Fonction $x \mapsto \sqrt[n]{x}$, $n \ge 2$

Théorème et définition

Soit *n* un entier supérieur ou égal à 2.

La fonction $x \mapsto x^n$ réalise une bijection de \mathbb{R}_+ sur \mathbb{R}_+ . Elle admet une fonction réciproque strictement croissante de \mathbb{R}_+ sur \mathbb{R}_+ , appelée fonction racine nème

Conséquences:

- > Pour tous réels positifs x et y, $y = x^n$, si et seulement si, $x = \sqrt[n]{y}$
- $\triangleright \lim_{n\to +\infty} \sqrt[n]{x} = +\infty$
- \blacktriangleright Soit deux entiers n et p tels que $n \ge 2$ et $p \ge 2$ et deux réels positifs a et b. Alors

$$\sqrt[n]{a^n} = a$$

$$\left(\sqrt[n]{a}\right)^n = a$$

$$\sqrt[n]{a.b} = \sqrt[n]{a}.\sqrt[n]{b}$$

$$\sqrt[n]{\frac{\overline{a}}{b}} = \frac{\sqrt[n]{\overline{a}}}{\sqrt[n]{\overline{b}}}, b \neq 0$$

$$\sqrt[n]{a} = \sqrt[np]{a^p}$$

$$\left(\sqrt[n]{a}\right)^p = \sqrt[n]{a^p}$$

$$\sqrt[n]{\sqrt[p]{a}} = \sqrt[np]{a}$$

Théorème

Pour tout entier $n \ge 2$, la fonction $h: x \mapsto \sqrt[n]{x}$ est continue sur $[0, +\infty[$ et dérivable sur $]0, +\infty[$

De plus, $h'(x) = \frac{1}{n(\sqrt[n]{x})^{n-1}}$, pour tout x > 0

4) Fonction
$$x \mapsto \sqrt[n]{u(x)}, n \ge 2$$

Théorème

Soit u une fonction dérivable et positive sur un intervalle I et un entier $n \ge 2$.

la fonction $g: x \mapsto \sqrt[n]{u(x)}$ est continue sur I et dérivable en tout réel x de I tel que $u(x) \neq 0$

De plus, $g'(x) = \frac{u'(x)}{n \left(\sqrt[n]{u(x)} \right)^{n-1}}$, pour tout x de I tel que u(x) > 0

Exercice 1

Soit f la fonction définie par : $f(x) = \sqrt[4]{x^2 - 1}$ et C_f sa courbe représentative dans un repère orthonormé $(0, \vec{\imath}, \vec{\jmath})$

- 1) Vérifier que f est une fonction paire
- 2) a) Montrer que pour tout $x \ge 1$, $f(x) = \sqrt{x} \sqrt[4]{1 \frac{1}{x^2}}$
 - b) En déduire $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \left(\frac{f(x)}{x}\right)$
- 3) a) Etudier la dérivabilité de f à droite en 1
 - b) Montrer que f est dérivable sur]1, $+\infty$ [et calculer f'(x)
 - c) Dresser le tableau de variation de f
- 4) a) On désigne par Δ la droite d'équation y = xEtudier la position relative de la courbe C_f et la droite Δ sur $[1, +\infty[$
 - b) Tracer la courbe C_f
- 5) Soit g la restriction de f à l'intervalle $[1, +\infty[$
 - a) Montrer que g réalise une bijection de $[1, +\infty[$ sur un intervalle J à préciser
 - b) Montrer que g^{-1} est dérivable sur J
 - c) Tracer la courbe C' de g^{-1} dans le repère $(O, \vec{\imath}, \vec{\jmath})$

Exercice2

- A) Soit f la fonction définie sur $[0, +\infty[$ par $: f(x) = \frac{x}{2}\sqrt{|x^2 4|}$
- 1) Etudier la dérivabilité de f en 2. Interpréter géométriquement les résultats trouvés
- 2) a) Justifier que f est dérivable sur $[0, +\infty[\setminus \{2\}$
 - b) Dresser le tableau de variation de f puis construire la courbe de f
- 3) a) Montrer que f réalise une bijection de [0, 1] sur un intervalle J à préciser.
 - b) Etudier la dérivabilité de f^{-1} sur J
 - c) Déterminer $f^{-1}(x)$ pour $x \in J$
- B) On considère la suite U définie sur $\mathbb N$ par : $\begin{cases} U_0 = \frac{1}{3} \\ U_{n+1} = f(U_n) \end{cases}$
- 1) Montrer que pour tout $n\in\mathbb{N}$ on a : $\mathbf{0}\leq oldsymbol{U_n}\leq \mathbf{1}$
- 2) Montrer que $oldsymbol{u}$ est une suite décroissante
- 3) En déduire que la suite U est convergente vers un réel qu'on note par I
- 4) a) Montrer que pour tout $n \in \mathbb{N}$; on a : $rac{1}{8}U_n^3 \leq U_n U_{n+1}$
 - b) En déduire la valeur de \boldsymbol{l}