Optical distribution network planning

Alexander Maximenko

HUAWEI TECHNOLOGIES CO. LTD (Russia)

Moscow, 30.10.2020

Example of a planar graph

Given:

a planar graph with $\approx 10^4$ nodes,

 \approx 10 nodes

 $pprox 10^4$ edges.

Every edge is a channel where cable may be laid

Example of a planar graph

Given:

a planar graph with $\approx 10^4$ nodes,

 $pprox 10^4$ edges.

Every edge is a channel where cable may be laid

Fragment of a graph

Example: clustering with minimal number of clusters (FATs)

The problem formulation

Given

- Set of nodes $V = D \cup U \cup W$, • D — demand nodes, U — access nodes, W — auxiliary nodes.
- ② Set of edges E and the length $len(e) \in \mathbb{R}$ for every $e \in E$.
- **3** $C_{max} \in \mathbb{N}$ the maximal capacity of an FAT (in demands).
- lacktriangle lacktriangl

The problem formulation

Given

- Set of nodes $V = D \cup U \cup W$, • D — demand nodes, U — access nodes, W — auxiliary nodes.
- ② Set of edges E and the length $len(e) \in \mathbb{R}$ for every $e \in E$.
- lacktriangle C_{max} $\in \mathbb{N}$ the maximal capacity of an FAT (in demands).
- lacktriangle lacktriangl

Definitions: distances and degrees

```
\begin{array}{l} \operatorname{path}(v_1,v_2)\subseteq E - \text{ the shortest path between } v_1 \text{ and } v_2, \ v_1,v_2\in V.\\ \operatorname{len}(v_1,v_2) \coloneqq \sum_{e\in\operatorname{path}(v_1,v_2)}\operatorname{len}(e) - \text{ the distance between } v_1 \text{ and } v_2.\\ \operatorname{Paths} \coloneqq \{(d,u)\mid d\in D,\ u\in U,\ \operatorname{len}(d,u)\leq \operatorname{L_{max}}\} - \text{ set of feasible}\\ \operatorname{paths}.\ \operatorname{deg}_S(v) \coloneqq \#\{s\in S\mid v\in s\} - \text{ the degree of a node } v \text{ in a set } S. \end{array}
```

The problem formulation

Given

- ① Set of nodes $V = D \cup U \cup W$, D demand nodes, U access nodes, W auxiliary nodes.
- ② Set of edges E and the length $len(e) \in \mathbb{R}$ for every $e \in E$.
- lacktriangle C_{max} $\in \mathbb{N}$ the maximal capacity of an FAT (in demands).
- **1** L_{max} $\in \mathbb{R}_+$ the maximal distance from an FAT to a demand.

Definitions: distances and degrees

```
\begin{array}{l} \operatorname{path}(v_1,v_2)\subseteq E - \text{ the shortest path between } v_1 \text{ and } v_2,\ v_1,v_2\in V.\\ \operatorname{len}(v_1,v_2)\coloneqq \sum_{e\in\operatorname{path}(v_1,v_2)}\operatorname{len}(e) - \text{ the distance between } v_1 \text{ and } v_2.\\ \operatorname{Paths}:=\{(d,u)\mid d\in D,\ u\in U,\ \operatorname{len}(d,u)\leq \operatorname{L}_{\max}\} - \text{ set of feasible}\\ \operatorname{paths.}\ \operatorname{deg}_S(v):=\#\{s\in S\mid v\in s\} - \text{ the degree of a node } v \text{ in a set } S. \end{array}
```

Find $B \subseteq Paths$, such that

- ② $\sum_{u \in U} x(u)$ is minimal, where $x(u) := \lceil \deg_B(u) / C_{\max} \rceil$.

Properties of the data and special requirements

Properties

- **10000**, demand nodes ≈ 5000 , access nodes ≈ 2000 .
- 2 nodes < edges $< 1.2 \cdot$ nodes.
- \odot neighboring access nodes for a demand $\in [10, 30]$ (on average).
- capacity $C_{max} \in \{8, 16, 32\}$.

Requirements

- Clusters do not intersect (do not have common nodes).
- 2 Accuracy: no worse than 5% from optimum.
- Do not use commercial software (e.g., CPLEX, Gurobi, etc.)
- Time limit: 5 minutes.

 d_1, d_2 — demand nodes u_1, u_2 — access nodes p_1 - p_4 — feasible paths

Variables:

 $\mathbf{x}(u) \in \mathbb{Z}_+$ is the number of FATs installed in $u \in U$; $\mathbf{y}(p) \in \{0,1\}$ is the indicator of using path $p \in \mathsf{Paths}$.

 d_1, d_2 — demand nodes u_1, u_2 — access nodes p_1 – p_4 — feasible paths

Variables:

 $x(u) \in \mathbb{Z}_+$ is the number of FATs installed in $u \in U$; $y(p) \in \{0, 1\}$ is the indicator of using path $p \in P$ aths.

(1)
$$y(p_1) + y(p_2) = 1$$
,

 d_1, d_2 — demand nodes u_1, u_2 — access nodes p_1 - p_4 — feasible paths

Variables:

 $x(u) \in \mathbb{Z}_+$ is the number of FATs installed in $u \in U$;

 $y(p) \in \{0,1\}$ is the indicator of using path $p \in Paths$.

