

PHY 3102 - Hyperfréquences

Lignes

$$V(x) = Ae^{-\gamma x} + Be^{\gamma x}$$

Le premier terme représente une onde progressive vers les x croissants, et le second vers les x décroissants.

$$I(x) = \frac{1}{Z_C} (Ae^{-\gamma x} + Be^{\gamma x})$$

Coefficient de propagation : $\gamma = \alpha + i\beta$

 α est l'atténuation du signal, β la partie propagative.

Remarque. Sans perte \Leftrightarrow sans atténuation $\Leftrightarrow \alpha = 0$

Vitesse de phase : $v_{\phi} = \frac{\omega}{\beta}$

Coefficient de reflexion : $\Gamma(x) = \frac{B(x)}{A(x)} = \frac{Be^{\gamma x}}{Ae^{-\gamma x}} = \frac{B}{A}e^{2\gamma x}$

Coefficient de reflexion en bout de ligne : $\Gamma_t = \frac{Z_t - Z_c}{Z_t + Z_c}$

Rapport d'ondes stationnaires : $ROS = \frac{1 + |\Gamma_t|}{1 - |\Gamma_t|}$

Puissance transmise à la charge par le générateur :

$$P = \frac{1}{2} Re(VI^*) = \frac{1}{2} R_t |I|^2 \ d'où \left[P = \frac{1}{2} R_t \frac{|V_g|^2}{|Z_g + Z_t|^2} \right]$$

$$P = P_{max} \Leftrightarrow Z_t = Z_g^* \Leftrightarrow \boxed{P_{max} = \frac{1}{8} \frac{|V_g|^2}{R_g}}$$
 (atteinte en $x = 0$, là où se trouve le générateur).

1

Remarque.

$$Z_g = R_g + jX_g$$

$$Z_t = R_t + jX_t$$

Guides d'ondes (orientés suivant z) - Note : $\vec{B} = \mu \vec{H}$

Mode TE (Transverse Electrique) : $H_z \neq 0$ et $E_z = 0$

Mode TM (Transverse Magnétique) : $E_z \neq 0$ et $H_z = 0$

Mode TEM (Transverse Electrique Magnétique) : $H_z \neq 0$ et $E_z \neq 0$

Guide Rectangulaire (Milieu homogène sans pertes):

Soit \underline{u} une composante de \vec{E} ou \vec{H} . Par l'équation de Helmhotz :

$$\Delta u + k^2 u = 0 \Leftrightarrow \frac{d^2 u_x}{dx^2} + \frac{d^2 u_y}{dy^2} + \frac{d^2 u_z}{dz^2} + k^2 u = 0$$

$$avec: k = \underbrace{\left(\lambda = \frac{\lambda_0}{n}\right)} k_0 n = k_0 \sqrt{\varepsilon_r} = \frac{\omega}{c} \sqrt{\varepsilon_r} = \omega \sqrt{\varepsilon \mu_0}$$

$$(n=\sqrt{arepsilon_r}:indice\ du\ milieu,\ c=rac{1}{\sqrt{\mu_0arepsilon_0}},\ k_z=rac{2\pi}{\lambda},\ \omega=2\pi f)$$

On pose ensuite $^1:u(x,y,z)=u_x(x)u_y(y)u_z(z),\ d$ 'où :

$$\vec{E}(x, y, z) = \vec{E}_0(x, y)e^{-jk_z z} = (\vec{E}_T + E_z \vec{u}_z)e^{-jk_z z}$$

$$\vec{H}(x,y,z) = \vec{H}_0(x,y)e^{-jk_zz} = (\vec{H}_T + H_z\vec{u}_z)e^{-jk_zz}$$

$$\begin{cases} u_x(x) = A_x \cos k_x x + B_x \sin k_x x \\ u_y(y) = A_y \cos k_y y + B_y \sin k_y y \end{cases}$$

 \vec{H} ou $\vec{E} = (A_x \cos k_x x + B_x \sin k_x x)(A_y \cos k_y y + B_y \sin k_y y)e^{-jk_z z}$

 k_z : constante de propagation du mode

 $ec{E}_0, ec{H}_0$: répartition de champ transverse

Equation de dispertion : $k = f(\omega)$

Vitesse de phase : $v_{\phi} = \frac{\omega}{k_z}$

Vitesse de groupe : $v_g = \frac{d\omega}{dk}$

Milieu non dispersif : $k_z = a\omega$, $(a \in \mathbb{R})$ ici, ssi $k_z = k$

Milieu dispersif : $k_z \neq a\omega$, $(a \in \mathbb{R})$ ici, ssi $k_z \neq k$

Equation de séparation : $k_x^2 + k_y^2 + k_z^2 = k^2$

Remarque. Dans un guide homogène de type tube parfaitement conducteur (guide rectangulaire, circulaire, etc.), seuls les modes TE ou TM peuvent exister.

