Subject index

When a term is referred to more than one page, number(s) in **bold** refer to the page(s) containing the definition or technical details.

```
\pi-edge, 367–8, 375
                                                     attenuation function, 201
\pi-vertex, 344, 354, 358–61, 367, 371,
                                                     Aumann expectation, 213–14
       375, 391
                                                     Austenite grain, 394, 442
                                                     average breadth, 12-15, 84, 214, 313, 334, 371,
\sigma-additivity, 28
                                                             374, 382, 386, 437
\sigma-algebra, 28
                                                        mean, 67, 368, 381, 395, 422
  trace, 28
                                                     average path length, 402
                                                     average width, 12
\chi^2 field, 261
                                                     avoidance function, 110
                                                     ball, 3
Abell clusters of galaxies, 347
                                                     balls on lines and planes, 274
Aboav's law, 366-7, 370, 378
                                                     Barrat-Weigt clustering coefficient, 406-7
absolute continuity, 33, 118, 122, 125, 130, 135,
                                                     basaltic columnar jointing, 344
       187-9, 281
                                                     binomial point process, 36, 43, 53, 58, 198
absolute curvature, 292, 294
                                                        intensity, 37
additive functional, 25
                                                        properties, 37
additive set function, 28
                                                        simulation, 38
affine linear subspace, 10-11, 84, 348
                                                     birth-and-death algorithm, 185
affine preferential attachment model, 403, 405,
                                                     birth-and-death process, 192
       407 - 8
                                                     birth-and-growth process, 105, 269
alternating Choquet capacity, 207-8
                                                        KJMA theory, 273
amorphous alloy, 101
                                                        process duration, 275
anisotropy, xiv, 77, 81, 85–6, 95, 99, 143, 148,
                                                        statistics, 275
       220, 224, 228, 232, 299, 301, 318, 324,
                                                        Weibull model, 271, 388
       328-9, 336, 345, 355, 372, 376, 415, 420,
                                                        with germs on lines and planes, 274
       444, 451
                                                     Blaschke's coefficient, 423
  local, 140
                                                     Boltzmann-Gibbs distribution, 178, 187
apex of a polyhedron, 367, 370, 375, 381
                                                     bombing, 69, 175
area, 12
                                                     Boolean connectivity graph, 91
area fraction, 7, 87, 100, 106, 150, 162, 170, 233,
                                                     Boolean function, 69
       321, 413, 415, 420, 423, 425
                                                     Boolean model, 64
associated zonoid, 317, 334
                                                        applications, 66
ASTM model, 353
                                                        as fibre process, 90, 298-9
asymptotic normality, 98-9, 103, 230
                                                        as segment process, 80-81, 87-8, 298-9, 301,
atomic measure, 30, 33, 285-6, 400
                                                             318-19, 321
```

Boolean model (Continued)	Buffon-Sylvester problem, 306,
as surface process, 299	313, 439
capacity functional, 71	bundle-free, 311, 371 , 373– 5
in the case of convex grains, 78	
characteristics, 73	C-additivity, 12 , 14, 16, 216, 249
chord, 77, 85–6	Campbell measure, 123 , 130, 134–5, 281
clumps, 91	higher-order, 134
connectivity, 91	modified, 123
contact distributions, 76, 81	reduced, 123 , 131, 188
covariance, 74	second-order, 123
coverage, 76, 89	Campbell theorem, 114 , 118–19, 130, 151, 157
critical assessment, 106	203, 221, 249–50, 254, 283, 308, 316,
estimation,	322–3, 336, 341, 429
of parameters, 98	Campbell–Mecke theorem, 130 –31, 135, 137,
of radius distribution, 102	140, 189
generalisations, 103	cancer, 68, 257
inhomogeneous, 69–73, 93	candy model, 320
interpretation, 106	canonical ensemble, 180
intersections with linear subspaces, 84	grand, 184
intrinsic volume, 78– 9 , 84	canopy gap, 68, 161
isotropy, 70	capacity functional, 71 , 73, 76–8, 84, 105, 110,
morphological function, 84	207 –10, 230, 238
<i>n</i> -point probability function, 76	capillaries, 332
of balls, 88	blood, 450
of circles, 450	in medullary zone of human brain, 452
of cylinders, 314	in skeletal muscles, 451
of discs, 87–8	carbon fibre, 332
of Poisson polygons/polyhedra, 71, 75, 87–8 ,	Cartesian plane, 2
94, 99, 101, 106	Cartesian product, 2
of thick plates, 314	causal cone, 272 –4, 276
percolation, 92	cell complex, 346, 399
planar section, 423	cell of partition, 137
projection of a thick section, 425	zero, 138,
simulation, 71	cell of tessellation, 344
stationarity, 69	neighbourhood, 366
statistics, 95	set of centroids, 357
testing model assumptions, 96	shell, 366 , 393
two-point probability function, 74	simulation, 359 , 372, 377, 381
vacancy, 94	typical, 282, 358
vacant regions, 94	zero, <i>see</i> zero cell of tessellation
variations, 103	central limit theorem,
volume fraction, 74	for lilypond model, 245
with convex grains, 78	for point processes, 115
Borel measurability, 29	for random sets, 214
Borel set, 28	for random tessellations, 390
boundary length, 12	centre–satellite process, 171
boundary of a set, 4	characterisation of Poisson point processes, see
bounded set, 3	Poisson point process
branching process, 164	characteristic path length, 402
spatial, 164	chemical activity, 189 , 196, 198
branching random walk, 164	cherry-pit model, 242
	· · / r, =

Choquet capacity, 207–8	Neyman-Scott, 154, 164, 171, 239, 347
Choquet theorem, 110, 208 –9	as Boolean model, 66, 69
chord length,	as Cox process, 168, 175
experimental determination, 23	simulation, 175
exterior, 85	statistics, 176
for birth-and-growth processes, 274	super-Poissonian, 173
for Boolean models, 85	Poisson, 71, 124, 164 , 171, 174, 245, 348,
density function, 86, 228	444, 450
mean, 86	as Cox process, 168, 175
relationship with linear contact distribution,	Thomas (modified), 61, 173–5
77	clustering (graph property), 406
second moment, 86	clustering (point pattern property), 36, 59,
for excursion sets, 264	60–61, 112, 142, 163, 179, 183
for random sets, 226	clustering (point process operation),
distribution, 226	158, 163
length-biased sampling, 226	homogeneous independent, 164
mean, 227	clustering coefficient, 406–7
relationship with covariance, 221	communication network, 92, 168, 201, 357, 397,
relationship with linear contact distribution,	401, 409,
226	compact, 4
used in stochastic reconstruction, 276–7	competition load, 201, 203
for tessellations,	complement (set-theoretic), 2
density function, 380, 382	complete alternation, 207
distribution, 348, 378	complete separate metric space, 6
mean, 379, 382, 387,	complete (spatial) randomness, 36, 41, 286
second moment, 379, 382	test for, 56 , 350
in stereology,	computerised tomography (CT), 7, 106,
density function, 434, 441	243, 411
distribution, 418, 433, 438-9	confidence interval
mean, 434	for intensity, 55
interior, 86	for mean ball diameter in stereology, 429
of convex bodies, 20	for mean set and mean boundary, 215
density function, 17, 21–3	for specific surface area, 421
distribution, 7, 19– 20	configuration model, 404 –5, 408
mean, 20, 22	(configuration) partition function, 181–2, 255
moment, 20–21, 23	configuration set,
closed ball, 3	for point processes 48, 109
closed interval, 1	for random measure, 280
closed set, 4	connectivity,
closing, 8 , 224–5, 257, 429	of Boolean model, 91 , 94
closure, 4	of random graph, 407
clump, 64, 91	connectivity network, 397
giant, 92	connectivity number, 25 –6, 249, 252–3, 400,
cluster (representative or typical), 164 ,	414, see also Euler–Poincaré
171–3	characteristic
cluster growth algorithm, 93	mean, 295
cluster point process, 60, 142–4, 155, 163	specific, 80 –81, 93, 229, 249, 262, 264–6, 294
Gauss-Poisson, 174	399, 418, 423, 425
Gibbs, 179, 183	contact distribution function,
Matérn, 142, 168, 173 –4, 444	bilinear, 382
as Cox process, 168, 175	disc. 84

