DA & Dynamical Model

竹田航太

2023年4月13日

目次

1	はじめに	
1.1	これまでの流れ	2
1.2	準備	2
2	基本の仮定	3
3	Lorenz63	4
4	Lorenz96	6
5	Notations	7
6	2 次元 Navier-Stokes	7
7	3 次元正則化 Navier-Stokes	9
付録 A	Gronwall の不等式	11

1 はじめに

データ同化を数学的に扱う際のモデルの解析について整理する。まずは気象で用いられる方程式に絞る。データ同化の文脈において求められるモデルの解析は well-posed 性に加えて、global attractor の存在や初期誤差の発達レートの評価である。無限次元力学系の理論 [1] に基づく。また、[2] のように、Lyapnov 関数を用いた評価・解析も基本的である。

1.1 これまでの流れ

[3, Hayden 2011] は Lorenz63(L63) と 2 次元 Navier-Stokes(2dNS) に対して解の存在から誤 差発達までの結果を示した. [4, Law 2016] は Lorenz96(L96) に対する同様の解析を行なった. どちらも対象の方程式を以下のような形の Hibert 空間上の ODE として表現した.

$$\frac{du}{dt} + \mathcal{A}u + \mathcal{B}(u, u) = f.$$

[5, Kelly 2014] は A, B に条件を設けて一般的な形で誤差発達について議論した.

1.2 準備

Hilbert 空間 $(\mathcal{H}, \langle \cdot, \cdot \rangle, |\cdot|)$ を考える.

Definition 1.1 (自励系 ODE と力学系). 自励系 *1 の ODE を考える.

$$\frac{du}{dt} = f(u), \quad u(0) = u_0.$$

この ODE が任意の $u_0 \in \mathcal{H}$ に対して,時間大域的な一意解 $u \in C^1(\mathbb{R}_{\geq 0}; \mathcal{H})$ を持つとき,1 パラメータ半群 $\Psi: \mathbb{R}_{\geq 0} \times \mathcal{H} \to \mathcal{H}$ が

$$\Psi(t, u_0) = u(t)$$

で定義できる. $\Psi_t(\cdot) = \Psi(t,\cdot)$ と書き、元の ODE や 1 パラメータ半群を力学系と呼ぶ.

Definition 1.2. $B \subset \mathcal{H}$ が半群 Ψ_t について forward invariant であるとは

$$\Psi_t(B) \subset B, \quad \forall t \geq 0$$

が成り立つことを言う.

Definition 1.3. 半群 $(\Psi_t)_{t\geq 0}$ の attractor とは以下を満たす集合 $\mathscr{A}\subset\mathcal{H}$.

- (1) $\Psi_t \mathscr{A} = \mathscr{A}$.
- (2) ある近傍 U が存在し、 $\forall u_0 \in U$ で $d(\Psi_t u_0, \mathscr{A}) \to 0$ $(t \to \infty)$.

また、attractor $\mathscr A$ がコンパクトであり、任意の有界集合 B に対して、B の点を一様に attract するとき、 $\mathscr A$ は global attractor と呼ばれる.

Definition 1.4 (absorbing set). 力学系 $\Psi: \mathbb{R}_{\geq 0} \times \mathcal{V} \to \mathcal{V}$ が有界な absorbing set \mathfrak{B}_{abs} を持つとは、任意の R>0 に対して、ある T=T(R)>0 が存在して

$$\Psi_t(B(0,R)) \subset \mathfrak{B}_{abs}, \quad \forall t \geq T$$

 $^{^{*1}}$ 速度ベクトル場が時間に依存しない.

が成り立つことを言う.

Theorem 1.5. 半群 $(\Psi_t)_{t\geq 0}$ が十分大きな t で一様コンパクト*2, つまり、任意の有界集合 B に対して、ある T=T(B)>0 が存在し $\cup_{t\geq T}\Psi_tB$ が $\mathcal H$ で相対コンパクト、とする. また、開集合 $U\subset\mathcal H$ とその上での absorbing set $\mathfrak B_{abs}$ が存在するとする. このとき、global attractor を

$$\mathscr{A} = \bigcap_{T \ge 0} \overline{\bigcup_{t \ge T} \Psi_t(\mathfrak{B}_{abs})} \tag{1.1}$$

で定めることができ、Uで包含関係について極大となる.

