data

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65
495	496	332	108	5	4.5	4.0	9.02	1	0.87
496	497	337	117	5	5.0	5.0	9.87	1	0.96
497	498	330	120	5	4.5	5.0	9.56	1	0.93
498	499	312	103	4	4.0	5.0	8.43	0	0.73
499	500	327	113	4	4.5	4.5	9.04	0	0.84
600 ro	ws × 9 column	is							

Next steps: Generate code with data View recommended plots

data preprocessing
data.isnull().sum().sum()

data.shape

(500, 9)

data.duplicated().any()

False

data.head(1) data.corr()

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
Serial No.	1.000000	-0.103839	-0.141696	-0.067641	-0.137352	-0.003694	-0.074289	-0.005332	0.008505
GRE Score	-0.103839	1.000000	0.827200	0.635376	0.613498	0.524679	0.825878	0.563398	0.810351
TOEFL Score	-0.141696	0.827200	1.000000	0.649799	0.644410	0.541563	0.810574	0.467012	0.792228
University Rating	-0.067641	0.635376	0.649799	1.000000	0.728024	0.608651	0.705254	0.427047	0.690132
SOP	-0.137352	0.613498	0.644410	0.728024	1.000000	0.663707	0.712154	0.408116	0.684137
LOR	-0.003694	0.524679	0.541563	0.608651	0.663707	1.000000	0.637469	0.372526	0.645365
CGPA	-0.074289	0.825878	0.810574	0.705254	0.712154	0.637469	1.000000	0.501311	0.882413
Research	-0.005332	0.563398	0.467012	0.427047	0.408116	0.372526	0.501311	1.000000	0.545871
Chance of Admit	0.008505	0.810351	0.792228	0.690132	0.684137	0.645365	0.882413	0.545871	1.000000

 \blacksquare ili

data visualisation
import seaborn as sns
sns.heatmap(data.corr())

data visualisation

import matplotlib.pyplot as plt

data['Chance of Admit ']=data['Chance of Admit ']*10 data

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit	==
0	1	337	118	4	4.5	4.5	9.65	1	9.2	ıl.
1	2	324	107	4	4.0	4.5	8.87	1	7.6	+/
2	3	316	104	3	3.0	3.5	8.00	1	7.2	-
3	4	322	110	3	3.5	2.5	8.67	1	8.0	
4	5	314	103	2	2.0	3.0	8.21	0	6.5	
495	496	332	108	5	4.5	4.0	9.02	1	8.7	
496	497	337	117	5	5.0	5.0	9.87	1	9.6	
497	498	330	120	5	4.5	5.0	9.56	1	9.3	
498	499	312	103	4	4.0	5.0	8.43	0	7.3	
499	500	327	113	4	4.5	4.5	9.04	0	8.4	
500 rd	ws × 9 column	IS								

Next steps: Generate code with data View recommended plots

 $sns.scatterplot(x='GRE\ Score',y='Chance\ of\ Admit\ ',data=data)\\ plt.xticks(rotation=90)$

 $\verb|sns.scatterplot(x='TOEFL Score',y='Chance of Admit',data=data)|\\$

data sns.barplot(x='University Rating',y='Chance of Admit ',data=data)


```
(array([ 6.5, 7. , 7.5, 8. , 8.5, 9. , 9.5, 10. , 10.5]),
[Text(7.6, 0, '6.5'),
Text(7.7, 0, '7.5'),
Text(7.5, 0, '7.5'),
Text(8.6, 0, '8.6'),
Text(8.5, 0, '8.5'),
Text(9.5, 0, '9.5'),
Text(9.6, 0, '9.0'),
Text(19.5, 0, '9.5'),
Text(10.5, 0, '10.5')])
                    9
                  8
     Chance of Admit
                                                                                                               8.0
                                                                                                                                               8.5
                                             7.0
                                                                                                                                                                                                                                                 10.0
```

model training and testing from sklearn.linear_model import LinearRegression

```
from sklearn.model_selection import train_test_split x=data.iloc[:,0:8]
y=data.iloc[:,-1]
y
                  9.2
7.6
7.2
8.0
6.5
      495 8.7
496 9.6
497 9.3
498 7.3
499 8.4
Name: Chance of Admit , Length: 500, dtype: float64
```

 $x_train, x_test, y_train, y_test=train_test_split(x, y, test_size=0.3, random_state=67)$

x train

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research
324	325	315	104	3	3.0	2.5	8.33	0
79	80	294	93	1	1.5	2.0	7.36	0
336	337	319	110	3	3.0	2.5	8.79	0
58	59	300	99	1	3.0	2.0	6.80	1
36	37	299	106	2	4.0	4.0	8.40	0

