Lección 2

Marcos Bujosa

26 de julio de 2024

Índice

1.	Con	aponentes no observables del número de viajeros internacionales	
	1.1.	Actividad 1 - generar una serie con el índice temporal y su cuadrado	
	1.2.	Actividad 2 - Ajustar una tendencia lineal	6
	1.3.	Actividad 3 - Ajustar una tendencia cuadrática	,
	1.4.	Actividad 4 - Ajustar una tendencia cuadrática y un componente estacional determinista	
2 .	Componentes no observables del número de viajeros internacionales 2		•
	2.1.	Actividad 1 - Estime el modelo con tendencia cuadrática y estacionalidad determinista	(
	2.2.	Actividad 2 - Reducir el modelo eliminando secuencialmente variables no significativas	(
	2.3.	Actividad 3 - Contrastar la ausencia de autocorrelación	(
	2.4.	Actividad 4 - Estimación del modelo con errores estándar robustos	-
		Actividad 4 - Estimación incluyendo en el modelo la autocorrelación de orden uno en las perturbaciones	

1. Componentes no observables del número de viajeros internacionales

Guión: componentes Airline Pass.inp

Vamos a reproducir el ejemplo de estimación de componentes no observables visto en clase. Los datos son mensuales y contienen el número de viajeros internacionales (en miles) en las líneas aéreas norteamericanas en los años 1949–1960 que aparece en manual de Box & Jenkins.

- 1. Objetivo
 - a) Reproducir el ejemplo visto en la lección 2.
- Carga de datos Archivo -->Abrir datos -->Archivo de muestra y en la pestaña Gretl seleccione bjg.
 o bien teclee en linea de comandos:

open bjg

1.1. Actividad 1 - generar una serie con el índice temporal y su cuadrado

Pulse en el menú desplegable Añadir que aparece arriba, en el centro de la ventana principal de Gretl.

■ Añadir ->Variable índices

```
o bien teclee en linea de comandos:
genr time
```

Selecione con el ratón la variable time y luego pulse en el menú desplegable Añadir que aparece arriba, en el centro de la ventana principal de Gretl.

■ Añadir ->Cuadrados de las variables seleccionadas

```
o bien teclee en linea de comandos:
```

square time

1.2. Actividad 2 - Ajustar una tendencia lineal

- Estime el modelo mediante los menús desplegables: Modelo ->Mínimos Cuadrados Ordinarios; indique a Gretl el regresando y los regresores y pulse Aceptar.
- "Pinche" Archivo en la ventana del modelo estimado y seleccione guardar como un icono y cerrar o bien teclee en linea de comandos:

```
TendenciaLineal <- ols lg 0 time

(el cero 0 indica el término constante: const)
```

Recupere el modelo "pinchando" sobre su icono

o teclee en linea de comandos el nombre que ha dado al icono seguido de .show, es decir:

TendenciaLineal.show

1. Recuperemos los valores ajustados

- Desde la ventana del modelo ajustado (recupérese con su icono), "pinche" en guardar ->valores estimados. Elija como nombre phat (puede añadir una descripción de la variable). Pulse en Aceptar
- Repita para guardar los residuos con el nombre ehat

```
o bien teclee en linea de comandos:
series TendenciaLineal = $yhat
series Comp_irregular = $uhat
```

2. Gráfico de la serie y la tendencia lineal

Marque las variables 1g y Tendencia (pulsando ctr1). Pinche con el botón derecho del ratón sobre ellas.
 Elija Gráfico de series temporales

```
o bien teclee en linea de comandos:

GraficoTendenciaLineal <- gnuplot lg TendenciaLineal --time-series --with-lines
GraficoTendenciaLineal.show
```

En la zona inferior izquierda de la ventana principal puede ver una serie de iconos. Uno de ellos es la vista de iconos de sesión.

3. Gráfico del componente irregular

 Marque la variable correspondiente al componente irregular (pulsando ctrl) y pinche con el botón derecho del ratón sobre ella. Elija Gráfico de series temporales

```
o bien teclee en linea de comandos:

GraficoComponenteIrregular <- gnuplot Comp_irregular --time-series --with-lines
GraficoComponenteIrregular.show
```

- 4. Gráfico de la diferencia estacional del componente irregular
 - Selecione con el ratón la variable correspondiente al componente irregular y luego pulse en el menú desplegable Añadir que aparece arriba, en el centro de la ventana principal de Gretl.
 - Añadir ->Diferencias estacionales de las variables seleccionadas

```
o bien teclee en linea de comandos:
```

```
sdiff Comp_irregular
```

• Genere un gráfico con la nueva serie diferenciada estacionalmente

```
en linea de comandos:
```

```
GraficoComponenteIrregularD12 <- gnuplot sd_Comp_irregular --time-series --with-lines
GraficoComponenteIrregularD12.show</pre>
```

1.3. Actividad 3 - Ajustar una tendencia cuadrática

Repita el ejercicio anterior, pero ajustando una tendencia cuadrática

- Estime la tendencia por MCO y vea los resultados de la regresión
- Guarde los valores ajustados (TendenciaCuadratica)
- Guarde los residuos (ComponenteIrregular2)
- Dibuje la tendencia
- Dibuje el componente irregular
- Dibuje la diferencia estacional del componente irregular

1.4. Actividad 4 - Ajustar una tendencia cuadrática y un componente estacional determinista

Pulse en el menú desplegable Añadir que aparece arriba, en el centro de la ventana principal de Gretl.

■ Añadir ->Variables ficticias estacionales

```
o bien teclee en linea de comandos:
```

seasonals()

- Estime el modelo mediante los menús desplegables: Modelo ->Mínimos Cuadrados Ordinarios; indique a Gretl el regresando y los regresores y pulse Aceptar.
- "Pinche" Archivo en la ventana del modelo estimado y seleccione guardar como un icono y cerrar o bien teclee en linea de comandos:

```
\label{thm:modeloCompleto} $$ <- ols lg const time sq\_time S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 $$ ModeloCompleto.show
```

- 1. Genere una nueva serie con la tendencia y otra con el componente estacional estimados
 - Cálculo de la tendencia estimada: $\widehat{\beta}_1$ const + $\widehat{\beta}_2$ time + $\widehat{\beta}_3$ sq_time Guardar ->Definir una nueva variable y teclee:

```
series Tendencia3 = $coeff[1] + $coeff[2]*time + $coeff[3]*sq_time
o bien:
series Tendencia3 = $coeff(const) + $coeff(time)*time + $coeff(sq_time)*sq_time
```

De manera análoga genere una serie con el componente estacional

- Genere los siguientes gráficos
 - la serie y su tendencia cuadrática
 - El componente estacional
 - El componente irregular
 - La serie y su ajuste

```
GraficoTendencia3 <- gnuplot lg Tendencia3 --time-series --with-lines
GraficoTendencia3.show

GraficoComponenteEstacional3 <- gnuplot Comp_Estacional3 --time-series --with-lines
GraficoComponenteEstacional3.show

series ComponenteIrregular3 = $uhat
GraficoComponenteIrregular3 <- gnuplot ComponenteIrregular3 --time-series --with-lines
GraficoComponenteIrregular3.show

series Ajuste3 = $yhat
GraficoAjuste3 <- gnuplot lg Ajuste3 --time-series --with-lines
GraficoAjuste3.show
```

Código completo de la práctica componentesAirlinePass.inp

```
open bjg
genr time
square time
TendenciaLineal <- ols lg 0 time
TendenciaLineal.show
series TendenciaLineal = $yhat
series Comp_irregular = $uhat
GraficoTendenciaLineal <- gnuplot lg TendenciaLineal --time-series --with-lines
GraficoTendenciaLineal.show
GraficoComponenteIrregular <- gnuplot Comp_irregular --time-series --with-lines
GraficoComponenteIrregular.show
sdiff Comp_irregular
GraficoComponenteIrregularD12 <- gnuplot sd_Comp_irregular --time-series --with-lines
{\tt GraficoComponenteIrregularD12.show}
# modelo con tendencia cuadrática
TendenciaCuadratica <- ols lg 0 time sq_time
TendenciaCuadratica.show
series TendenciaCuadratica = $yhat
series Comp_irregular2 = $uhat
GraficoTendenciaCuadratica <- gnuplot lg TendenciaCuadratica --time-series --with-lines
GraficoTendenciaCuadratica.show
GraficoComponenteIrregular2 <- gnuplot Comp_irregular2 --time-series --with-lines
GraficoComponenteIrregular2.show
sdiff Comp_irregular2
GraficoComponenteIrregular2D12 <- gnuplot sd_Comp_irregular2 --time-series --with-lines
GraficoComponenteIrregular2D12.show
# modelo con tendencia cuadrática
seasonals()
ModeloCompleto <- ols lg const time sq_time S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
ModeloCompleto.show
```

2. Componentes no observables del número de viajeros internacionales 2

Guión: componentes Airline Pass 2. inp

Continuamos el ejemplo anterior, pero ahora vamos a reducir el modelo quitando variables no siginificativas.

2.1. Actividad 1 - Estime el modelo con tendencia cuadrática y estacionalidad determinista

Repita la estimación del último modelo de la practica anterior

```
open bjg
genr time
square time
seasonals()
ModeloInicial <- ols lg const time sq_time S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
ModeloInicial.show</pre>
```

2.2. Actividad 2 - Reducir el modelo eliminando secuencialmente variables no significativas

Los p-valores de algunos parametros indican que sus estimaciones son no significativas. En particular los correspondientes a las variables ficticias de enero, febrero y octubre.

Reduzca el modelo, eliminando aquellas variables no significativas al 5 %. Verifique que el conjunto de variables excluidas es conjuntamente no significativo.

■ Desde la ventana del modelo estimado "pinche" en contrastes -->omitir variables y marque la opción Eliminación secuencial de variables utilizando el valor p a dos colas, indique una significación del 5 % y pulse en Aceptar

```
PrimeraReduccion <- omit --auto=0.05
```

2.3. Actividad 3 - Contrastar la ausencia de autocorrelación

- Observe bajo el valor de contraste de Durbin-Watson (0,691477).
- Desde la ventana del modelo estimado "pinche" en contrastes -->valor p del estadistico Durbin-Watson.

 o bien teclee en linea de comandos:

```
scalar DW = $dw
scalar PDW = $dwpval
print DW
print PDW
```

Claramente se rechaza la ausencia de autocorrelación de orden uno.

■ Desde la ventana del modelo estimado "pinche" en contrastes -->Autocrrelación. E indique por ejemplo 3 retardos. o bien teclee en linea de comandos:

```
modtest --autocorr 3
```

Claramente se rechaza la ausencia de autocorrelación y se observa que el retardo de orden uno es muy siginificativo.

2.4. Actividad 4 - Estimación del modelo con errores estándar robustos

Los test de autocorrelación indican que la inferencia empleada para reducir el modelo es incorrecta. A la hora de calcular las desviaciones típicas de las estimaciones hay que tener en cuenta que las perturbaciones estan autocorreladas.

Estime el modelo inicial con errores estándar robustos: Modelo ->Mínimos Cuadrados Ordinarios; indique
a Gretl el regresando y los regresores; marque la opción Desviaciones típicas robustas y pulse Aceptar.

o bien teclee en linea de comandos:

```
 \begin{tabular}{ll} ModeloInicialDTR <- ols lg const time sq\_time S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 -- robust ModeloInicialDTR.show   \end{tabular}
```

Fíjese que al 5 % de significación, solo es no significativa al dummie correspondeinte al mes de febrero.

• Reduzca el modelo, eliminando aquellas variables no significativas al 5 %. Verifique que el conjunto de variables excluidas es conjuntamente no significativo.

Desde la ventana del modelo estimado "pinche" en contrastes -->omitir variables y marque la opción Eliminación secuencial de variables utilizando el valor p a dos colas, indique una significación del 5% y pulse en Aceptar o bien teclee en linea de comandos:

```
ModeloReducidoDTR <- omit --auto=0.05
```

Fíjese que únicamente se elimina la dummie correspondeinte a febrero.

2.5. Actividad 4 - Estimación incluyendo en el modelo la autocorrelación de orden uno en las perturbaciones

■ Re-estime el modelo incluyendo en el modelo un AR(1) para las perturbaciones: Modelo ->Series temporales univariantes ->Errores AR ->AR(1) y pulse Aceptar.

o bien teclee en linea de comandos:

```
\label{eq:modeloAR1} $$\ \mbox{<- ar1 lg const time sq\_time S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11}$$$ $$\ \mbox{ModeloAR1.show}$
```

- Elimine secuencialmente las variables no significativas al $5\,\%$
- Haga un gráfico de los residuos y observe que "son estacionarios" (es decir, que tienen el aspecto de una realización de un proceso estacionario)
- Haga un gráfico de frecuencias de los residuos y observe que tiene la forma campaniforme compatible con una distribución gaussiana.

Marque con el ratón la variable Residuos y pinchado en la serie marcada con el botón derecho del ratón seleccione Distribución de frecuencias.

O bien mediante el comando

```
freq Residuos -- show-plot
```

donde --show-plot indica que se genere el gráfico en una ventana. Observe que dicho comando también genera una ventana de texto con la distribución de frecuencias relativa y acumulada.

■ Realice el contraste de normalidad de los residuos: Desde la ventana del modelo estimado "pinche" en contrastes -->Normalidad de los residuos y marque la opción Eliminación secuencial de variables utilizando el valor p a dos colas, indique una significación del 5% y pulse en Aceptar

O bien desde la ventana principal: marque la variable Residuos y "pinche" en Variable -->Contraste de Normalidad

O bien mediante el comando

Código completo de la práctica componentesAirlinePass2.inp

```
open bjg
genr time
square time
seasonals()
ModeloInicial <- ols lg const time sq_time S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
ModeloInicial.show
PrimeraReduccion <- omit --auto=0.05
scalar DW = $dw
scalar PDW = $dwpval
print DW
print PDW
modtest -- autocorr 3
ModeloInicialDTR <- ols lg const time sq_time S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 --robust
ModeloInicialDTR.show
ModeloReducidoDTR <- omit --auto=0.05
ModeloAR1 <- ar1 lg const time sq_time S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
ModeloAR1.show
ModeloAR1Reducido <- omit --auto=0.05
ModeloAR1Reducido.show
series Residuos = $uhat
GraficoResiduos <- gnuplot Residuos --time-series --with-lines
GraficoResiduos.show
freq Residuos --show-plot
series Residuos = $uhat
GraficoResiduos <- gnuplot Residuos -- time-series -- with-lines
GraficoResiduos.show
normtest Residuos -- all
```