Unit – 2 & 5

by Dr. SAKTHIVEL.S.M

SYMBOLS OF "NMOS" and "PMOS"

NMOS – PASS TRANSISTOR LOGIC

case(i):
$$V_q = V_{AA} = 5V$$
, also $V_{EN} = 4V$.

 $V_g = 0V \text{ (low input voltage)} \Rightarrow 0FF$
 $V_g = 5V \text{ (high IIP voltage)} \Rightarrow 0N \Rightarrow closed state$
 $V_g = 0V$; $V_D = ??$
 $V_{AS} > V_{EN}$, $V_{AS} = V_{AS} = 5 - 0 = 5V$
 $V_{EN} = 4V$; $V_{AS} > V_{EN}$ (i.e $5 > 1$)

 $V_D = V_S = 0V$ $\Rightarrow strong 0$

```
case (ii):
        Let Vg = 2V ; Np = ??
    Vgs = Vg - Vs = 5-2= 3V
             Ven = 1V
           Vgs > Ven > nMOS => ON state
                .. | ND = NS = 2N
case (iii): Let Vg = 44; Vp = ??
    Vgs = Vg - Vs = 5V - 4V = 1V; Vtn = 1V
              .: Vgs = Vtn (i.e. 1 = 1V)
              nmos > on state
           VD = VC = 4V
         VD = Vdd - Vtn (i.e Vdd = 50
                                 Ven = AV)
      = 5-1
V_D = 4V
```

NMOS – PASS TRANSISTOR LOGIC

case (iv):
$$V_S = 5V$$
 (\approx high voltage)

 $V_{QS} = V_{Q} - V_{S} = 5V - 5V = 0V$; $V_{EN} = 1V$
 $V_{QS} < V_{EN}$ \Rightarrow nMOS = OFF

 $V_d = V_{dd} - V_{EN}$ \Rightarrow Threshold voltage brop/
 $V_d = 4V$ V_{EN} \Rightarrow Weak "1"

NMOS – PASS TRANSISTOR LOGIC

SUMMARY:


```
case(i): V_g = V_{ad} = 5V; V_{en} = 1V

V_s = V_A = 0V and V_y = ?? = V_d = ??

V_{gs} = V_g - V_s = 5 - 0 = 5V;

V_{gs} > V_{en} \Rightarrow 5 > 1 .: nmos \Rightarrow on

... V_y = V_d = ov (strong 0)
```

case (iii):
$$V_a = V_A = 4V$$
; $V_y = V_A = ???$
 $V_{gs} = V_g - V_s = 5 - 4 = 1V$
 $V_{gs} = V_{tn} \Rightarrow 1 = 1V \therefore nMOS \Rightarrow DN$

whenever $V_{gs} > V_{tn}$
 $\therefore V_y = V_d = 4V$

case(ii):
$$V_A = 2v$$
; $V_Y = V_A = ???$
 $V_{gs} = V_g - V_s = V_g - V_A = 5 - 2 = 3V$
 $V_{gs} > V_{4n} \Rightarrow 3 > 1 : nmos \Rightarrow on$
 $\vdots \quad V_Y = V_A = 2v$

PMOS – PASS TRANSISTOR LOGIC

case (i):
$$V_g = OV \Rightarrow low IIP voltage \Rightarrow ON \Rightarrow dosed$$

$$V_g = 5V \Rightarrow high IIP voltage \Rightarrow OFF$$

$$V_{tp} = -1V ; PMOC: V_{sq} \Rightarrow V_{tp}$$

$$V_{tp} = 1V$$

$$V_{s} = 5V ; V_{g} = 0V ; V_{tp} = 1V$$

$$V_{sq} = V_{s} - V_{q} = 5 - 0 = 5V$$

$$V_{sq} = V_{s} - V_{q} = 5 - 0 = 5V$$

$$V_{sq} \Rightarrow V_{tp} \Rightarrow PMOS \Rightarrow ON$$

$$V_{tp} = V_{s} = 5V \Rightarrow strong 1.$$

```
ease (ii): V_S = 4V; V_g = 0V; V_{tp} I = 1V
   Vsq = Vs - Vq = 4-0 = 4V (Vsq > 1/4pl)
            PMOS => ON; | VD = 1/5 = 4V
case (iii): Vg = 1V
    Veg = Ve - Vg = 1-0= 1V; IV+pl = 1V
               Vag = IVtp1 => PMOS = ON
            VD = VS = IV
case(iv): Vs = OV ;
         Veg = Ve - Vg = 0-0 = 0V
             1 Vep 1 = 1V
          Veg & IV+p1 => PMOS - OFF state
          1V = Vd = IVtpl ) -> weak " 0"
```

(i)
$$V_S = OV$$
;
$$V_D = OV$$
.
$$STRONG "O"$$

(ii)
$$V_S = V_{dd}$$
;
 $V_D = V_{dd} - V_{tn}$
WEAK "1"

PMOS PASS TRANSISTOR

$$\frac{\text{case (i)}}{\text{V}_{\text{B}}} = 0 ; \quad \text{V}_{\text{A}} = \text{V}_{\text{ad}}$$

$$\text{V}_{\text{y}} = ???$$

$$\therefore \quad \forall y = \forall_A = \forall_{dd}$$

pMOS turns "ON" for LOW input at the gate terminal and produces "strong 1" at the drain output.

case (ii)
$$V_B = 0$$
; $V_A = 0V$;

 $V_Y = ???$

since "pMos" passes "weak o"

 $V_A = 0V$ cannot be passed as output to $V_A = 0$.

