Chapitre 15

TABLE DES MATIÈRES

I	Définition et premières propriétés	2
II	Sous-espaces vectoriels	4
TTT	Familles de vectours	Q

Première partie

Définition et premières propriétés

Ι

Définition: Soit E un ensemble muni d'une loi interne + et d'une loi \cdot définie sur $\mathbb{K}\times E$ à valeurs dans E où \mathbb{K} est un corps.

On dit que $(E,+,\cdot)$ est un $\underline{\mathbb{K}\text{-espace vectoriel}}$ (ou un
 $\underline{\text{espace vectoriel}}$ si

- 1. (E,+) est un groupe abélien
- 2. (a)

$$\forall u \in E, \forall (\lambda, \mu) \in \mathbb{K}^2,$$

$$\mu \cdot (\lambda \cdot u) = (\underbrace{\mu \underbrace{\times}_{\times} \lambda) \cdot u}_{\times \text{ de } \mathbb{K}}$$

- (b) $\forall u \in E, 1_{\mathbb{K}} \cdot u = u$
- 3. (a)

(b)

$$\forall \lambda \in \mathbb{K}, \forall (u, v) \in E^2,$$
$$\lambda \cdot (u + v) = (\lambda \cdot u) + (\lambda \cdot v)$$

Les éléments de E sont alors appelés <u>vecteurs</u> et les éléments de $\mathbb K$ sont dits <u>scalaires</u>. Par convention, \cdot est prioritaire sur +.

Proposition: Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel.

- $$\begin{split} &1. \ \, \forall u \in E, 0_{\mathbb{K}} \cdot u = 0_E \\ &2. \ \, \forall \lambda \in \mathbb{K}, \lambda \cdot 0_E = 0_E \\ &3. \ \, \forall \lambda \in \mathbb{K}, \forall u \in E, \lambda \cdot u = 0_E \implies \lambda = 0_{\mathbb{K}} \text{ ou } u = 0_E \end{split}$$

Proposition: Soit $(E,+,\cdot)$ un \mathbb{K} -espace vectoriel et $u\in E$. Alors, $-u=(-1_{\mathbb{K}})\cdot u$

Deuxième partie Sous-espaces vectoriels

Définition: Soit $(E,+,\cdot)$ un K-espace vectoriel. Soit $F\subset E.$ On dit que F est un sous-K-espace vectoriel de E si

- 1. $F \neq \emptyset$
- 2. $\forall (u, v) \in F^2, u + v \in F$
- 3. $\forall \lambda \in \mathbb{K}, \forall u \in F, \lambda u \in F$

Proposition: Avec les notations précédentes, $(F, +, \cdot)$ est un \mathbb{K} -espace vectoriel

Proposition: Soit $(E,+,\cdot)$ un \mathbb{K} -espace vectoriel et $F\subset E$. F est un sous-espace vectoriel de $(E,+,\cdot)$ si et seulement si

- 1. $F \neq \emptyset$
- 2. $\forall (\lambda, \mu) \in \mathbb{K}^2, \forall (u, v) \in F^2, \lambda \cdot u + \mu \cdot v \in F$

Définition: Soient $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et $(u_1, \dots, u_n) \in E^n$. Une <u>combinaison linéaire</u> de (u_1, \dots, u_n) est un vecteur de E de la forme $\sum_{i=1}^n \lambda_i u_i$ où $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$

Remarque:

On peut aussi démontrer que F est un sous-espace vectoriel de E si et seulement si

$$F \neq \varnothing$$
et $\forall u,v \in F, \forall \lambda \in \mathbb{K}, \lambda u + v \in F$

Proposition: Soit $(E,+,\cdot)$ un \mathbb{K} -espace vectoriel et \mathscr{F} une famille non vide de sous-espaces vectoriels de E. Alors $\bigcap_{F\in\mathscr{F}}F$ est un sous-espace vectoriel de E.

Remarque (Attention ⚠):

Une réunion de sous-espaces vectoriels n'est pas un sous-espace vectoriel en général.

 Définition: Soient F et G deux sous-espaces vectoriels de E. On définit leur $\underline{\mathrm{somme}}$ F+G par

$$F + G = \{x + y \mid x \in F, y \in G\}$$

Proposition: Avec les notations précédentes, F+G est le plus petit sous-espace vectoriel de E contenant $F\cup G$.

