Towards Diverse Liveness Feature Representation and Domain Expansion for **Cross-Domain Face Anti-Spoofing**

Pei-Kai Huang¹, Jun-Xiong Chong¹, Hui-Yu Ni¹, Tzu-Hsien Chen¹ and Chiou-Ting Hsu¹ ¹National Tsing Hua University, Taiwan

Face Anti-Spoofing (FAS)

- Challenges in Cross-Domain Testing
- Representation dominated by domain-dependent variations
- Lack of out-of-domain information
- · To enrich diversity of liveness feature
 - Generate out-of-domain features
 - Maintaining discriminative characteristics
- To enlarge generalization ability of domain features
- Generate unseen features

DFANet: Disentangled Feature Augmentation Network

- **■** Feature Disentanglement and Reconstruction
- · Disentanglement of liveness feature and domain feature

 $\mathcal{L}_{rec} = \sum_{l} \left(||\mathbf{f}_{ls,dm} - \overline{\mathbf{f}}_{ls,dm}||_2^2 \right)$

- Augmentation of Liveness Features
- Affine feature transform $\hat{\mathbf{f}_{ls}} = \mathbf{E}_{fwt}(\mathbf{f}_{ls}) = \mathbf{s} \odot \mathbf{f}_{ls} + \mathbf{b}$
- Increase diversity of transformed features

$$\mathcal{L}_{dis} = \text{sim}(\hat{\mathbf{f}}_{ls}, \mathbf{f}_{ls}) = \frac{\hat{\mathbf{f}}_{ls} \cdot \mathbf{f}_{ls}}{||\hat{\mathbf{f}}_{ls}|| \ ||\mathbf{f}_{ls}||}$$

Preserve live/spoof discriminative characteristics

$$\mathcal{L}_{ls-aft} = -\sum_{\forall \bar{\mathbf{f}}_{\hat{l}\hat{s}}} (y^{ls}log(\mathbf{C}_{ls}(\bar{\mathbf{f}}_{\hat{l}\hat{s}})))$$

- Augmentation of Domain Features
- Learnable AdaIN

$$\hat{\mathbf{f}}_{dm} = \mathbf{E}_{adl}(\mathbf{f}_{dm}) = \alpha \cdot (\frac{\mathbf{f}_{dm} - \mu_{\mathbf{f}_{dm}}}{\sigma_{\mathbf{f}_{dm}}}) + \beta$$

· Adversarial domain learning

$$\mathcal{L}_{adv} = -\sum_{\forall \bar{\mathbf{I}}_{ls}} ((1 - y^{ls})log(\mathbf{C}_{ls}(\bar{\mathbf{I}}_{ls}))$$

Model Training

Augmented Feature Learning

$$\mathcal{L}_{aug} = -\sum_{\forall \bar{\mathbf{f}}_{l\hat{s}}} y^{ls} log(\mathbf{C}_{ls}(\bar{\mathbf{f}}_{l\hat{s}})) - \sum_{\forall \bar{\mathbf{f}}_{ls}} y^{ls} log(\mathbf{C}_{ls}(\bar{\mathbf{f}}_{ls}))$$

Experiments

Datasets

OULU-NPU (O), MSU-MFSD (M), CASIA-MFSD (C), Replay-Attack (I)

- **■** Evaluation Metrics
- Half Total Error Rate (HTER)
- Area Under Curve (AUC)

Cross domain testing

Method	[O,C,I	$] \rightarrow M$	$[O,M,I] \rightarrow C$		$[O,C,M] \rightarrow I$		$[I,C,M] \rightarrow O$	
	HTER	AUC	HTER	AUC	HTER	AUC	HTER	AUC
MADDG [5] (CVPR 19)	17.69	88.06	24.50	84.51	22.19	84.99	27.89	80.02
DR-MD-Net [6] (CVPR 20)	17.02	90.10	19.68	87.43	20.87	86.72	25.02	81.47
SSDG-R [21] (CVPR 20)	7.38	97.17	10.44	95.94	11.71	96.59	15.61	91.54
RFM [22] (AAAI 20)	13.89	93.98	20.27	88.16	17.30	90.48	16.45	91.16
$D^2AM [9] (AAAI 21)$	12.70	95.66	20.98	85.58	15.43	91.22	15.27	90.87
RAEDFL [1] (ACPR 21)	16.67	87.93	17.78	86.11	14.64	85.64	18.06	90.04
SSAN-M [7] (CVPR 22)	10.42	94.76	16.47	90.81	14.00	94.58	19.51	88.17
SSAN-R [7] (CVPR 22)	6.67	98.75	10.00	96.67	8.88	96.79	13.72	93.63
PatchNet [23] (CVPR 22)	7.10	98.46	11.33	94.58	14.6	92.51	11.82	95.07
LDCN [10] (BMVC 22)	9.29	96.86	12.00	95.67	9.43	95.02	13.51	93.68
Ours	5.24	97.98	8.78	97.03	8.21	96.84	9.34	96.43

T-SNE Visualization