

11

SEQUENCE LISTING

OCT 15 2002

<110> Athena Diagnostics

<200> COMPOSITIONS AND METHODS FOR GENETIC ANALYSIS OF POLYCYSTIC KIDNEY DISEASE

<130> 1133/2002

<140> US 10/033,246

<141> 2002-02-26

<160> 168

<170> PatentIn version 3.1

<210> 1

<211> 14136

<212> DNA

<213> Homo sapiens

<400> 1

gcactgcaga	gcacaggtcc	gaggggggg	cggatccc	ggaggcct	ggccccggac	60
cccgaggcgg	cgtagtcag	cggcaggtag	cgccggcgc	gcccatcca	gcggcgcc	120
cgccatgcgg	tcggggggc	ccggctgagc	tgggttcc	ggggggggc	ggggctgggg	180
acggcggggc	catgggggg	ctggccataac	gtggccccc	ggggggccg	ccggccgtgc	240
gttggccctg	ggccggggc	tgtggctgg	gggggtggc	ggggggcccg	gggggggtgc	300
ggggccctgc	gagcccccc	gccttcggg	ccggggccc	ggggggccct	gcggcggtca	360
ctgtcgccgc	cgggggctgc	ggacgttcgg	tcggcgatgc	ccggatcccc	ggggccac	420
aggcgatagac	gtttccaca	acgttcgg	gggggtggc	gttgggttcc	tggggaaact	480
ctggcgatgc	ggaggatggg	atataagcaa	caaaaaggatt	ttaaaggtag	aagaaggaaat	540
atttgttaat	ttatTTAAT	taagtggaaat	aaacatgtgt	ggggaaaccgt	ttggatgtga	600
ctgttggcgtg	gggttggcgtg	cggtatgggc	ggggggggc	gggggggg	ttggtgccgc	660
cgaggcagcc	acgttgtgtg	ggctggcc	ctgggttggc	ccggcttcgc	ttggccatccc	720
cttgcggac	agtgggtgtg	gtggggatgc	tgtggcttgc	ctccctgaca	acagctcagg	780
caacatggca	gcagggttcc	tttcaatgtc	ccaaaggcc	ctgtttcgc	caaggccctg	840
cgccgccttc	tgtttccca	ccggccaggc	ctccggccc	ctccggcgc	agggttggtg	900
cttgtgtggg	ggggccca	ctcccaatgc	ctccatggcc	tgttttgc	tctgttcgg	960
cccccggcca	ctccatggcc	ccaaatgtcg	ggggccca	ctccatggc	acgtttcc	1020
tgtttccca	ggggccca	tggggggcc	ccacggatc	ctggccatgc	gcaggatagg	1080
acgtttccac	atcgatggcc	cgccatgtt	caatggcc	cgccatggact	tggggagg	1140
ctccggcgg	gtggatgcgc	ctggggccgc	tgttttgc	cgatgtgc	tgttttgc	1200
ctatcaatgc	acggccgtgc	tggccatgg	ggccggatc	gcctgtgg	ggacacgt	1260
tcgggtggaa	ggggccatgc	ccggccatgg	gttggatgc	ccgttccgg	tggatgtgc	1320
cgaggccatt	gaccccaagca	cccaaaaccc	cggtgttca	ggccgtgggg	ccggccatgc	1380
catcggtggc	ctgggggggg	agccggccgc	agggttgcac	ccgttccgc	ctccggccac	1440
ggagatcttc	ctggggaaac	ggccatgtca	ccgttccgc	gggggggg	ggggatggat	1500
ccaggccgg	ggccatgtgc	aggccatggc	ggggccgc	ctggccatgg	tggatgtgc	1560
ccggatgtgc	cggttccatgc	tccatgggg	ccgttccgc	ctggccatgg	ccggatggat	1620
ctggatgtgc	cggttccatgc	tccatgggg	ccgttccgc	ggggatggat	ccggatggat	1680
gagctgcac	aaatggatgc	ccggggggcc	acacccatgc	acggccggac	actggatcc	1740
gttggggcc	acggggatgc	gtttccatgc	ccgttccgc	ggggatggat	ccggatggat	1800
ccggatgtgc	ccggggatgc	cggttccatgc	tggccatgc	ccgttccgc	ggggatggat	1860
tggggccatgc	ccggggatgc	tggccatgc	ccgttccgc	ggggatggat	ccggatggat	1920
ccggatgtgc	ccggggatgc	tggccatgc	ccgttccgc	ggggatggat	ccggatggat	1980
ccggatgtgc	ccggggatgc	tggccatgc	ccgttccgc	ggggatggat	ccggatggat	2040
ccggatgtgc	ccggggatgc	tggccatgc	ccgttccgc	ggggatggat	ccggatggat	2100

