

### TTK4135 – Lecture 9 Linear Quadratic Control

Lecturer: Lars Imsland

#### **Outline**

- Recap: Open-loop linear dynamic optimization problems, and the different ways of solving them
  - Two batch methods (-> QPs)
  - One recursive method
- Today: Linear Quadratic Control ( = "The recursive method")
  - Finite horizon
  - Infinite horizon

Reference: F&H Ch. 4.3-4.4

## Last time: Dynamic open-loop optimization (with linear state-space model)

$$\min_{z \in \mathbb{R}^n} f(z) = \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q_{t+1} x_{t+1} + d_{x,t+1} x_{t+1} + \frac{1}{2} u_t^{\top} R_t u_t + d_{u,t} u_t + \frac{1}{2} \Delta u_t^{\top} S \Delta u_t$$
subject to  $> \emptyset$ 

$$x_{t+1} = A_t x_t + B_t u_t, \quad t = \{0, ..., N-1\}$$

$$x^{\text{low}} \le x_t \le x^{\text{high}}, \quad t = \{1, ..., N\}$$

$$u^{\text{low}} \le u_t \le u^{\text{high}}, \quad t = \{0, ..., N-1\}$$

$$-\Delta u^{\text{high}} \le \Delta u_t \le \Delta u^{\text{high}}, \quad t = \{0, ..., N-1\}$$

where

$$x_0$$
 and  $u_{-1}$  is given 
$$\Delta u_t := u_t - u_{t-1}$$

$$z^\top := (u_0^\top, x_1^\top, \dots, u_{N-1}^\top, x_N^\top)$$

$$n = N \cdot (n_x + n_u)$$

$$Q_t \succeq 0 \quad t = \{1, \dots, N\}$$

$$R_t \succ 0 \quad t = \{0, \dots, N-1\}$$



#### The significance of weigths



$$q = 5, r = 1$$



$$\sum_{t=0}^{N-1} x_{t+1}^2 = 1.9,$$

$$\sum_{t=0}^{N-1} x_{t+1}^2 = 1.9, \qquad \sum_{t=0}^{N-1} u_t^2 = 23.6$$

$$\min \sum_{t=0}^{5} q x_{t+1}^{2} + r u_{t}^{2}$$

s.t. 
$$x_{t+1} = 0.9x_t + 0.5u_t, \quad t = 0, \dots, 5$$

$$q = 2, r = 1$$



$$\sum_{t=0}^{N-1} x_{t+1}^2 = 4.8$$

$$\sum_{t=0}^{N-1} x_{t+1}^2 = 4.8, \qquad \sum_{t=0}^{N-1} u_t^2 = 14.7$$

$$q = 1, r = 2$$



$$\sum_{t=0}^{N-1} x_{t+1}^2 = 14.3, \qquad \sum_{t=0}^{N-1} u_t^2 = 5.3$$

$$\sum_{t=1}^{N-1} u_t^2 = 5.3$$



## Linear quadratic control: Dynamic optimization without (inequality) constraints

$$\min_{z} \sum_{t=0}^{N-1} x_{t+1}^{\top} Q x_{t+1} + u_{t}^{\top} R u_{t}$$
s.t.  $x_{t+1} = A x_{t} + B u_{t}, \quad t = 0, 1, \dots, N-1$ 

$$z = (u_{0}, x_{1}, u_{1}, \dots, u_{N-1}, x_{N})^{\top}$$

#### Three approaches for solution:

- Batch approach v1, "full space" solve as QP
- Batch approach v2, "reduced space" solve as QP
- 🔸 🤰 Recursive approach solve as linear state feedback ] 👚

Also work with input- and state constraints!

Only work without constraints!



