(19) World Intellectual Property Organization International Bureau

. I HERE BEGINDE HE BEGIN BEHE HERE AND EIGH BEGIN BEGEN HAR BEGIN HER HERE HERE HERE HERE HERE HERE

(43) International Publication Date 25 July 2002 (25.07.2002)

PCT

(10) International Publication Number WO 02/057301 A2

(51) International Patent Classification?: C07K 14/005

(21) International Application Number: PCT/GB02/00234

(22) International Filing Date: 21 January 2002 (21.01.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 0101513.0 19 Ja

19 January 2001 (19.01.2001) GE

- (71) Applicant (for all designated States except US): SCOT-TISH CROP RESEARCH INSTITUTE [GB/GB]; Invergrowrie, Dundee DD2 5DA (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): TALIANSKI, Mikhail Emmanuilovich [GB/GB]; 2F-L, 14 Baxter Park Terrace, Dundee DD4 6NW (GB). RIABOV, Evgueni Vitalievich [GB/GB]; 11 Cleeve Court, Kings Hill, West Malling, Kent ME19 4LP (GB). REAVY, Brian [GB/GB]; 16 Fountainbrae, Monifieth, Angus DD5 4DX (GB). MACFARLANE, Stuart, Andrew [GB/GB]; 8 Cupar Road, Newport on Tay, Fife DD6 8DG (GB).

- (74) Agent: MURGITROYD & COMPANY; 165-169 Scotland Street, Glasgow G5 8PL (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: GENE SILENCING SUPPRESSOR

(57) Abstract: A plant virus protein, displaying PTGS suppressor activity, and the use thereof as a suppressor of the gene silencing mechanism in a non-plant host cell (i.e. an animal cell) is provided. Examples of the plant virus protein include cysteine-rich proteins, such as the 16K CRP of tobacco rattle virus or the 12K CRP of pea early browning virus. Also described is a method of suppressing or inhibiting a gene silencing mechanism in a non-plant organism or cell through the use of a plant virus protein, exhibiting post transcriptional gene silencing suppressing functions.

02/057301

T	GENE SILENCING SUPPRESSOR
2	
3	The present invention relates to the suppression of
4	post-transcription gene silencing due to the presence
5	of a cysteine-rich plant virus protein in the host.
6	
7	Plants employ post transcriptional gene silencing
8	(PTGS) as a mechanism to defend themselves against
9	infection by viruses. In response, some plant
.0	viruses encode proteins that suppress PTGS and, thus
L 1	increase virus pathogenicity. Here we show that the
L2	Tobacco rattle virus (TRV) 16K cysteine-rich protein
L3	(CRP) is a silencing suppressor that is required for
4	efficient virus multiplication, both in protoplasts
L 5	and plants. The 16K protein can be substituted by
16	the 12K CRP from the related virus, Pea early-
L 7	browning virus and by the 2b protein, a known
18	silencing suppressor, from the unrelated virus,
. 9	Cucumber mosaic virus.
20	
21	Expression of the 16K CRP and other PTGS suppressors
22	in a Drosophila cell system prevents silencing of a

1	lacZ gene, demonstrating directly that the 16K CRP is
2	a suppressor of post-transcriptional gene silencing.
3	These results identify the tobravirus CRPs as a new
4	class of PTGS-suppressors and suggest that the CRPs
5 .	encoded by other, unrelated, plant viruses may also
6	be silencing suppressors.
7	
8	Plant viruses vary considerably in their ability to
9	infect different plant species so that, for example,
LO	Cucumber mosaic virus (CMV) is known to infect more
L1	than 775 species from at least 85 different families
12	(Palukaitis et al., 1992), whereas, Potato leafroll
13	virus infects only about 20 species, most of which
14	are from the family Solanaceae (Harrison, 1984). A
15	particular virus might be unable to infect a plant
16	species because the plant lacks a protein that is
17	required for efficient replication of the virus, for
18	example, Arabidopsis TOM1 (Yamanaka et al., 2000).
19	
20	Alternatively the plant may actively resist infection
21	by the virus, for example, tobacco plants carrying
22	the N gene are resistant to strains of Tobacco mosaic
23	virus (TMV) but are not resistant to other
24	tobamoviruses (Whitham et al., 1994). A more general
25	resistance mechanism, referred to as systemic
26	acquired resistance (SAR), also exists in tobacco and
27	other plants (Sticher et al., 1997). In this
28	process, challenge to the lower leaves of a plant
29	with TMV (or other unrelated pathogens) induces
30	partial resistance to TMV (or other viruses) in
- 31	upper, uninoculated leaves. SAR is dependent on the

synthesis of salicylic acid (SA) and exogenous
application of SA can induce resistance to viruses.
However, SA-mediated resistance appears to act by
several mechanisms, as TMV is inhibited at the stage
of virus replication, whereas CMV is blocked in
systemic movement (Chivasa et al., 1997; Naylor et
al., 1998).
More recently it has been discovered that plants also
may employ a cytoplasmic, sequence-specific, RNA
degradation system known as post transcriptional gene
silencing (PTGS) to combat virus infection. PTGS in
plants was first identified as the cause of
cosuppression, in which transformation of plants with
an additional copy of a host gene could abolish
expression of both the transgene and host homologue
by degradation of cytoplasmic mRNA (Napoli et al.,
1990). This system was shown to act on viruses,
firstly by the demonstration that transformation of
plants with non-translatable viral sequences often
resulted in either extreme resistance or in a
"recovery" phenotype where plants developed
resistance following an initial, virus-susceptible
phase (Lindbo et al., 1993). In other studies it was
shown that plants in which expression of a $eta-$
glucuronidase (GUS) transgene had been silenced by
PTGS were protected against infection by a plant
virus that carried part of the same (GUS) gene
(English et al., 1996). Furthermore, it was shown
that host gene or transgene expression could be
silenced following infection with a virus carrying

1	part (or all) of the same gene (Kumagai et al., 1995;
2	Ruiz et al., 1998).
3	
4	Several approaches have been taken to examine in
5	detail the interaction of plant viruses with the gene
6	silencing process. Infection with CMV of plants that
7	carried post-transcriptionally silenced transgenes
8	(GUS and nitrate reductase) led to the reversal of
9	PTGS and resumption of transgene expression in newly
10	emerging leaves (Beclin et al., 1998). Earlier work
11	had identified the CMV 2b protein as a pathogenicity
12	determinant that is required for symptom formation
13	and systemic invasion of particular hosts (Ding et
14	al., 1995). Silencing of a green fluorescent protein
15	(GFP) transgene in Nicotiana benthamiana plants was
16	reversed following infection with $Potato\ virus\ X$
17	(PVX) that had been modified to express the CMV 2b
18	gene, demonstrating that the 2b protein is a
19	silencing suppressor (Brigneti et al., 1998). This
20	and other studies showed that the HC-Pro proteins of
21	Potato virus Y and Tobacco etch virus can also
22	function as silencing suppressors (Anandalakshmi et
23	al., 1998; Kasschau et al., 1998). Evidence that
24	PTGS is a defensive system that can target viruses
25	comes from studies of Arabidopsis mutants (sgs2 and
26	sgs3) that originally were isolated in a screen for
27	plants impaired in the silencing of a GUS transgene
28	(Elmayan et al., 1998). These plants have an
29	increased susceptibility to CMV, showing that the
30	PTGS system does provide some protection against thi
31	virus (Mourrain et al., 2000). Interestingly, the

5

1	sgs mutants do not have increased susceptibility to
2	two other viruses, Turnip mosaic virus and Turnip
3	vein clearing virus. Plant virus-encoded silencing
4	suppressors may target different components of the
5	PTGS system. For example, the CMV 2b protein
6	prevents initiation of silencing in newly emerging
7	tissues but has no effect on already established
8	silencing. In contrast the potyvirus HC-Pro protein
9	suppresses silencing in all tissues (Brigneti et al.,
10	1998).
11	
12	A survey of a small number of other plant viruses
13	showed that the comovirus Cowpea mosaic virus, the
14	geminivirus African cassava mosaic virus, the
15	potexvirus Narcissus mosaic virus, the tobamovirus
16	TMV, the sobemovirus Rice yellow mottle virus (RYMV),
17.	the tombusvirus Tomato bushy stunt virus (TBSV) and
18	the tobravirus Tobacco rattle virus (TRV) also were
19	able to suppress GFP silencing (Voinnet et al.,
20	1999). Although in this study the potexvirus PVX did
21	not suppress silencing, using a different assay these
22	authors showed that PVX is in fact able to prevent
23	systemic silencing (Voinnet et al., 2000). Thus, it
24	seems probable that many plant viruses encode
25	proteins that allow them to evade or inhibit PTGS in
26	certain plant species, and that different suppressors
27	target different parts of the PTGS pathway.
28	
29	Inhibiting gene silencing in a host organism allows
30	an increase and/or in certain cases renders possible
31	the expression-of a transgene which can be introduced

BNSDOCID: <WO____02057301A2_I_>

PCT/GB02/00234

1	within the organism either through a foreign vector
2	or through the genetic modification of the host
3	organism itself.
4	
5	Thus suppression or inhibition of the gene silencing
6	mechanism may have many therapeutical implications,
7	especially in gene therapy for humans, when a foreign
8	gene expressing, for example, a therapeutic substance
.9	needs to be introduced and expressed in a host cell.
10	
11	Statement of the invention
12	
13	According to the present invention there is provided
14	a method of suppressing or inhibiting gene silencing
15	mechanisms in a non-plant host cell through the use
16	of a plant virus protein exhibiting post-
17	transcriptional gene silencing (PTGS) suppressing
18	functions. Preferably the non-plant cells are animal
19	cells or insect cells and more particularly may be
20	mammalian cells.
21	
22	The invention further provides a vector which
23	comprises a polynucleotide sequence which encodes the
24	above PTGS suppressor protein, and which
25	advantageously expresses said polynucleotide sequence
26	in a non-plant cell.
27	
28	Typically, the PTGS suppressor protein is, or is
29	derived from, the HC-Pro protein of tobacco etch
30	virus (TEV), the 2b protein of cucumber mosaic virus
3.1-	- (CMV) - the ORFO protein of potato leafroll-virus

Τ.	(PLRV), the 16k CRP protein of the tobacco rattle
2	virus, the 12K CRP protein of Pea early browning
3	virus and functional equivalents thereof. The term
4	"functional equivalent" refers to modifications of
5	the proteins, wherein the modifications do not
6	adversely affect the ability of the protein (relative
7	to the wild-type form) to suppress gene silencing.
8	Also included are related proteins having, for
9	instance 60% or more homology, preferably 75% or more
10	homology, especially 80% or 90% or more homology with
11	the protein in question. Desirably the related
12	protein will show 95% or more (even 98% or 99%)
13	homology with the protein in question. Amongst
14	functional equivalents of the PTGS suppressor
15	protein, HC-Pro, 2b, ORFO and 16K CRP or
16	corresponding proteins of other related plant viruses
17	are particularly preferred.
18	
19	A further object of the invention is a method to
20	increase the expression and/or replication of a virus
21	in a host cell, said method comprising reduction of
22	post-transcriptional gene silencing by said host cell
23	by expression of a plant virus protein in said non-
24	plant host cell.
25	\cdot
26	Another object of the invention is a method for
27	protecting a heterologous viral vector or transgene
28	from post-transcriptional gene silencing in a non-
29	plant host cell, the heterologous viral vector or
30	transgene expressing at least one heterologous
-3.1	protein of interest in the host cell, said method

comprising the expression of a plant virus protein in 1 said host cell. 2 3 A further object of the invention is a method to 4 increase the yield of expression of a heterologous 5 protein expressed by a viral vector or transgene in a 6 non-plant host cell, said method comprising the 7 expression of a plant virus protein in said host 8 cell. 9 10 The method of the present invention finds particular 11 utility in the production of a protein of interest 12 (for example a therapeutic protein) in a biofactory, 13 such as an animal organism. 14 15 Any heterologous protein (which term is deemed to 16 include small protein molecules or peptides) may be 17 used in the present invention and there is no 18 particular limitation as to size (which in any event 19 would depend only upon the viral vector, if used). 20 Mention may be made of antibodies (including 21 antibody-type molecules such as ScFv, for example), 22 protein hormones such as GnRH, insulin or the like, 23 cellular receptors or other biologically active 24 proteins as being exemplary of heterologous proteins 25 The heterologous protein will in of interest. 26 general be a pre-determined molecule which is 27 specifically selected for expression. 28 29 The invention further relates to a vector which 30 comprises a polynucleotide sequence which encodes the . 31

