

#biblioteca necesarias from sklearn import tree import pandas as pd

Here about the description of the columns

- Soil_Type: The type or composition of soil in which the plants are grown.
- Sunlight_Hours: The duration or intensity of sunlight exposure received by the plants.
- · Water_Frequency: How often the plants are watered, indicating the watering schedule.
- Fertilizer_Type: The type of fertilizer used for nourishing the plants.
- Temperature: The ambient temperature conditions under which the plants are grown.
- . Humidity: The level of moisture or humidity in the environment surrounding the plants.
- Growth_Milestone: Descriptions or markers indicating stages or significant events in the growth process of the plants.

#se presenta las medidas del árbol de decisión
tree.plot_tree(clf)

```
#para mostrar las reglas del árbol de decisión
from sklearn.tree import export_text
r = export_text(clf)
print(r)

--- feature_1 <= 75.43
feature_0 <= 33.71</pre>
```

#se muestran las predicciones del árbol de decisión ypred=clf.predict(X) ypred

[69] #se muestra la matriz de confusión para las medidas respectivas
 from sklearn.metrics import confusion_matrix
 mx=confusion_matrix(y, ypred)
 mx

```
⇒ array([[52, 45], [11, 85]])
```

[70] from sklearn.metrics import classification_report print(classification_report(y, ypred))

→	precision	recall	f1-score	support
e	0.83	0.54	0.65	97
1	0.65	0.89	0.75	96
accuracy	,		0.71	193
macro avg	0.74	0.71	0.70	193
weighted avg	0.74	0.71	0.70	193

El código sugerido puede estar sujeto a licencia | 2000090063/Machine_Learning | AaltoML/PeriodicBNN #se utiliza la Curva ROC

from sklearn.metrics import RocCurveDisplay, roc_auc_score import matplotlib.pyplot as plt

[72] #displayRoc=RocCurveDisplay.from_estimator(model, X_test, y_test) displayRoc=RocCurveDisplay.from_estimator(clf, X, y) plt.show

aparece

