

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO

Prova Escrita de Matemática A

12.º Ano de Escolaridade

Decreto-Lei n.º 139/2012, de 5 de julho

Prova 635/1.ª Fase

16 Páginas

Duração da Prova: 150 minutos. Tolerância: 30 minutos.

2014

VERSÃO 1

Página e	m branco ———	

Indique de forma legível a versão da prova.

Utilize apenas caneta ou esferográfica de tinta azul ou preta, exceto nas respostas que impliquem construções, desenhos ou outras representações, que podem ser, primeiramente, elaborados a lápis, e, a seguir, passados a tinta

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Não é permitido o uso de corretor. Deve riscar aquilo que pretende que não seja classificado.

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

Apresente apenas uma resposta para cada item.

A prova inclui um formulário.

As cotações dos itens encontram-se no final do enunciado da prova.

—— Página em branco ———	
Pagina em branco	

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$

Áreas de figuras planas

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Polígono regular: Semiperímetro × Apótema

Sector circular:

$$\frac{\alpha r^2}{2}(\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g (r - raio da base; g - geratriz)$$

Área de uma superfície esférica:
$$4\pi r^2$$
 $(r - raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Cone:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Esfera:
$$\frac{4}{3}\pi r^3$$
 $(r-raio)$

Trigonometria

$$sen(a+b) = sen a cos b + sen b cos a$$

$$cos(a+b) = cos a cos b - sen a sen b$$

$$tg(a+b) = \frac{tga + tgb}{1 - tga \ tgb}$$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \left(\frac{\theta + 2k\pi}{n}\right) \quad (k \in \{0, ..., n-1\} \quad \mathbf{e} \quad n \in \mathbb{N})$$

Probabilidades

$$\mu = p_1 x_1 + \dots + p_n x_n$$

$$\sigma = \sqrt{p_1 (x_1 - \mu)^2 + \dots + p_n (x_n - \mu)^2}$$

Se $X \in N(\mu, \sigma)$, então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

GRUPO I

Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

1. Seja Ω , conjunto finito, o espaço de resultados associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos $(A \subset \Omega \ e \ B \subset \Omega)$.

Sabe-se que:

- P(A) = 0.4
- $P(A \cap B) = 0,2$
- $P(B \mid \overline{A}) = 0.8$

Qual é o valor de P(B)?

- (A) 0.28
- **(B)** 0,52
- (C) 0,68
- **(D)** 0.80

2. Considere todos os números naturais de dez algarismos que se podem escrever com os algarismos de $1 \ a \ 9$

Quantos desses números têm exatamente seis algarismos 2?

- (A) $^{10}C_6 \times 8^4$
- **(B)** ${}^{10}C_6 \times {}^8A_4$
- (C) $^{10}A_6 \times ^8A_4$
- **(D)** $^{10}A_6 \times 8^4$

- 3. Seja f a função, de domínio \mathbb{R}^+ , definida por $f(x) = e^{\frac{1}{x}} 3$ Considere a sucessão de números reais (x_n) tal que $x_n = \frac{1}{\sqrt{n}}$ Qual é o valor de $\lim \frac{2}{f(x_n)}$?
 - (A) $-\infty$
 - **(B)** -e
 - **(C)** 0
 - (D) $+\infty$
- **4.** Considere, para um certo número real k, a função f, de domínio \mathbb{R} , definida por $f(x) = k e^x + x$ O teorema de Bolzano garante que a função f tem, pelo menos, um zero no intervalo]0,1[A qual dos intervalos seguintes pode pertencer k?
 - (A) $\left| -e, -\frac{1}{e} \right|$
 - **(B)** $\left] -\frac{1}{e}, 0 \right[$
 - (C) $\left]0, \frac{1}{e}\right[$
 - **(D)** $\frac{1}{e}$, 1

5. Considere, para um certo número real a positivo, a função f, de domínio \mathbb{R}^+ , definida por

$$f(x) = a + \ln\left(\frac{a}{x}\right)$$

Em qual das opções seguintes pode estar representada parte do gráfico da função f', primeira derivada da função f ?

