

RL78/G22

RENESAS MCU

R01DS0424EJ0100 Rev.1.00 Dec 28, 2022

True low-power platform, 37.5-μA/MHz operating current, 200-nA stop current, 32-/64-KB code flash memory and 4-KB RAM, up to 29 capacitive touch sensors, from 16 to 48 pins, 1.6 to 5.5 V

1. Outline

1.1 Features

Ultra-low power consumption technology

- VDD = single power supply voltage of 1.6 to 5.5 V
- HALT mode
- STOP mode
 High-speed wakeup from the STOP mode is possible.
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- The minimum instruction execution time can be changed from high to ultra-low speed.
- High speed: 0.03125 μs at 32-MHz operation with the high-speed on-chip oscillator clock
- Ultra-low speed: 30.5 µs at 32.768-kHz operation with the subsystem clock
- Multiply/divide/multiply & accumulate instructions are supported.
- · Address space: 1 MB
- General-purpose registers: (8-bit register × 8) × 4 banks
- · On-chip RAM: 4 KB

Code flash memory

- Code flash memory: 32 or 64 KB
- · Block size: 2 KB
- Security function: Prohibition of block erase and rewriting
- On-chip debugging
- Self-programming with boot swapping and flash shield window

Data flash memory

- · Data flash memory: 2 KB
- Background operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (typ.)

High-speed on-chip oscillator

- Selectable from among 32 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz
- High accuracy: ±1.0% (VDD = 1.8 to 5.5 V, TA = -20 to +85°C)

Middle-speed on-chip oscillator

 Selectable from among 4 MHz, 2 MHz, and 1 MHz with adjustability

Low-speed on-chip oscillator

· 32.768 kHz (typ.) with adjustability

Operating ambient temperature

- TA = -40 to +85°C (2D: Consumer applications)
- TA = -40 to +105°C (3C: Industrial applications)

Power management and reset function

- · On-chip power-on-reset (POR) circuit
- On-chip voltage detectors (LVD0 and LVD1)

Data transfer controller (DTC)

- Transfer modes: Normal transfer mode, repeat transfer mode, block transfer mode
- · Activation sources: Activated by interrupt sources.
- · Chain transfer function

SNOOZE mode sequencer (SMS)

- Calculations and comparison of values by the commands for use in processing by the sequencer can realize intermittent operations where the RL78/G22 does not have to return to normal operation.
- Sequentially handling a total of 32 processes with the use of desired commands from among 21 different ones
- The SNOOZE mode sequencer offers operation with low power consumption without using the CPU, flash memory, and RAM.

Event link controller (ELC)

• Event signals can be set up between specified peripheral functions.

Serial interface

- Simplified SPI (CSINote): 1 to 5 channels
- UART/UART (LIN-bus supported)/UARTA: 1 to 4 channels
- I2C/Simplified I2C: 2 to 6 channels

Timers

- 16-bit timer: 8 channels
- 32-bit interval timer: 1 channel in 32-bit counter

mode

2 channels in 16-bit counter

mode

4 channels in 8-bit counter

mode

- Realtime clock: 1 channel (counting of one second to 99 years, alarm interrupt, and clock correction)
- Watchdog timer: 1 channel (operates with the dedicated low-speed on-chip oscillator clock)

A/D converter

- 8-/10-bit resolution A/D converter
- Analog input: 3 to 10 channels
- Internal reference voltage (1.48 V) and temperature sensor

Capacitive sensing unit

- Operating voltage: VDD = 1.8 to 5.5 V
- Self-capacitance method: A single pin configures a single key, supporting up to 29 keys
- Mutual capacitance method: Matrix configuration with 8 × 8 pins, supporting up to 64 keys

Input/output port pins

· Number of port pins: 12 to 44

N-ch open drain I/O pins [withstand voltage of 6 V]: 0 to 4

N-ch open drain I/O pins [withstand voltage of VDD]: 4 to 13

- Can be set to N-ch open drain or TTL input buffer, and use of an on-chip pull-up resistor can be specified.
- Connectable to a device with different voltage (1.8, 2.5, or 3 V)

Others

- · Binary-coded decimal (BCD) correction circuit
- · Key interrupt input
- · Clock output/buzzer output controller

Note

Although the CSI function is generally called SPI, it is also called CSI in this product, so it is referred to as such in this manual.

Remark

The functions mounted depend on the product. See **1.6 Outline of Functions**.

O ROM, RAM capacities

Flash	Data flash	RAM		RL78/G22								
ROM	memory	IVAIVI	16 pins	20 pins	24 pins	25 pins	30 pins					
64 KB	2 KB	4 KB	R7F102G4E	R7F102G6E	R7F102G7E	R7F102G8E	R7F102GAE					
32 KB	2 KB	4 KB	R7F102G4C	R7F102G6C	R7F102G7C	R7F102G8C	R7F102GAC					

Flash	Data flash	RAM		RL78/G22								
ROM	memory	IVAIVI	32 pins	36 pins	40 pins	44 pins	48 pins					
64 KB	2 KB	4 KB	R7F102GBE	R7F102GCE	R7F102GEE	R7F102GFE	R7F102GGE					
32 KB	2 KB	4 KB	R7F102GBC	R7F102GCC	R7F102GEC	R7F102GFC	R7F102GGC					

1.2 List of Part Numbers

Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G22

Table 1 - 1 List of Ordering Part Numbers

Pin		Fields of	Ordering Part Number		
Count	Package	Application Note	Product Name	Packaging Specification	Renesas Code
16	16-pin plastic HWQFN	С	R7F102G4C3CNP, R7F102G4E3CNP	#AA0,	PWQN0016KD-A
	(3 × 3 mm, 0.50-mm pitch)	D	R7F102G4C2DNP, R7F102G4E2DNP	#BA0, #HA0	
20	20-pin plastic LSSOP	С	R7F102G6C3CSP, R7F102G6E3CSP	#CA0, #HA0	PLSP0020JB-A
	(4.4 × 6.5 mm, 0.65-mm pitch)	D	R7F102G6C2DSP, R7F102G6E2DSP		
24	24-pin plastic HWQFN	С	R7F102G7C3CNP, R7F102G7E3CNP	#AA0,	PWQN0024KG-A
	(4 × 4 mm, 0.5 mm pitch)	D	R7F102G7C2DNP, R7F102G7E2DNP	#BA0, #HA0	
25	25-pin plastic WFLGA	С	R7F102G8C3CLA, R7F102G8E3CLA	#AA0,	PWLG0025KB-A
	(3 × 3 mm, 0.5 mm pitch)	D	R7F102G8C2DLA, R7F102G8E2DLA	#BA0, #HA0	
30	30-pin plastic LSSOP	С	R7F102GAC3CSP, R7F102GAE3CSP	#AA0,	PLSP0030JB-B
	(7.62 mm (300), 0.65-mm pitch)	D	R7F102GAC2DSP, R7F102GAE2DSP	#BA0, #HA0	
32	32-pin plastic HWQFN	С	R7F102GBC3CNP, R7F102GBE3CNP	#AA0,	PWQN0032KE-A
	(5 × 5 mm, 0.50-mm pitch)	D	R7F102GBC2DNP, R7F102GBE2DNP	#BA0, #HA0	
	32-pin plastic LQFP	С	R7F102GBC3CFP, R7F102GBE3CFP	#AA0,	PLQP0032GB-A
	(7 × 7 mm, 0.80-mm pitch)	D	R7F102GBC2DFP, R7F102GBE2DFP	#BA0, #HA0	
36	36-pin plastic WFLGA	С	R7F102GCC3CLA, R7F102GCE3CLA	#BC0,	PWLG0036KB-A
	(4 × 4 mm, 0.50-mm pitch)	D	R7F102GCC2DLA, R7F102GCE2DLA	#AC0, #HC0	
40	40-pin plastic HWQFN	С	R7F102GEC3CNP, R7F102GEE3CNP	#AA0,	PWQN0040KD-A
	(6 × 6 mm, 0.50-mm pitch)	D	R7F102GEC2DNP, R7F102GEE2DNP	#BA0, #HA0	
44	44-pin plastic LQFP	С	R7F102GFC3CFP, R7F102GFE3CFP	#AA0,	PLQP0044GC-A
	(10 × 10 mm, 0.80-mm pitch)	D	R7F102GFC2DFP, R7F102GFE2DFP	#BA0, #HA0	
48	48-pin plastic LFQFP (7 × 7 mm, 0.50-mm pitch)	С	R7F102GGC3CFB, R7F102GGE3CFB	#AA0,	PLQP0048KB-B
		D	R7F102GGC2DFB, R7F102GGE2DFB	#BA0, #HA0	
	48-pin plastic HWQFN	С	R7F102GGC3CNP, R7F102GGE3CNP	#AA0,	PWQN0048KC-A
	(7 × 7 mm 0 50-mm pitch)	D	R7F102GGC2DNP, R7F102GGE2DNP	#BA0, #HA0	A0

Note For the fields of application, see Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G22.

1.3 Pin Configuration (Top View)

1.3.1 16-pin products

• 16-pin plastic HWQFN (3 × 3 mm, 0.5-mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see 1.4 Pin Identification.

Table 1 - 2 Multiplexed Pin Functions of the 16-pin Products

Pin Number	I/O	dock,	Analog Circuit		НМІ		Tim	ners	Comm	unications Int	erfaces
16HWQFN	Digital port	Power supply, system dock, and debugging	A/D converter (ADC)	Interrupt (INTP)	Key interrupt (KR)	Capacitive sensing unit (CTSU2La)	Timer array unit (TAU)	Realtime Clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Serial interface UARTA (UARTA)
1	P122	X2/XT2/EXCLK/ EXCLKS	_	_	_	_	_	_	_	_	_
2	P121	X1/XT1	_	_	_	_	_	_	_	_	_
3	_	REGC	_	_	_	_	_	_	_	_	_
4	_	Vss	_	_	_	_	_	_	_	_	_
5	_	VDD	_	_	_	_	_	_	_	_	_
6	P137	_	_	INTP0	_	_	_	_	_	_	_
7	_	RESET	_	_	_	_	_	_	_	_	_
8	P30	_	_	INTP3	_	TSCAP	_	RTC1HZ	SCL11	_	_
9	P17	_	_	_	_	TS18	TI02/TO02	_	SDA11	_	_
10	P12	TOOLTXD	_	_	_	TS13	_	_	SO00/ TxD0	_	_
11	P11	TOOLRxD	_	_	_	TS12	_	_	SI00/RxD0/ SDA00	_	_
12	P10	_	_	_	_	TS11	_	_	SCK00/ SCL00	_	
13	P22	_	ANI2	_	_	TS20	_	_	_	_	_
14	P21	_	ANI1/ AVREFM	_	_	_		_	_	_	
15	P20	_	ANIO/ AVREFP	_	_	_	_	_	_	_	_
16	P40	TOOL0	_	_	_	_	_	_	_	_	_

1.3.2 20-pin products

• 20-pin plastic LSSOP (4.4 × 6.5 mm, 0.65-mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see 1.4 Pin Identification.

Table 1 - 3 Multiplexed Pin Functions of the 20-pin Products

Pin Number	I/O	clock,	Analog Circuit		НМІ		Tim	ners	Comm	unications Int	erfaces
16HWQFN	Digital port	Power supply, system dock, and debugging	A/D converter (ADC)	Interrupt (INTP)	Key interrupt (KR)	Capacitive sensing unit (CTSU2La)	Timer array unit (TAU)	Realtime Clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Serial interface UARTA (UARTA)
1	P01	_	ANI16	_	_	TS27	TO00	_	RxD1	_	_
2	P00	_	ANI17	_	_	TS26	TI00	_	TxD1	_	_
3	P40	TOOL0	_	_	_	_	_	_	_	_	_
4	_	RESET	_	_	_	_	_	_	_	_	_
5	P137	_	_	INTP0	_	_	_	_	_	_	_
6	P122	X2/XT2/EXCLK/ EXCLKS	_	_	_	_	_	_	_	_	_
7	P121	X1/XT1	_	_	_	_	_	_	_	_	_
8	_	REGC	_	_	_	_	_	_	_	_	_
9	_	Vss	_	_	_	_	_	_	_	_	_
10	_	VDD	_	_	_	_	_	_	_	_	_
11	P30	_	_	INTP3	_	TSCAP	_	RTC1HZ	SCK11/ SCL11	_	_
12	P17	_	_	_	_	TS18	TI02/TO02	_	SI11/ SDA11	_	_
13	P16	_	_	INTP5	_	TS17	TI01/TO01	_	SO11	_	_
14	P12	TOOLTXD	_		_	TS13	_	_	SO00/ TxD0	_	_
15	P11	TOOLRxD				TS12	_		SI00/RxD0/ SDA00	_	_
16	P10	_	_	_	_	TS11	_	_	SCK00/ SCL00	_	_
17	P147	_	ANI18	_	_	TS10	_	_	_		_
18	P22	_	ANI2	_	_	TS20	_	_	_	_	_
19	P21	_	ANI1/ AVREFM	_	_	_	_	_	_	_	_
20	P20	_	ANIO/ AVREFP	_	_	_	_	_	_	_	_

1.3.3 24-pin products

• 24-pin plastic HWQFN (4 × 4 mm, 0.5-mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see **1.4 Pin Identification**.

Table 1 - 4 Multiplexed Pin Functions of the 24-pin Products

Pin Number	I/O	dock,	Analog Circuit		НМІ		Tin	ners	Comm	unications Int	erfaces
16HWQFN	Digital port	Power supply, system clock, and debugging	A/D converter (ADC)	Interrupt (INTP)	Key interrupt (KR)	Capacitive sensing unit (CTSU2La)	Timer array unit (TAU)	Realtime Clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Serial interface UARTA (UARTA)
1	P137	_	_	INTP0	_	_	_	_	_	_	_
2	P122	X2/XT2/EXCLK/ EXCLKS	_	_	_	_	_	_	_	_	_
3	P121	X1/XT1	_	_	_	_	_	_	_	_	_
4	_	REGC	_	_	_	_	_	_	_	_	_
5	_	Vss	_	_	_	_	_	_	_	_	_
6	_	VDD	_	_	_	_	_	_	_	_	_
7	P60	_	_	_	_	_	_	_	_	SCLA0	_
8	P61	_	_	_	_	_	_	_	_	SDAA0	_
9	P31	PCLBUZ0		INTP4	_	TS01	TI03/TO03	_	_	_	_
10	P30	_	_	INTP3	_	TSCAP	_	RTC1HZ	SCK11/ SCL11	_	_
11	P50	_	_	INTP1	_	TS00	_	_	SI11/ SDA11	_	_
12	P17	_	_	_	_	TS18	TI02/TO02	_	SO11	_	_
13	P16	_	_	INTP5	_	TS17	TI01/TO01	_	_	_	_
14	P12	TOOLTXD	_	_	_	TS13	_	_	SO00/ TxD0	_	_
15	P11	TOOLRxD	_	_	_	TS12	_	_	SI00/RxD0/ SDA00	_	_
16	P10	_	_	_	_	TS11	_	_	SCK00/ SCL00	_	_
17	P147	_	ANI18	_	_	TS10	_	_	_	_	_
18	P22		ANI2	_		TS20					
19	P21	_	ANI1/ AVREFM								
20	P20	_	ANIO/ AVREFP	_	_	_	_	_	_	_	
21	P01	_	ANI16	_	_	TS27	TO00	_	RxD1	_	_
22	P00	_	ANI17	_	_	TS26	TI00	_	TxD1	_	_
23	P40	TOOL0	_	_	_	_	_	_	_	_	_
24	_	RESET	_	_	_	_	_	_	_	_	_

1.3.4 25-pin products

• 25-pin plastic WFLGA (3 × 3 mm, 0.5-mm pitch)

	Α	В	С	D	E	
5	P40/TOOL0	RESET	P01/TS27/TO00/RxD1/ ANI16	P22/ANI2/TS20	P147/ANI18/TS10	5
4	P122/X2/EXCLK/XT2/ EXCLKS	P137/INTP0	P00/TS26/TI00/TxD1/ ANI17	P21/ANI1/AVREFM	P10/SCK00/SCL00/TS11	4
3	P121/X1/XT1	VDD	P20/ANI0/AVREFP	P12/SO00/TxD0/ TOOLTxD/TS13	P11/SI00/RxD0/ TOOLRxD/SDA00/TS12	3
2	REGC	Vss	P30/INTP3/TSCAP/ RTC1HZ/SCL11/SCK11	P17/TI02/TO02/TS18/ SO11	P50/TS00/INTP1/SI11/ SDA11	2
1	P60/SCLA0	P61/SDAA0	P31/TI03/TO03/INTP4/ TS01/PCLBUZ0	P16/TI01/TO01/INTP5/ TS17	P130/TS19	1
	Δ	В	C	D	F	

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see 1.4 Pin Identification.

Table 1 - 5 Multiplexed Pin Functions of the 25-pin Products

Pin Number	I/O	clock,	Analog Circuit		НМІ		Tin	ners	Comm	unications Int	erfaces
16HWQFN	Digital port	Power supply, system dock, and debugging	A/D converter (ADC)	Interrupt (INTP)	Key interrupt (KR)	Capacitive sensing unit (CTSU2La)	Timer array unit (TAU)	Realtime Clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Serial interface UARTA (UARTA)
A1	P60	_	_	_	_	_	_	_	_	SCLA0	_
A2	_	REGC	_	_	_	_	_	_	_	_	_
А3	P121	X1/XT1	_	_	_	_	_	_	_	_	_
A4	P122	X2/XT2/EXCLK/ EXCLKS	_	_	_	_	_	_	_	_	_
A5	P40	TOOL0	_	_	_	_	_	_	_	_	_
B1	P61	_	_	_	_	_	_	_	_	SDAA0	_
B2	_	Vss	_	_	_	_	_	_	_	_	_
В3	_	VDD	_	_	_	_	_	_	_	_	_
В4	P137	_	_	INTP0	_	_	_	_	_	_	_
В5	_	RESET	_	_	_	_	_	_	_	_	_
C1	P31	PCLBUZ0	_	INTP4	_	TS01	TI03/TO03	_	_	_	_
C2	P30	_	_	INTP3	_	TSCAP	_	RTC1HZ	SCK11/ SCL11	_	_
С3	P20	_	ANIO/ AVREFP	_	_	_	_	_	_	_	_
C4	P00	_	ANI17	_	_	TS26	TI00	_	TxD1	_	_
C5	P01	_	ANI16	_	_	TS27	TO00	_	RxD1	_	_
D1	P16	_	_	INTP5	_	TS17	TI01/TO01	_	_	_	_
D2	P17	_	_		_	TS18	TI02/TO02	_	SO11	_	_
D3	P12	TOOLTXD	_	_	_	TS13	_	_	SO00/ TxD0	_	_
D4	P21	_	ANI1/ AVREFM	_	_	_	_	_	_	_	_
D5	P22	_	ANI2	_	_	TS20	_	_	_	_	_
E1	P130	_	_	_	_	TS19	_	_	_	_	_
E2	P50	_	_	INTP1	_	TS00	_	_	SI11/ SDA11	_	_
E3	P11	TOOLRxD	_	_	_	TS12	_	_	SI00/RxD0/ SDA00	_	_
E4	P10	_	_	_	_	TS11	_	_	SCK00/ SCL00	_	_
E5	P147	_	ANI18	_	_	TS10	_			_	_

1.3.5 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65-mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Refer to Figure 4 - 9 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G22 User's Manual.

Table 1 - 6 Multiplexed Pin Functions of the 30-pin Products

in iber	I/O	J.	Analog		JIII PTOQUC		Tim	nere	Comm	unications lat	erfaces
Pin Number	1/0	clock	Circuit		HMI		I in	ners	Comm	unications Int	enaces
16HWQFN	Digital port	Power supply, system dock, and debugging	A/D converter (ADC)	Interrupt (INTP)	Key interrupt (KR)	Capacitive sensing unit (CTSU2La)	Timer array unit (TAU)	Realtime Clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Serial interface UARTA (UARTA)
1	P20	_	ANIO/ AVREFP	_	_	_	_	_	_	_	_
2	P01	_	ANI16	_	_	TS27	TO00	_	RxD1	_	_
3	P00	_	ANI17	_	_	TS26	TI00	_	TxD1	_	_
4	P120	_	ANI19	_	_	_	_	_	_	_	_
5	P40	TOOL0	_	_	_	_	_	_	_	_	_
6	_	RESET	_	_	_	_	_	_	_	_	_
7	P137	_	_	INTP0	_	_	_	_	_	_	_
8	P122	X2/XT2/EXCLK/ EXCLKS	_	_	_	_	_	_	_	_	_
9	P121	X1/XT1	_	_	_	_	_	_	_	_	
10	_	REGC	_	_	_	_	_	_	_	_	_
11	_	Vss	_	_	_	_	_	_	_	_	_
12	_	VDD	_	_	_	_	_	_	_	_	_
13	P60	_	_	_	_	_	_	_	_	SCLA0	_
14	P61	_	_	_	_	_	_	_	_	SDAA0	_
15	P31	PCLBUZ0	_	INTP4	_	TS01	TI03/TO03			_	_
16	P30	_	_	INTP3	_	TSCAP	_	RTC1HZ	SCK11/ SCL11	_	_
17	P50	_	_	INTP1	_	TS00	_	_	SI11/ SDA11	_	_
18	P51	_	-	INTP2	_	TS28	_	_	SO11	_	_
19	P17	_	-		_	TS18	TI02/TO02	_	(TxD0)	_	_
20	P16	_	-	INTP5	_	TS17	TI01/TO01	_	(RxD0)	_	_
21	P15	PCLBUZ1	_	_	_	TS16	(TI02)/ (TO02)	_	SCK20/ SCL20	_	_
22	P14	_	_	_	_	TS15	(TI03)/ (TO03)	_	SI20/RxD2/ SDA20	(SCLA0)	_
23	P13	_	_	_	_	TS14	(TI04)/ (TO04)	_	SO20/ TxD2	(SDAA0)	_
24	P12	TOOLTxD	_	_	_	TS13	(TI05)/ (TO05)	_	SO00/ TxD0	_	_
25	P11	TOOLRxD	_	_	_	TS12	(TI06)/ (TO06)	_	SI00/RxD0/ SDA00	_	_
26	P10	_				TS11	(TI07)/ (TO07)	_	SCK00/ SCL00	_	
27	P147	_	ANI18	_	_	TS10	_	_	_	_	_
28	P23	_	ANI3	_	_	TS21	_	_	_	_	_
29	P22	_	ANI2	_	_	TS20	_		_	_	
30	P21	_	ANI1/ AVREFM			_	_				

1.3.6 32-pin products

- 32-pin plastic HWQFN (5 × 5 mm, 0.50-mm pitch)
- 32-pin plastic LQFP (7 × 7 mm, 0.80-mm pitch)

Note The 32-pin plastic LQFP (7 × 7 mm, 0.80-mm pitch) products do not have an exposed die pad.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Refer to Figure 4 - 9 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G22 User's Manual.

