ИД32

Классические методы мат. Статистики

Звегинцева Елизавета 8382

Вариант 6

Bap. 6 (83822020)

- 1. В результате эксперимента получены данные, приведенные в таблице 1.
 - а) Построить вариационный ряд, эмпирическую функцию распределения и гистограмму частот.
 - вы выборочные аналоги следующих числовых характеристик:
 - (i) математического ожидания, (ii) дисперсии, (iii) медианы, (iv) асимметрии, (v) эксцесса,

(vi) вероятности $\mathbf{P}(X \in [a, b])$.

- с) В предположении, что исходные наблюдения являются выборкой из распределения Пуассона, построить оценку максимального правдоподобия параметра λ , а также оценку λ по методу моментов. Найти смещение оценок.
- d) Построить асимптотический доверительный интервал уровня значимости α_1 для параметра λ на базе оценки максимального правлополобия.
- е) Используя гистограмму частот, построить критерий значимости χ^2 проверки простой гипотезы согласия с распределением Пуассона с параметром λ_0 . Проверить гипотезу на уровне значимости α_1 . Вычислить наибольшее значение уровня значимости, на котором еще нет оснований отвергнуть данную гипотезу.
- f) Построить критерий значимости χ^2 проверки сложной гипотезы согласия с распределением Пуассона. Проверить гипотезу на уровне значимости α_1 . Вычислить наибольшее значение уровня значимости, на котором еще нет оснований отвергнуть данную гипотезу.
- g) Построить наиболее мощный критерий проверки простой гипотезы пуассоновости с параметром $\lambda = \lambda_0$ при альтернативе пуассоновости с параметром $\lambda = \lambda_1$. Проверить гипотезу на уровне значимости α_1 . Что получится, если поменять местами основную и альтернативную гипотезы?
- h) В пунктах (c)-(f) заменить семейство распределений Пуассона на семейство геометрических распределений

$$\mathbf{P}_{\lambda}(X=k) = \frac{\lambda^k}{(\lambda+1)^{k+1}}, \ k=0,1,\dots.$$

Таблица 1 $\alpha_1 = 0.10$; a = 1.72; b = 3.13; $\lambda_0 = 5.00$; $\lambda_1 = 2.00$.

- 2. В результате эксперимента получены данные, приведенные в таблице 2.
 - а) Построить вариационный ряд, эмпирическую функцию распределения, гистограмму и полигон частот с шагом h.
 - Вычислить выборочные аналоги следующих числовых характеристик:
 - (i) математического ожидания, (ii) дисперсии, (iii) медианы, (iv) асимметрии, (v) эксцесса,
 - (vi) вероятности ${\bf P}(X \in [c,d]).$
 - с) В предположении, что исходные наблюдения являются выборкой из нормального распределения, построить оценку максимального правдоподобия параметров (a, σ^2) и соответствующие оценки по методу моментов. Найти смещение оценок.
 - d) Построить доверительные интервалы уровня значимости α_2 для параметров (a, σ^2) .
 - е) С использованием теоремы Колмогорова построить критерий значимости проверки простой гипотезы согласия с нормальным распределением с параметрами a₀, σ₀². Проверить гипотезу на уровне значимости α₂. Вычислить наибольшее значение уровня значимости, на котором нет оснований отвергнуть данную гипотезу.
 - f) Используя гистограмму частот, построить критерий значимости χ^2 проверки простой гипотезы согласия с нормальным распределением с параметрами (a_0, σ_0^2) . Проверить гипотезу на уровне значимости α_2 . Вычислить наибольшее значение уровня значимости, на котором еще нет оснований отвергнуть данную гипотезу.
 - g) Построить критерий проверки значимости χ^2 сложной гипотезы согласия с нормальным распределением. Проверить гипотезу на уровие значимости α_2 . Вычислить наибольшее значение уровия значимости, на котором еще нет оснований отвергнуть данную гипотезу.
 - h) Построить наиболее мощный критерий проверки простой гипотезы о нормальности с параметром $(a,\sigma^2)=(a_0,\sigma_0^2)$ при альтернативе нормальности с параметром $(a,\sigma^2)=(a_1,\sigma_1^2)$. Проверить гипотезу на уровне значимости α_2 . Что получится, если поменять местами основную и альтернативную гипотезы?
 - і) В пунктах (c)-(g) заменить семейство нормальных распределений на двухпараметрическое семейство распределений Лапласа с плотностями $f(x) = \frac{1}{\sqrt{5}} e^{-\frac{\sqrt{2}}{\sigma}|x-a|}$.

Таблица 2 $\alpha_2 = 0.05; \ c = -3.80; \ d = -2.00; \ h = 0.40; \ a_0 = -3.00; \ \sigma_0 = 1.00; \ a_1 = -6.00; \ \sigma_1 = 1.00.$

 $-4.134\ -3.794\ -2.764\ -4.835\ -2.717\ -1.649\ -3.882\ -3.455\ -2.177\ -4.785\ -2.932\ -3.147\ -2.466\ -2.887\ -1.583\ -4.009$

 $-2.905 \; -3.961 \; -2.193 \; -3.930 \; -3.526 \; -1.251 \; -2.463 \; -4.431 \; -3.445 \; -4.493 \; -3.287 \; -3.096 \; -2.056 \; -2.347 \; -2.113 \; -3.136$

 $-3.775\ -3.906\ -2.491\ -1.949\ -4.483\ -3.212\ -0.087\ -2.367\ -1.950\ -2.691\ -3.571\ -4.174\ -3.401\ -3.760\ -2.639\ -2.690$

-1.435 -4.263

ЗАДАНИЕ 1

а) Построить вариационный ряд, эмпирическую функцию распределения и гистограмму частот.

Вариационный ряд:

Эмпирическая функция распределения:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i \le x\}}$$

plot(ecdf(x1))

$$F(x) = \begin{cases} 0, & x \le 0 \\ 0.18, & x \in (0; 1] \\ 0.4, & x \in (1; 2] \\ 0.7, & x \in (2; 3] \\ 0.86, & x \in (3; 4] \\ 0.96, & x \in (4; 5] \\ 0.98, & x \in (5; 9] \\ 1, & x > 9 \end{cases}$$

Гистограмма частот:

hist(x1, breaks=c(-1:9))

Histogram of x1

- b) Вычислить выборочные аналоги следующих числовых характеристик:
 - (і) Математическое ожидание

mean<-sum(x1)/length(x1)</pre>

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 1.98$$

(іі) Дисперсия

 $var<-sum(x1^2)/length(x1)-mean^2$

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = 2.6596$$

(ііі) Медиана

x1sort[trunc(length(x1)/2+1)]

$$t_{0.5} = 2$$

(iv) Асимметрия

 $asm < -sum((x1-mean)^3)/length(x1)/var^(3/2)$

$$As = \frac{\frac{1}{n}\sum_{i=1}^{n}(x_i - \bar{x})^3}{(S_n^2)^{\frac{3}{2}}} = 1.581515$$

(v) Эксцесс

 $exc < -sum((x1-mean)^4)/length(x1)/var^2-3$

$$Es = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4}{(S_n^2)^2} - 3 = 4.781523$$

(vi) Вероятность $P(X \in [a, b])$

$$P(X \in [1.72, 3.13]) = F_n(3.13) - F_n(1.72) = 0.46$$

с) В предположении, что исходные наблюдения являются выборкой из распределения Пуассона, построить оценку максимального правдоподобия параметра λ , а также оценку λ по методу моментов. Найти смещение оценок.

$$p_k = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0,1,2,...$$

Метод максимального правдоподобия:

$$L(\vec{x}, \lambda) = \frac{\lambda^{\sum_{i=1}^{n} x_i}}{\prod_{i=1}^{n} x_i!} e^{-n\lambda}$$

$$LL(\vec{x}, \lambda) = \sum_{i=1}^{n} x_i \log(\lambda) - \sum_{i=1}^{n} \log(x_i!) - n\lambda$$

$$\frac{dLL(\vec{x}, \lambda)}{d\lambda} = \frac{1}{\lambda} \sum_{i=1}^{n} x_i - n$$

$$\frac{1}{\tilde{\lambda}} \sum_{i=1}^{n} x_i - n = 0$$

$$\tilde{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$$

Оценка максимального правдоподобия:

$$\tilde{\lambda} = 1.98$$

Метод моментов:

$$EX = \lambda$$

$$\hat{\lambda} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Оценка метода моментов:

$$\hat{\lambda} = \tilde{\lambda} = 1.98$$

Смещение оценки:

$$E\tilde{\lambda} = E \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} E \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{n} E x_i = \frac{1}{n} \sum_{i=1}^{n} \lambda = \frac{1}{n} n\lambda = \lambda$$

 $\tilde{\lambda} = 1.98$ - Несмещённая оценка

d) Построить асимптотический доверительный интервал уровня значимости α_1 для параметра λ на базе оценки максимального правдоподобия.

