PROYECTO COMPILANDO CONOCIMIENTO

ALGEBRA LINEAL

Espacios Vectoriales y Bases

Espacios Vectoriales

AUTOR:

Rosas Hernandez Oscar Andres

Índice general

1.	Esp	acios y	SubEspacios	2			
	1.1.	Espaci	ios Vectoriales	3			
		1.1.1.	Propiedades	3			
	1.2.	SubEs	spacios Vectoriales	5			
		1.2.1.	Propiedades	5			
	1.3.	Indepe	endecia y Dependencia	6			
		1.3.1.	Independencia Lineal	6			
		1.3.2.	Propiedades	6			
		1.3.3.	Ejemplo	7			
		1.3.4.	Ejemplo	7			
	1.4.	Genera	ación de Espacios	8			
		1.4.1.	Propiedades	8			
	1.5.	Bases	y Dimensión	10			
		1.5.1.	Bases	10			
		1.5.2.	Dimensión	12			
2.	Sistemas de Coordenadas						
	2.1.						
		2.1.1.		14 14			
			¿Qué es un Sistema de Coordenadas?	14			
		2.1.3.		15			
	2.2.		io de Coordenadas	16			
		Callion	to do cooldonwado	10			
3.	Esp	acios I	Euclideanos	19			

3.1.	Espaci	os Euclideanos	20
3.2.	Produ	cto Interno	21
	3.2.1.	Producto Internos Comunes	21
	3.2.2.	Propiedades del Producto Interno	21
3.3.	Norma	de un Vector	22
	3.3.1.	Propiedades de la Norma	22
3.4.	Conju	ntos Octogonales	23
	3.4.1.	Propiedades	23

Capítulo 1

Espacios y SubEspacios

1.1. Espacios Vectoriales

Un espacio vectorial V es un Conjunto de objetos llamados Vectores (Dahh!), junto con dos operaciones:

- Suma de Vectores: Recibe 2 vectores y regresa 1 vector
- Producto Escalar: Recibe 1 vector y 1 escalar y regresa 1 vector

Lo importantes es que estas operaciones, satisfascan los 10 Axiomas que se enumeran a continuacion:

1. Es Cerrado en Suma:

Si
$$x \in V$$
 y $y \in V$, entonces $x + y \in V$

2. Es Asociativo:

Para todos
$$x, y, z \in V$$
, $(x + y) + z = x + (y + z)$

3. Existe en O Vector:

Existe un vector $0 \in V$ tal que todos $x \in V, x + 0 = 0$

4. Inverso de un Vector:

Si
$$x \in V$$
, existe un vector $-x$ en V tal que $x + (-x) = 0$

5. Es Conmutativo:

Si
$$x, y \in V$$
, entonces $x + y = y + x$

6. Multiplo de un Vector:

Si
$$x \in V$$
, y $\alpha \in K$, entonces $\alpha x \in V$

7. Existe un Uno:

Para todo vector $x \in V$, tenemos que 1x = x

- 8. Si $x, y \in V$ y $\alpha \in K$, entonces $\alpha(x+y) = \alpha x + \alpha y$
- 9. Si $x \in V$ y $\alpha \in K$, entonces $\alpha(\beta x) = \alpha \beta x$

1.1.1. Propiedades

Podemos ver algunas características muy útiles de los Espacios vectoriales, sea V un Espacio vectorial, entonces:

•
$$\alpha 0 = 0, \forall \alpha \in \mathbb{R}$$

- $0x = 0, \forall x \in V$
- Si $\alpha x = 0$, entonces $\alpha = 0$ ó bien x = 0 ó ambos.
- $(-1)x = -x \ \forall x \in V$

1.2. SubEspacios Vectoriales

Un Subconjunto no vacio H de un Espacio vectorial V es un Subespacio de V si se cumplen que:

- 1. Cerradura de la Suma Si $x \in H$ y $y \in H$, entonces $x + y \in H$
- 2. Cerradura de la Producto Escalar Si $x\in H,$ entonces $\alpha x\in H,$ para todo escalar α

Otra forma de probar es checar la combinación lineal $\alpha w_1 + \beta w_2 \in W$ ya que se cumplen las dos condiciones.

