Section 3.2

Linear Combinations and Linear Spans

Objective

- What is a linear combination?
- How to express a vector as a linear combination?
- What is a linear span?

What is a linear combination?

must start with vectors = then can start to combine

Definition 3.2.1

 $u_1, u_2, ..., u_k$: a fixed set of vectors in \mathbb{R}^n

 $c_1, c_2, ..., c_k$: real numbers

$$c_1 \boldsymbol{u_1} + c_2 \boldsymbol{u_2} + \cdots + c_k \boldsymbol{u_k}$$

is called a linear combination of $u_1, u_2, ..., u_k$.

Example
$$u_1 = (2, 1, 0)$$
 $u_2 = (-3, 0, 1)$

$$c_1 = 1, c_2 = 1$$

$$1(2, 1, 0) + 1(-3, 0, 1) = (-1, 1, 1)$$
a specific linear combination $c_1 = s, c_2 = t$

$$s(2, 1, 0) + t(-3, 0, 1)$$
 general linear combination with parameters s and t

Can every vector be expressed as a linear combination of a given set of vectors?

Example 3.2.2.1

$$u_1 = (2, 1, 3), u_2 = (1, -1, 2) \text{ and } u_3 = (3, 0, 5).$$

- (a) $\mathbf{v} = (3, 3, 4)$ is a linear combination of $\mathbf{u_1}$, $\mathbf{u_2}$, $\mathbf{u_3}$.
- (3, 3, 4) can be expressed as a(2, 1, 3) + b(1, -1, 2) + c(3, 0, 5)
- (b) $\mathbf{w} = (1, 2, 4)$ is not a linear combination of $\mathbf{u_1}$, $\mathbf{u_2}$, $\mathbf{u_3}$.
- (1, 2, 4) cannot be expressed as a(2, 1, 3) + b(1, -1, 2) + c(3, 0, 5)

Chapter 3 Vector spaces

26

How to express a vector as a specific linear combination of a given set of vectors?

Example 3.2.2.1(a) $u_1 = (2, 1, 3)$ $u_2 = (1, -1, 2)$ $u_3 = (3, 0, 5)$

Write
$$\mathbf{v} = \mathbf{a}\mathbf{u_1} + \mathbf{b}\mathbf{u_2} + \mathbf{c}\mathbf{u_3}$$

$$(3, 3, 4) = a(2, 1, 3) + b(1, -1, 2) + c(3, 0, 5)$$

solve for a, b, c

 $\begin{cases} 2a + b + 3c = 3 \\ a - b = 3 \\ 3a + 2b + 5c = 4 \end{cases}$

become linear system then easier to solve

1st component

2nd component

3rd component

So we obtain a linear system in variables a, b, c

$$\begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix} = a \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + b \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + c \begin{pmatrix} 3 \\ 0 \\ 5 \end{pmatrix}$$

vector equation form of the linear system (P.43)

How to express a vector as a specific linear combination of a given set of vectors?

Example 3.2.2.1(a) $u_1 = (2, 1, 3)$ $u_2 = (1, -1, 2)$ $u_3 = (3, 0, 5)$

$$(3, 3, 4) = a(2, 1, 3) + b(1, -1, 2) + c(3, 0, 5)$$

So (3, 3, 4) is a linear combination of u_1, u_2, u_3

To write (3, 3, 4) as a specific linear combination:

general solution of LS :
$$a = 2 - t$$
, $b = -1 - t$, $c = t$

Take t = 0:
$$a = 2$$
, $b = -1$, $c = 0$
 $(3, 3, 4) = 2u_1 - u_2 + 0u_3$

Take t = 1:
$$a = 1$$
, $b = -2$, $c = 1$
 $(3, 3, 4) = \mathbf{u_1} - 2\mathbf{u_2} + \mathbf{u_3}$

Chapter 3

How to show that a vector cannot be expressed as a linear combination of a given set of vectors?

Example 3.2.2.1(b) $u_1 = (2, 1, 3)$ $u_2 = (1, -1, 2)$ $u_3 = (3, 0, 5)$

Write
$$\mathbf{w} = a\mathbf{u_1} + b\mathbf{u_2} + c\mathbf{u_3}$$

 $(1, 2, 4) = a(2, 1, 3) + b(1, -1, 2) + c(3, 0, 5)$
 $2a + b + 3c = 1$
 $a - b = 2$
 $3a + 2b + 5c = 4$

(1, 2, 4) is not a linear combination of u_1, u_2, u_3 .