(1)
$$y(p_1) + y(p_2) = 1$$
,

(2)
$$y(p_3) + y(p_4) = 1,$$

 d_1, d_2 — demand nodes u_1, u_2 — access nodes p_1 - p_4 — feasible paths

Variables:

 $x(u) \in \mathbb{Z}_+$ is the number of FATs installed in $u \in U$;

 $y(p) \in \{0,1\}$ is the indicator of using path $p \in Paths$.

(1)
$$y(p_1) + y(p_2) = 1$$
,

(2)
$$y(p_3) + y(p_4) = 1$$
,

$$(3) y(p_1) + y(p_3) \leq C_{\max} \cdot x(u_1),$$

 d_1, d_2 — demand nodes u_1, u_2 — access nodes p_1 – p_4 — feasible paths

Variables:

 $x(u) \in \mathbb{Z}_+$ is the number of FATs installed in $u \in U$;

 $y(p) \in \{0,1\}$ is the indicator of using path $p \in \mathsf{Paths}.$

(1)
$$y(p_1) + y(p_2) = 1$$
,

(2)
$$y(p_3) + y(p_4) = 1$$
,

$$(3) y(p_1) + y(p_3) \leq C_{\max} \cdot x(u_1),$$

(4)
$$y(p_2) + y(p_4) \le C_{\text{max}} \cdot x(u_2),$$

 d_1, d_2 — demand nodes u_1, u_2 — access nodes p_1 – p_4 — feasible paths

Variables:

 $x(u) \in \mathbb{Z}_+$ is the number of FATs installed in $u \in U$;

 $y(p) \in \{0,1\}$ is the indicator of using path $p \in Paths$.

(1)
$$y(p_1) + y(p_2) = 1$$
,

(2)
$$y(p_3) + y(p_4) = 1,$$

(3)
$$y(p_1) + y(p_3) \le C_{\text{max}} \cdot x(u_1),$$

(4)
$$y(p_2) + y(p_4) \le C_{\text{max}} \cdot x(u_2),$$

(5)
$$y(p_2) + y(p_3) \le 1.$$

Capacitated Facility Location without intersections

D — demands, U — accesses, Paths — a set of feasible paths.

 $\mathbf{x}(u) \in \mathbb{Z}_+$ is the number of FATs installed in $u \in U$.

 $y(p) \in \{0,1\}$, for $p = (d,u) \in \mathsf{Paths}$.

N is the cost of FAT, N > len(p) for any $p \in Paths$.

minimize
$$N \sum_{u \in U} x(u) + \sum_{(d,u) \in Paths} len(d,u)y(d,u),$$

subject to

(1)
$$\sum_{u\in U}y(d,u)=1 \quad \forall d\in D,$$

(2)
$$\sum_{d \in D} y(d, u) \le x(u) \cdot \mathsf{C}_{\mathsf{max}} \quad \forall u \in U,$$

(3)
$$y(p_1) + y(p_2) \le 1 \quad \forall \text{ intersected } \{p_1, p_2\} \in \mathsf{Paths} \,.$$

Difficulties

The size of a problem

- The number of 0/1-variables: $|Paths| \approx 10^5$.
- ② The number of "intersection" inequalities $> 10^6$.

Requirements

- Accuracy: no worse than 5% from optimum.
- Oo not use commercial software (e.g., CPLEX, Gurobi, etc.)
- Time limit: 5 minutes.

Summary

The problem can't be solved by straightforward methods.

 d_1, d_2 — demand nodes u_1, u_2 — access nodes v_1, v_2 — auxiliary nodes a_1 - a_8 — arcs

Variables:

 $x(u) \in \mathbb{Z}_+$ is the number of FATs installed in $u \in U$; $y(a) \in \mathbb{R}_+$ is the value of a flow in arc $a \in A$.

 d_1, d_2 — demand nodes u_1, u_2 — access nodes v_1, v_2 — auxiliary nodes a_1 - a_8 — arcs

Variables:

 $x(u) \in \mathbb{Z}_+$ is the number of FATs installed in $u \in U$; $y(a) \in \mathbb{R}_+$ is the value of a flow in arc $a \in A$.

(1)
$$\Delta(v_1) = (y(a_3) + y(a_7)) - (y(a_4) + y(a_6)) = 0,$$

 d_1, d_2 — demand nodes u_1, u_2 — access nodes v_1, v_2 — auxiliary nodes a_1 - a_8 — arcs

Variables:

 $x(u) \in \mathbb{Z}_+$ is the number of FATs installed in $u \in U$; $y(a) \in \mathbb{R}_+$ is the value of a flow in arc $a \in A$.

(1)
$$\Delta(v_1) = (y(a_3) + y(a_7)) - (y(a_4) + y(a_6)) = 0,$$

$$\Delta(d_1) = y(a_1) = 1,$$

 d_1, d_2 — demand nodes u_1, u_2 — access nodes v_1, v_2 — auxiliary nodes a_1 — a_8 — arcs

Variables:

 $x(u) \in \mathbb{Z}_+$ is the number of FATs installed in $u \in U$;

 $y(a) \in \mathbb{R}_+$ is the value of a flow in arc $a \in A$.