1	above PTGS suppressor protein, and which expresses
2	said polynucleotide sequence in the non-plant host
3	cell.
4	
5	The reference to "plant virus protein" refers not
6	only to the full-length wild type version of the
7	protein, but also to variations of such proteins to
8	include minor modifications thereto (for example
9	amino acid deletions, insertions or substitutions)
10	which do not adversely affect its ability to protect
11	heterologous vectors or transgenes from gene
12	silencing by the host cell.
13	
14	More particularly in one embodiment the plant virus
15	protein is a cysteine-rich protein. Examples of such
16	cysteine-rich protein include the 16K CRP protein, in
17	particular the 16K CRP protein of the tobacco rattle
18	virus, or its functional equivalent. In another
19	embodiment the cysteine-rich protein is the 12K CRP
20	of Pea early browning virus or its functional
21	equivalent.
22	
23	Whilst protection of nucleic acid, and particularly
24	RNA, from silencing machinery is exemplified in plant
25	cells and insect cells, protection in other types of
26	host organisms, such as animals, fungi etc. using the
27	cysteine-rich plant virus protein expressed
28	transgenically, from viral vectors or by other ways,
29	in medical therapy/gene, therapy/over-expression
30	systems, for example in yeast/fungi (fermentation)
31	falls-within the scope of the present invention.

PCT/GB02/00234

7	
2	Although the previous study showed that TRV was able
3	to suppress transgene silencing, the specific viral
4	protein responsible for this activity was not
5	identified. TRV, like the other tobraviruses Pea
6	early-browning virus (PEBV) and Pepper ringspot
7	virus, has a bipartite, positive strand RNA genome
8	(MacFarlane, 1999). The larger RNA (RNA1) encodes
9	the 134K and 194K proteins that comprise the viral
10	replicase, a 29K cell-to-cell movement protein, and a
11	16K cysteine-rich protein (CRP). The smaller RNA
12	(RNA2) varies considerably between isolates, but
13	always encodes the coat protein (CP) and may encode
14	other (2b and 2c) proteins involved in virus
15	transmission by nematodes. A characteristic of the
16	tobraviruses is that RNA1 can infect plants
17	systemically in the absence of RNA2; i.e. without CP
18	expression and virion formation. This type of
19	infection, referred to as NM-infection, occurs
20.	frequently in vegetatively propagated crop plants
21	such as potato and bulbous ornamentals, and is often
22	associated with increased symptom severity. Clearly,
23	therefore, RNA1 encodes all the functions necessary
24	for virus multiplication including, possibly,
25	suppression of PTGS/host defence. As the TRV 16K
26	protein is the one protein encoded by RNA1 without an
27	assigned function we investigated whether it played a
28	role in viral replication and pathogenicity.
29	
30	We have found that the 16K CRP acts to suppress gene
-3-1-	sileneing in plant and animal cells.

1	
2	Thus the invention also relates to the use of a
3	cysteine-rich plant virus protein displaying PTGS
4	suppressor activity as a suppressor of the gene
5	silencing mechanism of a host cell.
6	Preferred host cells are plant cells, for example
7	tobacco plants. Whilst the present invention will
8	normally contemplate the use of whole plants or
9	plantlets as the host cells, limited infection of
LO	certain parts of the plant may also be utilised, as
L1	of course may be the use of protoplasts or other in
L2	vitro cell cultures. Other host cells include insect
L3	cells, especially cell cultures thereof.
L 4	
L5	The present invention will now be further described
L6	with reference to the following, non-limiting,
L7	examples and figures in which:
L8	
L9	Figure Legends
20	
21	Figure 1. Deletion of the 16K gene prevents virus
22	infection. (A) Northern blot of RNA extracted from N
23	tabacum leaves 7 days post inoculation (dpi). Lanes
24	1-6, inoculated with wild type RNA1 (transcript from
25	pTRV1) and RNA2-GFP (transcript from pK20-GFPc).
26	Lanes 7-12, inoculated with transcripts of pTRV1-
27	16Sand pK20-GFPc. M is RNA from uninoculated plants.
28	C is RNA of N. benthamiana infected with wild type
29	TRV. Blot hybridised with probes specific for TRV
30	RNA1 and RNA2. Location of RNAs 1 and 2 is
3 <u>-1</u>	indicated. (B) GFP expression, viewed under UV light.

in tobacco leaves inoculated with transcripts of 1 pK20-GFPc and pTRV1 (bottom, left), pTRV1NB (top, 2 left), pTRV1-12 (top, right) or pTRV1-16∆ (bottom, 3 right). 4 5 Figure 2. Comparison of 16K and 12K CRPs. (A) 6 Alignment of amino acid sequences of tobravirus CRPs 7 generated by the Clustal W programme. Asterisks 8 identify residues that are identical between the 16K 9 and 12K proteins. Hyphens indicate spaces inserted 10 to maximise alignment. Residues forming the CRP 11 motif identified by Diao et al., 1999 are in solid 12 boxes. C-terminal basic domain is boxed in dashed 13 lines. (B) Schematic drawing of constructs used in 14 this work. Asterisk in pTRV1 represents the leaky 15 terminator present in the TRV replicase protein. 16 1a/MP denotes the cell-to-cell-movement protein. The 17 single and double terminators inserted into the 16K 18 genes of pTRV1-16stop and pTRV1-16dstop appear as 19 asterisks below the 16K gene. 20 21 Figure 3. Multiplication of 16K mutants. (A) 22 Northern blot of RNA extracted from N. benthamiana 23 plants at 6dpi (inoculated leaf) and 11dpi (systemic 24 leaf). Lanes 1-3, wild type RNA1 (pTRV1) and RNA2-25 GFP (pK20-GFPc). Lanes 4-6, pTRV1NB and pK20-GFPc. 26 Lanes 7-9, pTRV1-16 Δ and pK20-GFPc. Lanes 10-12, 27 pTRV1-12 and pK20-GFPc. M is RNA from an uninoculated 28 plant. Blot hybridised with probes specific for TRV 29 RNA1 and RNA2. (B) GFP-fluorescence indicating 30

systemic movement of TRV derived from pTRV1-12 and

13

- 1 pK20-GFPc. (C) Northern blot of RNA extracted from N.
- 2 benthamiana protoplasts 48 hours after inoculation
- 3 with transcripts of wild type RNA2 (pK20-RNA2) and
- 4 (1) pTRV1, (2) pTRV1NB, (3) pTRV1-16 β , (4) pTRV1-12.
- 5 M is from protoplasts electroporated without
- 6 transcript. C is RNA from plants infected with TRV.
- 7 Blot hybridised with probes specific for TRV RNA1 and
- 8 RNA2. RNA1 can be seen in lanes 3 and 4 after very
- 9 long exposure of the blot, and in other protoplast
- 10 experiments. rRNA denotes ribosomal RNAs in these
- 11 samples, labelled by ethidium bromide staining. (D)
- Northern blot of RNA extracted from leaves of N.
- 13 benthamiana inoculated with transcript RNA2 from
- 14 pK20-GFPc and transcript RNA1 from pTRV1NB (lanes 1
- and 2) or pTRV1-16stop (lanes 3-7). Blot hybridised
- with probes specific for TRV RNA1 and RNA2.

- 18 Figure 4. The 16K gene is a pathogenicity
- 19 determinant. (A) Symptoms on N. tabacum var. Samsun
- NN following infection by TRV RNA1 (top, left), TRV
- 21 RNA1 and RNA2 (top, right) or TRV RNA1 and RNA2-16K.
- 22 Expression of an additional copy of the 16K gene from
- 23 RNA2 (RNA2-16K) results in severe stunting and
- 24 necrosis of the plants. (B) Northern blot of RNA
- 25 extracted from systemically-infected leaves of plants
- photographed in (A). Lanes 1-3, RNA1-only infection.
- 27 Lanes 4-6, infection with RNA1 and RNA2. Lanes 7-9,
- 28 infection with RNA1 and RNA2-16K. Position of viral
- 29 RNAs is indicated by arrows. 1 is RNA1, 2a is wild
- 30 type RNA2, 2b is RNA2-16K. rRNA denotes ribosomal
- 31 RNAs in these samples, labelled by ethidium bromide

PCT/GB02/00234

staining. Blot hybridised with probes specific for 1 TRV RNA1 and RNA2. 2 3 Figure 5. Heterologous expression of the 16K gene. 4 (A) Upper, uninoculated leaves of tobacco inoculated 5 with transcripts of PVX (left) and PVX-16K (right). 6 (B) N. benthamiana plants 20 days after inoculation 7 with transcripts of PVX (left) and PVX-16K (right). 8 The plants infected with PVX continued to grow after 9 this time, whereas, the severe tip necrosis of the 10 plants infected with PVX-16K was fatal. 11 12 Complementation of a 16K mutation in Figure 6. 13 trans. (A) Northern blot of RNA samples of N. 14 benthamiana inoculated with transcripts of (lanes 1-15 4) pTRV1NB and pK20-GFPc, (lanes 5-8) pTRV1NB and 16 pK20-16K, (lanes 9-12) pTRV1-16dstop and pK20-GFPc, 17 (lanes 13-16) pTRV1-16dstop and pK20-16K. Expression 18 of the 16K gene from RNA2 complements the early 19 termination mutations in the 16K gene on RNA1. M is 20 RNA from uninoculated plants. Blot hybridised with 21 probes specific for TRV RNA1 and RNA2. The position 22 of viral RNA 1 and 2 indicated by arrows. (B) 23 Northern blot of RNA samples of N. benthamiana 24 inoculated with transcripts of (lanes 1-4) pTRV1-25 16dstop and pK20-GFPc, (lanes 5-8) pTRV1-16dstop and 26 pK20-CMV2b, (lanes 9-12) pTRV1-16dstop and pK20-16K. 27 Expression of the CMV 2b gene from RNA2 complements 28 the early termination mutations in the 16K gene on 29 RNA1. Blot hybridised with probes specific for TRV 30 .31 ---- RNA1 and RNA2.

