(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2001-169530

(P2001-169530A) (43)公開日 平成13年6月22日(2001.6.22)

最終頁に続く

(51) Int. Cl. ⁷	識別記号	F I		テーマコート	(参考)
H02K 41/06		H02K 41/06	-	5H641	
37/12	521	37/12	521		
37/14		37/14		V	

		審査請求	: 未請求 請求項の数36 OL (全15頁)
(21)出願番号	特願2000-16405(P2000-16405)	(71)出願人	000005832 松下電工株式会社
(22)出願日	平成12年 1 月26日 (2000.1.26)	(72)発明者	大阪府門真市大字門真1048番地
(31)優先権主張番号 (32)優先日	特願平11-272341 平成11年9月27日(1999.9.27)	(10,707,1	大阪府門真市大字門真1048番地松下電工株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	北野 斉 大阪府門真市大字門真1048番地松下電工株 式会社内
		(74)代理人	100087767 弁理士 西川 惠清 (外1名)

(54) 【発明の名称】公転式アクチュエータ

(57)【要約】

【課題】 高効率化を図る。

【解決手段】 所定半径の公転が自在に支持されている 可動部材 3 と、この可動部材 3 の公転軌道の外接円に沿って配置されているとともに可動部材 3 に作用させる磁 気力で可動部材 3 に公転を行わせるステータ 4 とからなる。 鉄心 4 1 と該鉄心 4 1 に巻回されたコイル 4 2 とからなる上記ステータ 4 の鉄心 4 1 が、可動部材 3 の外周部を非接触で挟み込んでいる。ステータ 4 の次に励磁すべき部分と可動部材 3 との隙間を一定に保つことができる。

2

【特許請求の範囲】

【請求項1】 所定半径の公転が自在に支持されている 可動部材と、この可動部材の公転軌道の外接円に沿って 配置されているとともに可動部材に作用させる磁気力で 可動部材に公転を行わせるステータとからなる公転式ア クチュエータであって、鉄心と該鉄心に巻回されたコイ ルとからなる上記ステータの鉄心は、可動部材の外周部 を非接触で挟み込んでいることを特徴とする公転式アク チュエータ。

【請求項2】 ステータは、可動部材の公転平面に沿っ 10 た磁気回路を形成するものであることを特徴とする請求 項1記載の公転式アクチュエータ。

【請求項3】 ステータは、可動部材の公転平面を横断する磁気回路を形成するものであることを特徴とする請求項1記載の公転式アクチュエータ。

【請求項4】 可動部材はスクロールポンプの可動スクロール駆動用であることを特徴とする請求項1~3のいずれかの項に記載の公転式アクチュエータ。

【請求項5】 可動部材が永久磁石で形成されていることを特徴とする請求項1~4のいずれかの項に記載の公 20 転式アクチュエータ。

【請求項6】 可動部材は外周部が永久磁石で形成され、内周部が軽量部材で形成されていることを特徴とする請求項5記載の公転式アクチュエータ。

【請求項7】 可動部材は永久磁石と磁性材料とからなることを特徴とする請求項5記載の公転式アクチュエータ。

【請求項8】 可動部材は周方向において永久磁石と磁性材料とが交互に並んだものとして形成されているとともに、磁性材料に隣接する2つの永久磁石は間の磁性材 30料に同磁極を向けていることを特徴とする請求項7記載の公転式アクチュエータ。

【請求項9】 可動部材は永久磁石で形成されていると ともに径方向に着磁されていることを特徴とする請求項 1~4のいずれかの項に記載の公転式アクチュエータ。

【請求項10】 可動部材は永久磁石で形成されているとともに着磁方向が径方向に対して傾いていることを特徴とする請求項1~4のいずれかの項に記載の公転式アクチュエータ。

【請求項11】 可動部材は永久磁石で形成されている 40 とともに厚み方向において複数の永久磁石が積層されていることを特徴とする請求項1~4のいずれかの項に記載の公転式アクチュエータ。

【請求項12】 可動部材はその外周面に間隔をおいて 複数個の突部を備えていることを特徴とする請求項1~ 11のいずれかの項に記載の公転式アクチュエータ。

【請求項13】 突部はその断面積が可動部材の周方向において漸次変化していることを特徴とする請求項12 記載の公転式アクチュエータ。

【請求項14】 突部はその断面積が可動部材の径方向 50 載の公転式アクチュエータ。

において漸次変化していることを特徴とする請求項12 記載の公転式アクチュエータ。

【請求項15】 可動部材はその外周面に厚みの薄い鍔部を備えて、この鍔部がステータの鉄心で非接触状態で挟み込まれていることを特徴とする請求項1~5のいずれかの項に記載の公転式アクチュエータ。

【請求項16】 可動部材はその中心側が外周部よりも 薄肉もしくは中空となっていることを特徴とする請求項 1~5のいずれかの項に記載の公転式アクチュエータ。

【請求項17】 可動部材はステータとの対向部表面に スリットを備えていることを特徴とする請求項1~16 のいずれかの項に記載の公転式アクチュエータ。

【請求項18】 ステータの鉄心は磁束の流動方向と垂直な方向に電磁鋼板を積層したものとして形成されていることを特徴とする請求項1~17のいずれかの項に記載の公転式アクチュエータ。

