

Chapter 2

FTP, SMTP, and DNS

File Transfer Protocol (FTP)

- FTP communicates over two connections
 - Port 21 for control information
 - Port 20 for data
- Differences from HTTP
 - Control communication "out-of-band"
 - Server maintains per client state: authentication, current directory

FTP procedure:

- FTP client contacts FTP server at port 21, using TCP
- Client authorized over control connection
- Client browses remote directory, sends commands over control connection
- When server receives file transfer command, server opens 2nd TCP data connection (for file) to client
- After transferring one file, server closes data connection

Why use a separate control connection?

Simple Mail Transfer Prot. (SMTP)

MAIL FROM: <mike.wittie@montana.edu>
RCPT TO: <mwittie@gmail.com>
DATA
Subject: Hello
there.

- Differences with HTTP
 - Much older all content encoded as 7bit ASCII (no utf-encoded strings)
 - Even more verbose
 - SMTP primarily a push protocol, HTTP primarily pull

- Questions
 - Why not send the message directly between agents?
 - Why not have Alice's agent contact Bob's server directly?
 - How is email different from online social networks?

Domain Name System (DNS)

- People like mnemonics
 - Ex. montana.edu
- Routers like fixed width addresses
 - Ex. **153.90.3.95**
- How to map between the two?
- Domain Name System:
 - Database of mappings between host mnemonics and IP addresses
 - Application layer protocol
 - Hosts communicate with DNS to resolve names
 - Lookups over UDP on port 53

Example:

Come up with an architecture for DNS

Demo

DNS architecture

- A distributed database
 - No DNS server has all the records!
 - Hierarchical organization
- Root DNS servers
 - Responsible for TLD servers
- Top-level domain (TLD) servers:
 - Responsible for com, org, net, edu
 - And top-level country domains,
 e.g.: uk, fr, ca, jp
- Authoritative DNS servers:
 - Organization's own DNS with up-to-date records

- Local DNS servers
 - Not part of the hierarchy
 - Acts as proxy for local DNS queries
 - May contain cached records
- Complexity at the "network edge"

DNS root servers

DNS Services

- DNS services
 - Hostname to IP address translation host montana.edu
 - Hostname to IPv6 address translation
 - host -t AAAA montana.edu
 - Host aliasinghost -t CNAME img.huffingtonpost.com
 - Mail server aliasing
 host -t MX montana.edu
 - Load distribution
 host huffpost.com | grep "address" | sed -n -e 's/^.*address //p'
 - Redirection
 - Look up same host from servers in different regions

montana.edu
?
Welcome to

Inserting DNS records

MONTANA STATE UNIVERSITY

- Want netutopia.com
- Contact registrar
 - (eg. Network Solutions)
 - Provide IP of authoritative DNS
- Registrar updates .com TLD
 (netutopia.com, dns1.netutopia.com, NS)
 (dns1.netutopia.com, 212.212.21.1, A)
 - Update own DNS with type **A** and **MX** records

DNS lookup process

Iterative lookup

Recursive lookup

DNS caching

- Local DNS saves records after lookup
 - Host mappings
 - TLD addresses
- Changing DNS mappings
 - Cache entries have time to live (TTL)
 - Authoritative servers push updates to TLDs through UPDATE requests
 - Authoritative lookup (getting around the cache)

host -t NS montana.edu

host montana.edu dns1.msu.montana.edu

Authoritative DNS server dns.umass.edu

