

2018.11.1

Linlin Yu(Leader): 515030910078

Xueqi Guo: 515030910103

Zhenglong Wang: 515030910102

Chenyi Wang: 515030910362

Contents

Introduction 1

Idea & Rationale

3 Experiments

4 Conclusion

Introduction

traditional method

Greulich and Pyle atlas

Deep learning method

Convolutional neural network

IDEAI: A few specific pieces of bones are primary factors in determination of bone age prediction.

Bones	Weights in CHN		Weights in TW2	Bones	Weights in CHN		Weights in TW2
	male	female			male	female	
radius	9.52	8.39	10	proximal phalanx V	6.96	7.97	2.5
ulna	0	0	10	middle phalanx III	7.69	7.89	2.5
metacarpal bone I	1.97	4.51	3.34	middle phalanx V	1.14	3.83	2.5
				distal phalanx I	10.2	8.61	3.33
metacarpal bone III	7.75	7.76	2.5	distal phalanx III	6.69	7.06	2.5
metacarpal bone V	4.53	6.61	2.5	distal phalanx V	1.61	3.33	2.5
proximal phalanx I	2.09	3.87	3.33	capitatum bone	14.29	10.76	7.1
proximal phalanx III	11.19	9.21	2.5	hamate bone	14.13	10.75	7.1

(CHN, TW2: The Standards of Skeletal Maturity of Hand and Wrist.)

Attention mechanism:

- 1.To reduce the computational burden of processing high-dimensional input data, and to reduce the data dimension by structuredly selecting a subset of inputs.
- 2.To make the task processing system focus more on finding useful information related to the current output in the input data, thereby improving the quality of the output.

$- \wedge \sqrt{}$

Neural Network Architecture

Input: PNG files (12611 files)

Output: Floating point number

Attention mechanism: Conv2d_1~Conv2d_3

Mean Absolute Deviation: 13.6961 months

(VGG16: Pre-training model)

IDEAT: We wonder whether and how the size of convolution kernel will influence the accuracy of the final prediction.

IDEAII: Gender might be a potential influencing factor on bone age prediction.

Features	Female	Male
Height increase period	Bone age 11-13 years	Bone age 13-15 years
Puberty	Bone age 11 years and about 9 months	Bone age 13 years and about 9 months
Stop growing in height	Bone age 17.3 years	Bone age 18.4 years

- 1, Training male and female X-rays separately.
- 2. Adjusting the convolutional neural network structure to introduce Gender as a new feature.

	val_mae_month
Attention	13.6961
No_Attention	16.8528

(Evaluation standard: Mean Absolute Deviation)

Attention mechanism is suitable.

The contents of experiments:

Idea ${f I}$:	pre_train=vgg16
	pre_train=vgg19
	pre_train=resnet
	pre_train=inception_v3
Idea $oldsymbol{\Pi}$:	kernel_size=(1,1)
	kernel_size=(3, 3)
	kernel_size=(5, 5)
Idea ∭:	no_balance
	male only
	female only

Idea ${f I}$: Using VGG16 as pre-training model.

Regressions of 4 different pre-training models.

resnet

	• predictions — actual
200 -	
(Months)	
Predicted Age (Months)	
ة. 50 -	
	50 100 150 200

	• predictions — actual
200 -	
<u> </u>	ا ن ن کرن
(Months)	
Predicted Age (Months)	
Predict	
50 -	
	'/-
0 -	50 100 150 200
ľ	Actual Age (Months)

inception v3

pre_train_model	val_mae_month		
vgg16	13.6961		
vgg19	15.2857		
resnet	26.9282		
inception_v3	35.3809		

Discussion

It seems that images pre-trained by VGG16 attain The best performance in bone age prediction.

A possible conjecture is about VGG16's generous parameters and shallow depth.

model	size	accuracy of Top1	accuracy of Top5	amount of parameter	depth
Xception	88MB	0.79	0.945	22,910,480	126
VGG16	528MB	0.715	0.901	138,357,544	23
VGG19	549MB	0.727	0.91	143,667,240	26
ResNet50	99MB	0.759	0.929	25,636,712	168
InceptionV 3	92МВ	0.788	0.944	23,851,786	159
InceptionR esNetV2	215MB	0.804	0.953	55,876,736	572
MobileNet	17MB	0.665	0.871	4,253,864	88

Idea Π : Replacing the original kernel of 1*1 with one of 3*3 and 5*5.

(1*1)

(3*3)

(5*5)

Kernel_size	(1*1)	(3*3)	(5*5)
val_mae_month	13.6961	13.0673	12.9808

Discussion

A 5*5 kernel perform the best compared **VV** with a 1*1 kernel and 3*3 kernel in Mean Absolute Deviation but it has an no obvious difference compared to 3*3 kernel.

Guess: Overfitting.

Idea ${ m I\hspace{-.1em}I\hspace{-.1em}I}$: Using gender as a new feature.

Original data without balance in gender information.

No balance

	Convergence time
No_balance	8:27:58
Balance	4:09:50

Data with balance in gender and information.

Regressions of male-only and female-only.

Male-only

Female-only

Gender information	no_balance	male only	female only
val_mae_month	14.1151	10.8182	10.6902

shape	val_mae_months
16	11.2869
32	10.969
64	9.7845
128	10.2238
256	10.8532

Discussion

This experiment indicates that there indeed exists difference between male and female in skeletal development.

Conclusion

- $-\sqrt{\sqrt{}}$
- 1. Attention mechanism is effective in the task.
- 2. VGG16 performed best in several pre-training models that had been tried.
- 3. There indeed exists difference between male and female in skeletal development.
- 4, 3*3 kernel is suitable for this task.

Future work

1. Grayscale graph should be processed by one channel.

2. If we have pre-training weights for medical images, the pre-training model may perform better.

3. The uneven distribution of bone age may have potential effect on prediction.

4. The scanned image is noisy and can be converted to original image.

