Name:	Nicht bestanden: □
Vorname:	
Matrikelnummer:	Endnote:

B.Sc. Landwirtschaft; B.Sc. Angewandte Pflanzenbiologie - Gartenbau, Pflanzentechnologie

Klausur Mathematik und Statistik

Prüfer: Prof. Dr. Jochen Kruppa-Scheetz Fakultät für Agrarwissenschaften und Landschaftsarchitektur j.kruppa@hs-osnabrueck.de

26. Januar 2024

Erlaubte Hilfsmittel für die Klausur

- Normaler Taschenrechner ohne Möglichkeit der Kommunikation mit anderen Geräten also ausdrücklich kein Handy!
- Eine DIN A4-Seite als beidseitig, selbstgeschriebene, handschriftliche Formelsammlung keine digitalen Ausdrucke.
- You can answer the questions in English without any consequences.

Ergebnis der Klausur

_____ von 20 Punkten sind aus dem Multiple Choice Teil erreicht.

_____ von 69 Punkten sind aus dem Rechen- und Textteil erreicht.

_____ von 89 Punkten in Summe.

Es wird folgender Notenschlüssel angewendet.

Punkte	Note
85.0 - 89.0	1,0
80.5 - 84.5	1,3
76.5 - 80.0	1,7
72.0 - 76.0	2,0
67.5 - 71.5	2,3
63.0 - 67.0	2,7
58.5 - 62.5	3,0
54.5 - 58.0	3,3
50.0 - 54.0	3,7
44.5 - 49.5	4,0

Es ergibt sich eine Endnote von _____

Multiple Choice Aufgaben

- Pro Multipe Choice Frage ist *genau* eine Antwort richtig.
- Übertragen Sie Ihre Kreuze in die Tabelle auf dieser Seite.
- Es werden nur Antworten berücksichtigt, die in dieser Tabelle angekreuzt sind!

	A	В	С	D	E	√
1 Aufgabe						
2 Aufgabe						
3 Aufgabe						
4 Aufgabe						
5 Aufgabe						
6 Aufgabe						
7 Aufgabe						
8 Aufgabe						
9 Aufgabe						
10 Aufgabe						

• Es sind ____ von 20 Punkten erreicht worden.

Rechen- und Textaufgaben

• Die Tabelle wird vom Dozenten ausgefüllt.

Aufgabe	11	12	13	14	15	16	17
Punkte	9	10	10	10	8	10	12

• Es sind ____ von 69 Punkten erreicht worden.

Eine einfaktorielle ANOVA berechnet eine Teststatistik um zu die Nullhypothese abzulehnen. Welche Aussage über die Teststatistik der ANOVA ist richtig?

- **A** □ Die ANOVA berechnet die T-Statistik indem den Mittelwertsunterschied der Gruppen simultan durch die Standardabweichung der Gruppen teilt. Wenn die T-Statistik höher als 1.96 ist, kann die Nullhypothese abgelehnt werden.
- **B** □ Die ANOVA berechnet die F-Statistik indem die MS der Behandlung durch die MS des Fehlers geteilt werden. Wenn die F-Statistik sich der 0 annähert kann die Nullhypothese nicht abgelehnt werden.
- C □ Die ANOVA berechnet die F-Statistik indem die MS des Fehlers durch die MS der Behandlung geteilt werden. Wenn die F-Statistik sich der 1 annähert kann die Nullhypothese nicht abgelehnt werden.
- **D** Die ANOVA berechnt die F-Statistik aus den SS Behandlung geteilt durch die SS Fehler.
- **E** □ Die ANOVA berechnet die T-Statistik aus der Multiplikation der MS Behandlung mit der MS der Fehler. Wenn die F-Statistik genau 0 ist, kann die Nullhypothese abgelehnt werden.

2 Aufgabe (2 Punkte)

Das Falsifikationsprinzip besagt...

- **A** □ ... dass ein schlechtes Modell durch ein weniger schlechtes Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht.
- **B** □ ... dass Annahmen an statistische Modelle meist falsch sind.
- **C** □ ... dass Fehlerterme in statistischen Modellen nicht verifiziert werden können.
- **D** □ ... dass Modelle meist falsch sind und selten richtig.
- $\textbf{E} \ \square \ \dots \ \text{dass in der Wissenschaft immer etwas falsch sein muss. Sonst gebe es keinen Fortschritt.}$

3 Aufgabe (2 Punkte)

Beim statistischen Testen wird signal mit noise zur Teststatistik T verrechnet. Welche der Formel berechnet korrekt die Teststatistik T?

