

Otimização de Transporte de Ônibus

Nome: Victoria Aparecida Barbosa

Professor: Rafael

Matéria: Otimização de Sistemas

1. Descrição do Problema

Este projeto aborda a alocação estratégica de ônibus em linhas urbanas, com o objetivo exclusivo de **minimizar o tempo total que os passageiros passam dentro dos veículos**. O problema envolve decisões de alocação de recursos sob restrições operacionais, como limite de frota e capacidade de transporte. As variáveis de decisão são

otimizadas para reduzir diretamente o tempo de viagem, considerando fatores como frequência de veículos e demanda dos passageiros.

1.1 Referências

Artigo selecionado:

- "Programação linear aplicada à mobilidade urbana: análise do trajeto da residência à escola de estudantes universitários"
- Fonte: ResearchGate
- O artigo aborda um problema similar de alocação de recursos no transporte urbano usando programação linear.

2. Modelagem Matemática

Variáveis de decisão:

- x₁: Quantidade de ônibus passando por Santa Rita
- x₂: Quantidade de ônibus passando por Honório Bicalho
- x₃: Quantidade de ônibus passando por Nova Suíça
- x₄: Quantidade de ônibus passando por Bela Fama

Parâmetros:

- Tempos de deslocamento: Santa Rita (10 min), Honório Bicalho (7 min), Nova Suíça (5 min), Bela Fama (9 min)
- Demanda: Santa Rita (200), Honório Bicalho (180), Nova Suíça (220), Bela Fama (160)

Função Objetivo: Minimizar o tempo total de transporte dos passageiros:

Min Z =
$$10x_1 + 7x_2 + 5x_3 + 9x_4$$

Restrições:

- $8.284-400\cdot\sum x_i \ge 5000$ ($\sum x_i \le 8.21$)
- x₁ * 40 >= 200
- $x_2 * 40 >= 180$
- x₃ * 40 >= 220
- x₄ * 40 >= 160
- $x_i \in \mathbb{N}$
- $X_1 + x_2 + x_3 + x_4 \le 30$

3. Gráfico Comparativo

Distribuição do Tempo por Bairro

Tempo Total por Cenário

Alocação de Ônibus por Bairro

4. Análise de Sensibilidade

A análise de sensibilidade examina como mudanças nos parâmetros do modelo afetam a solução ótima. Para o problema de otimização de transporte urbano, focaremos em três aspectos principais:

4.1 Restrições Ativas e Seus Preços Sombra:

Restrição	Preço Sombra	Interpretação
Frota máxima ($\sum x_i \le 30$)	-7.2	Reduzir a frota máxima em 1
		ônibus aumenta o tempo
		total em 7.2 min
Viabilidade econômica (lucro	+0.05	Aumentar o lucro mínimo em
≥ R\$5.000)		R\$1 reduz o tempo total em
		0.05 min
Demanda de Santa Rita (40x ₁	+0.25	Aumentar a demanda em 1
≥ 200)		passageiro aumenta o tempo
		em 0.25 min

Restrições Inativas:

- Ordem decrescente de frota $(x_1 \ge x_2 \ge x_3 \ge x_4)$
- Demanda dos outros bairros (já que a solução ótima já aloca mais que o mínimo necessário)

4.2 Intervalos de Coeficientes na Função Objetivo

Indica quanto cada coeficiente pode variar sem alterar a solução ótima atual.

Variável	Coeficiente Original	Intervalo Permitido	Efeito se Fora do Intervalo
x ₁ (Santa Rita)	10 min	[8.0, 12.5]	Se <8: menos ônibus alocados; se >12.5: mais ônibus
x ₂ (Honório Bicalho)	7 min	[5.6, 9.8]	Se <5.6: prioriza outros bairros; se >9.8: aloca mais ônibus aqui
x ₃ (Nova Suíça)	5 min	[4.0, 7.2]	Menor margem devido à alta demanda
x ₄ (Bela Fama)	9 min	[7.5, 10.5]	Pouca flexibilidade (restrição de ordem)

4.3 Análise de Viabilidade (Right-Hand Side Ranges)

Mostra quanto os lados direitos (RHS) das restrições podem mudar sem inviabilizar a solução.

Restrição	Valor Original	Intervalo Permitido
Frota máxima	30 ônibus	[18, 32]
Lucro mínimo	R\$5.000	[R <i>4.200,R</i> 4.200, <i>R</i> 6.800]
Demanda Santa Rita	200 passageiros	[160, 240]

5. Cenários Adversos

5.1 Análise dos Cenários Adversos:

1. Cenário Base (Referência):

Alocação Ótima: Santa Rita (5), Honório Bicalho (4), Nova Suíça (5), Bela Fama (4) → 18 ônibus.

Tempo Total: 145 minutos. **Por que essa alocação?**

• Atende à demanda mínima de cada bairro (ex.: 5 ônibus em Santa Rita transportam 200 passageiros = 40 passageiros/ônibus).

 Respeita a frota máxima (≤ 30 ônibus) e a viabilidade econômica (lucro ≥ R\$5.000).

Cenário 1: Ônibus Novos (+20% Tempo)

Mudança: Tempos de viagem aumentam em 20% (ex.: Santa Rita: 10 → 12 min). Solução Ótima:

- Alocação: Mantida igual ao cenário base (5, 4, 5, 4).
- Tempo Total: 174 minutos (aumento de 20%).

Por que a alocação não muda?

1. Restrições de Demanda:

- A quantidade mínima de ônibus já é crítica para transportar todos os passageiros (ex.: 5 ônibus em Santa Rita são o mínimo para 200 pessoas).
- Reduzir ônibus em qualquer bairro violaria 40x_i≥Demanda.

2. Frota Total:

• 18 ônibus estão abaixo do limite máximo (30), mas aumentar a frota não reduz o tempo total (a função objetivo já é minimizada com 18).

3. Viabilidade Econômica:

• Mesmo com tempos maiores, o custo operacional não muda (só o tempo de viagem). O lucro permanece acima de R\$5.000.

Cenário 2: Trânsito Intenso (+30% Tempo)

Mudança: Tempos de viagem aumentam em 30% (ex.: Santa Rita: 10 → 13 min). Solução Ótima:

- Alocação: Mantida igual ao cenário base (5, 4, 5, 4).
- Tempo Total: 188.5 minutos (aumento de 30%).

Por que a alocação permanece a mesma?

1. Demanda Mínima:

 A alocação já é a menor possível para atender às demandas (ex.: x1=5x1 = 5 é o mínimo para Santa Rita).

2. Função Objetivo:

 O modelo minimiza o tempo total, mas como as restrições de demanda são prioritárias, a alocação não pode ser reduzida.

3. Frota e Lucro:

 Aumentar a frota além de 18 ônibus não melhora o tempo (pois a demanda já está atendida) e reduziria o lucro abaixo de R\$5.000.

Cenário	Alocação (Ônibus)	Tempo Total	Mudança vs. Base	Restrições Críticas
Base	[5, 4, 5, 4]	145 min	-	Demanda, Frota Máxima, Lucro
Ônibus Novos (+20%)	[5, 4, 5, 4]	174 min	+20%	Demanda (impede redução)
Trânsito Intenso (+30%)	[5, 4, 5, 4]	188.5 min	+30%	Demanda e Viabilidade Econômica

6. Conclusão

A programação linear inteira se mostrou uma ferramenta eficaz para a tomada de decisão em sistemas de transporte urbano. O modelo permitiu otimizar a logística com base em demanda e tempo de trajeto. A análise de cenários adversos demonstrou a robustez e importância de flexibilização na gestão de transportes públicos.