$$\lim_{n \to \infty} P_{\lambda} (a < \lambda < b) = 1 - \alpha_1$$

Испытания Бернулли

$$\sqrt{n}\sqrt{I(\lambda)}(\tilde{\lambda}-\lambda) \to N(0,1)$$

 $I(\lambda)$ – информация Фишера

$$I(\lambda) = \frac{1}{\lambda}$$

 $\tilde{\lambda} - OM\Pi$

 $\xi_{1-rac{lpha_{1}}{2}}$ – квантиль стандартного нормального распределения уровня $1-rac{lpha_{1}}{2}$

$$\xi_{1-\frac{\alpha_{1}}{2}} = \xi_{0.95} = 1.644854$$

$$\lim_{n \to \infty} P_{\lambda} \left(-\xi_{1-\frac{\alpha_{1}}{2}} < \sqrt{n} \sqrt{I(\lambda)} (\tilde{\lambda} - \lambda) < \xi_{1-\frac{\alpha_{1}}{2}} \right) = 1 - \alpha_{1}$$

$$P_{\lambda} \left(-\xi_{1-\frac{\alpha_{1}}{2}} < \sqrt{n} \sqrt{I(\tilde{\lambda})} (\tilde{\lambda} - \lambda) < \xi_{1-\frac{\alpha_{1}}{2}} \right) =$$

$$= P_{\lambda} \left(\tilde{\lambda} - \frac{\xi_{1-\frac{\alpha_{1}}{2}}}{\sqrt{n} \sqrt{I(\tilde{\lambda})}} < \lambda < \tilde{\lambda} + \frac{\xi_{1-\frac{\alpha_{1}}{2}}}{\sqrt{n} \sqrt{I(\tilde{\lambda})}} \right) =$$

$$= P_{\lambda} \left(1.98 - \frac{1.644854}{\sqrt{50}} \sqrt{1.98} < \lambda < 1.98 + \frac{1.644854}{\sqrt{50}} \sqrt{1.98} \right) =$$

$$= P_{\lambda} (1.652678 < \lambda < 2.307322)$$

[1.652678, 2.307322] — Асимптотический доверительный интервал для λ

е) Используя гистограмму частот, построить критерий значимости χ^2 проверки простой гипотезы согласия с распределением Пуассона с параметром λ_0 . Проверить гипотезу на уровне значимости α_1 . Вычислить наибольшее значение уровня значимости, на котором ещё нет оснований отвергнуть данную гипотезу.

$$H_0: X_1, ..., X_n \sim Pois(5.00)$$

$$\sum_{k=1}^{r} \frac{(n_k - np_k)^2}{np_k} \to \chi_{r-1}^2$$

 $t_{1-lpha_1,r-1}$ —квантиль распределения хи-квадрат с r-1 степенями свободы уровня $1-lpha_1$

$$t_{1-\alpha_1,r-1} = t_{0.90,4} = 7.77944$$

k	1	2	3	4	r = 5	Σ
G_k	0	1	2	3,4	>5	
n_k	9	11	15	13	2	50
p_k	0.0067	0.0337	0.0842	0.3158	0.5596	1
np_k	0.335	1.685	4.210	15.790	27.980	50
$n_k - np_k$	8.665	9.315	10.790	-2.790	-25.980	0
$(n_k - np_k)^2$	224.1260	51.4951	27.6542	0.4930	24.1230	327.8913
np_k						

$$\sum_{k=1}^{5} \frac{(n_k - np_k)^2}{np_k} = 327.8913 > 7.77944$$

=> Отвергаем гипотезу H_0

$$f(327.8913) = 1.0391 \cdot 10^{-69}$$

Наибольшее значение уровня значимости, на котором нет оснований отвергнуть данную гипотезу $1-1.0391\cdot 10^{-69}$.

f) Построить критерий значимости χ^2 проверки сложной гипотезы согласия с распределением Пуассона. Проверить гипотезу на уровне значимости α_1 . Вычислить наибольшее значение уровня значимости, на котором ещё нет оснований отвергнуть данную гипотезу.

$$H_0: X_1, \dots, X_n \sim Pois(\lambda)$$

$$\sum_{k=1}^{r} \frac{(n_k - np_k(\lambda))^2}{np_k(\lambda)} \to \chi_{r-d-1}^2$$

Метод минимизации хи-квадрат:

$$\underset{\lambda}{\operatorname{argmin}} \sum_{k=1}^{r} \frac{(n_k - np_k(\lambda))^2}{np_k(\lambda)}$$

Задача реализована в R следующим скриптом:

```
P<-function(a) {
p<-0
p[1]<-ppois(0,a)
p[2]<-ppois(1,a) - sum(p)
p[3]<-ppois(2,a) - sum(p)
p[4]<-ppois(4,a) - sum(p)
p[5]<-1-sum(p)
p}
X2<-function(a) {g<-n*P(a); f<-(nu-g)^2/g;sum(f)}
nu<-c(9,11,15,13,2)
XM<-nlm(X2,1.92)</pre>
```

Получили оптимальную $\hat{\lambda}=1.888308$ и $\sum_{k=1}^r \frac{\left(n_k-np_k(\widehat{\lambda})\right)^2}{np_k(\widehat{\lambda})}=1.228687$

 $t_{1-lpha_1,r-d-1}$ — квантиль распределения хи-квадрат с r-d-1 степенями свободы уровня $1-lpha_1$, где d — размерность оценки, $d=dim(\lambda)=1$

$$t_{1-\alpha_1,r-d-1} = t_{0.90,3} = 6.251389$$

$$\sum_{k=1}^{r} \frac{\left(n_k - np_k(\hat{\lambda})\right)^2}{np_k(\hat{\lambda})} = 1.228687 < 6.251389$$

=> Принимаем гипотезу H_0

$$f(1.330331) = 0.2538675 = 1 - 0.7461325$$

0.7461325 — наибольшее значение уровня значимости, на котором нет оснований отвергнуть данную гипотезу.

g) Построить наиболее мощный критерий проверки простой гипотезы пуассоновости с параметром $\lambda = \lambda_0$ при альтернативе пуассоновости с параметром $\lambda = \lambda_1$. Проверить гипотезу на уровне значимости α_1 . Что получится, если поменять местами основную и альтернативную гипотезы?

$$H_{0}: X_{1}, \dots, X_{n} \sim Pois(5.00)$$

$$H_{1}: X_{1}, \dots, X_{n} \sim Pois(2.00)$$

$$L_{0}(\vec{x}) = \frac{5^{\sum_{i=1}^{n} x_{i}}}{\prod_{i=1}^{n} x_{i}!} e^{-5n}$$

$$L_{1}(\vec{x}) = \frac{2^{\sum_{i=1}^{n} x_{i}}}{\prod_{i=1}^{n} x_{i}!} e^{-2n}$$

$$\frac{L_{1}(\vec{x})}{L_{0}(\vec{x})} = \frac{2^{\sum_{i=1}^{n} x_{i}} e^{-2n}}{5^{\sum_{i=1}^{n} x_{i}} e^{-5n}} = 0.4^{\sum_{i=1}^{n} x_{i}} e^{3n}$$

$$P_{0}(0.4^{\sum_{i=1}^{n} x_{i}} e^{3n} > C_{0.1}) = 0.1$$

$$\sum_{i=1}^{n} x_{i} \sim Pois(5 * 50) = Pois(250)$$

$$P_{0}(\sum_{i=1}^{n} x_{i} > C_{0.1}^{*}) = 0.1$$

$$C_{0.1}^{*} = 230$$

$$P_{0}(\sum_{i=1}^{n} x_{i} < 230) < 0.05$$

$$P_{0}(\sum_{i=1}^{n} x_{i} > 229) > 0.05$$

$$\sum_{i=1}^{n} x_{i} = 99$$

$$H_0': X_1, \dots, X_n \sim Pois(2.00)$$

$$H_1': X_1, \dots, X_n \sim Pois(5.00)$$

$$L_0(\vec{x}) = \frac{2^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!} e^{-2n}$$

$$L_1(\vec{x}) = \frac{5^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!} e^{-5n}$$

$$\frac{L_1(\vec{x})}{L_0(\vec{x})} = \frac{5^{\sum_{i=1}^n x_i} e^{-5n}}{2^{\sum_{i=1}^n x_i} e^{-2n}} = 2.5^{\sum_{i=1}^n x_i} e^{-3n}$$

$$P_0'(2.5^{\sum_{i=1}^{n} x_i} e^{-3n} > C_{0.1}) = 0.1$$

$$\sum_{i=1}^{n} x_i \sim Pois(100)$$

$$P_0'\left(\sum_{i=1}^n x_i > C_{0.1}^*\right) = 0.1$$

$$C_{0.1}^* = 87$$

$$P_0'\left(\sum_{i=1}^n x_i < 87\right) < 0.1$$

$$P_0'\left(\sum_{i=1}^n x_i > 86\right) > 0.1$$

$$\sum_{i=1}^{n} x_i = 99$$

99 > 87 => принимаем гипотезу H'_0

h) В пунктах (c) – (f) заменить семейство распределений Пуассона на семейство геометрических распределений

$$P_{\lambda}(X = k) = \frac{\lambda^{k}}{(\lambda + 1)^{k+1}}, k = 0, 1, \dots$$

$$P_{\lambda}(X = k) = \frac{\lambda^{k}}{(\lambda + 1)^{k+1}} = \frac{\lambda^{k}}{(\lambda + 1)^{k}(\lambda + 1)} = \frac{1}{\lambda + 1} \left(\frac{\lambda}{\lambda + 1}\right)^{k}$$

$$= \frac{1}{\lambda + 1} \left(1 - \frac{1}{\lambda + 1}\right)^{k} = pq^{k}, k = 0, 1, \dots$$

$$p = \frac{1}{\lambda + 1}; \quad q = 1 - \frac{1}{\lambda + 1}$$

с) В предположении, что исходные наблюдения являются выборкой из геометрического распределения, построить оценку максимального правдоподобия параметра λ , а также оценку λ по методу моментов. Найти смещение оценок.

Метод максимального правдоподобия:

$$L(\vec{x}, \lambda) = \frac{\lambda^{\sum_{i=1}^{n} x_i}}{(\lambda + 1)^{\sum_{i=1}^{n} x_i + n}}$$

$$LL(\vec{x}, \lambda) = \sum_{i=1}^{n} x_i \log(\lambda) - \sum_{i=1}^{n} x_i \log(\lambda + 1) - n\log(\lambda + 1)$$

$$\frac{dLL(\vec{x}, \lambda)}{d\lambda} = \frac{1}{\lambda} \sum_{i=1}^{n} x_i - \frac{1}{\lambda + 1} \sum_{i=1}^{n} x_i - \frac{n}{\lambda + 1}$$

$$\frac{1}{\tilde{\lambda}} \sum_{i=1}^{n} x_i - \frac{1}{\tilde{\lambda} + 1} \sum_{i=1}^{n} x_i - \frac{n}{\tilde{\lambda} + 1} = 0$$

$$\frac{\tilde{\lambda} + 1}{\tilde{\lambda}} \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i + n$$

$$1 + \frac{1}{\tilde{\lambda}} = 1 + \frac{n}{\sum_{i=1}^{n} x_i}$$

$$\tilde{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$$

Оценка максимального правдоподобия:

$$\tilde{\lambda} = 1.98$$

Метод моментов:

$$EX = \frac{q}{p} = \frac{1 - \frac{1}{\lambda + 1}}{\frac{1}{\lambda + 1}} = \frac{\frac{\lambda}{\lambda + 1}}{\frac{1}{\lambda + 1}} = \lambda$$
$$\hat{\lambda} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Оценка метода моментов:

$$\hat{\lambda} = \tilde{\lambda} = 1.98$$

Смещение оценки:

$$E\tilde{\lambda} = E \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} E \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{n} E x_i = \frac{1}{n} \sum_{i=1}^{n} \lambda = \frac{1}{n} n\lambda = \lambda$$

 $\tilde{\lambda} = 1.98$ - Несмещённая оценка

d) Построить асимптотический доверительный интервал уровня значимости α_1 для параметра λ на базе оценки максимального правдоподобия.

$$\lim_{n \to \infty} P_{\lambda} \left(a < \lambda < b \right) = 1 - \alpha_1$$

Испытания Бернулли:

$$\sqrt{n}\sqrt{I(\lambda)}(\tilde{\lambda}-\lambda) \to N(0,1)$$

 $I(\lambda)$ – информация Фишера

$$I(\lambda) = E\left(\frac{dLL(x,\lambda)}{d\lambda}\right)^{2} = E\left(\frac{1}{\lambda}x - \frac{1}{\lambda+1}x - \frac{1}{\lambda+1}\right)^{2} =$$

$$= E\left(\frac{1}{\lambda}x - \frac{1}{\lambda+1}(x+1)\right)^{2} =$$

$$= E\left(\frac{1}{\lambda^{2}}x^{2} - \frac{2}{\lambda(\lambda+1)}x(x+1) + \frac{(x+1)^{2}}{(\lambda+1)^{2}}\right) =$$

$$= \frac{1}{\lambda^{2}}Ex^{2} - \frac{2}{\lambda(\lambda+1)}Ex^{2} - \frac{2}{\lambda(\lambda+1)}Ex + \frac{1}{(\lambda+1)^{2}}Ex^{2} + \frac{2}{(\lambda+1)^{2}}Ex$$

$$+ \frac{1}{(\lambda+1)^{2}} \equiv$$

$$DX = \frac{q}{p^{2}} = \frac{1 - \frac{1}{\lambda+1}}{\left(\frac{1}{\lambda+1}\right)^{2}} = \frac{\frac{\lambda}{\lambda+1}}{\frac{1}{(\lambda+1)^{2}}} = \lambda(\lambda+1)$$

$$EX^{2} = DX + (EX)^{2} = \lambda(\lambda+1) + \lambda^{2} = 2\lambda^{2} + \lambda$$

$$\equiv \frac{1}{\lambda^{2}}(2\lambda^{2} + \lambda) - \frac{2}{\lambda(\lambda+1)}(2\lambda^{2} + \lambda) - \frac{2}{\lambda(\lambda+1)}\lambda + \frac{1}{(\lambda+1)^{2}}(2\lambda^{2} + \lambda)$$

$$+ \frac{2}{(\lambda+1)^{2}}\lambda$$

$$+ \frac{1}{(\lambda+1)^{2}} = 2 + \frac{1}{\lambda} - \frac{4\lambda+2}{(\lambda+1)} - \frac{2}{(\lambda+1)} + \frac{2\lambda^{2}+\lambda}{(\lambda+1)^{2}} + \frac{2\lambda}{(\lambda+1)^{2}} + \frac{1}{(\lambda+1)^{2}} =$$

$$= \frac{1}{\lambda} + \frac{2\lambda^{2}+4\lambda+2-4\lambda^{2}-8\lambda-4+2\lambda^{2}+3\lambda+1}{(\lambda+1)^{2}} = \frac{1}{\lambda} - \frac{\lambda+1}{(\lambda+1)^{2}} = \frac{1}{\lambda(\lambda+1)}$$

 $\xi_{1-rac{lpha_{1}}{2}}$ – квантиль стандартного нормального распределения уровня $1-rac{lpha_{1}}{2}$

$$\xi_{1-\frac{\alpha_{1}}{2}} = \xi_{0.95} = 1.644854$$

$$\lim_{n \to \infty} P_{\lambda} \left(-\xi_{1-\frac{\alpha_{1}}{2}} < \sqrt{n} \sqrt{I(\lambda)} (\tilde{\lambda} - \lambda) < \xi_{1-\frac{\alpha_{1}}{2}} \right) = 1 - \alpha_{1}$$

$$P_{\lambda} \left(-\xi_{1-\frac{\alpha_{1}}{2}} < \sqrt{n} \sqrt{I(\tilde{\lambda})} (\tilde{\lambda} - \lambda) < \xi_{1-\frac{\alpha_{1}}{2}} \right) =$$

$$= P_{\lambda} \left(\tilde{\lambda} - \frac{\xi_{1-\frac{\alpha_{1}}{2}}}{\sqrt{n} \sqrt{I(\tilde{\lambda})}} < \lambda < \tilde{\lambda} + \frac{\xi_{1-\frac{\alpha_{1}}{2}}}{\sqrt{n} \sqrt{I(\tilde{\lambda})}} \right) =$$

$$= P_{\lambda} \left(1.98 - \frac{1.644854}{\sqrt{50}} \sqrt{5.9004} < \lambda < 1.98 + \frac{1.644854}{\sqrt{50}} \sqrt{5.9004} \right) =$$

$$= P_{\lambda} (1.414955 < \lambda < 2.545045)$$

[1.414955; 2.545045] — Асимптотический доверительный интервал для λ

е) Используя гистограмму частот, построить критерий значимости χ^2 проверки простой гипотезы согласия с геометрическим распределением с параметром λ_0 . Проверить гипотезу на уровне значимости α_1 . Вычислить наибольшее значение уровня значимости, на котором ещё нет оснований отвергнуть данную гипотезу.

$$H_0: X_1, \dots, X_n \sim Geom\left(\frac{1}{5+1}\right) = Geom\left(\frac{1}{6}\right)$$

$$\sum_{k=1}^r \frac{(n_k - np_k)^2}{np_k} \to \chi_{r-1}^2$$

 $t_{1-lpha_1,r-1}$ —квантиль распределения хи-квадрат с r-1 степенями свободы уровня $1-lpha_1$

$$t_{1-\alpha_1,r-1} = t_{0.9,4} = 7.77944$$

k	1	2	3	4	r = 5	Σ
G_k	0	1	2	3,4	>5	
n_k	9	11	15	13	2	50
p_k	0.1667	0.1389	0.1157	0.1768	0.4019	1
np_k	8.335	6.9445	5.785	8.840	20.095	50
$n_k - np_k$	0.665	4.055	9.215	4.160	-18.095	0
$(n_k - np_k)^2$	0.0531	2.3676	14.6787	1.9576	16.2941	35.3511
np_k						

$$\sum_{k=1}^{5} \frac{(n_k - np_k)^2}{np_k} = 35.3511 > 7.77944$$

=> Отвергаем гипотезу H_0

$$f(35.3511) = 3.9344 \cdot 10^{-7} = 1 - 0.9999996$$

Наибольшее значение уровня значимости, на котором нет оснований отвергнуть данную гипотезу, равен 0.9999996.

f) Построить критерий значимости χ^2 проверки сложной гипотезы согласия с геометрическим распределением. Проверить гипотезу на уровне значимости α_1 . Вычислить наибольшее значение уровня значимости, на котором ещё нет оснований отвергнуть данную гипотезу.

$$H_0: X_1, \dots, X_n \sim Geom\left(\frac{1}{1+\lambda}\right)$$

$$\sum_{k=1}^{r} \frac{(n_k - np_k(\lambda))^2}{np_k(\lambda)} \to \chi_{r-d-1}^2$$

Метод минимизации хи-квадрат

$$\underset{\lambda}{\operatorname{argmin}} \sum_{k=1}^{r} \frac{(n_k - np_k(\lambda))^2}{np_k(\lambda)}$$

