

Coupled Electromagnetic and Thermal Analysis of Ferrite Core Electronic Planar Transformer

Mark Christini, P.E.
Technical Manager
ANSYS, Inc

ANSYS Outline

- Introduction
- **Maxwell 3D Eddy Current and Electrostatic Simulation**
- **ANSYS Mechanical Thermal** Simulation
- 2-way Thermal Coupling back to Maxwell
- **Simplorer System Simulation using Maxwell State Space Dynamic** model
- Summary

Introduction

- Coupled electromagnetic-thermal analysis of a ferrite core electronic planar transformer
- Magnetic simulation done at fundamental frequency = 100kHz with harmonics up to 5MHz
- All sources of losses considered including: eddy current, skin, and proximity losses in the windings as well as eddy current and hysteresis losses in the ferrite core
- Losses are directly coupled into an ANSYS Mechanical Thermal simulation in order to determine temperature rise using element by element coupling
- Temperatures fed back to Maxwell for material changes
- System simulation done inside of Simplorer using dynamic state space frequency dependent model

Coupled Electromechanical Design Flow

FEA Adaptive Meshing

2D Transformer Model

2D Transformer Mesh

3D Transformer Model

3D Transformer Mesh

In 3D, finite elements are tetrahedra

Transformer Design Challenges

Magnetic effects:

- nonlinear materials
- frequency dependent materials
- temp dependent materials
- eddy currents
- proximity effects
- eddy and hysteresis losses
- time diffusion of magnetic fields
- transient excitations

Electric Field effects:

- varying dielectric permitivities
- varying dimensions and shape
- 3D field effects

ANSYS Comprehensive Solution

ANSYS Workbench Coupling Technology

Electronic Planar Transformer

- Ferrite PQ Core
- Primary turns = 4
- Secondary turns = 2
- Insulation layers between conductors
- Fundamental Frequency = 100kHz

Maxwell 3D Source Setup

- Load case with Ipri = 50A and Isec = 80A
- **Unbalanced A-turns for** core excitation

Ferrite Core Properties

Frequency dependent permeability and imaginary permeability Use Simplorer Sheetscan utility to grab permeability data points

Datasheet

Sheetscan

Frequency Dependent Core Properties in Maxwell

Required inputs for Maxwell are real permeability and loss tangent

Loss tangent based on series equivalent model

Temp = 0 C

frequency	<u>perm</u>	perm_imag	loss tangent
100000	1939	6	0.0032
200000	1977	13	0.0068
300000	2015	22	0.0110
400000	2052	35	0.0173
500000	2090	51	0.0244
600000	2165	79	0.0363
700000	2281	119	0.0522
800000	2322	174	0.0750
900000	2446	264	0.1078
1000000	2533	336	0.1326
1500000	2581	998	0.3869
2000000	2029	2101	1.0351
3000000	828	2178	2.6306
4000000	227	1626	7.1618
5000000	97	1093	11.2199
6000000	61	663	10.8398
7000000	47	424	8.9644
8000000	39	327	8.3658
9000000	34	271	7.9437
10000000	31	228	7.4132

$\mathcal{S}_{s} = \frac{\mu_{s}^{"}}{\mu_{s}^{"}} = \frac{R_{s}}{\omega L_{s}}$ $\mathbb{S}_{s} = \frac{R_{s}}{\kappa_{s}} = \frac{R_{s}}{\omega L_{s}}$ Series representation

Permeabilty vs Frequency

ANSYS Core Material Properties - Inputs

Niew / Edit Material

Properties of the Material

Relative Permittivity

Relative Permeability

Name

Material Coordinate System 1

Units

Cartesian

Value

Туре

Simple

Simple

Material Name

M 3c85 temp

Datasets used to define properties vs. frequency:

- Relative Permeability = pwl(\$perm,Freq)
- Magnetic Loss tangent = pwl(\$losstan,Freq)

Relative permitivity = 12

Core Material Properties - Outputs

Use "named expression" in calculator to verify the real and imaginary permeability

Use report to plot μ' and loss tangent vs. frequency

Real permeability - µ'

Num > Vector > 1,0,0

Material > perm > multiply

complex > real > mag

constant > mu0 > divide

Real permeability - µ"

Num > Vector > 1,0,0

Material > perm > multiply

complex > imag > mag

constant > mu0 > divide

ANSYS Temperature Settings in Maxwell

- **Initial temperature** = 22 C
- **Core and windings** have temp dependent materials

Temperature dependent copper conductivity for 2-way coupling to Maxwell

$$\sigma = \frac{1}{(1+0.0039*(Temp-22))}$$

Initial Conductivity at 100kHz, 22 deg C

- Conductivity = 5.8e⁷ (S/m)
- Conductivity is constant throughout winding

Temperature dependent ferrite permeability for 2-way coupling to Maxwell

2-way coupling for temperature dependent permeability

		perm
<u>deg C</u>	<u>perm</u>	<u>modifier</u>
-50	1247	0.73
-25	1440	0.85
0	1700	1.00
25	2031	1.19
50	2442	1.44
74	2982	1.75
89	3252	1.91
100	3368	1.98
113	3483	2.05
125	3522	2.07
137	3560	2.09
149	3586	2.11
162	3650	2.15
175	3753	2.21
183	3869	2.28
189	3985	2.34
191	4113	2.42
194	4267	2.51
195	4370	2.57
197	4524	2.66
200	4576	2.69
202	4524	2.66
204	4422	2.60
205	4023	2.37
206	2494	1.47
209	514	0.30
211	180	0.11
213	77	0.05
216	39	0.02
221	13	0.01
225	13	0.01

