

Graduate Program in Production Engineering and Systems (PPGEPS)

Important Terms in an Ontology (Part 4/6)

Dr. Yongxin Liao

Course Outlines

- Important Terms in an Ontology (4/6)
 - Data Ranges
 - Data Types
 - Enumeration of Data Values (Literals)
 - Data Range Connectives
 - Complex Class Expressions (2/2)
 - Data Property Restrictions
- Protégé Practices

Important Terms in an Ontology

- Several Important Terms
 - Axioms
 - Concepts (Individuals and Classes)
 - Relationships (Class Assertions, Subclasses
 Disjoint/Equivalent Classes, Individual Equality/Inequality
 Properties, Property Assertions, Property Characteristics,
 and Property Descriptions)
 - Complex Class Expressions (Enumeration of Individuals, Propositional Connectives, Object Property Restrictions, Necessary and Sufficient Conditions,

Data Property Restrictions)

- Data Ranges (Data Types and Data Type Restrictions)
- Reasoning Rules
- Knowledge Base (T-box and A-box)
- SPARQL Query

- Data Type
 - Each kind of data values is called a data type.
 - Data Types for Numbers

- Data Type
 - Data Types for Strings
 - string character strings

E.g. "A pizza that only has Mozzarella and Tomato Sauce Toppings."^^string "Harry James Potter"^^string

- Data Types for Time Instants
 - dateTime instances of time "YYYY-MM-DDThh:mm:ss"

E.g. "2015-10-30T14:00:00"^^dateTime
"2015-10-30T14:00:00-03:00"^^dateTime
"2015-10-30T14:00:00+08:00"^^dateTime

- Data Types for Boolean Values
 - boolean the values of two-valued logic

E.g. "true"^^boolean "false"^^boolean

- Enumeration of Data Values
 - An enumeration of data values contains <u>exactly</u> the explicitly specified data values
 - In protégé, it is described by
 - Precisely listing all data values
 - Separating them by ","
 - Inside curly brackets ("{" and "}")

E.g. Bitmaps can require a color-depth of up to 24 bits per pixel (1,4,8,16,24 bits)

Bitmap Examples

(8)

(1 bits/pixel)

(8 bits/pixel)

(24 bits/pixel)

The range of the data property hasBits is {1, 4, 8, 16, 24}

{"1"^^integer, "4"^^integer, "8"^^integer, "16"^^integer, "24"^^integer}

{"1"^^xsd:integer, "4"^^xsd:integer, "8"^^xsd:integer, "16"^^xsd:integer, "24"^^xsd:integer}

- Datatype Restrictions
 - A datatype restriction contains <u>a data type</u> and <u>its</u>
 <u>value space restrictions</u>
 - In protégé, it is described by giving a data type and its value space restrictions inside square brackets ("[" and "]").
 - A data type + "[" + value space restrictions + "]"
 - Restrictions on Data types for numbers
 e.g. integer[>1, <5]
 - Restrictions on Data types for strings
 e.g. string[length 5]
 - Restrictions on Data types for time instances
 e.g. dateTime[> 1991-09-10T00:00:00]

- Datatype Restrictions
 - Restrictions on Data types for numbers

A data type + "[" + value space restrictions + "]"

```
"decimal",
"integer",
"negativeInteger",
"positiveInteger"
```

• Each value space restriction is composed of: a restriction symbol + a number

The relation among those restrictions is intersection.

It is possible to have multiple restrictions that are separated by ",".

The restriction symbol can be "<=", ">=", "<", ">"

E.g. decimal[< -12]

integer[> 1, < 5]

- Datatype Restrictions
 - Restrictions on Data types for strings

A data type + "[" + value space restrictions + "]"

Zero or a positive integer

"string"

- Each value space restriction is composed of:
 a restriction symbol + a number
- It is possible to have multiple restrictions that are separated by ",".

The relation among those restrictions is intersection.

The restriction symbol can be "length", "minLength", or "maxLength"

E.g. string[length "5"^^integer]

string[minLength "4"^^integer, maxLength "6"^^integer]

- Datatype Restrictions
 - Restrictions on Data types for Time Instances

A data type + "[" + value space restrictions + "]"

"dateTime"

- Each value space restriction is composed of:
 a restriction symbol + a date time
 - It is possible to have multiple restrictions that are separated by ",".

The relation among those restrictions is intersection.

The restriction symbol can be "<=", ">=", "<", ">"

E.g. dateTime[> 1991-09-10T00:00:00]

dateTime[> 1980-10-10T00:00:00 , < 1990-10-10T00:00:00]

- Data Range Connectives
 - Intersection of Data Ranges
 - An intersection data range contains all the data values that are shared (co-owned) by all the data ranges in this expression
 - In protégé, it is described by combining two or more data ranges using the "and" operator.

positiveInteger and negativeInteger = \emptyset

- Data Range Connectives
 - Union of Data Ranges
 - A union data range contains all the data values that are contained in at least one data range in this expression
 - In protégé, it is described by combining two or more data ranges using the "or" operator.