Задача реализована в R с помощью следующего скрипта:

```
P<-function(a) {
p<-0
p[1]<-pgeom(0,a)
p[2]<-pgeom(1,a) - sum(p)
p[3]<-pgeom(2,a) - sum(p)
p[4]<-pgeom(4,a) - sum(p)
p[5]<-1-sum(p)
p}
X2<-function(a) {g<-n*P(a); f<-(nu-g)^2/g;sum(f)}
nu<-c(9,11,15,13,2)
XM<-nlm(X2,1/(1+1.98))</pre>
```

Получили оптимальную $\hat{\lambda}=\frac{1}{0.3183507}-1=2.14119$ и $\sum_{k=1}^r \frac{\left(n_k-np_k(\widehat{\lambda})\right)^2}{np_k(\widehat{\lambda})}=17.13992$

 $t_{1-lpha_1,r-d-1}$ — квантиль распределения хи-квадрат с r-d-1 степенями свободы уровня $1-lpha_1$, где d — размерность оценки, $d=dim(\lambda)=1$

$$t_{1-\alpha_1,r-d-1} = t_{0.9,3} = 6.251389$$

$$\sum_{k=1}^{r} \frac{\left(n_k - np_k(\hat{\lambda})\right)^2}{np_k(\hat{\lambda})} = 17.13992 > 6.251389$$

=> Отвергаем гипотезу H_0

$$f(17.13992) = 0.9993386 = 1 - 0.0006614$$

0.0006614 — наибольшее значение уровня значимости, на котором нет оснований отвергнуть данную гипотезу.

ЗАДАНИЕ 2

а) Построить вариационный ряд, эмпирическую функцию распределения и гистограмму и полигон частот с шагом h.

```
x2 <- c(-4.134, -3.794, -2.764, -4.835, -2.717, -1.649, -3.882, -3.455, -2.177, -4.785, -2.932, -3.147, -2.466, -2.887, -1.583, -4.009, -2.905, -3.961, -2.193, -3.930, -3.526, -1.251, -2.463, -4.431, -3.445, -4.493, -3.287, -3.096, -2.056, -2.347, -2.113, -3.136, -3.775, -3.906, -2.491, -1.949, -4.483, -3.212, -0.087, -2.367, -1.950, -2.691, -3.571, -4.174, -3.401, -3.760, -2.639, -2.690, -1.435, -4.263)
```

Вариационный ряд:

```
      -4.835
      -4.785
      -4.493
      -4.483
      -4.431
      -4.263
      -4.174
      -4.134
      -4.009

      -3.961
      -3.930
      -3.906
      -3.882
      -3.794
      -3.775
      -3.760
      -3.571
      -3.526

      -3.455
      -3.445
      -3.401
      -3.287
      -3.212
      -3.147
      -3.136
      -3.096
      -2.932

      -2.905
      -2.887
      -2.764
      -2.717
      -2.691
      -2.690
      -2.639
      -2.491
      -2.466

      -2.463
      -2.367
      -2.347
      -2.193
      -2.177
      -2.113
      -2.056
      -1.950
      -1.949

      -1.649
      -1.583
      -1.435
      -1.251
      -0.087
```

Эмпирическая функция распределения:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i \le x\}}$$

Histogram of x2

- b) Вычислить выборочные аналоги следующих числовых характеристик:
 - (i) Математическое ожидание:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = -3.05386$$

(іі) Дисперсия:

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = 0.9977462$$

(ііі) Медиана:

$$t_{0.5} = -3.096$$

(iv) Ассиметрия:

$$As = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3}{(S_n^2)^{\frac{3}{2}}} = 0.4151716$$

(v) Эксцесс:

$$ES = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4}{(S_n^2)^2} - 3 = 0.0247966$$

(vi) Вероятность $P(X \in [c, d])$:

$$P(X\epsilon[-3.80, -2.00]) = F_n(-2.00) - F_n(-3.80) = 0.6$$

с) В предположении, что исходные наблюдения являются выборкой из нормального распределения, построить оценку максимального правдоподобия параметров (a, σ^2) и соответствующие оценки по методу моментов. Найти смещение оценок.

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}$$

Метод максимального правдоподобия:

$$L(\vec{x}, a, \sigma^2) = \frac{1}{\sigma^n (2\pi)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - a)^2}$$

$$LL(\vec{x}, a, \sigma^2) = -nlog(\sigma) - \frac{n}{2} \log(2\pi) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - a)^2$$

$$\frac{dLL(\vec{x}, a, \sigma^2)}{da} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - a) = \frac{1}{\sigma^2} \left(\sum_{i=1}^n x_i - \sum_{i=1}^n a \right) = \frac{1}{\sigma^2} \left(\sum_{i=1}^n x_i - na \right)$$

$$\frac{1}{\tilde{\sigma}^2} \left(\sum_{i=1}^n x_i - n\tilde{a} \right) = 0$$

$$\sum_{i=1}^n x_i - n\tilde{a} = 0$$

$$\tilde{a} = \frac{1}{n} \sum_{i=1}^n x_i = \bar{x}$$

$$\frac{dLL(\vec{x}, a, \sigma^2)}{d\sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n (x_i - a)^2$$

$$-\frac{n}{\tilde{\sigma}} + \frac{1}{\tilde{\sigma}^3} \sum_{i=1}^n (x_i - \tilde{a})^2 = 0$$

$$\tilde{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \tilde{a})^2 = S_n^2$$

Оценка максимального правдоподобия:

$$(\tilde{a}, \tilde{\sigma}^2) = (-3.05386, 0.9977462).$$

Оценка метода моментов:

$$EX = a, \quad DX = \sigma^2$$

$$\hat{a} = \bar{x}, \quad \hat{\sigma}^2 = S_n^2$$

$$(\hat{a}, \hat{\sigma}^2) = (\tilde{a}, \tilde{\sigma}^2) = (-3.05386, 0.9977462).$$

Смещение оценок:

$$E\tilde{a} = E\frac{1}{n}\sum_{i=1}^{n} x_{i} = \frac{1}{n}E\sum_{i=1}^{n} x_{i} = \frac{1}{n}\sum_{i=1}^{n} Ex_{i} = \frac{1}{n}\sum_{i=1}^{n} a = \frac{1}{n}na = a$$

$$y_{i} = x_{i} - a;$$

$$S_{n}^{2}(Y) = \frac{1}{n}\sum_{i=1}^{n} (x_{i} - a - \bar{x} + a)^{2} = \frac{1}{n}\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = S_{n}^{2}(X)$$

$$E\tilde{\sigma}^{2} = E\frac{1}{n}\sum_{i=1}^{n} (x_{i} - a - \bar{x} + a)^{2} = E\left(\frac{1}{n}\sum_{i=1}^{n} (x_{i} - a)^{2} - \frac{1}{n^{2}}\left(\sum_{i=1}^{n} (x_{i} - a)\right)^{2}\right) = \frac{1}{n}\sum_{i=1}^{n} E(x_{i} - a)^{2} - \frac{1}{n^{2}}\sum_{i=1}^{n} E(x_{i} - a)^{2} - \frac{2}{n^{2}}\sum_{i < j \le n} Ey_{i}y_{j} = \frac{1}{n}\sum_{i=1}^{n} E(x_{i} - a)^{2} - \frac{1}{n^{2}}\sum_{i=1}^{n} E(x_{i} - a)^{2} = \frac{1}{n}\sum_{i=1}^{n} \sigma^{2} - \frac{1}{n^{2}} = \sigma^{2} - \frac{\sigma^{2}}{n} = \frac{n-1}{n}\sigma^{2}$$

$$\tilde{\sigma}^{2} = \tilde{S}_{n}^{2} = \frac{n}{n-1}S_{n}^{2} = \frac{1}{n-1}\sum_{i=1}^{n} (x_{i} - \tilde{a})^{2}$$

$$E\tilde{\sigma}^{2} = E\frac{n}{n-1}S_{n}^{2} = \frac{n}{n-1}ES_{n}^{2} = \frac{n}{n-1}\frac{n-1}{n}\sigma^{2} = \sigma^{2}$$

 $(\tilde{a}, \check{\sigma}^2) = (-3.05386, 1.018108)$ – Несмещённая оценка

d) Построить доверительные интервалы уровня значимости α_2 для параметров (a, σ^2) .

$$\sqrt{n-1}\frac{\bar{x}-a}{\sqrt{S_n^2}} \sim Student(n-1)$$

 $t_{1-rac{lpha_2}{2},n-1}$ — квантиль распределения Стьюдента с n-1 степенями свободы уровня $1-rac{lpha_2}{2}$

$$t_{1-\frac{\alpha_2}{2},n-1} = t_{0.975,49} = 2.009575.$$

$$\begin{split} P_{a,\sigma^2}\left(-t_{1-\frac{\alpha_2}{2},n-1} < \sqrt{n-1}\frac{\bar{x}-a}{\sqrt{S_n^2}} < t_{1-\frac{\alpha_2}{2},n-1}\right) &= 1-\alpha_2 = \\ &= P_{a,\sigma^2}\left(\bar{x}-\frac{\sqrt{S_n^2}}{\sqrt{n-1}}t_{1-\frac{\alpha_2}{2},n-1} < a < \bar{x}+\frac{\sqrt{S_n^2}}{\sqrt{n-1}}t_{1-\frac{\alpha_2}{2},n-1}\right) = \\ &= P_{a,\sigma^2}\left(-3.05386-\frac{\sqrt{0.9977462}}{\sqrt{50-1}}2.009575 < a < \right. \\ &< -3.05386+\frac{\sqrt{0.9977462}}{\sqrt{50-1}}2.009575\right) = \\ &= P_{a,\sigma^2}(-3.340618 < a < -2.767102) \end{split}$$

