Algebra Lineal

12 de diciembre de 2018

Índice general

1	Sis	tema	s de ecuaciones	7			
1.	Matrices						
	1.1.	Definic	ciones	8			
		1.1.1.	Matriz	8			
		1.1.2.	Matriz cuadrada	8			
		1.1.3.	Matrices triangulares	9			
		1.1.4.	Matrices particulares	9			
		1.1.5.	Transposicion	9			
		1.1.6.	Matriz inversa	9			
	1.2.	Opera	ciones	10			
		1.2.1.	Suma	10			
		1.2.2.	Multiplicacion por un escalar	10			
		1.2.3.	Producto	10			
		1.2.4.	Traza	10			
	1.3.	Teorer	mas	11			
		1.3.1.	Propiedades de la suma	11			
		1.3.2.	Propiedades del producto por un escalar	11			
		1.3.3.	Propiedades del producto de matrices	11			
		1.3.4.	Propiedades de las matrices triangulares	12			
		1.3.5.	Propiedades de la transposicion	12			
		1.3.6.	Propiedades de la traza	12			
2.	Fact	torizac	ion LDU	13			
	2.1.	Definic		13			
		2.1.1.	Matriz de eliminacion	13			
		2.1.2.	Matriz de permutacion	13			
		2.1.3.	Matriz no singular	13			
	2.2.	Teorer		14			

		2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5.	Unicidad de la factorizacion LDU	14 14 14 15 15
		2.2.6.	No singularidad e invertibilidad	17
II	\mathbf{E}_{i}	spacio	os vectoriales	18
3.	Intr	oducci	ion	19
	3.1.	Defini	ciones	19
		3.1.1.	Espacio vectorial	19
		3.1.2.	Subespacio vectorial	20
		3.1.3.	Suma de subespacios	20
		3.1.4.	Combinacion lineal	20
		3.1.5.	Espacio generado	21
	3.2.	Teorer		21
		3.2.1.	Propiedades de los espacios vectoriales	21
		3.2.2.	Caracterizacion de suma directa de subespacios	21
		3.2.3.	Lema	22
		3.2.4.	Union de espacios vectoriales	23
4.	Inde	epende	encia lineal, dimension y base	24
	4.1.			24
		4.1.1.	Independencia lineal	24
		4.1.2.	Dimension	25
		4.1.3.	Base	25
	4.2.	Teorer	mas	25
		4.2.1.	Unicidad de la combinacion lineal independiente	25
		4.2.2.	Lema	25
		4.2.3.	Finitud de subconjuntos linealmente independientes	26
		4.2.4.	Corolario	27
		4.2.5.	Lema	27
		4.2.6.	Teorema	28
		4.2.7.	Relacion entre la dimension de un espacio y un subespacio	28
		4.2.8.	Corolario	29
		4.2.9.	Inversibilidad de una matriz	29

		4.2.10.	Dimension de la suma de subespacios	29
5.	Coo	rdenda	as y cambios de base	31
	5.1.	Definic	ciones	31
		5.1.1.	Base ordenada	31
		5.1.2.	Coordenadas	31
	5.2.	Teoren	nas	32
		5.2.1.	Matriz de cambio de base	32
		5.2.2.	Teorema	33
II.	l 'J	lransf	formaciones lineales	34
6.		oducci		35
	6.1.	Definic	ciones	35
		6.1.1.	Transformacion lineal	35
		6.1.2.	Espacio nulo	35
		6.1.3.	Rango	35
		6.1.4.	Homomorfismos	36
		6.1.5.	Espacios isomorfos	36
	6.2.	Teoren	nas	36
		6.2.1.	Determinacion de una TL por la actuacion en la base .	36
		6.2.2.	Inyectividad de una transformacion lineal	37
		6.2.3.	Teorema de la dimension	38
		6.2.4.	Relacion entre el rango por filas y columnas	39
		6.2.5.	Espacio de todas las transformaciones	39
		6.2.6.	Dimension del espacio de todas las transformaciones	40
		6.2.7.	Linealidad de la composicion	40
		6.2.8.	Linealidad de la inversa	40
		6.2.9.	Teorema de los morfismos	41
		6.2.10.	Isomorfismo sobre el cuerpo	42
			Respresentacion de TL por matrices	
			Teorema	43
		6.2.13.	Matriz asociada a la composicion	44
7.	Fun	cionale	es lineales y dualidad	45
	7.1.	Definic	ciones	45
		711	Funcional lineal	45

4

		7.1.2.	Espacio dual	45
		7.1.3.	Hiperplano	45
		7.1.4.	Anulador	46
	7.2.	Teoren		46
		7.2.1.	Existencia y unicidad de la base dual	46
		7.2.2.	Propiedades de los funcionales lineales	47
		7.2.3.	Relacion entre la dimension de un espacio y su anulador	47
		7.2.4.	Corolario	48
		7.2.5.	Corolario	48
		7.2.6.	Suma e interseccion de anuladores	49
IV	$^{\prime}$ I	Diagor	nalizacion	50
8.	Aut	ovalor	es y autovectores	51
	8.1.	Definic	ciones	51
		8.1.1.	Autovalores y autovectores	51
		8.1.2.	Ecuacion y polinomios característicos	52
	8.2.	Teoren	mas	52
		8.2.1.	Autovalores de una matriz triangular	52
		8.2.2.	Independencia lineal de los autoespacios	52
9.	•	gonaliz		54
	9.1.	Definio		54
		9.1.1.	Matrices semejantes	54
		9.1.2.	Matriz diagonalizable	54
	9.2.	Teoren		54
		9.2.1.	Autovalores de matrices semejantes	54
		9.2.2.	Condicion necesaria y suficiente de diagonalizabilidad .	55
		9.2.3.	O	56
		9.2.4.	Propiedades	56
10			rmal de Jordan	57
	10.1.		ciones	57
			Espacio invariante	57
			Vector ciclico	57
	10.0	10.1.3.	Espacio ciclico	58

10.2.1. Invarianza de espacios nulos	58
10.2.2. Teorema 4	58
10.2.3. Teorema 5	59
10.2.4. Proposicion 1	59
$10.2.5$. Proposicion $2 \dots \dots \dots \dots \dots \dots$	60
10.2.6. Lema de Schur	60
10.2.7. Independencia lineal de vectores ciclicos	60
10.2.8. Teorema de Jordan	61
V Producto interno y ortogonalidad	62
11.Producto interno	63
11.1. Definiciones	63
11.1.1. Producto interno	63
11.1.2. Producto interno estandar	63
11.1.3. Longitud	64
11.1.4. Distancia	64
11.2. Teoremas	64
11.2.1. Ley del paralelogramo	64
11.2.2. Teorema de Pitagoras	64
11.2.3. Desigualdad de Cauchy-Schwarz	65
11.2.4. Desigualdad triangular	65
12.Ortogonalidad	66
12.1. Definiciones	66
12.1.1. Ortogonalidad	66
12.1.2. Complemento ortogonal	66
12.1.3. Conjunto ortogonal	66
12.1.4. Base ortogonal	67
12.1.5. Conjunto ortonormal	
12.1.6. Matriz ortongonal	
12.1.7. Proyeccion de un vector sobre otro	67
12.2. Teoremas	68
12.2.1. Proposicion	68
12.2.2. Relacion entre complemento ortogonal y espacio nulo .	68
12.2.3. Independencia lineal de conjuntos ortogonales	69
12.2.4. Combinacion lineal ortogonal	69

12.2.5. Caracterizacion de las matrices ortonormales 7
12.2.6. Propiedades de las matrices ortonormales
12.2.7. Teorema de la descomposicion ortogonal
12.2.8. Teorema de la mejor aproximación
12.2.9. Corolario
12.2.10 Proyecciones sobre conjuntos ortonormales
12.2.11 Algoritmo de Gram-Schmidt

6

Parte I Sistemas de ecuaciones

Capítulo 1

Matrices

1.1. Definiciones

1.1.1. Matriz

Una matriz A de tamaño $f \times c$ con coeficientes en \mathbb{K} es una funcion $A : [1, f] \times [1, c] \to \mathbb{K}$. Notaremos al conjunto de todas las matrices de f filas y c columnas con coeficientes en \mathbb{K} como $\mathbb{K}^{f \times c}$.

Es comun representar a una matriz $A: [\![1,f]\!]\times [\![1,c]\!]\to \mathbb{K}$ como un arreglo rectangular

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1c} \\ a_{21} & a_{22} & \dots & a_{2c} \\ \vdots & \vdots & \ddots & \vdots \\ a_{f1} & a_{f2} & \dots & a_{fc} \end{bmatrix}$$

en donde a_{ij} son los llamados coeficientes de la matriz A.

Diremos que dos matrices A y B son iguales si tienen la misma cantidad de filas, la misma cantidad de columnas y $a_{ij} = b_{ij}$ para cualquier i, j.

1.1.2. Matriz cuadrada

Una matriz A se dice cuadrada si tiene la misma cantidad de filas y columnas, es decir, si $A \in \mathbb{K}^{n \times n}$ para algun n.

1.1.3. Matrices triangulares

Una matriz cuadrada A se dice:

- $triangular superior si a_{ij} = 0 para i > j;$
- triangular inferior si $a_{ij} = 0$ para i < j;
- diagonal si es triangular superior y triangular inferior.

1.1.4. Matrices particulares

La matriz nula $0_{f\times c}$ es la matriz de tamaño $f\times c$ que tiene todas sus entradas iguales a cero.

La matriz identidad de orden n es la matriz $I = I_n \in \mathbb{K}^{n \times n}$ tal que $I_{ij} = \delta_{ij}$ en donde δ_{ij} esta definida por:

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

1.1.5. Transposicion

Dada $A \in \mathbb{K}^{m \times n}$ se define la matriz transpuesta de A como la matriz $A^t \in \mathbb{K}^{n \times m}$ dada por $(A^t)_{ij} = a_{ji}$.

Diremos que una matriz A es simetrica si $A = A^t$.

1.1.6. Matriz inversa

Diremos que una matriz $A \in \mathbb{R}^{n \times n}$ es inversible si existe otra matriz $B \in \mathbb{R}^{n \times n}$ tal que AB = BA = I. De existir esta matriz es unica y se nota A^{-1} .

1.2. Operaciones

1.2.1. Suma

Si $A, B \in \mathbb{K}^{f \times c}$, la suma de A con B es la matriz $C = (A + B) \in \mathbb{K}^{f \times c}$ dada por los coeficientes $c_{ij} = a_{ij} + b_{ij}$.

Observacion Notese que solo pueden sumarse matrices del mismo tamaño.

1.2.2. Multiplicacion por un escalar

La multiplicacion de la matriz $A \in \mathbb{K}^{f \times c}$ por el escalar $\alpha \in \mathbb{K}$ se define como la matriz $C = (\alpha A) \in \mathbb{K}^{f \times c}$ dada por $c_{ij} = \alpha a_{ij}$.

1.2.3. Producto

Si $A \in \mathbb{K}^{m \times n}$ y $B \in \mathbb{K}^{n \times p}$ definimos el producto de A con B como la matriz $C = (AB) \in \mathbb{K}^{m \times p}$ dada por

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Observacion Notese que el producto de matrices no es conmutativo, aunque si asociativo.

1.2.4. Traza

Dada $A \in \mathbb{K}^{n \times n}$ se define la traza de A como $tr(A) = \sum_{i=1}^{n} a_{ii}$.

1.3. Teoremas

1.3.1. Propiedades de la suma

Sean $A, B, C \in \mathbb{K}^{n \times m}$, entonces:

- Asociatividad:(A + B) + C = A + (B + C);
- Conmutatividad:(A + B) = (B + A);
- Existencia del neutro: $0_{n \times m} + A = A + 0_{n \times m}$;
- Existencia del opuesto: A + (-1A) = 0.

1.3.2. Propiedades del producto por un escalar

Sean $A, B \in \mathbb{K}^{n \times m}$ y $\alpha, \beta \in \mathbb{K}$, entonces:

- Asociatividad: $(\alpha\beta) A = \alpha (\beta A)$;
- Distributividad respecto de la suma de matrices: $\alpha(A+B) = \alpha A + \beta B$;
- Distributividad respecto de la suma de escalares: $(\alpha + \beta) A = \alpha A + \beta A$;
- Escalar neutro para el producto: 1A = A;
- $\bullet \ \alpha 0_{n \times m} = 0_{n \times m};$
- $0A = 0_{n \times m}$;
- \bullet $\alpha A = 0_{n \times m} \Rightarrow \alpha = 0 \text{ o } A = 0_{n \times m};$
- $(-\alpha) A = \alpha (-A).$

1.3.3. Propiedades del producto de matrices

Sean A, B, C matrices con coeficientes en \mathbb{K} , entonces:

- Asociatividad: A(BC) = (AB)C;
- Distributividad respecto de la suma de matrices por la derecha: (A + B) C = AC + BC;
- Distributividad respecto de la suma de matrices por la izquierda: A(B+C) = AB + AC.

1.3.4. Propiedades de las matrices triangulares

- Si A, B son matrices triangulares inferiores, entonces AB tambien lo es y ademas si A es invertible resultara que A^{-1} es triangular inferior.
- Si A, B son matrices triangulares superiores, entonces AB tambien lo es y ademas si A es invertible resultara que A^{-1} es triangular superior.
- Si A, B son matrices diagonales, entonces AB tambien lo es y ademas si A es invertible resultara que A^{-1} es diagonal.

1.3.5. Propiedades de la transposicion

Sean $A, B \in \mathbb{K}^{f \times c}, \alpha \in \mathbb{K}$ entonces:

- $(A^t)^t = A;$
- $(\alpha A)^t = \alpha A^t;$
- $(A+B)^t = A^t + B^t;$
- Si $C \in \mathbb{K}^{m \times n}$ y $D \in \mathbb{K}^{n \times p}$ entonces $(CD)^t = D^t C^t$.

