

Home Gameboard Chemistry Physical Energetics Formation and Combustion

Formation and Combustion

For which of the following reactions does the value of ΔH° represent **both** a standard enthalpy change of combustion and a standard enthalpy change of formation?

- 1. $C(s) + O_2(g) \longrightarrow CO_2(g)$
- **2**. $2 \mathrm{C(s)} + \mathrm{O_2(g)} \longrightarrow 2 \mathrm{CO(g)}$
- 3. $CO(g) + \frac{1}{2}O_2(g) \longrightarrow CO_2(g)$
 - None of the above
 - 1 only
 - 2 only
 - **3** only
 - **1** and **2** only
 - 1 and 3 only
 - **2** and **3** only
 - All of the above

Adapted with permission from UCLES, A Level Chemistry, June 1994, Paper 4, Question 31

Home Gar

<u>Gameboard</u>

Chemistry

Physical Energetics

Essential Pre-Uni Chemistry F3.1

Essential Pre-Uni Chemistry F3.1

Data (all in $kJ \, mol^{-1}$):

	$\Delta_{f} H^{\scriptscriptstyle \oplus}$		$\Delta_{c} H^{\scriptscriptstyle \oplus}$
$\mathrm{CH_{4}\left(\mathrm{g} ight) }$	-74.8	$\mathrm{C_6H_6}\left(\mathrm{l}\right)$	-3267.4
$\mathrm{CCl}_4\left(\mathrm{l}\right)$	-129.6	$ m H_{2}\left(g ight)$	-285.8
$\mathrm{HCl}(\mathrm{g})$	-92.3	$\mathrm{C_{6}H_{12}}\left(\mathrm{l}\right)$	-3919.5
$\mathrm{TiCl}_{4}\left(\mathrm{l} ight)$	-804.2	$\mathrm{C_{2}H_{2}\left(g ight) }$	-1300.8
$\mathrm{TiCl}_{3}\left(\mathrm{s} ight)$	-720.9	$\mathrm{C_{2}H_{6}\left(g ight) }$	-1559.7
$\mathrm{PCl}_3\left(\mathrm{l}\right)$	-319.7	$\mathrm{C_{2}H_{5}OH}\left(\mathrm{l}\right)$	-1367.3
$\mathrm{PCl}_{5}\left(\mathrm{s}\right)$	-443.5	$\mathrm{C_{2}H_{4}\left(g ight) }$	-1410.8
$\mathrm{POCl}_{3}\left(\mathrm{l}\right)$	-597.1	$\mathrm{CH_{3}COOH}\left(\mathrm{l}\right)$	-874.1
$\mathrm{GeO}\left(\mathrm{s}\right)$	-212.1	$\mathrm{C_{6}H_{14}\left(l\right) }$	-4163.0
$\mathrm{GeO}_{2}\left(\mathrm{s} ight)$	-551.0	$\mathrm{CH_{3}COOC_{2}H_{5}}\left(\mathrm{l}\right)$	-2237.9
$\mathrm{NH_{3}\left(\mathrm{g}\right) }$	-46.1	$\mathrm{CO}\left(\mathrm{g}\right)$	-283.0
$\mathrm{TiO}_{2}\left(\mathrm{s} ight)$	-939.7	$\mathrm{Mg}\left(\mathrm{s}\right)$	-601.7

Use standard enthalpies of formation to calculate the reaction enthalpies for the following reactions. Unless stated otherwise in the question part, give your answers to 4 significant figures.

Part A (a)

$$2\operatorname{TiCl}_{3}\left(s\right)+\operatorname{Cl}_{2}\left(g\right)\longrightarrow2\operatorname{TiCl}_{4}\left(l\right)$$

Part B (b)

$$\mathrm{PCl}_{3}\left(l\right)+\mathrm{Cl}_{2}\left(g\right)\longrightarrow\mathrm{PCl}_{5}\left(s\right)$$

Part C (c)

$$2\operatorname{PCl}_{3}\left(\mathrm{l}\right)+\mathrm{O}_{2}\left(\mathrm{g}
ight)\longrightarrow2\operatorname{POCl}_{3}\left(\mathrm{l}\right)$$

