§1-3 平面向量的坐標表示法

(甲)坐標向量

(1)向量的坐標表示:

由於給定一向量 \overline{a} ,則過任一點A都可作一向量 \overline{AB} ,使得 \overline{AB} 。

因此我們取定一個坐標平面系,O為原點,則可用一個有向線段 \overrightarrow{OP} ,

使得 $\overrightarrow{OP} = \overrightarrow{a}$,反之,此平面坐標上的任一點P(a,b)也決定一個以原點O爲始點,P爲終點的向量。如此,平面上的每一個向量都可用一點的坐標來表示,每一點的坐標也都代表惟一的向量。

如下圖,設 $\overrightarrow{u}=\overrightarrow{OP}$,而P點的坐標爲(a,b) ,則我們就用P的坐標(a,b)來表示向量 \overrightarrow{u} ,記爲 $\overrightarrow{u}=(a,b)$,其中a和b分別稱爲向量 \overrightarrow{u} 的x-分量與y-分量。

所以 \vec{u} 的長度為 $\vec{u} = \overline{OP} = \sqrt{a^2 + b^2}$ 。

根據前面的說明,平面向量 \widehat{u} 用(a,b)來表示,它的方向是由原點O指向 P(a,b),而它的大小爲 $\sqrt{a^2+b^2}$ 。因此坐標的表示方式可以同時呈現出向量的兩個要素-大小與方向。

結論:

(a)長度: $\overrightarrow{u} = (a,b)$,則 $|\overrightarrow{u}| = \sqrt{a^2 + b^2}$ 。

(b)相等:若 \overrightarrow{u} =(a,b), \overrightarrow{v} =(c,d),則 \overrightarrow{u} = \overrightarrow{v} $\Leftrightarrow a$ =c且b=d

(c)兩點決定一向量:

例如:設A(1,2)、B(-4,6),試用坐標表示 \overrightarrow{AB} 。

作法:我們取一點P(x,y),使得 $\overline{OP} = \overline{AB}$,由向量相等的定義,可知四邊形 ABOP爲平行四邊形,平行四邊形對角線互相平分,所以AP的中點 與OB的中點爲同一點,故 $\frac{-4+0}{2} = \frac{x+1}{2}$, $\frac{0+6}{2} = \frac{y+2}{2}$,

即x=-4-1=-5,y=6-2=4,所以 $\overrightarrow{AB}=(-5,4)$ 。

A P

設 $\mathbf{A}(x_1,y_1)$, $\mathbf{B}(x_2,y_2)$ 為坐標平面上的兩點,則 $\mathbf{A}\mathbf{B}=(x_2-x_1,y_2-y_1)$

[說明]:

我們取一點P(x,y),使得 $\overrightarrow{OP} = \overrightarrow{AB}$,

由向量相等的定義,可知四邊形ABOP為平行四邊形,

因爲平行四邊形對角線互相平分,

所以AP的中點與OB的中點爲同一點,

故
$$\frac{x_2+0}{2} = \frac{x+x_1}{2}$$
, $\frac{y_2+0}{2} = \frac{y+y_1}{2}$,

即 $x=x_2-x_1$, $y=y_2-y_1=4$,所以 $\overrightarrow{AB}=(x_2-x_1, y_2-y_1)$ 。

結論:

將向量予以坐標化,即向量除了幾何表示(即有向線段)外,希望能利用代數法或代數式表示,使得向量在幾何問題的處理上能發揮更大的效益。

已知兩點 $A(x_1,y_1)$, $B(x_2,y_2)$, 則

(a)坐標化:AB =OP=_____

(b)求分量: AB的x分量爲_____, y分量爲_____。

(c)求長度:|AB|²=_____

(2)用長度、方向角決定一個向量:

將AB平移到OP,其中O為原點,令|OP|=r

從x軸正向逆時針轉到 \overrightarrow{OP} 的有向角爲 θ ,我們稱爲方向角, $0 \le \theta < 2\pi$ 則 $\overrightarrow{AB} = \overrightarrow{OP} = (r\cos\theta, r\sin\theta)$ 。

[説明]: 設A(x_1,y_1)、B(x_2,y_2) ⇒ \overrightarrow{OP} =(x_2-x_1,y_2-y_1),即P(x_2-x_1,y_2-y_1) 根據三角函數的定義,可知 $x_2-x_1=r\cos\theta$, $y_2-y_1=r\sin\theta$ 。 \overrightarrow{AB} = \overrightarrow{OP} =($r\cos\theta,r\sin\theta$)。

