9.2 Multiple Lineare Regression

- \hookrightarrow Mehrere Regressoren : $Y_i = \beta_0 + \beta_1 X_{i1} + \cdots + \beta_k X_{ik} + \epsilon_i$
- $\hookrightarrow \ \, {\sf Zusammenfassung} \,\, {\sf in} \,\, {\sf Matrizenschreibweise} :$

$$\mathbf{Y} = (Y_1, \dots, Y_n)^T$$

$$= \beta_0 \mathbf{X}_0 + \beta_1 \mathbf{X}_1 + \dots + \beta_k \mathbf{X}_k + \varepsilon$$

$$= \mathbf{X} \boldsymbol{\beta} + \varepsilon$$

$$\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)^T$$

$$\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_n)^T$$

$$(1, X_1, \dots, X_k) \qquad (1)$$

1	Α	В	C	D	E	F
1	beta	2,000	1,000	0,100		
2	delivery	const	n.prod	distance	delTime	hat_deltime
3	1	1	7	560	16,68	65
4	2	1	3	220	11,5	27
5	3	1	3	340	12,03	39
6	4	1	4	80	14,88	14
7	5	1	6	150	13,75	23
23	21	1	10	140	17,9	26
24	22	1	26	810	52,32	109
25	23	1	9	450	18,75	56
26	24	1	8	635	19,83	73,5
27	25	1	4	150	10,75	21

24

X	=	$\begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$	X_{11} X_{21} \vdots X_{n1}		X_{1k} X_{2k} \vdots X_{nk}	,	$X_0 =$	$\begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$	$, X_j =$	$\begin{pmatrix} X_{1j} \\ X_{2j} \\ \vdots \\ X_{nj} \end{pmatrix}$	$, 1 \le j \le k$
---	---	---	-------------------------------------	--	-------------------------------------	---	---------	---	-----------	--	-------------------

→ Umfasst auch den Spezialfall der einfachen linearen Regression.

→ Modell beschreibt Hyperebene im Raum der erklärenden Variablen.

$$E(Y|X_1, X_2) = 50 + 20X_1 + 7X_2$$

- $\hookrightarrow \beta_i$: Änderung in E(Y) bei Erhöhung von X_i um 1 Einheit (ceteris paribus)

1)
$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \ldots + \varepsilon$$

2)
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 + \ldots + \varepsilon$$

$$E(Y|X_1, X_2) = 50 + 20 \cdot X_1 + 7 \cdot X_2 + 5 \cdot \frac{X_1X_2}{2}$$

Parameterschätzung wieder mit KQ-Methode

Mit
$$\epsilon_i = Y_i - (\beta_0 + \beta_1 X_{i1} + \cdots + \beta_k X_{ik}),$$
 d.h. $\varepsilon = Y - X\beta$

Minimiere in
$$\beta = (\beta_0, \dots, \beta_k)$$
: $K(\beta) = \sum_{i=1}^n \varepsilon_i^2 = \varepsilon^T \varepsilon$

$$= (Y - \mathbf{X}\beta)^T (Y - X\beta)$$

$$= Y^T Y - \beta^T X^T Y - Y^T X \beta + \beta^T X^T X \beta$$

$$= Y^T Y - \beta^T X^T Y - \beta^T X^T Y + \beta^T X^T X \beta$$

$$= Y^T Y - 2\beta^T X^T Y + \beta^T X^T X \beta$$

Das führt auf die sog. Normalgleichungen:

$$\frac{\partial K}{\partial \beta} = -2X^{T}Y + 2X^{T}X\beta \stackrel{!}{=} \bar{0} \quad \Leftrightarrow \quad X^{T}X\beta = X^{T}Y$$

 \Rightarrow KQ-Schätzer ist $\hat{\beta} = (X^T X)^{-1} X^T Y$, falls $(X^T X)^{-1}$ existiert.

Optimierung mit Excel (Matrixfunktionen)

