

## 3.1 Generalidades

#### 3.1.1 Domínio

#### Definição 3.1.1

Sejam A e B dois subconjuntos de  $\mathbb{R}$ . Uma função f definida em A de valores em B é uma relação tal que para cada  $x \in A$  associamos um único  $y = f(x) \in B$ .

Dizemos que o y é a imagem do elemento (objeto) x pela função f.

O conjuntos A e B chamam-se respetivamente conjunto de partida e conjunto de chegada.

Seja  $E \subset A$  um subconjunto,

$$f(E) = \{B \ni y = f(x) \text{ tal que } x \in E\}.$$

chama-se imagem de E pela função f.

EXEMPLO 3.1.1 Seja  $f(x) = x^2$  e  $E = \{-4\} \cup [-1, 1] \cup [2, 3[$ , então  $f(E) = [0, 1] \cup [4, 9] \cup \{16\}$ .

#### Definição 3.1.2

No caso de  $B = \mathbb{R}$ , notamos por  $D_f \subset \mathbb{R}$  o maior domínio (ordenado pela inclusão dos conjuntos) onde f está definida. O conjunto  $CD_f = \{\mathbb{R} \ni y = f(x); x \in D_f\}$  chama-se contradomínio.

#### NOTA 3.1.1 Usamos também a notação

$$D_f \to \mathbb{R}$$
$$x \to y = f(x).$$

NOTA 3.1.2 Habitualmente, a função é dada por uma expressão analítica com a variável x e temos de determinar o domínio  $D_f$  onde a expressão faz sentido.

EXEMPLO 3.1.2 Seja a função  $f(x) = x^2$ , o seu domínio é  $\mathbb{R}$  enquanto o contradominio é  $[0, +\infty[$ . Temos ambos f(-2) = f(2) = 4 então 4 é a imagem de 2 e -2 enquanto -2 e 2 são os antecedente de 4.

NOTA 3.1.3 Uma função pode ter uma expressão analítica e portanto não existir... Por exemplo consideramos a função  $f(x)=\sqrt{-|x|-1}$ , podemos verificar que nenhum valore é eligível então  $D_f=\emptyset$ , quer dizer que a função não existe na prática (apenas simbolicamente).

#### Definição 3.1.3

Seja f uma função de valores reais e  $D_f$  o seu domínio. Notamos por

$$G_f = \{(x, f(x)) \in \mathbb{R}^2; \ x \in D_f\}$$

o gráfico (ou curva representativa) da função f.

NOTA 3.1.4 Uma curva corresponde a uma função desde que para qualquer  $x \in \mathbb{R}$ , a reta vertical que passa pelo ponto (x,0)

- não corta o gráfico (zero interseção) e  $x \notin D_f$ ,
- ullet ou corta apenas uma vez o gráfico e  $x \in D_f$ .

Se a reta corta duas vezes (ou mais) o gráfico então a curva não corresponde a uma função clássica. Chama-se "multi-valued" função.

Podemos também definir uma função por ramos onde a expressão é diferente em função do intervalo.

**EXEMPLO 3.1.3** 

$$f(x) = \begin{cases} 2x - 1 & \text{se } x > 0, \\ 0 & \text{se } x = 0, \\ \sin(x) & \text{se } x < 0, \end{cases} \qquad f(x) = \begin{cases} \ln(x) & \text{se } x \in [1, 4], \\ \frac{1}{x} & \text{se } x^2 < 1. \end{cases}$$

## 3.1.2 Propriedades elementares

Introduzimos neste parágrafo as propriedades usuais das funções de uma variável de valores reais.

# Definição 3.1.4 (paridade)

Sejam f uma função e  $E \subset D_f$  um subconjunto do domínio.

- $\bullet \ f$ é uma função par em E se
  - 1.  $\forall x \in E, -x \in E$ ,
  - 2.  $\forall x \in E, f(-x) = f(x).$
- $\bullet$  f é uma função ímpar em E se
  - 1.  $\forall x \in E, -x \in E,$
  - 2.  $\forall x \in E, f(-x) = -f(x).$

## Definição 3.1.5 (periódico)

Sejam f uma função e  $E\subset D_f$  um subconjunto do domínio. A função f é periódica de período T em E se

- 1.  $\forall x \in E, x + T \in E$ ,
- 2.  $\forall x \in E, f(x+T) = f(x).$

# Definição 3.1.6 (monotonia)

Sejam f uma função e  $E \subset D_f$  um subconjunto do domínio.

