

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

Installation Restoration Program

AD-A151 808

Final Report
Phase II, Stage 1
Problem Confirmation Study
Luke Air Force Base
Glendale, Arizona

Prepared For:

United States Air Force Occupational and Environmental Health Laboratory (OEHL) Brooks Air Force Base, Texas

November 1984

DTIC FILE COPY

This document has been approfor public release and sole; its distribution is anima

85 03 07 137

INSTALLATION RESTORATION PROGRAM PHASE II - CONFIRMATION/QUANTIFICATION STAGE 1

FINAL REPORT

FOR

LUKE AIR FORCE BASE GLENDALE, ARIZONA

TACTICAL AIR COMMAND LANGLEY AFB, VIRGINIA

PREPARED FOR

UNITED STATES AIR FORCE
OCCUPATIONAL AND ENVIRONMENTAL HEALTH LABORATORY (OEHL)
BROOKS AIR FORCE BASE, TEXAS 78235

This document has been ap, for public release and solet redistribution is unlimited.

NOVEMBER 1984

INSTALLATION RESTORATION PROGRAM PHASE II - CONFIRMATION/QUANTIFICATION STAGE 1

FINAL REPORT

FOR

LUKE AIR FORCE BASE GLENDALE, ARIZONA

TACTICAL AIR COMMAND LANGLEY AFB, VIRGINIA

PREPARED BY

ROY F. WESTON, INC. WEST CHESTER, PA.

CONTRACT NO. F33615-80-D-4006

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Junification

By_____
Distribution/
Availability Codes

Avail and/or
Dist Special

OEHL TECHNICAL MONITOR
MAJOR DENNIS D. BROWNLEY, USAF, BSC
TECHNICAL SERVICES DIVISION (TS)

PREPARED FOR

This document has been approved of for public release and sale; its distribution is unlimited.

UNITED STATES AIR FORCE
OCCUPATIONAL AND ENVIRONMENTAL HEALTH LABORATORY (OEHL)
BROOKS AIR FORCE BASE, TEXAS 78235

NOTICE

This report has been prepared for the United States Air Force by Roy F. Weston, Inc. for the purpose of aiding in the implementation of the Air Force Installation Restoration Program. It is not an endorsement of any product. The views expressed herein are those of the contractor and do not necessarily reflect the views of the publishing agency, the United States Air Force, nor the Department of Defense.

Copies of this report may be purchased from:

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Federal Government agencies and their contractors registered with Defense Technical Information Center should direct requests for copies of this report to:

Defense Technical Information Center Cameron Station Alexandria, Virginia 22314

PREFACE

The purpose of the Report is to document the accomplishment of the Phase II Stage 1, Problem Confirmation Study of the United States Air Force Installation Restoration Program (IRP) at Luke Air Force Base, Glendale, Arizona. This work was conducted by Roy F. Weston, Inc. under Contract Number F33615-80-D-4006, Task Order 0024.

Mr. Peter J. Marks is Program Manager for this Contract. Mr. Frederick Bopp III, Ph.D., P.G., managed this Task Order. Field work was supervised by Mr. John A. Williams. Laboratory analyses were accomplished at WESTON's Laboratory in West Chester, Pennsylvania, under the supervision of Dr. James S. Smith and Dr. Theodore F. Them. Roy F. Weston, Inc. wishes to acknowledge 1 Lt. Henry J. Thompson, Jr., USAF, BSC, Luke AFB Bioenvironmental Engineer, and Mr. John Forrest of the Luke AFB Civil Engineering staff for their kind assistance in conducting this project.

This work was accomplished during the period September, 1983 and August, 1984. Major Dennis D. Brownley, USAF, BSC, Technical Services Division, USAF Occupational and Environmental Health Laboratory (USAF OEHL/TS) was the Technical Monitor.

TABLE OF CONTENTS

Section	<u>Title</u>		Page
	EXECUTIVE SUMMARY		
	ES2.0 ES3.0 ES4.0	Introduction Scope of Work Major Findings Conclusions Recommendations	ES-1 ES-2 ES-2 ES-6 ES-7
		ES5.1 Base Production Wells - Recommendations ES5.2 Current and North Fire Department Training Area - Recommendations	ES-7
	INTRO	DUCTION	1-1
	1.2	Installation Restoration Program Program History at Luke AFB Base Profile	1-1 1-1 1-2
		1.3.1 Site No. 6, South Fire Department Training Area 1.3.2 Site No. 5, Waste POL Disposal Trenches 1.3.3 Site No. 4, Perimeter Road Waste Disposal Application Site 1.3.4 Site No. 7, North Fire Department Training Area	1-4 1-7 1-7 1-7 1-10
		Contamination Profile Project Team	1-10 1-14
		1.5.1 Subcontracting	1-16
	1.6	Factors of Concern	1-16
2	ENVIR	ONMENTAL SETTING	2-1
	2.2	Regional Geology Topography Drainage Hydrogeology	2-1 2-4 2-2 2-4
3	FIELD	PROGRAM	3-1
	3 1	Program Development	3_1

TABLE OF CONTENTS

Section			<u>Title</u>	<u>Page</u>
			Analytical Protocol Formal Scope of Work	3-1 3-1
	3.2	Field :	Investigation	3-3
			Schedule of Activity Exploratory Soil Boring Program	3-3 3-3
			3.2.2.1 Site No. 6, South Fire Department Training	3-7
			Area 3.2.2.2 Site No. 5, POL Waste Disposal Trenches	3-7
			3.2.2.3 Site No. 4, Perimeter Road Waste POL Applica-	3-10
			tion Site 3.2.2.4 Site No. 7, North Fire Department Training Area	3-10
		3.2.3	Water Quality Sampling Program	3-13
4	RESU	LTS		4-1
	4.1	Site I	nterpretive Geology	4-1
•			Site No. 6, South Fire Department	4-1
			Area Site No. 5, Waste POL Disposal	4-1
		4.1.3	Trenches Site No. 4, Perimeter Road Waste	4-2
		4.1.4	POL Application Site Site No. 7 - North Fire Depart- ment Training Area	4-2
	4.2	Soil C	hemistry Conditions	4-2
		4.2.1	Site No. 6, South Fire Department Area	4-2
		4.2.2	Site No. 5, Waste POL Disposal Trenches	4-3
		4.2.3	Site No. 4, Perimeter Road Waste POL Application Site	4-5
		4.2.4		4-7

TABLE OF CONTENTS

Section		<u>Title</u>	Page
	4.3	Water Chemistry Conditions	4-10
		4.3.1 Groundwater Quality Results	4-10
	4.4	Water Quality - General	4-13
		4.4.1 Water Quality - General 4.4.2 Water Quality at LAFB 4.4.3 Soil Quality - General 4.4.4 Soil Quality at LAFB 4.4.5 Conclusions	4-13 4-13 4-13 4-16
5	ALTE	RNATIVE MEASURES	5-1
	5.1	General	5-1
		5.1.1 Base Production Wells5.1.2 Current and North Fire Department Training Areas	5-2 5-2
	5.2	Summary	5-2
6	RECO	MMENDATIONS	6-1
	6.1	General	6-1
		6.1.1 Base Production Wells6.1.2 Current and North Fire Department Training Areas	6-1 6-1
Appendix	A	Acronyms, Definitions, Nomenclature and Units of Measurement	
Appendix	В	Task Order 0024	
Appendix	С	Professional Profiles of Project Personne	e 1
Appendix	D	Soil Boring Logs	
Appendix	E	Sampling and Quality Assurance Procedures	5
Appendix	F	Chain-of-Custody Documentation	
Appendix	G	Raw Water and Soil Quality Data	

WESTER

LIST OF FIGURES

Section	<u>Title</u>	Page
S-1	Locations of All Potential Sources of Contamination Receiving Phase I HARM Score Ratings	ES-3
1-1	Index Map Showing the Location of Luke AFB	1-3
1-2	General Site Map for Site No. 6 (South Fire Department Training Area)	1-6
1-3	Aerial Photography Analysis Showing Historical Development of Site No. 6, the South Fire Department Training Area	1-8
1-4	General Site Map for Site No. 5 POL Waste Disposal Trenches	1-9
1-5	General Site Map for Site No. 4 Perimeter Road Waste POL Application Site	1-11
1-6	General Site Map for Site No. 7, North Fire Department Training Area	1-12
1-7	Aerial Photography Analysis Showing His- torical Development of Site No. 7, The North Fire Department Training Area	1-13
2-1	Topography and Drainage Map of Luke AFB (From the CH2M Hill Phase I Report)	2-3
2-2	Locations of Base Production Wells and Nearby Irrigation/Waster Supply Wells	2-5
2-3	Elevation of Ground Water (in feet above mean seal level) in 1977 at Luke AFB (from the CH2M Hill Phase I Report)	2-8
3-1	Locations of Phase II Sites	3-2
3-2	General Site Map for Site No. 6 (South Fire Department Training Area) Showing Surface Sediment Samples	3-8
3-3	General Site Map for Site No. 5 (POL Waste Disposal Trench) Showing Soil Boring Locations	3-9

LIST OF FIGURES (cont.)

Section	<u>Title</u>	<u>Page</u>
3-4	General Site Map for the Site No. 4 (Perimeter Road Waste POL Application Site) Showing Soil Boring Locations	3-11
3-5	General Site Map for Site No. 7 (North Fire Department Training Area) Showing Soil Boring Locations	3-12

LIST OF TABLES

Section	<u>Title</u>	Page
1-1	Priority Ranking of Potential Contamination Sources	1-5
1-2	Analytical Protocol	1-15
3-1	Summary of Technical Work Scope	3-4
3-2	Field Activity Schedule	3-5
3-3	Sample Analysis	3-14
4-1	Summary of Soil Chemistry Data - South Fire Department Training Area	4-3
4-2	Listing for USEPA Priority Pollutants Volatile Organic Compounds (VOA)	4-4
4-3	Summary of Soil Chemistry Data - Waste POL Disposal Trenches	4-6
4-4	Summary of Soil Chemistry Data - Perimeter Road Waste POL Application	4-8
4-5	Summary of Soil Chemistry Data - North Fire Department Training Area	4-9
4-6	Summary of Water Quality Data - Base Production Wells (ug/l)	4-12
4-7	Comparison of LAFB Water Quality Results with Applicable Standards Guidelines and Criteria (mg/l unless otherwise noted)	4-13
4-8	Comparison of LAFB Water Quality Results With Applicable Standards Guidelines and Criteria (mg/l unless otherwise noted)	4-14

EXECUTIVE SUMMARY

ES 1.0 INTRODUCTION

Roy F. Weston, Inc. (WESTON) was retained by the U.S. Air Force Occupational and Environmental Health Laboratory (OEHL) under Contract No. F33615-80-D-4006 to provide general engineering, hydrogeological and analytical services. These services were applied to the Installation Restoration Program (IRP) Phase II effort at Luke Air Force Base under Task Order 0024 of this contract.

In 1976 the Department of Defense (DoD) devised a comprehen-The purpose of the IRP is to assess and control the migration and potential migration of hazardous environcontamination that may have resulted from past operation and disposal practices on DoD facilities. In response to the Resource Conservation and Recovery Act of 1976 (RCRA) and in anticipation of the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA or "Superfund"), the DoD issued a Defense Environmental Quality Program Policy Memorandum (DEQPPM) dated June, 1980 (DEQPPM requiring identification of past hazardous waste disposal sites on DoD agency installations. The U.S. Air Force implemented DEQPPM 80-6 by message in December, 1980. The program was revised by DEQPPM 81-5 (11 December 1981) which reissued and amplified all previous directives and memoranda on the IRP. The Air Force implemented DEQPPM 81-5 by message on 21 January 1982. The Installation Restoration Program has been developed as a four-phase program as follows:

Phase I - Problem Identification/Records Search
Phase II - Problem Confirmation and Quantification

Phase III - Technology Base Development

Phase IV - Corrective Action

Only the Phase II Problem Confirmation Stage (Stage 1) portion of the IRP effort at Luke Air Force Base was included in this Task Order.

ES 2.0 Scope of Work

Luke Air Force Base (LAFB) assigned to the Tactical Air Command (TAC), occupies 4,198 acres of land in Maricopa County, Arizona, 13 miles west of downtown Phoenix. Since the start of operations in 1941 as a World War II fighter pilot training facility, activities at LAFB in support of operational missions have resulted in the occurrence on the installation of several waste disposal sites of potential environmental concern.

The field investigation conducted under Task Order 0024 included four sites, as listed below:

- Site No. 6, South Fire Department Training Area
- Site No. 5, Waste POL Disposal Trenches
- Site No. 4, Perimeter Road Waste POL Application Area
- Site No. 7, North Fire Department Training Area

Locations of each of these sites on LAFB are shown in Figure S-1.

The scope of the investigation included: four soil samples at Site No. 6 (South Fire Department Training Area); ten soil borings, with continuous soil sampling to 20 feet, at Site No. 5 (Waste POL Disposal Trenches); eight soil borings to 2 feet at Site No. 4 (Waste POL Application Area), four soil borings, with continuous soil sampling to 20 feet, at Site No. 7 (North Fire Department Training Area); and water quality samples at all active Base production wells. All soil and water samples selected for analysis were analyzed at WESTON's laboratory facilities located in West Chester, Pennsylvania, and Stockton, California, and were analyzed in accordance with Standard USEPA Analytical Protocols.

ES 3.0 Major Findings

The major findings of this Phase II Confirmation Stage (Stage 1) Study may be summarized as follows:

FIGURE S-1 LOCATIONS OF ALL POTENTIAL SOURCES OF CONTAMINATION RECEIVING PHASE I HARM SCORE RANKINGS

- At Site No. 6 (South Fire Department Training Area), levels of oil and grease (as defined by extraction in Freon 113) were high in two of the samples analyzed. All four samples showed visual evidence of oil staining, but even the two high oil and grease concentrations detected represent only between 1.5 and 3.7 percent of the soil by weight. These data, combined with the very low VOA concentrations detected, indicated that any solvent and fuel residues remaining from previous fire-training exercises have weathered extensively in the desert environment at LAFB. This weathering, coupled with the Major Construction Program (MCP) plan to cap the entire site with concrete construction slabs and macadam parking lots, indicates that the low levels of fuel and solvent residues remaining at the site probably will not be subject to any forces, such as infiltration of precipitation, which would induce vertical migration of contaminants deeper into the subsurface.
- At Site No. 5 (Waste POL Disposal Site), Freon 113 extractable oil and grease was uniformly in the low part per million range in all samples analyzed. Lead concentrations were fairly uniform in all samples ranging from 0.053 to 0.304 parts per million. Only five VOA compounds were detected in only of the samples, with the maximum concentration found of $0.200~{\rm parts}$ per million for chloroform. The most common VOA compound found was chloroform, present in five of the samples. The very low levels of oil and grease and VOA compounds indicate that the weathering process employed by the Air Force at this site was effective in devolatilizing the emplaced fuels prior to burial. The net impact of disposal of POL wastes at this site appears to be minimal.
- At Site No. 4 (Perimeter Road Waste POL Application Area), Freon 113 extractable oil and grease was uniformly in the low part per million range in all samples analyzed. Only six VOA compounds were detected in 7 of the 11 samples, with a maximum concentration found of 0.040 parts per million of 1,1-dichloroethylene. The most common VOA

compound found was 1,1-dichloroethylene, found in all 7 of the samples containing VOA compounds. The very low level of oil and grease and VOA compounds indicates that weathering of sprayed fuels and solvents by the prevailing desert conditions at LAFB was effective in devolatizing the contaminants. The net impact of dust palliative spraying of waste fuels and solvents at this site appears to be minimal.

- At Site No. 7, (North Fire Department Training Area) Freon 113 extractable oil and grease occurred over a wide range of concentrations which covaried markedly with elevated HNu readings. Oil and grease levels are lower than the highest levels attained at the South Fire Department Training Area. Some oil stained samples were available, but not selected for analysis since the purpose of sample analysis was to detect vertical migration of contaminants away from the obvious oil-staining. Elevated oil and grease levels were detected to depths as much as 19 feet below the surface. fact, combined with the failure to detect a caliche layer in any of the borings, indicates that the potential exists for downward migration of contaminants to occur. Eleven VOA compounds were detected, and all 12 soil samples contained at least one VOA compound. The most common VOA compound found was 1,1-dichloroethylene, found in all 2 of the samples. The highest VOA concentrations detected were for chloroform, with concentrations ranging from 0.320 to 0.800 parts per million. VOA compounds were found at various depths in the four borings, but the detection of elevated chloroform levels in 3 samples below 9 foot depths confirms that fuels and solvents emplaced at the Site are migrating vertically to depths greater than those sampled.
- For Base production wells, the pesticide dibromochloropropane(DBCP) was detected at the limit of detection in only one well, Well No. 10. This well is located near the northeast boundary of LAFB, and it might be

expected to be impacted by pesticide usage on adjacent farm fields. Analysis for lead was required only on Well No. 121, adjacent the POL Waste Disposal Trenches site - lead was not detected at a detection limit equivalent to the Federal and State Safe Drinking Water Standard of 0.05 parts per million. Neither oil and grease nor phenol were detected in the three wells required to be analyzed. Four radiological parameters were analyzed on Well No. 4, located in the Waste Treatment Annex - only gross beta and gross gamma activities were detected at levels of 34 ± 4 and 38 ± 4 picocuries per liter, respectively. No data has yet been located which would indicate whether or not such activities are typical of background water quality in the area. VOA analyses were performed on three wells, and only in Well No. 10 were significant levels of any VOA compounds detected. Well No. 10 is located adjacent to both Site No. 7, the North Fire Department Training Area, and the current Fire Department Training Area. The 1,2dichloroethane detected at 0.0108 ppm in Well No. 10 was also found at low levels in five of the soil samples from the North Fire Department Training Area, but the (Trans)-1,2-dichloroethylene detected at 0.100 ppm in Well No. 10 was not found in any of the North Fire Department Training Area samples. The source of the two VOA contaminants in Well No. 10 remains unidentified, but the two nearby Fire Training Areas must be considered as potential sources.

ES 4.0 CONCLUSIONS

Based upon the Confirmation Study being conducted, the following conclusions were drawn:

Shallow soil conditions determined at LAFB indicate that levels of potential contaminants are low at most sites. The exception to this conclusion is Site No. 7, the North Fire Department Training Area, where VOA contaminants were detected at higher levels and deeper depths than at the other sites. No calibbe layer was detected at Site No. 7.

- Water quality testing was done only on Base production wells, and water quality data for the species tested are generally good. The exceptions to this conclusion are Wells No. 4 and 10, where the concentrations of 1,2-dichloroethane were 0.0014 and 0.0108 parts per million, respectively.
- Well No. 10 is located adjacent to Site No. 7, the North Fire Department Training Area, and the potential exists that solvents detected in Well No. 10 are from either the North Fire Department Training Area or from the Current Fire Department Training Area.
- Site No. 7, the North Fire Department Training Area, as well as the Current Fire Department Training Area (located about 200 yards east of Site No. 7) should be subjected to additional evaluation in order to ascertain the source or sources of VOA compounds in Production Well No. 10.

ES 5.0 RECOMMENDATIONS

Based upon the Stage 1 Study conducted at LAFB, the following Recommendations are made.

ES 5.1 Base Production Wells - Recommendations

- All Base Production Wells should be resampled and subjected to verification analyses for VOA compounds, pesticides (DBCP) and radionuclides (gross alpha, beta and gamma activities), at a minimum. Oil and grease analyses should also be run.
- 2. Based upon the results of the verification analyses, the Base should consider implementing a routine, quarterly water quality monitoring program for all Base Production Wells for these analytes.

ES 5.2 <u>Current and North Fire Department Training Area</u> - Recommendations

1. Based upon the results of the verification analyses, additional soil borings in the vicinity

KETTEN

of both Fire Department Training Areas are recommended. Four soil exploratory borings are recommended to be drilled to depths of 100 feet each, two at each of the two Areas. Soils should be sampled at 5-foot intervals, and should be analyzed for oil and grease and VOA compounds, in order to define the vertical extent of soil contamination.

- 2. If soil contaminants are found at the 100-foot level in any of the borings, then two downgradient monitor wells are recommended to be drilled one between the North and Current Fire Department Training Areas, and one between the North Fire Department Training Area and the cluster of Base Production Wells at the northwestern corner of the Base. These wells should be sampled and analyzed for oil and grease and VOA compounds, at a minimum.
- 3. A Concept Engineering Evaluation of the two sites should be conducted in order to a) identify the broadest possible spectrum of potentially appropriate remedial actions, and b) make recommendations as to proper reconstruction and operation of the Current Fire Department Training Area, in order that continued use of the Site will not provide a continuing source of potential groundwater contaminants.

SECTION 1

INTRODUCTION

1.1 INSTALLATION RESTORATION PROGRAM

In 1976 the Department of Defense (DoD) devised a comprehensive Installation Restoration Program (IRP). The purpose of the IRP is to assess and control the migration and potential migration of hazardous environmental contamination that may have resulted from past operations and disposal practices on DoD facilities. In response to the Resource Conservation and Recovery Act of 1976 (RCRA) and in anticipation of the Comprehensive Environmental Response Compensation Liability Act of 1980 (CERCLA or "Superfund"), the DOD Defense Environmental Quality Program Policy a Memorandum (DEQPPM) dated June, 1980 (DEQPPM requiring identification of past hazardous waste disposal sites on DoD agency installations. The U.S. Air Force implemented DEQPPM 80-6 by message in December, 1980. The program was revised by DEQPPM 81-5 (11 December 1981) which reissued and amplified all previous directives and memoranda on the IRP. The Air Force implemented DEQPPM 81-5 by message on 21 January 1982. The Installation Restoration Program has been developed as a four-phase program as follows:

Phase I - Problem Identification/Records Search
Phase II - Problem Confirmation and Quantification

Phase III - Technology Base Development

Phase IV - Corrective Action

1.2 PROGRAM HISTORY AT LUKE AIR FORCE BASE

Roy F. Weston, Inc. (WESTON) has been retained by the United States Air Force Occupational and Environmental Health Laboratory (OEHL) under Contract Number F33615-80-D-4006, to provide general engineering, hydrogeological and analytical services. The Phase Problem Identification/Records I, Search for Luke Air Force Base (LAFB) was accomplished by CH2M Hill in late 1981 and early 1982, and their Final Report was dated February 1982. In response to the findings contained in the CH2M Hill Phase I Final Report, the OEHL Task Order 0012 to WESTON, directing that a pre-survey site inspection be conducted at LAFB. The of this pre-survey was to obtain sufficient information to develop a work scope and cost estimate

for the conduct of a Phase II, Problem Confirmation Stage (Stage 1) Study at LAFB. The Pre-Survey Report was submitted in December 1982.

Task Order 0024 was issued on 12 September 1983, ordering a Phase II Problem Confirmation Stage (Stage 1) Study for the four sites at LAFB. A copy of the formal Task Order and technical scope of work are included here as Appendix B.

On 7 November 1983, WESTON personnel met with representatives of LAFB to review the goals of the investigation, contact LAFB security and staff responsible for site access and safety, and discuss drilling procedures, locations and schedules. Exploratory drilling was initiated on 9 November and was completed by 17 November 1983. Sampling of all active LAFB production wells was conducted on 17 November 1983. This report documents the procedures and findings of the Phase II Problem Confirmation Stage (Stage 1) investigation.

1.3 BASE PROFILE

Luke Air Force Base (LAFB), assigned to the Tactical Air Command (TAC), occupies 4,198 acres of land in Maricopa County, Arizona, 13 miles west of downtown Phoenix. The cities of Sun City, Sun City West, and Litchfield Park are located northeast, north, and south respectively, of the Base. The White Tank Mountains are located west of the Base. Figure 1-1 is an index map showing the location of LAFB. Luke Air Force Base also supports the following off-site facilities:

- 1. Gila Bend Air Force Auxiliary Field
- 2. Luke Air Force Range
- 3. Auxiliary Field No. 1 (now closed)
- 4. Holbrook Radar Bomb Scoring Range
- 5. Fort Tuthill Recreation Annex
- 6. Sanitary Landfill Annex
- 7. Waste Treatment Annex
- 8. Humbolt Mountain Radar Site.

Construction at LAFB began in March of 1941 after the land had been acquired from the City of Phoenix. Occupation of the base took place in June of 1941 with the primary purpose of providing advanced flight training to fighter pilots. In November of 1946, the base was deactivated after having trained 17,000 pilots over a 5-year period. The Gila Bend Gunnery Range, a major part of the training operation, remained open, but was operated by Williams AFB near Chandler,

FIGURE 1-1 INDEX MAP SHOWING THE LOCATION OF LUKE AFB

Arizona. With the onset of the Korean War, LAFB was re-opened in February of 1951, again to provide advanced flight training. The Base was transferred from Air Training Command (ATC) to Tactical Air Command (TAC) in July of 1958. In December of 1980, the 832nd Air Division replaced Tactical Training Luke (TTL) to become the current host of LAFB. The primary mission of the unit today is to provide command supervision of the F-16 training program of the 58th Tactical Training Wing and of the F-15 and F-5 programs of the 405th Tactical Training Wing.

Past Air Force activities at LAFB in support of operational missions have resulted in the occurrence at the base of severwaste disposal sites of potential concern. Each of these sites was rated by CH2M Hill during the Phase I activities accordance with the IRP Hazard Assessment Rating Methodology (HARM). The results of these ratings are summarized in Table (modified from the CH2M Hill report). Based upon these ratings and all other pertinent data, CH2M Hill recommended that Phase II activities concentrate only on Site No. 5, the Waste POL Disposal Trenches. Task Order 0024 required evaluation of the four sites shown in Table l-1. locations of the sites are shown on Figure ES-1. Following is a discussion of each of those sites.

1.3.1 Site No. 6 South Fire Department Training Area

The South Fire Department Training Area is located in the south central portion of the Base between Facility 999 and "N" Street. This site was the original fire department training area and was used from 1941 until deactivation of the Base in 1946, and again from the time of Base reactivation in 1951 until approximately 1963. Training exercise fires were fueled by a mixture of flammable liquids including waste POL products generated by the Base. The waste was poured onto an old aircraft or simulated aircraft in a cleared circular area approximately 100 feet in diameter and then ignited. Surface drainage from the site is southerly through erosional gullies into man-made drainageways.

Figure 1-2 is a general site map for Site No. 6, and shows the actual location of Site No. 6 as discovered from historical aerial photographs. It should be noted that this area

Table 1-1

PRIORITY RANKING OF POTENTIAL CONTAMINATION SOURCES

Priority Ranking	Site No.	Site Description	HARM Score
1	6	South Fire Department Training Area	69
2	5	Waste POL Disposal Trenches	68
3	4	Perimeter Road Waste POL Application Site	64
4	7	North Fire Department	62

FIGURE 1-2 GENERAL SITE MAP FOR SITE NO. 6
(SOUTH FIRE DEPARTMENT TRAINING AREA)

is located approximately two hundred yards east of the location shown in the IRP Phase I Report. A sequence of four aerial photographs taken at seven year intervals between 1962 and 1983 are shown in Figure 1-3. Four distinct circular fire pits are evident in the 1962 As seen in the 1983 aerial photograph, it is apparent that earth moving and weathering processes have eliminated all previously existing surficial evidence of the now defunct fire pits. Construction of a new Air Reserve facility is currently underway, and excavations had re-exposed the residues of past fire training exercises. The site was not, however, accessible to drilling equipment, due to the construction in-progress and construction contractor concerns for schedules and liabilities.

1.3.2 Site No. 5, Waste POL Disposal Trenches

Site No. 5, referred to as the POL Waste Disposal Site, is situated south of Building 1013 (Pump House, Well #11) and southeast of the power check pool (Facility 3640) as noted on the general site map shown in Figure 1-4. The site was used for the disposal of Base-generated waste POL products from 1970 through 1972. The liquid waste was distributed by tanker truck over the site in shallow trenches from 1 1.5 feet deep. The waste was left to weather for from four to six weeks, after which the trenches were backfilled and any residual product left from the weathering process cov-A reported shallow lagoon formerly located at the northeast corner of the site was also used. At present, this lagoon area is used to store asphalt rubble from an aircraft taxiway demolished in 1979. There is no surficial evidence of the location of the lagoon and the site is not accessible for subsurface evaluations. An estimated volume of 100,000 gallons per year, mostly waste JP-4 fuel, may have been dispersed at this site. Surficial expressions of two of trenches were evident on the northeastern portion of the site, and analysis of the only available aerial photo of the site indicated the trench locations shown on Figure 1-4.

1.3.3 Site No. 4, Perimeter Road Waste POL Application Site

Site No. 4 encompasses the portion of a south perimeter road beginning approximately 200 feet north of Facility 1080 and running southwest to west around the southern portion of the runway, then turning northeast before terminating immediately

FIGURE 1-3 AERIAL PHOTOGRAPH ANALYSIS SHOWING HISTORICAL DEVELOPMENT OF SITE NO. 6, THE SOUTH FIRE DEPARTMENT TRAINING AREA

<u>1</u>

...

