## **PCT**

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



#### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| (51) | International Patent Classification 6:                                                                                                                                                            | A2              | (11      | ) International Publication Number:                                                    | WO 98/33893               |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|----------------------------------------------------------------------------------------|---------------------------|
|      | C12N 9/00                                                                                                                                                                                         | AZ              | (43      | ) International Publication Date:                                                      | 6 August 1998 (06.08.98)  |
| ` '  | International Application Number: PCT/US  International Filing Date: 14 January 1998 (                                                                                                            |                 | - 1      | (81) Designated States: AU, CA, JP, M<br>BE, CH, DE, DK, ES, FI, FR, C<br>NL, PT, SE). |                           |
| (30) | Priority Data: 60/036,476 08/985,162 31 January 1997 (31.01.97) 4 December 1997 (04.12.97)                                                                                                        |                 | JS<br>JS | Published  Without international search report  upon receipt of that report.           | ort and to be republished |
| (71) | Applicants: RIBOZYME PHARMACEUTICAL [US/US]; 2950 Wildemess Place, Boulder, CO 80: ASTON UNIVERSITY [GB/GB]; Birmingham (GB).                                                                     | 301 (U          | S).      |                                                                                        |                           |
| (72) | Inventors: AKHTAR, Saghir, 52 Washwood Hea<br>Birmingham B8 1RB (GB). FELL, Patricia;<br>Oaks Road, Wythall, Birmingham B47 6HG (G<br>SWIGGEN, James, A.; 4866 Franklin Drive, Bot<br>80301 (US). | 41 Thi<br>B). M | ee<br>C- |                                                                                        |                           |
| (74) | Agents: SILVERSTEIN, Gary, H. et al.; Lyon LLP, Suite 4700, 633 West Fifth Street, Los Ang 90071-2066 (US).                                                                                       |                 |          |                                                                                        |                           |
|      |                                                                                                                                                                                                   |                 |          |                                                                                        |                           |

(54) Title: ENZYMATIC NUCLEIC ACID TREATMENT OF DISEASES OR CONDITIONS RELATED TO LEVELS OF EPIDERMAL GROWTH FACTOR RECEPTORS



(57) Abstract

Enzymatic nucleic acid molecules which cleave EGFR RNA.

#### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| \L  | Albania                  | ES | Spain               | LS | Lesotho               | SI | Stovenia                 |
|-----|--------------------------|----|---------------------|----|-----------------------|----|--------------------------|
| AM  | Armenia                  | FI | Finland             | LT | Lithuania             | SK | Slovakia                 |
| AТ  | Austria                  | FR | France              | LU | Luxembourg            | SN | Senegal                  |
| AU  | Australia                | GA | Gabon               | LV | Latvia                | SZ | Swaziland                |
| AZ  | Azerbaijan               | GB | United Kingdom      | MC | Monaco                | TD | Chad                     |
| BA. | Bosnia and Herzegovina   | GE | Georgia             | MD | Republic of Moldova   | TG | Togo                     |
| BB  | Barbados                 | GH | Ghana               | MG | Madagascar            | TJ | Tajikistan               |
| BE  | Belgium                  | GN | Guinea              | MK | The former Yugoslav   | TM | Turkmenistan             |
| BF  | Burkina Faso             | GR | Greece              |    | Republic of Macedonia | TR | Turkey                   |
| BG  | Bulgaria                 | HU | Hungary             | ML | Mali                  | TT | Trinidad and Tobago      |
| BJ  | Benin                    | Œ  | Ireland             | MN | Mongolia              | UA | Ukraine                  |
| BR  | Brazil                   | IL | Israel              | MR | Mauritania            | UG | Uganda                   |
| BY  | Belarus                  | IS | Iceland             | MW | Malawi                | US | United States of America |
| CA  | Canada                   | IT | Italy               | MX | Mexico                | UZ | Uzbekistan               |
| CF  | Central African Republic | JP | Japan               | NE | Niger                 | VN | Viet Nam                 |
| CG  | Congo                    | KE | Kenya               | NL | Netherlands           | YU | Yugoslavia               |
| CH  | Switzerland              | KG | Kyrgyzstan          | NO | Norway                | zw | Zimbabwe                 |
| CI  | Côte d'Ivoire            | KP | Democratic People's | NZ | New Zealand           |    |                          |
| CM  | Cameroon                 |    | Republic of Korea   | PL | Poland                |    |                          |
| CN  | China                    | KR | Republic of Korea   | PT | Portugal              |    |                          |
| CU  | Cuba                     | KZ | Kazakstan           | RO | Romania               |    |                          |
| CZ. | Czech Republic           | LC | Saint Lucia         | RU | Russian Federation    |    |                          |
| DE  | Germany                  | LI | Liechtenstein       | SD | Sudan                 |    |                          |
| DK  | Denmark                  | LK | Sri Lanka           | SE | Sweden                |    |                          |
| EE  | Estonia                  | LR | Liberia             | SG | Singapore             |    |                          |

#### DESCRIPTION

# Enzymatic Nucleic Acid Treatment Of Diseases Or Conditions Related To Levels Of Epidermal Growth Factor Receptors

#### 5 Background Of The Invention

The present invention concerns therapeutic compositions and methods for the treatment of cancer.

The present invention relates to therapeutic compositions and methods for the treatment or diagnosis of diseases or conditions related to EGFR expression levels, such as cancer. The following summary is not meant to be complete and is provided only for understanding of the invention that follows. This summary is not an admission that any of the work described below is prior art to the claimed invention.

The epidermal growth factor receptor (EGFR) is a 170 kDa transmembrane glycoprotein consisting of an extracellular 'ligand' binding domain, a transmembrane region and an intracellular domain with tyrosine kinase activity (Kung et al., 1994). The binding of growth factors to the EGFR results in down regulation of the ligand-receptor complex, autophosphorylation of the receptor and other protein substrates, leading ultimately to DNA synthesis and cell division. The external ligand binding domain is stimulated by EGF and also by TGFa, amphiregulin and some viral growth factors (Modjtahedi & Dean, 1994).

The EGFR gene (<u>c-erbB1</u>), is located on chromosome 7, and is homologous to the avian erythroblastosis virus oncogene (<u>v-erbB</u>), which induces malignancies in chickens. The <u>v-erbB</u> gene codes for a truncated product that lacks the extracellular ligand binding domain. The tyrosine

kinase domain of the EGFR has been found to have 97% homology to the v-erbB transforming protein (Downward et al., 1984).

EGFR is overexpressed in a number of malignant human tissues when compared to their normal tissue counterparts (for review see Khazaie  $\underline{\text{et}}$   $\underline{\text{al.}}$ , 1993). The gene for the receptor is both amplified and overexpressed in a number of cancer cells. Overexpression of the EGFR is often accompanied by the co-expression of the growth factors EGF 10 and  $TGF\alpha$ , suggesting that an autocrine pathway for control of growth may play a major part in the progression of tumors (Sporn & Roberts, 1985).

Growth factors and their receptors may play a role in the development of human brain tumors. A high incidence of overexpression, amplification, deletion and structural rearrangement of the gene coding for the EGFR has been found in biopsies of brain tumors (Ostrowski et al., 1994). In fact the amplification of the EGFR gene in glioblastoma multiform tumors is one of the most 20 consistent genetic alterations known, with the EGFR being overexpressed in approximately 40% of malignant gliomas (Black, 1991). It has also been demonstrated that in 50% of glioblastomas, amplification of the EGFR gene is accompanied by the co-expression of mRNA for at least one 25 or both of the growth factors EGF and TNFα (Ekstrand et al., 1991).

The amplified genes are frequently rearranged and associated with polymorphism leading to abnormal protein products (Wong et al., 1994). The rearrangements that have 30 been characterized usually show deletions of part of the extracellular domain, resulting in the production of an EGFR protein that is smaller in size. Three classes of deletion mutant EGF receptor genes have been identified in glioblastoma tumors. Type I mutants lack the majority of the external domain, including the ligand binding site, type II mutants have a deletion in the domain adjacent to the membrane but can still bind ligands and type III, which is the most common and found in 17% of glioblastomas, have a deletion of 267 amino acids spanning domains I and II of the EGFR.

In addition glioblastomas, to abnormal expression has also been reported in a number of squamous 10 epidermoid cancers and breast cancers (reviewed in Kung et al, 1994; Modjtahedi & Dean, 1994). Many patients with tumors that overexpress the EGFR have a poorer prognosis those who do not (Khazaie et al., Consequently, therapeutic strategies which can potentially 15 inhibit or reduce the aberrant expression of the EGFR receptor are of great interest as potential anti-cancer agents.

#### Summary Of The Invention

This invention relates to ribozymes, or enzymatic

nucleic acid molecules, directed to cleave RNA species
that are required for cellular growth responses. In
particular, applicant describes the selection and function
of ribozymes capable of cleaving RNA encoded by the
receptor of epidermal growth factor (EGFR). Such

ribozymes may be used to inhibit the hyper-proliferation
of tumor cells in one or more cancers.

In the present invention, ribozymes that cleave <u>EGFR</u>
RNA are described. Those of ordinary skill in the art
will understand that from the examples described that
other ribozymes that cleave target RNAs required for cell
proliferation may be readily designed and are within the
invention. Such RNAs may have at least 90% homology to
EGFR in humans with a normal EGFR gene.

By "inhibit" is meant that the activity of <u>EGFR</u> or level of RNAs encoded by <u>EGFR</u> is reduced below that observed in the absence of the nucleic acid, particularly, inhibition with ribozymes preferably is below that level observed in the presence of an inactive RNA molecule able to bind to the same site on the mRNA, but unable to cleave that RNA.

By "enzymatic nucleic acid molecule" it is meant a nucleic acid molecule which has complementarity in a 10 substrate binding region to a specified gene target, and also has an enzymatic activity which is active to specifically cleave RNA in that target. That is, the molecule enzymatic nucleic acid is able intermolecularly cleave RNA and thereby inactivate a 15 target RNA molecule. This complementarity functions to allow sufficient hybridization of the enzymatic nucleic acid molecule to the target RNA to allow the cleavage to occur. One hundred percent complementarity is preferred, but complementarity as low as 50-75% may also be useful in 20 this invention.

The term enzymatic nucleic acid is used interchangeably with phrases such as ribozymes, catalytic RNA, enzymatic RNA, catalytic DNA, nucleozyme, DNAzyme, RNA enzyme, endoribonuclease, minizyme, leadzyme, oligozyme or DNA enzyme, as used in the art. All of these terminologies describe nucleic acid molecules with enzymatic activity.

By "equivalent" RNA to <u>EGFR</u> is meant to include those naturally occurring RNA molecules associated with cancer in various animals, including human.

By "complementarity" is meant a nucleic acid that can form hydrogen bond(s) with another RNA sequence by either traditional Watson-Crick or other non-traditional types (for example, Hoogsteen type) of base-paired interactions.

