Hodnocení 93%

1-93/93

Pro sítě typu Ethernet (alespoň 10 Mbit/s) se používá následující kabelaž

- A) Supervidové optické vlákno (supermode)
- B) Tenký koaxiální kabel
- C) FTP (kroucená dvoulinka stíněná folií)
- D) UTP kategorie 1
- ☑ E) Dle normy EIA/TIA 568A/B
- F) Dle normy ISO 8859-2

B, C, E

O metodě LSA (link state algorithm) lze říci

- A) Je příkladem dynamického směrování
- B) Směrovače znají topologii sítě
- C) Směrovače posílají sousedům směrovací tabulku
- D) Pomalu konverguje
- E) Je reprezentována směrovacím protokolem RIP
- F) Je reprezentována směrovacím protokolem OSPF

A, B, F

Hlavička protokolu TCP

- A) Obsahuje čísla zdrojového a cílového portu
- B) Obsahuje kontrolní součet, který ale nemusí být vyplněn //hmmm
- C) Obsahuje pole jednobitových příznaků určených k řízení spojení
- D) Obsahuje číslo protokolu, neseného v TCP segmentu
- E) Obsahuje číslo posledního správně přijatého oktetu
- F) Je vkládána do rámců přímo na začátek datového pole

A, C, E

L3 TCP header has following properties: OFFICIAL

http://jansimecek.com/quiz/ 1/26

/	A) It contains the destination and source port numbers
	B) It contains the optional header checksum
•	C) It contains several bit flags used for the connection management
the	D) It contains application layer protocol ID, identifying the higher-level protocol carried in TCP segment
/	E) It may contain the ACK number informing about the next octet which can be sent.
	F) Is placed directly in the beginning of the data field in L2 frames
Α,	C, E
Přep	pínač (SWITCH)
✓	A) Posílá rámec Ethernetu s MAC adresou FF:FF:FF:FF:FF na všechna rozhraní.
/	B) Vybírá rozhraní, na něž bude rámec zaslán , podle cílové MAC adresy.
	C) Směřuje pakety na základě IP adresy cíle
	D) Má na každém portu přiřazenu IP adresu
•	E) Umožňuje definovat virtuální LAN sítě (VLANy)
/	F) Může posílat rámce z různých VLANů jinému přepínači pomocí TRUNK portů
Α,	B, E, F
SMT	TP server komunikuje
	A) s POP3 serverem, od kterého přijímá e-maily
•	B) se SMTP klientem (user agent)
	C) jak s POP3, tak s IMAP serverem
/	D) s jiným SMTP serverem.
	E) s IMAP serverem
	F) s IMAP klientem
В,	D
Pro	přenos dat se běžně používají následující typy modulací.
✓	A) Amplitudová
	B) Kvantová
•	C) Frekvenční

http://jansimecek.com/quiz/ 2/26

☑ D) Fázová
☐ E) Doplerovská
F) Binární
A, C, D
Metody nedeterministického přístupu ke sdílení kanálu jsou:
A) Centrální řízení
B) Distribuované řízení předávání
C) Aloha
D) Virtuální logický kruh
F) Binární vyhledávání
C, E
O metodě DVA (distance vector algorithm) lze říci:
A) Je příkladem dynamického směrování
B) Směrovače znají topologii celé sítě
C) Směrovače poskytují sousedům směrovací tabulku.
D) pomalu konverguje
☑ E) Je reprezentován směrovacím protokolem RIP
F) Je reprezentován směrovacím protokolem OSPF
A, C, D, E
Směrovač (router)
A) Posílá rámec Ethernetu s MAC adresou FF:FF:FF:FF:FF na všechna rozhraní.
B) Vybírá rozhraní, na něž bude rámec zaslán , podle cílové MAC adresy.
C) Směřuje pakety na základě IP adresy cíle
D) Zvyšuje pole TTL každého procházejícího paketu o nakonfigurovanou hodnotu.
☑ E) Má na každém portu přiřazenou IP adresu.
F) Musí mít celou směrovací tabulku ručně definovanou administrátorem (kromě připojených sítí.)

http://jansimecek.com/quiz/ 3/26

C, E

SMTP	server*
-------------	---------

/	A) Přímá e-maily od poštovního klienta (user agent)

- B) Odesílá e-maily poštovním klientem (user agent)
- C) V případě neexistence schránky příjemce zasílá klientovy zprávu ICMP Destination Unreachabble
- D) Může navazovat TCP spojení s jinými SMTP serverem.
- E) Přijímá e-maily od jiného SMTP serveru.
- F) Posílá e-maily jiného SMTP serveru jako UDP datagramy.

