

Sieci Sensorowe

Sieć sensorowa -bezprzewodowa sieć, złożona z dużej liczby działających niezależnie urządzeń, zwanych sensorami. Sensory zbierają za pomocą czujników lokalne dane o środowisku i komunikują się ze sobą i ze światem zewnętrznym

Przykładowe zadania stawiane sieciom sensorowym

- Obliczenie wartości jakiegoś parametru w zadanym miejscu.
- Wykrycie zdarzenia i oszacowanie jego parametrów.
 - Np. w sieci monitorującej ruch uliczny zdarzeniem jest wykrycie pojazdu, a sieć powinna dodatkowo oszacować prędkość pojazdu
 - Np. Wykrycie pęknięcia w budynku (moście).
- Klasyfikacja wykrytego obiektu; np. czy wykryto czołg czy samochód?
- Śledzenie obiektu

Bezprzewodowe sieci sensorowe

- Bezprzewodowe sieci sensorowe są zbiorem setek tysięcy małych, jednorazowych węzłów sensorowych o małej mocy, które komunikują się ze sobą celem wykonania określonego zadania.
- Węzeł sensorowy (sensor node) to urządzenie, które przetwarza badane cechy na dane w formie zrozumiałej dla użytkownika. Każdy węzeł zawiera moduł czuciowy, moduł komunikacyjny, pamięć oraz małą baterię.
- Sieci sensorowe są sieciami datacentrycznymi (skoncentrowanymi na danych). W ich polu zainteresowań znajduje się to jakie są dane, a nie gdzie te dane się znajdują. W bezprzewodowych sieciach sensorowych awaria jednego węzła nie wpływa na działanie sieci, dopóki zawiera ona inne węzły zbierające podobne dane w tym samym obszarze.

Bezprzewodowe sieci sensorowe

- Główna przewaga bezprzewodowych sieci sensorowych nad przewodowymi:
 - Łatwość rozlokowania sensory mogą być rozmieszczane bez wcześniejszego przygotowania infrastruktury
 - Powiększony zasięg wiele bezprzewodowych sensorów może zastąpić jeden przewodowy, pokrywając większy region
 - Tolerancja błędów awaria jednego sensora nie wpływa na fukcjonowanie całej sieci
 - Mobilność Sensory posiadają własne źródła energii, więc mogą się przemieszczać (np. przegrupowywać się celem pokrycia zasięgiem nowego obszaru)
- Sieci sensorowe przejęły również wady tradycyjnych sieci bezprzewodowych, takie jak:
 - Niska przepustowość
 - Transmisje skłonne do błędów (error-prone)
 - Wymóg dostępu do odpornego na kolizje kanału
- Ponadto ograniczeniem jest źródło energii jakie posiada mobilny sensor. Dąży się do tego, aby wyczerpanie się tych źródeł nastąpiło równocześnie we wszystkich węzłach, ponieważ koszt lokalizacji i wymiany poszczególnych sensorów jest większy niż zaaranżowanie sieci od nowa.

Coto jest sensor?

- Miniaturowe urządzenie, które zawiera:
 - mikroczujnik
 - przetwarza sygnały o niskiej mocy
 - ma niski poziom konsumpcji energii
 - niewielki zakres komunikacji (odległość)
 - niewielki i nieodnawialny zapas energii
- Komunikacja przez niektóre bezprzewodowe media komunikacyjne, np. fale radiowe, podczerwień, ultradźwięki, itp.
- Masowo produkowane
- Tanie (cena od kilkunastu centów do kilku \$ w zależności od parametrów)

Budowa typowego sensora

Typy czujników

Jakie są typowe przykłady czujników?

- Mierzący ciśnienie
- Mierzący temperaturę
- Mierzący światło
- Biologiczny
- Chemiczny
- Akustyczny
- Mierzący przyśpieszenie
- Sejsmiczny
- Wykrywający metal
- Stwierdzający obecność/brak obecności obiektu
- Mierzący stopień zanieczyszczenia powietrza

W ten sposób czujniki mogą mierzyć...