contact distribution function (Continued) discoidal, 224	for edge system of tessellation, 378, 382, 387
for Boolean model with convex grains,	for fibre process, 321
83–4, 88, 98	for germ–grain model, 225
for edge system of tessellation, 382	for Gibbs point process, 191
in stereology, 418	for point process, 115, 144
empirical, 95, 97–8, 269	for Poisson cluster process, 173
estimation, 8, 150 , 225, 235 , 237, 391	for Poisson line process, 332
first, 43, 115	for Poisson plane process, 334
for Boolean model, 76, 78	for Poisson point process, 43, 49
in testing model assumptions, 95–7	for random close packing, 241
with convex grains, 81	for random set, 224
with Poisson polygons/polyhedra, 87–8	for superposition of point processes, 165
with roisson polygons/polyneura, 87–8 with random balls, 88	in minimum contrast estimation, 154, 176
with random daiss, 86 with random discs, 87–8	in stereology, 419
	——————————————————————————————————————
with segments, 87–8, 321	relationship with morphological function,
for fibre process, 321	84, 229
for point process, 42, 115	relationship with Palm distribution, 288–9
density, 116	relationship with specific surface area, 224,
relationship with void-probabilities, 42	229
for Poisson line process, 332	two-point spherical, 225
for Poisson plane process, 334	continuum frontier-walk method, 93
for Poisson point process, 165	continuum percolation, 92, 409
for random set, 223	convergence, 3
density, 223	convex averaging sequence, 114 –15, 119, 138,
for tessellation, 348, 382	147, 154, 210–11, 229, 295
generalised, 321	convex body, 11
inner, 225, 288	convex-body functional, 12
linear, 77	convex hull, 11 , 213–14, 401
for Boolean model with convex grains, 82,	convex ring, 24
84, 97	extended, 25
for edge system of tessellation,	convex set, 10
378, 387	convexity number, 26 –7
for excursion set, 263, 266, 269	mean, 27
for point process, 116	relationship with positive curvature measure,
for random close packing, 241	293
for random set, 224	specific, 80 , 99, 253, 294, 423–4
in directional analysis, 228	coordination number, 8, 241
in stereology, 418	mean, 368, 399
relationship with chord length distribution,	corner of a polygon, 344 , 358, 360–61, 375, 392
226	correlation function, 75–6, 99–101, 103, 218 –19
outer, 225	222, 420
quadrat, 224	counting measure, 30, 286
for Boolean model with convex grains, 83	random, 37, 41, 110, 117, 127, 157, 286
relationship with capacity functional, 77	counting rules, 250
spherical, 77–8	covariance, see also set covariance
approximation, 190	approximation, 221
estimation, 150, 236–7	as coverage probability, 89
for Boolean model with convex grains, 83,	as product density, 218
87–8	cross-, 222
for cherry-pit model, 242	estimation, 8, 233 , 237

exponential, 221 –2, 232–3	crack, 301, 340-43, 345
in estimation of volume fraction, 421	mathematical model, 354-5, 397
in statistics for Boolean model, 96, 99, 103	critical enhancement, 245
in statistics for excursion set, 266, 268–9	Crofton cell, xiii
in stereology, 418, 444, 446	Crofton formula, 16, 27, 215, 253
in stochastic reconstruction, 276	cross-correlation measure, 285
of Boolean model, 74	cross-covariance, 222
of excursion set, 262–3	crystal growth, 349, 353
of fibre process, 321	CSR, see complete (spatial) randomness
of generalisations and variations of Boolean	curvature measure, 17, 229, 279, 287
model, 104–5	absolute, 292
of germ–grain model, 239	for convex sets, 290
of point counts of point process, 44–5, 121,	for polyconvex sets, 291
143	for random S-sets, 292
of random close packing model, 241	for sets of positive reach, 292
of random set, 217	in second-order analysis, 234
of random variables, 34 , 260	intensity, 294 , 399, 417
of Stienen model, 244	positive, 292
covariance function,	-
	random, 238, 287
Cauchy family, 261 estimation, 265, 268	signed, 229 cycle in a graph, 403
in statistics for random set, 231	cycloid, 416 –17, 420
Matérn class, 260–61	cylinder, 13, 23, 30, 89, 94, 242, 245, 259,
of random field, 160, 212, 259 , 260–69	302–6, 309–11, 314, 424, 452
of random field associated with random set,	1.1:
218 –19	d-dimensional space, 2
powered exponential family, 260–61	Davidson's conjecture, 310
spherical, 261	Debye random medium, 222
covariance property, 136–7	Debye X-ray correlation function, 218
coverage, 76, 89	degree of a vertex, 91, 397, 399–400, 402 –3
coverage function, 214 , 239	distribution, 400–401, 402 –3, 405, 408
coverage measure, 217 , 287	binomial, 403
coverage probability, 89 , 247	i.i.d., 401
coverage process, 238	limit, 403
Cox lilypond model,	power-law, 403–4
percolation, 245	prescribed, 401
Cox line process, 309 , 313–14	mean, 399–401
Cox point process, 53, 161, 166 , 274	out-, 401
as germ process of germ–grain model, 239	Delaunay tessellation, 350
characteristics, 168	Poisson, 383
log-Gaussian, 167 , 170	Delaunay tessellation field estimator, 349
marked, 166	dense packing, see packing
maximum likelihood method, 153	density function, 32
non-ergodic, 167	design-based approach, 412–13
Palm distribution, 169	deviation test, 57–8 , 97 , 155–6 , 253, 269
random-set-generated, 167 , 170	diameter of a graph, 403, 406
relationship with Neyman–Scott process, 175	difference (set-theoretic), 2
relationship with Poisson cluster process, 175	diffraction pattern, 23
shot-noise, 168, 202	diffuse measure, 31 , 51–2, 166, 285–6, 308
super-Poissonian, 169	digitisation, 96–7
Cox-process approach, 330	Gauss, 230

dilated edge system, 259, 379	element (set-theoretic), 1
dilated fibre process, 259, 314	ellipsoid, 23, 68, 167, 242, 416, 437, 439
dilated random set, 229, 328	EM algorithm, 329, 432–3, 438
dilated surface process, 259, 314	empty set, 2
dilation, 8	empty space function,
Dirac delta function, 18, 34, 111, 270	of point process, 115, 144,
Dirac measure, 30	of random set, 213, 223–4 , 229
direct correlation function, 191	hazard, 213, 224
directional analysis, 140, 228	energy,
directional distribution, 444, 451–2	conditional, 187
Dirichlet tessellations, 347	fixed mean, 181
Poisson, see Poisson-Dirichlet tessellation	function, 181
discoidal contact distribution function, see	in Candy model, 320
contact distribution function	in Gibbs discrete random set, 255–8, 277
disector, 251 , 424, 440	in Gibbs point process, 176, 181
dislocation line, 333, 449	in Metropolis algorithm simulating Gibbs
distance,	processes, 184–5
between a point and a closed set, 4	in stereological reconstruction, 418
Euclidean, 3	local, 187 –9, 194
distance distribution, 18	marks, 200
distance function, 215, 410	minimisation, 338
Euclidean, 4, 390	Erdős–Rényi model, 402 –3, 407–8
signed, 215	generalisation, 404
signed Euclidean, 4	ergodic theorem, 115, 119, 130 , 210 , 280
distance method, 55 , 58	ergodicity,
distance probability, 17	of point process, 115
distribution	of random set, 209
of fibre process, 315	erosion, 8
of point process, 109	erosion–dilation function, 17, 24
of random measure, 280	estimation
of random set, 207	counting rules, 250
of random tessellation, 345	Cox-process approach, 330
of random variable, 33	disector, 251
of surface process, 336	for birth-and-growth processes, 275
distribution function, 33	for tessellations, 391
DLR-equation, 187	lineal method, 231
DNA replication, 353	maximum likelihood, 153
Dobrushin–Lanford–Ruelle equation, 187	method of densities, 98, 232
doubly stochastic Poisson process, 161, 166	method of moments, 154
drainage network, 299, 398, 409	minimum contrast, 99
	of area fraction, 230
edge-correction, 145, 149–52, 225, 278, 393,	of capacity functional, 230
429, 442	of contact distribution function, 235
edge-effects, 71, 145 , 150–51, 188, 230–31, 236,	of covariance, 233
250, 359, 366, 391	of directional distribution from a planar
edge of tessellation, 344	section, 451
set of mid-points, 357	of distribution of spatial ball diameter from a
typical, 358	planar section, 430–32
edge system, 168, 343, 345 –6, 354, 356–7, 363,	of fibre process intensity, 328
371, 378–9, 397	of intensity, 55, 147, 250
Effros σ -algebra, 206	of intrinsic volume densities, 252–3

