partonic production spectrum, $dN/dp_T \propto 1/p_T^{n(p_T)}$ (see Appendix B); thus R_{AA} increases with p_T . On the other hand, the ASW models mimic the small normalization of the RHIC data by highly suppressing their jets; as discussed in the subsequent paragraphs, the significant quenching leads to a loss of information on the details of the energy loss process, flattening the results. The two ASW models represented in Fig. 4.12 used EKRT-type medium density scaling [402] making the LHC medium ~ 7 times more dense than at RHIC.

Figure 4.11: Radiative DGLV and TG and BT elastic partonic fractional energy loss as implemented in WHDG [152] at LHC momenta for all jet species at fixed L=5 fm and (a) $dN_g/dy=1750$ and (b) $dN_g/dy=2900$; the former density comes from the Phobos extrapolation [87, 403], the latter from the KLN model of the color glass condensate (CGC) [400]. $\Delta E/E$ exhibits asymptotic behavior for both energy loss channels as given by the analytic pocket formulae Eq. (4.9) and Eq. (4.10).