VEHICLE RENTAL SERVICE DATABASE DESIGN & DEVELOPMENT

Created By: Milind Naik

Guided By: Dr Junaid Qazi

Contents

Introd	uction	3		
Missio	n	3		
Object	ive	3		
Databa	ase Design	4		
Why	y Database Design is important?	4		
Databa	ase Tables and Fields	5		
1.	Customer Table	5		
2.	Vehicles Table	6		
3.	Reservations Table	6		
4.	Branches	7		
5.	Vehicle Reviews	7		
6.	Accident Reports	7		
7.	Employee	8		
8.	Vehicle Insurance	8		
Databa	ase Table Relationships	8		
Why	y Database Tables Relationship is important?	8		
Sum	nmary of All Relationships for Rental Database Tables	9		
Entity	Relationship Diagram (ER)	9		
Why Entity Relationship Diagram is Important?				
Enti	ty Relationship Diagram within the tables in Database	10		
Databa	ase Development	10		
Inne	er Join Query	12		
Grou	up By Query	13		
Conclu	ısion	14		
Appendix A – Data Dictionary				
Appendix B – SOL Oueries				

Introduction

This Article presents a comprehensive database design for a car rental service. The database is meticulously crafted to streamline employee management, reservations, vehicle availability tracking, and customer information handling, ensuring smooth and secure operations. We'll explore the objectives, tables, fields, relationships, and SQL queries essential for running an efficient vehicle rental business.

Mission

Our mission is to offer reliable, accessible, and secure car rentals with a focus on user privacy and satisfaction.

Objective

- 1. **Extensive Vehicle Selection:** Offer a wide range of car rental options to cater to every need and preference, ensuring you have the perfect vehicle for every occasion.
- 2. **Competitive Pricing:** Attract a diverse customer base by providing rental rates that are reasonable and affordable, making your services accessible to all.
- 3. **Exceptional Customer Service:** Prioritize excellent support and guidance to ensure a seamless and enjoyable rental experience for every client.
- 4. **Data-Driven Optimization:** Utilize technology to gain valuable insights that streamline operations and enhance the customer interface, fostering efficiency and convenience.
- 5. **Secure and Reliable Platform:** Guarantee a safe and dependable system that safeguards client information and maintains the integrity of every transaction, instilling confidence in your services.

Database Design

Why Database Design is important?

For the vehicle rental service firm, having a well-designed database is crucial for several reasons aligned with the company's goals of providing a safe, scalable, and efficient platform. Here's why:

1. Streamlined Data Management

Centralized data storage: All essential business data, such as customer information, vehicle availability, reservations, payments, and reviews, are organized in a thoughtfully structured database. This centralization enables seamless data processing and querying.

Rapid data retrieval: With optimal indexing and appropriate relationships, the system can instantly fetch relevant information like available vehicles, customer details, and rental history, boosting operational efficiency.

2. Enhanced Customer Experience

Prompt Responses: When booking a car, verifying availability, or reviewing past rentals, customers expect timely information. A well-structured database enables real-time data updates, ensuring exceptional customer service.

Personalized Recommendations: By effectively managing customer profiles and preferences, the database can offer individualized suggestions, such as preferred car models or rental history. This heightens customer satisfaction and fosters loyalty.

3. Flexibility and Scalability

Business Growth Support: A well-designed database can handle increasing data volumes without performance issues as the business expands, whether by adding more locations or serving a larger fleet. This aligns with the company's goal of providing reliable and easily accessible car rentals.

Adaptability for Future Changes: With the right architecture, additional tables or features (such as more payment options or car classifications) can be incorporated into the database without a complete overhaul. Maintaining competitiveness and the ability to adapt in a rapidly changing market requires this flexibility.

4. Security and Integrity of Data

Customer Data Protection: Ensuring a dependable and secure system is a major corporate goal. Customer data is shielded from intrusions and breaches using security features including role-based access, encryption, and user authentication in a well-designed database.

Transaction Integrity: The database ensures data integrity by using constraints

and foreign keys appropriately. For instance, it guarantees that payments are accurately matched to finished transactions and that bookings are associated with legitimate clients and automobiles.

