Functions on Euclidean Space

Carl Schader

Contents

1	Noı	rm and Inner Product
	1.1	Euclidean n-space $\mathbf{R^n}$
	1.2	Vectors
		1.2.1 Properties of Vectors
	1.3	Inner Product
		1.3.1 Inner Product Properties
	1.4	Notation Remarks

1 Norm and Inner Product

1.1 Euclidean n-space Rⁿ

 $\mathbf{R^n}$ is the set of all vectors or n-tuples

$$\vec{x} = \langle x_1, ..., x_n \rangle = \begin{bmatrix} x_1 \\ ... \\ x_n \end{bmatrix}$$

where x_i is a 1-tuple in $\mathbf{R} = \mathbf{R}$.

1.2 Vectors

Addition of vectors:

$$\vec{x} + \vec{y} = \langle x_1 + y_1, ..., x_n + y_n \rangle = \begin{bmatrix} x_1 + y_1 \\ ... \\ x_n + y_n \end{bmatrix}$$

Scalar multiple of a vector:

$$a\vec{x} = \langle ax_1, ..., ax_n \rangle = \begin{bmatrix} ax_1 \\ ... \\ ax_n \end{bmatrix}$$

Norm (magnitude) of a vector:

$$\|\vec{x}\| = \sqrt{x_1^2 + \dots + x_n^2}$$

1.2.1 Properties of Vectors

- 1. $\|\vec{x}\| \ge 0$, and $\|\vec{x}\| = 0$ if and only if $\vec{x} = \vec{0}$.
- 2. $|\sum_{i=1}^n x_i y_i| \le ||\vec{x}|| \cdot ||\vec{y}||$; equality holds if and only if \vec{x} and \vec{y} are linearly dependent, meaning $\vec{x} = \lambda \vec{y}$. (The value of the inner/dot product is \le the product of the magnitudes.)
- 3. $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$. (Triangle Inequality)
- 4. $||a\vec{x}|| = |a| \cdot ||\vec{x}||$.

1.3 Inner Product

$$\langle \vec{x}, \vec{y} \rangle = \vec{x} \bullet \vec{y} = \sum_{i=1}^{n} x_i y_i = \begin{bmatrix} x_i & \dots & x_n \end{bmatrix} \begin{bmatrix} y_i \\ \dots \\ y_n \end{bmatrix}$$

1.3.1 Inner Product Properties

1.

$$\vec{x} \bullet \vec{y} = \vec{y} \bullet \vec{x}$$
 (symmetry).

2.

$$(a\vec{x}) \bullet \vec{y} = \vec{x} \bullet (a\vec{y}) = a (\vec{x} \bullet \vec{y})$$
 (bilinearity).
$$(\vec{x_1} + \vec{x_2}) \bullet \vec{y} = (\vec{x_1} \bullet \vec{y}) + (\vec{x_2} \bullet \vec{y})$$
 (distributive).

3. $\vec{x} \bullet \vec{x} \ge 0$, and $\vec{x} \bullet \vec{x} = 0$ if and only if $\vec{x} = \vec{0}$ (positive definiteness).

4.

$$\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}}.$$
$$\|\vec{x}\|^2 = \vec{x} \cdot \vec{x}.$$

5.

$$\vec{x} \bullet \vec{y} = \frac{\|\vec{x} + \vec{y}\|^2 - \|\vec{x} - \vec{y}\|^2}{4}$$
 (polarization identity).

1.4 Notation Remarks

- The zero vector $\vec{0} = \langle 0, ..., 0 \rangle$.
- \bullet The usual basis of $\mathbf{R^n}$ is $\vec{e_1},...,\vec{e_n}$ where

$$e_i = \langle 0, ..., 1, ..., 0 \rangle$$

and the 1 is at the ith position in e_i .