# પ્રશ્ન ૧(અ) [૩ ગુણ]

ગેઈન અને સ્ટેબિલિટી પર નેગેટિવ કીડબેકની અસર સમજાવો.

#### જવાબ:

નેગેટિવ ફીડબેક એમ્પ્લીફાયરની કામગીરીને નોંધપાત્ર રીતે સુધારે છે.

# ટેબલ:

| પરિમાણ     | નેગેટિવ ફીડબેકની અસર |  |
|------------|----------------------|--|
| ગેઈન       | એકુલ ગેઈન ઘટાડે છે   |  |
| સ્ટેબિલિટી | સ્થિરતા વધારે છે     |  |
| બેન્કવિડ્થ | બેન્ડવિડ્થ વધારે છે  |  |

• ગેઈન ઘટાડો: એમ્પ્લીફાયરને વધુ અનુમાનિત બનાવે છે

• સ્થિરતા સુધારો: ઓસિલેશન અને વિકૃતિ ઘટાડે છે

• સારું નિયંત્રણ: સતત કામગીરી પ્રદાન કરે છે

મેમરી ટ્રીક: "ગેઈન ઘટે, સ્ટેબિલિટી સારી"

# પ્રશ્ન ૧(બ) [૪ ગુણ]

ફીડબેક એમ્પ્લીફાયરના જુદા જુદા પ્રકારો અને નેગેટિવ ફીડબેકના એમ્પ્લીફાયરના ફાયદા જણાવો.

#### જવાબ:

ઇનપુટ અને આઉટપુટ કનેક્શનના આધારે ચાર મૂળભૂત ફીડબેક પ્રકારો છે.

## ટેબલ:

| увіг          | ઇનપુટ કનેક્શન | આઉટપુટ કનેક્શન |
|---------------|---------------|----------------|
| વોલ્ટેજ સીરીઝ | સીરીઝ         | વોલ્ટેજ        |
| વોલ્ટેજ શન્ટ  | શન્ટ          | વોલ્ટેજ        |
| કરંટ સીરીઝ    | સીરીઝ         | કરંટ           |
| કરંટ શન્ટ     | શન્ટ          | કરંટ           |

#### ફાયદા:

• **વિકૃતિ ઘટાડો**: હાર્મોનિક કન્ટેન્ટ ઘટાડે છે

• **બેન્ડવિડ્થ વૃદ્ધિ**: સારી ફ્રીક્વન્સી રિસ્પોન્સ

• સુધારેલી સ્થિરતા: સતત ઓપરેશન

મેમરી ટ્રીક: "ખૂબ સ્માર્ટ કરંટ કંટ્રોલ"

# પ્રશ્ન ૧(ક) [७ ગુણ]

# નેગેટીવ ફીડબેક વોલ્ટેજ એમ્પ્લીફાયરનું ઓવરઓલ ગેઈનનું સૂત્ર મેળવો.

#### જવાબ:

નેગેટિવ ફીડબેક એમ્પ્લીફાયરમાં આઉટપુટ ઇનપુટમાં વિપરીત ફેઝમાં ફીડ થાય છે.

#### ડાયગ્રામ:



# વ્યુત્પત્તિ:

- એમ્પ્લીફાયરનું ઇનપુટ: Vi βVo
- આઉટપુટ: Vo = A(Vi βVo)
- Vo = AVi AβVo
- Vo + AβVo = AVi
- $Vo(1 + A\beta) = AVi$
- એકુલ ગેઈન: Af = A/(1 + Aβ)

# મુખ્ય મુદ્દા:

- હર (1 + Αβ): લૂપ ગેઈન કહેવાય છે
- સ્થિરતા ફેક્ટર: સિસ્ટમ રિસ્પોન્સ નક્કી કરે છે
- **ગેઈન ઘટાડો**: સારી કામગીરી માટે ગેઈન આપવામાં આવે છે

મેમરી ટ્રીક: "હંમેશા (1 + લૂપ) થી ભાગો"

# પ્રશ્ન ૧(ક અથવા) [७ ગુણ]

કરંટ શન્ટ પ્રકારના નેગેટીવ ફીડબેક એમ્પ્લીફાયર દોરો અને સમજાવો અને તેના ઇનપુટ અને આઉટપુટ ઇમ્પીડન્સના સૂત્ર મેળવો.

#### જવાબ:

કરંટ શન્ટ ફીડબેક આઉટપુટ કરંટ સેમ્પલ કરે છે અને ઇનપુટ સાથે શન્ટમાં વોલ્ટેજ ફીડ કરે છે.



### વિશ્લેષણ:

• ફ્રીડબેક પ્રકાર: કરંટ સેમ્પલિંગ, વોલ્ટેજ મિક્સિંગ

• ઇનપુટ ઇમ્પીડન્સ: શન્ટ ફીડબેકને કારણે ઘટે છે

• આઉટપુટ ઇમ્પીડન્સ: કરંટ સેમ્પલિંગને કારણે ઘટે છે

# સૂત્રો:

• ઇનપુટ ઇમ્પીડન્સ: Zif = Zi/(1 + Aβ)

• આઉટપુટ ઇમ્પીડન્સ: Zof = Zo/(1 + Aβ)

## લાક્ષણિકતાઓ:

• નીચું ઇનપુટ ઇમ્પીડન્સ: કરંટ સોર્સ માટે સારું

• નીચું આઉટપુટ ઇમ્પીડન્સ: વોલ્ટેજ આઉટપુટ માટે સાટું

• કરંટ-ટુ-વોલ્ટેજ કન્વર્ટર: એપ્લીકેશનમાં ઉપયોગી

મેમરી ટ્રીક: "કરંટ શન્ટ બંને ઇમ્પીડન્સ ઘટાડે"

# પ્રશ્ન ર(અ) [3 ગુણ]

ઓસિલેટર માટે બારખૌસન ક્રાઈટેરીઆ સમજાવો.

#### જવાબ:

ફીડબેક સર્કિટમાં સતત ઓસિલેશન માટે બે શરતો એક સાથે પૂરી થવી જોઈએ.

