UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CÂMPUS CHAPECÓ CURSO DE CIÊNCIA DA COMPUTAÇÃO

Notas de aula

CCR: GEX101 - Linguagens formais e autômatos			Criado em: 02/11/20	Alterado em:04/11/20	
Turma : 27365	Turno: Vespertino	Ano/Sem : 2020/1			
Encontro síncrono: 04/11/20		Período Assíncrono: de 05/11/20 a 06/11/20			
Carga horária da semana: 5ha			Professor : Braulio Mello		

Conteúdo: Construção de GLC's e árvores de derivação.

Material de apoio

Construção gramáticas livres de contexto (GLC) e árvores de derivação (páginas 32 e 33, da apostila disponível no moodle)

Construção de GLC:

```
L(G) = \{x \mid x \in 1^{n}0^{z}2^{n} \text{ onde } n \in z > 0\}
```

S := 1A2

 $A := 1A2 \mid 0C$

 $C := 0C \mid \varepsilon$

 $S \rightarrow 1A2$

→ 11A22

→ 110C22

 $\rightarrow 1100C22$

 $\rightarrow 11000C22$

 $\rightarrow 1100022$

$$L(G) = \{x \mid x \in 1^{n}0^{n}2^{z} \text{ onde } n \text{ e } z > 0\}$$

S := 1A02C

 $A := 1A0 \mid \epsilon$

 $C := 2C \mid \varepsilon$

 $S \rightarrow 1A02C$

 $\rightarrow 11A002C$

→ 111A0002C

 $\rightarrow 111A00022C$

 $\rightarrow 111A00022$

 $\rightarrow 11100022$

 $L(G) = \{x \mid x \in 1^n 0^x 2^z \text{ onde } n, x \in z > 0 \text{ e } n \# x\}$

S := 1A02C

 $A ::= 1A0 | 1D | E0 | \epsilon$

 $C := 2C \mid \varepsilon$

controla a situação onde $|1| > |0| D := 1D | \epsilon$

controla a situação onde |0| > |1| E ::= E0 | ϵ

- $S \rightarrow 1A02C$
- → 11A002C
- \rightarrow 11E0002C
- $\rightarrow 11E00002C$
- → 1100002C
- $\rightarrow 1100002$

$$L(G) = \{x \mid x \in a^n b^z c^k \text{ onde } z = n + k \text{ e } n, z, k \ge 0 \}$$

 $S := aAbbBc \mid aAb \mid bBc \mid \varepsilon$

gerar a's e b's $A := aAb \mid \varepsilon$

gerar b's e c's B ::= bBc | ε

 $S \rightarrow aAbbBc$

- → aaAbbbBc
- → aaaAbbbbBc
- → aaaAbbbbbBcc

Árvores de derivação

Tomanto como exemplo a seguinte GLC:

 $E := E + E \mid E * E \mid (E) \mid x$

(gramática ambígua)

Então, para a sentença: x + x * x

Derivação mais a esquerda:

 $E \rightarrow E + E$

- \rightarrow x+E
- $\rightarrow x+E*E$
- $\rightarrow x+x*E$
- $\rightarrow x+x*x$

Derivação mais a direita:

 $E \rightarrow E*E$

- $\rightarrow E^*x$
- \rightarrow E+E*x
- \rightarrow E+x*x
- $\rightarrow x+x*x$

Atividade Avaliativa
Construção de gramáticas.
(1) Construa uma gramática regular para a seguinte linguagem:
$L(G) = \{x \mid x \in (a,b)^* \text{ onde o número de a's é par se } x \text{ não possui b's consecutivos, senão o número de a's é impar} \}$
(2) Construa uma gramática livre de contexto para a seguinte linguagem:
$L(G) = \{x \mid x \in a^m b^n \text{ onde } m \neq n\}$
Data/horário limite para entrega (upload no Moodle) e apresentação em sessão síncrona: 07/11/20 (sábado) às 23h. Entrega atrasada não permitida.