

ECE 2321 Signals and Systems Discrete Signals

Martin Wafula

Multimedia University of Kenya

These slides are adapted from Prof Alejandro Ribeiro, UPenn

Discrete signals

Discrete signals

Inner products and energy

Discrete complex exponentials

Orthogonality of Discrete Complex Exponentials

Appendix: Plots of Discrete Complex Exponentials

Discrete signals

- ▶ We consider a discrete and finite time index set $\Rightarrow n = 0, 1, ..., N 1 \equiv [0, N 1]$.
- A discrete signal x is a function mapping the time index set [0, N-1] to a set of real values x(n)

$$x:[0,N-1]\to\mathbb{R}$$

- ▶ The values that the signal takes at time index n is x(n)
- lacktriangle Sometimes, it makes sense to talk about complex signals $\Rightarrow x:[0,N-1] o \mathbb{C}$
 - \Rightarrow The values $x(n) = x_R(n) + j x_I(n)$ the signal takes are complex numbers
- ▶ The space of all possible signals is the space of vectors with N components $\Rightarrow \mathbb{R}^N$ (or \mathbb{C}^N)

Deltas Functions a.k.a as Impulses or Spikes

▶ The discrete delta function $\delta(n)$ is a spike at (initial) time n=0

$$\delta(n) = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{else} \end{cases}$$

Time index n = 0, 1, ..., 7 = [0, 7]

Delta function $x(n) = \delta(n)$

▶ The shifted delta function $\delta(n-n_0)$ has a spike at time $n=n_0$

$$\delta(n-n_0) = \left\{ egin{array}{ll} 1 & ext{if } n=n_0 \ 0 & ext{else} \end{array}
ight.$$

This is not a new definition. Just a time shift of the previous definition

Constants and square pulses

ightharpoonup A constant function x(n) has the same value c for all n

$$x(n) = c$$
, for all n

▶ A square pulse of width M, $\sqcap_M(n)$, equals one for the first M values

$$\sqcap_{M}(n) = \left\{ \begin{array}{ll} 1 & \text{if } 0 \leq n < M \\ 0 & \text{if } M \leq n \end{array} \right.$$

▶ Can consider shifted pulses $\sqcap_M (n - n_0)$, with $n_0 < N - M$

Units: Sampling time and signal duration

- ▶ The Sampling time T_s is the clock time elapsed between time indexes n and n+1
- ▶ The sampling frequency $f_s := 1/T_s$ is the inverse of the sampling time
- ightharpoonup Discrete time index n represents clock (actual) time $t = nT_s$

▶ Total signal duration is $T = NT_s$ ⇒ We "hold" the last sample for T_s time units

Discrete cosines and sines

- \triangleright For a signal of duration N define (assume N is even):
 - \Rightarrow Discrete cosine of discrete frequency $k \Rightarrow x(n) = \cos(2\pi k n/N)$
 - \Rightarrow Discrete sine of discrete frequency $k \Rightarrow x(n) = \sin(2\pi k n/N)$

Cosine $x(n) = \cos(2\pi k n/N)$ and sine $x(n) = \sin(2\pi k n/N)$. Frequency k = 2 and number of samples N = 32.

- Frequency k is discrete. I.e., k = 0, 1, 2, ...
 - ⇒ Have an integer number of complete oscillations

Cosines of different frequencies (1 of 2)

- ightharpoonup Discrete frequency k = 0 is a constant
- ightharpoonup Discrete frequency k=1 is a complete oscillation
- Frequency k = 2 is two oscillations, for k = 3 three oscillations ...