A □ Es gilt
$$T = \frac{noise}{signal}$$

B
$$\square$$
 Es gilt $T = \frac{signal}{noise}$

C \square Es gilt $T = (signal \cdot noise)^2$

D \square Es gilt $T = signal \cdot noise$

E
$$\square$$
 Es gilt $T = \frac{signal}{noise^2}$

4 Aufgabe (2 Punkte)

Die Randomisierung von Beobachtungen bzw. Samples zu den Versuchseinheiten ist bedeutend in der Versuchsplanung. Welche der folgenden Aussagen ist richtig?

- **A** □ Randomisierung erlaubt erst die Mittelwerte zu schätzen. Ohne Randomisierung keine Mittelwerte.
- **B** □ Randomisierung erlaubt erst die Varianzen zu schätzen. Ohne eine Randomisierung ist die Berechnung von Mittelwerten und Varianzen nicht möglich.

C 🗆	Randomisierung war bis 1952 bedeutend, wurde dann aber in Folge besserer Rechnerleistung nicht mehr verwendet. Aktuelle Statistik nutzt keine Randomisierung mehr.
D 🗆	Randomisierung sorgt für Strukturgleichheit und erlaubt erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen.
E 🗆	Randomisierung bringt starke Unstrukturiertheit in das Experiment und erlaubt erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen.
5 A	aufgabe (2 Punkte)
Bere	chnen Sie den Mittelwert und Standardabweichung von y mit 10, 5, 13, 13 und 7.
A 🗆	Es ergibt sich 8.6 +/- 6.4
В□	Es ergibt sich 9.6 +/- 1.79
C 🗆	Es ergibt sich 9.6 +/- 12.8
D 🗆	Es ergibt sich 10.6 +/- 1.79
E 🗆	Es ergibt sich 9.6 +/- 3.58
6 A	aufgabe (2 Punkte)
Welc	the Aussage zum mathematische Ausdruck $Pr(D H_0)$ ist richtig?
A 🗆	Die Inverse der Wahrscheinlichkeit unter der die Nullhypothese nicht mehr die Alternativehypothese überdeckt.
В□	$Pr(D H_0)$ ist die Wahrscheinlichkeit der Alternativehypothese und somit $1-Pr(H_A)$
C 🗆	Die Wahrscheinlichkeit für die Nullhypothese, wenn die Daten wahr sind.
D 🗆	Die Wahrscheinlichkeit der Daten unter der Nullhypothese in der Grundgesamtheit.
E 🗆	$Pr(D H_0)$ ist die Wahrscheinlichkeit die Daten D zu beobachten wenn die Nullhypothese wahr ist.
7 A	aufgabe (2 Punkte)
	chnen Sie den Median, das 1^{st} Quartile sowie das 3^{rd} Quartile von y mit 18 , 12 , 20 , 20 , 27 , 23 , 8 , 13 , 24 und 42 .
A 🗆	Es ergibt sich 20 +/- 24
В□	Es ergibt sich 20 [13, 24]
C 🗆	Es ergibt sich 20 +/- 13
D 🗆	Es ergibt sich 21 [14, 25]
E 🗆	Es ergibt sich 21 +/- 13
8 A	aufgabe (2 Punkte)
Welc	che Aussage über den t-Test ist richtig?
A 🗆	Der t-Test vergleicht die Mittelwerte von zwei Gruppen unter der strikten Annahme von Varianzhomogenität. Sollte keine Varianzhomogenität vorliegen, so gibt es keine Möglichkeit den t-Test in einer Variante anzuwenden.
В□	Der t-Test vergleicht die Mittelwerte von zwei Gruppen.
C 🗆	Der t-Test ist ein Vortest der ANOVA und basiert daher auf dem Vergleich von Streuungsparametern
D 🗆	Der t-Test vergleicht die Varianzen von mindestens zwei oder mehr Gruppen
E 🗆	Der t-Test testet generell zu einem erhöhten $lpha$ -Niveau von 20%.

Der Datensatz PlantGrowth enthält das Gewicht von Pflanzen, die unter einer Kontrolle und zwei verschiedenen Behandlungsbedingungen erzielt wurden. Nach der Berechnung einer einfaktoriellen ANOVA ergibt sich ein $\eta^2 = 0.25$. Welche Aussage ist richtig?

- **A** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen erklärt wird. Das η^2 ist damit mit dem R^2 aus der linearen Regression zu vergleichen.
- **B** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen nicht erklärt wird. Somit der Rest an nicht erklärbarer Varianz.
- **C** \square Das η^2 ist ein Wert für die Güte der ANOVA. Je kleiner desto besser. Ein η^2 von 0 bedeutet ein perfektes Modell mit keiner Abweichung. Die Varianz ist null.
- **D** \square Das η^2 ist die Korrelation der ANOVA. Mit der Ausnahme, dass 0 der beste Wert ist.
- **E** \square Die Berechnung von η^2 ist ein Wert für die Interaktion.

