

DATA VISUALIZATION WITH GGPLOT2

Grid Graphics

ggplot2 internals

- Explore grid graphics
- Elements of ggplot2 plot
- How do graphics work in R?
- 2 plotting systems
 - base package
 - grid graphics

base package

```
> plot(mtcars$wt, mtcars$mpg, pch = 16, col = "#00000080")
```


base package

```
> plot(mtcars$wt, mtcars$mpg, pch = 16, col = "#000000080")
> abline(lm(mpg ~ wt, data = mtcars), col = "red")
```


base package - change labels

```
> plot(mtcars$wt, mtcars$mpg, pch = 16, col = "#00000080")
> abline(lm(mpg ~ wt, data = mtcars), col = "red")
> mtext("Weight", 1, 3)
> mtext("mpg (US gallons)", 2, 3)
```


base package - change dots

base package - restart

grid package

- Paul Murell
- Low-level graphic functions
- Assemble yourself
- ggplot2 built on top of grid
- Two components
 - Create graphic outputs
 - Layer and position outputs with viewports


```
> # Rectangle
```

> grid.rect()


```
> # Rectangle
> grid.rect()
> # Line
> grid.lines()
```



```
> # Rectangle
> grid.rect()
> # Line
> grid.lines()
> # Circle
> grid.circle()
```


- > # Rectangle
- > grid.rect()
- > # Line
- > grid.lines()
- > # Circle
- > grid.circle()
- > # Grid polygon
- > grid.polygon()


```
> # Rectangle
> grid.rect()
> # Line
> grid.lines()
> # Circle
> grid.circle()
> # Grid polygon
> grid.polygon()
> # Text
> grid.text("hello")
```

hello

Graphic output - adjust

Graphic output - gpar()

```
> # Rectangle
> grid.rect(x = 0.5, y = 0.5,
            width = 0.5, height = 0.5,
            just = "center",
            gp = gpar(fill = "darkgreen"))
```


Graphic output - gpar()

```
> # Rectangle
> grid.rect(x = 0.5, y = 0.5,
            width = 0.5, height = 0.5,
            just = "center",
            gp = gpar(fill = "darkgreen"))
> # Line
> grid.lines(x = c(0, 0.5), y = c(0.25, 1),
          gp = gpar(lty = 3,
                     col = "darkblue"))
```


Graphic output - gpar()

```
> # Rectangle
> grid.rect(x = 0.5, y = 0.5,
            width = 0.5, height = 0.5,
            just = "center",
            gp = gpar(fill = "darkgreen"))
> # Line
> grid.lines(x = c(0, 0.5), y = c(0.25, 1),
           gp = gpar(lty = 3,
                     col = "darkblue"))
> # Circle
> grid.circle(x = 0.5, y = 0.5, r = 0.25,
              gp = gpar(fill = "darkred",
                        col = NA))
```


