

TEST REPORT No.: 17-1-0048401T02a

According to: FCC Regulations Part 15.205 & Part 15.209 Part 15.247

ISED-Regulations

RSS-Gen, Issue 4 RSS-247, Issue 2

for

Robert Bosch Car Multimedia Navigation System with Bluetooth and WLAN AIVIL12F0

FCC ID: YBN-AIVIL12F0 ISED: 9595A-AIVIL12F0

CETECOM GmbH

Laboratory Radio Communications & Electromagnetic Compatibility Im Teelbruch 116 • 45219 Essen • Germany Registered in Essen, Germany, Reg. No.: HRB Essen 8984 Tel.: + 49 (0) 20 54 / 95 19-954 • Fax: + 49 (0) 20 54 / 95 19-964 E-mail: info@cetecom.com • Internet: www.cetecom.com

Table of contents

1. SUMMARY OF TEST RESULTS	3
1.1. Tests measurement overview according of US CFR Title 47, Subpart 15C and Canada RSS-Standar 1.2. Attestation:	
2. ADMINISTRATIVE DATA	<i>6</i>
2.1. Identification of the testing laboratory. 2.2. Test location	6 6 6
3. EQUIPMENT UNDER TEST (EUT)	7
3.1. Technical data of main EUT declared by applicant 3.2. IEEE 802.11 overview: modulation and data rates 3.3. EUT: Type, S/N etc. and short descriptions used in this test report 3.4. EUT: Type, S/N etc. and short descriptions used in this test report 3.5. EUT set-ups 3.6. EUT operating modes 3.7. Worst case identification	8 8 9
4. DESCRIPTION OF TEST SYSTEM SET-UP'S	12
4.1. Test system set-up for conducted measurements on antenna port	14 15
5. MEASUREMENT RESULTS	17
5.1. Duty-Cycle	18 20 22 24 26
6. ABBREVIATIONS USED IN THIS REPORT	29
7. ACCREDITATION DETAILS OF CETECOM'S LABORATORIES AND TEST SITES	29
8. INSTRUMENTS AND ANCILLARY	30
8.1. Used equiment "CTC"	30
9. VERSIONS OF TEST REPORTS (CHANGE HISTORY)	33
Table of annex Total	al pages
Annex 1: Test result diagrams (separate document) CETECOM-TR18-1-0048401T02a-A1	14
Annex 2: External photographs of EUT (separate document) CETECOM- TR18-1-0048401T01a-A2	4
Annex 3: Please refer to external document "AIVIL12F0_Internal_Pictures" dated 2018-06-04	9
Annex 4: Test set-up photographs (separate document) CETECOM- TR18-1-0048401T01a -A4	
The listed attachments are an integral part of this report.	

1. Summary of test results

The test results apply exclusively to the test samples as presented in this Report. The CETECOM GmbH does not assume responsibility for any conclusions and generalizations taken in conjunction with other specimens or samples of the type of the item presented to tests. Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

The presented Equipment Under Test (in this report, hereinafter referred as EUT) supports radiofrequency technologies with WLAN technology and operating frequency range at 2.412 to 2.462 GHz according to IEE 802.11 b/g/n. The EUT integrates a WLAN transmitter of pre-certified system AIVIL42P0 (FCC ID: YBNAIVIL42P0 and ISED: 9595A-AIVIL42P0). Due no modifications on the WLAN Part of the module only radiated tests have been performed. In addition power verification tests have been performed too. Other implemented wireless technologies were not considered within this test report.

Following test cases have been performed to show compliance with valid Part 15.207/15.209/15.247 of the FCC CFR Title 47 Rules, Edition 2017 and ISED RSS-247 Issue 2/RSS-Gen Issue 4 standards.

1.1. Tests measurement overview according of US CFR Title 47, Subpart 15C and Canada RSS-Standards:

			References & Limits			EUT		
Test cases	Port	FCC Standard	RSS Section	Test Limit	EUT set-up	opera- ting mode	Result	
	TX-Mode							
Timing of transmitter (pulsed operation)	Antenna Terminal or enclosure	§15.35	RSS-Gen, Issue 4, Chapter 6.10		-	-	Performed -for Informatio n only	
6 dB bandwidth	Antenna terminal (conducted)	§15.247(a)(2)	RSS-247, Issue 2 Chapter 5.2 b	≥ 500 kHz for DTS systems	-	1	Remark *1)	
99% occupied bandwidth	Antenna terminal (conducted)	2.1049(h)	RSS-Gen, Issue 5, Chapter 6.7	99% Power bandwidth	-	1	Remark *1)	
Transmitter Peak output power	Antenna terminal (conducted)	§15.247(b)(3)	RSS-247, Issue 2 Chapter 5.1 d	1 Watt Peak			Pass Remark *2)	
Transmitter Peak output power radiated	Enclosure + Inter- connecting cables (radiated)	§15.247(b)(4)	RSS-247, Issue 2 Chapter 5.1 d	< 4 Watt (EIRP) for antenna with directional gain less 6dBi	l	1	Remark *1)	
Out-Of-Band RF- emissions Band-Edge emissions	Antenna terminal (conducted)	§15.247 (d)	RSS-Gen, Issue 4, Chapter 8.9	20 dBc or RSS-Gen, Issue 4, Table 4 limits			Pass Remark *2)	
Power spectral density	Antenna terminal (conducted)	§15.247(e)	RSS-247, Issue 2 Chapter 5.2 b	8dBm in any 3 kHz band	-1		Remark *1)	

Transmitter frequency stability	Antenna terminal (conducted)		RSS-Gen, Issue 4, Chapter 8.11	Occupied bandwidth entirely outside restricted bands and prohibited TV bands			Not applicable Use of ISM band
General field strength emissions + restricted bands	Enclosure + Inter- connecting cables (radiated)	§15.247 (d) §15.205 §15.209	RSS-247, Issue 2, Chapter 5.5 RSS-Gen: Issue 4: §8.9 Table 4+5+6	Emissions in restricted bands must meet the general field-strength radiated limits	1	1	Pass Remark *2)
AC-Power Lines Conducted Emissions	AC-Power lines	§15.207	RSS-Gen, Issue 4: Chapter 8.8 Table 3	FCC §15.107 class B limits §15.207 limits ISED: Table 3, Chapter 8.8			Not applicable

RF-E	RF-Exposure Evaluation (separation distance user to RF-radiating element greater 20cm)						
			References & Limits			EUT oper	
Test cases	Port	FCC Standard	RSS Section	Test Limit	EUT set- up	a- ting mod e	Result
				SAR-Limits FCC: 1.1310(b)			
Radio frequency radiation exposure requirements	Cabinet + Inter- connecting cables (radiated)	\$1.1310(b) \$2.1091 \$2.1093	RSS-102 Issue 5	RF-Field Strength Limits: FCC: "general population/ uncontrolled" environment Table 1 ISED: Table 4	1	1	See separate test reports 18-1- 0048401T05a

Remark 1) Please refer to separate FCC RF Test Report BTL-FCCP-2-1807C078_2.4G with FCC-ID: YBN-AIVIL42P0 and ISED Test Report BTL-ISEDR-2-1807C078 2.4G with ISED 9595A-AIVIL42P0

1.2. Attestation:

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All requirements as shown in above table are met in accordance with enumerated standards.

DiplIng. N. Perez
Responsible for test report

²⁾ only worst case mode was tested from reference FCC-ID YBN-AIVIL42P0. For modulations and data rates not tested within this test report please refer to Test Report BTL-FCCP-2-1807C078_2.4G with FCC-ID: YBN-AIVIL42P0 and ISED Test Report BTL-ISEDR-2-1807C078 2.4G with ISED 9595A-AIVIL42P0

2. Administrative Data

2.1. Identification of the testing laboratory

Company name: **CETECOM GmbH** Address: Im Teelbruch 116

45219 Essen - Kettwig

Germany

Responsible for testing laboratory: Dipl.-Ing. Niels Jeß

Deputy: Dipl.-Ing. Rachid Acharkaoui

2.2. Test location

2.2.1. Test laboratory "CTC"

Company name: see chapter 2.1. Identification of the testing laboratory

2.3. Organizational items

Responsible for test report: Dipl.-Ing. N. Perez

Responsible for project: Dipl.-Ing N. Perez

Receipt of EUT: 2018-06-12

Date(s) of test: 2018-06-12 - 2018-07-18

Date of report: 2018-07-20

Version of template: 13.02

2.4. Applicant's details

Applicant's name: Robert Bosch Car Multimedia

Address: Robert-Bosch-Str. 200

31139 Hildesheim

Germany

Mr. Salvatore Miraglia Contact person:

2.5. Manufacturer's details

please see applicant's details Manufacturer's name: Address: please see applicant's details

3. Equipment under test (EUT)

3.1. Technical data of main EUT declared by applicant

Main function	Navigation System with Bluete	ooth and WLAN				
Type	AIVIL12F0	AIVIL12F0				
FCC ID	YBN-AIVIL12F0	YBN-AIVIL12F0				
IC/ISED	9595A-AIVIL12F0	9595A-AIVIL12F0				
Frequency range	■ 2412 MHz (Channel 1) to 2	462 MHz (Channel 11)	for 20MHz BW			
(US/Canada -bands)	■ 2422 MHz (Channel 3) to 2	452 MHZ (channel 9) f	for 40MHz BW			
Type of modulation	See chapter 3.2					
Number of channels (USA/Canada -bands)	1 to 11					
Antenna Type	▼ Integrated					
	☐ External, no RF- connector					
	☐ External, separate RF-conne	ector				
Antenna Gain	-1.4 dBi					
Max. Conducted Output Power	802.11b:11.2dBm					
*1)	802.11g: 6.6dBm					
	802.11n(20MHz): 6.5dBm					
	802.11n(40MHz): 6.1dBm					
EIRP WLAN	802.11b: 11.2dBm -1.4dBi =9.					
	802.11g: 6.6dBm -1.4dBi =5.2					
	802.11n(20MHz): $6.5dBm = 5$.1dBm				
	802.11n(40MHz): $6.1dBm = 4$					
	■ IEEE 802.11 5GHz a/n/ac (port)			
Installed options	■ Bluetooth (not tested within this report)					
instance options	☐ LTE FDD Band 2, 4, 5, 12 (port)			
	☐ UMTS Band 2, 4, 5 (not tested within this report)					
Power supply	☑ Nominal Test Voltage: 12.5 VDC with external power supply					
Special EMI components						
EUT sample type	☐ Production	➤ Pre-Production	☐ Engineering			
FCC label attached	□ yes	⋈ no				

Remark: *1) Power values for g, n20 and n40 taken from Test Report BTL-FCCP-2-1807C078_2.4G with FCC-ID: YBN-AIVIL42P0 and ISED Test Report BTL-ISEDR-2-1807C078 2.4G with ISED 9595A-AIVIL42P0

3.2. IEEE 802.11 overview: modulation and data rates

The modulations and data rates defined for 802.11 b/g/n transmitters are identified in the table below. Also it shows which operational mode is possible for the device under test (EUT) according applicant's information.

