MATHEMATICS OLYMPIAD TRAINING SESSIONS

2002 Senior Mathematics Contest Problems with Some Solutions

1. Find all solutions of the following system of equations:

$$\frac{x_1}{x_1+1} = \frac{x_2}{x_2+3} = \frac{x_3}{x_3+5} = \dots = \frac{x_{1001}}{x_{1001}+2001}$$

$$x_1 + x_2 + \dots + x_{1001} = 2002$$
(1)

Solution. First observe that

$$x_i = 0$$
 for some $i \implies x_i = 0$ for all i , by (1)
 $\implies x_1 + x_2 + \dots + x_{1001} = 0$, contradicting (2)
 $\therefore x_i \neq 0$ for all i .

Therefore, the reciprocals of the expressions in (1) are equal, i.e.

$$(1) \implies \frac{x_1+1}{x_1} = \frac{x_2+3}{x_2} = \dots = \frac{x_{1001}+2001}{x_{1001}}$$

$$\implies \frac{1}{x_1} = \frac{3}{x_2} = \dots = \frac{2001}{x_{1001}}, \text{ subtracting 1 from each equated expression}$$

$$\implies x_2 = 3x_1$$

$$x_3 = 5x_1$$

$$\vdots$$

$$x_{i} = (2i-1)x_1$$

$$\vdots$$

$$x_{1001} = 2001x_1$$

$$\implies \text{by (2)},$$

$$2002 = (1+3+\dots+2001)x_1$$

$$= 1001^2x_1, \text{ since sum of the first } n \text{ odd numbers is } n^2$$

$$x_1 = 2/1001$$

$$\implies x_1 = \frac{2}{1001}, x_2 = \frac{6}{1001}, \dots, x_i = \frac{2(2i-1)}{1001}, \dots, x_{1001} = \frac{4002}{1001}.$$

And the solution is unique.

2. Determine all $x, y \in \mathbb{N}$ such that

$$x! + 24 = y^2 \tag{*}$$

Solution. Consider cases according to the values of x.

Case 1: $x \ge 6$. Then

$$x! = \cdots 3 \cdots 6 \cdots$$
 is divisible by 3^2
but $24 = 2^3 \cdot 3$ is only divisible by 3
 $\implies 3$ is the highest power of 3 that divides LHS(*)
 $\implies \text{LHS}(*)$ is not a square $\frac{1}{2}$

 $\therefore x < 6.$

Case 2: x = 1. Then $1! + 24 = 25 = 5^2 \implies (1, 5)$ is solution.

Case 3: x = 2. Then 2! + 24 = 26, (not square) $\frac{1}{2}$

Case 4: x = 3. Then 3! + 24 = 30, (not square) $\frac{1}{2}$

Case 5: x = 4. Then 4! + 24 = 48, (not square)

Case 6: x = 5. Then $5! + 24 = 144 = 12^2 \implies (5, 12)$ is solution.

Therefore, the only solutions
$$(x,y) \in \mathbb{N}^2$$
 of $(*)$ are: $(1,5)$ and $(5,12)$.

- 3. For each pair (k, ℓ) of integers, determine all infinite sequences of integers a_1, a_2, a_3, \ldots in which the sum of every 28 consecutive numbers equals k and the sum of every 15 consecutive numbers equals ℓ .
- 4. Determine all functions f that have the properties:
 - (i) f is defined for all real numbers,

(ii)
$$|f(x)| \leq 2002 \leq \left| \frac{xf(y) - yf(x)}{x - y} \right|$$
 for all x, y with $x \neq y$.

5. For $\triangle ABC$, let D be the midpoint of BC, $\angle BAD = \angle ACB$ and $\angle DAC = 15^{\circ}$. Determine $\angle ACB$.

Solution.

Construct $K = \operatorname{circumcircle}(ADC)$

Then $\angle ACD$ = "angle on chord AD in K" = "angle between AD and AB"

 \therefore AB is tangent to K at A, by (converse of) Tangent-Chord Th.

Let
$$O = \operatorname{centre}(K)$$

Then
$$\angle DOC = 2\angle DAC$$

= $2 \cdot 15^{\circ}$
= 30°

Let B', D' be feet of perpendiculars dropped from B, D resp. to OC

Then
$$\frac{DD'}{DO} = \sin 30^{\circ}$$

$$= \frac{1}{2}$$

$$\therefore DD' = \frac{1}{2}DO$$

$$BC = 2DC$$

$$\therefore BB' = 2DD'$$

$$= DO$$

$$= AO$$

$$\angle BB'O = 90^{\circ}$$

$$= \angle BAO$$

$$BO = OB$$

- $\therefore \triangle BB'O \cong \triangle BAO$, by RHS
- $\therefore ABB'O$ is a parallelogram with a right angle
- $\therefore ABB'O$ is a rectangle

$$\therefore \angle AOC = 90^{\circ}$$

$$\therefore \angle CAO = \frac{1}{2}(180^{\circ} - \angle AOC), \ \triangle AOC \text{ is isos.}$$

$$= 45^{\circ}$$

$$\angle BAC = \angle BAO - \angle CAO$$

$$= 45^{\circ}$$

$$\therefore \angle ACB = \angle BAD$$

$$= \angle BAC - \angle DAC$$

$$= 45^{\circ} - 15^{\circ}$$

$$= 30^{\circ}.$$