Overview

- Combine a utility and cost model to mine cost-effective guidance patterns in E-learning event logs.
- Design measures to evaluate the correlation between patterns and the binary utility.
- Design a pruning strategy to improve algorithm's performance.
- A case study in real life E-learning dataset shows some interesting pattern.
- Detailed experiments and the visualization patterns' properties demonstrate our models' accuracy and usefulness.

High-utility sequential pattern mining

Input

```
Quantitative sequences with purchase quantities (internal utility) sequence 1: \langle (a,3), (b,3), (c,1), (b,4) \rangle
```

sequence 2: $\langle (a,1), (e,3) \rangle$

sequence 3: ((a, 6), (c, 7), (b, 8), (d, 9))

sequence 4: $\langle (b,3), (c,1) \rangle$

Unit profits (external utility)

$$a = 5\$, b = 1\$, c = 2\$, d = 1\$$$

a minimum utility threshold (e.g. minutil = 30)

Output

All sequences having a $utility \ge minutil$)

High-utility sequential pattern mining

Input

```
Quantitative sequences with purchase quantities (internal utility) sequence 1: (a,3),(b,3),(c,1),(b,4)\rangle sequence 2: \langle (a,1),(e,3)\rangle sequence 3: (a,6),(c,7),(b,8),(d,9)\rangle sequence 4: \langle (b,3),(c,1)\rangle Unit profits (external utility) a=5$ b=1$, c=2$, d=1$
```

a minimum utility threshold (e.g. minutil = 30)

Output

All sequences having a $utility \ge minutil$)

The sequence $\langle ab \rangle$ is a high utility pattern because: $u(\langle ab \rangle) = 3 \times 5 + 3 \times 1 + 6 \times 5 + 8 \times 1 = 56 > minutil$ Sequence 1 Sequence 3

Limitations

- **High utility pattern mining** aims at discovering patterns that have a high utility.
- But it ignores the cost or effort required to obtain these benefits.
- May find patterns that have:
 - a high utility but a very high cost
- Cost of a pattern: time, money, resources consumed or effort.

Our proposal: Find Cost-effective Patterns →

Sequential Activity Database

- A sequence is a series of activities, each having a cost.
- The **utility** of a sequence is a binary class.

Sid	<activity :="" cost=""></activity>	Utility
S ₁	<(a:4)(b:2)(e:4)(c:4)(d:5)>	Positive
S ₂	<(b:3)(c:2)(f:1)(d:1)(e:2)>	Negative
S ₃	<(a:2)(f:2)(e:1)(c:3)(d:5)>	Positive
S ₄	<(a:2)(b:2)(c:1)(f:2)>	Negative

(e.g. cured or died after some medical treatments)

The *support* measure

Sid	<activity :="" cost=""></activity>	Utility
S ₁	<(a:4)(b:2)(e:4)(c:4)(d:5)>	•••
S ₂	<(b:3)(c:2)(f:1)(d:1)(e:2)>	•••
S ₃	<(a:2)(f:2)(e:1)(c:3)(d:5)>	•••
S ₄	<(a:2)(b:2)(c:1)(f:2)>	•••

The **support** of a pattern p:

$$\sup(p) = |S_S|p \subseteq S_S \in DB|$$

(number of sequences containing p)

e.g.
$$sup(\langle ab \rangle) = |\{S_1, S_4\}| = 2$$
 sequences

This measure is used to remove noise.

The *cost* measure

Sid	<activity :="" cost=""></activity>	•••
S ₁	<(a:4)(b:2)(e:4)(c:4)(d:5)>	•••
S ₂	<(b:3)(c:2)(f:1)(d:1)(e:2)>	•••
S ₃	<(a:2)(f:2)(e:1)(c:3)(d:5)>	•••
S ₄	<(a:2)(b:2)(c:1)(f:2)>	•••

The **cost** of a pattern p:

$$c(p, S_s) = \sum_{v_i \in first(p, S_s)} c(v_i, S_s)$$

$$c(ab, S_1) = 4 + 2 = 6$$

This measure is used to assess the effort or resource spent.

