

Online Experience Sharing in Deep Reinforcement Learning

Author: Federico Bottoni

806944

Supervisor: Giuseppe Vizzari

Co-supervisor: Ivana Dusparic

Online Experience Sharing

CONTEXT

- Reinforcement Learning (RL)
 - Deep Q-Learning
- Transfer Learning (within RL)
 - No previous experience
 - Online

OUTLINE

- 1. Context introduction
- 2. Algorithm design
- 3. Evaluation
- 4. Discussion
- 5. Future works

Reinforcement Learning

- "Trial and Error" approach to identify the best agent policy to solve a task
- Related process is a Markov model
- Policy function can be approximated by Artificial Neural Networks
- Replay Buffer
- Widely used in game theory, control, simulations and other fields

Transfer Learning (within Reinforcement Learning)

Generalize across data drawn from multiple distributions or domains, potentially reducing the amount of data required to learn a new task

PURPOSE

Improve learning agents' performance and learning speed exchanging data among them

INSTANCES

Inter-Task Mapping, Reusing Representations, Learning from demonstrations, Policy Transfer

Contribution

- Design online transfer systems and agents
- Enable transfers defining:
 - Transferred object
 - Transfer frequency and data size
 - Data selection methods
- Design confidence evaluation systems for states and state-action pairs
- Introduced hyperparameters tuning

Online Experience Sharing

Parallel DeepRL Agents

SYSTEM

- Deep Q-Learning independent agents
- Agent's roles: sender or receiver
- System: two agents in 1-to-1 relationship
- Framework is flexible on mechanisms and methods

Enabling Transfer: Two Steps Selection

- Transferred object is the experience represented by transitions: <s, a, r, s'>
- Store transferred transitions: **Transfer buffer (Tb)**
- Senders select data to transfer and send them to receiver's Tb
- Receivers select a subset of Tb to fill partially their DQN batch
- Two selection algorithms handle the transfers of the two sides:
 - Sender Selection Method (SSM)
 - Receiver Selection Method (RSM)

Transfer Frequencies and Transfer Sizes

FREQUENCIES

- Sender: periodically, every
 TransferInterval (TI) steps, (TI ∈ Z⁺)
- 2. **Receiver**: every single step

SIZES

- 1. Sender: constant TransferSize (TS) amount of transitions, $(TS \subseteq Z^{+})$
- 2. Receiver: BatchSize * TransferBatchSize which is result of θ function defined later

θ-function

GOAL

- Transfer little data at the very beginning of the learning process
- Encourage transfer during the final part of exploration phase
- Reduce transfer when policies are consolidated

PARAMETERS

- θ_{max} : global max value
- θ_{\min} : global min value
- θ_{decay} : decay speed
- θ_{apex} : conjunction of the two functions

Result: Transfer Batch Size partition

Agents model: "State Visit Table" (VT)

Random Network Distillation

- Curiosity mechanism
 - Target network
 - Predictor network
- Uncertainty as Mean Squared Error
- Hyperparameter: *encoding_size*

Agents model: "State RND" (SRND)

Sender SM

→ Lowest
Uncertainty (Lu)

Receiver SM

→ Highest
Uncertainty
Difference (Hud)

Agents model: "State-Action RND" (QRND)

Sender SM

→ Lowest
Uncertainty (**Lu**)

Receiver SM

→ Highest
Uncertainty
Difference (**Hud**)

Evaluation

Experimental Settings

Benchmark single-agent systems with different desired task

- 1. Mountain Car (1000 episodes)
- 2. Cart Pole (150 episodes)

Experiments

Baselines (BL):

- 1. No Transfer (NT): regular DQL process
- 2. Random Transfer (RT):
 - a. senders transfer the most recent experience
 - b. receivers select randomly from Tb
- 3. Top Transfer (**TT**): agents share the same brain

Experiments for each scenario:

- senders apply SSM,
 receivers select randomly from Tb (R)
- senders select the most recent (L), receivers apply the RSM
- sender apply SSM, receivers apply RSM

Evaluation Metrics

- Asymptotic performance
- Learning speed
 - Total Reward
 - (Time to Threshold)
- Jumpstart
- Learning stability

Baselines

Mountain Car

 RT is faster the NT but slows down earlier, then is similar to NT

Cart Pole

• RT is slow and increases slowly

Visit Table (VT)

Mountain Car

Does not bring significant improvements

Cart Pole

 Important asymptotic improvement of about 25 reward units

State-RND (SRND)

Mountain Car

 Anticipates baselines (speed-up) and in general brings stability improvements

Cart Pole

- Reaches high reward before every baseline
- Does not bring significant improvements

State-Action RND (QRND)

Mountain Car

- Interesting stability improvement,speed-up
- Particularly stable in last 100 episodes

Cart Pole

- Does not bring significant improvements
- Multiple similarities to RT baseline

Total reward improvement analysis

Mountain Car				Cart Pole				
Scenario	SenderSM	ReceiverSM	% earned		Scenario	SenderSM	ReceiverSM	% earned
VT	MostVisited	Random	-0,38		VT	MostVisited	Random	-0,02
VT	Lasts	LastVisited	0,03		VT	Lasts	LastVisited	0,03
VT	MostVisited	LastVisited	-0,26		VT	MostVisited	LastVisited	0,22
SRND	LowestUncertainty	Random	0,27		SRND	LowestUncertainty	Random	-0,96
SRND	Lasts	HighestUncertaintyDiff	0,27		SRND	Lasts	HighestUncertaintyDiff	-0,6
SRND	LowestUncertainty	HighestUncertaintyDiff	-0,1		SRND	LowestUncertainty	HighestUncertaintyDiff	-0,53
QRND	LowestUncertainty	Random	-0,14		QRND	LowestUncertainty	Random	-0,77
QRND	Lasts	HighestUncertaintyDiff	0,29		QRND	Lasts	HighestUncertaintyDiff	-0,66
QRND	LowestUncertainty	HighestUncertaintyDiff	0,49		QRND	LowestUncertainty	HighestUncertaintyDiff	-1,03

SRND - QRND Cart Pole comparison

RND scenarios compared

- Confirm Cart Pole's poor speed
- Demonstrate how considering action in confidence evaluation pushes the agent to better policies

Transfer Parameters Tuning

TRANSFER PARAMETERS TUNING

[Bayesian optimization]

- Transfer Size
- Transfer Interval
- Transfer Buffer Size
- ullet eta_{decay}
- \bullet θ_{apex}

VT TUNING

[Bayesian optimization]

VT Dimension Discretizer

SRND - QRND TUNING

[Manual sampling]

RND Encoding Size

Conclusions

Discussion

- Performances strictly dependent on environment and task to learn
 - Mountain Car is improved by SRND and QRND scenarios in learning speed and stability
 - Cart Pole is improved by VT scenario in particular in asymptotic performance
- High variability due to neural networks usage
- Considering state-action pairs instead of state to evaluate transition confidence can provide better outcome

Future Works

- Experiments in multi-agents systems to study agents' interactions too
- Analysis of the effect of multi-sender and multi-receivers transfers
- Analysis of a online role-swap mechanism
- Change of transfer object, eg. sub trajectories of states, neural network data like weights
- Study the transfer clear effects letting the receiving agent chose only through transfers after a first period of state-space self-exploration