Sprawozdanie - badanie algorytmu genetycznego

Dane autora

Marcin Polewski 331 425

Bazowe dane do eksperymentu

iteartion	probability	probablility of	population			
count	of cross	mutation	size	result	avg. of 3	
200	0,9	0,01	20	-122,36946		
200	0,9	0,01	20	-122,60365	-123,06382	
200	0,9	0,01	20	-124,21834		

Badanie różnych ilości iteracji dla określonej populacji

		probablility			
iteartion	probability	of	population		
count	of cross	mutation	size	result	avg. of 3
200	0,9	0,01	200	-122,63024	
200	0,9	0,01	200	-123,05826	-122,92176
200	0,9	0,01	200	-123,07677	
500	0,9	0,01	200	-120,99213	
500	0,9	0,01	200	-122,07285	-121,61063
500	0,9	0,01	200	-121,76692	
1000	0,9	0,01	200	-122,23924	
1000	0,9	0,01	200	-122,10836	-121,96154
1000	0,9	0,01	200	-121,53701	

Wnioski:

- ta populacja dość szybko dąży do stablilizacji i dość szybko jej różnorodność się zmniejsza, co powoduje małą eksplorację przestrzenii
- przy aktualnych innych parametrach zwiększanie ilości iteracji nie przynosi efektów
- otrzymane wyniki w obrębie eksperymentu są zbliżone do siebie, co może świadczyć o tym że lokalne optima są dobrze wyeksplorowane

Badanie wpływu zwiększenia populacji i zmniejszenia innych parametrów

		probablility				
iteartion	probability	of	population			
count	of cross	mutation	size	result	avg. of 3	
2000	0,8	0,0015	50	-118,56914		
2000	0,8	0,0015	50	-118,76996	-118,64971	
2000	0,8	0,0015	50	-118,61002		
2000	0,8	0,002	50	-118,75498		
2000	0,8	0,002	50	-118,72661	-118,74727	
2000	0,8	0,002	50	-118,76023		
2000	0,8	0,01	50	-121,11513		
2000	0,8	0,01	50	-121,39189	-121,22776	
2000	0,8	0,01	50	-121,17625		
5000	0,8	0,01	50	-120,97827		
5000	0,8	0,01	50	-120,85759	-120,82783	
5000	0,8	0,01	50	-120,64762		

Wnioski:

Badanie większej ilości iteracji dla zwiększonej mutacji względem poprzedniego eksperymentu

		probablility			
iteartion	probability	of	population		
count	of cross	mutation	size	result	avg. of 3
2000	0,8	0,0005	50	-118,59455	
2000	0,8	0,0005	50	-118,63297	-118,66212
2000	0,8	0,0005	50	-118,75885	
5000	0,8	0,0005	50	-118,52677	
5000	0,8	0,0005	50	-118,51187	-118,5245
5000	0,8	0,0005	50	-118,53487	
10000	0,8	0,0005	50	-118,44223	
10000	0,8	0,0005	50	-118,54037	-118,49478
10000	0,8	0,0005	50	-118,50176	

⁻ jeśli zwiększymy liczbę iteracji to najlepsze wyniki dostajemy dla najmniejszej wartości mutacji – prawdopodobnie przy takiej ilości iteracji zbyt duża liczba genów jest "gubiona" i algorytm gorzej eksploatuje optima

Wnioski:

- dla większych ilości iteracji i mutacji zwiększonej symbolicznie względem najlepszej z poprzedniego eksperymentu, przyrost średniego wyniku jest znikomy

Badanie wpływu prawdopodobieństwa na wynik

		probablility			
iteartion	probability	of	population		
count	of cross	mutation	size	result	avg. of 3
2000	0,9	0,001	50	-118,52084	
2000	0,9	0,001	50	-118,47035	-118,49454
2000	0,9	0,001	50	-118,49243	
2000	0,7	0,001	50	-118,4816	
2000	0,7	0,001	50	-118,50629	-118,50072
2000	0,7	0,001	50	-118,51426	
2000	0,5	0,001	50	-118,45966	
2000	0,5	0,001	50	-118,53978	-118,51646
2000	0,5	0,001	50	-118,54994	
2000	0	0,001	50	-118,64955	
2000	0	0,001	50	-118,60522	-118,59895
2000	0	0,001	50	-118,54207	
2000	0	0	50	-149,39347	
2000	0	0	50	-156,01424	-152,12069
2000	0	0	50	-150,95435	

