Equilibrium Properties of the $H_2 + H + H^+ + e^-$ Reaction:

MAE 727 Midterm Report

Kelvin Loh (20114534)

Room 3333, Department Of Aerospace Engineering

KAIST

kklloh@kaist.ac.kr 10/26/2011

Abstract

The equilibrium properties for the $H_2 + H + H^+ + e^-$ reaction are investigated at different high temperatures. The Boltzmann statistical interpretation was used to calculate the equilibrium constant, and various other properties such as the average internal energy of the atoms, and ions. Results show that even at high temperatures of up to 20000 K, the reaction still favors the formation of H_2 molecules (i.e. the number density of the H_2 molecule is dominant with respect to the other species).

1 Introduction

The primary reaction (1)

$$H_2 \rightleftharpoons H + H^+ + e^- \tag{1}$$

can be thought of to be a combination of two reactions. Mainly,

$$H_2 \rightleftharpoons H + H$$
 (2)

and

$$H \rightleftharpoons H^+ + e^- \tag{3}$$

When both reactions (2) and (3) are combined, they form reaction (1). In order to calculate the equilibrium constant for reaction (1), K_{e1} , one can multiply the individual molar equilibrium constants for both reactions (2) and (3). This is because for a combination of reactions, the molar equilibrium constants are multiplicative.

$$K_{e1} = K_{e2} * K_{e3} = \frac{Q_H * Q_H^+ * Q_e}{N_A^2 * Q_{H_2}}$$

$$K_{e2} = \frac{[H][H]}{[H_2]} = \frac{Q_H^2}{N_A * Q_{H_2}} * exp(-D_0/kt)$$

$$K_{e2} = \frac{[H^+][e^-]}{[H]} = \frac{Q_H^+ * Q_e}{N_A * Q_H} * exp(-D_I/kt)$$
(4)

where Q are the individual partition functions of each species including the translational partition functions, and D_0 , D_I are the dissociation and ionization energies respectively. Note that D_I is measured from the ground level of the atom, while D_0 is measured from the ground state of the molecule H_2 at the lowest vibrational mode.

As for the theory to calculate the number density ratios of the individual species from the partition functions, the book by Park [1] is a good resource.

2 General Description of the Code

A computer program (CSA_test) is used to obtain the individual partition functions of the molecule, atom, ion, and electrons of the reaction. The complete listings of the code are shown in the appendix.

The program starts with the input of all the relevant data such as the energy levels and states for the atom, and ion species. The input file "H_atom2.in" provided in the appendix is used for the program. The program then proceeds to calculate the first Bohr radius in order to obtain the cutoff radius either by density cutoff or Debye shielding length (whichever is the smallest). However, for now, the Debye shielding length calculation needs an input which is the number density of electrons N_e . Theoretically, one can obtain N_e for a particular pressure, however, this is not implemented in the program due to time constraints. Also the cutoff radius is not used in the calculation of the internal molecular partition functions.

After all the relevant inputs are given, the program then proceeds to calculate the partition functions of the atom, ion, and electron. The program then calls the vibrot subroutine which proceeds to calculate the partition function for the molecule based on a method by Vinokur, and Liu [2] and written by Prof. Park. A separate input file is needed which an excerpt is given "kklloh_H2_vibrot.inp" in the appendix. The subroutine also produces an output file "vibrot.out" which can be used for error checking.

The program then completes the calculation for the average electronic excitation energies of the atom, and ion (if given as an input), and then the individual reaction equilibrium constants. The results are then fed into a file named "CSAtest.out". The program then calls another subroutine called turnpt to obtain the potential function for the different molecule electronic states based on Jarmain's method. Again, this subroutine uses its own input file "turnptcoa.inp". The maximum vibrational modes which the turnpt subroutine requires, can be obtained from the "vibrot.out" file. The subroutine produces an output file "turnpt_kklloh.out" which contains all the coordinates for the energy level (in cm^{-1}), and the minimum and maximum radius (in Bohr radius) for that particular energy level. From there, post-processing of the results can be done using MATLAB or gnuplot or any other plotting programs. The results from this report are produced using MATLAB.

