```
import seaborn as sns
import numpy as np
import pandas as pd
```

iris = sns.load_dataset('iris')
iris

<u> </u>						
_		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa
	145	6.7	3.0	5.2	2.3	virginica
	146	6.3	2.5	5.0	1.9	virginica
	147	6.5	3.0	5.2	2.0	virginica
	148	6.2	3.4	5.4	2.3	virginica
	149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

iris = iris[['petal_length', 'petal_width']]
iris

	petal_length	petal_width
0	1.4	0.2
1	1.4	0.2
2	1.3	0.2
3	1.5	0.2
4	1.4	0.2
145	5.2	2.3
146	5.0	1.9
147	5.2	2.0
148	5.4	2.3
149	5.1	1.8
150 rc	ws × 2 columns	

```
X = iris['petal_length']
Y = iris['petal_width']
```

```
import matplotlib.pyplot as plt
plt.scatter(X, Y)
plt.xlabel("Petal length")
plt.ylabel("Petal width")
```

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train , Y_test = train_test_split(X, Y, test_size = 0.4, random_state=23)
X_train

_	petal_length		
77	5.0		
29	1.6		
92	4.0		
23	1.7		
128	5.6		
39	1.5		
91	4.6		
31	1.5		
40	1.3		
83	5.1		
90 rc	90 rows × 1 columns		

X_train = np.array(X_train).reshape(-1, 1)

X_train

```
→ array([[5. ],
            [1.6],
            [4.],
            [1.7],
            [5.6],
            [4.8],
            [5.6],
            [5.1],
            [4.9],
            [1.4],
            [1.6],
            [5.6],
            [1.4],
            [1.6],
            [5.5],
            [5.1],
            [4.],
            [1.4],
            [4.1],
           [5.3],
```

```
[4.5],
             [5.8],
             [6.6],
             [4.3],
             [1.3],
             [4.],
             [4.9],
             [4.9],
             [4.],
             [1.5],
             [4.5],
             [4.5],
             [3.9],
             [5.],
             [4.8],
             [3.8],
             [5.1],
             [6.3],
             [6.1],
             [1.2],
             [5.7],
             [3.],
             [1.5],
             [5.9],
             [4.8],
             [1.4],
             [4.5],
             [4.2],
             [5.2],
             [1.3],
             [1.],
             [3.5],
             [1.1],
             [4.7],
             [4.2],
             [1.2],
Start coding or generate with AI.
X_test = np.array(X_test).reshape(-1,1)
X_test
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X_train, Y_train)
     ▼ LinearRegression
      LinearRegression()
c = lr.intercept_
→ -0.3511327422143746
m = lr.coef_
→ array([0.41684538])
y_pred_train = m*X_train + c
y_pred_train.flatten()
→ array([1.73309416, 0.31581987, 1.31624878, 0.3575044 , 1.98320139,
             1.31624878, 1.64972508, 1.98320139, 1.7747787 , 1.69140962,
            0.23245079, 0.31581987, 1.98320139, 0.23245079, 0.31581987,
            1.94151685, 1.7747787 , 1.31624878, 0.23245079, 1.35793332, 1.85814777, 1.52467147, 2.06657046, 2.40004677, 1.44130239,
            0.19076625, 1.31624878, 1.69140962, 1.69140962, 1.31624878,
            0.27413533,\ 1.52467147,\ 1.52467147,\ 1.27456424,\ 1.73309416,
            1.64972508, 1.2328797 , 1.7747787 , 2.27499315, 2.19162408,
            0.14908171, 2.02488593, 0.8994034 , 0.27413533, 2.108255 ,
            1.64972508, 0.23245079, 1.52467147, 1.39961786, 1.81646324,
            0.19076625, 0.06571264, 1.10782609, 0.10739718, 1.60804055,
            1.39961786, 0.14908171, 2.06657046, 1.44130239, 1.52467147,
             \hbox{\tt 0.31581987, 2.52510038, 1.56635601, 1.7747787, 1.98320139, } 
            1.60804055, 0.27413533, 0.31581987, 1.94151685, 2.06657046,
            1.48298693, 0.19076625, 1.81646324, 1.02445701, 2.02488593,
```

```
1.10782609, 0.19076625, 0.27413533, 0.27413533, 1.7747787,
            0.23245079, 0.23245079, 1.69140962, 0.23245079, 1.48298693,
            0.27413533, 1.56635601, 0.27413533, 0.19076625, 1.7747787 ])
y_pred_train1 = lr.predict(X_train)
y pred train1.flatten()
→ array([1.73309416, 0.31581987, 1.31624878, 0.3575044 , 1.98320139,
            1.31624878, 1.64972508, 1.98320139, 1.7747787 , 1.69140962,
            0.23245079, 0.31581987, 1.98320139, 0.23245079, 0.31581987,
            1.94151685, 1.7747787 , 1.31624878, 0.23245079, 1.35793332,
            1.85814777, 1.52467147, 2.06657046, 2.40004677, 1.44130239,
            0.19076625, 1.31624878, 1.69140962, 1.69140962, 1.31624878,
            0.27413533, 1.52467147, 1.52467147, 1.27456424, 1.73309416,
            1.64972508, 1.2328797, 1.7747787, 2.27499315, 2.19162408, 0.14908171, 2.02488593, 0.8994034, 0.27413533, 2.108255,
            1.64972508, 0.23245079, 1.52467147, 1.39961786, 1.81646324,
            0.19076625, 0.06571264, 1.10782609, 0.10739718, 1.60804055,
            1.39961786,\ 0.14908171,\ 2.06657046,\ 1.44130239,\ 1.52467147,
            0.31581987, 2.52510038, 1.56635601, 1.7747787 , 1.98320139,
            1.60804055, 0.27413533, 0.31581987, 1.94151685, 2.06657046,
            1.48298693, 0.19076625, 1.81646324, 1.02445701, 2.02488593,
            1.10782609, 0.19076625, 0.27413533, 0.27413533, 1.7747787,
            0.23245079, 0.23245079, 1.69140962, 0.23245079, 1.48298693,
            0.27413533, 1.56635601, 0.27413533, 0.19076625, 1.7747787 ])
import matplotlib.pyplot as plt
plt.scatter(X_train, Y_train)
plt.plot(X_train, y_pred_train1, color='red')
```