1

FIGURE 1-4 GENERAL SITE MAP FOR SITE NO. 5 POL WASTE DISPOSAL TRENCHES

adjacent to Facility 1082. A general site map of this unpaved road is shown in Figure 1-5.

This site was used for disposal of POL wastes from 1951 until approximately 1970. The POL waste generated from Base operations was collected on a weekly basis. A tanker truck collected the wastes from various holding tanks and drum storage areas located throughout the Base, and then spread the POL waste on the dirt perimeter road around the runway at the western portion of the Base. This "road oiling" procedure served a two-fold purpose: 1) to dispose of the POL waste and 2) as an effective palliative method to control excessive road dust which is hazardous to flight operations. Prior to 1954, the total volume of POL waste generated by the Base was small enough to be disposed of in fire department training ex-After 1954, the total volume of POL waste increased significantly, due mainly to contaminated JP-4 from assigned and F-4 jet aircraft. Up to 50,000 gallons per year of POL waste may have been disposed of on the perimeter road. The majority of this POL waste consisted of contaminated JP-4, but some AVGAS, MOGAS, diesel fuel, waste engine oils, and waste solvents may also have been included.

1.3.4 Site No. 7, North Fire Department Training Area

This site, as shown on Figure 1-6 is located in the northern portion of the Base, west of the current Facility 1356 fire department training area. The site was used from approximately 1963 until 1973. Training exercises were conducted in this area in a fashion similar to that previously discussed in Section 1.3.1. Surficial site characteristics show evidence of past fires. Scorch marks within a gravel and dirt circle mark the locations of defunct fire training pits. The location of these areas as shown in historical aerial photographs are plotted on Figure 1-7. There is also surficial evidence of historical fuel spillage in the general area. The site is characteristically flat, exhibiting little or no topographic relief.

1.4 CONTAMINATION PROFILE

No large scale industrial operations generating large quantities of hazardous waste have been conducted at LAFB in the past. The generation of waste oils and solvents from cleaning and painting operations has been small in comparison to other Bases having significant industrial aircraft maintenance or overhaul missions. Interviewees from the Base indicated that up to 50,000 gallons per year of POL waste was disposed of at Site No. 4 on the south perimeter road from 1951 to approximately 1970, and volumes in excess of 100,000

FIGURE 1-5 GENERAL SITE MAP FOR SITE NO. 4 PERIMETER ROAD WASTE POL APPLICATION SITE

FIGURE 1-6 GENERAL SITE MAP FOR SITE NO. 7, NORTH FIRE DEPARTMENT TRAINING AREA

-

B. 1976 aerial photograph showing weathering effects and reestabilishing wegation at the old North Fire Department Training Area Two additions potential Fire Training Pits can be seen east of the main pit.

FIGURE 1-7 AERIAL PHOTOGRAPH ANALYSIS SHOWING HISTORICAL DEVELOPMENT OF SITE NO. 7, THENORTH FIRE DEPARTMENT TRAINING AREA

WESTER!

gallons per year of POL waste (mostly JP-4) were disposed of at the Site No. 5 POL Disposal Trenches between 1970 and 1972. Smaller quantities of combustible waste were burned in fire training exercises conducted at Fire Training Sites No. 6 and No. 7. It is suspected that pesticides have been introduced into the soils through extensive agricultural operations from farms adjacent to the north, west and south Base boundaries. Based on the Phase I Records Search Report, the key chemical parameters of most potential concerns at LAFB are oils and grease, phenol, pesticides and volatile organics.

To develop an initial determination of whether or not past operation and disposal practices have adversely impacted the environment, soils and groundwater in and around the four sites were sampled and analyzed for the parameters listed in Table 1-2. The details of the field investigation are reported in Section 3, and results of the sample analysis are reported in Section 4 of this report.

1.5 PROJECT TEAM

The Phase II Confirmation Stage (Stage 1) Study at LAFB was conducted by staff personnel of Roy F. Weston, Inc. and was managed through WESTON's home office in West Chester, Pennsylvania. The following personnel served lead functions in this project:

- MR. PETER J. MARKS, PROGRAM MANAGER: Corporate Vice President and Manager of Laboratory Services, Master of Science in Environmental Science (M.S.), 18 years of experience in laboratory analysis and applied environmental sciences.
- MR. FREDERICK BOPP, III, PH.D., P.G., PROJECT MANAGER: Doctor of Philosophy (Ph.D.) in Geology and Geochemistry, Registered Professional Geologist (P.G.), over 8 years of experience in hydrogeology and applied geological science.
- MR. WALTER M. LEIS, P.G., GEOTECHNICAL QUALITY ASSURANCE OFFICER: Corporate Vice President and Manager of the Geosciences Department, M.S. in Geological Sciences, Registered Professional Geologist, over 10 years of experience in hydrogeology and applied geological services.
- MR. JAMES S. SMITH, PH.D., LABORATORY QUALITY ASSURANCE OFFICER: Ph.D. in Chemistry, over 16 years of experience in laboratory analysis.

Table 1-2
Analytical Protocol

	Site	Potential Contaminant	Sample <u>Medium</u>	Analytes
•	Site No. 6 South Fire Department Training Area	Petroleum Products Spent Solvents	Soils	Oil & Grease VOA Compounds
	Site No. 5, POL Waste Disposal Trenches	Petroleum Products Leaded Petroleum Sludges Spent Solvents	Soils	Oil & Grease VOA Compounds Lead
	Site No. 4, Perimeter Road Waste POL Applica- tion Site	Petroleum Products Spent Solvents	Soils	Oil & Grease VOA Compounds
	Site No. 7, North Fire Department Training Area	Petroleum Products Spent Solvents	Soils	Oil & Grease VOA Compounds
	Wells Nos. 1, 7 & 12	Pesticides	Ground- water	DBCP Oil & Grease
	Well No. 4	Pesticides Radio Isotopes Spent Solvents	Ground- water	DBCP Oil & Grease VOA Compounds Phenols Gross Alpha Gross Beta Radium 226
•	Well No. 8,9,10	Pesticides Spent Solvents	Ground- water	DBCP VOA Compounds Oil & Grease
	Well No. 11	Pesticides Spent Solvents Leaded Petroleum Sludges	Ground- water	DBCP VOA Compounds Oil & Grease Lead

WESTER

Professional profiles of these key personnel, as well as other project personnel, are contained in Appendix C.

1.5.1 Subcontracting

The drilling phase of the Confirmation Stage (Stage 1) Study at LAFB was performed by Western Technologies, Inc. of Phoenix, Arizona under contract to Roy F. Weston, Inc. All soil borings were drilled under direct supervision in the field by a WESTON geologist.

1.6 FACTORS OF CONCERN

Factors of concern should be highlighted at the outset of this Confirmation Study Report, which the reader should consider in the review of subsequent sections.

• LAFB overlies an extensively developed and over-pumped aquifer. Water levels in this aquifer have declined by over 300 feet at LAFB over the past years. Major water use in the area is for agricultural irrigation, but at this time groundwater is the sole source of potable water in LAFB. Surface water from the Central Arizona Project (CAP) is available to the Base, but at a significantly higher cost than that of groundwater. Any contamination introduced into the aquifer by either on-base or off-base activities could have far-reaching impacts upon the available supplies of potable water which currently support the Base mission at LAFB.

WESTER

SECTION 2

ENVIRONMENTAL SETTING

2.1 REGIONAL GEOLOGY

Luke Air Force Base is located within the Sonoran Desert section of the Basin and Range physiographic province. The prois characterized vince, in general, north by northwest-trending isolated mountain ranges separated by desert plains. The Sonoran Desert section consists of more desert plain than mountains, and the ranges are generally low and narrow comprising less than one-fourth of the area of this section. The Base rests on a broad alluvium-filled valley within the western portion of Phoenix Basin, and is surrounded on three sides, north, south and west, highland bedrock mountain ranges. The White Tank Mountains lie approximately 8 miles west of Luke, while the Sierra Estrella lie 12 miles to the south, and the Hieroglyphic Mountains lie about 15 miles to the north. The rocks forming the mountains are predominantly granites, gneisses and schists of Precambrian age, overlain locally by volcanic and sedimentary rocks of Tertiary Age.

The history of mountain building and sedimentation in the area of Luke is long, quite complex and much of it well beyond the scope of IRP concerns. However, by the beginning of the Tertiary time, approximately 67 million years ago, the mountains were in a state of uplift, and the Phoenix Basin was subsiding. Fresh water runoff from the uplifting mountains carried eroded sediments into the subsiding Basin, resulting in the thick valley-fill sequence comprising the subsurface Luke today. For the most part, the coarse-grained sediments were deposited in stream channels crossing the subsiding Basin. Along the margin of the White Tank Mountains, some coarse-grained materials were spread out from the mountains basinward by smaller streams. In areas outside of the channels where circulation was restricted, fine-grained sediments, including shallow-water lacustrine deposits, were laid down. Locally, evaporites are interbedded with these fine-grained sediments.

The thickness of the valley-fill sequence varies from a few feet at the periphery of the basin adjacent to the mountains

WESTEN!

to an estimated maximum of 10,000 feet at Litchfield Park, just south of Luke AFB. These unconsolidated sediments are deposited on top of basement rock which is probably of the same composition as the nearby mountain ranges.

No wells have penetrated the entire thickness of the alluvium to bedrock except at the periphery of the basin. The deepest well in the Luke AFB vicinity is 4,500 deep and is located at the salt processing operation approximately I mile east of the Base.

2.2 TOPOGRAPHY

Topographic relief in the western Phoenix Basin within a few miles of LAFB encompasses over 3,500 feet, ranging from about 1,000 feet msl on the desert plain to over 4,500 feet msl in the mountains, with the land surface varying from very steep to virtually flat. Elevations at Luke, located on the desert plain, range from 1,110 feet msl at the northwest corner to 1,075 feet msl at the southeast corner of the Base. The ground surface generally slopes uniformly from northwest to southeast at 25 feet per mile.

2.3 DRAINAGE

Average annual rainfall at Luke AFB is approximately seven inches, while the evapotranspiration rate is about 60 inches per year. Runoff from this extremely sparse and irregular rainfall at Luke is channeled into a network of surface ditches and storm drains. Due to the extreme aridity, and resulting excess evapotranspiration potential, much of this surface runoff never reaches discharge points to natural surface streams, but infiltrates or evaporates instead. Drainage from the northern portion of the Base discharges toward the nearest natural surface water feature, the Agua Fria River. Figure 2-1 summarizes surface drainage patterns at LAFB.

Rivers near the Base include the Agua Fria, the Salt and the Gila Rivers. The Aqua Fria, flowing north to south, lies approximately two miles east of the main portion of Luke. The Salt River, into which the Agua Fria discharges, flows from east to west and lies approximately 6.5 miles south of the Base. The Salt River discharges into the Gila River, which flows east to west, discharging to the Colorado River. The Gila River is located approximately 7 miles south of Luke. In years past these rivers, all fed by runoff from the mountains, experienced erratic natural flows which sometimes resulted in flooding - these natural flows represented virtually the only local recharge to groundwater resources in the Luke area. Dams and reservoirs were

2~3

WESTEN.

in the mountains around Luke in order to 1) assist in water resource management, and 2) to prevent periodic damaging floods in these rivers. Now the rivers near Luke are dry most of the year and flow only during and immediately following storms.

2.4 HYDROGEOLOGY

Groundwater occurs within the unconsolidated alluvial valley-fill deposits of the Phoenix Basin. The saturated thickness of these sediments is extremely variable, from 200 to 10,000 feet. The sediments are thin toward the mountains and thicken toward the center of the basin. In the vicinity of Luke, near the center of the basin, the unconsolidated sediments are thought to be as much as 10,000 feet thick. In general, the unconsolidated alluvium can be divided into three hydrogeologic units, referred to as the upper alluvial unit, the middle fine-grained unit, and the lower conglomerate unit.

The upper alluvial unit is the major source of groundwater in the Luke vicinity, and is the unit into which the Base production wells are completed. The Base wells are completed at depths of from 800 to 1,000 feet. Locations of Base Production Wells and nearby off-Base irrigation wells are The deposits within this hydrologic shown on Figure 2-2. unit are generally unconsolidated, and groundwater occurs under unconfined or water table conditions. There are areas where the occurrence of locally extensive clay layers results in a perched or confined groundwater condition. However, under the influence of long-term groundwater withdrawals, aquifer response is more unconfined as a unit than The upper alluvial unit ranges in thickness from confined. a few feet at the periphery of the basin to over 1200 feet near the Base. Well yields within this unit are high, ranging from 500 to 3,000 gallons per minute (gpm), with variations resulting from differences in well construction, well depth, and local hydrogeologic conditions.

The middle fine-grained unit occurs below the upper unit and consists of sedimentary deposits of low permeability, primarily clay and silt in the upper section, and gypsum and salt in the lower section. The gypsum and salt deposits impede the downward flow of groundwater. Some groundwater does occur in the lower section, within limited sand and gravel deposits. Where it does occur, it is under artesian or confined conditions. This unit ranges in thickness from

FIGURE 2-2 LOCATIONS OF BASE PRODUCTION WELLS AND NEARBY IRRIGATION/WATER SUPPLY WELLS

W. STATES

a few feet at the end of the basin to over 1500 in the vicinity of Luke. The occurrence of evaporite minerals, gypsum (calcium sulfate) and halite (sodium chloride) in this unit has a significant effect on local groundwater quality. The Luke Salt Body, located south and east of the Base occurs within this unit.

The lower conglomerate unit consists of a heterogeneous mixture of sand, gravel, and some clay. Groundwater generally occurs under artesian conditions confined by the middle finegrain unit above. The exception is in those areas at the periphery of the basin where the middle unit is absent and the upper alluvial unit rests directly on top of the lower conglomerate unit. In those areas, the two units hydrologically the same and the upper unit recharges the lower unit directly. The lower conglomerate unit ranges in thickness from a few feet near the edge of the basin to greater than 3,000 feet in the vicinity of Luke. Wells penetrating this unit are generally located along the basin edge and withdraw water from both the upper and lower units. Well yields are high and are generally greater than 1,000 gpm within this unit.

In the vicinity of Luke AFB, the upper alluvial unit is the primary source of water to over 500 western Phoenix Basin wells, and is the first unit which would potentially become contaminated by Air Force activities.

Groundwater withdrawals in the vicinity of Luke AFB have increased significantly during the past 20 years. More than 90 percent of the groundwater withdrawn is used for agricultural irrigation. The increased use of groundwater in the Luke AFB area has caused a number of significant changes in the hydrogeologic/geologic regime. For the past several years, groundwater levels have been declining by approximately 5 feet per year. During the period 1923 to 1977, the groundwater level has declined over 300 feet in the vicinity of Luke AFB.

The reason water levels are declining so rapidly is that groundwater withdrawals are significantly higher than recharge; thus, water is being "mined" from storage in the aquifer and not being replaced by recharge. Also, the effects of the groundwater pumpage are more pronounced in the area immediately around Luke AFB due to lower permeability production zones than in the surrounding area of the basin. Presently, the primary source of recharge is percolation from excess irrigation water and seepage losses from

irrigation canals such as the Beardsley and Buckeye Canals instead of infiltration from river beds.

Historically, groundwater flowed southwesterly from recharge areas at the base of mountains following the channels of the Agua Fria and the Gila Rivers, both of which contributed recharge to the aquifer. Flow out of the groundwater basin occurred under the Gila River bed south of the White Tank Today, as a result of large-scale off-Base agri-Mountains. cultural withdrawals, a large cone of depression has formed around the Luke AFB area. This cone of depression is shown in Figure 2-3 (adapted from the Phase I Report). result, the groundwater no longer flows southwesterly but instead flows toward Luke AFB from all directions. any, groundwater now leaves little, if the basin as underflow. Recharge in the Luke AFB area now occurs almost entirely as excess irrigation water. This recharge. however, probably has yet to reach the water table. In the Luke AFB area, water levels are approximately 380-390 feet below land surface. Downward flow rates in unsaturated materials are estimated to be in the range of from 10 to 20 feet per year (Ch2M Hill 1982). Therefore, it would take from 20 to 40 years for irrigation water applied at the surface to reach the water table, which is declining at the rate of 5 feet per year. Vertical migration in unirrigated areas would take even longer. This is significant not only from the standpoint of recharge but also from the standpoint of contaminant migration. For example, Luke AFB has been in existence from 1941 to the present, a period of 43 years. A migrating contaminant on the surface during the first years Base operation probably has not yet reached the water table.

ELEVATION OF GROUND WATER (IN FEET ABOVE MEAN SEA LEVEL) IN 1977 AT LUKE AFB (FROM THE CH2M HILL PHASE I REPORT) FIGURE 2-3

WESTERN

SECTION 3

FIELD PROGRAM

3.1 PROGRAM DEVELOPMENT

Based upon the conclusions of the Installation Restoration Program Phase I Records Search and the overall relative HARM Score ratings of Potential Contamination sources, the four sites prioritized in Table 1-1 were designated as areas showing the most significant potential for environmental impact. Subsequent to the Phase I Records Search Report, it was determined that the sites listed in Table 1-1 warranted a confirmatory Phase II field investigation.

The first work element of the Phase II confirmatory field investigation was a pre-survey site inspection at LAFB. On 3 November 1982, two WESTON personnel and a representative from OEHL conducted site inspections of LAFB and the four identified sites listed in the Phase I report. During that site inspection, all available maps, reports and aerial photographs reviewed with Bioenvironmental Base and Civil Engineering personnel. At that time, representatives from OEHL requested that WESTON prepare a Technical Scope of Work and Cost Estimates for conducting a limited monitoring program at those four sites.

Following the 3 November 1982 pre-survey inspection, WESTON prepared a Pre-Survey Report (December 1982) addressing the four sites. The locations of the sites investigated are illustrated on Figure 3-1.

3.1.1 Analytical Protocol

An analytical protocol for each site under investigation was selected to provide specific and non-specific indicators of soil and groundwater contamination. The analytical parameters selected for each site are summarized in Table 1-2.

3.1.2 Formal Scope of Work

Task Order 0024, which formalized the proposed work is included in Appendix B. This Task Order provided the basis for the implementation of the field program described in the following sections.

3-2

3.2 FIELD INVESTIGATION

Starting on 7 November 1983 and continuing through 19 November 1983, WESTON conducted a Phase II confirmation field investigation to define soil characteristics and assess the possible presence of hazardous environmental contaminants that may have resulted from past waste disposal activities at LAFB.

A shallow soil exploration and sampling program was conducted at the four sites listed in Table 1-1. Concurrent with this program, groundwater samples were collected at Well No. 4, immediately adjacent to the Waste Water Treatment Annex, and all remaining active Base production wells listed in Table 1-2. Data obtained from the two programs was used to evaluate the potential or real impacts resulting from past land filling and waste disposal operations. The field work conducted is summarized on a site-by-site basis in Table 3-1.

3.2.1 Schedule of Activity

The field investigation at LAFB was initiated on 7 November 1983 and completed on 18 November 1983. A chronology of WESTON's field activities at LAFB is summarized in Table 3-2.

3.2.2 Exploratory Soil Boring Program

The Soil Boring Program encompassing Sites Nos. 5, 4 and 7 was initiated 9 November 1983. A total of twenty-two soil borings were drilled between 9 November 1983 and 19 November 1983. All drilling work was accomplished under subcontract to WESTON by Western Technologies, Inc. of Phoenix, Arizona, under the direct supervision of an on-site WESTON geologist. Boring locations were pre-determined during a preliminary drilling site evaluation, after investigative interviews with Base personnel and careful inspection of historical reports, maps and aerial photographs. All borings were drilled in valley fill composed primarily of unconsolidated to semi-consolidated clay, silt, sand and gravel.

Each boring was advanced from the ground surface with a CME Model 75 drill rig, using conventional 4-inch inner-diameter hollow stem augers.

Soils in all borings were sampled continuously throughout the soil column and were recovered and retained in discrete one-foot increments. Samples were retrieved via two-inch diam-

WESTERN

Table 3-1

Summary of Technical Work Scope

Site	Action
Site No. 6	Four (4) discrete surface soil samples, obtained from sites rendered accessible by on-going construction activities.
Site No. 5	Ten (10) soil borings with continuous sampling at discrete one-foot intervals to a total depth of twenty (20) feet in each boring.
Site No. 4	Eight (8) soil borings with samples taken at discrete one-foot intervals to a total depth of two feet in each boring.
Site No. 7	Four (4) soil borings with continuous sampling at discrete one foot intervals to a total depth of twenty (20) feet in each boring.
Well No. 4 Base Production Wells	Water sample taken for locations and analytes referenced in Table 1-2

Table 3-2

Field Activity Schedule

Date	Activity
7 November 1983	Site visit with drilling contractor and Base personnel to discuss terms of work scope, determine soil boring locations, and procure Work Clearance Requests (AF Form 103).
8 November 1983	Aerial photograph and final record search. Stake out soil boring locations. Surface soil samples taken at Site No. 6.
9 November 1983 thru 17 November 1983	Drilling Rig on site. Soil sampling performed at Sites Nos. 5, 4 and 7. Twenty-two borings completed.
17 November 1983	Completion of soil boring program. Acquisition of groundwater samples from Base production wells Nos. 1, 4, 7, 10, 11 and 12.

WESTER

eter, eighteen-inch long split spoon samplers in compliance with Standard Penetration Test (SPT) Techniques (ASTM Standard Method No. D-1586). The split spoon sampler was driven ahead of the advancing auger into undisturbed soil. Each single split spoon sample penetrated 1.5 feet of soil. The resulting sample core recoveries were always less than 1.5 feet; only highly cohesive soils yielded full core recovery. In order to expedite sample recovery time and minimize open borehole exposure to the atmosphere (concerning VOA compounds) two split spoon samplers were utilized, enabling the field team to employ one sampler as the other was being decontaminated. Although the precise assignment of a depth interval of partially recovered samples is somewhat qualitative, the relative position of each soil sample in the soil column is accurate.

Upon retrieval, the soil cores were divided into two sections and transferred immediately from the split spoon sampler into EPA approved sample containers, and the containers labeled accordingly. Between samples, the split spoon samplers were washed thoroughly with water and detergent, then rinsed with deionized water. Between borings, the augers were washed clean of soil particles. All sample handling equipment was also washed and rinsed between samples. A representative subsample was taken from the samples to evaluate soil characteristics. Descriptions were made of each soil sample, using ASTM Standards for color, texture and moisture, and these descriptions were recorded on boring logs.

One log was produced for each boring. A compilation of all boring logs is presented in Appendix D. Throughout each sampling event, the borehole and sample were monitored for organic vapors and combustible gases using an H-Nu Model PI 101 photoionization detector and an MSA Combustible Gas Detector. Readings thus obtained from the H-Nu were incorporated into the boring logs; no positive readings above background levels were recorded at any drilling site using the explosimeter. Upon completion of each boring, the open borehole was pressure-grout backfilled with a bentonite-cement slurry. Drill cuttings were disposed of at a location designated by LAFB, and the general area cleaned. Location markers were permanently installed into the grout backfill.

The sample bottles were packed in bubble packs, placed in metal coolers, and shipped Air Express to WESTON's laboratory in Stockton, California pending their selection for chemical analysis.

KETTEN

3.2.2.1 Site No. 6 - South Fire Department Training Area

It was proposed that a total of ten soil borings, each drilled to a depth of twenty feet, be located throughout this site. Construction at the site by the U.S. Army Corp of Engineers prohibited the drilling of any soil borings. The Task Order was modified to delete the drilling and substitute four shallow soil samples to be taken from the construction site. WESTON personnel recovered four discrete subsurface soil samples exposed by construction activities. These four sampling points, labeled S-1 through S-4, are shown on Figure 3-2. Samples were taken at four separate locations within a 2-3 foot deep excavated area. These areas were intentionally chosen due to the discoloration of the exposed sub-soils and organic odor. Each sample was monitored for organic vapors using the H-Nu photoionizer.

3.2.2.2 Site No. 5 - POL Waste Disposal Trenches

Although most of the northwestern portion of this site is obstructed by asphalt rubble (from the demolition of an aircraft taxiway), surficial evidence of several of the trenches was noted on the northeastern portion of the site. Locations of additional trenches were estimated in the field based upon available aerial photos. These areas were drilled during the sampling programs. Ten soil borings, labeled SB-1 through SB-10, were drilled to a total depth of 20 feet each in the area of the POL trenches. The exact location selected for each boring was determined in the field using visual inspection of land subsidence associated with trenches, combined with analysis of available aerial photographs. The locations of the ten soil borings are plotted on Figure 3-3. Representative samples of each one foot increment of soils (a total of 20 samples) were collected from each boring. Duplicate samples taken for 20% quality assurance, resulting 4 samples per 20 foot boring. Samples were monitored for organic vapors with the H-Nu and the values recorded on the boring log.

As the boring logs (Appendix D) indicate, the soil encountered beneath the site consisted dominantly of silts, clays, sands and gravels. A caliche layer of from three to five-foot thickness was encountered at between ten and fifteen feet deep in all borings on the site.

FIGURE 3-2 GENERAL SITE MAP FOR SITE NO. 6 (SOUTH FIRE DEPARTMENT TRAINING AREA) SHOWING SURFACE SEDIMENT SAMPLES

FIGURE 3-3 GENERAL SITE MAP FOR SITE NO. 5 (P.O.L. WASTE DISPOSAL TRENCH) SHOWING SOIL BORING LOCATIONS

WESTEN

3.2.2.3 Site No.4 - Perimeter Road Waste POL Application Site

Prior to establishing the boring location, the road bed was inspected during a reconnaissance survey for evidence of remaining waste POL products. Despite the staining properties of waste POL products, inspection of the road bed revealed no evidence of remaining oil stains or compacted tar-soil mix-Since no affected areas were observed, boring locations were distributed along the road bed. These locations, labeled SB-11 through SB-18 are shown on Figure 3-4. The limited soil boring program consisted of two-foot deep soil sampling borings at eight locations along the south perimeter road bed. Representative samples were taken from the surface to one foot and one-foot to two-foot intervals. An additional duplicate sample was taken for quality assurance, resulting in a total of three samples per boring. Sampling was performed in accordance to the procedures described in Samples were monitored for organic vapors Section 3.2.2. with an H-Nu photoionizer and the values recorded on the boring logs. No evidence of sub-surface oil-staining or soiltar mixtures was encountered.

3.2.2.4 Site No. 7 - North Fire Department Training Area

A series of continuous soil samples were recovered from four twenty-foot deep soil borings installed in the North Fire Department Training Area. A site plan showing the locations the soil borings is shown in Figure 3-5. WESTON personnel established the four boring locations following an inspection of the site and its location in reference to historical aerial photographs. Two soil borings, SB-20 and SB-22, were drilled in a scorched gravel and dirt circle approximately 75 feet in diameter. The circle was evident in the 1969 aerial photograph, shown in Figure 1-8, and is most probably the remnant of the defunct fire pit. Soil borings SB-19 and SB-21 were located outside of the scorched area in two additional darkened areas found on the aerial photograph. Surficial evidence indicated that, at least, spillage had occurred in these locations. Sampling was accomplished following those procedures outlined in Section 3.2.2. During the drilling, fuel product odors were obvious in borings SB-20, SB-21 and SB-22. These odors were confirmed by These odors were confirmed by elevated H-Nu readings taken over the open hole. Readings organic vapors over borings GB-20, SB-21 and SB-22 ranged from 3-35 ppm for depths below 15 feet, to 100-300 ppm depths shallower than 5 feet. This shows a decreasing presence of organics with depth. This finding tends support earlier postulation that downward migration

FIGURE 3-4 GENERAL SITE MAP FOR THE SITE NO. 4 (PERIMETER ROAD WASTE P.O.L. APPLICATION SITE) SHOWING SOIL BORING LOCATIONS

FIGURE 3-5 GENERAL SITE MAP FOR SITE NO. 7 (NORTH FIRE DEPARTMENT TRAINING AREA) SHOWING SOIL BORING LOCATIONS

WESTERN

environmental contaminants is inhibited by low permeability soil, although the boring logs indicate that the tightly cemented caliche layer characteristic of the POL Trench Area (Site No. 5) was not encountered at this site.

3.2.3 Water Quality Sampling Program

On 17 November 1983, WESTON conducted a Water Quality Sampling Program at LAFB. Samples were collected from all operating Base Production Wells, and at the Waste Water Treatment Annex influent and effluent. While the Task Order specified sampling to be done at nine Base Production Wells, only eight wells are currently in the production system at Luke AFB (See Figure 2-2). Two of these production wells were out of service (Wells 8 and 9) and could not be sampled. The sample analytes are given in Table 3-3.

The purpose of the water quality sampling program was to identify, insofar as possible at the level of a confirmation the existence of survey, contamination present in hydrogeologic environment of the base pumping wells. To achieve these goals efficiently, specific field procedures were developed for purging the wells, collecting the samples, and ensuring field quality control. These procedures have been used to obtain a single complete set of representative samples for chemical analysis from the base production wells and the WWTP. The sampling and quality assurance plans used to accomplish these goals are contained in Appendix E. all wells sampled were in continuous operation, the wells already in a purged condition. Representative samples were obtained directly from the pump discharge. chain-of-custody documentation is contained in Appendix F. Standard laboratory analysis protocols used in the analysis of these samples are contained in Appendix G.

