

Finite Projective Planes

X: finite set of points,

L: finite set of lines.

- Any two lines intersect in one point;
- Any two points on one line;
- Non-degenerate.

PG(2, p) (Desarguesian finite projective plane):

- Points: 1-dimensional subspaces of \mathbb{F}_p^3 .
- Lines: 2-dimensional subspaces.
- Each line contains p + 1 points, each point on p + 1 lines.

Two parallel lines will intersect at infinity.

Incidence Matrix

Incidence Matrix:

$$A_p = (a_{ij})$$

$$a_{ij} = \begin{cases} 1, & \text{if the point } i \text{ is on the line } j \\ 0, & \text{otherwise} \end{cases}$$

p-rank (the rank over \mathbb{F}_p) of the incidence matrix:

In PG(2, p), p prime:

p-rank of the
$$A_p$$
 is $\binom{p+1}{2} + 1 = \frac{p(p+1)}{2} + 1$.

Example: An incidence matrix A_3 of PG(2, 3) is

The 3-rank of
$$A_3$$
 is $\frac{3(3+1)}{2} + 1 = 7$.

Example: An incidence matrix A_3 of PG(2,3) is

The rank of A_3 is $\frac{3(3+1)}{2} + 1 = 7$.

- Fix a row arbitrarily (here 1st row is fixed).
- Fix an arbitrary ordering of the positions where there is a one in that row (for example $a_1 = 7$, $a_2 = 1$, $a_3 = 5$, $a_4 = 2$).
- Remove some arbitrary p + 1 i rows with a one in position a_i (except for the fixed row).

Example: An incidence matrix A_3 of PG(2,3) is

The rank of A_3 is $\frac{3(3+1)}{2} + 1 = 7$.

- Fix a row arbitrarily (here 1st row is fixed).
- Fix an arbitrary ordering of the positions where there is a one in that row (for example $a_1 = 7$, $a_2 = 1$, $a_3 = 5$, $a_4 = 2$).
- Remove some arbitrary p + 1 i rows with a one in position a_i (except for the fixed row).

Example: An incidence matrix A_3 of PG(2,3) is

The rank of A_3 is $\frac{3(3+1)}{2} + 1 = 7$.

A Moorhouse basis

- Fix a row arbitrarily (here 1st row is fixed).
- Fix an arbitrary ordering of the positions where there is a one in that row (for example $a_1 = 7$, $a_2 = 1$, $a_3 = 5$, $a_4 = 2$).
- Remove some arbitrary p + 1 i rows with a one in position a_i (except for the fixed row).

Example: An incidence matrix A_3 of PG(2,3) is

The rank of A_3 is $\frac{3(3+1)}{2} + 1 = 7$.

Another Moorhouse basis

- Fix a row arbitrarily (here 1st row is fixed).
- Fix an arbitrary ordering of the positions where there is a one in that row (for example $a_1 = 1$, $a_2 = 2$, $a_3 = 5$, $a_4 = 7$).
- Remove some arbitrary p + 1 i rows with a one in position a_i (except for the fixed row).

1. The vertex set of the graph is the set of rows of H.

 H_3 used to construct generator matrix G_3

- 1. The vertex set of the graph is the set of rows of *H*.
- 2. Fix an arbitrary tree on the vertex set, i.e. a connected graph without cycles.

 H_3 used to construct generator matrix G_3

$$h_5$$
 h_7
 h_7
 h_4
 h_4
 $h_1 - h_7$
 h_1
 $h_1 - h_6$
 h_6
 $h_2 - h_6$
 h_3
 h_3

- 1. The vertex set of the graph is the set of rows of H.
- 2. Fix an arbitrary tree on the vertex set, i.e. a connected graph without cycles.
- 3. A row of G corresponds to an edge, and it is the difference of its endpoints (rows of *H*).

$$H_{3} \text{ used to construct generator matrix } G_{3}$$

$$h_{5} = \begin{pmatrix} h_{1} - h_{6} \\ h_{1} - h_{7} \\ h_{2} - h_{6} \\ h_{3} - h_{6} \\ h_{3} - h_{6} \\ h_{4} - h_{7} \\ h_{5} - h_{7} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 1 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 & -1 & 1 & 0 & 0 & 0 & -1 \end{pmatrix}$$

$$h_{1} - h_{6} h_{6} h_{2} - h_{6} h_{2}$$

$$h_{3} - h_{6} h_{3} - h_{6} h_{3}$$

- 1. The vertex set of the graph is the set of rows of H.
- 2. Fix an arbitrary tree on the vertex set, i.e. a connected graph without cycles.
- 3. A row of G corresponds to an edge, and it is the difference of its endpoints (rows of *H*).

