Kuok Group AI & Data Engineering Platform: Comprehensive Documentation

Executive Overview

This documentation details the implementation of an **Al-powered Commodities Trading Intelligence Platform** for Kuok Group, leveraging Microsoft Fabric, Semantic Kernel, RAG (Retrieval-Augmented Generation), Eventhouse as a Vector Database and KQL (Kusto Query Language) to transform raw commodities data into strategic business insights.

1. Architecture Overview

1.1 System Architecture Diagram

Natural Language Query

| Semantic Kernel + OpenAl]
| (RAG System)
| (Vector Search) [Text-to-KQL]
| | (Commodities Data) [KQL Database]
| (Business Intelligence)
| Strategic Recommendations

1.2 Technology Stack

Component	Technology	Purpose				
Data Processing	PySpark, Microsoft Fabric	Large-scale data transformation				
AI/ML	Semantic Kernel, OpenAl GPT-4	Natural language processing				
Vector Database	KQL Database	Semantic search and storage				
Query Engine	Kusto Query Language	Analytical queries				
Orchestration	Python, Async/Await	Pipeline management				

2. Core Concepts Explained

2.1 RAG (Retrieval-Augmented Generation)

What is RAG?

RAG enhances LLM responses by retrieving relevant information from a knowledge base before generating answers.

Kuok Group Implementation:

Traditional LLM vs RAG

Traditional: User Question \rightarrow LLM \rightarrow Generic Answer

RAG: User Question \rightarrow Vector Search \rightarrow Relevant Data + LLM \rightarrow Contextual Answer

Business Value:

- Accuracy: Answers based on actual trading data
- **Relevance**: Context-aware responses specific to commodities
- Transparency: Can trace insights back to source data

2.2 Semantic Kernel

What is Semantic Kernel?

Microsoft's orchestration framework for AI applications that connects LLMs, memory, and business logic.

Key Components:

- Kernel: Central orchestrator
- Plugins: Reusable AI functions
- Memory: Vector-based storage
- Planners: Al task decomposition

Kuok Group Usage:

Semantic Kernel setup for commodities trading

kernel = sk.Kernel()

kernel.add_chat_service("commodities_ai", OpenAlChatCompletion(...))

2.3 KQL (Kusto Query Language)

What is KQL?

A query language optimized for big data analytics in Azure Data Explorer.

Why KQL for Kuok Group?

- **Performance**: Handles billions of commodities records
- Real-time: Stream processing capabilities
- Integration: Native to Microsoft Fabric
- **Security**: Enterprise-grade governance

Example KQL Query:

kql

CommoditiesTrading

| where Commodity == "Crude Palm Oil (CPO)"

| where Country in ("Indonesia", "Malaysia")

summarize

AvgPrice = avg(PurchasePrice),

TotalVolume = sum(ProductionVolume)

by Country, Supplier

order by AvgPrice desc

2.4 Vector Databases & Embeddings

Concept:

Convert text/data into numerical vectors that capture semantic meaning.

Kuok Group Application:

Converting trading context to vectors

trading_context = "Palm Oil from Indonesia- Quality 9.2- Price \$780"

embedding = embed text batch(trading context) $\# \rightarrow [0.23, -0.45, 0.89, ...]$

Business Benefit:

- Find similar suppliers based on multiple criteria
- Semantic search beyond keyword matching
- Cluster analysis of trading patterns

3. Data Model & Schema

3.1 Commodities Trading Schema

```
commodities_schema = {
  "timestamp": "datetime",
```

"timestamp": "datetime", # Transaction timestamp

"commodity": "string", # Crude Palm Oil, Palm Kernel Oil, etc.

"country": "string", # Indonesia, Malaysia, Thailand "region": "string", # Sumatra, Sabah, Southern

"supplier": "string", # PT Sawit Makmur, Borneo Harvest, etc.