結論: $A(x_1,y_1)$ 、 $B(x_2,y_2)$, $\overrightarrow{AB}=(x_2-x_1,y_2-y_1)=(r\cos\theta,r\sin\theta)$ 。

[**例題**1] 如圖所示:坐標平面上,O為原點, $\overline{OA} = \overline{AB} = 8$, $\overline{BC} = \overline{CD} = 4$, $\angle OAB = \angle ABC = \angle BCD = 120^{\circ}$,試求:B,C,D之坐標。

Ans: $B(12, 4\sqrt{3})$, $C(10, 6\sqrt{3})$, $D(6, 6\sqrt{3})$

(練習1) $\triangle ABC$ 中, $\overrightarrow{AB} = (1, 2)$, $\overrightarrow{AC} = (-x, 2x)$,若 $\triangle ABC$ 之周長爲 $6\sqrt{5}$,x>0,則x=_____。Ans: $\frac{30}{11}$ (提示: $\overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{CB}$)

(練習2) 如圖中, O(0,0), X(1,0),

 \overline{OA} =2, \overline{AB} =4, \overline{BC} =4, $\angle AOX$ =45°, $\angle OAB$ =105°, $\angle ABC$ =120°, 則 C 點的坐標爲_____。 Ans: $(\sqrt{2},\sqrt{2}+4\sqrt{3})$

(乙)用坐標表示向量的加減法、係數積

(1)向量的加法

設 $\overrightarrow{u} = (a,b)$, $\overrightarrow{v} = (c,d)$,則 $\overrightarrow{u} + \overrightarrow{v} = (a+b,c+d)$

$$\Rightarrow$$
 $\overrightarrow{OC} = \overrightarrow{OA}$, $\overrightarrow{v} = \overrightarrow{OB}$, $\overrightarrow{OC} = \overrightarrow{u} + \overrightarrow{v}$

根據向量加法的定義,四邊形OACB為平行四邊形

- ⇒C的坐標爲(a+b,c+d)
- $\Rightarrow \overrightarrow{OC} = (a+b,c+d)$

(2)逆向量與向量減法

- (a)逆向量:設 \overrightarrow{u} =(a,b),則 $-\overrightarrow{u}$ 爲 \overrightarrow{u} 的逆向量,即 $-\overrightarrow{u}$ =-(a,b)=(-a,-b)
- (b)向量減法:設 $\overrightarrow{u}=(a,b)$, $\overrightarrow{v}=(c,d)$, 則 $\overrightarrow{u}-\overrightarrow{v}=\overrightarrow{u}+(-\overrightarrow{v})=(a-c,b-d)$ 。
- (3)向量係數積

設 $\vec{}=(a,b)$,r爲實數,則 $\vec{r}=r(a,b)=(ra,rb)$ 各分量乘以r

(4)坐標向量的運算性質

設 \overrightarrow{u} , \overrightarrow{v} , 是平面上三個向量,且 $r,s \in \mathbb{R}$,則

- ① \overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u} (交換律)
- ② $(\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})$ (結合律)
- ③ $\vec{0} = (0,0)$ $\vec{\bot}$ $\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$

$$\textcircled{4} \overrightarrow{u} = \overrightarrow{u} , -\overrightarrow{u} = (-1)\overrightarrow{u} , r(\overrightarrow{s}\overrightarrow{u}) = r\overrightarrow{s}\overrightarrow{u}$$

$$(s) r(\overrightarrow{u} + \overrightarrow{v}) = r\overrightarrow{u} + r\overrightarrow{v}, (r+s)\overrightarrow{u} = r\overrightarrow{u} + s\overrightarrow{u}$$

- (5)兩點所決定的向量⇒亦可用向量減法運算而產生 設 $\mathbf{A}(x_1,y_1)$, $\mathbf{B}(x_2,y_2)$,則 $\overline{\mathbf{A}\mathbf{B}} = \overline{\mathbf{O}\mathbf{B}} - \overline{\mathbf{O}\mathbf{A}} = (x_2-x_1,y_2-y_1)$
- (6)用標準單位向量(即 \vec{i} =(1,0), \vec{j} =(0,1)表示任一向量, 即 \vec{u} =(x,y)= \vec{i} +y \vec{j} 。
- (7)單位向量:若 $|\vec{u}|=1$,則稱 $|\vec{u}|$ 爲單位向量。
- (8)向量平行:

設
$$\overrightarrow{a} = (a_1, a_2)$$
、 $\overrightarrow{b} = (b_1, b_2)$

$$\overrightarrow{a}//\overrightarrow{b}$$
 \Leftrightarrow \Rightarrow $\overrightarrow{a}=t\overrightarrow{b}$ \Leftrightarrow $a_1b_2=a_2b_1$ [分量成比例]

[**例題**2] 設 \overrightarrow{a} =(2,-3), \overrightarrow{b} =(1,4),t為實數,試求 $|\overrightarrow{a}+t\overrightarrow{b}|$ 的最小値。Ans: $\frac{11}{\sqrt{17}}$

- [**例題3**] (1)求一向量 \vec{u} 使 $|\vec{u}|=1$ 且 \vec{u} 與 $\vec{v}=(5,6)$ 同方向。
 - (2) 求一向量 \vec{u} 使 $|\vec{u}|=1$ 且 \vec{u} 與 $\vec{v}=(5,6)$ 反方向。

Ans :
$$(1)(\frac{5}{\sqrt{61}}, \frac{6}{\sqrt{61}})$$
 $(2)(-\frac{5}{\sqrt{61}}, -\frac{6}{\sqrt{61}})$

[**例題4**] 設 \vec{a} =(2,1), \vec{b} =(1,-2), \vec{c} =(0,1),若 \vec{t} · \vec{a} //(\vec{b} + \vec{t} · \vec{c}),且 \vec{t} +0,求實數 \vec{t} 的値。 Ans: $\frac{5}{2}$

(練習3) 設 \overrightarrow{a} =(2,1), \overrightarrow{b} =(3,4),當 $|\overrightarrow{a}+t\overrightarrow{b}|$ 最小時,t=? Ans: -2

(練習4) 設 \vec{a} =(1,2)、 \vec{b} =(3,4),若 \vec{t} \vec{a} + \vec{b} 與 \vec{a} + \vec{t} \vec{b} 平行,求實數 \vec{t} =? Ans: \vec{t} =1或-1

(練習5) 請求出與 \vec{a} =(4,-3)平行的單位向量。Ans: $\frac{1}{5}$ (4,-3)或 $\frac{-1}{5}$ (4,-3)

(丙)坐標向量的分點公式

(1)分點公式: 設 $A(x_1,y_1)$, $B(x_2,y_2)$,

若 $P \in \overline{AB}$,且 \overline{AP} : $\overline{PB} = m$:n,則P點坐標($\frac{nx_1 + mx_2}{m + n}, \frac{ny_1 + my_2}{m + n}$)。

[說明]:

因爲
$$\overrightarrow{OP} = \frac{n}{m+n}\overrightarrow{OA} + \frac{m}{m+n}\overrightarrow{OB}$$
,

令O(0,0),P(x,y),所以P點坐標 $(\frac{nx_1+mx_2}{m+n},\frac{ny_1+my_2}{m+n})$ 。

(2)重心坐標:

設 \triangle ABC三頂點的坐標為 $A(x_1,y_1)$, $B(x_2,y_2)$, $C(x_3,y_3)$,

則 \triangle ABC的重心G點的坐標為 $(\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3})$ 。

[說明]:

所以重心G點的坐標為 $(\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3})$ 。

[**例題5**] 設A(4,3),B(-1,-2),爲坐標平面上兩點,若P點在直線 \overrightarrow{AB} 上

且 \overline{AP} : \overline{PB} =3:2,求P點坐標。

A: (1,0)或(-11,-12)

[**例題6**] 若 \vec{a} 和 \vec{b} 不平行,則在 \vec{a} 和 \vec{b} 所決定的平面上每一個向量不但都可以寫成 \vec{a} 和 \vec{b} :的線性組合而且這種寫法是唯一的。

