

INTRODUCTION

OBJECTIVE : To Apply Forward and Inverse Kinematics to MTAB Aristo

MTAB ARISTO MODEL

WORK ENVELOPE

The range of the movement of the End Effector

WORK VOLUME

The volume inside which robot can position the end effector.

DH PARAMETERS

α_i	a_i	d_i	θ_{i}
90	0	0.322	θ_1
0	0.3	0	θ_2
90	0	0	θ_3
90	0	-0.375	θ_4
90	0	0	θ_5
0	0	0.063	θ_6

FORWARD KINEMATICS

Assigning the Axes

Compute the position of the end-effector from specified values for the joint parameters

Z is always assigned along which joint motion occurs.

X along the shortest common normal Between Z axes

(c)

Y Completes the Right Hand System

B a_(i-1) - Translation about X_(i-1)

 $\theta_{(i)} \text{ - rotation about } Z_i$ aligned along X_{i-1} and X_i

D_i - Translation about Z_i

Calculating the DH Parameters

	$\cos heta_i$	$-\sin heta_i\coslpha_{i,i+1}$	$\sin\theta_i\sin\alpha_{i,i+1}$	$a_{i,i+1}\cos heta_i$]
$^{i-1}T_i=$	$\sin heta_i$	$\cos heta_i\coslpha_{i,i+1}$	$-\cos heta_i\sinlpha_{i,i+1}$	$a_{i,i+1}\sin heta_i$
1: -	0	$\sin\alpha_{i,i+1}$	$\coslpha_{i,i+1}$	d_i
	0	0	0	1

The obtained Matrix is the End effector Coordinates.

INVERSE KINEMATICS

GIVEN THE END EFFECTOR COORDINATES WE NEED TO FIND THE JOINT COORDINATES

APPROACHES TO SOLVE THIS IK PROBLEM

OVERVIEW OF INVERSE KINEMATICS IMPLEMENTATION

AXIS ANGLE ROTATION REPRESENTATION

Axis:
$$k = \begin{pmatrix} k_x \\ k_y \\ k_z \end{pmatrix}$$
 Angle: θ

EQUIVALENT 3X3 ROTATION MATRIX:

$$R_k(\theta) = \begin{bmatrix} k_x k_x (1 - \cos \theta) + \cos \theta & k_x k_y (1 - \cos \theta) - k_z \sin \theta & k_x k_z (1 - \cos \theta) + k_y \sin \theta \\ k_x k_y (1 - \cos \theta) + k_z \sin \theta & k_y k_y (1 - \cos \theta) + \cos \theta & k_y k_z (1 - \cos \theta) - k_x \sin \theta \\ k_x k_z (1 - \cos \theta) - k_y \sin \theta & k_y k_z (1 - \cos \theta) + k_x \sin \theta & k_z k_z (1 - \cos \theta) + \cos \theta \end{bmatrix}$$

HOMOGENEOUS OZ TRANSFORMATION MATRIX

$$\begin{bmatrix} \cos\theta_n & -\sin\theta_n\cos\alpha_n & \sin\theta_n\sin\alpha_n & r_n\cos\theta_n \\ \sin\theta_n & \cos\theta_n\cos\alpha_n & -\cos\theta_n\sin\alpha_n & r_n\sin\theta_n \\ 0 & \sin\alpha_n & \cos\alpha_n & d_n \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} R & T \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

03 POSITION METHOD

RESPECT TO THE LOCAL COORDINATES

JACOBIAN

TO FIND THE GLOBAL POSITION WITH

COMPUTES THE PSEUDO-INVERSE OF THE

OS JACOBIAN METHOD

OY PSEUDO-INVERSE METHOD

COMPUTES THE JACOBIAN MATRIX
$$J = \begin{bmatrix} J_v \\ J_w \end{bmatrix} = \begin{bmatrix} R_{i-1}^0 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times (d_n^0 - d_{i-1}^0) \\ R_{i-1}^0 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

