In [217]: ▶

```
import numpy as np
import pandas as pd
import glob, os, json
import seaborn as sns
import json
import matplotlib.pyplot as plt
%matplotlib inline
```

1.1 Merging all json files in one dataframe then display information about the structure of the df. We see which columns it contains, how many records have a non-empty value for each column and its data type (object usually corresponds to string) and a representation of the dataset

In [116]:

```
json_dir = 'C:/Users/Katerina/anaconda3/envs/tweets'

json_pattern = os.path.join(json_dir, '*.json')
file_list = glob.glob(json_pattern)

dfs = []
for file in file_list:
    with open(file) as f:
        json_data = pd.json_normalize(json.loads(f.read()))
        json_data['site'] = file.rsplit("/", 1)[-1]
        dfs.append(json_data)
df = pd.concat(dfs)
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 271342 entries, 0 to 27220
Data columns (total 24 columns):
```

```
#
    Column
                        Non-Null Count
                                         Dtype
     -----
                         -----
 0
    full_text
                         271331 non-null
                                         object
 1
    text_translation
                        271328 non-null object
 2
    created at
                         271334 non-null
                                         object
 3
                        271333 non-null object
    screen_name
 4
    description
                        223646 non-null
                                         object
 5
    desc_translation
                        223621 non-null
                                         object
 6
    weekofyear
                         271328 non-null
                                         float64
 7
                        271322 non-null float64
    weekday
 8
                         271328 non-null float64
    day
 9
    month
                         271322 non-null float64
10
    year
                        271322 non-null float64
 11
    location
                        151361 non-null object
    point_info
 12
                        134445 non-null object
 13
    point
                        134445 non-null
                                         object
 14
                        134445 non-null float64
    latitude
 15
    longitude
                        134445 non-null float64
 16
    altitude
                        254425 non-null float64
    province
                        268237 non-null object
   hisco_standard
                        69482 non-null
                                         object
 19 hisco code
                        69482 non-null
                                         object
 20
                        271342 non-null bool
    industry
 21
    sentiment_pattern
                        271342 non-null float64
 22
    subjective_pattern
                        271342 non-null
                                         float64
 23
                         271342 non-null
    site
                                         object
dtypes: bool(1), float64(10), object(13)
memory usage: 49.9+ MB
```

localhost:8888/notebooks/tweets/Kaggle_tweets.ipynb#

In [118]: ▶

```
pd.set_option('display.max_columns', 24)
pd.set_option('display.max_rows', 100)
df
```

Out[118]:

	full_text	text_translation	created_at	screen_name	descrip
0	@pflegearzt @Friedelkorn @LAguja44 Pardon, wol	@pflegearzt @Friedelkorn @ LAguja44 Pardon wol	1583756789000	TheoRettich	I ♥ scie therefc Commi FALGSC
1	RT @grantshapps: Aviation demand is reduced du	RT @grantshapps: Aviation demand is reduced du	1583756794000	davidiwanow	I tweet a lot but to enga converse
2	RT @DDStandaard: De droom van D66 wordt werkel	RT @DDStandaard: The D66 dream come true: COVI	1583756797000	EricL65	٨
3	RT @DDStandaard: De droom van D66 wordt werkel	RT @DDStandaard: The D66 dream come true: COVI	1583756797000	EricL65	٨
4	De droom van D66 wordt werkelijkheid: COVID-19	The D66 dream becomes reality: COVID-19 super	1583756807000	EhrErwin	Budget-Life Co Time manager Coaching
•••					
27216	RT @GuityMohebbi: Medeverantwoordelijk en voll	RT @GuityMohebbi: Jointly responsible and full	1599762803000	laAckxtra	While we v sleeping you fot @laAckxti
27217	RT @GuityMohebbi: Medeverantwoordelijk en voll	RT @GuityMohebbi: Jointly responsible and full	1599762803000	laAckxtra	While we v sleeping you fou @laAckxtı
27218	RT @ntvkenya: Covid? What Covid? Scam?\n\nPres	RT @ntvkenya: Covid? What Covid? Scam? \n\nPres	1599762814000	Leahs_Daughter	THE BEE's KNE
27219	@mauricedehond @covid Volgens mij krijgt Mauri	@mauricedehond @covid gets to me Maurice pay p	1599762824000	BruggeXander	Wielerfar Andersder Kritisch\n\nCoro
27220	@mauricedehond @covid Volgens mij krijgt Mauri	@mauricedehond @covid gets to me Maurice pay p	1599762824000	BruggeXander	Wielerfar Andersder Kritisch\n\nCoro
271342	? rows × 24 columns				

