Algoritmalara Giriş

6.046J/18.401J

DERS 12

Atlama Listeleri

- Veri Yapısı
- Rastgele Araya Yerleştirme
- Wüksek olasılıkla" sınırı
- Analiz (Çözümleme)
- Yazı Tura Atma

Prof. Erik D. Demaine

Atlama Listeleri

- Basit Rastgele Dinamik Arama Yapısı
 - –William Pugh tarafından 1989'da geliştirildi.
 - –Uygulaması kolay
- n elemanlı dinamik bir kümeyi, her bir işlem için $O(\lg n)$ zamanlı beklenen ve yüksek ihtimalle kurar.
 - -T(n)'nin kuyruk dağılımında sıkı garanti.
 - "Hemen her zaman" $O(\lg n)$

Bir Bağlantılı Liste

En basit veri yapısından başlangıç:

(sıralı) bağlantılı liste

- •Aramalar en kötü durumda $\Theta(n)$ kadar zaman alır.
- •Aramaları nasıl hızlandırabiliriz?

İki Bağlantılı Liste

İki sıralı bağlantılı listemiz olduğunu düşünün. (Elemanların alt kümeleriyle)

- •Her eleman bir veya iki listede yer alabilir.
- •Aramaları nasıl hızlandırabiliriz?

Metro Gibi İki Bağlantılı Liste

Fikir: Ekspres ve yerel Metro Hatları (New York 7. cadde Hattı)

- •Ekspres hat birkaç durağı birbirine bağlar.
- •Yerel hat bütün durakları birbirine bağlar.
- •Ana istasyonlar arasını bağlantılar. (linkler)

İki Bağlantılı Listede Arama

SEARCH / ARA(x):

- Üst bağlantılı listede (L_1) sağa doğru çok uzak olana kadar yürüyün.
- Alt bağlantılı listeye (L_2) yürüyün.
- L_2 'de eleman bulunana veya bulunamayana kadar yürüyün.

İki Bağlantılı Listede Arama

Örnek: SEARCH(59)

İki Bağlantılı Listenin Tasarımı

Soru: Hangi düğümler L_1 'de olmalı?

- Bir metroda, "popüler istasyonlar",
- Bizi burada en kötü durum performansı ilgilendiriyor.
- En iyi yaklaşım : L_1 'deki düğümleri eşit mesafede yerleştirin.
- Peki, L_1 'de kaç tane düğüm olmalı?

İki Bağlantılı Listenin Analizi

Çözümlemg:

- •Arama maliyeti kabaca $|L_1| + \frac{|L_2|}{|L_1|}$
- •Terimler eşit iken (sabit katlara kadar) azalır.

$$\bullet | L_1 |^2 = | L_2 | = n \Rightarrow | L_1 | = \sqrt{n}$$

İki Bağlantılı Listenin Analizi

¥ 3/4 Ão 190 g<

- $|L_1| = \sqrt{n}$, $|L_2| = n$
- Arama maliyeti kabaca

$$|L_1| + \frac{|L_2|}{|L_1|} = \sqrt{n} + \frac{n}{\sqrt{n}} = 2\sqrt{n}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Daha Fazla Bağlantılı Liste

¥ 3/4 Ão 190 g<

Pekiyi ya, daha fazla sıralı bağlantılı listemiz olsaydı?

- 2 sıralı liste $\Rightarrow 2 \cdot \sqrt{n}$
- 3 sıralı liste $\Rightarrow 3 \cdot \sqrt[3]{n}$
- k sıralı liste $\Rightarrow k \cdot \sqrt[k]{n}$
- $\lg n \text{ siral liste } \Rightarrow \lg n \cdot \sqrt[\lg n]{n} = 2 \lg n$

lg n Bağlantılı Liste

lg *n* sıralı listeler ikili ağaçlar gibidir.

(Aslında seviye bağlantılı B+- ağaçları gibidir.)

lg n Bağlantılı Listelerinde Arama

ÖRNEK : ARA (72)

Atlama Listeleri

İdeal Atlama Listesi bu lg *n* yapısındadır.

Atlama listesi veri yapısı, güncellemelerde (ekle/sil) kabaca bu

ARAYA YERLEŞTİR(x)

Herhangi bir *x* elemanını Atlama Listesine eklemek için:

- x' in alt listede nereye denk geldiğini bulmak için ARA(x) yaparız.
- Her zaman en alt listede araya yerleştirme yaparız.

DEĞİŞMEZ: En alt liste bütün elemanları kapsar.

• Üstteki listelerden bazılarına araya yerleştirme yapabiliriz.

SORU: *x*'i başka hangi listelere eklemeliyiz?

CTC[C'[GTNG V T'(x)

SORU: *x*'i başka hangi listelerde araya yerleştirmeliyiz?

FİKİR: Yazı-tura atın, eğer YAZI gelirse; *x*'i bir üst seviyeye yükseltin ve tekrar yazı-tura atın.

