Dataframe

CS 5135/6035 Learning Probabilistic Models Lecture 2a: Dataframes in Julia

Gowtham Atluri

August 28, 2018

- What is a dataframe?
- How are they different from data matrices?
- What can we do with them?
- How do we use them to explore our data?
 - particularly in Julia

Dataframe

- Two-dimensional size-mutable, potentially heterogeneous tabular data structure
- Has labeled axes (rows and columns)
 - · accessing and plotting data is easier
- Originally introduced in R statistical software

```
## 6×4 DataFrames.DataFrame
    Row Student Height
                            Gender
                                     Number
##
##
                   67.0
                            female
                   64.0
                            female
##
    3
         3
                   61.0
                            female
                                    2
##
    4
          4
                   61.0
                            female
                                     6
##
                   70.0
                            male
                   61.0
                            female
                                     3
```

Dataframes vs. Matrices

Dataframe

• has different types of features

Matrix

• all values are of the same type

```
## 6×2 DataFrames.DataFrame
##
   Row
        Height Gender
##
                            ## 4×3 Array{Float64,2}:
##
         67.0
                 female
                            ## -0.75 0.7 -0.8
##
         64.0
                 female
                            ## 0.8 -0.26 1.82
##
   3
         61.0
                 female
                            ## 1.9 1.86 0.59
##
         61.0
                            ## 0.67 0.59 0.48
                 female
##
   5
         70.0
                 male
         61.0
                 female
```

Sample student dataset: studentdata.txt

All students in the introductory statistics course at Bowling Green State University answered the following questions:

- What is your gender?
- What is your height in inches?
- 3 Choose a whole number between 1 and 10.
- Give the time you went to bed last night.
- **5** Give the time you woke up this morning.
- What was the cost (in dollars) of your last haircut, including the tip?
- O Do you prefer water, pop, or milk with your evening meal?

Rich dataset to explore descriptive statistics while illustrating Julia progamming.

Reading data into Julia

We will use the CSV Package to read the tab separated text file. - this returns a Dataframe object

```
using CSV;
                missingstring="NA",rows_for_type_detect=657)
typeof(data)
```

DataFrames.DataFrame

Size of a Dataframe

size(data)

(657, 11)

names(data)

11-element Array{Symbol,1}:

Column names in a Dataframe

:Student ## :Height

:Gender ## :Shoes

:Number ## :Dvds

:ToSleep ## :WakeUp

:Haircut ## :Job ## :Drink

Columns info. in a Dataframe

showcols(data)

##	11×5 I	DataFrames.I	DataFrame. Omitted printing of 2 columns	
##	Row	variable	eltype	nmissing
##				
##	1	Student	Int64	0
##	2	Height	Float64	10
##	3	Gender	CategoricalArrays.CategoricalString{UInt32}	0
##	4	Shoes	Float64	22
##	5	Number	Int64	2
##	6	Dvds	Float64	16
##	7	ToSleep	Float64	3
##	8	WakeUp	Float64	2
##	9	Haircut	Float64	20
##	10	Job	Float64	32
##	11	Drink	CategoricalArrays.CategoricalString{UInt32}	11

Head of a Dataframe

first 6 rows in Dataframe

head(data)

##	# 6×11 DataFrames.DataFrame. Omitted printing of 3 columns							
##	Row	Student	Height	Gender	Shoes	Number	Dvds	ToSlee
##								
##	1	1	67.0	female	10.0	5	10.0	-2.5
##	2	2	64.0	female	20.0	7	5.0	1.5
##	3	3	61.0	female	12.0	2	6.0	-1.5
##	4	4	61.0	female	3.0	6	40.0	2.0
##	5	5	70.0	male	4.0	5	6.0	0.0
##	6	6	63.0	female	missing	3	5.0	1.0

Tail of Dataframe

bottom 6 rows in Dataframe

tail(data)

##	6×11 [ataFrames	.DataFram	e. Omitte	ed print	ing of 3	column	S
##	Row	Student	Height	Gender	Shoes	Number	Dvds	ToSleep
##								
##	1	652	68.0	female	30.0	6	4.0	0.5
##	2	653	71.0	female	15.0	8	25.0	-1.0
##	3	654	66.0	female	25.0	5	1.0	-1.5
##	4	655	67.0	female	10.0	7	10.0	0.0
##	5	656	68.0	male	3.0	5	15.0	2.5
##	6	657	69.0	male	4.0	6	20.0	3.5

Drop rows with missing values

size(data)

(657, 11)

data = dropmissing(data); size(data)

(559, 11)

CS 5135/6035 Learning Probabilistic Models August 28, 2018 11/23

CS 5135/6035 Learning Probabilistic Models

Summary statistics of a column

describe(data[:,[:Height]]) ## 1×8 DataFrames.DataFrame. Omitted printing of 1 columns ## Row variable mean min median max nunique nmissing ## Height 66.7648 54.0 67.0 84.0 0 ## 1

Summary statistics for separate groups

describe(data[find(data[:Gender].=="male"),[:Height]])

```
## 1×8 DataFrames.DataFrame. Omitted printing of 1 columns
  Row variable mean
                                median max nunique nmissi
                          min
##
##
                                                       0
         Height
                  70.3782 59.0 71.0
```

describe(data[find(data[:Gender].=="female"),[:Height]])

##	1×8 Da	taFrames.Da	Omitte					
##	Row	variable	mean	min	median	max	nunique	nmissin
##								
##	1	Height	64.829	54.0	65.0	84.0		0

CS 5135/6035 Learning Probabilistic Models

Unique values in a column

unique(data[:Drink])

```
## 3-element Array{Union{Missings.Missing, String},1}:
## "water"
## "pop"
## "milk"
```

