

考场登记表序号

题号	 =	Ξ	四(16)	四(17)	四(18)	四(19)	总分
得分						17(12)	75.73
阅卷人	e e						ATT B

一、单选题(每小题3分,共15分)

得 分

- 1. 一定量的理想气体,在体积不变的条件下,当温度升高时,分子的平均碰撞频率 \overline{Z} 和平均自由程 $\overline{\lambda}$ 的变化情况是
 - (A) \overline{Z} 增大, $\overline{\lambda}$ 不变.
 - (B) \overline{Z} 不变, $\overline{\lambda}$ 增大.
 - (C) \overline{Z} 和 $\overline{\lambda}$ 都增大.
 - (D) \overline{Z} 和 $\overline{\lambda}$ 都不变.
- ★ 2. 在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹
 - (A) 对应的衍射角变小.
 - (B) 对应的衍射角变大.
 - (C) 对应的衍射角也不变.
 - (D) 衍射角的变化不确定.
- ★3. 两个相干波源的位相相同,它们发出的波叠加后,在下列哪条线上总是加强的
- []

- (A) 两波源连线的垂直平分线上.
- (B) 以两波源连线为直径的圆周上.
- (C) 以两波源为焦点的任意一个椭圆上.
- (D) 以两波源为焦点的任意一条双曲线上.
- ★4. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是

- (A) 使屏靠近双缝.
- (B) 使两缝的间距变小.
- (C) 把两个缝的宽度稍微调窄,

第1页 共6页

(D)	改用波长较小的单色光源
-----	-------------

 \bigstar 5. 在均匀磁场 B 内放置一极薄的金属片,其红限波长为 λ_0 . 今用单色光照射,发现有电子放出, λ_0 放出的电子(质量为m,电荷的绝对值为e)在垂直于磁场的平面内作半径为R的圆周运动,那么此题 光光子的能量是

(A)	hc		
(7.1)	$\lambda_{ m o}$.		

(B)
$$\frac{hc}{\lambda_0} + \frac{(eRB)^2}{2m}$$
.

(C)
$$\frac{hc}{\lambda_0} + \frac{eRB}{m}$$

(C)
$$\frac{hc}{\lambda_0} + \frac{eRB}{m}$$
. (D) $\frac{hc}{\lambda_0} + 2eRB$.

二、填空题(每小题3分,共15分)

- 6. 容器中储有一定量的处于平衡状态的理想气体,温度为T,分子质量为m,则分子速度在x方向 分量平均值为 _____. (根据理想气体分子模型和统计假设讨论)
- \uparrow 7. 在牛顿环实验中,平凸透镜的曲率半径为 3.00m, 当用某种单色光照射时,测得第 k 个暗纹半名 4.24mm, 第 k+10 个暗纹半径为 6.00mm, 则所用单色光的波长为
 - 8. 同一温度下的氢气和氧气的速率分布曲线如右图所示,其中曲线

1为_____的速率分布曲线, 的最概然速率较大 (填"氢气"或"氧气"). 若图中曲线表示同一种气体不同温度时 的速率分布曲线,温度分别为 T_1 和 T_2 且 $T_1 < T_2$; 则曲线 1 代表温度 为 的分布曲线 (填 T_1 或 T_2).

★9. 在空气中有一劈尖形透明物, 其劈尖角 $\theta = 1.0 \times 10^{-4} \text{ rad}$, 在波

长 $\lambda = 700 \text{ nm}$ 的单色光垂直照射下,测得干涉相邻明条纹间距 l=0.25 cm,此透明材料的折射

三、判断题(每小题2分,共10分)

★11. 光电效应中光电子的初动能与入射光的频率成线性关

系.

- 12. 1 mol 刚性双原子分子理想气体,当温度为T时,其内能为 $\frac{5}{2}kT$.
- 13. 能制成一种循环动作的热机,只从一个热源吸取热量,使之完全变为有用功.
- ▼14. 自然光以 60°的入射角照射到某一透明介质表面时,反射光为线偏振光,则折射光为部分偏振光,
- ★15. 检验自然光、部分偏振光和线偏振光时,使被检验光入射到偏振片上,然后旋转偏振片. 若从振偏 片射出的光线光强不变,则入射光为自然光;若射出的光线光强变化但不为零,则入射光为部分偏振光;

第2页 共6页

_	_
	
4	

四、计算题 (每小题 15分, 共60分)

- 16. 1mol 的氢,在压强为 $1.0 \times 10^5 Pa$,温度为 20℃时,其体积为 V_0 . 今使它经以下两种过程达到同一状态:
- (1) 先保持体积不变, 加热使其温度升高到80℃, 然后令它作等温膨胀, 体积变为原体积的2倍;
- (2) 先使它作等温膨胀至原体积的 2 倍, 然后保持体积不变, 加热使其温度升到 80℃.

试分别计算以上两种过程中吸收的热量,气体对外作的功和内能的增量.

(普适气体常量 $R = 8.31 J \cdot mol^{-1} \cdot K^{-1}$)

得 分

- 17. 一弹簧振子作简谐振动,振幅 A=0.20m,如弹簧的劲度系数 k=2.0N/m,所系物体的质量 m=0.50kg, 试求,
 - (1) 当动能和势能相等时,物体的位移是多少?
- (2) 设 t=0 时,物体在正最大位移处,达到动能和势能相等处所需的时间是多少?(在一个周期内)

- 18. 一横波沿绳子传播时的波动表达式为 $y = 0.05\cos(10\pi t 4\pi x)$ (SI制).
 - (1) 求此波的振幅、波速、频率和波长;
 - (2) 求绳子上各质点振动的最大速度和最大加速度;
 - (3) 求 x=0.2m 处的质点在 t=1s 时的相位,它是原点处质点在哪一时刻的相位?
 - (4) 分别画出 t=1s、1.25s、1.50s 各时刻的波形.

