Álgebra I: Estructuras algebraicas y la teoría de grupos Preguntas sobre el curso

- 1. Defina qué es un grupo. Dé por lo menos tres ejemplos diferentes de grupos. Demuestre que el elemento neutro es único y para cada elemento su inverso es único.
- 2. Defina qué es un subgrupo y un subgrupo normal. Dé tres ejemplos diferentes de subgrupos normales y tres ejemplos diferentes de subgrupos que no son normales.
- 3. Defina qué es el grupo simétrico S_n y el grupo alternante A_n . ¿Cuántos elementos hay en S_n y A_n ? ¿Cuándo estos grupos son abelianos? Describa los subgrupos normales en S_n y A_n para diferente n.
- 4. Escriba los tipos de ciclo diferentes que ocurren en el grupo simétrico S_5 y calcule el número de elementos de cada tipo de ciclo. ¿Cuáles elementos pertenecen a A_5 ?
- 5. Defina qué es el grupo diédrico D_n . ¿Cuántos elementos hay en D_n ? ¿Cómo se multiplican sus elementos?
- 6. Defina qué es el centro de un grupo. Demuestre que el centro es un subgrupo normal. Calcule el centro del grupo simétrico S_n y el grupo diédrico D_n .
- 7. Defina qué es un anilo y un cuerpo. Defina el anillo de polinomios R[X] y el anillo de matrices $M_n(R)$. Demuestre que el último anillo no es conmutativo. Dé tres ejemplos diferentes de anillos que no son cuerpos y tres ejemplos diferentes de cuerpos. Demuestre que un cuerpo no puede tener divisores de cero.
- 8. Defina el anillo $\mathbb{Z}/n\mathbb{Z}$. Demuestre que es un cuerpo si y solamente si n es primo. Describa el grupo de unidades $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
- 9. Defina qué es un homomorfismo, monomorfismo, epimorfismo, isomorfismo de grupos. Dé ejemplos diferentes para cada una de estas nociones. Demuestre que todo homomorfismo preserva el elemento neutro y elementos inversos.
- 10. Defina qué es la imagen y el núcleo de un homomorfismo. Demuestre que son subgrupos. Demuestre que el núcleo es un subgrupo normal. Dé por lo menos tres ejemplos diferentes de núcleos no triviales.
- 11. Defina qué es el orden de un elemento. Demuestre que para un elemento de orden finito se cumple ord $g^k = \text{ord } g / \text{mcd}(\text{ord } g, k)$. Calcule los órdenes de los elementos en el grupo simétrico S_n y el grupo diédrico D_n .
- 12. Defina qué es un grupo cíclico. Demuestre que todo grupo cíclico es isomorfo a \mathbb{Z} o $\mathbb{Z}/n\mathbb{Z}$. Describa los posibles generadores de $\mathbb{Z}/n\mathbb{Z}$.
- 13. Defina qué son las clases laterales. Formule y demuestre el teorema de Lagrange. Demuestre que si G es un grupo finito y H es un subgrupo, entonces |H| divide a |G|. Demuestre que si G es un grupo finito y $g \in G$, entondes ord g divide a |G|.
- 14. Defina qué es el grupo cociente. Formule y demuestre el primer teorema de isomorfía. Dé por lo menos tres ejemplos de su aplicación.
- 15. Defina qué es el subgrupo conmutador. Demuestre que es normal. Formule y demuestre la propiedad universal de la abelianización. Calcule la abelianización del grupo simétrico S_n y el grupo alternante A_n para todo n.

- 16. Defina qué es una acción (un G-conjunto). Defina qué es la órbita O_x y el estabilizador G_x de un punto. Demuestre que un G-conjunto es una unión disjunta de las órbitas. Establezca la biyección entre la órbita O_x y las clases laterales G/G_x .
- 17. Describa la acción de un grupo sobre sí mismo por multiplicación. Demuestre que esta acción es fiel. Demuestre el teorema de Cayley: para todo grupo existe un monomorfismo $G \mapsto S_G$. Describa la acción de un grupo sobre sí mismo por conjugación. Demuestre que esto es una acción por automorfismos. Describa las órbitas, puntos fijos y estabilizadores en este caso.
- 18. Defina qué es el producto directo y semidirecto de dos grupos (verifique que la multiplicación en el producto semidirecto nos da un grupo). Dé tres ejemplos diferentes de productos directos y semidirectos.
- 19. Defina qué es una sucesión exacta corta de grupos y dé por lo menos tres ejemplos diferentes.
- 20. Formule y demuestre el teorema chino del resto. Formule el teorema sobre la esctructura de grupos abelianos finitamente generados. Enumere los grupos abelianos de orden \leq 10 salvo isomorfismo.