Croissance comparée des fonctions puissances et de l'exponentielle en $+\infty$

L'objectif de cette activité est de déterminer $\lim_{x \to +\infty} \frac{e^x}{x^n}$ pour tout $n \in \mathbb{N}^*$.

Partie A: Expérimenter.

Nous avons vu que pour tout $n \in \mathbb{N}^*$, $\lim_{x \to +\infty} x^n = +\infty$.

- 1. a. A l'aide de la calculatrice, tracer la courbe représentative de la fonction $x \mapsto \frac{e^x}{r}$.
 - b. Quel semble être la limite de cette fonction en $+\infty$?
- 2. Faire de même avec la fonction $x \mapsto \frac{e^x}{x^2}$.
- 3. Soit f la fonction définie sur]0; + ∞ [par $f(x) = \frac{e^x}{r^{10}}$.
 - a. Dans un tableur, remplir la colonne A avec les nombres de 1 à 50.
 - b. Écrire une formule dans la cellule B1 donnant l'image de A1 par la fonction f pour pouvoir remplir la colonne B par copier-glisser. Que constate-t-on? Quelle semble être la limite de f en $+\infty$?
- 4. Soit g la fonction définie sur]0; $+\infty[$ par $g(x)=\frac{e^x}{x^{50}}$.
 - a. Refaire la même procédure que précédemment pour la fonction g en utilisant la colonne
 - C. Que constate-t-on? Quelle semble être la limite de g en $+\infty$?
 - b. Remplir la colonne D avec les nombres de 10 à 400 avec un pas de 10.
 - c. Écrire une formule dans la cellule E1 donnant l'image de D1 par la fonction g, pour pouvoir ensuite remplir la colonne E par copier glisser. Que constate-t-on? Cela remet-il en cause l'hypothèse de la question 5. a?

Bilan: Lorsque $n \in \mathbb{N}^*$, quelle semble être la limite de la fonction $x \mapsto \frac{e^x}{x^n}$ en $+\infty$?

B. Démonstration.

1. Cas n = 1.

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^x - \frac{x^2}{2}$.

- a. Déterminer la dérivée f' de f sur \mathbb{R}
- b. En utilisant le fait que pour tout $x \in \mathbb{R}$ (résultat démontré dans le chapitre sur la convexité), dresser le tableau de variations de f sur \mathbb{R}
- c. En déduire que pour tout x>0, $\frac{e^x}{x} > \frac{x}{2}$.
- d. En déduire que $\lim_{x\to+\infty} \frac{e^x}{x} = +\infty$.
- 2. Cas n > 1.
 - a. Montrer que pour tout $n \in \mathbb{N}^*$, et pour tout x > 0, $\frac{e^x}{x^n} = \left(\frac{e^{\frac{x}{n}}}{\frac{x}{n}}\right)^n \times \left(\frac{1}{n}\right)^n$.

b. On pose
$$X = \frac{x}{n}$$
. On a alors $\frac{e^x}{x^n} = \left(\frac{e^{\frac{x}{n}}}{X}\right)^n \times \left(\frac{1}{n}\right)^n$.

On admet le théorème suivant.

Soient f et g deux fonctions, a, b et c sont des nombres réels ou $+\infty$ ou $-\infty$. Si $\lim_{x\to a} f(x) = b$ et $\lim_{x\to b} f(x) = c$, alors $\lim_{x\to a} g(f(x)) = c$

A l'aide de ce théorème et du changement de variable proposé ci-dessus, démontrer que $\lim_{x\to +\infty} \frac{e^x}{x^n} = +\infty$

Partie C: pour aller plus loin,

L'objectif de cet exercice est de démontrer que, pour tout $n \in \mathbb{N}$, $\lim_{x \to -\infty} x^n e^x = 0$.

Posons X = -x.

- 1. Démontrer que calculer $\lim_{x \to -\infty} x^n e^x$ revient à calculer $\lim_{X \to +\infty} \frac{(-X)^n}{e^X}$.
- 2. a. Quelle est la limite de $\frac{e^{X}}{X^{n}}$ lorsque X tend vers $+\infty$?
 - b. En déduire $\lim_{X \to +\infty} \frac{X^n}{e^X}$.
 - c. En utilisant le fait que $(-X)^n = (-1)^n \times X^n$, en déduire $\lim_{X \to +\infty} \frac{(-X)^n}{e^X}$.
- 3. Conclure.