^{1.} Parce qu'on constate mathématiquement que ça marche.

Mode TE dans un guide homogène parfaitement conducteur

Mode
$$TE: E_z = 0 \Rightarrow On \ cherche \ H_z$$
.

Pour cela, posons $\vec{E} = (E_x, E_y, E_z)$ et $\vec{H} = (H_x, H_y, H_z)$

<u>Conditions aux limites</u>: $\vec{E} = \vec{0}$ dans les parois: $E_y(0, [0, b], z) = E_y(a, [0, b], z) = 0$, et $E_x([0, a], 0, z) = E_x([0, a], b, z) = 0$, d'où: $B_x = B_y = 0$, $k_x = \frac{n\pi}{a}$, $k_y = \frac{m\pi}{b}$ $\{m \in \mathbb{N}\}$

$$D'o\grave{u}: H_z = H_0 \cos \left(\frac{n\pi}{a}x\right) \cos \left(\frac{m\pi}{b}y\right) e^{-jk_zz}$$

Remarque. En milieu dispersif :

$$\vec{E}_T = \frac{1}{k^2 - k_z^2} \left[j\omega\mu \begin{pmatrix} -\frac{dH_z}{dy} \\ \frac{dH_z}{dx} \end{pmatrix} - jk_z \begin{pmatrix} -\frac{dE_z}{dx} \\ \frac{dE_z}{dy} \end{pmatrix} \right]$$

$$\vec{H}_T = \frac{-1}{k^2 - k_z^2} \left[j\omega\varepsilon \begin{pmatrix} -\frac{dE_z}{dy} \\ \frac{dE_z}{dx} \end{pmatrix} + jk_z \begin{pmatrix} -\frac{dH_z}{dx} \\ \frac{dH_z}{dy} \end{pmatrix} \right]$$

$$Ici, \ E_z = 0 \ donc \ finalement : \vec{E}_T = \frac{1}{k^2 - k_z^2} j\omega\mu \begin{pmatrix} -\frac{dH_z}{dy} \\ \frac{dH_z}{dx} \end{pmatrix} \ et \ \vec{H}_T = \frac{-1}{k^2 - k_z^2} jk_z \begin{pmatrix} -\frac{dH_z}{dx} \\ \frac{dH_z}{dy} \end{pmatrix}$$

Mode TM dans un guide homogène parfaitement conducteur

Mode
$$TM: H_z = 0 \Rightarrow On \ cherche \ E_z$$
.

Pour cela, on utilise les mêmes notations et les conditions aux limites de \vec{E} . On trouve :

3

$$E_z = E_0 \sin\left(\frac{n\pi}{a}x\right) \sin\left(\frac{m\pi}{b}y\right) e^{-jk_z z}$$

CONCLUSIONS SUR LES GUIDES

Equation de séparation

$$\left(\frac{n\pi}{a}\right)^2 + \left(\frac{m\pi}{b}\right)^2 + k_z^2 = k^2 = \left(\frac{\omega}{c}\sqrt{\varepsilon_r}\right)^2$$

 $\rightarrow k_z = f(\omega)$ (on a bien un milieu dispersif car $k_z \neq \alpha \omega$, $\alpha \in \mathbb{R}$.)

Fréquence de coupure $k_z = 0$ et $k = k_c$

$$k_c^2 = \left(\frac{n\pi}{a}\right)^2 + \left(\frac{m\pi}{b}\right)^2 = k^2 = \left(\frac{\omega_c}{c}\sqrt{\varepsilon_r}\right)^2$$

Bruits / Non linéarités

 $Puissance: N = k_B T \Delta f$

 $(puissance\ de\ bruit)$

T: Température

 k_B : Constante de Boltzman

 Δf : Bande passante.

Loi de Plank:

Si
$$hf \ll k_B T$$
, $\frac{dW}{df} = k_B T$

(densité spectrale de bruit)

$$\frac{dW}{df} = \frac{hf}{\exp\left(\frac{hf}{k_BT}\right) - 1}$$

Facteur de bruit F:

$$N_e = k_B T_0 \Delta f$$

$$N_s \ge GN_e$$

$$S_s = GS_e$$

$$N_s = FGNe$$

 $N_{e/s}$ est le bruit en entrée/sortie du composant.