How to express a general vector as a linear combination of a given set of vectors?

Example 3.2.2.2

standard basis vectors

is able to represent everything

Directional vectors of the x-axis, y-axis, z-axis

Every vector in \mathbb{R}^3

is a linear combination of the following vectors

$$\mathbf{e_1} = (1, 0, 0), \ \mathbf{e_2} = (0, 1, 0), \ \mathbf{e_3} = (0, 0, 1)$$

Take a general 3-vector (x, y, z)

$$(x, y, z) = (x, 0, 0) + (0, y, 0) + (0, 0, z)$$

= $x (1, 0, 0) + y (0, 1, 0) + z (0, 0, 1)$
= $xe_1 + ye_2 + ze_3$

e.g.
$$(1, 2, 5) = 1e_1 + 2e_2 + 5e_3$$

Span preview

```
7 just attaching a
Scalar :: can attach any scalar
```

How many linear combinations of (2,1,0) and (-3,0,1) are there? Infinite

The set of all linear combinations of

$$(2,1,0)$$
 and $(-3,0,1)$

$$\{s(2, 1, 0) + t(-3, 0, 1) \mid s, t \in \mathbb{R} \}$$

refer to a set/collection that is described

using set notation

by this set notation

We call it: the linear span of (2,1,0) and (-3,0,1)

using words (in terms of linear span)

We write it: $span\{(2,1,0), (-3,0,1)\}$

using linear span notation

Chapter 3

What is a linear span?

Definition 3.2.3

32

 $\boldsymbol{u_1}, \, \boldsymbol{u_2}, \, ..., \, \boldsymbol{u_k} : k \text{ (finite) vectors in } \mathbf{R}^n.$

→ The set of all linear combinations of $u_1, u_2, ..., u_k$

$$\{c_1u_1 + c_2u_2 + \cdots + c_ku_k \mid c_1, c_2, \dots, c_k \text{ in } \mathbb{R}\}$$

= span {u1, u2, ..., uk} = span{S}

This set is called

→ the linear span of $oldsymbol{u_1}$, $oldsymbol{u_2}$, ..., $oldsymbol{u_k}$

"Linear span" is always used w.r.t. a set of vectors

This set is denoted by $span\{u_1, u_2, ..., u_k\}$

What is a linear span?

Definition 3.2.3

33

```
S = \{u_1, u_2, ..., u_k\}: a (finite) subset of \mathbb{R}^n.
```

→ The set of all linear combinations of $u_1, u_2, ..., u_k$

```
\{c_1u_1 + c_2u_2 + \cdots + c_ku_k \mid c_1, c_2, ..., c_k \text{ in } \mathbb{R} \}
```

= span $\{u_1, u_2, ..., u_k\}$ = span(S)

This set is called

→ the linear span of $oldsymbol{u_1}$, $oldsymbol{u_2}$, ..., $oldsymbol{u_k}$

the linear span of S

"Linear span" is always used w.r.t. a set of vectors

This set is denoted by

What is a linear span?

Definition 3.2.3

 $S = \{u_1, u_2, ..., u_k\}$ a finite collection of vectors in \mathbb{R}^n

$$u_1, u_2, ..., u_k \in \mathbb{R}^n$$

$$S \subseteq \mathbb{R}^n$$

$$\operatorname{span}(S) \subseteq \mathbb{R}^n$$

$$S \subseteq \operatorname{span}(S)$$

span(S) can be equal to \mathbb{R}^n but not always.

