

Electrónica de Potencia

(Especialidad de Electricidad)

PRÁCTICA 1

DETERMINACIÓN DE LA THD Y EL FACTOR DE POTENCIA MEDIANTE PSPICE Y SIMPOWERSYSTEM

1. Introducción

Toda función periódica que cumple ciertas propiedades puede ser descompuesta en una suma infinita de senos y cosenos, denominada "desarrollo en serie de *Fourier*":

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} C_n \ \text{sen}(n\omega t + \phi_n) \ Donde : C_n = \sqrt{a_n + b_n} \ y \ \phi_n = \text{tg}^{-1} \left(\frac{a_n}{b_n}\right)$$

Cuyos coeficientes pueden calcularse mediante las expresiones:

$$a_n = \frac{2}{T} \int_0^T f(t) \cos(n\omega t) dt$$
 y $b_n = \frac{2}{T} \int_0^T f(t) \sin(n\omega t) dt$

La distorsión del armónico n-ésimo se define como:

$$D_n = \frac{C_n}{C_1}$$

Y la Distorsión Armónica Total (THD):

$$THD = \sqrt{D_2^2 + D_3^2 + D_4^2 + \cdots}$$

El Factor de Potencia en función de la THD, para fuente sinusoidal y carga no lineal, viene dado por:

$$PF = \frac{I_{1 RMS}}{\sqrt{I_{med}^2 + I_{1 RMS}^2 (1 + (THD)^2)}} \cos \varphi_1$$

Tanto *PSpice* como *SimPowerSystem* permiten calcular cada una de las componentes del desarrollo, así como la THD y por tanto el Factor de Potencia.

Para PSpice se accede al análisis *Transient*, se abre la ventana *Output File Options*, se habilita el casillero *Perform Fourier Analysis*, y se especifica la frecuencia del fundamental (*Center Frecuency*), el número de armónicos a calcular, junto con la/s variable/s de salida sobre la/s que se quiere realizar dicho análisis.

Una vez realizada la simulación y ejecutado *Probe*, se puede observar el espectro de *Fourier* activando el icono correspondiente a *FTT* (*Fourier*), y añadiendo las señales cuyo espectro se desee estudiar (*Trace* – *Add*). El valor de la Distorsión Armónica Total puede observarse en el fichero de salida *out* generado por *PSpice*, así como los valores de los armónicos y sus desfases.

Las figuras siguientes muestran un ejemplo de la interpretación de los resultados obtenidos mediante *Pspice*. Los parámetros configurados en este caso son:

Frecuencia central: 100 Hz

Variables de salida: V(Vo)

Espectro de la señal obtenido mediante Probe.

En el fichero de salida *out* (*File*-Examine *Output*) se obtienen los resultados numéricos:

***	FOURIER ANALYSIS		TEMPERATURE = 27.000 DEG C		

FOURIER COMPONENTS OF TRANSIENT RESPONSE U(Vo)					
DC COMPONENT = 5.975527E-01					
HARMONTC	FREQUENCY	FOURTER	NORMAL 12FD	PHASE	NORMAL 12FD
NO	(HZ)	COMPONENT	COMPONENT	(DEG)	PHASE (DEG)
1	1.000E+02	9.989E-01	1.000E+00	-2.716E-02	0.000E+00
2	2.000E+02	5.469E-01	5.475E-01	-9.001E+01	-8.998E+01
3	3.000E+02	1.257E-01	1.259E-01	-1.798E+02	-1.798E+02
4	4.000E+02	6.934E-02	6.941E-02	-9.014E+01	-9.011E+01
5	5.000E+02	5.839E-02	5.845E-02	-1.797E+02	-1.796E+02
6	6.000E+02	1.048E-02	1.049E-02	-9.110E+01	-9.107E+01
7	7.000E+02	2.997E-02	3.000E-02	-1.795E+02	-1.795E+02
8	8.000E+02	3.771E-03	3.775E-03	9.275E+01	9.277E+01
9	9.000E+02	1.510E-02	1.512E-02	-1.794E+02	-1.794E+02
TOTAL	HARMONIC DIS	STORTION =	5.701287E+01	PERCENT	

Columna 1: número de armónico.

Columna 2: frecuencia del armónico.

Columna 3: valor absoluto de la amplitud del armónico.

Columna 4: valor relativo respecto a la componente fundamental.

Columna 5: fase absoluta en grados sexagesimales.

Columna 6: fase relativa respecto a la componente fundamental.

Para SimPowerSystem se puede realizar el mismo cálculo, mediante el bloque *powergui* (Power Grafical User Interface) de la librería powerlib, o mediante los bloques Total Harmonic Distorsion y Fourier dentro de Extra Library/Measurements.

2. Procedimiento práctico

En esta práctica se van a estudiar diversos montajes de rectificadores monofásicos de media y de onda completa.

<u>1^{er} Caso:</u> Rectificador monofásico de media onda con carga resistiva.

b) Circuito para SimPowerSystem.

2º Caso: Rectificador monofásico de media onda con carga RC paralelo.

a) Circuito para PSpice.

b) Circuito para SimPowerSystem.

<u>**3**^{er} Caso:</u> Rectificador monofásico de onda completa con carga resistiva.

a) Circuito para PSpice.

b) Circuito para SimPowerSystem.

<u>4º Caso:</u> Rectificador monofásico de onda completa con carga RC paralelo.

© 220/50Hz 10 y 3300uF Voltag

a) Circuito para PSpice.

b) Circuito para SimPowerSystem.

2.1 Análisis mediante PSpice

En todos los casos se han de realizar los siguientes análisis:

- Transitorio de 40ms.
- Análisis de Fourier sobre la corriente de la fuente de excitación, con frecuencia del fundamental 50Hz y para cinco armónicos.

Para todos los circuitos se deben emplear diodos genéricos Dbreak con modelo DMOD D $(Is=2.22E-15 \ BV=1500)$, siendo los parámetros de tensión y frecuencia de la fuente de excitación los correspondientes a la red eléctrica.

2.1 Análisis mediante SimPowerSystem

Para las cuatro simulaciones, se establecerán los parámetros que aparecen en la ventana de la figura 1, dentro de *Simulation/Configuration parameters*.

Fig. 1 Configuración de parámetros para la simulación con SimPowerSystem.

a) Ventana de la FFT de Powergui.

b) Ventana de parámetros del Scope1.

Cancel

Objetivos:

- Determinar para los cuatro circuitos, la THD y el Factor de Potencia.
- Comparar los cuatro casos en términos de la THD, nivel de continua y Factor de Potencia.