Advanced Microeconometrics, Autumn 2021: The Delta Method

Anders Munk-Nielsen Jesper Riis-Vestergaard Sørensen

November 15, 2021

1 Motivation

Suppose that an estimator $\widehat{\boldsymbol{\theta}}_n$ for a parameter $\boldsymbol{\theta}_0$ is available, but the quantity of interest is $\mathbf{h}(\boldsymbol{\theta}_0)$ for some known function \mathbf{h} . A natural estimator of $\mathbf{h}(\boldsymbol{\theta}_0)$ is $\mathbf{h}(\widehat{\boldsymbol{\theta}}_n)$, sometimes referred to as the *plug-in estimator*. How do the asymptotic properties of $\mathbf{h}(\widehat{\boldsymbol{\theta}}_n)$ follow from those of $\widehat{\boldsymbol{\theta}}_n$?

A first result is an immediate consequence of a continuous-mapping theorem (C&T Theorem A.3). If the sequence $\widehat{\boldsymbol{\theta}}_n$ converges in probability to $\boldsymbol{\theta}_0$ as $n \to \infty$ and \mathbf{h} is continuous at $\boldsymbol{\theta}_0$, then $\mathbf{h}(\widehat{\boldsymbol{\theta}}_n)$ converges in probability to $\mathbf{h}(\boldsymbol{\theta}_0)$.

Of greater interest is a similar question concerning limiting distributions as these facilitate inference. In particular, if $\sqrt{n}(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0)$ converges in distribution as $n \to \infty$, is the same true for $\sqrt{n}\{\mathbf{h}(\widehat{\boldsymbol{\theta}}_n) - \mathbf{h}(\boldsymbol{\theta}_0)\}$? If so, what is the relationship between their distributional limits?

2 Delta Method

Suppose for simplicity that $\widehat{\boldsymbol{\theta}}_n$ is a sequence $\widehat{\boldsymbol{\theta}}_n$ of random scalars and that \mathbf{h} is a scalar function $h: \mathbf{R} \to \mathbf{R}$. Consider the random scalar $\sqrt{n}\{h(\widehat{\boldsymbol{\theta}}_n) - h(\boldsymbol{\theta}_0)\}$, which we may write as the product

$$\sqrt{n}\{h(\widehat{\theta}_n) - h(\theta_0)\} = \frac{h(\widehat{\theta}_n) - h(\theta_0)}{\widehat{\theta}_n - \theta_0} \cdot \sqrt{n}(\widehat{\theta}_n - \theta_0).$$

Provided that $\widehat{\theta}_n$ is consistent and h differentiable at θ_0 , one may show that the difference quotient converges in probability to the derivative $h'(\theta_0)$, i.e.

$$\frac{h(\widehat{\theta}_n) - h(\theta_0)}{\widehat{\theta}_n - \theta_0} \stackrel{p}{\to} h'(\theta_0).$$

Suppose that, in addition, $\sqrt{n}(\widehat{\theta}_n - \theta_0)$ converges in distribution to some limit Z (a scalar random variable). Since $h'(\theta_0)$ is constant, it follows from the product rule (CT Theorem A.12) that

$$\frac{h(\widehat{\theta}_n) - h(\theta_0)}{\widehat{\theta}_n - \theta_0} \cdot \sqrt{n}(\widehat{\theta}_n - \theta_0) \stackrel{d}{\to} h'(\theta_0) Z.$$

Summing up,

$$\sqrt{n}\{h(\widehat{\theta}_n) - h(\theta_0)\} \stackrel{d}{\to} h'(\theta_0) Z.$$

This result is the simplest form of what is usually referred to as the delta method.

While the above result has nothing to do with normality, often Z is normally distributed. Consider therefore the case of $Z \sim N(0, \sigma_0^2)$ with σ_0^2 denoting the limit variance. The fact that the normal family is closed under affine transformations (i.e. an affine transformation of a normally distributed random variable is normally distributed) then implies $h'(\theta_0) Z \sim N(0, [h'(\theta_0)]^2 \sigma_0^2)$. Hence, when the delta method is justified, in the case of a normal limit,

$$\sqrt{n}\{h(\widehat{\theta}_n) - h(\theta_0)\} \stackrel{d}{\to} N(0, [h'(\theta_0)]^2 \sigma_0^2).$$

Provided we can also consistently estimate the limit variance $[h'(\theta_0)]^2 \sigma_0^2 =: v_0^2$, the delta method therefore provides a vehicle for constructing confidence intervals for $h(\theta_0)$.