Table 3-3

Sample Analytes

Analytes	Well #1	Well #4	Well #7	We 11 #8	Well #91	Well #10	Well #1 Well #4 Well #7 Well #8 Well #9 Well #10 Well #11 Well #12	Well #12
Pesticides:								
DBCP	*	*	*	4	•	*	*	*
Volatile Organics (VUA)				*	4	*	•	
Oil & Grease		*		*	*	*	•	
Phenol		*						
Lead							•	
Radiological Species:								
Gross A		*						
. Gross B		•						
Gross Gamma		•						
Dadina 226		•						

Well Sampled for Specific Parameter

Wells were out of service at the time sampling was conducted and could not be sampled.

WESTEN

SECTION 4

RESULTS

4.1 SITE INTERPRETIVE GEOLOGY

The subsurface exploration program conducted at LAFB penetrated the upper 20 feet of unconsolidated materials at the Base. Where natural, in-place soils at the Base were encountered during the soil sampling program, these soils were consistent with the Gilman, Laveen and Mohall soil series mapped for the base by the U.S. Soil Conservation Service (1977). These soils are characteristically deep, well-drained soils with moderate permeability. They are alkaline and mildly to strongly effervescent, indicating the presence of an elevated calcium carbonate component. The relatively high carbonate component of the soils leads to the formation of calcite deposits at depth below the soil zone in the desert environment typical at LAFB.

4.1.1 Site No. 6 - South Fire Department Training Area

No drilling was accomplished at this site. Soils observed and sampled in the MCP excavation appeared to be in-place, native soils, with a veneer of local oil-stained fill material above the soil horizon. The soils were developed over silty, gravelly sands typical of the alluvial valley fill materials in the area.

4.1.2 Site No. 5 - Waste POL Disposal Trenches

Ten soil borings were drilled at this site to depths of 20 feet each. Gilman soils were penetrated in several boreholes, although most boreholes encountered disturbed alluvial valley-fill materials at depths shallower than about six feet. Eight of the 10 borings at the site, and all within the area of trenching operations, penetrated a semiconsolidated, well-cemented caliche zone, which ranged in thickness from two to about six feet and was encountered at depths ranging between eight and 15 feet below grade. This caliche zone is tight enough, and well-enough cemented, that it would provide a physical barrier to the vertical migration of contaminants from the shallow subsurface to aquifer-scale depths.

WESTERN

4.1.3 <u>Site No. 4 - Perimeter Road Waste POL Application Site</u>

Borings at this site only penetrated two feet into the subsurface, so no data is available to document the presence or absence of a caliche zone. Soils encountered appear to be from the lower portion of the natural soil horizon, with the probability that the upper soil zone was removed or disturbed during construction of the runways.

4.1.4 Site No. 7 - North Fire Department Training Area

Soils drilled by the four borings at this site constituted the Gilman series soil horizon and underlying alluvial valley-fill deposits to depths of 20 feet in each boring. None of the four borings encountered a caliche zone which could retard the vertical migration of contaminants.

4.2 SOIL CHEMISTRY CONDITIONS

Soil samples were selected from each site and soil boring for chemical analyses of the analytes listed in Table 1-2. Samples selected for analysis at each site were selected on the basis of the detection of organic vapors during drilling, in order to obtain a "worst case" evaluation of potential soil contamination.

4.2.1 Site No. 6 - South Fire Department Training Area

All four of the available soil samples from this site were subjected to analysis. Table 4-1 contains a summary of the analytical findings. Table 4-2 contains a complete listing of the volatile organic compounds analyzed. From the data in Table 4-1 it can be seen that oil and grease (as defined by extraction in Freon 113) was high in two of the samples analyzed. All four samples showed visual evidence of oil staining, but even the two high oil and grease concentrations detected represent only between 1.5 and 3.7 percent of the soil by weight. These data combined with the very low VOA concentrations detected indicate that any solvent and fuel residues remaining from previous fire-training exercises have weathered extensively in the desert environment at LAFB. This weathering, coupled with the MCP plan to cap the entire site with concrete construction slabs and macadam

Table 4-1: SUMMARY OF SOIL CHEMISTRY DATA SOUTH FIRE DEPARTMENT TRAINING AREA

Unidentified Peaks	o	0	Э	1
Bromodi- chloromethane	0.003	<0.001		0.001
Chloro- ethylene	0.022	<0.001	<0.001	0.016
Chloroform	0.162	0.023	<0.001	0.057
l, l, l-Tri- chloroethane	0.004	<0.001	<0.001	0.005
Oil and Grease (ug/g)	14,600	36,500	1,250	197
Approximate Depth (feet)	7	5	7	-
Sample	S-1	2-S	S-3	8-4

For a complete list of compounds analyzed see Table 4-2. Compounds listed in Table 4-2, but not found at a detection limit of 0.001 ug/g are not reported here. Methylene Chloride was detected in all samples, ga duplicates and blanks - cross-contamination within laboratory is indicated, so no methylene chloride results

Table 4-2

LISTING FOR USEPA PRIORITY POLLUTANTS VOLATILE ORGANIC COMPOUNDS (VOA)

Acrolein 1,2 - Dichloropropane

Acrylonitrile 1,2 - Dichloropropylene

Benzene Ethylbenzene

Bis-chloromethylether Methyl Bromide

Bromoform Methyl Chloride

Carbon Tetrachloride Methylene Chloride

Chlorobenzene 1,1,2,2 - Tetrachloroethane

Chlorodibromomethane Tetrachloroethylene

Chloroethane Toluene

2-Chloroethylvinylether (Trans) 1,2-Dichloroethylene

Chloroform 1,1,2 - Trichloroethane

Dichlorobromomethane 1,1,1 - Trichloroethane

Dichlorodifluoromethane Trichloroethylene

1,1 - Dichloroethane Trichlorofluoromethane

1,2 - Dichloroethane Vinyl Chloride

1,1 - Dichloroethylene

WESTEN!

rking lots, indicates that low levels of fuel and solvent residues remaining at the site probably will not be subject to any forces, such as infiltration of precipitation, which would induce vertical migration of contaminants deeper into the subsurface.

4.2.2 Site No. 5 - Waste POL Disposal Trenches

HNu readings at all 10 borings and all soil samples were very low, remaining at only a few parts per million above background. These field observations made "worst-case" selection of 12 soil samples for analysis less definitive than at other sites. Of the 12 samples selected for analysis, four were chosen due to: (1) the position of the boring within the trench area; and (2) the depth of the sample being below the caliche layer present at the site. Table 4-3 summarizes the data obtained from chemical analysis of the 12 samples selected.

From the data in Table 4-3 it can be seen that Freon 113 extractable oil and grease was uniformly in the low part per million range in all samples analyzed. Lead concentrations, ostensibly linked to disposal of leaded fuel sludges, were fairly uniform in all samples ranging from 0.053 to 0.304 Only 5 VOA compounds were detected in parts per million. only half the samples, with the maximum concentration found of 0.20 parts per million for chloroform. The most common VOA compound found was chloroform, present in 5 of the samples. The very low levels of oil and grease and VOA compounds indicates that the weathering process employed by Air Force at this site was effective in devolatizing the emplaced fuels prior to burial. While it does not appear that an actual waste POL trench was successfully penetrated and sampled, the net impact of disposal of POL wastes at the site appears to be minimal.

4.2.3 <u>Site No. 4 - Perimeter Road Waste POL Application</u> Site

A total of 16 soil samples were taken at 8 locations along the perimeter road. HNu readings at this site, as at the previous one, were uniformly within only a few parts per million of background, thereby making the selection of "worst case" samples less definitive than was desired.

	nidentified Peaks	n	0000000000
9/9)	ууохоцокш	٥	
VOA Compounds $(ug/g)^1$ The compounds ug/g The compounds ug	Trans) 1,2-Dichlor	,	
mpoun e	`]-DṛcµJo⊾o∈¢µλ∫∈υ	τ	
70 A Co	, l-Dichloroethane	τ	
	, 2-Dichloroethane	τ	
SUMMARY OF SOIL CHEMISTRY DATA, WASTE POL DISPOSAL TRENCHES		Lead (ug/kg)	161 100 103 304 145 104 101 112 103
		1 & Grease (ug/g)	209 16 26 75 10 10 18 38 43 63
TABLE 4-3:		HNU Reading (PPM) 0il	๛๛๛๛๛๛๛๛๛
	,	Sample Depth (ft.)	4.5-6.0 19.5-21.0 19.5-21.0 7.5-9.0 19.5-21.0 8.0-9.0 4.0-5.0 14.0-15.0 19.0-20.0 5.0-6.0
	•	Boring No./ Sample No.	B1-4 B1-14 B2-14 B2-15 B3-16 B3-14 B4-9 B5-5 B6-15 B7-20 B10-10

For a complete list of compounds analyzed see Table 4-2. Compounds listed in Table 4-2 but not found at a detection limit of .001 ug/g are not reported here. Methylene Chloride was detected in all samples, QA duplicates and blanks - cross-contamination within Laboratory is indicated, so no Methylene Chloride results are included here.

Boring Sample

WESTER

Twelve of the 16 samples taken were analyzed, and the results of these analyses are summarized in Table 4-4.

From the data in Table 4-4 it can be seen that Freon 113 extractable oil and grease was uniformly in the low part per million range in all samples analyzed. Only 6 VOA compounds were detected in 7 of the 11 samples, with a maximum concentration found of 0.040 parts per million of dichloroethylene. The most common VOA compound found was 1,1-dichloroethylene, found in all 7 of the samples contain-The very low levels of oil and grease ing VOA compounds. and VOA compounds indicate that weathering of sprayed fuels solvents by the prevailing desert conditions at LAFB was effective in devolatizing the contaminants. The net impact dust palliative spraying of waste fuels and solvents at this site appears to be minimal.

4.2.4 Site No. 7 - North Fire Department Training Area

A total of 80 soil samples were taken in four soil exploratory boreholes at the site. Twelve of these samples were selected for analysis, based upon the following criteria:

- (1) Elevated HNu readings at the borehole; and
- (2) Position of the sample within the borehole.

HNu readings in these boreholes ranged from background levels 1 up to a maximum of 300 parts per million. Table 4-5 summarizes the chemical analysis results obtained from this analytical program.

From the data in Table 4-5 it can be seen that Freon 113 tractable oil and grease occurred over a wide range of concentrations which covaried markedly with elevated readings (i.e. HNu readings proved to be good indicators of fuel contamination as indicated by oil and grease data). Oil and grease levels are lower than the highest levels attained at the South Fire Department Training Area, but this is to be expected since no obviously oil-stained samples were selected for analysis. Several stained samples were recovered from the site at very shallow depths, but these were not analyzed since the purpose of these analyses was to detect vertical migration of contaminants away from the obvious oil-staining. Elevated oil and grease levels were detected to depths as much as 19 feet below the surface. This

TABLE 4-4: SUMMARY OF SOIL CHEMISTRY DATA, PERIMETER ROAD WASTE POL APPLICATION

VOA Compounds (ug/g)

	- 1												
Unidentified Peaks		>	0	~	0	0	0	m	0	0	7	4	m
Сріогогогт	5	100.	.001	.300	<.00J	<.00J	<.031	.001	.001	.002	.001	.001	.001
Деглясруоловгрууеле	3	100.	·.001	<.001	·. co1	·.001	<.001	<.001	·.001	·.001	<.001	<.00T	<.001
1,3-Dichloropropane	100	,.uu	·.001	<.001	<.001	.001	.001	·.001	.001	·.001	<.002	.002	·.001
1,1-Dichloroethylen	50,	100%	.00	.024	.001	.00	.007	.007	.001	.002	.016	0.10	.532
1,1-Dichloroethane	5	100.	·.001	.004	<.001	·.001	<.001	.005	·.001	<.001	600.	.01	· .00.
1,2-Dichloroethane	100	700.	<.001	800.	·.001	·.001	.007	800.	TOO.	.012	600.	500.	.001
	Oil & Grease (mg/kg)	97	33	82	19	28	15	32	< 10	40	38	× 10	· 10
:	HNU Reading (PPM)	פר	BG	BG	1	-	2	7	8	2	m	m	m
e	Depth (ft)	T-0	1-2	1-2	1-2	0-1	1-2	0-1	1-2	<u>-</u> -	1-2	0-1	1-2
Boring No./	Sample No.	7-TT 95	SB 12-4	SB 13-6	SB 14-8				SB 16-12		SB 17-14		

For a complete list of compounds analyzed see Table 4-2. Compounds listed in Table 4-2 but not found at a detection limit of 1 ug/kg are not reported here. Methylene Chloride was detected in all samples, QA duplicates and blanks - cross-contamination within laboratory is indicated, so no Methylene Chloride results are included here.

TABLE 4-5: SUMMARY OF SOIL CHEMISTRY DATA NORTH FIRE DEPARTMENT TRAINING AREA

Unidentited Feaks	717771077800
Атийі Сруокіде	
Ттісһ Токое срапе	
ј,2-Бісћіотометћале	
Втомосісь Іотометь впе	
СРТокогокш	. 540 . 001 . 390 . 390 . 001 . 001 . 001 . 800 . 813
ј,і,і-ттісћіотое сћапе	
рхошошегряпе	0013 0013 0013 0013 0013 0013 0013 0013
ј'ј-Бісрјоковсруудеве	. 001 . 015 . 015 . 013 . 013 . 013 . 013 . 004 . 006 . 006 . 006
ј'ј-Бісрјокесрапе	
ј,2-Бісћіогесћапе	
Oil 6 Grease (ug/kg)	100 300 24,700 17,500 350 1,400 4,500 350 18,900 11,250 300
HNU Reading (PPM)	17 16 190 150 120 120 300 100 32
Sample Depth (ft)	
Soil Boring/	B 19-12 B 20-3 B 20-3 B 20-13 B 20-13 B 21-6 B 21-20 B 22-4 B 22-6 B-22-10

For a complete list of compounds analyzed see Table 4-2. Compounds listed in Table4-2 but not tound at a detection limot of .001 mg/g are not reported here. Methylene chloride was detected in all samples, Ag daplicates and blanks--cross-contamination within laboratory is indicated, so no methylene chloride results are included here.

WESTEN

combined with the failure to detect a caliche layer in any of the borings, indicates that the potential exists for downward migration of contaminants to occur. Eleven VOA compounds were detected, and all 12 soil samples contained at least one VOA compound. The most common VOA compound found was 1,1-dichloroethylene, found in all but 2 of the samples. The highest VOA concentrations detected were for chloroform, with concentrations ranging from 0.320 to 0.800 parts per million. VOA compounds were found at various depths in the four borings, but the detection of elevated chloroform levels in three samples below 9 foot depths confirms that fuels and solvents emplaced at the site are migrating vertically to depths greater than those sampled.

4.3 WATER CHEMISTRY CONDITIONS

Water samples were taken for analysis from all base production wells and from the influent and effluent of the wastewater treatment plant. The principal purpose of this sampling and analysis protocol was to ascertain whether or not past hazardous waste disposal activities had resulted in environmental degradation of ground water resources at LAFB. Only base production wells were used in this initial program due to the extreme depth to the water table (expected to be on the order of from 350 to 400 feet below grade) and the high cost of constructing monitor wells to such a depth.

The analytical results obtained reflect only a single round of sampling and analysis, and conclusions drawn from these results should be evaluated with this understanding.

4.3.1 Groundwater Quality Results

Water quality data from the sampling and analysis of groundwater samples obtained from all available LAFB production pesticide wells are Table 4-6. The contained in dibromochloropropane was detected at the limit of detection in only one well, Well No. 10. As can be seen in Figure 2-1 this well is located near the northwest boundary of LAFB, and it might be expected to be impacted by pesticide usage on adjacent farm fields. Analysis for lead was required on-No. 11, adjacent to the Waste POL Disposal ly on Well Trenches Site--lead was not detected at a detection limit equivalent to the Federal and State Safe Drinking Water Standard of 0.05 parts per million. Neither oil and grease nor phenol were detected in the well samples required to be analyzed. Four radiological parameters were analyzed on

WESTER

Well No.4 located in the Waste Treatment Annex--only gross beta and gross gamma activities were detected at levels of 34 +/- 4 and 38 +/- 4 picocuries per liter (pCi/1)respectively. No data has yet been located which would indicate whether or not such activities are typical of background water quality in the area. VOA analyses were performed on three wells, and only in Well No. 10 were significant levels of any VOA compounds detected. Well No. 10 is located adjacent to both Site No. 7, the North Fire Department Training Area, and the current Fire Department Training Area. The 1,2-dichloroethane detected at 0.0108 ppm in Well No. 10 was also found at low levels in 5 of the soil samples from the North Fire Department Training Area, but the (trans)-1,2-dichloroethylene detected at 0.001 ppm in Well No. 10 was not found in any of the North Fire Department Training Area samples. The source of the two VOA contaminants in Well No. 10 remains unidentified, but the two nearby fire training areas must be considered as potential sources.

4.4 SIGNIFICANCE OF THE FINDINGS

4.4.1 Water Quality - General

The principal objective of the Phase II Confirmation Stage (Stage 1) Study was to determine whether past hazardous waste operations or disposal practices had resulted in environmental degradation. The analytical results of the Phase II study represent a single round of sampling at wells. The conclusions drawn from this information should be evaluated with this understanding.

Groundwater quality results are in Table 4-6. Appendix G includes all analytical results from monitoring the base production wells. The water quality analyses accomplished encountered none of any contaminants in excess of Federal or Arizona drinking water enforcement standards. Table 4-7 summarizes these analytes detected at Luke AFB and the Federal or State enforceable Standards which apply.

4.4.2 Water Quality at LAFB

From the data contained in Tables 4-6 and 4-8 it can be seen that groundwater quality at LAFB is generally excellent for

TABLE 4-6: SUMMARY OF WATER QUALITY DATA BASE PRODUCTION WELLS (ug/1)

										VOA Compounds	unds ⁴
Sample No.	ان	DBCP	Lead	Oil L Grease	Phenols	RA-226 ³	Gross 3		Gross ₃	1,2-Dichloroethane	(frans) 1,2- Dichloroethylene
Well No. 1	7	<0.1	NR ¹	a a	2	NR	NR	X X	x Z	пR	NR
Well No. 4	4	<0.1	X	100	٠,	· 0 • 004	, 2	34-4	38±4	1.4	·0.1
Well No. 7	7	<0.1	~	N R	ž	X X	X X	N N	¥	NK	NR
Well No. 85	30 (30										
Well No. 95	ر پ										
Well No. 10	10	0.1	NR	100	NR	N.	NR	æ Z	X X	10.8	100.0
Well No. 11	11	.0.1	90	. 100	X X	~ N	ž	X X	X X	. 0.07	0.10
Well No. 12	12	.0.1	ž	X X	ž	NR	¥	N.	¥	X X	NR

NR indicates not required by task order

. As 2,4-Dimethylphenol

Picocuries per liter

For a complete list of compounds analyzed see Table 4-2. Compounds listed in Table 4-2, but not found at the Method 60t or 602 detection limits are not reported here.

. These wells were out of service and could not be sampled.

TABLE 4-7: COMPARISON OF LAFB WATER QUALITY RESULTS WITH APPLICABLE STANDARDS GUIDELINES AND CRITERIA (mg/l unless otherwise noted)

Detected Parameters	Federal and State Drinking Water Standards	Monitor Points Exceeding Standards
Oil & Grease	ı	1
Phenol	ı	ı
Lead	0.05	None of the Points Tested
DBCP	ı	ı
Trihalomethanes	0.100	None of the Points Tested
1,2-Dichloroethylene	ı	1
(Trans)-1,2,- Dichloroethylene	1	1
Gross Alpha	15.0 ¹	None of the Points Tested
Gross Beta	4.0 ²	None of the Points Tested
Gross Gamma	ı	ı
Radium - 226	5.01	None of the Points Tested

1 - Picocuries per liter

² - Millirem per year

TABLE 4-8: COMPARISON OF LAFB WATER QUALITY RESULTS WITH APPLICABLE STANDARDS GUIDELINES AND CRITERIA (mg/l unless otherwise noted)

Detected Parameters	Federal and State Drinking Water Standards	Monitor Points Exceeding Standards
Oil & Grease	ţ	ı
Phenol	ı	ı
Lead	0.05	None of the Points Tested
DBCP	ſ	1
Trihalomethanes	0.100	None of the Points Tested
1,2-Dichloroethylene	ſ	ı
(Trans)-1,2,- Dichloroethylene	1	1
Gross Alpha	15.0 ¹	None of the Points Tested
Gross Beta	4.0 ²	None of the Points Tested
Gross Gamma	ţ	ı
Radium - 226	5.01	None of the Points Tested

1 - Picocuries per liter

- Millirem per year

the suite of potential contaminants tested. The detection of 0.1 ug/l of dibromochloropropane (DBCP) in production Well No. 10 should be verified, although it should be noted that the concentration reported is at precisely the limit of detection. The detection of 1,2-dichloroethane in two Base Production Wells should be verified. The detection of (trans)-1-2-dichloroethylene in Well No. 10 should also be verified.

4.4.3 Soil Quality General

Other than the USEPA Action Level of 50 mg/kg for PCB in soil, there are no current quality standards, guidelines or criteria for the majority of soil contaminants. Target concentrations for various compounds in soils are usually established on a case-by-case basis by the regulatory agency having jurisdiction, and these target concentrations are usually established for attainment purposes in cleanup of environmental contamination.

4.4.4 Soil Quality at LAFB

Soil contamination in the form of oil and grease was detected at Site No. 6, the South Fire Department Training Area, although planned construction of concrete pads and macadam parking lots on the site effectively remove this contamination from further concern. Very mild lead and chloroform contamination was detected at Site No. 5, the POL Waste Disposal Trenches, although the very low levels encountered, combined with the presence of a caliche zone, would effectively remove this site from further concern. It should be noted here, however, that only a portion of the site was accessible for evaluation. Virtually no soil contamination detected at Site No. 4, the Perimeter Road Waste POL Application Site, effectively removing this site from further concern. At Site No. 7, the North Fire Department Training Area, contamination was detected in the form of oil and grease as well as several VOA compounds. While the levels of the contaminants detected are not high, combination of:

- (1) the soil concentrations found;
- (2) the lack of caliche layer at the site; and
- (3) the proximity to Base Production Wells;

indicates that the site, and the nearby Current Fire Training Area should be of further concern.

WESTEN

4.4.5 Conclusions

Based upon the results of the Phase II Confirmation Stage (Stage 1) Study at Luke AFB, the following key conclusions have been drawn:

- 1. Shallow soil conditions sampled and analyzed at LAFB indicate that levels of potential contaminants are low at most sites. The exception to this conclusion is Site No. 7, the North Fire Department Training Area, where VOA contaminants were detected at higher levels and deeper depths than at the other sites. No caliche layer was detected at Site No. 7.
- Water quality testing was done only on Base Production Wells, and water quality data for the species tested are generally good. The exceptions to this conclusion are Wells Nos. 4 and 10, where low levels of 1,2-dichloroethylene was detected.
- 3. Well No. 10 is located adjacent to Site No. 7, the North Fire Department Training Area, and the potential exists that solvents detected in Well No. 10 are from either the North Fire Department Training Area of from the Current Fire Department Training Area.
- 4. Site No. 7, the North Fire Department Training Area, as well as the Current Fire Department Training Area (located about 200 yards east of Site No. 7) should be subjected to additional evaluation in order to ascertain the source or sources of VOA compounds in Production Well No. 10.

WESTEN

SECTION 5

ALTERNATIVE MEASURES

5.1 GENERAL

The principal goal of this Phase II Confirmation Study was to determine whether or not environmental degradation was occuring as a result of past waste disposal practices at LAFB. The work scope directed that an initial round of samples be collected. The basis for many of the above conclusions is, therefore, predicated on this set of analyses. That only two Base Production Wells contained detectable levels of halogenated organics is an important preliminary finding which requires verification. The detection of low levels of radionuclides in Production Well No. 4 also requires further evaluation.

The alternative measures discussed below focus mainly upon problem definition aspects of environmental contamination detected at LAFB. The alternative actions which could be undertaken at this point generally fall into the following categories:

	Action	Sites
1.	Quantification Stage (Stage 1) Monitoring at Base Production Wells	Base Wells
2.	Expanding Groundwater Monitoring Network	Current and North Fire Department Training Areas
3.	Interim Quarterly Monitoring	Base Wells
4.	Quantification Stage (Stage 1) Analysis	Current and North Fire Department Training Areas

These alternative measures are generally in the order of priority based on the findings to date.

WESTER!

5.1.1. Base Production Wells

All Base Production Wells should be resampled for at least the list of analytes run in the single Confirmation Stage (Stage 1) round of analyses. This new round of sampling and analyses should include those wells which were out of service and could not be sampled during Confirmation Stage (Stage 1) activities. In view of the detection of VOA compounds in two wells, and radionuclides and a pesticide in one well, the Base should consider establishing a routine, quarterly sampling program for this limited suite of analytes in order to establish a baseline of these water quality data.

5.1.2 Current and North Fire Department Training Areas

A verification round of water quality analyses should be run on all Base Production Wells, with particular attention paid to the cluster of wells west and downgradient of these sites. If this round of sampling verifies the presence of VOA compounds in one or more of the wells, then an expanded Quantification Stage (Stage 2) evaluation of the sites would be warranted.

5.2 SUMMARY

Supplementary actions concerning water resource analysis and monitoring are not believed to be necessary based on the data obtained to date.

SECTION 6

RECOMMENDATIONS

6.1 GENERAL

The findings of the Phase II Study at LAFB indicate the need for follow-on work. This work includes the following:

- General verification of the initial round of water quality sampling and analysis.
- 2. An expanded monitoring program developed for the Current and North Fire Department Training Areas, with an emphasis on determining the nature and extent of contamination by priority pollutants.

The recommended actions are intended to establish the data base for evaluation of which, if any, remedial actions might be necessary for each given site. The recommendations are presented in prioritized order.

6.1.1 Base Production Wells

The following supplemental work is recommended for all Base Production Wells:

- 1. All Base Production Wells should be resampled and subjected to verification analyses for oil and grease, VOA compounds, pesticides and radionuclides, at a minimum. All positive VOA results should be subjected to second column confirmation.
- 2. Based upon the results of the verification analyses, the Base should consider implementing a routine, quarterly water quality monitoring program for all Base Production Wells for these analytes.

6.1.2 Current and North Fire Department Training Areas

The following supplemental work is recommended for the Current and North Fire Department Training Areas:

WESTEN

- 1. Based upon the results of the verification analyses, additional soil borings in the vicinity of both Fire Department Training Areas are recommended. Four soil exploratory borings are recommended to be drilled to depths of 100 feet each, two at each of the two Areas. Soils should be sampled at 5-foot intervals, and should be analyzed for oil and grease and VOA compounds, in order to define the vertical extent of soil contamination.
- 2. If soil contaminants are found at the 100-foot level in any of the borings, then two downgradient monitor wells are recommended to be drilled one between the North and Current Fire Department Training Areas, and one between the North Fire Department Training Area and the cluster of Base Production Wells at the northwestern corner of the Base. These wells should be sampled and analyzed for oil and grease and VOA compounds, as a minimum.
- 3. A Concept Engineering Evaluation of the two sites should be considered in order to a) identify the broadest possible spectrum of potentially appropriate remedial actions, and b) make recommendations as to the proper reconstruction and operation of the Current Fire Department Training Area, in order that continued use of the site will not provide a continuing source of potential groundwater contaminants.

APPENDIX A

Acronyms, Definitions, Nomenclature and Units of Measurement

WESTER

ASTM	American	Society	for	Testing	and	Materials
------	----------	---------	-----	---------	-----	-----------

Alluvium Sedimentary materials deposited in an environment

of flowing surface waters.

Aquifer Zone beneath the earth's surface capable of

producing water for a well.

Artesian Describes ground waters which are under pressure

in an aquifer, with pressures causing ground

water to rise in a well.

BEE Bio-Environmental Engineering

Caliche Gravel, sand or desert debris cemented by porous

calcium carbonate.

CERCLA Comprehensive Environmental Response Compensation

and Liability Act of 1980.

cm/s Centimeters per second

Conglomerate A rock composed of rounded, water-worn fragments

of gravel or pebbles, cemented together by another

mineral substance.

BDCP Pesticide compound syn: 1,2, Dibromo-3-

Chloropropane.

DEQPPM Defense Environmental Quality Program Policy

Memorandum

DoD Department of Defense

EDB Pesticide compound syn: Ethylene Dibromide

Evaporites Sedimentation deposits of minerals crystallized

during evaporation of fresh or saline waters.

ground water

divide

A line on the water table on each side of which

the ground water table slopes away from the

line.

ground water

surface

The level below which the earth is saturated.

