The Augmented Social Scientist

Using Sequential Transfer Learning to Annotated Millions of Texts with Human-Level Accuracy (Do, Ollion & Shen, *SMR*, 2022).

I. General Presentation

More at <u>www.css.cnrs.fr</u> (click "Tutorial")

Étienne Ollion (CNRS/ École polytechnique) Rubing Shen (Sciences Po / École polytechnique)

Introduction

- Confessions of a (non-)Believer
- Figuring it Out
 - An Experiment
 - On a Social Scientific Research Question
 - In a Limited Amount of Time?
- Human Augmentation at the tip of our Fingers
- Bonus: Do we even need this in the era of chatGPT?

Research Questions

RQ1: Can a Model Achieve Human-Level Quality for Textual Annotation?

(+ which human? On which task?)

RQ2: What Role does the Expertise of Annotators play in the Training of the Model?

Research questions

On a real research topic: the rise of "Strategic News Coverage"

- Political Games over Political Measures or Ideas
- Revelation of Backstage Manoeuvers
- Lengthy Depiction of the Strategies of Politicians

Introduction

- I. Data & Methods
- II. The Experiment
- III. Results
- IV. Discussion
- + Transition

Schedule

Augmented: General Presentation

Lab 1: Using the Augmented Package

BREAK

Lab 2: Conducting A Real Life Project

Augmented: Tips & Tricks

All articles in the Politics Section of the French daily Le Monde

1945-2015 61,511 articles 38,497,810 words
--

Task 1: Policy vs. Politics

- Content of a Measure vs. Action of Politicians
- At the sentence level
- Complexity = high

Task 2: Unattributed Quotes

- Prompts introducing unattributed quotes ("off the record")
- Below the sentence level
- Complexity = medium high

Keep in mind:

you get to design your indicators

Method: Supervised Learning

Training a Model to Mimic Human Annotation

Method: Supervised <u>Transfer</u> Learning

Using a Language Model to Drastically Reduce the Volume of Annotations

- Pretrained Language models: BERT (Devlin et al., 2019) and CamemBERT for French (Martin et al., 2020)
- Fine tuning: Adjusting the Model to Each of our two Tasks

3 types of Annotators

- Social Scientist (SS)
 - An expert in her field, often designs the indicators.
 - o Time: limited
 - ⇒ In this case: one of the authors of the paper

3 types of Annotators

- Social Scientist (SS)
- Research Assistants (RA)
 - Trained, qualified Students. Not experts in the field.
 - Interaction with the researcher
 - ⇒ 3 Master's Level Students, carefully trained by us

3 types of Annotators

- Social Scientist (SS)
- Research Assistants (RA)
- Microworkers (MW)
 - Limited Training, no Connections to the Researcher
 - ⇒ In our Case: 34 BA Students from a course (likely better than gig workers)

Against a carefully annotated test set ("gold standard"),

• RQ1: Compare the Performance of the Model Trained by the Social Scientist (ASS) against Human Annotations.

 RQ2: Compare the Performances of Models Trained by Annotators with Different Levels of Expertise (SS, RAs, MWs)

Research Question 1: Can a Model Achieve Human-Level Quality for Textual Annotation?

	Policy vs. Politics	Unattributed
Human - Microworkers	0.65	0.7
Human - RAs	0.80	0.86

Table: F-1 Score for human annotation

Comparison to a Gold Standard annotated with care by experts

	Policy vs. Politics	Unattributed
Human - Microworkers	0.65	0.70
Human - RAs	0.80	0.86
"Classic" supervised models	0.67	0.41
(SVM, LSTM)	[0.671, 0.673]	[0.390, 0.437]

Table: F-1 Score for human annotation vs. Model trained by the expert

	Policy vs. Politics	Unattributed
Human - Microworkers	0.65	0.70
Human - RAs	0.80	0.86
"Classic" supervised models	0.67	0.41
(SVM, LSTM)	[0.671, 0.673]	[0.390, 0.437]
Augmented Social Scientist	0.78	0.82
(camemBERT)	[0.781, 0.792]	[0.816, 0.834]

Table: F-1 Score for human annotation vs. Model trained by the expert

Qualitative Assessment

Qualitative Assessment

Туре	Frequency
(Quasi-) agreement	76%
Partial agreement	2%
In gold standard, but not predicted	10%
(= false negative)	
Predicted correctly by the algorithm,	8%
but not noticed by the expert	
Predicted incorrectly	4%
(= false positive)	

Manual evaluation of the quality of prediction

Result1: It is possible to train a human-level quality classifier even for complex tasks

RQ 2: What Role does the Expertise of Annotators play?

Sample efficiency curves (F1 Scores)

- In both cases, we could have massively cut down on annotation time
- And this is before doing active learning
- But quality matters for complex tasks (politics)

Sample efficiency curves (F1 Scores)

Result 1: It is possible to train a human-level quality classifier even for complex tasks

Result 2: Annotation plays an important role for complex tasks

- 1. An Immense Promise
 - An improvement with respect to alternative methods
 - Expert hand annotation, at scale
 - More tailored to research needs than non-supervised models
 - No outsourcing

- 1. An Immense Promise
 - An improvement with respect to alternative methods
 - Ability to fully annotate an entire data set
 - Comprehensive AND fine-grained Analysis
 - Forces conceptual clarification (Bonikowski et al., 2022)
 - Avoid "Fatigue effect", "Learning effect" (Rousson et al., 2002)

- 2. Limitation, Challenges, and Future Developments
 - Computer time and hardware
 - Hard Without a GPU
 - Colab and its Problems

- 2. Limitation, Challenges, and Future Developments
 - And what about non-foundational LLMs? (chatGPT)
 - A Recent Experiment (July 2023)
 - Easiest task of the two: detecting "unnamed sources"

	F1-Score ("unattributed")
Microworkers	0.7
Research Assistants	0.86
Augmented (Expert + BERT)	0.82 - (.94)
chatGPT (gpt 3.5-turbo) Few-shot learning Zero-shot learning	

	F1-Score ("unattributed")
Microworkers	0.7
Research Assistants	0.86
Augmented (Expert + BERT)	0.82 - (.94)
chatGPT (gpt 3.5-turbo) Zero-shot learning Few-shot learning	~.37 .486

- 2. Limitation, Challenges, and Future Developments
 - And what about non-foundational LLMs? (chatGPT)
 - Result? Not anywhere close to expert annotation + BERT
 - Sure, we could better engineer prompts; use a foundational model (Llama), do this in English, etc...
 - Yet: for research purposes, <u>as of now</u>, <u>in our experience</u>, what is relevant is hard to extract with zero or few-shot learning.

- 2. Limitation, Challenges, and Future Developments
 - Computer time and hardware
 - When to use it, when to not use it?
 - And what about non-foundational LLMs? (chatGPT)
 - As of today, clearly better on complex tasks
 - Also: are you sure you don't want to read your corpus??!

Conclusion

The return of an old debate: replacement, or augmentation

Creating an in-silico replica of ourselves

> Doug Engelbart, the Internet and "The Augmentation Research Lab"

"Increasing the capability of a man to approach a complex problem situation, to gain comprehension to suit his particular needs, and to derive solutions to problems." (Engelbart, Augmenting Human Intellect, 1962).

Resources

- Do, Ollion and Shen, "The Augmented Social Scientist", <u>Sociological Methods and</u> <u>Research</u>, 2022.
- GitHub repository
- Google Colab

Schedule

Augmented: General Presentation

Lab 1: Using the Augmented Package

BREAK

Lab 2: Conducting A Real Life Project

Augmented: Tips & Tricks