מאופרותיות. אוות חפתבקפתובס ו

1	Figure 7. Suppression of gene silencing in Drosophila
2	cells by the TRV 16K protein.
3	(A) Representative field of view of cells transfected
4	with a plasmid expressing the lacZ gene alone, or (B)
5	with this plasmid and dsRNA to induce silencing, or
6	(C) with this plasmid, dsRNA and a second plasmid
7	expressing the 16K protein.
8	(D) The percentage of cells in a culture expressing
9	the lacz gene in a transient assay.
10	Cells were transfected with a plasmid expressing the
11	lacz gene alone (lacz); or with the plasmid and dsRNA
12	to induce silencing (lacZ + dsRNA); or with the
13	plasmid, dsRNA and a second plasmid expressing the
14	16K protein (lacz + dsRNA + 16K). A minimum of 100
15	cells in each of 5 representative fields of view
16	(i.e. >500 cells) was counted and the percentage
17	staining positive for lacZ expression was determined.
18	
19	EXAMPLE 1: TRV 16K CRP IN PLANTS
20	
21	Materials and methods
22	
23	Construction of full-length clone of TRV RNA1
24	
25	Single-stranded cDNA was synthesised from total RNA
26	extracted from Nicotiana benthamiana plants infected
27	with TRV isolate PpK20 as described previously
28	(MacFarlane et al., 1991). A full-length clone of
29	RNA1 was amplified using a proof-reading polymerase
30	with primers designed to include a T7 RNA polymerase
31.	promoter sequence and Smal restriction site at the 5'

PCT/GB02/00234

1	and 3' ends, respectively, of the virus sequence, and
2	ligated into plasmid pCR-TOPO-XL according to the
3	manufacturer's instructions (Invitrogen). The full-
4	length clone, pTRV1, was linearised with SmaI, and
5	transcribed using T7 RNA polymerase (Ambion Inc.).
6	Transcripts were capped by addition of diguanosine
7	triphosphate to the transcription reaction
8	(MacFarlane et al., 1991).
.9	
10	Mutation of the 16K gene to produce pTRV1NB, pTRV1-
11	16Δ, pTRV1-12 and pTRV1-16stop
12	
13	Inverse PCR was used to introduce a NdeI site
14	immediately upstream of the 16K initiation codon and
15	a BgI II site immediately after the 16K termination
16	codon. A fragment carrying these mutations was moved
17	into the full-length cDNA clone to produce plasmid
18	pTRV1NB. Subsequently, the 16K gene was deleted by
19	digestion with Ndel and BglII, blunting with Klenow
20	polymerase and religation to produce plasmid pTRV1-
21	16Δ.
22	
23	The 12K gene from RNA1 of PEBV isolate SP5 was PCR
24	amplified to include an upstream NdeI site and a
25	downstream BglII site. This fragment was inserted
26	into pTRV1NB in place of the 16K gene to produce
27	plasmid pTRV1-12.
28	
29	The Ndel-BglII fragment carrying the 16K gene was
30	reamplified using a mutagenic primer
31	$(ext{TCCAT} \underline{ ext{ATG}} \underline{ ext{ACGTGTGTACTC}} ext{TAG} \underline{ ext{GGTTGTGTGAATGAAGTCACTGTT}})$

1	(SEQ ID No: 1) to introduce an early terminator
2	(bold) at position 6126, 16 nucleotides downstream of
3	the 16K initiation codon (underlined). The fragment
4	was moved into the full-length clone pTRV1NB to
5	produce plasmid pTRV1-16stop.
6	
7	Inverse PCR was used to introduce two early
8	terminators at positions 6120 and 6126 (bold), 10 and
9	16 nucleotides downstream of the 16K initiation codon
10	(underlined) to produce the sequence
11	ATGACGTGTTAACTCTAG(SEQ ID No: 2) A fragment
12	incorporating these changes but lacking the NdeI and
13	BglII 16K-flanking sites was moved into the full-
14	length clone pTRV1 to produce plasmid pTRV1-16dstop.
15	
16	Expression of heterologous viral genes from TRV RNA2
17	
18	The CMV 2b gene was amplified from a full-length cDNA
19	clone of RNA2 of CMV isolate Fny to incorporate Ncol
20	and $\mathit{Kpn}I$ sites at the 5' and 3' ends of the gene,
21	respectively. The Ncol-KpnI fragment was used to
22	replace the GFP gene carried on a similar fragment in
23	the TRV virus vector plasmid pK20-GFPc (MacFarlane
24	and Popovich, 2000). This new construct, pK20-CMV2b,
25	expresses the CMV 2b protein from a duplicated
26	tobravirus CP subgenomic promoter in TRV RNA2.
27	Similar strategies were used to clone the PEBV 12K
28	gene, as a RcaI-EcoRI fragment, and the TRV 16K gene,
29	as a Rcal-KpnI fragment, into TRV RNA2 to produce,
.30	respectively, plasmids pK20-12K and pK20-16K.
31	

BNSDOCID: <WO_____ 02057301A2_I >

1	Inoculation and analysis of plants
2	
3	Leaves of small N. benthamiana or N. tabacum cv.
4	Samsun NN plants were dusted with carborundum and
5	mechanically inoculated with capped transcripts of
6	TRV RNA1 and RNA2. RNA was isolated from samples of
7	inoculated and systemically infected leaves at 5-7
8	dpi and 10-12 dpi, respectively, and analysed by
9	northern blotting as described before (MacFarlane et
10	al., 1991) except that complementary-strand, RNA
11	probes were prepared using a non-radioactive system
12	(AlkPhos, Amersham Pharmacia).
13	
14	Protoplasts were isolated from N. benthamiana plants
15	as described before (Power and Chapman, 1985) and
16	inoculated with transcript RNA by electroporation.
17	RNA was extracted after 48 hours and analysed by
18	northern blotting.
19	
20	Results
21	
22	The 16K gene is required for virus multiplication
23	
24	The initial step in this work was the construction of
25	a full-length cDNA clone of RNA1 of TRV isolate
26	PpK20. Transcripts derived from this clone, pTRV1,
27	were infectious when inoculated to plants either
28	alone or in combination with transcripts of TRV PpK20
29	RNA2 (Mueller et al., 1997). Unlike the previously
30	described clone of TRV RNA1 (Hamilton and Baulcombe,
~ 4	1000) transcripts from pTRVI were encapsidated into

1 virus particles, and could be transmitted by the 2 natural nematode vector of TRV (data not shown). modified clone of TRV RNA1 was created in which the 3 4 16K gene was flanked by novel restriction sites. 5 6 Transcripts from this clone, pTRV1NB, behaved in an 7 identical way to those derived from the wild type 8 clone pTRV1. A second clone, pTRV1-16 Δ , was created 9 in which the entire 16K gene was deleted. 10 Transcripts derived from clones pTRV1NB or pTRV1-16 Δ 11 were mixed with RNA2 transcripts from clone pK20-GFPc 12 and inoculated to Nicotiana tabacum (var. Samsun NN). 13 Fluorescent lesions were visible by three days post 14 inoculation (dpi) on four of six plants inoculated 15 with wild type (pTRV1NB) RNA1 and RNA2-GFP, however, 16 no fluorescent lesions were visible on any plant 17 inoculated with RNA1 carrying the 16K gene deletion even at 6dpi or later. Northern blot analysis showed 18 19 that, although both TRV RNAs were clearly evident in plants inoculated with wild type transcripts, neither 20 21 RNA1 nor RNA2 could be detected in plants inoculated 22 with transcripts from the 16K deletion mutant (Fig. 23 1A). 24 25 The 3' proximal open reading frame of RNA1 of all 26 three tobraviruses encodes a small, cysteine-rich 27 protein (CRP). The CRP from PEBV is smaller (12K) than the TRV 16K protein, however, both proteins 28 29 contain cysteine/histidine motifs reminiscent of 30 zinc-binding domains present in some regulatory 31 proteins and both have C-terminal regions rich in

1	basic amino acid residues (Fig. 2A). Amino acid
2	sequence identity between the 16K and 12K proteins is
3	low (31%), however, there is a striking conservation
4	in the arrangement of the cysteines and their
5 [.]	flanking residues in these proteins. Thus, clone
6	pTRV1-12 was constructed to determine whether the
7	similarities in the cysteine-rich domains would
8	enable the PEBV 12K protein to function in place of
9	the TRV 16K protein (Fig. 2B). Inoculation of N .
10	tabacum with transcripts of pTRV1-12 and pK20-GFPc
11	produced isolated, very small fluorescent lesions on
12	only two of five plants at 5 dpi, whereas, in the
13	same experiment all five plants inoculated with wild
14	type transcripts carried many, large fluorescent
15	lesions by this time (Fig. 1B). As before,
16	transcripts from pTRV1-16 Δ were apparently not
17	infectious.
18	
19	Inoculation of N. benthamiana with transcripts from
20	these clones gave slightly different results.
21	Although mutant TRV1-12 was not as infectious as wild
22	type TRV1 or TRV1NB, viral RNAs were clearly
23	detectable in both inoculated and systemically
24	infected leaves (Fig. 3A) and GFP fluorescence was
25	apparent in systemic leaves (Fig. 3B). Viral RNAs
26	were barely detectable in leaves inoculated with
27	mutant TRV1-16 Δ , and were not detected in upper,
28	uninoculated leaves samples at 11dpi. Lack of
29	systemic movement of mutant TRV-16 Δ was confirmed by
30	RT-PCR analysis of these samples (data not shown). In

1	N. benthamiana protoplasts, mutants TRV1-16 Δ and
2	TRV1-12 both accumulated to much lower levels than
3	did the wild type viruses, suggesting that the 16K
4	gene is required for efficient replication of TRV and
5	that, in these conditions, the PEBV 12K gene is not
6	an adequate replacement (Fig. 3C).
7	
8	The requirement of the 16K protein for efficient TRV
9	replication was further examined by the creation of
10	two mutants carrying premature translation
11	termination codons in the 16K gene. In mutant TRV-
12	16stop, the sixth codon of the 16K gene is replaced
13	by a UAG terminator and the 16K gene is flanked by
14	NdeI and BgI II sites. This mutant multiplied very
15	poorly compared to wild type virus both in whole
16	plants (Fig. 3D) and in protoplasts (data not shown),
17	confirming that the 16K protein rather than the 16K
18	RNA sequence is required for efficient virus
19	replication. In mutant TRV-16dstop, the fourth codon
20 .	is UAA and the sixth codon is UAG, however, the 16K
21	gene is not flanked by artificial NdeI and BglII
22	restriction sites. This mutant also replicated
23	poorly confirming that the non-viral restriction
24	sites introduced into all of the previous mutants
25	were not the cause of reduced replication efficiency.
26	
27	The 16K protein is a pathogenicity determinant
28	
29	TRV RNA2 can be used as a vector from which
30	heterologous sequences are expressed at high levels
31	using a duplicated coat protein promoter (MacFarlane

BNSDOCID: <WO_____02057301A2_I_>

1	and Popovich, 2000). Clone pK20-16K was constructed
2	to examine the effects of over-expression of the 16K
3	protein on symptom production by TRV. Infection of
4	tobacco plants with TRV RNA1 only (NM infection)
5	resulted in stem/mid-vein necrosis and slight
6	stunting but on most systemic leaf blades no symptom
7	formed. Infection with wild type (RNA1 and RNA2) TRV
8	(isolate PpK20) resulted in infrequent, small
9	necrotic patches on systemic leaves together with
10	some leaf distortion and chlorotic mottle. Infection
11	with TRV RNA1 and RNA2-16K caused severe stunting and
12	distortion of systemic leaves together with
13	widespread necrosis (Fig. 4A). Northern blot
14	analysis of these plants showed that NM-infected
15	plants had little or no virus RNA in systemic leaf
16	blades. Both viral RNAs were easily detectable in
17	wild type virus-infected tissue. However, infection
18	with TRV RNA1 and RNA2-16K led to an increase in the
19	level of virus RNAs, particularly RNA2 (Fig. 4B).
20	Thus, over-expression of the 16K protein leads to
21	increased pathogenicity of TRV.
22	
23	Expression of the 16K gene from a PVX vector
24	
25	To examine whether enhancement of symptom expression
26	by the 16K protein was specific for TRV, the 16K gene
27	was cloned into the PVX vector (Chapman et al.,
28	1992). Inoculation of tobacco plants with PVX
29	lacking any insert resulted in a systemic, chlorotic
30.	mottle (Fig. 5A, left). Systemic infection with PVX-
-3:1-	-16K was slower by 1 to 2 days-than-with PVX and

1	produced severe, chlorotic lesions rather than
2	mottling (Fig. 5B, right). There was an even greater
3	contrast in symptomatology of the two viruses
4	following inoculation to N. benthamiana. Both PVX and
5	PVX-16K initially induced severe systemic leaf
6	curling and vein chlorosis. However, by 20dpi,
7	whereas PVX-infected plants were highly stunted,
8	plants infected with PVX-16K were killed (Fig. 5B).
9	Thus, the TRV 16K protein is a pathogenicity
10	determinant that can function when expressed from a
11	different virus.
12	
13	Complementation of 16K mutation by the gene encoding
14	the CMV 2b silencing suppressor
15	
16	As expression of the 16K gene from TRV RNA2 enhanced
17	the replication (and symptom production) of wild type
18	TRV RNA1, experiments were carried out to test the
19	effect of this RNA2 on the replication of the 16dstop
20	RNA1 mutant. Virus could not be detected by northern
21	blotting of plants inoculated with 16dstop RNA1 and
22	RNA2-GFP, either in inoculated or systemic leaves
23	(Fig. 6A, lanes 9-12). However, inoculation with
24	16dstop RNA1 and RNA2-16K produced a readily
25	detectable infection (Fig. 6A, lanes 13-16). Thus,
26	expression of the 16K protein in trans completely
27	rescued the very poorly replicating 16dstop RNA1
28	mutant. Likewise, other experiments showed that
29	expression of the PEBV 12K CRP from TRV RNA2 was able
30	to complement the 16dstop mutation (data not shown).