Définition: Soit $(E,+,\cdot)$ un \mathbb{K} -espace vectoriel et $(F_i)_{i\in I}$ une famille quelconque non vide de sous-espaces vectoriels de E. On définit $\sum_{i\in I}F_i$ par

$$\sum_{i \in I} F_i = \left\{ \sum_{i \in I} x_i \mid (x_i)_{i \in I} \in \prod_{i \in I} F_i; (x_i) \text{ presque nulle } \right\}$$

$$= \left\{ \sum_{i \in I} x_i \mid (x_i) \in \prod_{i \in I} F_i; \{i \in I \mid x_i \neq 0_E\} \text{ est fini } \right\}$$

 $\sum_{i \in I} F_i$ est l'ensemble de sommes $\underline{\text{finies}}$ obtenues à partir d'éléments de $\prod_{i \in I} F_i$

Proposition: Une somme quelconque de sous-espaces vectoriels est le plus petit sous-espace vectoriel contenant leur réunion. $\hfill\Box$

Définition: Soient F et G deux sous-espaces vectoriels de E. On dit qu'ils sont en somme directe si

$$\forall u \in F + G, \exists ! (x, y) \in F \times G, u = x + y$$

Dans ce cas, l'espace F+G est noté $F\oplus G$

Proposition: Soient $(E,+,\cdot)$ un $\mathbb{K}\text{-espace}$ vectoriel, F et G deux sous-espaces vectoriels de E

F et G sont en somme directe si et seuelement si $F \cap G = \{0_E\}$

Remarque:

Ce résultat est inutile pour l'instant (en l'absence d'arguments dimensionnels) pour prouver un resultat de la forme $E=F\oplus G$

Définition: Soit $(E,+,\cdot)$ un $\mathbb K\text{-espace}$ vectoriel. On dit que F et G sont supplémentaires dans E si

$$E = F \oplus G$$

en d'autres termes,

$$\forall x \in E, \exists ! (y, z) \in F \times G, x = y + z$$

Définition: Soit $(F_i)_{i\in I}$ une famille non vide de sous-espaces vectoriels de $(E,+,\cdot)$. On dit qu'ils sont en somme directe si

$$\forall x \in \sum_{i \in I} F_i, \exists ! (x_i)_{i \in I} \in \prod_{i \in I} F_i \text{ presque nulle telle que } x = \sum_{i \in I} x_i$$

Dans ce cas, on écrit
$$\bigoplus_{i \in I} F_i$$
 à la place de $\sum_{i \in I} F_i$

Troisième partie

Familles de vecteurs

Définition: Soit $(E,+,\cdot)$ un \mathbb{K} -espace vectoriel et $A\in \mathscr{P}(E)$. Le <u>sous-espace vectoriel engendré</u> par A est le plus petit sous espace vectoriel V de E tel que $A\subset V$. On le note $\mathrm{Vect}(A)$

Définition: Soit $(E,+,\cdot)$ un \mathbb{K} -espace vectoriel et $u\in E\setminus\{0_E\}$. La <u>droite (vectorielle) engendrée</u> par u est $\mathbb{K}u=\mathrm{Vect}(u)=\mathrm{Vect}(\{u\})$. Soit $v\in E$. On dit que u et v sont <u>colinéaires</u> si $v\in \mathbb{K}u$. Si v n'est pas colinéaire à u alors, $\mathrm{Vect}(u,v)=\mathbb{K}u+\mathbb{K}v$ est appelé <u>plan (vectoriel) engendré</u> par u et v.

Proposition: Soit $(e_i)_{i\in I}$ un famille non vide de vecteurs d'un K-espace vectoriel $(E,+,\cdot)$. Alors,

$$\operatorname{Vect}((e_i)_{i \in I}) = \left\{ \sum_{i \in I} \lambda_i e_i \mid (\lambda_i)_{i \in I} \in \mathbb{K}^I \text{ et } (\lambda_i) \text{ presque nulle } \right\}$$
$$= \sum_{i \in I} \mathbb{K} e_i$$

Définition: On dit que $(e_i)_{i \in I}$ est une famille génératrice de E si

 $E = \operatorname{Vect}\left((e_i)_{i \in I}\right)$

Proposition: Soit $(e_i)_{i\in I}$ une famille génératrice de E et $(u_j)_{j\in J}$ une surfamille de $(e_i)_{i\in I}$ constituée de vecteurs de E:

$$\forall i \in I, \exists j \in J, e_i = u_j$$

Alors, $(u_j)_{j\in J}$ engendre E.