HARM Hazard Assessment Rating Methodology.

HNu Volatile organic vapor detection meter.

W. STORY

hydraulic gradient Change in pressure or head in the ground

water over a given distance of flow.

IRP Installation Restoration Program.

Lacustrine Deposits Sedimentary materials deposited on the bottom

of a lake bed.

LAFB Luke Air Force Base

MCP Major Construction Program

ug/g Micrograms per gram (equilavent to parts

per billion in solids).

ug/l Micrograms per liter (equivalent to parts per

billion in water).

mg/l milligrams per liter (equivalent to parts per

million in water).

mgd million gallons per day

M.S. Master of Science degree

MSL Mean Sea Level datum

N North

O&G Oil and grease

OEHL Occupational and Environmental Health

Laboratory

pCi/l Picocuries per liter

P.G. Registered Professional Geologist

Ph.D. Doctor of Philosophy degree

POL Petroleum, Oil and Lubricants

ppb Parts per billion (equivalent to ug/l in

water).

ppm Parts per million (equivalent to mg/l in

water).

RCRA Resource Conservation and Recovery Act of 1976

TAC Tactical Air Command

Unconsolidated Sediments that are uncemented and thus contain Sediments

interconnected void space (primary porosity) that allow for the storage and transmission

of groundwater.

USAF United States Air Force

USEPA United States Environmental Protection Agency.

VOA Volatile Organic and Aromatic Hydrocarbons

Waste Treatment Annex WTA

WWTP Waste Water Treatment Plant

APPENDIX B
TASK ORDER 0024

Textision No. 1 of Textription of Task INSTRIBUTION RESIDEATION PROGRAM

Thase II Field Evaluation

Luke AFB AZ

I. Description of Work

The purpose of this task is to determine if environmental contamination has resulted from waste disposal practices at Luke AFB AZ; to provide estimates of the magnitude and extent of contamination, should contamination be found; to identify potential environmental consequences of migrating pollutants; to identify any additional investigations and their attendant costs necessary to identify the magnitude, extent and direction of movement of discovered contaminants.

The presurvey report (mailed under separate cover) and Phase I IRP report (mailed under separate cover) incorporated background and description of the sites for this task. To accomplish the survey effort, the contractor shall take the following steps:

A. General

- 1. Water sampling shall be accomplished only once at each location.
- 2. Sampling, maximum holding time and preservation of samples shall strictly comply with the following references: (a) Standard Methods for Examination of Water and Wastewater, 15th Ed. (1980), pp.35-42; (b) ASTM; Part 31, pp. 72-82, (1976), Method D-3370; and (c) Stardard Methods for Chemical Analysis of Water and Wastes, EPA Manual 600/4-79-020, pp.xiii to xix (1979). Minimum detection limits for chemical analyses are shown in attachment 1.
- 3. Bore holes shall be monitored for organic vapors with photo-ionization detector and explosimeter throughout drilling, and the readings thus obtained shall become part of the boring logs.
- B. In addition to items delineated above, conduct the following specific actions at sites identified on Luke AFB.
 - 1. Site No. 6, South Fire Department Training Area
- a. The contractor shall interview former employees familiar with the location of the South Fire Department Training Area to determine the exact location of this site. Names of personnel to be interviewed will be provided by the Luke AFB bioenvironmental engineer. Available aerial photos of the site shall also be reviewed. The contractor shall obtain the photos from Landis Aerial Surveys, Inc., in Phoenix AZ.

b. A maximum of four shallow soil samples shall be chiaised for analysis. A maximum of 4 soil samples total shall be analyzed. Samples shall be analyzed for oil and grease by EPA method 413.2 and volatile aromatics and volatile halocarbons utilizing GC techniques.

2. Site No. 5, POL Waste Disposal Trench

- a. The contractor shall install in this site 10 soil borings 20 feet deep. The exact location of each boring shall be determined in the field. Representative samples of each one foot increment (a total of 20) shall be collected from each boring. A maximum of two samples from each boring shall be selected for analysis. A maximum of 12 samples total shall be analyzed. Those samples not analyzed shall be frozen for possible future analyses. Samples shall be analyzed for lead, oil and grease by EPA method 413.2, and volatile aromatic and volatile halocarbons utilizing GC techniques.
- b. Concurrently with the soil boring program, Luke AFB Production Well No. 11 shall be sampled and analyzed for lead, oil and grease by EPA method 413.2, and volatile aromatics and volatile halocarbons using GC techniques.

3. Site No. 4, Perimeter Road Waste POL Application Site

a. The contractor shall install eight soil borings two feet deep in the area the site is believed to be located. Representative samples of each one foot increment (a total of 2) shall be collected from each boring and shipped to the contractor laboratory. A maximum of two samples from each boring shall be selected for analysis. A maximum of 12 soil samples total shall be analyzed. Those samples not analyzed shall be frozen for possible future analyses. Samples shall be analyzed for oil and grease by EPA method 413.2 and volatile aromatics and volatile halocarbons using GC techniques.

4. Site No. 7, North Fire Department Training Area

- a. The contractor shall install four soil borings 20 feet deep in the area where the site is believed to be located. Representative samples of each one foot increment (a total of 20) shall be collected from each boring and shipped to the contractor laboratory. A maximum of four samples from each boring shall be selected for analysis. A maximum of 12 soil samples total shall be analyzed. Those samples not analyzed shall be frozen for possible future analyses. Samples shall be analyzed for oil and grease by EPA method 413.2 and volatile aromatics and volatile halocarbons utilizing GC techniques.
- b. Concurrent with the soil sampling program, Luke AFB Production Wells 8, 9 and 10 shall also be sampled and analyzed for oil and grease by EPA method 413.2 and volatile aromatics and volatile halocarbons using GC techniques.

5. Rose Production Wells and Wastewater Treatment Plant

- a. The contractor shall sample all 9 existing base production wells. All 9 samples shall be analyzed for dibromochloropropane (DECP). The sample from Well No. 4 shall also be analyzed for Oils and Greases (TR Method 413.2), Phenols, Volatile, Aromatics, and Volatile Halocarbons by GC techniques, Gross-Alpha, Beta- and Gamma Activities, and Radium-226.
- b. The contractor shall obtain one sample each from the influent and effluent to the Wastewater Treatment Plant. Each sample (2 total) shall be analyzed for Oils and Greases, Phenols, and Volatile Aromatics, and Volatile Halocarbons by GC techniques.

C. Boring Installation and Clean-up

Upon completion of each boring, the bore hole shall be pressure-grout backfilled with a bentonite-cement mixture. Boring area shall be cleaned following the completion of each boring. Drill cuttings shall be removed and the general area cleaned. A total of 22 borings shall be accomplished. The exact location of borings in each site shall be determined in the field.

D. Data Review

Results of sampling and analysis shall be tabulated and incorporated in the monthly R&D Status Report and forwarded to the USAF OEHL for review as soon as they become available as specified in Item VI below.

E. Reporting -

- 1. A draft report deliniating all findings of this field investigation shall be prepared and forwarded to the USAF OEHL as specified in Item VI below for Air Force review and comment. This report shall include a discussion of the regional geohydrology, boring logs from all project borings, soil test results and conclusions, water quality analysis results, and laboratory quality assurance information. This report shall follow the USAF OEHL supplied format (mailed under separate cover).
- 2. Estimates shall be made of the magnitude and extent of movement of contaminants discovered. Potential environmental consequences of discovered contamination must be identified or estimated. Where survey data are insufficient to properly determine or estimate the magnitude and extent of movement of discovered contaminants specific recommendations, fully justified, shall be made for additional efforts required to properly evaluate contamination migration.
- 3. Specific requirements, if any, for additional soil borings or for future groundwater monitoring must be identified.

F. Cuality Assurance

The quality assurance specified in Section H, para. xxi of the contract is applicable to this order.

G. Cost Estimates

The contractor shall provide cost estimates for all additional work recommended to permit proper determination of contaminants. The recommendations provided shall include all efforts required to determine the magnitude, extent and direction of movement of discovered contaminants along with an estimate of the time required to accomplish the proposed effort. This information shall be provided in a separately bound appendix to the draft final report.

II. Site Location and Dates

Luke AFB AZ USAF Hospital Luke/SGPB Dates to be established

- III. Base Support: None
 - IV. Government Furnished Property: None
 - V. Government Points of Contact:
 - 1. Dee Ann Sanders USAF OEHL/CVT Brooks AFB TX 78235 (512) 536-2158 AV 240-2158
- 2. 2Lt Benry J. Thompson, Jr USAF Hospital Luke/SGPB Luke AFB AZ 85309 (602) 856-7521 AV 853-7521
- 3. Col Jerry Dougherty
 HQ TAC/SGPAE
 Langley AFB VA 23665
 (804) 764-2180
 AV 432-2180

No modification or change to above task will be done, without being proposed and submitted in writing, in a timely manner to USAF OEHL/CVT.

VI. In addition to sequence numbers 1, 5, and 11 listed in Atch 1 to the contract, which are applicable to all orders, the reference numbers below are applicable to this order. Also shown are data applicable to this order.

Sequence Nr Block 10 Block 11 Block 12 Block 13 Block 14

4 ONE/R 84FEB13 84FEB27 84JUN15

*Contractor shall supply the USAF OEHL with 20 copies of the draft report and 50 copies plus the original camera ready copy of the final report.

Attachment 1

Required Sample Detection Limits

Perereter	<u>Soil</u>	<u>Kater</u>
Oil and Grease (IR Method 413.2)	100 microgram/gram	0.1 milligram/liter
Phenol		1.0 microgram/liter
Dibromochloropropane (DBCP)		0.1 microgram/liter
Volatile Aromatics, Volatile		
Halocarbons	•	•
Gross Alpha, Beta, Gamma Activities		2 picocuries/liter
Radium 226		2 picocuries/liter

[•] Detection limits shall be as specified for compounds listed in EPA Methods 601 and 602.

APPENDIX C
Professional Profiles of Project Personnel

Peter J. Marks

Fields of Competence

Project management; environmental analytical laboratory analysis; hazardous waste, groundwater and soil contamination; source emissions/ambient air sampling; wastewater treatment; biological monitoring methods; and environmental engineering.

Experience Summary

Eighteen years in Environmental Laboratory and Environmental Engineering as Project Scientist, Project Engineer, Process Development Supervisor, and Manager of Environmental Laboratory with WESTON. Experience in analytical laboratory, wastewater surveys, hazardous waste, groundwater and soil contamination, DoD-specific wastes, stream surveys, process development studies, and source emission and ambient air testing. In-depth experience in pulp and paper, steel, organic chemicals, pharmaceutical, glass, petroleum, petrochemical, metal plating, food industries and DoD.

Applied research on a number of advanced wastewater treatment projects funded by Federal EPA.

Credentials

B.S., Biology-Franklin and Marshall College (1963)

M.S., Environmental Engineering and Science—Drexel University (1965)

American Society for Testing and Materials

Water Pollution Control Federation

Water Pollution Control Association of Pennsylvania

Employment History

1965-Present

WESTON

1963-1964

Lancaster County General Hospital Research Laboratory for Analytical

Methods Development

Key Projects

USAF/OEHL Brooks AFB. Program Manager for this three-year BOA contract provides technical support in environmental engineering surveys, wastewater characterization programs, geological investigations, hydrogeological studies, landfill leachate monitoring and landfill siting investigations, bioassay studies, wastewater and hazardous waste treatability studies, and laboratory testing and/or field investigations of environmental instrumentation/equipment. Collection, analysis, and reporting of contaminants present in water and wastewater samples in support of Air Force Environmental Health Programs.

United States Army Toxic and Hazardous Materials Agency (USATHAMA), Aberdeen Proving Ground, Maryland. Program Manager for three-year basic ordering agreement contract to provide research and development for technology in support of the DOD Installation Restoration Program. The objective of the Program is to identify and develop treatment methods/technology for containment and/or remedial action. Technology development for remedial action is to include groundwater, soils, sediments, and sludges.

Confidential Client, Ohio. Project Manager of an on-going contract to conduct corporate environmental testing and special projects at client's U.S. and overseas plants. WESTON must be able to assign up to four professionals to a project within a two week notice.

Confidential Client (Inorganic and Organic Chemicals). Product Manager of a current contract to conduct wastewater sampling and analysis of plant effluent for priority pollutants. The project also includes a wastewater treatability study to evaluate a number of process alternatives for removal of priority pollutants from the present effluent.

Confidential Client, Utah. Technical Project Manager for in-depth wastewater survey, in-plant study, treatability study, and concept engineering study in support of the client's objectives to meet 1983 effluent limitations. WESTON had two project engineers, two chemists, five technicians and an operating laboratory in the field. Field effort is six months duration.

Frederick Bopp III, Ph.D., P.G.

Registration

Registered Professional Geologist in the State of Indiana

Fields of Competence

Groundwater resources evaluation; hydrogeologic evaluation of sanitary landfills and other waste disposal sites; detection and abatement of groundwater pollution; digital modeling of groundwater flow and solute transport; statistical analysis of geological and geochemical data; geochemical prospecting; estuarine geology and geochemistry; trace metal and aqueous geochemistry.

Experience Summary

Seven years experience in hydrogeology and geochemistry, involving such activities as: assessment of subsurface water and soil contamination; development of contamination profiles; evaluation of remediation actions for groundwater quality restoration; quantitative chemical analysis of water and soil; ore assay and ore body evaluation; drilling supervisor; hydrogeologic assessment; pollution detection and abatement; estuarine pollution analysis; application of flow and solute transport computer models; computer programming; project management; teaching environmental geology and geochemistry.

Credentials

B.A., Geology-Brown University (1966)

M.S., Geology—University of Delaware (1973)

Ph.D., Geology-University of Delaware (1979)

Sigma Xi, The Scientific Research Society of North America

Geological Society of America, Hydrology Division

National Water Well Association, Technical Division

American Association for the Advancement of Science

Estuarine Research Federation: Atlantic Estuarine Research Society

Employment History

1979-Present WESTON

1977-1979 U.S. Army Corps of Engineers

Waterways Experiment Station

1976-1977 University of South Florida

Department of Geology

1970-1976 University of Delaware

Department of Geology

1974-1976 Earth Quest Associates

President and Principal Partner

1974 (Summer) WESTON

1966-1970 United States Navy

Commissioned Officer

Key Projects

Project manager on seven task orders for environmental assessment services at United States Air Force facilities in nine states.

Task manager for a Superfund site evaluation in Ohio.

Site manager for drum recovery operations in Pennsylvania and New Jersey.

Project manager for site assessments of oil and fuel spills in four states.

Project manager for closure plan development at a hazardous waste landfill in New Jersey.

Definition and abatement of groundwater contamination from chemical manufacturing in Delaware.

Flow and solute transport digital model of a heavilypumped regional aquifer in southern New Jersey.

Definition and abatement of groundwater contamination from chemical manufacturing in the Denver area.

Hydrogeologic impact assessment of on-land dredge spoil disposal in coastal North Carolina.

Geochemical prospecting and ore body analysis in Arizona.

Walter M. Leis, P.G.

Registration

Registered Professional Geologist in the States of Georgia (No. 440) and Indiana.

Fields of Competence

Detection and abatement of groundwater contamination; design of artificial recharge wells; deep well disposal; simulation of groundwater systems; hydrogeologic evaluation of hazardous waste sites and landfills; practical applications of geophysical surveys to hydrologic systems, site investigations, and borehole geophysical surveys. Geochemical studies of acid mine drainage and hazardous wastes.

Experience Summary

Sixteen years experience as field hydrogeologist, field supervisor, project director, research director. Six years research involving two consecutive projects: 1) application of geophysical techniques in evaluating groundwater supplies in fractured rock terrain in Delaware and Pennsylvania; 2) project director for an artificial recharge and deep well disposal study. Provided consultation for waste disposal and aquifer quality problems for coastal communities.

Developed geochemical sampling techniques for deep mine sampling. Evaluated synthetic and field hydrologic data for deep formulational analysis in coal field proiects.

Earlier research experience involved developing techniques for mapping subsurface regional structures having interstate hydrologic significance, and defining ore bodies by geochemical prospecting.

Credentials

B.S., Biochemistry—Albright College (1966)

M.S., Hydrogeology—University of Delaware (1975)

Cooperative Program Environmental Engineering— University of Pennsylvania Additional special course work in Geology and Hydrology, Franklin and Marshall College and Pennsylvania State University

Remote Sensing Data Processing Training, Goddard Space Center (1978)

OWRR Research Fellow, 1973

National Water Well Association, Technical Division.

Geological Society of America, Engineering Geological Division.

Society of Economic Paleontologists and Mineralogists

Employment History

1974-Present	WESTON
1973-1974	University of Delaware Water Resources Center
1971-1973	University of Delaware
1967-1971	Pennsylvania Department of Environmental Resources

Key Projects

Definition of groundwater contamination from sanitary landfill leachate and recovery of contaminants to protect heavily used aquifer in Delaware.

Field design studies for artificial recharge and waste disposal wells.

Design and construction of hydrologic isolation systems for various class hazardous wastes.

Design and supervision of chemical and physical rehabilitation of groundwater collection systems in fractured rock and coastal plain areas.

Principal investigator for six projects involving subsurface migration of PCB's in New York, New Jersey, Pennsylvania, and Oklahoma.

Design and construction supervision of hydrocarbon recovery wells in Pennsylvania.

James S. Smith, Ph.D.

Fields of Competence

Analytical laboratory management; organic chemistry; mass spectrometry, GC/MS/DS, high and low resolution, chemical ionization and special techniques; gas chromatography including capillary column techniques; high performance liquid chromatography (HPLC); the uses of NMR, IR, UV, visible, inorganic analyses, electrochemical, thermal techniques and surface methodologies (SEM, ESCA, SIMS) to solve industrial problems; the development of quality control measures in analytical protocols; the testing of laboratory safety methodologies; innovation of new analytical techniques and methods to solve industrial, product liability, production and environmental problems.

Experience Summary

Eleven years experience in the supervision of an analytical group involved in solving all types of industrial problems including environmental, product safety, production, research and development. The main emphasis was on the innovative development of analytical methods utilizing instrumental technologies. Indepth experience in the organic chemicals, inorganic chemicals polymer, fiber, tire, solvent, fluorine chemicals, coke and coal tar industries. Numerous scientific presentations. Contributor to three Chemical Manufacturers Association Task Groups: Environmental Monitoring, Groundwater, and Hazardous Waste Response Center.

Taught general chemistry, analytical chemistry, organic chemistry, and instrumental analysis for four years at Eastern Michigan University and the University of Illinois.

Credentials

B.A., Chemistry-Williams College (1960)

Ph.D., Organic Chemistry—Iowa State University (1964) Postdoctoral Organic Chemistry—University of Illinois (1966)

Postdoctoral Mass Spectroscopy—Cornell University (1969)

American Chemical Society

American Society for Testing Materials

American Society of Mass Spectroscopists

Employment History

1981-Present	WESTON
1969-1981	Allied Chemical Corporation Corporate Research Center
1966-1968	Eastern Michigan University Assistant Professor of Chemistry
1965-1966	University of Illinois

Key Projects

Directed analytical group for five years of intensive sampling and analysis of a toxic insecticide. Analyses involved soil, air, water, sludge, blood, bile, feces, urine, animal feed, and plant samples to detect the compound at the low parts-per-billion level. The project involved rapid development of new and accurate analytical methods.

Developed an industrumental analytical laboratory consisting of trace environmental analyses, gas chromatography, high performance liquid chromatography, mass spectrometry, surface analyses, X-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy including the design and manufacture of instrument modifications, purchasing instruments, and hiring of key personnel.

Isolated, identified, and developed a method of analysis for a colored impurity on a bulk chemical product. Synthesized the colorant for proof of identification and as a standard for future analysis. Proved the mechanism of the development of the color from the packaging materials. Designed new specifications eliminating the problem.

Conducted corporate plant environmental laboratory QA/QC audits including the development of a corporate QA/QC manual.

Provided an inexpensive and accurate method of analysis of lead for a manufacturing plant effluent. A published methodology in kit form was modified for plant personnel use to measure soluble and total lead in a waste stream without use of excessive manpower or capital. QA/QC procedures were included as well as the use of performance samples.

Supervision of analytical technological advances that lead to either patents and new products in the fields of coal tar chemicals, food packaging and transformer manufacturing.

Publications

Smith, J., A. Weston, and C. Wezwick, "Tire Cord Emission Studies, Conclusion", The International Society of Industrial Yarn Manufacturers, Savannah, Georgia, 3-4 November 1977.

Hanrahan, J., E. McCarthy, D. Richton, J. Smith, and A. Weston, "Identification of an Interfering Compound is the Determination of Dimethylnitrosamine by Gas Chromatography-Mass Spectrometry", 26th Annual Conference on Mass Spectrometry and Allied Topics, St. Louis, Missouri, 28 May to 2 June 1978.

Brozowski, E., D. Jerolamon, D. Richton, D. Smith, J. Smith, and A. Weston, "Industrial Applications of Chemical Ionization with the Ammonium Ion", 26th Annual Conference on Mass Spectrometry and Allied Topics, St. Louis, Missouri, 28 May to 2 June 1978.

Mueller, B.W., L. Palmer, G. Rebyak, and J. Smith, "Analysis of Alpha and Beta Naphthalene Sulfonic Acids by High Performance Liquid Chromatography", North Jersey A.C.A. Chromatography Discussion Group, Nutley, New Jersey, 14 March 1979.

French, C., L. Palmer, and J. Smith, "Analysis of Polymer Oligomers by High Performance Liquid Chromatography", Middle Atlantic Regional A.C.S. Meeting, West Long Branch, New Jersey, 19-23 March 1979. Burkitt, D. and J. Smith, "A Simple Chromatographic Modification Providing for Rapid Interchange of Capillary and Packed Columns", Middle Atlantic Regional A.C.S. Meeting, West Long Branch, New Jersey, 19-23 March 1979.

Brozowski, E., D. Jerolamon, D. Richton, D. Smith, and J. Smith, "A Convenient Method for the Evaporation of Solvent in the Priority Pollutant Program," Middle Atlantic Regional A.C.S. Meeting, West Long Branch, New Jersey, 19-23 March 1979.

Mady, N., D. Smith, J. Smith, and C. Wezwick, "The Analysis of Kepone in Biological Samples", Proceedings of the 9th Materials Research Symposium, Gaithersburg, Maryland, 10-12 April 1978.

Mueller, B., L. Palmer, and J. Smith, "A High Performance Liquid Chromatographic Method for the Analysis of Bis-phenol-A and Its Impurities", Middle Atlantic Regional A.C.S. Meeting, West Long Branch, New Jersey, 19-23 March 1979.

Gabriel, M., J. Hanrahan, and J. Smith, "A Sensitive Method for the Quantitative Analysis of Pyridine at the Low PPM Level", Middle Atlantic Regional A.C.S. Meeting, West Long Branch, New Jersey, 19-23 March 1979.

Burkitt, D., J. Hanrahan, and J. Smith, "Analysis of Hexachloroacetone and Hexafluoroacetone in Industrial Wastewater", Proceedings of the A.S.T.M. Committee D-19 Symposium, "The Measurement of Organic Pollutants in Water and Wastewater", Denver, Colorado, 19-20 June 1978.

Brozowski, E., D. Burkitt, M. Gabriel, E. McCarthy, J. Hanrahan, and J. Smith, "A Simple, Sensitive Method for the Quantitative Analysis of Carbon Tetrachloride and Chloroform in Water at the Parts Per Billion Level", Proceedings of the 9th Materials Research Symposium, Gaithersburg, Maryland, 10-12 April 1978.

John A. Williams, Jr.

Fields of Competence

Geologic and geophysical investigations; geological and groundwater sampling techniques and instrumentation technology; design, operation, and evaluation of geophysical survey, equipment, testing and analysis of aquifers, and groundwater pollution.

Experience Summary

Three years experience in geologic and geophysical investigations including subsurface profiling using Ground Penetrating Radar (GPR), electrical resistivity and electromagnetic conductivity for numerous private and government facilities; groundwater sampling and aquifer pump tests, six years experience in bathymetric, hydrographic and biological studies.

Credentials

A. S., Marine Technology - Cape Fear Technical Institute (1975)

B. S., Earth Science (Geology) - West Chester State College (1983)

Certified Ground Penetrating Radar Operator

Certified NAUI/PADDI Scuba Diver

Geological Society of America

Employment History

1982 - Present	WESTON
1980-1982	Environmental Resources Management, Inc.
1977-1980	WESTON
1976-1977	Highway Service Marineland
1975-1976	Lawler, Matusky, Skelly Engineer

Key Projects

Coordinated and supervised geophysical investigations to locate buried drums and to delineate the boundaries of a buried waste lagoon for a scrap recovery plant in Rhode Island.

Geophysical field investigation to locate buried trenches and waste lagoons for a government facility in California.

Geophysical field investigation, well installation and sample collection to determine the distribution of leachate, and the extent of contamination in a heavily-used aguifer in New York.

Geophysical investigation to define the lateral and vertical effect of fill deposition for a facility in Massachusetts.

Soils investigation to determine the extent of contamination from old waste lagoons and fire training areas for a government facility in Arizona.

Hydrogeologic investigation for a scrap recovery facility in western Pennsylvania.

Responsible for deploying benthic and water quality sampling gear and an electronic navigation system for a dredge spoils disposal study in Lake Erie.

Geophysical investigation (ground penetrating radar and electrical resistivity) to locate buried drums and delineate trench boundaries for a government facility in Ohio.

Vicki Bognar

Fields of Competence

Analytical laboratory analyses of water and soil utilizing wet chemistry and gas chromatography. Computer programing and operations. Data management.

Experience Summary

Two years of analytical laboratory experience in water analysis, process analysis of industrial plants, quality control checks of water treatment chemicals, preparation of lab quality assurance samples and subsequent performance reports using EPA standard methods of analysis. Methodology includes: wet methods of analysis, gas chromatography and auto analyzer.

Experience in field sampling, utilizing EPA techniques for water and soil. As data management coordinator: track sample status from logging through final reporting and sample disposal, complete operation of the laboratory data base computer system, and production of final tabular reports each month.

Credentials

Associates Degree—Milwaukee Area Technical College, Milwaukee, Wisconsin

Training Program by Varian Instrument Group on Gas Chromatography, Walnut Creek, CA

Basic Computer Programming and Operations—Tracy, CA

Employment History

1983-Present WESTON

1982-1983 Occidental Chemical Company

1978-1982 Todd Shipyards, Inc.

Key Projects

Occidental Chemical Company—Data management, pesticide, herbicide and fumigant analysis.

Helped plan and start up new laboratory facility.