1.3.6. Propiedades de la traza

- tr(A+B) = tr(A) + tr(B);
- $tr(\alpha A) = \alpha tr(A)$;
- tr(AB) = tr(BA);
- $tr(AA^t) = \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2$

Capítulo 2

Factorizacion LDU

2.1. Definiciones

2.1.1. Matriz de eliminacion

Definimos la matriz $E_{ij}(-l)$ dada por:

$$e_{pq} = \begin{cases} -l & p = i \land q = j \\ 1 & p = q \\ 0 \end{cases}$$

Si premultiplicamos a una matriz A por esta matriz de eliminacion, lo que obtenemos es una nueva matriz donde a la fila i de A se le ha restado l veces la fila j.

2.1.2. Matriz de permutacion

Una matriz es de permutacion si es cuadrada con exactamente una componente 1 por fila y columna, y el resto de sus coeficientes son 0.

2.1.3. Matriz no singular

Una matriz cuadrada A es «no singular» si puede transformarse en U sin pivotes nulos, con posibles intercambios de filas. En este caso el sistema Ax = b tiene solucion unica.

Una matriz es singular cuando aun con intercambio de filas hay pivotes nulos.

2.2. Teoremas

2.2.1. Unicidad de la factorización LDU

Enunciado Si A puede factorizarse sin intercambio de filas y todos los pivotes son distintos de 0, entonces la factorización LDU es unica.

Demostracion Supongamos $A = L_1D_1U_1 = L_2D_2U_2$.

- L_1^{-1} es triangular inferior con 1 en la diagonal.
- U_2^{-1} es triangular superior con 1 en la diagonal.
- D_1^{-1} es diagonal cuyos elementos diagonales son los reciprocos de los elementos diagonales de D_1 .

Luego ambas matrices son I, es decir: $U_1U_2^{-1} = I \Rightarrow U_1 = U_2$ y analogamente $L_1 = L_2$ y $D_1 = D_2$.

2.2.2. Unicidad de la factorización LU

Enunciado La factorización LU de una matriz cuadrada invertible es unica.

Demostracion Supongamos $A = L_1U_1 = L_2U_2$, luego $A = L_1D_1\widetilde{U_1} = L_2D_2\widetilde{U_2}$ y por el teorema anterior $L_1 = L_2 \wedge D_1 = D_2 \wedge \widetilde{U_1} = \widetilde{U_2} \Rightarrow U_1 = D_1\widetilde{U_1} = D_2\widetilde{U_2} = U_2$.

2.2.3. Factorización de matrices simetricas

Enunciado Si A es simetrica y puede factorizarse sin intercambio de filas en la forma LDU, entonces $U = L^t$.

Demostracion $A = LDU = A^t = U^tD^tL^t = U^tDL^t$ por lo tanto $L = U^t$ v $U = L^t$.

2.2.4. Lema

Enunciado Sean para $i, j \in \{1, ..., n\}$ las funciones:

$$\Pi_{ij}: \{1,\ldots,n\} \rightarrow \{1,\ldots,n\}$$

$$r \rightarrow \Pi_{ij}(r) = \begin{cases} r & i \neq j \neq r \\ i & r = j \\ j & r = i \end{cases}$$

entonces $P_{ij}E_{kl}(m) = E_{\Pi_{ij}(k)\Pi_{ij}(l)}(m) P_{ij}$.

Demostracion

- Si $k, l \neq i, j \Rightarrow P_{ij}E_{kl} = E_{kl}P_{ij}$.
- Si $k = i \wedge l = j$, como $\Pi_{ij}(k) = j$ y $\Pi_{ij}(l) = i \Rightarrow P_{ij}E_{ij} = E_{ji}P_{ij}$.
- Si $k = i \land l \neq j$, como $\Pi_{ij}(k) = j$ y $\Pi_{ij}(l) = l \Rightarrow P_{ij}E_{il} = E_{jl}P_{ij}$.
- COMPLETAR.

2.2.5. Clasificación de sistemas

Enunciado Sea $A \in \mathbb{R}^{n \times n}$, luego:

- 1. Si A se puede transformar en U triangular superior sin 0 en la diagonal entonces Ax = b tiene solucion unica $\forall b \in \mathbb{R}^n$.
- 2. Si no, entonces para cada $b \in \mathbb{R}^n$, Ax = b tiene infinitas soluciones o ninguna.

Demostracion

1. Ax = b, $\underbrace{EPA}_{U}x = \underbrace{EPb}_{\tilde{b}} \Rightarrow Ux = \tilde{b}$, luego como U es triangular superior sin 0 en la diagonal, existe solucion unica con substitucion hacia atras.

2. Si no se puede transformar en U, la matriz EPA tendra esta forma:

sea $x = \left(\underbrace{x_1, \dots, x_j, \dots x_n}_{w}\right)$, luego EPAx tendra esta forma:

$$\begin{bmatrix} U'w + cx_j + M_1z \\ m_2z \\ M_3z \end{bmatrix}$$

y sea $\tilde{b} = EPb = \left(\underbrace{\ldots}_{d_1}, b_j, \underbrace{\ldots}_{d_2}\right)$, luego el sistema $EPAx = \tilde{b}$ es equivalente al sistema Ax = b:

$$\begin{cases} U'w + cx_j + M_1z &= d_1 \\ M_2 &= b_j \\ M_3 &= d_2 \end{cases}$$

- Si $M_3z = d_2$ no tiene solucion entonces no hay solucion del sistema.
- Si $M_3z=d_2$ tiene solucion, sea \tilde{z} tal solucion, luego:
 - $M_2\tilde{z} \neq b_j \Rightarrow$ no hay solucion.
 - COMPLETAR.

2.2.6. No singularidad e invertibilidad

Enunciado A es no singular si y solo si A es inversible.

Demostracion

■ ⇒: Como A es no singular, entonces $\forall b \in \mathbb{R}^n$ el sistema Ax = b tiene solucion unica. En particular para los versores e_i .

Sean
$$x_j/Ax_j = e_j y B = \begin{bmatrix} | & | & | \\ x_1 & \dots & x_n \\ | & | & | \end{bmatrix}$$
, luego $AB = \begin{bmatrix} | & | & | \\ Ax_1 & \dots & Ax_n \\ | & | & | \end{bmatrix} = I$.

Tenemos:

•
$$Ax_j = e_j \Rightarrow \underbrace{EA}_{U} x_j = Ee_j \Rightarrow x_j = U^{-1} Ee_j.$$

•
$$B = \begin{bmatrix} | & | & | \\ U^{-1}Ee_1 & \dots & U^{-1}Ee_n \\ | & | & | \end{bmatrix} = U^{-1}EI = U^{-1}E.$$

Luego $BA=\left(U^{-1}E\right)A=U^{-1}\left(EA\right)=U^{-1}U=I,$ o en forma mas sencilla:

$$AB = I \iff EPAB = EP \iff UBA = EPA \iff UBA = U \iff BA = I$$

• \Leftarrow : A es invertible, luego existe A^{-1} por lo que Ax = b tiene solucion $x = A^{-1}b$.

Supongamos que $Ax_1 = b$ y $Ax_2 = b$, luego $x_1 = A^{-1}b$ y $x_2 = A^{-1}b$ por lo que $x_1 = x_2$.

Parte II Espacios vectoriales

Capítulo 3

Introduccion

3.1. Definiciones

3.1.1. Espacio vectorial

Sea V un conjunto no vacio de objetos llamados elementos, $\mathbb K$ un cuerpo de escalares y las operaciones:

$$+: V \times V \to V \qquad \cdot: \mathbb{K} \times V \to V$$

 $(u, v) \to u + v \qquad (\alpha, u) \to \alpha u$

decimos que $(V, \mathbb{K}, +, \cdot)$ es un espacio vectorial si satisface los siguientes axiomas:

- Axiomas para la suma
 - 1. Cerrado bajo la suma: $(\forall u, v \in V) \exists ! w \in V/w = u + v$.
 - 2. Asociatividad de la suma: u + (v + w) = (u + v) + w.
 - 3. Conmutatividad de la suma: u + v = v + u.
 - 4. Elemento neutro de la suma: $\exists ! 0 \in V/v + 0 = v$.
 - 5. Elemento opuesto de la suma: $(\forall v \in V) \exists ! v \in V/v + (-v) = 0.$

- Axiomas para el producto por escalares
 - 1. Cerrado bajo el producto: $(\forall v \in V, \alpha \in \mathbb{K}) \exists ! w \in V/w = \alpha v$.
 - 2. Asociatividad del producto: $(\alpha \beta) v = \alpha (\beta v)$.
 - 3. Elemento neutro del producto: $(\forall v \in V) 1_{\mathbb{K}} v = v$.
- Propiedades distributivas
 - 1. Del producto respecto de la suma de vectores: $\alpha(u+v) = \alpha u + \alpha v$.
 - 2. Del producto respecto de la suma de escalares: $(\alpha + \beta) v = \alpha v + \beta v$.

3.1.2. Subespacio vectorial

Sea V un espacio vectorial sobre \mathbb{K} , diremos que U es subespacio vectorial de V si es un subconjunto de V y ademas es un espacio vectorial, es decir:

- 1. No es vacio: $0 \in U$.
- 2. Cerrado bajo la suma: $(\forall u, v \in U) \exists ! w \in U/w = u + v$.
- 3. Cerrado bajo el producto: $(\forall v \in U, \alpha \in \mathbb{K}) \exists ! w \in U/w = \alpha v$.

Observacion El resto de los axioman se heredan por ser $U \subseteq V$.

3.1.3. Suma de subespacios

Sea V un espacio vectorial sobre el cuerpo \mathbb{K} y U_1, U_2 subespacios de V definimos el subespacio suma como: $U = U_1 + U_2 = \{u_1 + u_2 / u_1 \in U_1, u_2 \in U_2\}$.

Si ademas, cada $u \in U$ se escribe de manera unica como la suma de un vector de U_1 y otro de U_2 y lo notamos $U = U_1 \oplus U_2$.

3.1.4. Combination lineal

Sea V un espacio vectorial sobre \mathbb{K} y dados los vectores $v_1, v_2, \ldots, v_n \in V$ diremos que $v \in V$ es una combinación lineal de dichos vectores si existen escalares $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{K}$ tales que: $v = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$.

3.1.5. Espacio generado

Definimos al espacio generado por $S = \{v_1, v_2, \dots, v_n\}$ como:

$$\langle S \rangle = \{ \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n / \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{K} \}$$

es decir, el conjunto de todas las combinaciones lineales de los vectores de S. Si $S \subseteq V$ y $V = \langle S \rangle$ diremos que S genera a V. Si $|S| = n \in \mathbb{N}$ diremos que V es de dimension finita y en caso contrario de dimension infinita.

3.2. Teoremas

3.2.1. Propiedades de los espacios vectoriales

Enunciado Sea $(V, \mathbb{K}, +, \cdot)$ un espacio vectorial, sabemos existe $0 \in V/0 + x = x$; y para cada $v \in V$ existe $\bar{v}/v + \bar{v} = 0$, luego:

- 1. Si $0' \in V$ es tal que 0' + x = x, entonces 0' = 0.
- 2. Dado $v \in V$, si \bar{v}' es tal que $v + \bar{v}' = 0$, entonces $\bar{v}' = \bar{v}$.
- 3. Si z + x = z + y entonces x = y.
- 4. $\alpha \cdot 0 = 0$.
- 5. $0 \cdot v = 0$.
- 6. $(-\alpha \cdot v) = \alpha \cdot \bar{v} = \overline{(\alpha \cdot v)}$.
- 7. Si $\alpha \cdot v = 0$ entonces $\alpha = 0$ o v = 0.

Demostracion EJERCICIO.

3.2.2. Caracterizacion de suma directa de subespacios

Enunciado Sean U_1 y U_2 subespacios de V, luego las siguientes proposiciones son equivalentes:

- 1. $V = U_1 \oplus U_2$.
- 2. $V = U_1 + U_2 y 0 = u_1 + u_2 \Rightarrow u_1 = u_2 = 0.$
- 3. $V = U_1 + U_2$ y $U_1 \cap U_2 = \{0\}$.

Demostracion

- 1 ⇔ 2:
 - \Longrightarrow : Supongamos $V=U_1\oplus U_2$. Luego por definicion resulta $V=U_1+U_2$. Ademas por la unicidad de la representacion del 0 tenemos $0=u_1+u_2\Rightarrow u_1=u_2=0$ pues 0=0+0.
 - \Leftarrow : Puesto que $V = U_1 + U_2$ tenemos que $\forall v \in V \exists u_1, u_2/v = u_1 + u_2$. Solo nos queda ver la unicidad. Supongamos que $v = w_1 + w_2 = u_1 + u_2$, luego:

$$0 = v - v = (u_1 + u_2) - (w_1 + w_2) = \underbrace{(u_1 - w_1)}_{\in U_1} - \underbrace{(u_2 - w_2)}_{\in U_2}$$

y como $0 = u_1 + u_2 \Rightarrow u_1 = u_2 = 0$, sabemos que $u_1 - w_1 = 0 \Rightarrow u_1 = w_1$ y analogamente $u_2 = w_2$ por lo tanto $\exists ! u_1, u_2/v = u_1 + u_2$.

■ $1 \iff 3$: EJERCICIO.

3.2.3. Lema

Enunciado Sea V un espacio vectorial y $v_1, v_2, \ldots, v_n \in V$ entonces:

- 1. $v_j \in \langle \{v_1, v_2, \dots, v_n\} \rangle$ para $j \in \{1, \dots, n\}$.
- 2. $\langle \{v_1, v_2, \dots, v_n\} \rangle$ es un subespacio de V.
- 3. Si $U \subseteq V$ es un subespacio de V tal que $v_1, v_2, \ldots, v_n \in U$ luego $\langle \{v_1, v_2, \ldots, v_n\} \rangle \subseteq U$.

