

FICHA DE ASIGNATURAS DE PREGRADO

Por favor diligencie únicamente las celdas en azul. Escriba el nombre completo de la asignatura en mayúscula/minúscula.

	Día	Mes	Año
FECHA SOLICITUD:	19	Mayo	2017

1. IDENTIFICACIÓN DE LA ASIGNATURA					
1.1. CÓDIGO DE LA ASIGNATURA	(Asignado por el Sistema de Información Académica)				
1.2. NOMBRE DE LA ASIGNATURA	METODOS NUMÉRICOS APLICADOS A LA INGENIERIA CIVIL				
1.3. SEDE	MANIZALES				
1.4. FACULTAD	INGENIERÍA Y ARQUITECTURA				
1.5. UNIDAD ACADÉMICA BÁSICA (que ofrece la asignatura)	DEPARTAMENTO DE INGENIERIA CIVIL				
1.6. NIVEL	PREGRADO				

Convenciones utilizadas:

HAP: Horas de Actividad Presencial a la semana o intensidad horaria
HAI: Horas de Actividad autónoma o Independiente a la semana

THS: Total Horas de actividad académica por Semana

Semanas: Número de semanas por periodo académico (o semestre)

2. DURACIÓN . Por favor diligencie las celdas en azul						
A LA SEMANA AL SEMES				IESTRE	CREDITOS	
НАР	HAI	THS= HAP +HAI	No. de semanas	THP= THSxSemanas	No. de Créditos	
4	6	10	16	160	3	

3. VALIDABLE	
Marcar con una X	
Asignatura validable	х
Asignatura NO validable	

I	4. TIPO DE CALIFICACIÓN	
	Numerica (de () () a 5 ())	Las calificaciones de las asignaturas serán numéricas de cero (0.0) a cinco punto cero (5.0), en unidades y décimas.

5. PORCENTAJE DE ASIST	ENCIA			
%	Total de horas presenciales al semestre= HAP x Semanas	64	Mínimo de horas	0

6. PRERREQUISITOS - CORREQUISITOS DE LA ASIGN	NATURA Ma	rque con una X	
La asignatura tiene prerrequisitos	Х	La asignatura tiene correquisitos	

6.1. Liste por se	6.1. Liste por separado cada una de las asignaturas prerrequisito o correquisito. Inserte tantos renglones como sea necesario.				
	NOMBRE DE LA ASIGNATURA CÓDIGO				
Prerrequisito	ECUACIONES DIFERENCIALES (matematicas IV)	1000007			
Correquisito					

Sólo para las asignaturas de libre elección diligencie 7. Si además hace parte de una línea de profundización, diligencie 8. En caso contrario, pase a 9. Escriba los nombres completos en mayúscula/minúscula.

7. ASIGNATURA DE LIBRE	ELECCIÓN	Marque con una X			
Contexto o Cátedra		Electiva	Х	De línea de profundización	

8. ASIGNATURA DE LÍNEA DE PROFUND	IZACIÓN Liste por separado cada una de las asignaturas que conforman la línea. Inserte tantos
renglones como asignaturas contenga la lín	ea
NOMBRE DE LA LÍNEA:	
NOI	MBRE DE LAS ASIGNATURAS QUE CONFORMAN LA LÍNEA

NOMBRE DE LA LÍNEA:					
NOMBRE DE LAS ASIGNATURAS QUE CONFORMAN LA LÍNEA					

En la columna Componente seleccione según corresponda.

9. PLANES DE ESTUDIO A LOS QUE SE ASOCIARÁ LA ASIGNATURA	Componente
Ingeniería Civil	

10. AGRUPACIONES Las agrupaciones se componen de asignaturas que permiten profundizar en un tema o área del conocimiento, o que se asocian en torno a un eje temático. Si la asignatura hace parte de una o varias agrupaciones, liste las asignaturas que conforman el grupo. En la última columna seleccione el componente, según sea el caso.

Inserte agrupaciones si es necesario	
NOMBRE DE LA AGRUPACIÓN	Componente
Libre Elección	
NOMBRE DE LA AGRUPACIÓN	Componente
NOMBRE DE LA AGRUPACIÓN	Componente

PROGRAMA DE LA ASIGNATURA

11. DESCRIPCIÓN DE LA ASIGNATURA

A través de esta información se presenta una idea general del contenido del curso mediante el enunciado de resultados del aprendizaje, objetivos, metodología general (hasta 12 renglones, máximo 1500 caracteres).

