

UNIVERSIDADE LUTERANA DO BRASIL

Pró-Reitoria de Graduação Direção Geral de Ensino

CURSO: SISTEMAS DE INFORMAÇÃO	ANO/SEMESTRE 2014/2
DISCIPLINA: Paradigmas de Linguagem de Programação CODIGO: 204613 PROFESSOR: Márcio Daniel Puntel	CRÉDITOS: 04 C/H TOTAL: 68

PLANO DE ENSINO-APRENDIZAGEM

1. EMENTA

A disciplina de Paradigmas de Linguagens de Programação proporciona o estudo das características das linguagens de programação (conceitos, tipos de dados, escopo de declarações) e conceitualização dos paradigmas de linguagens de programação (características, facilidades e problemas).

2. OBJETIVOS DA DISCIPLINA

2.1 GERAL:

O objetivo da disciplina é capacitar o aluno a compreender os diferentes paradigmas de linguagens existentes, assim como, as principais características e peculiaridades das linguagens de programação.

ESPECÍFICO (S)

- Desenvolver no aluno o senso crítico na escolha da melhor linguagem de programação.
- Considerar os aspectos relevantes do problema a ser resolvido e a resolução ou estratégia de resolução adotada.
- Generalizar e abstrair as principais características de cada paradigma de linguagem.
- Desenvolver no aluno a competência de abstração conceitual para o estudo e abordagem de novas linguagens de programação.

3. CONTEÚDO PROGRAMATICO

- INTRODUÇÃO ÀS LINGUAGENS DE PROGRAMAÇÃO:
 - a) Conceituação;
 - b) Histórico:
 - c) As linguagens de programação no processo de desenvolvimento de software;
 - d) Abstração: dados, controle, unidade;
 - e) Amarração;
 - f) Unidades de programa.
- ESTRUTURAÇÃO DE LINGUAGENS:
- TIPOS DE DADOS:
 - a) Tipos definidos pelos usuários;
 - b) Tipo abstrato de dados.
- ESTRUTURAS DE CONTROLE E COMPOSIÇÃO DE PROGRAMAS:
 - a) Tipos de estruturas de controle;
 - b) Composição de programas;

- PARADIGMA ORIENTADO A OBJETOS: Conceitos do paradigma de orientação a objetos; Princípios da programação orientada a objetos e estruturas; Características das linguagens orientadas a objetos.
- PARADIGMA FUNCIONAL: Conceitos do paradigma funcional; Princípios da programação funcional;

Características das linguagens funcionais.

- Visão Geral dos demais principais paradigmas de programação:
 - a) Paradigma Programação em Lógica;
 - b) Paradigma Concorrente;
 - c) Paradigma Orientado a Eventos;
 - d) Paradigma Distribuído;
 - e) Paradigma Orientado a Agentes;
 - f) Paradigma Orientado a Aspectos.

4. METODOLOGIA

As atividades de aprendizagem consistem em leituras, reflexões e discussões sobre elas, exercícios teóricos e práticos, trabalhos de grupo, e avaliação G1 e G2.

- *a- Leituras:* as leituras indicadas na disciplina deverão ser cumpridas no prazo estabelecido a fim de facilitar a aprendizagem do grupo e as discussões sobre os temas que requerem a participação de cada um dos alunos.
- b- Reflexões e discussões: Após as leituras espera-se que os alunos identifiquem os conceitos-chave, ideias e questões. Esses itens formarão a base para a discussão. Os alunos poderão ampliar as questões que estão sendo discutidas e sugerir leituras complementares.
- c- Exercícios teóricos e práticos: Exercícios planejados para complementar, ampliar e organizar a aprendizagem. Serão disponibilizados ao longo do semestre acompanhados de data de entrega. Estes exercícios poderão ser individuais ou em grupo conforme a orientação determinada.
- d- Estudos de caso: Narrativas de situações que deverão ser exploradas criticamente.
 Objetivam a interpretação e aplicação prática das discussões teóricas da disciplina.
- e- Trabalhos em grupo: Formação de grupos para participação de discussões, execução da tarefas e envolvimento em atividades de grupo e simulações. A formação da equipe e as diretrizes para a formação dos grupos será dada no momento apropriado.

5. PROCESSOS AVALIATIVOS

A avaliação será realizada mediante prova individual e trabalhos desenvolvidos em aula e atividades extra-classe.

- **G1:** Prova individual (70%) e Trabalhos (30%).
- G2: Prova individual (50%), Trabalhos (30%) e Seminário (20%).

<u>Trabalhos:</u> Realizar atividades relacionadas às áreas de conhecimento para o projeto.

Seminário: Apresentação dos Trabalhos – realizados no semestre - dos grupos.