1	The results from experiments described above showed
2	that the TRV 16K protein is a pathogenicity
3	determinant that is required for efficient viral
4	replication and, thereafter, systemic infection of
5	plants. These properties are consistent with the 16K
6	protein acting as a PTGS suppressor. We hypothesized
7	that the absence of suppressor function resulting
8	from the 16dstop RNA1 mutation could be overcome by
9	co-expression of a host defense suppressor protein
LO	derived from another virus. Thus, 16dstop RNA1 was
L1	inoculated to plants together with transcripts of
12	pK20-CMV2b, in which the CMV2b gene is expressed from
13	TRV RNA2. Northern blotting showed that, indeed, the
14	CMV 2b gene was able to rescue TRV carrying a
15	mutation in the 16K gene, resulting in high levels of
16	viral RNAs both in inoculated and systemic infected
17	leaves (Fig. 6B, lanes 5-8). RT-PCR and sequencing
18	confirmed that the 16dstop mutation was retained in
19	RNA1 and that the CMV 2b gene was retained in RNA2
20	
21	Discussion
22	
23	In this study, we examined the role of the 16K
24	protein in the replication and pathogenesis of TRV.
25	An earlier report suggested that the 16K gene was
26	dispensable for TRV multiplication (Guilford et al.,
27	1991). Our results conflict with those of this
28	previous study, as we show that mutation of the 16K
29	gene leads to a significant decrease in the
30	accumulation of virus RNA in infected plants.
31	Protoplaststudies-confirmed that the 16K protein-is

NIEDCOID: >/NO 0205730182 1

1	required for efficient virus replication, and over-
2	expression of the 16K protein, whether from TRV or
3	from PVX, led to an increase in the severity of
4	symptoms. Expression of the 16K protein from TRV
5	RNA2 functions in trans to complement a mutation in
6	the RNA1-encoded 16K gene. Also, mutation of the 16K
7	gene was overcome by incorporation of the gene
8	encoding the CMV 2b silencing suppressor protein into
9	TRV RNA2, suggesting that the 16K protein itself
10	might be a silencing suppressor. We have used a
11	novel, insect cell expression system to confirm that
12	the TRV 16K protein is a suppressor of gene silencing
13	which may explain how alteration in the level of 16K
14	expression has such a significant effect on virus
15	pathogenicity.
16	
10	
17	Mutation of some of the other virus genes recently
	Mutation of some of the other virus genes recently identified as encoding silencing suppressors results
17	
17 18	identified as encoding silencing suppressors results
17 18 19	identified as encoding silencing suppressors results in a wide range of effects. The CMV 2b protein was
17 18 19 20	identified as encoding silencing suppressors results in a wide range of effects. The CMV $2b$ protein was shown not to be required for systemic infection of N .
17 18 19 20 21	identified as encoding silencing suppressors results in a wide range of effects. The CMV 2b protein was shown not to be required for systemic infection of N. glutinosa, although RNAs 1 and 2 accumulated to lower
17 18 19 20 21	identified as encoding silencing suppressors results in a wide range of effects. The CMV 2b protein was shown not to be required for systemic infection of N . $glutinosa$, although RNAs 1 and 2 accumulated to lower levels and symptoms produced by a 2b mutant were much
17 18 19 20 21 22	identified as encoding silencing suppressors results in a wide range of effects. The CMV 2b protein was shown not to be required for systemic infection of N . $glutinosa$, although RNAs 1 and 2 accumulated to lower levels and symptoms produced by a 2b mutant were much reduced and delayed in appearance compared to those
17 18 19 20 21 22 23	identified as encoding silencing suppressors results in a wide range of effects. The CMV 2b protein was shown not to be required for systemic infection of N. glutinosa, although RNAs 1 and 2 accumulated to lower levels and symptoms produced by a 2b mutant were much reduced and delayed in appearance compared to those of the wild type virus (Ding et al., 1995). In
17 18 19 20 21 22 23 24	identified as encoding silencing suppressors results in a wide range of effects. The CMV 2b protein was shown not to be required for systemic infection of N. glutinosa, although RNAs 1 and 2 accumulated to lower levels and symptoms produced by a 2b mutant were much reduced and delayed in appearance compared to those of the wild type virus (Ding et al., 1995). In inoculated leaves of cucumber, the 2b mutant
17 18 19 20 21 22 23 24 ·	identified as encoding silencing suppressors results in a wide range of effects. The CMV 2b protein was shown not to be required for systemic infection of N. glutinosa, although RNAs 1 and 2 accumulated to lower levels and symptoms produced by a 2b mutant were much reduced and delayed in appearance compared to those of the wild type virus (Ding et al., 1995). In inoculated leaves of cucumber, the 2b mutant accumulated to much lower levels (<5%) than did the
17 18 19 20 21 22 23 24 · 25 26 27	identified as encoding silencing suppressors results in a wide range of effects. The CMV 2b protein was shown not to be required for systemic infection of N. glutinosa, although RNAs 1 and 2 accumulated to lower levels and symptoms produced by a 2b mutant were much reduced and delayed in appearance compared to those of the wild type virus (Ding et al., 1995). In inoculated leaves of cucumber, the 2b mutant accumulated to much lower levels (<5%) than did the wild type virus, and did not move systemically.
17 18 19 20 21 22 23 24 25 26 27 28	identified as encoding silencing suppressors results in a wide range of effects. The CMV 2b protein was shown not to be required for systemic infection of N. glutinosa, although RNAs 1 and 2 accumulated to lower levels and symptoms produced by a 2b mutant were much reduced and delayed in appearance compared to those of the wild type virus (Ding et al., 1995). In inoculated leaves of cucumber, the 2b mutant accumulated to much lower levels (<5%) than did the wild type virus, and did not move systemically. Whether these phenotypes resulted from reduction in

transmission by aphids, autoproteolytic cleavage 1 between itself and the downstream P3 protein, genome 2 amplification and long-distance virus movement 3 (Govier et al., 1977; Carrington et al., 1989; Cronin 4 et al., 1995; Kasschau et al., 1997). A number of 5 insertion mutations that were introduced into the 6 Tobacco etch virus (TEV) HC-Pro gene did not affect 7 autoproteolytic function but did suppress virus 8 replication in protoplasts (Cronin et al., 1995). 9 One mutant (IGN) which accumulated to levels less 10 than 1% of the wild type virus was, however, able to 11 move systemically and induce mild, systemic symptoms. 12 In contrast, another mutant (CCCE) accumulated in 13 protoplasts to 25% of the level of wild type virus 14 but was incapable of moving into upper leaves. 15 results suggested that HC-Pro has separate functions 16 associated with virus replication and movement. 17 TBSV silencing suppressor has been identified as the 18 p19 protein that is nested within the p22 cell-to-19 cell movement protein gene near the 3' terminus of 20. the virus RNA (Voinnet et al., 1999). Expression of 21 the p19 protein is required for systemic spread of 22 the virus in spinach, induction of a hypersensitive 23 response in N. tabacum and induction of systemic 24 lethal collapse in N. benthamiana (Scholthof et al., 25 1995a; 1995b). However, in N. benthamiana 26 protoplasts mutation of the p19 gene had no effect on 27 virus replication (Chu et al., 2000). Perhaps the 28 results obtained following mutation of the gene 29 encoding the RYMV P1 silencing suppressor are most 30 -similar to our findings with the TRV-16K gene. The 3-1-

1	RYMV P1 protein is encoded by the 5' terminal open
2	reading frame of the viral RNA. Deletion of the
3	entire gene or insertion of a premature termination
4	codon into the gene abolished replication of viral
5	RNA in protoplasts. A mutant in which the P1
6	initiation codon was removed was able to replicate at
7	reduced levels (c. 50% of wild type) in protoplast
8	but did not accumulate either in inoculated, or in
9	upper uninoculated leaves of whole plants (Bonneau et
10	al., 1998). As with some of the silencing
11	suppressors discussed above, it is possible that in
12	some plant species, mutation of the TRV 16K gene may
13	not be deleterious. Deletion or frameshift mutation
14	of the PEBV 12K gene produced similar results in
15	Nicotiana species to those obtained here for the TRV
16	16K gene, with a c. 60-fold reduction in accumulation
17	of virus RNAs (S. MacFarlane, unpublished). In
18	contrast, in pea the PEBV 16K deletion mutant
19	accumulated to wild type levels, although the 16K
20	frameshift mutant could not be detected (Wang et al.,
21	1997).
22	
23	A premature termination mutation of the 16K gene was
24	overcome by co-expression of the CMV 2b gene from TRV
25	RNA2. The 2b protein is known to intervene at the
26	stage of PTGS initiation (Brigneti et al., 1998) and
27	could, thus, be able to prevent a silencing-based
28	defence reaction being initiated against the TRV 16K
29	mutant. As yet, there are no data to explain whether
30	the TRV 16K protein acts against PTGS initiation, or
31 -	during the later maintenance phase (as is the case

There are a few for the potyvirus HC-Pro protein). 1 other examples where the pathogenicity of one virus 2 has been modified by co-expression of a silencing 3 suppressor derived from a different virus. 4 . Expression of the potyvirus HC-Pro protein in 5 transgenic plants showed it to be the determinant 6 that mediates increases in PVX multiplication and 7 pathogenicity during PVX/potyvirus synergism (Vance 8 et al., 1995). When the 16K gene was expressed from 9 the PVX vector, there was an increase in the severity 10 of disease symptoms in a similar way to when other 11 silencing suppressors were expressed from PVX 12 (Scholthof, et al., 1995b; Brigneti, et al., 1998; 13 Voinnet, et al., 1999; Lucy et al., 2000). Only one 14 other example has been reported in which a silencing 15 suppressor from one virus has been completely 16 replaced with that of another virus (Ding et al., 17 1996). In this experiment the 2b gene of CMV was 18 replaced with the homologous gene from another 19 cucumovirus Tomato aspermy virus (TAV). 20 Unexpectedly, the hybrid virus had a significantly 21 increased pathogenicity compared to either of the 22 parental viruses (Ding et al., 1996). TRV and CMV 23 are taxonomically very distinct, and there is no 24 significant amino acid sequence similarity between 25 the 16K and 2b proteins. Nevertheless, these 26 proteins are functionally equivalent in the 27 protection of TRV against host defence mechanisms. 28 29 The TRV 16K protein was detected by western blotting 30 in extracts-of-infected tobacco protoplasts-(Angenent 31

