Question number	Scheme	Marks
7 a (i)	$\int f x = \int (4x^3 - 12x^2 - 19x + 12) dx = \frac{4}{4}x^4 - \frac{12}{3}x^3 - \frac{19}{2}x^2 + 12x + D \text{ oe}$	M1 A1
	For the point $4,-104$ it follows that	
	$-104 = (4)^4 - 4(4)^3 - \frac{19}{2}(4)^2 + 12(4) + D$	M1 A1*
	$-104 = 256 - 256 - 152 + 48 + D \Leftrightarrow D = 0*$	(4)
a (ii)	$x = 0.5$ $f'(x) = 4(0.5)^3 - 12(0.5)^2 - 19(0.5) + 12 = 0$	M1
	$f''(x) = 12x^2 - 24x - 19$	M1
	$x = 0.5$ f" $(x) = 12(0.5)^2 - 24(0.5) - 19(= -28) < 0$ Therefore maximum *	A1 cso (3)
b (i)	$f'(x) = (2x-1)(2x^2-5x-12)$	M1
	$f'(x) = (2x-1)(2x+3)(x-4) \rightarrow x =$	M1
	$x = -\frac{3}{2}$ or $x = 4$, $\left[x = \frac{1}{2} \right]$	A1
	$A\left(-\frac{3}{2}, -\frac{333}{16}\right)$ $B(4,-104)$	A1 A1 (5)
b (ii)	$f''(x) = 12(-1.5)^2 - 24(-1.5) - 19(=44) > 0$ Therefore minimum	ddM1 A1
	x=4 f''(x) = 12(4) ² - 24(4) - 19(= 77) > 0 Therefore minimum	A1
	(Read notes carefully for allocation of these marks)	(3)
	Alternative As we have a maximum at $x = 0.5$ and C is a continuous curve	{ddM1}
	$x = -\frac{3}{2}$ is a minimum and $x = 4$ is a minimum	{A1} {A1} (3)
Total		al 15 marks

Part	Marks	Notes
(a) (i)	M1	Attempt to integrate – see general guidance for minimally acceptable attempt – at
		least one term must be fully correct in this integration (unsimplified).
	A1	Fully correct integration – does not need to include a constant of integration,
		need not be simplified.
	M1	Substitution of $x = 4$ and $y = -104$ into their expression, which must include a
		constant of integration.
	A1 cso	Obtains the given result, making it clear the constant of integration is 0 or listing
		fully the function at the end after fully correct working. There must be no
		incorrect working for this final mark to be awarded.
Note: car	didates ma	y assume $D = 0$ & show, by substituting, $(4, -104)$ lies on the curve final M1 A1
(a) (ii)	M1	Substitution of $x = 0.5$ into f'(x) and shows f'(x) = 0.
		A candidate may also solve $f'(x) = 0$ and solve to get $x = 0.5$.
	M1	For finding $f''(x)$ - see general guidance for minimally acceptable attempt at
		differentiation. At least one term must be fully correct for this differentiation.
	A1 cso*	Substitutes $x = 0.5$ into a fully correct second derivative, shows that the result is
		negative and draws a conclusion. This can be as simple as "shown" or #.
		It is not necessary to work out the actual value of f "(0.5) if clear substitution is
		shown, but if calculated, it must be correct. No incorrect work for this mark to be
		awarded. Note: as always, this A mark must follow 2 M1 marks.