Remark 3. It is recommended to connect an exposed die pad to Vss.

Table 1 - 7 Multiplexed Pin Functions of the 32-pin Products

ē				or the 32-p							
Pin Number	I/O	dock,	Analog Circuit		НМІ		Tin	ners	Comm	unications Int	erfaces
16HWQFN	Digital port	Power supply, system dock, and debugging	A/D converter (ADC)	Interrupt (INTP)	Key interrupt (KR)	Capacitive sensing unit (CTSU2La)	Timer array unit (TAU)	Realtime Clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Serial interface UARTA (UARTA)
1	P40	TOOL0	_	_	_	_	_	_	_	_	_
2	_	RESET	_	_	_	_	_	_	_	_	_
3	P137	_	_	INTP0	_	_	_	_	_	_	_
4	P122	X2/XT2/EXCLK/ EXCLKS	_	_	_	_	_	_	_	_	_
5	P121	X1/XT1	_	_	_	_	_	_	_	_	_
6	_	REGC	_	_	_	_	_	_	_	_	_
7	_	Vss	_	_	_	_	_	_	_	_	_
8	_	VDD	_	_	_	_	-	_	_	_	_
9	P60	_	_	_	_	_	_	_	_	SCLA0	_
10	P61	_	_	_	_	_	_	_	_	SDAA0	_
11	P62	_	_	_	_	_	_	_	_	_	_
12	P31	PCLBUZ0	_	INTP4	_	TS01	TI03/TO03	_	_	_	_
13	P70	_	_	_	_	TS02	_	_	_	_	_
14	P30	_	_	INTP3	_	TSCAP	_	RTC1HZ	SCK11/ SCL11	_	_
15	P50	_	_	INTP1	_	TS00	_	_	SI11/ SDA11	_	_
16	P51	_	_	INTP2	_	TS28	_	_	SO11	_	_
17	P17	_	_		_	TS18	TI02/TO02	_	(TxD0)	_	_
18	P16	_	_	INTP5	_	TS17	TI01/TO01	_	(RxD0)	_	_
19	P15	PCLBUZ1	_	_	_	TS16	(TI02)/ (TO02)	_	SCK20/ SCL20	_	_
20	P14	-	_	_	_	TS15	(TI03)/ (TO03)	_	SI20/RxD2/ SDA20	(SCLA0)	_
21	P13	_	_	_	_	TS14	(TI04)/ (TO04)	_	SO20/ TxD2	(SDAA0)	_
22	P12	TOOLTxD	_	_	_	TS13	(TI05)/ (TO05)	_	SO00/ TxD0	_	_
23	P11	TOOLRxD				TS12	(TI06)/ (TO06)		SI00/RxD0/ SDA00		
24	P10		_	_	_	TS11	(TI07)/ (TO07)	_	SCK00/ SCL00	_	_
25	P147	_	ANI18	_	_	TS10	_	_	_	_	_
26	P23		ANI3	_	_	TS21	_		_	_	
27	P22	_	ANI2	_	_	TS20	_	_	_	_	_
28	P21	_	ANI1/ AVREFM		_	_				_	
29	P20	_	ANIO/ AVREFP	_	_	_	_	_	_	_	_
30	P01	_	ANI16	_	_	TS27	TO00	_	RxD1	_	_
31	P00		ANI17	_	_	TS26	TI00	_	TxD1	_	
32	P120	_	ANI19	_	_	_	_	_	_	_	_

1.3.7 36-pin products

• 36-pin plastic WFLGA (4 × 4 mm, 0.50-mm pitch)

	A	В	С	D	E	F
6	P60/SCLA0	VDD	P121/X1/XT1	P122/X2/EXCLK/ XT2/EXCLKS	P137/INTP0	P40/TOOL0
5	P62	P61/SDAA0	Vss	REGC	RESET	P120/ANI19
4	P72/TS04/SO21/ TxDA0	P71/TS03/SI21/ SDA21/RxDA0	P14/RxD2/SI20/ SDA20/(SCLA0)/ (TI03)/(TO03)/TS15	P31/TI03/TO03/ INTP4/TS01/ PCLBUZ0	P00/TS26/TI00/ TxD1	P01/TS27/TO00/ RxD1
3	P50/TS00/INTP1/ SI11/SDA11	P70/TS02/SCK21/ SCL21	P15/PCLBUZ1/ SCK20/SCL20/ (TI02)/(TO02)/TS16	P22/ANI2/TS20	P20/ANI0/AVREFP	P21/ANI1/AVREFM
2	P30/INTP3/TSCAP/ RTC1HZ/SCL11/ SCK11	P16/TI01/TO01/ INTP5/TS17/(RxD0)	P12/SO00/TxD0/ TOOLTxD/TS13/ (TI05)/(TO05)	P11/SI00/RxD0/ TOOLRxD/SDA00/ TS12/(TI06)/(TO06)	P24/ANI4/TS22	P23/ANI3/TS21
1	P51/TS28/INTP2/ SO11	P17/TI02/TO02/ TS18/(TxD0)	P13/TxD2/SO20/ (SDAA0)/(TI04)/ (TO04)/TS14	P10/SCK00/SCL00/ TS11/(TI07)/(TO07)	P147/ANI18/TS10	P25/ANI5/TS23

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Refer to Figure 4 - 9 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G22 User's Manual.

Table 1 - 8 Multiplexed Pin Functions of the 36-pin Products (1/2)

Pin	I/O	iditiplexed Pili i	Analog Circuit		НМІ		Tim	ners	Comm	unications Int	erfaces
16HWQFN	Digital port	Power supply, system clock, and debugging	A/D converter (ADC)	Interrupt (INTP)	Key interrupt (KR)	Capacitive sensing unit (CTSU2La)	Timer array unit (TAU)	Realtime Clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Serial interface UARTA (UARTA)
A1	P51	_	_	INTP2	_	TS28	_	_	SO11	_	_
A2	P30	_	_	INTP3	_	TSCAP	_	RTC1HZ	SCK11/ SCL11	_	_
A3	P50	_	_	INTP1	_	TS00	_	_	SI11/ SDA11	_	_
A4	P72	_	_	_	_	TS04	_	_	SO21	_	TxDA0
A5	P62	_	_	_	_	_	_	_	_	_	_
A6	P60	_	_	_	_	_	_	_	_	SCLA0	_
B1	P17	_	_	_	_	TS18	TI02/TO02	_	(TxD0)	_	_
B2	P16	_	_	INTP5	_	TS17	TI01/TO01	_	(RxD0)	_	_
В3	P70	_	_	_	_	TS02	_	_	SCK21/ SCL21	_	_
B4	P71	_	_	_	_	TS03	_	_	SI21/ SDA21	_	RxDA0
B5	P61	_	_	_	_	_	_	_	_	SDAA0	_
В6	_	VDD	_	_	_	_	_	_	_	_	_
C1	P13	_	_	_	_	TS14	(TI04)/ (TO04)	_	SO20/ TxD2	(SDAA0)	_
C2	P12	TOOLTXD	_	_	_	TS13	(TI05)/ (TO05)	_	SO00/ TxD0	_	_
C3	P15	PCLBUZ1	_	_	_	TS16	(TI02)/ (TO02)	_	SCK20/ SCL20	_	_
C4	P14	_	_	_	_	TS15	(TI03)/ (TO03)	_	SI20/RxD2/ SDA20	(SCLA0)	_
C5		Vss	_	_	_	_	_	_	_	_	_
C6	P121	X1/XT1	_	_	_	_	_	_	_	_	_
D1	P10	_	_	_	_	TS11	(TI07)/ (TO07)	_	SCK00/ SCL00	_	_
D2	P11	TOOLRxD	_	_	_	TS12	(TI06)/ (TO06)	_	SI00/RxD0/ SDA00	_	_
D3	P22	_	ANI2	_	_	TS20	_	_	_	_	_
D4	P31	PCLBUZ0	_	INTP4		TS01	TI03/TO03	_	_	_	_
D5	_	REGC	_	_	_	_	_	_	_	_	_
D6	P122	X2/XT2/EXCLK/ EXCLKS	_	_	_	_	_	_	_	_	_
E1	P147	_	ANI18	_	_	TS10	_	_	_	_	_
E2	P24	_	ANI4	_	_	TS22	_	_	_	_	_
E3	P20	_	ANIO/ AVREFP	_	_	_	_	_	_	_	_
E4	P00	_	_	_	_	TS26	TI00	_	TxD1	_	_
E5	_	RESET	_	_	_	_	_	_	_	_	_
E6	P137	_	_	INTP0		_	_	_	_	_	
F1	P25	_	ANI5	_	_	TS23	_	_	_	_	_
F2	P23	_	ANI3	_	_	TS21	_	_	_	_	_

Table 1 - 8 Multiplexed Pin Functions of the 36-pin Products (2/2)

Pin Number	I/O	clock,	Analog Circuit		НМІ		Tim	ners	Comm	unications Int	erfaces
16HWQFN	Digital port	Power supply, system clock, and debugging	A/D converter (ADC)	Interrupt (INTP)	Key interrupt (KR)	Capacitive sensing unit (CTSU2La)	Timer array unit (TAU)	Realtime Clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Serial interface UARTA (UARTA)
F3	P21	_	ANI1/ AVREFM	_	_	_	_	_	_	_	_
F4	P01	_	_	_	_	TS27	TO00		RxD1	_	_
F5	P120	_	ANI19	_	_	_	_	_		_	_
F6	P40	TOOL0	_	_	_	_	_	_	_	_	_

1.3.8 40-pin products

• 40-pin plastic HWQFN (6 × 6 mm, 0.50-mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Refer to Figure 4 - 9 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G22 User's Manual.

Remark 3. It is recommended to connect an exposed die pad to Vss.

Table 1 - 9 Multiplexed Pin Functions of the 40-pin Products (1/2)

≒	1-9 IV				om Produc	(/					
Pin Number	I/O	dock,	Analog Circuit		НМІ		Tim	ners	Comm	unications Int	erfaces
16HWQFN	Digital port	Power supply, system dock, and debugging	A/D converter (ADC)	Interrupt (INTP)	Key interrupt (KR)	Capacitive sensing unit (CTSU2La)	Timer array unit (TAU)	Realtime Clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Serial interface UARTA (UARTA)
1	P40	TOOL0	_	_	_	_	_	_	_	_	_
2		RESET	_	_	_	_	_	_	_	_	_
3	P124	XT2/EXCLKS	_	_	_	_	_	_	_	_	_
4	P123	XT1	_	_	_	_	_	_	_	_	_
5	P137	_	_	INTP0	_	_	_	_	_	_	_
6	P122	X2/EXCLK	_	_	_	_	_	_	_	_	_
7	P121	X1/VBAT	_	_	_	_	_	_	_	_	_
8	_	REGC	_	_	_	_	_	_	_	_	_
9	_	Vss	_	_	_	_	_	_	_	_	_
10	_	VDD	_	_	_	_	_	_	_	_	_
11	P60	_	_	_	_	_	_	_	_	SCLA0	_
12	P61	_	_	_	_	_	_	_	_	SDAA0	_
13	P62	_	_	_	_	_	_	_	_	_	_
14	P31	PCLBUZ0	_	INTP4	_	TS01	TI03/TO03	_	_	_	_
15	P73	_	_	_	KR3	TS05	_	_	_	_	_
16	P72	_	_	_	KR2	TS04	_	_	SO21	_	TxDA1
17	P71	_	_	_	KR1	TS03	_	_	SI21/ SDA21	_	RxDA0
18	P70	_	_	_	KR0	TS02	_	_	SCK21/ SCL21	_	_
19	P30	_	_	INTP3	_	TSCAP	_	RTC1HZ	SCK11/ SCL11	_	_
20	P50	_	_	INTP1	_	TS00	_	_	SI11/ SDA11	_	_
21	P51	_	_	INTP2	_	TS28	_	_	SO11	_	_
22	P17	_	_		_	TS18	TI02/TO02	_	(TxD0)	_	_
23	P16	_	_	INTP5	_	TS17	TI01/TO01	_	(RxD0)	_	_
24	P15	PCLBUZ1	_	_	_	TS16	(TI02)/ (TO02)	_	SCK20/ SCL20	_	_
25	P14	_	_	_	_	TS15	(TI03)/ (TO03)	_	SI20/RxD2/ SDA20	(SCLA0)	_
26	P13	_	_	_	_	TS14	(TI04)/ (TO04)	_	SO20/ TxD2	(SDAA0)	_
27	P12	TOOLTxD	_	_	_	TS13	(TI05)/ (TO05)	_	SO00/ TxD0	_	_
28	P11	TOOLRXD	_	_	_	TS12	(TI06)/ (TO06)	_	SI00/RxD0/ SDA00	_	_
29	P10	_	_	_	_	TS11	(TI07)/ (TO07)	_	SCK00/ SCL00	_	_
30	P147		ANI18	_	_	TS10	_	_		_	
31	P26	_	ANI6	_	_	TS24	_	_	_	_	
32	P25		ANI5			TS23	_				
33	P24	_	ANI4	_	_	TS22	_				

Table 1 - 9 Multiplexed Pin Functions of the 40-pin Products (2/2)

Pin Number	I/O	clock,	Analog Circuit		НМІ		Tim	ners	Comm	unications Inte	erfaces
16HWQFN	Digital port	Power supply, system clock, and debugging	A/D converter (ADC)	Interrupt (INTP)	Key interrupt (KR)	Capacitive sensing unit (CTSU2La)	Timer array unit (TAU)	Realtime Clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Serial interface UARTA (UARTA)
34	P23	_	ANI3	_	_	TS21	_	_	_	_	_
35	P22	_	ANI2	_	_	TS20	_	_	_	_	_
36	P21	_	ANI1/ AVREFM	_	_	_	_	_	_	_	_
37	P20	_	ANIO/ AVREFP	_	_	_	_	_	_	_	_
38	P01	_	_	_		TS27	TO00	_	RxD1		_
39	P00	_	_	_	_	TS26	T100	_	TxD1	_	_
40	P120	_	ANI19		_	_	_	_	_	_	_

1.3.9 44-pin products

• 44-pin plastic LQFP (10 × 10 mm, 0.80-mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Refer to Figure 4 - 9 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G22 User's Manual.

Table 1 - 10 Multiplexed Pin Functions of the 44-pin Products (1/2)

	1 - 10 N	fultiplexed Pin F	unctions	JI III E 44- p	ili Pioduc	ເຣ (1/2)					
Pin Number	I/O	clock,	Analog Circuit		НМІ		Tin	ners	Comm	unications Int	erfaces
16HWQFN	Digital port	Power supply, system dock, and debugging	A/D converter (ADC)	Interrupt (INTP)	Key interrupt (KR)	Capacitive sensing unit (CTSU2La)	Timer array unit (TAU)	Realtime Clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Serial interface UARTA (UARTA)
1	P41	_	_	_	_	_	TI07/TO07	_	_	_	_
2	P40	TOOL0	_	_	_	_	_	_	_	_	_
3	_	RESET	_	_	_	_	_	_	_	_	_
4	P124	XT2/EXCLKS	_	_	_	_	_	_	_	_	_
5	P123	XT1	_	_	_	_	_	_	_	_	_
6	P137	_	_	INTP0	_	_	_	_	_	_	_
7	P122	X2/EXCLK	_	_	_	_	_	_	_	_	_
8	P121	X1/VBAT	_	_	_	_	_	_	_	_	_
9	_	REGC	_	_	_	_	_	_	_	_	_
10	_	Vss	_	_	_	_	_	_	_	_	_
11	_	VDD	_	_	_	_	_	_	_	_	_
12	P60	_	_	_	_	_	_	_	_	SCLA0	_
13	P61	_	_	_	_	_	_	_	_	SDAA0	_
14	P62	_	_	_	_	_	_	_	_	_	_
15	P63	_	_	_	_	_	_	_	_	_	_
16	P31	PCLBUZ0	_	INTP4	_	TS01	TI03/TO03	_	_	_	_
17	P73	_	_	_	KR3	TS05	_	_	_	_	_
18	P72	_	_	_	KR2	TS04	_	_	SO21	_	TxDA1
19	P71	_	_	_	KR1	TS03	_	_	SI21/ SDA21	_	RxDA0
20	P70	_	_	_	KR0	TS02	_	_	SCK21/ SCL21	_	_
21	P30	_	_	INTP3	_	TSCAP	_	RTC1HZ	SCK11/ SCL11	_	_
22	P50	_	_	INTP1	_	TS00	_	_	SI11/ SDA11	_	_
23	P51	_	_	INTP2	_	TS28	_	_	SO11	_	_
24	P17	_	_		_	TS18	TI02/TO02	_	(TxD0)	_	_
25	P16	_	_	INTP5	_	TS17	TI01/TO01	_	(RxD0)	_	_
26	P15	PCLBUZ1	_	_	_	TS16	(TI02)/ (TO02)	_	SCK20/ SCL20	_	_
27	P14	_	_	_	_	TS15	(TI03)/ (TO03)	_	SI20/RxD2/ SDA20	(SCLA0)	_
28	P13	_	_	_	_	TS14	(TI04)/ (TO04)	_	SO20/ TxD2	(SDAA0)	_
29	P12	TOOLTXD	_	_	_	TS13	(TI05)/ (TO05)	_	SO00/ TxD0	_	_
30	P11	TOOLRxD	_	_	_	TS12	(TI06)/ (TO06)	_	SI00/RxD0/ SDA00	_	_
31	P10	_	_	_	_	TS11	(TI07)/ (TO07)	_	SCK00/ SCL00	_	_
32	P146	_	_	_	_	TS09	_	_	_	_	_
33	P147		ANI18			TS10	_				

Table 1 - 10 Multiplexed Pin Functions of the 44-pin Products (2/2)

Pin Number	I/O	clock,	Analog Circuit		НМІ		Tim	ners	Comm	unications Inte	erfaces
16HWQFN	Digital port	Power supply, system clock, and debugging	A/D converter (ADC)	Interrupt (INTP)	Key interrupt (KR)	Capacitive sensing unit (CTSU2La)	Timer array unit (TAU)	Realtime Clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Serial interface UARTA (UARTA)
34	P27		ANI7			TS25	_		1		_
35	P26	_	ANI6	_	_	TS24	_	_	_	_	_
36	P25		ANI5			TS23	_	1	1		
37	P24		ANI4			TS22	_	1	1		_
38	P23		ANI3			TS21	_	1	1		_
39	P22		ANI2			TS20	_	1	1		_
40	P21	ı	ANI1/ AVREFM	1	_	_	_	1	_	_	_
41	P20	_	ANIO/ AVREFP	_	_	_	_	_	_	_	_
42	P01	_	_	_	_	TS27	TO00		RxD1	_	_
43	P00	_	_	_	_	TS26	T100		TxD1	_	_
44	P120	_	ANI19			_	_	_	_	_	_

1.3.10 48-pin products

- 48-pin plastic LFQFP (7 × 7 mm, 0.50-mm pitch)
- 48-pin plastic HWQFN (7 × 7 mm, 0.50-mm pitch)

Note The 48-pin plastic LFQFP (7 × 7 mm, 0.50-mm pitch) products do not have an exposed die pad.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Refer to Figure 4 - 9 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G22 User's Manual.

Remark 3. It is recommended to connect an exposed die pad to Vss.

