CS61B Lecture #7

Announcements:

- New discussion section: Tuesday 2-3PM in 310 Soda.
- New lab section: Thursday 2-4PM in 273 Soda.
- Programming Contest coming up: 5 October (new date). Watch for details.

Object-Based Programming

Basic Idea.

- Function-based programs are organized primarily around the functions (methods, etc.) that do things. Data structures (objects) are considered separate.
- Object-based programs are organized around the types of objects that are used to represent data; methods are grouped by type of object.
- Simple banking-system example:

Philosophy

- Idea (from 1970s and before): An abstract data type is
 - a set of possible values (a domain), plus
 - a set of operations on those values (or their containers).
- In IntList, for example, the domain was a set of pairs: (head, tail), where head is an int and tail is a pointer to an IntList.
- The IntList operations consisted only of assigning to and accessing the two fields (head and tail).
- In general, prefer a purely procedural interface, where the functions (methods) do everything—no outside access to fields.
- That way, implementor of a class and its methods has complete control over behavior of instances.
- In Java, the preferred way to write the "operations of a type" is as instance methods.

You Saw It All in CS61A: The Account class

```
(define-class (account balance0)
  (instance-vars (balance 0))
  (initialize
    (set! balance balance0))
  (method (deposit amount)
    (set! balance (+ balance amount))
   balance)
  (method (withdraw amount)
    (if (< balance amount)
      (error "Insufficient funds")
      (begin
        (set! balance (- balance amount))
        balance)))))
(define my-account
  (instantiate account 1000))
```

```
(define my-account
  (instantiate account 1000))
(ask my-account 'balance)
(ask my-account 'deposit 100)
(ask my-account 'withdraw 500)
```

```
public class Account {
  public int balance;
  public Account (int balance0) {
    balance = balance0;
  public int deposit (int amount) {
    balance += amount; return balance;
  public int withdraw (int amount) {
    if (balance < amount)</pre>
      throw new IllegalStateException
         ("Insufficient funds");
    else balance -= amount;
    return balance;
Account myAccount = new Account (1000);
myAccount.balance
myAccount.deposit (100);
```

myAccount.withdraw(500);

You Saw It All in CS61A: Python Version

```
class Account:
    balance = 0
    def __init__(self, balance0):
        self.balance = balance0
    def deposit(self, amount):
        self.balance += amount
        return balance
    def withdraw(self, amount):
        if balance < amount:
            raise ValueError \
               ("Insufficient funds")
        else:
            self.balance -= amount
        return balance
```

```
my_account = Account(1000)
my_account.balance
my_account.deposit(100)
my_-account.withdraw(500)
Last modified: Mon Sep 16 14:37:46 2013
```

```
public class Account {
  public int balance;
  public Account (int balance0) {
    balance = balance0;
  public int deposit (int amount) {
    balance += amount; return balance;
  public int withdraw (int amount) {
    if (balance < amount)</pre>
      throw new IllegalStateException
         ("Insufficient funds");
    else balance -= amount;
    return balance;
Account myAccount = new Account (1000);
myAccount.balance
myAccount.deposit (100);
myAccount.withdraw(500);
```

The Pieces

- Class declaration defines a new type of object, i.e., new type of structured container.
- Instance variables such as balance are the simple containers within these objects (fields or components).
- Instance methods, such as deposit and withdraw are like ordinary (static) methods that take an invisible extra parameter (called this).
- The **new** operator creates (*instantiates*) new objects, and initializes them using constructors.
- Constructors such as the method-like declaration of Account are special methods that are used only to initialize new instances. They take their arguments from the **new** expression.
- Method selection picks methods to call. For example,

myAccount.deposit(100)

tells us to call the method named deposit that is defined for the object pointed to by myAccount.

Getter Methods

- Slight problem with Java version of Account: anyone can assign to the balance field
- This reduces the control that the implementor of Account has over possible values of the balance.
- Solution: allow public access only through methods:

```
public class Account {
   private int balance;
   ...
   public int balance () { return balance; }
   ...
}
```

- Now the balance field cannot be directly referenced outside of Account.
- (OK to use name balance for both the field and the method. Java can tell which is meant by syntax: A.balance vs. A.balance().)

Class Variables and Methods

- Suppose we want to keep track of the bank's total funds.
- This number is not associated with any particular Account, but is common to all—it is class-wide.

```
• In Java, "class-wide" ≡ static
   public class Account {
     private static int funds = 0;
     public int deposit (int amount) {
       balance += amount; funds += amount;
        return balance;
     public static int funds () {
       return funds;
      ... // Also change withdraw.
```

• From outside, can refer to either Account.funds() or myAccount.funds() (same thing).

Instance Methods

Instance method such as

```
int deposit (int amount) {
  balance += amount; funds += amount;
 return balance;
```

behaves sort of like a static method with hidden argument:

```
static int deposit (final Account this, int amount) {
 this.balance += amount; funds += amount;
 return this.balance;
```

- NOTE: Just explanatory: Not real Java (not allowed to declare 'this'). (final is real Java; means "can't change once set.")
- Likewise, the instance-method call myAccount.deposit (100) is like a call on this fictional static method:

```
Account.deposit (myAccount, 100);
```

 Inside method, as a convenient abbreviation, can leave off leading 'this.' on field access or method call if not ambiguous.

'Instance' and 'Static' Don't Mix

 Since real static methods don't have the invisible this parameter, makes no sense to refer directly to instance variables in them:

```
public static int badBalance (Account A) {
   int x = A.balance; // This is OK (A tells us whose balance)
   return balance; // WRONG! NONSENSE!
}
```

- Reference to balance here equivalent to this.balance,
- But this is meaningless (whose balance?)
- However, it makes perfect sense to access a static (class-wide) field or method in an instance method or constructor, as happened with funds in the deposit method.
- There's only one of each static field, so don't need to have a 'this' to get it. Can just name the class.

Constructors

- To completely control objects of some class, you must be able to set their initial contents.
- A constructor is a kind of special instance method that is called by the new operator right after it creates a new object, as if

```
L = new IntList(1,null) \Longrightarrow \begin{cases} tmp = pointer to O ; \\ tmp.IntList(1, null); \\ L = tmp; \end{cases}
```

• Instance variables initializations are moved inside constructors:

- In absence of any explicit constructor, get default constructor: public Foo() { }.
- Multiple overloaded constructors possible (different parameters).

Summary: Java vs. CS61A OOP in Scheme & Python

Java	CS61A OOP	Python
class Foo	(define-class (Foo args)	class Foo:
int $x =$;	(instance-vars (x))	x =
Foo(<i>args</i>) {}	(initialize)	definit(self, args):
int f() {}	(method (f))	def f(self,):
static int y =;	(class-vars (y))	y =
		(refer to with Foo.y)
static void $g()$ $\{\}$	(define (g))	def g(): or
		@staticmethod
		def g():
aFoo.f ()	(ask aFoo 'f)	aFoo.f()
aFoo.x	(ask aFoo 'x)	aFoo.x
new Foo ()	(instantiate Foo)	Foo()
this	self	self