0) 자료의 형태

A-type(2강의)

1.0	U		
남자 키	여자 키		
179	158		
168	165		
170	160		
180	160		
174	160		
168	170		
	153		

B type(3강의)

gender	height	
		9
	1 16	8
	1 17	0
3	2 15	8
	2 16	5
	1 18	0
ŝ	1 17	4
	2 16	0
- 4	1 16	8
ŝ	2 16	0
8	2 17	0
	2 15	3

B. 자료의 형태 (B-type)

B-1. 정규모집단, 등분산인 경우 (R 제공)

(2) 자료2 - 두가지 배양법에 대한 질소성분함량

method = c (1, 1, 1, 1, 1, 2, 2, 2, 2) # 자료입력 2

x = c (19.1, 32.8, 27.6, 25.9, 28.5, 17.0, 16.4, 16.8, 15.5)

t.test(x~method, var.equal = T) # 양전자료~그룹자료 순으로 $H_1: \mu_1 \neq \mu_2$

Two Sample t-test

data: x by method

t = 4.0647, df = 7, p-value = 0.004781

alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:

4.331008 16.378992 sample estimates:

mean in group 1 mean in group 2 26.780 16.425

해석:

추정

: 방법1의 평균 질소성분함량은 26.78, 방법2의 평균 질소성분함량은 16.46이며, 방법1과 방법2의 평균 질소성분함량차에 대한 95% 신뢰구간은 (4.33, 16.4)이다.

• 가설검정

- ① 가설 H_0 : 방법1과 방법2의 평균 질소성분함량은 같다. H_1 : 방법1과 방법2의 평균 질소성분함량은 다르다.
- ② 유의수준 α=0.05
- ③ 검정통계량 T값 = 4.0647
- ④ P값 = 0.0047 < α => H 를 기각
- ⑤ 결론 : 유의수준 5%에서 방법1과 방법2의 평균 질소성분함량은 다르다고 할 수 있다. 방법1의 평균 질소성분함량(26.78)이 방법2의 평균 질소성분함량(16.37)보다 크다고 할 수 있다.

B-2. 정규모집단, 등분산이 아닌 경우(이분산) (R 제공)

t.test(x~method)

```
Welch Two Sample t-test
data: x by method
t = 4.5889, df = 4.1769, p-value = 0.00913
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval: 4.193073 16.516927
sample estimates:
mean in group 1 mean in group 2
          26.780
                           16.425
```

B-3. 이표본 분산비 F-Test (R 제공)

var.test(x~method)

data: x by method

```
F test to compare two variances
F = 56.287, num df = 4, denom df = 3, p-value = 0.00748
alternative hypothesis: true ratio of variances is not equal to 1
```

$H_1: \sigma_1^2 \neq \sigma_2^2$

3.727375 561.699204 sample estimates: ratio of variances

95 percent confidence interval:

56.28701

해석:

• 가설검정

- ① 가설 H₀: 방법1과 방법2의 분산은 같다.
 - H, : 방법1과 방법2의 분산은 다르다.
- ② 유의수준 α = 0.05
- ③ 검정통계량 F값 = 56.287
- ④ P값 = $0.00748 < \alpha \Rightarrow H_0$ 를 기각
- ⑤ 결론 : 유위수준 5%에서 방법1과 방법2의 분산은 다르다고 할 수 있다.

=> 이표본 T-Test에서 이분산 가정 적용(B-2)

B-4. 이표본 T-Test (독립표본) (R 프로그래밍)

