

Введение в машинное обучение. KNN. Метрики качества. Матрица ошибок

Воробьёва Мария

- maria.vorobyova.ser@gmail.com
- @SparrowMaria

План лекции

Ш

Машинное обучение. Зачем и что это такое?

Примеры применения машинного обучения

Постановка задачи машинного обучения

Алгоритм knn

Оценка качества моделей

Переобучение моделей

Машинное обучение

Искусственный интеллект (Artificial Intelligence) — 1955

Машинное обучение (Machine Learning) — 1959

Интеллектуальный анализ данных (Data Mining) — 1989

Knowledge Discovery in Databases — 1989

Науки о данных (Data Science) — 1997

Предсказательная аналитика (Predictive Analytics) — 2007

Большие данные (Big Data) — 2008

Аналитика больших данных (Big Data Analytics)

Машинное обучение

Машинное обучение — это наука, изучающая способы извлечения закономерностей из ограниченного количества примеров.

Data — ► Knowledge

Допустим, мы хотим открыть новый магазин:

- Объект локация с параметрами
- Цель "какая будет прибыль через год"

Допустим, мы хотим открыть новый магазин:

- Объект локация с параметрами
- Цель "какая будет прибыль через год"

То есть нам нужна функция:

прибыль за год = f(параметры локации, где хотим открыть магазин)

Допустим, мы хотим открыть новый магазин:

- Объект локация с параметрами
- Цель "какая будет прибыль через год"

То есть нам нужна функция:

прибыль за год = f(параметры локации, где хотим открыть магазин)

Как можно получить такую функцию?

Допустим, мы хотим открыть новый магазин:

- Объект локация с параметрами
- Цель "какая будет прибыль через год"

То есть нам нужна функция:

прибыль за год = f(параметры локации, где хотим открыть магазин)

Как можно получить такую функцию?

- экспертно
- обучаясь на примерах

обучаясь на примерах

• то есть 1 магазин - это 1 пример

 По каждому магазину необходимо собрать ту информацию, которая нам поможет для решения первоначальной задачи:

Открывать успешные магазины с наибольшей прибылью

По каждому магазину мы можем собрать только ту информацию, которая доступна до момента открытия магазина

Нам доступны следующие характеристики магазина:

- площадь магазина
- на каком этаже ТЦ находится магазин
- в каком районе города
- что за город, соц дем характеристики города (плотность населения, безработица, %мужчин, % пенсионеров и так далее)
- а вот среднее количество людей, посещающих магазин, за 1 день неизвестно использовать нельзя

INVOPOLIS

Цель построить функцию

прибыль за год = f(параметры локации, где хотим открыть магазин)

Значит по каждому магазину, для которого собрали все доступные характеристики на момент открытия, мы также соберем прибыль за 1 года

Обучающая выборка состоит из к магазинов с п характеристиками и с 1 признаком - прибыль магазина через год

- Каждый магазин 1 строка в выборке
- n характеристик независимые признаки, features, предикторы, факторы
- доход магазина целевая переменная, target, метка, label

Провели обучение (например, выбрали независимые признаки и для выбранных независимых признаков подобрали коэффициенты) :

прибыль в 1 год = 500000 + 2*площадь_магазина +0.3*размер_населения города - 3*площадь_магазина_ближайшего_конкурента

Теперь для новой локации мы сможем посчитать прибыль за 1 год!
И только после этого принимать решение открывать новый магазин в этой локации или нет

Объект - кредитная заявка

Классы - bad (просрочка 90+ в 1-ый год) или good

Примеры признаков:

- пол, семейное положение, наличие телефона и ...
- место проживания, профессия, работодатель
- образование, должность
- возраст, зарплата, стаж работы, сумма прошлых кредитов, размер просрочки

Особенности задачи:

дисбаланс классов

Объект - абонент в определенный момент времени **Классы** - уйдет или не уйдет в следующем месяце

Примеры признаков:

- тарифный план, регион проживания
- длительность разговоров, смс, частота оплаты
- корпоративный клиент, включение услуг

Особенности задачи:

признаки необходимо вычислять по сырым данным большие данные

Объект - пациент в определенный момент времени

Классы - диагноз

Примеры признаков:

- пол, возраст, головная боль, слабость
- пульс, артериальное давление, содержание гемоглобина, другие показатели

Особенности задачи:

нужен интерпретируемый алгоритм

обычно много пропусков

innoboliz

Объект - изображение или видеопоследовательность

Классы: Собаки/Кошки (или решение объехать/не объехать)

Методы: Используются глубокие нейросетевые архитектуры (Deep Learning)

