

EK79631 EPD Driver

# **Table of Contents**

| 1.                                                   | GENERAL DESCRIPTION              | 2                          |
|------------------------------------------------------|----------------------------------|----------------------------|
| 2.                                                   | FEATURES                         | 2                          |
| 3.                                                   | BLOCK DIAGRAM                    |                            |
| 4.                                                   | PIN DESCRIPTION                  | 4                          |
| 5.                                                   | FUNCTION DESCRIPTION             | 6                          |
| 5.1.<br>5.2.<br>5.3.<br>5.4.                         | Power On/Off SequencePower Level | 8<br>8                     |
| 6.                                                   | ELECTRICAL SPECIFICATION         |                            |
| 6.1.<br>6.2.<br>6.3.<br>6.4.<br>6.5.<br>6.6.<br>6.7. | Recommended Operating Range      | 10<br>10<br>11<br>12<br>14 |
| 7.                                                   | DEFINITIONS                      | 17                         |
| 7.1.<br>7.2.                                         |                                  |                            |

## S1280\*G840 EPD Driver

### 1. GENERAL DESCRIPTION

The EK79631 is an EPD IC max for 1280\*840 active matrix display, include Source driver and Gate driver. It also provides cascade function for dot expansion.

The Source driver is a selectable 1280, 1200, 1024, 960 or 800 bit long 2-bit wide serial-input parallel-output driver with level conversion on each parallel output which converts the 2 digital bits into positive, GND, or negative analog output voltages. An 16-bit input bus simultaneously inputs 8 groups of 2 bits each. It consists of a Bi-Directional Shift Data Inputs, Transfer Latch, and 1280 bit Level Shifter/Output Driver. Each "S[1] .. S[1280]" pin is switched to one of [VPOS, GND, VNEG], according to the D15...D0 logic levels clocked into the Source driver, modified by the OE pin.

After a start pulse of Gate driver is triggered, output pins will output high-driving voltage pulses sequentially for the gate signals of the display. It supports 840/825/768/758/720/704/640/600/480 channels, shift up/down selection.

### 2. FEATURES

#### Source

- CMOS Technology
- 1280/1200/1024/960/800 Output Channels Selectable
- Drives Segment or Active Matrix Displays
- +/-15 Volt Source Output Driver Supply Voltage
- Logical Interface: 1.7V ~ 3.6V
- Maximum Operating Frequency: 60MHz / 48MHz (VCC = 2.5V ~ 3.6V / 1.7V ~ 2.5V)
- Bi-Directional Shift 16-bit Data Inputs

### Gate

- 840/825/768/758/720/704/640/600/480 Output Channels Selectable
- Built-in Bi-direction Shift Register
- Logical Interface: 1.7V ~ 3.6V
- Output Supply Voltage: VGL + 49V
- Maximum Operation Frequency: 200KHZ
- CMOS Silicon Gate

