MATH 45 – Module 16–17 Review Questions

Dr. Krauel

1. Rework, study, and understand all of the homework and quiz problems.

2. Study all of the midterm reviews.

3. Use the definition of the Laplace operator to determine $\mathcal{L}(\sin(3t))$.

4. Compute the following.

(a) $\mathcal{L}(2\sin(3t))$

(c)
$$\mathcal{L}^{-1}\left(\frac{3s}{2s^2+5}\right)$$

(b) $\mathcal{L}\left(\frac{t^7}{3} + \frac{e^{5t+3}}{2}\right)$

(d)
$$\mathcal{L}^{-1}\left(\frac{3}{s^4} - \frac{1}{3s}\right)$$

5. Compute the following.

(a)
$$\mathcal{L}\left(e^{2t}\frac{t^7}{3} + e^{-3t}\frac{e^{5t+3}}{2}\right)$$

(b)
$$\mathcal{L}^{-1}\left(\frac{2}{s^2 - 4s + 13}\right)$$

6. Solve the following initial value problems.

(a) $y' - 2y = 2e^{3t}$; y(0) = 2.

(b)
$$y'' + 5y' + 6y = 0$$
; $y(0) = 1, y'(0) = 0$.

7.

(a) Write the following system of differential equations in matrix form

$$\frac{dy}{dx} = x + 4y$$

$$\frac{dy}{du} = 2x + 3y.$$

(b) Write the following system of differential equations as two differential equations

$$\mathbf{X}' = \begin{pmatrix} 2 & 2 \\ 3 & 1 \end{pmatrix} \mathbf{X}.$$

8. Verify the given functions are solutions to the system of differential equations.

(a) The differential equation

$$\frac{dy}{dx} = x + 4y$$

1

$$\frac{dy}{du} = 2x + 3y.$$

with
$$y = \binom{1}{1} e^{5t}$$
.

(b) The differential equation

$$\mathbf{X}' = \begin{pmatrix} 2 & 2 \\ 3 & 1 \end{pmatrix} \mathbf{X}.$$

with
$$y = \begin{pmatrix} -\frac{2}{3} \\ 1 \end{pmatrix} e^{-t}$$
.

9. Suppose the following functions are solutions to a differential equation. Determine whether they are linearly independent solutions on the given interval.

(a)
$$y_1 = \binom{1}{1} e^{5t}$$
, $y_2 = \binom{2}{2} e^{-3t}$; $I = (0, \infty)$.

(b)
$$y_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{4t}, y_2 = \begin{pmatrix} -\frac{2}{3} \\ 1 \end{pmatrix} e^{-t}; \quad I = (-\infty, \infty).$$

10. Determine whether the functions $y_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{5t}$, $y_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{-t}$ form a fundamental set of solutions for the differential equation

$$\frac{dy}{dx} = x + 4y$$

$$\frac{dy}{dy} = 2x + 3y.$$

Explain your answer.

11. Verify that $y = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} -\frac{2}{3} \\ 1 \end{pmatrix} e^{-t}$ is the general solution to the differential equation

$$\mathbf{X}' = \begin{pmatrix} 2 & 2 \\ 3 & 1 \end{pmatrix} \mathbf{X}.$$

- 12. Solve the following systems of differential equations.
 - (a) The system

$$\frac{dy}{dx} = x + 4y$$
$$\frac{dy}{dy} = 2x + 3y.$$

(b) The system

$$\mathbf{X}' = \begin{pmatrix} 2 & 2 \\ 3 & 1 \end{pmatrix} \mathbf{X}.$$

- 13. Explain your answers to the following questions.
 - (a) Do $y_1 = 1$, $y_2 = 2$, and $y_3 = 3$ form a fundamental set of solutions for the differential equation y' = 0?
 - (b) Are $y_1 = \sin(5x)$ and $y_2 = \sin(-5x)$ linearly independent?

- (c) Suppose y_1 and y_2 are solutions to a differential equation. Is it possible for the Wronskian $\mathcal{W}(y_1, y_2)$ to equal 0?
- (d) Suppose y_1 and y_2 form a fundamental set of solutions to a differential equation. Is it possible for the Wronskian $\mathcal{W}(y_1, y_2)$ to equal 0?