Claims

5

- 1. A method for depolymerizing starch comprising mixing a starch material with an ionic liquid solvent to dissolve the starch, and then treating the dissolved starch by agitating at a temperature and for a period for time to effect depolymerization of the starch into desired depolymerization products.
- 2. The method according to claim 1 wherein microwave irradiation is applied to assist in dissolution and depolymerization.
- 3. The method according to claim 1 or 2 wherein pressure is applied to assist in dissolution and depolymerization.
- 10 4. The method according to any of claims 1 to 3 wherein the depolymerization temperature is at least 70°C, preferably at least 80°C.
 - 5. The method according to any of claims 1 to 4 wherein the depolymerization period is at least 5 minutes.
- 6. The method according to any of claims 1 to 5 wherein the starch is depolymerized selectively such that the amylose of the starch is depolymerized into sugars and the amylopectin of the starch is retained essentially unchanged.
 - 7. The method according to any of claims 1 to 5 wherein the starch is depolymerized quantitatively such that both the amylose and the amylopectin of the starch are depolymerized into sugars.
- 20 8. The method according to claim 1 wherein the ionic liquid solvent is molten at a temperature of below 200°C.
 - 9. The method according to claim 1 wherein the cation of the ionic liquid solvent is selected from the group consisting of

wherein R^1 and R^2 are independently a C_1 - C_6 alkyl or C_2 - C_6 alkoxyalkyl group, and R^3 , R^4 , R^5 , R^6 , R^7 , R^8 and R^9 are independently hydrogen, a C_1 - C_6 alkyl, C_2 - C_6 alkoxyalkyl or C_1 - C_6 alkoxy group or halogen, and

- wherein the anion of the ionic liquid solvent is halogen, pseudohalogen, perchlorate or C₁-C₆ carboxylate.
 - 10. The method according to claim 9 wherein said cation comprises

$$\begin{array}{c}
R^4 \\
R^5 \\
R^1 \\
R^3
\end{array}$$

wherein R^3 - R^5 are each hydrogen and R^1 and R^2 are the same or different and represent C_1 - C_6 alkyl, and said anion is halogen, preferably chloride.

11. The method according to claim 1 wherein the cation of the ionic liquid solvent is

wherein R^{10} , R^{11} , R^{12} and R^{13} are independently a C_1 - C_{30} alkyl, C_3 - C_8 carbocyclic or C_3 - C_8 heterocyclic group and the anion of the ionic liquid solvent is halogen, pseudohalogen, perchlorate, C_1 - C_6 carboxylate or hydroxide.

- 12. The method according to claim 1 wherein the depolymerization products are separated from the solution by adding a non-solvent for the depolymerization products to precipitate the depolymerization products.
- 13. The method according to claim 12 wherein said non-solvent is an alcohol, a ketone, acetonitrile, dichloromethane, a polyglycol, an ether or water.
- 14. The method according to claim 1 wherein the depolymerization products are separated by extraction with a non-solvent for the ionic liquid solvent.