	Α	В	C	D	E	F	G	Н	1	J
1	beta	2,341	1,616	0,014			R^2	0,9596		
2	delivery	const	n.prod	distance	delTime	hat_deltime	residuals	SS_Res	SS_T	SS_R
3	1	1	7	560	16,68	21,708	-5,0281	25,282	32,536	0,457
4	2	1	3	220	11,5	10,354	1,1464	1,314	118,461	144,730
5	3	1	3	340	12,03	12,080	-0,0498	0,002	107,205	106,177
6	4	1	4	80	14,88	9,956	4,9244	24,249	56,310	154,464
7	5	1	6	150	13,75	14,194	-0,4444	0,197	74,546	67,070
-										
23	21	1	10	140	17,9	20,514	-2,6142	6,834	20,106	3,496
24	22	1	26	810	52,32	56,007	-3,6865	13,590	896,164	1130,474
25	23	1	9	450	18,75	23,358	-4,6076	21,230	13,206	0,948
26	24	1	8	635	19,83	24,403	-4,5729	20,911	6,523	4,076
27	25	1	4	150	10,75	10,963	-0,2126	0,045	135,350	130,449
28	sum	25	219	10232	559,6	559,6	0,0000	233,732	5784,543	5550,811
29		X^T*X			X^T*Y					
30	normal	25	219	10232	559,6					
31	equations	219	3055	133899	7375,44					
32		10232	133899	6725688	337071,69					

B30:E32 = MMULT(MTRANS(B3:D27);B3:E27)

B1:D1 = MTRANS(MMULT(MINV(B30:D32);E30:E32))

F3:F27 = MMULT(B3:D27;MTRANS(B1:D1))

Lieferzeitenanalyse für Getränke-/Süßigkeitenautomaten

Y: Lieferzeit (Minuten), delTime

X₁: Anzahl nachzufüllender Produkte, n.prod

 X_2 : Fußweg (ft), distance

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

	n.prod	distance	delTime		n.prod	distance	delTime
1	7	560	16.68	14	6	462	19.75
2	3	220	11.50	15	9	448	24.00
3	3	340	12.03	16	10	776	29.00
4	4	80	14.88	17	6	200	15.35
5	6	150	13.75	18	7	132	19.00
6	7	330	18.11	19	3	36	9.50
7	2	110	8.00	20	17	770	35.10
8	7	210	17.83	21	10	140	17.90
9	30	1460	79.24	22	26	810	52.32
10	5	605	21.50	23	9	450	18.75
11	16	688	40.33	24	8	635	19.83
12	10	215	21.00	25	4	150	10.75
13	4	255	13.50				

$$X = \begin{bmatrix} 1 & 7 & 560 \\ 1 & 3 & 220 \\ 1 & 3 & 340 \\ \vdots & \vdots & \vdots \\ 1 & 8 & 635 \\ 1 & 4 & 150 \end{bmatrix}, \quad Y = \begin{bmatrix} 16.68 \\ 11.50 \\ 12.03 \\ \vdots \\ 19.83 \\ 10.75 \end{bmatrix}$$

Dr. Ingolf Terveer

$$X^{T}X = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 7 & 3 & \dots & 4 \\ 560 & 220 & \dots & 150 \end{bmatrix} \begin{bmatrix} 1 & 7 & 560 \\ 1 & 3 & 220 \\ \vdots & \vdots & \vdots \\ 1 & 4 & 150 \end{bmatrix}$$

$$= \begin{bmatrix} 25 & 219 & 10.232 \\ 219 & 3.055 & 133.899 \\ 10.232 & 133.899 & 6725.688 \end{bmatrix}$$

$$X^{T}Y = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 7 & 3 & \dots & 4 \\ 560 & 220 & \dots & 150 \end{bmatrix} \begin{bmatrix} 16.68 \\ 11.50 \\ \vdots \\ 10.75 \end{bmatrix} = \begin{bmatrix} 559.60 \\ 7375.44 \\ 337072 \end{bmatrix}$$

Datenanalyse

Sommersemester 2022

$$X^{T}X = \begin{bmatrix} 25 & 219 & 10.232 \\ 219 & 3.055 & 133.899 \\ 10.232 & 133.899 & 6725.688 \end{bmatrix}$$
$$X^{T}Y = \begin{bmatrix} 559.60 \\ 7375.44 \\ 337072 \end{bmatrix}$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} 2.341 \\ 1.616 \\ 0.014 \end{bmatrix}$$

$$\hat{y} = 2.341 + 1.616 \cdot x_1 + 0.014 \cdot x_2$$

Somit beträgt die durchschnittliche Lieferzeit 2.341 Minuten und verlängert sich im Schnitt mit jedem nachzufüllendem Produkt um 1.616 Minuten und mit jedem zusätzlichen Fuß (ft) Wegstrecke um 0.014 Minuten.