### Package

COG type

## 3. BLOCK DIAGRAM



Figure 1. Block Diagram

## 4. PIN DESCRIPTION

Table 1. Pin Description

| Pin Name       | Pin Type     |                                                                       |                              | D        | escrip    | tion        |           |          |      |           |
|----------------|--------------|-----------------------------------------------------------------------|------------------------------|----------|-----------|-------------|-----------|----------|------|-----------|
| Source Driver  |              |                                                                       |                              |          |           |             |           |          |      |           |
| CLK            | Input        |                                                                       | ver clock inpu               |          |           |             |           |          |      |           |
|                | mpat         |                                                                       | s are capture                |          | 1         |             |           | ınal.    |      |           |
| STL1           |              | SHR                                                                   | Start Pulse                  |          | Start     | Pulse Οι    | ıtput     |          |      |           |
| OTLO           | Bi-direction | Н                                                                     | STL2                         |          |           | STL1        |           |          |      |           |
| STL2           |              | L                                                                     | STL1                         |          |           | STL2        |           |          |      |           |
|                |              |                                                                       | rt pulse input.              |          |           | 1           |           |          |      |           |
|                |              | SHR                                                                   | GLOSTL s                     | -        |           |             |           |          |      |           |
| OL OCTI        | Input with   | Н                                                                     |                              | C' STL2  |           |             |           |          |      |           |
| GLOSTL         | Pull High    | L                                                                     |                              | C' STL1  |           |             |           |          |      |           |
|                |              |                                                                       | me and synch                 |          |           |             |           |          |      |           |
|                |              | cascade u                                                             | me and synch                 | ironous  | with the  | e ilist ic  | s start p | ouise ii | ipu  | t in      |
|                |              |                                                                       | oe.<br>Data inputs re        | ad segu  | entially  | from SI1    | 2801 to   | S[1]     |      |           |
| SHR            | Input        |                                                                       | ata inputs rea               |          |           |             |           |          |      |           |
|                |              |                                                                       | nronous to clo               |          |           |             | ,         |          |      |           |
|                |              | Source driver data input pins. They are latched on the rising edge of |                              |          |           |             |           | edge of  |      |           |
|                |              | CLK.                                                                  |                              |          |           |             |           |          |      |           |
| D[15:0]        | Input        |                                                                       | Input port                   | DSE      | L         | N           | ote       |          |      |           |
| D[13.0]        | Input        | 8-bit                                                                 | D00~D07                      | Н        |           | D08~D15     | should    | be       |      |           |
|                |              |                                                                       |                              |          | tied t    | o GND       |           |          |      |           |
|                |              | 16-bit                                                                | D00~015                      | L        |           |             |           |          |      |           |
| DOEL           | lant         | Data input                                                            |                              | D00 I    | D07       |             |           |          |      |           |
| DSEL           | Input        | DSEL=H: 8-bit, input port D00~D07 DSEL=L: 16-bit, input port D00~D15  |                              |          |           |             |           |          |      |           |
|                |              |                                                                       | ver outputs ei               |          |           | F is logic  | "Н"       |          |      |           |
| OE             | Input with   |                                                                       | rced to GND                  |          |           |             | , , ,     |          |      |           |
|                | Pull Low     |                                                                       | nronous to clo               |          |           |             |           |          |      |           |
| LE             | Input        |                                                                       | ver parallel la              |          |           | nsparent    | when hi   | igh.     |      |           |
|                | трис         |                                                                       | nronous to clo               |          |           |             |           |          |      |           |
| S[1] ~ S[1280] | Output       | Source dri                                                            | ver parallel o               | outputs. | Range     | is from     | VNEG      | to VP    | os   | . Always  |
| -(1 -(1        |              | Course to Gi                                                          | ND by setting tput channel s | OE to IC | ogic "L"  | prior to p  | ower s    | witchir  | ng o | n or off. |
|                |              | OSELS                                                                 |                              |          |           | ELS3        | chai      | nnels    |      |           |
| OSELS1         |              | X                                                                     | X                            |          |           | H           |           | 280      |      |           |
| OSELS2         | Input with   | H                                                                     | H                            | -        |           | L           |           | 200      |      |           |
| OSELS3         | Pull High    | L                                                                     | Н                            |          |           | L           |           | 024      |      |           |
|                |              | Н                                                                     | L                            |          |           | L           | 9         | 60       |      |           |
|                |              | L                                                                     | L                            |          |           | L           | 8         | 00       |      |           |
| Gate Driver    |              |                                                                       |                              |          |           |             |           |          |      |           |
| GCLK           | Input        |                                                                       | r shift clock p              |          | shift reg | gister data | a is shif | ted sy   | nch  | ronously  |
|                | , , ,        | 1                                                                     | rising edge of               |          | 1 _       |             |           |          |      |           |
| STV1           | D: " '       | UD                                                                    | Start Pulse                  |          | Start     | Pulse Ou    | ıtput     |          |      |           |
| STV2           | Bi-direction | H                                                                     | STV1                         |          |           | STV2        |           |          |      |           |
| 3172           |              | L                                                                     | STV2                         |          | l "       | STV1        |           | .1       |      |           |
|                |              |                                                                       | ate driver up/               | down pu  | iise dire | ection cor  | ntrol and | a settii | ng c | ascade    |
| UD             | Input        | sequence<br>Display dri                                               | input pin.<br>ve outputs sh  | ift from | G[1] to   | G[840] w    | hen set   | t to "H  | ,,   |           |
|                |              |                                                                       | ve outputs sh                |          |           |             |           |          |      |           |