[**例題7**] 等腰梯形ABCD, $\overrightarrow{BC} = \overrightarrow{CD} = \overrightarrow{DA} = 2$, $\angle A = 60^{\circ}$,令 \overrightarrow{BC} 中點爲M, \overrightarrow{CD} 中點爲N,若 $\overrightarrow{AC} = \alpha\overrightarrow{AM} + \beta\overrightarrow{AN}$,求 α 、 β 之值。 Ans: $\alpha = \frac{2}{5}$, $\beta = \frac{4}{5}$

(練習6) 在ΔABC中,A(2,-8)、B(-6,-2)、C(6,-5),若 \angle A之內角平分線交直線BC於D, \angle A外角平分線交直線BC於E,試求D、E的坐標。Ans: D(2,-4)、E(18,-8)

(練習7) (1)設A (x_1,y_1) ,B (x_2,y_2) ,C (x_3,y_3) ,且 \overline{AB} =c, \overline{BC} =a, \overline{CA} =b, 試證: $\triangle ABC$ 的內心坐標爲($\frac{ax_1+bx_2+cx_3}{a+b+c},\frac{ay_1+by_2+cy_3}{a+b+c}$) (2)若A(2,-3),B(2,1),C(5,-3),求 $\triangle ABC$ 之內心坐標。 Ans:(3,-2)

(練習8) 設 $\vec{a} = (3,1)$ 、 $\vec{b} = (-1,2)$ 、 $\vec{c} = (3,8)$,若 $\vec{c} = x\vec{a} + y\vec{b}$,則實數對(x,y) = ?

Ans : (x,y)=(2,3)

(練習9) 梯形ABCD中, $\overrightarrow{AD}/\overrightarrow{BC}$,且A(1,3)、B(-1,2)、C(2,-2), \overrightarrow{AD} =8, 則點D之坐標爲何? \overrightarrow{AD} =?Ans: $(\frac{29}{5},\frac{-17}{5})$ 、 \overrightarrow{AD} = $(\frac{24}{5},\frac{-32}{5})$

(丁)直線的參數式

(1)預備觀念:

(a)向量平行: 設 $\overrightarrow{u} = (x_1, y_1) \neq \overrightarrow{0}$, $\overrightarrow{v} = (x_2, y_2) \neq \overrightarrow{0}$, $t \neq 0$

$$\text{III} \overrightarrow{u} / \overrightarrow{v} \Leftrightarrow \overrightarrow{u} = t \overrightarrow{v} \Leftrightarrow (x_1, y_1) = t(x_2, y_2)$$

(b)直線的方向向量:

若一個有向線段的始點與終點是一直線上的相異兩點,則此有向線段所表示的 向量稱爲該直線的一個**方向向量**。

如下圖所示, \overrightarrow{AB} 、 \overrightarrow{AB} 、 \overrightarrow{BA} 、 \overrightarrow{BA} 、 \overrightarrow{AB} 、....都是L的方向向量,因此方向向量 並不是只有一個,它們都是互相平行的向量,但不可以是零向量。

因此直線L上有兩相異點 (x_1,y_1) , (x_2,y_2) , 則 $\overrightarrow{AB}=(x_2-x_1,y_2-y_1)$ 為直線L的一個方向向量。

(2)直線的參數式:

在坐標平面上,斜率描述直線的方向,例如:斜率=5的直線會有無限多條,但是它們的方向是一致,彼此互相平行。若指定直線要通過點(4,-3),則直線就可以確定了,其方程式爲y-(-3)=5(x-4)。

同樣的,直線的方向向量代表直線的方向,例如:方向向量 \vec{v} =(2,3)的直線會有無限多條,但是它們的方向是一致,彼此互相平行。若指定直線要通過點A(-1,2),則直線就可以確定了。

如何來表示方向向量 \vec{v} =(2,3),又過點A(-1,2)的直線L呢?

設P(x,y)爲直線L上異於A點的任一點,

則AP爲L的方向向量,所以AP平行

,

即存在一個實數t,使得 $\overrightarrow{AP} = t\overrightarrow{v}$ 。故(x+1,y-2) = t(2,3),

即
$$\begin{cases} x = -1 + 2t \\ y = 2 + 3t \end{cases}$$
。當 $t = 0$ 時,P點代表A點。

因此直線L上的任意點P的坐標都可以寫成P(-1+2t,2+3t)。

反過來說,指定一個實數 t_0 值時,P點坐標為 $P(-1+2t_0,2+3t_0)$

 $\overrightarrow{AP} = (2t_0, 3t_0) = t_0(2,3) = t_0\overrightarrow{v}$,即 $\overrightarrow{AP}//\overrightarrow{v}$,故P點會在直線L上。

