1과목 : 가스유체역학

2 36.9

287 J/kg·K 이다.)

① 23.9

0.40.5	@ F0.0
3 42.5	④ 52.6
2. 밀도 1.2 kg/m³ 의 기체가 직경 압력손실은 약 몇 Pa 인가?	10cm인 관속을 20m/s 로 흐르고 있다. 관의 마찰걔수 0.02 라면 1m당
① 24	② 36
3 48	④ 54
3. 반지름 200mm, 높이 250mm인	! 실린더 내에 20kg의 유체가 차 있다. 유체의 밀도는 약 몇 kg/m³인가?
① 6.366	② 63.66
3 636.6	4 6366
4. 물이 내경 2cm인 원형관을 평 유속은?	군 유속 5cm/s로 흐르고 있다. 같은 유량이 내경 1cm인 관을 흐르면 평균
① 1/2만큼 감소	② 2배로 증가
3 4배로 증가	④ 변함없다.
	산기를 통해 흐를 때 속도와 압력은 어떻게 되는가?(단, Ma는 마하수이다.)
유체흐름방향 기기기 Ma > 1	Marine Ma

1. 200℃의 공기가 흐를 때 정압이 200 kPa, 동압이 1 kPa 이면 공기의 속도(m/s)는? (단, 공기의 기체상수는

- 6. 수직 충격파는 다음 중 어떤 과정에 가장 가까운가?
 - ❶ 비가역 과정

❶ 속도증가, 압력감소

③ 속도감소, 압력불변

② 등엔트로피 과정

③ 가역 과정

④ 등압 및 등엔탈피 과정

② 속도감소, 압력증가

④ 속도불변, 압력증가

- 7. 왕복 펌프 중 산, 알칼리액을 수송하는데 사용되는 펌프는?
 - ❶ 격막 펌프

② 기어 펌프

③ 플렌지 펌프

- ④ 피스톤 펌프
- 8. 다음 중 대기압을 측정하는 계기는?
 - ❶ 수은기압계

② 오리피스미터

③ 로타미터

④ 둑(weir)

9. 체적효율은 η_{ν} , 피스톤 단면적을 $A[m^2]$, 행정을 S[m], 회전수를 n[rpm] 이라 할 때 실제 송출량 Q[m³/s]를 구하는 식은?

$$Q = \frac{ASn}{60\eta_{v}}$$

$$Q = \eta_v \frac{ASn}{60}$$

$$Q = \frac{AS\pi n}{60\eta_v}$$

$$Q = \eta_v \frac{AS\pi n}{60}$$

- 10. 아음속 등엔트로피 흐름의 확대 노즐에서의 변화로 옳은 것은?
 - ① 압력 및 밀도는 감소한다.
 - ② 속도 및 밀도는 증가한다.
 - ③ 속도는 증가하고, 밀도는 감소한다.
 - 4 압력은 증가하고, 속드는 감소한다.
- 11. 다음 그림에서와 같이 관속으로 물이 흐르고 있다. A점과 B 점에서의 유속은 몇 m/s인가?

- ① $u_A = 2.045$, $u_B = 1.022$ ② $u_A = 2.045$, $u_B = 0.511$
- ③ $u_A = 7.919$, $u_B = 1.980$ ④ $u_A = 3.960$, $u_B = 1.980$
- 12. 안지름 80cm인 관 속을 동점성계수 4stokes인 유체가 4m/s의 평균속도로 흐른다. 이 때 흐름의 종류는?
 - ① 층류

