Markov Decision Processes

CPS 271 Ron Parr

Applications of MDPs

- Economics/Operations Research
 - Fleet maintenance (Howard, Rust)
 - Road maintenance (Golabi et al.)
 - Packet Retransmission (Feinberg et al.)
 - Nuclear plant management (Rothwell & Rust)

Applications of MDPs

- Al/Computer Science
 - Robotic control
 - (Koenig & Simmons, Thrun et al., Kaelbling et al.)
 - Air Campaign Planning (Meuleau et al.)
 - Elevator Control (Barto & Crites)
 - Computation Scheduling (Zilberstein et al.)
 - Control and Automation (Moore et al.)
 - Spoken dialogue management (Singh et al.)
 - Cellular channel allocation (Singh & Bertsekas)

Applications of MDPs

- EE/Control
 - Missile defense (Bertsekas et al.)
 - Inventory management (Van Roy et al.)
 - Football play selection (Patek & Bertsekas)
- Agriculture
 - Herd management (Kristensen, Toft)

The MDP Framework

- We return to thinking at the level of states
- · Probabilistic state transitions
- · Multiple actions
- · Reward function

Action 2

How Do MDPs Differ From Search

- In search, we preferred to think about trees because graphs made things complicated
- Would like to use expectimax, but
- When we add probabilities, tree assumption becomes unrealistic
- · Need to address loops head on

The MDP Framework

• State space: S

Action space: A

• Transition function: P

· Reward function: R

Discount factor: γ

• Policy: $\pi(s) \to a$

Objective: Maximize expected, discounted return

Finding Good Policies

Suppose an expert told you the "value" of each state:

Value Determination

Determine the value of each state under policy p

$$V(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V(s')$$

Bellman Equation

$$V(s_1) = 1 + \gamma(0.4V(s_2) + 0.6V(s_3))$$

Matrix Form

$$\mathbf{P} = \begin{pmatrix} P(s_1 \mid s_1, \pi(s_1)) & P(s_2 \mid s_1, \pi(s_1)) & P(s_3 \mid s_1, \pi(s_1)) \\ P(s_1 \mid s_2, \pi(s_2)) & P(s_2 \mid s_2, \pi(s_2)) & P(s_3 \mid s_2, \pi(s_2)) \\ P(s_1 \mid s_3, \pi(s_3)) & P(s_2 \mid s_3, \pi(s_3)) & P(s_3 \mid s_3, \pi(s_3)) \end{pmatrix}$$

$$V = \gamma P_{\pi}V + R$$

How do we solve this system?

Solving for Values

$$\mathbf{V} = \gamma \mathbf{P}_{\pi} \mathbf{V} + \mathbf{R}$$

For moderate numbers of states we can solve this system exacty:

$$\mathbf{V} = (\mathbf{I} - \gamma \mathbf{P}_{\pi})^{-1} \mathbf{R}$$

Guaranteed invertible because γP_{π} has spectral radius <1

Solving for Values

$$\mathbf{V} = \gamma \mathbf{P}_{\pi} \mathbf{V} + \mathbf{R}$$

For larger numbers of states we can solve this system indirectly by Gauss iteration:

$$\mathbf{V}_{i+1} = \gamma \mathbf{P}_{\pi} \mathbf{V}_i + \mathbf{R}$$

Guaranteed convergent because p_{π} has spectral radius <1

We can also prove that this iteration is a *contraction* in max norm.

Improving Policies

- We can compute the value of a single policy
- How do we get the optimal policy?
- Need to ensure that we take the optimal action in every state:

$$V(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V(s')$$

Value Iteration

We can solve the system directly with a max in the equation Can we solve it iteration?

$$V_{i+1}(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_{i}(s')$$

- •Called value iteration or simply successive approximation
- •We can show that this is also a contraction in max norm
- •Guaranteed to converge to optimal policy
- Converges exponentially quickly

Can we do better?

Greedy Policy Construction

Pick action with highest expected future value:

$$\pi(s) = \operatorname{arg\,max}_{a} R(s) + \gamma \sum_{s'} P(s'|s, a) V(s')$$

Expectation over next-state values

 $\pi = \operatorname{greedy}(V)$

Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess V

p = greedy(V)

V = value of acting on p

Repeat until policy doesn't change

Guaranteed to find optimal policy Usually takes very small number of iterations Computing the value functions is the expensive part

Computational Complexity

- VI and PI are both contraction mappings w/rate γ
- · VI costs less per iteration
- PI tends to take O(n) iterations in practice
- · Open question: Subexponential bound on PI
- Is there a guaranteed poly time MDP algorithm???

Linear Programming

$$V(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V(s')$$

Issue: Turn the non-linear max into a collection of linear constraints

$$\forall s, a: V(s) \ge R(s) + \gamma \sum_{s'} P(s'|s, a) V(s')$$

MINIMIZE: $\sum_{s} V(s)$

Weakly polynomial; slower than PI in practice.

What's The Bad News?

- Works at the level of states = atomic events
- We usually have exponentially many of these
- Hot questions:
 - Combining learning/generalizations with MDPs
 - Solving MDPs when model is not known in advance (Reinforcement Learning)