Naming graphic output

Naming graphic output

Naming graphic output

Viewports

Windows onto which we draw graphic outputs

Viewports

Windows onto which we draw graphic outputs

Viewports

Windows onto which we draw graphic outputs

plotViewport

```
> grid.rect(gp = gpar(fill = "grey80"))
> mar <- c(5, 4, 2, 2)
> vp_plot <- plotViewport(margins = mar, name = "vp2")
> pushViewport(vp_plot)
> grid.rect(gp = gpar(fill = "#2685A2"))
```



```
> grid.rect(gp = gpar(fill = "grey80"))
> mar <- c(5, 4, 2, 2)
> vp_plot <- plotViewport(margins = mar, name = "vp2")</pre>
> pushViewport(vp_plot)
> vp_data <- dataViewport(mtcars$wt, mtcars$mpg)</pre>
> pushViewport(vp_data)
> grid.rect(gp = gpar(fill = "grey70"))
```



```
> grid.rect(gp = gpar(fill = "grey80"))
> mar <- c(5, 4, 2, 2)
> vp_plot <- plotViewport(margins = mar, name = "vp2")
> pushViewport(vp_plot)

> vp_data <- dataViewport(mtcars$wt, mtcars$mpg)
> pushViewport(vp_data)
> grid.rect(gp = gpar(fill = "grey70"))

> grid.xaxis()
> grid.yaxis()
```



```
> grid.rect(gp = gpar(fill = "grey80"))
> mar <- c(5, 4, 2, 2)
> vp_plot <- plotViewport(margins = mar, name = "vp2")</pre>
> pushViewport(vp_plot)
> vp_data <- dataViewport(mtcars$wt, mtcars$mpg)</pre>
> pushViewport(vp_data)
> grid.rect(gp = gpar(fill = "grey70"))
> grid.xaxis()
> grid.yaxis()
> grid.text("Weight", y = unit(-3, "lines"))
> grid.text("MPG", x = unit(-3, "lines"), rot = 90)
```



```
> grid.rect(gp = gpar(fill = "grey80"))
> mar <- c(5, 4, 2, 2)
> vp_plot <- plotViewport(margins = mar, name = "vp2")</pre>
> pushViewport(vp_plot)
> vp_data <- dataViewport(mtcars$wt, mtcars$mpg)</pre>
> pushViewport(vp_data)
> grid.rect(gp = gpar(fill = "grey70"))
> grid.xaxis()
> grid.yaxis()
> grid.text("Weight", y = unit(-3, "lines"))
> grid.text("MPG", x = unit(-3, "lines"), rot = 90)
> grid.points(mtcars$wt, mtcars$mpg, pch = 16,
              gp = gpar(col = "#00000080"),
              name = "data")
```


grid.edit

DATA VISUALIZATION WITH GGPLOT2

Let's practice!

DATA VISUALIZATION WITH GGPLOT2

Grid graphics in ggplot2

Grobs

- Graphical objects = grobs
- ggplot2 object = collection of grobs

Graphic Output	Graphics Object
grid.rect()	rectGrob()
grid.lines()	linesGrob()
grid.circle()	circleGrob()
grid.polygon()	polygonGrob()
grid.text()	textGrob()

ggplot2 example

ggplot2 example

> p

Accessing grobs

```
(3, 5) (3, 6).625null
                                                               (3, 4)
> library(grid)
> g <- ggplotGrob(p)</pre>
> g
TableGrob (6 x 6) "layout": 9 grobs
        cells
                                                                 grob
                     name
   (1-6,1-6) background zeroGrob[plot.background..zeroGrob.23938]
                  axis-l
2 \ 3 \ (3-3,3-3)
                              absoluteGrob[GRID.absoluteGrob.23907]
3 \ 1 \ (4-4,3-3)
                                                       zeroGrob[NULL]
               spacer
4 2 (3-3,4-4)
                                             gTree[GRID.gTree.23893]
               panel
                  axis-b
5 4 (4-4,4-4)
                              absoluteGrob[GRID.absoluteGrob.23900]
                  xlab
65(5-5,4-4)
                           titleGrob[axis.title.x..titleGrob.23910]
76(3-3,2-2)
                    ylab
                           titleGrob[axis.title.y..titleGrob.23913]
               guide-box
87(3-3,5-5)
                                                   gtable[guide-box]
98(2-2,4-4)
                             titleGrob[plot.title..titleGrob.23937]
                    title
```


List of grobs

```
> g$grob
[[1]]
zeroGrob[plot.background..zeroGrob.24133]
[[6]]
titleGrob[axis.title.x..titleGrob.24105]
[[7]]
titleGrob[axis.title.y..titleGrob.24108]
[[8]]
          (3 x 3) "guide-box": 1 grobs
TableGrob
                                           cells
                                                                   grob
                                                   name
99_cf2b20daa6ef538a0def731fa7c3e7db 1 (2-2,2-2) guides gtable[layout]
```


Legend grob

Speciessetosaversicolorvirginica

Structure of legend

- > library(gtable)
- > gtable_show_layout(g\$grob[[8]])

Update legend

Update legend

Species

Anderson, 1936

Update legend (2)

DATA VISUALIZATION WITH GGPLOT2

Let's practice!

