```
Dynamic Programming
 Best part -> You already have reen
    an enample
Prefix Sum ->
    pf(i) = pf(i-1) + arc(i)
where pfli) > Sum of [0:i]
Of Fibonacci Series
   1 1 2 3 5 8 13 21 34 ....
  fibln) = fibln-1) + fibln-2)
    fib(1) = 1 \qquad fib(2) = 1
  int fib (int n) L
  ( ( 1 < 2 )
```

return fib(n-1) + fib(n-2)

set usn 1

TC: 0(27)

DP solu

Bottom up lop-down (itelative) (reculsive) Small Homed 5/131 Break larger prob Large daria 511317 into smaller Top down int dp[n+1] //initialize everything int fib (int n) 2 if (n < 2) return 1 If already colculated, if (dp[n]!=-1) I setuln from memory. retun offind and = fib (n-1) + fib(n-2) & memoization de[n] = ans setum ans

fibls)

Bottom up (Iterative)

int dp(n+1) dp(1) = 1 dp(2) = 1for Li = 3; $i \le n$; $i + t \ge C$ dp(i) = dp(i-1) + dp(i-2) dp(i) = dp(i-1) + dp(i-2)

1 1 2 3 5

Oz Find minimum no of perfect squares to get the sum = N

 $\frac{1^{2}+1^{2}+1^{2}+1^{2}+1^{2}=6}{2^{2}+1^{2}+1^{2}=5}$

ans = 3

 $3^2 + 1^2$ and = 2

9 3² ans = 1

Idea Greedy?

N- last perfect square

 $12 \rightarrow 12 - 3^2 = 3$

 $3^{2} + 1^{2} + 1^{2} = 2$

2-1 =1

but better is $2^2+2^2+2^2$ ans = 3

squares $[12] = 1 + min^{(1)}$ squares $[12-1^2]$, squares $[12-2^2]$, squares $[12-3^2]$)

squares $[i] = 1 + \min ($ squares [i-1], squares [i-2],

squares [i-x²])

x² \le i

```
Code
int dp In+17 // initialize ==1
int calc (int n) L
  if (n==0)
                           L'done ]
   setun 0
if (dp(n)!=-1)
  setun de [n]
ans = INT_MAX
for(n=1; n*n\sn; n+t) 2
 ans = min (ans, calc (n-x2))
do [n]= 1+ ans
                       TC: O(N*sqrt(N
                      SC: O(n)
return of In ]
```

No of ways to reach N' stair can take one step or 2 steps step size = 1 or 2 4=> 5 mays / + / + / ans = 3 1 + 2 2 + 1 ____ 1 ⇒ 1 $2 \Rightarrow l+l \quad or \quad 2$ ans = 2 2 3 4 . _ - . n-3 n-2 n-1 n ways (n) = ways(n-1) + ways(n-2)1+1 2 => 2

Top down	
int db[n+1] /	/initialize everything
int ways Cint n)	
if 6 n 5 2 3	
return n	
if (dp[n]! = -1)	I if already colcubted I return from memory
retun delni	I setuln flom memory
ans = ways (n-1) -	
de[n] = ans	Je memoization
return and	
	Tc: 2 o(n)
	Sc:
TC of DP =>	
no of states	× TC of 1 state
	0