由上面的討論,直線L上的任意點P的坐標都可以寫成P(-1+2t,2+3t),而坐標形如(-1+2t,2+3t)的點,都會在直線L上,所以我們用 $\begin{cases} x=-1+2t \\ y=2+3t \end{cases}$ 的形式來表示直線L,其中t爲任意實數。

一般而言,若直線L通過點 $\mathbf{A}(x_0,y_0)$ 且方向向量 $\overrightarrow{v}=(a,b)$,那麼直線L的如何表示呢?

若P(x,y)爲L上任意點,則L上的每一點都可表誠 $\begin{cases} x = x_0 + at \\ y = y_0 + bt \end{cases}$,t爲一實數,

這個式子稱爲L的參數式。

證明:設P(x,y)為直線L上任一點,

$$\overrightarrow{AP}/\overrightarrow{v} \Leftrightarrow \overrightarrow{AP} = t\overrightarrow{v} \Leftrightarrow (x-x_0,y-y_0) = t(a,b)$$

所以
$$\begin{cases} x = x_0 + at \\ y = y_0 + bt \end{cases}, t 為 實數。$$

(其中t爲參數,也可用其它文字,如s,r....等)

結論:

- (a)在坐標平面上,一直線上的點P(x,y)滿足一個方程式ax+by+c=0,而方程式的解皆爲此直線上的點。這是直線用方程式表示的形式。
- (b)用參數式表示直線,重點在於用t表示直線的點坐標。 換句話說,直線上任一點P(x,y)皆可找到一個實數t使得 $x=x_0+at$, $y=y_0+bt$; 另一方面,當t代入任何實數後,形成的點構成一條直線。

(c)給定一個方向
$$\overrightarrow{v}=(a,b)$$
,過一點 $P(x_0,y_0)$ ⇒直線參數式
$$\begin{cases} x = x_0 + at \\ y = y_0 + bt \end{cases}$$

- (練習10) 設有一個質點位於A(2,-1)上, 做等速度直線運動, 1秒後質點 A(4,2)上,
 - (a)2秒後、 $\frac{9}{2}$ 秒質點會在那一個位置?
 - (b)t秒後質點會在那一個位置?

Ans :
$$(a)(6,5) \cdot (11,\frac{25}{2}) (b)(2+2t,-1+3t)$$

- [**例題8**] 設L爲通過A(2, -3), B(-3, -1)兩點的直線。
 - (1) 寫出L的參數式。
 - (2) 並在圖上描出對應於 $0, 1, 2, -1, \frac{1}{3}$ 的點。

設 $\mathbf{A}(x_1,y_1)$, $\mathbf{B}(x_2,y_2)$ 爲相異兩點, 則過 \mathbf{A} , \mathbf{B} 兩點的直線之參數式爲 $\begin{cases} x=x_1+(x_2-x_1)t \\ y=y_1+(y_2-y_1)t \end{cases}$ $t\in\mathbf{R}$

討論:

(a)上面的參數式並不是唯一的,當我們取 \overline{BA} 為方向向量時,參數式的形式就改變了,但仍然是L這條直線。 $1 \le t \le 0$ t > 1

(4)直線的一般式與參數式:

(a)直線L的參數式 $\begin{cases} x = x_0 + at \\ y = y_0 + bt \end{cases}$ 中,

若ab≠0,消去參數t,即可得到方程式 $y-y_0=\frac{b}{a}(x-x_0)$ 。 若a=0,則方程式爲 $x=x_0$,若b=0,則方程式爲 $y=y_0$ 。

(b)直線L的一般式ax+by+c=0中,任取二相異點A,B,再找出參數式。

(c)直線L的參數式 $\begin{cases} x = x_0 + at \\ y = y_0 + bt \end{cases}, (a \neq 0), 斜率爲 \frac{b}{a}.$

[**例題9**] 若一直線L通過A(3,5)、B(-2,6)兩點,則

(1)用參數式表示 \overrightarrow{AB} 。(2)用參數式表示 \overline{AB} 。(3)試求射線 \overrightarrow{AB} 的參數式。

