DSP in VLSI

HW5

電子所 ICS 組, R13943015, 張根齊

1. (Step 1) Please use FFTInput32.mat as the inputs. Use your MDC FFT Matlab/Python program to generate the 32 FFT outputs. The program outputs should be in a 2 × 16 array. Because they are in bit-reversed order, write a program to generate their associated frequency domain indices. Now, you have an 4 × 16 array containing the frequency domain indices and the MDC outputs. List the array. (Maybe you can copy the results in Work Space and paste onto your report.) (10%)

row 1 and row 2 are 32 FFT outputs (complexed number). And row3, row4 are corresponding frequency domain indices. (integer number)

MDC_output_wi	h_freq_indice ×														
4x16 complex dou	<u>ble</u>														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1 1.0000 + 1.0000	1.0000 - 1.0000	1.0000 + 1.0000i	1.0000 + 1.0000i	1.0000 + 1.0000i	-1.0000 + 1.0000i	1.0000 - 1.0000i	1.0000 - 1.0000i	1.0000 - 1.0000i	1.0000 - 1.0000i	1.0000 + 1.0000i	1.0000 + 1.0000i	-1.0000 + 1.0000i	1.0000 - 1.0000i	1.0000 - 1.0000i	-1.0000 - 1.0000i
2 -1.0000 - 1.0000	-1.0000 - 1.0000	1.0000 + 1.0000i	-1.0000 - 1.0000i	-1.0000 + 1.0000i	-1.0000 + 1.0000i	-1.0000 + 1.0000i	1.0000 + 1.0000i	-1.0000 - 1.0000i	-1.0000 + 1.0000i	-1.0000 - 1.0000i	1.0000 + 1.0000i	-1.0000 + 1.0000i	-1.0000 - 1.0000i	1.0000 + 1.0000i	1.0000 + 1.0000i
3 0.0000 + 0.0000	8.0000 + 0.0000	4.0000 + 0.0000i	12.0000 + 0.0000i	2.0000 + 0.0000i	10.0000 + 0.0000i	6.0000 + 0.0000i	14.0000 + 0.0000i	1.0000 + 0.0000i	9.0000 + 0.0000i	5.0000 + 0.0000i	13.0000 + 0.0000i	3.0000 + 0.0000i	11.0000 + 0.0000i	7.0000 + 0.0000i	15.0000 + 0.0000i
4 16.0000 + 0.0000	24.0000 + 0.0000	20.0000 + 0.0000i	28.0000 + 0.0000i	18.0000 + 0.0000i	26.0000 + 0.0000i	22.0000 + 0.0000i	30.0000 + 0.0000i	17.0000 + 0.0000i	25.0000 + 0.0000i	21.0000 + 0.0000i	29.0000 + 0.0000i	19.0000 + 0.0000i	27.0000 + 0.0000i	23.0000 + 0.0000i	31.0000 + 0.0000i
4 16.0000 + 0.0000	24.0000 + 0.0000	20.0000 + 0.0000i	28.0000 + 0.0000i	18.0000 + 0.0000i	26.0000 + 0.0000i	22.0000 + 0.0000i	30.0000 + 0.0000i	17.0000 + 0.0000i	25.0000 + 0.0000i	21.0000 + 0.0000i	29.0000 + 0.0000i	19.0000 + 0.0000i	27.0000 + 0.0000i	23.0000 + 0.0000i	3

2. (Step 2) Please use FFTInput32.mat as the inputs. Show that your program for output re-ordering is correct. Draw the real part and imaginary part of $X0\sim X31$. (10%) Compare the results of $X0\sim X31$ to $A0\sim A31$. Draw the absolute error of each sample. The error should be small than $10^{\circ}-10$ because of double-precision floating-point operations. If the error is not acceptable, the first 20 points will be deducted, too. (10%)

2.1 Draw the real part and imaginary part of X0~X31

2.2 Draw the absolute error of each sample

Average error (< 10^-10):

>> main
Average Absolute Error: 2.4945e-16

- 3. (Step 3) Generate your own inputs of 96 samples. Draw the SQNR versus fractional part word-length N stage by stage. (30%)
 - (a) Quantize the first stage. Evaluate the FFT output SQNR versus fractional part word-length N for N=7, 8, 9, 10, ..., 13, 14,15 for stage 1. Draw the figure.

Choose stage 1 fractional bit-width = 10 (reserved margin).

(b) Fix the setting for stage 1. Quantize the second stage. Evaluate the FFT output SQNR versus fractional part word-length N for N=7, 8, 9, 10,..., 13, 14,15 for stage 2. Draw the figure.

Choose stage 2 fractional bit-width = 10 (reserved margin):

(c) Fix the setting for stage 1 and 2. Quantize the third stage. Evaluate the FFT output SQNR versus fractional part word-length N for N=7, 8, 9, 10,..., 13,14,15 for stage 3 and so on. Draw the figure

Choose stage 3 fractional bit-width = 10 (reserved margin):

(d) Repeat until stage 5. So, you have five figures.

d-1: stage 4:

Choose stage 4 fractional bit-width = 10 (reserved margin):

d-2: stage 5:

Choose stage 5 fractional bit-width = 10 (reserved margin):

(e) Then, decide the fractional part word-length for twiddle factors of all the stages. Draw the FFT output SQNR versus fractional part word-length of twiddle factors.

Choose twiddle factors fractional bit-width = 10:

4. (Step 4) Now, use a 5-bit counter counting from 0 to 31, which is synchronized to the input index. Generate the control signals of commutator and butterfly units for each stage. Show how you generate them and why? (20%)

The overall schedule is shown below (The file is included in the submitted assignment package). The yellow sections indicate that the control signal for the commutator should be set to switch mode; otherwise, it should be in bypass mode. The green sections indicate that the control signal for the butterfly should be set to computation mode; otherwise, it should be in bypass mode.

4.1. Stage 1

4.1.1 Commutator

Counter = 0 ~ 15: switch mode

else: bypass mode

4.1.2 Butterfly

Counter = 16 ~ 31: computation mode

else: bypass mode

2	counter	()	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
3	commutator LI	x0	x1	x2	х3	3 X4	4 x	5 x	6	х7	x8	х9	x10	x11	x12	x13	x14	x15	x16	x17	x18	x19	x20	x21	x22	x23	x24	x25	x26	x27	x28	x29	x30	x31
4	commutator UO	x0	x 1	x2	x3	3 X4	4 x.	5 x	6	х7	x8	х9	x10	x11	x12	x13	x14	x15																
5	commutator LO																		x16	x17	x18	x19	x20	x21	x22	x23	x24	x25	x26	x27	x28	x29	x30	x31
6	butterfly UI																		x0	x1	x2	х3	x4	x5	x6	x7	x8	x9	x10	x11	x12	x13	x14	x15
7	butterfly LI																		x16	x17	x18	x19	x20	x21	x22	x23	x24	x25	x26	x27	x28	x29	x30	x31
8	butterfly UO (UI + LI)																		g0	g1	g2	g3	g4	g5	g6	g7	g8	g9	g10	g11	g12	g13	g14	g15
9	butterfly LO (UI - LI)																		h0	h1	h2	h3	h4	h5	h6	h7	h8	h9	h10	h11	h12	h13	h14	h15
10	twiddle (LO = LO .* W)																		W0	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15

4.2. Stage 2

4.2.1 Commutator

Counter = 24 ~ 31: switch mode

else: bypass mode

4.2.2 Butterfly

Counter = 24 ~ 31, 0 ~ 7: computation mode

else: bypass mode

counter	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	7 1	8 1	9 2	0 2	1 2	2 2:	3 2	4 25	5 26	5 2	7 2	8 29	30	31	1	0	1 :	2	3 4	1 :	5	6
commutator UI																	g0	gl	g2	g3	g4	g5	g6	g7	g8	g9	g10	g11	g12	g13	gl4	g15								
commutator LI																									h0	hl	h2	h3	h4	h5	h6	h7	h8	h9	h10	hll	h12	h13	hl4	h15
commutator UO																	g0	gl	g2	g3	g4	g5	g6	g7	h0	hl	h2	h3	h4	h5	h6	h7								
commutator LO																									g8	g9	g10	g11	g12	g13	g14	g15	h8	h9	h10	h11	h12	h13	hl4	h15
butterfly UI																									g()	gl	g2	g3	g4	g5	g6	g7	h0	hl	h2	h3	h4	h5	h6	h7
butterfly LI																									g8	g9	g10	gll	g12	g13	gl4	g15	h8	h9	h10	hll	h12	h13	hl4	h15
butterfly UO (UI + LI)																									p0	pl	p2	р3	р4	p5	рб	р7	p8	р9	p10	pll	p12	p13	pl4	p15
butterfly LO (UI - LI)																									q0	ql	q2	q3	q4	q5	q6	q7	q8	q9	q10	qll	q12	q13	ql4	q15
twiddle (LO = LO .* W)																									W0	W2	W4	W6	W8	W10	W12	W14	W0	W2	W4	W6	W8	W10	W12	2 W14

4.3. Stage 3

4.3.1 Commutator

Counter = 28 ~ 31, 4 ~ 7: switch mode

else: bypass mode

4.3.2 Butterfly

Counter = 28 ~ 31, 0 ~ 11: computation mode

else: bypass mode

4.4. Stage 4

4.4.1 Commutator

Counter = 30 ~ 31, 2 ~ 3, 6 ~ 7, 10 ~ 11: switch mode

else: bypass mode

4.4.2 Butterfly

Counter = $30 \sim 31$, $0 \sim 13$: computation mode

else: bypass mode

31 counter	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	3 24	25	2	б :	27 2	8 :	29	30	31	0		1 :	2	3	4	5	6	7	8	9	10	11	12
32 commutator UI		Т	Т	Т	Т	Т	Т	Т	П																				m0	m1	m2	2 m	3	m4	m5	mб	m7	m8	m9	m10	m11	m1	2 m13	3 m1-	4 m15	5	
33 commutator LI																															n0	n	1	n2	n3	n4	n5	nб	n7	n8	n9	n10	n11	n12	n13	n1	14 n15
34 commutator UO																													m0	m 1	n0	n	1	m4	m5	n4	n5	m8	m9	n8	n9	m l	2 m13	3 n 12	n13		
35 commutator LO																															m2	n S	3	n2	n3	mб	m7	nб	n7	m 10	m11	n 10	n11	m l-	4 m15	n l	14 n15
36 butterfly UI																															m() n	.1	n0	n1	m4	m5	n4	n5	m8	m9	n8	n9	m 13	2 m13	n1	2 n13
37 butterfly LI																															m2	2 m	3	n2	n3	mб	m7	nб	n7	m10	m11	n10	n11	m1	4 m15	n1	14 n15
38 butterfly UO (UI + LI)																															r0	r.		r2	r3	r4	r5	гб	r7	r8	r9	r10	r11	r12	r13	r1-	4 r15
39 butterfly LO (UI - LI)																															s0	s.		s2	s3	s4	s5	sб	s7	s8	s9	s10	s11	s12	s13	s1-	4 s15
40 twiddle (LO = LO .* W)																															W	0 V	18	W0	W8	WO	W8	WO	W8	WO	W8	WO	W8	WO	W8	W	0 W8

4.5. Stage 5

4.5.1 Commutator

Counter = 31, 1, 3, 5, 7, 9, 11, 13: switch mode

else: bypass mode

4.5.2 Butterfly

Counter = 31, 0 ~ 14: computation mode

else: bypass mode

5. (Step 5) Generate the control signals of complex multipliers for each stage. Show how you generate them and why? (10%)

5.1. Stage 1

5.1.1 Multipliers

Counter = 16 ~ 31: Multiplication mode

else: bypass mode

2	counter	(0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
3	commutator LI	х0	x 1	x2	X.	3 x	(4	x5	х6	x7	х8	х9	x10	x11	x12	x13	x14	x15	x16	x17	x18	x19	x20	x21	x22	x23	x24	x25	x26	x27	x28	x29	x30	x31
4	commutator UO	x0	x 1	x2	X.	3 x	(4	х5	хб	х7	х8	х9	x10	x11	x12	x13	x14	x15																
5	commutator LO		П	Т	Т														x16	x17	x18	x19	x20	x21	x22	x23	x24	x25	x26	x27	x28	x29	x30	x31
6	butterfly UI		П																x0	x1	x2	x3	x4	x5	х6	x7	x8	x9	x10	x11	x12	x13	x14	x15
7	butterfly LI																		x16	x17	x18	x19	x20	x21	x22	x23	x24	x25	x26	x27	x28	x29	x30	x31
8	butterfly UO (UI + LI)																		g0	g1	g2	g3	g4	g5	g6	g7	g8	g9	g10	g11	g12	g13	g14	g15
9	butterfly LO (UI - LI)																		h0	h1	h2	h3	h4	h5	h6	h7	h8	h9	h10	h11	h12	h13	h14	h15
10	twiddle (LO = LO .* W)																		W0	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15

5.2. Stage 2

5.2.1 Multipliers

Counter = 24 ~ 31, 0 ~ 7: Multiplication mode

else: bypass mode

counter	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	1	8 19	20) 2	1 22	2 2:	3 2	1 25	26	5 2	7 2	8 29	30	3	1	0	1 :	2	3 4	1 :	5	6
commutator UI																	g0	gl	g2	g3	g4	g5	g6	g7	g8	g9	g10	gll	g12	g13	g14	g15								\top
commutator LI																									h0	hl	h2	h3	h4	h5	h6	h7	h8	h9	h10	hll	h12	h13	hl4	h15
commutator UO																	g()	gl	g2	g3	g4	g5	g6	g7	h0	hl	h2	h3	h4	h5	h6	h7								
commutator LO																									g8	g9	g10	g11	g12	g13	g14	g15	h8	h9	h10	h11	h12	h13	hl4	h15
butterfly UI																									g()	gl	g2	g3	g4	g5	g6	g7	h0	hl	h2	h3	h4	h5	h6	h7
butterfly LI																									g8	g9	g10	gll	g12	g13	gl4	g15	h8	h9	h10	hll	h12	h13	hl4	h15
butterfly UO (UI + LI)																									p0	pl	p2	р3	p4	p5	р6	р7	p8	р9	p10	pll	p12	p13	pl4	p15
butterfly LO (UI - LI)																									q0	ql	q2	q3	q4	q5	q6	q7	q8	q9	q10	qll	q12	q13	q14	q15
twiddle (LO = LO .* W)																									W0	W2	W4	W6	W8	W10	W12	W14	W0	W2	W4	W6	W8	W10	W12	W14

5.3. Stage 3

5.3.1 Multipliers

Counter = 28 ~ 31, 0 ~ 11: Multiplication mode

else: bypass mode

5.4. Stage 4

5.4.1 Multipliers

Counter = 30 ~ 31, 0 ~ 13: Multiplication mode

else: bypass mode

4.5. Stage 5

4.5.1 Multipliers: bypass mode (no need to use a multiplier)

6. (Step 6) Explain the way that you use the sine/cosine values in the first quadrant to generate the required 32 phases for ROM 32. Draw the block diagram (10%)

As shown in the figure below, we can observe that the values in the first quadrant (W1 to W7) are the same as those in the second quadrant (W15 to W9), except for the sign of the real part. Ex: $Im\{W_N^5\} = Im\{W_N^{11}\}$, $Re\{W_N^5\} = -Re\{W_N^{11}\}$. So, we only need to save the values in the first quadrant.


```
>> main
W0 = 1.000000+0.0000000j
W1 = 0.980785 - 0.195090j
W2 = 0.923880-0.382683j
W3 = 0.831470-0.555570j
    = 0.707107-0.707107j
    0.555570-0.831470i
W6 = 0.382683 - 0.923880j
  = 0.195090-0.980785j
  = 0.000000-1.000000j
   = -0.195090-0.980785j
W10 = -0.382683 - 0.923880j
W11 = -0.555570 - 0.831470j
W12 = -0.707107 - 0.707107j
W13 = -0.831470 - 0.555570j
W14 = -0.923880 - 0.382683j
W15 = -0.980785-0.195090j
```

6.1. Block diagram

7. (Step 7) Show the timing diagram of behavior simulation for bit-reverse re-ordering with ping-pong accessed bit-reversal buffer as in Fig. 9. (15%)

7.1 timing diagram:

7.2 test pattern: MemInUp & MemInDown

8. (Step 8) Please use FFTInput32.mat as the inputs. Quantize them using the word-length selected by yourself. Show the timing diagram of behavior simulation for MDC FFT. Compared the results to your answer in Q1(Step 1). Draw the error for 32 samples of real part and imaginary part. (25%)

8.1. timing diagram of behavior simulation

The values are shown in signed decimal with 10 fractional bit-width, so divided it by 1024 is the real value.

8.2. The error for 32 samples of real part and imaginary part

9. (Step 9) Use your own inputs of 96 samples in Q3 (Step3). Show the timing diagram of behavior simulation with streaming-input and streaming-output. Draw the error for 96 samples of real part and imaginary part. (25%) Calculate the SQNR of 96 samples.

9.1 timing diagram of behavior simulation

The values are shown in signed decimal with 10 fractional bit-width, so divided it by 1024 is the real value.

9.2 the error for 96 samples of real part and imaginary part and SQNR

FFT96 SQNR = 30.83 dB

10. (Step 10) Insert D flip-flop at the input and output. Synthesize your design. Provide the report of max delay. Note that if you did not insert internal pipeline registers, the critical path is long and the operating frequency is not high. (10%)

max delay = 19.866ns (operating frequency = 50.3MHz)

∨ Summary	
Name	Path 1
Slack	<u>1.982ns</u>
Source	delay_element_U_stage1/DFF_re_r_reg[15][1]/C (rising edge-triggered cell FDRE clocked by clk {rise@0.000ns fall@11.000ns period=22.000ns})
Destination	delay_element_L_stage5/DFF_re_r_reg[0][10]/D (rising edge-triggered cell FDRE clocked by clk {rise@0.000ns fall@11.000ns period=22.000ns})
Path Group	clk
Path Type	Setup (Max at Slow Process Corner)
Requirement	22.000ns (clk rise@22.000ns - clk rise@0.000ns)
Data Path Delay	19.866ns (logic 12.661ns (63.731%) route 7.205ns (36.269%))
Logic Levels	24 (CARRY4=16 DSP48E1=2 LUT3=3 LUT6=3)
Clock Path Skew	<u>-0.145ns</u>
Clock Unrtainty	<u>0.035ns</u>

11. (Step 11) Insert pipeline registers to accelerate your design. For FPGA flow, the target operating clock frequency (fs) is 75MHz. For cell-based design flow, the target operating frequency (fs) is 130MHz. Show the timing diagram of post-synthesis simulation results with proper clock period settings (1/fs). Draw the error for 96 samples of real part and imaginary part. (25%)

11.1 Clk period = 13.2 ns (operating frequency = 75.75MHz):

11.2 the error for 96 samples of real part and imaginary part

