Algorytmy numeryczne

Zadanie 4 Dawid Bińkuś & Oskar Bir & Mateusz Małecki grupa 1 tester-programista

13 Styczeń 2019

1 Aproksymacja

Sprawozdanie prezentuje analizę aproksymacji dla problemu określonego w zadaniu 3. W tym celu, zastosowana została aproksymacja dla metod testowanych w zadaniu 3:

- Metoda Gaussa (PG) wielomian 3-go stopnia,
- Metoda Gaussa z drobną optymalizacją dla macierzy rzadkich (SPG) wielomian 2-go stopnia,
- Metoda Gaussa-Seidela (GS) przy założonej dokładności 1e-10 wielomian 2-go stopnia,

Oraz dodatkowo:

- Metoda zaimplementowana w oparciu o macierze rzadkie (S) wielomian 1 stopnia (wykonane za pomocą LUDecomposition z biblioteki Apache Commons Math¹) wariant z użyciem własnego typu danych (SparseFieldMatrix),
- wariant z użyciem tablicy double (DS) (OpenMapRealMatrix)

Program na potrzeby analizy problemu został napisany w języku Java. Ilość agentów oznaczana jest jako ${\cal N}$

2 Próbka pomiarów czasu

2.1 Zakres testów

Na potrzeby wyliczenia funkcji aproksymacyjnej dla każdej z metod, wykonane zostały testy dla N=15,16,...,60, co przy N=60 odpowiada liczbie około 2000 równań. Dla mniejszej ilości agentów testy wydajnościowe zostały wykonane kilka razy dla uśredniania wyniku.

2.2 Wyniki

Wyniki zostały zamieszczone w pliku csv

3 Aproksymacja średniokwadratowa dyskretna

Za pomocą aproksymacji średniokwadratowej dyskretnej, wygenerowane zostały wielomiany dla każdego typu pomiarów. Prezentują się one w sposób następujący:

- 1. Generowanie macierzy:
 - (a) $(2.3350439175615983e-11)x^3 (3.73562735299031e-8)x^2 + (3.927924861861045e-5)x^1 0.006632202623758287$ dla PG,
 - (b) $0.026544550834587136x^1 12.310426442549858$ dla S (wariant dla wielomianu stopnia 1, m = 1),
 - (c) $(1.1160411337156506e-8)x^3 (1.138102839915528e-5)x^2 + 0.006355108980340516x^1 0.9349542064725634$ dla S (wariant dla wielomianu stopnia 3, m = 3),
 - (d) $0.005862735639798491x^1 2.8318326460105085$ dla S (wariant)
 - (e) $(3.905262387830365e-8)x^2 (2.5264926661242525e-5)x^1 + 0.006283510185750934x^0$ dla SPG,
 - (f) $(5.486623477461811e 8)x^2 (5.4389374355751846e 5)x^1 + 0.014501100847044942$ dla GS.
- 2. Rozwiązywanie układu równań:

 $^{^1}$ http://commons.apache.org/proper/commons-math/javadocs/api-3.6/overview-summary.html

- (a) $(2.1592223868228134e-8)x^3 (3.716638790505861e-5)x^2 + 0.023672650455756852x^1 3.8108135102259824$ dla PG,
- (b) $(1.583603905695412e-4)x^1 0.06429601760699291$ dla S,
- (c) $(2.0353485741938283e-5)x^1$, -0.008158601334700392 dla DS,
- (d) $(1.3001654605220337e-6)x^2 0.0014560130726117273x^1 + 0.3507906257127139$ dla SPG,
- (e) $(2.3048124134271384e-5)x^2 0.020571995359005252x^1 + 4.514786569835568$ dla GS.

Rysunek 1: Wykresy reprezentujące czas wykonania i błędy bezwzględne zaimplementowanych algorytmów

3.1 Poprawność uzyskanego rozwiązania

Błąd aproksymacji			
Metoda	Wariant	Błąd aproksymacji[s]	
PG	Obliczanie	87.52296395468811	
	Generowanie	0.0056371667465691345	
SPG	Obliczanie	2.932007861300984	
	Generowanie	0.0035357258834377552	
GS	Obliczanie	204.23823436655252	
	Generowanie	0.013028009281415509	
S	Obliczanie	0.2257609275320777	
	Generowanie $m=1$	3727.8124913151905	
	Generowanie $m=3$	26.142413480394573	
DS	Obliczanie	8.484328415617502e-4	
	Generowanie	208.62045033311406	

Jak widać na załączonych wykresach 1 oraz tabeli powyżej prezentującej błąd aproksymacji, w większości przypadków funkcja aproksymująca poprawnie wylicza kolejne czasy wykonywania algorytmu.

Wyjątkiem jest funkcja dla generowania w metodzie S. Wielomian stopnia pierwszego okazał się być niewystarczający dla tego typu problemu, gdyż w bibliotece Commons Math maceirze rzadkie zapisywane są w postaci obiektów HashMap - co znacząco wydłuża czas

4 Ekstrapolacja

5 Próba obliczenia

6 Podział pracy

Dawid Bińkuś	Oskar Bir	Mateusz Małecki
Praca nad strukturą pro-	Analiza algorytmu Gaussa	Implementacja typu własnej
jektu.	oraz implementacja wariantu	precyzji
	G	
Przygotowanie sprawozdania	Przygotowanie testów i ich	Operacje na macierzach
	uruchomienie	
Implementacja algorytmu	Analiza danych oraz określe-	Praca nad strukturą pro-
Gaussa w wariantach PG i	nie czasu pracy typu Frac-	jektu
FG	tion	
Implementacja generycznej	Przygotowanie wykresów	Implementacja generycznej
klasy MyMatrix	końcowych	klasy MyMatrix