Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Лабораторна робота №3 з дисципліни «Комп'ютерна електроніка» на тему «Дослідження біполярного транзистора у ключовому режимі для схеми с загальною базою» Варіант №3

Виконав: студент ННІКІТ СП-225 Клокун Владислав Перевірив: Андрєєв О. В.

Київ 2017

1 Мета та основні завдання роботи

- 1. Закріпити теоретичні знання з фізики процесів, що відбуваються в біполярному тразисторі, який працює в ключовому режимі.
- 2. Набути практичних навичок у визначенні основних параметрів перехідних процесів.
- 3. Вивчити процеси, що відбуваються у біполярному транзисторі у ключовому режимі.
- 4. Вивчити, від чого залежить час увімкнення й вимкнення біполярного транзистора.

2 Принципова схема віртуальної лабораторної установки

Принципова схема віртуальної лабораторної установки для дослідження біполярного транзистора у ключовому режимі зображена на рис. 1.

Рис. 1: Принципова схема віртуальної лабораторної установки

3 Хід роботи

Вмикаємо біполярний транзистор за схемою з загальною базою. Для цього встановлюємо перемикач SA1 у верхнє положення. Відключаємо діод, встановивши перемикач SA2 у верхнє положення. Вмикаємо осцилограф та встановлюємо на ньому такі режими і масштаби:

Time Base 0,2 μs/div Y/T; Auto Channel A 20 V/div DC Channel B 5 V/div DC

Вмикаємо функціональний генератор та налаштовуємо його на генерацію прямокутних імпульсів. Встановлюємо такі налаштування:

Frequency 1 MHz Duty cycle 50% Amplitude 13,3 V

Запускаємо віртуальну установку на моделювання. На екрані осцилографа з'явилась часова діаграма вхідної і вихідної напруг транзистора. Призупиняємо моделювання і вимірюємо амплітуди вхідного імпульсу: $U_{\rm E}=13,3~{\rm B}$ та вихідного імпульсу: $U_{\rm K}=10~{\rm B}$. Амплітуда вихідного імпульсу близька за значенням до напруги $E_{\rm K}=10~{\rm B}$ — транзистор знаходиться в *режимі насичення*. За допомогою візирних ліній визначаємо часові параметри з діодом і без.

Параметр	Значення		Параметр	Значення
$t_{ m 3T}$	0 нс	_	t_{3T}	0 нс
$t_{ m HP}$	1 нс		$t_{ m HP}$	17 нс
$t_{ m P}$	0,35 нс		$t_{ m P}$	0,55 нс
$t_{ m C\Pi}$	3,3 нс	_	t_{CII}	22 нс
(а) 3 вимкненим ліолом		(б) З ввімкненим ліолом		

Табл. 1: Часові параметри біполярного транзистора, підключеного за схемою с загальною базою при $U_{\rm E}=13{,}3~{\rm B}$

За отриманими часовими параметрами рахуємо $t_{\rm BBIMK}$ і $t_{\rm BUMK}$:

$$t_{\rm BBIMK} = t_{\rm 3T} + t_{\rm HP} = 1 \,\mathrm{Hc}, \quad t_{\rm BMMK} = t_{\rm P} + t_{\rm CII} = 3.7 \,\mathrm{Hc}.$$

Для ввімкненого діода:

$$t_{\rm BBIMK} = t_{\rm 3T} + t_{\rm HP} = 17 \, {\rm Hc}, \quad t_{\rm BWMK} = t_{\rm P} + t_{\rm CII} = 22,6 \, {\rm Hc}.$$

Рис. 2: Часова діаграма вхідної і вихідної напруг для $U_{\rm E}=13{,}3~{\rm B}$ з вимкненим діодом

Рис. 3: Часова діаграма вхідної і вихідної напруг для $U_{\rm E}=13,\!3$ В з ввімкненим діодом

Відключаємо діод. На функціональному генераторі встановлюємо амплітуду вхідних імпульсів рівну $U_{\rm BX}=16,3$ В. При цьому амплітуда вихідних імпульсів зменшилась. Біполярний транзистор знаходиться в активному режимі. За допомогою візирних ліній визначаємо часові параметри.

