Decision Tree Regression Model Predicted_GPA Analysis.....

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import rcParams

import seaborn as sb

%matplotlib inline

rcParams['figure.figsize']=10,8

sb.set_style('whitegrid')

df=pd.read_csv("C:/Users/Vivek Vishan Jetani/Documents/Models/New Prediction/PredictionOrignal.csv")

df

	classification	resource	place_of_study	sleep_time	time_spend_on_social_media	SSC	HSC	attendance	self_study	Predicted_GPA
0	0	0	0	0	0.0	0	0	0	3	2.0
1	0	0	0	0	0.0	0	0	0	8	3.3
2	0	0	0	0	0.0	0	0	0	13	3.3
3	0	0	0	0	0.0	0	0	0	18	3.3
4	0	0	0	0	0.0	0	0	21-40%	0	2.0
5	0	0	0	0	0.0	0	0	41-60%	0	2.0
6	0	0	0	0	0.0	0	0	61-80%	0	2.0
7	0	0	0	0	0.0	0	0	81-100%	0	2.0
8	0	0	0	0	0.0	0	65%	0	0	2.0
9	0	0	0	0	0.0	0	70%	0	0	2.0

Classification vs Predicted_GPA......

pd.crosstab(df.classification, df.Predicted_GPA,normalize='index').plot(kind='bar')
pd.crosstab(df.classification, df.Predicted_GPA,normalize='index').plot(kind='line')
pd.crosstab(df.classification, df.Predicted_GPA,normalize='index')

Predicted_GPA classification	2.0	2.35	2.7	3.0	3.25	3.3	3.8
0	0.216108	0.003772	0.148880	0.001331	0.000666	0.518305	0.110939
Government	0.252941	0.003922	0.117647	0.000000	0.001961	0.521569	0.101961
Private	0.264706	0.005882	0.103922	0.000000	0.000000	0.533333	0.092157
Semi-Government	0.252941	0.003922	0.066667	0.000000	0.000000	0.596078	0.080392
0.6 Predicted_GPA							
0.4							
0.3							
0.2							

Government

dassification

Semi-Government

In this figure all parameters are slightly equal but 3.3 CGPA is increasing in each parameter.("0" is showing that values in which these three(Government, Private, Semi-Government) parameters are not depending....)

Resource vs Predicted_GPA......

pd.crosstab(df.resource, df.Predicted_GPA,normalize='index').plot(kind='Bar')
pd.crosstab(df.resource, df.Predicted_GPA,normalize='index').plot(kind='line')
pd.crosstab(df.resource, df.Predicted_GPA,normalize='index')

Predicted_GPA	2.0	2.35	2.7	3.0	3.25	3.3	3.8
resource							
0	0.237588	0.000000	0.155346	0.000000	0.000914	0.506244	0.099909
All of them	0.204598	0.000000	0.135632	0.013793	0.000000	0.533333	0.112644
Books	0.204598	0.000000	0.073563	0.000000	0.000000	0.600000	0.121839
Internet	0.211494	0.055172	0.137931	0.000000	0.002299	0.494253	0.098851
Notes given by teacher	0.252874	0.000000	0.137931	0.000000	0.000000	0.508046	0.101149
Notes prepare by yourself from lecture	0.218391	0.000000	0.082759	0.000000	0.000000	0.604598	0.094253
Research Paper	0.193437	0.000000	0.105354	0.000000	0.000000	0.559585	0.141623

In this figure all parameters are slightly equal but 3.3 CGPA is increasing in each parameter. This figure shows those students refers "Books", "Research paper" and "Notes repair by yourself from lecture" are around 60 % which have 3.3 CGPA ("0" is showing the values in which all Resource parameters are not depending....)