7	8	308	101	2	3.0	4.0	7.90	0
453	454	319	103	3	2.5	4.0	8.76	1
202	203	340	120	5	4.5	4.5	9.91	1
309	310	308	110	4	3.5	3.0	8.60	0
323	324	305	102	2	2.0	2.5	8.18	0

```
Next steps: Generate code with x_train View recommended plots
```

Ir=LinearRegression()
model=Ir.fit(x_train,y_train)
firstly model will be trained means here based on all the train records mathematical function will be created it is a model
by using gradient descent optimization takes place
loss function like we can use sum of squares of errors, mean square error, mean absolute error we can choose any thing where
this loss function is minimum that value related weights or coefficients we are going to consider
based on that weight values model is going to predict target variables

```
array([9.11379347e-04, 2.07464324e-02, 2.85944897e-02, 5.47027306e-02, 3.07003309e-02, 1.72226278e-01, 1.20106338e+00, 2.30932496e-01])
```

model.intercept_

-13.932238739014954

y_pred=model.predict(x_test)

from sklearn import metrics

metrics.r2_score(y_pred,y_test)
it is nearer to 1 so it is a good model
r2 score value ranges from 0 to 1

0.8154902126690262

multi colinearity

if there is a relationship is there between independent features or not we are going to find out
if there is a relation ship is there between independent features we cant find out actual regression coefficients then it is very difficult f
based on weight values importance on features will be there
based on ols and vif we can find multi collinearity from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.preprocessing import StandardScaler p=StandardScaler().fit_transform(x_test)
data=pd.DataFrame(p,columns=x_test.colum s=pd.DataFrame() s['features']=data.columns features == 0 Serial No. th GRE Score TOFFL Score SOF 5 LOR CGPA Research Next steps: Generate code with s View recommended plots s.shape data Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA Research 🚃 0.642635 1.159202 1.513344 -0.513790 -1.241923 0.085023 0.054560 -0.869836 1.155586 -0.483814 -0.255069 -0.241725 -0.357196 1.513344 -0.099637 -1.241923 -0.751923 0.867263 0.085023 -0.241725 -0.357196 -0.055791 0.476576 -1.241923 -0.429330 -0.001287 -0.765207 -0.241725 -0.862662 -0.578837 -0.153657 0.805203 1.029354 -1.931397 -1.105299 -0.241725 -1.368128 0.467254 -1.720235 0.805203 145 1.309870 -0.483814 0.255069 -1.126085 -0.862662 0.467254 0.710662 -1.241923 146 1.050392 -0.387309 -2.295622 -1.126085 -0.862662 -2.147972 -0.891929 -1.241923 147 -0.057646 1.735813 1.275345 0.642635 1.159202 0.990299 1.899101 0.805203 -0.241725 0.653736 -0.578837 -0.765883 -1.241923 **148** -1.404123 -0.966342 -1.105299 149 -1.628536 -0.676825 -1.445392 -1.126085 -1.873594 -1.624927 -2.386481 -1.241923 150 rows × 8 columns Next steps: Generate code with data View recommended plots len(data.values[0]) s['vif']=[variance inflation factor(data.values,i) for i in range(data.shape[1])] vif = features Serial No. 1.024350 GRE Score 4.741730 2 TOEFL Score 4.483460 3 University Rating 3.017187 SOP 3.169092 5 LOR 2.084630 CGPA 5.851363 Research 1.525741 Next steps: Generate code with s

View recommended plots # all features vif values are less than 10 so no need to remove columns
vif is grater than or equal to 10 then we should have to remove columns which are strongly correlated
vif it is 5 to 10 it is still more but our choice to remove or not
vif is less than 5 then it is not a problem # we can use ols method to see weather which column is more corelated based on hypothesis concept # if null hypothesis is accepted for a particular column it says that this column is irrelevant in order to find the # one industry rule is there adjusted r2 value >0.85 or vif greater than 5 then only we are going to remove columns
in both of them whichever is correct we can remove column import statsmodels.api as sm x sm=sm.add constant(x train)

```
const Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA Research
    324
         1.0
                 325
                          315
                                    104
                                                    3 3.0 2.5 8.33
                                                                            ıl.
                                                    1 1.5 2.0 7.36
                                                                         0 7
     79
                                 110
    336
          1.0
                 337
                          319
                                                    3 3.0 2.5 8.79
                                                                        0
     58
         1.0
                  59
                          300
                                    99
                                                    1 3.0 2.0 6.80
                                106
                        299
     36
          1.0
                 37
                                                    2 4.0 4.0 8.40
                                  101
                        308
     7
          1.0
                                                     2 3.0 4.0 7.90
    453 1.0 454 319
                                 103
                                                    3 2.5 4.0 8.76

    202
    1.0
    203
    340
    120

    309
    1.0
    310
    308
    110

                                                    5 45 45 9.91
                                                                         1
                                                    4 3.5 3.0 8.60
                                                                         0
    323 1.0 324 305
                                102
                                                    2 2.0 2.5 8.18
    350 rows × 9 columns
 Next steps: Generate code with x_sm View recommended plots
k=sm.OLS(y_train,x_sm).fit()
```

