Efficiency and Formulating Abstractions with Higher Order Procedures

Abelson & Sussman & Sussman sections:(first part 1.2) & 1.3

Assignment Project

© 2017 The University of Adelaide/1.0

Scheme_S2/Slide 1

Lecture contents

- · In this lecture we will look at:
- The processes generated by the evaluation of recursive definitions (A&S 1.2)
 - "Iterative" vs "recursive" definitions.
 - Efficiency
- Formulating abstractions with higher-order procedures(A&S
 - procedures as arguments
 - constructing procedures using lambda
 - procedures as general methods

We will defer the underlined topics until next lecture

https://eduassistpro.github.io/

Why understanding process is important

- When writing a program, it is important to be able to visualise what the program will do when it runs.
- · Without this knowledge you cannot tell if a program does what you want it to do.
 - or does its job efficiently!
- Recursive definitions describe how a computational process gets from one stage to the next.
 - It describes local processing.
- You, as the programmer, need to understand how these elements of local processing are joined together to form a global process.

© 2017 The University of Adelaide/1.0

Advanced Programming Paradigms

Scheme S2/Slide 3

eChat edu_assist_pro

· Consider the following definition of factorial:

```
(define (factorial n)
  (if (= n 1)
       (* n (factorial (- n 1)))))
```

- This definition makes one recursive call to factorial and then multiplies the result by n.
- The value of n must be recorded somewhere so we know what to multiply by when the recursive call: factorial(n-1) returns.
 - We must also remember that the next thing we have to do, after returning, is multiplication.

© 2017 The University of Adelaide/1.0

Advanced Programming Paradigms

Example: Factorial(cont'd)

Sample evaluation:

```
(factorial 6)
(* 6 (factorial 5))
(* 6 (* 5 (factorial 4)))
    (* 5 (* 4 (factorial 3))))
    (* 5 (* 4 (* 3 (factorial 2)))))
    (* 5 (* 4 (* 3 (* 2 (factorial 1))))))
    (* 5 (* 4 (* 3 (* 2 1)))))
720
                                 gnment Project E
```

- - some processing is done after each recursive call.

© 2017 The University of Adelaide/1.0

Scheme_S2/Slide 5

A more efficient factorial

· A more efficient version of factorial:

```
(define (factorial n)
 (fact-iter 1 1 n))
(define (fact-iter product counter max-count)
 (if (> counter max-count)
     product
     (fact-iter (* counter product)
                 (+ counter 1)
                max-count)))
```

- fact-iter does not perform any computation after the recursive call
 - No extra information to remember.

https://eduassistpro.github.io/

A more efficient Factorial (cont'd) WeChat edu_assist properties and the continuous made a maximum of sple evaluation of new version:

· Sample evaluation of new version:

```
(factorial 6)~
(fact-iter 1 1 6)
(fact-iter 1 2 6)
(fact-iter 2 3 6)
(fact-iter 6 4 6)
(fact-iter 24 5 6)
(fact-iter 120 6 6)
(fact-iter 720 7 6)
720
```

- This process is linear-iterative.
 - much more efficient
 - carries the state of the computation in the parameters.
- · Note that both definitions are recursive but only the first one generates a recursive process.

© 2017 The University of Adelaide/1.0

Advanced Programming Paradigms

Scheme S2/Slide 7

one recursive call for each recursive call.

- The term linear is derived from this (calls form a straight line)
- It is possible for each recursive call to generate > 1 recursive calls.
- · This is called Tree recursion.
- Example: generator for nth Fibonacci number:

```
(define (fib n)
  (cond ((= n 0) 0)
        ((= n 1) 1)
         (else (+ (fib (- n 1))
                  (fib (- n 2))))))
```

© 2017 The University of Adelaide/1.0

Advanced Programming Paradigms

Tree recursion

· This definition generates the following (inefficient) process for (fib 5).

Efficiency

- · The last solution was very inefficient.
 - can you see why?
- · A more efficient definition is:

```
(define (fib n)
   (fib-iter 1 0 n))
(define (fib-iter a b count)
   (if (= count 0)
  (fib-iter (+ a b) a (- count 1))))
```

- · Note the use of variables to hold:
 - The last two results

This version is O(n) efficient. The last version was O(kn)

https://eduassistpro.github.io/

Recall complexity analysis from data structures courses

Add WeChat edu_assist_pro_rogramming tool.

Consider performing 10⁶ operations per sec with problem size 10⁵

Function	Running Time	
2^n	More than a century	
n^3	31.7 years	
n^2	2.8 hours	
$n\sqrt{n}$	31.6 seconds	
$n \log n$	1.2 seconds	
n	0.1 seconds	
\sqrt{n}	3.2×10^{-4} seconds	
$\log n$	1.2×10^{-5} seconds	

- · Consider the problem of counting the number of ways to change a certain amount of money with a certain set of
 - So, for example, we could ask the question: How many ways can you change \$2.10 given the denominations: 5c, 10c, 20c,50c,\$1 and \$2?
- Where do you start with a solution to this problem?

