2 Relazioni

2.1 Definizione

Una relazione R tra due insiemi A,B è un insieme di coppie ordinate < a , b > con $a \subseteq A$, $b \subseteq B$.

La relazione R è un sottoinsieme del prodotto cartesiano $A \times B$.

$$R: A \times B = \{ \langle a, b \rangle : a \in A, b \in B \}$$

 $R \subseteq A \times B$

Si può alternativamente scrivere come aRb oppure R(a, b).

Caratteristiche delle relazioni:

- ullet dominio di R=Dom(R) : insieme degli elementi a tali che < a , $b> \subseteq R$ per qualche b
- ullet codominio di R=Codom(R) : insieme degli elementi $\,b\,$ tali che $\,< a\,$, $\,b> \,\in\, R\,$ per qualche $\,a\,$
- ullet campo di R= unione del domino e del codominio
- arietà di R = numero degli insiemi su cui la relazione è definita (quindi anche il suo numero di elementi o variabili indipendenti)

Relazioni n-arie

Una generica relazione n-aria è una relazione tra n insiemi. Ovvero un sottoinsieme del prodotto cartesiano degli insiemi $S_1 \times S_2 \times \ldots \times S_n$. Una relazione n-aria è definita quindi come un insieme di n-uple ordinate $< s_1, s_2, \ldots, s_n >$.

Relazione unaria

Una relazione definita su un solo insieme A.

$$R:A = \{ a \subseteq A : R(a) \}$$

L'insieme ${\it R}$ è composto dagli elementi che godono della proprietà di appartenere all'insieme ${\it A}$.

2.2 Proprietà delle relazioni

Riflessività

$$\forall x \in Dom(R) : xRx$$

(< x , x > $\subseteq R$)

Irriflessività

$$\forall x \in Dom(R) : K x$$

(< x , x > $\in R$)

Una non esclude l'altra. Esistono relazioni né riflessive né irriflessive.

Simmetria

$$\forall x, y \in Dom(R) : xRy \Rightarrow yRx$$

 $(\langle x, y \rangle \in R \Rightarrow \langle y, x \rangle \in R)$

Asimmetria

$$\forall x, y \in Dom(R) : xRy \Rightarrow_{\mathbf{R}} x$$

 $(\langle x, y \rangle \in R \Rightarrow \langle y, x \rangle \notin R)$

Antisimmetria

$$\forall x, y \in Dom(R) : xRy \land yRx \Rightarrow x=y$$

$$(\langle x, y \rangle \subseteq R \land \langle y, x \rangle \subseteq R \Rightarrow x=y)$$

Una non esclude l'altra

Transitività

$$\forall x, y, z \in Dom(R) : xRy \land yRz \Rightarrow xRz$$
$$(\langle x, y \rangle \subseteq R \land \langle y, z \rangle \subseteq R \Rightarrow \langle x, z \rangle \subseteq R)$$

Intransitività

$$\forall x, y, z \in Dom(R) : xRy \land yRz \Rightarrow x z$$

$$(\langle x, y \rangle \in R \land \langle y, z \rangle \in R \Rightarrow \langle x, z \rangle \notin R)$$

Sono mutualmente esclusive tra loro.

Chiusura Transitiva

Bisogna controllare per ogni coppia di coppie la loro transitività.

Ovvero si deve controllare che la relazione abbia come dominio **esattamente** tutte le possibili permutazioni e nessun'altra coppia.

Esempio:

$$R: A \times B$$
 $A = \{1, 2, 3\}$ $B = \{1, 2, 3\}$
 $R = \{<1, 1>, <2, 2>, <3, 3>, <1, 2>, <1, 3>, <2, 1>, <2, 3>, <3, 1>, <3, 2>\}$

 ${\it \it R}$ rispetta la chiusura transitiva.

2.3 Relazione di equivalenza / identità

Una relazione binaria è detta di equivalenza o d'identità se valgono le seguenti proprietà:

- \bullet $R:A\times A$
- riflessiva:

ogni elemento di A è in relazione con sé stesso

$$(\forall a, a \in A)$$

si indica con $a^{\sim}a$ oppure aRa

• simmetrica:

presi due elementi $oldsymbol{a}$, $oldsymbol{b}$ di $oldsymbol{A}$ qualsiasi,

se a è in relazione con b allora b è in relazione con a

si indica con $a{^{\sim}}b\Rightarrow b{^{\sim}}a$ oppure $aRb\Rightarrow bRa$

• transitiva:

presi tre elementi $oldsymbol{a}$, $oldsymbol{b}$, $oldsymbol{c}$ di $oldsymbol{A}$ qualsiasi,

se a è in relazione con b e b è in relazione con c, allora a è in relazione con c

si indica con $a{^\sim}b$ \wedge $b{^\sim}c$ \Rightarrow $a{^\sim}c$ oppure aRb \wedge bRc \Rightarrow aRc

2.4 Funzioni

Le funzioni sono particolari tipi di relazioni.

