תרגול – קצב גידול של פונקציות

.1

 $2n^4+n\leq c$ כר מתקיים: $n\geq n_0$ מתקיים: c א. הטענה נכונה. הוכחה: צ"ל שקיימים c אים ליחות ב"ל שקיים: $n_0>0$ מתקיים: צ"ל שקיימים $n_0=1$ ולכן נוכל לבחור $n_0=1$ ולכן נוכל לבחור $n_0=1$ ואכן אי השוויון מתקיים. n^5

ולכן: ולכן: n = 0(n) , $2n^4 = 0(n^4)$ (לפי רפלקסיביות) ולכן: n = 0(n) , $2n^4 = 0(n^4)$

- . (לפי המשפט של סכום סדרי גודל) $0(n^5)$ הקטן מ $0(n) + 0(n^4) = 0(n^4)$
- ב. הטענה נכונה. $\frac{n}{n} + \left(\frac{n}{9}\right)^2 = \Omega(n^2)$, ב. $\sqrt{n} + \left(\frac{n}{9}\right)^2 = 0(n^2)$, ב. $\sqrt{n} + \left(\frac{n}{9}\right)^2 = 0(n^2)$, נוכיח א: $c, n_0 > 0$ ב. $c, n_0 > 0$ ב"ל שקיימים $c, n_0 > 0$ כך שלכל $c, n_0 > 0$ מתקיים: $c = \frac{82}{81}$ ולכן נוכל לבחור $c = \frac{82}{81}$ ואכן $c = \frac{82 \cdot n^2}{81}$ (או יותר גדול) ואכן $c = \frac{82}{81}$ אי השוויון מתקיים.

נוכיח ב: צ"ל שקיימים $n \geq c$ כך שלכל $n_0 > 0$ מתקיים: $c,n_0 > 0$ נקטין , $\sqrt{n} + \left(\frac{n}{9}\right)^2 \geq c \cdot n^2$ מתקיים: $n \geq n_0$ מלכל מוכל לבחור $c = \frac{1}{81}$ ו את צד שמאל: $\left(\frac{n}{9}\right)^2 = \frac{n^2}{81} \geq c \cdot n^2$ (או יותר קטן) ואכן אי השוויון מתקיים.

 $\frac{n!}{5!(n-5)!} \ge \mathbf{c} \cdot n^5$ מתקיים: $n \ge n_0$ מתקיים: $c, n_0 > 0$ כך שלכל $n \ge n_0$ מתקיים: $n \ge n_0$ ג. נפשט את צד שמאל:

, נקבל פולינום ממעלה 5 ולכן לפי הדרך ב א' , $(n-4)(n-3)(n-2)(n-1)n \geq c \cdot n^5$ נקבל שיש שוויון בין הצדדים עבור n מסוים ולכן $\binom{n}{5}=\Omega(n^5)$

- ד. הטענה לא נכונה. הוכחה: נניח בשלילה שקיימים $c,n_0>0$ כך שלכל $n\geq n_0$ מתקיים: $c,n_0>0$ כך שלכל $n\geq n_0$ מתקיים: $(\ln n)^n\leq c\cdot 2^n$ נקבל: $(\ln n)^n\leq c\cdot 2^n$, $(\ln n)^n\leq c\cdot 2^n$ שואף לאינסוף ולכן לא קיים קבוע המקיים את אי השוויון. סתירה. $n\geq n$
 - קר שלכל $c,n_0>0$ כך שקיימים ולכן לא ייתכן שקיימים $\sqrt{2}^n<2^n$ כך שלכל הטענה לא נכונה. $\sqrt{2}^n < 2^n$ ולכן $\sqrt{2}^n \neq \Omega(2^n)$ ולכן $\sqrt{2}^n \geq c \cdot 2^n$ מתקיים: $n\geq n_0$
- ולא קיים c המקיים: $(n!)^{(n!)}>n^n\cdot n^{n-1}$ ולא קיים c המקיים: $n^{n+1}>n^n\cdot n^{n-1}$ ולא קיים c המקיים: $n^n\cdot n^{n-1}< cn^n$
- ז. $n \geq n_0$ מתקיים: $c, n_0 > 0$ כך שלכל $n_0 \geq n_0$ מתקיים: $\log(\sqrt{\log n})^{\log n} \geq \log c n^k$ נצמיד $\log t \leq \log t \leq \log t \leq \log t$, נצמיד $\log t \leq \log t \leq \log t \leq \log t \leq \log t$ ונקבל לפי חוקי לוגריתמים: $\log t \leq \log t$ שואף לאינסוף ולכן נוכל להתעלם מהקבועים. מכאן: $\log t \leq \log t$ ואכן פסוק זה נכון כי $\log t \leq \log t$ שואף לאינסוף ולכן הוא גדול מכל קבוע.
 - ח. הטענה לא נכונה. *הוכחה: נניח בשלילה שקיימים c,n_0>0* כך שלכל $n\geq n_0$ מתקיים: $c,n_0>0$ נגדיל את צד שמאל ונקבל: $e^{\ln n}\geq c\cdot n^k$ ומכאן: $e^{\frac{1}{n}}\geq c\cdot n^k$ ולכן: $n\geq c\cdot n^{k-1}$ שואף לאינסוף ולכן סתירה.
- $n \geq n_0$ ט. הטענה לא נכונה. $n_0 > 0$ קיים c > 0 קיים c > 0 קיים נניח בשלילה שלכל קבוע $\log n_0 > 0$ קיים $\log k^{\log n} < \log c \cdot n^2$ (צמיד $\log c \cdot n^2$ בצמיד $\log c \cdot n^2$ בצמיד $\log c \cdot n^2$ (צמיד $\log c \cdot n^2$ באגפים: $\log k^{\log n} < c \cdot n^2$ שואף לאינסוף ולכן נוכל להתעלם לוגריתמים: $\log n \cdot \log k < \log c + 2 \log n$ שואף לאינסוף ולכן נוכל להתעלם בסתירה לכך מהקבועים. מכאן: $\log n < c \log n$ שממנו הטענה נכונה.