- A função é crescente se  $\forall x,y \in E,\, x \geq y \Rightarrow f(x) \geq f(y).$
- A função é estritamente crescente se  $\forall x,y \in E, x > y \Rightarrow f(x) > f(y)$ .
- A função é decrescente se  $\forall x,y \in E, x \leq y \Rightarrow f(x) \geq f(y)$ .
- A função é estritamente decrescente se  $\forall x,y \in E, \ x < y \Rightarrow f(x) > f(y).$

Determinar os intervalos de monotonia de uma função f consiste em determinar os intervalos de  $D_f$  onde f é crescente ou decrescente.

NOTA 3.1.5 Uma função crescente ou decrescente num conjunto E diz-se monótona em E. É muito importante precisar o conjunto E. Por exemplo, a funcção  $f(x)=x^2$  é crescente em  $E=[0,+\infty[$  mas decrescente em  $]-\infty,0]$ . Além de mais, nem é crescerente nem é decrescente em  $\mathbb{R}$ .

### Definição 3.1.7 (limitada)

Sejam f uma função e  $E \subset D_f$  um subconjunto do domínio.

- m é um minorante de f em E se  $\forall x \in E, f(x) \geq m$
- f admite um mínimo m em E se existe  $x_m \in E$  tal que

$$\forall x \in E, \ f(x) \ge m = f(x_m).$$

- M é um majorante de f em E se  $\forall x \in E, f(x) \leq M$
- f admite um máximo M em E se existe  $x_M \in E$  tal que

$$\forall x \in E, \ f(x) \le M = f(x_M).$$

Uma função majorada e minorada é limitada.

### Proposição 3.1.1

Sejam f uma função e  $E\subset D_f$  um subconjunto do domínio. O mínimo e o máximo, quando exitem são únicos.

Demonstração. Quando existem, o máximo ou o mínimo correspondem aos máximo e mínimo do conjunto f(E). A unicidade deriva desta equivalência.

NOTA 3.1.6 A função  $f(x)=x^2$  tem 0 como mínimo e 1 como máximo em [-1,1]. Podemos notar que existem dois pontos (x=-1 e x=1) que conduzem ao mesmo máximo. A função  $f(x)=x^2$  não admite majorante no conjunto  $E=[5,+\infty[$ .

NOTA  $3.1.7 \ m$  é um minorante (resp. M majorante) de f em E é equivalante a m é um minorante (M majorante) ao conjunto f(E).

EXEMPLO 3.1.4 Seja a função  $f(x) = \sin(x)$ . A função não admite nem um mínimo nem um máximo no conjunto  $E = ]-\frac{\pi}{2}, \frac{\pi}{2}[$  porque  $-\frac{\pi}{2} \notin E$  e  $\frac{\pi}{2} \notin E$ .

NOTA 3.1.8 Mínimo, mínimo absoluto ou mínimo global têm exatamente o mesmo significado. Portanto, neste curso usamos de preferência a expressão mínimo global em oposição a mínimo local (ver capítulo sobre as derivadas) enquanto a palavra **absoluto** é reservada as situação onde se trata do sinal (valor absoluto, convergência absoluta).

# Definição 3.1.8 (ínfimo e supremo)

Sejam fuma função e  $E\subset D_f$ um subconjunto do domínio.

ullet f admite um ínfimo m em E se

$$\forall \varepsilon > 0, \exists x \in E, \ m > f(x) - \varepsilon.$$

 $\bullet$  f admite um supremo M em E se

$$\forall \varepsilon > 0, \exists x \in E, \ M < f(x) + \varepsilon.$$

EXEMPLO 3.1.5 0 é o ínfimo da função  $f(x) = \frac{1}{x}$  no intervalo  $]0, +\infty[$  (mas a função não admite um mínimizante).

1 é o supremo da função  $f(x)=1-e^{-x}$  no intervalo  $]0,+\infty[$  (mas a função não admite um maximizante).

Temos a proposição seguinte.

## Proposição 3.1.2

Se f é minorada em E então f admite um único ínfimo.

Se f é majorada em E então f admite um único supremo.

## Definição 3.1.9

Seja f uma função e  $D_f$  o seu domínio. Dizemos que  $x \in D_f$  é um zero da função se f(x) = 0. Notamos por

$$\mathcal{Z}_f = \{ x \in D_f; \ f(x) = 0 \}$$

os zeros da função f.

