SH7000 Series 32-Bit RISC Embedded Controller

HITACHI

PMH11TO002D2 Rev 1.2 January 16, 1997

Overview

The SH7000 series is a reduced instruction set computer (RISC) in which a Hitachi-original CPU and the peripheral functions required for system configuration are integrated onto a single chip.

The CPU has a RISC-type instruction set. Most instructions can be executed in one clock cycle, dramatically improving instruction execution speed. In addition the CPU has a 32-bit internal architecture for enhanced data-processing ability. As a result, the SH7020/SH7021 enable high-performance systems to be constructed with advanced functionality at low cost, even in applications such as real-time control that require operations at very high speeds.

This SH microcomputer includes peripheral functions such as large-capacity ROM, RAM, a direct memory access controller (DMAC), timers, serial communication interface (SCI), an interrupt controller, and I/O ports. External memory access support functions enable direct interface to PSRAM and DRAM. These features can drastically reduce system cost.

Features

- 20 MHz at 5 V, 12.5 MHz 3.3 V
- SH7020: 16-kbyte ROM with 1-kbyte RAM
- SH7021: 32-kbyte ROM/EPROM with 1-kbyte RAM
- RISC Central Processing Unit (CPU)
 - 32-bit internal data paths/16-bit external data paths
 - 16-bit fixed instruction set
 - Five-stage pipeline
 - Load/store register architecture
 - RISC instruction set optimized for C language
 - Sixteen 32-bit general registers, three 32-bit control registers, and four 32-bit system registers
- On-chip multiply and accumulate unit
 - Multiplication ($16 \times 16 \rightarrow 32$) executed in 1 to 3 cycles (50 ns to 150 ns)
 - MAC $(16 \times 16 + 42 \rightarrow 42)$ executed in 2 to 3 cycles (100 ns to 150 ns)
- Processing states:
 - Power-on-reset/manual reset
 - Exception processing

- Program execution
- Power-down
- Bus-released
- Bus State Controller (BSC)
 - Supports interface to PSRAM, DRAM, ROM, and peripheral I/O
 - DRAM refresh and burst access functions
 - One-stage write buffer for improved system performance
 - 16/8-bit bus width for addressing options
 - Number of wait states variable
- Four-channel Direct Memory Access Controller (DMAC)
 - DMA transfers between on-chip or external memory, I/O and peripheral modules
 - Selectable priorities and modes
 - Dual or single address transfer mode, external request resources mode and dual address transfer mode for internal request sources supported
- Interrupt Controller (INTC)
 - 9 external interrupt pins
 - 30 internal interrupt sources
 - 16 programmable priority levels
- Five-channel, 16-bit Integrated Timer Unit (ITU)
 - Ten waveforms can be output
 - PWM modes
 - Counters, input capture/measurement
- · Watchdog Timer
- Programmable timing pattern controller with maximum 16-bit output (4 bits × 4 channels)
- Two-channel SCI with full duplex and asynchronous/synchronous selectable modes
- 32 I/O
- User Break Controller (UBC) for generating interrupts to simplify debugging
- Operating Temperature: −20°C to +75°C
- Package: 100-pin Thin Quad Flat Pack (TQFP)
- Process: 0.8 micron technology
- Complete development system support

Related Manuals

- SH Series Overview
- SH7020, SH7021 Hardware Manual
- SH7000/7600 Programming Manual

See also http://www.halsp.hitachi.com

Block Diagram

Block Diagram (SH7020/7021)

Instruction Set By Classification (Total: 56 Types)

Table 1 Data Transfer (5 Types)

Operation Code	Function							
MOV	Data transfer, Immediate data transfer, Peripheral module and Structural data transfers							
MOVA	Effective address transfer							
MOVT	T-bit transfer							
SWAP	Swap of upper and lower bytes							
XTRCT	Extraction of middle of connected registers							

 Table 2
 Arithmetic Operations (17 Types)

Operation Code	Function
ADD	Binary addition
ADDC	Binary addition with carry
ADDV	Binary addition with overflow check
CMP/cond.	Comparison
DIV1	Division
DIV0S	Initialization of signed division
DIV0U	Initialization of unsigned division
EXTS	Sign extension
EXTU	Zero extension
MAC	Multiplication and accumulation
MULS	Singed multiplication
MULU	Unsigned multiplication
NEG	Negation
NEGC	Negation with borrow
SUB	Binary subtraction
SUBC	Binary subtraction with borrow
SUBV	Binary subtraction with underflow check