[NOTE] B-type => A-type 변환

```
method = c ( 1, 1, 1, 1, 1, 2, 2, 2, 2 )

x = c ( 19.1, 32.8, 27.6, 25.9, 28.5, 17.0, 16.4, 16.8, 15.5)

x1 = rep(0, length(method)); x1

x2 = rep(0, length(method)); x2

for ( i in 1 ; length(x)) {

    if ( method[i] < 2) x1[i] = x[i]

    else    x2[i] = x[i]

}

x1

x2

x1 = x1[ x1 > 0.01]

x1

x2 = x2[ x2 > 0.01]

x2
```

```
B-type: 이표본 T-Test (독립표본) (R 프로그래밍)
 T_test_2B = function(data , group) {
                                    # 자료 변환
 x = rep(0, length(group))
 y = rep(0, length(group))
 for ( i in 1 : length(group)) {
    if (\text{group}[i] \le 2) \times [i] = \text{data}[i]
    else y[i] = data[i]
 }
  x = x[x \ge 0.01]; y = y[y \ge 0.01]
 n1 = length(x) : n2 = length(y)
                                         # 등분산 건정
 s1 = var(x); s2 = var(y)
 F = s1 / s2
 pvalue = min(2*pf(F, n1-1, n2-1), 2*(1 - pf(F, n1-1, n2-1)))
 cat( " ========", "\n", "\n", "\n")
               F = ", F, ", P - value = ", pvalue, "\n", "\n")
 cat( "
                                               # 등분산인 경우 t-test
 xbar = mean(x) ; ybar = mean(y)
 sp = sqrt ( ( (n1 - 1) * s1 + (n2 - 1) * s2 ) / ( n1 + n2 - 2) )
 T = (xbar - ybar) / (sp * sqrt (1/n1 + 1/n2))
 pvalue = 2 * (1 - pt(abs(T), n1 + n2 - 2))
 cat( " ========", "\n", "\n", "\n")
 cat( " 등분산인 경우 : T = " , T, " , P - value = " , pvalue , "\n")
 df = (s1/n1 + s2/n2)^2 / ((s1/n1)^2 / (n1 - 1) + (s2/n2)^2 / (n2 - 1))
                                               # 이분사이 경우 t-test
 T = (xbar - ybar) / sqrt (s1/n1 + s2/n2)
 pvalue = 2 * (1 - pt(abs(T), df))
 cat( " 이분산인 경우 : T = " , T, " , P - value = " , pvalue , "\n")
 T_{\text{test}}_{2B(x, \text{ method})}
 ======= 이표본 분산비 검정 =========
         F = 56.28701 , P - value = 0.007479745
 ====== 이표본 평균차 검정 ========
등분산인 경우 : T = 4.064694 , P - value = 0.004781153
이분산인 경우 : T = 4.58886 , P - value = 0.009129666
```

[NOTE] SPSS

# method			
1.00	19.10		
1.00	32.80		
1.00	27.60		
1.00	25.90		
1.00	28.50		
2.00	17.00		
2.00	16.40		
2.00	16.80		
2.00	15.50		

	독립표본 검정									
		Levene의	등분산 검정	평균의 동일성에 대한 T 검정						
		F	유의확률) t	자유도	유의확률 (양 축)	평균차이	표준오차 차이	차이의 95 하한	% 신뢰구간 상한
x	동분산을 가정함	3.265	.114	4.065	7	.005	10.35500	2.54755	4.33101	16.37899
	동분산을 가정하지 않음	_	_	4.589	4.177	.009	10.35500	2.25655	4.19307	16.51693

[NOTE] R에서 Levene Test(참고만)

install.packages("lawstat")

library(lawstat)

levene.test(x, method)

디폴트 median base

Modified robust Brown-Forsythe Levene-type test based on the absolute deviations from the median

data: x
Test Statistic = 2.3939, p-value = 0.1657

levene.test(x, method, location = c("mean")) # mean base

Classical Levene's test based on the absolute deviations from the mean (none not applied because the location is not set to median)

data: x
Test Statistic = 3.265, p-value = 0.1137

(3) 우리자료

var.test(height~gender)

H₁: $\sigma_1^2 \neq \sigma_2^2 \Rightarrow 등분산$

 $t.test(height\sim gender, var.equal = T)$

T_test_2B(height, gender)

error ---

gender

LINI, OAN error ---

gender <- data\$gender

CHAI gender를 불러들이

T_test_2B(height, gender)

[과제24] (여러분은 따라서 해보시고, 아래 실습문제를 과제로 제출하시길)

- 과제방법 :
 - ① R에서 제공 결과 => 결과분석
 - ② R 프로그래밍 결과 => ①의 결과와 같음을 확인

[실습3] 우리자료 : 성별에 따라 몸무게에 차이가 있는지 검정하시오.

[실습4] 우리자료 : 성별에 따라 BMI에 차이가 있는지 검정하시오.

첨부파일 : 학번이름24.hwp (예 : 20192260홍길동24.hwp)