Machine Learning Regression Problem

Thomas Haschka 5 Mai 2021

Regression model

- Fit input parameters to expected output parameters
- Typical fit function

Regression Model

Loss Function

Distance(Estimated,Truth)

Distance(F(Features, Parameters), Truth)

In adapting F and its parameters we minimize the distance, between prediction and truth

Example Linear Regression

Example polynomial fit

Regularisation

Linear Regression: Ax=b

Loss Function: ||Ax-b||

Regularized Loss Function: $||Ax-b||+|\lambda|x|+||\lambda^2x||$

Regularization

Regularized Loss Function:
$$\Sigma ||Ax-b|| + |\lambda|x| + ||\lambda^2x||$$

LI Part

L2 Part

Regularization Regularized Loss Function: $\Sigma || \Delta x - b|| + |\lambda| x || + ||\lambda|^2 x||$

Evolution of values in x by modifying λ

R. Tibshirani et al. (1996)

Lasso:
$$\Sigma ||Ax-b|| + |\lambda|x|$$

Stability against outliers

LI-norm (Absolute Value)

less sensitive to outliers (can yield better fits)

L2-norm (Euclidean Norm)

sensitive to single large outliers

Coefficient of Determination

Model Validation

yields a confidence SCORE +- error ->How often will I hit the right target

but know what you are doing!