James K. Pringle 550.621 Probability Dr. Jim Fill Assignment 5 April 23, 2014

Assignment 5

Radon-Nikodym Theorem and fields

Part 1

Let P and Q be probabilities on a measurable space (Ω, \mathcal{A}) . Show that condition 2,

$$\lim_{\eta \to 0} \sup \{ P(A) : A \in \mathcal{A} \text{ and } Q(A) < \eta \} = 0$$

is equivalent to 2',

$$\lim_{\eta \to 0} \sup \{ P(A) : A \in \mathcal{A}_0 \text{ and } Q(A) < \eta \} = 0$$

where A_0 is a field generating A.

Proof. For fixed η , since $\mathcal{A}_0 \subset \mathcal{A}$,

$${A \in \mathcal{A}_0 : Q(A) < \eta} \subset {A \in \mathcal{A} : Q(A) < \eta}$$

Hence

$$\{P(A): A \in \mathcal{A}_0 \text{ and } Q(A) < \eta\} \subset \{P(A): A \in \mathcal{A} \text{ and } Q(A) < \eta\}$$

Therefore

$$0 \le \sup\{P(A) : A \in \mathcal{A}_0 \text{ and } Q(A) < \eta\} \le \sup\{P(A) : A \in \mathcal{A} \text{ and } Q(A) < \eta\}$$

Since this is true for all η , taking the limit as $\eta \to 0$,

$$0 \leq \lim_{\eta \to 0} \sup \{P(A) : A \in \mathcal{A}_0 \text{ and } Q(A) < \eta\} \leq \lim_{\eta \to 0} \sup \{P(A) : A \in \mathcal{A} \text{ and } Q(A) < \eta\}$$

By the assumption of condition 2, it follows by squeezing that

$$\lim_{\eta \to 0} \sup \{ P(A) : A \in \mathcal{A}_0 \text{ and } Q(A) < \eta \} = 0$$

and condition 2' holds. Thus condition 2 implies condition 2'.

Next suppose that condition 2' holds. Note $\emptyset \in \mathcal{A}_0$ since $\Omega \in \mathcal{A}_0$ and \mathcal{A}_0 is closed under complementation. Also, \mathcal{A}_0 is closed under binary intersection. Finally since \mathcal{A}_0 is closed under complementation, $A \subset B$ with $A, B \in \mathcal{A}_0$ implies $B \setminus A = B \cap A^c \in \mathcal{A}_0$. Therefore, \mathcal{A}_0 is a semiring. See Billingsley Section 11 for a definition of "semiring."

Fix $\eta > 0$. Let $A \in \mathcal{A}$ such that $Q(A) < \eta$. Thus $0 < \eta - Q(A)$. Note $\sigma(\mathcal{A}_0) = \mathcal{A}$ and Q is a p.m. (hence σ -finite) on \mathcal{A} . By Billingsley Theorem 11.4(i), there exists an infinite¹ disjoint sequence A_1, A_2, \cdots of \mathcal{A}_0 sets such that

$$A \subset \cup_k A_k$$

and

$$Q((\cup_k A_k) \setminus A) < \eta - Q(A).$$

Thus

$$Q((\cup_k A_k) \setminus A) < \eta - Q(A)$$

$$Q(\cup_k A_k) - Q(A) < \eta - Q(A) \text{ by additivity}$$

$$Q(\cup_k A_k) < \eta$$

Let $E_n = \bigcup_{k=1}^n A_k$, and $E = \bigcup_k A_k$. From the above, $Q(E) < \eta$. Since $E_n \uparrow E$, for all n

$$Q(E_n) \le Q(E) < \eta$$

By the closure properties of a field, for all n,

$$E_n \in \{A \in \mathcal{A}_0 : Q(A) < \eta\}.$$

Thus for all n

$$P(E_n) \le \sup\{P(A) : A \in \mathcal{A}_0 \text{ and } Q(A) < \eta\}$$

The right-hand side does not depend on n, so passing to the limit

$$\lim_{n\to\infty} P(E_n) \le \sup\{P(A) : A \in \mathcal{A}_0 \text{ and } Q(A) < \eta\}$$

By Monotone Sequential Continuity from Below,

$$\lim_{n \to \infty} P(E_n) = P(E) = P(\cup_k A_k)$$

and since $A \subset \bigcup_k A_k$

$$P(A) \le P(\cup_k A_k) \le \sup\{P(A) : A \in \mathcal{A}_0 \text{ and } Q(A) < \eta\}$$

¹ The original theorem says "there exists a finite or infinite disjoint sequence..." However, since the empty set is an element of any semiring, then in the finite case with m sets, define $A_n = \emptyset$ for n > m.

