CIRCUITO HAMILTONIANO

DEMOSTRACIÓN NP-COMPLETITUD DEL CIRCUITO HAMILTONIANO

Universidad de La Laguna

Curso 2016/2017

Problema del Circuito Hamiltoniano

CIRCUITO HAMILTONIANO (HC)

El problema del camino hamiltoniano consiste en encontrar un camino en un grafo dirigido o no dirigido, el cual visita cada vértice exactamente una vez. Si además el último vértice visitado es adyacente al primero, el camino es un ciclo(circuito) hamiltoniano.

¿Por qué es NP?

Existe una máquina de turing no determinista que lo resuelve en tiempo polinomial, sólo tiene que elegir n nodos (numero de nodos en el grafo) y despues comprobar que hay un arco desde cada nodo al siguiente y del ultimo hasta el primero.

$\mathsf{HC} \in \mathcal{NP}$

Se demostrará la NP-Completitud para el HC realizando una transformación polinomial desde el VC. $VC \propto HC$

¿En qué consiste el Vertex Cover?

El problema del Vertex Cover fue uno de los 21 problemas de NP-Completitud de Karp que hoy día se considera un problema clásico en la teoría de complejidad computacional. Dado un grafo G=(V,E), un VC es un conjunto de vértices (V') tal que cada una de las aristas es incidente en al menos uno de los vértices del conjunto.

Formalmente, V' es un subconjunto de V tal que $e=u,v\in E\Rightarrow u\in V'v\in V'$. El mínimo VC es aquel subconjunto V' que contenga el menor número de k-vértices necesarios que contenga a todas las aristas del grafo original.

Curso 2016/2017

Transformación polinomial

Sea una instancia arbitraria del problema VC dada por el grafo G=(V,E) con el entero positivo $K \leq |V|$. Construiremos un circuito hamiltoniano a partir de ésta dado por el grafo G'=(V',E').

Componentes (1)

Cada arista $e=u,v\in E$ del grafo G=(V,E) que describe la instancia en consideración del problema VC se convierte en una componente formada por 12 vértices, los cuales forman el conjunto V'_e tal que $V'_e=(u,e,i),(v,e,i):1\leq i\leq 6.$

Componentes (2)

El conjunto de aristas E_e^\prime que conectan los vértices de V_e^\prime entre sí se define del siguiente modo:

$$\begin{split} E'_e &= \{(u,e,i), (u,e,i+1), (v,e,i), (v,e,i+1) : 1 \leq i \leq 5 \\ \cup \{(u,e,3), (v,e,1), (v,e,3), (u,e,1)\} \\ \cup \{(u,e,6), (v,e,4), (v,e,6), (u,e,4)\} \end{split}$$

Tipos de componentes

Existen tres formas de recorrer una componente asociada a una arista $e=\{u,v\}\in E$ en el grafo G' del HC:

- ullet u pertenece al cubrimiento del problema de VC pero v no.
- ullet tanto u como v pertenecen al cubrimiento del problema de VC.
- ullet v pertenece al cubrimiento del problema de VC pero u no.

Unión de las componentes en G'

Dado el grafo G de la izquierda que describe una instancia del VC, la forma de conectar entre sí las componentes asociadas a cada arista de G se observa en la imagen de la derecha:

Vértices selectores

Además, al grafo G' han de añadirse K nuevos vértices denominados "vértices selectores" (representados en rojo en la imagen).

Unión de los vértices selectores con las componentes

Cada uno de los extremos de las componentes que quedan libres deben unirse con cada uno de los vértices selectores.

Obtener un HC

A partir del grafo anterior...

Cómo el grafo G' resuelve el VC

A partir del circuito hamiltoniano obtenido mediante la construcción del grafo G^\prime podemos obtener la solución al problema del VC original.

Fin

Gracias por su atención.