Lista 7 - Geometria Analítica e Álgebra Linear

Profa. Roseli

Considere fixado um sistema de coordenadas ortogonais no plano. Esboçar a figura relativa a cada exercício.

Nos Problemas a seguir, as elipses consideradas têm seu centro na origem do sistema de coordenadas.

1. Para cada uma das seguintes elipses, determinar as coordenadas dos vértices e dos focos, os comprimentos dos eixos maior e menor e a excentricidade. Faça também um esboço do gráfico:

(a)
$$\frac{x^2}{100} + \frac{y^2}{36} = 1$$
 (b) $\frac{x^2}{36} + \frac{y^2}{100} = 1$

(c)
$$9x^2 + 4y^2 = 36$$
 (d) $4x^2 + 9y^2 = 36$

(e)
$$16x^2 + 25y^2 = 400$$
 (f) $x^2 + 25y^2 = 25$

(g)
$$9x^2 + 5y^2 - 45 = 0$$
 (h) $4x^2 + 9y^2 = 25$

(i)
$$4x^2 + y^2 = 1$$
 (j) $4x^2 + 25y^2 = 1$

2. Os pontos $A_1=(-4,\ 0)$ e $A_2=(4,\ 0)$ são dois vértices de uma elipse cujos focos são $F_1=(-3,\ 0)$ e $F_2=(3,\ 0)$. Determinar sua equação.

3. Os pontos $A_1=(0,$ -6) e $A_2=(0,$ 6) são dois vértices de uma elipse cujos focos são $F_1=(0,$ -4) e $F_2=(0,$ 4). Determinar sua equação.

4. Os focos de uma elipse são os pontos $F_1=(-2,\ 0)$ e $F_2=(2,\ 0)$. Sabendo que sua excentricidade é $e=\frac{2}{3}$, determinar sua equação.

5. Uma elipse que passa pelo ponto $P=(\sqrt{5},\,\frac{14}{3})$ tem como um dos vértices o ponto $(0,\,7)$. Determinar sua equação e sua excentricidade.

6. Uma elipse passa pelos pontos $P=(\sqrt{6},$ -1) e $Q=(2,\sqrt{2})$ e seu eixo maior coincide com o eixo O_x . Determinar sua equação.

7. Uma elipse que passa pelo ponto $P=(\frac{\sqrt{7}}{2},3)$ tem seu eixo menor coincidente com o eixo O_x e o comprimento do seu eixo maior é o dobro do comprimento do seu eixo menor. Determinar sua equação.

1

Nos Problemas a seguir, as hipérboles consideradas têm seu centro na origem do sistema de coordenadas.

8. Para cada uma das seguintes hipérboles, determinar as coordenadas dos vértices e dos focos, os comprimentos dos eixos transverso e conjugado e a excentricidade. Faça também um esboço do gráfico:

(a)
$$\frac{x^2}{100} - \frac{y^2}{36} = 1$$

(b)
$$\frac{y^2}{36} - \frac{x^2}{100} = 1$$

(c)
$$9x^2 - 4y^2 = 36$$

(d)
$$4x^2 - 9y^2 = 36$$

(e)
$$9y^2 - 4x^2 = 36$$

(f)
$$x^2 - 4y^2 = 4$$

(g)
$$25x^2 - 144y^2 = 3600$$

(h)
$$16x^2 - 25y^2 = 400$$

(i)
$$y^2 - x^2 = 16$$

(j)
$$3x^2 - y^2 = 3$$

9. Os vértices de uma hipérbole são os pontos $A_1 = (-2, 0)$ e $A_2 = (2, 0)$ e seus focos são $F_1 = (-3, 0)$ e $F_2 = (3, 0)$. Determinar sua equação e sua excentricidade.

10. Os extremos do eixo conjugado de uma hipérbole são os pontos (0, -3) e (0, 3). Sabendo que sua excentricidade é $\sqrt{2}$. Determinar sua equação.

11. Os vértices de uma hipérbole são os pontos $A_1 = (0, -4)$ e $A_2 = (0, 4)$. Sabendo que sua excentricidade é $e = \frac{3}{2}$, determinar sua equação e as coordenadas de seus focos.

12. O eixo transverso de uma hipérbole coincide com o eixo O_x . Determinar sua equação, sabendo que ela passa pelos pontos P = (3, -2) e Q = (7, 6).

13. Determinar os pontos de intersecção da reta \mathbf{r} : $2\mathbf{x}$ - $9\mathbf{y}$ + 12 = 0 com as assíntotas da hipérbole $4\mathbf{x}^2$ - $9\mathbf{y}^2 = 11$.

