

	INSTRUKCJA OBSŁUGI	1
	USER MANUAL	39
i Ši	MANUAL DE USO	75
	РУКОВОДСТВО	
	ПО ЭКСПЛУАТАЦИИ	111
	CMM-40	

v1.10 01.03.2022

INSTRUKCJA OBSŁUGI

MULTIMETR PRZEMYSŁOWY

CMM-40

Wersja 1.10 01.03.2022

Multimetr TRMS CMM-40 przeznaczony jest do pomiaru napięcia stałego i zmiennego, prądu stałego i zmiennego, rezystancji, pojemności elektrycznej, częstotliwości (w elektryce i elektronice), cyklu roboczego (wypełnienia), a także testowania diod, ciągłości połączeń oraz pomiaru temperatury.

Do najważniejszych cech przyrządu CMM-40 należą:

- automatyczna lub ręczna zmiana zakresów,
- funkcja HOLD umożliwiająca odczyt pomiarów przy niedostatecznym oświetleniu lub w trudno dostępnych miejscach,
- funkcja REL umożliwiająca dokonywanie pomiarów względnych,
- funkcja MAX/MIN umożliwiająca wyświetlanie wartości maksymalnej i minimalnej,
- funkcja zatrzymania wartości szczytowej,
- pamięć 2000 wyników pomiarów,
- sygnalizacja dźwiękowa ciągłości obwodu (Beeper),
- samoczynne wyłączanie nieużywanego przyrządu ,
- wyświetlacz 4 ¾ cyfry,
- obudowa dwukomponentowa, wodoodporna.

SPIS TREŚCI

1	Ws	stęp	. 5
2	Be	zpieczeństwo	. 6
	2.1	Międzynarodowe symbole bezpieczeństwa	8
3	Prz	zygotowanie miernika do pracy	8
4	Ор	is funkcjonalny	. 9
	4.1 4.1	Gniazda pomiarowe i elementy wyboru funkcji pomiarowe	
	4.1	l.2 Elementy wyboru funkcji pomiarowej	
	4.2	Wyświetlacz ciekłokrystaliczny (LCD)	
_	4.3	· · · · · ·	
5	Po	miary	14
	5.1	Pomiar napięcia stałego	. 14
	5.2	Pomiar napięcia przemiennego	
	5.3	Pomiar napięcia w [mV]	
	5.4	Pomiar prądu stałego	
	5.5	Pomiar prądu przemiennego (częstotliwość, cykl roboczy).	
	5.6	Pomiar rezystancji	
	5.7	Test ciągłości obwodu	
	5.8	Test diod	
	5.9	Pomiar pojemności	
		Pomiar temperatury	
	5.11	Pomiar częstotliwości lub % cyklu roboczego (wypełnienia)	
		Pomiar pętli prądowej 4 ~ 20mA %	
6	Fu	nkcje specjalne	23
	6.1	Ręczna zmiana podzakresów	.23
	6.2	Tryb MAX/MIN	
	6.3	Tryb pomiaru względnego	.24
	6.4	Funkcja HOLD	
	6.5	Funkcja zatrzymania wartości szczytowej PEAK HOLD	.24
	6.6	Podświetlenie wyświetlacza	
	6.7	Zapisywanie danych	
	6.8	Kasowanie pamięci	.26

6	6.9 Przywoływanie wyników z pamięci	26
6	6.10 Konfiguracja parametrów	27
6	6.11 AC + DC	27
7	Wymiana baterii	28
8	Wymiana bezpieczników	29
9	Utrzymanie i konserwacja	30
10	Magazynowanie	31
11	Rozbiórka i utylizacja	31
12	? Dane techniczne	32
13	B Akcesoria standardowe	36
14	Serwis	36
15	Usługi laboratoryjne	37

1 Wstęp

Dziękujemy za zakup multimetru firmy Sonel. Miernik CMM-40 jest nowoczesnym, wysokiej jakości przyrządem pomiarowym, łatwym i bezpiecznym w obsłudze. Jednak przeczytanie niniejszej instrukcji pozwoli uniknąć błędów przy pomiarach i zapobiegnie ewentualnym problemom przy obsłudze miernika.

W niniejszej instrukcji posługujemy się dwoma rodzajami ostrzeżeń. Są to teksty w ramkach, opisujące możliwe zagrożenia zarówno dla użytkownika, jak i miernika. Teksty rozpoczynające się słowem 'OSTRZEŻENIE:' opisują sytuacje, w których może dojść do zagrożenia życia lub zdrowia, jeżeli nie przestrzega się instrukcji. Słowo 'UWAGA!' rozpoczyna opis sytuacji, w której niezastosowanie się do instrukcji grozi uszkodzeniem przyrządu.

OSTRZEŻENIE:

Miernik CMM-40 jest przeznaczony do pomiarów prądu oraz napięcia stałego i przemiennego, częstotliwości, rezystancji, pojemności i temperatury, a także testów diod i ciągłości. Każde inne zastosowanie niż podane w tej instrukcji może spowodować uszkodzenie przyrządu i być źródłem poważnego niebezpieczeństwa dla użytkownika.

OSTRZEŻENIE:

Miernik CMM-40 może być używany jedynie przez wykwalifikowane osoby posiadające odpowiednie uprawnienia do prac przy instalacjach elektrycznych. Posługiwanie się miernikiem przez osoby nieuprawnione może spowodować uszkodzenie przyrządu i być źródłem poważnego niebezpieczeństwa dla użytkownika.

OSTRZEŻENIE:

Przed użyciem przyrządu należy dokładnie przeczytać niniejszą instrukcję i zastosować się do przepisów bezpieczeństwa i zaleceń producenta.

2 Bezpieczeństwo

Aby zapewnić odpowiednią obsługę i poprawność uzyskiwanych wyników należy przestrzegać następujących zaleceń:

- przed rozpoczęciem eksploatacji miernika należy dokładnie zapoznać się z niniejszą instrukcją,
- przyrząd powinien być obsługiwany wyłącznie przez osoby odpowiednio wykwalifikowane i przeszkolone w zakresie BHP,
- należy zachować dużą ostrożność przy pomiarze napięć przekraczających 40VDC lub 20VAC RMS gdyż stanowią one potencjalne zagrożenie porażeniem,
- przed przystąpieniem do pomiarów należy ustawić przełącznik funkcji w odpowiednim położeniu,
- w trakcie pomiarów napięcia nie należy przełączać urządzenia w tryb pomiaru prądu lub rezystancji,
- nie wolno przekraczać maksymalnego dopuszczalnego zakresu napięcia wejściowego dla żadnej funkcji,
- nie wolno podłączać napięcia do miernika kiedy wybrana jest funkcja rezystancji,
- w przypadku zmiany zakresów zawsze należy odłączyć przewody pomiarowe od mierzonego obwodu,
- nie wolno przekraczać maksymalnych limitów sygnału wejściowego,
- niedopuszczalne jest używanie:
 - ⇒ miernika, który uległ uszkodzeniu i jest całkowicie lub częściowo niesprawny
 - ⇒ przewodów z uszkodzoną izolacją
 - ⇒ miernika przechowywanego zbyt długo w złych warunkach (np. zawilgoconego)
- naprawy mogą być wykonywane wyłącznie przez autoryzowany serwis.

OSTRZEŻENIE:

Nigdy nie wolno przystępować do pomiarów, jeżeli użytkownik ma mokre lub wilgotne dłonie.

OSTRZEŻENIE:

Nie wolno dokonywać pomiarów w atmosferze grożącej wybuchem (np. w obecności gazów palnych, oparów, pyłów, itp.). W przeciwnym razie używanie miernika w tych warunkach może wywołać iskrzenia i spowodować eksplozję.

	WAGA!
Wartości graniczr	ne sygnału wejściowego
Funkcja	Maksymalna wartość wejściowa
V DC lub V AC	1000V DC/AC rms
mA AC/DC	Bezpiecznik szybki 500mA 1000V
A AC/DC	Bezpiecznik szybki 10A 1000V (20A maksymalnie przez 30 se- kund co 15 minut)
Częstotliwość, rezystancja, pojemność elektryczna, cykl roboczy, test diody, ciągłość	1000V DC/AC rms
Temperatura	1000V DC/AC rms

2.1 Międzynarodowe symbole bezpieczeństwa

Niniejszy symbol, umieszczony w pobliżu innego symbolu lub gniazda wskazuje, że użytkownik winien zapoznać się z dalszymi informacjami zamieszczonymi w instrukcji obsługi.

Niniejszy symbol, umieszczony w pobliżu gniazda wskazuje, że w warunkach normalnego użytkowania istnieje możliwość wystąpienia niebezpiecznych napięć.

Podwójna izolacja

3 Przygotowanie miernika do pracy

Po zakupie miernika należy sprawdzić kompletność zawartości opakowania.

Przed przystąpieniem do wykonywania pomiarów należy:

- upewnić się, że stan baterii pozwoli na wykonanie pomiarów,
- sprawdzić czy obudowa miernika i izolacja przewodów pomiarowych nie są uszkodzone,
- dla zapewnienia jednoznaczności wyników pomiarów zaleca się do gniazda COM podłączać przewód czarny a do pozostałych gniazd przewód czerwony.

OSTRZEŻENIE:

Podłączanie nieodpowiednich lub uszkodzonych przewodów grozi porażeniem niebezpiecznym napięciem.

4 Opis funkcjonalny

4.1 Gniazda pomiarowe i elementy wyboru funkcji pomiarowej

CMM-40

4.1.1 Gniazda

7 gniazda pomiarowe μA, mA oraz 10A

Wejścia pomiarowe dla pomiarów prądów stałych i przemiennych.

8 gniazdo pomiarowe COM

Wejście pomiarowe wspólne dla wszystkich funkcji pomiarowych.

9 gniazdo pomiarowe Ω → • • CAPV°F°CHz%

Wejście pomiarowe dla pozostałych pomiarów oprócz prądów.

4.1.2 Elementy wyboru funkcji pomiarowej

- 1 wyświetlacz LCD
- 2 STORE (⊲RECALL)
 - Wpis wyniku do pamięci (wywołanie wyniku z pamięci)
- 3 przycisk MAX/MIN
 - Wyświetlanie wartości maksymalnej i minimalnej
- 4 przycisk MODE
 - Zmiana trybu pomiaru
- 5 przycisk RANGE
 - Ręczna zmiana zakresu pomiarowego

6 przełącznik obrotowy

Wybór funkcji:

- μA pomiar prądu stałego i przemiennego do 4000μA
 - 4~20mA% pomiar prądu pętli 4...20mA
- mA pomiar prądu stałego i przemiennego do 400mA
- 10AHz% pomiar prądu stałego i przemiennego do 10A, częstotliwości, cyklu roboczego (wypełnienia)
- OFF miernik wyłączony
- VacHz% pomiar napięcia przemiennego, częstotliwości, cyklu roboczego
- V_{DC} pomiar napięcia stałego
- mV pomiar napięcia stałego i przemiennego do 400mV
- Hz% pomiar częstotliwości, cyklu roboczego (wypełnienia)
- Ω → → → CAP pomiar rezystancji, ciągłości, pojemności i test diod
- Temp pomiar temperatury w stopniach Celsjusza lub Fahrenheita

10 przycisk 🍍

Podświetlenie wyświetlacza

11 przycisk EXIT (AC+DC)

- Wyjście
- Pomiar wartości trms

12 przycisk HOLD

Zatrzymanie wyniku pomiaru na wyświetlaczu

13 przycisk REL

Pomiar względny

4.2 Wyświetlacz ciekłokrystaliczny (LCD)

Wyświetlacz ciekłokrystaliczny miernika CMM-40

• y - symbol włączenia testu ciągłości

→ - symbol włączenia testu diod

🕆 – słaba bateria

n – nano (10⁻⁹) (pojemność elektryczna)

μ – mikro (10⁻⁶) (ampery, pojemność)

m - milli (10⁻³) (volty, ampery)

A - ampery

k - kilo (103) (ohmy)

F – farady (pojemność elektryczna)

M - mega (10⁶) (ohmy)

 Ω – ohmy

Hz - hertz (częstotliwość)

% - procent (współczynnik wypełnienia)

DC, AC - napięcie (prąd) stałe, zmienne

°C - stopnie Celsjusza

°F - stopnie Fahrenheita

MAX - maksimum

MIN - minimum

No. - numer wyniku w pamięci

S - sekunda

SET – ustawianie parametrów pomiaru

AC +DC - prad zmienny + prad stały

TRMS - rzeczywista wartość skuteczna prądu

STO - zapisz

RCL - przywołaj

AUTO - symbol automatycznego wyboru podzakresu

PEAK – wartość szczytowa

V - wolty

a – pomiar względny

HOLD - symbol włączenia funkcji HOLD

4.3 Przewody

Producent gwarantuje poprawność wskazań jedynie przy użyciu firmowych przewodów.

OSTRZEŻENIE:

Podłączanie nieodpowiednich przewodów grozi porażeniem wysokim napięciem lub błędami pomiarowymi.

5 Pomiary

Należy dokładnie zapoznać się z treścią tego rozdziału, ponieważ zostały w nim opisane sposoby wykonywania pomiarów i podstawowe zasady interpretacji wyników.

5.1 Pomiar napięcia stałego

UWAGA:

Nie należy mierzyć napięcia stałego w momencie, gdy silnik elektryczny w obwodzie jest włączany lub wyłączany. Mogłoby to spowodować duże skoki napięcia i w rezultacie uszkodzenie miernika.

Aby wykonać pomiar napięcia należy:

- ustawić przełącznik obrotowy w pozycji VDC,
- w razie potrzeby przyciskiem RANGE ustawić ręcznie zakres pomiarowy,
- podłączyć czerwony przewód pomiarowy do gniazda
 Ω→→ ••) CAPV°F°CHz% a czarny do gniazda COM,
- przyłożyć ostrza sond do punktów pomiarowych; sonda czerwona powinna być przyłożona do punktu o wyższym potencjale,
- odczytać wynik pomiaru na wyświetlaczu,
- po zakończeniu pomiarów wyjąć przewody z gniazd pomiarowych miernika.

5.2 Pomiar napięcia przemiennego

OSTRZEŻENIE:

Niebezpieczeństwo porażenia. Końcówki sondy mogą nie być dostatecznie długie, aby dosięgnąć elementów pod napięciem wewnątrz niektórych przyłączy sieciowych 240V dla urządzeń elektrycznych, ponieważ styki są umieszczone w głębi gniazdek. Na skutek tego odczyt będzie wskazywał wartość 0V, kiedy gniazdo w rzeczywistości może znajdować się pod napięciem. Należy się upewnić, że końcówki sondy dotykają metalowych styków wewnątrz gniazda zanim użytkownik założy, że gniazdo nie znajduje się pod napięciem.

UWAGA:

Nie należy mierzyć napięcia przemiennego w momencie, gdy silnik elektryczny w obwodzie jest włączany lub wyłączany. Mogłoby to spowodować duże skoki napięcia i w rezultacie uszkodzenie miernika.

Aby wykonać pomiar napięcia należy:

- ustawić przełącznik obrotowy w pozycji VacHz%,
- w razie potrzeby przyciskiem RANGE ustawić ręcznie zakres pomiarowy,
- podłączyć czerwony przewód pomiarowy do gniazda
 Ω → □) CAPV°F°CHz% a czarny do gniazda COM,
- przyłożyć ostrza sond do punktów pomiarowych,
- odczytać wynik pomiaru na wyświetlaczu,
- nacisnąć przycisk MODE celem wyświetlenia wartości "Hz",
- odczytać wartość częstotliwości na wyświetlaczu głównym,
- nacisnąć ponownie przycisk MODE celem wyświetlenia wartości "%".
- odczytać wartość % dla cyklu roboczego na wyświetlaczu głównym,

- nacisnąć przycisk EXIT i przytrzymać go przez dwie sekundy, aby przejść do funkcji AC+DC,
- wykonać pomiar rzeczywistej wartości skutecznej prądu stałego i zmiennego,
- po zakończeniu pomiarów wyjąć przewody z gniazd pomiarowych miernika.

5.3 Pomiar napięcia w [mV]

UWAGA:

Nie należy mierzyć napięcia w [mV] w momencie, gdy silnik elektryczny w obwodzie jest włączany lub wyłączany. Mogłoby to spowodować duże skoki napięcia i w rezultacie uszkodzenie miernika.

- ustawić przełącznik obrotowy w pozycji mV,
- nacisnąć przycisk MODE w celu wyświetlenia wartości DC lub AC,
- w zakresie AC nacisnąć przycisk EXIT i przytrzymać go przez dwie sekundy, aby przejść do funkcji AC+DC,
- przyłożyć ostrza sond do punktów pomiarowych; dla napięcia stałego sonda czerwona powinna być przyłożona do punktu o wyższym potencjale,
- odczytać wynik pomiaru na wyświetlaczu,
- po zakończeniu pomiarów wyjąć przewody z gniazd pomiarowych miernika.

5.4 Pomiar prądu stałego

UWAGA:

Nie należy wykonywać pomiarów prądu 20A przez czas dłuższy niż 30 sekund. Przekroczenie tego czasu może spowodować uszkodzenie miernika i/lub przewodów pomiarowych.

Aby wykonać pomiar prądu należy:

- podłączyć czarny przewód pomiarowy do gniazda COM,
- dla pomiarów prądu do 4000μA DC należy ustawić przełącznik funkcji w położeniu μA i podłączyć czerwony przewód pomiarowy do gniazda μA/mA,
- dla pomiarów prądu do 400mA DC należy ustawić przełącznik funkcji w położeniu mA i podłączyć czerwony przewód pomiarowy do gniazda µA/mA,
- dla pomiarów prądu do 20A DC należy ustawić przełącznik funkcji w położeniu 10AHz% i podłączyć czerwony przewód pomiarowy do gniazda 10A,
- odłączyć zasilanie od poddawanego pomiarom obwodu, a następnie miernik włączyć szeregowo w obwód w punkcie, w którym ma być mierzony prąd,
- przyłożyć ostrze czarnej sondy pomiarowej do ujemnego bieguna obwodu a ostrze czerwonej sondy pomiarowej do dodatniego bieguna obwodu,
- włączyć zasilanie obwodu,
- odczytać wynik pomiaru na wyświetlaczu,
- po zakończeniu pomiarów wyjąć przewody z gniazd pomiarowych miernika.

Pomiar prądu przemiennego (częstotliwość, cykl roboczy)

UWAGA:

Nie należy wykonywać pomiarów prądu 20A przez czas dłuższy niż 30 sekund. Przekroczenie tego czasu może spowodować uszkodzenie miernika i/lub przewodów pomiarowych.

Aby wykonać pomiar prądu należy:

- podłączyć czarny przewód pomiarowy do gniazda COM,
- dla pomiarów prądu do 4000μA AC należy ustawić przełącznik funkcji w położeniu μA i podłączyć czerwony przewód pomiarowy do gniazda μA/mA,
- dla pomiarów prądu do 400mA AC należy ustawić przełącznik funkcji w położeniu mA i podłączyć czerwony przewód pomiarowy do gniazda µA/mA,
- dla pomiarów prądu do 20A AC należy ustawić przełącznik funkcji w położeniu 10AHz% i podłączyć czerwony przewód pomiarowy do gniazda 10A,
- nacisnąć przycisk MODE w celu wyświetlenia wartości AC na wyświetlaczu,
- odłączyć zasilanie od poddawanego pomiarom obwodu, a następnie miernik włączyć szeregowo w obwód w punkcie, w którym ma być mierzony prąd,
- przyłożyć ostrze czarnej sondy pomiarowej do neutralnego bieguna obwodu a ostrze czerwonej sondy pomiarowej do bieguna obwodu będącego pod napięciem,
- włączyć zasilanie obwodu,
- odczytać wynik pomiaru na wyświetlaczu, w zakresie 10A AC prawy wyświetlacz pomocniczy przedstawia częstotliwość,
- nacisnąć i przytrzymać przycisk MODE celem wyświetlenia wartości Hz.
- odczytać wartość częstotliwości na wyświetlaczu,
- na krótko nacisnąć ponownie przycisk MODE w celu wyświetlenia wartości %,
- odczytać wartość % cyklu roboczego na wyświetlaczu,

- nacisnąć i przytrzymać przycisk MODE, aby powrócić do pomiaru pradu,
- nacisnąć przycisk EXIT i przytrzymać go przez dwie sekundy, aby przejść do funkcji AC+DC, wykonać pomiar rzeczywistej wartości skutecznej prądu stałego i zmiennego,
- po zakończeniu pomiarów wyjąć przewody z gniazd pomiarowych miernika.

5.6 Pomiar rezystancji

OSTRZEŻENIE:

Nie wolno dokonywać pomiarów w obwodzie będącym pod napięciem. Kondensatory należy rozładować.

Aby wykonać pomiar rezystancji należy:

- ustawić przełącznik obrotowy w pozycji Ω→ → → CAP,
- podłączyć czerwony przewód pomiarowy do gniazda
 Ω → □ □ CAPV°F°CHz% a czarny do gniazda COM,
- nacisnąć przycisk MODE, aby wyświetlić Ω na wyświetlaczu,
- w razie potrzeby przyciskiem RANGE ustawić ręcznie zakres pomiarowy,
- przyłożyć ostrza sond do punktów pomiarowych; najlepiej jest rozłączyć jedną stronę testowanego elementu, tak aby pozostała część obwodu nie zakłócała odczytu wartości rezystancji,
- · odczytać wynik pomiaru na wyświetlaczu,
- po zakończeniu pomiarów wyjąć przewody z gniazd pomiarowych miernika.

