

Background

- National Football League
 - \$163B American Football organization
 - Schedule
 - Preseason: 3 games
 - Season: 17 games
 - Postseason: 0-4 games

The Problem: Injuries

Athlete Wellbeing

- Physical/mental health
- Ability to function/live

Organizational Cost

- "Guaranteed" contracts
- Rehabilitation process

Fan Interest

- Pay to see their favorite players
- Devalues the product

The NFL has implemented over 50 rule changes intended to reduce player danger since 2002 alone.

Rule Changes: Helping?

"I don't like [the new rules] at all. I think the hip drop is pointless."

Fans often claim controversy over these changes: are they effective?

Q1: Have Injury Rates Improved?

Q1: The Data

	year	n_players	n_inj	pct_inj
1	2009	1715	581	0.3387755
2	2010	1716	597	0.3479021
3	2011	1715	617	0.3597668
4	2012	1715	565	0.3294461
5	2013	1734	556	0.3206459
6	2014	1736	596	0.3433180
7	2015	1730	624	0.3606936
8	2016	2714	782	0.2881356
9	2017	2401	714	0.2973761
10	2018	2430	613	0.2522634
11	2019	2440	661	0.2709016
12	2020	2716	719	0.2647275
13	2021	2677	682	0.2547628
14	2022	2631	734	0.2789814
15	2023	2645	735	0.2778828

*status: ACT, RSN, DEV, PUP, INA *report_status: Out, DBT, QST

Q1: EDA

Q1: The Model (Beta Conjugate)

Prior

Beta
$$(\theta | \alpha, \beta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

Posterior

$$p(\boldsymbol{\theta}|y, n, M) \propto \boldsymbol{\theta}^{y} (1 - \boldsymbol{\theta})^{n - y} \boldsymbol{\theta}^{\alpha - 1} (1 - \boldsymbol{\theta})^{\beta - 1}$$
$$\propto \boldsymbol{\theta}^{y + \alpha - 1} (1 - \boldsymbol{\theta})^{n - y + \beta - 1}$$

after normalization

$$p(\theta|y, n, M) = \text{Beta}(\theta|\alpha + y, \beta + n - y)$$

Q1: The Model (Hyperparameters)

Empirical Hyperparameters

3.1.2 Tuning the Beta prior

With a sense for how the Beta(α, β) model works, let's *tune* the shape hyperparameters α and β to reflect our prior information about Michelle's election support π . We saw in Figure 3.1 (left) that across 30 previous polls, Michelle's average support was around 45 percentage points, though she roughly polled as low as 25 and as high as 65 percentage points. Our Beta(α, β) prior should have similar patterns. For example, we want to pick α and β for which π tends to be around 0.45, $E(\pi) = \alpha/(\alpha + \beta) \approx 0.45$. Or, after some rearranging, Bayes Rules Book

Prior based on 2009-2013 years (~30 rule changes for players safety since):

 $E(pi) = alpha/(alpha+beta) \sim 0.30 - 0.36$

Thus: alpha = 125; beta = 245

Q1: Sampling (Gibbs)

```
{r hier}
iter <- 10000
n = df$number_of_players
x <- array(NA, c(iter, 10))</pre>
theta <- array(NA, c(iter, 10))
alpha <- 125
beta <-245
x[1, ]=df$distinct_injuries
theta[1, ]=df$prob_inj
for(i in 2:iter)
  x[i, ] \leftarrow rbinom(10, size = n, prob = theta[i - 1])
  theta[i, ] = rbeta(10, alpha+(x[i]), beta+n-(x[i]))
```