【請求項19】 ステータの鉄心は可動部材との対向面 にスリットを備えていることを特徴とする請求項1~1 8のいずれかの項に記載の公転式アクチュエータ。

【請求項20】 ステータの鉄心の先端部断面積が他の 部分より大となっていることを特徴とする請求項1~1 9のいずれかの項に記載の公転式アクチュエータ。

【請求項21】 ステータの鉄心は可動部材を挟んで接合される複数部品で形成されていることを特徴とする請求項1~20のいずれかの項に記載の公転式アクチュエータ。

【請求項22】 コイルが各部品毎に巻回されていることを特徴とする請求項21記載の公転式アクチュエータ。

0 【請求項23】 コイルは鉄心の可動部材寄りの先端部 に巻回されていることを特徴とする請求項1~22のいずれかの項に記載の公転式アクチュエータ。

【請求項24】 ステータはリング状であって内周側に 複数の磁極歯を突出させている鉄心と、該鉄心のリング 状部で且つ磁極歯間の部分に巻回されているコイルとか らなることを特徴とする請求項2記載の公転式アクチュ エータ。

【請求項25】 鉄心のコイル巻回部分には電気的に絶縁された複数のコイルが巻回されていることを特徴とする請求項1~23のいずれかの項に記載の公転式アクチュエータ。

【請求項26】 可動部材は自転拘束機構を介して支持 されていることを特徴とする請求項1~25のいずれか の項に記載の公転式アクチュエータ。

【請求項27】 可動部材は公転半径拘束部材を介して 支持されていることを特徴とする請求項1~26のいず れかの項に記載の公転式アクチュエータ。

【請求項28】 公転半径拘束部材は可動部材のカウン タバランスを備えていることを特徴とする請求項27記 載の公転式アクチュエータ 【請求項29】 可動部材の公転平面と直交する方向における可動部材の位置を規制する規制手段を備えていることを特徴とする請求項 $1\sim28$ のいずれかの項に記載の公転式アクチュエータ。

【請求項30】 規制手段はリテーナにて保持されて可動部材に接触する複数の球面体であることを特徴とする請求項29記載の公転式アクチュエータ。

【請求項31】 規制手段は磁気力を可動部材に及ぼして位置規制を行うものであることを特徴とする請求項2 9記載の公転式アクチュエータ。

【請求項32】 可動部材の径方向において向かい合う 位置にあるコイル同士を、両コイルで励磁される鉄心の 極性が逆となるように結線しておくことを特徴とする請 求項1~4のいずれかの項に記載の公転式アクチュエー タ。

【請求項33】 可動部材の公転位置を検出する検出手段と、検出手段の出力に基づいてステータを制御する制御手段とを備えていることを特徴とする請求項1~32のいずれかの項に記載の公転式アクチュエータ。

【請求項34】 検出手段は可動部材が備える永久磁石 20 の磁気に感応する磁気感応部材であることを特徴とする 請求項33記載の公転式アクチュエータ。

【請求項35】 可動部材に公転を行わせる磁気力を可動部材の周方向に並んでいる複数のコイルの同時励磁で発生させていることを特徴とする請求項1~4のいずれかの項に記載の公転式アクチュエータ。

【請求項36】 少なくとも可動部材の径方向において 可動部材が最も接近している極またはこの極に隣合う極 の鉄心と、該鉄心と可動部材の径方向において向かい合 う鉄心とを励磁するためのコイルを除く他の複数のコイ 30 ルの同時励磁で可動部材に公転を行わせる磁気力を発生 させていることを特徴とする請求項35記載の公転式ア クチュエータ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は可動部材に公転運動 を行わせる公転式アクチュエータに関するものである。

[0002]

【従来の技術】一般のモータは、特公昭63-3338 2号公報に示されているステップモータのように可動部 40 材に自転を行わせるものであるが、特開平8-2055 15号公報や特開平6-319251号公報に示された 可変空隙型モータのように、可動部材に公転運動を行わ せるものも存在している。磁界を移動させることで公転 自在に支持されている可動部材に公転運動を行わせるも のである。

[0003]

【発明が解決しようとする課題】しかし、従来の公転式 アクチュエータでは、磁界を移動させる際、次ステップ で励磁する固定鉄心と可動部材との間の隙間は、可動部 50 材の公転半径や可動部材の形状(直径等)に依存する可変隙間となっており、磁気抵抗や磁束漏れが大きく、高効率化が困難である。

【0004】本発明はこのような点に鑑みなされたものであって、その目的とするところは高効率化を図ることができる公転式アクチュエータを提供するにある。

[0005]

【課題を解決するための手段】しかして本発明は、所定 半径の公転が自在に支持されている可動部材と、この可 10 動部材の公転軌道の外接円に沿って配置されているとと もに可動部材に作用させる磁気力で可動部材に公転を行 わせるステータとからなる公転式アクチュエータにおい て、鉄心と該鉄心に巻回されたコイルとからなる上記ス テータの鉄心が、可動部材の外周部を非接触で挟み込ん でいることに特徴を有している。ステータの次に励磁す べき部分と可動部材との隙間を一定に保つことができ る。

【0006】この時、ステータは、可動部材の公転平面に沿った磁気回路を形成するものであっても、可動部材の公転平面を横断する磁気回路を形成するものであってもよい。可動部材が永久磁石で形成されておれば、より効率の高い駆動を行うことができる。

【0007】また、可動部材は外周部が永久磁石で形成され、内周部が軽量部材で形成されていたり、永久磁石と磁性材料とから形成されていたりしてもよく、後者の場合、周方向において永久磁石と磁性材料とが交互に並んだものとして形成されているとともに、磁性材料に隣接する2つの永久磁石は間の磁性材料に同磁極を向けているものとすることもできる。

【0008】さらに、可動部材が永久磁石で形成されている場合、径方向に着磁されていたり、着磁方向が径方向に対して傾いていたり、厚み方向において複数の永久磁石が積層されているものであってもよい。

