МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа прикладной математики и информатики

Отчёт о выполнении лабораторной работы 4.2

Исследование энергетического спектра β -частиц и определение их максимальной энергии при помощи магнитного спектрометра

Соболевский Федор Александрович Б05-111

Теоретические положения

Бета-распад – это самопроизвольное превращение ядер, при котором их массовое число не изменяется, а заряд изменяется на единицу. В данной работе мы будем иметь дело с электронным распадом:

$${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}X + e^{-} + \widetilde{\nu}. \tag{1}$$

Освобождающаяся в результате распада энергия делится между исходным ядром, электроном и нейтрино. При этом доля энергии, уносимая ядром крайне мала, так что вся энергия делится между нейтрино и электроном. Поэтому электроны могут иметь любую энергию от нулевой до некоторой максимальной энергии, высвобождаемой при распаде.

Вероятность $d\omega$ того, что электрон вылетит с импульсом $d^3\mathbf{p}$, а нейтрино с импульсом $d^3\mathbf{k}$ равна произведению этих дифференциалов, но мы должны учесть также закон сохранения энергии.

$$E_e - E - ck = 0, (2)$$

где E_e – максимальная энергия электрона, E – кинетическая энергия электрона:

$$E = c\sqrt{p^2 + m^2c^2} - mc^2, (3)$$

а через ck обозначена энергия антинейтрино с импульсом k. Таким образом, вероятность $d\omega$ принимает вид:

$$d\omega = D\delta(E_e - E - ck)d^3\mathbf{p}d^3\mathbf{k} = D\delta(E_e - E - ck)p^2dpk^2dkd\Omega_e d\Omega_{\widetilde{\nu}},\tag{4}$$

где D – некоторый коэффициент пропорциональности, δ – дельта-функция, $d\Omega_e$ и $d\Omega_{\tilde{\nu}}$ – элементы телесных углов направлений вылета электрона и нейтрино. В случае рассматриваемых нами разрешенных фермиевских типов распадов D можно считать с хорошей точностью константой. В этом случае можно проинтегрировать по всем углам и по абсолютному значению импульса нейтрино; δ -функция исчезнет, а ck всюду заменится на E_e – E. После умножения на полное число распадов проинтегрированное выражение приобретает смысл числа электронов dN, вылетающих из ядра с импульсом, абсолютная величина которого лежит между p и p+dp:

$$N = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 p$$
 (5)

Чтобы получить распределение электронов по энергиям, необходимо перейти от dp к dE. Получаем выражение:

$$\frac{dN}{dE} = N_0 B \sqrt{E(E + 2mc^2)} (E_e - E)^2 (E + mc^2), \tag{6}$$

где $B = (16\pi^2/c^4)D$. В нерелятивистском случае выражение упрощается и принимает вид:

$$\frac{dN}{dE} \simeq \sqrt{E}(E_e - E)^2 \tag{7}$$

Данное выражение определяет форму спектра β -распада. Дочерние ядра, возникающие в результате β -распада, нередко оказываются возбуждёнными. Возбуждённые ядра отдают свою энергию либо излучая гамма-квант, либо передавая избыток энергии одному из электронов с внутренних оболочек атома (обычно K или L). Последние электроны имеют строго определённую энергию и называются конверсионными. Ширина монохроматической линии, соответствующая конверсионным электронам, определяет разрешающую силу спектрометра (см. рис. 1).

Рис. 1: Вид энергетического спектра β -излучения

Экспериментальная установка

Энергию частиц определяют с помощью β -спектрометров. В работе используется магнитный спектрометр с «короткой» линзой, сцинтиллятором и ФЭУ (см. рис. 2, 3). Как показывает расчет, для заряженных частиц тонкая катушка эквивалентна линзе:

$$\frac{1}{f} \simeq \frac{I^2}{p_e^2} \tag{8}$$

При заданной силе тока на входное окно счетчика собираются электроны с определенным импульсом. Импульс сфокусированных электронов пропорционален силе тока:

$$p_e = kI. (9)$$

Коэффициент пропорциональности k обычно определяется по какой-либо известной конверсионной линии.

Рис. 2: Схема $\beta\text{-} \text{спектрометра}$ с короткой магнитной линзой

Рис. 3: Блок-схема установки для изучения β -спектра

Результаты измерений и обработка экспериментальных данных

Определение фона

Измерение фона было проведено 5 раз. Результаты и погрешности их определения представлены в таблице 1.

