

Дисперсионный анализ

Центр биоэлектрических интерфейсов, 13 февраля 2019 г.

Денис Деркач, Влад Белавин

Оглавление

Мотивация

- > ранее, мы рассматривали одно- и двухвыборочные тесты (например, t-test);
- > что делать, если мы хотим сравнить сразу несколько выборок?

Мотивирующий пример

График слева: мы можем сказать, что средние, видимо, отличаются. Что мы можем сказать про график справа?

Мотивирующий пример

Иными словами, пришли ли семплы из одного распределения или из разных?

Обсуждение мотивирующего примера

- Эти два случая отличаются так как в первом случае данные внутри семпла не сильно вариьруются. Большая дисперсия отражает большую неопределенность в отношении значений истинных неизвестных средних.
- Необходимо сравнить дисперсию внутри группы с дисперсией между группами, для того, чтобы получить вывод о равенстве средних.

Тестирование гипотез: нулевая гипотеза

Сформулируем нулевую гипотезу:

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$.

Это сложная гипотеза, то есть она содержит в себе много парных и непарных простых (например $\mu_1=\mu_2$ или $\mu_2=\frac{\mu_1+\mu_3}{2}$).

NB: есть другие способы сформулировать нулевую гипотезу ANOVA.

Тестирование гипотез: альтернативная гипотеза

Сформулируем альтернативную гипотезу:

 $\rightarrow H_1$: $\mu_1
eq \mu_2$ или $\mu_2
eq \mu_3$ или $\mu_1
eq \mu_3$.

Заметим, что H_0 отвергается, если верна хотя бы одна из маленьких частных альтернативных гипотез (парных или комплексных).

NB: ANOVA не говорит какая.

Какой тест предпочесть?

Мы можем взять несколько попарных t-тестов, проверяя:

$$H_0: \mu_1 = \mu_2;$$

 $H_1: \mu_1 \neq \mu_2.$

$$H_0: \mu_2 = \mu_3;$$

 $H_1: \mu_2 \neq \mu_3.$

> и т.д.

Проблема. вероятность ошибки первого рода резко увеличивается/

TABLE 1: Probability of Committing at Least One Type I Error by Using Two-Sample *t* Tests for All *C* Pairwise Comparisons of *k* Means*

		Level of Significance, α , Used in the t Tests				
\boldsymbol{k}	\boldsymbol{C}	0.10	0.05	0.01	0.005	0.001
2	1	0.10	0.05	0.01	0.005	0.001
3	3	0.27	0.14	0.03	0.015	0.003
4	6	0.47	0.26	0.06	0.030	0.006
5	10	0.65	0.40	0.10	0.049	0.010
6	15	0.79	0.54	0.14	0.072	0.015
10	45	0.99	0.90	0.36	0.202	0.044
	∞	1.00	1.00	1.00	1.000	1.000

^{*}There are C = k(k - 1)/2 pairwise comparisons of k means. This is the number of combinations of k items taken two at a time.

Идея ANOVA

- > Заметим, что при верной $_0$ все группы получены из популяций с одинаковыми средним μ и дисперсией σ^2 .
- Давайте оценим дисперсию разными независимыми способами и сравним!
- Можем оценить исходя из вариативности внутри группы и вариативности между групп.

Вариативность между группами

Оценим σ^2 на основе дисперсии средних между группами (посчитаем ошибку среднего, как будто это выборочные средние, и из неё вычислим дисперсию):

$$s_{\bar{x}} = \frac{\sum_{j} (\bar{X}_j - \bar{\bar{X}})}{k - 1}$$

Тогда mean square between groups (MS_B):

$$MS_B = \frac{\sum_j (\bar{X}_j - \bar{\bar{X}}) n_j}{k - 1}$$

Количество степеней свободы при этом:

$$DF_B = k - 1,$$

где k — число групп.

Вариативность внутри группы

Mean square within groups = error MS

$$MS_W = \frac{s_1^2 + \ldots + s_k^2}{k}$$

Количество степеней свободы при этом:

$$DF_B = N - k$$
,

где k — число групп, N - полное число семплов.

F-статистика

$$F=rac{ ext{oценка дисперсии между группами}}{ ext{oценка дисперсии внутри групп}}=rac{MS_B}{MS_W}.$$

Тестирование H_0

- \rightarrow для заданных df рассчитывается критическое значение F;
- > на основе групп считается F и сравнивается с критическим значением;
- ightarrow если F больше критического $_0$ о равенстве средних в группах отвергается;
- >F это отношение дисперсий, оно имеет особое распределение, оно всегда положительно; ANOVA принципиально односторонний тест.

