Hodge theory of cubic fourfolds, their Fano varieties, and associated K3 categories

after Hassett, Addington-Thomas, Beauville, Donagi, Voisin, Galkin-Shinder, ...

Period domains and moduli spaces

Lattice theory

(K3):

$$\Gamma = H^{4}(X, \mathbb{Z})_{pr}(-1), \ \Lambda = H^{2}(S, \mathbb{Z}) = E \oplus U_{1} \oplus U_{2} \oplus U_{3},$$

$$\widetilde{\Lambda} = \widetilde{H}(S, \mathbb{Z}) = \Lambda \oplus U_{4}, \ A_{2} \subset U_{3} \oplus U_{4}$$

$$\operatorname{sign} = (2, 20) \qquad \Gamma \simeq A_{2}^{\perp} \simeq E \oplus U_{1} \oplus U_{2} \oplus A_{2}(-1).$$

$$\operatorname{sign} = (2, 19) \qquad K_{d}^{\perp} \subset \Gamma \subset \widetilde{\Gamma}$$

$$|\wr \qquad |\wr \qquad \qquad |$$

$$L_{d}^{\perp} \subset A_{2}^{\perp} \subset \widetilde{\Lambda} \supset \Lambda \supset \Lambda_{d}$$

$$(H)_{0}: \qquad K_{d}^{\perp} \simeq L_{d}^{\perp} \simeq E \oplus U_{2} \oplus A_{2}(-1) \oplus \mathbb{Z}(d/3).$$

$$(H)_{2}:$$

 $K_d^{\perp} \simeq L_d^{\perp} \simeq \Lambda_d$.

Period domains

20

$$V=\mathbb{R}$$
 vector space & symmetric $(\ .\),\ \mathrm{sign}=(n_+\geq 2,n_-)$ $\mathrm{Gr^{po}}(2,V)\ \simeq\ \{x\mid (x)^2=0,\ (x.ar{x})>0\}\subset \mathbb{P}(V_\mathbb{C})$ $\simeq\ \mathrm{O}(n_+,n_-)/\mathrm{SO}(2)\times \mathrm{O}(n_+-2,n_-)$

 $\mathbb{P}(K_{d\mathbb{C}}^{\perp}) \ \subset \ \mathbb{P}(\Gamma_{\mathbb{C}}) \ \subset \ \mathbb{P}(\widetilde{\Lambda}_{\mathbb{C}}) \ \supset \ \mathbb{P}(\Lambda_{\mathbb{C}}) \ \supset \ \mathbb{P}(\Lambda_{d\mathbb{C}})$

23

 D_d \subset D \subset \widetilde{Q} \supset Q \supset

21

20

 Q_d

19 20 22 20 19

a
$$D = D = D = D + \Box D^{+} \Box D^{-}$$

- D_d , D, Q_d have 2 connected components, e.g. $D = D^+ \sqcup D^-$,
- Q
 Q are connected.

21

$$\begin{split} \tilde{\mathrm{O}}(\Gamma) &\coloneqq \{g \in \mathrm{O}(\widetilde{\Gamma}) \mid g(h) = h\} \subset \mathrm{O}(\Gamma = h^\perp) \text{ index two} \\ \tilde{\mathrm{O}}^+(\Gamma) &\coloneqq \{g \in \tilde{\mathrm{O}}(\Gamma) \mid g|_{\Gamma} \text{ preserves orientation of } (2,0) \subset (2,19)\} \\ &\Leftrightarrow g(D^+) = D^+ \\ \text{Similar: } \tilde{\mathrm{O}}^+(\Lambda_d) \subset \tilde{\mathrm{O}}(\Lambda_d = \ell^\perp), \ \ell \in \Lambda \text{ with } (\ell)^2 = d, \text{ and} \\ \tilde{\mathrm{O}}(\Gamma, K_d) &\coloneqq \{g \in \tilde{\mathrm{O}}(\Gamma) \mid g(K_d) = K_d \Leftrightarrow g(v_d) = \pm v_d\} \\ &\bigcup \\ \tilde{\mathrm{O}}(\Gamma, v_d) &\coloneqq \{g \in \tilde{\mathrm{O}}(\Gamma) \mid g(v_d)|_{K_d} = \mathrm{id} \Leftrightarrow g(v_d) = v_d\}. \end{split}$$

Lemma (Hassett)

- **1** (H)₀, i.e. $d \equiv 0$ (6): $\tilde{O}(\Gamma, v_d) \subset \tilde{O}(\Gamma, K_d)$ index 2.
- **2** (H)₂, i.e. $d \equiv 2$ (6): $\tilde{O}(\Gamma, v_d) = \tilde{O}(\Gamma, K_d)$.

Lemma (Hassett)

- **1** (H)₀, i.e. $d \equiv 0$ (6): $\tilde{O}(\Gamma, v_d) \subset \tilde{O}(\Gamma, K_d)$ index 2.
- ② (H)₂, i.e. $d \equiv 2$ (6): $\tilde{O}(\Gamma, v_d) = \tilde{O}(\Gamma, K_d)$.

Recall $(H)_0$: $\mathbb{Z}h \oplus \mathbb{Z}v_d = K_d \subset \mathbb{Z}(-1)^{\oplus 3} \oplus U_1$ $\Rightarrow \exists g = \mathrm{id} \oplus -\mathrm{id} \in \tilde{O}(\Gamma, K_d) \setminus \tilde{O}(\Gamma, v_d)$:

$$\widetilde{\Gamma} = \mathbb{Z}(-1)^{\oplus 3} \oplus E \oplus U_2 \oplus U_1$$

 $(H)_2$: $\mathbb{Z}h \oplus \mathbb{Z}v_d \subset K_d$ index two with

$$v_d = 3(e_1 - \frac{d-2}{6}f_1) + \mu_1 - \mu_2$$

Here, $\mu_1 = (1, -1, 0), \mu_2 = (0, 1, -1) \in A_2(-1) \subset \mathbb{Z}(-1)^{\oplus 3}$ and h = (1, 1, 1).

$$\Rightarrow$$
 $(1/3)(v_d - h) \in K_d$ but $(1/3)(-v_d - h) \notin K_d$.

Arithmetic quotients

If $V = N \otimes_{\mathbb{Z}} \mathbb{R}$ with $sign(N) = (2, n_{-})$, then O(N) acts properly discontinuous on period domain.

Applies to

... but not to $\widetilde{Q} \subset \mathbb{P}(\widetilde{\Lambda}_{\mathbb{C}})$ and $Q \subset \mathbb{P}(\Lambda_{\mathbb{C}})$.

All irreducible!

Theorem (Baily–Borel) Assume $sign(N) = (2, n_{-})$ and $G \subset O(N)$ of finite index and torsion free. Then

$$G \setminus D$$

is a smooth, quasi-projective, complex variety.

O(N)-action properly discontinuous \Rightarrow stabilizers are finite and hence torsion \Rightarrow G acts freely \Rightarrow quotient is a complex manifold.

Lemma For all finite index $G \subset O(N)$, there exists a torsion free normal subgroup $G_0 \lhd G$ of finite index. $\Rightarrow G_0 \backslash D$ is smooth and quasi-projective \Rightarrow normal and quasi-projective:

$$G \setminus D \simeq (G/G_0) \setminus (G_0 \setminus D).$$

Minkowski theorem: $\mathrm{Gl}(n,\mathbb{Z}) \longrightarrow \mathrm{Gl}(n,\mathbb{F}_p)$, p > 2, is injective on finite subgroups $\leadsto G_0 := G \cap \mathrm{Gl}(n,\mathbb{Z})(p)$.

Hassett's Noether-Lefschetz divisors

(H)
$$ilde{\mathcal{C}}_d
eq \emptyset$$

$$(\mathbf{H})_0: \qquad \qquad \tilde{\tilde{\mathcal{C}}}_d \xrightarrow{2:1} \tilde{\mathcal{C}}_d \xrightarrow{1:1} \mathcal{C}_d \subset \mathcal{C} \qquad \text{finite}$$

$$(H)_2:$$
 $\tilde{C}_d \xrightarrow{\simeq} \tilde{C}_d \xrightarrow{1:1} \mathcal{C}_d \subset \mathcal{C}$ finite

Theorem (Borel)

All maps are algebraic. (Be aware of torsion!)

$$\begin{split} (\mathsf{K3}) &\Leftrightarrow \mathsf{K}_d^\perp \simeq \mathsf{L}_d^\perp \simeq \mathsf{\Lambda}_d \Rightarrow D_d \simeq Q_d \ \& \ \tilde{\mathrm{O}}(\mathsf{\Gamma}, \mathsf{v}_d) \simeq \tilde{\mathrm{O}}(\mathsf{\Lambda}_d) \colon \\ \tilde{\mathrm{O}}(\mathsf{\Gamma}, \mathsf{v}_d) &= \{ g \in \mathrm{O}(\mathsf{K}_d^\perp) \mid g = \mathrm{id} \ \mathrm{on} \ \mathsf{A}_{\mathsf{K}_d^\perp} \} \\ \tilde{\mathrm{O}}(\mathsf{\Lambda}_d) &= \{ g \in \mathrm{O}(\mathsf{\Lambda}_d) \mid g = \mathrm{id} \ \mathrm{on} \ \mathsf{A}_{\mathsf{\Lambda}_d} \}. \end{split}$$

K3 vs cubics: $\mathcal{M}_d = \tilde{\mathrm{O}}(\Lambda_d) \backslash Q_d$, $\tilde{\tilde{\mathcal{C}}}_d = \tilde{\mathrm{O}}(\Gamma, v_d) \backslash D_d$, $\tilde{\mathcal{C}}_d = \tilde{\mathrm{O}}(\Gamma, K_d) \backslash D_d$, ...

Theorem (Hassett) For d satisfying
$$(K3)$$
:

$$\mathcal{M}_d \simeq \tilde{\tilde{\mathcal{C}}}_d$$

Corollary For d satisfying (K3):

$$(\begin{tabular}{ll} \begin{tabular}{ll} \be$$

(K3)₂:
$$\mathcal{M}_d \simeq \tilde{\mathcal{C}}_d \simeq \tilde{\mathcal{C}}_d \xrightarrow{1:1} \mathcal{C}_d \subset \mathcal{C}$$
 finite.

Similarly for K3s

$$\mathcal{M}_d = \tilde{\mathrm{O}}(\Lambda_d) \backslash Q_d \longrightarrow \mathrm{O}(\Lambda_d) \backslash Q_d$$

is finite of degree > 1 for d > 4.

 $M_d := \text{moduli space of polarized K3 surfaces } (S, L), (L)^2 = d \rightarrow \text{period map}$:

$$(S,L) \longmapsto H^{2,0}(S) \subset H^2(S,\mathbb{Z})_{L-pr} \otimes \mathbb{C} \simeq \Lambda_d \otimes \mathbb{C}.$$

Theorem (Pjateckiĭ-Šapiro/Šafarevič, Friedman, Sha, ...)

$$M_d \hookrightarrow \mathcal{M}_d = \tilde{O}(\Lambda_d) \backslash Q_d$$

is an open, algebraic embedding.

$$\operatorname{Aut}(S,L) \simeq \{g \colon H^2(S,\mathbb{Z}) \xrightarrow{\sim} H^2(S,\mathbb{Z}) \mid \text{Hodge isometry}, g(L) = L\}.$$

Ample cone:

$$M_d = \mathcal{M}_d \setminus \bigcup \delta^{\perp},$$

where $\delta \in \Lambda_d$ with $(\delta)^2 = -2$.

 $M := |\mathcal{O}_{\mathbb{P}^5}(3)|_{\mathrm{sm}}/\mathrm{PGl}(6) \leadsto \mathsf{period} \mathsf{map}$:

$$X \longmapsto H^{3,1}(X) \subset H^4(X,\mathbb{Z})_{\mathrm{pr}} \otimes \mathbb{C} \simeq \Gamma \otimes \mathbb{C}.$$

Theorem (Voisin,... Looijenga, Charles, Zheng,..., H.–Rennemo)

$$M \hookrightarrow \mathcal{C} = \tilde{\mathcal{O}}(\Gamma) \backslash D$$

is an open, algebraic embedding.

$$\operatorname{Aut}(X) \simeq \{g \colon H^4(X,\mathbb{Z}) \xrightarrow{\sim} H^4(X,\mathbb{Z}) \mid \text{Hodge isometry}, g(h) = h\}.$$

Theorem (Laza, Looijenga)

$$M = \mathcal{C} \setminus (\mathcal{C}_2 \cup \mathcal{C}_6).$$

Associated K3 and cubic: $\mathcal{M}_d \simeq \tilde{\mathcal{C}}_d - \tilde{\mathcal{C}}_d - \mathcal{C}_d \subset \mathcal{C}$

(K3): Then

$$\pi \colon M_d \subset \mathcal{M}_d \quad \Longrightarrow \quad \mathcal{C}_d \quad \subset \quad \mathcal{C}$$

$$\qquad \qquad \cup \qquad \qquad M = \mathcal{C} \setminus (\mathcal{C}_2 \cup \mathcal{C}_6)$$

and $M \cap \mathcal{C}_d \subset \pi(M_d)$.

A polarized K3 surface $(S, L) \in M_d$ and a smooth cubic fourfold $X \subset \mathbb{P}^5$ are associated if $\pi[(S, L)] = [X] \in M$.

Corollary A cubic X is associated to some polarized K3 surface if and only if $X \in C_d$ for some d satisfying (K3).

For given $[X] \in M$ there may be more than one (S, L):

- ② $\tilde{\mathcal{C}}_d \longrightarrow \mathcal{C}_d$ is only generically injective,
- **3** $[X] \in \pi(M_d) \cap \pi(M_{d'})$ is possible.

When (S, L) (or just S) and X could be called associated:

- $\pi[(S, L)] = [X] \in M$.

Then

$$(1) \Longrightarrow (2) \Longrightarrow (3) \stackrel{AT&Co}{\Longleftrightarrow} (4).$$

- Note (1) \Leftarrow (2) does not hold, not even when $\rho(S) = 1$.
- For (2) \Leftarrow (3) one needs to find a line bundle on *S*?

With one X, there may be infinitely many associated (S,L) (of unbounded degree), but only finitely many S.

Alternatively:

$$\mathrm{D^b}(S) \simeq \mathcal{A}_X \ \Leftrightarrow \ \exists \, \widetilde{H}(S,\mathbb{Z}) \simeq \widetilde{H}(\mathcal{A}_X,\mathbb{Z})$$

and

$$(S,L) \sim X \Leftrightarrow \exists \widetilde{H}(S,\mathbb{Z}) \simeq \widetilde{H}(A_X,\mathbb{Z})$$

$$\cup \qquad \qquad \cup$$

$$H^2(S,\mathbb{Z})_{L-pr} \simeq H^4(X,\mathbb{Z})_{pr}$$

But what is $\widetilde{H}(A_X, \mathbb{Z})$??

Further results:

- $\bigcup \mathcal{C}_d \subset \mathcal{C}$ is analytically dense (with d satisfying $(K3)^{[2]}$ should be enough).
- **3** ...

Rationality versus K3 ??

Question (Hassett, Harris,...): Is a smooth cubic fourfold $[X] \in M \subset \mathcal{C}$ rational if and only if $[X] \in \mathcal{C}_d$ for some d satisfying (K3), i.e. if X is associated to some (S, L)?

So far: In codim = 1 ok for d = 14 (Beauville–Donagi), d = 26,38 (Russo–Staglianò).