Exam Y

Python Algorithms for Industrial Engineers

Hadas Lapid, PhD

סטודנטים.ות יקרים.ות,

. "athletes_short.csv" המבחן עוסק בבסיס נתונים בשם

בסיס הנתונים מכיל סיכום נתוני תחרויות אתלטיקה מארבע מדינות.

בסיס הנתונים מכיל את העמודות הבאות:

שתנה קטגורי המיצג את מגדר הספורטאי – Gender

Age – משתנה מספרי המייצג גיל

- Height משתנה מספרי המייצג גובה

- weight - משתנה מספרי המייצג משקל

– משתנה קטגורי המייצג מדינה – Team

את השנה מספרי, המיצג את השנה – Year

Medal – משתנה קטגורי המייצג זכיה במדליה.

המבחן כולל 5 שאלות, אותן יש להטמיע בפונקציות המתאימות בשלד באופן הבא:

יש לממש את הפונקציות **במקום** המילה pass, כולל הקלט והפלט של כל אחת ואחת מהן.

יש לבדוק את מימושן באמצעות שורות הבדיקה התואמות ב-main.

באם צלח המימוש, השאירו את הבדיקות עובדות. באם לא צלח המימוש, יש להסתירן בכדי לאפשר לקובץ לרוץ באופן תקין.

5 נקודות מתוך 100 שמורות לתקינות ריצת הפתרון. (לקובץ קוד שלא רץ יורדו 5 נק')

במידה ולא הצלחתם לממש שאלה כלשהי, ויש תלות בעיבוד קודם לצורך הפתרון, ישנם קבצי עזר, אותם ניתן להעלות ע"י שימוש בשורות המוסתרות לפני הבדיקות של שאלות אלו.

בכל מקרה אין לשנות את שמות הפונקציות ו/או את הבדיקות המוצעות ב-main ואין לכתוב הערות בעברית.

העלאת בסיס הנתונים לטבלה (df), שהיא מאפיין של המחלקה (Data_Process), ממומשת עבורכם ב-main. כאשר מדפיסים את אובייקט המחלקה ((print(data)), ניתן לצפות בראשית הטבלה:

		Age	Height	Weight	Team	Year	Medal
0		30.0	187.0	76.0	France	2012	NaN
1		22.0	189.0	80.0	France	1976	NaN
2	M	21.0	NaN	NaN	France	1956	NaN
3	М	21.0	NaN	NaN	France	1956	Gold
4	M	21.0	198.0	90.0	Italy	2016	Bronze

טבלת סיכום הניקוד:

ציון חלקי והערות לסטודנט.ית	ניקוד יחסי	שאלה
	5	קובץ רץ/לא רץ
	10	1
	15	2
	15	3
	25	4
	5	5
	25	6
	100	סה"כ

1. ממשו את הפונקציה modify_col (נק)

הפונקציה מקבלת שם של עמודה (col).

הפונקציה מחליפה ערכים בעמודה col בטבלת הנתונים df לפי כלל המרה מוגדר.

לדוגמא, עבור עמודה 'Medal', וכלל ההחלפה הבא:

כל np.nan מוחלף בספרה 0,

כל "Gold" מוחלף בספרה 3,

כל "Silver" מוחלף ב-2,

וכל "Bronze" מוחלף ב-1.

הפונקציה אינה מחזירה אף ערך, אבל טבלת df הפונקציה אינה מחזירה אף ערך

בדיקה: אחרי הפעלת modify_col על "Medal" לפי הכלל הנ"ל, df נראית כך:

	Gender	Age	Height	Weight	Team	Year	Medal
0	М	30.0	187.0	76.0	France	2012	0
1 2 3 4	М	22.0	189.0	80.0	France	1976	0
2	M	21.0	NaN	NaN	France	1956	0
3	М	21.0	NaN	NaN	France	1956	3
4	М	21.0	198.0	90.0	Italy	2016	1

רמז: ניתן לעשות שימוש בפונקציה replace עם מילון.

