Exploring Password Authenticated Key Exchange Algorithms

Final Year Project Screencast

Sam Leonard

Supervisor: Bernardo Magri

Table of contents

1. Introduction

2. Context

3. Demo

Intro

Motivation

Traditional Authentication

Motivation

PAKEs are a radically different solution to this problem.

- the password never leaves a user's device
- $\boldsymbol{\cdot}$ an eavesdropper cannot learn enough information to attack the protocol
- both the server and client are authenticated with each other

Context

What are PAKEs?

Example Balanced PAKE

SPAKE2

Alice		Bob
$X \leftarrow \mathbb{Z}_p$		$y \leftarrow \$ \mathbb{Z}_p$
$X \leftarrow g^{x}$		$Y \leftarrow g^y$
$X^* \leftarrow X \cdot M^{pw}$		$Y^* \leftarrow X \cdot N^{pw}$
	X*	
	γ*	
$K_A \leftarrow (Y^*/N^{pw})^X$	`	$K_B \leftarrow (X^*/M^{pw})^y$
$SK_A \leftarrow H(A, B, X^*, Y^*, Ka)$		$SK_B \leftarrow H(A, B, X^*, Y^*, Kb)$

Elliptic Curves

$$y^2 = x^3 - 2x - 1 \text{ over } \mathbb{R}$$

Point addition

P!

Neutral element \mathcal{O} Inverse element -P

Addition P + Q"Chord rule"

Doubling P + P"Tangent rule"

Finite Fields

Computers cannot represent the real numbers.

Instead a finite set must be chosen instead.

The Finite Field of integers mod some prime p is used instead of the reals.

This is notated \mathbb{F}_p , GF(p).

8

Elliptic Curves Over Finite Fields

AuCPace

An Augmented PAKE designed for the Industrial Internet of Things (IIOT).

- Proved secure in the Universal Composability framework
- Optimised to run efficiently on small microcontrollers
- Three variants to allow users to adapt the protocol to their setting:
 - · Strong AuCPace provides pre-computation resistance by blinding the salt value
 - · Partial Augmentation server stores a long term keypair for each user
 - · Implicit Mutual Authentication removes a round of messages

RustCrypto

1

Demo

Conclusion

I have implemented the AuCPace protocol and all it's variants in an ergonomic Rust libary. The library has been open-sourced through the RustCrypto.