14. O eixo transverso de uma hipérbole se encontra ao longo do eixo O_x e uma de suas assíntotas é a reta \mathbf{r} : $2x + 3\sqrt{2}$ y = 0. Se a hipérbole passa pelo ponto P = (3, -1), determinar sua equação.

15. Determinar a distância do foco direito da hipérbole $16x^2 - 9y^2 = 144$ a cada uma de suas assíntotas.

16. Uma hipérbole tem seu eixo transverso coincidente com o eixo O_x . Sua excentricidade é $\frac{\sqrt{6}}{2}$ e ela passa pelo ponto P = (2, 1). Determine as equações de suas assíntotas.

17. Uma hipérbole tem seu eixo conjugado coincidente com o eixo O_x . Sua excentricidade é $\frac{2\sqrt{3}}{3}$ e ela passa pelo ponto $P=(-1,\,2)$. Determine as equações de suas assíntotas.

18. Determinar a equação das assíntotas s
da hipérbole $4x^2$ - $5y^2=7$.

- 19. Demonstrar que, se as assíntotas de uma hipérbole são mutuamente perpendiculares, a hipérbole é equilátera.
- **20.** Demonstrar que a excentricidade de qualquer hipérbole equilátera é $\sqrt{2}$

Nos Problemas a seguir, as parábolas consideradas têm seu vértice na origem do sistema de coordenadas.

21. Para cada uma das parábolas a seguir, determinar as coordenadas do foco, a equação da diretriz e fazer um esboço do gráfico.

(a)
$$y^2 = -100x$$

(b)
$$x^2 = 10y$$

(c)
$$y^2 = 4x$$

(d)
$$x^2 = -16y$$

(e)
$$y^2 = 12x$$

(f)
$$y^2 + 8x = 0$$

(g)
$$x^2 = 12y$$

(h)
$$x^2 + 2y = 0$$

- 22. Determinar a equação da parábola cujo foco é o ponto F = (3, 0).
- 23. Determinar a equação da parábola cujo foco é o ponto F = (0, -3).
- 24. Determinar a equação da parábola cuja diretriz é a reta d: y 5 = 0.
- 25. Determinar a equação da parábola cuja diretriz é a reta d: x + 5 = 0.
- **26.** Uma parábola cujo eixo é coincidente com o eixo O_x passa o pelo ponto $P=(-2,\ 4)$. Determinar sua equação, as coordenadas do seu foco e a equação de sua diretriz.
- 27. Uma corda da parábola $y^2 4x = 0$ se encontra sobre a reta \mathbf{r} : $\mathbf{x} 2\mathbf{y} + 3 = 0$. Determinar seu comprimento.
- 28. Determinar o comprimento da corda focal da parábola $x^2 + 8y = 0$ que é paralela à reta r: 3x + 4y 7 = 0.
- **29.** Determinar o comprimento do raio focal do ponto que se encontra sobre a parábola y^2 9x = 0 e cuja ordenada é igual a 6.
- **30.** Considere a circunferência cujo centro é o ponto C=(4,-1) e que passa pelo foco da parábola $x^2+16y=0$. Mostrar que esta circunferência é tangente à diretriz da parábola.

RESPOSTAS

1.	vértices	vértices	focos	eixo maior: 2a	eixo menor: 2b	excentricidade
a	(± 10, 0)	$(0, \pm 6)$	(± 8, 0)	20	12	$\frac{4}{5}$
b	$(0, \pm 10)$	$(\pm 6, 0)$	$(0, \pm 8)$	20	12	$\frac{4}{5}$
c	$(0, \pm 3)$	$(\pm 2, 0)$	$(0,\pm\sqrt{5})$	6	4	$\frac{\sqrt{5}}{3}$
d	(± 3, 0)	$(0, \pm 2)$	$(\pm\sqrt{5},0)$	6	4	$\frac{\sqrt{5}}{3}$
e		$(0, \pm 4)$		10	8	3 5
f			$(\pm\sqrt{24},0)$	10	2	$\frac{\sqrt{24}}{5}$
g		$(\pm\sqrt{5},0)$		6	$2\sqrt{5}$	$\frac{2}{3}$
h	$(\pm \frac{5}{2}, 0)$	$(0,\pm \frac{5}{3})$	$(\pm \frac{5\sqrt{5}}{6}, 0)$	5	$\frac{10}{3}$	$\frac{\sqrt{5}}{3}$
i	$(0, \pm 1)$	$(\pm \frac{1}{2}, 0)$	$(0,\pm\frac{\sqrt{3}}{2})$	2	1	$\frac{\sqrt{3}}{2}$
j	$(\pm \frac{1}{2}, 0)$	$(0,\pm\frac{1}{5})$	$(\pm \frac{q}{10}, 0)$	1	2 5	$\frac{\sqrt{21}}{5}$