MMOS PASS TRANSISTOR

VB= Vad (Transistor tune ON)

$$\therefore Vy = VA = 0$$

> nMOS twins "ON" for high input at the gate terminal and produces "strong o" at the drain output. case (ii) VB = Vad ; VA = Vad Vy=??? VB = Vad (Transister - ON); But nMOS passes "weak 1" .. VA = Vad cannot be passed as output to y y = Vad - Vtn

NMOS PASS TRANSISTOR

Boate	A	y prain
0	0	17tp1
0	Vad	Vad
Vad	0	2
Vdd	√dd	Z

Bate	A	y Drain
0	D	Z
0	Vad	2
Vad	0	0
V _d d	Vad	Vdd - Vtn

Given: F = [A + (B.C)]' using nmos paus Transistors.

$$F = \overline{A + x}$$

where
$$x = (B.C) \Rightarrow AND$$

 $\overline{A+X} \Rightarrow NOR gate$

B	C	×
D	0	0
D	1	D
1	0	0
1	1	1

TRANSMISSION GATE

- The transmission gate is a parallel combination of nMOS and pMOS transistors with gates controlled by complementary voltages.
- This is the most widely used solution for the voltage drop problem in pass transistors.
- It uses the complementary properties of pMOS and nMOS transistors.

(a), (b), (c), (d) are symbol representations of Transmission Gate

IMPLEMENTATION OF LOGIC GATES

IMPLEMENTATION OF LOGIC GATES

IMPLEMENTATION OF 2:1 MULTIPLEXER

2:1 MUX USING TG

Truth Table:

S	z
0	A
1	В

IMPLEMENTATION OF 2:1 MULTIPLEXER

2:1 MUX USING TG

Truth Table:

IMPLEMENTATION OF 4:1 MULTIPLEXER

4:1 MUX USING TG

Truth Table:

Sı	So	Z
0	0	Α
0	1	В
1	0	C
1	1	D

IMPLEMENTATION OF 4:1 MULTIPLEXER

POSITIVE LATCH

NEGATIVE LATCH

CONSTRUCTION OF STATIC LATCHES

IMPLEMENTATION OF POSITIVE LATCH USING TG

- A transmission gate-based implementation of a positive latch is shown in Figure.
- When CLK is high, the bottom transmission gate is ON, and the D input is copied to the Q output.
- During this period, the feedback loop is open because the top transmission gate is off.

IMPLEMENTATION OF POSITIVE LATCH USING TG

- A transmission gate-based implementation of a positive latch is shown in Figure.
- When CLK is high, the bottom transmission gate is ON, and the D input is copied to the Q output.
- During this period, the feedback loop is open because the top transmission gate is off.

IMPLEMENTATION OF POSITIVE LATCH USING TG

- A transmission gate-based implementation of a positive latch is shown in Figure.
- When CLK is high, the bottom transmission gate is ON, and the D input is copied to the Q output.
- During this period, the feedback loop is open because the top transmission gate is off.

POSITIVE EDGE TRIGGERED REGISTER

MASTER-SLAVE POSITIVE EDGE TRIGGERED REGISTER

A transmission gate level implementation of the complete register is shown in Figure.

MASTER-SLAVE POSITIVE EDGE TRIGGERED REGISTER

- \triangleright When CLK=0, T_1 is on and T_2 is off in the master latch. The D input is sampled into node Q_M .
- ➤ During this period, T₃ is off and T₄ is on and the cross-coupled inverters (I₅, I₆) hold the state of the slave latch.
- When CLK=1, the master stage stops sampling the input and goes into a hold mode.
- $\succ T_1$ is off and T_2 is on, and the cross coupled inverters I_3 and I_4 holds the state of Q_M .
- \triangleright Also, T_3 is on and T_4 is off, and Q_M is copied to the output Q.

Implementation of a 2 input Nand and Nor gate using Pass transistor and Transmission Gates

a) 2 i/P NAND Gate:

$$B=1; Y=\overline{A}$$

$$B=0; Y=\overline{B};$$

$$Y=VDD$$

Implementation of 2:1 muliplexer using Pass Transistor and Tranmission Gates NMOS Pase trans Y= 5A + 5B 2: Imux 2:1 mux using Tan-

Realize the following Boolean expression using CMOS Transmission Gate design style

Realize the following Boolean expression using CMOS Transmission Gate design style

SR LATCH CMOS

5	R.	Q	Q	Openation
0	0	m	CMJ	Hold
0	L	0	1	Reset
	0	1	0	set
Ł	1	0	0	Not allowed
				L .

SR LATCH CMOS

(11105 SK Lutch using NITTUP years

5	R	Q	Q	Openution
0	0	1	1	Invalid
0	1	1	0	Set
1	0	0	1	Reset
1	1	m	cal	Hold

SR FF CMOS

JK FF CMOS

