LABORATOR#8

INTERPOLARE CU FUNCȚII SPLINE

- $\mathbf{EX\#1}$ (a) Să se construiască în Python funcția $\mathbf{SplineLiniar}(f,a,b,n)$ care are ca date de intrare:
 - f funcția care este aproximată;
 - a, b capetele intervalului;
 - n numărul de subintervale $[x_j, x_{j+1}) \subset [a, b], j = \overline{1, n}$, de lungimi egale;
 - x punctul în care se evaluează funcția spline;

și care returnează:

- y valoarea funcției spline liniare în punctul $x \in [a, b]$, i.e. $y = S_j(x) = a_j + b_j(x x_j)$ pentru $x \in [x_j, x_{j+1}), j = \overline{1, n}$.
- (b) Fie $f(x) = e^{2x}$, a = -1, b = 1 şi n = 5. Reprezentaţi, în aceeaşi figură, graficele funcţiilor f şi S_j , $j = \overline{1, n}$, prin apelarea funcţiei SplineLiniar.
- $\mathbf{EX\#2}$ (a) Să se construiască în Python funcția $\mathbf{SplinePatratic}(f,a,b,n,df)$ care are ca date de intrare:
 - f funcția care este aproximată;
 - a, b capetele intervalului;
 - n numărul de subintervale $[x_j,x_{j+1})\subset [a,b],\,j=\overline{1,n},$ de lungimi egale;
 - x punctul în care se evaluează funcția spline;
 - df valoarea derivatei funcției f într-unul din capetele intervalului [a, b], i.e. df = f'(a), respectiv df = f'(b);

și care returnează:

- y valoarea funcției spline pătratice în punctul $x \in [a, b]$, i.e. $y = S_j(x) = a_j + b_j(x x_j) + c_j(x x_j)^2$ pentru $x \in [x_j, x_{j+1}), j = \overline{1, n}$.
- (b) Fie $f(x) = e^{2x}$, a = -1, b = 1 şi n = 5. Reprezentaţi, în aceeaşi figură, graficele funcţiilor f şi S_j , $j = \overline{1, n}$, prin apelarea funcţiei SplinePatratic.
- $\mathbf{EX\#3}$ (a) Să se construiască în Python funcția $\mathbf{SplineCubic}(f,a,b,n)$ care are ca date de intrare:
 - f funcția care este aproximată;
 - a, b capetele intervalului;
 - n numărul de subintervale $[x_j, x_{j+1}) \subset [a, b], j = \overline{1, n}$, de lungimi egale;
 - x punctul în care se evaluează funcția spline;

si care returnează:

- y valoarea funcției spline cubice în punctul $x \in [a,b]$, i.e. $y = S_j(x) = a_j + b_j(x-x_j) + c_j(x-x_j)^2 + d_j(x-x_j)^3$ pentru $x \in [x_j, x_{j+1}), j = \overline{1, n}$; în cazurile (i) S'(a) = f'(a) și S'(b) = f'(b), respectiv (ii) S''(a) = S''(b) = 0.
- (b) Fie $f(x) = e^{2x}$, a = -1, b = 1 şi n = 5. Reprezentaţi, în aceeaşi figură, graficele funcţiilor f şi S_j , $j = \overline{1,n}$, prin apelarea funcţiei SplineCubic în fiecare din cele două cazuri (i) şi (ii).