<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7f5d0a8db100>

x_sm.shape y_train.shape (350,)

k.summary()

No. Observations: 350 Df Residuals: 341 Df Model: 8 Covariance Type: nonrobust

 Omnibus:
 69.304
 Durbin-Watson:
 1.959

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 140.625

 Skew:
 -1.039
 Prob(JB):
 2.91e-31

 Kurtosis:
 5.308
 Cond. No.
 1.65e+04

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.65e+04. This might indicate that there are strong multicollinearity or other numerical problems.

feature scaling
StandardScaler
from sklearn.preprocessing import StandardScaler
st=StandardScaler()
l=st.fit_transform(data)
pd.DataFrame(1,columns=data.columns)

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	E
0	0.054560	-0.869836	0.085023	0.642635	1.159202	1.513344	-0.513790	-1.241923	1
1	1.155586	-0.483814	-0.255069	-0.241725	-0.357196	1.513344	-0.099637	-1.241923	
2	-0.751923	0.867263	0.085023	-0.241725	-0.357196	-0.055791	0.476576	-1.241923	
3	-0.429330	-0.001287	-0.765207	-0.241725	-0.862662	-0.578837	-0.153657	0.805203	
4	1.029354	-1.931397	-1.105299	-0.241725	-1.368128	0.467254	-1.720235	0.805203	
145	1.309870	-0.483814	0.255069	-1.126085	-0.862662	0.467254	0.710662	-1.241923	
146	1.050392	-0.387309	-2.295622	-1.126085	-0.862662	-2.147972	-0.891929	-1.241923	
147	-0.057646	1.735813	1.275345	0.642635	1.159202	0.990299	1.899101	0.805203	
148	-1.404123	-0.966342	-1.105299	-0.241725	0.653736	-0.578837	-0.765883	-1.241923	
149	-1.628536	-0.676825	-1.445392	-1.126085	-1.873594	-1.624927	-2.386481	-1.241923	
150 r	ows × 8 column	IS							

model performance evaluation by using Mae,mse,r2,adjusted r2

train and test performances are checked
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import adjusted_rand_score

mean_squared_error(y_pred,y_test)

0.29078083444414665

mean_absolute_error(y_pred,y_test)

0.41689893712161696

from sklearn.linear model import Lasso, Ridge

```
lasso\_model*Lasso(alpha=0.1)~\#~alpha~is~tuner~or~hyperparameter~which~regulates~l1~regularaizeridee~model*Ridee(alpha=0.1)~\#~alpha~is~tuner~or~hyperparameter~which~regulates~l2~regularaizeridee~model*Ridee(alpha=0.1)~\#~alpha~is~tuner~or~hyperparameter~which~regulates~l2~regularaizeridee~model*Ridee(alpha=0.1)~\#~alpha~is~tuner~or~hyperparameter~which~regulates~l2~regularaizeridee~model*Ridee(alpha=0.1)~\#~alpha~is~tuner~or~hyperparameter~which~regulates~l2~regularaizeridee~model*Ridee(alpha=0.1)~\#~alpha~is~tuner~or~hyperparameter~which~regulates~l2~regularaizeridee~model*Ridee(alpha=0.1)~\#~alpha~is~tuner~or~hyperparameter~which~regulates~l2~regularaizeridee~model*Ridee(alpha=0.1)~\#~alpha~is~tuner~or~hyperparameter~which~regulates~l2~regularaizeridee~model*Ridee(alpha=0.1)~\#~alpha~is~tuner~or~hyperparameter~which~regulates~l2~regularaizeridee~model*Ridee(alpha=0.1)~\#~alpha~is~tuner~or~hyperparameter~which~regulates~l2~regularaizeridee~model*Ridee(alpha=0.1)~\#~alpha~is~tuner~or~hyperparameter~which~regulates~l2~regularaizeridee~model*Ridee(alpha=0.1)~\#~alpha~is~tuner~or~hyperparameter~which~regulates~l2~regularaizeridee~model*Ridee(alpha=0.1)~\#~alpha~is~tuner~or~hyperparameter~which~regulates~l2~regularaizeridee~model*Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha=0.1)~Ridee(alpha
lasso=lasso model.fit(x train.v train)
ridge=ridge_model.fit(x_train,y_train)
y_lassopredict=lasso.predict(x_test)
y_ridge=ridge.fit(x_train,y_train)
      Q Close
    Generate is available for a limited time for unsubscribed users. Upgrade to Colab Pro
  y_lassopredict
                              array([7.6562936, 7.30947643, 7.76087589, 6.84387658, 5.7208282), 8.65027748, 7.27869425, 6.2478123, 5.11588513, 6.2436753, 5.34641447, 6.2627271, 7.58801227, 9.39564406, 8.24216282, 6.776927275, 6.33568373, 6.01233491, 7.26243725, 5.08083093, 7.68591383, 6.68899431, 7.02132287, 6.39952546, 8.16969628, 5.42106248, 8.17363667, 6.42472314, 6.43660813, 6.59873572, 7.01308546, 9.68197672, 8.77361848, 7.81604879, 5.1327976, 8.72641373, 8.96252567, 8.40854158, 6.83973465, 7.34913844, 8.84159117, 5.98127945, 7.94822912, 6.33174485, 8.20333346, 6.1021364, 8.46496534, 8.26497715, 5.8984272, 7.51215535, 8.07878771, 7.88998228, 8.13682675, 6.45457343, 6.49661727, 7.45380257, 8.4384666, 7.95725657, 5.86942712, 8.34065212, 7.45380257, 8.4384666, 7.95725657, 7.8699437, 8.17194755, 7.17320493, 8.11871286, 7.62919489, 9.70225711, 9.3277287, 9.2640647, 8.0762579, 8.85360787, 7.83698779, 7.88536693, 8.09789994, 7.38025593, 7.89118968, 6.62812615, 5.04016567, 6.48782465, 8.44828567, 8.4828567, 6.48782465, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.48782465, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828567, 6.487824658, 8.44828
                                                                              8.5344787, 7.88598779, 7.88536623, 8.09798994, 7.38075593, 7.89118096, 6.62812015, 5.04015657, 6.4872465, 8.44828567, 9.20582716, 6.67949571, 6.74772246, 9.44600997, 9.03852767, 6.27367827, 7.88558493, 6.95148986, 6.16271808, 6.17332305, 7.57007166, 8.09406374, 6.55314667, 6.06690878, 6.23524438, 6.57552815, 4.65779555, 8.35128077, 8.02182004, 5.75866143, 5.2528049, 9.37482323, 9.28087864, 6.59689548, 6.16729028, 6.51752913, 6.16323831, 7.52586644, 7.7212129, 9.16609927, 6.1879333, 7.23557826, 7.9580229, 6.24424125, 9.46609362, 6.28325007, 6.54415668, 8.73098293, 6.50321167, 7.72837721, 7.19957128, 9.1814907, 6.787980829, 6.91815676, 6.78756118, 5.2501381, 8.24541336, 8.13881567, 7.18187099, 8.28739663, 6.4424018, 6.0917975, 6.57948891, 6.80241581, 7.29956569, 6.4442198, 6.0917975, 6.57948891, 6.80241581, 7.29956569, 6.14697368, 5.2709882, 6.5974691, 6.80241581, 7.29956569, 6.14697368, 5.2709882, 6.89737691, 9.48545855, 7.58144818, 7.46727578, 5.92300022, 9.26165393, 5.98414188, 5.37980136]
y_ridge_predict=y_ridge.predict(x_test)
y_ridge_predict
                                array([ 7.82829404, 7.37113562, 7.59653661, 7.81746629, 5.84848088
8.62583264, 7.5343564, 5.94085444, 5.20304946, 6.20759601
5.126369066, 6.40448723, 7.48050315, 9.711806144, 8.73063355,
6.5270648, 6.3120726, 5.73932745, 7.4812651, 4.08082296
7.85761607, 6.57959345, 6.86699317, 6.21097313, 8.5905776
                                                                                      7.85761607, 6.57959345, 5.1694285, 8.83561569, 6.55539629, 9.74831833, 8.88351582, 9.1694866, 6.23173787, 6.42180936, 8.73655924, 7.9366322, 7.8569247, 7.856927, 8.59336225, 6.7445263, 7.2769296, 7.7516966, 7.957854, 7.85696759, 8.1111659, 7.9257854, 7.8569827, 6.41275821, 9.9988283, 6.52525748, 6.52525748, 7.95755777, 8.579399, 6.57339599, 4.9584352, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.99384451, 4.9938451, 4.9938451, 4.9938451, 4.9938451, 4.9938451, 4.9938451, 4.9938451, 4.9938451, 4.9938451, 4.9938451
                                                                                                                                                                                                                                                                  5.62090187,
8.96015447,
8.52053702,
8.00656473,
8.59111911,
                                                                                                                                                                                                                                                                                                                                                             6.91277575,
7.52790253,
7.77868441,
6.4357932,
5.90293018,
                                                                                                                                                                                                                                                                                                                                                                                                                                                      6.47124763
                                                                                                                                                                                                                                                                                                                                                                                                                                                    5.8401609
7.98026571
8.15684664
7.43254648
                                                                                                                                                                                                                                                                8.59111911,
7.82850787,
7.37989226,
8.27849552,
9.46310784,
7.05797352,
5.53215144,
7.19337191,
6.7919238,
6.79479963,
8.43190315.
                                                                                                                                                                                                                                                                                                                                                             6.37796471,
7.65448877,
                                                                                                                                                                                                                                                                                                                                                                                                                                                      6.62952593
8.31649083
                                                                                                                                                                                                                                                                                                                                                             7.48681688,
9.21798344,
8.1939668,
6.18333469,
9.75260959,
                                                                                                                                                                                                                                                                                                                                                                                                                                                  8.0191577
8.44979635
8.03594586
8.55730188
8.79664937
                                                                                                                                                                                                                                                                                                                                                             6.6555036 ,
6.03306453,
                                                                                                                                                                                                                                                                                                                                                                                                                                                      6.15049562
5.80847123
                                                                                           6.57139697,
5.6455095,
6.5862863,
9.78511449,
6.57154322,
                                                                                                                                                                           4.90304415,
9.58003186,
6.22288536,
7.29801827,
6.41523611,
                                                                                                                                                                                                                                                                8.43190315,
9.21875041,
8.1077011,
7.3540355,
8.79247155,
                                                                                                                                                                                                                                                                                                                                                             8.33949775,
6.70695993,
7.63929496,
6.2956326,
6.21202186,
                                                                                         6.57154322, 6.41523611, 8.79247155, 6.21202186, 7.88520182, 7.65499237, 9.52462265, 6.77301109, 7.58112741, 7.66758997, 5.56553856, 8.36412137, 8.3633946, 7.30218784, 8.36474227, 6.44131993, 7.59496956, 8.4431173, 7.18397753, 6.27917781, 6.35470804, 5.92528991, 6.35296043, 7.29114124, 7.28187686, 5.58185424, 5.26696833, 4.66555431, 9.53954619, 7.44651487, 7.77304365, 5.831482, 9.52575097, 6.03389237, 4.62718069])
from sklearn.preprocessing import mean_squared_error
  mean_squared_error(y_ridge_predict,y_test)
                                0.2906790062456789
        mean_squared_error(y_lassopredict,y_test)
                              0.3210632996410194
\mbox{\#}\mbox{ model} is good \mbox{\#}\mbox{ here}\mbox{ mean squared error} and mean absolute error are low
# based on values of mean squared error and mean absolute error model performance is good # mean squared error range between 0 to infinity # mean absolute error range between 0 to infinity
        # r2 score range between 0 to 1
  # mean absolute error we cant defferentiate it
# we have scaled the total data frame such that when model is created then which feature is having more value while finding
  # the target variable which feature having more value that value is considered as an important feature # in finding target variable so the values \, are scaled such that range between 0 to 1 or
```

-1 to +1

model should make sure that independent and dependent features have linear relationship is there or

then weight values now plays a key role which weight value is more means for a feature that feature is considered as important feature

* them weight values now plays a key role which weight value is more means for a reduce that reactive that the regularizer along with hyperparameter in order to convert #irrelevant features weight values will to zero based on gradient descent #ridge regression model contains 12 regularizer with hyper parameter it will increase or decrease loss function based on the #model weather model is facing overfitting or underfitting problems

[#] based on this results we cant use this model in real world inustry because the model should follow some rules