R-Code und zugehöriger Output

```
45
 46
     require(robustbase)
 47
 48
     data(delivery)
 49
 50
     summarv(lm.deli <- lm(delTime ~ n.prod+distance. data = deliverv))</pre>
     summary(lm.deli <- lm(delTime ~ ., data = delivery))</pre>
 48:15 (Untitled) $
Console ~/ 🖒
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.341231    1.096730    2.135    0.044170 *
n.prod 1.615907 0.170735 9.464 3.25e-09 ***
distance 0.014385
                       0.003613 3.981 0.000631 ***
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 3.259 on 22 degrees of freedom
Multiple R-squared: 0.9596, Adjusted R-squared: 0.9559
F-statistic: 261.2 on 2 and 22 DF. p-value: 4.687e-16
```

Wie ist der Output zu interpretieren? (siehe Hypothesentests)

Umsatz an einer Tankstelle

Der Inhaber einer Kette von 5 freien Tankstellen möchte wissen, ob und wie sich der Tagesgewinn aus seinen Umsätzen erklären lässt. Hierbei unterteilt er diese in Kraftstoff (K) und in Sonstige (S) Umsätze. Ergebnisse eines Tages: (in €):

Umsatz K x_1					
Umsatz S x_2	7 000	6 500	3 000	7 000	7 500
Gewinn <i>y</i>	3 000	4 000	2 000	3 000	3 500

Erlan

Medellieren Sie den Gewinn des Tankstellenbetreibers unter gemeinsamer Berücksichtung beider Umsatzkategorien!

Eigenschaften der KQ-Schätzer

Es gilt:

$$E(\hat{\boldsymbol{\beta}}) = E\left[(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} \right]$$

$$= E\left[(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}) \right]$$

$$= E\left[(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} \boldsymbol{\beta} + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \boldsymbol{\varepsilon} \right]$$

$$= E\left[\mathbf{I} \boldsymbol{\beta} \right] + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T E[\boldsymbol{\varepsilon}]$$

$$= \boldsymbol{\beta} + 0 = \boldsymbol{\beta}$$

 $\Rightarrow \hat{oldsymbol{eta}}$ ist ein erwartungstreuer Schätzer für $oldsymbol{eta}$

 $\hat{\beta}$ ist bester linearer erwartungstreuer Schätzer, d.h. $\hat{\beta}$ hat die kleinste Varianz in der Klasse aller erwartungstreuen Schätzer, die Linearkombinationen der erklärenden Variablen darstellen (ohne Beweis, [4]).

Eigenschaften der KQ-Schätzer (Forts.)

Weiterhin gilt für die Kovarianzmatrix:

$$\begin{aligned} var(\hat{\boldsymbol{\beta}}) &= var\left[(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} \right] \\ &= (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^Tvar(\mathbf{Y}) \left[(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T \right]^T \\ &= (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T \cdot (\sigma^2\mathbf{I}) \cdot \left[(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T \right]^T \\ &= \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1} \\ &= \sigma^2(\mathbf{X}^T\mathbf{X})^{-1} = \sigma^2C, \quad \text{mit } C = (\mathbf{X}^T\mathbf{X})^{-1}, \text{ d.h.} \end{aligned}$$

d.h.
$$var(\hat{\beta}_j) = \sigma^2 C_{jj}$$

 $cov(\hat{\beta}_i, \hat{\beta}_j) = \sigma^2 C_{ij}$

 \rightarrow Schätzung von σ ?

$\mathsf{Hat} ext{-}\mathsf{Matrix}\;\mathsf{H}=\mathsf{X}(\mathsf{X}^T\mathsf{X})^{-1}\mathsf{X}^T\in\mathbb{R}^{n imes n}$

H projiziert Y in vorhergesagte Werte: $\hat{Y} = X \hat{\beta} = X(X^T X)^{-1} X^T Y = HY$,

(Vulgo: "Die Hat-Matrix setzt (der Zielgröße) y den Hut auf.")

36

Eigenschaften der Hat-Matrix

- \Box $H^2 = H$ und $(I H)^2 = I H$ (Übung)
- \Box tr(H) = k + 1 (die Spur tr(H) ist die Summe der Diagonalelemente von H)
- $\Box \ \varepsilon = \mathsf{Y} \hat{\mathbf{Y}} = \mathsf{Y} \mathsf{X}\hat{\boldsymbol{\beta}} = \mathsf{Y} \mathsf{H}\mathsf{Y} = (\mathsf{I} \mathsf{H})\mathsf{Y}$

Dazu Eigenschaften der Spur:

- $\rightarrow tr(A \pm B) = tr(A) \pm tr(B)$ falls A, B quadratisch sind.
- $\hookrightarrow tr(AB) = tr(BA)$, falls beide Matrixprodukte gebildet werden können und AB, BA quadratisch sind.
- $\hookrightarrow tr(H) = tr(X(X^TX)^{-1}X^T) = tr(X^TX(X^TX)^{-1}) = tr(I_{k+1}) = k+1$

Übung: Zeigen Sie:

$$H^2 = H$$
 sowie $(I - H)^2 = I - H$.