- ② 난류
- ③ 플러그 흐름

- ④ 천이영역 흐름
- 13. 압축률이 5×10⁻⁵ cm²/kgf인 물 속에서의 음속은 몇 m/s 인가?
 - **1** 1400

2 1500

3 1600

- (4) 1700
- 14. 다음 중 기체수송에 사용되는 기계로 가장 거리가 먼 것은?
 - ① 팬
- ② 송풍기

	③ 압축기	④ 펌프
15.	원관 중의 흐름이 층류일 경우 유 다는 법칙은?	량이 반경의 4제곱과 압력기울기 (P1-P2)/L에 비례하고 점도에 반비례한
	① Hagen-Poiseuolle 법칙	② Reynolds 법칙
	③ Newton 법칙	④ Fourier 법칙
16.	프란틀의 혼합길이(Prandtl mixing ① 난류 유동에 관련된다. ② 전단응력과 밀접한 관련이 있던 ③ 벽면에서는 0 이다. 1 항상 일정한 값을 갖는다.	length)에 대한 설명으로 옳지 않은 것은? 다.
17.		다 수은관을 설치하고, A지점과 B지점 사이의 수은 높이 차(h)를 측정하 B점 사이의 압력차는 약 몇 kPa 인가? (단, 수은의 비중은 13.6 이다.)
		h = 0.7 m
	① 8.64	② 9.33
	3 86.4	④ 93.3
18.	실험실의 풍동에서 20℃의 공기로 비열비는 1.4 이다.)	실험을 할 때 마하각이 30°이면 풍속은 몇 m/s가 되는가?(단, 공기의
	① 278	② 364
	③ 512	1 686
19.	SI 기본 단위에 해당하지 않는 것은	≘?
	① kg	② m
	3 W	4 K
20.	안지름이 20cm의 관에 평균속도	20m/s 로 물이 흐르고 있다. 이때 유량은 얼마인가?
	1 0.628 m ³ /s	② 6.280 m³/s
	③ 2.512 m ³ /s	④ 0.251 m ³ /s
		2과목 : 연소공학
21.	기체연료를 미리 공기와 혼합시켜 연소방식은?	놓고, 점화해서 연소하는 것으로 연소실 부하율을 높게 얻을 수 있는
	① 확산연소 ②예혼합	연소
	③ 증발연소	④ 분해연소

22. 기체연료의 연소형태에 해당하는 것은?

	① 확산연소, 증발연소	② 예혼합연소, 증발연소
	3 예혼합연소, 확산연소	④ 예혼합연소, 분해연소
23.	저위발열량 93766 kJ/Sm³의 C₃Ha 기가스의 평균비열은 1.653 kJ/Sn	을 공기비 1.2로 연소시킬 때의 이론연소온도는 약 몇 K 인가?(단, 배 ^{3.} K 이고 다른 조건은 무시한다.)
	1735 2 1856	
	3 1919	4 2083
24.	확산연소에 대한 설명으로 옳지 않	t은 것은?
	① 조작이 용이하다. ② 연소	부하율이 크다.
	③ 역화의 위험성이 적다. ④	화염의 안정범위가 넓다.
25.	공기비가 클 경우 연소에 미치는	영향이 아닌 것은?
	① 연소실 온도가 낮아진다.	
	② 배기가스에 의한 열손실이 커	^집 다.
	③ 연소가스 중의 질소산화물이	증가한다.
	4 불완전연소에 의한 매연의 발생	뱅이 증가한다.
26.		운전자의 실수를 조합을 연역적으로 분석하는 정량적인 위험성평가 방
	법은?	
	① 결함수 분석법(FTA)	
	② 사건수 분석법(ETA)	
	③ 위험과 운전 분석법(HAZOP)	
	④ 작업자 실수 분석법(HEA)	
27.	분진폭발의 위험성을 방지하기 위	
	① 환기장치는 공동 집진기를 사는	
	② 분진이 발생하는 곳에 습식 스	
	③ 분진 취급 공정을 습식으로 운	
	④ 정기적으로 분진 퇴적물을 제	서한나.
28.	달톤(Dalton)의 분압법칙에 대하여	옳게 표한한 것은?
	① 혼합기체의 온도는 일정하다.	
	② 혼합기체의 체적은 각 성분의	
	③ 혼합기체의 기체상수는 각 성	
	② 혼합기체의 압력은 각 성분(기	제)의 문압의 압과 같다.
29.		성을 때 최대 연소속도가 가장 빠른 기체연료는?
	① 아세틸렌	② 메틸알코올
	③ 톨루엔	④ 등유
30.	프로판가스 1m³를 완전 연소시키; 함유한다.)	=데 필요한 이론 공기량은 약 몇 m ³ 인가?(단, 산소는 공기 중에 20%
	① 10	② 15

31. 제1종 영구기관을 바르게 표현한 것은?

- ❶ 외부로부터 에너지원을 공급받지 않고 영구히 일을 할 수 있는 기관
- ② 공급된 에너지보다 더 많은 에너지를 낼 수 있는 기관
- ③ 지금까지 개발된 기관 중에서 효율이 가장 좋은 기관
- ④ 열역학 제2법칙에 위배되는 기관
- 32. 프로판가스의 연소과정에서 발생한 열량은 50232 MJ/kg 이었다. 연소 시 발생한 수증기의 잠열이 8372 MJ/kg 이면 프로판가스의 저발열량 기준 연소효율은 약 몇 % 인가? (단, 연소에 사용된 프로판가스의 저 발열량은 46046 MJ/kg 이다.)
 - ① 87

2 91

3 93

4 96

33. 난류 예혼합화염과 층류 예혼합화염에 대한 특징을 설명한 것으로 옳지 않은 것은?

- ① 난류 예혼합화염의 연소속도는 층류 예혼합화염의 수배 내지 수십배에 달한다.
- ② 난류 예혼합화염의 두께는 수 밀리미터에서 수십 밀리미터에 달하는 경우가 있다.
- 3 난류 예혼합화염은 층류 예혼합화염에 비하여 화염의 휘도가 낮다.
- ④ 난류 예혼합화염의 경우 그 배후에 다량의 미연소분이 잔존한다.

