

Facultad de Ingenieria Civil

Taller de Ingeniería Estructural

ANALISIS Y DISEÑO DE VIGAS SÍSMICAS RECTANGULARES

DISEÑO POR FLEXION

Descrip = TRAMO 2 - Nivel 4 a. Datos de Diseño

Viga = V-104

Propiedades Geometrica de la Seccion

h = 0.60 m Altura de la viga $b = 0.30 \,\mathrm{m}$ Base

 $recubrimiento = 0.06 \, m$ recubrimiento

 $L_n = 7.20 \text{ m}$ Luz libre

Propiedades Mecanicas

 $f_c' = 210 \text{ kg/cm}^2$ Resistencia a la compresion

 $f_y = 4200 \text{ kg/cm}^2$ Fluencia del acero

 $E_c = 217371 \text{ kg/cm}^2$ M. elasticidad del concreto

 $E_{\rm S} = 2000000 \, {\rm kg/cm^2}$ M. elasticidad del acero

$$M_{iza}^{(-)} = 26579.58 \text{ kg-m}$$

$$M_{cent}^{(-)} = 3570.00 \text{ kg-m}$$

$$M_{der}^{(-)} = 29889.24 \text{ kg-m}$$

Diagrama de Momentos Flectores en la Viga

$$M_{izq}^{(+)} = 18579.58 \text{ kg-m}$$

$$M_{cent}^{(+)} = 8070.00 \text{ kg-m}$$

$$M_{der}^{(+)} = 20370.31 \text{ kg-m}$$

b. Cáculos previos

Peralte efectivo de la viga

$$d = 0.54 \text{ m}$$

Factor de eje neutro y profundidad

$$\beta_1 = 0.85$$

Cuantia Balanceada

$$\rho_{bal} = 0.85 \frac{f_c' \beta_1}{f_v} \left(\frac{6000}{f_v + 6000} \right) = 0.021419$$

Area de acero minima 01:
$$A_{s_{min}} = \frac{14}{f_y} b_w d = \qquad \text{5.40 cm}^2$$

Area de acero minima 02:

$$A_{S_{min}} = 0.7 \frac{\sqrt{f_c'}}{f_y} b_w d = 3.91 \text{ cm}^2$$

 $0.75
ho_{bal} = 0.01606$ Cuantia Maxima

 $0.50
ho_{bal} = 0.01071$ Cuantia Recomendada

c. Cáculo de las areas de acero requeridas

Apoyo Izquierdo Superior	Apoyo Izquierdo Inferior
$A_{s min} = 5.40 \text{cm}^2$	$A_{s min} = 5.40 \text{ cm}^2$
$A_{s max} = 26.02 \text{cm}^2$	$A_{s \; max} = 26.02 \; \text{cm}^2$
$\rho_{min} = 0.00333$	$\rho_{min} = 0.00333$
$\rho_{max} = 0.01606$	$ \rho_{max} = 0.01606 $
$M_u = 2657958 \text{ kg-cm}$	$M_u = 1857958 \text{ kg-cm}$
$\rho = 0.0090$	$\rho = 0.00605$
Cumple la ρ	Cumple la ρ
$A_s = 14.57 \text{ cm}^2$	$A_s = 9.80 \text{ cm}^2$

Distribucion del acero continuo	Distribucion del acero continuo	
3 ф 3/4" +	3 ф 3/4"	
Distribucion de los bastones	Distribucion de los bastones	
2 ф 3/4"	2 ф 5/8"	
1 ф 5/8"		

$A_s = 16.23 \text{ cm}^2$	$A_s = 12.51 \text{ cm}^2$
Cumple	Cumple

Distribucion del acero continuo	Distribucion del acero continuo
3 ф 3/4" +	3 ф 3/4"
Distribucion de los bastones	Distribucion de los bastones
2 ф 3/4" +	2 ф 5/8" +
Z Ψ 3/4 +	- Ψοίο ·