APPENDIX D

Soil Boring Logs

	AD-A1	51 898	IN: PRI	STALLA OBLEM (ESTER)	TION R	ESTORA MATION	TION F	ROGRA	M PHAS	E II S ROY F	TAGE :	L HEST	2/	2
	UNCLAS	SSIFIE	D	ESIEK I	n 110		33013	_			F/G :	13/2	NL	
ļ														
į														
1				}										
-														
1														
i														END
-														F (M) (
I														irte

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-4

MESTER

BORING NO.: 38-1 OWNER: USAF

LOCATION: 51+6 # 5 ADDRESS: LUKE AFB

P.O.L. WASTE Phoenis, Arizona

DISPOSAL 51TE TOTAL DEPTH 20.5'

SURFACE ELEVATION: WATER LEVEL:

DRILLING WESTERN DRILLING HONOLO DATE

COMPANY: Technologies METHOD: STEM ANNY DRILLED: 9100. 1683

DRILLER: T. KUALIK HELPER: E. GONZALES

LOG BY: J. W. II wans

NOTES:

SKETCH MAP

•	.6	n /	 ,	Jaer	1 /5
r	JEPTH IFEE	T-NU	/OLE	SAMPLES	DESCRIPTION / SOIL CLASSIFICATION (COLOR, TEXTURE, STRUCTURES)
· · · · · ·		<u>//</u>	SAMPLE	SAM S	(COLOR, TEXTURE, STRUCTURES)
0-1,5	4.0	1063	10.0		FINE SANDY SILT, CEMENTED, DRY, 7.5 YR 5/6
·. 5 -3.0	4.0	1064	33 16.0	8,11	FINE SANDY SILT, COMENTED, DRY, 7.5YR 5/6
30-4.5	6.0	1065 A	18.	15,21	FINE SANDY SILT, CEMENTED, DRY 10 YR 5/6
	6.0	1065 B			DUPLICATE
4.5-6.0	6.0	1066	170		FINE SANDY SILT CEMENTED 1 1048/6 AT 45 TO 4.8"
·0-7.5	5.0	1067	<u>33.0</u>		FINE SANDY SILT , CEMENTED, DRY , 7.5 YR 4
	5.0	1068	13.0	29,48 65	FINE SMOY SILT, CEMENTED, DRY, 75 YR 7/4
9.0-10.5	۷.0	1069	55 10.0	50,93	SILT, CEMENTED, Very HARD, DRY, 54R 7/3
D.5-12.0	5.0	1070	55 4	luts.	SILT, CEMENTED, VERY HADD, DRY, NB
12.0-13.5	5.0	1071	35 10	37,37 45	SILT CEMENTED, STRIATED DRY 104R 5/4
15.0	5.0	1072 A		28,42 53	FINE SANDY SILT, LOW MOISTURE - DRY, 1048/4
	5.0	1072			DUPLICATE
150-16-5	4.0	1073	55 17	23,24 24	FINE - MEDIUM SANDS, SOME SILT, LOW MORTURE - DRY, 104274
25-18.0	5.0	1074	53 17	25,29 48	FINE - MEDIUM SILLY SANDS, HARD SILT LAYER AT 17.0 TO 17.02, DRY
190-AS	4.0		55 16	25,21 17	FINE - COARSE SILTY SANDS, DRY 10425/6
	4.0	1075			Duplicare
1.5-21.0	3.0	1076	35 15	23,Z1 15	FINE - COARSE SILTY SONDS, Small amount of gravel, Day, 10424
		•	ASTN	D1586	SHEETOF

BORING NO .: 58-2 OWNER: USAF LOCATION: SITE #5 ADDRESS: LUKE AFB. Phoenix, ARIZUNA DISPOSAL TRENCH TOTAL DEPTH 21.0' SURFACE ELEVATION: ... WATER LEVEL: __ DRILLING WESTERN DRILLING Hole STEN DATE COMPANY: TECHNOLOGIES METHOD: AUG & DRILLED: 9 Nov. 1443

DRILLER: TO KURLIK HELPER: E. GONZALES

LOG BY: J. Williams

SKETCH MAP			
		•	
NOTES:		=	
			 -
			 -
			 -
			 -

·		_		_ /	
	an (FEE	^/	//	NUMBER	DESCRIPTION / SOIL CLASSIFICATION
6	DEPTH (FEE	H-MU	SAMPLE	SAMPLES	DESCRIPTION / SOIL CLASSIFICATION (COLOR, TEXTURE, STRUCTURES)
-1.5	1.0	1077	55	3,13	FINE SANDY SILT , DOY, HARD, 1042 5/6
1.5-3.0	10	1078	55 8.0	$\overline{}$	FINE SANDY SILT DRY CEMENTED, 10425/4
5.0-4.5	3.0	1079	10.0	15, 13	FINE SANDY SILT, DRY, HARD, 75 YR 5/4
1.5-60	5.0	1080	14.0	12,13	FINE - HEDIUM SANDY SILT, DRY-LOW MOISTURE, 1042 5/4
60-7.5	4.0	1081	55 165	17,21	FINE - HEDIUM SAND, SMALL AMOUNTS Gravel & SILT , 7.5 YES/6
	4.0	1801			
75-9.0	4.0	1082	120		SILT , VERY HARD, CEMENTED, DRY, 75 YR 7/2
90-10.5	5.0	1083	17.0	38,40 38	SILT, NECY HARD, CEMENTED, DRY, 7.542 7/4
25-12.0	4.0	1084	13.0	28,91	SILT, VERY HARD, CEMENTED, DRY, 7.5 YR 7/4
120-135	4.0	1085	0.3	29,100	FINE SANDY SILT, CEHENTED DRY, 1042 7/4
ن. ۲۰۱۶ م	3.0	1086	_	38,90	FINE SANDY SILT, CEMENTED, DRY, LOYR 6/4
5.0-165	4.0	1087			FINE to MEDIUM SANDS, DAMP, 1042 4/4
165-180	3.0	1088	15.0		FINE - MEDIUM SILTY SANDS, 44-3/8" GRAVEL , DAMP
30-195	4.0	1699	35 16.0		FINE -MEDIUM SILTY SAND , DOY
195-21.0	3.0	090	17.0	13,14	MEDIUM - COARSE SANDS, 1/4"-3/8" GrAVET DRY
	F -	-			
•	\vdash \dashv	-		\vdash	
·	-				
+	-	-			
•		Щ.	A.S.T.M	D1586	D-2 SHEET OF

BORING NO .: 578-3 OWNER: US AF LOCATION: Site # 5 ADDRESS: LUKE AFB Phoenix, ARIZONA POL WASTE Disposal Twench SURFACE ELEVATION: ___ WATER LEVEL: _ DRILLING Nollow SAM DATE METHOD: Muser Drilled: 9Nov. 83

DRILLING Western COMPANY: Technologies DRILLER: T. KURTIK HELPER: E. GOWZALES

LOG BY: J. Williams.

SKETCH MAP	•		
IOTES:			

		٠.		- JEP	
	OEPTH IFEE		//.	NUMBER	DESCRIPTION / SOIL CLASSIFICATION
	OEP.	A.MU	SAMPLE	NUMBER TO SAMPLE TO	DESCRIPTION / SOIL CLASSIFICATION (COLOR, TEXTURE, STRUCTURES)
-			155		
-1.5'	3.0	1091	12.0	15	MEDIUM TO FINE SAND, COMPACTED, DRY 1042 5/6
1.5-3.0	3.0	1092	11.0	15,16	MEDIUM TO FINE SAND, COMPACTED DRY 104R 5/6
4.5- س.ر	2.0	1093	55	11,15	FINE SAND AND SILT DRY 7.5 YR 4/4
5-60	4.0	1094	55	23,28	
6.0-7.5	4.0	1095		20,18	FINE SAND AND SILT , DRY 7.542 9/6 FINE SAND AND SILT , DRY 7.542 7/4
	4.0	B 1095	17.0		FIND AND SILL , DET FOOTE 1/4
75-9.0	5.0			15,20	HARD, SILT, COMPACTED 7.5 YR 6/4
1.0-10.5	5.0	1097	144	31,56	
5-12.0	3.0	1098	12.5 55 10.0	99/3"	VERY HARD, CEMENTED, SILT 10 YR 6/4
2.0-13.5	3.0	1099	35	100/10	VERY HARD, CEMENTED, SILT 1042 6/4
5-15.0	3.0	1100	55	100	VERY HARD CEMENTED LAMINATED SILT 1042 6/4
-50-16.5	3.0	4.	55	48,	VERY HARD CEMENTED SILT 1042 6/5
65-18.0	3.0	102	<u>55</u>	19,19	HARD CEMENTED ISILT 10 YR 5/6
	3.0	B 1102			
180-19.5	2.0	1103	\$5 13.0	22,21	FINE SILTY SAND GRADING TO HEDIUM SAND and Gravel 1042 1/6
5 -21.0	2.0	1104	35	20,21	THE STATE OF THE S
†					
†					
	<u></u>	•	ASTM	D1586	D-3 SHEET OF

BORING NO .: SB-4 USAF OWNER: ___ LOCATION: Site # 5
P.O.L. Weste Dispuse! ADDRESS: LUKE AFB Phoenix ARIZONA. Trench TOTAL DEPTH___ SURFACE ELEVATION: _ WATER LEVEL: _

DRILLING Western DRILLING Hellew StewDATE
COMPANY: Technologies METHOD: Anger DRILLED: 10 Nov.84
DRILLER: T. KURLIK HELPER: C. Gonzales

LOG BY: J. Williams

NOTES:

SKETCH MAP

	-6	n /		JAER	
	DEPTH IFE		//	MUMBER	DESCRIPTION / SOIL CLASSIFICATION
. i	DEF	4.14	SAMPLE	MUMBER GAMPLE T	DESCRIPTION / SOIL CLASSIFICATION . (COLOR, TEXTURE, STRUCTURES)
	3.0	1105	55		
-1.5	1.0	1106	12"	3,4	FINE SANDY SILT 7.5 YR 5/6
1.5-3.0				11,16	J. J
/.5- 3. 0	2.0	1107		24	FINE SANDY SILT 7.5 YR 5/6
D.O-4.5	5.0	Nog			'
	2.0	1109		42	FINE SANDY SILT, SLIBHALY COMPACTED 7.5425/6
5-60	2.0	1110	16	22	FINE SANDY SILT, SLIGHTLY CEMENTED 7.54R 5/4
40-75	4.0	June J	55	32,51	
• •	4.0	1112	12"	63	FINE SANDY SILT, UERY HARD, CEMENTED 104R 6/4
-5-9.0			14"	33,60 63	FINE SANDY SILT, VETLY HARD, CEMENTED 10 YP 6/4
9.0-10.5	60	' ' ' ' '	55	41,62	
_	5.0	1114	8.	54	FINE SANDY SILT , VERY HARD, CEMENTED 1042 73
10.5 - 12.0	5.0	اصينوا ا	32	1983	
- 43 -	5.0	1116	5°	40	FINE SANDY SILT VERY HARD, COMENTED 10 YR 7/3
.0 -13.5	5.0		40	100	FINE SONDY SILT, VERY HARD CEMENTED 104R 1/3
13.5-15.0		il i	1 53	11,23	
	50	1118			SILTY FINE SAND 10 YR 74
.3-165	5.0	1119	2 <u>5</u>	27	SILTY FINE SAND with Trace of COARSE to med Soud 104R /4
~,5-180				15,19	
,,,,,-1,0,-1		1121	140	22	SITTY FINE SAND, LITTLE CORRSO to MED SAND, and TRACE of GREAT 10425
18.0-19.5	1 40	1122	15"	24	COARSE TO MEDIUM SAND AND GRAVEL 10 YR 74
1	1 1	i i	. —	14,11	TORROC TO TREDIGIT SAND AND GRAVEL TOTR TY
9.5-21.0	.	-	18"	20	COARSE TO MEDIUM SAND AND GRAVEL
+	╟┤	╟╧┥			
	.L _J				
]	
+	┝╶┤	-		$\vdash \dashv$	
	T 7				
	┡╶┥				
.*.					
,			A.S.T.M	D1586	CUEFT I OF I

W. STED

BORING NO .: 58-5 OWNER: USAF LOCATION: Site # 5 ADDRESS: LUKE AFA Pal. WASTE DISPOSAL Phoenix, ARIZUNA TOTAL DEPTH 2/.0' TRENCH SURFACE ELEVATION: __ . WATER LEVEL: _ DRILLING Western
COMPANY: Technologies
DRILLER: T. KURLIK DRILLING Hollow Stem DATE
METHOD: Auger DRILLED: (ONOV 183

HELPER: C. GOWJALES

LOG BY: J. Williams

SKETCH MAP NOTES:

	,	s /	 ,	OEP.		
	DEPTH FEE		//st	NUMBER	DESCRIPTION / SOIL CLASSIFICATION (COLOR, TEXTURE, STRUCTURES)	
<u> </u>			_	SAMPLE SI	(COLOR, TEXTURE, STRUCTURES)	
-1.5	4.0	1123 1124		3,5	FINE SANDY SILT	10 YR 5/6
1.5-3.0	2.0	1/25	15 "	15,15	FINE SANDY SILT	10 YR 5/4
ا 4.5-د.	3.0	1126		9,13	FINE SANDY SILT	10425/6
;-60	5.0	Ш.	l	23,32 42	FINE SANDY SILT, LAMINATED	10 YR 5/6
6.0-7.5	$oxed{L}oxed{L}$	1129	15"	23,34 41	FINE SANDY SILT	104R 5/4
5-9.0		1130 1131		18,18 22	·	104R 7/4
9.0-10.5	4.0	1132	5 <u>S</u>	73	VERY HARD, CEMENTED, FINE SANDY SILT	1
105-12.0		1133	3"	50	VERY HARD CEMENTED, FINE SANDY SILT	. 1
.0-13.5		1134	15"			1042 6/4
135-15.0	3.0 3.0	1136	150		FINE SANDY SILT	104R 6/4
:0-16.5	\vdash \dashv	1/37	8^	14	SILTY FINE SAND	104R 6/4
2- 180	4.0	1139	15"		COMESE AND MEDIUM SAND GRADING TO FINE SAN	DOY SILT JUYE 1/4
18.0-19.5	3.0		77"		COHESE TO MEDIUM SAND AND GROVEL	
5-21.0	2.0	1141	18"	9,11	COMEST TO HEDILM SMUD AND GRAVEL	
	-	<u> </u>				
	-					
_	· ——		ASTA	1. D1586	D=5	SHEET OF

W. STEEN

BORING NO.: SB-6 OWNER: USAF

LOCATION: SITE * 5 ADDRESS: LUKE AFB

Phoenix: ARIZONA

TRENCH TOTAL DEPTH 21.0'

SURFACE ELEVATION: WATER LEVEL:

DRILLING WESTERN DATE

DRILLING Western DRILLING 401100 DATE

COMPANY: Technologies METHOD: Stem AUGER DRILLED: 10 Nov. 1988

DRILLER: T. KURLIK HELPER: £. GOWEALES.

LOG BY: 3. Williams

* ASTM D1586

SKETCH MAP			
NOTES:	_	 	

SHEET ___ OF __

	.4	\ <u> </u>		JOER .	
, s., ····	EPTH (FEET		//	MUMBET	PE E BLOWS DESCRIPTION / SOIL CLASSIFICATION
4	ET_	1. N. S.	MPLE	MUNETA	DESCRIPTION / SOIL CLASSIFICATION (COLOR, TEXTURE, STRUCTURES)
>-15	5.0	1142	19:	2,7	FINE SANDY SILT, DRY 1048-6/4
1.5.3.0	3.0	1143	5 <u>5.</u> 18"	17, 21 25	FINE SANDY SILT, DRY 1012 4/6
-0-4.5	1	1145	55 18"	13,19 35	FINE SANDY SILT, DRY 10 YR 6/3
5-60	2.0	1147	_	34,41	FINE SANDY SILT , LAMINATED , DRY 10 YR 6/3
40-75	2.0	1148	/3"	24,34 32	FINE SANDY SILT, LAMINATED DRY 10 YR 6/4
15-9.0	3.0	1149	55 14"	1327	FINE SANDY SILT, SLIENTLY COMPACTED, DRY 10 YR 44
90-105	3.0	1151	35	25,14	FINE SANDY SILT. COMPACTED, DRY 10 YR 5/4
.5.5-12.0	4.0	1152 1153	13"	51,80	FINE SANDY SILT, WARD, CEMENTED, DRY 10 YR 6/3
20-13.5		1154	55 6"	100	VERY HARD, CEMENTED SUT DRY 104R 7/4
13.5-150	4.0 5.0	F 1-	160		MEDIUM-CORESE SAND, MINOR SILT, DRY 104R6/4
50-16.5	, ,		17"	18	SILTY MEDIUM-COARSO SOND GRADING TO COMESE - VANYLOURS SAND 104846
165-180	1 1	1158 1159		34,35 30 22,34	VERY GOYSE SAND GRADING TO LAMINATED SANDY SILT LUYE 6/6
9.5-2.0	3.0	1160	15"	40	FINE SANDY SILT, LAMINATED DRY 10YE 5/6
7	-		90	21	MEDIUM - FINE SANDY SILT, DRY 10485/6
\rightarrow	┝╶┤		_		
†	$\vdash \dashv$		\dashv		
+	-		-	-	
†	-	\vdash			
†	-				
,					<u></u>

WESTERN.
DESCRIPT COMPATENTS

BORING NO .: __ 58-7 OWNER: USAF LOCATION: SITE "S ADDRESS: LUKE A.F. POL. WASTE DISPOSAL PHUBLIX, ARIZONA TRENCH. TOTAL DEPTH 21.01 SURFACE ELEVATION: _ WATER LEVEL: ___

DRILLING WESTERN DRILLING HOLLOW DATE
COMPANY: TECHNOLOGICS METHOD: STEM AUGER DRILLED: 11 NOV. 1783

DRILLER: T. KURLIK HELPER: C. GOWZALES

LOG BY: John Williams

NOTES:

SKETCH MAP

		4) <i>-</i>		- JER	
	DEPTH FEE	, W	//.	NUMBER	DESCRIPTION / SOIL CLASSIFICATION (COLOR, TEXTURE, STRUCTURES)
<u> </u>	OF.	*//	SAMPLE	SMAPLES	(COLOR, TEXTURE, STRUCTURES)
-1.5		1163		3,6	FINE SANDY SILT 1042 6/6
1.5-3.0	L _	┫┠━━┉	55 /5"	11,11	FINE SANDY SILT 10426/6
-0-45	L _	1/65	16"	10,15	FINE to MEDIUM SAND 7.542 5/6
5-60	<u> </u>	1164	<u>53</u> 18"	10,18	FINE to COMESE SAND GRADING TO FINE SANDY SILT, Laminates 10486
6.0-7.5		1168	12.	17, 19	FINE SANDY SILT , LANINATED , COMPACTED 104R6/4
5-9.0	<u>_</u> _		15"	18,26 34	FINE SANDY SILT, LAMINATED COMPACTED 10486/4
9.0-10.5			12"	27,39 50	FINE SANDY SILT, LAMINATED , COMPOCTED 104R6/4
2.5-17.0	- ½ -	1172 1173	9	50,60	HARD FINE SANDY SILT , LAMINATED 10486/4
0-13.5	-84	1174	11	44,100	FINE SANDY SILT, HARD, LAMINATED 1048 6/4
13.5-15:0	Z~ 2	1176	55	67	FINE SANDY SILT, LAMINATED, CEMENTED 1042 6/6
0-16.5	- <u>v</u> -	1198	14	17,20 20	SILTY FINE SAND, SLIGHTLY COMPACTED 1042 6/6
1.5-18.0	meter	1179	17"		SILTY FINE SAND , SLIGHTLY COMPACTED 10 YR 6/6
180-19.5	- `-	1180	18'	12,13 14 15,14	SILTY FINE SAND GRADING TO MEDIUM - COARSE SAND
75-21.0	-		10"		SILTY FINE SAND GRADING TO FINE-CLARSE SAND
\rightarrow					
+	 - 				
+	-				
	-				
	<u> </u>				
•\ ~^		بــاا	ASTM	D1586	SHEET 1 OF 1

D-7

W. STEN

HELPER: 4.50WZALES

BORING LOG

BORING NO.: 58-8

LOCATION: SITE * 5

ADDRESS: LUKE AFB

POL WASTE DISPOSAL Phoenix ARIZONA

TRENCH

TOTAL DEPTH 21.0'

SURFACE ELEVATION:

DRILLING WESTERD

DRILLING HOLLOW

DATE

COMPANY: TECHNOLOGIES METHOD: STEM AUGER DRILLED: 14 Nov 1983

NOTES:

SKETCH MAP

LOG BY: John Williams

DRILLER: T.KULLIK

				_ /a	
مستر مسر	DEPTH FEE		//	NUMBET	DESCRIPTION / SOIL CLASSIFICATION (COLOR, TEXTURE, STRUCTURES)
•	DEL	A.MU	SAMPLE	SMAPLE S	(COLOR, TEXTURE, STRUCTURES)
0-1.5	1.0	1182		7,11	
152.	- - 1.0_	1183	/2"	25,27	FINE SANDY SILT 10YR 4/6
1.5-3.0	2.0	10101	16"	26	FINE SANDY SILT 104R 6/6
ع.٥-4.5		1185	_	11,15	FINE SANDY SILT 10 YR 5/6
.5-6.0	- -/'&	1186	55	15,20	FINE SANDY SILT 10 412 76
· +		,		18	FINE SANDY SILT, SLIGHTLY COMPORTED 10 YIZ \$/4
6.0-7.5	3.0	1188 1189	!!	20	FINE SANDY SILT, SLIGHT MOTTLING 10425/4
1.5-9.0	-	1	55	16,20	ļ
4.0-10.5		1190		32 23,42	FINE SANDY SILT, SLIGHT MOTTLING 10425/3
· · · · · · · · · · · · · · · · · · ·	المرابع	1192		61	FINE SANDY SILT, HARD, CEMENTED JUYE 7/4
10.5-12.0	1 1	1193	12-2	100	
20-135		1194	55	41,51	FINE SANDY SILT, VERY HARD, CEMENTED, LAMINATED INTRA/4
- +	2.0	1195	14"		FINE SANDY SILT, HARD, CEMENTED 104R 5/4
13.5-15.0	20	1196	76"	19,39	FINE SAND with minor SILT, COHESIVE LOYR 5/6
.0-16.5	2.0	1197		60,	•
•	29	1198	55	13,19	FINE SAND WITH MINDE SILT, COHESIVE 104R 6/4
5-18.0		1199	_	31	FINE SAND AND SILT 10425/6
18.0-19.5	1.0	1200	15"	19,22	FRAGMENTED BOCK, ANGULAR - SUB HNGULAR
:5-21.0	''e	1201	55	6, 13	
21.0	╟┪		18"	17	SILTY MEDIUM SAND GOADING to MEDIUM - COURSE
					SAND and GRAVEL.
∶ .	·			11	
	-	<u> </u>		\vdash	
			<u> </u> 		
	Γ7				
· · · · · · · · · · · · · · · · · · ·	╟┪	-		\vdash	
	. []	L	L		
		•	ASTN	A. D1586	SHEET OF

BORING NO .: 58-9 OWNER: USAF LOCATION: SITE #5 ADDRESS: LUKE AFB HOLL WASTE DISPOSAL PHOENIX , ARIZONA TRENCH TOTAL DEPTH 21.0' SURFACE ELEVATION: _ WATER LEVEL: ___

DRILLING WESTERN COMPANY: TECHNOLOGIES DRILLER: T. KURLIK HELPER: E. GOW ZALES

LOG BY: J. Williams

 	 _
 	 ᅥ

SKETCH MAP

				_ /a	
	LEET	`		NUMBE	DESCRIPTION / SOIL CLASSIFICATION
·	DEPTH IFEET	1.HU	CAMPLE	CAMPLE	DESCRIPTION / SOIL CLASSIFICATION (COLOR, TEXTURE. STRUCTURES)
		<u>/</u>	7 2 2		
0-1.5	40	ro	55	6,10	6 1 11 11 11 11 11
- 4	ᅡᆔᆑ	1203	7	15	FINE SANDY SILT 10YR 5/6
1.5-3.0	, ,	1	_	12,16	m ,
+		1204		18	
3.0-4.5	4.0	1205	55	11,15	
4	╌		16	13	FINE SANDY SILT, HINDR GROUEL 104R4/6
-5-6.0	2.0	1206	55	8,10	
1	4.0	207	15"	12	FINE SANDY SILT GRADING to COURSE SAND AND GRAVEZ 104R
6.0-7.5	2.0	1208	<u>55</u>	12.17) _
	.├ -┤	10.0	18"	24	FINE SANDY SILT, COHESIVE, MOIST 104R 4/4
5-9.0	3.0	1209	35	13, 14	
. 1	_ 4.의	1210	15"	20	CLAYEY SAND AND SILT, MOIST 10423/4
	4.0	1211	<u>55</u>	25,15	FINE SANDY SILT 10YR 6/4
1	.L _l	L	16"	2.5	FINE SANDY SILT 10YR 6/4
10.5-12.0	4.0	1212	55	21,25	FINE SANDY SILT, COHESIVE, MOIST 10425/4
	3.0	1213	15"	31	FINE SANDY SILT, COHESIVE HOIST 10YR 5/4
0-13.5	3.0	1214	SS	112.13)
	1 1	i -	161/2	15	FINE SANDY SILT, COHESIVE, MOIST LUYE 5/4
135-150	2.0	1215	55	5.2	(
13.0		1216		111	FINE to COARSE SAND AND GRAVEL
12.0-165		1212	SS	12.10	
10.0-165	1 1	ſ !	15	1 / 2	FINE & MEDIUM SANDY SILT GRADING to MEDIUM to COARSE SAND
5-18.0	4.0	1218	55	0	
3-18.0	أميا	1219	18"	32	MEDIUM to COARSE SAND AND GRAVEL, MOIST
18.0-19.5		12.0	35	17.4	
10.0-11.5	4.0	1220	18.	17,30	FINE SANDY SILT AND CLAY, MOTTLED, DAMP
5-21.0	\vdash \dashv		35	21,29	0.7
2-21.0	4.0	141	18"	38	FINE SANDY SILT, SLIGHTLY COMPACTED
) †	\vdash \dashv	-	1,0	1-5-	THE SHORY SICE SCIENTLY WAGINGTED
	1 1		l	1	· ·
<i>ः</i> न	·├ ┤	 		-	
·*	1 1				
: †	\vdash \dashv		<u> </u>		
* - :	1				
• +	┝╶┤		\vdash	\vdash	
ļ	1 1				
< †	┝╶┤		 	├──┤	
3.5	1 1	1 1	Ì	1 1	
· 4	\vdash \dashv		<u> </u>	 	
·s •	1 1				
, <u> </u>	لـــا	بــــا	L		<u> </u>
• *		•	A.S.T.N	A. D1586	SHEET 4_ OF 1
					D-9

W. STEEN

BORING NO .: 56-10 OWNER US AF POLL WASTE DISPOSAL PHOENIX, ARIZONA TRENCH TOTAL DEPTH 21.01 SURFACE ELEVATION: ____ _ WATER LEVEL: ___

DRILLING WESTERN DRILLING Hallow Stem DATE

COMPANY: Technologies METHOD: Auger DRILLED: 14 NOV 1983

DRILLER: T. KURLIK HELPER: E.GONZALES

HELPER: C.GONZALES

LOG BY: 3. Williams

SKETCH MAP

	Æ	N /		BER	/ /s ⁵ /
	DEPTH FEE	/	//OE	HUMBE?	DESCRIPTION / SOIL CLASSIFICATION (COLOR, TEXTURE, STRUCTURES)
L		///	CAMIL	SNA S	(COLOR, TEXTURE, STRUCTURES)
<u>ئ-1،5</u>	3.0	1222	55 15	3,2 3	FINE SANDY SILT 10YR 6/6
5-3.0		1223	55	4,3	
3.0-4.5		1224		6,7	FINE SANDY SILT 104R 4/6
1	4.0	12-24		10	FINE SANDY SILT, SLIGHTLY COMPACTED 10425/6
1.5-6.0		1227	18	12	FINE SANDY SILT 10YR 5/4
40-7.5	1		16	10,13	FINE SANDY SILT 164R 5/6
7.5-9.0	4.0	1229	55	11,10	ll
1.0-10.5		/23 ₁	55	16,17	
10.5-12.0	4.0	L	1372	14,13	
10.3 12.0	3.0	1233	14	12	FINE SANDY SILT, MOTTLED 1042 5/6
. 1	1 1	1	14	111	FINE to COURSE SAND AND GRAVEL
135-15.0	4.0	1235	13	10	FINE to COARSE SAND AND GRAVEL
15.0-16.5	4.0	1237	16	1415	FINE to COARSE SAND AND GRAVEL
-5-180	3.0	1238	55 13	13,45	
180-195	4.9	1240	35	24.24	}
15-21.0	4.0	1241	55	12,17	FINE to COARSE SAND AND GRAVEL
9	+ +	-	16	35	FINE to COATSE SAND AND GRAVE GRADING to
	- -				HARD , CEMENTED SILT AND CLAY.
·	<u> </u>				
- 					
	T 7				
, †	+ +	-	 		
•		ــــــ	AST	A D1586	
			~3., 4		SHEET OF

BORING NO.: 5B-11 OWNER: USAF

LOCATION: SITE**H ADDRESS: LUILE AFB

PERIMETER ROAD PHOENIX, ARIZONA

TOTAL DEPTH 2.0

SURFACE ELEVATION: WATER LEVEL:

DRILLING WESTERN DRILLING HOLLOW DATE

COMPANY: TECHNOLOGIES METHOD: STEM AUGER DRILLED: 15 NOV. 1983

DRILLER: T. KWRLIK HELPER: E. GOWZALES

LOG BY: J. Williams

SKETCH MA	P		
		 السياسة	 _
NOTES:		 	

	DEPTH FEET	ANJ SAM	PLE SAMPLE SA	DESCRIPTION / SOIL CLASSIFICATION (COLOR, TEXTURE, STRUCTURES)
-1.5	0.0	1242 S 1243 18	5 12 1911	Brown Sandy SILt
	$\left - \right $			
+				
-	-		-	
-				
-	-			
	-			
-				
	-			
-	-			
· -				
	<u> </u>			

SHEET ____ OF _____

	W. Parker	SKETCH MAP
BORING LOG		
BORING NO .: 58-12 LOCATION: SITE *4	OWNER: USAF ADDRESS: LUKE AFB	
PERIMETER ROAD	TOTAL DEPTH 2.0	
SURFACE ELEVATION: DRILLING WESTERN DRILLING	WATER LEVEL:	
DRILLER: T. KURLIK	DE: ALGER: DRILLED: 15 NOV. 1983 HELPER: C. GOWZALES	NOTES:

LOG BY: J. Williams

,	ار	PTH IFEE	,^,	<u> </u>	NUMBER SAMPLE TO	DESCRIPTION / SOIL CLASSIFICATION (COLOR, TEXTURE, STRUCTURES)	
·	- OE	<u>/</u>				(COLOR, TEXTURE, STRUCTURES)	
>-1.0		, 0	R44	55 10"	6,15	LIGHT BOWN FINE SANDY SILT	
1-2.0		0	1745	55 12"	13,13	LIGHT BOWN FINE SANDY SILT	
r , -		_	<u> </u>				
-	-						
			 				