Part D (d)

$$\operatorname{CH}_{4}\left(g\right)+4\operatorname{Cl}_{2}\left(g\right)\longrightarrow\operatorname{CCl}_{4}\left(l\right)+4\operatorname{HCl}\left(g\right)$$

Part E (e)

$$2\,\mathrm{GeO}\left(\mathrm{s}
ight) \longrightarrow \mathrm{Ge}\left(\mathrm{s}
ight) + \mathrm{GeO}_{2}\left(\mathrm{s}
ight)$$

Part F (f)

 $GeO\left(s\right) + PCl_{3}\left(l\right) \longrightarrow Ge\left(s\right) + POCl_{3}\left(l\right). \text{ Give your answer to 3 significant figures.}$

Part G (g)

 $PCl_{5}\left(s\right)+2\operatorname{TiCl}_{3}\left(s\right)\longrightarrow PCl_{3}\left(l\right)+2\operatorname{TiCl}_{4}\left(l\right)$ Give your answer to 3 significant figures.

Part H (h)

 $20\,\mathrm{Ti}\,(\mathrm{s}) + 12\,\mathrm{PCl}_5\,(\mathrm{s}) \longrightarrow 20\,\mathrm{TiCl}_3\,(\mathrm{s}) + 3\,\mathrm{P}_4\,(\mathrm{s})$ Give you answer to 5 significant figures.

Gameboard:

STEM SMART Chemistry Week 13

<u>Home</u>

<u>Gameboard</u>

Chemistry

Physical Energetics

Essential Pre-Uni Chemistry F3.2

Essential Pre-Uni Chemistry F3.2

Data (all in $kJ \, mol^{-1}$):

	$\Delta_{f} H^{\scriptscriptstyle \oplus}$		$\Delta_{c} H^{\scriptscriptstyle \oplus}$
$\mathrm{CH_{4}\left(\mathrm{g} ight) }$	-74.8	$\mathrm{C_6H_6}\left(\mathrm{l}\right)$	-3267.4
$\mathrm{CCl}_4\left(\mathrm{l}\right)$	-129.6	$ m H_{2}\left(g ight)$	-285.8
$\mathrm{HCl}(\mathrm{g})$	-92.3	$\mathrm{C_{6}H_{12}}\left(\mathrm{l}\right)$	-3919.5
$\mathrm{TiCl}_{4}\left(\mathrm{l} ight)$	-804.2	$\mathrm{C_{2}H_{2}\left(g ight) }$	-1300.8
$\mathrm{TiCl}_{3}\left(\mathrm{s} ight)$	-720.9	$\mathrm{C_{2}H_{6}\left(g ight) }$	-1559.7
$\mathrm{PCl}_3\left(\mathrm{l}\right)$	-319.7	$\mathrm{C_{2}H_{5}OH}\left(\mathrm{l}\right)$	-1367.3
$\mathrm{PCl}_{5}\left(\mathrm{s}\right)$	-443.5	$\mathrm{C_{2}H_{4}\left(g ight) }$	-1410.8
$\mathrm{POCl}_{3}\left(\mathrm{l}\right)$	-597.1	$\mathrm{CH_{3}COOH}\left(\mathrm{l}\right)$	-874.1
$\mathrm{GeO}\left(\mathrm{s}\right)$	-212.1	$\mathrm{C_{6}H_{14}\left(l\right) }$	-4163.0
$\mathrm{GeO}_{2}\left(\mathrm{s} ight)$	-551.0	$\mathrm{CH_{3}COOC_{2}H_{5}}\left(\mathrm{l}\right)$	-2237.9
$\mathrm{NH_{3}\left(\mathrm{g}\right) }$	-46.1	$\mathrm{CO}\left(\mathrm{g}\right)$	-283.0
$\mathrm{TiO}_{2}\left(\mathrm{s} ight)$	-939.7	$\mathrm{Mg}\left(\mathrm{s}\right)$	-601.7

Use standard enthalpies of combustion to calculate the reaction enthalpies for the following reactions:

(a) Part A

$$\mathrm{C_{2}H_{2}\left(\mathrm{g}
ight) +2\,H_{2}\left(\mathrm{g}
ight) \longrightarrow\mathrm{C_{2}H_{6}\left(\mathrm{g}
ight) }}$$