## Linear Quadratic Control Batch approach v1, "Full space" QP

Formulate with model as equality constraints, all inputs and states as optimization variables



## Linear Quadratic Control Batch approach v2, "Reduced space" QP

 $\min_{z} \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q x_{t+1} + \frac{1}{2} u_{t}^{\top} R u_{t}$ s.t.  $x_{t+1} = A x_{t} + B u_{t}, \quad t = 0, 1, \dots, N-1$   $z = (u_{0}, x_{1}, u_{1}, \dots, u_{N-1}, x_{N})^{\top}$ 

- Use model to eliminate states as variables
  - Future states as function of inputs and initial state

$$\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_N
\end{pmatrix} = \begin{pmatrix}
A \\
A^2 \\
A^3 \\
\vdots \\
A^N
\end{pmatrix} x_0 + \begin{pmatrix}
B \\
AB & B \\
A^2 & AB & B \\
\vdots & \vdots & \vdots & \ddots \\
A^{N-1}B & A^{N-2}B & A^{N-3}B & \dots & B
\end{pmatrix} \begin{pmatrix}
u_0 \\
u_1 \\
\vdots \\
u_{N-1}
\end{pmatrix} = S^x x_0 + S^u U$$

Insert into objective (no constraints!)

$$\min_{U} \frac{1}{2} \left( S^{x} x_{0} + S^{u} U \right)^{\top} \mathbf{Q} \left( S^{x} x_{0} + S^{u} U \right) + \frac{1}{2} U^{\top} \mathbf{R} U$$

$$\mathbf{Q} = \begin{pmatrix} Q & & \\ & Q & \\ & & \ddots \end{pmatrix}, \quad \mathbf{R} = \begin{pmatrix} R & & \\ & R & \\ & & \ddots \end{pmatrix}$$

Solution (when no inequality constraints) found by setting gradient equal to zero:

$$U = \begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N-1} \end{pmatrix} = -\underbrace{\left( (S^u)^\top \mathbf{Q} S^u + \mathbf{R} \right)^{-1} (S^u)^\top \mathbf{Q} S^x}_{F} x_0 = -Fx_0$$



# Linear Quadratic Control Recursive approach

$$\min_{z} \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q x_{t+1} + \frac{1}{2} u_{t}^{\top} R u_{t}$$
s.t.  $x_{t+1} = A x_{t} + B u_{t}, \quad t = 0, 1, \dots, N-1$ 

$$z = (u_{0}, x_{1}, u_{1}, \dots, u_{N-1}, x_{N})^{\top}$$

• By writing up the KKT-conditions, we can show (we will do this today) that the solution can be formulated as:

$$u_t = -K_t x_t$$

where the feedback gain matrix is derived by

$$K_{t} = R^{-1}B^{\top}P_{t+1}(I + BR^{-1}B^{\top}P_{t+1})^{-1}A, \qquad t = 0, \dots, N-1$$

$$P_{t} = Q + A^{\top}P_{t+1}(I + BR^{-1}B^{\top}P_{t+1})^{-1}A, \qquad t = 0, \dots, N-1$$

$$P_{N} = Q$$

### Comments to the three solution approaches

- All give same numerical solution
  - If problem is strictly convex (Q psd, R pd), solution is unique
- The batch approaches give an open-loop solution, the recursive approach give a closed-loop (feedback) solution

$$\begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N-1} \end{pmatrix} = -Fx_0 \qquad \text{vs} \qquad \qquad \underbrace{u_t = -K_t x_t, \quad t = 0, \dots, N-1}_{}$$

- Constraints on inputs and states:
  - Easy for batch approaches (both becomes convex QPs)
  - Difficult for the recursive approach
- How to add feedback (and thereby robustness) to batch approaches?
  - Model predictive control! (Next time)

### **Today: The recursive solution (LQ control)**



### **KKT Conditions (Thm 12.1)**

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{subject to} \quad \begin{aligned} c_i(x) &= 0, & i \in \mathcal{E}, \\ c_i(x) &\geq 0, & i \in \mathcal{I}. \end{aligned}$$

Lagrangian: 
$$\mathcal{L}(x,\lambda) = f(x) - \sum_{i \in \mathcal{E} \cup \mathcal{T}} \lambda_i c_i(x)$$

