ADDI X9, X9, #1 // X9=X9+1
SUBI X10, X7, #1 // X10=X7=1

LEGv8 I-Format Instructions

Instruction format

	opcode	immediate	Rn	Rd	
	10 bits	12 bits	5 bits	5 bits	
		urce Regio			
	Rd → D	estination	Regist	er numbe	7 586 ,
Exampl		inslate			
instru	ction to m	achine ins	tnuction	n' ADDI	X9, X9, #1
	opcode	inmediate	2n	Rd,	Rd Pnt
Decind >	580	1	9	9	impediate
	10	12	5	5	

AND Operations

A logical bit-by-bit operation with two operands that calculates a lonly if there is a 1 in both operands.

AND X9 X10, XII

OR Operations

A logical bit-by-bit operation with two operands that calculates a lonly if there is a line either operands.

OR X 9, X 10, X 11

XII = XIO = XIO

060000000

Branch to a labeled instruction if a condition is true Otherwise, continue sequentially

CBZ register, L1

- if (register == 0) branch to instruction labeled L1;

- Example: CBZ X9, Else

CBNZ register, L1

- if (register != 0) branch to instruction labeled L1;

- Example: CBNZ X9, Else

BL1

- branch unconditionally to instruction la

- Example: B Exit

beled	1; 🗡	OKADA	LIKIIX,
	LLI	COLK SINS	XIIXIL

	Signed	numbers	Unsigned numbers		
Comparison	Instruction	CC Test	Instruction	CC Test	
***************************************	B.EQ	Z=1	B.EQ	Z=1	
, ≠	B.NE	Z=0	B.NE	Z=0	
<	B.LT	N!=V	B.10	C=0	
≤ .	B.LE	~(Z=0 & N=V)	B.LS	~(Z=0 & C=1)	
>_	B.GT	(Z=0 & N=V)	B.HI	(Z=0 & C=1)	
≥	B.GE	Ŋ≠V	B.HS	C=1	

Convert the following C++ code to LEGv8 Assembly code. Assume the variables f, g, h, i, and j correspond to five registers X19, X20, X21, X22, and X23.

$$f = (g + h) - (i + j); \rightarrow c + +$$

$$ADD \times 9, \quad \times 20, \times 21 \qquad || \quad \times 9 = g + h$$

$$ADD \times 10, \quad \times 22, \times 23 \qquad || \quad \times 10 = i + j$$

$$SUB \times 19, \quad \times 9, \times 10 \qquad || \quad f = \times 9 - \times 10$$

$$= (g + h) - (i + j); \rightarrow c + +$$

$$= j + h$$

$$= 1 + j$$

$$= (g + h) - (i + j); \rightarrow c + +$$

$$= j + h$$

$$= (g + h) - (i + j); \rightarrow c + +$$

$$= j + h$$

$$= (g + h) - (i + j); \rightarrow c + +$$

$$= j + h$$

$$= (g + h) - (i + j); \rightarrow c + +$$

$$= j + h$$

$$= (g + h) - (i + j); \rightarrow c + +$$

$$= j + h$$

$$= (g + h) - (i + j); \rightarrow c + +$$

$$= j + h$$

$$= (g + h) - (i + j); \rightarrow c + +$$

$$= (g + h) - (i + j); \rightarrow c + +$$

$$= (g + h) - (i + j); \rightarrow c + +$$

$$= (g + h) - (i + j); \rightarrow c + +$$

$$= (g + h) - (i + j); \rightarrow c + +$$

$$= (g + h) - (i + j); \rightarrow c +$$

$$= (g + h) - (i + j); \rightarrow c +$$

$$= (g + h) - (i + j); \rightarrow c +$$

$$= (g + h) - (i + j); \rightarrow c +$$

$$= (g + h) - (i + j); \rightarrow c +$$

$$= (g + h) - (i + j); \rightarrow c +$$

$$= (g + h) - (g + h) - (g + h)$$

$$= (g + h)$$

$$=$$

emp -> companison

If statement

Convert the following C++ code to LEGv8 Assembly code. Assume the variables a and b correspond to registers X22 and X23.

0X2000 CMP X.22, X.23

0x20004. B.GT L1

0x20008. -> B Exit 0x2002.1: ADDI x22, x22, #1 // a = a + 1

Alternate Solution

}

CMP X22, X23 B. LE Exit

ADDI X22, X22, #1

11 compare a and b

(a>b)

X 23

Exit:

Example

corresponds to registers XZZ and XZZ

if
$$(a = b)$$

$$\begin{cases} b = 8a \end{cases}$$

X55 X53 7 P

MUL

CMP X22, X23

B. F. ON EXIT

LSL X23, X22, #3

11 compare a and b

11 go to exit is true

11 6 = 8*9

Exit;