

1,E-05

2.E-05

1.E-04

2,E-04

3.E-04

2.E-04

2.E-04

1,E-04

4,E-04

3.E-04

2,E-04

1.E-04

8,E-05

2.5

12.5

31.5

40

50

63

3,E-04

6,E-04

3.E-04

9,E-05

1,E-04

4,E-04

7,E-04

8,E-04

3.E-04

2,E-04

1.E-04

8,E-05

6,E-04

5,E-04

3,E-04

1,E-04 1,E-04

6.E-05

5,E-05

8.E-05

9,E-05

5,E-04

3,E-04

2.E-04

1,E-04

Fase de post procesado

aw,i,j (de octava (j) y para los distintos instantes de la medición (i)).

$$a_{w,i} = \sqrt{\sum_{j} \left(w_{m,j} a_{w,i,j} \right)^2}$$

Global=suma energética RAIZ(SUMA.CUADRADOS)

- Ley 7/2002 de Protección contra la contaminación acústica de la Comunidad Valenciana.
- Para evaluar **la molestia** producida por las vibraciones, se utilizará al índice K mediante las siguientes expresiones:

Índice K de vibración	Rango frecuencial	
$k = \frac{a}{0,0035}$	$f \leq 2$	
$k = \frac{a}{0,0035 + 0,000257(f - 2)}$	2 > f < 8	
$k = \frac{a}{0,00063f}$	f > 8	

• Donde *a* es la aceleración eficaz de la vibración expresada en (m s-2) y *f* es la frecuencia de la vibración expresada en (Hz),

• Ninguna fuente sonora podrá emitir o transmitir niveles de vibraciones superiores a los límites establecidos en la siguiente tabla.

Valores de K						
Situación	Vibraciones continuas		Vibraciones transitorias			
	Día	Noche	Día	Noche		
Sanitario	2 1,4		16	1,4		
Docente	2 1,4		16	1,4		
Residencial	2 1,4		16	1,4		
Oficinas	4 4		128	12		
Almacenes y Comercios	8	8	128	128		
Industrias	8	8	128	128		

• Se considerarán vibraciones transitorias aquellas cuyo número de impulsos sea inferior a tres sucesos por día.

VALOR DEL COEFICIENTE K	PERCEPCION DE LAS VIBRACIONES
0,1	NO PERCEPTIBLE
·	APENAS PERCEPTIBLE
0,2	LIGERAMENTE PERCEPTIBLE
0,4	
0.0	PERCEPTIBLE
8,0	CLARAMENTE PERCEPTIBLE
1,6	FUERTEMENTE PERCEPTIBLE
6,3	TOERTEIWENTE PEROEPTIBLE
100	MUY FUERTEMENTE PERCEPTIBLE

Como inspeccionar niveles de vibración. **Ejemplo de un motor y torno**

mo	motor		rno
Hz	m/s²	Hz	m/s²
1,00 Hz	0,000048	1,00 Hz	0,000079
1,25 Hz	0,000051	1,25 Hz	0,000097
1,60 Hz	0,000058	1,60 Hz	0,000085
2,00 Hz	0,000054	2,00 Hz	0,000119
2,50 Hz	0,000051	2,50 Hz	0,000164
3,15 Hz	0,000060	3,15 Hz	0,000186
4,00 Hz	0,000070	4,00 Hz	0,000422
5,00 Hz	0,000100	5,00 Hz	0,000610
6,30 Hz	0,000182	6,30 Hz	0,004470
8,00 Hz	0,000355	8,00 Hz	0,025400
10,00 Hz	0,000733	10,00 Hz	0,005500
12,50 Hz	0,001570	12,50 Hz	0,006530
16,00 Hz	0,003550	16,00 Hz	0,016600
20,00 Hz	0,008710	20,00 Hz	0,143000
25,00 Hz	0,024800	25,00 Hz	0,989000
31,50 Hz	0,096600	31,50 Hz	0,347000
40,00 Hz	0,871000	40,00 Hz	0,324000
50,00 Hz	6,460000	50,00 Hz	0,104000
63,00 Hz	0,708000	63,00 Hz	0,324000
80,00 Hz	0,117000	80,00 Hz	1,580000

1° GRAFIAR LAS CURVA K

Índice K de vibración	Rango frecuencial
a = k0,0035	$f \leq 2$
a = k(0,0035 + 0,000257(f - 2))	2 > f < 8
a = k0,00063 f	f > 8

Para la inspección se puede realizar de 2 modos:

- A. Comparando directamente los valores de la fuente, implementándola en el gráfico realizado de las curvas K.
- B. Determinar para cada valor de aceleración a que curva correspondería, de manera que el MAX { m/s2/k} será la curva K a la cual corresponde la inspección de los valores seleccionados.

