Teoría de la integral y de la medida

Hoja n⁰ 3 (Functiones medibles)

- 1.- Consideramos el espacio de probabilidad $(\mathbf{N}, \mathcal{P}(\mathbf{N}), P)$ siendo $P(n) = \frac{1}{2^n}, n = 1, 2, ...$ Definimos $X : \mathbf{N} \to \{0, 1, ..., k-1\}$ mediante $X(n) = \text{resto de } n \pmod{k}, (k \in \mathbf{N}, \text{fijo})$. Sea P^* la probabilidad inducida por X (ver ejercicio 18, Hoja 2). Calcular $P^*(r)$, $0 \le r \le k-1$.
- 2.- Sea \mathcal{A} la σ álgebra formada por $\{\emptyset, \mathbb{R}, (-\infty, 0], (0, \infty)\}$. Sea $f: \mathbb{R} \to \mathbb{R}$ la función definida mediante

$$f(x) = \begin{cases} 0, & \text{si } x \in (-\infty, 0] \\ 1, & \text{si } x \in (0, 1] \\ 2, & \text{si } x \in (1, \infty) \end{cases}$$

¿Es f medible? ¿Cómo son en general las funciones medibles $f:(\mathbb{R},\mathcal{A})\to(\mathbb{R},\mathcal{B}_{\mathbb{R}})$?

- 3.- Para funciones $f:(X,\mathcal{A})\to(\mathbb{R},\mathcal{B}_{\mathbb{R}})$, ¿cuáles de las siguientes afirmaciones son ciertas?
- a) | f | medible $\Rightarrow f$ medible.
- b) $f_1 + f_2$ medible $\Rightarrow f_1 \circ f_2$ medible.
- c) $f_1.f_2$ medible $\Rightarrow f_1$ ó f_2 medible
- d) $f_1 + f_2$ medible $\Rightarrow f_1 y f_2$ medible
- d) $f_1 f_2$ medible $\Rightarrow f_1 y f_2$ medible
- 4.- Sea $f:(X,\mathcal{A},\mu)\to(\bar{\mathbb{R}},\mathcal{B}_{\bar{\mathbb{R}}})$ una función medible no-negativa, μ una medida σ -finita en \mathcal{A} . Probar que $f(x)=\lim t_n(x)$ siendo $\{t_n\}_n$ una sucesión creciente de funciones simples no negativas, tales que t_n toma valores distintos de cero solamente en un conjunto de medida finita. Sugerencia: Construir $\mathcal{B}_1\subset\mathcal{B}_2\subset\ldots\mathcal{B}_n\ldots$ $\mu(\mathcal{B}_n)<\infty$, tomar $t_n=s_n\chi_{\mathcal{B}_n}$, siendo s_n una sucesión creciente de funciones simples no-negativas con límite f.
- 5.- Probar que si $f: X \to \overline{\mathbb{R}}$ verifica que $f^{-1}((r, \infty])$ es medible para todo $r \in \mathbf{Q}$, entonces f es medible. (El resultado es cierto en general si $r \in A$, con A denso en \mathbb{R}).
- 6.- Si $f_n:(X,\mathcal{A})\to(\mathbb{R},\mathcal{B}), n=1,2,\ldots$, son medibles, probar que el conjunto $A=\{x\in X: \text{existe } \lim_{n\to\infty}f_n(x)\}$ es un elemento de \mathcal{A} .
- 7.- Probar que el supremo de una familia no contable de funciones medibles con valores en $[-\infty, \infty]$ puede no ser medible (a menos que la σ -álgebra sea muy especial).
- 8.- Sea (X, \mathcal{A}) un espacio medible. Supongamos que tenemos una familia $\{E_{\alpha}\}_{{\alpha}\in\mathbf{R}}$ de conjuntos medibles tal que $E_{\alpha}\subset E_{\beta}$ siempre que $\alpha<\beta, \bigcup_{\alpha\in\mathbf{R}}E_{\alpha}=X$ y $\bigcap_{\alpha\in\mathbf{R}}E_{\alpha}=\emptyset$. Probar que existe una función medible $f\colon X\to\mathbf{R}$ tal que $f(x)\leq\alpha$ en E_{α} y $f(x)\geq\alpha$ en E_{α}^c para todo α . (*Pista*. Usar el ejercicio 5.)
- 9.- Probar que si $f: \mathbf{R} \to \mathbf{R}$ es monótona, entonces f es medible Borel.
- 10.- (Teorema de Egorov) Sea (X, \mathcal{A}, μ) un espacio de medida finita (es decir, $\mu(X) < \infty$), sea $f_n \colon X \to \mathbf{C}$ una sucesin de funciones medibles que converge puntualmente en casi todo punto a un límite $f \colon X \to \mathbf{C}$, y sea $\varepsilon > 0$. Probar que existe un conjunto medible E de medida a lo sumo ε tal que f_n converge uniformemente a f fuera de E. Dar un ejemplo que demuestre que la afirmacin puede ser falsa cuando la medida μ no sea finita.