PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy: 170 minut

Instrukcja dla zdajacego

- 1. Sprawdź, czy arkusz zawiera 11 stron.
- 2. W zadaniach od 1. do 23. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa. Wybierz tylko jedna odpowiedź.
- 3. Rozwiązania zadań od 24. do 32. zapisz starannie i czytelnie w wyznaczonych miejscach. Przedstaw swój tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora. Błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegaja ocenie.
- 7. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać łącznie **50 punktów**.

JOPERON

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON na wzór arkuszy opublikowanych przez Centralną Komisję Egzaminacyjną

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 23. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Zadanie 1. (*1 pkt*)

Liczba x przy dzieleniu przez 5 daje resztę 3. Liczbę x można więc zapisać w postaci ($n \in N$):

A.
$$3n + 5$$

B.
$$5n + 3$$

C.
$$5(n+3)$$

D.
$$3(n+5)$$

Zadanie 2. (1 pkt)

Liczba $\frac{5^{18}5^3}{(5^2)^6}$ jest równa liczbie:

$$A.5^4$$

$$C.5^{42}$$

D.
$$5^{48}$$

Zadanie 3. (1 pkt)

Liczba $\log_{3\sqrt{3}} \frac{1}{81}$ jest równa:

$$A_{\cdot} - \frac{2}{3}$$

B.
$$-\frac{8}{3}$$

Zadanie 4. (1 *pkt*)

Suma przedziałów $(-\infty, -7) \cup (7, +\infty)$ jest zbiorem rozwiązań nierówności:

A.
$$|x| < 7$$

B.
$$|x| \leq 7$$

C.
$$|x| > 7$$

D.
$$|x| \ge 7$$

Zadanie 5. (1 pkt)

Rozwiązaniem równania $\frac{5}{x-3} - 2 = 0$ jest liczba:

A.
$$-\frac{11}{2}$$

$$\mathbf{B} \cdot -\frac{1}{2}$$

$$\mathbf{C} \cdot \frac{1}{2}$$

D.
$$\frac{11}{2}$$

Zadanie 6. (1 pkt)

Jeśli $x \in (3,5)$, to wyrażenie W = |x-3| - |x-5| można przedstawić w postaci:

A.
$$2x - 8$$

B.
$$-2x + 8$$

$$C. -2$$

Zadanie 7. (1 pkt)

Równanie
$$\frac{(x+5)(x-1)(x-4)}{x^2-16} = 0$$
:

A. nie ma pierwiastkówC. ma dwa pierwiastki

B. ma jeden pierwiastek **D.** ma trzy pierwiastki

Zadanie 8. (1 pkt)

Do zbioru rozwiązań nierówności $x^2 < 9$ nie należy liczba:

A.
$$-\sqrt{5}$$

B.
$$-\sqrt{10} + 1$$

$$\mathbf{C} \cdot -\sqrt{10}$$

$$\mathbf{D} \cdot -2 + \sqrt{10}$$

Zadanie 9. (1 pkt)

Wielomian $W(x) = x^2(x+5) - 9(x+5)$ można przedstawić w postaci:

A.
$$W(x) = (x+5)(x-3)^2$$

B.
$$W(x) = (x+5)(x+3)^2$$

C.
$$W(x) = -9x^2(x+5)$$

D.
$$W(x) = (x+5)(x-3)(x+3)$$

Zadanie 10. (1 pkt)

Dana jest funkcja
$$f(x) = \begin{cases} 2 - x & \text{dla } x < 1 \\ 3 & \text{dla } 1 \le x < 4. \text{ Wówczas:} \\ x^2 + 1 & \text{dla } x \ge 4 \end{cases}$$

A.
$$f(1) = 1$$

B.
$$f(1) = 2$$

$$C. f(4) = 3$$

C.
$$f(4) = 3$$
 D. $f(4) = 17$

Zadanie 11. (*1 pkt*)

Dana jest funkcja $f(x) = (1 - \sqrt{3} m)x + 2$. Funkcja ta jest malejąca dla:

A.
$$m < \frac{\sqrt{3}}{3}$$

B.
$$m < \sqrt{3}$$

D.
$$m > \sqrt{3}$$

Zadanie 12. (*1 pkt*)

Dana jest funkcja liniowa y = ax + b, o której wiadomo, że $a < 0 \land b > 0$. Wykres tej funkcji przechodzi przez następujące ćwiartki układu współrzędnych:

Zadanie 13. (*1 pkt*)

Zbiorem wartości funkcji kwadratowej $f(x) = -(x+6)^2 + 4$ jest przedział:

$$\mathbf{A} \cdot (-\infty, -6)$$

$$\mathbf{B.}(-\infty,4)$$

$$\mathbf{B}_{\bullet}(-\infty,4)$$
 $\mathbf{C}_{\bullet}(-6,+\infty)$

$$\mathbf{D}.(4,+\infty)$$

Zadanie 14. (*1 pkt*)

Najmniejszą wartością funkcji $f(x) = x^2 - 6x + 8$ w przedziale $\langle 4, 5 \rangle$ jest:

 $\mathbf{A.0}$

Zadanie 15. (1 pkt)

Wykres funkcji $y = \frac{2}{x} - 5$ ma jeden punkt wspólny z prostą o równaniu:

A.
$$y = -5$$

B.
$$y = 5$$

$$\mathbf{C.} x = 0$$

D.
$$y = -x - 5$$

Zadanie 16. (*1 pkt*)

