Exercice 1. Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = (3n+1)^2$.

- 1. Calculer les termes u_0 , u_1 et u_{10} .
- 2. Exprimer u_{n+1} en fonction de n.
- 3. Démontrer que pour tout entier $n \in \mathbb{N}$, $u_{n+1} u_n = 10n + 15$.

Exercise 2. Soit (w_n) la suite définie sur \mathbb{N} par $w_n = 5n^2 - 2n + 3$.

- 1. Calculer les trois premiers termes de cette suite.
- 2. Démontrer que pour tout entier $n \in \mathbb{N}$, $w_{n+1} w_n = 10n + 3$.

Exercice 3. Soit (t_n) la suite définie sur \mathbb{N} par $t_n = \frac{n^2-3}{n+2}$.

- 1. Calculer les trois premiers termes de la suite (t_n) .
- 2. Calculer t_{15} .
- 3. Exprimer t_{n+1} en fonction de n.
- 4. Exprimer t_{2n} en fonction de n.

Exercice 4.

1. Pour chacune des suites suivantes, définies par récurrence, calculer les trois prochains termes.

a)
$$u_0 = 3$$
 et $u_{n+1} = 5u_n - 2$

a)
$$u_0 = 3$$
 et $u_{n+1} = 5u_n - 2$ **b)** $u_0 = -2$ et $u_{n+1} = (u_n)^2 - 4u_n + 1$

c)
$$u_0 = 1$$
 et $u_{n+1} = -3u_n - 4n$

c)
$$u_0 = 1$$
 et $u_{n+1} = -3u_n - 4n$ **d)** $u_0 = 0$ et $u_{n+1} = \frac{1}{u_n} - \frac{1}{2n+1}$

2. Pour chacune des suites précédentes, exprimer u_n en fonction de u_{n-1} .

Exercise 5. Soit (u_n) la suite définie par $u_0 = 1$, $u_1 = 1$ et la relation

$$u_{n+2} = u_{n+1} + 2u_n + n.$$

- 1. Calculer u_2 , u_3 , u_4 , et u_5 .
- 2. Exprimer u_n en fonction de u_{n-1} et u_{n-2} .
- 3. Exprimer u_{n+3} en fonction de u_{n+2} et u_{n+1} .

Exercice 6. Soit (u_n) la suite définie par $u_0 = 4$ et, pour tout entier n, $u_{n+1} = \frac{1}{5}u_n^2$.

- 1. Calculer u_1 et u_2 .
- 2. Compléter la fonction python ci-dessous. Cette fonction est nommée suite_u et prend en argument un entier naturel p. Elle renvoie la valeur du terme de rang p de la suite u.

```
1 def suite_u(p):
 u = \dots # A remplir
 for i in range(1, ...): # A remplir
      u = \dots \# A remplir
  return(u)
```

Exercice 7. On considère la suite u définie sur \mathbb{N} par $u_{n+1} = 1 - 3(u_n)^2$.

```
1 def suite_u(n):
 u = 1
 for i in range ..... # A remplir
     u = \dots  # A remplir
return(u)
```

- 1. Compléter la fonction ci-dessous de façon à ce qu'elle renvoie le terme u_n .
- 2. Quelle valeur renvoie l'instruction suite_u(4)?