Serial No.: 10/091,836	Page 4
------------------------	--------

IN THE CLAIMS

Please amend the following Claims as indicated.

1. (Currently amended) An error correction method for use with a noisy communication channel, said method comprising the steps of:

dividing a data stream into symbols;

sampling the divided data stream and placing samples into threads, wherein samples are taken at fixed time intervals;

inserting a correction symbol into the <u>threads such that data stream to mix</u> the <u>same</u> correction symbol <u>is mixed</u> with data symbols <u>in more than one thread</u>, by inserting the correction symbol next to data symbols that have a fixed time separation;

transmitting the data stream;

receiving the transmitted data stream;

performing error detection and correction computations on the data and error correction symbols; and

outputting an error corrected data stream.

- 2. (Previously presented) The method of Claim 1 wherein the noisy communication channel comprises a satellite communication link.
- 3. (Previously presented) The method of Claim 1 wherein the noisy communication channel comprises a scratched compact disk.
- 4. (Previously presented) The method of Claim 1 wherein the symbols are in the form of bits.
- 5. (Previously presented) The method of Claim 1 wherein the symbols are in the form of bytes.
- 6. (Previously presented) The method of Claim 1 wherein the symbols are in the form of words.
- 7. (Previously presented) The method of Claim 1 wherein samples are taken at fixed time intervals that are longer than the time intervals of error bursts caused by the noisy channel.
- 8. (Previously presented) The method of Claim 1 wherein the step of performing error detection and correction comprises performing error correction with a cyclic redundancy check.

9. (Canceled)

10. (Previously presented) An error correction method for use with a noisy communication channel, said method comprising the steps of:

receiving an incoming data stream;

copying each data symbol that is to be transmitted onto a register;

placing each data symbol onto a transmit output buffer in a predetermined position, wherein positions between the data symbols are filled with error correcting symbols calculated after a register gets filled;

transmitting a symbol transmission stream from the transmit output buffer; receiving the transmitted transmission stream;

placing data and error correction symbols from the symbol transmission stream on predetermined registers;

performing error detection and correction computations on the data and error correction symbols;

placing the corrected data symbols on a receive output buffer in their correct positions; and

outputting an error corrected data stream from the receive output buffer.

- 11. (Previously presented) The method of Claim 10 wherein the noisy communication channel comprises a satellite communication link.
- 12. (Previously presented) The method of Claim 10 wherein the noisy communication channel comprises a scratched compact disk.
- 13. (Previously presented) The method of Claim 10 wherein the symbols are in the form of bits.
- 14. (Previously presented) The method of Claim 10 wherein the symbols are in the form of bytes.
- 15. (Previously presented) The method of Claim 10 wherein the symbols are in the form of words.
- 16. (Previously presented) The method of Claim 10 wherein samples are taken at fixed time intervals that are longer than the time intervals of error bursts caused by the noisy channel.

Serial No.: 10/091,836	Page	6
------------------------	------	---

17. (Previously presented) The method of Claim 10 wherein the step of performing error detection and correction comprises performing error correction with a cyclic redundancy check.

18. (Previously presented) The method of Claim 10 wherein the step of inserting a correction symbol into the data stream comprises the step of inserting the same correction symbol in more than one thread.