1	et al., 1989). The 16K protein accumulated to high
2	levels, equivalent to that of the coat protein (CP),
3	but continued to be expressed even after CP synthesis
4	had declined. Cell fractionation experiments,
5	combined with sedimentation analysis, showed that the
6	16K protein accumulated in a high-molecular weight
7	complex, either as a multimer or in association with
8	host proteins (Angenent et al., 1989). It is
9	tempting to speculate that the 16K protein may
10	associate with proteins of the host silencing system,
11	thus, inhibiting their action against TRV. In whole
12	plants the 16K protein was only detected when
13	infected leaves were extracted using highly
14	denaturing reagents, although, even in these
15	conditions some of the protein still accumulated in
16	higher molecular weight aggregations (Liu et al.,
17	1991). Immunogold labelling of ultrathin sections
18	showed that the 16K protein was located both in the
19	cytoplasm but mostly in the nucleus (Liu et al.,
20	1991). Interestingly, the CMV 2b protein also
21	localises to the nucleus, and removal of an arginine-
22	rich domain at the N-terminus of the protein
23	abolished both transport into the nucleus and
24	silencing suppressor activity (Lucy et al., 2000).
25	The TRV 16K and PEBV 12K proteins also possess an
26	arginine-rich domain, at the C-terminus of the
27	proteins, which might function as a nuclear
28	localisation signal (Fig. 2A). Computer alignment
29	suggested that there might be significant amino acid
30	sequence homology between the C-terminal basic domain

31 of the TRV 16K protein and mammalian high mobility

group chromatin (HMG) proteins (Koonin et al., 1991). 1 HMG proteins are nuclear proteins that bind DNA in a 2 non-sequence-specific fashion to promote chromatin 3 function and gene regulation (Grasser, 1998). 4 5 Viruses belonging to the genera Tobravirus (TRV, 6 PEBV), Hordeivirus (e.g. Barley stripe mosaic virus, 7 BSMV), Carlavirus (e.g. Potato virus M), Pecluvirus 8 (e.g. Peanut clump virus, PCV), Furovirus (e.g. Soil-9 borne wheat mosaic virus) and Benyvirus (Beet 10 necrotic yellow vein virus, BNYVV) all encode a small 11 (<20 kDa molecular weight) protein with an N-terminal 12 or central cysteine-rich domain. Amino acid sequence 13 alignment studies suggested that the tobravirus, 14 pecluvirus, hordeivirus and furovirus proteins, in 15 particular, share a region of seven cysteines, with a 16 highly conserved central motif of Cys-Gly...Cys-Gly-X-17 X-His (Diao et al., 1999). BSMV is the only one of 18 these viruses for which a detailed study of the 19 function of the CRP has been carried out. Virus in 20 which the gene encoding the BSMV 7b CRP had been 21 deleted was able to infect barley plants systemically 22 but virus RNAs accumulated to only 10-20% of wild 23 type levels and virus CP expression was reduced by 24 three orders of magnitude (Petty et al., 1990). 25 directed mutation of each of the individual cysteine 26 and histidine residues identified above as part of 27 the conserved CRP motif, caused the same phenotype as 28 the complete deletion mutation, emphasising the 29 importance of these residues in CRP function (Donald 30 31 - and Jackson, 1994). Other properties associated with

1	the BSMV γ b protein are seed transmission of the
2	virus (Edwards, 1995) and RNA-binding (Donald and
3	Jackson, 1996). Similarly, the PEBV 12K CRP also is
4	involved in seed transmission (Wang et al., 1997) and
5	can bind RNA (D. Wang and J. Davies, personal
6	communication). The roles of the CRPs in furovirus
7	and carlavirus biology are not known. However,
8	mutation of the BNYVV P14 CRP greatly reduced the
9	accumulation of virus RNA and had the additional
10	effect of decreasing expression of CP (Hehn et al.,
11	1995). Also, frameshift mutation of the P15 CRP of
12	PCV had a severe effect, reducing replication of the
13	virus in protoplasts to very low levels (Herzog et
14	al., 1998). We suggest that, based on our findings
15	on the function of the tobravirus 16K and 12K
16	proteins, the CRPs from this diverse group of viruses
17	may all act as suppressors of the plant PTGS system.
18	
19	EXAMPLE 2: Drosophila cell gene silencing assay
20	
21	Suppression of PTGS by the 16K protein
22	
23	A system for studying gene silencing in cultured
24	Drosophila cells was described recently in which
25	transient expression of a lacZ gene can be prevented
26	by co-transfection of the cells with double-stranded
27	lacZ-specific RNA (Hammond et al., 2000). We have
28	shown that induction of lacZ silencing can be
29	prevented by simultaneous expression of certain plant
30	virus genes demonstrating that some plant viral
31	silencing suppressors function in this heterologous

system (B. Reavy and S.A. MacFarlane, submitted). 1 Expression of the TRV 16K protein in Drosophila cells also was found to prevent dsRNA-mediated silencing of 3 lacZ, confirming our hypothesis that it is a 4 silencing suppressor protein. When cells were 5 transfected only with a plasmid (pMT/V5-His/lacZ) 6 encoding the lacZ gene, ~ 50% of the cells stained 7 blue after 48hr indicating the production of β -8 galactosidase. Co-transfection of cells with pMT/V5-9 His/lacZ and dsRNA corresponding to ~500nts at the 5' 10 end of the lacZ gene resulted in only ~6% of cells 11 staining blue, indicating that efficient silencing of 12 lacZ had occurred. However, co-transfection of 13 pMT/V5-His/lacZ with lacZ-specific, dsRNA and a 14 plasmid carrying the 16K gene increased the number of 15 cells staining blue to ~ 26%, demonstrating that the 16 16K protein inhibits RNA-mediated gene silencing 17 (Fig. 7). 18 19 Results and Discussion 20 21 Analysis of gene silencing in Drosophila S2 cells was 22 performed by transient expression using a variation 23 of the assay described by Hammond et al. (2000). DS2 24 cells were transfected with a plasmid expressing β -25 galactosidase along with dsRNA corresponding to 26 approximately the first 500 nts of the lacZ gene to 27 induce silencing. Co-transfection of these two 28 molecules along with a second plasmid expressing the 29

TRV 16K protein was used to assay suppression of gene

30

31

silencing.

1	Post-transcriptional gene silencing (PTGS), also
2	known as RNA interference or RNA silencing, has been
3	observed in a variety of organisms including plants,
4	fungus (Ding, 2000), etc. The silencing involves
5	sequence-specific degradation of a target RNA
6	molecule and can be initiated by dsRNA homologous to
7	the target RNA. PTGS has been used to generate
8	resistance to viruses in transgenic plants
9	(Waterhouse et al., 1998) but also appears to be an
10	inherent virus resistance mechanism in plants (Covey
11	et al, 1997; Ratcliff et al 1997; Elmayan et al.,
12	1998; Ratcliff et al., 1999 Mourrain et al., 2000).
13	A number of plant viruses have proteins that act as
14	suppressors of PTGS and these can act at different
15	stages of the suppression mechanism (Anandalakshmi et
16	al, 1998; Brigneti et al, 1998; Kasschau & Carrington
17	1998; Voinnet et al, 1999; Lucy et al, 2000; Llave et
18	al, 2000). PTGS has recently been demonstrated in
19	cultured Drosophila cells and a sequence-specific
20	nuclease involved in the process partially purified
21	(Hammond et al, 2000). Here we show that a plant
22	virus protein previously described as a suppressor of
23	gene silencing also suppress gene silencing in
24	Drosophila cells and also detect gene silencing
25	suppression with a second plant virus protein. The
26	HCPRO protein of tobacco etch virus (TEV) is able to
27	reverse gene silencing in plants after it has been
28	established and appears to affect a step involved in
29	maintenance of PTGS (Anandalakshmi et al, 1998; Llave
30	at al, 2000). Transient expression was used to
. 31-	determine if expression of this protein had any

1	suppressive effect on gene silencing in Diosophira
2	cells. β -galactosidase activity could be detected by
3	staining in up to approximately 70% of Drosophila
4	cells when they were transfected with a $lacZ$
5	expression plasmid alone (Fig 8A). The number of
6	cells staining for eta -galactosidase was only
7	approximately 12% when dsRNA corresponding to
8	approximately the first 500nts of the lacZ gene was
9	co-transfected with the lacZ expression vector (Fig
LO	8B). Co-transfection of Drosophila cells with dsRNA
11	and lacZ and an HCPRO expression vectors resulted in
12	staining of approximately 50% of the cells in the
13	culture (Fig 8C). The number of cells staining when
14	transfected with the lacZ expression vector alone
15	varied somewhat between experiments presumably due to
16	variation in the quality of plasmid DNA and the
17	condition of the cells but there was little variation
18	between replicate plates within an experiment.
19	
20	The percentage of cells that stained for eta -
21	galactosidase when transfected with the lacZ
22	expression vector alone was normalised to 100 and the
23	ratio of the number of cells staining with the other
24	treatments was expressed as a percentage of this for
25 .	quantitation purposes in Fig 1E. The TEV HCPRO
26	protein was effective in suppressing gene silencing
27	in transient assays.
28	
29	A stable cell line (DS2-HCPRO) expressing the HC-Pro
30	protein was produced to attempt to improve the
31	efficiency of the suppression assay by reducing the

number of co-transfected nucleic acid molecules from 1 3 to 2. An unrelated cell line (DS2-VCL) expressing 2 a recombinant antibody was used as a control for 3 silencing in order to eliminate the possibility that 4 stable transformation of the cells could interfere 5 with silencing. Co-transfection the lacZ expression 6 vector and dsRNA produced a slight reduction in the 7 number of DS2-HCPRO cells cells staining for $\beta\text{--}$ 8 galactosidase activity compared to the lacZ 9 expression vector alone. A significantly greater 10 silencing effect was seen in the DS2-VCL cells (Fig 11 9). Quantitation of the numbers of cells staining 12 showed that significantly more cells stained for β -13 galactosidase activity after transfection with the 14 ${\it lacZ}$ expression vector and dsRNA in the DS2-HCPRO 15 cells than in the DS2-VCL cells (Fig 10). 16 numbers of cells that stained for $\beta\text{-galactosidase}$ 17 activity in the DS2-HCPRO cells in the presence of 18 the lacZ expression vector and dsRNA was slightly 19 higher than when DS2 cells were transiently 20 transfected with pMT/V5-His/lacZ along with pMT-HCPRO 21 and lacZ dsRNA indicating that suppression of 22 silencing was somewhat more efficient in the DS2-23 24 HCPRO cells. Transient transfection with mutant HC-Pro 26

