" which of the following statements are not preposition?

The declaration statement is said to be an preposition not the imperation, exclamatory as other statements. In the above questions (A), (B) and (E) is not a preposition.

R: Les should be house, a: Les should be didicated.

R: Les should be overconfident. Then "We should be houseld be nousely be not dedicated but not overconfident" as represented by.

gustify.

DIPVENNR

BV9 & betailed na ternal sel bluate ser BVA & trubiformean ton tuel BVA BV9: remand

3. what is toutology? yive an Example

an unit spaula (i.e) noise proposition de su proposition that arequire in it.

En: (pag) > (pvg)

n	9	119	419	(bod) - (bod)
F	£	F	F	Т
E	Т	F	Т	Т
T	F	F	T	т
Т	Т	T	Т	T

4. Je state ut mi been i speller et . each them speller, pabet is . each them speller, pabet is peller ton is speller ent. each them speller, pabet is represent.

P: It name today

pe $q \in \text{stots llies speller ult:0}$ $p < q \in \text{stots llies speller ut, peaket times to <math>q$ is speller unt $q \sim q$ (point the individual $q \sim q$ (p $\sim \wedge (p \leftarrow q)$)

unlast subom a' turnstats with m' besu unwyni for element of the turnstate at turnstate at repieres. $q \vee p \vee (iii) q \leftarrow p \vee (ii) p \leftarrow q \vee i)$ pristage. turnstale with

 $p \rightarrow nq \equiv n(np) \times nq$ $p \rightarrow nq \equiv p \times nq \rightarrow 0$ $p \rightarrow nq \equiv p \times nq \rightarrow 0$ $p \rightarrow p \equiv nq \times p \rightarrow 0$ $p \rightarrow p \equiv nq \times p \rightarrow 0$ $p \rightarrow p \equiv 0$ $p \rightarrow p \equiv 0$ $p \rightarrow p \equiv 0$

6. Let p(x) denate the statement 'x > 3'. The truth value of p(H) is. gustify

1 (4) = 4) 3

p(n) denotes the statement 'x >3'. p(n) denotes 4>3

(H is greater than 3) is true then the truth value of p(n) is true.

langeolotuat ai $(\rho v \wedge q v) \vee (\rho v \wedge q) \vee \varphi$ rustuse pjing! T $T = (\rho v \wedge q v) \vee (\rho v \wedge q) \vee \varphi$: searly of

exitudistibil) (qv)v(prvp) \(\alpha\qvp) \(\alpha\qvp)\) (pr \(\alpha\q\rangle\) = (pr \(\alpha\q\rangle\rangle\) \(\alpha\q\rangle\rangle\) (pr \(\alpha\q\rangle\rangle\) \(\alpha\q\rangle\rangle\rangle\) \(\alpha\q\rangle\rangle\) \(\alpha\q\rangle\rangle\) \(\alpha\q\rangle\rangle\) \(\alpha\q\rangle\rangle\) \(\alpha\q\rangle\rangle\rangle\) \(\alpha\q\rangle\rangle\) \(\alpha\q\rangle\rangle\) \(\alpha\q\rangle\rangle\) \(\alpha\q\rangle\rangle\) \(\alpha\q\rangle\rangle\) \(\alpha\q\rangle\rangl

= (qvp) x Tv(~px~q) [De nongan's law]

8. Show that p > n, Np > q, q > s => NN > s

- \	0	0.1	Riason
Step	Primise	Rule	GCCCCCCCV.
1.	N -> 21	P	given Prunies
ā.	~p >q	P	ywer Premise
3.	9 -> 5	P	your Primise
4 -	$(NP \rightarrow q) \Lambda(q \rightarrow s) \equiv (NP \rightarrow s)$	т	Main Rule (2)(3)
5.	NP - DE PVD	Т	was barrottibus
6.	n → n = Npvn	Т	Lanoitibus
٦.	(pvs) ∧ (~pvn) = (svn)	T	Resolution (5)(6)
8.	(AVR) = (AVA)	T	commutative law
	(81 V A) = (D) - A	Т	conditional equivalence

9. Without using truth table, prove that $p \rightarrow (q \vee r) \iff (p \rightarrow q) \iff (p \wedge n \vee q) \rightarrow r$ (1)

0 - [unulawings lanaitibnas] (πνρ)νην ≡ (ρ ← η) ← πν [unulawings lanaitibnas] (ρ ← η)νπ ≡ (ρ ← η) ← πν [unulawings lanaitibnas] (ρνην)νπ ≡ [unulawings with the instable of more of the contable of the c

10. Using sules of inference snow that SVH is tautologically implied by pvq, p - p bus re - p ,pvq, pva bilguini

Styr	Premise	Rule	Riasan
1.	pvq	P	ljiven Premise
2.	prva = Np >a	Τ	sonditional equivalence
3 .	$h \rightarrow \nu$	P	given Previse
4.	A > s	P	ejener Prunise
5.	NPVN	Т	conditional equivalence (3)
6-	(pvq) n(~pvn) = gvn	Т	Resolution (1)(5)
٦.	~9,V3	Т	randitional equivalence (4)
8.	AVR = (AVp) A(RVp)	Т	Resolution (6) (7)
۹.	M > 2 × N M	т	rommutative law

11. Show that the following prunises are incomistent A) of virmals misses many classes through illness, then she fails sign school.

betombene si ens met, baans algiel slief abannies pe (8
ton si ens met, estade ja tol a shaer abannies pe (1

· bitariburu

DI Dirmala misses many classes through which and backs

P: Dirmala misses many classes through ilmss q: She fails high scread n: She is unidurated s: Dirmale reads a lot of books

↑→9, 9→4, &→NH, 1115 →F

Step	Prunise	Rule	Riasan
1.	p > 9	P	ljisen Premise
2.	sq > m	P	ejium Prunise
3.	(h = d) v(d = u) = (db = d)	Т	chain Rule (1) (2)
4.	8 7 091	P	given Prunise
5.	bvy	Р	ljiven Prunise
6.	RNV&V	Т	ronditional equivalence (4)
7.	~p vn	Т	ronditional equivalence (3)
8.	ひるりい コロ いかりいら	Т	rommutative law (6)
9.	NANN = HNNP	Т	rammutative law (4)
10.	(91 NP) N(N N) ~3) =	-	
	(NPVNS)	Т	Resolution (8)(9)
'IV.	(NPVNS) = N(PNS)	Т	De margan's law (10)
12-	(b vy) v ~ (b v y) = E	Т	Regation law

^{18.} Verify whither the following $(p \rightarrow q) \wedge (n \rightarrow s)$, $(q \rightarrow t) \wedge (s \rightarrow u)$, $\sim (1 \wedge u)$, $\sim (1 \wedge$

8 ty	Premise	Rule	Reason
1	(2+10) x (p+1)	P	ejeven Premire
2 .	(u = 21 x (n = p)	P	ejimen Premise
3.	$(p \rightarrow q) \wedge (n \rightarrow k) \wedge (q \rightarrow n)$ $\wedge (k \rightarrow u) \equiv (p \rightarrow \tau) \wedge (n \rightarrow u)$	Т	chain Rule (1)(2)
4.	~ (≠ \ m)	Р	given Premise
5.	(ntvv)	Т	de morgan's saw
6.	P1 → 91	P	yiven Premise
٦.	NANN	Т	randitional equivalence (6)
8.	$(t \vee q \vee q) = (u \leftarrow R) \wedge (t \leftarrow q)$ $(u \vee R \vee q) \wedge (u \vee Q) \wedge (u \vee R \vee q) $	Т	randitional equivalence (3)
9.	(いりょういいいかいかいかいかいか) = (いりょう) (Т	distributive law (8) (7)
10.	$\Lambda(\mu\nu\kappa\sigma)\Lambda(\kappa\Lambda t)\nu\eta\sigma$ $\Lambda(\kappa\Lambda t)\nu\eta\sigma\equiv(\mu\sigma\nu t\sigma)$ $(t\sigma\nu\kappa\sigma)$	т	Risalutian (9) (3)
11.	つりくした へか) へん(かんよ)	Т	de margan's law (10)
12.	~りい(ナルカ) ハ心(ナルカ)	Т	
13.	~り V(大A刀) A 心(大A刃)		(11) was svitaturmax
	= NPVF	T	Degation (12)
14-	~pvF = ~p	T	Domination law (13)