5.7 Test ciągłości obwodu

OSTRZEŻENIE:

Nie wolno dokonywać pomiarów w obwodzie będącym pod napięciem. Kondensatory należy rozładować.

Aby wykonać test ciągłości obwodu należy:

- ustawić przełącznik obrotowy w pozycji Ω→ → CAP,
- podłączyć czerwony przewód pomiarowy do gniazda
 Ω→ → → CAPV°F°CHz% a czarny do gniazda COM,
- nacisnąć przycisk MODE, aby wyświetlić Ω i •i) na wyświetlaczu,
- przyłożyć ostrza sond do punktów pomiarowych,
- odczytać wynik pomiaru na wyświetlaczu; sygnał dźwiękowy pojawia się przy wartościach rezystancji poniżej ok. 35Ω, jeżeli obwód jest otwarty, wyświetlacz wskaże symbol OL,
- po zakończeniu pomiarów wyjąć przewody z gniazd pomiarowych miernika.

5.8 Test diod

OSTRZEŻENIE:

Nie wolno dokonywać pomiarów w obwodzie będącym pod napięciem. Kondensatory należy rozładować.

Aby wykonać test diody należy:

- ustawić przełącznik obrotowy w pozycji Ω → □ □ CAP,
- podłączyć czerwony przewód pomiarowy do gniazda
 Ω → □ □ CAPV°F°CHz% a czarny do gniazda COM,
- nacisnąć przycisk MODE, aby wyświetlić

 i V na wyświetlaczu.
- przyłożyć ostrza sond do diody: czerwona sonda powinna być przyłożona do anody a czarna do katody,
- odczytać wynik testu na wyświetlaczu: wyświetlane jest napięcie przewodzenia, które dla typowej diody krzemowej wynosi ok. 0,7V a dla diody germanowej ok. 0,3V; jeżeli dioda spolaryzowana jest w kierunku zaporowym lub jest przerwa w obwodzie, na wyświetlaczu pojawi się odczyt OL, w przypadku diody zwartej, miernik wskaże wartość bliską 0V,
- po zakończeniu pomiarów wyjąć przewody z gniazd pomiarowych miernika.

5.9 Pomiar pojemności

OSTRZEŻENIE:

Nie wolno dokonywać pomiarów w obwodzie będącym pod napięciem. Kondensatory należy rozładować.

Aby wykonać pomiar należy:

- ustawić przełącznik obrotowy w pozycji Ω→ → CAP,
- podłączyć czerwony przewód pomiarowy do gniazda
 Ω→ → → CAPV°F°CHz% a czarny do gniazda COM,
- nacisnąć przycisk **MODE** celem wyświetlenia **F**,
- w razie potrzeby przyciskiem RANGE ustawić ręcznie zakres pomiarowy,
- przyłożyć ostrza sond do testowanego kondensatora,
- odczytać wynik pomiaru na wyświetlaczu,
- po zakończeniu pomiarów wyjąć przewody z gniazd pomiarowych miernika.

5.10 Pomiar temperatury

Aby wykonać pomiar należy:

- ustawić przełącznik obrotowy w pozycji **Temp**,
- podłączyć sondę temperatury do ujemnego gniazda COM oraz dodatniego gniazda Ω→ → → CAPV°F°CHz%, przestrzegając biegunowości,
- nacisnąć przycisk MODE aby wybrać jednostkę pomiaru: °C lub °F,
- przyłożyć głowicę sondy temperatury do testowanego urządzenia. Kontakt głowicy z mierzoną częścią testowanego urządzenia należy utrzymywać dopóki odczyt się nie ustabilizuje (po około 30 sekundach),
- odczytać wynik pomiaru na wyświetlaczu,
- po zakończeniu pomiarów wyjąć przewody sondy z gniazd pomiarowych miernika.

Uwaga:

Sonda temperatury jest wyposażona w mini-złącze typu K. Adapter do połączenia mini-złącza i wtyku bananowego dostarczany jest dla potrzeb połączenia z bananowymi gniazdami wejściowymi.

Pomiar częstotliwości lub % cyklu roboczego (wypełnienia)

Aby wykonać pomiar należy:

- ustawić przełącznik obrotowy w pozycji Hz%,
- podłączyć czerwony przewód pomiarowy do gniazda
 Ω→ → → CAPV°F°CHz%a czarny do gniazda COM,
- przyłożyć ostrza sond do testowanego obwodu,
- w razie potrzeby przyciskiem RANGE ustawić ręcznie zakres pomiarowy,
- odczytać wynik pomiaru na wyświetlaczu,
- nacisnąć przycisk MODE, aby wyświetlić %,
- odczytać wartość % cyklu roboczego na wyświetlaczu,
- po zakończeniu pomiarów wyjąć przewody z gniazd pomiarowych miernika.

5.12 Pomiar pętli prądowej 4 ~ 20mA %

Aby wykonać pomiar należy:

- skonfigurować i podłączyć urządzenie zgodnie z opisem dla pomiarów DC mA,
- ustawić obrotowy przełącznik funkcji w położeniu 4~20mA%,
- miernik wyświetli prąd pętli jako wartość % przy 0mA=-25%, 4mA=0%, 20mA=100%, oraz 24mA=125%.

6 Funkcje specjalne

6.1 Reczna zmiana podzakresów

Kiedy miernik zostaje włączony po raz pierwszy, przechodzi w tryb automatycznego wyboru zakresu. W trybie tym automatycznie zostaje wybrany najlepszy zakres dla wykonywanych pomiarów i jest to zazwyczaj najlepszy tryb dla większości pomiarów. W przypadku pomiarów, które wymagają ręcznych ustawień zakresu, należy wykonać poniższe czynności:

- nacisnąć przycisk RANGE. Symbol AUTO na wyświetlaczu zgaśnie,
- nacisnąć ponownie przycisk RANGE, który pozwala na przejście pomiędzy dostępnymi zakresami oraz wybranie pożądanego zakresu,
- aby wyjść z trybu ręcznego wyboru zakresu i powrócić do automatycznego wyboru zakresu nacisnąć przycisk EXIT.

Uwaga:

Ręczny wybór zakresu nie jest stosowany w przypadku funkcji pomiarów temperatury, ciągłości, testu diody, cyklu roboczego, mV, prądu 4~20mA oraz 10A.

6.2 Tryb MAX/MIN

Nacisnąć przycisk **MAX/MIN**, aby uruchomić tryb zapisu MAX/MIN. Na lewym wyświetlaczu pojawi się ikona **MAX**. Wyświetlacz pomocniczy miernika przedstawi maksymalny odczyt, który zostanie zaktualizowany dopiero po wystąpieniu nowej wartości "max". Na prawym wyświetlaczu pojawi się ikona **MIN**. Wyświetlacz pomocniczy miernika przedstawi minimalny odczyt, który zostanie zaktualizowany dopiero po wystąpieniu nowej wartości "min".

Aby wyjść z trybu MAX/MIN należy nacisnąć przycisk EXIT.

6.3 Tryb pomiaru względnego

Funkcja pomiaru względnego umożliwia dokonywanie pomiarów względem zapisanej wartości odniesienia. Wartość odniesienia napięcia, prądu, itd. może zostać zapisana, a pomiary mogą być dokonywane w porównaniu do tej wartości. Wyświetlana wartość jest różnicą pomiędzy wartością odniesienia a wartością mierzoną.

Uwaga:

Tryb względny nie jest stosowany w funkcjach 4~20mA, teście diody i ciągłości.

Aby wykonać pomiar w trybie względnym należy:

- wykonać pomiar zgodnie z opisem przedstawionym w instrukcji obsługi,
- nacisnąć przycisk REL w celu zapisania odczytu przedstawionego na wyświetlaczu; na wyświetlaczu pojawi się symbol
- na lewym wyświetlaczu pomocniczym pojawi się różnica wartości wartość bieżąca pomiaru, na prawym wyświetlaczu pomocniczym pojawi się odczyt początkowy, na wyświetlaczu głównym przedstawiony zostanie odczyt pomiaru wartości względnej w trybie REL TEST,
- aby wyjść z trybu względnego należy nacisnąć przycisk EXIT.

6.4 Funkcja HOLD

Funkcja ta służy do zatrzymania wyniku pomiaru na wyświetlaczu, co jest możliwe poprzez naciśnięcie przycisku HOLD. Kiedy funkcja jest włączona, na wyświetlaczu pojawia się symbol HOLD. Celem powrotu do normalnego trybu funkcjonowania urządzenia należy ponownie nacisnąć przycisk HOLD.

6.5 Funkcja zatrzymania wartości szczytowej PEAK HOLD

Funkcja PEAK HOLD wychwytuje wartość szczytową napięcia lub prądu zmiennego (AC) oraz zmiennego ze składową stałą

(AC+DC, patrz rozdz. 5.5). Miernik może wychwycić ujemne lub dodatnie wartości szczytowe trwające 1 milisekundę.

Aby uaktywnić funkcję, należy przytrzymać przycisk **PEAK** przez 2s (sygnalizowane dłuższym sygnałem dźwiękowym). Po puszczeniu przycisku na ekranie pojawi się symbol **PEAK**. U góry wyświetlacza pojawią się: wartości **MAX** na lewym wyświetlaczu pomocniczym, zaś **MIN** na prawym wyświetlaczu pomocniczym.

Miernik będzie aktualizował wyświetlane dane za każdym razem, gdy wystąpi niższa ujemna lub wyższa dodatnia wartość szczytowa.

Funkcja automatycznego wyłączenia zasilania zostanie w tym trybie dezaktywowana.

Aby wyjść z trybu PEAK HOLD, nacisnąć przycisk **EXIT** lub wybrać inną funkcję pomiarową.

Uwaga:

W czasie gdy funkcja PEAK HOLD jest aktywna, nie działa automatyczne dobieranie zakresów, dlatego zaleca się uruchamiać funkcję dopiero po podłączenia przewodów do punktu pomiarowego. Uruchomienie funkcji PEAK HOLD przed podłączeniem miernika do punktu mierzonego może powodować wyświetlanie symboli przekroczenia zakresu.

6.6 Podświetlenie wyświetlacza

Aby włączyć podświetlenie wyświetlacza, nacisnąć przycisk . Podświetlenie zostanie automatycznie wyłączone po upływie ustawionego przez użytkownika czasu. Aby wyjść z trybu podświetlenia wyświetlacza, nacisnąć przycisk . ponownie.

6.7 Zapisywanie danych

Aby zapisać wynik pomiaru należy:

 w bieżącym trybie pomiarowym jednokrotnie nacisnąć przycisk STORE, by wejść do trybu zapisu - w lewym górnym rogu wyświetlacza pojawi się komunikat NO. XXXX, który określa bieżący numer komórki pamięci (XXXX – numer komórki),

- nacisnąć przycisk PEAKHOLD, aby wybrać początkową komórkę pamięci kolejnego zapisu (na lewym wyświetlaczu 0000 – od początku pamięci, XXXX – od kolejnej wolnej komórki), na prawym wyświetlaczu pomocniczym pojawi się komunikat XXXX, który określa ilość zapisanych komórek,
- nacisnąć ponownie przycisk STORE, aby wprowadzić ustawienia interwału czasowego funkcji w lewym górnym rogu wyświetlacza pojawi się wartość 0000 S, która oznacza interwał czasowy zapisu danych. Naciskając przyciski + i można dokonać wyboru zakresu w granicach 0...255 sekund,
- kiedy interwał czasowy zapisu danych wynosi 0000s, wówczas należy ponownie nacisnąć przycisk STORE, aby przejść do trybu zapisu ręcznego - nacisnąć ponownie przycisk STORE celem dokonania jednokrotnego zapisu,
- kiedy interwał czasowy zapisu danych wynosi od 1...255s, wówczas należy ponownie nacisnąć przycisk STORE, aby rozpocząć automatyczny zapis do pamięci. W lewym górnym rogu podawana jest aktualna komórka pamięci, zapisywane dane są wyświetlane w prawym górnym rogu.

Uwaga:

Ze względu na ograniczenia cyfrowe, wyświetlacz przedstawia wyłącznie wartości czterocyfrowe.

 aby wyjść z trybu zapisu należy na krótki moment nacisnąć przycisk EXIT.

6.8 Kasowanie pamięci

Aby skasować całą pamięć należy:

- kiedy zasilanie urządzenia jest wyłączone, nacisnąć przycisk EXIT i przytrzymać go,
- przestawić przełącznik z pozycji OFF na jakąkolwiek inną i zwolnić przycisk EXIT - wyświetlacz zamiga trzykrotnie oraz będzie trzykrotny sygnał dźwiękowy, co oznacza, że dane w pamieci zostały skasowane.

6.9 Przywoływanie wyników z pamięci

Aby przywołać wyniki pomiarów z pamięci należy:

- nacisnąć przycisk STORE (
 RECALL) i przytrzymać go przez dwie sekundy celem wejścia do trybu wywoływania wyników – na lewym górnym wyświetlaczu pojawi się wartość XXXX, która oznacza bieżący numer komórki. W prawym górnym rogu wyświetlacza pojawi się wartość XXXX, która oznacza całkowitą liczbę zapisanych komórek,
- za pomocą przycisków + i można przeglądać kolejne komórki pamięci z zapisanymi danymi na głównym wyświetlacz.
- nacisnąć przycisk HOLD (PeakHOLD) jednokrotnie celem przeglądu danych od 0000 do XXXX w sposób ciągły,
- aby wyjść z trybu nacisnąć przycisk EXIT.

6.10 Konfiguracja parametrów

Aby skonfigurować parametry pomiaru należy:

- nacisnąć przycisk RANGE (SETUP) i przytrzymać go przez dwie sekundy, aby wejść do trybu ustawiania parametrów,
- przez krótką chwilę nacisnąć przycisk RANGE (SETUP) jeden raz aby zmienić rodzaj ustawień,

Rodzaj ustawień obejmuje poniższe elementy (w sekwencji)

A: alarm dźwiękowy dla górnego limitu,

B: alarm dźwiękowy dla dolnego limitu,

C: czas do automatycznego wyłączenia zasilania,

D: sygnał dźwiękowy wyłączenia,

E: czas podświetlenia.

- w celu wyboru parametrów stosować przyciski ←, +, -, →,
- naciskać przycisk SET, aby przejść przez zawartości ustawień, aż do wyjścia z ustawień do trybu pomiarowego; zaktualizowana zawartość ustawień zostaje zapisana. W przypadku naciśnięcia w tym czasie przycisku EXIT ustawienia nie zostaną zapisane.

$6.11 \quad AC + DC$

Funkcja działa we wszystkich trybach pomiarowych: VAC, mV(AC), 10A(AC), mA(AC), $\mu A(AC)$.

 Nacisnąć przycisk EXIT (AC+DC) przez dwie sekundy w celu wejścia do trybu testu prądu zmiennego i prądu stałego. Dokładność jest taka sama jak w pomiarze prądu zmiennego. Wyświetlacz wyświetla mnemonik AC+DC.

W celu wyjścia z niniejszego trybu nacisnąć przycisk EXIT.

7 Wymiana baterii

Miernik CMM-40 jest zasilany z baterii 9V typu 6LR61.

Uwaga:

Dokonując pomiarów przy wyświetlonym mnemoniku baterii należy się liczyć z dodatkowymi nieokreślonymi niepewnościami pomiaru lub niestabilnym działaniem przyrządu.

OSTRZEŻENIE:

Pozostawienie przewodów w gniazdach podczas wymiany baterii może spowodować porażenie niebezpiecznym napięciem.

Aby wymienić baterię należy:

- wyjąć przewody z gniazd pomiarowych i przełącznik obrotowy ustawić w pozycji OFF,
- otworzyć tylną pokrywę baterii poprzez odkręcenie dwóch śrub (B) używając śrubokrętu krzyżakowego,
- wyjąć rozładowaną baterię i włożyć nową przestrzegając biegunowości,
- założyć zdjętą pokrywę i przykręcić śruby mocujące.

OSTRZEŻENIE:

Aby uniknąć porażenia elektrycznego nie należy używać miernika, jeżeli pokrywa baterii nie znajduje się na swoim miejscu i nie jest prawidłowo zamocowana.

Uwaga:

Jeżeli miernik nie funkcjonuje prawidłowo, należy sprawdzić bezpieczniki oraz baterie, aby upewnić się, że znajdują się one we właściwym stanie oraz są prawidłowo zamontowane w urządzeniu.

8 Wymiana bezpieczników

OSTRZEŻENIE:

Pozostawienie przewodów w gniazdach podczas wymiany bezpieczników może spowodować porażenie niebezpiecznym napięciem.

Aby wymienić bezpiecznik należy:

- wyjąć przewody z gniazd pomiarowych i przełącznik obrotowy ustawić w pozycji OFF,
- otworzyć tylną pokrywę baterii poprzez odkręcenie dwóch śrub (B) używając śrubokrętu krzyżakowego,
- wyjąć baterię,
- odkręcić sześć śrub (A) mocujących tylną pokrywę,
- delikatnie wyjąć stary bezpiecznik i zainstalować nowy w jego uchwycie.
- założyć na nowo i zabezpieczyć tylną pokrywę, baterię oraz pokrywę baterii.

UWAGA!

Zawsze należy stosować bezpieczniki o właściwym rozmiarze i wartości (0,5A/1000V szybki bezpiecznik dla zakresu 400mA [SIBA 70-172-40], 10A/1000V szybki bezpiecznik dla zakresu 20A [SIBA 50-199-06]).

9 Utrzymanie i konserwacja

Miernik wielofunkcyjny został zaprojektowany z myślą o wielu latach niezawodnego użytkowania, pod warunkiem przestrzegania poniższych zaleceń dotyczących jego utrzymania i konserwacji:

- MIERNIK MUSI BYĆ SUCHY. W razie zawilgocenia miernika, należy go wytrzeć.
- MIERNIK NALEŻY STOSOWAĆ ORAZ PRZECHOWYWAĆ
 W NORMALNYCH TEMPERATURACH. Temperatury
 skrajne mogą skrócić żywotność elektronicznych elementów
 miernika oraz zniekształcić lub stopić elementy plastikowe.
- Z MIERNIKIEM NALEŻY OBCHODZIĆ SIĘ OSTROŻNIE I DELIKATNIE. Upadek miernika może spowodować uszkodzenie elektronicznych elementów miernika lub jego obudowy.
- MIERNIK MUSI BYĆ UTRZYMYWANY W CZYSTOŚCI. Od czasu do czasu należy przetrzeć jego obudowę wilgotną tkaniną. NIE wolno stosować środków chemicznych, rozpuszczalników ani detergentów.

- NALEŻY STOSOAĆ WYŁĄCZNIE NOWE BATERIE ZALECANEGO ROZMIARU I TYPU. Wyjąć z miernika stare lub wyczerpane baterie, aby uniknąć ich wycieku i uszkodzenia urządzenia.
- JEŚLI MIERNIK MA BYĆ PRZEZ DŁUŻSZY OKRES CZASU PRZECHOWYWANY, wówczas należy wyjąć z niego baterie, aby zapobiec uszkodzeniu urządzenia.

Uwaga:

Układ elektroniczny miernika nie wymaga konserwacji.

10 Magazynowanie

Przy przechowywaniu przyrządu należy przestrzegać poniższych zaleceń:

- odłączyć od miernika przewody,
- upewnić się, że miernik i akcesoria są suche,
- przy dłuższym okresie przechowywania należy wyjąć baterię.

11 Rozbiórka i utylizacja

Zużyty sprzęt elektryczny i elektroniczny należy gromadzić selektywnie, tj. nie umieszczać z odpadami innego rodzaju.

Zużyty sprzęt elektroniczny należy przekazać do punktu zbiórki zgodnie z Ustawą o zużytym sprzęcie elektrycznym i elektronicznym.

Przed przekazaniem sprzętu do punktu zbiórki nie należy samodzielnie demontować żadnych części z tego sprzętu.

Należy przestrzegać lokalnych przepisów dotyczących wyrzucania opakowań, zużytych baterii i akumulatorów.

12 Dane techniczne

"w.m." w określeniu wartość mierzoną wzorcową.