ggacaacagg	accagctgg	cccccggtg	catgccaggg	ggacgctgg	gcctggago	2160
caacatctgc	ttgcgcgtgg	aegcttgg	ccaccccccag	gcctggcga	atggctgcac	2220
gtcagggeca	gggttaccccg	ggggcccccta	tgcgttatgg	agagagtcc	tcttcttcgt	2280
tgcgggggg	ccccccggc	agtactcggt	cacccctccac	ggccaggatg	tcctcatgt	2340
ccctgggtgac	ctgttgggt	tgcagcacca	cgctggccct	ggcccccctcc	tgcactgtc	2400
ggcggtccc	ggccaccctg	gtccccaggg	ccgttaacct	tcggccaaag	ctcgtcatg	2460
gttgtcccaac	ttggccagccc	agctggagg	caattggggc	tgcctgcct	gtgcctgtcg	2520
gttgttgcac	ggcaagggaaac	agctcacccgt	gttgtgggg	ttgaggccaa	accctggaa	2580
ggggatgcct	ggggcgctatg	aggtccgggc	agagggtggg	aatggcggt	ccaggcacaa	2640
ctcttcgtgc	agttttgacg	tggttccccc	agtgggtgg	ctgggggtca	tctaccctgc	2700
ccccccggac	ggccgttct	agtgcccaac	caatggccaa	gccttgggtc	tcctagggtg	2760
ctctgggtgc	aaacggccacg	ccacggctcg	ctgggttggg	ggccatgtca	ggcccgctt	2820
tgagaatgtc	tgcctgtccc	tggtgccac	cttcgtcccc	ggctgcct	gggagaccaa	2880
cgataaccctg	tttcgttgtgg	tagcaactgc	gtggctcagt	gagggggagc	acgtgggtg	2940
cggttgttgtg	aaaaacacgg	ccagccgggc	caacccctcgc	ctgggggtga	cgccggaggg	3000
ccccatctgt	ggctcccgcc	ccacggccacg	ccccggggcc	cggtgtactc	aggagact	3060
agttaggtac	agcccggtgg	tggaggccgg	ctggacatg	gtttcccggt	ggaccatcaa	3120
cgacaaggcag	tcctgaccc	tcggaaatgt	ggttttcaat	gttttttata	agggggggc	3180
ggtttccaaag	cttcactga	cggttcccaa	ccacgttgcgc	aaacgttaccc	tgaactacaa	3240
cgtaaccgtg	gagggatgt	acaggatgc	gggttctgcag	gtttccacag	tgcggccgt	3300
gttgtccccc	aatggccacg	tagcaactgc	ggccgggggtg	ctgggtggact	cgccgttg	3360
ggtgcccttc	ctgttggact	ttggggatgg	ggagccaggcc	ctccaccagt	tcagccctcc	3420
gtacaacccgg	tccttccgg	ttccagaccc	ctcggtggcc	tcagggtgtgg	tggagccaaa	3480
tgtcatgcac	acccacgtcg	ccccagggtg	gtacccctcg	acgtgtgtgg	catataatgc	3540
cttcgagaac	ctgacggcgc	agggttgt	gaggttgcgc	gcctccctgc	cttcgttgc	3600
tgtgggtgt	agtgtccgg	tcctgggtgg	ggggggccccc	gttacccctt	accggccccc	3660
gttgtccctcg	cttgggggtg	tttttacac	gtggggactc	ggggacgggt	ccctgtct	3720
gaccggcgc	cgccggctg	ccaaaccacac	ctatgcctcg	agggggccct	accacgttgc	3780
cttgggggtc	aaacaaacccgg	tggcggtgc	ggggggcccg	cggtgtgtgc	gggttttgc	3840
ggagtcgc	ggacttcagg	tggacatgc	cttgggggtg	gggggggg	ccccgggggt	3900
ggtcagggcc	gggttgcaga	ggggggccaa	catcaatgtgg	acccctggaca	tggggggagg	3960
ccacgtgtcg	tggggccgg	aggcaacagt	ggagcaatgtg	tcctgggggg	cacagaactg	4020
ccacgtgacc	gtgggttgcgg	ccagcccccgg	ggggccatcg	ggccggagcc	tgcacgtgt	4080
ggtttccctgc	ctgggggtgc	tgcgttgtgc	acccggccgc	tgcacccca	cgccgttgc	4140
ccgttccatcc	tcgggggtgc	tcgggtgtgt	acccggccgc	tgcacccca	cgccgttgc	4200
gttttgcac	atctgggtgg	agccaggtgt	ggggcaacgtc	acccgttgc	caagagaggc	4260
ggggatggc	tcctccaaaca	cgacgttgc	gggggttcccg	acgggttgcac	acaacttcac	4320
ggggggggc	acgttccccc	tggcgctgtt	gttgtccago	cgccgttgcac	ggggccattt	4380
cttcaccac	atctgggtgg	agccaggtgt	ggggcaacgtc	acccgttgc	caagagaggc	4440
ccgttccatcc	tggactttgc	tcacccggagga	acccggccccc	acccgttgc	ggggccctgc	4500
gggttgcac	atctaccgg	accacggcgc	ctatcttgcg	acagtcaccc	cgccaaacaa	4560
catctctgt	gcacatgtac	ccggccgttgc	gggggttgcag	gagccgttgc	tggtcaccac	4620
catcaaggcc	aatggccccc	ttgggggtgg	gttgtccac	ccgttccatgt	tctctgtgt	4680
ggggccgtgg	ggggccggcc	gttacccctgt	ggatctgggg	gggggtgggt	ggccgggggg	4740
ccgggggtc	accacgttgc	acaacacccac	agggtgttgc	acccgttgc	tggccgggt	4800
gaatgggttg	aggccggcc	aggccctgggt	caatgttgc	gtggaaaggcc	gggttgcgggg	4860
gttgttgcgtc	aatggccacgc	gcacgggtgg	gcctccatgt	gggggggtgt	gtttcaacac	4920
gttgttgcgtc	aatggccacgc	gcacgggtgg	gcctccatgt	gggggggtgt	gtttcaacac	4980
catccctgggg	ggtccatccaa	tcttttacac	cttccgttcc	gtggggccct	tcacatataat	5040
cgccacgggt	gagaacgggg	tgggtccgc	ccaggccacg	atcttgcgtt	atgttccatgc	5100
gttgtccatcc	gggttgcagg	tgggtgggg	tggccgttac	ttcccccacca	accacacgg	5160
ccacgtgtcg	gggttgcagg	gggttgggg	tggccgttac	ttcccccacca	accacacgg	5220
ggccggggcc	ccggccctgg	ccggccggcc	caaaggccgc	tgttccaccc	tgttccggcc	5280
ccggccctac	catgtgcac	tgcggccac	caacatgtcg	ggccggccgt	ggccggactg	5340
ccacatggac	ttcggtgggg	ctgtgggggt	gtgtatgtgg	acccgttcc	cgaaacccagg	5400
tcgggtcaac	acaaaggccgt	ccctcaatgt	cgagggtgg	gggggggtgt	gtgttgcgtata	5460
ccatgggtcc	ttggaggagg	gggttgcgtt	ggaggccctcc	gaggccattt	ccaccatag	5520

cttccccaca	ccggcctgc	acttggtcac	catgacggca	ggaaacccgc	tgggctcago	5580
caacgccacc	gtggaaagtgg	atgtgcaggt	gcctgtgagt	ggcctcagca	tcagggccag	5640
cgagccccga	ggcagcttcg	tggeggccgg	gtcctctgtg	ccctttggg	ggcagctggc	5700
cacgggcacc	aatgtgagct	ggtgctggc	tgtgcccggc	ggcagcagca	agcgtggccc	5760
tcatgtcacc	atggtcttcc	cgatgtctgg	cacattctcc	atccggctca	atgcctccaa	5820
cgcagtcage	tgggtctcag	ccacgtacaa	cctcaeggcg	gaggagccca	tctgtggcct	5880
ggtgctgtgg	gccagcageca	aggtggtggc	gcccgccag	ctggtcatt	ttcagatct	5940
gctggctgcc	ggctcagctg	tcacettccg	cctgeaggtc	ggggggccca	accccgaggt	6000
getccccggg	ccccgtttt	ccacagett	cccccggtc	ggagaccacg	tggtgagcgt	6060
ggggggcaaa	aaccacgtga	gttggcccca	ggcgaggtg	cgatgtgg	tgttgaggc	6120
cgtgagtgccc	ctgcagatgc	ccaaactgtcg	cgagactggc	atgcacacgg	gcactgagag	6180
gaacttcaca	gcggcggtgc	agcgccggcc	tgggttcggc	taacccctgt	acttctcgct	6240
gcagaaggtc	caggcgact	cgctggtcat	cctgttcggc	cgcgacgtca	cctacacgco	6300
cgtggcccgcg	gggctgttgg	agatccaggt	ggcgcccttc	aaacccctgg	gcagtgagaa	6360
ccgcacgtcg	gtgttgtgggg	ttcaggacgc	cgccctgtat	gtggccctgc	agagccggcc	6420
ctgtttcacc	aaacgcgtcg	cgcagtttga	ggccggccacc	agcccccagcc	cccgccgtgt	6480
ggcctaccac	tggacttttgc	gggatgggtc	gcacggccag	gacacagatg	agcccgaggc	6540
cgagcaactcc	tcacgtggggc	ctggggacta	ccgggtggc	gtggacgtt	ccaaacctgg	6600
gagetttttc	gtggcgccgg	ccacgggtac	cgccctggc	ctggcctgc	gggagccgg	6660
ggtggacgtg	gttctgcggc	tgcaggtgt	gtggggcga	tcacagegca	actacttgga	6720
ggcccacgtt	gacctgcggc	actgcgtcac	ctaccagact	gatgtacgt	gggagggtgt	6780
tcgcacccgc	agctgcccgg	ggccggggcc	cccaagccgt	gtggccctgc	ccggccgtgg	6840
cgtgagccgg	cctcggtgg	tgtgcggcc	gttggccgt	cctgtggggc	actactgttt	6900
tgtgtttgtc	gtgtcatttt	gggacacgccc	actgacacag	agcatccagg	ccaatgtgac	6960
ggtggccccc	gagccctgg	tgcacatcat	tgagggtggc	tcataccgg	tgtggtcaga	7020
cacacgggac	ctgggtctgg	atgggagcga	gtctacggc	cccaacccctgg	aggacggccg	7080
ccagacggccg	ctcagtttcc	actggccctg	tgtggcttcg	acacagaggg	aggctggccgg	7140
gtgtgcgtcg	aactttgggc	cccgccggag	cacacggc	accatccac	gggagccggc	7200
ggcgccgtggc	gtggagttaca	ccttcagcc	gacccgtgtgg	aaggccggcc	gcaaggaggg	7260
ggccaccaac	cagacgggtgc	tgcacggcc	tggccgggtg	ccattgtgt	cctggagtg	7320
tgtgtctgc	aaggcacagg	ccgtgtacga	agtggccgc	agtcctta	tgtacttgga	7380
gggcgcgtgc	ctcaatttca	gcagccggcc	caagccgg	ccgtggccgt	cacgtacgtt	7440
cagcaacaag	acgtgggtgc	tggatgagac	caccacatcc	acggggcgt	caggcatg	7500
actgggtgtg	cgccggggcc	tgtgcgggg	ccggccgg	tacacccat	cgctcacgg	7560
gttggccgc	tctggcgagg	aggaggccgt	cgccctccat	ccctgtccc	ccaaaccggcc	7620
cccgctgggg	ggctcttgc	gcctttccc	actggccgt	gtgcacgccc	tcaccaccaa	7680
ggtgcacttc	gaatgcacgg	gttggcatga	cgccggaggat	gttggccccc	cgctgggtgt	7740
cccccgtcg	ctgcggcgct	gttgcggagg	ccactgtcg	gagttctgt	tctacaagg	7800
cagccctcc	agctacggag	ccgtgtcc	cccggttcc	aggccacact	tgcagggtgg	7860
cctggccgtg	gtgggtgcagg	accagctgg	ccggccgtgt	gttgccttca	acaggtcttt	7920
ggccatcacc	ctccccagac	ccaaacggcc	ccaaacgggg	ctcacagtct	ggtgcacgg	7980
gttccacgt	agtgtgtcc	cagggtgt	ccggccggcc	gttccacat	acgtcatcg	8040
gtactcggt	ccctgggtca	ccgtgtgaa	ccgtgtcg	ccggccctgg	acgtggccgg	8100
agagcccaag	cacgagccgc	ccacccggcc	ccagatacc	aagaacatca	cgagactct	8160
gggtgtccctg	agggtccaca	ctgtggatga	catccagcc	atccgtgt	cgctggccca	8220
gtgcacccgg	cccacccgg	agctcgat	ccgtcggt	ctgaaggaga	cgctgcacaa	8280
gttggaggcc	atgtatgtca	tcctgcaggc	agagaccacc	ccggccaccc	tgcacccac	8340
ccccatcgaa	gacacccatcc	tcaacatcac	aggacaccc	atccacccgt	ccagctcg	8400
cgtgcgggca	ccacccgcct	cagacgtgg	ccggccgtca	ccatcccg	tggtggccgt	8460
ccagccctac	aaacctgaccc	ctgccttcat	ccggccatcc	atgcgtcc	ccgtgtctaa	8520
ccaggccccc	ctgacgtcc	ccggccggcc	ccggccatcc	ccggccatcc	ccggccatcc	8580
ccggccgtcg	ctgtgtatcg	ccggccggcc	ccggccatcc	ccatcccg	ccatcccg	8640
ggctttcaggc	ggggccctgg	ccaaacctcc	tgacgtgg	ccgtgtatct	ttctgggtgg	8700
ctccaaatccc	tttcccttttgc	gttatatacg	ccactacacc	gttccacca	aggtggccctc	8760
gtatggcattc	cagacacagg	ccggccggcc	ccggccatcc	ccggccatcc	ccggccatcc	8820
ccccatcacc	gttgggtgc	ccaaacctcc	ggactgggg	ccggccggcc	ccggccatcc	8880
cccaactcc	cccaactcc	tttgcgtcc	ccggccggcc	ccgtgtcg	ccgtgtcg	8940