| Pin Name      | Pin Type   | Description                                                                                                                               |  |  |  |  |
|---------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|               |            | TFT type select pin                                                                                                                       |  |  |  |  |
| TFT_TYPE      | Input with | TFT_TYPE TFT Note                                                                                                                         |  |  |  |  |
| ''''_''''     | Pull Low   | H PMOS Gate Output L pulse scan                                                                                                           |  |  |  |  |
|               |            | L NMOS Gate Output H pulse scan                                                                                                           |  |  |  |  |
| MODE          | Input with | Used as gate driver output mode selection pins.                                                                                           |  |  |  |  |
| MODE          | Pull Low   | MODE = H: Normal single pulse.  MODE = L: Always keep VGL. (Always keep VGH when TFT_TYPE=H).                                             |  |  |  |  |
|               |            | When XON input pin is 'L', all the output pins are forced to VGH level                                                                    |  |  |  |  |
| VON           | Input with | (Forced to VGL when TFT_TYPE=H ). Also it has an internal pull high                                                                       |  |  |  |  |
| XON           | Pull High  | resistor, keep it to VCC is preferred when unused. The chip internal shift                                                                |  |  |  |  |
|               |            | register is not cleared when XON input is active.                                                                                         |  |  |  |  |
|               |            | Gate output channel select inputs.                                                                                                        |  |  |  |  |
|               |            | OSELG1 OSELG2 OSELG3 OSELG4 channels                                                                                                      |  |  |  |  |
|               |            | X                                                                                                                                         |  |  |  |  |
| OSELG1        |            | H         H         L         825           L         H         H         L         768                                                   |  |  |  |  |
| OSELG2        | Input with | H L H L 758                                                                                                                               |  |  |  |  |
| OSELG3        | Pull High  | L L H L 720                                                                                                                               |  |  |  |  |
| OSELG4        |            | H H L L 704                                                                                                                               |  |  |  |  |
|               |            | L H L L 640                                                                                                                               |  |  |  |  |
|               |            | H L L 600                                                                                                                                 |  |  |  |  |
|               |            | L L L L 480                                                                                                                               |  |  |  |  |
| 0141 010401   | • • •      | Gate driver output pins for driving the display's gate signals. The                                                                       |  |  |  |  |
| G[1] ~ G[840] | Output     | amplitude of these outputs is from VGH to VGL. The output timing of these signals is synchronous with the rising edge of the shift clock. |  |  |  |  |
| Power Supply  |            | these signals is synchronous with the fishing edge of the shift clock.                                                                    |  |  |  |  |
| VPOS          | Power      | Supply of positive power for source outputs                                                                                               |  |  |  |  |
| VNEG          | Power      | Supply of negative power for source outputs                                                                                               |  |  |  |  |
| VCC           | Power      | Power for digital circuit                                                                                                                 |  |  |  |  |
| GND           | Power      | Ground pin                                                                                                                                |  |  |  |  |
| VGH           |            | '                                                                                                                                         |  |  |  |  |
|               | Power      | Supply of positive power for the gate outputs.                                                                                            |  |  |  |  |
| VGL           | Power      | Supply of negative power for the gate outputs.                                                                                            |  |  |  |  |
| Others        |            |                                                                                                                                           |  |  |  |  |
| GLOSTL        |            | For bumping test.                                                                                                                         |  |  |  |  |
| TEST1~TEST2   |            | Please do not connect to any signal or power, just let them open.                                                                         |  |  |  |  |

Note: SHR, UD and MODE can not be changed during frame.

### 5. FUNCTION DESCRIPTION

### 5.1. Description

The EK79631 is an EPD IC max for 1280\*840 active matrix display, include Source driver and Gate driver. It also provides cascade function for dot expansion.

The Source driver is a selectable 1280, 1200, 1024, 960 or 800 bit long 2-bit wide serial-input parallel-output driver with level conversion on each parallel output which converts the 2 digital bits into positive, GND, or negative analog output voltages. An 16-bit input bus simultaneously inputs 8 groups of 2 bits each.

Terminal SHR, when SHR = logic 1, the data inputs are read sequentially from S[1280] to S[1] end of the device. The direction is reversed when SHR is logic 0. It is asynchronous to the clock CLK.

The two input terminals latch enable (LE) and output enable (OE) are asynchronous to the clock CLK. Terminal OE, when is logic 0, forces "S[1]...S[1280]" outputs to GND. Terminal LE controls 960 latches that are transparent when LE is logic 1 and hold the data when LE is logic 0.

The EK79631 logic is static CMOS type. The current drain depends on the operating frequency.

Each "S[1]...S[1280]" pin is switched to one of [VPOS, GND, VNEG] voltage levels according to the D[15:0] logic levels clocked into the JD79631, modified by the OE pin. The truth tables are shown in the following tables.

Table 2. Data Input Truth Table (8-bit)

| ΩE | D [2n + 1]  | D [2n]  | SHR = H             | SHR = L             |
|----|-------------|---------|---------------------|---------------------|
| OL | D [211 + 1] | נווצן ט | Output [n + 1 + 4k] | Output [4(k+1) - n] |
| 1  | 0           | 0       | GND                 | GND                 |
| 1  | 0           | 1       | VPOS                | VPOS                |
| 1  | 1           | 0       | VNEG                | VNEG                |
| 1  | 1           | 1       | GND                 | GND                 |
| 0  | X           | Χ       | GND                 | GND                 |

Note: n = 0 to 3, k = 0 to 319.

Table 3. Source clock input Table(8-bit)

| Table of Course Clock in part 1 acre (Course) |              |              |                    |  |  |  |  |  |  |
|-----------------------------------------------|--------------|--------------|--------------------|--|--|--|--|--|--|
| Output channels                               | Latch clocks | Dummy clocks | Total clocks       |  |  |  |  |  |  |
| 1280                                          | 320          |              | 320 + Dummy clocks |  |  |  |  |  |  |
| 1200                                          | 300          |              | 300 + Dummy clocks |  |  |  |  |  |  |
| 1024                                          | 256          | ≥ 10         | 256 + Dummy clocks |  |  |  |  |  |  |
| 960                                           | 240          |              | 240 + Dummy clocks |  |  |  |  |  |  |
| 800                                           | 200          |              | 200 + Dummy clocks |  |  |  |  |  |  |

### Note:

After the last data, it should append 10 dummy clocks at least.