Remark 1.6. Ψ_t に関する一様コンパクト性の条件は V での有界な absorbing set の存在と V の H への埋め込みがコンパクトであれば満たされる.

Remark 1.7. 有界な absorbing set の存在は以下の形の a priori estimate が得られるとわかる.

$$|u(t)|^2 \le e^{-\alpha t} |u_0|^2 + R^2 (1 - e^{-\alpha t})$$

ただし, $\alpha, R > 0$ は u_0 によらない定数. これより, 任意の $R_1 \ge R$ について, $|u_0| \le R_1$ のとき,

$$|u(t)|^2 \le e^{-\alpha t}R_1^2 + R^2(1 - e^{-\alpha t}) = R^2 + (R_1^2 - R^2)e^{-\alpha t} \le R_1^2$$

となるので、H における閉球 $B_H(0,R_1)$ は forward invariant である。また、 $R_1 > R$ について、 $B_H(0,R_1)$ は H で absorbing set になることもわかる.

2 基本の仮定

状態空間として Hilbert 空間 $(\mathcal{H}, |\cdot|)$ を考える.

Assumption 2.1. Banach 空間 $(\mathcal{V}, \|\cdot\|)$ を \mathcal{H} に連続的に埋め込めるとする*3. 以下の形の力学系を仮定する.

$$\frac{du}{dt} + \mathcal{A}u + \mathcal{B}(u, u) = f, \quad u(0) = u_0. \tag{2.1}$$

ただし、 $A: \mathcal{H} \to \mathcal{H}$ は非有界線形作用素で、ある $\lambda > 0$ が存在して以下が成り立つ.

$$\langle \mathcal{A}u, u \rangle \ge \lambda ||u||^2, \quad \forall u \in \mathcal{D}(\mathcal{A}).$$
 (2.2)

 $^{*^2}$ 証明には、ある T で Ψ_T がコンパクトという条件で十分.

^{*3} $\exists C > 0$, s.t. $|u| \le C|u|, \forall u \in V$.

さらに、双線形形式 $\mathcal{B}: \mathcal{V} \times \mathcal{V} \to \mathcal{H}$ は以下を満たし、

$$B(u, v) = B(v, u), \quad \forall u, v \in \mathcal{V},$$
 (2.3)

$$\langle B(u,u), u \rangle = 0, \quad \forall u \in \mathcal{V},$$
 (2.4)

あるc > 0が存在して、以下が成り立つとする.

$$|\langle B(u,v), v \rangle| \le c||u|||v|||v|, \quad \forall u, v \in \mathcal{V}. \tag{2.5}$$

また、任意の $u(0) \in \mathcal{H}$ に対して、(2.1) は一意な弱解を持つとし、 \mathcal{H} に拡張可能な 1-パラメータ半群 $\Psi_t: \mathcal{V} \to \mathcal{V}$ を生成するとする.さらに、 $global\ attractor\ \mathscr{A} \subset \mathcal{V}$ が存在し、ある R>0 が存在して任意の $u_0 \in \mathscr{A}$ に対して $\sup_{t>0} |u(t)| \leq R$ が成り立つとする.

Remark 2.2. 空間の包含関係は $\mathcal{D}(\mathcal{A}) \subset \mathcal{V} \subset \mathcal{H} \subset \mathcal{V}'$.

Remark 2.3. Lorenz63, 96, トーラス上 2 次元 Navier-Stokes はこの仮定を満たす.

Remark 2.4. 有限次元の場合は global attractor の存在は他の仮定から導かれる.

Remark 2.5. *global attractor* と有界性の証明には, *Remark 1.7の a priori estimate* を示せば良い.