Part B (b)

$$C_{6}H_{6}\left(l\right)+3\,H_{2}\left(g\right)\longrightarrow C_{6}H_{12}\left(l\right)$$

Part C (c)

$$3\,C_{2}H_{2}\left(g\right) \longrightarrow C_{6}H_{6}\left(l\right)$$

Part D (d)

 $C_{2}H_{4}\left(g\right) +H_{2}O\left(l\right) \longrightarrow C_{2}H_{5}OH\left(l\right) \text{ Give your answer to 3 significant figures}.$

Part E (e)

$$\mathrm{C_{2}H_{5}OH\left(l\right)}+\mathrm{O_{2}\left(g\right)}\longrightarrow\mathrm{CH_{3}COOH\left(l\right)}+\mathrm{H_{2}O\left(l\right)}$$

Part F (f)

$$\mathrm{C_{6}H_{14}\left(l
ight)} \longrightarrow \mathrm{C_{2}H_{6}\left(g
ight)} + 2\,\mathrm{C_{2}H_{4}\left(g
ight)}$$

Part G (g)

 $C_{2}H_{5}OH\left(l\right)+CH_{3}COOH\left(l\right)\longrightarrow CH_{3}COOC_{2}H_{5}\left(l\right)+H_{2}O\left(l\right) \text{ Give your answer to 2 significant figures.}$

Part H (h)

$$2\,\mathrm{C}_{2}\mathrm{H}_{2}\left(\mathrm{g}\right)+2\,\mathrm{H}_{2}\mathrm{O}\left(\mathrm{l}\right)+\mathrm{O}_{2}\left(\mathrm{g}\right)\longrightarrow2\,\mathrm{CH}_{3}\mathrm{COOH}\left(\mathrm{l}\right)$$

Gameboard:

STEM SMART Chemistry Week 13

Home Gameboard Chemistry

stry Physical

Energetics

Essential Pre-Uni Chemistry F3.3

Essential Pre-Uni Chemistry F3.3

Data (all in $kJ \text{ mol}^{-1}$):

	$\Delta_{f} H^{\scriptscriptstyle \oplus}$		$\Delta_{c} H^{\scriptscriptstyle \oplus}$
$\mathrm{CH_{4}}\left(\mathrm{g}\right)$	-74.8	$\mathrm{C_{6}H_{6}\left(l\right) }$	-3267.4
$\mathrm{CCl}_4\left(1 ight)$	-129.6	$ m H_{2}\left(g ight)$	-285.8
$\mathrm{HCl}(\mathrm{g})$	-92.3	$\mathrm{C_{6}H_{12}}\left(\mathrm{l}\right)$	-3919.5
$\mathrm{TiCl}_{4}\left(l\right)$	-804.2	$\mathrm{C_{2}H_{2}\left(g\right) }$	-1300.8
$\mathrm{TiCl}_{3}\left(\mathrm{s} ight)$	-720.9	$\mathrm{C_{2}H_{6}\left(\mathrm{g}\right) }$	-1559.7
$\mathrm{PCl}_3\left(\mathrm{l}\right)$	-319.7	$\mathrm{C_{2}H_{5}OH}\left(l\right)$	-1367.3
$\mathrm{PCl}_{5}\left(\mathrm{s}\right)$	-443.5	$\mathrm{C_{2}H_{4}\left(g\right) }$	-1410.8
$\mathrm{POCl}_{3}\left(\mathrm{l}\right)$	-597.1	$\mathrm{CH_{3}COOH}\left(\mathrm{l}\right)$	-874.1
${ m GeO}({ m s})$	-212.1	$\mathrm{C_{6}H_{14}}\left(\mathrm{l}\right)$	-4163.0
$\mathrm{GeO}_{2}\left(\mathrm{s} ight)$	-551.0	$\mathrm{CH_{3}COOC_{2}H_{5}}\left(\mathrm{l}\right)$	-2237.9
$\mathrm{NH_{3}\left(\mathrm{g}\right) }$	-46.1	${ m CO}\left({ m g} ight)$	-283.0
$\mathrm{TiO}_{2}\left(\mathrm{s} ight)$	-939.7	Mg(s) -601.7	