Vectors belong to a linear span

Example 3.2.4.1

In Example 3.2.2.1, $\mathbf{u_1} = (2, 1, 3), \ \mathbf{u_2} = (1, -1, 2) \text{ and } \mathbf{u_3} = (3, 0, 5).$

(a)
$$\mathbf{v} = (3, 3, 4)$$
 (b) $\mathbf{w} = (1, 2, 4)$

v is a linear combination of u_1 , u_2 , u_3 . $v \in \text{span}\{u_1, u_2, u_3\}$

w is not a linear combination of u_1 , u_2 , u_3 . w $\notin \text{span}\{u_1, u_2, u_3\}$

Express a linear span in explicit set notation form

Example 3.2.4.2

$$S = \{(1, 0, 0, -1), (0, 1, 1, 0)\} \subseteq \mathbb{R}^4 \text{ span}(S) \subseteq \mathbb{R}^4$$

$$span(S) = span\{(1, 0, 0, -1), (0, 1, 1, 0)\} \underset{form}{linear span}$$

$$= \{a(1, 0, 0, -1) + b(0, 1, 1, 0) | a, b \in \mathbb{R} \}$$

$$= \{(a, b, b, -a) | a, b \in \mathbb{R} \} \quad explicit form$$

A general vector in span(S):

$$a(1, 0, 0, -1) + b(0, 1, 1, 0) = (a, b, b, -a).$$

Section 3.2

Linear Combinations and Linear Spans

Objective

- How to express a linear span in explicit set notation?
- How to express a set notation as a linear span?
- How to show a linear span is (is not) equal to Rⁿ?
- How to show a linear span is contained in another?

Express an explicit set notation form as linear span

Example 3.2.4.3

 R^3 V = span(S) S (2,1,-1) (1,0,3)

Let
$$V = \{ (2a + b, a, 3b-a) \mid a, b \in \mathbb{R} \} \subseteq \mathbb{R}^3$$

Rewrite the general form:

explicit form

$$(2a + b, a, 3b-a) = a(2, 1,-1) + b(1, 0, 3).$$

So
$$V = \text{span}\{(2, 1, -1), (1, 0, 3)\}$$
. linear span form

The subset V is spanned by (2, 1, -1), (1, 0, 3)

(2, 1, -1), (1, 0, 3) spans the subset V.

How to show a linear span equal to Rⁿ?

Example 3.2.4.4

span of 3 vectors

To show: span $\{(1, 0, 1), (1, 1, 0), (0, 1, 1)\} = \mathbb{R}^3$

Same as showing:

every vector (x, y, z) in \mathbb{R}^3 can be written as linear combination of the three vectors

Write (x, y, z) = a (1, 0, 1) + b (1, 1, 0) + c (0, 1, 1)

Convert into linear system

$$\begin{cases} a + b = x \\ b + c = y \\ a + c = z \end{cases}$$

a, b, c are variables

x, y, z are treated as constants.

To show:

The system is consistent

becomes a linear system qn

How to show a linear span equal to Rⁿ?

Example 3.2.4.4

The system is consistent regardless of the values of x, y, z.

 \rightarrow So we can always solve for a, b, c for any vector (x, y, z).

Every (x, y, z) in \mathbb{R}^3 is a linear combination of the three given vectors

So span $\{(1, 0, 1), (1, 1, 0), (0, 1, 1)\} = \mathbb{R}^3$

How to show a linear span equal to **R**ⁿ?

Example 3.2.4.4

Solve a, b, c in terms of x, y, z

e.g.
$$(1,2,5) = 2(1,0,1) + (-1)(1,1,0) + 3(0,1,1)$$

Every (x, y, z) can be expressed as a linear combination of (1, 0, 1), (1, 1, 0) and (0, 1, 1) in exactly one way.

How to show a linear span not equal to Rⁿ?

Example 3.2.4.5

To show: span{(1,1,1), (1,2,0), (2,1,3), (2,3,1)} $\neq \mathbb{R}^3$

$$(x, y, z) = a(1, 1, 1) + b(1, 2, 0) + c(2, 1, 3) + d(2, 3, 1)$$

$$\begin{pmatrix}
1 & 1 & 2 & 2 & | & x \\
1 & 2 & 1 & 3 & | & y \\
1 & 0 & 3 & 1 & | & z
\end{pmatrix}
\xrightarrow{G.E}$$

$$\begin{pmatrix}
1 & 1 & 2 & 2 & | & x \\
0 & 1 & -1 & 1 & | & y - x \\
0 & 0 & 0 & 0 & | & y + z - 2x
\end{pmatrix}$$

The system is inconsistent when $y + z - 2x \neq 0$.

e.g.
$$x = 1 / = 0$$
, $z = 0$

So $(1, 0, 0) \notin \text{span}\{(1,1,1), (1,2,0), (2,1,3), (2,3,1)\}$

How to determine whether a linear span is equal to **R**ⁿ or not?

Discussion 3.2.5

 \mathbf{R} has no zero row system is always consistent span{ $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ } = \mathbf{R}^n R has a zero row system may be inconsistent span{ $u_1, u_2, ..., u_k$ } $\neq \mathbb{R}^n$

10

Tutorial 3 Q43

A condition for a linear span to be not equal to Rⁿ

Theorem 3.2.7

Let $S = \{u_1, u_2, \dots, u_k\}$ be a set of vectors in \mathbb{R}^n . If k < n, then S cannot span \mathbb{R}^n . span(S) $\neq \mathbb{R}^n$

More rows than columns

- will have 0-row

The REF \mathbf{R} of \mathbf{A} must have a zero row, so the system may be inconsistent, and span(\mathbf{S}) $\neq \mathbf{R}^n$.

11

A condition for a linear span to be not equal to Rⁿ

Theorem 3.2.7

```
Let S = \{u_1, u_2, ..., u_k\} be a set of vectors in \mathbb{R}^n.
If k < n, then S cannot span \mathbb{R}^n. span(S) \neq \mathbb{R}^n
```

Example 3.2.8

```
span{ u } \neq \mathbb{R}^2 since k = 1 < n = 2

span{ u } \neq \mathbb{R}^3 since k = 1 < n = 3

span{u_1, u_2 } \neq \mathbb{R}^3 since k = 2 < n = 3
```

Every linear span contains the zero vector

Theorem 3.2.9.1

```
Let S = \{ u_1, u_2, ..., u_k \} \leftarrow any set
```

The zero vector $\mathbf{0} \in \text{span}(S)$.

Proof

$$c_1 u_1 + c_2 u_2 + ... + c_k u_k \in \text{span}(S)$$

for any $c_1, c_2, ..., c_k$ in **R**

In particular

$$0\mathbf{u_1} + 0\mathbf{u_2} + \dots + 0\mathbf{u_k} \in \text{span}(S)$$

 $0 \in \text{span}(S)$

Any linear combination of vectors in a linear span is again a vector in the linear span.

Theorem 3.2.9.2

Let
$$S = \{ u_1, u_2, ..., u_k \} \subseteq \mathbb{R}^n$$

If $v_1, v_2, ..., v_r \in \text{span}(S)$ and $c_1, c_2, ..., c_r \in \mathbb{R}$
then $c_1v_1 + c_2v_2 + ... + c_rv_r \in \text{span}(S)$

Chapter 3

Vector Spaces

Any linear combination of vectors in a linear span is again a vector in the linear span.

Theorem 3.2.9.2

```
Let S = \{ u_1, u_2, ..., u_k \} \subseteq \mathbb{R}^n

If v_1, v_2, ..., v_r \in \text{span}(S) and c_1, c_2, ..., c_r \in \mathbb{R}

then c_1v_1 + c_2v_2 + ... + c_rv_r \in \text{span}(S)
```

Consequent of theorem

```
if u and v \in \text{span}(S), then u + v \in \text{span}(S).

Closure property under vector addition if u \in \text{span}(S) and c \in R, then cu \in \text{span}(S).

Closure property under scalar multiplication
```

Motivation

Example 3.2.11.1

span
$$u_1 = (1, 0, 1)$$

 $u_2 = (1, 1, 2)$
 $u_3 = (-1, 2, 1)$

span
$$\mathbf{v_1} = (1, 2, 3)$$

 $\mathbf{v_2} = (2, -1, 1)$

How are the two linear spans related?

usually cannot immediately tell relationship

Given two sets A and B.

To show A = B: We check $A \subseteq B$ and $B \subseteq A$.

How to show span(S_1) \subseteq span(S_2)?

Example 3.2.11.1

$$\mathbf{u_1} = (1, 0, 1) \quad \mathbf{v_1} = (1, 2, 3)
\mathbf{u_2} = (1, 1, 2) \quad \mathbf{v_2} = (2, -1, 1)
\mathbf{u_3} = (-1, 2, 1)$$

17

Show span $\{u_1, u_2, u_3\} \subseteq \text{span}\{v_1, v_2\}$:

Need to show: each u_i can be written as $av_1 + bv_2$ for some real number a and b

$$a\mathbf{v}_{1} + b\mathbf{v}_{2} = \mathbf{u}_{1}$$
 $a\mathbf{v}_{1} + b\mathbf{v}_{2} = \mathbf{u}_{2}$ $a\mathbf{v}_{1} + b\mathbf{v}_{2} = \mathbf{u}_{3}$

$$\begin{cases}
a + 2b = 1 \\
2a - b = 0 \\
3a + b = 1
\end{cases}$$
 $\begin{cases}
a + 2b = 1 \\
2a - b = 1 \\
3a + b = 2
\end{cases}$ $\begin{cases}
a + 2b = -1 \\
2a - b = 2 \\
3a + b = 1
\end{cases}$

Need to show all three linear systems are consistent

How to show span(S_1) \subseteq span(S_2)?

Example 3.2.11.1

$$\mathbf{u_1} = (1, 0, 1) \quad \mathbf{v_1} = (1, 2, 3)
\mathbf{u_2} = (1, 1, 2) \quad \mathbf{v_2} = (2, -1, 1)
\mathbf{u_3} = (-1, 2, 1)$$

We can solve the three systems simultaneously:

All the three systems are consistent.

This shows each u_i can be written as $av_1 + bv_2$ for some real number a and b,

So span $\{u_1, u_2, u_3\} \subseteq \text{span}\{v_1, v_2\}$. Theorem 3.2.9.2

By solve the three systems, we get:

$$\boldsymbol{u}_{1} = \frac{1}{5}\boldsymbol{v}_{1} + \frac{2}{5}\boldsymbol{v}_{2} \qquad \boldsymbol{u}_{2} = \frac{3}{5}\boldsymbol{v}_{1} + \frac{1}{5}\boldsymbol{v}_{2} \qquad \boldsymbol{u}_{3} = \frac{3}{5}\boldsymbol{v}_{1} - \frac{4}{5}\boldsymbol{v}_{2}$$

How to show span(S_1) \subseteq span(S_2)?

Theorem 3.2.10

```
Let S_1 = \{u_1, u_2, ..., u_k\} and S_2 = \{v_1, v_2, ..., v_m\} be subsets of \mathbb{R}^n.
```

```
Every linear combination of u_1, u_2, ..., u_k belongs to span(S_2)
       stronger statement
   Then
                       span(S_1) \subseteq span(S_2)
                             if and only if
    each u_i is a linear combination of v_1, v_2, ..., v_m.
stronge
               Every u_1, u_2, ..., u_k belongs to span(S_2)
implies
weaker
             weaker statement
```

How to show span(S_1) = span(S_2)?

Example 3.2.11.1

span
$$u_1 = (1, 0, 1)$$

 $u_2 = (1, 1, 2)$
 $u_3 = (-1, 2, 1)$

to show

span
$$\mathbf{v_1} = (1, 2, 3)$$

 $\mathbf{v_2} = (2, -1, 1)$

Need to show

$$span\{u_1, u_2, u_3\} \subseteq span\{v_1, v_2\}$$

Check consistencies

$$span\{\boldsymbol{v_1},\,\boldsymbol{v_2}\}\subseteq span\{\boldsymbol{u_1},\,\boldsymbol{u_2},\,\boldsymbol{u_3}\}$$

How to show span $(S_1) \neq \text{span}(S_2)$?

Example 3.2.11.2

```
span \begin{array}{l} \boldsymbol{u_1} = (1, 1, 0, 2) \\ \boldsymbol{u_2} = (1, 0, 0, 1) \\ \boldsymbol{u_3} = (0, 1, 0, 1) \\ \end{array} to show \boldsymbol{v_1} = (1, 1, 1, 1) \\ \boldsymbol{v_2} = (-1, 1, -1, 1) \\ \boldsymbol{v_3} = (-1, 1, 1, -1) \end{array}
```

subset but not equals, means other side is not subset

$$span\{u_1, u_2, u_3\} \subseteq span\{v_1, v_2, v_3\}$$

Show that the augmented matrix $(v_1 \ v_2 \ v_3 | \ u_1 | \ u_2 | \ u_3)$ is consistent.

$$span\{u_1, u_2, u_3\} \neq span\{v_1, v_2, v_3\}$$

Show that $span\{v_1, v_2, v_3\} \nsubseteq span\{u_1, u_2, u_3\}$

Show that the augmented matrix $(u_1 \ u_2 \ u_3 | \ v_1 | \ v_2 | \ v_3)$ is inconsistent.

