1. Theoretical Problems

True or False

a. True

 $R^2 = \frac{SSE}{SST} = \left(1 - \frac{SSR}{SST}\right)$: The portion of variations in y explained by the linear model.

$$R^2=1$$
 implies $SSR=\sum (y_i-\widehat{y}_i)^2=y_i-\widehat{y}_i=\widehat{u}_i=residuals=0$ for all i

 $R^2 = 1$ means we can explain all variations in y and residuals are all zero

b. True

Let
$$Y_i = \beta_0 + \beta_1 X_i + U_i$$
 and $X_i = \alpha_0 + \alpha_1 Y_i + U_i$

$$\widehat{\beta_1} = \frac{Cov(X,Y)}{Var(X)}$$
 $\widehat{\alpha_1} = \frac{Cov(X,Y)}{Var(Y)}$

since Var(X) = Var(Y) by given,

 $\widehat{eta_1} = \widehat{lpha_1}$ represents the estimated slope in two regression model are equal

c. False

 $R^2=0$ represents the explanatory variable X in **linear model** cannot explain the variation of dependent variable Y. In other words, there is **no linear relationship** between X and Y

There may have some other non-linear relationships between X and Y.

d. False

Sum of residuals are zero is not a crucial assumption of the linear model. We can prove it by properties of OLS.

e. False

$$\sum \widehat{U_i^2} = \sum (Y_i - \widehat{Y}_i)^2 = \sum (Y_i - \widehat{\beta}_0 - \widehat{\beta}_1 X_i)^2$$

$$\widehat{\beta_0} = \overline{Y} - \widehat{\beta_1} \ \overline{X} \qquad \widehat{\beta_1} = \frac{\sum (Y_i - \overline{Y})X_i}{\sum (X_i - \overline{X})X_i}$$

$$E(Y_i) = \beta_0 - \beta_1 X_i; E\left(\widehat{\beta_0}\right) = \beta_0; \ E\left(\widehat{\beta_1} X_i\right) = \beta_1 X_i$$

$$\mathbb{E}(\widehat{U}_{i}) = E(Y_{i} - \widehat{\beta_{0}} - \widehat{\beta_{1}}X_{i}) = E(Y_{i}) - E(\widehat{\beta_{0}}) - E(\widehat{\beta_{1}}X_{i}) = \beta_{0} - \beta_{1}X_{i} - \beta_{0} + \beta_{1}X_{i} = 0$$

Without assuming the expected value of the error term is zero, residual still have zero mean by OLS

f. False

$$\widehat{\beta_1} = \frac{\sum (Y_i - \bar{Y})X_i}{\sum (X_i - \bar{X})X_i}$$

$$E(\widehat{\beta_1}|X) = \beta_1 + \frac{\sum (X_i - \bar{X})}{\sum (X_i - \bar{X})^2} E(U_i|X)$$

We only need to use assumption $E(U_i|X) = 0$ to let the least – squares estimator is unbiased.

The assumption that the error term is normally distributed is not necessary.

$$Y = log(W) \ Y = \beta_0 + \beta_1 X + U \ with \ E(U) = 0$$

я

By properties of conditional expectation,

$$E(UX) = E(E(UX|X))$$

$$Cov(X,U) = E(XU) - E(X)E(U) = E(XU) = E(UX) = E(UX|X)$$
$$= E(XE(U|X)) = E(X*0) = 0$$

b.

$$Y = \beta_0 + \beta_1 X + U$$

$$Cov(X, Y) = Cov(\beta_0 + \beta_1 X + U, X) = Cov(\beta_1 X, X) + Cov(U, X) = \beta_1 Var(X) + Cov(U, X)$$

$$= \beta_1 Var(X) + 0 = \beta_1 Var(X)$$

$$\beta_1 = \frac{Cov(X, Y)}{Var(X)}$$

c

$$\widehat{\beta_{1}} = \frac{\sum y_{i}(x_{i} - \bar{x})}{\sum x_{i}(x_{i} - \bar{x})} = \frac{\sum y_{i}x_{i} - \sum y_{i}\bar{x}}{\sum x_{i}^{2} - \sum x_{i}\bar{x}} = \frac{\sum (\beta_{0} + \beta_{1}x_{i} + u)x_{i} - \bar{x}\sum y_{i}}{\sum x_{i}^{2} - \bar{x}\sum x_{i}}$$

$$= \frac{\frac{1}{n}\sum (\beta_{0} + \beta_{1}x_{i} + u)x_{i} - \bar{x}\frac{1}{n}\sum y_{i}}{\frac{1}{n}\sum x_{i}^{2} - \bar{x}\frac{1}{n}\sum x_{i}} = \frac{\frac{1}{n}\sum (\beta_{0} + \beta_{1}x_{i} + u)x_{i} - \bar{x}\bar{y}}{\frac{1}{n}\sum x_{i}^{2} - \bar{x}^{2}} = A$$