of K-function, 148–9, 329–30	mean differential topological characteristic,
of L-function, 149	264
of line density, 328	morphological function, 265
of mark correlation function, 149	specific connectivity number, 264
of mark distribution, 152	statistics, 265
of mean values for convex grains, 254	stereology for, 420
of nearest-neighbour distance distribution	<i>u</i> -level, 261
function, 145–6, 151–2	volume fraction, 262
of pair correlation function, 149, 155,	expectation, 33
233, 329	exponential covariance, 221 –2, 231–3
of pair correlation function from a planar	extended convex ring, 25
section, 445	exterior chord, 85
of Palm characteristics, 152	exterior normal, 11
of parameter, 153	exterior normal, 11
of probability generating functional, 150	face of cell, 344, see also k-face
of product density, 149	face of tessellation, 344, see also k-face
of radius distribution of spherical grains, 102	face-to-face, 344 , 354, 359, 368 , 370–71, 376,
of rose of directions, 328	383, 386–7, 395
of rose of intersection, 328	
	facet of a polyhedron, 367
of reduced second moment measure, 148	factorial moment measure, <i>see</i> moment measure
of second moment measure, 148	fibre, 314
of second-order characteristics, 149	cylindrical, 452
of spherical contact distribution function, 150,	fibre process, 315
236	anisotropic, 299, 301, 318, 324, 328–9
of volume fraction, 230	Boolean, 298 , 318 , 321, 332–3
pairwise likelihood, 266	Campbell theorem, 316–17
point-count method, 230	contact distribution function, 321, 332
Euclidean distance function, 4, 390	dilated, 259
signed, 4	distribution, 315
Euclidean distance transform, 4, 390	estimation,
Euclidean isometry, 9	of intensity, 328
proper, 10	of pair correlation function, 329
Euclidean metric, 3	of rose of directions, 328
Euclidean space, 2	of rose of intersection, 328
Euler formula, 360	of second reduced moment function, 329
Euler–Poincaré characteristic, 25 , 229, 235, 249,	intensity, 316, 331
264-5, 399, see also connectivity number	intensity measure, 315
informal rules, 25, 264	intersection,
mean, 264–5	of fibre processes, 327
specific, 252, 399, 419	with fibre systems, 326
event, 33	with lines, 322
exact simulation, 39, 71	isotropy, 315
excluded volume, 90	length measurement, 333
mean, 93, 216	line density, 316
excursion set, 259	marked, 212, 339
application in astrophysics, 265	moment measure, 318
application in medical imaging, 265	pair correlation function, 318
application in modelling heather, 266	planar, 315
chord length, 264	pressed, 324–5, 451
contact distribution function, 263	reduced second moment function, 318
covariance, 262	rose of directions, 316, 331

fibre process (Continued)	geometrical network, 298, 345, 397
rose of intersection, 324, 332	examples, 397
second-order analysis, 318, 329, 448	formal definition, 398
spatial, 330	models, 401
stationarity, 315	random, 399
statistical methods, 327	stationarity and isotropy, 399
typical fibre point, 282	statistics, 400
weighted, 339	summary characteristics, 399
fibre system, 314	Georgii–Nguyen–Zessin equation, 189 , 192
finite additivity, 29	germ, 64, 238
finite-dimensional distribution, 37, 110	germ–grain model, 237
of binomial point process, 38	capacity functional, 238
of Gaussian random field, 259	covariance, 239
of Poisson point process, 42	dynamic, 269
conditional, 43	estimation,
first moment measure, 45, 284	of intensity, 250
fission particle tracks, 333	of intrinsic volume densities, 252–3
flat, 11, see also hyperflat and k-flat	of mean values for convex grains, 254
flat process, 157, 298, 302	intersection formulae, 248
Fontainebleau sandstone, 62, 68, 234–5	lilypond model, 244
force-biased algorithm, 241, 395–6	of non-overlapping balls, 239
form factor, 423 , 444	planar section of, 421
	Poisson, 64
fractal, 74, 259, 261, 270 fracture networks, 69, 91, 301, 354, 397	
	random sequential adsorption (RSA), 240
fully penetrable grain system, 64	reconstruction, 278 shot-noise, 245
77	
gauge set, 77	simple sequential inhibition, 240
Gauss–Chebyshev quadrature method, 432	statistics, 250
Gauss-Poisson process, 174	stereological mean-value formulae, 421
cannot be Cox point process, 175	stereological methods for nonspherical grains
Gaussian random field, 259	436
continuity, 260	stereological methods for spherical grains,
covariance function, 259	425
isotropy, 259	Stienen model, 243
mean function, 259	thick section of, 424
normalised, 260	volume fraction, 239
second spectral moment, 263	weighted grain distribution, 247
simulation, 213	germ–grain process, 157, 238 , 247, 254, 358–9,
stationarity, 259	421
<i>u</i> -level excursion, 261	shot-noise, 245
galaxy, 175, 265, 320, 347, 383	Gibbs discrete random set, 255
gamma distribution, 99-100, 106, 166, 378, 381,	Gibbs point process, 178
395–6, 434	finite, 153, 180
generalised, 377	hard-core, 176, 181, 185–6, 190 –92, 195–6,
general quadratic position, 348	198, 242, 245
generalised intrinsic volume, 17, 26, 216	in bounded region, 180
generalised Steiner formula, 16, 216	in Euclidean space, 186
generating functional, see probability generating	morphological, 107
functional	marked, 192
geological deposits of potassium, 66-8	relationship with Neyman-Scott process,
geometric covariogram, 17	175

random total number of points, 184	homogeneity, 42 , 109–10
simulation, 184, 194, 198	test for, 44, 56
stationarity, 186	homogeneous deformation, 415
statistics, 184, 192	hyperflats, 11
Strauss model, 183, 197	hyperplane, 4, 11
with respect to a local specification, 187	hyperplane process, 298, 313, 375
Gilbert graph, 91	hyperplane tessellation, 94, 347
Gilbert tessellation, 354	bundle-free, 374
glass balls, 419	Poisson, 370–71, 375
global parameter (in stereology), 411, 413	, , , , , , , , , , , , , , , , , , ,
GNZ equation, 189, 192	image analysis, 4, 7, 17, 100, 102, 219, 224, 230,
goodness-of-fit test, 57, 59, 155–6 , 253, 400,	233, 243, 253, 327–8, 330, 400, 429
451, <i>see also</i> deviation test	image processing, 7, 390, 395
grain, 64, 238	independent scattering, 41 , 44, 51
convex isotropic, 78, 254	index-of-dispersion, 58 –9
ellipsoidal, 437, 439	test, 58–9 , 61
polygonal/polyhedral, 66, 68, 71, 75, 87–8 ,	indicator function, 17
94, 99, 101, 106, 242, 437, 439	inhomogeneous,
primary, 64	Boolean model, 69, 70 –73, 93
spherical, 67–8, 76, 81, 83, 86– 8 , 90–93, 95,	Johnson–Mehl tessellation, 353, 388
99, 101–3, 106, 232, 239 , 247–8, 254,	Poisson point process, 51 , 271, 376
	simulation, 54
270, 273–4, 336, 338, 351–2, 393, 395–6,	
398, 412–13, 424–38, 444–8	Poisson-Voronoi tessellation, 376
typical, 65, 238	random graph, 404 –6, 408
weighted, 247	STIT tessellation, 354
grand canonical ensemble, 184	structure, 413
Greig-Smith method, 58–9, 61	time-, 353
ground process, 116 , 118, 120, 125,	integral,
202–3, 212	Lebesgue, 32
growing segment, 270–71	Riemann, 31–2
growth process, 346–7, 354	Riemann–Stieltjes, 33
Gundersen counting frame, 250–53	with respect to a measure, 31
Gundersen tiling rule, 250	integral of mean curvature, 14 , 229, 235, 414
	mean, 67, 295
h-density, 229	specific, 80 –81, 295, 417
Hadwiger characterisation theorem, 16 , 27, 216,	integral of mean positive curvature, 26
249	integral range, 219 , 222, 232, 237
hard-core point process, 176	intensity,
Gibbs, 176, 181, 185–6, 190 –92, 195–6, 198,	of binomial point process, 37
242, 245	of curvature measure, 229, 294,
Matérn, 142, 159, 176 –9, 444	of fibre process, 316, 331
Hausdorff measure, 30	of homogeneous Poisson point process, 41
Hausdorff metric, 6	of intrinsic volume, 79 , 229, 239, 294
Hausdorff-rectifiable, 301	of line process, 307
heather, 67, 266–9	of log-Gaussian Cox process, 170
hemi-vertex, 367–8	of Matérn cluster process, 173
hitting distribution, 71	of Neyman–Scott process, 171
hitting probability, 89	of plane process, 334
hitting σ -algebra, 206	of point process, 113
trace, 288, 315, 345, 399	of Poisson cluster process, 164
hitting set, 206 , 208, 305 –6	of Poisson line and plane process, 312