Demostracion

- 1. En efecto $v_j = (0v_1 + \ldots + 1v_j + \ldots + 0v_n) \in \langle \{v_1, v_2, \ldots, v_n\} \rangle$.
- 2. Nos alcanzara con ver que $\langle \{v_1, v_2, \dots, v_n\} \rangle \neq \emptyset$ y ademas es cerrado bajo la suma de vectores y producto por escalares:
 - $0 \in \langle \{v_1, v_2, \dots, v_n\} \rangle$ pues $0 = 0v_1 + \dots + 0v_n$.
 - Sean $u, w \in \langle \{v_1, v_2, \dots, v_n\} \rangle$ luego $u = \alpha_1 v_1 + \dots + \alpha_n v_n$ y $w = \beta_1 v_1 + \dots + \beta_n v_n$. Sumando ambas igualdades obtenemos:

$$u + w = (\alpha_1 + \beta_1) v_1 + \ldots + (\alpha_n + \beta_n) v_n$$

por lo que $u + w \in \langle \{v_1, v_2, \dots, v_n\} \rangle$.

- Sea α un escalar, luego $\alpha v = \alpha (c_1 v_1 + \ldots + c_n v_n) = (\alpha c_1) v_1 + \ldots + (\alpha c_n) v_n$ por lo que $\alpha v \in \langle \{v_1, v_2, \ldots, v_n\} \rangle$.
- 3. Sea $u \in \langle \{v_1, v_2, \dots, v_n\} \rangle$, luego $u = \alpha_1 v_1 + \dots + \alpha_n v_n$. Como $v_1, \dots, v_n \in U$ y U es un espacio vectorial, los axiomas de clausura nos permiten asegurar que $\alpha_1 v_1 + \dots + \alpha_n v_n = u \in U$.

Observacion Este lema implica que $\langle \{v_1, v_2, \dots, v_n\} \rangle$ es el menor subespacio de V que contiene a v_1, v_2, \dots, v_n .

3.2.4. Union de espacios vectoriales

Enunciado Sean W_1, W_2 subespacios de V, luego $W_1 \cup W_2$ es subespacio de V si y solo si $W_1 \subset W_2$ o $W_2 \subset W_1$.

■ \implies : Supongamos lo contrario, es decir que $W_1 \not\subset W_2$ y $W_2 \not\subset W_1$. Esto quiere decir que $\exists u \in W_1/u \notin W_2$ y $\exists v \in W_2/u \notin W_1$.

Consideremos ahora el vector $u + v \in W_1 \cup W_2$, luego $u + v \in W_1$ o $u + v \in W_2$.

- Si $u + v \in W_1$ entonces por existencia del opuesto y clausura bajo la suma $u + v u = u \in W_1$. Contradiccion.
- Analogamente para $u + v \in W_1$.
- \sqsubseteq : Trivial pues si $W_1 \subset W_2$ o $W_2 \subset W_1$ entonces $W_1 \cup W_2 = W_1$ o bien $W_1 \cup W_2 = W_2$.

Capítulo 4

Independencia lineal, dimension y base

4.1. Definiciones

4.1.1. Independencia lineal

Sea V un espacio vectorial sobre \mathbb{K} , entonces $S \subset V$ se dice linealmente dependiente si existen $v_1, \ldots, v_n \in S$ distintos y escalares $\alpha_1, \ldots, \alpha_n$ no todos nulos tales que $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$.

Un conjunto que no es linealmente dependiente se dice linealmente independiente. Mas precisamente un conjunto es linealmente independiente si $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow \alpha_1 = \ldots = \alpha_n = 0.$

Si el conjunto S es finito, frecuentemente se dice que los vectores S son linealmente dependientes o independientes.

Observaciones

- Cualquier conjunto que contenga a 0 es linealmente dependiente.
- Cualquier conjunto que contenga a otro linealmente dependiente es linealmente dependiente.
- Cualquier subconjunto de uno linealmente independiente, tambien es linealmente independiente.
- Un conjunto S es linealmente independiente si y solo si cada subconjunto de S es linealmente independiente.

4.1.2. Dimension

Todo espacio vectorial V generado por una cantidad finita de vectores n se denomina espacio vectorial de dimension finita y lo notamos dim(V) = n siendo n el natural mas pequeño posible. En caso contrario diremos que V es de dimension infinita.

4.1.3. Base

En un espacio vectorial V de dimension finita, una base B es un conjunto de vectores linealmente independientes que genera el espacio.

Observacion Notese que |B| = dim(V).

4.2. Teoremas

4.2.1. Unicidad de la combinación lineal independiente

Enunciado Los vectores v_1, \ldots, v_n son linealmente independientes si y solo si $\forall v \in \langle \{v_1, \ldots, v_n\} \rangle$, v puede escribirse de manera unica como combinacion lineal de v_1, \ldots, v_n .

Demostracion

- \Longrightarrow : Sea $v \in \langle \{v_1, \dots, v_n\} \rangle / v = \alpha_1 v_1 + \dots + \alpha_n v_n = \beta_1 v_1 + \dots + \beta_n v_n$ luego $0 = v v = (\alpha_1 \beta_1) v_1 + \dots + (\alpha_n \beta_n) v_n$. Como dichos vectores son linealmente independientes resulta $\alpha_i \beta_i = 0 \iff \alpha_i = \beta_i$, por lo tanto ambas combinaciones son identicas.
- \Leftarrow : Como la unica forma de escribir al 0 es $0 = 0v_1 + \ldots + 0v_n$ entonces dichos vectores son linealmente independientes.

4.2.2. Lema

Enunciado Si $S = \{v_1, \ldots, v_n\}$ es linealmente dependiente y $v_1 \neq 0$ luego $\exists j \in \{2, \ldots, n\}$ tal que se verifican:

- 1. $v_j \in \langle \{v_1, \dots, v_{j-1}, v_{j+1}, \dots, v_n\} \rangle$.
- 2. Si quitamos al vector v_j resulta: $\langle \{v_1, \dots, v_n\} \rangle = \langle \{v_1, \dots, v_{j-1}, v_{j+1}, \dots, v_n\} \rangle$.

Demostracion

1. Como S es linealmente dependiente existen escalares $c_1, \ldots, c_n \in \mathbb{K}$ no todos nulos tales que $c_1v_1 + \ldots + c_nv_n = 0$. Como $v_1 \neq 0$ entonces c_2, \ldots, c_n no pueden ser todos cero.

Sea $j \in \{2, ..., n\}$ el mayor indice tal que $c_j \neq 0$ luego:

$$v_j = \frac{c_j}{c_i} v_j = -\frac{c_1}{c_i} v_1 - \frac{c_2}{c_i} v_2 - \dots - \frac{c_{j-1}}{c_i} v_{j-1} - \frac{c_{j+1}}{c_i} v_{j+1} - \dots - \frac{c_n}{c_i} v_n$$

quedando probado lo propuesto.

2.

- [⊇]: Trivial.
- \blacksquare \subseteq : Sea $v \in \langle \{v_1, \dots, v_n\} \rangle$ luego:

$$v = a_1 v_1 + \ldots + a_j \left(-\frac{c_1}{c_j} v_1 - \ldots - \frac{c_{j-1}}{c_j} v_{j-1} - \frac{c_{j+1}}{c_j} v_{j+1} - \ldots - \frac{c_n}{c_j} v_n \right) + \ldots + a_n v_n$$

quedando probado lo propuesto.

4.2.3. Finitud de subconjuntos linealmente independientes

Enunciado Sea V un espacio vectorial generado por un conjunto finito de vectores $B = \{v_1, \dots, v_n\}$ entonces cualquier conjunto linealmente independiente de vectores de V es finito y no contiene mas de n elementos.

Demostracion Sea $S \subseteq V$ un conjunto con mas de n vectores: $S = \{w_1, \dots, w_m\}$.

Como cada $w_j \in V$ entonces existen escalares $a_{ij} \in \mathbb{K}/w_j = \sum_{i=1}^n a_{ij}v_i$.

Sea $A = (a_{ij})_{n \times m}$, como el sistema Ax = 0 es compatible indeterminado (pues tiene menos ecuaciones que incognitas) existe una solucion no trivial

$$x = (x_1, \dots x_m) \text{ tal que } \sum_{i=1}^m a_{ij} x_j = 0.$$

Consideremos una combinación lineal en S con dichos escalares:

$$\sum_{j=1}^{m} x_j w_j = \sum_{j=1}^{m} x_j \left(\sum_{i=1}^{n} a_{ij} v_i \right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} x_j a_{ij} v_i \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} x_j a_{ij} \right) v_i = 0$$

Es decir que para esos escalares x_1, \ldots, x_m no todos nulos resulta que $x_1w_1 + \ldots + x_mw_m = 0$ con escalares no todos nulos, luego S es linealmente dependiente.

4.2.4. Corolario

Enunciado Sea V un espacio vectorial de dimension finita n entonces:

- 1. Cualquier subconjunto de V que contenga mas de n vectores es linealmente dependiente.
- 2. No existe un subconjunto de V que contenga menos de n vectores que genere V.

Demostracion

- 1. Sea S un subconjunto de V con mas de n vectores y supongamos que es linealmente independiente, luego por el teorema anterior resulta que S no tiene mas de n vectores. Contradiccion.
- 2. Supongamos existe un conjunto con menos de n vectores que genera V, digamos m < n vectores. Como n es la dimension de V entonces es el minimo numero de vectores necesarios para generar V, sin embargo tambien lo podemos generar con m < n vectores. Contradiccion.

4.2.5. Lema

Enunciado Sea S un subconjunto linealmente independiente de un espacio vectorial V y supongamos que $v \in V$ pero $v \notin \langle S \rangle$ entonces $S \cup \{v\}$ es linealmente independiente.

Demostracion Sean $w_1, \ldots, w_n \in S$ distintos. Consideremos $c_1 w_1 + \ldots + c_n w_n + bv = 0$ con $b \neq 0$. Podemos escribir $v = -\frac{c_n}{b} w_1 - \ldots - \frac{c_n}{b} w_n$ luego $v \in \langle S \rangle$ lo que contradice nuestra hipotesis por lo que b = 0 y en consecuencia $c_1 = \ldots = c_n = 0$ por ser S linealmente independiente.

4.2.6. Teorema

Enunciado Si W es un subespacio de un espacio vectorial de dimension finita V, entonces cada subconjunto linealmente independiente de W es finito y es parte de una base finita de W.

Demostracion Sea S_0 un subconjunto linealmente independiente de W, luego S_0 es subconjunto linealmente independiente de V por ser $W \subseteq V$ y por el teorema anterior (como V es de dimension finita) resulta S_0 un conjunto finito.

Si S_0 genera a W ya esta probado el teorema. Si no entonces existe $b_1 \in W/b_1 \notin \langle S_0 \rangle$ luego $S_1 = \{b_1\} \cup S_0$ resulta linealmente independiente por el lema anterior.

Si S_1 genera a W ya esta probado el teorema. Si no entonces existe $b_2 \in W/b_2 \notin \langle S_1 \rangle$ luego $S_2 = \{b_2\} \cup S_1$ resulta linealmente independiente por el lema anterior.

Continuando de esta manera entonces en a lo sumo dim(V) - 1 pasos llegamos a obtener un conjunto $S_k = S_0 \cup \{b_1, \ldots, b_k\}$ que es base de W.

4.2.7. Relacion entre la dimension de un espacio y un subespacio

Enunciado Si W es un subespacio propio de un espacio vectorial V de dimension finita entonces W es de dimension finita y dim(W) < dim(V).

Demostracion Sea $v \in W/v \neq 0$. Por el teorema anterior existe una base de W que contiene a v y no contiene mas de dim(V) elementos por lo que resulta W de dimension finita y $dim(W) \leq dim(V)$.

Como W es un subespacio propio de V, existe $b \in V/b \notin W$. Sea B_W una base de W luego:

$$dim(W) = |B_W| < |\{b\} \cup B_W| \le dim(V)$$

4.2.8. Corolario

Enunciado En un espacio vectorial de dimension finita V cada conjunto no vacio de vectores linealmente independientes es parte de una base de V.

Demostracion EJERCICIO.

4.2.9. Inversibilidad de una matriz

Enunciado Sea A una matriz $n \times n$ sobre un cuerpo \mathbb{K} y supongamos que sus vectores filas forman un conjunto linealmente independiente de \mathbb{K}^n entonces A es inversible.

Demostracion
$$A = \begin{bmatrix} - & v_1 & - \\ - & \vdots & - \\ - & v_n & - \end{bmatrix}$$
 siendo v_i vectores fila de A . Llamemos

W al subespacio generado por $\{v_1,\ldots,v_n\}$ donde dim(W)=n resultando $W=\mathbb{K}^n$.

Por otro lado $e_i = \sum_{j=1}^n c_{ij} v_j$ para algunos escalares c_{ij} con $1 \le i \le n$, luego I = CA y analogamente I = AC.

4.2.10. Dimension de la suma de subespacios

Enunciado Si W_1 y W_2 son subespacio de dimension finita de un espacio vectorial V entonces $W_1 + W_2$ es de dimension finita y ademas resulta:

$$dim(W_1) + dim(W_2) = dim(W_1 \cap W_2) + dim(W_1 + W_2)$$

Demostracion Por hipotesis podemos decir que $W_1 \cap W_2$ es un subespacio de dimension finita y por el corolario anterior existe una base de $W_1 \cap W_2$, digamos $\{u_1, \ldots, u_k\}$ tal que es parte de una base de W_1 y una base de W_2 . Es decir:

- $\{u_1, \dots, u_k, v_1, \dots, v_m\}$ es base de W_1 .
- $\{u_1, \ldots, u_k, w_1, \ldots, w_n\}$ es base de W_2 .