Place_of_study vs Predicted_GPA......

pd.crosstab(df.place_of_study, df.Predicted_GPA,normalize='index').plot(kind='Bar')
pd.crosstab(df.place_of_study, df.Predicted_GPA,normalize='index').plot(kind='line')
pd.crosstab(df.place_of_study, df.Predicted_GPA,normalize='index')

Predicted_GPA	2.0	2.35	2.7	3.0	3.25	3.3	3.8
place_of_study							
0	0.302087	0.006851	0.087200	0.000623	0.000000	0.561507	0.041732
Any other place	0.027601	0.000000	0.276008	0.000000	0.006369	0.481953	0.208068
Home	0.021231	0.000000	0.288747	0.004246	0.000000	0.473461	0.212314
Hostel/Friend's Place	0.237792	0.000000	0.084926	0.000000	0.000000	0.494692	0.182590
Lab	0.040340	0.000000	0.301486	0.000000	0.002123	0.452229	0.203822
Library	0.288747	0.004246	0.093418	0.004246	0.000000	0.552017	0.057325
Library & Home	0.227176	0.000000	0.097665	0.000000	0.000000	0.464968	0.210191

In this figure all parameters are slightly equal. But those students which use Library are 55% which have 3.3 CGPA ("0" is showing the values in which all Resource parameters are not depending....)

Sleep_time vs Predicted_GPA.....

```
pd.crosstab(df.sleep_time, df.Predicted_GPA,normalize='index').plot(kind='Bar')
pd.crosstab(df.sleep_time, df.Predicted_GPA,normalize='index').plot(kind='line')
print('Average Sleep Time in a day {4 hours, 7 hours, 10 hours}')
pd.crosstab(df.sleep_time, df.Predicted_GPA,normalize='index')
```

Predicted_GPA	2.0	2.35	2.7	3.0	3.25	3.3	3.8

sleep_tin	ne							
	0	0.221753	0.004966	0.141793	0.000497	0.00000	0.538614	0.092376
	4	0.205970	0.002985	0.137313	0.005970	0.00000	0.529851	0.117910
	7	0.197015	0.002985	0.125373	0.000000	0.00597	0.494030	0.174627
	10	0.304478	0.000000	0.105970	0.000000	0.00000	0.482090	0.107463

In this figure as Sleep time is increasing 3.3 CGPA is decreasing and at average 7 hours sleep 3.8 CGPA is increasing and at average 10 hours sleep 2.0 CGPA is increasing and 3.8 is decreasing. ("0" is showing the values in which all Sleep_time parameters are not depending....)

Time_spend_on_social_media vs Predicted_GPA.....

pd.crosstab(df.time_spend_on_social_media, df.Predicted_GPA,normalize='index').plot(kind='Bar')
pd.crosstab(df.time_spend_on_social_media, df.Predicted_GPA,normalize='index').plot(kind='line')
print('Place of Study {0.5 hours, 1.5 hours, 4 hours, 7.5 hours}')
pd.crosstab(df.time_spend_on_social_media, df.Predicted_GPA,normalize='index')

Predicted_GPA 2.0 2.35 2.7 3.0 3.25 3.3 3.8

time	spend	on	social	media

time_spend_on_social_	media							
	0.0	0.249297	0.005936	0.127148	0.000000	0.000000	0.545767	0.071853
	0.5	0.220028	0.004231	0.104372	0.000000	0.004231	0.540197	0.126939
	1.5	0.194640	0.002821	0.139633	0.008463	0.001410	0.513399	0.139633
	4.0	0.207334	0.000000	0.152327	0.000000	0.000000	0.523272	0.117066
	7.5	0.180536	0.000000	0.183357	0.000000	0.000000	0.441467	0.194640
0.5							Predic	sted_GPA 2.0 2.35 2.7 3.0 3.25 3.3 8.8
0.3								
0.2								
0.1								
0.0		0.5	fime_spend	_on_social_n ကို	nedia	4.0	7.5	

In this figure as time spend on social media is increasing 3.3 CGPA is decreasing and 2.7 CGPA is increasing ("0" is showing the values in which all time spend on social media parameters are not depending....)

