Tensor Factorisation for Group Detection

Ange Kokotakis, Romain Ramez directed by Rodrigo Cabral Farias

November 2023

Abstract

The aim of this project is to detect groups of people with a given dataset of interactions in a community. For this purpose we will represent the dataset as a tensor and use non-negative tensor factorization to approximate it as a product of different matrix from which we can get information about groups in this community.

1 Introduction

In this project, we use datasets similar to Figure 1 in which each line represents an interaction between two individuals: id1 and id2 at a certain time.

31220 58 31220 59 31220 63 31220 85 1 31220 85 2 31220 102 1 31220 191 1 31220 191 2 31240 58 31240 63 31240 85 1 31240 85 2 31240 102 1 31240 143 1 31240 143 1 31240 188 1			
31220 59 31220 63 31220 85 1 31220 85 2 31220 102 1 31220 191 1 31220 191 2 31240 58 31240 63 31240 85 1 31240 85 2 31240 102 1 31240 143 1 31240 143 1 31240 188 1	time	id1	id2
31220 63 31220 85 1 31220 85 2 31220 102 1 31220 191 1 31220 191 2 31240 58 31240 63 31240 85 1 31240 85 2 31240 102 1 31240 143 1 31240 143 1 31240 188 1	31220	58	63
31220 85 1 31220 85 2 31220 102 1 31220 191 1 31220 191 2 31240 58 31240 63 31240 85 1 31240 85 2 31240 102 1 31240 143 1 31240 143 1 31240 188 1	31220	59	64
31220 85 2 31220 102 1 31220 191 1 31220 191 2 31240 58 31240 63 31240 85 1 31240 85 2 31240 102 1 31240 143 1 31240 188 1	31220	63	66
31220 102 31220 191 31220 191 31240 58 31240 63 31240 85 1 31240 85 2 31240 102 1 31240 143 1 31240 188 1	31220	85	190
31220 191 1 31220 191 2 31240 58 31240 63 31240 85 1 31240 85 2 31240 102 1 31240 143 1 31240 188 1	31220	85	214
31220 191 2 31240 58 31240 63 31240 85 1 31240 85 2 31240 102 1 31240 143 1 31240 188 1	31220	102	115
31240 58 31240 63 31240 85 1 31240 85 2 31240 102 1 31240 143 1 31240 188 1	31220	191	199
31240 63 31240 85 1 31240 85 2 31240 102 1 31240 143 1 31240 188 1	31220	191	214
31240 85 1 31240 85 2 31240 102 1 31240 143 1 31240 188 1	31240	58	63
31240 85 2 31240 102 1 31240 143 1 31240 188 1	31240	63	66
31240 102 1 31240 143 1 31240 188 1	31240	85	190
31240 143 1 31240 188 1	31240	85	214
31240 188 1	31240	102	115
	31240	143	192
212/0 101 1	31240	188	194
31240 131 1	31240	191	199

Figure 1: dataset

From this dataset we create matrices $X \in \{0,1\}^{I \times I}$ which represent interactions between people during a certain interval of time where I is equal to the number of people in the community and each coefficient is equal to :

$$X_{i,j} = \begin{cases} 1 & \text{if there is an interaction between person } i \text{ and } j \text{ during a given interval of time} \\ 0 & \text{otherwise} \end{cases}$$

And then we stack these matrices with different interval t_k of time to create our tensor $Y \in \{0, 1\}^{I \times I \times K}$ where K is the number of intervals of time. Finally the tensor containing the dataset has its coefficients equal to:

$$Y_{i,j,k} = \begin{cases} 1 & \text{if there is an interaction between person } i \text{ and } j \text{ at interval of time } t_k \\ 0 & \text{otherwise} \end{cases}$$

Model 2

In order to approximate this tensor we create 3 matrices:

$$U \in \mathbb{R}_+^{I \times R}, \ V \in \mathbb{R}_+^{I \times R}, \ W \in \mathbb{R}_+^{K \times R}$$

where:

- -I is the number of individuals in the community,
- -K is the number of interval of time,
- -R is the number of groups in the community (we choose one randomly at first we will see later how to choose it correctly).

The U and V matrices represent the membership level of a person to a certain group and W represents in which interval of time a group has been active. We define $S \in \mathbb{R}_+^{I \times I \times K}$