

SA

 T_{B}

48 tuples

K)
$$O_{A=DVB=D}$$
 $O_{A,B}(R)$ $O_{A,B}(R)$

$$\frac{\sigma_{A=bAC>1}(R)}{A \quad B \quad C}$$

$$\frac{b \quad c \quad 3}{b \quad a \quad 2}$$

m)
$$\sigma_{\neg(B=A)}$$

Natural Join

w.C	D	A	B	
1	a	b	b	
2	b	6	9	
3	C	b	\subset	
3	C	C	C	
3	C	C	٩	
4	d	С	a	

* arour dues not matter*

Equi -join

Lo no projection

W.C	D	A	B	R.C
1	a	b	b	l
2	b	6	9	2
3	C	b	C	3
3		C	C	3
3	C	C	٩	3
4	λ	<i>C</i> .	a	4

В	TiD	E	F	3 C	M.D
a	a	l	2	l	a
coubaaaaa	d	2 2 2	4	2 3	b C d
C	q	2	4	3	Ç
	a	2	4	4	d
Ŋ	り	3	2	1	a
U	d ad b ba	3	2	1	a 9
4		2 2	2 2 3 3	2	a 5
1	9			7	b
4	9	•	4	2	ሻ ከ
a	9	! "	1	2 3	d
V.		ı	•	_	

r.A	R.B	R.C		- S.B	
b	C	3	C	C	2
b	C	ડ	C	α	3
Ь	ر	ડ		C	
<u>_</u>	C	3		ر	
_	C	3		۹	
C	_	3	(_	3
	6,1	c /c	2 b/s	, 20'	5, 2a's

$$\begin{array}{c|c} Y & & & \\ \hline &$$

$$\mathcal{X}$$
)
 \mathcal{T}_{ϕ}
 \mathcal{Y}
 $\mathcal{$

$$\frac{2}{\sigma_{c=1}} \sum_{\substack{\sigma_{c=2} \\ | \\ R}} \frac{\sigma_{c=2}}{5}$$

$$\frac{R}{ABC} = \frac{S}{ABC}$$

$$\frac{ABC}{CC2}$$

$$\frac{ABC}{CC2}$$

MI. Name (1)

Problem 3

- 1) A candidate key for this table would be (FirstName, LastName, TeamName, Season). This is a candidate key because FirstName and LastName are unique for a team, and those team names are unique. Finally, the season is included to decipher which season this player's stats are for.
- 2) This is not a candidate key because a player on the same team can have the same amount of shots and rebounds, for example a players that is on the bench would have both 0.
- 3) (LastName, Season) is not a valid candidate key because 2 players could potentially have the same last name but a different first name. Also this combination would make it that players can not have same last names and play in the same season.
- 4) This is is not a valid candidate key because it does not container the minimal number of attributes for uniquess. In fact, this contains the candidate key that was specified.

Problem 4

- 1) Route Number by itself is a candidate key. Another one would be (Origin, Departure, Destination, Arrival) since the assumption can be made that 2 trains cannot have the same departure and arrival times, since that would be inefficient. So this means that 2 trains have no reason to leave from the same place at the same time.
- 2) RouteNumber would be a primary key.
- 3) This not a candidate key because it contains a candidate key which is RouteNumber.
- 4) (Origin, Destination) is not a candidate key because this stops 2 trains that are connecting cities but going and arriving at different times.
- 5) This is not a candidate key because 2 trains can depart from the same place, be the same type and also have the same number of stops.

Problem 5

- 1) If the assumptions that no 2 legislators have the same full name, email address, phone number or web address then:
- (FirstName, MiddleName, LastName, Birthday)
- (State, Chamber, District, StartYear, EndYear)
- (State, Chamber, FirstName, MiddleName, LastName)
- (State, Chamber, District, FirstName, LastName)
- (Email) this is assuming that each legislator has a unique email address
- 2) A Primary key for this table would be (State, Chamber, District, StartYear, EndYear) since this would remain unique over time of the legislator's term.
- 3) (Email, Phone, Web) is not a valid candidate key because these attributes could be shared by multiple people. For example, multiple can have similar website URLs or phone numbers.
- 4) This is not a valid candidate key because legislators in the same state can server during the same term.
- 5) This is not a valid candidate key because multiple legislators with the same name can server each year.
- 6) Not valid because legislators can share the same number and be part of the same chamber and term.