intensity (Continued)	as curvature measure, 291
of positive curvature measure, 80, 294	as morphological function, 84
of random measure, 280	estimation of density, 252
of surface process, 336	generalised, 26 , 216
of superposition of point processes, 165	intensity, 70, 79 , 229 , 239, 294
of thinned process, 160	mean, 67, 78 , 95, 215, 239, 249, 356
intensity estimation, see estimation	of intersection, 17, 84 , 248–9
intensity function	precision hierarchy of density estimator,
of general point process, 113–14, 122	96, 99
of inhomogeneous Poisson process, 51-5, 273,	specific, 229 , 249, 294
376	intrinsic volume field, 234–5
intensity measure,	invariance,
of completely random measure, 287	isometry, 12
of Cox line process, 309	motion, 42, 112
of Cox process, 166	rotation, 42
of fibre process, 315–16	translation 42
of general point process, 112, 157	inversion formula, 134, 138, 282, 321
of inhomogeneous Poisson process, 45,	Ising model, 256
51 –2	isometry, see Euclidean isometry
of line process, 304, 307 , 321	isoperimetric inequality, xiv, 313
of marked point process, 118–19	isotropy,
of marked random measure, 283	of Boolean model, 70
of plane process, 334	of fibre process, 315
of random measure, 280, 284	of Gaussian random field, 259
of superposition of point processes,	of geometrical network, 399
165	of Palm distribution, 133
of thinned processes, 159-60	of point process, 42, 112
interaction function, 182	of random measure, 280
interaction radius, 191	of random set, 209
interface, 389,	of surface process, 336
interference, 23, 201, 245–6	of tessellation, 345
interference field, 201 , 203	iterated division, 356
interior chord, 86	IUR, 333 , 339, 438
interior of a set, 4	,,
interrupted point process, 161 , 167	jammed packing, see packing
intersection (set-theoretic), 2	Jensen's inequality, 364
intersection	Johnson–Mehl tessellation, 351–2, 381, 388,
of cells in a tessellation, 389	442–3, <i>see also</i> birth-and-growth process
of fibre process and fibre system, 326	statistics, 396
of fibre process and line, 322	statistics, 570
of fibre process and surface process, 337	<i>k</i> -face, 344, 358
of fibre processes, 327	mean-value formulae,
of Poisson line tessellation with a test line	planar, 359
segment, 371	spatial, 367
of surface process and line/plane, 336	point process of centroids of, 368
of surface processes, 337	typical, 358 , 368
process, 310, 313 , 326	k-flat, 11
rate, 313	K-function,
intersection formulae for germ–grain model,	estimation, 148
248	for fibre process, 318
intrinsic volume. 15 –17, 95, 215, 229	Boolean segment process, 319
mumbre volume, 15-17, 73, 413, 447	DOUGHI SCEIRCIL DIOCCSS, JIJ

estimation, 329	line process, xiv, 157, 274, 298, 302
interpretation, 340	applications, 313
intersection with lines, 322, 325	as fibre process, 320
for point process, 141–4	as intersection process, 313, 335
Cox process, 169	as point process on representation space,
homogeneous Poisson point process, 51	306, 312
mixed Poisson process, 170	bundle-free, 311
Neyman–Scott process, 172	Cox, 309 , 313–14
$\pi(x)$ -thinned process, 160	intensity, 307, 312
superposition of point processes, 165	intensity measure, 307
for random measure, 285	Kallenberg lattice-type, 311
for surface process,	line density, 307
Boolean disc model, 338	mixed Poisson, 310
Poisson plane process, 338	moment measure, 308
in deviation test, 57	motion invariance, 307
k-interface, 389	motion-symmetry, 304
k-plane, 11	planar, 302
Kallenberg lattice-type line process,	Poisson, 259, 274, 298, 308 , 312 , 318–21,
311	329, 332 –3, 371–3, 444, 450
Kendall's conjecture, xiii–iv	tessellation generated by, see Poisson line
Kendall's problem, <i>see</i> Kendall's conjecture	tessellation
kernel, 103, 120, 149, 275, 432	rose of directions, 307
kernel method, 432	spatial, 311
KJMA theory, 273	stationarity, 307
KSWIT theory, 275	statistics, 327, 330
L-function, 59–60, 63, 141 –2, 144, 149, 156	tessellation generated by, 346 , 356
estimation, 149	translation-symmetry, 304
of homogeneous Poisson point process, 57,	with no or infinite many parallel lines, 310
142	line tessellation, 346 , 356
L-test, 57	Poisson, see Poisson line tessellation
Laguerre tessellation, 351 , 370	lineal method, 231
statistics, 395	linear contact distribution function, see contact
with respect to Poisson point process, see	distribution function
Poisson-Laguerre tessellation	linear fault zone, 272–3, 298–9
Laplace functional, 127, 169, 284 –7	linear section, 263, 276, 412–13, 414 , 444
Laplace transform, 203, 284	of spatial system of balls, 425, 433
Laplace transform, 203, 204 Laplace–Stieltjes transform, 120	of spatial system of nonspherical grains,
law of large numbers for random sets,	438
214	of surface process, 336, 415
Lebesgue integral, 32	of tessellation, 382–3, 443
Lebesgue measure, 30	local anisotropy, 140
length, 12	local competition function, 201
Lennard-Jones potential, 184	local energy, 187 –9, 194
Lewis' law, 367	local finiteness, 29 , 108, 238, 306
lichen pattern, 96, 100, 107	local interaction, 255
lightning gap locations, 161	local parallel set, 290
	local percolation probability, 92, 289
lilypond model, 176, 244	local porosity, 289
line, 11	local specification, 187
directed, 302	-
representation space, 302, 312	local Steiner formula, 290
undirected, 302	local stereology, 413