1.2.1. Propiedades

- $\{0_v\}$ es un Subespacio.
- ullet V es un Subespacio de V
- ullet $W_1interW_2$ es un Subespacio de V
- $\blacksquare W_1 + W_2$ es un Subespacio de V

1.3. Independecia y Dependencia

1.3.1. Independencia Lineal

Sea A una matriz de $n \times n$. Entonces cada uno de los siguientes siete enunciados implica a los otros seis.

- A es Invertible.
- $Det(A) \neq 0$.
- La unica solución al Sistema Homogéneo Ax = 0 es la solución x = 0.
- El sistema Ax = b posee una solución única para todo n-vector b.
- A es equivalente por filas a la Matriz Identidad.
- A puede ser escrita como el producto de matrices elementales.
- Las columnas y los renglones de A son Linealmente Independientes.

Podemos generalizar aún más esto de la siguiente manera como:

Sean A =
$$\begin{bmatrix} F_1 \\ F_2 \\ F_n \end{bmatrix}$$
 = $\begin{bmatrix} C_1 & C_2 & C_n \end{bmatrix}$ pertenecen a $M_{m \times n}(K)$

Es decir sea A un Vector de Vectores (estos últimos sean Vectores Fila o Columna, la verdad no importa), entonces los siguientes enunciados son equivalentes:

- A es Invertible
- F_1, F_2, \cdots, F_n generan a K^n
- C_1, C_2, \cdots, C_n generan a K^n
- F_1, F_2, \cdots, F_n son Linealmente Independientes en K^n
- lacksquare C_1, C_2, \cdots, C_n son Linealmente Independientes en K^n
- lacksquare $B = (F_1, F_2, \cdots, F_n)$ es base de K^n
- B = (C_1, C_2, \cdots, C_n) es base de K^n

1.3.2. Propiedades

• Un conjunto de n vectores en \mathbb{R}^m es siempre Linealmente **Dependiente** si n > m. (Si hay mas incognitas que ecuaciones).

1.3.3. Ejemplo

Tengamos el Sistema $\{3,2x,-x^2\}$ y veamos si es Linealmente Independiente: Sea $\alpha_1,\alpha_2,\alpha_3\in\mathbb{R}$ tales que:

$$\alpha_1(3) + \alpha_2(2x) + \alpha_3(-x^2) = 0$$

Entonces tenemos el sistema:

$$\begin{bmatrix} 0 & 0 & -\alpha_3 & = 0 \\ 0 & 2\alpha_2 & 0 & = 0 \\ 3\alpha_1 & 0 & 0 & = 0 \end{bmatrix}$$

Así que $\alpha_1 = \alpha_2 = \alpha_3 = 0$, por lo que $\{3, 2x, -x^2\}$ son Linealmente Independientes.

1.3.4. Ejemplo

Tengamos el Sistema $\{1+x,2+2x-3x^2,x^2\}$ y veamos si es Linealmente Independiente: Sea $\alpha_1,\alpha_2,\alpha_3\in\mathbb{R}$ tales que:

$$\alpha_1(1+x) + \alpha_2(2+2x) + \alpha_3(x^2) = 0$$

Entonces tenemos el sistema:

$$\begin{bmatrix} 0 & -3\alpha_2 & \alpha_3 & = 0 \\ \alpha_1 & 2\alpha_2 & 0 & = 0 \\ \alpha_1 & 2\alpha_2 & 0 & = 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -3 & 1 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \end{bmatrix}$$

Donde este sistema tiene infinitas soluciones, por lo tanto $\{1+x,2+2x-3x^2,x^2\}$ son Linealmente Dependientes.

1.4. Generación de Espacios

Los vectores v_1, v_2, \ldots, v_n forman un Espacio Vectorial V, o se dice que generan a V, si todo vector en V puede expresarse como Combinación lineal de ellos.

Esto es, para todo $v \in V$, existen escalares $\{a_1, a_2, \dots, a_n\}$ tales que:

$$v = a_1 v_1 + a_2 v_2 + \dots + a_n v_n \tag{1.1}$$

1.4.1. Propiedades

- Un Conjunto de n Vectores linealmente independientes en \mathbb{R}^n genera a \mathbb{R}^n
- Sean n+1 Vectores: $\{v_1, v_2, \dots, v_n, v_{n+1}\}$, de un espacio vectorial V. Si $\{v_1, v_2, \dots, v_n\}$ generan a V, entonces $\{v_1, v_2, \dots, v_n, v_{n+1}\}$ también generan a V.
- Si $\{v_1, v_2, \dots, v_n\}$ son linealmente independientes, entonces los n-1 vectores, $\{v_1, v_2, \dots, v_{n-1}, v_n\}$ son Linealmente Independientes.