Quadripôle G(f) parfait $\Rightarrow N_s = GN_e$

Quadripôle G(f) imparfait $\Rightarrow N_s = GN_e + N_q$, où N_q est le bruit du composant.

Remarque. $F_{dB} = 10 \log F \ (dB) \Leftrightarrow F = 10^{\frac{F_{dB}}{10}} \ (linéaire^2)$

$$Finalement: \boxed{F = \frac{\left(\frac{S}{N}\right)_e}{\left(\frac{S}{N}\right)_s} = \frac{1}{G}\frac{N_s}{N_e}} \text{ et en s\'erie}: \boxed{F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1G_2} + \ldots + \frac{F_n - 1}{G_1G_2 \ldots G_{n-1}}}$$

Remarque. En optimisation de circuits, il faut donc choisir G_1 le plus élevé et F_1 le plus faible pour obtenir F le plus petit possible.

Non linéarités - Cas théorique

 $Si\ V_e(t) = A\cos\omega t\ et\ V_s(t) = \alpha_1 V_e(t) + \alpha_2 V_e^2(t) + \alpha_3 V_e^3(t)\ (non-linéarité\ d'ordre\ 3\ pour\ V_s(t))$:

- L'harmonique n est proportionnelle à A^n
- $\alpha_1 V_e(t)$ est le comportement fondamental de $V_s(t)$

Si $V_e(t) = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t$, il y a apparition pour $V_s(t)$ des produits d'intermodulation : $\{PIM_2\} = \{\omega_1 \pm \omega_2\}, \{PIM_3\} = \{2\omega_1 \pm \omega_2, 2\omega_2 \pm \omega_1\}... \{PIM_n\} = \{k\omega_1 \pm (n-k)\omega_2\}_{k \in [1,n]}$

 $Dynamique \ sans \ parasite : SDFR = P_{entr\'eeMAX} - P_{entr\'eeMIN}$

^{2.} Pour une puissance par exemple : $dBm \leftrightarrow mW$

Multipôles : composantes à plusieurs bornes

quadripôle : 2 voies d'accès = 4 bornes hexapôle : 3 voies d'accès = 6 bornes octopôle : 4 voies d'accès = 8 bornes

Caractérisation d'un multipôle (n voies) :

 \rightarrow 2n variables à déterminer : n tensions, n courants.

Cas du quadripôle en hyperfréquences

$$a_i = \frac{V_i + R_i I_i}{2\sqrt{R_i}}, b_i = \frac{V_i - R_i^* I_i}{2\sqrt{R_i}}$$

Servent à définir : $P_i = \frac{|a_i|^2 - |b_i|^2}{2}$ (puissance transmise sur la voie i)

 a_i : partie transmise sur la voie i

 b_i : partie réfléchie vers la voie i

 $Z_i = R_i + jX_i$: impédance caractéristique du coté i.

On souhaite exprimer simplement b_i en fonction de a_i (et en déduire P_i)

 \rightarrow On définit la matrice de diffusion S par :

$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = S \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \Leftrightarrow \begin{cases} b_1 = S_{11}a_1 + S_{12}a_2 \\ b_2 = S_{21}a_1 + S_{22}a_2 \end{cases}$$

Conclusions Les coefficients de S définissent :

$$S_{11}=rac{b_1}{a_1}igg)_{a_2=0}$$
 : Coefficient de réflexion en entrée quand $a_2=0$

$$S_{22} = \frac{b_2}{a_2}\Big)_{a_1=0}$$
: Coefficient de réflexion en sortie quand $a_1=0$

$$S_{21} = \frac{b_2}{a_1}\Big)_{a_2=0}$$
: Coefficient de transmission $1 \to 2$ quand $a_2 = 0$

$$S_{12} = \frac{b_1}{a_2}\Big)_{a_1=0}$$
: Coefficient de transmission $2 \to 1$ quand $a_1 = 0$

Interpretation physique

 S_{ii} : Coefficient de réflexion sur la voie i. $S_{ii} = \frac{b_i}{a_i}$ quand les autres voies sont adaptées.