Motor Torno

- A. Comparando directamente los valores de la fuente, implementándola en el gráfico realizado de las curvas K.
 - Los valores evaluados no pueden sobrepasar "ningún" punto de la curva superior más pròxima.
 - Este método solamente nos dice que tanto el motor como el torno tienen un valor K>128 y k>60, respectivamente.
 - Es imprecisa.

B. Determinar para cada valor de aceleración a que curva correspondería, de manera que el MAX { m/s²/k} será la curva K a la cual corresponde la inspección de los valores seleccionados.

$$k = \frac{a}{0,0035} \quad f \le 2$$

$$k = \frac{a}{0,0035 + 0,000257(f - 2)} \quad 2 > f < 8$$

$$k = \frac{a}{0,00063f} \quad f > 8$$

- Así el motor posee un valor K=205, y el torno un valor k=63.
- Es más preciso que el método anterior.

motor			torno		
Hz	m/s ²	m/s²/k	Hz	m/s ²	m/s²/k
1,00 Hz	0,000048	0,0	1,00 Hz	0,000079	0,0
1,25 Hz	0,000051	0,0	1,25 Hz	0,000097	0,0
1,60 Hz	0,000058	0,0	1,60 Hz	0,000085	0,0
2,00 Hz	0,000054	0,0	2,00 Hz	0,000119	0,0
2,50 Hz	0,000051	0,0	2,50 Hz	0,000164	0,0
3,15 Hz	0,000060	0,0	3,15 Hz	0,000186	0,0
4,00 Hz	0,000070	0,0	4,00 Hz	0,000422	0,1
5,00 Hz	0,000100	0,0	5,00 Hz	0,000610	0,1
6,30 Hz	0,000182	0,0	6,30 Hz	0,004470	1,0
8,00 Hz	0,000355	0,1	8,00 Hz	0,025400	5,0
10,00 Hz	0,000733	0,1	10,00 Hz	0,005500	0,9
12,50 Hz	0,001570	0,2	12,50 Hz	0,006530	0,8
16,00 Hz	0,003550	0,4	16,00 Hz	0,016600	1,6
20,00 Hz	0,008710	0,7	20,00 Hz	0,143000	11,3
25,00 Hz	0,024800	1,6	25,00 Hz	0,989000	62,8
31,50 Hz	0,096600	4,9	31,50 Hz	0,347000	17,5
40,00 Hz	0,871000	34,6	40,00 Hz	0,324000	12,9
50,00 Hz	6,460000	205,1	50,00 Hz	0,104000	3,3
63,00 Hz	0,708000	17,8	63,00 Hz	0,324000	8,2
80,00 Hz	0,117000	2,3	80,00 Hz	1,580000	31,3
	MAX {m/s2/k}	205,1		MAX {m/s2/k}	62,8

USA: National Environmental Balancing Bureau (NEBB)

Human Occupancy (actividad)	Time of day	Curve
Workschops	All	J
Office Areas	All	
Basidantial (Cond Emiliarmental Standard)	07,00h-22,00h	H-I
Residential (Good Environmental Standars)	22,00h-07,00h	G
Hospital Operating	Δ.ΙΙ	F
Rooms and Critical Work Areas	All	Г

Equipment Requeriments	Curve	
Cumputer areas	Н	
Bench microscopes up to 100x magnificatrion Laboratory Robots.	F	
Bench microscopes up to 400x magnificatrion; Optical and other Precision Balances; Coordinate Measuring Machines: Metrology Laboratories; Optical Comparators; Microelectronics Manufacturing Equipment-Class A (Note)	E	
Micro-Surgey Eye Surgeny, Neuro-Surgeny: Bench Microscope at Magnification Greater Than 400x; Optical Equipment on isolation Tables; Microelectronic Manufacturing Equipment-Class B (Note)	D	
Electron Microscopes up to 30.000x Magnification; Microtomes, Magnetic Resonance Imagers; Microelectronics Manufacturing Equipment-Class C (Note)	С	NO.
Electron Microscopes at Magnification Greater than 30.000x; Mass Spectrometers; Cell Impact Equipment; Microelectronics Manufacturing Equipment-Class D (Note)	В	Cla:
Unisolated Laser and Optical Research Systems; Microelectronics Manufacturing Equipment- Class E (Note)	А	Cla

Inspection, probe test, and other manufacturing support equipment

Aligners, steppers and other critical equipment for photolithography with line of 3 microns or more.

Aligners, steppers and other critical equipment for photolithography with line widths of 1 micron.

Aligners, steppers and other critical equipment for photolithography with line widths of 1/2 micron; includes electron-beam systems.

Aligners, steppers and other critical equipment for photolithography with line widths of 1/4 micron; includes electron-beam systems.

Inspección de motores e instalaciones

RITE 2007ITE.0.2.2.3: UNE 100-153/2004

De acuerdo con pruebas experimentales efectuadas sobre equipos de climatización, la amplitud máxima permitida del desplazamiento provocado por la vibración, de pico a pico, tomada sobre los rodamientos o, cuando estos sean inaccesibles, sobre la estructura de la máquina, para equipos funcionando en régimen permanente, no debe rebasar los valores indicados en la tabla siguiente.