[-3.340618, -2.767102] — доверительный интервал для a

$$\frac{nS_n^2}{\sigma^2} \sim \chi_{n-1}^2$$

 $k_{\frac{\alpha_2}{2},n-1}$ — квантиль распределения хи-квадрат с n-1 степенями свободы уровня $\frac{\alpha_2}{2}$

 $k_{1-rac{lpha_2}{2},n-1}$ — квантиль распределения хи-квадрат с n-1 степенями свободы уровня $1-rac{lpha_2}{2}$

$$k_{\frac{\alpha_2}{2},n-1} = k_{0.025,49} = 31.55492$$

$$k_{1-\frac{\alpha_{2}}{2},n-1} = k_{0.975,49} = 70.22241$$

$$P_{a,\sigma^{2}} \left(k_{\frac{\alpha_{2}}{2},n-1} < \frac{nS_{n}^{2}}{\sigma^{2}} < k_{1-\frac{\alpha_{2}}{2},n-1} \right) = 1 - \alpha_{2} =$$

$$= P_{a,\sigma^{2}} \left(\frac{nS_{n}^{2}}{k_{1-\frac{\alpha_{2}}{2},n-1}} < \sigma^{2} < \frac{nS_{n}^{2}}{k_{\frac{\alpha_{2}}{2},n-1}} \right) =$$

$$= P_{a,\sigma^{2}} \left(\frac{50 * 0.9977462}{70.22241} < \sigma^{2} < \frac{50 * 0.9977462}{31.55492} \right) =$$

$$= P_{a,\sigma^{2}} (0.7104187 < \sigma^{2} < 1.580968)$$

[0.7104187, 1.580968] — Доверительный интервал для σ^2

е) С использованием теоремы Колмогорова построить критерий значимости проверки простой гипотезы согласия с нормальным распределением с параметрами α_0 , σ_0^2 . Проверить гипотезу на уровне значимости α_2 . Вычислить наибольшее значение уровня значимости, на котором нет оснований отвергнуть данную гипотезу.

$$\sqrt{\text{n}} \sup |F_n(x) - F_0(x)| \to K(x)$$

где K(x) - функция Колмогорова

$$K(C_{\alpha_2}) = 1 - \alpha_2 = 1 - 0.05 = 0.95$$

 $C_{\alpha_2} = C_{0.05} = 1.3323$
 $H_0: X_1, \dots, X_n \sim N(-3.00, 1.00)$

			T	1
i	$x_{(i)}$	$\Phi(x_{(i)})$	$ F_n(x_{(i)})-F_0(x_{(i)}) $	$ F_n(x_{(i)})-F_0(x_{(i)}) $
			слева	справа
1	-4.835	0.03325284	0.03325284	0.01325284
2	-4.785	0.03713066	0.01713066	0.00286934
3	-4.493	0.06771859	0.02771859	0.00771859
4	-4.483	0.06903721	0.00903721	0.01096279
5	-4.431	0.07621511	0.00378489	0.02378489
6	-4.263	0.10329459	0.00329459	0.01670541
7	-4.174	0.12019751	0.00019751	0.01980249
8	-4.134	0.12839727	0.01160273	0.03160273
9	-4.009	0.15648732	0.00351268	0.02351268
10	-3.961	0.16827608	0.01172392	0.03172392
11	-3.930	0.17618554	0.02381146	0.04381146
12	-3.906	0.18246793	0.03753207	0.05753207
13	-3.882	0.18888840	0.05111160	0.07111160
14	-3.794	0.21359772	0.04640228	0.06640228

15	-3.775	0.21916983	0.06083017	0.08083017
16	-3.760	0.22362729	0.07637271	0.09637271
17	-3.571	0.28399982	0.03600018	0.05600018
18	-3.526	0.29944410	0.04055590	0.06055590
19	-3.455	0.32455462	0.03544538	0.05544538
20	-3.445	0.32815988	0.05184012	0.07184012
21	-3.401	0.34421006	0.05578994	0.07578994
22	-3.287	0.38705616	0.03294384	0.05294384
23	-3.212	0.41605352	0.02394648	0.04394648
24	-3.147	0.44156601	0.01843399	0.03843399
25	-3.136	0.44591064	0.03408936	0.05408936
26	-3.096	0.46176029	0.03823971	0.05823971
27	-2.932	0.52710718	0.00710718	0.01289282
28	-2.905	0.53784259	0.00215741	0.02215741
29	-2.887	0.54498472	0.01501528	0.03501528
30	-2.764	0.59328366	0.01328366	0.00671634
31	-2.717	0.61141158	0.01141158	0.00858842
32	-2.691	0.62133924	0.00133924	0.01866076
33	-2.690	0.62171952	0.01828048	0.03828048
34	-2.639	0.64095028	0.01904972	0.03904972
35	-2.491	0.69462389	0.01462389	0.00537611
36	-2.466	0.70332923	0.00332923	0.01667077
37	-2.463	0.70436619	0.01563381	0.03563381
38	-2.367	0.73663318	0.00336682	0.02336682
39	-2.347	0.74312186	0.01687814	0.03687814
40	-2.193	0.79016676	0.01016676	0.00983324
41	-2.177	0.79474600	0.00525400	0.02525400
42	-2.113	0.81246055	0.00753945	0.02753945
43	-2.056	0.82741518	0.01258482	0.03258482

44	-1.950	0.85314094	0.00685906	0.02685906
45	-1.949	0.85337071	0.02662929	0.04662929
46	-1.649	0.91165228	0.01165228	0.00834772
47	-1.583	0.92175854	0.00175854	0.01824146
48	-1.435	0.94120855	0.00120855	0.01879145
49	-1.251	0.95985449	0.00014551	0.02014551
50	-0.087	0.99821013	0.01821013	0.00178987

$$\sup |F_n(x) - F_0(x)| = 0.09637271$$

$$\sqrt{n} \sup |F_n(x) - F_0(x)| = 0.681458 < 1.3323$$

=> Принимаем гипотезу H_0

$$K(0.681458) = 0.2944376 = 1 - 0.7055624$$

0.7055624 — наибольшее значение уровня значимости, на котором нет оснований отвергнуть данную гипотезу.

f) Используя гистограмму частот, построить критерий значимости χ^2 проверки простой гипотезы согласия с нормальным распределением с параметрами (a_0, σ_0^2) . Проверить гипотезу на уровне значимости α_2 . Вычислить наибольшее значение уровня значимости, на котором ещё нет оснований отвергнуть данную гипотезу.

$$H_0: X_1, ..., X_n \sim N(-3.00, 1.00)$$

$$\sum_{k=1}^{r} \frac{(n_k - np_k)^2}{np_k} \to \chi_{r-1}^2$$

 $t_{1-lpha_2,r-1}$ –квантиль распределения хи-квадрат с r-1 степенями свободы уровня $1-lpha_2$

$$t_{1-\alpha_2,r-1} = t_{0.95,4} = 9.487729$$

k	1	2	3	4	5	Σ
I_k	$(-\infty, -4)$	(-4, -3)	(-3, -2)	(-2, -1)	$(-1, +\infty)$	
n_k	9	17	17	6	1	50
p_k	0.1587	0.3413	0.3413	0.1359	0.0228	1
np_k	7.935	17.065	17.065	6.795	1.140	50
$n_k - np_k$	1.065	-0.065	-0.065	0.765	-0.140	0
$(n_k - np_k)^2$	0.1429	0.0002	0.0002	0.0930	0.0172	0.2535
np_k						

$$\sum_{k=1}^{r} \frac{(n_k - np_k)^2}{np_k} = 0.2535 < 9.487729$$

=> Принимаем гипотезу H_0

$$f(0.2535) = 0.07385212 = 1 - 0.9926148$$

0.9926148 — наибольшее значение уровня значимости, на котором нет оснований отвергнуть данную гипотезу.

g) Построить критерий проверки значимости χ^2 сложной гипотезы согласия с нормальным распределением. Проверить гипотезу на уровне значимости α_2 . Вычислить наибольшее значение уровня значимости, на котором ещё нет оснований отвергнуть данную гипотезу.

$$H_0: X_1, \dots, X_n \sim N(\alpha, \sigma^2)$$

$$\sum_{k=1}^{r} \frac{(n_k - np_k(a, \sigma^2))^2}{np_k(a, \sigma^2)} \to \chi_{r-d-1}^2$$

Метод минимизации хи-квадрат

$$\underset{a,\sigma^2}{\operatorname{argmin}} \sum_{k=1}^{r} \frac{(n_k - np_k(a, \sigma^2))^2}{np_k(a, \sigma^2)}$$

Задача реализована в R с помощью скрипта:

```
P<-function(a) {
p<-0
p[1]<-pnorm(-4,a[1],a[2])
p[2]<-pnorm(-3,a[1],a[2]) - sum(p)
p[3]<-pnorm(-2,a[1],a[2]) - sum(p)
p[4]<-pnorm(-1,a[1],a[2]) - sum(p)
p[5]<-1-sum(p)
p}
X2<-function(a) {g<-n*P(a); f<-(nu-g)^2/g;sum(f)}
nu<-c(9,17,17,6,1)
a<-c(-3,1)
XM<-nlm(X2,a)</pre>
```

