CLAIMS

What is claimed is:

1	1.	An acoustic logging apparatus comprising:
2		(a) a drill collar conveyed on a drilling tubular in a borehole within a
3		formation, said drill collar having a cutoff frequency for a collar mode
4		wave therein; and
5		(b) a transmitter on the collar producing a signal at a frequency below said
6		cutoff frequency, said signal comprising primarily of a formation mode.
1	2.	The logging apparatus of claim 1 wherein the cutoff frequency is determined at
2		least in part by a thickness of the drill collar.
1	3.	The logging apparatus of claim 1 wherein the drill collar further comprises a
2		plurality of segments.
1	4.	The logging apparatus of claim 1 wherein said collar mode is a quadrupole mode
2		and said transmitter is a quadrupole transmitter and said signal comprises a
3		quadrupole signal having an azimuthal variation substantially given by $\cos 2\theta$,
4		where θ is an azimuthal.
1	5.	The logging apparatus of claim 1 further comprising at least one signal detector
	٥.	
2		on the drill collar for detecting said signal, said at least one signal detector spaced
,		ANAM TRAM THE TRANSMITTER IN AN AVIOLATION OF THE CALLER

2

1

2

1	6.	The logging apparatus of claim 5 wherein the at least one signal detector further
2		comprises a plurality of detector elements disposed circumferentially about the
3		collar

- 7. The logging apparatus of claim 6 wherein the transmitter further comprises a plurality of transmitter elements
- 1 8. The logging apparatus of claim 7 wherein the plurality of transmitter elements is 2 the same as the plurality of detector elements
 - 9. The logging apparatus of claim 5 wherein said at least one signal detector further comprises a plurality of axially spaced-apart signal detectors.
- 1 10. The logging apparatus of claim 8 wherein said detector elements are azimuthally aligned with elements of said transmitter.
- 1 11. The logging apparatus of claim 7 wherein said detector elements are azimuthally aligned with a junction between adjacent elements of said transmitter.
- 1 12. The logging apparatus of claim 4 wherein said quadrupole transmitter further
 2 comprises 2N pairs of diametrically opposed transmitter elements disposed
 3 circumferentially around said collar, where N is an integer.

2

3

- 1 13. The logging apparatus of claim 12 wherein N is equal to one.
- 1 14. The logging apparatus of claim 4 wherein said quadrupole transmitter comprises 2 two dipole transmitters.
- 1 15. The logging apparatus of claim 4 wherein said transmitter further comprises a
 2 plurality of elements including a material selected from: (i) a piezoelectric
 3 material, (ii) an electrostrictive material; and, (iii) a magnetostrictive material.
 - 16. The logging apparatus of claim 4 wherein said transmitter further comprises a device selected from (i) a bender bar, (ii) an electromechanical device, and, (iii) a porthole.
- 1 17. The logging apparatus of claim 6 wherein said detector elements further comprise
 2 a material selected from: (i) a piezoelectric material, (ii) an electrostrictive
 3 material; and, (iii) a magnetostrictive material.
- 1 18. The logging apparatus of claim 6 wherein said detector elements further comprise 2 a device selected from (i) a bender bar, and, (ii) an electromechanical device.
- 1 19. The apparatus of claim 5 wherein the at least one signal detector is spaced between the transmitter and a drillbit conveyed on the drill collar.

1	20.	The apparatus of claim 5 wherein the at least on signal detector further comprises
2		at least one additional signal detector spaced axially apart from the at least one
3		signal detector.
1	21.	The apparatus of claim 1 wherein said formation has a shear velocity greater than
2		a compressional velocity of a fluid in the borehole and said signal further
3		comprises a first quadrupole mode and a second quadrupole mode, said
4		transmitter operating at a frequency above an Airy phase associated with the first
5		quadrupole mode.
1	22.	An acoustic logging apparatus comprising:
2		(a) a drill collar conveyed on a drilling tubular in a borehole within a
3		formation, said drill collar having a cutoff frequency for a collar mode
4		wave therein;
5		(b) a transmitter on the collar producing a signal, said signal comprising a
6		formation mode and a collar mode;
7		(c) at least one signal detector on the drill collar for detecting said signal, said
8		at least one signal detector spaced apart from the transmitter in an axial
9		direction of the collar and receiving signals including the formation mode
10		and the collar mode; and
11		(d) a processor including a filter for low-pass filtering of a component of the

received signals having a frequency below the cutoff frequency.