34. 인화(Pilot ignition)에 대한 설명으로 틀린 것은?

- ① 점화원이 있는 조건하에서 점화되어 연소를 시작하는 것이다.
- 2 물체가 착화원 없이 불이 붙어 연소하는 것을 말한다.
- ③ 연소를 시작하는 가장 낮은 온도를 인화점(flash point)이라 한다.
- ④ 인화점은 공기 중에서 가연성 액체의 액면 가까이 생기는 가연성 증기가 작은 불꽃에 의하여 연소될 때의 가연성 물체의 최저 온도이다.
- 35. 오토 사이클의 열효율을 나타낸 식은? (단, ղ은 열효율, r는 압축비, k는 비열비이다.)

$$\eta = 1 - (\frac{1}{r})^{k+1}$$

 $\eta = 1$

36. Fire ball에 의한 피해로 가장 거리가 먼 것은?

① 공기팽창에 의한 피해

② 탱크파열에 의한 피해

- ③ 폭풍압에 의한 피해
- ④ 복사열에 의한 피해

37. 다음 중 차원이 같은 것끼리 나열한 것은?

② 열전도율	Ϣ 점성계수	☞ 저항계수
@ 확산계수	⑩ 열전달률	♨ 동점성계수

① ②, U

② (P), (D)

3 2, H

- 4 O, H
- 38. C₃He을 공기와 흔합하여 완전연소시킬 때 흔합기체 중 C₃He의 최대농도는 약 얼마인가? (단, 공기 중 산소는 20.9% 이다.)
 - ① 3 vol%
- 2 4 vol%
- ③ 5 vol%

- 4 6 vol%
- 39. 최대안전틈새의 범위가 가장 적은 가연성가스의 폭발 등급은?
 - ① A

② B

3 C

- 4 D
- 40. 분자량이 30인 어떤 가스의 정압비열이 0.75 kJ/kg·K 이라고 가정할 때 이 가스의 비열비(k)는 약 얼마인가?
 - ① 0.28

② 0.47

3 1.59

4 2.38

3과목 : 가스설비

41. 다음 그림은 어떤 종류의 압축기인가?

- ① 가동날개식
- 2루트식
- ③ 플런저식
- ④ 나사식

42. 수소에 대한 설명으로 틀린 것은?

- ① 암모니아 합성의 원료로 사용된다.
- ② 열전달율이 적고 열에 불안정하다.
- ③ 염소와의 혼합 기체에 일광을 쬐면 폭발한다.
- ④ 모든 가스 중 가장 가벼워 확산속도도 가장 빠르다.
- 43. 가스조정기 중 2단 감압식 조정기의 장점이 아닌 것은?

- 조정기의 개수가 적어도 된다.
- ② 연소기구에 적합한 압력으로 공급할 수 있다.
- ③ 배관의 관경을 비교적 작게 할 수 있다.
- ④ 입상배관에 의한 압력강하를 보정할 수 있다.
- 44. 다음 수치를 가진 고압가스용 용접용기의 동판 두께는 약 몇 mm 인가?

- 최고충전압력 : 15 MPa - 동체의 내경 : 200 mm

- 재료의 허용응력 : 150 N/mm²

- 용접효율 : 1,00

- 부식여유 두께 : 고려하지 않음

① 6.6

2 8.6

3 10.6

4 12.6

- 45. 인장시험 방법에 해당하는 것은?
 - ❶ 올센법

② 샤르피법

③ 아이조드법

- ④ 파우더법
- 46. 대기압에서 1.5 MPa·g 까지 2단 압축기로 압축하는 경우 압축동력을 최소로 하기 위해서는 중간압력을 얼마로 하는 것이 좋은가?
 - ① 0.2 MPa·g ② 0.3 MPa·g
- - ③ 0.5 MPa·g
- 4 0.75 MPa·g
- 47. 가연성 가스로서 폭발범위가 넓은 것부터 좁은 것의 순으로 바르게 나열한 것은?
 - ① 아세틸렌-수소-일산화탄소-산화에틸렌
 - ② 아세탈렌-산화에틸렌-수소-일산화탄소
 - ③ 아세틸렌-수소-산화에틸렌-일산화탄소
 - ④ 아세릴렌-일산화탄소-수소-산화에틸렌
- 48. 접촉분해 프로세스에서 다음 반응식에 의해 카본이 생성될 때 카본생성을 방지하는 방법은?