Cosines of different frequencies (2 of 2)

- ightharpoonup Frequency k represents k complete oscillations
- ► Although for large k the oscillations may be difficult to see

- ▶ Do note that we can't have more than N/2 oscillations
 - \Rightarrow Indeed $1 \rightarrow -1 \rightarrow 1, \rightarrow -1, \dots$
 - \Rightarrow Frequency N/2 is the last one with physical meaning
- ▶ Larger frequencies replicate frequencies between k = 0 and k = N/2

Duplicated frequencies

Frequencies k and N - k represent the same cosine

- Actually, if $k + l = \dot{N}$, cosines of frequencies k and l are equivalent
- Not true for sines, but almost. The signals have opposite signs

Discrete frequencies and actual frequencies

- ightharpoonup What is the discrete frequency k of a cosine of frequency f_0 ?
- ▶ Depends on sampling time T_s , frequency $f_s = \frac{1}{T_s}$, duration $T = NT_s$
- ▶ Period of discrete cosine of frequency k is T/k (k oscillations)
- ► Thus, regular frequency of said cosine is $\Rightarrow f_0 = \frac{k}{T} = \frac{k}{NT_s} = \frac{k}{N}f_s$
- ▶ A cosine of frequency f_0 has discrete frequency $k = (f_0/f_s)N$
- ▶ Only frequencies up to $N/2 \leftrightarrow f_s/2$ have physical meaning
- ▶ Sampling frequency f_s ⇒ Cosines up to frequency $f_0 = f_s/2$

Use of units example

- ▶ Generate N = 32 samples of an A note with sampling frequency $f_s = 1,760$ Hz
- ▶ The frequency of an A note is $f_0 = 440$ Hz. This entails a discrete frequency

$$k = \frac{f_0}{f_s} N = \frac{440 \text{Hz}}{1,760 \text{Hz}} 32 = 8$$

The A note observed during $T = NT_S = 18.2$ ms with a sampling rate $f_S = 1,760$ Hz

Time t (in miliseconds)

- ► Alternatively $\Rightarrow x(n) = \cos \left[2\pi k n/N \right] = \cos \left[2\pi (f_0/f_s)Nn/N \right]$
- ► Which simplifies to $\Rightarrow x(n) = \cos \left[2\pi (f_0/f_s)n\right] = \cos \left[2\pi f_0(nT_s)\right]$

Noninteger frequencies

- \triangleright The frequency k does not need to an integer. In that case we talk of sampled cosines and sines
 - \Rightarrow Sampled cosine $\Rightarrow x(n) = \cos(2\pi k n/N)$ with arbitrary, not necessarily integer k
 - \Rightarrow Sampled sine $\Rightarrow x(n) = \sin(2\pi k n/N)$ with arbitrary, not necessarily integer k
- \triangleright Sampled sines and cosines have fractional oscillations (k not integer)
- ightharpoonup Discrete sines and cosines have complete oscillations (k is integer)
 - ⇒ Discrete sines and cosines are used to define Fourier transforms (As we will see later)

Inner products and energy

Discrete signals

Inner products and energy

Discrete complex exponentials

Orthogonality of Discrete Complex Exponentials

Appendix: Plots of Discrete Complex Exponentials

Inner product

• Given two signals x and y with components x(n) and y(n) define the inner product of x and y as

$$\langle x, y \rangle := \sum_{n=0}^{N-1} x(n)y^*(n)$$

$$= \sum_{n=0}^{N-1} x_R(n)y_R(n) - \sum_{n=0}^{N-1} x_I(n)y_I(n) + j \sum_{n=0}^{N-1} x_I(n)y_R(n) + j \sum_{n=0}^{N-1} x_R(n)y_I(n)$$

- ightharpoonup This is the same as the inner product between vectors x and y. Just with different notation
- ▶ The Inner product is a linear operations $\Rightarrow \langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$
- ▶ Reversing the order of the factor results in conjugation $\Rightarrow \langle y, x \rangle = \langle x, y \rangle^*$

Inner product interpretation

- ▶ The inner product $\langle x, y \rangle$ is the projection of the signal (vector) y on the signal (vector) x
- ▶ The value of $\langle x, y \rangle$ is how much of y falls in x direction
 - \Rightarrow How much y resembles x. How much x predits y. Knowing x, how much of y we know
 - \Rightarrow Very importantly, if $\langle x, y \rangle = 0$ the signals are orthogonal. They are "unrelated"