Wnioski:

- przy tej ilości iteracji widoczny jest znikomy wpływ na wyniki – tak duża liczba iteracji działa jak taki bruteforce, mutacja dość skutecznie mimo o prowadzi do sensownych wyników. Wyłączenie jej powoduje znaczy spadek efektywności

Badanie wpływu prawdopodobieństwa krzyżowania - mała populacja i mlaa liczba iteracji

iteartion	probability	probablility of	population		
count	count of cross		size	result	Avg. of 3
50	0	0,0015	20	-140,2873	126 56092
50	0	0,0015	20	-136,97152	-136,56083

50	0	0,0015	20	-132,42366	
50	0,1	0,0015	20	-129,84652	
50	0,1	0,0015	20	-131,91273	-131,36179
50	0,1	0,0015	20	-132,32612	
50	0,2	0,0015	20	-135,06599	
50	0,2	0,0015	20	-134,78933	-133,81232
50	0,2	0,0015	20	-131,58165	
50	0,3	0,0015	20	-133,54472	
50	0,3	0,0015	20	-130,75821	-131,13993
50	0,3	0,0015	20	-129,11685	
50	0,4	0,0015	20	-128,44241	
50	0,4	0,0015	20	-134,35583	-132,44885
50	0,4	0,0015	20	-134,54832	
50	0,5	0,0015	20	-135,55612	
50	0,5	0,0015	20	-126,07275	-130,87353
50	0,5	0,0015	20	-130,99173	
50	0,6	0,0015	20	-130,57469	
50	0,6	0,0015	20	-128,73474	-131,69126
50	0,6	0,0015	20	-135,76435	
50	0,7	0,0015	20	-129,60268	
50	0,7	0,0015	20	-126,33772	-127,8523
50	0,7	0,0015	20	-127,6165	
50	0,8	0,0015	20	-133,61786	
50	0,8	0,0015	20	-125,05445	-128,86169
50	0,8	0,0015	20	-127,91276	
50	0,9	0,0015	20	-130,05959	
50	0,9	0,0015	20	-127,69047	-128,75654
50	0,9	0,0015	20	-128,51955	
50	1	0,0015	20	-129,09141	
50	1	0,0015	20	-130,62138	-130,75536
50	1	0,0015	20	-132,55328	

W tym eksperymencie, na kanwie poprzedniego eksperymentu, znacznie obniżono liczbę iteracji, żeby zmniejszyć wpływ mutacji

Wnioski:

- najlepsze wyniki uzyskiwane są dla wartości prawdopodobieństwa krzyżowania równego 0.7, co porykwa się z rekomendowaną wartością dla tego algorytmu
- nadmiernie duże krzyżowanie powoduje że różnorodność populacji szybko się zmniejsza, a więc algorytm za mało eksploruje
- z kolei dla małych wartości krzyżowania eksploatacja jest zbyt niska, gdyż zbyt mało szukamy punktów pośrednich

Badanie różnych wielkości populacji dla znalezionej już wartości prawdopodobieństwa krzyżowania

iteartion	probability of	probablility of			
count	cross	mutation	population size	result	avg. of 3
50	0,7	0,0015	10	-129,9225231	
50	0,7	0,0015	10	-128,1216584	
50	0,7	0,0015	10	-134,3024988	-130,78223
50	0,7	0,0015	20	-126,894372	
50	0,7	0,0015	20	-129,3113206	
50	0,7	0,0015	20	-126,2489872	-127,48489
50	0,7	0,0015	40	-128,9685366	
50	0,7	0,0015	40	-128,8107691	
50	0,7	0,0015	40	-128,7391461	-128,83948
50	0,7	0,0015	80	-125,6577839	
50	0,7	0,0015	80	-127,1162449	
50	0,7	0,0015	80	-125,5697981	-126,11461
50	0,7	0,0015	160	-122,9685695	
50	0,7	0,0015	160	-127,5770814	
50	0,7	0,0015	160	-126,1463948	-125,56402
50	0,7	0,0015	320	-122,5458892	
50	0,7	0,0015	320	-125,762727	
50	0,7	0,0015	320	-124,538903	-124,28251
50	0,7	0,0015	640	-125,4452076	
50	0,7	0,0015	640	-124,5813347	
50	0,7	0,0015	640	-123,1320999	-124,38621
50	0,7	0,0015	1280	-124,6606268	
50	0,7	0,0015	1280	-125,7096995	
50	0,7	0,0015	1280	-125,3945315	-125,25495
50	0,7	0,0015	2500	-123,9798479	
50	0,7	0,0015	2500	-124,6392139	
50	0,7	0,0015	2500	-124,6106817	-124,40991
50	0,7	0,0015	5000	-127,3068073	
50	0,7	0,0015	5000	-127,0642429	
50	0,7	0,0015	5000	-126,5501517	-126,97373