Table 1 - 11 Multiplexed Pin Functions of the 48-pin Products (1/2)

	1 - 11 IV	iuitipiexed Pin F		 							
Pin Number	I/O	clock,	Analog Circuit		НМІ		Tim	ners	Comm	unications Int	erfaces
16HWQFN	Digital port	Power supply, system dock, and debugging	A/D converter (ADC)	Interrupt (INTP)	Key interrupt (KR)	Capacitive sensing unit (CTSU2La)	Timer array unit (TAU)	Realtime Clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Serial interface UARTA (UARTA)
1	P60	_	_	_	_	_	_	_	_	SCLA0	_
2	P61	_	_	_	_	_	_	_	_	SDAA0	_
3	P62	_	_	_	_	_	_	_	_	_	_
4	P63	_	_	_	_	_	_	_	_	_	_
5	P31	(PCLBUZ0)	_	INTP4	_	TS01	TI03/TO03	_	_	_	_
6	P75	_	_	INTP9	KR5	TS07	_	_	SCK01/ SCL01	_	_
7	P74	_	_	INTP8	KR4	TS06	_	_	SI01/ SDA01	_	_
8	P73	_	_	_	KR3	TS05	_	_	SO01	_	_
9	P72	_	_	_	KR2	TS04	_	_	SO21	_	TxDA0
10	P71	_	_	_	KR1	TS03	_	_	SI21/ SDA21	_	RxDA0
11	P70	_	_	_	KR0	TS02	_	_	SCK21/ SCL21	_	_
12	P30	_	_	INTP3	_	TSCAP	_	RTC1HZ	SCK11/ SCL11	_	_
13	P50	_	_	INTP1	_	TS00	_	_	SI11/ SDA11	_	_
14	P51	_	_	INTP2	_	TS28	_	_	SO11	_	_
15	P17	_	_	_	_	TS18	TI02/TO02	_	(TxD0)	_	_
16	P16	_	_	INTP5	_	TS17	TI01/TO01	_	(RxD0)	_	_
17	P15	PCLBUZ1	_	_	_	TS16	(TI02)/ (TO02)	_	SCK20/ SCL20	_	_
18	P14	_	_	_	_	TS15	(TI03)/ (TO03)	_	SI20/RxD2/ SDA20	(SCLA0)	_
19	P13	_	_	_	_	TS14	(TI04)/ (TO04)	_	SO20/ TxD2	(SDAA0)	_
20	P12	TOOLTxD	_	_	_	TS13	(TI05)/ (TO05)	_	SO00/ TxD0	_	_
21	P11	TOOLRxD	_	_	_	TS12	(TI06)/ (TO06)	_	SI00/RxD0/ SDA00	_	_
22	P10	_	_	_	_	TS11	(TI07)/ (TO07)	_	SCK00/ SCL00	_	_
23	P146	_		_	_	TS09	_	_	_	_	
24	P147	_	ANI18	_	_	TS10	_	_	_	_	_
25	P27	_	ANI7	_	_	TS25	_	_	_	_	_
26	P26	_	ANI6	_	_	TS24	_	_	_	_	_
27	P25	_	ANI5	_	_	TS23	_	_	_	_	_
28	P24	_	ANI4	_	_	TS22	_	_	_	_	_
29	P23	_	ANI3	_	_	TS21	_	_	_	_	_
30	P22	_	ANI2	_	_	TS20	_	_	_	_	_
31	P21	_	ANI1/ AVREFM	_	_	_	_	_	_	_	_

Table 1 - 11 Multiplexed Pin Functions of the 48-pin Products (2/2)

Pin Number	I/O	clock,	Analog Circuit		НМІ		Tim	ners	Comm	unications Inte	erfaces
16HWQFN	Digital port	Power supply, system clock, and debugging	A/D converter (ADC)	Interupt (INTP)	Key interrupt (KR)	Capacitive sensing unit (CTSU2La)	Timer array unit (TAU)	Realtime Clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Serial interface UARTA (UARTA)
32	P20	_	ANIO/ AVREFP	_	_	_	_	_	_	_	_
33	P130	_	_	_	_	TS19	_	_	_	_	_
34	P01	_	_	_	_	TS27	TO00	_	RxD1	_	_
35	P00	_	_	_	_	TS26	T100	_	TxD1	_	_
36	P140	PCLBUZ0	_	INTP6	_	TS08	_	_	_	_	_
37	P120	_	ANI19	_	_	_	_	_	_	_	_
38	P41	_	_	_	_	_	TI07/TO07	_	_	_	_
39	P40	TOOL0	_	_	_	_	_	_	_	_	_
40	_	RESET	_	_	_	_	_	_	_	_	_
41	P124	XT2/EXCLKS	_	_	_	_	_	_	_	_	_
42	P123	XT1	_	_	_	_	_	_	_	_	_
43	P137	_	_	INTP0	_	_	_	_	_	_	_
44	P122	X2/EXCLK	_	_	_	_	_	_	_	_	_
45	P121	X1/VBAT	_	_	_	_	_	_	_	_	_
46	_	REGC	_	_	_	_	_	_	_	_	_
47	_	Vss	_	_	_	_	_	_	_	_	_
48	_	VDD	_	_	_	-	_	_	_	_	_

1.4 Pin Identification

ANI0 to ANI7,		RxD0 to RxD2,	
ANI16 to ANI19	: Analog input	RxDA0	: Receive data
AVREFM	: Analog reference voltage minus	SCLA0,	
AVREFP	: Analog reference voltage plus	SCK00, SCK01,	
EXCLK	: External clock input	SCK11, SCK20, SCK21	: Serial clock input/output
	(main system clock)	SCL00, SCL01,	
EXCLKS	: External clock input	SCL11, SCL20,	
	(subsystem clock)	SCL21	: Serial clock output
INTP0 to INTP6, INTP8,		SDAA0, SDA00,	
INTP9	: Interrupt request from peripheral	SDA01, SDA11,	
KR0 to KR5	: Key return	SDA20, SDA21	: Serial data input/output
P00, P01	: Port 0	SI00, SI01, SI11,	
P10 to P17	: Port 1	SI20, SI21	: Serial data input
P20 to P27	: Port 2	SO00, SO01	
P30, P31	: Port 3	SO11, SO20, SO21	: Serial data output
P40, P41	: Port 4	TSCAP	: Touch sensor capacitance
P50, P51	: Port 5	TI00 to TI07	: Timer input
P60 to P63	: Port 6	TO00 to TO07	: Timer output
P70 to P75	: Port 7	TOOL0	: Data input/output for tool
P120 to P124	: Port 12	TOOLRXD, TOOLTXD	: Data input/output for external device
P130, P137	: Port 13	TS00 to TS28	: Capacitive touch sensor
P140, P146, P147	: Port 14	TxD0 to TxD2	: Transmit data
PCLBUZ0, PCLBUZ1	: Programmable clock output/buzzer	TxDA0	
	output	VBAT	: Battery backup power supply
REGC	: Regulator capacitance	VDD	: Power supply
RESET	: Reset	Vss	: Ground
RTC1HZ	: Realtime clock correction clock (1 Hz)	X1, X2	: Crystal oscillator (main system clock)
	output	XT1, XT2	: Crystal oscillator (subsystem clock)

1.5 Block Diagram

- Caution 1. The serial interface IICA is only incorporated in the 24- to 48-pin products.
- Caution 2. The serial interface UARTA is only incorporated in the 36- to 48-pin products.
- Caution 3. The key return function is only incorporated in the 40- to 48-pin products.

Remark m: Unit number, n: Channel number, p: Simplified SPI (CSI) number, q: UART number, r: Simplified I²C number, xx: Port number

1.6 Outline of Functions

Caution This outline describes the functions at the time when peripheral I/O redirection register (PIOR) is set to 00H.

(1/4)

lte	em	16-pin	20-pin	24-pin	25-pin	30-pin	32-pin	36-pin	40-pin	44-pin	48-pin	
0 1 2				R7F102G7x	R7F102G8x	R7F102GAx	R7F102GBx	R7F102GCx	R7F102GEx	R7F102GFx	R7F102GGx	
Code flash		32 or 64 K	В									
Data flash r	nemory	2 KB										
RAM		4 KB										
Address sp	ace	1 Mbyte										
CPU/ peripheral hardware clock frequency (fclk)	Main system clock	HS (high-s LS (low-sp LS (low-sp	peed main) eed main) r eed main) r	mode: 1 to mode: 1 to a mode: 1 to	o 32 MHz (V o 4 MHzNote 24 MHz (VC 4 MHzNote 1 2 MHzNote 1	e1 (V _{DD} = 1 DD = 1.8 to 5 I (V _{DD} = 1.6	.6 to 5.5 V) 5.5 V) 6 to 5.5 V)					
(Subsystem clock	SUB mode	: 32.768 k⊦	łz (VDD = 1	.6 to 5.5 V)							
Main system clock	High- speed system clock (fMX)	1 to 20 MH	lz									
	High- speed on- chip oscillator clock (fiH)	1 MHz, 2 N	/IHz, 3 MHz	z, 4 MHz, 6	MHz, 8 MH	z, 12 MHz,	16 MHz, 24	I MHz, 32 №	ИНz			
	Middle- speed on- chip oscillator clock (fim)	1 MHz, 2 N	/IHz, 4 MHz	:								
Subsystem clock	Subsystem clock X (fsx)	32.768 kHz	z (VDD = 2.4	4 to 5.5 V)					32.768 kHz	z (VDD = 1.0	6 to 5.5 V)	
	Low-speed on-chip oscillator clock (fiL)	d 32.768 kHz (typ.)										
General-pu registers	rpose	8 bits × 32 registers (8 bits × 8 registers × 4 banks)										
Minimum in execution ti		0.03125 μs	at the 32-	MHz opera	ation with th	e high-spee	d on-chip o	scillator clo	ock (fiH))			
Instruction	set	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (set, reset, test, and Boolean operation), etc. 										

(2/4)

		16-pin	20-pin	24-pin	25-pin	30-pin	32-pin	36-pin	40-pin	44-pin	48-pin
Ite	em	R7F102G4x	R7F102G6x		R7F102G8x	R7F102GAx		R7F102GCx	R7F102GEx	R7F102GFx	R7F102GGx
I/O port	Total number of pins	12	16	20	21	26	28	32	36	40	44
	CMOS I/O	11 (N-ch open drain I/O [withstand voltage of VDD]: 4)	15 (N-ch open drain I/O [withstand voltage of VDD]: 5)	17 (N-ch open o [withstand vo VDD]: 6)		23 (N-ch open drain I/O [withstand voltage of VDD]: 10)	24 (N-ch open drain I/O [withstand voltage of VDD]: 10)	28 (N-ch open drain I/O [withstand voltage of VDD]: 12)	30 (N-ch open drain I/O [withstand voltage of VDD]: 12)	33 (N-ch open drain I/O [withstand voltage of VDD]: 12)	36 (N-ch open drain I/O [withstand voltage of VDD]: 13)
	CMOS input	1							3		
	CMOS output				1			1			
	N-ch open drain I/O [withstand voltage of 6 V]	_		2			3			4	
Timers	16-bit timer	8 channels	;								
	Watchdog timer	1 channel									
	Realtime clock (RTC)	1 channel									
	32-bit interval timer (TML32)	2 channels	in 16-bit co	unter mode ounter mode unter mode	•						
	Timer output	1 channel (PWM output: 1)	3 channels (PWM outputs: 2Note 2)	4 channels outputs: 3 ^N	,		(PWM out				
	RTC output	1 channel									
Clock outpu	ut/buzzer	2									
output		(at the 32 • 256 Hz, 5	2-MHz oper 512 Hz, 1.0	ation with th 24 kHz, 2.0	ne main sys 48 kHz, 4.0		•		2.768 kHz		
8-/10-bit res	solution A/D	3 channels	6 channels	3		8 channels	3		9 channels	10 channe	ls

(3/4)

R7F102G4x R7F102G6x R7F102G7x R7F102G8x R7F1												(3/4)
Serial interfaces R7F10206k R7F10206	Ite	em	16-pin	20-pin	24-pin	25-pin	30-pin	32-pin	36-pin	40-pin	44-pin	48-pin
Simplified SPI (CSI): 1 channel, simplified IPC: 1 channel, UART: 1 channel	110	2111	R7F102G4x	R7F102G6x	R7F102G7x	R7F102G8x	R7F102GAx	R7F102GBx	R7F102GCx	R7F102GEx	R7F102GFx	R7F102GGx
Simplified SPI (CSI): 1 channel, simplified IPC: 1 channel, UART: 1 channel Simplified SPI (CSI): 1 channel, simplified IPC: 1 channel, UART: 1 channel Simplified SPI (CSI): 1 channel, simplified IPC: 1 channel, UART: 1 channel Simplified SPI (CSI): 1 channel, simplified IPC: 1 channel, UART: 1 channel Simplified SPI (CSI): 1 channel, simplified IPC: 1 channel, UART: 1 channel Simplified SPI (CSI): 1 channel, simplified IPC: 1 channel, UART: 1 channel Simplified SPI (CSI): 1 channel, simplified IPC: 1 channel, UART: 1 channel Simplified SPI (CSI): 1 channel, simplified IPC: 1 channel, UART: 1 channel Simplified SPI (CSI): 2 channels, simplified IPC: 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, simplified IPC: 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, simplified IPC: 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, simplified IPC: 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, simplified IPC: 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, simplified IPC: 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, simplified IPC: 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, simplified IPC: 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, simplified IPC: 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, simplified IPC: 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, simplified IPC: 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, simplified IPC: 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, simplified IPC: 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, simplified IPC: 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, simplified IPC: 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, simplified IPC: 2 channels, UART: 1 channel Simplified SPI (CSI): 2 channels, uarticles, uarticles, uarticles, uarticles, uarticles,	Serial interf	aces	 Simplified 	d SPI (CSI)		, simplified	I ² C: 1 chanı	nel, UART:	1 channel			
Simplified SPI (CSI): 1 channel, simplified I ² C: 1 channel, UART: 1 channel			Simplified	d SPI (CSI)	: 1 channel	•						
Simplified SPI (CSI): 1 channel, simplified I ² C: 1 channel, UART: 1 channel			SimplifiedSimplified	d SPI (CSI) d SPI (CSI)	: 1 channel : 1 channel	, simplified	l ² C: 1 chanı	nel, UART:	1 channel	porting LIN-	-bus): 1 cha	innel
Simplified SPI (CSI): 2 channels, simplified I ² C: 2 channels, UART: 1 channel			SimplifiedSimplified	d SPI (CSI) d SPI (CSI)	: 1 channel : 1 channel	, simplified	l ² C: 1 chanı	nel, UART:	1 channel	upporting Ll	IN-bus): 1 c	hannel
1			SimplifiedSimplified	d SPI (CSI) d SPI (CSI)	1 channel	, simplified	l ² C: 1 chanı	nel, UART:	1 channel		IN-bus): 1 c	hannel
Data transfer controller 21 23 25 sources 28 sources 30 31 sources 32 sources 28 sources 30 31 sources 32 sources 32 sources 32 sources 32 sources 33 sources 34 sources 35 sources 35 sources 36 sources 37 sources 38 sources 39 sources 39 sources 39 sources 39 sources 39 sources 39 sources 30 sources		UARTA	_						1 channel			
Event link controller (ELC)		I ² C bus	_		1 channel							
SNOOZE mode sequencer (SMS) 1		er controller			25 sources	3	28 sources	}		31 sources	S	32 sources
Sequencer (SMS) Capacitive sensing unit 5 9 11 12 16 17 21 23 25 29		ontroller	1									
New of the content			1						,	<u> </u>	·	
External 2 3 5 6 7 10	Capacitive	sensing unit	5	9	11	12	16	17	21	23	25	29
Sources External 2 3 5 6 7 10 Key interrupt —		Internal	23	25	26		29		32			
Reset Re		External	2	3	5		6			7		10
Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detectors (LVD0 and LVD1) Internal reset by illegal instruction execution Note 4 Internal reset by RAM parity error Internal reset by illegal-memory access Power-on-reset circuit Voltage detector LVD0 Detection voltage Rising edge: 1.67 to 4.00 V (6 stages) Falling edge: 1.63 to 3.92 V (6 stages) Rising edge: 1.67 to 4.16 V (18 stages) Falling edge: 1.63 to 4.08 V (18 stages) Falling edge: 1.63 to 4.08 V (18 stages)	Key interrup	ot	_							4		6
• 1.50 V (typ.) Voltage detector Detection voltage • Rising edge: 1.67 to 4.00 V (6 stages) • Falling edge: 1.63 to 3.92 V (6 stages) LVD1 Detection voltage • Rising edge: 1.67 to 4.16 V (18 stages) • Falling edge: 1.63 to 4.08 V (18 stages)	Reset		Internal rInternal rInternal rInternal rInternal r	eset by wat eset by pov eset by volt eset by illed eset by RA	chdog time ver-on-rese age detecto gal instruction M parity err	t ors (LVD0 a on execution or				1		
detector • Rising edge: 1.67 to 4.00 V (6 stages) • Falling edge: 1.63 to 3.92 V (6 stages) LVD1 Detection voltage • Rising edge: 1.67 to 4.16 V (18 stages) • Falling edge: 1.63 to 4.08 V (18 stages)	Power-on-re	eset circuit										
• Rising edge: 1.67 to 4.16 V (18 stages) • Falling edge: 1.63 to 4.08 V (18 stages)	-	LVD0	• Rising edge: 1.67 to 4.00 V (6 stages)									
On-chip debugging Available		LVD1	Rising ed	dge: 1.67 to								
	On-chip del	bugging	Available									
Power supply voltage VDD = 1.6 to 5.5 V	Power supp	oly voltage	VDD = 1.6	to 5.5 V								

(4/4)

Item	16-pin	20-pin	24-pin	25-pin	30-pin	32-pin	36-pin	40-pin	44-pin	48-pin
110111	R7F102G4x	R7F102G6x	R7F102G7x	R7F102G8x	R7F102GAx	R7F102GBx	R7F102GCx	R7F102GEx	R7F102GFx	R7F102GGx
Operating ambient temperature	TA = -40 to	o +85°C (2E): Consume	er applicatio	ns), TA = -4	40 to +105°	C (3C: Indu	ıstrial applic	cations)	

- **Note 1.** Ensure that the operating voltage is at least 1.8 V during overwriting of the flash memory.
- Note 2. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves). For details, see 7.9.3 Operation for the multiple PWM output function in the RL78/G22 User's Manual.
- **Note 3.** This applies when the setting of the PIOR0 bit is 1.
- **Note 4.** In normal operation, executing the instruction code FFH triggers an internal reset, but this is not the case during emulation by the on-chip debugging emulator.

RL78/G22 2. Electrical Characteristics

2. Electrical Characteristics

This section describes the electrical characteristics of the following products.

- 2D: Consumer applications, TA = -40 to +85°C R7F102Gxx2Dxx
- 3C: Industrial applications, TA = -40 to +105°C R7F102Gxx3Cxx
- Caution 1. RL78 microcontrollers have on-chip debugging functionality for use in the development and evaluation of user systems. Do not use on-chip debugging with products designated as part of mass production, because using this function may cause the guaranteed number of times the flash memory is rewritten to be exceeded, and product reliability therefore cannot be guaranteed.

 Renesas Electronics is not liable for problems occurring when on-chip debugging is used with products designated as part of mass production.
- Caution 2. For the consumer application products, the ambient operating temperature of TA = -40 to +85°C applies. Note that the characteristics of the A/D converter for each of the ranges of ambient operating temperature are described in the following sections.

 2.6.1 Characteristics of the A/D converter for TA = -40 to +85°C

2.6.2 Characteristics of the A/D converter for TA = -40 to +105°C

Caution 3. The present pins differ depending on the products. For details, see section 2.1 Functions of Port Pins through section 2.2.1 Functions for each product in the RL78/G22 User's Manual.

2.1 Absolute Maximum Ratings

(1/2)

Item	Symbols		Conditions	Ratings	Unit
Supply voltage	VDD			-0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC		-0.3 to +2.1 and -0.3 to V _{DD} + 0.3Note 1	V
Input voltage	VI1		P17, P30, P31, P40, P41, P50, P120, P140, P146, P147	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
	VI2	P60 to P63 (N-ch	n open-drain)	-0.3 to +6.5	V
	VI3	P20 to P27, P121 RESET	I to P124, P137, EXCLK, EXCLKS,	-0.3 to V _{DD} + 0.3Note 2	V
Output voltage	VO1		P17, P30, P31, P40, P41, P50, P70 to P75, P130, P140, P146,	-0.3 to V _{DD} + 0.3Note 2	V
	VO2	P20 to P27, P12	1, P122	-0.3 to V _{DD} + 0.3Note 2	V
Analog input voltage	VAI1	ANI16 to ANI19		-0.3 to VDD + 0.3 and -0.3 to AVREFP + 0.3 Notes 2, 3	V
	VAI2	ANI0 to ANI7		-0.3 to VDD + 0.3 and -0.3 to AVREFP + 0.3 Notes 2, 3	V
High-level output current	Іон1	Per pin	P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140, P146, P147	-40	mA
		Total of all pins -170 mA	P00, P01, P40, P41, P120, P130, P140	-70	mA
			P10 to P17, P30, P31, P50, P51, P70 to P75, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P121, P122	-5	mA
		Total of all pins		-20	mA
Low-level output current	IOL1	Per pin	P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P130, P140, P146, P147	40	mA
		Total of all pins 170 mA	P00, P01, P40, P41, P120, P130, P140	70	mA
			P10 to P17, P30, P31, P50, P51, P60 to P63, P70 to P75, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P121, P122	10	mA
		Total of all pins]	20	mA

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). The listed value is the absolute maximum rating of the REGC pin. Only use the capacitor connection. Do not apply a specific voltage to this pin.

(Caution and Remarks are listed on the next page.)

Note 2. This voltage must be no higher than 6.5 V.

Note 3. The voltage on a pin in use for A/D conversion must not exceed AVREFP + 0.3.