A, D, E

Topologie sítí jsou

- A) Sběrnice
- B) Hvězda
- C) Distribuovaná hvězda (strom)
- D) Čtverec
- E) Kruh
- F) Polynomiální

A, B, C, E

Topologie sítě Ethernet jsou

- A) Sběrnice
- B) Hvězda
- C) Distribuovaná hvězda (strom)
- D) Čtverec
- E) Kruh
- F) Polynomiální

A, B, C

Protokol RIP*

- A) Běží mezi směrovači (ROUTERY)
- B) Běží mezi přepínači (SWITCHi)
- C) Předává sousedovi směrovací tabulku

	D) Předává sousedovi tabulku dvojic
•	E) Počítá nejkratší (nejlevnější) cesty do všech sítí
	F) Zabraňuje vzniku smyček na 2. vrstvě
A, C	, E
Násle	edující typy záznamů jmenných serverů mají tyto významy
	A) SOA – Definuje všechny neautoritativní servery pro danou doménu.
✓	B) NS – určuje autoritativní jmenný server pro danou doménu
	C) MX – určuje WINS server (jmenný server pro protokol MS NetBios)
	D) A – přiřazuje k IP adrese k doménové jméno
•	E) PTR – přiřazuje ke speciálnímu zápisu IP adresy doménové jméno
•	F) CNAME – určuje alias pro dané doménové jméno
В, Е	, F
Ve kt	terých situacích se posílá odesílateli ICMP zpráva?
	A) Pokud velikost paketu přesáhne 64 kB a je zakázána fragmentace.
	B) Když se paket na některé lince ztratí.
	C) Pokud velikost paketu přesáhne délku datového pole rámce některé linky a je povolena gmentace.
•	D) Pokud velikost paketu přesáhne délku dat.pole rámce některé linky a je zakázaná frag.
	E) Pokud směrovač příjme paket s TTL=1 a podle směrovací tabulky jej má přeposlat dalšímu érovači.
	F) Jako odpověď na DNS dotaz
D, E	
Pro o	odesílání a příjem elektronické pošty slouží následující protokoly
✓	A) SMTP
	B) SNMP
•	C) POP3
•	D) IMAP
	E) FTP
	F) BOOTP

http://jansimecek.com/quiz/ 5/26

A, C, D

Stanice X příjme TCP segment s nastaveným příznakem ACK a s těmito hodnotami v záhlaví, Sequence number: 1000, Acknowledge number: 500, Window: 100. Na základě této informace stanice X smí odeslat bajty se sekvenčními čísly

- A) 10001 1500
- B) 501 600
- C) 501 1000
- D) 101 500
- E) 101 1000

В

U směrovacích protokolů třídy Distance vector posílají směrovače

- A) informaci o přilehlých linkách vždy při změně stavu
- B) obsah své směrovací tabulky jen tehdy, když dojde k její změně
- C) periodicky informaci o přilehlých linkách
- D) periodicky obsah své směrovací tabulky

D

Síť je nakonfigurovaná podle obrázku (MAC adresy jsou označeny pro přehlednost symbolicky). Všechny stanice mají správně nakonfigurovány IP adresy, masky podsítě i výchozí brány (default gateway). Jaké zdrojové a cílové MAC a IP adresy budou v rámci, který dorazí na cílovou stanici při zaslání paketů.

A) ze stanice A na stanici C

http://jansimecek.com/quiz/ 6/26

•	B) ze stanice B na stanici A
В	
Refe	renční model ISO-OSI
	A) Obsahuje 10 vrstev
•	B) Definuje na 1. vrstvě fyzické parametry rozhraní
	C) Definuje na spojové vrstvě (link layer) způsoby svařování kabelů
	D) Na 3. vrstvě realizuje směrování mezi sítěmi
•	E) Pro přenos dat na 4. vrstvě může využívat metodu plovoucího okénka (sliding window)
	F) Definuje jako standardní protokol 3. vrstvy protokol IP
В, [), E
Sério	ový přenos
	A) Je synchronní, asynchronní nebo antisynchronní.
	B) Zasílá v jednom taktu hodin podle implementace slovo o délce 8, 16 nebo 32 bitů
	C) V synchronním režimu udržuje neustálou časovou synchronizaci zdroje a cíle.
	D) Používá vždy pro přenos dat start bity a stop bity.
	E) Po vypršení časového limitu vždy znovu posílá nepotvrzené znaky
•	F) V synchronním režimu používá křídlových značek pro označení hranic datové jednotky.
С, Г	=
Služ	ba doménových jmen (DNS)
•	A) Umožňuje používat doménová jména o délce komponenty max. 63 znaků
	B) Rozlišuje malá a velká písmena (je case-sensitive)
	C) Používá jako oddělovač komponent jmen dvojtečku
/	D) Využívá pro komunikaci protokoly UDP i TCP
	E) Realizuje překlad MAC adresy na IP adresu
•	F) Umožňuje překlad IP adres na doménová jména
Α, [D. F

Co se stane, když router nemůže doručit IP paket?

