Human Activity Recognition (HAR) Using smartphone sensor data to teach machines how we move

Neural Network SS 25

- Accelerometers & gyroscopes track motion along X, Y, Z
- Raw sensor values reflect user activity
- Patterns in this data allow us to predict behaviors
- Basis for Al models in Human Activity Recognition

Human Activity Recognition with Smartphone sensory

UCI Human Activity Recognition (HAR) Dataset

10,299 samples from 30 participants Smartphone worn on waist Sensors: Accelerometer + Gyroscope Sampling rate: 50 Hz

6 Activities:

- Walking
- Walking Upstairs
- Walking Downstairs
- Sitting
- Standing
- Laying

Format: 128 time steps × 9 features per sample

1.0

0.8

Activity: SITTING - Label: 3 - Sample Index: 4926

Labels

Label Distribution in **TRAIN** Set:

Label 0: 1226 samples (16.68%)

Label 1: 1073 samples (14.59%)

Label 2: 986 samples (13.41%)

Label 3: 1286 samples (17.49%)

Label 4: 1374 samples (18.69%)

Label 5: 1407 samples (19.14%)

Label Distribution in **TEST** Set:

Label 0: 496 samples (16.83%)

Label 1: 471 samples (15.98%)

Label 2: 420 samples (14.25%)

Label 3: 491 samples (16.66%)

Label 4: 532 samples (18.05%)

Label 5: 537 samples (18.22%)

What it Learns

Local temporal patterns in short windows
Fast, efficient, great at extracting motion spikes
Misses longer temporal relationships

1D CNN Architecture

Optimizer: Adam (Ir=0.001)

Loss Function: CrossEntropyLoss

Dropout: 0.5

Input Shape: (Batch, 9, 128)

Output: 6 classes

20 EPOCHS 500 EPOCHS

Hyperparameter Tuning 1D CNN

Epochs: 100

reduced Learning Rate: 0.0005

Loss Function: CrossEntropyLoss (with weighting)

boosted Sitting and Standing

100 EPOCHS

What it Learns

Full-sequence attention + global context Best for long, complex motion patterns

Transformer Encoder Model

Transformer

What it Learns

Local patterns + temporal dependencies
Balanced: local + sequence context
Slower than pure CNN

CNN-LSTM Model Architecture

CNN + LSTM Layer

20 EPOCHS 500 EPOCHS

Model	Accuracy	WALKING F1 Score	WALKING_ UPSTAIRS F1 Score	WALKING_ DOWNSTAIRS F1 Score	SITTING F1 Score	STANDING F1 Score	LAYING F1 Score
1D CNN	0.97	1	0.97	0.97	0.92	0.94	1
CNN-LSTM	0.94	0.97	0.96	0.93	0.89	0.92	0.99
Transformer	0.92	0.89	0.93	0.89	0.87	0.91	1

Key Takeaways

- 1D CNN gave the best performance overall
- Sitting vs. Standing was consistently the hardest to distinguish
- Hyperparameter tuning improved early training efficiency

Future Improvement

advanced data augmentation early stopping Add attention on top of CNN layers

Questions?

CNN (500 epochs)				CNN + LSTM (500 epochs)				
Activity	Precision	Recall	F1 Score	Activity	Precision	Recall	F1 Score	
WALKING	1.00	1.00	1.00	WALKING	1.00	0.94	0.97	
WALKING_UPSTAIRS	0.97	0.97	0.97	WALKING_UPSTAIRS	0.98	0.95	0.96	
WALKING_DOWNSTAIRS	0.97	0.98	0.97	WALKING_DOWNSTAIRS	0.88	0.98	0.93	
SITTING	0.97	0.87	0.92	SITTING	0.94	0.84	0.89	
STANDING	0.91	0.98	0.94	STANDING	0.88	0.95	0.92	
LAYING	0.99	1.00	1.00	LAYING	0.99	1.00	0.99	
Accuracy			0.97	Accuracy			0.94	

Transformer (500 epochs)

Activity	Precision	Recall	F1 Score
WALKING	0.94	0.85	0.89
WALKING_UPSTAIRS	0.94	0.93	0.93
WALKING_DOWNSTAIRS	0.84	0.95	0.89
SITTING	0.96	0.80	0.87
STANDING	0.85	0.97	0.91
LAYING	0.99	1.00	1.00
Accuracy			0.92

1D CNN

Transformer