2

1

2

3

1	23.	The logging apparatus of claim 22 wherein said collar mode is a quadrupole mode
2		and said transmitter is a quadrupole transmitter.

- The logging apparatus of claim 22 wherein the at least one signal detector further comprises a plurality of detector elements disposed circumferentially about the collar.
 - 25. The logging apparatus of claim 24 wherein the transmitter further comprises a plurality of transmitter elements.
 - 26. The logging apparatus of claim 23 wherein said quadrupole transmitter further comprises at least 2N pairs of diametrically opposed transmitter elements disposed circumferentially around said collar, where N is an integer
- The logging apparatus of claim 25 wherein said transmitter elements further
 comprise a material selected from: (i) a piezoelectric material, (ii) an
 electrostrictive material; and, (iii) a magnetostrictive material.
- The logging apparatus of claim 25 wherein said transmitter elements further

 comprise a device selected from (i) a bender bar, (ii) an electromechanical device,

 and, (iii) a portnole

1	29.	The le	ogging apparatus of claim 22 wherein the at least one detector further
2		comp	rises a plurality of detector elements comprising a material selected from: (i)
3		a piez	zoelectric material, (ii) an electrostrictive material; and, (iii) a
4		magn	etostrictive material.
1	30.	The l	ogging apparatus of claim 22 wherein said formation has a shear velocity
2		greate	er than a compressional velocity of a fluid in the borehole and said signal
3		furthe	er comprises a first quadrupole mode and a second quadrupole mode, and
4		said p	processor further comprises a filter for high pass filtering said signal above
5		an Ai	iry phase associated with the first quadrupole mode.
1	31.	A she	ear wave logging apparatus comprising:
2		(a)	a drilling collar conveyed on a drilling tubular in a borehole within a
3			formation, said drilling collar having a cutoff frequency for a collar mode
4			wave therein;
5	,	(b)	a quadrupole transmitter on the collar producing a signal at a frequency
6			below said cutoff frequency, said signal comprising primarily of a
7			formation mode having an azimuthal variation substantially having a
8			$\cos 2\theta$ variation, wherein θ is an azimuthal angle;
9		(c)	at least one detector spaced axially apart from the quadrupole transmitter
10			for detecting said signal; and
11		(d)	a processor for processing the detected signal and determining therefrom a

shear velocity of the formation.

1	32.	A snea	ar wave logging apparatus comprising.
2		(a)	a drilling collar conveyed on a drilling tubular in a borehole within a
3			formation, said drilling collar having a cutoff frequency for a collar mode
4			wave therein;
5		(b)	a quadrupole transmitter on the collar producing a signal, said signal
6			comprising a formation mode and a collar mode;
7		(c)	at least one detector spaced axially apart from the quadrupole transmitter
8			for detecting said signal;
9		(d)	a processor for processing the detected signal using a filter for low pass
10			filtering components of the signal below said cutoff frequency and
11			determining therefrom a shear velocity of the formation.
1	33.	An ap	paratus for obtaining information about a parameter of interest of a
2		subsu	rface formation during drilling of a borehole therein comprising:
3		(a)	a drill collar conveyed on a drilling tubular in the borehole, said drilling
4			collar having a cutoff frequency for a collar mode wave therein;
5		(b)	a quadrupole transmitter on the collar producing an acoustic signal at a
6			frequency below said cutoff frequency, said signal comprising primarily
7			of a formation mode indicative of a shear velocity of the formation;
8		(c)	a drillbit operatively coupled to said drilling collar, said drillbit adapted to
9			drill the borehole upon rotation of the drilling collar;
10		(d)	at least one detector disposed between the transmitter and the drillbit, said
			41

at least one detector receiving said signal; and

37.

414-23747US November 7, 2001

1

11

The method of claim 34 wherein said transmitter is a quadrupole transmitter

2		comprising two pairs of diametrically opposed transmitter elements and
3		producing said signal further comprises:
4		activating each element of each pair to produce a signal having an azimuthal
5		dependence of $\cos 2\theta$, where θ is the azimuthal angle.
1	38.	The method of claim 34 wherein said further comprises two dipole transmitters.
1	39.	The method of claim 34 wherein the at least one signal detector further comprises
2		detector elements disposed circumferentially on the collar.
1	40.	The method of claim 39 wherein said at least one signal detector further
2		comprises a plurality of axially spaced-apart signal detectors.
1	41.	The method of claim 34 wherein the transmitter comprises a quadrupole
2		transmitter and the at least one signal detector comprises two detector elements,
3		the method further comprising operating the transmitter at a first time with one
4		polarization and at a second time with a second polarization.
1	42.	The method of claim 40 wherein processing said signal further comprises using
2		said plurality of axially spaced-apart detectors for beam steering.
1	43.	The method of claim 34 wherein said formation has a shear velocity greater than a

compressional velocity of a fluid in the borehole and said signal further comprises

