

(Empowered Autonomous Institute Affiliated to Mumbai University)

Name	Manish Shashikant Jadhav
UID	2023301005
Subject	Design and Analysis of Algorithms (DAA)
Experiment No.	6
Aim	To implement Greedy Approach (Prim's Algorithm and Dijkstra's Algorithm)
Code:	<pre>#include <stdio.h> #include <stdib.h> #include <limits.h> void primsAlgorithm(int **graph, int vertices) { int parent[vertices]; int key[vertices]; int mstSet[vertices]; for (int i = 0; i < vertices; i++) { key[i] = INT_MAX; mstSet[i] = 0; } key[0] = 0;</limits.h></stdib.h></stdio.h></pre>
	parent[0] = -1;
	<pre>for (int count = 0; count < vertices - 1; count++) { int minKey = INT_MAX, minIndex;</pre>
	<pre>for (int v = 0; v < vertices; v++) { if (mstSet[v] == 0 && key[v] < minKey) { minKey = key[v]; minIndex = v; } }</pre>
	<pre>mstSet[minIndex] = 1;</pre>

(Empowered Autonomous Institute Affiliated to Mumbai University)

```
for (int v = 0; v < vertices; v++) {</pre>
             if (graph[minIndex][v] && mstSet[v] == 0 &&
graph[minIndex][v] < key[v]) {</pre>
                 parent[v] = minIndex;
                 key[v] = graph[minIndex][v];
            }
    }
    printf("Edge \tWeight\n");
    for (int i = 1; i < vertices; i++) {</pre>
        printf("%d - %d \t%d \n", parent[i], i,
graph[i][parent[i]]);
void dijkstraAlgorithm(int **graph, int vertices, int src) {
    int dist[vertices];
    int visited[vertices];
    for (int i = 0; i < vertices; i++) {</pre>
        dist[i] = INT MAX;
        visited[i] = 0;
    dist[src] = 0;
    for (int count = 0; count < vertices - 1; count++) {</pre>
        int minDist = INT_MAX, minIndex;
        for (int v = 0; v < vertices; v++) {
             if (!visited[v] && dist[v] <= minDist) {</pre>
                 minDist = dist[v];
                 minIndex = v;
             }
```


(Empowered Autonomous Institute Affiliated to Mumbai University)

```
visited[minIndex] = 1;
        for (int v = 0; v < vertices; v++) {
            if (!visited[v] && graph[minIndex][v] &&
dist[minIndex] != INT MAX &&
                dist[minIndex] + graph[minIndex][v] < dist[v])</pre>
                dist[v] = dist[minIndex] + graph[minIndex][v];
            }
    }
    printf("Vertex \tDistance from Source\n");
    for (int i = 0; i < vertices; i++) {</pre>
        printf("%d \t%d\n", i, dist[i]);
    }
int main() {
    int choice, vertices, src;
    printf("Enter the number of vertices: ");
    scanf("%d", &vertices);
    int **graph = (int **)malloc(vertices * sizeof(int *));
    for (int i = 0; i < vertices; i++) {</pre>
        graph[i] = (int *)malloc(vertices * sizeof(int));
    }
    printf("Enter the adjacency matrix:\n");
    for (int i = 0; i < vertices; i++) {</pre>
        for (int j = 0; j < vertices; j++) {
            scanf("%d", &graph[i][j]);
    }
```


(Empowered Autonomous Institute Affiliated to Mumbai University)

```
do {
        printf("\nChoose an option:\n");
        printf("1. Prim's Algorithm\n");
        printf("2. Dijkstra's Algorithm\n");
        printf("3. Exit\n");
        scanf("%d", &choice);
        switch (choice) {
            case 1:
                 primsAlgorithm(graph, vertices);
                break;
            case 2:
                 printf("Enter the source vertex for Dijkstra's
Algorithm: ");
                scanf("%d", &src);
                if (src >= 0 && src < vertices) {</pre>
                     dijkstraAlgorithm(graph, vertices, src);
                 } else {
                     printf("Invalid source vertex.\n");
                break;
            case 3:
                 printf("Execution Completed\n");
                 break;
            default:
                 printf("Invalid choice. Please enter
again.\n");
    } while (choice != 3);
    for (int i = 0; i < vertices; i++) {</pre>
        free(graph[i]);
    free(graph);
    return 0;
```


(Empowered Autonomous Institute Affiliated to Mumbai University)

Department Of Computer Engineering

Output

```
PS D:\Manish\SPIT> cd 'd:\Manish\SPIT\4th SEM\DAA\Exp6\output'
PS D:\Manish\SPIT\4th SEM\DAA\Exp6\output> & .\'greedy.exe'
 Enter the number of vertices: 4
 Enter the adjacency matrix:
 0130
 1014
 3 1 0 2
 0 4 2 0
 Choose an option:
1. Prim's Algorithm
 2. Dijkstra's Algorithm
 3. Exit
         Weight
 Edge
 Choose an option:
 1. Prim's Algorithm
 2. Dijkstra's Algorithm
 Exit
 Enter the source vertex for Dijkstra's Algorithm: 1
 Vertex Distance from Source
         0
         1
 Choose an option:
 1. Prim's Algorithm
 2. Dijkstra's Algorithm
 Exit
 Execution Completed
 PS D:\Manish\SPIT\4th SEM\DAA\Exp6\output>
```


(Empowered Autonomous Institute Affiliated to Mumbai University)

Department Of Computer Engineering

Pseudo Code

(Empowered Autonomous Institute Affiliated to Mumbai University)

(Empowered Autonomous Institute Affiliated to Mumbai University)

A TATUTE OF THE STATE OF THE ST

BHARATIYA VIDYA BHAVAN'S SARDAR PATEL INSTITUTE OF TECHNOLOGY

(Empowered Autonomous Institute Affiliated to Mumbai University)

(Empowered Autonomous Institute Affiliated to Mumbai University)

Conclusion	Hence, by completing this experiment I came to know about implementation of Prims and Dijkestra algorithm.