 $c,n_0>0$ י. הטענה לא נכונה עבור $(2+\frac{1}{\ln n})^{n^2}=0$. הוכחה: נניח בשלילה שקיימים י. $(2+\frac{1}{\ln n})^{n^2}=0$ מתקיים: $n\geq n_0$ מתקיים: $n\geq n_0$ לבמיד אל בי ולפי חוקי לוגריתמים: $ln(2+\frac{1}{\ln n})^{n^2}\leq \ln c\cdot 3^n$

: שואף אינסוף ולכן נוכל להתעלם מהקבועים. מכאן n , $n^2\ln(2+\frac{1}{\ln n}) \leq \ln c + n \cdot \ln 3$: נקטין את צד שמאל: $n^2\ln(2) \leq c \cdot n$ ועדיין קיבלנו סתירה: $n^2\ln(2+\frac{1}{\ln n}) \leq c \cdot n$. $n^2 \leq c \cdot n$

.2

טכי $\binom{5}{k}=\Theta(1)$, $(n^n+3)^5=\sum_{k=0}^5\binom{5}{k}\cdot n^{kn}\cdot 3^{5-k}$: נפתח סוגריים לפי הבינום של ניוטון: $3^{5-k}=\Theta(1)$, מכאן: k

לפי $\sum_{k=0}^{5} {5 \choose k} \cdot n^{kn} \cdot 3^{5-k} = \Theta(1) + \Theta(n^n) + \Theta(n^{2n}) + \Theta(n^{3n}) + \Theta(n^{4n}) + \Theta(n^{5n})$ כלל מכפלה של סדרי גודל. ומכאן:

סכום $\Theta(1)+\Theta(n^n)+\Theta(n^{2n})+\Theta(n^{3n})+\Theta(n^{4n})+\Theta(n^{5n})=\Theta(n^{5n})$ לפי כלל סכום סדרי גודל.

 $\sum_{k=1}^n k^2 \leq \sum_{k=1}^n n^2 = n^3 = O(n^3)$ ב. נמצא 0: נגדיל את הפונקציה: נמצא Ω : נקטין את הפונקציה:

$$\sum_{k=1}^{n} k^2 = \sum_{k=1}^{\frac{n}{2}-1} k^2 + \sum_{k=\frac{n}{2}}^{n} k^2 \ge \sum_{k=\frac{n}{2}}^{n} k^2 \ge \sum_{k=\frac{n}{2}}^{n} \left(\frac{n}{2}\right)^2 = \left(\frac{n}{2}+1\right) \left(\frac{n}{2}\right)^2 = \left(\frac{n}{2}\right)^3 + \sum_{k=1}^{n} k^2 = \sum_{k=1}^{n} k^2 \ge \sum_{k=\frac{n}{2}}^{n} k^2 \ge \sum_{k=\frac{n}{2}}^{n} \left(\frac{n}{2}\right)^2 = \left(\frac{n}{2}+1\right) \left(\frac{n}{2}\right)^2 = \left(\frac{n}{2}\right)^3 + \sum_{k=1}^{n} k^2 \ge \sum_{k=\frac{n}{2}}^{n} k^2 \ge \sum_{k=\frac{n}{2}}^{n} \left(\frac{n}{2}\right)^2 = \left(\frac{n}{2}+1\right) \left(\frac{n}{2}\right)^2 = \left(\frac{n}{2}\right)^3 + \sum_{k=\frac{n}{2}}^{n} \left(\frac{n}{2}\right)^2 = \left(\frac{n}{2$$