Pomiar napięcia stałego

Zakres	Rozdzielczość	Niepewność podstawowa		
400,00mV	0,01mV			
4,0000V	0,0001V	1 (0.069/ w.m 4 overn)		
40,000V	0,001V	± (0,06% w.m. + 4 cyfry)		
400,00V	0,01V			
1000,0V	0,1V	± (0,1% w.m. + 5 cyfr)		

Pomiar napięcia przemiennego (True RMS)

Zakres	Rozdzielczość	Niepewność podstawowa
400,00mV	0,01mV	± (1% w.m. + 40 cyfr)
4,0000V	0,0001V	
40,000V	0,001V	+ (10/ ··· ·· · · · · · · · · · · · · · · ·
400,00V	0,01V	± (1% w.m. + 30 cyfr)
1000,0V	0,1V	

Zakres częstotliwości 50...1000Hz

Pomiar prądu stałego

Zakres	Rozdzielczość	Niepewność podstawowa
400,00µA	0,01μΑ	
4000,0µA	0,1μΑ	
40,000mA	0,001mA	\pm (1% w.m. + 3 cyfry)
400,00mA	0,01mA	
10,000A	0,001A	

• 20A: maksymalnie 30 sekund przy ograniczonej dokładności

Pomiar pradu przemiennego (True RMS)

Zakres	Rozdzielczość	Niepewność podstawowa
400,00μA	0,01µA	
4000,0µA	0,1µA	
40,000mA	0,001mA	\pm (1,5% w.m. + 30 cyfr)
400,00mA	0,01mA	
10,000A	0,001A	

20A: maksymalnie 30 sekund przy ograniczonej dokładności

Uwaga:

Dokładność została wyznaczone przy temperaturze w zakresie od 18°C do 28°C i przy względnej wilgotności powietrza niższej niż 75%. Dla prądu zniekształconego błąd jest większy o ±(2% odczytu + 2% pełnej skali), dla współczynnika szczytu <3.0.

Pomiar rezystancji

Zakres	Rozdzielczość	Niepewność podstawowa
400,00Ω	0,01Ω	± (0,3 % w.m. + 9 cyfr)
4,0000kΩ	0,0001kΩ	
40,000kΩ	0,001kΩ	1 (0.3.9/ m 4 outm)
400,00kΩ	0,01kΩ	± (0,3 % w.m. + 4 cyfry)
$4,0000 M\Omega$	0,0001MΩ	
$40,000$ M Ω	0,001MΩ	± (2 % w.m. + 10 cyfr)

Pomiar pojemności

onnai pojenn	10301	
Zakres	Rozdzielczość	Niepewność podstawowa
40,000nF	0,001nF	1 (2 E 0/ m . 40 outs)
400,00nF	0,01nF	± (3,5 % w.m. + 40 cyfr)
4,0000µF	0,0001µF	
40,000µF	0,001µF	± (3,5 % w.m. + 10 cyfr)
400,00µF	0,01µF	
4000,0µF	0,1µF	± (5 % w.m. + 10 cyfr)
40,000mF	0,001mF	± (5 % w.m. + 10 cym)

Pomiar częstotliwości (w elektronice)

Zakres	Rozdzielczość	Niepewność podstawowa
40,000Hz	0,001Hz	
400,00Hz	0,01Hz	
4,0000kHz	0,0001kHz	
40,000kHz	0,001kHz	± (0,1 % w.m. + 1 cyfra)
400,00kHz	0,01kHz	
4,0000MHz	0,0001MHz	
40,000MHz	0,001MHz	
100,00MHz	0,01MHz	Wartość nieokreślona

 Czułość: minimalna wartość skuteczna napięcia 0,8V przy 20% do 80% cyklu roboczego oraz <100kHz; minimalna wartość skuteczna napięcia 5V przy 20% do 80% cyklu roboczego oraz > 100kHz

Pomiar częstotliwości (w elektryce)

Zakres	Rozdzielczość	Niepewność podstawowa
40,00Hz 10,000kHz	0,01Hz 0,001kHz	\pm 0,5 % w.m.

Czułość:1Vrms

Pomiar cyklu roboczego (wypełnienia)

Zakres	Rozdzielczość	Niepewność podstawowa
0,10 99,00%	0,01%	± (1,2 % w.m. + 2 cyfry)

 Szerokość impulsu: 100µs - 100ms, Częstotliwość: 5Hz do 150kHz

Pomiar temperatury

Zakres	Rozdzielczość	Niepewność podstawowa*
-50.01200,0°C	0,1°C	± (1% odczytu + 2,5°C)
-58.02192,0°F	0,1°F	± (1% odczytu + 4,5°F)

^{*} dokładność sondy typu K nie jest uwzględniana

Pomiar petli pradowej 4-20mA%

Zakres	Rozdzielczość	Niepewność podstawowa
-25,00 125,00%	0,01%	± 50 cyfr

• 0mA=-25%, 4mA=0%, 20mA=100%, 24mA=125%

Pozostałe dane techniczne

a) kategoria nomiarowa wg PN-FN 61010-1

a)		J 10-1III 1000 V
b)	stopień ochrony obudowy wg PN-EI	N 60529IP67
c)		2
ď)	zasilanie miernika	bateria 9V
e)	test diody	I=0,9mA, U ₀ =2,8V DC
f)	test ciągłości	I<0,35mA, sygnał dźwiękowy dla R<35Ω
g)	wskazanie przekroczenia zakresu	symbol 0L
h)	współczynnik szczytu	≤3 dla pełnego zakresu 500V,
		niejszający się liniowo do ≤1,5 przy 1000V
i)	wartość szczytowa PEAK	wychwytuje wartości szczytowe >1ms
j)	częstotliwość pomiarów	2 odczyty na sekundę
k)	impedancja wejściowa	>10MΩ (V DC), >9MΩ (V AC)
l)	wyświetlaczpodświ	etlany LCD z bargrafem, wskazanie 40000
m)		2000
n)	wymiary	187 x 81 x 55mm
o)	masa miernika	342 g
p)	bezpiecznikizakro	es mA, µA: 0,5A/1000V ceramiczny szybki
		zakres A: 10A/1000V ceramiczny szybki
q)	temperatura pracy	0+40°C
r)	temperatura przechowywania	–20+60°C
s)		o 31°C malejąca liniowo do 50% przy 40°C
t)		
ú)	czas bezczynności do samowyłacze	enia15 minut
v)		PN-EN 61010-1
		PN-EN 61010-2-032
w)	standard jakości	ISO 9001

III 1000V

13 Akcesoria standardowe

W skład standardowego kompletu dostarczanego przez producenta wchodzą:

- miernik CMM-40,
- przewody pomiarowe do CMM (CAT IV, M) WAPRZCMM2,
- bateria 9 V.
- sonda do pomiaru temperatury (typ K) WASONTEMK,
- adapter do sond temperatury typu K WAADATEMK,
- zatyczka zabezpieczająca gniazda pomiarowe (2 szt.),
- futerał.
- instrukcja obsługi,
- karta gwarancyjna,
- certyfikat kalibracji.

Aktualne zestawienie akcesoriów znajduje się na stronie internetowej producenta.

14 Serwis

Prowadzącym serwis gwarancyjny i pogwarancyjny jest:

SONEL S.A.

ul. Wokulskiego 11 58-100 Świdnica tel. (74) 858 38 00 (Biuro Obsługi Klienta)

e-mail: bok@sonel.pl
internet: www.sonel.pl

Uwaga:

Do prowadzenia napraw serwisowych upoważniony jest jedynie SONEL S.A.

Wyprodukowano w Chińskiej Republice Ludowej na zlecenie SONEL S.A.

15 Usługi laboratoryjne

Laboratorium Badawczo - Wzorcujące działające w SONEL S.A. posiada akredytację Polskiego Centrum Akredytacji nr AP 173.

AP 173

Laboratorium oferuje usługi wzorcowania następujących przyrządów związanych z pomiarami wielkości elektrycznych i nieelektrycznych:

MIERNIKI DO POMIARÓW WIELKOŚCI ELEKTRYCZNYCH ORAZ PARAMETRÓW SIECI ENERGETYCZNYCH

- o mierniki napięcia
- o mierniki prądu (w tym również mierniki cęgowe)
- mierniki rezystancji
- mierniki rezystancji izolacji
- o mierniki rezystancji uziemień
- o mierniki impedancji petli zwarcia
- o mierniki zabezpieczeń różnicowoprądowych
- o mierniki małych rezystancji
- o analizatory jakości zasilania
- testery bezpieczeństwa sprzętu elektrycznego
- multimetry
- mierniki wielofunkcyjne obejmujące funkcjonalnie w/w przyrządy

WZORCE WIELKOŚCI ELEKTRYCZNYCH

- kalibratory
- wzorce rezystancji

PRZYRZĄDY DO POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH

- pirometry
- kamery termowizyjne
- luksomierze

Świadectwo Wzorcowania jest dokumentem prezentującym zależność między wartością wzorcową a wskazaniem badanego przyrządu z określeniem niepewności pomiaru i zachowaniem spójności pomiarowej. Metody, które mogą być wykorzystane do wyznaczenia odstępów czasu między wzorcowaniami określone są w dokumencie ILAC G24 "Wytyczne dotyczące wyznaczania odstępów czasu między wzorcowaniami przyrządów pomiarowych". Firma SONEL S.A. zaleca dla produkowanych przez siebie przyrządów wykonywanie potwierdzenia metrologicznego nie rzadziej, niż co 12 miesięcy.

Dla wprowadzanych do użytkowania fabrycznie nowych przyrządów posiadających Świadectwo Wzorcowania lub Certyfikat Kalibracji, kolejne wykonanie potwierdzenia metrologicznego (wzorcowanie) zaleca się przeprowadzić w terminie do 12 miesięcy od daty zakupu, jednak nie później, niż 24 miesiące od daty produkcji.

UWAGA!

Osoba wykonująca pomiary powinna mieć całkowitą pewność, co do sprawności używanego przyrządu. Pomiary wykonane niesprawnym miernikiem mogą przyczynić się do błędnej oceny skuteczności ochrony zdrowia, a nawet życia ludzkiego.

USER MANUAL

INDUSTRIAL MULTIMETER

CMM-40

Version 1.10 01.03.2022

TABLE OF CONTENTS

1	Int	roduction	42
2	Sa	fety	43
	2.1	International Safety Symbols	
3	Pre	eparation of the meter for operation	
4		nctional description	
4			40
	4.1	Measurement sockets and elements of selection of the measurement function	16
	4.1		
		.2 Elements of selection of the measurement function	
	4.2	LCD display	
	4.3	Test leads	51
5	Ме	asurements	51
	5.1	DC voltage measurements	51
	5.2	AC voltage measurements	
	5.3	mV voltage measurements	
	5.4	DC current measurements	
	5.5	AC current (frequency, duty cycle) measurements	
	5.6	Resistance measurements	
	5.7 5.8	Continuity Measurements	
	5.6 5.9	Capacitance measurements	
	5.10	Temperature measurements	
	5.11	Frequency or % duty cycle measurements	
	5.12	% 4 – 20 mA measurements	
6	Sp	ecial functions	59
	6.1	Autoranging/manual range selection	
	6.2	MAX/MIN	
	6.3	Relative mode	
	6.4	DATA HOLD function	
	6.5	PEAK HOLD function	
	6.6	Display backlight	
	6.7 6.8	Data record function	62 62
	0.0	Data memory dean function	02

	5.9 Data recall function	
6	6.10 Parameter setting up function	63 63
(3.11 AC + DC function	03
7	Replacement of the batteries	64
8	Replacement of the fuses	65
9	Cleaning and maintenance	66
10	Storage	67
11	Dismantling and utilization	67
12	Technical data	68
13	Standard accessories	72
14	Manufacturer	72
15	Laboratory services	73

1 Introduction

We appreciate your having purchased our industrial meter. The CMM-40 meter is a modern, high-quality measuring device, which is easy and safe to use. Please acquaint yourself with the present manual in order to avoid measuring errors and prevent possible problems related to operation of the meter.

In the present manual we apply three kinds of warnings. These are texts in frames, which describe possible dangers both for the user and the meter itself. The messages starting from the word 'WARNING:' describe situations which imply a risk for life or health should the recommendations presented in the present manual not be observed. The word 'ATTENTION!' introduces a description of a situation where non-observance of the recommendations presented in the present manual may imply damage for the meter. Indications of possible problems are preceded by the word 'Caution:'

WARNING:

Before using the instrument acquaint yourself with the present manual and observe the safety regulations and recommendations specified by the manufacturer.

WARNING:

The purpose of the CMM-40 meter is to realise measurements of AC/DC voltage, AC/DC current, resistance, capacitance, frequency, duty cycle, diode test, continuity and temperature. Using the meter in a manner which does not comply with the recommendations specified in the present manual may lead to its damage and constitutes a source of a serious risk for the user.

WARNING:

The CMM-40 meter may be operated solely by qualified and properly authorised personnel for work at electric installations. Using the meter by unauthorised personnel may lead to its damage and constitutes a source of a serious risk for the user.

2 Safety

In order to guarantee proper operation and correctness of the obtained results it is necessary to observe the following recommendations:

- Before commencing operation of the meter please acquaint yourself thoroughly with the present manual,
- The instrument should be operated solely by properly qualified personnel, who also must be trained regarding the industrial safety regulations.
- Use great care when making measurements if the voltages are greater than 20VAC rms or 40VDC. These voltages are considered a shock hazard.
- Before use for non-contact AC voltage measurements, always test the voltage detector on a known live circuit to verify proper operation,
- Set function switch to the appropriate position before measuring.
- When measuring volts do not switch to current/resistance modes,
- Do not exceed the maximum allowable input range of any function,
- Do not apply voltage to meter when resistance function is selected.
- When changing ranges using the selector switch always disconnect the test leads from the circuit under test,
- Do not exceed the maximum rated input limits,
- It is prohibited to operated the meter:

- ⇒ If it is damaged and completely or partially out of order
- ⇒ If the insulation of the test leads has been damaged
- If it has been stored for an excessive period of time in inadequate conditions (e.g. if it is humid)
- Repairs must be realised solely by an authorised service workshop.

WARNING:

Do not realise measurements with wet hands.

WARNING:

Do not realise measurements in environments in which there are inflammable gases. Otherwise operation of the meter under such conditions may cause sparking and explosion.

ATTENTION!		
Input Li	mits	
Function	Maximum Input	
V DC or V AC	1000V DC/AC rms	
mA AC/DC	500mA 1000V fast acting fuse	
A AC/DC	10A 1000V fast acting fuse (20A for 30 seconds max every 15 minutes)	
Frequency, Resistance, Capacitance, Duty Cycle, Diode Test, Continuity	1000V DC/AC rms	
Temperature 1000V DC/AC rms		
Surge Protection: 8kV peak per IEC 61010		

2.1 International Safety Symbols

This symbol, adjacent to another symbol or terminal, indicates the user must refer to the manual for further information.

This symbol, adjacent to a terminal, indicates that, under normal use. hazardous voltages may be present

Double insulation

3 Preparation of the meter for operation

Having purchased the meter examine completeness of the contents of the package.

Before measurements commence, it is necessary to realise the following actions:

- Make sure the conditions of the batteries or accumulators permit to realise measurements,
- Make sure the casing of the meter and the insulation of the test leads are not damaged,
- Insert the black test lead into the negative COM terminal and the red test lead into the other positive terminal.

WARNING:

Connection of inappropriate or damaged test leads constitutes a risk of an electric shock with a dangerous voltage.

4 Functional description

4.1 Measurement sockets and elements of selection of the measurement function

CMM-40

4.1.1 Sockets

7 measurement socket mA, µA, 10A

Measurement socket for the purpose of measurements of direct and current.

8 measurement socket COM

Measurement socket common for all the measurement functions (connection to the mass of the device).

9 measurement socket Ω → • • CAP V °F °C Hz %

Measurement socket for all the measurement functions except of current measurements.

4.1.2 Elements of selection of the measurement function

- 1 40,000 count LCD display
- 2 STORE(<RECALL) button
 - Saving the measurement result to the memory (recalling the result from memory)
- 3 MAX/MIN (-) button
 - Displaying the maximum and minimum value
- 4 MODE button
 - Changing the measurement mode
- 5 RANGE(SETUP) button
 - Manual changing of the measurement range

6 Rotational selector

Selection of function:

- μA direct and alternative current measurement up to 4000μA,
- 4~20mA% loop current measurement,
- mA direct and alternative current measurement up to 400mA,
- 10AHz% direct and alternative current measurement up to 10A, frequency and duty cycle measurement,
- OFF meter off,
- VacHz% alternative voltage, frequency and duty cycle measurement,
- V_{DC} direct voltage measurement,
- mV direct and alternative voltage measurement up to 400mV,
- Hz% frequency and duty cycle measurement,
- Q → W CAP resistance, capacitance and continuity measurement and diode testing,
- **Temp** Celsius or Fahrenheit temperature measurement.

10 Backlight button Display backlit

11 EXIT(AC+DC) button

- Exit
- Measurement of the trms value

12 HOLD(PEAKHOLD>) button

Holding the measurement result on the display

13 REL(+) button

· Relative measurement

4.2 LCD display

Illustration 2. LCD display of the CMM-40 meter

•) - continuity check mode

→ - diode test mode

🖹 – Battery status

n - nano (10⁻⁹) (capacitance)

μ - micro (10⁻⁶) (amps, cap)

m - milli (10⁻³) (volts, amps)

A - Amps

k - kilo (103) (ohms)

F - Farads (capacitance)

M - mega (106) (ohms)

 Ω - Ohms

Hz - Hertz (frequency)

% - percent (duty ratio)

AC - alternating current

DC - direct current

°C - degrees Celsius

°F - degrees Fahrenheit

MAX - maximum

MIN – minimum No. – serial number

S - second

SET – set up parameter

AC +DC - alternating current + direct current

TRMS - true RMS

STO - store

RCL - recall

AUTO – auto range

PEAK - peak hold

V - Volts

_ relative

HOLD - display hold

4.3 Test leads

The manufacturer guarantees correct measurement indications provided original test leads are used.

WARNING:

Connection of inadequate test leads constitutes a risk of electric shock with a dangerous voltage or may be a cause of measurement errors.

5 Measurements

It is recommended to get acquainted thoroughly with the contents of the present chapter since it describes the measurement systems, the manner of realisation of measurements and the basic principles of interpretation of the results.

5.1 DC voltage measurements

ATTENTION!

Do not measure DC voltages if a motor on the circuit is being switched ON or OFF. Large voltage surges may occur that can damage the meter.

In order to realise a measurement of DC voltage, it is necessary to realise the following actions:

- Set the function switch to the VDC position,
- with the RANGE button set the measurement range manually if necessary,
- Insert the black test lead banana plug into the negative COM jack. Insert the red test lead banana plug into the positive V jack,
- Touch the black test probe tip to the negative side of the circuit. Touch the red test probe tip to the positive side of the circuit.
- · Read the voltage in the display,
- Having done the measurement disconnect the test leads from the meter.

5.2 AC voltage measurements

WARNING:

Risk of Electrocution. The probe tips may not be long enough to contact the live parts inside some 240V outlets for appliances because the contacts are recessed deep in the outlets. As a result, the reading may show 0 volts when the outlet actually has voltage on it. Make sure the probe tips are touching the metal contacts inside the outlet before assuming that no voltage is present.

ATTENTION!

Do not measure AC voltages if a motor on the circuit is being switched ON or OFF. Large voltage surges may occur that can damage the meter.

In order to realise a measurement of AC voltage, it is necessary to realise the following actions:

- Set the function switch to the VAC/Hz/% position,
- with the RANGE button set the measurement range manually if necessary,
- Insert the black test lead banana plug into the negative COM jack. Insert red test lead banana plug into the positive V jack,
- Touch the black test probe tip to the neutral side of the circuit.
 Touch the red test probe tip to the "hot" side of the circuit,
- Read the voltage in the main display and the frequency in the right auxiliary display,
- Press the MODE button to indicate "Hz",
- Read the frequency in the main display,
- Press the MODE button again to indicate "%",
- Read the % of duty cycle in the main display,
- Press EXIT (AC+DC) for 2 seconds into the function of AC+DC. Test DC and AC True RMS,
- Having done the measurement disconnect the test leads from the meter.

5.3 mV voltage measurements

ATTENTION!

Do not measure mV voltages if a motor on the circuit is being switched ON or OFF. Large voltage surges may occur that can damage the meter.

In order to realise a measurement of mV voltage, it is necessary to realise the following actions:

- Set the function switch to the **mV** position,
- with the RANGE button set the measurement range manually if necessary,
- Press the MODE button to indicate "DC" or "AC", or in AC range press EXIT for two seconds and chose "AC+DC",
- Insert the black test lead banana plug into the negative COM jack. Insert the red test lead banana plug into the positive V jack,
- Touch the black test probe tip to the negative side of the circuit. Touch the red test probe tip to the positive side of the circuit,
- Read the mV voltage in the display,
- Having done the measurement disconnect the test leads from the meter.

5.4 DC current measurements

ATTENTION!

Do not make 20A current measurements for longer than 30 seconds. Exceeding 30 seconds may cause damage to the meter and/or the test leads.

In order to realise a measurement of DC current, it is necessary to realise the following actions:

- Insert the black test lead banana plug into the negative COM jack,
- For current measurements up to 4000μA DC, set the function switch to the μA position and insert the red test lead banana plug into the μA/mA jack,
- For current measurements up to 400mA DC, set the function switch to the mA position and insert the red test lead banana plug into the μA/mA jack,
- For current measurements up to 20A DC, set the function switch to the 10A/HZ/% position and insert the red test lead banana plug into the 10A jack,
- Press the MODE button to indicate "DC" on the display,
- Remove power from the circuit under test, then open up the circuit at the point where you wish to measure current,
- Touch the black test probe tip to the negative side of the circuit. Touch the red test probe tip to the positive side of the circuit.
- Apply power to the circuit,
- · Read the current in the display,
- Having done the measurement disconnect the test leads from the meter.

