Mathematical Methods II PDF 9

Craig Testrow

Key Points

• Revision Lecture

Revision

- Common terms in y_c and y_p : Let's say you have the following solution to a homogeneous ODE $y_c = c_1x + c_2$. Let's also say the inhomogeneous RHS is x^2 . So you decide your $y_p = ax^2 + bx + c$. But as you want to avoid terms already found in y_c you multiply by x^2 . Now $y_p = ax^4 + bx^3 + cx^2$, not $y_p = ax^4 + bx^3 + cx^2 + dx + e$. This is the equation you would use if you started with a quartic RHS. The d and e terms won't invalidate the solution, they will just add to the c_1 and c_2 terms in y_c . These terms are unecessary and just cause more work if included.
- Legendre: Please bare in mind Adrien-Marie Legendre, like many famous mathematicians, lent his name to more than one equation or technique. Legendre linear equations are not the same as the Legendre differential equation.

2nd order Legendre linear equation (from L4),

$$a_2(\alpha x + \beta)^2 y'' + a_1(\alpha x + \beta)y' + a_0 y = f(x).$$

Legendre's differential equation (from L8),

$$(1 - x^2)y'' - 2xy' + \ell(\ell + 1)y = 0.$$

• Singular points at ∞ : Show that Legendre's equation has a regular singular point at $|z| \to \infty$.

$$(1 - z^2)y'' - 2zy' + \ell(\ell + 1)y = 0$$

Let w = 1/z. We need to eliminate z from the derivatives, expressing them in terms of w

$$\frac{dy}{dz} = \frac{dw}{dz}\frac{dy}{dw} = \frac{d}{dz}\left(\frac{1}{z}\right).\frac{dy}{dw} = -\frac{1}{z^2}\frac{dy}{dw} = -w^2\frac{dy}{dw}$$

$$\frac{d^2y}{dz^2} = \frac{dw}{dz} \frac{d}{dw} \left(\frac{dy}{dz}\right),$$

$$= \frac{-1}{z^2} \frac{d}{dw} \left(-w^2 \frac{dy}{dw}\right),$$

$$= -w^2 \left(-2w \frac{dy}{dw} - w^2 \frac{d^2y}{dw^2}\right),$$

$$= 2w^3 \frac{dy}{dw} + w^4 \frac{d^2y}{dw^2}.$$

Sub into the ODE,

$$\left(1 - \frac{1}{w^2}\right) \left(2w^3 \frac{dy}{dw} + w^4 \frac{d^2y}{dw^2}\right) + 2\left(\frac{1}{w}\right) \left(w^2 \frac{dy}{dw}\right) + \ell(\ell+1)y = 0.$$

Expanding and simplifying,

$$\left(2w^{3}\frac{dy}{dw} + w^{4}\frac{d^{2}y}{dw^{2}}\right) - \left(2w\frac{dy}{dw} + w^{2}\frac{d^{2}y}{dw^{2}}\right) + 2w\frac{dy}{dw} + \ell(\ell+1)y = 0,$$

which leaves us with a 2^{nd} order ODE in terms of w,

$$(w^4 - w^2)\frac{d^2y}{dw^2} + 2w^3\frac{dy}{dw} + \ell(\ell+1)y = 0.$$

Dividing by $(w^4 - w^2)$ we find

$$p(w) = \frac{2w}{w^2 - 1},$$
 $q(w) = \frac{\ell(\ell + 1)}{w^4 - w^2}$

Examining p(0) and q(0) we find,

$$\lim_{w \to 0} p(w) = \frac{2w}{w^2 - 1} \to 0, \qquad \lim_{w \to 0} q(w) = \frac{\ell(\ell + 1)}{w^4 - w^2} \to \infty,$$

p(0) = 0 but q(0) diverges, so $|z| \to \infty$ is a singular point.

Testing $(w - w_0)p = wp$ and $(w - w_0)^2q = w^2q$ we find,

$$\lim_{w \to 0} w p(w) = \frac{2w^3}{w^2 - 1} \to 0, \qquad \lim_{w \to 0} w^2 q(w) = \frac{\ell(\ell + 1)w^2}{w^4 - w^2} = \frac{\ell(\ell + 1)}{w^2 - 1} \to -\ell(\ell + 1),$$

both converge at w=0, so $|z|\to\infty$ is a regular singular point.