Since A is arbitrary in \mathcal{A} as long as $Q(A) < \eta$, then for all $A \in \mathcal{A}$ with $Q(A) < \eta$

$$0 \le P(A) \le \sup\{P(A) : A \in \mathcal{A}_0 \text{ and } Q(A) < \eta\}$$

Thus

$$0 \le \sup\{P(A) : A \in \mathcal{A} \text{ and } Q(A) < \eta\} \le \sup\{P(A) : A \in \mathcal{A}_0 \text{ and } Q(A) < \eta\}$$

Since η is arbitrary, take the limit as $\eta \to 0$,

$$0 \leq \lim_{\eta \to 0} \sup \{P(A) : A \in \mathcal{A} \text{ and } Q(A) < \eta\} \leq \lim_{\eta \to 0} \sup \{P(A) : A \in \mathcal{A}_0 \text{ and } Q(A) < \eta\}$$

By the assumption of condition 2', the right-hand limit is 0. Thus by squeezing,

$$\lim_{n\to 0} \sup \{ P(A) : A \in \mathcal{A} \text{ and } Q(A) < \eta \} = 0$$

and condition 2 holds. Hence condition 2' implies condition 2. Since implications in both directions have been proved, conditions 2 and 2' are equivalent. \Box

Part 2

Specialize to $(\Omega, \mathcal{A}, Q) = ([0, 1], \text{Borels, Lebesgue})$ to deduce that a nondecreasing, right-continuous function F on [0, 1] with F(0) = 0 which is absolutely continuous in the classical sense that

for each $\epsilon > 0$, there exists an $\eta_{\epsilon} > 0$ such that for every choice of $n \geq 1$ and $a_i < b_i$, $1 \leq i \leq n$, for which $\sum_{i=1}^{n} (b_i - a_i) < \eta_{\epsilon}$, one has $\sum_{i=1}^{n} (F(b_i) - F(a_i)) < \epsilon$ necessarily is of the form $F(t) = \int_0^t X(s) ds$, $0 \leq t \leq 1$, for some $X \geq 0$.

Proof. First a few definitions. Define \mathscr{B}_0 to be the Borel sets on (0,1]. Define \mathscr{B} to be the Borel sets on [0,1]. Define \mathscr{B}^1 to be the Borel sets on \mathscr{R}^1 , the real line.

The proof is broken into two cases.

Case 1: F(1) = 0. Then since F is nondecreasing, F(t) = 0 for $0 \le t \le 1$. Hence a suitable function X(s) is the constant function 0. For $0 \le t \le 1$,

$$0 = F(t) = \int_0^t X(s)ds = \int_0^t 0ds = 0$$

Case 2: $F(1) \neq 0$. Since F is nondecreasing, F(1) > 0. Note by the absolute continuity of F, it follows that F is uniformly continuous (take n = 1 in $\sum_{i=1}^{n} (b_i - a_i) < \eta_{\epsilon}$ and $\sum_{i=1}^{n} (F(b_i) - F(a_i)) < \epsilon$). Since [0,1] is an interval, and F is uniformly continuous on that

interval, by a result from real analysis, F is bounded on that interval. Hence F(1) is finite. Define

$$G(t) = \begin{cases} 0 & \text{for } t < 0 \\ F(t)/F(1) & \text{for } t \in [0, 1] \\ 1 & \text{for } t > 1 \end{cases}$$

Shortly, it is shown that G is a d.f. Note $\lim_{n\to\infty} G(t) = 0$ and $\lim_{n\to\infty} G(t) = 1$. Also, G is right-continuous on [0,1) because it is a constant (1/F(1)) times F. Clearly G is right-continuous on $(-\infty,0)$. And since G(1) = F(1)/F(1) = 1, it follows that G is right-continuous on $[1,\infty)$. Finally, since F(1) is a positive constant, F(t)/F(1) is nondecreasing because F is nondecreasing. Therefore G is nondecreasing. Thus, G is a d.f.

By Chung Theorem 2.2.4 let μ be the p.m. induced by G on $(\mathcal{R}^1, \mathcal{B}^1)$. Note $0 \le G(0-) \le G(0) = 0$. Thus $0 = G(0-) = \mu((-\infty,0))$. Moreover, $\mu((1,\infty)) = 1 - \mu((-\infty,1]) = 1 - G(1) = 0$. Hence $\mu([0,1]) = 1$.

Define a set function P to be the restriction of μ on \mathscr{B} . This is valid since $\mathscr{B} \subset \mathscr{B}^1$. Shortly, it is shown that P is a p.m. As shown above P([0,1]) = 1. For any $A \in \mathscr{B}$, it is the case that $A \subset [0,1]$. Thus $0 \leq P(A) \leq 1$. Finally, let A_1, A_2, \cdots be disjoint sets in \mathscr{B} . Then since $\bigcup_{i=1}^{\infty} A_i \in \mathscr{B} \subset \mathscr{B}^1$,

$$P(\bigcup_{i=1}^{\infty} A_i) = \mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Therefore, P is a p.m. on $([0,1], \mathcal{B})$.