Seguro que $W_1 + W_2$ esta generado por $\{u_1, \ldots, u_k, v_1, \ldots, v_m, w_1, \ldots, w_n\}$. Veamos que este conjunto es linealmente independiente:

$$\sum_{i=1}^{k} x_i u_i + \sum_{j=1}^{m} y_j v_j + \sum_{l=1}^{n} z_l w_l = 0$$

$$\underbrace{-\sum_{l=1}^{n} z_{l} w_{l}}_{h \in W_{2}} = \underbrace{\sum_{i=1}^{k} x_{i} u_{i} + \sum_{j=1}^{m} y_{j} v_{j}}_{h \in W_{1}}$$

luego resulta que $h \in W_2$ y $h \in W_1$, es decir $h \in W_1 \cap W_2 = \{u_1, \dots, u_k\}$ por lo que existen escalares c_i tales que:

$$h = -\sum_{l=1}^{n} z_l w_l = \sum_{i=1}^{k} c_i u_i \Rightarrow 0 = \sum_{i=1}^{k} c_i u_i + \sum_{l=1}^{n} z_l w_l$$

donde $\{u_1, \ldots, u_k, w_1, \ldots, w_n\}$ es linealmente independiente (por ser base de W_2) y entonces $z_l = 0$ para todo $l \in \{1, \ldots, n\}$.

Volviendo a (*):
$$\sum_{i=1}^{k} x_i u_i + \sum_{j=1}^{m} y_j v_j = 0$$
 donde $\{u_1, \dots, u_k, v_1, \dots, v_m\}$ es

linealmente independiente, luego $x_i = 0$ para todo $i \in \{1, ..., k\}$ y $y_j = 0$ para todo $j \in \{1, ..., m\}$.

Por lo tanto $\{u_1, \ldots, u_k, v_1, \ldots, v_m, w_1, \ldots, w_n\}$ es linealmente independiente y mas aun, es una base de $W_1 + W_2$.

Tenemos:

- $dim(W_1) + dim(W_2) = (k+m) + (k+n) = k + (m+k+n).$
- \bullet $dim(W_1 + W_2) = k + m + n.$
- $dim(W_1 \cap W_2) = k$.

luego,

$$dim(W_1) + dim(W_2) = dim(W_1 \cap W_2) + dim(W_1 + W_2)$$

Capítulo 5

Coordendas y cambios de base

5.1. Definiciones

5.1.1. Base ordenada

Sea V un espacio vectorial de dimension finita, una base ordenada de V es una sucesion finita de vectores que genera el espacio V. Por abuso de notacion diremos que $B = \{v_1, \ldots, v_n\}$ es una base ordenada.

5.1.2. Coordenadas

Sea V un espacio vectorial de dimension finita sobre \mathbb{K} y sea $B = \{v_1, \ldots, v_n\}$ una base ordenada de V entonces, dado $v \in V$ resulta que existe una unica n-upla (x_1, \ldots, x_n) de escalares tal que $v = \sum_{i=1}^n x_i v_i$. Llamaremos a x_i la cordenada i-esima de v respecto de la base ordenada B.

Es decir que para cada base ordenada de V existe una funcion biyectiva:

$$F: V \to \mathbb{K}^n$$

 $v \to (x_1, \dots, x_n)$

donde F verifica F(u+v) = F(u) + F(v) y $F(\alpha u) = \alpha F(u)$.

Para establecer la dependencia de las coordenadas respecto de una base ordenada B notaremos $[v]_B$.

5.2. Teoremas

5.2.1. Matriz de cambio de base

Enunciado Sea V un espacio vectorial de dimension n sobre \mathbb{K} y sean B y B' bases ordenadas de V entonces existe una unica matriz $n \times n$ inversible $A \in \mathcal{M}[\mathbb{K}]$ tal que: $[v]_B = A[v]_{B'}$ y $[v]_{B'} = A^{-1}[v]_B$ para todo $v \in V$.

Demostracion Sean $B = \{v_1, \ldots, v_n\}$ y $B' = \{v'_1, \ldots, v'_n\}$ bases ordenadas de V y sea $u \in V$ tal que $[u]_{B'} = (x'_1, \ldots, x'_n)$. Sabemos que para cada v'_j existe unicos escalares a_{ij} tales que $v'_j = \sum_{i=1}^n a_{ij}v_i$ para $1 \leq j \leq n$. Para u tenemos:

$$u = x_1'v_1' + \ldots + x_nv_n' = \sum_{j=1}^n x_j'v_j' = \sum_{j=1}^n x_j' \left(\sum_{i=1}^n a_{ij}v_i\right) = \sum_{j=1}^n \sum_{i=1}^n \left(x_j'a_{ij}\right)v_i = \sum_{i=1}^n \left(\sum_{j=1}^n x_j'a_{ij}\right)v_i$$

Como las coordenadas x_1, \ldots, x_n de u respecto de B son unicas, se deduce que $x_i = \sum_{j=1}^n a_{ij} x_j'$ para $1 \le i \le n$.

Sea A la matriz $n \times n$ cuyas entradas entrada ij son a_{ij} y sean $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$

y
$$x' = \begin{bmatrix} x'_1 \\ \vdots \\ x'_n \end{bmatrix}$$
 podemos escribir (*) como $[u]_B = x = Ax' = A[u]_{B'}$ (1).

Como B y B' son linealmente independientes, $x = 0 \iff x' = 0$ entonces considerando (1) resulta que los vectores columna de A son linealmente independientes luego A resulta inversible y $x' = A^{-1}x$.

5.2.2. Teorema

Enunciado Sea A una matriz inversible $n \times n$ sobre \mathbb{K} , V un espacio vectorial de dimension n sobre \mathbb{K} y B una base ordenada de V entonces existe una unica base ordenada B' de V tal que:

1.
$$[v]_B = A^{-1} [v]_{B'}$$
.

2.
$$[v]_{B'} = A[v]_B$$
.

Demostracion Sea $B = \{v_1, \ldots, v_n\}$, si $B' = \{v'_1, \ldots, v'_n\}$ es una base que verifica (2) entonces $v'_j = \sum_{i=1}^n a_{ij}v_i$. Veamos que $\{v'_1, \ldots, v'_n\}$ asi definidos constituyen una base ordenada. Sea $Q = A^{-1}$, luego

$$\sum_{j=1}^{n} q_{jk} v_j' = \sum_{j=1}^{n} q_{jk} \sum_{i=1}^{n} a_{ij} v_i = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} q_{jk} \right) v_i = v_k$$

para $1 \le k \le n$.

Vemos que para cada k pudimos expresar al vector v_k como combinacion lineal de los vectores $\{v'_1, \ldots, v'_n\}$, es decir que el espacio generado por B' contiene a B por lo tanto B' genera todo el espacio V. Ademas como B' es linealmente independiente, luego B' es base de V y por su definicion y el teorema anterior resultan (1) y (2).

Parte III Transformaciones lineales

Capítulo 6

Introduccion

6.1. Definitiones

6.1.1. Transformacion lineal

Sean V y W espacios vectoriales sobre \mathbb{K} , una funcion $T:V\to W$ es llamada lineal si verifica:

- 1. $T(u+v) = T(u) + T(v) \ \forall u, v \in V$.
- 2. $T(\alpha u) = \alpha T(u) \ \forall u \in V \forall \alpha \in \mathbb{K}$.

Notaremos al conjunto de todas las transformaciones lineales de V en W como $\mathcal{L}(V, W)$.

Observacion Como T(0-v) = T(0) - T(v) resulta $T(u) = T(v) \iff T(u-v) = 0$.

6.1.2. Espacio nulo

Sea $T \in \mathcal{L}(V, W)$ definimos el espacio nulo de T como: $\mathcal{N}(T) = \{v \in V/T(v) = 0\}$. Notese que $\mathcal{N}(T)$ es un espacio vectorial.

Diremos que una transformación lineal es no singular si $T(v) = 0 \Rightarrow v = 0$ es decir $\mathcal{N}(T) = \{0\}$.

6.1.3. Rango

Si V es un espacio vectorial de dimension finita y $T \in \mathcal{L}(V, W)$ se dice que la dimension de img(T) es el rango de T.

6.1.4. Homomorfismos

Las transformaciones lineales de entre espacios vectoriales son llamadas homomorfismos de espacios vectoriales. Un homomorfismo $T \in \mathcal{L}(V, W)$ se llama:

Monomorfismo si T es inyectiva.

Epimorfismo si T es sobreyectiva.

Isomorfismo si T es biyectiva.

Endomorfismo si V = W.

Automorfimos si es un isomorfimo endomorfo.

6.1.5. Espacios isomorfos

Si existe un isomorfismo de V en W diremos que V y W son isomorfismos.

Observaciones

- Todo espacio vectorial es trivialmente isomorfo a si mismo.
- Si V es isomorfo a W luego W es isomorfo a V.
- Si V es isomorfo a W y W a Z entonces V es isomorfo a Z.

De lo anterior concluimos que la relacion «ser isomorfo a» es una relacion de equivalencia en el conjunto de espacios vectoriales.

6.2. Teoremas

6.2.1. Determinacion de una TL por la actuacion en la base

Enunciado Sea V un espacio vectorial de dimension finita y $\{v_1, \ldots, v_n\}$ una base ordenada de V y sean W un espacio vectorial sobre el mismo cuerpo \mathbb{K} y $w_1, \ldots, w_n \in W$ entonces existe una unica $T \in \mathcal{L}(V, W)/T(v_i) = w_i$ con $i \in \{1, \ldots, n\}$.

Demostracion Definamos T sobre V: sea $v \in V$, sabemos que existe un unico vector $(x_1, \ldots, x_n) \in \mathbb{K}^n$ tal que $v = x_1v_1 + \ldots + x_nv_n$. Sea:

$$T(v) = x_1 T(v_1) + \ldots + x_n T(v_n) = T\left(\sum_{i=1}^n x_i v_i\right) = \sum_{i=1}^n x_i T(v_i) = \sum_{i=1}^n x_i w_i$$

- T esta bien definida pues $T(v_i) \in W$.
- T es lineal pues:

•
$$T(u+v) = T\left(\sum_{i=1}^{n} x_i v_i + \sum_{i=1}^{n} y_i v_i\right) = T\left[\sum_{i=1}^{n} (x_i + y_i) v_i\right] = \sum_{i=1}^{n} (x_i + y_i) T(v_i) = \sum_{i=1}^{n} (x_i + y_i) w_i = \sum_{i=1}^{n} x_i w_i + \sum_{i=1}^{n} y_i w_i = T(v) + T(w)$$

•
$$T(\alpha v) = T\left(\sum_{i=1}^{n} \alpha x_i v_i\right) = \sum_{i=1}^{n} \alpha x_i T(v_i) = \alpha \sum_{i=1}^{n} x_i w_i = \alpha T(v)$$

■ T es unica: Supongamos $S: V \to W$ es una transformación lineal tal que $S(v_i) = w_i$ para $1 \le i \le n$. Luego para $v \in V$:

$$S(v) = S\left(\sum_{i=1}^{n} x_i v_i\right) = \sum_{i=1}^{n} x_i S(v_i) = \sum_{i=1}^{n} x_i w_i = \sum_{i=1}^{n} x_i T(v_i) = T\left(\sum_{i=1}^{n} x_i v_i\right) = T(v)$$

6.2.2. Inyectividad de una transformacion lineal

Enunciado Sea T una transformación lineal, luego T es inyectiva si y solo si $\mathcal{N}(T) = \{0\}.$

Demostracion

- \implies : Supongamos existe un vector $v \in V/T(v) = 0 = T(0) \underset{\text{invectiva}}{\Longrightarrow} v = 0.$

6.2.3. Teorema de la dimension

Enunciado Sean V, W espacios vectoriales sobre \mathbb{K} y $T \in \mathcal{L}(V, W)$ de dimension finita, entonces $rang(T) + dim[\mathcal{N}(T)] = dim(V)$.

Demostracion Sea $\{v_1, \ldots, v_k\}$ una base de $\mathcal{N}(T)$, existen vectores v_{k+1}, \ldots, v_m tales que $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_m\}$ es base de V. Veamos que $\{T(v_{k+1}), \ldots, T(v_m)\}$ es una base de img(T).

Los vectores $T\left(v_{1}\right),\ldots,T\left(v_{m}\right)$ generan $img\left(T\right)$ pues sea $y\in img\left(T\right)$ luego $\exists v\in V/T\left(v\right)=y$. Como $v\in V$ existen escalares $\alpha_{1},\ldots,\alpha_{m}\in\mathbb{K}/v=\sum_{i=1}^{m}\alpha_{j}v_{j},$

luego
$$y = T\left(\sum_{j=1}^{m} \alpha_{j} v_{j}\right) = \sum_{j=1}^{m} \alpha_{j} T\left(v_{j}\right)$$
. Para $1 < j < k$ se tiene que

 $T(v_j) = 0$ (por ser vectores de $\mathcal{N}(T)$) por lo tanto $y = \sum_{j=k+1}^{m} \alpha_j T(v_j)$ con-

cluyendo que $T(v_{k+1}), \ldots, T(v_m)$ generan img(T). Debemos ver ahora que son linealmente independientes.