Exemplo 3.1.6 Os zeros da função  $f(x) = x^2 - 1$  são -1, 1 e temos  $\mathcal{Z}_f = \{-1, 1\}$ .

# 3.1.3 Aritmética das funções

# Definição 3.1.10 (soma, produto)

Sejam f e g duas funções e  $E \subset D_f \cap D_g$ .

- Definimos a função soma por (f+g)(x) = f(x) + g(x).
- Definimos a função produto por (fg)(x) = f(x)g(x).
- Definimos o produto com um números real  $\lambda \in \mathbb{R}$  por  $(\lambda f)(x) = \lambda f(x)$ .

# Definição 3.1.11 (quociente)

Sejam f e g duas funções e  $E \subset D_f \cap D_g$  tal que  $\forall x \in E, g(x) \neq 0$ . Definimos a função quociente por

 $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}.$ 

EXEMPLO 3.1.7 A função quociente  $\tan(x) = \frac{\sin(x)}{\cos(x)}$  é bem definida desde que  $\cos(x) \neq 0$ , seja  $x \neq \frac{\pi}{2} + k\pi$ ,  $k \in \mathbb{Z}$ .

# Definição 3.1.12 (composta)

Sejam f e g duas funções.

- O conjunto  $E \subset D_f$  é compatível para a composta se  $f(E) \subset D_g$ .
- $\bullet\,$  Se E é compatível, definimos a função composta  $h=g\circ f$ em E por

$$\forall x \in E, \ h(x) = (g \circ f)(x) = g(f(x)).$$

EXEMPLO 3.1.8 A principal dificuldade na composta de funções é determinar qual é o maior domínio E compatível para a composta. Por exemplo se  $f(x) = x^2 - 1$  e  $g(y) = \ln(y)$  como  $D_g = ]0, +\infty[$  temos escolher E tal que  $f(E) \subset ]0, +\infty[$  quer dizer procurar os  $x \in \mathbb{R}$  tal que  $x^2 - 1 > 0$ . O maior conjunto E compatível é finalmente  $]-\infty, -1[\cup ]1, +\infty[$ .

# 3.1.4 Funções de relevo

Apresentamos aqui algumas funções de relevo.

# Definição 3.1.13

Seja  $a,b\in\mathbb{R},$  a função f(x)=ax+b chama-se função afim. O caso a=0 corresponde à função constante.

Generalizamos este tipo de função com as funções polinomiais.

### Definição 3.1.14

- Para qualquer  $i \in \mathbb{N}_0$ , a função  $x \to x^i$  chama-se monómio de grau i.
- Um polinómio de grau n é constituido por monómios de grau  $i \leq n$  tal que

$$f(x) = a_0 x^0 + a_1 x^1 + \dots + a_n x^n = \sum_{i=0}^n a_i x^i$$

onde  $a_0, a_1, ..., a_n$  são os coeficientes reais do polinómio.

• Sejam f e g dois polinómios, o quociente  $h = \frac{f}{g}$  chama-se função racional.

Exemplo 3.1.9 A função  $f(x)=4x^3$  é um monómio de grau 3 e  $g(x)=3-4x^4-12x^5$  é um polinómio de grau 5. Finalmente obtemos a fração racional  $h(x)=\frac{f(x)}{g(x)}=\frac{4x^3}{3-4x^4-12x^5}$ .

### Proposição 3.1.3

Para qualquer  $x \in \mathbb{R}$ , existe um único  $n \in \mathbb{Z}$  tal que  $n \leq x < n+1$ . Notamos por E(x) = n a parte inteira de x. Falamos também de função em escada porque cada valor inteiro representa um andar.

#### Lema 3.1.1

Para qualquer  $x \in \mathbb{R}$ , E(x+1) = E(x) + 1.

Demonstração. Por definição temos  $E(x) \le x < E(x) + 1$  então  $(E(x) + 1) \le x + 1 < (E(x) + 1) + 1$ . O número  $m = E(x) + 1 \in \mathbb{Z}$  e satisfaz a condição  $m \le x + 1 < m + 1$  assim como a proposição anterior, isto significa que m = E(x+1) e concluimos E(x+1) = E(x) + 1.  $\square$ 

Exemplo 3.1.10 E(1.21) = 1, E(-1.21) = -2. Existe outro tipo de arredondamento na literatura e também em programação, como o Matlab, tal que 'round', 'floor'.

