8. Supongamos que el diagrama de Coxeter G correspondiente a (W, S) tiene como componentes conexas a los grafos de Coxeter G_1, \ldots, G_k .

Ahora, procedamos por inducción sobre k:

- k = 1: Trivial
- k=2: Tenemos que como S_1 y S_2 satisfacen que $S_1 \cap S_2 = \{e\}$ y adems cada elemento de S_1 conmuta con cada elemento de S_2 (pues G_1 y G_2 son disyuntos), lo cual implica que $W_1W_2 = W_2W_1$ y esto hace de W_1W_2 un grupo. Por lo tanto, $W = W_1W_2$. Así, por un resultado de álgebra abstracta, concluimos que W es el producto directo de W_1 y W_2 .
- k=n: Supongamos que el resultado es válido cuando k=n-1 y veámoslo para n. Por inducción tenemos que $\prod_{i=1}^{n-1} W_i$ es igual al grupo generado por $\{S_1,\ldots,S_{n-1}\}=S-S_n$. Tenemos que $W_n \cap W_i=\{e\}$ para $i\neq n$ y como $S_iS_j=S_jS_i$ entonces $W_iW_j=W_jW_i$ para todo $i\neq j$ entonces

 $W_1 \cdots W_n$ es un grupo, por lo tanto $W = W_1 \cdots W_n$ y por lo tanto W es el producto directo de los subgrupos W_1, \dots, W_n .