§3.7 Implicit Differentiation

Example 2. Find the slope of the circle $x^2 + y^2 = 25$ at the point (3, -4).

Example 3. Find dy/dx if $y^2 = x^2 + \sin xy$.

Example 4. Find d^2y/dx^2 if $2x^3 - 3y^2 = 8$.

Example 5. Show that the point (2,4) lies on the curve $x^3 + y^3 - 9xy = 0$. Then find the tangent and normal to the curve there.

§3.8 Derivatives of Inverse Functions and Logarithms

Theorem 3 (The Derivative Rule for Inverses). If f has an interval I as domain and f'(x) exists and is never zero on I, then f^{-1} is differentiable at every point in its domain (the range of f). The value of $(f^{-1})'$ at a point b in the domain of f^{-1} is the reciprocal of the value of f' at the point $a = f^{-1}(b)$:

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$$
 or $\frac{df^{-1}}{dx}\Big|_{x=b} = \frac{1}{\frac{df}{dx}\Big|_{x=f^{-1}(b)}}$.

Example 2. Let $f(x) = x^3 - 2$, x > 0. Find the value of df^{-1}/dx at x = 6 = f(2) without finding a formula for $f^{-1}(x)$.

Derivative of Logarithm. $\frac{d}{dx}(\ln x) = \frac{1}{x}, x > 0.$

Example 3. Find (a) $\frac{d}{dx}\ln(2x)$ (b) $\frac{d}{dx}\ln(x^2+3)$.

Example 4. A line with slope m passes through the origin and is tangent to the graph $y = \ln x$. What is the value of m?

Example 6. Find dy/dx if $y = \frac{(x^2+1)(x+3)^{1/2}}{x-1}$, x > 1.

Example 7. Differentiate $f(x) = x^x, x > 0$.

§3.9 Inverse Trigonometric Functions

Definition. $y = \tan^{-1} x$ is the number in $(-\pi/2, \pi/2)$ for which $\tan y = x$.

 $y = \cot^{-1} x$ is the number in $(0, \pi)$ for which $\cot y = x$.

 $y = \sec^{-1} x$ is the number in $[0, \pi/2) \cup (\pi/2, \pi]$ for which $\sec y = x$.

 $y = \csc^{-1} x$ is the number in $[-\pi/2, 0) \cup (0, \pi/2]$ for which $\csc y = x$.

Derivative of sin⁻¹ x. $\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}, |x| < 1.$

Example 2. Find $\frac{d}{dx}(\sin^{-1}x^2)$.

Derivative of $\tan^{-1} x$. $\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$.

Derivative of $\sec^{-1} x$. $\frac{d}{dx}(\sec^{-1} x) = \frac{1}{|x|\sqrt{x^2 - 1}}, |x| > 1$.

$\S 3.10*$ Related Rates

Exercise 6. If $x = y^3 - y$ and dy/dt = 5, then what is dx/dt when y = 2?

Exercise 10. If $r + s^2 + v^3 = 12$, dr/dt = 4, and ds/dt = -3, find dv/dt when r = 3 and s = 1.