【0009】可動部材の外周面に間隔をおいて複数個の 突部を設けたものとするのも好ましく、この場合の突部 は、その断面積が可動部材の周方向あるいは径方向にお いて漸次変化しているものを好適に用いることができ る。

【0010】可動部材の外周面に厚みの薄い鍔部を設けて、この鍔部がステータの鉄心で非接触状態で挟み込まれているようにしてもよい。

【0011】可動部材の中心側が外周部よりも薄肉もしくは中空となっていたり、ステータとの対向部表面にスリットを備えていてもよい。

【0012】ステータの鉄心は磁束の流動方向と垂直な方向に電磁鋼板を積層したものとして形成されていたり、可動部材との対向面にスリットを備えていたり、鉄心の先端部断面積が他の部分より大となっていたりしてもよい。

【0013】また、ステータの鉄心は可動部材を挟んで

接合される複数部品で形成されていてもよく、この場 合、コイルが各部品毎に巻回されていると、尚、好まし V.

【0014】ステータのコイルは鉄心の可動部材寄りの 先端部に巻回されていることが好ましいが、この他、ス テータがリング状であって内周側に複数の磁極歯を突出 させている鉄心と、該鉄心のリング状部で且つ磁極歯間 の部分に巻回されているコイルとからなるものも好適に 用いることができる。

れた複数のコイルを巻回していてもよい。

【0016】可動部材は自転拘束機構や公転半径拘束部 材を介して支持されたものが好ましく、この場合の公転 半径拘束部材には可動部材のカウンタバランスを備えた ものが特に好ましい。

【0017】可動部材の公転平面と直交する方向におけ る可動部材の位置を規制する規制手段を備えたものとす るのも好ましく、規制手段としては、リテーナにて保持 されて可動部材に接触する複数の球面体や、磁気力を可 動部材に及ぼして位置規制を行うものを好適に用いるこ 20 とができる。

【0018】可動部材の径方向において向かい合う位置 にあるコイル同士を、両コイルで励磁される鉄心の極性 が逆となるように結線しておいてもよい。

【0019】さらに、可動部材の公転位置を検出する検 出手段と、検出手段の出力に基づいてステータを制御す る制御手段とを備えたものとしてもよく、検出手段には 可動部材が備える永久磁石の磁気に感応する磁気感応部 材を好適に用いることができる。

【0020】可動部材に公転を行わせる磁気力をステー 30 タに発生させるにあたっては、可動部材の周方向に並ん でいる複数のコイルの同時励磁で行うとよい。少なくと も可動部材の径方向において可動部材が最も接近してい る極またはこの極に隣合う極の鉄心と、該鉄心と可動部 材の径方向において向かい合う鉄心とを励磁するための コイルを除く他の複数のコイルの同時励磁で可動部材に 公転を行わせる磁気力を発生させるようにするのも好ま しい。

[0021]

【発明の実施の形態】以下本発明を実施の形態の一例に 40 基づいて詳述すると、このアクチュエータ1は、ベース 2とベース2上に固定したステータ4、そしてベース2 に対して所定半径での公転を行うように駆動される円盤 状の可動部材3とからなるもので、該可動部材3はその 公転に際して自転は行わないものとなっている。

【0022】まず、上記可動部材3の支持構造について 説明すると、上記ベース1は図2にも示すようにその中 央に軸受10を介して軸11を回転自在に受けているの であるが、この軸11は偏心した位置に軸孔12を備え

軸32を回転自由に遊嵌させているために、可動部材3 はベース2及び固定スクロール2に対して、上記軸孔1 2の偏心量を半径とする旋回(公転)が自在となってい る。可動部材3の公転半径拘束部材として機能している 軸11には、図29(a)に示すように、可動部材3のカ ウンタバランスとなる偏心重量部13を備えたものを用 いてもよい。可動部材3と軸11との重心位置を可動部 材3の公転中心の軸線上に位置させることができるため に、可動部材3が公転運動をしている時のアクチュエー 【0015】鉄心のコイル巻回部分には電気的に絶縁さ 10 タ1内の振動を抑えることができる。なお、偏心重量部 13は、可動部材3及び軸11と同じ回転数で自転回転 するものであれば、軸11と一体になっていなくてもよ く、また図29(b)に示すように、軸11そのものを断 面非円形として重心が偏ったものとすることでカウンタ バランスとして機能するようにしたものであってもよ W

> 【0023】また、可動部材3の一面に設けたキー溝3 3にオルダムリング5が備えるキー51がスライド自在 に係合して、オルダムリング5に対して可動部材3が1 自由度の移動が可能となっており、さらにオルダムリン グ5は他面に上記キー51と直交するキー52を備えて 該キー52がベース2に設けたキー溝15にスライド自 在に係合することでベース2に対してオルダムリング5 が1自由度の移動が可能となっている。ベース2に対 し、可動部材3はオルダムリング5を介して2自由度の 移動が可能となっているとともに、可動部材3はその自 転について拘束されており、この結果、上記軸11によ る案内を受けて可動部材3が公転する時、可動部材3は 自転を行うことがないものである。

> 【0024】そして、電磁鋼板あるいは電磁軟鉄などの 磁性材料からなる可動部材3を駆動するステータ4は、 内周側へと突出する複数個(図示例では8個であるが、 この個数は限定するものではない)の磁極歯43が所定 間隔で設けられるとともにベース2の中心と同心に配設 されて可動部材3の外周側に位置しているリング状の鉄 心41と、この鉄心41の各磁極歯43の部分に夫々巻 回した複数個のコイル42とからなるもので、可動部材 3を囲んでいるステータ4における隣接する2つのコイ ル42を同時に励磁することで、この2つのコイル42 が巻回されている2つの磁極歯43の先端を異極に磁化 して、鉄心41のリング状部と磁極歯43,43と可動 部材3とを通る磁気回路Mを形成すれば、可動部材3は 励磁されているコイル42側に吸引される。このため に、通電するコイル42を時計回り方向もしくは反時計 回り方向に順次切り換えていけば、可動部材3も同じ方 向の公転運動を行う。