Wnioski:

- najlepszy wynik jest uzyskiwany dla populacji około 320 osobników – wtedy mamy odpowiedni balans między eksploracja i eksploatacją. W dużych populacjach ciężej jest przeżyć słabym osobnikom , gdyż mają większą konkurencje, a mogą to być osobnicy, którzy są rozwijający i wyciągają algorytm z jakiegoś optimum lokalnego i prowadzą do optimum globalnego. Z drugiej strony zbyt mała populacja przy tej ilości iteracji ma problem, gdyż nie jest w stanie pokryć dostatecznie dobrze przestrzeni rozwiązań aby szybko(przy tej, małej ilości iteracji) dojść do sensownego wyniku. Dla małej populacji pomocna może być zwiększona ilość iteracji

Badanie tego jaka powinna być relacją między wielkością populacji i ilością pokoleń, jeśli mamy stałą, ustaloną liczbę rozwinięć funkcji celu

(rozmiar populacji) * (ilość iteracji) = k , gdzie k jest ustaloną stałą

(rozmiar populacji) / (ilość iteracji) = r, gdzie r jest stałą

 $(ilość iteracji)^2 * r = k$

(ilość iteracji) = sqrt(k / r) (rozmiar populacji) = k / sqrt(k/r)

	•	1	i		ı		i	ı			ı	i
					population					population		
max	population size /			max	size /				max	size /		
evaluations	iterations	result	avg. of 3	evaluations	iterations	result	avg. of 3		evaluations	iterations	result	avg. of 3
100	0,01	-221,6713928		500	0,01	-129,88583			1000	0,01	-123,81799	
100	0,01	-170,6338861		500	0,01	-129,67085			1000	0,01	-124,35766	
100	0,01	-196,2433604	-196,18288	500	0,01	-135,01731	-131,52467		1000	0,01	-123,33224	-123,83596
100	0,05	-160,7736112		500	0,05	-131,36082			1000	0,05	-122,2651	
100	0,05	-147,2390601		500	0,05				1000	0,05	-125,83359	
100	0,05	-195,9979298	-168,00353	500	0,05	-127,74892	-128,84454		1000	0,05	-124,50052	-124,19973
100	0,5	-141,4558483		500	0,5				1000	0,5		
100	0,5	-158,7210535		500	0,5				1000	0,5		
100	0,5	-166,7129115	-155,62994	500	0,5	-129,48539	-136,17274		1000	0,5	-127,21807	-128,43458
100	0,1	-145,8661751		500	0,1	-132,39889			1000	0,1	-127,23589	
100	0,1	-186,1270363		500	0,1	-125,69744			1000	0,1	-123,62513	
100	0,1	-182,9191681	-171,63746	500	0,1	-131,19426	-129,76353		1000	0,1	-126,40607	-125,75569
100	0,3	-162,5483778		500	0,3	-129,4677			1000	0,3	-131,91726	
100	0,3	-162,8937906		500	0,3	-135,4284			1000	0,3	-130,62175	
100	0,3	-191,4679806	-172,30338	500	0,3	-135,39809	-133,43139		1000	0,3	-131,63499	-131,39133
100	0,2	-169,6118049		500	0,2	-130,81215			1000	0,2	-124,67397	
100	0,2	-169,6006404		500	0,2	-130,7239			1000	0,2	-130,39324	
100	0,2	-151,153987	-163,45548	500	0,2	-137,47263	-133,00289		1000	0,2	-127,08789	-127,38504
100	0,7	-165,045158		500	0,7	-137,79658			1000	0,7	-131,08885	
100	0,7	-164,881992		500	0,7	-136,95758			1000	0,7	-128,99299	
100	0,7	-164,3768135	-164,76799	500	0,7	-126,83661	-133,86359		1000	0,7	-125,81738	-128,63307
100	1	-146,459276		500	1	-132,2199			1000	1	-129,08891	
100	1	-145,3214282		500	1	-144,40223			1000	1	-137,03497	
100	1	-141,1969619	-144,32589	500	1	-131,25893	-135,96035		1000	1	-126,05632	-130,72673
100	2	-150,4647173		500	2	-133,76407			1000	2	-133,49985	
100	2	-160,6282985		500	2	-137,49078			1000	2	-137,71446	
100	2	-149,0978767	-153,39696	500	2	-138,98092	-136,74526		1000	2	-130,60393	-133,93941
100	3	-154,0401404		500	3	-136,30168			1000	3	-128,52971	
100	3	-148,1358699		500	3	-139,29756			1000	3	-132,80726	
100	3	-148,6596803	-150,27856	500	3	-129,69661	-135,09862		1000	3	-137,05533	-132,79743
100	5	-150,4130096		500	5	-134,93358			1000	5	-136,97571	
100	5	-144,7846852		500	5	-134,46279			1000	5	-130,40246	
100	5	-149,0953947	-148,0977	500	5	-145,84306	-138,41314		1000	5	-139,12497	-135,50105
100	10	-145,1185502		500	10	-141,25064			1000	10	-133,33719	
100	10	-159,6101878		500	10	-145,13447			1000	10	-135,99405	
100	10	-152,7453882	-152,49138	500	10	-140,21109	-142,19873		1000	10	-139,69706	-136,34276
100	20	-149,633827		500	20	-140,90688			1000	20	-137,66674	
100	20	-142,3704999		500	20	-140,18603			1000	20	-135,22087	
100	20	-147,6848715	-146,56307	500	20	-148,60786	-143,23359		1000	20	-138,71939	-137,20234
100	50	-143,5179968		500	50	-146,0265			1000	50	-141,29748	
100	50	-154,5518037		500	50	-148,68218			1000	50	-136,04969	
100	50	-145,0779532	-147,71592	500	50	-147,4107	-147,37313		1000	50	-141,39646	-139,58121
100	100	-148,6057538		500	100	-143,90828			1000	100	-142,07408	
100	100	-147,3354023		500	100	-143,19925			1000	100	-145,8474	
100	100	-147,8526886	-147,93128	500	100	-148,84608	-145,31787		1000	100	-143,978	-143,96649