Criterio ARAU: $0.008 \text{ m/s}^2 \text{ rms}$ de 0 a 1k Hz

Equipo	A(mm) PICO-PICO
Bombas	
1.500 rpm	0.05
3.000 rpm	0.025
Ventiladores	
<600rpm	0.1
600 <x<1000 rpm<="" td=""><td>0.075</td></x<1000>	0.075
1000 <x<2000 rpm<="" td=""><td>0.05</td></x<2000>	0.05
>2000rpm	0.025
Compresores	
Centrífugos	0.025
Alternativos	0.2

Amplitud de Desplazamiento RMS/ Comparada con UNE100-153/88 para bombas de 1500rpm

Niveles máximos admisibles en maquinas y motores

- Establece los niveles máximos admisibles que han de tener los motores eléctricos y demás equipos para evitar que el proceso de envejecimiento se acelere en los mismo y origine AVERIA.
- Por otro lado si se mantiene el CONTROL DE VIBRACIONES dentro de los niveles aceptables se evita generar niveles nocivos a ESTRUCTURAS Y PERSONAS

CLASIFICACION DE LAS MÁQUINAS	Referencia	
Partes de máquinas o motores eléctricos hasta 15 KW	CLASE I	
Partes de máquinas o motores eléctricos de 15 KW a 75 KW	CLASE II	
Grandes máquina motrices en bancadas rígidas	CLASE III	
Grandes máquina motrices en bancadas rígidas con capacidad superior a los 10MW	CLASE IV	

CATEGORIA	ZONA DE EVALUACION
BUENO	Α
ACEPTABLE	В
TOLERABLE JUSTO	С
NO TOLERABLE	D

Velocidad de vibración rms en mm/s	CLASE I	CLASE II	CLASE III	CLASE IV
0.28				
0.45	Α	А		
0.71			A	Α
1.12	D			
1.8	В	D		
2.8	C	В	D	
4.5	С	6	В	D
7.1		С		В
11.2			С	6
18	D			С
28		D	D	
45				D

Fuente: METRO3/ALDOVIER MAYO 2004

Niveles de vibración en 1ª pica

Impacto de las vibraciones por trafico ferroviario

Impacto de las vibraciones por trafico ferroviario

4.1 Estudio de la transmisión.

El primer paso para inferir el impacto que puede producir en un edificio los niveles de vibración generados por una vía ferroviaria es el estudio de la transmisión de las vibraciones desde la vía hasta la edificación. De esta forma si conocemos los niveles de vibración generados por el tren y conocemos como se atenúan/amplifican en su propagación en distancia podemos estimar los niveles en los edificios próximos.

Para calcular la propagación en el terreno el proceso es similar tanto para trenes de superficie como para trenes subterráneos. En ambos casos se medirán los niveles de vibración presentes en distancia producidos por una fuente conocida. Esta fuente conocida puede ser la excitación generada por la caída de un gran peso.

$$Z = \frac{F}{v} (N/m/s)$$

Rafael Torres del Castillo (9º Ed.:6/2015) Profesor externo de la Salle URL. Codirector del MAAM.

Amortiguación terreno

Impacto de las vibraciones por trafico ferroviario

Impacto de las vibraciones por obra civil trazado ferroviario

Paso de vagonetas de alimentación para una tuneladora

Ref: Joan Cardona & Rafa Torres AV. Enginyers 2009

Impacto de las vibraciones por obra civil trazado ferroviario

FFCC Terrasa

Paso de vagonetas de alimentación para una tuneladora

Control de vibraciones por voladuras

CLASIFICACION DE LAS ESTRUCTURAS A EFECTOS DE LA APLICACIÓN DEL CRITERIO DE PREVENCION DE DAÑOS

- GRUPO I: Edificios y naves industriales ligeras con estructuras de hormigón armado o metálicas
- GRUPO II: Edificios de viviendas, oficinas, centros comerciales y de recreo, cumpliendo la normativa legal vigente. Edificios y estructuras de valor arqueológico, arquitectónico o histórico que por su fortaleza no presenten especial sensibilidad a las vib.
- GRUPO III: Estructuras de valor arqueológico, arquitectónico o histórico que presenten una especial sensibilidad a las vibraciones por ellas mismas o por elementos que pudieran contener.

Control de vibraciones por voladuras

		Frecuencia principal en Hz		
		2-15	15-75	75
		Velocidad mm/s	Desplazamiento mm	Velocidad mm/s
Tipo de estructura	I	20	0.212	100
	II	9	0.095	45
	III	4	0.042	20

Video de voladura línea 9 en Santa Coloma el 6/11/09 para la ejecución del pozo de ataque.