#### Proposição 3.1.4

Seja a função f(x) = x - E(x) então f é periódica de período 1 e  $f(\mathbb{R}) = [0, 1]$ .

DEMONSTRAÇÃO. Seja  $x \in \mathbb{R}$  então por definição temos  $E(x) \leq x < E(x) + 1$ , seja  $0 \leq x - E(x) < 1$  e deduzimos  $f(x) \in [0, 1[$ .

Como  $D_f = \mathbb{R}$ , temos imediatamente que se  $x \in D_f$ ,  $x+1 \in D_f$ . Do outro lado, com o lema calculamos

$$f(x+1) = x+1 - E(x+1) = x+1 - [E(x)+1] = x - E(x) = f(x).$$

Deduzimos que a função f é 1-periodica.

EXEMPLO 3.1.11 Podemos verificar a propriedade  $\min(0, x) = -\max(0, -x)$  seja g(x) = -f(-x). Verificamos também

$$x = \min(0, x) + \max(0, x),$$
  $|x| = \max(0, x) - \min(0, x).$ 

Definimos a função sinal  $\operatorname{sng}(x) = \frac{x}{|x|}$  para  $x \neq 0$  e  $\operatorname{sng}(0) = 0$ .

# 3.2 Função recíproca

#### Definição 3.2.1 (injetiva)

Sejam f uma função e  $E \subset D_f$  um subconjunto do domínio. A função f é injetiva em E se

$$\forall x, x' \in E, \ f(x) = f(x') \Rightarrow x = x'.$$

NOTA 3.2.1 A última relação chama-se critério de injetividade.

Temos a proposição seguinte.

#### Proposição 3.2.1

Seja f uma função estritamente monótona no subconjunto  $E \subset D_f$ . Então f é injectiva.

DEMONSTRAÇÃO. Vamos dar a prova no caso de uma função estritamente crescente. Sejam dois pontos  $x, x' \in E$  tal que f(x) = f(x'). Supomos que x < x' então devemos ter f(x) < f(x') o que é impossível porque f(x) = f(x'). Do mesmo modo, supomos então que x > x'. Desta vez devemos ter f(x) > f(x') o que é também impossível. Fica finalmente a única possibilidade x = x' o que significa que a função é injetiva.

## Definição 3.2.2 (sobrejetiva)

Sejam f uma função e  $E \subset D_f$  um subconjunto do domínio e  $F \subset \mathbb{R}$ . Dizemos que a função é sobrejetiva de E sobre F se f(E) = F. Em outras palavras

$$\forall y \in F, \ \exists x \in E \ \text{tal que } f(x) = y.$$

EXEMPLO 3.2.1 Por exemplo a função  $f(x) = x^2$  é sobrejetiva de [-2, 2] em [0, 4] mas não é injetiva porque f(-2) = f(2) = 4 (dois valores diferentes do domínio têm a mesma imagem).

### Definição 3.2.3 (bijetiva)

Sejam f uma função e  $E \subset D_f$  um subconjunto do domínio e  $F \subset \mathbb{R}$ . Dizemos que a função é bijetiva de E sobre F se ela é injetiva e surjetiva. Por outras palavras

$$\forall y \in F, \ \exists x \in E \ \text{tal que } f(x) = y$$

e x é único.

EXEMPLO 3.2.2 Por exemplo a função  $f(x) = x^2$  é bijetiva de [0,2] em [0,4].

Obtemos a corolário seguinte.

#### Corolário 3.2.1

Seja f uma função estritamente monótona no subconjunto  $E \subset D_f$ . Então f é bijectiva de E em f(E).

## Definição 3.2.4 (função recíproca)

Seja f uma função bijetiva de  $E \subset D_f$  em  $F \subset \mathbb{R}$ . Então para qualquer  $y \in F$ , notamos por  $x = f^{-1}(y)$  o único x tal que f(x) = y. Além de mais temos

$$\forall x \in E, \ x = f^{-1}(f(x)), \quad \text{e} \quad \forall y \in F, \ y = f(f^{-1}(y)).$$

 $f^{-1}$  chama-se função recíproca definida de F sobre E.