5. Technology-Based Perspectives

Data Insights and Analytics: The business can monitor crucial performance indicators like revenue, client feedback, and vehicle usage with a relational database. Using this data, the company can identify high-demand car models, refine pricing strategies, and streamline operations to meet technology-driven insight goals.

Monitoring Performance: The database provides valuable information on fleet performance, consumer preferences, and operational efficiency. This data enables the business to make informed decisions that enhance customer satisfaction and boost profitability.

6. Streamlined Booking Experience

Seamless Reservation Process: The car rental system offers an intuitive booking interface where customers can effortlessly reserve vehicles and access real-time information on availability, pricing, and rental status. This user-friendly approach directly contributes to customer satisfaction and cost-effectiveness.

Preventing Conflicts: The database's well-designed relationships significantly reduce the risk of double bookings or pricing discrepancies, ensuring smooth operations.

7. Facilitating Regulatory Compliance

Meticulous Record-Keeping: The system securely stores rental agreements, client contracts, and transaction records. This comprehensive documentation ensures accurate data is available for audits or disputes, helping the business adhere to legal and regulatory requirements.

Database Tables and Fields

The following are the key tables and their fields in the database:

1. Customer Table

user_id (INT) - PRIMARY KEY, AUTO_INCREMENT first_name (VARCHAR (50)) - NOT NULL

last_name (VARCHAR (50)) - NOT NULL
email (VARCHAR (100)) - UNIQUE, NOT NULL
password (VARCHAR (255)) - NOT NULL
phone_number (VARCHAR (20)) - Optional
address (TEXT) - Optional
created_at (TIMESTAMP) - DEFAULT CURRENT_TIMESTAMP

2. Vehicles Table

vehicle_id (INT) - PRIMARY KEY, AUTO_INCREMENT

model (VARCHAR (50)) - NOT NULL

year (INT) - NOT NULL

vehicle_type (VARCHAR (50)) - NOT NULL

daily_rate (DECIMAL (10, 2)) - NOT NULL

availability_status (VARCHAR (20)) - NOT NULL

branch_id (INT) - FOREIGN KEY REFERENCES Branches(branch_id)

insurance_id (INT) - FOREIGN KEY REFERENCES

VehicleInsurance(insurance_id)

3. Reservations Table

reservation_id (INT) - PRIMARY KEY, AUTO_INCREMENT
user_id (INT) - FOREIGN KEY REFERENCES Customer(user_id)
vehicle_id (INT) - FOREIGN KEY REFERENCES Vehicles(vehicle_id)
reservation_date (DATE) - NOT NULL
start_date (DATE) - NOT NULL
end_date (DATE) - NOT NULL
total_price (DECIMAL (10, 2)) - NOT NULL
status (VARCHAR (20)) - NOT NULL

4. Branches

```
branch_id (INT)- PRIMARY KEY, AUTO_INCREMENT
branch_name (VARCHAR (100)),
address (TEXT),
city (VARCHAR (50))
state (VARCHAR (50))
zip_code (VARCHAR (10))
phone_number (VARCHAR (20))
email (VARCHAR (100))
```

5. Vehicle Reviews

```
review_id (INT)- PRIMARY KEY, AUTO_INCREMENT
user_id (INT) - FOREIGN KEY REFERENCES Customer(user_id)
vehicle_id (INT) - FOREIGN KEY REFERENCES Vehicles(vehicle_id)
review_rating (INT)
review_text (TEXT)
review_date -TIMESTAMP DEFAULT CURRENT_TIMESTAMP
```

6. Accident Reports

```
report_id (INT) - PRIMARY KEY, AUTO_INCREMENT
reservation_id (INT) - FOREIGN KEY, REFERENCES
Reservations(reservation_id)
vehicle_id (INT) - FOREIGN KEY, REFERENCES Vehicles(vehicle_id)
insurance_id (INT) - FOREIGN KEY, REFERENCES
VehicleInsurance(insurance_id)
accident_date (DATE) - NOT NULL
```

```
description (TEXT) – Optional damage_cost (DECIMAL (10, 2)) - Optional is_resolved (BOOLEAN) - DEFAULT FALSE
```

7. Employee

```
employee_id (INT) - PRIMARY KEY

first_name (VARCHAR (50)) - NOT NULL

last_name (VARCHAR (50)) - NOT NULL

branch_id (INT) - FOREIGN KEY, REFERENCES Branches(branch_id)
```

8. Vehicle Insurance

```
insurance_id (INT) - PRIMARY KEY, AUTO_INCREMENT
provider (VARCHAR (100)) - NOT NULL
policy_number (VARCHAR (50)) - NOT NULL
coverage_amount (DECIMAL (12, 2)) - NOT NULL
valid_from (DATE) - NOT NULL
valid_until (DATE) - NOT NULL
```

Database Table Relationships

Why Database Tables Relationship is important?