Table 3 Logic Operations (6 Types)

Operation Code	Function
AND	Logic AND
NOT	Bit inversion
OR	Logical OR
TAS	Memory test and bit set
TST	Logical AND and T bit set
XOR	Exclusive OR

Table 4 Shift Instructions (10 Types)

Operation Code	Function
ROTL	One-bit left rotation
ROTR	One-bit right rotation
ROTCL	One-bit left rotation with T bit
ROTCR	One-bit right rotation with T bit
SHAL	One-bit arithmetic left shift
SHAR	One-bit arithmetic right shift
SHLL	One-bit logical left shift
SHLLn	n-bit logical left shift
SHLR	One-bit logical right shift
SHLRn	n-bit logical right shift

Table 5 Branch Instructions (7 Types)

Operation Code	Function
BF	Conditional branch (T = 0)
ВТ	Conditional branch (T = 1)
BRA	Unconditional branch
BSR	Branch to subroutine procedure
JMP	Unconditional branch
JSR	Branch to subroutine procedure
RTS	Return from subroutine procedure

Table 6 System Control (11 Types)

Operation Code	Function
CLRT	T bit clear
CLRMAC	MAC register clear
LDC	Load to control register
LDS	Load to system register
NOP	No operation
RTE	Return from exception processing
SETT	T bit set
SLEEP	Shift into power-down mode
STC	Storing control register data
STS	Storing system register data
TRAPA	Trap exception processing

DC Characteristics

Table 7 Current Consumption*3, *4

Item	Symbol	Min	Тур	Max	Unit	Measurement Conditions
Ordinary operation	I _{cc}	_	65	80	mA	f = 12.5 MHz
Ordinary operation	I _{cc}	_	75	90	mA	f = 16.6 MHz
Ordinary operation	I _{cc}	_	90	100	mA	f = 20 MHz
Sleep	I _{cc}	_	30	50	mA	f = 12.5 MHz
Sleep	I _{cc}	_	35	55	mA	f = 16.6 MHz
Sleep	I _{cc}	_	40	60	mA	f = 20 MHz
Standby	I _{cc}	_	0.01	5	μΑ	Ta ≤ 50°C
Standby	I _{cc}	_	_	20.0	μΑ	50°C < Ta

Notes: Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, $\phi = 20 \text{ MHz}$, $Ta = -20 \text{ to } +75^{\circ}\text{C}$, Normal Products $Ta = -40 \text{ to } +85^{\circ}\text{C}$ for wide-temperature range products.

AC Characteristics

Table 8 LSI Clock Table

		Case A		Case B					
		12.5 MHz		16.6 MHz 20		20	MHz	_	
Item	Symbol	Min	Max	Min	Max	Min	Max	Unit	Figures
EXTAL input high level pulse width	t _{EXH}	20	_	10	_	10	_	ns	1
EXTAL input low level pulse width	t _{EXL}	20	_	10	_	10	_	ns	
EXTAL input rise time	t _{EXr}	_	10	_	5	_	5	ns	
EXTAL input fall time	t _{EXf}	_	10	_	5	_	5	ns	
Clock cycle time	t _{cyc}	80		60	500	50	500	ns	1, 2
Clock high pulse width	t _{cH}	30	_	20	_	20	_	ns	2
Clock low pulse width	t _{CL}	30	_	20	_	20	_	ns	
Clock rise time	t _{Cr}	_	10	_	5	_	5	ns	
Clock fall time	t _{Cf}	_	10	_	5	_	5	ns	
Reset oscillation settling time	t _{osc1}	10	_	10	_	10	_	ms	3
Software standby oscillation settling time	t _{osc2}	10	_	10	_	10	_	ms	

Note: Case A: $V_{CC} = 3.0$ to 5.5 V, $V_{SS} = 0$ V, Ta = -20 to +75°C for normal products; Ta = -40 to +85°C for wide-temperature range products.

Case B: V_{cc} = 5.0 V ±10%, V_{ss} = 0 V, Ta = -20 to +75°C* for normal products; Ta = -40 to +85°C for wide-temperature range products.

Figure 1 EXTAL Input Timing

Figure 2 System Clock Timing

Figure 3 Oscillation Settling Time

Pin Diagrams

TQFP-100 (Top View)

Package Information

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.