(2/2)

Item	Symbols	Condition	าร	Ratings	Unit
Ambient operating	TA	In normal operation mode 3C: Industrial applications		-40 to +105	°C
temperature			2D: Consumer applications		
		In flash memory programming mode	3C: Industrial applications	-40 to +105	
			2D: Consumer applications	-40 to +85	
Storage temperature	Tstg			-65 to +150	°C

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark 1.** The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.
- Remark 2. AVREFP refers to the positive reference voltage of the A/D converter.
- Remark 3. The reference voltage is Vss.

2.2 Characteristics of the Oscillators

2.2.1 Characteristics of the X1 oscillator

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Resonator	Conditions	Min.	Тур.	Max.	Unit
X1 clock oscillation allowable input cycle time Note	Ceramic resonator/ crystal resonator		0.05		1	μs

Note

The listed time and frequency indicate permissible ranges of the oscillator. For actual applications, request evaluation by the manufacturer of the oscillator circuit mounted on a board so you can use appropriate values. See **2.4 AC Characteristics** for instruction execution time.

Caution

Since the CPU is started by the high-speed on-chip oscillator clock after release from the reset state, the user should use the oscillation stabilization time counter status register (OSTC) to check the X1 clock oscillation stabilization time. Specify the values for the oscillation stabilization time in the OSTC register and the oscillation stabilization time select register (OSTS) after having sufficiently evaluated the oscillation stabilization time with the resonator to be used.

2.2.2 Characteristics of the XT1 oscillator

(TA = -40 to +105°C, 2.4 V ≤ VDD ≤ 5.5 V (16- to 36-pin products), 1.6 V ≤ VDD ≤ 5.5 V (40- to 48-pin products), Vss = 0 V)

Item	Resonator	Conditions	Min.	Тур.	Max.	Unit
XT1 clock oscillation frequency (fxT)Note	Crystal resonator			32.768		kHz

Note

The listed time and frequency indicate permissible ranges of the oscillator. For actual applications, request evaluation by the manufacturer of the oscillator circuit mounted on a board so you can use appropriate values. See **2.4 AC Characteristics** for instruction execution time.

2.2.3 Characteristics of the On-chip Oscillators

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Symbol		Condition	s	Min.	Тур.	Max.	Unit
High-speed on-chip oscillator clock frequency	fін				1		32	MHz
High-speed on-chip		HIPREC = 1	+85 to +105°C	1.8 V ≤ VDD ≤ 5.5 V	-2.0		+2.0	%
oscillator clock frequency accuracyNote 1				1.6 V ≤ VDD ≤ 5.5 V	-6.0		+6.0	%
			-20 to +85°C	1.8 V ≤ VDD ≤ 5.5 V	-1.0		+1.0	%
				1.6 V ≤ VDD ≤ 5.5 V	-5.0		+5.0	%
			-40 to -20°C	1.8 V ≤ VDD ≤ 5.5 V	-1.5		+1.5	%
				1.6 V ≤ VDD ≤ 5.5 V	-5.5		+5.5	%
		HIPREC = 0N	IPREC = 0Note 4				0	%
High-speed on-chip oscillator clock correction resolution						0.05		%
Middle-speed on-chip oscillator clock frequencyNote 2	fiM				1		4	MHz
Middle-speed on-chip oscillator clock frequency accuracyNote 1					-12		+12	%
Middle-speed on-chip oscillator clock correction resolution						0.15		%
Middle-speed on-chip oscillator frequency temperature coefficient							±0.17 Note 3	%/°C
Low-speed on-chip oscillator clock frequencyNote 2	fiL					32.768		kHz
Low-speed on-chip oscillator clock frequency accuracyNote 1					-15		+15	%
Low-speed on-chip oscillator clock correction resolution						0.3		%
Low-speed on-chip oscillator frequency temperature coefficient							±0.21 Note 3	%/°C

- Note 1. The accuracy values were obtained in testing of this product.
- **Note 2.** The listed values only indicate the characteristics of the oscillators. See **2.4 AC Characteristics** for instruction execution time.
- Note 3. Guaranteed by characterization results.
- Note 4. The listed condition applies when the setting of the FRQSEL3 bit is 1.

2.3 DC Characteristics

2.3.1 Characteristics of Pins

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/5)

Item	Symbol	Conditions	;	Min.	Тур.	Max.	Unit
Allowable high-level output current Note 1	Іон1	Per pin for P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140, P146, P147	1.6 V ≤ VDD ≤ 5.5 V			-10.0Note 2	mA
		Total of P00, P01, P40, P41, P120,	4.0 V ≤ VDD ≤ 5.5 V			-55.0Note 4	mA
		P130, P140 (when duty ≤ 70%Note 3)	2.7 V ≤ VDD < 4.0 V			-10.0	mA
			1.8 V ≤ VDD < 2.7 V			-5.0	mA
			1.6 V ≤ VDD < 1.8 V			-2.5	mA
		Total of P10 to P17, P30, P31,	4.0 V ≤ VDD ≤ 5.5 V			-80.0Note 5	mA
		P50, P51, P70 to P75, P146, P147 (when duty ≤ 70% Note 3)	2.7 V ≤ VDD < 4.0 V			-19.0	mA
			1.8 V ≤ VDD < 2.7 V			-10.0	mA
			1.6 V ≤ VDD < 1.8 V			-5.0	mA
		Total of all pins (when duty ≤ 70%Note 3)	1.6 V ≤ VDD ≤ 5.5 V			-135.0Note 6	mA
	Іон2	Per pin for P20 to P27, P121,	4.0 V ≤ VDD ≤ 5.5 V			_3.0Note 2	mA
		P122	2.7 V ≤ VDD < 4.0 V			-1.0Note 2	mA
			1.8 V ≤ VDD < 2.7 V			_1.0Note 2	mA
			1.6 V ≤ VDD < 1.8 V			_0.5Note 2	mA
		Total of all pins	4.0 V ≤ VDD ≤ 5.5 V			-20.0	mA
		(when duty ≤ 70%Note 3)	2.7 V ≤ VDD < 4.0 V			-10.0	mA
			1.8 V ≤ VDD < 2.7 V			-5.0	mA
			1.6 V ≤ VDD < 1.8 V			-5.0	mA

- Note 1. Device operation is guaranteed at the listed currents even if current is flowing from the VDD pin to an output pin.
- Note 2. The combination of these and other pins must also not exceed the value for maximum total current.
- **Note 3.** The listed currents apply when the duty cycle is no greater than 70%.

Use the following formula to calculate the output current when the duty cycle is greater than 70%, where n is the duty cycle.

- Total output current from the listed pins = (IoH \times 0.7)/(n \times 0.01) Example when n = 80% and IoH = -10.0 mA
- Total output current from the listed pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

Note that the duty cycle has no effect on the current that is allowed to flow into a single pin. A current higher than the absolute maximum rating must not flow into a single pin.

- **Note 4.** The maximum value is -30 mA in the products for industrial applications (R7F102Gxx3xxxC) with an ambient operating temperature range of +85 to +105°C.
- **Note 5.** The maximum value is -50 mA in the products for industrial applications (R7F102Gxx3xxxC) with an ambient operating temperature range of +85 to +105°C.
- Note 6. The maximum values are respectively -100 mA and -60 mA in the products for industrial applications (R7F102Gxx3xxxC) with an ambient operating temperature range of -40 to +85°C and of +85 to +105°C.
- Caution The following pins are not capable of the output of high-level signals in the N-ch open-drain mode. P00, P10 to P15, P17, P50, P71, P72, P74, and P120
- **Remark** The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

(2/5)

Item	Symbol	Conditions	3	Min.	Тур.	Max.	Unit
Allowable low-level output currentNote 1	IOL1	Per pin for P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140, P146, P147				20.0Note 2	mA
		Per pin for P60 to P63				15.0Note 2	mA
		Total of P00, P01, P40, P41, P120,	4.0 V ≤ VDD ≤ 5.5 V			70.0Note 4	mA
		P130, P140 (when duty ≤ 70%Note 3)	2.7 V ≤ V _{DD} < 4.0 V			15.0	mA
			1.8 V ≤ VDD < 2.7 V			9.0	mA
			1.6 V ≤ VDD < 1.8 V			4.5	mA
		P50, P51, P60 to P63, P70 to P75, P146, P147 (when duty ≤ 70%Note 3)	4.0 V ≤ VDD ≤ 5.5 V			80.0Note 4	mA
			2.7 V ≤ V _{DD} < 4.0 V			35.0	mA
			1.8 V ≤ VDD < 2.7 V			20.0	mA
			1.6 V ≤ VDD < 1.8 V			10.0	mA
		Total of all pins (when duty ≤ 70%Note 3)				150.0Note 5	mA
	IOL2	Per pin for P20 to P27, P121,	4.0 V ≤ VDD ≤ 5.5 V			8.5Note 2	mA
		P122	2.7 V ≤ V _{DD} < 4.0 V			1.5Note 2	mA
			1.8 V ≤ VDD < 2.7 V			0.6Note 2	mA
			1.6 V ≤ VDD < 1.8 V			0.4Note 2	mA
		Total of all pins	4.0 V ≤ VDD ≤ 5.5 V			20	mA
		(when duty ≤ 70%Note 3)	2.7 V ≤ V _{DD} < 4.0 V			20	mA
			1.8 V ≤ VDD < 2.7 V			15	mA
			1.6 V ≤ VDD < 1.8 V			10	mA

- Note 1. Device operation is guaranteed at the listed currents even if current is flowing from an output pin to the Vss pin.
- Note 2. The combination of these and other pins must also not exceed the value for maximum total current.
- **Note 3.** The listed currents apply when the duty cycle is no greater than 70%.

Use the following formula to calculate the output current when the duty cycle is greater than 70%, where n is the duty cycle.

- Total output current from the listed pins = (IoL \times 0.7)/(n \times 0.01) Example when n = 80% and IoL = 10.0 mA
 - Total output current from the listed pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

Note that the duty cycle has no effect on the current that is allowed to flow into a single pin. A current higher than the absolute maximum rating must not flow into a single pin.

- **Note 4.** The maximum value is 40 mA in the products for industrial applications (R7F102Gxx3xxxC) with an ambient operating temperature range of +85 to +105°C.
- Note 5. The maximum value is 80 mA in the products for industrial applications (R7F102Gxx3xxxC) with an ambient operating temperature range of +85 to +105°C.
- **Remark** The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

(TA = -40 to +105°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

(3/5)

Item	Symbol	Condition	s	Min.	Тур.	Max.	Unit
Input voltage, high	VIH1	P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140, P146, P147	Normal input buffer	0.8 VDD		VDD	V
	VIH2	P01, P10, P11, P13 to P17, P41, P71	TTL input buffer 4.0 V ≤ VDD ≤ 5.5 V	2.2		VDD	V
			TTL input buffer 3.3 V ≤ VDD < 4.0 V	2.0		VDD	V
			TTL input buffer 1.6 V ≤ VDD < 3.3 V	1.5		VDD	V
	VIH3	P20 to P27	P20 to P27			VDD	V
	VIH4	P60 to P63	0.7 VDD		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EX	0.8 VDD		VDD	V	
Input voltage, low	VIL1	P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140, P146, P147		0		0.2 VDD	V
	VIL2	P01, P10, P11, P13 to P17, P41, P71	TTL input buffer 4.0 V ≤ VDD ≤ 5.5 V	0		0.8	V
			TTL input buffer 3.3 V ≤ VDD < 4.0 V	0		0.5	V
			TTL input buffer 1.6 V ≤ VDD < 3.3 V	0		0.32	٧
	VIL3	P20 to P27		0		0.3 VDD	V
	VIL4	P60 to P63		0		0.3 VDD	٧
	VIL5	P121 to P124, P137, EXCLK, EX	CLKS, RESET	0		0.2 VDD	V

Caution The maximum value of VIH of pins P00, P10 to P15, P17, P50, P71, P72, P74, and P120 is VDD, even in the N-ch open-drain mode.

Remark The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

(4/5)

Item	Symbol	Con	ditions	Min.	Тур.	Max.	Unit
Output voltage, high	Voн1	P00, P01, P10 to P17, P30, P31,	4.0 V ≤ VDD ≤ 5.5 V, IOH1 = -10.0 mA	VDD - 1.5			V
		P40, P41, P50, P51, P70 to P75, P120, P130, P140, P146, P147	4.0 V ≤ VDD ≤ 5.5 V, IOH1 = -3.0 mA	VDD - 0.7			V
			2.7 V ≤ VDD ≤ 5.5 V, IOH1 = -2.0 mA	VDD - 0.6			٧
			1.8 V ≤ VDD ≤ 5.5 V, IOH1 = -1.5 mA	VDD - 0.5			V
			1.6 V ≤ VDD < 5.5 V, IOH1 = -1.0 mA	VDD - 0.5			V
	Voн2	P20 to P27, P121, P122	4.0 V ≤ VDD ≤ 5.5 V, IOH2 = -3.0 mA	VDD - 0.7			V
			2.7 V ≤ VDD < 4.0 V, IOH2 = -1.0 mA	VDD - 0.5			V
			1.8 V ≤ VDD < 2.7 V, IOH2 = -1.0 mA	VDD - 0.5			V
			1.6 V ≤ VDD < 1.8 V, IOH2 = -0.5 mA	VDD - 0.5			V
Output voltage, low	Vol1	P00, P01, P10 to P17, P30, P31,	4.0 V ≤ VDD ≤ 5.5 V, IOL1 = 20.0 mA			1.3	V
		P40, P41, P50, P51, P70 to P75, P120, P130, P140, P146, P147	4.0 V ≤ VDD ≤ 5.5 V, IOL1 = 8.5 mA			0.7	V
			2.7 V ≤ VDD ≤ 5.5 V, IOL1 = 3.0 mA			0.6	V
			2.7 V ≤ VDD ≤ 5.5 V, IOL1 = 1.5 mA			0.4	V
			1.8 V ≤ VDD ≤ 5.5 V, IOL1 = 0.6 mA			0.4	V
			1.6 V ≤ VDD ≤ 5.5 V, IOL1 = 0.3 mA			0.4	V
	VOL2	P20 to P27, P121, P122	4.0 V ≤ VDD ≤ 5.5 V, IOL2 = 8.5 mA			0.7	V
			2.7 V ≤ VDD < 4.0 V, IOL2 = 1.5 mA			0.5	V
			1.8 V ≤ VDD < 2.7 V, IOL2 = 0.6 mA			0.4	V
			1.6 V ≤ VDD < 1.8 V, IOL2 = 0.4 mA			0.4	V
	Vol3	P60 to P63	4.0 V ≤ VDD ≤ 5.5 V, IOL3 = 15.0 mA			2.0	V
			4.0 V ≤ VDD ≤ 5.5 V, IOL3 = 5.0 mA			0.4	V
			2.7 V ≤ VDD ≤ 5.5 V, IOL3 = 3.0 mA			0.4	V
			1.8 V ≤ VDD ≤ 5.5 V, IOL3 = 2.0 mA			0.4	V
			1.6 V ≤ VDD ≤ 5.5 V, IOL3 = 1.0 mA			0.4	V

Caution P00, P10 to P15, P17, P50, P71, P72, P74, and P120 do not output high-level signals in the N-ch open-drain mode.

Remark The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

(5/5)

Item	Symbol	Conditions		Min.	Тур.	Max.	Unit
Input leakage current, high	ILIH1	P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P130, P140, P146, P147	VI = VDD			0.5	μΑ
	ILIH2	P20 to P27, P137, RESET	VI = VDD			0.5	μΑ
	ILIH3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD			0.5	μA
Input leakage current, low	ILIL1	P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P130, P140, P146, P147	VI = VSS			-0.5	μΑ
	ILIL2	P20 to P27, P137, RESET	VI = VSS			-0.5	μΑ
	ILIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS			-0.5	μA
On-chip pull-up resistance	Ru	P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120 to P122, P140, P146, P147	VI = VSS, In input port	10	20	100	kΩ

Remark The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

2.3.2 Characteristics of the supply current

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/4)

Supply current Note 1 IDD1 Operating mode $Mode = Mode = $	1.2		4
Note 1	1		mA
LS (low-speed main) mode	1.2		1
LS (low-speed main) mode	2.7	4.6	mA
(low-speed main) mode operation VDD = 1.8 V fil = 16 MHzNote 2 Normal operation VDD = 5.0 V	2.7	4.6	
mode VDD = 1.8 V VDD = 1.8 V VDD = 5.0 V VDD = 5.0 V VDD = 5.0 V VDD = 5.0 V	2.0	3.5	mA
oneration energian	2.0	3.5	
operation VDD = 1.8 V	1.5	2.5	mA
	1.5	2.5]
f _{IM} = 4 MHzNote 3 Normal VDD = 5.0 V	0.4	0.7	mA
operation V _{DD} = 1.6 V	0.4	0.7	
LP fim = 2 MHzNote 3 Normal VDD = 5.0 V	179	300	μΑ
(low-power main) operation VDD = 1.6 V	179	300	
f _{IM} = 1 MHzNote 3 Normal VDD = 5.0 V	100	163	μΑ
operation VDD = 1.6 V	100	163	
HS f _{MX} = 20 MHzNote 4, Normal V _{DD} = 5.0 V	1.7	2.9	mA
(high-speed main) Square wave input operation VDD = 1.8 V	1.6	2.8	
LS f _{MX} = 20 MHzNote 4, Normal V _{DD} = 5.0 V	1.5	2.7	mA
(low-speed main) Square wave input operation VDD = 1.8 V	1.5	2.7	
f _{MX} = 20 MHzNote 4, Normal VDD = 5.0 V	1.7	3.0	mA
Resonator connection operation VDD = 1.8 V	1.7	3.0]
f _{MX} = 10 MHzNote 4, Normal VDD = 5.0 V	8.0	1.5	mA
Square wave input operation VDD = 1.8 V	8.0	1.4]
f _{MX} = 10 MHzNote 4, Normal VDD = 5.0 V	0.9	1.6	mA
Resonator connection operation VDD = 1.8 V	0.9	1.6]
f _{MX} = 8 MH _Z Note 4, Normal V _{DD} = 5.0 V	0.7	1.2	mA
Square wave input operation VDD = 1.8 V	0.7	1.2	
f _{MX} = 8 MHzNote 4, Normal VDD = 5.0 V	0.8	1.3	mA
Resonator connection operation VDD = 1.8 V	0.8	1.3] !

- Note 1. The listed currents are the total currents flowing into VDD, including the input leakage currents flowing when the level of the input pin is fixed to VDD or Vss. The following points apply in the HS (high-speed main), LS (low-speed main), and LP (low-power main) modes.
 - The currents in the "Typ." column do not include the operating currents of the peripheral modules.
 - The currents in the "Max." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

(Remarks are listed on the next page.)

- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. flm: Middle-speed on-chip oscillator clock frequency
- Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. The typical value for the ambient operating temperature (TA) is +25°C unless otherwise specified.

(2/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit		
Supply	IDD1	Operating	Subsystem	fsub = 32.768 kHzNote 2,	Normal	TA = -40°C		2.9	4.7	μΑ		
current Note 1		mode	clock operation mode	Low-speed on-chip oscillator operation	operation	TA = +25°C		3.1	4.9			
						TA = +50°C		3.3	6.3			
						TA = +70°C		3.6	9.6			
						TA = +85°C		4.1	15.2			
						TA = +105°C		5.4	32.2			
				fsuB = 32.768 kHzNote 3,	Normal	TA = -40°C		2.9	4.9	μA		
				Square wave input Ope	operation	TA = +25°C		3.0	5.0			
						TA = +50°C		3.2	6.4			
							TA = +70°C		3.5	9.7		
							TA = +85°C		4.0	15.3		
						TA = +105°C		5.4	32.4			
				fsuB = 32.768 kHzNote 3,	Normal	TA = -40°C		2.9	4.9	μA		
				Resonator connection	operation	TA = +25°C		3.1	5.3			
						TA = +50°C		3.3	6.7			
						TA = +70°C		3.6	10.2			
							TA	TA = +85°C		4.1	15.8	
						TA = +105°C		5.5	33.3			

- **Note 1.** The listed currents are the total currents flowing into VDD, including the input leakage currents flowing when the level of the input pin is fixed to VDD or Vss. In the subsystem clock operation mode, the currents in both the "Typ." and "Max." columns do not include the operating currents of the peripheral modules.
- Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed on-chip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.

 $\textbf{Remark 1.} \ \textbf{fil: Low-speed on-chip oscillator clock frequency}$

Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

(3/4)

Item	Symbol		Con	ditions		Min.	Тур.	Max.	Unit
Supply	IDD2	HALT mode	HS	fiH = 32 MHzNote 3	VDD = 5.0 V		0.49	1.87	mA
current ^{Note} 1	Note 2		(high-speed main) mode		VDD = 1.8 V		0.49	1.87	
			LS	fiH = 24 MHzNote 3	VDD = 5.0 V		0.41	1.46	mA
			(low-speed main) mode		VDD = 1.8 V		0.40	1.45	
				fih = 16 MHzNote 3	VDD = 5.0 V		0.42	1.15	mA
					VDD = 1.8 V		0.41	1.14	
				fIM = 4 MHzNote 4	V _{DD} = 5.0 V		0.08	0.26	mA
					VDD = 1.6 V		0.07	0.25	
			LP	fim = 2 MHzNote 4	V _{DD} = 5.0 V		29	115	μΑ
			(low-power main) mode		VDD = 1.6 V		29	115	
				fim = 1 MHzNote 4	VDD = 5.0 V		25	71	μA
				VDD = 1.6 V		25	71		
		HS	,	V _{DD} = 5.0 V		0.19	1.03	mA	
			(high-speed main) mode	Square wave input	V _{DD} = 1.8 V		0.16	0.99	
			LS f _{MX} = 20 MHz Note 5, (low-speed main) Square wave input			0.19	1.03	mA	
			(low-speed main) mode	Square wave input	VDD = 1.8 V		0.16	0.99	
				fmx = 20 MHzNote 5,	V _{DD} = 5.0 V		0.38	1.26	mA
				Resonator connection	VDD = 1.8 V		0.37	1.25	
				fmx = 10 MHzNote 5,	VDD = 5.0 V		0.12	0.54	mA
				Square wave input	VDD = 1.8 V		0.10	0.52	
				fmx = 10 MHzNote 5,	V _{DD} = 5.0 V		0.22	0.67	mA
				Resonator connection	VDD = 1.8 V		0.22	0.66	
				fmx = 8 MHzNote 5,	V _{DD} = 5.0 V		0.10	0.45	mA
				Square wave input	VDD = 1.8 V		0.09	0.43	
				, , ,	V _{DD} = 5.0 V		0.20	0.57	mA
				Resonator connection	VDD = 1.8 V		0.20	0.56	

- Note 1. The listed currents are the total currents flowing into VDD, including the input leakage currents flowing when the level of the input pin is fixed to VDD or Vss. The following points apply in the HS (high-speed main), LS (low-speed main), and LP (low-power main) modes.
 - The currents in the "Typ." column do not include the operating currents of the peripheral modules.
 - The currents in the "Max." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

(Remarks are listed on the next page.)

- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. flm: Middle-speed on-chip oscillator clock frequency
- Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. The typical value for the ambient operating temperature (TA) is +25°C unless otherwise specified.

(4/4)

Item	Symbol			Conditions		Min.	Тур.	Max.	Unit
Supply	IDD2	HALT mode	Subsystem clock	fsub = 32.768 kHzNote 3,	TA = -40°C		0.48	1.84	μΑ
current Note 1	Note 2		operation mode	Low-speed on-chip oscillator operation	TA = +25°C		0.57	1.89	
					TA = +50°C		0.67	3.19	
					TA = +70°C		0.91	6.33	
					Ta = +85°C		1.69	12.66	
					Ta = +105°C		3.04	29.93	
				fsub = 32.768 kHz,	TA = -40°C		0.20	1.72	μA
				Square wave input Note 4	TA = +25°C		0.29	1.75	
					TA = +50°C		0.49	3.75	
					TA = +70°C		0.90	8.16	
					Ta = +85°C		1.41	14.55	
					Ta = +105°C		2.79	32.65	
				fsuB = 32.768 kHz,	TA = -40°C		0.21	1.79	μΑ
				Resonator connection Note 5	TA = +25°C		0.33	2.03	
					TA = +50°C		0.44	3.40	
					TA = +70°C		0.97	8.65	
					Ta = +85°C		1.48	15.04	
					Ta = +105°C		2.92	33.56	
	IDD3	STOP mode	TA = -40°C				0.15	1.10	μΑ
			TA = +25°C				0.20	1.10	
			TA = +50°C TA = +70°C				0.40	2.40	
							0.80	5.50	
			TA = +85°C				1.30	11.00	
			TA = +105°C				2.70	28.00	

- Note 1. The listed currents are the total currents flowing into VDD, including the input leakage currents flowing when the level of the input pin is fixed to VDD or VSs. In the subsystem clock operation mode or the STOP mode, the currents in both the "Typ." and "Max." columns do not include the operating currents of the peripheral modules.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog timer.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped. They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

Peripheral Functions

(TA = -40 to +105°C, 1.6 V \leq VDD \leq 5.5 V, VSS = 0 V)

Item	Symbol			Conditions	Min.	Тур.	Max.	Unit
High-speed on- chip oscillator operating current	I _{FIH} Note 1					380		μΑ
Middle-speed on- chip oscillator operating current	FIMNote 1					20		μΑ
Low-speed on- chip oscillator operating current	FILNote 1					0.3		μΑ
RTC operating	IRTC	frtcclk = 32	2.768 kHz			0.005		μA
current	Notes 1, 2, 3	frtcclk = 12	28 Hz			0.002		μΑ
32-bit interval timer operating current	IIT Notes 1, 2, 4					0.04		μΑ
Watchdog timer operating current	IWDT Notes 1, 2, 5	fiL = 32.768	kHz (typ.)			0.32		μA
A/D converter	IADC	When conve		Normal mode, AVREFP = VDD = 5.0 V		1.3	1.7	mA
operating current	Notes 1, 6	maximum sp	beed	Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter internal reference voltage current	IADREFNote 1					100		μΑ
Temperature sensor operating current	ITMPSNote 1					110		μА
LVD operating current	ILVD0 Notes 1, 7					0.02		μΑ
	ILVD1 Notes 1, 7					0.02		μΑ
Self-programming operating current	IFSP Notes 1, 8					2.5	12.2	mA
Data flash rewrite operating current	IBGO Notes 1, 9					2.5	12.2	mA
SNOOZE mode	Isms	fıн = 32 MHz	<u>z</u>			0.93		mA
sequencer operating current	Notes 1, 10	fiL = 32.768	kHz			0.97		μΑ
SNOOZE operating current	ISNOZNote 1	fıн=32 MHz	ADC to be in use	The ADC is shifting from the STOP mode to the SNOOZE mode. Note 11		0.5	0.7	mA
				The ADC is operating in the low-voltage mode. AVREFP = VDD = 3.0 V		0.9	1.4	
			Simplified S	PI (CSI)/UART to be in use		0.6	0.79	mA
			SMSNote 13			1.4		mA
Low-speed peripheral clock supply current	ISXP Notes 1, 12	RTCLPC = ()			0.22		μΑ
Operating current of the true random number generator	ITRNG Note 1					1.1		mA

(Notes and Remarks are listed on the next page.)

- Note 1. This current flows into VDD.
- Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, and high-speed system clock are stopped.
- Note 3. This current flows into the realtime clock (RTC). It does not include the operating current of the low-speed on-chip oscillator or the XT1 oscillator. The supply current of the RL78 microcontrollers is the sum of either IDD1 or IDD2, and IRTC, when the realtime clock is operating or in the HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be included in the supply current. IDD2 in the subsystem clock operation mode includes the operating current of the realtime clock.
- Note 4. This current only flows to the 32-bit interval timer. It does not include the operating current of the low-speed on-chip oscillator or the XT1 oscillator. The supply current of the RL78 microcontrollers is the sum of either IDD1 or IDD2, and IIT, when the 32-bit interval timer is operating or in the HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be included in the supply current.
- Note 5. This current only flows to the watchdog timer. It includes the operating current of the low-speed on-chip oscillator. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is operating.
- Note 6. This current only flows to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is operating or in the HALT mode.
- Note 7. This current only flows to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- Note 8. This current only flows during self-programming.
- **Note 9.** This current only flows while the data flash memory is being rewritten.
- Note 10. This current only flows into the SNOOZE mode sequencer. Note that the operating current of the low-speed on-chip oscillator and the XT1 oscillator are not included. The supply current of the RL78 microcontrollers is the sum of either IDD1 or IDD2, and ISMS, when the SNOOZE mode sequencer is operating or in the HALT mode.
- Note 11. For shift time to the SNOOZE mode, see 20.3.3 SNOOZE mode in the RL78/G22 User's Manual.
- **Note 12.** This current is added to the supply current in the HALT mode when the setting of RTCLPC is 0 in the STOP mode, or when the setting of RTCLPC is 0 with the subsystem clock X (fsx) selected as the CPU clock, while the subsystem clock X (fsx) is oscillating.
- **Note 13.** The listed values apply when the SNOOZE mode sequencer is in normal operation equivalent to IDD1. They do not include the current flowing into the peripheral functions other than the SNOOZE mode sequencer.
- Remark 1. fll: Low-speed on-chip oscillator clock frequency
- Remark 2. fsx: Subsystem clock X frequency
- Remark 3. fclk: CPU/peripheral hardware clock frequency
- Remark 4. The typical value for the ambient operating temperature (TA) is +25°C unless otherwise specified.

2.4 AC Characteristics

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Item Symbol Conditions					Тур.	Max.	Unit
Instruction cycle	Tcy	Main system clock		1.8 V ≤ VDD ≤ 5.5 V	0.03125		1	μs
(minimum instruction execution time)		(fMAIN) operation	(high-speed main) mode	1.6 V ≤ VDD ≤ 1.8 V	0.25		1	μs
			LS	1.8 V ≤ VDD ≤ 5.5 V	0.04167		1 1 1 1 1 31.3 1 1 20.0 4.0 38.4 16 8 4 2 16 8 4 2	μs
			(low-speed main) mode	1.6 V ≤ VDD ≤ 1.8 V	0.25		1	μs
			LP (low-power main) mode	1.6 V ≤ VDD ≤ 5.5 V	0.5		1	μs
		Subsystem clock (f	SUB) operation	1.6 V ≤ VDD ≤ 5.5 V	26.041	30.5	31.3	μs
		In the self-programming mode	HS (high-speed main) mode	1.8 V ≤ VDD ≤ 5.5 V	0.03125		1	μs
			LS (low-speed main) mode	1.8 V ≤ VDD ≤ 5.5 V	0.04167		1	μs
External system clock	fEX	1.8 V ≤ VDD ≤ 5.5 \	/	-	1.0		20.0	MHz
frequency		1.6 V ≤ VDD < 1.8 V	/		1.0		4.0	MHz
	fexs				32		38.4	kHz
External system clock	texH,	1.8 V ≤ VDD ≤ 5.5 \	/		15			ns
input high-level width, low-level width	texL	1.6 V ≤ VDD < 1.8 V	/		120			ns
	texhs, texhs				13.7			μs
TI00 to TI07 input high-level width, low-level width	tтін, tтіL				1/fмск + 10			nsNote
TO00 to TO07 output	fтo	HS (high-speed ma		4.0 V ≤ VDD ≤ 5.5 V			16	MHz
frequency		LS (low-speed mai	n) mode	2.7 V ≤ V _{DD} < 4.0 V			8	MHz
				1.8 V ≤ VDD < 2.7 V			4	MHz
				1.6 V ≤ VDD < 1.8 V			2	MHz
		LP (low-power mai	n) mode	1.6 V ≤ VDD ≤ 5.5 V			2	MHz
PCLBUZ0, PCLBUZ1	fPCL	HS (high-speed ma		4.0 V ≤ VDD ≤ 5.5 V			16	MHz
output frequency		LS (low-speed mai	n) mode	2.7 V ≤ V _{DD} < 4.0 V			8	MHz
				1.8 V ≤ VDD < 2.7 V			4	MHz
				1.6 V ≤ V _{DD} < 1.8 V			2	MHz
		LP (low-power mai	n) mode	1.6 V ≤ VDD < 1.8 V			2	MHz
Interrupt input high-level width, low-level width	finth, fintl	INTP0 to INTP6, IN	ITP8, INTP9	1.6 V ≤ VDD ≤ 5.5 V	1			μs
Key interrupt input low-	fkrh,	KR0 to KR5		1.8 V ≤ VDD ≤ 5.5 V	250			ns
level width	fkrl			1.6 V ≤ V _{DD} < 1.8 V	1			μs
RESET low-level width	fRSL			•	10		İ	μs

Remark fMCK: Timer array unit operating clock frequency

To set this operating clock, use the CKSmn0 and CKSmn1 bits of the timer mode register mn (TMRmn).

m: Unit number (m = 0), n: Channel number (n = 0 to 3)

- Minimum Instruction Execution Time during Main System Clock Operation
- (a) TCY vs VDD in HS (high-speed main) mode

(b) Tcy vs VDD in LS (low-speed main) mode

(c) Tcy vs VDD in LP (low-power main) mode

(d) AC Timing Test Points

(e) External System Clock Timing

(f) TI/TO Timing

(g) Interrupt Request Input Timing

(h) Key Interrupt Input Timing

(i) RESET Input Timing

RL78/G22 2. Electrical Characteristics

2.5 Characteristics of the Peripheral Functions

AC Timing Test Points

2.5.1 Serial array unit

(1) In UART communications with devices operating at same voltage levels

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Symbol	Conditions	HS (High-Speed Main) Mode		LS (Low-Speed Main) Mode		LP (Low-Power Main) Mode		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
Transfer rate		1.6 V ≤ VDD ≤ 5.5 V		fмск/6		fмск/6		fmck/6	bps
Note 1		Theoretical value of the maximum transfer rate fMCK = fCLKNote 2		5.3		4		0.33	Mbps

Note 1. The transfer rate in the SNOOZE mode is within the range from 4800 to 9600 bps.

Note 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are as follows.

HS (high-speed main) mode: 32 MHz (1.8 V ≤ VDD ≤ 5.5 V)

 $4 \text{ MHz} (1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V})$

LS (low-speed main) mode: 24 MHz (1.8 V ≤ VDD ≤ 5.5 V)

4 MHz $(1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V})$

LP (low-power main) mode: 2 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(a) Connection in the UART communications with devices operating at same voltage levels

(b) Bit width in the UART communications when interfacing devices operate at the same voltage level (reference)

Remark 1. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)

Remark 2. fmck: Serial array unit operation clock frequency

To set this operating clock, set the CKSmn bit in the serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01, 03, 10, 11)

(2) In simplified SPI (CSI) communications in the master mode with devices operating at same voltage levels with the internal SCKp clock (the ratings below are only applicable to CSI00)

 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Symbol	Conditions		HS (High-Speed Main) Mode		LS (Low-Speed Main) Mode		LP (Low-Power Main) Mode		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp cycle time	tKCY1	tKCY1 ≥ 2/fCLK	CY1 ≥ 2/fCLK 4.0 V ≤ VDD ≤ 5.5 V			83.3		1000		ns
			2.7 V ≤ VDD ≤ 5.5 V	83.3		125		1000		ns
SCKp high-/ low-level width	tKH1, tKL1	4.0 V ≤ VDD ≤	5.5 V	tkcy1/2 - 7		tKCY1/2 - 10		tkcy1/2 - 50		ns
		2.7 V ≤ VDD ≤	5.5 V	tkcy1/2 - 10		tKCY1/2 - 15		tkcy1/2 - 50		ns
SIp setup time	tsik1	4.0 V ≤ VDD ≤	5.5 V	23		33		110		ns
(to SCKp↑)Note 1		2.7 V ≤ VDD ≤	5.5 V	33		50		110		ns
SIp hold time (from SCKp↑) Note 1	tksi1	2.7 V ≤ VDD ≤	.7 V ≤ VDD ≤ 5.5 V			10		10		ns
Delay time from SCKp↓ to SOp outputNote 2	tKSO1	C = 20 pFNote	C = 20 pFNote 3		10		10		10	ns

- Note 1. The setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the SIp setup time becomes "to SCKp↓" and that for the SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **Note 3.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using the port input mode register g (PIMg) and the port output mode register g (POMg).
- Remark 1. The listed times are only valid when the peripheral I/O redirect function of CSI00 is not in use.
- Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 1)
- Remark 3. fmck: Serial array unit operation clock frequency

To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00)

(3) In simplified SPI (CSI) communications in the master mode with devices operating at same voltage levels with the internal SCKp clock

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Symbol	(HS (High-Spee Mod	d Main)	LS (Low-Spee Mod		LP (Low-Powe Mod	Unit		
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp cycle time	tKCY1	tkcy1 ≥ 4/fclk	2.7 V ≤ VDD ≤ 5.5 V	125		166		2000		ns
			2.4 V ≤ VDD ≤ 5.5 V	250		250		2000		ns
			1.8 V ≤ VDD ≤ 5.5 V	500		500		2000		ns
			1.6 V ≤ VDD ≤ 5.5 V	1000		1000		2000		ns
SCKp high-/ low-level width	tKH1, tKL1	4.0 V ≤ VDD ≤	5.5 V	tKCY1/2 - 12		tKCY1/2 - 21		tKCY1/2 - 50		ns
		2.7 V ≤ VDD ≤	5.5 V	tKCY1/2 - 18		tKCY1/2 - 25		tKCY1/2 - 50		ns
		2.4 V ≤ VDD ≤	5.5 V	tkcy1/2 - 38		tKCY1/2 - 38		tKCY1/2 - 50		ns
		1.8 V ≤ VDD ≤	5.5 V	tKCY1/2 - 50		tKCY1/2 - 50		tKCY1/2 - 50		ns
		1.6 V ≤ VDD ≤	5.5 V	tkcy1/2 - 100		tKCY1/2 - 100		tKCY1/2 - 100		ns
SIp setup time	tsık1	4.0 V ≤ V _{DD} ≤	5.5 V	44		54		110		ns
(to SCKp↑)Note 1		2.7 V ≤ VDD ≤	5.5 V	44		54		110		ns
		2.4 V ≤ V _{DD} ≤	5.5 V	75		75		110		ns
		1.8 V ≤ VDD ≤	5.5 V	110		110		110		ns
		1.6 V ≤ V _{DD} ≤	5.5 V	220		220		220		ns
SIp hold time (from SCKp↑) Note 1	tksi1	1.6 V ≤ VDD ≤	5.5 V	19		19		19		ns
Delay time from SCKp↓ to SOp outputNote 2	tKSO1	1.6 V ≤ V _{DD} ≤ C = 30 pF ^{Note}			25		25		25	ns

- Note 1. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the SIp setup time becomes "to SCKp↓" and that for the SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **Note 3.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using the port input mode register g (PIMg) and the port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3), g: PIM and POM numbers (g = 0, 1, 5, 7)
- Remark 2. fmck: Serial array unit operation clock frequency

 To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn).

 m: Unit number, n: Channel number (mn = 00, 01, 11)

(4) In simplified SPI (CSI) communications in the slave mode with devices operating at same voltage levels with the SCKp external clock

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Item	Symbol	Conditi	ons	HS (High-Speed Main) Mode		LS (Low-Speed Main) Mode		LP (Low-Power Main) Mode		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp cycle time	tKCY2	4.0 V ≤ VDD ≤ 5.5 V	20 MHz < fmck	8/fмск		8/fmck		_		ns
Note 4			fMCK ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		2.7 V ≤ VDD ≤ 5.5 V	16 MHz < fmck	8/fмск		8/fмск		_		ns
			fмcк ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		2.4 V ≤ VDD ≤ 5.5 V		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		1.8 V ≤ VDD ≤ 5.5 V		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		1.6 V ≤ VDD ≤ 5.5 V		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/	tKH2,	4.0 V ≤ VDD ≤ 5.5 V		tkcy2/2 - 7		tkcy2/2 - 7		tkcy2/2 - 7		ns
low-level width	tKL2	2.7 V ≤ VDD ≤ 5.5 V		tkcy2/2 - 8		tkcy2/2 - 8		tkcy2/2 - 8		ns
		1.8 V ≤ VDD ≤ 5.5 V		tkcy2/2 - 18		tKCY2/2 - 18		tKCY2/2 - 18		ns
		1.6 V ≤ VDD ≤ 5.5 V		tkcy2/2 - 66		tKCY2/2 - 66		tксү2/2 - 66		ns

(Notes, Caution, and Remarks are listed on the next page.)