What is a redundant vector in span(S)?

\mathbf{R}^n $\mathbf{u_1}$ $\mathbf{u_2}$ \dots $\mathbf{u_k}$

Theorem 3.2.12

Suppose $u_1, u_2, ..., u_k$ are vectors taken from \mathbb{R}^n .

If u_k is a linear combination of u_1 , u_2 , ..., u_{k-1} , then $u_k = d_1 u_1 + d_2 u_2 + \cdots + d_{k-1} u_{k-1}$

span { u_1 , u_2 , ..., u_{k-1} } = span { u_1 , u_2 , ..., u_{k-1} , u_k }

$$c_1 u_1 + c_2 u_2 + \cdots + c_{k-1} u_{k-1}$$
 $c_1 u_1 + c_2 u_2 + \cdots + c_{k-1} u_{k-1} + c_k u_k$

We say u_k is a "redundant" vector in span{ u_1 , u_2 , ..., u_{k-1} , u_k }.

If $u \in \text{span}(S)$, then $\text{span}(S) = \text{span}(S \cup u)$

if already know this Chapter 3

Vector Spaces

then the union

Geometrical meaning of linear span

Discussion 3.2.14.1

span = extend across (Oxford Dictionary)

In \mathbf{R}^2 and \mathbf{R}^3

$$S = \{u\}$$
 (u is a non-zero vector)

span(S) = span{
$$u$$
} = { cu | c in \mathbb{R} .}

the line through the origin and parallel to u

 $span(S) = span\{u\}$ represents a line through the origin

since can just modify with all the coefficients

Geometrical meaning of linear span

Discussion 3.2.14.2

```
span = extend across (Oxford Dictionary)
In \mathbb{R}^2 and \mathbb{R}^3
 S = \{u, v\} (u, v are two non-parallel vectors)
                 span(S) = span\{u, v\}
                             = \{ su + tv \mid s, t \in \mathbb{R} \}
      the plane containing
      the origin and parallel
      to u and v
     since adding the 2 vectors tgt will
     form a new vector
```

Chapter 3 Vector Spaces

25

 $span(S) = span\{u, v\}$ represents a plane through the origin

Lines and planes in terms of linear span

Discussion 3.2.15

Objects	Geometrical	Span	Set notation
Line through origin	0	span{ u }	{ <i>tu</i> <i>t</i> ∈ R }
Line not through origin	parallel line being shifted	$x + (span\{u\})$	tu comes from $\{x + tu \mid t \in \mathbb{R}\}$ span (4) $\{x + w \mid w \in \text{span}\{u\}\}$
Plane through origin	0 v	span{ u, v }	$\{tu + sv \mid t, s \in \mathbf{R}\}$
Plane not through origin	0 v		{ x + tu + sv t, s ∈ R } { x + w w ∈ span{ u,v }}

Fill in the blanks

```
a vector in \mathbb{R}^2 , a vector in \mathbb{R}^3 , a line in \mathbb{R}^3 , a plane in \mathbb{R}^3 , the entire \mathbb{R}^3 space
```

- 1. A linear combination of two vectors in \mathbb{R}^3 is a vector in \mathbb{R}^3 .
- 2. A linear combination of three vectors in \mathbb{R}^3 is <u>a vector in \mathbb{R}^3 </u>.

tricky shit

non-zero

3. A linear span of one vector in \mathbb{R}^3 is a line in \mathbb{R}^3

non-parallel

- 4. A linear span of two vectors in \mathbb{R}^3 is <u>a plane in \mathbb{R}^3 </u>.
- 5. A linear span of three vectors in \mathbb{R}^3 is the entire \mathbb{R}^3 space

non-coplanar

Section 3.3

Subspaces

Objective

- What is a subspace?
- How to show that a subset of Rⁿ is a subspace?
- What are some subspaces of Rⁿ?
- What is a solution space of a LS?

