## I. additions 6/6/21

- 142 already has basics in table and ToA table, but was not included in type/transition analysis (b/c thought it was potentially two different sources
  - o in type 3 part of base num vs. stdev ratio, which makes sense



periodicity: not a complete disappearance after

transition

- o not set apart in transition definition of median difference (as you can see, not necessarily a constant change in median, more about shape)
  - again, see notes below about whether or not to keep
  - of course moves around on plot when cut into pieces, but otherwise saw not a great way to define transition
  - this is more of an orbital transition that affects the super-orbital look as well
  - other option is to consider as "interesting source" and write a paragraph on it
- did basic analysis with new files, but will better integrate into other analyses
- latestsumm.csv: types now correctly numbered, and a bunch of extraneous/irrelevant columns deleted
- II. sources/LCs with problems
  - 77 (which we should replace based on new paper anyway)
  - calibration between epochs (especially in type 6 sources, maybe some type 5)
    - o if they looked uncalibrated, set medians to the same value when doing periodogram search & when adding info like skew to table
    - o note: calibration in getIV *does not* currently calibrate the V band (keep in mind for color, feel free to change)
  - 12 and 75 are the same source
  - weird color-mag for 10 -- I guess possible but has same shape has color-mag of 73
  - 25 -- maybe just uncalibrated but also looks fairly different between epochs
  - table for 51 not working; not sure if there are files for source numbers with letters in them (3-4 sources)
- III. potential directions (and where to find starting code)
  - error on periodogram (not sure if we want)
    - bootstrapping in \_\_\_\_\_
    - o width of peaks in \_\_\_\_\_
    - o other papers simulate similar LCs
  - width, height, spacing of peaks
    - o including width at different percentages (e.g. width at 20% and 90% of height)
  - quantifying flattening at bright values in color-mag
  - more on X-ray (max X-ray luminosity, comparing to Swift data some more)
  - PCA
- IV. tables
  - final table:
  - allsummtab.csv (alls)
    - o older version: summtab.csv (summ)
  - sourcefiles.csv (cross)
  - part2files.csv (usually join with ascii file to make cross2)

- phasetab.csv
- smc x m03 zar match OGLE v2.ascii (full)
- qualitative periodicity table
- V. jupyter notebooks: "final" notebooks that I went over to clean up/set you up for success
  - FINAL colormag
  - FINAL quiescentpart -- check this out b/c I may've forgotten to discuss at the final meeting
  - FinalFigures
  - SuperorbitalTimescale
  - FINAL ToAs
    - o can save example procedure from here
  - FINAL\_PeriodbyYear
- VI. other (potentially useful) jupyter notebooks that I skimmed through but didn't really change
  - PredictingOutburst notebooks (e.g. with other good periods) but they should be in good shape
    - o for (potentially) new periods: predicted the next X-ray outburst
  - original periodogram analysis (SplinePulsatingSourcesBasic and Part2Analysis)
    - o long, unruly function so let me know if you have questions
    - o don't overwrite e.g. the folding info (or save old) b/c overwrite for e.g. type 4 sources
    - o sources broken up by notebook based on if they have spin period measurement or not
  - OrbitalProperties
    - where I developed what to save based on phase-folded data (amplitude, measure of symmetry etc.)
  - QuiescentSources
    - very first part on src 55 (quiescent and then type 1) important
      - found that the 'best' period of ~127 days only present in flaring part, whereas 95.36 present throughout
    - otherwise sort of outdated, but investigated a list of what I considered 'quiescent' at the time (so type 6/maybe some type 5) vs. gradual/slight variation (a.k.a type 5 now for the most part)
    - a bunch of individual periodicity follow-ups
    - o **found that a bunch are aperiodic** (original discovery that more quiescent → aperiodic)
    - o but also searched at higher periods (than 200 days) since these sources could just be on longer timescales
    - also started quantitative separation of these types (standard deviation and kurtosis at the time)

## • TransitionDefinition

 write now, only need meddiff plot from this notebook, but see note at bottom about another direction to go in if you'd like (type1t function instead)



- FinalTypes (just show how it's calculated, though don't necessarily need)
- SuperOrbitalFeatures (e.g. feature width, height)
- o OpticalvsXrayPeriod
- TypeIIOutbursts

## VII. module: ogle.py

- some functions were only really used early on or in early versions of super-orbital types
- functions that are repeatedly used
  - o getIV: how to grab I and V band LCs
    - inefficient, but often have to specify if source from part 1 or 2 (spin period or not)
    - if not working, try using cross2 instead of cross and mlist2 instead of mlist1
  - o colormag: get interpolated I and/or plot color-mag diagram
  - splinedetrend
  - o gettype
  - o tplot
  - o when checking for monotonic change: monotonic
- period search
  - o periodogram
  - o meanphase and phasestep
  - o findpeaks
  - o aliasarr and findpeaks
  - o characterizing phase-folded data
    - combine
    - phase dict
    - symm
    - test bins
- some functions that may not be called in final notebooks but could be helpful esp. in period search
  - o finddense
  - o denselcpd
  - o yrpd
  - o rollpd

## VIII. npz files

- IX. meta-table
- X. some things about super-orbital types
  - A. double check, but I think I ultimately used the third brightest and third faintest points for base number, to protect against spurious points
  - B. also, stdev ratio does not use spline detrending in most straightforward way
    - 1. accounts for sharp features like those in type 4
  - C. I'm still not 100% sure on transition types, but I am "sure" of the significance/helpfulness of the ones that have partial type 1-ness
  - D. if just want transitions in/out of type 1 (that region of base num vs. stdey): see type1t in TransitionDefinition
    - 1. 11, 19, 52, 97 (all transition anyway)
    - 2. 104 from type 2 (happy with that, although could say it just comes from shape of dip making return look like type 1 flare)
    - 3. no others from other types