Conversion of the von Mises-Fisher concentration parameter to an equivalent angle

Romain Fayat

July 2021

The von Mises-Fisher probability distribution function is written for $X \in \mathcal{S}^2$ (unit 3-dimensional sphere):

$$vmf_{\mu,\kappa}(X) = C(\kappa) \exp(\kappa \mu^T X)$$

With $C(\kappa) = \frac{\kappa}{4\pi \sinh(\kappa)}$

where $\mu \in \mathcal{S}^2$ represents the mean direction of the distribution and $\kappa \in \mathbb{R}^{+*}$ is the concentration parameter of the distribution (analogue to the invert variance of a Gaussian).

Taking advantage of the isotropy of the von Mises-Fisher distribution (cylindrical symmetry around μ) we derive here a formula for converting the concentration parameter κ to an equivalent more interpretable angle θ_{α} such that a fraction α of the probability distribution function centered on μ is contained within an angle θ_{α} of μ .

By rewritting X in polar coordinates i.e.

$$X = r \begin{bmatrix} cos(\phi)sin(\theta) & sin(\phi)sin(\theta) & cos(\theta) \end{bmatrix}^T$$
 (1)

and setting μ to $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$ (the same result can be derived for different values of μ using a rotation) we obtain for a given value of α :

$$\alpha = \int_{\mathcal{S}^{2}, \, \theta < \theta_{\alpha}} vm f_{\mu,\kappa}(X) \, dS$$

$$= \int_{\theta=0}^{\theta_{\alpha}} \int_{\phi=0}^{2\pi} vm f_{\mu,\kappa}(X) \sin(\theta) \, d\theta \, d\phi$$

$$= C(\kappa) 2\pi \int_{\theta=0}^{\theta_{\alpha}} exp(\kappa \cos(\theta)) \sin(\theta) \, d\theta$$

$$= \frac{exp(\kappa) - exp(\kappa \cos(\theta_{\alpha}))}{exp(\kappa) - exp(-\kappa)}$$
(2)

After a few simplifications, we obtain:

$$\theta_{\alpha} = \arccos\left[1 + \frac{\log[1 - \alpha + \alpha \exp(-2\kappa)]}{\kappa}\right]$$
 (3)