- Bir sonraki seviyeye yükselme olasılığı = $\frac{1}{2}$
- Ortalamada;
 - -Elemanların yarısı hiç seviye atlayamaz.
 - -Elemanların 1/4'ü 1 seviye atlar.
 - -Elemanların 1/8'i 2 seviye atlar.

Yaklaşık olarak dengeli?

-VS.

Atlama Listesi Örneği

EGZERSİZ: Gerçek bir bozuk para kullanarak, tekrarlanan eklemelerle bir Atlama Listesi yaratın.

Ufak değişiklik:

Özel -∞ değerini
 her listeye ekleyin.

⇒ Aynı algoritma ile arama yapabilirsiniz.

Atlama Listeleri

Boş bir yapıya ($-\infty$ 'u içeren) yapılan araya yerleştirmeler (ve silmeler) sonucunda oluşan yapı bir *Atlama Listesi*dir.

- •AR. YER. (x), rastgele yazı-tura yöntemiyle terfi düzeylerini belirler.
- $\mathbf{SiL}(x)$, x'in bulunduğu bütün listelerden x'i siler.

Atlama Listeleri

Boş bir yapıya (-∞'u içeren) yapılan araya yerleştirmeler (ve silmeler) sonucunda oluşan yapı bir *Atlama Listesi*dir.

- AR. YER.(x), rastgele yazı-tura yöntemi ile üst seviyeye çıkışları belirler.
- SIL(x), x'in bulunduğu bütün listelerden x'i siler.

Atlama listeleri ne kadar iyidir? (hız/denge)

- SEZGİSEL OLARAK: Ortalamada oldukça iyi.
- İDDİA: Hemen her zaman gerçekten, ama gerçekten iyi.

"Yüksek Olasılıkla" Teoremi

TEOREM : "Yüksek Olasılıkla", n elemanlı bir atlama listesinde her bir arama $O(\lg n)$ 'ye mal olur.

"Yüksek Olasılıkla" Teoremi

- **TEOREM :** Yüksek olasılıkla, n elemanlı bir atlama listesinde her bir arama $O(\lg n)$ 'e mal olur.
- Gayri resmi olarak : Eğer, herhangi bir $\alpha \ge 1$ için, uygun olan ve E olayının $1 O(1/n^{\alpha})$ ihtimali ile gerçekleştiği bir seçim şansı varsa, E olayı yüksek olasılıkla (y.o.) gerçekleşir.
 - Aslında $O(\lg n)$ içindeki sabit, α 'ya bağlıdır.
- Resmi olarak : Eğer, herhangi bir $\alpha \ge 1$ için, E_{α} 'nın en azından $1-c_{\alpha}/n^{\alpha}$ ihtimali ile gerçekleşmesini sağlayan uygun sabit seçimleri varsa, E_{α} yüksek olasılıkla gerçekleşir.

"Yüksek Olasılıkla" Teoremi

- **TEOREM :** Yüksek olasılıkla, n elemanlı bir atlama listesinde her bir arama $O(\lg n)$ 'e mal olur.
- Gayri resmi olarak : Eğer, herhangi bir $\alpha \ge 1$ için, uygun olan ve E olayının $1 O(1/n^{\alpha})$ ihtimali ile gerçekleştiği bir seçim şansı varsa, E olayı yüksek olasılıkla (y.o.) gerçekleşir.
- FİKİR : α 'yı büyük seçerek (örneğin 100), hata olasılığını $O(1/n^{\alpha})$ oldukça azaltabiliriz.
- Hemen hemen kesinlikle, sınırlar, varolan polinomsal zaman algoritmalarında kalacaklardır.

Boole'un Eşitsizliği / Birleşik Sınır

Hatırlatma:

Boole'un Eşitsizliği / Birleşik Sınır

Herhangi bir rastgele olay $E_1, E_2, ..., E_k$ için

$$\Pr\{E_1 \cup E_2 \cup ... \cup E_k\}$$

 $\leq \Pr\{E_1\} + \Pr\{E_2\} + ... + \Pr\{E_k\}$

Yüksek olasılıklı olaylarda uygulama:

Eğer $k = n^{O(1)}$ ise ve her E_i olayı yüksek olasılıkla oluşuyorsa, $E_1 \cap E_2 \cap ... \cap E_k$

Çözümlemeye Isınma

GERÇEK: Yüksek Olasılıkla,

n elemanlı bir atlama listesinin $O(\lg n)$ düzeyi vardır.

