ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM – ROK AKADEMICKI 2014/2015				
Dzień: Czwartek 8-12 Stanowisko: F	Karolina Czerniak, Oskar Świtalski	12.03.2015		
Ćwiczenie 2	Obwody rezonansowe	Ocena		

1 Cel ćwiczenia

Celem ćwiczenia jest poznanie właściwości obwodów rezonansowych i ich parametrów, reakcji obwodów selektywnych na sygnały i harmoniczne i prostokątne oraz możliwości zastosowań.

2 Schematy układów pomiarowych i wykaz użytych przyrządów

Rysunek 1: Schemat szeregowego.

Wykaz przyrządów

- Oporniki 33Ω , $10k\Omega$, $130k\Omega$
- Kondensatory 6,2 nF
- Cewka 20,57 mH

3 Podstawowe definicje i zależności

Obwody drgające, zawierające cewki i kondensatory klasyfikuje się na podstawie liczby stopni swobody. W najprostszym przypadku jest to 1 stopień, kiedy to układ może mieć postać obwodu szeregowego lub równoległego. W przypadku układu szeregowego badanie drgań wymuszonych polega na rejestrowaniu modułu natężenia prądu w obwodzie przy stałej amplitudzie w funkcji częstotliwości f. Gdy pulsacja drgań źródła jest równa pulsacji drgań własnych $\omega=\omega_0=2\pi f$, gdzie $\omega_0=\frac{1}{\sqrt{LC}}$ mówimy, że w układzie nastąpił rezonans.

W przypadku układu równoległego badanie drgań wymuszonych polega na rejestrowaniu modułu napięcia prądu na obwodzie przy stałej amplitudzie wydajności prądowej w funkcji częstotliwości f.

Dobroć jest wielkością charakteryzującą układ rezonansowy, która określa ile razy amplituda wymuszonych drgań rezonansowych jest większa niż analogiczna amplituda w obszarze częstości nierezonansowych. W przypadku wyżej wymienionych obwodów dobroć definiujemy w następujący sposób:

- dla układu szeregowego $Q = \frac{\omega_0 L}{R}$
- $\bullet\,$ dla układu równoległego $Q=\frac{\omega_0 C}{G}$

gdzie: R - rezystancja, C - pojemnokondensatora, L - indukcyjnocewki, G - konduktancja

4 Wyniki pomiarów

4.1 Zad 3-5.

4.2 Układ szeregowy

Rysunek 2: Wykres modułu natężenia prądu w obwodzie szeregowym w funkcji częstotliwości.

Rysunek 3: $R=33\Omega$

Rysunek 4: $R = 130\Omega$

wyniki dla opornika 33Ω					
Q = 19.99	B = 723	$r_L = 55.83 \ \Omega$	L = 19,6 mH	$Q_L = 31.8$	
wyniki dla opornika 130 Ω					
Q = 10.03	B = 1440	$r_L = 46.93 \ \Omega$	L = 19,6 mH	$Q_L = 37.8$	

Tabela 1: Obliczone w ćwiczeniu parametry.

- 4.3 Układ równoległy
- 4.4 Zad 6
- 4.5 Zad 7
- 4.6 Nieznany kondensator

5 Dyskusja błędów

Błędy wielkości z 3-5. Wraz ze wzorami.

6 Wnioski

TODO