Lab session 10:

Voxel-wise modeling (within-subject)

Andrew Bauer 03/30/16

Session no.	Date (all Wednesday)	Topic/activity	Topic of quiz that day	Topic of lab write-up (assignment) due that day
1	13-Jan	Lab overview		
2	20-Jan	Brain anatomy		
3	27-Jan	Data preprocessing	Brain anatomy (no. 1)	
4	3-Feb	Set up GLM model	Functional brain anatomy (no. 2)	
5	10-Feb	Single-subject SPM contrasts	Data preprocessing and GLM model (no. 3)	Brain anatomy (no. 1)
6	17-Feb	Within-subject MVPA		Single-subject SPM contrasts (no. 2)
7	24-Feb	SIBR tour and review for mid-term exam		Within-subject MVPA (no. 3)
No lab	2-Mar	No lab (mid-term exam)		
No lab	9-Mar	No lab (spring break)		
8	16-Mar	Group-level SPM contrasts		
9	23-Mar	Between-subjects MVPA		Group-level SPM contrasts (no. 4)
10	30-Mar	Voxel-wise modeling		Between-subjects MVPA (no. 5)
11	6-Apr	Functional connectivity analysis (no assignment)		
12	13-Apr	Review for final exam		Voxel-wise modeling (no. 6)
No lab	20-Apr	No lab		
No lab	27-Apr	No lab (final exam)		

Upon successful completion of this lab course, you should be able to...

- Process raw fMRI data in preparation for statistical data analysis;
- Visualize brain activation to discover which brain regions are active, or inactive, in a given cognitive or behavioral task;
- Conduct "mind-reading" to infer what a person is thinking about based on distributed brain activation patterns; and
- Predict the brain activation pattern associated with thinking about a specific concept (the inverse of "mind-reading")
 - If we can make precise predictions, then we could be on the right track to an understanding of the phenomenon
 - (E.g. the ability of physics to make precise quantitative predictions, a hallmark of success in science)

Predictive voxel-wise modeling

- Predict the multi-voxel activation pattern of a concept... based on a model of how different voxels encode the concept's features
 - E.g. house: is used for shelter, is made of wood or brick, etc.

How & why do voxel-wise modeling?

- We first estimate a model of how each voxel responds to a set of features that define object concepts
 - E.g. one particular voxel activates to thinking about motion (one possible feature), but not about color (another feature)
- We can then predict the brain activation pattern of a concept based on:
 - The feature decomposition of that concept
 - The estimated model of how each voxel responds to these features
- This analysis determines:
 - What types of information (features) of concepts are represented in the brain
 - Where these features are represented in the brain

Step 1: Break down a concept into constituent features (e.g. recruit subjects to)

HOUSE

Used for shelter

Is warm

Is large

Rectangular shaped

Made of wood

Step 2: Categorize the features

HOUSE

Used for shelter Function

Is warm Tactile

Is large Visual surface

Rectangular shaped Visual surface

Made of wood Visual surface

Step 3: Weight each feature category (based on proportion its features)

HOUSE

Function	1/5
Tactile	1/5
Visual surface	3/5

We are using the set of feature categories called the *Brain Region Encoding Scheme*; this includes primarily sensorimotor feature categories (useful in defining object concepts)

Cree and McRae (2003)'s Brain Region (BR) Encoding Scheme

Class	Feature Category	Example	(Chang Mitchell Just, 201
Visual	Visual color	Celery <is green=""></is>	
	Visual form and surface properties	House <is bricks="" made="" of=""></is>	
	Visual motion	Cow <eat grass=""></eat>	
Other primary	Smell	Barn <is smelly=""></is>	
sensory-processing	Sound	Cat < behavior—meows>	
	Tactile	Bed <is soft=""></is>	
	Taste	Corn <tastes sweet=""></tastes>	
Functional	Function	Hammer <used< td=""><td></td></used<>	
		for pounding>	
Miscellaneous	Taxonomic	Skirt < clothing>	
	Encyclopedic	Car < requires gasoline>	9

After defining concepts by constituent features...

