(DATASET: Online Retail) The transactions made by a UK-based, registered, non-store online retailer between December 1, 2010, and December 9, 2011, are all included in the transnational data set known as online retail. The company primarily offers one-of-a-kind gifts for every occasion. The company has a large number of wholesalers as clients. Company ObjectiveUsing the global online retail dataset, we will design a clustering model and select the ideal group of clients for the business to target.

In [5]: import pandas as pd
 from matplotlib import pyplot as plt
 %matplotlib inline

In [6]: df=pd.read_csv(r"C:\Users\venka\Downloads\praneeth123.csv")
 df

Out[6]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Coı
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	U Kinç
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	U Kinç
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	U Kinç
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	U Kinç
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	U Kinç
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	Fr
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	Fr
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	Fr
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	Fr
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	Fr
541909	rows × 8 cc	lumns						
4								

In [7]: df.head()

Out[7]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12 - 2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom

In [8]: df.tail()

Out[8]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Cou
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	Fra
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	Fra
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	Fra
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	Fra
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	Fra
4								•

```
In [9]: df['InvoiceNo'].value_counts()
 Out[9]: InvoiceNo
         573585
                     1114
         581219
                      749
         581492
                      731
         580729
                      721
         558475
                      705
         554023
                        1
         554022
                        1
         554021
                        1
         554020
                        1
         C558901
                        1
         Name: count, Length: 25900, dtype: int64
In [10]: df['CustomerID'].value_counts()
Out[10]: CustomerID
         17841.0
                     7983
         14911.0
                     5903
         14096.0
                     5128
         12748.0
                     4642
         14606.0
                     2782
         15070.0
                        1
         15753.0
                        1
         17065.0
                        1
         16881.0
                        1
         16995.0
                        1
         Name: count, Length: 4372, dtype: int64
In [11]: df['Quantity'].value_counts()
Out[11]: Quantity
          1
                    148227
          2
                     81829
          12
                     61063
                     40868
          6
          4
                     38484
          -472
                         1
         -161
                         1
         -1206
                         1
         -272
                         1
         -80995
         Name: count, Length: 722, dtype: int64
```

```
In [12]: plt.scatter(df["CustomerID"],df["Quantity"])
    plt.xlabel("CustomerID")
    plt.ylabel("Quantity")
```

Out[12]: Text(0, 0.5, 'Quantity')

In [13]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):

Data	COTAIIII (COC	ar o coramis,.	
#	Column	Non-Null Count	Dtype
0	InvoiceNo	541909 non-null	object
1	StockCode	541909 non-null	object
2	Description	540455 non-null	object
3	Quantity	541909 non-null	int64
4	InvoiceDate	541909 non-null	object
5	UnitPrice	541909 non-null	float64
6	CustomerID	406829 non-null	float64
7	Country	541909 non-null	object
dtype	es: float64(2), int64(1), obje	ct(5)
memoi	ry usage: 33.	1+ MB	

```
In [14]: df.isnull().sum()
Out[14]: InvoiceNo
                              0
         StockCode
                              0
         Description
                           1454
         Quantity
                              0
         InvoiceDate
                              0
         UnitPrice
                              0
         CustomerID
                         135080
         Country
                              0
         dtype: int64
In [15]: | df.fillna(method='ffill',inplace=True)
In [16]: df.isnull().sum()
Out[16]: InvoiceNo
                         0
         StockCode
                         0
         Description
                         0
         Quantity
                         0
         InvoiceDate
                         0
         UnitPrice
                         0
         CustomerID
                         0
                         0
         Country
         dtype: int64
In [17]: from sklearn.cluster import KMeans
         km=KMeans()
         km
Out[17]:
          ▼ KMeans
          KMeans()
         y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
In [18]:
         y_predicted
         C:\Users\venka\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
Out[18]: array([0, 0, 0, ..., 6, 6, 6])
```

In [19]: df["cluster"]=y_predicted
 df.head()

Out[19]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	C
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom	
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	
4									

```
In [20]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
    plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
    plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
    plt.xlabel("CustomerID")
    plt.ylabel("Quantity")
```

Out[20]: Text(0, 0.5, 'Quantity')


```
In [21]: from sklearn.preprocessing import MinMaxScaler
    scaler=MinMaxScaler()
    scaler.fit(df[["Quantity"]])
    df["Quantity"]=scaler.transform(df[["Quantity"]])
    df.head()
```

Out[21]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12 - 2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom
4								•

```
In [22]: scaler.fit(df[["CustomerID"]])
    df["CustomerID"]=scaler.transform(df[["CustomerID"]])
    df.head()
```

Out[22]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country (
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdom
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4								

K-MeansClustering

Out[24]: array([5, 5, 5, ..., 2, 2, 2])

In [25]: df["New Cluster"]=y_predicted
df.head()

Out[25]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	(
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdom	•
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	
4								•	

```
In [26]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]
    plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
    plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
    plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
    plt.xlabel("CustomerID")
    plt.ylabel("Quantity")
```

Out[26]: Text(0, 0.5, 'Quantity')


```
In [28]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]
    plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
    plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
    plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
    plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",plt.xlabel("CustomerID")
    plt.ylabel("Quantity")
```

Out[28]: Text(0, 0.5, 'Quantity')


```
In [29]: k_rng=range(1,10)
sse=[]
```

```
In [30]: for k in k rng:
             km=KMeans(n clusters=k)
             km.fit(df[["CustomerID","Quantity"]])
             sse.append(km.inertia )
         #km.inertia_ will give you the value of sum of square error
         print(sse)
         plt.plot(k rng,sse)
         plt.xlabel("K")
         plt.ylabel("Sum of Squared Error")
         C:\Users\venka\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\venka\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\venka\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\venka\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\venka\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\venka\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\venka\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\venka\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\venka\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
```

warnings.warn(

[46374.84553398485, 11336.065820168864, 4921.706891841403, 2723.519105189462 6, 1695.0392229312758, 1178.5963655607843, 910.2922640623467, 677.2020363970 291, 528.9028429929842]

CONCLUSION

For the given dataset we use K-means Clustering and done the grouping based on the given data. In the above dataset we will take customer id and quantity based on that we make the clusters. When the K-value is low error rate is more and the K-value is high error rate is very high. So, finally we can Conclude the above dataset is bestfit for K-Means.

In []:	