

programas de formación creativa

MEDIOS INTERACTIVOS

AGOSTO — DICIEMBRE

4 MESES

DIRECTOR PROGRAMA

Sergio Mora-Diaz

LED

RESISTENCIA

TENSION ELECTRICA o VOLTAJE (V)

La fuerza con la que circulan los electrones desde un punto hasta otro. Se mide en voltios.

INTENSIDAD DE CORRIENTE ELECTRICA (I)

La cantidad de electrones que circulan por un cable conductor por unidad de tiempo. Se mide en amperios.

RESISTENCIA ELECTRICA (R)

La oposición que ofrece un material al paso de electrones (corriente eléctrica) a través de él. Se mide en ohms.

CALCULO DE RESISTENCIAS EN CIRCUITO DE LED

Resistencia =

$$\mathbf{R} = \frac{V}{I}$$

Corriente Admisible en LED

POTENCIOMETRO

DATOS DIGITALES

valores de 1 o 0 dígito binario o bit (2 posibles valores)

digitalRead();
digitalWrite();

DATOS ANALOGICOS

rangos variables Arduino procesa datos de 0 a 1023 (2^10)

analogRead();
analogWrite();

EJERCICIO 2: POTENCIOMETRO (ANALOG IN / OUT)

COMUNICACION SERIAL

Información transmitida en dos direcciones usando el puerto USB, un dato tras otro.

Serial.begin (9600); inicia comunicación serial

Serial.println(datoSensor); muestra datos recibidos en el monitor serie

MAPEO DE VALORES

datoLed = map (datoSensor, 0, 1023, 0, 255);

0 a 1023 es el rango analógico máximo que entrega un sensor (2^{10} = 10 bits). 0 a 255 es el rango de intensidad de brillo de un led, en escala RGB (2^8 = 8 bits = 1 byte).

analogWrite(pinLed, datoLed);

BITS DE INFORMACION

MODULACIÓN DIGITAL POR ANCHOS DE PULSOS (PWM)

SENSOR DE LUZ LDR

EJERCICIO 3: SENSOR DE LUZ LDR (DIGITAL IN / OUT)

SENSOR DE PROXIMIDAD SHARP

EJERCICIO 4: SENSOR DE PROXIMIDAD SHARP (ANALOG IN / OUT)

CONDICIONALES

La información contenida en las llaves se ejecuta sólo al cumplir la condición