Получаем оптимальные
$$(\hat{a},\hat{\sigma}^2)=(-3.068423,1.005747)$$
 и
$$\sum_{k=1}^r \frac{(n_k-np_k(\hat{a},\hat{\sigma}^2))^2}{np_k(\hat{a},\hat{\sigma}^2)}=0.04251365.$$

 $t_{1-lpha_2,r-d-1}$ –квантиль распределения хи-квадрат с r-d-1 степенями свободы уровня $1-lpha_2$, где d – размерность оценки, $d=\dim(a,\sigma^2)=2$

$$t_{1-\alpha_2,r-d-1}=t_{0.95,2}=5.991465$$

$$\sum_{k=1}^{r} \frac{(n_k - np_k(\hat{a}, \hat{\sigma}^2))^2}{np_k(\hat{a}, \hat{\sigma}^2)} = 0.04251365 < 5.991465$$

=> Принимаем гипотезу H_0

$$f(0.04251365) = 0.0210325 = 1 - 0.9789675$$

0.9789675 — наибольшее значение уровня значимости, на котором нет оснований отвергнуть гипотезу.

h) Построить наиболее мощный критерий проверки простой гипотезы о нормальности с параметрами $(a,\sigma^2)=(a_0,\sigma_0^2)$ при альтернативе нормальности с параметром $(a,\sigma^2)=(a_1,\sigma_1^2)$. Проверить гипотезу на уровне значимости α_2 . Что получится, если поменять местами основную и альтернативную гипотезы?

$$H_0: X_1, \dots, X_n \sim N(-3.00, 1.00)$$

$$H_1: X_1, \dots, X_n \sim N(-6.00, 1.00)$$

$$L_0(\vec{x}) = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2} \sum_{i=1}^n (x_i + 3)^{\wedge 2}} = \frac{e^{-\frac{1}{2} \sum_{i=1}^n x_i^2 - 3 \sum_{i=1}^n x_i - \frac{9}{2} n}}{(2\pi)^{\frac{n}{2}}}$$

$$L_1(\vec{x}) = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2} \sum_{i=1}^n (x_i + 6)^{\wedge 2}} = \frac{e^{-\frac{1}{2} \sum_{i=1}^n x_i^2 - 6 \sum_{i=1}^n x_i - 18n}}{(2\pi)^{\frac{n}{2}}}$$

$$\frac{L_1(\vec{x})}{L_0(\vec{x})} = \frac{e^{-\frac{1}{2} \sum_{i=1}^n x_i^2 - 6 \sum_{i=1}^n x_i - 18n}}{e^{-\frac{1}{2} \sum_{i=1}^n x_i^2 - 3 \sum_{i=1}^n x_i - \frac{9}{2} n}} = e^{-3 \sum_{i=1}^n x_i - 13.5n}$$

$$P_0(e^{-3 \sum_{i=1}^n x_i - 13.5n} > C_{0.05}) = 0.05$$

$$\sqrt{50} \frac{\bar{x} + 3}{\sqrt{1}} \sim N(0,1)$$

$$P_0(\sqrt{50}(\bar{x} + 3) > C_{0.05}^*) = 0.05$$

 $\mathcal{C}_{0.05}^* = \xi_{0.95}$ - квантиль стандартного нормального распределения уровня 0.95

$$C_{0.05}^* = 1.644854$$

$$\sqrt{50}(\bar{x}+3) = -0.3808477$$

=-0.3808477 < 1.644854 => Принимаем гипотезу H_0

$$H_0': X_1, \dots, X_n \sim N(-6.00, 1.00)$$

$$H_1': X_1, \dots, X_n \sim N(-3.00, 1.00)$$

$$L_0(\vec{x}) = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2}\sum_{i=1}^n (x_i + 6)^2} = \frac{e^{-\frac{1}{2}\sum_{i=1}^n x_i^2 - 6\sum_{i=1}^n x_i - 18n}}{(2\pi)^{\frac{n}{2}}}$$

$$L_1(\vec{x}) = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2}\sum_{i=1}^n (x_i + 3)^2} = \frac{e^{-\frac{1}{2}\sum_{i=1}^n x_i^2 - 3\sum_{i=1}^n x_i - \frac{9}{2}n}}{(2\pi)^{\frac{n}{2}}}$$

$$\frac{L_1(\vec{x})}{L_0(\vec{x})} = \frac{e^{-\frac{1}{2}\sum_{i=1}^n x_i^2 - 3\sum_{i=1}^n x_i - \frac{9}{2}n}}{e^{-\frac{1}{2}\sum_{i=1}^n x_i^2 - 6\sum_{i=1}^n x_i - 18n}} = e^{3\sum_{i=1}^n x_i + 13.5n}$$

$$P_0'(e^{3\sum_{i=1}^n x_i + 13.5n} > C_{0.1}) = 0.1$$

$$\sqrt{50} \frac{\bar{x}+6}{\sqrt{1}} \sim N(0,1)$$

$$P_0'(\sqrt{50}(\bar{x}+6) > C_{0.1}^*) = 0.1$$

 $\mathcal{C}_{0.05}^* = \xi_{0.95}$ - квантиль стандартного нормального распределения уровня 0.95

$$C_{0.05}^* = 1.644854$$

$$\sqrt{50}(\bar{x}+6) = 20.83236$$

 $20.83236 > 1.644854 => Отвергаем гипотезу <math>H_0'$

i) В пунктах (c) – (g) заменить семейство нормальных распределений на двухпараметрическое семейство распределений Лапласа с плотностями

$$p(x) = \frac{1}{\sqrt{2}\sigma} e^{-\frac{\sqrt{2}}{\sigma}|x-a|} = \frac{\alpha}{2} e^{-\alpha|x-\beta|}$$
$$\alpha = \frac{\sqrt{2}}{\sigma}; \quad \beta = \alpha$$

с) В предположении, что исходные наблюдения являются выборкой из распределения Лапласа, построить оценку максимального правдоподобия параметров (a, σ^2) и соответствующие оценки по методу моментов. Найти смещение оценок.

Метод максимального правдоподобия:

$$L(\vec{x}, a, \sigma^2) = \frac{1}{\sigma^n 2^{n/2}} e^{-\frac{\sqrt{2}}{\sigma} \sum_{i=1}^n |x_i - a|}$$

$$LL(\vec{x}, a, \sigma^2) = -nlog(\sigma) - \frac{n}{2} \log(2) - \frac{\sqrt{2}}{\sigma} \sum_{i=1}^n |x_i - a| =$$

$$= -nlog(\sigma) - \frac{n}{2} \log(2) - \frac{\sqrt{2}}{\sigma} \sum_{i=1}^k (a - x_{(i)}) - \frac{\sqrt{2}}{\sigma} \sum_{i=k+1}^n (x_{(i)} - a) =$$

$$= -nlog(\sigma) - \frac{n}{2} \log(2) - \frac{\sqrt{2}}{\sigma} ka + \frac{\sqrt{2}}{\sigma} \sum_{i=1}^k x_{(i)} - \frac{\sqrt{2}}{\sigma} \sum_{i=k+1}^n x_{(i)} +$$

$$+ \frac{\sqrt{2}}{\sigma} (n - k - 1)a =$$

$$= -nlog(\sigma) - \frac{n}{2} \log(2) + \frac{\sqrt{2}}{\sigma} \sum_{i=1}^k x_{(i)} - \frac{\sqrt{2}}{\sigma} \sum_{i=k+1}^n x_{(i)} + \frac{\sqrt{2}}{\sigma} (n - 2k - 1)a$$

$$\frac{dLL(\vec{x}, a, \sigma^2)}{da} = \frac{\sqrt{2}}{\sigma} (n - 2k - 1)$$

$$\frac{\sqrt{2}}{\tilde{\sigma}} (n - 2k - 1) = 0$$

 $k = \frac{n-1}{2}$ – выборочная медиана

$$\tilde{a}\epsilon\left(x_{(\frac{n}{2})}, x_{(\frac{n}{2}+1)}\right) = \left(x_{(25)}, x_{(26)}\right) = (-3.136, -3.096) = -3.1$$

$$\frac{dLL(\vec{x}, a, \sigma^2)}{d\sigma} = -\frac{n}{\sigma} + \frac{\sqrt{2}}{\sigma^2} \sum_{i=1}^{n} |x_i - a|$$

$$-\frac{n}{\tilde{\sigma}} + \frac{\sqrt{2}}{\tilde{\sigma}^2} \sum_{i=1}^{n} |x_i - \tilde{a}| = 0$$

$$\tilde{\sigma} = \frac{1}{n} \sum_{i=1}^{n} |x_i - \tilde{a}|$$

Оценка максимального правдоподобия:

$$(\tilde{a}, \tilde{\sigma}^2) = (-3.1, 0.81794).$$

Оценка метода моментов:

$$EX = \beta = a, \quad DX = \frac{2}{\alpha^2} = \sigma^2$$

$$\hat{a} = \bar{x}, \quad \hat{\sigma}^2 = S_n^2$$

$$(\hat{a}, \hat{\sigma}^2) = (\tilde{a}, \tilde{\sigma}^2) = (-3.05386, 0.9977462).$$