KANIT:

- En fazla *c* lg *n* düzeyine sahip olmamızdaki hata ihtimali
- = $\Pr \{c \mid g \mid n \text{ düzeyinden daha fazla}\}.$
- $\leq n$. Pr $\{x \text{ elemans en az } c \text{ lg } n \text{ defa üste çıkmıştır}\}$.

```
= n \cdot (1/2^{c \lg n})
= n \cdot (1/n^{c})
= 1/n^{c-1}
(Boole 'un eşitsizliği ile.)
```


Çözümlemeye Isınma

GERÇEK: Yüksek Olasılıkla,

n elemanlı bir atlama listesinin $O(\lg n)$ düzeyi vardır.

KANIT:

• En fazla *c* lg *n* düzeyine sahip olmamızdaki hata ihtimali

$$\leq 1/n^{c-1}$$

• Bu olasılık *polinomsal olarak küçüktür*,

Örnek : en fazla $\alpha = c$ -1 için n^{α}

• $O(\lg n)$ sınırındaki sabit c'yi uygun bir şekilde seçerek, α 'yı keyfi olarak büyük yapabiliriz.

ALGORITHMS

Teoremin İspatı

TEOREM: Yüksek olasılıkla, n elemanlı bir atlama listesinde her bir arama $O(\lg n)$ 'e mal olur.

AKILLICA FİKİR: Arama'yı tersten, yapraktan köke doğru yapmak.

- Arama yaprakta (en alttaki düğüm) başlar. (biter)
- Her düğüm ziyaret edilir:
 - Eğer düğüm bir üste çıkmadıysa (Tura geldiyse), sola gideriz. (soldan gelmiştik)
 - Eğer düğüm bir üste çıktıysa (Yazı geldiyse), yukarı gideriz, (yukarıdan gelmiştik)
- Arama kökte (veya -∞'da) sona erer (başlar).

ALGORITHMS

Teoremin İspatı

TEOREM: Yüksek qlasılıkla, n elemanlı bir atlama listesinde her bir arama $O(\lg n)$ 'e mal olur.

AKILLICA FİKİR: Arama'yı tersten, yapraktan köke doğru yapmak.

KANIT:

- Arama, köke ulaşana (veya —∞'a) kadar yukarı ve sola ilerler.
- •Yukarı hareket sayısı < düzeylerin sayısı

 $\leq c \lg n$ y.o. ile ($\ddot{O}nkuram$)

• => y.o. ile, hareket sayısı en fazla $c \lg n$ kere YAZI gelmesi için fırlatmamız gereken para sayısıdır.

Para Ctma Analizi

İDDİA:c lg n kere YAZI gelmesi için gereken para atma sayısı

$$=\Theta$$
 (lg n) y.o. ile

KANIT:

Açıkça $\Omega(\lg n)$: en az $c \lg n$

 $O(\lg n)$ 'i "örnekle" kanıtlayın:

- Diyelim ki; 10 *c* lg *n* atma yaptık.
- En *c* lg *n* kere YAZI ne zaman gelir?

(Daha sonra 10'un rastgele değerlerine genelleyin.)

Para Ctma Analizi

IDDİA:c lg n kere YAZI gelmesi için gereken para atma sayısı

$$= \Theta$$
 (lg n) y.o. ile

KANIT:

$$\leq \left(\frac{10c \lg n}{c \lg n}\right) \cdot \left(\frac{1}{2}\right)^{9c \lg n}$$
düzeylere aşırı tura değer biçimi

Para Ctma Analizi (devam)

Sınırlarla ilgili hatırlatma:
$$\begin{pmatrix} y \\ x \end{pmatrix}$$
: $\left(\frac{y}{x}\right)^x \le \left(\frac{y}{x}\right) \le \left(e\frac{y}{x}\right)^x$

• Pr {en fazla
$$c \lg n$$
 YAZI} $\leq \left(\frac{10c \lg n}{c \lg n}\right) \cdot \left(\frac{1}{2}\right)^{9c \lg n}$
 $\leq \left(e^{\frac{10c \lg n}{c \lg n}}\right)^{c \lg n} \cdot \left(\frac{1}{2}\right)^{9c \lg n}$
 $= (10e)^{c \lg n} 2^{-9c \lg n}$
 $= 2^{\lg(10e) \cdot c \lg n} 2^{-9c \lg n}$
 $= 2^{\lceil \lg(10e) - 9 \rceil \cdot c \lg n}$
 $= 2^{\lceil \lg(10e) - 9 \rceil \cdot c \lg n}$
 $= 1/n^{\alpha} \text{ için } \alpha = [9 - \lg(10e)] \cdot c$

Para Ctma Analizi (devam)

- Pr {en fazla $c \lg n \text{ TURA}$ } $\leq 1/n^{\alpha}$, $(\alpha = [9 \lg(10e)]c)$
- •ANAHTAR ÖZELLİK: herhangi bir c için $10 \rightarrow \infty$ 'ki gibi $\alpha \rightarrow \infty$
- 10'a ayarlayın, örnek, $O(\lg n)$ sınırında bir sabit, istenen α 'ya denk geliyor.

Bu para atma iddiasının ve teoremin kanıtını tamamlıyor.