Machine Learning para Inteligencia Artificial

Aprendizaje estadístico

Universidad ORT Uruguay

2 de Abril, 2025

Ingredientes: Atributos y Etiquetas

Problema: Clasificación binaria

$$\mathcal{Y} = \text{Espacio de etiquetas } = \{\text{Cat}, \text{Dog}\}, \quad y = \begin{cases} \text{Cat} \\ \text{Dog} \end{cases}$$

 $\mathcal{X} = \mathsf{Espacio} \mathsf{de} \mathsf{atributos} \subset \mathbb{R}^D$

Espacio de etiquetas \mathcal{Y}

Espacio de atributos \mathcal{X}

Ingredientes: Datos

Datos: conjunto de instancias (muestra) de perros y gatos

N=12 observaciones etiquetadas de la forma $(x,y) \in \mathcal{X} \times \mathcal{Y}$

Los atributos de cada instancia son un vector

$$\mathbf{x} = (x^{(1)}, x^{(2)}) = (\text{nose size}, \text{ear shape}) \in \mathbb{R}^D, \ D = 2$$

En este caso están representados en forma tabular

$$X = \text{ matriz de diseño } \in \mathbb{R}^{(N,D)}$$

$$\mathbf{y} = \text{vector de etiquetas } \in \mathcal{Y}^N$$

Ingredientes: Distribución

Datos: $T = \{(x_i, y_i)\}_{i=1}^N$ muestra i.i.d. de distribución desconocida \mathcal{D} en $\mathcal{X} \times \mathcal{Y}$

 \blacksquare \mathcal{D} representa la distribución conjunta del par $(x,y) \in \mathcal{X} \times \mathcal{Y}$

Ingredientes: Distribución

La relación estocástica entre x e y viene dada por las condicionales

Ingredientes: Hipótesis o Modelo

Aprender: inferir una hipótesis/modelo h a partir de T en \mathcal{H} espacio de hipótesis.

Ingredientes: Sesgo Inductivo

 \blacksquare \mathcal{H} se llama sesgo inductivo. Por ejemplo:

$\mathcal{H} = \mathbf{Poligonales}$

- Una hipótesis es una función $h: \mathcal{X} \to \mathcal{Y}$ perteneciente a \mathcal{H}
- Suele ser de la forma $h(x) = \begin{cases} \mathsf{Cat} & \mathsf{si}\ p(\mathsf{Cat}\mid x) \geq 1/2 \\ \mathsf{Dog} & \mathsf{si}\ p(\mathsf{Cat}\mid x) < 1/2 \end{cases}$

Ingredientes: Predicción

Error de generalización

Un modelo debe desempeñarse bien en datos no vistos (validación).

Datos nuevos

Ingredientes: Función de Pérdida (Loss) y Costo

■ Pérdida de una predicción $\hat{y} = h(x)$ con respecto a la *verdad y*:

$$Loss(Predicción, Verdad) = L(\widehat{y}, y)$$

Ejemplo (0-1 loss):
$$L(\widehat{y}, y) = \text{Loss}(\widehat{y}, y) = \mathbb{1}_{\{\widehat{y} \neq y\}} = \begin{cases} 1 & \text{si } \widehat{y} \neq y \\ 0 & \text{si } \widehat{y} = y \end{cases}$$

Costo (o riesgo, o error) verdadero de una hipótesis h respecto a \mathcal{D} :

$$J_{\mathcal{D}}(h) = \mathsf{Cost}_{\mathcal{D}}(h) = \mathop{m{\mathcal{E}}}_{(m{x},y)\sim\mathcal{D}} \left[\; \mathsf{Loss} \left(h(m{x}), y
ight)
ight]$$

Ejemplo (0-1 loss): $J_{\mathcal{D}}(h)$ es igual a $\mathsf{Prob}_{(x,y)\sim\mathcal{D}}\left[h(x) \neq y\right]$

Ingredientes: Minimización del costo verdadero

■ **Objetivo**: Idealmente construir la hipótesis que minimiza el costo verdadero

$$h_{ ext{opt}} = rg\min_{h \in \mathcal{H}} J_{\mathcal{D}}(h)$$

 \blacksquare Si conociéramos $\mathcal D$ estaríamos frente a un problema de optimización clásico.

Ejemplo: si conociéramos ${\mathcal D}$

- $L(\widehat{y},y) = \mathbb{1}_{\{\widehat{y}\neq y\}}$ la 0 1 loss
- $lacksquare \mathcal{H} = \{h_{ heta}: heta \in [0,1]\} ext{ donde } h_{ heta}(x) = egin{cases} ext{azul} & ext{si } x > heta \ ext{rojo} & ext{si } x \leq heta \end{cases}$
- Se puede ver que $J_{\mathcal{D}}(h_{\theta}) = \frac{1}{2}\theta^2 + \frac{1}{2}(1-\theta)^2 = \theta^2 \theta + \frac{1}{2}$

Ejemplo: si conociéramos ${\mathcal D}$

Ingredientes: Minimización del costo empírico

Como NO conocemos \mathcal{D} lo hacemos con la muestra disponible T

■ Costo (o riesgo, o error) empírico de una hipótesis h respecto a T

$$J_T(h) = \mathsf{Cost}_T(h) = \underset{(\mathbf{x}, y) \in T}{\mathbf{E}} \left[\mathsf{Loss} \left(h(\mathbf{x}), y \right) \right] = \frac{1}{|T|} \sum_{(\mathbf{x}, y) \in T} \mathsf{Loss} \left(h(\mathbf{x}), y \right)$$

Minimizar el costo empírico (ERM): encontrar una hipótesis h_T tal que

$$h_T = \operatorname*{arg\,min} \mathsf{Cost}_T(h)$$

Pero si no tenemos cuidado, este enfoque puede conducir a sobreajuste ... más sobre esto en las próximas clases

Ejemplo: como NO conocemos ${\cal D}$

En resumen

Algoritmo de Machine Learning

Representa un procedimiento que a partir de datos genera una hipótesis:

En el ejemplo

Paramétrico vs No paramétrico

 $\begin{cases} \mathsf{Parametros} \colon \theta \in [0,1] \\ \mathsf{Predicción} \colon \mathsf{azul} \ \mathsf{si} \ x > \theta ; \mathsf{rojo} \ \mathsf{si} \ x \leq \theta \end{cases} \begin{cases} \mathsf{Paramétrico} \colon \mathsf{dim} \ \theta \ \mathsf{no} \ \mathsf{depende} \ \mathsf{de} \ \mathsf{N} \\ \mathsf{No} \ \mathsf{paramétrico} \colon \mathsf{dim} \ \theta \ \mathsf{crece} \ \mathsf{con} \ \mathsf{N} \end{cases}$

Bibliografía

■ An introduction to statistical learning with applications in Python. Cap 2.

■ Machine Learning - A First Course for Engineers and Scientists. Cap 2.

■ Machine Learning Refined: Foundations, Algorithms, and Applications. Cap 1.

■ Understanding Machine Learning: From Theory to Algorithms. Cap 2.