USAJMO 2012 Solutions

Samuel de Araújo Brandão

July 31, 2025

Contents

1	1 Problems	Problems												2					
2	2 Solutions: day 1	Solutions: day 1														3			
	2.1 Problem 1																		5
	2.2 Problem 2																		4
	2.3 Problem 3																		5
3	3 Solutions: day 2																		6
	3.1 Problem 4																		
	3.2 Problem 5																		7
	3.3 Problem 6																		8

1 Problems

1. Given a triangle ABC, let P and Q be points on segments \overline{AB} and \overline{AC} , respectively, such that AP = AQ. Let S and R be distinct points on segment \overline{BC} such that S lies between B and R, $\angle BPS = \angle PRS$, and $\angle CQR = \angle QSR$. Prove that P, Q, R, S are concyclic.

- 2 Solutions: day 1
- 2.1 Problem 1.

2.2 Problem 2.

2.3 Problem 3.

- 3 Solutions: day 2
- 3.1 Problem 4.

3.2 Problem 5.

3.3 Problem 6.

Problem 1

Given a triangle ABC, let P and Q be points on segments \overline{AB} and \overline{AC} , respectively, such that AP = AQ. Let S and R be distinct points on segment \overline{BC} such that S lies between B and R, $\angle BPS = \angle PRS$, and $\angle CQR = \angle QSR$. Prove that P, Q, R, S are concyclic.

Solution

By the Alternate Segment Theorem, \overline{AC} is tangent to (QRS) and \overline{AB} is tangent to (PRS). Assume for the sake of contradiction that (QRS) and (PRS) are distinct. In that case, $A \in \overline{BC}$ since \overline{BC} is the radical axis and $\operatorname{Pow}_{(QRS)}(A) = \operatorname{Pow}_{(PRS)}(A)$. This leads to a contradiction, as $A \notin \overline{BC}$. Therefore, P, Q, R and S are concyclic.