 $\left(\frac{n}{2}\right)^2 = \Omega(n^3)$

 $\sum_{k=1}^{n} k^2 = \Theta(n^3)$:ולכן

$$\binom{n}{4} = \frac{n(n-1)(n-2)(n-3)}{4!} = \Theta(n^4) + \Theta(n^3) + \Theta(n^2) + \Theta(n) + \Theta(1) = \Theta(n^4)$$
 \therefore

. נמצא הערכה ל $\frac{1}{2}$. ולכן הסכום סדרה הנדסית אינסופית עם מנה $\frac{1}{2}$. ולכן הסכום הוא: - $\sum_{k=0}^n \frac{1}{2^k}$ ולכן המכפלה ביניהם היא: $n^{\log n}=\Theta(n^{\log n})$, $\sum_{k=0}^n \frac{1}{2^k}=\frac{1}{1-\frac{1}{2}}=2=\Theta(1)$

 $\sum_{i=1}^n \sum_{j=1}^n \frac{1}{i+j} \le \sum_{i=1}^n \sum_{j=1}^n \frac{1}{i} = \sum_{i=1}^n \frac{n}{i} = n \cdot O(\log n) = O(n \cdot \log n)$ ה.

.3

 $n\geq n_0$ צ"ל f=0(g) צ"ל $f+g=\Theta(g)$. לפי ההנחה, קיימים f+g=0 כך שלכל f+g=0 א. נניח $f+g=c\cdot g+g$ נוסיף את g ל 2 האגפים ונקבל: $g+g=c\cdot g+g$ ומכאן: g+g=0 ומכאן: g+g=0 ומלכן: g+g=0

- $n\cdot n^2 \neq \Theta(n^2\cdot n^2)$ אבל: n=0
- נניח (g) וגם (g) וגם (g) צ"ל: (g) צ"ל: (g) לפי ההנחה: קיימים בניח (g) וגם (g) נניח (g) בעלכל ב(g) מתקיים: (g) מתקיים: (g) באי השוויון הראשון: (g) באי השוויון הראשון: (g) באי השוויון הראשון: (g) באי השוויה ל(g) ולכן: (g) ולכן: (g)
- ד. לא. דוגמא נגדית: f=n ונבחר: f=n ומכאן: f=n ומכאן: לא. דוגמא נגדית: f=n ונבחר: f=n שוויון זה אינו מתקיים. הוכחה: נראה כי לא קיים c>0 קבוע המקיים: הוכחה: נראה כי לא קיים קבוע המדול מביטוי השואף לאינסוף. נחלק את 2 הצדדים ב n^n ונקבל: n^n ונקבל: n^n

.4

 $n \geq n_0$ לכל $n^{\log n} \leq c \cdot 2^n$ עך ש $n_0, c > 0$ לכל , g = O(f) א. א. $g = \log n \cdot \log n \leq \log c + n$ לכל לבי חוקי לוגריתמים. נצמיד $\log n$ ל

c מתקיים ולכן גם האי שוויון מתקיים לכל ו $\log n \cdot \log n = o(n)$

- $n \geq n_0$ לכל $(n!)^2 \leq c \cdot n^2!$ ב. $n_0, c > 0$ נראה כי קיימים f = O(g) .ב. $\log n! = O(n \cdot \log n)$ לפי סטרלינג, $\log n! \leq \log c + \log n^2!$ נצמיד נצמיד ל 2 האגפים: ו : ומכאן $2n \cdot \log n$ ב ונחלק בc = 1 (בבחר: c = 1) ומכאן: ומכאן וולכן נובע כי $n_0=1$, ואכן אי שוויון זה מתקיים עבור $1\leq n$
- $n \geq n_0$ לכל $n^n \leq c \cdot n! \cdot 2^n$ כך ש $n_0, c > 0$ לכל , g = O(f)נצמיד לפי חוקי לוגריתמים ולפי $\log n^n \leq \log c + \log n! + \log 2^n$ נצמיד ל $\log n$ ל ל . מתקיים $0 \leq n$ אכן: $n_0 = 1$, c = 1 : נבחר: $n \cdot \log n \leq \log c + n \cdot \log n + n$ מתקיים

 - g = O(f) .ה
 - g = O(f) .I $g = {n^2 \choose n}$, $f = {2n \choose n}^n$.T