	802.11 b -Mode (DSSS System)				
Data rate [MBps]	Modulation type	Supported by EUT			
1	DBPSK (Differential binary phase shift keying)	YES			
2	DQPSK (Differential quadrature phase shift keying)	YES			
5.5 / 11	CCK/PBCC (8-chip complementary code keying)	YES			
22	ERP-PBCC (Packet binary convolutional coding)	NO			

	802.11g-Mode (OFDM system)				
Brutto data rate [MBps]	Modulation type of subcarriers	Supported by EUT			
6/9	BPSK	YES			
12 /18	QPSK	YES			
24 / 36	16-QAM	YES			
48 / 54	64-QAM	YES			

Remark: 52 sub-carriers which can be modulated at different data-rates.

802.11 n -Mode (OFDM)				
Brutto data rate [MBps]	Modulation type	Supported by EUT		
7.2/14.4/21.7/28.9/43.3/57.8/65/72.2 Mbps	HT20 (MCS0MCS7)	YES		
14.444/28.889/43.333/57.778/86.667/	HT20 (MCS8MCS7)	NO		
115.556/130/144.444 Mbps		NO		
15/30/45/60/90/120/135/150 Mbps	HT40 (MCS0MCS7)	YES		
30/60/90/120/180/240/270/300 Mbps	HT40 (MCS8MCS15)	NO		

Comments: For additional details please refer to "A-IVI_Scope2_TechnicalPassport_0706207"

3.3. EUT: Type, S/N etc. and short descriptions used in this test report

Short description*)	EUT	Туре	S/N serial number	HW hardware status	SW software status
EUT A	AIVIL12F0	Navigation System with Bluetooth and WLAN	0007647	001	X317 (0539)
EUT B	AIVIL12F0	Navigation System with Bluetooth and WLAN	0007625	001	X317 (0539)

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

3.4. EUT: Type, S/N etc. and short descriptions used in this test report

3.4.1. Auxiliary Equipment (AE): Type, S/N etc. and short descriptions

AE short description *)	Auxiliary Equipment	Туре	S/N serial number	HW hardware status	SW software status
AE 1	Harness	Test Cable			

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report.

3.5. EUT set-ups

EUT set-up no.*)	Combination of EUT and AE	Remarks
set. 1	EUT A + AE 1	Radiated measurement set-up
set. 2	EUT B + AE 1	Conducted measurement set-up

EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

3.6. EUT operating modes

EUT operating mode no.*1)	Description of operating modes	Additional information
op. 1	TX-Mode Burst 20MHz	With help of special test firmware WLAN is switched to a bandwidth of 20MHz and a continuous traffic mode in burst mode (duty cycle >98%) was set-up *2)
op. 2	TX-Mode Burst 40MHz	With help of special test firmware WLAN is switched to a bandwidth of 40MHz and a continuous traffic mode in burst mode (duty cycle >98%) was set-up *2)
op. 3	TX-Mode Burst 80MHz	With help of special test firmware WLAN is switched to a bandwidth of 80MHz and a continuous traffic mode in burst mode (duty cycle >98%) was set-up *2)

^{*1)} EUT operating mode no. is used to simplify the test report.

The following settings have been done under SW Labtool:

^{*2)} Please refer to document "Instructions_RadioTypeApproval_9_6_2017" dated 2017-06-09 for additional information regarding operating mode setup and output power levels.

Make the main settings which only have to be set once (per session): 30 0 (Choose the 2,4G band) or 30 1 (Choose the 5G band) 112 0 (20 MHz Bandwidth) or 112 1 (40 MHz Bandwidth) or 112 4 (80 MHz Bandwidth)

```
Enter option: 1
Nano: DutApiClass
Interface: EtherNet
Version: 2.0.0.75
Date: Mar 18 2015 (15:56:06)
Note:

Q:\MB\cIP\05 Models Test Results\B-Sample\SB032_cTP_My\03_Inbetriebnahme\labto
ol_for_win_22075_p22\setup.ini
Dut's IP 192.168.1.49:9930
Host's IP 192.168.1.1:9931
DutIf_UdpIp::vd=Id=Ny 0
DutIf_UdpIp::vd=Id=Ny 0
DutIf_UdpIp::vd=Id=Ny 0
DutIf_InitGonnection: 0

V87xx (802.11a/g/b/n/ac) IESI MENU
Enter option: 30 0
DutIf_SetModenG: 0x0
Enter option: 112 0
DutIf_SetChannelBv: 0x00000000
```

Now the parameters for Channel, Power level and modulation group has to be done:

22 1 14 0

```
Enter option: 22 1 17 0
DutIf_SetRfChannel: 0x0
DutIf_SetRfPowerCal: 0x0
Enter option:
```

For 802.11b the Power level is always 14 and the modulation group is 0

For 802.11g the Power level is always 11 and the modulation group is 1

For 802.11n (2,4GHz) the Power level is always 11 and the modulation group is 1

For 802.11n (5GHz) the Power level is always 10 and the modulation group is 1

For 802.11a the Power level is always 10 and the modulation group is 1

For 802.11ac the Power level is always 6 and the modulation group is 1

If a continuous burst is required use instead of the command 25 the command 17: 17 1 4

Enter option: 17 1 4

DutIf_SetIxDataRate: 0x00000000

TRPC ID: 2

DutIf_SetIxContMode: 0x00000000

Enter option:

11b					
ID	DataRate				
1	1M				
2	2M				
3	5.5M				
4	11M				

	11g/a					
	ID DataRate					
	6	6M				
	7	9M				
	8	12M				
	9	18M				
	10	24M				
	11	36M				
	12	48M				
	13	54M				
Γ						
_						

11n						
ID	ID DataRate					
15	MCS0					
16	MCS1					
17	MCS2					
18	MCS3					
19	MCS4					
20	MCS5					
21	MCS6					
22	MCS7					

1190						
ID	DataRate					
101	VHT_SS1_MCS0					
102	VHT_SS1_MCS1					
103	VHT_SS1_MCS2					
104	VHT_SS1_MCS3					
105	VHT_SS1_MCS4					
106	VHT_SS1_MCS5					
107	VHT_SS1_MCS6					
108	VHT_SS1_MCS7					
109	VHT_SS1_MCS8					
110	VHT_SS1_MCS9					

11ac

In order to stop the TX:

170

Enter option: 17 0 Dutlf_SetTxContMode: 0x00000000 Enter option:

3.7. Worst case identification

From AIVIL42P0 (FCC ID: YBNAIVIL42P0 and ISED: 9595A-AIVIL42P0) worst case mode and worst case bandwidth was identified as:

- b-mode
- 1Mbit

4. Description of test system set-up's

4.1. Test system set-up for conducted measurements on antenna port Conducted Set-up W1

W-LAN conducted RF-Setup 1 (W1 Set-up)

General description:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to the power meter (3) for conducted power measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings.

Schematic:

Testing method: ANSI C63.10:2013, KDB 558074 D01 DTS Meas.Guidance v04

Used Equipment Passive Elements Test Equipment Remark:

×

■ 20 dB Attenuator
 ■ Power Meter
 ■ Low loss RF ■ DC-Power Supply
 See List of equipment under each test case and chapter 8 for calibration info

cables

Spectrum-Analyser

Measurement uncertainty See chapter 5.10

See List of equipment under each test case and chapter 8 for calibration info

Conducted Set-up W2

W-LAN conducted RF-Setup 2 (W2 Set-up)

General description:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

ANSI C63.10:2013, KDB 558074 D01 DTS Meas.Guidance v04 **Testing method:**

Used Equipment Passive Elements Test Equipment Remark:

☒ Power Meter

≥ 20 dB Attenuator **■** Low loss RF-**☑** DC-Power Supply

cables ■ Spectrum-Analyser

Measurement uncertainty See chapter 5.10

4.2. Test system set-up for radiated magnetic field measurements below 30 MHz

Specification: ANSI C63.10-2013 chapter 6.4 (§6.4.4.2)

General Description: Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed

in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

Exploratory, preliminary measurement

The EUT and it's associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0° to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2orthogonal axis (defined operational position of EUT), the emission spectrum was recorded. The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$

 $M = L_T - E_C$

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

 $C_L + D_F - G_A$ AF = Antenna factor

 $C_L = Cable loss$

 $D_F\!\!=\!Distance\;correction\;factor$

 E_C = Electrical field – corrected value

 E_R = Receiver reading

G_A= Gain of pre-amplifier (if used)

 $\begin{aligned} L_T &= Limit \\ M &= Margin \end{aligned}$

All units are dB-units, positive margin means value is below limit.

Distance correction: Reference for applied correction (extrapolating) factors due to reduced

measurement distance:

ANSI C63.10:2013, $\S6.4.4.2$ - Equations (2) + (3) + (4)

4.3. Test system set-up for radiated electric field measurement 30 MHz to 1 GHz

Specification: ANSI C63.4-2014 chapter 8.2.3, ANSI C63.10-2013 chapter 6.5

General Description: Evaluating the field emissions have to be done first by an exploratory emissions

measurement and a final measurement for most critical frequencies. The tests are performed in a NSA-compliant semi anechoic room (SAR) recognized by the

regulatory commissions.

Schematic:

Testing method:

Formula:

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3orthogonal axis (portable equipment) or 2orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMIreceiver, broadband antenna and software.

Measurement antenna: horizontal and vertical. heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

 $M = L_T - E_C$ (2) Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semianechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

 $E_C = E_R + AF + C_L + D_F - G_A$ (1)

AF = Antenna factor

 $C_L = Cable loss$

 D_F = Distance correction factor (if used)

 E_C = Electrical field – corrected value

 E_R = Receiver reading

 $G_A = Gain of pre-amplifier (if used)$

 $L_T = Limit$

M = Margin

All units are dB-units, positive margin means value is below limit.

4.4. Test system set-up for radiated electric field measurement above 1 GHz

Specification: ANSI C63.4-2014 chapter 8.3, ANSI C63.10-2013 chapter 6.6.3.3 & 6.6.4

General Description:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360° , step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Formula:

$$E_C = E_R + AF + C_L + D_F - G_A$$
 (1)

$$M = L_T - E_C \tag{2}$$

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined. Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out. On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

 E_C = Electrical field – corrected value

 E_R = Receiver reading

M = Margin

 $L_T = Limit$

AF = Antenna factor

 $C_L = Cable loss$

 D_F = Distance correction factor (if used)

 $G_A = Gain of pre-amplifier (if used)$

All units are dB-units, positive margin means value is below limit.