3 Results and Discussion

The numerical results of the computation are provided in an accompanying compressed file that came together with this report. Shown in this section are only the plots. Figure 1 shows the internal partition function for the atom and proton. The internal partition function for the H atom increases with temperature as expected and also is approximately constant at 2.0 until 15000 K. As for the proton, since it has no electronic structure, by default it has a value of 1.0.

Figure 1: Internal Partition Function for Atoms and Ions

Figure 2 shows the translation partition function plot for both atom/ion (assuming mass of ion = mass of atom) and the molecule. It is shown here that the translation partition function for H_2 is always larger than either H of H^+ .

Figure 2: Translation Partition Function

Figure 3 shows the total partition functions of the individual species. It can be seen that the total partition function for the molecule H_2 is much larger than both atom and ion. One would then expect the number density of molecules to be larger than both atom and ion.

Figure 3: Total partition functions

Figure 4 shows the average electronic excitation energy and also the translational energy (for atom and ion) as calculated from the program. As expected, the internal energy for the atom increases with temperature.

Figure 4: Average internal energies

Figure 5 shows the equilibrium constants for all the reactions. It shows that the reaction favors the formation of the molecule H_2 even at the temperature of up to 20000 K. Although the numbers seem very small, one must remember that the K_{e1} value is normalized with N_A^2 due to the multiplication of K_{e2} and K_{e3} .

Figure 5: Equilibrium constants

A better form would be the log of K_{e1} which is shown in Figure 6.

Figure 6: $ln(K_{e1})$

In order to visualize the potential function for the internal vibrations of the H_2 molecule, one can plot the coordinates given by the turnpt subroutine as shown in Figure 7.

Figure 7: Potential function for H_2 using Jarmain's method

4 Summary and Future Work Discussions

In summary, the work done can provide insight as to the equilibrium composition for the decomposition and ionization of the hydrogen molecule, and atom. It shows that the H_2 molecule as being stable even at temperatures approximately 20000 K. However, one thing to note is that a lot of errors might be included due to the assumption that the molecule has a potential cutoff radius which is smaller than that calculated by the density cutoff or the Debye shielding length, and this one needs to be investigated more thoroughly. Given the time constraints it was not possible for the author to complete that investigation. One can actually feed in the values for the cutoff radius into the vibrot subroutine and then from there inversely calculate the maximum energy level (and hence the maximum vibrational level) from the potential functions (Hulburt-Hirchfelder or Lippincott). Another additional function would be to calculate the ionization level for comparison with the Saha equation.

Acknowledgments

The author is grateful to Prof. Park Chul for his lectures as well as the FORTRAN subroutines necessary to complete this project.

References

- [1] Park, Nonequilibrium Hypersonic Aerothermodynamics, 1st Ed. (John Wiley & Sons, USA, 1990).
- [2] M. Vinokur, and Y. Liu "Equilibrium Gas Flow Computations.I. Accurate and Efficient Calculation of Equilibrium Gas Properties", presented at the 24th AIAA Thermophysics Conference, AIAA paper 89-1736, Buffalo, New York, June 12-14, 1989.