DATA VISUALIZATION WITH GGPLOT2

ggplot2 Objects

ggplot2 example

> p

Accessing grobs

```
> library(grid)
> g <- ggplotGrob(p)</pre>
> g
TableGrob (6 x 6) "layout": 9 grobs
       cells
                   name
                                                              grob
1 0 (1-6,1-6) background zeroGrob[plot.background..zeroGrob.23938]
2 \ 3 \ (3-3,3-3) axis-l
                            absoluteGrob[GRID.absoluteGrob.23907]
3 \ 1 \ (4-4,3-3)
                                                   zeroGrob[NULL]
             spacer
4 2 (3-3,4-4)
                  panel
                                          gTree[GRID.gTree.23893]
             axis-b
5 4 (4-4,4-4)
                            absoluteGrob[GRID.absoluteGrob.23900]
65(5-5,4-4)
             xlab
                         titleGrob[axis.title.x..titleGrob.23910]
76(3-3,2-2)
                          titleGrob[axis.title.y..titleGrob.23913]
                   ylab
87(3-3,5-5) guide-box
                                                gtable[guide-box]
                           titleGrob[plot.title..titleGrob.23937]
98(2-2,4-4)
                  title
```


ggplot object

p

```
> p <- ggplot(iris, aes(x = Sepal.Length,</pre>
                       y = Sepal.Width,
                       col = Species)) +
   geom_point(alpha = 0.3, size = 5, shape = 16) +
   geom_smooth(method = "lm", se = FALSE) +
   scale_y_continuous("Width", limits = c(2, 4.5), expand = c(0,0)) +
   scale_x_continuous("Length", limits = c(4, 8), expand = c(0,0)) +
   coord_equal() +
   ggtitle("Iris Sepals") +
   theme(rect = element_blank())
> names(p)
[1] "data"
          "layers" "scales" "mapping"
                                                          "theme"
[6] "coordinates" "facet"
                        "plot_env" "labels"
```


> p\$data

Sepal.Length Sepal.Width Petal.Length Petal.Width Species 5.1 3.5 1.4 0.2 setosa 4.9 0.2 3.0 1.4 setosa 4.7 3 3.2 1.3 0.2 setosa 4.6 1.5 0.2 4 3.1 setosa

• • •

- > p\$layers
- > p\$scales
- > p\$mapping
- > p\$theme
- > p\$coordinates
- > p\$facet
- > p\$plot_env
- > p\$labels


```
> p$data
> p$layers
[[1]]
geom_point: na.rm = FALSE
stat_identity: na.rm = FALSE
position_identity
[[2]]
geom_smooth: na.rm = FALSE
stat_smooth: na.rm = FALSE, method = lm, formula = y ~ x, se =
FALSE
position_identity
> p$scales
> p$mapping
> p$theme
> p$coordinates
> p$facet
> p$plot_env
> p$labels
```



```
> p$data
> p$layers
> p$scales
<ggproto object: Class ScalesList>
    add: function
    clone: function
    find: function
    get_scales: function
    has_scale: function
    input: function
    n: function
    non_position_scales: function
    scales: list
    super: <ggproto object: Class ScalesList>
> p$mapping
> p$theme
> p$coordinates
> p$facet
> p$plot_env
> p$labels
```



```
> p$data
> p$layers
> p$scales
> p$mapping
   -> Sepal.Length
* X
* y -> Sepal.Width
* colour -> Species
> p$theme
> p$coordinates
> p$facet
> p$plot_env
> p$labels
```



```
> p$data
> p$layers
> p$scales
> p$mapping
> p$theme
List of 1
$ rect: list()
  ..- attr(*, "class")= chr [1:2] "element_blank" "element"
 - attr(*, "class")= chr [1:2] "theme" "gg"
 - attr(*, "complete") = logi FALSE
 - attr(*, "validate")= logi FALSE
> p$coordinates
> p$facet
> p$plot_env
> p$labels
```



```
> p$data
> p$layers
> p$scales
> p$mapping
> p$theme
> p$coordinates
<ggproto object: Class CoordFixed, CoordCartesian, Coord>
    aspect: function
    distance: function
    expand: TRUE
    is_linear: function
    labels: function
    limits: list
    range: function
    ratio: 1
    render_axis_h: function
    • • •
> p$facet
> p$plot_env
> p$labels
```