- Odległość od obiektu
- Kierunek obiektu
- Temperaturę otoczenia
- Obecność chemikaliów
- · Natężenie światła
- Wibracje
- Ruch
- Drgania sejsmiczne
- Natężenie, częstotliwość dźwięku
- itp.

Czujniki i ich działania

- Energooszczędne działanie
 - Dużo spać
 - Budzić się okresowo
 - Działać lokalnie
 - Komunikować się oszczędnie
- Bezobsługowa praca

Co to jest sieć sensorowa?

- Rozproszony system bez centralnego sterowania
- Duża liczba czujników gęsto rozmieszczonych w interesującym nas obszarze
- Rozmieszczenie losowe: indywidualna pozycja czujnika nie może być projektowana
- Główny cel: globalna informacja z lokalnych danych
- Sieć jest tak dobra, jak informacje, które wytwarza:
 - jakość informacji
 - bezpieczeństwo informacji

Bezprzewodowa sieć sensorowa kontra siec ad-hoc

- Liczba węzłów: rząd wielkości wyższy w WNS (wireless sensor network)
- Gęstość rozmieszczenia: rząd wielkości wyższy w WNS
- Niezawodność: Czujniki są podatne na uszkodzenia!
- Topologia:
 - niewielka lub żadna mobilność
 - bardzo dynamiczny w WSN ze względu na cykl sen/budzenie
- Komunikacja: nadawanie broadcastowe w WSN, punkt-punkt w sieci ad-hoc
- Skromne zasoby: moc obliczeniowa i zdolności komunikacyjne
- Anonimowość węzłów w WSN

Zagadnienia komunikacyjne

- Lokalny Sink: przez duży zasięg radia dostarcza interfejs do zewnętrznego świata
- Komunikacja:
 - sensor do Sink(ów): multi-hop
 - Sink(i) do sensorow: broadcast lub multicast
- Niewielka moc i pamięć narzuca:
 - proste i energooszczędne protokoły komunikacyjne
 - optymalną liczbę czujników wykonujących dane zadanie
 - komunikację typu "multi-hop"
 - minimalną niezgodność warstw MAC

Przykłady zastosowań WNS

- Inteligentne przedszkola
- Monitorowane osiedla
- Monitorowane środowisko
- Inteligentne klasy
- Detekcja pożaru lasu
- Kontrola stada (zwierząt)
- Aplikacje rolnicze:
 - Inteligentne szklarnie
 - Inteligentne winnice

Dwa spojrzenia na sieci sensorowe

Sterowane centralnie

- zdalny użytkownik wprowadza zapytanie
- sieć sensorowa dostarcza odpowiedzi
- niezbyt dobrze skaluje się
- skłonność do nierównomiernego wyczerpania energii (np. dziury energetyczne)
- Autonomiczne
 - zakłada dominację urządzeń
 - organizacja ad hoc
 - dobrze skaluje się
 - mniej podatna na tworzenie się dziur energetycznych

Sterowanie centralne Lustracja

Autonomiczna sieć sensorów

- Autonomiczna sieć czujników bezprzewodowych (ang. AutoNomouS Wireless sEnsor netwoRk, skrót ANSWER)
 - wykonywanie zaawansowanych analiz
 - wykrywanie trendów
 - identyfikacja nieoczekiwanego zachowania
- ANSWER znajduje bezpośrednie zastosowania do nadzoru taktycznego pola bitwy, zarządzania kryzysowego i bezpieczeństwa kraju

Autonomiczna sieć sensorów (c.d.)