Example1: If only 800 output channels in use, the total clocks should be 200+10 at least. Example2: In cascade application, if output channels are 1920, the total clocks should be 480

+10 at least.

Table 4. Data Input Truth Table (16-bit)

| ΩE | D [2n + 1] D [2n] | SHR = H | SHR = L             |                     |
|----|-------------------|---------|---------------------|---------------------|
| OL | D [211 + 1]       | נווצן ט | Output [n + 1 + 8k] | Output [8(k+1) - n] |
| 1  | 0                 | 0       | GND                 | GND                 |
| 1  | 0                 | 1       | VPOS                | VPOS                |
| 1  | 1                 | 0       | VNEG                | VNEG                |
| 1  | 1                 | 1       | GND                 | GND                 |
| 0  | X                 | Χ       | GND                 | GND                 |

Note: n = 0 to 7, k = 0 to 159.

Table 5. Source clock input Table

| Output channels | Latch clocks Dummy clocks |      | Total clocks       |  |
|-----------------|---------------------------|------|--------------------|--|
| 1280            | 160                       |      | 160 + Dummy clocks |  |
| 1200            | 150                       |      | 150 + Dummy clocks |  |
| 1024            | 128                       | ≥ 10 | 128 + Dummy clocks |  |
| 960             | 120                       |      | 120 + Dummy clocks |  |
| 800             | 100                       |      | 100 + Dummy clocks |  |

Table 6. Latch block

| LE | Data in 1280-bit long 2-bit wide latch     |
|----|--------------------------------------------|
| Н  | Load data into latch from shifter register |
| L  | Hold latch data                            |

### 5.2. Power On/Off Sequence

This IC is a high-voltage EPD driver, so it may be damaged by a large current flow if an incorrect power sequence is used. Connecting the drive powers, [VNEG, VGL] & [VPOS, VGH], after the logical power, VCC, is the recommended sequence. When shutting off the power, shut off the drive power and then the logic system or turn off all powers simultaneously.



Figure 2. Power On/Off Sequence

### 5.3. Power Level



Figure 3. Signal voltage level

#### Note:

For the input signals: CLK, STL1, STL2, GLOSTL, SHR, D[15:0], OE, LE, OSELS[3:1],GCLK, STV1, STV2, UD, MODE, XON and OSELG[4:1] "High" level = VCC, "Low" level = GND.

## 5.4. Channel Selection Function

| OSELS1 | OSELS2 | OSELS3 | Source<br>Output<br>Channels | Valid Output<br>Channels | Invalid Output Channels             |
|--------|--------|--------|------------------------------|--------------------------|-------------------------------------|
| Х      | X      | Н      | 1280CH                       | S1 ~ S1280               | None                                |
| Н      | Н      | L      | 1200CH                       | S49~ S1248               | S1 ~ S48,S1249~S1280 Fix to<br>GND  |
| L      | Н      | L      | 1024CH                       | S129~ S1152              | S1 ~ S128,S1153~S1280 Fix<br>to GND |
| Н      | L      | L      | 960CH                        | S161~ S1120              | S1 ~ S160,S1121~S1280 Fix<br>to GND |
| L      | L      | L      | 800CH                        | S241~ S1040              | S1 ~ S240,S1041~S1280 Fix<br>to GND |

 $\mathsf{TFT}_\mathsf{TYPE} = \mathsf{L}$ 

| OSELG1 | OSELG2 | OSELG3 | OSELG4 | Gate<br>Output<br>Channels | Valid Output<br>Channels | Invalid Output Channels           |
|--------|--------|--------|--------|----------------------------|--------------------------|-----------------------------------|
| Х      | Х      | Х      | Н      | 840CH                      | G1 ~ G840                | None                              |
| Н      | Н      | Н      | L      | 825CH                      | G1 ~ G825                | G826~ G840 Fix to VGL             |
| L      | Н      | Н      | L      | 768CH                      | G1 ~ G768                | G769~ G840 Fix to VGL             |
| Н      | L      | Н      | L      | 758CH                      | G1~ G758                 | G759~ G840 Fix to VGL             |
| L      | L      | Н      | L      | 720CH                      | G101~ G820               | G1~ G100, G821~ G840 Fix to VGL   |
| Н      | Н      | L      | L      | 704CH                      | G101~ G804               | G1~ G100, G805~G840 Fix to VGL    |
| L      | Н      | L      | L      | 640CH                      | G101~ G740               | G1~ G100, G741~ G840 Fix to VGL   |
| Н      | Ĺ      | L      | L      | 600CH                      | G121~ G720               | G1~ G120, G721~ G840 Fix to VGL   |
| L      | L      | L      | L      | 480CH                      | G181 ~ G660              | G1 ~ G180, G661 ~ G840 Fix to VGL |