分

ψ. 波长为 500nm 的单色光, 垂直入射到光栅, 如果要求第一级谱线的衍射角为30°, 光栅每毫米应刻几条线? 如果单色光不纯, 波长在 0.5%范围内变化,则相应的衍射角变化范围 Δθ 如何?又如果光栅上下移动而保持光源不动, 衍射角θ又如何变化?

安徽大学 20<u>11</u>—20<u>12</u> 学年第<u>1</u>学期 《普通物理 B(下)》(A卷)考试试题参考答案及评分标准

一、单选题 (每小题 3 分, 共 15 分)

1. A 2. B 3. A 4. B 5. B

二、填空题(每小题3分,共15分)

- 6. 0.
- 7. 601.
- 8. 氧气, 氢气, T₁.
- 9. 1.4.

10. 0.

三、判断题(每题2分,共10分)

11. \checkmark 12. \times 13. \times 14. \checkmark 15. \checkmark

四、计算题 (每题 15 分, 共 60 分)

16. **AP**: (1)
$$\Delta E = C_V \Delta T = \frac{5}{2} R \Delta T = \frac{5}{2} \times 8.31 \times 60 = 1246.5(J)$$
 (3 分)

$$A = RT \ln \frac{V_2}{V_1} = 8.31 \times (273 + 80) \ln 2 = 2033.3(J)$$
(3 分)

$$Q = A + \Delta E = 3279.8(J) \tag{2 \%}$$

(2)
$$A = RT \ln \frac{V_2}{V_1} = 8.31 \times (273 + 20) \ln 2 = 1687.7(J)$$
 (3 分)

$$\Delta E = C_V \Delta T = \frac{5}{2} R \Delta T = \frac{5}{2} \times 8.31 \times 60 = 1246.5(J)$$
 (2 分)

$$Q = A + \Delta E = 2934.2(J) \tag{2 \%}$$

17. **解**: (1)由题意,
$$\frac{1}{2}mv^2 = \frac{1}{2}kx^2$$
及简谐振动特征, $\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2$,得

$$x = \pm \frac{A}{\sqrt{2}} = \pm 0.141 \tag{5 \%}$$

第1页 共3页

(2)由条件,
$$\omega = \sqrt{\frac{k}{m}} = 2rad/s$$
 $x = A\cos\Delta\varphi = \frac{\sqrt{2}}{2}A$,得

$$\Delta \varphi = \frac{\pi}{4}, 3\frac{\pi}{4}, 5\frac{\pi}{4}, 7\frac{\pi}{4} \tag{4.7}$$

$$\Delta t = \frac{\Delta \varphi}{\omega} = \frac{\pi}{8}, 3\frac{\pi}{8}, 5\frac{\pi}{8}, 7\frac{\pi}{8} \tag{4.5}$$

$$\Delta t = 0.39s, 1.2s, 2.0s, 2.7s$$
 (2 β)

18. **A**: (1) A = 0.05(m), $\omega = 10\pi \, s^{-1} = 31.4(s^{-1})$

$$v = \frac{\omega}{2\pi} = 5.0(Hz), \quad T = \frac{1}{v} = \frac{1}{5}s = 0.2(s)$$

$$u = \frac{\omega}{k} = \frac{10\pi}{4\pi} = 2.5(m/s), \quad \lambda = \frac{u}{v} = \frac{2.5}{5.0} = 0.5m$$
(4 \(\frac{\pi}{2}\))

(2)
$$\upsilon_m = A\omega = 0.05 \times 10\pi = 0.5\pi \approx 1.57 (m/s)$$
$$a_m = A\omega^2 = 0.05 \times 100\pi^2 = 5\pi^2 \approx 49.3 (m/s^2)$$

(3)
$$\varphi = 10\pi \times 1 - 4\pi \times 0.2 = 9.2\pi (\vec{\boxtimes} 0.8\pi)$$
$$\varphi = 10\pi \times t - 4\pi \times 0, \quad t = \frac{\varphi}{10\pi} = 0.92(s)$$

(4) t=1s 时波形曲线方程为: $y = 0.05\cos(10\pi \times 1 - 4\pi x) = 0.05\cos 4\pi x$

t=1.25s 时波形曲线方程为: $y=0.05\cos(10\pi \times 1.25-4\pi x)=0.05\cos(4\pi x-0.5\pi)$

t=1.50s 时波形曲线方程为: $y=0.05\cos(10\pi\times1.5-4\pi x)=0.05\cos(4\pi x-\pi)$

19. 解: (1) $d\sin\theta = k\lambda$ (5分)

 $d = \frac{k\lambda}{\sin\theta_k} = \frac{1 \times 500 \times 10^{-9}}{0.5} = 1 \times 10^{-6} \, m = 1 \times 10^{-3} \, mm$

每毫米 1000 条.

(2) 由光栅方程 $(a+b)\sin\theta = k\lambda$ 及其微分 $(a+b)\cos\theta d\theta = kd\lambda$ 得

$$d\theta = \frac{d\lambda}{\lambda} tg\theta = 0.5\% \times tg30^{\circ} = 2.887 \times 10^{-3} rad = 10'$$
(4 \(\frac{\phi}{\phi}\))

(4分)