Chapter 1

1.1 1

consideremos la ecuación hypergeométrica

$$x(1-x)\frac{d^2u}{dx^2} + \{c - (a+b+1)x\}\frac{du}{dx} - abu$$

con exponentes imaginarios puros

$$1 - c = i\theta_0, c - a - b = i\theta_1, a - b = i\theta_2$$

(Los exponentes son por las soluciones)

Donde supondremos $\theta_0, \theta_1, \theta_2 > 0$. Para cualesquiera dos soluciones linealmente independientes u_1 y u_2 tenemos el mapeo multivaluado

$$s: \mathcal{C} - \{0, 1\} \ni x \mapsto u_1(x) : u_2(x) \in \mathcal{P} := \mathcal{C} \cup \{\infty\}$$

llamado el mapeo de Schwarz.

1.2 2

Para nuestros propositos hallaremos un dominio en el plano-x y un dominmio en el plano-s (estos aun no los coloco aqui ya que no termino de dibujarlos aun) tal que el mapeo

$$s|_{F_x}:F_x\to F_s$$

es un biholomorfismo (conformally isomorphic) y el mape
osse puede recuperar via el mapeo restringido
 $s|_{f_x}$ a traves del principio de reflexión de Schwarz, estos se l
laman dominios fundamentales para el mapeo de Schwarz.

Denotemos por C(c,r) el circulo en el plano s con centro c y radio r y considerense los tres circulos disjuntos en el plano s

$$C_1 = C(0,1), C_2 = C(0,T), C_3 = C(-C,R)$$

Donde $T = e^{\theta_1 \pi}, r = e^{-\theta_0 \pi}$

$$C = \frac{\xi(1-r^2)}{\xi^2 - r^2}, R = \frac{r(1-\xi^2)}{\xi^2 - r^2}, \xi = \left(\frac{\cosh\theta_2\pi + \cosh(\theta_0 - \theta_1)\pi}{\cosh\theta_2\pi + \cosh(\theta_0 + \theta_1)\pi}\right)^{\frac{1}{2}}$$

Cuando $\theta_2 = 0 \; Cosh(\theta_0 - \theta_1)\pi = \frac{1+(rt)^2}{2rT} \; \text{y} \; Cosh(\theta_0 + \theta_1)\pi = \frac{r^2+T^2}{2rT}$ y también $Cosh\theta_2\pi = 1 \; \text{por lo que} \; \xi^2|_{\theta_2=0} = \frac{1+\frac{1+(rt)^2}{2rT}}{1+\frac{r^2+T^2}{2rT}} = \frac{\frac{2rT+1+(rt)^2}{2rT}}{\frac{2rT+r^2+T^2}{2rT}} = \frac{T^2+2rT+1}{r^2+2rT+T^2} = \frac{(rT+1)^2}{(r+T)^2} \; \text{entonces} \; \xi|_{\theta_2=0} = \frac{Tr+1}{T+r}$

Ya que T>1 y r<1 tenemos por un lado $r^2<1$ entonces $Tr+r^2< Tr+1$, es decir, r(T+r)< Tr+1, entonces; $r<\frac{Tr+1}{T+r}$.

Por otro lado; r < 1 y también T - 1 > 0 por lo que (T - 1)r < T - 1 entonces Tr - r < T - 1 y luego Tr + 1 < T + r por lo que $\frac{Tr + 1}{T + r} < 1$ Dado que ξ como una función de $\theta_2 \ge 0$ incrementa de manera monótona a 1 y

$$1 > \xi|_{\theta_2 = 0} = \frac{Tr + 1}{T + r} > r$$

tenemos

$$C - R - 1 = \frac{\xi(1 - r^2)}{\xi^2 - r^2} - \frac{r(1 - \xi^2)}{\xi^2 - r^2} - 1 = \frac{\xi - \xi r^2 - r + r\xi^2 - \xi^2 - r^2}{\xi^2 - r^2} = \frac{\xi - r + \xi r(-r + \xi) - (\xi - r)(\xi - r)(\xi - r)}{\xi^2 - r^2}$$

$$T - C - R = \frac{(T+r)\xi - (Tr+1)}{\xi - r} > 0$$

y tenemos

$$-T < -C - R < -C + R < -1 < 1 < T$$

El dominio en el semi-plano superior, acotado por C_1, C_2, C_3 y el eje real, puede servir como un dominio fundamental F_s , y tiene la forma de un puente de doble arco como en la figura 1. El dominio fundamental F_x también tiene la forma de de un puente de doble arco como en la figura 1, y esta acotado por tres segmentos reales y tres curvas que no son parte de circunferencias.

1.3 4

El grupo de monodromia

Gracias a estos dominios fundamentales y el principiuo de reflexion de Schwars aplicado a lo largo de los lados, el grupo de monodromia de la ecuación diferencial se puede describir como sigue; La reflexión con respecto al circulo C(c,r) donde c es real, esta dada por

$$\psi(c,r): s \mapsto \frac{r^2}{\bar{s}-c}$$

Sea $\bar{\lambda}$ el grupo generado por las tres reflexiones respecto a los circulos C_1, C_2, C_3 , respectivamente. El grupo de monodromia λ_{θ} de la ecuación hypergeometrica es el subgrupo de $\bar{\lambda}$, de indice 2 que consiste de las palabras pares de ψ_1, ψ_2, ψ_3 .

