學號:R06922048 系級: 資工所碩一 姓名:陳柏堯

請實做以下兩種不同 feature 的模型,回答第(1)~(3)題:

- (1) 抽全部 9 小時內的污染源 feature 的一次項(加 bias)
- (2) 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias)

備註:

- a. NR 請皆設為 0,其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的

1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數),討論兩種 feature 的影響

- * Gradient Descent with 10^(-8) learning rate
- * 9 hours features
- * 污染源 features: 100000 iterations pm2.5features: 30000 iterations
- * 我將污染源 features 定義為 SO2,CO,PM10, PM2.5, NOx, NO, NO2,THC, NMHC, CH4
- * 我的 Training Data 和 Validation Data 是從原始的 Training Data 去 random shuffle 然後切除 2/3 為 Training, 1/3 為 Validation

Features \ Error	Training	Validation	Public	Private
Score				
All Pollution	5.8487916838	5.98204409851	7.65911	5.57930
features				
Pm2.5	6.11281674618	6.15122550959	7.43985	5.62742

比較可以發現 validation 的 error 都會略高於 Training data 的 error。

Pollution 的含有較多 features 且包含了 Pm2.5, 所以在 Training 的表現更好。

無論是 pm2.5 還是 pollution 在 public 和 private 的表現差距都有一點大, private 表現較好, 我認為這是由於兩者的 testing 資料在切的時候不夠平均或不夠多, 使得 Pollution 在 private 表現好, 而 pm2.5 在 public 表現好。

這兩次的 submit 我都沒有做什麼 tuning,因此 private 表現較好而 public 很糟糕,我不認為是 overfitting 所導致。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

解:

* 除了 hours 改成 5 小時,其他參數及 validation 都和第 1 題相同。

Features \ ErrorScore	Training	Validation	Public	Private
All Pollution features	6.53883596039	6.31968703215	8.06458	5.68668
Pm2.5	6.21701842044	6.22728179451	7.57762	5.79381

和第一題的結果比較,5 小時的 error 都比 9 小時大一些,表示 9 小時的 feature 對於 accuracy 比較有幫助。而 pollution 的 feature 在 training 的 error 比 validation 大,我認為應該是由於該 model 剛好有 fit 到所切的 validation data。

3. (1%)Regularization on all the weight with $\,\lambda$ =0.1、0.01、0.001、0.0001,並作圖解:

*參數和模型都和第一題相同設定,加上 regularization

$\lambda = 0.0001$

Features \ ErrorScore	Training	Validation
All Pollution features	5.85143877732	5.98225594085
Pm2.5	6.11281674618	6.15122551004

$\lambda = 0.001$

Features \ ErrorScore	Training	Validation
All Pollution features	5.8486805535	5.98198378618
Pm2.5	6.11281674619	6.15122550787

$\lambda = 0.01$

Features \ ErrorScore	Training	Validation
All Pollution features	5.83136179518	5.97565268913
Pm2.5	6.11281674621	6.15122548614

$\lambda = 0.1$

Features \ ErrorScore	Training	Validation
All Pollution features	5.83182971205	5.97801002921
Pm2.5	6.11281674646	6.15122526882

$\lambda = 1$

Features \ ErrorScore	Training	Validation
All Pollution features	5.83162216839	5.97756707025
Pm2.5	6.1128167497	6.15122309644

$\lambda = 10$

Features \ ErrorScore	Training	Validation
All Pollution features	5.83109258332	5.97741279883
Pm2.5	6.11281685617	6.15120145481

$\lambda = 100$

Features \ ErrorScore	Training	Validation
All Pollution features	5.82294653669	5.97552785426
Pm2.5	6.11282528073	6.1509932039

$\lambda = 1000$

Features \ ErrorScore	Training	Validation
All Pollution features	5.79867939479	5.97593640325
Pm2.5	6.11360235617	6.1496826974

可以發現,在 lambda 0.0001~1 之間的 Regularization,performance 都沒有明顯的改變, 我認為這是因為 learning rate 很小,乘上去之後對原本的 model 沒有貢獻太多的變化。 因此我將 lambda 放大到 1000,發現 training data 的 error 有所改變,而 validation 的 error 還是有輕微地下降,表示 regularization 是有一定幫助的。

在 PM2.5 中,regularization 的效果比較明顯,而在 pollution 中比較不明顯,我認為這是 因為 pollution 的參數比較多,而 100000 的 iteration 之後仍然沒有到完全的收斂,因此 regularization 過程中反而增加了 validation 一些誤差。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一存量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^{N}$ ($\mathbf{y}^n - \mathbf{x}^n \cdot \mathbf{w}$)²。若將所有訓練資料的特徵值以矩陣 $\mathbf{X} = [\mathbf{x}^1 \ \mathbf{x}^2 \cdots \mathbf{x}^N]^T$ 表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^1 \ \mathbf{y}^2 \cdots \mathbf{y}^N]^T$ 表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} ?請寫下算式並選出正確答案。(其中 $\mathbf{X}^T\mathbf{X}$ 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^{T}X)^{-0}X^{T}y$
- (c) $(X^{T}X)^{-1}X^{T}y$
- (d) $(X^{T}X)^{-2}X^{T}y$

解:

如下: