Programming Assignment: Logistic Regression and k-Nearest Neighbors (kNN)

Submission Deadline: 13th November, 2024, 2:59 PM

Objective

The goal of this assignment is to build and evaluate classifiers for binary classification. You will implement both Logistic Regression and k-Nearest Neighbors (kNN) classifiers from scratch, using a given dataset.

Dataset

Use the Breast Cancer Wisconsin (Diagnostic) dataset for binary classification:

- Download Link: Breast Cancer Dataset
- Features: This dataset contains 30 numerical features for each instance.
- **Target**: A binary label indicating if a case is malignant (1) or benign (0).

Note: Download the data and store it in a CSV file format named breast_cancer.csv with headers: id, diagnosis, feature1, feature2, ..., feature30.

Tasks

1. Data Preprocessing

- Load the Dataset: Use pandas to load the dataset.
- Encoding: Convert the diagnosis column to binary labels (1 for malignant, 0 for benign). In the dataset, M is for malignant and B is for benign.
- Train-Test Split: Split the data into training and testing sets (e.g., 80% training and 20% testing).

2. Logistic Regression Implementation

Implement the following functions:

- sigmoid(z): Compute the sigmoid of z, where z is a linear combination of weights and features.
- initialize_weights(n_features): Initialize the weights and bias term to zero for n_features.
- compute_cost(X, y, weights, bias): Compute the binary cross-entropy cost function for logistic regression.
- optimize_weights(X, y, weights, bias, learning_rate, num_iterations): Perform gradient descent to optimize weights and bias.
- train_logistic_regression(X_train, y_train, learning_rate, num_iterations):
 Use the above helper functions to train logistic regression on the training
 set.
- predict_logistic_regression(X_test, weights, bias): Predict binary labels for the test set using the trained model.

Evaluation Metric:

• Accuracy: Print the accuracy of the model on both train and test sets.

3. k-Nearest Neighbors (kNN) Implementation

Implement the following functions:

- euclidean_distance(x1, x2): Calculate the Euclidean distance between two feature vectors x1 and x2.
- get_neighbors(X_train, X_test_instance, k): Retrieve the k nearest neighbors to a given test instance from the training set.
- predict_kNN(X_train, y_train, X_test, k): For each instance in X_test, use get_neighbors to predict the label by majority vote from k neighbors.

Evaluation Metric:

• Accuracy: Measure and print the accuracy of the kNN model on both train and test sets for various values of k.

4. Comparison and Analysis

- Compare the performance of Logistic Regression and kNN on the test set and discuss:
 - Which model performs better and why?
 - How does the choice of k affect the performance of kNN?
 - What are the strengths and limitations of Logistic Regression and kNN for this classification problem?

Requirements

- Implement all functions from scratch, without using any pre-built machine learning libraries (e.g., scikit-learn).
- Use Numpy for numerical operations and pandas for data handling.
- For optional visualization, you may use matplotlib.

Submission

Submit a Jupyter Notebook (.ipynb)

- Your implemented code for all functions.
- Accuracy results for both Logistic Regression and kNN.
- Analysis as discussed in Task 4.
- Experiment with different values of k for kNN (e.g., k=1,3,5,7).