•	-		-				
-	-		-				
-	}	_					
_	}						
_							
		-					
		_]					
	-	-]					
	- -	_					
	-						
	- -						_
,	L						
•			•	ASTM	D1586	SHEETOF	

D-12

BORING NO .: 58-13 OWNER: USAF LOCATION: SITE* 4
PERIMETER ROAD ADDRESS: LUKE PHOENIX, ARIZONA TOTAL DEPTH 2.0 SURFACE ELEVATION: _ WATER LEVEL: _

DRILLING WESTERN DRILLING HOLLOW DATE

COMPANY: TECHNOLOGIES METHOD: STEM AUGER DRILLED: 15 NOV. 1913

DRILLER: T. KURLIK HELPER: E. GONZALES

LOG BY: J. Williams

SKETCH MAP			
NOTES:			

	Æ	n /		WBER	or one		DECO	207:01:00:00:00:00			7
•	JEPTH IFEE	H-MU	AMPLE	HUMBE TO	PE BLOWS			RIPTION/SOIL CLASS OR, TEXTURE, STRU			1
		1246	35	7,13							뒥
0-1.0	0		9"	7,13	FINE	SANDY	SILT		104	25/6	┙
1.0-2.0	0	1247	35	7,8	CALE	50404	Sur		(0.5)	40 5/L	1
†	\vdash \dashv		7	-	FINE	JANBY	1121			776	ヿ
1	┡┪	 			 						_
ĺ	1 1		ļ								
†	\vdash \dashv										ヿ
-	H -			\vdash							\dashv
<u> </u>				[[[\Box
	Γ										1
· †	\vdash \dashv	 	 	\vdash						·	ㅓ
_		<u> </u>									\dashv
]	j	} }	ļ						
†	\vdash \dashv							······································			ヿ゙
	┝╶	i			ļ						ㅓ
1]]]	ļ						
Ī	Γ										}
+	\vdash \dashv		-	\vdash							ㅓ
	L 4		<u> </u>		ļ						4
			ł								Į
†	 										ヿ
	┝╶┤			<u> </u>	ļ						\dashv
· ·											_
.	1				ł					-	
†	 	 -	 	\vdash	 						ᅥ
	-	 	<u> </u>			·			 		4
			Ì								1
, †	Γ 7										コ
	لــــا	با	A.S.T.N	D1586	L					SHEET OF /	

HELPER: E. GONZALES

BORING LOG

BORING NO.: SR-14 OWNER: USAF

LOCATION: SITE* 4 ADDRESS: LUKE AFB

PERIMETER ROAD PHOENIX, ARIZONA

TOTAL DEPTH 2.0'

SURFACE ELEVATION: WATER LEVEL:

DRILLING WESTERN DRILLING HOLLOW DATE

COMPANY: TECHNOLOGIES: METHOD: STEM AUGERDRILLED: 15 NOV 1923

NOTES:

SKETCH MAP

LOG BY: J. Williams

DRILLER: T. KURLIK

		TH IFEE	· /		NUMBER	PE GLOWS		DESCRIPTION / SOIL	CLASSIFICATION	
	06 ⁹		4.440	SAMPLE	NUMBE TO	PE BLOWS		(COLOR, TEXTURE,		
-1.0	$\ \cdot\ $	/.0	1248	8.,	7,22	FINE	SANDY	SILT		10 YR5/6
٦-2.0	\prod	1.0	249	33	24,20	FINE	SANDY	SILT		
	$\prod_{i=1}^{n}$			<u> </u>			·			
·.	\prod	- 4								
-	 -	. 4								
	$\left \cdot \right $	{		<u> </u>						
; :	$\left \cdot \right $	- 4	 	ļ		ļ 				
.	 -									
	$\left \cdot \right $	- 4								
	$\left\{ \right\}$	{							- 	
•	-		-			ļ 	·			
•	$\left. ight -$		-			<u></u>				
· .	-	{	-						·	
	$\left \cdot \right $		-					···		
	$\left \cdot \right $			<u> </u>						
• •	$\left\{ \right\}$		_						· ·	
-	\dashv		-							
	$\left\{ ight\}$						·····			
· ,	$\dag \vdash$			-						
-	IL		ب	ASTM	D1586					EET OF

•				بر						
	DEPTH IFEE	\ /	7/.	NUMBER	PE BLOWS			SOIL CLASSIFICATION		
	DEL	A-MU	SAMPLE	NUMBE TO	MAC		(COLOR, TEXT	URE, STRUCTURES)		
2-1.0	1.0	1250	5"	9, 27		SANDY	SILT			
1.0-2.0	2.0	1251		39,26	Fine	SANDY SANDY	Sur			
_			, <u>, , , , , , , , , , , , , , , , , , </u>		- CINE	-110124	<u> </u>			
<u>-</u> •	th -									
· •	┢╴┤						<u> </u>			
T -	╁┠╴╶┪	-								
-	-									
-	├ ├	 								
<u> </u>	-		ļ							
	<u> </u>		<u> </u>							
··.]
***									<u> </u>	
_					•					
-										
<u>.</u>										
· _		_	 		<u> </u>	· · · · · · · · · · · · · · · · · · ·	······			
	├ ┤	-	-							
.			 							
-	├ ├ ┤	<u> </u>								
	├ ┤	-								
	 		ļ							
			L							

D-15

SHEET ____ OF ____

HELPER: E. GONZALES.

BORING LOG

DRILLER: _

3B-16 BORING NO .:_ OWNER: LISAF LOCATION: SITE #4
PERIMETER ROAD ADDRESS: LUKE PHOENK, ARIZONA TOTAL DEPTH _____ 2.0 / SURFACE ELEVATION: WATER LEVEL: DRILLING WESTERN DRILLING HOLLOW DATE
COMPANY: TECHNOLOGICS METHOD: 576- August DRILLED: 15 Nov. 1983

T. KURLIK

SKETCH MA	AP		
NOTES:			

				- /a	
	DEPTH FEET	r.Wi	SAMPLE	NUMBER SAMPLE TO	DESCRIPTION / SOIL CLASSIFICATION (COLOR, TEXTURE, STRUCTURES)
-1.0	2.0	1252	55 71/2	3,8	
1.0-2.0	2.0	1253	55 12	10,10	FINE SANDY SILT FINE SANDY SILT
•	-				
		-	-		
	┝╶┤	-			
+	+ +		ļ.—.		·
	\dagger				
	_				
	. -				
					· · · · · · · · · · · · · · · · · · ·
	┝╶┤	-			
	┝┤				
•	\dagger				
	1				
		•	ASTM	D1586	D-16 SHEET OF

D-16

SB-17 BORING NO .:_ OWNER: USAF LOCATION: SITE *4
PERIMETER ROAD ADDRESS LUKE AFB PhoENIX , ARIZONA 2,0 TOTAL DEPTH ___ SURFACE ELEVATION: .. WATER LEVEL: _

DRILLING WESTERN COMPANY: TECHNOLOGICS DRILLER: T. ICURLIK DRILLING HOLLOW DATE METHOD: STEM ANGER DRILLED: 13 Mby 1983 HELPER: E. GONZALES.

LOG BY: 3. Williams

SKETCH MAP NOTES:

	EEE	n /	7	MBER	DESCRIPTION / SOIL CLASSIFICATION
•	DEPTH IFEE	H-MU	SAMPLE !	MUPLE TO	(COLOR, TEXTURE, STRUCTURES)
)-1.0	2.0	1254	58 9"	10,30	
2-2.0	3.0	1255	55 12"	51,25	FINE SANDY SILT, COMPACTED.
r <u> </u>					,
' ↓					
- 1					
·÷·		•	A.S.T M	D1586	SHEET OF

	\\\\	
	COMPANY COMPANY	SKETCH MAP
ORING LOG		
ORING NO.: 58-18	OWNER: USAF ADDRESS: LUKE AFB	
PERIMETER ROAD	Phaenix Apizona	
SURFACE ELEVATION:	WATER LEVEL:	
	ING HOLLOW DATE DD: <u>STEM ALGER</u> DRILLED: <u>15 AJOV. 198</u> 3	NOTES:
PRILLER: T. KURLIK	HELPER: C. GONZALES	INOTES

							<u> </u>		
	Æ	n /	_	HUMBER TY	or ons		DESCRIPTION (CON CONTRACTION)		
	JEPTH IFEE	MY	MPLE	HUMBLE TY	HE BLOWS		DESCRIPTION / SOIL CLASSIFICATION (COLOR, TEXTURE, STRUCTURES)	•	
			55						
2-1.0	3.0	1256	\$\$ 3 "	8,15	FINE	SANDY	SILT		
1.0-2.0	30	1257	53	13, 14	E E	SANDY SANDY	5.47		ĺ
†	 				FINE	SANITY	316/		
1	┡								
									ĺ
1	\vdash \lnot								
<u> </u>	\vdash \dashv								
* †	\vdash \dashv						·		
<u> </u>	\vdash \dashv	<u> </u>							
1									
· 📑	\vdash \dashv								i
+	<u> </u>				·			· · · · · · · · · · · · · · · · · · ·	
1	ĹJ								
/									
<u></u> ↓	L 4	ļ							
. • .	1								l
	$\lceil \rceil$								
. †	$\vdash \dashv$								
; 1	\vdash \dashv								
									ļ
* 1	Γ 1								
··· 🗼	┝┥	-							
•		•	ASTM	D1586			D-18	SHEET	OF

BORING NO .: SB-19 OWNER: USAF ADDRESS: LUKE AFB. Phornix / Agiegna. LOCATION: SITE # 7 MORTH FIRE TRAINING TOTAL DEPTH 2/.º SURFACE ELEVATION: _ _ WATER LEVEL: __ DRILLING WESTERN DRILLING HOLLOW DATE
COMPANY: TECHNOLOGICS METHOD: STEM AUGERDRILLED: 14 NOV.1983 HELPER: E. GORZALES DRILLER: T.KWRLIK

LOG BY: J. Williams

SKETCH MAP			
NOTES:		. — . —	_
NOTES.	 		
	 	·	-

6.0-7.5 10 1264 SS 13, 14 FINE SANDY SILT WITH ROCK FrAGMENTS 1042 5/4	•	_	ر n		JOER .	
0-1.5 4.0 1258 55 4.5 12 6 Fine Sandy Silt Mixed with Medium Sand 1042 4/6 1.5-3.0 2.0 1259 95 8.12 126 15 12 12 12 15 12 12 12 15 12 12 12 12 12 12 12 12 12 12 12 12 12	· ·	TH FEE		//.	NUMBER	PE BLOWS DESCRIPTION / SOIL CLASSIFICATION
0-1.5 4.0 1258 55 4.5 FINE SANDY SILT MIXED WITH HEDIUM SAND 1042 4/2 1.5-3.0 1.0 1259 95 8,12 FINE SANDY SILT MIXED WITH GRAVEL 1042 4/2 1.5-6.0 1.0 1264 55 15.25 FINE SANDY SILT MIXED WITH GRAVEL 1042 4/2 1.5-6.0 1.0 1264 55 13,14 FINE SANDY SILT MIXED WITH GRAVEL 1042 7/4 1.5-9.0 1.0 1265 55 18,34 FINE SANDY SILT MIXED WITH GRAVEL 1042 5/4 1.5-9.0 1.0 1265 55 18,34 FINE SANDY SILT MIXEDWITH GRAVEL 1042 5/4 1.5-9.0 1.0 1265 55 18,34 FINE SANDY SILT MIXEDWITH GRAVEL 1042 5/4 1.5-9.0 1.0 1265 55 18,34 FINE SANDY SILT MIXEDWITH GRAVEL 1042 5/4 1.5-9.0 1.0 1265 55 18,34 FINE SANDY SILT MIXEDWITH GRAVEL 1042 5/4 1.5-12.0 150 1268 55 17,19 FINE SANDY SILT, LAMINATED 1042 6/4 1.5-12.0 150 127 157 15 FINE SANDY SILT MIXEDWITH GRAVEL 1042 5/4 1.5-15.0 12.0 12.0 13,12 FINE SANDY SILT MIXEDWITH GRAVEL 1042 5/4 1.5-15.0 12.0 12.0 13,12 FINE SANDY SILT MIXEDWITH ROCK FRAGMENTS 1.5-15.0 12.0 12.0 12.1 15 12 FINE A COARSE SAND, MINOR SILT, WITH ROCK FRAGMENTS 1.5-15.0 12.0 12.0 12.1 15 15 FINE HOLDANSE SAND WITH ROCK FRAGMENTS 1.5-15.0 12.0 12.0 12.1 15 16 17 19 FINE HOLDANSE SAND WITH ROCK FRAGMENTS 1.5-15.0 12.0 12.0 12.1 15 16 17 17 15 FINE HOLDANSE SAND WITH ROCK FRAGMENTS 1.5-15.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12		SER!	,MU	CAMPLE	SAMPLE	(COLOR, TEXTURE, STRUCTURES)
1.5-3.0 1.5		~~	/			<i></i>
1.5-3.0 2.0 1259 35 8,12 1260 15 12 12 12 12 12 12 12	0-1.5	4.0	1258		4,5	FINE SANDY SILT MIXED WITH MEDIUM SAND 1012 4/6
10-4.5 10 1261 55 15,25 18 35 FINE SANDY SILT, SLIGHTLY COMPACTED 10YR 5/4 10-12-12-12-13 12" 13 FINE SANDY SILT MIXED WITH GrAVEL 10YR 7/4 10-7.5 10 1264 55 13,16 11-12-12-12-12-13-13-13-14 11-12-12-12-13-13-14 11-12-12-13-13-14 11-12-13-13-14 11-12-13-13-14 11-12-13-13-14 11-12-13-13-14 11-12-13-13-14 11-12-13-13-14 11-12-13-13-14 11-12-13-13-14 11-12-13-13-14 11-12-13-13-14 11-12-13-13-14 11-12-13-13-14 11-12-13-13-14 11-12-13-13-14 11-12-13-13-14 11-12-13-13-14 11-12-13-14 11-12-13-14 11-12-13-14 11-12-13-14 11-12-13-14 11-12-13-14 11-14 11	1.5-3.0	1 1			8,12	1
1.5-60 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	30-4.5			55	15,25	·
1.0 1263 12" 13 FINE SANDY SILT MIXED WITH GRAVEL 104/2 7/4 1.0 1264 55 13,14 1.0 1266 55 18,24 1.0 1266 55 18,24 1.0 1266 55 18,24 1.0 1266 12" 25 1.0 1267 35 16,19 1.0 1267 13 20 1.0 1267 13 20 1.0 1267 13 20 1.0 1267 13 20 1.0 1267 13 20 1.0 1267 13 20 1.0 1267 13 20 1.0 1270 35 13,12 1.0 1270 35 1	15-60	10,0	1262			FINE SANDY SILT, SUGHTLY COMPACTED 1042 5/6
1265 13.0 1267 25 18,24 17 20 1268 25 18,14 17 20 1268 25 18,14 17 20 1268 25 17,19 17 20 1268 25 17,19 1264 127 20 1268 25 17,19 1264 127 20 1270 20 20 20 20 20 20 20	1	_ /.9	1243	12"	13	FINE SANDY SILT MIXED WITH GRAVEL LOYR 3/4
4.0 1265 SS 18,24 1216 12" 25 FINE SANDY SILT MIXEDWITH GRAVEL 10YR 5/4 2.0-10.5 13.0 1267 35 16,19 177 20 1268 55 17,19 179 1269 1272 20 FINE SANDY SILT LAMINATED 10YR 6/4 10-13.5 16.0 12.70 25 13,12 179 11 FINE to COARSE SAND, MINOR SILT, WITH POCK FRAGMENTS 3.0-165 8.0 1272 17 13 FINE to COARSE SAND, WITH POCK FRAGMENTS 3.0-165 8.0 1274 55 20,19 19 FINE to COARSE SAND WITH POCK FRAGMENTS 18.0-19.5 12.0 1274 55 20,19 FINE to COARSE SAND WITH POCK FRAGMENTS 18.0-19.5 12.0 1274 55 20,19 FINE to COARSE SAND WITH POCK FRAGMENTS 18.0-19.5 12.0 1274 55 16,19 FINE to COARSE SAND WITH POCK FRAGMENTS 18.0-19.5 12.0 1274 55 16,19 FINE to COARSE SAND WITH POCK FRAGMENTS 18.0-19.5 12.0 1274 55 16,19 FINE to COARSE SAND WITH POCK FRAGMENTS	6.0 - 7.5	[40]		IR"	20	FINE SANDY SILT WITH ROCK FRAGMENTS 10 YR 5/4
3.0-10.5 13.0 1767 35 16,19 17.5-12.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	5-9.0				18.24	l _
13.5-12.0 13.0-13.5 13.0-13.5 13.0-165 14.0-165 15.0-165 15.0-165 16.	3.0-10.5				16.19	1
13.5-15.0 13.0 1270 35 13,12 FINE to COARSE SAND, MINOR SILT, WITH ROCK FRAGMENTS 13.5-15.0 13.0 1271 55 19,11 FINE to COARSE SAND, MINOR SILT, WITH ROCK FRAGMENTS 3.0-165 8.0 1272 17 13 FINE to COARSE SAND WITH ROCK FRAGMENTS 16.5-18.0 80 1274 55 20,19 16.5-18.0 80 1274 55 20,19 18.0-195 12.0 1274 55 16,19 FINE to COARSE SAND WITH ROCK FRAGMENTS 18.0-195 12.0 1274 55 16,19 FINE to COARSE SAND WITH ROCK FRAGMENTS 18.0-195 12.0 1274 55 16,19 FINE to COARSE SAND WITH ROCK FRAGMENTS	+	150	1268	35	17.19	. ,
13.5-15.0 13.0 1		1/29	126	12/2	20	
30 1272 17 13 FINE to COARSE SAND WITH ROCK FRAGMENTS 3.0-165 80 1274 55 20,19 16.5-18.0 80 1274 55 20,19 18.0-19.5 12.0 1274 55 16,19 18.0-19.5 12.0 1274 55 16,19 18.0-19.5 12.0 1274 55 16,19 18.0-19.5 12.0 1274 55 16,19 18.0-19.5 12.0 1274 55 16,19 18.0-19.5 12.0 1274 55 16,19 18.0-19.5 12.0 1274 55 16,19 18.0-19.5 12.0 1274 55 16,19 18.0-19.5 12.0 1277 55 18,15		⊢⊣	<u> </u>	17"		FINE to COARSE SAND, MINOR SILT, WITH POCK FRAGMENTS
16.5-18.0 16.0 1274 55 20,19 18.0-19.5 12.0 1274 55 16,19 17.0 1274 55 16,19 17.0 1274 55 16,19 17.0 1274 55 16,19 17.0 1274 55 16,19 17.0 1277 55 16,19 17.0 1277 55 18,15	13.5-15.0	1 1	272	17	13	FINE to COMESE SAND, WITH ROCK FRAGMENTS
16.5-18.0 16.0 1274 55 20,19 18.0-19.5 12.0 1274 55 16,19 17.0 1274 55 16,19 17.0 1274 55 16,19 17.0 1277 55 16,19 17.0 1277 55 16,19 17.0 1277 55 18,15	3.0-165	1 1	'*	16	915	FINE to COARSE SAND WITH RUCK FRAGMENTS, DAND
18.0-195 12.0 1274 55 16,19 FINE to COMESE SAND WITH ROCK FRAGNENTS	16.5-18.0		1274	55	2016	
5 · · · · · · · · · · · · · · · · · · ·	18.0-195		1276	55	16,19	First to Course Sans with Park Francisco
- 17 16 FINE SANDY SILT 109R 5/6	9.5-21.0	14.0	1277			
	+	┝┥	-	17	16	FINE STANSY SILT 107R 5/6
	\rightarrow	\vdash \dashv	<u> </u>			
		┝╶┧	<u> </u>			
* -						
	†	r 1				
;	†	┝┪	<u> </u>	-		
*ASTM D1506 SHEET OF		لـــا	Щ.	ASTN	D1586	SHEET OF

MAN

HELPER: E JONZALES

BORING LOG

BORING NO .: SB-20 WNER: USAF LOCATION: SITE #7 ADDRESS: LUKE AFB NORTH FIRE TRAINING PLOEDIX ARIZONA TOTAL DEPTH 21.0 AREA SURFACE ELEVATION: __ . WATER LEVEL: _____ DRILLING WESTERN DRILLING HOLLOW DATE
COMPANY: TECHNOLOGIES METHOD: STEM AUG! R. DRILLED: 16 NOV 1783 DRILLER: T. KURLIK

LOG BY: J. Williams

SKETCH MAP	,		
NOTES:		 	

		۸ .		-/68	
 -	DEPTH FEE		//.	NUMBE	DESCRIPTION / SOIL CLASSIFICATION (COLOR, TEXTURE, STRUCTURES)
.	OE	4.HV	SAMPLE	SAMPLE	(COLOR, TEXTURE, STRUCTURES)
0-1.5	70	1278	SS	3,4,	ASH and SLAG O-6" 10 YR 1/2 STRONG ORGANIC Fine SANDY SILT, 6"-18' 10 YR 34, DANR, ODOR
1.5-3.0	120	1250	50	4,4	
● 3.o - 4.5		1281	SS	1, 1,	Fine SANDY SILT, TRACE of med-coarse Sands. 10 YR 36 ODOR
45-60		1282	22		Fine SANDY SILT, Some med-Course Souls. 104R 46 ODOR Laminar Compaction.
C.o-7.5	T	1283	22	14,13	Fine SANDY SILT GRADING to Medium-Cookse Sand, 107846 ODOR Compacted Little GRAVEL 107846
	30	12.95	33	7,10	Fine SANDY SILT GRADING to Med Coarse Sand, FRAG, Rock, Annaded-Salb R
9.0 -10 s	11 7	1286			Medium · Course SawD, Some Rock FRAG. Sub ANGular - Sub Rounded 10 YR
105-12.0	├ ├─∷⊢	1000		13	Medium-Course SAND, Some GRAVEL Rounded-SubRounded 1042 5/2
2.0 - 13.5	12	1289	14"	19	Medium Coarse SAND, Some fine Soudy Silt 104R %
13.5 - 150	⊦├─ ^ॱ ॅ┤	122	14"	15	Fine SANDY SILT, some med-Coarse Sands. 1078 %
_	13	1212	14"	19	Fine SANDY SILT, BRADING to Med Coarse Sands 10 yr 1/6
15.0 -14.5	┡ ┣┋	1293	15"	8	SILTY FINE SAND GRADING to FINE-COArse SAND LOYR GA
IG.5-18.0		1295	17.	14	SILTY FINE SAND GRADING to Medium - Coarse Sand loye &
18.0-17.5	20	1294	4"	13	FINE-SAND GRADING to Med-Coarse SANDS, Little GRAVEL
9.5 -21.0		1297	18"	33	fine-GARSE SAND, Some GRAVEL
_					
	<u> </u>				
· ··.					
₹		•	A.S.T.M	D1586	SHEET _ 1_ OF _ 1_

D-20

LOG BY: J. WILLIAMS

BORING NO.: SB-21 OWNER: USAF

LOCATION: SITE * 7 ADDRESS: LUKE AFB.

PLOEDIX ARIZONA

TOTAL DEPTH 21.0'

SURFACE ELEVATION: WATER LEVEL:

DRILLING WESTERN DRILLING METHOD: STEP AUGUSDRILLED: 16 Nov. 1983

DRILLER: T. KURLIK HELPER: £. GONZAGES

OTES:	 	

SKETCH MAP

DEPTH (FEET) **DESCRIPTION/SOIL CLASSIFICATION** (COLOR, TEXTURE, STRUCTURES) 1298 10 3-1.5 10YR 3/6 TOP SOIL 14 1299 SS 4,5 5YR4/6 5-3.0 FINE SANDY, SILTY, CLAY 1300 5,9 3.0-45 22 40 130/ FINE SANDY, SILTY CLAY, MINOR COARSE SAND SYR 4/6 17" 10 22 80 1302 7,7 -.5 -6.0 MINOR COARSE SAND 9 1303 15" 120 SS 9,9 6.0 -7.5 1304 20 10 70 305 22 5,5 1.5 -9.0 MEDIUM to COARSE SAND AND GRAVEL 1306 30 17' 30 55 10,12 3.0-10.5 1307 7.5 YR 5/6 AND SILT 19 22 14,14 11 1308 10.5-120 6 YR 5/6 FINE SAND AND 16 22 13,13 2.0-13.5 1310 104R 5/6 FINE SAND AND 16 18 134 SS 9,10 13.5-15.0 10TR 5/6 FINE SAND AND SILT 1512 144 is 8,9 15.0-165 1313 MEDIUM to FINE SAND 10YR 5/4 SILTY 81/2 1314 **S**3 6.5-18.0 8.8 SAND AND GRAVEL SILTY 16" 1315 10 22 180-195 5 1316 8,13 COARSE SAND AND GRAVEL 11 12,42 1317 22 19.5-21.0 MEDIUM TO FINE SAND, HAPD 15" 33

SHEET __ OF __

BORING NO.: SB-22 OWNER: USAF

LOCATION: SITE *7

ADDRESS: LUKE AFB.

PLOENIX ARIZONA

TOTAL DEPTH 21.0'

SURFACE ELEVATION: WATER LEVEL:

DRILLING WESTERN DRILLING HOLLOW DATE

COMPANY: TECHNOLOGIES METHOD: STEM AUGUEDRILLED: 13 Nov. 1383

DRILLER: T. KURLIK HELPER: E. GONZALES

NOTES:		

SKETCH MAP

LOG BY: J. Williams

		۰ ر		- Jaco	
	DEPTH FEE		//.٤	NUMBER	DESCRIPTION / SOIL CLASSIFICATION
	DEX	NO /	SAMPLE	SAMPLE ?	DESCRIPTION / SOIL CLASSIFICATION (COLOR, TEXTURE, STRUCTURES)
0-1.5	130	1318	S.S.	5,8	ASH & SLAG O.6" 10 YRYZ SHOWS Organie FINE SANDY SILT, G"-18" 10 YRYG DAMP, COMPACTED ODOR
1.5 - 3.0	140	1319	SS	د,5 ع	fine SILTY SAND GRADING to Medium - Course Sand, Some GRAVEL
30-4.5	300			8,10	
4.5-60	300	1322	<u>SS</u>	9,31 35	
6.0-75		1324		20,16	
7.5-9.0	140	1325	22	9,11	MEDIUM - COARSE SAND AND GRAVEL
9.0-10.5	100			11.18	
10.5-120		1328	12	14,17	
120-135		1330		5,7	HARD, FINE SANDY SILT , MOIST HARD, FINE SANDY SILT
135-150	100	133)	55 15"	7,10	SILTY FINE SAND
15.0-165	3인 35	1333	22	6.7	SILTY FINE SAND GRADING TO HEDIUM - COARSE SAND
16.5-180	10	1334			MEDIUM TO COARSE SAND AND GRAVEL
18.0-19.5	35	1334			MEDIUM TO COARSE SAND AND GRAVEL
_9.5-21.0	32	1337		11,16	
	† 1				FINE SANNY SILT.
··· 1					
†					
			ASTM	I. D1586	SHEET OF

APPENDIX E

Sampling and Quality Assurance Procedures

APPENDIX E

SAMPLING AND QA/QC PLANS

E-1.1 PRODUCTION WELL PURGING

All groundwater sampling at Luke AFB was accomplished on Base Production Wells using the permanent pumps installed. All wells on-line at the time of sampling were assumed to have been purged after the sampling petcock at the wellhead had been allowed to flow for about five minutes. Wells not online, but serviceable, at the time of sampling were restarted by the Civil Engineering escort and allowed to run for about 20 minutes prior to opening the sampling petcock. Two of the eight wells could not be started for sampling, and, therefore, were not sampled. All sampling was accomplished under escort of personnel from Civil Engineering.

3.1.2 GROUNDWATER SAMPLE COLLECTION

Groundwater sampling was directed toward the detection of:

- Oil and Grease
- Lead
- Volatile Organic Compounds
- Phenol
- Radiological Species

All required sample containers were prepared by WESTON laboratories in accordance with standard EPA procedures and protocols.

After the wells were purged, sampling consisted of the following steps:

 Each sample container was gently filled from the pump line, taking care to avoid aeration and turbulence in the sample water.

WESTER

- 2. Appropriate containers were filled according to analytical parameter. The containers used were:
 - VOA: 40 ml septum seal glass vial, no preservative, taken at least in duplicate.
 - Metals (Lead): 1 liter plastic bottle, preserved with nitric acid after filtration in the field.
 - Phenols: 250 ml amber glass jar preserved with phosphoric acid and copper sulfate.
 - Pesticides (DBC): 1 liter amber glass jar, no preservative.
 - Oil and Grease: 1 liter amber glass jar, preserved with sulfuric acid.
 - Radiological Species: 2 gallon plastic bottle, no preservative.
- 3. Grab samples were taken for immediate analyses in the field for pH, temperature and specific conductance.
- 4. The sample containers were wrapped in packaging material and placed in a thermal chest packed with enough ice to insure cooling to 4° C.

