Logistic Regression

NCP Seminar with Rstudio and Andy Field's DSUR Logistic Regression

interaction terms in regression models

adding interaction terms expand the model and the understanding

$$Y_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + b_3 + X_{1i} * X_{2i}$$

- multiplication of predictors creates interaction term
- interpretation of sig. interaction terms is a chapter for itself!

what is logistic regression?

- continuous outcome:
- $Y_i = b_0 + b_1 X_{1i} + \varepsilon_i$ linear regression model
- $Y_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + \dots + b_n X_{ni} + \varepsilon_i$
- categorical outcome:

•
$$P(Y) = \frac{1}{1 + e^{-(b_0 + b_1 X_{1i})}}$$
 Logistic regression model
• $P(Y) = \frac{1}{1 + e^{-(b_0 + b_1 X_{1i} + b_2 X_{2i} + \dots + b_n X_{ni})}}$

•
$$P(Y) = \frac{1}{1 + e^{-(b_0 + b_1 X_{1i} + b_2 X_{2i} + \dots + b_n X_{ni})}}$$

GOAL: predict outcome (yes/no) based on predictors

WHY: categorical outcome violates linearity assumption

probability: classifier, threshold convergence between 0 & 1

sigmoid function, ML training, accuracy

methods of logistic regression

forced entry method

all predictors in one block and revealing their estimated parameter

stepwise methods

- forward / backward integration
- forward: constant + predictor inclusion with AIC / BIC (must improve model)
- backward: exclusion of predictors that tune information criterion (AIC / BIC)
- hybrid: forward/backward more dynamic on each step

method selection

- theoretical background / data exploration
- stepwise is a good approach to fit data (not causality driven!)

assumptions and background

- linearity
- independence of errors
- multicollinearity
- MLE (Maximum-likelihood estimation)

log-likelihood =
$$\sum_{i=1}^{N} [Y_i ln(P(Y_i)) + (1 - Y_i) ln(1 - Y_i)]$$
deviance = $-2LL$ (follows a χ^2 distribution)

complete separation

 $df = k_{pew} - k_{baseline}$

 $\chi^2 = (-2LL(baseline)) - (-2LL(new))$

= 2LL(new) - 2LL(baseline)

FIGURE 8.3 An example of the relationship between weight (x-axis) and a dichotomous outcome variable (y-axis, 1 = Burglar, 0 = Teenager) – note that the weights in the two groups overlap

FIGURE 8.4 An example of complete separation – note that the weights (x-axis) of the two categories in the dichotomous outcome variable (y-axis, 1 = Burglar, 0 = Cat) do not overlap

assumptions and background

- Akaike information criterion AIC = -2LL + 2k
- Bayes information criterion $BIC = -2LL + 2k * \log(n)$
- contribution of the predictors: the z-statistic $z = \frac{b}{SE_b}$
- the odds ratio $odds = \frac{P(event)}{P(no\ event)}$ $P(event\ of\ Y) = \frac{1}{1+e^{-(b_0+b_1Y_1)}} \quad P(no\ event\ of\ Y) = 1 P(event\ of\ Y)$

exercise one

- use the functions vif() and log(), dataset = 'penalty.dat'
- evaluate the multicollinearity of the variables: Previous, Anxious, PSWQ
- is the assumption violated? If so what can you do?
 - omit variable (is there a relevant criterion?)
 - test more subjects
 - factor analysis, general load of predictors combined as a factor
 - accept the unreliable model
- Evaluate the linearity of the variables. Interaction: X * log(X)
 - PSWQ logPSWQInt; Previous logPrevInt; Anxious logAnxInt
 - What do you know about logarithmic any special cases?

exercise one

PSWQ	Anxious	Previou	is So	cored	logPSWQInt	logAnxInt	logPrevInt
18	21	56	Scored	Penalty	52.02669	63.93497	226.41087
17	32	35	Scored	Penalty	48.16463	110.90355	125.42316
16	34	35	Scored	Penalty	44.36142	119.89626	125.42316
14	40	15	Scored	Penalty	36.94680	147.55518	41.58883
5	24	47	Scored	Penalty	8.04719	76.27329	181.94645
1	15	67	Scored	Penalty	0.00000	40.62075	282.70702
etc.							