Supongamos existen escalares $c_i \in \mathbb{K}$ tales que $0 = \sum_{i=k+1}^{m} c_i T\left(v_i\right) = T\left(\sum_{i=k+1}^{m} c_i v_i\right)$,

es decir que $v = \sum_{i=k+1}^{m} c_i v_i \in \mathcal{N}(T)$. Como $\{v_1, \dots, v_k\}$ es base de $\mathcal{N}(T)$

tambien existen escalares $b_i \in \mathbb{K}$ tales que $v = \sum_{i=1}^k b_i v_i \in \mathcal{N}(T)$. Luego

$$0 = v - v = \sum_{i=1}^{k} b_i v_i - \sum_{i=k+1}^{m} c_i v_i \text{ y como } \{v_1, \dots, v_k, v_{k+1}, \dots, v_m\} \text{ son li-}$$

nealmente independientes por ser base de V resulta que $b_i = c_i = 0$. Por lo tanto $\{T(v_{k+1}), \ldots, T(v_m)\}$ es base de img(T).

- $\quad \blacksquare \ rang\left(T\right) = dim\left[img\left(T\right)\right] = m k \ .$
- $dim(V) = m = k + (m k) = dim[\mathcal{N}(T)] + rang(T).$

39

6.2.4. Relacion entre el rango por filas y columnas

Enunciado Si A es una matriz con entradas en \mathbb{K} entonces $dim\left[\mathcal{N}\left(T\right)\right]$ mas el rango de A por filas es igual al rango de A por columnas.

Demostracion Sea $T: \mathbb{K}^n \to \mathbb{K}^m$ tal que T(x) = Ax. El espacio nulo de T es el espacio solucion de Ax = 0. La imagen de T es el conjunto de vectores columna y tales que Ax = y tiene solucion.

Sean A_1, \ldots, A_m las columnas de A, luego $T(x) = Ax = x_1A_1 + \ldots + x_nA_n$ por lo tanto img(T) es el subespacio generado por las columnas de A. Vale decir entonces que img(T) es $\mathcal{C}(A)$ de donde sigue que $rang(T) = dim[\mathcal{C}(A)]$. COMPLETAR.

6.2.5. Espacio de todas las transformaciones

Enunciado Sean V, W espacios vectoriales sobre \mathbb{K} y $T, S \in \mathcal{L}(V, W)$ entonces la funcion (T + S) definida por (T + S)v = Tv + Sv es una transformacion lineal.

El conjunto de todas las transformaciones lineales de V en W junto a la suma y el producto por escalares asi definido, es un espacio vectorial sobre \mathbb{K} .

Demostracion

- Clausura respecto de la suma:
 - (T+S)(cv+u) = T(cv+u) + S(cv+u) = cT(v) + T(u) + cS(v) + S(u)
 - T(cv + u) + S(cv + u) = cT(v) + T(u) + cS(v) + S(u)
- Clausura respecto del producto por escalares:
 - $(\alpha T)(cv + u) = (\alpha T)(cv) + (\alpha T)(u) = c(\alpha T)(v) + (\alpha T)(u) = c\alpha T(v) + \alpha T(u)$.
 - $\alpha T(cv + u) = \alpha [T(cv) + T(u)] = \alpha T(cv) + \alpha T(u) = \boxed{\alpha c T(v) + \alpha T(u)}$
- EJERCICIO.

Observacion $\mathcal{L}(V, W)$ es un subespacio del espacio vectorial formado por todas las funciones de V en W (no solo las lineales) con la suma y producto por escalares usuales.

6.2.6. Dimension del espacio de todas las transformaciones

Enunciado Sea V un espacio vectorial n-dimensional sobre \mathbb{K} y sea W otro espacio m-dimensional sobre el mismo cuerpo luego $\mathcal{L}(V, W)$ es de dimension finita y de dimension mn.

Demostracion Sean $B = \{v_1, \ldots, v_n\}$ y $B' = \{w_1, \ldots, w_m\}$ bases ordenadas de V y W. Definimos para $1 \le p \le m$ y $1 \le q \le n$ las siguientes transformaciones lineales:

$$E_{pq}(v_j) = \begin{cases} 0 & j \neq q \\ w_p & j = q \end{cases}$$

Veamos que las $m \times n$ transformaciones lineales definidas forman una base de $\mathcal{L}(V, W)$. COMPLETAR.

6.2.7. Linealidad de la composicion

Enunciado Sean V, W, Z espacios vectoriales sobre \mathbb{K} y sean $T \in \mathcal{L}(V, W)$, $S \in \mathcal{L}(W, Z)$ luego la composicion $S \circ T$ definida por $(S \circ T) v = (ST) v = STv = S(Tv)$ es una transformacion lineal de V en Z.

Demostracion
$$(ST)(\alpha v + u) = S[T(\alpha v + u)] = S[\alpha T(v) + T(u)] = \alpha S(Tv) + S(Tu) = \alpha (ST)(v) + (ST)u.$$

6.2.8. Linealidad de la inversa

Enunciado Sean V, W espacios vectoriales sobre \mathbb{K} y $T \in \mathcal{L}(V, W)$, si T es inversible entonces su inversa $T^{-1} \in \mathcal{L}(W, V)$.

Demostracion Si $T \in \mathcal{L}(V, W)$ es inversible se tiene que $TT^{-1} = I_W$ y $T^{-1}T = I_V$. Sean $w_1, w_2 \in W$, $\alpha \in \mathbb{K}$ y sean $v_i = T^{-1}(w_i)$ es decir que $v_i \in V$ son los unicos vectores tales que $T(v_i) = w_i$.

Como T es lineal, $T(\alpha v_1 + v_2) = \alpha T(v_1) + T(v_2) = \alpha w_1 + w_2$. El vector $\alpha v_1 + v_2$ es el unico vector de V que T asigna a $\alpha w_1 + w_2$, luego:

$$T^{-1}(\alpha w_1 + w_2) = \alpha v_1 + v_2 = \alpha T^{-1}(w_1) + T^{-1}(w_2)$$

Observaciones Supongamos que $T \in \mathcal{L}(V, W)$ y $S \in \mathcal{L}(W, Z)$ son inversibles entonces:

- $(ST)^{-1} = T^{-1}S^{-1}$.
- $(ST)(T^{-1}S^{-1}) = I_v \wedge (T^{-1}S^{-1})(ST) = I_z.$

6.2.9. Teorema de los morfismos

Enunciado Sea $T \in \mathcal{L}(V, W)$ luego:

- 1. T es monomorfismo si y solo si lleva cada conjunto linealmente independiente de V a un subconjunto linealmente independiente de W.
- 2. Si T es epimorfismo entonces lleva cada conjunto generador de V a un conjunto generador de W.
- 3. T es isomorfismo si y solo si lleva cada base de V a una base de W.

Demostracion

1.

■ \Longrightarrow : Sea T no singular y sea S un subconjunto linealmente independiente de V, queremos ver que si $v_1, \ldots, v_k \in S$ luego $T(v_1), \ldots, T(v_k)$ es linealmente independiente en W.

$$0 = \alpha_1 T(v_1) + \ldots + \alpha_k T(v_k) = T(\alpha_1 v_1 + \ldots + \alpha_k v_k) \Rightarrow \alpha_1 v_1 + \ldots + \alpha_k v_k = 0 \Rightarrow \alpha_i = 0$$

■ E: Supongamos que T lleva subconjunton $\{v_1, \ldots, v_k\}$ linealmente independientes en V en subconjuntos linealmente independientes en W. Sea $v \in V/v \neq 0$. El conjunto $S = \{v\}$ es linealmente independiente luego $\{T(v)\}$ es linealmente independiente en W por lo tanto $T(v) \neq 0$. Esto muestra que $\mathcal{N}(T) = \{0\}$ y por lo tanto T es no singular.

2. Sea $\{v_1,\ldots,v_n\}\subseteq V/\langle\{v_1,\ldots,v_n\}\rangle=V$, nos preguntamos si $\langle\{T\left(v_1\right),\ldots,T\left(v_n\right)\}\rangle=W$:

$$\blacksquare \subseteq : x \in \langle \{T(v_1), \dots, T(v_n)\} \rangle \Rightarrow x = \sum_{i=1}^n \alpha_i \underbrace{T(v_i)}_{\in W} \Rightarrow x \in W.$$

$$\blacksquare \ \supseteq : x \in W \underset{Hip.}{\Longrightarrow} \exists v \in V/T(v) = x \Rightarrow \exists v = \sum_{i=1}^{n} \beta_{i} v_{i}/T(v) = x \Rightarrow
\Rightarrow T\left(\sum_{i=1}^{n} \beta_{i} v_{i}\right) = x \Rightarrow \sum_{i=1}^{n} \beta_{i} T(v_{i}) = x \Rightarrow x \in \langle \{T(v_{1}), \dots, T(v_{n})\} \rangle = W.$$

3. Trivial pues si B_V es base de V, entonces es linealmente independiente y genera a V. Luego como T es monomorfismo y epimorfismo lleva B_W a un conjunto linealmente que genera W, es decir una base de W.

6.2.10. Isomorfismo sobre el cuerpo

Enunciado Todo espacio vectorial n-dimensional sobre \mathbb{K} es isomorfo a \mathbb{K}^n .

Demostracion Sea V un espacio n-dimensional y $B = \{v_1, \ldots, v_n\}$ una base ordenada de V, definimos la transformacion $T: V \to \mathbb{K}^n$ dada por $T(v) = (x_1, \ldots, x_n)$ la n-upla de coordenadas de v relativas a la base B, es decir: $v = x_1v_1 + \ldots + x_nv_n$. Esta aplicacion resulta lineal, inyectiva y sobrevectiva

6.2.11. Respresentacion de TL por matrices

Enunciado Sean V un espacio vectorial n-dimensional sobre \mathbb{K} , W un espacio vectorial m-dimensional sobre el mismo cuerpo y sean B base ordenada de V y B' base ordenada de W entonces para cada $T \in \mathcal{L}(V, W)$ existe una matriz $A \in \mathcal{M}_{m \times n}[\mathbb{K}]$ tal que para cada vector $v \in V$ resulta $[Tv]_{B'} = A[v]_B$. Mas aun, la funcion que a cada transformacion le asignua su correspondiente matriz, es biyectiva.

Demostracion Si $v = x_1v_1 + \ldots + x_nv_n \in V$ entonces:

$$T(v) = T\left(\sum_{j=1}^{n} x_{j} v_{j}\right) = \sum_{j=1}^{n} x_{j} T(v_{j}) = \sum_{j=1}^{n} x_{j} \left(\sum_{i=1}^{m} A_{ij} w_{i}\right) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} x_{j}\right) w_{i}$$

Si x es el vector de coordenadas de v en la base B, esta igualdad muestra que Ax es el vector de coordenadas del vector T(v) en la base B' y por lo tanto $[T(v)]_{B'} = A[v]_B$.

Ademas si A es cualquier matriz $m \times n$ sobre \mathbb{K} entonces definiendo $T\left(\sum_{j=1}^{n} x_{j} v_{j}\right) := \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} x_{j}\right) w_{i}$ resulta $T \in \mathcal{L}(V, W)$ cuya matriz asociada relativa a las bases ordenadas B y B' es A. A esta matriz A asociada a T se llama matriz de transformacion relativa a las bases B y B'.

Observacion Sea A la matriz cuyas columnas son A_1, \ldots, A_n con $a_{ij} = [T(v_j)]_{B'}$, si $S \in \mathcal{L}(V, W)$ y $C = [C_1, \ldots, C_n]$ es la matriz de S relativa a las bases ordenadas B y B' entonces la matriz $\alpha A + C$ es la matriz asociada a la transformacion lineal $\alpha T + S$ relativa a B y B' pues:

$$\alpha a_{ij} + c_{ij} = \alpha [T(v_i)]_{B'} + [S(v_i)]_{B'} = [\alpha T(v_i) + S(v_i)]_{B'} = [(\alpha T + S)(v_i)]_{B'}$$

6.2.12. Teorema

Enunciado Sea V un espacio vectorial n-dimensional sobre \mathbb{K} y W un espacio vectorial sobre el mismo cuerpo, para cada par de bases ordenadas B y B' de V y W respectivamente la funcion

$$F: \mathcal{L}\left(V, W\right) \to \mathbb{K}^{m \times n}$$
$$T \to A$$

donde A es la matriz de transformacion relativa a las bases B y B', es un isomorfismo entre dichos espacios vectoriales.

Demostracion Resulta evidente de considerar el teorema anterior teniendo en cuenta la observacion.

Notacion Para señalar explicitamente la dependencia de esta matriz A asociada a T de la base ordenada B suele escribirse como $A = [T]_B$.

6.2.13. Matriz asociada a la composicion

Enunciado Sean V, W, Z espacios vectoriales de dimension finita sobre \mathbb{K} y sean $T \in \mathcal{L}(V, W)$, $S \in \mathcal{L}(W, Z)$, si B, B', B'' son bases ordenadas para V, W, Z y si A es la matriz de T relativa a B y B' y C es la matriz de S relativa a S y S es la matriz de la composicion S relativa a S y S es la matriz S

Demostracion EJERCICIO.

Observaciones

- Si $T, S \in \mathcal{L}(V)$, B base ordenada de V de dimension finita entonces: $[ST]_B = [S]_B [T]_B$.
- El isomorfismo entre $\mathcal{L}(V)$ y $\mathcal{M}_{n\times n}[\mathbb{K}]$ preserva productos. Como consecuencia de esto se tiene que un operador lineal T es inversible si y solo si $[T]_B$ es una matriz inversible.
- Cuando T es inversible resulta $[T^{-1}]_B = [T]_B^{-1}$.

Capítulo 7

Funcionales lineales y dualidad

7.1. Definiciones

7.1.1. Funcional lineal

Sea V un espacio vectorial sobre \mathbb{K} , una transformacion lineal de V en \mathbb{K} se dice un funcional lineal.

Observaciones

- Si f es un funcional lineal no nulo, entonces rang(f) = 1.
- Si $dim(V) = n \in \mathbb{N}$ sabemos que $dim[\mathcal{N}(f)] = dim(V) rang(f) = n 1$.