5.5 AC current (frequency, duty cycle) measurements

ATTENTION!

Do not make 20A current measurements for longer than 30 seconds. Exceeding 30 seconds may cause damage to the meter and/or the test leads.

In order to realise a measurement of AC current, it is necessary to realise the following actions:

- Insert the black test lead banana plug into the negative COM jack,
- For current measurements up to 4000μA AC, set the function switch to the μA position and insert the red test lead banana plug into the μA/mA jack,
- For current measurements up to 400mA AC, set the function switch to the mA position and insert the red test lead banana plug into the μA/mA jack,
- For current measurements up to 20A AC, set the function switch to the 10A/HZ/% position and insert the red test lead banana plug into the 10A jack,
- Press the MODE button to indicate "AC" on the display,
- Remove power from the circuit under test, then open up the circuit at the point where you wish to measure current,
- Touch the black test probe tip to the neutral side of the circuit.
 Touch the red test probe tip to the "hot" side of the circuit,
- Apply power to the circuit,
- Read the current in the display. In the 10AAC range, right auxiliary display frequency,
- Press and hold the MODE button to indicate "Hz",
- Read the frequency in the display,
- Momentarily press the MODE button again to indicate "%",
- Read the % duty cycle in the display,
- Press and hold the MODE button to return to current measurement,

- Press EXIT for 2 seconds into the function of AC+DC. Test DC and AC True RMS.
- Having done the measurement disconnect the test leads from the meter.

5.6 Resistance measurements

ATTENTION!

Measurements must not be realised in live circuits. Capacitors must be discharged.

In order to realise a measurement of the resistance it is necessary to realise the following actions:

- Set the function switch to the Ω → □ CAP position,
- Insert the black test lead banana plug into the negative COM jack. Insert the red test lead banana plug into the positive Ω jack,
- Press the **MODE** button to indicate " Ω " on the display,
- Touch the test probe tips across the circuit or part under test. It
 is best to disconnect one side of the part under test so the rest
 of the circuit will not interfere with the resistance reading,
- Read the resistance in the display,
- Having done the measurement disconnect the test leads from the meter.

5.7 Continuity Measurements

ATTENTION!

Measurements must not be realised in live circuits. Capacitors must be discharged.

In order to realise continuity test it is necessary to realise the following actions:

Set the function switch to the Ω ★ → CAP position,

- Insert the black lead banana plug into the negative COM jack.
 Insert the red test lead banana plug into the positive Ω jack,
- Press the **MODE** button to indicate and " Ω " on the display,
- Touch the test probe tips to the circuit or wire you wish to check.
- If the resistance is less than approximately 35Ω, the audible signal will sound. If the circuit is open, the display will indicate "OL",
- Having done the measurement disconnect the test leads from the meter.

5.8 Diode Measurements

ATTENTION!

Measurements must not be realised in live circuits. Capacitors must be discharged.

In order to realise diode test it is necessary to realise the following actions:

- Set the function switch to the green Ω → □ □ CAP position,
- Insert the black test lead banana plug into the negative COM jack and the red test lead banana plug into the positive Ω jack,
- Press the MODE button to indicate → and V on the display,
- Touch the test probes to the diode under test. Forward voltage will typically indicate 0.400 to 0.700V. Reverse voltage will indicate "OL". Shorted devices will indicate near 0V and an open device will indicate "OL" in both polarities,
- Having done the measurement disconnect the test leads from the meter.

5.9 Capacitance measurements

WARNING:

To avoid electric shock, disconnect power to the unit under test and discharge all capacitors before taking any capacitance.

In order to realise capacitance measurement it is necessary to realise the following actions:

- Set the rotary function switch to the green Ω→ □ CAP position.
- Insert the black test lead banana plug into the negative COM jack and the red test lead banana plug into the positive Ω jack,
- Press the MODE button to indicate "F",
- Touch the test leads to the capacitor to be tested,
- Read the capacitance value in the display,
- Having done the measurement disconnect the test leads from the meter.

5.10 Temperature measurements

In order to realise temperature measurement it is necessary to realise the following actions:

- Set the function switch to the green **Temp** position,
- Insert the temperature probe into the input jacks, making sure to observe the correct polarity,
- Press the MODE button to indicate "oF" or "oC",
- Touch the temperature probe head to the part whose temperature you wish to measure, keep the probe touching the part under test until the reading stabilizes (about 30 seconds),
- Read the temperature in the display,
- Having done the measurement disconnect the probe leads from the meter.

Caution:

The temperature probe is fitted with a type K mini connector. A mini connector to banana connector adaptor is supplied for connection to the input banana jacks.

5.11 Frequency or % duty cycle measurements

In order to realise frequency or % duty cycle measurement it is necessary to realise the following actions:

- Set the rotary function switch to the green **Hz/%** position,
- Insert the black lead banana plug into the negative COM jack and the red test lead banana plug into the positive Hz jack,
- Touch the test probe tips to the circuit under test,
- Read the frequency on the display,
- Press the MODE button to indicate "%",
- Read the % duty cycle in the display,
- Having done the measurement disconnect the test leads from the meter.

5.12 % 4 – 20 mA measurements

In order to realise measurement it is necessary to realise the following actions:

- Set up and connect as described for DC mA measurements,
- Set the rotary function switch to the 4-20mA% position,
- The meter will display loop current as a % with 0mA=-25%, 4mA=0%, 20mA=100%, and 24mA=125%. Special functions

6 Special functions

6.1 Autoranging/manual range selection

When the meter is first turned on, it automatically goes into autoranging. This automatically selects the best range for the measurements being made and is generally the best mode for most measurements. For measurement situations requiring that a range be manually selected, perform the following:

- Press the RANGE key. The "AUTO" display indicator will turn off,
- Press the RANGE key to step through the available ranges until you select the range you want,
- To exit the manual ranging mode and return to autoranging, press EXIT.

Caution:

Manual ranging does not apply for the Temperature, Continuity, Diode test, mV, current 10A and 4~20mA functions.

6.2 MAX/MIN

Press the **MAX/MIN** key to activate the MAX/MIN recording mode. The display icon "**MAX**" will appear. The meter left auxiliary display will display and hold the maximum reading and will update only when a new "max" occurs. The display icon "**MIN**" will appear. The right auxiliary display meter will display and hold the minimum reading and will update only when a new "min" occurs.

To exit MAX/MIN mode press EXIT.

6.3 Relative mode

The relative measurement feature allows you to make measurements relative to a stored reference value. A reference voltage, current, etc. can be stored and measurements made in comparison to that value. The displayed value is the difference between the reference value and the measured value.

Caution:

Relative mode does not operate in the 4~20mA, diode test and continuity function.

In order to realise relative measurement it is necessary to realise the following actions:

- Perform the measurement as described in the operating instructions.
- Press the REL button to store the reading in the display and the "REL" indicator will appear on the display,

- Left auxiliary display the margin of initial value and the current value. Right auxiliary display the initial reading. Main display the reading after REL test,
- Press the EXIT button to exit the relative mode.

6.4 DATA HOLD function

The hold function freezes the reading in the display. Press the **HOLD** key momentarily to activate or to exit the **HOLD** function.

6.5 PEAK HOLD function

The PEAK HOLD function captures the peak of AC voltage or curent – both AC and AC with a constant component (AC+DC, see sec. 5.5). The meter can capture negative or positive peaks as fast as 1 millisecond in duration.

To activate the function, hold the **PEAK** button for 2 s (signalisation with a long sound). After releasing the button the symbol **PEAK** will appear. At the top of the display symbols will appear: **MAX** in left auxiliary display, **MIN** in right auxiliary display.

The meter will update the display each time a lower negative, or higher possitive peak occurs.

To exit the PEAK HOLD mode, press the **EXIT** button or choose another measurement function.

Auto Power Off feature will be disabled automatically in this mode.

Note:

While PEAK HOLD is active, autoranging is disabled, therfore it is advised to start the function after connecting test leads to the measurement point. Running PEAK HOLD before that may cause overrange symbols to appear.

6.6 Display backlight

Press the key to turn the backlight on. The backlight will automatically turn off after **SET** time. Press the button to exit the backlight on mode.

6.7 Data record function

In order to realise data store it is necessary to do the following:

- In the current testing mode, press STORE button one time, enter into STORE function. On the left upper corner of LCD shows NO. XXXX, which states current storage serial number,
- Then, press button PEAK HOLD to change into the initial serial number 0000. (Press again it will change back). On the right upper corner of LCD shows XXXX, which states how many current storage is used,
- Press STORE button again, enter into recording interval time set up function. On the left upper shows 0000 S, which states recording interval time; using button + and - to select, the range is 0~255 seconds,
- When the recording interval time is 0000 S, then press STORE button again to change into manual recording. Press the STORE button again to record once,
- When the recording interval time is 1~255 S, then press STORE button again to start recording automatically from 0000 or XXXX (chosen earlier). Recording times is showed on the left upper corner, data is showed on the right upper corner (Due to digitally limitation, there is only display preceding four numbers),
- To finish above STORE function, press EXIT button shortly.

6.8 Data memory clean function

If you want to clean all the memory data, the steps are:

- When power off, press the EXIT button long time,
- Then turn the switch from OFF to random, and release the EXIT button, the LCD will flash thrice and meantime buzzer thrice, which means all memory data have been cleaned.

6.9 Data recall function

In order to realise data recall it is necessary to do the following:

 Press STORE (☐RECALL) button two seconds to enter into RECALL function. On the left upper corner shows XXXX, which states current storage serial number. On the right upper corner shows XXXX, which states how many current storage is used.

- Press button HOLD (PeakHOLD) shortly once to scan data from 0000 to XXXX continuously,
- · Press again then scan again,
- Use button + & to select serial number XXXX on the left upper corner and record data on the right upper corner,
- To finish above RECALL function, press EXIT button.

6.10 Parameter setting up function

In order to realise parameter setting up it is necessary to do the following:

- Press the RANGE (SETUP) button second seconds to enter into SET function,
- Then press SET shortly once, change on setting content,
- Setting content includes (in sequence):
 - A: upper limit buzzer alarm
 - B: lower limit buzzer alarm
 - C: auto power off time
 - D: turn off phonating
 - E: backlight time
- Use ← + → buttons to select the parameter,
- Press SET button continuously to switch to setting content, till
 exiting set up to testing mode. So the updated setting content
 is saved. If press EXIT button in this period, all setting can't be
 saved.

6.11 AC + DC function

In order to use AC + DC function it is necessary to do the following:

- In all the measuring mode press EXIT button for 2 seconds to enters into AC+DC testing. The precision is the same as AC measure. LCD shows AC+DC signal,
- Press button EXIT to exit.

7 Replacement of the batteries

The CMM-40 meter is supplied by means of one 9V battery. It is recommended to use alkaline battery.

Attention:

When making measurements with a battery's mnemonic on, one must take into account additional indefinite measurement uncertainty or unstable working of the meter.

WARNING:

Should the test leads be left in the sockets during replacement of the battery, there might be a risk of electric shock with a dangerous voltage.

WARNING:

To avoid electric shock, do not operate the meter until the battery cover is in place and fastened securely.

Caution:

If your meter does not work properly, check the fuses and batteries to make sure that they are still good and that they are properly inserted.

In order to replace the battery it is necessary to do the following:

- remove all the test leads from the measurement sockets and place rotational selector in the position OFF,
- Open the rear battery cover by removing two screws (B) using a Phillips head screwdriver,

- Insert the battery into battery holder, observing the correct polarity,
- Put the battery cover back in place. Secure with the screws.

Illustration 3. Battery cover of the CMM-40 meter

8 Replacement of the fuses

WARNING:

To avoid electric shock, disconnect the test leads from any source of voltage before removing the meter cover.

In order to replace the fuses it is necessary to do the following:

- Disconnect the test leads from the meter and place rotational selector in the position OFF,
- Remove the battery cover (two "B" screws) and the battery,
- Remove the six "A" screws securing the rear cover,
- Gently remove the old fuse and install the new fuse into the holder,

- Always use a fuse of the proper size and value (0.5A/1000V fast blow for the 400mA range [SIBA 70-172-40], 10A/1000V fast blow for the 20A range [SIBA 50-199-06]),
- Replace and secure the rear cover, battery and battery cover.

WARNING:

To avoid electric shock, do not operate your meter until the fuse cover is in place and fastened securely.

9 Cleaning and maintenance

This MultiMeter is designed to provide years of dependable service, if the following care instructions are performed:

- 1. **KEEP THE METER DRY**. If it gets wet, wipe it off.
- USE AND STORE THE METER IN NORMAL TEMPERATURES. Temperature extremes can shorten the life of the electronic parts and distort or melt plastic parts.
- 3. HANDLE THE METER GENTLY AND CAREFULLY. Dropping it can damage the electronic parts or the case.
- KEEP THE METER CLEAN. Wipe the case occasionally with a damp cloth. DO NOT use chemicals, cleaning solvents, or detergents.
- USE ONLY FRESH BATTERIES OF THE RECOMMENDED SIZE AND TYPE. Remove old or weak batteries so they do not leak and damage the unit.
- IF THE METER IS TO BE STORED FOR A LONG PERIOD OF TIME, the batteries should be removed to prevent damage to the unit.

The electronic system of the meter does not require maintenance.

10 Storage

In the case of storage of the device, the following recommendations must be observed:

- Disconnect all the test leads from the meter,
- Make sure the meter and its accessories are dry,
- In the case the meter is to be stored for a prolonged period of time, the battery must be removed from the device,

11 Dismantling and utilization

Worn-out electric and electronic equipment should be gathered selectively, i.e. it must not be placed with waste of another kind.

Worn-out electronic equipment should be sent to a collection point in accordance with the law of worn-out electric and electronic equipment.

Before the equipment is sent to a collection point, do not dismantle any elements.

Observe the local regulations concerning disposal of packages, worn-out batteries and accumulators.

12 Technical data

"m.v." means measured value of standard.

DC voltage measurement

Range	Resolution	Basic uncertainty
400,00mV	0,01mV	
4,0000V	0,0001V	1 (0.069/ m v · 4 digita)
40,000V	0,001V	± (0.06% m.v. + 4 digits)
400,00V	0,01V	
1000,0V	0,1V	± (0.1% m.v. + 5 digits)

AC voltage measurement (True RMS) AC + DC

Range	Resolution	Basic uncertainty
400,00mV	0,01mV	± (1% m.v. + 40 digits)
4,0000V	0,0001V	
40,000V	0,001V	1 (10/ m v · 20 digita)
400,00V	0,01V	± (1% m.v. + 30 digits)
1000,0V	0,1V	

frequency range 50 to 1000Hz

DC current measurement

Range	Resolution	Basic uncertainty
400,00µA	0,01µA	
4000,0µA	0,1μΑ	
40,000mA	0,001mA	\pm (1% m.v. + 3 digits)
400,00mA	0,01mA	
10,000A	0,001A	

• 20A: 30 sec max with reduced accuracy

AC current measurement (True RMS) AC + DC

Range	Resolution	Basic uncertainty
400,00µA	0,01μΑ	
4000,0µA	0,1µA	
40,000mA	0,001mA	\pm (1,5% m.v. + 30 digits)
400,00mA	0,01mA	
10,000A	0,001A	

20A: 30 sec max with reduced accuracy

Caution:

Accuracy is stated at 65°F to 83°F (18°C to 28°C) and less than 75% RH.

AC switch according to the calibration of sine wave. It generally increase $\pm (2\% \text{ reading} + 2\% \text{ full scale})$ if non sine wave in the wave crest less than 3.0.

Resistance measurement

Range	Resolution	Basic uncertainty
400,00Ω	0,01Ω	± (0,3 % m.v. + 9 digits)
4,0000kΩ	0,0001kΩ	
40,000kΩ	0,001kΩ	(0.2.9/ may 1.4 digita)
400,00kΩ	0,01kΩ	± (0,3 % m.v. + 4 digits)
$4,0000 M\Omega$	0,0001MΩ	
$40,000$ M Ω	0,001MΩ	± (2 % m.v. + 10 digits)

Capacitance measurement

Range	Resolution	Basic uncertainty
40,000nF	0,001nF	1 (2 F 0/ 40 dinita)
400,00nF	0,01nF	\pm (3,5 % m.v. + 40 digits)
4,0000µF	0,0001µF	
40,000µF	0,001µF	\pm (3,5 % m.v. + 10 digits)
400,00µF	0,01µF	- 1
4000,0µF	0,1µF	1 (E 9/ m) 10 digita)
40,000mF	0,001mF	\pm (5 % m.v. + 10 digits)

Frequency measurement (electronic)

Range	Resolution	Basic uncertainty
40,000Hz	0,001Hz	
400,00Hz	0,01Hz	
4,0000kHz	0,0001kHz	
40,000kHz	0,001kHz	± (0,1 % m.v. + 1 digit)
400,00kHz	0,01kHz	
4,0000MHz	0,0001MHz	
40,000MHz	0,001MHz	
100,00MHz	0,01MHz	Not specified

 Sensitivity: 0.8V rms min. @ 20% to 80% duty cycle and <100kHz; 5Vrms min @ 20% to 80% duty cycle and > 100kHz

Frequency measurement (electrical)

Range	Resolution	Basic uncertainty
40,00Hz 10,000kHz	0,01Hz 0,001kHz	± 0,5 % m.v.

Sensitivity: 1Vrms

Duty cycle measurement

Range	Resolution	Basic uncertainty
0,10 99,0%	0,01%	± (1,2 % m.v. + 2 digits)

Pulse width: 100µs - 100ms, Frequency: 5Hz to 150kHz

Temperature measurement

Range	Resolution	Basic uncertainty
-50.01200,0°C	0,1°C	± (1% m.v. + 2,5°C)
-58.02192,0°F	0,1°F	± (1% m.v. + 4,5°F)

^{*} probe accuracy not included

4-20mA% loop measurement

Range	Resolution	Basic uncertainty
-25,00 125,00%	0,01%	± 50 digits

Measurement category in acc. with EN 61010-1.....III 1000V

0mA=-25%, 4mA=0%, 20mA=100%, 24mA=125%

Other technical data

b)	Ingress protection in acc. wi	ith EN 60529IP67
c)	Pollution degree	2
d)		one 9V battery
e)		I=0,9mA, U₀=2,8V DČ
f)		I<0,35mA, sound signal for R<35 Ω
g)	Overrange indication	OL displayed
h)		≤3 at full scale up to 500V
		decreasing linearly to ≤1,5 at 1000V
i)		captures peaks >1ms
j)		2 times per second, nominal
k)	Input impedance	>10MΩ VDC & >9MΩ VAC
l)		40,000 count backlit liquid crystal with bargraph
m)		2000
n)	Size	187 x 81 x 55mm
0)		342g
p)	Fuses	mA, µA ranges; 0.5A/1000V ceramic fast blow
		A range; 10A/1000V ceramic fast blow
q)	Operating temperature	0°C to 40°C (32°F to 104°F)
r)	Storage temperature	20°C to 60°C (-4°F to 140°F)
s)		max 80% up to 31°C (87°F)
		decreasing linearly to 50% at 40°C (104°F)
t)		<80%
u)	Max. operating altitude	
v)		15 minutes (approx.) with disable feature
w)		double molded, waterproof
x)		ements specified in the following standards
		EN 61010-1
		EN 61010-2-032
y)	Quality standard	ISO 9001

13 Standard accessories

The standard set provided by the manufacturer includes the following components:

- The CMM-40 meter,
- Test leads set for CMM (CAT IV, M) WAPRZCMM2,
- 9 V battery,
- Temperature probe (type K) WASONTEMK,
- Type K temperature probe adapter WAADATEMK,
- Socets protective plugs (2 pcs),
- User manual,
- Carrying case,
- Warranty card,
- Factory calibration certificate.

The current list of accessories can be found on the manufacturer's website.

14 Manufacturer

The manufacturer of the device, which also provides guarantee and post-guarantee service is the following company:

SONEL S.A.

Wokulskiego 11 58-100 Świdnica Poland Tel: +48 74 858 38 60

Fax: +48 74 858 38 09 E-mail: export@sonel.pl Web page: www.sonel.pl

Note:

Service repairs must be realized solely by the manufacturer.

15 Laboratory services

SONEL Testing and Calibration Laboratory has been accredited by the Polish Center for Accreditation (PCA) - certificate no. AP 173.

AP 173

Laboratory offers calibration for the following instruments that are used for measuring electrical and non-electrical parameters.

METERS FOR MEASUREMENTS OF ELECTRICAL PARAMETERS

- voltage meters,
- o current meters (including clamp meters),
- o resistance meters,
- o insulation resistance meters,
- o earth resistance and resistivity meters,
- o RCD meters,
- o short-circuit loop impedance meters,
- power quality analyzers,
- o portable appliance testers (PAT),
- o power meters,
- o multimeters,
- multifunction meters covering the functions of the abovementioned instruments,

ELECTRICAL STANDARDS

- calibrators,
- resistance standards,

METERS FOR MEASUREMENTS OF NON-ELECTRICAL PARAMETERS

- pyrometers,
- o thermal imagers,
- luxmeters.

The Calibration Certificate is a document that presents a relation between the calibration standard of known accuracy and meter indications with associated measurement uncertainties. The calibration standards are normally traceable to the national standard held by the National Metrological Institute.