A) Paket je zahozen.

http://jansimecek.com/quiz/ 7/26

	B) Router paket uchová v bufferu do doby, než se dobudují směrovací tabulky.
•	C) Je poslána chybová zpráva ICMP původnímu odesílateli
	D) Je poslána chybová zpráva ICMP původnímu cíli
	E) Paket je vrácen na předchozí router.
	F) Paket je zaslán zpět původnímu zdroji.
Α,	С
Pro	stahování binárních souborů z Internetu se běžně používají tyto protokoly
	A) SNMP
•	B) HTTP
•	C) FTP
•	D) HTTPS
	E) BOOTP
	F) DHCP
Β,	C, D
Jedr	noznačnou IP adresu (Ipv4) může stanice získat následujícím způsobem
•	A) Pomocí protokolu DHCP
	B) Pomocí protokolu HTTP
4	C) Protokolem BOOTP
	D) Protokolem ICMP (IP address request)
	E) Pomocí protokolu ARP
	F) Od nejbližšího DNS serveru nalezeného pomocí zprávy vyslané broadcastem
Α,	С
Jak	může router získat informace o cestách do cílových sítí?
\bigcirc	A) Switche informují okolní routery, které sítě admin nakonfiguroval do jejich tabulek
•	B) Informace jsou vloženy staticky síťovým administrátorem.
	C) Cesty se získávají z informací shromážděných v ARP tabulkách.
sm	D) Routery a switche si vzájemně přeposílají informace o sítích, které znají, pomocí něrovacích protokolů.

http://jansimecek.com/quiz/

E) Informace jsou odeslány jako broadcast switchem pokaždé, když je k němu připojen novy segment sítě.
F) Informace lze získat aktivními dotazy protokolu ARP
В
V hlavičce protokolu TCP jsou obsaženy následující položky
A) Bitový příznak FIN, požadující ukončení komunikace v jednom směru
B) Bitový příznak NAK určující, že se jedná o negativní potvrzení
C) Bitový příznak NOP, definující, že se jedná o paket, udržující spojení (keep-alive)
D) Bitový příznak RST, který vynucuje ukončení spojení v obou směrech
E) Bitový příznak SYN, který se používá při navazování spojení
F) Pole určující aktuální šířku přijímacího okénka
A, D, E, F
Metody deterministického přístupu ke sdílenému kanálu jsou
A) Centrální řízení
B) Distribuované řízení předáváním pověření
C) ALOHA
D) Virtuální logický kruh
E) Metoda CSMA/CD
F) Binární vyhledávání
A, B, D, F
Které z následujících tvrzení jsou pravdivá o protokolu HTTP?
A) Je postaven na architektuře client-server
B) Slouží pro získání IP adresy, při znalosti MAC adresy.
C) Je provozován nad transportním protokolem UDP.
D) Používá se pro šifrovaný přenos WWW stránek
E) Využívá se pro ohlašování chyb a zvláštních stavů při přenosu paketů.
F) Je provozován nad transportním protokolem TCP.
A, F

http://jansimecek.com/quiz/ 9/26

MAC adresa	lole	há	lně	nlatn:	á١
IVIAC aul Esa	ιχι	วมล	IIIE	Diali	a,

- A) Je rozdělena na dvě části, určující výrobce a sériové číslo
- B) Slouží k adresaci cílového počítače na 3. vrstvě OSI modelu
- C) Je rozdělena na adresu sítě a koncového uzlu
- D) Je tvořena čtyřmi osmibitovými čísly
- E) Je na Ethernetu tvořena šesti osmibitovými čísly
- F) Obsahuje informace nutné pro směrování paketů směrovačem

A, E

Metoda Sliding window (plovoucí okénko)*

- A) Ve variantě GO-BACK-N požaduje retransmisi paketů od prvního ztraceného
- B) Udržuje v přijímacím okénku dosud nepotvrzené pakety.
- C) Používá na odesílající straně okénka zaslané pakety
- D) Vždy vyžaduje zasílání negativních potvrzení (NAK)
- E) Po vypršení časového limitu ve variantě GO-BACK-N znovu posílá všechny dosud nepotvrzené pakety
- F) Je použita pro přenos dat na internetu protokolem UDP

A, C, E

Druhy směrování jsou

- A) Statické (neadaptivní) směrování
- B) Hierarchické směrování
- C) Geografické směrování
- D) Distribuované směrování
- E) Topologické směrování
- F) Dynamické směrování

A, B, D, F

Co jsou to výhody použití statického směrování oproti dynamickému?

- A) menší zatížení procesoru routeru
- B) úplná kontrola nad výběrem použitých cest
- C) menší námaha při konfiguraci

http://jansimecek.com/quiz/ 10/26

D) vyšší adaptabilita při změně topologie
 E) vyšší bezpečnost než při použití směrovacího protokolu
 F) možnost použití i na přepínačích s podporou VLAN

A, B, E

Pokud nemáte k dispozici žádný e-mailový klient, jakým způsobem si můžete nahlédnout do své emailové schránky?