CS 5135/6035 Learning Probabilistic Models

August 28, 2018 15 / 23

Grouping rows based on a column

```
# returns GroupedDataFrame - vector of Dataframes
ans = groupby(data, :Drink)
```

```
## DataFrames.GroupedDataFrame 3 groups with keys: Symbol[:Drink]
## First Group:
\#\# 308×11 DataFrames.SubDataFrame{Array{Int64,1}}. Omitted printing of 3 co
##
    Row Student Height Gender Shoes Number Dvds ToSleep WakeUp
##
##
                   67.0
                           female 10.0
                                                   10.0
                                                         -2.5
##
                                                        2.0
    2
                   61.0
                           female
                                   3.0
                                          6
                                                   40.0
                                                                  8.5
         4
##
    3
                   61.0
                                   12.0
                                                   53.0
                                                         1.5
                                                                  7.5
                           female
                                          3
##
    4
         9
                   66.0
                           female
                                   30.0
                                          3
                                                   40.0
                                                         -0.5
                                                                  7.0
##
    5
         12
                   63.0
                           female
                                   20.0
                                          4
                                                   60.0
                                                         -1.0
                                                                  7.0
##
    6
         16
                   65.0
                           female
                                   40.0
                                                   50.0
                                                         -0.5
                                                                  7.0
##
    7
         19
                   71.0
                           male
                                   6.0
                                                   0.0
                                                         0.5
                                                                  7.5
##
    8
         20
                   64.0
                           female
                                   4.0
                                                   8.0
                                                         -1.5
                                                                  7.5
##
                   67.0
                                                        4.0
                                                                  9.0
         638
                           female 12.0
##
    301
         639
                   66.5
                           female
                                   13.0
                                                   48.0
                                                        2.5
                                                                  9.0
    302
         641
                   63.0
                                   10.0
                                                   6.0
                                                         1.5
                                                                  11.0
##
                           female
                                                                   16/23
```

Finding number of rows for each type

apply nrow function to every row in the group from Drink ans = by(data, :Drink, nrow)

```
## 3×2 DataFrames.DataFrame
    Row Drink x1
##
##
    1
          water
                 308
                 154
         pop
##
         milk
                 97
    3
```

Adding a new column to DataFrame

```
data[:HrsSleep] = data[:WakeUp] - data[:ToSleep];
names(data)
```

```
## 12-element Array{Symbol,1}:
##
   :Student
##
    :Height
##
   :Gender
## :Shoes
##
    :Number
##
   :Dvds
   :ToSleep
##
    :WakeUp
##
    :Haircut
##
   :Job
##
    :Drink
##
    :HrsSleep
```

Gowtham Atluri

Creating a Dataframe from an existing Dataframe

data1 = data[:,[:Student,:Height,:Gender,:Number]]

```
## 559×4 DataFrames.DataFrame
##
  Row Student Height Gender Number
##
##
                 67.0
                         female
##
    2
                 64.0
                         female 7
##
    3
                 61.0
                         female 2
##
    4
                 61.0
                         female 6
        4
##
    5
        5
                 70.0
                         male
                         female 3
##
                 61.0
##
   7
        8
                 64.0
                         female 4
##
    8
         9
                 66.0
                         female 3
##
        648
                 68 O
##
    551
                         female
##
         649
                  65.0
                         female
##
    553
         650
                 74.0
                         male
                                 2
##
    554
         651
                 72.0
                         male
```

Creating a Dataframe from vectors

```
df = DataFrame(x=1:10, y=rand(10), label="a");
## 6×3 DataFrames.DataFrame
## Row x y
##
         1 0.420658 a
##
   1
##
            0.857426 a
         3 0.683784 a
##
         4 0.352729 a
##
##
    5
         5 0.131234 a
##
         6 0.258234 a
                   CS 5135/6035 Learning Probabilistic Models
```

Creating a Dataframe form a matrix

```
## 3×4 Array{Float64,2}:
## 0.129378 0.855021 0.55745 0.492016
## 0.493085 0.222304 0.308584 0.854161
## 0.586671 0.341275 0.846363 0.679096
df = convert(DataFrame, x);
```

3×4 DataFrames.DataFrame ## Row x1 x4 ## ## 0.129378 0.855021 0.55745 0.492016 1 ## 2 0.493085 0.222304 0.308584 0.854161 0.586671 0.341275 0.846363 0.679096

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

August 28, 2018 21 / 23

Vertical concatenation of Dataframes

```
df1 = DataFrame(x=1:5, y=rand(5), label="a");
df = vcat(df1, df2)
```

```
## 10×3 DataFrames.DataFrame
## Row x y
##
        1 0.941676
   1
##
        2 0.768907
##
        3 0.742488
                       a
##
        4 0.618849
##
   5
        5 0.00647757
                       a
        1 0.2857
##
   6
                       b
##
        2 0.106403
##
   8
        3 0.950561
                       b
##
   9
        4 0.182568
                       b
        5 0.433047
```

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

August 28, 2018 22 / 23

Horizontal concatenation of Dataframes

```
df2 = DataFrame(y=rand(5), z=rand(5));
df = hcat(df1, df2)
```

```
## 5×4 DataFrames.DataFrame
##
##
       0.117431 0.556622 0.241158
                              0.349199
       0.271952 0.78754 0.635181
                                0.934288
##
##
   3
       0.741677 0.897741 0.603863
                                0.922777
##
       0.430203 0.221894 0.171996
                                0.866495
  4
##
```

Gowtham Atluri CS 5135/6035 Learning Probabilistic Models August 28, 2018 23 / 23