5. Measurement results

5.1. Duty-Cycle5.1.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

Ambient Climatic conditions Temperatur			re: (22±2)°C Rel. humidity: (45±15)%			
test site	☐ 441 EMI SAR	□ 348 EMI cond.	■ 443 EMI FAR	■ 347 Radio.lab.	□ 337 OATS	
equipment	□ 331 HC 4055					
spectr. analys.	■ 683 FSU26	□ 120 FSEM	□ 264 FSEK			
power meter	☐ 262 NRV-S	□ 266 NRV-Z31	□ 265 NRV-Z33	□ 261 NRV-Z55	□ 356 NRV-Z1	
multimeter	☐ 341 Fluke 112					
DC power	□ 086 LNG50-10	□ 087 EA3013	☐ 354 NGPE 40	☐ 349 car battery	☐ 350 Car battery	¥ 463 HP3245A
line voltage	voltage 🗵 13.5 V DC			□060 120 V 60 Hz via PAS 5000		
otherwise	☐ 530 Attenuator 10dB					

Method of measurement:	≥ conducted	
	☐ radiated	
☐ The results were corrected	n order to evaluate for worst-case result each time when average values as	re
necessary for example ave	age radiated emissions or similar	
■ No correction necessary: D	ty-Cycle > 98%	

5.2. General Limit – Maximum power output conducted

5.2.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	☑ CETECOM Essen (Chapter. 2.2.1)		☐ 443 System CTC-FAR-EMI-		☐ Please see Chapter. 2.2.3	
test site	☐ 441 EMI SAR	□ 487 SAR NSA	■ 347 Radio.lab.			
receiver	□ 377 ESCS30	□ 001 ESS	□ 489 ESU 40			
spectr. analys.	□ 584 FSU	☐ 120 FSEM	□ 264 FSEK	□ 489 ESU 40		
antenna	□ 574 BTA-L	☐ 133 EMCO3115	□ 302 BBHA9170	□ 289 CBL 6141	□ 030 HFH-Z2	□ 477 GPS
signaling	□ 392 MT8820A	□ 436 CMU	□ 547 CMU			
otherwise	□ 266 NRV-Z31	□ 600 NRVD	□ 110 USB LWL	☐ 482 Filter Matrix	☐ 378 RadiSense	区 693 TS8997
DC power	№ 671 EA-3013S	□ 463 HP3245A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE 40
otherwise	□ 331 HC 4055	□ 248 6 dB Attenuator	□ 529 Power divider	□ - cable OTA20		
	☐ 530 10dB Attenuator		☐ K 4 Cable kit			
line voltage	☑ 13.5 V DC		□ 060 110 V 60 Hz via PAS 5000			

5.2.2. Reference

FCC	☑ §15.247(b) (3) + KDB 558074 D01 DTS Meas Guidance v04
ISED	☑ RSS-247, Chapter 5.4(4)
ANSI	■ ANSI 63.10:2013
Specification	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

5.2.3. EUT settings:

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.2.4. Test condition and measurement test set-up

Signal ink to test system (if used):	□ air link □ cable connection		⋈ none	
EUT-grounding	■ none □ with power supply		☐ additional connection	
Equipment set up	■ table top 1.5m height		☐ floor standing	
Climatic conditions	Temperature: (22±3°C)		Rel. humidity: (40±20)%	
1	Please see chapter "Test system set-up for conducted RF-measurement at anten Set-up)			

5.2.5. Measurement method and analyzer settings:

The measurement was performed in non-hopping transmission mode with the carrier set to lowest/middle and highest channel.

MEASUREMENT METHOD/ SPECTRUM-ANALYZER SETTINGS:

MENDOREMENT METHOD, SI ECTROM-MARETEER SETTINGS.					
Measurement Method 1.)	§15.247(b)	1.) ☐ PK1-Method RBW > 6dB-bandwidth of the signal, ANSI 63.10: 2013, chapter			
	(3)	2.) ☐ PK2-Method (§5.2.1.2): Channel integration method (ANSI 63.10:2013)			
	Maximum	3.) \square PK1-Method (§9.1.2 KDB): Peak Power Meter Method			
	Peak				
	§15.247(b)	4.) □ AVG1 - power averaging over EBW + integrated band power measurement			
	(3)	5.) ☐ AVG2 - trace averaging over EBW + integrated band power measurement			
	Maximum	6.) E RMS power meter method: Chapter 9.2.3.2 AVGPM-G			
	Average				
	MIMO	7.) Method as described in Chapter 3.8 was used for measurements on two available			
		RF-Antenna ports.			
Center Frequency		Nominal channel frequency			
Span		30% higher than the EBW measured before			
Resolution Bandwidth (RI	3W)	20MHz			
Video Bandwidth (VBW)		30MHz			
Sweep time		coupled			
Detector		Peak, Max hold mode for method PK1/PK2 or RMS and trace average for method			
		AVG1/AVG2			
Sweep Mode		Repetitive mode, allow trace to stabilize			
Analyzer-Mode		normal			
		□ activated channel integration method with limits set to the EBW of the signal			

Remark 1: guidance 558074 D01 measurement DTS guidance v04

5.2.6. RESULTS

APLICANT'S DECLARED ANTENNA CHARACTERISTICS:

☑ Directional Gain < 6 dBi (measured: difference between measured conducted and radiated eirp. power) ☐ Directional Gain > 6 dBi (measured / applicant's declaration) -> conducted power reduction necessary

Maximum declared antenna gain [isotropic]: -1.4 dBi

Different modulation types and data rates were tested in order to find the maximum peak conducted output power. **Enclosed are only the maximum values for each modulation format**, pls. compare separate document A1 for all results.

	Limit [dBm]	Result			
Set-up no.: 2 Channel = 0 Channel = 6 Channel = 11					
Op-Mode: 1	(2412 MHz)	(2427 MHz)	(2462 MHz)		
Measured Level b mode, 1Mbit, 20MHz	10.6	10.3	11.2	30	passed

Remark: Please refer to Annex A for complete other results

5.3. General Limit - Radiated field strength emissions below 30 MHz

5.3.1. Test location and equipment

test location	☑ CETECOM Essen (Chapter. 2.2.1)			☐ Please see Chapter. 2.2.2			☐ Please see Chapter. 2.2.3					
test site	≥ 441 EN	MI SAR	□ 487	SAR NSA	□ 347	Radio.lab.						
receiver	□ 377 ES	SCS30	≥ 001	ESS								
spectr. analys.	□ 584 FS	SU	□ 120	FSEM	□ 264	FSEK						
antenna	□ 574 B7	ΓA-L	□ 133	EMCO3115	□ 302	BBHA9170	□ 289	CBL 6141	区 030	HFH-Z2	□ 477	GPS
signaling	□ 392 M′	T8820A	□ 371	CBT32	□ 547	CMU	□ 594	CMW				
otherwise	□ 400 FT	TC40x15E	□ 401	FTC40x15E	□ 110	USB LWL	□ 482	Filter Matrix	□ 378	RadiSense		
DC power	□ 671 EA	A-3013S	≥ 457	EA 3013A	□ 459	EA 2032-50	□ 268	EA- 3050	□ 494	AG6632A	□ 498	NGPE 40
line voltage	≥ 13.5 V I	DC			□ 060	120 V 60 Hz	via PA	S 5000	•	•		

5.3.2. Requirements

our requirements								
FCC	Part 15, Subpart 0	C, §15.205 & §15.209						
ISED	RSS-Gen: Issue 4	RSS-Gen: Issue 4: §8.9 Table 5						
ANSI	C63.10-2013	C63.10-2013						
Frequency [MHz]	Field [[Field strength limit [μV/m] [dBμV/m]		Remarks				
0.009 - 0.490	2400/f (kHz)	67.6 – 20Log(f) (kHz)	300	Correction factor used due to measurement distance of 3 m				
0.490 – 1.705	24000/f (kHz)	87.6 – 20Log(f) (kHz)	30	Correction factor used due to measurement distance of 3 m				
1.705 – 30	30	29.5	30	Correction factor used due to measurement distance of 3 m				

5.3.3. Test condition and test set-up

	ition and test set a						
Signal link to test s	ystem (if used):	☐ air link	☐ cable connection	□ none			
EUT-grounding	EUT-grounding		☐ with power supply	□ additional connection			
Equipment set up		■ table top		☐ floor standing			
Climatic conditions	3	Temperature:	(22±3°C)	Rel. humidity: (40±20)%			
	Scan data		☑ 9 – 150 kHz RBW/VBW = 200 Hz Scan step = 80 Hz ☑ 150 kHz – 30 MHz RBW/VBW = 9 kHz Scan step = 4 kHz □ other:				
EMI-Receiver or	Scan-Mode	☑ 6 dB EMI-Receiver Mode ☐ 3dB Spectrum analyser Mode					
Analyzer Settings	Detector	Peak (pre-mea	eak (pre-measurement) and Quasi-PK/Average (final if applicable)				
	Mode:	Repetitive-Sca	ın, max-hold				
	Sweep-Time	Coupled – cali	brated display if continuo	ous signal otherwise adapted to EUT's individual			
		transmission duty-cycle					
General measureme	nt procedures	Please see chapter "Test system set-up radiated magnetic field measurements below 30 MHz"					

5.3.4. Measurement Results

The results are presented below in summary form only. For more information please consult the diagrams included in annex 1.

The EUT is put on operation on middle channel only. If critical peaks are found (Margin <10 dB) the lowest and highest channels will be performed too. For more information please see the diagrams.

Table of measurement results:

Diagram No.	Chainei		Frequency range	Set- OP- up mode no. no.		Remark	Used detector			Result
	Range	No.					PK	AV	QP	
2.02a+b	High	1	9 kHz - 30 MHz	1	1	b-Mode-1Mbps-CH11	×			Pass

5.3.5. Correction factors due to reduced meas. distance (f< $30\ MHz$)

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors.