Номер измерения	1	2	3	4	5
N_{Φ}, c^{-1}	0,6797	0,8196	0,5197	0,6197	0,6397
Δ, c^{-1}	0,117	0,128	0,102	0,111	0,113

Таблица 1: Результаты измерения фона

Будем использовать усреднённое значение:

$$\overline{N_{\Phi}} = 0.656 \text{ c}^{-1}, \quad \sigma = \frac{1}{5-1} \sqrt{\sum_{i=1}^{5} (N_{\Phi_i} - \overline{N_{\Phi}})^2} = 0.054 \text{ c}^{-1}, \quad \sigma_{\text{полн}} = \sqrt{\sigma^2 + \overline{\Delta}^2} = 0.123 \text{ c}^{-1}.$$

Измерение спектра β -частиц

Определим коэффициент пропорциональности в формуле (9) по току, соответствующему пику конверсии $T_{\kappa} = 0.624$ МэВ:

$$I_{\text{конв}} = 4.25 \text{ A}, \quad k = \frac{T_{\text{K}}}{I_{\text{K}}c} = 0.489 \cdot 10^{-3} \frac{9 \text{B}}{c \cdot \text{A}}, \quad \sigma_k = k \frac{\sigma_I}{I} = 0.005 \cdot 10^{-3} \frac{9 \text{B}}{c \cdot \text{A}}.$$

По этому коэффициенту теперь можно определить p_e и T β -частиц, зная ток в установке. Результаты измерения спектра представлены в таблице 2. По этим данным построены графики зависимости частоты частиц от тока (рис. 4) и импульса/энергии (рис. 5).

в линзе

Рис. 4: Зависимость частоты β -частиц от тока Рис. 5: Импульсный и энергетический спектр β -частиц

Расчет максимальной энергии электронов

Чтобы точнее определить максимуальную энергию электрона $T_{\rm max}$, используем график Ферми. По осям ординат и абсцисс отложим соответственно $\sqrt{N(p_e)}/p_e^{3/2}\sim T_{\rm max}-T$. Выделяем линейную часть графика, соответствующую части электронов, которые не замедлены кулоновским притяжением, но еще не попадают под пик. Установив ее пересечение с осью абсцисс, получаем значение

$$T_{\rm max} \approx (0.58 \pm 0.02) \text{ M}{\circ}\text{B},$$

где погрешность рассчитана по формуле:

$$\sigma(k) = \sqrt{\frac{1}{N-1} \left(\frac{D_{yy}}{D_{xx}} - k^2 \right)}, \quad \sigma_b = \sigma_k \sqrt{\langle x^2 \rangle}.$$

Это хорошо сходится с табличным значением примерно в 600КэВ.

Рис. 6: График для определения $T_{\rm max}$

Вывод

Нам удалось довольно точно измерить энергетический спектр β -частиц. Теоретические предположения о пике конверсии и расположении максимума энергий подтвердились на практике. Полученное значение максимума близко к табличному.

Приложение

I, A	p_e , Мэ B/c	T , M \ni B	$N_{\text{полн}}, 1/c$	N, 1/c
0.6	0.088	0.088	0.66	0.004
0.8	0.117	0.117	0.83	0.174
1	0.147	0.147	1.15	0.494
1.2	0.176	0.176	2.149	1.493
1.4	0.205	0.205	3.779	3.123
1.6	0.235	0.235	5.998	5.342
1.8	0.264	0.264	8.977	8.321
2	0.293	0.293	10.297	9.641
2.2	0.323	0.323	11.247	10.591
2.4	1.174	0.352	11.337	10.681
2.6	1.271	0.381	11.117	10.461
2.8	1.369	0.411	9.977	9.321
3	1.467	0.440	9.177	8.521
3.2	1.565	0.469	6.788	6.132
3.4	1.663	0.499	4.569	3.913
3.6	1.760	0.528	2.279	1.623
3.7	1.809	0.543	1.979	1.323
3.8	1.858	0.557	1.729	1.073
3.9	1.907	0.572	1.969	1.313
3.95	1.932	0.579	1.939	1.283
4	1.956	0.587	3.389	2.733
4.05	1.980	0.594	5.538	4.882
4.1	2.005	0.601	8.368	7.712
4.15	2.029	0.609	11.467	10.811
4.2	2.054	0.616	13.136	12.48
4.25	2.078	0.623	15.066	14.41
4.3	2.103	0.631	14.566	13.91
4.35	2.127	0.638	11.787	11.131
4.4	2.152	0.645	10.087	9.431
4.45	2.176	0.653	7.378	6.722
4.5	2.201	0.660	4.699	4.043
4.6	2.249	0.675	1.67	1.014

Таблица 2: Результаты измерения спектра β -частиц