		U		С		A		G		
	U	UUU UUC	Phe	UCU UCC	Ser	UAU UAC	Tyr	UGU UGC	Cys	U C
		UUA	Leu	UCA		UAA	STOP	UGA	STOP	Α
		UUG		UCG		UAG	STOP	UGG	Trp	G
	С	CUU	Leu	CCU	Pro	CAU	His	CGU	Arg	U
		CUC		CCC		CAC		CGC		С
		CUA		CCA		CAA	Gln	CGA		Α
		CUG		CCG		CAG		CGG		G
	A	AUU	Ile Met	ACU	Thr	AAU	Asn	AGU	Ser	U
		AUC		ACC		AAC		AGC		С
		AUA		ACA		AAA	Lys	AGA	Arg	Α
		AUG		ACG		AAG		AGG		G
	G	GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly	U
		GUC		GCC		GAC		GGC		С
		GUA		GCA		GAA	Glu	GGA		Α
		GUG		GCG		GAG		GGG		G

Similarity of Genomes

- As scientists sequence more and more genomes of organisms, they find that all organisms on earth share a certain degree of genetic similarity, suggesting they have a universal common ancestor.
- One of the genes that is highly conserved is the sequence of the ribosome. The ribosome seems to be a necessity for life.
- Scientists often take the genetic sequence of the ribosome in different organisms and compare how similar they are to each other.
- The similarity of the gene sequences in two species can be defined in a calculated value called genetic distance. The larger the genetic distance, the further back in time was the split in their ancestry that eventually produced the two species.
- Scientists can use phylogenetic tree diagrams to display their findings in their studies of genetic distance between different organisms.

Universal Genetic Code

- In almost all organisms on earth, the same codons are used to code for the same amino acids!
- This is evidence that there is a Last Universal Common Ancestor that used this coding system in its RNA or DNA to produce its proteins and ribosomes to do the translation process.
- It is thought that organisms that try to deviate from this universal code must have a big disadvantage, which is why very few species today are known to

deviate from this code. Scientists don't yet understand why species haven't evolved away from using this code.

Name:

Comparative Genomics

Coding Regions • Coding regions in the genome are symbolized by arrows. These are the regions in the genome that are transcribed into RNA and those RNAs are in turn translated into a protein. Coding regions are often conserved between different related species.

- In less complex organisms, a high percentage of the genome is made of coding regions. In more complex organisms, a low percentage of the genome is made of coding regions.
- In humans, coding regions are estimated to take up only 2% of the human genome.

Noncoding regions

- Noncoding regions are shown on genome diagrams as lines in between the arrows.
- Some noncoding DNA is transcribed into functional RNA molecules (like transfer RNA, ribosomal RNA, and regulatory RNAs)
- In the human genome, 98% of DNA is noncoding. Scientists don't know how much of that 98% is useful or "junk DNA".
- Pseudogenes are also present in noncoding

 DNA. These are the nonfunctional remnants of genes that scientists think used to function in our ancestors.
- Introns are noncoding regions that are found inside of genes and are cut out (spliced) at the mRNA modification stage.
- Noncoding regions tend to be less conserved between different species.

Name:

Parts of a Genome