NOTA 3.2.2 Infelizmente a notação  $f^{-1}$  é muita má porque podemos confundir com  $\frac{1}{f(x)}$ . Por exemplo a notação  $x^{-1}$  não é clara porque pode ser a função inversa  $\frac{1}{x}$  ou a função recíproca x. Para evitar qualquer confusão, usamos a expressão função recíproca para designar  $f^{-1}$  enquanto usamos a expressão função inversa para designar o inverso algébrico  $\frac{1}{f(x)}$ .

### Notação 3.2.1

Notamos  $f^{-1} \circ f = Id_E$  e  $f \circ f^{-1} = Id_F$  onde  $Id_E$  e  $Id_F$  são as funções identidades em E e F respetivamente.

Seja f é uma função bijetiva  $E \subset D_f$  sobre F e  $f^{-1}$  a sua função reciproca. Para qualquer ponto M = (x, f(x)) do gráfico de f, observamos que  $M = (f^{-1}(y), y)$ . Por consequência o ponto  $M' = (y, f^{-1}(y))$  é o ponto simétrico de M relativamente à reta diagonal x = y. Concluimos que os gráficos de f e  $f^{-1}$  são simétricos relativemente a diagonal.

# 3.3 Funções $x^a$ , $a^x$ , $\log_a(x)$

## 3.3.1 Função potência

### Definição 3.3.1

Seja  $a \in \mathbb{R}$ , notamos por  $x^a$  a função potência.

- Se  $a \in \mathbb{R}^+ \setminus \mathbb{Z}$ ,  $D_f = [0, +\infty[$ .
- Se  $a \in \mathbb{R}^- \setminus \mathbb{Z}$ ,  $D_f = ]0, +\infty[$ .
- Se  $a \in \mathbb{Z} \setminus \mathbb{N}_0$ ,  $D_f = \mathbb{R} \setminus \{0\}$ .
- Se  $a \in \mathbb{N}_0$ ,  $D_f = \mathbb{R}$ .

NOTA 3.3.1 Os monómios  $x^5$  ou o seu inverso  $x^{-5}$  são exemplos de funções potências.

# Notação 3.3.1

No caso particular  $a = \frac{1}{n}$  com  $n \in \mathbb{N}$ , notamos

$$x^{\frac{1}{n}} = \sqrt[n]{x}.$$

# Proposição 3.3.1

Seja  $a \neq 0$  então  $f(x) = x^a$  é uma bijecção de  $]0, +\infty[$  sobre  $]0, +\infty[$  e a sua função recíproca é dado por  $f^{-1}(y) = y^{\frac{1}{a}}$ 

Demonstração. Usamos a propriedade que  $(x^a)^b = x^{ab}$  desde que x > 0. Com efeito

$$f^{-1}(f(x)) = (x^a)^{\frac{1}{a}} = x^{\frac{a}{a}} = x.$$

NOTA 3.3.2 Temos casos mais complexos onde temos uma bijeção de  $\mathbb R$  sobre  $\mathbb R$ . Por exemplo se a=2i+1 é um número inteiro ímpar, então  $x^a$  e  $x^{\frac{1}{a}}$  faz sentido mesmo se  $x\leq 0$ .

### 3.3.2 Função exponencial

#### Definição 3.3.2

Seja a>0, notamos por  $a^x$  a função exponencial de base a. É a única função que satisfaz as propriedade seguintes

- $\forall x, y \in \mathbb{R}, a^{x+y} = a^x a^y$ .
- $a^0 = 1 e a^1 = a$ .

NOTA 3.3.3 É importante distinguir a função potência  $x^a$  da função exponencial  $a^x$ . Notamos também  $\exp_a(x) = a^x$  a exponecial de base a.

NOTA 3.3.4 Consideramos a sucessão  $u_i = \left(1+\frac{1}{i}\right)^i$ . Podemos mostrar que esta sucessão converge para um valor que notamos habitualmente e (o número de Neper) seja

$$\lim_{i \to \infty} \left( 1 + \frac{1}{i} \right)^i = e$$

Simplificamos a notação por  $\exp(x)=\exp_e(x)$  quando tratamos da função exponecial com a=e. A razão fundamental deste caso particular é que é o único valor que verifica a propriedade  $(e^x)'=e^x$ .

