Künstliche Intelligenz - Übung 3

Julian Dobmann, Kai Kruschel

Aufgabe 1

Um zu zeigen, dass aus einer Menge A von Axiomen die logische Konsequenz K folgt, muss man zeigen, dass deren Wahrheitswerte sich bei gleicher Belegung wie eine Implikation verhalten. D.h.:

A	K	$A \Rightarrow K$
0	0	1
0	1	1
1	0	0
1	1	1

a)

$$A = \{ p \lor q \lor r,$$

$$r \Rightarrow (p \lor q),$$

$$(q \land r) \Rightarrow p,$$

$$\neg p \lor q \lor r \}$$

$$K = (q \Rightarrow) \lor \neg (q \Rightarrow (p \lor r))$$

Wie in folgender Wahrheitstabelle sichtbar, erfüllen A und K die Implikationseigenschaft, K ist also logische Konsequenz von A.

p	q	r	$p \lor q \lor r$	$r \Rightarrow (p \lor q)$	$(q \land r) \Rightarrow p$	$\neg p \lor q \lor r$	A	$q \Rightarrow p$	$\neg(q \Rightarrow (q \lor r))$	K
0	0	0	0	1	1	1	0	1	0	1
0	0	1	1	0	1	1	0	1	0	1
0	1	0	1	1	1	1	1	0	1	1
0	1	1	1	1	0	1	0	0	0	0
1	0	0	1	1	1	0	0	1	0	1
1	0	1	1	1	1	1	1	1	0	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	0	1

b)

1 of 2

$$A = \{q \lor r, q \Rightarrow \neg p, \neg (r \land p)\}$$

$$K = \neg p$$

p	q	r	$q \lor r$	$q \Rightarrow \neg p$	$\neg(r \land p)$	A	$\neg p = K$
0	0	0	0	1	1	0	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	0	1	1	0	0
1	0	1	1	1	0	0	0
1	1	0	1	0	1	0	0
1	1	1	1	0	0	0	0

Die logische Konsequenz $A \Rightarrow K$ ist gegeben.

c)

$$A = \{p \Rightarrow q, q\}$$

$$K = p \land q$$

р	q	$p \Rightarrow q$	A	$K = p \wedge q$
0	0	1	0	0
0	1	1	1	0
1	0	0	0	0
1	1	1	1	1

Für die Belegung p=0, q=1 entsteht die Auswertung A=1, K=0 was dazu führt, dass hier $A\Rightarrow K$ nicht gilt.

Aufgabe 3

2 of 2