Econ 6190 Final Exam

© Chen Qiu. Do not reproduce or share with any third party

2:00 pm - 4:30 pm, Wednesday, Dec 13, 2023

Instructions

This exam consists of two questions, not of equal length or difficulty. Answer all questions. Remember to always explain your answer. Good luck!

1. [50 pts] Suppose X is a random variable with the following pdf

$$f(x \mid \theta) = C(\theta) \exp^{Q(x)\theta}, \ x \in \mathbb{R},$$

where the functional forms of $C(\cdot)$ and $Q(\cdot)$ are both known, and $\theta \in \mathbb{R}$ is the unknown parameter of interest. As $f(x \mid \theta)$ is a pdf, note $C(\theta) \geq 0$ for all possible values of θ . We observe a random sample $\{X_1, X_2, \ldots, X_n\}$ from X. The goal here is to learn about θ . You may assume that all regularity conditions hold for this question, and in particular, that both $C(\cdot)$ and $Q(\cdot)$ are differentiable.

- (a) [5 pts] By using the properties of a pdf, express $C(\theta)$ in terms of an integral.
- (b) [10 pts] By using the Factorization Theorem, find a sufficient statistic for θ based on the random sample $\{X_1, X_2, \ldots, X_n\}$.
- (c) [5 pts] Find the log-likelihood function and derive the F.O.C that the Maximum Likelihood Estimator (MLE), say $\hat{\theta}_{MLE}$, should satisfy. (You do not need to solve for the estimator).
- (d) [5 pts] Explain how you would construct a method of moment estimator for θ , say, $\hat{\theta}_{MM}$.
- (e) [10 pts] Show that Cramer-Rao Lower Bound for estimating θ , say V_{CRLB} , equals $\frac{1}{n \cdot Var(Q(X))}$.
- (f) Suppose one finds the asymptotic distribution of the method of moment estimator $\hat{\theta}_{MM}$ as

$$\sqrt{n}\left(\hat{\theta}_{MM}-\theta\right) \stackrel{d}{\to} N(0,V),$$

where V is the asymptotic variance of $\hat{\theta}_{MM}$. In addition, they finds that \hat{V} is a consistent estimator for V.

- i. [5 pts] Which of the two, V_{CRLB} and V, do you think is larger?
- ii. [10 pts] Construct an asymptotically valid confidence interval with coverage probability 98% for $\beta = \exp(\theta)$. Explain your reasoning carefully.
- 2. **[50 pts]** Consider the normal sampling model, where $X \sim N(\mu, \sigma^2)$ with σ^2 known and with pdf $f(x \mid \mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$. A random sample of n observations, $\{X_1, X_2, \dots, X_n\}$, is drawn from the distribution of X.
 - (a) Consider testing $\mathbb{H}_0: \mu = \mu_0$ v.s. $\mathbb{H}_1: \mu > \mu_0$ for some $\mu_0 \in \mathbb{R}$. Let $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, and

$$T_{1} = \frac{\bar{X} - \mu_{0}}{\frac{\sigma}{\sqrt{n}}},$$

$$T_{2} = \frac{\bar{X} - \mu_{0}}{\frac{s}{\sqrt{n}}}, \text{ where } s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.$$

- i. [5 pts] Construct a finite-sample valid one-sided test that controls size at 5% based on T_1 . Call this Test A.
- ii. [5 pts] Construct a finite-sample valid one-sided test that controls size at 5% based on T_2 . Call this Test B.
- iii. [5 pts] Derive the finite-sample power of Tests A and B when the alternative distribution has mean $\mu_1 = \mu_0 + \sigma$. What do you think would happen to the power of Tests A and B when you let $n \to \infty$?
- iv. [10 pts] Derive the asymptotic distribution of T_2 when $n \to \infty$ under \mathbb{H}_0 . Carefully prove any of your asymptotic statement.
- (b) Suppose now one wishes to test $\mathbb{H}_0: \mu = \mu_0$ v.s. $\mathbb{H}_1: \mu \neq \mu_0$ for the same μ_0 used in (a).
 - i. [5 pts] Construct a finite-sample valid two-sided test that controls size at 5% based on T_1 . Call this Test C.
 - ii. [10 pts] Derive the finite-sample power of Tests A and C when the alternative distribution has mean $\mu_1 = \mu_0 \sigma$. Which test has a larger power as $n \to \infty$?
- (c) [10 pts] Derive the most powerful test for testing \mathbb{H}_0 : $\mu = \mu_0$ v.s. \mathbb{H}_1 : $\mu = \mu_0 \sigma$ among the set of all tests that control size at 5%. Is this test the same as any of the Tests A, B and C above?