Seven basic varieties of naturally-occurring enzymatic RNAs are known presently. Each can catalyze the hydrolysis of RNA phosphodiester bonds in trans (and thus can cleave other RNA molecules) under physiological conditions. Table Ι summarizes some characteristics of these ribozymes. In general, enzymatic nucleic acids act by first binding to a target RNA. binding occurs through the target binding portion of an enzymatic nucleic acid which is held in close proximity to 10 an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets.

The enzymatic nature of a ribozyme is advantageous over other technologies, since the concentration of ribozyme necessary to affect a therapeutic treatment is lower. This advantage reflects the ability of the ribozyme to act enzymatically. Thus, a single ribozyme molecule is able to cleave many molecules of target RNA. In addition, the ribozyme is a highly specific inhibitor, with the specificity of inhibition depending not only on the base-pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage can be chosen to completely eliminate catalytic activity of a ribozyme.

Nucleic acid molecules having an endonuclease enzymatic activity are able to repeatedly cleave other

separate RNA molecules in a nucleotide base sequencespecific manner. Such enzymatic RNA molecules can be
targeted to virtually any RNA transcript, and efficient
cleavage achieved in vitro (Zaug et al., 324, Nature 429

1986; Uhlenbeck, 1987 Nature 328, 596; Kim et al., 84
Proc. Natl. Acad. Sci. USA 8788, 1987; Dreyfus, 1988,
Einstein Quart. J. Bio. Med., 6, 92; Haseloff and Gerlach,
334 Nature 585, 1988; Cech, 260 JAMA 3030, 1988; and
Jefferies et al., 17 Nucleic Acids Research 1371, 1989).

10

Because of their sequence-specificity, <a href="trans-cleaving">trans-cleaving</a> ribozymes show promise as therapeutic agents for human disease (Usman & McSwiggen, 1995 Ann. Rep. Med. Chem. 30, 285-294; Christoffersen and Marr, 1995 J. Med. Chem. 38, 2023-2037). Ribozymes can be designed to cleave specific RNA targets within the background of cellular RNA. Such a cleavage event renders the RNA non-functional and abrogates protein expression from that RNA. In this manner, synthesis of a protein associated with a disease state can be selectively inhibited.

Ribozymes that cleave the specified sites in <u>EGFR</u>
RNAs represent a novel therapeutic approach to treat diseases, such as cancer and other conditions. Applicant indicates that ribozymes are able to inhibit the activity of <u>EGFR</u> and that the catalytic activity of the ribozymes is required for their inhibitory effect. Those of ordinary skill in the art, will find that it is clear from the examples described that other ribozymes that cleave these sites in <u>EGFR</u> RNAs may be readily designed and are within the scope of this invention.

In one of the preferred embodiments of the inventions herein, the enzymatic nucleic acid molecule is formed in a hammerhead or hairpin motif, but may also be formed in

the motif of a hepatitis  $\delta$  virus, group I intron, group II intron or RNaseP RNA (in association with an RNA guide sequence) or Neurospora VS RNA. Examples of such hammerhead motifs are described by Dreyfus, supra, Rossi et al., 1992, AIDS Research and Human Retroviruses 8, 183; of hairpin motifs by Hampel et al., EP0360257, Hampel and Tritz, 1989 Biochemistry 28, 4929, Feldstein et al., 1989, Gene 82, 53, Haseloff and Gerlach, 1989, Gene, 82, 43, and Hampel et al., 1990 Nucleic Acids Res. 18, 299; of the 10 hepatitis  $\delta$  virus motif is described by Perrotta and Been, 1992 Biochemistry 31, 16; of the RNaseP motif by Guerrier-Takada et al., 1983 Cell 35, 849; Forster and Altman, 1990, Science 249, 783; Li and Altman, 1996, Nucleic Acids Res. 24, 835; Neurospora VS RNA ribozyme motif is 15 described by Collins (Saville and Collins, 1990 Cell 61, 685-696; Saville and Collins, 1991 Proc. Natl. Acad. Sci. USA 88, 8826-8830; Collins and Olive, 1993 Biochemistry 32, 2795-2799; Guo and Collins, 1995, EMBO. J. 14, 363); Group II introns are described by Griffin et al., 1995, 20 Chem. Biol. 2, 761; Michels and Pyle, 1995, Biochemistry 34, 2965; Pyle et al., International PCT Publication No. WO 96/22689; and of the Group I intron by Cech et al., U.S. Patent 4,987,071. These specific motifs are not limiting in the invention and those skilled in the art 25 will recognize that all that is important in an enzymatic nucleic acid molecule (or multiple fragments of such molecules) of this invention is that it has a specific substrate binding site or arm(s) which is complementary to one or more of the target gene RNA regions, and that it 30 have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule (enzymatic portion).

By "enzymatic portion" is meant that part of the

ribozyme essential for cleavage of an RNA substrate.

By "substrate binding arm" is meant that portion of a ribozyme which is complementary to (i.e., able to basepair with) a portion of its substrate. Generally, such 5 complementarity is 100%, but can be less if desired. For example, as few as 10 bases out of 14 may be base-paired. Such arms are shown generally in Figures 1-3 as discussed That is, these arms contain sequences within a ribozyme which are intended to bring ribozyme and target together through complementary base-pairing interactions; e.g., ribozyme sequences within stems I and III of a standard hammerhead ribozyme make up the substrate-binding domain (see Figure 1).

In a preferred embodiment the invention provides a 15 method for producing a class of enzymatic cleaving agents which exhibit a high degree of specificity for the RNA of a desired target. The enzymatic nucleic acid molecule is preferably targeted to a highly conserved sequence region of a target mRNAs encoding EGFR proteins such that 20 specific treatment of a disease or condition can be provided with either one or several enzymatic nucleic Such enzymatic nucleic acid molecules can be delivered exogenously to specific cells as required. Alternatively, the ribozymes can be expressed

25 from DNA/RNA vectors that are delivered to specific cells.

nucleic acids Synthesis of greater than 100 nucleotides in length is difficult using automated methods, and the therapeutic cost of such molecules is 30 prohibitive. In this invention, small nucleic acid motifs (e.g., antisense oligonucleotides, hammerhead or hairpin ribozymes) are used for exogenous delivery. simple structure of these molecules increases the ability of the nucleic acid to invade targeted regions of the mRNA

structure. However, these nucleic acid molecules can also be expressed within cells from eukaryotic promoters (e.g., Izant and Weintraub, 1985 Science 229, 345; McGarry and Lindquist, 1986 Proc. Natl. Acad. Sci. USA 83, 399; 5 SullengerScanlon et al., 1991, Proc. Natl. Acad. Sci. USA, 88, 10591-5; Kashani-Sabet et al., 1992 Antisense Res. Dev., 2, 3-15; Dropulic et al., 1992 J. Virol, 66, 1432-Weerasinghe <u>et al.</u>, 1991 <u>J. Virol</u>, 65, 5531-4; Ojwang et al., 1992 Proc. Natl. Acad. Sci. USA 89, 10802-10 6; Chen et al., 1992 Nucleic Acids Res., 20, 4581-9; Sarver et al., 1990 Science 247, 1222-1225; Thompson et al., 1995 Nucleic Acids Res. 23, 2259). Those skilled in the art realize that any nucleic acid can be expressed in eukaryotic cells from the appropriate DNA/RNA vector. The 15 activity of such nucleic acids can be augmented by their release from the primary transcript by a ribozyme (Draper et al., PCT W093/23569, and Sullivan et al., WO94/02595, both hereby incorporated in their totality by reference herein; Ohkawa et al., 1992 Nucleic Acids Symp. 20 Ser., 27, 15-6; Taira et al., 1991, Nucleic Acids Res., 19, 5125-30; Ventura et al., 1993 Nucleic Acids Res., 21, 3249-55; Chowrira et al., 1994 J. Biol. Chem. 269, 25856).

Such ribozymes are useful for the prevention of the diseases and conditions discussed above, and any other diseases or conditions that are related to the levels of EGFR activity in a cell or tissue.

By "related" is meant that the inhibition of EGFR RNAs and thus reduction in the level respective protein activity will relieve to some extent the symptoms of the 30 disease or condition.

Ribozymes are added directly, or can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to target cells. The nucleic acid or nucleic acid complexes can be locally administered to

relevant tissues ex vivo, or in vivo through injection, infusion pump or sent, with or without their incorporation in biopolymers. In preferred embodiments, the ribozymes have binding arms which are complementary to the sequences in Tables III and IV. Examples of such ribozymes are also shown in Tables III and IV. Examples of such ribozymes consist essentially of sequences defined in these Tables.

By "consists essentially of" is meant that the active ribozyme contains an enzymatic center or core equivalent to those in the examples, and binding arms able to bind mRNA such that cleavage at the target site occurs. Other sequences may be present which do not interfere with such cleavage.

15 Thus, in a first aspect, the invention features ribozymes that inhibit gene expression and/or cell proliferation via cleavage of RNA expressed from the EGFR gene. These chemically or enzymatically synthesized RNA molecules contain substrate binding domains that bind to accessible regions of their target mRNAs. 20 The RNA molecules also contain domains that catalyze the cleavage of RNA. The RNA molecules are preferably ribozymes of the hammerhead or hairpin motif. Upon binding, the ribozymes cleave the target mRNAs, preventing translation and protein accumulation. In the absence of the expression of 25 the target gene, cell proliferation is inhibited.

In preferred embodiment, the enzymatic RNA molecules cleave **EGFR** mRNA and inhibit cell proliferation. Such ribozymes are useful for the 30 prevention and/or treatment of cancer. Ribozymes are added directly, or can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to smooth muscle cells. The RNA or RNA complexes can be locally administered to relevant tissues through the use

of a catheter, infusion pump or sent, with or without their incorporation in biopolymers. The ribozymes, similarly delivered, also are useful for inhibiting proliferation of certain cancers associated with elevated levels of the EGFR, particularly glioblastoma multiform. Using the methods described herein, other enzymatic RNA molecules that cleave EGFR and thereby inhibit tumor cell proliferation may be derived and used as described above. Specific examples are provided below in the Tables and figures.

In another aspect of the invention, ribozymes that cleave target molecules and inhibit EGFR activity are expressed from transcription units inserted into DNA or RNA vectors. The recombinant vectors are preferably DNA 15 plasmids or viral vectors. Ribozyme expressing viral vectors could be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, alphavirus. Preferably, the recombinant vectors capable of expressing the ribozymes are delivered as described above, 20 and persist in target cells. Alternatively, viral vectors may be used that provide for transient expression of ribozymes. Such vectors might be repeatedly administered as necessary. Once expressed, the ribozymes cleave the target mRNA. Delivery of ribozyme expressing vectors could 25 be systemic, such as by intravenous or intramuscular administration, by administration to target cells explanted from the patient followed by reintroduction into the patient, or by any other means that would allow for introduction into the desired target cell (for a review 30 see Couture and Stinchcomb, 1996, TIG., 12, 510).

By "patient" is meant an organism which is a donor or recipient of explanted cells or the cells themselves.

"Patient" also refers to an organism to which enzymatic nucleic acid molecules can be administered. Preferably,

a patient is a mammal or mammalian cells. More preferably, a patient is a human or human cells.

