Problem Set 6

D. Zack Garza

Sunday 3rd May, 2020

Contents

3	Exercise p.108	2
2	Humphreys 7.2 2.1 Solution	1
1	Humphreys 5.3	1

1 Humphreys 5.3

Let λ be regular, antidominant, and integral, and suppose $M(\lambda)^n \neq 0$ but $M(\lambda)^{n+1} = 0$. In the Jantzen filtration of $M(w \cdot \lambda)$, show that $n = \ell_{\lambda}(w)$ where ℓ_{λ} is the length function of the system $(W_{[\lambda]}, \Delta_{[\lambda]})$. Thus there are $\ell(w) + 1$ nonzero layers in this filtration.

Use 0.3(2) to describe $\Phi_{w \cdot \lambda}^+$.

2 Humphreys 7.2

Let $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$ and show that T^{μ}_{λ} need not take Verma modules to Verma modules.

For example, let $\lambda = 1$ and $\mu = -3$.

2.1 Solution

Let $\lambda = 1$ and $\mu = -3$, noting that both are integral, μ is antidominant, and μ , λ are compatible as in the definition in 7.1. We can then consider $\nu := \mu - \lambda = -3 - 1 = -4$, and to compute the $\bar{\nu}$ that appears in the definition of T^{μ}_{λ} , we consider the (usual) W-orbit of ν . In $\mathfrak{sl}(2,\mathbb{C})$, we identify $\Lambda = \mathbb{Z}$, $W = \{\mathrm{id}, s_{\alpha}\}$, and $s_{\alpha}\lambda = -\lambda$ as reflection about 0. Thus the orbit is given by $W\nu = \{-4, 4\}$, which contains the unique dominant weight $\bar{\nu} = 4$. We thus have

$$T_1^{-3}(\,\cdot\,) = \operatorname{pr}_{-3}(L(4) \otimes \operatorname{pr}_1(\,\cdot\,)).$$

We use the fact that we always have an exact sequence of the form

$$0 \longrightarrow N(\lambda) \longrightarrow M(\lambda) \longrightarrow L(\lambda) \longrightarrow 0.$$

where in $\mathfrak{sl}(2,\mathbb{C})$ we can identify $N(\lambda) = L(-\lambda - 2)$, thus we have

$$0 \longrightarrow L(-\lambda - 2) \longrightarrow M(\lambda) \longrightarrow L(\lambda) \longrightarrow 0.$$

Here we can identify

$$\begin{split} L(-\lambda-2) &= L(-1-2) \\ &= L(-3) \\ &= L(\mu) \\ &= M(\mu) \quad \text{since } \mu = -3 \text{ is integral and antidominant,} \end{split}$$

and thus we in fact have an exact sequence

$$\begin{array}{ccc}
0 & \longrightarrow & M(\mu) \\
\parallel & & \\
0 & \longrightarrow & M(\mu)
\end{array}$$

$$0 \longrightarrow M(\mu) \longrightarrow M(\lambda) \longrightarrow L(\lambda) \longrightarrow 0.$$

3 Exercise p.108

- a. Work out the Jantzen filtration sections for $M(w_0 \cdot \lambda)$. List carefully any additional assumptions or facts needed to deduce $M(w_0 \cdot \lambda)^i$ uniquely.
- b. Continue #4.11 for the case of singular λ , e.g. $(\lambda + \rho, \widehat{\alpha}) = 1$. If you didn't deduce the structure of all $M(w \cdot \lambda)$ there, can you complete it now?
- c. Work out the non-integral case. (There are several different cases to consider.)