A Code listing for CSA_test.f

```
program CSA_test
integer i, ij, iT, Ni, Nn, NT, Nmax
integer, parameter :: n = 500
integer, parameter :: long = selected_real_kind(9,99)
```

```
integer, dimension(n) :: x, s, xi = 0
      real(kind=long), dimension(n) :: J, E, QE, Ji, Ei, QEi = 0.
      real(kind=long) :: S_QE, S_J, boltz, g, D0, DI, Mo, PI, h, k = 0.
      real(kind=long) :: S_QEI, S_JI, Ne, Ntot, deb, dm, elec, a0 = 0.
      real(kind=long) :: C, Na, Me, Ke, Kei, Ked, QTe, QP, QA = 0.
      real(kind=long) :: eps_i, eps_a, eps_m, eps_t, S_QE2, S_QE1,
     &
                          SI, SII = 0.
      real temp, mol_parti, mol_partf, dtemp
      open (51, file = 'CSAtest.out')
       open (53, file='SAHA_stuff.out')
\mathbf{c}
      open (52, file = 'H_atom2.in')
      PI = 4.d0*atan(1.d0)
      Me = 9.1093897d - 31
      Na = 6.02214129d23
      elec = 1.60217733d-19
      k = 1.3806488d-23
      C = 299792458.d0
      h = 6.62606957d - 34
      boltzmann's constant 1/cm.K
\mathbf{c}
      boltz = k/(100.d0*h*C)
      read (52,*) Ni, Nn, Mo, D0, Ntot !Ni = number of energy levels for at
      read (52,*) temp, dtemp, NT !temp = initial temperature, dtemp = tem
      write (51,21) 'T (K)', 'qA (cm-3)', 'qP (cm-3)',
     & 'qTe (cm-3)', 'qTA (cm-3)', 'QM_int (cm-3)',
     & 'QM (cm-3)', 'eps_A (cm-1)', 'eps_i (cm-1)', 'eps_t (cm-1)',
     & 'Kei (cm-3)', 'Ked (cm-3)',
     & 'Ke (cm-6)', 'Log(Ke)'
      temperature input at eV to K
\mathbf{c}
\mathbf{c}
       temp = temp * 11604.505
      do i=1, Ni+1
        read(52,*) x(i), s(i), J(i), E(i)
      end do
      do i = 1,Nn
        read(52,*) xi(i), Ji(i), Ei(i)
      end do
```

```
Calculate first Bohr radius
\mathbf{c}
       a0 = 0.529177249d-8 !in cm
      Ne = 100. ! Placeholder number for electron number density
      do iT = 1,NT
       Calculate density cutoff radius
\mathbf{c}
      dm = (1.d0/Ntot)**(1.d0/3.d0)!in cm
       Calculate Debye shielding length
\mathbf{c}
      deb = 0.69 * sqrt (temp/Ne) ! in cm
       if (dm .gt. deb) then
      dm = deb
      end if
      Nmax = floor(sqrt(dm/a0))
       ij = 0
      Search for the corresponding energy level of index Nmax = s
\mathbf{c}
      do i=1,Ni
         if (Nmax .lt. s(i)) then
         Nmax = x(i) - 1
         ii = 1
         end if
      end do
       if (ij .eq. 0) then
         Nmax = x(Ni)
      end if
      do i = 1, Nmax
        QE(i) = (J(i)+1.d0)*exp(-E(i)/(boltz*temp))
      end do
      do i = 1,Nn
         QEi(i) = (Ji(i)+1.d0)*exp(-Ei(i)/(boltz*temp))
      end do
       Calculate the atom internal partition function
\mathbf{c}
      do i = 1, Nmax
      S_{QE} = S_{QE} + QE(i)
      end do
       do i = 2,4
\mathbf{c}
       S_{-}QE2 = S_{-}QE2 + QE(i)
\mathbf{c}
```

```
end do
\mathbf{c}
        do i = 1, 2
\mathbf{c}
        S_{-}QE1 = S_{-}QE1 + QE(i)
\mathbf{c}
        end do
^{\mathrm{c}}
\mathbf{c}
       Calculate ion internal partition function
       do i = 1,Nn
       S_{-}QEI = S_{-}QEI + QEi(i)
       end do
       To account for hydrogen ion internal partition function (proton)
\mathbf{c}
       if (Nn = 0) then
       S_{-}QEI = 1.0 d0
       end if
       Obtain the ionization energy of the atom measured from the ground sta
^{\mathrm{c}}
       DI = E(Nmax+1)
       Atom and ion translational partition function (Assuming negligible m
\mathbf{c}
      QT = (2.d0*PI*Mo*k*temp/(1000.d0*Na*h*h))**(1.5)*1.d-6! multiplication
       QT = 1.878 e^{20*sqrt} (Mo*temp)*Mo*temp
\mathbf{c}
       QTe = (2.d0*PI*Me*k*temp/(h*h))**(1.5)*1.d-6 ! electron translation p
       Electron total partition function (QEe*QTe) QEe = 2.0
\mathbf{c}
       QTe = 2.d0*QTe
\mathbf{c}
       Atom total partition function
      QA = S_QE*QT
       Ion total partition function (QTH*QEH)
\mathbf{c}
       QP = QT*S_QEI
       Calculate molecular partition function
\mathbf{c}
       mol_parti = 0.0
       mol_partf = 0.0
       call vibrot (temp, mol_parti, mol_partf)
\mathbf{c}
       Calculate internal energy of atoms
       do i = 1, Nmax
         eps_a = eps_a + E(i)*(J(i)+1.d0)*exp(-E(i)/(boltz*temp))
       end do
       do i=1,Nn
         eps_i = eps_i + Ei(i)*(Ji(i)+1.d0)*exp(-Ei(i)/(boltz*temp))
       end do
```

```
eps_t = (3.d0)*boltz*temp/(2.d0)
       eps_a = eps_a/S_QE! + (3.d0)*boltz*temp/(2.d0)
       eps_i = eps_i/S_QEI
       Calculate equilibrium constant Ke
\mathbf{c}
      Ke = \exp(-(DI+D0)/(boltz*temp))*QP*QTe*QA/(mol_partf*Na*Na)
       \text{Kei} = \exp(-(\text{DI})/(\text{boltz*temp}))*\text{QP*QTe}/(\text{QA*Na})
      Ked = \exp(-(D0)/(boltz*temp))*QA*QA/(mol_partf*Na)
       write (51,22) temp, S_QE, S_QEI, QTe, QT, mol_parti,
     & mol_partf, eps_a, eps_i, eps_t, Kei, Ked, Ke, log(Ke)
        write(*,'(1p4E15.6)') eps_t
\mathbf{c}
        write (53,20) temp, QP*QP*(QTe*QTe)*exp(-(DI+D0)/(boltz*temp))/
\mathbf{c}
                       (mol_partf*Na*Na*Na)
      &
\mathbf{c}
        write (*,*) Nmax
   20 format (2(1p4E10.3,3X))
   21 format (14(A,5X))
   22 format (14(1p4E15.6,3X))
      temp = temp + dtemp
      S_{-}QE = 0.d0
      S_QEI = 0.d0
      S_{-}QE1 = 0.d0
      S_{-}QE2 = 0.d0
      end do
\mathbf{c}
      Obtain the coordinates for the potential function based on Jarmain's
       call turnpt
      end
```