- A) Použiji příkaz ping s volbou –t MX a adresou serveru, kde je má poštovní schránka
- B) Využiji program telnet a připojím se na port 25 (port SMTP serveru)
- C) Neexistuje žádný způsob, kterým lze přečíst obsah emailové schránky
- D) Využiji program FTP a připojím se na port 110 (port POP3 serveru)
- E) Využiji program telnet a připojím se na port 110 (port POP3 serveru)
- F) Použiji protokolu MDP (Mail Download Protocol) pomocí příkazu mdp

Ε

Při zjišťování cesty sítí příkazem traceroute

- A) odesílatel postupně zvětšuje pole TTL v hlavičce IP paketu a přijímá zprávu ICMP Echo Reply
- B) odesílatel postupně snižuje pole TTL v hlavičce IP paketu a přijímá zprávu ICMP Echo Reply
- C) odesílatel postupně snižuje pole TTL v hlavičce IP paketu a přijímá zprávu ICMP Time Exceeded
- D) odesílatel postupně zvětšuje pole TTL v hlavičce IP paketu a přijímá zprávu ICMP Time
 Exceeded

D

Kanál je sdílen metodou distribuovaného binárního vyhledávání. V případě současného vysílání různé hodnoty více stanicemi bude na kanále logická nula. O kanál soutěží stanice A,B a C s adresami: Určete, při kterém bitu adresy je rozhodnuto, která stanice získá přístup ke kanálu a která to bude.

- A) 1101010
- B) 1010010
- C) 1010101

В

http://jansimecek.com/quiz/

Fragmentované pakety sestavuje podle polí Identification, Fragment Offset a

- A) zdrojové MAC adresy výhradně cílová stanice.
- B) zdrojové MAC adresy kterýkoliv router na cestě.
- C) zdrojové IP adresy výhradně cílová stanice.
- D) zdrojové IP adresy kterýkoliv router na cestě.

C

Co lze říci o MAC adresách 00:BB:BB:BB:00 a 00:BB:BB:BB:01?

- A) jde o dvě varianty broadcast adresy.
- B) jde o adresy stanic na stejném segmentu sítě.
- C) jde o adresy přidělené témuž výrobci.
- D) jde o MAC adresy vyhrazené pro funkci protokolu ARP.

C

V TCP segmentu se zdrojovou adresou 10.0.1.10 a cílovou adresou 10.0.2.20 je nastaven příznak RST dochází k:

- A) Násilnému ukončení spojení (oboustranně)
- B) Jednosměrnému ukončení z 10.0.1.10
- C) Jednosměrnému ukončení z 10.0.2.20
- D) Upozornění na poškození

Α

POP3 server

- A) Slouží typicky k odesílání el. pošty
- B) Je prvním serverem přenášející zprávu
- C) Umožňuje příjem el. pošty pouze po autentizaci
- D) Se připojuje k DNS serveru

C

SMTP server

- A) Slouží typicky k příjmu el. pošty
- B) Při průchodu zprávy vloží hlavičku Received určující, že zpráva prošla
- C) Umožňuje zaslaní zpráv el. pošty pouze po autentizaci USER a PASS

http://jansimecek.com/quiz/ 12/26

o při	D) Se připojuje k DNS serveru, kde zjišťuje podle MX záznamu POP3 doménu, na nějž se pojí a odešle mu zprávu
В	
Přík	ladem protokolů 7 vrstvy modelu RM OSI (celá kombinace)
	A) TFTP, HTTP, FTP, ICMP
	B) TCP a UDP
\bigcirc	C) IP a IPX
•	D) DNS, HTTP, TFTP
D	
Pro	tokol TFTP
•	A) Umožňuje stanicím stáhnout soubor pro start OS ze serveru
	B) Poskytuje masku podsítě
	C) Vyžaduje uživatelské jméno a heslo pro autentizaci
	D) Umožňuje nahrávat soubor na server
	E) Využívá protokol TCP
•	F) Používá potvrzovacího schématu stop-and-wait
Α,	D, F
Tec	hnologie ASDL
	A) Je vhodná pro poskytovatele služeb díky velkým přenosovým rychlostem
✓ tel	B) Umožňuje přenášet data na vzdálenosti řádově jednotek km po klasickém vedení efonní sítě
	C) Má asymetrické přenosové rychlosti rychlejší k poskytovateli pomalejší opacně
•	D) Přizpůsobuje skutečnou rychlost kvalitě linky
	E) Vylučuje současné použití analogového telefonu
•	F) Používá splitter pro rozdělení pásma
В,	D, F
Sítě	typu Ethernet jsou podle normy IEEE 802.3
	A) 10Base2 – sítě Ethernet na tenkém koax kabelu typu RG58
	B) 100BaseSX – plně duplexní přenos po 1 metalickém vodiči