1.2 Below are listed:

- 1. the most active months of the year
- 2. most active days of the week
- 3. most active weeks of the year
- 4. some visualisations

all in descending order (from largest value to smallest), count = number of occurrences in the dataset, percent = percentage of occurances in the tota dataset

```
In [107]: ▶
```

```
responders_month = df['month'].value_counts()
responders_month_per = df['month'].value_counts(normalize=True).mul(100).round(1).astype
month_df = pd.concat([responders_month, responders_month_per], axis='columns', sort=Fals
month_df.columns = ['Count', 'Percent']
month_df
```

Out[107]:

	Count	Percent
9.0	59936	22.1%
8.0	56626	20.9%
6.0	50811	18.7%
2.0	26738	9.9%
3.0	23151	8.5%
7.0	19098	7.0%
4.0	17692	6.5%
5.0	12944	4.8%
1.0	4324	1.6%
2020.0	2	0.0%

In [108]:

```
month_df.head(n=5).plot(y = "Count", kind="bar", figsize=(8,5), color="blue")
```

Out[108]:

<AxesSubplot:>

In [148]:

responders_day = df['weekday'].value_counts()
responders_day_per = df['weekday'].value_counts(normalize=True).mul(100).round(1).astypeday_df = pd.concat([responders_day, responders_day_per], axis='columns', sort=False)
day_df.columns = ['Count','Percent']
day_df # the most popular days of the week Monday=0....Sunday = 6

Out[148]:

	Count	Percent
2.0	46125	17.0%
0.0	45737	16.9%
3.0	45406	16.7%
1.0	37113	13.7%
4.0	36000	13.3%
5.0	30697	11.3%
6.0	30244	11.1%

In [111]:

```
responders_week = df['weekofyear'].value_counts()
responders_week_per = df['weekofyear'].value_counts(normalize=True).mul(100).round(1).as
week_df = pd.concat([responders_week, responders_week_per], axis='columns', sort=False)
week_df.columns = ['Count', 'Percent']
week_df
```

Out[111]:

	Count	Percent
36.0	24708	9.1%
25.0	19698	7.3%
34.0	16924	6.2%
26.0	16614	6.1%
38.0	15655	5.8%
35.0	13632	5.0%
37.0	12883	4.7%
32.0	12300	4.5%
39.0	10846	4.0%
9.0	8500	3.1%
31.0	8188	3.0%
23.0	7238	2.7%
10.0	6902	2.5%
27.0	6616	2.4%
14.0	6393	2.4%
33.0	6195	2.3%
6.0	5951	2.2%
18.0	5726	2.1%
12.0	5682	2.1%
8.0	5546	2.0%
11.0	5494	2.0%
7.0	5357	2.0%
5.0	5162	1.9%
30.0	5117	1.9%
24.0	4883	1.8%
21.0	4221	1.6%
13.0	3821	1.4%
16.0	3649	1.3%
15.0	2957	1.1%
28.0	2777	1.0%
22.0	2520	0.9%
19.0	2437	0.9%
17.0	2311	0.9%
29.0	2203	0.8%
20.0	1674	0.6%
4.0	548	0.2%

In [172]: ▶

```
sns.distplot(week_df['Count'], bins=15, color='green')
#week distribution curve
```

C:\Users\Katerina\anaconda3\lib\site-packages\seaborn\distributions.py:26
19: FutureWarning:

`distplot` is a deprecated function and will be removed in a future versi on. Please adapt your code to use either `displot` (a figure-level functi on with similar flexibility) or `histplot` (an axes-level function for hi stograms).

