чений Y функции f(x), то это соответствие определяет на множестве Y некоторую, вообще говоря, многозначную функцию

$$x=[-1(y),$$

называемую обратной по отношению к функции f(x). Если функция y = f(x) монотонна в строгом смысле, т. е. $f(x_2) > f(x_1)$ (или соответственно $f(x_2) < f(x_1)$) при $x_2 > x_1$. то обратная функция $x = f^{-1}(y)$ является однозначной и монотонной в том же смысле.

Определить области существования следующих функций:

151.
$$y = \frac{x^3}{1+x}$$
. 152. $y = \sqrt{3x-x^3}$.

153.
$$y = (x-2)\sqrt{\frac{1+x}{1-x}}$$
.

154. a)
$$y = \log(x^2 - 4)$$
; 6) $y = \log(x + 2) + \log(x - 2)$.

155.
$$y = \sqrt{\sin(\sqrt{x})}$$
. 156. $y = \sqrt{\cos x^3}$.

157.
$$y = \lg \left(\sin \frac{\pi}{x} \right)$$
. 158. $y = \frac{\sqrt{x}}{\sin \pi x}$.

159.
$$y = \arcsin \frac{2x}{1+x}$$
 160. $y = \arccos (2 \sin x)$

161.
$$y = \lg[\cos(\lg x)]$$
. 162(H). $y = (x + |x|) \sqrt{x \sin^2 \pi x}$.

163. $y = \text{ctg } \pi x + \arccos{(2^x)}$.

164.
$$y = \arcsin(1-x) + \lg(\lg x)$$
. 165. $y = (2x)$!

165.1.
$$y = \log_2 \log_3 \log_4 x$$
. 165.2. $y = \sqrt[4]{\log \log x}$.

165.3.
$$y = \sqrt{\sin 2x} + \sqrt{\sin 3x}$$
 $(0 \le x \le 2\pi)$.

Определить области существования и множество вначений следующих функций:

166.
$$y = \sqrt{2 + x - x^2}$$
. 167. $y = \lg(1 - 2\cos x)$.
168. $y = \arccos \frac{2x}{1 + x^2}$. 169. $y = \arcsin(\lg \frac{x}{10})$.

170.
$$y = (-1)^x$$
.

171. В треугольник ABC (рис. 1), основание которого AC = b и высота BD = h, вписан прямоугольник KLMN, высота которого NM = x. Выразить периметр