7.1.2. Espacio dual

Si V es un espacio vectorial sobre \mathbb{K} , el conjunto de todos los funcionales lineales sobre V forman un espacio vectorial. Dicho espacio lo notaremos $\mathcal{L}(V,\mathbb{K}) = V^*$ y lo llamaremos espacio dual de V.

Observacion Por el teorema de la dimension del espacio de todas las transformaciones, sabemos que $dim(V^*) = dim(V)$.

7.1.3. Hiperplano

En un espacio vectorial de dimension finita n, un subespacio de dimension n-1 es llamado hiperplano.

7.1.4. Anulador

Sea V un espacio vectorial sobre \mathbb{K} y $S \subset V$, llamamos anulador de S al conjunto $S^0 = \{ f \in V^* / f(v) = 0 \forall v \in S \}$.

Observaciones

- S^0 es subespacio vectorial de V^* .
- Si $S = \{0\}$ entonces $S^0 = V^*$.
- Si S = V entonces $S^0 = \{0\} \subset V^*$.

7.2. Teoremas

7.2.1. Existencia y unicidad de la base dual

Enunciado Sea $B = \{v_1, \ldots, v_n\}$ una base ordenada de un espacio vectorial V, sabemos por el teorema de determinación de una TL por la actuación en la base que para cada $i \in \{1, \ldots, n\}$ existen unicos funcionales lineales f_i sobre V tales que $f_i(v_j) = \delta_{ij}$. Luego el conjunto $\{f_1, \ldots, f_n\}$ es la unica base de V^* .

Demostracion Veamos que son linealmente independientes: Sea $f = \sum_{i=1}^{n} c_i f_i$

con
$$c_i \in \mathbb{K}$$
 luego $f(v_j) = \sum_{i=1}^n c_i f_i(v_j) = \sum_{i=1}^n c_i \delta_{ij} = c_j$. En particular si f es

el funcional lineal nulo $f_0 = \sum_{i=1}^{n} c_i f_i$ sera $f_0(v_j) = 0$ por lo tanto $c_j = 0$ pudiendo concluir lo propuesto.

Ademas como sabemos que $dim(V^*) = dim(V) = n$ surge que $B^* = \{f_1, \dots, f_n\}$ es base para V^* llamada base dual de V.

Observacion El funcional lineal f_i es la funcion que asigna a cada vector $v \in V$ su i-esima coordenada relativa a la base B.

7.2.2. Propiedades de los funcionales lineales

Enunciado

- 1. Para cada funcional lineal f sobre V se tiene que: $f = \sum_{i=1}^{n} f(v_i) f_i$.
- 2. Para cada $v \in V$ se tiene $v = \sum_{i=1}^{n} f_i(v) v_i$.

Demostracion

1. Sea $f \in V^*$, luego f es combinacion lineal de los elementos f_i , es decir:

$$f = \sum_{i=1}^{n} c_i f_i$$
 y como $f(v_i) = c_1 f_1(v_i) + \ldots + c_n f_n(v_i) = 0 + \ldots + c_n f_n(v_i)$

$$c_i \underbrace{f_i(v_i)}_{1} + \ldots + 0$$
 resulta $f(v_i) = c_i$ por lo que $f = \sum_{i=1}^n f(v_i) f_i$.

2. De forma similar si $v \in V$, $v = \sum_{i=1}^{n} x_i v_i$, luego $f_j(v) = \sum_{i=1}^{n} x_i f_j(v_i) = \sum_{i=1}^{n} x_i \delta_{ij} = x_j$ y por lo tanto $x_j = f_j(v)$.

7.2.3. Relacion entre la dimension de un espacio y su anulador

Enunciado Sea V un espacio vectorial de dimension finita sobre \mathbb{K} y sea W subespacio de V, entonces se tiene que $dim(W) + dim(W^0) = dim(V)$.

Demostracion Sea dim(W) = k y $\{v_1, \ldots, v_k\}$ base de W. Elijamos $v_{k+1}, \ldots, v_n \in V/B = \{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ es una base de V.

Sea $\{f_1, \ldots, f_n\}$ la base dual de V^* en B. Veamos que $\{f_{k+1}, \ldots, f_n\}$ es base de W^0 .

$$\begin{cases} f_i \in W^0 \text{ para } i = k+1, \dots, n \text{ pues } f_i(v_j) = \delta_{ij} \text{ donde } \delta_{ij} = 0 \text{ si} \\ i \geq k+1 \\ j \leq k \end{cases}, \text{ luego para } v \in W \text{: } v = \sum_{j=1}^n \alpha_j v_j \text{ para ciertos } \alpha_j \in \mathbb{K} \text{ se tiene} \end{cases}$$

que
$$f_i(v) = \sum_{j=1}^{\kappa} \alpha_j f_i(v_j) = 0$$
, $i \geq k+1$ por lo tanto $f_i \in W^0$, $\{f_{k+1}, \ldots, f_n\}$ es linealmente independiente.

Falta ver que
$$\langle \{f_{k+1}, \dots, f_n\} \rangle = W^0$$
. Sea $f \in V^*$, $f = \sum_{i=1}^n f(v_i) f_i$. Si $f \in W^0$ se tiene que $f(v_i) = 0$ para $v_i \in W$, $1 \le i \le k$ luego $f = \sum_{i=k+1}^n f(v_i) f_i$,

es decir, f es combinacion lineal de $\langle \{f_{k+1}, \ldots, f_n\} \rangle$. Así se tiene que $dim(W^0) = n - k$.

7.2.4. Corolario

Enunciado Si W es subespacio k-dimensional de un espacio vectorial V n-dimensional, entonces W es la interseccion de (n-k) hiperplanos de V.

Demostracion W es exactamente el conjunto de vectores v tales que $f_i(v) = 0$, i = k + 1, ..., n. En el caso k = n - 1, W es el espacio nulo de f_n .

7.2.5. Corolario

Enunciado Si W_1 y W_2 son subespacios de un espacio vectorial de dimension finita, entonces $W_1 = W_2 \iff W_1^0 = W_2^0$.

Demostracion

- ⇒: Trivial.
- E: Supongamos $W_1 \neq W_2$ y supongamos existen $v \in V/v \in W_1 \land v \notin W_2$, es decir existe un funcional lineal f tal que f(u) = 0 para todo $u \in W_2$ pero $f(v) \neq 0$. Luego $f \in W_2^0$ y $f \notin W_1^0$. (W_2 esta generado como la interseccion de un numero finito de hiperplanos).

7.2.6. Suma e interseccion de anuladores

Enunciado Sean W_1 y W_2 subespacios de un espacio vectorial V de dimension finita entonces:

1.
$$(W_1 + W_2)^0 = W_1^0 \cap W_2^0$$
.

2.
$$(W_1 \cap W_2)^0 = W_1^0 + W_2^0$$
.

Demostracion EJERCICIO.

Parte IV Diagonalizacion

Capítulo 8

Autovalores y autovectores

8.1. Definiciones

8.1.1. Autovalores y autovectores

Sea V un espacio vectorial sobre \mathbb{K} y sea T un operador lineal sobre V, un autovalor de T es un escalar $\lambda \in \mathbb{K}$ tal que existe un vector no nulo $v \in V$ que verifica $T(v) = \lambda v$. Si λ es un autovalor de T entonces:

- Cualquier vector $v/T(v) = \lambda v$ se llama autovector de T asociado al autovalor λ .
- La colección de todos los autovectores asociados a un determinado autovalor λ se llama autoespacio de T asociado a λ .

Observaciones

- Si T es un operador lineal cuya matriz asociada es A y λ es un escalar cualquiera, el conjunto $\{v \in V : Av = \lambda v\}$ es un subespacio de V. En efecto es el espacio nulo de la matriz $A \lambda I$. Tenemos que λ es autovalor de T si $Av = \lambda v \iff Av \lambda v = 0 \iff (A \lambda I) v = 0 \iff v \in \mathcal{N}(A \lambda I)$.
- Si dim(V) es finita, $(A \lambda I)$ es no invectiva cuando el determinante de la matriz asociada a ella para alguna base B es igual a 0.
- Si una matriz A tiene a 0 como autovalor, esto significa que Ax = 0x tiene una solución no trivial, luego A es singular y por lo tanto no inversible.

8.1.2. Ecuación y polinomios característicos

La ecuacion $|A - \lambda I| = 0$ se llama ecuacion caracteristica de A. Al polinomio $P(\lambda) = |A - \lambda I|$ se lo llama polinomio caracteristico.

Observacion Un escalar λ es autovalor de A si y solo si λ satisface la ecuacion caracteristica de A.

8.2. Teoremas

8.2.1. Autovalores de una matriz triangular

Enunciado Los autovalres de una matriz triangular son las entradas de su diagonal principal.

Demostracion Veamoslo para una matriz de orden 3 triangular superior:

$$A - \lambda I = \begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ 0 & a_{22} - \lambda & a_{23} \\ 0 & 0 & a_{33} - \lambda \end{bmatrix}$$

 λ sera autovalor de A si y solo si $|A - \lambda I| = 0$ si y solo si $(a_{11} - \lambda)(a_{22} - \lambda)(a_{33} - \lambda) = 0$ si y solo si $\lambda = a_{ii}$.

8.2.2. Independencia lineal de los autoespacios

Enunciado Si v_1, \ldots, v_r son autovectores correspondientes a distintos autovalores $\lambda_1, \ldots, \lambda_r$ de una matriz A entonces $\{v_1, \ldots, v_r\}$ es linealmente independiente.

Demostracion Supongamos $\{v_1, \ldots, v_r\}$ es linealmente dependiente. Como para cada $j \in \{1, \ldots, r\}$ se tiene que $v_j \neq 0$, uno de ellos debe ser combinacion lineal de los precedentes vectores linealmente independientes. Entonces para ciertos escalares c_1, \ldots, c_p tenemos: $c_1v_1 + \ldots + c_pv_p = v_{p+1}$ para algun p+1 entre 1 y r.

Por un lado, multiplicando ambos lados por A obtenemos:

$$c_1Av_1 + \ldots + c_pAv_p = Av_{p+1} \iff c_1\lambda_1v_1 + \ldots + c_p\lambda_pv_p = \lambda_{p+1}v_{p+1}$$

donde v_j son autovectores asociados al correspondiente autovalor λ_j ; por el otro multiplicando por λ_{p+1} :

$$c_1\lambda_{p+1}v_1 + \ldots + c_p\lambda_{p+1}v_p = \lambda_{p+1}v_{p+1}$$

y restando ambas igualdades resulta:

$$c_1 (\lambda_1 - \lambda_{p+1}) v_1 + \ldots + c_p (\lambda_p - \lambda_{p+1}) v_1 = 0$$

pero como $\{v_1, \ldots, v_p\}$ es linealmente independiente resulta que todos los escalares tienen que ser 0.

Como por hipotesis los autovalores son distintos sabemos que $\lambda_i - \lambda_{p+1} \neq 0$ surge que $c_i = 0$ para $1 \leq i \leq p$ luego reemplazando en la igualdad original se tiene $v_{p+1} = 0$ lo que es contradiccion que parte de suponer $\{v_1, \ldots, v_r\}$ es linealmente dependiente.

Capítulo 9

Diagonalizacion

9.1. Definitiones

9.1.1. Matrices semejantes

Sean 2 matrices cuadradas A y B sobre \mathbb{K} , se dice que B es semejante o similar a A si existe una matriz P inversible tal que $B = P^{-1}AP$.

Observacion En dicho caso A tambien es semejante a B pues $B = P^{-1}AP \iff PBP^{-1} = A$

9.1.2. Matriz diagonalizable

Se dice que una matriz A es diagonalizable si es semejante a una matriz diagonal. Es decir si $A=PDP^{-1}$ para alguna matriz P inversible y D diagonal.

9.2. Teoremas

9.2.1. Autovalores de matrices semejantes

Enunciado Si las matrices A, B son semejantes, entonces tienen el mismo polinomio característico y por lo tanto los mismos autovalores con la misma multiplicidad.

Demostracion Si $B = P^{-1}AP$ entonces:

$$B - \lambda I = P^{-1}AP - \lambda I = P^{-1}AP - \lambda P^{-1}IP = P^{-1}(A - \lambda I)P$$

luego:

$$|B - \lambda I| = |P^{-1}(A - \lambda I)P| = |P^{-1}||A - \lambda I||P| = |A - \lambda I|$$

Observacion Este resultado permite calcular los autovalores de un operador lineal T sobre un espacio vectorial V de dimension finita como los autovalores de la matriz asociada a T en cualquier base ordenada B de V.

Esto demuestra ademas que un operador lineal T sobre V con dim(V) = n tendra a lo sumo n autovalores diferentes.

9.2.2. Condicion necesaria y suficiente de diagonalizabilidad

Enunciado Una matriz A es diagonalizable si y solo si A tiene n autovectores linealmente independientes. Es mas, $A = PDP^{-1}$ con D diagonal si y solo si las columnas de P son n autovectores linealmente independientes de A. En este caso las entradas diagonales de D son los autovalores de A que corresponden a los respectivos autovectores.

Demostracion

Como A es diagonalizable $A = PDP^{-1} \iff AP = PD$, e igualando columnas $Av_i = \lambda_i v_i$. Ademas como P es inversible resultan sus columnas ser autovectores linealmente independientes de A y los elementos diagonales de D los autovalores correspondientes.

9.2.3. Condicion suficiente de diagonalizabilidad

Enunciado Una matriz de orden n con n autovalores diferentes es diagonalizable.

Demostracion Resulta evidente de considerar los teoremas de independencia lineal de los autoespacios y condicion necesaria y suficiente de diagonalizabilidad.

