复旦大学 2021 每周一题

1 高代Ⅰ每周一题

1. xxx

复旦大学 2022 每周一题

2 高代 II 每周一题

1. xxx

- 2. 设 A,B 分别是数域 \mathbb{K} 上的 m,n 阶矩阵,他们在复数域 \mathbb{C} 中有公共的特征值,证明:存在非零矩阵 $C\in M_{m\times n}(\mathbb{K})$,使得 AC=CB.
- 3. 设 A 是数域 \mathbb{K} 上的 n 阶矩阵,其特征多项式等于极小多项式,证明:矩阵方程 XA = A'X 的解是 \mathbb{K} 上的对称阵.
- 4. 设 V 为 n 阶复方阵全体构成的线性空间,V 上的线性变换 φ 定义为 $\varphi(X) = AX XA$,其中 $A \in V$. 证明: φ 可对角化的充要条件是 A 可对角化.

注. 本题是第二届 CMC 决赛题的推广.

- 5. 设 V 为 n 阶复方阵全体构成的线性空间,V 上的线性变换 φ 定义为 $\varphi(X)=JXJ$,其中 $J=J_n(0)$ 是特征值为 0 的 n 阶 Jordan 块,试求 φ 的 Jordan 标准型.
- 6. 设 a 为实数,求下列 n 阶实对称阵的正负惯性指数:

$$A = \begin{pmatrix} 1 & a & a^2 & \cdots & a^{n-1} \\ a & 1 & a & \cdots & a^{n-2} \\ a^2 & a & 1 & \cdots & a^{n-3} \\ \vdots & \vdots & \vdots & & \vdots \\ a^{n-1} & a^{n-2} & a^{n-3} & \cdots & 1 \end{pmatrix}$$

- 7. 设 $A=(a_{ij})$ 为 n 阶正定实对称阵, $B=(b_{ij})$ 为 n 阶半正定实对称阵且主对角元全打于零,证明: Hadamard 乘积 $A\circ B=(a_{ij}b_{ij})$ 是正定对称阵.
- 8. 设 A 为 n 阶实对称阵, B 为 n 阶半正定实对称阵, 满足 |A+iB|=0, 求证: 存在 n 维非零实列向量, 使得 $A\alpha=B\alpha=0$.

注. FDU21 期末考试第八题推广.