Раздел 5. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Системы линейных уравнений

Основные понятия

Системой линейных алгебраических уравнений, содержащей m уравнений и n неизвестных, называется система вида

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{cases}$$

где числа a_{ij} , $i=\overline{1,m}$, $j=\overline{1,n}$ называются коэффициентами системы, числа b_i – свободными членами. Подлежат нахождению числа x_n .

Такую систему удобно записывать в компактной *матричной форме* $A \cdot X = B$. Здесь A — матрица коэффициентов системы, называемая *основной матрицей*:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},$$

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 — вектор-столбец из неизвестных x_j , $B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$ — вектор-столбец из свободных

членов b_i .

Pасширенной матрицей системы называется матрица \overline{A} системы, дополненная столбцом свободных членов

$$\overline{A} = \begin{pmatrix} a_{11} & a_{12} \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} \dots & a_{2n} & b_2 \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} \cdots & a_{nn} & b_m \end{pmatrix}.$$

Решением системы называется n значений неизвестных $x_1 = c_1$, $x_2 = c_2$, ..., $x_n = c_n$, при подстановке которых все уравнения системы обращаются в верные равенства.

Всякое решение системы можно записать в виде матрицы-столбца $C = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$.

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет ни одного решения.

Совместная система называется *определенной*, если она имеет единственное решение, и *неопределенной*, если она имеет более одного решения. В последнем случае каждое ее решение называется *частным решением* системы. Совокупность всех частных решений называется *общим решением*.

Решить систему – это значит выяснить, совместна она или не совместна. Если система совместна, то найти ее общее решение.

Две системы называются эквивалентными (равносильными), если они имеют одно и то же общее решение. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой, и наоборот.

Эквивалентные системы получаются, в частности, при элементарных преобразованиях системы при условии, что преобразования выполняются лишь над строками матрицы.

Система линейных уравнений называется однородной, если все свободные члены равны нулю:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0. \end{cases}$$

Однородная система всегда совместна, так как $x_1 = x_2 = ... = x_n = 0$ является решением системы. Это решение называется *нулевым* или *тривиальным*.

Решение систем линейных уравнений

Пусть дана произвольная система m линейных уравнений с n неизвестными

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Теорема 1 (Кронекера-Капелли). Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы равен рангу основной матрицы.

Теорема 2. Если ранг совместной системы равен числу неизвестных, то система имеет единственное решение.

Теорема 3. Если ранг совместной системы меньше числа неизвестных, то система имеет бесконечное множество решений.

Пример. Исследовать на совместность систему
$$\begin{cases} x+y=1, \\ 3x+3y=-2. \end{cases}$$
 Решение. $A = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}, r(A) = 1; \ \overline{A} = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 3 & -2 \end{pmatrix}, r(\overline{A}) = 2, \qquad \left(\Delta = \begin{vmatrix} 1 & 1 \\ 3 & -2 \end{vmatrix} \neq 0\right).$

Таким образом, $r(A) \neq r(\overline{A})$, следовательно, система несовместна.

<u>Решение невырожденных систем линейных уравнений. Формулы Крамера</u> Пусть дана система n линейных уравнений с n неизвестными

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n, \end{cases}$$

или в матричной форме А·Х=В.

Основная матрица А такой системы – квадратная. Определитель этой матрицы называется *определителем системы*. Если определитель системы отличен от нуля, то система называется *невырожденной*.

Найдем решение данной системы уравнений в случае $\Delta \neq 0$. умножив обе части уравнения $A \cdot X = B$ слева на матрицу A^{-1} , получим $A^{-1} \cdot A \cdot X = A^{-1} \cdot B$. Поскольку $A^{-1} \cdot A = E$ и $E \cdot X = X$, то $X = A^{-1} \cdot B$. Данный способ решения системы называют *матричным*.

Из матричного способа вытекают формулы Крамера $x_i = \frac{\Delta_i}{\Delta}, i = \overline{1,n}$, где Δ – определитель основной матрицы системы, а Δ_i – определитель, полученный из определителя Δ путем замены i-го столбца коэффициентов столбцом из свободных членов.

$$\Pi$$
 р и м е р. Решить систему $\begin{cases} 2x_1-x_2=0,\\ x_1+3x_2=7. \end{cases}$ Решение. $\Delta=\begin{vmatrix} 2 & -1\\ 1 & 3 \end{vmatrix}=7$, $7\neq 0$, $\Delta_1=\begin{vmatrix} 0 & -1\\ 7 & 3 \end{vmatrix}=7$, $\Delta_2=\begin{vmatrix} 2 & 0\\ 1 & 7 \end{vmatrix}=14$. Значит, $x_I=\frac{7}{7}=1$, $x_2=\frac{14}{7}=2$.