- > p\$data
- > p\$layers
- > p\$scales
- > p\$mapping
- > p\$theme
- > p\$coordinates
- > p\$facet

facet_null()

- > p\$plot_env
- > p\$labels


```
> p$data
```

- > p\$layers
- > p\$scales
- > p\$mapping
- > p\$theme
- > p\$coordinates
- > p\$facet
- > p\$plot_env

<environment: R_GlobalEnv>

> p\$labels


```
> p$data
> p$layers
> p$scales
> p$mapping
> p$theme
> p$coordinates
> p$facet
> p$plot_env
> p$labels
$title
[1] "Iris Sepals"
$x
   "Sepal.Length"
$y
    "Sepal.Width"
$colour
[1] "Species"
```


ggplot_build

```
> p_build <- ggplot_build(p)
> names(p_build)
[1] "data" "panel" "plot"
```


data

```
> p_build$data
[[1]]
    colour y x PANEL group shape size fill alpha stroke
   #F8766D 3.5 5.1
                                16
                                          NA
                                               0.3
                                                     0.5
   #F8766D 3.0 4.9 1 1 16 5
#F8766D 3.2 4.7 1 1 16 5
                                              0.3
                                                   0.5
                                         NA
                                              0.3 0.5
                                         NA
   #F8766D 3.1 4.6 1
                                16
                                          NA
                                               0.3
                                                     0.5
[[2]]
                          y PANEL group fill size linetype weight alpha
    colour
                 X
   #F8766D 4.300000 2.864239
                                     1 grey60
                                                                   0.4
   #F8766D 4.318987 2.879401 1 1 grey60 1
                                                                    0.4
   #F8766D 4.337975 2.894563
                                     1 grey60
                                                                    0.4
   #F8766D 4.356962 2.909725
                                     1 grey60
                                                                    0.4
• • •
```


panel

```
> p_build$panel
$layout
  PANEL ROW COL SCALE_X SCALE_Y
  1 \quad 1 \quad 1 \quad 1 \quad 1
$shrink
[1] TRUE
$x_scales
$x_scales[[1]]
<ScaleContinuousPosition>
 Range: 4.3 -- 7.9
 Limits: 4.3 -- 8
$y_scales
$y_scales[[1]]
<ScaleContinuousPosition>
 • • •
```


plot

> p_build\$plot

gtable

```
> p_build <- ggplot_build(p)</pre>
> gtab <- ggplot_gtable(p_build)</pre>
> gtab
TableGrob (6 x 6) "layout": 9 grobs
        cells
                                                               grob
                    name
1 0 (1-6,1-6) background zeroGrob[plot.background..zeroGrob.25361]
2 \ 3 \ (3-3,3-3) axis-l
                             absoluteGrob[GRID.absoluteGrob.25330]
3 \ 1 \ (4-4,3-3)
                                                     zeroGrob[NULL]
                  spacer
4 2 (3-3,4-4)
              panel
                                           gTree[GRID.gTree.25316]
5 4 (4-4,4-4)
             axis-b
                             absoluteGrob[GRID.absoluteGrob.25323]
65(5-5,4-4)
             xlab
                          titleGrob[axis.title.x..titleGrob.25333]
76(3-3,2-2)
                    ylab
                          titleGrob[axis.title.y..titleGrob.25336]
87(3-3,5-5) guide-box
                                                  gtable[guide-box]
9 8 (2-2,4-4)
                            titleGrob[plot.title..titleGrob.25360]
                   title
> gtab2 <- ggplotGrob(p) # same thing</pre>
```