According to ILAC-G24 "Guidelines for determination of calibration intervals of measuring instruments", SONEL S.A. recommends periodical metrological inspection of the instruments it manufactures no less frequently than once every 12 months.

For new instruments provided with the Calibration Certificate or Validation Certificate at the factory, re-calibration should be performed within 12 months from the date of purchase, however, no later than 24 months from the date of purchase.

ATTENTION!

The person performing the measurements should be absolutely sure about the efficiency of the device being used. Measurements made with an inefficient meter can contribute to an incorrect assessment of the effectiveness of health protection and even human life.

MANUAL DE USO

MULTÍMETRO INDUSTRIAL

CMM-40

Versión 1.10 01.03.2022

El multímetro TRMS CMM-40 está diseñado para medir la tensión continua y alterna, corriente continua y alterna, resistencia, capacidad eléctrica, frecuencia (en aparatos eléctricos y electrónicos), ciclo de trabajo (de llenado), y prueba de diodos, de la continuidad de las conexiones y la medición de la temperatura.

Las características más importantes del instrumento CMM-40 son:

- selección del rango automático o manual,
- la función HOLD permite la lectura de la medición con poca luz o en lugares de difícil acceso,
- la función REL permite tomar las mediciones relativas,
- la función MAX/MIN permite la visualización del valor máximo y mínimo,
- · función de retención del valor de pico,
- memoria de 2000 mediciones,
- señalización sonora de la continuidad del circuito (Beeper),
- · desactivación automática del instrumento sin usar,
- pantalla de 4 ¾ dígitos,
- carcasa de dos componentes, resistente al agua.

ÍNDICE

1	Int	roduccion	79
2	Se	guridad	80
	2.1	Símbolos internacionales de seguridad	82
3		eparación del medidor para el trabajo	
4	De	scripción funcional	83
	4.1 4.1 4.2	Los enchufes de medición y los elementos de la selección de función de medición	.83 .84 .84 .86
_		Cablesdiciones	
5			
	5.11	Medición de la tensión continua	89 90 91 92 93 94 94 95 95
6	Fu	nciones especiales	97
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Cambio manual de sub-rangos	97 98 98 99 99

	6.8	Borrado de la memoria	.100	
	6.9	Muestra de los resultados de la memoria	. 101	
		Configuración de los parámetros		
		AC + DC		
7	Ca	mbio de la batería	102	
8	Ca	mbio de los fusibles	103	
9	Ма	ntenimiento y conservación	104	
1	0 Alı	nacenamiento	105	
1	1 De	smontaje y utilización	105	
1	2 Datos técnicos 106			
1	3 Ac	cesorios estándar	110	
1	4 Se	rvicio	110	

1 Introducción

Gracias por comprar el multímetro de la marca Sonel. El medidor CMM-40 es un instrumento de medición moderno, de alta calidad, fácil y seguro de usar. Lea estas instrucciones para evitar errores de medición y prevenir los posibles problemas relacionados con el funcionamiento del medidor.

En este manual se utilizan dos tipos de avisos. Se trata de textos en el marco que describen los posibles riesgos tanto para el usuario como el medidor. Los textos que comienzan con la palabra 'ADVERTENCIA:' describen las situaciones en las que puede haber un peligro para la vida o la salud, si no cumple con las instrucciones. La palabra '¡ATENCIÓN!' da comienzo a la descripción de la situación en la que el incumplimiento de las instrucciones puede dañar el instrumento.

ADVERTENCIA:

El medidor CMM-40 está diseñado para medir la tensión continua y alterna, frecuencia, resistencia, capacidad y temperatura, así como las pruebas de diodos y continuidad. El uso de un instrumento distinto del especificado en este manual de instrucciones, puede causar daño y ser fuente de un grave peligro para el usuario.

ADVERTENCIA:

El medidor CMM-40 puede ser utilizado sólo por las personas cualificadas que estén facultadas para trabajar con las instalaciones eléctricas. El uso del medidor por personas no autorizadas puede resultar en daños en el instrumento y ser fuente de un grave peligro para el usuario.

ADVERTENCIA:

Antes de utilizar el instrumento debe leer cuidadosamente este manual de instrucciones y seguir las normas de seguridad y las recomendaciones del fabricante.

2 Seguridad

Para garantizar el servicio adecuado y la exactitud de los resultados obtenidos hay que seguir las siguientes precauciones:

- antes de utilizar el medidor debe leer atentamente el presente manual de instrucciones,
- el instrumento debe ser utilizado únicamente por el personal adecuadamente cualificado y formado en materia de Seguridad e Higiene en el Trabajo,
- debe ser muy cuidadoso al medir tensiones superiores a 40V DC (DC - corriente continua) o 20V AC (AC - corriente alterna) RMS (RMS - valor cuadrático medido), ya que son una amenaza potencial de una descarga eléctrica,
- antes de la medición hay que ajustar el conmutador en la posición adecuada,
- durante las mediciones de tensión no se debe cambiar el instrumento en el modo de medición de corriente o resistencia,
- no está permitido exceder el máximo rango de tensión de entrada para cualquier función,
- no se puede conectar la tensión al medidor cuando se ha seleccionado la función de la resistencia,
- al cambiar los rangos debe desconectar siempre los cables de medición del circuito medido,
- no exceda los límites máximos de la señal de entrada,
- <u>inaceptable</u> es el uso de:
 - ⇒ el medidor que ha sido dañado y está total o parcialmente estropeado,
 - ⇒ los cables con aislamiento dañado,
 - ⇒ el medidor guardado demasiado tiempo en malas condiciones (p. ej. húmedas)

 las reparaciones pueden ser realizadas sólo por el servicio autorizado.

ADVERTENCIA:

No se puede medir si el usuario tiene las manos mojadas o húmedas.

ADVERTENCIA:

No tome mediciones en atmósfera explosiva (por ejemplo, en la presencia de gases inflamables, vapores, polvo, etc.). De lo contrario, el uso del medidor en estas condiciones puede causar chispas y provocar una explosión.

¡ATENCIÓN! Valores límites de señal de entrada		
	Valor máximo	
Función	de entrada	
V DC o V AC	1000V DC/AC rms	
mA AC / DC	Fusible rápido 500mA 1000V	
A AC / DC	Fusible rápido 10A 1000V (hasta 20A durante 30 segundos cada 15 minutos)	
Frecuencia, resistencia, capacidad eléctrica, ciclo de trabajo, prueba de diodos, continuidad	1000V DC/AC rms	
Temperatura	1000V DC / AC rms	
Protección contra subidas de tensión: el valor de pico 8 kV según IEC 61010		

2.1 Símbolos internacionales de seguridad

Este símbolo, situado cerca de otro símbolo o un enchufe indica que el usuario debe consultar más información en el manual de instrucciones

Este símbolo, situado cerca del enchufe sugiere que en condiciones normales de uso, existe la posibilidad de tensiones peligrosas.

Doble aislamiento

3 Preparación del medidor para el trabajo

Después de comprar el medidor, hay que comprobar la integridad del contenido del paquete.

Antes de realizar la medición hay que:

- asegurarse si el estado de la batería permite las mediciones,
- comprobar si la carcasa del medidor y el aislamiento de los cables de medición no están dañados,
- para asegurar la interpretación única de los resultados de la medición, se recomienda conectar al enchufe COM el cable negro y a los otros enchufes el cable rojo.

ADVERTENCIA:

La conexión de los cables incorrectos o dañados puede causar descarga de tensión peligrosa.

4 Descripción funcional

4.1 Los enchufes de medición y los elementos de la selección de función de medición

CMM-40

4.1.1 Enchufes

7 enchufes de medición uA, mA y 10A

Las entradas para la medición de corrientes continuas y alternas.

8 enchufe de medición COM

Entrada de medición común para todas las funciones de medición.

9 enchufe de medición Ω → OAPV°F°CHz%

La entrada de medición para las otras mediciones además de las corrientes.

4.1.2 Elementos de la selección de funciones de medición

- 1 pantalla LCD
- 2 STORE (< RECALL)
 - Inscripción del resultado en la memoria (visualización del resultado de la memoria)

3 tecla MAX/MIN

Visualización del valor máximo y mínimo

4 tecla MODE

Cambio del modo de medición

5 tecla RANGE

Cambio manual del rango de medición

6 interruptor rotatorio

Selección de función:

- μA medición de corriente continua y alterna hasta 4000μA
- 4~20mA% medición de corriente de bucle 4...20mA
- mA medición de corriente continua y alterna hasta 400mA
- 10AHz% medición de corriente continua y alterna hasta 10A, frecuencia, ciclo de trabajo (llenado)
- OFF medidor apagado
- VcaHz% medición de tensión alterna, frecuencia, ciclo de trabajo
- Vcc medición de tensión continua
- mV medición de tensión continua y alterna hasta 400mV
- 10AHz% medición de frecuencia, ciclo de trabajo (Ilenado)
- Ω[→] ^{•0)} CAP medición de resistencia, continuidad, capacidad y pruebas de diodos
- Temp medición de temperatura en grados Celsius o Fahrenheit

10 tecla 🎬

Iluminación de la pantalla

11 tecla EXIT (CA+CC)

- Salida
- Medición de los valores TRMS

12 tecla HOLD

Mantener el resultado de medición en la pantalla

13 tecla REL

Medición relativa

4.2 Pantalla de cristal líquido (LCD)

Pantalla de cristal líquido del medidor CMM-40

- símbolo de iniciar la prueba de continuidad
- 材 símbolo iniciar la prueba de diodos

†batería baja

n - nano (10⁻⁹) (capacidad eléctrica)

μ - micro (10⁻⁶) (amperios, capacidad)

m - milli (10⁻³) (voltios, amperios)

A - amperios

k - kilo (103) (ohmios)

F - faradios (capacidad eléctrica)

M - mega (106) (ohmios)

 Ω - ohmios

Hz - hertz (frecuencia)

% - porcentaje (factor de llenado)

CC, CA - tensión (corriente) continua, alterna

°C - grados Celsius

°F - grados Fahrenheit

MAX - máximo

MIN - mínimo

No. - número del resultado en la memoria

S - segundo

SET - ajuste de los parámetros de medición

CA +CC - corriente alterna + corriente continua

TRMS - valor eficaz de corriente

STO - guardar

RCL - recordar

AUTO - símbolo de selección automática del sub-rango

PEAK - valor de pico

V - voltios

- medición relativa HOLD - símbolo de poner la función HOLD

4.3 Cables

El fabricante garantiza la exactitud de las indicaciones sólo si se utiliza los cables del fabricante.

ADVERTENCIA:

La conexión de los cables inadecuados puede causar descarga eléctrica o errores de medición.

5 Mediciones

Por favor, lea cuidadosamente el contenido de este capítulo, ya que se ha descrito la forma de realizar las mediciones y los principios básicos de interpretación de los resultados.

5.1 Medición de la tensión continua

ATENCIÓN:

No se puede medir la tensión continua cuando estamos encendiendo o apagando el motor eléctrico en el circuito. Esto podría causar grandes subidas de tensión y por lo tanto dañar el medidor.

Para realizar la medición de la tensión hay que:

- poner el conmutador rotativo en la posición VDC,
- si es necesario, con la tecla RANGE ajustar manualmente el rango de medición,
- conectar el cable rojo de medición al enchufe
 Ω → □ CAPV°F°CHz% y el negro al enchufe COM,
- poner las puntas de las sondas en los puntos de medición; la sonda roja debe ser puesta en el punto de mayor potencial,
- leer el resultado de la medición en la pantalla,
- al terminar las mediciones quitar los cables de los enchufes de medición del medidor.

5.2 Medición de la tensión alterna:

ADVERTENCIA:

Peligro de descarga eléctrica. Las puntas de la sonda pueden no ser lo suficientemente largas para llegar a los elementos bajo tensión de algunas conexiones de corriente de 240 V para los aparatos eléctricos, ya que los contactos están colocados profundamente en los enchufes. Como resultado de ello, la lectura tendrá el valor de 0 V, aunque en realidad el enchufe puede estar bajo tensión. Asegúrese de que la punta de la sonda esté en contacto con los contactos metálicos dentro del enchufe antes de que el usuario considere que el enchufe no está bajo tensión.

ATENCIÓN:

No se puede medir la tensión alterna cuando estamos encendiendo o apagando el motor eléctrico en el circuito. Esto podría causar grandes subidas de tensión y por lo tanto dañar el medidor.

Para realizar la medición de la tensión hay que:

- poner el conmutador rotativo en la posición VacHz%,
- si es necesario, con la teclaRANGE ajustar manualmente el rango de medición.
- conectar el cable rojo de medición al enchufe
 Ω → □ CAPV°F°CHz% el negro al enchufe COM,
- poner las puntas de las sondas en los puntos de la medición,
- leer el resultado de la medición en la pantalla,
- pulsar la teclaMODE para mostrar en la pantalla el valor "Hz",
- leer el valor de la frecuencia en la pantalla principal,
- pulsar de nuevo la tecla MODE para mostrar en la pantalla el valor "%".
- leer el valor de % para el ciclo de trabajo en la pantalla principal,

- pulsar la teclaEXIT y mantenerla presionada durante dos segundos para pasar a la función AC+DC,
- realizar la medición de valor eficaz de la corriente continua y alterna.
- al terminar las mediciones quitar los cables de las tomas de medición del medidor.

5.3 Medición de la tensión en [mV]

ATENCIÓN:

No se puede medir la tensión en [mV] cuando estamos encendiendo o apagando el motor eléctrico en el circuito. Esto podría causar grandes subidas de tensión y por lo tanto dañar el medidor.

- poner el conmutador rotativo en la posición mV,
- pulsarla tecla MODE para mostrar en la pantalla el valor DC o AC.
- en el rango de AC pulsar la teclaEXIT y mantenerla pulsada durante dos segundos para pasar a la función AC+DC,
- conectar el cable rojo de medición al enchufe
 Ω → □ CAPV°F°CHz% y el negro al enchufe COM,
- poner las puntas de las sondas en los puntos de medición; para la tensión continua la sonda roja debe ser puesta en el punto de mayor potencial,
- leer el resultado de la medición en la pantalla,
- al terminar las mediciones quitar los cables de las tomas de medición del medidor.

5.4 Medición de corriente continua

ATFNCIÓN:

No realice las mediciones de corriente de 20A durante más de 30 segundos. La superación de este tiempo puede causar daños del medidor y/o de los cables de medición.

Para realizar la medición de la corriente hay que:

- conectar el cable negro de medición al enchufe COM,
- para la medición de la corriente continua hasta 4000μA DC hay que ajustar el conmutador de la función en la posición μA y conectar el cable rojo de medición al enchufe μA/mA,
- para medir la corriente hasta 400mA DC hay que ajustar el conmutador de la función en la posición mA y conectar el cable rojo de medición al enchufe µA/mA,
- para medir la corriente hasta 20 A DC hay que ajustar el conmutador de la función en la posición 10AHz y conectar el cable rojo de medición al enchufe 10A,
- desconectar la alimentación del circuito durante la medición y luego ponga el medidor en serie en el circuito en el lugar donde debe medir la corriente.
- poner las puntas negras de la sonda al polo negativo del circuito y la punta roja de la sonda al polo positivo del circuito,
- poner la alimentación del circuito,
- leer el resultado de la medición en la pantalla,
- al terminar las mediciones quitar los cables de las tomas de medición del medidor.

5.5 Medición de corriente alterna (frecuencia, ciclo de trabajo)

ATENCIÓN:

No realice las mediciones de corriente de 20A durante más de 30 segundos. La superación de este tiempo puede causar daños del medidor y/o de los cables de medición.

Para realizar la medición de la corriente hay que:

- conectar el cable negro de medición al enchufe COM,
- para medir la corriente hasta 400mA AC hay que ajustar el conmutador de la función en la posición mA y conectar el cable rojo de medición al enchufe µA/mA,
- para medir la corriente hasta 400mA AC hay que ajustar el conmutador de la función en la posición mA y conectar el cable rojo de medición al enchufe µA/mA,
- para medir la corriente hasta 20 A AC hay que ajustar el conmutador de la función en la posición 10AHz y conectar el cable rojo de medición al enchufe 10A,
- pulsarla tecla MODEpara mostrar en la pantalla el valor ACenla pantalla.
- desconectar la alimentación del circuito durante la medición y luego ponga el medidor en serie en el circuito en el lugar donde debe medir la corriente,
- poner las puntas negras de la sonda al polo neutro del circuito y la punta roja de la sonda al polo positivo del circuito que está bajo tensión,
- poner la alimentación del circuito,
- leer el resultado de la medición en la pantalla, en el rango10A
 AC la pantalla secundaria derecha muestra la frecuencia,
- pulsar y mantener pulsada la tecla MODE para mostrar el valor Hz.
- leer el valor de la frecuencia en la pantalla,
- pulsar brevemente de nuevo la tecla MODE para mostrar el valor %.
- leer el valor % del ciclo de trabajo en la pantalla,

- pulsar y mantener pulsada la tecla MODE, para volver a medir la corriente.
- pulsar la tecla EXIT mantenerlo pulsado durante dos segundos para pasar a la función AC+DC, realizar la medición del valor eficaz de la corriente continua y alterna,
- al terminar las mediciones quitar los cables de las tomas de medición del medidor.

5.6 Medición de la resistencia

ADVERTENCIA:

No realice mediciones en el circuito que se esté bajo tensión. Los condensadores deben ser descargados.

Para realizar la medición de la resistencia hay que:

- poner el conmutador rotativo en la posición Ω[→] [●] CAP,
- conectar el cable rojo de medición al enchufe
 Ω → ⁽⁴⁾ CAPV°F°CHz% y el negro al enchufe COM,
- pulsarla tecla MODE, para mostrar Ω en la pantalla,
- si es necesario, con la tecla RANGE ajustar manualmente el rango de medición,
- poner las puntas de las sondas en los puntos de medición; es mejor desconectar un lado del elemento de prueba para que el resto del circuito no distorsione la lectura de la resistencia,
- leer el resultado de la medición en la pantalla,
- al terminar las mediciones quitar los cables de las tomas de medición del medidor.

5.7 Prueba de continuidad del circuito

ADVERTENCIA:

No realice mediciones en el circuito que se esté bajo tensión. Los condensadores deben ser descargados.

Para llevar a cabo una prueba de continuidad del circuito se debe:

- poner el conmutador rotativo en la posición Ω → (CAP)
- conectar el cable rojo de medición al enchufe
 Ω → CAPV°F°CHz% y el negro al enchufe COM,
- pulsar la tecla MODE, para mostrar Ω y
 en la pantalla,
- poner las puntas de las sondas en los puntos de la medición,
- leer el resultado de la medición en la pantalla; la señal sonora se produce cuando los valores de resistencia de menos de 35Ω, si el circuito está abierto, la pantalla muestra el símbolo OL.
- al terminar las mediciones quitar los cables de las tomas de medición del medidor.

5.8 Prueba de diodos

ADVERTENCIA:

No realice mediciones en el circuito que se esté bajo tensión. Los condensadores deben ser descargados.

Para probar los diodos se debe:

- poner el conmutador rotativo en la posición Ω[→] ⁽¹⁾ CAP,
- conectar el cable rojo de medición al enchufe
 Ω→ ⁽¹⁾ CAPV°F°CHz% y el negro al enchufe COM,
- pulsarla tecla MODE para mostrar

 y V en la pantalla,
- poner las puntas de las sondas al diodo: la sonda roja debe ser puesta al ánodo y la sonda negra al cátodo,
- leer el resultado de la prueba en la pantalla: se muestra la tensión de conducción que para un diodo de silicio típico es de

unos 0,7V y para un diodo de germanio es de unos 0,3 V; y si el diodo está polarizado en la dirección de la barrera o hay una ruptura en el circuito, en la pantalla se leerá **OL**, en el caso de un diodo compacto, el medidor indicará un valor cercano a 0V.

 al terminar las mediciones quitar los cables de las tomas de medición del medidor.

5.9 Medición de la capacidad

ADVERTENCIA:

No realice mediciones en el circuito que se esté bajo tensión. Los condensadores deben ser descargados.

Para realizar la medición hay que:

- poner el conmutador rotativo en la posición Ω → (CAP)
- conectar el cable rojo de medición al enchufe
 Ω → □ CAPV°F°CHz% y el negro al enchufe COM,
- pulsar la tecla MODE para mostrar F,
- si es necesario, con la tecla RANGE ajustar manualmente el rango de medición,
- poner las puntas de las sondas en el condensador de prueba,
- leer el resultado de la medición en la pantalla,
- al terminar las mediciones quitar los cables de las tomas de medición del medidor.

5.10 Medición de la temperatura

Para realizar la medición hay que:

- poner el conmutador rotativo en la posición Temp
- conectar la sonda de temperatura al enchufe negativo COM y al enchufe positivo Ω→ CAPV°F°CHz%, respetando la polaridad.
- pulsar el botón MODE para seleccionar la unidad de medición:
 °C o °F,

- poner el cabezal de la sonda de temperatura al instrumento de prueba. El contacto del cabezal con la parte medida del dispositivo de prueba se debe mantener hasta que la lectura sea estable (después de aproximadamente 30 segundos).
- leer el resultado de la medición en la pantalla,
- al terminar las mediciones quitar los cables de la sonda de los enchufes de medición del medidor.

