Thursday, October 15, 2020 5:00 PM

$$T(n) = or T(\frac{n}{b}) + f(n)$$

+n: input size

* a: nr of sub-problems

P = input size of EACH sub-problem

+ P(n): ant work to divide & combine the problem into on sub-problems

* T(n): time to run a problem of size n

Step	Size	thee_
0	^	Fin)
l	<u>n</u>	fra son fra
2	$\frac{n}{b^2}$	$f_{\frac{N}{b^2}}$
X	\(\frac{\partial \kappa \kappa \}{\partial \kappa \} = \)	$\frac{1}{T(n) = af(n) + \alpha f(\frac{n}{b}) + a^2 f(\frac{n}{b}) + \cdots + a^{k-1} f(\frac{n}{b^{k-1}}) + \alpha \phi(1)}{n}$
N= b	\sim	$= \sum_{i \geq 0} \alpha^{i} \frac{1}{2} \left(\frac{b^{i}}{b^{i}} \right) + \alpha^{i}$ $= \sum_{i \geq 0} \alpha^{i} \frac{1}{2} \left(\frac{b^{i}}{b^{i}} \right) + \alpha^{i}$ $= \sum_{i \geq 0} \alpha^{i} \frac{1}{2} \left(\frac{b^{i}}{b^{i}} \right) + \alpha^{i}$

L16 Page 1

Example:

1059 < 1096 < 1088

(2)
$$T(n) = 8T(\frac{n}{4}) + \sqrt{n}$$
 $a = 8$
 $b = 4$
 $f(n) = \sqrt{n}$
 $k = \log_{8} \alpha = \log_{4} \mathbf{n}$
 $= \sqrt{n} \cdot \sum_{i=0}^{k-1} \frac{8^{i}}{4^{i}} + n^{\log_{4} 8}$
 $= \sqrt{n} \cdot \sum_{i=0}^{k-1} \frac{4^{i}}{4^{i}} + n^{\log_{4} 8}$

$$T(n) = \sum_{i=0}^{k+1} a_i^{i} P\left(\frac{n}{b_i^{i}}\right) + a_i^{i} \frac{1}{b_i^{i}}$$

$$= \sum_{i=0}^{k+1} a_i^{i} P\left(\frac{n}{10^{i}}\right) + a_i^{i} P\left(\frac{n}{10^{i}}\right) + a_i^{i} P\left(\frac{n}{10^{i}}\right)$$

$$= \sum_{i=0}^{k+1} a_i^{i} P\left(\frac{n}{10^{i}}\right) + a_i^{i} P\left(\frac{n}{10^{i}}\right) + a_i^{i} P\left(\frac{n}{10^{i}}\right)$$

$$= \sum_{i=0}^{k+1} a_i^{i} P\left(\frac{n}{10^{i}}\right) + a_i^{i} P\left(\frac{n}{10^{i}$$

Evample: T(n) =3T(10) + T(210) + T(210) + T(210) + T(210) + T(10) + T(210) + T(210)

step size

Green Tree

$$T(n) = 3T\left(\frac{n}{5}\right) + T\left(\frac{2n}{5}\right) + n$$

Step	size of lettmost	tnee
Ō	N	
l	<u>n</u> 5	5 5 5 X
2	72	$\frac{n}{5^2}$, $\frac{2n}{5^2}$ $\frac{2n}{5^2}$ $\frac{2n}{5^2}$
\ K.	(K - 1	θ(ι)
	6 K, 2 log h	$1 T(n) > n + n + n + \cdots + n$
		> (K,+1) n ~ n logn = 2 T(n) = 2 (n/m)
You only need to do one of		010975 2 10975
stem :)		T(n) > n+n+n+n+4

Red Tree

 $T(n) = 3T(\frac{n}{5}) + T(\frac{2n}{5}) + n$

shep	Size of right most	tree
0	^	7 3 7
1	2n 5	$\frac{n}{5}$ $\frac{2n}{5}$
2	2 n 52	
K ₂	$\frac{2^{\kappa_2}}{5^{\kappa_2}} = 1$ $\left(\frac{2}{5}\right)^{\kappa_2} = 1$	$T(n)$ $\langle n+n+n+ - + n \rangle$ $\langle (k_2+1)n = nk_2 \rangle$ $T(n) \geq O(n \log_{5_{12}}^{n}) \geq O(n \log_{10}^{n})$

=0 (1094) HWS agh Example: T(n) = 4 T((2) +2) + n2 2 3 4

EC question

$$T(n) \ge 2T\left(\left\lfloor \frac{n}{3}\right\rfloor + 1\right) + n^3$$