Relationships are essential for databases because they define the connections between data stored in different tables, ensuring data consistency and integrity. By separating similar data into multiple tables and enabling complex queries to retrieve related information efficiently, they reduce data redundancy. Establishing relationships also improves scalability, ensuring that the system can grow while maintaining structured and meaningful data exchanges.

Summary of All Relationships for Rental Database Tables

- Customer (1) ↔ Reservations (N): user_id in Reservations references user_id in Customer.
- Customer (1)

 → VehicleReviews (N): user_id in VehicleReviews references user_id in Customer.
- Vehicles (1)

 Reservations (N): vehicle_id in Reservations references vehicle_id in Vehicles.
- Vehicles (1) ↔ VehicleReviews (N): vehicle_id in VehicleReviews references vehicle_id in Vehicles.
- Vehicles (1)

 AccidentReports (N): vehicle_id in AccidentReports references vehicle_id in Vehicles.
- Branches (1)

 → Vehicles (N): branch_id in Vehicles references branch_id in Branches.
- Branches (1)
 ← Employees (N): branch_id in Employees references branch_id in Branches.
- Reservations (1) ↔ AccidentReports (N): rental_id in AccidentReports references reservation_id in Reservations.
- **VehicleInsurance (1)** ↔ **Vehicles (N)**: insurance_id in **Vehicles** references insurance id in **VehicleInsurance**.
- VehicleInsurance (1) ↔ AccidentReports (N): insurance_id in AccidentReports references insurance_id in VehicleInsurance.

Entity Relationship Diagram (ER)

Why Entity Relationship Diagram is Important?

An entity-relationship (ER) diagram is a crucial tool for visualizing the relationships and data structure within a database. It helps stakeholders understand the entities, their attributes, and the connections between them, facilitating effective communication. ER diagrams serve as a blueprint for database design, ensuring optimal structure and data integrity. They simplify database design and maintenance by providing a clear representation of data flows, making it easier to identify and address potential issues or areas for improvement.

Entity Relationship Diagram within the tables in Database

The ER diagram below illustrates the relationships between the various entities in the vehicle rental system database.

Database Development

We create a sample database for the rental car system. Below is the sample query run during the development. Moreover, the other queries are mentioned in <u>Appendix B</u>.

Example:

Create Database:

CREATE DATABASE CarRentalService:

Create table and Insert query for Customer table:

1. Customer Table

```
CREATE TABLE Customer (

user_id INT PRIMARY KEY AUTO_INCREMENT,

first_name VARCHAR(50),

last_name VARCHAR(50),

email VARCHAR(100) UNIQUE NOT NULL,

password VARCHAR(255) NOT NULL,

phone_number VARCHAR(20),

address TEXT,

created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

);
```

INSERT INTO Customer (first_name, last_name, email, password, phone_number, address)
VALUES

('John', 'Doe', 'johndoe@example.com', 'securepass123', '1234567890', '123 Main St'), ('Jane', 'Smith', 'janesmith@example.com', 'securepass456', '0987654321', '456 Elm St');

Inner Join Query

SELECT

Customer.first_name,

Customer.last_name,

COUNT(Reservations.reservation_id) AS total_reservations

FROM

Customer INNER JOIN

Reservations ON Customer.user_id = Reservations.user_id

GROUP BY

Customer.user_id, Customer.first_name, Customer.last_name;

Explanation: We are trying to get the number of bookings by customer and displaying their first name and last name by matching the reservation id in reservation table and customer id from customer table.

