МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по учебной практике

Тема: Генетические алгоритмы

Студент гр. 0304	Люлин Д.В.
Студент гр. 0304	 Максименко Е.М.
Студентка гр. 0304	 Говорющенко А.В
Студент гр. 0304	 Алексеев Р.В.
Руководитель	Жангиров Т.Р.

Санкт-Петербург

ЗАДАНИЕ

НА УЧЕБНУЮ ПРАКТИКУ

Студент Люлин Д.В. группы 0304
Студент Максименко Е.М. группы 0304
Студентка Говорющенко А.В. группы 0304
Студент Алексеев Р.В. группы 0304
Тема практики: Генетические алгоритмы
Задание на практику:
Разработать и реализовать программу, решающую одну из оптимизационных
задач с использованием генетических алгоритмов (ГА), а также
визуализирующая работу алгоритма.
Задача:
Задача раскроя
Дана полубесконечная лента ткани фиксированной ширины, из нее
необходимо вырезать прямоугольные участки ткани заданных размеров.
Необходимо разместить прямоугольники таким образом чтобы
минимизировать длину используемой ленты и количество отходов.
Сроки прохождения практики: 29.06.2020 – 12.07.2020
Дата сдачи отчета: 02.07.2020
Дата защиты отчета: 02.07.2020
Студент Люлин Д.В.
Студент Максименко Е.М.
Студентка Говорющенко А.В.
Студент Алексеев Р.В.

Руководитель

Жангиров Т.Р.

АННОТАЦИЯ

Цель практики заключается в реализации программы, решающей задачу раскроя при помощи генетического алгоритма. Пограмма должны иметь графичекий интерфейс (GUI), визуализировать работу алгоритма, иметь возможность ввода данных через GUI или файл.

СОДЕРЖАНИЕ

	Введение	5
1.	Графический интерфейс	6
1.1.	Скетч GUI	6
1.2.	Сценарии взаимодействия с GUI	9
2.	Описание генетического алгоритма	11
	Заключение	15
	Список использованных источников	16

ВВЕДЕНИЕ

Целью работы является реализация программы, решающей задачу раскроя при помощи генетического алгоритма, программа должны бать написана на языке С++. Программа должна иметь: графический интерфейс (GUI), возможность ввода данных через GUI или файл, пошаговую визуализацию работы ГА с возможностью перехода к концу алгоритма, настройку параметров ГА через GUI, отображение особей популяции с выделением лучшей особи, визуализацию кроссинговера и мутиций, текстовые логи с пояснениями к ГА. После выполнения программа не должна сразу закрываться, а должна давать возможность провести ГА заново, либо ввести другие данные.

1. ГРАФИЧЕСКИЙ ИНТЕРФЕЙС

1.1. Скетч GUI.

Скетч графического интерфейса (GUI), который планируется релизовать представл на рис. 1.

Рисунок 1 — Скетч GUI

В левой части окна отображается список особей из текущей популяции. Для каждой особи написано значение функции пригодности, особь с максимальным значение выделена зелёным цветом.

В центральной части окна отображается лента с расположенными на ней прямоугольниками.

В нижней части окна находтся вкладки с логами и информацией о выбранной особи. Во вкладке с логами отображаются все сообщения логов. Во вкладке с информацией описаны все гены выбранной особи, а именно информация о каждом прямоугольнике: номер, координаты, поворот.

В верхней части окна расположен ряд кнопок:

- Ввести данные открывается небольшое всплывающее окошко, в котором пользователь вводит ширину ленты и может добавлять прямоугольники разных размеров. При вводе прямоугольника ему автоматически присваивается случайный цвет, который сохраняется между особями. Это позволяет наблюдать за тем, как меняется положение данного прямоугольника в разных особях.
- Шаг выполнить один шаг алгоритма. Кнопки "Ввести данные" и "Настройки" становятся недоступными.
- Продолжить продолжить выполнение алгоритма с текущего момента до конца. Кнопки "Ввести данные" и "Настройки" становятся недоступными.
- Стоп прервать выполнение алгоритма. Популяция очищается, ввод данных и настройки становится доступными.
- Настройки отображение меню настроек. Меню представлено на рис. 2.

Рисунок 2 — Скетч меню настроек ГА в GUI

1.2. Описание сценариев взаимодействия с GUI.

Основной сценарий взаимодествия пользователя с GUI:

- 1. Запустив программу, пользователь может выбрать опцию "Ввести данные". Всплывает окно, в котором он вводит ширину ленты, а также добавляет произвольное количество прямоугольников с заданной длиной и шириной. После ввода данных пользователь закрывает окно.
- 2. Перед началом работы алгоритма пользователь может настроить параметры генетического алгоритма, выбрав опцию "Настройки". Можно настроить следующие параметры: способ выбора родителей, способ отбора особей в новую популяцию, критерий остановки алгоритма, вероятности мутации и кроссинговеров, размер популяции. Также пользователь может настроить логирование: уровень подробности логов, запись логов в консоль и файл (и выбор файла).
- 3. Пользователь может запустить один шаг алгоритма, выбрав опцию "Шаг". С помощью этой опции можно подробно исследовать работу алгоритма. Если делать шаги во время кроссинговера, то синим цветом в левой части экрана будут отображаться пары родителей.
- 4. В любой момент пользователь может выбрать опцию "Продолжить", чтобы запустить алгоритм с текущего места не пошагово, а в обычном режиме.
- 5. В любой момент пользователь может выбрать опцию "Стоп", чтобы прервать работу алгоритма. Популяция удаляется, программа восстанавливает состояние из пункта 2. Становится доступным изменение настроек и входных данных, запуск алгоритма с начала.
- 6. При возникновении исключительных ситуаций всплывает окно, информирующее об ошибке, и программа делает то же, что при выборе опции "Стоп". Сообщение об ошибке записывается в лог.
- 7. При удачном завершении алгоритма популяция не очищается, пользователь может выделить особь с лучшим решением и посмотреть расположение прямоугольников. При этом кнопки "Шаг" и "Продолжить"

не дают эффекта. Чтобы начать алгоритм заново, необходимо нажать "Стоп".