 $CH_4 \rightleftharpoons 2H_2 + C$

- ❶ 반응 온도를 낮게 반응 압력을 높게 한다.
- ② 반응 온도를 높게 반응 압력을 낮게 한다.
- ③ 반응 온도와 반응 압력을 모두 낮게 한다.
- ④ 반응 온도와 반응 압력을 모두 높게 한다.
- 49. 왕복식 압축기의 특징이 아닌 것은?
 - ① 용적형이다.
 - ② 압축효율이 높다.
 - ③ 용량조정의 범위가 넓다.
 - 4 점검이 쉽고 설치면적이 적다.

50.	금속	;재료에 대한 설명으로 옳은 것	으로만 짝지어진 것은?
	(염소는 상온에서 건조하여다.	E 연강을 침식시킨
	(다. D 고온, 고압의 수소는 강에 한다.	대하여 탈탄작용을
	(한다. B) 암모니아는 동, 동합금에 [이 있다.	H하며 심한 부식성
	1 (3	② ¬, □
	8	©, ©	♠ ¬, □, □
51.	압력	l용기에 해당하는 것은?	
	0 3	설계압력(MPa)과 내용적(m³)을	곱한 수치가 0.05인 용기
	2	완충기 및 완충장치에 속하는	용기가 자동차에어백용 가스충전용기
	3	압력에 관계없이 안지름, 폭, 길	일이 또는 단면의 지름이 100mm인 용기
	4	펌프, 압축장치 및 축압기의 본	체와 그 본체와 분리되지 아니하는 일체형 용기
52.	천연	!가스에 첨가하는 부취제의 성분	분으로 적합하지 않은 것은?
	1 7	THT(Tetra Hydro Thiophene)	
② .	ТВМ((Tertiary Butyl Mercaptan)	
	3 [DMS(Dimethyl Sulfide)	
1	OMD	S(Dimethyl Disulfide)	
53.		·매설물 탐사방법 중 주로 가스 !되는 원리를 이용한 탐사법은?	배관을 탐사하는 기법으로 전도체에 전기가 흐르면 도체 주변에 자장이
	0 7	전자유도탐사법	② 레이다탐사법
	3	음파탐사법	④ 전기탐사법
54.	고압	가스의 상태에 따른 분류가 아	닌 것은?
	1) {	압축가스	② 용해가스
	3	액화가스	④ 혼합가스
55.	LP기	· - - - - - - - - - - - - - - - - - - -	l를 사용할 경우의 장점에 해당되지 않는 것은?
	1) (잔액이 거의 없어질 때까지 소!	비된다.
	2 8	용기교환주기의 폭을 좁힐 수 :	있어, 가스발생량이 적어진다.
	3	전체 용기 수량이 수동교체식의	l 경우보다 적어도 된다.
	4	가스소비시의 압력변동이 적다.	

57. 고압가스 용기의 재료에 사용되는 강의 성분 중 탄소, 인, 황의 함유량은 제한되어 있다. 이에 대한 설명 으로 옳은 것은?

56. 용해 아세틸렌가스 정제장치는 어떤 가스를 주로 흡수, 제거하기 위하여 설치하는가?