Atención:

La sonda de temperatura está equipada con un miniconector tipo K. El adaptador para unir el mini-conector y la clavija tipo banana es suministrada para la conexión con las tomas de entrada tipo banana.

5.11 Medición de frecuencia o % del ciclo de trabajo (llenado)

Para realizar la medición hay que:

- poner el conmutador rotativo en la posición Hz%,
- conectar el cable rojo de medición al enchufe
 Ω→ □ CAPV°F°CHz% v el negro al enchufe COM,
- poner las puntas de las sondas en el circuito de prueba,
- si es necesario, con la tecla RANGE ajustar manualmente el rango de medición,
- leer el resultado de la medición en la pantalla,
- pulsar la tecla MODE para mostrar %
- leer el valor % del ciclo de trabajo en la pantalla,
- al terminar las mediciones quitar los cables de las tomas de medición del medidor.

5.12 Medición de bucle de corriente 4 ~ 20mA %

Para realizar la medición hay que:

- configurar y conectar el instrumento como se describe para la medición de la DC mA
- poner el conmutador rotativo de la función en la posición 4~20mA%,
- el medidor muestra la corriente del bucle como el valor % con 0mA=-25%, 4mA=0%, 20mA=100%, y 24mA=125%.

6 Funciones especiales

6.1 Cambio manual de sub-rangos

Cuando el medidor se enciende por primera vez, se pone en el modo automático de selección del rango. En este modo se selecciona automáticamente el mejor rango para las mediciones y por lo general es el mejor modo para la mayoría de las mediciones. Para las mediciones que requieren un ajuste manual del rango, debe hacer lo siguiente:

- pulsar la tecla RANGE. Símbolo AUTO se apaga en la pantalla,
- pulsar de nuevo el botón RANGE, que permite la transición entre los rangos disponibles y la selección del rango deseado,
- para salir del modo manual de la selección del rango y volver a la selección automática debe pulsar el botón EXIT.

Atención:

La selección manual del rango no se utiliza para la función de medición de temperatura, continuidad, prueba de diodo, ciclo de trabajo, mV, corriente 4 ~ 20 mA y 10A.

6.2 Modo MAX / MIN

Pulsar la tecla **MAX/MIN**, para iniciar el modo de registro MAX/MIN. En la pantalla izquierda se mostrará el icono **MAX**. La pantalla secundaria del medidor presentará una lectura máxima,

que será actualizada sólo después de un nuevo valor "máx". En la pantalla derecha se mostrará el icono **MIN**. La pantalla secundaria del medidor presentará una lectura mínima, que será actualizada sólo después de un nuevo valor "min".

Para salir del modo MAX/MIN pulse la tecla EXIT.

6.3 Modo de medición relativa

La función de medición relativa permite realizar mediciones con relación a un valor de referencia guardado. El valor de referencia de tensión, corriente, etc. puede ser guardado, y las mediciones se pueden hacer en comparación a este valor. El valor indicado es la diferencia entre el valor de referencia y el valor medido.

Atención:

El modo relativo no se utiliza en las funciones 4 ~ 20mA, prueba de diodo y continuidad.

Para realizar la medición en modo relativo hay que:

- realizar una medición como se describe en el manual de instrucciones.
- pulsarla tecla REL para guardar la lectura mostrada en la pantalla; en la pantalla aparece el símbolo ,
- en la pantalla secundaria izquierda aparecerá la diferencia de los valores, el valor actual medido, en la pantalla secundaria derechaaparecerá la lectrura inicial, en la pantalla principal aparecerá la lectura de la medición del valor relativo en el modo REL TEST.
- Para salir del modo relativo pulse la tecla EXIT.

6.4 Función HOLD

Esta función se utiliza para detener el resultado de la medición en la pantalla, que es posible presionando la tecla **HOLD**. Cuando está activado, en la pantalla aparece el símbolo **HOLD**. Para volver al funcionamiento normal del instrumento, pulse de nuevo la tecla **HOLD**.

6.5 Función de retención del valor de pico PEAK HOLD

La función de retención del valor de pico captura el valor de pico de tensión o de corriente alterna con el componente fijo (AC+DC más en el capítulo 5.5). El medidor puede capturar los picos negativos o positivos que duran 1 mili-segundo. Para activar la funcción, hay que mantener pulsada la tecla **PEAK** durante 2 segundos (señalizado por una señal de sonido largo). Después de soltar el botón, en la pantalla aparece el símbolo **PEAK**. Arriba de la pantala aparecerán: los valores **MAX** en la pantalla secundaria izquierda, **MIN** aparecerán en la pantalla secundaria derecha.

El medidor actualizará los datos mostrados en la pantalla cuando aparezca un valor de pico más negativo o positivo.

La función del apagado automático de la alimentación se desactivará en este modo.

Para salir del modo PEAK HOLD, pulse la tecla **EXIT** (o elige otra funcción de medición).

Nota:

Mientras la función PEAK HOLD está activa, la selección automática de rango no funciona, por lo tanto, se recomienda ejecutar la función solo después de conectar los cables al punto de medición. La activación de la función PEAK HOLD antes de conectar el medidor al punto de medición puede provocar la visualización de los símbolos de rango excesivo.

6.6 Iluminación de la pantalla

Para encender la iluminación de fondo, pulse la tecla . iluminación de fondo se apagará automáticamente tras un tiempo predeterminado por el usuario. Para salir de la iluminación de la pantalla, pulse la tecla otra vez.

6.7 Guardar los datos

Para guardar el resultado de la medición hay que:

 en el modo de medición actual, pulse una vez la teclaSTORE, para entrar en el modo guardar - en la esquina superior izquierda de la pantalla aparecerá el mensaje NO. XXXX, que

- especifica el número actual de células de memoria (XXXX número de célula).
- pulsar la tecla PEAKHOLD, para seleccionar la célula de memoria inicial del siguiente registro (en la pantalla izquierda 0000 - al principio de la memoria, XXXX - desde la siguiente célula libre), en la pantalla secundaria derecha aparece XXXX, que determina la cantidad de las células guardadas, ,
- pulsar de nuevo la tecla STORE, para introducir los ajustes del intervalo de tiempode la función - en la esquina superior izquierda de la pantalla aparecerá el valor 0000 S, que significa que el intervalo de tiempo de grabación de datos. Pulsando las teclas + y - se puede seleccionar el rango en los límites es de 0 .. 255 segundos,
- cuando el intervalo de registro de datos es de 0000s, entonces debe pulsar de nuevo la tecla STORE, para pasar al modo de grabación manual - pulsar de nuevo la tecla STORE para realizar un solo registro,
- cuando el intervalo de tiempo de grabación de datos es de 1 ...
 255s, entonces pulse de nuevo la tecla STORE, para iniciar la grabación automática a la memoria. En la esquina superior izquierda se muestra la célula de memoria actual, se guardan los datos mostrados en la esquina superior derecha.

Atención:

Debido a las limitaciones digitales, la pantalla muestra sólo los valores de cuatro dígitos.

 para salir del modo guardar datos, pulse un breve momento la tecla EXIT.

6.8 Borrado de la memoria

Para borrar toda la memoria hay que:

- cuando el instrumento esté apagado, pulsar la tecla EXIT y mantenerla pulsada,
- cambiar el conmutador de la posición OFF a cualquier otra y soltar la tecla EXIT - la pantalla parpadeará tres veces y

emitirá un sonido triple, lo que indica que los datos en la memoria han sido borrados.

6.9 Muestra de los resultados de la memoria

Para mostrar los resultados de medición de la memoria hay que:

- pulsar la tecla STORE(☐RECALL) y mantenerla pulsada durante dos segundos para pasar al modo mostrar los resultados - en la pantalla izquierda superior se mostrará el valor XXXX, que significa el número de célula actual. En la esquina superior derecha de la pantalla se mostrará el valor XXXX, que significa el número total de células registradas;
- con las teclas + y puede revisar las siguientes células de los datos guardados en la pantalla principal.
- pulsar la tecla HOLD (PeakHOLD) una vez para revisar los datos de 0000 a XXXX de forma continua,
- para salir del mado debe pulsar la tecla EXIT.

6.10 Configuración de los parámetros

Para configurar los parámetros de medición hay que:

- pulsar la tecla RANGE (SETUP) y mantenerla pulsada durante dos segundos , para entrar en el modo de ajuste de parámetros,
- pulsar brevemente la tecla RANGE (SETUP) una vez para cambiar el tipo de ajustes,

El tipo de ajustes incluye los siguientes componentes (en secuencia)

- A: alarma de sonido para el límite superior,
- B: alarma de sonido para el límite inferior,
- C: tiempo de apagado automático de alimentación,
- D: señal sonora de apagado,
- E: tiempo de iluminación,
- para seleccionar los parámetros se utilizan las teclas ←, +, -,
- pulsar la tecla SET para pasar a través de los contenidos de los ajustes hasta salir de la configuración al modo de medición; el contenido actualizado de los ajustes se guarda. Si en este tiempo pulsa la tecla EXIT no se guardan los ajustes.

6.11 AC + DC

Esta función es activa en todos los modos de medición: mV CA, (AC), 10 A (AC), mA (AC), UA (AC).

- Pulsar la tecla EXIT (AC+DC) durante dos segundos para entrar en el modo de prueba de corriente alterna y continua.
 La precisión es la misma que en la medición de la corriente alterna. La pantalla muestra el mnemónico AC + DC.
- Para salir de este modo, pulse la tecla EXIT.

7 Cambio de la batería

El medidor CMM-40 se alimenta de la batería de 9V tipo 6LR61.

Atención:

Haciendo mediciones en el mostrado mnemónico de la batería hay que tener en cuenta las incertidumbres adicionales de medición no especificadas o el funcionamiento inestable del instrumento.

ADVERTENCIA:

Si dejamos los cables en los enchufes durante el cambio de la batería, esto puede causar una descarga de tensión peligrosa.

Para reemplazar la batería hay que:

- retirar los cables de los enchufes y poner el conmutador rotatorio en la posición OFF,
- abrir la tapa trasera de la batería aflojando los dos tornillos
 (B) con un destornillador,
- retirar la batería descargada e insertar una nueva respetando la polaridad,
- poner la tapa retirada y apretar los tornillos de fijación.

ADVERTENCIA:

Para evitar una descarga eléctrica, no utilice el medidor si la tapa de la batería no está en su lugar y no está fijada de forma segura.

Atención:

Si el medidor no funciona correctamente, hay que revisar los fusibles y las baterías para asegurarse de que estén en buenas condiciones y estén bien instaladas en el instrumento.

8 Cambio de los fusibles

ADVERTENCIA:

Si dejamos los cables en los enchufes durante el cambio de los fusibles, esto puede causar una descarga de tensión peligrosa.

Para reemplazar la batería hay que:

- retirar los cables de los enchufes y el poner conmutador rotatorio en la posición OFF,
- abrir la tapa trasera de la batería aflojando los dos tornillos (B) con un destornillador,
- retirar la batería,
- desenroscar los seis tornillos (A) que sujetan la cubierta trasera,
- retirar con cuidado el fusible viejo e instalar uno nuevo en su enganche.
- poner de nuevo y asegurar la cubierta trasera, la batería y la tapa de la batería.

¡ATENCIÓN!

Siempre deben usar los fusibles del tamaño y valor (0,5 A/1000V fusible rápido de para el rango de 400mA [SIBA 70-172-40], 10A/1000V fusible rápido para el rango de 20A [SIBA 50-199-06]).

9 Mantenimiento y conservación

El medidor multifunción ha sido diseñado para que sirva muchos años, siempre y cuando se cumplan las siguientes recomendaciones para su mantenimiento y conservación:

- EL MEDIDOR DEBE ESTAR SECO. Si el medidor se humedece, séquelo inmediatamente.
- EL MEDIDOR SE USA Y GUARDA A UNA TEMPERATURA NORMAL. Las temperaturas extremas pueden acortar la vida útil de los componentes electrónicos del medidor y deformar o derretir algunos elementos plásticos.
- EL MEDIDOR DEBE SER MANEJADO CON CUIDADO Y DELICADEZA. La caída del medidor puede causar daños de los componentes electrónicos del medidor o su carcasa.

- EL MEDIDOR DEBE SER MANTENIDO LIMPIO. De vez en cuando debe limpiar la carcasa con un paño húmedo. NO use productos químicos, disolventes ni detergentes.
- DEBE UTILIZAR SOLAMENTE LAS BATERÍAS NUEVAS DEL TAMAÑO Y TIPO RECOMENDADO. Retirar del medidor las baterías viejas o agotadas para evitar fugas y daños del instrumento.
- SI EL MEDIDOR DEBE ESTAR GUARDADO DURANTE UN PERÍODO LARGO, entonces hay que sacar las baterías para evitar daños del instrumento.

Atención:

El sistema electrónico del medidor no requiere conservación.

10 Almacenamiento

Durante el almacenamiento del instrumento, hay que seguir las siguientes instrucciones:

- desconectar todos los cables del medidor,
- asegurarse de que el medidor y los accesorios estén secos,
- durante un almacenamiento prolongado se debe quitar la batería.

11 Desmontaje y utilización

Los residuos de aparatos eléctricos y electrónicos deben ser recogidos por separado, es decir, no depositar con los residuos de otro tipo.

El dispositivo electrónico debe ser llevado a un punto de recogida conforme con la Ley de residuos de aparatos eléctricos y electrónicos.

Antes de llevar el equipo a un punto de recogida no se debe desarmar cualquier parte del equipo.

Hay que seguir las normativas locales en cuanto a la eliminación de los envases, baterías usadas y acumuladores.

12 Datos técnicos

• "m.v." significa la medida de valor de la norma.

Medición de la tensión continua

Rango	Resolución	La incertidumbre básica
400,00mV	0,01mV	
4,0000V	0,0001V	(0.000/ 4 d(=it==)
40,000V	0,001V	± (0,06% m.v. + 4 dígitos)
400,00V	0,01V	
1000,0V	0,1V	± (0,1% v.m. + 5 dígitos)

Medición de la tensión alterna (True RMS)

Rango	Resolución	Incertidumbre básica
400,00mV	0,01mV	± (1% m.v. + 40 dígitos)
4,0000V	0,0001V	
40,000V	0,001V	1 (40/ m) (30 díaitea)
400,00V	0,01V	\pm (1% m.v. + 30 dígitos)
1000,0V	0,1V	

• Rango de frecuencia de 50 a...1000 Hz

Medición de la corriente continua

Rango	Resolución	Incertidumbre básica
400,00µA	0,01μΑ	
4000,0µA	0,1μΑ	
40,000mA	0,001mA	± (1% m.v. + 3 dígitos)
400,00mA	0,01mA	, , ,
10,000A	0,001A	

• 20 A: hasta 30 segundos con una precisión reducida

Medición de la corriente alterna (True RMS)

Rango	Resolución	Incertidumbre básica
400,00µA	0,01μΑ	
4000,0µA	0,1μΑ	
40,000mA	0,001mA	\pm (1,5% m.v. + 30 dígitos)
400,00mA	0,01mA	
10,000A	0,001A	

20 A: hasta 30 segundos con una precisión reducida

Atención:

La precisión fue determinada a temperaturas de 18 °C a 28°°C y una humedad relativa de aire inferior al 75%. Para la corriente con distorsión, el error es mayor de $\pm (2\%$ de la lectura $\pm 2\%$ de la escala), para el factor del pico <3.0.

Medición de la resistencia

Rango Resolución		Incertidumbre básica
400,00Ω 0,01Ω		± (0,3% v.m. + 9 dígitos)
4,0000kΩ	0,0001kΩ	
40,000kΩ	0,001kΩ	(0.39/ m v . 4 d(sites)
400,00kΩ	0,01kΩ	\pm (0,3% m.v. + 4 dígitos)
4,0000ΜΩ	0,0001ΜΩ	
40,000MΩ	0,001ΜΩ	± (2% m.v. + 10 dígitos)

Medición de la capacidad

Rango	Resolución	Incertidumbre básica
40,000nF	0,001nF	1 (2 E9/ m) 1 (40 digitos)
400,00nF	0,01nF	\pm (3,5% m.v. + 40 dígitos)
4,0000µF	0,0001µF	
40,000µF	0,001µF	\pm (3,5% m.v. + 10 dígitos)
400,00µF	0,01µF	
4000,0µF	0,1µF	(F9/ m) (10 digitos)
40,000mF	0,001mF	± (5% m.v. + 10 dígitos)

Medición de la frecuencia (en electrónica)

Rango	Resolución	Incertidumbre básica
40,000Hz	0,001Hz	
400,00Hz	0,01Hz	
4,0000kHz	0,0001kHz	
40,000kHz	0,001kHz	± (0,1% m.v. + 1 dígito)
400,00kHz	0,01kHz	
4,0000MHz	0,0001MHz	
40,000MHz	0,001MHz	
100,00MHz	0,01MHz	Valor indeterminado

 Sensibilidad: el valor mínimo eficaz de la tensión 0,8 V de 20% a 80% del ciclo de trabajo y <100kHz; el valor mínimo eficaz de la tensión 5V de 20% a 80% del ciclo de trabajo y> 100kHz

Medición de la frecuencia (en eléctrica)

Rango	Resolución	Incertidumbre básica
40,00Hz 10,000kHz	0,01Hz 0,001kHz	\pm 0,5 % m.v.

Sensibilidad: 1 V rms

Medición del ciclo de trabajo (llenado)

Rango	Resolución	Incertidumbre básica	
0,10 99,00%	0,01%	± (1,2% m.v. + 2 dígitos)	

 Ancho de impulso: 100µs - 100ms, Frecuencia: 5Hz hasta 150kHz

Medición de la temperatura

Rango	Resolución	Incertidumbre básica*
-50.01200,0liC	0,10C	± (1% de la lectura + 2,50C)
-58.02192,01F	0,10F	± (1% de la lectura + 2,5\(\text{C}\)

^{*} precisión de la sonda tipo K no incluida

La medición de bucle de corriente 4-20mA%

Rango	Resolución	Incertidumbre básica
-25,00 125,00%	0,01%	± 50 dígitos

0mA=-25%, 4mA=0%, 20mA=100%, 24mA=125%

Otros datos técnicos

a)	categoría de medición según EN 61010-1III 1000V
b)	grado de protección de la carcasa según EN 60529IP67
c)	grado de contaminación
ď)	alimentación del medidor batería 9V
e)	prueba de diodoI=0,9mA, U ₀ =2,8V DC
f)	prueba de continuidadI<0,35mA, señal sonora para R<35Ω
g)	indicación de superación del rango
h)	factor de pico≤ 3 para el rango completo 500 V
,	disminuyendo linealmente hasta ≤1,5 a 1000 V
i)	valor de pico PEAK captura el valor de pico> 1ms
i)	frecuencia de mediciones
•	impedancia de intrada
k)	ninpedancia de entrada
I)	pantallaLCD con gráfico de barras, indicación 40 000
m)	número de resultados en la memoria
n)	dimensiones
0)	peso del medidor342 g
p)	fusiblesrango mA, µA: 0,5A/1000V de cerámica rápida
	rango A: 10A/1000V de cerámica rápida
q)	temperatura de trabajo
r)	temperatura de almacenamiento–20+60°C
s)	humedadmáx el 80% hasta 31°C
,	disminuyendo linealmente hasta el 50% a 40°C
t)	máx. altura de trabajo2000m
ú)	tiempo de inactividad para apagado automático
v)	cumple con los requisitos de las normasEN 61010-1
٠,	EN 61010-2-032
w)	norma de calidad
•••	101110 00 0001

13 Accesorios estándar

El contenido del juego estándar suministrado por el fabricante incluye:

- medidor CMM-40,
- cables de medición para CMM (CAT IV, M) WAPRZCMM2,
- batería 9 V,
- sonda para medir la temperatura (tipo K) WASONTEMK,
- adaptador tipo K de la sonda de temperatura WAADATEMK,
- tapón de seguridad para el enchufe de medición (2 unidades)
- funda.
- manual de uso.
- tarjeta de garantía,
- certificado de calibración de fábrica.

La lista actual de accesorios se puede encontrar en el sitio web del fabricante.

14 Servicio

El servicio de garantía y postgarantía lo presta:

SONEL S.A.

Wokulskiego 11 58-100 Świdnica Polonia Tel: +48 74 858 38 60

Fax: +48 74 858 38 09 E-mail: export@sonel.pl Web page: www.sonel.pl

ATENCIÓN:

Para el servicio de reparaciones sólo está autorizado SONEL S.A.

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

ПРОМЫШЛЕННЫЙ МУЛЬТИМЕТР

CMM-40

Версия 1.10 01.03.2022

Мультиметр TRMS CMM-40 предназначен для измерения постоянного и переменного напряжения, постоянного и переменного тока, сопротивления, электрической емкости, частоты (в электротехнике и электронике), рабочего цикла (заполнения), а также тестирования диодов, проверки непрерывности соединений и измерения температуры.