Name of	Form/Condition	Order	Coeff.	Notes
ODE / method				
Separable	dy/dx = u(x)v(y)	1	Var	Integrate independently
Exact	$du = A(x, y)dx$ $+B(x, y)dy = 0$ Test if $\partial A/\partial y = \partial B/\partial x$ $\partial u/\partial x = A, \partial u/\partial y = B$	1	Var	Find $u(x,y) = C$ by integrating A or B , use other to find $F(x \text{ or } y)$ from integral.
Integrating factor	$\mu(x,y)A(x,y)dx + \mu(x,y)B(x,y)dy = 0$	1	Var	For inexact eqns
Homogeneous	$A(x,y)dx = B(x,y)dy$ $f(\lambda x, \lambda y) = \lambda^n f(x,y).$ Sub $y = vx$ $A(x,y)dx = B(x,y)dy$	1	Var	
Isobaric	$f(\lambda x, \lambda^m y) = \lambda^{m-1} f(x, y).$	1	Var	Set powers of: $x, dx = 1, y, dy = m$
Linear 1st or- der	Sub $y = vx^m$ dy/dx + p(x)y = q(x) $y = 1/\mu(x) \int_{x} \mu(x)q(x)dx$ $\mu(x) = e^{\int p(x)dx}$	1	Var	
Bernoulli	$dy/dx + b(x)y = c(x)y^n$ $z = y^{1-n}$ $a_n(x)d^n y/dx^n$	1	Var	Solve as linear 1st order
Linear nth or- der	$\begin{vmatrix} +a_{n-1}(x)d^{n-1}y/dx^{n-1} + \dots \\ +a_1(x)dy/dx + a_0(x)y = f(x) \end{vmatrix}$	n	Var	
Linear 2nd or- der	y'' + p(z)y' + q(z)y = f(z)	2	Var	
Complementary function (lin- ear superposi- tion)	$y_c = c_1 y_1(x) + c_2 y_2(x)$	2+	Const	Solve as RHS=0. y_1 and y_2 must be linearly independent
Auxiliary equation	Sub $y = Ae^{\lambda x}$ Real: $c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$ Repeat: $(c_1 + c_2 x)e^{\lambda_1 x}$ Complex: $c_1 e^{(\alpha + i\beta)x} + c_2 e^{(\alpha - i\beta)x}$ $y_p = be^{rx}$ or	2+	Const	Identify roots
Particular integral / trial functions	$b_1 sinrx + b_2 cosrx$ or $b_0 + b_1 x + \dots + b_N x^N$	2+	Const	To find $RHS \neq 0$
General solution	$y = y_c + y_p$	2+	Const	
Laplace transform	$f(s) \equiv \int_0^\infty e^{-sx} f(x) dx$ $f^n(s) = s^n f(s) - s^{n-1} f(0)$ $-s^{n-2} f'(0) - \dots$ $-s f^{(n-2)}(0) - f^{(n-1)}(0)$	2+	Const	

Name of	Form/Condition	Order	Coeff.	Notes
ODE /				
method				
	$a_n(\alpha x + \beta)^n \frac{d^n y}{dx^n} + \dots$			
Legendre	$+a_1(\alpha x + \beta)\frac{dy}{dx} + a_0 y = f(x)$	n	Var	Make coeffs. const. with
linear eqns	$\frac{\operatorname{Sub} \alpha x + \beta = e^t}{a_n x^n \frac{d^n y}{dx^n} + \dots}$			sub.
Euler linear		n	Var	Make coeffs. const. with
eqns	$\begin{vmatrix} +a_1 x \frac{dy}{dx} + a_0 y = f(x) \\ \text{Sub } x = e^t \end{vmatrix}$	11	Vai	sub.
Wronskian	$Sub x = e^t$ $W = y_1 y_2' - y_1' y_2$	2+	Var	Check for linear indepen-
				dence
	$y_p(x) =$			
Wronskian	$k_1(x)y_1(x) + k_2(x)y_2(x)$	2+	Var	Find y_c as usual. $y = y_p$ as
	$k_1' = \frac{-f(x)}{W(x)} y_2$	·		y_c is implicit in y_p
variation of	$k_2' = \frac{f(x)}{W(x)} y_1$			
parameters				
	$p \text{ and } q \text{ finite} \rightarrow \text{ ordinary}$			
	$p \text{ or } q \text{ infinite } \to \text{singular}$ $(z - z_0)p \text{ and } (z - z_0)^2q$			
Ordinary and	finite \rightarrow regular singular	2+	Var	
singular points	$(z-z_0)p \text{ or } (z-z_0)^2q$			
	$infinite \rightarrow irregular singular$			
	infinite \rightarrow irregular singular $y(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$			
Taylor series	$ \begin{aligned} &= \sum_{n=0}^{\infty} a_n (z - z_0)^n \\ &y' = \sum_{n=0}^{\infty} n a_n z^{n-1} \\ &y'' = \sum_{n=0}^{\infty} n(n-1) a_n z^{n-2} \end{aligned} $	2+	Var	Requires ordinary point.
	$y' = \sum_{n=0}^{\infty} n a_n z^{n-1}$			Shift index by adding to
	$y'' = \sum_{n=0}^{n} n(n-1)a_n z^{n-2}$			n terms. Determine recur-
	(4 2) # 2 1			rance relation(s) for a_n .
	$(1-x^2)y'' - 2xy'$	0	17	D. () 1 (1) D
Legendre's DE	$ +\ell(\ell+1)y = 0 $ $ P_{\ell}(x) = \frac{1}{2\ell\ell!} \frac{d^{\ell}}{dx^{\ell}} (x^2 - 1)^{\ell} $	2	Var	Determine ℓ , solve with Rodrigues' formula
	$\int I(x) - \frac{1}{2^{\ell}\ell!} \frac{1}{dx^{\ell}} (x - 1)$			diigues ioimua