METILDE 304

- 29 -531 Rec d C // 13 NOV 2001

CLAIMS

ay o

1. (Amended) A reflective liquid crystal device comprising in sequence a linear polariser, a retarder arrangement comprising two retarders, and a reflector, characterized in that.

in at least one state of the device, a first of said retarders acts to rotate linearly polarised light of wavelength λ and a second of the retarders acts to convert linearly polarised light of wavelength $y\lambda$ (where 0.7 $\langle y \langle 1.3 \rangle$ to substantially circular polarised light, and

at least one of the said first and second retarders comprises a Bistable Twisted Nematic (BTN) liquid crystal.

2. (Cancelled)

m. a

- 3. A device according to claim 1, wherein the BTN is switchable between a first state in which it rotates linearly polarised light and a second state in which it does not rotate linearly polarised light.
- 4. A device according to claim 1, wherein the BTN is switchable between a first state in which it substantially converts linearly polarised light to circularly polarised light and a second state in which it does not convert linearly polarised light to circularly polarised light.

Ħ

A device according to any one of claims 1 to 4, wherein the retarder adjacent to the polariser is a fixed retarder with an optic axis at an angle θ_1 to either the transmission or absorption axis of the polariser, and the retarder adjacent to the reflector is a BTN which in the low twist state, ϕ , has the input director (LC director at cell surface adjacent to retarder) at an angle $\theta_2 = 2\theta_1 + \theta$ (ϕ) $\pm x$, wherein $x < 5^{\circ}$.

6. (Cancelled)

20

- A device according to claim 5 or 6, wherein θ_1 is substantially 15° and the low twist state is substantially ϕ = 0°.
- 8. A device according to claims 5 or 6, wherein 5° < θ_1 < 25° and the low twist state is substantially $\phi = 63.6^{\circ}$.
- 9. A device according to claim 5 or 6, wherein θ_1 = 15° and the low twist state is substantially ϕ = 63.6°.
- 10. A device according to claim 8, wherein $\theta_1 = 6^{\circ}$ and the low twist state is substantially $\phi = 63.6^{\circ}$.

M. A device according to claims 4 or 5, wherein 5° < 90° - θ_1
< 25° and the low twist state is substantially ϕ = 63.6°.

- 12. A device according to claim 11, wherein $\theta_1 = 84^{\circ}$ and the low twist state is substantially $\phi = 63.6^{\circ}$.
- 13. A device according to claim 5, wherein θ_1 and θ_2 are both substantially 15° and the low twist state is substantially $\phi=85^\circ$.
- 14. A device according to claim 1 or 2, wherein the retarder adjacent to the polariser is a BTN which in the low twist state has $\phi = 0^\circ$ and optic axis at an angle α to either the transmission or absorption axis of the polariser and the retarder adjacent the reflector is a fixed retarder with optic axis at an angle $2\alpha+45^\circ+x$, wherein $x < 5^\circ$, preferably 0° .

15. (Cancelled)

16. (Amended) A reflective liquid crystal device comprising in sequence a linear polariser, a retarder arrangement comprising two retarders, and a reflector, characterized in that,

Ju 60

Sub-

ong. Bd

j

a first of said retarders provides a retardation of substantially $m\lambda/2$ and a second of the retarders provides a retardation of substantially $n\lambda/4$ where m is an integer and n is an odd integer,

at least one of the said first and second retarders comprises a Bistable Twisted Nematic (BTN) liquid crystal, and

the at least one of the said first and second retarders is switchable between a first state in which the retarder provides a retardation of substantially $m\lambda/2$ or $n\lambda/4$ and a second state in which the retardation is substantially zero.

- 17. A device according to claim 16, wherein the wavelength λ is an operating wavelength of the reflective liquid crystal device and is in the range 400-700nm.
- 18. A device according to claim 17, wherein the wavelength λ is in the range 420-600nm.
 - 19. A device according to claim 18, wherein the wavelength A is in the range 440-550nm.

20. A device according to any of claims 16 to 19, wherein the retarder comprising a BTN liquid crystal provides a retardation of $n\lambda/4$.

21. (Amended) A reflective liquid crystal device comprising in sequence a linear polariser, a retarder arrangement comprising at least three retarders, and a reflector, characterized in that,

at least one of said retarders comprises a Bistable Twisted Nematic (BTN) liquid crystal, and

the at least one of said retarders is switchable between first and second retardation states.

22. A device according to claim 21, wherein the retarder adjacent to the reflector acts to convert linearly polarised light of wavelength $\gamma\lambda$ (0.7 $\langle\gamma\rangle$ 1.3) to substantially circular polarised light and the two other retarders act to rotate linearly polarised light of wavelength λ .

Sub

įΠ

14

Ш

Se

23. A device according to claim 22, wherein the retarder adjacent the polariser is at angle α to the axis of the polariser, the next retarder is at angle β to the axis of the polariser and the retarder adjacent the reflector is a BTN which in the low twist state, ϕ , has the input director (LC director at cell surface adjacent to retarder) at an angle $2(\beta-\alpha)+\theta$ $(\phi)+x$ to the axis of the polariser wherein $x < 5^{\circ}$, preferably 0° .

24. (Cancelled)

25. A device according to claim 24 in which $\alpha = 6.9^{\circ}$ and $\beta = 34.5^{\circ}$.

W. B

IJ

Ш. И

. : ja:

4

<u>ļ.</u>

4

IJ

- 26. A device according to claim 21, wherein the retarder adjacent to the polariser acts to rotate linearly polarised light of wavelength λ , the middle retarder acts to convert linearly polarised light of wavelength $y\lambda$ (0.7 $\langle y \langle 1.3 \rangle$) to substantially circular polarised light, and the retarder adjacent to the reflector is a BTN device.
- 27. A device according to claim 26, wherein the retarder adjacent to the polariser has optic axis at α to the axis of the polariser, the middle retarder has optic axis at $2\alpha+45^{\circ}$ to the axis of the polariser.
 - 28. A device according to claim 27, wherein $\alpha=15^{\circ}$ and the BTN has a low twist state of 0° orientated at 75° to the transmission axis of the polariser.
 - 29. A device according to claims 21, wherein said at least one retarder provides a retardation in said first state of substantially $m\lambda/2$ or $n\lambda/4$ where m is an integer and n is an odd integer, and a retardation in said second state of substantially zero.

Da.

30. A device according to claims 22 to 29, wherein the wavelength λ is an operating wavelength of the reflective liquid crystal device and is in the range 400-700nm.

50h \

. 1

- 31. A device according to claim 30, wherein the wavelength λ is in the range 440-550nm.
- 32. A device according to any of the preceding claims in which the BTN switches between a state ϕ and $(\phi \pm 360^{\circ})$.
- 33. A device according to any of the preceding claims in which the BTN switches between a state ϕ and $(\phi \pm 180^\circ)$.

Ald one