Change Detection for Online Matching Problems

Combinatorial constraints

Candidates

C1

C2

C3

C4

C5

C6

C7

Unknown expected reward

Combinatorial constraints

Arms, superarms, objective function

- An arm is a candidate
- A superarm is a collection of candidates
- A feasible superarm is a superarm satisfying the (combinatorial) constraints

$$\mathscr{C}(\mathbf{a}) = 0$$

- The reward of a superarm is the sum of the reward of arms it contains
- The **goal** is to maximize the cumulative, in time, expected reward

Adjacency Matrix

	S1	S2	S 3
B1	1/4	1	1/4
B2	1/2	1/4	1/4
В3	1/4	1/4	1

UCB1 pseudocode

1. Play once every arm $a \in A$

2. At every time t play arm a_t such that

$$a_t \leftarrow \arg\max_{a \in A} \left\{ \overline{x}_a + \sqrt{\frac{2 \log(t)}{n_a(t-1)}} \right\}$$

Changes in Online Matching Problems

	S1	S2	S 3
B1	1/4	1	1/4
B2	1/2	1/4	1/4
В3	1/4	1/4	1

UCB1 and abrupt changes

UCB1 and abrupt changes (after a lot of samples)

UCB1 and abrupt changes

Change Detection UCB

CD-UCB Pseudocode

- 1. inItialize τ_a =0 for each arm $a \in A$
- 2. for each t

$$a_t \leftarrow \arg\max_{a \in A} \left\{ \bar{x}_{a,\tau_a,t} + \sqrt{\frac{2\log(n(t))}{n_a(\tau_a,t-1)}} \right\} \text{ with probability } 1 - \alpha$$

 $a_t \leftarrow \text{random arm with probability } \alpha$

n(t) is the total number of valid samples $\bar{x}_{a,\tau_a,t}$ is the empirical mean of arm a over the last valid samples $n_a(\tau_a,t-1)$ is the number of valid samples for arm a

- 3. collect reward r_t
- 4. if $CD_a(r_\tau, ..., r_t) = 1$ then $\tau_a = t$ and restart CD_a

Change Detection (CUSUM)

The first M valid samples are used to produce the reference point

Empirical mean of arm a over the first M valid samples $ar{X}_a^0$

From the M+1-th valid sample on, we check whether there is a change

Positive deviation from the reference point at t $s_a^+(t) = (x_a(t) - \bar{X}_a^0(t)) - \epsilon$

Negative deviation from the reference point at t $s_a^-(t) = -\left(x_a(t) - \bar{X}_a^0(t)\right) - \epsilon$

Change Detection (CUSUM)

The first M valid samples are used to produce the reference point

Empirical mean of arm a over the first M valid samples $ar{X}_a^0$

From the M+1-th valid sample on, we check whether there is a change

Positive deviation from the reference point at t

$$s_a^+(t) = \left(x_a(t) - \bar{X}_a^0(t)\right) - \epsilon$$

Negative deviation from the reference point at t

$$s_a^-(t) = -\left(x_a(t) - \bar{X}_a^0(t)\right) - \epsilon$$

Cumulative positive deviation from the reference point at t

$$g_a^+(t) = \max \left\{ 0, g_a^+(t-1) + s_a^+(t) \right\}$$

Cumulative negative deviation from the reference point at t

$$g_a^-(t) = \max \{0, g_a^-(t-1) + s_a^-(t)\}$$

Change Detection (CUSUM)

The first M valid samples are used to produce the reference point

Empirical mean of arm a over the first M valid samples $ar{X}_a^0$

From the M+1-th valid sample on, we check whether there is a change

Positive deviation from the reference point at t $s_a^+(t) = (x_a(t) - \bar{X}_a^0(t)) - \epsilon$

Negative deviation from the reference point at t $s_a^-(t) = -\left(x_a(t) - \bar{X}_a^0(t)\right) - \epsilon$

Cumulative positive deviation from the reference point at t $g_a^+(t) = \max\{0, g_a^+(t-1) + s_a^+(t)\}$

Cumulative negative deviation from the reference point at t $g_a^-(t) = \max\left\{0, g_a^-(t-1) + s_a^-(t)\right\}$

We have a change if $g_a^-(t) > h$ or $g_a^+(t) > h$

CD-UCB for Online Matching Pseudocode

- 1. inItialize τ_a =0 for each arm $a \in A$
- 2. for each t

$$\boldsymbol{a}_t \leftarrow \arg\max_{\boldsymbol{a} \in \mathcal{M}} \left\{ \sum_{a \in \boldsymbol{a}} \bar{x}_{a,\tau_a,t} + \sqrt{\frac{2\log(n(t))}{n_a(\tau_a,t-1)}} \right\} \text{ with probability } 1 - \alpha$$

 $a_t \leftarrow \text{random match with probability } \alpha$

n(t) is the total number of valid samples $\bar{x}_{a,\tau_a,t}$ is the empirical mean of arm a over the last valid samples $n_a(\tau_a,t-1)$ is the number of valid samples for arm a

3. collect reward r_t

4. if $CD_a(r_\tau, ..., r_t) = 1$ then $\tau_a = t$ and restart CD_a