Use enthalpies of formation and combustion to calculate the reaction enthalpy for the reaction: $Ge\left(s\right)+2\,H_{2}O\left(l\right)\longrightarrow GeO_{2}\left(s\right)+2\,H_{2}\left(g\right) \text{ Give your answer to 3 significant figures.}$

Gameboard:

STEM SMART Chemistry Week 13

Home Gameboard Cher

Chemistry Physical

Energetics

Essential Pre-Uni Chemistry F3.4

Essential Pre-Uni Chemistry F3.4

Data (all in $kJ\,mol^{-1}$):

	$\Delta_{f} H^{\scriptscriptstyle \oplus}$		$\Delta_{c} H^{\scriptscriptstyle \oplus}$
$\mathrm{CH_{4}}\left(\mathrm{g}\right)$	-74.8	$\mathrm{C_{6}H_{6}}\left(\mathrm{l}\right)$	-3267.4
$\mathrm{CCl}_4\left(\mathrm{l}\right)$	-129.6	$ m H_{2}\left(g ight)$	-285.8
$\mathrm{HCl}(\mathrm{g})$	-92.3	$\mathrm{C_{6}H_{12}}\left(\mathrm{l}\right)$	-3919.5
$\mathrm{TiCl}_{4}\left(\mathrm{l} ight)$	-804.2	$\mathrm{C_{2}H_{2}\left(\mathrm{g}\right) }$	-1300.8
$\mathrm{TiCl}_{3}\left(\mathrm{s} ight)$	-720.9	$\mathrm{C_{2}H_{6}\left(g ight) }$	-1559.7
$\mathrm{PCl}_3\left(\mathrm{l}\right)$	-319.7	$\mathrm{C_{2}H_{5}OH}\left(\mathrm{l}\right)$	-1367.3
$\mathrm{PCl}_{5}\left(\mathrm{s}\right)$	-443.5	$\mathrm{C_{2}H_{4}\left(\mathrm{g}\right) }$	-1410.8
$\mathrm{POCl}_{3}\left(\mathrm{l}\right)$	-597.1	$\mathrm{CH_{3}COOH}\left(\mathrm{l}\right)$	-874.1
$\mathrm{GeO}\left(\mathrm{s}\right)$	-212.1	$\mathrm{C_{6}H_{14}\left(l\right) }$	-4163.0
$\mathrm{GeO}_{2}\left(\mathrm{s} ight)$	-551.0	$\mathrm{CH_{3}COOC_{2}H_{5}}\left(\mathrm{l}\right)$	-2237.9
$\mathrm{NH_{3}\left(\mathrm{g}\right) }$	-46.1	$\mathrm{CO}\left(\mathrm{g} ight)$	-283.0
$\mathrm{TiO}_{2}\left(\mathrm{s} ight)$	-939.7	$\mathrm{Mg}\left(\mathrm{s}\right)$	-601.7

Use the reaction enthalpies given, and the combustion or formation enthalpies above to find the requested enthalpy change in each case:

Part A $NH_4Cl(s)$

 $\mathrm{NH_{3}}\left(\mathrm{g}\right)+\mathrm{HCl}\left(\mathrm{g}\right)\longrightarrow\mathrm{NH_{4}Cl}\left(\mathrm{s}\right),\,\Delta_{\mathsf{r}}H^{\scriptscriptstyle{\oplus}}=-176\,\mathrm{kJ\,mol^{-1}}$ find $\Delta_{\mathsf{f}}H^{\scriptscriptstyle{\oplus}}$ of $\mathrm{NH_{4}Cl}\left(\mathrm{s}\right)$

Part B $MgCl_2(s)$

$$\mathrm{TiCl_4\left(l
ight)} + 2\,\mathrm{Mg\left(s
ight)} \longrightarrow 2\,\mathrm{MgCl_2\left(s
ight)} + \mathrm{Ti\left(s
ight)}\,\Delta_{\mathsf{r}}H^{\,\circ} = -478.4\,\mathrm{kJ\,mol^{-1}}, \,\mathrm{find}\,\,\Delta_{\mathsf{f}}H^{\,\circ}\,\,\mathrm{of}\,\,\mathrm{MgCl_2\left(s
ight)}$$

Part C CH₃COOCOH₃(l)

