

Ferienkurs Analysis 3 für Physiker

Übung: Integration im \mathbb{R}^n

Autor: Benjamin Rüth Stand: 16. März 2014 **Aufgabe 1** (Zylinder) Gegeben sei der Zylinder Z der Höhe h > 0 über dem in der x-y-Ebene gelegenen Kreis mit Radius R > 0 um den Ursprung.

- 1.1 Beschreiben Sie den Zylindermantel von Z in geeigneten Koordinaten.
- ${\bf 1.2}$ Berechnen Sie den Fluss des Vektorfelds ${\bf v}$ durch die Mantelfläche von Z von innen nach außen, wobei

$$\mathbf{v}: \mathbb{R}^3 \to \mathbb{R}^3, \quad (x, y, z)^\top \mapsto (xz + y, yz - x, z)^T.$$

Lösung:

(.1)Es bezeichne M die Mantelfläche des Zylinders Z. Zur Beschreibung von M bietet sich die Abbildung

$$\phi: [0, 2\pi] \times [0, h] \to \mathbb{R}^3, \quad (u, v)^\top \mapsto (R \cos u, R \sin u, v)^\top$$

an. Wir schreiben also

$$M = \left\{ (R \cos u, R \sin u, v)^{\top} \in \mathbb{R}^3 \mid (u, v)^{\top} \in D \right\},\,$$

wobei $D = [0, 2\pi] \times [0, h]$.

(.2) Der Fluss des Vektorfelds \mathbf{v} durch die Mantelfläche M von Z von innen nach außen ist das vektorielle Flächenintegral von \mathbf{v} über M, wobei $\phi_u \times \phi_v$ nach außen zeigt:

$$\iint_{M} \mathbf{v} \cdot ds = \iint_{D} \mathbf{v}(\phi(u, v))^{\top} (\phi_{u} \times \phi_{v}) du dv.$$

Wir berechnen

$$\phi_u = \begin{pmatrix} -R\sin u \\ R\cos u \\ 0 \end{pmatrix}, \quad \phi_v = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad \phi_u \times \phi_v = \begin{pmatrix} R\cos u \\ R\sin u \\ 0 \end{pmatrix}$$

und stellen fest, dass $\phi_u \times \phi_v$ nach außen zeigt (wäre das nun nicht der Fall, so würde man $\phi_v \times \phi_u$ wählen; hierbei wird die Orientierung umgedreht). Damit erhalten wir:

$$\iint_{M} \mathbf{v} \cdot ds = \int_{0}^{h} \int_{0}^{2\pi} \begin{pmatrix} R v \cos u + R \sin u \\ R v \sin u - R \cos u \\ v \end{pmatrix}^{\top} \begin{pmatrix} R \cos u \\ R \sin u \\ 0 \end{pmatrix} du dv = R^{2} h^{2} \pi.$$

Aufgabe 2 (Schraubenfläche) Man berechne den Flächeninhalt der Schraubenfläche

$$\phi(r,\varphi) = \begin{pmatrix} r\cos\varphi\\r\sin\varphi\\\varphi \end{pmatrix}, \qquad r \in [0,1], \ \varphi \in [0,2\pi] \, .$$

Lösung: Aus der gegebenen Parametrisierung folgt

$$\phi_r(r,\varphi) = \begin{pmatrix} \cos \varphi \\ \sin \varphi \\ 0 \end{pmatrix}, \ \phi_{\varphi}(r,\varphi) = \begin{pmatrix} -r \sin \varphi \\ r \cos \varphi \\ 1 \end{pmatrix} \quad \text{und} \quad \phi_r(r,\varphi) \times \phi_{\varphi}(r,\varphi) = \begin{pmatrix} \sin \varphi \\ -\cos \varphi \\ r \end{pmatrix}$$

und somit

$$|\phi_r(r,\varphi) \times \phi_{\varphi}(r,\varphi)| = \sqrt{1+r^2}$$
.