Frequency -Range	f [kHz/MHz]	Lambda [m]	Far-Field Point [m]	Distance Limit accord. 15.209 [m]		1st Condition (dmeas< D _{near-field})	2'te Condition (Limit distance bigger d _{near-field})	Distance Correction accord. Formula
	9,00E+03 1,00E+04 2,00E+04 3,00E+04	33333,33 30000,00 15000,00 10000,00	0 4774,65 0 2387,33			fulfilled fulfilled fulfilled fulfilled	not fullfilled not fullfilled not fullfilled not fullfilled	-80,00 -80,00 -80,00 -80,00
	5,00E+04 6,00E+04	7500,00 6000,00 5000,00	1193,66 954,93 795,78			fullfilled fullfilled fullfilled	not fullfilled not fullfilled not fullfilled	-80,00 -80,00 -80,00
kHz	7,00E+04 8,00E+04 9,00E+04 1,00E+05	4285,71 3750,00 3333,33 3000,00	682,09 596,83 530,52 477,47	300		fullfilled fullfilled fullfilled fullfilled	not fullfilled not fullfilled not fullfilled not fullfilled	-80, 00 -80, 00 -80, 00 -80, 00
WIE	1,25E+05 2,00E+05 3,00E+05	2400,00 1500,00 1000,00	381,97 238,73 159,16 119,37			fullfilled fullfilled fullfilled	not fullfilled fullfilled fullfilled	-80,00 -78,02 -74,49 -72,00
	4,00E+05 4,90E+05 5,00E+05 6,00E+05	750,00 612,24 600,00 500,00	97,44 95,49 79,58			fullfilled fullfilled fullfilled fullfilled	fullfilled fullfilled not fullfilled not fullfilled	-72,00 -70,23 -40,00 -40,00
	7,00E+05 8,00E+05 9,00E+05 1,00	428,57 375,00 333,33 300,00	68,21 59,68 53,05 47,75			fullfilled fullfilled fullfilled fullfilled	not fullfilled not fullfilled not fullfilled not fullfilled	-40,00 -40,00 -40,00 -40,00
	1,59 2,00 3,00	188,50 150,00 100,00	30,00 23,87 15,92			fullfilled fullfilled fullfilled	not fullfilled fullfilled fullfilled	-40,00 -38,02 -34,49
	4,00 5,00 6,00 7,00	75,00 60,00 50,00 42,86	11,94 9,55 7,96 6,82			fullfilled fullfilled fullfilled fullfilled	fullfilled fullfilled fullfilled fullfilled	-32,00 -30,06 -28,47 -27,13
	8,00 9,00 10,00	37,50 33,33 30,00	5,97 5,31 4,77	30		fullfilled fullfilled fullfilled	fullfilled fullfilled fullfilled	-25, 97 -24, 95 -24, 04
MHz	10,60 11,00 12,00 13,56	28,30 27,27 25,00 22,12	4,50 4,34 3,98 3,52			fullfilled fullfilled fullfilled fullfilled	fullfilled fullfilled fullfilled fullfilled	-23,53 -23,21 -22,45 -21,39
	15,00 15,92 17,00	20,00 18,85 17,65	3,18 3,00 2,81			fullfilled fullfilled not fullfilled	fulfilled fulfilled fulfilled	-20,51 -20,00 -20,00
	18,00 20,00 21,00 23,00	16,67 15,00 14,29 13,04	2,65 2,39 2,27 2,08			not fullfilled not fullfilled not fullfilled not fullfilled	fullfilled fullfilled fullfilled fullfilled	-20,00 -20,00 -20,00 -20,00
	25,00 27,00 29,00 30,00	12,00 11,11 10,34 10,00	1,91 1,77 1,65 1,59			not fullfilled not fullfilled not fullfilled not fullfilled	fullfilled fullfilled fullfilled fullfilled	-20,00 -20,00 -20,00 -20,00

5.4. General Limit - Radiated field strength emissions, 30 MHz - 1 GHz

5.4.1. Test location and equipment

test location	▼ CETECOM Esset	n (Chapter. 2.2.1)	☐ Please see Chapte	er. 2.2.2	☐ Please see Chapter. 2.2.3		
test site		■ 487 SAR NSA					
receiver	□ 377 ESCS30	■ 001 ESS	□ 489 ESU 40	□ 620 ESU 26			
spectr. analys.	□ 584 FSU	☐ 120 FSEM	□ 264 FSEK				
antenna	≥ 574 BTA-L	☐ 133 EMCO3115	□ 302 BBHA9170	□ 289 CBL 6141	□ 030 HFH-Z2	□ 477 GPS	
signaling	□ 392 MT8820A	□ 371 CBT32	□ 547 CMU	□ 594 CMW			
otherwise	☐ 400 FTC40x15E	□ 401 FTC40x15E	□ 110 USB LWL	■ 482 Filter Matrix			
DC power	□ 456 EA 3013A	¥ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE	
line voltage	■ 13.5 V DC		□ 060 120 V 60 Hz via PAS 5000				

5.4.2. Requirements/Limits

.4.2. Keyui	.2. Requirements/Limits									
	FCC	☐ Part 15 Subpart B, §15.109, class B ☑ Part 15 Subpart C, §15.209 @ frequencies defined in §15.205								
	ISED (IC)	 ■ RSS-Gen., Issue 4, Chapter 8.9, Table 4+6 (licence-exempt radio apparatus) □ RSS-Gen., Issue 5, Chapter 7.1.2, Table 2 (receiver) □ ICES-003, Issue 6, Table 5 (Class B) ■ RSS-247, Issue 2, Chapter 5.5 □ RSS-247, Issue 2, Chapter 6.2 								
	ANSI	☐ C63.4-2014 ☑ C63.10-2013								
	Enggyanay [MHz]	Radiated emission	ns limits, 3 meters							
	Frequency [MHz]	QUASI Peak [μV/m]	QUASI-Peak [dBμV/m]							
Limit	30 - 88	100	40.0							
Lillit	88 - 216	150	43.5							
	216 - 960	200	46.0							
	above 960	500	54.0							

5.4.3. Restricted bands of operation (FCC §15.205/ RSS-Gen, Issue 4 Chapter 8.10, Table 6)

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.20725-4.20775	37.5-38.25	1645.5-1646.5	9.3-9.5
6.215-6.218	73-74.6	1660-1710	10.6-12.7
6.26775-6.26825	74.8-75.2	1718.8-1722.2	13.25-13.4
6.31175-6.31225	108-121.94	2200-2300	14.47-14.5
8.291-8.294	123-138	2310-2390	15.35-16.2
8.362-8.366	149.9-150.05	2483.5-2500	17.7-21.4
8.37625-8.38675	156.52475-156.52525	2690-2900	22.01-23.12
8.41425-8.41475	156.7-156.9	3260-3267	23.6-24.0
12.29-12.293	162.0125-167.17	3332-3339	31.2-31.8
12.51975-12.52025	167.72-173.2	3345.8-3358	36.43-36.5
12.57675-12.57725	240-285	3600-4400	
13.36-13.41	322-335.4		
Remark: only spurious emi	ssions are allowed within these freque	ency bands not exceeding the limits	per §15.209

5.4.4. Test condition and measurement test set-up

Signal link to test sy	vstem (if used):	☐ air link	☐ cable connection	none			
EUT-grounding		≥ none	I none □ with power supply □ additional connection				
Equipment set up	Equipment set up			☐ floor standing			
Climatic conditions	3	Temperature: ((22±3°C)	Rel. humidity: (40±20)%			
EMI-Receiver	Scan frequency range:	≥ 30 − 1000 M	IHz □ other:				
(Analyzer) Settings	Scan-Mode	🗷 6 dB EMI-R	☐ 6 dB EMI-Receiver Mode ☐ 3 dB spectrum analyser mode				
	Detector	Peak / Quasi-peak					
	RBW/VBW	100 kHz/300 kHz					
	Mode:	Repetitive-Sca	ın, max-hold				
	Scan step	80 kHz					
	Sweep-Time	Coupled – cali	brated display if continuo	ous tx-signal otherwise adapted to EUT's individual			
		duty-cycle					
General measureme	ent procedures	Please see chapter "Test system set-up for electric field measurement in the range 30 MHz					
		to 1 GHz"					

5.4.5. MEASUREMENT RESULTS

The results are presented below in summary form only. For more information please consult the diagrams included in annex 1.

Table of measurement results:

Dia- gram	Carrier C	hannel	Frequency range			Used detector			Result	
no.	Range	No.		no.	no.		PK	AV	QP	
3.01a+ b	High	11	30 MHz – 1 GHz	1	1	b-mode, 1Mbps	×		×	Pass

Remark:

5.5. General Limit - Radiated emissions, above 1 GHz

5.5.1. Test location and equipment FAR

1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -								
test site	□441 EMI SAR	□ 348 EMI cond.	■ 443 EMI FAR	☐ 347 Radio.lab.	□337 OATS			
spectr. analys.	□584 FSU	□ 120 FSEM	□ 264 FSEK	■ 489 ESU 40				
antenna meas	□574 BTA-L	□ 289 CBL 6141	□ 608 HL 562	■ 549 HL025	≥ 302 BBHA9170	□ 477 GPS		
antenna meas	□123 HUF-Z2	□ 132 HUF-Z3	□ 030 HFH-Z2	■ 376 BBHA9120E				
antenna subst	□071 HUF-Z2	□ 020 EMCO3115	□ 063 LP 3146	□ 303 BBHA9170	С			
multimeter	□341 Fluke 112							
signaling	□392 MT8820A	□ 371 CBT32	□ 547 CMU	□ 594 CMW				
DCpower	□086 LNG50-10	■ 087 EA3013	☐ 354 NGPE 40	☐ 349 car battery	□350 Car battery			
line voltage	■ 13.5 V DC		□ 060 120 V 60 Hz	via PAS 5000				

5.5.2. Requirements/Limits

.5.2. Requirements/Limits								
FCC	□ Part 15 Subpart B, §15.109 class B ☑ Part 15 Subpart C, §15.209 for frequencies defined in §15.205 □ Part 15 Subpart C, §15.407(b)(1)(2)(3)(4)							
ISED	☐ RSS-Gen., Issue 5, Chap ☐ ICES-003, Issue 6, Chap ☑ RSS-247, Issue 2, Chapt	 ■ RSS-Gen., Issue 4, Chapter 8.9, Table 4+6 (transmitter licence excempt) □ RSS-Gen., Issue 5, Chapter 7.3, Table 3 (receiver) □ ICES-003, Issue 6, Chapter 6.2.2, Table 7 (class B) ■ RSS-247, Issue 2, Chapter 5.5 □ RSS-247, Issue 2, Chapter 6.2 						
ANSI	☐ C63.4-2014 区 C63.10-2013							
Г		Limit	ts					
Frequency [MHz]	AV [μV/m]	AV [dBμV/m]	Peak [μV/m]	Peak [dBμV/m]				
above 1 GHz for frequencies as defined in §15.205 or RSS-Gen., Issue 9, §8.9 - Table 5	500	54.0	5000	74.0				

5.5.3. Test condition and measurement test set-up

	tion 1 est condition and incusar ement test set up									
Signal link	to test system (if used):	☐ air link	☐ cable connection	none						
EUT-groun	EUT-grounding		☐ with power supply	☐ additional connection						
Equipment	set up	table top 1.5 ■ table top 1.5	5m height	☐ floor standing						
Climatic co	nditions	Temperature: ((22±3°C)	Rel. humidity: (40±20)%						
Spectrum-	Scan frequency range:	№ 1 – 18 GHz	□ 18 – 25 GHz □ 18 -	– 40 GHz □ other:						
Analyzer	Scan-Mode	☑ 6 dB EMI-Receiver Mode ☐ 3 dB Spectrum analyser Mode								
settings	Detector	Peak and Average								
	RBW/VBW	1 MHz / 3 MHz								
	Mode:	Repetitive-Scan, max-hold								
	Scan step	400 kHz								
	nal otherwise adapted to EUT's individual duty-cycle									
General mea	asurement procedures	Please see chapter "Test system set-up for radiated electric field measurements above 1 GHz"								

5.5.4. Measurement Results

5.5.4.1. Measurement Results 1GHz to 18GHz

The results are presented below in summary form only. For more information please consult the diagrams included in annex 1.

