ЛКШ.2015.Июль.AS.День 4: Блиц. Серия #5. Судиславль, Берендеевы Поляны, 9 июля 2015, четверг

Задача К. Целые точки [2 sec, 256 mb]

Точку на координатной плоскости будем называть целой, если обе её координаты — целые числа. К примеру, точки (0,0) и (-4,7) — целые, а точки (-1,0.5) и $(\frac{1}{3},\sqrt{2})$ — нет.

Сколько целых точек содержит заданный отрезок на плоскости?

Формат входных данных

В первой строке входного файла заданы два числа x_1 и y_1 — координаты одного конца отрезка. Во второй строке заданы два числа x_2 и y_2 — координаты другого конца отрезка. Числа в каждой строке разделены пробелами. Все заданные координаты — целые числа, не превосходящие по модулю $1\,000\,000\,000$. Гарантируется, что заданные две точки не совпадают.

Формат выходных данных

Выведите в выходной файл количество целых точек на заданном отрезке. Обратите внимание, что концы отрезка тоже учитываются.

Примеры

stdin	stdout
2 1	3
4 1	
0 0	2
5 7	

Пояснения к примерам

В первом примере целые точки — (2,1), (3,1) и (4,1).

Во втором примере целые точки — только концы отрезка (0,0) и (5,7).

Задача М. От z-функции к префикс-функции [2 sec, 256 mb]

Z-функция z(i) для строки $s=s_1s_2\dots s_n$ определяется от позиции i $(1\leqslant i\leqslant n)$ в строке так: z(1)=0, а для i>1 z(i)—это максимальное число такое, что строки $s_1s_2\dots s_{z(i)}$ и $s_is_{i+1}\dots s_{i+z(i)-1}$ совпадают.

Префикс-функция p(i) для строки $s=s_1s_2\dots s_n$ определяется от позиции i $(1\leqslant i\leqslant n)$ в строке так: p(i)— это максимальная длина собственного префикса строки $s_1s_2\dots s_i$, равного её собственному суффиксу. Напомним, что собственный префикс строки $s=s_1s_2\dots s_n$ — это строка $s_1s_2\dots s_r$ для некоторого r< n. Аналогично, собственный суффикс строки $s=s_1s_2\dots s_n$ — это строка $s_1s_2\dots s_n$ — это строка $s_1s_2\dots s_n$ для некоторого l>1.

Даны длина строки n и значения z-функции $z(1), z(2), \ldots, z(n)$ для этой строки. Найдите для этой строки значения префикс-функции $p(1), p(2), \ldots, p(n)$.

Формат входных данных

В первой строчке входного файла задано целое число n ($1 \le n \le 1\,000\,000$). Во второй строчке заданы n чисел через пробел—значения z-функции $z(1), z(2), \ldots, z(n)$. Гарантируется, что существует строка длины n, состоящая из строчных букв латинского алфавита, для которой z-функция от позиций $1, 2, \ldots, n$ принимает данные значения.

Формат выходных данных

В первой строчке выходного файла выведите n чисел через пробел—значения префикс-функции для строки, имеющей данную z-функцию.

Примеры

stdin	stdout
6	0 0 1 2 3 4
0 0 4 0 2 0	
7	0 0 0 1 2 3 4
0 0 0 4 0 0 1	
4	0 0 0 0
0 0 0 0	