

Mechanical Springs

- Controlled flexibility is required in many applications
 - Springs provide the solution
- Used for storing and releasing energy
- Soften impact loads (by absorbing energy)
- You will find springs in
 - Automotive suspensions
 - Stapler
 - Locks
 - IC engine valves
 - Pens
 - Door closers
 - Many other appliances

Helical springs

• Made by winding a spring wire over a mandrel

$$\tau_{\max} = \frac{Tr}{J} + \frac{F}{A}$$

C = D/d; Spring index

$$\tau = \frac{Tr}{J} + \frac{F}{A} = \frac{8FD}{\pi d^3} + \frac{4F}{\pi d^2}$$

$$\tau = \frac{8FD}{\pi d^3} \left(1 + \frac{1}{2C} \right) = \frac{8FD}{\pi d^3} K_s$$

 K_s = Shear stress correction factor

Deflection of springs

Strain Energy
$$U = \frac{T^2l}{2GJ} + \frac{F^2l}{2GA}$$
; $T = \frac{FD}{2}$

$$U = \frac{4F^{2}D^{2}}{G\pi d^{4}}\pi DN_{a} + \frac{2F^{2}}{G\pi d^{2}}\pi DN_{a}$$

 N_a - Number of active coils

G- Shear modulus

$$U = \frac{4F^2D^3}{Gd^4}N_a \left(1 + \frac{1}{2C^2}\right) \sim \frac{4F^2D^3}{Gd^4}N_a$$

$$y = \frac{dU}{dF} = \frac{8FD^3}{Gd^4}N_a; \ k = \frac{F}{y} = \frac{Gd^4}{8D^3N_a}$$

		Type of Spring Ends					
Term	Plain	Plain and Ground	Squared or Closed	Squared and Ground			
End coils, N _e	0	1	2	2			
Total coils, N_t	Na	$N_a + 1$	$N_a + 2$	$N_a + 2$			
Free length, L_0	$pN_a + d$	$p(N_a + 1)$	$pN_a + 3d$	$pN_a + 2d$			
Solid length, Ls	$d(N_t + 1)$	dN_t	$d(N_t + 1)$	dN_t			
Pitch, p	$(L_0 - d)/N_a$	$L_0/(N_a + 1)$	$(L_0 - 3d)/N_a$	$(L_0 - 2d)/N_a$			

Clash allowance

- The force-deflection response of springs should be ideally linear till it reaches solid length
- But it is not so as the some coils starts touching each other before solid length is reached due to manufacturing inaccuracies

Force at solid length: $F_s = ky_s = k(L_0 - L_s)$

Maximum force: $F_{\text{max}} = ky_{\text{max}} = k(L_0 - L_{\text{max}})$

Stability

• Like columns, compression springs can buckle when their deflection exceeds a limit y_{cr}

$$y_{cr} = L_0 C_1 \left\{ 1 - \left[1 - \frac{C_2}{\lambda_{eff}^2} \right]^{1/2} \right\}; \quad \lambda_{eff} = \frac{\alpha L_0}{D}$$

 L_0 – Free length, α – End condition costant

$$L_0 < \frac{\pi D}{\alpha} \left\{ \frac{2(E-G)}{2G+E} \right\}^{1/2}$$
 for absolute stability,

E-Young's modulus, G-Shear modulus

For steel springs, $L_0 < 2.63 \frac{D}{\alpha}$ for absolute stability

Stability

End Condition	Constant α
Spring supported between flat parallel surfaces (fixed ends)	0.5
One end supported by flat surface perpendicular to spring axis (fixed); other end pivoted (hinged)	0.707
Both ends pivoted (hinged)	1
One end clamped; other end free	2

^{*}Ends supported by flat surfaces must be squared and ground.

Spring surge

- When a helical compression spring is subjected to excitation close to its natural frequency, coils can start clashing each other.
- The forcing frequency should be well separated from the natural frequency of the spring to avoid this.
- Forcing frequency should be much smaller than natural frequency

Frequency in Hz, $f = \frac{1}{2} \sqrt{\frac{kg}{W}}$ when ends are always in contact with plates

k-spring stiffness, g-accleration due to gravity

$$W = \frac{\pi^2 d^2 D N_a \gamma}{4}$$
; γ is specific weight

Spring Materials

- Springs are manufactured either by hot or cold working
- Winding the spring wire over a mandrel: this process induces residual stresses due to bending
- Pre-hardened wire should not be used for C < 4 or d > 6 mm
- Materials
 - Plain carbon steels
 - Alloy steels
 - Nickel alloys
 - Spring brass

Tensile Strength

$$S_{ut} = \frac{A}{d^m}$$

- Annealing
- Set Removal or Pre-setting

Table 10-4

Constants A and m of $S_{ut} = A/d^m$ for Estimating Minimum Tensile Strength of Common Spring Wires Source: From Design Handbook, 1987, p. 19. Courtesy of Associated Spring.