Lemma 2.6 (初期値連続性/誤差発達 [5]). Assumption 2.1 を仮定すると、ある $\beta \in \mathbb{R}$ が存在 して以下が成り立つ.

$$|\Psi_h(v_0) - \Psi_h(w_0)| \le e^{\beta h} |v_0 - w_0|, \quad \forall v_0 \in \mathcal{A}, h > 0, w_0 \in \mathcal{H}.$$
 (2.6)

Proof.
$$[5]$$

Remark 2.7. 初期値は片方だけが *global attractor* $\mathscr A$ に入っているという条件だけが課せられている.これはデータ同化において,信号 $u_t \in \mathscr A$ の推定値 $\hat u_t$ が $\mathscr A$ に入っているとは限らない場合を想定している.

3 Lorenz63

 $\sigma, b, r \in \mathbb{R}$ に対して、r + a シフトした Lorenz63 を考える.

$$\begin{aligned} \frac{dx}{dt} &= \sigma(y-x), \\ \frac{dy}{dt} &= -\sigma x - y - xz, \\ \frac{dz}{dt} &= xy - bz - b(r+\sigma). \end{aligned}$$

これは $\mathcal{H} = \mathcal{V} = \mathbb{R}^3$ として、 $u = (x, y, z)^{\mathsf{T}}$ に対して、(2.1) を用いて以下のように書ける.

$$\mathcal{A} = \begin{bmatrix} \sigma & -\sigma & 0 \\ \sigma & 1 & 0 \\ 0 & 0 & b \end{bmatrix}, f = \begin{bmatrix} 0 \\ 0 \\ -b(r+\sigma) \end{bmatrix},$$

$$\mathcal{B}(u, \tilde{u}) = \frac{1}{2} \begin{bmatrix} 0 \\ x\tilde{z} + z\tilde{x} \\ -(x\tilde{y} + y\tilde{x}) \end{bmatrix}.$$

以下, $\sigma > 0, b > 1, r > 0$ とする. $(\sigma = 10, b = 8/3, r = 28$ はこれを満たす.)

Lemma 3.1. $\forall u, \tilde{u} \in \mathbb{R}^3$ で以下が成り立つ.

- (1) $\langle \mathcal{A}u, u \rangle \geq |u|^2$.
- (2) $\langle \mathcal{B}(u,u), u \rangle = 0.$
- (3) $\mathcal{B}(u, \tilde{u}) = \mathcal{B}(\tilde{u}, u)$.
- (4) $|\mathcal{B}(u, \tilde{u})| \le 2^{-1}|u||u|$.

Proof.
$$\langle Au, u \rangle = \sigma x^2 + y^2 + bz^2 \ge |u|^2, \ (y^2 + \tilde{y}^2)(z^2 + \tilde{z}^2) \ge (y\tilde{y} + z\tilde{z}).$$

Lemma 3.2. $K = \frac{b^2(r+\sigma)^2}{4(b-1)}$ とおく.

(1) $\forall u_0 \in \mathbb{R}^3$ に対して,全ての t > 0 で定義された一意な解 $u \in C^1(\mathbb{R}_{\geq 0}; \mathbb{R}^3)$ が存在し,以下が成り立つ.

$$\limsup_{t \to \infty} |u(t)|^2 \le K.$$

(2) absorbing set $\mathfrak{B}_{abs} = B(0, K^{1/2})$ は forward invariant, つまり以下が成り立つ.

$$\Psi_t(\mathfrak{B}_{abs}) \subset \mathfrak{B}_{abs}, \quad \forall t \geq 0$$

(3) global attractor \mathscr{A} を (1.1) で定めると、 $\forall u_0 \in \mathscr{A}$ で、以下が成り立つ.

$$|u(t)|^2 \le K, \quad \forall t \ge 0.$$

Proof. [3] 解の存在は速度ベクトル場の局所リプシッツ性から従う. $\langle \mathcal{A}u+\mathcal{B}(u,u)-f,u\rangle \leq K-|u|^2$ を示す. Gronwall の不等式から従う.