NOTA  $3.3.5\,$  É facil verificar que  $a^x\geq 0$  porque

$$a^x = a^{\frac{x}{2} + \frac{x}{2}} = a^{\frac{x}{2}} a^{\frac{x}{2}} > 0.$$

Por outro lado verificamos que

$$1 = a^0 = a^{x-x} = a^x a^{-x} \Rightarrow a^{-x} = \frac{1}{a^x} = \left(\frac{1}{a}\right)^x.$$

Recordamos também a propriedade  $a^{xy}=(a^x)^y=(a^y)^x$  para quaisquer  $x,y\in\mathbb{R}$ .

### Proposição 3.3.2

Se  $a \in ]0,1[$  a função é estritamente decrescente enquanto é estritamente crescente se a>1.

# 3.3.3 Função logarítmica

### Proposição 3.3.3

Seja a>0, a função exponencial de base a é bijetiva de  $\mathbb R$  sobre  $\mathbb R^+$  e notamos por  $\log_a(x)$  a função recíproca /função logarítmica) tal que

$$\forall x \in \mathbb{R}, \ \log_a(a^x) = x, \quad \forall x \in \mathbb{R}^+, \ \exp_a(\log_a(x)) = x.$$

### Notação 3.3.2

Para tratar do logarítmo na base a=e usamos a notação especial  $\ln(x)=\log_e(x)$ . Alguns autores usam também da notação  $\log(x)$  ou  $\log(x)$  para o logarítmo em base a=10.

Recordadamos aqui as principais propriedades do logarítmo.

### Proposição 3.3.4

Seja a > 0 e x, y > 0.

- $\log_a(xy) = \log_a(x) + \log_a(y)$
- $\log_a(1) = 0$ ,  $\log_a(a) = 1$ .
- $\log_a(1/x) = -\log_a(x)$ .

Outras propriedades entre as diferentes bases e o logaritmo neperiano são dadas aqui.

#### Proposição 3.3.5

Seja a, b > 0 e x > 0.

- $\log_a(x) = \frac{\ln(x)}{\ln(a)}$ .
- $\bullet \ a^x = e^{x \ln(a)}$
- $\log_a(b^x) = x \frac{\ln(b)}{\ln(a)}$ .

# 3.4 Funções trigonométricas

### Definição 3.4.1

Consideramos uma circunferência de raio 1 centrado em 0 e notamos por A o ponto à nossa direita.

- A orientação trigonométrica é dada pelo vetor no ponto A de direção (0,1).
- Para qualquer ângulo  $\theta \in [0, 2\pi]$ , associamos o ponto M situado na circunferência tal que o comprimento do arco vale  $\theta$ .
- o seno é a medida algébrica da projeção no eixo Oy.
- $\bullet$  o cosseno é a medida algébrica da projeção no eixo 0x.

Como  $\sin(0) = \sin(2\pi)$  e  $\cos(0) = \cos(2\pi)$ , efetuamos uma extensão das funções por periodicidade do modo seguinte.

#### Definição 3.4.2

Seja  $x \in \mathbb{R}$ , então existe um único  $n \in \mathbb{Z}$  é um único  $\theta \in [0, 2\pi[$  tal que  $x = \theta + 2\pi n$  e definimos

$$cos(x) = cos(\theta), sin(x) = sin(\theta).$$

A função sin é impar enquanto a função cos é par. Por construção, as duas funções são periódicas de periodo  $2\pi$ .

Agora definimos duas funções complementares.

### Definição 3.4.3

Para qualquer  $x \in \mathbb{R}, x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$  definimos

$$\tan(x) = \frac{\sin(x)}{\cos(x)}.$$

Para qualquer  $x \in \mathbb{R}, x \neq k\pi, k \in \mathbb{Z}$  definimos

$$\cot(x) = \frac{\sin(x)}{\cos(x)}.$$

As duas funções são ímpares e periódicas de período  $\pi$ .

Podemos agora definir as funções trigonométricas inversas

## Proposição 3.4.1 (arco-seno)

A função  $x \to y = \sin(x)$  é uma bijeção de  $[-\frac{\pi}{2}, \frac{\pi}{2}]$  sobre [-1, 1] e notamos por  $y \to x = \arcsin(y)$  a função recíproca definida de [-1, 1] sobre  $[-\frac{\pi}{2}, \frac{\pi}{2}]$ 

$$\forall x \in [-\frac{\pi}{2}, \frac{\pi}{2}], \arcsin(\sin(x)) = x, \quad \forall y \in [-1, 1], \sin(\arcsin(y)) = y.$$

 ${
m NOTA}~3.4.1~$  Cuidado! Os conjunto de partida e chegada são muitos importantes.