http://jansimecek.com/quiz/

•	C) 10BaseT a 100BaseT – metalické sítě na kroucené dvojlince
	D) 100BaseFX – optické trasy 10Mbit/s
	E) 10BaseGLX – přenos po klasické telefonní dvojlince
	F) 10GBaseT – optické sítě 10000 Mbps full duplex
Α,	C
Pro	tokol ICMP IPv4 lze využít k
	A) Přiřazení MAC adresy IP adrese (address resultion)
	B) Přesměrování provozu pro určitou sít na jinou bránu
/	C) Kontrola dostupnosti PC (echo request)
•	D) Informaci o nedoručitelnosti datagramu (destination unreachable)
•	E) Informaci o překročení počtu směrování (time exceeded)
	F) Informaci o počtu paketu zahozených směrovačem (router drop rate)
С,	D, E
Prof	tokol FTP
	A) UDP data
	B) ICMP data
•	C) TCP data
	D) UDP řídící
	E) ICMP řídící
✓	F) TCP řídící
С,	F
Pou	žití ISDN pro přenos dat přes přípojku BRI dává tyto možnosti
	A) Datový kanál s přenosovou rychlostí až 2Mbps
•	B) Zřízení spojení cca do 1 sekundy
do	C) Vetší přenosovou rychlost ve směru ke koncovému zařízeni (downstream) než ve směru sítě (upstream)
	D) Možnost svazkování až 16 kanálů
•	F) Možnost pomalého přenosu po kanále D pokud to operátor sítě ISDN podporuje

http://jansimecek.com/quiz/ 14/26

20. 1. 2016

Quiz F) Současné použití analogového telefonu na téže lince B, E Virtuální privátní sítě A) Jsou sítě založené na VLAN které používají privátních IP adres B) Používají sdílenou veřejnou infrastrukturu C) Lze na 3 vrstvě realizovat s použitím SSL D) Lze na 3 vrstvě realizovat s použitím IPSec E) Z principu nedovolují provozovaní jiných protokolů než IP F) Jsou nákladnější na vybudování a správu než privátní infrastruktura B, D Překlad adres NAT A) Při použití statického NAT je nutné použít ve vnitřní síti statického směrování B) NAT dovoluje stanicím bez podpory protokolu IP komunikovat s Internetem C) Zvyšuje bezpečnost skrytím vnitřní struktury sítě D) Zvyšuje bezpečnost vnější sítě před útoky E) Při použití čistého dynamického NAT nelze ve vnitřní síti provozovat servery přístupné z Internetu F) Ve vnitřní síti za NAT musí být použity privátní IPadresy, jinak nebude fungovat C Protokol pro služby www A) Ve verzi HTTP 1.0 více dokumentů v 1 spojení B) Ve verzi HTTP 1.1 více dokumentů v 1 spojení C) Ve verzi HTTP 1.0 data šifruje

- D) Ve verzi HTTP 1.1 data šifruje
- E) K šifrování dat ve verzi 1.0 i 1.1 je třeba HTTPS
- F) Umožňuje přenos binárních dat až od verze 1.1

B, E

Bezestavová filtrace

A) Každý paket UDP

http://jansimecek.com/quiz/ 15/26

- B) Každý paket TCP
- C) Každý paket IP

A, B, C

Protokol UDP

- A) Obsahuje čísla zdrojového a cílového portu
- B) Obsahuje CRC (kontrolní součet) který nemusí být vyplněn

A, B

Přenosové medium lze sdílet

- A) Frekvenčním multiplexem
- B) Časovým multiplexem
- C) Vlnovým multiplexem

A, B, C

šifrováni

- A) zajištění integrity při přenosu dat, (data nebyly změněny)
- B) symetrické šifrováni bývá rychlejší než asymetrické (privátní a veřejný klíč)

A, B

Dijkstrův algoritmus na procházení stromu s ohodnocenýma hranama, který protokol to používá?

A) protokol OSPF

Α

Při TCP spojení příkazem FIN dává strana vědět,

A) že už nebude nic posílat a že chce ukončit spojení

Α

U IP 10.8.0.0 adresy určit masku, aby tato adresa byla adresa uzlu

255.240.0.0

255.240.0.0

Jak bude vypadat zakódovaná bitová sekvence 01111111011111010 v datové části rámce synchronního seriového protokolu při použití techniky bit stuffing, když křídlová značka má tvar 0111110 (šest následujících jedniček)?

http://jansimecek.com/quiz/ 16/26

0111110110111111010

0111110110111111010

- A) Je rozdělena na dvě části, určující výrobce a sériové číslo
- B) Slouží k adresaci cílového počítače na 3. vrstvě OSI modelu
- C) Je rozdělena na část adresy sítě a část adresy koncového uzlu
- D) Je tvořena 4mi osmibitovými čísly
- E) Je na Ethernetu tvořena 6ti osmibitovými čísly
- F) Obsahuje informace nutné pro směrování paketu přepínačem

B, C, D

Spanning Tree

- A) Běží mezi směrovači
- B) Běží mezi přepínači
- C) Předává sousedovi směrovací tabulku
- D) Předává sousedovi tabulku dvojic (MAC adresu, port)
- E) Počítá nejkratší (nejlevnější) cesty ke kořeni stromu
- F) Zabraňuje tvorbě smyček na 2. vrstvě

B, E, F

Hlavička protokolu IP (IPv4)

- A) Obsahuje zdrojovou a cílovou adresu
- B) Obsahuje čísla zdrojového a cílového portu
- C) Obsahuje zdrojový příznak FF (force fragments), vynucující fragmentaci
- D) Obsahuje kontrolní součet
- E) Obsahuje pole TTL (time to live), při jehož vynulování je paket zahozen
- F) Může být proměnné délky

A, D, E, F

Jakým způsobem můžeme charakterizovat asymetrický kryptografický systém?