Классификация задач машинного обучения

Постановка задачи машинного обучения

Пусть

X - множество описаний объектов

Y - множество допустимых ответов

Существует неизвестная целевая зависимость у*

отображение $y^*: X \to Y$

значения y^st известны только на объектах конечной обучающей выборки X^n

$$X^n = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

Требуется построить алгоритм a, который приближал бы неизвестную целевую зависимость как на элементах выборки X^n , так и на всем множестве X

Постановка задачи машинного обучения

Данные X и Y -

репрезентативная выборка, то есть она должна быть iid (independent and identically distributed)

		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some							
student	23	3	3	NA	Esperanto	2	FALSE

Независимые признаки и целевая переменная могут быть разного типа

Постановка задачи машинного обучения

Гиперпараметры модели — задаются перед обучением моделей

Параметры модели — то, что находим во время обучения

Loss function — функция, которая характеризует потери при неправильном принятии решений на основе наблюдений, то есть эта функция оценивает на сколько модель ошибается на данных

Метрики качества — это числовые показатели или статистики, используемые для оценки качества или производительности системы, модели или алгоритма. В контексте машинного обучения и анализа данных метрики часто используются для измерения точности, эффективности или других аспектов работы модели или алгоритма.

Классификация или регрессия?

Классификация - целевая категориальная. Цель: найти такую поверхность, которая разделяет классы

Регрессия - целевая числовая. Цель регрессии — найти такую поверхность, которая проходит через точки обучающей выборки, минимизируя отклонения между предсказанными значениями и реальными числовыми значениями целевой переменной.

Алгоритм kNN - k Nearest Neighbours

innoboriz

Для классификации каждого из объектов тестовой выборки необходимо последовательно выполнить следующие операции:

- Вычислить расстояние до каждого из объектов обучающей выборки
- Отобрать объекты обучающей выборки, расстояние до которых минимально
- Класс классифицируемого объекта это класс, наиболее часто встречающийся среди ближайших соседей

Для **задачи регрессии** возвращается не метка, а число – среднее (или медианное) значение целевого признака среди соседей.

алгоритм kNN - k Nearest Neighbours

Число k - гиперпараметр модели

Расстояние:

- Евклидовое расстояние
- Minkowski (расстояние Минковского)
- косинусное расстояние
- и так далее

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$$

Minkowski Distance =
$$\left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{1/p}$$

Manhattan Distance =
$$d(x,y) = \left(\sum_{i=1}^{m} |x_i - y_i|\right)$$

Алгоритм kNN. Как можно улучшить алгоритм?

Будем учитывать расстояние до каждого объекта в явном виде

$$w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$$

$$p_{\text{green}} = \frac{w(\mathbf{x}_1) + w(\mathbf{x}_2)}{w(\mathbf{x}_1) + w(\mathbf{x}_2) + w(\mathbf{x}_3) + w(\mathbf{x}_4)}$$

$$p_{\text{blue}} = \frac{w(\mathbf{x}_3) + w(\mathbf{x}_4)}{w(\mathbf{x}_1) + w(\mathbf{x}_2) + w(\mathbf{x}_3) + w(\mathbf{x}_4)}$$

$$k = 4$$

Алгоритм kNN. Как можно улучшить алгоритм?

Гиперпараметр:

- функция расстояния
- число k

Рекомендуется выборку X нормировать:

Минусы:

• классический алгоритм плохо работает на больших данных

$$k = 4$$

А как понять, что мы построили хорошую модель?

Метрики качества зависят от типа целевой переменной: если целевая числовая: вещественная

							1.5		120				
	ID магазина	1	2	3	4	5	6	7	 n	доход от магазина	прогноз		
	1									1000000	999900	100	10000
	2									200000	200100	100	10000
	3									300000	299870	130	16900
	4									500000	499800	200	40000
	5									600000	600200	200	40000
	6									1000000	1000150	150	22500
	7									200000	199900	100	10000
	8									300000	299900	100	10000
	9									500000	499800	200	40000
	10									600000	600200	200	40000
	k									600000	600300	300	90000
												161.8	29945.5
-												101.0	29940.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (Y_i - Y_i^p)^2,$$

$$RMSE = \sqrt{MSE}$$

$$MAE = \frac{1}{N}abs(Y_i - Y_i^p)$$

где

 $Y_i^{\,p}$ - прогнозное значение ,

 Y_i - фактическое значение,

N - количество объектов

Метрики качества зависят от типа целевой переменной: если целевая числовая: вещественная

ID магазина	1	2	3	4	5	6	7	 n	доход от магазина	прогноз		
1									1000000	999900	100	1000
2									200000	200100	100	1000
3									300000	299870	130	1690
4									500000	499800	200	4000
5									600000	600200	200	4000
6									1000000	1000150	150	2250
7									200000	199900	100	1000
8									300000	299900	100	1000
9									500000	499800	200	4000
10									600000	600200	200	4000
k									600000	600300	300	9000
											161.8	29945

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (Y_{i} - Y_{i}^{p})^{2}}{\sum_{i=1}^{N} (Y_{i} - Y_{avg})^{2}}$$

где

 $Y_i^{\it p}$ - прогнозное значение ,

 Y_i - фактическое значение,

N - количество объектов

Коэффициент детерминации измеряет долю дисперсии, объяснённую моделью, в общей дисперсии целевой переменной.