**KKT-conditions** (First-order necessary conditions): If  $x^*$  is a local solution and LICQ holds, then there exist  $\lambda^*$  such that

$$\begin{array}{c} \nabla_x \mathcal{L}(x^*,\lambda^*) = 0, \\ c_i(x^*) = 0, \quad \forall i \in \mathcal{E}, \\ \hline -c_i(x^*) \geq 0, \quad \forall i \in \mathcal{I}, \\ \hline -\lambda_i^* \geq 0, \quad \forall i \in \mathcal{I}, \\ \hline \lambda_i^* c_i(x^*) = 0, \quad \forall i \in \mathcal{E} \cup \mathcal{I}. \end{array} \right.$$
 (stationarity) 
$$\begin{array}{c} \text{(primal feasibility)} \\ \text{(dual feasibility)} \\ \text{(complementarity condition/complementary slackness)} \end{array}$$

$$0 \frac{\partial \mathcal{L}}{\partial u_{k}} = Ru_{k} + B^{T} \lambda_{k+1} = 0, t = 0, \dots, N-1$$

$$0 \frac{\partial \mathcal{L}}{\partial u_{k}} = Q x_{k} - \lambda_{k} + A^{T} \lambda_{k+1} = 0, t = 7, \dots, N-1$$

$$0 \frac{\partial \mathcal{L}}{\partial u_{k}} = Q x_{k} - \lambda_{k} + A^{T} \lambda_{k+1} = 0, t = 7, \dots, N-1$$

$$0 \frac{\partial \mathcal{L}}{\partial u_{k}} = Q x_{k} - \lambda_{k} + A^{T} \lambda_{k+1} = 0, t = 7, \dots, N-1$$

$$0 \frac{\partial \mathcal{L}}{\partial u_{k}} = Q x_{k} - \lambda_{k} + A^{T} \lambda_{k+1} = 0, t = 7, \dots, N-1$$

$$0 \frac{\partial \mathcal{L}}{\partial u_{k}} = Q x_{k} - \lambda_{k} + A^{T} \lambda_{k+1} = 0, t = 7, \dots, N-1$$

$$0 \frac{\partial \mathcal{L}}{\partial u_{k}} = Q x_{k} - \lambda_{k} + A^{T} \lambda_{k+1} = 0, t = 7, \dots, N-1$$

$$0 \frac{\partial \mathcal{L}}{\partial u_{k}} = Q x_{k} - \lambda_{k} + A^{T} \lambda_{k+1} = 0, t = 7, \dots, N-1$$

$$0 \frac{\partial \mathcal{L}}{\partial u_{k}} = Q x_{k} - \lambda_{k} + A^{T} \lambda_{k+1} = 0, t = 7, \dots, N-1$$

Norwegian University of

Science and Technology

LQR:  $\min_{z} \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q x_{t+1} + \frac{1}{2} u_{t}^{\top} R u_{t}$ 

 $\rightarrow \nabla_x \mathcal{L}(x^*, \lambda^*) = 0,$  $c_i(x^*) = 0, \quad \forall i \in \mathcal{E},$  $c_i(x^*) \ge 0, \quad \forall i \in \mathcal{I},$ s.t.  $x_{t+1} = Ax_t + Bu_t$ , t = 0, 1, ..., N-1 $\lambda_i^* \geq 0, \quad \forall i \in \mathcal{I},$  $z = (u_0, x_1, u_1, \dots, u_{N-1}, x_N)^{\top}$  $\mathcal{L}(Z, \lambda_1, \lambda_2, \dots, \lambda_N) = \sum_{t=0}^{N-1} \left( \frac{1}{2} x^T Q x_{t+1} + \frac{1}{2} u_t^T R u_t \right) - \sum_{t=0}^{N-1} \lambda_{t+1}^T \left( x_{t+1} - A x_t - B u_t \right)$ KKT: Stationanty: 7, X = 0

Teasibility:

(9) Kty = A Kt + Dut (t - O. ..., W +

11 Guess : 
$$\lambda_{\xi} = P_{\xi} \times_{\xi}$$
,  $P_{\xi} = P_{\xi}^{T} > 0$ 

(4) 
$$X_{\xi + 1} = A X_{\xi} + B \left( -R^{-1} B^{T} P_{\xi + 1} X_{\xi + 1} \right)$$