## ટેબલ:

| કાઈટેરીઆ    | શરત                | વર્ણન           |
|-------------|--------------------|-----------------|
| મેગ્નિટ્યુડ | AB   = 1           | લૂપ ગેઈન એકમ    |
| ફેઝ         | ∠Aβ = 0° અથવા 360° | શૂન્ય ફેઝ શિફ્ટ |

• **એકમ લૂપ ગેઈન**: સિગ્નલ એમ્પ્લિટ્યુડ જાળવે છે

• શૂન્ય ફેઝ શિફ્ટ: પોઝીટીવ ફીડબેક સુનિશ્ચિત કરે છે

• સતત ઓસિલેશન: બંને શરતો સ્વ-ટકાઉ સિગ્નલ બનાવે છે

**મેમરી ટ્રીક:** "એક મેગ્નિટ્યુડ, શૂન્ય ફેઝ"

# પ્રશ્ન ૨(બ) [૪ ગુણ]

સ્વચ્છ ડાયગ્રામની મદદથી ટેન્ક સર્કિટ સમજાવો.

#### જવાબ:

ટેન્ક સર્કિટ ઓસિલેટર સર્કિટ માટે ફ્રીક્વન્સી સિલેક્ટિવ પોઝીટીવ ફીડબેક પ્રદાન કરે છે.



## ઓપરેશન:

રેઝોનન્ટ ફ્રીક્વન્સી પર, LC ટેન્ક સર્કિટ દર્શાવે છે:

### ટેબલ:

| પેરામીટર  | મૂલ્ય   | અસર               |
|-----------|---------|-------------------|
| રીએક્ટન્સ | XL = XC | રેઝોનન્સ          |
| ઇમ્પીડન્સ | ਮੁੰਦਰਮ  | ઉચ્ચ સિલેક્ટિવિટી |
| ફેઝ       | 0°      | એકમ ફીડબેક        |

• **ઊર્જા સંગ્રહ**: L અને C ઊર્જાની આપ-લે કરે છે

• ફ્રીક્વન્સી પસંદગી: તીક્ષ્ણ રેઝોનન્સ લાક્ષણિકતા

• ઓસિલેશન ટકાવી રાખવું: પોઝીટીવ ફીડબેક પ્રદાન કરે છે

મેમરી ટ્રીક: "ટેન્ક ઊર્જા સંગ્રહે, ફ્રીક્વન્સી પસંદ કરે"

# પ્રશ્ન ૨(ક) [७ ગુણ]

હાર્ટલી ઓસિલેટર દોરો અને સમજાવો. ઉપરાંત હાર્ટલી ઓસિલેટરની ઓસિલેશનની ફ્રીક્વન્સીનું સૂત્ર જણાવો.

#### જવાબ:

હાર્ટલી ઓસિલેટર ફ્રીક્વન્સી જનરેશન માટે ટેન્ક સર્કિટમાં ટેપ્ડ ઇન્ડક્ટરનો ઉપયોગ કરે છે.

### સર્કિટ ડાયગ્રામ:



### ઓપરેશન:

• ટેપ્ડ ઇન્ડક્ટર: L1 અને L2 ફીડબેક પ્રદાન કરે છે

• ટેન્ક **સર્કિટ**: L1+L2 સાથે C ફ્રીક્વન્સી નક્કી કરે છે

• **પોઝીટીવ ફીડબેક**: L1-L2 કપલિંગ દ્વારા ફેઝ શિફ્ટ

# ફ્રીક્વન્સી સૂત્ર:

 $f = 1/[2\pi \sqrt{((L1+L2)C)]}$ 

# મુખ્ય લાક્ષણિકતાઓ:

• સારી ફ્રીક્વન્સી સ્થિરતા: ઇન્ડક્ટર-આધારિત ટ્યુનિંગ

• સરળ ટ્યુનિંગ: વેરિયેબલ ઇન્ડક્ટર અથવા કેપેસિટર

• **RF એપ્લીકેશન**: ઉચ્ચ ફ્રીક્વન્સી માટે યોગ્ય

મેમરી ટ્રીક: "હાર્ટલીમાં ટેપ્ડ ઇન્ડક્ટર હોય છે"

# પ્રશ્ન ર(અ અથવા) [3 ગુણ]

ઓસિલેટરના પદને પોઝીટીવ ફીડબેક એમ્પ્લીફાયર તરીકે સમજાવો.

#### જવાબ:

ઓસિલેટર બાહ્ય ઇનપુટ સિગ્નલ વિના પોઝીટીવ ફીડબેકનો ઉપયોગ કરીને AC સિગ્નલ ઉત્પન્ન કરે છે.

## ટેબલ:

| પેરામીટર | એમ્પ્લીફાયર           | ઓસિલેટર           |
|----------|-----------------------|-------------------|
| ઇનપુટ    | બાહ્ય સિગ્નલ          | બાહ્ય ઇનપુટ નહીં  |
| ફીડબેક   | નેગેટિવ ઉપયોગ કરી શકે | પોઝીટીવ ઉપયોગ કરે |
| આઉટપુટ   | એમ્પ્લિફાઇડ ઇનપુટ     | સ્વ-ઉત્પન્ન AC    |

• સ્વ-ટકાઉ: પોઝીટીવ ફીડબેક ઓસિલેશન જાળવે છે

• **બારખૌસન ક્રાઈટેરીઆ**: લૂપ ગેઈન = 1, ફેઝ = 0°

• **સિગ્નલ જનરેશન**: DC સપ્લાયમાંથી AC બનાવે છે

મેમરી ટીક: "પોઝીટીવ ફીડબેક સતત સિગ્નલ ચલાવે"

# પ્રશ્ન ર(બ અથવા) [૪ ગુણ]

ક્રિસ્ટલ ઓસિલેટર દોરો અને સમજાવો.

#### જવાબ:

ક્રિસ્ટલ ઓસિલેટર ઉચ્ચ સ્થિરતા માટે ક્વાર્ટ્ઝ ક્રિસ્ટલના પીઝોઇલેક્ટ્રિક ઇફેક્ટનો ઉપયોગ કરે છે.



# લાક્ષણિકતાઓ:

### ટેબલ:

| ગુણઘર્મ   | મૂલ્ય         | ફાયદો             |
|-----------|---------------|-------------------|
| સ્થિરતા   | ±0.01%        | ખૂબ ઉચ્ચી         |
| Q ईड्स्टर | >10,000       | તીક્ષ્ણ રેઝોનન્સ  |
| તાપમાન    | નીયું ડ્રિફ્ટ | સ્થિર ફ્રીક્વન્સી |

• **પીઝોઇલેક્ટ્રિક ઇફેક્ટ**: મિકેનિકલ વાઇબ્રેશન ઇલેક્ટ્રિકલ સિગ્નલ બનાવે છે

• ઉચ્ચ **Q**: ખૂબ સ્થિર ફ્રીક્વન્સી જનરેશન

• ક્લોક એપ્લીકેશન: ડિજિટલ સિસ્ટમમાં ઉપયોગ

મેમરી ટ્રીક: "ક્રિસ્ટલ સતત ફ્રીક્વન્સી બનાવે"

# પ્રશ્ન ર(ક અથવા) [૭ ગુણ]

UJTની રચના, સિમ્બોલ તથા ઇક્વિવેલેન્ટ સર્કિટ દોરો અને તેને વિસ્તૃતમાં સમજાવો.