A) Používá dva klíče jako vzájemně související pár

http://jansimecek.com/quiz/ 17/26

B) Pro větší zabezpečení šifruje data na zdroji dvěmi klíči
C) Používá jeden sdílený klíč
D) Používá algoritmy DES, 3DES nebo AES
E) Používá jeden klíč pro šifrování a druhý pro dešifrování
F) Používá efektivní algoritmy, které nejsou náročné na výpočet a jsou snadno implementovatelné hardwarově
A, E
Ve srovnání DVA a LSA směrovacích algoritmů
A) Jsou DVA na implementaci jednodušší a výpočetně méně náročné než LSA
B) LSA výrazně déle konvergují než DVA
C) Směrovací informace se v případě algoritmů DVA mezi směrovači šíří ve stanovených časových intervalech (např. 30s) V případě LSA jsou šířeny pouze při jejich změně //FAKE, viz EIGRP
D) LSA sestavují směrovací tabulku na základě znalosti topologie sítě, DVA algoritmy sestavují směrovací tabulku na základě směrovacích tabulek jiných směšovačů.
E) DVA i LSA algoritmy používají stejný typ metriky a tím je vždy počet směšovačů mezi zdrojem a cílem
F) Pro rozsáhlé sítě jsou vhodnější LSA směrovací algoritmy z důvodů rychlé konvergence, stability
A, C, D
Které z následujících protokolů můžeme pomocí ACL zakázat, aniž bychom ohrozily funk č nost zasílání a p ř íjmu elektrické pošty?
■ A) POP3
■ B) SMTP
✓ C) ICMP
✓ D) FTP
E) DNS
✓ F) TFTP
C, D, F
User Datagram Protokol (UDP)

A) Je protokol druhé vrstvy

http://jansimecek.com/quiz/ 18/26

	B) vždy zajišťuje spolehlivý přenos dat sítí
•	C) je používán při přenosu dat nepotvrzovanou datovou službou
•	D) v hlavičce obsahuje pole kontrolního součtu
ne	E) v hlavičce obsahuje číslo zdrojového a cílového portu. Tyto položky však nejsou povinné a musí být použity
	F) používá se pouze pro přenos zvuku v IP sítích.
С,	D
	á je největší vzdálenost mezi dvěma aktivními prvky u 100BaseT Ethernetu podle standartu, ž používámé kabely UTP5?
	A) 82 metrů
•	B) 100 metrů
	C) 185 metrů
	D) 300 metrů
	E) 305 metrů
В	
Pro	tokol Spanning Tree slouží k
	A) vyhledání nejkratších cest z každého přepínače do každého segmentu sítě
•	B) zablokování spojů tvořících smyčky mezi přepínači
	C) vyhledání nejkratších cest z každého směrovače do každého segmentu sítě
	D) zablokování spojů tvořících smyčky mezi směrovači
	E) zablokování spojů mající nejdelší cestu ke kořenu stromu
В	
	rý z následujících výrazů označuje čas, mezi odesláním paketu odesílatelem a jeho přijetí emcem?
	A) šířka pásma (bandwidth)
•	B) zpoždění (delay)
	C) time-to-live (TTL)
	D) kontrolní součet
	E) rozptyl (jitter)

http://jansimecek.com/quiz/ 19/26

В

- A) je číslo, které reprezentuje kvalitu linky k sousednímu směrovači
- B) je číslo,ktereé udává počet přeskoků (hop count) na cestě od zdroje k cíli // JEN RIP
- C) určuje počet bitů IP adresy, které jsou použity pro pro adresaci sítě
- D) bývá omtezená maximální hodnotou, při jejímž překročení se směrovací informace považuje za neplatnou
- E) se mění v závislosti počtu směrovačů ve zvolené cestě sítí
- F) je zcela nezávislá na počtu směrovačů ve zvolené cestě sítí

B, D, E

Protokoly 7. Vrstvy OSI modelu jsou (všechny ve variantě)

- A) FTP, TFTP a HTTP
- B) TCP a UDP
- C) IP a IPX
- D) DNS, ARP, DHCP a BOOTP
- E) TCP, UDP a IP

Α

Která tvrzení z oblasti bezpečnosti sítí jsou platná?