Material	ASTM No.	Exponent m	Diameter, in	A, kpsi·in ^m	Diameter, mm	A, MPa·mm ^m	Relative Cost of wire
Music wire*	A228	0.145	0.004-0.256	201	0.10-6.5	2211	2.6
OQ&T wire [†]	A229	0.187	0.020-0.500	147	0.5-12.7	1855	1.3
Hard-drawn wire [‡]	A227	0.190	0.028-0.500	140	0.7-12.7	1783	1.0
Chrome-vanadium wire§	A232	0.168	0.032-0.437	169	0.8-11.1	2005	3.1
Chrome-silicon wire	A401	0.108	0.063-0.375	202	1.6-9.5	1974	4.0
302 Stainless wire#	A313	0.146	0.013-0.10	169	0.3-2.5	1867	7.6-11
		0.263	0.10-0.20	128	2.5-5	2065	
		0.478	0.20-0.40	90	5-10	2911	
Phosphor-bronze wire**	B159	0	0.004-0.022	145	0.1-0.6	1000	8.0
		0.028	0.022-0.075	121	0.6-2	913	
		0.064	0.075-0.30	110	2-7.5	932	

	Elastic Limit, Percent of 5.,		Diameter	E		G	
Material		Torsion	d, in	Mpsi	GPa	Mpsi	GPa
Music wire A228	65-75	45-60	< 0.032	29.5	203.4	12.0	82.7
			0.033-0.063	29.0	200	11.85	81.7
			0.064-0.125	28.5	196.5	11.75	81.0
			>0.125	28.0	193	11.6	80.0
HD spring A227	60-70	45-55	< 0.032	28.8	198.6	11.7	80.7
			0.033-0.063	28.7	197.9	11.6	80.0
			0.064-0.125	28.6	107.2	11.5	79.3
	$S_{yt} =$	0.755	S_{ut} ; $S_{sv} = 0$	0.577	7 C	11.4	78.6
Oil tempered A239	J_{yt} —	0.75	θ_{ut} , $\theta_{sy} - \epsilon$	J.J 1 1	y_t	11.2	77.2
Valve spring A230	03-40	30-00	•	29.0	200.4	11.2	77.2
Chrome-vanadium A231	88-93	65-75		29.5	203.4	11.2	77.2
A232	88-93			29.5	203.4	11.2	77.2
Chrome-silicon A401	85-93	65-75		29.5	203.4	11.2	77.2
Stainless steel							
A313*	65-75	45-55		28	193	10	69.0
1 <i>7-7</i> PH	75-80	55-60		29.5	208.4	11	75.8
414	65-70	42-55		29	200	11.2	77.2
420	65-75	45-55		29	200	11.2	77.2
431	72-76	50-55		30	206	11.5	79.3
Phosphor-bronze B159	75-80	45-50		15	103.4	6	41.4
Beryllium-copper B197	70	50		17	117.2	6.5	44.8
	7.0	50-55		19	131	7.3	50.3
	75	30-33		1.7			

Helical Compression Springs: Fatigue design

• Springs are always subjected to fluctuating loads

$$F_{m} = \frac{r_{\min} + r_{\max}}{2}$$

$$F_{a} = \frac{F_{\max} - F_{\min}}{2}$$

• Calculate τ_a and τ_m

Approximate Strength Ratios of Some Common Spring Materials

$S_{ys}IS_u$	S'_{es}/S_u
0.42	0.21
0.40	0.23
0.45	0.22
0.52	0.20
0.52	0.20
	0.42 0.40 0.45 0.52

Helical Compression Springs: Fatigue design

Zimmerli's approach

- ➤ Observed that size, material and tensile strength has no effect on the endurance limit when d < 10 mm
- Springs are many times subjected to shot peening for improving fatigue life
- \triangleright For R=0, the value of S_{se} (S_a) is as follows for infinite life
 - ➤ S_{se} = 310 MPa for unpeened springs
 - >S_{se} = 465 MPa for peened springs
- \triangleright The above is not for fully reversed loading as $\tau_a = \tau_m$

(F. P. Zimmerli, "Human Failures in Spring Applications," *The Mainspring, no.* 17, Associated Spring Corporation, Bristol, Conn., August–September 1957)

Helical Compression Springs: Fatigue design

- Calculate τ_m, τ_a from load history
- Use Zimmerly data for **infinite life** given below For unpeened springs $S_{sa}^z = 241 \text{ MPa}, S_{sm}^z = 379 \text{ MPa}$ For peened springs $S_{sa}^z = 398 \text{ MPa}, S_{sm}^z = 534 \text{ MPa}$
- Construct Goodman line using the above data