grid.draw

- > library(grid)
- > grid.draw(gtab)

gtab

layout

> gtable_show_layout(gtab)

u mtegatiblith	2n7,50p16)091 6cm, 0.0	0762cm, 1 <u>.</u> 32	
5.501 eight (2, (2, 3	(2, 4)	(2, 5)	(2, 6)grob
6nu(18)(3, (23, 3)	(3, 4)	(3, 5)	(3, 6).675
eight)4(4, (4, 3)	(4, 4)	(4, 5)	(4, 6s)um(
eight (5, 45, 3	(5, 4)	(5, 5)	(5, 6) grol
um égagablavéit htf	2n7,50p b 096cm, 0.0	0762cm, 1.32	8 3 3 2 3 2 98

layout (2)

```
> gtab$layout
  t l b r z clip
                       name
   1 6 6 0
              on background
             off
                     axis-l
   3 3 3 3
 4 3 4 3 1
             off
                     spacer
                      panel
   4 3 4 2
              on
             off
                     axis-b
 4 4 4 4 4
             off
                       xlab
   4 5 4 5
             off
                       ylab
   2 3 2 6
             off
                  guide-box
7 3 5 3 5 7
             off
                      title
8 2 4 2 4 8
```

	2117,50pp019 16cm, 0.	0762cm, 1.328 33232 298
5.5pt (2, 42, 3	(2, 4)	(1, 5) (1, 6).5pt (2, 5) (2, 6)grob
6nu(18(3, 4 3, 3	(3, 4)	(3, 5) (3, 60).675
eight (4, (4, 3) eight (5, 6), 3 5.5 pt (6, 6), 3 um (5, 5)	(4, 4) (5, 4) (6, 4) 2n7,5p6096cm, 0.	(4, 5) (4, 6)um((5, 5) (5, 6)grol (6, 5) (6, 6).5pt 0762cm, 1.328 332 32298

Update clipping

```
> gtab$layout$clip
[1] "on" "off" "on" "off" "off" "off" "off"
> gtab$layout$clip[gtab$layout$name == "panel"] <- "off"</pre>
```


Redraw

- > library(grid)
- > grid.draw(gtab)

DATA VISUALIZATION WITH GGPLOT2

Let's practice!

DATA VISUALIZATION WITH GGPLOT2

gridExtra

gridExtra

- Manage multiple plotting objects
- Reasons
 - Avoid giant facetted plot
 - Defer plotting
 - Arrange multiple plots in layout
 - Make a multiple page pdf of plots

Build multiple plots

```
> library(plyr)
> my_plots <- dlply(mtcars, .(cyl), function(df) {</pre>
    ggplot(df, aes(mpg, wt)) +
      geom_point() +
      xlim(range(mtcars$mpg)) +
      ylim(range(mtcars$wt)) +
      ggtitle(paste(df$cyl[1], "cylinders"))})
> length(my_plots)
\lceil 1 \rceil 3
> names(my_plots)
   "4" "6" "8"
```


Plot by position

> my_plots[[2]]

Plot by name

> my_plots[["6"]]

Combine plots (1)

- > library(gridExtra)
- > grid.arrange(my_plots[[2]], my_plots[[1]], ncol = 2)

Combine plots (2)

> do.call(grid.arrange, my_plots)

Combine plots (3)

> grid.arrange(p, my_plots[[1]])

Why grid.arrange()?

- You are not able to make manual adjustments
- Creating many of the same composite plots
 - Slight variations (different dataset or variables)

DATA VISUALIZATION WITH GGPLOT2

Let's practice!