cctggacaga	agcaaccctg	cgcccccgt	gcatctgcag	ctcaactata	cgtgtgttga	9000
ggccactac	ctgtctgagg	aacctgagcc	ctaccctggca	gtctacctac	actcggagcc	9060
ccggccaaat	gaggacaact	gttcggctag	caggaggatc	cccccagagt	cactccagggg	9120
tgtgaccac	ggccctaca	ctttttcat	ttccccgggg	agcagagacc	caggggggag	9180
ttaccatctg	aaccttcca	gcacttccg	ctggcgggg	ctgcaggtgt	cgtggggct	9240
gtacacgtcc	ctgtgcctgt	acttcagega	ggaggacatg	gtgtggggga	caagggggct	9300
gttcggggcc	agcttcttcc	tgcccccaag	ccatgtccgg	tttgtgttcc	ctgagccgac	9360
agoggatgt	aactacatcg	tcatgtcac	atgtgtgtg	tgcctgggtg	ctacatgtgt	9420
catggccgcc	atccgtcaca	agctggacca	gttggatgcc	agccggggcc	ccgcacatcc	9480
tttctgtggg	cagggggcc	gttcaagta	cgagatcc	gtcaagacag	gttggggccg	9540
gggtcaggt	accacggcc	acgtggccat	catgtgtat	gggggtggaca	ccgggagccgg	9600
ccacccggcc	ctggacggcc	acagagoctt	ccacccjcaac	agctggaca	tcttcggat	9660
ccacccccc	cacagccctgg	gtacgtgtgt	gaagatcc	gtgtggccac	acaacaaaagg	9720
gttcagcc	gttcgggtcc	tgcagcaagt	catgtcagg	gacccgtcaga	ccggccacgca	9780
ccaccccttc	ctggcataat	actgggttcc	ggtggagacg	gaggccaa	ggggccctgtt	9840
ggagaaggag	gtgtggcc	cgagccacgc	agccctttt	cgccctccgg	gttcgtgtgt	9900
gggtgggt	cacgtgtgt	tatccaaaa	ccacatctgg	cttcacat	ggggccggcc	9960
gcctcgttgc	cggttcactc	gcatccagag	ggccaccc	tgcgttctcc	tcatctgc	10020
cttcctggc	cccaacggcc	tgtgtacgg	ggctgttgg	gacccctt	acacccgggg	10080
gcacgtgtcc	aggctgagcc	cgctgagcgt	ccacacagtc	gttgcgttggcc	tgggtgtcc	10140
cggtgttgc	tatcccgat	acgtggccat	ctttttcc	ccccggatgt	ccgggagccaa	10200
gggtggctggg	accccgagcc	ccacaccc	ccggcagcc	gtgtggaca	ccacacgtg	10260
cttgcactcg	tcgtgtgtt	acacgttcc	cttcacgtcc	acgtggcc	10320	
ctttgttgg	cacatgaaga	gtgtttgtt	tctggatgt	tataagatc	tgggtgtgt	10380
ccctccggc	gagggaaacg	tcaatttggcc	ggacccctcc	agtgcacccgt	ccattgtgg	10440
tagcaatctg	ccggcagctgg	ccggggcc	ggggggccat	gggtggcc	cagaggagga	10500
ccgttcc	ctggccaccc	ccatccccc	ttccaaatcc	ttccacgtat	cagatgaaga	10560
ccatgtcc	caggcccttgc	ccgggggg	ccggcc	cccccaccc	10620	
catggaaaac	gacccgtcc	gcacccctgc	ccggccat	ggggagaaga	cagacacgt	10680
ccgcgtcc	aggctgggg	acgtggcc	ccggccat	ggccctgaact	ggggacccgc	10740
ccggccaccc	aggctgtcc	ggacccgt	ggtggaggt	ctggccaa	ccctgtgtcc	10800
ggccctgggt	cccaacgggt	ccggccgt	ccggccgt	ctgggtgt	tgggtgtgg	10860
tgttcagg	tgggtgggt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	10920
cacccggcc	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	10980
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	11040
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	11100
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	11160
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	11220
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	11280
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	11340
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	11400
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	11460
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	11520
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	11580
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	11640
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	11700
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	11760
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	11820
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	11880
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	11940
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	12000
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	12060
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	12120
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	12180
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	12240
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	12300
ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	ccggccgt	12360