【0025】この時、ステータ4の各磁極歯43の先端 面の内接円は、公転する可動部材3の外接円よりも少し 小さくしているとともに、各磁極歯43の先端面には、 ており、この軸孔12に可動部材3の一面から突出する 50 可動部材3の外周縁が入り込む溝44を設けて、可動部

材3の外周部の上下面に磁極歯43が非接触で対向する ようにしてある。このために、可動部材3の公転につれ て各磁極菌43の先端面と可動部材3の中心との間隔が 変化するものの、可動部材 3 に磁気吸引力を作用させて いる磁極歯43と可動部材3との間のギャップは一定に 保たれるものであり、磁気抵抗や磁束漏れが少なく、高 効率化が可能となる。特に、磁気回路Mが可動部材3の 公転平面に沿って形成される図示例のものでは、ほとん どの磁束が磁気吸引力として可動部材3に作用するため に、高い推進力を得られるものである。

【0026】磁極歯43の先端の幅を大きくすることで 磁極歯43の先端部の断面積を大きくしているのも、可 動部材3との対向面積を大きくして、磁気抵抗の減少に よる推進力の向上を図っているためである。

【0027】図3に示すように、可動部材3の外周縁に 厚みの薄い鍔部30を設けて、この鍔部30が磁極歯4 の溝44内に入るようにしてもよい。可動部材3の外周 面全面も磁極歯43に対向させることができ、可動部材 3を通過する際の磁束の集中が生じにくくなって磁気抵 抗を小さくすることができる。つまり、可動部材3に流 20 れる磁束が多くなるために、可動部材3の推進力を向上 させることができる。

【0028】コイル42の励磁に際しては、隣接する2 つのコイル42ではなく、図4に示すように、隣接する 3つのコイル42を励磁するとともに、励磁するコイル 42を一つずつずらしていくようにしてもよい。また、 2つもしくは3つのコイル42を同時に励磁すると同時 に、励磁するコイル42を順次一つずつずらしていくこ とは、2つのコイル42を同時に励磁する場合で示す と、図5に示すように、各磁極歯43に電気的に絶縁さ 30 れた2つのコイル42a, 42bを設けて、コイル42 aは隣の磁極歯43のコイル42bに予め直列接続して おくと、各コイル42への通電制御を簡単に行うことが できる。

【0029】図6に他例を示す。ここではステータ4と して、内周側へと突出する磁極歯43が所定間隔で設け られているリング状の鉄心41における磁極歯43間の 部分にコイル42を夫々巻回している。あるコイル42 に通電すれば、そのコイル42の両端に位置する2つの 磁極歯43, 43が異極に磁化されて、可動部材3を通 40 る磁気回路Mを形成し、磁性体からなる可動部材3に対 して磁気吸引力を作用させる。この場合も、通電するコ イル42を順次切り換えていけば、可動部材3に公転運 動を行わせることができる。なお、図6に示したものに おいても、隣合う複数のコイル42を同時に励磁しても よく、この場合、両コイル42,42間に位置するとと もに両コイル42,42が共有する磁極歯43が同磁極 となるように通電する。

【0030】図7は上記構成のステータ4を備えたアク

場合を示しており、ここでは可動部材3における固定ス クロール25の渦巻き状のラップ20が形成された面に 対向する一面に渦巻き状のラップ38を形成して、可動 部材3自体を可動スクロールとし、両ラップ20,38 が重なるように両者を組み合わせて、上記の軸11とオ ルダムリング5とによって拘束された動き、つまりは自 転を伴うことなく一定半径の公転運動を所定の回転方向 において可動部材3が行う時、固定スクロール25のラ ップ20と可動部材3のラップ38とによって密閉され 10 た空間が外周側から中心側へとその容積を漸次小さくし つつ移動させるために、外周側に吸い込み口35、中心 部に吐出口36を配した該スクロール型ポンプでは、吸 い込み口35から吸い込んだ流体を吐出口36から吐出

【0031】図8に別の例を示す。可動部材3及びその・ 支持構造は前述のものと同じであるが、ここでは鉄心4 1と鉄心41に巻回したコイル42とからなる電磁石4 0を複数個(図示例では8個であるが、この個数は限定 するものではない)、ベース2上に放射状に配置したも のをステータ4としている。各電磁石40は鉄心41が C字形をして、対向する両端面間の空隙に可動部材3の 外周部が入り込むものとなっており、コイル42は可動 部材3の外周部の上下面に夫々近接対向する両端部に各 々巻回してあって、これらコイル42、42に通電する ことで可動部材3の外周部をその厚み方向に通る磁気回 路Mを形成すれば、平面内の公転移動が可能な可動部材 3はその電磁石40側に吸引されることになる。このた めに、励磁する電磁石40を順次切り換えていけば、可 動部材3は公転を行う。なお、この場合においても、隣 接する2つの電磁石40、40に同時に通電するように

【0032】ここで、1つの鉄心41に対して可動部材 3に近接している両端部に夫々コイル42、42を巻回 しているのは、コイル42で発生した磁束が可動部材3 に流れ込み易く、磁束のロスを避けることができるから である。磁気回路Mが可動部材3の回転平面に沿って形 成される前述の例のものにおいても、同じ理由で、図1 に示したものの方が図6に示したものよりも高い効率を 得ることができる。