Group By Query

SELECT

Vehicles.model,

SUM(Reservations.total_price) AS total_revenue

FROM

Vehicles

INNER JOIN

Reservations ON Vehicles.vehicle_id = Reservations.vehicle_id

GROUP BY

Vehicles.model;

Explanation:

We are trying to get the revenue generated by each vehicle using group by.

Conclusion

In today's competitive rental car market, a well-designed database is crucial for a company's success and growth. By implementing a structured database system, the business can efficiently manage vital operations like reservations, vehicle inventory, and customer relationships. The database design addresses key objectives, such as offering a diverse fleet, competitive pricing, exceptional customer service, and leveraging data-driven insights to make informed decisions.

The relational database model streamlines processes through centralized data management, real-time information access, and personalized customer experiences. Additionally, it enables scalability, allowing the company to adapt seamlessly to increasing demand and new business opportunities. Implementing robust security protocols safeguards customer information, fostering trust and reliability in the service.

Overall, a thoughtfully designed database system is the backbone of a thriving automobile rental service, enabling efficient operations, data-driven decision-making, and a customercentric approach.

Appendix A – Data Dictionary

Table Name	Field Name	Description	Constraints
Customer	user_id	Unique identifier for the	PRIMARY KEY,
Customer		customer	AUTO_INCREMENT
	first_name	First name of the customer	NOT NULL
	last_name	Last name of the customer	NOT NULL
	email	Email address of the customer	UNIQUE, NOT NULL
	password	Encrypted password	NOT NULL
	phone_number	Contact number of the customer	Optional
	address	Residential address of the customer	Optional
	created_at	Timestamp of customer creation	DEFAULT CURRENT_TIMESTAMP
	is_active	Active status of the customer	DEFAULT TRUE
Vehicles	vehicle_id	Unique identifier for each vehicle	PRIMARY KEY, AUTO_INCREMENT
	model	Vehicle model	NOT NULL
	year	Manufacture year of the vehicle	NOT NULL
	vehicle_type	Type of vehicle (SUV, Sedan, etc.)	NOT NULL
	daily_rate	Rental rate per day	NOT NULL
	availability_status	Availability status (available, rented, etc.)	NOT NULL
	branch_id	Foreign key referencing Branches table	FOREIGN KEY REFERENCES Branches(branch_id)
	insurance_id	Foreign key referencing VehicleInsurance table	FOREIGN KEY REFERENCES VehicleInsurance(insurance_id)
Reservations	reservation_id	Unique identifier for each reservation	PRIMARY KEY, AUTO_INCREMENT
	user_id	Foreign key referencing Customer table	FOREIGN KEY REFERENCES Customer(user_id)
	vehicle_id	Foreign key referencing Vehicles table	FOREIGN KEY REFERENCES Vehicles(vehicle_id)
	reservation_date	Date the reservation was made	NOT NULL
	start_date	Start date of the reservation	NOT NULL
	end_date	End date of the reservation	NOT NULL
	total_price	Total cost of the reservation	NOT NULL

		Ctatus of the reconnetion	
	status	Status of the reservation (confirmed, canceled, etc.)	NOT NULL
Branches	branch_id	Unique identifier for each branch	PRIMARY KEY, AUTO_INCREMENT
	branch_name	Name of the branch	NOT NULL
	address	Address of the branch	NOT NULL
	city	City where the branch is located	NOT NULL
	state	State where the branch is located	NOT NULL
	zip_code	Postal code of the branch	NOT NULL
	phone_number	Contact number of the branch	Optional
	email	Email address of the branch	Optional
VehicleReviews	review_id	Unique identifier for each review	PRIMARY KEY, AUTO_INCREMENT
	user_id	Foreign key referencing Customer table	FOREIGN KEY REFERENCES Customer(user_id)
	vehicle_id	Foreign key referencing Vehicles table	FOREIGN KEY REFERENCES Vehicles(vehicle_id)
	review_rating	Rating given to the vehicle (1-5)	CHECK (review_rating BETWEEN 1 AND 5)
	review_text	Text review by the customer	Optional
	review_date	Date and time of the review	DEFAULT CURRENT_TIMESTAMP
AccidentReports	report_id	Unique identifier for each accident report	PRIMARY KEY, AUTO_INCREMENT
	rental_id	Foreign key referencing Reservations table	FOREIGN KEY REFERENCES Reservations(rental_id)
	vehicle_id	Foreign key referencing Vehicles table	FOREIGN KEY REFERENCES Vehicles(vehicle_id)
	insurance_id	Foreign key referencing VehicleInsurance table	FOREIGN KEY REFERENCES VehicleInsurance(insurance_id)
	accident_date	Date of the accident	NOT NULL
	description	Detailed description of the accident	Optional
	damage_cost	Estimated cost of damage	Optional
	is_resolved	Resolution status of the report	DEFAULT FALSE
Employees	employee_id	Unique identifier for each employee	PRIMARY KEY, AUTO_INCREMENT
	first_name	First name of the employee	NOT NULL
	last_name	Last name of the	NOT NULL