3		a first quadrupole mode and a second quadrupole mode, said transmitter
4		producing a signal above an Airy phase associated with the first quadrupole
5		mode.
1	44.	A method of using an acoustic logging apparatus on drilling collar conveyed on a
2		drilling tubular in a borehole within a formation, the method comprising:
3		(a) using a transmitter on the logging apparatus for producing a quadrupole
4		signal comprising a formation mode and a tool mode;
5		(b) using at least one signal detector on the drilling collar spaced apart axially
6		from the transmitter for detecting said signal; and
7		(d) using a processor for low-pass filtering a component of the detected signal
8		having a frequency below a cutoff frequency of the tool mode in the drill
9		collar.
1	45.	The method of claim 44 wherein said transmitter is comprises two pairs of
2		diametrically opposed transmitter elements and producing said signal further
3		comprises:
4		activating said elements to produce a signal having a $\cos 2\theta$ azimuthal variation.
1	46.	The method of claim 44 wherein said transmitter further comprises two dipoles.
1	47.	The method of claim 44 wherein the at least one signal detector further comprises
2		detector elements disposed circumferentially on the collar.

5

1	48.	The method of claim 44 wherein said at least one signal detector further
2		comprises a plurality of axially spaced-apart signal detectors.
2		Comprises a praiatily of anially spaced apart signal acceptain.
1	49.	The method of claim 44 wherein the at least one transmitter comprises a
2		quadrupole transmitter and the at least one signal detector comprises two detector
3		elements, the method further comprising operating the transmitter at a first time
4		with one polarization and at a second time with a second polarization.
1	50.	The method of claim 48 wherein processing said signal further comprises using
2		said plurality of axially spaced-apart detectors for beam steering
1	51.	The method of claim 44 wherein said formation has a shear velocity greater than a
	J1.	
2		compressional velocity of a fluid in the borehole and said signal further comprises
3		a first quadrupole mode and a second quadrupole mode, the method further
4		comprising using said processor for high pass filtering said signal above an Airy
5		phase associated with the first quadrupole mode.
1	52.	A method of determining a parameter of interest of an earth formation using a
2		shear wave logging apparatus on a drilling collar, the method comprising:
3		(a) conveying the drilling collar on a drilling tubular in a borehole within the
		- · · · · · · · · · · · · · · · · · · ·

formation, said drilling collar having a cutoff frequency for a collar mode

wave therein;

6		(b)	using a quadrupole transmitter on the collar for producing a signal at a
7			frequency below said cutoff frequency, said signal comprising primarily
8			of a formation mode;
9		(c)	using at least one detector spaced axially apart from the quadrupole
10			transmitter on the drilling collar for detecting said signal; and
11		(d)	using a processor for processing the detected signal and determining
12			therefrom a shear velocity of the formation.
1	53.	A me	ethod of determining a parameter of interest of an earth formation using a
2		shear	wave logging apparatus on a drilling collar, the method comprising:
3		(a)	using a quadrupole transmitter on the collar for producing a signal, said
4			signal comprising a formation mode and a tool mode;
5		(c)	using at least one detector spaced axially apart from the quadrupole
6			transmitter for detecting said signal;
7		(d)	using a processor for processing the detected signal using a filter for
8			attenuating components of the signal above said cutoff frequency and
9			determining therefrom a shear velocity of the formation.
1	54.	A m	ethod of obtaining information about a parameter of interest of a subsurface
2		form	nation during drilling of a borehole therein comprising:
3		(a)	conveying a drilling collar conveyed on a drilling tubular into the
4			borehole, said drilling collar having a cutoff frequency for a collar mode
5			wave therein;

	6	(b)	using a quadrupole transmitter on the collar producing an acoustic signal
	7		at a frequency below said cutoff frequency, said signal comprising
	8		primarily of a formation mode indicative of a shear velocity of the
	9		formation;
	10	(c)	using a drillbit operatively coupled to said drilling collar for drilling said
	11		borehole;
	12	(d)	using at least one detector disposed between the transmitter and the drillbit
	13		for receiving said signal; and
	14	(e)	processor for processing said received signal and determining therefrom
***	15		the parameter of interest.
:			