Theorem 3.3. $\beta = 2(K^{1/2} - 1)$ とおく. $\forall v_0 \in \mathcal{A}, \ w_0 \in \mathbb{R}^3, \ t > 0$ で以下が成り立つ.

$$|v(t) - w(t)| \le e^{\beta t} |v_0 - w_0|.$$

Proof. β の存在は、[5] からわかる.具体的な β は [3] を見よ.

4 Lorenz96

 $J\in\mathbb{N}$ に対して,J 変数の Lorenz96 モデルは 1 次元周期境界の領域を J 点格子で離散化した以下のような力学系. $u=(u_1,\cdots,u_J)^{\top}\in\mathbb{R}^J$,

$$\frac{du_j}{dt} = u_{j-1}(u_{j+1} - u_{j-2}) - u_j + F, \quad \text{for } j = 1, 2, \dots, J,$$

$$u_0 = u_J, \quad u_{J+1} = u_1, \quad u_{-1} = u_{J-1}.$$

 $F \in \mathbb{R}$ は外力パラメータ.

 $\mathcal{H} = \mathcal{V} = \mathbb{R}^J$ として, (2.1) の形で以下のように書ける.

$$\mathcal{A} = I, f = \begin{bmatrix} F \\ \vdots \\ F \end{bmatrix},$$

$$\mathcal{B}(u, \tilde{u}) = \frac{1}{2} \begin{bmatrix} \tilde{u}_2 u_J + u_2 \tilde{u}_J - \tilde{u}_J u_{J-1} - u_J \tilde{u}_{J-1} \\ \vdots \\ \tilde{u}_{j-1} u_{j+1} + u_{j-1} \tilde{u}_{j+1} - \tilde{u}_{j-2} u_{j-1} - u_{j-2} \tilde{u}_{j-1} \\ \vdots \\ \tilde{u}_{J-1} u_1 + u_{J-1} \tilde{u}_1 - \tilde{u}_{J-2} u_{J-1} - u_{J-2} \tilde{u}_{J-1} \end{bmatrix}.$$

Lemma 4.1. $\forall u, \tilde{u} \in \mathbb{R}^J$ に対して、以下が成り立つ.

- (1) $\langle \mathcal{A}u, u \rangle = |u|^2$.
- (2) $\langle \mathcal{B}(u,u), u \rangle$.
- (3) $\mathcal{B}(u, \tilde{u}) = \mathcal{B}(\tilde{u}, u)$.
- $(4) |\mathcal{B}(u, \tilde{u})| \le 2|u||u|.$
- (5) $2 \langle \mathcal{B}(u, \tilde{u}), u \rangle = \langle \mathcal{B}(u, u), \tilde{u} \rangle$.

Lemma 4.2. $K = 2JF^2$ とおく.

(1) $\forall u_0 \in \mathbb{R}^J$ に対して,全ての t > 0 で定義された一意な解 $u \in C^1(\mathbb{R}_{\geq 0}; \mathbb{R}^J)$ が存在し,以下が成り立つ.

$$\limsup_{t \to \infty} |u(t)|^2 \le K.$$

(2) absorbing set $\mathfrak{B}_{abs}=B(0,K^{1/2})$ は forward invariant, つまり以下が成り立つ.

$$\Psi_t(\mathfrak{B}_{abs}) \subset \mathfrak{B}_{abs}, \quad \forall t \geq 0$$

(3) global attractor $\mathscr A$ を (1.1) で定めると、 $\forall u_0 \in \mathscr A$ で、以下が成り立つ.

$$|u(t)|^2 \le K, \quad \forall t \ge 0.$$

Proof. [4]

Theorem 4.3. $\beta = 2(K^{1/2} - 1)$ とする. $\forall v_0 \in \mathcal{A}, \ w_0 \in \mathbb{R}^J, \ t > 0$ で以下が成り立つ.

$$|v(t) - w(t)| \le e^{\beta t} |v_0 - w_0|.$$

Proof. β の存在は、[5] からわかる. 具体的な β は [4] を見よ.

5 Notations

[6, 7, 3]. $\Omega = [0, L]^n (n = 2, 3)$ とおく.