By Law of large number, converge in probability

As
$$\bar{x}\bar{y} \xrightarrow{p} E(x)E(y) = E(x)(\beta_0 + \beta_1 E(x) + E(u)) = \beta_0 E(x) + \beta_1 E(x)^2$$

$$\beta_1 \frac{1}{n} \sum x_i^2 \xrightarrow{p} \beta_1 E(x^2) \qquad \bar{x}^2 \xrightarrow{p} (E[x])^2 \qquad \beta_0 \bar{x} \xrightarrow{p} \beta_0 E(x) \qquad \frac{1}{n} \sum ux \xrightarrow{p} E(xu)$$

$$A \xrightarrow{p} \frac{\beta_{0}E(x) + \beta_{1}E(x^{2}) + E(xu) - \beta_{0}E(x) - \beta_{1}E(x)^{2}}{E(x^{2}) - E(x)^{2}}$$

$$\xrightarrow{p} \frac{\beta_{1}[E(x^{2}) - E(x)^{2}] + E(xu)}{E(x^{2}) - E(x)^{2}} = \beta_{1} + \frac{Cov(x, u) + E(x)E(u)}{Var(x)}$$

$$= \beta_{1} + \frac{Cov(x, u)}{Var(x)} (SINCE E(U) = 0)$$

d.

Approximate: If x increases by 1 unit, W increase by $\widehat{\beta_1} * 100 \ percent$ $\Delta \widehat{W}\% = 100 * \widehat{\beta_1} \ (\Delta X)$

Exact:
$$\Delta \widehat{W}\% = \frac{W_1}{W_0} - 1$$

$$\begin{split} &\log(\widehat{W}) = \widehat{\beta_0} + \widehat{\beta_1}X + U \\ &\widehat{W} = e^{\widehat{\beta_0} + \widehat{\beta_1}X + U} \\ &\Delta \widehat{W}\% = & \frac{W_1}{W_0} - 1 = \frac{e_1^{\widehat{\beta_0} + \widehat{\beta_1}X_1 + U}}{e_0^{\widehat{\beta_0} + \widehat{\beta_1}X_0 + U}} - 1 = e^{\widehat{\beta_1}\Delta X} - 1 \end{split}$$

e.

$$E(\hat{\beta}) = \beta$$

note: $e^{x\beta}$ is **not** a linear function, thus $E\left(e^{x\widehat{\beta}}\right) \neq \left(e^{xE(\widehat{\beta})}\right)$

$$\text{bias} = E\left(e^{x\widehat{\beta}} - 1\right) - \left(e^{x\beta} - 1\right) = E\left(e^{x\widehat{\beta}}\right) - \left(e^{x\beta}\right) = E\left(e^{x\widehat{\beta}}\right) - \left(e^{xE(\widehat{\beta})}\right) \neq 0$$

Thus, $e^{x\widehat{\beta}}-1$ is a biased estimator for $e^{x\beta}-1$

Since Cov(X, U) = 0, $\hat{\beta} \stackrel{p}{\rightarrow} \beta$ by question c

$$f(\hat{\beta}) = e^{x\hat{\beta}} - 1$$
 is a continuous function, $f(e^{x\beta}) = e^{x\beta} - 1$

Thus,
$$f(\hat{\beta}) = e^{x\hat{\beta}} - 1 \xrightarrow{p} f(\beta) = e^{x\beta} - 1$$

then $e^{x\widehat{\beta}} - 1 \xrightarrow{p} e^{x\beta} - 1$ by properties of coverge in probability

2. Computer Based Problems

Determinants of Income

a.

. reg loginc female black age agesq educ1 educ2 educ3 educ4

Source	SS	df	MS	Numb	er of obs	=	3,987
				- F(8,	3978)	=	123.70
Model	1072.10954	8	134.01369	3 Prob	> F	=	0.0000
Residual	4309.72891	3,978	1.08339088	8 R-sq	uared	=	0.1992
				- Adj	R-squared	=	0.1976
Total	5381.83845	3,986	1.35018526	5 Root	MSE	=	1.0409
	!	-					
loginc	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
female	2672268	.0331098	-8.07	0.000	332140	7	202313
black	552836	.0565014	-9.78	0.000	663610	5	4420616
age	.0490182	.0053594	9.15	0.000	.038510	8	.0595256
agesq	0004872	.0000526	-9.27	0.000	000590	2	0003841
educ1	.4489675	.0721566	6.22	0.000	.307	5	. 5904349
educ2	.705606	.067872	10.40	0.000	.572538	7	.8386732
educ3	1.126566	.0713241	15.80	0.000	.986730	9	1.266401
educ4	1.503135	.0749474	20.06	0.000	1.35619	6	1.650074
_cons	9.044574	.1379751	65.55	0.000	8.77406	6	9.315083

