EE3019 - Integrated Electronics Tutorial 11

- 1. A Bode diagram depicting the magnitude loop gain, $|T(j\omega)|$, of a feedback amplifier is depicted in Figure 11.1.
 - (a) By inspection, write an expression for $|T(j\omega)|$ and for $\angle T(j\omega)$.
 - (b) Estimate the frequency where $|T(j\omega)|=1$ and determine the phase angle at this frequency.
 - (c) Determine the frequency where the $\angle T(j\omega) = -180^{\circ}$.

[(b) ~86.5 MHz, ~213°; (c) ~33 MHz]

2. The DC open loop of an op amp is 2 x 10^6 and the three dominant poles are 10 kHz, 1 MHz and 100 MHz. The op amp is used as a unity gain inverting amplifier with an input resistance of 100 k Ω . Draw the schematic of the amplifier and determine if the amplifier is stable.

[unstable]

- 3. (a) Draw the circuit schematic of an inverting amplifier with an ideal closed-loop gain of $-R_2/R_1$.
 - (b) Draw the feedback model of your design in part (a).
 - (c) Assuming that the open-loop gain of the op amp is given by

$$a(j\omega) = \frac{a_0}{1+j(\omega/\omega_a)}, \text{ show that the closed loop response is}$$

$$A(j\omega) = \frac{A_0}{1+j(\omega/\omega_A)} \quad \text{where}$$

$$A_0 = \frac{b-1}{b} \frac{1}{1+\frac{1}{a_o b}}$$

$$\omega_A = \omega_a (1+a_0 b)$$
 where $b = \frac{R_1}{R_1 + R_2}$

(d) Interpret your derivations in part(c).