

Respiration Introduction

Part A
Respiration definition Y
Respiration is the process by which biological molecules (e.g. carbohydrates) are broken down into smaller
molecules to produce energy. This energy is used to add a group to , producing
, which acts as an energy storage molecule. It can then transfer this energy to other molecules by them.
Respiration can occur (without oxygen) or (with oxygen).
Items:
adenosine diphosphate (ADP) phosphorylating methylating anaerobically phosphate aerobically methyl adenosine triphosphate (ATP)
R
Part B

Aerobic respiration equation >

Complete the equation to give the correct (and balanced) general equation for aerobic respiration of one glucose molecule.

$$+ O_2 \longrightarrow 6 CO_2 + 6$$

p

Part C Aerobic vs anaerobic >	
Fill in the table below to identify which processes are part of aer respiration, and which are part of both.	obic respiration, which are part of anaerobic
Process	Part of which type of respiration
Glycolysis	
Link reaction (oxidative decarboxylation)	
Krebs cycle (citric acid cycle)	
Oxidative phosphorylation	
Fermentation	
Items: aerobic respiration anaerobic respiration both types	
	P

Glycolysis

Subject & topics: Biology | Biochemistry | Respiration Stage & difficulty: A Level P3

Glycolysis is the process by which glucose is broken down into pyruvate. This process is the first step of both anaerobic and aerobic respiration.

Figure 1: An overview of glycolysis. Molecules are labelled with letters (A-E), and individual steps (indicated by arrows) are labelled with numbers (1-4). Note that only some of the intermediate molecules/steps involved in glycolysis are shown.

Part A Match the molecules		
Match the molecule names to the le	etters in Figure 1 .	
Letter	Molecule name	
Α		
В		
С		
D		
E		
Items:		
triose phosphate (glyceraldehyde-3-	phosphate) (triose bisphosphate) (glucose) (pyruvate) (hexose bisphosphate)	
		p
Part B Phosphorylation >		
What molecule is responsible for pl	hosphorylating molecule A to help convert it into molecule B during step 1?	
How many of these molecules are u	used up during step 1?	
		p

P

Part E Net results >		
Fill in the table below to give the net loss/gain of each molecule during glycolysis.		
Molecule	Net result	
glucose	-1	
pyruvate		
АТР		
NAD ⁺		
NADH		
Items:		
-2 -1 0 $+1$ $+2$ $+3$ $+4$		
	P	

Question deck:

The Link Reaction

Subject & topics: Biology | Biochemistry | Respiration Stage & difficulty: A Level P3

The link reaction (also called pyruvate decarboxylation, or oxidative decarboxylation) is the stage of aerobic respiration that occurs after glycolysis.

Figure 1: An overview of the link reaction. Certain molecules are labelled with letters (A-D). Molecule A is a three-carbon molecule.

Part A Match the molecule		
Match the names to the molecules in Figure 1.		
Molecule	Name	
А		
В		
С		
D		
Items:		
(pyruvate) (coenzyme A (CoA)) (acetyl coenzyme A (acetyl CoA) NADH (reduced NAD)	
	R	
Net results > Fill in the table below to give the net loss/gain of each molecule during this stage of respiration, per molecule of glucose.		
Molecule	Net result	
NAD ⁺		
NADH		
CO ₂		
Items:		
-2 -1 0 $+1$ $+2$		
	P	

Part C Cell location >	
Where does the link reaction occur in eukaryotic cells?	
at the thylakoid membranes	
in the mitochondrial matrix	
in the cytoplasm	
in the chloroplast stroma	
at the outer mitochondrial membrane	
at the inner mitochondrial membrane	
	P

Question deck:

Krebs Cycle

Krebs Cycle (also called the citric acid cycle, or the tricarboxylic acid (TCA) cycle) is the stage of aerobic respiration that occurs after the link reaction.

Figure 1: An overview of Krebs cycle. Certain molecules are labelled with letters (A-F). The number of carbons present in each intermediate molecule is shown e.g. 5C. Arrows represent the steps within Krebs cycle. Pi = inorganic phosphate.

Part A Match the molecule	
Match the names to the molecules in Figure 1 .	
Molecule	Name
А	
В	
С	
D	
E	
F	
Items:	
FADH ₂ (reduced FAD) coenzyme A (CoA) acety	rl coenzyme A (acetyl CoA) NADH (reduced NAD) oxaloacetate
	9

0/2020, 10.00	Meda dydie — Isaac delence
Part B Net results >	
Fill in the table below to give the net loss/gain of e glucose.	ach molecule during this stage of respiration, per molecule of
Molecule	Net result
ATP	
NAD ⁺	
NADH	
FAD	
FADH ₂	
CO ₂	
Items:	
-6 -5 -4 -3 -2 -1 0 +1 +2	+3 +4 +5 +6

Part C Cell location >	
Where does Krebs cycle occur in eukaryotic cells?	
at the outer mitochondrial membrane	
at the inner mitochondrial membrane	
in the cytoplasm	
in the mitochondrial matrix	
at the thylakoid membranes	
in the chloroplast stroma	
	P

Question deck:

Fermentation

Subject & topics: Biology | Biochemistry | Respiration Stage & difficulty: A Level P3

Aerobic respiration is the main form of respiration in eukaryotic cells. However, some eukaryotic cells can respire anaerobically. This requires a process called fermentation.

