04 데이터 다루기(2) ¶

학습내용

- 데이터 탐색해 보기(head, tail, summary, dim, class, str)
- 변수명 바꿔보기
- 파생변수 만들기

내장 데이터 셋 불러오기

In [1]:

data("mtcars")

설명	함수
데이터 셋 객체의 차원을 보기(행,열등)	dim()
데이터의 앞에서부터 몇행, 상위6개	head()
데이터의 뒤에서부터 몇행, 하위6개	tail()
데이터 구조, 변수 개수, 변수 명, 관찰치 개수, 관찰치	str()
데이터 객체의 컬럼명	names() or colnames()
데이터 객체의	class()
요약값	summary()
뷰어에서 확인	View()

In [2]:

dim(mtcars)

32 11

In [3]:

head(mtcars)
head(mtcars, 7)

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1
	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive											
nomet 4 brive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	21.4 18.7	6 8	258 360	110 175	3.08 3.15	3.215 3.440	19.44 17.02	1 0	0	3	1
								•			

In [4]:

tail(mtcars)

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.7	0	1	5	2
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.9	1	1	5	2
Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.5	0	1	5	4
Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.5	0	1	5	6
Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.6	0	1	5	8
Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.6	1	1	4	2

In [5]:

```
str(mtcars)
```

```
'data.frame':
              32 obs. of 11 variables:
$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : num 6646868446 ...
            160 160 108 258 360 ...
$ disp: num
$ hp : num
            110 110 93 110 175 105 245 62 95 123 ...
$ drat: num
            3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$ wt : num
            2.62 2.88 2.32 3.21 3.44 ...
$ qsec: num
            16.5 17 18.6 19.4 17 ...
$ vs : num
            0 0 1 1 0 1 0 1 1 1 ...
$ am : num
           1110000000...
$ gear: num 4 4 4 3 3 3 3 4 4 4 ...
$ carb: num 4411214224...
```

In [6]:

```
names(mtcars)
```

'mpg' 'cyl' 'disp' 'hp' 'drat' 'wt' 'qsec' 'vs' 'am' 'gear' 'carb'

In [7]:

```
class(mtcars)
```

'data.frame'

In [8]:

summary(mtcars)

```
mpg
                     cyl
                                     disp
                                                      hp
                                Min. : 71.1
                                                Min. : 52.0
Min. :10.40
                Min. :4.000
1st Qu.: 15.43
                1st Qu.:4.000
                                1st Qu.: 120.8
                                                1st Qu.: 96.5
Median : 19.20
                Median :6.000
                                Median : 196.3
                                                Median : 123.0
     :20.09
                     :6.188
                                      :230.7
Mean
                Mean
                                Mean
                                                Mean : 146.7
3rd Qu.:22.80
                                3rd Qu.:326.0
                                                3rd Qu.: 180.0
                3rd Qu.:8.000
Max.
       :33.90
                Max.
                       :8.000
                                Max.
                                       :472.0
                                                Max.
                                                       :335.0
     drat
                      wt
                                     qsec
                                                      ٧S
       :2.760
                Min.
                      :1.513
                                       :14.50
                                                Min.
Min.
                                Min.
                                                       :0.0000
                1st Qu.:2.581
1st Qu.:3.080
                                1st Qu.:16.89
                                                1st Qu.:0.0000
Median :3.695
                Median :3.325
                                Median : 17.71
                                                Median :0.0000
     :3.597
                      :3.217
                                Mean
                                      : 17.85
                                                      :0.4375
Mean
                Mean
                                                Mean
3rd Qu.:3.920
                3rd Qu.:3.610
                                3rd Qu.: 18.90
                                                3rd Qu.:1.0000
       :4.930
                       :5.424
                                       :22.90
Max.
                Max.
                                Max.
                                                Max.
                                                       :1.0000
      am
                      gear
                                      carb
Min.
       :0.0000
                 Min.
                        :3.000
                                 Min.
                                        :1.000
1st Qu.:0.0000
                 1st Qu.:3.000
                                 1st Qu.:2.000
Median :0.0000
                 Median :4.000
                                 Median :2.000
Mean :0.4062
                 Mean
                       :3.688
                                 Mean :2.812
3rd Qu.:1.0000
                 3rd Qu.:4.000
                                 3rd Qu.:4.000
                 Max. :5.000
Max. :1.0000
                                 Max.
                                        :8.000
```

In [9]:

```
# View() : R studio에서 확인 가능
```

(ex) 4-1 실습 해보기

• mpg 데이터 셋에 대한 탐색을 해 보기

dply 패키지 사용해 보기

```
In [10]:
```

```
install.packages("dplyr")
```

Warning message:

"unable to access index for repository http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/3.5: (http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/3.5:)

URL 'http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/3.5/PACKAGES'를 열수 없습니다"

package 'dplyr' successfully unpacked and MD5 sums checked

The downloaded binary packages are in C:\Users\UITHJS\AppData\Local\Temp\RtmpQ9HUtg\downloaded_packages

In [11]:

```
library(dplyr)
```

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

변수명 바꾸기

In [12]:

```
df_new <- mtcars
```

In [13]:

```
colnames(df_new)
```

'mpg' 'cyl' 'disp' 'hp' 'drat' 'wt' 'qsec' 'vs' 'am' 'gear' 'carb'

In [14]:

?mtcars

In [15]:

```
df_new <- rename(df_new, weight=wt)
names(df_new)</pre>
```

'mpg' 'cyl' 'disp' 'hp' 'drat' 'weight' 'qsec' 'vs' 'am' 'gear' 'carb'

(ex) 4-2 mpg 데이터 셋을 불러오기

- cty는 도시의 연비
- hwy는 고속도로 연비를 의미
- cty -> city로
- hwy -> hightway로 바꾸어 보자.