$$G_3^{(2)} = \begin{pmatrix} h_1 - h_6 \\ h_1 - h_7 \\ h_2 - h_6 \\ h_3 - h_7 \\ h_5 - h_7 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & -1 & -1 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 & -1 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 & -1 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 & -1 & 1 & 0 & 0 & 0 & -1 \end{pmatrix}$$

Repair in coded storage

Data center

Repair locality

Repair group for a position: set of other positions that can reconstruct its information.

Repair locality of a position: size of its smallest repair group.

For a code from PG(2, p):

Codeword length is $p^2 + p + 1$.

p + 1 points on a line means repair locality of every symbol is p.

Example: An incidence matrix A_3 of PG(2, 3) is

$$(b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, b_{10}, b_{11}, b_{12}, b_{13})$$

From the first row,

For coded symbol b_5 , a repair group is $\{b_1, b_2, b_7\}$; For coded symbol b_1 , a repair group is $\{b_2, b_5, b_7\}$; For coded symbol b_7 , a repair group is $\{b_1, b_2, b_5\}$;

. . .

Repair availability

Repair availability: maximum number of disjoint repair groups.

The p + 1 lines through a point form p + 1 disjoint repair groups for the corresponding position.

Example: An incidence matrix A_3 of PG(2,3) is

$$(b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, b_{10}, b_{11}, b_{12}, b_{13})$$

For coded symbol b_2 , The repair groups are: $\{b_1, b_5, b_7\}$ by looking at row 1; $\{b_3, b_6, b_8\}$ by looking at row 2; $\{b_9, b_{10}, b_{13}\}$ by looking at row 9; $\{b_4, b_{11}, b_{12}\}$ by looking at row 11.

| Update in coded storage

Update efficiency: the number of coded symbols that need to be updated when updating a data symbol.

The update efficiency of the code: the maximum update efficiency for each data symbol.

For a code from PG(2, p):

Codeword length is $p^2 + p + 1$.

The update efficiency is 2p.

$$G_3^{(1)} = \begin{pmatrix} \frac{1 & 1 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & -1 \\ 0 & 1 & 1 & 0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 1 & -1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 & -1 & -1 & 1 & 0 & 0 & 0 & -1 \end{pmatrix}$$

Delta update:

Data symbols: $(a_1, a_2, a_3, a_4, a_5, a_6)$ Coded symbols: Data symbols $\times G_3^{(1)} =$

$$(b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, b_{10}, b_{11}, b_{12}, b_{13})$$

Updated data symbols:

$$(a_1, a_2, a_3, a_4, a_5, a_6) + (\Delta_1, 0, 0, 0, 0, 0)$$

Updated Coded symbols:

$$(b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, b_{10}, b_{11}, b_{12}, b_{13}) + (\Delta_1, \Delta_1, 0, 0, \Delta_1, -\Delta_1, 0, 0, 0, -\Delta_1, 0, -\Delta_1, 0)$$

Choice of G

$$G_3^{(1)} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & -1 \\ 0 & 1 & 1 & 0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 1 & -1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 & 0 & -1 & 1 & 0 & 0 & 0 & -1 \end{pmatrix}$$

$$G_3^{(2)} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & -1 & -1 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 & -1 & 1 & 0 & 0 & 0 & -1 \end{pmatrix}$$

Data symbols	$(a_1, a_2, a_3, a_4, a_5, a_6)$
Update frequency of data symbols during a time unit	1) (2,2,2,2,2,2)
	2) (1,4,1,4,1,1)
	3) (4,1,1,4,1,1)

For example, (1,4,1,4,1,1) means

 a_1 updates once,

 a_2 updates four times,

 a_3 updates once,

 a_4 updates four times,

 a_5 updates once,

 a_6 updates once,

during a time unit.

Update frequencies (coded symbols) for (1,4,1,4,1,1):

 $G_3^{(1)}$: (5, 6, 5, 5, 7, 6, 3, 6, 5, 7, 5, 6, 6),

 $G_3^{(2)}$: (5, 6, 5, 5, 7, 3, 3, **11**, 5, 2, 8, 3, 9).

