PUBLISHED ONLINE: 10 APRIL 2017 | DOI: 10.1038/NPHYS4091

Edge conduction in monolayer WTe₂

Zaiyao Fei¹, Tauno Palomaki¹, Sanfeng Wu¹, Wenjin Zhao¹, Xinghan Cai¹, Bosong Sun¹, Paul Nguyen¹, Joseph Finney¹, Xiaodong Xu^{1,2*} and David H. Cobden^{1*}

Outline

Background

• Experimental results & explanations

Summary

Background

Quantum spin Hall effect and 2DTI

Schematic of the spin-polarized edge channels in a quantum spin Hall insulator in a quantum well.

Band structure of 2DTI

Background

Some puzzles in experimental works on 2DTI of quantum wells

- > The conductance at low temperatures is not perfectly quantized, becoming small in long edges
- ➤ The edge conductance showing mesoscopic fluctuations as a function of gate voltage.
- > The edges show signs of conducting even at high magnetic field.
- Non-helical edge conduction may also be present, due for instance to band bending when a gate voltage is applied in the quantum wells.

So, identification of a natural monolayer 2DTI would be helpful for elucidating and exploiting TI physics

• Experimental results & explanations

Temperature dependence of G_{diff} in different thickness WTe₂

• Experimental results & explanations

Distinguishing edge and bulk conduction

Traditional nonlocal measurement to detect edge conductance

Quantitative separation of bulk and edge contributions

• Experimental results & explanations

Distinguishing edge and bulk conduction

Temperature dependence of the conductance G_{edge} at zero magnetic field

Gate-averaged linear-response edge conductance for 19 adjacent-contact pairs

Effect of in-plane magnetic field B_{//} at 1.6 K

Sweeps of B_{//} at Vg=0 for various temperatures

Experimental results & explanations

Some explanations

- The monolayer edge conductance is independent of Vg. This is consistent with a single gapless mode, and not with carrier accumulation due to band bending.
- No edge conduction in bilayers. This can be explained by the fact that TR symmetry does not prohibit backscattering at the bilayer edge.
- \triangleright The conductance is dramatically suppressed by $B_{//}$, consistent with the expectation that elastic backscattering is allowed once TR symmetry is broken.

Summary

- At temperatures below about 100 K, monolayer WTe2 does become insulating in its interior, while the edges still conduct.
- The edge conduction is strongly suppressed by an in-plane magnetic field and is independent of gate voltage.
- significant elastic scattering in the edge.