Package 'kangoo'

October 16, 2014

Type Package	
Title Analyse qRT-PCR data with a special focus on differential splicing detection	
Version 1.0	
Date 2014-03-17	
Author Frithjof Glowinski	
Maintainer Frithjof Glowinski <frithjof@miklaw.org></frithjof@miklaw.org>	
Description Especially designed for ABI output.	
License GPL-3	
Depends R (>= 3.0.0),ggplot2, reshape2, scales, plyr, tcltk	
Imports	
Suggests RSVGTipsDevice	
R topics documented:	
analyzeInclIndex	2
Index	4

2 analyzeInclIndexKD

analyze InclIndex

analyzeInclIndex

Description

This function takes the output of the ABI SDS programm and calculates the alternative isoform fraction (AIF), which describes the proportion of the alternative isoform compared to the contitutive expression as defined by the conservative primer pair.

Combines the loadExp and calculateInclIndex function into one call.

Usage

```
analyzeInclIndex(plate.setup = "splicing", plate.format = "96-well")
```

Arguments

plate.setup Specify the sample setup on the plate. Default is "splicing".

Specify the plate format of the RT-PCR cycler. Default is "96-well".

Details

This function outputs 3 plots: 1. plot of the raw CT values for quality control 2. plot of the AIF without p-value 3. plot of the AIF including the p-value for each gene

Also it outputs a table describing the results and showing the dAIF. This output is also appended to the general output file in the e-book. In addition a small txt file is written giving the session info.

Examples

```
{
   }
```

analyzeInclIndexKD

analyzeInclIndexKD

Description

This function takes the output of the ABI SDS programm and calculates the alternative isoform fraction (AIF), which describes the proportion of the alternative isoform compared to the contitutive expression as defined by the conservative primer pair.

Combines the loadExp and calculateInclIndex function into one call.

This version is adapted to incorporate different knockdown experiments by siRNAs. Sample information is needed in form AGS_SESN1_SRPK2-7_con_NI

analyzeInclIndexKD 3

Usage

```
analyzeInclIndexKD(plate.setup="splicing",plate.format="96-well")
```

Arguments

plate.setup Specify the sample setup on the plate. Default is "splicing" ("Cells_Gene_Primer_Treatment").

Alternatively you can use "splicing_knockdown", which needs a sample descrip-

tion in the form "Cells_Gene_Knockdown_Primer_Treatment".

plate.format Specify the plate format of the RT-PCR cycler. Default is "96-well".

Details

This function outputs 3 plots: 1. plot of the raw CT values for quality control 2. plot of the AIF without p-value 3. plot of the AIF including the p-value for each gene

Also it outputs a table describing the results and showing the dAIF. This output is also appended to the general output file in the e-book. In addition a small txt file is written giving the session info.

Examples

{
 }

Index

```
*Topic \textasciitildekwd1
analyzeInclIndex, 2
analyzeInclIndexKD, 2
*Topic \textasciitildekwd2
analyzeInclIndex, 2
analyzeInclIndexKD, 2
analyzeInclIndex, 2
analyzeInclIndex, 2
```