

FIG. 1A

BURST PROFILE

EXCITATION PROFILE

FIG. 1B
EMISSION PROFILES

FIG. 1C

FIG. 2

$$K_a = \frac{k_{on}}{k_{off}} = \frac{[P_1 P_2]}{[P_1][P_2]} \quad K_a = \frac{[P_1^D P_2^A]}{[P_1^D][P_2^A]}$$

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

a) Normalized Subpopulation Concentrations $Y_D + Y_A + Y_{DA} = 1$

$$G_g(0) = \frac{1}{N_{total}} \cdot \frac{Y_D + Y_{DA}(1-E)^2}{[Y_D + Y_{DA}(1-E)]^2}$$

$$G_r(0) = \frac{1}{N_{total}} \cdot \frac{Y_{DA}E^2k^2 + Y_A}{(Y_{DA}Ek + Y_A)^2}$$

$$G_{gr}(0) = \frac{1}{N_{total}} \cdot \frac{Y_{DA}(1-E)Ek}{[Y_D + Y_{DA}(1-E)][Y_{DA}Ek + Y_A]}$$