Laboratorio 2: Arquitectura y Organización de Computadores

Profesor: Viktor Tapia

Ayudante de cátedra: Mauricio Cortés y Muryel Constanzo Ayudante de Tarea: Vicente Alvear y Luciano Yevenes

21 de Abril 2024

1 Reglas Generales

Para la siguiente tarea se debe utilizar la plataforma Logisim¹ para diseñar un circuito que cumpla con los requerimientos de la sección 2. Se exigirá que el formato de los circuitos se presente de la forma más limpia y ordenada posible. Deberá incluir un README con la identificación de los estudiantes que desarrollaron la tarea, además de cualquier supuesto utilizado.

2 Programa a implementar

2.1 SIMDIVERS 2

Saludos, ciudadano! Has sido involuntariamente voluntariado a servir a la Super Tierra en su distribución de democracia supervisada al resto de las estrellas. El ministerio de turbo arquitectura y circuitos lógicos de Inviktus Tapia lo ha encomendado a pautear la ruta hacia el próximo objetivo de invasión, *Malevelon Creek*, un planeta enemigo que debe ser arrasado para instalar un centro recreativo para hurones.

Sin embargo el camino hasta este planeta es peligroso y consta de varias rutas, por lo que se le ha pedido modelar las rutas posibles haciendo uso de la plataforma *logisim* para poder analizar cual es el mejor curso de acción.

¹Disponible en https://sourceforge.net/projects/circuit/

A continuación están los elementos del circuito a modelar. Cada planeta va a representar un estado, y el estado siguiente debe ser el que se acerque en dirección a *Malevelon Creek*. La entrada corresponde al planeta desde donde se quiere recorrer y posteriormente el estado se debe actualizar automáticamente usando lógica secuencial para llegar al sistema de destino.

2.1.1 El mapa

Figure 1: Mapa de ofensiva

Cada planeta tiene una dificultad asociada del 1 al 9, que se debe mostrar en un display de 7 bits. El nombre y la dificultad de cada nodo a continuación.

2.1.2 Los planetas

Numero	Nombre	Dificultad
1	Caladan	2
2	Arrakis	4
3	Terminus	1
4	Trantor	5
5	Etheria	5
6	Sanghelios	7
7	Ásgard	4
8	Namek	4
9	Gensokyo	6
10	Rend	3
11	Experimentation	8
12	Cadia	7
13	Lothric	9
14	Petricor V	7
15	Planeta Gol	8
16	Malevelon Creek	9

Entonces, su misión es generar un circuito que reciba una coordenada inicial que corresponda a uno de estos planetas, que pueda recorrer su ruta hasta *Malevelon Creek* actualizando su estado, y mostrando la dificultad en el display de salida de cada uno.

2.2 Formato Entrada

La lógica combinacional de salida consiste en 9 simbolos del 1 al 9 correspondientes al 1 al 9 en el display de 7 bits. **PRO TIP:** Se puede ahorrar trabajo buscando los valores de los bits de salida ya que el display de 7 bits está en el apunte.

Figure 2: display de 7 bits.

Respecto a la lógica secuencial, esta debe encargarse de recibir 4 bits para representar un estado inicial y luego se debe seguir la trayectoria explicitada en el mapa para actualizar el estado siguiente hasta llegar al destino final.

Adjunto un salto de ejemplo:

Figure 3: Cambio de estado desde Etheria a Lothric. Los 4 bits representan el estado y el display lo que debe mostrar la salida.

2.3 Requerimientos

El programa deberá poder:

- Recorrer el grafo descrito en 2.1.1 desde cualquiera de los estados de forma de que llegue al estado final.
- Mostrar en el display de salida la dificultad asociada al estado actual.
- Se deben elaborar las tablas de verdad y mapas de karnaugh para cada bit de salida y estos presentarse en un documento pdf llamado **informe.pdf**
- SE DEBE USAR LA SALIDA DISPLAY DE 7 SEGMENTOS PROVEÍDA POR LO-GISIM PARA LA SALIDA

2.4 Formato de los circuitos

El circuito debe dividirse en varios subcircuitos, creados usando el botón en el menú de la izquierda de Logisim. El subcircuito principal debe llamarse main, y el resto de los subcircuitos deben tener nombres descriptivos. Toda lógica debe hacerse en subcircuitos separados para mantener el orden, y el subcircuito principal solo debe contener esos subcircuitos, similar a como se muestra en la figura 6.

Figure 4: Esquema para main

3 README

Debe contener como mínimo:

- Nombre, Rol y Paralelo de los integrantes.
- Especificación de los algoritmos y desarrollo realizado.
- Supuestos utilizados

4 Consideraciones

- Se deberá trabajar de a pares. Se deberá entregar en Aula a mas tardar el día 5 de Mayo de 2024 a las 23:59 horas. Se descontarán 5 puntos por cada hora o fracción de atraso. Las copias serán evaluadas con nota 0 en el promedio de las tareas.
- La tarea debe realizarse en Logisim. Se recomienda que se familiarice rápidamente con la plataforma, y ante cualquier duda consulte con sus compañeros o directamente con los ayudantes lo antes posible. El único responsable si no acude a alguien para resolver sus dudas a tiempo es usted.
- Puede utilizar una cantidad arbitraria de subcircuitos, siempre y cuando cada uno tenga un nombre descriptivo e incluya como mínimo el subcircuito main.
- La entrega considera dos archivos, mapa.circ y informe.pdf, junto con el README. Los archivos deberán ser comprimidos y enviados juntos en un archivo .zip de nombre LAB2_ROL1_ROL2.
- El circuito puede o bien detenerse en el último nodo , o volver a un nodo inicial existente (como 0). La implementación en este sentido es libre.
- Si no se entrega README, o si su programa no funciona, la nota es 0 hasta la recorrección.
- Una vez entregadas las notas de la tarea existirá un plazo de 5 días para apelar. Transcurrido este plazo las notas no podrán ser modificadas.