(1) 可積分関数の空間 X に対して

$$\dot{X} = \{ \varphi \in X \mid \int_{\Omega} \varphi(x) dx = 0 \}$$

と書く.

(2) $\mathscr{V} = \{ \varphi \mid \varphi \text{ id } \Omega \text{ 上の三角多項式}, \nabla \cdot \varphi = 0, \int_{\Omega} \varphi dx = 0 \}$ とし、

$$\mathcal{H}=\overline{\mathscr{V}}^{L^2}, \mathcal{V}=\overline{\mathscr{V}}^{H^1}$$

とする. $\mathcal{H}^{\perp} = \{ \nabla p \mid p \in H^1(\Omega) \}$ が成り立つ.

(3) Leray-Helmholtz 射影と呼ばれる L^2 直交射影 $P_{\sigma}:\dot{L}^2(\Omega)^n\to\mathcal{H}$ を用いて、Stokes 作用素

$$A = -P_{\sigma} \triangle, \quad D(A) = (H^2(\Omega))^n \cap \mathcal{V}$$

を定める (n=2,3). 周期境界条件の場合には, $A=-\triangle|_{D(A)}$ となり,自己共役正作用素となる. さらに, A^{-1} がコンパクトとなる. このため,固有値の列 $0<\lambda_1\leq \lambda_2,\ldots,\lambda_j\to\infty$ と \mathcal{H} で正規直交な $(w_j)_{j\in\mathbb{N}}\subset D(A)$ が存在し, $Aw_j=\lambda_jw_j$ が成り立つ.

(4) L^2 内積とノルムをそれぞれ $\langle \cdot, \cdot \rangle$, $|\cdot|$ と書く. Poincaré の不等式からある c>0 が存在し

$$c|Aw| \le ||w||_{H^2} \le c^{-1}|Aw|, \quad \forall w \in D(A),$$

 $c|A^{1/2}w| \le ||w||_{H^1} \le c^{-1}|A^{1/2}w|, \quad \forall w \in V$

が成り立ち, $V=D(A^{1/2})$ もわかる. $((\cdot,\cdot))=\left\langle A^{1/2}\cdot,A^{1/2}\cdot\right\rangle$, $\|\cdot\|=|A^{1/2}\cdot|$ と書くとそれぞれ $\mathcal V$ の内積とノルムになる.

6 2 次元 Navier-Stokes

L>0, $\Omega=[0,L]^2$ 上の 2 次元 Navier-Stokes 方程式を $\mathcal H$ で考える.

$$\frac{\partial u}{\partial t} - \nu \triangle u + (u \cdot \nabla)u + \frac{1}{\rho_1} \nabla p = f.$$

次に双線形形式 $B: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{H}$ を

$$B(u, v) = P_{\sigma}[(u \cdot \nabla)v]$$

で与え、対称な双線形形式 $\mathcal{B}: \mathcal{V} \times \mathcal{V} \to \mathcal{H}$ を

$$\mathcal{B}(u,v) = \frac{1}{2} [B(u,v) + B(v,u)] \tag{6.1}$$

で定める.

2次元 Navier-Stokes 方程式は次のように表せる.

$$\frac{du}{dt} + \nu \mathcal{A}u + \mathcal{B}(u, u) = f, \tag{6.2}$$

ただし、外力は $f \in \mathcal{H}$ とする*4.

解の存在は Theorem 2.1 in [1, p.108].

Theorem 6.1. $u_0, f \in \mathcal{H}$ とする. このとき, (6.2) の一意な解が存在し以下を満たす.

$$u \in C([0,T];\mathcal{H}) \cap L^2([0,T];\mathcal{V}), \quad \forall T > 0,$$

 $\frac{du}{dt} \in L^2([0,T];\mathcal{H})$ であり、 $\mathcal{H} \ni u_0 \mapsto u(t) \in D(A)$ は連続*5. さらに、 $u_0 \in \mathcal{V}$ のとき

$$u \in C([0,T]; \mathcal{V}) \cap L^2([0,T]; D(A)), \quad \forall T > 0$$

が成り立つ.