#### જવાબ:

UJT (Unijunction Transistor) અનોખી સ્વિચિંગ લાક્ષણિકતાઓ ધરાવતું ત્રણ-ટર્મિનલ ડિવાઇસ છે.

## રથના:



### સિમ્બોલ:



# ઇક્વિવેલેન્ટ સર્કિટ:

```
B2 +---R2---+
|
E +-----+
|
B1 +---R1---+
```

# ઓપરેશન:

• ઇન્ટ્રિન્સિક સ્ટેન્ડઓફ રેશિયો: η = R1/(R1+R2)

• **นใร นาย-ะ นาเล้ง**: VP = ŋVBB + VD

• નેગેટિવ રેઝિસ્ટન્સ: પીક પોઇન્ટ પછી

## એપ્લીકેશન:

• રિલેક્સેશન ઓસિલેટર: સોટૂથ વેવ જનરેશન

• ટ્રિગર સર્કિટ: SCR ફાયરિંગ સર્કિટ

• **ટાઇમિંગ એપ્લીકેશન**: RC ચાર્જિંગ સર્કિટ

મેમરી ટ્રીક: "UJT અનોખી જંક્શન ટેકનોલોજી વાપરે"

# પ્રશ્ન 3(અ) [3 ગુણ]

ઓપરેટિંગ પોઇન્ટના આદ્યારે પાવર એમ્પ્લીફાયરને વર્ગીકૃત કરો.

### જવાબ:

પાવર એમ્પ્લીફાયર ટ્રાન્ઝિસ્ટર કન્ડક્શન એંગલ અને બાયસ પોઇન્ટના આદ્યારે વર્ગીકૃત થાય છે.

| ક્લાસ    | કન્ડક્શન એંગલ | รเข้ลหดเ | એપ્લીકેશન      |
|----------|---------------|----------|----------------|
| ક્લાસ A  | 360°          | 25-50%   | ઓડિયો, લો પાવર |
| ક્લાસ B  | 180°          | 78.5%    | પુશ-પુલ        |
| ક્લાસ AB | 180°-360°     | 60-70%   | ઓડિયો પાવર     |
| ક્લાસ C  | <180°         | >90%     | RF, ट्यु-S     |

• બાયસ પોઇન્ટ: ઓપરેટિંગ ક્લાસ નક્કી કરે છે

• કાર્યક્ષમતા ટ્રેડ-ઓફ: ઉચ્ચ કાર્યક્ષમતા, વધુ વિકૃતિ

• એપ્લીકેશન સ્પેસિફિક: જરૂરિયાત પ્રમાણે પસંદગી

મેમરી ટ્રીક: "બધા મોટા એમ્પ્લીફાયર પાવર આપી શકે"

# પ્રશ્ન ૩(બ) [૪ ગુણ]

કોમ્પ્લીમેંટરી સિમેટ્રી પુશ પુલ પાવર એમ્પ્લીફાયરને દોરો અને સમજાવો.

#### જવાબ:

સેન્ટર-ટેપ્ડ ટ્રાન્સફોર્મર વિના કાર્યક્ષમ પાવર એમ્પ્લિફિકેશન માટે NPN અને PNP ટ્રાન્ઝિસ્ટરનો ઉપયોગ કરે છે.

## સર્કિટ ડાયગ્રામ:



# ઓપરેશન:

• **પોઝીટીવ હાફ-સાયકલ**: NPN કન્ડક્ટ કરે, PNP બંધ

• **નેગેટિવ હાફ-સાયકલ**: PNP કન્ડક્ટ કરે, NPN બંધ

• કોમ્પ્લીમેંટરી એક્શન: બંને ટ્રાન્ઝિસ્ટર વૈકલ્પિક હાફ-સાયકલ હેન્ડલ કરે

#### ફાયદા:

• ટ્રાન્સફોર્મર નહીં: ડાયરેક્ટ કપલિંગ ટુ લોડ

• ઉચ્ચ કાર્યક્ષમતા: ક્લાસ B ઓપરેશન

• ક્રોમ્પેક્ટ ડિઝાઇન: ઓછા ક્રોમ્પોનન્ટ્સ

• સારું પાવર ટ્રાન્સફર: ડાયરેક્ટ કપલિંગ

**મેમરી ટ્રીક:** "કોમ્પ્લીમેંટરી ટ્રાન્ઝિસ્ટર સાયકલ પૂરું કરે"

# પ્રશ્ન ૩(૬) [૭ ગુણ]

# ક્લાસ-B પુશ પુલ એમ્પ્લીફાયરની કાર્યક્ષમતાનું સૂત્ર મેળવો.

#### જવાબ:

ક્લાસ B પુશ-પુલ એમ્પ્લીફાયરમાં દરેક ટ્રાન્ઝિસ્ટર ઇનપુટ સાયકલના 180° માટે કન્ડક્ટ કરે છે.

## વિશ્લેષણ:

સાઇનુસોઇડલ ઇનપુટ માટે: Vi = Vm sin ωt

## આઉટપુટ પાવર:

• પીક આઉટપુટ વોલ્ટેજ: Vom = Vcc

• RMS આઉટપુટ વોલ્ટેજ: Vo(rms) = Vcc/√2

• Po = Vo2(rms)/RL = Vcc2/2RL

# ઇનપુટ પાવર:

• DC કરંટ (એવરેજ): ldc = 2lm/π

• જ્યાં Im = Vcc/RL

• Pin =  $Vcc \times Idc = 2VccIm/\pi = 2Vcc^2/\pi RL$ 

## કાર્યક્ષમતા ગણતરી:

 $\eta = Po/Pin = (Vcc^2/2RL)/(2Vcc^2/\pi RL)$  $\eta = \pi/4 = 0.785 = 78.5\%$ 

## મુખ્ય મુદ્દા:

• કલાસ B ફાયદો: ક્લાસ A (25%) કરતાં ખૂબ ઊંચી

• પ્રેક્ટિકલ કાર્યક્ષમતા: નુકસાનને કારણે થોડી ઓછી

મેમરી ટ્રીક: "પુશ-પુલ π/4 કાર્યક્ષમતા આપે"

# પ્રશ્ન ૩(અ અથવા) [૩ ગુણ]

વોલ્ટેજ અને પાવર એમ્પ્લીફાયર વચ્ચેનો તફાવત કરો.

