Circular Motion

Principles for Success

- Treat everyone with respect.
- Learn by doing and questioning.
- Everything should make sense.

Meet Your Group

- Introduce yourself!
- With your group, discuss
 - What does it mean to interact professionally?
 - Come up with an example of someone interacting unprofessionally in class
 - Who gets to decide if something is unprofessional?
 - What can you do if someone does something unprofessional?

Meet Your Group

- What does it mean to interact professionally?
 - Respect others
 - Ideas
 - Background don't pre-judge
 - Sensitivities
 - Keep discussions focused on the task
 - Understand the impact of your actions
- Examples of unprofessional behavior
 - Distracting zoom backgrounds and filters
 - Off-topic discussion in zoom chat
 - Not respecting others' ideas
 - Not following the Guidelines for Conduct
- Who gets to decide if something is unprofessional?
 - We collectively get to decide what is unprofessional
 - How unprofessional something is can depend on things like context and frequency
 - Keep in mind the difference between intentions and impact
- What can you do if someone does something unprofessional?
 - Let them know (if you're comfortable)
 - Let an instructor, TA, or LA know
 - Submit a bias incident report with the university
 - <u>https://diversity.oregonstate.edu/bias-incident-response</u>

Activity 1-1 – Uniform Circular Motion

- An object that is moving with **uniform circular motion** follows a path that is circular while moving with a speed that is constant. Draw a motion diagram for such an object that includes at least five different points. Recall that your motion diagram should include, at each point: a representation of the object, a position vector, a velocity vector, and an acceleration vector.
- Make a table with six columns
 - In the first (left-most) column, make a list of the following physical quantities of a particle moving around a circle at constant speed: (translational) position, (translational) velocity, (translational) acceleration, mass, net force, (translational) kinetic energy, and (translational) momentum.
 - In the second column indicate if the quantity is a scalar or a vector.
 - In the third column indicate if the quantity is constant or not constant.
 - In the fourth column write the units for the quantity.
 - In the fifth column write a symbolic definition of the quantity.
 - In the sixth column, if the quantity is a vector, then write what is known about its direction.

Activity 1-2 – The Coin on the Disc

- A small coin (mass m) is placed on the edge of a disc of radius R that is rotating so that the speed of the coin is a constant v. The coefficient of static friction between the coin and the disc is μ_s .
 - Understand and Plan: Draw a free-body diagram for the coin.
 - Solve the Problem: Find the force of static friction on the coin.
 - Make Sense of Your Solution: Use special-case analysis to decide whether or not your answer makes sense.

Activity 1-3 – The Merry-Go-Round

- You are riding a merry-go-round with a wild reputation. Below is your angular position *vs.* time.
- Describe your experience on the merry-go-round using words, equations, and graphs.

Note that you don't step off where you started!

Activity 1-4 – Swing in a Circle

- A ball on a string (mass *m*) is swung so that it moves in a vertical circle of radius *r*. The speed *v* of the ball is the same at the top of the circle and at the bottom of the circle.
 - A. Draw free-body diagrams for the ball at the top and bottom.
 - B. At the top, is the magnitude of the tension *greater than, less than,* or *equal to* the magnitude of the gravitational force on the ball? Explain your reasoning.
 - C. At the bottom, is the magnitude of the tension *greater than*, *less than*, or *equal to* the magnitude of the gravitational force on the ball? Explain your reasoning.
 - D. Find an expression for the tension in the string at the bottom.