Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова Российской академии наук

Рабочий протокол и отчёт по лабораторной работе \mathbb{N}_3

Свиридов Фёдор, Александр Слободнюк, Владимир Попов

«Эффект Холла в примесном полупроводнике»

Цель работы.

Изучить поведение примесного полупроводника в магнитном поле

Задачи, решаемы при выполнении работы.

- Получить вольт-амперную характеристику полупроводника
- Получить зависимость ЭДС Холла от силы внешнего магнитного поля
- Косвенно измерить удельную проводимость полупроводника, постоянную Холла, концентрацию свободных носителей зарядов и их подвижность

Объект исследования.

Эффект Холла в полупроводниках

Метод экспериментального исследования.

Измерение продольного и поперечного напряжения в полупроводнике

Исходные данные.

Геометрические размеры полупроводника p-Ge: l=20 мм; h=10 мм; d=1 мм; S=hd=10 мм².

$$I = \sigma \frac{S}{I} U_{\parallel} \tag{1}$$

$$U_{\perp} = R \frac{I}{d} B \tag{2}$$

Результаты прямых измерений.

Вольт-амперная характеристика для полупроводника при нулевом магнитном поле:

I, мА	U_{\parallel} , B
5	0,22
10	0,46
15	0,75
20	0,98
25	1,22
30	1,49
35	1,77
40	2,07

Зависимость поперечного напряжения U_{\perp} (ЭДС Холла) от силы магнитного поля

B, Тл	U_{\perp} , B
0,007	30,0
0,014	30,8
0,032	32,7
0,056	35,4
0,080	38,2
$0,\!103$	40,7
$0,\!123$	43,0
0,148	45,6
$0,\!176$	48,5
0,207	51,7
$0,\!222$	53,3

Обработка результатов и расчёт косвенных величин.

• Удельная проводимость.

Из формулы (1) $k=\sigma \frac{S}{l}$, где k=19.1 $\left(\frac{\text{мA}}{\text{B}}\right)$ - коэффициент пропорциональности ВАХ. Отсюда получаем: $\sigma=k\frac{l}{S}$

$$\sigma = 19, 1 \cdot 10^{-3} \cdot \frac{20 \cdot 10^{-3}}{10 \cdot 10^{-6}} = 38, 2 \quad (\text{Om}^{-1} \cdot \text{m}^{-1})$$

Погрешность σ .

$$\Delta k = 1,06 \, \left(\frac{\text{MA}}{\text{B}}\right)$$

$$\Delta \sigma = \Delta k \, \frac{l}{S}$$

$$\Delta \sigma = 2,12 \, (\text{Om}^{-1} \cdot \text{m}^{-1})$$

• Постоянная Холла.

Из формулы (2): $\alpha=R\frac{I}{d},$ где $\alpha=108,72$ $\left(\frac{\mathrm{B}}{\mathrm{Ta}}\right)\Rightarrow R=\alpha\frac{d}{I}$

$$R = 108,72 \cdot \frac{10^{-3}}{15 \cdot 10^{-3}} = 7,248 \, \left(\frac{\text{M}^3}{\text{K}_{\text{JJ}}}\right)$$

Погрешность R.

$$\Delta \alpha = 3,7 \, \left(\frac{\mathrm{B}}{\mathrm{T}\pi}\right)$$

$$\Delta R = \Delta \alpha \, \frac{d}{I}$$

$$\Delta R = 0,25 \, \left(\frac{\mathrm{M}^3}{\mathrm{K}\pi}\right)$$

• Концентрация носителей заряда.

$$n = \frac{1}{eR}$$

$$n = \frac{1}{1, 6 \cdot 10^{-19} \cdot 7,248} = 8, 6 \cdot 10^{17} \text{ (M}^{-3}\text{)}$$

$$\Delta n = n \frac{\Delta R}{R}$$

$$\Delta n = 0, 3 \cdot 10^{17} \text{ (M}^{-3}\text{)}$$

• Подвижность носителей заряда.

$$\mu = \sigma R$$

$$\mu = 38, 2 \cdot 7, 248 = 276, 87 \left(\frac{\text{M}^2}{\text{B} \cdot \text{c}}\right)$$

$$\Delta \mu = \mu \cdot \sqrt{\left(\frac{\Delta R}{R}\right)^2 + \left(\frac{\Delta \sigma}{\sigma}\right)^2}$$

$$\Delta \mu = 18 \left(\frac{\text{M}^2}{\text{B} \cdot \text{c}}\right)$$

Окончательные результаты.

• Удельная проводимость.

$$\sigma = (38, 2 \pm 2, 1) \text{ Om}^{-1} \cdot \text{m}^{-1}$$

• Постоянная Холла.

$$R = (7, 25 \pm 0, 25) \frac{\text{M}^3}{\text{K}_{\text{J}}}$$

• Концентрация носителей заряда.

$$n = (8, 6 \pm 0, 3) \cdot 10^{17} \text{ m}^{-3}$$

• Подвижность носителей заряда.

$$\mu = (277 \pm 18) \frac{\text{M}^2}{\text{B} \cdot \text{c}}$$

Выводы.

Мы получили вольт-амперную характеристику примесного полупроводника p-Ge, с помощью которой оценили удельную проводимость. Также мы получили зависимость ЭДС Холла от силы внешнего магнитного поля, на основе этих данных нашли постоянную Холла, концентрацию свободных носителей зарядов и их подвижность. Полученные результаты хорошо согласуются с теоретическими предсказаниями: поперечное напряжение U_{\perp} (ХЭДС) прямо пропорционально силе внешнего магнитного поля.