Specifically, one may show that if both

- 1. $\sqrt{n}(\widehat{\theta}_n \theta_0) \stackrel{d}{\to} N(0, \sigma_0^2)$ for some $\sigma^2 \in \mathbf{R}_{++}$,
- 2. h is continuously differentiable at θ_0 with nonzero derivative $h'(\theta_0)$, and
- 3. $\hat{\sigma}_n^2$ is a sequence of variance estimators consistent for σ_0^2 ,

then the random interval

$$\left[h(\widehat{\theta}_n) - 1.96 \cdot \frac{\widehat{v}_n}{\sqrt{n}}, h(\widehat{\theta}_n) + 1.96 \cdot \frac{\widehat{v}_n}{\sqrt{n}}\right]$$

with variance estimator given by

$$\widehat{v}_n^2 := [h'(\widehat{\theta}_n)]^2 \widehat{\sigma}_n^2$$

is an asymptotically valid 95 pct. confidence interval for $h(\theta_0)$. This claim follows from repeated applications of CT Theorems A.3 and A.12, a straightforward but tedious exercise, which we encourage you to carry out. Of course, asymptotic $100 \cdot (1 - \alpha)$ pct. confidence for some other $\alpha \in (0,1)$ may be obtained by replacing 1.96 with the $(1 - \alpha/2)$ quantile of the standard normal distribution.

The delta method is not limited to the scalar case. One may show that if $\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0)$ converges in distribution to \mathbf{Z} , a random element of \mathbf{R}^K , and the function $\mathbf{h}: \mathbf{R}^K \to \mathbf{R}^L$ is differentiable at $\boldsymbol{\theta}_0$, then

$$\sqrt{n}\{\mathbf{h}(\widehat{\boldsymbol{\theta}}_n) - \mathbf{h}(\boldsymbol{\theta}_0)\} \stackrel{d}{\to} \nabla \mathbf{h}(\boldsymbol{\theta}_0) \mathbf{Z},$$

where $\nabla \mathbf{h}(\boldsymbol{\theta}_0)$ denotes the gradient of \mathbf{h} at $\boldsymbol{\theta}_0$ [i.e. the $L \times K$ matrix of partial derivatives $(\partial/\partial\theta_k) h_\ell(\boldsymbol{\theta}_0)$]. If, in addition, \mathbf{Z} is $\mathrm{N}(\mathbf{0}_{K\times 1}, \boldsymbol{\Sigma}_0)$ distributed for some $K\times K$ variance matrix $\boldsymbol{\Sigma}_0$, then the affine transformation $\nabla \mathbf{h}(\boldsymbol{\theta}_0) \mathbf{Z}$ is distributed $\mathrm{N}(\mathbf{0}_{L\times 1}, \nabla \mathbf{h}(\boldsymbol{\theta}_0) \boldsymbol{\Sigma}_0 \nabla \mathbf{h}(\boldsymbol{\theta}_0)')$. Hence, when the (multivariate) delta method is justified, in the case of a normal limit, we get the simplification

$$\sqrt{n}\{\mathbf{h}(\widehat{\boldsymbol{\theta}}_n) - \mathbf{h}(\boldsymbol{\theta}_0)\} \stackrel{d}{\to} \mathrm{N}\left(\mathbf{0}_{L\times 1}, \nabla \mathbf{h}(\boldsymbol{\theta}_0) \boldsymbol{\Sigma}_0 \nabla \mathbf{h}(\boldsymbol{\theta}_0)'\right).$$

Provided we can consistently estimate the limit variance $\nabla \mathbf{h}(\boldsymbol{\theta}_0) \boldsymbol{\Sigma}_0 \nabla \mathbf{h}(\boldsymbol{\theta}_0)' =: \mathbf{V}_0$ —now a matrix—the delta method therefore provides a vehicle for constructing confidence intervals for the *elements of* $\mathbf{h}(\boldsymbol{\theta}_0)$ or some combination thereof.