plt.xlabel("Petal length") plt.ylabel("Petal width")

→ Text(0, 0.5, 'Petal width')

y_pred_test1 = lr.predict(X_test)


```
y_pred_test1.flatten()
array([1.89983231, 2.14993954, 1.35793332, 0.27413533, 1.73309416,
```

```
1.69140962, 0.3575044 , 1.94151685, 0.3575044 , 1.14951063, 1.60804055, 0.31581987, 2.108255 , 0.27413533, 0.27413533,
1.7747787 , 1.52467147, 1.60804055, 2.19162408, 0.23245079,
1.85814777,\ 0.23245079,\ 0.31581987,\ 0.19076625,\ 1.98320139,
0.23245079, 0.44087348, 1.64972508, 1.48298693, 1.27456424,
0.27413533, 1.27456424, 0.19076625, 2.44173131, 0.27413533,
 0.3575044 \ , \ 1.56635601, \ 1.02445701, \ 1.39961786, \ 2.14993954, 
2.02488593, 0.44087348, 1.19119517, 0.23245079, 1.48298693,
1.73309416, 1.52467147, 2.31667769, 0.27413533, 1.35793332,
2.19162408, 1.89983231, 0.23245079, 1.98320139, 1.52467147,
1.60804055, 2.44173131, 1.39961786, 0.23245079, 1.7747787 ])
```

```
import matplotlib.pyplot as plt
plt.scatter(X_test, Y_test)
plt.plot(X_test, y_pred_test1, color='red')
plt.xlabel("Petal length")
plt.ylabel("Petal width")
```