tgtggactcc	ctctggagcg	tggcccaggc	cctgttggtg	ctgtgcctg	ggactgggt	12420
ctctaccctg	tgtctctggcg	agtctctggca	cctgtcaccc	ctgtctgttg	tggggctctg	12480
ggcactgcgg	ctgtggggcg	cctacggct	gggggtgtt	atttttcgt	ggcgctacca	12540
cgccttgcgt	ggagagctgt	acggccggc	ctgggagccc	caggactacg	agatggtgga	12600
gttgttctcg	cgaggctgcs	gcgtctggat	gggcctcago	aaggtcaagg	atgttcggca	12660
caaagtccgc	tttgaaggga	tggagccgt	gcgttcgtc	tcctccagg	gttccaagg	12720
atccccggat	gtgcggccac	ccagcgttgt	ctcgtgtcc	tcgtacccct	ccacccctcc	12780
cagccagctg	gatggggctga	gcgtgacgt	ggggcgggtg	gggacaagg	gtgagccgt	12840
gcgtcccg	ctccaaaggcg	tgttcggggt	ctgtgtcc	cagtttggcc	gactcaacca	12900
ggccacagag	gacgtctacc	agctggagca	gcacgtgcac	agctgtcaag	gcggcaggag	12960
cagccgggg	cccgccggat	ctcccggtgg	ccatcccg	ggcgtgggg	cagcactgcc	13020
cagccggcgtt	gcggggccaa	gtcggggtgt	ggacatggcc	actggccca	gcaggacacc	13080
ccttcgggcc	aagaacaagg	tcaccccaag	cagcaacttag	tcgttcctcc	tggcgggggt	13140
gggcgtgtgg	gtcggtgtgg	acacccgtca	gtattactt	ctgtcggtgt	caaggccggag	13200
ggccaggcag	aatggctgca	cgtaggttcc	ccagagagca	ggcaggggca	tctgtctgtc	13260
tgtgggttc	agcaetttaa	agaggetgtg	tggccaaacc	ggacccagg	tcctccccc	13320
agtccttgc	ggaaggcac	agcagtattt	gacggtttct	agctctgt	atgttaattt	13380
atttccccga	gttcctcagg	acaggggtt	gttcctccgg	ccaccccttgc	ggcagatgtc	13440
cccccactgt	aaggetgtg	gttcctagg	gggttagct	gcacccggc	cacccctccc	13500
ctaagtttt	acccctccag	ttccctaccgt	actccatgca	cgtctact	gtgtgtctcg	13560
tgttagtaat	ttatatggtg	ttaaaatgtg	tatattttt	tatgtcaact	ttttcaactag	13620
ggctgagggg	ctcgccccc	gagctggct	cccccaacac	ctgtcggt	tggtaggtgt	13680
ggcggcggtt	tggcagcccg	gtgtgtgtt	ggatgogagc	ttggcccttgg	gcgggtgtgt	13740
ggggccacage	tgtctgcac	gcactctcat	caccccaag	gccttgcata	ctcccttgc	13800
ccaggccac	gtaccaagag	agcagegecc	agccctgt	gcacgggt	tggccaaagta	13860
gcacggactag	gcacgtcaga	ggaccccagg	gtgggttagag	aaaaagact	ctcttgggg	13920
ctggctccca	gggtgggagg	aggtgactgt	gtgtgtgtgt	gtgtgcggc	gcggccggcg	13980
agtgtgtgt	atggcccagg	cacccctcaag	gcctctggag	ctggctgtgc	ctgttttgt	14040
gtaccaccc	tgtggccatg	gcgttctca	gacccctcgac	accccccac	cccccggacc	14100
aaggcagacaa	agtcaataaa	agagctgtot	gactgc			14136

<210> 2

<211> 6749

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(6749)

<223> "r." at position 719, 1277, 1278, 1279, 1280, 1288, 1289, 1638, 1967, 2246, 2251, 2254, 2283, 2585, 2586, 2625, 2932, 2949, 2972, 2978, 3406, is any of A, T, G, and C.

<223> "r." at position 3419, 3604, 3675, 3849, 4132, 4337, 4367, 4368, 4369, 4396, 4404, 5700, 5701, 5702, 6611, 6628, 6637, 6700, 6733 is any of A, T, G, and C.

<400> 2

ggcttcgtgg gggccacagcg cggaggccgg cgccggccac ccggccggcg gacggccagt

60

cccgccatgg tgaactccag tcgtgtgtcg cctcagcaga cggggggccgc caaggccgg

120

cccgccccc gggccgggaa cggggccgg ctgtatgggt gtgtggggcc cgtggggcc

180

acccctggccg cccggggccg cctctggag cagggggcc tggagatcga gatggccggc

240

atccggcagg cggccggcg ggaccccccg gcggagccg cggctccc ttctctccg 300
ctctgttgt gtcggca ggcgtggagc cgcgataacc cgggttoga ggcggaggag 360
gaggaggagg aggtggaaagg ggaagaaggc ggaatggtagg tggagatggc cgttagatgg 420
cgcccgggca gcccggggc ggcggggcc tcggcgtga gtcgggtggc cgccggggc 480
cgcccccttg ggggttacca cggcgccggc caccggagcg gjaggcgcc cggcgaggag 540
gaccaggccc cggcggtggc cggcccgatc ggccgggggg acggcgatc tggccaccc 600
cccttggaa ggcggccggc cgggtggcc tggccggaga ggtgggttg cgggtggca 660
ggtgtaaag cggcgaccc gcaaggccggat atgcacggaa cagaacggcc ggcggccggc 720
gtttttttttttaaaaatgata tttttttttt tttttttttt tttttttttt tttttttttt 780
aacaagactc atggaggaaa gcaacttcaa cggagagaaa tttttttttt tttttttttt 840
ggaaactggc acataccccc ttttttttttt tttttttttt tttttttttt tttttttttt 900
tttgcactaa tggaaagt ttgaaacgt gtgtttttt tttttttttt tttttttttt 960
aacaatccc ttgtgaaggg tttttttttt tttttttttt tttttttttt tttttttttt 1020
atttggatct ttctgtgttc cagtgcacta cggcatgtatc agtccaaatc tttttttttt 1080
cacccggatc atgtcacagg tttttttttt tttttttttt tttttttttt tttttttttt 1140
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1200
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1260
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1320
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1380
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1440
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1500
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1560
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1620
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1680
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1740
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1800
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1860
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1920

ggttgtacat acatcctatt ctagggttac ccagaaaaac cttttntgc aggttgtat 1980
tgtttaatt gttcttattt acatgcagg tattggttga attcccagca acaggtggtg 2040
tgattccatc ttggcaattt cagccttaa agctgatccg atatgtcaca acttttGatt 2100
tcttcctggc agcctgtgag attatctttt gtttctttat ctttactat gtggtgaaag 2160
agatatttgg aattcgcatt cacaaactac actattcag gagtttctgg aattgtctgg 2220
atgttgttat cgttgtggta ggtccganca ncancaccaa atttccattt ctattctaca 2280
agnatgttaa caattaatac attgggtgaag aaaaatatac tagtcatatt aaggtaagtt 2340
tcatatttct aaaacactgt aataaaatat aaatattttt ctttcagct gtcagtggta 2400
gtstataggaa ttaacatata cagaacatca aatgtggagg tgctactaca gtttctggaa 2460
gatcaaaata ctttccccaa ctttgagcat ctggcatatt ggcaagataca gttcaacaat 2520
atagctgctg tcacagtatt ttttgtctgg attaaggtaa ttataaaatt tcatgttcta 2580
catnnnaaat aatattttct ttaaaaaaaaa tgagttccac aaaancatgc gaaacaatgt 2640
tttattatac acagtcacac catttggttt atccattcat ctattgtatgt cttctctctc 2700
ttacagctct tcaaattcat caattttAAC aggaccatga gccagctctc gacaaccatg 2760
tctcgatgtg ccaaagacct gtttggctt gttattatgt ttttcattat ttctctagcg 2820
tatgctcagt tggcataacct tgtctttggc actcaggctg atgacttcag tactttccaa 2880
gagtgatgt aagtatataat gaaattaaga agaaaaattt agtcagagta gncactgttg 2940
cgtggacant ctttggttt gtattgtggt gntttgtntt attttatacg cttcactcaa 3000
ttccgtatca ttttggcga tatcaacttt gcagagattt aggaagctaa tcgagtttg 3060
ggacaattt atttcactac atttgcgttc tttatgttt tcattttttt ggtatgtaca 3120
tttatattta tagggaggt tcaatttaaa cttcgtaaat cttgtcttc tcttttttga 3180
ttgataattc caaattatgt ttcttcctt aattttgcc cttcttcatt ttacaaacag 3240
aatatgtttt tggctatcat caatgatact tactctgaag taaaatctga cttggcacag 3300
cagaaagctg aaatggaact ctcagatctt atcagaaagg tagaaaaaac cttaaattctc 3360
aaaaattctt ctgtttctga cataaaatga gcattgttcc accanattt tagaatacnc 3420
taaaccagg cttttatattt ttctctctt gataggctt cccataaagct ttggtaaacc 3480
taaaactgaa aaaaaatacc gtggatgaca ttctcagagag tctgcggcaa ggaggaggca 3540
agttaaactt tgacgaactt cgacaagatc tcaaagggtg agaatcatgc ttccctgaggt 3600
tctnaaaaat tcctgcttct aaagataaat tcctggttat aagagtattt ctagcccaag 3660

