GIẢI TÍCH I BÀI 8

§2.1. TÍCH PHÂN BẮT ĐỊNH (TIẾP THEO)

- 4. Tích phân của một vài lớp hàm
- b) Hàm lượng giác. $\int R(\sin x, \cos x) dx$, ở đó $R(\sin x, \cos x)$ là hàm hữu tỉ đối với các biến

Đặt
$$t = \tan \frac{x}{2}$$
, $-\pi < x < \pi \Rightarrow \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2}{1+t^2} dt$

- Chú ý. +) $R(\sin x, \cos x)$ chẵn với $\sin x$ và $\cos x$ thì đặt $t = \tan x$ hoặc $t = \cot x$
 - +) $R(\sin x, \cos x)$ lẻ với $\sin x$ thì đặt $t = \cos x$
 - +) $R(\sin x, \cos x)$ lẻ với $\cos x$ thì đặt $t = \sin x$

Ví du 1.

a)
$$\int \sin^3 x \cos^2 x dx$$

c)
$$\int \frac{dx}{2\sin x + \cos x + 3}$$

e)
$$\int \sin x \sin 2x \sin 3x dx$$

g)
$$\int \frac{dx}{(\sin x + \cos x)^2}$$

i)
$$\int \frac{dx}{\sin^2 x + 3\sin x \cos x - \cos^2 x}$$

1)(K54) 1.
$$\int \frac{\tan x}{1+\cos^2 x} dx$$

$$2. \int \frac{\cot x}{1+\sin^2 x} dx$$

$$\mathbf{m)(K60)} \quad \int \frac{dx}{-3\sin x + 4\cos x + 5}$$

$$n)(K61) \int \frac{dx}{5\cos x + 12\sin x + 13}$$

b)
$$\int \frac{dx}{\sin^2 x \cos^4 x}$$

$$\mathbf{d)} \int \frac{\cos 2x \, dx}{\cos^4 x + \sin^4 x}$$

f)
$$\int \frac{\sin 2x}{\cos^3 x - \sin^2 x - 1} dx$$

h)
$$\int \frac{dx}{1+\sin^2 x}$$

$$k) \int \frac{3\sin x + 2\cos x}{2\sin x + 3\cos x} dx$$

$$(-\frac{1}{2}\ln\frac{\cos^2 x}{1+\cos^2 x}+C)$$

$$(\frac{1}{2}\ln\frac{\sin^2 x}{1+\sin^2 x}+C)$$

$$\left(\frac{2}{3-\tan\frac{x}{2}}+C\right)$$

$$\left(\frac{1}{2(2\tan\frac{x}{2}+3)}+C\right)$$

- c) Tích phân các hàm số vô tỉ $\int R(x, \sqrt{Ax^2 + Bx + C}) dx$ và $\int R(x, \sqrt{\frac{ax + b}{cx + d}}) dx$
- 1°) $\int R(x, \sqrt{a^2 x^2}) dx$, đặt $x = a \sin t$ hoặc $x = a \cos t$ đưa về tích phân hàm lượng giác (4b).

2°)
$$\int R(x, \sqrt{a^2 + x^2}) dx$$
, đặt $x = a \tan t$ hoặc $x = a \cot t \Rightarrow (4b)$

3°)
$$\int R(x, \sqrt{x^2 - a^2}) dx$$
, đặt $x = \frac{a}{\cos t}$ hoặc $x = \frac{a}{\sin t} \Rightarrow$ (4b).

Ví dụ 2.

a)
$$\int \frac{x^5}{\sqrt{1-x^2}} dx$$

b)
$$\int \frac{x+3}{\sqrt{x^2+2x+2}} dx$$
 c) $\int \frac{dx}{x\sqrt{x^2+x+1}}$

c)
$$\int \frac{dx}{x\sqrt{x^2+x+1}}$$

d)
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx$$
, $a > 0$ **e)** $\int \sqrt{\frac{x+1}{x-1}} dx$

e)
$$\int \sqrt{\frac{x+1}{x-1}} dx$$

f)
$$\int \sqrt[3]{\frac{2-x}{2+x}} \frac{dx}{(2-x)^2}$$

g)
$$\int x \sqrt{-x^2 + 3x - 2} \, dx$$
 h) $\int x \sqrt{\frac{x - 1}{x + 1}} \, dx$

h)
$$\int x \sqrt{\frac{x-1}{x+1}} dx$$

i)
$$\int \frac{\sqrt{x} - 1}{1 + \sqrt[3]{x}} dx$$

$$k) \int \frac{x^3 dx}{\sqrt{1 + 2x - x^2}}$$

1)(K51) 1.
$$\int \frac{x+4}{\sqrt{x^2+2x-3}} dx$$

1)(K51) 1.
$$\int \frac{x+4}{\sqrt{x^2+2x-3}} dx$$
 ($\sqrt{x^2+2x-3}+3\ln|x+1+\sqrt{x^2+2x-3}|+C$)

