The arithmetic of vector bundles with a flat connection

Raju Krishnamoorthy

April 17, 2023

1 Introduction

Definition 1.1. Let X/k be a smooth variety over a field and let $M \in \mathsf{QCoh}(X)$ be a quasi-coherent sheaf on X. A connection on M is a map

$$\nabla \colon M \to M \otimes \Omega^1_{X/k}$$

that satisfies the Leibniz property: for all open subsets $U \subset X$, and all local sections $f \in \Gamma(U, \mathcal{O}_X), s \in \Gamma(U, M)$, we have $\nabla(fs) = f\nabla(s) + s \wedge df$. A connection ∇ is said to be flat (or integrable) if $\nabla \circ \nabla = 0$.

Given a smooth variety X/k, we denote $\mathbf{MIC}(X)$ the category of quasi-coherent sheaves with an integrable connection. When $\mathrm{char}(k)=0$, any coherent sheaf M that admits a connection is automatically locally free, i.e., is a vector bundle. We note that the notion of a quasi-coherent sheaf with a relative integrable connection may be defined over any smooth morphism $\mathcal{X} \to S$, by using $\Omega^1_{\mathcal{X}/S}$ in Definition 1.1.

The link to the seminar last semester is the following.

Fact 1.2. Let X/\mathbb{C} be a smooth projective variety. The functor from the category of vector bundles with a flat connection on X to the category of finite dimensional \mathbb{C} -local systems on X^{an} given by the formula on sheaves:

$$(M, \nabla) \longmapsto M^{\nabla=0},$$

is an equivalence of categories.

One may extend this equivalence to arbitrary smooth varieties using Deligne's work on the Riemann-Hilbert problem [Del70].

Following last semester, we make the following definition.

Definition 1.3. Let X/\mathbb{C} be a smooth, connected, projective variety. Let (M, ∇) be a vector bundle with a flat connection on X. We say that (M, ∇) is of geometric origin (or geometric, or motivic) if threre exists an open dense $U \subset X$, a smooth projective morphism $f: Y \to U$, and an integer $i \geq 0$ such that $L|_U$ is a subquotient of:

$$(\mathcal{H}_{dR}^{i}(Y/U), \nabla_{GM}),$$

where $\mathcal{H}^i(Y/U)$ stands for the relative de Rham cohomology and ∇_{GM} stands for the Gauss-Manin connection.

Recall that local systems only depend on the topology of $X^{\rm an}$ (and in particlar not on the algebraic structure). On the other hand, the notion of a vector bundle with a flat connection manifestly does depend on the complex/algebraic structure.

Last semester we discussed several conjecturally sufficient conditions to guarantee a complex local system is of geometric origin. This term we will focus on analogous questions about vector bundles with a flat connection (the de Rham side). In particular, we will focus on the notion of flat connections in positive/mixed characteristic. In the context of positive characteristic, a new player emerges: the p-curvature. Briefly, the p-curvature emerges from the fact that in positive characteristic, $M^{\nabla=0}$ actually defines a coherent sheaf on the Frobenius twist X' and hence is very far from being locally constant. When the p-curvature is zero, we say that (M, ∇) has a complete set of algebraic solutions

We have the following orienting conjecture.

¹For example, that the local system underlies a \mathbb{Z} -PVHS, or that there exists an isomorphism $\mathbb{C} \to \bar{\mathbb{Q}}_{\ell}$ such that the associated $\bar{\mathbb{Q}}_{\ell}$ -topological local system extends to an étale local system and is moreover arithmetic.

Conjecture 1.4 (General Grothendieck-Katz p-curvature conjecture). Let $\mathbb{Z} \subset A \subset \mathbb{C}$ be an integral domain of finite type over \mathbb{Z} and let $S = \operatorname{Spec}(A)$. Let \mathcal{X}/S be a smooth projective morphism, and write $X_{\mathbb{C}}$ for the pullback to the point $\operatorname{Spec}(\mathbb{C}) \to S$.

