Challenge NPC

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

> Sugar is a SAT-based Constraint Solver. Constraint Satisfaction Problem (CSP) is encoded to a Boolean CNF formula, and it is solved by an external SAT solver.

— Sugar: a SAT-based Constraint Solver

It is well known that finding the chromatic number of a graph is an NPC problem. However, little tarjen claims that he can solve this problem with a simple greedy algorithm:

Color the vertices from 1 to n. For each vertex u, assign the minimum excluded (MEX) positive integer of $\{col_v|v < u, (v, u) \in E\}$ to col_u , where E is the edge set of the graph. For example, $\text{MEX}(\{1, 1, 2, 4\}) = 3$, $\text{MEX}(\emptyset) = 1$.

You want to show that this greedy algorithm is completely wrong. Construct a graph such that you can color this graph in c colors, but the greedy algorithm will color this graph with at least c + k colors.

Input

The only line contains one integer k $(1 \le k \le 500)$.

Output

The first line contains three integers n, m, and c $(1 \le n \le 1024, 0 \le m \le \frac{n(n-1)}{2}, 1 \le c \le n)$, representing the number of vertices, the number of edges, and the number of colors you can use to color this graph.

The following line contains n integers $col_1, col_2 \dots col_n$ $(1 \le col_i \le c)$, representing your coloring.

The following m lines each contain two integers u, v $(1 \le u, v \le n, u \ne v, col_u \ne col_v)$, representing an edge in your graph.

If there are multiple solutions, output any.

Example

standard input	standard output
1	4 3 2
	1 2 2 1
	1 2
	2 4
	3 4