^b Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba. Argentina.

Marco Teórico

En áreas urbanas la bicicleta es percibida como una alternativa económica de movilidad y que reporta beneficios en salud tales como la promoción de actividad física, la mejoría en el acondicionamiento cardiorrespiratorio y disminución de riesgos cardiovasculares. Es así como los gobiernos provinciales, municipales y universitarios promueven su uso para mejorar la calidad de vida y salud de la comunidad. Sin embargo, las altas tasas de respiración de los ciclistas favorecen una mayor inhalación de contaminantes atmosféricos, lo cual puede ser simultáneamente perjudicial para su salud.

OBJETIVO

El presente trabajo se propone desarrollar un modelo predictivo para comprender como factores influyentes en la variación espaciotemporal del PM2.5 determinan la exposición de los ciclistas a este contamínate.

METODOLOGÍA

Miembros de la comunidad universitaria que utilizan habitualmente la bicicleta como medio de transporte fueron seleccionados. Sus bicicletas fueron equipadas con un dispositivo portátil de medición de PM_{2.5} (Air Visual Pro, IQAir) y un GPS (eTrex 20, Garmin) en la parte delantera. El sensor de PM_{2.5} se configuró para tomar datos cada 10 segundos durante los viajes hacia o desde el campus universitario. En total, se evaluaron 72 rutas diferentes desde febrero hasta septiembre de 2019 (4017 registros).

ID

306

Rodríguez Núñez M^a, Tavera Busso I^{a,b}, Mateos AC^{a,b}, Carreras HA^{a,b}*.

^a Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.

^b Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba. Argentina.

METODOLOGÍA

El sensor empleado para medir contaminación de aire fue calibrado con instrumentos de referencia (ECAMR) aprobados por la Agencia de Protección Ambiental de Estados Unidos (USEPA).

Las variables incluidas en el modelo predictivo de concentración de $PM_{2.5}$, fueron: temperatura, humedad relativa, velocidad del viento, dirección del viento presión atmosférica, mes, hora del día, día de la semana, intensidad del tráfico vehicular, tipología de la calle y densidad de vegetación.

RESULTADOS Y DISCUSIÓN

El Gradient Boosting Machine fue el modelo que mejor se ajustó a los datos, con un valor mínimo de *root mean square error* de 5,62 µg m³, un R² ajustado de 0,72 y un *mean absolute percentage error* de 29,77% en el conjunto de datos de testeo.

Model id	Mean residual deviance	RMSE	MSE	MAE	RMSLE
GBM	31.629	5.624	31.637	4.123	0.367
DRF	43.581	6.601	43.581	4.992	0.394
XRT	45.509	6.746	45.509	5.026	0.406
DeepLearning	76.539	8.748	76.539	6.355	0.465
GLM	77.448	8.800	77.448	6.507	0.5140

Las variables más importantes fueron las temporales (mes, hora del día y día de la semana, respectivamente), seguidas de las meteorológicas (velocidad del viento, temperatura, presión atmosférica, dirección del viento y humedad relativa) y las espaciales (intensidad del tráfico, densidad de la vegetación y tipología de las calles).

ID

306

UN ENFOQUE NOVEDOSO PARA EVALUAR LA CONTRIBUCION DE VARIABLES AMBIENTALES ALA EXPOSICION DE CICLISTAS AL $PM_{2,5}$.

Rodríguez Núñez M^a, Tavera Busso I^{a,b}, Mateos AC^{a,b}, Carreras HA^{a,b}*.

^a Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.

^b Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba. Argentina.

RESULTADOS Y DISCUSIÓN

Contribución de los predictores a una concentración por encima (a) y por debajo (b) del promedio general y del valor límite de la OMS.

Se esperan niveles elevados de PM_{2.5} para las primeras horas de la mañana, el mes de agosto, la alta intensidad del tráfico, la baja velocidad del viento, la baja densidad de vegetación y la baja humedad.

La tarde/noche, alta densidad de vegetación, la baja intensidad del tráfico, los fines de semana, las calles o ciclovías, la alta velocidad del viento tienden a disminuir los niveles de PM_{2.5.}

En el 14,5% de las calles, los niveles de PM_{2.5} superaban las directrices de la Organización Mundial de la Salud (OMS).

Mejor escenario: calles o ciclovías con vegetación y baja intensidad de tráfico 12,44 µg m-3 de concentración promedio.

Peor escenario: avenidas con baja presencia de vegetación y alta intensidad de tráfico 22,06 µg m-3 de concentración promedio.

ID

306