By "vectors" is meant any nucleic acid- and/or viralbased technique used to deliver a desired nucleic acid.

These ribozymes, individually, or in combination or in conjunction with other drugs, can be used to treat diseases or conditions discussed above. For example, to treat a disease or condition associated with EGFR levels, the patient may be treated, or other appropriate cells may 10 be treated, as is evident to those skilled in the art.

In a further embodiment, the described ribozymes can be used in combination with other known treatments to treat conditions or diseases discussed above. For example, the described ribozymes could be used in 15 combination with one or more known therapeutic agents to treat cancer.

In preferred embodiments, the ribozymes have binding arms which are complementary to the sequences in the III and IV (Seq ID NOs. 1-823 and 1759-1870.

20 Examples of such ribozymes are also shown in Tables III and IV (Seq. ID Nos. 824-1758). Other sequences may be present which do not interfere with such cleavage.

Other features and advantages of the invention will be apparent from the following description of preferred embodiments thereof, and from the claims.

### Description Of The Preferred Embodiments

The drawings will first briefly be described.

#### Drawings:

Figure 1 is a diagrammatic representation of the hammerhead ribozyme domain known in the art. Stem II can be  $\geq$  2 base-pair long.

Figure 2a is a diagrammatic representation of the

hammerhead ribozyme domain known in the art; Figure 2b is a diagrammatic representation of the hammerhead ribozyme as divided by Uhlenbeck (1987, Nature, 327, 596-600) into a substrate and enzyme portion; Figure 2c is a similar diagram showing the hammerhead divided by Haseloff and Gerlach (1988, Nature, 334, 585-591) into two portions; and Figure 2d is a similar diagram showing the hammerhead divided by Jeffries and Symons (1989, Nucl. Acids. Res., 17, 1371-1371) into two portions.

10 Figure 3 is a diagrammatic representation of the general structure of a hairpin ribozyme. Helix 2 (H2) is provided with a least 4 base pairs (i.e., n is 1, 2, 3 or 4) and helix 5 can be optionally provided of length 2 or more bases (preferably 3 - 20 bases, i.e., m is from 1 -20 or more). Helix 2 and helix 5 may be covalently linked 15 by one or more bases (i.e., r is  $\geq$  1 base). Helix 1, 4 or 5 may also be extended by 2 or more base pairs (e.g., 4 -20 base pairs) to stabilize the ribozyme structure, and preferably is a protein binding site. In each instance, 20 each N and N' independently is any normal or modified base each dash represents a potential base-pairing interaction. These nucleotides may be modified at the sugar, base or phosphate. Complete base-pairing is not required in the helices, but is preferred. Helix 1 and 4 25 can be of any size (i.e., o and p is each independently)from 0 to any number, e.g., 20) as long as some base-Essential bases are shown as pairing is maintained. specific bases in the structure, but those in the art will recognize that one or more may be modified chemically 30 (abasic, base, sugar and/or phosphate modifications) or replaced with another base without significant effect. Helix 4 can be formed from two separate molecules, i.e., without a connecting loop. The connecting loop when be a ribonucleotide with or without present may

modifications to its base, sugar or phosphate. "q" is ≥ 2 bases. The connecting loop can also be replaced with a non-nucleotide linker molecule. H refers to bases A, U, or C. Y refers to pyrimidine bases. "\_\_\_\_\_" refers to a covalent bond.

Figure 4 is a representation of the general structure of the hepatitis delta virus ribozyme domain known in the art.

Figure 5 is a representation of the general 10 structure of the self-cleaving VS RNA ribozyme domain.

Figure 6 shows in vitro RNA cleavage activity of Amino ribozymes targeted against EGFR Autoradiograph of the cleavage reaction. The reaction was performed in the presence of 50mM Tris.HCl (pH 7.5), 10mM  $15 \text{ MgCl}_2$  at  $37^{\circ}\text{C}$  as described below. Times of the reaction in minutes are given above the lanes. SO represents intact substrate in Tris. HCl buffer without the addition of ribozyme at time 0. S1 represents intact substrate in Tris. HCl buffer at time 60min. +C represents a positive 20 control of cleaved product only. Band S represents intact substrate, band P cleaved product and band D degradation; Time course of cleavage. Bands from autoradiography were quantified by scanning densitometry and the fraction substrate remaining plotted against time. inset. Semilog plots were used to determine the half life of the 25 substrate  $(t_{1/2} = 0.693 / k)$ ; c Autoradiograph showing reaction of the EGFR ribozyme against a non complementary substrate RNA. 40nM ribozyme was added to 1nM substrate in the presence of 50mM Tris.HCl (pH 7.5), 10mM MgCl<sub>2</sub> at 37°C. 30 Band S refers to intact substrate and band P is cleaved product. Reaction times are given in minutes (unless stated otherwise). C represents intact substrate without the addition of ribozyme. +C represents cleaved product.

Figure 7 Representative examples of autoradiographs depicting the time course of cleavage reactions exhibited by EGFR ribozyme against it's target substrate under multiple turnover reactions. a In vitro activity of 10nM 5 ribozyme with 300nM of 5' [32P] labeled substrate RNA; b In vitro activity of 10nM ribozyme with  $1\mu$ M of 5'[32P] labeled substrate RNA. Reactions were performed in the presence of 50mM Tris.HCl (pH 7.5), 10mM MgCl<sub>2</sub> at 37°C as described below. Reaction times, in minutes, are given 10 above the lanes. C represents intact substrate in Tris. HCl buffer without the addition of ribozyme. Band S refers to intact substrate and band P refers to cleaved product. c Kinetics of hammerhead cleavage reactions exhibited by the EGFR ribozyme. The initial rate of reaction (Vo,nM / min) 15 is plotted versus substrate concentration. Ribozyme concentration was 10nM while substrate concentration varied as indicated. inset Eadie-Hofstee plot of this data.

Figure 8 shows a generic structure of chemically 20 modified amino hammerhead ribozyme.

Figure 9 shows a generic structure of chemically modified C-allyl hammerhead ribozyme.

#### Target sites

Targets for useful ribozymes can be determined as disclosed in Draper et al., WO 93/23569; Sullivan et al., WO 93/23057; Thompson et al., WO 94/02595; Draper et al., WO 95/04818; McSwiggen et al., US Patent No. 5,525,468 and hereby incorporated by reference herein in totality. Rather than repeat the guidance provided in those documents here, below are provided specific examples of such methods, not limiting to those in the art. Ribozymes to such targets are designed as described in those

applications and synthesized to be tested <u>in vitro</u> and <u>in vivo</u>, as also described. Such ribozymes can also be optimized and delivered as described therein.

The sequence of human <u>EGFR</u> RNAs were screened for optimal ribozyme target sites using a computer folding algorithm. Hammerhead or hairpin ribozyme cleavage sites were identified. These sites are shown in Tables III and IV (All sequences are 5' to 3' in the tables) The nucleotide base position is noted in the Tables as that site to be cleaved by the designated type of ribozyme. The nucleotide base position is noted in the Tables as that site to be cleaved by the designated type of ribozyme.

Hammerhead or hairpin ribozymes were designed that could bind and were individually analyzed by computer folding (Jaeger et al., 1989 Proc. Natl. Acad. Sci. USA, 86, 7706) to assess whether the ribozyme sequences fold into the appropriate secondary structure. Those ribozymes with unfavorable intramolecular interactions between the binding arms and the catalytic core are eliminated from consideration. Varying binding arm lengths can be chosen to optimize activity. Generally, at least 5 bases on each arm are able to bind to, or otherwise interact with, the target RNA.

Ribozymes of the hammerhead or hairpin motif were designed to anneal to various sites in the mRNA message. The binding arms are complementary to the target site sequences described above. The ribozymes were chemically synthesized. The method of synthesis used follows the procedure for normal RNA synthesis as described in Usman et al., 1987 J. Am. Chem. Soc., 109, 7845; Scaringe et al., 1990 Nucleic Acids Res., 18, 5433; and Wincott et al., 1995 Nucleic Acids Res. 23, 2677-2684 and makes use of common nucleic acid protecting and coupling groups,

such dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end. Small scale synthesis were conducted on a 394 Applied Biosystems, synthesizer using a modified 2.5  $\mu$ mol scale protocol with 5 a 5 min coupling step for alkylsilyl protected nucleotides and 2.5 min coupling step for 2'-Q-methylated nucleotides. Table II outlines the amounts, and the contact times, of the reagents used in the synthesis cycle. excess (163  $\mu L$  of 0.1 M = 16.3  $\mu mol$ ) of phosphoramidite and a 24-fold excess of S-ethyl tetrazole (238  $\mu$ L of 0.25 M = 59.5  $\mu$ mol) relative to polymer-bound 5'-hydroxyl was used in each coupling cycle. Average coupling yields on the 394 Applied Biosystems, Inc. synthesizer, determined by colorimetric quantitation of the trityl fractions, were 15 97.5-99%. Other oligonucleotide synthesis reagents for the 394 Applied Biosystems, Inc. synthesizer: detritylation solution was 2% TCA in methylene chloride (ABI); capping was performed with 16% N-methyl imidazole in THF (ABI) and 10% acetic anhydride/10% 2,6-lutidine in THF (ABI); 20 oxidation solution was 16.9 mM I<sub>2</sub>, 49 mM pyridine, 9% water in THF (Millipore). B & J Synthesis Grade acetonitrile was used directly from the reagent bottle. S-Ethyl tetrazole solution (0.25 M in acetonitrile) was made up from the solid obtained from American International 25 Chemical, Inc.

Deprotection of the RNA was performed as follows. The polymer-bound oligoribonucleotide, trityl-off, transferred from the synthesis column to a 4mL glass screw top vial and suspended in a solution of methylamine (MA) 30 at 65 °C for 10 min. After cooling to -20 °C, supernatant was removed from the polymer support. The was washed three times with 1.0  $EtOH:MeCN:H_2O/3:1:1$ , vortexed and the supernatant was then WO 98/33893

20

added to the first supernatant. The combined supernatants, containing the oligoribonucleotide, were dried to a white powder.

The base-deprotected oligoribonucleotide was resuspended in anhydrous TEA·HF/NMP solution (250  $\mu$ L of a solution of 1.5mL N-methylpyrrolidinone, 750  $\mu$ L TEA and 1.0 mL TEA·3HF to provide a 1.4M HF concentration) and heated to 65°C for 1.5 h. The resulting, fully deprotected, oligomer was quenched with 50 mM TEAB (9 mL) prior to anion exchange desalting.

For anion exchange desalting of the deprotected oligomer, the TEAB solution was loaded onto a Qiagen 500® anion exchange cartridge (Qiagen Inc.) that was prewashed with 50 mM TEAB (10 mL). After washing the loaded cartridge with 50 mM TEAB (10 mL), the RNA was eluted with 2 M TEAB (10 mL) and dried down to a white powder.

Inactive hammerhead ribozymes were synthesized by substituting a U for  $G_5$  and a U for  $A_{14}$  (numbering from Hertel, K. J., et al., 1992, Nucleic Acids Res., 20, 3252).