Es gilt:

$$H^{2} = X(X^{T}X)^{-1}X^{T}X(X^{T}X)^{-1}X^{T}$$

$$= X(X^{T}X)^{-1}(X^{T}X)(X^{T}X)^{-1}X^{T}$$

$$= X(X^{T}X)^{-1}X^{T} = H$$
Analog gilt:

$$(I - H)^{2} = \underbrace{I^{2} - 2\underbrace{IH}_{=H} + \underbrace{H^{2}}_{=H}}_{=H}$$

$$= I - 2H + H = I - H.$$

Schätzung von σ^2

$$\hat{\sigma}^2 = \frac{SS_{res}}{n-p}$$
 (mit $p = k+1$) ist ein erwartungstreuer Schätzer für σ^2 .

$$\begin{split} SS_{res} &= \varepsilon^{T} \varepsilon = ((I - H)Y)^{T} (I - H)Y = Y^{T} (I - H)Y = Y^{T}Y - \hat{\beta}^{T}X^{T}Y \\ E(SS_{res}) &= E(Y^{T} (I - H)Y) \\ &= E((Y - E(Y))^{T} (I - H)(Y - E(Y)) \\ &= E(tr((Y - E(Y))^{T} (I - H)(Y - E(Y)))) \\ &= E(tr((I - H)(Y - E(Y))(Y - E(Y))^{T}) \\ &= tr((I - H) \cdot E((Y - E(Y))(Y - E(Y))^{T})) \\ &= tr((I - H) \cdot Cov(Y)) \\ &= tr((I - H) \cdot \sigma^{2}I_{n}) \\ &= (n - k - 1)\sigma^{2} \end{split}$$

Lieferzeitenanalyse

Schätzung der Varianz σ^2 der Residuen.

$$SS_{res} = \mathbf{Y}^T \mathbf{Y} - \hat{\boldsymbol{\beta}}^T \mathbf{X}^T \mathbf{Y}$$

$$Y^TY = \sum_{i=1}^{25} y_i^2 = 18310.63$$

coefficients:

Residual standard error: 3.259 on 22 degrees of freedom Multiple R-squared: 0.9596, Adjusted R-squared: 0.9559 F-statistic: 261.2 on 2 and 22 DF, p-value: 4.687e-16

$$\hat{\boldsymbol{\beta}}^T X^T Y = \begin{bmatrix} 2.341 & 1.616 & 0.014 \end{bmatrix} \begin{bmatrix} 559.60 \\ 7375.44 \\ 337072 \end{bmatrix} = 18076.9$$

$$SS_{res} = 18310.63 - 18076.9 = 233.73$$

$$\hat{\sigma}^2 = \frac{SS_{res}}{n-p} = \frac{233.73}{25-3} = 10.62, \quad \hat{\sigma} = 3.259$$

Umsatz an einer Tankstelle

Schätzen Sie die Varianz σ^2 der Residuen im Tankstellen-Beispiel.

$$Y^{T}Y = \sum_{i=1}^{5} y_{i}^{2} = 50250000$$

$$\hat{\beta}^{T}X^{T}Y = \begin{bmatrix} 2161.889 & -0.117 & 0.276 \end{bmatrix} \cdot \begin{bmatrix} 15500 \\ 97750000 \\ 100250000 \end{bmatrix}$$

$$= 49727846$$

$$SS_{res} = 50250000 - 49727846 = 522153.8$$

$$\hat{\sigma}^{2} = \frac{SS_{res}}{n-p} = \frac{522153.8}{5-3} = 261076.9, \quad \hat{\sigma} = 510.96$$

Maximum-Likelihood-Schätzer

 die KQ-Schätzer im multiplen linearen Regressionsmodell entsprechen den Maximum-Likelihood-Schätzern bei Gültigkeit der Modellannahmen

$$\begin{array}{rcl} \mathsf{Y} & = & \mathsf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \\ & \boldsymbol{\varepsilon} & \sim & \mathcal{N}(0,\sigma^2\mathsf{I}), \quad \mathsf{d.h.} \\ & f(\varepsilon_i) & = & \frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{1}{2\sigma^2}\varepsilon_i^2\right) \\ \\ \Rightarrow \mathcal{L}(\boldsymbol{\varepsilon},\boldsymbol{\beta},\sigma^2) & = & \prod_{i=1}^n f(\varepsilon_i) = \frac{1}{(2\pi)^{n/2}\sigma^n}\exp\left(-\frac{1}{2\sigma^2}\boldsymbol{\varepsilon}^T\boldsymbol{\varepsilon}\right) \\ \\ \mathcal{L}(\mathsf{Y},\mathsf{X},\boldsymbol{\beta},\sigma^2) & = & \frac{1}{(2\pi)^{n/2}\sigma^n}\exp\left(-\frac{1}{2\sigma^2}(\mathsf{Y}-\mathsf{X}\boldsymbol{\beta})^T(\mathsf{Y}-\mathsf{X}\boldsymbol{\beta})\right) \end{array}$$