(1)
$$\Delta(v_1) = (y(a_3) + y(a_7)) - (y(a_4) + y(a_6)) = 0,$$

$$\Delta(d_1) = y(a_1) = 1,$$

(3)
$$-\Delta(u_2) = y(a_8) - y(a_5) \le x(u_2) \cdot C_{\max},$$

 d_1, d_2 — demand nodes u_1, u_2 — access nodes v_1, v_2 — auxiliary nodes a_1 - a_8 — arcs

Variables:

 $x(u) \in \mathbb{Z}_+$ is the number of FATs installed in $u \in U$;

 $y(a) \in \mathbb{R}_+$ is the value of a flow in arc $a \in A$.

(1)
$$\Delta(v_1) = (y(a_3) + y(a_7)) - (y(a_4) + y(a_6)) = 0,$$

$$\Delta(d_1) = y(a_1) = 1,$$

(3)
$$-\Delta(u_2) = y(a_8) - y(a_5) \leq x(u_2) \cdot C_{\max},$$

$$z(a_3)+z(a_7)\leq 1,$$

$$z(a) \in \{0,1\}, \quad \varepsilon \cdot y(a) \le z(a) \le y(a).$$

- $A := \{(v_1, v_2) \mid \{v_1, v_2\} \in E\}$ set of arcs $x(u) \in \mathbb{Z}_+$ is the number of FATs installed in $u \in U$.
- $y(a) = y(v_1, v_2) \in \mathbb{R}_+$ is the amount of flow in arc $a = (v_1, v_2) \in A$.
- $z(a) \in \{0, 1\}, \qquad \varepsilon \cdot y(a) \le z(a) \le y(a), \quad a \in A.$

$$\Delta(v) \coloneqq \sum_{(s,v) \in A} y(s,v) - \sum_{(v,s) \in A} y(v,s)$$
 is the flow difference in v .

minimize
$$N \sum_{u \in U} x(u) + \sum_{a \in A} \operatorname{len}(a) \cdot y(a),$$

subject to

(1)
$$\Delta(w) = 0$$
 for every auxiliary node $w \in W$,

(2)
$$\Delta(d) = 1$$
 for every demand $d \in D$,

(3)
$$-\Delta(u) \le x(u) \cdot \mathsf{C}_{\mathsf{max}} \qquad \text{for every access node } u \in U,$$

(4)
$$\sum_{(v',v)\in A} z(v',v) + \varepsilon \cdot x(v) \leq 1, \qquad \forall v \in V.$$

Pros and cons of the flow model

Pros: the numbers of variables and constraints are much smaller

	Flow model	Precise model
Variables	≈ 30000	≈ 100000
Constraints	≈ 30000	> 1000000

Cons: no distance constraints

The flow model has no a limit on the distance between demands and FATs. For adding this constraint, we may add variables-odometers to the model. But this will significantly increase the complexity of the model.

Results of experiments with the flow model

The size of model

The size: 26 000 variables, 26 000 constraints.

Half of variables and constraints are indicators:

$$z(a) \in \{0,1\}, \qquad \varepsilon \cdot y(a) \le z(a) \le y(a), \quad a \in A.$$

Test results

- 1. CPLEX solves the flow model in 20 minutes with 11% gap.
- 2. Free solver CBC get 11% gap in 50 minutes.

Requirements

- Accuracy: no worse than 5% from optimum.
- ② Do not use commercial software (e.g., CPLEX, Gurobi, etc.)
- Time limit: 5 minutes.

Idea 1: split the graph into several parts

Test results

A subgraph of size 1000-2000 nodes (edges) is solved:

by CPLEX in 10-60 seconds;

by CBC in 10-60 minutes;

A disadvantage

The total solution quality deteriorates when we split the graph into several parts. The smaller the part size, the further a solution from the optimum.

Summary

The idea works, but the graph should be splitted carefully and the part size can't be small (> 20 clusters in one part).

ldea 2: 2-stage approach

Prerequisite

The number of access nodes is much greater than the number of clusters in the solution.

2-stage approach

- Choose a short list L of "good" access nodes (with a relaxation of the model or with some heuristic).
- 2 Run the precise model for L instead of the set of all access nodes.

Current results

Results

With using described and some other ideas, we get a good solution:

by CPLEX in 1 minute;

by CBC in 10 minutes;

To Do

- Tune CBC solver for this task.
- Develop an algorithm (heuristic) that does not use a MILP solver.
- Solve the task for a very large graph: $100\,000 \text{ demands}, \, 300\,000 \text{ accesses}, \, \text{cluster capacity } C_{\text{max}} = 1024.$

A similar task with a special requirement

In the previous task

Every demand is directly connected to a FAT.

Thus, every cluster has a star-like structure.

In new task

Every cluster is a tree with at most 4 branches.

Every branch is a chain with at most 4 demand nodes

An additional demand may be connected to every node of a chain.

Thank You!