The average stepwise coupling yields were >98% (Wincott et al., 1995 Nucleic Acids Res. 23, 2677-2684).

Hairpin ribozymes are synthesized in two parts and annealed to reconstruct the active ribozyme (Chowrira and Burke, 1992 <u>Nucleic Acids Res.</u>, 20, 2835-2840). Ribozymes are also synthesized from DNA templates using bacteriophage T7 RNA polymerase (Milligan and Uhlenbeck, 1989, Methods Enzymol. 180, 51).

Ribozymes are modified to enhance stability and/or enhance catalytic activity by modification with nuclease resistant groups, for example, 2'-amino, 2'-C-allyl, 2'-flouro, 2'-O-methyl, 2'-H, nucleotide base modifications (for a review see Usman and Cedergren, 1992 TIBS 17, 34;

Usman et al., 1994 Nucleic Acids Symp. Ser. 31, 163; Burgin et al., 1996 Biochemistry 6, 14090). Ribozymes are purified by gel electrophoresis using general methods or are purified by high pressure liquid chromatography (HPLC; See Wincott et al., supra) the totality of which is hereby incorporated herein by reference) and are resuspended in water.

The sequences of the ribozymes that are chemically synthesized, useful in this study, are shown in Tables 10 III-IV. Those in the art will recognize that these sequences are representative only of many more such sequences where the enzymatic portion of the ribozyme (all but the binding arms) is altered to affect activity. example, stem-loop II sequence of hammerhead ribozymes can 15 be altered (substitution, deletion, and/or insertion) to contain any sequences provided a minimum of two basepaired stem structure can form. Similarly, stem-loop IV sequence of hairpin ribozymes listed in Tables IV (5'-CACGUUGUG-3') can be altered (substitution, deletion, 20 and/or insertion) to contain any sequence, provided a minimum of two base-paired stem structure can form. Preferably, no more than 200 bases are inserted at these The sequences listed in Tables III and IV may be formed of ribonucleotides or other nucleotides or non-25 nucleotides. Such ribozymes (which have enzymatic activity) are equivalent to the ribozymes described specifically in the Tables.

#### Optimizing Ribozyme Activity

Ribozyme activity can be optimized as described by 30 Draper et al., supra. The details will not be repeated here, but include altering the length of the ribozyme binding arms (stems I and III, see Figure 2c), or chemically synthesizing ribozymes with modifications

(base, sugar and/or phosphate) that prevent their degradation by serum ribonucleases and/or enhance their enzymatic activity (see <a href="e.g.">e.g.</a>, Eckstein et International Publication No. WO 92/07065; Perrault et 5 <u>al.</u>, 1990 <u>Nature</u> 344, 565; Pieken et al., 1991 Science 253, 314; Usman and Cedergren, 1992 Trends in Biochem. Sci. 17, 334; Usman et al., International Publication No. WO 93/15187; and Rossi et al., International Publication No. WO 91/03162; Sproat, US Patent No. 5,334,711; and 10 Burgin et al., supra; all of these describe various chemical modifications that can be made to the base, phosphate and/or sugar moieties of enzymatic molecules). Modifications which enhance their efficacy in cells, and removal of stem II bases to shorten RNA 15 synthesis times and reduce chemical requirements are desired. (All these publications are hereby incorporated by reference herein.).

By "enhanced enzymatic activity" is meant to include activity measured in cells and/or <u>in vivo</u> where the activity is a reflection of both catalytic activity and ribozyme stability. In this invention, the product of these properties in increased or not significantly (less that 10 fold) decreased <u>in vivo</u> compared to an all RNA ribozyme.

25 The enzymatic nucleic acid having chemical modifications which maintain or enhance enzymatic activity is provided. Such nucleic acid is also generally more resistant to nucleuses than unmodified nucleic acid. "modified bases" in this aspect is meant nucleotide bases 30 other than adenine, guanine, cytosine and uracil at 1' position or their equivalents; such bases may be used within the catalytic core of the enzyme as well as in the substrate-binding regions. In particular, the invention features modified ribozymes having a base substitution

selected from pyridin-4-one, pyridin-2-one, pseudouracil, 2, 4, 6-trimethoxy benzene, 3-methyluracil, dihydrouracil, naphthyl, 6-methyl-uracil and aminophenyl. As noted above, substitution in the core may decrease in 5 vitro activity but enhances stability. Thus, in a cell and/or in vivo the activity may not be significantly lowered. As exemplified herein such ribozymes are useful in a cell and/or in vivo even if activity over all is reduced 10 fold. Such ribozymes herein are said to "maintain" the enzymatic activity on all RNA ribozyme.

Sullivan, et al., supra, describes the general for delivery of enzymatic RNA molecules. methods Ribozymes may be administered to cells by a variety of methods known to those familiar to the art, including, but 15 restricted to, encapsulation in liposomes, iontophoresis, or by incorporation into other vehicles, hydrogels, as cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres. For some indications, ribozymes may be directly delivered ex vivo 20 to cells or tissues with or without the aforementioned vehicles. Alternatively, the RNA/vehicle combination is locally delivered by direct injection or by use of a catheter, infusion pump or sent. Other routes of delivery include. but are not limited to, intravascular, 25 intramuscular, subcutaneous or joint injection, aerosol inhalation, oral (tablet or pill form), topical, systemic, ocular, intraperitoneal and/or intrathecal delivery. detailed descriptions of ribozyme delivery administration are provided in Sullivan et al., supra and 30 Draper et al., supra which have been incorporated by reference herein.

Another means of accumulating high concentrations of a ribozyme(s) within cells is to incorporate the ribozymeencoding sequences into a DNA or RNA expression vector.

Transcription of the ribozyme sequences are driven from a promoter for eukaryotic RNA polymerase I (pol I), RNA polymerase II (pol II), or RNA polymerase III (pol III). Transcripts from pol II or pol III promoters will be expressed at high levels in all cells; the levels of a given pol II promoter in a given cell type will depend on the nature of the gene regulatory sequences (enhancers, silencers, etc.) present nearby. Prokaryotic polymerase promoters are also used, providing that the prokaryotic RNA polymerase enzyme is expressed in the appropriate cells (Elroy-Stein and Moss, 1990 Proc. Natl. Acad. Sci. USA, 87, 6743-7; Gao and Huang 1993 Nucleic Acids Res., 21, 2867-72; Lieber et al., 1993 Methods Enzymol., 217, 47-66; Zhou et al., 1990 Mol. Cell. Biol., 15 10, 4529-37). Several investigators have demonstrated that ribozymes expressed from such promoters can function in mammalian cells (e.g. Kashani-Sabet et al., Antisense Res. Dev., 2, 3-15; Ojwang et al., 1992 Proc. Natl. Acad. Sci. USA, 89, 10802-6; Chen et al., 1992 20 Nucleic Acids Res., 20, 4581-9; Yu et al., 1993 Proc. Natl. Acad. Sci. U.S.A., 90, 6340-4; L'Huillier et al., 1992 EMBO J. 11, 4411-8; Lisziewicz et al., 1993 Proc. Natl. Acad. Sci. U.S.A., 90, 8000-4; Thompson et al., 1995 Nucleic Acids Res. 23, 2259; Sullenger & Cech, 1993, 25 Science, 262, 1566). The above ribozyme transcription units can be incorporated into a variety of vectors for introduction into mammalian cells, including but not restricted to, plasmid DNA vectors, viral DNA vectors (such as adenovirus or adeno-associated virus vectors), or 30 viral RNA vectors (such as retroviral or alphavirus vectors) (for a review see Couture and Stinchcomb, 1996, supra).

In a preferred embodiment of the invention, a transcription unit expressing a ribozyme that cleaves

WO 98/33893 PCT/US98/00730

mRNAs encoded by EGFR is inserted into a plasmid DNA vector or an adenovirus or adeno-associated virus DNA viral vector or a retroviral RNA vector. Viral vectors have been used to transfer genes and lead to either 5 transient or long term gene expression (Zabner et al., 1993 Cell 75, 207; Carter, 1992 Curr. Opi. Biotech. 3, The adenovirus vector is delivered as recombinant adenoviral particles. The DNA may be delivered alone or complexed with vehicles (as described for RNA above). 10 recombinant adenovirus or AAV particles are locally administered to the site of treatment, e.g., incubation or inhalation in vivo or by direct application to cells or tissues ex vivo. Retroviral vectors have also been used to express ribozymes in mammalian cells (Ojwang 15 et al., 1992 supra; Thompson et al., 1995 supra; Couture and Stinchcomb, 1996, supra).

In another preferred embodiment, the ribozyme is administered to the site of <u>EGFR</u> expression (e.g., tumor cells) in an appropriate liposomal vesicle.

#### 20 Examples

## Example 1: Identification of Potential Ribozyme Cleavage Sites in Human EGFR RNA

The sequence of human EGFR RNA was screened for accessible sites using a computer folding algorithm.

25 Regions of the mRNA that did not form secondary folding structures and potential hammerhead and/or hairpin ribozyme cleavage sites were identified. The sequences of these cleavage sites are shown in tables III and IV.

# Example 2: Selection of Ribozyme Cleavage Sites in Human D EGFR RNA

To test whether the sites predicted by the computer-

based RNA folding algorithm corresponded to accessible sites in EGFR RNA, 20 hammerhead sites were selected for analysis. Ribozyme target sites were chosen by analyzing genomic sequences of human EGFR (GenBank Accession No. 5 X00588) and prioritizing the sites on the basis of Hammerhead ribozymes were designed that could bind each target (see Figure 2C) and were individually analyzed by computer folding (Christoffersen et al., 1994 J. Mol. Struc. Theochem, 311, 273; Jaeger et al., 1989, 10 Proc. Natl. Acad. Sci. USA, 86, 7706) to assess whether the ribozyme sequences fold into the appropriate secondary structure. Those ribozymes with unfavorable intramolecular interactions between the binding arms and the catalytic core were eliminated from consideration. As 15 noted below, varying binding arm lengths can be chosen to optimize activity. Generally, at least 5 bases on each arm are able to bind to, or otherwise interact with, the target RNA.

# Example 3: Chemical Synthesis and Purification of Ribozymes for Efficient Cleavage of EGFR RNA

Ribozymes of the hammerhead or hairpin motif were designed to anneal to various sites in the RNA message. The binding arms are complementary to the target site sequences described above. The ribozymes were chemically synthesized. The method of synthesis used followed the procedure for normal RNA synthesis as described in Usman et al., (1987 J. Am. Chem. Soc., 109, 7845), Scaringe et al., (1990 Nucleic Acids Res., 18, 5433) and Wincott et al., supra, and made use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end. The average stepwise coupling yields were >98%. Inactive ribozymes were synthesized by substituting a U for G5 and a U for A14

(numbering from Hertel et al., 1992 Nucleic Acids Res., 20, 3252). Hairpin ribozymes were synthesized in two parts and annealed to reconstruct the active ribozyme (Chowrira and Burke, 1992 Nucleic Acids Res., 20, 2835-5 2840). Ribozymes were also synthesized from DNA templates using bacteriophage T7 RNA polymerase (Milligan and Uhlenbeck, 1989, Methods Enzymol. 180, 51). All ribozymes were modified to enhance stability by modification with nuclease resistant groups, for example, 2'-amino, 2'-C-10 allyl, 2'-flouro, 2'-O-methyl, 2'-H (for a review see Usman and Cedergren, 1992  $\underline{\text{TIBS}}$  17, 34). Ribozymes were purified by gel electrophoresis using general methods or were purified by high pressure liquid chromatography (HPLC; See Wincott et al., supra; the totality of which is 15 hereby incorporated herein by reference) and were resuspended in water. The sequences of the chemically synthesized ribozymes used in this study are shown below in Table III and IV.