Log-Likelihood:

$$\ln L(Y, X, \beta, \sigma^2) = \ln \left(\frac{1}{(2\pi)^{n/2}\sigma^n}\right) - \frac{1}{2\sigma^2}(Y - X\beta)^T(Y - X\beta)$$

$$= 0 - \left(\frac{n}{2}\ln(2\pi) + n\ln(\sigma)\right) - \frac{1}{2\sigma^2}(Y - X\beta)^T(Y - X\beta)$$

$$= -\frac{n}{2}\ln(2\pi) - n\ln(\sigma) - \frac{1}{2\sigma^2}(Y - X\beta)^T(Y - X\beta)$$

 \Rightarrow Für fixes σ wird $\ln L(Y, X, \beta, \sigma^2)$ maximal für minimales $(Y - X\beta)^T (Y - X\beta)$

 \Rightarrow ML-Schätzer ist $\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T Y$ (s.o.)

MI -Schätzer für σ^2 :

$$\frac{\partial \ln(Y, X, \hat{\beta}, \sigma^{2})}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^{3}} (Y - X\hat{\beta})^{T} (Y - X\hat{\beta}) \stackrel{!}{=} 0$$

$$\Leftrightarrow \frac{n}{\sigma} = \frac{1}{\sigma^{3}} (Y - X\hat{\beta})^{T} (Y - X\hat{\beta})$$

$$\Leftrightarrow n\sigma^{2} = (Y - X\hat{\beta})^{T} (Y - X\hat{\beta})$$

$$\Rightarrow \hat{\sigma}^{2} = \frac{(Y - X\hat{\beta})^{T} (Y - X\hat{\beta})}{n} = \frac{SS_{res}}{n}$$

• Der ML-Schätzer für σ^2 ist nicht erwartungstreu.

9.3 Hypothesentests in der linearen Regression

- Wie ist die Modellgüte? Ist das Modell geeignet, um die Zusammenhänge zu beschreiben?
- Von welcher Bedeutung sind die erklärenden Variablen?
- Überprüfung anhand statistischer Hypothesentests
- Annahmen: $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$

45

9.3.1 Varianzzerlegung und Bestimmtheitsmaß

Varianzzerlegung

$$SS_T = SS_R + SS_{res}$$
 d.h.

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \qquad d.h.$$

$$\mathbf{Y}^{T}\mathbf{Y} - n\bar{\mathbf{Y}}^{2} = \hat{\boldsymbol{\beta}}^{T}\mathbf{X}^{T}\mathbf{Y} - n\bar{\mathbf{Y}}^{2} + \mathbf{Y}^{T}\mathbf{Y} - \hat{\boldsymbol{\beta}}^{T}\mathbf{X}^{T}\mathbf{Y}$$

 SS_T : Gesamtvariabilität (Total sum of squares)

 SS_R : Variabilität der Regression (sum of sq. due to regression)

 SS_{res} : Variabilität der Residuen (residual sum of squares)

Die Varianzzerlegung ist (nur) korrekt, wenn der konstante Effekt β_0 im Modell ist (Eins-Spalte in X)

Beispiel mit Excel (fortges.)

4	Α	В	C	D	Е	F	G	Н	1	J
1	beta	2,341	1,616	0,014			R^2	0,9596		
2	delivery	const	n.prod	distance	delTime	hat_deltime	residuals	SS_Res	SS_T	SS_R
3	1	1	7	560	16,68	21,7081	-5,02805188	25,281	32,536	0,457
4	2	1	3	220	11,5	10,3536	1,14636478	1,314	118,461	144,730
5	3	1	3	340	12,03	12,0798	-0,04978497	0,002	107,205	106,177
6	4	1	4	80	14,88	9,95571	4,9242914	24,249	56,310	154,462
7	5	1	6	150	13,75	14,1945	-0,44445881	0,198	74,546	67,069
23	21	1	10	140	17,9	20,5143	-2,61427203	6,834	20,106	3,496
24	22	1	26	810	52,32	56,0066	-3,68657762	13,591	896,164	1130,478
25	23	1	9	450	18,75	23,3576	-4,60757746	21,230	13,206	0,948
26	24	1	8	635	19,83	24,4028	-4,57281023	20,911	6,523	4,076
27	25	1	4	150	10,75	10,9626	-0,21262929	0,045	135,350	130,448
28	sum	25	219	10232	559,6	559,6	-0,00044424	233,732	5784,543	5550,795