25

27

BNSDOCID: <WO____02057301A2_1_>

We were interested to determine if this Drosophila 28

cell system could be used as a screen for gene 29

silencing suppression effects caused by other virus 30

proteins. It has been suggested that the ORFO 31

L	protein of potato leafroll virus (PLRV) may act as a
2	suppressor of gene silencing (REF). Drosophila cells
3	transfected an ORFO expression plasmid along with the
4	lacZ expression plasmid and dsRNA demonstrated
5	suppression of gene silencing compared to cells
6	transfected with the lacZ expression plasmid and
7	dsRNA alone (Fig 11). This identification of gene
8	silencing suppression with the PLRV ORF 0 suggests
9	that this system will be a useful screening tool to
.0	identify other proteins that have similar functions.
L1	
12	The observations here that plant virus proteins can
13	suppress gene silencing in Drosophila cells indicates
14	that at least part of the pathway of PTGS is
15	conserved between plants and Drosophila. The
16	Drosophila cell system has been useful for
17	elucidating some of the biochemical detail of PTGS
18	and a nuclease activity apparently deriving sequence-
19	specificity from essential ~25 nucleotide RNA species
20	has been identified (Hammond et al, 2000).
21	
22	Suppressors of PTGS that function in Drosophila cells
23	will be useful for further dissection of the
24	mechanisms of PTGS in Drosophila cells as well as
25	being an amenable system for study of the mode of
26	action of the plant virus proteins themselves. The
27	Drosophila system will also be a good starting point
28	for the identification of proteins with which the
29	suppressor proteins interact.
30	

1	Plasmid constructions.
2	
3	A region (nts 1055-2449) of the TEV genome containing
4	the HCPRO sequence was amplified by Polymerase chain
5	reaction (PCR) using primers HCPRO-1 (5'-
6	CCGGTACCATGAGCGACAAATCAATCTCTGAGGC-3') (SEQ ID No: 3)
7	and HCPRO-2 (5'- GGCTCGAGCTACACATCTCGGTTCATCCCTCC-3')
8	(SEQ ID No: 4). Primer HCPRO-1 contains a KpnI site
9	(shown in bold in the sequence) and an ATG initiation
10	codon (shown underlined) in addition to the TEV
11	sequence. Primer HCPRO-2 contains an XhoI site (shown
12	in bold) and the complement of a TAG termination
13	codon (shown underlined) in addition to the TEV
14	sequence. The PCR product was cloned into pGEM-Teasy
15	(Promega) and then subcloned as a KpnI-XhoI fragment
16	into pMT/V5-HisA (Invitrogen) cut with KpnI and XhoI
17	to give plasmid pMT-HCPRO.
18	
19	PLRV ORFO construction
20	The PLRV ORFO sequence was amplified by PCR using
21	cloned cDNA as a template and primers 499 (5'-
22	ATAGCCCATGGTTGTATTGACCC-3') (SEQ ID No: 5) and 500
23	(5'-TTCCAGGTACCTCTCATTCTTGTAATTCC-3') (SEQ ID No: 6)
24	to introduce flanking NcoI and KpnI sites into the
25	PCR product. The PCR product was cloned into pMT/V5-
26	HisA to produce plasmid pMT-ORFO.
27	
28	RNA synthesis. cDNA corresponding to ~500bp of the 5'
29	end of the LacZ gene was amplified using
30	pcDNA3.1/HisB/lacZ as a template and primers LacZ-1
- 3-1	(5' TAATACGACTCACTATAGGGAGACCCAAGCTGGCTAGC-3-') (SEQ

38

ID No: 7) and LacZ-2 (5'-1 TAATACGACTCACTATAGGGCAAACGGCGGATTGACCG-3') (SEQ ID 2 No: 8). Both primers contained T7 RNA polymerase 3 initiation sequences (shown underlined). 4 product was used to direct synthesis of dsRNA using 5 T7 RNA polymerase (Invitrogen) after which the DNA 6 template was removed by DNase digestion. 7 8 Cell culture and Transfection. DS2 cells and DES 9 expression medium were part of the Drosophila 10 Expression System (Invitrogen) and cells were grown 11 according to the manufacturer's instructions. Cells 12 were grown in 60mm dishes and transfected with 10µg 13 plasmid DNA either alone or with 5 µg dsRNA by 14 15 calcium phosphate co-precipitation. After transfection the cells were washed twice in DES 16 17 medium and grown for eight hours before expression of proteins was induced by addition of CuSO4. A stably 18 19 transformed line expressing the HCPRO gene was 20 established by co-transfection of cells with the relevant plasmid and pCo-Hygro (Invitrogen) followed 21 by selection of transformed cells in medium 22 containing hygromycin. Cells were stained to detect 23 24 lacZ gene expression using a β -Gal Staining Kit (Invitrogen) 48hrs after transfection. 25 26 EXAMPLE 3: Groundnut Rosette Virus (GRV) ORF3 27 Suppresses RNA Interference in Drosophilla Cells 28 29 The GRV ORF3 sequence was amplified by PCR using 30 31 cloned cDNA as a template and two sets of primers.

39

1 The first set of primers, GRV3HTFOR (5'-CGATGGTACCACATGGACACCACCC-3') (SEQ ID No: 9) and 2 3 GRV3MTHREV (5'-4 CGATCTCGAGTCAATGGTGATGGTGATGCCACTTATTGGCAGCGG-3') 5 (SEQ ID No: 10), introduce a polyhistidine tag at the carboxy-terminal end of the ORF3 protein and flanking 6 7 KpnI and XhoI sites. This PCR product was cloned into pMT/V5-HisC (Invitrogen) to produce plasmid pMT-8 9 The second set of primers, GRV3MTHFOR (5'-ORF3/His. CGATGGTACCACAATGGGACATCATCACCATCACCATGACACCACCCCGG-10 11 3') (SEQ ID No: 11) and GRF3HTREV (5'-CGATCTCGAGTCACCACTTATTGGCAGCGG-3') (SEQ ID No: 12), 12 introduce a polyhistidine tag at the amino-terminal 13 14 end of the ORF3 protein and flanking KpnI and XhoI 15 This PCR product was cloned into pMT/V5-HisC 16 to produce plasmid pMT-His/ORF3. 17 18 Drosophila (DS2) cells were grown in Schneider's 19 Drosophila medium (Life Technologies). Stably transformed Drosophila (DS2) cell lines expressing 20 21 the modified ORF3 proteins were produced by cotransfection of cells with either pMT-ORF3/His or 22 23 pMT-His/ORF3 along with pCo-Hygro (Invitrogen) using 24 calcium phosphate co-precipitation, followed by 25 selection of transformed cells in medium containing 26 300 µg/ml hygromycin. Expression of the modified 27 ORF3 proteins was confirmed by immunoblotting using an anti-6His antibody (Sigma). The cell lines were 28 called DS2-ORF3/His (expressing pMT-ORF3/His) and 29

DS2-His/ORF3 (expressing pMT-His/ORF3).' Cultures of control DS2 cells and of both transformed cell lines

30

PCT/GB02/00234

1 .	expressing the modified ORF3 proteins were
2	transfected by calcium phosphate co-precipitation in
3	60mm tissue culture dishes with either 10 μg of
4	pMT/V5-His/lacZ (Invitrogen) or 10 µg of pMT/V5-
5	His/lacZ and 5 µg of double-stranded (ds) RNA
6	corresponding to the 5'-terminal 500 nucleotides of
7	the lacZ gene to induce gene silencing. Cells were
8	stained to detect $lacZ$ gene expression using a eta -gal
9 .	staining kit (Invitrogen) 48 hours after
10	transfection. The results are shown in Table 1.
11	
12	Transfection efficiencies were determined in the
13	cultures transfected with pMT/V5-His/lacZ and were
14	approximately 55% for all three cell types. Only
15	10.25% of control DS2 cells transfected with pMT/V5-
16	His/lacZ + dsRNA stained for lacZ expression,
17	representing 19.2% of the cells staining when the
18	cells were transfected with pMT/V5-His/lacZ alone,
19	and indicating that RNA interference (gene silencing)
20	was occurring. In contrast, 30.75% of DS2-ORF3/His
21	cells and 33% of DS2-His/ORF3 cells transfected with
22	pMT/V5-His/lacZ + dsRNA stained for lacZ expression
23	representing 54.9% and 63% of the cells staining when
24	the cells were transfected with pMT/V5-His/ $lacZ$ alone
25	respectively. This indicates that RNA interference
26	(gene silencing) was suppressed in the Drosophila
27	cell lines expressing the modified versions of the
28	ORF3 protein and shows that the ORF3 protein can
29	suppress RNA interference (gene silencing) in
30	heterologous systems.

		% cells
Cell Type	Transfection	stained *
DS2	pMT/V5-His/lacZ	53.38
DS2	pMT/V5-His/lacZ + dsRNA	10.25
DS2-ORF3/His	pMT/V5-His/lacZ	56
DS2-ORF3/His	pMT/V5-His/lacZ + dsRNA	30.75
DS2-His/ORF3	pMT/V5-His/lacZ	53.4
DS2-His/ORF3	pMT/V5-His/lacZ + dsRNA	33

Table 1. Effects of GRV ORF3 on RNA interference in Drosophila cells. *Four randomly selected fields of view each containing ~100 cells were selected in each of duplicate plates and the number of cells staining blue was counted for each experiment.

31-

1 References 2 Anandalakshmi, R., Pruss, G.J., Ge, X., Marathe, R., 3 Mallory, A.C., Smith, T.H. and Vance, V.B. 1988. A 4 viral suppressor of gene silencing in plants. Proc. 5 Natl. Acad. Sci. USA., 95, 13079-13084. 6 7 Angenent, G.C., Verbeek, H.B.M. and Bol, J.F. 1989. 8 Expression of the 16K cistron of tobacco rattle virus 9 in protoplasts. Virology, 169, 305-311. 10 11 Beclin, C., Berthome, R., Palauqui, J.C., Tepfer, M. 12 and Vaucheret, H. 1998. Infection of tobacco or 13 Arabidopsis plants by CMV counteracts systemic post-14 transcriptional silencing of nonviral (trans)genes. 15 Virology, 252, 313-317. 16 17 Bonneau, C., Brugidou, C., Chen, L., Beachy, R.N. and 18 Fauguet, C. 1998. Expression of the rice yellow 19 mottle virus P1 protein in vitro and in vivo and its 20 . involvement in virus spread. Virology, 244, 79-86. 21 22 Brigneti, G., Voinnet, O., Li, W.X., Ji, L.H., Ding, 23 S.W. and Baulcombe, D.C. 1998. Viral pathogenicity 24 determinants are suppressors of transgene silencing 25 in Nicotiana benthamiana. EMBO J., 17, 6739-6746. 26 27 Carrington, J.C., Cary, S.M., Parks, T.D. and 28 Dougherty, W.G. 1989. A second proteinase encoded by

Dougherty, W.G. 1989. A second proteinase encodes a plant potyvirus genome. *EMBO J.*, **8**, 365-370.

- 1 Chapman, S., Kavanagh, T. and Baulcombe, D.C. 1992.
- 2 Potato virus X as a vector for gene expression in
- 3 plants. Plant J., 2, 549-557.

4

- 5 Chivasa, S., Murphy, A.M., Naylor, M. and Carr, J.P.
- 6 1997. Salicylic acid interferes with tobacco mosaic
- 7 virus replication via a novel salicylhydroxamic acid-
- 8 sensitive mechanism. Plant Cell. 9, 547-557.

9

- 10 Chu, M., Desvoyes, B., Turina, M., Noad, R. and
- 11 Scholthof, H.B. 2000. Genetic dissection of tomato
- 12 bushy stunt virus p19-protein-mediated host-dependent
- 13 symptom induction and systemic invasion. Virology,
- **266**, 79-87.

15

- 16 Covey S.N. et al. Plants combat infections by gene
- 17 silencing. Nature, vol 387, pages 781-782.

18

- 19 Cronin, S., Verchot, J., Haldeman-Cahill, R., Schaad,
- 20 M.C. and Carrington, J.C. 1995. Long-distance
- 21 movement factor: A transport function of the
- 22 potyvirus helper component proteinase. Plant Cell, 7,
- 23 549-559.