Фактически, данная мера качества — это нормированная среднеквадратичная ошибка. Если она близка к единице, то модель хорошо объясняет данные, если же она близка к нулю, то прогнозы сопоставимы по качеству с константным предсказанием.

$$R_{adj}^2=1-rac{s^2}{s_n^2}=1-rac{RSS/(n-k)}{TSS/(n-1)}=1-(1-R^2)rac{(n-1)}{(n-k)}\leq R^2$$
 ,

где

$$RSS = \sum\limits_{n}^{t=1} e_t^2 = \sum\limits_{n}^{t=1} (y_t - \hat{y}_t)^2$$
 — сумма квадратов остатков регрессии,

$$TSS = \sum\limits_{n}^{t=1} (y_t - ar{y})^2 = n \hat{\sigma}_y^2$$
 — общая дисперсия,

n — количество наблюдений в наборе данных,

k — количество параметров модели.

Не учитывает качество модели:

Высокий R2 не всегда означает, что модель хорошая.
 Модель может объяснять значительную часть дисперсии, но при этом иметь значительные ошибки предсказания.

Зависимость от числа предикторов:

 R2 всегда увеличивается с добавлением новых предикторов, даже если они незначительно улучшают модель. Это может привести к избыточной подгонке модели (overfitting).

Не измеряет предсказательную силу:

 R2 показывает, насколько хорошо модель объясняет дисперсию в обучающих данных, но не говорит о её предсказательной способности на новых данных. Для оценки предсказательной силы используются другие метрики, такие как RMSE, MAE и т.д.

MSE (или RMSE)

- сильное влияние оказывают выбросы
- интерпретируемая метрика

MAE

- интерпретируемая метрика
- не учитывает масштаб ошибки, 10 будет ошибкой и для 1000 и 1010 и для ситуации 10 и 20

Absolute Total Difference (разность между суммарным прогнозом и суммарным фактом) или **Bias (Relative Total Difference** - отношение суммарного прогноза к суммарному факту минус 1)

- подсвечивает есть ли в целом сдвиг модели вверх или вниз
- понятна бизнесу
- метрика отвечает только за глобальную точность

Плюсы:

$$MAPE(y^{true}, y^{pred}) = rac{1}{N} \sum_{i=1}^{N} rac{|y_i - f(x_i)|}{|y_i|}$$

- Прост в интерпретации и расчете.
- Учитывает масштаб ошибки, отклонение на 10 ед при факте 2000 менее будет критично, чем при факте 20

Минусы:

- Неустойчив к нулевым значениям в базовых данных (когда фактические значения равны нулю), что может вызвать проблемы при расчете. Есть доработка, например, max(y, eps) или у заменяем на y+eps, но нет алгоритма как правильно выбрать eps
- Не симметричен и может давать разные результаты в зависимости от порядка фактических и прогнозных значений. За перепрогноз штрафует больше, чем за недопрогноз

Month Year	Actual Spend	Forecasted Spend	Absolute Percentage Error
Jan-22	0.2	1	400.00

Month Year	Actual Spend	Forecasted Spend	Absolute Percentage Error
Jan-22	500	600	20.00
Feb-22	600	500	16.67

$$SMAPE(y^{true}, y^{pred}) = rac{1}{N} \sum_{i=1}^{N} rac{2\left|y_i - f(x_i)
ight|}{y_i + f(x_i)}$$

SMAPE (Symmetric Mean Absolute Percentage Error):

Плюсы:

Симметричен и не зависит от порядка фактических и прогнозных значений.

Обрабатывает нулевые значения более устойчиво, чем МАРЕ.

Минусы:

Может быть бесконечным, если фактическое значение равно нулю, и прогноз также равен нулю.