【0033】可動部材3としては、可動部材3の回転平 面に沿った磁気回路Mを形成するものにおいても、可動 部材3の回転平面と直交する方向の磁気回路Mを形成す るものにおいても、永久磁石で形成したものを使用する ことができる。この場合、前者については、図9(a)(b) に示すように、可動部材3の外周部に周方向においてほ ぼ等間隔に極性が変化するように着磁したものを用いる ことができ、後者については、可動部材3の表裏を異極 に着磁したものや、図9(c)(d)に示すように、可動部材 3の表裏を異極に且つ周方向においてほぼ等間隔に極性 チュエータ1をスクロールポンプの駆動源として用いた 50 が変化するように着磁したもの(この場合、隣接する電

10

磁石40では磁気回路Mの磁束が流れる方向が逆となる ように通電する)を用いることができる。これは、可動 部材3全体を起磁力をもつ希土類またはフェライト系の 永久磁石で形成するほか、希土類磁石を含有するプラス チックで形成したり、あるいは図10に示すようにプラ スチックやアルミニウム等の軽量非磁性体からなるコア 部35の外周にリング状永久磁石36や矩形体状永久磁 石36を接着や機械的な拘束を用いて固定したものを用 いることができる。上記コア部35を磁性材料で形成し たものを用いてもよい。磁気特性の良い磁性材料の比透 10 磁率(120~2000)は永久磁石の比透磁率

(1.0~7.0) よりもかなり大きいことから、磁気 回路内の磁気抵抗を減少させることができる。

【0034】図11に示すように、薄板状の永久磁石3 6を同一極同士が向かい合うように配置するとともにそ の間に磁性材料37を配置したものとしてもよい。永久 磁石36は同一極が向かいあっているために、磁束はそ の間にある磁性材料37を通って可動部材3の外部に出 ていくことから、磁性材料37はある極に励磁されるこ とになる。永久磁石から出る磁束の密度は使用する永久 20 磁石の特性(希土類磁石では1.2Wb/m²程度)で 決まるが、この構造であると、磁束が磁性材料37を通 過する際に絞り込まれることになり、磁性材料37の磁 東密度限界(1.6~2.1Wb/m²) まで可動部材 3から発生する磁束密度を高くすることができる。

【0035】さらに、周方向において極性の異なる磁極 を間隔をおいて配置する場合、図12に示すように、可 動部材3の外周部に突部3aを設けて、この突部3aに 磁極が位置するようにしてもよい。なお、突部3aは磁 極歯43の数もしくは電磁石40の数と同数とする。こ の時、突部3aが可動部材3の外周面に固定した永久磁 石で形成されるようにしてもよく、図11に示したもの のように、磁性材料37が突部3aを構成するようにし てもよい。いずれにしても、可動部材3の外径は突部3 a以外の部分を小さくすることができて、軽量化を図る ことができる。また、突部3aとして、図12(b)(c)に 示すように、角部を曲面としたり面取りしたりすること で、角部での磁束において可動部材3の公転時の進行方 向成分を増加させることができる。

【0036】ところで、可動部材3全体を永久磁石で形 40 成する場合は、図13に示すように、S極とN極の対が 半径方向に並ぶようにすると、磁針方向Aと逆向きに生 ずるとともに磁石の性能を損なう原因となる反磁界Bが 周囲の磁極から生じた磁界で弱められることになり、こ の結果、可動部材3全体の磁気特性が向上することにな る。

【0037】また、半径方向に着磁するにあたり、図1 4(a)(b)に示すように、磁針方向Aが径方向とある角度 をもって交差するようにしておけば、図14(c)に示す 磁針方向Aが径方向と一致する場合と比較して、可動部 50 可動部材3を厚み方向に横切るものにおいても適用する

材3とステータ4との間のギャップで磁束がより直線的 に流れることになり、磁気抵抗の減少による可動部材3 の推進力の向上を得ることができる。

【0038】図15に示すように、可動部材3の厚み方 向において複数枚の永久磁石34を積層するとともに、 厚み方向において折れ曲がった磁路が形成されるように しておけば、次相の電磁石40に向かって磁束が直線的 に流れるようにすることができる。

【0039】可動部材3に突部3aを設ける場合は、図 16(a)または図17(a)または図18(a)に示すよう に、突部3aを公転方向と反対側の断面積が大となるよ うにしておくとよい。断面積が一様の場合、図16(b) または図17(b)または図18(b)に示すように、磁極歯 43 (電磁石40) に接近するにつれて推進力に寄与す る磁束Fが減って寄与しない磁束F、が増えるために推 進力が減少するが、断面積を変えておけば、推進力に寄 与しない磁束の増加を少なくすることができる。

【0040】図19または図20に示すように、可動部 材3の表面に磁束流動方向Cと直交する方向のスリット 39を設けたり、あるいは図21または図22に示すよ うに、磁極歯43または鉄心41の端面に磁束流動方向 と直交する方向のスリット49を設けると、可動部材3 表面あるいは鉄心41(磁極歯43)表面で発生する渦 電流を抑制することができるために、渦電流損失を少な くすることができる。

【0041】ステータ4における鉄心41は、磁束の流 動方向と直交する方向に電磁鋼板を積層して形成したも のが好ましい。図23はリング状鉄心41を有するもの において、該鉄心41を厚さ1mm以下の珪素鋼板の積 層物として形成したものを示している。このものにおい ても、鉄心41内部に発生する渦電流を抑制することが できて磁気特性を向上させることができる。