The **average cost** of a pattern p:

$$ac(p) = \frac{\sum_{p \subseteq S_S \in DB} c(p, S_S)}{|\sup(p)|}$$

$$ac(ab) = 6 + 4 / 2 = 5$$

Sequence 1 Sequence 4

Problem 1:

Finding all cost-effective patterns in a binary DB

Sid	<activity :="" cost=""></activity>	Utility
S ₁	<(a:4)(b:2)(e:4)(c:4)(d:5)>	Positive
S ₂	<(b:3)(c:2)(f:1)(d:1)(e:2)>	Negative
S ₃	<(a:2)(f:2)(e:1)(c:3)(d:5)>	Positive
S ₄	<(a:2)(b:2)(c:1)(f:2)>	Negative

A pattern p is cost-effective if:

$$\sup(p) \ge \min \sup$$

$$ac(p) \le \max \cos t$$

$$occup(p) \ge \min occup$$

Furthermore, we measure the **correlation of** a **pattern** p with the desirable outcome:

$$cor(p) = \frac{ac(D_p^+) - ac(D_p^-)}{Std} \sqrt{\frac{|D_p^+||D_p^-|}{|D_p^+ \cup D_p^-|}} \quad \in [-1,1]$$
 a positive correlation is desirable

Pattern	support	average cost	correlation
<ac></ac>	3	5.3	0.80

More details...

The **correlation** of a pattern *p*:

$$cor(p) = \frac{ac(D_p^+) - ac(D_p^-)}{Std} \sqrt{\frac{|D_p^+||D_p^-|}{|D_p^+ \cup D_p^-|}} \quad \text{where, } ac(D_p^+), ac(D_p^-) \text{ denotes pattern p' s average cost in positive and negative sequences, respectively.}$$

- $ac(D_p^+) ac(D_p^-)$, indicates the difference in terms of average cost for positive and negative sequences.
- *Std*, standard deviation of the cost to avoid absolute values.
- $\sqrt{\frac{|D_p^+||D_p^-|}{|D_p^+|\cup D_p^-|}}$, measures distribution difference to indicate patterns' effect on the outcome.
- The *cor* measure values are in the [-1,1] interval.
- The greater positive(negative) the *cor* measure is, the more a pattern is correlated with a positive (negative) utility.

How to reduce the search space? (1)

Sid	<activity :="" cost=""></activity>	Utility
S ₁	<(a:4)(b:2)(e:4)(c:4)(d:5)>	•••
S ₂	<(b:3)(c:2)(f:1)(d:1)(e:2)>	•••
S ₃	<(a:2)(f:2)(e:1)(c:3)(d:5)>	•••
S ₄	<(a:2)(b:2)(c:1)(f:2)>	•••

We propose a **lower-bound** on the **average cost**:

$$ASC(p) = \frac{1}{sup} \sum_{i=1,2,..,minsup} c(p, S_i)$$

where $c(p,S_i)$ are sorted in ascending order.

e.g. For
$$minsup = 2$$
 $c(bc, S_1) = 6$ $c(bc, S_2) = 5$ $c(bc, S_4) = 3$

$$ASC(bc) = (3+5) / 2 = 2.67$$

Properties of ASC

$$ASC(p) = \frac{1}{\sup} \sum_{i=1,2,..,minsup} c(p, S_i)$$

Properties of the ASC:

- I. Underestimation: The ASC of a pattern p is smaller than or equal to its cost, $ASC(p) \le c(p)$
- II. Monotonicity: Let p_x and p_y be two patterns, If $p_x \subset p_y$ then $ASC(p_x) \leq ASC(p_y)$
- **III.Pruning**: For a pattern p, if $ASC(p) > \max cost$, then pattern p can be eliminated as well as its supersequences.

Execution times

gray line: no pruning strategy / orange line: using AMSC

results: up to 10 times faster

BMS, Bible and SIGN are benchmark datasets

Case Study: data review

- Six session, each session contains 115 students' study records.
- In each session, 15 activities and 13 features in system are documented.