24

- Diao, A., Chen, J., Ye, R., Zheng, T., Shanquan, Y.,
- 26 Antoniw, J.F. and Adams, M.J. 1999. Complete sequence
- 27 and genome properties of Chinese wheat mosaic virus,
- 28 a new furovirus from China. J. Gen. Virol., 80, 1141-
- 29 1145.)

PCT/GB02/00234

- 1 Ding, S.W., Shi, B.J., Li, W.X. and Symons, R.H.
- 2 1995. A novel naturally occurring hybrid gene encoded
- 3 by a plant RNA virus facilitates long distance virus
- 4 movement. EMBO J., 14, 5762-5772
- 5 Ding, S.W., Shi, B.J., Li, W.X. and Symons, R.H.
- 6 1996. An interspecies hybrid RNA virus is
- 7 significantly more virulent than either parental
- 8 virus. Proc. Natl. Acad. Sci. USA, 93, 7470-7474.

9

- 10 Ding, S.W. RNA silencing. Curr. Opinion in Biotech.
- **11 11**, 152-156 (2000).

12

- Donald, R.G.K. and Jackson, A.O. 1994. The barley
- 14 stripe mosaic virus γb gene encodes a multifunctional
- 15 cysteine-rich protein that affects pathogenesis.
- 16 Plant Cell, 6, 1593-1606.

17

- 18 Donald, R.K.G. and Jackson, A.O. 1996. RNA-binding
- 19 activities of barley stripe mosaic virus gamma b
- 20 fusion proteins. J. Gen. Virol., 77, 879-888.

21

- 22 Edwards, M.C. 1995. Mapping of the seed transmission
- 23 determinants of barley stripe mosaic virus. Mol.
- 24 Plant Microbe Interact., 8, 906-915.

25

- 26 Elmayan, T., Balzergue, S., Beon, F., Bourdon, V.,
- Daubremet, J., Guenet, Y., Mourrain, P., Palauqui,
- J.C., Vernhettes, S., Vialle, T., Wostrikoff, K. and
- Vaucheret, H. 1998. Arabidopsis mutants impaired in
- 30 cosuppression. Plant Cell, 10, 1747-1757.

31

0205730142 | 3

45

- 1 English, J.J., Mueller, E. and Baulcombe, D.C. 1996.
- 2 Suppression of virus accumulation in transgenic
- 3 plants exhibiting silencing of nuclear genes. Plant
- 4 Cell, 8, 179-188.
- 5 Govier, D.A., Kassanis, B. and Pirone, T.P. 1977.
- 6 Partial purification and characterization of the
- 7 potato virus Y helper component. Virology, 78, 306-
- 8 314.

9

- 10 Grasser, K.D. 1998. HMG1 and HU proteins:
- 11 architectural elements in plant chromatin. Trends
- 12 Plant Sci., 3, 260-265.

13

- 14 Guilford, P.J., Ziegler-Graff, V. and Baulcombe, D.C.
- 15 1991. Mutation and replacement of the 16-kDa protein
- 16 gene in RNA-1of tobacco rattle virus. Virology, 182,
- 17 607-614.

18

- 19 Hamilton, W.D.O. and Baulcombe, D.C. 1989. Infectious
- 20 RNA produced by in vitro transcription of a full-
- 21 length tobacco rattle virus RNA-1 cDNA. J. Gen.
- 22 Virol., 70, 963-968.

23

- Hammond, S.M., Bernstein, E., Beach, D. and Hannon,
- 25 G.J. 2000. An RNA-directed nuclease mediates post-
- transcriptional gene silencing in Drosophila cells.
- 27 Nature, 404, 293-296.

28

- 29 Harrison, B.D. 1984. Potato Leafroll Virus. CMI/AAB
- 30 Descriptions of Plant Viruses, no. 291.

.3.1.

BNSDOCID: <WO____02057301A2_I_>

46

- 1 Hehn, A., Bouzoubaa, S., Twell, D., Marbach, J.,
- 2 Richards, K., Guilly, H. and Jonard, G. 1995. The
- 3 small cysteine-rich protein P14 of beet necrotic
- 4 yellow vein virus regulates accumulation of RNA2 in
- 5 cis and coat protein in trans. Virology, 210, 73-81.

6

- 7 Herzog, E., Hemmer, O., Hauser, S., Meyer, G.
- 8 Bouzoubaa, S. and Fritsch, C. 1998. Identification of
- 9 genes involved in replication and movement of peanut
- 10 clump virus. Virology, 248, 312-322.

11

- 12 Kasschau, K.D., Cronin, S. and Carrington, J.C. 1997.
- 13 Genome amplification and long-distance movement
- 14 functions associated with the central domain of
- 15 Tobacco etch virus helper component-proteinase.
- 16 Virology, 228, 251-262.

17

- 18 Kasschau, K.D. and Carrington, J.C. 1998. A
- 19 counterdefensive strategy of plant viruses:
- 20 Suppression of posttranscriptional gene silencing.
- 21 Cell, 95, 461-470.

22

- 23 Koonin, E.V., Boyko, V.P. and Dolja, V.V. 1991. Small
- 24 cysteine-rich proteins of different groups of plant
- 25 RNA viruses are related to different families of
- 26 nucleic acid-binding proteins. Virology, 181, 395-
- 27 398.

- 29 Kumagai, M.H., Donson, J., Della-Cioppa, G., Harvey,
- 30 D., Hanley, K. and Grill, L.K. 1995. Cytoplasmic
- -31 inhibition of carotenoid biosynthesis with virus-

1 derived RNA. Proc. Natl. Acad. Sci. USA, 92, 1679-2 1683. 3 4 Lindbo, J.A., Silva-Rosales, L., Proebsting, W.M. and 5 Dougherty, W. G. 1993. Induction of a highly specific 6 anti-viral state in transgenic plants: Implications 7 for gene regulation and virus resistance. Plant Cell, **5**, 1749-1759. 8 9 10 Liu, D.H., Robinson, D.J., Duncan, G.H. and Harrison, 11 B.D. 1991. Nuclear location of the 16K non-structural 12 protein of tobacco rattle virus. J. Gen. Virol., 72, 13 1811-1817. 14 15 Llave, C., Kasschau, K.D. & Carrington, J.C. Virus-16 encoded suppressor of posttranscriptional gene 17 silencing targets a maintenance step in the silencing 18 pathway. Proc. Natl Acad. Sci. USA 97, 13401-13406 19 (2000).20 21 Lucy, A.P., Guo, H.S., Li, W.X. and Ding, S.W. 2000. 22 Suppression of post-transcriptional gene silencing by a plant viral protein localized in the nucleus. EMBO 23 24 J., 19, 1672-1680. 25 26 MacFarlane, S.A., Wallis, C.V., Taylor, S.C., 27 Goulden, M.G., Wood, K.R. and Davies, J.W. 1991. 28 Construction and analysis of infectious transcripts

- 29 synthesized from full-length cDNA clones of both
- 30 genomic RNAs of pea early-browning virus. Virology,
- 31 **182**, 124-1-29.

PCT/GB02/00234

1 MacFarlane, S.A. 1999. The molecular biology of the 2 tobraviruses. J. Gen. Virol., 80, 2799-2807. 3 MacFarlane, S.A. and Popovich, A.H. (2000). Efficient expression of foreign proteins in roots from 5 tobravirus vectors. Virology, 267, 29-35. 6 7 Mourrain, P., Beclin, C., Elmayan, T., Feuerbach, F., 8 Godon, C., Morel, J.B., Jouette, D., Lacombe, A.M., 9 Nikic, S., Picault, N., Remoue, K., Sanial, M., Vo, 10 T.A. and Vaucheret, H. 2000. Arabidopsis SGS2 and 11 SGS3 genes are required for posttranscriptional gene 12 silencing and natural virus resistance. Cell, 101, 13 533-542. 14 15 Mueller, A.M., Mooney, A.L. and MacFarlane, S.A. 16 1997. Replication of in vitro tobravirus recombinants 17 shows that the specificity of template recognition is 18 determined by 5' non-coding but not 3' non-coding 19 sequences. J. Gen. Virol., 78, 2085-2088. 20 21 Napoli, C., Lemieux, C. and Jorgensen, R. 1990. 22 Introduction of a chimeric chalcone synthase gene 23 into petunia results in reversible co-suppression of 24 homologous genes in trans. Plant Cell, 2, 279-289. 25 26 Naylor, M., Murphy, A.M., Berry, J.O. and Carr, J.P. 27 1998. Salicylic acid can induce resistance in plant 28 virus movement. Mol. Plant Microbe Interact., 11, 29 860-868. 30 31

- 1 Palukaitis, P., Roosinck, M.J., Dietzgen, R.G. and
- 2 Francki, R.I. 1992. Cucumber mosaic virus. Adv. Virus
- 3 Res., 41, 281-348.

4

- 5 Petty, I.T.D., French, R., Jones, R.W. and Jackson,
- 6 A.O. 1990. Identification of barley stripe mosaic
- 7 virus genes involved in viral RNA replication and
- 8 systemic movement. EMBO J., 9, 3453-3457.

9

- 10 Power, J.B. and Chapman, J.V. 1985. Isolation,
- 11 culture and genetic manipulation of plant
- 12 protoplasts. In Plant Cell Culture, pp. 37-66. Edited
- 13 by R.A. Dixon. Oxford: ICR Press.

14

- 15 Ratcliff S., MacFarlane S.A., Baulcombe D.C. (1999)
- 16 Gene Silencing without DNA: RNA-mediated cross
- 17 protection between viruses. The Plant Cell, Vol 11,
- 18 pages 1207-1215.

19

- 20 Ruiz, M.T., Voinnet, O. and Baulcombe, D.C. 1998.
- 21 Initiation and maintenance of virus-induced gene
- 22 silencing. Plant Cell, 10, 937-946.

23

- 24 Scholthof, H.B., Scholthof, K.B.G., Kikkert, M. and
- 25 Jackson, A.O. 1995a. Tomato bushy stunt virus spread
- 26 is regulated by two nested genes that function in
- 27 cell-to-cell movement and host-dependent systemic
- 28 invasion. Virology, 213, 425-438.

- 30 Scholthof, H.B., Morris, T.J. and Jackson, A.O.
- -31 1995b. Identification of tomato bushy-stunt virus

- 1 host-specific symptom determinants by expression of
- 2 individual genes from a potato virus X vector. Plant
- 3 *Cell*, **7**, 1157-1172.

4

- 5 Sticher, L., Mauch-Mani, B. and Metraux, J.P. 1997.
- 6 Systemic acquired resistance. Annu. Rev.
- 7 Phytopathol., **35**, 235-270.

8

- 9 Vance, V.B., Berger, P.H., Carrington, J.C., Hunt,
- 10 A.G. and Shi, X.M. 1995. 5' proximal potyviral
- 11 sequences mediate potato virus X/potyviral
- 12 synergistic disease in transgenic tobacco. Virology,
- **206,** 583-590.

14

- Voinnet, O., Pinto, Y.M. and Baulcombe, D.C. 1999.
- 16 Suppression of gene silencing: A general strategy
- 17 used by diverse DNA and RNA viruses of plants. Proc.
- 18 Natl. Acad. Sci. USA, 96, 14147-14152.

19

- Voinnet, O., Lederer, C. and Baulcombe, D.C. 2000. A
- 21 viral movement protein prevents spread of the gene
- 22 silencing signal in Nicotiana benthamiana. Cell, 103,
- 23 157-167.

24

- Wang, D., MacFarlane, S.A. and Maule, A.J. 1997.
- 26 Viral determinants of pea early-browning virus seed
- transmission in pea. Virology, 234, 112-117.

- 29 Waterhouse, P.M., Graham, M.W. & Wang, M.-B. Virus
- 30 resistance and gene silencing in plants can be
- 31 induced by simultaneous expression of sense and

51

- 1 antisense RNA. Proc. Natl Acad. Sci. USA 95, 13959-
- 2 13964 (1998).

- Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R.,
- 5 Corr, C. and Baker, B. 1994. The product of the
- 6 tobacco mosaic virus resistance gene N: Similarity to
- 7 Toll and the Interleukin-1 receptor. Cell, 78, 1101-
- 8 1115.
- 9 Yamanaka, T., Ohta, T., Takahashi, M., Meshi, T.,
- 10 Schmidt, R., Dean, C., Naito, S and Ishikawa, M.
- 11 2000. TOM1, an Arabidopsis gene required for
- 12 efficient multiplication of a tobamovirus, encodes a
- 13 putative transmembrane protein. Proc. Natl. Acad.
- 14 Sci. USA, 97, 10107-10112.

1	CLAIM	
2		
3	1.	A method of suppressing or inhibiting one or
4		more gene silencing mechanisms in a non-plant
5		host cell through the use of a plant virus
6	•	protein exhibiting post-transcriptional gene
7	•	silencing suppressing functions.
8		
9	2.	A method as claimed in Claim 1 wherein the
10		expression of a heterologous protein encoded
11		by a virus vector or transgene in the non-
12		plant host cell is increased.
13		
14	3.	A method as claimed in Claim 1 wherein
15		expression of a heterologous protein encoded
16		by a virus vector or transgene in the non-
17		plant host cell is protected from post-
18		transcriptional gene silencing effected by the
19		host cell.
20		
21	4.	A method as claimed in any one of Claims 1 to
22		3 wherein the non-plant cell is an animal
23		cell.
24		
25	5.	A method as claimed in any one of Claims 1 to
26		4 wherein the non-plant cell is a mammalian
27		cell.
28	-	
29	6.	A method as claimed in any one of Claims 1 to
30		4 wherein the non-plant cell is an insect
3.	L	cell.
3:		

		53
1	7.	The method as claimed in Claim 5 wherein said
2		host cell is a Drosophila cell.
3		
4	8.	The method as claimed in any one of Claims 1
5		and 7 wherein said viral vector encoding said
6		heterologous protein is based on PVX, PVY, or
7		TMV.
8		
9	9.	The method as claimed in any one of Claims 2
10		and 8, wherein a transgenic host cell
11		expressing said plant virus protein is
12		inoculated with a viral vector encoding the
13		heterologous protein of interest.
14		
15	10.	The method as claimed in any one of Claims 2
16		and 9, wherein a transgenic host cell
17		expressing a heterologous protein of interest
18		is inoculated with a viral vector encoding the
19		plant virus protein.
20	•	·
21	11.	The method as claimed in any one of Claims 2
22		to 10 wherein said plant virus protein and
23		said heterologous protein of interest are
24		encoded by a single viral vector.
25		
26	12.	The method as claimed in any one of Claims 1
27		to 11 wherein said plant virus protein is a
28		cysteine-rich plant virus protein.
29		
30	13.	The method as claimed in any one of Claims 1
31		to 11 wherein said plant virus protein is the
32		HC-Pro protein of tobacco etch virus (TEV),

1		the 2b protein of cucumber mosaic virus (CMV),
2		the ORFO protein of potato leafroll virus
3		(PLRV), the 16K CRP protein of the tobacco
4		rattle virus, the 12K CRP of Pea early
5		browning virus or is a functional equivalent
6		of these proteins.
7		
8	14.	The use of a plant virus protein as a
9	٠.	suppressor of the gene silencing mechanism of
10		a non-plant host cell.
11		
12	15.	The use as claimed in Claim 14 wherein said
13		plant virus protein is a cysteine-rich plant
14		virus protein.
15		
16	16.	The use as claimed in Claim 14 wherein said
17		plant virus protein is the HC-Pro protein of
18		tobacco etch virus (TEV), the 2b protein of
19		cucumber mosaic virus (CMV), the ORFO protein
20		of potato leafroll virus (PLRV), the 16K CRP
21		protein of the tobacco rattle virus, the 12K
22		CRP of Pea early browning virus or is a
23		functional equivalent of these proteins.
24		
25	17.	A vector comprising a polynucleotide sequence
26		which encodes at least one plant virus protein
27		displaying post-transcriptional gene
28		suppressor activity and which is capable of
29		expressing said polynucleotide sequence in a
30		non-plant host cell.
31		

1	18.	A vector as claimed in Claim 17 wherein the
2		post-transcriptional gene suppressor protein
3		is derived from the HC-Pro protein of tobacco
4		etch virus (TEV), the 2b protein of cucumber
5		mosaic virus (CMV), the ORFO protein of potato
6		leafroll virus (PLRV), the 16K CRP protein of
7		the tobacco rattle virus, the 12K CRP of Pea
8		early browning virus or is a functional
9		equivalent of these proteins.
LO		
L1	19.	The use of a cysteine-rich plant virus protein
12		displaying post-transcriptional gene silencing
L3		as a suppressor of the gene silencing
14		mechanism of a host cell.
15		
16	20.	The use as claimed in Claim 19 wherein said
17		plant virus protein is the 16K CRP of tobacco
18		rattle virus or the 12K CRP of pea early
19		browning virus.
20		
21	21.	A method of suppressing or inhibiting one or
22		more gene silencing mechanisms in a host cell
23		through the use of a cysteine-rich plant virus
24		protein exhibiting post-transcriptional gene
25		silencing suppressing functions.
26		
27	22.	The method as claimed in Claim 19 wherein said
28		plant virus protein is the 16K CRP of tobacco
29		rattle virus or the 12K CRP of pea early
30		browning virus.

Fig. 1a

Fig. 1b

Fig. 2a

E K K K K V TCSI GHANKL RKQVAL TCSMKCANKYNRHLAL *** VTVL GHETAOSN-KFT * لياليا CEV CEV VEV STG STG MT CV L* TRV16K PEBV12K

ENNCGWF-VCVV! NDFTF CVNCGWYPA! EVRADF-I **** GVTRRCAE SI KRKCEC * * TRV16K PEBV12K

TRV16K PEBV12K

♥Z ĿĿ* **----** * A G G EFGT PKRFL RODVPFGI -LNSPKRL FRODI DFGL *** *** ** KTSKKKFKEDREFG -----PKRKE-R-LN * * * * TRV16K PEBV12K

 \circ

Fig. 2b

Fig. 3a

Fig. 3b

Fig. 3c

Fig. 3d

Fig. 4a

Fig. 4b

Fig. 5a

Fig. 5b

M 12345678910111213141516

Inoculated leaf

Systemic leaf

Fig. 6a

Fig. 6b

8/12

Fig. 7a

Fig. 7b Fig. 7c

Fig. 7d

9/12

Fig. 8c

+ lacZ +dsRNA +HC-Pro

Fig. 8b

+ lacZ +dsRNA

+ lacZ

SEQUENCE LISTING

:110> Scottish Crop Research Institute	
<120> Gene Silencing Suppressor	
<130> P28022A/JDA/BOU	
<160> 8	
<170> PatentIn version 3.1	
<210> 1 <211> 47 <212> DNA <213> Artificial sequence	
<220> <223> mutagenic primer used to reamplify Ndel-BgIII fragment	
<400> 1 tccatatgac gtgtgtactc tagggttgtg tgaatgaagt cactgtt	47
<210> 2 <211> 18 <212> DNA <213> Artificial sequence	
<220> <223> Mutated fragment of TRV 16K gene	•
<400> 2 atgacgtgtt aactctag	18
<210> 3 <211> 34 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer HCPRO-1 used to amplify TEV HCPRO sequence	
<400> 3 ccggtaccat gagcgacaaa tcaatctctg aggc	34
<210> 4 <211> 32 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer HCPRO-2 used to amplify TEV HCPRO sequence	
<400> 4 ggctcgagct acacatctcg gttcatccct cc	. 32

<210> 5

																101/0	DU2/U(
										2							
<23	L1>	38							•	2							
	12>	DNA															
<21	L3>	Art:	ific:	ial	sequ	ence											
<22	20>																
<22	23>	Pri	ner 1	Lacz	-1 u	sed t	to a	mpli	Ey cl	ONA o	corre	espoi	ndin	g to	the	LacZ	gene
<40		5															
taa	tace	gact	cact	ata	3 9 9 8	agaco	ccaa	gc to	act:	acc							
								J;	55000	. 90							38
<21		6															
<21	1>	38															
<21		DNA				•											
<21	.3>	Arti	.fici	al a	seque	ence											
<22	0>																
<22		Prim	er I	acz.	.2 110	- For		7									
				ucz	2 uz	eu t	.o an	фттт	y cI	NA c	orre	spor	ıding	, to	the	LacZ	gene
<40		6															
taa	tacc	jact	cact	atag	igg c	aaac	aacc	g at	tgac	יכמ							
							-5 -		-546	5							38
<21	0>	7															
<21	1>	141															
<21	2>	PRT				•											
<21	3>	Toba	cco	ratt	le v	irus											
<40	0>	7															
Met	Thr	Cha	37 m 7	.	_												
1	1111	Cys	vaı	ьеи 5	Lys	Gly	Cys	Val	Asn	Glu	Val	Thr	Val	Leu	Gly		
				,					10					15			
 .																	
His	GLu	Thr	Cys	Ser	Ile	Gly	His	Ala	Asn	Lys	Leu	Ara	Lvs	G] n	Va 1		
			20					25		•		5	30	CIII	val		
Ala	Gln	Met	Val	Gl v	17.7	mh		_									
		35	VUL	GTĀ	val	THE	Arg	Arg	Cys	Ala	Glu	Asn	Asn	Сув	Gly		
							40					45					
_																	
Trp	Phe	Val	Сув	Val	Val	Ile	Asn	Asp	Phe	Thr	Phe	Asn	Val	Th m	λ a=		
	50					55		-			60		, u.i.	- y -	4011	•	
Cys	Сув	Glv	Ara	Ser	นเอ	Len	C1	Lys	_	_	_						
-	_	1	3		ひてひ	neu	OT II	TAS	(NG	Ara	Tare	×~~	TT-7	~1	est.		

ys Cys Arg Lys Arg Val Glu Thr 75 80 65 70

Arg Asn Arg Glu Ile Trp Lys Gln Ile Arg Arg Asn Gln Ala Glu Asn 85

Met Ser Ala Thr Ala Lys Lys Ser His Asn Ser Lys Thr Ser Lys Lys 110

Lys Phe Lys Glu Asp Arg Glu Phe Gly Thr Pro Lys Arg Phe Leu Arg 120 125

Asp Asp Val Pro Phe Gly Ile Asp Arg Leu Phe Ala Phe 130 135 140

<210> B

<211> 107

<212> PRT

<213> Pea early browning virus

<400> 8

Met Lys Cys Ala Val Ser Thr Cys Glu Val Glu Ala Asp Ser Asn Lys

1 10 15

Phe Thr Cys Ser Met Lys Cys Ala Asn Lys Tyr Asn Arg His Leu Ala 20 25 30

Glu Lys Tyr Ser Ile Lys Arg Lys Cys Glu Cys Val Asn Cys Gly Trp 35 40 45

Tyr Pro Ala Ile Glu Val Arg Ala Asp Phe Ile Glu Val Tyr Phe Cys
50 55 60

Cys Gly Met Lys His Leu Ser Lys Val Ile Ser Ser Asn Pro Lys Arg
65 70 75 80

Lys Glu Arg Leu Asn Ser Pro Lys Arg Leu Phe Arg Asp Asp Ile Asp 85 90 95

Phe Cys Leu Thr Gly Leu Phe Asn Glu Ser Cys
100 105

THIS PAGE BLANK (USPTO)