model output

TODO: What does family mean and how many families are there?

```
Call:
glm(formula = Cured ~ Intervention family = binomial(), data = eelData)
Deviance Residuals:
                                                                    family(object, ...)
                   Median
    Min
                                          Max
-1.5940 -1.0579
                   0.8118
                             0.8118
                                      1.3018
                                                                    binomial(link = "logit")
                                                                    gaussian(link = "identity")
                                                                    Gamma(link = "inverse")
Coefficients:
                                                                    inverse.gaussian(link = "1/mu^2")
                          Estimate Std. Error z value Pr(>|z|)
                                                                    poisson(link = "log")
                                                                    quasi(link = "identity", variance = "constant")
(Intercept)
                           -0.2877
                                        0.2700
                                               -1.065 0.28671
                                                                    quasibinomial(link = "logit")
                                                 3.074 0.00212 **
InterventionIntervention
                           1.2287
                                        0.3998
                                                                    quasipoisson(link = "log")
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                           but is the model
(Dispersion parameter for binomial family taken to be 1)
                                                                           significant?
    Null deviance: 154.08 on 112 degrees of freedom
Residual deviance: 144.16 on 111 degrees of freedom
AIC: 148.16
```

Number of Fisher Scoring iterations: 4

our model improves when adding intervention

model output

but is the model significant?

```
Call:
glm(formula = Cured ~ Intervention, family = binomial(), data = eelData)
Deviance Residuals:
              10 Median
    Min
                                        Max
                                                                   follows a chi-square statistic
-1.5940 -1.0579
                  0.8118
                           0.8118
                                    1.3018
Coefficients:
                         Estimate Std. Error z value Pr(>|z|)
(Intercept)
                          -0.2877
                                      0.2700
                                            -1.065 0.28671
                                              3.074 0.00212 **
InterventionIntervention
                          1.2287
                                      0.3998
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 154.08 on 112 degrees of freedom
Residual deviance: 144.16 on 111 degrees of freedom
AIC: 148.16
Number of Fisher Scoring iterations: 4
```

 χ^2 = null deviance – deviance $\chi^2 = 154.08 - 144.16 = 9.926$ Degrees of freedom

df = 112 - 111 = 1p-value: chi.sq.prob = $1 - pchisq(\chi^2, df)$

 $\chi^2 = 9.926$, p = 0.002

exercise two

- pick a data set from the Drive folder
- run a logistic regression for variables, interactions, ...
- present and explain

estimates for R²

```
logisticPseudoR2s <- function(LogModel) {
    dev <- LogModel$deviance
    nullDev <- LogModel$null.deviance
    modelN <- length(LogModel$fitted.values)
    R.l <- 1 - dev / nullDev
    R.cs <- 1- exp ( -(nullDev - dev) / modelN)
    R.n <- R.cs / (1 - ( exp (-(nullDev / modelN))))
    cat("Pseudo R^2 for logistic regression\n")
    cat("Hosmer and Lemeshow R^2 ", round(R.l, 3), "\n")
    cat("Cox and Snell R^2 ", round(R.cs, 3), "\n")
    cat("Nagelkerke R^2 ", round(R.n, 3), "\n")
}</pre>
```

```
Pseudo R^2 for logistic regression
Hosmer and Lemeshow R^2 0.064
Cox and Snell R^2 0.084
Nagelkerke R^2 0.113
```

equivalents to R²

running multinomial logistic regression

- install.packages("mlogit")
- select a baseline (relevel() function)
- use function mlogit()
 - read documentary ?mlogit
 - reference is included in mlogit function
- log-likelihood ratio:
 - how much unexplained data is in the model

Table 8.3 How to report multinomial logistic regression

		95% CI for odds ratio			
	B (SE)	Lower	Odds Ratio	Upper	
Phone number vs. no re	esponse			-	
Intercept	-1.78 (0.67)**				
Good Mate	0.13 (0.05)*	1.03	1.14	1.27	
Funny	0.14 (0.11)	0.93	1.15	1.43	
Female	-1.65 (0.80)*	0.04	0.19	0.92	
Sexual Content	0.28 (0.09)**	1.11	1.32	1.57	
Female × Funny	0.49 (0.14)***	1.24	1.64	2.15	
Female × Sex	-0.35 (0.11)*	0.57	0.71	0.87	
Going home vs. no res	ponse				
Intercept	-4.29 (0.94)***				
Good Mate	0.13 (0.08)	0.97	1.14	1.34	
Funny	0.32 (0.13)*	1.08	1.38	1.76	
Female	-5.63 (1.33)***	0.00	0.00	0.05	
Sexual Content	0.42 (0.12)**	1.20	1.52	1.93	
Female × Funny	1.17 (0.20)***	2.19	3.23	4.77	
Female × Sex	-0.48 (0.16)**	0.45	0.62	0.86	

```
Log-Likelihood: -868.74
McFadden R^2: 0.13816
Likelihood ratio test : chisq = 278.52 (p.value=< 2.22e-16)
```

McFadden R² and LL relationship to χ^2