Ejemplo

Determine si el siguiente conjunto de vectores $\{3, 2x, -x^2\}$ genera a $\mathbb{R}_2[x]$, es decir que genera a todos los polinómios de máximo grado 2.

Sea
$$ax^2 + bx + c \in \mathbb{R}_2[x]$$
.

Luego tenemos que $\alpha_1(3) + \alpha_2(2x) + \alpha_3(-x^2) = ax^2 + bx + c$, entonces tenemos el Sistema que:

$$\begin{bmatrix} 0 & 0 & -\alpha_3 & = a \\ 0 & 2\alpha_2 & 0 & = b \\ 3\alpha_1 & 0 & 0 & = c \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & -1 & |a| \\ 0 & 2 & 0 & |b| \\ 3 & 0 & 0 & |c| \end{bmatrix}$$

Donde es obvio que su determinante no es 0, (es 6 :p), esto quiere decir que el sistema siempre tiene solución.

Por lo tanto este conjunto si que genera a $\mathbb{R}_2[x]$.

Ejemplo

Determine si el siguiente conjunto de vectores $\{1+x,2+2x-3x^2,x^2\}$ genera a $\mathbb{R}_2[x]$, es decir que genera a todos los polinómios de máximo grado 2.

Sea $ax^2 + bx + c \in \mathbb{R}_2[x]$.

Luego tenemos que $\alpha_1(1+x) + \alpha_2(2+2x-3x^2) + \alpha_3(x^2) = ax^2 + bx + c$, entonces tenemos el Sistema que:

$$\begin{bmatrix} 0 & -3\alpha_2 & \alpha_3 & = a \\ \alpha_1 & 2\alpha_2 & 0 & = b \\ \alpha_1 & 2\alpha_2 & 0 & = c \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -3 & 1 & |a| \\ 1 & 2 & 0 & |b| \\ 1 & 2 & 0 & |c| \end{bmatrix}$$

Donde es obvio que su determinante es 0, esto quiere decir que el sistema NO siempre tiene solución.

Por lo tanto este conjunto NO genera a $\mathbb{R}_2[x]$.

1.5. Bases y Dimensión

1.5.1. Bases

Un conjunto de vectores forman una Base para V si:

- Dicho conjunto es Linealmente Independiente.
- Dicho conjunto es genera a V.

Propiedades

Un Conjunto de vectores forman una Base para V si Todo conjunto de n vectores linealmente independientes en \mathbb{R}^n es un Base en \mathbb{R}^n

Si $\{v_1, v_2, \dots, v_n\}$ es una Base de V y si $v \in V$, entonces existe un conjunto Único de escalares c_1, c_2, \dots, c_n tales que:

$$v = c_1 v_1 + c_2 v_2 + \dots + c_n v_n \tag{1.2}$$

Si $\{u_1, u_2, \dots, u_n\}$ y $\{v_1, v_2, \dots, v_n\}$ son bases del Espacio vectorial V, entonces m = n, cualesquiera dos bases en un espacio vectorial V poseen el mismo número de vectores.

Observaciones

Sea n = dim(V). Entonces los siguientes enunciados son equivalentes:

- v_1, v_2, \cdots, v_n Generan a V
- v_1, v_2, \cdots, v_n Son Linealmente Independientes
- $\blacksquare B = \{v_1, v_2, \cdots, v_n\}$ son una Base de V

Sea n = dim(V). Entonces los siguientes enunciados son verdaderos:

- Todo conjunto $\{v_1, v_2, \dots, v_n \text{ con } n < m \text{ que generan a V se puede reducir a una base de V.}$
- Todo conjunto $\{v_1, v_2, \cdots, v_n \text{ con } m < n \text{ que sea Linealmente Independiente se puede completar a una base}$

Ejemplo

Para que valores de a los siguentes vectores forman una base de \mathbb{R}^3 :

$$\left\{ \begin{bmatrix} 1\\1\\a \end{bmatrix}, \begin{bmatrix} 1\\a\\1 \end{bmatrix}, \begin{bmatrix} a\\1\\1 \end{bmatrix} \right\}$$