Per cui tutte le funzioni sono relazioni, ma non tutte le relazioni sono funzioni.

Una funzione $f: X \to Y$ è una relazione $f: \subseteq X \times Y$ tale che $\forall x \subseteq X$, $\exists y$ unico per cui $\langle x, y \rangle \subseteq f$.

Una funzione(propriamente detta) è definita per tutti gli elementi del suo dominio (cioè è totale) ed associa a ogni elemento del dominio uno e un solo elemento unico del codominio.

Una funzione(propriamente detta) è quindi biiettiva (e quindi è anche invertibile).

Se $x \in X$ è nel dominio di f allora si dice che f(x) è definito oppure che f è definita in x.

Dominio, codominio e immagine

Data una funzione $f: X \to Y$

Dominio: Dom(f) = X.

Codominio: Codom(f) = Y.

 $Codom(f) \supseteq Im(f)$.

 $\frac{\mathsf{Immagine}}{\mathsf{Im}}: Im(f) = Y.$

 $Im(f) \subseteq Codom(f)$

La differenza tra Im(f) e Codom(f) è che il codominio è sempre dato e già definito, mentre l'immagine può essere calcolata a partire dal codominio e dalle leggi che regolano la funzione.

Funzione totale e parziale

Data una funzione $f: X \to Y$

Se il dominio di f coincide con X allora si dice totale.

Se il dominio di f non coincide con X allora si dice parziale.

Funzione iniettiva

Data una funzione $f: X \to Y$

Se $\forall x_1, x_2 \subseteq X$ con $x_1 \neq x_2$, risulta che $f(x_1) \neq f(x_2)$, allora si dice iniettiva.

Ovvero ogni elemento di X produce almeno un elemento unico in Y. (ogni elemento di X ha almeno un immagine in Y).

Funzione suriettiva

Data una funzione $f: X \to Y$

Se $\forall y \in Y$, $\exists x \in X$ tale che f(x) = y, allora si dice suriettiva. Equivale a dire che f(X) = Y oppure che Im(f) = Codom(f).

Ovvero ogni elemento di Y è prodotto da almeno un elemento di X. (ogni elemento di Y ha almeno una controimmagine in X).

Funzione biiettiva / biunivoca

Data una funzione $f: X \to Y$

Si dice bijettiva se è sia injettiva sia surjettiva.

Funzione composta

Date due funzioni f , $oldsymbol{g}$

si dice funzione composta $f \circ g$ oppure f(g(x)).

Se $f: X \to Y$ e $g: Y \to Z$

allora $f \circ g : X \to Z$.

Ovvero la funzione composta può essere calcolata solamente se

 $Im(g) \subseteq Dom(f)$.

Funzione invertibile

Data una funzione $f: X \to Y$

si dice **invertibile** se è biiettiva.

La funzione inversa è $f^{-1}: Y \to X$.

Se f(x) = y allora $f^{-1}(y) = x$.

Esempio:

$$\boldsymbol{f}: \mathbb{R} \to \mathbb{R} = (2x+8)^3$$

$$y = (2x + 8)^{3}$$

$$\sqrt[3]{y} = 2x + 8$$

$$\sqrt[3]{y} - 8 = 2x$$

$$\frac{1}{2}(\sqrt[3]{y} - 8) = x$$

$$f^{-1}: \mathbb{R} \to \mathbb{R} = \frac{1}{2}(\sqrt[3]{y} - 8)$$

2.4 Operazioni

Le operazioni sono particolari tipi di funzioni, dove gli argomenti e l'elemento prodotto appartengono tutti allo stesso insieme. Sono quindi quelle funzioni del tipo $R:A\to A$.

Esempio:

 $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} =$ la funzione somma sui numeri naturali

 $Dom(+) = \mathbb{N} \times \mathbb{N}.$

 $Codom(+) = \mathbb{N}.$

 $Im(+) = \mathbb{N}$.

Im(+) = Codom(+). Infatti l'operatore + è una funzione suriettiva