 ${
m CH_3COOCOCH_3\,(l) + H_2O\,(l) \longrightarrow 2\,CH_3COOH\,(l)} \ \Delta_r H^\circ = -46\,{\rm kJ\,mol^{-1}}, \ {
m find} \ \Delta_c H^\circ \ {
m of} \ {
m CH_3COOCOCH_3\,(l)} \ {
m Give} \ {
m your} \ {
m answer} \ {
m to} \ 4 \ {
m significant} \ {
m figures}.$

Part D $C_6H_5CHCH_2$

 $4 \, \mathrm{C_2H_2} \, (\mathrm{g}) \longrightarrow \mathrm{C_6H_5CHCH_2} \, (\mathrm{l}), \ \Delta_{\mathsf{r}} H^\circ = -808.2 \, \mathrm{kJ} \, \mathrm{mol^{-1}}, \ \mathsf{find} \ \Delta_{\mathsf{c}} H^\circ \ \mathsf{of} \ \mathrm{C_6H_5CHCH_2} \ \mathsf{Give} \ \mathsf{your}$ answer to 4 significant figures.

Part E $Al_2O_3(s)$

 $4\,\mathrm{Al}(\mathrm{s}) + 3\,\mathrm{GeO_2}(\mathrm{s}) \longrightarrow 2\,\mathrm{Al_2O_3}(\mathrm{s}) + 3\,\mathrm{Ge}(\mathrm{s})\,\Delta_{\mathrm{r}}H^\circ = -1698.4\,\mathrm{kJ\,mol^{-1}}, \,\mathrm{find}\,\Delta_{\mathrm{f}}H^\circ \,\,\mathrm{of}\,\, \mathrm{Al_2O_3}(\mathrm{s})$ Give your answer to 4 significant figures.

Part F Fe_2O_3

 $\mathrm{Fe_2O_3}(\mathrm{s}) + 3\,\mathrm{CO}(\mathrm{g}) \longrightarrow 2\,\mathrm{Fe}(\mathrm{s}) + 3\,\mathrm{CO_2}(\mathrm{g}),\, \Delta_{\mathsf{r}}H^\circ = -24.8\,\mathrm{kJ\,mol^{-1}},\, \mathsf{find}\,\Delta_{\mathsf{f}}H^\circ \,\,\mathsf{of}\,\,\mathrm{Fe_2O_3}$

Part G CuO(s)

 $3\,\mathrm{CuO}\,(\mathrm{s}) + 2\,\mathrm{NH_3}\,(\mathrm{g}) \longrightarrow 3\,\mathrm{Cu}\,(\mathrm{s}) + \mathrm{N_2}\,(\mathrm{g}) + 3\,\mathrm{H_2O}\,(\mathrm{l}), \ \Delta_{\mathrm{r}}H^\circ = -293.3\,\mathrm{kJ}\,\mathrm{mol}^{-1}, \ \text{find}\ \Delta_{\mathrm{f}}H^\circ \ \text{of} \ \mathrm{CuO}\,(\mathrm{s})$ Give your answer to 3 significant figures.

Part H $H_3PO_4(s)$

 $2\operatorname{PCl}_5(s) + 8\operatorname{H}_2\operatorname{O}(l) \longrightarrow 2\operatorname{H}_3\operatorname{PO}_4(s) + 10\operatorname{HCl}(g), \ \Delta_r H^\circ = -307.6\,\mathrm{kJ\,mol}^{-1}, \ \text{find}\ \Delta_f H^\circ \ \text{of}\ H_3\operatorname{PO}_4(s)$ Give your answer to 3 significant figures.

Part I Ga

$$\mathrm{Ga_2O_3(s)} + 3\,\mathrm{Mg(s)} \longrightarrow 2\,\mathrm{Ga(s)} + 3\,\mathrm{MgO(s)},\, \Delta_{\mathsf{r}}H^{\scriptscriptstyle\oplus} = -716.1\,\mathrm{kJ\,mol^{-1}},\, \mathsf{find}\,\,\Delta_{\mathsf{c}}H^{\scriptscriptstyle\oplus}\,\,\mathsf{of}\,\,\mathrm{Ga}.$$

Part J HCl(g)

 ${
m TiCl_4\,(l)} + 2\,{
m H_2O\,(l)} \longrightarrow {
m TiO_2\,(s)} + 4\,{
m HCl\,(aq)}, \ \Delta_{
m r}H^\circ = -232.3\,{
m kJ\,mol^{-1}}, \ {
m find}\ \Delta_{
m sol}H^\circ \ {
m of} \ {
m HCl\,(g)}$ Give your answer to 3 significant figures.