Must always contain linear things

28

What is a subspace of **R**ⁿ?

Definition 3.3.2

no condition

condition applies

V is called a subspace of \mathbb{R}^n provided ...

there is a set $S = \{ u_1, u_2, ..., u_k \}$ of \mathbb{R}^n such that V = span(S)

condition of subspace

i.e. V can be expressed in linear span form.

Every subspace of \mathbb{R}^n is a subset of \mathbb{R}^n .

Not every subset of \mathbb{R}^n is a subspace of \mathbb{R}^n .

{0} and Rⁿ are subspaces of Rⁿ

Remark 3.3.3

condition of V = span(S)subspace

1. $\{0\}$ is a subspace of \mathbb{R}^n . zero space

Take
$$S = \{0\}$$

 $\{0\} = span\{0\}$

2. \mathbb{R}^3 is a subspace of \mathbb{R}^3 .

Take S to be standard basis vectors for **R**³

$$\mathbf{v_1} = (1, 0, 0), \ \mathbf{v_2} = (0, 1, 0), \ \mathbf{v_3} = (0, 0, 1)$$

$$\mathbb{R}^3 = \operatorname{span}\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$$
 Refer to Example 3.2.2

30

 \mathbb{R}^n is a subspace of \mathbb{R}^n .

Take S to be standard basis vectors for Rⁿ

$$\mathbf{e_1} = (1, 0, ..., 0), \ \mathbf{e_2} = (0, 1, ..., 0), ..., \mathbf{e_n} = (0, ..., 0, 1)$$

$$R^n = span\{e_1, e_2, ..., e_n\}$$

Chapter 3 **Vector Spaces**

How to show that a given subset is a subspace?

Example 3.3.4.1

→
$$V_1 = \{ (a+4b, a) \mid a, b \in \mathbb{R} \}$$
 explicit form
$$(a + 4b, a) = (a, a) + (4b, 0)$$

$$= a(1, 1) + b(4, 0)$$
 general linear combination
$$V_1 \text{ is the set of all linear combinations of}$$

$$(1, 1) \text{ and } (4, 0)$$

$$V_1 = \text{span}\{(1, 1), (4, 0)\}$$
 linear span form

 V_1 is a subspace of \mathbb{R}^2

In fact
$$V_1 = \mathbb{R}^2$$

span 2 vectors = plane = R2

Chapter 3 Vector Spaces

31

How to show that a given subset is a subspace?

Example 3.3.4.2

to conclude as R3

→
$$V_2 = \{ (x, y, z) \mid x + y - z = 0 \}$$
 implicit form
$$V_2 = \{ (t - s, s, t) \mid s, t \in \mathbf{R} \} \text{ explicit form } \checkmark$$

$$(t - s, s, t) = (t, 0, t) + (-s, s, 0)$$

$$= t(1, 0, 1) + s(-1, 1, 0)$$

$$\text{general linear combination}$$

$$V_2 \text{ is the set of all linear combinations of } (1, 0, 1) \text{ and } (-1, 1, 0)$$

 $V_2 = \text{span}\{(1, 0, 1), (-1, 1, 0)\}$ linear span form

 V_2 is a subspace of \mathbb{R}^3

In fact V_2 is a plane in \mathbb{R}^3 .

Chapter 3 Vector Spaces

How to show a given subset is not a subspace?

Example 3.3.4.3

$$V_3 = \{ (1, a) \mid a \text{ in } \mathbf{R} \}$$
 subset of \mathbf{R}^2 think as a line that does not $(1, a) = (1, 0) + (0, a) = (1, 0) + (0, 1)$ pass origin not a general linear combination

 V_3 is not a linear span of "any" set of vectors

"So" V_3 is not a subspace of \mathbb{R}^2

There is an easier way: Use theorem 3.2.9.1

$$(0, 0) \notin V_3 = \{ (1, a) \mid a \text{ in } \mathbf{R} \}$$

will not exist due to translator

 \Rightarrow not a subspace of \mathbb{R}^2

If a subset of \mathbb{R}^n does not contain the zero vector $\mathbf{0}$, then it is not a linear span.