- A) Šifrování se v praxi realizuje výhradně na prezentační vrstvě
- B) Vrstva SSL zajišťuje šifrování na 2.vrstvě OSI RM
- C) IPSec zajišťuje šifrování na 3.vrstvě OSI RM
- D) Pro šifrování provozu v Internetu je nejefektivnější šifrování na 2.vrstvě OSI RM
- E) Šifrování může být technicky realizováno i na více vrstvách OSI RM současně
- F) Při asymetrickém šifrování lze šifrovat privátním klíčem a dešifrovat veřejným nebo opačně

C, E, F

Server provozuje dvě služby – HTTP a FTP. Jakým způsobem rozliší server, o který druh spojení se jedná, v okamžiku, kdy zaregistruje pokus o připojení?

A) Příchozí segment obsahuje cílový port, který určuje, o kterou službu se jedná.

Α

Směrovací tabulka musí vždy	obsahovat tyt	o sloupce:
-----------------------------	---------------	------------

•	A) IP adresu cílové stanice sítě, kterou daný daný řádek tabulky reprezentuje
•	B) Rozhraní, kterým bude paket vysílán nebo IP adresu souseda, kterému bude paket poslán
	C) IP adresu počítače, který adresu poslal
	D) Metriku, která vždy reprezentuje počet směrovačů na cestě k cíli
	E) Seznam protokolů, které daná síť podporuje
	F) Porty protokolu TCP, které mohou být použity v poli cílového portu v hlavičce TCP
А, В	
Ve sr	ovnání protokolů TCP a UDP platí
	A) Protokol TCP zatěžuje síť při přenosu malého množství daleko méňe než protokol UDP
	B) Protokol TCP je na rozdíl od protokolu UDP schopen zajistit, že přenášena data budou k emci vždy doručena bez případných chyb vzniklých jejich přenosem sítí.
	C) Protokol UDP má mnohem delší záhlaví než protokol TCP
	D) Oba protokoly používají pro identifikování zdrojového a cílového portu šestnáctibitová a nesená v jejich záhlaví.
	E) Protokol UDP může mít jako cílovou adresu uvedenou adresu broadcastovou nebo ticastovou. Protokol TCP toto neumožňuje.
	F) Hlavička obou protokolů je stejná, zajišťuje však síťové služby
B, D	, E
NAT	
	A) Znamená Network Access Tunnel
	B) Slouží pro bezpečné vzdálené připojení do podnikové sítě
•	C) Jedná se o příklad IP adres
•	D) Umožňuje změnu cílového portu v TCP segmentu
•	E) Umožňuje změnu zdrojového portu v TCP segmentu
	F) Šifruje data transparentní vrstvě OSI modelu

C, D, E

Protokol TFTP

A) Používá na 4.vrstvě protokol UDP

http://jansimecek.com/quiz/ 21/26

	B) Je využíván pro svou jednoduchost k načítání souboru pro start OS se serveru (network boost)
6	C) Kvůli omezení velikosti dat v UDP datagramu může přenášet pouze soubory do velikosť 64KB
	D) Používá sliding window
	E) Přenáší data pouze ze serveru ke klientovi
	F) Využívá zašifrované spojení
A	, B
Pr	ro fyzickou vrstvu OSI modelu plati
•	A) muze oznamovat chybove stavy spojove vrstve (grygárek říká že ano)
	B) definuje spusob adresovani koncovych stanic
	C) prikladem prvku teto vrstvy je switch
•	D) prikladem prvku teto vrstvy je hub
•	☑ E) poskytuje sluzbu pro prenos serioveho proudu bitu
	F) poskytuje chyby v datove casti ramcu pri prenosu
A.	, D, E
V	yberte tvrzeni, ktera charakterizuji (globalni platnou) MAC adresu
	A) je tvorena ctyrmi osmibitovymi cisly
•	B) je tvorena sesti osmibitovymi cisly
	C) Slouzi k adresaci ciloveho pocitace na 3.vrstve OSI modelu
	D) Obsahuje informace nutne pro smerovani paketu smerovace
	☑ E) prvni cast urcuje vyrobce, druha seriove cislo
	F) je rozdelena na adresu site a koncoveho uzlu
В	, E
Ve	e srovnani DVA a LSA smerovacich algoritmu
(A) DVA konverguji typicky dele nez LSA
(B) jsou LSA na implementaci jednodusi a vypocetne mene narocnejsi nez DVA
2	C) DVA i LSA algoritmy pouzivaji stejny typ metriky a tim je vzdy pocet smerovacu mezi zdrojem a cilem