### જવાબ:

વોલ્ટેજ અને પાવર એમ્પ્લીફાયર ઇલેક્ટ્રોનિક સિસ્ટમમાં જુદા હેતુઓ સેવે છે.

| પેરામીટર    | વોલ્ટેજ એમ્પ્લીફાયર | પાવર એમ્પ્લીફાયર |
|-------------|---------------------|------------------|
| હેતુ        | વોલ્ટેજ વધારવું     | પાવર વધારવું     |
| લોક         | ઉચ્ચ ઇમ્પીડન્સ      | નીચું ઇમ્પીડન્સ  |
| કાર્યક્ષમતા | મહત્વપૂર્ણ નથી      | ખૂબ મહત્વપૂર્ણ   |
| વિકૃતિ      | ઓછી હોવી જોઈએ       | મધ્યમ સ્વીકાર્ય  |
| કપલિંગ      | RC/ડાયરેક્ટ         | ટ્રા-સફોર્મર     |

• **ડિઝાઇન પ્રાથમિકતા**: વોલ્ટેજ ગેઈન વર્સીસ પાવર ડિલિવરી

• એપ્લીકેશન: સિગ્નલ પ્રોસેસિંગ વર્સીસ લોડ ડ્રાઇવિંગ

• સર્કિટ જટિલતા: સરળ વર્સીસ જટિલ પાવર સ્ટેજ

**મેમરી ટ્રીક:** "વોલ્ટેજ સિગ્નલ વધારે, પાવર લોડ ચલાવે"

# પ્રશ્ન ૩(બ અથવા) [૪ ગુણ]

## ક્લાસ AB પાવર એમ્પ્લીફાયર ડાયગ્રામ સાથે સમજાવો.

#### જવાબ:

ક્લાસ AB ક્લાસ A અને ક્લાસ B વચ્ચે ઓપરેટ કરે છે, ક્રોસઓવર ડિસ્ટોર્શન ઘટાડે છે.

## સર્કિટ ડાયગ્રામ:



## ઓપરેશન:

• થોડું ફોરવર્ડ બાયસ: બંને ટ્રાન્ઝિસ્ટર થોડા ઓન

• કન્ડક્શન **અંગલ**: >180° પણ <360°

• ઓવરલેપ કન્ડક્શન: ક્રોસઓવર ડિસ્ટોર્શન દૂર કરે છે

# લાક્ષણિકતાઓ:

| પેરામીટર  | મૂલ્ય         | ફાયદો              |
|-----------|---------------|--------------------|
| รเข้ลุหดเ | 60-70%        | ક્લાસ A કરતાં સારી |
| વિકૃતિ    | ઓછી           | ક્લાસ B કરતાં સારી |
| બાયસ      | થોડું ફોરવર્ડ | સમાધાનકારી ઉકેલ    |

મેમરી ટ્રીક: "AB ખરાબ ક્રોસઓવર ડિસ્ટોર્શન ટાળે"

# પ્રશ્ન ૩(ક અથવા) [७ ગુણ]

# સીરીજ ફેડ ક્લાસ-A પાવર એમ્પ્લીફાયરની કાર્યક્ષમતાનું સૂત્ર મેળવો.

#### જવાબ:

સીરીજ ફેડ ક્લાસ A એમ્પ્લીફાયરમાં DC સપ્લાય લોડ સાથે સીરીજમાં જોડાયેલું હોય છે.

#### સર્કિટ વિશ્લેષણ:

- **DC સપ્લાય વોલ્ટેજ**: Vcc
- **ક્વિસન્ટ કરંટ**: lcq = Vcc/2RL (મહત્તમ પાવર માટે)
- **ક્વિસન્ટ વોલ્ટેજ**: Vceq = Vcc/2

### AC વિશ્લેષણ:

- મહત્તમ આઉટપુટ વોલ્ટેજ સ્વિંગ: Vom = Vcc/2
- **พเดิวบุว นเผง**: Po = Vom²/2RL = Vcc²/8RL

#### DC vide:

- DC siz: Idc = Icq = Vcc/2RL
- ยานุร นเฉะ: Pin = Vcc × ldc = Vcc²/2RL

## કાર્યક્ષમતા:

 $\eta = Po/Pin = (Vcc^2/8RL)/(Vcc^2/2RL)$  $\eta = 1/4 = 0.25 = 25\%$ 

### મુખ્ય મુદ્દા:

- หહत्तम सेद्धांतिङ ราชัยหลา: 25%
- પાવર બર્બાદી: 75% ગરમીમાં ખોવાય છે
- **ડિઝાઇન મર્યાદા**: નબળી કાર્યક્ષમતા પણ સારી લીનિયરિટી

મેમરી ટીક: "ક્લાસ A ક્વાર્ટર કાર્યક્ષમતા મેળવે"

# પ્રશ્ન ૪(અ) [૩ ગુણ]

## IC 741 OP-AMPનો પિન ડાયગ્રામ દોરો અને સમજાવો.

#### જવાલ:

IC 741 ઇન્ડસ્ટ્રી સ્ટાન્ડર્ડ પિનઆઉટ સાથે 8-પિન ક્યુઅલ-ઇન-લાઇન પેકેજ ઓપરેશનલ એમ્પ્લીફાયર છે.