Lemma 6.2 (A について).

$$\langle \mathcal{A}u, u \rangle \ge \lambda_1 \|u\|^2, \quad \forall u \in \mathcal{V}$$
 (6.3)

が成り立つ.

Lemma 6.3 (\mathcal{B} の評価). 任意の $u, v \in \mathcal{V}$ について以下が成り立つ.

- (1) $\mathcal{B}(u,v) = \mathcal{B}(v,u)$.
- (2) $\langle \mathcal{B}(u,u), u \rangle = 0.$
- $(3) \mid \langle \mathcal{B}(u,v), v \rangle \mid \leq \exists c \|u\| \|v\| |v|.$

ただし、c > 0 は \mathcal{B} にのみ依存.

Proof. まず、[3] から B について以下が成り立つ.

 $[\]overline{}^{*4}$ もしくは f の勾配部分 $f-P_{\sigma}f$ を圧力勾配 abla p に加えて $P_{\sigma}f$ を改めて f とおく.

^{*5} 半群 $\Psi_t: \mathcal{H} \ni u_0 \mapsto u(t) \in D(A)$ が定義できる.

- i) $\langle B(u,v), v \rangle = 0$, $\forall u, v \in \mathcal{V}$.
- ii) $\langle B(u,v), w \rangle = \langle B(u,w), v \rangle, \quad \forall u, v, w \in \mathcal{V}.$
- iii) $|\langle B(u,v), w \rangle| \le \exists c |u|^{1/2} ||u||^{1/2} ||v|| ||w||^{1/2} ||w||^{1/2}, \quad \forall u, v, w \in \mathcal{V}.$

(1), (2) は明らか.

$$\begin{split} |\left<\mathcal{B}(u,v),v\right>| &\leq \frac{1}{2}[|\left< B(u,v),v\right>| + |\left< B(v,u),v\right>|] \leq 0 + \frac{c}{2}|v|^{1/2}\|v\|^{1/2}\|u\||v|^{1/2}\|v\|^{1/2} \\ &= \frac{c}{2}\|u\|\|v\||v|. \end{split}$$

2つ目の不等式では i) と iii) を用いた.

Lemma 6.4. 以下の a priori estimate が成り立つ.

$$|u(t)|^{2} \le |u_{0}|^{2} e^{-\nu\lambda_{1}t} + \frac{|f|^{2}}{\nu^{2}\lambda_{1}^{2}} (1 - e^{-\nu\lambda_{1}t}). \tag{6.4}$$

また、ある $\rho_1 > 0$ が存在して $\mathcal{B}_1 = B_{\mathcal{V}}(0, \rho_1)$ は \mathcal{V} での有界な absorbing set であるので、 Ψ_t の \mathcal{H} での一様コンパクト性が従う.これより、global attractor の存在もわかる.

Lemma 6.5 ([3]). $K = \frac{|f|^2}{\nu^2 \lambda_1}$ とする. global attractor \mathscr{A} を (1.1) で定めると、 $\forall u_0 \in \mathscr{A}$ で、以下が成り立つ.

$$||u(t)||^2 \le K, \quad \forall t \ge 0.$$

以上から \mathbb{T}^2 上 Navier-Stokes 方程式は基本の仮定を満たすので \mathcal{H} のノルム $(L^2$ ノルム $|\cdot|)$ に対して、Lemma 2.6 の結果が従う. [3] は \mathcal{V} のノルム $(\|\cdot\|)$ に対して同様の評価をしている.