- · $S_{ii} = 0 \Leftrightarrow b_i = 0$ donc pas de réflexion sur la voie i
- \cdot $S_{ii} = 1 \Leftrightarrow b_i = a_i$ donc réflexion totale sur la voie i

 S_{ij} : Coefficient de transmission $j \to i$. $S_{ij} = \frac{b_i}{a_j}$

- · $S_{ij} = 0 \Leftrightarrow b_i = 0$ donc pas de transmission $j \to i$
- $\cdot S_{ij} = 1 \Leftrightarrow b_i = a_j \ donc \ transmission \ totale \ j \rightarrow i$

Remarque. $S_{ii} = \Gamma_i = \frac{Z_i - Z_c}{Z_i + Z_c}$, $donc = \begin{bmatrix} Z_i & \Gamma_i \\ 0 & -1 \\ \hline \infty & 1 \\ \hline Z_c & 0 \end{bmatrix}$ (court-circuit) (circuit ouvert)

La voie i est donc dite adaptée s'il n'y a pas de reflexion ($\Gamma_i = 0$) et désadaptée s'il y a reflexion ($\Gamma_i \neq 0$)

Remarque. Pas de lien a priori entre non réflexion et transmission totale : Il ne faut pas oublier les éventuelles pertes lors de la transmission.

Propriétés éventuelles de la matrice S

Réciprocité : $\forall ij, \ S_{ij} = S_{ji}$

Antiréciprocité : $\forall i \neq j, \ S_{ij} = -S_{ji}$

Adaptation: $\forall i, S_{ii} = O$

Unilatéralité : $\forall ij, \ S_{ij} = 0 \ et \ S_{ji} \neq 0$

Idéalité (pas de perte) : $SS^{t*} = Id$, où S^{t*} est la transconjuguée de S.

Le coupleur directif Il s'aqit d'un octopôle adapté, réciproque et sans pertes.

On définit pour ce composant :

Coefficient de couplage : $C_{dB} = 20 \log |S_{41}| = 20 \log |S_{23}| \ car \left[S_{41} = S_{23} \right]$

Isolation: $I_{dB} = 20 \log \frac{1}{|S_{21}|} = -20 \log |S_{21}| = -20 \log |S_{43}| \ car \left[S_{21} = S_{43} \right]$

Directivité: $D_{dB} = 20 \log \frac{|S_{41}|}{|S_{21}|} = I_{dB} + C_{dB}$, car $D = I \cdot C$

Rayonnement et antennes

 \rightarrow coordonnées sphériques (r, θ, ϕ) dans la base $(\vec{u}_r, \vec{u}_\theta, \vec{u}_\phi)$

Cadre: approximation des "champs lointains" (domaine de rayonnement des sources): $r > \frac{2D^2}{\lambda}$, où r est la distance au point d'observation et D diamètre de la plus petite sphère centrée à l'origine et contenant l'ensemble des sources (=antenne).

Dans ce cadre, l'onde a **localement** une structure d'onde plane; on peut donc à partir de $\vec{E}(r)$ déduire $\vec{H}(r)$ par \vec{s} : 0 $\vec{H}(M) = \frac{1}{\eta} \vec{u}_r \wedge \vec{E}(r)$; avec $\eta = \sqrt{\frac{\mu}{\xi}}$ l'impédance d'onde

du milieu diélectrique (dans l'air, $\eta_0 = 120\pi$)

Vecteur de Poynting

Sa partie réelle est la densité de flux de puissance $\vec{I}(M) = \vec{E}(M) \wedge \vec{H}(M) = \frac{1}{2n} ||\vec{E}(M)||^2$

Principe de superposition

En résumé, linéarité des champs engendrés par les sources si le milieu est linéaire.

Théorème de translation

La translation d'une source (en champ lointain) ne modifie que la phase du champ rayonné.

Densité de puissance : $\vec{U}(\theta,\phi) = r^2 \vec{\Pi}(\theta,\phi)$

Directivité

$$\boxed{D(\theta,\phi) = \frac{U(\theta,\phi)}{U_{moyen}}} \ avec \ \boxed{U_{moyen} = \frac{P_{rayonn\acute{e}e}}{4\pi}} \ avec \ \boxed{P_{rayonn\acute{e}e} = \int\limits_{\phi=0}^{2\pi} \int\limits_{\theta=0}^{\pi} \Pi(r,\theta,\phi) r^2 \sin\theta d\theta d\phi}$$

Remarque. Si on demande de calculer la directivité de cette antenne pour θ, ρ quelconques : U_{max}

 $D = \frac{U_{max}}{U_{moyen}} \rightarrow directivit\'e~dans~sa~direction~de~rayonnement~maximal~;$

d'où $U_{max} = r^2\Pi(r, \theta_0, \rho_0)$, avec (θ_0, ρ_0) la direction de rayonnement maximal.