10 Aufgabe (2 Punkte)

Welche Aussage über den p-Wert und dem Signifikanzniveau α gleich 5% ist richtig?

- **A** \square Wir vergleichen mit dem *p*-Wert und dem Signifikanzniveau α Wahrscheinlichkeiten und damit die absoluten Werte auf einem Zahlenstrahl, wenn die H_0 gilt.
- **B** \square Wir vergleichen die Effekte des *p*-Wertes mit den Effekten der Signifiaknzschwelle unter der Annahme der Nullhypothese.
- ${f C}$ \square Wir machen eine Aussage über die indivduelle Wahrscheinlichkeit des Eintretens der Nullhypothese H_0 .
- **D** \square Wir vergleichen mit dem *p*-Wert und dem Signifikanzniveau α Wahrscheinlichkeiten und damit die Flächen unter der Kurve der Teststatistik, wenn die H_0 gilt.
- **E** \square Wir vergleichen mit dem *p*-Wert und dem Signifikanzniveau α absolute Werte auf einem Zahlenstrahl und damit den Unterschied der Teststatistiken, wenn die H_0 gilt.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nach einem Freilandexperiment mit zwei Bewässerungstypen (*low* und *high*) als Behandlung (*treatment*) ergibt sich die folgende Datentabelle mit dem gemessenen Trockengewicht (*drymatter*) von Kartoffeln.

treatment	freshmatter
high	48.3
low	53.7
low	45.8
high	44.6
low	31.9
high	31.9
Iow	42.1
high	36.6
Iow	34.9
high	46.6
high	30.8
high	49.7
low	41.2
high	36.9
low	29.6
low	18.5
high	30.3
high	30.4
low	43.7

- 1. Zeichnen Sie in *einer* Abbildung die beiden Boxplots für die zwei Behandlungen von Kartoffeln! Beschriften Sie die Achsen entsprechend! **(6 Punkte)**
- 2. Beschriften Sie einen der beiden Boxplots mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 3. Wenn Sie *keinen Effekt* zwischen den Behandlungen von Kartoffeln erwarten würden, wie sehen dann die beiden Boxplots aus? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Pyramiden bauen Es stehen die oldenburgischen Pyramidentage an und Sie sind auf abenteuerlichen Wegen für den Bau der Pyramiden zuständig. Zu allem Überfluss handelt es sich auch noch eine *Reenactment* Veranstaltung. Thema der diesjährigen Pyramidentage sind die Pyramiden von Meroe, die den Königen und Königinnen des historischen Reiches von Kusch in Nubien, dem heutigen Sudan, als Grabstätten dienten. Die Pyramiden in Meroe fallen durch ihren steilen Winkel von 71 Grad im Vergleich zu den ägyptischen Pyramiden mit 60 Grad auf. Die durchschnittliche Seitenlänge der Grundfläche einer Pyramide beträgt 32 Königsellen. Eine Königselle misst 52.6cm.

Lösen Sie diese Aufgabe mit Hilfe einer Skizze der Pyramide. Bezeichnen Sie Seiten und die Winkel der Pyramide entsprechend!

- 1. Bei der Königspyramide von Meroe soll eine Seitenlänge der Grundfläche 32 Königsellen lang sein. Welche Höhe der Königspyramide in m ergibt sich?? (1 Punkt)
- 2. Die Außenflächen der Pyramide soll begrünt werden. Für die Bepflanzung muss eine 6cm dicke Torfschicht auf die Pyramide aufgebracht werden. Berechnen Sie die ungefähre Menge an benötigten Torf in m³! (2 Punkte)

Wie in jedem guten *Reenactment* gibt es viel Oberschicht, aber nur 2 Sklaven, die Ihnen bei dem Befüllen der Pyramide mit Schutt zu Seite stehen. Leider haben Ihre Sklaven zu allem Überfluss auch noch chronische Schulterschmerzen entwickelt, als sie von der anstehenden Aufgabe erfahren haben. Gehen Sie daher von einer Effizienz der Sklaven von 70% aus. In eine Schubkarre passen 90 Liter.

