A model with perfect competition where AI decreases GDP

Casey O. Barkan

I previously made a model of a non-competitive economy where AI decreases GDP (available here), and at the time I thought that the lack of competition was the essential ingredient to get this effect. It turns out this is not the case: AI can cause GDP to drop in a competitive economy (assuming there are no mistakes in my calculation). If you find a mistake, please contact me at casey.oday.barkan@gmail.com.

Model

1. **Production:** There are two available technologies, the *old* technology and the *automation* technology, and their production functions are $f_{\rm old}(K,L)=A_{\rm old}K^{\alpha}L^{1-\alpha}$ and $f_{\rm auto}(K)=A_{\rm auto}K$. We will assume $A_{\rm auto}$ is zero initially and increases as AI technology improves, and we will compute the equilibrium as a function of $A_{\rm auto}$ without modeling the dynamics of how $A_{\rm auto}$ increases in time. The total production function is determined by allocating capital between the two technologies so as to maximize output for the given inputs:

$$F(K,L) = \max_{0 \le K_{\text{old}} \le K} \{ f_{\text{old}}(K_{\text{old}}, L) + f_{\text{auto}}(K - K_{\text{old}}) \}$$
 (1)

- 2. Capital supply: Fixed value of K.
- 3. Labor supply: $L^s(W)$, with a "reservation wage" W_{\min} (this is a wage below which people do not supply labor, perhaps because they don't have enough income to survive). $L^s(W) = 0$ when $W < W_{\min}$.
- 4. Competitive markets: Factor inputs are paid their marginal products, i.e. $W = F_L(K, L)$ and $R = F_K(K, L)$. Because F(K, L) is constant returns to scale, this condition on W and R ensures firms' profits are zero, as is the case in competitive equilibrium.

Specifying parameters

To simplify things so that the equilibrium can be calculated by hand, let's make the following choices:

- $A_{\rm old} = 1$
- K = 1
- $\alpha = \frac{1}{2}$
- $L^s(W)=1-\frac{1}{W}$ (this means that $W_{\min}=1$). Written differently, $W=\frac{1}{1-L^s}$. This can be derived by maximizing the utility function u(C,L)=(2+C)(2-L), where C=WL is consumption (note that this assumes laborers do not own capital, so their income is only from labor).

Computing the general equilibrium

Start by solving the maximization problem in Equation 1 to find the production function. We want to find the $K_{\rm old}$ that maximizes $\sqrt{K_{\rm old}L} + A_{\rm auto}(1-K_{\rm old})$. The solution is:

$$K_{\rm old} = \begin{cases} \frac{L}{4A_{\rm auto}^2} & \text{if } \frac{L}{4A_{\rm auto}^2} < 1\\ 1 & \text{if } \frac{L}{4A_{\rm auto}^2} \ge 1 \end{cases}$$
 (2)

The reason for the two cases is that $0 \le K_{\rm old} \le 1$. So when $A_{\rm auto}$ is small, $K_{\rm old} = 1$ and the automation technology (AI) isn't used at all. Only when $A_{\rm auto}$ surpasses a threshold will AI begin to be utilized for automated production. Let's call this threshold A_1 , and it satisfies $\frac{L}{4A_1^2} = 1$. We will compute it's numerical value a bit later. Note that there will be another threshold where the marginal product of labor drops below $W_{\rm min}$, in which case L=0 and $K_{\rm old}=0$. Call this second threshold A_2 , and we will compute it's numerical value later as well. Above A_2 , all production is done with AI.

Computing the equilibrium in the different ranges of $A_{
m auto}$:

- $A_{
 m auto} < A_1$: $F(K,L) = \sqrt{L}$, so $W = \frac{1}{2\sqrt{L}}$. The labor market clearing condition requires $W = \frac{1}{1-L}$, so L must satisfy $2\sqrt{L} = 1 L$. The solution to this is $L = 3 2\sqrt{2} \approx 0.17$. Hence, $W = \frac{1}{1-L} = \frac{1}{2\sqrt{2}-2} \approx 1.2$, and therefore $F = \sqrt{L} = \sqrt{3-2\sqrt{2}} \approx 0.4$. Now we can compute the threshold $A_1 = \frac{\sqrt{L}}{2} = \sqrt{\frac{3}{4} \frac{\sqrt{2}}{2}} \approx 0.2$. Note that all these quantities are independent of $A_{
 m auto}$ because AI is not utilized in this regime.
- $A_1 \leq A_{\mathrm{auto}} < A_2$: $K_{\mathrm{old}} = \frac{L}{4A_{\mathrm{auto}}^2} < 1, \quad \text{so} \quad F(K,L) = \sqrt{K_{\mathrm{old}}L} + A_{\mathrm{auto}}(1-K_{\mathrm{old}}) = \frac{L}{4A_{\mathrm{auto}}} + A_{\mathrm{auto}}. \quad \text{Wage} \quad W = F_L(K,L) = \frac{1}{4A_{\mathrm{auto}}}. \quad \text{From labor supply, } L = 1 \frac{1}{W} = 1 4A_{\mathrm{auto}}, \quad \text{and therefore } F = \frac{1}{4A_{\mathrm{auto}}} 1 + A_{\mathrm{auto}}.$

We can now compute A_2 , which is the value of $A_{\rm auto}$ at which $W=W_{\rm min}$ and L=0. $W_{\rm min}=1$, so $1=\frac{1}{4A_2}$, therefore $A_2=\frac{1}{4}$.

•
$$m{A}_{
m auto} \geq m{A}_{m{2}}$$
: Now $L=0$ and $K_{
m old}=0$, so $F=A_{
m auto}$.

Plotting the equilibrium as a function of $A_{ m auto}$

Here is output F, capital & labor share, and firm's profits, plotted as a function of A_{auto} . The output of the economy is decreasing for $A_1 < A_{\text{auto}} < A_2$. Note that this plot requires computing R, which is done below.

Computing rent R

•
$$A_{
m auto} < A_1$$
:
$$F = \sqrt{KL}, \, {
m so} \,\, R = F_K(K,L) = {\textstyle \frac{1}{2}} \sqrt{\frac{L}{K}}. \,\, K = 1, \, {
m so} \,\, R = {\textstyle \frac{\sqrt{L}}{2}}.$$

• $A_1 \leq A_{\mathrm{auto}} < A_2$:

In this intermediate regime, capital is utilized for both technologies, so its marginal product for the two technologies must be equal. It's marginal product for the automation technology is $A_{
m auto}$, so $R=A_{\rm auto}.$

• $A_{\mathrm{auto}} \geq A_2$:

$$F = A_{\text{auto}} K$$
, so $R = A_{\text{auto}}$.