Решение систем линейных уравнений методом Гаусса

Метод Гаусса состоит в последовательном исключении неизвестных. Пусть дана система уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к *ступенчатому* (в частности, *треугольному*) виду.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1k}x_k + \dots + a_{1n}x_n = b_1, \\ a_{22}x_2 + \dots + a_{2k}x_k + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{kk}x_k + \dots + a_{kn}x_n = b_k. \end{cases}$$

где $k \le n$, $a_{ii} \ne 0$, $i = \overline{1,k}$. Коэффициенты a_{ii} называются *главными* элементами системы.

На втором этапе (обратный ход) идет последовательное определение неизвестных из этой ступенчатой системы.

Замечания:

- 1. Если ступенчатая система оказывается треугольной, т.е. k=n, то исходная система имеет единственное решение. Из последнего уравнения находим x_n , из предпоследнего уравнения находим x_{n-1} , далее поднимаясь по системе вверх, найдем все остальные неизвестные.
- 2. На практике удобнее работать с расширенной матрицей системы, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент a_{II} был равен 1(уравнения переставить местами, либо разделить на $a_{II} \neq 1$).

Пример. Решить систему методом Гаусса
$$\begin{cases} 2x_1-x_2+3x_3-5x_4=1,\\ x_1-x_2-5x_3=2,\\ 3x_1-2x_2-2x_3-5x_4=3,\\ 7x_1-5x_2-9x_3-10x_4=8. \end{cases}$$

Решение. В результате элементарных преобразований над расширенной матрицей системы

исходная система свелась к ступенчатой: $\begin{cases} x_1 - x_2 - 5x_3 = 2, \\ x_2 + 13x_3 - 5x_4 = -3 \end{cases}$

Поэтому общее решение системы: $x_2 = 5x_4 - 13x_3 - 3$; $x_1 = 5x_4 - 8x_3 - 1$.

Если положить, например, $x_3 = x_4 = 0$, то найдем одно из частных решений этой системы $x_1 = -1$, $x_2 = -3$, $x_3 = 0$, $x_4 = 0$.

Системы однородных линейных уравнений

Пусть дана система линейных однородных уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0. \end{cases}$$

Очевидно, что однородная система всегда совместна, она имеет нулевое (тривиальное) решение.

Теорема 4. Для того, чтобы система однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы ранг ее основной матрицы был меньше числа неизвестных, т.е. r < n.

Теорема 5. Для того, чтобы однородная система n линейных уравнений с nнеизвестными имела ненулевое решение, необходимо и достаточно, определитель ее основной матрицы был равен нулю, т.е. Δ =0.

Если система имеет ненулевые решения, то Δ =0.

$$\Pi$$
 р и м е р. Решить систему
$$\begin{cases} x_1 - 2x_2 + 4x_3 = 0, \\ 2x_1 - 3x_2 + 5x_3 = 0. \end{cases}$$

Решение. $A = \begin{pmatrix} 1 & -2 & 4 \\ 2 & -3 & 5 \end{pmatrix}$, $r(A) = 2 \quad \left(\Delta = \begin{vmatrix} 1 & -2 \\ 2 & -3 \end{vmatrix} = 1, 1 \neq 0\right)$, n = 3. Так как r < n, то

система имеет бесконечное множество решен

$$\begin{cases} x_1 - 2x_2 = -4x_3, \\ 2x_1 - 3x_2 = -5x_3 \end{cases}$$

$$\begin{vmatrix} 2x_1 - 3x_2 = -5x_3. \\ \Delta_1 = \begin{vmatrix} -4x_3 & -2 \\ -5x_3 & -3 \end{vmatrix} = 2x_3, \quad \Delta_2 = \begin{vmatrix} 1 & -4x_3 \\ 2 & -5x_3 \end{vmatrix} = 3x_3.$$
 Стало быть, $x_1 = \frac{\Delta_1}{\Delta} = 2x_3, \quad x_2 = \frac{\Delta_2}{\Delta} = 3x_3$ —

общее решение.

Положив $x_3=0$, получим одно частное решение: $x_1=0$, $x_2=0$, $x_3=0$. Положив $x_3 = 1$, получим второе частное решение: $x_1 = 2$, $x_2 = 3$, $x_3 = 1$ и т.д.

Вопросы для контроля

- ✓ Что такое система линейных алгебраических уравнений?
- ✓ Поясните следующие понятия: коэффициент, свободный член, основная и расширенная матрицы.
- ✓ Какими бывают системы линейных уравнений? Сформулируйте теорему Кронкера-Капелли (о совместности системы линейных уравнений).
- ✓ Перечислите и поясните методы решения систем линейных уравнений.