Solve for  $X_{\xi + 1} = \frac{1}{2} \left( -R^{-1} B^{T} P_{\xi + 1} X_{\xi + 1} \right)$ 

$$(I + BR^{-1}B^{T}P_{e+1})K_{e+1} = AK_{e}$$

$$X_{\ell+1} = \left( \underline{T} + BR^{-1}B^{-1}P_{\ell+1} \right)^{-1}A \times_{\ell}$$

$$(f) \Rightarrow \mathcal{L}_{\xi} = -R^{-1}B^{T}\lambda_{\xi+1} = -R^{-1}B^{T}P_{\xi+1}(I+BR^{T}B^{T}P_{\xi+1})^{T}A_{\xi}X_{\xi}$$

$$:= \mathcal{K}_{\xi} \qquad (\xi = 0, ..., N-1)$$

Q KE-PEKE+ATPER (I+B R-13TPER) A KE=S, tel, ..., W

 $\left[Q - P_{\xi} + A^{T} P_{\xi_{T+}} \left(I + BR^{T} B^{T} P_{\xi_{T}} \right)^{T} A\right] X_{\xi} = 0 \quad (\xi = 1, ..., N-1)$ 

Las Perk

=0, t=1,...,N-1

Norwegian University of Science and Technology

Emust hold for all &

Summing up: KKT satistica if rt = - Kt xt  $K_{\xi} = R^{-1} B^{T} P_{\xi_{\tau_{1}}} \left( \underline{\Gamma} + B R^{T} B^{T} P_{\xi_{\tau_{1}}} \right)^{-1} A \qquad \xi = 0, \dots, N^{-1}$ Riccati PE = Q + AT PET, (I+DR BT PET) A, 6=7,... NH

Norwegian University of Science and Technology

#### **Second-order conditions**

**Theorem 12.6** (Second-Order Sufficient Conditions).

Suppose that for some feasible point  $x^* \in \mathbb{R}^n$  there is a Lagrange multiplier vector  $\lambda^*$  such that the KKT conditions (12.34) are satisfied. Suppose also that

$$w^T \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) w > 0$$
, for all  $w \in \mathcal{C}(x^*, \lambda^*)$ ,  $w \neq 0$ . (12.65)

Then  $x^*$  is a strict local solution for (12.1).

Critical directions:

$$w \in \mathcal{C}(x^*, \lambda^*) \Leftrightarrow \begin{cases} \nabla c_i(x^*)^T w = 0, & \text{for all } i \in \mathcal{E}, \\ \nabla c_i(x^*)^T w = 0, & \text{for all } i \in \mathcal{A}(x^*) \cap \mathcal{I} \text{ with } \lambda_i^* > 0, \\ \nabla c_i(x^*)^T w \ge 0, & \text{for all } i \in \mathcal{A}(x^*) \cap \mathcal{I} \text{ with } \lambda_i^* = 0. \end{cases}$$
(12.53)

• The critical directions are the "allowed" directions where it is not clear from KKT-conditions whether the objective will decrease or increase

#### Thm 16.4: For convex QP, KKT is sufficient

From N&W, p. 464:

KKT conditions

For convex QP, when G is positive semidefinite, the conditions (16.37) are in fact sufficient for  $x^*$  to be a global solution, as we now prove.

#### Theorem 16.4.

If  $x^*$  satisfies the conditions (16.37) for some  $\lambda_i^*$ ,  $i \in A(x^*)$ , and G is positive semidefinite, then  $x^*$  is a global solution of (16.1).

- That is: Since the solution of the Riccati equation implies the KKT conditions are fulfilled,
   Thm 16.4 means that the Riccati equation gives the global solution
  - Side-remark: It is, in fact, the *unique* global solution. If G is positive definite (implied by Q positive definite), this follows from the proof of Thm 16.4. If Q positive semidefinite, further arguments are necessary (for instance using Thm 12.6 as in the note).