2 H₂S, PH₃

4 NH₃, COCl₂

① CO₂, SO₂

3 H₂O, SiH₄

	❶ 황은 적열취성이 원인이 된다.				
	② 인(P)은 될수록 많은	은 것이 좋다.			
	③ 탄소량은 증가하면	인장강도와 충격치가 감소한다.			
	④ 탄소량이 많으면 인	장강도는 감소하고 충격치는 증가한다.			
58.	액화 프로판 15L를 대기 0.5 kg/L 이다.)	기 중에 방출하였을 경우 약 몇 L의 기체가 되는가?(단, 액화 프로판의 액 밀도는			
	① 300 L	② 750 L			
	③ 1500 L	● 3800 L			
59.	LNG Bunkering이란?				
	① LNG를 지하시설에	저장하는 기술 및 설비			
	② LNG 운반선에서 LN	NG인수기지로 급유하는 기술 및 설비			
	③ LNG 인수기지에서	가스홀더로 이송하는 기술 및 설비			
	4 LNG를 해상 선박에	급유하는 기술 및 설비			
60.	염소가스(Cl ₂) 고압용기	의 지름을 4배, 재료의 강도를 2배로 하면 용기의 두께는 얼마가 되는가?			
	① 0.5	② 1 HH			
	3 2번H	④ 4 HH			
		4과목 : 가스안전관리			
61.	가연성이면서 독성가스	가 아닌 것은?			
61.	가연성이면서 독성가스 ① 염화메탄	가 아닌 것은? ②산화프로필렌			
61.					
	 연화메탄 벤젠 	②산화프로필렌 ④ 시안화수소 의을 운반할 때 보호구를 차량의 승무원수에 상당한 수량을 휴대하여야 한다. 다음			
	 연화메탄 벤젠 독성가스인 염소 500kg 	②산화프로필렌 ④ 시안화수소 의을 운반할 때 보호구를 차량의 승무원수에 상당한 수량을 휴대하여야 한다. 다음			
	 연화메탄 벤젠 독성가스인 염소 500kg 휴대하지 않아도 되 	②산화프로필렌 ④ 시안화수소 의을 운반할 때 보호구를 차량의 승무원수에 상당한 수량을 휴대하여야 한다. 다음 는 보호구는?			
62.	① 염화메탄③ 벤젠독성가스인 염소 500kg중 휴대하지 않아도 되① 방독마스크③ 보호의	②산화프로필렌 ④ 시안화수소 의을 운반할 때 보호구를 차량의 승무원수에 상당한 수량을 휴대하여야 한다. 다음 는 보호구는? ② 공기호흡기			
62.	① 영화메탄 ③ 벤젠 독성가스인 영소 500kg 중 휴대하지 않아도 되 ① 방독마스크 ③ 보호의 액화석유가스 저장탱크	②산화프로필렌 ④ 시안화수소 G을 운반할 때 보호구를 차량의 승무원수에 상당한 수량을 휴대하여야 한다. 다음 는 보호구는? ② 공기호흡기 ④ 보호장갑			
62.	① 염화메탄 ② 벤젠 독성가스인 염소 500kg 중 휴대하지 않아도 되 ① 방독마스크 ③ 보호의 액화석유가스 저장탱크	②산화프로필렌 ④ 시안화수소 의을 운반할 때 보호구를 차량의 승무원수에 상당한 수량을 휴대하여야 한다. 다음는 보호구는? ② 공기호흡기 ④ 보호장갑 지하 설치시의 시설기준으로 틀린 것은?			
62.	① 염화메탄 ② 벤젠 독성가스인 염소 500kg 중 휴대하지 않아도 되 ① 방독마스크 ③ 보호의 액화석유가스 저장탱크 ① 저장탱크 주위 빈 등 ② 저장탱크를 2개 이성	②산화프로필렌 ④ 시안화수소 의을 운반할 때 보호구를 차량의 승무원수에 상당한 수량을 휴대하여야 한다. 다음는 보호구는? ② 공기호흡기 ④ 보호장갑 지하 설치시의 시설기준으로 틀린 것은?			
62.	1 영화메탄 3 벤젠 독성가스인 영소 500kg 중 휴대하지 않아도 되 1 방독마스크 3 보호의 액화석유가스 저장탱크 1 저장탱크 주위 빈 등 2 저장탱크를 2개 이성 3 점검구는 저장능력(②산화프로필렌 ④ 시안화수소 의을 운반할 때 보호구를 차량의 승무원수에 상당한 수량을 휴대하여야 한다. 다음는 보호구는? ② 공기호흡기 ④ 보호장갑 지하 설치시의 시설기준으로 틀린 것은? 공간에는 세립분을 포함한 마른모래를 채운다. 상 인접하여 설치하는 경우에는 상호간에 1m 이상의 거리를 유지한다.			
62. 63.	1 영화메탄 3 벤젠 독성가스인 영소 500kg 중 휴대하지 않아도 되 1 방독마스크 3 보호의 액화석유가스 저장탱크 1 저장탱크 주위 빈 경 2 저장탱크를 2개 이경 3 점검구는 저장능력(4) 검지관은 직경 40A	②산화프로필렌 ④ 시안화수소 의을 운반할 때 보호구를 차량의 승무원수에 상당한 수량을 휴대하여야 한다. 다음는 보호구는? ② 공기호흡기 ④ 보호장갑 지하 설치시의 시설기준으로 틀린 것은? 공간에는 세립분을 포함한 마른모래를 채운다. 상 인접하여 설치하는 경우에는 상호간에 1m 이상의 거리를 유지한다. 이 20톤 초과인 경우에는 2개소로 한다. 이상으로 4개소 이상 설치한다.			
62.	① 영화메탄 ③ 벤젠 독성가스인 영소 500kg 중 휴대하지 않아도 되 ① 방독마스크 ③ 보호의 액화석유가스 저장탱크 ① 저장탱크 주위 빈 등 ② 저장탱크를 2개 이성 ③ 점검구는 저장능력() ④ 검지관은 직경 40A 가스난방기는 상용압력	②산화프로필렌 ④ 시안화수소 의을 운반할 때 보호구를 차량의 승무원수에 상당한 수량을 휴대하여야 한다. 다음는 보호구는? ② 공기호흡기 ④ 보호장갑 지하 설치시의 시설기준으로 틀린 것은? 공간에는 세립분을 포함한 마른모래를 채운다. 상 인접하여 설치하는 경우에는 상호간에 1m 이상의 거리를 유지한다. 이 20톤 초과인 경우에는 2개소로 한다. 이상으로 4개소 이상 설치한다.			
62.	① 영화메탄 ③ 벤젠 독성가스인 영소 500kg 중 휴대하지 않아도 되 ① 방독마스크 ③ 보호의 액화석유가스 저장탱크 ① 저장탱크 주위 빈 등 ② 저장탱크를 2개 이성 ③ 점검구는 저장능력() ④ 검지관은 직경 40A 가스난방기는 상용압력 얼마 이하가 되어야 하	②산화프로필렌 ④ 시안화수소 의을 운반할 때 보호구를 차량의 승무원수에 상당한 수량을 휴대하여야 한다. 다음는 보호구는? ② 공기호흡기 ④ 보호장갑 지하 설치시의 시설기준으로 틀린 것은? 공간에는 세립분을 포함한 마른모래를 채운다. 상 인접하여 설치하는 경우에는 상호간에 1m 이상의 거리를 유지한다. 이 20톤 초과인 경우에는 2개소로 한다. 이상으로 4개소 이상 설치한다. 의 1.5배 이상의 압력으로 실시하는 기밀시험에서 가스차단밸브를 통한 누출량이는가?			
62.63.64.	① 영화메탄 ③ 벤젠 독성가스인 영소 500kg 중 휴대하지 않아도 되 ① 방독마스크 ③ 보호의 액화석유가스 저장탱크 ① 저장탱크 주위 빈 등 ② 저장탱크를 2개 이성 ③ 점검구는 저장능력(○) ④ 검지관은 직경 40A 가스난방기는 상용압력 얼마 이하가 되어야 하 ① 30 mL/h ③ 70 mL/h	②산화프로필렌 ④ 시안화수소 의을 운반할 때 보호구를 차량의 승무원수에 상당한 수량을 휴대하여야 한다. 다음는 보호구는? ② 공기호흡기 ④ 보호장갑 지하 설치시의 시설기준으로 틀린 것은? 공간에는 세립분을 포함한 마른모래를 채운다. 상 인접하여 설치하는 경우에는 상호간에 1m 이상의 거리를 유지한다. 이 20톤 초과인 경우에는 2개소로 한다. 이상으로 4개소 이상 설치한다. 의 1.5배 이상의 압력으로 실시하는 기밀시험에서 가스차단밸브를 통한 누출량이는가? ② 50 mL/h			
62.63.64.	① 영화메탄 ③ 벤젠 독성가스인 영소 500kg 중 휴대하지 않아도 되 ① 방독마스크 ③ 보호의 액화석유가스 저장탱크 ① 저장탱크 주위 빈 등 ② 저장탱크를 2개 이성 ③ 점검구는 저장능력(○) ④ 검지관은 직경 40A 가스난방기는 상용압력 얼마 이하가 되어야 하 ① 30 mL/h ③ 70 mL/h	● 산화프로필렌 ④ 시안화수소 ② 운반할 때 보호구를 차량의 승무원수에 상당한 수량을 휴대하여야 한다. 다음는 보호구는? ② 공기호흡기 ④ 보호장갑 지하 설치시의 시설기준으로 틀린 것은? 공간에는 세립분을 포함한 마른모래를 채운다. 상 인접하여 설치하는 경우에는 상호간에 1m 이상의 거리를 유지한다. 이 20톤 초과인 경우에는 2개소로 한다. 이상으로 4개소 이상 설치한다. 의 1.5배 이상의 압력으로 실시하는 기밀시험에서 가스차단밸브를 통한 누출량이는가? ② 50 mL/h ④ 90 mL/h			