2. ממשו את הפונקציה replace_by_mean (15 נק)

הפונקציה מקבלת רשימת שמות עמודות קטגוריות (group_cols) ושם של עמודה רציפה (val). הפונקציה ממלאת את החוסרים בעמודה val בהתאם לממוצע הקבוצתי של עמודות (val). במילים אחרות, בכל שורה שבה מופיע חוסר (Nan) בעמודה val, החוסר יוחלף בממוצע ערכי val, עבור הקטגוריות המתאימות מעמודות group_cols.

לדוגמא, בהנחה שהעמודות הקטגוריות הן ["Gender","Team"], ועמודת התוכן המספרי היא "Height". החוסרים בשורות 2 ו-3 שמופיעים בעמודה Height, משוייכים לקטגוריות M ו-France מעמודות Gender ו-Team בהתאמה. לכן, חוסרים אלו יושלמו על ידי הגובה הממוצע של הספורטאים הגברים מצרפת. או במקרה זה, 178.29.

בדיקות:

לאחר הפעלת הפונקציה על עמודות "Weight", "Height", עם העמודות הקטגוריות" (לאחר הפעלת הפונקציה על עמודות 19-20", ["Gender","Team"], שורות 19-20 בהן הופיעו חוסרים קודם יראו עתה כך:

	Gender	Age	Height	Weight	Team	Year	Medal
17	M	26.000000	183.000000	75.000000	United States	1928	0
18	F	30.000000	163.000000	52.000000	United States	2016	0
19	M	26.729748	178.293243	73.157444	France	1952	0
20	М	20.000000	178.293243	73.157444	France	1952	0
21	М	23.000000	178.000000	61.000000	United States	2000	0
22	M	27.000000	178.000000	61.000000	United States	2004	0
23	М	31.000000	178.000000	61.000000	United States	2008	0
24	M	35.000000	178.000000	61.000000	United States	2012	0

רמז 1: מומלץ להשתמש ב-groupby ובאינדקסים של הקבוצות שלו עבור חיתוך הטבלה בהתאם לדרישות.

רמז 2: ניתן להשתמש בפונקציה transform עם פונקציית עזר על מנת לחשב את הממוצעים הנדרשים להשלמה.

3. ממשו את הפונקציה data_select

הפונקציה מבצעת חיתוך של טבלת df בהתאם לדרישות הבאות:

הפונקציה מקבלת כקלט:

שם של עמודה קטגורית, cat col

cat ערך קטגורי,

שם של עמודה מספרית, num col

threshold ערך סף מספרי

ורשימת שמות של עמודות, cols.

.cat הערך cat_col הפונקציה מחלצת את השורות שבהן מופיע בעמודה הקטגורית

מתוך אותן השורות, הפונקציה בוחרת רק בשורות בהן בעמודה המספרית num_col מופיעים ערכים הגדולים או שוים ל-threshold, ועבור שורות נבחרות אלו, הפונקציה בוחרת רק את העמודות cols.

הפונקציה מחזירה True בלבד, אך משנה את טבלת df של המחלקה להיות הגרסה המצומצמת בהתאם לדרישות החיתוך הנ"ל.

בדיקה: לאחר הפעלת הפונקציה data_select עם בחירה בשורות בהן מופיע F בעמודה (לאחר הפעלת הפונקציה data_select), ובחירה בשנים 2000 ומעלה, וצמצום העמודות ל- ["Team", "Year", "Medal"]] בלבד, ובחירה הטבלה בעלת מימדים: (2598,3) בלבד, וראשיתה תראה כך:

		Team	Year	Medal
18	United	States	2016	0
64	United	States	2000	0
65	United	States	2004	0
66	United	States	2008	0
67	United	States	2012	0

רמז: ניתן לפתור את הדרישה בשורת קוד אחת, הכוללת חיתוך שורות על ידי שימוש במשפט תנאי מורכב, וחיתוך עמודות לפי הדרישה.

4. ממשו את הפונקציה calc_counts

הפונקציה מקבלת רשימת שמות של עמודות קטגוריות (grps) ושם של עמודת קטגורית נוספת, שרוצים למדוד את התפלגות המופעים שבה (val).