TFT\_TYPE = H

| OSELG1 | OSELG2 | OSELG3 | OSELG4 | Gate<br>Output<br>Channels | Valid Output<br>Channels | Invalid Output Channels           |  |
|--------|--------|--------|--------|----------------------------|--------------------------|-----------------------------------|--|
| Х      | X      | Х      | Н      | 840CH                      | G1 ~ G840                | None                              |  |
| Н      | Н      | Н      | L      | 825CH                      | G1 ~ G825                | G826~ G840 Fix to VGH             |  |
| L      | Н      | Н      | L      | 768CH                      | G1 ~ G768                | G769~ G840 Fix to VGH             |  |
| Н      | L      | Н      | L      | 758CH                      | G1~ G758                 | G759~ G840 Fix to VGH             |  |
| L      | L      | Н      | L      | 720CH                      | G101~ G820               | G1~ G100, G821~ G840 Fix to VGH   |  |
| Н      | Н      | L      | L      | 704CH                      | G101~ G804               | G1~ G100, G805~G840 Fix to VGH    |  |
| L      | Н      | L      | L      | 640CH                      | G101~ G740               | G1~ G100, G741~ G840 Fix to VGH   |  |
| Н      | L      | L      | L      | 600CH                      | G121~ G720               | G1~ G120, G721~ G840 Fix to VGH   |  |
| L      | L      | L      | L      | 480CH                      | G181 ~ G660              | G1 ~ G180, G661 ~ G840 Fix to VGH |  |

### 6. ELECTRICAL SPECIFICATION

### 6.1. Absolute Maximum Ratings

**Table 7.** Absolute Maximum Ratings (GND = 0 V)

| Parameter                | Symbol      | Rating          | Unit |
|--------------------------|-------------|-----------------|------|
| Logic Supply Voltage     | VCC         | -0.3 to +5      | V    |
| Positive Supply Voltage  | VPOS        | -0.3 to +18     | V    |
| Negative Supply Voltage  | VNEG        | +0.3 to -18     | V    |
| Max. Drive Voltage Range | VPOS - VNEG | 36              | V    |
| Supply voltage           | VGH         | -0.3 to +VGL+51 | V    |
| Supply voltage           | VGL         | -25.0 to + 0.3  | V    |
| Supply range             | VGH - VGL   | -0.3 to + 51    | V    |
| Operating Temp. Range    | TOTR        | -30 to +85      | °C   |
| Storage Temperature      | TSTG        | -55 to +125     | °C   |

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this data sheet is not implied. Exposure of the device to the absolute maximum ratings for an extended period may degrade the device and affect its reliability.

### 6.2. Recommended Operating Range

**Table 8.** Recommended Operating Range (GND = 0V)

| Parameter             | Condition         | Symbol | Min. | Тур.     | Max.     | Unit   |
|-----------------------|-------------------|--------|------|----------|----------|--------|
| Supply Voltage (1)    | -                 | VCC    | 1.7  | 3.0      | 3.6      | V      |
| Supply Voltage (2)    | -                 | VPOS   | 10   | -        | 15       | V      |
| Supply Voltage (3)    | -                 | VNEG   | -15  | -        | -10      | V      |
| Supply Voltage (4)    | -                 | VGH    | 7.0  | VGL + 48 | VGL + 49 | V      |
| Supply Voltage (5)    | -                 | VGL    | -20  | -        | VNEG - 4 | V      |
| Clock Frequency (1)   | -                 | fGCLK  | -    | -        | 200      | KHz    |
| Clock Frequency (2)   | VCC = 2.5V ~ 3.6V | fCLK   | _    |          | 60       | MHz    |
| Clock Frequency (2)   | VCC = 1.7V ~ 2.5V |        | _    | -        | 48       | IVIITZ |
| Operating temperature | -                 | $T_A$  | -20  | -        | 75       | °C     |

### 6.3. Supply Capacitor Selection

We recommended it is necessary to connect 4.7 $\mu F$  ceramic capacitors from VCC, VGH, VGL, VPOS and VNEG to GND.