Exercício 3.4.1 Resolver as equações  $\sin(x) = \frac{1}{2}$ ,  $\sin(x) = \sin(2x)$ .

# Proposição 3.4.2 (arco-cosseno)

A função  $x \to y = \cos(x)$  é uma bijeção de  $[0, \pi]$  sobre [-1, 1] e notamos por  $y \to x = \arccos(y)$  a função recíproca definida de [-1, 1] sobre  $[0, \pi]$ 

$$\forall x \in [0, \pi], \arccos(\cos(x)) = x, \quad \forall y \in [-1, 1], \cos(\arccos(y)) = y.$$

Exercício 3.4.2 Resolver as equações  $\cos(x) = \frac{1}{\sqrt{2}}$ ,  $\cos(x) = \cos^2(x)$ .

# Proposição 3.4.3 (arco-tangente)

A função  $x \to y = \tan(x)$  é uma bijeção de  $]-\frac{\pi}{2},\frac{\pi}{2}[$  sobre  $\mathbb{R}$  e notamos por  $y \to x = \arctan(y)$  a função recíproca definida de  $\mathbb{R}$  sobre  $[-\frac{\pi}{2},\frac{\pi}{2}]$ 

$$\forall x \in ]-\frac{\pi}{2}, \frac{\pi}{2}[,\arctan(\tan(x))=x, \quad \forall y \in \mathbb{R}, \sin(\arctan(y))=y.$$

Exercício 3.4.3 Resolver as equações  $\tan(x) = \frac{1}{3}$ ,  $\tan(x) = \frac{1}{\tan(x)}$ ,  $\arctan(y) = 20$ .

# Proposição 3.4.4 (arco-cotangente)

A função  $x \to y = \cot(x)$  é uma bijeção de  $]0, \pi[$  sobre  $\mathbb{R}$  e notamos por  $y \to x = \operatorname{arccot}(y)$  a função recíproca definida de  $\mathbb{R}$  sobre  $[0, \pi]$ 

$$\forall x \in ]0, \pi[, \operatorname{arccot}(\cot(x)) = x, \quad \forall y \in \mathbb{R}, \cot(\operatorname{arccot}(y)) = y.$$

Exercício 3.4.4 Resolver as equações  $\cot(x) = -1$ ,  $\cot(x) = \tan(x)$ .

# 3.5 Funções hiperbólicas

## Definição 3.5.1 (Cosseno hiperbólico)

Para qualquer  $x \in \mathbb{R}$  definimos o cosseno hiperbólico por

$$\cosh(x) = \frac{e^x + e^{-x}}{2}.$$

Notamos que a função é par e positiva.

## Proposição 3.5.1

A função  $x \to y = \cosh$  é uma bijecção de  $[0, +\infty[$  sobre  $[1, +\infty[$  e notamos por  $y \to x = \arg\cosh(y)$  a função reciproca de  $[1, +\infty[$  sobre  $[0, +\infty[$ .

$$\forall x \in [0, +\infty[, \operatorname{arg\,cosh}(\operatorname{cosh}(x)) = x, \quad \forall y \in [1, +\infty[, \operatorname{cosh}(\operatorname{arg\,cosh}(y)) = y.$$

Ao contrário das funções trigonométricas circulares, é possivel dar uma expressão analítica às funções hiperbólicas recíprocas.

# Proposição 3.5.2

Para qualquer  $y \in [1, +\infty[$ , temos

$$\operatorname{arg} \cosh(y) = \ln\left(y + \sqrt{y^2 - 1}\right).$$

DEMONSTRAÇÃO. Seja  $y = \cosh(x)$  então temos  $2y = X + \frac{1}{X}$  com  $X = e^x$ , seja ainda  $X^2 - 2yX + 1 = 0$ . Temos de resolver uma equação do segundo grau cujas as soluções são

$$X_1 = y - \sqrt{y^2 - 1}, \quad X_2 = y + \sqrt{y^2 - 1}$$

Como  $x \ge 0$  então  $X = e^x \ge 1$  e devemos ecolher a segunda solução. Obtemos assim  $e^x = X = y + \sqrt{y^2 - 1}$ , seja ainda  $x = \ln\left(y + \sqrt{y^2 - 1}\right)$ .