F-статистика

$$F=rac{ ext{oценка дисперсии между группами}}{ ext{oценка дисперсии внутри групп}}=rac{MS_B}{MS_W}.$$

Sum of squares

SS - это суммы квадратов отклонений (sum of squared deviations):

- > SSBetween сумма квадратов отклонений каждого среднего в группе от общего среднего = Effect;
- SSWithin сумма квадратов отклонений каждого измерения от среднего в соответствующей группе = Error;
- SSTotal сумма квадратов отклонений каждого измерения от общего среднего = Total.

При этом:

$$SS_T = SS_W + SS_B.$$

ANOVA достигнутый эффект

Для того, чтобы понять насколько значим полученный результат в тесте строят два типа переменных:

- $R^2 = \eta^2 = \frac{SS_B}{SS_T}$, чем выше R^2 , тем больше полученный эффект.
- $f=rac{s_{ar{x}}}{\sqrt{MS_W}}$, чем выше, тем больше полученный эффект.

Переменные ANOVA

Типы переменных:

- > Группирующая переменная, фактор (factor, predictor).
- > Зависимая переменная (dependent variable, response).

Мы пока разбираем случай с одним фактором (one-way). В ANOVA одна зависимая переменная, а факторов может быть несколько, и они могут составлять довольно сложные конструкции.

Дизайн эксперимента

Факторы могут быть двух видов:

- » fixed. Рассматриваются именно эти значения фактора. Другие значения не существуют или не интересуют. Пример: пол, время суток и тд.
- random. Рассматриваются случайно выбранные значения фактора из многих возможных. За пределами исследования существуют другие значения фактора. Пример: происхождение семпла, процент лекарства.

Для этих типов факторов по-разному оценивается межгрупповая изменчивость. Когда фактор один, это не важно, но в сложных моделях с несколькими факторами эти различия очень важны!

Допущения ANOVA

- Выборки должны быть случайными, измерения независимыми.
- > Размеры групп должны различаться как можно меньше.
- > Нормальность в каждой группе по отдельности.
- > Равенство дисперсий в группах.

Требование нормальности

Возможные проверки:

- > Сделать тест по методу моментов (Обычно достаточно проверить эксцесс и асимметрию).
- > Построить гистограмму распределения остатков ($x_i \bar{x}$) внутри каждого семпла (и проверить goodness-of-fit тесты).
- > Тест Шапиро-Уилка.

Тест Шапиро-Уилка

Критерий Шапиро-Уилка основан на оптимальной линейной несмещённой оценке дисперсии к её обычной оценке методом максимального правдоподобия. Статистика критерия имеет вид:

$$W = \frac{1}{s^2} \left[\sum_{i=1}^n a_{n-i+1} (x_{n-i+1} - x_i) \right]^2,$$

где $s^2=\sum_{i=1}^n(x_i-\overline{x})^2, \overline{x}=\frac{1}{n}\sum_{i=1}^nx_i$, а коэффициенты a_{n-i+1} берутся из таблиц.

На практике, следует проверять применимость таблиц в том или ином софте. Можно также использовать тест Шапиро-Франчиа.

Ненормальные данные

- > Если семплы достаточно большие, можно оставить как есть.
- > Провести преобразование к нормальным:
 - > стандартизовать распределение;
 - метод Бокса-Кокса.
- > Использовать непараемтрический ANOVA:
 - односторонний дисперсионный анализ Краскела—Уоллиса.

Метод Бокса-Кокса

Для последовательности: $\{y_1,\dots y_n\}$, $y_i>0$ однопараметрическое преобразование Бокса-Кокса с параметром λ определяется следующим образом:

$$y_i^{\lambda} = \begin{cases} \frac{y_i^{\lambda} - 1}{\lambda}, & \text{if } \lambda \neq 0, \\ \log(y_i), & \text{if } \lambda = 0. \end{cases}$$

Где λ - свободный параметр.

Требование равенства дисперсий

Для проверки можно:

- > Использовать тест Левена (Ливиня).
- > Использовать F-тест.
- > Построить зависимость остатков (residuals) от средних.

Тест Ливиня

Проверяет равенство дисперсий всех семплов.

$$W = \frac{(N-k)}{(k-1)} \cdot \frac{\sum_{i=1}^{k} N_i (Z_{i.} - Z_{..})^2}{\sum_{i=1}^{k} \sum_{j=1}^{N_i} (Z_{ij} - Z_{i.})^2},$$

Здесь Z может центрироваться на:

- > среднее выборки (для симметричных распределений);
- > медиану выборки (для асимметричных распределений);
- усечённое среднее выборки (для распределений с тяжёлыми хвостами).