e.g

```
Aulaweb, 2.10.2014 11:25:35, 2.10.2014 11:25:42, 218, 0, 0,
              Blank, 2.10.2014 11:25:43, 2.10.2014 11:25:43, 0, 0, 0, 0, 0, 59, 0
              Deeds, 2.10.2014 11:25:44, 2.10.2014 11:26:17, 154117, 6, 0,
              Other, 2.10.2014 11:26:18, 2.10.2014 11:26:18, 0, 0, 0, 2, 0,
              Other, 2.10.2014 11:26:19, 2.10.2014 11:26:27,
              Blank, 2.10.2014 11:26:28, 2.10.2014 11:26:28, 0, 0, 0, 1, 0, 93, 0
              Deeds, 2.10.2014 11:26:29, 2.10.2014 11:26:29, 0, 0, 0, 1, 0, 75, 0
              Aulaweb, 2.10.2014 11:26:30, 2.10.2014 11:26:33, 0, 0, 0, 2, 0,
              Deeds, 2.10.2014 11:26:34, 2.10.2014 11:26:41, 4933, 0, 0,
              Other, 2.10.2014 11:26:42, 2.10.2014 11:26:47, 3212, 0,
              Aulaweb, 2.10.2014 11:26:48, 2.10.2014 11:27:0, 1174, 3,
              Aulaweb, 2.10.2014 11:27:1, 2.10.2014 11:27:4, 63, 0, 0, 2,
              Other, 2.10.2014 11:27:5, 2.10.2014 11:27:10, 7834, 0, 0, 0, 0,
              Aulaweb, 2.10.2014 11:27:11, 2.10.2014 11:27:15, 0, 4, 0, 2,
              Other, 2.10.2014 11:27:16, 2.10.2014 11:27:17, 140, 0, 0, 0, 0, 99, 0
          Es 1 1, Study Es 1 1, 2.10.2014 11:27:18, 2.10.2014 11:27:45, 165188, 0, 0, 4, 0, 715, 0
          Es 1 1, Deeds Es 1 1, 2.10.2014 11:27:46, 2.10.2014 11:27:49, 234, 0, 0,
          Es 1 1, Study Es 1 1, 2.10.2014 11:27:50, 2.10.2014 11:27:50, 0, 0, 0, 0, 0, 77, 0
       1, Es 1 1, Deeds Es 1 1, 2.10.2014 11:27:51, 2.10.2014 11:33:57, 11510470, 0, 0, 230, 54, 16970, 7
    1, 1, Es 1 1, Properties, 2.10.2014 11:33:58, 2.10.2014 11:33:59, 31, 0, 0, 0, 189, 0
   1, 1, Es 1 1, Deeds Es 1 1, 2.10.2014 11:34:0, 2.10.2014 11:36:3, 2396565, 5, 0, 50, 0, 2811, 0
   1, 1, Es 1 1, Other, 2.10.2014 11:36:4, 2.10.2014 11:36:12, 11543, 0, 0, 2, 0, 356, 0
24 1, 1, Es 1 1, Deeds Es 1 1, 2.10.2014 11:36:13, 2.10.2014 11:36:55, 819129, 0, 0, 2, 0, 116, 0
```

Case study 1: binary e-learning DB

Database

- 115 students
- A **sequence** is a series of learning sessions, e_1 to e_6 .
- **Cost**: time to complete a session.
- **Utility**: to *pass* or *fail* the final exam.

Observation: now the point threshold for passing the exam is set to be 60, when the threshold **decrease**, the **correlation** values **increase**.

Cost-efficient patterns

Pattern	Correlation	Average Cost	Support
$\langle e_1, e_6 \rangle$	0.210	250.2	39
$\langle e_1, e_2, e_5, e_6 \rangle$	0.209	485.7	34
$\langle e_2, e_6 \rangle$	0.208	298.4	41
$\langle e_1, e_2, e_6 \rangle$	0.204	391.9	36
$\langle e_1, e_5, e_6 \rangle$	0.194	344.3	37
$\langle e_6 angle$	0.193	157.2	50
$\langle e_1, e_4 \rangle$	-0.004	169.1	41
$\langle e_1, e_5 \rangle$	0.002	186.0	41
$\langle e_2, e_3 \rangle$	0.001	284.1	40
$\langle e_3, e_4, e_5, e_6 \rangle$	0.001	469.5	40
$\langle e_1, e_4, e_5 \rangle$	0.003	263.2	38
$\langle e_1, e_2, e_4 \rangle$	-0.003	311.5	36
$\langle e_2, e_3, e_4 \rangle$	-0.005	358.2	38
$\langle e_5 \rangle$	-0.147	96.3	53
$\langle e_4, e_5 \rangle$	-0.109	171.0	49
$\langle e_1, e_3 \rangle$	-0.099	234.6	37
$\langle e_1, e_3, e_4 \rangle$	-0.081	311.2	35

Visualization and Interpretability

The difference distribution in terms of cost shows the measure's rationality.