Representations for a word

我们已经学到

- word2vec
- GloVe
- FastText

在2014年,普遍人为pre-training比random的wordvec对下游任务更有效。

目前wordvec存在的问题

- 同一个word type("人")向量相同,没有考虑word token("人次")的context
- 同义词/派生词也有不同的适用场景,要根据context加以区分

Tips for unknown words with word vectors

- 1. char-level
- 2. Dhingra <mark>为什么有unsupervised wordvec?#因为word2vec可以无监督学习corpus中的word embedding,但最后下游任务的vocab不包含corpus中所有单词,出现unk。</mark>
 - 2. Try these tips (from Dhingra, Liu, Salakhutdinov, Cohen 2017)
 - a. If the <UNK> word at test time appears in your unsupervised word embeddings, use that vector as is at test time.
 - Additionally, for other words, just assign them a random vector, adding them to your vocabulary
 - · a. definitely helps a lot; b. may help a little more

Did we solve the problem?

核心思想

可以利用学到的contextual word embedding!

Contextual word embeddings

TagLM

用word embedding+LM embedding

https://arxiv.org/pdf/1705.00108.pdf

- Idea: Want meaning of word in context, but standardly learn task RNN only on small task-labeled data (e.g., NER)
- Why don't we do semi-supervised approach where we train NLM on large unlabeled corpus, rather than just word vectors?

如何无监督地pretrain wordvec和LM? #word2vec就是无监督的。LM可以通过"预测下一个单词"任务来完成,这是无监督的。通常pretrain的参数不会在train时改变。

ELMo (Embedding from Language Models)

ELMo是对TagLM的改进,包括

- 两层bi-LSTM
- combine每层的特征而不是最后一层
- First run biLM to get representations for each word
- · Then let (whatever) end-task model use them
 - Freeze weights of ELMo for purposes of supervised model
 - Concatenate ELMo weights into task-specific model
 - Details depend on task
 - Concatenating into intermediate layer as for TagLM is typical
 - Can provide ELMo representations again when producing outputs, as in a question answering system

ELMo的最大贡献是,这种word embedding可以被用在不同下游任务上。

ULMfit (Universal Language Model Fine-tuning for Text Classification)

用transfer learning的思想,把一个任务/数据集的embedding迁移到另一个任务/数据集。

流程:

- 1. 在大的corpus上训练embedding
- 2. 在小的vocab上fine tune
- 3. 训练下游分类器

ULMfit提供了一个有效思路: 在大量数据上预训练, 在少量数据上fine-tune。

由此出现了大公司的算力竞争,在巨大数据量的corpus上预训练LM:

Let's scale it up!

ULMfit	GPT	BERT	GPT-2
Jan 2018	June 2018	Oct 2018	Feb 2019
Training:	Training	Training	Training
1 GPU day	240 GPU days	256 TPU days	~2048 TPU v3
		~320–560	days according to a reddit thread
	~	GPU days	

Google Al

OpenAI

<u>fast.ai</u>

attention的q, K, V的解释。

Dot-Product Attention (Extending our previous def.)

- Inputs: a query q and a set of key-value (k-v) pairs to an output
- · Query, keys, values, and output are all vectors
- Output is weighted sum of values, where
- Weight of each value is computed by an inner product of query and corresponding key
- Queries and keys have same dimensionality d_k value have d_v

$$A(q, K, V) = \sum_{i} \frac{e^{q \cdot k_i}}{\sum_{j} e^{q \cdot k_j}} v_i$$

multi-head attention希望 Q_i, K_i, V_i 的不同i注意不同的东西。

Multi-head attention

- · Problem with simple self-attention:
- Only one way for words to interact with one-another
- Solution: Multi-head attention
- First map Q, K, V into h=8 many lower dimensional spaces via W matrices
- Then apply attention, then concatenate outputs and pipe through linear layer

$$\begin{split} \text{MultiHead}(Q,K,V) &= \text{Concat}(\text{head}_1,...,\text{head}_{\text{h}})W^O \\ \text{where head}_{\text{i}} &= \text{Attention}(QW_i^Q,KW_i^K,VW_i^V) \end{split}$$

attention可视化

BERT (Bidirectional Encoder Representations from Transformers)

Language Model也可以是双向的。seq2seq不是双向的吗?

单向是因为:

- LM会预测下一个word
- 看到两边的context是一种作弊

解决方法

- Solution: Mask out k% of the input words, and then predict the masked words
 - They always use k = 15%

the man went to the [MASK] to buy a [MASK] of milk

- Too little masking: Too expensive to train
- Too much masking: Not enough context