### 6.4. DC Characteristics

6.4.1. Source DC Characteristics (TA = 25°C, VCC=3.0V, GND = 0V, VPOS = 15V, VNEG = -15V, CLK=20MHz)

| Parameter                             | Symbol            | Condition                                                     | Min.      | Тур. | Max.      | Unit |
|---------------------------------------|-------------------|---------------------------------------------------------------|-----------|------|-----------|------|
| High level input voltage              | $V_{IH}$          | -                                                             | 0.8 x VCC | -    | VCC       | V    |
| Low level input voltage               | $V_{IL}$          | -                                                             | GND       | -    | 0.2 x VCC | V    |
| High level output voltage             | V <sub>OH</sub>   | I <sub>OH</sub> = 2mA                                         | VCC-0.5V  | -    | VCC       | V    |
| Low level output voltage              | V <sub>OL</sub>   | $I_{OL} = 2mA$                                                | GND       | -    | GND+0.5V  | V    |
| Input leakage current                 | IL                | -                                                             | -1        | -    | +1        | μΑ   |
| Input pull high / low                 | Rph / Rpl         | VCC = 1.8V                                                    | 200       | _    | 1000      | ΚΩ   |
| resistance                            | INPH / INPL       | VCC = 3.0V                                                    | 100       |      | 450       |      |
| Logic static current, output inactive | I <sub>ccs</sub>  | When VPOS and VNEG = 0, $V_{IN}$ = GND or VCC                 | -         | -    | 30        | μΑ   |
| Logic current, output active          | I <sub>CC1</sub>  | Per output that is switched to VNEG.                          | -         | -    | 3         | mA   |
| VPOS DC current                       | I <sub>POS1</sub> | Per output that is switched to VPOS.                          | -         | -    | 30        | μΑ   |
| VNEG DC current                       | I <sub>NEG1</sub> | Per output that is switched to VNEG.                          | -         | 1    | 30        | μΑ   |
| VPOS Switching current                | I <sub>POS2</sub> | VPOS = 15V, VNEG = -15V,<br>Cload = 100pf, $f_{LINE}$ = 57KHz | -         | -    | TBD       | mA   |
| VNEG Switching current                | I <sub>NEG2</sub> | VPOS = 15V, VNEG = -15V,<br>Cload = 100pf, $f_{LINE}$ = 57KHz | -         | -    | TBD       | mA   |

6.4.2. Gate DC Characteristics (TA =  $25^{\circ}$ C, VCC=3.0V, GND = 0V, VGH = 22V, VGL = -20V, GCLK=200KHz)

| Parameter                              | Symbol      | Condition                           | Min.      | Тур. | Max.      | Unit |
|----------------------------------------|-------------|-------------------------------------|-----------|------|-----------|------|
| High level input voltage               | VIH         | -                                   | 0.8 x VCC | -    | VCC       | V    |
| Low level input voltage                | VIL         | -                                   | 0         | -    | 0.2 x VCC | V    |
| High level output current              | IXOH        | Driving current,<br>VO = VGH - 0.5V | 0.5       | ı    | -         | mA   |
| Low level output current               | IXOL        | Skin current,<br>VO = VGL + 0.5V    | -0.5      | -    | -         | mA   |
| Input Leakage current                  | IIL         | -                                   | -1        | -    | 1         | μΑ   |
| Input pull high / low                  | Rph / Rpl   | VCC = 1.8V                          | 200       | _    | 1000      | ΚΩ   |
| resistance                             | IXPH / IXPL | VCC = 3.0V                          | 100       | -    | 450       |      |
| Operating current consumption (Note 1) | ICC         | VCC = 3.0V<br>Fclk = 20KHz, No load | -         | -    | 120       | μΑ   |
| Operating current consumption (Note 1) | IGH         | VGH = 22V,<br>Fclk = 20KHz, No load | -         |      | 300       | μΑ   |
| Operating current consumption (Note 1) | IGL         | VGL = -20V<br>Fclk = 20KHz, No load | -         | -    | 300       | μΑ   |

