CS722/822: Machine Learning

Instructor: Jiangwen Sun Computer Science Department

Last Lecture

- What is regression
- Least squares
- Different regression problems
- Statistical interpretation of least squares
- Solve least squares (to be continued)

Solve least squares

- Least squares with a linear function of x and parameters
 w is called "linear regression"
- Linear regression has a closed-form solution for w

$$\min_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{x}_i^T \mathbf{w})^2$$

$$= \min_{\mathbf{w}} (\mathbf{y} - \mathbf{X} \mathbf{w})^T (\mathbf{y} - \mathbf{X} \mathbf{w})$$

$$= \min_{\mathbf{w}} E(\mathbf{w})$$

The minimum is achieved at the zero gradient

The gradient
$$\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = -2\mathbf{X}^T(\mathbf{y} - \mathbf{X}\mathbf{w}) = 0$$

$$\mathbf{w} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

Solve least squares

We can use the following formula

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

to build a model

- 1. the model can be a linear function of X
- 2. the model can be a polynomial of *X*
- 3. Actually, the model can be any format of

$$y_i = \phi(\mathbf{x}_i)^T \mathbf{w}$$

Let us try out some examples

Simple examples - linear

- A simple example where we observed three data points
- $(\mathbf{x}^{(1)}, y^{(1)})$, $(\mathbf{x}^{(2)}, y^{(2)})$ and $(\mathbf{x}^{(3)}, y^{(3)})$ where $\mathbf{x}^{(i)}$ is a vector of 2 elements

$$\begin{bmatrix} x_1^{(1)} & x_2^{(1)} \\ x_1^{(2)} & x_2^{(2)} \\ x_1^{(3)} & x_2^{(3)} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \approx \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ y^{(3)} \end{bmatrix}$$

$$E(\mathbf{w}) = \sum_{i=1}^{3} \left(y^{(i)} - \mathbf{x}^{(i)^T} \mathbf{w} \right)^2$$

$$\frac{\partial E(\mathbf{w})}{\partial w_1} = \sum_{i=1}^{3} -2x_1^{(i)} \left(y^{(i)} - \left(x_1^{(i)} w_1 + x_2^{(i)} w_2 \right) \right) = 0$$

$$\Rightarrow \frac{1-1}{-2\sum_{i=0}^{3} x_1^{(i)} y^{(i)} + 2\sum_{i=0}^{3} x_1^{(i)} x_1^{(i)} w_1 + 2\sum_{i=0}^{3} x_1^{(i)} x_2^{(i)} w_2 = 0}{\frac{\partial E(\mathbf{w})}{\partial w_2}} = -2\sum_{i=0}^{3} x_2^{(i)} y^{(i)} + 2\sum_{i=0}^{3} x_2^{(i)} x_1^{(i)} w_1 + 2\sum_{i=0}^{3} x_2^{(i)} x_2^{(i)} w_2 = 0$$

Simple examples - polynomial

- Our function is no longer linear but a polynomial of x
- Let us assume we have one independent variable x, and we are building a polynomial of order M to approximate y

$$f(x; \mathbf{w}) = w_0 + w_1 x^1 + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^M \\ 1 & x_2 & x_2^2 & \cdots & x_2^M \\ 1 & x_3 & x_2^2 & \cdots & x_2^M \end{bmatrix} \begin{bmatrix} w_0 \\ \vdots \\ w_M \end{bmatrix} \approx \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Simple examples - polynomial

 Similarly, Least Squares has a closed form solution with linear regression, we also have the same closed form solution when the function is a polynomial

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

where

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^M \\ 1 & x_2 & x_2^2 & \cdots & x_2^M \\ 1 & x_3 & x_2^2 & \cdots & x_2^M \end{bmatrix} \begin{array}{c} \mathbf{Design} \\ \mathbf{Matrix} \end{array}$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Solve least squares

- For nonlinear regression, there is no closed-form solution
- Or when the design matrix (i.e., X) is too big, the computation cost of inverse matrix is too high

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

We use the so-called "gradient descent" algorithm

Recall: for linear regression, we set

the gradient
$$\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = -2\mathbf{X}^T(\mathbf{y} - \mathbf{X}\mathbf{w}) = 0$$
 to obtain the solution

Basic idea of gradient descent

• From \mathbf{w}_0 , at each iteration, we reduce $E(\mathbf{w})$,

$$E(\mathbf{w}_0) \ge E(\mathbf{w}_1) \ge E(\mathbf{w}_2) \ge \cdots$$

- w₀ can be any feasible w
- If $E(\mathbf{w})$ is differentiable, then at any point \mathbf{w}_k , $E(\mathbf{w})$ decreases fastest along the direction of the negative gradient of $E(\mathbf{w})$ at \mathbf{w}_k ,

$$-\frac{\partial E(\mathbf{w}_k)}{\partial \mathbf{w}_k} = 2\mathbf{X}^T(\mathbf{y} - \mathbf{X}\mathbf{w}_k)$$

Algorithm of gradient descent

- 1. Set iteration k = 0, make an initial guess \mathbf{w}_0
- 2. repeat:
- 3. Compute the negative gradient of $E(\mathbf{w})$ at \mathbf{w}_k and set it to be the search direction \mathbf{d}_k
- 4. Choose a step size α_k to sufficiently reduce $E(\mathbf{w}_k + \alpha_k \mathbf{d}_k)$
- 5. Update $\mathbf{w}_{k+1} = \mathbf{w}_k + \alpha_k \mathbf{d}_k$
- 6. k = k + 1
- 7. Until a termination rule is met