К наиболее важным особенностям прибора СММ-40 относятся:

- автоматическое или ручное изменение диапазонов,
- функция HOLD позволяет считывать показания измерений при недостаточном освещении или в труднодоступных местах,
- функция **REL**, позволяющая проводить относительные измерения,
- функция MAX/MIN, позволяющая отображать максимальное и минимальное значения,
- функция фиксации пиковых значений,
- память на 2000 результатов измерений,
- звуковая сигнализация непрерывности цепи (Beeper),
- автоматическое выключение неиспользуемого прибора,
- дисплей на 4 ¾ цифр,
- двухкомпонентный водонепроницаемый корпус.

СОДЕРЖАНИЕ

1	Вв	едение	115
2	Бе	зопасность	116
	2.1	Международные символы безопасности	.118
3	По	дготовка измерителя к работе	118
4	Оп	исание функций	119
	4.1		
		измерения	
		1.1 Г _{незда}	
		1.2 Элементы выбора функции измерения	
		Жидкокристаллический дисплей (ЖКИ)	
	4.3	Провода	
5	Из	мерения	124
	5.1	Измерение постоянного напряжения	124
	5.2	Измерение переменного напряжения	
	5.3	Измерение напряжения в милливольтах [mV]	
	5.4	Измерение постоянного тока	
	5.5	Измерение переменного тока (частота, рабочий ц	икл) 128
	5.6	Измерение сопротивления	
	5.7	Тест непрерывности цепи	. 130
	5.8	Тест диода	
	5.9	Измерение емкости	
	5.10	Измерение температуры	
	5.11	Измерение частоты или % рабочего цикла (заполне	
	5.12	Измерение токовой петли 4 ~ 20mA %	. 133
6	Сп	ециальные функции	
	6.1	Ручное изменение поддиапазонов	
	6.2	Режим MAX/MIN	
	6.3	Режим относительного измерения	
	6.4	Функция HOLD	
	6.5	Функция удержания пикового значения PEAK HOLD	
	6.6	Подсветка дисплея	
	6.7	Сохранение данных	. 136

	6.8	Стирание памяти	137
		Вызов результатов из памяти	
		Настройка параметров	
	6.11	AC + DC	138
7	За	мена батарейки	138
8	За	мена предохранителей	140
9	Со	держание и обслуживание	141
1	0 Xp	анение	142
1	1 Pa	зборка и утилизация	142
1.	2 Te	хнические данные	143
1	3 Cn	пандартные аксессуары	147
1	4 Ce	рвисное обслуживание	147

1 Введение

Благодарим за покупку мультиметра компании Sonel. Измеритель CMM-40 — это современный, высококачественный измерительный прибор, удобный и безопасный в работе. Прочтение данного руководства позволит избежать ошибок при измерениях и поможет устранить возможные проблемы во время эксплуатации измерителя.

данном руководстве используются два типа Это тексты в рамках. предупреждений. описывающие возможные риски, как для пользователя. так прибора. Тексты. начинающиеся измерительного словом **'ПРЕДУПРЕЖДЕНИЕ:'** описывают ситуации, которые могут привести к угрозе жизни или здоровью, если не соблюдаются инструкции. Словом **'ВНИМАНИЕ!'** начинается ситуации, в которой невыполнение инструкции может привести к повреждению прибора.

ПРЕДУПРЕЖДЕНИЕ:

Измеритель СММ-40 предназначен для измерений тока, постоянного и переменного напряжения, частоты, сопротивления, емкости, температуры, а также тестирования диодов и непрерывности соединений. Любое другое применение, не указанное в данном руководстве, может привести к повреждению прибора и стать источником серьезной опасности для пользователя.

ПРЕДУПРЕЖДЕНИЕ:

Измеритель СММ-40 может использовать только квалифицированный персонал, с соответствующими допусками для работы на электрических установках. Эксплуатация измерителя посторонними лицами может привести к повреждению прибора и стать источником серьезной опасности для пользователя.

ПРЕДУПРЕЖДЕНИЕ:

Перед использованием прибора необходимо подробно ознакомиться с данным руководством, а также соблюдать правила техники безопасности и рекомендации производителя.

2 Безопасность

Для обеспечения грамотной эксплуатации и правильности получаемых результатов, следует придерживаться следующих рекомендаций:

- до начала эксплуатации измерителя необходимо подробно ознакомиться с данным руководством,
- прибор должен эксплуатироваться исключительно людьми, имеющими соответствующую квалификацию и прошедшими обучение правилам ТБ,
- следует соблюдать большую осторожность при измерении напряжений, превышающих 40 В постоянного напряжения или 20 В переменного напряжения RMS, потенциально опасных поражением электрическим током,
- перед началом измерений необходимо установить переключатель функций в соответствующее положение,
- в процессе измерения напряжения нельзя переключать прибор в режим измерения тока или сопротивления,
- нельзя превышать максимально допустимый диапазон входного напряжения для любой функции,
- нельзя подключать напряжение к щупам, если в приборе выбрана функция измерения сопротивления,
- при изменении диапазонов необходимо всегда отключать измерительные провода от тестируемой цепи,
- нельзя превышать максимальные лимиты значений входного сигнала.
- недопустимо использование:
 - измерителя, который был поврежден и полностью или частично неисправен,
 - ⇒ проводов с поврежденной изоляцией,
 - \Rightarrow измерителя, слишком долго хранящегося в плохих условиях (например, отсыревшего),
- ремонт может быть выполнен только в авторизованном сервисе.

ПРЕДУПРЕЖДЕНИЕ:

Нельзя проводить измерения, если у пользователя мокрые или влажные руки.

ПРЕДУПРЕЖДЕНИЕ:

Нельзя выполнять измерения во взрывоопасной атмосфере (например, в присутствии горючих газов, паров, пыли, и т. д.). В противном случае, использование прибора в таких условиях может вызвать искрение и привести к взрыву.

ВНИМАНИЕ!		
Предельные значения входного сигнала		
Функция	Максимальное входное значение	
V постоянное или переменное напряжение	1000 В постоянное/переменное напряжение RMS	
мА постоянный/переменный ток	Быстродействующий предохранитель 500 мА 1000 В	
А постоянный/переменный ток	Быстродействующий предохранитель 10 А 1000В (максимально 20 А в течение 30 секунд через 15 минут)	
Частота, сопротивление, электрическая емкость, рабочий цикл, тест диода, непрерывность цепи	1000 В постоянное/переменное напряжение RMS	
Температура	1000 В постоянное/переменное напряжение RMS	
Защита от скачков напряжения: пиковое значение 8 кВ в соответствии с IEC 61010		

2.1 Международные символы безопасности

Данный символ, расположенный возле другого символа или гнезда означает, что пользователь должен получить дополнительную информацию в руководстве по эксплуатации.

Данный символ, расположенный рядом с гнездом, означает, что в условиях нормальной эксплуатации существует возможность появления опасного напряжения.

Двойная изоляция

3 Подготовка измерителя к работе

При покупке прибора необходимо проверить комплектность содержимого упаковки.

Перед началом выполнения измерений необходимо:

- убедиться, что состояние батарейки позволит выполнить измерения,
- проверить, не поврежден ли корпус прибора и изоляция измерительных проводов,
- для обеспечения однозначности результатов измерений рекомендуется к гнезду **COM** подключать черный провод, а к остальным гнездам красный провод.

ПРЕДУПРЕЖДЕНИЕ:

Подключение несоответствующих или поврежденных проводов угрожает поражением опасным напряжением.

4 Описание функций

4.1 Измерительные гнезда и элементы выбора функции измерения

CMM-40

4.1.1 Гнезда

7 измерительные гнезда µA, mA и 10A

Измерительные входы для измерений постоянного и переменного тока.

8 измерительное гнездо СОМ

Общий измерительный вход для всех измерительных функций.

9 измерительное гнездо Ω → • • САРV°F°CHz%

Измерительный вход для остальных измерений, кроме измерения тока.

4.1.2 Элементы выбора функции измерения

- 1 ЖКИ дисплей
- 2 STORE (⊲RECALL)
 - Запись результата в память (вызов результата из памяти)
- 3 кнопка МАХ/МІН
 - Отображение максимального и минимального значения
- 4 кнопка МОDE
 - Изменение режима измерения
- 5 кнопка RANGE
 - Ручное изменение измерительного диапазона

6 поворотный переключатель

Выбор функции:

- µА измерение постоянного и переменного тока до 4000 мкА
- 4~20mA% измерение токовой петли 4...20 мА
- та измерение постоянного и переменного тока до 400 мА
- 10AHz% измерение постоянного и переменного тока до 10A, частоты, рабочего цикла (заполнения)
- OFF измеритель выключен
- VacHz% измерение переменного напряжения, частоты, рабочего цикла
- VDC измерение постоянного напряжения
- mV измерение постоянного и переменного напряжения до 400 мВ
- Hz% измерение частоты, рабочего цикла (заполнения)
- Ω → •)) САР измерение сопротивления, непрерывности цепи, емкости и тест диода
- Тетр измерение температуры в градусах Цельсия или Фаренгейта

10 кнопка 🎬

Подсветка дисплея

11 кнопка EXIT (AC+DC)

- Выход
- Измерение значения TRMS

12 кнопка HOLD

Удерживание результата измерения на дисплее

13 кнопка REL

Относительное измерение

4.2 Жидкокристаллический дисплей (ЖКИ)

Жидкокристаллический дисплей мультиметра СММ-40

• символ включения теста непрерывности цепи

→ – символ включения теста диода

🕆 – разряженная батарейка

n – нано (10⁻⁹) (электрическая емкость)

μ – микро (10⁻⁶) (Амперы, емкость)

m – милли (10⁻³) (Вольты, Амперы)

А – Амперы

k - кило (10³) (Омы)

F – Фарады (электрическая емкость)

M – мега (10⁶) (Омы)

 Ω - Омы

Hz - Герцы (частота)

% - процент (коэффициент заполнения)

DC, AC - напряжение (ток) постоянное, переменное

°С - градусы Цельсия

°F – градусы Фаренгейта

МАХ - максимум

MIN - минимум

No. - номер результата в памяти

S - секунда

SET - настройка параметров измерения

AC +DC - переменный ток + постоянный ток

TRMS - истинное эффективное значение тока

STO - сохранить

RCL - вызвать

AUTO – символ автоматического выбора поддиапазона

РЕАК - пиковое значение

V – Вольты

— относительное измерение

HOLD - символ включения функции HOLD

4.3 Провода

Производитель гарантирует правильность показаний только при использовании фирменных проводов.

ПРЕДУПРЕЖДЕНИЕ:

Подключение неподходящих проводов угрожает поражением высоким напряжением или ошибками измерения.

5 Измерения

Необходимо подробно изучить содержание данной главы, потому что в нем описаны методы выполнения измерений и основные принципы интерпретации результатов.

5.1 Измерение постоянного напряжения

ВНИМАНИЕ!

He измеряйте напряжение момент. В TOT находящийся В цепи электрический двигатель выключается. включается Это может вызвать большие скачки напряжения И В результате повреждение измерителя.

Для измерения напряжения необходимо:

- установить поворотный переключатель в положение Vьс,
- в случае необходимости, кнопкой **RANGE** установить диапазон измерений вручную,
- подключить красный измерительный провод в гнездо
 Ω→ → → CAPV°F°CHz%, а черный провод в гнездо COM,
- приложить острие щупов к точкам измерения; красный щуп должен находиться в точке с более высоким потенциалом,
- считать на дисплее результат измерения,
- после завершения измерений, извлечь провода из измерительных гнезд прибора.

5.2 Измерение переменного напряжения

ПРЕДУПРЕЖДЕНИЕ:

Существует опасность поражения электрическим током. Наконечники измерительных шупов, из-за своей длины. могут не дотянуться до элементов под напряжением внутри некоторых сетевых разъемов 240 электрических устройств, потому что контакты расположены в глубине розеток. В такой ситуации показание прибора будет 0 В, хотя одновременно в напряжение присутствует. Перед решения об отсутствии напряжения в гнезде необходимо **убедиться.** что наконечники касаются шупов металлических контактов внутри гнезда.

ВНИМАНИЕ!

Не измеряйте напряжение в тот момент, когда находящийся в цепи электрический двигатель включается или выключается. Это может вызвать большие скачки напряжения и в результате – повреждение измерителя.

Для измерения напряжения необходимо:

- установить поворотный переключатель в положение VacHz%,
- в случае необходимости, установить вручную диапазон измерений кнопкой RANGE,
- подключить красный измерительный провод в гнездо
 Ω→ → → CAPV°F°CHz%, а черный провод в гнездо COM,
- приложить острие щупов к точкам измерения,
- считать на дисплее результат измерения,
- нажать кнопку **MODE**, чтобы на дисплее отобразилось значение "**Hz**".
- считать значение частоты на основном поле дисплея,

- повторно нажать кнопку MODE, чтобы на дисплее отобразилось значение "%",
- считать значение % для рабочего цикла на основном поле дисплея.
- нажать кнопку EXIT и удерживать в течение двух секунд, чтобы перейти к функции AC+DC,
- выполнить измерение истинного эффективного значения (TRMS) постоянного и переменного тока,
- после завершения измерений, извлечь провода из измерительных гнезд прибора.

5.3 Измерение напряжения в милливольтах [mV]

ВНИМАНИЕ!

Не измеряйте напряжение диапазона [mV] в тот момент, когда находящийся в цепи электрический двигатель включается или выключается. Это может вызвать большие скачки напряжения и в результате – повреждение измерителя.

- установить поворотный переключатель в положение **mV**,
- нажать кнопку MODE, чтобы на дисплее отобразились символы DC или AC.
- в диапазоне переменного напряжения AC нажать на кнопку EXIT и удерживать в течение двух секунд, чтобы перейти к функции AC+DC,
- подключить красный измерительный провод в гнездо
 Ω→ → → → CAPV°F°CHz%, а черный провод в гнездо СОМ,
- приложить острие щупов к точкам измерения; для постоянного напряжения красный щуп должен находиться в точке с более высоким потенциалом,
- считать на дисплее результат измерения,
- после завершения измерений, извлечь провода из измерительных гнезд прибора.

5.4 Измерение постоянного тока

ВНИМАНИЕ!

Не выполняйте измерения тока 20 А длительностью более чем 30 секунд. Превышение этого времени может привести к повреждению прибора и/или измерительных проводов.

Для измерения тока необходимо:

- подключить черный измерительный провод в гнездо СОМ,
- для измерения постоянного тока до 4000 мкА необходимо установить переключатель функций в положение µA и подключить красный измерительный провод в гнездо µA/mA,
- для измерения постоянного тока до 400 мА необходимо установить переключатель функций в положение mA и подключить красный измерительный провод в гнездо µA/mA.
- для измерения постоянного тока до 20 А необходимо установить переключатель функций в положение 10АНz% и подключить красный измерительный провод в гнездо 10A.
- отключить питание цепи, в которой выполняется измерение, а затем последовательно присоединить к ней измеритель в точке, где необходимо измерить ток,
- приложить острие черного измерительного щупа к отрицательному полюсу цепи, а острие красного измерительного щупа к положительному полюсу цепи,
- включить питание цепи,
- считать результат измерения на дисплее,
- после завершения измерений, извлечь провода из измерительных гнезд прибора.

5.5 Измерение переменного тока (частота, рабочий цикл)

ВНИМАНИЕ!

Не выполняйте измерения тока 20 А длительностью более чем 30 секунд. Превышение этого времени может привести к повреждению прибора и/или измерительных проводов.

Для измерения тока необходимо:

- подключить черный измерительный провод в гнездо СОМ,
- для измерения переменного тока до 4000 мкА необходимо установить переключатель функций в положение µА и подключить красный измерительный провод в гнездо µА/mA.
- для измерения переменного тока до 400 мА необходимо установить переключатель функций в положение mA и подключить красный измерительный провод в гнездо µA/mA,
- для измерения переменного тока до 20А необходимо установить переключатель функций в положение 10АНz% и подключить красный измерительный провод в гнездо 10A.
- нажать кнопку MODE, чтобы символ AC отобразился на дисплее,
- отключить питание цепи, в которой выполняется измерение, а затем последовательно присоединить к ней измеритель в точке, где необходимо измерить ток,
- приложить острие черного измерительного щупа к нейтральному полюсу цепи, а острие красного измерительного щупа к полюсу цепи, находящемуся под напряжением,
- включить питание цепи,
- считать результат измерения на дисплее, в диапазоне переменного тока 10 А правый вспомогательный экран отобразит частоту,

- нажать и удерживать кнопку MODE, чтобы на дисплее отобразился символ Hz,
- считать значение частоты на дисплее,
- коротко снова нажмите кнопку MODE, чтобы на дисплее отобразился символ %,
- считать на дисплее значение % рабочего цикла,
- нажать и удерживать кнопку MODE, чтоты вернуться к измерению тока,
- нажать кнопку EXIT и удерживать в течение двух секунд, чтобы перейти к функции AC+DC, выполнить измерение истинного эффективного значения (TRMS) постоянного и переменного тока,
- после завершения измерений, извлечь провода из измерительных гнезд прибора.

5.6 Измерение сопротивления

ПРЕДУПРЕЖДЕНИЕ:

Нельзя выполнять измерение в цепи, находящейся под напряжением. Конденсаторы необходимо разрядить.

Для измерения сопротивления необходимо:

- установить поворотный переключатель в положение
 Ω→ → → ○) САР,
- подключить красный измерительный провод в гнездо
 Ω→ → → → → CAPV°F°CHz%, а черный провод в гнездо COM,
- нажать кнопку **MODE**, чтобы символ Ω отобразился на дисплее.
- в случае необходимости, кнопкой **RANGE** установить диапазон измерений вручную,
- приложить острие щупов к точкам измерения; лучше всего разомкнуть цепь с одной стороны тестируемого элемента, чтобы остальная часть цепи не искажала показания сопротивления,
- считать результат измерения на дисплее,

 после завершения измерений, извлечь провода из измерительных гнезд прибора.

5.7 Тест непрерывности цепи

ПРЕДУПРЕЖДЕНИЕ:

Нельзя выполнять измерение в цепи, находящейся под напряжением. Конденсаторы необходимо разрядить.

Чтобы выполнить тест непрерывности цепи, необходимо:

- установить поворотный переключатель в положение
 Ω→ → → CAP.
- нажать кнопку MODE, чтобы символы Ω и

 «»)
 отобразились на дисплее,
- приложить острие щупов к точкам измерения,
- считать результат измерения на дисплее; звуковой сигнал включится при значении сопротивления менее 35 Ом, если цепь разомкнута, то на дисплее отобразится символ OL.
- после завершения измерений, извлечь провода из измерительных гнезд прибора.

5.8 Тест диода

ПРЕДУПРЕЖДЕНИЕ:

Нельзя выполнять измерение в цепи, находящейся под напряжением. Конденсаторы необходимо разрядить.

Чтобы выполнить тест диода, необходимо:

- установить поворотный переключатель в положение Ω→ □ □ CAP,
- подключить красный измерительный провод в гнездо
 Ω → □ □ САРV° F° CHz%, а черный провод в гнездо COM,

- приложить острие щупов к диоду: красный щуп к аноду, а черный к катоду,
- считать результат теста на дисплее: отображается прямое напряжение, которое для обычного кремниевого диода равно примерно 0,7 В, а для германиевого диода 0,3 В; если диод смещен в обратном направлении или в цепи обрыв, то на дисплее отображается символ OL, в случае замкнутого диода прибор покажет значение близкое к 0 В,
- после завершения измерений, извлечь провода из измерительных гнезд прибора.

5.9 Измерение емкости

ПРЕДУПРЕЖДЕНИЕ:

Нельзя выполнять измерение в цепи, находящейся под напряжением. Конденсаторы необходимо разрядить.

Чтобы выполнить измерение, необходимо:

- установить поворотный переключатель в положение Ω→ → → → CAP.
- подключить красный измерительный провод в гнездо
 Ω→ → → CAPV° F° CHz %, а черный провод в гнездо COM,
- нажать кнопку **MODE**, чтобы на дисплее отобразилось **F**,
- в случае необходимости, кнопкой **RANGE** установить диапазон измерений вручную,
- приложить острие щупов к тестируемому конденсатору,
- считать результат измерения на дисплее,
- после завершения измерений, извлечь провода из измерительных гнезд прибора.

5.10 Измерение температуры

Чтобы выполнить измерение, необходимо:

 установить поворотный переключатель в положение Тетр,

- подключить температурный зонд к отрицательному гнезду
 COM и положительному гнезду Ω→ □ CAPV°F°CHz%,
 соблюдая полярность,
- нажать кнопку MODE для выбора единицы измерения: °С или °F.
- приложить головку температурного зонда к тестируемому объекту. Необходимо сохранять плотный контакт головки с измеряемой частью тестированного объекта до тех пор, пока показания не стабилизируются (примерно 30 секунд),
- считать результат измерения на дисплее,
- после завершения измерений, извлечь провода из измерительных гнезд прибора.

Примечание:

Температурный зонд оснащен мини-разъемом типа К. Поставляемый адаптер этого мини-разъема имеет штекер типа "банан" для подключения к входным гнездам измерителя типа "банан".