E-1.3 SOIL SAMPLING

All soil sampling accomplished using a drill rig employed the Standard Penetration Test (ASTM Method 1586) using a steel split-spoon sampler. Prior to taking each sample, the following procedures were followed:

- The split-spoon sampler was washed thoroughly with an Alconox and water solution, and rinsed in tap water from the Base-approved source for drilling.
- 2. After assembly of the sampler, the sampler was lowered into the boring, and the sample taken by the Standard Penetration Test Method.

- 3. Upon recovery of the sampler, the spoon was split and the sample examined for soil characteristics.
- 4. The sample was then cleaned of any smeared sample around the outside of the sampler, and the cleaned, representative sample was put in a marked and labelled 1 liter clear glass sampling jar with a screw cap.
- 5. Samples for analysis of Oil and grease, Pesticides or PCB were stored for analysis in washed and baked sample jars of amber glass, equipped with a washed aluminum foil inner seal.

All soil sampling not accomplished using a drill rig was done using a Teflon scoop, or a PVC-lined coring device. Care was taken to ensure that the sample taken for analysis was as undisturbed as possible, in order that any contaminants present would not be winnowed out of the sample (in a subaqueous site). As above, only specially prepared sample jars were used for taking and storing samples for pending analyses.

Soil samples at Luke AFB were taken for analyses of:

- 1. Oil and Grease
- 2. Volatile Organic Compounds

E-2.0 QUALITY ASSURANCE PLAN

WESTON Analytical Services enforces a rigid QA/QC program toward maintenance of validity and reliability of all analytical data. The Laboratory QA/QC Manual (Table of Contents thereof is Attachment No. 1 to this appendix) outlines the specifics of the QA/QC plan. This plan patterned after the EPA Handbook for Analytical Quality Water and Wastewater Laboratories (EPA-600/4-79-019,by general March 1979), augmented applicable experience and interaction with the QA/QC plan U.S. the Army Toxic and Hazardous Materials Agency (USATHAMA). All methods and procedures followed by WESTON are either USEPA or ASTM-approved. Any variations from such procedures, regardless of cause, are documented by the responsible analyst(s) and are documentable, literature-traceable. A general review of this QA/QC plan is in the following paragraphs.

W. STIES

Although specific QA/QC measures for each method are designated in WESTON's <u>Laboratory Quality Assurance</u> Manual, the general QA/QC program normally includes:

- EPA-acceptable sample preparation and analytical methods.
- Instrument calibration via use of Standard Analytical Reference Materials (SARMS).
- Regular equipment maintenance and servicing.
- Use of SARMS and QA/QC samples (spikes, laboratory blanks, replicates, and splits) to ascertain overall precision.
- Statistical evaluation of data to delineate acceptable limits.
- Documentation of system/operator performance.
- Suitable chain-of-custody procedures.
- Maintenance and archiving of all records, charts, and logs generated in the above.
- Proper reporting.

Acceptable analyses at WESTON's Analytical Laboratory Services include, but are not limited to, the above.

In general, WESTON's QA/QC sequence follows the following diagram (Figure E-1). Documentation (as available from instrument recordings and technicians' notebooks) is sufficient to validate each step in the sequence.

E.2.2 CONTAINER PREPARATION

Another consideration in this, or any, analytical project is that of sample container preparation. Accordingly, all appropriate sample bottles shall be cleaned in a manner mandated by the U.S. EPA to insure maximal cleanliness (and minimal contamination) before the containers go to the field. Sufficient bottles to accommodate both laboratory and field blank requirements will be preferred in a single batch mode for each monthly sampling requirement.

Figure E-1: Flow Chart of the Sequence of Events during a Controlled Series of Laboratory Measurements.

E.2.3 VERIFICATION/VALIDATION

In the laboratory, the analytical scheme begins with initial verification, which is comprised of:

- <u>Lab Blanks</u> To insure that no background level of specific analytes is introduced by laboratory procedures.
- Standard Analytical Reference Materials (SARMS) To determine the accuracy and precision of procedures.
- Spikes To determine the percent recovery of analyte(s).

If the laboratory QA/QC program is extended to the field, it includes a fifth item:

• Field Blanks - To provide a check on contamination of containers and/or preservatives and to establish "practical" detection limits.

WESTON has used all of the above in this project. All data resulting from these verification media have been archived for future reference, retrieval, or processing. (QA/QC data from WESTON's above-described, internal QA/QC plan normally are not available to clientele without associated reimbursement to WESTON).

E.2.4 DATA HANDLING - LABORATORY

Use of any analytical data should be preceded by an assessment of its quality. The assessment should be based on accuracy, precision, completeness, representativeness, and comparability. These criteria are, in turn, assessed as follows:

Accuracy - Is it acceptable for the planned use?
 QA/QC shall measure the accuracy of all data.

- Precision Is it acceptable for the planned use?
 QA/QC shall reflect the reproducibility of the measurements.
- Completeness Are the data sufficient for the planned use? QA/QC shall identify the quantity of data needed to match the goals.
- Representativeness -Do the data accurately reflect actual site conditions, sampling procedures, and analytical method? QA/QC shall ensure this.
- Comparability Is the report self-consistent in format, units, and standardization of methods used to generate it? QA/QC shall ensure this.

Additionally, statistical methods outlined in the QA/QC program have been applicable to data evaluation.

The Laboratory Supervisor and the Laboratory QA/QC Officer have been responsible for the evaluation of the above criteria and for enforcement of analytical protocols that will necessarily lead to acceptable data quality. The signature of the Supervisor and QA/QC Officer accompany each laboratory analytical report and serve to ensure the overall validity of the reported data.

E.2.5 SAMPLE PLAN/LOG

Normal protocol demands client-and /or site-specific logging all sample batches delivered to WESTON. Basic information -- such as client name, address, etc.; client number; reporting/invoicing instructions; site descriptions; and parameter-specifications and requirements -- is initiated here. Additionally, sample instructions as storage/disposal well as turnaround and sample collection requirements requirements addressed at this point.

The appropriate number of method blanks is also logged at this point, and in-house chain-of-custody documentation is initiated here.

E.2.6 SAMPLE RESULTS

WESTON's analytical protocols generally require five-point calibration curve plus a reagent blank as the basis for

quantification analytes from a linear calibration curve. (A three-point plus blank curve vs. the original five point one is acceptable if it falls within the QA/QC requirements of \pm 3 standard deviation of the original curve.) Linear regression analysis is then performed. Method- and detection limit-specific data are accessed for quantitation and report-writing from each such data set. For reporting accuracy, the algorithm

Linear-Regressed Solid Sample Concentration
Raw Concentration Extract Volume or Final
from Calibration Curve If Solid Dilution Factor=
Solid Sample Fraction tration
Mass If Solid Solids If Solid

is used for all quantitations. (All such algorithm input data are archived for long-term storage.) Detection limits for solids are generated on a per-sample basis and calculated by replacing "LINEAR-REGRESSED RAW CONCENTRATION FROM CALIBRATION CURVE" with "DETECTION LIMIT OF ANALYTE IN LIQUID MATRIX" in the above equation.

E. 2. 7 CHAIN-OF-CUSTODY

Since they document the history of samples, chain-of-custody procedures are a crucial part of a sampling/analysis program. Chain-of-custody documentation enables identification and tracking of a sample from collection to analysis to reporting.

WESTON's chain-of-custody program necessitates the use of EPA-approved sample labels, secure custody, and attendant recordkeeping. Depending on the client's requirements, WESTON also offers container sealing during unattended transportation of samples.

In essence, WESTON considers a sample in custody if it: is in a WESTON employee's physical possession; it is in view of that WESTON employee; is secured by that WESTON employee to prevent tampering; or is secured by that WESTON employee in an area that is restricted to authorized personnel.

Each time a sample is relinquished from one analyst to another or from one major location to another, WESTON's analytical personnel are required to make appropriate entries. Personnel-specific initials are used as identifiers of analysts, as are location codes for various locations (refrigerators, extraction areas, analytical areas, etc.)

within the laboratory. Each transaction for each sample is accompanied by a specific reason for transfer. Chain-of-custody documentation is given in Appendix F.

E.2.8 QA/QC OFFICER

Toward maintenance of a rigid, credible QA/QC regimen, WESTON Analytical Services maintains a full-time, in-house QA/QC officer who retains independent authority to declare out-of-control situations, thereby precluding reporting of unacceptable data. The QA/QC officer has been available, as needed, on the project.

APPENDIX F
Chain-of-Custody Documentation

SAMPLERS: (Sign	_ 51 🙈		1	4437
Phone:	yours		SHIPPING II	NFORMATION
SHIP TO:			Chinana	
	in 5th	,	Shipper	
	37C 9 K			
			• •	
			Shipment Service	
				
			Cooler No.	
Phone No.				
Relinquished by:	A .		Received by: (Signature)	Date/Time
Relinquished by:	(Signature)		Received by: (Signature)	Date/Time
Relinquished by:	(Signature)		Received by: (Signature)	Date/Time
Relinquished by:	(Signature)		Receive for laboratory by (Signature)	Date/Time
			Jack House	11/15 1/3
*Analysis labor Occidental Ch	atory should comple emical Co.,16777 Ho	ete, "sample co wland Ave.,P. (indition upon receipt", section below, O. Box 198, Lathrop, California 95330.	sign and return top copy to Attn: Environmental Dept.
Sample	Site	Date	Analysis	Sample Condition
Number	Identification	Sampled	Requested	Upon Receipt
105 9-ATQ	SFT-1	11-8-83	<u> </u>	ok
1050 ATO	$\frac{-2}{2}$		-	+
<u>US/-470</u>	-3			
2.62 ATO	-4			
063-4 <u>7</u> 0	PULBI-1	11-9-83	3	
1664-AR	POL-B1-2		_	
165-ATO	607-B1-3	<u> </u>		
CGS-BTQ	PEL-B1-2			
U65-470	POL B1- 4	i		
567-ATO	504B1-9			
068-45a	502 B-6			
269-ATS	Par-81-87	*		
070-ATG	POL-B1-9	 + +		
77-ATQ	PUL-131-39		-	
072-ATO	FO1-B1-19		-	
172-07U	E)L-B1-19		-	
1073.ATQ	PCL B1-1139			
175-210 11-4-C	FOL31-2		-	
الا - 150 ماري الا - 150 ماري	101-31-10		_	
	101-31-13	/-		
1275-BTQ	FOL 31-12			75

4438

SAMPLERS: (Sig!	nature)				4438
M. M. kels			SHIPPING II	NFORMATION	1
Phone:					
SHIP TO:		-	Shipper	. <u> </u>	
			Address		
			Date Shipped	 	
			Shipment Service		
			Airbill No.		·
ATTENTION:			Cooler No		
Phone No					·
Relinquished by:	(Signature)		Received by: (Signature)		Date/Time
Mai	<u> </u>			·	Data (Time
Relinquished by:	(Signature)		Received by: (Signature)		Date/Time
Relinquished by:	: (Signature)		Received by: (Signature)		Date/Time
Relinquished by:	(Signature)		Receive for laboratory, by "(Signature)		Date/Time
,	· • · · · · · · ·		Jave Boguer		11/5 100
*Analysis labor	ratory should comple	te, "sample co	ondition upon receipt", section below.	sign and retur	
Occidental Ch	emical Co.,16777 Ho	wland Ave.,P.	O. Box 198, Lathrop, California 95330.	Attn: Environ	mental Dept.
Sample Number	Site Identification	Date Sampled	Analysis Requested	•	Condition Receipt
		11-9-23			- B
675-ATQ	801-B1-14	<u> </u>		<u> </u>	
:72-ATQ :228-ATU	PUL-B2-1 PUL-B2-2				
	C-2-82-3		-		
COSTATO	POL- B2-4				
(-81-AT)	FOL-62-5				
1381-14TC					
CEL STO	PCL B2-5				
CF2-ATQ	PUBDIO				
CF3 ATO	POL-PO 7			 ,	
84, 417	Cu 32 8				
1083 1570	PUL 32-7				
1085 FD	POL-B2-89				
CESTATU -	PUL RO10				
1287- AJU	POL- BOY/S			<u></u>	
COSTETA	801-33-112			+_	
1.58-450	802-B2-12				
SULATU	EOF-BJ-13				
1595ATO	902-B2-14			-	
1,91-150	POL-132-1	· · · · · · · · · · · · · · · · · · ·			
1.12 ATO	121-83-2				

4439

SAMPLERS: (\$19)	peture f					7 4	192
///eekis				SHIPPIN	G INFORMATION		
SHIPTO:				Shipper			
	 			Address			
				Date Shipped			
				Shipment Service			
				Airbill No.			
ATTENTION:				Cooler No.			
Phone No		·					
Relinquished by			Receiv	ed by: (Signature)		Date	/Time
///kdall			Door			Data	(Z :===
Relinquished by:	(Signature)		Hecerv	ed by: (Signature)		Date	/Time
Relinquished by	: (Signature)		Receiv	red by: (Signature)		Date	/Time
Relinquished by	(Signature)	·	Receiv	e for laboratory by: (Signat	ure)	Date	/Time
				Lave Bouna	_	11/15-	1100
				upon receipt", section bel	ow, sign and return		py to
Occidental Ch Sample	Site	vland Ave.,P. Date	O. Box	198, Lathrop, California 95 Analysis	330. Attn: Environi Sample		
Number	Identification	Sampled		Requested	· ·	Receip	
CURATO	1'01-B3-3	11-9-83)	
094-4JQ	1702-B3-4	1					
1995-ATU	POL-183-5		_				
075-BJQ	PUL-83-5		_		-		
- 16-AJU	PUL-83-6						
1:97-AJQ	P-L-13-7						
:08-AJQ	P.L. B3-8	11-10-8	ح _			· · · · · · ·	
1099-ATU	81.1-B3-9	/	 -				
100-AJQ	FOL-B319		_				
MILATO	P31-837/8		_				
1777-ATU	PUL-B3-12					·	
1-2-ATQ	PUL-33-13	•			1		
-13-ATU	PUL-13-13						
1.4. 150	P14-R3-1814	 					
05 ATG	POL-1818-1	,			·		
36-ATO	POL-R-1-2	:					
127-ATQ	FOL-B4-3		_				
WEATER	POL-84-4						
11.19-ATQ	Pol - 134-5						
//3/17久	1921-134-1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	_		<u>~</u>		
++++++++++++++++++++++++++++++++++++++	1	<u>~</u>	_				

111/1	mature)		_ [SHIPPING INFO	ORMATION	l	
hone:			_				
RIF IU:	•			Shipper			
			-	Address			
		· · · · · · · · · · · · · · · · · · ·	-	Date Shipped			
			-	Shipment Service			
				Airbill No			
TTENTION:			-	Cooler No.			
hone No			—			Date	Time
Relinquished by	/: (Signature)		Heceive	ed by: (Signature)		Date	שווווו
lelinquished by	(): (Signature)		Receive	ed by: (Signature)		Date	Time
lelinquished by	y: (Signature)		Receive	ed by: (Signature)		Date	Time
Relinquished by	y: (Signatura)		Receive	e for laboratory by ": (Signature)			Time
	- ·		ľ	Lave Bognac		111/5-	11.00
Sample Number	Site Identification	Date Sampled	-	Analysis Requested	Upor	Conditi n Receip	
1/1-AJC	POL-B4-7	11-10-8-	<u> </u>			<u>e</u>	
	1 346						
12-AJU	1 34-8	-/					
12-AJU 13-AJU	B4-9		-				
112-AJO 113-AJO 119-ATQ	B4-9 B4-10						
12-AJO 13-AJO 19-AJO 15-AJO	B4-9 B4-10 B4-11		 				
112-AJO 112-AJO 114-AJO 15-AJO	B4-9 B4-10 B4-11 B4-12		- - -				
112-AJO 112-AJO 114-AJO 15-AJO	B4-9 B4-10 B4-11 B4-12 B4-13		- - - -				
112-AJU 113-AJU 119-ATU	B4-9 B4-10 B4-11 B4-12 B4-13 B4-13		- - - - -				
13-AJO 13-AJO 15-AJO	B4-9 B4-10 B4-11 B4-12 B4-13 B4-14		 				
13-ATO 19-ATO 15-ATO 13-ATO 17-BTO 17-BTO 17-ATO	B4-9 B4-10 B4-11 B4-13 B4-13 B4-14 34-15		 				
112-AJO 112-AJO 119-AJO 115-AJO 117-AJO 117-AJO 111-AJO	B4-9 B4-10 B4-11 B4-13 B4-13 B4-13 B4-14 34-15 B4-16		- - - - - - -				
112-AJO 112-AJO 119-AJO 115-AJO 117-AJO 117-AJO 111-AJO	B4-9 B4-10 B4-11 B4-13 B4-13 B4-14 34-15 B4-17						
112-AJO 112-AJO 119-AJO 115-AJO 117-AJO 117-AJO 111-AJO	B4-9 B4-10 B4-11 B4-13 B4-13 B4-14 34-15 B4-10 B4-18		-				
112-ATO 112-ATO 113-ATO 113-ATO 113-ATO 113-ATO 121-ATO 122-ATO 122-ATO 122-ATO	B4-9 R4-10 B4-11 B4-12 B4-13 B4-13 B4-14 34-15 B4-16 B4-18 B4-18						
112-ATO 112-ATO 113-ATO 113-ATO 113-ATO 113-ATO 122-ATO 122-ATO 122-ATO 123-ATO	B4-9 R4-10 B4-11 B4-12 B4-13 B4-13 B4-14 34-15 B4-17 B4-18 B4-18 B4-18 B4-18						
112-ATO 112-ATO 113-ATO 113-ATO 113-ATO 113-ATO 121-ATO 122-ATO 122-ATO 122-ATO 122-ATO	B4-9 B4-10 B4-10 B4-12 B4-13 B4-13 B4-14 34-15 B4-18 B4-18 B4-18 B4-18 B4-18						
112-ATO 112-ATO 119-ATO 119-ATO 117-ATO 117-ATO 111-ATO 121-ATO 121-ATO 122-ATO 122-ATO 123-ATO	B4-9 R4-10 B4-11 B4-12 B4-13 B4-13 B4-14 34-15 B4-16 B4-18 B4-18 B4-18 B4-18 B4-18						
112-ATO 112-ATO 119-ATO 119-ATO 117-ATO 117-ATO 111-ATO 121-ATO 121-ATO 122-ATO 122-ATO 123-ATO	B4-9 R4-10 B4-11 B4-12 B4-13 B4-13 B4-14 34-15 B4-18 B4-18 B4-18 B4-18 B4-18 B5-2 B5-4						
112-ATO 112-ATO 119-ATO 119-ATO 117-ATO 117-ATO 111-ATO 121-ATO 121-ATO 122-ATO 122-ATO 123-ATO	B4-9 R4-10 B4-11 B4-12 B4-13 B4-13 B4-14 34-15 B4-16 B4-18 B4-18 B4-18 B4-18 B4-18						

4441

SAMPLERS: (SIG	kelail			SHIPPING IN	FORMATION		74
Phone:							
anir IO.			ļ	Shipper			
· 				Address			
				Date Shipped			
				Shipment Service			
		-		Airbill No			
ATTENTION:				Cooler No.			
Phone No							
Relinquished by	leels			ed by: (Signature)			Time
Relinquished by: (Signature)		Receiv	ed by: (Signature)		Date/	Time	
Relinquished by	: (Signature)	- <u>-</u> -	Receiv	red by: (Signature)		Date	Time
Relinquished by	: (Signature)		Receiv	e for laboratory, by *: (Signature)			Time
				Jave Bornan		1/3-	1:30
				upon receipt"/ section below, s 198, Lathrop, California 95330. Analysis		nental [Dept.
Number	Identification	Sampled		Requested		Receip	
1129-AJQ	POL-85-7	11-10-8	₹		1-	k	
1130-AJQ	7 7-8	/				`	
131-ATO	1-9		_				
131-370	-9		_			1	
132-,450	-/0	+					
123-ATO	-11		_				
134-AJQ	-/3	:					
					j		
	-17-14		_				
	-13-14		- 				
136-ATQ	-13-14 -14-15		-				
136-ATQ	-13-14 -14-15 -15-16		 				
136-ATQ 137-ATQ 138-ATQ	-16-17		 				
136-ATQ 137-ATQ 138-ATQ 139-ATQ	-16-17 -17-18		 				
136-ATQ 137-ATQ 138-ATQ 139-ATQ	-16-17 -17-18 -17-18		 				
136-ATQ 137-ATQ 138-ATQ 139-ATQ 139-BTQ 140-ATO	-16-17 -17-18 -17-18 POL-B5-19		 				
136-ATQ 137-ATQ 138-ATQ 139-ATQ 139-BTQ 140-ATQ	-16-17 -17-18 -17-18 POL-B5-19 V J 20						
136-ATQ 137-ATQ 138-ATQ 139-ATQ 1140-ATQ 1141-ATQ 1142-ATQ	-16-17 -17-18 POL-B5-19 V J 20 POL-B6-1		 				
136-ATQ 137-ATQ 138-ATQ 139-BTQ 1140-ATQ 1141-ATQ 1142-ATQ	-16-17 -17-18 POL-B5-19 V J 20 POL-B6-1 POL-B6-2						
136-ATQ 137-ATQ 138-ATQ 139-ATQ 1139-BTQ 1140-ATQ 1141-ATQ 1142-ATQ 1143-ATQ	-16-17 -17-18 POL-B5-19 V J 20 POL-B6-1 POL-B6-2 FOL-B6-3		 				
135-ATQ 136-ATQ 137-ATQ 138-ATQ 1139-BJQ 1140-ATQ 1141-ATQ 1142-ATQ 1143-ATQ 1144-BJQ	-16-17 -17-18 POL-B5-19 V J 20 POL-B6-1 POL-B6-2		 				

4442

SAMPLERS: (Sign	els.l			SHIPPING	INFORMATION		
Phone:							
SHIPTO:				Shipper			
				Address			
				Date Shipped			
				Shipment Service			
				Airbill No			
ATTENTION:				Cooler No			
Phone No							
Relinquished by			Receiv	red by: (Signature)		Date/	Time
Relinquished by:			Receiv	red by: (Signature)		Date/	Time
Relinquished by:	(Signature)		Received by: (Signature)			Date/Tim	Time
Relinquished by:	(Signature)		Receiv	e for aboratory by ". (Signature)		Date/	Time
·		1		Mave Bognar		11/15	1100
				upon receipt", section below 198, Lathrop, California 95330		top cop	oy to
Sample	Site	Date	0. B0x	Analysis	Sample		
Number	Identification	Sampled	_	Requested	Upon	Receipt	<u> </u>
146-AJG	FOL-B6-5	11-10-8	<u>-</u> ح			<u>ĕ</u>	
147 ATU	1-6						
148 ATG	1 - 7						
149-ATC	-8		_				
150-AJ6	-9		-				
	1-9						
ICO DITO		ŧ			\		_
	-10		_				
151-4TO			-				
151-4TO							
151-4TO 152-ATO 153-ATO							
151-4TO 152-ATO 153-ATO 154-4TG			- - - -				
151-4TO 152-ATO 153-ATO 153-ATO 155-ATO			 				
151-4TO 152-ATO 153-ATO 151-ATO 156-4TU			 				
151-4TO 152-ATO 153-ATO 151-ATO 156-4TU 157-ATO			 				
151-4TO 152-ATO 153-ATO 155-4TO 156-4TO 156-4TO			 				
151-4TO 152-ATO 153-ATO 151-ATO 156-4TU 157-ATO			 				
151-4TO 152-ATO 153-ATO 151-ATO 156-4TU 157-ATO			 				
151-4TO 152-ATO 153-ATO 154-ATO 156-ATO 156-ATO			 				
150-BTO 151-ATO 152-ATO 153-ATO 151-ATO 156-ATO 157-ATO 157-ATO							
151-4TO 152-ATO 153-ATO 154-ATO 156-ATO 156-ATO			 				

CHAIN OF CUSTODY RECORD 4443 SAMPLERS: (Signature) France + J. WULLAMS SHIPPING INFORMATION Phone: SHIP TO: Address __ Date Shipped _____ Shipment Service _____ Airbill No. _____ # ATTENTION:_ Cooler No. _____ Phone No. Relinquished by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) Date/Time Received by: (Signature) Relinquished by: (Signature) Date/Time Receive for laboratory by "I Signature I *Analysis laboratory should complete, "sample condition upon receipt", section below, sign and return top copy to Occidental Chemical Co.,16777 Howland Ave., P. O. Box 198, Lathrop, California 95330. Attn: Environmental Dept. Sample Site Date Analysis Sample Condition Number Identification Sampled Requested **Upon Receipt** OL-BK-17 11-10-83 1158-470 1159-454 1150-AJQ 140-BT0 7727-1 11:11-83

Form A-382 (Rev. 7.82)

15% ASQ

respirato posta de la estableción de la comencia de la proposición de la comencia de la comencia de la comencia

SAMPLERS: /STO	ina(uro)			TODY RECORD		44	44
Phone:	ROGION TO	J. William	ک	SHIPPING	INFORMATION	l	
SHIP TO:			- -	Shipper			
				Address			
			_	Date Shipped			
				Shipment Service			
				Airbill No.			
ATTENTION:				Cooler No.		_	
				000187 140			
Relinquished by			Receiv	ed by: (Signature)		Date	Time
Relinquished by	l: (Signatura)		Receiv	ed by: (Signature)		Date/	Time
Relinquished by: (Signature)			Received by: (Signature)			Date/	Time
Relinquished by	l: (Signature)		Receiv	e for laboratory by*:(Signature)		Date	Time
11 12	carrel	1	, , , , , , , , , , , , , , , , , , , ,	Care Bounn			1/30
*Analysis labo	ratory should compl	ete, "sample co owland Ave.,P. (ndition D. Box	upon receipt", section below. 198, Lathrop, California 95330	sign and return	top co	by to
Sample	Site	Date		Analysis	Sample	Conditi	on
Number	Identification 2.1	Sampled	-	Requested		Receip	<u>t </u>
174-AJD	12x-37-13	11-11-83	-		- (0.	2	
175 ATO			-				
TID- ATO	\ 2		-				
TO ATO	<u></u>		- _A S				
			Ω (λο				
			- 20		<u> </u>	y	
1-12			v			<u>D</u>	
<u> </u>			— w				
13/130	<u> </u>						
			_				
			-				
			_				
			_				
			_				
			-				
			_				
			_				
			-				

CHAIN OF CUSTODY RECORD SAMPLERS: (Signature) V. Bognay J. Williams SHIPPING INFORMATION Phone: SHIP TO: Shipper __ Address __ Date Shipped _____ Shipment Service _____ Airbill No. __ ATTENTION:__ Cooler No. _____ Phone No. Relinquished by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) Receive for laboratory by (Signature) Date/Time Dognar *Analysis laboratory should complete, "sample condition upon receipt", section below, sign and return top copy to Occidental Chemical Co., 16777 Howland Ave., P. O. Box 198, Lathrop, California 95330. Attn: Environmental Dept. Sample Site Date Analysis Sample Condition Number Identification Requested Upon Receipt Sampled -11-83 78 AJQ 11-14-83 1134 AJTO 9

10

4446 CHAIN OF CUSTODY RECORD Brand X J Williams SHIPPING INFORMATION Phone:. SHIP TO: Shipper ___ Address ___ Date Shipped _____ Shipment Service _____ Airbill No. ___ Cooler No. _____ ATTENTION:___ Phone No. Date/Time Received by: (Signature) Relinquished by: (Signature) Date/Time Received by: (Signature) Relinquished by: (Signature) Date/Time Received by: (Signature) Relinquished by: (Signature) Date/Time Receive for laboratory by : (Signature) Relinquished by: (Signatura) 1381 *Analysis laboratory should complete, "sample condition upon receipt", section below, sign and return top copy to Occidental Chemical Co., 16777 Howland Ave., P. O. Box 198, Lathrop, California 95330. Attn: Environmental Dept. Sample Condition Analysis Sample Site **Upon Receipt** Requested Number Identification Sampled POC-B8-14 1196 BJG 16 1197 AJG 11 1198 AJQ 1199 AJQ 1,200 AJQ. 1.301 AJQ 1201 BJQ POL-B9-1 1202 AJQ 1203 AJQ 1204 AJQ 1205 AJQ 1205050 1206 ASO 1207 AJQ 1208 AJP 1209 AJP 1210ASP 1210BJP

