```
matrix A : [[1]
[2]
[4]
[5]
[7]
[8]]
dimensions of A : (6, 1)
matrix B : [[1 4 7]
[2 5 8]]
dimensions of B : (2, 3)
```

Another useful expression is np.c_ and np.r_, which allow us to stack column (and row) vectors with other vectors (and matrices).

6.2. Zero and identity matrices

Zero matrices. A zero matrix of size $m \times n$ is created using np.zeros((m,n)). Note the double brackets!

Identity matrices. Identity matrices in Python can be created in many ways, for example, by starting with a zero matrix and then setting the diagonal entries to one. You can also use the np.identity(n) function to create an identity matrix of dimension n.

6. Matrices

Ones matrix. In VMLS we do not use special notation for a matrix with all entries equal to one. In Python, such a matrix is given by np.ones((m,n))

Diagonal matrices. In standard mathematical notation, diag(1,2,3) is a diagonal 3×3 matrix with diagonal entries 1, 2, 3. In Python, such a matrix can be created using np. diag().

Here we can see that, when we apply the np.diag() function to a matrix, it extracts the diagonal elements as a vector (array). When we apply the np.diag() function to a vector (array), it constructs a diagonal matrix with diagonal entries given in the vector.

Random matrices. A random $m \times n$ matrix with entries distributed uniformly between 0 and 1 is created using np.random.random((m,n)). For entries that have a standard normal distribution, we can use np.random.normal((m,n)).

Sparse matrices. Functions for creating and manipulating sparse matrices are contained in the scipy.sparse module, which must be installed and imported. Sparse matrices are stored in a special format that exploits the property that most of the elements are zero. The scipy.sparse.coo_matrix() function create a sparse matrix from three arrays that specify the row indexes, column indexes, and values of the nonzero elements. The following code creates a sparse matrix

$$A = \begin{bmatrix} -1.11 & 0 & 1.17 & 0 & 0 \\ 0.15 & -0.10 & 0 & 0 & 0 \\ 0 & 0 & -0.3 & 0 & 0 \\ 0 & 0 & 0 & 0.13 & 0 \end{bmatrix}$$

Sparse matrices can be converted to regular non-sparse matrices using the todense() method.

6. Matrices

A sparse $m \times n$ zero matrix is created with sparse.coo_matrix((m, n)). To create a sparse $n \times n$ identity matrix in Python, use sparse.eye(n). We can also create a sparse diagonal matrix (with different offsets) using

A useful function for creating a random sparse matrix is **sparse.rand()**. It generates a sparse matrix of a given shape and density with uniformly distributed values.

6.3. Transpose, addition, and norm

Transpose. In VMLS we denote the transpose of an $m \times n$ matrix A as A^T . In Python, the transpose of A is given by np.transpose(A) or simply A.T.