Смещение оценок:

$$E\hat{a} = E\frac{1}{n}\sum_{i=1}^{n} x_i = \frac{1}{n}E\sum_{i=1}^{n} x_i = \frac{1}{n}\sum_{i=1}^{n} Ex_i = \frac{1}{n}\sum_{i=1}^{n} a = \frac{1}{n}na = a$$

$$y_i = x_i - a;$$

$$S_n^2(Y) = \frac{1}{n}\sum_{i=1}^{n} (x_i - a - \bar{x} + a)^2 = \frac{1}{n}\sum_{i=1}^{n} (x_i - \bar{x})^2 = S_n^2(X)$$

$$E \hat{\sigma}^2 = E \frac{1}{n} \sum_{i=1}^n (x_i - a - \bar{x} + a)^2 = E \left(\frac{1}{n} \sum_{i=1}^n (x_i - a)^2 - \frac{1}{n^2} \left(\sum_{i=1}^n (x_i - a) \right)^2 \right) =$$

$$= \frac{1}{n} \sum_{i=1}^n E(x_i - a)^2 - \frac{1}{n^2} \sum_{i=1}^n E(x_i - a)^2 - \frac{2}{n^2} \sum_{i < j \le n} Ey_i y_j =$$

$$= \frac{1}{n} \sum_{i=1}^n E(x_i - a)^2 - \frac{1}{n^2} \sum_{i=1}^n E(x_i - a)^2 = \frac{1}{n} \sum_{i=1}^n \sigma^2 - \frac{1}{n^2} = \sigma^2 - \frac{\sigma^2}{n} = \frac{n-1}{n} \sigma^2$$

$$\check{\sigma}^2 = \tilde{S}_n^2 = \frac{n}{n-1} S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{a})^2$$

$$E\check{\sigma}^2 = E \frac{n}{n-1} S_n^2 = \frac{n}{n-1} ES_n^2 = \frac{n}{n-1} \frac{n-1}{n} \sigma^2 = \sigma^2$$

 $(\tilde{a}, \check{\sigma}^2) = (-3.05386, 1.018108)$ – Несмещённая оценка

d) Построить доверительные интервалы уровня значимости α_2 для параметров (a, σ^2) .

$$\lim_{n \to \infty} P_{a,\sigma^2} (t_1 < a < t_2) = 1 - \alpha_2$$

Испытания Бернулли

$$\sqrt{n}\sqrt{I(a)}(\tilde{a}-a) \rightarrow N(0,1)$$

I(a) – информация Фишера

$$I(a) = E\left(\frac{dLL(x, a, \sigma^2)}{da}\right)^2 = E\left(\frac{\sqrt{2}}{\sigma}sign(x - a)\right)^2 = \frac{2}{\sigma^2}$$

 $\tilde{a} - OM\Pi$

 $\xi_{1-rac{lpha_{2}}{2}}$ – квантиль стандартного нормального распределения уровня $1-rac{lpha_{2}}{2}$

$$\begin{split} \xi_{1-\frac{\alpha_{2}}{2}} &= \xi_{0.975} = 1.959964 \\ \lim_{n \to \infty} P_{a,\sigma^{2}} \left(-\xi_{1-\frac{\alpha_{2}}{2}} < \sqrt{n} \sqrt{I(a)} (\tilde{a} - a) < \xi_{1-\frac{\alpha_{2}}{2}} \right) = 1 - \alpha_{2} \\ P_{a,\sigma^{2}} \left(-\xi_{1-\frac{\alpha_{2}}{2}} < \sqrt{n} \sqrt{I(\tilde{a})} (\tilde{a} - a) < \xi_{1-\frac{\alpha_{2}}{2}} \right) = \\ &= P_{a,\sigma^{2}} \left(\tilde{a} - \frac{\xi_{1-\frac{\alpha_{2}}{2}}}{\sqrt{n} \sqrt{I(\tilde{a})}} < a < \tilde{a} + \frac{\xi_{1-\frac{\alpha_{2}}{2}}}{\sqrt{n} \sqrt{I(\tilde{a})}} \right) = \\ &= P_{a,\sigma^{2}} \left(-3.1 - \frac{1.959964}{\sqrt{100}} \sqrt{0.81794} < a < -3.1 + \frac{1.959964}{\sqrt{100}} \sqrt{0.81794} \right) = \\ &= P_{\lambda} (-3.277259 < a < -2.922741) \end{split}$$

[-3.277259, -2.922741] — Асимптотический доверительный интервал для a

$$\lim_{n \to \infty} P_{a,\sigma^2} (t_1 < \sigma^2 < t_2) = 1 - \alpha_2$$

Испытания Бернулли

$$\sqrt{n}\sqrt{I(\sigma)}(\tilde{\sigma}-\sigma) \to N(0,1)$$

 $I(\sigma)$ – информация Фишера

$$I(\sigma) = E\left(\frac{dLL(x, a, \sigma^{2})}{d\sigma}\right)^{2} = E\left(-\frac{1}{\sigma} + \frac{\sqrt{2}}{\sigma^{2}}|x - a|\right)^{2} =$$

$$= \frac{1}{\sigma^{2}}\left(1 - \frac{2\sqrt{2}}{\sigma}E|x - a| + \frac{2}{\sigma^{2}}E(x - a)^{2}\right) =$$

$$= \frac{1}{\sigma^{2}}\left(1 - \frac{2\sqrt{2}}{\sigma}E|x - a| + \frac{2}{\sigma^{2}}Ex^{2} - \frac{4a}{\sigma^{2}}Ex + \frac{2a^{2}}{\sigma^{2}}\right) =$$

$$EX = \beta = a, \quad DX = \frac{2}{\alpha^{2}} = \sigma^{2}$$

$$EX^{2} = DX + (EX)^{2} = \sigma^{2} + a^{2}$$

$$E|X - a| = \int_{-\infty}^{\infty}|x - a| \frac{1}{\sqrt{2}\sigma}e^{-\frac{\sqrt{2}}{\sigma}|x - a|}dx =$$

$$t = x - a, dt = dx, x = -\infty = > t = -\infty, x = \infty = > t = \infty$$

$$= \frac{1}{\sqrt{2}\sigma}\int_{-\infty}^{\infty}|t|e^{-\frac{\sqrt{2}}{\sigma}|t|}dt = \frac{\sqrt{2}}{\sigma}\int_{0}^{\infty}te^{-\frac{\sqrt{2}}{\sigma}t}dt = -\frac{\sqrt{2}}{\sigma}\frac{\sigma}{\sqrt{2}}\int_{0}^{\infty}t\left(e^{-\frac{\sqrt{2}}{\sigma}t}\right)'dt =$$

$$= -\int_{0}^{\infty}t\left(e^{-\frac{\sqrt{2}}{\sigma}t}\right)'dt = -(te^{-\frac{\sqrt{2}}{\sigma}t})|_{t=0}^{\infty} + \int_{0}^{\infty}e^{-\frac{\sqrt{2}}{\sigma}t}dt = \int_{0}^{\infty}e^{-\frac{\sqrt{2}}{\sigma}t}dt =$$

$$= -\frac{\sigma}{\sqrt{2}}e^{-\frac{\sqrt{2}}{\sigma}t}|_{t=0}^{\infty} = \frac{\sigma}{\sqrt{2}}$$

$$\equiv \frac{1}{\sigma^{2}}\left(1 - 2 + \frac{2(\sigma^{2} + a^{2})}{\sigma^{2}} - \frac{4a^{2}}{\sigma^{2}} + \frac{2a^{2}}{\sigma^{2}}\right) = \frac{1}{\sigma^{2}}$$

 $\xi_{1-\frac{\alpha_{2}}{2}}$ – квантиль стандартного нормального распределения уровня $1-\frac{\alpha_{2}}{2}$

$$\begin{split} \xi_{1-\frac{\alpha_{2}}{2}} &= \xi_{0.975} = 1.959964 \\ \lim_{n \to \infty} P_{a,\sigma^{2}} \left(-\xi_{1-\frac{\alpha_{2}}{2}} < \sqrt{n} \sqrt{I(\sigma^{2})} (\tilde{\sigma}^{2} - \sigma^{2}) < \xi_{1-\frac{\alpha_{2}}{2}} \right) = 1 - \alpha_{2} \\ P_{a,\sigma^{2}} \left(-\xi_{1-\frac{\alpha_{2}}{2}} < \sqrt{n} \sqrt{I(\tilde{\sigma}^{2})} (\tilde{\sigma}^{2} - \sigma^{2}) < \xi_{1-\frac{\alpha_{2}}{2}} \right) = \\ &= P_{a,\sigma^{2}} \left(\tilde{\sigma}^{2} - \frac{\xi_{1-\frac{\alpha_{2}}{2}}}{\sqrt{n} \sqrt{I(\tilde{\sigma}^{2})}} < \sigma^{2} < \tilde{\sigma}^{2} + \frac{\xi_{1-\frac{\alpha_{2}}{2}}}{\sqrt{n} \sqrt{I(\tilde{\sigma}^{2})}} \right) = \\ &= P_{a,\sigma^{2}} \left(0.81794 - \frac{1.959964 * \sqrt{0.81794}}{\sqrt{50}} < \sigma^{2} \right) \\ &< 0.81794 + \frac{1.959964 * \sqrt{0.81794}}{\sqrt{50}} \\ &= P_{a,\sigma^{2}} (0.5672576 < \sigma^{2} < 1.068622) \end{split}$$