Para poder resolver esto basta con seguir las propiedades:

Forman una base en \mathbb{R}^3 ssi la siguiente Matriz es Invertible:

$$A = \begin{bmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{bmatrix}$$

Ssi, la Determinante de A sea difetente de 0.

$$det(A) = 3a - a^3 - 2 = -(a^3 + 3a - 2)$$

= -(a - 1)(a^2 + a - 2) = -(a - 1)(a - 1)(a + 2) = -(a - 1)^2(a + 2)

Con esto logramos ver que las raices de dicha expresión es 1 y -2. Pero sabemos que dicho Determinante no puede ser 0, por lo tanto tenemos que:

$$A = \begin{bmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{bmatrix}$$

Genera a \mathbb{R}^3 siempre y cuando $a \neq 1$ ó $a \neq -2$

1.5.2. Dimensión

Si el Espacio vectorial V posee una base finita, la dimension de V es el número de vectores en la base, y V se llama Espacio vectorial de dimension finita.

Cualesquiera n vectores linealmente independientes en un Espacio vectorial V de dimensión n, constituyen una base.

- De otra manera, V se denomina Espacio vectorial de dimension infinita. Si $V = \{0\}$, entones V se dice que es de Dimensión 0.
- Supongase que dim(V) = n. Si $\{u_1, u_2, \dots, u_n\}$ es un Conjunto de m vectores Linealmente Independientes en V, entonces $m \leq n$.
- Sea H un Subespacio vectorial de V. Entonces H es de dimensión finita y $dim(H) \le dim(V)$.

Dimensiones Comunes

Sea $B = (V_1, V_2, \dots, V_n)$, osea, sea B un Conjuntos de Vectores:

- $\bullet \ dim(K^n) = n$
- $\bullet \ dim(M_{m \times n}(K)) = mn$
- $\bullet \ dim(K_n[X]) = n+1$

Capítulo 2

Sistemas de Coordenadas

2.1. Sistemas de Coordenadas

Sea una $B = \{v_1, v_2, \dots, v_n\}$ una base de un Espacio Vectorial V. Sean $v \in V$. Sean $\alpha_1, \alpha_2, \dots, \alpha_n \in K$ tales que:

$$v = \sum_{i=1}^{n} \alpha_i v_i \tag{2.1}$$

Si esto pasa, entonces podemos decir que $\alpha_1, \alpha_2, \cdots, \alpha_n$ son únicos.

2.1.1. Demostración

- Propon otros escalares que cumplen con generar al mismo vector
- Pero como son base, son linealmente independientes, por lo tanto ambos escalares deben ser iguales

2.1.2. ¿Qué es un Sistema de Coordenadas?

Sea una $B = \{v_1, v_2, \cdots, v_n\}$ una base de un Espacio Vectorial V. Sean $v \in V$. Sean $\alpha_1, \alpha_2, \cdots, \alpha_n \in K$ tales que $v = \sum_{i=1}^n \alpha_i v_i$.

Entonces podemos definir las coordenadas de nuestro pequeño e inocente v en la Base B como:

$$[v]_B = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_n \end{pmatrix} \in K^n \tag{2.2}$$

Ejemplo:

Considerere a $B = \{(1+x), (1+x^2), (x+x^2)\}$ como una base de un Polinomio de $\mathbb{R}_2[x]$.

Sea
$$p(x) = 1 + 8x + 3x^2$$
.

Luego podemos ver que podemos escribirlo como: $3(1+x)+(-2)(1+x^2)+(5)(x+x^2)$

Es decir, podemos escribirlo como:
$$[p(x)]_B = \begin{pmatrix} 3 \\ -2 \\ 5 \end{pmatrix}$$

Para encontrarlos lo que tuvimos que hacer fue plantear el siguiente sistema de ecuaciones:

$$\alpha_1 + \alpha_2 = 1 \qquad \qquad \alpha_1 + \alpha_3 = 8 \qquad \qquad \alpha_2 + \alpha_3 = 3$$

2.1.3. Propiedades

Podemos ver entonces que estas coordenadas se comporta de manera muy muy bonita:

$$\bullet \ [\alpha v_1]_B = \alpha [v_1]_B$$

2.2. Cambio de Coordenadas

Sea
$$B_1 = \{v_1, v_2, \dots, v_n\}$$
 y sean $B_2 = \{u_1, u_2, \dots, u_n\}$.