Dia- gram	Carrier C	Channel	Frequency range	Set- up	OP- mode	Remark	Used detector			Result
no.	Range	No.		no.	no.		PK	AV	QP	
8.01	High	11	1 GHz – 18 GHz	1	1	b-Mode, 1Mbps	×	×		Pass

Remark: --

5.5.4.2. Measurement Results 18GHz to 26.5GHz

The results are presented below in summary form only. For more information please consult the diagrams included in annex 1.

Dia- gram	Carrier C	Channel	Frequency range	Set- up	OP- mode	Remark	Used detector			Result
no.	Range	No.		no.	no.		PK	AV	QP	
4.03	High	11	18GHz – 26.5GHz	1	1	b-mode, 1Mbps	×	×		Pass

Remark: --

5.6. RF-Parameter - Band Edge compliance measurements

5.6.1. Test location and equipment FAR

2.0.1. I CSt 10	cation and equi	pinent raix				
test site	□441 EMI SAR	□ 348 EMI cond.	■ 443 EMI FAR	☐ 347 Radio.lab.	□ 337 OATS	
spectr. analys.	□584 FSU	□ 120 FSEM	□ 264 FSEK	■ 489 ESU 40		
antenna meas	□574 BTA-L	□ 289 CBL 6141	□ 608 HL 562	■ 549 HL025	□ 302 BBHA9170	□ 477 GPS
antenna meas	□123 HUF-Z2	□ 132 HUF-Z3	□ 030 HFH-Z2			
antenna subst	□071 HUF-Z2	□ 020 EMCO3115	□ 063 LP 3146	□ 303 BBHA9170		
multimeter	□341 Fluke 112					
signaling	□392 MT8820A	□ 371 CBT32	□ 547 CMU	□ 594 CMW		
DC power	□086 LNG50-10	■ 087 EA3013	□ 354 NGPE 40	☐ 349 car battery	☐ 350 Car battery	
line voltage	■ 13.5 V DC		□ 060 120 V 60 Hz	via PAS 5000		

5.6.2. Requirements/Limits

FCC	☐ Part 15 Subpart B, §15.109 class B Part 15 subpart C, §15.209 @ frequencies defined in §15.205								
ISED	☐ RSS-210, Issue 8, Annex 8 ☐ RSS-247, Issue 1, Chapter 5.5 ☐ RSS-Gen: Issue 4: §8.9, Table 4+6								
ANSI	□ C63.4-2009 □ C63.4-2014 □ C63.10-2009 ☑ C63.10-2013, Chapter 6.10.6								

5.6.3. Test condition and measurement test set-up

Signal ink t	to test system (if used):	□ air link	☐ cable connection	☑ none		
EUT-groun	ding	≥ none	☐ with power supply	□ additional connection		
Equipment	Equipment set up		5m height	☐ floor standing		
Climatic co	onditions	Temperature:	(22±3°C)	Rel. humidity: (40±20)%		
Spectrum-	Scan frequency range:	□ 1 – 18 GHz	2 □ 18 – 25 GHz □ 18	- 40 GHz ■ other: see diagrams		
Analyzer	Scan-Mode	□ 6 dB EMI-I	Receiver Mode 🗷 3 dB S	Spectrum analyzer Mode		
settings	Detector	Peak and Aver	rage			
	RBW/VBW	Left band-edge: 100kHz/300kHz				
		Right band-edge: 1 MHz / 3 MHz				
	Mode:	Repetitive-Sca	an, max-hold			
	Scan step	40kHz or 400	kHz			
	Sweep-Time			nal otherwise adapted to EUT's individual duty-cycle		
General mea	asurement procedures	Please see chapter "Test system set-up for radiated electric field measurements above 1 GHz"				
		for general measurements procedures in anechoic chamber.				

5.6.4. Measurement Method

For <u>uncritical results</u> where a measurement resolution bandwidth of 1MHz can clearly show the compliance without influencing the results, a field strength measurement was performed to show compliance.

For <u>critical results</u> a Marker-Delta marker method was used for showing compliance to restricted bands. The method is according ANSI C63.10:2013, Chapter 6.10.6 "Marker-Delta method",. The method consists of three independent steps:

- **1. Step:** Prior to the measurement the fundamental radiated In-Band field strength was performed. The determined value is used as reference value.
- **2. Step**: Second step consist of finding the relative attenuation between the fundamental emission and the maximum local out-of-band emission (within 2 MHz range around the band edge either on the band-edge directly or some modulation product if the level is greater than that on the band-edge) when measured with lower resolution bandwidth.
- **3. Step:** The delta value recorded in step 2 will be subtracted from value recorded in step 1, thus giving the required field strength at the band-edge. This value must fulfil the requirements for radiated spurious emissions in restricted bands in FCC §15.205 with the general limits of FCC §15.209.

5.6.5. EUT settings

The EUT was instructed to send with maximum power (if adjustable) according to applicants instructions.

5.6.6. Results: for non-restricted bands near-by

5.6.6.1. Non-restricted bands near-by - limits according FCC §15.407 and RSS-247, Issue 1, Chapter 5.5

Di	Channel	Fundamental Value Band-Edge Value [dBuV/m] [dBuV/m] Difference		Limit	Margin	Verdict	Remark:				
Diagram no.	no.	band ?	Peak -Value	Average -Value + Duty Cycle Correction	Peak-Value	[dB]	[dBc]	[dB]	verdict	Mode-B.WData Rate-Power	
9.01a_lay	1	NO	94,17	86,30	53,89	40,28	20,00	20,28	PASS	b-Mode-1Mbit	
9.01a_sta	1	NO	94,29	86,09	57,28	37,01	20,00	17,01	PASS	b-Mode-1Mbit	

5.6.7. Results: for non-restricted bands near-by

(§15.205 with limits accord. FCC §15.209) and (RSS-Gen, Issue4, Chapter 8.10)

Diagramm		Restricted	Fundamental Value [dBuV/m]		Value at Band-Edge [dBuV/m]		Limits [dBuV/m]		Duty-Cycle Correction for AV-detector	Margin [dB]		Verdict	Remark:
no.	no. no.	band?	Peak-Value	Average- Value	Peak -Value	Average -Value	Peak -Value	Average -Value	[dB]	Peak	Average		
9.01b_lay	11	yes	94,99	91,05	58,05	47,43	74	54	0	15,95	6,57	PASS	b_Mode, 1MBit
9.01b_sta	11	yes	95,05	91,14	57,66	47,20	74	54	0	16,34	6,80	PASS	b_Mode, 1MBit

Remark: The EUT complies to the band edge requirement under provision that the power level is adjusted to those listed in the table above.

5.7. Measurement uncertainties

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved.

For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it's contribution to the overall uncertainty according it's statistical distribution calculated.

Following table shows expectable uncertainties for each measurement type performed.

RF-Measurement	Reference	Frequency range	Ca			tainty b evel of	ased or 95%	ı a	Remarks	
Conducted emissions (U CISPR)	CISPR 16-2-1	9 kHz - 150 kHz 150 kHz - 30 MHz	4.0 dB 3.6 dB				-			
Radiated emissions Enclosure	CISPR 16-2-3	30 MHz - 1 GHz 1 GHz - 18 GHz		4.2 dB 5.1 dB					E-Field	
Disturbance power	CISPR 16-2-2	30 MHz - 300 MHz	-						-	
Power Output radiated	-	30 MHz - 4 GHz	3.17 d	В					Substitution method	
Downer Output conducted		Set-up No.	Cel- C1	Cel- C2	BT1	W1	W2			
Power Output conducted	_	9 kHz - 12.75 GHz	N/A	0.60	0.7	0.25	N/A		-	
		12.75 - 26.5GHz	N/A	0.82		N/A	N/A			
Conducted emissions	-	9 kHz - 2.8 GHz	0.70	N/A	0.70	N/A	0.69		N/A - not	
on RF-port		2.8 GHz - 12.75GHz	1.48	N/A	1.51	N/A	1.43		applicable	
		12.75 GHz - 18GHz	1.81	N/A	1.83	N/A	1.77			
		18 GHz - 26.5GHz	1.83	N/A	1.85	N/A	1.79			
Occupied bandwidth	-	9 kHz - 4 GHz	0.1272 1.0 dE	2 ppm (Delta N	Marker)			Frequency error Power	
Emission bandwidth	-	9 kHz - 4 GHz		0.1272 ppm (Delta Marker) See above: 0.70 dB			Frequency error Power			
Frequency stability	-	9 kHz - 20 GHz	0.0636	5 ppm					-	
Radiated emissions Enclosure	-	150 kHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 20 GHz	5.0 dE 4.2 dE 3.17 d	3					Magnetic field E-field Substitution	

Table: measurement uncertainties, valid for conducted/radiated measurements

6. Abbreviations used in this report

The abbreviation	S
ANSI	American National Standards Institute
AV , AVG, CAV	Average detector
EIRP	Equivalent isotropically radiated power, determined within a separate measurement
EGPRS	Enhanced General Packet Radio Service
EUT	Equipment Under Test
FCC	Federal Communications Commission, USA
IC	Industry Canada
n.a.	not applicable
Op-Mode	Operating mode of the equipment
PK	Peak
RBW	resolution bandwidth
RF	Radio frequency
RSS	Radio Standards Specification, Dokuments from Industry Canada
Rx	Receiver
TCH	Traffic channel
Tx	Transmitter
QP	Quasi peak detector
VBW	Video bandwidth
ERP	Effective radiated power

7. Accreditation details of CETECOM's laboratories and test sites

Ref No.	Accreditation Certificate	Valid for laboratory area or test site	Accreditation Body	
-	D-PL- 12047-01-01	All laboratories and test sites of CETECOM GmbH, Essen	DAkkS, Deutsche Akkreditierungsstelle GmbH	
337 487 558 348 348	736496	Radiated Measurements 30 MHz to 1 GHz, 3 m / 10 m (OATS) Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements above 1 GHz, 3 m (FAR) Mains Ports Conducted Interference Measurements Telecommunication Ports Conducted Interference Measurem.	FCC, Federal Communications Commission Laboratory Division, USA (MRA US-EU 0003)	
337 487 550 558	3462D-1 3462D-2 3462D-2 3462D-3	Radiated Measurements 30 MHz to 1 GHz, 3 m / 10 m (OATS) Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements 1 GHz to 6 GHz, 3 m (SAR) Radiated Measurements above 1 GHz, 3 m (FAR)	IC, Industry Canada Certification and Engineering Bureau	
487 550 348 348	R-2666 G-301 C-2914 T-1967	Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements 1 GHz to 6 GHz, 3 m (SAR) Mains Ports Conducted Interference Measurements Telecommunication Ports Conducted Interference Measurem.	VCCI, Voluntary Control Counci for Interference by Information Technology Equipment, Japan	
OATS	S = Open Area Te	st Site, SAR = Semi Anechoic Room, FAR = Fully Anechoic Room		

8. Instruments and Ancillary

8.1. Used equiment "CTC"

The "Ref.-No" in the left column of the following tables allows the clear identification of the laboratory equipment.