locally compact space, 156	Martian crater, 61
locally compact separable Hausdorff (LCS)	material for thermal insulation, 395
space, 205–6	Matérn cluster process, see cluster point process
locally polyconvex, 25	Matérn hard-core process, see hard-core point
location, 3	process
location point, 3	mathematical morphology, 7
log-Gaussian Cox process, 167, 170	Matlab, 7, 350
lognormal distribution, 99, 106, 395-6, 424	maximum breadth, 437
longleaf pine, 59, 117, 120, 124	maximum likelihood, see estimation
lower convex tangent point, 80 –81, 100,	MCMC, see Markov Chain Monte Carlo
253, 295	mean, see expectation
	mean average breath, 67 , 214, 368, 381, 395, 422
manifold process, 302	mean boundary length per unit area, 79 , 100,
mark, 116	248–9, 392, 420, see also specific
for k-face of a tessellation, 358	boundary length
mean, 119	mean coordination number, 241, 368, 399
mark correction function, 123	mean surface area per unit volume, 79 , 229, 248,
estimation, 149	297, 413, see also specific surface area
relationship with two-fold Palm distribution,	mean-value formulae,
134	for random sets, 215
mark distribution,	for tessellation,
chord length distribution as, 226	planar, 359
unconditional, 341	spatial, 367
estimation, 152	of stereology, 413
for marked point process, 66, 118	stereological for germ–grain models, 421
for marked random measure, 283	measurability condition, 33
for tessellation, 358	measurable function, 29
interpretation, 119, 135	measurable set, 29
joint, 325, 340	measurable space, 29
number-weighted, 248	measure, 29
rose of directions as, 316	area, 30
two-atom, 387	atomic, 30
two-point, 125, 448	Campbell, see Campbell measure
used to define Palm distribution, 129	counting, see counting measure
volume-weighted, 248	curvature, see curvature measure
mark distribution function, 119	derived, 281
mark space, 116, 283	diffuse, 31
mark sum measure, 119 –20, 286	Dirac, 30
marked fibre process, 339	Hausdorff, 30
as random marked set, 212	intensity, see intensity measure
marked point process, 116	isometry-invariant, 30
as random marked set, 212	Lebesgue, 30
Campbell theorem, 118	length, 30
Campbell–Mecke theorem, 135	moment, see moment measure
Palm distribution, 134	motion-symmetric, 304
marked random measure, 283	positive Minkowski, 293
Campbell theorem, 283	probability, 33
marked surface process, 339	random, <i>see</i> random measure
Markov Chain Monte Carlo (MCMC), 183–5,	Radon, 29
194, 198, 256, 320, 329, 390	signed, 80, 279, 291
Markov point process, 182	support of, 281
Transo, point process, 102	support of, 201

surface (area),	factorial, 46-7, 53, 121 , 169
of random set, 79, 289	first, 45, see also intensity measure
translation-symmetric, 304	n th , 47, 120
volume, 30	reduced second, 51, 140
of random set, 229, 287	second, 45, 121, 139 , 147
measure space, 31	for projection of thick section, 446
Mecke's formula, 132	for random measure, 284
Mecke's morphological function, 84, 96, 116,	obtained from Laplace functional, 285
229, 265	reduced, 285
medullary zone of human brain, 452	for surface process, 337
membrane, 314, 425	morphological function, 84, 96, 116,
method of densities, 98, 232	229, 265
method of moments, 154	morphological Gibbs process, 107
metric,	morphologically constrained discrete random
complete, 6	sets, 257
countably separated, 6	mosaic, 343
Euclidean, 3	motion, 10
Hausdorff, 6	motion-covariant, 292
space, 6	motion-invariance,
Metropolis(–Hastings) algorithm, 184, 196 , 277,	of line process, 307
320	of plane process, 334
with single-site updating, 256	of point process, 42, 112 , 118
Miles' formulae, 80	of random set, 209
Miles–Lantuéjoul sampling, 254	of tessellation, 345
minimal directed spanning forest, 409	motion-symmetry 304
minimum contrast method, 99	mud-crack, 345
minimum spanning tree, 400, 409	multiparticle functional, 181
Minkowski-addition, 5	multiplication,
Minkowski function, 84	sets by real numbers, 5
Minkowski functional, 14 –15, 26, 84, 229, 291	multitype point process, 116
Minkowski measure, 293	multivariate point process, 116
Minkowski-subtraction, 5	n point probability function 76, 222, 277
minus-sampling, 145– 6 , 150–51, 153, 236, 254 , 429	<i>n</i> -point probability function, 76, 223, 277 nanoporous silica, 101
mixed Poisson line process, 310	natural neighbour interpolation, 349
mixed Poisson point process, 115, 166 , 169–70	nearest-neighbour distance distribution function,
mixing, 70, 115 , 210 , 219, 223, 230	48, 127–8, 132 , 144
model-based approach, 412	approximation, 190
model for particles, 215	estimation, 145–6, 151–2
modified Campbell measure, 123	in deviation test, 155–6
modified support function, 11, 317, 324, 334	in minimum contrast estimation, 154, 176
modified Thomas process, 61, 173–5	of Cox process, 169
moment measure,	of Gauss-Poisson process, 174–5
for fibre process, 318, 327	of Gibbs point process, 191
for line process, 308	of homogeneous Poisson point process, 49
for marked point process, 123	of mixed Poisson point process, 170
for marked random measure, 283	of Neyman–Scott process, 173
for point process, 44, 53, 120 , 123, 169	of superposition of point processes, 165
derived from probability generating	nearest neighbour embracing graph, 401
functional, 126	network adapted to pores, 62
estimation, 148	neurobiology, 396

Neyman–Scott process, <i>see</i> cluster point process node, 62, 247, 397	for random set, 219 estimation, 233
nonparametric maximum likelihood, 350, 432	for surface area measure, 289
non-overlapping balls, 176, 239 , 395, 425, 448	for vertices of tessellation, 378-9, 383
North Sea chalk, 419	for volume measure, 289
,	stereological determination,
oblate spheroid, 439	for spatial fibre system, 448
octahedron, 13	for system of ball centres, 244, 445
open ball, 3	pair potential, 181 –2, 186–7
open interval, 1	Gibbs hard-core, 190
open set, 3	Lennard-Jones, 183–4
opening, 8 , 224–5, 257, 429	local energy in terms of, 189
ordinary equilibrium, 362 , 367–8 , 390, 393	parametric family, 183
oriented mean normal measure, 336	square-well, 183
origin, 3	pairwise interaction process, 182
Ornstein–Zernicke equation, 191	Palm distribution,
Offistem-Zernicke equation, 171	estimation, 152
packing,	global approach, 50
of cubical paving-stones, 243	in proving mean-value formulae, 362
of hard balls, 142, 176, 191, 240 , 395–6, 445,	inversion formula, 134 , 138, 282, 321
447–8	isotropy, 133
of interacting grains, 107	local approach, 48
random close, 142, 240	measure-theoretic approach, 130
	<i>n</i> -fold, 134
random dense, 191, 396, 445, 447–8 random jammed, 240 , 242	of Cox process, 169
volume fraction, 241–2	of marked point process, 134
	of marked point process, 134 of marked random measure, 283
pair correlation function,	
for fibre process, 318 –19, 325, 333	of Neyman, Scott process, 172
Boolean segment process, 319	of Neyman–Scott process, 172
estimation, 329	of point process, 127 of Poisson cluster process, 171
Poisson line process, 318	-
for geometrical network, 400	of Poisson point process, 48, 132
for point process, 46 , 57, 60, 63, 124, 141 –4,	of random measure, 281
153	of stationary point process, 129
approximation, 191–2	of volume measure, 288
estimation, 149, 155	reduced, 131, 188–9, 285
in goodness-of-fit test, 156	underlying the term 'typical', 282
in minimum contrast estimation, 154, 176	with respect to mark set, 135
,	with respect to x , 130
interrupted point process, 162	Palm probability,
log-Gaussian Cox process, 170	retaining, 177
Matérn cluster process, 142, 173	two-point, 178
Matérn hard-core process, 142, 177–8	Palm version, 136–8
modified Thomas process, 173 Neyman–Scott process, 172	paper, 67, 313, 332
•	parallel set, 12
Poisson point process, 47, 142	in morphological function, 84
random close packing, 142, 241	inner, 24
random-set-generated Cox process, 171	local, 290
superposition of point processes, 165	outer, 24
thinned process, 160	parametric bootstrap test, 97, 155, 269
for random measure, 285	particle process, 157