2. ОПИСАНИЕ ГЕНЕТИЧЕСКОГО АЛГОРИТМА

Генетический алгоритм:

Основные понятия ГА:

- Ген информация об одном прямоугольнике, представленная в виде тройки чисел: номер прямоугольника, координата X (координата Y берётся минимально возможной при данном X, и на алгоритм не влияет), поворот (0 или 90 градусов).
- Особь (хромосома) какое-то решение задачи, т. е. расположение прямоугольников на ленте. За расположение каждого прямоугольника в данном решении отвечают гены. В каждом гене записана информация, по какому значению X разместить данный прямоугольник, индекс данного прямоугольника, отвечающий за поворот на 90 градусов. Важен порядок генов, т. к. прямоугольники, за которые они отвечают, размещаются на ленте с минимально возможным значением Y в порядке расположения генов в массиве.
- Популяция набор особей, в общем случае не упорядоченный, но во время отбора популяции может потребоваться сортировка.
- Функция пригодности (fitness) функция от особи, значение функции в диапазоне [0;1]. Показывает качество особи, т. е. качество ответа на задачу. Качество особи считается как 1/h, где h длина использованной ленты, необходимой для расположения прямоугольников в данной конфигурации.

Генетический алгоритм можно настраивать, изменяя его параметры, а именно:

- 1. Способ выбора родителей.
- 2. Способ отбора особей в новую популяцию.
- 3. Критерий остановки алгоритма.
- 4. Вероятности мутации и кроссинговеров.

5. Размер популяции.

Процедуры кроссинговера и мутации не параметризуются, они фиксированы алгоритмом. Существует 2 вида кроссинговера. Происходит или один из них с какой-то вероятностью, или мутация. Эти вероятности может настраивать пользователь.

Операторы кроссинговера:

- 1. В гены потомка попадают значения координаты X и поворота из генов родителя 2, порядок не изменяется. Далее выбирается промежуток $0 \le l \le r \le n$, где n — количество генов особи. В гены потомка с индексами из интервала попадают номера прямоугольников из генов с этими же индексами генов родителя 2. В гены не из промежутка попадают номера прямоугольников родителя 1. Если возникает конфликт прямоугольников, т. е. возникает попытка номеров повторного добавления номера прямоугольника, который уже попал в гены потомка родителя 2, выбирается другой номер: если данный номер прямоугольника у родителя 2 находится в гене с индексом k, берем номер прямоугольника из гена родителя 1 с индексом k, повторяем пока есть конфликты.
- 2. Также как и в предыдущем случае выбирается пара индексов $0 \le l \le r \le n$. Далее гены родителя 1 из промежутка полностью копируются по данным индексам в гены потомка. Гены не из промежутка будут копировать гены с такими же индексами родителя 2. Если возникают конфиликты, они решаются также, как и в предыдущем операторе.

Оператор мутации:

Оператор мутации один, он заключается в том, что есть один родитель, выбираются два различных случайных гена, которые меняются местами. Также у данных генов может быть изменено значение поворота (с шансом в 50%).

Способ выбора родителей:

1. Панмиксия:

Для каждой особи популяции случайным образом с равной вероятностью выбирается пара, с которой будет скрещивание. При этом допускается участие одной особи в нескольких скрещиваниях и скрещивание особи самой с собой.

2. Рулеточный отбор:

Процедура выбора такая же, как в панмиксии, но разница в том, что парная особь выбирается не равновероятно, а пропорционально пригодности f каждой из N особей:

$$P(i) = \frac{f(i)}{\sum_{i=1}^{N} f(i)}$$

Инбридинг и аутбридинг неприменимы к задаче, т. к. нет правильного способа подсчёта расстояния между родителями. В связи с тем, что при турнирном отборе во время скрещивания будет много повторяющихся особей, что не улучшает работу алгоритма, решено не использовать этот способ.

Способ отбора особей в новую попалуяцию:

1. Отбор усечением:

Пусть N - фиксированный ранее размер популяции. Текущая популяция после кроссинговера (т.е. родители + дети, всего 2*N) сортируется по возрастанию значения f пригодности особей. Задаётся параметр T в промежутке (0;1], представляющий долю непригодных особей. Из особей, не попавших в непригодную долю, случайно выбирается одна. Этот процесс повторяется N раз. Данный параметр требует дополнительного ввода значения T.

2. Элитарный отбор:

Из текущей популяции после кроссинговера выбирается N особей с лучшим значением f пригодности, а остальные — отбрасываются.

Критерий остановки алгоритма:

1. Предельное значение пригодности:

Остановка, если в текущей популяции есть хотя бы одна особь, значение функции пригодности которой больше или равно заданному.

- 2. Ограничение на количество шагов.
- 3. Критерий близости функции пригодности:

Остановка, если для любой пары особей значения функции пригодности не превосходят заданную величину.

ЗАКЛЮЧЕНИЕ

Был создан скетч графического интерфейса программы и описан один из сценариев взаимодействия пользователя с графическим интерфейсом. Также были описаны и обоснованы модификации ГА, используемые для решения задачи раскроя.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Панченко Т.В. Учебно-методическое пособие «Генетические алгоритмы».