3. ZASTOSOWANIA GEOMETRYCZNE CAŁEK

1. Obliczyć pola powierzchni figur ograniczonych krzywymi (wykonać rysunki):

(a)
$$y = \operatorname{tg} x$$
, $y = \frac{2}{3} \cos x$, $x = 0$, (b) $y = \arcsin x$, $y = \arccos x$, $y = 0$, (c) $y = |\log x|$, $y = 0$, $x = 0, 1$, $x = 10$.

2. Niech $f: [\alpha, \beta] \to \mathbb{R}_+ \cup \{0\}$ będzie funkcją ciągłą i niech $\beta - \alpha \leq 2\pi$. Udowodnić, że pole figury ograniczonej krzywą o równaniu $r = f(\theta)$ (we współrzędnych biegunowych) oraz początkowym i końcowym promieniem można wyrazić wzorem:

$$P = \frac{1}{2} \int_{\alpha}^{\beta} (f(\theta))^2 d\theta.$$

- 3. Naszkicować krzywą daną we współrzędnych biegunowych równaniem $r = \cos 2\theta$, a następnie obliczyć pole figury ograniczonej tą krzywą.
- 4. Obliczyć długości łuków krzywych danych równaniami:

(a)
$$y = \ln \cos x, \ x \in \left[0, \frac{\pi}{3}\right],$$
 (b) $y = \ln \frac{e^x + 1}{e^x - 1}, \ x \in [1, 2].$

5. Obliczyć objętość bryły powstałej przez obrót wokół osi OX obszaru ograniczonego krzywymi (wykonać rysunki):

(a)
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, $x = a + h$, gdzie $a, b, h > 0$, (b) $y = (x^2 + 1)^{-1}$, $x = 0$, $x = 1$, $y = 0$.

6. Soczewka wypukła jest ograniczona dwiema współosiowymi przystającymi paraboloidami, jej średnica (w płaszczyźnie przecięcia paraboloid) jest równa D, a jej grubość (mierzona wzdłuż wspólnej osi paraboloid) wynosi h. Obliczyć objętość soczewki.