ggctcatggg aacanaggat gaatgttato tgtatccct ctctaattc aggaagggcc 3720
atactgatgc agagatttag gcaatattca caaagtacga ccaagatgga gaccaagaac 3780
tgaccgaaca tgaacatca gcatgagag acgacttggg gaaagagagg gtgggtctgg 3840
tttaggagna acggatttg atttggtaac taaaacaaaa cacttcttgt gggtctcagt 3900
gttctgtcc tcactcaigt accccttgtt cttaggagg acctggattt ggatcacagt 3960
tcttaccac gtcccatgag cagccgaagt ttccctogaa gcctggatga ctctgaggag 4020
gtgacgatg aagatagcgg acatajctcc agaaggaggg gaagcatttc tagtggcggt 4080
tcttaeaaag agttcaagt gtaagtataa aggaattggc agaatttgcg tngacaattt 4140
gtcccttgtt actgtgtttt cttggagcc tggtgagacg agtggacccc atggaggatt 4200
ccatggcag cttatgtgtcc aagattgacg ccgtatgtt gaagctagag attatggac 4260
gagccaaact gaagaggagg gaggtgtgg gaaggccgtt ggatggggtg gcccgggtca 4320
gtatcatga gctgaanaca ccgttgttca gcatgggtttt attaattnnna atatatgttg 4380
ctgacagttt tatttaaagt attnactgac ccccaacacc agtttctttt tcctttta 4440
ggatgaaagg ctgggtgtg aagtgaaat ccataggaa cagatggaa cgcgtatgt 4500
tgaagagttt gaaacgtggg aatccatgtt tgcagctcc cagatcgtt atggtttagg 4560
ccggccatgt ggactaaatg gtcacaccc cccagaags tcctggccat ctccctccca 4620
atctacagaa ggcacatggaa gtgcaggtgg aatgggagt tccatgtcc acgtatgata 4680
tgtgtgttcc agtatgtgtg tttctataa gtgaggaagt ggctgttctg aattgtgtta 4740
acaaggcacac tatttatatg ccgtgaccac cataggatgc tagtcttgc gacccattgc 4800
taatcttctg cacttaattt tattttat aactttacc cttgttccaa agatttttt 4860
ttcttttctt cttatataa atcttaggtt aatatttgag taagaaaaaa aatcttcat 4920
gatgtgttattt gagcggtacg ccgttgtcc accatgactg agtcttctca gttgacaatg 4980
aagttagcctt ttaaagctag aaaactgtca aagggttttctt gagtttccatt tcctgtcaca 5040
aaaatcgtt tttttttttt tttccaaagg tttttttttt aatggggcaa ttcccttccaa 5100
ctctggccat gttcatgtgg ttaatacata gttttttttt aagaaaggag ccctttttttt 5160
caacttagctt cctggggtaa acttttctaa aagataaaat gggaaaggaac tcctaaactat 5220
gatagaatct gtgtgaatgg ttaagatgaa tttttttttt tatgtttttt tttttttttt 5280
tcgtatctga tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 5340

atttgaataa gctgagtaaa accaccaaag atcagttata ggataaaatg gcatctctaa 5400
ccataacaca ggagaattgg aaggagccct aagtgtcac tcagttaat ttctttaat 5460
ggtagtttgcgcctaaagat ttatctgtcat attcttttc ccatgtggct ctactcattt 5520
gcaactgaat ttaatgttat aactcatcta gtgagaccaa cttactaaat ttttagtatg 5580
cactgaaagt ttttataccaa caattatgtt cattttaagc aaaattttaa gaaagtttg 5640
aaattcataa agcatttggc tttaaactat tttaagaata tagtactcg taggtatgn 5700
nnacgcctg taatcccgc actttgggag gcccggaaacag gccaatcact tgagccccagg 5760
aqtcaagac caacatgggc aatgtggcga aactccatct ctacaaaaaa tgcaaaaaata 5820
aaaaatatacg tactcaagta ttcttgatcc tggtttcaaa aactagaatt tgtaatgcaa 5880
atggagctca gtctaataaa aaagaggttt tggtttaaa agtccataca ttagacagta 5940
tcagccaaaa tttgagtttgc caacactgtt ttctttacg gaggggtctca cccaaattta 6000
tggggagaaa tctatttcc aaaaaaaa aatcttctt tacagaaatg ttgagtaagg 6060
tgacattttg agcgctaata agaaaaagcg catcgagtgc tggtaataa ccctcacttg 6120
gagaaccaag agaattctgt cgtttaatgc tatattttaa tttccacaagt tgtttattta 6180
actggtagaa tgtcagtcac atctccatcg agaacatgag caaatagacc tttccaggtt 6240
gaaagtgaaa catactgggt ttctgttaatgc tttccctcat ggccatct ctatctttac 6300
tttcttttgc atatgttaca caaagttttt tattactaca tactaaagt tgcatccag 6360
ggatattgac tgtacatatt tatgtatatg taccatgttgc ttacatgtaa acaaacttca 6420
atttgaagtg cagctattat gtggtatccaa tggatgtcgccatccatcaattt 6480
atggtcacta gaaagtcttctt ttagtataat ttttatttgc ctgttttca ttccacttgc 6540
aaaattttgc agaattcttgc ttccatccatcaataaattaca tataattttt ctcttttagt 6600
catggagaaac nccccccat catctccancc ctattancc tccatgtgt actggatttt 6660
ttaaaaagac atttacatac gcaagttttt cactgacaan caagaatgtt attaatgtgt 6720
aatactgagc acntttactt cttaataaaa 6749

:010 : 3
:011 : 20
:012 : DNA
:013 : Artificial Sequence

:020 :
:021 : misc_feature
:022 : (1)..(20)
:023 : Synthetic primer

<400> 3
tgcgtgcaac tgcctcctgg 20
<210> 4
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(23)
<223> Synthetic primer

<400> 4
aaacaqadac aqacctgtga gag 23
<210> 5
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(34)
<223> Synthetic primer

<400> 5
gcgcgcgcgc ctgtcacagg tctgtctctg cttc 34
<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> Synthetic primer

<400> 6
gttgtgtatgc ctaccctgg 20
<210> 7
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(19)
<223> Synthetic primer

<400> 7
ggacccctct gaagccacc 19

<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence

<210>
<211> misc_feature
<212> (1)..(21)
<213> Synthetic primer

<400> 8
ggggaaagtggg agacaagaga c 21

<210> 9
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

<400> 9
aaaggccctgc tgcactgtg g 21

<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(23)
<223> Synthetic primer

<400> 10
aaataaaaggcc cagaagacag acc 23

<210> 11
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature

<220> (1)..(21)
<213> Synthetic primer

<400> 11
aactgtctgc cccagaacat c

21

<210> 12
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(23)
<223> Synthetic primer

<400> 12
ctaaaggatg ctctctcaac aag

23

<210> 13
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(22)
<223> Synthetic primer

<400> 13
actctgttg ggttttgatg ag

22

<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(23)
<223> Synthetic primer

<400> 14
gaggactact ccattgtcct tgg

23

<210> 15
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(24)
<223> Synthetic primer

<400> 15
a~~gg~~ctaagga ca~~gg~~ggagta gttc 24

<210> 16
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(22)
<223> Synthetic primer

<400> 16
t~~gg~~ggtctctg g~~t~~ttggtgact gc 22

<210> 17
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(40)
<223> Synthetic primer

<400> 17
g~~gg~~ggccgcgc gccc~~gg~~ggctg ctactgaccc gcaccctctg 40

<210> 18
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(18)
<223> Synthetic primer

<400> 18
g~~t~~tg~~gg~~gagg~~gg~~ gt~~g~~agacg 18

<210> 19

<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(42)
<223> Synthetic primer

<400> 19
gccccccggcc gccccccggccg cgtccctccc gccctcctga cc 42

<210> 20
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(36)
<223> Synthetic primer

<400> 20
gccccccggccg ctgcggacga gaaatctgtc tgcttg 36

<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> Synthetic primer

<400> 21
cagggttgtca agcagacaga 20

<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> Synthetic primer

<400> 22

ctgagctaag aegccctccc 20

<210> 23
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

<400> 23
ctgtacggcc tcactggtgt c 21

<210> 24
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

<400> 24
ggcaacagggg ct.cagtcagt c 21

<210> 25
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

<400> 25
ggactgactg agccctgtg c 21

<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> Synthetic primer

<400> 26
agt~~t~~gttcaa actgggtgaa 20
<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> Synthetic primer

<400> 27
caa~~g~~gtgtga gactgagccc 20
<210> 28
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

<400> 28
cgtatgtccac tcggactcca c 21
<210> 29
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(32)
<223> Synthetic primer

<400> 29
cgcgtcccccgc cggcgccgg acgccagtga cc 32
<210> 30
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature

<222>	(1)..(32)	
<223>	Synthetic primer	
<400>	30	
ggccggccgg cccggggatc cccttctcct		30
<210>	31	
<211>	44	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<221>	misc_feature	
<222>	(1)..(44)	
<223>	Synthetic primer	
<400>	31	
ggggccggccgg ccccccggccgg cggccgttct ggttcggtca tctg		44
<210>	32	
<211>	34	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<221>	misc_feature	
<222>	(1)..(34)	
<223>	Synthetic primer	
<400>	32	
ggccggccgg aaatgatata tttttttttc ttca		34
<210>	33	
<211>	33	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<221>	misc_feature	
<222>	(1)..(30)	
<223>	Synthetic primer	
<400>	33	
ggccggccgg aactttccca ttagtgcaag		30
<210>	34	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	

<220>		
<221> misc_feature		
<222> (1)..(36)		
<223> Synthetic primer		
<400> 34		
cgtttttttttt gcccgtgtga tagagaggta ctttca		36
<210> 35		
<211> 39		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_feature		
<222> (1)..(19)		
<223> Synthetic primer		
<400> 35		
cggcggccccc cgcgcgtttt tcaaagatgt ttcccttgcc		39
<210> 36		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_feature		
<222> (1)..(20)		
<223> Synthetic primer		
<400> 36		
tatcacccgag tgccaatgag		20
<210> 37		
<211> 35		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_feature		
<222> (1)..(35)		
<223> Synthetic primer		
<400> 37		
cggcggccccc cgcgcgtttt aagtgttcca ctgat		35
<210> 38		

<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(35)
<223> Synthetic primer

<400> 38
ccccccggcccg ttgttagaata gaataggaaa tttgg

35

<210> 39
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(35)
<223> Synthetic primer

<400> 39
ggcccccggccg ttgggtgaaga aaaatatact agtca

35

<210> 40
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(37)
<223> Synthetic primer

<400> 40
cgcgcggccccc gcccgtggaa ctcatttttt ttaaaga

37

<210> 41
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(39)
<223> Synthetic primer

<400> 41

gccccccgggggggggg	cggggccgttt	tattatacacac	agtcacacc	39
<210>	42			
<211>	32			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<221>	misc_feature			
<222>	(1)..(32)			
<223>	Synthetic primer			
<400>	42			
ccccccgggg	cttcctttaa	tttttgcctt	cc	32
<210>	43			
<211>	33			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<221>	misc_feature			
<222>	(1)..(33)			
<223>	Synthetic primer			
<400>	43			
ccccggccccc	gcggggaaac	aatgctcatt	ttatgtcag	39
<210>	44			
<211>	39			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<221>	misc_feature			
<222>	(1)..(39)			
<223>	Synthetic primer			
<400>	44			
ccccggccccc	cgccggaaacc	aagtctttta	ttttttctc	39
<210>	45			
<211>	39			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<221>	misc_feature			
<222>	(1)..(39)			
<223>	Synthetic primer			

· 400 · 45		
ccgcgtcccc cgcggatga atgttatctg tattcttc		39
· 210 · 46		
· 211 · 37		
· 212 · DNA		
· 213 · Artificial Sequence		
· 220 ·		
· 221 · misc_feature		
· 222 · (1)..(37)		
· 223 · Synthetic primer		
· 400 · 46		
ccgcgtcccc gcgcggcaaa ttctgccaat tccttta		37
· 210 · 47		
· 211 · 32		
· 212 · DNA		
· 213 · Artificial Sequence		
· 220 ·		
· 221 · misc_feature		
· 222 · (1)..(32)		
· 223 · Synthetic primer		
· 400 · 47		
gcgcgcgcgg tttgtccctc tgtactgtgt tt		32
· 210 · 46		
· 211 · 32		
· 212 · DNA		
· 213 · Artificial Sequence		
· 220 ·		
· 221 · misc_feature		
· 222 · (1)..(32)		
· 223 · Synthetic primer		
· 400 · 43		
ccgcgtcccc cgtgacccccc aacaccagg tt		32
· 210 · 49		
· 211 · 40		
· 212 · DNA		
· 213 · Artificial Sequence		
· 220 ·		
· 221 · misc_feature		

<220> (1)..(40)
<223> Synthetic primer

<400> 49
ccggccccggccg ccccccggcccg ggacagccac ttccctcactt 40

<210> 50
<211> 20
<212> DNA
<213> Artificial Sequence

<210>
<211> misc_feature
<220> (1)..(20)
<223> Synthetic primer

<400> 50
cgttcgtctcag cagcaggtag 20

<210> 51
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(19)
<223> Synthetic primer

<400> 51
cgttcgtctt cccgtcccg 19

<210> 52
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(42)
<223> Synthetic primer

<400> 52
ccgtttccggcc gccccccggccg ttggggatgc tggcaatgtg tg 42

<210> 53
<211> 20
<212> DNA
<213> Artificial Sequence

<220>		
<221> misc_feature		
<222> (1)..(10)		
<223> Synthetic primer		
<400> 53		
gggattccggc aaagctgatg		20
<210> 54		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_feature		
<222> (1)..(20)		
<223> Synthetic primer		
<400> 54		
ttoctatcgc ttggccgaat		20
<210> 55		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_feature		
<222> (1)..(21)		
<223> Synthetic primer		
<400> 55		
atcttgttgc aaggctggaa g		21
<210> 56		
<211> 49		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_feature		
<222> (1)..(49)		
<223> Synthetic primer		
<400> 56		
gtcccgccgc cgtccccggc ccccccggca gacccttccc accagacct		49
<210> 57		

<210> 31
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(31)
<223> Synthetic primer

<400> 57
cgccccccccc cgtgagccct gcccagtgtc t

31

<210> 58
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(41)
<223> Synthetic primer

<400> 58
ggggcccccggcc gccccccggccg gagccaggag gagcagaacc c

41

<210> 59
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(22)
<223> Synthetic primer

<400> 59
ttt

22

<210> 60
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(28)
<223> Synthetic primer

<400> 60
gcggccggcg cccagccctc cagtgcct 28
<210> 61
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> Synthetic primer

<400> 61
atcgatatgt gctgcctggg 20
<210> 62
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(18)
<223> Synthetic primer

<400> 62
ccggagggtggaa tggccgtg 28
<210> 63
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