(4) In simplified SPI (CSI) communications in the slave mode with devices operating at same voltage levels with the SCKp external clock

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Item	Symbol	ool Conditions		(High-Sp	IS eed Main) ode	LS (Low-Speed Main) Mode		LP (Low-Power Main) Mode		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
SIp setup time (to SCKp↑)Note 1	tsık2	2.7 V ≤ VD	D≤5.5 V	1/fмcк + 20		1/fмск + 30		1/fмск + 30		ns
		1.8 V ≤ VD	D ≤ 5.5 V	1/fмcк + 30		1/fмcк + 30		1/fмcк + 30		ns
		1.6 V ≤ VD	D ≤ 5.5 V	1/fмcк + 40		1/fмск + 40		1/fмcк + 40		ns
SIp hold time (from SCKp↑)Note 1	tKSI2	1.8 V ≤ VD	D ≤ 5.5 V	1/fмcк + 31		1/fмск + 31		1/fмск + 31		ns
		1.6 V ≤ VD	D ≤ 5.5 V	1/fмcк + 250		1/fмск + 250		1/fмск + 250		ns
Delay time from SCKp↓ to SOp output	tKSO2	C = 30 pF Note 3	2.7 V ≤ VDD ≤ 5.5 V		2/fмcк + 44		2/fмск + 110		2/fмск + 110	ns
Note 2			2.4 V ≤ VDD ≤ 5.5 V		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			1.8 V ≤ VDD ≤ 5.5 V		2/fмcк + 110		2/fмcк + 110		2/fмcк + 110	ns
			1.6 V ≤ VDD ≤ 5.5 V		2/fмcк + 220		2/fмcк + 220		2/fмcк + 220	ns

- Note 1. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the SIp setup time becomes "to SCKp↓" and that for the SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. C is the load capacitance of the SOp output line.
- Note 4. Transfer rate in the SNOOZE mode is 1 Mbps at the maximum.
- Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using the port input mode register g (PIMg) and the port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3), g: PIM and POM numbers (g = 0, 1, 5, 7)
- Remark 2. fmck: Serial array unit operation clock frequency

To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01, 03, 10, 11)

(a) Connection in the simplified SPI (CSI) communications with devices operating at same voltage levels

(b) Timing of serial transfer in the simplified SPI (CSI) communications with devices operating at same voltage levels when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1

(c) Timing of serial transfer in the simplified SPI (CSI) communications with devices operating at same voltage levels when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0

Remark 1. p: CSI number (p = 00, 01, 11, 20, 21)

Remark 2. m: Unit number, n: Channel number (mn = 00, 01, 03, 10, 11)

(5) In simplified I²C communications with devices operating at same voltage levels

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

(1/2)

Item	Symbol	Conditions	HS (High-Speed Main) Mode		LS (Low-Speed Main) Mode		LP (Low-Power Main) Mode		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
SCLr clock frequency	fscl	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω		1000 Note 1		1000 Note 1		400Note 1	kHz
		1.8 V ≤ VDD ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ		400Note 1		400Note 1		400Note 1	kHz
		1.8 V ≤ V _{DD} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ		300Note 1		300Note 1		300Note 1	kHz
		1.6 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ		250Note 1		250Note 1		250Note 1	kHz
Hold time when SCLr is low	tLOW	2.7 V \leq V _{DD} \leq 5.5 V, C _b = 50 pF, R _b = 2.7 kΩ	475		475		1150		ns
		1.8 V ≤ VDD ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ	1150		1150		1150		ns
		1.8 V ≤ V _{DD} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		1.6 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	1850		1850		1850		ns
Hold time when SCLr is high	tHIGH	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	475		475		1150		ns
		1.8 V ≤ VDD ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ	1150		1150		1150		ns
		1.8 V ≤ V _{DD} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		1.6 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	1850		1850		1850		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(5) In simplified I²C communications with devices operating at same voltage levels

$$(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$$

(2/2)

Item	Symbol	Conditions	HS (High-Speed Main) Mode		LS (Low-Speed Main) Mode		LP (Low-Power Main) Mode		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
Data setup time (reception)	tsu:dat	2.7 V \leq VDD \leq 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	1/fMCK + 85 Note 2		1/fMCK + 85 Note 2		1/fMCK + 145 Note 2		ns
		1.8 V ≤ V _{DD} ≤ 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1/fMCK + 145 Note 2		1/fMCK + 145 Note 2		1/fMCK + 145 Note 2		ns
		1.8 V ≤ V _{DD} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1/fMCK + 230 Note 2		1/fMCK + 230 Note 2		1/fMCK + 230 Note 2		ns
		1.6 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	1/fMCK + 290 Note 2		1/fMCK + 290 Note 2		1/fMCK + 290 Note 2		ns
Data hold time (transmission)	thd:dat	$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	0	305	0	305	0	305	ns
		1.8 V \leq VDD \leq 5.5 V, Cb = 100 pF, Rb = 3 kΩ	0	355	0	355	0	355	ns
		1.8 V \leq VDD $<$ 2.7 V, Cb = 100 pF, Rb = 5 kΩ	0	405	0	405	0	405	ns
		1.6 V \leq VDD $<$ 1.8 V, Cb = 100 pF, Rb = 5 kΩ	0	405	0	405	0	405	ns

Note 1. The listed times must be no greater than fMCK/4.

Caution Select the normal input buffer and the N-ch open drain output [withstand voltage of VDD] mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Remarks are listed on the next page.)

Note 2. Set fMCK so that it will not exceed the hold time when SCLr is low or high.

(a) Connection in the simplified I²C communications with devices operating at same voltage levels

(b) Timing of serial transfer in the simplified I2C communications with devices operating at same voltage levels

Remark 1. $Rb[\Omega]$: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance

Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 21), g: PIM number (g = 0, 1, 3, 7), h: POM number (g = 1, 5, 7)

Remark 3. fMCK: Serial array unit operation clock frequency

To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01, 03, 10, 11)

(6) In UART communications with devices operating at different voltage levels (1.8 V, 2.5 V, 3 V)

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Item	Item Symbol		Conditions		HS (High-Speed Main) Mode		LS (Low-Speed Main) Mode		LP (Low-Power Main) Mode		Unit
					Min.	Max.	Min.	Max.	Min.	Max.	
Transfer rate		Reception		0 V ≤ VDD ≤ 5.5 V, 7 V ≤ Vb ≤ 4.0 V		fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
				Theoretical value of the maximum transfer rate fMCK = fCLKNote 3		5.3		4		0.33	Mbps
				7 V ≤ VDD < 4.0 V, 3 V ≤ Vb ≤ 2.7 V		fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
				Theoretical value of the maximum transfer rate fMCK = fCLKNote 3		5.3		4		0.33	Mbps
			1.8 V \leq VDD $<$ 3.3 1.6 V \leq Vb \leq 2.0 V Theoretical val the maximum t rate fMCK = fCLKNot			fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
						5.3		4		0.33	Mbps

- **Note 1.** Transfer rate in the SNOOZE mode is within the range from 4800 to 9600 bps.
- **Note 2.** Use this rate with $VDD \ge Vb$.
- Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 32 MHz (1.8 V ≤ VDD ≤ 5.5 V)

 $4 \text{ MHz} (1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V})$

LS (low-speed main) mode: 24 MHz (1.8 V \leq VDD \leq 5.5 V)

4 MHz $(1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V})$

LP (low-power main) mode: 2 MHz (1.6 V \leq VDD \leq 5.5 V)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output [withstand voltage of VDD] mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
- Remark 3. fmck: Serial array unit operation clock frequency

To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01)

Remark 4. Communications by using UART2 with devices operating at different voltage levels are not possible when the setting of bit 1 (PIOR1) of the peripheral I/O redirection register (PIOR) is 1.

(6) In UART communications with devices operating at different voltage levels (1.8 V, 2.5 V, 3 V)

RL78/G22

$$(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$$
 (2/2)

Item	Symbol	Conditions		HS (High-Speed Main) Mode		LS (Low-Speed Main) Mode		LP (Low-Power Main) Mode		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
Transfer rate		Transmission	4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $Cb = 50 pF$, $Rb = 1.4 k\Omega$, $Vb = 2.7 V$		2.8Note 2		2.8Note 2		2.8Note 2	Mbps
			2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate $Cb = 50 \text{ pF}, \\ Rb = 2.7 \text{ k}\Omega, \\ Vb = 2.3 \text{ V}$		1.2Note 4		1.2Note 4		1.2Note 4	Mbps
			1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate $Cb = 50 pF$, $Rb = 5.5 k\Omega$, $Vb = 1.6 V$		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$, $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$

This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 2. This rate is calculated as an example when the conditions described in the "Conditions" column are met. See **Note 1** above to calculate the maximum transfer rate under conditions of the customer.

(Notes 3 to 7 and Caution are listed on the next page.)

Note 3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$

$$\begin{array}{c} 1 \\ \hline \\ \text{{-Cb}} \times \text{{Rb}} \times \text{{In}} \ (1 - \frac{2.0}{V_b} \)) \times 3 \\ \\ \hline \\ \frac{1}{\text{{Transfer rate}} \times 2} - \ \{ \text{{-Cb}} \times \text{{Rb}} \times \text{{In}} \ (1 - \frac{2.0}{V_b} \)) \} \\ \\ \text{{Baud rate error (theoretical value)}} = \frac{1}{\text{{Transfer rate}} \times 2} - \{ \text{{-Cb}} \times \text{{Rb}} \times \text{{In}} \ (1 - \frac{2.0}{V_b} \)) \} \\ \\ \times 100 \ [\%] \\ \end{array}$$

This value is the theoretical value of the relative difference between the transmission and reception sides.

($\frac{1}{\text{Transfer rate}}$) × Number of transferred bits

- **Note 4.** This rate is calculated as an example when the conditions described in the "Conditions" column are met. See **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- **Note 5.** Use this rate with $VDD \ge Vb$.
- Note 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 1.8 V \leq VDD < 3.3 V, 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$

$$= \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{\times 100 \, [\%]}$$
Baud rate error (theoretical value) =
$$\frac{1}{\left(\frac{1}{\text{Transfer rate}}\right) \times \text{Number of transferred bits}}$$

This value is the theoretical value of the relative difference between the transmission and reception sides.

- **Note 7.** This rate is calculated as an example when the conditions described in the "Conditions" column are met. See **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output [withstand voltage of VDD] mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(a) In UART communications with devices operating at different voltage levels

(b) Bit width in the UART communications with devices operating at different voltage levels (reference)

Remark 1. Rb[Ω]: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)

Remark 3. fMCK: Serial array unit operation clock frequency

To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01)

Remark 4. Communications by using UART2 with devices operating at different voltage levels are not possible when the setting of bit 1 (PIOR1) of the peripheral I/O redirection register (PIOR) is 1.

(7) In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (2.5 V or 3 V) with the internal SCKp clock (the ratings below are only applicable to CSI00)

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Item	Symbol		Conditions	HS (High-Spee Mod	ed Main)	LS (Low-Spee Mod	ed Main)	LF (Low-Pow Mod	er Main)	Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp cycle time	tKCY1	tĸcy1 ≥ 2/fc∟ĸ	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 20 pF, $Rb = 1.4 \text{ k}\Omega$	200		200		2300		ns
			$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 20 pF, $Rb = 2.7 \text{ k}\Omega$	300		300		2300		ns
SCKp high-level width	tкн1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ $C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}\Omega$		tKCY1/2 - 50		tKCY1/2 - 50		tKCY1/2 - 50		ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 20 \text{ pF}, Rb = 2.7 \text{ k}\Omega$		tkcy1/2 - 120		tKCY1/2 - 120		tKCY1/2 - 120		ns
SCKp low-level tkL1 width		$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}Ω$		tKCY1/2 - 7		tKCY1/2 - 7		tKCY1/2 - 50		ns
		2.7 V ≤ V _{DD} · 2.3 V ≤ V _b ≤ C _b = 20 pF, F	tkcy1/2 - 10		tKCY1/2 - 10		tKCY1/2 - 50		ns	
SIp setup time (to SCKp↑)Note 1	tsiK1	4.0 V ≤ VDD: 2.7 V ≤ Vb ≤ Cb = 20 pF, F	4.0 V,	58		58		479		ns
		2.7 V ≤ V _{DD} · 2.3 V ≤ V _b ≤ C _b = 20 pF, F	2.7 V,	121		121		479		ns
SIp hold time (from SCKp↑)Note 1	tKSI1	4.0 V ≤ VDD: 2.7 V ≤ Vb ≤ Cb = 20 pF, F	4.0 V,	10		10		10		ns
		2.7 V ≤ V _{DD} · 2.3 V ≤ V _b ≤ C _b = 20 pF, F	2.7 V,	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note} 1	tKSO1	4.0 V ≤ V _{DD} : 2.7 V ≤ V _b ≤ C _b = 20 pF, F	4.0 V,		60		60		60	ns
		2.7 V ≤ V _{DD} · 2.3 V ≤ V _b ≤ C _b = 20 pF, F	2.7 V,		130		130		130	ns

(Notes, Caution, and Remarks are listed on the next page.)

(7) In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (2.5 V or 3 V) with the internal SCKp clock (the ratings below are only applicable to CSI00)

$$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$$

(2/2)

Item	Symbol	Conditions	(High-Spe	S eed Main) ode	L (Low-Spe Mo	ed Main)	_	P wer Main) ode	Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
SIp setup time (to SCKp↓)Note 2	tsiK1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}Ω$	23		23		110		ns
		2.7 V \leq VDD $<$ 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 20 pF, Rb = 2.7 k Ω	33		33		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tKSI1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}Ω$	10		10		10		ns
		2.7 V \leq VDD $<$ 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 20 pF, Rb = 2.7 k Ω	10		10		10		ns
Delay time from SCKp↑ to SOp outputNote 2	tKSO1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}Ω$		10		10		10	ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		10		10		10	ns

- Note 1. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- Note 2. This setting applies when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output [withstand voltage of VDD] mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 1)
- Remark 3. fMCK: Serial array unit operation clock frequency

To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn= 00)

Remark 4. The listed times are only valid when the peripheral I/O redirect function of CSI00 is not in use.

(8) In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V) with the internal SCKp clock

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/3)

				HS	3	LS	1	LF)	
Item	Symbol		Conditions	(High-Spe		(Low-Spee		(Low-Pow Mod	,	Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp cycle time	tKCY1	tkCY1 ≥ 4/fCLK	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 30 pF, $Rb = 1.4 \text{ k}\Omega$	300		300		2300		ns
			$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, $Rb = 2.7 \text{ k}\Omega$	500		500		2300		ns
			$\begin{array}{l} 1.8 \ V \leq V DD < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\mbox{Note}}, \\ C_b = 30 \ pF, \\ R_b = 5.5 \ k\Omega \end{array}$	1150		1150		2300		ns
SCKp high-level width	tKH1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 30 pF, Rb = 1.4 kΩ		tKCY1/2 - 75		tKCY1/2 - 75		tKCY1/2 - 75		ns
		2.3 V ≤ Vt	$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ $1.8 \text{ V} \le \text{VDD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			tkcy1/2 - 170		tKCY1/2 - 170		ns
		1.6 V ≤ Vt				tKCY1/2 - 458		tKCY1/2 - 458		ns
SCKp low-level width	tKL1	2.7 V ≤ Vt	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			tKCY1/2 - 12		tKCY1/2 - 50		ns
		2.3 V ≤ Vt	DD < 4.0 V, o ≤ 2.7 V, F, Rb = 2.7 kΩ	tKCY1/2 - 18		tKCY1/2 - 18		tKCY1/2 - 50		ns
		1.6 V ≤ Vt	DD < 3.3 V, D ≤ 2.0 V Note , F, Rb = 5.5 kΩ	tKCY1/2 - 50		tKCY1/2 - 50		tKCY1/2 - 50		ns

Note Use this setting with $VDD \ge Vb$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output [withstand voltage of VDD] mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

(8) In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V) with the internal SCKp clock

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/3)

Item	Symbol	Conditions	(High-Sp	IS eed Main) ode	LS (Low-Speed Main) Mode		LP (Low-Power Main) Mode		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
SIp setup time (to SCKp↑)Note 1	tsik1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 30 pF, Rb = 1.4 kΩ	81		81		479		ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	177		177		479		ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{VDD} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ VNote 2}, \\ \text{Cb} = 30 \text{ pF}, \text{Rb} = 5.5 \text{ k}\Omega \end{array}$	479		479		479		ns
SIp hold time (from SCKp↑)Note 1	tKSI1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 30 pF, Rb = 1.4 kΩ	19		19		19		ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	19		19		19		ns
		$\begin{array}{c} 1.8 \text{ V} \leq \text{VDD} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ VNote 2}, \\ \text{Cb} = 30 \text{ pF}, \text{Rb} = 5.5 \text{ k}\Omega \end{array}$	19		19		19		ns
Delay time from SCKp↓ to SOp outputNote 1	tKSO1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}Ω$		100		100		100	ns
		2.7 V \leq VDD $<$ 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 30 pF, Rb = 2.7 kΩ		195		195		195	ns
		1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 VNote 2, Cb = 30 pF, Rb = 5.5 kΩ		483		483		483	ns

Note 1. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output [withstand voltage of VDD] mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

Note 2. Use this setting with $VDD \ge Vb$.

(8) In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V) with the internal SCKp clock

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(3/3)

Item	Symbol	Conditions	(High-Spe	IS eed Main) ode	LS (Low-Speed Main) Mode		LP (Low-Power Main) Mode		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
SIp setup time (to SCKp↓)Note 1	tsiK1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 30 pF, Rb = 1.4 kΩ	44		44		110		ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 30 \text{ pF}, Rb = 2.7 \text{ k}\Omega$	44		44		110		ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{VDD} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V} \\ \text{Cb} = 30 \text{ pF}, \text{Rb} = 5.5 \text{ k} \Omega \end{array}$	110		110		110		ns
SIp hold time (from SCKp↓)Note 1	tKSI1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$	19		19		19		ns
		2.7 V \leq VDD $<$ 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 30 pF, Rb = 2.7 kΩ	19		19		19		ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{VDD} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ VNote 2}, \\ \text{Cb} = 30 \text{ pF}, \text{Rb} = 5.5 \text{ k}\Omega \end{array}$	19		19		19		ns
Delay time from SCKp↑ to SOp outputNote 1	tKSO1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$		25		25		25	ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		25		25		25	ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{VDD} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V} \\ \text{Cb} = 30 \text{ pF}, \text{Rb} = 5.5 \text{ k} \Omega \end{array}$		25		25		25	ns

Note 1. This setting applies when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output [withstand voltage of VDD] mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Note 2. Use this setting with $VDD \ge V_b$.

(a) Connection in the simplified SPI (CSI) communications with devices operating at different voltage levels

- Remark 1. $Rb[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 20), m: Unit number, n: Channel number (mn = 00, 01, 03, 10, 11), g: PIM and POM number (g = 1, 3, 7)
- Remark 3. fmck: Serial array unit operation clock frequency

To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00)

- Remark 4. Communications by using CSI01 of 48-pin products, and CSI11 and CSI21 with devices operating at different voltage levels are not possible. Use other CSI channels to handle such communications.
- (b) Timing of serial transfer in the simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1

(c) Timing of serial transfer in the simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0

Remark 1. p: CSI number (p = 00, 01, 20), m: Unit number, n: Channel number (mn = 00, 01, 03, 10, 11), g: PIM and POM number (g = 1, 3, 7)

Remark 2. Communications by using CSI01 of 48-pin products, and CSI11 and CSI21 with devices operating at different voltage levels are not possible. Use other CSI channels to handle such communications.

(9) In simplified SPI (CSI) communications in the slave mode with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V) with the external SCKp clock

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Item	Symbol	Co	HS (High-Speed Main) Mode		LS (Low-Speed Main) Mode		LP (Low-Power Main) Mode		Unit	
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp	tKCY2	4.0 V ≤ VDD ≤ 5.5 V,	24 MHz < fmck	14/fмск		_		_		ns
cycle time		2.7 V ≤ Vb ≤ 4.0 V	20 MHz < fмcк ≤ 24 MHz	12/fмск		12/fмск		_		ns
Note 1			8 MHz < fмcк ≤ 20 MHz	10/fмск		10/fмск		_		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		8/fмск		_		ns
			fмcк ≤ 4 MHz	6/fмск		6/fмск		10/fмск		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	24 MHz < fmck	20/fмск		_		_		ns
			20 MHz < fмcк ≤ 24 MHz	16/fмск		16/fмск		_		ns
			16 MHz < fмcк ≤ 20 MHz	14/fмск		14/fмск		_		ns
			8 MHz < fмcк ≤ 16 MHz	12/fмск		12/fмск		_		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		8/fмск		_		ns
			fMCK ≤ 4 MHz	6/fмск		6/fмск		10/fмск		ns
		1.8 V ≤ V _{DD} < 3.3 V,	24 MHz < fmck	48/fмcк		_		_		ns
		1.6 V ≤ Vb ≤ 2.0 V Note 2	20 MHz < fмcк ≤ 24 MHz	36/fмск		36/fмск		_		ns
			16 MHz < fмcк ≤ 20 MHz	32/fмck		32/fмcк		_		ns
			8 MHz < fMCK ≤ 16 MHz	26/fмск		26/fмск		_		ns
			4 MHz < fMCK ≤ 8 MHz	16/fмск		16/fмск		_		ns
			fMCK ≤ 4 MHz	10/fмск		10/fмск		10/fмск		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(9) In simplified SPI (CSI) communications in the slave mode with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V) with the external SCKp clock

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Item	Symbol	Symbol Conditions		IS eed Main) ode	(Low-Spe	S eed Main) ode		P wer Main) ode	Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
SCKp high-/low-level width	tKH2, tKL2	4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V	tксү2/2 - 12		tkcy2/2 - 12		tkcy2/2 - 50		ns
		2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V	tксү2/2 - 18		tkcy2/2 - 18		tkcy2/2 - 50		ns
		1.8 V \leq VDD $<$ 3.3 V, 1.6 V \leq Vb \leq 2.0 VNote 2	tkcy2/2 - 50		tKCY2/2 - 50		tkcy2/2 - 50		ns
SIp setup time (to SCKp↑)Note 3	tsık2	4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V	1/fмск + 20		1/fмск + 20		1/fмск + 30		ns
		2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V	1/fмск + 20		1/fмск + 20		1/fмск + 30		ns
		1.8 V \leq VDD $<$ 3.3 V, 1.6 V \leq Vb \leq 2.0 VNote 2	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑)Note 3	tKSI2		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp outputNote 4	tKSO2	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 30 pF, Rb = 1.4 kΩ		2/fмск + 120		2/fмск + 120		2/fмск + 573	ns
		2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 30 pF, Rb = 2.7 kΩ		2/fмск + 214		2/fмск + 214		2/fмск + 573	ns
		1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 VNote 2, Cb = 30 pF, Rb = $5.5 \text{ k}\Omega$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

- Note 1. Transfer rate in the SNOOZE mode: 1 Mbps (max.)
- **Note 2.** Use this setting with $VDD \ge Vb$.
- Note 3. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" and SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output [withstand voltage of VDD] mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(a) Connection in the simplified SPI (CSI) communications with devices operating at different voltage levels

- Remark 1. $Rb[\Omega]$: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 20), m: Unit number, n: Channel number (mn = 00, 01, 03, 10, 11), g: PIM and POM number (g = 1, 3, 7)
- Remark 3. fmck: Serial array unit operation clock frequency

To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01, 03, 10, 11)

- **Remark 4.** Communications by using CSI01 of 48-pin products, and CSI11 and CSI21 with devices operating at different voltage levels are not possible. Use other CSI channels to handle such communications.
- (b) Timing of serial transfer in the simplified SPI (CSI) communications in the slave mode with devices operating at different voltage levels when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1

(c) Timing of serial transfer in the simplified SPI (CSI) communications in the slave mode with devices operating at different voltage levels when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0

Remark 1. p: CSI number (p = 00, 01, 20), m: Unit number, n: Channel number (mn = 00, 01, 03, 10, 11), g: PIM and POM number (g = 1, 3, 7)

Remark 2. Communications by using CSI01 of 48-pin products, and CSI11 and CSI21 with devices operating at different voltage levels are not possible. Use other CSI channels to handle such communications.

