

Presentation and Interaction

https://www.tibco.com/products/tibco-spotfire/learn/demos

The presentation issue

- The issue of **layout** is important due to the limited screen real estate, as well as users' cognitive limitations
- Irrespective of how data may be represented decisions have to be made:
 - how the representation is to be displayed
 - When and how it is to be displayed

 Links to representation and interaction are important

(Spence, 2014)

To help overcome space limitations

- Scrolling
- Overview + detail

Distortion

- Suppression
- Zoom and pan

- Scrolling consists in moving displayed text or graphics on a screen in order to view different parts of them
- an obvious solution when a document is larger than the display area
- A long document can be moved past a "window"
- Often it is not a satisfactory solution

- Scrolling hides most of a document:
 - there is not a view of context as well as detail

7.1 A PROBLEM

Man y of us have found ou is elves with a report that has to be on my leted by a deadline, with the crest if (Fig ure 7.1) that he diming no om table extended to its 12 gueststate, is o wered by piles of payor well as reports, be ooks, clippings and sslides; perhaps with more arranged on the floor and on a couple of chairs. In a creany even be piles on to pof piles. Such a presentation of vital information makesa lot of sense; every hing rele or an is to hand (hopefully!) and, more or ver, it's very visibility a test as a reminder (Bo. 1984, page 2) of what might be relevant any part in larjuncture, possibly trigg oring assituated action (Suchman, 1987). In this environment! can concentrate on creative tasks ratherthan organisation.

Despite the avail ab ility of high-resol utidisplays and po werful work stations I still write most of my reports in this way Why? Because the display area provided by the typ ical workstation is fart oo sma to support, vis bly, all the seo unces that a relevant to my composition.

7.2 THE PRESENTATION PROBLEM

I am not d one in the senseo f havin g too much data to fit o nto a small screen. A very large and expen sive ser one, for example, w ould be needed to display the Lond on Underground map in sufficient detail (Figure 1.1), and i two ulk be diffeult orimp ossible to present, on a no mad display, the complete organisation chart of BBM or KI.

Moreov σ, the recent emergen ω of small and mob lie in formation and communication d or icessu th as PDAs and wearab le displays has add ditional ly id not fit ed ap ressing n ed 6 ra solution to the 'tog much data, too little displays has to little displays has to the 'tog on the different control to the 'tog much data, too little displays has to little displays has to little displays has the control to the 'tog much data, too little displays has the displays have little displays have the displ

7.2.1 Sero lli ng

An o by our solution is to scro ll the data into and out of the visible area. In other words, to provide a neans whereby a long do unent tean be moved past a window until it reaches the required 'page' (figure 7.2). This mechanismis widely used, but cam es with it many penal fies. One relate st other Where am

- or wasit 5.6? All I can do is op erate serol ling mechan isman d look out for thefigureI need, albeit assisted by vari ous cues such ast he page number in dicated in the scrolling mechanism. With a scrolling mechanism most of a do on ment ishi dden from view. I have th es amep rob lem when usin g a micro f lm reader, wi th t he ad dit ion al complication that if I move thet ray to th left, the image no vest oth eright. A simil ar diffi on lty ap pli est o my use of the famo us Lo ndo n 'AtoZ' street di rector y. I'm dri vin g alon g a road t hat go es off th eedg eo f the page, so I d esper at ely need what ever page contains the continuation of that road (and quickly! Even if I get it, I will ty pically have trouble least to the grown and on the tr oub le locati ng t he same road o n the new page. These and othersimilar provision of context. Much of this chapt er, in fact, is concern ed with decid ing h ow to pro vi de context

 Two separate views of detail and of context can be combined in a overview + detail view helps with the focus + context problem

"You are here"

Another example

Detail plus Overview. Miniatures of pages of a pdf document provide useful context while attention is paid to detail of one page (Spence, 2007)

 Distortion offers a way of solving the focus + context problem

 The bifocal display (Spence and Apperley, 1982) uses distortion and is based on a simple metaphor

 Part of an information space can be viewed in detail; a bird's eye view is provided of the remainder

Original videos:

http://www.youtube.com/watch?v=DaF5brrdpJw http://www.youtube.com/watch?v=gNTQaH8MM 98&NR=1

(a) An information space containing documents, emails, e

(b) The same space wrapped around two uprights.

(c) Appearance of the information space when viewed from an appropriate direction

The Bifocal Display allows a large data space to be viewed as a whole, while simultaneously a portion is seen in detail.

The detail is seen in the context of the overview, with continuity across the boundaries, rather than existing in a disjoint window

https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/bifocal-display

Another example

(Tao et al., 2021)

• The use of a "magnifying glass" helps minimize the focus + context problem

 a small region of interest is shown amplified and the context is maintained

Kyrix-S: Authoring Scalable Scatterplot Visualizations of Big Data | IEEE TVCG Example: a small region of interest a context map can be flexibly positioned to provide a magnified view

https://databricks.com/blog/2015/03/19/pantera-big-data-visualization-leverages-the-power-of-the-databricks-cloud.html

Suppression is used in Filtering

Filtering may be done in different ways through the User Interface (sliders, check boxes, ...)