③ 유량감시장치	◑ 농도감시장치
66. 액화석유가스 저장탱크에 설치	하는 폭발방지장치와 관련이 없는 것은?
1 비드	② 후프링
③ 방파판	④ 다공성 알루미늄 박판
67. 가스도매사업자의 공급관에 대한	한 설명으로 맞는 것은?
❶ 정압기지에서 대량수요자의	가스사용시설까지 이르는 배관
② 인수기지 부지경계에서 정입	압기까지 이르는 배관
③ 인수가지 내에 설치되어 있	는 배관
④ 대량수요자 부지 내에 설치	된 배관
	트의 재료를 고압가스용기용 강판 및 강대 SG 295 이상의 재료로 제조하는 50L 미만인 용기는 스커트의 두께를 얼마 이상으로 할 수 있는가?
① 2mm	2 3mm
③ 3.6mm	④ 5mm
69. 가연성가스가 폭발할 위험이 있 은?	l는 농도에 도달할 우려가 있는 장소로서 "2종 장소"에 해당되지 않는 것
❶ 상용의 상태에서 가연성가∠	느의 농도가 연속해서 폭발 하한계 이상으로 되는 장소
② 밀폐된 용기가 그 용기의 사	나고로 인해 파손될 경우에만 가스가 누출할 위험이 있는 장소
③ 환기장치에 이상이나 사고기	가 발생한 경우에 가연성가스가 체류하여 위험하게 될 우려가 있는 장소
④ 1종 장소의 주변에서 위험형	한 농도의 가연성가스가 종종 침입할 우려가 있는 장소
	전시설에서 가스누출검지경보장치의 검지경보장치 설치수량의 기준으로 틀
린 것은? ① 펌프 주변 1개 이상	
② 압축가스 설비 주변에 1개	
③ 충전설비 내부에 1개 이상	
④ 배관접속부마다 10m 이내0	╢ 17╫
	기설비가 방폭성능 구조를 갖추지 아니하여도 되는 가연성 가스는?
1. 기간당 기그리 제모들이 중 전기 ① 암모니아	② 아세틸렌
③ 염화에탄	④ 아크릴알데히드
	음매로 허브플랜지를 사용하지 않아도 되는 것은?
1) 설계압력이 2.5 MPa 인 특	
② 설계압력이 3.0 MPa 인 특	
	으르미 플랜지의 호칭 내경이 260 mm 특정설비
	플랜지의 호칭 내경이 300 mm 특정설비
_	
/3. 고압가스 특성세소시설에서 준(치 설치기준으로 적합한 것은?	내화구조 액화가스 저장탱크 온도상승방지설비 설치와 관련한 물분무살수장

