 2X_2 + & X_3 \leq 1 \\ -4X_1 - 2X_2 + 3X_3 \leq 2 \\ X_1, & X_2, X_3 \geq 0 \end{aligned}$$

16.01.2008

Algorithms © Dr Reuven Hotoveli, 2008

: מתרונה האופטימלי מתקבל בטבלה הבאה

משתנים בבסיס	<u>a</u> ₁	$\underline{\mathbf{a}}_2$	<u>a</u> ₃	$\underline{\mathbf{a}}_4$	<u>a</u> ₅	<u>b</u>	$\frac{b_i}{a_{ik}}$	
\mathbf{x}_1	1	8/7	0	3/7	-1/7	1/7	1/8	משתנה יוצא
x ₃	0	6/7	1	4/7	1/7	6/7	1	
C_j^l		0		-2	-4	$Z^* = -10$		
		A						='

שתנה | 16.01.2008 ננס |

Algorithms © Dr Reuven Hotoveli, 2008

17

:כי:

 $X_1^* = 1/7, X_2^* = 0, X_3^* = 6/7, X_4^* = 0, X_5^* = 0$ $Z^* = -10$

- אנו רואים, כי המקדם C_2^{1} בפיתרון האופטימלי שווה אנו רואים, כי המקדם X_2 את שניתן להכניס את אופטימלי, כלומר ערך פונקצית המטרה לא ישתנה.
 - לפי קריטריון לפי את לבסיס ונוציא לבסיס את גכניס את גכניס לבסיס לבסיס לבסיס ההוצאה, ונקבל ההוצאה, ונקבל

16.01.2008

Algorithms © Dr Reuven Hotoveli, 2008

משתנים בבסיס	\underline{a}_1	$\underline{\mathbf{a}}_2$	<u>a</u> ₃	\underline{a}_4	<u>a</u> ₅	<u>b</u>
x ₂	7/8	1	0	3/8	-1/8	1/8
x ₃	-3/4	0	1	1/4	1/4	3/4
C_j	0	-2	-4			Z=-10

בסיסיים והם : מכאן שקיבלנו שני פתרונות בסיסיים והם •

. פיתרון אופטימלי

16.01.2008

Algorithms © Dr Reuven Hotoveli, 2008