Introduction to Robotics

Lecture 6

Kacper Jastrzębski 260607@student.pwr.edu.pl

Date: Tuesday 11:15, 04-04-2023

Contents

1	Forward kinematics	2
2	Different coordinates systems	6
	.1 Cartesian	
	.2 Cylindrical	
	Spherical	
	nverse kinematics	
	.1 Double pendulum	
	2 Custom example	

1 Forward kinematics

From Wikipedia: Forward kinematics refers to the use of the kinematic equations of a robot to compute the position of the end-effector from specified values for the joint parameters (configuration vectors)

$$Q^a \ni q \to x^b = k(q)$$
 where $x \in X^c$ (1)

2 Different coordinates systems

2.1 Cartesian

Unique – point $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ describes one point exactly.

2.2 Cylindrical

Non-unique – the same point can be described by r = 0 and any angle $\gamma \in [0, 2\pi]$. Sensitivity to error – for

2.3 Spherical

3 Inverse kinematics

Having given point (generalized position) find the configuration that realizes it. Given the task space and forward kinematics find such configuration(s) that solve the equation. Given: $x_p \in X$, k = k(q) find: q^* : $x_f = k(q^*)$.

$$x^{(t)} = k(q^{(t)}) \quad / \frac{\partial}{\partial t} \tag{2}$$

$$\dot{x} = \frac{\partial k(q)}{\partial q} \cdot \dot{q} = J(q)\dot{q} \tag{3}$$

3.1 Double pendulum

Photo

3.2 Custom example

Photo

Function approximation using Taylor series

How to get q_{i+1} from the complicated equation:

$$\xi(x_f - k(q_i)) = J(q_i)(q_{i+1} - q_i) \tag{4}$$

$$q_{i+1} = q_i + \xi J^{-1}(q_i)(x_f - k(q_i))$$
(5)

Newton algorithm of inverse kinematics for non-redundant manipulator.

^aConfiguration space

^bPosition an orientation of end-effector

^cTask space

Only for inversible Jacobi matrix (aka. entering the singular configuration)

Stop condition – when the difference between q_i and q_f is small enough.

regular configuration q: rankJ(q) = m (full rank)

singular configuration q: rankJ(q) < m

Checking the rank: 2x3 -> at least one determinant of square submatrix must be non-zero

What about redundant manipulators, with non-square matrices:

pseudo-inverse of Jacobi matrix: (still not working for singular configuration)

$$J^{\#} = J^{T}(JJ^{T})^{-1} \tag{6}$$

Manipulabity matrix

$$J_{(q)}J_{(q)}^{T} = M(q) (7)$$

3rd method – robust (against singularity) inverse:

$$J^{\#} = J^T (JJ^T + \lambda I_m) \tag{8}$$

When to switch to robust? When the determinant of manipulabity matrix is below given threshold