Gameboard:

STEM SMART Chemistry Week 13

<u>Home</u> <u>Gameboard</u> Chemistry Physical Energetics Reducing Carbon Dioxide

Reducing Carbon Dioxide

The standard enthalpy changes of formation of carbon monoxide and carbon dioxide are $-110\,\mathrm{kJ}\,\mathrm{mol}^{-1}$ and $-393\,\mathrm{kJ}\,\mathrm{mol}^{-1}$, respectively.

Part A Carbon monoxide formation

Write an equation, including state symbols, for the first of these enthalpy changes (formation of carbon monoxide).

Part B Carbon dioxide formation

Write an equation, including state symbols, for the second of these enthalpy changes (formation of carbon dioxide).

Part C Standard enthalpy change

Use the two standard enthalpy of formation values to calculate, in $kJ\,\mathrm{mol}^{-1}$, the standard enthalpy change of the reaction

$$C+CO_2 {\:\longrightarrow\:} 2\,CO$$

Part D Condition

_	In light of the result obtained in the previous part, suggest what condition is necessary to obtain a reasonable yield of carbon monoxide by this reaction.				
_ F	High temperature				
F	Presence of O_2				
	Low pressure				
	Low temperature				

Adapted with permission from UCLES, A Level Chemistry, June 1990, Paper 2, Question 1

Gameboard:

STEM SMART Chemistry Week 13

 ${\color{red} {\hbox{{\tt Home}}}}$ ${\color{gray} {\hbox{{\tt Gameboard}}}}$ Chemistry Physical Energetics C_3H_6 Combustion

C_3H_6 Combustion

A and **B** are two isomers with the molecular formula C_3H_6 . The standard enthalpies of formation, $\Delta_{\mathsf{f}}H^{\circ}$, of both **A** and **B** have been found by first measuring the standard enthalpies of combustion, $\Delta_{\mathsf{c}}H^{\circ}$, of each. These values are given in the table below, together with the standard enthalpies of combustion of carbon and hydrogen.

	Α	В	carbon	hydrogen
$\Delta_{c} H^{\scriptscriptstyle \oplus} / \mathrm{kJ} \mathrm{mol}^{-1}$	-2058	-2091	-393.5	-241.8

Part A Combustion equation

Give the equation for the complete combustion of C_3H_6 . (Balance it for one mole of the hydrocarbon.)

Part B $\Delta_{\mathsf{f}} H^{\scriptscriptstyle \oplus}$ of A

Calculate the standard enthalpy of formation of **A**.

Part C $\Delta_{\mathsf{f}} H^{\, \circ}$ of B

Calculate the standard enthalpy of formation of ${\bf B}.$

Part D Isomerisation

Gaseous **B** needs to be stored carefully since it can convert explosively to the elements, to isomer **A**, or to other hydrocarbons. Calculate the standard enthalpy change for the reaction $\mathbf{B} \longrightarrow \mathbf{A}$.

Adapted with permission from the Cambridge Chemistry Challenge 2011, Question 1

Gameboard:

STEM SMART Chemistry Week 13

Home Gameboard Chemistry Physical Energetics Ethene Combustion

Ethene Combustion

The standard enthalpy change of combustion of but-1-ene, $C_4H_8(g)$, is $x \text{ kJ mol}^{-1}$.

The standard enthalpy change of the reaction $2 C_2 H_4(g) \longrightarrow C_4 H_8(g)$ is $y \text{ kJ mol}^{-1}$.

Write down an expression, in terms of x and y, for the standard enthalpy change of combustion of ethene, $C_2H_4(g)$ when expressed in $kJ \mod^{-1}$ (your answer should not feature any units).

The following symbols may be useful: x, y

Adapted with permission from UCLES, A Level Chemistry, November 1993, Paper 4, Question 8