Podemos cambiar de base usando la siguiente Matriz:

$$C_{B_1 \to B_2} = C_{B_1}^{B_2} = C_{\frac{B_2}{B_1}} = ([v_1]_{B_2} + [v_2]_{B_2} + \dots + [v_n]_{B_2})$$

Podemos ver entonces que:

$$[v]_{B_2} = C_{B_1 \to B_2}[v]_{B_1}$$

Para encontrarla lo mas útil de la vida será:

$$(Base2|Base1) \to_{Gauss-Jordan} (I_n|C_{B_1 \to B_2})$$
(2.3)

Podemos saber algunas cosas super interesantes como:

- Si tenemos ya una matriz de cambio de base podemos obtener el otro cambio simplemente sacando la inversa a la matriz: $C_{\frac{B_2}{B_1}}^{-1} = C_{\frac{B_1}{B_2}}$
- Podemos ver que existe algo que me tienta a llamar 'inversos' o que 'se cancela': $C_{\frac{B_3}{B_2}}C_{\frac{B_2}{B_1}}=C_{\frac{B_3}{B_1}}$

Ejemplo 1

Por ejemplo, sea:

$$B_1 = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$$

$$B_2 = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

Entonces, podemos encontrar la Matriz de Cambio de Coordenadas de B_2 al B_1 como:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 \\ I_3 & 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Entonces ya al final podemos decir que:

$$C_{B_2 \to B_1} = \begin{pmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Ejemplo 2

Si queremos encontrar la matriz de cambio de base entre:

$$B_1 = \langle (1+x), (1+x^2), (x+x^2) \rangle$$

$$B_2 = <(1), (1+x), (1+x+x^2) >$$

Entonces podemos tener esta Matriz de Cambio de Base:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} \rightarrow_{Gauss-Jordan} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Por lo tanto podemos concordar que:

$$C_{\frac{B_2}{B_1}} \begin{pmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Ejemplo 3

Por ejemplo, sea:

$$B_1 = \left\{ \begin{pmatrix} \bar{1} & \bar{2} \\ \bar{4} & \bar{0} \end{pmatrix}, \begin{pmatrix} \bar{0} & \bar{1} \\ \bar{0} & \bar{1} \end{pmatrix}, \begin{pmatrix} \bar{1} & \bar{1} \\ \bar{3} & \bar{0} \end{pmatrix}, \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix}, \right\}$$

Y la canonica:

$$B_2 = \left\{ \begin{pmatrix} \overline{1} & \overline{0} \\ \overline{0} & \overline{0} \end{pmatrix}, \begin{pmatrix} \overline{0} & \overline{1} \\ \overline{0} & \overline{0} \end{pmatrix}, \begin{pmatrix} \overline{0} & \overline{0} \\ \overline{1} & \overline{0} \end{pmatrix}, \begin{pmatrix} \overline{0} & \overline{0} \\ \overline{0} & \overline{1} \end{pmatrix}, \right\}$$

Entonces, podemos encontrar la Matriz de Cambio de Coordenadas de B_2 al B_1 como:

$$\begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & \bar{0} | & \bar{1} & \bar{0} & \bar{1} & \bar{1} \\ \bar{0} & \bar{1} & \bar{0} & \bar{0} | & \bar{2} & \bar{1} & \bar{1} & \bar{0} \\ \bar{0} & \bar{0} & \bar{1} & \bar{0} | & \bar{4} & \bar{0} & \bar{3} & \bar{0} \\ \bar{0} & \bar{0} & \bar{0} & \bar{1} | & \bar{0} & \bar{1} & \bar{0} & \bar{0} \end{pmatrix}$$

Por lo tanto podemos concordar que:

$$C_{\frac{B_2}{B_1}} = \begin{pmatrix} \bar{1} & \bar{0} & \bar{1} & \bar{1} \\ \bar{2} & \bar{1} & \bar{1} & \bar{0} \\ \bar{4} & \bar{0} & \bar{3} & \bar{0} \\ \bar{0} & \bar{1} & \bar{0} & \bar{0} \end{pmatrix}$$

