Machine Learning & Artificial Intelligence for Data **Scientists: Classification** (Part3)

Ke Yuan
https://kyuanlab.org/
School of Computing Science

Support Vector Machines (SVM)

- We have seen two algorithms where we find the parameters that optimise something:
 - Minimise the loss
 - Maximise the likelihood
- The Support Vector Machine (SVM) is no different:
 - It finds the decision boundary that maximises the margin.

Some toy data

SVM is a binary classifier. N data points, each with attributes $\mathbf{x} = [x_1, x_2]^\mathsf{T}$ and target $t = \pm 1$

► A linear *decision boundary* can be represented as a straight line:

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$$

- Our task is to find w and b
- Once we have these, classification is easy:

$$\mathbf{w}^\mathsf{T} \mathbf{x}_{\mathsf{new}} + b > 0$$
 : $t_{\mathsf{new}} = 1$ $\mathbf{w}^\mathsf{T} \mathbf{x}_{\mathsf{new}} + b < 0$: $t_{\mathsf{new}} = -1$

ightharpoonup i.e. $t_{\text{new}} = \text{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{\text{new}} + b)$

Margin

- ▶ How do we choose **w** and *b*?
- Need a quantity to optimise!
- Use the margin, γ
- ► Maximise it!

Perpendicular distance from the decision boundary to the closest points on each side.

Why maximise the margin?

- Maximum margin decision boundary (left) seems to better reflect the data characteristics than other boundary (right).
- Note how margin is much smaller on right and closest points have changed.
- ► There is going to be one 'best' boundary (w.r.t margin)

$$2\gamma = \frac{1}{||\mathbf{w}||}\mathbf{w}^{\mathsf{T}}(\mathbf{x}_1 - \mathbf{x}_2)$$

Fix the scale such that:

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_1 + b = 1$$

 $\mathbf{w}^{\mathsf{T}}\mathbf{x}_2 + b = -1$

Therefore:

$$(\mathbf{w}^{\mathsf{T}}\mathbf{x}_1 + b) - (\mathbf{w}^{\mathsf{T}}\mathbf{x}_2 + b) = \mathbf{w}^{\mathsf{T}}(\mathbf{x}_1 - \mathbf{x}_2) = -$$

$$\mathbf{x}_1$$
 \mathbf{x}_2
 \mathbf{x}_1
 \mathbf{x}_2
 \mathbf{x}_2

Maximising the margin

- We want to maximise $\gamma = \frac{1}{||\mathbf{w}||}$
- ► Equivalent to minimising ||w||
- Equivalent to minimising $\frac{1}{2}||\mathbf{w}||^2 = \frac{1}{2}\mathbf{w}^\mathsf{T}\mathbf{w}$
- ▶ There are some constraints:
 - For \mathbf{x}_n with $t_n = 1$: $\mathbf{w}^\mathsf{T} \mathbf{x}_n + b > 1$
 - For \mathbf{x}_n with $t_n = -1$: $\mathbf{w}^\mathsf{T} \mathbf{x}_n + b \le -1$
- Which can be expressed more neatly as:

$$t_n(\mathbf{w}^\mathsf{T}\mathbf{x}_n+b)\geq 1$$

▶ (This is why we use $t_n = \pm 1$ and not $t_n = \{0, 1\}$.)

Maximising the margin

▶ We have the following optimisation problem:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \ \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$
 Subject to: $t_n(\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) \geq 1$

Can put the constraints into the minimisation using Lagrange multipliers:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \ \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{n=1}^{N} \alpha_n (t_n(\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) - 1)$$
Subject to: $\alpha_n \geq 0$

The final formula

$$\underset{\alpha}{\operatorname{argmax}} \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n,m=1}^{N} \alpha_n \alpha_m t_n t_m \mathbf{x}_n^\mathsf{T} \mathbf{x}_m$$
 subject to
$$\sum_{n=1}^{N} \alpha_n t_n = 0, \quad \alpha_n \geq 0$$

- This is a standard optimisation problem (quadratic programming)
- ► Has a single, global solution. This is very useful!
- Many algorithms around to solve it.
- e.g. quadprog in Matlab...
- ▶ Once we have α_n :

$$t_{\text{new}} = \operatorname{sign}\left(\sum_{n=1}^{N} \alpha_n t_n \mathbf{x}_n^{\mathsf{T}} \mathbf{x}_{\text{new}} + b\right)$$

Optimal boundary

- Optimisation gives us $\alpha_1, \ldots, \alpha_N$
- Compute $\mathbf{w} = \sum_{n} \alpha_n t_n \mathbf{x}_n$
- ▶ Compute $b = t_n \mathbf{w}^\mathsf{T} \mathbf{x}$ (for one of the closest points)
 - ▶ Recall that we defined $\mathbf{w}^\mathsf{T}\mathbf{x} + b = \pm 1 = t_n$ for closest points.
- Plot $\mathbf{w}^\mathsf{T} \mathbf{x} + b = 0$

Support Vectors

▶ At the optimum, only 3 non-zero α values (squares).