2 types de rayonnement : directif (une seule direction de rayonnement max) et omnidirectionnel (rayonnement maximal dans tous les directions).

^{3.} $\vec{H}(M) = \mu \vec{B}(M)$

^{4.} Puissance rayonnée par unité de surface

Antenne à l'émission

Circuit équivalent :

 $egin{aligned} &-Z_g=R_g+jX_g: imp\'edance\ interne\ &-V_g: f.e.m\ (g\'en\'erateur)\ &-Z_A: charge\ de\ l'antenne \end{aligned}$

Bilan de puissance

$$P_{dispo} = P_{entr\'ee} = P_{alimentation} = \frac{|V_g|^2}{8R_g} \left(= \frac{|V_g|_{eff}|^2}{4R_g} \right)$$

 P_{dispo} est la puissance disponible pour le générateur. C'est une puissance max $(Z_A = Z_g^*)$

Coeff de réflexion en puissance : $\Gamma = \frac{Z_A - Z_g^*}{Z_A + Z_g}$

 $e_{cd} = \frac{R_r}{R_r + R_L}$ est le coeff d'efficacité lié aux pertes ohmiques $(e_{cd} \leq 1, avec \ égalité \ ssi \ pas \ de \ pertes)$

 R_L est la résistance de pertes

$$\Rightarrow \boxed{\frac{1}{2}R_r|I|^2 = P_{rayon\acute{e}e}} = P_{incidente} - P_{dissip\acute{e}e} = e_{cd}P_{incidente} = e_{cd}(1 - |\Gamma|^2)P_e$$

 $\frac{1}{2}R_r|I|^2=P_{rayon\acute{e}e}=e_{cd}(1-|\Gamma|^2)P_e=k_{eff}P_e,\ où\ k_{eff}\ est\ le\ facteur\ d'efficacit\'e\ de\ l'antenne.$

Remarque. $R_A (= \Re(Z_A)) = (R_r + R_L) \left| \frac{I}{I_e} \right|^2$ (I_e courant présent à l'alimentation de l'antenne)

$$\mathbf{Gain}: \boxed{G(\theta,\rho) = \frac{U(\theta,\rho)}{U_{ref}(\theta,\rho)}}$$

— Si on demande de "Calculer le gain de l'antenne",
$$G = \frac{U_{max}}{U_{ref}(\theta, \rho)}$$

— Si le milieu est isotrope :
$$G_{iso}(\theta, \rho) = \frac{U(\theta, \rho)}{U_{ref\ iso}(\theta, \rho)}$$
, avec $U_{ref\ iso}(\theta, \rho) = \frac{P_e}{4\pi}$

$$\begin{cases} G_{iso} &= \frac{U}{\frac{P_e}{4\pi}} \\ D &= \frac{P_{rayon\acute{e}e}}{\frac{P_{rayon\acute{e}e}}{4\pi}} \end{cases} \Rightarrow G_{iso}(\theta, \rho) = \frac{P_{rayonn\acute{e}e}}{P_e} D(\theta, \rho) = k_{eff} D(\theta, \rho) \leq D(\theta, \rho)$$

Antenne en réception

 $Circuit\ \'equivalent:$

- $-Z_T: imp\'edance du r\'ecepteur$ charge terminale
- $-V_T: f.e.m. (générateur)$
- Z_A : charge de l'antenne

Aire équivalente en réception :

$$A_{eq}(\theta,\rho) = \frac{\lambda^2}{4\pi} G(\theta,\rho)$$

BILAN DE LIAISON EN ESPACE LIBRE:

$$oxed{ rac{P_r}{P_e} = rac{G_e G_r}{A_{attel}} }$$
 (oui c'est important)

 $A_{ttel} = \left(\frac{4\pi d}{\lambda}\right)^2$ est l'atténuation en espace libre, d la distance entre l'émetteur et le récepteur P_r est la puissance transmise au récepteur

Diagramme de rayonnement

C'est la représentation graphique de Π ou U (en puissance) ou de E(M) (en champ)

Normalisés : $\frac{\pi}{\pi_{max}} \ / \ \frac{U}{U_{max}} \ ou \ \frac{E}{E_{max}}$ Logarithmiques : $10 \log \Pi$ ou $10 \log U$ ou $20 \log E$

Logarithmiques normalisés : $10 \log \frac{\pi}{\pi_{max}}$ etc...