HYPR.AI

Cloud-based AutoML

Ryan Reece Insight Al Fellow

Also with Jiangming "Jimmy" Hu Previous Insight Fellow

Intro

- Al is an experimental science
- Search & test many models: "hyperparameters"

- Better tools can streamline this process
- Leads to discovering and organizing better models
- Jeff Dean: tools for "ML 2.0" or "AutoML"

Typical ML workflow today

- Compute

- Workflow
- Visualization
- Iterate
- **Bookkeeping?**

Typical ML workflow today

- Workflow
- Visualization
- Iterate
- Bookkeeping?

HYPER.Al provides

Website UI: construct or upload keras models

Database for storing models and results

Task queue for training many models

Compute back-ends for AWS & Paperspace

HYPR.AI

Cloud-based AutoML

n- Models ≣ Tasks

Storage

Settings

Models

+ New

CNN-Base

Convolution2D (conv1) - inputs: [null,32,32,3] fi...

Convolution2D (conv2) - filters: 64 kernel_size: ...

MaxPooling2D (pool1) - pool_size: [2,2] strides: ...

Dropout (dropout1) - rate: 0.25

Convolution2D (conv3) - filters: 128 kernel size:...

MaxPooling2D (pool2) - pool_size: [2,2] strides: ...

Convolution2D (conv4) - filters: 128 kernel_size:...

MaxPooling2D (pool3) - pool_size: [2,2] strides: ...

Flatten

Dense (dense1) - units: 1024 activation: relu

Dropout (dropout2) - rate: 0.25

Dropout (dropout3) - rate: 0.5

Dense (softmax1) - units: 10 activation: softmax

Compiler optimizer: {"adam":{"lr":0.0001}} loss: ...

CNN-RMSprop

From: CNN-Base

From: Civiv-base

input softmax1, Compiler: optimizer: rmsprop loss...

Models

Convolution2D (conv1) - inputs: [null,32,32,3] fi...

From: CNN-Base

Dropout (dropout3) - rate: 0.5

Dense (softmax1) - units: 10 activation: softmax

Compiler optimizer: {"adam":{"lr":0.0001}} loss: ...

250	test-012	CNN-Base-test-012	dataset/cifar-10	50	initial	2018-01-30 22:43
SS/ 1	test-011	CNN-Base-test-011	dataset/cifar-10	50	initial	2018-01-30 22:43
HYPR.AI	test-010	CNN-Base-test-010	dataset/cifar-10	50	initial	2018-01-30 22:43
Cloud-based AutoML	test-009	CNN-Base-test-009	dataset/cifar-10	50	initial	2018-01-30 22:43
ṁ- Models	test-008	CNN-Base-test-008	dataset/cifar-10	50	initial	2018-01-30 22:43
≣ Tasks	test-007	CNN-Base-test-007	dataset/cifar-10	50	initial	2018-01-30 22:43
✓ Results Storage	test-006	CNN-Base-test-006	dataset/cifar-10	50	initial	2018-01-30 22:43
	test-005	CNN-Base-test-005	dataset/cifar-10	50	initial	2018-01-30 22:43
	test-004	CNN-Base-test-004	dataset/cifar-10	50	initial	2018-01-30 22:43
Settings	test-003	CNN-Base-test-003	dataset/cifar-10	50	initial	2018-01-30 22:43
in 🗘	test-002	CNN-Base-test-002	dataset/cifar-10	50	initial	2018-01-30 22:43
	test-001	CNN-Base-test-001	dataset/cifar-10	50	training	2018-01-30 22:43

I Tasks

✓ Results

Storage

Cluster

Settings

in ()

Results

Name

test-025

test-024

test-023

test-022

test-021

test-020

test-019

test-018

test-017

Loss (train/test)

0.30405 / 0.044943

0.37652 / 0.082246

0.56593 / 0.23273

0.17968 / 0.0084701

0.14708 / 0.0075892

0.14485 / 0.01072

0.13193 / 0.0083731

0.069662 / 0.0028221

0.092113 / 0.003807

Accuracy (train/test) 0.96932 / 0.9999 0.8915 / 0.9949 0.86504 / 0.987 0.79544 / 0.9376

0.93818 / 0.9998

0.94836 / 0.9999

0.95078 / 0.9999

0.9543 / 0.9999

0.97752 / 0.9999

99 / 100 2018-01-31 05:05 100 / 100 2018-01-31 05:05 100 / 100 99/99

Created

2018-01-31 05:05

Best

Epoch

52 / 52

82 / 82

80 / 81

59 / 60

51 / 51

2018-01-31 05:05 2018-01-31 05:05 2018-01-31 05:05 2018-01-31 05:05 2018-01-31 05:05

2018-01-31 05:05

2018-01-31 05:05

1/51

Close

Transfer learning

Train a model on one dataset, and then more on another.

Advantages of using HYPR.AI

- Bookkeeping datasets/models/weights in the cloud
- RESTful API allows back-end independence
- Modular models facilitate transfer learning
- Hyperparameter optimization: currently random search or scan. Possible future plugins: Bayesian?, RL?
- Try out the running example: http://hypr.umx.io

Ryan Reece, Ph.D.

Data scientist, AI/ML/Stats

Previously a particle physicist with the ATLAS experiment at the Large Hadron Collider

Backup slides

CLOUD AUTOML ALPHA

Train high quality custom machine learning models with minimum effort and machine learning expertise

REQUEST ACCESS

- Models

≣ Tasks

✓ Results

Storage

Cluster

Settings

in (7)

Results

test-b-024

test-b-023

test-b-022

test-b-021

test-b-020

test-b-019

toot-b-019

Loss (train/test)

0.56193 / 0.32403

0.22183 / 0.043774

Accuracy (train/test)

0.93328 / 0.998

0.88984 / 0.9894

0.80062 / 0.9151

0.92308 / 0.9971

10 / 10

Best

Created

2018-01-30 19:04 2018-01-30 19:04 2018-01-30 19:04 2018-01-30 19:04 2018-01-30 19:04 2018-01-30 19:04 2040 04 20 40:04

≡ Tasks

✓ Results

Storage

Dataset

Weights

Cluster

C

Name

paperspace

_paperspace-psrxvede4

_paperspace_psrxvede4

54.153.100.55

AWS-g2.2xlarge

PAPERSPACE-P5000-1

Cluster (workers)

Status

idle

offline

offline

offline

offline

offline

Last seen

2018-01-26

2018-01-22 21:15:56

2018-01-22

2018-01-19 04:22:31

2018-01-12

2018-01-12

20:17:58

20:18:01

21:06:16

17:36:27

Server Info

1

1

1

1

1

0

Data and models

 As proofs of concept, using standard image classification datasets: CIFAR-10, MNIST

Successful models use several layers of CNNs + pooling,

With this platform, easily upload and test many architectures

Goals

- Demonstrate a successful hyperparameter scan
- Use our system to discover a performant model
- Future upgrades could add better
 optimization (e.g. SigOpt / custom RL?)

