Roll	No.:	 	 	

National Institute of Technology, Delhi

Name of the Examination: B. Tech.

Branch

: EEE

: Ordinary Differential

Semester Course Code : MAL 201

Title of the Course

Equations and Transforms

Time: 3 Hours

Maximum Marks: 50

Section A

[All parts of section A are compulsory. Each part is of 01 mark]

Q.1. Attempt each of the following:

i. The solution of the differential equation
$$\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$$
 is

(A)
$$\sin^{-1} x - \sin^{-1} y = c$$
 (B) $\sin^{-1} x + \sin^{-1} y = c$ (C) $\sin^{-1} x = c \sin^{-1} y$ (D) $\sin^{-1} x \cdot \sin^{-1} y = c$

(B)
$$\sin^{-1} x + \sin^{-1} y$$

(C)
$$\sin^{-1} x = c \sin^{-1} x$$

(D)
$$\sin^{-1} x \cdot \sin^{-1} y = c$$

ii. If
$$J_n(x)$$
 defines the Bessel's function of first kind of order n, then which of the following is true for n>2

(A)
$$\frac{d}{dx} \left[x^n J_n(x) \right] = x^{n-1} J_n(x)$$

(B)
$$\frac{d}{dx} \left[x'' J_n(x) \right] = x J_{n-1}(x)$$

(C)
$$\frac{d}{dx} \left[x^n J_n(x) \right] = x^n J_{n-1}(x)$$
 (D) $\frac{d}{dx} \left[x^n J_n(x) \right] = x J_n(x)$

(D)
$$\frac{d}{dx} \left[x^n J_n(x) \right] = x J_n(x)$$

iii. The finite Fourier sine transform of
$$f(x) = x$$
, $0 \le x \le 1$ is

(A)
$$\frac{1}{n}$$

(B)
$$\frac{\left(-1\right)^n}{n}$$

(A)
$$\frac{1}{n}$$
 (B) $\frac{(-1)^n}{n}$ (C) $\frac{1-\cos n\pi}{n}$

iv. If the Fourier cosine transform of
$$f(x)$$
 is $\sqrt{\frac{2}{\pi}} \frac{\omega}{1+\omega^2}$ then the Fourier transform of $f(ax)$ is

(A)
$$\sqrt{\frac{2}{\pi}} \frac{a\omega}{a^2 + \omega^2}$$
 (B) $\sqrt{\frac{2}{\pi}} \frac{\omega}{a^2 + \omega^2}$ (C) $\sqrt{\frac{2}{\pi}} \frac{a}{a^2 + \omega^2}$ (D) $\sqrt{\frac{2}{\pi}} \frac{a + \omega}{a^2 + \omega^2}$

(B)
$$\sqrt{\frac{2}{\pi}} \frac{\omega}{a^2 + \omega^2}$$

(C)
$$\sqrt{\frac{2}{\pi}} \frac{a}{a^2 + \omega^2}$$

(D)
$$\sqrt{\frac{2}{\pi}} \frac{a+\omega}{a^2+\omega^2}$$

v. If
$$\delta(t)$$
 denotes a unit impulse function, then the Laplace transform of $\frac{d^2\delta(t)}{dt^2}$ will be

B)
$$s^2$$
 (C)

(D)
$$s^{-2}$$

vi. The value of
$$\int_0^\infty t e^{-3t} J_0(4t)$$

(A)
$$\frac{3}{125}$$
 (B) $\frac{2}{125}$

(D)
$$\frac{2}{25}$$

vii. The inverse Laplace transform of
$$\frac{e^{-2s}}{r}$$
 is

(A)
$$e^{3(t-2)}u(t-3)$$

(B)
$$e^{2(t-3)}u(t-2)$$

(C)
$$e^{3(t-2)}u(t-2)$$

(D)
$$e^{2(t-3)}u(t-3)$$

vi. (A) 1 (B)
$$s^2$$
 (C) s (D) s^{-2}
vi. The value of $\int_0^\infty t e^{-3t} J_0(4t)$ is (A) $\frac{3}{125}$ (B) $\frac{2}{125}$ (C) $\frac{3}{25}$ (D) $\frac{2}{25}$
vii. The inverse Laplace transform of $\frac{e^{-2s}}{s-3}$ is (A) $e^{3(t-2)}u(t-3)$ (B) $e^{2(t-3)}u(t-2)$ (C) $e^{3(t-2)}u(t-2)$ (D) $e^{2(t-3)}u(t-3)$
viii. At $x=0$, the Fourier series of $f(x)=\begin{cases} 0, & -\pi < x < 0 \\ \pi - x, & 0 < x < \pi \end{cases}$ converges to

(B) 0 (C)
$$\frac{\pi}{2}$$

ix. If
$$f(x) = \begin{cases} 1, & 0 < x < \frac{1}{2} \\ 0, & \frac{1}{2} < x < 1 \end{cases}$$
 then b_1 in the half-range sine series is equal to

- $(A) \frac{1}{\pi}$
- (B) $\frac{2}{\pi}$
- (C) $\frac{3}{\pi}$
- (D) $\frac{4}{\pi}$
- x. The Fourier transform of exponential signal $e^{j\omega_0 t}$ is
 - (A) a constant
- (B) a rectangular gate
- (C) an impulse
- (D) a series of impulses

Section B

[Attempt any 04 questions of 05 marks each]

- **Q.2.** Solve the differential equation $(D^2 4D + 4)y = 8x^2e^{2x}\sin 2x$.
- **Q.3.** Solve the differential equation $(x+1)^4 D^3 y + 2(x+1)^3 D^2 y (x+1)^2 Dy + (x+1) y = \frac{1}{1+x}$.
- Q.4. Determine the half range Fourier cosine series for $f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi x, & \frac{\pi}{2} < x < \pi \end{cases}$.
- **Q.5.** Find the Fourier transform of $f(x) = \frac{1}{\sqrt{x}}$.
- **Q.6.** Define Laplace transform and inverse Laplace transform of the function. Find the inverse Laplace transform of $F(s) = \ln\left(\frac{s+1}{s+5}\right)$.

Section C

[Attempt any 02 questions of 10 marks each (06 marks + 04 marks)]

Q.7. (A) Find the Fourier series for the function f(x) if f(x) is defined in $-\pi < x < \pi$ as

$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ \sin x, & 0 < x < \pi \end{cases}$$

Hence deduce that $\frac{1}{4}(\pi-2) = \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots$

- **(B)** Find the Fourier sine transform of $g(x) = \begin{cases} x, & 0 < x < 1 \\ 2 x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$
- Q.8. (A) Find the general solution of $2x(x+1)D^2y (1-x)Dy + y = 0$ in series about x = 0.
 - **(B)** Show that $J_n(x) = \frac{x}{2n} \left[J_{n-1}(x) + J_{n+1}(x) \right]$ and express $J_4(x)$ in terms of $J_0(x)$ and $J_1(x)$.
- Q.9. (A) Solve the following system of ordinary differential equation by Laplace transformation $x y'' + y = e^{-t} 1$, $x' + y' y = -3e^{-t} + t$ where x(0) = 0, y(0) = 1, y'(0) = -2.
 - **(B)** Find the Laplace transform of periodic function $f(t) = |\sin \omega t|$ with period $\frac{\pi}{\omega}$.