8.1.1. Test software and firmware of equipment

RefNo.	Equipment	Туре	Serial-No.	Version of Firmware or Software during the test
001	EMI Test Receiver	ESS	825132/017	Firm.= 1.21 , OTP=2.0, GRA=2.0
012	Signal Generator (EMS-cond.)	SMY 01	839069/027	Firm.= V 2.02
013	Power Meter (EMS cond.)	NRVD	839111/003	Firm.= V 1.51
017	Digital Radiocommunication Tester	CMD 60 M	844365/014	Firmware = V 3.52 .22.01.99, DECT = D2.87 13.01.99
053	Audio Analyzer	UPA3	860612/022	Firm. V 4.3
119	RT Harmonics Analyzer dig. Flickermeter	B10	G60547	Firm.= V 3.1DHG
140	Signal Generator	SMHU	831314/006	Firm.= 3.21
261	Thermal Power Sensor	NRV-Z55	825083/0008	EPROM-Datum 02.12.04, SE EE 1 B
262	Power Meter	NRV-S	825770/0010	Firm.= 2.6
263	Signal Generator	SMP 04	826190/0007	Firm.=3.21
295	Racal Digital Radio Test Set	6103	1572	UNIT Firmware= 4.04, SW-Main=4.04, SW-BBP=1.04, SW-DSP=1.02, Hardboot=1.02, Softboot=2.02
298	Univ. Radio Communication Tester	CMU 200	832221/091	R&S Test Firmware =3.53 /3.54 (current Testsoftw. f. all band used
323	Digital Radiocommunication Tester	CMD 55	825878/0034	Firm.= 3.52 .22.01.99
335	CTC-EMS-Conducted	System EMS Conducted	-	EMC 32 V 8.52
340	Digital Radiocommunication Tester	CMD 55	849709/037	Firm.= 3.52 .22.01.99
355	Power Meter	URV 5	891310/027	Firm.= 1.31
365	10V Insertion Unit 50 Ohm	URV5-Z2	100880	Eprom Data = 31.03.08
366	Ultra Compact Simulator	UCS 500 M4	V0531100594	Firm. UCS 500=001925/3.06a02, rc=ISMIEC 4.10
371	Bluetooth Tester	CBT32	100153	CBT V5,30+ SW-Option K55, K57
377	EMI Test Receiver	ESCS 30	100160	Firm.= 2.30, OTP= 02.01, GRA= 02.36
378	Broadband RF Field Monitor	RadiSense III	03D00013SNO-08	Firm.= V.03D13
389	Digital Multimeter	Keithley 2000	0583926	Firm. = A13 (Mainboard) A02 (Display)
392	Radio Communication Tester	MT8820A	6K00000788	Firm.= 4.50 #005, IPL=4.01#001,OS=4.02#001, GSM=4.41#013, W-CDMA= 4.54#004, scenario= 4.52#002
436	Univ. Radio Communication Tester	CMU 200	103083	R&S Test Firmware Base=5.14, Mess-Software= GSM:5.14 WCDMA:5.14 (current Testsoftw. F. all band
441	CTC-SAR-EMI Cable Loss	System EMI field (SAR)	-	EMC 32 Version 8.52
442	CTC-SAR-EMS	System EMS field (SAR)	-	EMC 32 Version 8.40
443	CTC-FAR-EMI-RSE	System CTC-FAR-EMI- RSE	-	Spuri 7.2.5 or EMC 32 Ver. 9.15.00
444	CTC-FAR-EMS field	System-EMS-Field (FAR)	-	EMC 32 Version 9.15.00
460	Univ. Radio Communication Tester	CMU 200	108901	R&S Test Firmware Base=5.14, GSM=5.14 WCDMA=5.14 (current Testsoftw.,f. all band to be used,
489	EMI Test Receiver	ESU40	1000-30	Firmware=4.43 SP3, Bios=V5.1-16-3, Spec. =01.00
491	ESD Simulator dito	ESD dito	dito307022	V 2.30
524	Voltage Drop Simulator	VDS 200	0196-16	Software Nr: 000037 Version V4.20a01
526	Burst Generator	EFT 200 A	0496-06	Software Nr. 000034 Version V2.32
527	Micro Pulse Generator	MPG 200 B	0496-05	Software-Nr. 000030 Version V2.43
528	Load Dump Simulator	LD 200B	0496-06	Software-Nr. 000031 Version V2.35a01
546	Univ. Radio Communication Tester	CMU 200	106436	R&S Test Firmware Base=5.14, GSM=5.14 WCDMA=5.14 (current Testsoftw.,f. all band to be used
547	Univ. Radio Communication Tester	CMU 200	835390/014	R&S Test Firmware Base=V5.1403 (current Testsoftw., f. all band used, GSM = 5.14 WCDMA: = 5.14
584	Spectrum Analyzer	FSU 8	100248	2.82_SP3
597	Univ. Radio Communication Tester	CMU 200	100347	R&S Test Firmware Base=5.01, GSM=5.02 WCDMA= not installed, Mainboard= μP1=V.850
598	Spectrum Analyzer	FSEM 30	831259/013	Firmware Bios 3.40 , Analyzer 3.40 Sp 2
607	Signal Generator	SMR 20	832033/011	V1.25
620	EMI Test Receiver	ESU 26	100362	4.43_SP3
642	Wideband Radio Communication Tester	CMW 500	126089	Setup V03.26, Test programm component V03.02.20
670	Univ. Radio Communication Tester	CMU 200	106833	μP1 =V8.50, Firmware = V.20
689	Vector Signal Generator	SMU200	100970	02.20.360.142
692	Bluetooth Tester	CBT 32	100236	CBT V 5.40, FW: V.2.41 (FPGA Digital, V. 3.09 FPGA RF)
			1	