Hieraus ergibt sich der Flächeninhalt

$$\iint_{\phi} dF = \int_{0}^{1} \int_{0}^{2\pi} \sqrt{1 + r^{2}} dp h i dr = 2\pi \int_{0}^{1} \sqrt{1 + r^{2}} dr.$$

Zur Berechnung des verbliebenen Integrals führt man die Substitution $r=\sinh t$ durch. Da $\cosh^2 t - \sinh^2 t = 1$ und $\frac{\mathrm{d}r}{\mathrm{d}t} = \cosh t$ gilt, erhält man

$$\int_0^1 \sqrt{1+r^2} \, \mathrm{d}r = \int_0^a \cosh^2 t \, \mathrm{d}t \quad \text{mit} \quad a = \text{arsinh1}.$$

Partielle Integration ergibt unter Verwendung von $\sinh^2 t = -1 + \cosh^2 t$:

$$\int_0^a \cosh^2 t \, dt = \sinh t \, \cosh t \Big|_0^a - \int_0^a \sinh^2 t \, dt = \sqrt{2} + a - \int_0^a \cosh^2 t \, dt \,,$$

woraus folgt

$$\int_0^a \cosh^2 t \, \mathrm{d}t = \frac{1}{2} \big(\sqrt{2} + a \big) \quad \text{und damit} \quad \iint_\phi \, \mathrm{d}F = \pi \big(\sqrt{2} + \mathrm{arsinh1} \big) \, .$$

Aufgabe 3 (Schnitt zweier Zylinder) Man berechne den Flächeninhalt der Oberfläche des Schnitts der beiden Zylinder $x^2 + z^2 \le a^2$ und $y^2 + z^2 \le a^2$. Fertige eine Skizze an und nutze die Symmetrie des Problems aus!

Lösung: Aus Symmetriegründen kann man sich auf die Fläche über dem ersten Oktanten der x-y-Ebene $(0 \le z)$ beschränken. Die Oberfläche ist hier gegeben durch $x^2 + z^2 = a^2$. Hieraus ergibt sich die Parametrisierung

$$\phi(u,v) = \begin{pmatrix} v \\ u \\ \sqrt{a^2 - v^2} \end{pmatrix}, \quad u \in [0, a], \ v \in [0, a], \ u \le v.$$

und somit

$$\phi_u(u,v) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ \phi_v(u,v) = \begin{pmatrix} 1 \\ 0 \\ -\frac{t}{\sqrt{a^2 - v^2}} \end{pmatrix} \text{ und } \phi_u(u,v) \times \phi_v(u,v) = \begin{pmatrix} -\frac{v}{\sqrt{a^2 - v^2}} \\ 0 \\ -1 \end{pmatrix}$$

mit

$$|\phi_u(u,v) \times \phi_v(u,v)| = \frac{a}{\sqrt{a^2 - v^2}}.$$

Der Flächeninhalt des ersten Oktanten beträgt also

$$\iint_{\phi} dF = \int_{0}^{a} \int_{0}^{v} \frac{a}{\sqrt{a^{2} - v^{2}}} du dv = a \int_{0}^{a} \frac{v}{\sqrt{a^{2} - v^{2}}} dv = -a \sqrt{a^{2} - v^{2}} \Big|_{0}^{a} = a^{2}.$$

Somit ist der Flächeninhalt der gesamten Oberfläche des Schnitts $16 a^2$.

Aufgabe 4 (Integral) Seien D das Dreieck mit den Ecken (0,0), (1,0) und (1,1) sowie $K = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le a^2\}$ mit a > 0. Man berechne:

$$4.1 \iint_D e^{-x^2} \mathrm{d}x \mathrm{d}y$$

$$4.2 \iint_K e^{-x^2-y^2} \mathrm{d}x \mathrm{d}y$$

Lösung:

(.1) D ist Normalbereich:

$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, \ 0 \le y \le x\}$$
 (\alpha)

$$= \{(x,y) \in \mathbb{R}^2 \mid 0 \le y \le 1, \ y \le x \le 1\}$$
 (\beta)

$$\iint_D e^{-x^2} dx dy \stackrel{(\alpha)}{=} \int_0^1 \int_0^x e^{-x^2} dy dx = \int_0^1 \left(e^{-x^2} \int_0^x dy \right) dx$$
$$= \int_0^1 x e^{-x^2} dx = -\frac{1}{2} e^{-x^2} \Big|_0^1 = -\frac{1}{2} e^{-1} + \frac{1}{2} = \frac{1}{2} \left(1 - \frac{1}{e} \right)$$

Mit (β) , also in der anderen Integrationsreihenfolge, ist keine Lösung möglich!

