The HPCchallenge Benchmark

http://icl.cs.utk.edu/hpcc/

Jack Dongarra Piotr Luszczek

Innovative Computing Laboratory
University of Tennessee
and
Computer Science and Mathematics Division
Oak Ridge National Laboratory

HPCchallenge Benchmark

- ? Consists of basically 5 benchmarks;
- ? HPL is the Linpack TPP benchmark. The test stresses the floating point performance of a system. (Gflop/s)
- ? RandomAccess measures the rate of random updates of memory. (GUp/s)
- ? PTRANS measures the rate of transfer for larges arrays of data from multiprocessor's memory. (GB/s)
- ? BW/Latency measure simple ping-pong and more complicated simulation communications. (μs, GB/s)
 http://icl.cs.utk.edu/hpcc/

HPL Benchmark

- ? TPP Linpack Benchmark
- ? Used for the Top500 ratings
- ? Solve Ax=b, dense problem, matrix is random
 - ∠ Uses LU decomposition with partial pivoting
 - **Based on the ScaLAPACK routines but optimized**
- ? Requires
- ? Reports total TFlop/s achieved for set of processors

http://icl.cs.utk.edu/hpcc/

TPP performance

STREAM Benchmark

- ? The STREAM Benchmark is a standard benchmark for the measurement of computer memory bandwidth
- ? Measures bandwidth sustainable from standard operations -- not the theoretical "peak bandwidth" provided by most vendors
- ? Four operations

 ∠ COPY, SCALE
 ∠ ADD, TRIAD

name	kernel	bytes/iter	FLOPS/iter
COPY:	a(i) = b(i) $a(i) = q*b(i)$	16	0
SCALE:		16	1
SUM:	a(i) = b(i) + c(i)	24	1
TRIAD:	a(i) = b(i) + q*c(i)	24	2

- ? Measures:

 - ∠ Vector lengths chosen to fill local memory
- ? Tested on a single processor
- ? Tested on all processors in the set in an "embarrassingly parallel" fashion
- ? Reports total GB/s achieved per processor http://icl.cs.utk.edu/hpcc/

PTRANS

- ? Implements parallel matrix transpose $\angle A = A + B^T$
 - The matrices \boldsymbol{A} and \boldsymbol{B} are distributed across the processors
 - ∠ Two-dimensional block-cyclic storage
 ∠ Same storage as for HPL
- ? Exercises the communications pattern where pairs of processors communicate with each other simultaneously.
 - ∠ Large (out-of-cache) data transfers across the network
- ? Reports total GB/s achieved for set of processors

Random Access

- ? Integer Read-modify-write to random address

 - latency
- ? Architecture stresses
 - ∠ Latency to cache and main memory
- ? Three forms for test

 - parallel" fashion
 - ∠ Each processor caches updates then all processors perform MPI all-to-all communication to perform updates across processors
- Reports Gup/s (Giga updates per second) per processor

http://icl.cs.utk.edu/hpcc/

proc.

Bandwidth and Latency Tests

? Ping-Pong test between pairs of processors

proc; MPI_Send() - proc, MPI_Recv()

proc_i MPI_Recv() - proc_k MPI_Send()

∠Other processors doing MPI_Waitall()

- z time += MPI_Wtime()
- distinct pairs of processors.
- Tries to find the weakest link amongst all pairs

 - ✓ Not necessarily the same link will be the worst for bandwidth and latency
- http://icl.cs.utk.edu/hpcc/

```
Bandwidth/Latency
  Ring Tests (All Procs)
? Two types of rings:
                      ≤(use MPI_COMM_WORLD): 0,1,2, ... P-1.

≪Randomly ordered
   (30 rings tested)
    ≤eg.: 7, 2, 5, 0, 3, 1, 4, 6
  Each node posts two sends (to its left and right
   neighbor) and two receives (from its left and right
   neighbor).
    send/receive and non-blocking send/receive.

✓ MPI _Sendrecv( TO: right_neighbor,FROM: left_neighbor)

       MPI_I recv( left_neighbor )MPI_I recv( right_neighbor ) and
MPI_I send( right_neighbor )MPI_I send( left_neighbor )
    smaller depends on the MPI implementation).
```


How Will This Work?

- ? Single program to download and run
 - **∠**Simple input file similar to HPL input
- ? Base Run and Optimization Run
 - **∠**Base run must be made
 - **∠**User supplies MPI and the BLAS
 - **∠**Optimized run allowed to replace certain routines
 - **∠**User specifies what was done
- ? Results upload via website
- ? html table and Excel spreadsheet generated with performance results

Expanded Set of Benchmarks

- ? Developing a framework for benchmarks
- ? Plans are to expand the benchmark collection
- ? Currently working on
 - **∠**DGEMM and *DGEMM
 - **∠**Sparse matrix operations
- ? Thinking about an I/O benchmark

Collaborators

- ? David Koester, MITRE
- ? John McCalpin, IBM, Austin
- ? Rolf Rabenseifner, HLRS Stuttgart
- ? Jeremy Kepner, MIT Lincoln Lab
- ? Bob Lucas, ISI/USC
- ? Thanks