- 3. Wie oft müssen Ihre maladen Sklaven die Rampe mit der Schubkarre zur Spitze der Pyramide hochfahren um die Pyramide mit Schutt zu füllen? (1 Punkt)
- 4. Berechnen Sie die Länge der Rampe zur Spitze der Pyramide mit einem Anstellwinkel von 10°! (2 Punkte)
- 5. Wie weit reicht Ihre Rampe vom Fuß der Pyramide in die oldenburgische Landschaft? (2 Punkte)

Bei der Besichtigung der Pyramide teilt Ihnen der leicht übergewichtige Pharao (Nebenberuf *Mittelständler*) mit, das die Pyramide zu steil sei und somit nicht in die oldenburgische Landschaft passen würde. Sie müssen nochmal ran.

6. Die Grundfläche der Pyramide ändert sich nicht. Berechnen Sie die Änderung der Höhe in Königsellen, wenn sich der Anstellwinkel der Pyramide um 8° ändert! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nelken von den Molukken In der Ausstellung "Europa und das Meer" im Deutschen Historischen Museum in Berlin gab es folgendes Zitat über die Probleme der frühen Hochseeschifffahrt.

»Ohne ausreichende Zufuhr von Vitamin C stellen sich nach 50 Tagen die ersten Symptome ein; die ersten Toten sind nach 70 Tagen zu beklagen; nach 105 Tagen rafft die Skorbut eine ganze Schiffsbesatzung dahin«

Ferdinand Magellan stach im Jahre 1519 in See um eine Passage durch den südamerikanischen Kontinent zu finden. Zu seiner Flotte gehörten fünf Schiffe - das Flaggschiff Trinidad, die San Antonio, die Victoria, die Concepción und die Santiago - mit einer Besatzung von insgesamt 218 Mann.

- 1. Stellen Sie den Verlauf der Anzahl an Matrosen auf einem Schiff der Flotte in der Form einer Überlebenszeitkurve dar! Beschriften Sie die Achsen entsprechend! (3 Punkte)
- 2. Schätzen Sie die Überlebenswahrscheinlichkeit nach 90 Tagen aus Ihrer Abbildung ab! (2 Punkte)

Der Chronist an Bord der Trinidad, Antonio Pigafetta, schrieb in seinem Bericht "[...] Um nicht Hungers zu sterben, aßen wir das Leder, mit dem die große Rahe zum Schutz der Taue umwunden war." Insbesondere die Mannschaft der Concepción erlitt große Verluste durch die Skrobut bei der Überquerung des Pazifiks, da durch Erkundungsfahrten weniger Zeit blieb, um wilden Sellerie aufzunehmen. Wilder Sellerie enthält $4000\mu g/150mg$ Vitamin C. Der Bedarf liegt bei 105mg pro Tag für Männer.

- 3. Berechnen Sie die notwendige Menge in *kg* an aufzunehmenden wilden Sellerie auf die Concepción für die ununterbrochene Fahrt von drei Monate und 22 Tage über den Pazifik! **(3 Punkte)**
- 4. Skizzieren Sie die Überlebenszeitkurve für die Concepción im Vergleich zu der Überlebenszeitkurve der Trinidad! Beschriften Sie die Achsen! (2 Punkte)

Sie erhalten folgende R Ausgabe der Funktion t.test().

```
##
## Two Sample t-test
##
## data: drymatter by Fe
## t = -4.2438, df = 14, p-value = 0.000818
## alternative hypothesis: true difference in means between group high and group low is not equal to
## 95 percent confidence interval:
## -10.227131 -3.360171
## sample estimates:
## mean in group high mean in group low
## 13.77778 20.57143
```

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (2 Punkte)
- 2. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Skizieren Sie eine Abbildung in der Sie T_{calc} , $Pr(D|H_0)$, A=0.95, sowie $T_{\alpha=5\%}=|2.14|$ einzeichnen! **(4 Punkte)**
- 4. Beschriften Sie die Abbildung entsprechend! (2 Punkte)

In einem Experiment wurde der Ertrag von Erbsen unter drei verschiedenen Pestizid-Dosen 0.5 g/l, 1.5 g/l und 2.5 g/l gemessen. Unten stehenden sehen Sie die Visualisierung des Datensatzes.

- 1. Zeichnen Sie folgende statistischen Masszahlen in die Abildung ein! Beschriften Sie die statistischen Maßzahlen! (6 Punkte)
 - ullet Total (grand) mean: eta_0
 - ullet Mittelwerte der Dosen: $ar{y}_{0.5}$, $ar{y}_{1.5}$ und $ar{y}_{2.5}$
 - ullet Effekt der einzelnen Level der Dosen: $eta_{0.5}$, $eta_{1.5}$, und $eta_{2.5}$
 - ullet Residuen oder Fehler: ϵ
- 2. Liegt ein *vermutlicher* signifikanter Unterschied zwischen den Dosisstufen vor? Begründen Sie Ihre Antwort! **(2 Punkte)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Solar- & Biogasanlagen Um die Energiekosten Ihres Betriebes zu senken, wollen Sie eine Solaranlage auf den Hühnerstall montieren lassen. Sie messen Ihren Stall und finden folgende Maße wieder. Die vordere Seite des Hühnerstall hat eine Höhe h_{ν} von 7m. Die hintere Seite des Hühnerstall hat eine Höhe h_b von 11m. Der Hühnerstall hat eine Tiefe t von 14m und eine Breite b von 50m.

