Domaine Sciences et Technologies MASTER 1 INFORMATIQUE

Aspects probabilistes pour l'informatique : TD 5 Code UE: SINB19AL

Année 2020-2021

VC-dimension et PAC-learning

Exercice 1 Soit Π la classe des concepts rectangle axe-parallele de \mathbb{R}^2 . En cours on a demontré que VC-dim $(\Pi) \leq 4$.

- 1. Montrer par un exemple à 4 points que VC-dim(Π) ≥ 4 .
- 2. Refaire l'analyse vue en cours pour borner le nombre N d'exemples a tirer pour retourner un rectangle hypothèse h à la place du concept cible c, tel que $P[\text{Aire}(c\Delta h) \leq \epsilon] \geq 1 \delta$.

Exercice 2 Soit \mathcal{B} la classe de concepts boite axe-parallele de \mathbb{R}^d et soit \mathcal{I}_k la classes de concepts union de k intervals de la droire réelle.

- 1. Calculer VC-dim(\mathcal{B}).
- 2. Calculer VC-dim(\mathcal{I}_1) et VC-dim(\mathcal{I}_2), ensuite calculer VC-dim(\mathcal{I}_k) pour tout k.
- 3. Etant données N examples positives et negatives, comment calculer un concept-hypotèse de \mathcal{I}_k (respectivement, de \mathcal{B}) compatible avec les examples?

Exercice 3 Soit \mathcal{C} la classe de concepts ensemble convexe de \mathbb{R}^2 . Montrer que VC-dim $(\mathcal{C}) = \infty$.

Exercice 4 Soit \mathcal{S} la classe de concepts circle de \mathbb{R}^2 (i.e., $(x-a)^2+(y-b)^2\leq r^2$ et soit \mathcal{H} la classe de concepts $demi-\acute{e}space$ de \mathbb{R}^2 (i.e., $ax+by\geq c$). On peut montrer (ou on a vue déjà en cours) que VC-dim(\mathcal{S}) ≤ 3 et VC-dim(\mathcal{H}) ≤ 3 . Etant données N examples positives et negatives, comment algorithmiquement calculer un concept-hypotèse de \mathcal{S} et de \mathcal{H} ?

Exercice 5 Soit \mathcal{T} la classe de concepts triangle de \mathbb{R}^2 . Une conséquence d'un résultat vue en cours est que VC-dim $(\mathcal{T}) \leq 7$.

- 1. Revisitez la preuve vue en cours et montrez que VC-dim $(\mathcal{T}) \leq 7$. Ensuite montrez que VC-dim $(\mathcal{T}) \geq 4$, VC-dim $(\mathcal{T}) \geq 5$, etc.
- 2. Et ant données N examples positives et negatives, comment algorithmiquement calculer un concept-hypotèse de \mathcal{T} ?