OBJETIVOS: Esta asignatura etá orientada a introducir la técnica básica del cálculo numérico y explicar su objetivo fundamental: Encontrar soluciones aproximadas a problemas complejos utilizando procedimientos matemáticos que se pueden programar fácilmente con un computador. Hacer énfasis en la programación de computadores como una herramienta para obtener soluciones numéricas de problemas cuya solución análitica es extremadamente compleja. METODOLOGIA: El curso se desarrollará teniendo en cuenta diferentes aspectos pedagógicos como son: Clases presenciales: El profesor explica los conceptos relevantes en el salón de clases. Realización de talleres prácticos de programación en MATLAB que faciliten, refuercen y apliquen los conocimientos adquiridos en la parte teórica cada vez que el tema lo amerite. Presentación y sustentación de proyectos por parte de los estudiantes. Trabajo dirigido fuera de clase, ya sea individual o por grupo, por parte de los estudiantes con el propósito de afianzar los conceptos aprendidos

12. CONTENIDO			
12.1. CONTENIDO BÁSICO	12.2. CONTENIDO DETALLADO		
Índice a partir del cual se muestra el contenido de la asignatura a t de los ítems principales.	Descripción del contenido de la asignatura especificando cada uno de los ítems del contenido básico.		
	1.1.Introducción.		
	1.2.Eliminación Gauss-Jordan.		
1. SOLUCION DE ECUACIONES ALGEBRAICAS LINEALES	1.3.Eliminación Gausiana con sustitución.		
	1.4.Descomposición LU de Cholesky.		
	1.5.Mejoramiento iterativo a la solución de ecuaciones lineales.		
	1.6.Matrices ralas.		
	1.7. Aplicación del tema en MATLAB y contextualizacion a la ingeniería civil		
	2.1.Introducción		
	2.2.Interpolación por los vecinos más cercanos		
	2.3.Interpolación lineal		
	2.4.Interpolación con la fórmula de Lagrange		
2. INTERPOLACION Y EXTRAPOLACION	2.5.Interpolación polinomial (cuadrática y cúbica)		
	2.6.Interpolación con splines		
	2.7.Interpolación en varias dimensiones		
	2.8. Aplicación del tema en MATLAB y contextualización a la ingenieria civil		