partition function, 181-2, 255	rose of (normal) directions, 334
path in a graph, 402	stationarity, 334
closed, 403	surface density, 312
length, 402, 404	tessellation generated by, 346
physical, 408	plane tessellation, 346
topological, 408	Poisson, see Poisson plane tessellation
path-loss function, 202	plate of a tessellation, 367 –8, 370, 375, 381, 391,
simplified, 202 , 246–7	440, 444
percolation,	plus-sampling, 145–6, 152, 254
bond, 408	quasi-, 146, 278
continuum, 92 , 409	point, 2
in Boolean model, 92	typical, 48, 119, 135
in lilypond model, 245	point-count method, 230
in random geometric graph, 409	point defects on surfaces of silicon wafers,
in random graph, 407	166
local, 92, 289	point field, xviii, 35, 109
site, 408	point process,
periodic boundary conditions, 139, 145, 147 ,	as random counting measure, 286
185–6, 194, 196, 199, 276, 401, 404	binomial, see binomial point process
periodic edge-correction, 146	cluster, see cluster point process
phase transition, 92, 187, 405, 407	clustering, see clustering
photographic emulsion, 68	contact distribution function, see contact
pilot study, 155, 237, 433	distribution function
planar section, 83, 95, 301, 341, 411– 14 , 419	Cox, see Cox point process
of Boolean model, 106, 423	distribution, 109
of germ–grain models, 421	doubly stochastic Poisson, 161, 166
of spatial fibre process, 414, 417–18, 448	finite-dimensional distribution, see
of spatial random field, 420	finite-dimensional distribution
of spatial system of balls, 338–9, 426 , 445	Gauss-Poisson, 174
of spatial system of nonspherical grains, 437	Gibbs, see Gibbs point process
of Stienen model, 244	hard-core, see hard-core point process
of surface process, 297, 415	hypotheses testing, 56, 155
of tessellation, 355, 374, 383, 390,	intensity, see intensity
394–5, 440	intensity function, see intensity function
summary characteristics easily determined	intensity measure, see intensity measure
from, 418	interrupted, 161 , 167
plane, 2, 11, <i>see also</i> hyperplane <i>and k</i> -plane	isotropy, 42, 112
Cartesian, 2	K-function, see K-function
parametric representations, 311	L-function, see L-function
plane process, 298, 300, 311	local finiteness, 108
applications, 313	log-Gaussian Cox, 167 , 170
as intersection process, 313	marked, see marked point process
as point process on representation space, 312	Markov, 182
as surface process, 333	Matérn cluster, <i>see</i> cluster point process
bundle-free, 375	Matérn hard-core, <i>see</i> hard-core point process
intensity, 312, 334	moment measure, see moment measure
motion-invariance, 334	modified Thomas, 61, 173–5
Poisson, 259, 274, 312 , 334	morphological Gibbs, 107
tessellation generated by, <i>see</i> Poisson plane	motion-invariance, 42, 112 , 118
tessellation	
rose of intersections, 335	multitype, 116 multivariate, 116
10se of finelsections, 555	munivariate, 110

point process (Continued)	Poisson distribution, 38, 41, 43, 51, 54–5, 72, 76,
nearest-neighbour distance distribution	90–91, 127, 168, 173, 175, 274, 308–9,
function, see nearest-neighbour distance	312, 321, 334, 371, 421
distribution function	mixed, 169
Neyman-Scott, see cluster point process	Poisson germ-grain model, 64
of vertices of Poisson-Dirichlet tessellation,	Poisson graph, 401
378	Poisson-Laguerre tessellation, 386
on representation space, 306, 312	mean chord length, 387
operations on, 158	mean edge length per unit area, 387
pair correlation function, see pair correlation	mean number of vertices per unit area,
function	386
pairwise interaction, 196	Poisson line process, see line process
Palm distribution, see Palm distribution	Poisson line tessellation, 371
Poisson, see Poisson point process	as limit of superposition of planar
probability generating functional, see	tessellations, 356
probability generating functional	as planar section of Poisson plane tessellation,
related to tessellations, 357	444
representative volume element (RVE), 165	mean-value formulae, 372–3
second-order characteristics, 144	polygon, see Poisson polygon
estimation, 149	typical cell embedded in zero cell, 364
simplicity, 37 –8, 43– 4 , 108 –10, 132,	Poisson plane process, see plane process
157, 166	Poisson plane tessellation, 370
spatio-temporal, 109, 192	mean-value formulae, 373–5
stationarity, 42 , 109–10, 112	planar section, 444
statistics, 145	polyhedron, see Poisson polyhedron
Strauss, 183, 197	typical cell embedded in zero cell, 364
thinned, 158	Poisson point process, 35
thinning, 158	as a limit of binomial process, 38
Thomas (modified), 61, 173–5	balanced partition, 137
superposition, 158	characterisation, 43
void-probabilities, 110	cluster, see cluster point process
point-stationarity, 136	conditioning, 43
points scattered on random fibres and networks,	contact distribution function, 43
168	definition, 41
Poisson cluster process, see cluster point process	doubly stochastic, 161, 166
Poisson-Delaunay tessellation, 383	estimation of intensity, 55
Poisson-Dirichlet tessellation, 377	finite-dimensional distribution, 42
Aboay's law, 378	general, 51
chord length probability density function,	homogeneous, 41
378–80	independent scattering, 41, 44, 51
contact distribution function, 378	inhomogeneous, 51 , 271, 376
distribution of edge length, 378	simulation, 54
distribution of number of edges, 377	intensity, 41
Lewis' law, 367	intensity function, 51 –2, 273, 376
linear contact distribution, 379	intensity measure, 45, 51 –2
mean-value parameters, 377,	<i>K</i> -function, 51
n-edged cell, 366	mixed, 115, 166 , 169–70
point process of vertices of, 378	moment and moment measures, 44, 53
second moments of characteristics, 378	nearest-neighbour distance distribution
statistics, 393	function, 49
typical cell embedded in zero cell, 364	pair correlation function, 47, 142

potassium deposit, 66–8
precision hierarchy, 96, 99
preferential attachment model, 403 –4, 409
affine, 403 , 405, 407–8
geometric, 409
Prekopa's theorem, 160
pressing, 324 –5, 451
principal curvature, 14, 294
principal kinematic formula, 17, 27
probability density function, 33
probability generating functional, 125
estimation, 150
of Cox process, 168
of Neyman–Scott process, 171
of Poisson cluster process, 164
of Poisson process, 126, 161
of superposition of point processes, 165
of thinned process, 160
relationship with capacity functional of
germ–grain model, 238
relationship with Laplace functional of
random measure, 286
probability measure, 33
probability (measure) space, 33
product density, 122
n th -order,
of homogeneous Poisson point process, 47
of inhomogeneous Poisson point process,
53
of log-Gaussian Cox process, 170
of point process, 122
of random measure, 284
second-order,
estimation, 149
interpretation, 47
of germ–grain process, 239
of homogeneous Poisson point process, 46
of Matérn hard-core process, 177
of point process, 122
of Poisson cluster process, 164
of random measure, 218, 225, 285 , 289
of segment process, 325
of superposition of point processes, 165
of thinned process, 160
relationship with other second-order
characteristics, 140-41
quadrat contact distribution function, see contact
distribution function
quadrat count methods, 58
quasi-plus-sampling, 146, 278

integral range, 219
intensity, 229
intrinsic volume, 215
intrinsic volume field, 234
isotropy, 209
lilypond model, 244
morphological function, 229
<i>n</i> -point probability function, 223, 277
non-overlapping balls, 239
packing, see packing
pair correlation function, 219
random sequential adsorption (RSA), 240
relevant volume (RV) 236
representative volume element (RVE), 236
second-order analysis, 234
shot-noise germ–grain model, 245
simple sequential inhibition, 240
simulation, 213
SINR, 245
specific connectivity number, 229
specific intrinsic volume, 229
specific surface area, 219, 224, 229
standard, 209
stationarity, 209
statistics, 230, 250
Stienen model, 243
stochastic reconstruction, 276
volume fraction, 216
volume measure, 229
random clumping, 67
random compact set, 64–5, 90, 94–5, 208, 213 ,
238
exclude volume, 216
generalised Steiner formula, 216
mean of, 213
mean-value formulae, 215
random counting measure, 37, 41, 110, 117, 127
157, 286
random field, 75, 245, 259–61 , 264–5, 268, 349
as Cox point process intensity, 167, 170
associated with random set, 211 , 218
χ^2 , 261
Gaussian, see Gaussian random field
in random marked set, 212
intrinsic volume, 234
nonnegative, 281
on sphere, 265
planar section, 420
random measures constructed from, 286
shot-noise, 200
thinning, 159-60, 162

