高速通道

产品简介

产品简介

产品简介

即使远隔重洋,也有内网质量 -- 阿里云 高速通道(ExpressConnect)服务,帮助您在不同网络环境间搭建 私网通信通道,提高网络拓扑的灵活性和跨网络通信的质量和安全性。

"不同的网络环境"的内网互通,包括:

两个VPC之间进行内网通信

- 无论它们位于相同地域还是不同地域 -- 远距离数据内网传输易如反掌
- 无论它们归属于同一账号还是不同账号 -- 合作开发灵活方便
- 物理IDC和阿里云上VPC之间进行内网通信 -- 融合网络唾手可得

高速通道产品处于公测状态。如果您需要使用该功能,请到阿里云官网高速通道产品页申请公测资格。

产品特性

高速互通

依靠阿里云的网络虚拟化技术,可以将不同网络环境连通,两侧直接进行内网通信,不再需要绕行公网,即使两侧远隔千里,也可以享受到内网通信一般的低延迟和高带宽。

稳定可靠

阿里云高速通道产品依托阿里巴巴集团优质基础设施实现,保障您的网络间通信稳定可靠。

安全

高速通道在网络虚拟化层进行网络间连通,所有通信数据在阿里巴巴自建设施中传输,保证不经公网且多租户 互相隔离,让您的私密数据免去传输过程中被窃取的风险。

拓扑灵活

无论是多中心部署、还是物理机房与云上资源组成融合网络、或是进行多条专线容灾,高速通道提供的灵活网

络拓扑能力都能轻松实现。

简单易用

高速通道的产品抽象简明易用,几个简单的操作就能取代物理世界中复杂的网络配置。同时,您可以完全掌控您的高速通道的通信带宽、工作状态、两侧网络的路由配置,所见即所得。

按需购买

规格配置丰富,不同规格提供不同的数据传输速度。您可以根据您的业务需求按需购买,成本可控。 同时,实时在线变更配置,即使是快速的业务变化也可轻松应对。

产品对比

在阿里云上,您的每一个VPC都是一个与外界二层隔离的网络环境。VPC之间进行网络通信、VPC与物理IDC机房间的网络通信,即是我们所说的不同网络间通信。

如果不依靠高速通道,您只能通过公网通信的方式实现跨网络通信。而高速通道可以帮助您实现跨网络的内网通信。

功能点	使用公网	使用高速通道
通信质量与可用性	远距离公网通信质量受各种因素 影响,时延稳定性、丢包率难以 保证	阿里云优质基础设施为更好的链路质量和可用性提供保障:保证时延抖动不超过20%保证封包成功率不低于99.8%可用性不低于99.95%
成本	使用公网进行通信需要支付公网 流量费用或者带宽费用	带宽免费提供,虚拟设备按需购 买,价格亲民;
安全性	通信数据在公网上存在被监听窃 取的风险	基于阿里云虚拟网络技术实现 ,不同通信链路相互隔离,安全 性高

相关文档链接

功能介绍与使用方式

地域、规格与价格

产品限制

场景介绍

API手册

常见问题

产品名词解释

名词	英文	说明
	7 47 4	7075

高速通道	ExpressConnect	高速通道是依托阿里云优质基础设施实现的数据传输通道,用于不同网络间进行安全可靠的内网通信,比如VPC间、VPC与物理IDC机房之间。
专有网络	Virtual Private Cloud	专有网络是用户基于阿里云创建的自定义私有网络,不同的专有网络之间彻底逻辑隔离,用户可以在自己创建的专有网络内创建和管理云产品实例,比如ECS,Intranet SLB,RDS等。
物理专线	Physical Connection	物理专线是客户直接连接到阿里 云的物理线路的抽象,客户每使 用一根专线接入阿里云,就会在 阿里云拥有一个物理专线对象。
路由器	VRouter	路由器,是VPC网络的枢纽,它可以连接VPC内的各个交换机,同时也是连接VPC与其他网络的网关设备。它会根据具体的路由条目的设置来转发网络流量。
边界路由器	Virtual Boarder Router	客户在物理专线上可以创建多个 边界路由器,每个边界路由器负 责专线上一个VLAN的数据在阿 里云上的转发。通过边界路由器 ,客户的数据可以直达阿里云任 何地域。
路由器接口	RouterInterface	路由器接口,一种虚拟的网络设备,可以挂载在路由器并与其他路由器接口进行高速通道互联,实现不同网络间的内网互通。
路由表	Route Table	路由表,是指路由器上管理路由条目的列表。
路由条目	Route Entry	路由表中的每一项成为一条路由条目,路由条目定义了通向指定目标网段的网络流量的下一跳地址,路由条目包括系统路由和自定义路由两种类型。