(.2) Der Integrationsbereich K ist ein Kreis um (0,0) mit Radius a > 0. Wir verwenden daher Polarkoordinaten:

$$x = r\cos\varphi$$
, $y = r\sin\varphi$, $dxdy = rdrd\phi$

$$\iint_K e^{-x^2 - y^2} dx dy = \int_0^{2\pi} \int_0^a e^{-r^2} r dr d\phi = \int_0^{2\pi} d\phi \int_0^a r e^{-r^2} dr = 2\pi \left[-\frac{1}{2} e^{-r^2} \right]_0^a = \pi (1 - e^{-a^2})$$

Aufgabe 5 (Integral) Gegeben ist das Doppelintegral

$$\int_{-1}^{1} \int_{x^2}^{1} f(x, y) \mathrm{d}y \mathrm{d}x$$

- 5.1 Skizzieren Sie das Integrationsgebiet.
- 5.2 Geben Sie das Doppelintegral mit vertauschter Integrationsreihenfolge an.
- **5.3** Berechnen Sie das Integral für $f(x,y) = 2x \sin x^2$.

Lösung:

- (.1) Integrationsgebiet $G = \{(x, y) \in \mathbb{R}^2 \mid -1 \le x \le 1, x^2 \le y \le 1\}$
- (.2) Vertauschung der Integrationsreihenfolge:

$$G = \{(x,y) \in \mathbb{R}^2 \mid 0 \le y \le 1, \ -\sqrt{y} \le x \le \sqrt{y}\}$$

$$\Rightarrow I = \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} f(x,y) dx dy$$

(.3) Nach (.1):

$$I = \int_{-1}^{1} \int_{x^{2}}^{1} 2x \sin x^{2} dy dx = \int_{-1}^{1} y \cdot 2x \sin x^{2} \Big|_{y=x^{2}}^{y=1} dx = \int_{-1}^{1} \underbrace{2x(1-x^{2})\sin x^{2}}_{\text{ungerade Funktion}} dx = 0$$

Nach (.2):

$$I = \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} 2x \sin x^2 dx dy = \int_0^1 -\cos x^2 \Big|_{x=-\sqrt{y}}^{x=\sqrt{y}} dy = -\int_0^1 \cos y - \cos y dy = 0$$

Aufgabe 6 (Integral) Seien D das Dreieck mit den Ecken (0,0), (1,0) und (1,1) sowie $K = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le a^2\}$ mit a > 0. Man berechne:

6.1
$$\iint_D xy dx dy$$

$$\textbf{6.2} \iint_K \frac{\mathrm{d}x\mathrm{d}y}{1+x^2+y^2}$$

6.3
$$\iint_D \frac{2y}{x+1} dx dy$$

6.4
$$\iint_K \sin(x^2 + y^2) \mathrm{d}x \mathrm{d}y$$

Lösung:

(.1) D ist Normalbereich:

$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, \ 0 \le y \le x\}$$
 (\alpha)

$$= \{(x,y) \in \mathbb{R}^2 \mid 0 \le y \le 1, \ y \le x \le 1\}$$
 (\beta)

$$\iint_D xy dx dy \stackrel{(\alpha)}{=} \int_0^1 \int_0^x xy dy dx = \int_0^1 x \left(\int_0^x y dy \right) dx$$
$$= \int_0^1 x \cdot \frac{1}{2} x^2 dx = \frac{1}{2} \int_0^1 x^3 dx = \frac{1}{8}$$

Auch möglich:

$$\iint_D xy dx dy \stackrel{(\beta)}{=} \int_0^1 \left(\int_y^1 xy dx \right) dy = \int_0^1 y \cdot \frac{1}{2} (1 - y^2) dy = \frac{1}{8}$$

