Tutorial 2 - Accessing biodiveristy data through web services

In this tutorial we will work with another r-package that can be used to download biodiversity data:

The IUCN redlist package rredlist

The IUCN RedList is a collective work of many researchers and conservaionists, which compile information about species population trends, habitats, and evaluations of all applicable threats. This information is used to assign a protection status to each species. You can find more information about the IUCN RedList here https://www.iucnredlist.org/).

Let's load the rredlist package:

```
In [1]: library(rredlist)
```

1. Get your API token

In order to use this package you first need to apply for an API token. You can do that by filling out this form here: https://apiv3.iucnredlist.org/api/v3/token (https://apiv3.iucnredlist.org/api/v3/token).

Since it is hard to predict how long it will take for IUCN to approve your token request, you can get a key from us (just approach us if you're getting to this part of the tutorial and haven't received your token yet).

Then store the API token as a string:

```
In [10]: iucn_api = 'paste_your_api_here'
```

Extra info: If you're interested you can store this key in your R environment. It's not necessary for this exercise but if you want you can check out the documentation of the functions $rl_use_iucn()$ and $edit_renviron()$.

2. Pick a taxon and find synonyms

Now you can again pick a species of your choice, in this example we're working with the tiger Panthera tigris.

```
In [38]: taxon_name <- "Panthera tigris" # tiger</pre>
```

We can check for synonyms of our species name, using the rl synonyms() function:

```
In [37]: rl_synonyms(taxon_name,key=iucn_api)
```

\$name

'Felis tigris'

\$count

1

\$result

accepted_id	accepted_name	authority	synonym	syn_authority
15955	Panthera tigris	(Linnaeus, 1758)	Felis tiaris	Linnaeus, 1758

IUCN standardizes all its' data to one main taxonomy, so you will not find any data associated with the synonyms ooutside of the accepted_name . Therefore make sure you continue working with the accepted_name .

Similarly as before in the GBIF tutorial, we can extract **popular names (vernacular names)** associated with our chosen taxon in the IUCN database:

In [39]: rl_common_names(taxon_name,key=iucn_api)

\$name

'Panthera tigris'

\$result

taxonname	primary	language
Tigre	FALSE	fre
Tiger	TRUE	eng

3. Habitat information

The IUCN rredlist package offers several functions to extract information about the chosen taxon. You can check out the available functions and explanation in the <u>official package documentation (https://cran.r-project.org/web/packages/rredlist/rredlist.pdf)</u>.

For example we can extract information about the habitats the species is found in using the $rl_habitats()$ function.

In [40]: rl_habitats(taxon_name, key=iucn_api)

\$name

'Panthera tigris'

\$result

code	habitat	suitability	season	majorimportance
1.1	Forest - Boreal	Suitable	NA	Yes
1.4	Forest - Temperate	Suitable	NA	Yes
1.5	Forest - Subtropical/Tropical Dry	Suitable	NA	Yes
1.6	Forest - Subtropical/Tropical Moist Lowland	Suitable	NA	Yes
1.7	Forest - Subtropical/Tropical Mangrove Vegetation Above High Tide Level	Suitable	NA	Yes
1.9	Forest - Subtropical/Tropical Moist Montane	Marginal	NA	NA
3.5	Shrubland - Subtropical/Tropical Dry	Suitable	NA	Yes
3.6	Shrubland - Subtropical/Tropical Moist	Suitable	NA	Yes
4.5	Grassland - Subtropical/Tropical Dry	Marginal	NA	NA
4.6	Grassland - Subtropical/Tropical Seasonally Wet/Flooded	Marginal	NA	NA

4. Threat status

One of the most interesting and unique information IUCN has to offer are the RedList assessments. Each species is classified into either one of the following categories:

- Least Concern (LC)
- Near threatened (NT)
- Vulnerable (VU)
- Endangered (EN)
- · Critically endangered (CR)
- Extinct in the wild (EW)
- Extinct (EX)
- Data deficient (DD)

Let's see how our species is evaluated. We are using the rl_search() function which will return all sorts of information, but for now we're only interested in the category of the output:

```
In [41]: threat_data = rl_search(taxon_name,key=iucn_api)
threat_data$result$category
```

'EN'

We can also view the history of IUCN assessments of our species and see if the trends have improved or worsened. Note that older evaluations may contain different categories, since IUCN has changed its' nomenclature several times in history:

```
In [42]: rl_history(taxon_name, key=iucn_api)
```

\$name

'Panthera tigris'

\$result

year	code	category
2015	EN	Endangered
2011	EN	Endangered
2010	EN	Endangered
2008	EN	Endangered
2002	EN	Endangered
1996	EN	Endangered
1994	Е	Endangered
1990	Е	Endangered
1988	E	Endangered
1986	Е	Endangered

5. Extract geographic information

Unfortunately it is not possible to download range maps for your species via the package rredlist (to our knowledge), even though IUCN has range maps for most species in their database stored on their server. Precise range maps can instead be downloaded manually via the webpage (https://www.iucnredlist.org /resources/spatial-data-download).