- Heterogeniczny system składający się z
 - Zwykłych sensorowych węzłów
 - agregacji i fuzji węzłów (ang. aggregation and fusion nodes, AFN)
- AFN = mobilne SINK wyposażone w:
 - Radioodbiornik o dużym zasięgu
 - Duże możliwości obliczeniowe
 - Znaczny zapas energii
- AFN może poruszać się w odpowiedzi na potrzeby misji
 - działać jako kolektor (zbieracz) danych
 - działać jako interfejs dla użytkownika i świata zewnętrznego

ANSWER Lustracja

- Ogromna liczba wcześniej rozmieszczonych sensorów
- Sensory poznają środowisko, zbierają i przechowują dane
 - o polach minowych
 - żołnierzach wroga
 - warunkach drogowych,
- Autoryzowany użytkownik (np. PSAR) może wykorzystać te informacje w celu wsparcia swojej misji

PSAR - Patrol Search and Rescue vehicle

Zastosowania

Szerokie zastosowanie

- Monitorowanie statyki środowiska
 - monitorowanie środowiska
 - monitorowanie osiedli
 - nadzorowanie
- Monitoring obiektów ruchomych / cele
 - śledzenie dzikich zwierząt i ich zachowania w rezerwatach
 - śledzenie ruchu pojazdów wroga
 - transgraniczna infiltracja

Specyficzne obszary zastosowania

-Środowisko

- wykrywanie pożarów lasów i ich kontrola (reakcja w czasie rzeczywistym)
- rolnictwo precyzyjne (monitorowanie poziomu pestycydów w zapasach wody, poziom erozji gleby)
- Biomedycyna
 - tele-monitoring fizjologicznych danych pacjenta (zbieranie danych do badań naukowych, pomoc pacjentom w podeszłym wieku)
 - podawanie leków w szpitalach (załączyć czujniki monitorowania leków, aby zapobiec błędom)

Monitoring środowiska

Monitoring ekosystemu

Primary node

Secondary nodes

•Gęsta sieć sensorów fizycznych i chemicznych w glebie i koronie drzew

•Mierzenie i charakteryzowanie wcześniej nieobserwowalnych procesów zachodzących w ekosystemach

Zarządzanie łańcuchem dostaw

Kontrola ruchu

Czy sieć sensorowa potrafi kontrolować przepływ pojazdów lepiej niż "sieć ludzi"?

Aplikacje medyczne

Aplikacje związane z obroną i bezpieczeństwem państwa

- Wojsko/ bezpieczeństwo wewnętrzne
 - monitorowanie wyposażenia i amunicji własnych oddziałów (poprzez dołączenie sensorów)
 - nadzór pola bitwy (monitorowanie strategicznego terenu, dróg, mostów i cieśnin pod kątem działalności wroga)
 - oceny szkód bitwy (raporty z sensorów rozlokowanych na polu walki /uzbrojeniu mogą dostarczać raporty w czasie rzeczywistym)
 - wczesne wykrywanie czynników biologicznych, chemicznych lub wykrywanie ataku jądrowego
 - powstrzymywanie ataków terrorystycznych: sensory rozmieszczone na całym obszarze metropolii, w publicznych miejscach mogą być źródłem danych do pierwszego reagowania

Zabezpieczenie portów w USA

Jedynie 2% kontenerów wprowadzanych do portów jest sprawdzane!

Zabezpieczanie tranzytu kontenerów

...i przeładunek

Dokąd stąd podążamy?

- Wykładnicza poprawa co do rozmiaru, mocy, sposób obliczania, komunikacji, itp. sensorów będzie silnie wpływać na definicję i dziedziny stosowania WSN
- National Research Council przewiduje, że:

Coraz większe możliwości i wszechobecność sieci sensorowych poprawią inteligencję, niezależność i elastyczność systemów elektronicznych i mechanicznych, na tyle że będą one szybko zbliżały się i wkrótce przekroczą zdolności ludzi

