KINGDOM OF SAUDI ARABIA Ministry of Education Al-Imam Mohammad University College of Computer & Information Sciences

المملكة العربية السعودية وزارة التعليم جامعة الإمام محمد بن سعود الإسلامية كلية علوم الحاسب والمعلومات

First term 1442/2020

Operating Systems (CS-322)

Section: 173

Banker's Algorithm

Submitted By

Abdulrahman Saleh Alghaligah (439015052)

Instructor

Dr. Raza Ur Rehman Qazi

Date: December 10, 2020.

Table of Contents

1.Introduction:	3
2.What is Banker's algorithm?	3
3.Safety Algorithm:	3
4.Resource-Request Algorithm:	4
5.Output:	
Example:1:	
Example:2	
Reference:	8

1.Introduction:

This report describes Banker's algorithm and gives a snapshot output of the code that I will provide.

2. What is Banker's algorithm?

It is a deadlock avoidance algorithm that determine a loan can be granted or not. Several data structures must be maintained to implement the banker's algorithm. These data structures encode the state of the resource-allocation system. We need the following data structures, where n is the number of threads in the system and m is the number of resource types:

- Available: A vector of length m indicates the number of available resources of each type.
- Max: An n x m matrix defines the maximum demand of each thread.
- **Allocation:** An n x m matrix defines the number of resources of each currently allocated to each thread.
- **Need**: An n x m matrix indicates the remaining resources need of each thread.

3. Safety Algorithm:

We can now present the algorithm for finding out whether a system is in a safe state.

This algorithm can be described as follows:

- 1. Let Work and Finish be vectors of length m and n, respectively. Initialize Work = Available and Finish[i] = false for i = 0, 1, ..., n 1.
- 2. Find an index i such that both
- a. Finish[i] == false
- b. Needi ≤ Work

If no such i exists, go to step 4.

3. Work = Work + AllocationFinish[i] = trueGo to step 2.

4. If Finish[i] == true for all i, then the system is in a safe state.

This algorithm may require an order of \times n2 operations to determine whether a state is safe.

4. Resource-Request Algorithm:

Next, we describe the algorithm for determining whether requests can be safely granted.

This algorithm can be described as follows:

- 1.If Requesti \leq Needi, go to step 2. Otherwise, raise an error condition, since the thread has exceeded its maximum claim.
- 2. If Requesti \leq Available, go to step 3. Otherwise, Ti must wait, since the resources are not available.
- 3. Have the system pretend to have allocated the requested resources to thread Ti by modifying the state as follows:

 Available = Available—Requesti

 Allocationi = Allocationi + Requesti

Needi = Needi - Requesti

5.Output:

In this section I will provide a snapshot output of two examples, first one is the required one from the project instructions file, and the second one is from the text book.

Example:1:

5	Sample input file
4	
0012	
1000	
1354	
0632	
0014	
0012	
1750	
2356	
0652	
0656	
1520	
1:0 4 2 0	

Snapshot:

```
There are 5 processes in the system.
0: 0 0 0 0 0 1: 0 7 5 0 2: 1 0 0 2 0 4: 0 6 4 2
BUILD SUCCESS
```

Example:2

5	Sample input file
3	
010	
200	
302	
211	
002	
753	
3 2 2	
902	
222	
433	
3 3 2	
4:3 3 0	

Snapshot:

```
There are 5 processes in the system.
There are 3 resource types.
The Allocation Matrix is...
  ABC
 ABC
 ABC
1: 1 2 2
The Available vector is...
3 3 2
THE SYSTEM IS IN A SAFE STATE!
The Request vector is...
THE REQUEST CAN NOT BE GRANTED!
ABC
BUILD SUCCESS
```

Reference:

• Silberschatz, A., Gagne, G., & Galvin, P. B. (2018). *Operating System Concepts, 10e EPUB Reg Card Abridged Print Companion Set* (10th ed.). Wiley.