<400> 63
ggatggggat ggccacgcaga c 21
<210> 64
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

·400· 64
cactgacccgt tgacaccctc g 21

·210· 65
·211· 21
·212· DNA
·213· Artificial Sequence

·220·
·221· misc_feature
·222· (1)..(21)
·223· Synthetic primer

·400· 65
tgcccccagtg cttcagagat c 21

·210· 66
·211· 19
·212· DNA
·213· Artificial Sequence

·220·
·221· misc_feature
·222· (1)..(19)
·223· Synthetic primer

·400· 66
ggagtgccctt gagccccct 19

·210· 67
·211· 19
·212· DNA
·213· Artificial Sequence

·220·
·221· misc_feature
·222· (1)..(19)
·223· Synthetic primer

·400· 67
ccccataaaa cagccagcg 19

·210· 68
·211· 21
·212· DNA
·213· Artificial Sequence

·220·

<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

<400> 68
tctgttcgtc ctatgtgtcc t g

21

<210> 69
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

<400> 69
gcaggagggc aggttgtaga a

21

<210> 70
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(40)
<223> Synthetic primer

<400> 70
gcggccccgc gccccccggc ggttaggggg ga gtctgggctt

40

<210> 71
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(17)
<223> Synthetic primer

<400> 71
jagtccacc cggatcc

17

<210> 72
<211> 20
<212> DNA

<210> Artificial Sequence

<210>

<211> misc_feature

<212> (1)..(20)

<213> Synthetic primer

<400> 72

attpggcata tctgacggtg

20

<210> 73

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(35)

<223> Synthetic primer

<400> 73

atccggccccc gccccggaaag gtggccttag gagat

35

<210> 74

<211> 37

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(37)

<223> Synthetic primer

<400> 74

atccggccccc gccccggccg ggggtccacg ggccatg

37

<210> 75

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(20)

<223> Synthetic primer

<400> 75

aaggccagca gcacggtgag

20

<210> 76
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(34)
<223> Synthetic primer

<400> 76
ccacccgcccc cggcgctgcc ctgcctgtgc cctg 34

<210> 77
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(51)
<223> Synthetic primer

<400> 77
ggccggcgcc cgtccccggccg ccccccggcccg ttccaccacc acgtccacca c 51

<210> 78
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

<400> 78
gttgtggagg tggtggtggaa a 21

<210> 79
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

.400.. 79
ggatqctgcc ctcactggga a 21
.210.. 80
.211.. 21
.212.. DNA
.213.. Artificial Sequence

.220..
.221.. misc_feature
.222.. (1)..(21)
.223.. Synthetic primer

.400.. 80
taaggcaga gtcctccaca g 21
.210.. 41
.211.. 22
.212.. DNA
.213.. Artificial Sequence

.220..
.221.. misc_feature
.222.. (1)..(22)
.223.. Synthetic primer

.400.. 81
ccaccccccgc ccacctactg ag 22
.210.. 42
.211.. 40
.212.. DNA
.213.. Artificial Sequence

.220..
.221.. misc_feature
.222.. (1)..(40)
.223.. Synthetic primer

.400.. 82
ggggccccggc gcggggggcg tggagggagg gacgccaatc 40
.210.. 83
.211.. 19
.212.. DNA
.213.. Artificial Sequence

.220..
.221.. misc_feature
.222.. (1)..(19)
.223.. Synthetic primer

<211> misc_feature
<212> (1)..(35)
<213> Synthetic primer

<400> 87
ccgcggccccc gccccggctct gggtcaggac agggga

36

<210> 88
<211> 18
<212> DNA
<213> Artificial Sequence

<211>
<221> misc_feature
<222> (1)..(18)
<223> Synthetic primer

<400> 88
cgccgtgggg tgtttttt

18

<210> 89
<211> 18
<212> DNA
<213> Artificial Sequence

<211>
<221> misc_feature
<222> (1)..(18)
<223> Synthetic primer

<400> 89
atgtatgtt gtccggccg

18

<210> 90
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(32)
<223> Synthetic primer

<400> 90
ccccggccgg gggccccc gtggtggtca gc

32

<210> 91
<211> 18
<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(18)

<223> Synthetic primer

<400> 91

caggatgcgttggatgc

18

<210> 92

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(18)

<223> Synthetic primer

<400> 92

ctgaaaggtagc tgcccggtt

18

<210> 93

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(30)

<223> Synthetic primer

<400> 93

cgtccccccc cgtggctcc acgcagatgc

30

<210> 94

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(18)

<223> Synthetic primer

<400> 94

cgtgaacagg gcgcattta

18

<210> 95
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(31)
<223> Synthetic primer

<400> 95
cccccggcccg gcagcagaga tgggttttggga c

31

<210> 96
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(36)
<223> Synthetic primer

<400> 96
ccgcggcccccc cgccggccagg ctccatatctt gtgaca

36

<210> 97
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

<400> 97
tggaaatcaacc ttgtgttgttgg t

21

<210> 98
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(19)
<223> Synthetic primer

·400· 98		
ctacatgtgg gatctgggg		19
·210· 99		
·211· 18		
·212· DNA		
·213· Artificial Sequence		
·220·		
·221· misc_feature		
·222· (1)..(18)		
·223· Synthetic primer		
·400· 99		
tgcgtgaagct caggctcc		18
·210· 100		
·211· 19		
·212· DNA		
·213· Artificial Sequence		
·220·		
·221· misc_feature		
·222· (1)..(20)		
·223· Synthetic primer		
·400· 100		
gggctctgttgtc tcaatgcaag		20
·210· 101		
·211· 40		
·212· DNA		
·213· Artificial Sequence		
·220·		
·221· misc_feature		
·222· (1)..(40)		
·223· Synthetic primer		
·400· 101		
ggggcccccgc gccccccgc caccacgtgc agccctctta		40
·210· 102		
·211· 40		
·212· DNA		
·213· Artificial Sequence		
·220·		
·221· misc_feature		
·222· (1)..(40)		
·223· Synthetic primer		

.400> 102
ggggccggcc gccccccggc cccggccaggaa cagcatcttc 40
.210> 103
.211> 18
.212> DNA
.213> Artificial Sequence

.220>
.221> misc_feature
.222> (1)..(18)
.223> Synthetic primer

.400> 103
ggtttcccaag catgttgg 18
.210> 104
.211> 24
.212> DNA
.213> Artificial Sequence

.220>
.221> misc_feature
.222> (1)..(24)
.223> Synthetic primer

.400> 104
ggccggccggc ggcaaaggct tctc 24
.210> 105
.211> 19
.212> DNA
.213> Artificial Sequence

.220>
.221> misc_feature
.222> (1)..(19)
.223> Synthetic primer

.400> 105
ggccggccggc agtcacat 19
.210> 106
.211> 21
.212> DNA
.213> Artificial Sequence

.220>

· 221 · misc_feature
· 222 · (1)..(21)
· 223 · Synthetic primer

· 400 · 106
cgadccattt accacccata g

21

· 210 · 107
· 211 · 21
· 212 · DNA
· 213 · Artificial Sequence

· 220 ·
· 221 · misc_feature
· 222 · (1)..(.0)
· 223 · Synthetic primer

· 400 · 107
ggcaccagc aggatctgaa

20

· 210 · 108
· 211 · 21
· 212 · DNA
· 213 · Artificial Sequence

· 220 ·
· 221 · misc_feature
· 222 · (1)..(21)
· 223 · Synthetic primer

· 400 · 108
atgtttggccaa gcggcaagggt g

21

· 210 · 109
· 211 · 21
· 212 · DNA
· 213 · Artificial Sequence

· 220 ·
· 221 · misc_feature
· 222 · (1)..(21)
· 223 · Synthetic primer

· 400 · 109
cctgttttttc cagcaccaggc g

21

· 210 · 110
· 211 · 21
· 212 · DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(21)

<223> Synthetic primer

<400> 110

aggcccgagg cgactcgctg g

21

<210> 111

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(21)

<223> Synthetic primer

<400> 111

caggccaca cggctgggc g

21

<210> 112

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(21)