$$\begin{split} \widehat{loginc_i} &= 9.044574 \, - .2672268 \ female_i - .552836 \ black_i + .0490182 \ age_i \\ &- .0004872 \ age_i^2 - .4489675educ1_i + .705606 \ educ2_i + 1.126566 \ educ3_i \\ &+ 1.503135 \ educ4_i + \widehat{\epsilon_i} \end{split}$$

Interpretation of educ1:

Holding gender, race, age constant, the log of income will be 44.89% higher for the graduated high school people than for the high school dropout people on average.

• Interpretation of educ4:

Holding gender, race, age constant, the log of income will be 150.31% higher for the graduated or professional school people than for the high school dropout people on average.

b.

. reg loginc female black age agesq educ0 educ2 educ3 educ4

Source	SS	df	MS	Numb	Number of obs		3,987
				- F(8,	3978)	=	123.70
Model	1072.10954	8	134.01369	3 Prob	> F	=	0.0000
Residual	4309.72891	3,978	1.08339088	8 R-sq	uared	=	0.1992
				- Adj	R-square	d =	0.1976
Total	5381.83845	3,986	1.3501852	6 Root	MSE	=	1.0409
loginc	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
female	2672268	.0331098	-8.07	0.000	3321	407	202313
black	552836	.0565014	-9.78	0.000	6636	105	4420616
age	.0490182	.0053594	9.15	0.000	.0385	108	.0595256
agesq	0004872	.0000526	-9.27	0.000	0005	902	0003841
educ0	4489675	.0721566	-6.22	0.000	5904	349	3075
educ2	.2566385	.0466763	5.50	0.000	.1651	269	.3481502
educ3	.6775986	.0514378	13.17	0.000	. 5767	517	.7784455
educ4	1.054167	.0565341	18.65	0.000	.9433	288	1.165006
_cons	9.493542	.1289343	73.63	0.000	9.240	758	9.746325

formula:

$$\begin{split} loginc_i &= \beta_0 + \beta_1 female_i + \beta_2 black_i + \beta_3 age_i + \beta_4 age_i^2 + \beta_5 educ0_i + \beta_6 educ2_i + \beta_7 educ3_i \\ &+ \beta_8 educ4_i + \epsilon_i \end{split}$$

$$\widehat{loginc_i} = 9.493542 - .2672268 female_i - .552836 \ black_i + .0490182 \ age_i - .0004872 \ age_i^2 - .4489675 educ0_i + .2566385 \ educ2_i + .6775986 educ3_i + 1.054167 \ educ4_i + \widehat{\epsilon_i}$$

Interpretation of educ4:

Holding gender, race, age constant, the log of income will be 105.41% higher for the graduated or professional school people than for the graduated high school people on average.

It is possible to obtain the same result using the regression estimated in item (a)

 $\widehat{\beta_8}$ in regression Q2(difference between graduated or professional school and graduated high school)

- $=\widehat{eta_8}$ in regression Q1(difference between graduated or professional school and high school dropout)
- $\widehat{eta_5}$ in regression Q1(difference between graduated high school and high school dropout)
- = 1.503135 .4489675 = 1.0541675

c.
$$H_0: \beta_3 = \beta_4 = 0$$

 $H_a: \beta_3 \neq \beta_4 \neq 0$
. test (age == 0) (agesq =0)
(1) age = 0
(2) agesq = 0
F(2, 3978) = 42.98
Prob > F = 0.0000

We use F-test to test whether age has significant impacts on income. **P-value is close to 0**, we need to reject H_0 . In other words, there is sufficient evidence that $\beta_3 \neq \beta_4 \neq 0$ and age has significant impacts on income.

$$\begin{split} \widehat{loginc_i} &= 9.044574 \, - .2672268 \ female_i - .552836 \ black_i + .0490182 \ age_i \\ &- .0004872 \ age_i^2 - .4489675educ1_i + .705606 \ educ2_i + 1.126566 \ educ3_i \\ &+ 1.503135 \ educ4_i + \widehat{\epsilon_i} \end{split}$$

Holding other variables constant, the effect of an increase in age from 34 to 35 on income is

$$0.0490182 * 35 - .0004872 * 35^2 - (.0490182 * 34 - .0004872 * 34^2) = 0.0154014$$

The age for **maximum in income level**:

$$\frac{dloginc_i}{dage_i} = .0490182 - 2 * .0004872 \ age_i = 0$$

$$age_i \approx 50.31$$

Before age 50, the income is increasing as age increasing.

