Quiz 8: Lazy Evaluation

Graded

Student

Abhinav Shripad

Total Points

0 / 5 pts

Question 1

Lazy Evaluation/Call-by-Name

0 / 5 pts

- + 1 pt For arriving at (\y.e)O
- + 2 pts Handling the case of e not containing y
- + 2 pts Handling the case of e containing y
- → + 0 pts Empty/Incorrect

Q1 Lazy Evaluation/Call-by-Name 5 Points

Let Ω denote an expression which does not terminate --- its evaluation/calculation in even lazy i.e., call-by-name) semantics does not terminate. Let e be any expression.

Using lazy evaluation (call-by-name) rules, what answer does one get for calculating the value of the expression $((\lambda x.\lambda y.x)\ e)\ \Omega$, starting with an initial table γ .

[You may write \mid - instead of \vdash , g instead of γ , O instead of Ω , \ instead of λ , and < > instead of $\langle\langle \rangle\rangle$ in your answer].

1.((\x.\y.x) e) O

2.Apply the outermost function (($\xspace x$. $\xspace x$. $\xspace y$) to the argument O.

To apply a function to an argument in call-by-name evaluation, we substitute the argument directly into the function body without evaluating it. So, we substitute O for x in the function body $(\lambda y.x)$:

 $1.(\y.x)[x := 0]$

2.(\y.O)

Now, we have a new function (\y.O). Next, we apply this function to the argument O:

1.(\y.O) O

Again, we substitute O for y in the function body (O):

1.0[O/y]

2.0