Ministério da Educação

Centro Federal de Educação Tecnológica Celso Suckow da Fonseca UNED Nova Friburgo Bacharelado em Sistemas da Informação

Escalonamento

Sistemas Operacionais

Prof. Bruno Policarpo Toledo Freitas bruno.freitas@cefet-rj.br

Objetivos

- Definir escalonamento, seus objetivos e principais algoritmos
- Diferenciar algoritmos de lote, interativos e de sistemas de tempo real
- Compreender como diferentes algoritmos interferem no desempenho geral do sistema
- Aprimorar a capacidade de avaliar vantagens e desvantagens de algoritmos

Comportamento de Processos

- Utilização da CPU alterna com períodos de espera de I/O.
 - a)Processos CPU-Bound
 - b)Processos I/O-Bound

Quando escalonar?

Principais situações:

- Criação de um novo processo
- Término de um processo
- Bloqueio de I/O
- Interrupções
- Decisões de escalonamento podem ser tomadas segundo interrupções de relógio
 - Preemptivos
 - Não-preemptivos

Categorias

Lote

- Não há necessidade de resposta rápida de programas
- Reduz chaveamento de contextos

Interativo

- Evitar posse da CPU por longos períodos de tempo
- São preemptivos

Tempo Real

- Não podem executar por longos períodos de tempo
- Tarefas específicas para a aplicação.

Objetivos gerais

Justiça

Todo mundo usar a CPU.

Aplicação de política

Finalidade do sistema determina prioridades.

Equilíbrio

Manter o computador ocupado.

Escalonamento em sistemas de lote Objetivos

- Vazão (throughput)
 - quantidade de tarefas terminadas em um dado período de tempo (geralmente horas)
- Tempo de retorno (turnaround time)
 - minimizar tempo entre submissão e término
- Utilização da CPU

- Ordem de submissão dos processos
- Vantagens
 - Justo
- Desvantagens
 - Tempo de retorno maior

Considerando que:

- A=40, B=10, C=30, e D=20
- Inícios: A=0, B=20, C=10. e D=50 Qual é o :
- Tempo médio de retorno?
- Vazão?

Ordem de escalonamento:

$$A \rightarrow C \rightarrow B \rightarrow D$$

Tarefa	Tempo de computação	Submissão	Início	Fim
Α	40	0	0	40
С	30	10	40	70
В	10	20	70	80
D	20	50	80	100

$$tr_{p} = t_{fim} - t_{submissao}$$

$$\sum_{p=1}^{n} tr_{p}$$

$$tr = \frac{p=1}{n}$$

$$vazão = \frac{número de tarefas}{período de tempo}$$
 (Geralmente horas)

$$tr_A = 40 m$$

 $tr_B = 60 m$
 $tr_C = 60 m$
 $tr_D = 50 m$
 $t\bar{r} = 52,5 m$

$$vaz\tilde{a}o = \frac{4 tarefas}{2 horas}$$

 $vaz\tilde{a}o = 2 tarefas/hora$

Escalonamento em sistemas de lote Shortest Job First

- Processos são alocados em ordem de tempo de computação
- Vantagens:
 - Tempo de retorno melhor
- Desvantagens:
 - Como calcular tempo de execução?
 - Tarefas devem estar prontamente disponíveis
 - Injusto

Escalonamento em sistemas de lote Shortest Job First

Considerando que:

- A=40m, B=10m, C=30m, e D=20m
- Inícios como na figura Qual é o :
- Tempo médio de retorno?
- Vazão?

Ordem de escalonamento?

Escalonamento em sistemas interativos Objetivos

Tempo de resposta

- Responder rapidamente às requisições

Proporcionalidade

- Satisfazer as expectativas dos usuários

Escalonamento em Sistemas Interativos Round-Robin

Chaveamento Circular

- Mantém lista de processos prontos
- A cada processo é dado um quantum
- Ao término do quantum, processo sofre preempção

Escalonamento em sistemas interativos Round-Robin

Questões importantes:

- Tamanho do Quantum
- Chaveamento de Contexto

Duas situações:

- 1 ms chaveamento / 4 ms de quantum
- 1 ms chaveamento / 100ms de quantum

$$U_{te\acute{o}rica} = \frac{quantum}{chaveamento + quantum}$$

$$U_{real} = \frac{tempo\ \acute{u}til}{tempo\ transcorrido}$$

Escalonamento em sistemas interativos Round-Robin

Sejam os tempos de execução dos seguintes processos:

- A=4 ms
- B=1 ms
- C=3 ms
- D=2 ms

Considere, ainda, que esteja sendo utilizado um escalonamento por Round-Robin com o quantum valendo 2 ms e se gastando 1 ms para realizar uma troca de contexto.

- 1)Esboce um gráfico de processo x tempo, mostrando qual processo está sendo executado em um dado instante de tempo.
- 2)Quais são as taxas de utilização do processador teórica e da carga de trabalho realmente executada?