Finite horizon LQ optimal control problem:

$$\min_{z \in \mathbb{R}^n} f(z) = \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q_{t+1} x_{t+1} + \frac{1}{2} u_t^{\top} R_t u_t$$
subject to  $x_{t+1} = A_t x_t + B_t u_t, \quad t = 0, \dots, N-1$ 

$$x_0 = \text{given}$$

$$Q_t \succeq 0 \quad t = 1, \dots, N$$

$$R_t \succ 0 \quad t = 0, \dots, N-1$$

where

$$z^{\top} := (u_0^{\top}, x_1^{\top}, \dots, u_{N-1}^{\top}, x_N^{\top})$$
  
 $n = N \cdot (n_x + n_u)$ 

State feedback solution

$$u_t = -K_t x_t$$

where the feedback gain matrix is derived by

$$K_{t} = R_{t}^{-1} B_{t}^{\top} P_{t+1} (I + B_{t} R_{t}^{-1} B_{t}^{\top} P_{t+1})^{-1} A_{t}, \qquad t = 0, \dots, N-1$$
  

$$P_{t} = Q_{t} + A_{t}^{\top} P_{t+1} (I + B_{t} R_{t}^{-1} B_{t}^{\top} P_{t+1})^{-1} A_{t}, \qquad t = 0, \dots, N-1$$
  

$$P_{N} = Q_{N}$$

(discrete) Riccati equation

#### Linear quadratic control (finite horizon)

• The optimal solution to LQ control is a linear, time-varying state feedback:

$$u_t = -K_t x_t$$

where the feedback gain matrix is derived by

$$K_{t} = R_{t}^{-1} B_{t}^{\top} P_{t+1} (I + B_{t} R_{t}^{-1} B_{t}^{\top} P_{t+1})^{-1} A_{t}, \qquad t = 0, \dots, N-1$$

$$P_{t} = Q_{t} + A_{t}^{\top} P_{t+1} (I + B_{t} R_{t}^{-1} B_{t}^{\top} P_{t+1})^{-1} A_{t}, \qquad t = 0, \dots, N-1$$

$$P_{N} = Q_{N}$$

- Note that the gain matrix  $K_t$  is independent of the states, and can therefore be computed in advance (knowing  $A_t$ ,  $B_t$ ,  $Q_t$ ,  $R_t$ )
- The matrix (difference) equation

$$P_{t} = Q_{t} + A_{t}^{\top} P_{t+1} (I + B_{t} R_{t}^{-1} B_{t}^{\top} P_{t+1})^{-1} A_{t}, \qquad t = 0, \dots, N-1$$

$$P_{N} = Q_{N}$$

is called the (discrete) Riccati equation

 Note that the "boundary condition" is given at the end of the horizon, and the P<sub>t</sub> -matrices must be found iterating backwards in time

#### **Example**

 $u_t = -K_t x_t$ 

$$\min \sum_{t=0}^{10} \frac{1}{2} x_{t+1}^{2} + \frac{1}{2} r u_{t}^{2} \qquad K_{t} = R^{-1} B^{\top} P_{t+1} (I + B R^{-1} B^{\top} P_{t+1})^{-1} A, \qquad t = 0, \dots, N-1$$

$$P_{t} = Q + A^{\top} P_{t+1} (I + B R^{-1} B^{\top} P_{t+1})^{-1} A, \qquad t = 0, \dots, N-1$$

$$P_{N} = Q$$

$$P_{\eta} = Q = 7$$

$$P_{\epsilon} = 1 + 1.2 P_{\epsilon \tau_{1}} \left( 1 + \frac{1}{r} P_{\epsilon \tau_{1}} \right)^{-1} 1.2 = 1 + 1.44 r \frac{P_{\epsilon \tau_{1}}}{r + P_{\epsilon \tau_{1}}}, \quad t = 0, ..., N - 1$$

$$k_{t} = \frac{1}{r} P_{\epsilon \tau_{1}} \left( 1 + \frac{1}{r} P_{\epsilon \tau_{1}} \right)^{-1} 1.2 = 1 - 2 \frac{P_{\epsilon \tau_{1}}}{r + P_{\epsilon \tau_{1}}}$$