(.2)

$$\iint_{D} \frac{2y}{x+1} dx dy \stackrel{(\alpha)}{=} \int_{0}^{1} \int_{0}^{x} \frac{2y}{x+1} dy dx = \int_{0}^{1} \frac{1}{x+1} \left[y^{2} \right]_{0}^{x} dx = \int_{0}^{1} \frac{x^{2}}{x+1} dx$$
$$= \int_{0}^{1} \frac{x^{2}-1}{x+1} + \frac{1}{x+1} dx = \int_{0}^{1} (x-1) + \frac{1}{x+1} dx$$
$$= \left[\frac{1}{2} x^{2} - x + \ln(x+1) \right]_{0}^{1} = \ln 2 - \frac{1}{2}$$

Auch möglich:

$$\begin{split} \iint_D \frac{2y}{x+1} \mathrm{d}x \mathrm{d}y &\stackrel{(\beta)}{=} \int_0^1 \left(\int_y^1 \frac{2y}{x+1} \mathrm{d}x \right) \mathrm{d}y = \int_0^1 2y \left[\ln(x+1) \right]_y^1 \mathrm{d}y \\ &= \int_0^1 2y (\ln 2 - \ln(y+1)) \mathrm{d}y = \ln 2 - 2 \int_0^1 (y+1) \ln(y+1) - \ln(y+1) \\ &\stackrel{t=y+1}{=} \ln 2 - 2 \int_1^2 t \ln t - \ln t \mathrm{d}t = \ln 2 - 2 \left[t^2 \left(\frac{1}{2} \ln t - \frac{1}{4} \right) - t \ln t + t \right]_1^2 = \ln 2 - \frac{1}{2} \end{split}$$

(.3) Der Integrationsbereich K ist ein Kreis um (0,0) mit Radius a>0. Wir verwenden daher Polarkoordinaten:

$$x = r\cos\varphi$$
, $y = r\sin\varphi$, $dxdy = rdrd\phi$

$$\iint_{K} \frac{\mathrm{d}x\mathrm{d}y}{1+x^{2}+y^{2}} = \int_{0}^{2\pi} \int_{0}^{a} \frac{r\mathrm{d}r\mathrm{d}\phi}{1+r^{2}} = \int_{0}^{2\pi} \mathrm{d}\phi \int_{0}^{a} \frac{r\mathrm{d}r}{1+r^{2}} = 2\pi \left. \frac{1}{2} \ln(1+r^{2}) \right|_{0}^{a} = \pi \ln(1+a^{2})$$
(.4)

$$\iint_{K} \sin(x^{2} + y^{2}) dxdy = \int_{0}^{2\pi} \int_{0}^{a} \sin(r^{2}) r dr d\phi = \int_{0}^{2\pi} d\phi \int_{0}^{a} r \sin(r^{2}) dr$$
$$= 2\pi \int_{0}^{a} r \sin(r^{2}) dr = 2\pi \cdot \frac{1}{2} (-\cos(r^{2})) \Big|_{0}^{a} = \pi (1 - \cos(a^{2}))$$

Aufgabe 7 (Transformationsformel) Zu bestimmen ist das Bereichsintegral

$$\int_D \arctan \frac{x-y}{x+y} \, \mathrm{d}x \, \mathrm{d}y, \quad \text{wobei} \quad D = \{(x,y)^\top \mid x^2 + y^2 \le 2\}.$$

7.1 Führen Sie die Koordinatentransformation

$$x = s(\cos t + \sin t), \quad y = s(\cos t - \sin t) \quad \text{mit} \quad s \in [0, \infty[, t \in [0, 2\pi[$$

im gegebenen Integral durch und geben Sie das Bereichsintegral in den neuen Koordinaten an.

7.2 Berechnen Sie das Bereichsintegral.

Lösung: (.1) Die Jacobimatrix der Koordinatentransformation lautet

$$J = \begin{pmatrix} \cos t + \sin t & s \left(-\sin t + \cos t \right) \\ \cos t - \sin t & s \left(-\sin t - \cos t \right) \end{pmatrix}$$

und man erhält die Jacobideterminante $\det J = -2s$. Der Bereich D transformiert sich wie folgt

$$x^{2} + y^{2} = s^{2} (\cos t + \sin t)^{2} + s^{2} (\cos t - \sin t)^{2} \le 2$$
 liefert $0 \le s \le 1$,

woraus sich ein Normalgebiet $B=\{(s,t)^\top\mid 0\le s\le 1, 0\le t\le 2\pi\}$ ergibt. Das Bereichsintegral in den neuen Koordinaten ist somit

$$\int_{B} \arctan \frac{2s \sin t}{2s \cos t} \, 2s \, \mathrm{d}s \, \mathrm{d}t = \int_{B} 2st \, \mathrm{d}s \, \mathrm{d}t \,.$$