(A)

(B)

(C)

6. Considere, num referencial o.n. Oxyz, o plano α , definido por 4x-z+1=0

Seja $\,r\,$ uma reta perpendicular ao plano $\,lpha\,$

Qual das condições seguintes pode definir a reta r?

(A)
$$\frac{x}{4} = y \land z = -1$$

(B)
$$x = 4 \land z = -1$$

(C)
$$x-3 = \frac{z}{4} \land y = 0$$

(D)
$$\frac{x-3}{4} = -z \land y = 1$$

7. Na Figura 1, está representada, num referencial o.n. xOy, uma circunferência de centro O e raio 1

Figura 1

Sabe-se que:

ullet os pontos A e B pertencem à circunferência;

• o ponto A tem coordenadas (1,0)

ullet os pontos B e C têm a mesma abcissa;

• o ponto $\,C\,$ tem ordenada zero;

• o ponto D tem coordenadas (-3,0)

• α é a amplitude, em radianos, do ângulo AOB, com $\alpha \in \left]\frac{\pi}{2}, \pi\right[$

Qual das expressões seguintes representa, em função de α , a área do triângulo [BCD]?

(A)
$$\frac{1}{2}(-3-\sin\alpha)\cos\alpha$$

(B)
$$\frac{1}{2}(-3 + \sin \alpha)\cos \alpha$$

(C)
$$\frac{1}{2}(3+\cos\alpha)\sin\alpha$$

(D)
$$\frac{1}{2}(3-\cos\alpha)\sin\alpha$$

8. Na Figura 2, está representado, no plano complexo, um polígono regular [ABCDEF]

Figura 2

Os vértices desse polígono são as imagens geométricas das $\,n\,$ raízes de índice $\,n\,$ de um número complexo $\,z\,$

O vértice $\,C\,$ tem coordenadas $\,(\,-2\sqrt{2}\,,\,2\sqrt{2}\,)\,$

Qual dos números complexos seguintes tem por imagem geométrica o vértice E?

- (A) $2\sqrt{2} \operatorname{cis}\left(\frac{13}{12}\pi\right)$
- **(B)** $4 \operatorname{cis} \left(\frac{13}{12} \pi \right)$
- (C) $2\sqrt{2} \operatorname{cis}\left(\frac{17}{12}\pi\right)$
- **(D)** $4 \operatorname{cis} \left(\frac{17}{12} \pi \right)$

GRUPO II

Na resposta aos itens deste grupo, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

- **1.** Seja \mathbb{C} o conjunto dos números complexos.
 - **1.1.** Considere $z_1 = \frac{(-1+\sqrt{3} \ i)^3}{1-i}$ e $z_2 = \operatorname{cis} \alpha$, com $\alpha \in [0,\pi[$

Determine os valores de α , de modo que $z_1 \times (z_2)^2$ seja um número imaginário puro, sem utilizar a calculadora.

1.2. Seja z um número complexo tal que $|1+z|^2+|1-z|^2\leq 10$

Mostre que $|z| \le 2$

- 2. Uma caixa tem nove bolas distinguíveis apenas pela cor: seis pretas, duas brancas e uma amarela.
 - **2.1.** Considere a experiência aleatória que consiste em retirar dessa caixa, simultaneamente e ao acaso, três bolas.

Determine a probabilidade de as bolas retiradas não terem todas a mesma cor.

Apresente o resultado na forma de fração irredutível.

2.2. Considere a caixa com a sua composição inicial.

Considere agora a experiência aleatória que consiste em retirar dessa caixa uma bola de cada vez, ao acaso e sem reposição, até ser retirada uma bola preta.

Seja X a variável aleatória «número de bolas retiradas dessa caixa».

Construa a tabela de distribuição de probabilidades da variável X

Apresente as probabilidades na forma de fração.

3. Na Figura 3, está representada uma planificação de um dado tetraédrico equilibrado, com as faces numeradas com os números -1, 1, 2 e 3

Figura 3

Considere a experiência aleatória que consiste em lançar esse dado duas vezes consecutivas e registar, após cada lançamento, o número inscrito na face voltada para baixo.

Sejam A e B os acontecimentos seguintes.

