Are the following functions continuous or not continuous? Sketch an argument using the ϵ - δ definition of continuity and an argument using the open set definition of continuity.

$$(1) f(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x \neq 0 \end{cases}$$

Let
$$E = \frac{1}{2}$$
. Then if $x = 0$, for all $S > 0$, $y = \frac{8}{2}$ has $|x-y| = \frac{8}{2} < \delta$, but $|f(x) - f(y)| = 1 \ge \frac{1}{2} = \varepsilon$.

The preimage of (1, 2) under f is 103, which is not open

(2)
$$g(x) = \begin{cases} \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

←

Let x=0

Let E=1. For each positive integer n, g let $y=\frac{1}{2\pi n + \sqrt{1/2}}$.

For all 8>0 there is an n s.t. Oc yn <8. We have

 $|g(x) - g(y_n)| = 1 \ge 1 = \varepsilon.$

Let U = (-1,1). Then $0 \in g^{-1}(u)$, $y_n \notin g^{-1}(u)$ for all n. Since $\forall \varepsilon > 0$ $\exists n$ s.t. $y_n \in B(0,\varepsilon)$, so $B(0,\varepsilon) \notin U$. Brates Page 1 Therefore U is not open.

思考证 的 以 以思

(3) Prove or give a counterexample: Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous function. Then whenever $U \subseteq \mathbb{R}$ is open, $f(U) \subseteq \mathbb{R}$ is open.

False: Let
$$f: \mathbb{R} \to \mathbb{R}$$
 $\times F \to 0$.

Then $f((0,1)) = 803$ is not open.

Then $f((0,1)) = 803$ is not open.

(4) Prove or give a counterexample: Suppose $f: \mathbb{R} \to \mathbb{R}$ is a continuous function. Then whenever $Z \subseteq \mathbb{R}$ is closed, $f(Z) \subseteq \mathbb{R}$ is closed.

False. Let
$$f: \mathbb{R} \to \mathbb{R}$$
 $x \mapsto e^x$.

Then $f(\mathbb{R}) = (0, \infty)$ is not closed.

 $x \mapsto e^x \mapsto (0, \infty)$ is not closed.

 $x \mapsto e^x \mapsto (0, \infty)$ is not closed.

 $x \mapsto e^x \mapsto (0, \infty)$ is not closed.

 $x \mapsto e^x \mapsto (0, \infty)$ is not closed.

We will show the following on homework:

Theorem 1. If
$$f_1: \mathbb{R}^n \to \mathbb{R}^{m_1}$$
 and $f_2: \mathbb{R}^n \to \mathbb{R}^{m_2}$ are continuous, then the function

$$f_1 \times f_2 : \mathbb{R}^n \to \mathbb{R}^{m_1 + m_2}$$

 $\mathbf{x} \mapsto (f_1(\mathbf{x}), f_2(\mathbf{x}))$

is continuous.

- (5) Let's show that subtraction is continuous without ϵ 's and δ 's.
 - (a) Show that the constant function $f : \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto -1$ is continuous using the open sets definition of continuity.

(b) Show that the identity function $id_{\mathbb{R}}: \mathbb{R} \to \mathbb{R}$ is continuous using the open sets definition of continuity.

(c) Prove that

$$-: \mathbb{R}^2 \to \mathbb{R}$$

$$(x,y) \mapsto x - y$$
is continuous by writing it as a composition of continuous functions.

We know $\pi_1: \mathbb{R}^2 \to \mathbb{R}, \ \pi_2: \mathbb{R}^2 \to \mathbb{R} \ +: \mathbb{R}^2 \to \mathbb{R}$

$$(x,y) \mapsto x \qquad (x,y) \mapsto y \qquad (x,y) \mapsto xy$$

are continuous

Then
$$+ \circ (\pi_1 \times (m \circ (f \times \pi_2))) : \mathbb{R}^2 \to \mathbb{R}$$

$$(x,y) \mapsto \times + (m \circ (f \times \pi_2)) (x,y)$$

$$= \times + (m (-1,y))$$

$$= \times + -1 \cdot y$$

$$= \times -y$$

is continuous

(d) Recall that the graph of a function $f: X \to Y$ is the subset $\operatorname{graph}(f) = \{(x,y) \in X \times Y \mid f(x) = y\}.$ Is the graph of $\operatorname{id}_{\mathbb{R}}$ is a closed subset of \mathbb{R}^2 ? Is it an open subset of \mathbb{R}^2 ?

(6) Prove that if $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous, then for each closed subset Z of \mathbb{R}^m , $f^{-1}(Z)$ is a closed subset of \mathbb{R}^n . (Hint: $f^{-1}(A - B) = f^{-1}(A) - f^{-1}(B)$.)

Let Z be a closed subset of R". Then U = Z is open.

$$f'(z) = f'((z^c)^c) = f'(u^c) = (f'(u))^c$$

closed, since complement of open.

- (7) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function.
 - (a) Prove that the function $\mathbb{R}^2 \to \mathbb{R}$ given by $(x, y) \mapsto y f(x)$ is continuous.

$$\pi_{\mathbf{z}}: \mathbb{R}^2 \to \mathbb{R}$$
 , $f \circ \pi_{\mathbf{z}}: \mathbb{R}^2 \to \mathbb{R}$ continuous $(x_{\mathbf{z}\mathbf{y}}) \mapsto \mathbf{y}$ $(x_{\mathbf{z}\mathbf{y}}) \mapsto f(\mathbf{x})$

so
$$-\circ (\pi_2 \times (f \circ \pi_1)) : \mathbb{R}^2 \to \mathbb{R}$$
 is continuous $(x,y) \mapsto (y-f(x))$

(b) Use part (a) to show that the graph of f is a closed subset of \mathbb{R}^2 .

write
$$h: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto y - f(x)$.
By 6, $h^{-1}(\{0\}) = \{(x,y) \mid y - f(x) = 0\}$
 $= graph(f)$, is closed.

(8) Consider the function

$$g(x) = \begin{cases} \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

again. We will show that the graph of g is not closed. (And therefore g is not continuous!)

(a) For each $y \in [-1,1]$, show that (0,y) is a limit point of graph(g). (Hint: what are the x's so that $\sin(1/x) = y$?)

Consider
$$x_n = \frac{1}{2\pi n + \arcsin(y)}$$
.

Then $\sin(\frac{1}{x_n}) = y$ for all n , so $(x_n, y) \in graph(g)$ for all n .

For all
$$\varepsilon>0$$
, there is n s.t. $0 \times n < \varepsilon$, so
$$\left(B(Co, \gamma), \varepsilon \right) \cap g \operatorname{naph}(g) \neq \emptyset \text{ for all } \varepsilon.$$

$$= 103)$$

$$(o, \gamma) \text{ is a limit point of } g \operatorname{naph}(g).$$