Norm and energy

- ▶ Define the norm of signal x as $\Rightarrow ||x|| := \left[\sum_{n=0}^{N-1} |x(n)|^2\right]^{1/2} = \left[\sum_{n=0}^{N-1} |x_R(n)|^2 + \sum_{n=0}^{N-1} |x_I(n)|^2\right]^{1/2}$
- ▶ Define the energy as the norm squared $\Rightarrow ||x||^2 := \sum_{n=0}^{N-1} |x(n)|^2 = \sum_{n=0}^{N-1} |x_R(n)|^2 + \sum_{n=0}^{N-1} |x_I(n)|^2$
- ▶ The energy of x is the inner product of x with itself $\Rightarrow ||x||^2 = \langle x, x \rangle$
- ▶ Recall that for complex numbers we have $x(n)x^*(n) = |x_R(n)|^2 + |x_I(n)|^2 = |x(n)|^2$

Cauchy Schwarz inequality

▶ Inner product can't exceed the product of the norms $\Rightarrow -\|x\| \|y\| \le \langle x, y \rangle \le \|x\| \|y\|$

▶ Inner product squared can't exceed product of energies $\Rightarrow \langle x, y \rangle^2 \leq ||x||^2 ||y||^2$

▶ If you prefer explicit expressions $\Rightarrow \sum_{n=0}^{N-1} x(n)y^*(n) \le \left[\sum_{n=0}^{N-1} |x(n)|^2\right] \left[\sum_{n=0}^{N-1} |y(n)|^2\right]$

ightharpoonup The equalities hold if and only if the signals (vectors) x and y are collinear (aligned)

Example: Square pulse of unit energy

▶ The unit energy square pulse is the signal $\sqcap_M(n)$ that takes values

$$\Box_{M}(n) = \frac{1}{\sqrt{M}} \quad \text{if } 0 \le n < M$$
 $\Box_{M}(n) = 0 \quad \text{if } M \le n$

► To compute energy of the pulse we just evaluate the definition

$$\| \sqcap_{M} \|^{2} := \sum_{n=0}^{N-1} | \sqcap_{M} (n) |^{2} = \sum_{n=0}^{M-1} | (1/\sqrt{M}) |^{2} = \frac{M}{M} = 1$$

ightharpoonup As name indicates, the unit energy square pulse has unit energy. If pulse height is 1, energy is M.

Shifted pulses

▶ Shift pulse by modifying argument $\Rightarrow \sqcap_M(n-K) \Rightarrow$ Pulse is now centered at K

▶ If the pulse support is disjoint $(K \ge M)$, the inner product of two pulses is zero

$$\langle \sqcap_M(n),\sqcap_M(n-K)\rangle := \sum_{n=0}^{N-1} \sqcap_M(n)\sqcap_M(n-K) = 0$$

▶ Pulese are orthogonal ⇒ They are "unrelated." One pulse does not predict the other

Overlapping shifted pulses

If K < M the pulses overlap. They overlap between n = K and n = M - 1. Thus, the inner product is

$$\langle \sqcap_{M}(n), \sqcap_{M}(n-K) \rangle := \sum_{n=0}^{N-1} \sqcap_{M}(n) \sqcap_{M}(n-K) = \sum_{n=K}^{M-1} \left(1/\sqrt{M} \right) \left(1/\sqrt{M} \right) = \frac{M-K}{M} = 1 - \frac{K}{M}$$

ightharpoonup Inner product proportional to relative overlap \Rightarrow How much the pulses are "related" to each other

Discrete complex exponentials

Discrete signals

Inner products and energy

Discrete complex exponentials

Orthogonality of Discrete Complex Exponentials

Appendix: Plots of Discrete Complex Exponentials

Discrete Complex exponentials

ightharpoonup Discrete complex exponential of discrete frequency k and duration N

$$e_{kN}(n) = \frac{1}{\sqrt{N}} e^{j2\pi k n/N} = \frac{1}{\sqrt{N}} \exp(j2\pi k n/N)$$