Let \mathcal{A}'_0 be the class of finite unions of disjoint intervals (a, b] contained in [0, 1]. By **Chung Example 2.2.2**, \mathcal{A}'_0 is a field on (0, 1] and generates \mathcal{B}_0 . However, \mathcal{A}'_0 is not a field on [0, 1] (because [0, 1] is not an element of \mathcal{A}'_0). The next task is to describe a field on [0, 1] that generates the Borel sets on [0, 1].

Let \mathcal{A}_0 be the class of sets of \mathcal{A}'_0 possibly unioned with $\{0\}$. Hence $A \in \mathcal{A}_0$ can be written as

$$A = A' \quad \text{or} \quad A = \{0\} \cup A'$$

where $A' \in \mathcal{A}'_0$ and

$$A' = \bigcup_{i=1}^{n} (a_i, b_i]$$

with $0 \le a_1 < b_1 < a_2 < b_2 < \dots < a_n < b_n \le 1$ and $n \ge 0$.

Notice that (using the two possible A definitions above)

$$A^{c} = \{0\} \cup (0, a_{1}] \cup (\bigcup_{i=1}^{n-1} (b_{i}, a_{i+1}]) \cup (b_{n}, 1] \quad \text{or} \quad A^{c} = (0, a_{1}] \cup (\bigcup_{i=1}^{n-1} (b_{i}, a_{i+1}]) \cup (b_{n}, 1],$$

respectively. Hence $A^c \in \mathcal{A}_0$. Next, suppose $B_1, B_2 \in \mathcal{A}_0$. Case 1: $\{0\}$ is not a subset of both B_1 and B_2 . Then $B_1 \cap B_2 \in \mathcal{A}'_0$ and hence $B_1 \cap B_2 \in \mathcal{A}_0$. Case 2: $\{0\}$ is a subset of

both B_1 and B_2 . Then $B_1 \cap (B_2 \setminus \{0\}) \in \mathcal{A}'_0$ by case 1, and

$$(B_1 \cap (B_2 \setminus \{0\})) \cup \{0\} = B_1 \cap B_2 \in \mathcal{A}_0$$

by definition of \mathcal{A}_0 . Hence \mathcal{A}_0 is a field on [0,1].

From Chung Example 2.2.2, the Borel sets on [0,1] are generated by the Borel sets on (0,1] and the singleton $\{0\}$. In math,

$$\mathscr{B} = \sigma(\mathscr{B}_0, \{0\})$$

Let $A \in \mathcal{A}_0$. Then A = A' or $A = A' \cup \{0\}$ where $A' \in \mathcal{A}'_0$. Note $A' \in \sigma(\mathcal{A}'_0) = \mathscr{B}_0$. Therefore, $A' \in \mathscr{B}$. Moreover, $\{0\} \in \mathscr{B}$. Hence by closure of σ -fields, A is an element of \mathscr{B} . Since A was arbitrary, $\mathcal{A}_0 \subset \mathscr{B}$. Therefore $\sigma(\mathcal{A}_0) \subset \mathscr{B}$.

Next, let \mathscr{B}^* be the trace of $\sigma(\mathcal{A}_0)$ onto (0,1]. In math

$$\mathscr{B}^* = \{ A \cap (0,1] : A \in \sigma(\mathcal{A}_0) \}$$

From class notes, 550.620, slide 38, \mathscr{B}^* is a σ -field on (0,1]. Since $(0,1] \in \sigma(\mathcal{A}_0)$, it follows that $\mathscr{B}^* \subset \sigma(\mathcal{A}_0)$ by closure of σ -fields. For $A' \in \mathcal{A}'_0$, it is the case that $A' \subset (0,1]$ and $A' \in \mathcal{A}_0 \subset \sigma(\mathcal{A}_0)$. Thus $A' \in \mathscr{B}^*$. Since A' is arbitrary, $\mathcal{A}'_0 \subset \mathscr{B}^*$. Hence $\mathscr{B}_0 = \sigma(\mathcal{A}'_0) \subset \mathscr{B}^* \subset \sigma(\mathcal{A}_0)$. Finally, since $\{0\} \in \mathcal{A}_0$, it follows that $\{0\} \in \sigma(\mathcal{A}_0)$. The previous two facts show that $\mathscr{B} = \sigma(\mathscr{B}_0, \{0\}) \subset \sigma(\mathcal{A}_0)$. Since containment has been shown in both directions, $\mathscr{B} = \sigma(\mathcal{A}_0)$. In words, the field \mathcal{A}_0 on [0,1] generates the σ -field of the Borel sets on [0,1].