A: «o número registado no primeiro lançamento é negativo»

B: «o produto dos números registados nos dois lançamentos é positivo»

Elabore uma composição, na qual indique o valor de $P(A \mid B)$, sem aplicar a fórmula da probabilidade condicionada.

Na sua resposta, explique o significado de $P(A \mid B)$ no contexto da situação descrita, explique o número de casos possíveis, explique o número de casos favoráveis e apresente o valor de $P(A \mid B)$

4. Na Figura 4, está representado, num referencial o.n. Oxyz, o cubo [OABCDEFG], de aresta 3

Sabe-se que:

- ullet o ponto A pertence ao semieixo positivo Ox
- ullet o ponto C pertence ao semieixo negativo Oy
- ullet o ponto D pertence ao semieixo positivo ${\it Oz}$
- o ponto H tem coordenadas (3, -2, 3)

Seja α a amplitude, em radianos, do ângulo AHC

Determine o valor exato de $\mbox{sen}^2 \alpha$, sem utilizar a calculadora.

5. Considere a função f, de domínio \mathbb{R} , definida por

$$f(x) = \begin{cases} \frac{e^{x-4} - 3x + 11}{4 - x} & \text{se } x < 4\\ \ln(2e^x - e^4) & \text{se } x \ge 4 \end{cases}$$

Resolva os itens seguintes, recorrendo a métodos analíticos, sem utilizar a calculadora.

- **5.1.** Averigue se a função f é contínua em x = 4
- **5.2.** O gráfico da função f tem uma assíntota oblíqua quando x tende para $+\infty$, de equação y=x+b, com $b\in\mathbb{R}$

Determine *b*

- **6.** Seja f uma função cuja derivada f', de domínio \mathbb{R} , é dada por $f'(x) = x \sin(2x)$
 - **6.1.** Determine o valor de $\lim_{x \to \frac{\pi}{2}} \frac{f(x) f\left(\frac{\pi}{2}\right)}{2x \pi}$
 - **6.2.** Estude o gráfico da função f, quanto ao sentido das concavidades e quanto à existência de pontos de inflexão em $\left]-\frac{\pi}{2}, \frac{\pi}{4}\right[$, recorrendo a métodos analíticos, sem utilizar a calculadora.

Na sua resposta, deve indicar o(s) intervalo(s) onde o gráfico da função f tem concavidade voltada para cima, o(s) intervalo(s) onde o gráfico da função f tem concavidade voltada para baixo e, caso existam, as abcissas dos pontos de inflexão do gráfico da função f

7. Considere a função f, de domínio $]-e^2$, $+\infty[$, definida por $f(x)=-\ln(x+e^2)$

Na Figura 5, estão representados, num referencial o.n. xOy, parte do gráfico da função f e o triângulo [ABC]

Figura 5

Sabe-se que:

- o ponto A tem coordenadas (0, -2)
- o ponto B pertence ao gráfico da função f e tem abcissa negativa;
- ullet o ponto C pertence ao eixo Oy e tem ordenada igual à do ponto B
- a área do triângulo [ABC] é igual a 8

Determine a abcissa do ponto B, recorrendo à calculadora gráfica.

Na sua resposta, deve:

- escrever uma expressão da área do triângulo [ABC] em função da abcissa do ponto B
- equacionar o problema;
- reproduzir, num referencial, o gráfico da função ou os gráficos das funções visualizados, devidamente identificados;
- $\,$ $\,$ indicar a abcissa do ponto $\,B\,$ com arredondamento às centésimas.

FIM

COTAÇÕES

GRUPO I

1. a 8 (8 × 5 pontos)	40 pontos	
		40 pontos
GRUPO II		
1.		
1.1.	15 pontos	
1.2.	15 pontos	
2.		
2.1.	15 pontos	
2.2.	15 pontos	
3	15 pontos	
4	15 pontos	
5.	15 mantas	
5.1.	15 pontos 15 pontos	
0.2.	15 pontos	
6.		
6.1.	10 pontos	
6.2.	15 pontos	
7	15 pontos	
_	- 1. 5	160 pontos
		-
	_	
TOTAL		200 pontos