Przyszłość: inteligentne środowisko

- Prymitywne elementy są doskonale osadzone w świecie fizycznym, w tym sensie, że wspólnie działają i komunikują się ze sobą
- Te prymitywy samoorganizujące się tworzą inteligentne środowiska, które hermetyzują rzeczywisty świat
- Wbogacenie świata fizycznego tymi prymitywami jest warunkiem niezbędnym do budowy inteligentnych środowisk

Modele bio-metryczne

- Jak przejść z podstawowej implementacji SmartDust do przyszłości inteligentnych autonomicznych sieci sensorowych?
- Prawdopodobne rozwiązanie: Musimy się wiele nauczyć na temat rozwoju, od prostych do złożonych form przez naśladowanie ewolucji życia na Ziemi

Protokoły

Bezprzewodowe sieci sensorowe

- Sieci sensorowe wymagają protokołów zależnych od zastosowania, a zarazem na tyle ogólnych, aby zachować datacentryczność, zdolność łączenia danych oraz minimalizację zużycia energii.
- Idealna sieć sensorowa powinna zawierać następujące dodatkowe zdolności:
 - Adresowanie oparte na atrybutach, złożone z serii par atrybut – wartość, które określają jakie fizyczne parametry mają być badane.
 - Węzły powinny znać swoje położenie.
 - Sensory powinny natychmiast reagować na drastyczne zmiany zachodzące w ich otoczeniu i informować niezwłocznie o tym użytkownika
 - Obsługa zapytań użytkownik, korzystając z mobilnego urządzenia powinien mieć możliwość wysyłania zapytań i otrzymywania na nie odpowiedzi.

Bezprzewodowe sieci sensorowe – zapytania

Obsługa zapytań jest kolejną cechą sieci sensorowych. Użytkownicy wykorzystując urządzenia mieszczące się w dłoni (hand held) powinni być w stanie żądać danych z sieci. Zapytania użytkowników dzielą sie na trzy typy:

- Zapytania historyczne: Wykorzystywane do analiz historycznych danych zebranych w stacji bazowej (Base Station – BS) np. "Jaka była temperatura 2 godziny temu w północnozachodnim kwadrancie?"
- Zapytania jednorazowe: Udostępniają migawki sieci np. "Jaka jest bieząca temperatura w północnozachodnim kwadrancie?"
- Zapytania trwałe: Wykorzystywane do monitorowania sieci przez fragment czasu z uwzględnieniem pewnych parametrów np. "Raportuj stan temperatury przez kolejne 2 godziny".

Klasyfikacja sieci sensorowych

Proaktywne

- Węzły w sieci okresowo przełączają się między ich sensorami i nadajnikami, badają otoczenie i transmitują dane leżące w polu zainteresowania.
- Udostępniają migawki istotnych parametrów w regularnych odstepach czasu – odpowiednie dla zastosowań wymagających czasowego monitorowania danych.

Reaktywne

- W tym schemacie węzły reagują natychmiast na niespodziewane i drastyczne zmiany wartości badanych cech.
- Odpowiednie dla zastosowań czasu rzeczywistego (time-critical).

Podstawy protokołu MAC dla bezprzewodowych sieci sensorowych

Statyczne przydzielanie kanału

- W tej kategorii protokołów, jeśli mamy N węzłów, szerokość pasma jest dzielona na N równych porcji w funkcji częstotliwości (FDMA), czasu (TDMA), kodu (CDMA), przestrzeni (SDMA – Space Division Multiple Access) lub OFDM (Orthogonal Frequency Division Multiplexing)
- Działa wydajnie gdy w sieci znajduje się niewielka, stała liczba użytkowników, z których każdy posiada duży, buforowany zasób danych

Dynamiczne przydzielanie kanału

- W tej kategorii protokołów nie występuje stałe przydzielenie szerokości pasma.
- Odpowiednie gdy liczba użytkowników zmienia się dynamicznie, a dane są wysyłane w nierównych porcjach.

