

Serijski U/I

Serijski i paralelni prenos

Serijski prenos	Paralelni prenos
1 bit u jednom taktu	8 bitova u jednom taktu
2 linije za prenos	9 linija za prenos
Prenos je sporiji	Prenos je brži
Veća rastojanja	Kratka rastojanja

Serijska veza terminal-mikroračunar

Problemi u prenosu signala

- slabljenje signala energija signala duž propagacionog puta se smanjuje
- distorziono kašnjenje signala različite Fourier-ove komponentesignala se prostiru različitim brzinama (što dovodi do izobličenja signala)
- šum nepoželjna energija koja potiče od drugih izvora
 - termički šum je uzrokovan slučajnim kretanjem elektrona kroz provodnike,
 - preslušavanje je uzrokovano induktivnom spregom izmešu dva provodnika,
 - Impulsni šum posledica je uticaja indukovanih smetnji energetskog razvoda (uključenje/isključenje raznih motora ili velikih potrošača).

Načini serijskog povezovanja

POINT TO POINT PREDAJNIK PRIJEMNIK

DTE

MULTIDROP

DTE

Fizička veza

Veza sa jednim i dva para provodnika

Logičke veze

SIMPLEX

Samo za prijem ili samo za predaju, ali ne oba

HALF DUPLEX

Komunikacija je moguća u oba smera, ali ne istovremeno

FULL DUPLEX

Komunikacija u oba smera istovremeno

Komponente komunikacionog sistema

Tipovi modulacije

Amplitudna

Frekventna

Fazna

Asinhroni prenos

- Svaki bajt se "omotava" da bi omogućio sinhronizaciju prijemnika i predajnika
- Dodaju se start i stop bitovi
- Linija je inicijalno na "visokom" nivou
- Kada treba da se prenese 1B, u trajanju od 1 klokintervala, prelazi na nisku vrednost – start bit
- Nakon prenosa poslednjeg bita podatka (D₇) linija prelazi na visok nivo za određeni period (1, 1.5 ili 2 klok-intervala) – stop bitovi

Asinhroni prenos

- Pogodan je za manje brzine prenosa, do 32kb/s.
- Na svaki bajt troši još bar 2 dodatna bita.
- Nema kontrolu grešaka.

Sinhroni prenos

- Zahteva prenos takt-signala i master/slave organizaciju (master je onaj koji šalje i obezbeđuje takt)
- Prenos takta obezbeđuje se posebnom linijom ili stalnim prenosom podataka
- Povećava efikasnost grupisanjem podataka
- Dodaje se okvir (početak, zaglavlje, kontrolna suma, kraj okvira)
- Može biti
 - Karakter-orijentisan
 - Bit-orijentisan

Serijski protokoli

• RS-232

- Kratko rastojanje (<15m) i mala brzina prenosa (20kb/s)
- Podložan šumovima (predaja i prijem dele istu uzemljenje)
- Ne podržava multidrop

RS-423

- Veće rastojanje (<1200m) i veće brzine prenosa (100kb/s na 15m, 1kb/s na 1200m)
- Podložan šumovima (predaja i prijem dele isto uzemljenje nebalansiran)
- Kompatibilan je sa RS-232, iako dozvoljava veće dužine kablova i brzine prenosa
- Adaptabilna brzina promene signala (može se postaviti zavisno od dužine kabla i brzine prenosa i time smanjiti uticaj šuma; izražava se u V/μs; za RS-232 max. 30 V/μs)

Typical RS-232 Wiring

TX 0	——○ RX
RX 0	——○ тх
SND O	——○ GNE

Serijski protokoli

RS-422

- Veće rastojanje (<1200m) i veća brzina prenosa (10Mb/s na 15m, 100kb/s na 1200m)
- Podrška za multidrop (više uređaja mogu biti vezana na jedan port, svaki ima svoju adresu)
- Otporan na šum (upredene parice za svaki kanal, signal predstavlja razliku napona linija u okviru parice balansiran)

RS-485

- Sličan RS-422, ali dozvoljava više i primalaca i pošiljaoca (više mastera na magistrali)
- Koristi samo jednu paricu za prenos podataka (RS-422 koristi dve)
- Mnogo komplikovaniji protokol za komunikaciju i teže programiranje