random geometric graph, 91, 409	random S-set, 209 , 238, 289–90, 292, 294
random geometrical network, see geometrical	random sequential addition, 240
network	random sequential adsorption (RSA), 176, 212,
random graph, 91, 247, 402	240 , 245, 395–6
characteristic path length, 402	random variable, 33
clustering, 406	range of vision, 82
configuration model, 404–5, 408	Rayleigh distribution, 263, 427, 434
degree distribution, 400–401, 402 –3, 405, 408	reach of a set, 27
diameter, 403	reduced Campbell measure, 123, 131, 188
Erdős–Rényi model, 402 –3, 407–8	reduced cross-correlation measure, 285
inhomogeneous, 404 –6, 408	reduced Palm distribution, 131, 188-9, 285
percolation, 407	reduced second moment measure,
phase transition, 407	estimation, 148
preferential attachment model, see preferential	of fibre process, 318, 327
attachment model	of point process, 140
resilience, 407	reduced second-order moment function, see
rich-get-richer model, 403	<i>K</i> -function
scale-free, 403 , 405, 408	regular closed, 4
small word, 404–7	regular conditional probability, 131
typical distance, 402	regularisation, 431
typical vertex, 402	reflection, 5, 10
Watts-Strogatz model, 404-7	rejection sampling, 39, 54, 186, 195
random marked set, 211, 283	relevant volume (RV), 236
random measure, 279	representation space, 282–3, 298, 302–4 , 306,
Campbell measure of, 281	308, 310, 312 –13, 333–4
Campbell theorem, 283	representative volume element (RVE), 154, 219
completely random, 286	236
constructed from point process, 286	representative window, 154
constructed from random field, 286	resilience, 407
cross-correlation measure of, 285	rich-get-richer model, 403
curvature, see curvature measure	ridge of a polyhedron, 367 –8, 370, 375, 381
distribution, 280	Ripley's K-function, see K-function
generated by random set, 287	roots of plants, 333
intensity of, 280	rose of directions, 297
intensity measure of, 280, 284	empirical, 299
isotropy, 280	estimation, 328
Laplace functional of, 284	of line process, 307
marked, 283	of planar fibre process, 316
measure derived from, 281	of spatial fibre process, 331
moment measures of, 284	rose of intersections,
operation on, 280	estimation, 328
Palm distribution of, 281	of planar fibre process, 324
product density of, 284	of spatial fibre process, 332
signed, 279, 291	of spatial plane process, 335
stationarity, 280	rose of normal directions,
superposition, 281	of plane process, 334
support of, 281	of surface process, 336
surface area, 289	rose of tangent directions, 336
volume, 229, 287	rotation, 10
weighted, 283	RSA model, <i>see</i> random sequential adsorption
random point field, xviii, 35, 109	RVE, see representative volume element

S-set, see locally polyconvex	of Gaussian random field, 213
sample function, 260	of Gibbs point process, 184, 194, 198
sample path, 260	of Neyman–Scott process, 175
sample point, 33	of Poisson point process, 53
sample space, 33	of Poisson polygon, 372
Scheil-Schwartz-Saltykov method,	of Poisson random variable, 53
430, 433	of random closed set, 213
second-order characteristics of point process,	of the typical Poisson-Voronoi cell, 381
144	perfect, 198, 213
estimation, 148–9	SINR coverage process, 245
stereological determination, 444	sinter metal balls, 447
second spectral moment, 263	six degrees of separation, 404
secondary network, 313	size–shape of spheroids, 439
section,	size-shape-orientation of spheroids, 439
IUR-planes, 438	Slivnyak–Mecke theorem, 50–51, 81, 90, 110,
linear, see linear section	132 , 141, 172, 204, 247, 318–19, 359
planar, see planar section	small-angle scattering, 20, 76, 96, 100 –101
thick, see thick section	small world, 404 –7
thin, 419	social network, 404
vertical, 416 –17, 420	spatial average, 114 , 210–11
section disc diameter, 426	specific boundary length, 423, 425
area-weighted, 436	specific connectivity number, 80 –81, 93, 99, 229,
selection expectation, 213	249, 262, 264–6, 294, 399, 418, 423, 425,
set, 1	see also specific Euler-Poincaré
set covariance, 7–8, 17 –18, 20, 74, 143, 247,	characteristic
261	specific convexity number, 80 , 99, 253, 294,
isotropised, 18, 23, 75–6, 89, 147,	423–4
239, 285	specific curve length, 417, 420
set operation, 2, 5	specific Euler–Poincaré characteristic, 252, 399,
shape-and-size problem, 436	419, see also specific connectivity
shear, 304, 310, 333	number
shell map analysis, 366, 393	specific integral of mean curvature, 80 –81, 295,
shell of cell, 366	417
shot-noise Cox process, 168, 202	specific intrinsic volume, 229, 249, see also
shot-noise field, 200	intrinsic volume intensity
moment formulae, 202	specific line length, 411
shot-noise germ-grain model, 245	specific surface (area), 79 , 84, 219, 224, 229 ,
shot-noise model 69	242, 263, 266, 289, 355, 411, 413,
shot-noise process, 69	415–16, 419
side of a polygon, 344 , 347, 358, 360–61, 368,	specific value, 413
375, 392, 394	sphere, 3
signal to interference and noise ratio (SINR),	spherical contact distribution function, see
245, 398	contact distribution function
simple point process, see point process	spherical erosion function, 24
simple sequential inhibition, 240	spherical polar coordinates, 331
simplicity, see point process	spruces in a forest, 117
simulated annealing, 243, 277 , 419	standard Gaussian/normal distribution, 55, 242,
simulation	262, 385, 421
exact, 39, 71	standard invariant measure, 305, 307
of binomial point process, 38	standard random set, 209
of Boolean model, 71	starch grain, 24

stationarity,	for spatial fibre systems, 448
of Boolean model, 69	for spatial systems of balls, 425
of fibre process, 315	for spatial systems of convex polyhedra, 439
of Gaussian random field, 259	for spatial systems of ellipsoids, 439
of geometrical network, 399	for spatial tessellation, 440
of line process, 307	mean-value formulae of, 413
of marked point process, 118	precision of estimators, 413,
of marked random measure, 283	421, 433
of plane process, 334	symbols, 249, 414
of point process, 42 , 109–10, 112	Stienen model, 176, 243 , 448–9
of random measure, 280	stochastic reconstruction, 219, 237, 265, 276
of random set, 209	Strauss model, 183, 197
of surface process, 336	structuring element, 7–9, 77 , 81, 115, 218, 223,
of tessellation, 345	225–6, 257, 321, 332, 382
of thinned process, 160	summary characteristics,
of superposition of point processes, 165	functional, 418
point-, 136	of point process 143
time-, 193	of random geometrical network, 399
stationary partition, 137	of tessellation, 390
balanced, 138	super-Poissonian point-count, 169, 173
statistical mechanics, 181, 184	superposition,
statistics,	of point process 165
· · · · · · · · · · · · · · · · · · ·	of random measure, 281
for birth-and-growth process, 275 for Boolean model, 95	of tessellation, 356
for cluster point process, 176	support function, 11 , 17, 213
for excursion set, 265	modified, 11 , 317, 324, 334
for fibre process, 327	support of measure, 281
for geometrical network, 400	surface (area), 12
for germ–grain model, 250	measure, 79, 289
for Gibbs point process, 184, 192	measurement, 338
for Johnson–Mehl tessellation, 396	specific, 79 , 84, 219, 224, 229 , 242, 263, 266,
for Laguerre tessellation, 395	289, 355, 411, 413, 415–16, 419
for point process, 145	surface density, 312, 413
for Poisson-Dirichlet tessellation, 393	Surface Evolver, 338
for Poisson point process, 55	surface process, 335
for random closed set, 230	area measurement, 338
for tessellation, 390	Boolean, 298, 338
Steiner compact, 313, 317 , 324, 329, 332,	Campbell theorem, 336
334 –7,	dilated, 259
Steiner formula, 12, 14 –15	distribution, 336
generalised, 16, 216	intensity, 336
local, 290	intersection by lines and planes, 336
stereological reconstruction, 418	intersection with fibre processes and surface
stereology, 23, 106, 220, 227, 253, 277, 289,	processes, 337
297, 301–2, 328, 332–3, 336, 339, 341,	isotropy, 336
355, 370, 395, 411	linear section, 336, 415
for directional distribution, 451	marked, 339
for excursion set, 420	planar section of, 297, 415
for germ-grain model, 421	rose of normal directions, 336
for nonspherical grains, 436	second moment measure, 337
for second-order characteristics, 444	stationarity, 336

surface process (Continued)	linear section of, 382-3, 443
Steiner compact of, 335–7	mark for k -face, 358
typical surface point, 282	mean-value formulae, 359, 367
weighted, 339	motion-invariant, 345
symmetric difference, 215 , 350	non-Euclidean norm Voronoi, 351
	normal, 368
Takacs-Fiksel method, 189, 192	π -edge, 367 –8, 375
tangent count, 295	π -vertex, 344 , 354, 358–61, 367, 371, 375, 39
tangent direction, 316	planar, 344
joint distribution with mark, 340	planar section, 355, 374, 383, 390, 394–5, 440
rose of, 336	plane, 346, 373–5, 440, 444
TEM image, 101, 449	plate of, 367 –8, 370, 375, 381, 391, 440, 444
tessellation, 343	point processes related to, 357
additively weighted power Voronoi, 351	Poisson-Delaunay, 383
additively weighted Voronoi, 351	Poisson-Dirichlet, 377
apex of a constituent polyhedron in, 367 , 370,	Poisson-Laguerre, 386
375, 381	Poisson line and plane, 370
as germ-grain model, 358	Poisson-Voronoi, 376
cell of, 344	reconstruction, 390
central limit theorem, 390	regular, 344, 368
centroidal Voronoi, 353	ridge of a constituent polyhedron in, 367 –8,
chord length distribution, 348, 378, 380, 382,	370, 375, 381
387	side of a constituent polygon in, 344 , 347, 358
contact distribution, 348, 378–9, 382–3, 387,	360–61, 368, 375, 392, 394
391	simulation of Poisson polygon, 372
corner of a constituent polygon in, 344 , 358,	simulation of the typical Poisson-Voronoi cell
360–61, 375 392	381
crack, 345, 354	stability under iteration, 354
Delaunay, 350	stationarity, 345
Dirichlet, 347	statistics, 390
distribution of, 345	stereology for, 440
edge of, 344	STIT, 354, 375
edge system, 168, 343, 345 –6, 354, 356–7,	summary characteristics, 390
363, 371, 378–9, 397	superposition of, 356
face of, 344	Thiessen, 347
face-to-face, 344 , 354, 359, 368 , 370–71, 376,	trivalent, 362 , 366–7, 371, 391–2
383, 386–7, 395	typical cell, 282, 358
facet of a constituent polyhedron in, 347, 349,	typical cen, 282, 338 typical edge, 358
* *	
360, 367 , 370, 374–6, 381–3, 389, 395–6,	typical k-face, 368
444	typical vertex, 358
generalised Voronoi, 350	vertex, 344
Gilbert, 354	Voronoi, 347
higher-order Voronoi, 350	Voronoi S-, 352
hyperplane, 94, 347 , 371, 374–5	weighted Voronoi, 351
intersection of cells in, 389	test set, 24, 42, 50, 77 , 206, 224, 248, 342
isotropy, 345	testing the Boolean model hypothesis, 96
iterated division of cells, 356	testing the homogeneity, 56
Johnson–Mehl, 351– 2 , 381, 388 , 396, 442–3	testing the Poisson process hypothesis, 56
<i>k</i> -face of, 344, 358	tetrahedron, 13, 23, 393, 440
Laguerre, 351 , 370, 386, 395	thick section, 412, 419 , 424, 427, 435, 445,
line, 346 , 356, 371–3, 444	448–9, 451–2

thin section, 419	approaches to solve, 430
thinning, 158	numerics, 436
dependent, 159	uniformly distributed points, 19, 36–40, 59, 309
independent, 159	union (set-theoretic), 2
$\pi(x)$ -, 167	unit ball,
p-, 158	surface area, 182
p(x)-, 159	volume, 14
Thomas process, 61, 173 –5	unit sphere, 4
three-component model, 105	upcrossing, 263–4
time-invariant, 193	upper semicontinuity, 207
time-inhomogeneous, 353, 388	
time-reversible, 193–4	vacancy, 94
time-stationary, 193, 353	vacant region, 94
trace of σ -algebra, 28	variance, 34
trace plot, 198, 200	of characteristics of the typical
traffic network, 314, 398	Poisson-Dirichlet and Poisson-Voronoi
translated set, 10	cell, 378, 382
translation, 5, 10	of intensity estimator, 147, 393
translation-symmetry, 304	of interior angle at the typical vertex of
transmission range network, 397	Poisson-Dirichlet tessellation, 377
trivalent state, 362	of nearest neighbour distance for
tubular structures, 425	homogeneous Poisson point process, 50
two-point blocking function, 239	of number of edges of the typical cell, 366
two-point cluster function, 239	of random field, 260
two-point mark distribution, 125, 448	of random measure, 285
two-point Palm probability, 178	of sectional disc diameter, 427, 429
two-point probability function, 74, 217	of stationary shot-noise fields, 203
two-point spherical contact distribution function,	of total fibre length estimator, 333
225	of total surface area estimator, 339
two-step statistical method, 106, 266, 328, 433,	of volume fraction estimator, 231-3
438, 447	of volume of vacant regions, 94
typical,	variogram, 202–3, 219 , 234 , 329
cell, 282, 358	semi-, 235
cluster, 164 , 171–3	vascular system, 333
distance, 402	vasculature, 300
edge, 358	vertex of geometrical network, 398
fibre point, 282	typical, 399–401
grain, 65, 238	vertex of graph, 402
k-face, 368	typical, 402
Palm distribution underlying the term, 282	vertex of tessellation, 344
point, 48, 119, 135	typical, 358
Poisson polygon, 371	vertical section, 416 –17, 420
Poisson polyhedron, 374	void-probability, 110,
Poisson-Voronoi cell, 381	of binomial point process, 38
surface point, 282	of Cox point process, 169
vertex of a random graph, 402	of Poisson point process, 42, 132
vertex of a tessellation, 358	volume, 12
	volume fraction,
u-level excursion set, see excursion set	estimation, 230
unfolding problem, 412, 422, 426 , 433,	of birth-and-growth process, 273, 388
437, 439	of Boolean model, 74

544 SUBJECT INDEX

volume fraction (Continued) of cherry-pit model, 242 of germ-grain model, 239 of intersection of Boolean models, 104 of lilypond model, 245 of packing of hard balls, 241 of random jammed packing, 242 of random set, 216 of RSA model, 240 of Stienen model, 244 of u-level excursion set of normalised Gaussian field, 262. stereological mean-value formula for, 414 volume measure, 30, of random set, 229, 287 von Mises distribution, 299, 301, 329 von Mises fibres, 299, 301 Vorob'ev mean, 214

Watts-Strogatz clustering coefficient, 406-7 Watts-Strogatz model, **404**-7

wavelet method, 432
Weibull distribution, 99, 106, 271, 427
Weibull model, **271**, 388
Weibull modulus, 271
Weibull-Poisson process, 271
Wicksell corpuscle problem, 328, 412, **426**Wigner–Seitz cell, 347
woven materials, 313, 332

X-ray scattering, 23, 100, 106, 219, *see also* small-angle scattering

zero cell of partition, 138
zero cell of tessellation, 94, 134, **359**, 363, 366, 370, 382
as size-weighted version, 364, 367
distribution of number of edges of, 371–2
mean-values, 372, 378, 381
typical cell embedded in, 364
zonoid,
associated, 317, 334