Out[172]:

<AxesSubplot:xlabel='Count', ylabel='Density'>

In [113]:

```
xaxis = df['month']
yaxis = df['day']
res = sns.barplot(x=xaxis,y=yaxis)
plt.show
# barplot = trend estimation diagram (x axis: category y axis: numerical value.)
# Black bars are the degree of uncertainty around the estimate
```

Out[113]:

<function matplotlib.pyplot.show(close=None, block=None)>

1.3 Top 10 users based on tweets, covid references, province, industry reference

In [143]:

```
tweets_screenname_count = df['screen_name'].value_counts().reset_index()
plt.figure(figsize=(40,17))
sns.barplot(x='index', y='screen_name', data= tweets_screenname_count.head(10))
plt.title('Top 20 users by number of tweets', weight='bold', size=15)
plt.ylabel('User_name', size=15, weight='bold')
plt.xlabel('Tweet_count', size=15, weight='bold')
plt.show() #top 10 'tweeters'
#from https://www.kaggle.com/code/iqraddfkldf/duch-social-media-tweets-analysis
```


In [135]:

covid = df['text_translation'].str.contains('covid', case = False).sum()
covid #number of tweets containing the word covid

Out[135]:

38843

In [138]:

```
responders_province = df['province'].value_counts()
responders_province_per = df['province'].value_counts(normalize=True).mul(100).round(1).
province_df = pd.concat([responders_province, responders_province_per], axis='columns',
province_df.columns = ['Count', 'Percent']
province_df # the province of responders (count & percentage)
```

Out[138]:

	Count	Percent
False	161110	60.1%
Noord-Holland	33959	12.7%
Flevoland	31424	11.7%
Zuid-Holland	15254	5.7%
Utrecht	5628	2.1%
Noord-Brabant	4928	1.8%
Gelderland	4724	1.8%
Overijssel	2879	1.1%
Groningen	2343	0.9%
Limburg	1990	0.7%
Friesland (Fryslân)	1912	0.7%
Drenthe	1365	0.5%
Zeeland	721	0.3%

```
In [150]:
```

```
responders_industry = df['industry'].value_counts()
responders_industry_per = df['industry'].value_counts(normalize=True).mul(100).round(1).
industry_df = pd.concat([responders_industry, responders_industry_per], axis='columns',
industry_df.columns = ['Count','Percent']
industry_df #whether the tweets talks about indusrty
```

Out[150]:

	Count	Percent
False	201860	74.4%
True	69482	25.6%

Sentiment Score - Categorising - Same can be done for Subjectivity Score

In [199]:
sns.distplot(df['sentiment_pattern'], bins=15, color='green')

C:\Users\Katerina\anaconda3\lib\site-packages\seaborn\distributions.py:26
19: FutureWarning:

`distplot` is a deprecated function and will be removed in a future versi on. Please adapt your code to use either `displot` (a figure-level functi on with similar flexibility) or `histplot` (an axes-level function for histograms).

Out[199]:

<AxesSubplot:xlabel='sentiment_pattern', ylabel='Density'>

In [200]: ▶

```
#categorising sentiment score
df.loc[df['sentiment_pattern']<= -0.5, 'sent_group'] = 'very negative'
df.loc[df['sentiment_pattern'].between(-0.501,-0.0001), 'sent_group'] = 'negative'
df.loc[df['sentiment_pattern']==0, 'sent_group']='neutral'
df.loc[df['sentiment_pattern'].between(0.01,0.5), 'sent_group'] = 'positive'
df.loc[df['sentiment_pattern']>0.51, 'sent_group'] = 'very_positive'

responders_sent = df['sent_group'].value_counts()
responders_sent_per = df['sent_group'].value_counts(normalize=True).mul(100).round(1).as
sent_df = pd.concat([responders_sent, responders_sent_per], axis='columns', sort=False)
sent_df.columns = ['Count', 'Percent']
sent_df

#sentiment score grouping
```

Out[200]:

	Count	Percent
neutral	116973	43.3%
positive	77244	28.6%
negative	50004	18.5%
very_positive	15584	5.8%
very negative	10641	3.9%

In [177]: ▶

sent_df.plot.pie(y='Count', figsize=(10, 10))

Out[177]:

<AxesSubplot:ylabel='Count'>

In [198]:

```
province_grp = df.groupby(['province'])
sent_grp = province_grp['sent_group'].value_counts()
sent = pd.concat([sent_grp], axis='columns', sort=False)

sent_per = province_grp['sent_group'].value_counts(normalize=True).mul(100).round(1).ast
sent_df_per= pd.concat([sent,sent_per], axis='columns', sort=False)

sent_df_per.columns=['Count', 'Percent']
sent_df_per #sentiment pattern grouping for each province
```

