Analogové elektronické obvody			Jméno		ID
Ústav mikroelektroniky			Jakub Charvot		240844
FEKT VUT v Brně		Ročník	Obor	Skupina	
		2.	MET	MET/4	
Spolupracoval Radek Kučera	Měřeno dne 13. 10. 2022	Odevzdáno d	lne 27. 10. 2022	Hodnocen	í
Ověřování základních vlastností OZ					Č. úlohy 2

Teoretický úvod

Vlastnosti OZ

Parametr	Ideální OZ	Reálný OZ (1458)
Stejnosměrné zesílení A_0	∞	≈ 200000
Vstupní odpor R_{in}	∞	$\approx 1 \mathrm{M}\Omega$
Výstupní odpor R_{out}	0	$\approx 75\Omega$
Slew Rate SR	∞	$\approx 0.5 \mathrm{V} \cdot \mathrm{\mu s}^{-1}$

Tabulka 1: Ideální a reálné parametry OZ.

Důležitým paramaterem je $SR-Slew\ Rate$, mezní rychlost přeběhu. Maximální možná rychlost změny výstupního napětí. OZ neumí přenést ideální napěťový skok (obdélníkový signál) a vždy vytváří drobné nelineární zkreslení, u nízkých frekvencí a hodnot signálu to ale můžeme zanedbat.

Pro přenos sinusového ignálu pak platí $2\pi f U_2 < SR,$ vycházíme z derivace v bodě průchodu signálu nulou.

Obr. 1: Převodní charakteristiky OZ – a) Neinvertující zapojení, b) Invertující zapojení.

Zapojení OZ

Obr. 2: Schéma zapojení. a) Neinvertující zesilovač, b) Invertující zesilovač.

Samotný OZ má příliš vysoké zesílení a i při malé změně na vstupu už dosahuje saturace a tedy nefunguje správně. Pro stabilizaci jeho funkce využíváme záporné zpětné vazby – část výstupního signálu přivádíme zpět na vstup a tím snižujeme rozdíl potenciálů na vstupních svorkách téměř na nulu.

Napěťové zesílení dané aplikace vypočítáme následovně:

$$K_U=1+\frac{R_1}{R_2}.$$
.. neinvertující zesilovač (Obr. 2 a)
) $K_U=-\frac{R_1}{R_2}.$.. invertující zesilovač (Obr. 2 b))

Kmitočtová charakteristika

Obr. 3: Kmitočtová charakteristika 0Z 1458 a jeho neinvertujích zapojení.

Samotný OZ má udávaný tranzitní kmitočet $f_t=1\,\mathrm{MHz}$, tento údaj by ale platil jako horní mezní frekvence jen v případě zesílení 1. V případě aplikace s vyšším zesílením se horní mezní kmitočet snižuje dle vztahu:

$$f_{Ku} = \frac{f_t}{K_U}$$

Grafické znázornění je na Obr. 3.

Výsledky počítačové simulace a laboratorního měření Buffer

Obr. 4: Buffer, simulace – Pracovní bod obvodu.

Obr. 5: Buffer, simulace – Přenos signálu o frekvenci 100 kHz.

Obr. 6: Buffer, simulace – Přenos signálu o frekvenci 500 kHz.

Obr. 7: Buffer, laboratoř – Časová závislost vstupního a výstupního napětí.

Obr. 8: Buffer, simulace – Reakce obvodu na náběžnou a sestupnou hranu.

Zapojení sledovače je ideální k měření mezní rychlosti přeběhu. Obr. 8 zobrazuje simulaci zkreslení obdélníkového signálu, výpočtem stanovíme mezní rychlost přeběhu, která je stejná pro náběžnou i sestupnou hranu:

$$SR_{sim} = \frac{\Delta U}{\Delta t} = \frac{4,5-1,5}{33,133-25,979} \doteq 0.419 \,\text{V} \cdot \text{µs}^{-1}$$

Obr. 9: Buffer, laboratoř – Reakce obvodu na náběžnou hranu.

Obr. 10: Buffer, laboratoř – Reakce obvodu na sestupnou hranu.

Z Obr. 9 a 10 stejným způsobem vypočteme hodnotu odpovídající měření v laboratoři, zvlášť pro náběžnou a sestupnou hranu:

$$SR_{lab-rise} = \frac{\Delta U}{\Delta t} = \frac{0,830}{1,436} \doteq 0,578 \,\text{V} \cdot \text{µs}^{-1}$$

$$SR_{lab-fall} = \frac{\Delta U}{\Delta t} = \frac{0,740}{2503} \doteq 0,296 \,\mathrm{V} \cdot \mathrm{ms}^{-1}$$

Obr. 11: Buffer, simulace – Převodní charakteristika.

