Universidade Federal de Uberlândia

Aluno: Henrique Santos de Lima - 11811ETE016

Professor: Alan Petrônio Pinheiro

Universidade Federal de Uberlândia

Lista 1 de Sinais e Sistemas 2

Método dos dois wattímetros

Aluno: Henrique Santos de Lima - 11811ETE016

Professor: Alan Petrônio Pinheiro

Conteúdo

Questão 1	2
Questão 2	9
Questão 3	12
Questão 4	18
Questão 5	23
Questão 6	25

a)-

Sistemas em serie, então:

$$h_{total}(t) = h_1(t) * h_2(t)$$

 $H_{total}(j\omega) = H_1(j\omega) \cdot H_2(j\omega)$

tens que:

$$H_{1}(j\omega) = \frac{640(j\omega + 1)}{(j\omega + 8)(j\omega + 40)}$$

$$H_{2}(j\omega) = \frac{0.01(j\omega + 40)}{(j\omega + 1)(j\omega + 8)}$$

$$H_{total}(j\omega) = \frac{640(j\omega + 1)}{(j\omega + 8)(j\omega + 40)} \cdot \frac{0.01(j\omega + 40)}{(j\omega + 1)(j\omega + 8)}$$

$$H_{total}(j\omega) = \frac{6.4}{(j\omega + 8)^{2}} = \frac{6.4}{(j\omega)^{2} + 16j\omega + 64}$$

b)-

Gráficos para H_1 :

Figura 1: Gráfico assintótico de bode para H_1

Figura 2: Gráfico de bode para H_1

Gráficos para H_2 :

Figura 3: Gráfico assintótico de bode para H_2

Figura 4: Gráfico de bode para H_2

Gráficos para H_{total} :

Figura 5: Gráfico assintótico de bode para H_{total}

Figura 6: Gráfico de bode para H_{total}

Nas figuras acima fica bem claro que o gráfico assintótico é uma aproximação boa para

a análise do sistema.

Em comparação ao gráfico do modulo da função sem aplicar log₁₀, é difícil compreender o que está acontecendo pois existe valores muito grandes e valores muito pequenos levando a falsa interpretação de que chegou a 0.

Código que gerou os gráficos: em anexo "resolucao/1/src/"

c)-

Gráficos em escala linear:

Figura 7: Gráfico linear de H_1

Figura 8: Gráfico linear de H_2

Figura 9: Gráfico linear de H_{total}

d)-

o sistema atenua 93,815 % para f = 1Hz e 99,995 % para f = 60Hz

```
>>> from math import pi
>>> ht = lambda f: abs(6.4/(2j*pi*f + 8)**2)
>>> {'1Hz':100*(1 - ht(1)),'60Hz':100*(1-ht(60))}
{'1Hz': 93.81513541841163, '60Hz': 99.99549886321815}
```

Figura 10: Obtenção dos valores

a)

Abaixo o gráfico do Sinal X.

Figura 11: sinal X

Solução analítica de Fourier

$$x(t) = 5 * \sin(2\pi 1000t) + 2 * \cos(2\pi 3000t) + 0.5 * \cos(2\pi 5000t)$$

$$x(t) = 5 * \frac{e^{j(2\pi 1000t)} - e^{-j(2\pi 1000t)}}{2j} + 2 * \frac{e^{j(2\pi 3000t)} + e^{-j(2\pi 3000t)}}{2} + 0.5 * \frac{e^{j(2\pi 5000t)} + e^{-j(2\pi 5000t)}}{2} + 0.5 * \frac{e^{j(2\pi 5000t)} + e^{-j(2\pi 5000t)}}{2}$$

$$x(t) = \frac{5}{2j} * e^{2\pi j1000t} - \frac{5}{2j} * e^{-2\pi j1000t} + e^{2\pi j3000t} - e^{-2\pi j3000t} + \frac{1}{4} * e^{2\pi j5000t}$$

$$X(j\omega) = \frac{5}{2j} * 2\pi * \delta(\omega - 2\pi 1000) - \frac{5}{2j} * 2\pi * \delta(\omega + 2\pi 1000) + 2\pi * \delta(\omega - 2\pi 3000t) - 2\pi * \delta(j\omega + 2\pi 3000) + \frac{1}{4} * 2\pi * \delta(\omega - 2\pi 5000) + \frac{1}{4} * 2\pi * \delta(\omega - 2\pi 3000t) - 2\pi * \delta(j\omega + 2\pi 3000) + 5j\pi * \delta(\omega + 2\pi 1000) + 2\pi * \delta(\omega - 2\pi 3000t) - 2\pi * \delta(j\omega + 2\pi 3000) + \frac{\pi}{2} * \delta(\omega - 2\pi 5000) + \frac{\pi}{2} * \delta(\omega + 2\pi 5000)$$

Figura 12: Espectro do sinal X

Utilizando a Função FFT

Para isso a função x(t) teve que ser discretizada. Segundo o teorema de Nyquist[1], a taxa de amostragem deve ser no 2 vezes mais que a maior que a maior frequência do sinal.

$$\frac{Fs}{2} = F_{sinal_{max}}$$

Como a frequência máxima do sinal x é 5KHz Fs escolhido foi 12KHz, satisfazendo o teorema de Nyquist; Abaixo os gráficos gerados com a taxa de Amostragem de 12KHz.