(.2) Das Bereichsintegral berechnet sich wie folgt

$$\int_{B} 2st \, ds dt = \int_{0}^{1} \int_{0}^{2\pi} 2st \, dt ds = 2\pi^{2}.$$

Aufgabe 8 (Transformationsformel) Man berechne das Bereichsintegral

$$\int_D e^{(x+y)/(x-y)} \, \mathrm{d}x \mathrm{d}y,$$

wobei D der trapezförmige Bereich mit den Eckpunkten (1,0), (2,0), (0,-2) und (0,-1) sei.

Hinweis: Man führe die Koordinatentransformation s = x + y, t = x - y durch.

Lösung: Aufgelöst nach x, y erhält man die Rücktransformation

$$x = \frac{1}{2}(s+t),$$
 $y = \frac{1}{2}(s-t)$

aus der sich leicht die entsprechende Jacobideterminante berechnen lässt:

$$\frac{\partial(x,y)}{\partial(s,t)} = \begin{vmatrix} \frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = -\frac{1}{2}.$$

Der ursprüngliche Integrationsbereich wird durch die Geraden

$$y = x - 1$$
, $y = x - 2$, $y = 0$ sowie die y-Achse

begrenzt. Diese Geraden transformieren sich in die Geraden

$$t = 1, \quad t = 2, \quad t = s, \quad t = -s,$$

woraus sich ein Normalbereich

$$B = \{(s,t) \mid 1 \le t \le 2, -t \le s \le t\}$$

ergibt. Somit erhält man folgende Integraltransformation

$$\int_{D} e^{(x+y)/(x-y)} \, dx dy = \int_{B} e^{s/t} \left| \frac{\partial(x,y)}{\partial(s,t)} \right| \, ds dt = \frac{1}{2} \int_{t=1}^{2} \int_{s=-t}^{t} e^{s/t} \, ds dt.$$

Das transformierte Integral kann man schließlich leicht berechnen

$$\frac{1}{2} \int_{t=1}^{2} \int_{s=-t}^{t} e^{s/t} \, \mathrm{d}s \, \mathrm{d}t = \frac{1}{2} \int_{t=1}^{2} t e^{s/t} \Big|_{s=-t}^{t} \, \mathrm{d}t = \frac{e^{1} - e^{-1}}{2} \int_{1}^{2} t \, \mathrm{d}t = \frac{3}{4} (e^{1} - e^{-1}) \,.$$

Aufgabe 9 (Transformationsformel) Es seien R und α positiv. Die kreisförmige Platte $B = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq R^2\}$ eines Kondensators werde durch Elektronen aufgeladen, welche sich gemäß der Flächenladungsdichte $\varrho(x,y) = -\alpha(R^2 - x^2 - y^2)$ auf B verteilen.

9.1 Berechnen Sie die Gesamtladung $Q = \iint_B \varrho \, dF$ der Platte direkt.

9.2 Benutzen Sie Polarkoordinaten, um die Rechnung zu vereinfachen.

Lösung: (.1) Die Gesamtladung der kreisförmigen Kondensatorplatte B lässt sich hier als Doppelintegral über die Flächenladungsdichte $\varrho(x,y) = -\alpha(R^2 - x^2 - y^2)$ für $(x,y) \in B$ ausrechnen: Kürzt man $\omega(x) = \sqrt{R^2 - x^2}$ ab, so folgt