Dany jest ciąg o wyrazie ogólnym $a_n = 2n + 3$. Liczba wyrazów tego ciągu mniejszych od 50 jest równa:

A. 23

B. 24

C. 25

D. 26

Zadanie 17. (*1 pkt*)

Miary kątów trójkąta tworzą ciąg arytmetyczny o pierwszym wyrazie 20°. Różnica tego ciągu jest równa:

A. 30°

B. 40°

C.50°

D. 60°

Zadanie 18. (1 pkt)

Liczby $\frac{1}{4}$, x, $\frac{1}{2}$ tworzą rosnący ciąg geometryczny. Liczba x może być równa:

A.
$$\frac{1}{3}$$

B.
$$\frac{3}{8}$$

$$\mathbf{C} \cdot \frac{\sqrt{2}}{4}$$

D.
$$\sqrt{2}$$

Zadanie 19. (*1 pkt*)

Dla kata ostrego α spełniony jest warunek tg $\alpha = \frac{\sqrt{11}}{5}$. Wówczas: **A.** $\cos \alpha = \frac{2}{15}$ **B.** $\cos \alpha = \frac{15}{2}$ **C.** $\cos \alpha = \frac{5}{6}$ **D.** $\cos \alpha = \frac{6}{5}$

$$\mathbf{A.}\cos\alpha = \frac{2}{15}$$

B.
$$\cos \alpha = \frac{15}{2}$$

C.
$$\cos \alpha = \frac{5}{6}$$

$$\mathbf{D.}\cos\alpha = \frac{6}{5}$$

Zadanie 20. (*1 pkt*)

W kwadracie ABCD punkt E jest środkiem boku BC, $|\angle EAB| = \alpha$. Wynika stąd, że:

$$\mathbf{A.}\sin\alpha = \frac{1}{2}$$

B.
$$\sin \alpha = \frac{\sqrt{5}}{5}$$

B.
$$\sin \alpha = \frac{\sqrt{5}}{5}$$
 C. $\sin \alpha = \frac{\sqrt{6}}{2}$ **D.** $\sin \alpha = \frac{2}{3}$

D.
$$\sin \alpha = \frac{2}{3}$$

Zadanie 21. (*1 pkt*)

Kwadrat jest wpisany w okrąg o średnicy $\sqrt{5}$. Bok kwadratu jest równy:

A.
$$\sqrt{10}$$

B.
$$\frac{\sqrt{10}}{2}$$

C.
$$\sqrt{5}$$

$$\mathbf{C.\sqrt{5}} \qquad \qquad \mathbf{D.\frac{\sqrt{5}}{2}}$$

Zadanie 22. (*1 pkt*)

Dwa trójkąty podobne mają pola równe odpowiednio 49 cm², 98 cm². Skala podobieństwa jest równa:

A.
$$\frac{1}{2}$$

D.
$$\sqrt{2}$$

Zadanie 23. (1 pkt)

Dany jest okrąg o równaniu $(x+3)^2 + (y-5)^2 = 36$. Jedna ze średnic okręgu zawarta jest w prostej: **A.** y = -3x + 5 **B.** y = 5x - 3 **C.** y = -x - 2 **D.** y = 2x + 11

A.
$$y = -3x + 5$$

B.
$$y = 5x - 3$$

C.
$$y = -x - 2$$

D.
$$y = 2x + 11$$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 24. do 32. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 24. (2 *pkt*)

Wykaż, że liczba $\sqrt{3-2\sqrt{2}} - \sqrt{2}$ jest liczba całkowitą.

Zadanie 25. (2 *pkt*)

Cenę płaszcza zimowego obniżono wiosną o 15% i wówczas cena wynosiła 510 zł. Oblicz cenę płaszcza przed obniżką.

Zadanie 26. (2 pkt)

Dany jest trójkąt prostokątny. Wykaż, że suma pół kół o średnicach będących przyprostokątnymi trójkąta jest równa polu koła o średnicy równej przeciwprostokątnej.

Zadanie 27. (2 *pkt*)
Spośród liczb dwucyfrowych wybrano dwa razy po jednej bez zwracania. Oblicz prawdopodobieństwo, że dwa razy wybrano liczby parzyste.

Zadanie 28. (2 pkt)

Wyznacz dziedzinę funkcji $f(x) = \frac{1}{x^3 - 7x^2 - 2x + 14}$.

Zadanie 29. (2 *pkt*) Rozwiąż nierówność $-x^2 - 2x + 15 \ge 0$.

Zadanie 30. (*4 pkt*)

Dany jest trójkąt prostokątny o przyprostokątnych 12 i 5. Wyznacz promień okręgu wpisanego w ten trójkąt.

Zadanie 31. (*5 pkt*)

Kąt między przekątnymi sąsiednich ścian bocznych prostopadłościanu o podstawie kwadratowej jest równy 60°. Krawędź podstawy jest równa 12. Wyznacz pole powierzchni całkowitej tego prostopadłościanu i kąt nachylenia przekątnej ściany bocznej do płaszczyzny podstawy prostopadłościanu.

Zadanie 32. (6 pkt)

Dwa boki równoległoboku zwierają się w prostych o równaniach $AB: y = \frac{1}{2}x - 2$, AD: y = 2x - 5. Środek symetrii równoległoboku ma współrzędne S = (5, 2). Wyznacz współrzędne wierzchołka B tego równoległoboku.

