## Практические задания №7. Григорьев И.С. 6304

## Задание №1

Даны следующие данные

| $\mathbf{x}_i$ | $a_1$            | $a_2$ | $a_3$ | Class |
|----------------|------------------|-------|-------|-------|
| $\mathbf{x}_1$ | T                | T     | 5.0   | Y     |
| $\mathbf{x}_2$ | T                | T     | 7.0   | Y     |
| $\mathbf{x}_3$ | T                | F     | 8.0   | N     |
| $\mathbf{x}_4$ | F                | F     | 3.0   | Y     |
| $\mathbf{x}_5$ | $\boldsymbol{F}$ | T     | 7.0   | N     |
| $\mathbf{x}_6$ | F                | T     | 4.0   | N     |
| <b>X</b> 7     | F                | F     | 5.0   | N     |
| $\mathbf{x}_8$ | T                | F     | 6.0   | Y     |
| <b>X</b> 9     | F                | T     | 1.0   | N     |

Используя наивный байесовский классификатор определите класс точки x=(T,F,1.0).

Исходя из предположения, что все атрибуты независимы  $P(x|c_i)$  может быть разложена на произведение вероятностей каждого измерения:

$$P(\boldsymbol{x}|c_i) = \prod_{j=1}^d P(x_j|c_i)$$

Для числовых атрибутов:

$$P(x_j|c_i) \propto \frac{1}{\sqrt{2\pi}\sigma_{ij}} \exp\left\{-\frac{(x_j - \mu_{ij})^2}{2\sigma_{ij}^2}\right\}$$

Для категориальных атрибутов:

$$\prod_{j=1}^{d} P(x_j | c_i) = \prod_{j=1}^{d} \frac{n_i(\mathbf{v}_j)}{n_i}$$

где  $n_i(\mathbf{v}_i)$  частота категориального значения определенного атрибута и класса.

0.0043443043728038045

P1\_Y

 $P1_Y = f(1.0, a3_Y.mean(), a3_Y.std())$ 

```
P1_N = f(1.0, a3_N.mean(), a3_N.std())
P1_N
```

0.04293140793792167

```
P_Y_v = P1_Y * (3/4) * (1/2) * (4/9)
P_Y_v
```

0.000724050728800634

```
P_N_v = P1_N * (1/5) * (2/5) * (5/9)
P_N_v
```

0.0019080625750187413

P(N|x) > P(Y|x), значит x = (T,F,1.0) относится к классу N

## Задание №2

Даны два класса  $c_1$  и  $c_2$  со следующими мат. ожиданиями и матрицами ковариации:

$$\mu_1 = (1,3) \qquad \qquad \mu_2 = (5,5)$$

$$\Sigma_1 = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix} \qquad \qquad \Sigma_2 = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

Классифицируйте точку  $\mathbf{x} = (3,4)$  используя Байесовский вывод, предположив, что классы распределены по нормальному закону, и P(c1) = P(c2) = 0.5

Т.к. классы нормально распределены, плотность вероятности в х для класса  $c_i$  задается как

$$f_i(\mathbf{x}) = f(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) = \frac{1}{(\sqrt{2\pi})^d \sqrt{|\boldsymbol{\Sigma}_i|}} \exp\left\{-\frac{(\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)}{2}\right\}$$

Вероятность наблюдения  ${\bf x}$  при условии, что истинным классом является  $c_i$ , при рассмотрении малого интервала  $\epsilon>0$  можно получить как

$$P(\mathbf{x}|c_i) = 2\epsilon \cdot f_i(\mathbf{x})$$

Тогда апостериорную вероятность можно получить по теореме Байеса как

$$P(c_i|x) = \frac{2\epsilon \cdot f_i(x)P(c_i)}{\sum_{j=1}^{k} 2\epsilon \cdot f_j(x)P(c_j)} = \frac{f_i(x)P(c_i)}{\sum_{j=1}^{k} f_j(x)P(c_j)}$$

Таким образом предсказать класс для  $m{x}$  можно следующим образом

$$\hat{y} = \arg\max_{c_i} \{ f_i(\mathbf{x}) P(c_i) \}$$

0.04826617631502697

0.012555482738023717

 $P(c_1|x) > P(c_2|x)$ , значит x = (3,4) относится к первому классу  $c_1$ 

**Задание №3** Даны следующие данные

| Point                 | Age | Car     | Risk |
|-----------------------|-----|---------|------|
| $\mathbf{x}_1$        | 25  | Sports  | L    |
| $\mathbf{x}_2$        | 20  | Vintage | H    |
| <b>x</b> <sub>3</sub> | 25  | Sports  | L    |
| $\mathbf{x}_4$        | 45  | SUV     | H    |
| <b>x</b> <sub>5</sub> | 20  | Sports  | H    |
| <b>x</b> <sub>6</sub> | 25  | SUV     | H    |

Постройте решающее дерево используя порог для чистоты (purity threshold) равным 100%.

В качестве критерия для разделения используйте энтропию. Классифицируйте наблюдение (Age=27, Car=Vintage)



Age 27 <= 22.5 => no => Car Vintage or SUV? => yes => class H