2.
$$\frac{x^2}{16} + \frac{y^2}{7} = 1$$

$$3. \quad \frac{y^2}{36} + \frac{x^2}{20} = 1$$

4.
$$\frac{x^2}{9} + \frac{y^2}{5} = 1$$

5.
$$\frac{x^2}{9} + \frac{y^2}{49} = 1$$
 e e $\frac{2\sqrt{10}}{7}$

6.
$$\frac{x^2}{8} + \frac{y^2}{4} = 1$$

7.
$$\frac{x^2}{4} + \frac{y^2}{16} = 1$$

8.	vértices	focos	eixo maior: 2a	eixo menor: 2b	excentricidade
					/24
a	$(\pm 10, 0)$	$(\pm 2\sqrt{34}, 0)$	20	12	$\frac{\sqrt{34}}{5}$
					. /24
b	$(0, \pm 6)$	$(0,\pm 2\sqrt{34})$	12	20	$\frac{\sqrt{34}}{3}$
					1/13
c	$(\pm 2, 0)$	$(\pm\sqrt{13},0)$	4	6	$\frac{\sqrt{13}}{2}$
		_			,/13
d	$(\pm 3, 0)$	$(\pm\sqrt{13},0)$	6	4	$\frac{\sqrt{13}}{3}$
		_			$\sqrt{13}$
e	$(0, \pm 2)$	$(0,\pm\sqrt{13})$	4	6	$\frac{\sqrt{13}}{2}$
					$\frac{\sqrt{5}}{2}$
f	$(\pm 2, 0)$	$(\pm\sqrt{5},0)$	4	2	$\frac{\sqrt{3}}{2}$
g	$(\pm 12, 0)$	$(\pm 13, 0)$	24	10	13 12
h	$(\pm 5, 0)$	$(\pm\sqrt{41},0)$	10	8	$\frac{\sqrt{41}}{5}$
		_			/5
i	$(0, \pm 4)$	$(0,\pm 4\sqrt{2})$	8	8	$\sqrt{2}$
j	(± 1, 0)	$(\pm 2, 0)$	2	$2\sqrt{3}$	2

9.
$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$
 e e = $\frac{3}{2}$ 10. $\frac{x^2}{9} - \frac{y^2}{9} = 1$

10.
$$\frac{x^2}{9} - \frac{y^2}{9} = 1$$

11.
$$\frac{y^2}{16} - \frac{x^2}{20} = 1$$
 e F = $(0, \pm 6)$ 12. $4x^2 - 5y^2 = 16$

12.
$$4x^2 - 5y^2 = 16$$

13.
$$(3, 2)$$
 e $(-\frac{3}{2}, 1)$

13.
$$(3, 2)$$
 e $(-\frac{3}{2}, 1)$ **14.** $2x^2 - 9y^2 = 9$ ou $\frac{x^2}{\frac{9}{2}} - y^2 = 9$

16.
$$y = \pm \frac{\sqrt{2}}{2} X$$

17.
$$y = \pm \sqrt{3} x$$

18.
$$y = \pm \frac{2\sqrt{5}}{5} X$$

21.	foco	$\operatorname{\mathbf{diretriz}}$	
a	(-25, 0)	d: x = 25	
b	$(0, \frac{5}{2})$	d: $y = -\frac{5}{2}$	
c	(1, 0)	d : x = -1	
d	(0, -4)	d: y = 4	
e	(3, 0)	d: x = -3	
f	(-2, 0)	d: x = 2	
g	(0, 3)	d: y = -3	
h	$(0, -\frac{1}{2})$	d: $y = \frac{1}{2}$	

22.
$$y^2 = 12 x$$

23.
$$x^2 = -12 y$$

24.
$$x^2 = -20 y$$

25.
$$y^2 = 20 x$$

26.
$$y^2 = -8 x$$
, $F = (-2, 0)$ e **d**: $x = 2$

27.
$$4\sqrt{5}$$
 uc

28.
$$\frac{25}{2}$$
 uc

29.
$$\frac{25}{4}$$
 uc