파생변수(derived Variable)

In [16]:

```
df <- data.frame(var1 = c(1,3,5), var2=c(2,4,6))
df</pre>
```

var1	var2
1	2
3	4
5	6

In [17]:

```
df$sum <- df$var1 + df$var2
df$sum
```

3 7 11

In [18]:

df

var1	var2	sum
1	2	3
3	4	7
5	6	11

(해보기) 평균 변수 추가하기

조건문을 활용한 파생변수 만들기

In [9]:

head(ggplot2::mpg,10)

manufacturer	model	displ	year	cyl	trans	drv	cty	hwy	fl	class
audi	a4	1.8	1999	4	auto(I5)	f	18	29	р	compact
audi	a4	1.8	1999	4	manual(m5)	f	21	29	p	compact
audi	a4	2.0	2008	4	manual(m6)	f	20	31	p	compact
audi	a4	2.0	2008	4	auto(av)	f	21	30	р	compact
audi	a4	2.8	1999	6	auto(I5)	f	16	26	р	compact
audi	a4	2.8	1999	6	manual(m5)	f	18	26	р	compact
audi	a4	3.1	2008	6	auto(av)	f	18	27	p	compact
audi	a4 quattro	1.8	1999	4	manual(m5)	4	18	26	p	compact
audi	a4 quattro	1.8	1999	4	auto(I5)	4	16	25	р	compact
audi	a4 quattro	2.0	2008	4	manual(m6)	4	20	28	р	compact

In [20]:

```
dat <- ggplot2::mpg
dat$total <- (dat$cty + dat$hwy) /2 # 통합연비 생성
head(dat)
```

total	class	fl	hwy	cty	drv	trans	cyl	year	displ	model	manufacturer
23.5	compact	р	29	18	f	auto(l5)	4	1999	1.8	a4	audi
25.0	compact	p	29	21	f	manual(m5)	4	1999	1.8	a4	audi
25.5	compact	p	31	20	f	manual(m6)	4	2008	2.0	a4	audi
25.5	compact	p	30	21	f	auto(av)	4	2008	2.0	a4	audi
21.0	compact	p	26	16	f	auto(l5)	6	1999	2.8	a4	audi
22.0	compact	р	26	18	f	manual(m5)	6	1999	2.8	a4	audi

hist(dat\$total)

Histogram of dat\$total

In [22]:

summary(dat\$total)

Min. 1st Qu. Median Mean 3rd Qu. Max. 10.50 15.50 20.50 20.15 23.50 39.50

- total 연비의 평균과 중앙값은 약 20
- total연비가 20~25사이의 해당하는 자동차 모델이 많다.
- 대부분 25이하, 25를 넘기는 자동차는 많지 않음.

ifelse()

- ifelse(조건문, 참일때, 거짓일때)
- (ex) ifelse(dat\$total >= 20, "pass", "fail")

In [23]:

```
ifelse(dat$total >= 20, "pass", "fail")
```

'pass' 'fail' 'pass' 'fail' 'fail' 'fail' 'fail' 'fail' 'fail' 'pass' 'fail' 'pass' 'pass' 'fail' 'fail' 'fail' 'fail' 'pass' 'pass' 'pass' 'pass' 'pass' 'pass' 'pass' 'pass' 'fail' 'pass' 'fail' 'pass' 'fail' 'fail' 'pass' 'fail' 'fail' 'fail' 'pass' 'pass' 'pass' 'pass' 'pass' 'pass' 'pass' 'pass' 'fail' 'pass' 'pass' 'pass' 'pass' 'pass' 'pass' 'pass' 'pass' 'pass' 'fail' 'fail' 'fail' 'fail' 'pass' 'fail' 'fail' 'fail' 'fail' 'fail' 'pass' 'fail' 'fail' 'fail' 'fail' 'fail' 'fail' 'fail' 'pass' 'pass' 'pass' 'pass' 'pass' 'pass' 'pass' 'fail' 'fail' 'pass' 'fail' 'pass' 'pass'

In [24]:

```
### 위의 내용을 갖는 변수 추가
dat$passfail <- ifelse(dat$total >= 20, "pass", "fail")
head(dat$passfail,15)
```

'pass' 'pass'

In [25]:

library(ggplot2) qplot(dat\$passfail)

실습과제 4-3

• total을 이용하여 A, B, C 등급 부여하기

In [26]:

head(dat)

manufacturer	model	displ	year	cyl	trans	drv	cty	hwy	fl	class	total	passfail
audi	a4	1.8	1999	4	auto(I5)	f	18	29	р	compact	23.5	pass
audi	a4	1.8	1999	4	manual(m5)	f	21	29	р	compact	25.0	pass
audi	a4	2.0	2008	4	manual(m6)	f	20	31	р	compact	25.5	pass
audi	a4	2.0	2008	4	auto(av)	f	21	30	р	compact	25.5	pass
audi	a4	2.8	1999	6	auto(I5)	f	16	26	р	compact	21.0	pass
audi	a4	2.8	1999	6	manual(m5)	f	18	26	р	compact	22.0	pass

In [27]:

table(dat\$cyl)

4 5 6 8 81 4 79 70

In [28]:

qplot(dat\$cyl)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

실습과제 4-4 (p123)

• ggplot2 패키지의 미국 동북중부 437개 지역의 인구 통계 정보를 담은 midwest를 데이터 셋을 이용하여 분석 문제 해결해 보기