[**例題**10] 設P是線段 \overline{AB} 上的一點,其中A,B的坐標為(1,-1)、(3,-5) 試求P點到原點的最長距離與最短距離? $Ans:\sqrt{34}$, $\sqrt{2}$

(練習11) 設A(3,5),B(-2,-4),C(3,-1),D(-1,2)為平面上四個點,試求

- (1)經過點A而與向量 \overrightarrow{CD} 平行的直線方程式爲____。
- (2)經過點D而與向量AB平行的直線方程式爲_____。
- (3)直線AB的參數方程式爲 $_{----}$,線段 \overline{AB} 的參數方程式爲

Ans:
$$(1)$$
 $\begin{cases} x=3-4t \\ y=5+3t \end{cases}$ $t \in \mathbb{R}$ (2) $\begin{cases} x=-1-5t \\ 2-9t \end{cases}$ $t \in \mathbb{R}$ (3) 直線 $\begin{cases} x=-2+5t \\ y=-4+9t \end{cases}$ $t \in \mathbb{R}$,線段 $\begin{cases} x=-2+5t \\ y=-4+9t \end{cases}$ $0 \le t \le 1$

(練習12) 設A(3,0),B(-1,2),L: $\begin{cases} x=3-4t \\ y=2t \end{cases}$ 則下列何者爲真?(A)若 $t \in \mathbb{R}$,則L表直線 \overrightarrow{AB} (B)若 $t \geq 0$,則L表射線BA (C)若 $t \leq 1$,則L表射線AB (D)若 $0 \leq t \leq 1$,則L表線段 \overline{AB} (E)若 $t \leq 0$,則L表射線AB的相反射線。Ans:(A)(D)(E)

- (練習13) 寫出下列直線L的參數方程式:
 - (1)L的方程式是2x-y-5=0。
 - (2)L通過(-1,-2), 且斜率是-3。

Ans: (1)
$$\begin{cases} x=t \\ y=-5+2t \end{cases}$$
 $t \in \mathbb{R}$ (2) $\begin{cases} x=-1+t \\ y=-2-3t \end{cases}$ $t \in \mathbb{R}$

(練習14) 設一直線L:3x-4y=1,(1)將L化爲參數式。(2)又設A($1,\frac{1}{2}$),B(3,2)在直線上,且P(x,y)在直線AB上時,求2x+y+1之最大値與最小値。 (3)同(2)求 x^2+y^2-4 之最大値與最小値。

Ans: (1)
$$\begin{cases} x = 3 + 4t \\ y = 2 + 3t \end{cases}$$
, t 寫實數。 (2)9, $\frac{7}{2}$ (3)9, $\frac{-11}{4}$

- (練習15) 求在一直線L:x-2y+3=0上,而與點A(-1,2)的距離最小的點P之坐標為何?並求此最小距離。 Ans: $(\frac{-3}{5},\frac{6}{5})$
- (練習16) 設A(4,0),B(0,-3),動點P爲直線x+y=0上之一點。則PA · PB 之最小値=____。Ans: $\frac{-49}{8}$

綜合練習

- (1) 若A(0,2), B(-2,6), C(-6,4), 則下列何點可與上述三點恰可構成一個平行四邊形? (A)(-4,0)(B)(4,4)(C)(-8,8)(D)(-3,3)(E)(-4,4)
- (2) $\triangle ABC$ 中, $\overrightarrow{AB} = (1,t)$, $\overrightarrow{BC} = (s,-2)$, $\overrightarrow{AC} = (3,4)$,則數對(s,t) = ?
- (3) 設 \overrightarrow{OA} =(3,1), \overrightarrow{OB} =(-1,2),若 \overrightarrow{OC} \bot \overrightarrow{OB} , \overrightarrow{BC} // \overrightarrow{OA} , \overrightarrow{OD} + \overrightarrow{OA} = \overrightarrow{OC} ,求 \overrightarrow{OC} 和

(4) 如圖所示,坐標平面上 O 為原點, $\overline{OA} = 8 , \overline{AB} = 4 , \overline{BC} = 2 , \overline{CD} = 1 ,$ $\angle OAB = \angle ABC = \angle BCD = \frac{2\pi}{3} , \text{則} :$ $(a) \overline{OC} \angle \Psi = \mathbb{E} = \mathbb{E} = \mathbb{E} = \mathbb{E}$