g

47

Bestimmtheitsmaß R²

$$R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_{res}}{SS_T}, 0 \le R^2 \le 1$$

 die Fähigkeit der Regressionsgeraden, die Variabilität in Y zu erklären, ist umso besser, je kleiner die Residualvariabilität im Vergleich zur Gesamtvariabilität ist.

- $R^2 = 0$: Regressionsgerade erklärt nicht besser als der Mittelwert.
- Je größer R^2 , desto besser ist der "Fit" der Regressionsgeraden.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Lieferzeitenanalyse

```
(Untitled) $
 58:67
Console C:/DatenM/Repositories/Datenanalyse/R/
Residual standard error: 3.259 on 22 degrees of freedom
Multiple R-squared: 0.9596, Adjusted R-squared: 0.9559
F-statistic: 261.2 on 2 and 22 DF, p-value: 4.687e-16
 52
     summary(lm.deli <- lm(delTime ~ n.prod, data = delivery))</pre>
 53:58
      (Untitled) $
Console C:/DatenM/Repositories/Datenanalyse/R/
Residual standard error: 4.181 on 23 degrees of freedom
Multiple R-squared: 0.9305, Adjusted R-squared: 0.9275
F-statistic: 307.8 on 1 and 23 DF, p-value: 8.22e-15
```

summary()]m.deli <- |m(delTime ~ n.prod+distance, data = delivery))|

- Vorsicht bei der Interpretation von R²
- R² kann sich nicht verschlechtern bei Hinzunahme weiterer erklärender Variablen

Varianzzerlegung und Bestimmtheitsmaß

- Mit weiteren erklärenden Variablen lässt sich R² künstlich erhöhen
- Eine Erhöhung von *k* führt zu einer Verringerung der Freiheitsgrade, d.h. zu ungenaueren Koeffizientenschätzungen
- R² kann nicht die Angemessenheit des linearen Modelles beurteilen, d.h. es können nichtlineare Zusammenhänge vorliegen

Adjustiertes Bestimmtheitsmaß \tilde{R}^2

ullet Verwende adjustiertes Bestimmtheitsmaß $ilde{R}^2$

$$R^2 = 1 - \frac{SS_{res}}{SS_T}$$
 \Rightarrow $\tilde{R}^2 = 1 - \frac{SS_{res}/(n-k-1)}{SS_T/(n-1)}$

- "Bestrafe" die Hinzunahme weiterer erklärender Variablen.
- Verwendung von erwartungstreuen Schätzern für die wahren Variabilitätswerte.

51

Lieferzeitenanalyse

52

```
53:58
     (Untitled) $
Console C:/DatenM/Repositories/Datenanalyse/R/
Residual standard error: 4.181 on 23 degrees of freedom
Multiple R-squared: 0.9305. Adjusted R-squared: 0.9275
F-statistic: 307.8 on 1 and 23 DF. p-value: 8.22e-15
 58 summary(lm.deli <- lm(delTime ~ n.prod+distance, data = delivery))
     (Untitled) $
 58:67
Console C:/DatenM/Repositories/Datenanalyse/R/ <>
Residual standard error: 3.259 on 22 degrees of freedom
Multiple R-squared: 0.9596, Adjusted R-squared: 0.9559
F-statistic: 261.2 on 2 and 22 DF. p-value: 4.687e-16
```

53 summary(lm.deli <- lm(delTime ~ n.prod, data = delivery))

• Hier verbessert das Hinzufügen der zweiten Variablen die Erklärung der Gesamtvariabilität tatsächlich (allerdings nur geringfügig).