הפונקציה מייצרת טבלת אחוזונים ובה סיכום של אחוז המופעים בכל קטגוריה ב-val, בכל קבוצה מתוך grps.

הפונקציה מחזירה את טבלת אחוזונים זו.

בדיקה: עבור עמודת המדידה (Medal" (val)", ועבור העמודה הקטגורית (grps"), התפלגות האחוזונים תסוכם בפלט הפונקציה בטבלה הבאה:

לדוגמא, בצרפת 93.0% מהספורטאיות לא זכו במדליה, 1.32% זכו במקום ראשון, 3.76% לדוגמא, בצרפת 1.88% מהספורטאיות לא זכו במדליה, 1.88% זכו במקום שלישי, ו

הערה: שימו לב, שהערכים היחודיים בעמודה val מופיעים כשמות העמודות בטבלת האחוזונים המסכמת.

הערה 2: שימו לב, ששמות הקטגוריות ב-grps מופיעות באינדקסים של טבלת האחוזונים המסמכת.

הערה 3: שימו לב כי סך האחוזים בכל שורה (כל קטגוריה מ-grps) הוא 100.

5. ממשו את הפונקציה rename_index (5 נק')

(new_colname), ושם של עמודה חדשה (d), ושם טבלה הפונקציה מקבלת טבלה

הפונקציה מאתחלת את שמות השורות (האינדקסים) בטבלה לספרור רץ (מ-0 ועד למספר השורות בטבלה פחות אחד), כאשר היא שומרת את שמות האינדקסים המקוריים בעמודה חדשה ששמה new_colname.

הפונקציה מחזירה את הטבלה המתוקנת.

.rename-ו reset_index הערה: ניתן להשתמש בפונקציות

בדיקה: אחרי הפעלת הפונקציה על הטבלה female_scores תתקבל הטבלה

	Country	0	3	1	2
0	France	93.045113	1.315789	3.759398	1.879699
1	Great Britain	85.95679	4.320988	4.012346	5.709877
2	Italy	91.136364	3.863636	2.5	2.5
3	United States	60.224949	18.507157	8.895706	12.372188

6. ממשו את הפונקציה הרקורסיבית selection_sort (כק')

הפונקציה מקבלת טבלת נתונים (d), שם של עמודה (col) ומשתנה בוליאני בשם sscending.

הפונקציה מממשת את אלגוריתם המיון selection sort (רמת סיבוכיות (O(n²)), ומחזירה את הטבלה d, ממויינת לפי עמודה col, בסדר **יורד/עולה** בהתאם לדרישה במשתנה False) ascending זה מיון בסדר יורד, True

לדוגמא, אם ascending הוא False, והמיון נעשה לפי עמודה 3 (מייצג זכיה במדליית דוגמא, אם הפלט תראה כך:

	Country	0	3	1	2
0	United States	60.224949	18.507157	8.895706	12.372188
1	Great Britain	85.95679	4.320988	4.012346	5.709877
2	Italy	91.136364	3.863636	2.5	2.5
3	France	93.045113	1.315789	3.759398	1.879699

:2 דוגמא

אם ascending הוא True, והמיון נעשה לפי עמודה 3=col (מייצג זכיה במדליית זהב), טבלת הפלט תראה כך:

	Country	0	3	1	2
0	France	93.045113	1.315789	3.759398	1.879699
1	Italy	91.136364	3.863636	2.5	2.5
2	Great Britain	85.95679	4.320988	4.012346	5.709877
3	United States	60.224949	18.507157	8.895706	12.372188

לסיום, בדקו היטב את פתרונכם, ודאו שאתם מעלים קובץ רץ, בשם id_XXX.py, כאשר XXX מייצג את הת.ז. שלכם, וודאו שהקובץ אכן מכיל את הפתרון שלכם ולא מכיל אף הערה בעברית או בכל שפה אחרת מלבד אנגלית / פייתון.

עלו והצליחו,

צוות הקורס