CHAIN OF CUSTODY RECORD 4447 SAMPLERS: (Signature) V BOSLAR + J. WILLIAMS SHIPPING INFORMATION Phone:. SHIP TO: Address ___ Date Shipped ___ Shipment Service ___ Airbill No. _____ ATTENTION:__ Cooler No. ... Phone No. Relinquished by: (Signature) Received by: (Signature) Date/Time Date/Time Relinquished by: (Signature) Received by: (Signature) Relinquished by: (Signature) Received by: (Signature) Date/Time Date/Time Relinquished by: (Signature) Receive for laboratory by : (Signature) ROGNAR *Analysis laboratory should complete, "sample condition upon receipt", section below, sign and return top copy to Occidental Chemical Co., 16777 Howland Ave., P. O. Box 198, Lathrop, California 95330. Attn: Environmental Dept. Sample Site Date Analysis Sample Condition Number Identification Sampled Requested **Upon Receipt** 1211 ATP 10 1212 AJP 1213 AJP 12 IZIK AJP 1216 AJF 1217 AJP 1217 BJP 16 WIS AUTP 1219 BJ 1220 AUF 20 1221 AJP Pallo-1222 ASP POLBIO-1223 AJP 1224 ASP 1225 ASP 1226 ASTF 1226 BJ

SAMPLERS: (Signature) 1. BOGNARY T WULLAMS SHIPPING INFORMATION Phone: SHIP TO: Shipper_ Address _ Date Shipped ___ Shipment Service _____ Airbill No. _ ATTENTION:_ Cooler No. ___ Phone No. Received by: (Signature) Date/Time Relinquished by: (Signature) Date/Time Relinquished by: (Signature) Received by: (Signature) Relinquished by: (Signature) Received by: (Signature) Date/Time Relinquished by (Signature) Receive for laboratory by : (Signature) Date/Time *Analysis laboratory should complete, "sample condition upon receipt", section below, sign and return top copy to Occidental Chemical Co., 16777 Howland Ave., P. O. Box 198, Lathrop, California 95330. Attn: Environmental Dept. Sample Date Analysis Sample Condition Number Sampled Requested **Upon Receipt** Identification 1228 AJP Mar. B-10 -1230 AST 1235 ATA 1236 AST 1236 61 1238 ASF 1239AJF 1240ASF 19 20 1241Bs Form A-382 (Rev. 7/82)

Dint-I sh Courtesy Copy

CHAIN OF CUSTODY RECORD

SAMPLERS: (Signature)						4449			
, -	Danas + J. L	ullans		SHIPPING INFORMATION					
Phone:	J								
HIPTO:				Shipper					
				Address					
				Date Shipped					
				Shipment Service					
				Airbill No.					
ATTENTION:				Cooler No.					
Phone No									
Relinquished by:	(Signature)		Receiv	ed by: (Signature)	Date	/Time			
Relinquished by:	(Signature)		Receiv	red by: (Signature)	Date	Time			
Relinquished by:	(Signature)		Receiv	red by: (Signature)	Date	/Time			
	, _ -			· · · · · · · · · · · · · · · · · · ·		1			
Relinquished by:	(Signature)		Receiv	e for laboratory by (Signature)		Time			
V Boar	nar_			V. Bognar	1/2	<u> </u>			
Occidental Che	emical Co.,16777 H	owland Ave.,P.	O. Box	upon receipt ¹ , section below, 198, Lathrop, California 95330. Analysis	Attn: Environmental	Dept.			
Sample Number	Identification	Sampled		Requested	Upon Regeir				
1342AJD	\$3/1-1	11-15-8	23						
1243AJP	B11-3								
124 HAJP	B12-3								
12 - 4 B 573	B12-3		_						
1245AJP	BB-4		_						
1346AJP	B13-5		_						
1247AJP	B13-6		_		· · · · · · · · · · · · · · · · · · ·				
1248AJP	B14-7				: 				
349 ATP	B14-8								
1249 359	B14-8		_						
1250 AJP	B15-9				<u> </u>				
1251/200	B15-10		_						
1352 AJP	B16-11				· · · · · · · · · · · · · · · · · · ·				
1352 BJP	B16-11								
1353AJP	016-12		_						
1354 AJP	B17-13		_		·				
1355AJP	B17-14								
1256AJP	B18-15		_						
1256 BJP	B18-15		_ 		$\overline{\mathcal{L}}$				
12574.70	B18-16	· 7							

CHAIN OF CUSTODY RECORD 4451 SAMPLERS: (Signature) Bognary J. Williams SHIPPING INFORMATION Phone:. SHIP TO: Shipper _ Address _ Date Shipped ___ Shipment Service _____ Airbill No. ___ ATTENTION:_ Cooler No. ___ Phone No. Relinquished by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) Received by: (Signature) Date/Time Date/Time Relinquished by: (Signature) Received by: (Signature) Relinquished by: (Signature) Receive for laboratory by ": Signature) Date/Time *Analysis laboratory should complete, "sample condition upon receipt", section below, sign and return top copy to Occidental Chemical Co., 16777 Howland Ave., P. O. Box 198, Lathrop, California 95330. Attn: Environmental Dept. Site Sample Date Analysis Sample Condition Number Identification Sampled Requested **Upon Receipt** 11 B19-1 11-16-83 1258AJP 1259AJP B19-2 1360 AJP B19-3 B19-4 1261 AJP 1261BJP B19-4

1262 AJP B19-5 1263 AJP B19-6 1264 AJP B19-7 1265 ATP B19-8 B19-9 1266 AJP 1366 BJP 019-9 B19-10 1267 AJP B19-11 1268 AJP 1269 AJP B19-12 12 70 ATP B19-13 1271 ATP B19-14 1.271 BJF 1272 AJP B19-15

B19-16 B19-17

1273 AJP

CHAIN OF CUSTODY RECORD

4452

SAMPLERS: (Sign	neture)	•	1	
V. Box	par + J.10	ullians	SHIPPING I	NFORMATION
Phone:	7			
SHIPTO:			Shipper	
			Address	
·		- 	Date Shipped	
	. <u></u>		Shipment Service	
ATTENTION:				
Phone No.				
Relinquished by:	(Signature)		Received by: (Signature)	Date/Time
Relinquished by:	(Signature)		Received by: (Signature)	Date/Time
Relinquished by:	(Signature)		Received by: (Signature)	Date/Time
Relinquished by:			Description to the second business	DotATime
Helinduished by:	12 /		Receive for laboratory by signature)	Date Time
· Analysis labor	Dogran	oto l'esmale es	ndition upon receipt section below.	
			O. Box 198, Lathrop, California 95330	
Sample	Site	Date	Analysis	Sample Condition
Number	Identification	Sampled	Requested	Upon Receipt
1275 AJP	B19-18	11-16-83		<u> </u>
1876 AUP	<u> 619-19</u>			·
1277 AJP	<u> 19-20</u>	+-	_	
1277 AJP	B19-20			· · · · · · · · · · · · · · · · · · ·
1218 AJP	820-1			·
1279 AUP	1320-A			·
1280 AJP	B20-3			
1280 BJB	B20-3			
1281 ADP	BOU-4			
1282 AJP	020-5			
1283 AJP	B30-6			
1284 AJP	<u> 620 - 7</u>			
1235 AJP	B20-8			
1286 AJP	BBC-9			
1386 BJP	800-9			
WRT AUTO	BD-10			
1288 ATP	B20-11			
1289 ATP	B20-12			
1290 ASP	B20-13			
1291 ATP	B30-14			7

Form A-382 (Rev. 7/82)

an ordered F-

Dinti tah Californi Con

CHAIN OF CUSTODY RECORD

SAMPLERS: (819	naturo) OGNASTIW	Mans	SHIPPING IN	FORMATION
Phone:	J		_	
SHIP TO:	· · · · · · · · · · · · · · · · · · ·		Shipper	. 1:
	· 		Address	•
			Date Shipped	
			Shipment Service	
			Airbill No	
ATTENTION:			Cooler No.	
Phone No.				
Relinquished by	: (Signature)		Received by: (Signature)	Date/Time
Relinquished by	: (Signature)		Received by: (Signature)	Date/Time
Relinquished by	: (Signatura)		Received by: (Signature)	Date/Time
Relinquished by	: (Signature)		Receive for laboratory by*:(Signature)	Date (Time
V. K	gares		V.Brancev	1 542
*Analysis labo	ratory should compl		andition upon receipt", section below, s	
Occidental Ch Sample	nemical Co.,16777 Ho Site	owland Ave.,P. Date	O. Box 198, Lathrop, California 95330. Analysis	Sample Condition
Number	Identification	Sampled	Requested	Upon Receipt
129 160P	B20-14	11-16-8	3	H
292 ATP	B20-15	7		
1293 ATP	B20-16			
1294 AJP	820-17			
1395 ATP	B20-18			
1296 AJP	B30-19			
393 ATP	B20-19			
1297 BUP	B30-20			
1298 AJP	1-160			
299 ATP	321-2	- 		
1300 AJP	B21-3			
1300 BJP	B21-3			
1301 AJP	B21-4	:		
1302-AJP	B21-5			
1303 AJP	B21-6	 -		
1304AJP				
		i		
1305 ATP	B31-7			
1305 ATP	B21-8			
1305 ATP 1306 ATP 1306 BTP	B31-7			

Form A-382 (Rev 7/82)

CHAIN OF CUSTODY RECORD 4454 SAMPLEBS: (Signature) Bognar + J. Williams SHIPPING INFORMATION Phone: SHIP TO: Shipper ... Address __ Date Shipped _____ Shipment Service _____ Airbill No. __ ATTENTION:_ Cooler No. _ Phone No. Received by: (Signature) Relinquished by: (Signature) Date/Time Relinquished by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) Date/Time Received by: (Signature) Date/Time Relinquished by: (Signature) Receive for laboratory by ": (Signature) Boanas *Analysis laboratory should complete, "sample condition upon receipt", section below, sign and return top copy to Occidental Chemical Co., 16777 Howland Ave., P. O. Box 198, Lathrop, California 95330. Attn: Environmental Dept. Site Sample Date Analysis Sample Condition Number Identification Sampled Requested Upon Beceipt B21-11 308 AJP 1321-12 1309 AJP 1310 AJP B21-13 1310 300 1311 AJP B21-15 1312 ASTP 1.313 ATP B21-16 1314 ATT B21-17 1315 ATP B21-18 1316 ASP BZI -19 1317ADP 1317650 821-20

Form A-382 (Rev. 7/82)

		CHAIN OF	CUS	STODY RECORD	•	44	56
SAMPLERS: (Sign	anav+II	villans	•	SHIPPING II	NFORMATION	-	
Phone:							
SHIPTO:		•		Shipper			
		<u> </u>		Address			
				Date Shipped			
				Shipment Service			
				Airbill No.			
				Cooler No.			
Phone No Relinquished by:	(Singatura)			ved by: (Signature)	1 0	to/	Time
nemiquished by.	(Signature)		necei	ved by. (Signature)	J.	116/	ime
Relinquished by:	(Signature)		Recei	ved by: (Signature)	D	ate/	Time
Relinquished by:	(Signature)		Recei	ved by: (Signature)	D:	ate/	Time
Relinquished by:	(Signature)		Recei	ve for laboratory by "(Signature)		atex	Time
V.	Bognar			Pognar	´ ' <i>'</i> ',	20	
	atory should compl			n upan receipt", secti g n below,			
Sample	Site	Date	O. Box	198, Lathrop, California 95330. Analysis	Sample Con	_	
Number	Identification	Sampled	_	Requested	Upon Rec		
1318 AJP	B22-1	11-17-83	<u>3</u>				
1319 AJP	B22-2		_				
1319 AJP 1320 AJP	<u>B22-2</u> B22-3		- -				
320 ATP			- -				
320 ATP 1320 ATP	822-3		- - -				
320 ATP 1320 ATP	B22-3 B22-3 B22-4		- - -				
1320 ATP 1320 ATP 1321 ATP 1322 ATP	B22-3		- - - -				
320 ATP 1320 ATP 1321 ATP 1322 ATP 1323 ATP	BDD-3 BDD-3 BDD-4 BDD-5		- - - -				
320 ATP 1320 ATP 1321 ATP 1323 ATP 1323 ATP 1324 ATP 1325 ATP	BDD-3 BDD-4 BDD-5 BDD-6		- - - - -				
320 ATP 320 ATP 321 ATP 1322 ATP 1323 ATP 1324 ATP 1325 ATP	BDD-3 BDD-3 BDD-4 BDD-5 BDD-6 BDD-7		- - - - -				
320 ATP 1320 ATP 1321 ATP 1323 ATP 1324 ATP 1325 ATP 1326 ATP 1326 BTP	BDD-3 BDD-3 BDD-4 BDD-5 BDD-6 BDD-7 BDD-8		- - - - -				
320 ATP 1320 ATP 1321 ATP 1323 ATP 1324 ATP 1325 ATP 1326 BTP 1326 BTP 1327 ATP	BDD-3 BDD-3 BDD-4 BDD-5 BDD-6 BDD-7 BDD-8 BDD-9		- - - - -				
330 ATP 1320 ATP 1331 ATP 1333 ATP 1334 ATP 1335 ATP 1336 ATP 1336 BTP 1338 ATP	BDD-3 BDD-3 BDD-4 BDD-5 BDD-5 BDD-7 BDD-8 BDD-9 BDD-9		- - - - - -				
330 ATP 1320 ATP 1331 ATP 1333 ATP 1334 ATP 1335 ATP 1336 ATP 1336 BTP 1338 ATP 1339 ATP	BDD-3 BDD-3 BDD-4 BDD-5 BDD-6 BDD-7 BDD-8 BDD-9 BDD-9 BDD-9 BDD-9		- - - - - -				
330 ATP 1320 ATP 1331 ATP 1333 ATP 1334 ATP 1335 ATP 1336 BTP 1338 ATP 1338 ATP 1339 ATP 1339 ATP 1339 ATP	BDD-3 BDD-3 BDD-4 BDD-5 BDD-5 BDD-6 BDD-7 BDD-7 BDD-9 BDD-9 BDD-10 BDD-10		- - - - - -				
330 ATP 132 ATP 1331 ATP 1333 ATP 1334 ATP 1335 ATP 1336 ATP 1336 ATP 1337 ATP 1339 ATP 1339 ATP 1339 ATP 1331 ATP	BDD-3 BDD-3 BDD-3 BDD-4 BDD-5 BDD-5 BDD-6 BDD-7 BDD-7 BDD-9 BDD-9 BDD-10 BDD-10 BDD-11 BDD-13		- - - - - - -				
330 ATP 132 ATP 1331 ATP 1333 ATP 1334 ATP 1335 ATP 1336 ATP 1338 ATP 1339 ATP 1331 ATP 1331 ATP 1331 ATP	BDD-3 BDD-3 BDD-4 BDD-5 BDD-5 BDD-6 BDD-7 BDD-8 BDD-9 BDD-9 BDD-10 BDD-10 BDD-11 BDD-11		- - - - - - -				
330 ATP 132 ATP 1331 ATP 1333 ATP 1334 ATP 1335 ATP 1336 BTP 1338 ATP 1339 ATP 1331 ATP 1331 ATP 1331 ATP	BDD-3 BDD-3 BDD-4 BDD-5 BDD-5 BDD-6 BDD-7 BDD-8 BDD-9 BDD-9 BDD-9 BDD-10 BDD-10 BDD-11 BDD-13 BDD-13 BDD-14 BDD-15		- - - - - - - -				
330 ATP 132 ATP 1331 ATP 1333 ATP 1334 ATP 1335 ATP 1336 ATP 1336 ATP 1337 ATP 1339 ATP 1339 ATP 1339 ATP 1331 ATP	BDD-3 BDD-3 BDD-3 BDD-4 BDD-5 BDD-5 BDD-6 BDD-7 BDD-7 BDD-9 BDD-9 BDD-10 BDD-10 BDD-11 BDD-12 BDD-13 BDD-13		- - - - - - -				

SAMPLERS: (Signature) Bonas + J. Williams SHIPPING INFORMATION Phone: SHIP TO: Shipper ... Address ___ Date Shipped ___ Shipment Service _____ Airbill No. __ ATTENTION:_ Cooler No. ___ Phone No. Date/Time Received by: (Signature) Relinquished by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) Relinquished by: (Signature) Received by: (Signature) Date/Time Date/Time Relinquished by: (Signature) Receive for laboratory by ": (Signature) *Analysis laboratory should complete, "sample condition upon receipt", section below, sign and return top copy to Occidental Chemical Co., 16777 Howland Ave., P. O. Box 198, Lathrop, California 95330. Attn: Environmental Dept. Analysis Sample Condition Date Sample Site Requested Upon Receipt Number Identification Sampled B00-18 1335 AJ B00-19 B20-20 1337 05 822-20 B20 - 1 1328-2 B39 -1340 AT

CHAIN OF CUSTODY RECORD

4457

4458 SAMPLERS: (Signature) Borrar + V. Williams SHIPPING INFORMATION Phone:. SHIP TO: Shipper __ Address __ Date Shipped _____ Shipment Service _____ Airbill No. __ ATTENTION:__ Cooler No. _____ Phone No. Received by: (Signature) Date/Time Relinquished by: (Signature) Relinquished by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) Receive for laboratory, by 'Signature) Date/Time *Analysis laboratory should complete, "sample condition upon receipt", section below, sign and return top copy to Occidental Chemical Co., 16777 Howland Ave., P. O. Box 198, Lathrop, California 95330. Attn: Environmental Dept. Sample Site Date Analysis Sample Condition Number Identification Sampled Requested Upon Receipt WIF 1241 WIF 12263 WIF N transit Well #10 : 3 43 411 #10 Well #10 1243 1343 Well #10 1344 Well # 17 Well # 17 1344 1345 Well # 11 Well # 11 13:15 1345 ue11 # 11 Well # 11 1345 1345 12211 411 1346 Well 47 1346 441 47 well #1 1347 wal # Well # L

CHAIN OF CUSTODY RECORD

SAMPLERS: (SI	gnature)		CUSTODY RECOR	445
•	ogna (+J: Li	Julians_	sн	IPPING INFORMATION
Phone: SHIP TO:			Shinner	
			į	
 		 	1	
			1	
			,	
			J	
			Cooler No	
Relinquished by	V' (Signatura)		Received by: (Signature)	Date/Tin
terinquisited by	y. (Signalur a)		rieceived by, isignaluly)	Date/Tin
Relinquished by	y: (Signature)		Received by: (Signature)	Date/Tin
Relinquished b	y: (Signature)		Received by: (Signature)	Date/Tin
Relinquished by	y: (Signature)		Receive for laboratory by	
*Analysis labo	oratory should compl		ndition upon receipt", section	on below, sign and return top copy to the 95330. Attn: Environmental Dep
Sample Number	Site	Date	Analysis	Sample Condition
	Identification	Sampled	Requested	Upon Receipt
348	Well #4	11-17-83	-	
348	well #4			
348	Well #4			
348	11.011 #4			
348	1211 #4			
				
				
				
				
				
			-	
				
			-	

CHAIN OF CUSTODY RECORD

APPENDIX G

Raw Water and Soil Quality Data

LUKE AFB SOILS

LAB NO.	FIELD LABLE	PARAMETER	RESULTS ug/kg (ppb)
1772	B21-20 1317	1,2-Dichlorethane 1,1-Dichloroethane 1,1-Dichloroethylene Methylene Chloride Unidentified Peaks	4 4 23 26 2
1780	B22-6 1323	l,l-Dichloroethylene Methylene Chloride Unidentified Peaks	6 18 3
1728	B20-3 1280	1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene Methylene Chloride Unidentified Peaks	7 9 35 56 2
1721	B19-17 1274	1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene Methylene Chloride Bromomethane Unidentified Peaks	4 2 21 16 13 1
1747	B20-19 1296	1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene Methylene Chloride Unidentified Peaks	16 5 13 38 1
Blank	for 5 above	Methylene Chloride	32
1261	1059	l,l,l-Trichloroethane Chloroform Methylene Chloride Bromodichloromethane Trichloroethylene	4 162 600 3 22
1264	1062	l,l,l-Trichloroethane Chloroform Methylene Chloride Trichloroethylene Unidentified Peaks	2 57 330 16 1
1785	B22-10 1327	1,1,1-Trichloroethane Chloroform Methylene Chloride Bromodichloromethane	11 320 790 13

SOILS

LAB NO.	FIELD LABLE	<u>PARAMETER</u> <u>u</u>	RESULTS g/kg (ppb)
1796	B22-20 1337	1,1,1-Trichloroethane Chloroform Methylene Chloride Bromodichloromethane	11 800 950 16
1262	1060	Chloroform Methylene Chloride	23 130
Blank sample	for above 5	Methylene Chloride	410
1715	B19-12 1269	<pre>1,1,1-Trichloroethane Chloroform Methylene Chloride Bromodichloromethane Unidentified Peaks</pre>	2 540 1300 10 2
1731	B20-5 1282	1,2 Dichloromethane 1,1,1-Trichloroethane Chloroform 1,1 Dichloroethylene 1,2 Dichloropropane Methylene Chloride Bromodichloromethane Trichloroethylene Vinyl Chloride Unidentified Peaks	190 22 390 15 1 1300 19 2 90 2
Blank sample	for above 2	Methylene Chloride	1300
1583	B20-16 1293	<pre>l,l-Dichloroethane l,l-Dichloroethylene Methylene Chloride Unidentified Peaks</pre>	5 22 27 4
1699	SB18-15 1256	1,2-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloroethylene Trans & Cis-1,3 Dichloropropa Tetrachloroethylene Unidentified Peaks	5 11 40 ne 2 1 4
1693	SB-15-10 1251	1,2-Dichloroethane 1,2-Dichloroethylene Methylene Chloride	7 7 8

SOILS

LAB NO.	FIELD LABLE	PARAMETER	RESULTS ug/kg (ppb)
1756	B-21-6 1303	1,1 Dichloroethylene Methylene Chloride	2 19
1692	SB 15-9 1250	Methylene Chloride	1
1701	SB 18-16 1257	l,1-Dichloroethylene Methylene Chloride Unidentified Peaks	2 24 3
1778	B22-4 1321	l,2-Dichloroethane l,1-Dichloroethane l,1-Dichloroethylene Methylene Chloride Unidentified Peaks	31 3 6 65 2
1255	SB17-14 1255	1,2-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloroethylene Methylene Chloride Unidentified Peaks	9 9 16 59 2
1694	SB-16-11 1252	1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene Methylene Chloride Unidentified Peaks	8 5 7 40 3
1740	B20-13 1290	<pre>1,1-Dichloroethane 1,1-Dichloroethylene Methylene Chloride Unidentified Peaks</pre>	1 3 17 2
1697	SB17-13 1254	1,2-Dichloroethane 1,1-Dichloroethane Chloroform 1,1-Dichloroethylene Methylene Chloride	12 1 2 2 62
1696	SB16-12-1253	Methylene Chloride	2
1590	SB14-8 1249	Methylene Chloride	2
1588	SB-13-6 1247	1,2 Dichloroethane 1,1 Dichloroethane Chloroform 1,1 Dichloroethylene Unidentified Peaks	8 4 8 24 1

SOILS

LAB NO.	FIELD LABLE	PARAMETER	RESULTS ug/kg (ppb)
1586	SB 12-4 1245	No peaks Found	
1492	B1-14 1076	Methylene Chloride	8
1579	B10-10 1231	No peaks found	
Blank sample	for above 17 s	Methylene Chloride	35
1518	B5-5 1127	Chloroform Methylene Chloride	120 950
1596	B7-20 1181	Chloroform Methylene Chloride	160 1200
1325	B6-15 1156	Chloroform Methylene Chloride	200 1400
1499	B3-6 1096	1,2 Dichloroethane Chloroform Methylene Chloride	3 8 320
1292	B2-14 1090	No peaks found	
1309	B4-9 1113	No peaks found	
1299	B3-14 1104	1,2 Dichloroethane 1,1 Dichloroethane 1,1 Dichloroethylene Trans-1,2 Dichloroethylene Methylene Chloride	12 14 10 11 970
1269	B1-4 1066	No peaks found	
1280	B2-4 1080	Methylene Chloride	430
Blank 9 sam	s for the above ples		750
1601	B8-6 1187	Chloroform 1,1 Dichloroethylene Methylene Chloride	35 12 13,000
Blank		Methylene Chloride	13,000
2210	SB 11-2 1243	No peaks found	

PHENOLS

LAB NO.	FIELD LABLE	PARAMETER	RESULTS ug/kg (ppb)
83-1868	WIF Influent	2,4 Dimethylphenol	53
83-1666	1341-HQ Effluent	2,4 Dimethylphenol	5
83-1677	1348-DQ #4	No detectable phenol	
83-1672	1345-HQ #11	No detectable phenol	
83-1669	1343-JQ #10	No detectable phenol	
	RADIO:	LOGY	
83-1676		Radium 226 Gross Alpha Gross Beta CS 137 CS 139	ND 0.004 ND 2 34 + 4 26 ± 4 12 ± 4

LUKE AFB

WATER

SITE LOCATION	PARAMETER	RESULTS
Well 10	1,2 Dichloroethane Trans-1,2-Dichloroethylene Methylene Chloride EDB DBCP	10.8 100 24 1.0 0.1
Effluent	1,2 Dichloroethane Chloroform Bromodichloromethane Trichloroethylene	2.9 2.0 0.15 0.63
Well 11	Methylene Chloride EDB DBCP	0.28 ND 1.0 ND 0.1
WIF Inffluent	1,2 Dichloroethane 1,1,1-Trichloroethane 1,1 Dichloroethane Chloroform 1,2 Dichlorobenzene 1,3 Dichlorobenzene Trans 1,2 Dichloroethylene Trans & Cis 1,3 Dichloropropene Methylene Chloride Tetrachloroethylene Trichloroethylene Unidentified Peaks	1.0 4.8 2.5 0.17 3.8 15 1.5 0.30 6.2 2.3 2.2
Well 4	1,2-Dichloroethane Methylene Chloride EDB DBCP	1.4 43.7 ND 1.0 ND 0.1
Well 1	DBCP EDB	ND 0.1 ND 1.0
Well 7	DBCP EDB	ND 0.1 ND 1.0
Well 12	DBCP EDB	ND 0.1 ND 1.0

DATA SUMARY SHEET

W. O/P.O. No. C 25-65-14-

Date(s) Samples Collected Client Nach

	A CALL CALL CALL CALL CALL CALL CALL CA												. ~			
400	Ch	13/	7. 13	53	5.7.5	Sout	1.45	151	40%	101	1/2	7.17	125	1/1/		
	Sample Description	1991	10.71	70.80	200	250		111.3		5,5%	11.81	110%	1.231	1345		
	B.S. RFW #	11- 75-000	0200	0630	0470	2522	242)	2(0)	75.27	37,.13	<i>331.3</i>	(110	2212	13817		
	RFW No.															

Signed

Q. A. Officer

Date

Date(s) Samples Collected W. 0/P. 0. 110. 6 25-65-34 DATA SUMARY SHEET

		- ·											,		
The formation															
-						<u> </u>									
													<u> </u>		
2007 120	161	21 3	53	5.7.5	12 m	11.45	151	KO!	101	112	1117	125	Mr		
Sample Description	797/	1:71	2000	20%	22	110.11	11.3	7011	2,00	1/8/	1157	1.231	1345		
R.S. RFW #	141- 783-000	0200	0500	0770	5555	2.7.7.)	360)	75,77	0.76	<i>327.7</i>	0110	17613	7730		
AFV NO.	- 1														

Signed Q. A. Officer

Date Date(s) Samples Collected Client Ales tox DATA SURMARY SHEET Signed 3930 2000 730C 41.8 14.9 350 12.6 3.2 39.4 77 77 W.0/P.0. No. Sample Description 127 Dup 1096 076 1062 1090 1060 080, 1066 1137 1001 101 0000 0050 0900 0030 0200 2020 0700 CCSO 0130 0100-169-1068 0010 0110 0140 0110 0150 0110 B.S. RFW # RFW NO.

Q. A. Officer

G-8

DATA SHHMARY SHEET

Date(s) Samples Collected

W.0/P.0. No. _

Client Alice A of Dulle of B

TER ATT WOMEN	11. mar. 1. ma															
-1/0	76	77	11.0	77	38.0	1.57	16.4	3,8	3.2	8.0	77	6.3	2.9	5.6	7.6	77
Sample Description	-	1113		1231	1343	1.345		13/19	Stark	1354	1353			1350		1356
B.S. RFW #	8401-694-0170	08.10	0)30	0200	1210	0220	0730	0240	0220	020	0270	0750	0520	030	080	0250
RFW NO.																

Signed

Q. A. Officer

Date

Date(s) Samples Collected Date Client DATA SUPMARY SHEET Slgned 5.65 35.5 28.0 135 378 8 2.5 4.0 90.11 350 63) (: -) 77 W.0/P.0. No. Sample Description 230 500 1252 2/2 1396 0200 1321 0340 0%0 0360 01/10 1370 33% 27/12 1,750 01/20 RFW # RFU No.

G-10

Q. A. Officer

Date(s) Samples Collected C1 ient DATA SUIWARY SHEET W.0/P.0. No.

												-	
													Date
													pac
0//-	343	260	5.5			12.6	25.5	627.	312				51gned
Sample Description	120 Aug	1-382 111	1390 11	,, 960	1347 034"	13/7 "	the C	1321 "	1333 "				
B.S. RFW #	19401-694-0492	Q50	050	0250	0530	0//50	0550	0250	0,50				
AFU NO.													

Q. A. Officer

END

FILMED

4-85

DTIC