Specifically, one may show that if both

- 1. $\sqrt{n}(\widehat{\boldsymbol{\theta}}_n \boldsymbol{\theta}_0) \to_d \mathrm{N}(\mathbf{0}_{k \times 1}, \mathbf{\Sigma}_0)$ for some $\mathbf{\Sigma}_0 \in \mathbf{R}^{K \times K}$ symmetric positive definite,
- 2. **h** is continuously differentiable at $\boldsymbol{\theta}_0$ with derivative $\nabla \mathbf{h} \left(\boldsymbol{\theta}_0 \right)$ of full rank, and
- 3. $\widehat{\Sigma}_n$ is a sequence of variance estimators consistent for Σ_0 ,

then each random interval

$$\left[h_{\ell}(\widehat{\boldsymbol{\theta}}_n) - 1.96 \cdot \sqrt{\frac{\widehat{V}_{n,\ell\ell}}{n}}, h_{\ell}(\widehat{\boldsymbol{\theta}}_n) + 1.96 \cdot \sqrt{\frac{\widehat{V}_{n,\ell\ell}}{n}}\right],$$

with $\widehat{V}_{n,\ell\ell}$ denoting the ℓ th diagonal element of the variance estimator $\widehat{\mathbf{V}}_n$ given by the sandwich formula

$$\widehat{\mathbf{V}}_n := \nabla \mathbf{h}(\widehat{\boldsymbol{\theta}}_n) \mathbf{\underline{\widehat{\Sigma}}_n} \nabla \mathbf{h}(\widehat{\boldsymbol{\theta}}_n)',$$

is an asymptotically valid 95 pct. confidence interval for $h_{\ell}(\theta_0)$.

 $ext{Avar}[\mathbf{h}(\hat{oldsymbol{ heta}})] = \mathbf{g} \operatorname{Avar}(\hat{oldsymbol{ heta}}) \, \mathbf{g}'$

 $\mathbf{g} =
abla_{ heta} \mathbf{h}(\hat{oldsymbol{ heta}}).$

3 Probit Marginal Effects

Often we formulate a model for the conditional mean E[Y|X=x] of an outcome Y as a function of regressor realizations x. One object which may be of interest is the *marginal*

effect of some regressor X_k at a particular point \mathbf{x}_0 . In the case of a continuous conditioning variable, when speaking of the "marginal effect at \mathbf{x}_0 " we mean the partial derivative

$$\mathrm{ME}_{k}\left(\mathbf{x}_{0}\right) := \frac{\partial}{\partial x_{k}} \mathrm{E}\left[Y \mid \mathbf{X} = \mathbf{x}_{0}\right].$$

(For discrete regressors, simply replace differentials with differences in conditional expectations.) Via differentiation, our model for the conditional mean implies a model for the marginal effect(s). When $E[Y|\mathbf{X}=\mathbf{x}]$ is linear in \mathbf{x} , marginal effects are given by the model parameters and, thus, constant. In nonlinear models, this relationship is more complicated. Moreover, $ME_k(\mathbf{x}_0)$ will generally depend on the point \mathbf{x}_0 in a nontrivial manner. However, for a fixed point of interest \mathbf{x}_0 , $ME_k(\mathbf{x}_0)$ is given by a potentially complicated—but known—function of model parameters.

To illustrate this point, consider the probit model, which models a binary outcome Y as

$$Y = \mathbf{1} \left(\mathbf{X}' \boldsymbol{\beta}_0 + \varepsilon > 0 \right),$$

where ε is distributed N (0, 1) independently of regressors **X**. With Φ (t) := $\int_{-\infty}^{t} (2\pi)^{-1/2} e^{-u^2/2} du$ denoting the standard normal cumulative distribution function (CDF), we obtain

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \Phi(\mathbf{x}'\boldsymbol{\beta}_0),$$

where we have invoked independence of ε and \mathbf{X} , normality of ε , and symmetry of the standard normal distribution about zero. (Check it!) By virtue of Y being binary, this is also the conditional mean, so

$$E[Y|\mathbf{X} = \mathbf{x}] = \Phi(\mathbf{x}'\boldsymbol{\beta}_0).$$

Writing $\varphi(t) = (2\pi)^{-1/2} e^{-t^2/2}$ for the standard normal probability density function (PDF), by means of the chain rule for differentiation we see that

$$\mathrm{ME}_{k}\left(\mathbf{x}_{0}\right)=\varphi\left(\mathbf{x}_{0}^{\prime}\boldsymbol{\beta}_{0}\right)\beta_{0j}.$$

The right-hand side, hence the marginal effect of X_j , depends on both model parameters and the point of evaluation in a nonlinear manner.