Capítulo 3

Espacios Euclideanos

3.1. Espacios Euclideanos

Son un espacio vectorial, en nuestro caso lo vamos a considerar sobre los reales, la principal caracteristica de estos espacios es que cumplen con que tienen un producto interno:

3.2. Producto Interno

Un producto interno será aquella función <,> tal que reciba 2 vectores y te regrese un vector: $\vec{v} \times \vec{v} \to \mathbb{R}$ tal que para todo 3 vectores cuales quiera $v, w, u \in V$ y para todo $\alpha, \beta \in \mathbb{R}$ tenemos que:

- \bullet $< \alpha v + \beta w, u > = \alpha < v, u > + \beta < w, u >$
- < u, v > = < v, u >
- \bullet $< v, v > \ge 0$ y $< v, v > = 0 \leftrightarrow v = 0$

En el caso de que tenga un producto interno que cumpla estas caracteristicas podemos decir que nuestro espacio vectorial es Euclidiano.

3.2.1. Producto Internos Comunes

- Matrices: $\langle A, B \rangle = traza(transpuesta(A)B)$ Es decir, es la suma de todos los elementos de la diagonal principal de la matriz resultante de la multiplicación de la transpuesta de A con B.
- \mathbb{R}^n : $\langle v, u \rangle = v_x u_x + v_y u_y \cdots$ Es decir, lo que conocemos como el producto punto.

3.2.2. Propiedades del Producto Interno

Podemos saber que:

- $\langle v, 0_v \rangle = 0$
- Si $\langle u, v \rangle = \langle v, u \rangle$ y $\forall n \in V$, entonces $v = 0_v$

3.3. Norma de un Vector

Podemos definir una norma de un vector $v \in V$ como:

$$||v|| = \sqrt{\langle v, v \rangle} \tag{3.1}$$

Ejemplo

$$||\begin{pmatrix} 3 & -2 \\ 0 & 6 \end{pmatrix}|| = \sqrt{\left\langle \begin{pmatrix} 3 & -2 \\ 0 & 6 \end{pmatrix}, \begin{pmatrix} 3 & -2 \\ 0 & 6 \end{pmatrix} \right\rangle} = \sqrt{traza\begin{pmatrix} 13 & -12 \\ -12 & 36 \end{pmatrix}} = \sqrt{13 + 36} = 7$$

3.3.1. Propiedades de la Norma

- $||v|| \ge 0$ y también ||v|| = 0 ssi $v = 0_v$
- $\bullet ||\alpha v|| = |\alpha|||v||$
- $\bullet \ || < v, u > || \le ||u|| ||v||$ Esta es conocida como Desigualdad de Cauchy-Shuartz
- $\bullet \ ||v+u|| \leq ||u|| + ||v||$ Esta es conocida como Desigualdad del Triangulo

3.4. Conjuntos Octogonales

Decimos que el conjunto $S = \{v_1, v_2, \dots, v_n\}$ de vectores de un espacio euclidiano es:

- i) Ortogonal: Si $\forall i, j \in \{1, \dots, n\} \ (i \neq j) \rightarrow \langle v_i, v_j \rangle = 0$
- i) Ortonormal: Si ademas de Ortogonal tenemos que $||v_i||=1 \ \forall i \in \{1,\cdots,n\}$

Ejemplo

Este conjunto no es ni Ortogonal ni Ortonormal:

$$S_1 = \left\langle \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\rangle$$

Este conjunto es Ortogonal pero no Ortonormal:

$$S_1 = \left\langle \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix} \right\rangle$$

3.4.1. Propiedades

Sea
$$S = \{v_1, v_2, \cdots, v_n\} \subseteq V$$

- Si S es Ortogonal y $v_i \neq 0_v \ \forall i \in \{1, \dots, n\}$ entonces podemos concluir que S es Linealmente independiente.
- Si S es Ortonormal, entonces el vector de la forma: $w = v \langle v, v_1 \rangle v_1 \langle v, v_2 \rangle v_2 \dots \langle v, v_n \rangle v_n$ O visto mas bonito $w = v \sum_{i=1}^n \langle v, v_i \rangle v_i$ es ortogonal a S $\forall v \in V$

Bibliografía

[1] ProbRob Youtube.com