**Note 1:** For STV frequency = 60 Hz

## 6.5. AC Characteristics

6.5.1. Source AC Characteristic (TA = 25°C, VCC=3.0V, GND = 0V, VPOS = 15V, VNEG = -15V, VGL=-20V)

| Parameter                          | Symbol               | Condition        | Min.                   | Тур. | Max.                                      | Unit |
|------------------------------------|----------------------|------------------|------------------------|------|-------------------------------------------|------|
| Clock CLK cycle time               | t <sub>cy</sub>      | -                | 16.67                  | 50   | -                                         | nS   |
| D15D0 setup time                   | t <sub>su</sub>      | -                | 8                      | -    | -                                         | nS   |
| D15D0 hold time                    | t <sub>h</sub>       | -                | 8                      | -    | -                                         | nS   |
| STL1/STL2 setup time               | t <sub>stls</sub>    | -                | 0.5 x t <sub>cy</sub>  | -    | 0.8 x t <sub>cy</sub>                     | nS   |
|                                    |                      | 1280 outputs     |                        |      | $320 \times t_{cy} - t_{stls}$            |      |
|                                    |                      | 1200 outputs     |                        |      | $300 \times t_{cy} - t_{stls}$            | nS   |
| STL1/STL2 hold time <sup>(1)</sup> | t <sub>stlh</sub>    | 1024 outputs     | $0.5 \times t_{cy}$    | -    | $256 \times t_{cy} - t_{stls}$            |      |
|                                    |                      | 960 outputs      |                        |      | 240 x t <sub>cy</sub> - t <sub>stls</sub> |      |
|                                    |                      | 800 outputs      |                        |      | 200 x t <sub>cy</sub> - t <sub>stls</sub> |      |
| GLOSTL setup time                  | t <sub>glostls</sub> | -                | 0.5 x t <sub>cy</sub>  | -    | 0.8 x t <sub>cy</sub>                     | nS   |
|                                    |                      | 1280 outputs     |                        |      | $320 \times t_{cy} - t_{stls}$            |      |
|                                    | t <sub>glostlh</sub> | 1200 outputs     | 0.5 x t <sub>cv</sub>  | -    | $300 \times t_{cy} - t_{stls}$            | nS   |
| GLOSTL hold time <sup>(1)</sup>    |                      | 1024 outputs     |                        |      | 256 x t <sub>cy</sub> - t <sub>stls</sub> |      |
|                                    |                      | 960 outputs      |                        |      | 240 x t <sub>cy</sub> - t <sub>stls</sub> |      |
|                                    |                      | 800 outputs      |                        |      | 200 x t <sub>cy</sub> - t <sub>stls</sub> |      |
| LE on delay time                   | t <sub>LEdly</sub>   | -                | 10.5 x t <sub>cy</sub> | -    | -                                         | nS   |
| LE high-level pulse width          | t <sub>LE</sub>      | VCC=2.5V to 3.6V | 300                    | -    | -                                         | nS   |
| LE off delay time                  | t <sub>LEoff</sub>   | -                | 200                    | -    | -                                         | nS   |
| Output settling time to +/- 30mV   | t <sub>OUT</sub>     | Cload = 200pF    | -                      | -    | 20                                        | μS   |

(TA = 25°C, VCC=1.8V, GND = 0V, VPOS = 15V, VNEG = -15V, VGL= -20V)

| Parameter                          | Symbol               | Condition        | Min.                   | Тур. | Max.                                      | Unit |
|------------------------------------|----------------------|------------------|------------------------|------|-------------------------------------------|------|
| Clock CLK cycle time               | t <sub>cy</sub>      | -                | 20.83                  | -    | -                                         | nS   |
| D15D0 setup time                   | t <sub>su</sub>      | -                | 10                     | -    | -                                         | nS   |
| D15D0 hold time                    | t <sub>h</sub>       | -                | 10                     | -    | -                                         | nS   |
| STL1/STL2 setup time               | t <sub>stls</sub>    | -                | 0.5 x t <sub>cy</sub>  | -    | 0.8 x t <sub>cy</sub>                     | nS   |
|                                    |                      | 1280 outputs     |                        |      | 320 x t <sub>cy</sub> - t <sub>stls</sub> |      |
|                                    |                      | 1200 outputs     |                        |      | $300 \times t_{cy} - t_{stls}$            |      |
| STL1/STL2 hold time <sup>(1)</sup> | t <sub>stlh</sub>    | 1024 outputs     | 0.5 x t <sub>cy</sub>  | -    | 256 x t <sub>cy</sub> - t <sub>stls</sub> | nS   |
|                                    |                      | 960 outputs      |                        |      | 240 x t <sub>cy</sub> - t <sub>stls</sub> |      |
|                                    |                      | 800 outputs      |                        |      | 200 x t <sub>cy</sub> - t <sub>stls</sub> |      |
| GLOSTL setup time                  | t <sub>glostls</sub> | -                | 0.5 x t <sub>cy</sub>  | -    | 0.8 x t <sub>cy</sub>                     | nS   |
|                                    |                      | 1280 outputs     |                        |      | $320 \times t_{cy} - t_{stls}$            |      |
|                                    |                      | 1200 outputs     |                        |      | 300 x t <sub>cy</sub> - t <sub>stls</sub> |      |
| GLOSTL hold time <sup>(1)</sup>    | t <sub>glostlh</sub> | 1024 outputs     | 0.5 x t <sub>cy</sub>  | -    | 256 x t <sub>cy</sub> - t <sub>stls</sub> | nS   |
|                                    |                      | 960 outputs      |                        |      | 240 x t <sub>cy</sub> - t <sub>stls</sub> |      |
|                                    |                      | 800 outputs      |                        |      | 200 x t <sub>cy</sub> - t <sub>stls</sub> |      |
| LE on delay time                   | t <sub>LEdly</sub>   | -                | 10.5 x t <sub>cy</sub> | -    | -                                         | nS   |
| LE high-level pulse width          | t <sub>LE</sub>      | VCC=1.7V to 2.5V | 300                    | -    | -                                         | nS   |
| LE off delay time                  | t <sub>LEoff</sub>   | -                | 200                    | -    | -                                         | nS   |
| Output settling time to +/- 30mV   | t <sub>OUT</sub>     | Cload = 200pF    | -                      | -    | 20                                        | μS   |

Note: (1)For 8 bit.