<223> Synthetic primer

<400> 112

ttagggccc acgttgacct g

21

<210> 113

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(31)

<223> Synthetic primer

<400> 113

ccccccccc catgggtgtg gacgggtgag g

31

<210> 114
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> Synthetic primer

<400> 114

taaaactgga tggggctctc

20

<210> 115
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(18)
<223> Synthetic primer

<400> 115

ggccctccacc agcactaa

18

<210> 116
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> Synthetic primer

<400> 116

gggtccccca gtcccttccag

20

<210> 117
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(17)
<223> Synthetic primer

<400> 117
tccccagccc gccccaca 17

<210> 118
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> Synthetic primer

<400> 118
gcgcgcgtcac caccccttct 20

<210> 119
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

<400> 119
tcggcgctgtt ccgcggcgcgc a 21

<210> 120
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(18)
<223> Synthetic primer

<400> 120
aatggccgtgg ggaccgtc 18

<210> 121
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> Synthetic primer

<400> 121
gtggcagggt ggcagtctcg 20

<210> 122
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

<400> 122
ccacccccc tgcgtgttagg t 21

<210> 123
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(19)
<223> Synthetic primer

<400> 123
ggttcccaaggc acggatgca 19

<210> 124
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(22)
<223> Synthetic primer

<400> 124
tgggggttc ctgcgtgtct ga 22

<210> 125
<211> 29
<212> DNA
<213> Artificial Sequence

<220>

<221> misc_feature
<222> (1)..(9)
<223> Synthetic primer

<400> 125
gcggggcaggg tgagcaggtg gggccatcc

29

<210> 126
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(26)
<223> Synthetic primer

<400> 126
gaggatgtgg gggtccagtc aagtgg

26

<210> 127
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(25)
<223> Synthetic primer

<400> 127
aggaggcag agjaaaggc cgaac

25

<210> 128
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(29)
<223> Synthetic primer

<400> 128
tgttucgtttt gcactgacct cacgcatgt

29

<210> 129
<211> 41
<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(41)

<223> Synthetic primer

<400> 129

cggccgcggcgg cccccggcccg gccaaaggga aagggattgg a

41

<210> 130

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(21)

<223> Synthetic primer

<400> 130

ccggggggccg tgggtgtgcta t

21

<210> 131

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(39)

<223> Synthetic primer

<400> 131

ccggccgcgg cggccgcgttg gtggagacgg tggtagttgc

39

<210> 132

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(21)

<223> Synthetic primer

<400> 132

tccaaatccct ttccctttgg c

21

<210> 133
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(2)
<223> Synthetic primer

<400> 133
cagccagccca tgaaacagaa ag

22

<210> 134
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

<400> 134
tatatctttca ggcccggtggc a

21

<210> 135
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(23)
<223> Synthetic primer

<400> 135
ataccccatc cccgggtccag tcc

23

<210> 136
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(23)
<223> Synthetic primer

<400> 136
qgactggacc gggatgggc tct 23

<210> 137
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(31)
<223> Synthetic primer

<400> 137
cccccccgccg caccaggcc ctccctgact c 31

<210> 138
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(30)
<223> Synthetic primer

<400> 138
cccccggccgc tgggtgggtt cggctctatac 30

<210> 139
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(23)
<223> Synthetic primer

<400> 139
tggtagcat gtcacagtca ctt 23

<210> 140
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(23)
<223> Synthetic primer

<400> 140	
caagcccaaag ctgagatgac ttg	23
<210> 141	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<221> misc_feature	
<222> (1)..(10)	
<223> Synthetic primer	
<400> 141	
agaggcgccag gagggaggtc	20
<210> 142	
<211> 16	
<212> DNA	
<213> Artificial Sequence	
<220>	
<221> misc_feature	
<222> (1)..(18)	
<223> Synthetic primer	
<400> 142	
ccctctggcc cgcattg	18
<210> 143	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<221> misc_feature	
<222> (1)..(21)	
<223> Synthetic primer	
<400> 143	
atgtttcaaaa gggtctgcgtc g	21
<210> 144	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	

<221> misc_feature
<222> (1)..(22)
<223> Synthetic primer

<400> 144
ggccctccct gccttctagg cg

22

<210> 145
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> Synthetic primer

<400> 145
ccgtgctgtg tggaggagag

20

<210> 146
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

<400> 146
ccctttcttg cccagccctt c

21

<210> 147
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(21)
<223> Synthetic primer

<400> 147
tttccggcgc agcccttggt g

21

<210> 148
<211> 20
<212> DNA

<213> Artificial Sequence

<210>

<211> misc_feature

<212> (1)..(20)

<213> Synthetic primer

<400> 148

cttggactacc gccccgtgac

20

<210> 149

<211> 20

<212> DNA

<213> Artificial Sequence

<210>

<211> misc_feature

<212> (1)..(20)

<213> Synthetic primer

<400> 149

aggcccccca gccccagccca

20

<210> 150

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(13)

<223> Synthetic primer

<400> 150

cttggcgcgag ctggact

13

<210> 151

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(20)

<223> Synthetic primer

<400> 151

acacccagca aggacacgca

20

<210> 152
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> Synthetic primer

<400> 152
tgtcacacat ccacctggtac

20

<210> 153
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> Synthetic primer

<400> 153
gcaagggtca gtttcagago

20

<210> 154
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(51)
<223> Synthetic primer

<400> 154
ggcccgccgc cgtcccgccc accctatgcc tcctgtacct c

51

<210> 155
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(18)
<223> Synthetic primer

:400> 155
cccttcctctt ggcaatcc 18

:210> 156
:211> 20
:212> DNA
:213> Artificial Sequence

:220>
:221> misc_feature
:222> (1)..(20)
:223> Synthetic primer

:400> 156
cttgccggga gcacgacgag 20

:210> 157
:211> 20
:212> DNA
:213> Artificial Sequence

:220>
:221> misc_feature
:222> (1)..(20)
:223> Synthetic primer

:400> 157
ctgggtctggg gcacgggggg 20

:210> 158
:211> 21
:212> DNA
:213> Artificial Sequence

:220>
:221> misc_feature
:222> (1)..(21)
:223> Synthetic primer

:400> 158
ttttttttttt acggcgcccc c 21

:210> 159
:211> 20
:212> DNA
:213> Artificial Sequence

:220>
:221> misc_feature
:222> (1)..(21)
:223> Synthetic primer

<400> 159
tttggggcggtt catttggatc 20
<210> 160
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> Synthetic primer

<400> 160
accacacaca aataggaggg 20
<210> 161
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(24)
<223> Synthetic primer

<400> 161
tttgttattgt tttaattgtt ctta 24
<210> 162
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(25)
<223> Synthetic primer

<400> 162
ctaaacctgtac taaattttc ttctt 25
<210> 163
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

:121: misc_feature
:122: (1)..(10)
:123: Synthetic primer

:400: 163
tttgggttttg tatttgtggtg

20

:210: 164
:211: 23
:212: DNA
:213: Artificial Sequence

:220:
:221: misc_feature
:222: (1)..(23)
:223: Synthetic primer

:400: 164
aaggatttac gaagtttaaa ttg

23

:210: 165
:211: 21
:212: DNA
:213: Artificial Sequence

:220:
:221: misc_feature
:222: (1)..(21)
:223: Synthetic primer

:400: 165
aqaaccttag gaagcatgtat t

21

:210: 166
:211: 20
:212: DNA
:213: Artificial Sequence

:220:
:221: misc_feature
:222: (1)..(20)
:223: Synthetic primer

:400: 166
taggtaccua atcaaatccg

20

:210: 167
:211: 20
:212: DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(20)

<223> Synthetic primer

<400> 167

gtatcagtg tctgttcctc

20

<210> 168

<211> 22

<212> DNA

<213> Artificial Sequence Sequence

<220>

<221> misc_feature

<222> (1)..(22)

<223> Synthetic primer

<400> 168

aaataacaact gtcaagcaaca ta

22