$$k_{t} = \frac{1}{r} P_{ter} \left( \left( 1 + \frac{1}{r} r \left( \frac{1}{r} \right) \right) \left( 1 + \frac{1}{r} r \left( \frac{1}{r} \right) \right) \left( 1 + \frac{1}{r} r \left( \frac{1}{r} r r \left( \frac{1}{r} r \left( \frac{1}{r} r r \left( \frac{1}{r} r r \left( \frac{1}{r} r r \left( \frac{1}{r} r r r \left( \frac{1}{r} r r r r r \right) \right) \right) \right) \right) \right) \right) \right) \right)}$$

$$P_{15} = \dots \quad (K_{10} = \dots)$$

$$P_{q} = \dots \quad (K_{q} = \dots)$$

#### **Example**



### What if the horizon goes to infinity?



$$\min \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q x_{t+1} + \frac{1}{2} u_t^{\top} R u_t$$
  
s.t.  $x_{t+1} = A x_t + B u_t, \quad t = 0, 1, \dots, N-1$ 

$$A = \begin{pmatrix} 1 & 0.5 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0.125 \\ 0.5 \end{pmatrix}, \quad Q = I, \quad R = 1.$$





$$\min \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q x_{t+1} + \frac{1}{2} u_t^{\top} R u_t$$
s.t.  $x_{t+1} = A x_t + B u_t, \quad t = 0, 1, \dots, N-1$ 

$$A = \begin{pmatrix} 1 & 0.5 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0.125 \\ 0.5 \end{pmatrix}, \quad Q = I, \quad R = 1.$$



$$\min \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q x_{t+1} + \frac{1}{2} u_t^{\top} R u_t$$
  
s.t.  $x_{t+1} = A x_t + B u_t, \quad t = 0, 1, \dots, N-1$ 

$$A = \begin{pmatrix} 1 & 0.5 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0.125 \\ 0.5 \end{pmatrix}, \quad Q = I, \quad R = 1.$$





$$\min \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q x_{t+1} + \frac{1}{2} u_t^{\top} R u_t$$
s.t.  $x_{t+1} = A x_t + B u_t, \quad t = 0, 1, \dots, N-1$ 

$$A = \begin{pmatrix} 1 & 0.5 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0.125 \\ 0.5 \end{pmatrix}, \quad Q = I, \quad R = 1.$$





$$\min \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q x_{t+1} + \frac{1}{2} u_t^{\top} R u_t$$
s.t.  $x_{t+1} = A x_t + B u_t, \quad t = 0, 1, \dots, N-1$ 

$$A = \begin{pmatrix} 1 & 0.5 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0.125 \\ 0.5 \end{pmatrix}, \quad Q = I, \quad R = 1.$$





$$\min \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q x_{t+1} + \frac{1}{2} u_t^{\top} R u_t$$
s.t.  $x_{t+1} = A x_t + B u_t, \quad t = 0, 1, \dots, N-1$ 

$$A = \begin{pmatrix} 1 & 0.5 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0.125 \\ 0.5 \end{pmatrix}, \quad Q = I, \quad R = 1.$$





### Infinite horizon LQ control

$$\min \sum_{t=0}^{\infty} \frac{1}{2} x_{t+1}^{\top} Q x_{t+1} + \frac{1}{2} u_t^{\top} R u_t$$
s.t.  $x_{t+1} = A x_t + B u_t, \quad t = 0, 1, \dots$ 



<u>Fact</u>: Steady-state  $(P_{t+1} = P_t)$  backwards-in-time solution of Riccati equation is infinite horizon solution

$$u_t = -K_t x_t$$

where

$$K_t = R^{-1}B^{\top}P_{t+1}(I + BR^{-1}B^{\top}P_{t+1})^{-1}A,$$
  $t = 0, ..., N-1$   
 $P_t = Q + A^{\top}P_{t+1}(I + BR^{-1}B^{\top}P_{t+1})^{-1}A,$   $t = 0, ..., N-1$   
 $P_N = Q$ 



$$u_t = -Kx_t$$

where

$$K = R^{-1}B^{\top}P(I + BR^{-1}B^{\top}P)^{-1}A$$

$$P = Q + A^{\top}P(I + BR^{-1}B^{\top}P)^{-1}A$$



### Infinite horizon LQ control

**Theorem:** The solution (when one exists) to

$$\min \sum_{t=0}^{\infty} \frac{1}{2} x_{t+1}^{\top} Q x_{t+1} + \frac{1}{2} u_t^{\top} R u_t$$
s.t.  $x_{t+1} = A x_t + B u_t, \quad t = 0, 1, \dots$ 

is given by

$$u_t = -Kx_t$$

where

$$K = R^{-1}B^{\top}P(I + BR^{-1}B^{\top}P)^{-1}A$$
$$P = Q + A^{\top}P(I + BR^{-1}B^{\top}P)^{-1}A$$