After age 50, the income is decreasing as age increasing.

Economic Convergence

a.

	Source	SS	df	MS	Number of obs		104
-					F(1, 102)	=	1.80
	Model	.670515709	1	.670515709	Prob > F	=	0.1829
	Residual	38.0298019	102	.372841195	R-squared	=	0.0173
-					Adj R-squared	=	0.0077
	Total	38.7003176	103	.375731239	Root MSE	=	.61061

result1	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
loggdp1975percapita _cons	1	.0589873 .4997609			0378965 -1.417823	.1961054 .5647239

regression model:
$$\log \left(\frac{y_{i,1995}}{y_{i,1975}} \right) = \alpha + \beta \log(y_{i,1975}) + u_{i,1975}$$

Estimated:

$$\log\left(\frac{y_{i,1995}}{y_{i,1975}}\right) = -.4265494 + .0791044 \, \log(y_{i,1975}) + u_{i,1975}$$

Interpretation:

Increasing GDP per capita of country i at year 1975 by 1 percent, is associated with 0.079% increase in the growth rate of GDP per capita of country i between year 1975 and 1995.

$$H_0: \beta = 0$$
 $H_a: \beta < 0 (beta - convergence)$ one side test.

P-value = 0.183/2 = 0.0915 > 0.05 (significance level)

Fail to reject H0, there is insufficient evidence of beta-convergence.

b.

. reg result loggdp1975percapita hci1975

Source Model Residual		SS 526904 940485	2 3.60313		3.00323432		Number of obs F(2, 101) Prob > F R-squared			
Total	38.70	003176	103	.375731	239	- Adj R-squared = 0.170 9 Root MSE = .5584				
re	esult1	Coef.	Std	l. Err.		t	P> t	[95%	Conf.	Interval]
loggdp1975perc	apita i1975 _cons	2737754 .7028936 1.299738	.15	40804 35307 25073	4	.91 .58 .19	0.004 0.000 0.031	460 .398 .124	3299	0871452 1.007457 2.475113

regression model:
$$\log \left(\frac{y_{i,1995}}{y_{i,1975}} \right) = \alpha + \beta_1 \log(y_{i,1975}) + \beta_2 H C_{i,1975} + u_{i,1975}$$

Estimated:

$$\log\left(\frac{y_{i,1995}}{y_{i,1975}}\right) = 1.299738 - .2737754 \log(y_{i,1975}) + .7028936HC_{i,1975} + u_{i,1975}$$

Interpretation:

 β_1 : Increasing GDP per capita of country i at year 1975 by 1 percent, is associated with 0.273% decrease in the growth rate of GDP per capita of country i between year 1975 and 1995.

 β_2 : Increasing human capital index of country i at year 1975 by 1 percent, is associated with 0.702% decrease in the growth rate of GDP per capita of country i between year 1975 and 1995

$$H_0: \beta = 0$$
 $H_a: \beta < 0$ (conditionally beta – convergence) one side test.

P-value = 0.004/2 = 0.002 < 0.05

Controlling the human capital index. Reject H0, there is sufficient evidence of beta-convergence.

P-value is **much smaller** compare to question a, we can prove the statistically significance of conditionally beta-convergence in question b.

c.

. reg result loggdp1975percapita gcf1975 hci1975

Source	SS	df	MS	Number of obs	=	104
				F(3, 100)	=	9.06
Model	8.27402029	3	2.75800676	Prob > F	=	0.0000
Residual	30.4262973	100	.304262973	R-squared	=	0.2138
				Adj R-squared	=	0.1902
Total	38.7003176	103	.375731239	Root MSE	=	.5516

result1	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
loggdp1975percapita gcf1975 hci1975 _cons	3519952 1.015701 .7384911 1.656595	.1018823 .542195 .1528442 .615502	-3.45 1.87 4.83 2.69	0.001 0.064 0.000 0.008	5541268 0599982 .4352526 .4354566	1498635 2.091401 1.04173 2.877733

regression model:
$$\log \left(\frac{y_{i,1995}}{y_{i,1975}} \right) = \alpha + \beta_1 \log(y_{i,1975}) + \beta_2 GCF_{i,1975} + \beta_3 HC_{i,1975} + u_{i,1975}$$

Estimated:

$$\log\left(\frac{y_{i,1995}}{y_{i,1975}}\right) = 1.656595 - .3519952 \log(y_{i,1975}) + 1.015701 GCF_{i,1975} + .7384911 HC_{i,1975} + u_{i,1975}$$

Interpretation:

 β_1 : Increasing GDP per capita of country i at year 1975 by 1 percent, is associated with 0.352% decrease in the growth rate of GDP per capita of country i between year 1975 and 1995.

