

Virtualizzazione di rete

Franco CALLEGATI

Dipartimento di Informatica: Scienza e Ingegneria

Virtualizzazione

- Creare versioni "virtuali" di sistemi di computazione, di memorizzazione, di rete
- Versione virtuale di un sistema
 - Il sistema viene eseguito come elemento software logicamente indipendente dall'hardware utilizzato
- Vantaggi
 - Condivisione di risorse fisiche
 - Disaccoppiamento del progetto software da quello hardware
 - Maggiore flessibilità (mobilità, scalabilità)
- Criticità
 - Isolamento fra sistemi distinti che condividono lo stesso hardware
 - Sicurezza e privacy

Virtualizzazione di rete

- Punto di partenza
 - L'infrastruttura di rete, soprattutto se geografica, non è facilmente modificabile su richiesta
 - Le esigenze di servizio dell'utenza presentano una complessità sempre crescente
- Obiettivo della virtualizzazione
 - Realizzare topologie o funzionalità sull'infrastruttura esistente diverse da quelle native
- In generale si parla di reti "overlay"
 - Sovrapposte logicamente all'infrastruttura fisica per realizzare funzionalità diverse da quelle normalmente fornite dalla stessa

Reti "Overlay"

- Virtual Local Area Network (VLAN) IEEE 802.1Q
- Generic Routing Encapsulation (GRE) RFC 1701
- Virtual eXtensible Local Area Network (VXLAN) RFC 7348
- Virtual Private Network (VPN)

- Virtual Private Wire Service (VPWS)
- Virtual Private LAN Service (VPLS) RFC 4761 4762

- La network IP è già una forma di network overlay
- Gli switch interconnessi realizzano la LAN
 - Un solo dominio di broadcast
 - La ripartizione degli host in diverse network IP determina differenze nelle politiche di instradamento politica di instradamento
 - Direct forwarding fra Host della stessa network IP
 - Indirect forwarding tramite gateway fra host di network IP diverse

 Protocollo per l'incapsulamento di pacchetti generici su protocollo IP

 In particolare può permettere l'incapsulamento di IP su IP

GRE header

- Version (0) indica la versione dell'header
- Protocol type: dice che tipo di protocollo viene incapsulato nel tunnel
- Sono poi disponibili campi opzionali per altre funzioni

Checksum

- Inserito per controllare la correttezza dei dati (Internet checksum)

Key

- Puà essere inserito per autenticare la sorgente del pacchetto incapsulato nel tunnel con un qualche metodo di autenticazione (password)

Sequence Number

- Inserito alla sorgente per stabilire la sequenza di invio dei pacchetti sul tunnel
- La destinazione dovrebbe instradare i pacchetti ricevuti nel corretto ordine

Routing

 È possibile elencare i router che si vuole vengano attraversati dal pacchetto (determina la politica di instradamento del tunnel)

Applicazione del GRE

- Incapsulamento di IP su IP
- Permette di creare un overlay a livello di routing

Applicazione del GRE

Una modifica del percorso nel dominio su rete fisica non viene percepita nel dominio su rete logica

- Highly scalable distributed Layer 2 overlay network for tenant traffic isolation in could computing environments
- Encapsulation of L2 traffic in UDP packets (dest port 4789)
 - stateless tunnels between VXLAN Tunnel End Points (VTEPs)
 - each isolated L2 segment is identified by a 24-bit VXLAN Network Identifier (VNI) → 16M VNIs

Applicazione di VXLAN

- Una sola network IP estesa sulla rete globale
- VXLAN trasporta i frame Ethernet sulla rete di interconnessione IP

ARP request «Who has 192.168.1.1 Tell 192.168.1.3

IP Network 192.168.1.0/24

Il dominio di broadcast

- Quando il dominio di broadcast è uno solo
 - Un broadcast inviato da un calcolatore tutti gli altri calcolatori della LAN
 - Anche se su reti IP diverse
- Questo rappresenta un doppio problema
 - Prestazioni: i pacchetti broadcast utilizzano capacità di rete, più ce ne sono minore è la capacità per il traffico rimanente
 - Sicurezza: i pacchetti broadcast possono essere utilizzati per studiare la topologia di rete e/o per tentare attacchi alla sicurezza della rete stessa

Virtual LAN (VLAN)

- Un solo switch
- Più LAN separate
 - Ogni VLAN rappresenta un diverso dominio di broadcast
 - Se facciamo coincidere le network IP con le VLAN i broadcast di una network non raggiungono gli host di un'altra

Classificazione delle VLAN

- VLAN statiche o port-based
 - ogni porta dello switch è associata ad una VLAN
 - un host appartiene alla VLAN corrispondente alla porta a cui è connesso
 - per spostare un host su una diversa VLAN occorre intervenire sullo switch e modificare la VLAN a cui è associata la porta a cui l'host è connesso

VLAN dinamiche

- l'appartenenza alle VLAN è stabilita in base all'indirizzo dell'host
 - MAC-based
 - IP-based
- un host appartiene alla corrispondente VLAN indipendentemente dalla porta a cui è connesso
- per spostare un host su una diversa VLAN occorre intervenire sullo switch e modificare la VLAN associata all'indirizzo dell'host

Normalmente VLAN statiche

 Lo switch conosce la VLAN di appartenenza di un host in base alla configurazione della porta a cui è connesso

LAN estesa

• Se una LAN è realizzata con più di uno switch come posso gestire le VLAN inter-switch?