【0042】図24は可動部材3の軽量化のために、中 心部の厚みを薄くしたり、リング状としたものを示して いる。可動部材3の高速回転に有利となる。

【0043】ところで、リング状の鉄心41を備えたス テータ4においては、図25に示すように、鉄心41を 可動部材3の公転平面と垂直な方向に分割したものと し、2つの鉄心41a, 41b間に可動部材3を位置さ せた後に機械的な拘束または接着剤またはビーム溶接等 で接合し、次いでコイル42を巻回する構成としておく ことで、可動部材3の公転半径が小さく、しかも鉄心4 1が可動部材3を覆う面積が大きい時でも鉄心41の中 に可動部材3を組み付けることができる。なお、リング 状の鉄心41は半円状のもの2つを接合することで形成 するようにしても、同様の効果を得ることができるとと もに、この時には接合前にコイル42を巻回しておくこ とができるために、さらに製造が容易となる。

【0044】鉄心41を分割することは、磁気回路Mが

ことができる。図26はこの場合の一例を示しており、 予めコイル42を巻回した2つの鉄心41a, 41bを 可動部材3を挟むようにして接合している。

【0045】図27は可動部材3の支持のためにスラス ト軸受18を用いた場合を示している。 可動部材3の軸 方向の傾きを無くすことができる。

【0046】なお、以上の説明では、ステータ4が可動 部材3に作用させる磁気力として磁気吸引力のみを示し たが、可動部材3を永久磁石としている場合には、磁気 反発力も利用することができる。図28はこの場合の一 10 例を示しており、磁気吸引力を働かせている部分と逆の 部分において磁気反発力を働かせている。

【0047】図30は、可動部材3の軸方向の動きを規 制する規制手段を設けて、可動部材3とステータ4との 磁気ギャップのさらなる安定化を図ったものを示してお り、図30(a)に示すものでは、下面側が軸11を介し てベース2で支持されている可動部材3の上面側に可動 部材抑えとして機能するハウジング21を配して、該ハ ウジング21を可動部材3の上面にすべり接触させてい る。もちろん、図30(b)に示すように、ハウジング2 1下面に4フッ化エチレンやステンレス、セラミック等 の低摩擦係数材料からなる抑え部材22を配して、該抑 え部材22が可動部材3の上面にすべり接触するように すると、より好ましいものとなり、さらには図31及び 図32に示すように、リング状のリテーナ23で保持さ れた複数の球面体24(つまりはスラスト軸受)をベー ス2と可動部材3及び可動部材3とハウジング21の間 に介在させて、球面体24が可動部材3に転がり接触す るようにすれば、摩擦を大きく低減させることができる ために、効率が向上する。

【0048】可動部材3の軸方向位置規制は、磁気力を 用いて行うようにしてもよく、図33は可動部材3に設 けた永久磁石36と、ベース2に固定した磁性体(永久 磁石を含む) 26との間に働く磁気吸引力が可動部材3 の軸方向位置規制を行うようにしたものを示している。 磁性体26は可動部材3の上方側に配置する部材(ハウ ジング21)に固定していてもよい。いずれにしても、 磁気力を利用する場合は、可動部材3の軸方向両面から 挟み込まなくても軸方向位置規制を行うことができるた めに、コストを下げることができる。

【0049】図34は、可動部材3の径方向において向 かい合う位置にあるコイル42, 42同士を短絡線45 で繋ぐとともに、両コイル42, 42で励磁される鉄心 41の極性が逆となるようにしたものを示している。通 電を制御すべきコイル42の相数を半分とすることがで きるために制御が容易となる。

【0050】また、ステータ4のコイル4の通電制御に あたっては、可動部材3の公転位置を検出する検出手段 を設けて、検出手段の出力に基づいて制御を行うことで

しては、図35に示すものでは、発光ダイオードのよう な発光素子61とフォトダイオードのような受光素子6 2との対を複数個、周方向において間隔をおいて配置す るとともに可動部材3の位置によって発光素子61から 受光素子62に至る光が遮断されてしまうようにしたも のを用いることができるが、可動部材3が永久磁石から なるもの、あるいは可動部材3が永久磁石36を備えて いるものでは、図36に示すように、ホール素子のよう な磁気感応素子63を周方向において間隔をおいて配置 するとともに、可動部材3の位置に応じた磁界の強さの 変化で磁気感応素子63の出力が変化するようにしてお けば、より簡単に可動部材3の公転位置を検出すること ができる。

【0051】ところで、コイル42への通電制御である が、ある一つのコイル42のみに電流を流したり、隣接 する複数のコイル42に電流を流したりするほか、前述 のように磁気反発力も利用する場合には、図37に示す ように、全コイル42に同時に電流を流すようにしても よい。この場合、電流の方向は磁気吸引力を可動部材3 20 に作用させるか磁気反発力を可動部材3に作用させるか によって適宜切り換えることになるが、この切り換えを 行うコイル42を順次ずらしていくことによって、可動 部材3に公転を行わせる。可動部材3を公転させる推進 力を大きくすることができる。

【0052】もっとも、可動部材3の径方向において可 動部材3が最も接近している極またはこの極に隣合う極 の鉄心41と、該鉄心41と可動部材3の径方向におい て向かい合う鉄心41とを励磁するためのコイル42 は、電流を流しても可動部材3公転させる推進力とはな 30 らないことから、図38に示すように、これらのコイル 42を除く他の複数のコイル42に電流を同時に流した 方が、コイル42において発生するジュール熱損を少な くすることができるために、より効率を高くすることが できる。

[0053]

