A FIRST COURSE

IN

ANALYSIS

A FIRST COURSE

IN

ANALYSIS

MAT2006 Notebook

Lecturer

Prof. Weiming Ni The Chinese University of Hongkong, Shenzhen

Tex Written By

Mr. Jie Wang

The Chinese University of Hongkong, Shenzhen

Contents

Ackn	owledgments	i۶
Notat	tions	X
1	Week1	1
1.1	Wednesday	1
1.1.1	Introduction to Set	1
1.2	Quiz	5
1.3	Friday	6
1.3.1	Proof of Schroder-Bernstein Theorem	6
1.3.2	Connectedness of Real Numbers	10
2	Week2	. 13
2.1	Wednesday	13
2.1.1	Review and Announcement	13
2.1.2	Irrational Number Analysis	13
2.2	Friday	21
2.2.1	Set Analysis	21
2.2.2	Set Analysis Meets Sequence	22
2.2.3	Completeness of Real Numbers	23
3	Week3	. 27
3.1	Tuesday	27
3.1.1	Application of Heine-Borel Theorem	27
3.1.2	Set Structure Analysis	29
3.1.3	Reviewing	31

3.2	Friday	33
3.2.1	Review	. 33
3.2.2	Continuity Analysis	. 34
4	Week4	41
4.1	Wednesday	41
4.1.1	Function Analysis	. 41
4.1.2	Continuity Analysis	. 46
4.2	Friday	50
4.2.1	Continuity Analysis	. 50
4.2.2	Monotone Analysis	. 53
4.2.3	Cantor Set	. 55
5	Week5	59
5.1	Wednesdays	59
5.1.1	Differentiation	. 59
5.1.2	Basic Rules of Differentiation	61
		. 01
5.1.3	Analysis on Differential Calculus	
5.1.3 5.2		
	Analysis on Differential Calculus	. 62 67
5.2	Analysis on Differential Calculus	. 62 67 . 67
5.2 5.2.1	Analysis on Differential Calculus	. 62 67 . 67
5.2 5.2.1 5.2.2	Analysis on Differential Calculus Friday Analysis on Derivative Analysis on Mean-Value Theorem	. 62 67 . 67 . 68
5.2 5.2.1 5.2.2 5.3	Analysis on Differential Calculus Friday Analysis on Derivative Analysis on Mean-Value Theorem Saturday: Comments on Quiz 1	. 62 67 . 67 . 68 73
5.2 5.2.1 5.2.2 5.3 5.3.1	Analysis on Differential Calculus Friday Analysis on Derivative Analysis on Mean-Value Theorem Saturday: Comments on Quiz 1 First Question	. 62 67 . 67 . 68 73 . 73
5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2	Analysis on Differential Calculus Friday Analysis on Derivative Analysis on Mean-Value Theorem Saturday: Comments on Quiz 1 First Question Second Question	. 62 67 . 67 . 68 73 . 73 . 74
5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.3.3	Analysis on Differential Calculus Friday Analysis on Derivative Analysis on Mean-Value Theorem Saturday: Comments on Quiz 1 First Question Second Question Third Question	. 62 67 . 67 . 68 73 . 73 . 73

6	Week6	77
6.1	Wednesday	77
6.1.1	Reviewing	. 77
6.2	Friday	83
6.2.1	Announcement	. 83
6.2.2	Riemann Integration	. 83

Acknowledgments

This book is taken notes from the MAT2006 in fall semester, 2018. These lecture notes were taken and compiled in LATEX by Jie Wang, an undergraduate student in Fall 2018. Prof. Weiming Ni has not edited this document. Students taking this course may use the notes as part of their reading and reference materials. This version of the lecture notes were revised and extended for many times, but may still contain many mistakes and typos, including English grammatical and spelling errors, in the notes. It would be greatly appreciated if those students, who will use the notes as their reading or reference material, tell any mistakes and typos to Jie Wang for improving this notebook.

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

6.2. Friday

6.2.1. Announcement

This lecture will mainly discuss the integration, but first let's review what we have learnt from last lecture.

The Taylor series has its connection with complex numbers:

■ Example 6.2 Given a function $f(x) = \frac{1}{1+x^2} \in \mathcal{C}^{\infty}(\mathbb{R})$. There is a smart way to check the property infinite differentiable:

$$f(x) = \frac{1}{1 - (-x^2)} = 1 - x^2 + x^4 - x^6 + \cdots$$
, holds for $x^2 < 1$

Why would the function f have taylor series convergent only hold for $x^2 < 1$, but it is infinite differentiable on the whole real line?

The answer is that if extending the domain into complex plane, the function $\frac{1}{1+z^2}$ have poles $\pm i$, and thus have no chance to have taylor expansion beyond |z| < 1. Then project the complex plane into real line.

Exercise: find the taylor series of $\frac{1}{1+x^2}$ at x=1 and determine its radius of convergence $(\sqrt{2})$.

Taylor series and uniform continuous will be definitely in the mid-term exam.

6.2.2. Riemann Integration

Set Up. Given a bounded function f on the closed (finite) interval [a,b]. A partition \mathcal{P} is a set of points $\{x_i\}_{i=0}^n$:

$$a_1 = x_0 \le x_1 \le x_2 \le \dots \le x_n = b$$

where the **mesh** of \mathcal{P} is defined to be $\lambda(\mathcal{P}) = \max_{1 \leq i \leq n} |\Delta x_i|$.