2.
$$\int \frac{x+3}{\sqrt{x^2+4x-5}} dx$$

2.
$$\int \frac{x+3}{\sqrt{x^2+4x-5}} dx \qquad (\sqrt{x^2+4x-5} + \ln|x+2+\sqrt{x^2+4x-5}| + C)$$

m)(K59)
$$\int \frac{x+2}{\sqrt{-x^2+2x}} dx$$
 $(-\sqrt{-x^2+2x}+3\arcsin(x-1)+C)$

$$(-\sqrt{-x^2+2x}+3\arcsin(x-1)+C)$$

n)(K60)
$$\int \frac{2x+1}{\sqrt{x^2+1}} dx$$

$$(2\sqrt{x^2+1} + \ln(x+\sqrt{x^2+1}) + C)$$

o)(K61)
$$\int \frac{x+1}{\sqrt{x^2-2x-1}} dx$$

o)(K61)
$$\int \frac{x+1}{\sqrt{x^2-2x-1}} dx$$
 $(\sqrt{x^2-2x-1}+2\ln(x-1+\sqrt{x^2-2x-1})+C)$

Ví dụ 3. Dùng phép thế Euler để tính

•
$$A > 0$$
, đặt $\sqrt{Ax^2 + Bx + C} = t \pm \sqrt{A}x$

•
$$C > 0$$
, đặt $\sqrt{Ax^2 + Bx + C} = xt \pm \sqrt{C}$

• Nếu $Ax^2 + Bx + C = A(x - \lambda)(x - \mu)$, đặt $\sqrt{Ax^2 + Bx + C} = t(x - \lambda)$ hoặc $t(x - \mu)$ μ) sẽ đưa về tích phân hàm hữu tỉ.

a)
$$\int \frac{dx}{x + \sqrt{x^2 + x + 1}}$$

b)
$$\int \frac{dx}{1 + \sqrt{1 - 2x - x^2}}$$

c)
$$\int \frac{dx}{(x^2 + a^2)\sqrt{x^2 - a^2}}$$

d)
$$\int \frac{x^2-1}{(x^2+1)\sqrt{x^4+1}} dx$$

Chú ý. Có những hàm không có nguyên hàm sơ cấp:

• $e^{\pm x^2}$, $\cos x^2$, $\sin x^2$, $\frac{e^x}{x}$, $\frac{\cos x}{x}$, $\frac{\sin x}{x}$, $\frac{1}{\ln x}$, $\sqrt{1-x^3}$, $\frac{1}{\sqrt{1-x^3}}$ (Chứng minh

bởi Liouville (Pháp) vào thế kỉ 19).

Một số công thức hay dùng

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln|x + \sqrt{x^2 \pm a^2}| + C$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin\frac{x}{a} + C$$

$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin\frac{x}{a} + C$$

$$\int \sqrt{x^2 \pm a^2} dx = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln|x + \sqrt{x^2 \pm a^2}| + C$$

§2.2. TÍCH PHÂN XÁC ĐỊNH

Đặt vấn đề

I. Định nghĩa.

1) Ý nghĩa hình học:

+) Bài toán diện tích hình thang cong: f(x) liên tục và không âm trên [a; b], khi đó diện tích của hình thang cong $0 \le y \le f(x)$, $a \le x \le b$

là
$$S = \lim_{\lambda \to 0} \sum_{i=0}^{n} f(x_i) \Delta x_i$$
, $\lambda = \max_{i=1,n} |\Delta x_i|$

2) Ý nghĩa cơ học
$$\int_{a}^{b} f(x) dx$$
, $f(x) > 0$

- Là khối lượng của đoạn [a; b] với mật độ khối lượng là f(x)
- là công của lực có độ lớn f(x) > 0 tác động vào vật chuyển động thẳng từ x = a đến x = b.

