

Initial Project Planning Template

Date	15 july 2024
Team ID	740040
Project Name	Predicting Co2 Emission By Countries Using Machine Learning
Maximum Marks	4 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional	User Story	User Story / Task	Story	Priority	Team	Sprint	Sprint End
	Requirement	Number		Points		Members	Start Date	Date
	(Epic)							(Planned)
Sprint-1	Data collection	USN-1	As a developer, I can collect historical CO2 emissions data from multiple sources	2	medium	priyanka	June 10th	June 13th
Sprint-1	Data Collection	USN-2	As developer, I can clean and preprocess the collected CO2 emissions data	1	High	priyanka	June 13th	June 17th
Sprint-2	Data analysis	USN-3	As a data scientist, I can analyze trends and patterns in the CO2 emissions data	2	Low	malavika	June 17th	June 19th
Sprint-2	Model Training	USN-4	As a data scientist, I can train a machine learning model to predict future CO2 emissions based on historical data	4	Medium	malavika	June 19th	June 21st

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members	Sprint Start Date	Sprint End Date (Planned)
Sprint-3	Model Evaluation	USN-5	As a data scientist, I can evaluate the performance of the trained model suing various metrics	2	Medium	malavika	June 21st	June 23rd
Sprint-3	Model Deployment	USN-6	As a developer, I can deploy the trained model to a cloud platform for predictions	3	High	vamshi	June 23rd	June 26th
Sprint-4	User Interface	USN-7	As a developer, I can create a user interface to visualize CO2 emissions predictions for different countries	3	Medium	vamshi	June 26th	June 29th
Sprint-4	User Testing	USN-8	As a tester, I can perform user acceptance testing to ensure the application meets the requirements	2	High	sagar	June 29th	July 3rd

Screenshot:

