Indexação e Tratamento de Dados Heterogêneos: Variedade

Mecanismos de Busca

Apresentação

Raul Sena Ferreira

Mestrando - PESC / UFRJ

Coordenador técnico - IPEA

raulsf@cos.ufrj.br

www.raulferreira.com.br

https://br.linkedin.com/in/raulsenaferreira

Nota composta por:

- Entrega de exercícios semanais até a meia noite do dia anterior à aula.
- Ex: aulas nas quintas, trabalhos entregues por email até a meia noite de quarta
- Cada dia de atraso, menos 15% no valor do trabalho

Conteúdo dividido entre parte teórica e prática

Não faltar aulas teóricas. Programar é a melhor maneira de praticar a teoria

Ritmo corrido

- Estudar além do horário de aula é fundamental
- Material de apoio: http://www-nlp.stanford.edu/IR-book/

Exercícios práticos em python ou java (preferencialmente python)

Ao longo do curso construíremos algumas partes de um sistema de busca

Conteúdo do Bloco

THUTO IVENTED TO THE TOTAL PROPERTY OF THE PRO

Indexação

Recuperação de Informação

Solr

Elasticsearch

Busca e recuperação da informação

Também conhecido como Information Retrieval

Um sistema de information retrieval é composto essencialmente por lista invertida, indexador, processador de consulta e buscador

O que é lista invertida? O que é um indexador? Como eles estão ligados?

Como construir uma lista invertida e um indexador?

Mecanismo de busca

Segundo [Silveira, 2002], o mecanismo de busca é "um banco de dados que ajuda as pessoas a encontrar informações na Internet de acordo com palavras ou termos digitados pelos usuários".

Motores de busca

Top 15 most popular Search Engines: http://www.ebizmba.com/articles/search-engines

Serve para ajudar a mapear em qual documento cada termo ocorre e o número de vezes que esse termo aparece

É o primeiro processo de indexação

Existem algumas variantes de lista invertida e várias técnicas para se construir a lista invertida

Stopwords:

termos que podem ser

dispensados para diminuir

o espaço de termos a serem

considerados pelo buscador

onceptual/SearchKitConcepts/searchKit basics/searchKit basics.html

THUTO IVENTED AND THE TOTAL PROPERTY OF THE PR

Stemming

- Corte de sufixos de um termo
 - o car, car's, cars, cars' -> car

Lemmatization

- Reduz termo considerando a morfologia do termo
 - o saw -> see, saw
 - o am, are, is -> be

Stemming

- Algoritmo de Porter
- Basicamente possui 5 fases de redução de um termo

(F)	Rule			Example		
	SSES	\rightarrow	ss	caresses	\rightarrow	caress
	IES	\rightarrow	Ι	ponies	\rightarrow	poni
	SS	\longrightarrow	ss	caress	\rightarrow	caress
	\mathbf{S}	\rightarrow		cats	\rightarrow	cat

Fonte:

 $\label{lem:http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html} \begin{tabular}{ll} http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html} \end{tabular}$

Fonte:

https://developer.apple.com/library/content/documentation/UserExperience/C onceptual/SearchKitConcepts/searchKit basics/searchKit basics.html

Tokenization

- Dado uma frase em um documento, deve-se construir tokens, onde estes são cada termo da frase
 - ciência de dados é o emprego do momento, os salários são altos!
 - [ciência, de, dados, é, o, emprego, do, ..., altos!]
- Qual a forma correta de se "tokenizar"?
 - [..., altos!] ou [..., altos] ou [..., altos, !] ?

TUTO INFINITION OF THE PROPERTY OF THE PROPERT

Snowball: Processamento de palavras voltados para stemming

http://snowballstem.org/

Pode ser usado facilmente com a ferramenta NLTK

Normalização

- Retirada de acentos
- Maiúsculas/minúsculas
- outros tratamentos

Existem ferramentas muito úteis para fazer de forma automática os tratamentos descritos nos slides anteriores

NLTK

NLTK

Ferramenta em python de código aberto bastante usada para pré processamento para problemas de linguagem natural (NLP) ou information retrieval

http://www.nltk.org/book/

Um jeito fácil de praticar é usá-lo em conjunto com notebooks em python de forma online como o Jupyter

https://try.jupyter.org/

Indexação

Peso dos termos

- tf-idf (term frequency-inverse document frequency)
 - TF(t) = Número de vezes que um termo t aparece em um documento / total de termos existentes no documento
 - Quão frequente um termo ocorre?
 - IDF(t) = log_e(Número total de documentos / Número de documentos contendo o termo t)
 - Quão importante é o termo?
 - Exemplo
 - Um documento contém 100 palavras onde 6 são "infnet"
 - tf(infnet) = 6 / 100 = 0.06
 - Em 1 milhão de documentos a palavra infnet aparece em 1000
 - idf(infnet) = log(1.000.000 / 1.000)
 - TF-IDF(infnet) = tf*idf

Modelo vetorial

SNI Micrococce 1994

Link simplificado de cálculo do modelo vetorial

http://www.site.uottawa.ca/~diana/csi4107/cosine_tf_idf_example.pdf

Modelo vetorial

Documentos podem ser representados dentro do espaço vetorial

- Modelo simples baseado em álgebra linear
- Pesos dos termos não são binários
- Permite computar um grau contínuo de similaridade entre consultas e documentos
- Permite ranquear documentos de acordo com sua possível relevância
- Permite "casamento" parcial em relação a consulta

Para medir a similaridade entre a consulta feita e o documento retornado usa-se algumas métricas

Cosseno é a mais comum

$$\operatorname{sim}(d_j,q) = rac{\mathbf{d_j} \cdot \mathbf{q}}{\|\mathbf{d_j}\| \, \|\mathbf{q}\|} = rac{\sum_{i=1}^N w_{i,j} w_{i,q}}{\sqrt{\sum_{i=1}^N w_{i,j}^2} \sqrt{\sum_{i=1}^N w_{i,q}^2}}$$

CSTNews corpus

http://conteudo.icmc.usp.br/pessoas/taspardo/sucinto/cstnews.html

Cystic fibrosis

http://people.ischool.berkeley.edu/~hearst/irbook/cfc.html

Gutenberg Corpus

http://www.nltk.org/book/ch02.html

Wikipedia

https://en.wikipedia.org/wiki/Wikipedia:Database_download

Próxima aula

Entrega do primeiro exercício

Métricas em information retrieval e aprofundamento do modelo vetorial de busca

Implementando algumas partes em python

Resumo de duas páginas sobre o TED Talk de Andreas Ekström:

The moral bias behind your search results

- Escrever com suas próprias palavras sobre o que foi explicado e quais as suas impressões e opiniões sobre o que o autor disse
- Entrega na próxima semana