ブートキャンプ for Data Science 2回目講義資料

Tryeting Inc. ながえゆうき

- イントロダクション
 - ・ この講義の趣旨の再確認
 - 前回の宿題の確認
 - ・プ・レ・ゼ・ン
- 早速やってみよう
 - アヤメのデータで、let's classification (Rでの分類問題)
 - API経由で予測モデルを活用する (サービス化・Bash-shell)

- イントロダクション
 - ・ この講義の趣旨の再確認
 - 前回の宿題の確認
 - ・プ・レ・ゼ・ン
- 早速やってみよう
 - アヤメのデータで、let's classification (Rでの分類問題)
 - API経由で予測モデルを活用する (サービス化・Bash-shell)

さて、どうでしたか?

今回の一連の講義は、レベルアップのためのもの

含 ついていけない

◎ わからないことがあればきく

諦めないで、頑張りましょう!

本授業のゴール

<ゴール>

高度な統計学や機械学習理論とスキルを体系立てて理解し、ビジネス課題に適用できる人材育成を目指します。具体的に以下ことができるようになることを目指します。

- 高度なデータ分析技術を用いてビジネス課題解決ができる
- 「なぜこの分析手法を使うか」を技術的な側面とビジネス側面から判断できる
- PythonやRを使って求められている課題に対し適切な分析手法を実行できる (やっていけないことも理解している)
- 分析結果を関係者にわかりやすく説明できる

<特徴>

- 体系立てて学習することで、データ分析技術の引き出しを増やします。
- 小規模クラスのため、クラス内での議論や講師とやりとりを多くすることで 内容理解を深めることができます。
- 理解を深めるためのクイズやハンズオンで演習(宿題含む)を数多く実施し、 理解するだけでなく手を動かせることを目標にします。

本授業のゴール

<ゴール>

高度な統計学や機械学習理論とスキルを体系立てて理解し、ビジネス課題に適用できる人材育成を目指します。具体的に以下ことができるようになることを目指します。

- 高度なデータ分析技術を用いてビジネス課題解決ができる
- 「なぜこの分析手法を使うか」を技術的な側面とビジネス側面から判断できる
- PythonやRを使って求められている課題に対し適切な分析手法を実行できる (やっていけないことも理解している)
- 分析結果を関係者にわかりやすく説明できる

<特徴>

- 体系立てて学習することで、データ分析技術の引き出しを増やします。
- 小規模クラスのため、クラス内での議論や講師とやりとりを多くすることで 内容理解を深めることができます。
- 理解を深めるためのクイズやハンズオンで演習(宿題含む)を数多く実施し、 理解するだけでなく手を動かせることを目標にします。

プロジェクトの進行:こんな感じ

概要

- 合計約2~3ヶ月のPBLプログラム秋期開講のブートキャンプ ⇒ 春期のプロジェクトワーク 春期開講のブートキャンプ ⇒ 夏期のプロジェクトワーク
- メンターによるコーチングやピアディスカッションの場を提供
- プロジェクトと並行して名古屋大学のオンライン講座を提供

前半 1.5ヶ月

ブートキャンプ

(前提知識の修得)

データサイエンスの基本コンセプトや基本的 分析技術のレクチャー

内容

• PBLの概要理解

オンライン講義(適宜)

後半

1-2ヶ月 プロジェクトワーク

(常駐型orリモート型インターンによる実践経験)

- 受講者によるプロジェクト推進
- データ提供元へのプレゼンテーションと議論
- ・ 議論に基づき追加分析・修正
- オンライン講義(適宜)

習得・獲得できるもの

- データサイエンスの概要理解
- 使用言語の基本の習得
- プロジェクトの概要理解

- 分析手法の理解と使用方法の理解
- ・ プロジェクト経験、プレゼンテーションのまとめ方等
- 正社員採用やインターン採用の機会

プロジェクトの俯瞰図

初年度は春期と夏期の年2回の会員企業によるプロジェクトワークを実施。 それぞれに向け、東京・名古屋で事前のトレーニングプログラムを開講。

■初年度のスケジュール

要は…

頑張ると、企業が目をつけてくれる

就活もセットのデータサイエンスビジネス応用の授業。

(スポンサーが見ている)