【発明の効果】以上のように本発明においては、所定半 径の公転が自在に支持されている可動部材と、この可動 部材の公転軌道の外接円に沿って配置されているととも に可動部材に作用させる磁気力で可動部材に公転を行わ せるステータとからなる公転式アクチュエータにおい 40 て、鉄心と該鉄心に巻回されたコイルとからなる上記ス テータの鉄心が、可動部材の外周部を非接触で挟み込ん でいるために、ステータの次に励磁すべき部分と可動部 材との隙間を一定に保つことができるものであり、この ために磁気抵抗や磁束漏れを少なくすることができて、 高効率化を図ることができる。

【0054】この時、ステータが可動部材の公転平面に 沿った磁気回路を形成するものであると、ほとんどの磁 束が可動部材をステータに吸引する働きをするために、 可動部材3の脱調を防ぐことができる。この検出手段と 50 磁気吸引力が大きくなって高い推進力を得ることができ

る。

【0055】可動部材の公転平面を横断する磁気回路を 形成するものであってもよく、この場合は各鉄心が磁気 的に絶縁されるために、他の手心への干渉や漏洩磁束を 減少させることができて高効率化を図ることができる。

【0056】そして可動部材が永久磁石で形成されておれば、磁気力が増加するためにより効率の高い駆動を行うことができるとともに推進力も向上させることができる。

【0057】また、可動部材は外周部が永久磁石で形成 10 され、内周部が軽量部材で形成されていると、可動部材の軽量化により、可動部材の高速回転に対応させることができる。

【0058】可動部材が永久磁石と磁性材料とから形成されている場合は、磁気抵抗を下げることができて、所定の磁気回路内を通る磁束量を増加させることができるために、推進力が向上する。また、周方向において永久磁石と磁性材料とが交互に並んだものとして形成されているとともに、磁性材料に隣接する2つの永久磁石は間の磁性材料に同磁極を向けているものでは、永久磁石か20ら発生する磁束が磁性材料において絞り込まれるために、磁束密度が大きくなり、推進力が向上する。

【0059】さらに、可動部材が永久磁石で形成されている場合、径方向に着磁されたものを用いれば、磁極のカップリングにより反磁界の効果が弱まるために可動部材の推進力が向上する。

【0060】着磁方向が径方向に対して傾いている場合には、吸引する鉄心に向かって磁束が直線的に流れるために、可動部材に働く吸引力が増加することになり、推進力の向上を得ることができる。

【0061】可動部材が厚み方向において複数の永久磁石が積層されているものである時には、次相の鉄心に向かって磁束が直線的に流れるように着磁することが容易となる。

【0062】可動部材の外周面に間隔をおいて複数個の 突部を設けたものとするのも軽量化の点で好ましく、こ の場合の突部は、その断面積が可動部材の周方向あるい は径方向において漸次変化しているものを用いると、可 動部材の公転方向成分の磁束が増大するために推進力を 向上させることができる。

【0063】可動部材の外周面に厚みの薄い鍔部を設けて、この鍔部がステータの鉄心で非接触状態で挟み込まれているようにしてもよい。ギャップでの磁束流路が大きくなって磁気抵抗が減少するために、可動部材の推進力が向上する。

【0064】可動部材の中心側が外周部よりも薄肉もしくは中空となっていると、可動部材の軽量化をさらに図ることができる。

【0065】また、可動部材のステータとの対向部表面 にスリットを設けておくと、渦電流損失を減少させるこ 50 とができて、効率の向上を図ることができる。

【0066】ステータの鉄心は磁束の流動方向と垂直な 方向に電磁鋼板を積層したものとして形成したり、可動 部材との対向面にスリットを備えたものとしても、渦電 流損失の減少を図ることができる。

【0067】鉄心の先端部断面積が他の部分より大としておくと、可動部材との対向面積の増大化による磁気抵抗の減少を図ることができて、推進力を向上させることができる。

【0068】ステータの鉄心は可動部材を挟んで接合される複数部品で形成されていると、可動部材の公転半径が小さい場合でも可動部材を容易に鉄心の間に挿入することができ、生産性を向上させることができる。

【0069】この場合、コイルが各部品毎に巻回されていると、さらに生産性を向上させることができる。

【0070】ステータのコイルは鉄心の可動部材寄りの 先端部に巻回しておくと、コイルから発生した磁束が可 動部材に流れ込みやすくなるために、効率の向上を図る ことができる。

【0071】ステータがリング状であって内周側に複数の磁極歯を突出させている鉄心と、該鉄心のリング状部で且つ磁極歯間の部分に巻回されているコイルとからなるものでは、2個のコイルで1個の磁極歯を励磁することができるために、可動部材の推進力が向上する。

【0072】鉄心のコイル巻回部分には電気的に絶縁された複数のコイルを巻回していてもよい。複数のコイルを同時に励磁することを1つずつ順にずらしていく場合の制御が容易である。

【0073】可動部材は自転拘束機構や公転半径拘束部 30 材を介して支持されたものが好ましい。可動部材の不要 な動きを確実に抑制して可動部材を正確な軌道で駆動す ることができる。

【0074】また、公転半径拘束部材には可動部材のカウンタバランスを備えたものを用いると、可動部材の公転に伴う重心位置の変化を無くすことができるために振動を少なくすることができる。

【0075】可動部材の公転平面と直交する方向における可動部材の位置を規制する規制手段を備えたものとすれば、可動部材のぶれが無くなり、可動部材のステータ との磁気ギャップがさらに安定して、スムーズで且つ正確な動きを得ることができる。

