## Assignment BrojectdExamilHelp Lecture 8 - Undecidable Problems

https://pow.coder.com

University of Toronto

Add WeChat2powcoder

### Reducibility

## Assignment Project Exam Help

Let A,B be two languages. We say A is mapping reducible to B, written  $A \leq_{\mathcal{D}} B$ , if there is a computable function  $f: \mathcal{L}^* \to \mathcal{L}^*$  such that to  $\mathcal{L}^*$   $\mathcal{L}^*$   $\mathcal{L}^*$   $\mathcal{L}^*$   $\mathcal{L}^*$ 

$$w \in A \iff f(w) \in B$$
.

The fated is Wee Chat poweoder

### The Halting Problem

### Definition Assignment Project Exam Help

Theorem HALINTEDS:///powcoder.com

Proof. We wind the work by Points DOWCOCET  $\vdash HALT_{TM} \leq_m A_{TM}$  (hence,  $HALT_{TM} \in SD$ ); and

- $ightharpoonup A_{TM} \leq_m HALT_{TM}$  (hence,  $HALT_{TM} \notin D$ ).

This is equivalent to saying  $HALT_{TM} \equiv_m A_{TM}$ .

#### The Halting Problem

 $HALT_{TM} \leq_m A_{TM}$ : Define  $f: \Sigma^* \to \Sigma^*$  as follows:

## Assignment Project Exam Help

where  $M^\prime$  accepts w iff M halts on w, and  $M_{loop}$  always loops.

 $A_{TM} \leq_m HALT_{TM}$ : Define  $f: \Sigma^* \to \Sigma^*$  as follows:  $Add W_{\leftarrow}$ ,  $Chat_{M}$  powcoder

 $x \mapsto \langle M_{loop}, \varepsilon \rangle,$ 

where M' halts on w iff M accepts w.

Clearly, f is computable and  $y \in A_{TM} \iff f(y) \in HALT_{TM}$ .  $\square$ 

### The Equality Problem

### Definition Assignment Project Exam Help

Theorem the side power of the

Proof. We with the two the by hours provided by  $A_{TM} \leq_m EQ_{TM}$  (hence,  $EQ_{TM} \not\in coSD$ ); and

- $ightharpoonup A_{TM} \leq_m EQ^c_{TM}$  (hence,  $EQ_{TM} \not\in SD$ ).

#### The Equality Problem

 $A_{TM} \leq_m EQ_{TM}$ : Define  $f: \Sigma^* \to \Sigma^*$  as follows:

$$\langle M, w \rangle \mapsto \langle M_{accept}, M' \rangle$$

## Assignment<sup>\*</sup> Project<sup>\*</sup> Exam Help

where  $M_{accept}$  is a TM that accepts everything,  $M_{reject}$  is a TM that rejects everything, and M' is a TM that, on any input, runs M orhthps:p/s/ipowreoderv.com

$$\mathcal{L}(M') = \begin{cases} \Sigma^* & \text{if } M \text{ accepts } w \\ \emptyset & \text{otherwise.} \end{cases}$$

 $\mathcal{L}(M') = \begin{cases} \Sigma^* & \text{if } M \text{ accepts } w \\ \emptyset & \text{otherwise.} \end{cases}$   $\mathbf{Add} \ \mathbf{WeChat} \ \mathbf{powcoder}$ Thus,

$$\langle M, w \rangle \in A_{TM} \iff M \text{ accepts } w$$

$$\iff \mathcal{L}(M_{accept}) = \mathcal{L}(M')$$

$$\iff \langle M_{accept}, M' \rangle \in EQ_{TM}.$$

### The Equality Problem

 $A_{TM} \leq_m EQ^c_{TM}$ : Define  $f: \Sigma^* \to \Sigma^*$  as follows:

## Assignment, Project''Exam Help

where  $M_{accept}$ ,  $M_{rejeat}$  and M' are as before. Thus,

### Add WeChatapowcoder

 $\iff \langle M_{reject}, M' \rangle \not\in EQ_{TM}$ 

 $\iff \langle M_{reject}, M' \rangle \in EQ^c_{TM}.$ 

# Assignment Project Exam Help

- 1. https://powersetrom.
- 2. P is a property of the TM's languages, i.e., whenever that powcoder

Then P is undecidable.

#### Proof of Rice's Theorem

#### Proof.

Assignment Project Exam Help Let  $M_{reject}$  be a TM that always rejects. We may assume without

loss of generality that  $M_{reject} \notin P$  (otherwise replace P by  $P^c$ ).

Since https://tpowscoder.com P.

Define  $f: \varSigma^* \to \varSigma^*$  as follows:

### Add We Chat powcoder

 $x \mapsto M_{reject},$ 

where  $M_w$ , on input y, rejects if M rejects w, else simulates T on y and outputs whatever T outputs.

#### Proof of Rice's Theorem

 $\begin{array}{l} \textbf{Assignment Project Exam Help} \\ \textbf{Assignment Project Exam Help} \\ \textbf{Assignment Project Exam Help} \\ \end{array}$ 

Finally, if M loops on w, then  $M_w$  loops on all inputs y. In this case of the  $M_w$  of  $M_w$ 

# And We Chat powcoder $\langle M, w \rangle \in A_{TM} \iff M_w \in P$ ,

i.e.,  $A_{TM} \leq_M P$ .

### Applications of Rice's Theorem

### Assignment Project Exam Help

- 1.  $EMPTY_{TM} := \{ \langle M \rangle \mid M \text{ is a TM and } \mathcal{L}(M) = \emptyset \}$
- 2.  $FINITE_{TM} := \{\langle M \rangle \mid M \text{ is a TM and } \mathcal{L}(M) \text{ is finite} \}$ 3.  $PIUDS_{TM} : POWQ GCMIs \text{regular} \}$
- 4.  $DECIDABLE_{TM} := \{\langle M \rangle \mid M \text{ is a TM and } \mathcal{L}(M) \text{ is}$ decidable}

### Add WeChat powcoder

By Rice's Theorem, all the above languages are undecidable.

### Venn diagram of different classes