[0.5672576, 1.068622] — Асимптотический доверительный интервал для σ^2

е) И использованием теоремы Колмогорова построить критерий значимости проверки простой гипотезы согласия с Лапласа с параметрами α_0 , σ_0^2 . Проверить гипотезу на уровне значимости α_2 . Вычислить наибольшее значение уровня значимости, на котором нет оснований отвергнуть данную гипотезу.

$$\sqrt{n} \sup |F_n(x) - F_0(x)| \to K(x)$$

где K(x) - функция Колмогорова

$$K(C_{\alpha_2}) = 1 - \alpha_2 = 1 - 0.05 = 0.95$$

$$C_{\alpha_2} = C_{0.05} = 1.3323$$

$$H_0: X_1, \dots, X_n \sim Laplace(\sqrt{2}, -3)$$

i	$x_{(i)}$	$F_{\sqrt{2},-3}(x_{(i)})$	$ F_n(x_{(i)}) - F_0(x_{(i)}) $	$ F_n(x_{(i)})-$
			слева	$F_0ig(x_{(i)}ig)$ справа
1	-4.835	0.03731988	0.03731988	0.01731988
2	-4.785	0.04005433	0.02005433	0.00005433
3	-4.493	0.06053291	0.02053291	0.00053291
4	-4.483	0.06139506	0.00139506	0.01860494
5	-4.431	0.06608016	0.01391984	0.03391984
6	-4.263	0.08380196	0.01619804	0.03619804
7	-4.174	0.09504224	0.02495776	0.04495776
8	-4.134	0.10057361	0.03942639	0.05942639
9	-4.009	0.12002099	0.03997901	0.05997901
10	-3.961	0.12845117	0.05154883	0.07154883
11	-3.930	0.13420782	0.06579218	0.08579218
12	-3.906	0.13884117	0.08115883	0.10115883
13	-3.882	0.14363448	0.09636552	0.11636552
14	-3.794	0.16266982	0.09733018	0.11733018

15	-3.775	0.16710003	0.11289997	0.13289997
16	-3.760	0.17068262	0.12931738	0.14931738
17	-3.571	0.22298225	0.09701775	0.11701775
18	-3.526	0.23763402	0.10236598	0.12236598
19	-3.455	0.26273369	0.09726631	0.11726631
20	-3.445	0.26647570	0.11352430	0.13352430
21	-3.401	0.28358402	0.11641598	0.13641598
22	-3.287	0.33319530	0.08680470	0.10680470
23	-3.212	0.37047828	0.06952172	0.08952172
24	-3.147	0.40614844	0.05385156	0.07385156
25	-3.136	0.41251603	0.06748397	0.08748397
26	-3.096	0.43652410	0.06347589	0.08347589
27	-2.932	0.54584363	0.02584363	0.00584363
28	-2.905	0.56285812	0.02285812	0.00285812
29	-2.887	0.57384550	0.01384550	0.00615450
30	-2.764	0.64188517	0.06188517	0.04188517
31	-2.717	0.66491452	0.06491452	0.04491452
32	-2.691	0.67701170	0.05701170	0.03701170
33	-2.690	0.67746815	0.03746815	0.01746815
34	-2.639	0.69991163	0.03991163	0.01991163
35	-2.491	0.75658364	0.07658364	0.05658364
36	-2.466	0.76503935	0.06503935	0.04503935
37	-2.463	0.76603409	0.04603409	0.02603409
38	-2.367	0.79573648	0.05573648	0.03573648
39	-2.347	0.80143299	0.04143299	0.02143299
40	-2.193	0.84029350	0.06029350	0.04029350
41	-2.177	0.84386667	0.04386667	0.02386667
42	-2.113	0.85737759	0.03737759	0.01737759
43	-2.056	0.86842323	0.02842323	0.00842323

44	-1.950	0.88674025	0.02674025	0.00674025
45	-1.949	0.88690031	0.00690031	0.01309969
46	-1.649	0.92600440	0.02600440	0.00600440
47	-1.583	0.93259849	0.01259849	0.00740151
48	-1.435	0.94532733	0.00532733	0.01467267
49	-1.251	0.95785363	0.00214637	0.02214637
50	-0.087	0.99187453	0.01187453	0.00812547

$$\sup |F_n(x) - F_0(x)| = 0.14931738$$

$$\sqrt{n} \sup |F_n(x) - F_0(x)| = 1.055833 < 1.3323$$

=> Принимаем гипотезу H_0

$$K(1.055833) = 0.8057066 = 1 - 0.1942934$$

0.1942934 - наибольшее значение уровня значимости, на котором нет оснований отвергнуть гипотезу

f) Используя гистограмму частот, построить критерий значимости χ^2 проверки простой гипотезы согласия с распределением Лапласа с параметрами (a_0, σ_0^2) . Проверить гипотезу на уровне значимости α_2 . Вычислить наибольшее значение уровня значимости, на котором ещё нет оснований отвергнуть данную гипотезу.

$$H_0: X_1, \dots, X_n \sim Laplace(\sqrt{2}, -3)$$

$$\sum_{k=1}^{r} \frac{(n_k - np_k)^2}{np_k} \to \chi_{r-1}^2$$

 $t_{1-lpha_2,r-1}$ —квантиль распределения хи-квадрат с r-1 степенями свободы уровня $1-lpha_2$

$$t_{1-\alpha_2,r-1} = t_{0.95,4} = 9.487729$$

k	1	2	3	4	5	Σ
I_k	$(-\infty, -4)$	(-4, -3)	(-3, -2)	(-2, -1)	$(-1, +\infty)$	
n_k	9	17	17	6	1	50
p_k	0.1216	0.3784	0.3784	0.0920	0.0296	1
np_k	6.08	18.92	18.92	4.60	1.48	50
$n_k - np_k$	2.92	-1.92	-1.92	1.40	-0.48	0
$(n_k - np_k)^2$	1.4024	0.1948	0.1948	0.4261	0.1557	2.3738
np_k						

$$\sum_{k=1}^{r} \frac{(n_k - np_k)^2}{np_k} = 2.3738 < 9.487729$$

=> Принимаем гипотезу H_0

$$f(2.3738) = 0.3326329 = 1 - 0.6673671$$

0.6673671 — наибольшее значение уровня значимости, на котором нет оснований отвергнуть гипотезу

g) Построить критерий проверки значимости χ^2 сложной гипотезы согласия с распределением Лапласа. Проверить гипотезу на уровне значимости α_2 . Вычислить наибольшее значение уровня значимости, на котором ещё нет оснований отвергнуть данную гипотезу.

$$H_0: X_1, ..., X_n \sim Laplace(\alpha, \beta)$$

$$\sum_{k=1}^{r} \frac{(n_k - np_k(\alpha, \beta))^2}{np_k(\alpha, \beta)} \to \chi_{r-d-1}^2$$

Метод минимизации хи-квадрат

$$\underset{a,\sigma^2}{\operatorname{argmin}} \sum_{k=1}^r \frac{(n_k - np_k(\alpha, \beta))^2}{np_k(\alpha, \beta)}$$

Задача реализована в R с помощью скрипта:

```
P<-function(a) {
if (a[1] \le 0) return (1000)
0 - > q
    (-4 \le a[2]) p[1] < -1/2 * exp(a[1] * (-4-a[2])) else p[1] < -1-a[2]
1/2 * exp(-a[1] * (-4-a[2]))
if (-3 \le a[2]) p[2] < -1/2 \times exp(a[1] \times (-3 - a[2])) - sum(p) else p[2] < -1 - a[2]
1/2 \times \exp(-a[1] \times (-3-a[2])) - \sup(p)
if (-2 \le a[2]) p[3]<-1/2*exp(a[1]*(-2-a[2]))-sum(p) else p[3]<-1-a[2]
1/2*exp(-a[1]*(-2-a[2]))-sum(p)
if (-1 \le a[2]) p[4] < -1/2 * exp(a[1] * (-1-a[2])) - sum(p) else p[4] < -1-a[2]
1/2 \times \exp(-a[1] \times (-1-a[2])) - \sup(p)
p[5] < -1 - sum(p)
return(p)}
X2 < -function(a) \{ q < -50 * P(a) ; f < -(nu-q)^2/q ; sum(f) \}
nu < -c(9, 17, 17, 6, 1)
a < -c(sqrt(2), -3)
XM < -nlm(X2, a)
```

Получаем оптимальные $(\hat{\alpha}, \hat{\beta}) = (1.177500, -3.029983)$, то есть $(\hat{\alpha}, \hat{\sigma}^2) = (-3.029983, 1.201031)$, и $\sum_{k=1}^r \frac{(n_k - np_k(\hat{\alpha}, \hat{\beta}))^2}{np_k(\hat{\alpha}, \hat{\beta})} = 1.049736$.

 $t_{1-lpha_2,r-d-1}$ — квантиль распределения хи-квадрат с r-d-1 степенями свободы уровня $1-lpha_2$, где d — размерность оценки, $d=\dim(a,\sigma^2)=2$

$$t_{1-\alpha_2,r-d-1} = t_{0.95,2} = 5.991465$$

$$\sum_{k=1}^{r} \frac{\left(n_k - np_k(\hat{\alpha}, \hat{\beta})\right)^2}{np_k(\hat{\alpha}, \hat{\beta})} = 1.049736 < 5.991465$$

=> Принимаем гипотезу H_0

$$f(1.049736) = 0.4083665 = 1 - 0.5916335$$

0.5916335 – наибольшее значение уровня значимости, на котором нет оснований