"production_volume_metric_tons": "float",

"purchase price usd per ton": "float",

"market price usd per ton": "float",

"quality score": "float", #1-10 scale

"supplier_reliability_index": "float", # 1-10 scale

```
"sustainability_certification": "string", #RSPO, MSPO, ISCC, Organic
"carbon_emissions_kg_co2_per_ton": "float",
"logistics_cost_usd_per_ton": "float",
"storage_days_inventory": "int",
"profit_margin_percent": "float",
"customer_demand_forecast": "float"
}
```

3.2 Business Metrics Calculated

Metric	Formula	Business Significance	
Price Premium	(MarketPrice- PurchasePrice) / PurchasePrice * 100	Trading profitability	
Efficiency Score	Quality × Reliability × Sustainability	Supplier performance	
Carbon Efficiency	Production Volume / Carbon Emissions	Environmental impact	
Inventory Turnover	365 / StorageDays	Supply chain efficiency	

4. Code Implementation Deep Dive

4.1 Data Generation & Enrichment

def create_kuok_commodities_data(num_records: int = 2000)-> DataFrame:

Generates realistic commodities trading data with business logic:

- Price-quality correlation: Higher quality commands premium prices
- Regional variations: Different base prices by country
- Supplier consistency: Reliability scores per supplier
- Sustainability premiums: Certified products have price advantages

Key Business Logic:

- **Price Modeling**: base_price × quality_multiplier × regional_factor
- Quality Correlation: Better quality = higher prices + better margins
- Sustainability Impact: Certified products get 5-15% price premium

4.2 RAG System Implementation

class KUOK_RAG_System:

1111111

Four-Step RAG Process:

- 1. VECTOR SEARCH: Find relevant trading records
- 2. KQL GENERATION: Create analytical queries
- 3. PROMPT AUGMENTATION: Combine context + query
- 4. AI RESPONSE: Generate business insights

.....

4.2.1 Vector Search Logic

def vector_search(self, query: str, top_k: int = 5)-> List[Dict]:

Semantic search heuristics:

- "supplier reliability" → reliability_index > 9.0
- "sustainability" → certification != "None"

- "high margin" → profit_margin > 15%
- Country names → filter by specific countries
- Commodity types ightarrow filter by palm oil products

4.2.2 Text-to-KQL Generation

```
async def generate_kql_query_async(self, natural_language_query: str)-> str:
```

Converts natural language to KQL using OpenAI with schema awareness:

Examples:

- "Best suppliers in Indonesia" → summarize avg(quality_score) by supplier where country='Indonesia'
- "High margin palm oil" → where commodity contains 'Palm' and profit_margin_percent > 20

4.3 Business Intelligence Prompt Engineering

```
def augment_prompt(self, query: str, context: List[Dict], kql_query: str = "")-> str:
    """
```

Creates structured prompts for strategic analysis:

- 1. Situation Analysis: Current trading landscape
- 2. Key Findings: Data-driven patterns
- 3. Recommendations: Actionable strategies
- 4. Business Impact: Estimated value creation

Prompt Structure:

ROLE: Commodities Trading Expert CONTEXT: Relevant trading records QUERY: User business question

TASK: Strategic analysis + recommendations

5. Business Use Cases & Value Propositions

5.1 Supplier Optimization

Problem: Manual supplier evaluation is time-consuming and subjective

Solution:

```
# Al-powered supplier scoring
supplier_score = (quality_score × 0.3 +
reliability_index × 0.3 +
sustainability_bonus × 0.2 +
margin_contribution × 0.2)
```

Business Impact:

- 20-30% reduction in supplier evaluation time
- 15% improvement in supplier performance
- Risk mitigation through objective scoring

5.2 Pricing Strategy

```
Problem: Static pricing misses market opportunities Solution:
```

```
# Dynamic pricing insights

price_recommendation = analyze_market_trends() +

factor_quality_premium() +

consider_sustainability_demand()
```

Business Impact:

- 3-8% margin improvement through optimized pricing
- Real-time market adaptation
- Competitive intelligence integration

5.3 Sustainability Intelligence

Problem: ESG compliance is complex and manual

Solution:

Automated sustainability scoring

sustainability_index = (certification_value +

carbon_efficiency + supplier_esg_rating)

Business Impact:

- **Automated ESG reporting**
- Premium market positioning
- Regulatory compliance assurance