However the rredlist package offers a function rl_occ_country() which can be used to extract a list of countries where the species exists:

In [43]: occurrence_countries = rl_occ_country(taxon_name,key=iucn_api) occurrence_countries

\$name

'Panthera tigris'

\$count

24

\$result

code	country	presence	origin	distribution_code
AF	Afghanistan	Extinct Post-1500	Native	Regionally Extinct
BD	Bangladesh	Extant	Native	Native
вт	Bhutan	Extant	Native	Native
CN	China	Extant	Native	Native
ID	Indonesia	Extant	Native	Native
IN	India	Extant	Native	Native
IR	Iran, Islamic Republic of	Extinct Post-1500	Native	Regionally Extinct
KG	Kyrgyzstan	Extinct Post-1500	Native	Regionally Extinct
KH	Cambodia	Possibly Extinct	Native	Possibly Extinct
KP	Korea, Democratic People's Republic of	Possibly Extinct	Native	Possibly Extinct
KZ	Kazakhstan	Extinct Post-1500	Native	Regionally Extinct
LA	Lao People's Democratic Republic	Extant	Native	Native
MM	Myanmar	Extant	Native	Native
MY	Malaysia	Extant	Native	Native
NP	Nepal	Extant	Native	Native
PK	Pakistan	Extinct Post-1500	Native	Regionally Extinct
RU	Russian Federation	Extant	Native	Native
SG	Singapore	Extinct Post-1500	Native	Regionally Extinct
TH	Thailand	Extant	Native	Native
TJ	Tajikistan	Extinct Post-1500	Native	Regionally Extinct
TM	Turkmenistan	Extinct Post-1500	Native	Regionally Extinct
TR	Turkey	Extinct Post-1500	Native	Regionally Extinct
UZ	Uzbekistan	Extinct Post-1500	Native	Regionally Extinct
VN	Viet Nam	Possibly Extinct	Native	Possibly Extinct

As you can see, the output also contains the information if the species is extant or extinct in the country where it was once found. In the next step we use this information to plot a world map with countries highlighted where our species has been found, with different coloring depending on if the species is extinct or extant in the respective country.

6. Plotting geographic information

First let's turn the presence column, which contain the info if the taxon is extinct/extant in each country, into an array of 0 (extinct) and 1 (extant), in order to use this information for plotting:

```
In [49]: extant_extinct = occurrence_countries$result$presence
    extant_extinct[extant_extinct != "Extant"] <- 0
    extant_extinct[extant_extinct == "Extant"] <- 1</pre>
```

Now let's extract the list of countries where our species has been found:

```
In [50]: theCountries <- c(occurrence_countries$result$code) # ISO2 country codes
theCountries

'AF' 'BD' 'BT' 'CN' 'ID' 'IN' 'IR' 'KG' 'KH' 'KP' 'KZ' 'LA' 'MM' 'MY' 'NP' 'PK' 'RU'
'SG' 'TH' 'TJ' 'TM' 'TR' 'UZ' 'VN'
```

Now let's merge the list with our extinct/extant info with the list of the country names into one dataframe:

country	extant
AF	0
BD	1
ВТ	1
CN	1
ID	1
IN	1
IR	0
KG	0
KH	0
KP	0
KZ	0
LA	1
MM	1
MY	1
NP	1
PK	0
RU	1
SG	0
TH	1
TJ	0
TM	0
TR	0
UZ	0
VN	0

Now we will use the rworldmap package, which provides a function that allows us to find the countries on the world map based on their ISO2 codes:

```
In [52]: library(rworldmap)
    extMap <- joinCountryData2Map(extDF, joinCode = "ISO2", nameJoinColumn = "country")
# This will join your data.frame to the country map data</pre>
```

24 codes from your data successfully matched countries in the map 0 codes from your data failed to match with a country code in the map 219 codes from the map weren't represented in your data

Finally we can plot the map with the countries of presence of our species highlighted in red and the countires where the species went extinct in yellow:

extant

Resolving taxon names

Often in biology we are confronted with taxon names or lists of taxon names, and we need to somehow retrieve data for these taxa from public databases (as we did in the previous tutorial steps). The challenge here is usually to find the correct species name, since taxonomies can vary between databases and between different authors. Luckily there are great tools to standardize and resolve taxonomic issues in many cases, implemented in the taxize package.