LAN estesa

• Se una LAN è realizzata con più di uno switch come posso gestire le VLAN inter-switch?

- Protocollo che permette l'utilizzo delle stesse VLAN su diversi switch interconnessi tra loro
- Occorre specificare a quale VLAN appartiene una trama inviata ad un altro switch
- Etichetta (tag) nell'intestazione Ethernet

IEEE 802.1Q header format

- 4 bytes
- Tag Protocol Identifier (TPID)
 - 16 bit
 - Usually 0x8100
- Priority
 - 3 bit
- CFI
 - 1 bit
 - Identifica il formato del MAC address
- Unique LAN Identifier (VID)
 - 12 bits
 - Numero della VLAN (da 0 a 4095)

Porte dello switch

Access mode

- porta associata ad una sola VLAN
- tagging 802.1Q non necessario
- modalità tipica per porte connesse agli hosts

• Trunk mode

- porta associata a VLAN multiple
- tagging 802.1Q necessario per determinare la VLAN a cui appartiene ciascun frame Ethernet
- una porta trunk può essere associata contemporaneamente a una sola VLAN "untagged" e a più VLAN "tagged"
- modalità tipica per porte connesse a switch e router

Inter-VLAN routing

- In teoria un router dovrebbe avere un'interfaccia dedicata a ciascuna VLAN
- Soluzione inefficiente e poco scalabile
 - n VLAN richiedono l'uso di n interfacce sul router e n porte sullo switch

- Più efficiente e scalabile l'utilizzo di interfacce virtuali, o sub-interfacce
 - unica interfaccia fisica compatibile con il tagging 802.1Q
 - n interfacce virtuali sulla stessa interfaccia fisica
 - ogni sub-interfaccia utilizza il VLAN ID corrispondente alla sua VLAN

- Aziende e/o enti di dimensioni medio/grandi in genere hanno necessità di interconnettere in maniera sicura sedi sparse sul territorio e distanti tra loro
- Soluzione tradizionale: utilizzo di linee dedicate da affittare direttamente presso gli operatori (reti private)
 - Implica costi di acquisto e di gestione dedicati
- Alternativa: utilizzo di una rete in "overlay" attraverso reti pubbliche (reti private virtuali - VPN)
 - flusso punto-punto di pacchetti autenticati (con contenuto informativo criptato) incapsulati in pacchetti tradizionali
 - diverse tecnologie disponibili
 - Diversi protocolli di tunnelling
 - · livello 2: PPTP, L2TP
 - · livello 3: IPsec

I rischi della comunicazione remota

Normal information flow

Obiettivi di una rete privata

- Riservatezza
 - Le informazioni non sono leggibili da tutti
- Autorizzazione
 - Definisco il sottoinsieme di coloro che sono in grado di leggere i dati
- Autenticazione
 - Verifico chi sta leggendo i dati
- Paternità
 - Garantisco l'origine dei dati

Reti private reali e reti private

VPN Roadwarrior

- Su una network viene configurato un server VPN
- Tutti i client si collegano a quel server da un punto qualunque di Internet
 - Tunnel sicuri punto-punto
- Topologia a stella

 Si configura come una rete di comunicazioni sicure sul server VPN

Roadwarrior

Problema

Se ho molti host co-localizzati il rodawarrior è inefficiente

- N host richiedono N tunnel Network IP Internet Network IP

VPN da rete a rete

- Si crea un tunnel cifrato su rete pubblica fra due LAN o fra due network IP
 - Su rete pubblica i pacchetti vengono cifrati
 - Su rete pubblica l'indirizzamento reale può essere mascherato

 Normalmente i server VPN vengono co-localizzati con i gateway delle network

IPSec

IPSec documents:

- RFC 2401: An overview of security architecture
- RFC 2402: Description of a packet encryption extension to IPv4/IPv6
- RFC 2406: Description of a packet emcryption extension to IPv4/IPv6
- RFC 2408: Specification of key managament capabilities

Concetti base

- SA (Security Association) relazione unidirezionale tra mittente e destinatario, definita da
 - Security Parameter Index (SPI)
 - IP Destination address
 - Security Protocol Identifier
- Due modalità possibili di SA
 - Transport Mode
 - Tunnel Mode

Protocolli

- IKE (Internet Key Exchange):
 - autenticazione interlocutore
 - negoziazione algoritmi e chiavi crittografiche
 - Utilizza UDP (porta sorgente e destinazione = 500)
- AH (Authentication Header) (campo protocol IP = 51):
 - autenticazione dei pacchetti trasmessi in VPN garantendo
 - · integrità ed autenticità dei dati
 - · identità del mittente
- ESP (Encapsulating Security Payload) (campo protocol IP = 50):
 - come in AH + riservatezza delle informazioni tramite crittografia

IKE

- Fase 1 Negoziazione preliminare
 - uno dei due nodi VPN (initiator) tenta di contattare l'altro
 - i due nodi si accordano sui parametri di sicurezza da usare in questa fase
- Fase 2 Negoziazione della connessione
 - i due nodi VPN si accordano sui parametri di sicurezza e sulla modalità di comunicazione
 - si generano e si rinnovano le chiavi crittografiche

IPsec: ESP Transport

IPsec: ESP Tunnel

ESP: tunnel vs transport