#### પિન ડાયગ્રામ:



# પિન કન્ફિગરેશન:

### ટેબલ:

| પિન | ફંક્શન               | વર્ણન              |
|-----|----------------------|--------------------|
| 1   | ઓફસેટ નલ             | ઓફસેટ એડજસ્ટમેન્ટ  |
| 2   | ઇન્વર્ટિંગ ઇનપુટ     | નેગોટિવ ઇનપુટ      |
| 3   | નોન-ઇન્વર્ટિંગ ઇનપુટ | પોઝિટિવ ઇનપુટ      |
| 4   | -Vcc                 | નેગેટિવ સપ્લાય     |
| 5   | ઓફસેટ નલ             | ઓફસેટ એડજસ્ટમેન્ટ  |
| 6   | આઉટપુટ               | એમ્પ્લીફાયર આઉટપુટ |
| 7   | +Vcc                 | પોઝિટિવ સપ્લાય     |
| 8   | NC                   | કોઈ કનેક્શન નહીં   |

મેમરી ટ્રીક: "નલ, નેગેટિવ, પોઝિટિવ, નેગેટિવ સપ્લાય, નલ, આઉટપુટ, પોઝિટિવ સપ્લાય, કંઈ નહીં"

# પ્રશ્ન ૪(બ) [૪ ગુણ]

# OP-AMPના નીચેના પરિમાણ વ્યાખ્યાયિત કરો. ૧. ઇનપુટ ઓફસેટ વોલ્ટેજ ૨. સી.એમ.આર.આર

#### જવાબ:

આ પેરામીટર્સ પ્રેક્ટિકલ ઓપરેશનલ એમ્પ્લીફાયરની નોન-આઇડીયલ લાક્ષણિકતાઓ વ્યાખ્યાયિત કરે છે.

# ૧. ઇનપુટ ઓફસેટ વોલ્ટેજ (Vio):

• વ્યાખ્યા: આઉટપુટ શૂન્ય બનાવવા માટે ઇનપુટ્સ વચ્ચે લાગુ કરવામાં આવતું DC વોલ્ટેજ

• **સામાન્ય મૂલ્ય**: 741 માટે 1-5 mV

• કારણ: ઇનપુટ ટ્રાન્ઝિસ્ટરમાં મિસમેથ

• **અસર**: DC એપ્લીકેશનમાં આઉટપુટ એરર

# ર. કોમન મોડ રિજેક્શન રેશિયો (CMRR):

• વ્યાખ્યા: બંને ઇનપુટ્સ પર કોમન સિગ્નલ રિજેક્ટ કરવાની ક્ષમતા

• ਮ੍ਰਕ: CMRR = Ad/Acm

• **સામાન્ય મૂલ્ય**: 741 માટે 90 dB

• **મહત્વ**: નોઇઝ ઇમ્યુનિટી

## ટેબલ:

| પેરામીટર            | સિમ્બોલ | એકમ | આઇડીયલ | 741 સામાન્ય |
|---------------------|---------|-----|--------|-------------|
| ઇનપુટ ઓફસેટ વોલ્ટેજ | Vio     | mV  | 0      | 2           |
| CMRR                | -       | dB  | ∞      | 90          |

મેમરી ટ્રીક: "ઓફસેટ આઉટપુટ એરર બનાવે, CMRR કોમન સિગ્નલ રિજેક્ટ કરે"

# પ્રશ્ન ૪(૬) [७ ગુણ]

# IC 741ની મદદથી ઇન્વર્ટિંગ એમ્પ્લીફાયર વિસ્તૃતમાં સમજાવો.

#### જવાબ:

ઇન્વર્ટિંગ એમ્પ્લીફાયર ઇન્વર્ટિંગ ટર્મિનલ પર લાગુ ઇનપુટ સાથે નેગેટિવ ફીડબેકનો ઉપયોગ કરે છે.

## સર્કિટ ડાયગ્રામ:



## વિશ્લેષણ:

વર્ચ્યુઅલ શોર્ટ કોન્સેપ્ટનો ઉપયોગ કરીને:

• V+ = V- = 0V (વર્ચ્યુઅલ ગ્રાઉન્ડ)

• **ย-หุว ระ่ว**: I1 = Vin/R1

• **ફીડબેક કરંટ**: If = Vout/Rf

• **કરંટ બેલેન્સ**: I1 = If (ઓપ-એમ્પમાં કોઈ કરંટ નહીં)

# વ્યુત્પત્તિ:

Vin/R1 = -Vout/Rf

• વોલ્ટેજ ગેઈન: Av = -Rf/R1

# લાક્ષણિકતાઓ:

| પેરામીટર         | એક્સપ્રેશન  | નોંઘ                     |
|------------------|-------------|--------------------------|
| વોલ્ટેજ ગેઈન     | -Rf/R1      | નેગેટિવ સાઇન             |
| ઇનપુટ ઇમ્પીડન્સ  | R1          | નીચું ઇમ્પીડન્સ          |
| આઉટપુટ ઇમ્પીડન્સ | ~0Ω         | ખૂબ નીચું                |
| બેન્ડવિડ્થ       | f = GBW/ Av | ગેઈન-બેન્ડવિડ્થ પ્રોડક્ટ |

# એપ્લીકેશન:

• સિગ્નલ ઇન્વર્શન: ફેઝ રિવર્સલ

• સ્કેલ ફેક્ટર: પ્રોગ્રામેબલ ગેઈન

• AC એમ્પ્લિફિકેશન: કપલિંગ કેપેસિટર સાથે

મેમરી ટ્રીક: "ઇન્વર્ટિંગ ઇનપુટ ઇન્વર્ટેડ આઉટપુટ આપે"

# પ્રશ્ન ૪(અ અથવા) [૩ ગુણ]

# ldeal OP-AMPની લાક્ષણિકતાની સૂચિ બનાવો.

#### જવાબ:

આઇડીયલ ઓપ-એમ્પ બધા પેરામીટર્સ માટે સૈદ્ધાંતિક મર્યાદા સાથે સંપૂર્ણ એમ્પ્લીફાયરનું પ્રતિનિધિત્વ કરે છે.

### ટેબલ:

| પેરામીટર         | આઇડીયલ મૂલ્ય | પ્રેક્ટિકલ ઇમ્પેક્ટ          |
|------------------|--------------|------------------------------|
| ઓપન લૂપ ગેઈન     | ∞            | સંપૂર્ણ એમ્પ્લિફિકેશન        |
| ઇનપુટ ઇમ્પીડન્સ  | ∞            | કોઈ ઇનપુટ કરંટ નહીં          |
| આઉટપુટ ઇમ્પીડન્સ | 0Ω           | સંપૂર્ણ વોલ્ટેજ સોર્સ        |
| બેન્ડવિડ્થ       | ∞            | કોઈ ફ્રીક્વન્સી મર્યાદા નહીં |
| CMRR             | ∞            | સંપૂર્ણ નોઇઝ રિજેક્શન        |
| સ્લ્યુ રેટ       | ∞            | કોઈ સ્લ્યુ રેટ લિમિટિંગ નહીં |
| ઇનપુટ ઓફસેટ      | 0V           | કોઈ DC એરર નહીં              |

• **સંપૂર્ણ કામગીરી**: બધા પેરામીટર્સ ઓપ્ટિમાઇઝ્ડ

• ડિઝાઇન સરળીકરણ: વિશ્લેષણ સરળ બને છે

• પ્રેક્ટિકલ અપ્રોક્સિમેશન: ઘણી એપ્લીકેશનમાં આઇડીયલની નજીક

મેમરી ટ્રીક: "અનંત ઇનપુટ, શૂન્ય આઉટપુટ, સંપૂર્ણ કામગીરી"

# પ્રશ્ન ૪(બ અથવા) [૪ ગુણ]

# Op-ampની મદદથી સમિંગ એમ્પ્લીફાયર દોરો અને સમજાવો.

#### જવાબ:

સમિંગ એમ્પ્લીફાયર દરેક ઇનપુટ માટે પ્રોગ્રામેબલ ગેઈન સાથે બહુવિધ ઇનપુટ વોલ્ટેજ ઉમેરે છે.