Step 4: Run subjects in the scanner, asking them to think about the concepts

Step 5: Estimate how each of *n* feature categories affects a voxel's activation, using training data

(multiple linear regression) (E.g. the 1/5 and 3/5 weights for "house" in Step 3) f(w): Weight of feature category i for word w $\beta_{vi}f_i(w) +$ **Total** The error activation effect (β) of ("leftover of voxel v feature category activation") of i on voxel v voxel v

- Initially known (i.e. before doing regression)
- Initially unknown (but computed using regression)

Step 6: Plug the estimated beta values and feature category weights into the regression equation to predict the activation pattern of each TEST concept; then evaluate predictions

Voxel-wise modeling is often called generative (vs. discriminative) classification

 It can generate/predict the activation pattern for any unseen concept, as long as the concept can be decomposed into the model's feature categories

Generative classifier

TRAIN on:

Car Hammer

Apple

TRAINING stimuli

can be ≠

TEST stimuli

TEST on:

House

Cow

Tree

Discriminative classifier (MVPA)

TRAIN on:

Car Hammer Apple TRAINING stimuli

must be =

TEST stimuli

TEST on:

Car

Hammer

Apple

Generative generalizes better than discriminative ... so it is probably capturing truer activation patterns

Summary: Generative vs. discriminative classification approaches to studying multi-voxel activation patterns

Discriminative

- Does not model feature encodings of concepts
- High classification accuracy can result from overfitting data ← no model of constituent features to "guide" classification
- Still useful in determining where in the brain there are multi-voxel neural representations of concepts
- Generative (i.e. predictive voxel-wise modeling)
 - Does model feature encodings of concepts
 - Generally truer results (lower classification accuracy, but less overfitting)
 - This analysis determines:
 - What types of information (features) of concepts are represented in the brain
 - Where these features are represented in the brain

Voxel-wise modeling in fMRI vision research

- 1. Estimate how each voxel encodes colors, shapes, etc., using training data
- 2. Reconstruct the images seen in a movie (test data) based on the estimated model

Real images seen in movie

(Nishimoto et al., 2011)

Start Matlab 2012b (on desktop, or type "matlab" in Start menu to find it) NOTE: You MUST select Matlab 2012b, do NOT select 2014b

1: Select Add with Subfolders again

1: Go to the Matlab Command Window and type:

cd C:/Users/Public/lab_85_429_2016/session10

...(OR navigate there using the browser)

2: See the next slide for remaining instructions

Assignment instructions

- Problem 1: Run script "do_VM_accuracy", which you do not edit
 - Just type do_VM_accuracy in Matlab command prompt and press the enter/return key
- Other problems ask you to run the "do_VM_activations" script, which you also do not edit
 - do_VM_activations in Matlab command prompt
 - You will then be asked to type an object concept name
- Use xjview to view resulting observed and predicted activation patterns; these files are found in folder "voxelwiseModel_results"
 - Files are named either "observed" or "predicted" and by the object concept
 - Use these xjview parameters always whenever you load a file
 - Select "Old" (not "New") and checkmark next to "Render"
 - pThreshold: 1
 - Voxel cluster size: 2
 - Toggle "Only +", not "All" or "Only -"

(NOTE: You may need to squint at the monitor to see xjview activation!)

- This is all the guidance/information that you should need to do this session's assignment
- If you must restart MATLAB for whatever reason, after you restart MATLAB <u>be sure to set the paths again (just our lab folder)</u> and <u>cd</u> <u>back to the "session10" directory</u> (see beginning slides)
- See the slides below for any needed help with orientation terms and planes, brain anatomy, and general functional neuroanatomy

Brain partitioned into four lobes

(... plus some extra regions)

NOT "lobes": Some subcortical brain regions & cerebellum

Orientation terms and planes

We are using the Automated Anatomical Labeling (AAL) atlas in this lab (very similar to the atlases of your two quizzes)

Lateral gyri and sulci Precentral gyrus Postcentral gyrus Central sulcus Dorsal / Superior (thick blue line) Primary motor area (M1) Superior parietal lobule Supplementary motor area Inferior parietal lobule: Premotor area Supramarginal gyrus Angular gyrus Dorsolateral prefrontal cortex (Includes some middle and superior frontal gyri) Lateral occipital gyrus Rostral / Caudal/ Anterior **Posterior** Lateral occipital gyrus Frontal pole Inferior frontal gyrus Orbital gyrus-Temporal pole Cerebellum Superior temporal gyrus Middle temporal gyrus Inferior temporal gyrus Sylvian fissure (or "lateral sulcus") Ventral / Inferior (thick yellow line)

Medial gyri (some redundancy w/previous slide)

General functional neuroanatomy

References

Chang, K. K., Mitchell, T., & Just, M. A. (2011). Quantitative modeling of the neural representation of objects: how semantic feature norms can account for fMRI activation. *NeuroImage*, *56*(2), 716–27. doi:10.1016/j.neuroimage.2010.04.271

Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B., & Gallant, J. L. (2011). Reconstructing visual experiences from brain activity evoked by natural movies. *Current Biology: CB*, *21*(19), 1641–6. doi:10.1016/j.cub.2011.08.031