# Appendix

Quantum Technology Summer School

### Commutator

Exercise:  $[X_1, CNOT_{01}]$ 

 $X_1 \equiv \mathbb{I} \otimes X$ : NOT gate define on #Q1

 $CNOT_{01}$ : CNOT gate defined on #Q0 (control),

#Q1 (target)

#### Kronecker product

$$|\psi_{1}\rangle \otimes |\psi_{2}\rangle = \begin{bmatrix} 1 \cdot \begin{bmatrix} i \\ -1 \end{bmatrix} & -1 \cdot \begin{bmatrix} i \\ -1 \end{bmatrix} \\ 0 \cdot \begin{bmatrix} i \\ -1 \end{bmatrix} & i \cdot \begin{bmatrix} i \\ -1 \end{bmatrix} \\ (-1+i) \cdot \begin{bmatrix} i \\ -1 \end{bmatrix} & (1-i) \cdot \begin{bmatrix} i \\ -1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} i & -i \\ -1 & 1 \\ 0 & -1 \\ 0 & -i \\ -1-i & 1+i \\ 1-i & -1+i \end{bmatrix}$$

#### **Hilbert space**

$$\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$$

#### **Definition**

The commutator of two operators  $\hat{A}$  and  $\hat{B}$  is defined as

$$[\hat{A}, \hat{B}] := \hat{A}\hat{B} - \hat{B}\hat{A}.$$

If the value is zero, the two guys  $\hat{A}$ ,  $\hat{B}$  are commutable:

$$[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A} = 0 \implies \hat{A}\hat{B} = \hat{B}\hat{A}.$$

### Controlled gates

#### **Controlled gates**

Do operation on the target when all controls are "1".



#### **Negative controlled gates**

Do operation on the target when all controls are "0".



### Project presentation

#### **Time limit: 15min**

- Identify problem
  - Motivation, background
- Methodology
  - Model: architecture, operators
  - Quantum circuit
- Results (data)
  - Theoretical prediction

- Simulator vs. real device
- Analysis & discussion
  - Meaning of results
  - Comparison with classical
  - Possible applications

## Project report

- Abstract
  - Short summary, quick look
  - Keywords
- Introduction & model
  - Identify question
  - Historical background e.g.: what has been done previously (classically)

- Result & discussion
  - Data analysis
- Conclusion
  - Potential research topics
- Reference
  - No need of details in content
  - Be aware of the format