	employee	
role	Role or job position of the employee	NOT NULL
branch id	Foreign key referencing	FOREIGN KEY REFERENCES
brancii_lu	Branches table	Branches(branch_id)
hire_date	Date the employee was	NOT NULL
Tille_date	hired	
email	Email address of the	Optional
emait	employee	Optionat
phone_number	Contact number of the	Optional
priorie_number	employee	

Appendix B – SQL Queries

1. Vehicles

```
CREATE TABLE Vehicles (
  vehicle_id INT PRIMARY KEY AUTO_INCREMENT,
  model VARCHAR(50),
  year INT,
  vehicle_type VARCHAR(50), -- (e.g., 'SUV', 'Sedan', 'Truck')
  daily_rate DECIMAL(10, 2),
  availability_status VARCHAR(20), -- (e.g., 'available', 'rented', 'maintenance')
  branch_id INT,
  FOREIGN KEY (branch_id) REFERENCES Branches(branch_id)
FOREIGN KEY (insurance_id) REFERENCES VehicleInsurance(insurance_id)
);
INSERT INTO Vehicles (model, year, vehicle_type, daily_rate, availability_status,
branch_id, insurance_id) VALUES
('Toyota Camry', 2020, 'Sedan', 45.99, 'available', 1, 101),
('Ford Explorer', 2019, 'SUV', 65.50, 'rented', 2, 102),
('Chevrolet Silverado', 2021, 'Truck', 80.00, 'available', 1, 103),
('Honda Civic', 2018, 'Sedan', 40.00, 'maintenance', 3, 104),
('Tesla Model 3', 2022, 'Sedan', 120.00, 'available', 2, 105);
```

2. Reservations

```
CREATE TABLE Reservations (
reservation_id INT PRIMARY KEY AUTO_INCREMENT,
user_id INT,
vehicle_id INT,
```

```
reservation_date DATE,
     start_date DATE,
     end_date DATE,
     total_price INT,
     status VARCHAR(20), -- (e.g., 'confirmed', 'cancelled', 'completed')
     FOREIGN KEY (user_id) REFERENCES Users(user_id),
     FOREIGN KEY (vehicle_id) REFERENCES Vehicles(vehicle_id)
   );
   INSERT INTO Reservations (user_id, vehicle_id, reservation_date, start_date,
   end_date, total_price, status)
   VALUES
   (1, 1, '2024-09-15', '2024-09-20', '2024-09-25', 229.95, 'confirmed'),
   (2, 2, '2024-09-18', '2024-09-21', '2024-09-23', 131.00, 'completed'),
   (3, 3, '2024-09-20', '2024-09-22', '2024-09-24', 160.00, 'cancelled'),
   (4, 4, '2024-09-25', '2024-09-28', '2024-10-01', 240.00, 'confirmed'),
   (5, 5, '2024-09-30', '2024-10-02', '2024-10-05', 360.00, 'confirmed');
3. Branch
   CREATE TABLE Branches (
     branch_id INT PRIMARY KEY AUTO_INCREMENT,
     branch_name VARCHAR(100),
     address TEXT,
     city VARCHAR(50),
     state VARCHAR(50),
     zip_code VARCHAR(10),
     phone_number VARCHAR(20),
     email VARCHAR(100)
   );
```

```
INSERT INTO Branches (branch_name, address, city, state, zip_code, phone_number, email)
```

VALUES

```
('Downtown Branch', '123 Main St', 'Springfield', 'IL', '62701', '217-555-1234', 'downtown@carrental.com'),
```

