EXPECTED NUMBER OF n-SIDED DIE THROWS TO COLLECT kPOINTS IS A GEOMETRIC SERIES FOR k < n

A PREPRINT

Boris Demeshev

Department of Computer Science, Department of Applied Economics State University Higher School of Economics Moscow bdemeshev@hse.ru

July 15, 2021

1 Link between die and geometric series

Let's start with a visual proof of a formula for the finite geometric series sum. We consider a growing geometric series (b_j) where $b_{j+1} = rb_j$ with ratio r > 1. We represent the ratio as $r = 1 + \alpha$, so $b_{k+j} = b_j + \alpha b_j$.

Adding all segments lengths we see that

$$b_k = b_1 + \alpha(b_1 + b_2 + b_3 + \ldots + b_{k-1})$$

This property of geometric series also has an economic intuition. You final wellfare b_k equals your initial wellfare b_1 plus all interest payments, where α is the nominal rate in the compound interest scheme.

Now let's toss a n-sided die until we collect k points or more with $k \le n$. We denote the random number of tosses by X_k and the expected number of tosses by $b_k = \mathbb{E}(X_k)$.

For sure we'll collect one point or more with exactly one toss, $X_1 = 1$ and hence $b_1 = 1$.

Now we need to collect k points or more. Let's consider the first toss. With probability (n-k)/n zero more tosses will be required. And with probability 1/n we will need to collect 1, 2, ..., k-1 points.

The recurrence formula is

$$b_k = 1 + \frac{n-k}{n} \cdot 0 + \frac{1}{n} (b_1 + b_2 + \dots + b_{k-1}).$$

This equation coupled with initial condition defines the geometric series with $b_1 = 1$ and ratio $r = 1 + \frac{1}{n}$.

Hence we obtain

$$b_k = \mathbb{E}(X_k) = \left(1 + \frac{1}{n}\right)^{k-1}$$

This result appears in disguised form $\mathbb{E}(X_k) = \sum_{i=0}^{k-1} {k-1 \choose i}/n^i$ in Conroy [2021]. The particular case with k=n is proven in Treviño [2020]. In both these sources the Christmas stockings theorem is invoked in the proof. The approach with recurrence equation is used in Suspect [2019], where the chase for the general k hides the simple structure for $k \leq n$.

References

- M Conroy. A collection of dice problems, 2021. URL www.madandmoonly.com/doctormatt/mathematics/dice1.pdf.
- Enrique Treviño. Expected number of dice rolls for the sum to reach n. *The American Mathematical Monthly*, 127(3): 257–257, 2020.
- Usual Suspect. Expected number of dice rolls require to make a sum greater than or equal to k? Cross Validated, 2019. URL https://stats.stackexchange.com/q/146114. https://stats.stackexchange.com/users/73364/usual-suspect.