(b)若
$$\overrightarrow{OD} = x\overrightarrow{OA} + y\overrightarrow{OB}$$
,則 $x = \underline{\hspace{1cm}}$, $y = \underline{\hspace{1cm}}$ 。

- (5) 在xy平面上,設O爲原點,已知 \overrightarrow{OA} , \overrightarrow{AB} , \overrightarrow{BC} 之方向角爲 30° 、 45° 、 60° ,且 $|\overrightarrow{OA}|=1$, $|\overrightarrow{AB}|=\sqrt{2}$, $|\overrightarrow{BC}|=\sqrt{3}$,請問 $\overrightarrow{OC}=?$
- (6) $A(3,2) \cdot B(-2,1) \cdot C(-1,-3)$,求滿足 $|\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}| = 6$ 之點P(x,y)軌跡方程式。
- (7) \triangle ABC 之重心爲 G,邊AB與BC的中點分別爲 D 與 E,若 G,D,E 的坐標分別爲 $G(\frac{13}{6},-2)$, $D(\frac{-5}{4},-1)$, $E(\frac{11}{4},-4)$,則求頂點 A,B,C 的坐標。
- (8) 設 $\vec{a} = (2\cos\theta, 2\sin\theta)$, $\vec{b} = (\cos2\theta, \sin2\theta)$, $0 \le \theta \le 2\pi$,則 $\vec{a} \vec{b}$ |之最大値爲何?
- (9) 設 A(-4, -4),B(2, 8), $C(\frac{28}{5}, \frac{4}{5})$,則△ABC之內心坐標爲何?
- (10) \triangle ABC中,設A (x_1,y_1) ,B (x_2,y_2) ,C (x_3,y_3) ,P與 \triangle ABC共平面, 若 $\overline{PA}^2 + \overline{PB}^2 + \overline{PC}^2$ 之值最小,求P之坐標,此時P與 \triangle ABC有何關係?
- (11) 設 $L_1: x=3-s$,y=2s,s 爲任意實數; $L_2: x=4+t$,y=-1+3t,t 爲任意實數,則 L_1 , L_2 之交點坐標爲何?
- (12) 求參數方程式 $\begin{cases} x=t+1 \\ y=4t-5 \end{cases}$, $-1 \le t \le 2$ 所表之線段長。
- (13) 已知A(-2,3),B(4,-5),設點P(x,y)在線段 \overline{AB} 上,求3x-4y+6的最大值?
- (14) 設A(2,8),B(1,5),L:x+2y-3=0,且 P \in L,則當 P的坐標爲何時?時,PA²+PB²有最小值爲何?

進階問題

(15) ΔABC 中,A(1,-2)、B(0,3)、C(-1,1),P為其內部一點, $ABCP: \Delta CAP: \Delta ABP=2:1:3$,則點P的坐標爲何?

(16) 試證通過 $\mathbf{A}(h,k)$ 且與x軸正向夾角爲 α 之直線 \mathbf{L} 的參數方程式爲 $\begin{cases} x = h + t \cos \alpha \\ y = k + t \sin \alpha \end{cases}$, t爲任意實數。

綜合練習解答

- (1)(A)(B)(C)
- (2)(2,6)
- (3)(14,7), (11,6)
- (4) (a) $(9.3\sqrt{3})$ (b) $\frac{-7}{8}$, $y = \frac{3}{2}$
- $(5)(\sqrt{3}+1,3)$
- (6) $x^2 + y^2 = 4$
- (7) A(1, 2), B($-\frac{7}{2}$, -4), C(9, -4)
- (8)3
- (9)(2, 2)
- (10) P為△之重心
- $(11)(\frac{19}{5}, -\frac{8}{5})$
- (12) $3\sqrt{17}$
- (13)38

$$(14)(-\frac{4}{5},\frac{19}{10}),\frac{579}{10}(-\frac{4}{5},\frac{19}{10}),\frac{579}{10}$$

(15) $(\frac{-1}{6},\frac{1}{3})$ [提示: 設P爲 Δ ABC內部一點,若lPA+mPB+nPC=0 ,則 Δ PAB: Δ PBC: Δ PCA= $n:l:m\circ$]

(16)取L之方向單位向量 $\vec{v} = (\cos\alpha, \sin\alpha)$,由 $\overrightarrow{AP} = t \vec{v}$,即可得。