B Input file H_atom2.in

```
66 0 1.0 36118.11 1.d16
500 500 40
1
    1
              1
                              0.0000000000
2
    2
              1
                         82258.9191133
    2
3
              3
                         82259.2850014
4
    2
              1
                         82258.9543992821
5
    3
              1
                         97492.211200
```

7 3 1 97492.221 8 3 97492.319 9 3 5 97492.355 10 4 1 102823.848 11 4 3 102823.894 12 4 1 102823.894 14 4 5 102823.909 15 4 5 102823.909 16 4 7 102823.917 17 5 1 105291.628 18 5 3 105291.652 19 5 1 105291.652 19 5 1 105291.652 20 5 3 105291.659 21 5 5 105291.659 22 5 5 105291.663 24 5 7 105291.663 24 5 7 105291.666 26 6 1 106632.148 27 6 3 106632.162 28 6 1 106632.166 3	611
9 3 5 97492.355 10 4 1 102823.848 11 4 3 102823.894 12 4 1 102823.894 13 4 3 102823.909 15 4 5 102823.909 16 4 7 102823.917 17 5 1 105291.628 18 5 3 105291.652 19 5 1 105291.652 20 5 3 105291.659 21 5 5 105291.659 22 5 5 105291.663 24 5 7 105291.663 25 5 9 105291.663 25 5 9 105291.663 26 6 1 106632.162 28 6 1 106632.162 28 6 1 106632.166 30 6 5 106632.166 31 6 5 106632.168	701
10 4 1 102823.848 11 4 3 102823.894 12 4 1 102823.853 13 4 3 102823.909 14 4 5 102823.909 15 4 5 102823.909 16 4 7 102823.917 17 5 1 105291.628 18 5 3 105291.652 19 5 1 105291.652 20 5 3 105291.659 21 5 5 105291.659 22 5 5 105291.663 24 5 7 105291.663 25 5 9 105291.663 25 5 9 105291.663 26 6 1 106632.148 27 6 3 106632.149 29 6 3 106632.166 30 6 5 106632.166 31 6 5 106632.168 <td>433</td>	433
11 4 3 102823.894 12 4 1 102823.853 13 4 3 102823.894 14 4 5 102823.909 15 4 5 102823.917 17 5 1 105291.652 18 5 3 105291.652 19 5 1 105291.652 19 5 1 105291.652 20 5 3 105291.652 21 5 5 105291.659 22 5 5 105291.659 23 5 7 105291.663 24 5 7 105291.663 25 5 9 105291.663 25 5 9 105291.663 26 6 1 106632.148 27 6 3 106632.149 29 6 3 106632.166 30 6 5 106632.166 31 6 5 106632.166 <td>566</td>	566
12 4 1 102823.853 13 4 3 102823.894 14 4 5 102823.909 15 4 5 102823.917 17 5 1 105291.628 18 5 3 105291.652 19 5 1 105291.652 19 5 1 105291.652 20 5 3 105291.652 21 5 5 105291.659 22 5 5 105291.663 23 5 7 105291.663 24 5 7 105291.663 25 5 9 105291.663 26 6 1 106632.148 27 6 3 106632.162 28 6 1 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	5825
13 4 3 102823.894 14 4 5 102823.909 15 4 5 102823.909 16 4 7 102823.917 17 5 1 105291.628 18 5 3 105291.652 19 5 1 105291.652 19 5 1 105291.653 20 5 3 105291.659 21 5 5 105291.659 22 5 5 105291.663 24 5 7 105291.663 25 5 9 105291.663 25 5 9 105291.663 26 6 1 106632.148 27 6 3 106632.162 28 6 1 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	3175
14 4 5 102823.909 15 4 5 102823.909 16 4 7 102823.917 17 5 1 105291.628 18 5 3 105291.652 19 5 1 105291.652 20 5 3 105291.651 21 5 5 105291.659 22 5 5 105291.663 24 5 7 105291.663 24 5 7 105291.663 25 5 9 105291.663 26 6 1 106632.148 27 6 3 106632.162 28 6 1 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	0211