Por otro lado, para el circulo C(c,r) definimos la transformación fraccional lineal de orden 2 que fija los dos puntos de intersección del circulo y el eje real:

$$\gamma(c,r): s \mapsto \frac{r^2}{s-c} + c$$

Sea Γ_{θ} , θ)(θ_0 , θ_1 , θ_2) el grupo generado por tres involuciones γ_1 , γ_2 , γ_3 con respecto a los circulos C_1 , C_2 , C_3 , respectivamente. El grupo de monodromia λ_{θ} es el subgrupo de γ_{θ} , de indice 2 que consiste de las palabras pares de γ_1 , γ_2 , γ_3 . Sea ω ($\subset \mathcal{P}^{\infty}$) el dominio de discontinuidad de γ_{θ} y el grupo de Schotky γ_{θ} .

Esta representación tiene algunos problemas, aunque la ecuación hiprgeometrica es simétrica respecto de $\theta_0, \theta_1, \theta_2$, los tres circulos C_1, C_2, C_3 no lo son. Por ejemplo si $\theta_2 \to 0$ los circulos C_2 y C_3 se tocan, y si $\theta_1 \to 0$ entonces C_3 tiende a un punto y C_1 y C_2 coinciden, más aún ya que C_1 y C_2 son concentricosHacemos un cambio de coordenadas como sigue :

$$s \mapsto \frac{(3+T^2)s+1+3T^2}{4(s+T^2)}$$

entonces los diametros de los circulos en el eje real estan dados por

$$C_1:[s_4,s_5],C_2:[s_1,s_6],C_3:[s_2,s_3]$$

figura 2

Donde

$$s_1 = -\frac{(1-T)^2}{4T}, s_2 = -\frac{(T-1)^3 - (3+T^2)(T-C-R)}{4(T^2 - T + T - C - R)}$$

$$s_3 = -\frac{(1+T^2)(C-R-1)}{4(T^2-1-(C-R-1))} + \frac{1}{2}, s_4 = \frac{1}{2}$$
$$s_5 = 1, s_6 = \frac{(1+T)^2}{4T}$$

Notemos que $s_1 < s_2 < \cdots < s_6$ Ahora podemos probar lo siguiente:

Proposition 1.1. Si $\theta_1 = 0$ entonces C_1 y C_2 se tocan en un punto; Si $\theta_2 = 0$ entonces C_2 y C_3 se tocan en un punto; Y si $\theta_0 = 0$, entonces C_3 y C_1 se tocan en un punto

Prueba.

Cuando $\theta_1 = 0$, notemos que en este caso $T = e^{\theta_1 \pi}$ y dado que $\theta_1 = 0$ se tiene que T = 1, también recordemos que $C_1 : [s_4, s_5]$ y $C_2 : [s_1, s_6]$ y dado que $s_5 = 1$ y $s_6 = \frac{(1+T^2)^2}{4T} = \frac{(1+1^2)^2}{4} = \frac{4}{4} = 1$ es decir C_1 y C_2 se tocan en 1.

que $s_5 = 1$ y $s_6 = \frac{(1+T^2)^2}{4T} = \frac{(1+1^2)^2}{4} = \frac{4}{4} = 1$ es decir C_1 y C_2 se tocan en 1. Si $\theta_2 = 0$,primero veremos que T - C - R = 0, como $\theta_2 = 0$ entonces $\xi = \frac{Tr+1}{T+r}$ esto implica que $(T+r)\xi = Tr+1$ y como $T - C - R = \frac{(T+r)\xi - (Tr+1)}{\xi - r} = \frac{Tr+1 - (Tr+1)}{\xi - r} = 0$, Ahora bien $s_1 = -\frac{1-T^2}{4T}$ y $s_2 = -\frac{(T-1)^3 - (3+T^2)(T-C-R)}{4(T^2-T+T-C-R)} = -\frac{(T-1)^3}{4(T^2-T)} = -\frac{(T-1)^2(T-1)}{4T(T-1)} = -\frac{(T-1)^2}{4T} = s_1$ por lo que C_2 y C_3 se tocan en s_1 .

Por último si $\theta_0=0$ tenemos $r=e^{-\theta_0\pi}$ en este caso r=1 mostremos que C-R-1=0. $C-R-1=\frac{(1-r)(1-\xi)}{\xi+r}=0$ ya que r=1, entonces $s_3=\frac{(1+T^2)(C-R-1)}{4(T^2-1-C-R-1)}+\frac{1}{2}=\frac{1}{2}$ ya que C-R-1=0 y dado que $C_3:[s_2,s_3]$ y $C_1:[s_4,s_5]$ por los calculos anteriores obtuvimos $s_4=s_3$ (recordando que $s_4=\frac{1}{2}$), Concluyendo con la prueba.