Let (M, ∇) be a vector bundle with flat connection on \mathcal{X}/S . Then:

- 1. The flat connection $(M, \nabla)|_{X_{\mathbb{C}}}$ has finite monodromy if and only if for all $p \gg 0$ and for all closed points s of characteristic p, the p-curvature of $(M, \nabla)|_{\mathcal{X}_s}$ is 0.
- 2. Assume further that (M, ∇) is irreducible. The flat connection $(M, \nabla)|_{X_{\mathbb{C}}}$ is of geometric origin if and only if for all $p \gg 0$ and for all closed points s of characteristic p, the p-curvature of $(M, \nabla)|_{\mathcal{X}_s}$ is nilpotent.

The first part Conjecture 1.4 is what is known as the Grothendieck-Katz *p*-curvature conjecture. The second part has been suggested by many mathematicians, including Bombieri, Dwork, Esnault, and Ogus. On the other hand, we have the following conjecture of Simpson.

Conjecture 1.5. Let X/\mathbb{C} be a smooth, projective, connected variety. Let (M, ∇) be an irreducible rigid local system with torsion determinant on X. Then (M, ∇) is of geometric origin.

Recent work of Esnault-Gröchenig has revealed a remarkable interplay between Conjecture 1.4 and Conjecture 1.5 [EG20]. Understanding portions of this work will be one of the main goals for this semester.

2 Topics

We aim to discuss the following topics.

- The definition and basic properties of the p-curvature.
- The crystalline site on a smooth variety X/k over a perfect field. The notion of crystals and isocrystals on this site.
- Nonabelian Hodge theory in positive characteristic, following Lan-Sheng-Zuo (and having origins in Ogus-Vologodsky). The notion of a periodic Higgs-de Rham flow in characteristic p. Main reference: [LSZ15]. Secondary reference: [OV07]
- The Hitchin fibration for the de Rham moduli space on a curve X/k over a perfect field of positive characteristic. The correspondence between the Higgs and de Rham moduli spaces over the Hitchin base, again in the context of a curve. Main reference: [G15]. Secondary references: [BB07, BMR08]. (Realistically, we will only have careful statements here.)
- Two proofs (one due to Esnault-Gröchenig, the other due to Esnault-de Jong) of the following result. Let $S = \mathsf{Spec}(A)$, with $A \subset \mathbb{C}$ an integral domain of finite type over \mathbb{Z} , and let \mathcal{X}/S be a smooth projective family. Let (\mathcal{M}, ∇) be a flat connection on \mathcal{X}/S . Suppose $(\mathcal{M}, \nabla)|_{X_{\mathbb{C}}}$ is cohomologically rigid. Then for all $p \gg 0$, for all closed points s of residue characteristic p, completing at s yields an F-isocrystal on \mathcal{X}_s .
- Time permitting, applications of non-abelian Hodge theory in positive characteristic to questions in complex geometry, after Arapura and Langer.

3 Outline

1. (3 lectures) **Goals**: Introduction to flat connections, the ring of crystalline differential operators, the definition and basic properties of *p*-curvature, Cartier Descent, Katz/Deligne's theorem that the *p*-curvature of a family coming from geometry is nilpotent. Explain the relation to crystals/isocrystals on the crystalline and nilpotent crystalline site. Time permitting, present Mochizuki's perspective on *p*-curvature.