(Discrete-time Algebraic Riccati Equation, DARE)



Two central questions:

When does a solution exist?

When is the closed-loop stable?

# Controllability vs stabilizability Observability vs detectability

 Stabilizable: All unstable modes are controllable (that is: all uncontrollable modes are stable)

 Detectability: All unstable modes are observable (that is: all unobservable modes are stable)

- Controllability implies stabilizability
- Observability implies detectability

 $X^{f-1} = \begin{bmatrix} 0 & 0.8 \\ 1.5 & 0 \end{bmatrix} x^f + \begin{bmatrix} p^5 \\ p^1 \end{bmatrix} n^4$ b, # 0, b2 # 0 b, +0, b2=0 b1=0 ( b2 # 0 |  $Q = \begin{bmatrix} 411 & 0 \\ 0 & 422 \end{bmatrix} \qquad Q = D \mid D$ De tectobe. Observable D=[2,07] + 7,50, 42,70 4 9 >0 , 9 n=0 D= [qu S] D=[ S Jan ] 4 9 = 3 (4250) Norwegian University of

Science and Technology

#### **Riccati equations**

Discrete-time Riccati equation in the note (and lecture)

$$P_t = Q_t + A_t^{\top} P_{t+1} (I + B_t R_t^{-1} B_t^{\top} P_{t+1})^{-1} A_t, \quad P_N = Q_N$$

However, another, equivalent, form is found in other sources:

$$P_{t} = Q_{t} + A_{t}^{\top} P_{t+1} A_{t} - A_{t}^{\top} P_{t+1} B_{t} (R_{t} + B_{t}^{\top} P_{t+1} B_{t})^{-1} B_{t}^{\top} P_{t+1} A_{t}, \quad P_{N} = Q_{N}$$

- The latter is more numerically stable due to "enforced symmetry"
- The trick used to get the different formulas is the "Matrix Inversion Lemma" (a very useful Lemma in control theory, optimization, ...)
- Discrete-time Algebraic Riccati equation (DARE) in the note (and lecture)

$$P = Q + A^{\top} P (I + BR^{-1}B^{\top}P)^{-1}A \qquad \longleftarrow$$

Equivalent form (e.g. Matlab)

$$P = Q + A^{\top}PA - A^{\top}PB(R + B^{\top}PB)^{-1}B^{\top}PA \quad \longleftarrow$$

 Note: This is a quadratic equation with two solutions. The one we want is the positive definite solution (the "stabilizing" solution). >> help dare

dare Solve discrete-time algebraic Riccati equations.

[X,L,G] = dare(A,B,Q,R,S,E) computes the unique stabilizing solution X of the discrete-time algebraic Riccati equation



**Example** 

$$\min \sum_{t=0}^{\infty} \frac{1}{2} x_{t+1}^2 + \frac{1}{2} r \ u_t^2$$

s.t. 
$$x_{t+1} = 1.2x_t + u_t$$
,  $t = 0, 1, ...$ 

$$u_t = -Kx_t$$

where

$$K = R^{-1}B^{\top}P(I + BR^{-1}B^{\top}P)^{-1}A$$

$$P = Q + A^{\top}P(I + BR^{-1}B^{\top}P)^{-1}A$$

$$P = 1 + 1.44 r \frac{P}{r+p} \Rightarrow P(r+p) = r+p + 1.44 r p$$

$$\Rightarrow P^{2} + (r - 1 - 1.44 r) p - r = 0$$

$$\Rightarrow p = -(\frac{1}{2}) + \sqrt{\frac{1}{2}} = 0$$

Choose the positive one