- $t_{\text{new}} = \text{sign} \left(\sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n}^{\mathsf{T}} \mathbf{x}_{\text{new}} + b \right)$
- Predictions only depend on these data-points!
- We knew that margin is only a function of closest points.
- ► These are called **Support Vectors**
- Normally a small proportion of the data:
 - Solution is sparse.

Is sparseness good?

► Not always:

► Why does this happen?

$$t_n(\mathbf{w}^\mathsf{T}\mathbf{x}_n+b)\geq 1$$

- All points must be on correct side of boundary.
- ► This is a hard margin

$$\underset{\alpha}{\operatorname{argmax}} \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n,m=1}^{N} \alpha_n \alpha_m t_n t_m \mathbf{x}_n^\mathsf{T} \mathbf{x}_m$$

subject to
$$\sum_{n=1}^{N} \alpha_n t_n = 0$$
, $0 \le \alpha_n \le C$

► Here's our problematic data again:

- $ightharpoonup \alpha_n$ for the 'bad' square is 3.5.
- ▶ So, if we set C < 3.5, we should see this point having less influence and the boundary moving to somewhere more sensible...

► Try *C* = 1

- ▶ We have an extra support vector.
- And a better decision boundary.

- ▶ The choice of *C* is very important.
- ► Too high and we *over-fit* to noise.
- ► Too low and we *underfit*
 - ...and lose any sparsity.

Choose it using cross-validation.

SVM - more observations

▶ In our example, we started with 3 parameters:

$$\mathbf{w} = [w_1, w_2]^{\mathsf{T}}, b$$

- ▶ In general: D+1.
- We now have $N: \alpha_1, \ldots, \alpha_N$
- Sounds harder?
- Depends on data dimensionality:
 - Typical Microarray dataset:
 - ► $D \sim 3000$, $N \sim 30$.
 - ▶ In some cases $N \ll D$

Inner product

Here's the optimisation problem:

$$\underset{\alpha}{\operatorname{argmax}} \sum_{n} \alpha_{n} - \frac{1}{2} \sum_{n,m} \alpha_{n} \alpha_{m} t_{n} t_{m} \mathbf{x}_{n}^{\mathsf{T}} \mathbf{x}_{m}$$

Here's the decision function:

$$t_{\text{new}} = \text{sign}\left(\sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n}^{\mathsf{T}} \mathbf{x}_{\text{new}} + b\right)$$

▶ Data $(\mathbf{x}_n, \mathbf{x}_m, \mathbf{x}_{\text{new}}, \text{ etc})$ only appears as inner (dot) products:

$$\mathbf{x}_{n}^{\mathsf{T}}\mathbf{x}_{m}, \ \mathbf{x}_{n}^{\mathsf{T}}\mathbf{x}_{\mathsf{new}}, \mathsf{etc}$$

- Our SVM can find linear decision boundaries.
- What if the data requires something nonlinear?

We can transform the data e.g.:

$$\phi(\mathbf{x}_n) = x_{n1}^2 + x_{n2}^2$$

- So that it can be separated with a straight line.
- ▶ And use $\phi(\mathbf{x}_n)$ instead of \mathbf{x}_n in our optimisation.

Our optimisation is now:

$$\underset{\alpha}{\operatorname{argmax}} \sum_{n} \alpha_{n} - \frac{1}{2} \sum_{n,m} \alpha_{n} \alpha_{m} t_{n} t_{m} \phi(\mathbf{x}_{n})^{\mathsf{T}} \phi(\mathbf{x}_{m})$$

And predictions:

$$t_{\text{new}} = \operatorname{sign}\left(\sum_{n} \alpha_{n} t_{n} \phi(\mathbf{x}_{n})^{\mathsf{T}} \phi(\mathbf{x}_{\text{new}}) + b\right)$$

In this case:

$$\phi(\mathbf{x}_n^{\mathsf{T}})\phi(\mathbf{x}_m) = (x_{n1}^2 + x_{n2}^2)(x_{m1}^2 + x_{m2}^2) = k(\mathbf{x}_n, \mathbf{x}_m)$$

We can think of the dot product in the projected space as a function of the original data.

- We needn't directly think of projections at all.
- ▶ Can just think of functions $k(\mathbf{x}_n, \mathbf{x}_m)$ that are dot products in some space.
- Called kernel functions.
- ▶ Don't ever need to actually project the data just use the kernel function to compute what the dot product would be if we did project.
- Optimisation task:

$$\underset{\alpha}{\operatorname{argmax}} \sum_{n} \alpha_{n} - \frac{1}{2} \sum_{n,m} \alpha_{n} \alpha_{m} t_{n} t_{m} k(\mathbf{x}_{n}, \mathbf{x}_{m})$$

Predictions:

$$t_{\text{new}} = \operatorname{sign}\left(\sum_{n} \alpha_{n} t_{n} k(\mathbf{x}_{n}, \mathbf{x}_{\text{new}}) + b\right)$$