 β_2 : Increasing Gross capital formation shares of country i at year 1975 by 1 percent, is associated with 1.01% decrease in the growth rate of GDP per capita of country i between year 1975 and 1995

 β_3 : Increasing Human capital index of country i at year 1975 by 1 percent, is associated with 0.738% decrease in the growth rate of GDP per capita of country i between year 1975 and 1995

$$H_0$$
: $\beta = 0$ H_a : $\beta < 0$ (conditionally beta – convergence) one side test.

P-value =
$$0.001/2 = 0.0005 < 0.05$$
(significance level)

Controlling the human capital index and Gross capital formation shares. Reject H0, there is sufficient evidence of beta-convergence.

P-value is **much smaller** compare to question a and b, we can prove the statistically significance of conditionally beta-convergence in question b & c.

$$H_0: \beta_2 = \beta_3 = 0$$
 $H_a: \beta_2 \neq \beta_3 \neq 0$

We use F-test, with degree of freedom for the numerator is 2, for the denominator is 104-3-1=100 **P-value is close to 0, P-value< 0.05**(significance level). Reject H0, there is sufficient evidence that both types of capitals jointly important to explain future growth.

Monte Carlo Simulation

a.

. sum p_value b1 b0 0bs Std. Dev. Variable Mean Min Max .0001011 1,000 .9990631 p_value .5072577 .2864259 1,000 1.712932 .1414761 11.11117 b1 5.114218 bø .9718946 -12.79138 -7.294732 1,000 -10.07301 . count if p_value <0.05

$$H_0$$
: $\beta_1 = 5$

$$H_a$$
: $\beta_1 \neq 5$

We reject H_0 whenever P – value $\leq \alpha = 0.05$ (significance level)

In 1000 simulations, we reject the null hypotheses 49 times.

The fraction of the simulations we can rejut the null hypotheses:

$$\frac{49}{1000}$$
 * 100% = 4.9% 4.9% is close to 5%

For those 49 times, you have a Type 1 Error.

Probabilty of Type 1 error

: $\alpha(significance\ level)$ represent the probability that reject H_0 given H_0 is ture. $P(reject\ H_0|H_0:\ \beta_1=5\ is\ true)=\alpha=0.05=5\%$

b.

For
$$H_0$$
: $\beta_1 = 4.5$ H_a : $\beta_1 \neq 4.5$

. sum p_value	b1 b0				
Variable	Obs	Mean	Std. Dev.	Min	Max
p_value	1,000	.4914149	. 2950307	.0000292	.9990672
b1	1,000	5.114218	1.712932	.1414761	11.11117
b0	1,000	-10.07301	.9718946	-12.79138	-7.294732
count if p_v 65	value <0.05				

In 1000 simulations, we reject the null hypotheses 65 times.

The fraction of the simulations we can rejut the null hypotheses:

$$\frac{65}{1000}$$
 * 100% = 6.5% 6.5% is close to 5%

For
$$H_0$$
: $\beta_1 = 0$ H_a : $\beta_1 \neq 0$

. sum p_value bl b0

Max	Min	Std. Dev.	Mean	0bs	Variable
.9399751	5.45e-11	.0922712	.0367694	1,000	p_value
11.11117	.1414761	1.712932	5.114218	1,000	b1
-7.294732	-12.79138	.9718946	-10.07301	1,000	b0

In 1000 simulations, we reject the null hypotheses 829 times.

The fraction of the simulations we can rejut the null hypotheses:

$$\frac{829}{1000}$$
 * 100% = 82.9% 82.9% is NOT close to 5%

When $H_0: \beta_1 = 0$ $H_a: \beta_1 \neq 0$, we get more significant fractions of the simulations we can reject each null hypothesis.

In those two cases, we get the **Power** of the test.

Power represent the probability that reject H_0 given H_a is ture.

Power: P(reject H₀|H_a is true) = 6.5% for
$$H_0$$
: $\beta_1 = 4.5$ H_a : $\beta_1 \neq 4.5$ = 82.9% for H_0 : $\beta_1 = 0$ H_a : $\beta_1 \neq 0$

Since 4.5 is close to 5, it has a smaller power. 0 is much smaller than 5, it has a greater power.