专有网络

关于专有网络的说明,详见阿里云文档-VPC-名词解释。

高速通道

高速通道是依托阿里云优质基础设施实现的数据传输通道,用于不同网络间进行安全可靠的内网通信,比如 VPC间、VPC与物理IDC机房之间。

功能说明和使用方式介绍:请参见功能介绍与使用方式

产品约束:请参见高速通道产品约束

路由器

路由器,是VPC网络的枢纽,它可以连接VPC内的各个交换机,同时也是连接VPC与其他网络的网关设备。它会根据具体的路由条目的设置来转发网络流量。

有关路由器的详细说明,参见阿里云文档-网络产品-VPC-名词解释。

路由器接口

路由器接口,是一种虚拟的网络设备。它可以挂载在路由器上,并与其他路由器接口进行高速通道互联,实现不同网络间的内网互通。

功能说明和使用方式介绍:请参见功能介绍与使用方式

产品约束:请参见高速通道产品约束

路由表

路由表,是指路由器上管理路由条目的列表。

关于路由表的详细说明,参见阿里云文档-网络产品-VPC-名词解释。

路由条目

关于路由条目的详细说明,参见阿里云文档-网络产品-VPC-名词解释。

功能与使用流程

什么是路由器接口

路由器接口是一种虚拟设备,具备搭建通信通道并控制其工作状态的功能。

高速通道产品,将不同网络间搭建内网通信通道的过程抽象为:在两侧的路由器上分别创建路由器接口,并进行互连,从而使两个路由器可以通过这个通道向对方转发消息。此时,两个VPC中的资源(比如ECS实例)就可以互相进行内网通信了。

示意图如下:

路由器接口的连接过程

当两个路由器接口进行互连时,会有一个扮演"连接发起端"角色,另一个则扮演"连接接受端"角色。

发起端和接受端的概念仅用于控制连接建立的过程;在实际进行网络通信时,通信链路是双向的,发起端和接 受端没有任何差别。

整个连接过程示意图如下。详细的连接流程,请参见使用入门。

需要注意的是:连接角色这个属性是在路由器接口创建时就必须指定的,且不能修改,因此您在实际操作中,应该在进行路由器接口创建前先设计好哪一侧作为发起端、哪一侧作为接受端

发起端与接受端的异同点详细对比,见下表:

对比点	发起端	接受端
用于同地域VPC互通时是否收费	收费	免费
用于跨地域VPC互通时是否收费	收费	免费

进行连接动作前是否需要配置连 接对端信息	需要	需要
连接过程中是否可以发起连接动作	可以	不可以
已连接后是否可以主动向对端发 消息	可以	可以
创建后是否可以修改角色	不可以	不可以

路由器接口的状态机

绿色状态是稳定状态,用户可以在这些状态上进行各种操作;

深蓝色状态是一些操作过程中存在的中间状态,在这些状态上无法进行任何操作。

路由器接口上可进行的操作

创建:

创建时需要指定所在Region,以及在哪个路由器上创建;创建时需要指定该RouterInterface的 Role(连接发起端还是连接接受端)、对端RegionId(用于与哪个Region进行连接)、规格 (RouterInterface上的数据处理能力)

修改路由器接口属性:

可修改的属性有: Name、Description,以及连接对端的信息,包括对端RouterInterfaceId、对端RI所属的RouterId、对端RI所属的用户Id。需要注意的是,只有在进行连接之前(处于Idle状态)时,可以进连接对端信息的改动,用于指定连接目标。一旦连接开始建立,则无法再次进行修改。

发起连接:

对一个RouterInterface进行"发起连接"操作;系统将会根据RI上已经设置的对端RI信息去进行连接建立动作。需要注意的是,只有Role为"连接发起端"(InitiatingSide)的RI上才可以进行发起连接动作。Role为"连接接受端"(AcceptingSide)的RI只能先设置好要连接的对端状态,然后等待对方发起连接。

将状态设置为非激活:

指定一个状态为Active的RouterInterface,将其置为非激活状态,从而达到暂时中断连接上数据传输的目的。这个动作是一个异步动作。用户获取操作完成与否的方法是:轮询RI的状态,观察RI是否从Deactivating状态进入了InActive状态。

将状态设置为激活:

指定一个状态为Inactive的RouterInterface,将其值为激活状态。若此时对端RouterInterface也是Active状态,则数据传输恢复;若对端RouterInterface的状态是Inactive,则需要对端也进行Active后才能恢复。这个动作是一个异步动作。用户获取操作完成与否的方法是:轮询RI的状态,观察RI是否从Deactivating状态进入了InActive状态。

修改路由器接口规格:

修改虚拟路由器的规格,即修改虚拟路由器接口上的数据处理能力。

删除

对状态为Idle、Inactive的RouterInterface进行删除操作。

这些操作对应的API,参见API手册

路由器接口的数据传输能力

路由器接口有着不同的规格,对应着不同的数据转发速度。

高速通道的数据传输带宽由发起端路由器的规格所决定。接受端的规格不起作用。

发起端和接受端的详细规格列表,参见地域、规格与价格

用于VPC互连时,两侧互相访问的资源

- 一侧的ECS实例可以访问另一侧的ECS实例、SLB实例、RDS实例;

使用场景

同地域下的VPC私网互通

同一地域的两个VPC中的资源可能有网络通信的需求。使用高速通道,可以实现两侧的私网通信,既可以避免绕行公网带来的网络质量不稳定问题,也可以免去数据在传输过程中被窃取的风险。

同Region内的VPC私网互通,价格为30元/天。费用为按日结算、先使用后付费。

实现过程大致如下:

- 1. 在路由器1上创建一个路由器接口,角色为发起端;
- 2. 在路由器2上创建一个路由器接口,角色为接受端;
- 3. 对路由器接口1进行配置,设置其连接对端为路由器接口2;
- 4. 对路由器接口2进行配置,设置其连接对端为路由器接口1;
- 5. 对路由器接口1进行"连接"操作;操作返回成功后,两个路由器接口连接完成;
- 6. 对两侧的路由表进行自定义路由添加,使路由器可以正确的转发消息;具体设置见示意图;
- 7. 对两侧要进行互访的资源进行访问控制设置,比如,对ECS的安全组进行规则添加,允许对端VPC的ECS实例访问;

跨地域的VPC私网互通

处于不同地域的两个VPC中的资源可能有网络通信的需求。使用高速通道,同样可以实现两侧的私网通信,同样既可以避免绕行公网带来的网络质量不稳定问题,也可以免去数据在传输过程中被窃取的风险。

跨Region的VPC私网互通,需要付费。费用为按日结算、先使用后付费;费用高低取决于通信两侧的距离和规

格。详见TODO 收费说明

实现过程大致如下:

- 1. 在路由器1上创建一个路由器接口,角色为发起端;
- 2. 在路由器2上创建一个路由器接口,角色为接受端;
- 3. 对路由器接口1进行配置,设置其连接对端为路由器接口2;
- 4. 对路由器接口2进行配置,设置其连接对端为路由器接口1;
- 5. 对路由器接口1进行"连接"操作;操作返回成功后,两个路由器接口连接完成;
- 6. 对两侧的路由表进行自定义路由添加,使路由器可以正确的转发消息;具体设置见示意图;
- 7. 对两侧要进行互访的资源进行访问控制设置,比如,对ECS的安全组进行规则添加,允许对端VPC的ECS实例访问:

跨账号的VPC私网互通

处于不同账号下的两个VPC中的资源可能有网络通信的需求。使用高速通道,同样可以实现两侧的私网通信,同样既可以避免绕行公网带来的网络质量不稳定问题,也可以免去数据在传输过程中被窃取的风险。

跨Region的VPC私网互通,需要付费。费用为按日结算、先使用后付费;费用高低取决于通信两侧的距离和规格。详见TODO 收费说明

实现过程大致如下:

假设用户1拥有路由器1,用户2拥有路由器2;经协商后由用户1付费(如果是同地域内互连,则不收费);

- 1. 用户1在路由器1上创建一个路由器接口,角色为发起端(因为用户1付费);
- 2. 用户2在路由器2上创建一个路由器接口,角色为接受端;
- 3. 用户1对路由器接口1进行配置,设置其连接对端为路由器接口2;
- 4. 用户2对路由器接口2进行配置,设置其连接对端为路由器接口1;
- 5. 用户1对路由器接口1进行"连接"操作;操作返回成功后,两个路由器接口连接完成;
- 6. 两个用户分别对两侧的路由表进行自定义路由添加,使路由器可以正确的转发消息;具体设置见示意

图;

7. 两个用户分别对两侧要进行互访的资源进行访问控制设置,比如 , 对ECS的安全组进行规则添加 , 允许对端VPC的ECS实例访问 ;

自行专线接入访问VPC

客户的阿里云上VPC,需要与自有机房进行私网通信。使用高速通道的专线接入功能,可以实现两侧的私网通信,既可以避免绕行公网带来的网络质量不稳定问题,也可以免去数据在传输过程中被窃取的风险。

实现过程大致如下:

- 1. 在物理专线页面申请专线接入;
- 2. 物理专线接入审批通过后,获得机房地址和联系人,进行专线接入施工;
- 3. 专线接入施工完毕,双方在系统中确认接入成功,物理专线进入正常状态;
- 4. 在物理专线上创建边界路由器;
- 5. 在边界路由器上创建一个路由器接口1,角色为发起端;
- 6. 在需要访问的VPC路由器上创建一个路由器接口2, 角色为接受端;
- 7. 对路由器接口1进行配置,设置其连接对端为路由器接口2;
- 8. 对路由器接口2进行配置,设置其连接对端为路由器接口1;
- 9. 对路由器接口1进行"连接"操作;操作返回成功后,两个路由器接口连接完成;
- 10. 对两侧的路由表进行自定义路由添加,使路由器可以正确的转发消息;具体设置见示意图;
- 11. 对两侧要进行互访的资源进行访问控制设置,比如,对ECS的安全组进行规则添加,允许对端VPC的ECS实例访问。

通过合作伙伴接入访问VPC

客户的阿里云上VPC,需要与自由机房进行私网通信。使用高速通道的合作伙伴接入功能,可以实现两侧的私网通信,既可以避免绕行公网带来的网络质量不稳定问题,也可以免去数据在传输过程中被窃取的风险。

实现过程大致如下:

- 1. 在文档中查看接入合作伙伴的联系方式,与合作伙伴联系专线接入;
- 2. 合作伙伴完成专线接入后,为客户建立边界路由器;
- 3. 客户在边界路由器上创建一个路由器接口1,角色为发起端;
- 4. 在需要访问的VPC路由器 上创建一个路由器接口2, 角色为接受端;
- 5. 对路由器接口1进行配置,设置其连接对端为路由器接口2;
- 6. 对路由器接口2进行配置,设置其连接对端为路由器接口1;
- 7. 对路由器接口1进行"连接"操作;操作返回成功后,两个路由器接口连接完成;
- 8. 对两侧的路由表进行自定义路由添加,使路由器可以正确的转发消息;具体设置见示意图;
- 9. 对两侧要进行互访的资源进行访问控制设置,比如,对ECS的安全组进行规则添加,允许对端VPC的 ECS实例访问。

两个VPC共用自建SNAT网关

该场景中,VPC1里有一个用户自建的SNAT网关,用于实现同VPC内的其他ECS访问公网;VPC2的实例借助高速通道实现使用VPC1里的自建SNAT网关访问公网。

实现过程大致如下:

假设用户1拥有路由器1,用户2拥有路由器2;经协商后由用户1付费(如果是同地域内互连,则不收费);

- 1. 通过高速通道将两个VPC进行互连(具体步骤见前面的场景介绍)
- 2. 在路由器2的路由表中添加条目,将0.0.0.0/0指向路由器2上的路由器接口;
- 3. 确认路由器1上也已经添加了0.0.0.0/0的默认路由,是指向ECS1的;