Typical RS-422 Wiring

Typical 2-Wire RS-485 Wiring

Serijski protokoli

Specification	RS485	RS422	RS423	RS232
Line Configuration	Differential	Differential	Single-ended	Single-ended
Total number of Tx and Rx on one line	32Tx 32Rx	1Tx 10Rx	1Tx 10Rx	1Tx 1Rx
Maximum Cable Distance (at 1000kbps)	~4000 feet	~4000 feet	~4000 feet	~50 feet
Maximum Data Rate (for 50 feet)	10Mbps	10Mbps	100kbps	20kbps
Typical logic levels	±1.5V~±6V	±2V~±6V	±3.6V~±6V	±5V~±25V
Tx load impedance	54Ω	100Ω	>=450Ω	$3k - 7k\Omega$
Maximum Rx input resistance	12kΩ	4kΩ	4kΩ	3~7kΩ
Receiver input sensitivity	± 200mV	± 200mV	± 200mV	± 3V

Dužina kabla i maksimalna brzina prenosa

RS-232

- DTR (Data Terminal Ready) se koristi za upravljanje priključenjem DCE na komunikacioni kanal.
- **DSR** (Data Set Ready) se koristi da prikaže stanje lokalnog DCE (modema). Ako je mark znači da je spreman za korišćenje.
- DSR i DTR se često vezuju na izvor napajanja u DCE i DTE respektivno, tako da pokazuju da je svaki od uređaja uključen i spreman za rad.
- RTS (Request To Send), šalje DTE (računar ili terminal) ka DCE (modemu) da bi pripremio DCE za prenos. Ovaj signal se takođe koristi da odredi smer prenosa u half duplex režimu. Prelazi na aktivni nivo kad god DTE ima spreman karakter za slanje.
- CTS (Clear To Send) generiše DCE da bi obavestio DTE da prenos može da počne kad god DTE bude spreman. Kod full duplex linija RTS i CTS se prosto vezuju zajedno.
- **Ring** (CE) ukazuje da je prisutan zvuk zvona na telefonskoj liniji. Indicira uspostavljanje veze onom ko je zvao.
- **DCD** (*Data Carrier Detect*) znači da je DCE primio signal koji odgovara modemskim specifikacijama. Ako ga nema, znači da signal nije primljen ili da je nepogodan za demodulaciju od strane DCE.

Tipične primene

Serijski U/I korišćenjem paralelnog porta

- Pretpostavimo da je potrebno implementirati softverski zasnovan serijski U/I, korišćenjem 8086 procesora
- Na raspolaganju je 8255 programabilni periferijski interfejs
- Postaviti port A (P_A) u mod 0 i ulazni smer, a port B (P_B) u mod 0 i izlazni smer
- Neka se bit P_{A0} koristi kao serijski ulaz, a P_{B0} kao serijski izlaz

Serijski U/I korišćenjem paralelnog porta

Serijski U/I korišćenjem paralelnog porta

- Smestiti podatke koje treba preneti u memoriju, počev od određene lokacije
- Smestiti dužinu u odgovarajući brojač
- Inicijalizovati 8255 tako da radi u odgovarajućem režimu
- Dok nisu preneti svi bajtovi
 - Učitati jedan bajt
 - Poslati 0 na P_{Δ} (start bit)
 - Dok nisu poslati svi bitovi (8)
 - Poslati na P_A očitani bajt (samo P_{AO} se zaista šalje)
 - Šiftovati sadržaj pročitanog podatka
 - Poslati 1 na P_A (stop bit)
 - Dekrementirati brojač i inkrementirati adresu sa koje se čitaju podaci

USART 8251 (Universal Synchronous Asynchronous Receiver Transmitter)

- Ako se koristi 8251, CPU treba samo da inicijalizuje komponentu i pošalje odgovarajući podatak
- 8251 prihvata "paralelni" podatak od CPU, konvertuje ga i šalje serijski
- Takođe, prihvata serijske podatke na svom ulazu i konvertuje ih u "paralelne" i prosleđuje CPU