8.1.2. Single instruments and test systems

Beginnest						ı ı	Ų.	
SE SE SECULZON Stocke & Schwarz 12 M 1.055.2014	RefNo.	Equipment	Туре	Serial-No.	Manufacturer	nterval of alibration	Remark	
\$1.00	001	EMI Test Receiver	ESS	825132/017	Rohde & Schwarz		-	16.05.2018
1987	005	AC - LISN (50 Ohm/50µH, test site 1)	ESH2-Z5	861741/005	Rohde & Schwarz	12 M	-	15.05.2018
Description Process								
101 102 American (147-148)								
1901 Pro-Jamesem (Sch 1988) Pro-Jamesem								
SSE_SECURIS SECURIS								
627 Power Surffer (C. 2011)								
Dec								
1979 100	060	power amplifier (DC-2kHz)	PAS 5000	B6363	Spitzenberger+Spies	-	3	
Distance	086	DC - power supply, 0 -10 A	LNG 50-10	-	Heinzinger Electronic	pre-m	2	
Desires Voltage profe	087	DC - power supply, 0 -5 A	EA-3013 S	-	Elektro Automatik	pre-m	2	
100 SBL TUK Converter	091	USB-LWL-Converter	OLS-1	007/2006	Ing. Büro Scheiba	-	4	
100 SSL-Wi-Converter Store Sto	099	passive voltage probe	ESH2-Z3	299.7810.52	Rohde & Schwarz	36 M	-	30.04.2018
199 F. Hammaries Analyser alg. Filekementer 510 Gen547 SOCKOSSILT 35 M 2, 3005.2019				without	Schwarzbeck	36 M		30.04.2018
133				-	-	-		
154 Some antennan 18 Golfst Golfst Golfston 2 3112 3905-3414 EMCCO 36 M - 30,03 2018								
160 Signatification September Sept		,					1c	
140 Signal Generator							-	
Stemanor		3 1 1						
Section		O Company		-				
Section		attenuator		-		•		
Section Sect	252	attenuator	N 6dB 12W	-	Radiall	•	2	
150 Thermal Power Sensor MRV-255 R250830008 Robbe & Schwarz 24 M - 3005 2018	256	attenuator	SMA 3dB 2W	-	Radiall	pre-m		
200 150	257	hybrid	4031C	04491	Narda	pre-m	2	
10.2 Power Meter	260		4032C	11342	Narda	pre-m	2	
16.5 Signal Generator SMP 04 \$26,090,0007 Roble & Schwarz 16 M 30,052,018	261	Thermal Power Sensor	NRV-Z55	825083/0008	Rohde & Schwarz	•		30.05.2018
265 Peak Power Sensor	262	Power Meter	NRV-S	825770/0010	Rohde & Schwarz	24 M	-	30.05.2018
1566 Peak Power Sensor NRV-231, Model 04 843383016 Robake & Schwarz 24 M . 30,05,2018	263	Signal Generator	SMP 04	826190/0007	Rohde & Schwarz	36 M	-	30.05.2019
1677 motch filter GSM 850 WBCA 800960-6EEK 9 Weinweight GmbH pre-m 2		* *						
270 termination			,					30.05.2018
271 termination					·	•		
272 attenuator (20 dB) 50 W Model 47 BF6239 Weinschel pre-m 2						•		
273								
274						•		
DC-Block						•		
DC-Block						•		
299 power divider						•		
298						•		
Solution Solution		1				•		
301 attenuator (20 dB) 50W, 18GHz						_		17.05.2019
Born antenna 40 GHz (Meas 1) BBHA9170 155 Schwarzbeck 36 M - 14.03.2020								17.05.2018
303 horn antenna 40 GHz (Subst 1) BBHA9170 156 Schwarzbeck 36 M - 20.03.2020 331 Climatic Test Chamber 40/+180 Grad HC 4055 43146 Heraeus Votsch 24 M - 30.10.2018 341 Digital Multimeter Fluke 112 81650455 Fluke 24 M - 30.05.2018 342 Digital Multimeter Voltcraft M-4660A IB 255466 Voltcraft 24 M - 17.05.2019 343 Laboratory site radio lab. - - - 5 344 Laboratory site EMI conducted - - - 5 345 DC - Power Supply 40A NOPE 40/40 448 Rohde & Schwarz pre-m 2 354 DC - Power Supply 40A NOPE 40/40 448 Rohde & Schwarz 24 M - 30.05.2018 357 Power Meter URV 5 891310/027 Rohde & Schwarz 24 M - 24.05.2019 378 Bluetooth Tester CBT32 100153 R&S 36 M - 30.05.2018 379 Bluetooth Tester CBT32 100153 R&S 36 M - 30.05.2018 370 EMI Test Receiver ESCS 30 100160 Rohde & Schwarz 12 M - 17.05.2018 371 Bluetooth Tester CBT32 100153 R&S 36 M - 30.05.2018 372 EMI Test Receiver ESCS 30 100160 Rohde & Schwarz 12 M - 17.05.2018 373 EMI Test Receiver DPUS 10 THI 126.0604.0003.33.3.32.2 LUFFT Mess u. Regelechnik 430 UltraLog-Antenna HL 562 HM 205-3 9210 P 29661 Hameg - 4 436 UltraLog-Antenna HL 562 HM 205-3 9210 P 29661 Hameg - 4 437 DC - Power supply 0-5 A EA 3013 S 207810 Elektro Automatik pre-m 2 448 DC - Power supply 0-5 A O.3 2 V EA-PS 2032-50 910722 Elektro Automatik pre-m 2 449 DC - Power supply 0-5 A O.3 2 V EA-PS 2032-50 910722 Elektro Automatik pre-m 2 440 Digital Multimeter Fluke 112 8960806 Fluke USA 36 M - 30.04.2018 407 40						2434	-	14.03.2020
331 Climatic Test Chamber -40/+180 Grad HC 4055 43146 Heraeus Vötsch 24 M - 30.05.2018 341 Digital Multimeter Fluke 112 81650455 Fluke 24 M - 30.05.2018 342 Digital Multimeter Voltcraft M-4660A IB 255466 Voltcraft 24 M - 17.05.2019 343 Iaboratory site radio lab. 5 348 Iaboratory site EMI conducted 5 354 DC - Power Supply 40A NOFE 40/40 448 Rohde & Schwarz 24 M - 30.05.2018 355 Power Meter URV 5 891310/027 Rohde & Schwarz 24 M - 24.05.2019 357 Power Meter URV 5 891310/027 Rohde & Schwarz 24 M - 24.05.2019 371 Bluetooth Tester CBT32 100153 R&S 36 M - 30.05.2018 373 Single-Line V-Network (50 Ohm/5µH) ESH3-Z66 100535 Rohde & Schwarz 12 M - 17.05.2018 374 EMI Test Receiver ESCS 30 100160 Rohde & Schwarz 12 M - 17.05.2018 375 Radio Communication Tester MT8820A 6K0000788 Anritsu 12 M - 18.05.2018 405 Thermo-/Hygrometer OPUS 10 THI 126.0604.0003.33.3.22 LUFFT Mess u. 24 M - 30.05.2019 431 Model 7405 Near-Field Probe Set 9305-2457 EMCO - 4 436 Univ. Radio Communication Tester CMU 200 103083 Rohde & Schwarz 12 M - 10.03.2020 443 Univ. Radio Communication Tester CMU 200 103083 Rohde & Schwarz 36 M - 10.03.2020 444 CTC-FAR-EMI-RSE System CTC-FAR-EMI-RSE - ETS-Lindgren / CETECOM 12 M 5 30.09.2017 456 Ox-Power supply 0-5 A EA 3013 S 207810 Elektro Automatik pre-m 2 467 Oxilloscope HM 205-3 9210 P 29661 Hameg - 4 468 Digital Multimeter Fluke 112 8920157 Fluke USA 36 M - 30.04.2018 467 Digital Multimeter Fluke 112 8960306 Fluke USA 36 M - 30.04.2018 468 Digital Multimeter Fluke 112 90090455 Fluke USA 36 M - 30.04.2018 467 Digital Multimeter Fluke 112 90090455 Fluke USA 36 M - 30.04.2018 467 Digital Multimeter Fluke 112 90090455 Fluke USA 36 M - 30.04							-	
342 Digital Multimeter Voltcraft M-4660A IB 255466 Voltcraft 24 M - 17.05.2019 347 laboratory site radio lab. - - - 5 348 laboratory site EMI conducted - - - 5 349 laboratory site EMI conducted - - - 5 354 DC - Power Supply 40A NGPE 40/40 448 Rohde & Schwarz pre-m 2 355 Power Meter URV 5 891310/027 Rohde & Schwarz 24 M - 30.05.2018 357 power sensor NRV-Z1 861761/002 Rohde & Schwarz 24 M - 24.05.2019 371 Bluetooth Tester CBT32 100153 R&S 36 M - 30.05.2019 373 Single-Line V-Network (50 Ohm/5μH) ESH3-Z6 100535 Rohde & Schwarz 12 M - 17.05.2018 373 Single-Line V-Network (50 Ohm/5μH) ESH3-Z6 100535 Rohde & Schwarz 12 M - 17.05.2018 375 EMI Test Receiver ESCS 30 100160 Rohde & Schwarz 12 M - 15.05.2018 376 Radio Communication Tester MT8820A 6K00000788 Anritsu 12 M - 18.05.2018 405 Thermo-/Hygrometer OPUS 10 THI 126.0604.0003.3.3.3.22 LUFFT Mess u. Regeltechnik 431 Model 7405 Near-Field Probe Set 9305-2457 EMCO - 4 436 Univ: Radio Communication Tester CMU 200 103083 Rohde & Schwarz 12 M - 24.05.2018 439 UltraLog-Antenna HL 562 100248 Rohde & Schwarz 36 M - 1003.2020 443 CTC-FAR-EMI-RSE System CTC-FAR-EMI-RSE ETS-Lindgren / CETECOM 12 M 5 30.09.2017 454 Oscilloscope HM 205-3 9210 P 29661 Hameg - 4 456 DC-Power supply 0-5 A EA 3013 S 207810 Elektro Automatik pre-m 2 467 Digital Multimeter Fluke 112 89680306 Fluke USA 36 M - 30.05.2018 468 Digital Multimeter Fluke 112 89680306 Fluke USA 36 M - 30.04.2018 477 ReRadiating GPS-System AS-47 - Automotive Cons. Fink -			HC 4055				-	
1 1 1 1 1 1 1 1 1 1	341	Digital Multimeter	Fluke 112	81650455	Fluke	24 M	-	30.05.2018
Boundary site EMI conducted - - 5		0		IB 255466	Voltcraft	24 M		17.05.2019
DC - Power Supply 40A NGPE 40/40 448 Rohde & Schwarz pre-m 2		•		-	=	-		
355 Power Meter URV 5 891310/027 Rohde & Schwarz 24 M - 30.05.2018					-	-		
357 power sensor NRV-Z1 861761/002 Rohde & Schwarz 24 M - 24.05.2019 371 Bluetooth Tester CBT32 100153 R&S 36 M - 30.05.2019 373 Single-Line V-Network (50 Ohm/5μH) ESH3-Z6 100535 Rohde & Schwarz 12 M - 17.05.2018 377 EMI Test Receiver ESCS 30 100160 Rohde & Schwarz 12 M - 15.05.2018 378 Zadio Communication Tester MT8820A 6K00000788 Anritsu 12 M - 18.05.2018 405 Thermo-/Hygrometer OPUS 10 THI 126.0604.0003.3.3.3.22 LUFFT Mess u. Regeltechnik LUFFT Mess u. Regeltechnik Regeltechnik LUFFT Mess u.						-	2	
Single-Line V-Network (50 Ohm/5μH) ESH3-Z6 100153 R&S 36 M - 30.05.2019							-	
Single-Line V-Network (50 Ohm/5μH) ESH3-Z6 100535 Rohde & Schwarz 12 M - 17.05.2018 377 EMI Test Receiver ESCS 30 100160 Rohde & Schwarz 12 M - 15.05.2018 392 Radio Communication Tester MT8820A 6K00000788 Anritsu 12 M - 18.05.2018 405 Thermo-/Hygrometer OPUS 10 THI 126.0604.0003.3.3.3.22 LUFFT Mess u. Regeltechnik Regeltechnik		*						
Section								
Radio Communication Tester								
DPUS 10 THI							-	
436 Univ. Radio Communication Tester CMU 200 103083 Rohde & Schwarz 12 M - 24.05.2018 439 UltraLog-Antenna HL 562 100248 Rohde & Schwarz 36 M - 10.03.2020 443 CTC-FAR-EMI-RSE System CTC-FAR-EMI-RSE - ETS-Lindgren / CETECOM 12 M 5 30.09.2017 454 Oscilloscope HM 205-3 9210 P 29661 Hameg - 4 455 DC-Power supply 0-5 A EA 3013 S 207810 Elektro Automatik pre-m 2 459 DC-Power supply 0-5 A , 0-32 V EA-PS 2032-50 910722 Elektro Automatik pre-m 2 463 Universal source HP3245A 2831A03472 Agilent - 4 466 Digital Multimeter Fluke 112 89210157 Fluke USA 24 M - 30.05.2018 467 Digital Multimeter Fluke 112 89680306 Fluke USA 36 M - 30.04.2018 468 Digital Multimeter Fluke 112 90090455 Fluke USA 36 M - 30.04.2018 477 ReRadiating GPS-System AS-47 - Automotive Cons. Fink - 3					Regeltechnik	24 M		30.03.2019
439 UltraLog-Antenna						10.34	4	24.05.2010
443 CTC-FAR-EMI-RSE System CTC-FAR-EMI-RSE - ETS-Lindgren / CETECOM 12 M 5 30.09.2017 454 Oscilloscope HM 205-3 9210 P 29661 Hameg - 4 456 DC-Power supply 0-5 A EA 3013 S 207810 Elektro Automatik pre-m 2 459 DC-Power supply 0-5 A, 0-32 V EA-PS 2032-50 910722 Elektro Automatik pre-m 2 463 Universal source HP3245A 2831A03472 Agilent - 4 466 Digital Multimeter Fluke 112 89210157 Fluke USA 24 M - 30.05.2018 467 Digital Multimeter Fluke 112 89680306 Fluke USA 36 M - 30.04.2018 468 Digital Multimeter Fluke 112 90090455 Fluke USA 36 M - 30.04.2018 477 ReRadiating GPS-System AS-47 - Automotive Cons. Fink - 3							-	
454 Oscilloscope HM 205-3 9210 P 29661 Hameg - 4 456 DC-Power supply 0-5 A EA 3013 S 207810 Elektro Automatik pre-m 2 459 DC-Power supply 0-5 A, 0-32 V EA-PS 2032-50 910722 Elektro Automatik pre-m 2 463 Universal source HP3245A 2831A03472 Agilent - 4 466 Digital Multimeter Fluke 112 89210157 Fluke USA 24 M - 30.05.2018 467 Digital Multimeter Fluke 112 89680306 Fluke USA 36 M - 30.04.2018 468 Digital Multimeter Fluke 112 90090455 Fluke USA 36 M - 30.04.2018 477 ReRadiating GPS-System AS-47 - Automotive Cons. Fink - 3				-			5	
456 DC-Power supply 0-5 A EA 3013 S 207810 Elektro Automatik pre-m 2 459 DC-Power supply 0-5 A, 0-32 V EA-PS 2032-50 910722 Elektro Automatik pre-m 2 463 Universal source HP3245A 2831A03472 Agilent - 4 466 Digital Multimeter Fluke 112 89210157 Fluke USA 24 M - 30.05.2018 467 Digital Multimeter Fluke 112 89680306 Fluke USA 36 M - 30.04.2018 468 Digital Multimeter Fluke 112 90090455 Fluke USA 36 M - 30.04.2018 477 ReRadiating GPS-System AS-47 - Automotive Cons. Fink - 3			•	9210 P 29661	-	-		50.07.2011
459 DC -Power supply 0-5 A , 0-32 V EA-PS 2032-50 910722 Elektro Automatik pre-m 2 463 Universal source HP3245A 2831A03472 Agilent - 4 466 Digital Multimeter Fluke 112 89210157 Fluke USA 24 M - 30.05.2018 467 Digital Multimeter Fluke 112 89680306 Fluke USA 36 M - 30.04.2018 468 Digital Multimeter Fluke 112 90090455 Fluke USA 36 M - 30.04.2018 477 ReRadiating GPS-System AS-47 - Automotive Cons. Fink - 3					, and the second	pre-m		
463 Universal source HP3245A 2831A03472 Agilent - 4 466 Digital Multimeter Fluke 112 89210157 Fluke USA 24 M - 30.05.2018 467 Digital Multimeter Fluke 112 89680306 Fluke USA 36 M - 30.04.2018 468 Digital Multimeter Fluke 112 90090455 Fluke USA 36 M - 30.04.2018 477 ReRadiating GPS-System AS-47 - Automotive Cons. Fink - 3						•		
466 Digital Multimeter Fluke 112 89210157 Fluke USA 24 M - 30.05.2018 467 Digital Multimeter Fluke 112 89680306 Fluke USA 36 M - 30.04.2018 468 Digital Multimeter Fluke 112 90090455 Fluke USA 36 M - 30.04.2018 477 ReRadiating GPS-System AS-47 - Automotive Cons. Fink - 3						-		
467 Digital Multimeter Fluke 112 89680306 Fluke USA 36 M - 30.04.2018 468 Digital Multimeter Fluke 112 90090455 Fluke USA 36 M - 30.04.2018 477 ReRadiating GPS-System AS-47 - Automotive Cons. Fink - 3					-	24 M		30.05.2018
468 Digital Multimeter Fluke 112 90090455 Fluke USA 36 M - 30.04.2018 477 ReRadiating GPS-System AS-47 - Automotive Cons. Fink - 3		•						
	468	Digital Multimeter				36 M	-	
480 power meter (Fula) NRVS 838392/031 Rohde & Schwarz 24 M - 16.05.2019	477	ReRadiating GPS-System		-		-	3	
	480	power meter (Fula)	NRVS	838392/031	Rohde & Schwarz	24 M	-	16.05.2019