Менее интуитивен в интерпретации

Метрики качества зависят от типа целевой переменной: если целевая категориальная:

- матрица ошибок (Confusion matrix)
- Accuracy
- точность и полнота (Precision и Recall)
- F1-мера
- ROC-кривая(ROC Curve)
- ROC AUC (площадь под ROC Curve)

Необходимо снова сравнить факт с прогнозом, задаем cutoff для прогноза и от оценки вероятностей переходим к прогнозу 0

l	id клиента	fact	прогноз модели	бинарный прогноз модели
	1	1	0.2	0
	2	0	0.3	0
	3	1	0.5	1
	4	0	0.1	0
	5	0	0.2	0
	6	1	0.55	1
	7	1	0.7	1
	8	1	0.8	1
	9	0	0.55	1

COUNT of id	прогноз	
fact	0	1
0	3	1
1	1	4

Матрица ошибок

True Positives	False Positives	Число наблюдений классифицированн ых как Р
False Negatives	True Negatives	Число наблюдений классифицированн ых как N
Число наблюдений из Р (TP + FN)	Число наблюдений из N (FP + TN)	

Если результат классификации положительный (или 1) и фактическое значение тоже положительное (то есть тоже 1), то **TRUE POSITIVE (TP)**

Если результат классификации положительный (или 1) и фактическое значение отрицательное (то есть -1 или 0), то **FALSE POSITIVE (FP)**

Если результат классификации отрицательный (-1, или 0) и фактическое значение положительное (то есть тоже 1), то **TRUE NEGATIVE (TN)**

Если результат классификации отрицательный (-1 или 0) и фактическое значение тоже отрицательное (-1 или 0), то **FALSE NEGATIVE (FN)**

Accuracy

True Positives	False Positives	Число наблюдений классифицированн ых как Р
False Negatives	True Negatives	Число наблюдений классифицированн ых как N
Число наблюдений из P (TP + FN)	Число наблюдений из N (FP + TN)	

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Accuracy

True Positives	False Positives	Число наблюдений классифицированн ых как Р
False Negatives	True Negatives	Число наблюдений классифицированн ых как N
Число наблюдений из P (TP + FN)	Число наблюдений из N (FP + TN)	

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Пример:

пусть в выборке

- 1. 10000 выданных кредитов
- 2. 100 кредитов достигли просрочку 90+ за 1-ый год, то есть доля "1" = 0.01

Теперь возьмем "самый глупый" алгоритм, который всем объектам прогнозирует 0, то accuracy = 0.99.

Это хороший алгоритм?

Матрица ошибок

True Positives	False Positives	Число наблюдений классифицированн ых как Р
False Negatives	True Negatives	Число наблюдений классифицированн ых как N
Число наблюдений из Р (TP + FN)	Число наблюдений из N (FP + TN)	

Specificity =
$$TN/(TN+FP) = 1 - FPR = 1-FP/(TN+FP)$$

Precision и recall

Сколько выбранных объектов корректны?

$$precision = \frac{TP}{TP + FP}$$

Как много корректных объектов выбрано?

$$recall = \frac{TP}{TP + FN}$$

Precision и recall

Сколько выбранных объектов корректны?

$$precision = \frac{TP}{TP + FP}$$

Как много корректных объектов выбрано?

$$recall = \frac{TP}{TP + FN}$$

Пример:

пусть в выборке

- 1. 10000 выданных кредитов
- 2. 100 кредитов достигли просрочку 90+ за 1-ый год, то есть доля "1" = 0.01

Теперь возьмем "самый глупый" алгоритм, который всем объектам прогнозирует 0

Precision и recall

Сколько выбранных объектов корректны?

$$precision = \frac{TP}{TP + FP}$$

Как много корректных объектов выбрано?

$$recall = \frac{TP}{TP + FN}$$

Невозможно уменьшить и precision, и recall

Что же делать?

Все зависит от задачи:

Например, задача **детектировать болезнь клиента**: Тогда нам важен recall, пропустить клиента с болезнью будет хуже, чем если мы кого-то лишний раз проверим

а вот в задаче **не пропустить безбилетника,** важна точность, то есть precision

Как объединить Precision и Recall

$$F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

$$F_{\beta} = (1 + \beta^{2}) \cdot \frac{precision \cdot recall}{(\beta^{2} \cdot precision) + recall}$$

Теперь все ясно!

надо просто строить модель с идеальными метриками качества!

Но тут мы встречаемся с такой проблемой как ПЕРЕОБУЧЕНИЕ

Недообучение (underfitting) - модель слишком проста

Переобучение (overfitting) - модель склишком сложна

Недообучение (underfitting) - модель слишком проста

Переобучение (overfitting) - модель склишком сложна

Причина переобучения

- слишком сложная модель
- избыточные параметры в модели, то есть наблюдается мультиколлинеарность
- иногда переменные из "будущего"

Как обнаружить переобучение

 эмпирически, путем разбиения на выборки и замерения качества моделей на отложенной выборке (тестовой)

Избавить от переобучения нельзя, его можно МИНИМИЗИРОВАТЬ

- накладывать ограничения на коэффициенты при независимых признаках
- выбрать модель по оценкам обобщающей способности

