Practical No. 8

Aim: To implement 4-bit magnitude comparator.

Apparatus: 4 bit magnitude comparator IC (74LS85), Connecting wires, Bread Board, Power supply, LED, DMM.

Theory:

Definition

A magnitude comparator is a combinational circuit that compares two numbers A & B to determine whether:

```
A > B, or
```

$$\triangleright$$
 A = B, or

> A < B

Inputs

First number A

Second n-bit number B

Outputs

3 output signals (GT, EQ, LT), where:

```
1. GT = 1 IFF A > B
```

2.
$$EQ = 1$$
 IFF $A = B$

3.
$$LT = 1$$
 IFF $A < B$

Note: Exactly One of these 3 outputs equals 1, while the other 2 outputs are 0's

4-bit magnitude comparator

Inputs: 8-bits (A \Rightarrow 4-bits, B \Rightarrow 4-bits)

A and B are two 4-bit numbers

- ightharpoonup Let $A = A_3A_2A_1A_0$, and
- ightharpoonup Let B = B₃B₂B₁B₀
- \triangleright Inputs have 2^8 (256) possible combinations
- > Not easy to design using conventional techniques

Design of the EQ output (A = B) in 4-bit magnitude comparator Define $X_i = (A_i B_i) + (A_i B_i)$

Thus $X_i = 1$ IFF $A_i = B_i$ $\forall i = 0, 1, 2$ and 3 $X_i = 0$ IFF $A_i \neq B_i$

Condition for A= B

EQ=1 (i.e., A=B) IFF

- 1. $A_3=B_3 \to (X_3 = 1)$, and
- A₂=B₂ → (X₂ = 1), and
- A₁=B₁ → (X₁ = 1), and
- 4. $A_0=B_0 \to (X_0=1)$.

Thus, EQ=1 IFF X_3 X_2 X_1 $X_0 = 1$. In other words, $EQ = X_3$ X_2 X_1 X_0

Design of the GT output (A > B) 4-bit magnitude comparator If $A_3 > B_3$, then A > B (GT=1) irrespective of the relative values of the other bits of A & B. Consider, for example, A = 1000 and B = 0111 where A > B. This can be stated as GT=1 if $A_3 B_3^{-1} = 1$

If $A_3 = B_3 (X_3 = 1)$, we compare the next significant pair of bits $(A_2 \& B_2)$.

If $A_2 > B_2$ then A > B (GT=1) irrespective of the relative values of the other bits of A & B. Consider, for example, A = 0100 and B = 0011 where A > B. This can be stated as GT=1 if $X_3A_2B_2^{-1}=1$

If $A_3 = B_3 (X_3 = 1)$ and $A_2 = B_2 (X_2 = 1)$, we compare the next significant pair of bits $(A_1 \& B_1)$.

If $A_1 > B_1$ then A > B (GT=1) irrespective of the relative values of the remaining bits A_0 & B_0 . Consider, for example, A = 0010 and B = 0001 where A > B This can be stated as GT=1 if $X_3 X_2 A_1 B_1' = 1$

If $A_3 = B_3 (X_3 = 1)$ and $A_2 = B_2 (X_2 = 1)$ and $A_1 = B_1 (X_1 = 1)$, we compare the next pair of bits $(A_0 \& B_0)$.

If $A_0 > B_0$ then A > B (GT=1). This can be stated as GT=1 if $X_3X_2X_1A_0B_0'=1$

To summarize, GT = 1 (A > B) IFF:

- 1. $A_3 B_3 = 1$, or
- 2. $X_3A_2B_2'=1$, or
- 3. $X_3 X_2 A_1 B_1' = 1$, or
- 4. $X_3X_2X_1A_0B_0^{-1}=1$

In other words, $GT = A_3 B_3 + X_3 A_2 B_2 + X_3 X_2 A_1 B_1 + X_3 X_2 X_1 A_0 B_0$

Design of the LT output (A < B) 4-bit magnitude comparator

In the same manner as above, we can derive the expression of the LT (A < B) output LT = $\mathbf{B}_3 \mathbf{A}_3^{\ /} + \mathbf{X}_3 \mathbf{B}_2 \mathbf{A}_2^{\ /} + \mathbf{X}_3 \mathbf{X}_2 \mathbf{B}_1 \mathbf{A}_1^{\ /} + \mathbf{X}_3 \mathbf{X}_2 \mathbf{X}_1 \mathbf{B}_0 \mathbf{A}_0^{\ /}$

The gate implementation of the three output variables (EQ, GT & LT) is shown in the figure below.

Logic Diagram:

Procedure:

- i) Do the connection as per below pin diagram for various input data or 4 bit number.
- ii) Apply proper input condition and observe the output information of led on/off.
- iii) Compare theoretical data with observation and write conclusion.

Pin Diagram:

BCD to Excess-3 Code conversion logic diagram

Procedure:

- i) Do the connection as per Combinational logic diagram for various input data.
- ii) Apply proper input condition and observe the output information of using DMM. Compare theoretical data with observation and write conclusion

Inputs				Outputs		
Αı	Aο	Bı	Bo	G	E	L
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

CIRCUIT DIAGRAMS:

2- Bit Magnitude comparator

CONCLUSION:

Comparators compares an input signal with a reference voltage and has as a result a logic stage, which indicates whether the signal is lower or higher.