15 4 5 102823.909 16 4 7 102823.917 17 5 1 105291.628 18 5 3 105291.652 19 5 1 105291.630 20 5 3 105291.651 21 5 5 105291.659 22 5 5 105291.663 23 5 7 105291.663 24 5 7 105291.663 25 5 9 105291.666 26 6 1 106632.148 27 6 3 106632.149 29 6 3 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	250
16 4 7 102823.917 17 5 1 105291.628 18 5 3 105291.652 19 5 1 105291.630 20 5 3 105291.651 21 5 5 105291.659 22 5 5 105291.663 23 5 7 105291.663 24 5 7 105291.663 25 5 9 105291.666 26 6 1 106632.148 27 6 3 106632.149 29 6 3 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	4871
17 5 1 105291.628 18 5 3 105291.652 19 5 1 105291.630 20 5 3 105291.651 21 5 5 105291.659 22 5 5 105291.659 23 5 7 105291.663 24 5 7 105291.663 25 5 9 105291.666 26 6 1 106632.148 27 6 3 106632.149 29 6 3 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	49
18 5 3 105291.652 19 5 1 105291.630 20 5 3 105291.651 21 5 5 105291.659 22 5 5 105291.663 23 5 7 105291.663 24 5 7 105291.663 25 5 9 105291.666 26 6 1 106632.148 27 6 3 106632.162 28 6 1 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	091
19 5 1 105291.630 20 5 3 105291.651 21 5 5 105291.659 22 5 5 105291.663 23 5 7 105291.663 24 5 7 105291.663 25 5 9 105291.666 26 6 1 106632.148 27 6 3 106632.162 28 6 1 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	67
20 5 3 105291.651 21 5 5 105291.659 22 5 5 105291.659 23 5 7 105291.663 24 5 7 105291.663 25 5 9 105291.666 26 6 1 106632.148 27 6 3 106632.162 28 6 1 106632.149 29 6 3 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	09
21 5 105291.659 22 5 5 105291.659 23 5 7 105291.663 24 5 7 105291.663 25 5 9 105291.666 26 6 1 106632.148 27 6 3 106632.162 28 6 1 106632.149 29 6 3 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	94
22 5 5 105291.659 23 5 7 105291.663 24 5 7 105291.663 25 5 9 105291.666 26 6 1 106632.148 27 6 3 106632.162 28 6 1 106632.149 29 6 3 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	993
23 5 7 105291.663 24 5 7 105291.663 25 5 9 105291.666 26 6 1 106632.148 27 6 3 106632.162 28 6 1 106632.149 29 6 3 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	796
24 5 7 105291.663 25 5 9 105291.666 26 6 1 106632.148 27 6 3 106632.162 28 6 1 106632.149 29 6 3 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	83494
25 5 9 105291.666 26 6 1 106632.148 27 6 3 106632.162 28 6 1 106632.149 29 6 3 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	70
26 6 1 106632.148 27 6 3 106632.162 28 6 1 106632.149 29 6 3 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	73033
27 6 3 106632.162 28 6 1 106632.149 29 6 3 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	07200
28 6 1 106632.149 29 6 3 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	5242
29 6 3 106632.162 30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	0756
30 6 5 106632.166 31 6 5 106632.166 32 6 7 106632.168	8416
31 6 5 106632.166 32 6 7 106632.168	0536
32 6 7 106632.168	5697
	56761
	82614
33 6 7 106632.168	82188
34 6 9 106632.170	17701
35 6 9 106632.170	17434
36 6 11 106632.171	07779
37 7 1 107440.438	50
38 7 3 107440.447	03
39 7 1 107440.439	33
40 7 3 107440.447	022

