Admitere * Universitatea Politehnica din București 2006 Disciplina: Algebră și Elemente de Analiză Matematică Varianta F

- 1. Câte soluții distincte are ecuația $\bar{z}=z^2,\,z\in\mathbb{C}$? (8 pct.)
 - a) O infinitate; b) 5; c) 3; d) 6; e) 1; f) 4.
- 2. Să se calculeze $\lim_{x\to 0} \frac{1}{x^4} \int_0^x t^2 \cdot e^{-t^2} \cdot \sin t \, dt$. (8 pct.)
 - a) 0; b) ∞ ; c) $\frac{1}{4}$; d) 1; e) $\frac{1}{e}$; f) $\frac{\sin 1}{e}$.
- 3. Să se calculeze aria mărginită de dreptele $x=0, \quad x=1,$ axa Ox și de graficul funcției $f: \mathbb{R} \to \mathbb{R},$ $f(x)=\frac{x}{x^2+1}.$ (8 pct.)
 - a) $2\ln 2$; b) $\frac{1}{2}$; c) 1; d) $\ln 2$; e) $\frac{\pi}{4}$; f) $\frac{1}{2}\ln 2$
- 4. Câte soluții în $\mathbb{Z} \times \mathbb{Z}$ are ecuația $x^4 x^3y 8y^4 = 0$? (6 pct.)
 - a) Nici una; b) Una; c) Două; d) Patru; e) Trei; f) O infinitate.
- 5. Să se calculeze f'(2) pentru funcția $f:(0,\infty)\to\mathbb{R}, f(x)=x^x-2^x-x^2$. (6 pct.)
 - a) 4; b) -4; c) $4 \ln 2$; d) $4(1 + \ln 2)$; e) $2 \ln 2$; f) 0.
- 6. Se cer cea mai mică și cea mai mare valoare pentru funcția $f:[0,3]\to\mathbb{R}, f(x)=x^2-2x-5$. (6 pct.)
 - a) -5, -2; b) -6, -2; c) 1, 3; d) -6, 3; e) 0, 3; f) -5, 3
- 7. Se cere domeniul maxim de definiție al funcției $f: D \to \mathbb{R}, f(x) = \ln(1+3x)$. (4 pct.)
 - a) $\left(-\frac{1}{3}, \infty\right)$; b) $(0, \infty)$; c) $(3, \infty)$; d) $(-3, \infty)$; e) $(1, \infty)$; f) (e, ∞) .
- 8. Câte matrice de forma $X = \begin{pmatrix} x & y \\ y & x \end{pmatrix}$ verifică relația $X^2 = I_2; x, y \in \mathbb{R}$? (4 pct.)
 - a) 4; b) 3; c) 2; d) 5; e) 1; f) O infinitate.
- 9. Fie $a \ge 0$, $b \ge 0$ astfel încât $\sqrt{a} + \sqrt{b} = \sqrt{a+b}$. Atunci (4 pct.)
 - a) ab = 1; b) a = 0, b = 0; c) a > 1; d) a = 0 sau b = 0; e) a < b; f) $a^2 + b^2 = 1$.
- 10. Ecuația tangentei la graficul funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^3}{3} 3x^2 + 5x + 2$ în punctul de inflexiune este (4 pct.)
 - a) y = 4x 9; b) y = -4x; c) y = 4x + 13; d) y = -4x + 11; e) y = -1; f) y = -4x + 13.
- 11. Să se calculeze $x^2 + y$ dacă $2^x 3y = 0$, $3^x 2y = 0$ cu $x, y \in \mathbb{R}$. (4 pct.)
 - a) $\frac{1}{6}$; b) $\frac{5}{6}$; c) $\frac{7}{6}$; d) $\frac{11}{6}$; e) 6; f) -6.
- 12. Să se determine abscisele punctelor de extrem local ale funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = x^4 4x^3$. (4 pct.)
 - a) 0, 2, -2; b) 0; c) 0 i 3; d) 2; e) 3; f) 2, -2.
- 13. Să se rezolve ecuația $3^{x+1} = 9^{\sqrt{x}}$. (4 pct.)
 - a) 4; b) 0 și 1; c) 1; d) 0; e) -1; f) Nu are soluții.
- 14. Să se calculeze valoarea expresiei $E = \frac{x_2 + x_3}{x_1} + \frac{x_1 + x_3}{x_2} + \frac{x_1 + x_2}{x_3}$, unde x_1, x_2, x_3 sunt soluțiile ecuației $x^3 6x^2 + x + 2 = 0$. (4 pct.)
 - a) 1; b) -3; c) -6; d) -1; e) 3; f) 0.
- 15. Să se determine $m \in \mathbb{R}$ dacă sistemul 2x + my = 0, 3x + 2y = 0 admite numai soluția nulă. (4 pct.)
 - a) $m = \frac{3}{4}$; b) $m = \frac{4}{3}$; c) $m \neq \frac{4}{3}$; d) $m \neq 0$; e) $m = -\frac{3}{4}$; f) m = 3.

16. Să se rezolve inecuația $\sqrt{-x-2} - \sqrt[3]{x+5} < 3$. (4 pct.)

a)
$$[-6, -5]$$
; b) $(-6, -2)$; c) $x \in (-\infty, -2]$; d) $(-5, -2)$; e) $x \in (-\infty, -6]$; f) $x \in (-6, -2]$.

- 17. Numerele x, 2x + 3, x + 2 sunt termenii unei progresii aritmetice, în ordinea scrisă. Să se determine rația progresiei. (4 pct.)
 - a) 3; b) 2; c) x + 3; d) -1; e) 1; f) -2.
- 18. Se cere limita $\lim_{x\to\infty} \left(\sqrt{x+\sqrt{x}}-\sqrt{x}\right)$. (4 pct.)
 - a) 1 ; b) $\frac{1}{2}$; c) $\infty;$ d) 2; e) 0; f) Nu există.