Wengxi Li

CONTACT INFORMATION 726 Serra Street Stanford, CA 94305 +1 (734) 450-2112

wengxili@umich.edu GitHub Website

RESEARCH INTERESTS Utilize human-centered design and applied AI to design, build, and evaluate human-AI systems in education, accessibility, or any everyday activities to assist and augment human intelligence.

EDUCATION

University of Michigan, Ann Arbor, MI

Master of Science in Electrical & Computer Engineering, GPA: 4.00/4.00

April 2023

• Coursework: Computer Vision, Computational Data Science & Machine Learning, Human-AI Interaction & Systems, SQL & Databases, Web Systems, Data Structure & Algorithms

University College London, London, United Kindom

Master of Science with **Distinction** in *Medical Image Computing*

August 2021

• Coursework: Programming Foundations for Medical Image Analysis, Machine Learning in Medical Imaging, Medical Electronics and Control

Beijing Normal University, Beijing, China

Bachelor of Science in *Physics*, GPA: 3.60/4.00

June 2020

• Coursework: Foundation of Programming Language (Java), Linear Algebra, Solidworks, Data Analysis, Electrodynamics, Quantum Mechanics, Solid State Physics

RESEARCH EXPERIENCE

Collaborative Programming Learning: Transforming Programming Videos into Interactive Tutorials with LLMs (in preparation)

Advisor: Prof. Hariharan Subramonyam

Stanford Institute for Human-Centered AI

- Cognitive Apprenticeship Pedagogy
 - Designed a syntax tree structure that can be populated with information from programming videos, data sets, and computational notebooks.
 - The syntax tree defines appropriate cognitive apprenticeship pedagogy for skill acquisition that is adaptive to the learner's skill level
- Intelligent Tutor System
 - Implemented a syntax tree-embedded conversational Intelligent Tutor System (ITS) as a JupyterLab extension using TypeScript, React, and Python
 - The ITS uses LLM to generate interactions to help learners watch video tutorials in several areas of computer science, such as exploratory data analysis, machine learning, and more.

Real-time Refocusing Algorithms for Acoustic Neurostimulations

[Paper] [Poster][Code]

Advisor: Dr. Antonio Stanziola, Prof. Bradley Treeby

Biomedical Ultrasound Group, UCL

- Traditional Algorithms Design and Simulations
 - Applied the Time Reversal (TR) algorithm to simulate the ultrasonic focus movement during neurostimulation sessions and got the transmit phases of three fixed targets
 - Calculated the phase difference of the transmitted wave due to the head movements for the three targets using the Geometric Beamforming (GB) algorithm
- Dataset Built and Deep Neural Network Training
 - Simulated the phase difference for 50 different patients, 50 random targets for each patient,

and ten sets of transformations (including displacements and rotations) for each target

• Implemented a fully connected neural network that takes target position, head displacement and rotation as input and outputs phase difference prediction

• Results and conclusions

- Traditional method: The GB algorithm works only when the focal point is at the center and the near side, so neural network prediction is necessary
- Deep neural network: A single model for all the skulls performs poorly, so training a specific model for each skull is more effective

COURSE PROJECTS

Workers-AI Interaction for Ergonomic Solutions Applying a Vision Language Approach
Advisor: Prof. Anhong Guo

[Report] [Talk] [Code]

• Dataset Built and Model Fine Tune

- Made a dataset that has images within ten different categories (each has a specific ergonomic problem) and another script that maps each problem to a list of feasible solutions
- Fine-tuned a Bootstrapping Language-Image Pre-training (BLIP) model on Hugging Face that could take an image as input and output a problem caption, with an accuracy of 73.39%

• Human-AI Interaction Design

- To achieve human-in-the-loop, a feedback mechanism is designed that can put the user's choices and the suggestions of ergonomics experts into practice
- In the user interaction loop, the user can select the most helpful solution from a list of solutions. The solution list will prioritize the options with the highest number of options
- In the ergonomic expert's interaction cycle, if the user does not select any solution, the ergonomic expert will provide another solution to the list and notify the user

SERVICE

Volunteer

UIST 2023 San Francisco, CA (Win the T-shirt Design Contest!)

Social Inverstigator

Microscopic survey of China's real progress (Completed 150 sample families' household surveys)

COMPUTER SKILLS

- Statistical & Back-end development: Python (Flask, PyTorch), C++, MATLAB, R, Java
- Data visualization & Front-end development: HTML, CSS, JavaScript, TypeScript, React, Vue.js

HONORS AND AWARDS

The First-Class Fellowships (Top 5%) of Beijing Normal University	2018
The First-Class Competition Scholarship (Top 5%) of Beijing Normal University	2018
Meritorious Winner (Top 7%) of Mathematical Contest in Modeling	2018