- ► The complex exponential function is $\Rightarrow e^{j2\pi kn/N} = \cos(2\pi kn/N) + j\sin(2\pi kn/N)$
- ► The Real part is a discrete cosine. The imaginary part a discrete sine. An oscillation

Signal and Information Processing

Properties

[P1] For frequency k = 0, the exponential $e_{kN}(n) = e_{0N}(n)$ is a constant $\Rightarrow e_{kN}(n) = \frac{1}{\sqrt{N}} = \frac{1}{\sqrt{N}}$

[P2] For frequency k = N, the exponential $e_{kN}(n) = e_{NN}(n)$ is a constant. True for any multiple $k \in N$

$$e_{NN}(n) = \frac{e^{j2\pi Nn/N}}{\sqrt{N}} = \frac{(e^{j2\pi})^n}{\sqrt{N}} = \frac{(1)^n}{\sqrt{N}} = \frac{1}{\sqrt{N}}$$

[P3] For $k = \frac{N}{2}$, the exponential $e_{kN}(n) = e_{N/2N}(n) = (-1)^n/\sqrt{N}$. Fastest possible oscillation with N samples

$$e_{N/2N}(n) = \frac{e^{j2\pi(N/2)n/N}}{\sqrt{N}} = \frac{(e^{j\pi})^n}{\sqrt{N}} = \frac{(-1)^n}{\sqrt{N}}$$

That $e^{j2\pi}=1$ follows from $e^{j\pi}=-1$. Which follows from $e^{j\pi}+1=0$. Relates five most important constants in mathematics.

Equivalent frequencies

Theorem

If the frequency difference is k-l=N the signals $e_{kN}(n)$ and $e_{lN}(n)$ coincide for all n, i.e.,

$$e_{kN}(n) = \frac{e^{j2\pi kn/N}}{\sqrt{N}} = \frac{e^{j2\pi ln/N}}{\sqrt{N}} = e_{lN}(n)$$

ightharpoonup Exponentials with frequencies k and l are equivalent if the frequency difference is k-l=N

Proof of equivalence

Proof.

▶ We prove by showing that the ratio $e_{kN}(n)/e_{lN}(n) = 1$. Combine exponents

$$\frac{e_{kN}(n)}{e_{lN}(n)} = \frac{e^{j2\pi kn/N}}{e^{j2\pi ln/N}} = e^{j2\pi (k-l)n/N}$$

ightharpoonup By hypothesis we have that k-l=N. Therefore, the latter simplifies to

$$\frac{e_{kN}(n)}{e_{lN}(n)} = e^{j2\pi \frac{N}{n/N}} = \left[e^{j2\pi}\right]^n = 1^n = 1$$

Canonical frequency sets

► Canonical set \Rightarrow Suffice to look at N consecutive frequencies, e.g., k = 0, 1, ..., N - 1

$$-N$$
, $-N+1$, ..., -1
0, 1, ..., $N-1$
 N , $N+1$, ..., $2N-1$

ightharpoonup Another canonical choice is to make k=0 a center frequency

$$-N/2+1$$
, ..., -1 , 0, ..., $N/2$
 $N/2+1$, ..., $N-1$, N , ..., $3N/2$

- ▶ With N even (as usual) we use N/2 positive frequencies and N/2 1 negative frequencies
- ► From one canonical set to the other ⇒ Chop and shift

Conjugate frequencies

Theorem

Opposite frequencies k and -k yield conjugate signals: $e_{-kN} = e_{kN}^*(n)$

Proof.