 $A_S = 17.10 \, \mathrm{cm^2}$ $A_S = 12.51 \, \mathrm{cm^2}$ Cumple Cumple

d. Análisis del momento resistente por el acero distribuido

			Apoyo Izquierdo Superior	Apoyo Izquierdo Inferior	Apoyo Derecho Superior	Apoyo Derecho Inferior
	Acero Continuo sup.	Acero Continuo inf.	3 ф 3/4"	3 ф 3/4"	3 ф 3/4"	3 ф 3/4"
Barillas de						
Acero	3 ф 3/4"	3 ф 3/4"	2 ф 3/4"	2 ф 5/8"	2 ф 3/4"	2 ф 5/8"
			1 ф 5/8"		1 ф 3/4"	
$A_s =$	8.55 cm ²	8.55 cm ²	16.23 cm ²	12.51 cm ²	17.10 cm ²	12.51 cm ²
A _{s min} =	3.91 cm ²	3.91 cm ²	3.91 cm ²	3.91 cm ²	3.91 cm ²	3.91 cm ²
condicion:			Cumple	Cumple	Cumple	Cumple
ρ=	0.005278	0.005278	0.010019	0.007722	0.010556	0.007722
$\rho_{max} =$	0.016064	0.016064	0.016064	0.016064	0.016064	0.016064
condicion:			Cumple la ρ	Cumple la ρ	Cumple la ρ	Cumple la ρ
a =	3.73 cm	3.73 cm	7.07 cm	5.45 cm	7.45 cm	5.45 cm
$M_n =$	18722.49 kg-m	18722.49 kg-m	34399.33 kg-m	26940.65 kg-m	36107.15 kg-m	26940.65 kg-m
$M_u = \phi M_n =$	16850.24 kg-m	16850.24 kg-m	30959.39 kg-m	24246.59 kg-m	32496.44 kg-m	24246.59 kg-m

e. Análisis de los puntos teoricos para el corte de acero

Distribucion acero Izquierdo	Distribucion de acero central	Distribucion acero derecho	
Longitud de desarrollo del acero	Longitud de desarrollo del acero	Longitud de desarrollo del acero	
Ld 3/4"= 84.00 cm	Ld 3/4"= 84.00 cm	Ld 3/4"= 84.00 cm	
Ld 3/4"= 84.00 cm Ld 5/8"= 70.00 cm	Ld 5/8"= 70.00 cm	Ld 3/4"= 84.0 cm Ld 3/4"= 84.00 cm	
$L_{d max} = 84.00 cm$	Ld max = 84.00 cm	Ld max = 84.00 cm	
12 veces diametro de la barilla	12 veces diametro de la barilla	12 veces diametro de la barilla	
12ф 3/4"= 22.92 cm	12ф 3/4"= 22.92 cm	12ф 3/4"= 22.92 cm	
12ф 3/4"= 22.92 cm 12ф 5/8"= 19.08 cm	12ф 5/8"= 19.08 cm	12 φ 3/4"= 22.92 cm 12 φ 3/4"= 22.92 cm	
12ф max = 22.92 cm	12φ max = 22.92 cm	12ф max = 22.92 cm	

 $P_{izq} = 0.60 \text{ m}$ (Inferior)

Elegimos el mayor de "12 ϕ " y "d" $L_c' = 54.00 \text{ cm}$ Punto de corte teorico central izq.

d = 54.00 cm

Elegimos el mayor de "12 ϕ " y "d" $L_c' = 54.00 \text{ cm}$ Punto de corte teorico derecho $P_{c \text{ der}} = 5.60 \text{ m} \quad \text{(Superior)}$ $P_{c \text{ der}} = 6.20 \text{ m} \quad \text{(Inferior)}$