В общем случае рекомендуют использовать медиану. Значение W затем сравнивается с соответсвующим F распределением.

Свойства ANOVA

- > Возможно провести one-way ANOVA в случае, если у нас в руках есть только средние значения, показатели разброса (SD, SE, s^2) и размер выборок (например, из какой-нибудь статьи).
- ightarrow В случае двух выборок ANOVA эквивалентна t-тесту.

Апостериорные (post-hoc) тесты

ANOVA не называет причину, по которой была отвергнута гипотеза H_0 . Потому используют апостериорные тесты:

- > Сначала сравнить все группы между собой с помощью ANOVA.
- > Если различия есть, использовать методы множественного сравнения (сравнивают группы попарно, сохраняя общую $\alpha=0.05$).
- > Если различий нет, анализ следует считать завершённым (и не проводить post-hoc тесты).

NB: проведение апостериорных тестов может испортить весь анализ.

Тест Тьюки

Он же honestly significant difference test (HSD test) or wholly significant difference test (WSD test).

- > Выстраиваем средние по выборке по возрастанию.
- > Строим статистику $q=\frac{Y_A-Y_B}{SE},$ где Y среднее (причём $Y_A>Y_B,$ SE стандартное отклонение.
- > Ищем значимость $q_{\alpha,N-k,k}$ для нужного $\alpha.$

Тест Тьюки

- Наиболее распространённый и рекомендуемый в литературе тест;
- > строго контролирует α (0.05);
- > проверяет все парные гипотезы сразу;
- > плохо работает, если размер групп сильно различается;
- > увствителен к неравенству дисперсий;
- > считает статистику (q) на основе MSwithin и df.

Другие post-hoc тесты

- Тьюки-Крамера, решает проблему теста Тьюки для неравных выборок.
- > Критерий Ньюмена-Кейлса. Все средние упорядочивают по возрастанию и пошагово вычисляют статистики; начинают от сравнения наибольшего с наименьшим. Сравнивают с $q_{\alpha,N-k,p}$, где p диапазон средних. Мощнее теста Тьюки, но плохо контрлирует ошибку 1-го рода.
- > Критерий Шеффе (Scheffe test) очень консервативный, мощность меньше, чем у теста Тьюки (но см. ниже).
- > Критерий Даннетта (Dunnett test) используется для сравнения нескольких групп с контрольной группой, мощнее, чем тест Тьюки. Размер контрольной группы рекомендуется делать больше, чем размеры остальных групп в $\sqrt{k-1}$ раз.

Failed post-hoc

Бывает так, что в ANOVA нулевая гипотеза отвергается, а пост-хок тесты не обнаруживают различий, так как их мощность ниже. В этом случае необходимо увеличивать размер выборки.

Анализ контрастов (planned comparisons)

- > Проводится вместо ANOVA.
- Важно: то, какие группы сравнивать, выбирают заранее, до проведения какого-либо анализа. В идеале — ещё при постановке исследования.
- > В тесте проверяется только одна гипотеза;
- Можно провести 2-3 таких теста в пределах одного «набора» групп, только надо следить, чтобы сравнения не сильно перекрывались, не были избыточными.
- > Мощнее post-hoc тестов.

Пример

У нас 4 группы тигров, их кормят: овощами; фруктами;рыбой; мясом.

Вопрос: отличается ли масса тигров, питающихся животной и растительной едой?

Построение контрастов

Контраст — линейная комбинация средних значений. Коэффициенты сравнения — константы, на которые умножены средние. Таким образом гипотезы формулируются:

$$H_0: \sum_i C_i \mu_i = 0;$$

$$H_1: \sum_i C_i \mu_i \neq 0.$$

При этом $\sum_i C_i = 0$.

Если тестируется несколько гипотез: $\sum_i C_{1,i}C_{2,i}=0$. В этом случае статистика строится: $t=\frac{\sum_i C_i \mu_i}{SE}$ и имеет t распределение.

Пример

У нас 4 группы тигров, их кормят: овощами; фруктами;рыбой; мясом.

Вопрос: отличается ли масса тигров, питающихся животной и растительной едой?

Мы строим контраст: $\frac{1}{2}\mu_1 + \frac{1}{2}\mu_2 - \frac{1}{2}\mu_3 - \frac{1}{2}\mu_4$.