(b)	Part (i) an	nd (ii) may be marked together	
(i)	M 1	A clear attempt to divide by $(2x-1)$ or compare coefficients. The student must arrive	
		at a quadratic factor of the form $(2x^2 + Ax - 12)$ if dividing	
		It is also possible to divide by $\left(x-\frac{1}{2}\right)$ and arrive at a quadratic factor of the form	
		$4x^2 + Bx - 24$	
	M1	Uses a complete method to solve their 3TQ, see general guidance for a minimally acceptable attempt. Must progress to $x = $.	
	A1	$x = -\frac{3}{2}$ or $x = 4$	
		Award M1 M1 A1 if both correct values are given without working.	
	A1	$A\left(-\frac{3}{2}, -\frac{333}{16}\right)$ or $B(4,-104)$ Allow $x = \text{and } y = \text{(clearly paired) for both final A marks.}$	
	A1	$A\left(-\frac{3}{2}, -\frac{333}{16}\right)$ and $B(4,-104)$ accept 20.8 or better – answer is 20.8125	
	Factorisin	g in (a)(ii) and then using in this part can be awarded the marks above.	
(b) (ii)	ddM1	Correctly substitutes $x = -\frac{3}{2}$ or $x = 4$ into their $f''(x)$. Their values	
		Dependent on both previous M marks in part (b). A fully correct evaluation of the second derivative can imply this mark ie sight of 77 and 44. Part (i) and (ii) may be marked together	
	A1	Substitutes $x = -1.5$ or $x = 4$ into a fully correct second derivative, shows that the result is positive and draws the conclusion this is a minimum. It is not necessary to work out the actual value of $f''(x)$ if clear substitution is shown, but if calculated, it	
	A1	must be correct. Substitutes $x = -1.5$ and $x = 4$ into a fully correct second derivative, shows that the	
	AI	result is positive and draws the conclusion that both values of x give a minimum. It is	
		not necessary to work out the actual value of $f''(x)$ if clear substitution is shown, but	
		if calculated, it must be correct.	
ALT	ddM1	For stating the curve is continuous and there is a maximum at $x = 0.5$ Dep both previous M	
	A1	For stating "as we have a maximum at $x = 0.5$ " and progressing to state either A or B must be a minimum.	
	A1	Fully correct conclusion, stating <i>A</i> and <i>B</i> must both be minimum points.	
There MI	J ST be an a	appropriate justification for these marks to be awarded, such as that given in M1	

Question	Scheme	Marks
number		
8 a	$\frac{4}{3}\pi r^3 = 500 \text{so } r^3 = \frac{3 \times 500}{4\pi} \text{therefore } r = 4.92 \text{accept awrt } 4.92$	M1 A1 (2)
ь	$\delta A = 20$	B1
	$(A = 4\pi r^2) \rightarrow \left(\frac{\mathrm{d}A}{\mathrm{d}r}\right) = 8\pi r$	M1
	$\delta r \approx \frac{\mathrm{d}r}{\mathrm{d}A} \delta A = 20 \times \frac{1}{8\pi r}$	M1
	When $r = 4.92$ $\delta r \approx \frac{20}{8\pi(4.92)} = 0.16(16204507)$	dM1
	or 0.1617428283 if 4.92 used	
	0.16 cm accept awrt to 0.16	A 1
	one on acceptantities one	(5)
	Total 7 m	

Part	Marks	Notes
(a)	M1	For correct substitution into the formula for volume of a sphere and correct rearrangement
		to give r or r^3 .
	A1	For $r = 4.92$
(b)		For $\delta A = 20$ - may be stated explicitly or implicit in working.
	B1	Accept $\frac{dA}{dt} = 20$
	M1	For $8\pi r$
		A may be replaced with another variable, eg S
	M1	For $\delta r \approx \frac{\mathrm{d}r}{\mathrm{d}A} \delta A$ and substitution of 20 and their expression for $\frac{\mathrm{d}A}{\mathrm{d}r}$ Condone poor notation if substitution and their expression for $\frac{\mathrm{d}A}{\mathrm{d}r}$ is correct. Eg accept $\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}A} \times \frac{\mathrm{d}A}{\mathrm{d}t}$ if using their expression for $\frac{\mathrm{d}A}{\mathrm{d}r}$
	dM1	For substitution of their value for r into their expression (as given above, poor notation condoned) for δr
		Dependent on previous method mark.
	A1	For 0.16 cm (units not required)
	Without a	ppropriate calculus – no marks may be awarded for this question.