Generic verifiable computation and zero knowledge proof

Verifiable Computation (VC)

server

data

Verification: \checkmark or \square

Correctness/completeness: $\Pr[\text{result} = f(\text{data}) \text{ and proof is honest and verification is } \checkmark] = 1$ Soundness/security: $\Pr[\text{result} \neq f(\text{data}) \text{ and verification is } \checkmark] \leq \frac{1}{2^{100}}$

Efficiency measures

Generic VC

Model functions as arithmetic circuits

SNARK

- Succinct Non-interactive ARgument of Knowledge
- ✓ Supports all functions (modeled as arithmetic circuit)
- Constant proof size
- ✓ Fast verification time

SNARK

server

Satisfying assignment of circuits

Proving C(data) = output \rightarrow ($c_1, c_2, ... c_{11}$) with conditions defined by the circuit

Verifying is easier than computing

Labeling of wires and gates

Labeling of wires and gates

Assign a different number to each multiplication gate

Circuit SAT to polynomial division

$$\bullet p(x) = \left(\sum_{i=1}^{m} c_i \times v_i(x)\right) \times \left(\sum_{i=1}^{m} c_i \times w_i(x)\right) - \left(\sum_{i=1}^{m} c_i \times y_i(x)\right)$$

Circuit SAT to polynomial division

$$\bullet p(x) = \left(\sum_{i=1}^m c_i \times v_i(x)\right) \times \left(\sum_{i=1}^m c_i \times w_i(x)\right) - \left(\sum_{i=1}^m c_i \times y_i(x)\right)$$

• Target polynomial: $t(x) = (x - r_1)(x - r_2)(x - r_3)$

Quadratic arithmetic program (QAP)

"Bad" generic verifiable computation

Compute all polynomials with only the circuit

client

- On some data, send me all c_i s
- Compute p(x), check it is divisible by t(x)

server

To be continued...

• SNARK from QAP using bilinear map

Zero knowledge

• Pros and cons