Numerical Linear Algebra: Homework #7

Due on September 16, 2022 at 10:00PM

Instructor: Professor Blake Barker Section 1

Michael Snyder

Problem 7.3

Let A be an $m \times m$ matrix, and let a_i be its j^{th} column. Give an algebraic proof of Hadmamard's inequality:

$$|\det A| \le \prod_{j=1}^m \|a_j\|_2.$$

Also, give a geometric interpretation of this result, making use of the fact that the determinant equals the volume of a parallelepiped.

Proof. Let A be an $m \times m$ matrix, and let a_j be its j^{th} column. We will prove Hadamard's inequality using the following facts:

- 1. A has a QR factorization;
- 2. For matrices A and B, $\det AB = \det A \det B$;
- 3. By Theorem 5.6, $|\det A| = \prod \sigma_j$. Moreover, by Theorem 5.3, $||A||_2 = \sigma_1$. As a consequence of these two theorems, we have $|\det Q| \le 1$;
- 4. det $U = \prod u_{ii}$ for upper triangular U;
- 5. By algorithm 7.1, $r_{jj} = ||a_j||_2$.

Using these facts, we have

$$\begin{aligned} |\det A| &= |\det QR| & \operatorname{Fact} 1 \\ &= |\det Q \det R| & \operatorname{Fact} 2 \\ &\leq |\det R| & \operatorname{Fact} 3 \\ &= \prod_{j=1}^n r_{jj} & \operatorname{Fact} 4 \\ &= \prod_{j=1}^n \left\|a_j\right\|_2. & \operatorname{Fact} 5 \end{aligned}$$

Problem 7.4

Let $x^{(1)}, y^{(1)}, x^{(2)}, y^{(2)}$ be nonzero vectors in \mathbb{R}^3 with the property that $x^{(1)}$ and $y^{(1)}$ are linearly independent and so are $x^{(2)}$ and $y^{(2)}$. Consider the two planes in \mathbb{R}^3 ,

$$P^{(1)} = \langle x^{(1)}, y^{(1)} \rangle, \qquad P^{(2)} = \langle x^{(2)}, y^{(2)} \rangle.$$

Suppose we wish to find a nonzero vector $v \in \mathbb{R}^3$ that lies in the intersection $P = P^{(1)} \cap P^{(2)}$. Devise a method for solving this problem by reducing it to the computation of QR factorizations of 3×2 matrices.

Solution: Let $A^{(1)} = \begin{bmatrix} x^{(1)} & y^{(1)} \end{bmatrix}$, be the 3×2 matrix whose columns are the vectors $x^{(1)}$ and $y^{(1)}$. Similarly, form the matrix $A^{(2)} = \begin{bmatrix} x^{(2)} & y^{(2)} \end{bmatrix}$ Then

$$A^{(1)} = \begin{bmatrix} x^{(1)} & | & y^{(1)} \end{bmatrix} = Q^{(1)} R^{(1)} = \begin{bmatrix} q_1^{(1)} & | & q_2^{(1)} & | & q_3^{(1)} \end{bmatrix} R^{(1)},$$

where $Q^{(1)}R^{(1)}$ is the QR factorization of $A^{(1)}$ and hence by Algorithm 7.1, $q_1^{(1)}, q_2^{(1)}, q_3^{(1)}$ are the orthonormal columns of $Q^{(1)}$. But $range(A^{(1)})$ is spanned by the vectors $q_1^{(1)}, q_2^{(1)}$. Stated another way, $span(\{q_1^{(1)}, q_2^{(1)}\}) = P^{(1)}$. Since $q_3^{(1)}$ is orthogonal to $q_1^{(1)}$ and $q_2^{(1)}, q_3^{(1)}$ is also orthogonal to $P^{(1)}$. By similar analysis, we obtain, through QR factorization of the matrix $A^{(2)}$, the vector $q_3^{(2)}$ orthogonal to P^2 .

Now consider the matrix $A^{(3)} = \begin{bmatrix} q_3^{(1)} & | & q_3^{(2)} \end{bmatrix}$. By the same process as above we find the QR factorization of $A^{(3)}$, which yields the matrix $Q^{(3)} = \begin{bmatrix} q_3^{(1)} & | & q_3^{(2)} & | & q_3^{(3)} \end{bmatrix}$. Again, $q_3^{(1)}$ and $q_3^{(2)}$ are orthogonal to $q_3^{(3)}$. But that puts $q_3^{(3)}$ in the intersection of the planes $P^{(1)}$ and $P^{(2)}$. Therefore, we have found the requested vector $v = q_3^{(3)}$ through QR factorization of 3×2 matrices.