Assignment1 Solutions

Harsh Suthar

June 2024

1 Linear Algebra

1.1 Problem 1

Necessity condition

Let's assume that $\{|k\rangle\}$ is an orthonormal basis for the Hilbert space \mathcal{H} containing $|a\rangle$ and $|b\rangle$. Then we can write $\langle a|$ and $|b\rangle$ as

$$|b\rangle = \sum_{i} d_{i}|k_{i}\rangle, \ \langle a| = \sum_{i} c_{i}^{*}\langle k_{i}| \ where \ c_{i}, d_{i} \in \mathcal{C}$$

Taking inner product with the orthonormal basis,

$$\langle k_i | b \rangle = d_i, \ \langle a | k_i \rangle = c_i^*$$

The right side of the given equation simplifies to

$$\sum_{i} \langle a|k_i\rangle \langle k_i|b\rangle = \sum_{i} c_i^* d_i$$

The left side of the given equation simplifies to

$$\langle a|b\rangle = \left(\sum_{i} c_{i}^{*} \langle k_{i}|\right) \left(\sum_{j} d_{j}|k_{j}\rangle\right)$$

$$= \sum_{i} \sum_{j} c_{i}^{*} d_{j} \delta_{ij}$$

$$= \sum_{i} c_{i}^{*} d_{i}$$
(1)

Hence, if $\{|k\rangle\}$ is an orthonormal basis of the Hilbert space \mathcal{H} , the above condition in necessary.

Sufficiency condition

We have been given the equation and we have to prove that this condition is sufficient to show that $\{|k\rangle\}$ is an orthonormal basis for the Hilbert space \mathcal{H} containing $|a\rangle$ and $|b\rangle$.

$$\langle a|b\rangle = \sum_{i} \langle a|k_i\rangle\langle k_i|b\rangle$$
 (2)

Post-multiplying both sides by $|a\rangle$,

$$\langle a|a\rangle|b\rangle = \langle a|a\rangle \sum_{i} |k_{i}\rangle\langle k_{i}|b\rangle$$

As $|a\rangle$ is an arbitrary vector in the Hilbert space, we can take its modulus to be non-zero, leaving us with

$$|b\rangle = \sum_{i} |k_i\rangle\langle k_i|b\rangle \quad \forall b \in \mathcal{H}$$

Thus, $\{|k\rangle\}$ form a basis of the Hilbert space \mathcal{H} .

1.2 Problem 2

We need to prove that log is a non-unique function, i.e., for every matrix B, there are multiple matrices A that satisfy the matrix relation $e^A = B$.

Since $e^x = e^{x+i2\pi n} \quad \forall n \in \mathcal{Z}$, we can extend this relation to matrices as following,

$$e^A = e^{A+i2\pi n\mathcal{K}} = B \ \forall n \in \mathcal{Z}$$

where K is a matrix with the same dimension as the matrix A and $k_{ij} \in \{0,1\}$ with at least one element being non-zero. Therefore, log is a non-unique.

1.3 Problem 3

problem i).

By observation, we can see that the given matrix is the tensor product of $\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, i.e., $\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Eigenvalues of $\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$ are $\{1,5\}$ and eigenvalues of $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ are $\{-1,1\}$. Therefore, the eigenvalues of the given matrix will be $\{1 \times 1, 1 \times (-1), 5 \times 1, 5 \times (-1)\}$, i.e., $\{1, -1, 5, -5\}$.

problem ii).

By observation, we can see that the given matrix is

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \bigotimes \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$

Therefore, the eigenvalues of the given matrix will be $\{1 \times 1, 1 \times (-1), 5 \times 1, 5 \times (-1)\}$, i.e., $\{1, -1, 5, -5\}$.

problem iii).

By observation, we can see that the given matrix is

$$\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \bigotimes \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$

Therefore, the eigenvalues of the given matrix will be $\{1 \times 1, 1 \times 5, 5 \times 1, 5 \times 5\}$, i.e., $\{1, 5, 5, 25\}$.

2 **Quantum Mechanics**

Problem 1

Given $|\psi\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$ and unitary operator $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, we need $|\psi'\rangle =$ $H|\psi\rangle$. Writing H in terms of Pauli's matrices,

$$H = \frac{1}{\sqrt{2}}(\sigma_x + \sigma_z)$$

Thus we can apply the X-gate and Z-gate on $|\psi\rangle$.

$$|\psi'\rangle = \frac{1}{2}(\sigma_x + \sigma_z)(|0\rangle - |1\rangle)$$

$$= \frac{1}{2}(|1\rangle - |0\rangle + |0\rangle - (-|1\rangle))$$

$$= |1\rangle$$
(3)

2.2Problem 2

Calculating the probability distribution $|\psi\rangle$ and $|\psi'\rangle$

For $|\psi\rangle$

$$\begin{array}{l} P(|0\rangle) = ||\langle 0|\psi\rangle||^2 = \frac{1}{2} \ , \\ P(|1\rangle) = ||\langle 1|\psi\rangle||^2 = \frac{1}{2} \end{array}$$

$$P(|1\rangle) = ||\langle 1|\psi\rangle||^2 = \frac{1}{2}$$

Post-measurement state:

 $|\psi_{pm}\rangle = |0\rangle$ if $|0\rangle$ is measured.

 $|\psi_{pm}\rangle = |1\rangle$ if $|1\rangle$ is measured.

For $|\psi'\rangle$

$$\begin{split} \mathbf{P}(|0\rangle) &= ||\langle 0|\psi'\rangle||^2 = 0 \ , \\ \mathbf{P}(|1\rangle) &= ||\langle 1|\psi'\rangle||^2 = 1 \end{split}$$

$$P(|1\rangle) = ||\langle 1|\psi\rangle||^2 = 1$$

Post-measurement state:

$$|\psi_{pm}^{'}\rangle = |1\rangle$$