Suppression finds valuable application in the Magic Lens (Stone et al., 1994)

Magic Lens:

- (a) shows a conventional map of an area,
- (b) shows the location of services (gas, water and electricity pipes)
- (c) a (movable) Magic Lens shows services in an area of interest, in context (Spence, 2007)

The magic lens offers another way of solving the focus + context problem

(Tominski et al., 2016)

<u>Interactive Lenses for Visualization: An Extended Survey - Tominski - 2017 - Computer Graphics Forum</u>

A molecular surface of the protein transferase colored by electrostatic potential bound to DNA shown as a schematic. The magic lens window allows a view of the atomic structure bonding to be shown, with the bound ligand structure highlighted as cylinders, thereby providing a view inside the protein (Spence, 2007)

The Magic Lens using Augmented Reality for Data Visualization

L Schwenderling, et al., "Activation modes for gesture-based interaction with a magic lens in AR anatomy visualisation," Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, vol. 11, n. 4, pp. 1243-1250, 2023 https://www.tandfonline.com/doi/full/10.1080/21681163.2022.2157749 15

The Table Lens is method to dynamically explore large amounts of tabular data

- This simple but powerful concept can be generalized
- It is possible to use X and Y distortion

Calendar interface using X and Y distortion (Bederson et al., 2003, 2004)

X-distortion

X and Y -distortion

The Table Lens a is method to dynamically explore large amounts of tabular data

https://ncva.itn.liu.se/education-geovisual-analytics/table-lens?l=en

It allows to sort records, focus "zoom" in on interesting areas in the data (to reveal exact numerical information) using "focus + context"

 Furnas proposed a Degree of Interest (DoI) to determine which data should be represented and presented and which should be suppressed

The Degree of Interest of any item is expressed as a function of:

- A priori importance (API)
- Distance (D) between that item and the item which is currently the user's focus of interest

Example (Spence, 2007) Considering only Distance:

3- The context defined by setting an upper threshold of unity for distance from a focus

1-The organization tree of a company

4- Display that might be associated with the focus and context defined

Context

Focus

N

Example (Spence, 2007)

Considering a priori importance:

Distance to the focus:

A priori importance:

What is shown/suppressed:

Nodal values of Degree of Interest:

Setting a lower limit of 6 for DoI identifies the nodes within the shaded region

10

Example: Part of an engineering drawing

The engineering drawing simplified in the context of a suspected fault (Spence, 2007)

Another example:

- providing both overview and detail on a dynamic citation network is a challenge, and small changes can be drowned out by larger ones
- a degree-of-interest specification by which the user can identify salient changes at the desired scale and importance may help

Two main views: (1) the DoI view and (2) the Network view (a snapshot of the DBLP dataset for the year 2007 reduced according to the defined DoI function).

(Abello et al., 2014)

Panning is the smooth movement of a viewing frame over a 2D image

Zooming is the increasing magnification of a fraction of an image (or *vice versa*)

Zooming is the increasing magnification of a fraction of an image (or *vice versa*)

Semantic zoom- more information is shown (not only the previous one magnified)

https://infovis-wiki.net/wiki/Semantic Zoom

In semantic zoom the meaning conveyed by the new view differs from the conveyed by the previous one

(Spence, 2007)

Visual Information-Seeking Mantra

(Shneiderman, 1996)

"Overview first, zoom and filter, then details-on-demand"

Few, S., The Surest Path to Visual Discovery

https://www.perceptualedge.com/articles/b-eye/path to visual discovery.pdf

Not always... (some domain experts operate under a Details-first model, not Overview-first)

Annotation

Is about creating extra layers of data detail through interactive events suc as hovering or clicking

- This is particularly useful to reveal actual data values or extra detail about a given category or event
- By having the backup of absolute data accuracy through the values, allows using a more creative visual representation
- It's almost like having a "perceptual safety net" (Kirk, 2019)

Annotation

- Can help explain and facilitate the viewing and interpretive experience:
- Titles and introductions
- Captions, labels and units
- User guides
- Attribution
- Data sources

countries?

https://medium.com/@Elijah Meeks/making-annotations-first-class-citizens-in-data-visualization-21db6383d3fe

https://www.spotfire.com/demos

World Energy Survey Analysis

changed over the last 45 years?