- 2. (2-3 lectures) **Goals**: Explain mod p non-abelian Hodge theory via exponential twisting. State the main theorem of [LSZ15]. Carefully explain the key-input: [LSZ15, Lemma 2.1] (including the background material from Deligne-Illusie). Explain the functors in [LSZ15, Sections 2.2 and 2.3]. Explain [LSZ15, Lemma 4.1], which specifies the inverse Cartier in the case of a geometric family. Give the definition of a Higgs-de Rham flow and a periodic Higgs-de Rham flow (in the case of 1-periodicity, this appears as a "stationary point" in [Ara17]).
- 3. (2 lectures) **Goal**: Sketch the BNR correspondence, [EG20, Theorem 2.17] or [G15, Proposition 3.15]. Sketch the proof of the above theorem, including background material from [G15]. This will require: defining the *de Rham Hitchin fibration* as in [EG20, Section 2.5], stating the BNR correspondence [EG20, Theorem 2.17], and giving an indication of the proof (either written up in [EG20] or [G15]). Explain why the de Rham Hitchin fibration is proper. ([Lan14] might also be useful.)
- 4. (1 Lecture) **Goal**: Prove that stable rigid flat connections are globally nilpotent. Explain [EG20, Lemma 3.4, Proposition 3.5]. Prove [EG20, Theorem 1.4]
- 5. (2 lectures) **Goal**: explain the key counting argument in [EG20, Lemma 4.11], i.e., indicate why stable rigid flat connections yield, on reduction modulo p, periodic Higgs-de Rham flows.

 Explain enough of [EG20, Section 4.2] to prove [EG20, Lemma 4.11]. Give an indication as to what the p-adic periodicity statement is (without defining the p-adic inverse Cartier transform). State the corollary that stable rigid flat connections yield F-crystals (on the crystalline site). Another useful
- 6. (1 lecture) **Goal**: explain [E22, Theorem 8.4], i.e., the alternative argument of Esnault-de Jong that stable rigid flat connections yield F-isocrystals.
- 7. (remaining lectures?) Explain one of the theorems [Ara17, Lan15, Lan16].

References

reference might be [E22, Section 9]

- [Ara17] Arapura, D. Kodaira–Saito vanishing via Higgs bundles in positive characteristic. J. für die Reine und Angew. Math, 755, 293-312 (2017).
- [BB07] Braverman, A.; Bezrukavnikov, R. Geometric Langlands correspondence for D-modules in prime characteristic: the GL(n) case, Pure Appl. Math. Q. 3, no. 1, Special Issue: In honor of Robert D. MacPherson. Part 3, 153–179 (2007).
- [BMR08] Bezrukavnikov, R.; Mirković, I.; Rumynin, D. Localization of modules for a semisimple Lie algebra in prime characteristic, Ann. of Math. (2) 167, no. 3, 945–991, (2008). With an appendix by Bezrukavnikov and Simon Riche.
- [Del70] Deligne, P. Équations différentielles à points singuliers réguliers, LNM, Vol. 163. Springer-Verlag, (1970).
- [EG20] Esnault, H.; Gröchenig, M.; Rigid connections and F-isocrystals, Acta Mathematica 225 (1), 103–158 (2020).
- [E22] Esnault, H. Lectures on local systems in algebraic-arithmetic geometry, available at https://page.mi.fu-berlin.de/esnault/preprints/helene/147_eilenberg.pdf
- [G15] Gröchenig, M. Moduli of flat connections in positive characteristic Math. Res. Lett. 23 (4) 989 1047(2016).
- [LSZ15] Lan, G.; Sheng, M.; Zuo, K. Nonabelian Hodge theory in positive characteristic via exponential twisting, Math. Res. Lett. 22, (3), 859–879 (2015).

- [Lan14] Langer, A. Semistable modules over Lie algebroids in positive characteristic, Doc. Math. 19, 509–540 (2014).
- [Lan15] Langer, A. Bogomolov's inequality for Higgs sheaves in positive characteristic, Invent. math. 199, 889–920 (2015).
- [Lan16] Langer, A. The Bogomolov-Miyaoka-Yau inequality for logarithmic surfaces in positive characteristic. Duke Math. J. 165 (14) 2737 2769, (2016).
- [OV07] Ogus, A.; Vologodsky, V. "Nonabelian Hodge theory in characteristic p." Publications mathématiques 106 (1), 1-138 (2007).