BUT all linear span must have 0 vector

How to show a given subset is not a subspace?

Example 3.3.4.4

$$V_4 = \{ (x, y, z) | x^2 \le y^2 \le z^2 \} \text{ subset of } \mathbb{R}^3$$

e.g.
$$(1, 1, 2)$$
, $(1, 1, -2)$, $(0, 0, 0) \in V_4$

Note: Having zero vector in a set *V* does not guarantee *V* is a subspace

Take two vectors in V, show that the sum is not in V.

Use theorem 3.2.9.2

subset but not subspace

34

$$(1, 1, 2) + (1, 1, -2) = (2, 2, 0) \notin V_4$$
 Not a linear span

Violate the closure property of linear span (theorem 3.2.9.2)

So V_4 is not a subspace of \mathbb{R}^3

Chapter 3 Vector Spaces

Geometrical interpretation of subspaces of R²

Remark 3.3.5.1

The following are all the subspaces of \mathbb{R}^2 :

- a. {0} spanned by zero vector 0
- b. any line that passes through the origin spanned by one non-zero vector **u**
- c. \mathbf{R}^2 spanned by two non-parallel vectors \mathbf{u} , \mathbf{v}

Why are there no other subspaces of \mathbb{R}^2 ? $V = \text{span}\{ u_1, u_2, u_3, ..., u_k \}$ at least two not parallel a line $XY-\text{plane } \mathbb{R}^2$

Geometrical interpretation of subspaces of R³

Remark 3.3.5.2

The following are all the subspaces of \mathbb{R}^3 :

- a. {**0**} spanned by zero vector **0**
- b. any line through the origin

spanned by one non-zero vector **u**

- c. any plane containing the origin
- $d. R^3$

spanned by three vectors **u**, **v**, **w** not lying on a plane

spanned by two non-parallel vectors **u**, **v**

What is a solution space?

Theorem 3.3.6

Closure properties under vector addition and scalar multiplication

Ax = 0

must satisfy

The solution set of a homogeneous linear system in n variables is a subspace of \mathbf{R}^n .

The solution set of every homogeneous LS can be written as a linear span

solution set is subset but also subspace

We call it the solution space of the system.

The solution set of non-homogeneous LS is not a subspace of \mathbb{R}^n .

because no trivial solution so no 0 vector

- & doesnt satisfy closure property

Example 3.3.7

Homogeneous system

general solution

$$\begin{cases} x - 2y + 3z = 0 \\ 2x - 4y + 6z = 0 \\ 3x - 6y + 9z = 0 \end{cases}$$

$$\begin{cases} x = 2s - 3t \\ y = s \\ z = t \end{cases}$$

subspace of \mathbb{R}^3

solution set linear span form $span\{(2, 1, 0), (-3, 0, 1)\} = \{(2s - 3t, s, t) | s, t in$ **R** $\}$

general linear combination

Closure property of subspaces

Remark 3.3.8

Let V be a non-empty subset of **R**ⁿ. Then

by definition of subspace
= linear span

V is a subspace of Rⁿ

= will have this property

if and only if

for all $u, v \in V$ and $c, d \in \mathbb{R}$, $cu + dv \in V$.

closure properties under addition & scalar multiplication

This is the <u>actual definition</u> of subspaces in abstract linear algebra.

To show a subset V is a subspace,

- (i) check that it contains the zero vector;
- (ii) take two general vectors \mathbf{u} , \mathbf{v} in V and c, $d \in \mathbf{R}$, show that $c\mathbf{u} + d\mathbf{v} \in V$.

Chapter 3 Vector spaces

To show subspace (or not)

To show a subset S of Rⁿ is a subspace:

- Express S as a linear span
- Show that S is the solution set of a homogeneous system
- (For R² and R³) show that S represents a line or plane through origin.

To show a subset S of Rⁿ is not a subspace:

- Show that the zero vector is not in S
- → Find u, v∈S such that u + v ∉ S use 2 specific vectors to show closure property under addition does not apply
 - \longrightarrow Find $\mathbf{v} \in S$ and a scalar c such that $c\mathbf{v} \notin S$
 - (For R² and R³) show that S is not a line or plane through origin.