6.5.2. Gate AC Characteristic (TA = 25°C, VCC = 3.0V, GND = 0V, VGH = 22V, VGL = -20V)

| Parameter                  | Symbol            | Condition              | Min. | Тур. | Max.      | Unit |
|----------------------------|-------------------|------------------------|------|------|-----------|------|
| Clock rise time            | Trck              | 10% to 90%             | -    | -    | 100       | nS   |
| Clock fall time            | Tfck              | 90% to 10%             | -    | -    | 100       | nS   |
| Clock pulse width (low)    | Tclkl             | -                      | 500  | -    | -         | nS   |
| Clock pulse width (high)   | Tclkh             | -                      | 500  | -    | -         | nS   |
| Clock frequency            | Fclk              | -                      | -    | -    | 200       | KHz  |
| XON pulse width            | t <sub>WXON</sub> | -                      | 10   | -    | -         | μs   |
| XON to output delay time   | t <sub>PD</sub>   | CL=300pF               | -    | -    | 20        | μs   |
| STV rise time              | Trstv             | 10% to 90%             | -    | -    | 100       | nS   |
| STV fall time              | Tfstv             | 90% to 10%             | -    | -    | 100       | nS   |
| STV setup to Clock         | Tsu               | -                      | 100  | -    | Tclkh-100 | nS   |
| STV hold from Clock        | Th                | -                      | 100  | -    | Tclkh-100 | nS   |
| Output transfer delay time | Td                | CL = 300pf,            | -    | TBD  | -         | uS   |
| Output rise time           | Tr                | CL = 300pf, 10% to 90% | -    | -    | 1         | uS   |
| Output fall time           | Tf                | CL = 300pf, 90% to10%  | -    | -    | 1         | uS   |
| VCC rise time              | Ton               | -                      | -    | -    | 20        | ms   |
| VCC fall time              | Toff              | -                      | -    | -    | 20        | ms   |
| VCC waiting time           | Toff-on           | -                      | 700  | -    | -         | ms   |

 $(TA = 25^{\circ}C, VCC = 1.8V, GND = 0V, VGH = 22V, VGL = -20V)$ 

| Parameter                  | Symbol            | Condition              | Min. | Тур. | Max.      | Unit |
|----------------------------|-------------------|------------------------|------|------|-----------|------|
| Clock rise time            | Trck              | 10% to 90%             | -    | -    | 100       | nS   |
| Clock fall time            | Tfck              | 90% to 10%             | -    | -    | 100       | nS   |
| Clock pulse width (low)    | Tclkl             | -                      | 1000 | ı    | -         | nS   |
| Clock pulse width (high)   | Tclkh             | -                      | 1000 | -    | -         | nS   |
| Clock frequency            | Fclk              | -                      | -    | -    | 200       | KHz  |
| XON pulse width            | t <sub>WXON</sub> | -                      | 10   | ı    | -         | μs   |
| XON to output delay time   | t <sub>PD</sub>   | CL=300pF               | -    | ı    | 20        | μs   |
| STV rise time              | Trstv             | 10% to 90%             | -    | -    | 100       | nS   |
| STV fall time              | Tfstv             | 90% to 10%             | -    | -    | 100       | nS   |
| STV setup to Clock         | Tsu               | -                      | 100  | ı    | Tclkh-100 | nS   |
| STV hold from Clock        | Th                | -                      | 100  | ı    | Tclkh-100 | nS   |
| Output transfer delay time | Td                | CL = 300pf,            | -    | TBD  | -         | uS   |
| Output rise time           | Tr                | CL = 300pf, 10% to 90% | -    | -    | 1         | uS   |
| Output fall time           | Tf                | CL = 300pf, 90% to10%  | -    | -    | 1         | uS   |
| VCC rise time              | Ton               | -                      | -    | ı    | 20        | ms   |
| VCC fall time              | Toff              | -                      | -    | -    | 20        | ms   |
| VCC waiting time           | Toff-on           | -                      | 700  | -    | -         | ms   |

## 6.6. Operating Timing

## 6.6.1. Source



Figure 4. Clock and Data Timing



Figure 5. Output Latch / Control Signals

Note: After the last data, CLK must append 10 dummy clocks at least.



Figure 6. Example of input/output timing

## 6.7. Timing Waveform



Figure 7. Timing Waveform

## 6.8. VCC on/off time

G1 to G840



Figure 8. VCC on/off time

### 7. DEFINITIONS

### 7.1. Data Sheet Status

| Tentative Data Sheet | This data sheet contains Tentative data; supplementary data may be published later. |
|----------------------|-------------------------------------------------------------------------------------|
| Data Sheet           | This data sheet contains final product specifications.                              |

Contents in the document are subject to change without notice.

### 7.2. Life Support Application

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Fitipower customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify fitipower for any damages resulting from such improper use or sale.