# સર્કિટ ડાયગ્રામ:



#### વિશ્લેષણ:

વર્ચ્યુઅલ ગ્રાઉન્ડ કોન્સેપ્ટનો ઉપયોગ કરીને (V- = 0V):

• R1 ผูเลเ รล่อ: I1 = V1/R1

• **R2** giri sez: 12 = V2/R2

• **R3** giri sez: I3 = V3/R3

• รูต ยานูร ระ่ว: lin = 11 + 12 + 13

# આઉટપુટ સમીકરણ:

Vout = -Rf(V1/R1 + V2/R2 + V3/R3)

### વિશેષ કેસો:

• સમાન રેઝિસ્ટર: Vout = -(Rf/R)(V1 + V2 + V3)

• યુનિટી ગેઈન: Rf = R, Vout = -(V1 + V2 + V3)

### એપ્લીકેશન:

• ઓડિયો મિક્સિંગ: બહુવિધ સિગ્નલ કમ્બિનેશન

• **ડિજિટલ-ટુ-એનાલોગ**: વેઈટેડ રેઝિસ્ટર DAC

• સિગ્નલ પ્રોસેસિંગ: ગણિતીય ઓપરેશન

મેમરી ટ્રીક: "ઇનપુટ્સ સરવાળો, રેઝિસ્ટર રેશિયો દ્વારા સ્કેલ કરો"

# પ્રશ્ન ૪(ક અથવા) [७ ગુણ]

# IC741ની મદદથી ડિફરેન્શિયલ એમ્પ્લીફાયર વિસ્તૃતમાં સમજાવો.

#### જવાબ:

ડિફરેન્શિયલ એમ્પ્લીફાયર કોમન સિગ્નલ રિજેક્ટ કરતાં બે ઇનપુટ સિગ્નલ વચ્ચેનો તફાવત એમ્પ્લિફાઇ કરે છે.



## વિશ્લેષણ:

નોન-ઇન્વર્ટિંગ ઇનપુટ માટે:

• V+ = V2 × R3/(R2+R3)

ઇન્વર્ટિંગ ઇનપુટ માટે વર્ચ્યુઅલ શોર્ટનો ઉપયોગ કરીને:

• V- = V+ = V2 × R3/(R2+R3)

કરંટ બેલેન્સનો ઉપયોગ કરીને:

• (V1-V-)/R1 = (V--Vout)/Rf

# આઉટપુટ સમીકરણ:

જ્યારે R1 = R2 અને R3 = Rf:

Vout = (Rf/R1)(V2 - V1)

# મુખ્ય લાક્ષણિકતાઓ:

#### ટેબલ:

| પેરામીટર         | મૂલ્ય     | ફાયદો                   |
|------------------|-----------|-------------------------|
| ડિફરેન્શિયલ ગેઈન | Rf/R1     | તફાવત એમ્પ્લિફાઇ કરે    |
| કોમન મોડ ગેઈન    | ~0        | કોમન સિગ્નલ રિજેક્ટ કરે |
| CMRR             | ખૂબ ઊંચું | શ્રેષ્ઠ નોઇઝ ઇમ્યુનિટી  |

### એપ્લીકેશન:

• **ઇન્સ્ટ્રુમેન્ટેશન**: સેન્સર સિગ્નલ પ્રોસેસિંગ

• નોઇઝ રિજેક્શન: ડિફરેન્શિયલ સિગ્નલ ટ્રાન્સમિશ

• બ્રિજ સર્કિટ: સ્ટ્રેઇન ગેજ મેઝરમેન્ટ

મેમરી ટ્રીક: "તફાવત એમ્પ્લિફાઇડ, કોમન રિજેક્ટેડ"

# પ્રશ્ન ૫(અ) [૩ ગુણ]

OP-AMPની મદદથી ઇન્ટીગ્રેટર સર્કિટ દોરો અને તેના ઇનપુટ અને આઉટપુટ વેવફોર્મ દોરો.

### જવાબ:

ઓપ-એમ્પ ઇન્ટીગ્રેટર RC ફીડબેકનો ઉપયોગ કરીને ઇનપુટ સિગ્નલનું ગાણિતિક ઇન્ટીગ્રેશન કરે છે.



# વેવફોર્મ:

# ઓપરેશન:

• ઇન્ટીગ્રેશન ફંક્શન: Vout = -(1/RC)[Vin dt

• સ્ક્વેર વેવ ઇનપુટ: ત્રિકોણાકાર આઉટપુટ ઉત્પન્ન કરે છે

• રેમ્પ જનરેશન: કોન્સ્ટન્ટ ઇનપુટ લીનિયર રેમ્પ આપે છે

મેમરી ટ્રીક: "ઇન્ટીગ્રેશન સ્ક્વેરમાંથી ત્રિકોણાકાર બનાવે"

# પ્રશ્ન ૫(બ) [૪ ગુણ]

પુશ પુલ એરેન્જમેન્ટ પાવર એમ્પ્લીફાયરના ફાયદા તથા ગેરફાયદા જણાવો.

#### മവവം

પુશ-પુલ કન્ફિગરેશન પાવર એમ્પ્લિફિકેશન માટે કમ્પ્લીમેન્ટરી રીતે ઓપરેટ કરતા બે ટ્રાન્ઝિસ્ટરનો ઉપયોગ કરે છે.