Proposition: Soit $(e_i)_{i\in I}$ une famille génératrice de E et $i_0\in I$

$$(e_i)_{i \in I \setminus \{i_0\}}$$
 engendre $E \iff e_{i_0} \in \text{Vect}\left((e_i)_{i \in I \setminus \{i_0\}}\right)$
 $\iff e_{i_0}$ est une combinaison linéaire des e_i $(i \in I, i \neq i_0)$

Proposition: Soit $(e_i)_{i\in I}$ une famille génératrice de $E, i_0 \in I$.

1. On pose
$$u_i = \begin{cases} e_i & \text{si } i \neq i_0 \\ \lambda e_{i_0} & \text{sinon} \end{cases}$$
 où $\lambda \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$
Alors, $(u_i)_{i \in I}$ engendre E

2. Soit
$$v \in \text{Vect}\left((e_i)_{i \in I \setminus \{i_0\}}\right)$$
.

On pose $u_i = \begin{cases} e_i & \text{si } i \neq i_0 \\ e_{i_0} + v & \text{sinon} \end{cases}$ où $\lambda \in \mathbb{K} \setminus \{0_K\}$

Alors, $(u_i)_{i \in I}$ engendre E

Définition: Soit $(e_i)_{i \in I}$ une famille de vecteurs. On dit que $(e_i)_{i \in I}$ est <u>libre</u> si aucun vecteur de cette famille n'est une combinaison linéaire des autres vecteurs de cette famille :

$$\forall i \in I, e_i \not\in \text{Vect}\left((e_j)_{j \in I \setminus \{i\}}\right)$$

On dit aussi que les e_i sont <u>linéairement indépendants</u>

Proposition

$$(e_i)_{i \in I} \text{ est libre} \iff \forall (\lambda_i) \in \mathbb{K}^I \text{ presque nulle }, \left(\sum_{i \in I} \lambda_i e_i = 0_E \implies \forall i \in I, \lambda_i = O_\mathbb{K}\right)$$

Proposition: Soit $(e_i)_{i \in I}$ une famille libre de E. Alors

$$\sum_{i \in I} \mathbb{K} e_i = \bigoplus_{i \in I} \mathbb{K} e_i$$

i.e.

$$\forall u \in \sum_{i \in I} \mathbb{K} e_i, \exists ! (\lambda_i) \in \mathbb{K}^I \text{ presque nulle telle que } u = \sum_{i \in I} \lambda_i e_i$$

En d'autres termes, tout vecteur de E a <u>au plus</u> une décomposition en combinaisons linéaires des $e_i, i \in I$

Proposition: Soit $(e_i)_{i \in I}$ une famille libre de E.

- 1. Toute sous famille de (e_i) est encore libre
- 2. Soit $u \in E$, $\mathscr{F} = (e_i \mid i \in I) \cup \{u\}$.

$$\mathscr{F}$$
 est libre $\iff u \not\in \operatorname{Vect}(e_i \mid i \in I)$

- 3. (a) Quand on remplace un vecteur e_i par λe_i avec $\lambda \neq 0_K$, la famille obtenue est libre.
 - (b) Quand on remplace un vecteur e_i par $v+e_i$ avec $v\in \mathrm{Vect}(e_j\mid j\neq i),$ la famille obtenue est libre.

Définition: Soit $(e_i)_{i\in I}$ une famille de vecteurs de E. On dit que (e_i) est une <u>base</u> de E si c'est à la fois une famille libre et génératrice de E; i.e. si

$$E = \bigoplus_{i \in I} \mathbb{K} e_i$$

i.e. si

$$\forall u \in E, \exists ! (\lambda_i) \in \mathbb{K}^I$$
 presque nulle telle que $u = \sum_{i \in I} \lambda_i e_i$

Dans ce cas, on dit que les λ_i sont les coordonnées de u dans la base $(e_i)_{i\in I}$