Out[198]:

		Count	Percent
province	sent_group		
	neutral	59496	37.1%
	positive	50684	31.6%
False	negative	33245	20.7%
	very_positive	9743	6.1%
	very negative	7328	4.6%
	positive	463	34.1%
	neutral	460	33.8%
Drenthe	negative	283	20.8%
	very_positive	91	6.7%
	very negative	62	4.6%
	neutral	17704	56.4%
	positive	6855	21.9%
Flevoland	negative	4372	13.9%
	very_positive	1553	5.0%
	very negative	885	2.8%
	neutral	708	37.1%
	positive	602	31.6%
Friesland (Fryslân)	negative	392	20.6%
	very_positive	116	6.1%
	very negative	88	4.6%
	neutral	1778	37.7%
	positive	1510	32.0%
Gelderland	negative	935	19.8%
	very_positive	299	6.3%
	very negative	191	4.1%
	neutral	925	39.6%
	positive	687	29.4%
Groningen	negative	476	20.4%
	very_positive	147	6.3%
	very negative	100	4.3%
	neutral	978	49.3%
	positive	505	25.5%
Limburg	negative	329	16.6%
	very_positive	109	5.5%
	very negative	61	3.1%

		Count	Percent
province	sent_group		
	neutral	2044	41.6%
	positive	1454	29.6%
Noord-Brabant	negative	960	19.5%
	very_positive	283	5.8%
	very negative	170	3.5%
	neutral	20650	60.9%
	positive	6577	19.4%
Noord-Holland	negative	4241	12.5%
	very_positive	1621	4.8%
	very negative	804	2.4%
	neutral	1052	36.8%
	positive	967	33.8%
Overijssel	negative	536	18.7%
	very_positive	181	6.3%
	very negative	123	4.3%
	neutral	2285	40.8%
	positive	1745	31.1%
Utrecht	negative	985	17.6%
	very_positive	381	6.8%
	very negative	207	3.7%
	neutral	275	38.3%
	positive	240	33.4%
Zeeland	negative	142	19.8%
	very_positive	38	5.3%
	very negative	23	3.2%
	neutral	7203	47.4%
	positive	4129	27.2%
Zuid-Holland	negative	2584	17.0%
	very_positive	818	5.4%
	very negative	472	3.1%

In [211]:

```
industry_grp = df.groupby(['industry'])
ind_grp = industry_grp['sent_group'].value_counts()
ind = pd.concat([ind_grp], axis='columns', sort=False)

ind_per = industry_grp['sent_group'].value_counts(normalize=True).mul(100).round(1).asty
ind_df_per= pd.concat([ind,ind_per], axis='columns', sort=False)

ind_df_per.columns=['Count', 'Percent']
ind_df_per
```

Out[211]:

		Count	Percent
industry	sent_group		
	neutral	92475	46.0%
	positive	54470	27.1%
False	negative	34733	17.3%
	very_positive	11772	5.9%
	very negative	7760	3.9%
	neutral	24498	35.4%
	positive	22774	32.9%
True	negative	15271	22.1%
	very_positive	3812	5.5%
	very negative	2881	4.2%

In [215]: ▶

```
hisco = df['hisco_standard'].value_counts()
hisco_per = df['hisco_standard'].value_counts(normalize=True).mul(100).round(1).astype(s
hisco_df = pd.concat([hisco, hisco_per], axis='columns', sort=False)
hisco_df.columns = ['Count', 'Percent']
hisco_df.head(15)#top 15 hisco standar key words count & percent
```

Out[215]:

	Count	Percent
min	9427	13.6%
graaf	2756	4.0%
arts	1926	2.8%
min, minister	1925	2.8%
meter	1847	2.7%
ober	1751	2.5%
waard	1745	2.5%
patiënte, patiënt	1607	2.3%
ijker	1144	1.6%
expert	1132	1.6%
witter	909	1.3%
werker, medewerker	888	1.3%
student, studente	781	1.1%
huisarts, arts	726	1.0%
gemeente	715	1.0%