### ફાયદા:

# ટેબલ:

| ફાયદો                       | લાભ                            | એપ્લીકેશન        |
|-----------------------------|--------------------------------|------------------|
| <b>હૅચ્ચ કાર્યક્ર</b> ્ષમતા | 78.5% સુધી                     | બેટરી ઓપરેટેડ    |
| ટ્રાન્સફોર્મર નહીં          | કોમ્પેક્ટ ડિઝાઇન               | પોર્ટેબલ ડિવાઇસ  |
| ઓછી વિકૃતિ                  | સારી લીનિયરિટી                 | ઓડિયો સિસ્ટમ     |
| ગરમીનું વિતરણ               | ટ્રાન્ઝિસ્ટર વચ્ચે વહેંચાયેલું | થર્મલ મેનેજમેન્ટ |

## ગેરફાયદા:

| ગેરફાયદો            | સમસ્થા                    | бèа                |
|---------------------|---------------------------|--------------------|
| ક્રોસઓવર ડિસ્ટોર્શન | શૂન્ય ક્રોસિંગ પર ડેડ ઝોન | ક્લાસ AB બાયસ      |
| કોમ્પોનન્ટ મેચિંગ   | મેચ્ડ ટ્રાન્ઝિસ્ટરની જરૂર | કાળજીપૂર્વક પસંદગી |
| થર્મલ રનઅવે         | તાપમાન કોઇફિશન્ટ મિસમેંથ  | થર્મલ કપલિંગ       |

# એપ્લીકેશન:

• ઓડિયો એમ્પ્લીફાયર: હાઇ ફિડેલિટી સિસ્ટમ

• **મોટર ડ્રાઇવર**: DC મોટર કંટ્રોલ

• **RF એમ્પ્લીફાયર**: કમ્યુનિકેશન સિસ્ટમ

મેમરી ટ્રીક: "પુશ-પુલ પાવર પ્રદાન કરે પણ સમસ્યાઓ છે"

# પ્રશ્ન ૫(ક) [७ ગુણ]

555 ટાઇમર ICની મદદથી એસ્ટેબલ મલ્ટીવાઇબ્રેટર દોરો અને સમજાવો.

#### જવાબ:

એસ્ટેબલ મલ્ટીવાઇબ્રેટર 555 ટાઇમરનો ઉપયોગ કરીને બાહ્ય ટ્રિગર વિના સતત સ્કવેર વેવ આઉટપુટ ઉત્પન્ન કરે છે.

## સર્કિટ ડાયગ્રામ:

```
+Vcc

|
RA
|
+--+--+ (7)
|
|
RB (2)+(6) 555 (3)--- Output
|
|
C (1) (4)
|
GND GND +Vcc
```

# પિન કનેક્શન:

- **પિન 1**: ગ્રાઉન્ડ
- પિન 2: ટ્રિગર (પિન 6 સાથે કનેક્ટેડ)
- પિન 3: આઉટપુટ
- **પિન 4**: રીસેટ (+Vcc)
- **પિન 6**: થ્રેશોલ્ડ
- **પિન 7**: ડિસચાર્જ
- **นิศ 8**: +Vcc

### ઓપરેશન:

1. **યાર્જિંગ ફેઝ**: C એ RA + RB દ્વારા ચાર્જ થાય છે

2. **થ્રેશોલ્ડ પહોંચ્યું**: 2/3 Vcc પર, આઉટપુટ LOW જાય છે

3. **ડિસચાર્જિંગ કેઝ**: C એ RB દ્વારા ડિસચાર્જ થાય છે

4. **ટ્રિગર પહોંચ્યું**: 1/3 Vcc પર, આઉટપુટ HIGH જાય છે

5. **સાયકલ રિપીટ**: સતત ઓસિલેશન

# ટાઇમિંગ સમીકરણો:

• **HIGH ลม2**: t1 = 0.693(RA + RB)C

• **LOW ลม2**: t2 = 0.693(RB)C

• કુલ પીરિયક: T = t1 + t2 = 0.693(RA + 2RB)C

• ફ્રીક્વન્સી: f = 1.44/[(RA + 2RB)C]

• ક્યુટી સાયકલ: D = (RA + RB)/(RA + 2RB) × 100%

## એપ્લીકેશન:

• ક્લોક જનરેશન: ડિજિટલ સિસ્ટમ

• LED ફ્લેશર: બ્લિકિંગ સર્કિટ

• ટોન જનરેશન: ઓડિયો ઓસિલેટર

• PWM જનરેશન: મોટર સ્પીડ કંટ્રોલ

મેમરી ટ્રીક: "એસ્ટેબલ હંમેશા ઓટોમેટિક ઓસિલેટ કરે"

# પ્રશ્ન ૫(અ અથવા) [૩ ગુણ]

# Op-ampનો બ્લોક ડાયગ્રામ દોરો અને તેને સમજાવો.

#### જવાબ:

ઓપ-એમ્પની આંતરિક રચના ઉચ્ચ ગેઈન અને કામગીરી માટે બહુવિદ્ય સ્ટેજનો સમાવેશ કરે છે.

### બ્લોક ડાયગ્રામ:



## સ્ટેજ ફંક્શન:

| સ્ટેજ                    | ફંક્શન                 | લાક્ષણિકતાઓ            |
|--------------------------|------------------------|------------------------|
| ડિફરેન્શિયલ ઇનપુટ        | ઉચ્ચ ઇનપુટ ઇમ્પીડન્સ   | નીચું ઓફસેટ, ઉચ્ચ CMRR |
| ઇન્ટરમીડિયેટ એમ્પ્લીફાયર | ઉચ્ચ વોલ્ટેજ ગેઈન      | મોટાભાગનું ગેઈન        |
| લેવલ શિફ્ટર              | DC લેવલ એડજસ્ટમેન્ટ    | AC સ્ટેજ કપલ કરે છે    |
| આઉટપુટ સ્ટેજ             | નીચું આઉટપુટ ઇમ્પીડન્સ | કરંટ બફર               |

• ઉચ્ચ ગેઈન: સામાન્ય રીતે 100,000 અથવા વધુ

• **વાઇડ બેન્ડવિડ્થ**: MHz રેન્જ ક્ષમતા

• નીચું આઉટપુટ ઇમ્પીડન્સ: વિવિધ લોડ ડ્રાઇવ કરે છે

મેમરી ટ્રીક: "ડિફરેન્શિયલ ઇનપુટ, ઇન્ટરમીડિયેટ ગેઈન, લેવલ શિફ્ટ, આઉટપુટ બફર"

# પ્રશ્ન ૫(બ અથવા) [૪ ગુણ]

પાવર એમ્પ્લીફાયરના સંદર્ભમાં પદો વિશે સમજાવો.i) કાર્યક્ષમતા ii) ડિસ્ટોર્શન.