Umsatz an einer Tankstelle

Prüfen Sie die Modellgüte im Tankstellen-Beispiel (
$$\hat{\beta} = (2161.9, -0.117, 0.276)^T$$
)

Umsatz K x_1 | 6 000 | 2 500 | 8 500 | 6 500 | 9 500

Umsatz S x_2 | 7 000 | 6 500 | 3 000 | 7 000 | 7 500

Gewinn y | 3 000 | 4 000 | 2 000 | 3 000 | 3 500

$$SS_{T} = Y^{T}Y - \frac{1}{n} \left(\sum_{i=1}^{5} y_{i}\right)^{2} = 2200000$$

$$SS_{res} = Y^{T}Y - \hat{\beta}^{T}X^{T}Y = 522153.8$$

$$R^{2} = 1 - \frac{SS_{res}}{SS_{T}} = 1 - \frac{522153.8}{2200000} = 0.763$$

$$\tilde{R}^{2} = 1 - \frac{SS_{res}/(5-2-1)}{SS_{T}/(5-1)} = 1 - \frac{522153.8/2}{2200000/4} = 0.525$$

53

F-Test auf Modellgüte

Besteht ein linearer Zusammenhang zwischen der abhängigen Variablen und mindestens einer der erklärenden Variablen?

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$$
 vs. $H_1: \beta_j \neq 0$ für mind. ein j

Teststatistik/-entscheidung: Es gilt unter H_0

$$SS_T = SS_R + SS_{res}$$
 und SS_R, SS_{res} sind st.u.
$$SS_R/\sigma^2 \sim \chi_k^2$$

$$SS_{res}/\sigma^2 \sim \chi_{n-k-1}^2$$

$$\Rightarrow F_0 = \frac{SS_R/k}{SS_{res}/(n-k-1)} = \frac{n-k-1}{k} \cdot \frac{R^2}{1-R^2} \sim \mathcal{F}_{k,n-k-1}$$

 H_0 wird abgelehnt, falls $F_0 > \mathcal{F}_{1-\alpha,k,n-k-1}$

9.3.2 F-Test auf Modellgüte

	Α	В	С	D	Е	F	G	Н	1	J
1	beta	2,341	1,616	0,014			R^2	0,9596		
2	delivery	const	n.prod	distance	delTime	hat_deltime	residuals	SS_Res	SS_T	SS_R
3	1	1	7	560	16,68	21,7081	-5,02805188	25,281	32,536	0,457
4	2	1	3	220	11,5	10,3536	1,14636478	1,314	118,461	144,730
5	3	1	3	340	12,03	12,0798	-0,04978497	0,002	107,205	106,177
6	4	1	4	80	14,88	9,95571	4,9242914	24,249	56,310	154,462
7	5	1	6	150	13,75	14,1945	-0,44445881	0,198	74,546	67,069
23	21	1	10	140	17,9	20,5143	-2,61427203	6,834	20,106	3,496
24	22	1	26	810	52,32	56,0066	-3,68657762	13,591	896,164	1130,478
25	23	1	9	450	18,75	23,3576	-4,60757746	21,230	13,206	0,948
26	24	1	8	635	19,83	24,4028	-4,57281023	20,911	6,523	4,076
27	25	1	4	150	10,75	10,9626	-0,21262929	0,045	135,350	130,448
28	sum	25	219	10232	559,6	559,6	-0,00044424	233,732	5784,543	5550,795

$$F_0 = \frac{SS_R/k}{SS_{res}(n-k-1)} = \frac{5550.8/2}{233.732/(24-2-1)} \approx 261.2 \approx \frac{22}{2} \frac{0.9596}{1-0.9596} = \frac{n-k-1}{k} \frac{R^2}{1-R^2}$$

58 summary(lm.deli <- lm(delTime ~ n.prod+distance, data = delivery))

58:67 (Untitled) \$

Console C:/DatenM/Repositories/Datenanalyse/R/ <>

Residual standard error: 3.259 on 22 degrees of freedom Multiple R-squared: 0.9596, Adjusted R-squared: 0.9559 F-statistic: 261.2 on 2 and 22 DF. p-value: 4.687e-16

Umsatz an einer Tankstelle

Bestimmen Sie die F-Statistik, sowie den zugehörigen p-Wert zum Tankstellen-Beispiel. Entscheiden Sie anhand Ihrer Ergebnisse, ob ein (linearer) Zusammenhang zwischen (mind.) einem der Umsätze und dem Gewinn nachweisbar ist.

$$SS_R = SS_T - SS_{res} = 2200000 - 522154 = 1677846$$

 $\Rightarrow F_0 = \frac{SS_R/k}{SS_{res}/(n-k-1)} = \frac{1677846/2}{522154/(5-2-1)} = 3.213$

Alternative Berechnung von F_0 :

$$F_0 = \frac{n-k-1}{k} \cdot \frac{R^2}{1-R^2} = \frac{5-2-1}{2} \cdot \frac{0.7626574}{1-0.7626574} = 3.21$$

Zugehöriger p-Wert: 1 - pf(3.213, 2, 5 - 2 - 1) = 0.237

Es konnte somit nicht nachgewiesen werden, dass mindestens eine der beiden Umsatz-Merkmale einen (linearen) Einfluss auf den Gewinn hat.