Note $Q(\{0\}) = 0$. Hence for $A \in \mathcal{A}_0$, where A = A' or $A = A' \cup \{0\}$ for some $A' \in \mathcal{A}'_0$, it follows that Q(A) = Q(A') or $Q(A') + Q(\{0\}) = Q(A')$. Then by definition of \mathcal{A}_0 ,

$${A \in \mathcal{A}_0 : Q(A) < \eta} = {A \in \mathcal{A}'_0 : Q(A) < \eta}$$

Note $P(\{0\}) = \mu(\{0\}) = \mu((-\infty, 0]) - \mu((-\infty, 0)) = G(0) - G(0-) = 0$. Hence for $A \in \mathcal{A}_0$, where A = A' or $A = A' \cup \{0\}$ for some $A' \in \mathcal{A}'_0$, it follows that P(A) = P(A') or $P(A') + P(\{0\}) = P(A')$. Therefore, by the two facts above about P and Q, it is the case that

 $\lim_{n\to 0} \sup\{P(A): A\in \mathcal{A}_0 \text{ and } Q(A)<\eta\}$

$$= \lim_{\eta \to 0} \sup \{ P(A) : A \in \mathcal{A}'_0 \text{ and } Q(A) < \eta \}$$

$$= \lim_{n \to 0} \sup \{ P(\bigcup_{i=1}^{n} (a_i, b_i]) : 0 \le a_1 < b_1 < \dots < a_n < b_n \le 1, n \ge 0, Q(\bigcup_{i=1}^{n} (a_i, b_i]) < \eta \}$$

$$= \lim_{\eta \to 0} \sup \{ \sum_{i=1}^{n} \mu((a_i, b_i)) : 0 \le a_1 < b_1 < \dots < a_n < b_n \le 1, n \ge 0, \sum_{i=1}^{n} Q((a_i, b_i)) < \eta \}$$

$$= \lim_{\eta \to 0} \sup \{ \sum_{i=1}^{n} G(b_i) - G(a_i) : 0 \le a_1 < b_1 < \dots < a_n < b_n \le 1, n \ge 0, \sum_{i=1}^{n} b_i - a_i < \eta \}$$

$$= \lim_{\eta \to 0} \sup \{ \frac{1}{F(1)} \sum_{i=1}^{n} F(b_i) - F(a_i) : 0 \le a_1 < b_1 < \dots < a_n < b_n \le 1, n \ge 0, \sum_{i=1}^{n} b_i - a_i < \eta \}$$

Let $\epsilon > 0$. Then by the absolute continuity of F, since $\epsilon F(1) > 0$, there exists a $\delta > 0$, such that if $\sum_{i=1}^{n} b_i - a_i < \delta$, then $\sum_{i=1}^{n} F(b_i) - F(a_i) < \epsilon F(1)$. Or in other words,

$$\frac{1}{F(1)}\sum_{i=1}^{n}F(b_i)-F(a_i)<\epsilon.$$

Notice ϵ is a bound that does not depend on the choice of the a_i 's and the b_i 's. Therefore, as $\delta \to 0$, i.e. as the bound on $\sum_{i=1}^{n} b_i - a_i$ tends to 0, it is the case that

$$\frac{1}{F(1)} \sum_{i=1}^{n} F(b_i) - F(a_i) \to 0$$

uniformly in the choice of $0 \le a_1 < b_1 < \cdots < a_n < b_n \le 1$ and $n \ge 0$. Hence

$$\lim_{n\to 0} \sup \{ P(A) : A \in \mathcal{A}_0 \text{ and } Q(A) < \eta \}$$

$$= \lim_{\eta \to 0} \sup \{ \frac{1}{F(1)} \sum_{i=1}^{n} F(b_i) - F(a_i) : 0 \le a_1 < b_1 < \dots < a_n < b_n \le 1 \text{ and } \sum_{i=1}^{n} b_i - a_i < \eta \}$$

$$= 0$$

and condition 2' holds. By the first part of this homework, condition 2 holds. Thus by the Little Radon-Nykodym theorem, there exists $X \geq 0$ such that $P(A) = \int_A X dQ$ for all $A \in \mathcal{B}$. In particular, take A = [0, t], then

$$F(t)/F(1) = G(t) = \mu((-\infty, t]) = \mu([0, t]) = P([0, t]) = P(A) = \int_A X dQ = \int_0^t X(s) ds$$

Hence there exists a function, F(1)X, such that

$$F(t) = \int_0^t F(1)X(s)ds$$

for $0 \le t \le 1$ Furthermore, since F(1) > 0, $F(1)X \ge 0$.