5.11 Измерение частоты или % рабочего цикла (заполнения)

Чтобы выполнить измерение, необходимо:

- установить поворотный переключатель в положение Hz%,
- подключить красный измерительный провод в гнездо
 Ω→ → → → → CAPV°F°CHz%, а черный провод в гнездо СОМ,
- приложить острие щупов к тестируемой цепи,
- в случае необходимости, кнопкой RANGE установить диапазон измерений вручную,
- считать результат измерения на дисплее,
- нажать кнопку **MODE**, чтобы на дисплее отобразились %,
- считать на дисплее значение % рабочего цикла,
- после завершения измерений, извлечь провода из измерительных гнезд прибора.

5.12 Измерение токовой петли 4 ~ 20тА %

Чтобы выполнить измерение, необходимо:

- настроить и подключить прибор в соответствии с описанием для измерения постоянного тока в диапазоне mA.
- установить поворотный переключатель в положение 4~20mA%.
- прибор отобразит значение тока петли, как величину в % при 0 мА = -25%, 4мА = 0%, 20 мА = 100% и 24 мА = 125%.

6 Специальные функции

6.1 Ручное изменение поддиапазонов

При первом включении измеритель переходит в режим автоматического выбора диапазона. В этом режиме автоматически выбирается наиболее подходящий диапазон для измерений и это обычно самый лучший режим для большинства измерений. В случае проведения измерений, требующих выбора диапазона вручную, необходимо выполнить следующие действия:

- нажать кнопку **RANGE**. Символ **AUTO** на дисплее погаснет,
- еще раз нажать кнопку RANGE, которая служит для перехода между доступными диапазонами и выбора нужного диапазона,
- для выхода из режима ручного выбора диапазона и возврата к автоматическому выбору диапазона, необходимо нажать кнопку EXIT.

Примечание:

Ручной выбора диапазона не применяется для функций измерения температуры, непрерывности цепи, теста диода, рабочего цикла, напряжения в mV, токовой петли 4~20mA и тока 10 A.

6.2 Режим MAX/MIN

Нажать кнопку **MAX/MIN**, для включения режима записи MAX/MIN. На левом экране дисплея появится символ **MAX**. Вспомогательный экран измерителя отобразит максимальное показание, которое обновится только при появлении нового значения "максимума". На правом экране дисплея появится символ **MIN**. Вспомогательный экран измерителя отобразит минимальное показание, которое обновится только при появлении нового значения "минимума".

Для выхода из режима **MAX/MIN** нажать кнопку **EXIT**.

6.3 Режим относительного измерения

Функция относительного измерения позволяет выполнять измерения относительно записанного сравнительного значения. Величину сравнительного напряжения, тока, и т.д. можно сохранить и проводить измерения относительно этого значения. Отображаемое на дисплее показание — это разность между сравнительным и измеренным значением.

Примечание:

Режим относительного измерения не применяется для функций 4~20mA, теста диода и непрерывности цепи.

Для измерения в относительном режиме, необходимо:

- выполнить измерение в соответствии с описанием, представленным в руководстве по эксплуатации,
- нажать кнопку **REL** для сохранения отображаемого показания: на дисплее появится символ ...
- на вспомогательном экране слева отобразится разность значений для текущего измерения, на вспомогательном экране справа отображается исходное показание, а на основном экране дисплея будет представлено значение относительного измерения в режиме REL TEST,
- для выхода из режима относительного измерения необходимо нажать кнопку **EXIT.**

6.4 Функция HOLD

Функция предназначена для удержания на дисплее результата измерения, что возможно путем нажатия кнопки **HOLD**. Когда функция включена, на дисплее появляется символ **HOLD**. Для того, чтобы вернуться в обычный режим функционирования прибора, необходимо повторно нажать кнопку **HOLD**.

6.5 Функция удержания пикового значения PEAK HOLD

Функция PEAK HOLD фиксирует пиковое значение переменного напряжения или тока (AC), а также переменного сигнала с постоянной составляющей (AC+DC, смотри главу 5.5). Измеритель регистрирует отрицательное или положительное пиковое значение, длительностью 1 миллисекунду.

Для включения данной функции, необходимо нажать и удерживать кнопку **PEAK** в течение 2 секунд (сигнализируется длительным звуковым сигналом). После отпускания кнопки на экране отобразится символ **PEAK**. Вверху дисплея появится: значение **MAX** на вспомогательном экране слева и значение **MIN** на вспомогательном экране справа.

Измеритель будет обновлять отображаемые данные каждый раз при появлении более низкого отрицательного или более высокого положительного пикового значения.

Функция автоматического выключения питания в этом режиме не будет работать.

Для выхода из режима PEAK HOLD нажать кнопку **EXIT** или выбрать другую функцию измерения.

Примечание:

При активной функции PEAK HOLD не работает автоматический выбор диапазонов, поэтому рекомендуется включать функцию только после подключения проводов к точке измерения. Включение функции PEAK HOLD до подключения прибора к точке измерения может вызвать отображение символа превышения диапазона.

6.6 Подсветка дисплея

Для включения подсветки дисплея нажать кнопку 🚁 .

Подсветка автоматически выключится по истечении заданного пользователем времени. Для выхода из режима подсветки дисплея, необходимо повторно нажать кног :

6.7 Сохранение данных

Для записи результата измерения необходимо:

- в текущем режиме измерения один раз нажать на кнопку STORE для входа в режим записи – в левом верхнем углу дисплея появится сообщение NO. XXXX, которое показывает текущий номер ячейки памяти (XXXX – номер ячейки).
- Нажать кнопку **PEAK HOLD**, чтобы выбрать начальную ячейку памяти для очередной записи (на экране слева отображается: 0000 с начала памяти, XXXX со следующей свободной ячейки), на вспомогательном экране справа появится сообщение XXXX, которое показывает число записанных ячеек.
- еще раз нажать кнопку STORE, для ввода интервала времени действия функции – в левом верхнем углу дисплея появится значение 0000 S, которое показывает временной интервал записи данных. С помощью нажатия кнопок + и – можно задать значение в диапазоне 0...255 секунд,
- если временной интервал записи данных равен 0000 секунд, то необходимо еше раз нажать кнопку STORE, для перехода в режим записи вручную – повторно нажать кнопку STORE для однократной записи,
- если временной интервал записи данных равен 1...255 секунд, то необходимо еше раз нажать кнопку STORE, чтобы начать процесс автоматической записи в память. В левом верхнем углу экрана отобразится номер текущей ячейки памяти, а сохраняемые данные будет показаны в правом верхнем углу.

Примечание:

В связи с ограниченной разрядностью цифрового дисплея, на экране отображаются только четыре цифры.

для выхода из режима записи коротко нажать кнопку EXIT.

6.8 Стирание памяти

Чтобы стереть всю память, необходимо:

- при выключенном питании прибора, нажать и удерживать кнопку **EXIT**,
- перевести переключатель из положения OFF в любое другое и отпустить кнопку EXIT – дисплей моргнет три раза, а также прибор выдаст три звуковых сигнала, означающих, что все данные из памяти стерты.

6.9 Вызов результатов из памяти

Для вызова результатов измерений из памяти, необходимо:

- нажать и удерживать в течение двух секунд кнопку STORE
 (⊲RECALL) для входа в режим вызова результатов из
 памяти в левом верхнем углу дисплея появится значение
 ХХХХ, которое означает текущий номер ячейки. В правом
 верхнем углу экрана отобразится значение ХХХХ, которое
 означает общее количество записанных ячеек,
- с помощью кнопок + и на основном экране дисплея можно просмотривать содержимое последующих ячеек памяти с записанными данными,
- однократно нажать кнопку HOLD (PeakHOLD) для непрерывного просмотра данных от 0000 до XXXX,
- для выхода из режима нажать кнопку **EXIT**.

6.10 Настройка параметров

Для настройки параметров измерения необходимо:

 нажать кнопку RANGE (SETUP) и удерживать ее в течение 2 секунд, чтобы войти в режим настройки параметров, на короткое время один раз нажать кнопку RANGE (SETUP), чтобы изменить тип параметра,

Параметры включают в себя следующие элементы (последовательно):

- А: звуковой сигнал верхнего лимита,
- В: звуковой сигнал нижнего лимита,
- С: время до автоматического выключения притания,
- D: звуковой сигнал выключения.
- Е: время подсветки,
- для выбора параметров используйте кнопки \leftarrow , +, -, \rightarrow ,
- нажать кнопку SET, чтобы перейти от просмотра содержания параметров, через выход из настроек в режим измерения; обновленные параметры настроек будут сохранены. Есди в это время нажать кнопку EXIT, то настройки не сохранятся.

6.11 AC + DC

Функция работает во всех режимах измерения: VAC, mV(AC), 10A(AC), mA(AC), $\mu A(AC)$.

- нажать кнопку EXIT (AC+DC) в течение 2 секунд для перехода в режим измерения переменного и постоянного тока. Погрешность измерения такая же, как при измерении переменного тока. Дисплей отобразит символы AC+DC.
- для выхода из данного режима нажмите кнопку **EXIT**.

7 Замена батарейки

Измеритель СММ-40 питается от батарейки 9 в типа 6LR61.

Примечание:

Проводя измерения при высвечиваемом символе разряда батарейки, следует считаться с дополнительной неопределенной погрешностью измерения или нестабильной работой прибора.

ПРЕДУПРЕЖДЕНИЕ:

Оставление проводов в гнездах измерителя во время замены батарейки может привести к поражению опасным напряжением.

Чтобы заменить батарейку, необходимо:

- вынуть провода из измерительных гнезд прибора и установить поворотный переключатель в положение OFF,
- снять заднюю крышку батарейного отсека, открутив два винта (В) с помощью отвертки с крестообразным шлицем,
- извлечь разряженную батарейку и установить новую, соблюдая полярность,
- установить на место крышку и закрутить винты.

ПРЕДУПРЕЖДЕНИЕ:

Чтобы избежать поражения электрическим током, не используйте измеритель, если крышка батарейки не находится на своем месте или правильно не закреплена.

Примечание:

Если измеритель не работает должным образом, следует проверить предохранители и батарейку, чтобы убедиться, что они находятся в удовлетворительном состоянии и правильно установлены в прибор.

8 Замена предохранителей

ПРЕДУПРЕЖДЕНИЕ:

Оставление проводов в гнездах измерителя во время замены предохранителей может привести к поражению опасным напряжением.

Чтобы заменить предохранитель, необходимо:

- вынуть провода из измерительных гнезд прибора и установить поворотный переключатель в положение OFF,
- снять заднюю крышку батарейного отсека, открутив два винта (В) с помощью отвертки с крестообразным шлицем,
- вынуть батарейку,
- открутить шесть винтов (А) крепления задней крышки,
- аккуратно извлечь старый предохранитель и установить новый в его держатель.
- установить на место и закрепить заднюю крышку, батарейку и крышку батарейного отсека.

ВНИМАНИЕ!

Всегда используйте предохранители правильного размера и номинала (0,5 A/1000 В быстрого срабатывания для диапазона 400 мА [SIBA 70-172-40], 10 A/1000 В быстрого срабатывания для диапазона 20 A [SIBA 50-199-06]).

9 Содержание и обслуживание

Многофункциональный измеритель проектировался с мыслью о долголетнем надежном использовании, при условии соблюдения следующих рекомендаций, касающихся его содержания и технического обслуживания:

- 1. **ИЗМЕРИТЕЛЬ ДОЛЖЕН БЫТЬ СУХОЙ**. Намокший измеритель необходимо протереть.
- 2. ИЗМЕРИТЕЛЬ НЕОБХОДИМО ИСПОЛЬЗОВАТЬ И ХРАНИТЬ ПРИ НОРМАЛЬНОЙ ТЕМПЕРАТУРЕ. Предельные значения температуры могут сократить срок службы электронных компонентов измерителя и деформировать или расплавить пластиковые детали.
- С ПРИБОРОМ СЛЕДУЕТ ОБРАЩАТЬСЯ ОСТОРОЖНО И АККУРАТНО. Падение измерителя может привести к повреждению электронных компонентов или его корпуса.
- 4. **ИЗМЕРИТЕЛЬ ДОЛЖЕН СОДЕРЖАТЬСЯ В ЧИСТОТЕ.** Время от времени необходимо протирать его корпус

- влажной тканью. НЕЛЬЗЯ применять химические средства, растворители или моющие средства.
- 5. НЕОБХОДИМО ИСПОЛЬЗОВАТЬ ТОЛЬКО НОВЫЕ БАТАРЕЙКИ РЕКОМЕНДОВАННОГО РАЗМЕРА И ТИПА. Извлеките из отсека старую или разряженную батарейку, во избежание утечки электролита и повреждения прибора.
- 6. **ЕСЛИ ИЗМЕРИТЕЛЬ БУДЕТ ХРАНИТЬСЯ ДЛИТЕЛЬНОЕ ВРЕМЯ**, необходимо извлечь из него батарейку, чтобы избежать повреждения прибора.

Примечание:

Электронная схема измерителя не требует технического обслуживания.

10 Хранение

При хранении прибора следует придерживаться рекомендаций ниже:

- отключить от измерителя провода,
- убедиться, что измеритель и аксессуары сухие,
- при длительном сроке хранения необходимо извлечь батарейку.

11 Разборка и утилизация

Отходы использованного электрического и электронного оборудования необходимо собирать раздельно, т.е. не смешивать с другими видами отходов.

Утилизируемое электронное оборудование необходимо передать в пункт сбора отходов, согласно Положения об обращении с отходами электрических и электронных устройств.

Перед доставкой в пункт сбора нельзя самостоятельно демонтировать какие-либо части данного оборудования.

Следует соблюдать местные правила по утилизации упаковки, использованных батареек и аккумуляторов.

12 Технические данные

- "и.в." обозначает значение измеренной величины.
- "е.м.р." обозначение единиц младшего разряда.

Измерение постоянного напряжения

Диапазон	Разрешение	Основная погрешность	
400,00 мВ	0,01 мВ		
4,0000 B	0,0001 B	L (0.069/	
40,000 B	0,001 B	± (0,06% и.в. + 4 е.м.р.)	
400,00 B	0,01 B		
1000,0 B	0,1 B	± (0,1% и.в. + 5 е.м.р.)	

Измерение переменного напряжения (True RMS)

Диапазон	Разрешение	Основная погрешность
400,00 мВ	0,01 мВ	± (1% и.в. + 40 е.м.р.)
4,0000 B	0,0001 B	
40,000 B	0,001 B	. (40/ 20)
400,00 B	0,01 B	± (1% и.в. + 30 е.м.р.)
1000,0 B	0,1 B	

• Диапазон частоты 50...1000 Гц

Измерение постоянного тока

Диапазон	Разрешение	Основная погрешность
400,00 мкА	0,01 мкА	
4000,0 мкА	0,1 мкА	
40,000 мА	0,001 мА	± (1% и.в. + 3 е.м.р.)
400,00 мА	0,01 мА	
10,000 A	0,001 A	

• 20 А: максимально 30 секунд при ограниченной точности

Измерение переменного тока (True RMS)

Диапазон	Разрешение	Основная погрешность
400,00 мкА	0,01 мкА	
4000,0 мкА	0,1 мкА	
40,000 мА	0,001 мА	± (1,5% и.в. + 30 е.м.р.)
400,00 мА	0,01 мА	
10,000 A	0,001 A	

• 20А: максимально 30 секунд при ограниченной точности

Примечание:

Точность определена при температуре в диапазоне от 18°C до 28°C и относительной влажности воздуха ниже 75%. Для искаженного тока погрешность более ±(2% и.в. + 2% всей шкалы) при коэффициенте пиковых значений <3.0.

Измерение сопротивления

Диапазон	иапазон Разрешение Основная погрешность	
400,00 Ом	0,01 Ом	± (0,3 % и.в. + 9 е.м.р.)
4,0000 кОм	0,0001 кОм	
40,000 кОм	0,001 кОм	± (0,3 % и.в. + 4 е.м.р.)
400,00 кОм	0,01 кОм	± (0,3 % и.в. + 4 е.м.р.)
4,0000 МОм	0,0001 МОм	
40,000 МОм	0,001 МОм	± (2 % и.в. + 10 е.м.р.)

Измерение емкости

Диапазон	Разрешение	Основная погрешность	
40,000 нФ	0,001 нФ	1 (2 E 9/	
400,00 нФ	0,01 нФ	± (3,5 % и.в. + 40 е.м.р.)	
4,0000 мкФ	0,0001µF		
40,000 мкФ	0,001 мкФ	± (3,5 % и.в. + 10 е.м.р.)	
400,00 мкФ	0,01 мкФ		
4000,0 мкФ	0,1 мкФ	+ (5 % up + 10 o up)	
40,000 мФ	0,001 мФ	± (5 % и.в. + 10 е.м.р.)	

Измерение частоты (в электронике)

Диапазон	Разрешение	Основная погрешность
40,000 Гц	0,001 Гц	
400,00 Гц	0,01 Гц	
4,0000 кГц	0,0001 кГц	
40,000 кГц	0,001 кГц	± (0,1 % и.в. + 1 е.м.р.)
400,00 кГц	0,01 кГц	
4,0000 МГц	0,0001 МГц	
40,000 МГц	0,001 МГц	
100,00 МГц	0,01 МГц	Неопределенное значение

 Чувствительность: минимальное значение эффективного напряжения 0,8 В при рабочем цикле от 20% до 80% и <100 кГц; минимальное значение эффективного напряжения 5 В при рабочем цикле от 20% до 80% и > 100 кГц

Измерение частоты (в электротехнике)

Диапазон	Разрешение	Основная погрешность
40,00 Гц 10,000 кГц	0,01 Гц 0,001 кГц	± 0,5 % и.в.

• Чувствительность:1 В RMS

Измерение рабочего цикла (коэффициент заполнения)

Диапазон	Разрешение	Основная погрешность
0,10 99,00%	0,01%	± (1,2 % и.в. + 2 е.м.р.)

• Ширина импульса: 100 мкс – 100мс, частота: 5 Гц – 150 кГц

Измерение температуры

Диапазон	Разрешение	Основная погрешность *	
-50.01200,0°C	0,1°C	± (1% показания + 2,5°C)	
-58.02192,0°F	0,1°F	± (1% показания + 4,5°F)	

^{*} погрешность зонда типа К не учитывается

Измерение токовой петли 4-20mA%

Диапазон	Разрешение Основная погрешност	
-25,00 125,00%	0,01%	± 50 е.м.р.

• 0 MA = -25%, 4 MA = 0%, 20 MA = 100%, 24 MA = 125%

Другие технические характеристики

a)	измерительная категория по EN 61010-1	III 1000 B
b)	степень защиты корпуса согласно EN 60529	IP67
c)	степень загрязнения	2
ď)	питание измерителя	батарейка 9 В
e)	тест диодапостоянный	ток І=0,9 мА, U₀=2,8 В
f)	тест непрерывности I<0,35 мА, звуковой	
g)	индикация превышения диапазона	
h)	коэффициент пиковых значений≤3 для полн	юго диапазона 500 В,
	линейно уменьшает	ся до ≤1,5 при 1000 В
i)	пиковое значение РЕАКзахват пи	ковых значений >1 мс
j)	частота измерения	2 показания в секунду
k)	входной импеданс>10 МОм (пос	тоянное напряжение)
	>9 МОм (пере	менное напряжение)
l)	дисплейЖКИ с подсветкой и барграс	ром, показание 40000
m)	количество результатов в памяти	2000
n)	размеры	187 х 81 х 55 мм
0)	масса измерителя	
p)	предохранителидиапазон mA, µA: 0,5A/1000В ке	
	диапазон А: 10А/1000В ке	рамический быстрый
q)	рабочая температура	0+40°C
r)	температура хранения	20+60°C
s)	влажность тах 80% до 31 С и линейно снижа	ется до 50% при 40°С
t)	максимальная рабочая высота	2000 м
u)	время бездействия до автовыключения	15 минут
v)	соответствие требованиям стандартов	EN 61010-1
w)	стандарт качества	ISO 9001

13 Стандартные аксессуары

В состав стандартного комплекта, поставляемого производителем, входят:

- измеритель СММ-40,
- измерительные провода для СММ (САТ IV, M) WAPRZCMM2,
- батарейка 9 В,
- зонд для измерения температуры типа К WASONTEMK,
- адаптер к температурному зонду типа K WAADATEMK,
- заглушка для защиты измерительных гнезд (2 шт.),
- чехол.
- руководство по эксплуатации,
- гарантийный талон,
- сертификат заводской калибровки.

Актуальный список аксессуаров можно найти на сайте производителя.

14 Сервисное обслуживание

Гарантийное и послегарантийное обслуживание проводит:

SONEL S.A.

Wokulskiego 11 58-100 Świdnica Польша

тел.: +48 74 858 38 60 факс: +48 74 858 38 09 E-mail: <u>export@sonel.pl</u> Beб-сайт: <u>www.sonel.pl</u>

Примечание:

Проводить ремонт и сервисное обслуживание имеет право только SONEL S.A.

NOTATKI / NOTES / NOTAS / ПРИМЕЧАНИЯ

SONEL S.A. Wokulskiego 11 58-100 Świdnica Poland

PL +48 74 858 38 00 (Biuro Obsługi Klienta)

e-mail: bok@sonel.pl

GB • ES • RU +48 74 858 38 60 +48 74 858 38 00 fax: +48 74 858 38 09 e-mail: export@sonel.pl

www.sonel.pl