Suppose now that we want a (say, 95 pct.) confidence interval for $ME_k(\mathbf{x}_0) = \varphi(\mathbf{x}_0'\boldsymbol{\beta}_0) \beta_{0k}$. The right-hand side is the kth coordinate of the function $\mathbf{h}: \mathbf{R}^K \to \mathbf{R}^K$ defined by

$$\mathbf{h}\left(\boldsymbol{\beta}\right):=\varphi\left(\mathbf{x}_{0}^{\prime}\boldsymbol{\beta}\right)\boldsymbol{\beta},\quad\boldsymbol{\beta}\in\mathbf{R}^{K},$$

evaluated at $\beta = \beta_0$. Inspection shows that φ is differentiable with derivative given by $\varphi'(t) = -t\varphi(t)$. (Do it!) It thus follows from the product and chain rules for differentiation that the function **h** is differentiable with gradient

$$\nabla \mathbf{h}\left(\boldsymbol{\beta}\right) = \varphi\left(\mathbf{x}_{0}^{\prime}\boldsymbol{\beta}\right)\left[\mathbf{I}_{K} - \left(\mathbf{x}_{0}^{\prime}\boldsymbol{\beta}\right)\boldsymbol{\beta}\mathbf{x}_{0}^{\prime}\right] \in \mathbf{R}^{K \times K}.$$

(Check it!) The right-hand side is element-by-element continuous in β , so **h** is everywhere continuously differentiable, hence continuously differentiable at β_0 .

Suppose now that we have access to an independent sample of n pairs (Y_i, \mathbf{X}_i) and estimate $\boldsymbol{\beta}_0$ using maximum likelihood. Then, under certain conditions, the maximum likelihood estimator (MLE) $\widehat{\boldsymbol{\beta}}_n$ satisfies $\sqrt{n}(\widehat{\boldsymbol{\beta}}_n - \boldsymbol{\beta}_0) \stackrel{d}{\to} \mathrm{N}\left(\mathbf{0}_{K\times 1}, \boldsymbol{\Sigma}_0\right)$ with a consistently estimable limit variance $\boldsymbol{\Sigma}_0$ (see lecture slides for details).

The delta method therefore applies to show that the $K \times 1$ vector $\widehat{\mathbf{ME}}(\mathbf{x}_0) := \mathbf{h}(\widehat{\boldsymbol{\beta}}_n)$ of estimators of marginal effects $\mathbf{ME}(\mathbf{x}_0) = \mathbf{h}(\boldsymbol{\beta}_0)$ satisfies

$$\sqrt{n}\{\widehat{\mathbf{ME}}(\mathbf{x}_0) - \mathbf{ME}(\mathbf{x}_0)\} \stackrel{d}{\to} \mathrm{N}\left(\mathbf{0}_{K\times 1}, \mathbf{V}_0\right)$$

where the limit variance takes the form (check!):

$$\mathbf{V}_{0} = \varphi^{2} \left(\mathbf{x}_{0}^{\prime} \boldsymbol{\beta}_{0} \right) \left[\mathbf{I}_{K} - \left(\mathbf{x}_{0}^{\prime} \boldsymbol{\beta}_{0} \right) \boldsymbol{\beta}_{0} \mathbf{x}_{0}^{\prime} \right] \boldsymbol{\Sigma}_{0} \left[\mathbf{I}_{K} - \left(\mathbf{x}_{0}^{\prime} \boldsymbol{\beta}_{0} \right) \boldsymbol{\beta}_{0} \mathbf{x}_{0}^{\prime} \right]^{\prime}.$$