

Theory 1/9

D.E. Brown

Quantitative

Qualitative

Statistical Decision Theory

Donald E. Brown

School of Data Science University of Virginia Charlottesville, VA 22904

Statistical Decision Theory: Quantitative Response

Theory 3/9

5.2. 5.0.

Quantitative

Oualitative

- Let Y be a quantitative output and X be the input where $Y \in \Re$ and $X \in \Re^p$.
- Let P(X, Y) be the joint distribution.
- Goal is to find a function, $\hat{Y} = f(X)$ for predicting Y.
- Criterion or loss function, L(Y, f(X)) for scoring the performance of the learned function or model.
- Bayes risk

$$L^* = \inf_{f(\boldsymbol{X}) \in \mathfrak{D}} (E[L(Y, f(\boldsymbol{X}))])$$

• $f^*(X)$ is Bayes optimal if $E[L(Y, f^*(X))] = L^*$

Squared Error: Bayes Optimal Predictor

Theory 4/9

D.E. Brown

Quantitative

Qualitative

- Square error loss: $[Y f(X)]^2$
- Expected square prediction error or

$$\mathsf{EPE}(f) = E[Y - f(\mathbf{X})]^{2}$$

$$= \int [Y - f(\mathbf{X})]^{2} p(x, y) dx dy$$

$$= E_{\mathbf{X}} \left[E_{Y|\mathbf{X}} ([Y - f(\mathbf{X})]^{2} | \mathbf{X}) \right]$$

- The Bayes optimal predictor is given by the conditional mean, f(X) = E[Y|X = x]
- The universal machine learning solution

Qualitative Response

Theory 6/9

D.E. Brown

Quantitative

- For a categorical response, $G \in \mathcal{G}$, we want a decision function or rule, $d(\mathbf{X}) \in \mathcal{G}$, where $\mathcal{G} = \{g_1, \dots, g_K\}$
- Need a loss function $L(g_i, d(\mathbf{X}))$ for classifying an observation as $d(\mathbf{X})$ when $G = g_i$.
- A common choice is a zero-one loss function:

$$c_{i,j} = \left\{ \begin{array}{ll} 1 & g_i \neq g_j \\ 0 & g_i = g_j \end{array} \right.$$

Optimal Qualitative Classification

Theory 7/9

D.E. Brown

Quantitative Qualitative The expected prediction error is

$$EPE(d) = E_{G,X}[L(G, d(X))]$$

$$= E_X \left(\sum_{k=1}^K L(\mathcal{G}_k, d(X)) Pr(\mathcal{G}_k | X) \right)$$

- The minimum of the EPE is the Bayes risk
- For $\mathbf{X} = \mathbf{x}$, the Bayes optimal decision rule is

$$d(\mathbf{x}) = argmin_{c \in \mathcal{G}} \sum_{i=1}^{K} L(g_i, c) Pr(G = g_i | \mathbf{X} = \mathbf{x})$$

Optimal 0-1 Loss Classification

Theory 8/9

D.E. Brown

Quantitative

When the loss function is 0-1, the Bayes optimal rule is

$$d(\boldsymbol{X}) = \operatorname{argmax}_{g_i \in \S} Pr(G = g_j | \boldsymbol{X} = \boldsymbol{x})$$

Break ties arbitrarily.

Optimal Bayes Classifier

Theory 9/9

D.E. Brown

Quantitative

- We have methods for constructing classification functions d(X) that are Bayes optimal under known distributions.
- We also estimate likelihoods $h(\mathbf{X} = \mathbf{x}|G = g_i)$ and apply Bayes rule to get $Pr(G = g_i|\mathbf{X} = \mathbf{x})$.