

## **Art of Problem Solving** 2011 Iran Team Selection Test

Iran Team Selection Test 2011

| Day 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | In acute triangle $ABC$ angle $B$ is greater than $C$ . Let $M$ is midpoint of $BC$ . $D$ and $E$ are the feet of the altitude from $C$ and $B$ respectively. $K$ and $E$ are midpoint of $E$ and $E$ are midpoint of $E$ and $E$ are the line through $E$ parallel to $E$ in $E$ , prove that $E$ and $E$ are the line through $E$ and $E$ in $E$ are the line through $E$ and $E$ are the line through $E$ are the line through $E$ and $E$ are the line through $E$ are the line through $E$ and $E$ are the line through $E$ are the line through $E$ and $E$ are through $E$ and $E$ are the line through $E$ are the line through $E$ are the line through $E$ and $E$ are through $E$ are throu |
| 2     | Find all natural numbers $n$ greater than 2 such that there exist $n$ natural numbers $a_1, a_2, \ldots, a_n$ such that they are not all equal, and the sequence $a_1 a_2, a_2 a_3, \ldots$ forms an arithmetic progression with nonzero common difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3     | There are $n$ points on a circle $(n > 1)$ . Define an "interval" as an arc of a circle such that it's start and finish are from those points. Consider a family of intervals $F$ such that for every element of $F$ like $A$ there is almost one other element of $F$ like $B$ such that $A \subseteq B$ (in this case we call $A$ is sub-interval of $B$ ). We call an interval maximal if it is not a sub-interval of any other interval. If $m$ is the number of maximal elements of $F$ and $a$ is number of non-maximal elements of $F$ , prove that $n \ge m + \frac{a}{2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Day 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4     | Define a finite set $A$ to be 'good' if it satisfies the following conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | -(a) For every three disjoint element of A, like $a, b, c$ we have $gcd(a, b, c) = 1$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | -(b) For every two distinct $b, c \in A$ , there exists an $a \in A$ , distinct from $b, c$ such that $bc$ is divisible by $a$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | Find all good sets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5     | Find all surjective functions $f: \mathbb{R} \to \mathbb{R}$ such that for every $x, y \in \mathbb{R}$ , we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | f(x + f(x) + 2f(y)) = f(2x) + f(2y).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6     | The circle $\omega$ with center $O$ has given. From an arbitrary point $T$ outside of $\omega$ draw tangents $TB$ and $TC$ to it. $K$ and $H$ are on $TB$ and $TC$ respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | a) $B'$ and $C'$ are the second intersection point of $OB$ and $OC$ with $\omega$ respectively. $K'$ and $H'$ are on angle bisectors of $\angle BCO$ and $\angle CBO$ respectively such                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Contributors: goldeneagle, Potla, shoki



## Art of Problem Solving

### 2011 Iran Team Selection Test

that  $KK' \perp BC$  and  $HH' \perp BC$ . Prove that K, H', B' are collinear if and only if H, K', C' are collinear.

b) Consider there exist two circle in TBC such that they are tangent two each other at J and both of them are tangent to  $\omega$  and one of them is tangent to TB at K and other one is tangent to TC at H. Prove that two quadrilateral BKJI and CHJI are cyclic (I is incenter of triangle OBC).

| Day | 3 |
|-----|---|
|-----|---|

8

7 Find the locus of points P in an equilateral triangle ABC for which the square root of the distance of P to one of the sides is equal to the sum of the square root of the distance of P to the two other sides.

Let p be a prime and k a positive integer such that  $k \leq p$ . We know that f(x)is a polynomial in  $\mathbb{Z}[x]$  such that for all  $x \in \mathbb{Z}$  we have  $p^k | f(x)$ .

(a) Prove that there exist polynomials  $A_0(x), \ldots, A_k(x)$  all in  $\mathbb{Z}[x]$  such that

$$f(x) = \sum_{i=0}^{k} (x^{p} - x)^{i} p^{k-i} A_{i}(x),$$

(b) Find a counter example for each prime p and each k > p.

9 We have n points in the plane such that they are not all collinear. We call a line  $\ell$  a 'good' line if we can divide those n points in two sets A, B such that the sum of the distances of all points in A to  $\ell$  is equal to the sum of the distances of all points in B to  $\ell$ . Prove that there exist infinitely many points in the plane such that for each of them we have at least n+1 good lines passing through them.

### Day 4

**10** Find the least value of k such that for all  $a, b, c, d \in \mathbb{R}$  the inequality

$$\sqrt{(a^2+1)(b^2+1)(c^2+1)} + \sqrt{(b^2+1)(c^2+1)(d^2+1)} + \sqrt{(c^2+1)(d^2+1)(a^2+1)} + \sqrt{(d^2+1)(d^2+1)(d^2+1)(d^2+1)} + \sqrt{(d^2+1)(d^2+1)(d^2+1)(d^2+1)} + \sqrt{(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)} + \sqrt{(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2+1)(d^2$$

$$\geq 2(ab+bc+cd+da+ac+bd)-k$$

holds.

www.artofproblemsolving.com/community/c5387

Contributors: goldeneagle, Potla, shoki



# **Art of Problem Solving** 2011 Iran Team Selection Test

| 11 | Let $ABC$ be a triangle and $A', B', C'$ be the midpoints of $BC, CA, AB$ respectively. Let $P$ and $P'$ be points in plane such that $PA = P'A', PB = P'B', PC = P'C'$ . Prove that all $PP'$ pass through a fixed point. |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 | Suppose that $f: \mathbb{N} \to \mathbb{N}$ is a function for which the expression $af(a)+bf(b)+2ab$ for all $a,b\in\mathbb{N}$ is always a perfect square. Prove that $f(a)=a$ for all $a\in\mathbb{N}$ .                 |

www.artofproblemsolving.com/community/c5387 Contributors: goldeneagle, Potla, shoki