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
482	filter matrix	Filter matrix SAR 1	-	CETECOM (Brl)	-	1d	
487	System CTC NSA-Verification SAR-EMI	System EMI field (SAR) NSA	-	ETS Lindgren / CETECOM	24 M	-	31.09.2017
489	EMI Test Receiver	ESU40 WRCG 1709/1786-1699/1796-	1000-30	Rohde & Schwarz	12 M	-	18.05.2019
502	band reject filter		SN 9	Wainwright	pre-m	2	
503	band reject filter	WRCG 824/849-814/859-	SN 5	Wainwright	pre-m	2	
517	relais switch matrix	HF Relais Box Keithley	SE 04	Keithley	pre-m	2	
523	Digital Multimeter	L4411A	MY46000154	Agilent	24 M	-	18.05.2019
529	6 dB Broadband resistive power divider	Model 1515	LH 855	Weinschel	pre-m	2	
530	10 dB Broadband resistive power divider	R 416110000	LOT 9828	=	pre-m	2	
546	Univ. Radio Communication Tester	CMU 200	106436	R&S	12 M	-	30.03.2018
547	Univ. Radio Communication Tester	CMU 200	835390/014	Rohde & Schwarz	12 M	-	30.04.2017
549	Log.Per-Antenna	HL025	1000060	Rohde & Schwarz	36/12 M	-	31.07.2018
574	Biconilog Hybrid Antenna	BTA-L	980026L	Frankonia	36/12 M	-	31.03.2019
584	Spectrum Analyzer	FSU 8	100248	Rohde & Schwarz	pre-m	-	
597	Univ. Radio Communication Tester	CMU 200	100347	Rohde & Schwarz	pre-m	-	
600	power meter	NRVD (Reserve)	834501/018	Rohde & Schwarz	24 M	-	17.05.2019
601	medium-sensitivity diode sensor	NRV-Z5 (Reserve)	8435323/003	Rohde & Schwarz	24 M	-	15.05.2019
602	peak power sensor	NRV-Z32 (Reserve)	835080	Rohde & Schwarz	24 M	-	
611	DC power supply	E3632A	KR 75305854	Agilent	pre-m	2	
612	DC power supply	E3632A	MY 40001321	Agilent	pre-m	2	
613	Attenuator	R416120000 20dB 10W	Lot. 9828	Radiall	pre-m	2	
616	Digitalmultimeter	Fluke 177	88900339	Fluke	24 M	-	30.05.2018
617	Power Splitter/Combiner	ZFSC-2-2-S+	S F987001108	Mini Circuits	-	2	
618	Power Splitter/Combiner	50PD-634	600994	JFW Industries USA	-	2	
619	Power Splitter/Combiner	50PD-634	600995	JFW Industries, USA	-	3	
620	EMI Test Receiver	ESU 26	100362	Rohde-Schwarz	12 M	-	16.05.2018
621	Step Attenuator 0-139 dB	RSP	100017	Rohde & Schwarz	pre-m	2	
625	Generic Test Load USB	Generic Test Load USB	-	CETECOM	-	2	
627	data logger	OPUS 1	201.0999.9302.6.4.1.43	G. Lufft GmbH	24 M	-	30.03.2019
634	Spectrum Analyzer	FSM (HF-Unit)	826188/010	Rohde & Schwarz	pre-m	2	
637	High Speed HDMI with Ethernet 1m	HDMI cable with Ethernet 1m	-	KogiLink	-	2	
638	HDMI Kabel with Ethernet 1,5 m flach	HDMI cable with Ethernet	-	Reichelt	-	2	
640	HDMI cable 2m rund	HDMI cable 2m rund	-	Reichelt	-	2	
641	HDMI cable with Ethernet	Certified HDMI cable with	-	PureLink	-	2	
642	Wideband Radio Communication Tester	CMW 500	126089	Rohde&Schwarz	12 M	-	24.05.2018
644	Amplifierer	ZX60-2534M+	SN865701299	Mini-Circuits	-	-	
670	Univ. Radio Communication Tester	CMU 200	106833	Rohde & Schwarz	24 M	-	30.05.2018
671	DC-power supply 0-5 A	EA-3013S	-	Elektro Automatik	pre-m	2	
678	Power Meter	NRP	101638	Rohde&Schwarz	pre-m	-	
683	Spectrum Analyzer	FSU 26	200571	Rohde & Schwarz	12 M	-	17.05.2018
686	Field Analyzer	EHP-200A	160WX30702	Narda Safety Test Solutions	24 M	-	29.03.2019
687	Signal Generator	SMF 100A	102073	Rohde&Schwarz	12 M	-	17.05.2018
688	Pre Amp	JS-18004000-40-8P	1750117	Miteq	pre-m	-	
690	Spectrum Analyzer	FSU	100302/026	Rohde&Schwarz	12 M	-	16.05.2018
691	OSP120 Base Unit	OSP120	101183	Rohde & Schwarz	12 M	-	22.05.2018
692	Bluetooth Tester	CBT 32	100236	Rohde & Schwarz	36 M	-	29.05.2020
697	Power Splitter	ZN4PD-642W-S+	165001445	Mini-Circuits	-	2	
703	INNCO Antennen Mast	MA 4010-KT080-XPET-ZSS3	MA4170-KT100-XPET-	INNCO	pre-m	-	
704	INNCON Controller	CO 3000-4port	CO3000/933/38410516/L	INNCO Systems GmBh	pre-m	-	
711	Harmonic Mixer 90 GHz - 140GHz	RPG FS-Z140	101004	RPG	12 M	-	22.02.2018
712	Harmonic Mixer 75 GHz - 110GHz	FS-Z110	101468	Rohde & Schwarz	12 M		22.02.2018
713	Harmonic Mixer, 50 GHz - 75GHz	FS-Z75	101022	Rohde & Schwarz	12 M	-	22.05.2018
714 715	Signal Analyzer 67GHz Harmonic Mixer, 140 GHz - 220GHz	FSW67 FS-Z220	104023 101009	Rohde & Schwarz RPG Radiometer Physics	24 M 12 M	-	03.03.2019 03.08.2018
716	Harmonic Mixer, 140 GHz - 220GHZ Harmonic Mixer 220 GHz to 325 GHZ	FS-Z325	101009	RPG Radiometer Physics RPG Radiometer Physics	12 M	-	13.02.2018
747	Spectrum Analyzer	FSU 26	200152	Rohde & Schwarz	12 M	-	18.05.2018
748	Pickett-Potter Horn Antenna	FH-PP 4060	010001	Radiometer Physiscs	-	-	
749	Pickett-potter Horn Antenna	FH-PP 60-90	010003	Radiometer Physics	-	-	
750	Pickett-Potter Horn Antenna	FH-PP 140-220	010011	Radiometer Physics	_	-	
.50	I ottor IIom I moniiu	1111110 220	1		<u> </u>	L	

8.1.3. Legend

Note / remarks		Calibrated during system calibration:
	1a	System CTC-SAR-EMS (RefNo. 442)
	1b	System-CTC-EMS-Conducted (RefNo. 335)
	1c	System CTC-FAR-EMI-RSE (RefNo . 443)
	1d	System CTC-SAR-EMI (RefNo . 441)
	1e	System CTC-OATS (EMI radiated) (RefNo. 337)
	1 f	System CTC-CTIA-OTA (RefNo . 420)
	1 g	System CTC-FAR-EMS (RefNo . 444)
	2	Calibration or equipment check immediately before measurement
	3	Regulatory maintained equipment for functional check or support purpose
	4	Ancillary equipment without calibration e.g. mechanical equipment or monitoring equipment
	5	Test System

Interval of calibration	12 M	12 month
	24 M	24 month
	36 M	36 month
24/12 M Calibration every 24 months, between this every 12 months internal validation		Calibration every 24 months, between this every 12 months internal validation
	36/12 M	Calibration every 36 months, between this every 12 months internal validation
	Pre-m	Check before starting the measurement
	-	Without calibration

9. Versions of test reports (change history)

Version	Version Applied changes			
	Initial release	2018-06-20		