Escalonamento em sistemas interativos Round-Robin

Escalonamento em sistemas Interativos Round-Robin com prioridades

- Semelhante ao Round-Robin, mas processos com prioridade maior são executados antes
- Diferentes implementações são possíveis:
 - Prioridades fixas
 - Decaimento de prioridade a cada quantum

Escalonamento em sistemas interativos Round-Robin com prioridades

Sejam os processos:

- A, com 5 ms, e prioridade 4
- B, com 3 ms. e prioridade 3
- C, com 1 ms. e prioridade 2
- D, com 2 ms. e prioridade 1
- Quantum com 2 ms.
- Trocas de contexto com 1 ms.

Situação 1:

 Processos de menor prioridade devem esperar pelo término dos processos de maior prioridade

Situação 2:

 Decaimento da prioridade em 1 após execução do quantum, colocando o processo no início da próxima fila de prioridade

Escalonamento em sistemas interativos Round-Robin com prioridades (fixo)

Escalonamento em sistemas interativos Round-Robin com prioridades (decaimento)

Exercício

Sejam os processos:

- A, com 5 ms., e prioridade 1
- B, com 3 ms. e prioridade 3
- C, com 1 ms. e prioridade 2
- D, com 2 ms. e prioridade 3
- Quantum com 2 ms.
- Trocas de contexto com 1 ms

Responda:

- a)Faça um gráfico do escalonamento dos processos acima por prioridades, considerando decaimento da prioridade em 1 após execução do quantum, colocando o processo *no final da próxima fila de prioridade*
- b)Qual é a taxa de utilização *máxima* desse sistema?
- c) Qual é a taxa de utilização real desse sistema?

Escalonamento em Sistemas de Tempo Real Objetivos

Cumprimento de prazos

- Soft real time
 - Evitar degradação da experiência do usuário (mídias)
 - Evitar perda de dados
- Hard real time
 - Evitar falhas catastróficas
- Previsibilidade

Escalonamento em Sistemas de Tempo Real

Um sistema de tempo-real é escalonável se:

- Dados:
 - m eventos periódicos
 - Evento i ocorre dentro de um período P_i e requer C_i segundos
- Então a carga só pode ser executada se:

$$Carga = \sum_{i=1}^{m} \frac{C_i}{P_i} \le 1$$

Escalonamento em Sistemas de Tempo Real

Exemplo que funciona:

Escalonamento em Sistemas de Tempo Real

Exemplo que não funciona:

Escalonamento em Sistemas de Tempo Real Estrutura do Kernel

- Para prover tempo real de fato, o kernel deve ser preemptável
- Sistemas operacionais de tempo real:
 - VxWorks
 - RTEMS
 - RTOS
 - SCHED_DEADLINE no kernel Linux

^{*} WARNING! Fiddling with these settings can result in an unpredictable or even unstable system behavior. As for -rt (group) scheduling, it is assumed that root users know what they're doing.

Ars Technica. Definitely not Windows 95: What operating systems keep things running in space?.

Política versus Mecanismo

- Situação: nem sempre os processos são todos de usuários diferentes.
- Solução: algoritmo de escalonamento é parametrizado
 - Separa o que é permitido fazer de como é ele implementado
 - Mecanismo no kernel
 - Programa *nice* no Linux
- Parâmetros preenchidos pelos processos de usuário
 - Política configurada pelo processo de usuário

Escalonamento de Threads Threads de Kernel

Considerando:

- Quantum de 50ms
- Threads trabalham por 5ms antes de passar a vez
- É possível alternar para threads de outros processos dentro do quantum

Possible: A1, A2, A3, A1, A2, A3 Also possible: A1, B1, A2, B2, A3, B3

- V6.6: Earliest Eligible Virtual Deadline First (EEVDF)
 - Substitui o antigo Completely Fair Scheduler (CFS)
- Ideia básica é dar prioridade aos processos que não conseguiram usar toda sua fatia de tempo

(STOICA; ABDEL-WAHAB, 1995)

Mundo ideal:

- 4 processos A, B, C e D
- Fatia de 250ms para cada um

Mundo real:

- 4 processos A, B, C e D
- Perdas por Interrupções, trocas de contexto,
 IO, etc

Mundo real:

$$Lag = fatia_{teorica} - fatia_{recebida}$$

- 4 processos A, B, C e D
- Perdas por Interrupções, trocas de contexto,
 IO, etc

Mundo real:

- 4 processos A, B, C e D
- Perdas por Interrupções, $t_{Lag_c=250-62,5=187,5}$), IO, etc

$$Lag = fatia_{teorica} - fatia_{recebida}$$

$$Lag_{A} = 250 - 125 = 125$$
 $Lag_{B} = 250 - 312,5 = -62,5$
 $Lag_{C} = 250 - 62,5 = 187,5$
 $Lag_{D} = 0$

Referências

- TANENBAUM, A. S. Sistemas Operacionais Modernos. 3ª. ed.
 - Capítulo 2: seção 2.4.1, 2.4.3, 2.4.4, 2.4.5,2.4.6
- Slides originais de Andrew S.
 Tanenbaum
 - http://www.cs.vu.nl/~ast/books/book_software. html

Referências

I. Stoica and H. Abdel-Wahab. 1995. Earliest Eligible Virtual Deadline First: A Flexible and Accurate Mechanism for Proportional Share Resource Allocation. Technical Report. Old Dominion University, USA.

Referências

- https://www.phoronix.com/review/linux-66-features
- https://kernelnewbies.org/Linux_6.6

Exercícios

Capítulo 2: