

第七章

Tree Searching Strategies

参考资料

A STATE OF THE PARTY OF THE PAR

R.C.T.Lee, S.S.Tseng, R.C.Chang, and Y.T.Tsai, Introduction to the Design and Analysis of Algorithms

Chapter 5

Page 157~219

- 7.1 Motivation of Tree Searching
- 7.2 Optimal Tree Searching Strategies
- 7.3 Personnel Assignment Problem
- 7.4 0/1 Knapsack Problem

7.1 Motivation of Tree Searching

很多问题的解可以表示成为树.

解为树的节点或路径.

求解这些问题可以转化为树搜索问题

布尔表达式可满足性问题

• 问题的定义

-輸出:是否存在 $x_1, x_2, ..., x_n$ 的一种赋值使得所有k个析取式皆为真

例如: $-x_1$, $x_2 \vee x_3$, x_3 , $-x_2$

- 把问题的解表示为树
 - 通过不断地为赋值集合分类来建立树

问题的解是由根到叶的一条路径

8-Puzzle问题

• 问题的定义

- 输入: 具有8个编号小方块的魔方

2	3	
5	1	4
6	8	7

- 输出:移动序列,经过这些移动,魔方到达如下状态

1	2	3
8		4
7	6	5

如何构造树?

• 转换为树搜索问题

7.2 Optimal Tree Searching Strategies

- Hill Climbing
- Best-First Search Strategy
- Branch-and-Bound Strategy

• 基本思想

- -在深度优先搜索过程中, 我们经常遇到多个 节点可以扩展的情况, 首先扩展哪个?
- 一爬山策略使用贪心方法确定搜索的方向,是 优化的深度优先搜索策略
- 他山策略使用启发式测度来排序节点扩展的顺序
 - 使用什么启发式测度与问题本身相关

1	2	3
8		4
7	6	5

- · 用8-Puzzle问题来说明爬山策略的思想
 - 启发式测度函数:
 - f(n)=W(n), W(n)是节点n中处于错误位置的方块数.
 - 例如,如果节点n如下:

2	8	3
1		4
7	6	5

•则f(n)=3,因为方块1、2、8处于错误位置.

• Hill Climbing算法

- 1. 构造由根组成的单元素栈S;
- 2. If Top(S)是目标节点 Then 停止;
- 3. Pop(S);
- 4. S的子节点接照其启发测度由大到 小的顺序压入S;
- 5. If S空 Then 夹败 Else goto 2.

Best-First Search Strategy

- ·基本思想(也称最少代价优先, Least-cost-first)
 - 结合深度优先和广度优先的优点于一个方法
 - •根据一个评价函数,在目前产生的所有节点中选择具有最小评价函数值的节点进行扩展。
 - 具有全局优化观念, 而爬山策略仅具有局部优化观念.

• Best-First Search 算法

- 1. 使用评价函数构造一个堆H, 首先构造由根组成的单元素堆;
- 2. If H的根r是目标节点 Then 停止;
- 3. 从H中删除r, 把r的子节点插入H;
- 4. If H空 Then 失败 Else goto 2.

Heapsort方法见Intro. to Algo. 第II部分第6章

Branch-and-Bound Strategy

- 上述方法很难用于求解优化问题
- 分支界限策略可以有效地求解组合优化问题
- · 分支界限基本思想
 - 迅速找到一个可行解
 - 将该可行解作为优化解的一个界限
 - -利用界限裁剪解空间,提高求解的效率

• 多阶段图搜索问题

-输入:多阶段图

-输出:从 ν_0 到 ν_3 的最短路径

- 分支界限策略的原理
 - 产生分支的机制(使用前面的任意一种策略)
 - 爬山法
 - Best-First
 - 产生一个界限(可以通过发现可能解)
 - 进行分支界限搜索,即剪除不可能产生优化解的分支.

7.3 Personnel Assignment Problem

- ●问题的定义
- 转换为树搜索问题
- 求解问题的分支界限搜索算法

问题的定义

• 输入

- 人的有序集合 $P=\{P_1, P_2, ..., P_n\}, P_1 < P_2 < ... < P_n$
- 工作的集合 $J=\{J_1,J_2,...,J_n\},J$ 是偏序集合(≤)
- 矩阵 $[C_{ij}]$, C_{ij} 是 P_i 被分配工作 J_j 的代价

· 输出

- 矩阵 $[X_{ij}], X_{ij}=1$ 表示 P_i 被分配 J_j , $\sum_{i,j} C_{ij} X_{ij}$ 最小
 - 不同人分配不同工作
 - 每个人被分配一种工作,
 - $f: P \rightarrow J$ 是工作分配函数,满足:

如果 $f(P_i) \leq f(P_j)$,则 $P_i < P_j$, 如果 $i \neq j$, $f(P_i) \neq f(P_i)$.

问题的定义

例. 给定 $P=\{P_1, P_2, P_3\}$, $J=\{J_1, J_2, J_3\}$, $J_1 \le J_3$, $J_2 \le J_3$. $P_1 \rightarrow J_1$, $P_2 \rightarrow J_2$, $P_3 \rightarrow J_3$ 是否为可能的解?

 $P_1 \rightarrow J_1$, $P_2 \rightarrow J_3$, $P_3 \rightarrow J_2$ 是否为可能的解?

求解问题的思想

- 问题转化为树搜索问题
 - $-J=\{J_1,J_2,...,J_n\}$ 的每个拓扑序列对应一个解
 - 用一个拓扑序列树把所有拓扑序列安排在一个树中,每个路径对应一个拓扑序列
 - 问题成为在树中搜索最小路径问题
- 构造拓扑序列树
- 使用分支界限法搜索拓扑序列树求解问题
- 改柘扑序列树构造算法为分支界限求解算法

转换为树搜索问题

·拓扑排序

- 输入: 偏序集合(S, ≤)

- 输出: S的柘扑序列是 $< s_1, s_2, ..., s_n >$,

满足: 如果 $S_i \leq S_i$,则 S_i 排在 S_i 的前面.

- 例

$x \rightarrow y$ 表示 $x \le y$

拓扑排序:

$$x_1 \ x_3 \ x_7 \ x_4 \ x_9 \ x_5 \ x_2 \ x_8 \ x_6$$
 $x_2 \ x_9 \ x_5 \ x_1 \ x_3 \ x_7 \ x_4 \ x_8 \ x_6$

• 问题的解空间

命题1. $P_1 \rightarrow J_{k1}$ 、 $P_2 \rightarrow J_{k2}$ 、、 $P_n \rightarrow J_{kn}$ 是一个可能解,当且仅当 J_{k1} 、 J_{k2} 、、 J_{kn} 是一个拓扑排序的序列.

例. $P=\{P_1, P_2, P_3, P_4\}, J=\{J_1, J_2, J_3, J_4\}, J$ 的偏序如下

则J所有的拓扑排序序列有: (J_1,J_2,J_3,J_4) . (J_1,J_2,J_4,J_3) . (J_1,J_3,J_4) . (J_2,J_1,J_3,J_4) . (J_2,J_1,J_3,J_4) . (J_2,J_1,J_4,J_3) .

 (J_1, J_2, J_4, J_3) 对点于 $P_1 \rightarrow J_1$ 、 $P_2 \rightarrow J_2$ 、 $P_3 \rightarrow J_4$ 、 $P_4 \rightarrow J_3$

• 问题的解空间

命题1. $P_1 \rightarrow J_{k1}$ 、 $P_2 \rightarrow J_{k2}$ 、 $P_n \rightarrow J_{kn}$ 是一个可能解,当且仅当 J_{k1} 、 J_{k2} 、 J_{kn} 是一个拓扑排序的序列.

例. $P=\{P_1, P_2, P_3, P_4\}, J=\{J_1, J_2, J_3, J_4\}, J$ 的偏序如下

解空间是工作集合所有拓扑排序的序列集合,每个序列对应于一个可能的解

• 问题的树表示(即用树表示所有拓扑排序序列)

如何由偏序关系直接生成拓扑序列树呢

$$(J_1, J_2, J_3, J_4)$$
, (J_1, J_2, J_4, J_3) , (J_1, J_3, J_2, J_4) , (J_2, J_1, J_3, J_4) , (J_2, J_1, J_4, J_3)

• 拓扑序列树的生成算法的基本思想

● 拓扑序列树的生成算法

输入: 偏序集合S, 树根root.

输出: 由S的所有拓扑排序序列构成的树.

- 1. 生成树根root;
- 2. 选择偏序集中没有前序元素的所有元素,作为 root的子结点;
- 3. For root的每个子结点v Do
- 4. $S=S_{v}-\{v\};$
- 5. ν 作为根, 遂归地处理 S_{ν} .

•解空间的加权树表示

被分配 的人员 1

> 2 裁剪效果不好, 搜索代价高!!

3 如何改进?

4

求解问题的分支界限搜索算法

• 计算解的代价的下界

J₂ 得到一个具有最小代价12+26+3+10+3=54的 任务分配方案:

$$P_1 \rightarrow J_4$$
、 $P_2 \rightarrow J_3$ 、 $P_3 \rightarrow J_1$ 、 $P_4 \rightarrow J_2$
它不满足偏序约束,故不是可行解

由此得到可行解的代价下界=54

求解问题的分支界限搜索算法

- 计算解的代价的下界
- 命题2: 把代价矩阵每行(列)各元素减去同一个数,不影响优化解的求解.
 - 一代价矩阵每行(列)减去该行(列)的最小数,使得每行和每列至少有一个零,其余各元素非零
 - -如此简化代价矩阵对解无影响 (因为每个解代价都减去了一个相同的数)
 - 每行和列减去的数的总和是解的下界.

•改进后解空间的加权树表示

算法的思想(用爬山法)

$$\{P_1, P_2, P_3, P_4\}$$
 $\int_{J_3}^{J_1} \int_{J_4}^{J_2}$

- 分支界限搜索(使用爬山法)算法
 - 1. 建立根结点, 其权值为解代价下界;
 - 2. 使用爬山法,类似于拓扑排序序列树生成算法 求解问题,每产生一个结点,其权值为加工后的 代价矩阵对应元素加其父结点权值;
 - 3. 一旦发现一个可能解,将其代价作为界限,循环 地进行分支界限搜索:剪掉不能导致优化解的 子解,使用爬山法继续扩展新增节点,直至发现 优化解.

修改拓扑排序算法,可以写出严格的分支 界限搜索算法

7.4 0/1 Knapsack

- 问题的定义
- 转换为树搜索问题
- 分支界限搜索算法

问题的定义

给定n种物品和一个背包,物品i的重量是 w_i ,价值 v_i ,背包承重为C,问如何选择装入背包的物品,使装入背包的物品的总价值最大?

对于每种物品只能选择完全装入或不装入,一个物品至多装入一次。

输入: C>0, $w_i>0$, $v_i>0$, $1 \le i \le n$

输出: $(x_1, x_2, ..., x_n), x_i \in \{0, 1\}$, 满足:

- $(1) \sum_{1 \le i \le n} w_i x_i \le C,$
- (2) $\sum_{1 \leq i \leq n} v_i x_i$ 最大.

转换为树搜索问题

- 按照"价值重量比"降序排列n个物品
- 空包为根;
- · 用爬山法或Best-First遂归地划分解空间,得到 二叉树
 - -树中第i层的每个节点都代表了n个物品中所有符合以下特征的子集:
 - · 每个子集对应于序列中前i个物品的一个特定选择
 - 这个特定选择是根据从根到该节点的一条路径确定的
 - 向左的分支表示包含下一个物品
 - 向右的分支表示不包含下一个物品
 - 每个节点中记录如下信息
 - · 当前装入背包物品的总重量W及总价值V
 - · 此时背包能够容纳的物品价值上界UB

分支界限搜索算法

- 计算节点代价的上界UB:
 - $-UB=v+(C-w)\times(v_{i+1}/w_{i+1})$,或者
 - -UB=v+UB'
 - UB'是部分背包算法在子问题($\{i+1, i+2,...,n\}$, C-w)上的最优解代价
- 0/1背包问题的优化解与部分背包问题优化解之间的关系?
 - _ 0/1背包问题的优化解是部分背包问题的可行解
 - _ 部分背包问题的优化解是0/1背包问题优化解上界

• 根节点及其代价上界

$$w=0, v=0$$

$$UB = v + (C - w) \times v_1 / w_1$$
$$= C \times v_1 / w_1$$

· 第i层节点的搜索及其代价上界

根据左右儿子节点的代价的上界,确定下一次待搜索的节点

· 第i层节点的搜索及其代价上界

• 对于i+1层节点:

- \dot{a} w>C, 停止搜索,由根到该节点对应路径不是可行解一部分
- 若其UB小于当前优化解下界,则由根到该节点对应的路径一定不会产生最优解,停止搜索
- 否则,优先选择UB较大的节点,继续爬山法搜索

最优解!