41	7	5	107440.449866
42	8	1	107965.0491583
43	8	3	107965.0548753
44	8	1	107965.0497145
45	8	3	107965.0548660
46	8	5	107965.05677174
47	9	1	108324.72016
48	9	3	108324.72418
49	9	1	108324.72055
50	9	3	108324.724162
51	9	5	108324.725501
52	10	1	108581.99051
53	10	3	108581.99344
54	10	1	108581.99080
55	10	3	108581.9934250
56	10	5	108581.9944009
57	11	1	108772.34135
58	11	3	108772.34355
59	11	1	108772.34157
60	11	3	108772.343536
61	11	5	108772.344270
62	12	1	108917.11870
63	12	3	108917.12039
64	12	1	108917.11886
65	12	3	108917.1203787
66	12	5	108917.12094342
67	0	3	109678.771732

Combined input file for H, and H+, 1st column = energy level index, 2nd column = n-th state, third column = degeneracy, fourth column = energy level (cm-1)

C Excerpt for kklloh_H2_vibrot.inp

 $\begin{array}{ccc} \mathrm{spnm} & \mathrm{spwt}\,(\,\mathrm{kg/m}) & \mathrm{nelec} \\ \mathrm{H2} & 0.002016 & 12 \end{array}$

 $\begin{array}{ccc} \text{reduced} & \text{mass} & \text{factr} \\ 0.5039 & & 0.5 \end{array}$

STATE NAME (SYMBOL)

	(
DEGEN	TERM	WE	WEXE	WEYE	REQUIL	DZERO
	BE	ALPHA	DE	BETA		
X1SIGG+						
1.	0.	4401.213	121.3360	0.000	0.7414	
36117.40						
	60.85300	3.062	0.04710	-0.00274		
B1SIGU+						
1.	91700.80	1358.090	20.8880	0.000	1.2928	
26675.60						
	20.01540	1.184	0.01625	-0.002165		