Theorem 6.6. $\forall v_0 \in \mathcal{A}, \ w_0 \in \mathcal{V}$ を初期値とする [0,T] での (6.2) の解をそれぞれ v(t),w(t) と書く. ある無次元の定数 C_1 と $\beta = C_1 \nu^{-5/3} \lambda_1^{-1/3} K^{4/3}$ に対し、 $t \in [0,T]$ で以下が成り立つ.

$$||v(t) - w(t)|| \le e^{\beta t} ||v_0 - w_0||.$$

7 3 次元正則化 Navier-Stokes

L>0 とし周期境界の $\Omega=[0,L]^3$ 上 3 次元 Camassa-Holm(Navier-Stokes-lpha) 方程式は

$$\frac{\partial}{\partial t}(\alpha_0^2 u - \alpha_1^2 \triangle u) - \nu(\alpha_0^2 u - \alpha_1^2 \triangle u) - u \times (\nabla \times (\alpha_0^2 u - \alpha_1^2 \triangle u)) + \frac{1}{\rho_1} \nabla p = f,$$

$$\nabla \cdot u = 0,$$

$$u(x, 0) = u_0(x).$$

ただし、 $\frac{p}{\rho_1} = \frac{\pi}{\rho_0} + \alpha_0^2 |u|^2 - \alpha_1^2 (u \cdot \Delta u)$ は修正圧力であり、圧力 π 、粘性係数 $\nu > 0$ 、密度 $\rho_0 > 0$ 、 f は外力を表す。 $\alpha_0 > 0$ と $\alpha_1 \ge 0$ はスケールパラメータであり $\alpha_0 = 1$ 、 $\alpha_1 = 0$ のとき、3 次

元 Navier-Stokes 方程式に一致する. f は時間に依存しないと仮定する. また, $\int_\Omega u dx=0$ となるように, $\int_\Omega u_0 dx=\int_\Omega f dx=0$ を仮定する.

また、 $((\cdot,\cdot))$ を \mathcal{V} に制限すると $\alpha_1>0$ のとき以下の H^1 内積と同値になる.

$$[u, v] = \alpha_0^2 \langle u, v \rangle + \alpha_1^2((u, v)), \quad u, v \in \mathcal{V}.$$

次に双線形形式 $B: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{H}$ を

$$B(u, v) = P_{\sigma}[(u \cdot \nabla)v], \quad u, v \in V$$

で与え, $B(u)v = B(u,v), u,v \in \mathcal{V}$ とおく. さらに,

$$\tilde{B}(u,v) = -P_{\sigma}(u \times (\nabla \times v)), \quad u,v \in V$$

3次元 Camassa-Holm 方程式は ODE として以下のように表せる.

$$\frac{d}{dt}(\alpha_0^2 u + \alpha_1^2 A u) + \nu A(\alpha_0^2 u + \alpha_1^2 A u) + \tilde{B}(u, \alpha_0^2 u + \alpha_1^2 A u) = f, \tag{7.1}$$

$$u(0) = u_0, (7.2)$$

ただし, $f \in \mathcal{H}$ を仮定する.

Lemma 7.1 ([7]). (1) $\langle B(u,v),w\rangle = -\langle B(u,w),v\rangle$.

(2)
$$\tilde{B}(u,v) = (B(v) - B^*(v))u, \quad \forall u, v \in V.$$

Definition 7.2 (Regular solution). $f \in \mathcal{H}$, T > 0 とする. $u \in C([0,T); \mathcal{V}) \cap L^2([0,T);D(A))$, $\frac{du}{dt} \in L^2([0,T);\mathcal{H})$ が以下を満たすとき (7.1) の regular solution と呼ばれる.

$$\left\langle \frac{d}{dt} (\alpha_0^2 u + \alpha_1^2 A u), w \right\rangle_{D(A)'} + \nu \left\langle A(\alpha_0^2 u + \alpha_1^2 A u), w \right\rangle_{D(A)'} + \left\langle \tilde{B}(u, \alpha_0^2 u + \alpha_1^2 A u), w \right\rangle_{D(A)'} = \left\langle f, w \right\rangle,$$

 $\forall w \in D(A), \ a.e. \ t \in [0, T).$

Theorem 7.3 ([7]). $f \in \mathcal{H}$, $u_0 \in \mathcal{V}$ とする. 任意の T > 0 に対して, (7.1) の regular solution u が一意に存在し,以下を満たす.