On each interval $[x_{i-1}, x_i]$, define

$$m_i = \inf_{x_{i-1} \le x \le x_i} f(x), \quad M_i = \sup_{x_{i-1} \le x \le x_i} f(x)$$

The lower sum and upper low sum associated with partition \mathcal{P} is defined as:

$$L(\mathcal{P}, f) = \sum_{i=1}^{n} m_i (x_i - x_{i-1}) = \sum_{i=1}^{n} m_i \Delta x_i$$
$$U(\mathcal{P}, f) = \sum_{i=1}^{n} M_i (x_i - x_{i-1}) = \sum_{i=1}^{n} M_i \Delta x_i$$

Now we define the lower and upper Riemann intergral as:

$$\frac{\int_{a}^{b} f(x) dx = \sup_{\mathcal{P}} L(\mathcal{P}, f)}{\int_{a}^{b} f(x) = \inf_{\mathcal{P}} U(\mathcal{P}, f)}$$

These definitions are well-defined.

Definition 6.2 [integrable] We say that f is (Riemann) integrable if $\underline{\int_a^b} f(x) dx = \overline{\int_a^b} f(x)$. The set of all **Riemann integrable functions** on [a,b] is denoted as $\mathcal{R}[a,b]$.

- Example 6.3 1. $f(x) \equiv 1$ on [0,1]; then $\int_a^b f(x) \, \mathrm{d}x = \overline{\int_a^b} f(x) = 1$
 - 2. Dirichlet function:

$$D(x) = \begin{cases} 0, & x \notin \mathbb{Q} \\ 1, & x \in \mathbb{Q} \end{cases}$$

This function always has lower sum 0 and upper sum 1.

3. Riemann function on [0,1]:

$$R(x) = \begin{cases} 0, & x \notin \mathbb{Q} \\ \frac{1}{q}, & x = \frac{p}{q}, q > 0, (p, q) = 1 \end{cases}$$

We will show that it is integrable only by definition.

4. The function defined on [0,1]:

$$f(x) = \begin{cases} 0, & x = 0\\ \sin\frac{1}{x}, & x \neq 0 \end{cases}$$

5.

$$\lim_{n\to\infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right]$$

Definition 6.3 [Refinement] Given a partition \mathcal{P} , we say \mathcal{P}^* is a refinement of \mathcal{P} if \mathcal{P}^* contains all the sub-division points of \mathcal{P}

Proposition 6.4 Let $f : [a,b] \mapsto \mathbb{R}$ with $m \le f(x) \le M$ on [a,b], then

- 1. $L(\mathcal{P},f) \leq L(\mathcal{P}^*,f)$ and $U(\mathcal{P}^*,f) \leq U(\mathcal{P},f)$ holds for any refinement \mathcal{P}^* of \mathcal{P}
- 2. $L(\mathcal{P}_1, f) \leq U(\mathcal{P}_2, f)$ for any refinements $\mathcal{P}_1, \mathcal{P}_2$.

3.

$$m(b-a) \le \int_a^b f(x) dx \le \overline{\int_a^b} f(x) dx \le M(b-a)$$

4. f is **Riemann integrable** iff $\forall \varepsilon$, there exists \mathcal{P} s.t. $U(\mathcal{P}, f) - L(\mathcal{P}, f) \leq \varepsilon$.

Proof. For (2), take the \mathcal{P}^* as common refinement for $\mathcal{P}_1, \mathcal{P}_2$, and show that

$$L(\mathcal{P}_1, f) \leq L(\mathcal{P}^*, f) \leq U(\mathcal{P}^*, f) \leq U(\mathcal{P}_2, f)$$

Theorem 6.4 If f is continuous on [a,b], then f is Riemann integrable on [a,b].

Proof. f is continuous on [a,b] implies f is uniform continuous, i.e., $\forall \varepsilon > 0, \exists \delta > 0$ s.t. for $|x-y| < \delta$,

$$|f(x) - f(y)| < \varepsilon$$
.

Pick a partition $P = \{x_0 := a, x_1 := a + h, x_2 := a + 2h, ..., x_n := a + nh := b\}$ with h = a

 $\frac{b-a}{n} < \delta$. It follows that on interval $[x_{i-1}, x_i]$, we have

$$M_i - m_i < \varepsilon \implies U(\mathcal{P}, f) - L(\mathcal{P}, f) = \sum_{i=1}^n (M_i - m_i) \Delta x_i \le \varepsilon \sum_{i=1}^n \Delta x_i = \varepsilon (b - a)$$

Corollary 6.1 If f is continuous expect for finitely many points on [a,b], then f is Riemann integrable.

does not apply to $f(x) = \sin \frac{1}{x}$

$$f_n(x) = \begin{cases} n, & x \in [0, \frac{1}{n}) \\ 0, & x \notin (0, \frac{1}{n}) \end{cases}$$

then $\int_0^1 f_n(x) dx = 1$ and $\int_0^1 f(x) dx = 0$ since $f = \lim_{n \to \infty} f_n = 0$.

Theorem 6.5 Let $\{f_n\}$ be a sequence of **Riemann integrable** functions on [a,b], and f_n converges uniformly to f. Then f is Riemann integrable and

$$\int_{a}^{b} f(x) = \lim_{n \to \infty} \int_{a}^{b} f_n$$

Definition 6.4 [Uniform Convergence] Let f be the pointwise limit of f_n , then f_n is said to converge uniformly to f if

$$\sup_{a \le x \le b} |f_n(x) - f(x)| \to 0, \text{ as } n \to \infty.$$

Apply Uniform Convergence Theorem into Dirichlet function.

Converse: $f_n(x) = x^n$ for $x \in [0,1]$.

Today any function talked is bounded.