Q1: Gibbs Diagnostics

Quantile (q) = 0.025	Quantile (q) = 0.025 Accuracy (r) = +/- 0.005 Probability (s) = 0.95 Burn-in Total Lower bound Dependence (M) (N) (Nmin) factor (I) 10 10700 3746 2.86	Quantile (q) = 0.025	Quantile (q) = 0.025	Quantile (q) = 0.025
Accuracy (r) = +/-		Accuracy (r) = +/-	Accuracy (r) = +/-	Accuracy (r) = +/-
0.005		0.005	0.005	0.005
Probability (s) = 0.95		Probability (s) = 0.95	Probability (s) = 0.95	Probability (s) = 0.95
Burn-in Total Lower		Burn-in Total Lower	Burn-in Total Lower	Burn-in Total Lower
bound Dependence		bound Dependence	bound Dependence	bound Dependence
(M) (N) (Nmin)		(M) (N) (Nmin)	(M) (N) (Nmin)	(M) (N) (Nmin)
factor (I)		factor (I)	factor (I)	factor (I)
12 14030 3746		8 10956 3746	10 11344 3746	12 17655 3746
3.75		2.92	3.03	4.71
Quantile (q) = 0.025 Accuracy (r) = +/- 0.005 Probability (s) = 0.95 Burn-in Total Lower bound Dependence (M) (N) (Nmin) factor (I) 15 18006 3746 4.81	Quantile (q) = 0.025 Accuracy (r) = +/- 0.005 Probability (s) = 0.95 Burn-in Total Lower bound Dependence (M) (N) (Nmin) factor (I) 10 11022 3746 2.94	Quantile (q) = 0.025 Accuracy (r) = +/- 0.005 Probability (s) = 0.95 Burn-in Total Lower bound Dependence (M) (N) (Nmin) factor (I) 15 16932 3746 4.52	Quantile (q) = 0.025 Accuracy (r) = +/- 0.005 Probability (s) = 0.95 Burn-in Total Lower bound Dependence (M) (N) (Nmin) factor (I) 10 10584 3746 2.83	Quantile (q) = 0.025 Accuracy (r) = +/- 0.005 Probability (s) = 0.95 Burn-in Total Lower bound Dependence (M) (N) (Nmin) factor (I) 15 14979 3746 4

20,000 iterations

Burn-in: 20Thin: 10

Raftery-Lewis Heidelberg-Welch: Passed

Q1: Sampling (Gibbs... again)

```
'{r sampled}
                                                     0 X 1
iter <- 20000
n = df$number_of_players
x <- array(NA, c(iter, 10))
theta <- array(NA, c(iter, 10))
alpha <- 125
beta <- 245
x[1, ]=df$distinct_injuries
theta[1, ]=df$prob_inj
for(i in 2:iter)
 x[i, ] <- rbinom(10, size = n, prob = theta[i - 1])</pre>
 theta[i, ] = rbeta(10, alpha+(x[i]), beta+n-(x[i]))
x <- as.data.frame(x)
theta <- as.data.frame(theta)
binded <- cbind(x, theta)
burn <- 20
b <- burn + 1
k=10
N = round((iter-b)/k)
burned_df <- binded[b:iter, ]</pre>
final <- burned_df[k*(1:N), ]
```

- 20,000 iterations
- Burn-in: 20
- Thin: 10

Q1: Gibbs Convergence

Q1: Posteriors / Discussion

Question 2: Has Age Composition Changed?

Q2: EDA

Q2: The Data

age_35_up_hurt ⊲db⊳	age_35_up ⊲dbl>	age_30_34_hurt ≪dbl>	age_30_34 ⊲db⊳	age_25_29_hurt ≪dbl>	age_25_29 ⊲dbl>	age_20_24_hurt	age_20_24 <dbl></dbl>	prob_inj ⊲dbl>
0	28	8	246	131	848	453	614	0.3433180
0	29	6	243	105	845	504	613	0.3606936
0	49	4	325	97	1201	680	974	0.2881356
0	43	5	265	66	1133	642	960	0.2973761
1	47	4	263	43	1142	565	975	0.2522634
1	51	2	267	53	1112	605	1008	0.2709016
0	55	3	321	50	1295	666	1045	0.2647275
0	45	1	323	37	1361	644	948	0.2547628
1	45	2	316	42	1376	689	894	0.2789814
0	46	3	326	41	1396	688	877	0.2778828

Q2: The Model (Dirichlet Conjugate)

Dirichlet as a conjugate prior

$$P(\mathbf{X}|\boldsymbol{\pi}) = \prod_{n} \operatorname{Cat}(\mathbf{x}_{n}|\boldsymbol{\pi}) = \prod_{n} \prod_{c} \pi_{c}^{x_{cn}} = \prod_{c} \pi_{c}^{m_{c}}$$

$$\operatorname{Dir}(\boldsymbol{\pi}|\boldsymbol{\alpha}) = \frac{\Gamma(\sum_{c} \alpha_{c})}{\Gamma(\alpha_{1}) \dots \Gamma(\alpha_{c})} \prod_{c=1} \pi_{c}^{\alpha_{c}-1}$$

$$p(\boldsymbol{\pi}|\mathbf{X}) = \frac{P(\mathbf{X}|\boldsymbol{\pi})p(\boldsymbol{\pi})}{P(\mathbf{X})} \propto \prod_{c} \pi_{c}^{m_{c}} \prod_{c} \pi_{c}^{\alpha_{c}-1}$$

$$= \prod_{c=1} \pi_{c}^{m_{c}+\alpha_{c}-1} \propto \operatorname{Dir}(\boldsymbol{\pi}|\boldsymbol{\alpha}+\mathbf{m})$$

