Contents

1 Définitions 2

Module de Tate, notes 1

5 juillet 2023

1 Définitions

Module de Tate : On rappelle que (avec choix de base)

$$E[l] \cong \mathbb{Z}/l\mathbb{Z} \times \mathbb{Z}/l\mathbb{Z} \tag{1}$$

$$E[p^e] \cong O \ ou \cong \mathbb{Z}/p^e\mathbb{Z}$$
 (2)

En char p pour $l \neq p$. En plus, si $P \in E[l]$ et $\sigma \in Gal(\overline{k}/k)$ alors $P^{\sigma} \in E[l]$ car les polynômes à division sont définis sur k si E est déf sur k (voir Schoof). C'est à dire que E[l] est munit d'une action de $Gal(\overline{k}/k)$ et ce sera de même pour le module de Tate. On definit le module de Tate via :

$$T_l(E) = \lim_{\stackrel{\longleftarrow}{\longrightarrow}} E[l]$$

Où:

On a via (1) et (2): (avec choix de base)

$$T_l(E) \cong \mathbb{Z}_l \times \mathbb{Z}_l \tag{3}$$

$$T_p(E) \cong O \text{ ou } \mathbb{Z}_p$$
 (4)

Et l'action de $Gal(\overline{k}/k)$ sur $T_l(E)$ fournit une représentation : (avec choix de base encore)

$$\rho_l : Gal(\overline{k}/k) \to GL_2(\mathbb{Z}_l) \hookrightarrow GL_2(\mathbb{Q}_l)$$

On peut éviter le choix de base avec :

$$\rho_l : Gal(\overline{k}/k) \hookrightarrow Aut(T_l(E)) \otimes_{\mathbb{Z}_l} \mathbb{Q}_l$$

Ensuite $\phi \in \text{Hom}(E_1, E_2)$ induit $\phi \in \text{Hom}(E_1[l], E_2[l])$ puis $\phi_l \in \text{Hom}_{\mathbb{Z}_l}(T_l(E_1), T_l(E_2))$.

Où en fait : Le premier résultat important

$$\operatorname{Hom}(E_1, E_2) \otimes_{\mathbb{Z}} \mathbb{Z}_l \hookrightarrow \operatorname{Hom}_{\mathbb{Z}_l}(T_l(E_1), T_l(E_2)) \tag{*}$$

est une injection.

Preuve: On regarde

- ϕ tel que $\phi_l = 0$ et $\phi \in M \otimes \mathbb{Z}_l \subset \text{Hom}(E_1, E_2) \otimes \mathbb{Z}_l$ un sous groupe de type fini (qui est alors libre).
- Et $M_{div} \otimes \mathbb{Z}_l$ (les fractions contenues dans le Hom) est alors de t.f donc libre aussi (le Hom est sans torsion). On le montre en tensorisant avec \mathbb{R} . Alors deg : $M_{div} \otimes \mathbb{R} \to \mathbb{R}$ est continue et $\deg^{-1}(]-\infty,1[) \cap M_{div} \otimes \mathbb{R} = \{0\}$, i.e. M_{div} est un reseau!.

Ensuite, suffit d'écrire $\phi = \sum_i \alpha_i \otimes \psi_i$ de sorte qu'on ait $\psi = \sum_i a_i \psi_i$ et

$$a_i \equiv \alpha_i \bmod l^n$$

Alors $\phi = \lambda \circ [l^n]$ et $\lambda = \sum b_i \psi_i$ d'où $a_i = l^n b_i$ i.e.

$$\alpha_i \equiv 0 \bmod l^n$$

Puis
$$\alpha_i = 0$$
.

Avec le choix de base et comme End(E) est sans torsion,

$$\mathbf{rg}_{\mathbb{Z}}\mathbf{End}(E) \leq \mathbf{rg}_{\mathbb{Z}_l}\mathbf{End}(T_l(E)) \leq 4.$$

On déf $End_k(T_l(E))$ pour les endomorphismes commutant avec $Gal(\overline{k}/k)$.

Theoreme d'Isogénie : L'injection $(*)_k$ est un isomorphisme quand

- k est un corps de nombres. (Faltings)
- k est un corps fini. (Tate)

Apparemment on peut voir le module de Tate comme un H_1 et le théorème veut alors dire qu'on cherche à savoir quand est-ce qu'un de ces morphismes provient d'un vrai morphisme géométrique.