ちなみに

氏名	所属	学年	経験のあるプログラミング言語、経験年数等について記入してください。
川添亮太郎	医学系研究科	D2	
筒井大貴	生命農学研究科	ポスドク	プログラミングに入るのかは不安ですが、Rなら遺伝子発現解析などで1年ほど使っていました
河合 翼	生命農学研究科	博士課程前期課程2年	シェルスクリプト(Unix)と若干R, それぞれ約1年です。
佐藤 真	工学研究科有機·高分子化学専攻	研究員	Fortran (簡単なデータ解析に使う程度)
岡本一輝	工学研究科	修士1年	Fortran 半年
山口毅志	生命農学研究科	博士課程2年	R言語を有意差検定程度で使用(3年間)
 直田格弥	名古屋大学	D2	Python 3カ月程度
山崎 匠	工学研究科 航空宇宙工学専攻	M2	C (授業でやったことがある程度), Python (積分計算に使用)
天本 義史	工学研究科	博士研究員	Python 1年
胡 蘇紅(こ そこう)	人文学研究科	D1	全くわからないんです。
嬰井 幹記 (さくらい よし	さ工学研究科計算理工学専攻	修士2年	fortran90,4年程 C言語,2年程
今井祐太	名古屋大学 創薬科学研究科	M1	R一年半ほど
土屋 健斗	生命農学研究科		1 Java半年、python1年、VB半年
アラム タニムル	理学研究科	D3	
公田 光司	理学研究科 生命理学専攻 動物器官	研究員	
加藤優介(かとうゆうすり	t) 理学研究科物質理学専攻(物理系)	博士後期課程2年	
松本 恵	工学研究科 化学・生物工学専攻(D3	C, C++, Java(企業にて7年間、組込み開発)、R(研究にて6年間)
東璐	文学研究科	D3	css
林 卓弥	名古屋大学大学院理学研究科	修士課程2年	C言語1年、FORTRAN言語 2 年
鈴木俊章	創薬科学研究科	D3	
今枝立至	工学	D2	C言語、Fortran
金山英誠	農学部		4 matlab、python、共に半年程度

ながえゆうき

工学研究科

D2

R(原理主義者), python, bash-shell, Cなどなど

ちなみに、プログラムかけることに価値はない。どう使って、価値を認めさせるか。(ナーバスにならなくてもいい)

この講義でのルール(暫定版)

- 楽しむ(リタイヤは、ご自由に)
- プログラミングそのものを教えるつもりない(ggrks)
- かといって、理論を教えるつもりない(教科書読んで)
- 社会人として扱います
- わからないことがあったら聞く(だいたいなんでも答える)

この講義でのルール(暫定版)

- 楽しむ(リタイヤは、ご自由に)
- プログラミングそのものを教えるつもりない(ggrks)
- かといって、理論を教えるつもりない(教科書読んで)
- 社会人として扱います
- わからないことがあったら聞く(だいたいなんでも答える)

- ・イントロダクション
 - この講義の趣旨の再確認
 - 前回の宿題の確認
 - ・プ・レ・ゼ・ン
- 早速やってみよう
 - アヤメのデータで、let's classification (Rでの分類問題)
 - API経由で予測モデルを活用する (サービス化・Bash-shell)

宿題

なんでもいいからオープンデータを見つけてきて、MLで予測をしてみよう

- pptx 1枚スライド(16:9)で作成・次回発表1分ピッチ・質疑3分
 - 入力データの構成は?
 - アウトプットの構成は?
 - わかると何が嬉しい?
- 作成ファイル
 - ピッチファイル: {name}_1_work.pptx
 - 作成コード: {name}_1_work.R
 - 作成MLモデルオブジェクト: {name}_1_work.obj
 - 印刷資料人数分

- ・イントロダクション
 - この講義の趣旨の再確認
 - 前回の宿題の確認
 - ・プ・レ・ゼ・ン
- 早速やってみよう
 - アヤメのデータで、let's classification (Rでの分類問題)
 - API経由で予測モデルを活用する (サービス化・Bash-shell)

このirisデータ、一体何?

- 米国の植物学者Edgar Andersonによって1936年に発表された研究のなかで、もともとの計測が行なわれている (Anderson, 1936)。数値データが報告されたのは、英国の統計学者Ronald Aylmer Fisherの1936年の論文 (Fisher, 1936)。
- setosaに比べて, versicolorとvirginicaの形態はよく似ている. setosaとの違いは, virsinicaのほうが大きく, versicolorで小さい. versicolorは, setosaとvirginicaの雑種に由来しているかもしれない.

このirisデータ、一体何?

- 米国の植物学者Edgar Andersonによって1936年に発表された研究のなかで、もともとの計測が行なわれている (Anderson, 1936)。数値データが報告されたのは、英国の統計学者Ronald Aylmer Fisherの1936年の論文 (Fisher, 1936)。
- setosaに比べて, versicolorとvirginicaの形態はよく似ている. setosaとの違いは, virsinicaのほうが大きく, versicolorで小さい. versicolorは, setosaとvirginicaの雑種に由来しているかもしれない.

これ。アルゴリズムではどうしようもない

きちんとデータの本質を知って、解析をすること が必要である好例。

- ・イントロダクション
 - この講義の趣旨の再確認
 - 前回の宿題の確認
 - ・プ・レ・ゼ・ン
- 早速やってみよう
 - アヤメのデータで、let's classification (Rでの分類問題)
 - API経由で予測モデルを活用する (サービス化・Bash-shell)

- ・イントロダクション
 - この講義の趣旨の再確認
 - 前回の宿題の確認
 - ・プ・レ・ゼ・ン
- 早速やってみよう
 - アヤメのデータで、let's classification (Rでの分類問題)
 - API経由で予測モデルを活用する (サービス化・Bash-shell)

下記のお客様のご要望を聞いて、利益最大化に貢献できそうな方法を考案し、 実現できるシステムの構成を、機械学習を交えてご提案せよ(コードは書か なくてもいい)

- 小売店舗のオーナー
- POSによる簡単な購買履歴データを持っている(後述)
- 「データは集めているだけ」
- 「どのお客様にクーポンを配ればいいのかわからない」
- 「単価を上げたい」