SSC vs Predicted_GPA......

```
pd.crosstab(df.SSC, df.Predicted_GPA,normalize='index').plot(kind='Bar')
pd.crosstab(df.SSC, df.Predicted_GPA,normalize='index').plot(kind='line')
print('SSC Percentage{65%, 70%, 90%}')
pd.crosstab(df.SSC, df.Predicted_GPA,normalize='index')
```

Predicted_GPA	2.0	2.35	2.7	3.0	3.25	3.3	3.8	
SSC								
0	0.297811	0.006048	0.070853	0.000000	0.000000	0.570565	0.054724	
65%	0.278824	0.003529	0.057647	0.000000	0.000000	0.567059	0.092941	
70%	0.080046	0.000000	0.219258	0.004640	0.000000	0.467517	0.228538	
90%	0.031653	0.000000	0.391559	0.002345	0.004689	0.365768	0.203986	
0.5							Pred	icted_GPA 20 235 27 3.0 3.25 3.3 3.8
0.2	Н	1	+		н		+	
0.1	ŀ							
0.0	_		% 8	SSC	70%		%06	

In this figure as SSC percentage is increasing 3.3 CGPA is decreasing, 2.7 and 3.8 CGPA is increasing. ("0" is showing the values in which all SSC parameters are not depending....)

HSC vs Predicted_GPA.....

pd.crosstab(df.HSC, df.Predicted_GPA,normalize='index').plot(kind='Bar')
pd.crosstab(df.HSC, df.Predicted_GPA,normalize='index').plot(kind='line')
print('HSC Percentage{65%, 70%, 90%}')
pd.crosstab(df.HSC, df.Predicted_GPA,normalize='index')

Predicted_GPA	2.0	2.35	2.7	3.0	3.25	3.3	3.8
HSC							
0	0.260773	0.004086	0.150817	0.000000	0.000000	0.533432	0.050892
65%	0.186533	0.002730	0.192903	0.003640	0.001820	0.471338	0.141037
70%	0.203918	0.002671	0.107747	0.000000	0.001781	0.549421	0.134461
90%	0.205699	0.006233	0.070347	0.001781	0.000000	0.540516	0.175423

In this figure as HSC percentage is increasing 3.3 and 3.8 CGPA is also increasing. ("0" is showing the values in which all HSC parameters are not depending....)

Attendance vs Predicted_GPA......

pd.crosstab(df.attendance, df.Predicted_GPA,normalize='index').plot(kind='bar')
pd.crosstab(df.attendance, df.Predicted_GPA,normalize='index').plot(kind='line')
print('Average attendance{30%, 50%, 70%, 90%}')
pd.crosstab(df.attendance, df.Predicted_GPA,normalize='index')

Predicted_GPA	2.0	2.35	2.7	3.0	3.25	3.3	3.8
attendance							
0	0.271280	0.00000	0.156507	0.000000	0.000000	0.570016	0.002197
30%	0.542694	0.00000	0.259013	0.002846	0.003795	0.159393	0.032258
50%	0.058824	0.00000	0.109108	0.002846	0.000000	0.795066	0.034156
70%	0.034156	0.00000	0.136622	0.000000	0.000000	0.810247	0.018975
90%	0.192600	0.02277	0.000949	0.000000	0.000000	0.265655	0.518027

In this figure as Attendance is increasing the 3.3 CGPA is also increasing at 50% and 70% attendance, and at 90% attendance 3.8 CGPA is increasing.("0" is showing the values in which all Attendance parameters are not depending....)

Self_study vs Predicted_GPA.....

pd.crosstab(df.self_study, df.Predicted_GPA,normalize='index').plot(kind='Bar')
pd.crosstab(df.self_study, df.Predicted_GPA,normalize='index').plot(kind='line')
pd.crosstab(df.self_study, df.Predicted_GPA,normalize='index')

Predicted_GPA	2.0	2.35	2.7	3.0	3.25	3.3	3.8
self_study							
0	0.693920	0.002096	0.207547	0.000000	0.000000	0.090147	0.006289
3	0.574820	0.000000	0.256835	0.002158	0.002878	0.138129	0.025180
8	0.028058	0.000000	0.095683	0.002158	0.000000	0.848201	0.025899
13	0.009353	0.000000	0.132374	0.000000	0.000000	0.843885	0.014388
18	0.133094	0.016547	0.032374	0.000000	0.000000	0.425180	0.392806

In this figure as if average Self-study Time is 3 hours per week the CGPA is decreasing to 2 CGPA and if average Self-study Time is 8 and 13 hours per week the CGPA is increasing to 3.3 CGPA and if average Self-study Time is 18 hours per week the CGPA is increasing from 3.3 to 3.8 CGPA. ("0" is showing the values in which all Self-study Time parameters are not depending....)

