

UNIVERSITY OF TRENTO DEPARTMENT OF PHYSICS BACHELOR'S DEGREE IN PHYSICS

 $\sim \cdot \sim$

ACADEMIC YEAR 2023–2024

FALSE VACUUM DECAY VIA BUBBLE FORMATION

Supervisor Dr. Alessandro ZENESINI

Graduate StudentGiorgio MICAGLIO
227051

FINAL EXAMINATION DATE: January 18, 2025

To all my friends

Acknowledgments

I would like to thank all of my friends.

Abstract This thesis analyses a BEC experiment and some data analysis

Contents

Introduction						
1 Theoretical picture				3		
2	Data analysis					
	2.1	Magn	etization data	5 5		
		2.1.1	Bubble parameters and shot sorting	5		
		2.1.2	FFT analysis			
		2.1.3	Autocorrelation analysis	6		
	2.2	Densi	ty data	6		
Co	nclu	sions		9		
A	Alb	ero		11		
Bibliography						
List of Figures						
List of Tables						

Introduction

Chapter 1

Theoretical picture

The experimental platform is composed of a bosonic gas of ²³Na atoms, optically trapped and cooled below the condensation temperature. The initial spin state in which the system is prepared is $|F, m_F\rangle = |2, -2\rangle = |\uparrow\rangle$, with F being the total angular momentum of the atom ($\mathbf{F} = \mathbf{I} + \mathbf{J}$, takes into account the nuclear spin and the total angular momentum of the electrons) and m_F its projection on the quantization axis. The $|\uparrow\rangle$ state is then coupled to $|1, -1\rangle = |\downarrow\rangle$ through microwave radiation with amplitude Ω_R .

The trapping potential is harmonic in all three directions, but strongly asymmetric concerning the radial (ρ) and axial (x) directions. In fact, the trapping frequencies are respectively $v_{\rho}=2$ kHz and $v_{x}=20$ Hz, yielding an elongated system (cigar-shaped) with inhomogeneous density. The spatial size of the system is given by the Thomas-Fermi radii $R_{\rho}=2$ µm and $R_{x}=200$ µm. This particular setup is helpful for suppressing the radial spin dynamics of the condensate and thus being able to study its longitudinal properties.

In order to extract the density distribution, the two spin states are treated independently one from another, and two imaging sequences are obtained at the end of each experimental realization. Then, an integration along the transverse direction is performed, obtaining two 1D density profiles $n_{\uparrow}(x)$ and $n_{\downarrow}(x)$, from which one can extract the relative magnetization

$$Z(x) = \frac{n_{\uparrow}(x) - n_{\downarrow}(x)}{n_{\uparrow}(x) + n_{\downarrow}(x)}.$$
(1.1)

It is possible to study the two-component system by separating the treatment on the density $(n=n_{\uparrow}+n_{\downarrow})$ and the spin $(nZ=n_{\uparrow}-n_{\downarrow})$ degrees of of freedom. While the density is described by a continuity equation, the spin behaviour is ruled by a magnetic mean-field Hamiltionian, that presents a first-order phase transition in the central region of the system when $\Omega_R < |k|n$, where $k \propto \Delta a$. At fixed values of Ω_R , the experiment can be tuned by the parameter δ , expressing the *detuning*. In general, the mean-field energy landscape E(Z) is described by an asymmetric double-well, that becomes symmetric for $\delta=0$. In the case of $\delta>0$, the energy is minimized by positive values of Z, and the absolute minimum will correspond to

Chapter 2

Data analysis

Raw data is organized in a hierarchical system. At a fixed instant, the condensate's measured data are called a *shot* (it refers to the imaging process). Each shot is part of a series of them that can be analyzed as the time evolution of a single system: this series is called a *sequence*. Eventually, during a *day* of measurements, many sequences may be collected, and a selection of them will be studied in the following analysis. For each sequence, the experimental data contains also the radiation coupling Ω_R in a range between 200 and 800 Hz (it changes from one day of measurements to another) and the detuning δ .

A shot contains all the information on the system at a certain instant, including the two population densities, $n_{\uparrow}(x)$ for to the atoms in the state $|\uparrow\rangle$ and $n_{\downarrow}(x)$ for the atoms in the state $|\downarrow\rangle$, distributed on a length scale from 0 to 400 pixels. The spatial resolution of the image is 1 pixel = 1 µm, so the two length units will be often used interchangeably. The magnetization data Z(x) is calculated with Eq. (1.1) and, by definition, composed of a series of values ranging from -1 to 1.

2.1 Magnetization data

Our focus here is to study the magnetization of the system, developing a method to analyze the effects of its bubble formation.

2.1.1 Bubble parameters and shot sorting

In order to study the bubble dynamics, the most interesting parameters to retrieve from a shot are the bubble center x_0 and width σ_B . However, not all shots contain a bubble, namely the ones taken when the bubble was not formed yet. We can easily classify the two types of shots by computing the magnetization average in the central region and using a threshold value of $Z_{\text{thr}} = -0.2$. The no-bubble shots will be useful later, when dealing with the noise frequency spectrum.

To find the bubble parameters, the magnetization data is fitted with a double-arctangent function

$$Z_{\text{fit}}(x) = -A \left[\frac{2}{\pi} \arctan\left(\frac{x - c_1}{w_1}\right) - \frac{2}{\pi} \arctan\left(\frac{x - c_2}{w_2}\right) \right] + \Delta, \qquad (2.1)$$

where c_1 and c_2 are the centers of the arctangent "shoulders", and w_1 and w_2 are their characteristic widths. Then, for a better result, a further fit is performed on each shoulder with a

single-arctangent function

$$Z_{\mathrm{fit}}(x) = -A\frac{2}{\pi}\arctan\left(\frac{x-c}{w}\right) + \Delta$$
,

yielding the shoulder center c. Eventually, we obtain the bubble center $x_0 = (c_1 + c_2)/2$ and the bubble width $\sigma_B = c_2 - c_1$.

In some cases, especially when the bubble is narrow, the fitting procedure to optimize the parameters of Eq. (2.1)'s function fails and we are forced to use a gaussian profile such as

$$Z_{\text{fit}}(x) = -A \exp \left[-\frac{(x-c)^2}{2\sigma^2} \right] + \Delta,$$

with $x_0 = c$ being the bubble center and $\sigma_B = 2.335 \, \sigma$ its width.

Figure 2.1: Example of double arctangent fit results performed on a shot.

Figure 2.2: Example of gaussian fit results performed on a shot.

An example of fitting with the arctangent functions is provided in Fig. 2.1, while a gaussian fit is shown in Fig. 2.2.

Once the width is retrieved, it is useful to order the shots in a sequence by this parameter. This process lets us display the system evolution, in contrast to the original shot ordering based on the experimental time waited before observing the bubble. Furthermore, we can obtain a nicer picture by aligning the bubbles to their center. An example sequence is shown in Fig. 2.3 with a colormap displaying the magnetization profiles (blue is for positive Z and red for negative Z).

2.1.2 FFT analysis

2.1.3 Autocorrelation analysis

2.2 Density data

Figure 2.3: Shot sorting based on bubble width and alignment based on bubble center. Both parameters are estimated from the previous fitting procedure.

Conclusions

Appendix A

Albero

List of Figures

2.1	Example of double arctangent fit results performed on a shot	6
2.2	Example of gaussian fit results performed on a shot	6
2.3	Shot sorting based on bubble width and alignment based on bubble center. Both	
	parameters are estimated from the previous fitting procedure	7

List of Tables