Diagrama de Momento Resistente

a. Datos de Diseño

$$V_u = 21178.94 \text{ kg}$$

$$V_{CM} = 12641.57 \text{ kg}$$

$$V_{CV} =$$

5576.91 kg

b. Area de acero y momentos nominales

Lado Izquierdo

 $A_{s inf} = 8.55 \text{ cm}^2$

$$A_{s\;sup} = \;\; \text{16.23 cm}^{\text{2}} \qquad \quad M_{n\;sup} = \;\; \text{30959.39 kg-m}$$

$$M_{n \, sup} = 30959.39 \text{ kg-m}$$

 $M_{n \, inf} = 16850.24 \text{ kg-m}$

 $A_{s inf} = 8.55 \text{ cm}^2$

$$A_{s \; sup} = \;\; 17.10 \; \mathrm{cm^2} \qquad \qquad M_{n \; sup} = \;\; 32496.44 \; \mathrm{kg\text{-}m}$$

$$M_{n inf} = 16850.24 \text{ kg-m}$$

b. Diagrama de cortantes hiperestaticos e isostaticos de la viga

Diagrama de Cortantes Hiperestáticos de la VIga

Diagrama de Cortantes Isostáticos de la VIga

c. Diagrama de la resultante por ductilidad en la viga

Diagrama de Ductilidad de la Viga

d. Diagrama de fuerzas cortantes para el diseño de la viga

Cortante maximo por requisitos de ductilidad

Cortante maximo obtenido del analisis estructural

Cortante maximo de diseño

$$V_u = 29626.81 \text{ kg}$$

$$V_u = 21178.94 \text{ kg}$$

$$V_u = 29626.81 \text{ kg}$$

Resistencia del concreto al cortante

$$\emptyset = 0.75$$

$$\emptyset V_c = 0.75 \cdot 0.53 \sqrt{f_c'} b_W d = 9331.72 \text{ kg}$$

Cortante a la distancia "d" de la cara del apoyo

$$V_{ud} = 25182.78 \text{ kg}$$

El corte que debe ser resistido por el acero es:

$$V_s = \left(\frac{V_{ud}}{\phi}\right) - V_c = 21134.75 \text{ kg}$$

Distancia de la cara del apoyo hasta la resitencia del concreto

$$L_{vc} = 2.47 \text{ m}$$

Distancia de la cara del apoyo

$$L_{dc} = 0.54 \text{ m}$$

Resistencia al cortate maxima del acero

$$V_{Smax} = 2.12\sqrt{f_c'}b_w d = 49769.18 \text{ kg}$$

Cumple

La separacion para estribos vertivales, sera:

$$\emptyset A_v = \phi 3/8"$$

$$A_v = 1.42 \text{ cm}^2$$

$$s = \frac{A_v f_y d}{V_s} = 15.24 \text{ cm}$$
 (1)

Se debe de verificar la separacion maxima de los estribos de acuerdo a las siguientes condiciones

-
$$si: V_u \leq \frac{V_c}{2}:$$

$$\frac{V_u}{\phi} = 33577.05 \text{ kg}$$

$$\frac{V_c}{2}$$
 = 6221.15 kg

No verifica

-
$$si: \frac{V_u}{\phi} > \frac{V_c}{2}$$
 $y \frac{V_u}{\phi} \le V_c$:

$$\frac{V_u}{\emptyset} = 33577.05 \text{ kg}$$
 $V_c = 12442.30 \text{ kg}$

$$V_c = 12442.30 \text{ kg}$$

No verifica

-
$$si: \frac{V_u}{\emptyset} > V_c:$$

si:
$$\frac{V_u}{\emptyset} \le 1.06 b_w d\sqrt{f_c'}$$
 : $s \le d/2$, $s \le 60 cm$
$$1.06 b_w d\sqrt{f_c'} = 24884.59 \ \mathrm{kg}$$

$$s \le d/2$$
 , $s \le 60cn$

$$1.06b_w d\sqrt{f_c'} = 24884.59 \text{ kg}$$

No verifica

$$si: \ \frac{V_u}{\emptyset} > 1.06 b_w d\sqrt{f_c'} \ y \ \frac{V_u}{\emptyset} \leq 2.12 b_w d\sqrt{f_c'}: \qquad s \leq d/_4 \ , \ s \leq 30 cm$$

$$s \le a/4$$
, $s \le 30cn$

$$2.12b_w d\sqrt{f_c'} = 49769.18 \text{ kg}$$

S = 30 cm

La separacion maxima que tendran nuestros estribos sera de:

S = 15.24 cm

e. Distribucion final de los estribos en la viga

corregir la automatizacion distribucion de estribos.

ф 3/8": 1@0.05 m; 6@0.10 m; 3@0.15 m; Rto. @ 0.15 m

Diagrama de Fuerza Cortante para el Diseño de la Viga

a. Verificacion del agrietamiento en la viga

Peralte efectivo de la viga

$$d = 54.00 \text{ cm}$$

El momento critico "Mcr" de la viga sera:

$$M_{cr} = \frac{I_g f_r}{v_c} = 5216.90 \text{ kg-m}$$

Momento de inercia bruta:

Modulo de ruptura del concreto

$$I_a = 540000.00 \text{ cm}4$$

$$f_r = 2\sqrt{f_c'} = 28.98 \text{ kg/cm}^2$$

El momento ultimo actuante en el centro de la viga es:

$$M_u = 29889.24 \text{ kg-m}$$

Seccion Agrietada

$$n = \frac{3}{E_c} = 9.20$$

$$A_S = 12.51 \text{ cm}^2$$

$$b = 30.00 \text{ cm}$$

$$d = 54.00 \text{ cm}$$

$$b = 30.00 \text{ cm}$$

 $c = 16.88 \text{ cm}$

$$I_{cr} = \frac{bc^3}{3} + nA_s(d-c)^2 = 206696.61 \text{ cm}4$$

$$f_s = n \frac{M_u(d-c)}{I_{cr}} = 4939.07 \text{ kg/cm}^2$$

$$f_{s_{max}} = 0.6 f_y = 2520 \text{ kg/cm}^2$$

$$f_{\rm s} = 2520.00 \, \rm kg/cm^2$$

d. Determinamos el ancho de la grieta mediante la siguiente ecuacion formulada por Gergely Lutz:

$$w_{max} = 0.1086 \cdot 10^{-4} \beta f_s \sqrt[3]{d_c A}$$

$$\beta = \left(\frac{h-c}{d-c}\right) = 1.16$$

$$d_c = 6.00 \text{ cm}$$
 (recubrimiento del concreto)

$$\gamma_{bc} = 5$$
 (Numero de barras de refuerzo)

$$t = 12.00 \text{ cm}$$
 (concreto en tension = $2.d_c$)

$$A = \frac{b \ t}{v_{hc}} = 72.00 \text{ cm}^2$$

$$\omega_{max} = 0.2403 \text{ mm}$$

e. Verificamos los anchos de grieta permesibles:

Aire seco o con menbrana de proteccion Exposición:

 $W_{permitido} = 0.41 \text{ mm}$

Cumple

f. Determinacion del factor Z recomendado por el ACI

$$Z = f_s \sqrt[3]{d_c A} = 19050.01 \text{ kg/cm}$$

El valor de Z no excedera de: Para vigas en interiores

 $Z_{max} = 31000.00 \text{ kg/cm}$

Cumple

Tipo de viga Viga (Empotrado - Empotrado)

480 (RNE)

a. Determinacion de las cargas distribuidas de servicio "WD+L", "WD" y ultima "Wu"