- Using Dirichlet as a prior for Categorical parameter π results in Dirichlet posterior distribution → Dirichlet is conjugate prior to Categorical dist.
- $\alpha_c 1$ can be seen as a prior count for the individual events.

Q2: Model (Hyperparameters)

Empirical Hyperparameters

Thus:

- alpha1 = 250
- alpha2 = 400
- alpha3 = 120
- alpha4 = 20

Q2: Sampling (Analytical)

```
iter <- 10000
alpha <- c(250,400,120,20)
n_matrix <- subset(players_age[6:15, 2:5])
sims <- array(NA, c(iter, length(alpha), nrow(n_matrix)))

for (i in 1:10){
   sims[, ,i] = rdirichlet(iter, (alpha + n_matrix[i,]))
}</pre>
```

Q2: Posteriors / Discussion

Question 3: Which Ages are Getting Hurt?

Q3: EDA

Q3: The Data

age_35_up_hurt	age_35_up	age_30_34_hurt	age_30_34 ≪dbl>	age_25_29_hurt	age_25_29 ⊲dbl≻	age_20_24_hurt	age_20_24 <dbl></dbl>	prob_inj <dbl></dbl>
0	28	8	246	131	848	453	614	0.3433180
0	29	6	243	105	845	504	613	0.3606936
0	49	4	325	97	1201	680	974	0.2881356
0	43	5	265	66	1133	642	960	0.2973761
	47	O / 4	263	O / 43	1142	565	975	0.2522634
	51	2	267	53	1112	605	1008	0.2709016
0	55	3	321	50	1295	666	1045	0.2647275
0	45	1	323	37	1361	644	948	0.2547628
1	45	2	316	42	1376	689	894	0.2789814
0	46	3	326	41	1396	688	877	0.2778828

Q3: The Model (Beta Conjugate)

Prior

Beta
$$(\theta | \alpha, \beta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

Posterior

$$p(\boldsymbol{\theta}|y, n, M) \propto \boldsymbol{\theta}^{y} (1 - \boldsymbol{\theta})^{n - y} \boldsymbol{\theta}^{\alpha - 1} (1 - \boldsymbol{\theta})^{\beta - 1}$$
$$\propto \boldsymbol{\theta}^{y + \alpha - 1} (1 - \boldsymbol{\theta})^{n - y + \beta - 1}$$

after normalization

$$p(\theta|y, n, M) = \text{Beta}(\theta|\alpha + y, \beta + n - y)$$

Q3: Model (Hyperparameters)

• Empirical Hyperparameters

Thus:

- alpha1 = 10, beta1 = 6
- alpha2 = 15, beta2 = 40
- alpha3 = 8, beta3 = 40
- alpha4 =5, beta4 = 50

Q3: Sampling (Analytical)

```
alpha = c(10, 15, 8, 5)
beta = c(6, 40, 40, 50)

for (i in 1:10){
   for (j in 1:iter){
      sims[j, ,i] <- rbeta(4, alpha + (as.numeric(players_age2[i, 6:9])), beta +
      (as.numeric(players_age2[i, 2:5]) - as.numeric(players_age2[i, 6:9])))
}}</pre>
```

Q3: Posteriors / Discussion

Wrapping It All Up:

Conclusions

- 2016 and onwards has seen an impressive shift in the percentage of athletes getting injured compared to the past.
 - Which rulings are responsible?
 - Rulings or change in referee flexibility?
 - Both?... or another factor?
- Age has shown to be a significant determinant of the composition of players getting hurt (younger).
 - Sports Science / Inability to handle explosiveness
 - Inability to adapt to new league
 - Load Management
- NFL should continue implementing rule changes for player safety, but maybe with a focus towards protecting younger athletes.

Interested?: https://github.com/brandonowens24/NFL-Injuries-Bayesian-Analysis

