LSTMを用いたGANによる疑似トラヒックの生成 に関する一考察

長岡技術科学大学 電気電子情報工学課程4年 通信ネットワーク研究室 栗山海渡

2020年 9月26日

目的•背景

- 近年, ユーザが利用する端末が多様化
- ■トラヒックジェネレータを用いて、試験用の疑似トラヒックデータを生成し、シミュレーションやテストを行う
 - ex) キャパシティプランニング
 - ITシステムの構築の際に使われる
 - あるトラヒックを処理するのに、どのくらい増強すれば良いか
- ■トラヒックジェネレータにおける問題
 - 公開されているデータセットが少ない
 - ■リアルなトラヒックを作るのが困難
 - 統計学的知識やパラメータ設定が必要

目的•背景

GAN (Generative Adversarial Networks)

- ■本物のデータに類似したデータを生成する教師なし学習モデル
- GANの構成
 - 識別器(Discriminator)
 - ■入力されたデータが、学習データか生成データかを識別
 - ■学習データなら1, 生成データなら0となるように学習
 - 生成器(Generator)
 - ■Discriminatorを騙せるほど類似したデータを生成
 - Discriminatorの出力を1に近づけるように学習

先行研究

- GANとAutoEncoderを組み合わせた疑似トラヒック生成手法
- AutoEncoderの構成
 - Encoder ・・・ データの次元圧縮を行う
 - Decoder ・・・ 次元圧縮されたデータを復元する
- ■次元圧縮することでGANの生成範囲を狭めることができる

➡ 学習データと生成データの長さを変更することができない

先行研究

- ■学習方法
 - 1.トラヒックデータをAutoEncoderに学習させる
 - 2. 学習済みのEncoderとGANを組み合わせ、GANのみを学習させる
 - 3. Generatorからの生成データをDecoderに入力し、疑似トラヒックデータを生成する

LSTM(Long Short Term Memory)

- ■長期的な依存関係を学習できるため、時系列データに対してよく用いられる
- ■LSTMの構造
 - セル(C) ・・・セル状態に情報を追加または削除していく
 - ゲート・・・ シグモイド層(σ)によって, 0~1の数値を出力することで, 前の情報(h)を引き継ぐ

提案手法

- GANとLSTMを組み合わせた疑似トラヒック生成手法
- ➡ 学習データと生成データの長さを任意に変更可能
 - LSTMにより、トラヒックデータの時系列的な特性を学習

提案手法

- GANとLSTMを組み合わせた疑似トラヒック生成手法
 - GANにより、学習済みのLSTMに入力する最初のセル状態 Cと隠れ層h、入力xを学習
 - 学習済みのGeneratorとLSTMにより、 疑似トラヒックデータ を生成

データセット

■ MAWI Working GroupのWIDEネットワークトポロジ[2]

- 複数の点で測定された長期的なネットワークトラヒックを公開
- サンプリング点Gにおける2020年4月20日の8時間のトラヒックトレースを使用

シミュレーション

- ■データセット
 - ある1日の30秒毎に何バイト通信されたかを表したデータ
- ■学習データ
 - ■前処理として、標準化を行う(平均値=0,標準偏差=1)
 - tを1ずつずらして学習データを生成(t = 0~50,1~51,…)

シミュレーション

■ GANのニューラルネットワークの構成

	Generator		Discriminator	
Layer	Units	Act.	Units	Act.
Input	100	-	(1, 1, 10)	-
Hidden	128	LReLU	512	LReLU
Hidden	256	LReLU	256	LReLU
Hidden	512	LReLU	-	-
Hidden	1024	LReLU	-	-
Output	(1, 1, 10)	-	1	Sigmoid

■ エポック数: 300

■ LSTMの各パラメータ

■ 隠れ層の次元: 5

■ バッチサイズ: 4

■ エポック数: 100000

結果

■生成結果の一部

- 挙動が似ていることが確認できる
- 同様の挙動をとる異なるトラヒックデータが生成できている
- ➡ 元のトラヒックと類似したトラヒックデータを生成できた

まとめ・今後の予定

■まとめ

- バイトレベルにおけるLSTMとGANを組み合わせた新たな 疑似トラヒック生成手法を提案
- 元のトラヒックと類似した疑似トラヒックデータを生成することができた
- ■今後の予定
 - LSTMとGANの各パラメータの調整
 - ■評価手法の検討
 - ■データの前処理の検討

参考文献

[1] 山際哲哉, 渡部康平, 中川健治, 敵対的生成ネットワークを利用した疑似トラヒック生成に関する一考察. 信学技報, Vol. 119, No. 125, pp. 27–29, 2019.

[2] Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traffic data repository at the wide project, USENIX Association, pp. 51, 2000.

補足

■トラヒックジェネレータは大きく三つのレベルに分類される