6. Integration with Microsoft Fabric

6.1 Fabric Components Used

Fabric Service	Purpose	Kuok Group Benefit
Data Factory	Data ingestion pipelines	Real-time commodities data
Synapse Data Engineering	PySpark processing	Scalable data transformation
KQL Database	Vector storage & analytics	High-performance queries
Power BI	Visualization & reporting	Executive dashboards
OneLake	Data lake storage	Unified data management

6.2 Data Flow in Fabric

[External Sources]
$$\rightarrow$$
 [Data Factory] \rightarrow [OneLake]

 $[Synapse Spark] \rightarrow [KQL DB]$

[Semantic Kernel] \rightarrow [Power BI]

7. Performance & Scalability

7.1 Expected Performance Metrics

Metric	Target Justification				
Query Response Time	< 5 seconds	Real-time decision support			
Data Volume	1M+ records/day	Global trading operations			
Concurrent Users	50+ analysts	Enterprise-wide deployment			
Model Accuracy	85%+ business relevance	Quality threshold for adoption			

7.2 Scaling Strategy

Horizontal Scaling:

- Multiple KQL clusters for different regions
- Load-balanced Semantic Kernel instances
- Distributed Spark processing

Vertical Optimization:

- Vector indexing for faster searches
- Query caching for common analyses
- Model fine-tuning for commodities domain

8. Security & Governance

8.1 Data Security

```
security_measures = {
   "encryption": "AES-256 at rest and in transit",
   "access_control": "Azure AD integration",
   "audit_trail": "All queries logged and monitored",
   "compliance": "GDPR, SOX, industry standards"
}
```

8.2 Al Governance

- Model transparency: All recommendations traceable to source data
- Bias monitoring: Regular fairness audits
- Human oversight: Critical decisions require approval
- Version control: Model and prompt management

9. Implementation Roadmap

Phase 1: Foundation (Weeks 1-4)

- Basic data pipeline setup
- RAG system prototype
- Initial KQL schema design

Phase 2: Intelligence (Weeks 5-8)

- Advanced analytics integration
- Supplier optimization features
- Pricing intelligence modules

Phase 3: Scale (Weeks 9-12)

- Enterprise deployment
- User training & adoption
- Performance optimization

Phase 4: Innovation (Ongoing)

- Predictive analytics
- Automated trading signals
- Market forecasting

10. Success Metrics & KPIs

10.1 Technical KPIs

System uptime: 99.9%

Query performance: < 5 seconds

Data accuracy: 99.5%User satisfaction: 4.5/5.0

10.2 Business KPIs

• Trading Margin Improvement: 5-15%

Supplier Performance: 20% better outcomes

• Operational Efficiency: 30% time savings

• Risk Reduction: 25% fewer incidents

10.3 ROI Calculation

roi = (annual_benefits- implementation_cost) / implementation_cost
Expected ROI: 200-400% in first year

11. Risk Mitigation

Technical Risks

- Data quality: Implement validation pipelines
- Model accuracy: Continuous monitoring and retraining
- **System integration**: API-first design with fallbacks

Business Risks

- User adoption: Change management and training
- Regulatory changes: Agile compliance framework
- Market volatility: Real-time adaptation capabilities

12. Conclusion

This Al-powered commodities intelligence platform represents a transformational opportunity for Kuok Group to:

- 1. Leverage data as strategic asset
- 2. Accelerate decision-making from days to seconds
- 3. Enhance trading performance through AI insights
- 4. Build sustainable competitive advantage

The implementation combines **cutting-edge Al technologies** with **proven enterprise architecture** to deliver immediate business value while establishing a foundation for future innovation.

Next Steps: Begin with Phase 1 implementation while engaging business stakeholders to refine specific use cases and success criteria.

