MAT- 1 2 0 , RHR Semester: Fall, 2024

Department of **Mathematics and Natural Science MAT120- Integral Calculus & Differential Equations**

Total marks: 10

Assignment-01

N	<u>a</u>	m	_	
17	a	m	С	

Sec:

ID:

- 1. (4 Points) For problems (i) and (ii) estimate the area of the region between the function and the x-axis on the given interval using n = 6 and using,
 - (a) the right end points of the subintervals for the height of the rectangles,
 - (b) the left end points of the subintervals for the height of the rectangles and,
 - (c) the midpoints of the subintervals for the height of the rectangles

(i)
$$g(x) = 4 - \sqrt{x^2 + 2}$$
 on $[-1,3]$

(ii)
$$f(x) = x^3 - 2x^2 + 4$$
 on [1,4]

2. (2 Points) Evaluate the following integrals (use method of substitution rules):

$$(i) \int \frac{1}{\sqrt{x}} \cos \sqrt{x} \, dx \ (ii) \int \frac{2x+1}{x^2+x-2} \, dx \ (iii) \int \frac{e^x(x+1)}{\cos^2(xe^x)} \, dx \ (iv) \int \tan^3 x \sqrt{\sec x} \, dx$$

3. (2 Points) Evaluate the following integrals (use method of integration by parts):

$$(i) \int \ln (x + \sqrt{x^2 + a^2}) dx$$

$$(ii) \int (\sin^{-1} x)^2 dx$$

4. (2 Points) Find the Reduction formula of the following integrals:

$$(i) \int \cos^8 x \, dx$$
$$(ii) \int \tan^7 x \, dx$$