近似算法

概念

- 1. 近似算法和最优化算法
- 2. 近似比和r-近似算法
- 3. 多项式时间近似方案、完全多项式时间近似方案

可近似性分类

近似性	问题
完全可近似	背包问题
可近似	最小顶点覆盖问题, 多机调度问题
不可近似	货郎问题

最小顶点覆盖

左左 > 十	トロ / ハ L レ
算法	近似比
MVC	2

多机调度问题

算法	近似比
G-MPS	$2-rac{1}{m}$
DG-MPS	$\frac{3}{2}-\frac{1}{2m}$

$$G-MPS(I) - t_b \leq \frac{1}{m} \left(\sum t_i - t_b \right)$$

$$G-MPS(I) \leq \frac{1}{m} \sum t_i + (I - \frac{1}{m}) t_b$$

$$\leq OPT(I) + (I - \frac{1}{m}) OPT(I)$$

$$F = \frac{2m-1}{m} = 2 - \frac{1}{m}$$

察文例:
$$\frac{m(m-1) \times 1 + 1 \times m}{r = \frac{2m-1}{m}} = 2 - \frac{1}{m}$$

$$2Mj \pm \frac{\pi}{2} \sqrt{\eta} - \frac{1}{1} = 7 \text{ OPT}(I) = \frac{1}{1} \sqrt{\eta} + \frac{1}{1} = 2 + \frac{1}{1} \sqrt{\eta} + \frac{1}{1} = 0$$

> 6550PT(I)

满足三角不等式的货郎问题

算法 近似比
$$(\frac{1}{3}(log_2(n+1)+\frac{4}{3}),\frac{1}{2}(\lceil log_2n\rceil+1)]$$
 MST
$$2$$
 MM
$$\frac{3}{2}$$

有紧文例

=> MST(I) < 2W(T(I)) < 20PT(I)

是最小生成树的奇色顶点在原图中导出子图的最小匹配" $W(M) \leq \frac{1}{2}w(C) \leq \frac{1}{2}oPJ(I)$

 $MM(I) \leq W(M) + W(I)$ $\leq \frac{1}{2} OPT(I) + OPT(I)$

货郎问题

这 A 为近似 再 占

不可近似,除非P=NP HC ≤p TSP,⇒ P= NP

0-1背包问题

算法	近似比	时间复杂度
G-KK	2	O(n)
PTAS_ε	$1+\epsilon$	$O(n^{rac{1}{\epsilon}+2})$
ਿFPTAS_ε	$1+\epsilon$	$O(n^3(1+\frac{1}{\epsilon}))$

① 都 施 装 入 √
 ② 有 - ケ 不 旅 湛 入 。 没 第 - ケ 为 し
 G - KK(I) + VL > OP T(I)
 ⇒ G - KK(I) + Vmax > OP T(I)
 ⇒ 2G - KK(I) > OP T(I)