13. Sample Outputs

LOAD DATA TO KOL DATABASE - KUOK COMMODITIES TRADING ______ \checkmark Data prepared for KQL ingestion Records to ingest: 2,000 √ Data saved to Delta table: kuok_commodities_staging Total records prepared for ingestion: 2000 |commodity |country |supplier |purchase_price_usd_per_ton|quality_score|profit_margin_percent| +------|Palm Stearin |Indonesia|Borneo Harvest Sdn Bhd |651.2 |Palm Kernel Oil |Thailand |Sumatra Green Plantations|891.16 8.1 | 12.18 18.7 16.1 |Crude Palm Oil (CPO)|Malaysia |Sumatra Green Plantations|776.29 9.3 18.93 |7.7 |9.2 |Crude Palm Oil (CPO)|Thailand |Borneo Harvest Sdn Bhd |719.71 21.74 |Palm Kernel Oil | Thailand |Borneo Harvest Sdn Bhd | 881.79 9.2 11.33 +-----+

```
→ Initializing trading memory...

✓ Loaded 200 trading records into memory

✓ KUOK RAG System initialized with OpenAI.

Chat Model: gpt-4

Embedding Model: text-embedding-ada-002

→ Performing semantic search for: 'high quality suppliers in Indonesia'

✓ Found 5 relevant records

Sample records returned by vector_search():

1. 2025-05-10 14:25:48.143623 | Palm Olein | Indonesia | Borneo Harvest Sdn Bhd | Buy=$766.25 Quality=8.1 Margin=25.0%

2. 2025-07-06 09:24:48.143623 | Palm Olein | Thailand | PT Sawit Makmur | Buy=$809.25 Quality=9.2 Margin=24.98%

3. 2025-10-04 14:21:48.143623 | Palm Kernel Oil | Malaysia | Borneo Harvest Sdn Bhd | Buy=$812.88 Quality=8.1 Margin=24.98%

4. 2025-06-06 06:02:48.143623 | Palm Stearin | Thailand | Sabah Sustainable Oils | Buy=$670.73 Quality=8.8 Margin=24.97%
```

■ Generating KQL Query...

√ Generated KQL: CommoditiesTrading

| summarize avg_quality_score = avg(quality_score), avg_profit_margin = avg(profit_margin_percent) by supplier | order by avg_quality_score desc, avg_profit_margin desc | project supplier, avg_quality_score, avg_profit_margin

5. 2025-07-11 19:14:48.143623 | Palm Olein | Indonesia | Sabah Sustainable Oils | Buy=\$758.4 Quality=7.7 Margin=24.94%

Generating Business Intelligence Response...

BUSINESS INTELLIGENCE RESPONSE

1) Strategic Analysis:

The trading situation for palm oil commodities involves suppliers from Indonesia, Thailand, and Malaysia. The commodities traded include Palm Olein, Palm Kernel Oil, and Palm Stearin. The suppliers are Borneo Harvest Sdn Bhd, PT Sawit Makmur, and Sabah Sustainable Oils. The reliability of these suppliers is high, ranging from 9.2 to 9.5. The quality of the commodities also varies from 7.7 to 9.2.

- 2) Key Insights and Patterns:
- Borneo Harvest Sdn Bhd has been a supplier for both Palm Olein and Palm Kernel Oil, with a consistent quality score of 8.1 and high reliability of 9.5. However, they do not provide any certification.
- PT Sawit Makmur provides Palm Olein with a high quality score of 9.2 and reliability of 9.2. They also have ISCC certification.
- Sabah Sustainable Oils supplies both Palm Olein and Palm Stearin, with quality scores of 7.7 and 8.8 respectively. They have a reliability score of 9.3 and provide Organic and RSPO certifications.
- 3) Recommendations:
- Supplier Optimization: Consider increasing trade volume with PT Sawit Makmur due to their high quality and reliability scores, and ISCC certification. Also, Sabah Sustainable Oils could be a good choice for sustainability due to their Organic and RSPO certifications.
- Pricing Strategy: The margin is consistently around 25% for all trades. Consider negotiating with suppliers for better buying prices to increase the margin, especially for high volume trades.
- Sustainability Opportunities: Prioritize suppliers with sustainability certifications like ISCC, Organic, and RSPO. This could improve the company's sustainability profile and meet increasing demand for sustainable palm oil.
- Risk Mitigation: Diversify the supplier base to reduce dependency on a single supplier. Also, consider suppliers with certifications to mitigate risks related to sustainability and quality.
- 4) Estimated Business Impact and Next Steps:

Implementing these strategies could increase profit margins, improve sustainability, and reduce risks. The next step would be to engage in negotiations with the suppliers based on these insights and develop a detailed implementation plan. Regularly review the trading records to monitor the effectiveness of these strategies and make necessary adjustments.

```
// 1. SUPPLIER PERFORMANCE DASHBOARD
5
     CommoditiesTrading
6
     I take 100
8
     summarize
9
         TotalVolume = round(sum(production_volume_metric_tons), 2),
10
         AvgQuality = round(avg(quality_score), 2),
11
         AvgReliability = round(avg(supplier_reliability_index), 2),
12
         AvgMargin = round(avg(profit_margin_percent), 2),
13
         SustainablePercent = round(countif(sustainability_certification != "None") * 100.0 / count(), 2)
14
     by supplier, country
15
     | order by AvgMargin desc
     extend PerformanceGrade =
16
17
             AvgMargin > 20 and AvgQuality > 8.5, "A+ Elite",
18
             AvgMargin > 18 and AvgQuality > 8.0, "A Premium",
19
             AvgMargin > 15, "B Standard",
20
21
             "C Needs Review"
22
```

	sual 🖺 Stats			Q	Search 2025-	10-20 14:20 (UTC)	✓ Done (0.035 s)
supplier ▽ :	country ∇ :	TotalVo ↓ ▽ : AvgQualit	y	gReliability ▽ : Avg	Margin ▽ : Sust	ainablePercent ∇ :	PerformanceGrade ∇ :
> Krabi Organic Farms	Indonesia	55,872	8.46	8.7	18.66	88.89	A Premium
> Sabah Sustainable Oils	Indonesia	48,960	8.18	9.3	17.9	100	B Standard
> Thai Palm Co	Thailand	45,777	8.98	8.8	13.99	75	C Needs Review
> Borneo Harvest Sdn Bhd	Thailand	42,705	8.57	9.5	16.63	100	B Standard
> Borneo Harvest Sdn Bhd	Malaysia	40,374	8.25	9.5	16.7	83.33	B Standard
> Sabah Sustainable Oils	Malaysia	37,570	8.62	9.3	15.56	100	B Standard
> Sumatra Green Plantations	Thailand	35,652	8.42	9	18.33	83.33	A Premium
> Thai Palm Co	Indonesia	35,516	7.75	8.8	18.5	100	B Standard

```
// 8. PRODUCT PORTFOLIO OPTIMIZATION
45
       CommoditiesTrading
46
47
       | take 100
48
       summarize
49
           TotalRevenue = round(sum(market_price_usd_per_ton * production_volume_metric_tons), 2),
           TotalVolume = round(sum(production_volume_metric_tons), 2),
50
51
           AvgMargin = round(avg(profit_margin_percent), 2),
52
          MarketSharePercent = round(sum(production_volume_metric_tons) * 100.0 /
               toscalar(CommoditiesTrading | take 100 | summarize sum(production_volume_metric_tons)), 2)
53
54
       by commodity
55
       | order by TotalRevenue desc
       extend BCGMatrix =
56
57
           case(
               MarketSharePercent > 15 and AvgMargin > 20, "♠ Star Product",
MarketSharePercent > 10 and AvgMargin > 15, "ὧ Cash Cow",
MarketSharePercent < 8 and AvgMargin > 18, " ? Question Mark",
58
59
60
                "ৠ Dog Product"
61
62
Q Search
                                                                                                                2025-10-21 00:42 (
```

commodity ∇ : TotalRevenue ∇ : TotalVolume ∇ : AvgMargin ∇ : MarketSharePercent ∇ : BCGMatrix ∇ :							
> Crude Palm Oil (CPO)	261,292,379.15	324,408	16.9	43.42	💧 Cash Cow		
> Palm Olein	214,514,194.12	241,860	18.85	32.37	⑥ Cash Cow		
> Palm Kernel Oil	117,361,759.01	122,139	18.49	16.35	⑥ Cash Cow		
> Palm Stearin	44,280,433.25	58,713	17.1	7.86	19 Dog Product		