### Example 4: Ribozyme Cleavage of EGFR RNA Target

Twenty hammerhead-type ribozymes targeted to the human EGFR RNA were designed and synthesized to test the cleavage activity in vitro. The target sequences and the nucleotide location within the EGFR mRNA are given in Table III. All hammerhead ribozymes were synthesized with binding arm (Stems I and III; see Figure 2C) lengths of seven nucleotides. The relative abilities of a HH ribozyme to cleave human EGFR RNA is summarized in Figure 6 and 7.

Full-length or partially full-length, internally30 labeled target RNA for ribozyme cleavage assay was prepared by in vitro transcription in the presence of [a32 P] CTP, passed over a G 50 Sephadex column by spin chromatography and used as substrate RNA without further

purification. Alternately, substrates were 5'-32P-end labeled using T4 polynucleotide kinase enzyme. were performed by pre-warming a 2X concentration of purified ribozyme in ribozyme cleavage buffer (50 mM Tris-5 HCl, pH 7.5 at 37°C, 10 mM MgCl<sub>2</sub>) and the cleavage reaction was initiated by adding the 2X ribozyme mix to an equal volume of substrate RNA (maximum of 1-5 nM) that was also pre-warmed in cleavage buffer. As an initial screen, assays were carried out for 1 hour at 37°C using a final 10 concentration of either 40 nM or 1 mM ribozyme, <u>i.e.</u>, ribozyme excess. The reaction was quenched by the addition of an equal volume of 95% formamide, 20 mM EDTA, 0.05% bromophenol blue and 0.05% xylene cyanol after which the sample was heated to 95°C for 2 minutes, quick chilled and loaded onto a denaturing polyacrylamide gel. 15 Substrate RNA and the specific RNA cleavage products generated by ribozyme cleavage were visualized on an autoradiograph of the gel. The percentage of cleavage was determined by Phosphor Imager® quantitation of bands 20 representing the intact substrate and the cleavage products.

Single Turnover Reaction: Alternately, Cleavage reactions were carried out in 50mM Tris.HCl, pH 7.5 and 10mM MgCl<sub>2</sub> at 37°C. In order to disrupt aggregates that can form during storage, unlabeled ribozyme and 5'end labeled substrate were denatured and renatured separately in standard cleavage buffer (50mM Tris.HCl, pH 7.5 ) by heating to 90°C for 2 minutes and allowed to equilibrate to the reaction temperature of 37°C for 15 minutes. Each RNA solution was then adjusted to a final concentration of 10mM MgCl<sub>2</sub> and incubated at 37°C for a further 15 minutes. Cleavage reactions were initiated by combining the ribozyme and the substrate samples to the required

concentrations in a final volume of  $100\mu$ l. Ribozyme concentration was 40nM and substrate concentration was 1nM. The reaction was also repeated using double (2nM) and half (0.5nM) the concentration of substrate to verify that 5 the reaction was indeed performed under single turnover conditions. Aliquots of  $10\mu l$  were removed at appropriate time intervals between 0 and 120 minutes and quenched by adding an equal volume of formamide loading buffer ( 9:1 (v:v) formamide:1x TBE) and frozen on dry ice. Product and 10 substrate were separated by denaturing 20% polyacrylamide (7M urea) gel electrophoresis. To determine the fraction of cleavage, substrate and product bands were located by autoradiography of wet gels and quantified by densitometry of these autoradiograms. Autorads were scanned using an AGFA focus scanner connected to a Macintosh computer and 15 images were saved as TIFF files. The programme NIH Image 1.58 (Division of Computing and Research Technology, NIH, Bethesda, USA ) was used to plot and quantify the band intensities. In addition, the relevant bands were excised 20 from the gel and quantified by scintillation counting of the slices cut from the gel (Packard Tricarb 2000 CA liquid scintillation analyser).

Reaction rate constants (k) were obtained from the slope of semilogarithmic plots of the amount of substrate remaining versus time. The activity half time t1/2 was calculated as 0.693/ k. Each rate constant was determined from duplicate experiments.

In order to show the specificity of cleavage demonstrated under the above conditions, the experiment was repeated using a different substrate, relating to another site along the human EGFR mRNA. All conditions remained as described above except

samples were taken over a longer time period i.e.at intervals spanning over 24 hours rather than over 2 hours.

Multiple Turnover Reactions: The kinetic characteristics of ribozyme RPI.4782 were determined from Eadie - Hofstee plots obtained from initial velocities with multiple turnovers done with 5' 32P labeled substrate. 5 Cleavage reactions were carried out in 50mM Tris. HCl, pH7.5 and 10mM MgCl<sub>2</sub> at 37°C. Stock solutions of 100nM ribozyme and 500nM - 2uM substrate RNA were prepared in 50mM Tris. HCl, pH 7.5, preheated separately at 0°C for 2 minutes and cooled to 37°C for 15 minutes. After MgCl<sub>2</sub> was 10 added to each of these solutions to a final volume of 10mM, a further incubation period of 15 minutes at 37°C took place. Cleavage reactions were performed in a final volume of  $100\mu l$  with a concentration of 10nM ribozyme and concentrations of substrate between 100nM and  $1\mu$ M. 15 Reactions were initiated by the addition of ribozyme stock solution to substrate. Aliquots of  $10\mu l$  were taken at time intervals between 0 and 120 minutes, quenched by adding an equal volume of formamide loading buffer and frozen on dry ice. Intact substrate and products of cleavage were separated by electrophoresis on a 20% polyacrylamide / 7M urea denaturing gel and were detected by autoradiography. The degree of cleavage at each time point was quantified by scanning densitometry of the resulting autoradiogram. Initial rates of reaction were measured at eight 25 substrate concentrations and values of Kcat and Km were determined using Eadie-Hofstee plots.

As shown in Figure 6 and 7, Amino hammerhead ribozymes (RPI.4782) targeted against EGFR RNA cleaved their target RNAs in a sequence-specific manner the cleavage rates appeared to follow saturation kinetics with respect to concentration of substrate. Cleavage rates were first order at low substrate concentrations, however, as the concentration of substrate increased, the reaction

rates leveled off suggesting that ribozymes were effectively saturated with substrate. These results indicate that the cleavage reactions were truly catalytic and were therefore amenable to analysis using Michaelis Menten rate equation. From a Eadie-Hofstee plot the kinetic parameters Km and Kcat were determined; ribozyme exhibited a Km value of 87nM and a Kcat value of 1.2 min<sup>-1</sup>.

Under single turnover conditions, ribozyme RPI.4782 exhibited rapid cleavage of it's target sequence, the half life of the substrate being only 7 minutes. The high activity of this ribozyme is in agreement with the findings of Beigelman et al. (1995c). They reported that a ribozyme modified in the same manner as RPI.4782 exhibited almost wild type activity, with the half life of the substrate being only 3 minutes. Although cleavage was slightly slower than that demonstrated by Beigelman et al. (1995c), these findings clearly demonstrate that ribozyme RPI.4782 is able to cleave it's target in a highly efficient manner.

When the experiment was repeated using a different, non complementary, substrate sequence, no cleavage products were evident (figure 3.3), demonstrating the sequence specificity of this molecule.

To assess more precisely the activity of ribozyme 25 Amino ribozyme (RPI.4782), the kinetic parameters  $K_M$  and  $k_{\rm cat}$  were determined under multiple turnover conditions. The results indicate that the cleavage reaction was truly catalytic with a turnover rate ( $K_{\rm cat}$ ) of 1.2 min<sup>-1</sup> and a  $K_M$  value of 87nM (figure 6 and 7). These results fall in line 30 with typical values reported for the hammerhead ribozyme of 1-2 min<sup>-1</sup> and 20-200nM for Kcat and Km respectively (Kumar et al., 1996). Direct comparisons are difficult, however, since many factors including base sequence, length of substrate binding arms and varying chemical

modifications can have an effect on these kinetic parameters (Fedor & Uhlenbeck, 1992).

# Example 5: Stability of EGFR Ribozymes in Fetal Calf Serum.

To assess the stability of the chemically modified ribozyme, a comparative stability study was carried out in 100% foetal calf serum (Gibco, Paisley, U.K.) at 37°C.

Degradation profiles of 5' and internally [32P] labeled ribozyme were compared to those of 5'-end [32P] labeled phosphoodiester (PO), phosphorothioate (PS) oligodeoxynucleotides and unmodified RNA.

Synthesis / labeling: 37mer PO and PS oligonucleotides were synthesized on an automated DNA synthesizer (model 392, Applied Biosystems, Warrington, U.K.) using standard phosphoramide chemistry (section 2.2.1). The chemically modified 37mer ribozyme (Amino Hammerhead Ribozyme; Figure 8) and the 15mer unmodified all RNA substrate were synthesized as described above. Ribozymes and oligonucleotides were radiolabelled with [32P] ATP and purified on 20% polyacrylamide gel as previously described.

Degradation study conditions: Radiolabelled ribozymes/ oligonucleotides were incubated in 100  $\mu$ l of FCS at 37°C to give a final concentration of 200nM. 10ul aliquots were removed at timed intervals, mixed with a loading buffer containing 80% formamide, 10mM EDTA (pH8.0), 0.25% xylene cyanol, 0.25% bromophenol blue, and frozen at -20°C prior to gel loading. Degradation profiles were analyzed by 20% polyacrylamide (7M urea) gel electrophoresis and autoradiography.

A comparative stability study was undertaken in 100% fetal calf serum (FCS) to compare the degradation profiles

of 5' end labeled and internally labeled amino ribozyme to those of 5'end labeled unmodified RNA phosphodiester (PO) and phosphorothioate oligodeoxynucleotides. The chemical modifications of the 5 amino ribozyme resulted in a substantial increase in nuclease resistance over that of the unmodified substrate. The half life (t 50%) of the internally labeled ribozyme was approximately 20 hours whereas the substrate was completely degraded within the time that it took to add 10 the RNA to serum, mix and quench the reaction ( t  $_{50\%}$  < It was interesting to note that although the patterns of degradation were clearly different for the internally labeled ribozyme (figure 3.6a) and the 5' end labeled ribozyme, the kinetics of degradation were 15 strikingly similar. ( t 50% of  $\approx$  20 hours for both).