56

F-Test auf Einfluss von Parametergruppen

Hat ein - festgelegtes - Set von Variablen einen Einfluss auf die abhängige Variable? Konkret mit $1 \le i_1 < \dots < i_m \le k$:

$$H_0: \beta_{i_1} = \beta_{i_2} = \cdots = \beta_{i_m} = 0$$

Teststatistik / Testentscheidung:

 Unter H₀ entfallen m Parameter im Modell, d.h. Y = X_Hβ_H + ε, dabei entstehen β_H bzw. X_H durch Streichung der Einträge bzw. Spalten i₁ + 1,..., i_m + 1 aus β bzw. X.
 Zugehörige KQ-Schätzung

$$\hat{\beta}_H = (X_H^T X_H)^{-1} X_H^T Y, \qquad \hat{Y}_H = X_H \hat{\beta}_H$$

• Teststatistik $V = \frac{\|\hat{\mathbf{Y}} - \hat{\mathbf{Y}}_H\|^2/m}{SS_{res}/(n-k-1)} \sim F = \mathcal{F}_{m,n-k-1}$

Anwendung: Tests für kategorielle Einflussfaktoren (s.u.)

ullet H_0 wird abgelehnt, falls $V>\mathcal{F}_{1-lpha,m,n-k-1}$ (p-value 1-F(v))

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

57

Tests für die Regressionskoeffizienten

• Welche Regressionskoeffizienten sind wichtig?

$$H_0: \beta_j = 0$$
 vs. $H_1: \beta_j \neq 0$

Prinzipiell ein Spezialfall des Parametergruppentests (F-Test), aber gleichwertig als t-Test durchführbar.

Teststatistik / Testentscheidung:

$$t_0 = \frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2(\mathsf{X}^\mathsf{T}\mathsf{X})_{jj}^{-1}}} = \frac{\hat{\beta}_j}{\mathsf{se}(\hat{\beta}_j)} \sim t_{n-k-1}$$

- H_0 wird abgelehnt, falls $|t_0| > t_{1-\alpha/2, n-k-1}$
- ullet Test beurteilt den Beitrag von eta_j bedingt auf das Vorliegen der anderen Koeffizienten

9.3.4 Tests für die Regressionskoeffizienten

```
45
     require(robustbase)
 46
 47
 48
     data(delivery)
 49
 50
     summary(lm.deli <- lm(delTime ~ n.prod+distance, data = delivery))</pre>
 51
     summarv(lm.deli <- lm(delTime ~ .. data = deliverv))</pre>
 48:15 (Untitled) ©
Console ~/ 🖒
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.341231 1.096730 2.135 0.044170 *
n.prod 1.615907 0.170735 9.464 3.25e-09 ***
distance 0.014385 0.003613 3.981 0.000631 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.259 on 22 degrees of freedom
Multiple R-squared: 0.9596, Adjusted R-squared: 0.9559
F-statistic: 261.2 on 2 and 22 DF, p-value: 4.687e-16
```

Umsatz an einer Tankstelle

Welche der Koeffizienten $\hat{\beta}=\begin{pmatrix}2\,161.889 & -0.117 & 0.276\end{pmatrix}^T$ haben einen signifikanten Einfluss $(\alpha=5\%)$ auf das Modell?

$$t_{\beta_0} = \frac{\hat{\beta}_0}{\sqrt{\hat{\sigma}^2(X^TX)_{11}^{-1}}} = \frac{2161.889}{\sqrt{261076.9 \cdot 5.68}} = 1.775$$

$$t_{\beta_1} = \frac{\hat{\beta}_1}{\sqrt{261076.9 \cdot 3.58 \cdot 10^{-8}}} = -1.211$$

Kritischer Wert: $t_{1-\alpha/2,n-k-1} = 4.303$ Teststatistiken:

$$t_{\beta_2} = \frac{\hat{\beta}_2}{\sqrt{\hat{\sigma}^2 (X^T X)_{33}^{-1}}} = \frac{0.276}{\sqrt{261076.9 \cdot 7.86 \cdot 10^{-8}}} = 1.926$$

Da jeweils $|t_{\beta_j}| \le t_{1-\alpha/2,n-k-1}$ gilt, wird die Nullhypothese $\beta_j = 0$ für jeden der drei Koeffizienten beibehalten.