$$\begin{split} \iint_{B} \varrho \, \mathrm{d}F &= -\alpha \int_{x=-R}^{R} \int_{y=-\omega(x)}^{\omega(x)} \left(R^{2} - x^{2} - y^{2} \right) \mathrm{d}y \mathrm{d}x \\ &= -\alpha \int_{x=-R}^{R} 2 \int_{y=0}^{\omega(x)} \left(R^{2} - x^{2} - y^{2} \right) \mathrm{d}y \mathrm{d}x \\ &= -\alpha \int_{x=-R}^{R} 2 \left[\left(R^{2} - x^{2} \right) y - \frac{1}{3} y^{3} \right]_{y=0}^{\omega(x)} \mathrm{d}x \\ &= -\alpha \int_{x=-R}^{R} \frac{4}{3} \omega(x)^{3} \, \mathrm{d}x \\ &= -\alpha \left[\frac{1}{3} \omega(x)^{3} + \frac{1}{2} R^{2} x \, \omega(x) + \frac{1}{2} R^{4} \arcsin \frac{x}{R} \right]_{x=-R}^{R} \\ &= -\alpha R^{4} \arcsin 1 = -\frac{1}{2} \alpha \pi R^{4}, \end{split}$$

wobei wir eine Formelsammlung und diverse Symmetrien benutzt haben.

(.2) Die Rechnung in (.1) lässt sich mit Polarkoordinaten $x = r \cos \varphi$, $y = r \sin \varphi$ über d $y dx = r d\varphi dr$ signifikant abkürzen:

$$\iint_{B} \varrho \, dF = -\alpha \int_{r=0}^{R} \int_{\varphi=0}^{2\pi} (R^{2} - r^{2}) r \, d\varphi \, dr = -\alpha \int_{r=0}^{R} 2\pi (R^{2} - r^{2}) r \, dr$$
$$= -\alpha \pi \left[R^{2} r^{2} - \frac{1}{2} r^{4} \right]_{r=0}^{R} = -\frac{1}{2} \alpha \pi R^{4} .$$

Das Ergebnis ist natürlich identisch zu (.1), aber wir haben hier weder die Formelsammlung noch komplizierte Transformationen benötigt (oft ist es günstig, die natürliche Symmetrie eines Problems zu berücksichtigen).

Aufgabe 10 (Transformationsformel) Bestimmen Sie den Schwerpunkt der Nordhalbkugel $D = \{(x, y, z) \mid x^2 + y^2 + z^2 \le R^2 \text{ mit } z \ge 0\}$ mit der Dichte $\rho(x, y, z) = z$.

Lösung: Wir benutzen Kugelkoordinaten und erhalten für die Masse M der Kugel:

$$M = \int_{\vartheta=0}^{\frac{\pi}{2}} \int_{0}^{2\pi} \int_{r=0}^{R} r \cos \vartheta \, r^{2} \sin \vartheta \, dr \, d\varphi \, d\vartheta$$
$$= 2\pi \frac{R^{4}}{4} \int_{\vartheta=0}^{\frac{\pi}{2}} \cos \vartheta \sin \vartheta \, d\vartheta = \frac{\pi R^{4}}{2} \left[\frac{\sin^{2} \vartheta}{2} \right]_{0}^{\frac{\pi}{2}} = \frac{\pi R^{4}}{4} .$$

Nun berechnen wir die Koordinaten s_1 , s_2 , s_3 des Schwerpunkts S. Aus Symmetriegründen liegt der Schwerpunkt von D auf der z-Achse. Damit haben wir schon $s_1 = s_2 = 0$. Und für die z-Komponente berechnen wir das Integral:

$$s_3 = \frac{1}{M} \int_{\vartheta=0}^{\frac{\pi}{2}} \int_{\varphi=0}^{2\pi} \int_{r=0}^{R} r^2 \cos^2 \vartheta \, r^2 \sin \vartheta \, dr \, d\varphi \, d\vartheta = \frac{1}{M} \frac{2\pi R^5}{5} \left[-\frac{\cos^3 \vartheta}{3} \right]_{\vartheta=0}^{\frac{\pi}{2}} = \frac{1}{M} \frac{2\pi R^5}{15} .$$

Setzen wir M ein, so erhalten wir $s_3 = \frac{8R}{15}$.

Aufgabe 11 (Transformationsformel) Man betrachte den Kegel K im \mathbb{R}^3 mit der Spitze $(0,0,3)^{\top}$ und der Grundfläche $x^2+y^2\leq 1$ in der Ebene z=0. Die (inhomogene) Massendichte ρ von K sei gegeben durch $\rho(x,y,z)=1-\sqrt{x^2+y^2}$.