('Airport Branch', '456 Airport Rd', 'Springfield', 'IL', '62707', '217-555-5678', 'airport@carrental.com'),

('Eastside Branch', '789 East Blvd', 'Shelbyville', 'IL', '62565', '217-555-9876', 'eastside@carrental.com'),

('Westside Branch', '321 West Dr', 'Ogdenville', 'IL', '62298', '618-555-4321', 'westside@carrental.com'),

('Capitol Branch', '654 Capitol Ave', 'Capital City', 'IL', '62702', '217-555-8765', 'capitol@carrental.com');

4. VehicleReviews

VALUES

```
CREATE TABLE VehicleReviews (
review_id INT PRIMARY KEY AUTO_INCREMENT,
user_id INT,
vehicle_id INT,
review_rating INT CHECK (review_rating BETWEEN 1 AND 5),
review_text TEXT,
review_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (user_id) REFERENCES Users(user_id),
FOREIGN KEY (vehicle_id) REFERENCES Vehicles(vehicle_id)
);
```

INSERT INTO VehicleReviews (user_id, vehicle_id, review_rating, review_text)

(1, 1, 5, 'Excellent car! Smooth ride and very comfortable. Highly recommend!'),

- (2, 2, 4, 'Great SUV for family trips. Good space but a bit thirsty on gas.'),
- (3, 3, 3, 'The truck was okay. Performance was decent, but it had some scratches.'),
- (4, 4, 5, 'Absolutely loved this car! Perfect for my weekend getaway.'),
- (5, 5, 4, 'The Tesla was amazing! Quick acceleration and great technology. A bit pricey though.');

6. Accident reports

```
CREATE TABLE AccidentReports (
  report_id INT PRIMARY KEY AUTO_INCREMENT,
  rental_id INT,
  vehicle_id INT,
  insurance_id INT,
  accident_date DATE,
  description TEXT,
  damage_cost DECIMAL(10, 2),
  is resolved BOOLEAN DEFAULT 0.
  FOREIGN KEY (rental_id) REFERENCES Rentals(rental_id),
  FOREIGN KEY (vehicle id) REFERENCES Vehicles (vehicle id)
  FOREIGN KEY (insurance_id) REFERENCES VehicleInsurance(vehicle_id)
);
INSERT INTO AccidentReports (rental_id, vehicle_id, insurance_id, accident_date,
description, damage_cost, is_resolved)
VALUES
(1, 1, 101, '2024-09-21', 'Minor fender bender, no injuries reported.', 250.00, 0),
(2, 2, 102, '2024-09-22', 'Side collision at an intersection.', 1500.50, 0),
(3, 3, 103, '2024-09-23', 'Rear-end collision, extensive damage.', 3500.75, 1),
(4, 4, 104, '2024-09-24', 'Accident due to slippery road conditions.', 800.00, 0),
(5, 5, 105, '2024-09-25', 'Vehicle rolled over, severe damage.', 5000.00, 1);
```

7. EMPLOYEE TABLE

```
driven insights.
CREATE TABLE Employees (
 employee_id INT PRIMARY KEY AUTO_INCREMENT,
 first_name VARCHAR(50),
 last_name VARCHAR(50),
 role VARCHAR(50), -- (e.g., 'customer service', 'manager', 'mechanic')
 branch_id INT,
 hire_date DATE,
 email VARCHAR(100),
 phone_number VARCHAR(20),
 FOREIGN KEY (branch_id) REFERENCES Branches(branch_id)
);
INSERT INTO Employees (first_name, last_name, role, branch_id, hire_date, email,
phone_number)
VALUES
('Alice', 'Johnson', 'manager', 1, '2023-01-15', 'alice.johnson@carrental.com', '217-
555-0011'),
('Bob', 'Smith', 'customer service', 2, '2023-03-10', 'bob.smith@carrental.com', '217-
555-0012'),
('Charlie', 'Brown', 'mechanic', 1, '2023-05-20', 'charlie.brown@carrental.com', '217-
555-0013'),
('David',
              'Williams',
                              'customer
                                              service',
                                                            3,
                                                                   '2023-07-05',
'david.williams@carrental.com', '217-555-0014');
```

Contains employee details for managing client service and utilizing technology-