Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

Ispitni rok iz predmeta **TEORIJA INFORMACIJE**, 6. rujna 2012.

Napomena:

Svaki točno riješen zadatak boduje se s najviše 10 bodova. Svaki zadatak potrebno je rješavati na zasebnom listu papira. U svakom potpitanju jasno istaknite konačni odgovor. Svaka izračunata veličina mora imati točnu brojčanu vrijednost i po potrebi mjernu jedinicu. U zadacima koji su razdvojeni na dva dijela (tzv. I .dio i II. dio) ne postoji nikakva povezanost između navedenih dijelova.

Trajanje ispita: 120 minuta.

Broj zadataka na ispitu: 5

ZADACI

1. zadatak: (I. dio) Dan je kontinuirani komunikacijski kanal koji se sastoji od dva AWGN kanala čiji su ulazi X_1 i X_2 te izlazi:

$$Y_1 = X_1 + Z_1$$

 $Y_2 = X_2 + Z_2$

Šum Z_1 neovisan je o šumu Z_2 , dok su njihove varijance N_1 , odnosno N_2 ($N_1 < N_2$) i očekivanja 0. Također, vrijedi sljedeće: $X_1 = X_2 = X$ i $E[X^2] = P$. Na prijamnoj strani (izlaz kanala) vrijedi sljedeće: $Y = Y_1 + Y_2$.

Odredite:

- i) {3 boda} srednju snagu signala (bez AWGN šuma) na prijamnoj strani.
- ii) {3 boda} dinamiku danog kanala.

(II. dio)

iii) {4 boda} Odredite kapacitet diskretnog komunikacijskog kanala čija je matrica uvjetnih prijelaza

$$[p(y_j|x_i)] = \begin{bmatrix} 2/3 & 1/3 & 0 \\ 1/3 & 1/3 & 1/3 \\ 0 & 1/3 & 2/3 \end{bmatrix}.$$

2. zadatak: (I. dio) Dano je diskretno bezmemorijsko izvorište X koje generira simbole 1, 2, 3 s vjerojatnostima pojavljivanja 0.4, p i 0.6-p, slijedno gledano . Neka je C prefiksni kôd za X, tj.

$$C(X) = \begin{cases} 0 & \text{za } x = 1 \\ 10 & \text{za } x = 2 \\ 11 & \text{za } x = 3 \end{cases}$$

i) $\{4 \text{ boda}\}\ \text{Za koje vrijednosti } p \text{ je } C(X) \text{ optimalan prefiksni kôd.}$

(II. dio)

- ii) {4 boda} Diskretno bezmemorijsko izvorište generira simbole iz skupa simbola $X = \{a, b, c, d\}$ s vjerojatnostima pojavljivanja $p_a \ge p_b \ge p_c \ge p_d$, $(p_a + p_b + p_c + p_d = 1)$. Odredite nužan i dovljan uvjet za koji je $l_a = l_b = l_c = l_d = 2$, uz Huffmanovo binarno kodiranje.
- iii) {2 boda} Navedite primjer Huffmanovog binarnog kodiranja za dobiveni uvjet pod ii).

3. zadatak: Za neki binarni blok kôd K dani su svi njegovi sindromi, \mathbf{s} , i njima pripadajući vodeći članovi razreda (tzv. reprezenti razreda) standardnog niza koda K.

S	Vodeći članovi razreda
000	00000
001	10000
010	01000
011	00011
100	00100
101	00010
110	00001
111	10001

(I. dio)

Odredite za dani kôd *K*:

- i) {1 bod} koje pogreške (u cjelosti) može ispraviti. Dokaz!
- ii) {2 boda} matricu proviere pariteta, H.
- iii) {2 boda} generirajuću matricu, G.
- iv) $\{1 \text{ bod}\}$ minimalnu udaljenost, d_{\min} .

Napomena: Matrice G i H ne smiju biti u standardnom obliku.

(II. dio)

- v) $\{4 \text{ boda}\}\$ Odredite sve binarne ciklične kodove čija je duljina kodne riječi n=7, a koji sadrže kodnu riječ 1111000.
- **4. zadatak:** Na slici je dan amplitudni spektar signala x(t)

i) {5 bodova} Odredite Fourierov transformat sljedećeg signala

$$x_1(t) = -x(t) + x(t)\cos(2000\pi t) + 2x(t)\cos^2(3000\pi t)$$
 [V].

ii) {5 bodova} Za dobiveno i) skicirajte amplitudni spektar signala $x_1(t)$.

Napomena: Prilikom skiciranja spektra signala $x_1(t)$ potrebno je na brojevnim osima navesti točne numeričke vrijednosti.

5. zadatak: (I. dio) Neka su X i Y slučajne varijable koje poprimaju vrijednosti iz skupova $x \in \{0, 1\}$ i $y \in \{0, 1, 2\}$, slijedno gledano. Neka je $p(X=x, Y=y)=K \cdot (x+y), K \in \mathbb{R}^+$. Odredite:

- i) $\{1 \text{ bod}\}\ K$.
- ii) $\{2 \text{ boda}\} H(X)$.
- iii) $\{2 \text{ boda}\} H(Y).$
- iv) $\{2 \text{ boda}\} I(X;Y).$

(II. dio)

v) $\{3 \text{ boda}\}\$ Neka je Z slučajna varijabla koja poprima vrijednosti iz skupa $\{0, 1\}$ i neka je

$$p(Z = z) = \begin{cases} p, & z = 0\\ 1 - p, & z = 1 \end{cases}$$

Neka je p slučajna varijabla koja poprima, s jednakom vjerojatnosti, vrijednosti iz skupa $\{0, 0.5, 1\}$. Kolika je očekivana vrijednost entropije slučajne varijable Z?