	population				population				population				population		
max	size /			max	size /			max	size /			max	size /		
evaluations	iterations	result	avg. of 3			result	avg. of 3	evaluations	iterations	result	avg. of 3	evaluations	iterations	result	avg. of 3
2000	0,01	-120,27115 -120,61135		5000		-118,98205 -119.03822	-	10000	0,01			20000	0,01	-118,52126 -118.66342	
2000	0,01	-119,59206	-120,15819	5000			110 05570	10000	0,01		-118,69267	20000			
2000	0.05	-119,39206	-120,15619	5000			-110,95576	10000	0,01		-110,09207	20000			
2000	0,05	-120,84696		5000				10000	0,05			20000	0,05		
2000	0,05	-122,05016	-121.08802	5000			-119,49915	10000	0.05		-118,9355	20000		-118,6318	
2000	0,05	-123,64205	-121,00002	5000			-113,43313	10000	0,03		-110,5555	20000	0,05	-119,3634	-110,00701
2000	0,5	-125,96621		5000				10000	0,5			20000			
2000	0,5	-126,33444	-125.31423	5000			-121.51912	10000	0,5		-119.66473	20000	0,5	-118,97412	-119.13235
2000	0,1	-121,64127	125,51425	5000			121,51512	10000	0,1		113,001/3	20000	0,1	-118,77464	115,15255
2000	0,1			5000				10000	0,1			20000	0.1	-118,83267	1
2000	0,1		-122,05593	5000			-119.85817	10000	0,1		-119,23504	20000	0.1	-118,77718	-118,79483
2000	0,3			5000				10000	0,3			20000	0.3		
2000	0,3	-122,40444		5000				10000	0,3			20000	0,3	-118,95132	
2000	0,3	-124,86296	-123,25029	5000			-121,12938	10000	0,3		-119,93793	20000	0,3		-118,88374
2000	0,2	-122,70321		5000				10000	0,2			20000	0,2	-118,97323	
2000	0,2	-123,97219		5000				10000	0,2			20000	0,2	-118,96367	1
2000	0,2	-125,38622	-124,02054	5000	0,2	-120,64882	-120,33803	10000	0,2	-119,2797	-119,50382	20000	0,2	-118,83226	-118,92305
2000	0,7	-127,68074		5000	0,7	-121,54689		10000	0,7	-119,76416		20000	0,7	-119,58504	
2000	0,7	-124,93933		5000	0,7	-123,14664		10000	0,7	-119,94919		20000	0,7	-119,4839	
2000	0,7	-125,73074	-126,11694	5000	0,7	-121,40194	-122,03183	10000	0,7	-119,8566	-119,85665	20000	0,7	-119,21122	-119,42672
2000	1	-125,86245		5000	1	-122,36657		10000	1	-120,67905		20000	1	-119,21077	
2000	1	-126,41746		5000	1	-121,73608		10000	1	-120,91859		20000	1	-119,42866	
2000	1	-126,98399	-126,4213	5000	1	-122,266	-122,12288	10000	1	-120,60178	-120,73314	20000	1	-119,04813	-119,22919
2000	2	-127,39397		5000	2	-124,26794		10000	2	-121,43407		20000	2	-119,97738	
2000	2	-126,54546		5000		-122,57962		10000	2	-122,3435		20000	2	220,20000	