Choice of G

Data symbols	$(a_1, a_2, a_3, a_4, a_5, a_6)$
Update frequency of data symbols during a time unit	1) (2,2,2,2,2,2)
	2) (1,4,1,4,1,1)
	3) (4.1.1.4.1.1)

The maximum update frequencies of coded symbols

- 3) 8 (preferable)

Circulant structure

Circulant structure:

Rows of the matrix are the cyclic shifts of one row.

The incidence matrix of PG(2, p) always has the circulant structure (from the Singer cycle).

Example with p = 2:

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Short description (sparse 0 - 1 vector):

$$(1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0)$$

Algorithm A:

While possible, do:

- Find a projective line with exactly one erased coded symbol,
- Repair this coded symbol from the other points of the line.

Specifically, the coded symbol is repaired to minus the sum of the other coded symbols of the line (over \mathbb{F}_p).

$$(b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, b_{10}, b_{11}, b_{12}, b_{13})$$

Example:

Erased coded symbols is
$$\{b_1, b_2, b_3, b_4, b_8\}$$

Algorithm A:

While possible, do:

- Find a projective line with exactly one erased coded symbol,
- Repair this coded symbol from the other points of the line.

Specifically, the coded symbol is repaired to minus the sum of the other coded symbols of the line (over \mathbb{F}_p).

 $(b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, b_{10}, b_{11}, b_{12}, b_{13})$

At first,

b₁ cannot be repaired, (each repair group contains an erased coded symbol, see the red arrows.)

Similarly, b_4 cannot be repaired.

Algorithm A:

While possible, do:

- Find a projective line with exactly one erased coded symbol,
- Repair this coded symbol from the other points of the line.

Specifically, the coded symbol is repaired to minus the sum of the other coded symbols of the line (over \mathbb{F}_p).

Algorithm A:

While possible, do:

- Find a projective line with exactly one erased coded symbol,
- Repair this coded symbol from the other points of the line.

Specifically, the coded symbol is repaired to minus the sum of the other coded symbols of the line (over \mathbb{F}_p).

Algorithm A:

While possible, do:

- Find a projective line with exactly one erased coded symbol,
- Repair this coded symbol from the other points of the line.

Specifically, the coded symbol is repaired to minus the sum of the other coded symbols of the line (over \mathbb{F}_q).

Algorithm A:

While possible, do:

- Find a projective line with exactly one erased coded symbol,
- Repair this coded symbol from the other points of the line.

Specifically, the coded symbol is repaired to minus the sum of the other coded symbols of the line (over \mathbb{F}_p).

Algorithm A:

While possible, do:

- Find a projective line with exactly one erased coded symbol,
- Repair this coded symbol from the other points of the line.

Specifically, the coded symbol is repaired to minus the sum of the other coded symbols of the line (over \mathbb{F}_p).

The **stopping sets** (**sets without tangents**) are the sets of projective points intersecting no line in exactly one point.

Example:

Erased coded symbols: $\{b_2, b_3, b_5, b_6, b_7, b_8\}$.

It is the union of two lines through b_1 , without b_1 .

Algorithm A never manages to repair any of those servers.

UNIVERSITY OF TARTU

The smallest size s_p of a set without tangents or stopping set:

$$p + \frac{1}{4}\sqrt{2p} + 2 \le s_p \le 2p - 2$$

For small odd p:

$$s_3 = 6$$
,

$$s_5 = 10$$
,

$$s_7 = 12$$
,

$$s_9 = 15$$
,

$$s_{11} = 18.$$

While $s_{11} = 18$, the smallest stopping sets our experiments encountered for p = 11 had size 27.

This means smaller stopping sets are very rare.

Conclusion

Explicit codes with efficient updates, good repair locality and good repair availability.

Allows different choices for G, i.e. support for unequal update frequencies.

- 1. We recalled the \mathbb{F}_p -linear code with parity-checks given by the rows of the incidence matrix of PG(2, p). A parity-check matrix is obtained e.g. via a Moorhouse basis.
- 2. We propose a method to obtain the generator matrix via tree construction.
- 3. The repair locality is p, and the repair availability is p+1, while the number of coded symbols is p^2+p+1 .
- 4. We can use different generator matrices depending on update frequencies of symbols, to reduce the maximum update frequency of a coded symbol.
- 5. The incidence matrix is circulant.
- 6. We designed the repair algorithm from the incidence matrix and discussed stopping sets.

Open problem:

The recovery of any individual data symbols from a small number of coded symbols.