A comparison of ribozyme degradation and oligodeoxynucleotide degradation was also performed. The chemically modified ribozyme appeared to be more stable in FCS than either the PO oligonucleotide or the PS oligonucleotide; the approximate half lives being 10 minutes and 5 hours respectively. It must be noted, however, that the apparent degradation products migrated to the position of free phosphate. This suggests that dephosphorylation (removal of [32P] label) occurred, resulting in a progressive increase in free phosphate concentration with time.

There is no doubt, however, that the findings of this study show that the chemical modifications applied to ribozyme result in an extremely stable structure. Under the conditions of this experiment amino ribozyme proved to be the most stable to nuclease mediated degradation in fetal calf serum.

#### Example 6: Ribozymes uptake studies

Cell Culture Techniques U87-MG cell line was purchased from the European Cell Culture Collection, Porton Down, U.K. These human glioblastoma astrocytoma cells were originally derived from a grade 3 malignant glioma by explant technique (Poten et al., 1968). A431 cells were derived from a vulval carcinoma and expresses the EGFR at levels 10 to 50 fold higher than seen in other cell lines (Ullrich et al., 1984).

10 The cell lines U87-MG and Raw 264.7 were maintained in Dulbecco's modified Eagle's media (DMEM) supplemented by 10% v/v foetal bovine serum (FBS), penicillin/streptomycin and 1% v/v L-glutamine (all supplied from Gibco, Paisley, U.K.). The same media, 15 without the addition of the foetal bovine serum, was used in the stability and uptake studies. A431 cells were maintained under the same conditions except glutamine was added to a final concentration of 2% v/v. CaCo-2 cells were kindly cultured and plated by Vanessa Moore in DMEM, 20 10% FBS, 1% non essential amino acids, 1% penicillin/ streptomycin, and 1% L-glutamine.

Cells were cultured in 75cm<sup>3</sup> plastic tissue culture flasks (Falcon, U.K.) with 25ml of the respective media. The cultures were incubated at 37°C in a humidified (95%) atmosphere of 5% CO2 in air. Stock cultures were maintained by changing the media every 48 hours and passaged (1:5) when confluent (after approximately 4 days). Passaging was carried out using the following procedure:

The media was removed and the cells washed with 10ml of phosphate-buffered saline solution (PBS). Following this, 5ml of 2x Trypsin/EDTA (0.25% w/v trypsin, 0.2% disodium ethylenediamine tetraacetate in PBS, pH 7.2) was added and the flasks incubated at 37°C for 5minutes. The

flasks were tapped to dislodge the cell monolayer from the bottom and fresh media was added to neutralize the trypsin. The cells were split as required and media added to a final volume of 25ml.

For long term storage, frozen stock cultures were prepared in the following manner:

Stock cultures were trypsinised as described and neutralized with the addition of 10ml of DMEM media. The cell suspension was then transferred to a 15ml universal tube (Falcon, U.K.) and centrifuged for 3 minutes at 350 revolutions per minutes. The supernatant was decanted and the cell pellet was resuspended in 1ml of freezing media (10% DMSO, 90% heat inactivated foetal calf serum) and transferred to a 2ml screw capped cryovial (Costar, U.K.).

The ampule was then placed in the freezing head of a liquid nitrogen freezer for 4-6 hours before being transferred into liquid nitrogen (-196°C) cell bank. When

transferred into liquid nitrogen (-196°C) cell bank. When required, the cells were recovered by rapid thawing at 37°C and gradual dilution with DMEM media before seeding in

20 25cm<sup>3</sup> flasks (Falcon, U.K.).

The viable cell density of stock cultures was measured by haemocytometry using a trypan blue exclusion test.  $100\mu l$  of trypan blue (4mg ml<sup>-1</sup>) was mixed with  $400\mu l$  of cell suspension (1:1.25 dilution). A small amount of the trypan blue-cell suspension was transferred to the counting chamber of a Neubauer haemocytometer, with depth of 0.1mm and area  $1/400\text{mm}^2$  (Weber Scientific International Ltd, U.K.). The cells were counted in the 5 large squares of the haemocytometer using a light microscope. Since live cells do not take up the trypan blue dye, while dead cells do, the number of viable (unstained) cells were counted. The cell density was calculated using the following equation:

cells  $ml^{-1}$  = average count per square x  $10^4$  x 1.25 (dilution factor of trypan blue)

Cell Association Studies: A series of experiments were conducted to examine the mechanism of uptake of the ribozyme in the U87-MG glioblastoma cell line. The following general experimental procedure was used throughout these studies unless otherwise stated.

Synthesis/ labelling: Prior to use in uptake studies, the 37mer ribozyme was internally labeled with 32P as previously described (section 2.3.2) and purified by 20% native polyacrylamaide gel electrophoresis. [14C]

Mannitol (specific activity 56mCi / mmol) was purchased from Amersham (Amersham, U.K.).

Uptake study procedure: U87-MG cells were cultured on 15 plastic 24-well plates (Falcon, U.K.). Confluent stock cultures were trypsinised and the cell density of the stock suspension diluted to  $0.5 \times 10^5$  cells ml<sup>-1</sup> with DMEM media. Each well was seeded with 2ml of the diluted cell suspension to give a final concentration of 1x105 well-1. 20 The plates were incubated at 37°C in a humidified (95%) atmosphere of 5% CO2 in air. After approximately 20 - 24 hours, the cell monolayers had reached confluency and were then ready for uptake experiments. The media was then removed and the monolayer carefully washed twice with PBS 25 ( 2 x 1ml x 5min) to remove any traces of serum. The washing solution was aspirated and replaced with  $200\mu l$  of serum free DMEM media containing the radiolabelled ribozyme. Both PBS and serum free media were equilibrated at 37°C for lhour prior to use. The plates were incubated 30 at 37°C, unless otherwise stated, in a dry environment for the duration of the experiment. Once incubated for the desired period of time, the apical media was carefully collected and their radioactive content assessed by liquid

scintillation counting (LSC) The cells were then washed 3 times \* (3 x 0.5ml x 5min) with ice cold PBS/ sodium azide (0.05% w/v NaN<sub>3</sub> / PBS ) to inhibit any further cellular metabolism and remove any ribozyme loosely associated with the cell surface. The washings were collected and their radioactive content determined by LSC. Cell monolayers were solubilized by shaking with 0.5ml of 3% v/v Triton X100 (Aldrich Chemical Company, Gillingham, UK) distilled water for 1 hour at room temperature. The wells 10 were washed twice more (2 x 0.5ml) with Triton X-100 to ensure that all the cells had been harvested and the radioactivity content of the cellular fraction determined by LSC. Unless otherwise indicated, all experiments were performed at a final concentration of  $0.01\mu M$ internally labeled riboxyme and incubated for a period of 60 minutes.

The uptake of Amino ribozymes were compared in different cell lines. The results show that cellular association of these ribozymes ranged from 0.325  $\pm$  0.021 and 10<sup>5</sup> cells in intestinal epithelial cells to 1.09  $\pm$  0.207 and 10<sup>5</sup> cells in the macrophage cell line.

The ability of ribozymes to penetrate the cell membrane and the mechanism of entrance are important considerations in developing ribozymes as therapeutics.

25 The mechanisms by which oligodeoxynucleotides enter cells has been well documented (for review see Akhtar & Juliano, 1991) and include the involvement of fluid phase, adsorptive and receptor mediated endocytosis. The mechanism and extent of uptake is dependent on many factors including oligonucleotide type and length and cell line studied. In contrast, however, no mechanism of cellular uptake has yet been described for ribozymes and ribonucleotides. In order to investigate the means of

uptake of ribozyme RPI.4782 in glioma cells, a series of cellular association studies were performed in the human glioma derived cell line, U87-MG.

The cellular association of ribozyme RPI.4782 to U875 MG cells appeared to be biphasic, with a rapid initial phase continuing for approximately two hours followed by a slower second phase. The cellular association of oligonucleotides has been shown to be a dynamic process representing both uptake and efflux processes (Jaroszewski & Cohen, 1990). Consequently, the plateauing seen in the second phase could represent an equilibrium of both uptake and exocytosis of ribozyme. The uptake of ribozyme RPI.4782 was strongly dependent on temperature, suggesting that an active process is involved. In addition, the metabolic inhibitors, sodium azide and 2-deoxyglucose significantly inhibited cellular association by 66%, demonstrating that ribozyme uptake was also energy dependent.

The energy and temperature dependency of cellular 20 association of this ribozyme in U87-MG cells characteristic of an active process, indicating that the mechanism of uptake is via endocytosis. These findings do not, however, distinguish whether fluid phase endocytosis or receptor mediated endocytosis is involved; since both 25 mechanisms will be effected by these parameters (Beltinger et al., 1994). In order to evaluate the pathway of internalization, the uptake of a fluid phase marker, [14C] mannitol, was measured to determine the extent of pinocytosis in U87-MG cells. The basal rate of pinocytosis 30 in these cells remained extremely low throughout the time period tested and it is unlikely, therefore, to account for a significant fraction of ribozyme uptake in this cell line.

To investigate whether ribozyme RPI.4782 is taken up

into U87-MG cells by receptor mediated endocytosis a self competition study was conducted. Ribozyme uptake was found to be significantly inhibited by competition with unlabeled ribozyme. This demonstrates that cellular association was concentration dependent and suggests that the dominant uptake mechanism is via receptor mediated endocytosis.

Receptor mediated endocytosis involves the internalization of molecules via specific membrane 10 protein, cell surface receptors. Consequently, proteolytic enzyme such as trypsin or pronase® can be used to determine the extent to which membrane proteins mediate uptake (Beck et al., 1996; Shoji et al., 1991; Wu-pong et In a study investigating the cellular al., 1994). association of oligonucleotides in intestinal CaCo-2 cells, Beck et al. (1996) reported a 50% reduction of uptake upon cell surface washing with pronase, while 60% of oligonucleotide uptake was reported to be trypsin sensitive in Rauscher Red 5-1.5 ertythroleukemai cells (Wu-Pong et al., 1994). To further characterize ribozyme 20 uptake, the effects of the endocytosis inhibitor, phenylarsine oxide and the endosomal alkalinizers, chloroquine and monensin could be studied (Loke et al., 1989; Wu-Pong et al., 1994).

To determine whether specific binding sites are 25 involved in the uptake of ribozyme RPI.4782 in U87-MG cells, competition studies are required to evaluate the effect on ribozyme uptake by competitors oligonucleotides, ATP and other polyanions, such 30 dextran sulphate and heparin. The cellular association of ribozyme RPI.4782 to U87-MG cells was also found to be pH dependent. In fact a decrease in pH from pH 8 to pH 5 resulted in а significant increase in association. The effect of pH on ribozyme partition

coefficients had not as yet been undertaken in order to determine whether the increase in cellular association was due to an increase in the partition coefficient of the ribozyme, at low pH conditions. The increase of cellular 5 association at low pH is in agreement with the work of Goodarzi et al. (1991) and Kitajima et al. (1992) who found that cellular association of oligonucleotides also increased under acidic conditions. It has been postulated that enhanced binding could be due to the presence of a 34kDa membrane protein receptor that functions around pH 10 4.5 (Goodarzi et al., 1991). In addition, the  $\alpha$  amino group of lysine, the guanidium group of arginine and protonated imidazole of histidine have been suggested to be possible oligonucleotide binding sites (Blackburn et al., 1990). Histidine, having a pKa of 6.5 is susceptible 15 to protonation over a pH range of 7.2 to 5.0. Therefore, the enhanced affinity of ribozyme RPI.4782 to U87-MG cells at pH 5.0 could be due to protonation of histidine residues present at the binding site.