- ▶ Plenty of off-the-shelf kernels that we can use:
- Linear:

$$k(\mathbf{x}_n, \mathbf{x}_m) = \mathbf{x}_n^\mathsf{T} \mathbf{x}_m$$

Gaussian:

$$k(\mathbf{x}_n, \mathbf{x}_m) = \exp\left\{-\beta(\mathbf{x}_n - \mathbf{x}_m)^{\mathsf{T}}(\mathbf{x}_n - \mathbf{x}_m)\right\}$$

► Polynomial:

$$k(\mathbf{x}_n, \mathbf{x}_m) = (1 + \mathbf{x}_n^\mathsf{T} \mathbf{x}_m)^\beta$$

- ► These all correspond to $\phi(\mathbf{x}_n)^T \phi(\mathbf{x}_m)$ for some transformation $\phi(\mathbf{x}_n)$.
- ▶ Don't know what the projections $\phi(\mathbf{x}_n)$ are don't need to know!

- Our algorithm is still only finding linear boundaries....
- ...but we're finding linear boundaries in some other space.
- The optimisation is just as simple, regardless of the kernel choice.
 - Still a quadratic program.
 - Still a single, global optimum.
- We can find very complex decision boundaries with a linear algorithm!

A technical point

- Our decision boundary was defined as $\mathbf{w}^\mathsf{T}\mathbf{x} + b = 0$.
- ▶ Now, **w** is defined as:

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n t_n \phi(\mathbf{x}_n)$$

- We don't know $\phi(\mathbf{x}_n)$.
- We only know $\phi(\mathbf{x}_n)^{\mathsf{T}}\phi(\mathbf{x}_m)=k(\mathbf{x}_n,\mathbf{x}_m)$
- ► So, we can't compute **w** or the boundary!
- But we can evaluate the predictions on a grid of x_{new} and use Matlab to draw a contour:

$$\sum_{n=1}^{N} \alpha_n t_n k(\mathbf{x}_n, \mathbf{x}_{\mathsf{new}}) + b$$

Aside: kernelising other algorithms

- Many algorithms can be kernelised.
 - Any that can be written with data only appearing as inner products.
- Simple algorithms can be used to solve very complex problems!
- Class exercise:
 - ▶ KNN requires the distance between \mathbf{x}_{new} and each \mathbf{x}_n :

$$(\mathbf{x}_{\text{new}} - \mathbf{x}_n)^{\mathsf{T}} (\mathbf{x}_{\text{new}} - \mathbf{x}_n)$$

Can we kernelise it?

Example: nonlinear data

We'll use a Gaussian kernel:

$$k(\mathbf{x}_n, \mathbf{x}_m) = \exp\left\{-\beta(\mathbf{x}_n - \mathbf{x}_m)^{\mathsf{T}}(\mathbf{x}_n - \mathbf{x}_m)\right\}$$

▶ And vary β (C = 10).

Example

$$\beta = 1.$$

$$k(\mathbf{x}_n, \mathbf{x}_m) = \exp\left\{-\beta(\mathbf{x}_n - \mathbf{x}_m)^{\mathsf{T}}(\mathbf{x}_n - \mathbf{x}_m)\right\}$$

Example

$$\beta = 0.01.$$

$$k(\mathbf{x}_n, \mathbf{x}_m) = \exp\left\{-\beta(\mathbf{x}_n - \mathbf{x}_m)^\mathsf{T}(\mathbf{x}_n - \mathbf{x}_m)\right\}$$

Example

▶
$$\beta = 50$$
.

$$k(\mathbf{x}_n, \mathbf{x}_m) = \exp\left\{-\beta(\mathbf{x}_n - \mathbf{x}_m)^\mathsf{T}(\mathbf{x}_n - \mathbf{x}_m)\right\}$$

The Gaussian kernel

- \triangleright β controls the *complexity* of the decision boundaries.
- $\beta = 0.01$ was too simple:
 - ▶ Not flexible enough to surround just the square class.
- $\beta = 50$ was too complex:
 - Memorises the data.
- \triangleright $\beta = 1$ was about right.
- ▶ Neither $\beta = 50$ or $\beta = 0.01$ will generalise well.
- Both are also non-sparse (lots of support vectors).

Choosing kernel function, parameters and C

- Kernel function and parameter choice is data dependent.
- Easy to overfit.
- ▶ Need to set C too
- ightharpoonup C and β are linked
 - ► *C* too high overfitting.
 - C too low underfitting.
- Cross-validation!
- \triangleright Search over β and C
 - \triangleright SVM scales with N^3 (naive implementation)
 - ▶ For large N, cross-validation over many C and β values is infeasible.

Summary - SVMs

- Described a classifier that is optimised by maximising the margin.
- Did some re-arranging to turn it into a quadratic programming problem.
- Saw that data only appear as inner products.
- Introduced the idea of kernels.
- Can fit a linear boundary in some other space without explicitly projecting.
- Loosened the SVM constraints to allow points on the wrong side of boundary.
- Other algorithms can be kernelised...we'll see a clustering one in the future.