❶ 표면적 1m²당 2.5L/분 이상

- ② 표면적 1m²당 3.5L/분 이상 ③ 표면적 1m²당 5L/분 이상 ④ 표면적 1m²당 8L/분 이상 74. 고압가스용 안전밸브 구조의 기준으로 틀린 것은?
 - - ❶ 안전밸브는 그 일부가 파손되었을 때 분출되지 않는 구조로 한다.
 - ② 스프링의 조정나사는 자유로이 헐거워지지 않는 구조로 한다.
 - ③ 안전밸브는 압력을 마음대로 조정할 수 없도록 봉인할 수 있는 구조로 한다.
 - ④ 가연성 또는 독성가스용의 안전밸브는 개방형을 사용하지 않는다.
- 75. 용기의 도색 및 표시에 대한 설명으로 틀린 것은?
 - ① 가연성가스 용기는 빨간색 테두리에 검정색 불꽃모양으로 표시한다.
 - ② 내용적 2L 미만의 용기는 제조자가 정하는 바에 의한다.
 - ③ 독성가스 용기는 빨간색 테두리에 검정색 해골모양으로 표시한다.
 - 선박용 LPG 용기는 용기의 하단부에 2cm의 백색 띠를 한 줄로 표시한다.
- 76. 고압가스 설비 중 플레어스택의 설치 높이는 플레어스택 바로 밑의 지표면에 미치는 복사열이 얼마 이하 로 되도록 하여야 하는가?
 - 1 2000 kcal/m²·h
- 2 3000 kcal/m²·h
- **3** 4000 kcal/m²·h
- (4) 5000 kcal/m²·h
- 77. 고압가스제조시설 사업소에서 안전관리자가 상주하는 현장사무소 상호간에 설치하는 통신설비가 아닌 것 은?
 - ① 인터폰

- ② 페이징설비
- ③ 휴대용확성기
- ④ 구내방송설비
- 78. 불화수소에 대한 설명으로 틀린 것은?
 - ① 강산이다.
- ② 황색기체이다.
- ③ 불연성기체이다.
- ④ 자극적 냄새가 난다.
- 79. 액화 조연성가스를 차량에 적재운반하려고 한다. 운반책임자를 동승시켜야 할 기준은?
 - ① 1000 kg 이상
- ② 3000 kg 이상
- **3** 6000 kg 이상
- ④ 12000 kg 이상
- 80. 고압가스 운반 중에 사고가 발생한 경우의 응급조치의 기준으로 틀린 것은?
 - ① 부근의 화기를 없앤다.
 - ② 독성가스가 누출된 경우에는 가스를 제독한다.
 - ③ 비상연락망에 따라 관계업소에 원조를 의뢰한다.
 - ♪ 착화된 경우 용기파열 등의 위험이 있다고 인정될 때는 소화한다.

5과목: 가스계측기기

81. 단위계의 종류가 아닌 것은?