http://jansimecek.com/quiz/ 22/26

ses	D) DVA sestavuji smerovaci tabulky na zaklade znalosti topologie site , LSA algoritmy stavuji smerovaci tabulku na zaklade smerovacich tabulek jinych algoritmu
	E) smerovaci informace se v pripade algoritmu DVA mezi smerovaci siri ve stanovenych sovych intervalech . V pripade algoritmu LSA jsou sireny pouze pri jejich zmene. //pozor GRP který je DVA šíři pri změně!
\bigcirc	F) pro rozsahle site jsou vhodnejsi DVA smerovaci algoritmy z duvodu rychle konvergence.
Α	
-	prochazi TCP segment se zdrojovym portem 100, cilovym portem 200 a s nastavenymi naky SYN a ACK. Tento segment predstavuje
\bigcirc	A) zadost o navazani spojeni z klienta z portu 100 na port serveru 200
	B) zadost o navazani spojeni z klienta z portu 200 na port serveru 100
\bigcirc	C) zamitnuti zadosti o navazani spojeni na port 200 serverem
\bigcirc	D) odpoved serveru na zadost o navazani spojeni na port 200 z klienskeho portu 100
	E) zamitnuti zadosti o navazani spojeni na port 100 klientem
•	F) odpoved serveru na zadost o navazani spojeni na port 100 z klienskeho portu 200
F	
Intr	usion Detection System je nastroj pro
•	A) odhaleni utoku na sit nebo operacni sytem
\bigcirc	B) sifrovani komunikace ve VPN tunelu
	C) Smerovani IP paketu mezi VLANy
	D) Sysnchronizaci primarni a sekundarni DNS
\bigcirc	E) Prepinani ramcu mezi VLANy
Α	
Co r	nuzeme rict o protokolu RIP
•	A) Predava sousedovi obsah sve smerovaci tabulky
✓	B) Je pouzivan na smerovacich
•	C) Zjistuje nejkratsi cesty do vsech siti - rozhodujici je pocet preskoku
	D) Predava sousedovi tabulky dvojic (MAC adresu, post)
	E) Zabranuje vzniku smycek na 2.vstve ISO-OSI Referencniho modelu
	F) Je pouzivan na prepinacich

http://jansimecek.com/quiz/ 23/26

A, B, C

Lllassialss	protoko	I ID /	/ID 4\
HIAVICK	i Drotoko	iu ir i	(1PV4)

- 🗹 A) Neobsahuje cisla zdrojoveho a ciloveho portu
- B) Obsahuje zdrojovou a cilovou adresu
- C) Ma pevnou delku
- D) Obsahuje pole TTL, inkrementovane pri pruchodu smerovaci
- E) Obsahuje bitovy priznak MF, individualni indikující fragmentaci
- F) Obsahuje kontrolni soucet ramce

A, B, E

Referencni model ISO-OSI

- A) Definuje na 1.vrstve fyzicke parametry rozhrani
- B) NA 3.vrstve popisuje komunikaci mezi ruznymi LAN pres prostredniky
- C) Definuje jako standartni protokol 3. vrstvy protokol TCP
- D) Obsahuje 15 vrstev
- E) NA 3. vrstve popisuje komunikaci mezi primo propojenymi systememy
- F) Definuje na spojove vrstve zpusoby spojovani kabelu (parametry stavu atd.)

A, B

DNS - Sluzba domenovych jmen

- A) Vyuziva pro komunikaci protokoly UDP i TCP
- B) Umoznuje pouzivat domenova jmena o delce komponenty max. 63 znaku
- C) Umoznuje preklad IP adres na domenova jmena
- D) Realizuje preklad MAC adresy na IP adresu
- E) Rozlisuje mala a vekla pismena
- F) Pouziva jako oddelovac komponent jmen dvojtecku

A, B, C

Server protokolu POP3

A) Umoznuje cteni obsahu postovni schranky pouze po predchozi autentifikaci

Α

http://jansimecek.com/quiz/ 24/26

0 .0	
Mozi	nosi zdileni prenosoveho media jsou
/	A) Castovy multiplex
•	B) Vlnovy multiplex
•	C) Frekvencni multiplex
	D) Nelze sdilet vubec
	E) Napetovym multiplex
Α, Β	3, C
Kter	e z nasledujich tvrzeni jsou pravdiva o protokolu HTTP?
•	A) Je provozovan nad transportnim protokolem TCP
•	B) Je postaven na architekture client-server
	C) Je provoznovan nad transportnim protokolem UDP
	D) Slouzi pro ziskani IP adresy pri znalosti MAC adresy
	E) Pouziva se pro ohlasovani chyb a zvlastnich stavu pri prenosu paketu
	F) Pouziva se pro sifrovany prenos WWW stranek
Α, Β	
Торс	ologicka databaze, ktera reprezentuje topologii dane site
	A) Se pozuva v pripade pouziti algoritmu DVA pro dynamicke smerovani //spis ne
	B) je pouzivana protokolem RIP
•	C) je vyuzita v dynamikem smerovani k nalezeni nejkratsich cest do jednotlivych siti //spis jo
	D) Se v dynamickem smerovani vubec nepouziva
/	E) Prichozi datagram obsahuje cilovy port, ktery urcuje, o kterou sluzbu se jedna
C, E	
K cei	mu se v sitich IEEE 802.11 pouziva mechanizmus RTS-CTS?
•	A) K rezervaci kanalu na dobu zamysleneho vysilani ramce
Α	

Problem skryteho uzlu spociva v

A) Neuplne vzajemne slysitelnosti stanic

Α

http://jansimecek.com/quiz/ 25/26

Ohodnotit

Random

Další

100

http://jansimecek.com/quiz/ 26/26