### Definição 3.5.2 (Seno hiperbólico)

Para qualquer  $x \in \mathbb{R}$  definimos o seno hiperbólico por

$$\sinh(x) = \frac{e^x - e^{-x}}{2}.$$

Notamos que a função é impar.

#### Proposição 3.5.3

A função  $x \to y = \sinh$  é uma bijeção de  $\mathbb{R}$  em  $\mathbb{R}$  e notamos por  $y \to x = \arg \sinh(y)$  a função recíproca de  $\mathbb{R}$  sobre  $\mathbb{R}$ .

 $\forall x \in [0, +\infty[, \arg\sinh(\sinh(x)) = x, \quad \forall y \in [1, +\infty[, \sinh(\arg\sinh(y)) = y.$ 

E possível dar uma expressão analítica da função recíproca.

#### Proposição 3.5.4

Para qualquer  $y \in [1, +\infty[$ , temos

$$\operatorname{argsinh}(y) = \ln\left(y + \sqrt{y^2 + 1}\right).$$

DEMONSTRAÇÃO. Seja  $y=\sinh(x)$  então temos  $2y=X-\frac{1}{X}$  com  $X=e^x$ , seja ainda  $X^2-2yX-1=0$ . Temos de resolver uma equação do segundo grau cujas as soluções são

$$X_1 = y - \sqrt{y^2 + 1}, \quad X_2 = y + \sqrt{y^2 + 1}$$

Como a primeira solução é negativa, devemos ecolher a segunda solução. Obtemos assim  $e^x = X = y + \sqrt{y^2 + 1}$ , seja ainda  $x = \ln\left(y + \sqrt{y^2 + 1}\right)$ .

## Definição 3.5.3 (tangente hiperbólica)

Para qualquer  $x \in \mathbb{R}$  definimos a tangente hiperbólica por

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

Notamos que a função é par.

### Proposição 3.5.5

A função  $x \to y = \tanh$  é uma bijeção de  $\mathbb{R}$  sobre ]-1,1[ e notamos por  $y \to x = \arg\tanh(y)$  a função recíproca de ]-1,1[ sobre  $\mathbb{R}$ .

 $\forall x \in \mathbb{R}, \arg \tanh(\tanh(x)) = x, \quad \forall y \in ]-1, 1[, \tanh(\arg \tanh(y)) = y.$ 

É possível dar uma expressão analítica à função recíproca.

## Proposição 3.5.6

Para qualquer  $y \in ]-1,1[$ , temos

$$\operatorname{argtanh}(y) = \frac{1}{2} \ln \left( \frac{1+y}{1-y} \right).$$

Demonstração. Seja  $y=\tanh(x)$  então temos  $y=\frac{X^2-1}{X^2+1}$  com  $X=e^x$ , seja ainda  $(1-y)X^2=1+y$ . Obtemos a solução  $e^x=X=\sqrt{\frac{1+y}{1-y}}$  ou ainda  $x=\ln\left(\sqrt{\frac{1+y}{1-y}}\right)$ .

# Definição 3.5.4 (cotangente hiperbólica)

Para qualquer  $x \in \mathbb{R} \setminus \{0\}$  definimos a cotangente hiperbólica por

$$\coth(x) = \frac{\cosh(x)}{\sinh(x)} = \frac{e^x + e^{-x}}{e^x - e^{-x}}.$$

Notamos que a função é par.

## Proposição 3.5.7

A função  $x \to y = \coth$  é uma bijeção de  $]0, +\infty[$  sobre  $]1, +\infty[$  e notamos por  $y \to x = \operatorname{arg} \coth(y)$  a função recíproca de  $]1, +\infty[$  sobre  $]0, +\infty[$ .

 $\forall x \in ]0, +\infty[, \operatorname{arg} \operatorname{coth}(\operatorname{coth}(x)) = x, \quad \forall y \in ]1, +\infty[, \operatorname{coth}(\operatorname{arg} \operatorname{coth}(y)) = y.$ 

É possível dar uma expressão analítica à função recíproca.

# Proposição 3.5.8

Para qualquer  $y \in ]1, +\infty[$ , temos

$$\operatorname{arg} \operatorname{coth}(y) = \frac{1}{2} \ln \left( \frac{1+y}{1-y} \right).$$

Demonstração. A prova faz-se exatamente como no caso anterior. Notamos que arg  $\tanh(y)$  e arg  $\coth(y)$  têm a mesma expressão analítica mas são definidas em domínios diferentes.  $\square$