- 11.1 Veranschaulichen Sie sich die Situation durch eine geeignete Skizze des Kegels.
- **11.2** Bestimmen Sie mithilfe von Zylinderkoordinaten das Volumen V und die Gesamtmasse M von K.

Zur Kontrolle: $V(K) = \pi$, $M(K) = \frac{\pi}{2}$.

11.3 Bestimmen Sie den Massenschwerpunkt des Kegels.

Zur Kontrolle: $(x_s, y_s, z_s)^T = (0, 0, \frac{9}{10})^T$.

Lösung: Zur Beschreibung des Kegels K bieten sich Zylinderkoordinaten an: Mit der Transformation $x = r \cos \varphi$, $y = r \sin \varphi$ und z = z erhält man K für $z \in [0, 3]$, $\varphi \in [0, 2\pi]$ und $r \in [0, 1 - \frac{z}{3}]$.

(.2) Mit Hilfe der Transformation in Zylinderkoordinaten ergibt sich für das Volumen V von K:

$$V = \iiint_K dV = \int_0^3 \int_0^{2\pi} \int_0^{1-\frac{z}{3}} r \, dr \, d\varphi \, dz = \int_0^3 \int_0^{2\pi} \left[\frac{r^2}{2} \right]_0^{1-\frac{z}{3}} \, d\varphi \, dz$$
$$= 2\pi \int_0^3 \frac{1}{2} - \frac{1}{3}z + \frac{1}{18}z^2 \, dz = 2\pi \left[\frac{1}{2}z - \frac{1}{6}z^2 + \frac{1}{54}z^3 \right]_0^3 = \pi.$$

Unter Verwendung der angegebenen Massendichte $\rho(x,y,z)=1-\sqrt{x^2+y^2}$ erhalten wir

für die Gesamtmasse M von K:

$$\begin{split} M &= \iiint_K \rho(x,y,z) \, \mathrm{d}V = \int_0^3 \int_0^{2\pi} \int_0^{1-\frac{z}{3}} \rho \left(r \cos \varphi, r \sin \varphi, z \right) r \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}z \\ &= \int_0^3 \int_0^{2\pi} \int_0^{1-\frac{z}{3}} (1-r) r \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}z = \int_0^3 \int_0^{2\pi} \left[\frac{r^2}{2} - \frac{r^3}{3} \right]_0^{1-\frac{z}{3}} \, \mathrm{d}\varphi \, \mathrm{d}z \\ &= 2\pi \int_0^3 \frac{1}{6} - \frac{1}{18} z^2 + \frac{1}{81} z^3 \, \mathrm{d}z = 2\pi \left[\frac{1}{6} z - \frac{1}{54} z^3 + \frac{1}{324} z^4 \right]_0^3 = \frac{\pi}{2} \,. \end{split}$$

(.3) Nun berechnen wir noch die Komponenten s_1 , s_2 , s_3 des Massenschwerpunkts S von K:

$$s_{1} = \frac{1}{M} \iiint_{K} x \, \rho(x, y, z) \, dV = \frac{2}{\pi} \int_{0}^{3} \int_{0}^{2\pi} \int_{0}^{1 - \frac{z}{3}} (1 - r) \, r \, \cos \varphi \, r \, dr \, d\varphi \, dz$$
$$= \frac{2}{\pi} \int_{0}^{3} \int_{0}^{2\pi} \cos \varphi \left[\frac{r^{3}}{3} - \frac{r^{4}}{4} \right]_{0}^{1 - \frac{z}{3}} \, d\varphi \, dz$$
$$= \frac{2}{\pi} \int_{0}^{3} \left[\frac{r^{3}}{3} - \frac{r^{4}}{4} \right]_{0}^{1 - \frac{z}{3}} \left[\sin \varphi \right]_{0}^{2\pi} \, dz = 0,$$

wobei der letzte Schritt aus der Beziehung $[\sin\varphi]_0^{2\pi}=0$ folgt. Entsprechend erhält man

$$s_2 = \frac{1}{M} \iiint_K y \, \rho(x, y, z) \, dV = \frac{2}{\pi} \int_0^3 \left[\frac{r^3}{3} - \frac{r^4}{4} \right]_0^{1 - \frac{z}{3}} \left[-\cos \varphi \right]_0^{2\pi} dz = 0.$$