2000	2	-123,59815	-125,84586	5000			-123,76171	10000	2	-120,78111	-121,51956	20000	2	-120,10078	-120,0896
2000	3	-127,05401		5000		-125,31108		10000	3	-122,8907		20000	3	-121,00502	
2000	3	-129,75692		5000				10000	3	-121,59142		20000	3	-120,26402	
2000	3	-129,39371	-128,73488	5000			-124,42597	10000	3	-123,1962	-122,55944	20000	3	-120,77143	-120,68016
2000	5	,		5000		,		10000	5	-122,55283		20000	5	-121,2978	
2000	5			5000				10000	5	-123,80935		20000	5	-121,9752	-
2000		-129,85132	-131,28528	5000			-124,98052	10000	5		-123,39518	20000	5		-121,56653
2000	10			5000				10000	10			20000	10		-
2000	10			5000				10000	10		404 50500	20000	10		
2000	10		-131,47315	5000			-126,29232	10000	10		-124,58728	20000	10		-122,54627
2000	20			5000				10000	20			20000	20		
2000	20		404 450	5000			404 570	10000	20		425 70024	20000	20	/	
2000	20		-134,16092	5000			-131,57385	10000	20		-126,70024	20000	20		-125,61035
2000	50			5000				10000	50			20000			-
2000	50		420 7562	5000				10000	50		424 00455	20000			425 70024
2000	50		-139,7563	5000			-132,74926	10000	50		-131,08155	20000			
2000	100			5000				10000	100			20000	100		-
	100	-138,26196	144 65305				435 6460	10000		,	120.00011	20000		-128,62754	420 45444
2000	100	-142,79098	-141,65385	5000	100	-131,92279	-135,6469	10000	100	-129,85152	-128,96911	20000	100	-128,32669	-129,45141

Dla max 100 ewaluacji

Wtedy najlepsze wyniki dostajemy dla dużego r, gdyż wtedy w zasadzie tworzymy jedną generacje i gdy mamy dużą populację, to mamy większą szansę że w tej populacji trafi się wartościowy osobników

Dla reszty przypadków

Widzimy że małe wartości r dają najlepsze wyniki. W takim przypadku mamy dużo generacji i stosunkowo mała populację. Taka konfiguracja daje dobre wyniki, gdyż słabe osobniki mają mniejszą konkurencje i mają większą szanse na przeżycie w porównaniu z sytuacją w której rozmiar populacji byłby duży, a potrafią oni być bardzo rozwojowi dla algorytmu. Do tego gdy mamy dużo iteracji to mutacja ma większe pole do popisu, co poprawia eksploracje

Finalne wnioski

- najlepsza wartość prawdopodobieństwa krzyżowania to 0.7
- stosunek wielkości populacji do ilości iteracji powinien być mały(mniejszy niż 0,01 dla liczby ewaluacji większej niż 100, a lepiej jeszcze większej)
- duża liczba iteracji powoduje zmniejszenie wpływu krzyżowania na działanie algorytmu