- APROVAÇÃO: para aprovação na disciplina o aluno deve ter nota final mínima de 6,0 (seis) ao final do semestre.
- **PLÁGIO:** em caso de identificação de plágio nos trabalhos, o respectivo trabalho receberá nota 0 (zero).
- <u>- Freqüência:</u> a presença do aluno em aula é obrigatória, faltas acima de 25% (vinte e cinco por cento) das aulas implicam em falta de frequência (reprovação), independentemente dos demais conceitos.

6. BILIOGRAFIA BÁSICA

- 1. SEBESTA, R. W. **Conceitos de Linguagens de Programação**. Editora Bookman, 5. ed, 2003.
- 2. MELO, A. C. V. de. **Princípios de linguagens de programação**. São Paulo: Edgard Blücher, 2003.
- 3. VAREJÃO, F. M. . Linguagens de Programação Conceitos e Técnicas. 1. ed. Rio de Janeiro: Elsevier Editora Ltda (Editora Campus), 2004.

7. BIBLIOGRÁFIA COMPLEMENTAR

- 1. SANTOS, Rafael. Introdução à programação orientada a objetos usando Java. Rio de Janeiro: Campus, 2003.
- 2. MONTENEGRO, Fernando. **Orientação a objetos em C++**. Rio de Janeiro: Ciência Moderna. 1994.
- 3. TUCKER, Allen e NOONAM, Robert. **Linguagens de Programação Princípios e Paradigmas**. Editora McGrawHill.
- 4. FRIEDMAN Daniel. P., HAYNES Christopher T. e WAND Mitchell. **Fundamentos de linguagem de programação** Segunda Edição. Editora Berkeley, 2001.
- 5. WATT, David. **Programming Language Concepts and Paradigms**. Prentice Hall International Series in Computer Science, 1990.
- 10. BIBLIOTECA PERSON (livros disponíveis na biblioteca virtual mediante login no autoatendimento da ULBRA):
- 1. ASCENCIO, A. F. G, CAMPOS, E. A. V. Fundamentos da Programação de Computadores: algoritmos, Pascal e C/C++ e Java. São Paulo: Pearson, 2012.

4. CRONOGRAMA

AULA	DESENVOLVIMENTO
1ªAULA 29/07	Apresentação professor; Apresentação do Plano de Ensino; Introdução as Linguagens (histórico, evolução, tipos, sintaxe e semântica).
2ª AULA 05/08	Estudo da estrutura dos tipos de dados (Simples e compostos. Tipos primitivos, estruturados e definidos pelo usuário. Operações entre tipos de dados). Estruturas de Controle (procedimentos, funções, parâmetros).
3ª AULA 12/08	Paradigma Funcional (introdução a lógica funcional)
4ª AULA 16/08	Atividade não presencial – Pesquisar qual linguagem você utilizaria para desenvolver um sistema. Por quê?
5ª AULA 19/08	Linguagem Funcional (conceitos, ambiente, estrutura, características, notação, sintaxe e semântica).
6ª AULA 26/08	Estudo do Paradigma Concorrente.
7ª AULA 02/09	Paradigma Programação em Lógica (histórico, conceitos, características e linguagens). Exercício de Programação em Lógica.
8ª AULA 09/09	(Trabalho G1-01) Estudo de Caso usando linguagem estruturada.
9ª AULA 16/09	Avaliação G1 - Prova
10ª AULA 23/09	Paradigma Orientado a Objetos (histórico, conceitos, características e linguagens). Comparação ente Programação Estruturada e POO

11ª AULA	Estudo dos conceitos da programação orientada a objetos: classes, objetos, atributos, operações, herança, abstração, representação, encapsulamento,	
30/09	polimorfismo e comunicação entre objetos.	
	Exercícios sobre classe e objetos	
12 ^a AULA	Paradigma Orientado a Objetos (herança e abstração)	
07/10	Exercícios sobre herança e abstração.	
13ª AULA 14/10	Exercícios sobre herança e abstração.	
14ª AULA 21/10	(Trabalho G2-01) Estudo de Caso usando POO.	
15 ^a AULA	Paradigma Orientado a Objetos (polimorfismo e encapsulamento).	
28/10	Exercícios sobre polimorfismo e encapsulamento.	
16 ^a AULA	Everafeiro colore nelimentiamo e encoronte	
04/11	Exercícios sobre polimorfismo e encapsulamento.	
17ª AULA	Linguagens para alto desempenho, programação paralela, programação	
11/11	distribuída.	
1 1/ 1 1	Cases.	
18 ^a AULA	Seminário sobre Paradigma Orientado a Eventos	
18/11	Seminário sobre Paradigma Orientado a Agentes	
19 ^a AULA	Seminário sobre Paradigma Orientado a Aspectos	
25/11	Seminário sobre Paradigma Distribuído	
20 ^a AULA	Avaliação de Grau (G2) – Prova	
02/12	Availação de Grad (G2) - Prova	
21 ^a AULA	Revisão	
09/12	IVEAISOO	
22ª AULA	Substituição do Grau - Prova	
16/12	Substituição de Grau – Prova	
Feriados:		