

CRST055N08N, CRSS052N08N

SkyMOS1 N-MOSFET 85V, 4.6mΩ, 120A

Features

- Uses CRM(CQ) advanced SkyMOS1 technology
- Extremely low on-resistance R_{DS(on)}
- Excellent Q_qxR_{DS(on)} product(FOM)
- Qualified according to JEDEC criteria

Product Summary

V_{DS}	85V
R _{DS(on)}	4.6mΩ
I_{D}	120A

Applications

- · Motor control and drive
- Battery management
- UPS (Uninterrupible Power Supplies)

100% Avalanche Tested

Package Marking and Ordering Information

Part #	Marking	Package	Packing	Reel Size	Tape Width	Qty
CRST055N08N	-	TO-220	Tube	N/A	N/A	50pcs
CRSS052N08N	-	TO-263	Tube	N/A	N/A	50pcs

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V_{DS}	85	V
Continuous drain current			
$T_C = 25$ °C (Silicon limit)	I_{D}	135	Α
T _C = 25°C (Package limit)	₁ D	120	
T _C = 100°C (Silicon limit)		86	
Pulsed drain current ($T_C = 25$ °C, t_p limited by T_{jmax})	${ m I_{D~pulse}}$	480	Α
Avalanche energy, single pulse (L=0.5mH, Rg=25 Ω)	E _{AS}	144	mJ
Gate-Source voltage	V_{GS}	±20	V
Power dissipation ($T_C = 25^{\circ}C$)	P _{tot}	174	W
Operating junction and storage temperature	T_{j} , T_{stg}	-55+150	°C

CRST055N08N, CRSS052N08N

SkyMOS1 N-MOSFET 85V, $4.6m\Omega$, 120A

Thermal Resistance

Parameter	Symbol	Max	Unit
Thermal resistance, junction – case.	R_{thJC}	0.72	°C/W
Thermal resistance, junction – ambient(min. footprint)	R_{thJA}	62	- C/ W

Electrical Characteristic (at Tj = 25 °C, unless otherwise specified)

Davameter	Cumbal	Value			Unit	Took Condition
Parameter	Symbol	min.	typ.	max.	Unit	Test Condition
Static Characteristic						
Drain-source breakdown voltage	BV _{DSS}	85	97	-	V	V _{GS} =0V, I _D =250uA
Gate threshold voltage	V _{GS(th)}	2	3	4	V	$V_{DS}=V_{GS}$, $I_{D}=250$ uA
Zero gate voltage drain current	I _{DSS}	-	0.05	1 5	μА	V_{DS} =80V, V_{GS} =0V T_{j} =25°C T_{j} =125°C
Gate-source leakage current	I_{GSS}	-	10	100	nA	V _{GS} =±20V,V _{DS} =0V
Drain-source on-state resistance	R _{DS(on)}	-	4.6 4.3	5.5 5.2	mΩ	V _{GS} =10V, I _D =50A TO-220 TO-263
Transconductance	g _{fs}	-	84.2	-	S	$V_{DS}=5V,I_{D}=50A$

Input Capacitance	C _{iss}	-	3086	-		
Output Capacitance	C _{oss}	-	1057	-	pF	V_{GS} =0V, V_{DS} =40V, f =1MHz
Reverse Transfer Capacitance	C _{rss}	-	26	-	·	
Gate Total Charge	Q_{G}	-	55	-		
Gate-Source charge	Q_{gs}	-	15	-	nC	V_{GS} =10V, V_{DS} =40V, I_{D} =50A, f=1MHz
Gate-Drain charge	Q_{gd}	-	13	-		
Turn-on delay time	t _{d(on)}	-	20.1	-		V_{GS} =10V, V_{DD} =40V, R_{G_ext} =3.0 Ω
Rise time	t _r	-	38.9	-	nc	
Turn-off delay time	t _{d(off)}	-	45.1	-	ns	
Fall time	t _f	-	22.8	-		
Gate resistance	R_G	-	3.3	-	Ω	V_{GS} =0V, V_{DS} =0V, f =1MHz

CRST055N08N, CRSS052N08N

SkyMOS1 N-MOSFET 85V, $4.6m\Omega$, 120A

Body Diode Characteristic

Parameter	Symbol Value Unit		Symbol	Unit	Test Condition	
	Symbol	min.	typ.	max.	Oilit	rest Condition
Body Diode Forward Voltage	V_{SD}	ı	0.95	1.4	V	V _{GS} =0V,I _{SD} =50A
Body Diode Reverse Recovery Time	t _{rr}	-	60	-	ns	I _F =20A, dI/dt=500A/μs
Body Diode Reverse Recovery Charge	Q _{rr}	-	560	-	nC	

SkyMOS1 N-MOSFET 85V, 4.6mΩ, 120A

Typical Performance Characteristics

Fig 1: Output Characteristics

Fig 2: Transfer Characteristics

Fig 3: Rds(on) vs Drain Current and

Fig 4: Rds(on) vs Gate Voltage

Fig 5: Rds(on) vs. Temperature

Fig 6: Capacitance Characteristics

SkyMOS1 N-MOSFET 85V, 4.6mΩ, 120A

Fig 7: Gate Charge Characteristics

Fig 8: Body-diode Forward Characteristics

Fig 9: Power Dissipation

Fig 10: Drain Current Derating

Fig 11: Safe Operating Area

SkyMOS1 N-MOSFET 85V, 4.6mΩ, 120A

Fig 12: Max. Transient Thermal Impedance

SkyMOS1 N-MOSFET 85V, $4.6m\Omega$, 120A

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

SkyMOS1 N-MOSFET 85V, $4.6m\Omega$, 120A

Package Outline: TO-220-3L

Cumbal	Dimensions In M		Dimensions	In Inches
Symbol	Min.	Max.	Min.	Max.
Α	4.30	4.80	0.169	0.189
A1	1.20	1.45	0.047	0.057
A2	2.20	2.90	0.087	0.114
b	0.69	0.95	0.027	0.037
b2	1.00	1.60	0.039	0.063
С	0.33	0.65	0.013	0.026
D	14.70	16.20	0.579	0.638
D1	8.59	9.65	0.338	0.380
D2	11.75	13.60	0.463	0.535
е	2.54	BSC.	0.100	BSC.
Е	9.60	10.60	0.378	0.417
E1	7.00	8.46	0.276	0.333
H1	6.20	7.00	0.244	0.276
L	12.60	14.80	0.496	0.583
L1	2.70	3.80	0.106	0.150
L2	12.13	16.50	0.478	0.650
Q	2.40	3.10	0.094	0.122
Р	3.50	3.90	0.138	0.154

SkyMOS1 N-MOSFET 85V, $4.6m\Omega$, 120A

Package Outline: TO-263

Comple al	Dimensions In Millimeters		Dimensions	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	4.30	4.86	0.169	0.191
A1	0.00	0.25	0.000	0.010
A2	2.34	2.79	0.092	0.110
b	0.68	0.94	0.027	0.037
b2	1.15	1.35	0.045	0.053
С	0.33	0.65	0.013	0.026
c2	1.17	1.40	0.046	0.055
D	8.38	9.45	0.330	0.372
D1	6.90	8.17	0.272	0.322
е	2.54 BSC.		0.100	BSC.
E	9.78	10.50	0.385	0.413
E1	6.50	8.60	0.256	0.339
Н	14.61	15.88	0.575	0.625
L	2.24	3.00	0.088	0.118
L1	0.70	1.60	0.028	0.063
L2	1.00	1.78	0.039	0.070
L3	0.00	0.25	0.000	0.010

CRST055N08N, CRSS052N08N

SkyMOS1 N-MOSFET 85V, 4.6mΩ, 120A

Revision History

Revison	Date	Major changes
1.0	2018-02-09	Release of formal version.
2.0	2019-03-06	Modify package outline spec
3.0	2019-05-31	Supplement package outline info.

Disclaimer

Unless otherwise specified in the datasheet, the product is designed and qulified as a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability, such as automotive, aviation/aerospace and life-support devices or systems.

Any and all semicondutor products have certain probability to fail or malfunction, which may result in personal injury, death or property damage. Customer are solely responsible for providing adequate safe measures when design their systems.

CRM(CQ) reserves the right to improve product design, function and reliability without notice.