This analysis is based upon historical data for energy

from 1965 through 2010. Use the following pages to

explore the data and explore the following questions:

consumption and production in over 65 countries worldwide

✓ How has world energy consumption grown and

✓ How does energy consumption compare across

Color by:

Creating Interaction

Enhancements in technology over the past decade have created incredible opportunities to construct powerful interactive visualizations

The development of an interactive design requires technical capabilities

Technical constraints should be pondered:

- as platform compatibility,
- data loading speed,
- server capacity

• • •

If not correctly tackled the usefulness and UX is compromised

Creating Interaction

- When the complexity of the data is incompatible with a static portrayal, interaction is vital
- Careful consideration of the motivation and intention is still needed;
 specifically: what functional experience is the goal of the design?
 - exploratory,
 - explanatory,
 - or maybe a combined design?
- Different features and functions should be considered:
 - Manipulating variables and parameters (e.g. select, filter, modify, sort, ...)
 - Adjusting the view
 - Annotating details
 - Animation

Manipulating variables and parameters

- The ability to select, filter, exclude, or modify certain variables is a valuable way of letting the user interact with different slices of the data
- Grouping and sorting options are common for extracting new insights
- You can also modify a variable using a slider to see changes across numerous values of the variable
- Brushing —highlighting a set of data marks—is a powerful way of focusing in on a subset view the presented data
- Linking user interactions in one visualization are applied to others; linked and brushing is one of the most powerful interactive techniques for visual data exploration

Manipulating variables and parameters (e.g. select, filter, modify, sort, ...)

Reducing the complexity

 Is important to help users better understand the data (in static or interactive solutions)

Different ways to do it, may be organized:

ItemsFilterAttributes

Aggregate Spatial dataAttributes

• Filtering items

(just ignoring part of the items)

IPMA - Ground percentage of water

Monitoring SNS – SNS

Filtering attributes

ignoring part of the attributes/dimensions:

Easier to understand in spatial data

But also interesting for abstract data

https://www.slicer.org/

Aggregating items and spatial data

Several items are replaced by just one:

Histograms

Boxplots

Clustering ...

Aggregating attribute

Dimensionality reduction techniques:

Try represent a n dimensional dataset using k<n attributes/dimensions

Principal Component Analysis (PCA)

Linear Discriminant Analysis (LDA)

Multi Dimensional Scaling (MDS)

t- Distributed Stochastic Neighbor Embedding (t-SNE)

Etc.

Example:

Only two attributes (CP1 and CP2) represent 97.5% of the original iris dataset in a new space

https://plotly.com/r/pca-visualization

PC1 (92.5%)

versicolor

virginica

Total Explained Variance = 99.48

Method	Main characteristics	Main usage in Visualization
PCA	Non-supervised (does not need a predifined k)	
	Linear (new attributes/dimensions (PC) are linear	Exploring the dataset, particularly when
	combinations of the originals)	struture particularly is important
	PCs are ordered by importance	
	Tries to preserve dataset global structure	
LDA	Supervised (needs predefined k)	
	Linear	Representing well separeted classes, mainly
	Tries to maximize separation among classes	in annotated datasets
MDS	Non-supervised	
	Não Linear	Visualizing pairs of items when only relative
	Tries to preserve distances (or their order)	distances are known
t-SNE	Non-supervised	
	Non-linear (probabilistic approach)	Representing clusters, particularly for very
	Tries to preserve local dataset structure	high n datasets

Main bibliography

- Spence, R., Information Visualization, An Introduction, 3rd ed., Springer, 2014
- Spence, R., *Information Visualization, Design for Interaction*, 2nd ed., Prentice Hall, 2007
- Kirk, A., Data Visualisation: A Handbook for Data Driven Design, SAGE Publications, 2019
- Kirk, A., Data Visualization: a successful design process, Packt Publishing, 2012 *
- Munzner, T., Visualization Analysis and Design, A K Peters/CRC Press, 2014 *
- Ware, C., Information Visualization: Perception for Design, 3rd ed Morgan Kaufmann 2012 *

Explore books with * and other Visualization books available at the playlist: https://learning.oreilly.com/playlists/74bfec5e-4346-48ff-82b4-657fda6922b6

Acknowledgement: The author of these slides is grateful to Professor Robert Spence as he provided the electronic version of his book figures, as well as to colleagues and students who have provided examples

Other bibliography

- Abello, J., S. Hadlak, H. Schumann and H. Schulz, "A Modular Degree-of-Interest Specification for the Visual Analysis of Large Dynamic Networks," *IEEE Transactions on Visualization and Computer Graphics*, vol. 20, no. 3, pp. 337-350, March 2014
 https://ieeexplore.ieee.org/document/6574858/citations?tabFilter=papers#citations
- Cockburn, A., Karlson, A., and Bederson, B., "A Review of Overview + Detail, Zooming, and Focus + Context Interfaces," ACM Comput. Surv., January, 2009.
 https://dl.acm.org/doi/10.1145/1456650.1456652
- Kersten, M. and Murphy G., "Mylar: a degree-of-interest model for IDEs," Proceedings of the 4th international conference on Aspect-oriented software development AOSD'05, pp. 159–168.
 https://dl.acm.org/doi/10.1145/1052898.1052912
- W. Tao, et al, "Kyrix-S: Authoring Scalable Scatterplot Visualizations of Big Data," IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 2, pp. 401-411
 https://ieeexplore.ieee.org/document/9222038
- Tominski, C., Gladisch, S., Kister, U., Dachselt, R. and Schumann, H., "Interactive Lenses for Visualization: An Extended Survey," *Comput. Graph. Forum*, vol. 36, no. 6, pp. 173–200, 2017. https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12871
- Visualization Wiki, http://www.wikiviz.org/wiki/Main Page

Examples: https://www.spotfire.com/demos