CS 304: Design and Analysis of Algorithm

Strongly Connected Component

Last Class's Topic

- DFS
- Topological Sort
- Problems:
 - Detect cycle in an undirected graph
 - Detect cycle in a directed graph
 - How many paths are there from "s" to "t" in a directed acyclic graph?

Connectivity

- Connected Graph
 - In an <u>undirected graph</u> G, two vertices u and v are called connected if G contains a path from u to v. Otherwise, they are called disconnected.
 - A <u>directed graph</u> is called connected if every pair of distinct vertices in the graph is connected.
- Connected Components
 - A connected component is a maximal connected subgraph of G. Each vertex belongs to exactly one connected component, as does each edge.

Connectivity (cont.)

- Weakly Connected Graph
 - A <u>directed graph</u> is called weakly connected if replacing all of its directed edges with undirected edges produces a connected (undirected) graph.
- Strongly Connected Graph
 - It is strongly connected or strong if it contains a directed path from u to v for every pair of vertices u, v. The strong components are the maximal strongly connected subgraphs

Connected Components

- Strongly connected graph
 - A directed graph is called *strongly connected* if for every pair of vertices *u* and *v* there is a path from *u* to *v* and a path from *v* to *u*.
- Strongly Connected Components (SCC)
 - The **strongly connected components** (**SCC**) of a directed graph are its maximal strongly connected subgraphs.
- Here, we work with
 - Directed unweighted graph

Strongly Connected Components

- *G* is strongly connected if every pair (*u*, *v*) of vertices in *G* is reachable from one another.
- A **strongly connected component** (*SCC*) of *G* is a maximal set of vertices $C \subseteq V$ such that for all $u, V \in C$, both $u \sim V$ and $V \sim u$ exist.

DFS - Strongly Connected Components

DFS - Strongly Connected Components

Component Graph

- Gscc = (Vscc, Escc).
- *V*^{SCC} has one vertex for each SCC in *G*.
- *E*^{SCC} has an edge if there's an edge between the corresponding SCC's in *G*.
- G^{SCC} for the example considered:

Strongly Connected Components

The **transpose** M^T of an NxN matrix M is the matrix obtained when the rows become columns and the column become rows:

Transpose of a Directed Graph

- G^{T} = **transpose** of directed G.
 - $\blacksquare G^{\mathrm{T}} = (V, E^{\mathrm{T}}), E^{\mathrm{T}} = \{(u, v) : (v, u) \in E\}.$
 - \blacksquare G^{T} is G with all edges reversed.
- Can create G^T in $\Theta(V + E)$ time if using adjacency lists.
- G and G^T have the *same* SCC's. (u and v are reachable from each other in G if and only if reachable from each other in G^T .)

Algorithm to determine SCCs

SCC(G)

- 1. call DFS(G) to compute finishing times f[u] for all u
- 2. compute G^{T}
- call DFS(G^T), but in the main loop, consider vertices in order of decreasing f[u] (as computed in first DFS)
- 4. output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Time: $\Theta(V+E)$.

Example

DFS on the initial graph G

b e a c d g h f 16 15 14 10 9 7 6 4

DFS on GT:

- start at b: visit a, e
- start at c: visit d
- start at g: visit f
- start at h

Strongly connected components: $C_1 = \{a, b, e\}, C_2 = \{c, d\}, C_3 = \{f, g\}, C_4 = \{h\}$

Component Graph

- The **component graph** Gscc = (Vscc, Escc):
 - $V^{SCC} = \{v_1, v_2, ..., v_k\}$, where v_i corresponds to each strongly connected component C_i
 - There is an edge $(v_i, v_j) \in E^{SCC}$ if G contains a directed edge (x, y) for some $x \in C_i$ and $y \in C_j$
- The component graph is a DAG

Lemma 1

Let C and C' be distinct SCCs in G

Let $u, v \in C$, and $u', v' \in C'$

Suppose there is a path U \(\text{U} \) in G

Then there cannot also be a path $V' \square V$ in G.

Proof

- Suppose there is a path v' □ v
- There exists u □ u' □ v'
- There exists v' □ v □ u
- u and v' are reachable from each other, so they are not in separate SCC's: contradiction!

Notations

- Extend notation for d (starting time) and f (finishing time) to sets of vertices $U \subseteq V$:
 - $d(U) = \min_{u \in U} \{ d[u] \}$ (earliest discovery time)
 - $f(U) = \max_{u \in U} \{ f[u] \}$ (latest finishing time)

Lemma 2

- Let C and C' be distinct SCCs in a directed graph G =
 (V, E). If there is an edge (u, v) ∈ E, where u ∈ C
 and V ∈ C' then f(C) > f(C').
- Consider C₁ and C₂, connected by edge (b, c)

Corollary

- Let C and C' be distinct SCCs in a directed graph G =
 (V, E). If there is an edge (u, v) ∈ E^T, where u ∈ C
 and V ∈ C' then f(C) < f(C').
- Consider C₂ and C₁, connected by edge (c, b)

- Since (c, b) ∈ E^T ⇒
 (b, c) ∈ E
- From previous lemma:

$$f(C_1) > f(C_2)$$

Corollary

• Each edge in G^T that goes between different components goes from a component with an earlier finish time (in the DFS) to one with a later finish time

Why does SCC Work?

- When we do the second DFS, on G^T, we start with a component C such that f(C) is maximum (b, in our case)
- We start from b and visit all vertices in C₁
- From corollary: f(C) > f(C') in G for all $C \neq C' \Rightarrow$ there are no edges from C to any other SCCs in G^T
- \Rightarrow DFS will visit only vertices in C₁
- \Rightarrow The depth-first tree rooted at **b** contains exactly the vertices of C₁

Why does SCC Work? (cont.)

- The next root chosen in the second DFS is in SCC C_2 such that f(C) is maximum over all SCC's other than C_1
- DFS visits all vertices in C₂
 - the only edges out of C_2 go to C_1 , which we've already visited
- \Rightarrow The only tree edges will be to vertices in C_2
- Each time we choose a new root it can reach only:
 - vertices in its own component
 - vertices in components already visited

Reference

- Book: Cormen Chapter 22 Section 22.5
- Exercise:
 - 22.5-1: Number of componets change?
 - 22.5-6: Minimize edge list
 - 22.5-7: Semiconnected graph