Part A
Why ferment? Y
Aerobic respiration is much more efficient at producing than anaerobic respiration. However, aerobic
respiration requires oxygen to act as the final electron acceptor during . Without oxygen, this process
will stop working.
Importantly, this means that will no longer be oxidised to regenerate, which is necessary
for every other stage of aerobic respiration. Fermentation allows the cell to regenerate this molecule when there is
not enough oxygen for aerobic respiration, which means the cell can keep respiring anaerobically (i.e. cycle between
and fermentation).
However, most cells cannot keep doing this indefinitely, as the products of fermentation are toxic at high levels.
Items:
ADP NADH (reduced NAD) NAD+ oxidative phosphorylation Krebs cycle ATP the link reaction glycolysis
(NADIT (reduced NADI) (NADIT (reduced NADIT) (Intelligence of the control of the
p
Part B
Mammals >
What is pyruvate reduced to in mammal cells during fermentation?
p

Part C Plants and yeast >	
What is pyruvate reduced to in plant cells and yeast cells during fermentation?	
	P

Question deck:

Aerobic vs Anaerobic Respiration

Figure 1: Two alternative pathways in mammalian respiration. Processes are shown as arrows and labelled A-E. Only some steps are shown in each process.

Part B Using ATP >	
Select the process/processes in which ATP is used. Select all that apply. A B C	
D E	j
Part C Oxidising NADH without ATP >	
Select the process/processes in which NADH (reduced NAD) is oxidised to NAD+ without ATP formation. Select all that apply. A B C D E	
7]

Part D Producing ATP >	
Select the process/processes in which ATP is produced outside the mitochondria. Select all that apply. A B C D E	
	8
Part E Using oxygen >	
Select the process/processes for which oxygen is required. Select all that apply.	
A	
В	
С	
D D	
E	
	P

Part F Reducing NAD >	
Select the process/processes in which NAD ⁺ is reduced to form NADH (reduced NAD). Select all that apply.	
В	
С	
D D	
E E	
	p

Adapted with permission from OCR A Level June 1999, Science Modular Central Concepts in Biology, Question 1

Question deck:

Oxygen Debt and Recovery Period

Subject & topics: Biology | Biochemistry | Respiration Stage & difficulty: A Level C3

In anaerobic respiration, glycolysis is followed by fermentation. In mammals, this means that each molecule of glucose is converted to two molecules of lactic acid, as is shown in a simplified form below.

glucose $\rightarrow 2 \times \text{pyruvate} \rightarrow 2 \times \text{lactic acid}$

This process is less efficient than aerobic respiration in terms of ATP production (producing 2 ATP molecules instead of ~ 30 ATP molecules per glucose molecule), but it is much faster and does not require oxygen.

During high-intensity exercise, muscle cells need ATP faster than aerobic respiration can provide, and so these cells carry out anaerobic respiration. However, lactic acid is toxic in high concentrations, and so the body must metabolise it by converting it back into pyruvate to be aerobically respired (broken down into ${\rm CO_2}$ and ${\rm H_2O}$), which requires oxygen. This is partly why, after high-intensity exercise, individuals have a period of increased oxygen consumption (compared to their oxygen consumption at rest). The excess oxygen consumed during this period is sometimes called the **oxygen debt** or excess post-exercise oxygen consumption (EPOC). The period itself is called the **recovery period**.

A particular individual undergoes $30\,\mathrm{minutes}$ of high-intensity exercise. During this time, their muscles anaerobically respire glucose at an average rate of $0.010\,\mathrm{mol}\,\mathrm{min}^{-1}$.

Part B

Recovery period >

Using the information below, and your answer to part A, calculate how long the recovery period will last.

- ullet At rest, the individual consumes oxygen at an average rate of $0.011\,\mathrm{mol}\;\mathrm{min}^{-1}$.
- During the recovery period, the individual consumes oxygen at an average rate of $0.070 \,\mathrm{mol}\,\mathrm{min}^{-1}$.
- ullet 20% of the excess oxygen consumed during the recovery period is used for lactic acid metabolism.
- The recovery period ends when all lactic acid has been fully metabolised.

Assume that no lactic acid was metabolised during the exercise period.

Give your answer to 2 sf.

P

Created for isaacscience.org by Lewis Thomson