Devoir Surveillé - 2h

Exercice 1 - suite de fonction - récurrence - france septembre 2019

10 points

Soit f la fonction définie sur l'intervalle [0; 4] par

$$f(x) = \frac{2+3x}{4+x}.$$

Partie A

On considère la suite (u_n) définie par :

 $u_0 = 3$ et pour tout entier naturel n, $u_{n+1} = f(u_n)$.

On admet que cette suite est bien définie.

- Calculer u₁.
- 2. Montrer que la fonction f est croissante sur l'intervalle [0; 4].
- 3. Montrer que pour tout entier naturel n,

$$1 \leq u_{n+1} \leq u_n \leq 3$$
.

- a. Montrer que la suite (u_n) est convergente.
 - **b.** On appelle ℓ la limite de la suite (u_n) ; montrer l'égalité :

$$\ell = \frac{2+3\ell}{4+\ell}$$

c. Déterminer la valeur de la limite ℓ .

Partie B

On considère la suite (v_n) définie par :

 $v_0 = 0$, 1 et pour tout entier naturel n, $v_{n+1} = f(v_n)$.

Placer sur l'axe des abscisses par construction géométrique les termes v_1 , v_2 et v_3 sur l'annexe, à rendre avec la copie.

Quelle conjecture peut-on formuler sur le sens de variation et le comportement de la suite (v_n) quand n tend vers l'infini?

2. a. Montrer que pour tout entier naturel n,

$$1 - \nu_{n+1} = \left(\frac{2}{4 + \nu_n}\right) (1 - \nu_n).$$

b. Montrer par récurrence que pour tout entier naturel n,

$$0 \leqslant 1 - \nu_n \leqslant \left(\frac{1}{2}\right)^n$$
.

3. La suite (v_n) converge-t-elle? Si oui, préciser sa limite.

Exercice 2 - limites - à bien rédiger

2 points

- 1/ calculer la limite de $\frac{x^2-3x+2}{x^2+x+2}$ en $+\infty$
- 2/ calculer la limite de $\sqrt{x^2+1}-\sqrt{x}$ en $+\infty$

Exercice 3 - étude de fonction

8 points

on considère la fonction $f(x)=\frac{3x-3}{x+1}$ définie (à priori) sur ${\bf R}$

1/ donner Df, le domaine de définition de f

- 2/ déterminer 2 réels a et b tel que : $f(x) = a + \frac{b}{x+1}$, $\forall x \in Df$
- 2/en déduire les limites de f aux bornes du domaine Df
- 3/ en déduire que f admet une asymptote horizontale et une asymptote verticale, dont on donnera les équations
- 4/ calculer f', la dérivée de f, sur Df; en déduire le tableau de variation (complet : avec les limites) de f sur Df
- 5/ montrer que si x > 5 alors 2 < f(x) < 5
- 6/ quels sont les entiers naturels non nuls n tels que n+1 divise 3n-3?