此时, VPC2中的ECS访问公网时,路由器2会根据路由表将数据包通过高速通道转发到路由器1上,路由器1会将该消息转发到ECS1上,ECS1会行使SNAT网关的职能,将数据发向公网,并将回包原路返回;

地域、规格与价格

可互联的地域范围

阿里云所有具有VPC的地域内和地域间均可互通。

包括: 华北2(北京)、华东1(杭州)、华东2(上海)、华南1(深圳); 亚太(新加坡)、美西(硅谷)。

可使用的规格

高速通道的数据传输带宽由发起端路由器的规格所决定。接受端的规格不起作用。

连接发起端的规格可选范围和说明如下表:

规格	每秒最大转发数据量 (MB)	每小时最大转发数据量 (MB)	每天最大转发数据量 (MB)
Small.1	1.25	4500	108000
Small.2	2.5	9000	216000
Small.5	6.25	22500	540000

Middle.1	12.5	45000	1080000
Middle.2	25	90000	2160000
Middle.5	62.5	225000	5400000
Large.1	125	450000	10800000
Large.2	256	900000	21600000

连接接受端的规格可选范围和说明如下表:

规格	数据传输带宽
Negative	由连接对端(发起端)路由器接口的规格所决定

费用说明

收费范围

进行VPC互通时:

- 发起端路由器接口收费,其中:
 - 同地域互通价格为30元/天, 规格为Large.2
 - 不同地域互通的费用取决于两侧地域的距离和发起端路由器的规格。详见下表。
- 接受端路由器接口免费;

进行物理IDC专线接入时:

- 专线接入初装费: 1000元/次;
- 接口租用费:1G及以下20元/接口/天;10G170元/接口/天

收费方式

- 按天收费的, 先使用, 后付费; 专线接入初装费, 一次性收取, 后续因为客户原因无法接入的, 接入费不退还;
- 按天结算,每天凌晨对前一天的高速通道使用情况进行账单生成和结算;
- 每个路由器接口的费用,取决于用户设定的规格、连接两端地域的距离;具体价格详见下表;
- 使用未满一天,按一天收费;
- 如果某个路由器接口一天当中发生过变配,则按照当天出现过的最高配置收费;

路由器接口价格表

发起端路由器接口价格

距离映射表如"	下表 昕 示
	トスメリリノハ

ELIAIDA ALA TARAM	/1/0				
	华北 2 (北京)	华东 1 (杭州)	华东 2 (上海)	华南 1 (深圳)	

华北 2 (北京)	本地			
华东 1 (杭州)	大陆中	本地		
华东 2 (上海)	大陆中	大陆近	本地	
华南 1 (深圳)	大陆远	大陆中	大陆中	本地

	价格-元/天			
规格	大陆近	大陆中	大陆远	
Sma11.1	140	160	180	
Sma11.2	220	240	270	
Sma11.5	380	420	470	
Middle. 1	590	640	710	

接受端路由器接口价格

接受端路由器接口,价格永远为0。

价格计算举例

要将华北 2 (北京)的某个VPC与华南 1 (深圳)的某个VPC试用高速通道进行内网打通。经评估后,实际数据传输需求大约为20Mbps。

查"距离映射表"得知,华北2(北京)和华南1(深圳)属于"大陆远"一档;

查"规格说明表"得知,需要创建两个路由器接口,发起端规格为Small.2可以满足需求;接受端规格为Negative;

查"价格说明表"得知,华北2(北京)到华南1(深圳)进行VPC内网互通,使用Small.2规格,每日费用为270元。

产品使用限制

产品使用中的限制

- 一个用户名下最多可以同时存在的路由器接口个数: 5个;
- 一个路由器上最多可以同时存在的路由器接口个数: 5个;
- 一个用户名最多可以在一个接入点接入的物理专线条数: 2条;

- 一个物理专线上最多可以存在的边界路由器个数: 50个;
- 一个用户名下最多可以存在的空闲边界路由器 (没有接口的边界路由器)个数:2个;
- 同一个路由器上的路由器接口不能互连;
- 边界路由器上的路由器接口只能作为发起端;
- 一对VPC之间只能同时存在一对互连的路由器接口;