Zagadnienia routingu w sieciach sensorowych

- W tradycyjnych sieciach przewodowych każdy węzeł jest identyfikowany przez unikalny adres, który jest wykorzystywany przy routingu. Sieci sensorowe, przez to, że są datacentryczne, nie wymagają (zazwyczaj) routingu między dwoma konkretnymi węzłami.
- Sąsiadujące węzły mogą zawierać zbliżone dane.
 Dlatego pożądanym zachowaniem jest połączenie tych danych, a następnie wysłanie.
- Wymagania względem sieci zmieniają się wraz ze zmianą zastosowania, dlatego każda sieć sensorowa jest zależna od zastosowania.

40

Routing w sieciach sensorowych – płaski routing

Rozproszenie Kierunkowe

- Zapytanie jest "rozlewane" w całej sieci.
- Dane startują z konkretnych punktów i poruszają się na zewnątrz, aż do osiągnięcia żądanego węzła.
- Ten typ kolekcji danych nie w pełni wykorzystuje cechę sieci sensorowych, mówiącą o tym, że sąsiednie węzły posiadają zbliżone dane.
- Ten sposób przetwarzania danych jest odpowiedni jedynie dla zapytań trwałych, gdzie węzeł żądający oczekuje danych, które zaspokoją zapytanie przez pewnien czas.
- Sensor Protocols for Information via Negotiation (SPIN)
 - Sensorowe protokoły informacji przez negocjację
 - Rozprzestrzeniają informację z poszczególnych węzłów do każdego węzła w sieci.
 - Wykorzystuje cechę sieci sensorowych mówiącą o tym, że sąsiednie węzły zawierają zbliżone dane i przekazuje jedynie te dane, których nie mają pozostałe węzły
 - Protokoły te działają proaktywnie i rozpowszechniają dane po całej sieci, nawet jeśli użytkownik nie żądał żadnych danych.

Routing w sieciach sensorowych – płaski routing

Kuguar (Cougar)

- Jest to podejście hurtowe.
- Dane są wydobywane w predefiniowany sposób i składowane w centralnej bazie danych (BS).
- Przetwarzanie zapytania odbywa się w BS.
- Kuguar jest charakterystycznym dla sieci sensorowych modelem reprezentacji zapytań.
- Posiada architekturę trójwarstwową:
 - **Pośrednik zapytań** (Query proxy): mały komponent bazy danych działający w węzłach, celem interpretacji i wykonania zapytań.
 - Komponent końcowy (Front-end component): potężny pośrednik zapytań, który pozwala sieci sensorowej łączyć się z otaczającym światem. Zawiera pełnoprawny serwer bazy danych.
 - Graficzny interfejs użytkownika (GUI): Przez GUI użytkownik może składać krótko i długo wykonywane zapytania do sieci sensorowej. GUI pozwala też zwizualizować topologię sieci oraz zadawać pytania pod kątem regionu.

Routing hierarchiczny w sieciach sensorowych

- Schematy hierarchicznego klastrowania są najbardziej odpowiednie dla bezprzewodowych sieci sensorowych.
- Sieć opiera się na stacji bazowej (Base Station BS), oddalonej od węzłów, przez które końcowi użytkownicy mogą uzyskiwać dostęp do danych z sieci sensorowej.
- BS może nadawać z dużą mocą.
- Węzły nie mogą odpowiadać bezpośrednio BS z powodu ich wymuszonej małej mocy, co skutkuje tym, że komunikacja przebiega asymetrycznie.

Routing hierarchiczny w sieciach sensorowych

- Główne cechy architektury klastrowej:
 - Wszystkie węzły nadają tylko do ich najbliższych węzłów głównych klastra (Cluster Head - CH). Jest to podyktowane oszczędnością energii.
 - Tylko węzły główne wykonują dodatkowe obliczenia na danych (takie jak ich łączenie). Również to oszczędza energię.
 - Węzły składowe klastra, są głównie swoimi sąsiadami i posiadają zbliżone dane. Dlatego CH łączy podobne dane, co jest bardziej efektywne.
 - Węzły główne na wyższych poziomach w hierarchii muszą wysyłać dane na większe odległści, co powoduje większe zużycie energii. Aby rozproszyć to zużycie każdy węzeł pełni rolę głównego przez określony czas T zwany okresem klastra (cluster period)
 - Ponieważ tylko CH musi wiedzieć jak przekazać dane do CH wyższego poziomu lub BS, ograniczona jest złożoność routingu.

Protokoły routingu oparte o klaster

Cluster Based Routing Protocol (CBRP)

- W tym przypadku węzły składowe klastra wysyłają dane do węzła głównego klastra (cluster head – CH).
- CH routuje dane do ich celu.
- Nie jest to podejście odpowiednie dla wysoce mobilnego środowiska, ponieważ wiele wiadomości kontrolnych (HELLO messages) musi zostać wysyłanych celem utrzymania klastra.

Low-Energy Adaptive Clustering Hierarchy (LEACH)

- Hierarchiczne klastrowanie adaptacyjne o małej energii.
- LEACH jest rodziną protokołów zawierającą zarówno rozproszone jak i zcentralizowane schematy. LEACH wykorzystuje proaktywne uaktualnianie.
- LEACH wykorzystuje losową rotację lokalnych węzłów głównych (CH) do równomiernego rozłożenia obciążenia energetycznego wśród sensorów.
- Korzysta ze schematów TDMA/CDMA MAC, celem redukcji wewnątrz- oraz między-klastrowych kolizji.
- Zbieranie danych jest scentralizowane i odbywa się okresowo. Stosowne do ciągłego monitorowania sieci.

Reaktywne Protokoły Sieciowe: TEEN

TEEN (Threshold-sensitive Energy Efficient sensor Network protocol)

- Wrażliwy na progi, wydajny energetycznie protokół sieci sensorowych.
- Jest pierwszym protokołem opracowanym specjalnie dla sieci reaktywnych.
- W tym schemacie CH transmituje następujące dane do węzłów klastra za każdym razem gdy następuje zmiana klastra:
 - Twardy próg (Hard threshold HT): jest to wartość progowa badanego atrybutu.
 - Miękki próg (Soft Threshold ST): Jest to mała zmiana wartości badanego atrybutu, która powoduje, że węzeł włącza trasnsmiter i przesyła tą wartość.

Reaktywne Protokoły Sieciowe: TEEN

TEEN c.d.

- Węzły badają środowisko nieustannie.
- Gdy po raz pierwszy jakiś parametr z zestawu atrybutów osiąga wartość swojego twardego progu, wezeł włącza nadajnik i przesyła dane.
- Badana wartość jest składowana w wewnętrznej zmennej zwanej badaną wartością (Sensed Value - SV).
- Węzeł prześle dane w bieżącym cyklu klastra, tylko wtedy, gdy spełnione będą następujące warunki:
 - Bieżąca wartość badanego atrybutu jest większa niż twardy próg
 - Bieżąca wartość badanego atrybutu różni się od SV o wartość większą lub równą miękkiemu progowi.

TEEN

Ważne cechy:

- Odpowiedni dla zastosowań, w których krytyczny jest czas zbierania danych.
- Wysyłka wiadomości wymaga większych nakładów energii niż zbieranie danych, więc zużycie energii jest mniejsze w tym schemacie niż w sieciach proaktywnych.
- Miękki próg (soft threshold) może być zmienny.
- W każdym czasie zmiany klastra, parametry są wysyłane na nowo; daje to użytkownikowi możliwość ich dowolnej zmiany,
- Główną wadę stanowi sytuacja, gdy żaden próg nie zostanie osiągnięty, ponieważ wtedy węzły nigdy nie nawiążą komunikacji.

51

Adaptive Periodic Threshold-sensitive Energy Efficient sensor Network protocol (APTEEN)

- Adaptacyjny, okresowy, wrażliwy na progi, wydajny energetycznie protokół sieci sensorowych.
- Zasada działania:
 - Węzeł główny klastra rozsyła następujące parametry:
 - Atrybuty (A): Zestaw fizycznych parametrów, których dane chce pozyskać użytkownik.
 - Progi: Składa się z Twardego Progu (HT) oraz Miękkiego Progu (ST).
 - Harmonogram: Harmonogram TDMA, który przypisuje przedział czasowy każdemu węzłowi
 - Kwant czasu (Count Time CT): Maksymalny okres czasu, jaki może upłynąć między dwoma udanymi wysyłkami raportów przez węzeł.

Adaptive Periodic Threshold-sensitive Energy Efficient sensor Network protocol (APTEEN) Harmonogram TDMA i Parametry Szczelina czasowadla itego węzła Tworzenie Ramka czasu klastra

Linia życia APTEEN

Czas zmiany

klastra

APTEEN c.d.

- Węzły badają środowisko nieustannie.
- Nadają tylko te węzły, które pobierają wartość danych równą lub przekraczającą twardy próg.
- Gdy węzeł wyczuje wartość przekraczającą HT, wyśle dane tylko wtedy, gdy wartość tego atrybutu zmieni się o wartość większą bądź równą ST.
- Jeśli węzeł nie wyśle żadnych danych przez czas równy bądź dłuższy niż kwant czasu, jest zmuszany do zczytania danych z czujnika i wysłania ich.
- Każdy węzeł w klastrze zostaje przypisany do przedziału transmisyjnego, ponieważ wykorzystywany jest harmonogram TDMA.

APTEEN c.d.

Główne cechy:

- Łączy obie polityki: reaktywną i proaktywną.
- Oferuje dużą elastyczność dzięki zezwalaniu użytkownikowi na ustalenie kwantu czasu (CT) oraz wartości progów dla atrybutów.
- Zużycie energii może być kontrolowane poprzez zmiany kwanty czasu oraz wartość progów.
- Główną wadą jest dodatkowa złożoność wymagana do implementacji funkcji progowych i kwantu czasu.

Porównanie topologii hierarchicznych i płaskich

Płaskie
Harmonogramowanie oparte na twierdzeniu
Występują kolizje nagłówków
Zmienny cykl działania dzięki kontrolowanemu czasowi uśpienia węzłów
Węzeł na wieloskokowej ścieżce łączy dane przychodzące od sąsiadów
Skomplikowany, ale optymalny routing
Połączenia tworzone w locie, bez synchronizacji
Trasy formowane tylko w obszarach posiadających dane do wysłania
Opóźnienie spowodowane budzeniem węzłów pośrednich i ustawianiem wieloskokowych ścieżek
Zapotrzebowanie na energię zależne od wzorców ruchu
Zapotrzebowanie na energię dostosowuje się do wzorców ruchu 56
Uczciwość niegwarantowana

Przystosowanie do wrodzonej, dynamicznej natury bezprzewodowych sieci sensorowych

Konkretne cele do osiągnięcia:

- Wykorzystać przestrzenną różnorodność i zagęszczenie sensorów.
- Stworzyć adaptacyjny harmonogram usypiania węzłów.
- Badać zależność między nadmiarowością danych i wykorzystaniem przepustowości.
- Rozmieszczone węzły powinny tworzyć i budować sieć stosownie do awarii lub uszkodzeń urządzeń, powinny wykorzystywać mobilność węzłów i reagować na zmiany w wykonywanym zadaniu oraz wymagania czujników.
- Zdolność przystosowywania do zmian natężenia ruchu. Konkretne węzły wykrywają zdarzenia, które mogą wyzwalać liczne uaktualnienia, znowu innym razem w sieci może mieć miejsce bardzo małe natężenie ruchu.
- Raczej zezwalać na ulepszającą kontrolę nad algorytmem₅₇ niż poprostu go włączać i wyłączać.