#### જવાબ:

આ પેરામીટર્સ પાવર એમ્પ્લીફાયરની કામગીરી અને એપ્લીકેશન માટે યોગ્યતા નક્કી કરે છે.

# i) **કાર્યક્ષમતા (η)**:

• વ્યાખ્યા: AC આઉટપુટ પાવર અને DC ઇનપુટ પાવરનો ગુણોત્તર

• ਮ੍ਰ>: η = Po(AC)/Pin(DC) × 100%

• મહત્વ: ગરમી વિસર્જન અને બેટરી લાઇફ નક્કી કરે છે

### કાર્યક્ષમતા સરખામણી:

## ટેબલ:

| ક્લાસ | รเช้นหดเ | એપ્લીકેશન               |
|-------|----------|-------------------------|
| A     | 25%      | લો પાવર, હાઇ ફ્રિડેલિટી |
| В     | 78.5%    | પુશ-પુલ એમ્પ્લીફાયર     |
| АВ    | 60-70%   | ઓડિયો એમ્પ્લીફાયર       |
| С     | >90%     | RF એપ્લીકેશન            |

## ii) ડિસ્ટોર્શન:

• વ્યાખ્યા: આઉટપુટ સિગ્નલ શેપમાં અનિચ્છનીય ફેરફારો

• પ્રકારો: હાર્મોનિક, ઇન્ટરમોક્યુલેશન, ક્રોસઓવર

• મેઝરમેન્ટ: ટોટલ હાર્મોનિક ડિસ્ટોર્શન (THD)

## ડિસ્ટોર્શન સોર્સ:

• નોનલીનિયરિટી: ટ્રાન્ઝિસ્ટર લાક્ષણિકતાઓ

• **ક્રોસઓવર**: પુશ-પુલમાં ડેડ ઝોન • **થર્મલ ઇફેક્ટ**: તાપમાન વેરિયેશન

મેમરી ટ્રીક: "કાર્યક્ષમતા ઊર્જા ઉપયોગ માપે, ડિસ્ટોર્શન સિગ્નલ ડિગ્રેડેશન દર્શાવે"

# પ્રશ્ન ૫(ક અથવા) [७ ગુણ]

555 ટાઇમર IC નો પિન ડાયગ્રામ દોરો. ઉપરાંત 555 ટાઇમર ICની મદદથી બે સ્ટેજવાળું સિક્વન્સિયલ ટાઇમર દોરો.

#### જવાબ:

555 ટાઇમર સ્ટાન્ડર્ડ 8-પિન પેકેજ સાથે ટાઇમિંગ એપ્લીકેશન માટે વર્સેટાઇલ IC છે.

### પિન ડાયગ્રામ:

# પિન ફંક્શન:

## ટેબલ:

| પિન | नाम       | ફંક્શન                        |
|-----|-----------|-------------------------------|
| 1   | ગ્રાઉન્ડ  | કોમન ગ્રાઉન્ડ                 |
| 2   | ટ્રિગર    | ટાઇમિંગ સાયકલ શરૂ કરે         |
| 3   | આઉટપુટ    | ટાઇમર આઉટપુટ                  |
| 4   | રીસેટ     | ટાઇમર રીસેટ કરે               |
| 5   | કંટ્રોલ   | વોલ્ટેજ રેફરન્સ               |
| 6   | થ્રેશોલ્ડ | ટાઇમિંગ સાયકલ બંધ કરે         |
| 7   | ડિસચાર્જ  | ટાઇમિંગ કેપેસિટર ડિસચાર્જ કરે |
| 8   | Vcc       | સપ્લાય વોલ્ટેજ                |

## બે સ્ટેજ સિક્વન્સિયલ ટાઇમર સર્કિટ:

```
First Stage (555A):
```

```
+Vcc
     R1
  +--+--+ (7)
       (2)+(6) 555A (3)---+
  C1
           (1)
                 (4)
           GND
          GND
                 +Vcc
Second Stage (555B):
   +Vcc
     R3
  +--+--+ (7)
       (2) 555B (3)--- Output
       (6) (1)
                (4)
       GND---+--GND
                +Vcc
        +----+
```

## ઓપરેશન:

- 1. **પ્રથમ ટાઇમર**: મોનોસ્ટેબલ મોડમાં ઓપરેટ કરે છે
- 2. **ટ્રિગર લાગુ**: પ્રથમ ટાઇમર આઉટપુટ પલ્સ આપે છે
- 3. **આઉટપુટ અવધિ**: T1 = 1.1 × R2 × C1
- 4. **બીજું ટાઇમર**: પ્રથમ ટાઇમરના આઉટપુટ દ્વારા ટ્રિગર થાય છે
- 5. **સિક્વન્સિયલ ઓપરેશન**: પ્રથમ પૂર્ણ થયા પછી બીજું શરૂ થાય છે
- 6. **કુલ વિલંબ**: T1 + T2 જ્યાં T2 = 1.1 × R4 × C2

# એપ્લીકેશન:

- ડિલે સર્કિટ: સિક્વન્સિયલ સ્વિચિંગ
- ટ્રાફિક લાઇટ: ટાઇમ્ડ સિક્વન્સ કંટ્રોલ
- ઇન્ડસ્ટ્રિયલ ઓટોમેશન: પ્રોસેસ ટાઇમિંગ
- મોટર કંટોલ: સ્ટાર્ટ-સ્ટોપ સિક્વન્સ

## ટાઇમિંગ સમીકરણો:

- સ્ટેજ **1 વિલંબ**: T1 = 1.1 R2 C1
- સ્ટેજ **2 વિલંબ**: T2 = 1.1 R4 C2
- કુલ સિક્યન્સ સમય: Ttotal = T1 + T2

# મુખ્ય લાક્ષણિકતાઓ:

• સ્વતંત્ર ટાઇમિંગ: દરેક સ્ટેજ અલગથી એડજસ્ટેબલ

• સિક્વન્સિયલ ઓપરેશન: સ્ટેજ વચ્ચે કોઈ ઓવરલેપ નહીં

• વિશ્વસનીય સ્વિચિંગ: સ્વચ્છ ડિજિટલ ટ્રાન્ઝિશન

• **સરળ ડિઝાઇન**: સરળ કોમ્પોનન્ટ ગણતરી

મેમરી ટ્રીક: "સિક્વન્સિયલ સ્ટેજ અલગથી શરૂ થાય"