In general these observations suggest that the pathway of cellular uptake of ribozyme involves an active cellular process; indications are that the predominant mechanism of uptake is via receptor mediated endocytosis.

## Example 7: Ribozyme stability in U87-MG Cells

In order to ensure that the results obtained from the uptake studies represented cell association of **intact** 37mer ribozyme and not degraded ribozyme or free [<sup>32</sup>P] label, the stability of this ribozyme, when incubated with U87 cells , was examined.

 WO 98/33893

concentration of 10nM.  $10\mu l$  aliquots of the apical solution were collected at variable time points over a period of 4 hours, mixed with an equal volume of formamide loading buffer (9:1 v/v formamide: 1x TBE) and stored at -20C. Prior to gel loading, the samples were heated to  $100^{\circ}$ C for 5 minutes and separated on 7M urea / 20% acrylamide gels; bands were detected by autoradiography of wet gels.

For comparative purposes, the stability profiles of 5' labeled ribozyme RPI.4782, 5' end labeled all RNA 15mer substrate, and 5' end labeled 37mer PO and PS oligodeoxynucleotides were also measured under the same conditions.

To ensure that any findings obtained from uptake 15 studies represented the cellular association of intact 37mer ribozyme and not that of shorter degraded fragments or free [32P] label, the degradation of 5'-end and internally [32P] labeled ribozyme was examined when exposed to U87-MG cells. For comparative purposes, the stability 20 profile of an unmodified RNA substrate was also measured under the same conditions. The chemically modified ribozyme remained largely intact throughout a four hour incubation period. While no degradation was evident from the internally labeled sample, the 5'-end labeled ribozyme 25 did exhibit some degradation after 120 minutes. This indicates that 5' dephosphorylation occurred in the latter case. In contrast, however, the unmodified RNA substrate was completely degraded within 10 minutes incubation with the U87-MG cell monolayer. The ribozyme was clearly 30 protected from cellular nucleuses by the chemical modifications previously described.

## Optimizing Ribozyme Activity

Sullivan, et al., supra, describes the general

WO 98/33893

methods for delivery of enzymatic RNA molecules. The data presented in Examples above indicate that different cationic lipids can deliver active ribozymes to smooth muscle cells. Experiments similar to those performed in above-mentioned Examples are used to determine which lipids give optimal delivery of ribozymes to specific cells. Other such delivery methods are known in the art and can be utilized in this invention.

The proliferation of smooth muscle cells can also be inhibited by the direct addition of chemically stabilized ribozymes. Presumably, uptake is mediated by passive diffusion of the anionic nucleic acid across the cell membrane. In this case, efficacy could be greatly enhanced by directly coupling a ligand to the ribozyme.

The ribozymes are then delivered to the cells by receptor-mediated uptake. Using such conjugated abducts, cellular uptake can be increased by several orders of

Alternatively, ribozymes may be administered to cells by a variety of methods known to those familiar to the art, including, but not restricted to, encapsulation in liposomes, by iontophoresis, or by incorporation into other vehicles, such as hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres.

linkages necessary for ribozyme cleavage activity.

magnitude without having to alter the phosphodiester

The RNA/vehicle combination is locally delivered by direct injection or by use of a catheter, infusion pump or sent. Alternative routes of delivery include, but are not limited to, intramuscular injection, aerosol inhalation, oral (tablet or pill form), topical, systemic, ocular, intraperitoneal and/or intrathecal delivery. More detailed descriptions of ribozyme delivery and administration are provided in Sullivan, et al., supra and Draper, et al., supra which have been incorporated by

reference herein.

Chemical modifications, ribozyme sequences and ribozyme motifs described in this invention are meant to be non-limiting examples, and those skilled in the art will recognize that other modifications (base, sugar and phosphate modifications) to enhance nuclease stability of a ribozyme can be readily generated using standard techniques and are hence within the scope of this invention.

## 10 Use of Ribozymes Targeting EGFR

Overexpression of the EGFR has been reported in a number of cancers (see above). Thus, inhibition of EGFR expression (for example using ribozymes) can reduce cell proliferation of a number of cancers, in vitro and in vivo and can reduce their proliferative potential.

Ribozymes, with their catalytic activity and increased site specificity (see above), are likely to represent a potent and safe therapeutic molecule for the treatment of cancer. In the present invention, ribozymes are shown to inhibit smooth muscle cell proliferation and stromelysin gene expression. From those practiced in the art, it is clear from the examples described, that the same ribozymes may be delivered in a similar fashion to cancer cells to block their proliferation. These ribozymes can be used in conjunction with existing cancer therapies.

Gliomas are the most common primary tumors arising from the brain, in fact each year malignant gliomas account for approximately 2.5% of the deaths from cancer (Bruner, 1994). These gliomas are morphologically and biologically heterogeneous and include neoplasms derived from several cell types. Astrocytomas form the largest single group among the primary tumors (75-90%) which also

includes oligodendrogliomas, ependymomas and mixed gliomas (Bruner, 1994). Distinct histological features allow astrocytomas to be graded into levels of anaplasia, the most widely used today involves a three tiered grading system (Ringertz, 1950) dividing astrocytomas into low grade astrocytomas, anaplastic astrocytomas and glioblastomas.

The most malignant and frequently occurring form, glioblastoma multiform (GBM), accounts for approximately one third of all primary brain tumors (Wong et al., 1994). This tumor is so undifferentiated that it cell of origin remains obscure, however most examples are generally thought to arise from astrocytes because glial fibrillary acidic protein (GFAP), a histological marker for astrocytes, can be identified in the cell cytoplasm.

The histological morphology of glioblastoma can be highly variable, confirming the name "multiforme".

The characteristic features of glioblastoma multiform is tumor necrosis. The individual cells may be small with 20 a high nuclear / cytoplasmic ratio or very large and bizarre with abundant eosinophilic cytoplasm. The small cells are the more proliferative ones and show a more aggressive course. In fact some glioblastomas are so highly cellular that the population of small anaplastic 25 cells stimulates primitive neuroectodermal tumors such as These small cells often appear to medulloblastoma. condense around areas of tumor necrosis forming characteristic 'pseudopalisades". They also have

the propensity to infiltrate the brain extensively, 30 giving the appearance of multifocal gliomas.

Despite advances in many areas of cancer research and treatment, glioblastoma multiform almost always proves fatal, with a median survival rate of less than one year and a 5 year survival rate of 5.5% or less (Martuza et

43

al., 1991). At present, no therapeutic modality has substantially changed the outcome of patients with glioblastoma. Characteristics of this type of tumor, including it's invasive nature, it's ability to spread locally and distantly while avoiding recognition by the immune system, it's relative resistance to radiation and a high local recurrence rate, limit the success of conventional therapy. The effective treatment of glioblastoma multiform, therefore, presents a tremendous challenge.

The current methods of treatment used in the management of malignant gliomas are briefly reviewed.

Surgery: The cornerstone of therapy for glioblastoma multiform tumors has been surgery. The use of 15 microsurgical techniques, intraoperative ultrasonic aspiration, electrophysiologic monitoring and lasers make the surgical procedure safe and accurate (Kornblith et al., 1993). Although surgery does improve the survival of patients with glioblastoma multiform, the inability to 20 surgically remove eloquent areas of cerebral cortex invaded by the tumor render such ablative technologies of only modest value.

Radiotherapy: Malignant gliomas such as glioblastoma multiform exhibit an extraordinary resistance to 25 radiotherapy and as a consequence the effectiveness of this form of treatment is limited. The sensitivity of the surrounding, unaffected, brain limits the dose that can safely be delivered to 60Gy (Leibel et al., 1994), which is well below the level required to completely eradicate the primary tumor in the majority of patients. In addition, whole brain radiotherapy does not prevent local tumor recurrence. The effective use of more localized forms of radiotherapy, such as radiosensitizers and radiosurgical techniques, are at present under review.

WO 98/33893

Chemotherapy: Chemotherapy has been shown to be effective adjuncts to surgery and radiotherapy in the treatment of cancer. Unfortunately, however, chemotherapy has had a limited impact on survival in patients with high grade astrocytomas. A report published in 1993 determined that adding chemotherapy to surgery and radiation improved the median survival duration in these patients from 9.4 to 12 months (Fine et al., 1993).

Generally, the relatively lipid soluble and non ionized nitrosourea drugs; e.g. carmustine, lomustine, semustine and nimustine, have proved to be the most active single chemotherapy agents for treating malignant astrocytomas (Lesser & Grossman, 1994). New drugs continue to enter clinical trials in patients with glioblastoma; none so far, however, have substantially prolonged a patient's life span. A myriad of physiological and biological factors such as the blood brain barrier, heterogeneous and resistant tumor cell populations and unacceptable toxicities have limited the efficacy of these agents.

Different routes of administration have been used to overcome the impenetrability of the blood brain barrier. A unique delivery system has been reported (Brem et al., 1991) which incorporates biodegradable polymers impregnated with chemotherapy agents. These polymers are placed topically at the resection site and slowly release the drugs as they degrade. Direct injection into tumors may also be useful as a means to deliver the highest dose to the tumor site without systemic exposure.

Immunotherapy: Glioblastoma multiform is an appropriate target for immunological directed therapy. Studies have revealed that sera from patients with GBM stimulates little or no humoral response. A realistic approach, therefore, is to stimulate a stronger immune

response in glioblastoma patients. Although this approach looks promising in theory, as yet no effective means of stimulating a clinically immune response has been identified. The most promising avenue, through the use of lymphokine activated killer (LAK) cells and interleukin - 2, has been limited by lack of tumor specific cell homing and difficulties with LAK cell delivery and toxicity.

Advances in the understanding of the molecular basis of cancer has now made it possible to design molecules that specifically interact with cancer cells. The most promising modes of therapy for the treatment of GBM, therefore, may lie with molecular based technologies which employ genetic interventions to alter the properties or behaviour of specific cells.

In fact ,glioblastoma multiform tumors are ideal candidates for this type of therapy since they rarely metastasize, are accessible to direct delivery techniques and can be precisely monitored by MRI and CT scans. The tumor cells may also divide rapidly, which enables agents such as retroviruses to infect the cells and synthesize genes leading to tumor cell destruction. (Kornblith et al., 1993).

Many detailed cytogenetic studies have been performed on malignant gliomas and these reveal commonly occurring abnormalities (Bigner & Vogelstein, 1990). For example, approximately 80% of malignant gliomas have gains of one or more copies of chromosome 7 and approximately 60% show a loss of chromosome 10. In addition, one of the most consistent genetic abnormalities is the presence of double minute chromosomes (DMs). Double minute chromosomes refer to small portions of chromosomes which are paired but lack a centromere; they are the karyotypic manifestation of gene amplification. The presence of such DMs have been found in over 50% of glioblastomas, with some tumors

possessing 50 - 100 copies of DMs per cell (Ostrowski  $\underline{\text{et}}$   $\underline{\text{al.}}$ , 1994). This indicates that gene amplification in a cancer cell is a key method of increasing a certain amount of protein.