▶ Just use the definitions to write the chain of equalities

$$e_{-kN}(n) = \frac{e^{j2\pi(-k)n/N}}{\sqrt{N}} = \frac{e^{-j2\pi kn/N}}{\sqrt{N}} = \left[\frac{e^{j2\pi kn/N}}{\sqrt{N}}\right]^* = e_{kN}^*(n)$$

ightharpoonup Opposite imaginary part

⇒ The cosine is the same, the sine changes sign

Physical meaning

▶ Of *N* canonical frequencies, only $\frac{N}{2} + 1$ are distinct. No more than $\frac{N}{2}$ oscillations in *N* samples

0, 1, ...,
$$N/2 - 1$$
 $N/2$ -1 , ..., $-N/2 + 1$ $N-1$, ..., $N/2 + 1$

ightharpoonup The frequencies 0 and N/2 do not have a conjugate counterpart. All Others do

- ► The canonical set $-N/2+1,\ldots,-1,0,1,\ldots,N/2$ is easier to interpret
 - \Rightarrow Positive frequencies ranging from 0 to $N/2 \leftrightarrow f_s/2$ have physical meaning
 - ⇒ The negative frequencies are conjugates of the corresponding positive frequencies

Orthogonality of Discrete Complex Exponentials

Discrete signals

Inner products and energy

Discrete complex exponentials

Orthogonality of Discrete Complex Exponentials

Appendix: Plots of Discrete Complex Exponentials

Orthogonality

Theorem

Complex exponentials with nonequivalent frequencies are orthogonal. I.e.

$$\langle e_{kN}, e_{lN} \rangle = 0$$

when k - I < N. E.g., when k = 0, ..., N - 1, or k = -N/2 + 1, ..., N/2.

- Signals of canonical sets are "unrelated." Different rates of change
- Also note that the energy is $\|e_{kN}\|^2 = \langle e_{kN}, e_{kN} \rangle = 1$
- ightharpoonup Exponentials with frequencies k = 0, 1, ..., N 1 are orthonormal

$$\langle e_{kN}, e_{lN} \rangle = \delta(l-k)$$

► They are an orthonormal basis of signal space with *N* samples

Proof of orthogonality

Proof.

▶ Use definitions of inner product and discrete complex exponential to write

$$\langle e_{kN}, e_{lN} \rangle = \sum_{n=0}^{N-1} e_{kN}(n) e_{lN}^*(n) = \sum_{n=0}^{N-1} \frac{e^{j2\pi kn/N}}{\sqrt{N}} \frac{e^{-j2\pi ln/N}}{\sqrt{N}}$$

Regroup terms to write as geometric series

$$\langle e_{kN}, e_{lN} \rangle = \frac{1}{N} \sum_{n=0}^{N-1} e^{j2\pi(k-l)n/N} = \frac{1}{N} \sum_{n=0}^{N-1} \left[e^{j2\pi(k-l)/N} \right]^n$$

• Geometric series with basis a sums to $\sum_{n=0}^{N-1} a^n = (1-a^N)/(1-a)$. Thus,

$$\langle e_{kN}, e_{lN} \rangle = \frac{1}{N} \frac{1 - \left[e^{j2\pi(k-l)/N} \right]^N}{1 - e^{j2\pi(k-l)/N}} = \frac{1}{N} \frac{1 - 1}{1 - e^{j2\pi(k-l)/N}} = 0$$

► Completed proof by noting $\left[e^{j2\pi(k-l)/N}\right]^N = e^{j2\pi(k-l)} = \left[e^{j2\pi}\right]^{(k-l)} = 1$

Appendix: Plots of Discrete Complex Exponentials

Discrete signals

Inner products and energy

Discrete complex exponentials

Orthogonality of Discrete Complex Exponentials

Appendix: Plots of Discrete Complex Exponentials

Complex exponentials for N=2

▶ When signal durations is N = 2 only frequencies k = 0 and k = 1 represent distinct signals

► The signals are real, they have no imaginary parts

Complex exponentials for N = 4

▶ When N = 4, k = 0, 1, 2 are distinct. k = -1 is conjugate of k = 1

lacktriangle Can also use k=3 as canonical instead of k=-1 (conjugate of k=1)

Complex exponentials for N = 8

Frequencies from k = 1 to k = 4 represent distinct signals

Frequencies k = -1 to k = -3 are conjugate signals of k = 1 to k = 3

► All other frequencies represent one of the signals above

Complex exponentials for N = 16

▶ There are 9 distinct frequencies and 7 conjugates (not shown). Some look like actual oscillations

