Spin Bit

=

Summary of work and issues

Simple algorithm utilizing a single bit to convey RTT information.

- When a server sends a packet, it sets the spin bit to the spin bit on the last packet it received from the client.
- When a client sends a packet, it sets the spin bit to the *inverse* of the spin bit on the last packet it received from the server.

- Inter-Domain Troubleshooting
 - Process of honing in on the network segment(s) responsible for faulty behavior.
- Quality Monitoring
 - Collection of QoE and QoS metrics, for use in dashboards etc.
- Bufferbloat Detection
 - Detection and mitigation of downstream bufferbloat.
- Internet Measurement Research

Expressed Intent to Implement *

- Microsoft
- LiteSpeed Technologies
- PicoQuic (with some reservations)

* Based on recent discussions on list

- Geolocation Threat
 - Analyzed by Design Team
 - RTT data is very coarse and generally lacks required precision.
 - Tracking Handshake RTT for a set of connections gives similar min RTT data.
- Selectively opting out of spinning
 - Requires an anonymity set in order to not "stick out".
- Semantics of the bit can potentially change between QUIC versions
 - Requires a sizeable amount of non-spinning endpoints from the start.

Robustness Concerns

- Shown to work under good conditions *
- Susceptible to loss and reordering *
 - Reordering causes spurious edge transitions and introduces noise to the signal
 - Severe packet loss causes the RTT samples to be somewhat overestimated.
- Non Participating Endpoints
- Solutions:
 - Valid Edge Counter
 - Allows for precise but potentially low frequency sampling
 - Non-explicit edge validation
 - Heuristics
 - Reverse path validation

Unidirectional measurments require heuristics or additional bits for edge validation

Bi-directional measurements can use reverse path for edge validation

^{*} Piet De Vaere, Tobias Bühler, Mirja Kühlewind, and Brian Trammell. 2018. Three Bits Suffice: Explicit Support for Passive, Measurement of Internet Latency in QUIC and TCP. In Proceedings of IMC '18. ACM, New York, NY, USA

Single Bit Measurements w. Reverse Path Validation

5% Random Packet Loss

Loss correlation of 30%

Bi-directional measurement and edge validations.

Single Bit Measurements w. Reverse Path Validation

10% Random Packet Reordering

Reorder depth of 5ms

Bi-directional measurement and edge validations.