		_		
Параметр	Значення		Параметр	Значення
$t_{ m 3T}$	0 нс		$t_{ m 3T}$	0 нс
$t_{ m HP}$	1 нс		$t_{ m HP}$	15 нс
$t_{ m P}$	0,4 нс		$t_{ m P}$	0,6 нс
$t_{ m C\Pi}$	3,2 нс		$t_{ m C\Pi}$	21 нс
(а) З вимкненим діодом			(б) З ввімкню	еним діодом

Табл. 2: Часові параметри біполярного транзистора, підключеного за схемою с загальною базою при $U_{\rm E}=10{,}3~{\rm B}$

За отриманими часовими параметрами рахуємо $t_{\rm BBIMK}$ і $t_{\rm BUMK}$:

$$t_{\rm BBIMK} = t_{\rm 3T} + t_{\rm HP} = 1 \, {\rm Hc}, \quad t_{\rm BMMK} = t_{\rm P} + t_{\rm CH} = 3.6 \, {\rm Hc}.$$

Для ввімкненого діода:

$$t_{\rm BBIMK} = t_{\rm 3T} + t_{\rm HP} = 15 \, {\rm Hc}, \quad t_{\rm BWMK} = t_{\rm P} + t_{\rm CII} = 20,4 \, {\rm Hc}.$$

Відключаємо діод. На функціональному генераторі встановлюємо амплітуду вхідних імпульсів рівну $U_{\rm BX}=16,3~{\rm B}.$ При цьому амплітуда вихідних імпульсів зменшилась. Біполярний транзистор знаходиться в режимі глибокого насичення. За допомогою візирних ліній визначаємо часові параметри.

Параметр	Значення	Параметр	Значення	
$t_{ m 3T}$	0,9 нс	$t_{ m 3T}$	62 нс	
$t_{ m HP}$	1,8 нс	$t_{ m HP}$	52 нс	
$t_{ m P}$	0,4 нс	$t_{ m P}$	0,5 нс	
$t_{ m C\Pi}$	2 нс	$t_{ m C\Pi}$	17 нс	
(а) З вимкненим діодом		(б) З ввімкн	(б) 3 ввімкненим діодом	

Табл. 3: Часові параметри біполярного транзистора, підключеного за схемою с загальною базою при $U_{\rm E}=16,3~{\rm B}$

За отриманими часовими параметрами рахуємо $t_{\text{ВВІМК}}$ і $t_{\text{ВИМК}}$:

$$t_{\rm BBIMK} = t_{\rm 3T} + t_{\rm HP} = 2.7 \, {\rm Hc}, \quad t_{\rm BWMK} = t_{\rm P} + t_{\rm CII} = 2.4 \, {\rm Hc}.$$

Рис. 4: Часова діаграма вхідної і вихідної напруг для $U_{\rm E}=10{,}3~{\rm B}$ з вимкненим діодом

Рис. 5: Часова діаграма вхідної і вихідної напруг для $U_{\rm E}=10{,}3~{\rm B}$ з ввімкненим діодом

Для ввімкненого діода:

$$t_{
m BBIMK} = t_{
m 3T} + t_{
m HP} = 134\,{
m Hc}, \quad t_{
m BИMK} = t_{
m P} + t_{
m C\Pi} = 17,5\,{
m Hc}.$$

4 Висновки

Рис. 6: Часова діаграма вхідної і вихідної напруг для $U_{\rm E}=16,3~{\rm B}$ з вимкненим діодом

Рис. 7: Часова діаграма вхідної і вихідної напруг для $U_{\rm E}=16,\!3$ В з ввімкненим діодом