■ Thus, the *frequency response* of this circuit looks like a *staircase*, having *two steps*

$\succ C_{\pi}$

- \blacksquare R_{π}^{0} can't be obtained by inspection
- Analyze the circuit and show that:

$$R_{\pi}^{0} = r_{\pi} \parallel \left(\frac{R_{S} + R_{L}}{1 + g_{m}R_{L}} \right)$$

$$\Rightarrow \tau_{1} = R_{\pi}^{0}C_{\pi}$$

This is another Standard Form
 and the topology should be carefully noted

$\succ C_{\mu}$

- This is relatively straightforward
- **By inspection:**

$$R_{eq} = r_{\pi} + (\beta + 1)R_{L}$$

$$R_{\mu}^{0} = R_{S} || R_{eq}$$

$$\Rightarrow \tau_{2} = R_{\mu}^{0}C_{\mu}$$

This circuit also has reasonably good frequency response

• *CD*:

 $\succ C_{db}$ absent due to obvious reason

$$\triangleright v_{bs} = -v_0$$

 $\Rightarrow g_{mb}v_{bs}$ is simple a conductance g_{mb} , in parallel with R_L

$$\Rightarrow$$
 Club them to $R = R_L ||(1/g_{mb})|$

- $\succ C_{gs}$:
 - Standard Form sans $r_{\pi}(CC)$

$$\Rightarrow R_{gs}^{0} = \frac{R_{S} + R}{1 + g_{m}R}$$

$$\Rightarrow \tau_1 = R_{gs}^0 C_{gs}$$

$\succ C_{gd}$:

By inspection:

$$R_{gd}^{0} = R_{S}$$

$$\Rightarrow \tau_{2} = R_{gd}^{0} C_{gd}$$

- $\succ C_{sb}$:
 - **By inspection**:

$$R_{sb}^{0} = R \parallel (1/g_{m})$$

$$\Rightarrow \tau_{3} = R_{sb}^{0} C_{sb}$$

> Loving it?:)

• *CE(D)*:

ac Schematic

High-Frequency Equivalent

$\succ C_{\pi}$

• Standard Form (similar to CC, with R_L replaced by R_E)

$$\Rightarrow R_{\pi}^{0} = r_{\pi} \parallel \left(\frac{R_{S} + R_{E}}{1 + g_{m}R_{E}} \right)$$
$$\Rightarrow \tau_{1} = R_{\pi}^{0}C_{\pi}$$

$> C_{\mu}$

- Slightly more complicated
- **Remove** C_{π} and look across 2 terminals of C_{μ}
- Can be represented by a 2-port network

• Show that:

$$R_{eq} = R_S || R_{\pi}$$
with $R_{\pi} = r_{\pi} (1 + g_m R_E)$

$$G_m = g_m / (1 + g_m R_E)$$

 This can be easily identified as a Three-Legged Creature

$$\Rightarrow R_{\mu}^{0} = R_{eq} + R_{L} + G_{m}R_{eq}R_{L}$$
$$\Rightarrow \tau_{2} = R_{\mu}^{0}C_{\mu}$$

2-Port Representation of a CE(D) Stage

• *CS(D)*:

ac Schematic

High-Frequency Equivalent