	Junio 18 2008		
	3.1.Introducción		
	3.2.Métodos de Newton-Cotes		
	3.2.1.Método de los rectángulos		
	3.2.2.Método de los trapecios		
	3.2.3.Método de Simpson 1/8 y 3/8		
3. INTEGRACION DE FUNCIONES	3.2.4.Fórmula de Boole		
	3.3.Extrapolaciones de Richardson		
	3.4.Integración de Romberg		
	3.5.Integración con cuadraturas de Gauss-Legendre		
	3.6.Aplicación del tema en MATLAB y contextualización a la ingenieria		
	civil		
	4.1 INTRODUCCIÓN		
	4.2 MINIMIZACIÒN UNIDIMENSIONAL		
	4.2.1 ACOTACION DE FUNCIONES		
	4.2.2.METODO DE LA INTERPOLACION PARABÓLICA		
	4.2.3.METODO DE LA BUSQUEDA AUREA		
	4.2.4.METODO DE NEWTON-RAPHSON		
4. MINIMIZACION Y MAXIMIZACION DE FUNCIONES, REGRESIÒN			
LINEAL Y NO LINEAL	4.3.MINIMIZACION EN VARIAS DIMENSIONES		
	4.3.1.METODO DEL DESCENSO MAS EMPINADO		
	4.3.2. METODO DE NEWTON-RAPHSON		
	4.3.3.METODO DE LEVENBERG-MARQUARDT		
	4.5.REGRESION LINEAL Y NO LINEAL		
	5.1INTRODUCCIÓN		
	5.2.METODO DE LA ACOTACION Y DE LA BISECCION		
5. RAICES DE ECUACIONES Y SISTEMAS DE ECUACIONES NO	5.3.METODO DE NEWTON-RAPHSON		
LINEALES.	5.4.METODO DE NEWTON-RAPHSON PARA LA SOLUCION DE		
	SISTEMAS DE ECUACIONES NO LINEALES		
	5.5.APLICACION DEL TEMA EN MATLAB Y CONTEXTUALIZACION A LA INGENIERIA CIVIL		
	LA INGENIENIA GIVIE		
	6.1.INTRODUCCION		
	6.2.GENERACION DE NUMEROS PSEUDO ALEATORIOS		
	UNIFORMEMENTE DISTRIBUIDOS		
	6.2.1.METODO DEL GENERADOR CONGRUENCIAL LINEAL(METODO DE PARK Y MILLER)		
	6.2.2.METODO DE MERSENNE TWISTER		
	6.2.3.METODO BLUM-BLUM-SHUB		
	6.2.4.METODO RANLUX		
	6.3. GENERACION DE NUMEROS PSEUDOALEATORIOS		
6. NUMEROS PSEUDOALEATORIOS Y SIMULACIONES DE MONTE	PROVENIENTES DE OTRAS DISTRIBUCIONES.		
CARLO	6.3.1.METODO DE LA TRTANSFORMADA INVERSA		
	6.3.2.METODO DE LA ACEPTACION RECHAZO		
	6.3.3.METODO ZIGGURAT Y TRANSFORMACION DE BOX - MULLER		
	6.4.INTEGRACION SIMPLE DE MONTE CARLO		
	6.5.INTRODUCCION A LA CONFIABILIDAD ESTRUCTURAL Y		
	CALCULO DE PROBABILIDAD DE FALLA DE SISTEMAS		
	ESTRUCTURALES		
	6.6.APLICACION DEL TEMA EN MATLAB Y CONTEXTUALIZACION A		
	LA INGENIERIA CIVIL		
	7.1.INTRODUCION		
	7.2.METODO DE LAS DIFERENCIAS FINITAS		
7. SOLUCIONES DE ECUACIONES DIFERENCIALES ORDINARIAS	7.3.METODO DE RUNGE-KUTTA		
	7.4.APLICACION DEL TEMA EN MATLAB Y CONTEXTUALIZACION A		
	LA INGENIERIA CIVIL		

Inserte cuantos bloques sean necesarios

8. CASOS ESPECÍFICOS PARA INGENIERÍA CIVIL

٠	3.	_		CF	- D	W	10	10	м	•
ı	-5-	u	ю.	ЭЕ	: K	v ,	١.	ıv	N	3

Incluya los comentarios adicionales relacionados con la asignatura, importantes de ser tomados en cuenta y no solicitados en este formato. Por ejemplo, didácticas específicas.

14. BIBLIOGRAFÍA BÁSICA				
Por favor escriba el título y los nombres	de autor completos en mayúscula/minúscula.			
Autor (es)	Título	Editorial - País	Año	
1.ALVAREZ, DIEGO	NOTAS DE CLASE, PAGINA DE INTERNET DEL CURSO			
2.TREJOS, OMAR	LA ESENCIA DE LA LOGICA DE PROGRAMACION. LIBRO GRATIS DISPONIBLE EN http://gpsis.utp.edu.co/omartrejos/desacargas/libro_la%20e			
3. MOLLER (2004)	Numerial computing with MATLAB-libro disponible en http://www.mathworks.com/moler/chapters.html.			
4. PRESS, WILLIAM and TEUKOSKY, SAUL and VETTERLING, WILLIAM and FLANNERY,BRIAN (1992)	Numerical recipes in C. 2nd edition. Cambridge University Press: Cambridge UK			
5. WON YOUNG YANG ET.AL. (2005)	APPLIED NUMERICAL METHODS USING MATLAB. HOBOKEN N.J.: WILEY-INTERSCIENCE			
6. CHAPRA, STEVEN C. Y RAYMOND P. CANALE (2002)	NUMERICAL METHODS FOR ENGINEERS. BOSTON: McGraw-Hill			

Introduzca las filas que sean necesarias

NOMBRE DEL DIRECTOR DE ÁREA CURRICULAR	
DIEGO ALEXANDER ESCOBAR GARCÍA	

APROBACIÓN DEL CONSEJO DE FACULTAD				
Fecha del Consejo (dia/mes/año)		Acta Número		