9.2.4. Propiedades

Sea A una matriz de orden n cuyos autovalores diferentes son $\lambda_1, \ldots, \lambda_p$ con $1 \le p \le n$ entonces:

- 1. Para $1 \leq k \leq p$ la dimension del autoespacio correspondiente a λ_k es menor o igual a la multiplicidad del autovalor λ_k .
- 2. La matriz A es diagonalizable si y solo si la suma de las dimensiones de los distintos autoespacios es igual a n. Esto sucede si y solo si la dimension del autoespacio correspondiente a λ_k es igual a su multiplicidad.
- 3. Si A es diagonalizable y B_k es base para el autoespacio correspondiente a λ_k entonces la coleccion $B = B_1 \cup \ldots \cup B_p$ forma una base de autovectores de A.

Capítulo 10

Forma normal de Jordan

10.1. Definiciones

10.1.1. Espacio invariante

Sea V un espacio vectorial sobre \mathbb{K} y sea $T:V\to V$ un operador lineal, un subespacio W de V se dice invariante por T si T aplica a W en si mismo. Esto es, si $v\in W\Rightarrow T\left(v\right)\in W$.

Si $S = \{T_1, T_2, \ldots\}$ es un conjunto de operadores lineales sobre V, diremos que un subespacio W de V es S-invariante si es invariente para cada $T_i \in S$.

Diremos ademas que $V \neq \{0\}$ es un S-espacio simple si sus unicos subespacios S-invarantes son V y el espacio trivial.

10.1.2. Vector ciclico

Sea V un espacio vectorial sobre \mathbb{K} , $T:V\to V$ un operador lineal, $\alpha\in\mathbb{K}$ y $v\in V$ un vector no nulo, diremos que v es $(T-\alpha I)$ ciclico si existe un entero $r\geq 1$ tal que $(T-\alpha I)^r v=0$.

El minimo entero positivo r que tiene esta propiedad recibe el nombre de periodo de v relativo a $T - \alpha I$.

Observacion Si r es dicho periodo, entonces tenemos que $(T - \alpha I) v \neq 0$ para cualquier entero k tal que $0 \leq k < r$.

10.1.3. Espacio ciclico

Un espacio vectorial V de dimension r se conoce como ciclico, si existe algun numero α y un vector $v \in V$ que es $(T - \alpha I)$ ciclico de orden r, para alguna transformacion lineal T.

Observacion Si V es ciclico entonces $\{(T - \alpha I)^{r-1} v, (T - \alpha I)^{r-2} v, \dots, (T - \alpha I) v, v\}$ es una base de V llamada base de Jordan.

10.2. Teoremas

10.2.1. Invarianza de espacios nulos

Enunciado Sea $T: V \to V$ lineal y P(X) un polinomio cualqueira, entonces $\mathcal{N}[P(T)]$ es invariante por T.

Demostracion Llamemos con S a la transformacion lineal P(T) y sea $v \in \mathcal{N}(S)$, esto es S(v) = 0. Necesitamos probar que $T(v) \in \mathcal{N}(S)$ o lo que es lo mismo: S[T(v)] = 0.

Como P(X) X = XP(X) tenemos ST = TS, luego S[T(v)] = T[S(v)] = T(0) = 0.

10.2.2. Teorema 4

Enunciado Sean $P_1(X)$, $P_2(X)$ polinomios no constantes tales que su maximo comun divisor es 1 (es decir que no comparten raices y sus coeficientes principales son coprimos) y sean $T: V \to V$ un operador lineal. Si P(T) es la transformación nula, entonces para $W_1 = \mathcal{N}[P_1(T)]$ y $W_2 = \mathcal{N}[P_2(T)]$ resulta $V = W_1 \oplus W_2$.

Demostracion Debemos ver que V es suma de W_1 y W_2 y cada vector de $W_1 + W_2$ se expresa de forma unica. Por suposicion existen polinomios Q_1, Q_2 tales que $Q_1(X) P_1(X) + Q_2(X) P_2(X) = 1$ de donde $Q_1(T) P_1(T) + Q_2(T) P_2(T) = I(*)$.

• $V = W_1 + W_2$: Sea $v \in V$, luego $v = Iv = [Q_1(T) P_1(T)](v) + [Q_2(T) P_2(T)](v)$. Observemos que el primer termino de esta suma pertenece a W_2 pues

$$[P_{2}(T) Q_{1}(T) P_{1}(T)](v) = \left[Q_{1}(T) \underbrace{P_{1}(T) P_{2}(T)}_{P(T)}\right](v) = 0 \text{ y analoga-}$$

mente el segundo termino esta en W_1 .

■ Sea $v \in W_1 + W_2$, luego $v = w_1 + w_2$ con $w_1 \in W_1$ y $w_2 \in W_2$. Observemos que:

$$[Q_{1}(T) P_{1}(T)](v) = \underbrace{[Q_{1}(T) P_{1}(T)](w_{1})}_{0} + [Q_{1}(T) P_{1}(T)](w_{2}) = [Q_{1}(T) P_{1}(T)](w_{2})$$

Aplicando (*) a w_2 resulta $w_2 = Iw_2 = [Q_1(T) P_1(T)] (w_2) + [Q_2(T) P_2(T)] (w_2)$, luego w_2 esta determinado de manera unica y analogamente para w_1 .

10.2.3. Teorema 5

Enunciado Sea V un espacio vectorial sobre \mathbb{K} , $T:V\to V$ un operador lineal, $P(X)=(X-\alpha_1)^{m_1}\dots(X-\alpha_r)^{m_r}$ un polinomio tal que P(T)=0 y $U_i=\mathcal{N}\left(T-\alpha_i I\right)^{m_i}$ entonces V es la suma directa de los subespacios U_1,\dots,U_r .

Demostracion EJERCICIO (INDUCCION).

10.2.4. Proposicion 1

Enunciado Sea $S = \{U_1, \ldots, U_n\}$ un conjunto de operadores de V y $T \in \mathcal{L}(V)$ tal que $TU_i = U_iT$ para toda $U_i \in S$, entonces img(T) y $\mathcal{N}(T)$ son subespacios S-invariantes de V.

Demostracion

- Sea $w \in Img(T)$ tal que T(v) = w, luego $U_i(w) = U_i[T(v)] = T[U_i(v)]$ y como T aplica vectores dentro de su imagen resulta $U_i(w) \in Img(T)$.
- Sea $u \in \mathcal{N}(T)$, entonces $T[U_i(u)] = U_i[T(u)] = U_i(0) = 0$ por lo que $U_i(u) \in \mathcal{N}(T)$.

10.2.5. Proposicion 2

Enunciado Sea S un conjunto de operadores de V y $T:V\to V$ un operador lineal. Supongamos que UT=TU para todo $U\in S$, luego si P es un polinomio sobre \mathbb{K} entonces $P\left(T\right)U=UP\left(T\right)$.

Demostracion EJERCICIO.

10.2.6. Lema de Schur

Enunciado Sea V un espacio vectorial sobre \mathbb{K} y sea $S = \{U_1, \ldots U_n\}$ un conjunto de operadores de V. Si V es un S-espacio simple y $T: V \to V$ una transformacion lineal tal que $TU_i = U_iT$ para toda $U_i \in S$, entonces T es invertible o T es la aplicacion nula.

Demostracion Supongamos $T \neq 0$. Por la proposicion 1 sabemos que Img(T) y $\mathcal{N}(T)$ son subespacios invariantes. Ademas como V es un S-espacio simple sus unicos subespacios invariantes son V y $\{0\}$ por lo que Img(T) = V y $\mathcal{N}(T) = \{0\}$. Esto implica que T es sobreyectiva e inyectiva, luego es invertible.

10.2.7. Independencia lineal de vectores ciclicos

Enunciado Si $v \neq 0$ es $(T - \alpha I)$ ciclico con periodo r, entonces los elementos $v, (T - \alpha I) v, \dots, (T - \alpha I)^{r-1} v$ son linealmente independientes.

Demostracion Sea $U = T - \alpha I$, consideremos escalares c_0, \ldots, c_{r-1} tales que $0 = c_0 v + c_1 U^1(v) + \ldots + c_{r-1} U^{r-1}(v)$.

Aplicando U^{r-1} :

$$U^{r-1}(0) = 0 = c_0 U^{r-1}(v) + c_1 \underbrace{U^r(v)}_{0} + \underbrace{\dots}_{0} + c_{r-1} 0$$

es decir $c_0 \underbrace{U^{r-1}(v)}_{\neq 0} = 0$ por lo que $c_0 = 0$.

Aplicando U^{r-2} :

$$U^{r-2}(0) = 0 = 0v + c_1 U^{r-1}(v) + c_2 \underbrace{U^r(v)}_{0} + \underbrace{\cdots}_{0} + c_{r-1} 0$$

es decir $c_1 \underbrace{U^{r-1}(v)}_{\neq 0} = 0$ por lo que $c_1 = 0$. Continuando de esta manera obtenemos que $c_i = 0$ por lo que dichos vectores son linealmente independientes.

10.2.8. Teorema de Jordan

Enunciado Sea $V \neq \{0\}$ un espacio de dimension finita sobre \mathbb{K} y sea $T: V \to V$ un operador lineal, entonces V se puede expresar como una suma directa de subespacios ciclicos T-invariantes.

Demostracion NO COMPLETAR.

Parte V Producto interno y ortogonalidad

Capítulo 11

Producto interno

11.1. Definiciones

11.1.1. Producto interno

Dado un espacio vectorial V sobre un cuerpo $\mathbb{K},$ un producto interno en V es una funcion

$$\begin{array}{ccc} V \times V & \to & \mathbb{K} \\ (u,v) & \to & u \cdot v = u \times v = \langle u,v \rangle \end{array}$$

que satisface los siguientes:

- 1. $\langle u, v \rangle = \overline{\langle v, u \rangle}$.
- 2. $\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle$.
- 3. $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$.
- 4. $\langle u, u \rangle \ge 0$.
- 5. $\langle u, u \rangle = 0 \iff u = 0$.

11.1.2. Producto interno estandar

Sean u, v matrices $n \times 1$ sobre \mathbb{R} , luego el escalar $u^t v$ se dice producto interno de u y v y se indica $u \cdot v$.

11.1.3. Longitud

La longitud o norma de un vector $v \in \mathbb{R}^n$ es un escalar no negativo que notamos ||v|| definido como $\sqrt{v \cdot v}$.

11.1.4. Distancia

Para $u, v \in \mathbb{R}^n$, la distancia entre u y v es la longitud de u - v, es decir: dist(u, v) = ||u - v||.

11.2. Teoremas

11.2.1. Ley del paralelogramo

Enunciado $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2).$

Demostracion

- $\|x + y\|^2 = (x + y) \cdot (x + y) = x \cdot x + x \cdot y + y \cdot x + y \cdot y.$
- $\|x y\|^2 = (x y) \cdot (x y) = x \cdot x x \cdot y y \cdot x + y \cdot y.$

11.2.2. Teorema de Pitagoras

Enunciado $||x + y||^2 = ||x||^2 + ||y||^2 \iff x \cdot y = 0.$

Demostracion

- $= (= : ||x + y||^2 = x \cdot x + \underbrace{x \cdot y}_0 + \underbrace{y \cdot x}_0 + y \cdot y = ||x||^2 + ||y||^2.$

65

11.2.3. Desigualdad de Cauchy-Schwarz

Enunciado $|u \cdot v| \le ||u|| \, ||v||$.

Demostracion Si v=0 el teorema es trivialmente cierto, si no, sea $\alpha=\frac{u\cdot v}{v\cdot v}$, luego:

$$0 \le \|u - \alpha v\|^2 = u \cdot u - u \cdot \alpha v - \alpha v \cdot u + \alpha v \cdot \alpha v = u \cdot u - 2\alpha (u \cdot v) + \alpha^2 (v \cdot v)$$

y reemplazando $[\alpha]$ tenemos:

$$0 \le \|u\|^2 - 2\left[\frac{u \cdot v}{v \cdot v}\right](u \cdot v) + \left[\frac{u \cdot v}{v \cdot v}\right]^2(v \cdot v) = \|u\|^2 - 2\frac{(u \cdot v)^2}{\|v\|^2} + \frac{(u \cdot v)^2}{\|v\|^2} = \|u\|^2 - \frac{(u \cdot v)^2}{\|v\|^2}$$

Notemos que como $u \cdot v \ge 0$ entonces $u \cdot v = |u \cdot v| \iff (u \cdot v)^2 = |u \cdot v|^2$. En resumen:

$$0 \le \|u\|^2 - \frac{|u \cdot v|^2}{\|v\|^2} \iff \frac{|u \cdot v|^2}{\|v\|^2} \le \|u\|^2 \iff |u \cdot v|^2 \le \|u\|^2 \|v\|^2 \iff |u \cdot v| \le \|u\| \|v\|$$

11.2.4. Desigualdad triangular

Enunciado $||u+v|| \le ||u|| + ||v||$.

Demostracion

 $||u+v||^2 = ||u||^2 + 2(u \cdot v) + ||v||^2 = ||u||^2 + 2|u \cdot v| + ||v||^2 \le ||u||^2 + 2||u|| \cdot ||v|| + ||v||^2 = (||u|| + ||v||)^2$ donde la desigualdad vale por el teorema anterior.

Capítulo 12

Ortogonalidad

12.1. Definiciones

12.1.1. Ortogonalidad

Dos vectores $u, v \in \mathbb{R}^n$ son ortogonales si $u \cdot v = 0$.

Observaciones

- El vector 0 es ortogonal a todo vector.
- Si u es ortogonal a v entonces tambien lo es a αv .

12.1.2. Complemento ortogonal

Si un vector z es ortogonal a todo vector en un subespacio W de \mathbb{R}^n , diremos que z es ortogonal a W.

El conjunto de todos los vectores z que son ortogonales a W se llama complemento ortogonal de W y se nota W^{\perp} .

12.1.3. Conjunto ortogonal

Se dice que un conjunto de vectores $\{u_1, \ldots, u_n\}$ es ortogonal si cada par de vectores diferentes del conjunto son ortogonales.

67

12.1.4. Base ortogonal

Una base ortogonal de un subespacio W de \mathbb{R}^n es una base de W que ademas es un conjunto ortogonal.

12.1.5. Conjunto ortonormal

Un conjunto $\{u_1, \ldots, u_n\}$ es un conjunto ortonormal si es un conjunto ortogonal de vectores de norma 1.

12.1.6. Matriz ortongonal

Una matriz ortogonal es una matriz U cuadrada, inversible tal que $U^{-1} = U^t$.

Observacion Toda matriz cuadrada con columnas ortonormales es una matriz ortogonal.

12.1.7. Proyeccion de un vector sobre otro

Dados $u, y \in \mathbb{R}^n$ (con $u \neq 0$), buscamos escribir a y como $y = \alpha u + z$ con $z \perp u$. Notese que $y = \alpha u + z \iff z = y - \alpha u$, luego $z \perp u \iff (y - \alpha u) \perp u \iff (y - \alpha u) \cdot u = 0 \iff y \cdot u - \alpha (u \cdot u) = 0$ y despejando α obtenemos: $\alpha = \frac{y \cdot u}{u \cdot v}$.

 α obtenemos: $\alpha = \frac{y \cdot u}{u \cdot u}$.

Llamando $\hat{y} = \alpha u = \frac{y \cdot u}{u \cdot u} u$ tenemos $y = \hat{y} + z$. Diremos que \hat{y} es proyeccion ortogonal de y sobre u.

Observacion La proyeccion ortogonal de y sobre u es igual a la de y sobre cualquier multiplo de u. Luego, considerando $L = \langle \{u\} \rangle$ resulta:

$$\hat{y} = proy_L y = \frac{y \cdot u}{u \cdot u} u$$

12.2. Teoremas

12.2.1. Proposicion

Enunciado

- 1. Un vector $x \in W^{\perp}$ si y solo si x es ortogonal a todo vector de un conjunto que genere W.
- 2. W^{\perp} es un espacio vectorial.

Demostracion

- 1. Sea $B = \{w_1, \dots, w_n\}$ una base de W.
 - \implies : Dado $x \in W^{\perp}$, luego $x \perp w$ para todo $w \in W$, en particular para todo $w_i \in B$.
 - \leftarrow : Sea $w \in W$ tal que $w = \alpha_1 w_1 + \ldots + \alpha_n w_n$, luego:

$$w \cdot x = \alpha_1 \underbrace{(w_1 \cdot x)}_0 + \ldots + \alpha_n \underbrace{(w_n \cdot x)}_0 = 0$$

- 2. Veamos que satisface los axiomas de clausura:
 - Para cualquier $w \in W$ sean $x, x' \in W^{\perp}$, luego $x \cdot w = x' \cdot w = 0$ y como $(x + x') \cdot w = x \cdot w + x' \cdot w = 0$ resulta que $x + x' \in W^{\perp}$.
 - Para cualquier $w \in W$ sea $x \in W^{\perp}$, luego $x \cdot w = 0$ y como $(\alpha x) \cdot w = \alpha (x \cdot w) = 0$ resulta que $\alpha x \in W^{\perp}$.

12.2.2. Relacion entre complemento ortogonal y espacio nulo

Enunciado Sea $A \in \mathbb{R}^{m \times n}$ entonces el complemento ortogonal del espacio fila de A es el espacio nulo de A y el complemento ortogonal del espacio columna de A es el espacio nulo de A.

Demostracion
$$Ax = 0 = \begin{bmatrix} A_1x \\ \vdots \\ A_nx \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$
, luego x es ortogonal a cada

vector fila de A, por lo que $x \in \mathcal{F}(A)^{\perp}$.

De manera reciproca si $x \in \mathcal{F}(A)^{\perp}$ entonces x es ortogonal a todo vector en $\mathcal{F}(A)$, en particular a los vectores filas de A y asi resulta $Ax = 0 \Rightarrow x \in \mathcal{N}(A)$.

Usando este resultado para A^t obtenemos la otra igualdad.

12.2.3. Independencia lineal de conjuntos ortogonales

Enunciado Si $S = \{u_1, \ldots, u_p\} \subset \mathbb{R}^n$ es un conjunto ortogonal de vectores distintos de 0 entonces S es linealmente independiente, por lo tanto es una base del espacio generado por S.

Demostracion Supongamos $c_1u_1 + \ldots + c_pu_p = 0$ para algunos escalares c_i . Entonces:

$$0 = 0 \cdot u_1 = (c_1 u_1 + \ldots + c_p u_p) \cdot u_1 = c_1 (u_1 \cdot u_1) + \ldots + c_p (u_p \cdot u_1) = c_1 (u_1 \cdot u_1) = 0 \Rightarrow c_1 = 0$$

De forma analoga obtenemos que $c_i = 0$, luego S es linealmente independiente.

12.2.4. Combinacion lineal ortogonal

Enunciado Sea $S = \{u_1, \ldots, u_p\}$ una base ortogonal de un subespacio W de \mathbb{R}^n , entonces para cada $y \in W$, los coeficientes de la combinacion lineal $y = c_1 u_1 + \ldots + c_p u_p$ estan dados por $c_j = \frac{y \cdot u_j}{u_j \cdot u_j}$.

Demostracion La ortogonalidad de S nos permite afirmar que:

$$\underbrace{y \cdot u_j}_{(1)} = (c_1 u_1 + \ldots + c_p u_p) \cdot u_j = c_j \underbrace{(u_j \cdot u_j)}_{(2)} \Rightarrow c_j = \underbrace{\underbrace{y \cdot u_j}_{(2)}}_{(2)}$$

70

12.2.5. Caracterización de las matrices ortonormales

Enunciado Una matriz tiene columnas ortonormales si y solo si $U^tU = I$.

Demostracion Supongamos m=3=n y sea $U=\begin{bmatrix} & & & & & \\ & u_1 & u_2 & u_3 \\ & & & & & \end{bmatrix}$ luego

$$\begin{array}{c|ccccc} U^t U & u_1 & u_2 & u_3 \\ \hline u_1^t & u_1^t \cdot u_1 & u_1^t \cdot u_2 & u_1^t \cdot u_3 \\ u_2^t & u_2^t \cdot u_1 & u_2^t \cdot u_2 & u_2^t \cdot u_3 \\ u_3^t & u_3^t \cdot u_1 & u_3^t \cdot u_2 & u_3^t \cdot u_3 \\ \end{array}$$

de donde sigue el resultado.

12.2.6. Propiedades de las matrices ortonormales

Enunciado Sea $U \in \mathbb{R}^{m \times n}$ con columnas ortonormales y sean $x, y \in \mathbb{R}^n$ entonces se tiene que:

- 1. ||Ux|| = ||x||.
- $2. \ Ux \cdot Uy = x \cdot y.$
- 3. $Ux \cdot Uy = 0 \iff x \cdot y = 0$.

Demostracion EJERCICIO.

12.2.7. Teorema de la descomposicion ortogonal

Enunciado Sea W un subespacio de \mathbb{R}^n , entonces todo $y \in \mathbb{R}^n$ puede escribirse de forma unica como $y = \hat{y} + z$ donde $\hat{y} \in W$ y $z \in W^{\perp}$.

De hecho si $\{u_1, \ldots, u_p\}$ es cualquier base ortogonal de W entonces:

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \ldots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p$$

Demostracion Sea $\{u_1, \ldots, u_p\}$ base ortogonal de W y definimos

$$\hat{y} := \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \ldots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p$$

entonces $\hat{y} \in W$. Sea $z = y - \hat{y}$, luego:

$$z \cdot u_1 = (y - \hat{y}) \cdot u_1 = y \cdot u_1 - \hat{y} \cdot u_1 = y \cdot u_1 - \left[\frac{y \cdot u_1}{u_1 \cdot u_1} (u_1 \cdot u_1) + \underbrace{\cdots}_{=0} + \frac{y \cdot u_p}{u_p \cdot u_p} \underbrace{(u_p \cdot u_1)}_{=0} \right] =$$

$$= y \cdot u_1 - \left[\frac{y \cdot u_1}{u_1 \cdot u_1} (u_1 \cdot u_1) \right] = y \cdot u_1 - [y \cdot u_1] = 0$$

De manera analoga obtenemos que $z \perp u_j$ para $j \in \{1, \ldots, p\}$.

Para ver la unicidad supongamos que y puede escribirse como $y = \hat{y}_1 + z_1$ y como $y = \hat{y}_2 + z_2$ con $\hat{y}_1, \hat{y}_2 \in W^{\perp}$. Entonces $y = \hat{y}_1 + z_1 = \hat{y}_2 + z_2 \Rightarrow$ $\underbrace{\hat{y}_1 - \hat{y}_2}_{v \in W} = \underbrace{z_2 - z_1}_{v \in W^{\perp}}, \text{ luego } v \cdot v = 0 \Rightarrow \begin{cases} \hat{y}_1 - \hat{y}_2 &= 0 \\ z_2 - z_1 &= 0 \end{cases} \Rightarrow \hat{y}_1 = \hat{y}_2 \wedge z_1 = z_2.$

Teorema de la mejor aproximacion 12.2.8.

Enunciado Sean W un subespacio de \mathbb{R}^n , $y \in \mathbb{R}^n$ e \hat{y} la proyeccion ortogonal de y sobre W, entonces \hat{y} es el vector de W mas cercano a y en el sentido de que $||y - \hat{y}|| < ||y - v||$ para todo $v \in W$ $(v \neq \hat{y})$.

Demostracion Sea $v \in W$ $(v \neq \hat{y})$, luego $\hat{y} - v \in W$. Ademas segun el teorema de la descomposicion ortogonal $y - \hat{y} \in W^{\perp}$, en particular $y - \hat{y} \perp \hat{y} - v$.

Usando el teorema de Pitagoras, $\|y - \hat{y}\|^2 + \|\hat{y} - v\|^2 = \|y - \hat{y} + \hat{y} - v\|^2 = \|y - v\|^2$ y puesto que $v \neq \hat{y} \Rightarrow \hat{y} - v \neq 0 \Rightarrow (\hat{y} - v) \cdot (\hat{y} - v) > 0 \iff \|\hat{y} - v\|^2 > 0$. Sumando a ambos lados de la desigualdad tenemos $\|\hat{y} - v\|^2 + \|y - \hat{y}\|^2 > \|y - \hat{y}\|^2$ y por lo visto usando el teorema de pitagoras obtenemos $\|y - v\|^2 > \|y - \hat{y}\|^2$ si y solo si $||y - v|| > ||y - \hat{y}||$.

72

12.2.9. Corolario

Enunciado Si $y \in W = \langle \{u_1, \dots, u_p\} \rangle$ entonces $proy_W y = y$.

Demostracion Sea $y = c_1u_1 + \ldots + c_pu_p$, luego:

$$proy_W y = \frac{\overbrace{y \cdot u_1}^{c_1 u_1 \cdot u_1}}{u_1 \cdot u_1} u_1 + \dots + \frac{\overbrace{y \cdot u_p}^{c_p u_p \cdot u_p}}{u_p \cdot u_p} u_p = c_1 u_1 + \dots + c_p u_p = y$$

12.2.10. Proyecciones sobre conjuntos ortonormales

Demostracion EJERCICIO.

12.2.11. Algoritmo de Gram-Schmidt

Enunciado Dada una base $\{w_1, \ldots, w_p\}$ para un subespacio W de \mathbb{R}^n , definiendo:

- $v_1 = w_1$.
- $v_2 = w_2 \frac{w_2 \cdot v_1}{v_1 \cdot v_1} v_1.$
- $v_3 = w_3 \frac{w_3 \cdot v_1}{v_1 \cdot v_1} v_1 \frac{w_3 \cdot v_2}{v_2 \cdot v_2} v_2.$
- .
- $v_p = w_p \frac{w_p \cdot v_1}{v_1 \cdot v_1} v_1 \frac{w_p \cdot v_2}{v_2 \cdot v_2} v_2 \dots \frac{w_p \cdot v_p}{v_p \cdot v_p} v_p$.

entonces $\{v_1, \ldots, v_k\}$ es base ortogonal de $W_k = \langle \{w_1, \ldots, w_k\} \rangle$ para $1 \le k \le p$.

Demostracion

- CASO BASE: Trivial pues $v_1 = w_1$.
- CASO INDUCTIVO: Supongamos que se probo el resultado para k, es decir que $\{v_1, \ldots, v_k\}$ es base ortogonal de $W_k = \langle \{w_1, \ldots, w_k\} \rangle$. Veamos que $B = \{v_1, \ldots, v_k, v_{k+1}\}$ es ortogonal. Para $i, j \in \{1, \ldots, k\} / i \neq j$ resulta $v_i \perp v_j$ por hipotesis inductiva. Ademas:

$$v_{k+1} \cdot v_i = \left(w_{k+1} - \frac{w_{k+1} \cdot v_1}{v_1 \cdot v_1} v_1 - \dots - \frac{w_{k+1} \cdot v_k}{v_k \cdot v_k} v_k \right) \cdot v_i = w_{k+1} \cdot v_i - \frac{w_{k+1} \cdot v_i}{v_i \cdot v_i} v_i \cdot v_i = 0$$

luego $\{v_1,\ldots,v_k,v_{k+1}\}$ es ortogonal y en consecuencia tambien es linealmente independiente. Como ademas $|B|=|W_{k+1}|$ resulta que tambien es base.