83.	열팽창계수가 다른 두 금속을	붙여서 온도에 따라 휘어지는 정도의 차이로 온도를 측정하는 온도계는	≞ ?
	① 저항온도계 ②	바이메탈온도계	
	③ 열전대온도계	④ 광고온계	
84.	온도 계측기에 대한 설명으로	틀린 것은?	
	① 기체 온도계는 대표적인	차 온도계이다.	
	② 접촉식의 온도계측에는 위	팽창, 전기저항 변화 및 열기전력 등을 이용한다.	
	3 비접촉식 온도계는 방사원	도계, 광온도계, 바이메탈 온도계 등이 있다.	
	④ 유리온도계는 수은을 봉원	한 것과 유기성 액체를 봉입한 것 등으로 구분한다.	
85.		측정하였다. 측정용기의 무게가 11.6125 g, 증류수를 채웠을때가 13.16 8749g 이라면 이 시료액체의 밀도는 약 몇 g/cm³ 인가? (단, 20℃에서	
	① 0.791	② 0.801	
	3 0.810	4 0.820	
86.	시험지에 의한 가스 검지법	등 시험지별 검지가스가 바르지 않게 연결된 것은?	
	① 연당지 - HCN ②	(I전분지 - NO ₂	
	③ 염화파라듐지 - CO ④	병화제일동 착염지 - C₂H₂	
87.	물체의 탄성 변위량을 이용현	압력계가 아닌 것은?	
	① 부르동관 압력계	② 벨로우즈 압력계	
	③ 다이어프램 압력계	❶ 링밸런스식 압력계	
88.	자동조절계의 제어동작에 대	· 설명으로 틀린 것은?	
	① 비례동작에 의한 조작신화다.	의 변화를 적분동작만으로 일어나는데 필요한 시간을 적분시간이라고	한
	② 조작신호가 동작신호의 [분값에 비례하는 것을 레이트 동작(rate action)이라고 한다.	
	3 매분 당 미분동작에 의힌	변화를 비례동작에 의한 변화로 나눈 값을 리셋율이라고 한다.	
	④ 미분동작에 의한 조작신 고 한다.	의 변화가 비례동작에 의한 변화와 같아질 때까지의 시간을 미분시간C	기라
89.	가스미터에 대한 설명 중 틀	J 것은?	
	① 습식 가스미터는 측정이	정확하다.	
	② 다이어프램식 가스미터는	일반 가정용 측정에 적당하다.	
	③ 루트미터는 회전자식으로	고속회전이 가능하다.	
	4 오리피스미터는 압력손실	이 없어 가스량 측정이 정확하다.	

2실제단위계

④ 공학단위계

4 500

① 절대단위계

① 0.5

3 50

③ 중력단위계

② 5

82. 5 kgf/cm²는 약 몇 mAq 인가?

₫ 운반기체의 흐름속도가 클수록 감도가 증가하므로, 높은 흐름속도를 유지한다.

98. 정오차(static error)에 대하여 바르게 나타낸 것은?

- ① 측정의 전력에 따라 동일 측정량에 대한 지시값에 차가 생기는 현상
- ② 측정량이 변동될 때 어느 순간에 지시값과 참값에 차가 생기는 현상
- 측정량이 변동하지 않을 때의 계측기의 오차
- ④ 입력 신호변화에 대해 출력신호가 즉시 따라가지 못하는 현상

99. 페러데이(Faraday)법칙의 원리를 이용한 기기분석 방법은?

- ❶ 전기량법
- ② 질량분석법
- ③ 저온정밀 증류법
- ④ 적외선 분광광도법

100. 기체 크로마토그래피의 분리관에 사용되는 충전 담체에 대한 설명으로 틀린 것은?

- ❶ 화학적으로 활성을 띠는 물질이 좋다.
- ② 큰 표면적을 가진 미세한 분말이 좋다.
- ③ 입자크기가 균등하면 분리작용이 좋다.
- ④ 충전하기 전에 비휘발성 액체로 피복한다.

1	2	3	4	5	6	7	8	9	10
2	3	3	3	1	1	1	1	2	4
11	12	13	14	15	16	17	18	19	20
2	2	1	4	1	4	3	4	3	1
21	22	23	24	25	26	27	28	29	30
2	3	2	2	4	1	1	4	1	4
31	32	33	34	35	36	37	38	39	40
1	2	3	2	4	2	3	2	3	3
41	42	43	44	45	46	47	48	49	50
2	2	1	3	1	2	2	1	4	3
51	52	53	54	55	56	57	58	59	60
1	4	1	4	2	2	1	4	4	3
61	62	63	64	65	66	67	68	69	70
2	2	1)	3	4	1)	1)	2	1	2
71	72	73	74	75	76	77	78	79	80
1)	4	1)	1)	4	3	3	2	3	4
81	82	83	84	85	86	87	88	89	90
2	3	2	3	3	1	4	3	4	4
91	92	93	94	95	96	97	98	99	100
1	2	2	2	3	3	4	3	1	1)