INPUT - TARGET POSITION OUTPUT - JOINT VARIABLES

ROBOT SIMULATION - MATLAB

FORWARD KINEMATICS

INVERSE KINEMATICS

JACOBIAN

HELPS TO CONVERT JOINT VELOCITIES TO END-EFFECTOR VELOCITY

$$J = \begin{bmatrix} J_v \\ J_\omega \end{bmatrix}_{6 \times n}$$

GENERAL FORM OF THE JACOBIAN

$$J = \begin{bmatrix} J_v \\ J_w \end{bmatrix} = \begin{bmatrix} R_{i-1}^0 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times (d_n^0 - d_{i-1}^0) \\ R_{i-1}^0 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

TRAJECTORY PLANNING

TRAJECTORY - TIME EVOLUTION OF POSITION, VELOCITY & ACCELERATION

CONSIDER 1 DEGREE POLYNOMIAL

CONSIDER A 3 DEGREE POLYNOMIAL

From(1)

INITIAL POSITION & FINAL POSITION

$$\theta = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \to (1)$$

$$\mathring{\theta} = a_1 + 2a_2 t + 3a_3 t^2 \to (2)$$

$$\begin{array}{ll} \theta(0) = \theta_0 & \Rightarrow \theta_0 = a_0 \\ \theta(t_f) = \theta_0 & \Rightarrow \theta_f = \theta_0 + a_1 t_f + a_2 t_f^2 + a_3 t_f^3 \end{array}$$

$$\overset{\circ}{\theta} = a_1 + 2a_2t + 3a_3t^2 \qquad \to (2)$$

$$\overset{\circ\circ}{\theta} = 2a_2 + 6a_3t \qquad \to (3)$$

From(2)
$$\mathring{\theta}(0) = 0 \Rightarrow a_1 = 0$$

$$\overset{\circ\circ}{\theta} = 2a_2 + 6a_3t \qquad \to (3)$$

$$\begin{aligned} \mathring{\theta}(0) &= 0 \quad \Rightarrow \boxed{a_1 = 0} \\ \mathring{\theta}(t_f) &= 0 \quad \Rightarrow 2a_2t_f^{\text{iii}} + 3a_3t_f^2 = 0 \end{aligned}$$

$$\theta = 2a_2 + 6a_3t \qquad \to (3)$$

$$\begin{bmatrix} t_f^2 & t_f^3 \\ 2t_f & 3t_f^2 \end{bmatrix} \begin{bmatrix} a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} \theta_f - \theta_0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} t_f^2 & t_f^3 \\ 0 & t_f^2 \end{bmatrix} \begin{bmatrix} a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} \theta_f - \theta_0 \\ -2(\theta_f - \theta_0) \\ \hline t_f \end{bmatrix}$$

$$\begin{bmatrix} a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_2 \\ -2(\theta_f - \theta_0) \\ \hline t_f \end{bmatrix}$$
Substitute a0, a1, a2 and a3 in the polynomial equations to get equations for

 $t_f^2 a_2 + a_3 t_f^3 = \theta_f - \theta_0$

 $t_f^2 a_2 - 2(\theta_f - \theta_0) = \theta_f - \theta_0$

 $a_2 t_f^2 + a_3 t_f^3 = \theta_f - 0 \quad \to (4)$

 $2a_2t_f + 3a_3t_f^2 = 0$ \to (5)

angular displacement, angular velocity, angular acceleration

CODE

ROBO-ANALYZER

Visualizing the DH
Parameters of Each
Joint.

FORWARD KINEMATICS

Applying Forward
Kinematics analysis
to the Model.

Plotting the Graph for Forward Kinematics.

LINK 1, 2, 3 PLOT

LINK 4, 5, 6 PLOT

JOINTS 1, 2, 3 - VELOCITY, ACCELERATION GRAPHS:

JOINTS 4, 5, 6 - VELOCITY, ACCELERATION GRAPHS:

INVERSE KINEMATICS

Initializing the End Effector Position And Orientation Matrix

Computing 8 Initial Position Solution Using Inverse Kinematics Analysis.

Using "show" we could view the solution in the 3D model

We could use these solutions to set the Initial and Final value of Joints for Forward Kinematics computation.

THANK YOU

