

Tarea 3 - EYP3407

Profesor: Mauricio Castro **Ayudante:** Bladimir Morales

- 1. (60%) En el contexto de los árboles y bósques aleatorios de clasificación muestre que:
 - (20%) Si $\phi(p_1,\ldots,p_K)$ es una función estrictamente cóncava en $0 \le p_k \le 1$, $k = 1,\ldots,K$, y $\sum_k p_k = 1$, entonces, para $\phi(p(1 \mid \tau),\ldots,p(K \mid \tau))$ y cualquier split s, se tiene que $\Delta i(s,\tau) \ge 0$, con igualdad, si solo si, $p(k \mid \tau) = p(k \mid \tau_L) = p(k \mid \tau_R)$, con $k = 1,\ldots,K$.
 - (20%) Demuestre que $R^{re}(\tau) \ge R^{re}(\tau_L) + R^{re}(\tau_R)$.
 - (20%) Se dice que en el contexto del *bagging*, en promedio, cada árbol basado en una muestra *bootstrap* usa al rededor de 2/3 de las observaciones. El 1/3 restante no es utilizado para ajustar dicho árbol. Ese grupo de observaciones se conoce como las observaciones OOB (*out-of-bag*). Suponga entonces que se desea realizar *bootstrap* de una muestra de n observaciones.
 - (15%); Cuál es la probabilidad de que la j-ésima observación de la muestra original no esté en la muestra bootstrap? Detalle sus cálculos.
 - (5%) Grafique la probabilidad de que la j-ésima observación de la muestra original esté en la muestra bootstrap en función de n (considere una grilla de valores de 1 a 100000). ¿Es cierta la afirmación que se hace sobre las observaciones OOB? Realice un experimento numérico usando simulación que reafirme o contradiga lo anterior (la afirmación sobre las observaciones OOB). Comente sus hallazgos.
- 2. (40%) Considere los datos de LendingClub.com loan.csv desde el año 2007 hasta el año 2015. Lending Club conecta a las personas que necesitan dinero (prestatarios) con las personas que tienen dinero (inversionistas). Para los inversionistas, la pregunta a responder es ¿a qué personas prestarles dinero? Las variables disponibles son:
 - purpose: El propósito del préstamo (toma los valores "credit_card", "debt_consolidation", "education", "high_purchase", "small_business", y "all_other").
 - *int_rate*: La tasa de interés del préstamo, como proporción (una tasa del 11% se almacenaría como 0.11).
 - *installment*: Las cuotas mensuales adeudadas por el prestatario si el préstamo es financiado.

- annual_inc: los ingresos anuales auto-reportados del prestatario.
- dti: La relación deuda-ingreso del prestatario (monto de la deuda dividido por el ingreso anual).
- revol_bal: el saldo rotativo del prestatario (monto no pagado al final del ciclo de facturación de la tarjeta de crédito).
- revol_util: tasa de utilización de la línea rotativa del prestatario (el monto de la línea de crédito utilizada en relación con el crédito total disponible).
- *inq_last_6mths*: El número de consultas crediticias del deudor realizadas por los prestatarios en los últimos 6 meses.
- delinq_2yrs: La cantidad de veces que el prestatario ha estado vencido por más de 30 días en un pago en los últimos 2 años.
- pub_rec: El número de registros públicos derogados del prestatario (declaraciones de quiebra, gravámenes fiscales o fallos).
- loan_status: estado del préstamo (fully paid es completamente pagado).

Ud. como consultor estadístico deberá pre-procesar los datos y considerar los siguientes clasificadores: árboles de clasificación, bagging, boosting, random forest, AdaBoost y otra técnica de clasificación su elección para contestar la pregunta de investigación. Reporte tasas de mala clasificación (evalúe la pertinencia de las métricas a considerar dependiendo del desbalance), error OOB, importancia de las variables, y realice un análisis de sensibilidad sobre el número de árboles a considerar (cuando se necesite definir este número). Comente los resultados y detalle todos los aspectos técnicos utilizados en los métodos considerados. Utilize la razón 70-30 para determinar el conjunto de entrenamiento y de testeo. Cualquier decisión que tome sobre los datos o métodos considerados deberá estar debidamente justificada en el reporte a presentar.