Schließlich gilt

$$s_3 = \frac{1}{M} \iiint_K z \, \rho(x, y, z) \, dV = \frac{2}{\pi} \int_0^3 \int_0^{2\pi} \int_0^{1 - \frac{z}{3}} (1 - r) \, z \, r \, dr \, d\varphi \, dz$$
$$= \frac{2}{\pi} \int_0^3 \int_0^{2\pi} z \left[\frac{r^2}{2} - \frac{r^3}{3} \right]_0^{1 - \frac{z}{3}} \, d\varphi \, dz = 4 \int_0^3 \frac{1}{6} z - \frac{1}{18} z^3 + \frac{1}{81} z^4 \, dz$$
$$= 4 \left[\frac{1}{12} z^2 - \frac{1}{72} z^4 + \frac{1}{405} z^5 \right]_0^3 = \frac{9}{10} \, .$$

Man erhält als Massenschwerpunkt von K den Punkt $(s_1, s_2, s_3)^{\top} = (0, 0, \frac{9}{10})^{\top}$.

Aufgabe 12 (Gramsche Determinante) Eine Parkhausauffahrt P habe die Gestalt eines Wendelflächenstücks:

$$P = \{(x_1, x_2, x_3)^T \in \mathbb{R}^3 \mid (x_1, x_2, x_3)^T = (u_2 \cos u_1, u_2 \sin u_1, u_1)^T, \ 0 \le u_1 \le 2\pi, \ 5 \le u_2 \le 9\}.$$

Berechnen Sie den Flächeninhalt F von P und vergleichen Sie ihn mit dem Flächeninhalt F des Kreisrings R, der den Grundriss von P bestimmt. (Hinweis: Eine Stammfunktion von $\sqrt{1+x^2}$ lautet $\frac{1}{2} \left(x \sqrt{1+x^2} + \ln(x+\sqrt{1+x^2}) \right)$.

Lösung: Die Parkhausauffahrt P wird dargestellt als Bild der Abbildung

$$x: [0, 2\pi] \times [5, 9] \to \mathbb{R}^3, \quad (u_1, u_2)^T \mapsto (u_2 \cos u_1, u_2 \sin u_1, u_1)^T$$

mit

$$x_{u_1} = \begin{pmatrix} -u_2 \sin u_1 \\ u_2 \cos u_1 \\ 1 \end{pmatrix}, \quad x_{u_2} = \begin{pmatrix} \cos u_1 \\ \sin u_1 \\ 0 \end{pmatrix}, \quad x_{u_1} \times x_{u_2} = \begin{pmatrix} -\sin u_1 \\ \cos u_1 \\ -u_2 \end{pmatrix}.$$

Mit Hilfe des Oberflächenintegrals der konstanten Funktion 1 über P erhalten wir den Flächeninhalt F(P) von P:

$$F(P) = \iint_{P} 1 \, dO = \iint_{[0,2\pi] \times [5,9]} 1 \cdot ||x_{u_{1}} \times x_{u_{2}}|| \, du_{1} \, du_{2}$$

$$= \int_{5}^{9} \int_{0}^{2\pi} \sqrt{1 + u_{2}^{2}} \, du_{1} \, du_{2} = 2\pi \left[\frac{1}{2} u_{2} \sqrt{1 + u_{2}^{2}} + \frac{1}{2} \ln \left| u_{2} + \sqrt{1 + u_{2}^{2}} \right| \right]_{5}^{9}$$

$$= \pi \left(9\sqrt{82} + \ln(9 + \sqrt{82}) - 5\sqrt{26} - \ln(5 + \sqrt{26}) \right) \approx 56,58\pi,$$

wobei wir den Ausdruck $\sqrt{1+u_2^2}$ mit Hilfe der Formelsammlung integrieren.

Der Flächeninhalt von P unterscheidet sich daher nur geringfügig vom Flächeninhalt F(R) des den Grundriss von P bildenden Kreisrings R mit Innenradius 5 und Außenradius 9:

$$F(R) = 9^2\pi - 5^2\pi = 56\pi.$$