Permeability 5000 4000 2000 1000 -50 0 50 100 150 200 250 temp (C)

Permeability modifier

Initial Permeability at 100kHz, 22 deg C

Real Permeability

Imaginary Permeability

ANSYS Current Density at 100kHz, 22 deg C

Magnetic Flux Density at 100kHz, 22 deg C

Winding Eddy Current Loss Density at 100kHz, 22 deg C

ANSYS Core Loss Density at 100kHz, 22 deg C

$$P_{eddy} = \frac{1}{2\sigma} \iiint_{vol} \operatorname{Re}(\vec{J} \bullet \vec{J}^*) dV$$

$$P_{hysteresis} = -\frac{1}{2} \omega \iiint_{vol} \operatorname{Im}(\vec{B} \bullet \vec{H}^*) dV$$

Ohmic Loss

Hysteresis Loss

core	hyster	eddy	losses

Freq [kHz]	core_hyster_loss Setup1 : LastAdaptive Phase='0deg'	core_eddy_loss Setup1 : LastAdaptive Phase='0deg'	
10.000000	0.001082	0.001897	
100.000000	1.211527	0.191875	
500.000000	44.428733	5.032800	
	10.000000	Freq [kHz] Setup1: LastAdaptive Phase=0deg' 10.000000 0.001082 100.000000 1.211527	Freq [kHz] Setup1 : LastAdaptive Phase='0deg' Setup1 : LastAdaptive Phase='0deg' 10.000000 0.001082 0.001897 100.000000 1.211527 0.191875

ANSYS Simulated Resistance, 22 deg C

ANSYS Simulated Inductance, 22 deg C

ANSYS Simulated Capacitance

Use DC conduction solver to assign +1V and -1V to coils and on core

$$\begin{bmatrix} \mathcal{Q}_1 \\ \mathcal{Q}_2 \\ \mathcal{Q}_3 \end{bmatrix} = \begin{bmatrix} C_{10} + C_{12} + C_{13} & -C_{12} & -C_{13} \\ -C_{12} & C_{20} + C_{12} + C_{23} & -C_{23} \\ -C_{13} & -C_{23} & C_{30} + C_{13} + C_{23} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

Workbench Coupling

- Maxwell 3D Eddy
 Current calculates
 losses and couples
 directly to ANSYS
 thermal
- Maxwell 3D
 Electrostatic calculates
 capacitances between
 winding and core
- Maxwell 3D Eddy
 Current calculates R,L
 vs. frequency and
 inports directly into
 Simplorer via the
 State-space dynamic
 link

ANSYS Workbench Coupling

Engineering Data allows materials to be chosen including thermal conductivity

MSYS Workbench Coupling

- Workbench geometry imported directly into Workbench
- **Appropriate** materials can then be assigned

MSYS Workbench Coupling

- Workbench mesh is different than Maxwell 3D mesh
- Set maximum element size = 0.5mm

ANSYS Workbench Coupling

- **Fixed** temperature cold plate assigned to base = 22 C
- Convection boundaries assigned to outer surfaces of core and coils $= 5 W/m^2 - C$

ANSYS Workbench Coupling

- Imported Loss Density on core and windings at 100kHz
- Scaling Factor approximately ~ 1 indicates sufficient mesh and excellent loss mapping from Maxwell into Workbench

Exported loss density from Maxwell 3D

Imported loss density into Workbench

Ferrite Core Transformer Temperature at 100kHz

Temperature range from 22–182 deg C

Export temperature back to Maxwell

Re-solve in Maxwell with actual temp from

Updated Copper Conductivity with 2-way coupling

Initial Conductivity

Initial conductivity at 22°C is uniform = 5.8e⁷ (S/m)

Final Conductivity

- As temp increases, conductivity decreases
- Final conductivity at operating temperature = 3.5e⁷ to 4.7e⁷ (S/m)

Updated Loss density with 2-way coupling

ANSYS°

Simplorer Architecture

ANSYS Simplorer System Simulation

Maxwell 3D Frequency Sweep

ANSYS Simplorer System Simulation

Select appropriate Maxwell 3D design with frequency sweep

Simplorer System Simulation

- Imported frequency dependent R,L model (statespace)
- Imported capacitance model
- Apply appropriate sources and loads

ANSYS Conclusions

- Maxwell 3D determines R, L and loss components (eddy current, hysteresis, proximity, skin) at multiple frequencies as well Capacitance
- Using Workbench, Maxwell loss densities are coupled to ANSYS Mechanical for temperature rise calculation
- Resulting temperature rise can be coupled back into Maxwell to change material properties such as permeability and conductivity and determine thermal operating point and calculate higher losses
- Maxwell 3D can export a frequency dependent transfer function using Dynamic State Space coupling inside of Simplorer to allow for a complete system simulation

