Projektauftrag: Verlustprävention an Selbstbedienungskassen im Einzelhandel

1. Projektbezeichnung

Titel: Betrug an Self Checkout-Kassen

2. Problemstellung und Ziele

Immer mehr Einzelhändler setzen auf Selbstbedienungskassen (SBK), um Personalressourcen zu sparen. Gleichzeitig steigen jedoch die Verluste, insbesondere durch bewusstes oder unbeabsichtigtes Nicht-Scannen von Artikeln.

Neben vorsätzlichem Betrug stehen im Rahmen des Projekts auch Bedienfehler und technische Probleme im Fokus.

Ziel ist die Entwicklung eines Machine-Learning-Modells zur Erkennung fehlerhafter Transaktionen. Die Evaluierung sollte über eine flexible Bewertungsfunktion in Abstimmung mit dem Kunden erfolgen.

3. Domänenspezifika

Im Einzelhandel entstehen jährlich erhebliche Verluste durch Inventurdifferenzen. SBK-Kassen sind besonders anfällig, z. B. durch:

- das Scannen günstiger Artikel statt teurerer ("Bananen-Trick"),
- das komplette Auslassen von Artikeln,
- oder Systemfehler.

Die xxxxxxx GmbH setzt bislang manuelle Stichprobenkontrollen ein, was auf Dauer nicht effizient ist. Diese Kontrollen sollen zukünftig auf Basis der neuen Modelle durchgeführt werden.

4. Beteiligte und Stakeholder

Projektgruppe:

Raphael Schaffarczik (Experte für statistische Datenanalyse)

- David Zurschmitten (Experte für Programmierung und Softwareentwicklung)
- Matthias Bald (Experte für Dokumentation & Projektkoordination)

Projektgeber: xxxxxxx GmbH

Betreuung:

- Prof. Dr. Christian Beecks (Lehrgebiet Data Science)
- Frau Sabine Folz-Weinstein
- Herr Max Pernklau

5. Projektorganisation inkl. Zeitplan mit den Meilensteinen

Das Team arbeitet iterativ nach dem DASC-PM-Modell.

Die Kommunikation der Gruppe erfolgt über eine zu diesem Zweck eingerichtete WhatsApp-Gruppe sowie über die Softwareentwicklungsplattform GitHub.

Es finden wöchentliche interne Abstimmungen über Zoom sowie zweiwöchentliche Meetings mit der Betreuung statt.

Geplante Meilensteine:

Meilenstein	Verantwortlich	Frist
Projektskizze	Matthias	17.04.2025
Explorative Datenanalyse	Raphael	24.04.2025
Analyseergebnis	Raphael	
Modelle/Verfahren/Systeme	David	
Abschlusspräsentation	Alle Teilnehmer	08./09.07.2025

6. Ressourcen

Kenntnisse im Team:

- Python, Statistik, maschinelles Lernen
 Verwendete Tools:
- pandas, scikit-learn, JupyterLab, GitHub, Docker
 Infrastruktur:
- Eigene Notebooks

7. Risiken

- Gelabelte Daten sind nicht repräsentativ für den gesamten Datensatz,
- Übertragbarkeit der Analyseergebnisse auf andere Filialen,
- Berücksichtigung externe Auflagen (gesetzliche Vorschriften, Gesellschaftsvertrag etc.),
- Beeinflussung durch vom Unternehmen abgeschlossene (Diebstahl) Versicherungen,
- Technische Umsetzung

8. Vorerfahrungen

Alle Mitglieder verfügen über relevante Vorerfahrung in den Bereichen Datenanalyse, Python und Machine Learning.

- Raphael bringt vertiefte Kenntnisse in Mathematik und Statistik mit,
- David Erfahrung in Modellierung und Softwareentwicklung,
- Matthias verfügt über einen betriebswirtschaftlichen Hintergrund.