(10) Simplified I²C communications with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V)

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

ltem	Symbol	Conditions	(High-Sp	IS eed Main) ode	(Low-Spe	S eed Main) ode	(Low-Po	.P wer Main) ode	Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
SCLr clock frequency	fscl	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}Ω$		1000 Note 1		1000 Note 1		300 Note 1	kHz
		2.7 V \leq VDD $<$ 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 50 pF, Rb = 2.7 kΩ		1000 Note 1		1000 Note 1		300 Note 1	kHz
		$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 2.8 \text{ k}Ω$		400 Note 1		400 Note 1		300 Note 1	kHz
		2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 100 pF, Rb = 2.7 kΩ		400 Note 1		400 Note 1		300 Note 1	kHz
		1.8 V \leq VDD $<$ 3.3 V, 1.6 V \leq Vb \leq 2.0 VNote 2, Cb = 100 pF, Rb = 5.5 k Ω		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr is low	tLOW	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	475		475		1550		ns
		2.7 V \leq VDD $<$ 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 50 pF, Rb = 2.7 kΩ	475		475		1550		ns
		$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 100 pF, Rb = 2.8 kΩ	1150		1550		1550		ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1150		1550		1550		ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}_{b} \text{Ote 2}, \\ \text{Cb} = 100 \text{ pF}, \text{Rb} = 5.5 \text{ k}\Omega \end{array}$	1550		1550		1550		ns
Hold time when SCLr is high	thigh	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}Ω$	245		245		610		ns
		2.7 V \leq VDD $<$ 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 50 pF, Rb = 2.7 kΩ	200		200		610		ns
		$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 2.8 \text{ k}\Omega$	675		675		610		ns
		2.7 V \leq V _{DD} $<$ 4.0 V, 2.3 V \leq V _b \leq 2.7 V, C _b = 100 pF, R _b = 2.7 kΩ	600		600		610		ns
		1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note 2} , C _b = 100 pF, R _b = 5.5 kΩ	610		610		610		ns

(10) Simplified I²C communications with devices operating at different voltage levels (1.8 V, 2.5 V, and 3 V)

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Item	Symbol	Conditions	HS (High-Spee Mod	ed Main)	LS (Low-Spee Mod	ed Main)	LF (Low-Pow Mod	er Main)	Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
Data setup time (reception)	tsu:dat	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	1/fMCK + 135 Note 3		1/fMCK + 135 Note 3		1/fMCK + 190 Note 3		ns
		2.7 V \leq VDD $<$ 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 50 pF, Rb = 2.7 k Ω	1/fMCK + 135 Note 3		1/fMCK + 135 Note 3		1/fMCK + 190 Note 3		ns
		$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 2.8 \text{ k}Ω$	1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		ns
		2.7 V \leq VDD $<$ 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 100 pF, Rb = 2.7 k Ω	1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		ns
		1.8 V \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note 2} , C _b = 100 pF, R _b = 5.5 k Ω	1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		ns
Data hold time (transmission)	thd:dat	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$	0	305	0	305	0	305	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 50 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	0	305	0	305	0	305	ns
		$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 2.8 \text{ k}\Omega$	0	355	0	355	0	355	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	0	355	0	355	0	355	ns
		1.8 V \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _D \leq 2.0 V Note 2 , Cb = 100 pF, Rb = 5.5 kΩ	0	405	0	405	0	405	ns

Note 1. The listed times must be no greater than fMCK/4.

Caution Select the TTL input buffer and the N-ch open drain output [withstand voltage of VDD] mode for the SDAr pin and the N-ch open drain output [withstand voltage of VDD] mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Note 2. Use this setting with $VDD \ge Vb$.

Note 3. Set fMCK so that it will not exceed the hold time when SCLr is low or high.

(a) Connection in the I²C communications with devices operating at different voltage levels

(b) Timing of serial transfer in the simplified I²C communications with devices operating at different voltage levels

Remark 1. $Rb[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 01, 11, 20, 21), g: PIM and POM number (g = 0, 1, 3, 7), POM number (h = 1, 5, 7)

Remark 3. fMCK: Serial array unit operation clock frequency

To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01, 03, 10,11)

RL78/G22 2. Electrical Characteristics

2.5.2 Serial interface UARTA

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Transfer rate			200	0	153600	bps

Caution Select the normal input buffer for the RxDAn pin and the normal output mode for the TxDAn pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark n: Unit number (n = 0), g: PIM or POM number (g = 7)

2.5.3 Serial interface IICA

(1) I²C standard mode

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLA0 clock frequency	fscl	Standard mode: fc∟k ≥ 1 MHz	0		100	kHz
Setup time of restart condition	tsu:sta		4.7			μs
Hold timeNote 1	thd:sta		4.0			μs
Hold time when SCLA0 is low	tLOW		4.7			μs
Hold time when SCLA0 is high	tHIGH		4.0			μs
Data setup time (reception)	tsu:dat		250			ns
Data hold time (transmission)Note 2	thd:dat		0		3.45	μs
Setup time of stop condition	tsu:sto		4.0			μs
Bus-free time	tBUF		4.7			μs

- Note 1. The first clock pulse is generated after this period when the start or restart condition is detected.
- **Note 2.** The maximum value of thd:DAT applies to normal transfer. The clock stretching will be inserted on reception of an acknowledgment (ACK) signal.
- Caution The listed frequency and times apply even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1.
 In such cases, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of communication line capacitance (Cb) and communication line pull-up resistor (Rb) are as follows. $C_b = 400 \text{ pF}$, $R_b = 2.7 \text{ k}\Omega$

(2) I2C fast mode

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLA0 clock frequency	fSCL	Fast mode: fcLK ≥ 3.5 MHz 1.8 V ≤ VDD ≤ 5.5 V	0		400	kHz
Setup time of restart condition	tsu:sta	1.8 V ≤ VDD ≤ 5.5 V	0.6			μs
Hold timeNote 1	thd:sta	1.8 V ≤ VDD ≤ 5.5 V	0.6			μs
Hold time when SCLA0 is low	tLOW	1.8 V ≤ VDD ≤ 5.5 V	1.3			μs
Hold time when SCLA0 is high	tHIGH	1.8 V ≤ VDD ≤ 5.5 V	0.6			μs
Data setup time (reception)	tsu:dat	1.8 V ≤ VDD ≤ 5.5 V	100			ns
Data hold time (transmission)Note 2	thd:dat	1.8 V ≤ VDD ≤ 5.5 V	0		0.9	μs
Setup time of stop condition	tsu:sto	1.8 V ≤ VDD ≤ 5.5 V	0.6			μs
Bus-free time	tBUF	1.8 V ≤ VDD ≤ 5.5 V	1.3			μs

- Note 1. The first clock pulse is generated after this period when the start or restart condition is detected.
- **Note 2.** The maximum value of thd:DAT applies to normal transfer. The clock stretching will be inserted on reception of an acknowledgment (ACK) signal.
- Caution The values in the above table apply even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. In such cases, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of communication line capacitance (Cb) and communication line pull-up resistor (Rb) are as follows. $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

(3) I2C fast mode plus

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLA0 clock frequency	fscL	Fast mode plus: fcLK ≥ 10 MHz 2.7 V ≤ VDD ≤ 5.5 V	0		1000	kHz
Setup time of restart condition	tsu:sta	2.7 V ≤ VDD ≤ 5.5 V	0.26			μs
Hold timeNote 1	thd:sta	2.7 V ≤ VDD ≤ 5.5 V	0.26			μs
Hold time when SCLA0 is low	tLOW	2.7 V ≤ VDD ≤ 5.5 V	0.5			μs
Hold time when SCLA0 is high	tHIGH	2.7 V ≤ VDD ≤ 5.5 V	0.26			μs
Data setup time (reception)	tsu:dat	2.7 V ≤ VDD ≤ 5.5 V	50			ns
Data hold time (transmission)Note 2	thd:dat	2.7 V ≤ VDD ≤ 5.5 V	0		0.45	μs
Setup time of stop condition	tsu:sto	2.7 V ≤ VDD ≤ 5.5 V	0.26			μs
Bus-free time	tBUF	2.7 V ≤ VDD ≤ 5.5 V	0.5			μs

Note 1. The first clock pulse is generated after this period when the start or restart condition is detected.

Note 2. The maximum value of thd:DAT applies to normal transfer. The clock stretching will be inserted on reception of an acknowledgment (ACK) signal.

Caution The values in the above table apply even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. In such cases, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of communication line capacitance (Cb) and communication line pull-up resistor (Rb) are as follows. $C_b = 120 \text{ pF}, Rb = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0

2.6 Characteristics of the Analog Circuits

2.6.1 Characteristics of the A/D converter for TA = -40 to +85°C

Reference for the characteristics of the A/D converter

Reference Voltage Input Channel	Reference Voltage (+) = AVREFP Reference Voltage (-) = AVREFM	Reference Voltage (+) = VDD Reference Voltage (-) = Vss	Reference Voltage (+) = VBGR Reference Voltage (-) = AVREFM
ANI0 to ANI7	See 2.6.1 (1)	See 2.6.1 (3)	See 2.6.1 (4)
ANI16 to ANI19	See 2.6.1 (2)		
Internal reference voltage, temperature sensor output voltage, and TSCAP voltage of the CTSU	See 2.6.1 (1)		_

(1) Reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI7, internal reference voltage, temperature sensor output voltage, and TSCAP voltage of the CTSU

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, reference voltage (+) = AVREFP, reference voltage (-) = AVREFM = 0 V) (1/2)

Item	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
Resolution	RES			8		10	Bit
Overall errorNote 1	AINL	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V		1.2	±3.5	LSB
		AVREFP = V _{DD} Note 3	1.6 V ≤ AVREFP ≤ 5.5 VNote 4		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution conversion target: ANI2 to ANI7	3.6 V ≤ VDD ≤ 5.5 V	2.125		39	μs
			2.7 V ≤ VDD ≤ 5.5 V	3.1875		39	μs
			1.8 V ≤ VDD ≤ 5.5 V	17		39	μs
			1.6 V ≤ VDD ≤ 5.5 V	57		95	μs
		10-bit resolution conversion target: Internal reference temperature sensor output voltage, and TSCAP voltage of the CTSU	3.6 V ≤ VDD ≤ 5.5 V	2.375		39	μs
			2.7 V ≤ VDD ≤ 5.5 V	3.5625		39	μs
			1.8 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale errorNotes 1, 2	Ezs	10-bit resolution AVREFP = VDDNote 3	1.8 V ≤ AVREFP ≤ 5.5 V			±0.25	%FSR
			1.6 V ≤ AVREFP ≤ 5.5 VNote 4			±0.50	%FSR
Full-scale errorNotes 1, 2	EFS	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±0.25	%FSR
		AVREFP = V _{DD} Note 3	1.6 V ≤ AVREFP ≤ 5.5 VNote 4			±0.50	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±2.5	LSB
		AVREFP = VDDNote 3	1.6 V ≤ AVREFP ≤ 5.5 VNote 4			±5.0	LSB
Differential linearity errorNote 1	DLE	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±1.5	LSB
		AVREFP = VDDNote 3	1.6 V ≤ AVREFP ≤ 5.5 VNote 4			±2.0	LSB

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, reference voltage (+) = AVREFP, reference voltage (-) = AVREFM = 0 V) (2/2)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Analog input voltage	VAIN	ANI2 to ANI7	0		AVREFP	V
		Internal reference voltage (1.8 V ≤ VDD ≤ 5.5 V)		VBGRNote 5		
		Temperature sensor output voltage (1.8 V ≤ VDD ≤ 5.5 V)	\	/ _{TMPS25} Note	5	V
		TSCAP voltage of the CTSU (1.8 V ≤ VDD ≤ 5.5 V)		VTSCAP		V

- Note 1. This value does not include the quantization error (±1/2 LSB).
- **Note 2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- Note 3. When reference voltage (+) = VDD and reference voltage (-) = VSS, the maximum values are as follows.

 Overall error: Add ±10 LSB to the maximum value when VDD = AVREFP.

 Zero-scale/full-scale error: Add ±0.05%FSR to the maximum value when VDD = AVREFP.
 - Integral linearity error and differential linearity error: Add ±0.5 LSB to the maximum value when VDD = AVREFP.
- Note 4. The listed value applies when the settings of the maximum and minimum conversion time values are respectively 57 μs and 95 μs.
- Note 5. See 2.6.3 Characteristics of the temperature sensor and internal reference voltage.

(2) Reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI16 to ANI19

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, VSS = 0 V, reference voltage (+) = AVREFP, reference voltage (-) = AVREFM = 0 V)

Item	Symbol	С	Conditions		Тур.	Max.	Unit
Resolution	RES			8		10	Bit
Overall errorNote 1	AINL	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V		1.2	±5.0	LSB
		AVREFP = VDDNote 3	1.6 V ≤ AVREFP ≤ 5.5 V Note 4		1.2	±5.0	
Conversion time	tconv	10-bit resolution conversion target: ANI16 to ANI19	3.6 V ≤ VDD ≤ 5.5 V	2.125		39	μs
			2.7 V ≤ VDD ≤ 5.5 V	3.1875		39	μs
			1.8 V ≤ VDD ≤ 5.5 V	17		39	μs
			1.6 V ≤ VDD ≤ 5.5 V	57		95	
Zero-scale errorNotes 1, 2	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	1.8 V ≤ AVREFP ≤ 5.5 V			±0.35	%FSR
			1.6 V ≤ AVREFP ≤ 5.5 V Note 4			±0.60	
Full-scale errorNotes 1, 2	AVREFP = VDDNote 3	-	1.8 V ≤ AVREFP ≤ 5.5 V			±0.35	%FSR
		1.6 V ≤ AVREFP ≤ 5.5 V Note 4			±0.60		
Integral linearity errorNote 1	ILE	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±3.5	LSB
		AVREFP = VDDNote 3	1.6 V ≤ AVREFP ≤ 5.5 V Note 4			±6.0	
Differential linearity errorNote 1	DLE	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±2.0	LSB
		AVREFP = VDDNote 3	1.6 V ≤ AVREFP ≤ 5.5 V Note 4			±2.5	
Analog input voltage	VAIN	ANI16 to ANI19	•	0		AVREFP	V

- **Note 1.** This value does not include the quantization error (±1/2 LSB).
- Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **Note 3.** When AVREFP < VDD, the maximum values are as follows.
 - Overall error: Add ±4.0 LSB to the maximum value when VDD = AVREFP.
 - Zero-scale/full-scale error: Add ±0.20% FSR to the maximum value when VDD = AVREFP.
 - Integral linearity error/differential linearity error: Add ±2.0 LSB to the maximum value when VDD = AVREFP.
- Note 4. The listed value applies when the settings of the maximum and minimum conversion time values are respectively 57 μ s and 95 μ s.

(3) Reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = VSS (ADREFM = 0), conversion target: ANI0 to ANI7, and ANI16 to ANI19, internal reference voltageNote 5, temperature sensor output voltageNote 5, TSCAP voltage of the CTSU

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{ reference voltage (+)} = \text{VDD}, \text{ reference voltage (-)} = \text{Vss})$

Item	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
Resolution	RES			8		10	Bit
Overall errorNote 1	AINL	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V		1.2	±7.0	LSB
			1.6 V ≤ V _{DD} ≤ 5.5 V Note 3		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	3.6 V ≤ VDD ≤ 5.5 V	2.125		39	μs
		conversion target: ANI0 to ANI7,	2.7 V ≤ VDD ≤ 5.5 V	3.1875		39	μs
		ANI16 to ANI19	1.8 V ≤ VDD ≤ 5.5 V	17		39	μs
			1.6 V ≤ VDD ≤ 5.5 V	57		95	μs
		10-bit resolution	3.6 V ≤ VDD ≤ 5.5 V	2.375		39	μs
		conversion target: Internal reference voltage, temperature sensor output voltage, and TSCAP voltage of the CTSU	2.7 V ≤ VDD ≤ 5.5 V	3.5625		39	μs
	volt tem out TSc		1.8 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale errorNotes 1, 2	Ezs	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±0.60	%FSR
			1.6 V ≤ V _{DD} ≤ 5.5 V Note 3			±0.85	%FSR
Full-scale errorNotes 1, 2	EFS	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±0.60	%FSR
			1.6 V ≤ V _{DD} ≤ 5.5 V Note 3			±0.85	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±4.0	LSB
			1.6 V ≤ V _{DD} ≤ 5.5 VNote 3			±6.0	LSB
Differential linearity errorNote 1	DLE	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±2.0	LSB
			1.6 V ≤ V _{DD} ≤ 5.5 V ^{Note 3}			±2.5	LSB
Analog input voltage	VAIN	ANI0 to ANI7, ANI16	to ANI19	0		VDD	V
		Internal reference voltage (1.8 V ≤ VDD ≤ 5.5 V)			VBGRNote 4		
		Temperature sensor output voltage (1.8 V ≤ VDD ≤ 5.5 V)		V _{TMPS25} Note 4			V
		TSCAP voltage of the CTSU (1.8 V ≤ VDD ≤ 5.5 V)		VTSCAP			V

- **Note 1.** This value does not include the quantization error (±1/2 LSB).
- Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- Note 3. The listed value applies when the settings of the maximum and minimum conversion time values are respectively 57 μ s and 95 μ s.
- Note 4. See 2.6.3 Characteristics of the temperature sensor and internal reference voltage.
- Note 5. If the internal reference voltage or temperature sensor output voltage is to be A/D converted, VDD must be at least 1.8 V.

(4) Reference voltage (+) = VDD (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI0, ANI2 to ANI7, ANI16 to ANI19

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, VSS = 0 V, reference voltage (+) = VBGRNote 3, reference voltage (-) = AVREFMNote 4 = 0 V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES			8		Bit
Conversion time	tconv		17		39	μs
Zero-scale errorNotes 1, 2	Ezs				±0.60	%FSR
Integral linearity errorNote 1	ILE				±2.0	LSB
Differential linearity errorNote 1	DLE				±1.0	LSB
Analog input voltage	VAIN		0		VBGRNote 3	V

- Note 1. This value does not include the quantization error (±1/2 LSB).
- Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- Note 3. See 2.6.3 Characteristics of the temperature sensor and internal reference voltage.
- **Note 4.** When reference voltage (–) = Vss, the maximum values are as follows.
 - Zero-scale error: Add ±0.35%FSR to the maximum value when reference voltage (-) = AVREFM.
 - Integral linearity error: Add ±0.5 LSB to the maximum value when reference voltage (-) = AVREFM.
 - Differential linearity error: Add ±0.2 LSB to the maximum value when reference voltage (–) = AVREFM.

2.6.2 Characteristics of the A/D converter for TA = -40 to +105°C

Reference for the characteristics of the A/D converter

Reference Voltage Input Channel	Reference Voltage (+) = AVREFP Reference Voltage (-) = AVREFM	Reference Voltage (+) = VDD Reference Voltage (-) = Vss	Reference Voltage (+) = VBGR Reference Voltage (-) = AVREFM
ANI0 to ANI7	See 2.6.2 (1)	See 2.6.2 (3)	See 2.6.2 (4)
ANI16 to ANI19	See 2.6.2 (2)		
Internal reference voltage, temperature sensor output voltage, and TSCAP voltage of the CTSU	See 2.6.2 (1)		_

(1) Reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI7, internal reference voltage, temperature sensor output voltage, and TSCAP voltage of the CTSU

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, VSS = 0 V, reference voltage (+) = AVREFP, reference voltage (-) = AVREFM = 0 V)

Item	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
Resolution	RES			8		10	Bit
Overall errorNote 1	AINL	10-bit resolution AVREFP = VDDNote 3	2.4 V ≤ AVREFP ≤ 5.5 V		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	3.6 V ≤ VDD ≤ 5.5 V	2.125		39	μs
		conversion target: ANI2 to ANI7	2.7 V ≤ VDD ≤ 5.5 V	3.1875		39	μs
			2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
		conversion target: Internal reference	3.6 V ≤ VDD ≤ 5.5 V	2.375		39	μs
			2.7 V ≤ VDD ≤ 5.5 V	3.5625		39	μs
			2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale errorNotes 1, 2	Ezs	10-bit resolution AVREFP = VDDNote 3	2.4 V ≤ AVREFP ≤ 5.5 V			±0.25	%FSR
Full-scale errorNotes 1, 2	EFS	10-bit resolution AVREFP = VDDNote 3	2.4 V ≤ AVREFP ≤ 5.5 V			±0.25	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution AVREFP = VDDNote 3	2.4 V ≤ AVREFP ≤ 5.5 V			±2.5	LSB
Differential linearity errorNote 1	DLE	10-bit resolution AVREFP = VDDNote 3	2.4 V ≤ AVREFP ≤ 5.5 V			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI7	<u>'</u>	0		AVREFP	V
		Internal reference vo	ltage	VBGRNote 4			V
		Temperature sensor output voltage		V _{TMPS25} Note 4			V
		TSCAP voltage of th	TSCAP voltage of the CTSU		VTSCAP		

- **Note 1.** This value does not include the quantization error (±1/2 LSB).
- Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- Note 3. When reference voltage (+) = VDD and reference voltage (-) = VSS, the maximum values are as follows.