【0076】この場合の規制手段としては、リテーナにて保持されて可動部材に接触する複数の球面体を用いると、転がり摩擦とすることができるために摩擦によるところの損失を少なくすることができ、さらに規制手段として、磁気力を可動部材に及ぼして位置規制を行うものを用いると、可動部材の軸方向における一方側からだけで位置規制を行うことができる上に高精度な加工を必要としないために規制手段の追加を安価に行うことができる

【0077】可動部材の径方向において向かい合う位置にあるコイル同士を、両コイルで励磁される鉄心の極性が逆となるように結線しておいてもよい。通電制御するコイルの相数を半分にすることができるために制御が容易となる。

【0078】さらに、可動部材の公転位置を検出する検出手段と、検出手段の出力に基づいてステータを制御する制御手段とを備えたものとすれば、可動部材の脱調を招くことがない駆動を行うことができる。

【0079】そして、この時の検出手段として、可動部 10 材が備える永久磁石の磁気に感応する磁気感応部材を用 いると、検出手段を少ない部品数で構成することができ て、コストを下げることができる。

【0080】可動部材に公転を行わせる磁気力をステータに発生させるにあたっては、可動部材の周方向に並んでいる複数のコイルの同時励磁で行うと、可動部材を公転させるための推進力を大きくすることができる。

【0081】また、少なくとも可動部材の径方向において可動部材が最も接近している極またはこの極に隣合う極の鉄心と、該鉄心と可動部材の径方向において向かい 20合う鉄心とを励磁するためのコイルを除く他の複数のコイルの同時励磁で可動部材に公転を行わせる磁気力を発生させるようにした時には、大きな推進力を得られると同時に、ジュール熱損を低減して効率を高めることができる。

【図面の簡単な説明】

【図1】本発明の実施の形態の一例を示すもので、(a) は平面図、(b)は断面図である。

【図2】同上の分解斜視図である。

【図3】他例の部分断面図である。

【図4】(a)(b)は駆動方法の他例を示す説明図である。

【図5】さらに他例の部分断面図である。

【図6】別の例の平面図である。

【図7】同上を用いたスクロールポンプの分解斜視図である。

【図8】さらに別の例を示しており、(a)は平面図、(b)は断面図である。

【図9】(a)~(d)は可動部材を永久磁石とした場合の磁極の配置例を示す斜視図である。

【図10】(a)(b)は可動部材の他例の斜視図である。

【図11】可動部材のさらに他例を示すもので、(a)は平面図、(b)は部分平面図である。

【図12】(a)は可動部材の別の例の斜視図、(b)(c)は 突部の平面図である。

【図13】着磁方向の一例を示すもので、(a)は斜視図、(b)は部分平面図である。

【図14】着磁方向の他例を示すもので、(a)は平面図、(b)は磁束の流れの説明図、(c)は着磁方向が径方向の場合の磁束の流れの説明図である。

【図15】可動部材の別の例における磁束の流れの説明 50

図である。

【図16】(a)(b)は突部における磁束の流れの説明図である。

【図 1 7】(a)(b)は突部における磁束の流れの説明図である。

【図18】(a)(b)は突部における磁束の流れの説明図である。

【図19】可動部材にスリットを設けた場合を示しており、(a)は部分平面図、(b)は側面図である。

【図20】可動部材にスリットを設けた場合を示しており、(a)は部分平面図、(b)は側面図である。

【図21】ステータの磁極歯にスリットを設けた場合を示しており、(a)は部分平面図、(b)は側面図である。

【図22】ステータの鉄心の端面にスリットを設けた場合を示しており、(a)は側面図、(b)は端面図である。

【図23】リング状鉄心の他例を示しており、(a)は分解斜視図、(b)は斜視図である。

【図24】可動部材の別の例を示しており、(a)(b)はいずれも断面図である。

0 【図25】ステータの組立手順の説明図である。

【図26】他のステータの組立手順の説明図である。

【図27】異なる例の断面図である。

【図28】異なる駆動法の説明図である。

【図29】カウンタバランスを備えた例を示しており、(a)は分解斜視図、(b)は他例における軸の斜視図である。

【図30】可動部材の軸方向位置規制手段を設けた場合を示しており、(a)は断面図、(b)は他例の断面図である。

30 【図31】可動部材の軸方向位置規制手段を設けた場合 の別の例の分解斜視図である。

【図32】同上の断面図である。

【図33】可動部材の軸方向位置規制手段を設けた場合 のさらに別の例の断面図である。

【図34】他例を示しており、(a)は平面図、(b)は断面図である。

【図35】位置検出手段を設けた場合の一例の断面図である。

【図36】位置検出手段を設けた場合の他例の断面図で 40 ある。

【図37】駆動制御の他例を示すもので、(a)は平面図、(b)はタイムチャートである。

【図38】駆動制御のさらに他例を示すもので、(a)は 平面図、(b)はタイムチャートである。

【符号の説明】

1 アクチュエータ

3 可動部材

4 ステータ

41 鉄心

42 コイル

`.

[図33]

【図34】

【図35】

【図36】

フロントページの続き

(72)発明者 平田 勝弘

大阪府門真市大字門真1048番地松下電工株 式会社内

(72)発明者 光武 義雄

大阪府門真市大字門真1048番地松下電工株 式会社内

(72)発明者 北野 幸彦

大阪府門真市大字門真1048番地松下電工株

式会社内

(72) 発明者 法上 司

大阪府門真市大字門真1048番地松下電工株 式会社内

Fターム(参考) 5H641 BB06 BB17 BB19 GG02 GG04

GG08 GG11 GG12 GG24 GG26 GG28 HH03 HH05 HH08 HH09 HH12 HH14 HH16 JA03 JA07 JA15