Obr. 12: Buffer, laboratoř – Převodní charakteristika.

Z převodních charakteristik na Obr. 11 a 12 lze stanovit napěťové zesílení:

$$A_{U-sim} = \frac{\Delta U_{in}}{\Delta U_{out}} = \frac{10}{10} = 1$$
$$A_{U-lab} = \frac{\Delta U_{in}}{\Delta U_{out}} = \frac{2}{2} = 1$$

Neinvertující zesilovač

Obr. 13: Neinvertující zes., simulace – Pracovní bod obvodu.

Obr. 14: Neinvertující zes., simulace – Přenos signálu o frekvenci $100\,\mathrm{kHz}$ pro různá zesílení, $R_1 = \{1\,\mathrm{k}\Omega; 10\,\mathrm{k}\Omega; 100\,\mathrm{k}\Omega\}$.

Z časových průběhů pomocí podílu amplitud (resp. hodnot P-P) vypočteme napěťové zesílení pro zapojení s jednotlivými odpory, obecně lze říci, že $A_U=\frac{u_2}{u_1}$. Obdobně lze zesílení získat ze sklonu křivek na Obr. 14. Vypočtené hodnoty jsou uvedeny v Tab. 2. Pro případ, kdy $R_1=100\,\mathrm{k}\Omega$ nejsou některé výsledky uvedeny, protože zde působí silné zkreslení signálu vlivem dosažení saturačního napětí.

Obr. 15: Neinvertující zesilovač – vstupní a výstupní signál v čase, $R_1=R_2=1\,\mathrm{k}\Omega$

Obr. 16: Neinvertující zesilovač – vstupní a výstupní signál v čase, $R_1=10\,\mathrm{k}\Omega,\,R_2=1\,\mathrm{k}\Omega$

Obr. 17: Neinvertující zesilovač – vstupní a výstupní signál v čase, $R_1=100\,\mathrm{k}\Omega,\,R_2=1\,\mathrm{k}\Omega$

Obr. 18: Neinvertující zes., simulace – Převodní charakteristika zapojení pro různé hodnoty R_1 .

Obr. 19: Neinvertující zesilovač – převodní charakteristika, $R_1=R_2=1\,\mathrm{k}\Omega$

Obr. 20: Neinvertující zesilovač – převodní charakteristika, $R_1=10\,\mathrm{k}\Omega,$ $R_2=1\,\mathrm{k}\Omega$

Obr. 21: Neinvertující zesilovač – převodní charakteristika, $R_1=100\,\mathrm{k}\Omega,\,R_2=1\,\mathrm{k}\Omega$

$R_1 \; [\mathrm{k}\Omega]$	1	10	100
Simulace, časový průběh (Obr. 14)	2	11	-
Měření, časový průběh (Obr. 15 - 17)	1,96	10,77	-
Simulace, převodní char. (Obr. 18)	2	11	100,95
Měření, převodní char. (Obr. 19 - 21)	2	≈ 11	≈ 90

Tabulka 2: Porovnání výsledků.

Invertující zesilovač

Obr. 22: Invertující zes., simulace – Pracovní bod obvodu.

Obr. 23: Invertující zes., simulace – Přenos signálu o frekvenci 100 kHz pro různá zesílení, $R_1=\{1\,\mathrm{k}\Omega;10\,\mathrm{k}\Omega;100\,\mathrm{k}\Omega\}.$

Obdobně jako pro zapojení neinvertujícho zesilovače vypočteme napěťové zesílení, postup je totožný. Získané hodnoty se nacházejí v Tab. 3.

Obr. 24: Invertující zesilovač – vstupní a výstupní signál v čase, $R_1=R_2=1\,\mathrm{k}\Omega$

Obr. 25: Invertující zesilovač – vstupní a výstupní signál v čase, $R_1=10\,\mathrm{k}\Omega,\,R_2=1\,\mathrm{k}\Omega$

Obr. 26: Invertující zesilovač – vstupní a výstupní signál v čase, $R_1=100\,\mathrm{k}\Omega,\,R_2=1\,\mathrm{k}\Omega$

Obr. 27: Invertující zes., simulace – Převodní charakteristika.

$R_1 [k\Omega]$	1	10	100
Simulace, časový průběh (Obr. 23)	-1	-10	-
Měření, časový průběh (Obr. 24 - 26)	-1	-9,9	-
Simulace, převodní char. (Obr. 27)	-1	-10	-99,95
Měření, převodní char. (Obr. 28 - 30)	-1	≈ -10	≈ -100

Tabulka 3: Porovnání výsledků.

Obr. 28: Invertující zesilovač – převodní charakteristika, $R_1=R_2=1\,\mathrm{k}\Omega$

Obr. 29: Invertující zesilovač – převodní charakteristika, $R_1=10\,\mathrm{k}\Omega,\,R_2=1\,\mathrm{k}\Omega$

Obr. 30: Invertující zesilovač – převodní charakteristika, $R_1=100\,\mathrm{k}\Omega,\,R_2=1\,\mathrm{k}\Omega$

Kmitočtové charakteristiky

Obr. 31: Buffer, simulace – Kmitočtová charakteristika.

Obr. 32: Neinvertující zes., simulace – Kmitočtová charakteristika.

Obr. 33: Invertující zes., simulace – Kmitočtová charakteristika.

Obr. 34: Kmitočtová charakteristika OZ pro aplikace s různým zesílením.

Závěr

Buffer

Pro zapojení sledovače jsme měřili napěťové zesílení, díky záporné zpětné vazbě musí být na výstupu stejná hodnota napětí jako na vstupu, zesílení je tedy $A_U = 1$, což jsme ověřili jak počítačvovou simulací, tak i měřením.

Toto zesílení je ale frekvenčně závislé. Obr. 5 a 6 zobrazují simulaci přenosu signálu o různých frekvencích, pro frekvenci 500 kHz je vidět, že signál je již značně utlumený, což odporuje kmitočtové charakteristice vytvořené simulací (Obr. 31), ale je to v souladu s námi změřenou charakteristikou. Modul simulace frekvenční charakteristiky tedy nejspíše nezapočítává některý důležitý parametr. Rozdíl v simulované a měřené šířce pásma je nezanedbatelný a z mého pohledu je tento modul simulace nepoužitelný, jelikož je v rozporu jak s měřeními, tak i s dalšími moduly simulace. Vlastním měřením jsme tedy stanovili tranzitní kmitočet $f_t = 330\,\mathrm{kHz}$. Výrobce udává podstatně vyšší hodnotu, zde může mít vliv také mezní rychlost přeběhu, která pro vyšší frekvence způsobuje nelineární zkreslení, pokud je použita příliš velká amplituda.

Tento parametr jsme určovali z reakce obvodu na obdélníkový impuls, v simulaci nám vyšla hodnota $SR_{sim} \doteq 0.419 \,\mathrm{V} \cdot \mu\mathrm{s}^{-1}$, ta je zde stejná pro náběžnou i sestupnou hranu. V laboratoři jsme pak naměřili hodnoty $SR_{lab-rise} \doteq 0.578 \,\mathrm{V} \cdot \mu\mathrm{s}^{-1}$ pro náběžnou hranu a $SR_{lab-fall} \doteq 0.296 \,\mathrm{V} \cdot \mathrm{ms}^{-1}$ pro sestupnou – ta vyšla o několik řádů nižší.

Neinvertující zesilovač

Zde jsme měnili poměr hodnot zpětnovazebních odporů, čímž jsme nastavovali zesílení obvodu. Tab. 2 porovnává dosažené výsledky. Simulace i měření si vzájemně odpovídají, ověřili jsme také použití teoretického vztahu pro výpočet $A_U = 1 + \frac{R_1}{R_2}$. Z převodní charakteristiky je také možné odečíst saturační napětí, které odpovídá $\approx 13 - 14$ V, tedy o 1 - 2 V méně, než je napětí napětí napájecí.

Invertující zesilovač

Pro toto zapojení je situace obdobná, z časových průběhů je zřejmé, že zesílení opět závisí na poměru zpětnovazebních odporů a výstupí signál je navíc invertovaný. Zjištěné hodnoty A_U se nacházejí v Tab. 3. I zde jsme ověřili použitelnost teoretického vztahu, tentokrát vztahu $A_U = -\frac{R_1}{R_2}$.

	f_t [kHz]	$SR_{rise} [V \cdot \mu s^{-1}]$	$SR_{fall} [V \cdot \mu s^{-1}]$
Simulace	1533	0,419	0,419
Měření	133	0,578	$0,296 \cdot 10^{-3}$

Tabulka 4: Srovnání ostatních parametrů.