Chapter 2 (One-Dimensional Kinematics)

Homework Check A (collected _____

Reading

Please read the following on your own in the OpenStax textbook by the dates given. It will give good context for class discussion. Check off when you have completed them.

- 2.2 Vectors, Scalars, and Coordinate Systems

Problems and Conceptual Question

Get stamps from your instructor as you complete each of the following problems. The conceptual questions (CQ) require at least one sentence of explanation.

2.1 Displacement (3 POINTS) P #1-4 CQ #2-3	2.3 Time, Velocity, Speed (3 POINTS) P #5,7 CQ #6
2.4 Acceleration (5 POINTS) P #16,17,19 CQ #13-15	2.8 Graphical Analysis (4 POINTS) P #59,61 CQ #26-29

Problem Answers

- 1. (a) 7 m; (b) +7 m; (c) 7 m
- 2. (a) 5 m; (b) -5 m; (c) 5 m
- 3. (a) 12 m; (b) +8 m; (c) 8 m
- 4. (a) 8 m; (b) -4 m; (c) 4 m
- 5. (a) 3.0×10^4 m/s (b) 0 m/s
- 7. $1.67 \times 10^7 \,\mathrm{yr}$
- 16. $4.29 \,\mathrm{m/s^2}$
- 17. (a) $56.4 \,\mathrm{m/s^2} = 5.76 \,\mathrm{g}$;
 - (b) $-201 \,\mathrm{m/s^2} = -20.6q$
- 19. $108 \,\mathrm{m/s^2} = 11.1 \,\mathrm{g}$
- 59. verify using rise/run
- 61. verify using rise/run

Equations

$$\bar{v} = \frac{\Delta x}{\Delta t}$$
 $\bar{a} = \frac{\Delta v}{\Delta t}$ $v = v_0 + at$

$$v = v_0 + at$$
 "Old Faithful"

$$x = x_0 + v_0 t + \frac{1}{2}at$$
"Big Chalupa"

$$x=x_0+v_0t+\frac{1}{2}at^2$$
 $v^2=v_0^2+2a\left(x-x_0
ight)$ "Big Chalupa" "Ain't Got No Time"

Chapter 2 (One-Dimensional Kinematics)

Homework Check B (collected on Test Day - _____

Reading

Please read the following on your own in the OpenStax textbook by the dates given. It will give good context for class discussion. Check off when you have completed them.

- 2.7 Falling Objects

Problems and Conceptual Question

Get stamps from your instructor as you complete each of the following problems. The conceptual questions (CQ) require at least one sentence of explanation.

2.5 Constant Acceleration (10 Points)	2.7 Free Fall (10 POINTS)
P #22,27,28,30,31	P #43,45,46,47,48,49,51
HW Quiz on Mon, Aug 18	CQ #20,21,22,24

Bonus Problems

Get stamps for any bonus problems you complete.

P #32	P #55	P #57

Problem Answers

- 22.502 m/s
- 27. 0.799 m
- 28. 52.3 m
- $30.~8.45\times 10^3\,{\rm m/s^2}$
- 31. (a) 51.4 m; (b) 17.1 s
- $43. \ 4.95 \ \mathrm{m/s}$
- 45. (b) 8.62 m; (c) 2.65 s
- 46. (a) 1.14 s;
 - (b) 0.816 m;
 - (c) -7.16 m/s

- 47. (a) 8.26 m; (b) 0.717 s
- 48. 2.88 s
- 49. 1.91 s
- 51. (a) 94.0 m; (b) 3.13 s

Equations

$$\bar{v} = \frac{\Delta x}{\Delta t}$$
 $\bar{a} = \frac{\Delta v}{\Delta t}$ $v = v_0 + at$

$$v = v_0 + at$$
 "Old Faithful"

$$x = x_0 + v_0 t + \frac{1}{2}at$$
"Big Chalupa"

$$x=x_0+v_0t+\frac{1}{2}at^2$$
 $v^2=v_0^2+2a\left(x-x_0\right)$ "Big Chalupa" "Ain't Got No Time"