- (1) $u \in L^{\infty}_{loc}((0,T]; H^3(\Omega)).$
- (2) $\nu, \alpha_0, \alpha_1, f$ にのみ依存する定数 R_k (k = 0, 1, 2, 3) が存在し,

$$\limsup_{t \to \infty} (\alpha_0^2 |A^{k/2}u|^2 + \alpha_1^2 |A^{\frac{k+1}{2}}u|^2) = R_k^2$$

が成り立つ.

Corollary 7.4. (7.1) の解 u に対して、 $\Psi_t u_0 = u(t)$ とおくと Ψ_t はコンパクトな半群となる。また、 $\mathfrak{B}_{abs} = \{u \in \mathcal{V} \mid \|u\| \leq \frac{R_0}{\alpha_1}\}$ とおくと、V での absorbing set となる。(1.1) で $\mathscr A$ を定めるとコンパクトとなる。

Theorem 7.5. $f \in \mathcal{H}, T > 0$ とする. $v_0 \in \mathcal{A}, w_0 \in \mathcal{V}$ を初期値とする (7.1) の [0,T) での解をそれぞれ v(t), w(t) と書き, $\delta u(t) = v(t) - w(t)$ とおく.ある $\beta \in \mathbb{R}$ が存在し, $t \in [0,T)$ で以下が成り立つ.

$$(\alpha_0^2 |\delta u(t)|^2 + \alpha_1^2 ||\delta u(t)||^2) \le e^{\beta t} (\alpha_0^2 |\delta u(0)|^2 + \alpha_1^2 ||\delta u(0)||^2).$$

Proof. [7] の p.20 にある regular solutino の一意性の議論から従う.

Remark 7.6. 初期値の条件 $w_0 \in \mathcal{V}$ に注意.

付録 A Gronwall の不等式

Lemma 付録 A.1. $a, b, u_0 \in \mathbb{R}$ に対して、 $u \in C^1(\mathbb{R}_{>0}; \mathbb{R})$ が

$$\frac{du}{dt} \le au + b, u(0) = u_0$$

を満たすとする. このとき, 以下が成り立つ.

$$u(t) \le e^{at}u_0 + \frac{b}{a}(e^{at} - 1).$$

参考文献

- [1] Roger Temam. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer New York, NY, 1997.
- [2] Xin T Tong, Andrew J Majda, and David Kelly. Nonlinear stability and ergodicity of ensemble based kalman filters. *Nonlinearity*, 29(2):657, jan 2016.
- [3] Kevin Hayden, Eric Olson, and Edriss S. Titi. Discrete data assimilation in the lorenz and 2d navier-stokes equations. PHYSICA D-NONLINEAR PHENOMENA, 240(18):1416–1425, SEP 1 2011.
- [4] K. J. H. Law, D. Sanz-Alonso, A. Shukla, and A. M. Stuart. Filter accuracy for the lorenz 96 model: Fixed versus adaptive observation operators. PHYSICA D-NONLINEAR PHENOMENA, 325:1–13, JUN 15 2016.
- [5] D. T. B. Kelly, K. J. H. Law, and A. M. Stuart. Well-posedness and accuracy of the ensemble kalman filter in discrete and continuous time. *NONLINEARITY*, 27(10):2579– 2603, OCT 2014.

- [6] P. Constantin and C. Foias. Navier-Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, 1988.
- [7] C. Foias, D. D. Holm, and E. S. Titi. The three dimensional viscous camassa-holm equations, and their relation to the navier-stokes equations and turbulence theory. *Journal of Dynamics and Differential Equations*, 14(1), 2001.
- [8] Andrew J. Majda and John Harlim. Filtering Complex Turbulent Systems. Cambridge University Press, 2012.
- [9] K. J. H. Law, A. M. Stuart, and K. C. Zygalakis. Data Assimilation: A Mathematical Introduction. Springer, 2015.
- [10] Kody Law, Abhishek Shukla, and Andrew Stuart. Analysis of the 3dvar filter for the partially observed lorenz'63 model. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 34(3, SI):1061–1078, MAR 2014.
- [11] Don A Jones and Edriss S Titi. On the number of determining nodes for the 2d navier-stokes equations. *Journal of Mathematical Analysis and Applications*, 168(1):72–88, 1992.