Spring design

- \triangleright Spring index: 4 ≤ C ≤ 12, Choose C
- \triangleright If stiffness k is specified then
 - From F_{max} calculate y_{max}
 - Using the condition $\xi \ge 0.15$ determine F_s or y_s
 - The factor of safety at solid length (n_s) should be at least 1.2: Using this fix d. Choose standard size
 - You will have to choose the material at this point to get S_{ut} and S_{sy}
 - Check if factor of safety at F_{max} is sufficient
- Now using $k = \frac{d^4G}{8D^3N_a}$ fix N_a ; (4 $\leq N_a \leq$ 12) then get L₀
- > Check for fatigue, buckling and surge
- Iterate till all conditions are satisfied

Multi-leaf springs

- Used in the suspension of trucks, railway wagons and SUVs
- Consists of a series of plates, usually having semielliptical shape
- Leaf at the top has maximum length- master leaf
- The leaves are held together by two U bolts and a center clip
- Re-bound clips are provided to keep the leaves in alignment

- The leaves share the load only when applied in direction shown
- The leaves tend to separate when load is reversed

Leaf springs with additional full length leaves

- ➤ Leaf springs also have to withstand additional loads
 - Axial thrust (due to acceleration and deceleration)
 - o Lateral loads during turning of vehicle (cornering)
 - o Torque reactions about the axis of the shaft (axle)
- ➤ Additional full length leaves are added
- ➤ The graduated set and the additional leaves act like parallel springs: Deflection is same for both
- ➤ No friction between leaves and perfect contact assumed
 - ightharpoonupTotal load shared by the n_f additional leaves :- F_f
 - ➤ Total load shared by the graduated leaves :— F_g
 - \triangleright Force on the spring 2F=(2F_f + 2F_g)

 $n_{\!\scriptscriptstyle f}$: number of additional full length leaves (not including master) $n_{\!\scriptscriptstyle g}$: number of graduated length leaves (includes master)

$$y = \frac{4F_f L^3}{En_f bh^3} = \frac{6F_g L^3}{En_g bh^3}; \quad F_f = \frac{3n_f}{2n_g} F_g$$

$$F = F_f + F_g = F_g + \frac{3n_f}{2n_g} F_g \quad \Rightarrow F_g = \frac{2n_g}{2n_g + 3n_f} F; \quad F_f = \frac{3n_f}{2n_g + 3n_f} F$$

$$\sigma_f = \frac{6F_f L}{n_f bh^2} = \frac{18FL}{(2n_g + 3n_f)bh^2}$$

This is the maximum stress and varies along the span

$$\sigma_g = \frac{6F_gL}{n_gbh^2} = \frac{12FL}{(2n_g + 3n_f)bh^2}; \quad y_{\text{max}} = \frac{12FL^3}{(2n_g + 3n_f)Ebh^3}$$

 Maximum stress in additional leaves is 50% more than that in graduated leaves

- The gap of δ is closed by tightening the center U bolt
- The graduated set and the extra full length sets make full contact after this
- The gap δ has to be chosen such a way that when the service load (2F) is applied, the stress in both sets will be the same

- During closing the gap, both sets have the same force 2F_p
- This force causes
 - Compressive stress at the top fibers of the full length set
 - Tensile stresses in the top fibers of graduated set

$$\sigma_f = -\frac{6F_pL}{n_fbh^2}; \ \sigma_g = \frac{6F_pL}{n_gbh^2}$$

 When the external force 2F acts, it causes tensile stress on top fibers of both sets

$$\sigma_f = \frac{18FL}{(2n_f + 3n_g)bh^2}; \ \sigma_g = \frac{12FL}{(2n_f + 3n_g)bh^2}$$

 Add the two stresses and then equate to get F_p so that the stresses during service in both sets are equal

$$\sigma_f = \frac{18FL}{(2n_f + 3n_g)bh^2} - \frac{6F_pL}{n_fbh^2} = \sigma_g = \frac{12FL}{(2n_f + 3n_g)bh^2} + \frac{6F_pL}{n_gbh^2}$$

$$F_p = \frac{Fn_f n_g}{(2n_f + 3n_g)n}; n = n_f + n_g;$$

Putting back in previous equation

$$\sigma_f = \frac{6FL}{nbh^2} = \sigma_g$$

$$\delta = \frac{6F_p L^3}{n_g Ebh^3} + \frac{4F_p L^3}{n_f Ebh^3} = \frac{2FL^3}{nEbh^3}$$

Material

• Made of hardened steel

G92600 (SAE 9260) G86600(SAE 8660)
G40680 (SAE 4068) G51600(SAE 5160)
G41610 (SAE 4161) G51601(SAE 51B60)
G61500 (SAE 6150) H51600(SAE 5160H)
G50601(SAE 50B60)

Typical properties

Hardness:

Bhn 388-461 (3000 kg mass)

Brinell indentation diameter 3.10-

2.85 mm

Rockwell C 42-49

Tensile strength:

1300-1700 MPa

Yield strength

(0.2% offset):

1170-1550 MPa

Reduction of area:

25% min

Elongation:

7% min

Source: SAE Spring design manual