Figura 13: sinal X

Observação: o gráfico esta continuo pois ao plotar o software liga os pontos.

b)

O sistema produzido possui o seguinte espectro.

Figura 14: Espectro do sistema produzido

c)

Saída após x passar pelo sistema.

Figura 15: Saída do sistema

a)

Sinal a

Figura 16: Sinal A

O gráfico da amplitude do sinal A mostra que existiu som por um longo período de tempo continuamente.

continuamente.

Pelo espectro do sinal e sabendo que Fs = 22050 pode se concluir que o som produzido esté em maior parte nas frequências de ate 1.6kHz

Sinal b

Figura 17: Sinal B

Esse sinal possui partes que não possui som e suas Frequências estão na banda de 643Hz a 1.5KHz.

b) Gráficos para analise do espectro do sinal em cada intervalo

Figura 18: Sinal B com N entre 2100 2800

Figura 19: Sinal B com N entre 3700 4500

Figura 20: Sinal B com N entre 5300 6000

Figura 21: Sinal B com N entre 6800 7600

Figura 22: Sinal B com N entre 8400 9300

Figura 23: Sinal B com N entre 10100 10800

intervalo de análise [s]	N de análise	Frequência 1 [Hz]	Frequência 2 [Hz]	Digito
0.263 - 0.35	2100 - 2800	696.1	1210	1
0.463 - 0.563	3700 - 4500	858	1338	8
0.662 - 0.750	5300 6000	696.1	1335	2
0.863 - 0.950	6900 7600	855.5	1335	8
1.050 - 1.163	8400 9300	772.5	1208	4
1.262 - 1.350	10100 10800	764	1472	6

Tabela 1: Frequências encontradas em cada intervalo

c)

O número digitado foi: 182846.

a)

Espectro da musica com ruido.

Figura 24: sinal X

Analisando o gráfico percebe-se que a amplitude das frequências tendem a ir diminuindo quando a mesma aumenta. Porém na frequência de 2.2kHz possui uma amplitude que não segue o padrão analisado do gráfico, que leva a supor que esta seja a frequência que cause o ruido.

b)

Sistema 1

Gráfico gerado pela função freqz:

Figura 25: espectro do sistema 1

Figura 26: espectro do sistema 1

Em comparação dos gráficos a diferença é que a função freqz normaliza w para frequência.

Sistema 2Gráfico gerado pela função freqz:

Figura 27: espectro do sistema 2

Figura 28: espectro do sistema 2

Para normalizar basta multiplicar o eixo das abscissas por $\frac{f_s}{2\pi}$.

c)

O sistema 2 aparenta ser mais eficiente pelo gráfico de bode do mesmo, pois possui uma ondulação bem menor que a do sistema 1. Contudo não consegui observar qual áudio possui a melhor qualidade, então a conclusão é feita somente pela analise do sistema.

d)

Ao multiplicar o áudio, ele aumentou o volume e no de 5x ocorreu algumas chiados. Os ruídos (chiados) se dão por limitações do hardware, o circuito amplificador satura assim criando frequências que as interpretamos como chiado.

e)

Ao multiplicar a musica por -1 não foi constatado mudança nenhuma. Então foi estudado um trecho do sinal para verificar quais mudanças a multiplicação gerou. abaixo os gráficos comparativos de espectro.

Figura 29: Comparações de amplitude dos sinais

Figura 30: comparação da fase dos sinais

Ao multiplicar por -1 não altera o modulo do sinal mas soma 180° a fase, visto nos gráficos de fase. O ouvido humano não é sensível a fase do sinal por isso não foi possível detectar mudança alguma.

a)

Gráfico da voz constante:

Figura 31: Espectro da voz

Como a partir de 5 kHz a amplitude é muito baixa em relação as demais, as frequências maiores que 5KHz foram ignoradas para análise.

Figura 32: Espectro da voz

Assim a frequência fundamental deste sinal é 157Hz e a maior harmônica encontrada foi a 59 $^\circ$ frequência de 8330 Hz com 25 dB, cerca de 0.48 % da maior amplitude encontrada. A maior amplitude foi a 3 $^\circ$ harmônica com 71 dB.

Figura 33: Espectro da musica

Figura 34: Espectro da musica + voz

Espectro do sinal X, original, deslocado de 101kHz e 105kHz.

Figura 35: Espectro

A frequência de amostragem teve que ser aumentada para não perder o sinal. Para deslocar o sinal foi usado a propriedade de convolução, ao convoluir com uma única frequência o sinal é deslocado. No caso é oi mesmo que multiplicar no tempo.

Referencias

- [1] -H. Nyquist, "Certain topics in telegraph transmission theory", Trans. AIEE, vol. 47, pp. 617–644, Apr. 1928 Reprint as classic paper in: Proc. IEEE, Vol. 90, No. 2, Feb 2002.
- [2] Analisador de potência trifásico PCE-PA 8000 https://www.pce-medidores.com.pt/fichas-dados/analisador-potencia-trifasico-pce-pa-8000.htm acesso em 28/10/2018