Theory of Automata

Ambiguous Grammars

Dr. Sabina Akhtar

Revision

Ambiguity in CFGs

 A CFG is said to be ambiguous if there exists a string which has more than one left-most derivation

Example:

S ==> AS | ε A ==> A1 | 0A1 | 01

LM derivation #1:

S => AS

=> 0A1S

=>0<mark>A1</mark>1S

=> 00111S

=> 00111

LM derivation #2:

S => AS

=>A1S

=> 0A11S

=> 00111S

=> 00111

Input string: 00111

Can be derived in two ways

Ambiguous Grammars

- A CFG is ambiguous if there is a string in the language that is the yield of two or more parse trees.
- Example: S -> SS | (S) | ()
- Two parse trees for ()()().

Draw the parse trees.

Example

Why does ambiguity matter?

$$E ==> E + E | E * E | (E) | a | b | c | 0 | 1$$

$$string = a * b + c$$

$$\cdot \underbrace{LM \text{ derivation } #1:}_{\bullet E \Rightarrow E + E \Rightarrow E * E + E}$$

$$==>* a * b + c$$

$$\cdot \underbrace{LM \text{ derivation } #2}_{\bullet E \Rightarrow E * E \Rightarrow a *$$

Removing Ambiguity in Expression Evaluations

- It MAY be possible to remove ambiguity for some CFLs
 - E.g., in a CFG for expression evaluation by imposing rules & restrictions such as precedence
 - This would imply rewrite of the grammar

Removing Ambiguity in Expression Evaluations

- It MAY be possible to remove ambiguity for some CFLs
 - E.g., in a CFG for expression evaluation by imposing rules & restrictions such as precedence
 - This would imply rewrite of the grammar
- Precedence: (), * , +

Modified unambiguous version:

Ambiguous version:

E ==> E + E | E * E | (E) | a | b | c | 0 | 1

How will this avoid ambiguity?

Parse tree for a*b+c and a+b*c a+b+c

Ambiguity, Left- and Rightmost Derivations

- If there are two different parse trees, they must produce two different leftmost derivations by the construction given in the proof.
- Conversely, two different leftmost derivations produce different parse trees by the other part of the proof.
- Likewise for rightmost derivations.

Ambiguity, etc. -(2)

- Thus, equivalent definitions of "ambiguous grammar' are:
 - 1. There is a string in the language that has two different leftmost derivations.
 - 2. There is a string in the language that has two different rightmost derivations.

Ambiguity is a Property of Grammars, not Languages

 For the balanced-parentheses language, here is another CFG, which is unambiguous.

Class Activity: Unambiguous Grammar

 Construct a parse tree for ()()() check if there are more than 1 trees possible.

LL(1) Grammars

- As an aside, a grammar such B -> (RB | €
 R ->) | (RR, where you can always figure out the production to use in a leftmost derivation by scanning the given string left-to-right and looking only at the next one symbol is called LL(1).
 - "Leftmost derivation, left-to-right scan, one symbol of lookahead."

LL(1) Grammars -(2)

- Most programming languages have LL(1) grammars.
- LL(1) grammars are never ambiguous.

Inherent Ambiguity

- It would be nice if for every ambiguous grammar, there were some way to "fix" the ambiguity, as we did for the balanced-parentheses grammar.
- Unfortunately, certain CFL's are *inherently ambiguous*, meaning that every grammar for the language is ambiguous.

Example: Inherent Ambiguity

- The language $\{0^i1^j2^k \mid i=j \text{ or } j=k\}$ is inherently ambiguous.
- Intuitively, at least some of the strings of the form 0ⁿ1ⁿ2ⁿ must be generated by two different parse trees, one based on checking the 0's and 1's, the other based on checking the 1's and 2's.

Class Activity

```
S -> AB | CD
A -> 0A1 | 01
B -> 2B | 2
C -> 0C | 0
D -> 1D2 | 12
```

Is the above grammar ambiguous? If yes prove it by providing 2 parse trees for a word of length greater than 6.

(Start variable is S)

Class Activity

2.46 Consider the following CFG *G*:

$$S
ightarrow SS \mid T$$
 $T
ightarrow aTb \mid ab$

Describe L(G) and show that G is ambiguous.

Class Activity

Design CFG for

$$-\{0^{i}1^{j}2^{k} \mid i = j \text{ or } j = k\}$$

Exercise

^A2.3 Answer each part for the following context-free grammar G.

$$egin{aligned} R &
ightarrow XRX \mid S \ S &
ightarrow \mathtt{a} T\mathtt{b} \mid \mathtt{b} T\mathtt{a} \ T &
ightarrow XTX \mid X \mid oldsymbol{arepsilon} \ X &
ightarrow \mathtt{a} \mid \mathtt{b} \end{aligned}$$

- **a.** What are the variables of G?
- **b.** What are the terminals of G?
- **c.** Which is the start variable of G?
- **d.** Give three strings in L(G).
- **e.** Give three strings *not* in L(G).
- **f.** True or False: $T \Rightarrow aba$.
- **g.** True or False: $T \stackrel{*}{\Rightarrow}$ aba.
- **h.** True or False: $T \Rightarrow T$.

- i. True or False: $T \stackrel{*}{\Rightarrow} T$.
- j. True or False: $XXX \stackrel{*}{\Rightarrow} aba$.
- **k.** True or False: $X \stackrel{*}{\Rightarrow}$ aba.
- 1. True or False: $T \stackrel{*}{\Rightarrow} XX$.
- **m.** True or False: $T \stackrel{*}{\Rightarrow} XXX$.
- **n.** True or False: $S \stackrel{*}{\Rightarrow} \varepsilon$.
- **o.** Give a description in English of L(G).

Exercise

- **2.4** Give context-free grammars that generate the following languages. In all parts, the alphabet Σ is $\{0,1\}$.
 - ^Aa. $\{w \mid w \text{ contains at least three 1s}\}$
 - **b.** $\{w | w \text{ starts and ends with the same symbol}\}$
 - c. $\{w | \text{ the length of } w \text{ is odd} \}$
 - Ad. $\{w \mid \text{ the length of } w \text{ is odd and its middle symbol is a 0} \}$
 - **e.** $\{w | w = w^{\mathcal{R}}, \text{ that is, } w \text{ is a palindrome}\}$
 - **f.** The empty set

References

- Book Chapter
- Lectures from Stanford University
 - http://infolab.stanford.edu/~ullman/ialc/spr10/sp r10.html#LECTURE%20NOTES
- Lectures from Washington State University
 - http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/