- Data Range Connectives
 - Complement of Data Ranges
 - The complement of the data range x contains all the data values that are not contained in the data range x.
 - In protégé, it is described by placing a "not" operator <u>at the</u>
 <u>beginning of</u> that data range.

p Value n

- Data Property Existential Quantification
 - A data property existential restriction expression consists of a data property p and a data range dr
 - It contains all those individuals that are connected, <u>at least once</u>, by p to the data values that are in the range of dr.
 - In Protégé, it is described as
 a data property + "some" + a data range

p Value n

- Data Property Universal Quantification
 - A data property universal restriction expression consists of a data property p and a data range dr
 - it contains all those individuals that are <u>only</u> connected by p to the data values that are in the range of dr.
 - In Protégé, it is described as
 a data property + "only" + a data range

- Data Value Restriction
 - A data value restriction expression consists of a data property p and a data value x
 - It contains all those individuals that are connected by p to x.
 - In Protégé, it is described as
 a data property + "value" + a data value

if n+1

Up to n

▶Value v

Other Values

- A data property maximum cardinality expression consists of a data property p, a nonnegative integer n, and a data range dr
- It contains all those individuals that are connected by p to <u>at</u>
 <u>most n different</u> data values that are in the range of dr.
- In protégé, it is described as

a data property + "max" + a nonnegative integer + a data range

- Cardinality Restrictions Minimum cardinality restriction on p, n and dr
 - Data Property Minimum Cardinality
 - A data property minimum cardinality restriction is consist of a data property p, a nonnegative integer n, and a data range dr
 - It contains all those individuals that are connected by p to <u>at</u> <u>least n different</u> data values that are in the range of <u>dr</u>.
 - In protégé, it is described as

a data property + "min" + a nonnegative integer+ a data range

Value v

At least n

Other Values

- Data Property Exact Cardinality
 - A data property exact cardinality restriction is consist of a data property p, a nonnegative integer n, and a data range dr

if n+1

Exactly n

➤Value v

Other Values

- It contains all those individuals that are connected by p to <u>exactly n different</u> data values that are in the range of dr.
- In protégé, it is described as

a data property + "exactly" + a nonnegative integer + a data range

- The "Classes" Tab
 - Complex Class Expressions (via Data Properties)
 - Equivalent Classes Axioms
 - Subclass Axioms
- The "Data Properties" Tab
 - Data Property Ranges
 - Data Range Expressions

- The "SubClass Of"
 - "SubClass Of" => necessary conditions
 - Let class C be a subclass of some necessary conditions
 - All the individuals and subclasses of C are necessary to fulfill those conditions.

Description: Thing

- Pizzas
 - All pizza should fulfill the following necessary conditions:
 - a) Each pizza contains exactly one weight in grams (decimal);
 - b) Each pizza contains exactly one size in inches (integer);
 - c) Each pizza contains exactly one production date (dateTime);
 - d) Each Pizza might have zero or more history backgrounds (string).

- Four Kinds of Pizzas
 - Margherita Pizza
 - Its size is 9 inches
 - Its weight is from 360 to 380 grams
 - It has one history background "Pizza Margherita, was invented in 1889, when the Royal Palace of Capodimonte commissioned the Neapolitan pizzaiolo (pizza maker) Raffaele Esposito to create a pizza in honor of the visiting Queen Margherita."
 - American Pizza
 - Its size is 9 inches
 - Its weight is from 400 to 420 grams
 - American Hot Pizza
 - Its size is either 6 or 9 inches
 - Its weight is from 150 to 450 grams
 - Soho Pizza
 - Its size is 12 inches.
 - Its weight is from 550 to 580 grams

- The "Equivalent To"
 - "Equivalent To" => necessary & sufficient conditions
 - Let class C be a equivalent class of some necessary &sufficient conditions
 - All the individuals and subclasses of C are necessary to fulfill those conditions.
 - Meanwhile, an individual (a class) that satisfy those conditions is sufficient to be a member (a subclass) of C.

Description: Thing

Equivalent To

SubClass Of 🕂

- Data Type: string
- Historical Pizzas (Data Type: string)
 - All Historical Pizzas (all the individuals and subclasses of class:
 HistoricalPizza) should contains at least one historical
 background (a historical background in the data type of string).
 - A pizza (a collection of pizzas) that contains at least one historical background (a historical background in the data type of string) is sufficient to be a member (a subset) of Historical Pizzas

- Data Type: integer
- Six or Nine Inches Pizzas (Data Type: integer)
 - All Six or Nine Inches Pizzas (all the individuals of class: NineInchesPizza) should be in the size of six or nine inches.
 - A pizza (a collection of pizzas) that in the size of six or nine inches is sufficient to be a member (a subset) of Six or Nine Inches Pizzas.

- Data Type: decimal
- Big Pizzas (Data Type: decimal)
 - All Big Pizzas (all the individuals and subclasses of class: BigPizza)
 should have a weight more than half a kilogram.
 - A pizza (a collection of pizzas) that have a weight more than half a kilogram is sufficient to be a member (a subset) of Big Pizzas

- Data Type: dateTime
- Pizzas Produced In July 2015 (Data Type: dateTime)
 - All Pizzas in the class PizzaProducedInJuly2015 should be produced during the July of 2015.
 - A pizza (a collection of pizzas) that is produced during the July of 2015 is sufficient to be a member (a subset) of PizzaProducedInJuly2015

- Data Type: boolean
- The Expired Pizzas (Data Type: boolean)
 - Create an new data property named is Expired.
 - Specify the ExamplePizzaX is in the expired state.
 - A Class named ExpiredPizza to classify all pizzas that are expired.

- Complete the Additional Protégé Practices
- Answer the corresponding questions.

Thank you for your attention!

Any Questions?