 Overall error: Add ±10 LSB to the maximum value when VDD = AVREFP.
 - Zero-scale/full-scale error: Add $\pm 0.05\%$ FSR to the maximum value when VDD = AVREFP.
 - Integral linearity error and differential linearity error: Add ±0.5 LSB to the maximum value when VDD = AVREFP.
- Note 4. See 2.6.3 Characteristics of the temperature sensor and internal reference voltage.

(2) Reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI16 to ANI19

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, reference voltage (+) = AVREFP, reference voltage (-) = AVREFM = 0 V)

Item	Symbol	С	onditions	Min.	Тур.	Max.	Unit
Resolution	RES			8		10	Bit
Overall errorNote 1	AINL	10-bit resolution AVREFP = VDDNote 3	2.4 V ≤ AVREFP ≤ 5.5 V		1.2	±5.0	LSB
Conversion time tcc	tconv	10-bit resolution	3.6 V ≤ VDD ≤ 5.5 V	2.125		39	μs
		conversion target: ANI16 to ANI19	2.7 V ≤ VDD ≤ 5.5 V	3.1875		39	μs
			2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale errorNotes 1, 2	Ezs	10-bit resolution AVREFP = VDDNote 3	2.4 V ≤ AVREFP ≤ 5.5 V			±0.35	%FSR
Full-scale errorNotes 1, 2	EFS	10-bit resolution AVREFP = VDDNote 3	2.4 V ≤ AVREFP ≤ 5.5 V			±0.35	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution AVREFP = VDDNote 3	2.4 V ≤ AVREFP ≤ 5.5 V			±3.5	LSB
Differential linearity errorNote 1	DLE	10-bit resolution AVREFP = VDDNote 3	2.4 V ≤ AVREFP ≤ 5.5 V			±2.0	LSB
Analog input voltage	VAIN	ANI16 to ANI19		0		AVREFP	V

- Note 1. This value does not include the quantization error (±1/2 LSB).
- Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **Note 3.** When AVREFP < VDD, the maximum values are as follows.
 - Overall error: Add ±4.0 LSB to the maximum value when VDD = AVREFP.
 - Zero-scale/full-scale error: Add ±0.20% FSR to the maximum value when VDD = AVREFP.
 - Integral linearity error/differential linearity error: Add ±2.0 LSB to the maximum value when VDD = AVREFP.

(3) Reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = VSS (ADREFM = 0), conversion target: ANI0 to ANI7, and ANI16 to ANI19, internal reference voltage, temperature sensor output voltage, and TSCAP voltage of the CTSU

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{ reference voltage (+)} = \text{VDD}, \text{ reference voltage (-)} = \text{Vss})$

Item	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
Resolution	RES			8		10	Bit
Overall errorNote 1	AINL	10-bit resolution	2.4 V ≤ AVREFP ≤ 5.5 V		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution conversion target: ANI0 to ANI7, ANI16 to ANI19	3.6 V ≤ VDD ≤ 5.5 V	2.125		39	μs
			2.7 V ≤ VDD ≤ 5.5 V	3.1875		39	μs
			2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
		conversion target: Internal reference	3.6 V ≤ VDD ≤ 5.5 V	2.375		39	μs
			2.7 V ≤ VDD ≤ 5.5 V	3.5625		39	μs
			2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale errorNotes 1, 2	Ezs	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±0.60	%FSR
Full-scale errorNotes 1, 2	EFS	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±0.60	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	2.4 V ≤ AVREFP ≤ 5.5 V			±4.0	LSB
Differential linearity errorNote 1	DLE	10-bit resolution	2.4 V ≤ AVREFP ≤ 5.5 V			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI7, ANI16	to ANI19	0		Vdd	V
		Internal reference vo	Internal reference voltage		VBGRNote 3		
		Temperature sensor output voltage		V _{TMPS25} Note 3			V
		TSCAP voltage of the CTSU		VTSCAP			V

Note 1. This value does not include the quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. See 2.6.3 Characteristics of the temperature sensor and internal reference voltage.

(4) Reference voltage (+) = VDD (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI0, ANI2 to ANI7, ANI16 to ANI19

(TA = -40 to $+105^{\circ}$ C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, reference voltage (+) = VBGRNote 3, reference voltage (-) = AVREFMNote 4 = 0 V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES			8		Bit
Conversion time	tconv		17		39	μs
Zero-scale errorNotes 1, 2	Ezs				±0.60	%FSR
Integral linearity errorNote 1	ILE				±2.0	LSB
Differential linearity errorNote 1	DLE				±1.0	LSB
Analog input voltage	VAIN		0		VBGRNote 3	V

- Note 1. This value does not include the quantization error (±1/2 LSB).
- Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- Note 3. See 2.6.3 Characteristics of the temperature sensor and internal reference voltage.
- **Note 4.** When reference voltage (–) = Vss, the maximum values are as follows.
 - Zero-scale error: Add ±0.35%FSR to the maximum value when reference voltage (-) = AVREFM.
 - Integral linearity error: Add ±0.5 LSB to the maximum value when reference voltage (-) = AVREFM.
 - Differential linearity error: Add ±0.2 LSB to the maximum value when reference voltage (–) = AVREFM.

2.6.3 Characteristics of the temperature sensor and internal reference voltage

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.42	1.48	1.54	V
Temperature coefficient	FVTMPS	Temperature dependency of the temperature sensor voltage		-3.3		mV/°C
Operation stabilization wait time	tamp		5			μs

2.6.4 Characteristics of the POR circuit

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, Vss = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Detection voltage	VPOR, VPDR		1.43	1.50	1.57	V
Minimum pulse widthNote	Tpw		300			μs

Note

This width is the minimum time required for a POR reset when VDD falls below VPDR. This width is also the minimum time required for a POR reset from when VDD falls below 0.7 V to when VDD exceeds VPOR in the STOP mode or while the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.5 Characteristics of the LVD circuit

(1) LVD0 Detection Voltage in the Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)

	Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Detection	Supply voltage level	VLVD00	The power supply voltage is rising.	3.84	3.96	4.08	V
voltage			The power supply voltage is falling.	3.76	3.88	4.00	V
		VLVD01	The power supply voltage is rising.	2.88	2.97	3.06	V
			The power supply voltage is falling.	2.82	2.91	3.00	V
		VLVD02	The power supply voltage is rising.	2.59	2.67	2.75	V
			The power supply voltage is falling.	2.54	2.62	2.70	V
		VLVD03	The power supply voltage is rising.	2.31	2.38	2.45	V
			The power supply voltage is falling.	2.26	2.33	2.40	V
		VLVD04	The power supply voltage is rising.	1.84	1.90	1.95	V
			The power supply voltage is falling.	1.80	1.86	1.91	V
		VLVD05	The power supply voltage is rising.	1.64	1.69	1.74	V
			The power supply voltage is falling.	1.60	1.65	1.70	V
Minimum puls	se width	tLW		500			μs
Detection del	ay time					500	μs

(2) LVD1 Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Detection	Supply voltage level	VLVD10	The power supply voltage is rising.	4.08	4.16	4.24	V
voltage			The power supply voltage is falling.	4.00	4.08	4.16	V
		VLVD11	The power supply voltage is rising.	3.88	3.96	4.04	V
			The power supply voltage is falling.	3.80	3.88	3.96	V
		VLVD12	The power supply voltage is rising.	3.68	3.75	3.82	V
			The power supply voltage is falling.	3.60	3.67	3.74	V
		VLVD13	The power supply voltage is rising.	3.48	3.55	3.62	V
			The power supply voltage is falling.	3.40	3.47	3.54	V
		VLVD14	The power supply voltage is rising.	3.28	3.35	3.42	V
			The power supply voltage is falling.	3.20	3.27	3.34	V
		VLVD15	The power supply voltage is rising.	3.07	3.13	3.19	V
			The power supply voltage is falling.	3.00	3.06	3.12	V
		VLVD16	The power supply voltage is rising.	2.91	2.97	3.03	V
			The power supply voltage is falling.	2.85	2.91	2.97	V
		VLVD17	The power supply voltage is rising.	2.76	2.82	2.87	V
			The power supply voltage is falling.	2.70	2.76	2.81	V
		VLVD18	The power supply voltage is rising.	2.61	2.66	2.71	V
			The power supply voltage is falling.	2.55	2.60	2.65	V
		VLVD19	The power supply voltage is rising.	2.45	2.50	2.55	V
			The power supply voltage is falling.	2.40	2.45	2.50	V
		VLVD110	The power supply voltage is rising.	2.35	2.40	2.45	V
			The power supply voltage is falling.	2.30	2.35	2.40	V
		VLVD111	The power supply voltage is rising.	2.25	2.30	2.34	V
			The power supply voltage is falling.	2.20	2.25	2.29	V
		VLVD112	The power supply voltage is rising.	2.15	2.20	2.24	V
			The power supply voltage is falling.	2.10	2.15	2.19	V
		VLVD113	The power supply voltage is rising.	2.05	2.09	2.13	V
			The power supply voltage is falling.	2.00	2.04	2.08	V
		VLVD114	The power supply voltage is rising.	1.94	1.98	2.02	V
			The power supply voltage is falling.	1.90	1.94	1.98	V
		VLVD115	The power supply voltage is rising.	1.84	1.88	1.91	V
		Note	The power supply voltage is falling.	1.80	1.84	1.87	V
		VLVD116	The power supply voltage is rising.	1.74	1.78	1.81	V
		Note	The power supply voltage is falling.	1.70	1.74	1.77	V
		VLVD117	The power supply voltage is rising.	1.64	1.67	1.70	V
		Note	The power supply voltage is falling.	1.60	1.63	1.66	V
Minimum pul	se width	tLW		500			μs
Detection de	lay time					500	μs

Note This setting can only be used when LVD0 is disabled.

RL78/G22 2. Electrical Characteristics

2.6.6 Characteristics of the rising slope of the power supply voltage

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, Vss = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD0 circuit or an external reset until VDD reaches the operating voltage range shown in AC characteristics.

2.7 Characteristics of Retention of RAM Data

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, Vss = 0V)$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Data retention supply voltage	VDDDR		1.43Note		5.5	V

Note This voltage depends on the POR detection voltage. When the voltage drops, the data in RAM are retained until a POR is applied, but are not retained following a POR.

2.8 Characteristics of Flash Memory Programming

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
CPU/peripheral hardware clock frequency	fCLK		1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = +85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = +25°C		1,000,000		=
		Retained for 5 years TA = +85°C	100,000			
		Retained for 20 years TA = +85°C	10,000			

- Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

 The retaining years are until next rewrite after the rewrite.
- **Note 2.** The listed numbers of times apply when using flash memory programmer and Renesas Electronics self-programming library.
- **Note 3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

(1) Code flash memory

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item		Symbol	fc	CLK = 1 N	ИHz	fclk =	2 MHz,	3 MHz	4 MHz	≤ fCLK <	< 8 MHz	8 MHz	≤ fclk <	32 MHz	fCL	κ = 32 N	ИHz	Unit
item		Syllibol	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Onic
Programming time	4 bytes	tP4	_	74.7	656.5	_	51.0	464.6	_	41.7	384.8	_	37.1	346.2	_	34.2	321.9	μs
Erasure time	2 Kbytes	tE2K	_	10.4	312.2	_	7.7	258.5	_	6.4	231.8	_	5.8	218.4	_	5.6	214.4	ms
Blank checking time	4 bytes	tBC4	_	_	38.4	_	_	19.2	_	_	13.1	_	_	10.2	_	_	8.3	μs
ume	2 Kbytes	tBC2K	ı	_	2618.9	_	_	1309.5	_		658.3	_		332.8	ı	_	234.1	μs
Time taken to fo the erasure	rcibly stop	tsed		_	18.0	_	_	14.0	_		12.0	_		11.0		_	10.3	μs
Security setting	time	tawssas	_	18.2	526.2	_	14.4	469.2	_	12.5	441.1	_	11.6	427.1	_	11.3	422.6	ms
Time until progr starts following cancellation of t instruction	-		20	_	_	20	_	_	20	_	_	20	_	_	20	_	_	μs

Caution The listed values do not include the time until the operations of the flash memory start following execution of an instruction by software.

(2) Data flash memory

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item		Symbol	fo	CLK = 1 N	ЛHz	fclk =	2 MHz,	3 MHz	4 MHz	≤ fclk <	< 8 MHz	8 MHz	≤ fclk <	32 MHz	fcL	κ = 32 N	ЛHz	Unit
item		Syllibol	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Onic
Programming time	1 byte	tP4	_	74.7	656.5	_	51.0	464.6	_	41.7	384.8	_	37.1	346.2	_	34.2	321.9	μs
Erasure time	256 bytes	tE2K	_	7.8	259.2	_	6.4	232.0	_	5.8	218.5	_	5.5	211.8	_	5.4	209.7	ms
Blank checking time	1 byte	tBC4	_	_	38.4	_	_	19.2	_	_	13.1	_	_	10.2	_	_	8.3	μs
ume	256 bytes	tBC2K	_	_	1326.1	_	_	663.1	_	_	335.1	_	_	171.2	_	_	121.0	μs
Time taken to fo the erasure	rcibly stop	tsed	_	_	18.0	_	_	14.0	_	_	12.0	_	_	11.0	_	_	10.3	μs
Time until progr starts following cancellation of t instruction		_	20	_	_	20	_	_	20	_	_	20	_	_	20	_	_	μs
Time until readil following setting to 1		_	0.25	_	_	0.25	_	_	0.25	_	_	0.25	_	_	0.25	_	_	μs

Caution The listed values do not include the time until the operations of the flash memory start following execution of an instruction by software.

2.9 Dedicated Flash Memory Programmer Communication (UART)

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing of Entry to Flash Memory Programming Modes

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (the processing time of the firmware to control the flash memory is not included)	tHD	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released. Note that the POR and LVD reset must be released before the external reset is released.
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The time during which the communications for the initial setting must be completed within 100 ms after the external reset is released.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level

the: Time to hold the TOOL0 pin at the low level after the external reset is released. It does not include the processing time of the firmware to control the flash memory.

RL78/G22 3. Package Drawings

3. Package Drawings

3.1 16-pin Products

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-HWQFN016-3x3-0.50	PWQN0016KD-A	0.02

Reference Symbol	Dimension in Millimeters			
	Min.	Nom.	Max.	
Α	_	-	0.80	
A1	0.00	0.02	0.05	
A3	0.203 REF.			
b	0.20	0.25	0.30	
D	3.00 BSC			
Е	3.00 BSC			
е	0.50 BSC			
L	0.30	0.35	0.40	
K	0.20	_	-	
D2	1.65	1.70	1.75	
E2	1.65	1.70	1.75	
aaa	0.15			
bbb	0.10			
ccc	0.10			
ddd	0.05			
eee	0.08			
fff	0.10			

3.2 20-pin Products

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-4.4x6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1

NOTE

- 1.Dimensions "X1" and "X2" do not include mold flash.
- 2.Dimension "¾3" does not include tim offset.

(UNIT:mm)
DIMENSIONS
6.50±0.10
4.40±0.10
6.40±0.20
1.45 MAX.
0.10±0.10
1.15
0.65±0.12
0.22 + 0.10
$0.15 \pm 0.05 \\ -0.02$
0.50±0.20
0.10
0° to 10°

©2012 Renesas Electronics Corporation. All rights reserved.

3.3 24-pin Products

JEITA Package Code	RENESAS Code	MASS (TYP.) [g]
P-HWQFN24-4x4-0.50	PWQN0024KG-A	0.04

Reference	Dimensio	on in Mil	limeters	
Symbol	Min.	Nom.	Max.	
Α	_	_	0.80	
A 1	0.00	0. 02	0.05	
A 3	0	. 203 REI	F.	
b	0. 18	0. 25	0. 30	
D	4	4. 00 BS0)	
E	4	4.00 BS0)	
е	(0.50 BSC		
L	0. 35	0.40	0.45	
K	0. 20	_	_	
D_2	2. 65	2. 70	2. 75	
E ₂	2. 65	2. 70	2. 75	
aaa		0. 15		
bbb	0. 10			
ccc	0. 10			
ddd	0. 05			
eee	0. 08			
fff	0. 10			

3.4 25-pin Products

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-WLGA25-3x3-0.50	PWLG0025KB-A	0.01

2 3 4 5

1

Dimension in Millimeters		
Min.	Nom.	Max.
_	3.00	_
_	3.00	_
	2.27	
	2.27	
_	_	0.76
0.19	0.24	0.29
_	0.330	_
_	0.330	_
	0.50	
_	_	0.10
_	_	0.20
_	_	0.08
_	25	_
	Min. — —	Min. Nom. - 3.00 - 3.00 2.27 2.27 0.19 0.24 - 0.330 - 0.330 0.50

3.5 30-pin Products

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

HEIM	MILLIMETERS
Α	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
Е	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
M	0.13
N	0.10
Р	3°+5°
T	0.25
U	0.6±0.15

©2012 Renesas Electronics Corporation. All rights reserved.

3.6 32-pin Products

JEITA Package code	RENESAS code	MASS (TYP.) [g]
P-HWQFN032-5x5-0.50	PWQN0032KE-A	0.06

Reference	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
Α	_	_	0.80
A ₁	0.00	0.02	0.05
A₃		0.203 REF	
b	0.18	0.25	0.30
D		5.00 BSC	
E		5.00 BSC	
е	0.50 BSC		
L	0.35	0.40	0.45
K	0.20	_	1
D ₂	3.15	3.20	3.25
E ₂	3.15	3.20	3.25
aaa		0.15	
bbb	0.10		
ccc	0.10		
ddd	0.05		
eee	0.08		
fff	0.10		

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

(UNIT:mm)

	(UNIT:mm)
ITEM	DIMENSIONS
D	7.00±0.10
E	7.00±0.10
HD	9.00±0.20
HE	9.00±0.20
Α	1.70 MAX.
A1	0.10±0.10
A2	1.40
b	0.37±0.05
С	0.145±0.055
L	0.50±0.20
θ	0° to 8°
е	0.80
x	0.20
у	0.10

NOTE

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "%3" does not include trim offset.

 $\hbox{@}$ 2012 Renesas Electronics Corporation. All rights reserved.

3.7 36-pin Products

JEITA Package Code	RENESAS Code	MASS(Typ.)[g]
P-WFLGA36-4 × 4-0. 50	PWLG0036KB-A	0. 02

Reference	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
D	_	4. 00	_
Е	_	4. 00	_
D1	2	2.90 BSC	
E1	2.90 BSC		
A	_	_	0.76
W1	0. 19	0. 24	0. 29
W	_	0. 55	_
L	_	0. 55	_
е	0.50 BSC		
aaa	0.10		
ссс	0. 20		
ddd	0.08		
n	_	36	_

3.8 40-pin Products

JEITA Package code	RENESAS code	MASS (TYP.) [g]
P-HWQFN040-6x6-0.50	PWQN0040KD-A	0.08

Defenses	Dimension in Millimeters		
Reference Symbol			
	Min.	Nom.	Max.
Α	_	_	0.80
A ₁	0.00	0.02	0.05
A₃		0.203 REF	•
b	0.18	0.25	0.30
D		6.00 BSC	
E	6.00 BSC		
е	0.50 BSC		
L	0.30	0.40	0.50
K	0.20	_	_
D ₂	4.45	4.50	4.55
E₂	4.45	4.50	4.55
aaa	0.15		
bbb	0.10		
ccc	0.10		
ddd	0.05		
eee 0.08			
fff	0.10		

3.9 44-pin Products

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP44-10x10-0.80	PLQP0044GC-A	P44GB-80-UES-2	0.36

© 2012 Renesas Electronics Corporation. All rights reserved.

48-pin Products 3.10

JEITA Package Code	RENESAS Code	Previous Code	MASS[Typ.]
P-LFQFP48-7×7-0.50	PLQP0048KB-B		0.2g

NOTE) 1.

- DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH.
 DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET.
 PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
 LOCATED WITHIN THE HATCHED AREA.
 CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.

Reference Symbol	Dimens	ion in Mil	limeters
	Min	Nom	Max
D	6.9	7.0	7.1
Е	6.9	7.0	7.1
A2		1.4	
HD	8.8	9.0	9.2
HE	8.8	9.0	9.2
Α			1.7
A1	0.05		0.15
bp	0.17	0.20	0.27
С	0.09		0.20
θ	0 "	3.5°	8 °
е		0.5	_
×			0.08
У			0.08
Lp	0.45	0.6	0.75
L1		1.0	

JEITA Package code	RENESAS code	MASS (TYP.) [g]
P-HWQFN048-7x7-0.50	PWQN0048KC-A	0.13 g

Reference	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
Α	_	_	0.80
A ₁	0.00	0.02	0.05
A ₃		0.203 REF	=
b	0.20	0.25	0.30
D		7.00 BSC	
E	7.00 BSC		
e 0.50 BSC			
L	0.30	0.40	0.50
K	0.20	_	_
D_2	5.25	5.30	5.35
E ₂	5.25	5.30	5.35
aaa	0.15		
bbb	0.10		
ccc 0.10			
ddd	0.05		
eee	0.08		
fff 0.10			

REVISION HISTORY	RL78/G22 Datasheet
------------------	--------------------

Rev.	Date		Description	
		Page	Summary	
1.00	Dec 28, 2022	_	First edition issued	

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

- 1. Precaution against Electrostatic Discharge (ESD)
 - A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
- 2. Processing at power-on
 - The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.
- 3. Input of signal during power-off state
 - Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.
- 4. Handling of unused pins
 - Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
- 5. Clock signals
 - After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
- 6. Voltage application waveform at input pin
 - Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
- 7. Prohibition of access to reserved addresses
 - Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.
- 8. Differences between products
 - Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/