3) Tính áp lực lên mặt đĩa. Tính áp lực lên một mặt đĩa phẳng chìm trong nước trong hình

$$F = \int_{a}^{b} whxdh$$
,

ở đó w là trọng lượng riêng của nước = $\frac{1}{32}$ tấn/(ft)³

- +) Chia [a; b] bởi các điểm chia $a \equiv x_0 < x_1 < x_2 < ... < x_n \equiv b$
- +) Lấy $\xi_i \in [x_{i-1}; x_i]$

+) Lập tổng
$$\sigma = \sum_{i=1}^n f(\xi_i) \Delta x_i$$
, đặt $\lambda = \max_{i=1,n} |\Delta x_i|$

Nếu lim $\sigma = I$ không phụ thuộc vào cách chia [a; b] và cách chọn điểm ξ_i thì $(n \rightarrow \infty)$

I là tích phân xác định của hàm f(x) trên [a;b] và kí hiệu là $\int f(x) dx$.

Ví dụ 1. a) Tính
$$\int_{20}^{30} 0 \, dx$$
 b) Tính $\int_{11}^{2} 2010 \, dx$

c)
$$\int_{0}^{1} y(x) dx, \ y(x) = \begin{cases} 1, \ x \in \mathbb{Q} \\ 0, \ x \in I \end{cases}$$
, \mathbb{Q} là tập số hữu tỷ, còn I là tập số vô tỷ.

Định nghĩa. • Khi
$$b < a \text{ có} \int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

• Khi $a = b \text{ có} \int_{a}^{b} f(x) dx = 0$

II. Tiêu chuẩn khả tích, tính chất

1) Tiêu chuẩn khả tích

Định lí 1. f(x) khả tích trên $[a; b] \Leftrightarrow \lim_{\lambda \to 0} (S - s) = 0$,

$$S = \sum_{i=0}^{n} M_i \Delta x_i, \quad S = \sum_{i=0}^{n} m_i \Delta x_i, \quad M_i = \max_{\Delta x_i} f(x), \quad m_i = \min_{\Delta x_i} f(x)$$

Định lí 2. f(x) liên tục trên $[a;b] \Rightarrow f(x)$ khả tích trên [a;b]

Định lí 3. f(x) bị chặn trên [a;b] và có hữu hạn điểm gián đoạn trong $[a;b] \Rightarrow$ f(x) khả tích trên [a; b]

Định lí 4. f(x) bị chặn và đơn điệu trong $[a;b] \Rightarrow f(x)$ khả tích trong [a;b]Ví du 2. Tính

a)
$$\int_{0}^{2} x \, dx$$

b)
$$\int_{0}^{1} x^{2} dx$$
 c) $\int_{1}^{2} e^{x} dx$

c)
$$\int_{0}^{2} e^{x} dx$$

$$d) \int_{1}^{5} x^{3} dx$$

e)
$$\int_{0}^{1} a^{x} dx$$
, $a > 0$

e)
$$\int_{0}^{1} a^{x} dx$$
, $a > 0$ f) $\int_{a}^{b} x^{\alpha} dx$, $a > 0$

g)(K52) 1.
$$\lim_{n\to\infty} \frac{1}{n^2} \sum_{k=1}^{n} k \cos \frac{k\pi}{2n}$$
 ($\frac{2\pi-4}{\pi^2}$) 2. $\lim_{n\to\infty} \frac{1}{n^2} \sum_{k=1}^{n} k \sin \frac{k\pi}{2n}$ ($\frac{4}{\pi^2}$)

2.
$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^{n} k \sin \frac{k\pi}{2n}$$
 ($\frac{4}{\pi^2}$

h)(K54) 1.
$$\lim_{n\to\infty} \sum_{k=1}^{n} \frac{n}{n^2 + k^2}$$
 $(\frac{\pi}{4})$

h)(K54) 1.
$$\lim_{n\to\infty}\sum_{k=1}^{n}\frac{n}{n^2+k^2}$$
 ($\frac{\pi}{4}$) 2. $\lim_{n\to\infty}\sum_{k=1}^{n}\frac{n}{3n^2+k^2}$ ($\frac{\pi}{6\sqrt{3}}$)

- i)(K55) 1. Chứng minh rằng $\sum_{k=1}^{n} \frac{1}{n+k} < \ln 2$.
 - 2. Chứng minh rằng $\sum_{k=1}^{n} \frac{1}{2n-k} > \ln 2$
- **k)(K57) 1.** $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{1}{\sqrt{4n^2 3k^2}}$ $(\frac{\pi}{3\sqrt{3}})$ **2.** $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{n}{n^2 + 3k^2}$ $(\frac{\pi}{3\sqrt{3}})$

HAVE A GOOD UNDERSTANDING!