Losa =
$$350.00 \text{ kg/m}^2$$

 $W_{CM} = 150.00 \text{ kg/m}^2$
 $W_D = 2250.00 \text{ kg/m}$

$$Wcv = 400.00 \text{ kg/m}^2$$

$$Ws/c = 25.00 \text{ kg/m}^2$$

$$W_1 = 1912.50 \text{ kg/m}$$

$$B_t = 4.50 \text{ m}$$

 $L_n = 7.20 \text{ m}$

Carga distribuida ultima

$$\omega_{CM+CV} = CM + CV = 4162.50 \text{ kg/m}$$

$$\omega_{CM} = 2250.00 \text{ kg/m}$$

$$w_u = 1.4CM + 1.7CV = 6401.25 \text{ kg/m}$$

b. Calculo de los momentos actuantes "Ma(D+L)", "Ma(D)" y ultimos "Mu"

$$M_{a_{(CM+CV)}} = 26973.00 \text{ kg-m}$$

$$M_{a_{CM}} = 14580.00 \text{ kg-m}$$

$$M_u = 41480.10 \text{ kg-m}$$

c. Momento critico "Mcr" de la viga

Momento de inercia bruta:

El momento critico "Mcr" de la viga sera:

$$I_q = 540000.00 \text{ cm}4$$

$$f_r = 2\sqrt{f_c'} = 28.98 \text{ kg/cm}^2$$

$$M_{cr} = \frac{I_g f_r}{v_c} = 5216.90 \text{ kg-m}$$

d. Determinamos el valor de la inercia agrietada "Icr"

$$I_{cr} = \frac{bc^3}{2} + nA_s(d-c)^2 = 206696.61 \text{ cm}4$$

e. Calculo de la inercias efectivas " $I_{e(CM+CV)}$ " y " $I_{e(CM)}$ "

$$I_{e_{(CM+CV)}} = \frac{M_{cr}^3 I_g}{M_{a_{(CM+CV)}}^3} + I_{cr} - \frac{M_{cr}^3 I_{cr}}{M_{a_{(CM+CV)}}^3} = \qquad 209108.12 \text{ cm4} \qquad \leq \qquad I_g = \quad 540000.00 \text{ cm4} \qquad \qquad \textbf{Ok}$$

$$I_{e_{CM}} = \frac{M_{cr}^3 I_g}{M_{a_{CM}}^3} + I_{cr} - \frac{M_{cr}^3 I_{cr}}{M_{a_{CM}}^3} =$$
 221965.37 cm4 \leq $I_g = 540000.00$ cm4 **Ok**

f. Hallamos el valor de las deflexiones inmediatas para "
$$\Delta_{\text{i(CM+CV)}}$$
", " $\Delta_{\text{i(CM)}}$ " y " $\Delta_{\text{i(CV)}}$ "
$$\Delta = \frac{1}{384} \frac{\omega_u L^4}{EI}$$

$$\Delta_{\mathsf{i(CV)}}" \qquad \Delta = \frac{1}{384} \frac{34}{EE}$$

$$\Delta_{i_{(CM+CV)}} = \frac{1}{384} \frac{\omega_{(CM+C)} L^4}{EI_{e_{(CM+CV)}}} = 0.6409 \text{ cm}$$

$$\Delta_{i_{CM}} = \frac{1}{384} \frac{\omega_{CM} L^4}{EI_{e_{CM}}} = 0.3264 \text{ cm}$$

$$\Delta_{i_{CV}} = \Delta_{i_{(CM+CV)}} - \Delta_{i_{CM}} = 0.3145 \text{ cm}$$

g. El valor de la deflexion inmediata "Δi" estara dada por:

$$\Delta_i = \Delta_{i_{CM}} - 0.40 \Delta_{i_{Cv}} = 0.4522 \ \mathrm{cm}$$

h. El valor de la deflexion diferida o a largo plazo "Δdif" estara dada por:

$$\Delta_{dif} = \frac{\xi \Delta_i}{1 + 50 \rho'} = \quad \text{ 0.9043 cm}$$

Periodo de tiempo en el calculo de las deflexiones:

$$t > 5 \text{ años}$$
 $\xi = 2.0$

Cuantia de acero en compresion en la parte central de la viga ρ' =

i. El valor de la deflexion total " Δ " estara dada por:

$$\Delta = \Delta_{dif} + \Delta_{i_{CV}} = 1.2189 \text{ cm}$$

$$\Delta_{max} = \frac{L}{480} = 1.50 \text{ cm}$$

Cumple