The taxize package provides access to taxonomic information sourced from many databases, among them the Global Names Resolver (GNR) service provided by the Encyclopedia of Life (http://eol.org/). The advantage of taxize is that it is primarily designed for resolving taxonomic issues and thus has many useful functions for this purpose, compared to some similar but more simplified functionalities of the rgbif and rredlist packages we have seen in the previous tutorial steps.

Let's first load the package.

In [55]: library(taxize)

1. Finding correct taxon name for database

Let's say we have a list of species names and we want to know if our species are spelled correctly.

Here, we are searching for two misspelled names:

In [66]: temp <- gnr_resolve(names = c("Pantera tigrsi", "Homo saapiens"))
temp</pre>

user_supplied_name	submitted_name	matched_name	data_source_title	score
Pantera tigrsi	Pantera tigrsi	Panthera tigris (Linnaeus, 1758)	Catalogue of Life	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris (Linnaeus, 1758)	ITIS	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris	NCBI	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris (Linnaeus, 1758)	Union 4	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris (Linnaeus, 1758)	The Interim Register of Marine and Nonmarine Genera	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris	Freebase	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris (Linnaeus, 1758)	GBIF Backbone Taxonomy	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris (Linnaeus, 1758)	EOL	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris	EOL	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris (Linnaeus, 1758)	TaxonConcept	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris	AnAge	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris	ARKive	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris (Linnaeus, 1758)	Wikipedia in EOL	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris (Linnaeus, 1758)	EUNIS	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris	CU*STAR	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris (Linnaeus, 1758)	IUCN Red List of Threatened Species	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris (Linnaeus, 1758)	BioLib.cz	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris (Linnaeus, 1758)	nlbif	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris	Index to Organism Names	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris Linnaeus 1758	Index to Organism Names	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris (Linnaeus 1758)	Index to Organism Names	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris (Linnaeus, 1758)	uBio NameBank	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris	uBio NameBank	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris Linnaeus 1758	uBio NameBank	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris	Arctos	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris (Linnaeus 1758)	The Paleobiology Database	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris Linnaeus 1758	The Mammal Species of The World	0.75
Pantera tigrsi	Pantera tigrsi	Panthera tigris	Open Tree of Life Reference Taxonomy	0.75

Here you can find the database you want to download data from and use the according correct species name (can vary between databases).

2. Getting species list for higher taxon

Let's say we have a taxonomic family name and want to find all species belonging to this family, for example all dogs of the family Canidae.

A number of data sources in taxize provide the capability to retrieve higher taxonomic names, we will be using the <u>Catalogue of Life (COL) (http://www.catalogueoflife.org/)</u>.

```
In [82]: species_output = downstream("Canidae", downto = "Species", db = "col")
    species_output
```

Retrieving data for taxon 'Canidae'

\$Canidae

15

16

17

18

FALSE

FALSE

FALSE

FALSE

70	anidae		
	childtaxa_id	childtaxa_name	_
1	5f3ddd0e635c5fb11690722f002dbdfa	Atelocynus microtis	species
2	36807bbc8e4efedbea119a1144c0dae3	Canis adustus	species
3	cbc6668c8147b2292e3ab4b57696cc35	Canis anthus	species
4	2d360d349c645ad93fd960ae988101e9	Canis aureus	species
5	04afba115065ca57c2ea8f64fe876579	Canis latrans	species
6	f942db24200d36657e3e0e5d270b66cb	Canis lupaster	species
7	bcd6035778291a7feaad52cb7ac167cb	Canis lupus	species
8	3f5e32547d4f78fbd3e3dd4755a27166	Canis mesomelas	species
9	e2c274e049e7a12fa066f96028092720	Canis simensis	species
	9491363ed5ec89660e88360f5b26371d	Cerdocyon thous	species
	0b3e53b24ae32db8b7f60d943b8c3814	Chrysocyon brachyurus	species
12	59a93bdf80e76056b2e314cf0b036f9c	Cuon alpinus	species
	dd44e931aa3f678a294d10fa7077aec6	Dusicyon australis	species
14	f40aaf906fb148d75061b038ed87d151	Lycalopex culpaeus	species
15	35662d32e85eb35c5924815d886613b3	Lycalopex fulvipes	species
	9cd7fa30d6d5ee85a659136379561bc6	Lycalopex gymnocercus	species
17	1170f87af3bf43bcf4682cd3afa3ee28	Lycalopex sechurae	species
18	c35e04f0ec502c3ae31d718e14a29d10	Lycalopex vetulus	species
	52fba5321357578285952cce9c1b6dac	Lycaon pictus	species
	6ec904764dc49972c516a4e145fe1119		species
21	53df8909c343b83a85be76d14b33e0bb	Otocyon megalotis	species
	1c649d85dbd9ca61520070161bbb35b2	Speothos venaticus	species
23	773e517e0d62fa2480d4e98d903bca20		species
24	2c067f962be1d8728cdac746468de29e	Urocyon littoralis	species
25	eb30fda8c22c514872dc41db41aa9ee4	Vulpes bengalensis	species
	20348ff212809ed92379a8fd97ff8603	Vulpes cana	species
27	db657058fc8388992045c700568188b6	Vulpes chama	species
28		Vulpes corsac	species
	58d469f96f6b40a7f9091b29c117a88b	Vulpes ferrilata	species
	74f649c50206103b78005228c898e177	Vulpes lagopus	species
	fab10f7b9fa033416da18dabbb3e00b2	Vulpes macrotis	species
	65b53deea25e6b58b0eec077888c4094	Vulpes pallida	species
	db3a8a220f89e6efce06d28e2f183e9b	Vulpes rueppellii	species
	f7b9a26e37b69782b0d2b4438d46d128	Vulpes velox	species
	f76554e91aa357dd527f70ed534fa52c	Vulpes vulpes	species
36	0974e2e971e67503122402cf46b5fb1e	Vulpes zerda	species
	childtaxa_extinct		
1	FALSE		
2	FALSE		
3	FALSE		
4	FALSE		
5	FALSE		
6	FALSE		
7	FALSE		
8	FALSE		
9	FALSE		
10	FALSE		
11			
12	FALSE		
13			
14	FALSE		

You can now extract the list of all species belonging to your chosen family:

```
In [83]: species_list = species_output$Canidae$childtaxa_name
    species_list
```

'Atelocynus microtis' 'Canis adustus' 'Canis anthus' 'Canis aureus' 'Canis latrans' 'Canis lupaster' 'Canis lupus' 'Canis mesomelas' 'Canis simensis' 'Cerdocyon thous' 'Chrysocyon brachyurus' 'Cuon alpinus' 'Dusicyon australis' 'Lycalopex culpaeus' 'Lycalopex fulvipes' 'Lycalopex gymnocercus' 'Lycalopex sechurae' 'Lycalopex vetulus' 'Lycaon pictus' 'Nyctereutes procyonoides' 'Otocyon megalotis' 'Speothos venaticus' 'Urocyon cinereoargenteus' 'Urocyon littoralis' 'Vulpes bengalensis' 'Vulpes cana' 'Vulpes chama' 'Vulpes corsac' 'Vulpes ferrilata' 'Vulpes lagopus' 'Vulpes macrotis' 'Vulpes pallida' 'Vulpes rueppellii' 'Vulpes velox' 'Vulpes vulpes' 'Vulpes zerda'

Assignment

Now where you have a basic overview over the use of the rgbif, rredlist, and taxize packages, you are ready to approach a bioinformatic task based on biodiversity data:

Your supervisor asks you for help with a project about the cat family Felidae. Your task is to create a map of global occurrences of this family, colored by species. Further your supervisor asks you to retrieve a list of IUCN threat statuses for all species of this family (if you like a challenge, you can also create a second plot, colored by threat status instead of colored by species).

Since these data are supposed to be used in a publication, your supervisor expects you as a properly trained biodiversity data wizard to provide a DOI assigned dataset of Felidae occurrence records to be cited in the study.

Tips for assignment:

There are different ways of solving this task, one approach could be:

- 1. create a download request containing all records assigned to the taxon Felidae, using the rgbif::occ download() function
- 2. download the data and load into R (step 8 in the first tutorial)
- 3. export the DOI reference of the data download (step 8 in the first tutorial)
- 4. plot occurrences colored by name (step 8 in the first tutorial)
- 5. retrieve a species list of the family Felidae, using the taxize package
- 6. get the IUCN RedList status for each species, using the rredlist::rl_search() function