- 1. Skizzieren Sie den Hühnerstall auf dem die Solaranlage montiert werden soll! Ergänzen Sie die Angaben für die Höhen h_V , h_b , die Tiefe t und die Breite b des Stalls! **(2 Punkte)**
- 2. Berechnen Sie die Fläche der schrägen, neuen Solaranlage auf dem Hühnerstall! (3 Punkte)

Ebenfalls planen Sie eine neue Biogasanlage für Ihren Betrieb. Der neue Methantank hat einen Radius r von 1m. Leider gibt es ein paar bauliche Beschränkungen auf dem Grundstück. Ihr Fundament des zylindrischen Methantanks kann nur ein Gewicht von maximal 15t aushalten bevor der Tank wegbricht. Sie rechnen eine Sicherheitstoleranz von 10% ein beinhaltend das Gewicht des Methantanks. In flüssiger Form hat Methan bei -80°C eine Dichte von $240kg/m^3$. Bei -100°C hat Methan eine Dichte von $280kg/m^3$. Sie betrieben Ihre Anlage bei -90°C.

- 3. Extrapolieren Sie die effektive Dichte des Methans in Ihrem Methantank! Welche Annahme haben Sie getroffen? (1 Punkt)
- 4. Berechnen Sie wie viel Kubikmeter m^3 Sie in den Methantank füllen können, bevor das Fundament nachgibt! (2 **Punkte**)
- 5. Berechnen Sie die maximale Höhe h_{max} für den gefüllten Methantank mit dem Radius r, bevor das Fundament wegbricht! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Herodot – der Schimmel aus Ivenack Während der Besetzung Mecklenburgs durch die Franzosen kamen Napoleon die Geschichten des berühmten Apfelschimmels Herodot aus Ivenack zu Gehör. Herodot lief zwar niemals Rennen, war aber eines der berühmtesten Pferde dieser Zeit. Napoleon selbst gab den Auftrag, diesen Schimmel durch die Armee nach Frankreich zu bringen. Der Legende nach sollen Arbeiter den Schimmel im hohlen Stamm einer 1000-jährigen Eiche aus Ivenack vor den Franzosen versteckt haben. Doch Herodot verriet sein Versteck durch lautes Wiehern, woraufhin die französische Armee den Schimmel beschlagnahmte und nach Frankreich führte.

Forschungsfrage: "Konnten die Ivenacker den Apfelschimmel Herodot vor dem Zugriff von Napoleon in der 1000-jährigen Eiche verstecken?"

Gehen Sie von einem radialen Wachstum der 1000-jährigen Eiche von 1.2mm pro Jahr aus. Es ist bekannt, dass die Eiche im Jahr 2022 einen Umfang von 10.5m in Brusthöhe hatte.

- Wie groß war der Durchmesser der Eiche im Jahr 1840 als Herodot in der Eiche versteckt werden sollte?
 (3 Punkte)
- 2. Skizzieren Sie in einer Abbildung einen linearen Zusammenhang und einen exponentiellen Zusammenhang für das Wachstum der 1000-jährigen Eiche. Erklären Sie die Auswirkungen der Entscheidung für linear oder exponentiell auf Ihre Berechnungen! (2 Punkte)

Herodot hatte eine Schulterhöhe von 190cm, eine Breite von 85cm sowie eine Länge von 230cm.

3. Berechnen Sie das effektive Volumen von Herodot in m^3 , welches Herodot in der 1000-jährigen Eiche einnehmen würde! (2 Punkte)

Es wurde berichtet, dass sich Herodot in der 1000-jährigen Eiche *bequem* um die eigene Achse drehen konnte.

- 4. Berechnen Sie die Dicke der Eichenwand in cm! Verdeutlichen Sie Ihre Berechnungen an einer aussagekräftigen Skizze für Pferd und Eiche! (3 Punkte)
- 5. Unter einer Dicke der Eichenwand von 15*cm* bricht die Eiche zusammen. Beantworten Sie die Forschungsfrage! Begründen Sie Ihre Antwort! (2 Punkte)