© 2017 The University of Adelaide/1.0

Advanced Programming Paradigms

Solution specification

- The following statement is true:
- The number of ways to count an amount a using n kinds of coins equals.
 - The number of ways to change amount a using all but the first kind of
 - The number of ways to change amount a-d using all n kinds of coins, where *d* is the denomination of the first coin.
- This provides a way sub-divide a problem. Now we need to know when to stop this subdivision process.
- · We stop when:
 - a is exactly 0c, there is exactly one way to change 0c.
 - a < 0c, there are zero ways to change of ignment Project Exam kinds on is 0, there are zero ways to change any amount of money.

© 2017 The University of Adelaide/1.0

Advanced Programming Paradigms

Scheme_S2/Slide 13

Counting Change: code (define (count-change amount) (cc amount 5)) (define (cc amount kinds-of-coins) (cond ((= amount 0) 1) ((or (< amount 0) (= kinds-of-coins 0)) 0) (else (+ (cc amount (- kinds-of-coins 1)) (cc (- amount (first-denomination kinds-of-coins)) kinds-of-coins))))) (define (first-denomination kinds-of-coins) (cond ((= kinds-of-coins 1) 5) ((= kinds-of-coins 2) 10) □ □ ((= kinds-of-coins 3) 20) ((= kinds-of-coins 4) 50)

https://eduassistpro.github.io/

Problems (section 1.2) Add WeChat edu_assistul the following with Higher-Order Procs (1.3)

bility to attach labels to code.

- It helps document code.
- It makes programming a lot easier
- scheme supports this using the define keyword.
- In Scheme, we can also treat code as a value implications:
 - we can give values a label (as above), but we can also...
 - pass values into procedures
 - return values as results of procedures
 - combine values using operations
- Scheme allows procedures to be treated as values by supporting the first three capabilities directly.
- given this, we can define our own operations on procedures.

© 2017 The University of Adelaide/1.0

Advanced Programming Paradigms Scheme S2/Slide 16

 To understand the conditions that terminate the recursion in the change problem, trace *completely* a simple example. such as making change for 25 cents from 5 and 10 cent coins.

- The code in the last example is not very efficient. Define the order of efficiency of this code.
- Describe how getting the program to remember the results that it generates could make the algorithm more efficient. How much more efficient?
- Exercises 1.11 and 1.12

© 2017 The University of Adelaide/1.0

Advanced Programming Paradigms

Abstractions with Higher-Order Procedures

- Procedures that treat other procedures as data are called higher-order procedures.
- Higher-order procedures add another level of expressive power to a programming language.
 - We can define our own patterns of computation.
 - We can then "plug" the procedures of our choice into these patterns.
 - In most languages, these patterns are built into the language and cannot be changed.

Assignment Project Externorm energy to of these definitions.

Patterns of computation

· Consider the following examples:

```
(define (sum-integers a b)
   (if (> a b)
       (+ a (<u>sum-integers</u> (+ a 1) b))))
(define (sum-cubes a b)
   (if (> a b)
       (+ (cube a) (<u>sum-cubes</u> (+ a 1) b))))
(define (pi-sum a b)
   (if (> a b)
     (+ (/ 1.0 (* a (+ a 2))) (pi-sum (+ a 4) b))))
```

© 2017 The University of Adelaide/1.0

Advanced Programming Paradigms

Scheme_S2/Slide 17

https://eduassistpro.github.io/

Capturing patterns of computation atterns of computation pattern followed by the preceding definitions is: We Chat edu_assist properties procedure to define

The pattern followed by the preceding definitions is:

```
define (name a b)
   (if (> a b)
     (+ (term a) (name (next a) b)))
```

• The scheme function defining this pattern is:

```
(define (sum term a next b)
  (if (> a b)
      (+ (term a) (sum term (next a) next b))))
```

- Now we have a general-purpose procedure that captures the concept of summation.
 - and also allows us to write shorter, less repetitive, code.

© 2017 The University of Adelaide/1.0

Advanced Programming Paradigms

Scheme S2/Slide 19

· The sum of integers:

```
(define (identity x) x)
(define (sum-integers a b)
   (sum identity a inc b))
```

The sum of cubes:

```
(define (inc n) (+ n 1))
(define (sum-cubes a b)
    (sum cube a inc b))
```

- and many others
 - see exercise 1.31, 1.32 and 1.33

© 2017 The University of Adelaide/1.0

Advanced Programming Paradigms