- Studies have revealed that a number of genes are amplified in glioblastoma tumors including the genes for: the epidermal growth factor receptor (EGFR); .c-myc, ros-1, myb, and gli (Ostrowski et al., 1994; Wong et al., 1994). Consequently many target areas exist for the future
- 10 development of novel forms of therapy in the treatment of glioblastoma multiform.

#### REFERENCES

- Adams et al., (1994), <u>Tetrahedron Letters</u>, **35**, 1597-1600.
- 15 Akhtar et al., (1992) Trends In Cell Biology, 2, 139-143.

  Akhtar et al., (1996) In Press.

  Akhtar et al., (1995) Nature Medicine, 1(4), 300-302.

  Akhtar et al., (1991) Life Sciences, 49, 1793-1801.

  Ali et al., (1994) Gene Therapy, 1, 367-384.
- 20 Altman (1993) Proceedings Of The National Acadamy Of Sciences, USA., 90, 10898-10900.
  - Amiri et al., (1994) Biochemistry, 33, 13172-13177.
  - Aurup <u>et al.</u>, (1995) In : Akhtar, S. (Ed), Delivery Strategies For Antisense Oligonucleotide Therapeutics.
- London, Crc Press.Pp161-177.
  - Ayers et al., (1996) Journal Of Controlled Release, 38, 167-175.
  - Bacchetti et al., 1995 International Journal Of Oncology, 7, 423-432.
- 30 Barinaga (1993) Science, 262, 1512-1514.

  Bassi et al., 1995 Nat. Struct. Biol., 2, 45-55.

  Beck et al., 1997 Submitted.

  Beigelman et al., 1994 Biorg. Med. Chem. Lett, 4, 1715-

1720.

Beigelman et al., 1995 Nucleosides And Nucleotides, 14, 895-899.

Beigelman et al., 1995 b Nucleic Acids Research, 23(21), 4434-4442.

Beigelman et al., 1995 C Journal Of Biological Chemistry, 270(43), 25701-25708.

Beltinger et al., 1995 J. Clin. Invest., 95, 1814-1823.

Bertrand et al., 1994 Embo Journal, 73: 2904-2912.

10 Bertrand et al., 1996 Nucleic Acids And Molecular Biology, 10, 301-313.

Bertrand et al., 1994 Nucleic Acids Research, 22 (3), 293-300.

Bigner et al., 1990 Brain Pathol., 1, 12-18.

15 Black et al., 1991 New England Journal Of Medicine, 324, 1471-1476 & 1555-1564.

Bratty et al., 1993 Biochimica Et Biophysica Acta. 1216, 345-359.

Brem et al., 1991 Journal Of Neurosurgery, 74, 441-446.

20 Bruner, 1994 Seminars In Oncology, 21(2), 126-138.

Cech et al., 1986 Annual Review Of Biochemistry, 55, 599-629.

Cech et al., 1994 Nature, 372, 39-40.

Cech et al., 1981Cell, 27, 487-496.

25 Chadeneau <u>et al.</u>, 1995 Oncogene, 11, 893-898.

Chen et al., 1996 Cancer Gene Therapy, 3(1), 18-23.

Crooke, 1992 Annual Review Of Pharmacology, 32, 329-379.

Denman, . 1993 Biocomputing, 15(6) 1090-1094.

Denman, 1996 Febs Letters, 382, 116-120.

30 Downward 1984 Nature, 307, 521-527.

Dropulic et al., 1993 Antisense Research And Development, 3, 87-94.

Elkins et al., 1995 In: Akhtar, S. Delivery Stratergies For Antisense Oligonucleotide Therapeutics. London,

15

20

Crc Press.Pp17-37.

Ellis et al., 1993 Nucleic Acids Research. 21(22), 5171-5178.

Eckstein, 1985 Annual Review Of Biochemistry, 54, 367-402.

Ekstrand et al., 1991 Cancer Research, 51, 2164-2172.

Fedor et al.,1990 Proceedings Of The National Acadamy Of Sciences, Usa, 87, 1668-1672.

Fedor et al., 1992 Biochemistry, 31, 12042-12054.

10 Felgner et al.,1994 Journal Of Biological Chemistry, 269, 2550-2561.

Feng et al., 1995 Science, 69, 1236-1241.

Fine et al., 1993 Cancer, 71, 2585-2597.

Flory et al., 1996 Proceedings Of The National Acadamy Of Sciences, Usa, 93, 754-758.

Foster et al., 1987 Cell, 49, 211-220.

Fu et al., 1992 Proceedings Of The National Acadamy Of Sciences, Usa, 89, 3985-3989.

Gait et al.,1995 Nucleosides And Nucleotides, 14 (3-5), 1133-1144.

Gish et al.,1989 Trends In Biochemical Sciences, 14, 97-

Goodarzi <u>et al.</u>,1991 Biochem. Biophys. Res. Comm, 181, 1343-1351.

25 Goodchild <u>et al.</u>,1990 Nucleic Acids Research, 20, 4607-4612.

Griffiths et al.,1987 Nucleic Acids Research, 15, 4145-4162.

Guerrier-Takda et al., 1983 Cell, 35, 849-857.

30 Gutierrez et al., 1992 Lancet, 339, 715-719.

Hampel, A. et al., 1990 Nucleic Acids Research, 18, 299-304.

Healy 1995 Oncology Research, 7(3), 121-130.

Heidenreich et al., 1994 Journal Of Biological

10

Chemistry, 269, 2131-2138.

- Heidenreich et al., 1993 Faseb Journal, 7, 90-96.
- Hendry et al., 1995 Nucleic Acids Research, 23(19), 3928-3936.
- 5 Herschlag <u>et al.</u>, 1994 Embo Journal, 13, 2913-2924.
  - Hertel et al., 1992 Nucleic Acids Research, 20 (12), 3252.
  - Hertel et al., 1994 Biochemistry, 33, 3374-3385.
  - Homann <u>et al.</u>, 1994 Nucleic Acids Research, 22, 3951-3957.
  - Inoue, T. (1994) Time To Change Parthers. Nature, 370, 99-100.
  - Jaeger, J.A. Turner, D.H., Zuker, M. (1989). Improved Predictions Of Secondary Structures For Rna,
- Proceedings Of The National Acadamy For Sciences, Usa, 86, 7706-7710.
  - Jarvis et al., 1996 RNA 2, 419-428
  - Juliano et al.,1992 Antisense Research And Development, 2, 165.
- 20 Kanazawa et al., 1996 Biochemical And Biophysical Research Communication, 225, 570-576.
  - Kariko et al., 1994 Febs Letters, 352, 41-44.
  - Khazaie et al.,1993 Cancer And Metastasis Review, 12, 255-274.
- 25 Kiehntopf <u>et al.</u>, 1995 a Journal Of Molecular Medicine, 73, 65-71.
  - Keihntopf, M., Esquivel, E.L., Brach, M.A., Hermann, F. (1995b) Clinical Applications Of Ribozymes. The Lancet, 345, 1027-1031.
- 30 Keihntopf <u>et al.</u>,1994 Embo Journal, 13, 4645-4652.
  - Kim et al., 1994 Science, 266, 2011-2015.
  - Kisich et al., 1995 Journal Of Cellular Biochemistry, 19a, 291.
  - Koizumi et al., 1993 Biol. Pharm. Bull., 16, 879-883.

- Kornblith et al., 1994 Surg. Neurol, 39, 538-43.
- Kumar <u>et al.</u>,1996 Nucleic Acids And Molecular Biology, 10, 217-230.
- Kung et al., 1994 In: Pretlow, T.G. & Pretlow, T.P. (Eds)
- 5 Biochemical And Molecular Aspects Of Selected Cancers, Volume 2, San Diego, Academic Press, 19-45.
  - LOhuillier et al., 1996 Nucleic Acids And Molecular Biology, 10, 283-299.
  - Lamond et al., 1993 Febs Letters, 325(1), 123-127.
- 10 Lange et al., 1994 Leukemia, 7(11), 1786-1794.
  - Leibel et al., 1994 Seminars In Oncology, 21(2), 198-219.
  - Leopold et al., 1995 Blood, 85, 2162-2170.
  - Lesser, G.L. & Grossman, S. (1994) The Chemotherapy Of
- High Grade Astrocytomas. Seminars In Oncology, 21(2), 220-235.
  - Lewis et al., 1995 Journal Of Cellular Biochemistry, 19a, 227.
- Loke <u>et al.</u>, 1989 Proceedings Of The National Acadamy Of Sciences, Usa, 88, 3474-3478.
  - Lyngstadaas <u>et al.</u>, 1995 Embo Journal, 14(21), 5224-5229
  - Marshall et al., 1993 Science, 259, 1565-1569.
  - Marschall et al., 1994 Cellular And Molecular
- 25 Neurobiology, 14 (5), 523-538.
  - Martuza et al., 1991 Science, 252, 854-855.
  - Miller et al., 1991 Virology, 183, 711-720.
  - Milligan et al., 1993 Journal Of Medicinal Chemistry, 36(14) 1923-1937.
- 30 Modjtahedi <u>et al.</u>, 1994 International Journal Of Cancer, 4, 277-296.
  - Morvan et al., 1990 Tetrahedron Letters, 31, 7149-7152.
  - Ohkawa et al., 1995 Journal Of Biochemistry, 118, 251-258.

- Olsen et al., 1991 Biochemistry, 31, 9735-9741.
- Ostrowski <u>et al.</u>, 1994 In Human Malignant Glioma.In: Pretlow, T.G. & Pretlow, T.P. (Eds) Biochemical And Molecular Aspects Of Selected Cancers. San Diego,
- 5 Academic Press, 143-168.
  - Paolella et al., 1992 Embo Journal, 11(5), 1913-1919. Perreault et al., 1990 Nature, 334, 565-567.
  - Perriman <u>et al.</u>,1995 Proceedings Of The National Academy Of Sciences, Usa, 92, 6175-6179.
- Perriman et al., 1992 Gene, 113, 157-163.
  Pieken et al., 1991Science, 253, 314-317.
  Pley, H.W., Flaherty, K.M. & Mckay, D.B. (1994) ThreeDimensional Structure Of A Hammerhead Ribozyme.
  Nature, 372, 68-74.
- 15 Ponten et al., 1968Acta Path. Microbiol.Scandinav, 74,
  - Puttaraju <u>et al.</u>, 1993 Nucleic Acids Research, 21, 4253-4258.
  - Rawls 1996 Chemical And Engineering News, 74(5), 26-28.
- 20 Reddy 1996 Drugs Of Today, 32(2), 113-137.
  Ringertz, 1950 Acta. Pathol. Microbiol. Scand., 27, 51-
  - Ringertz, 1950 Acta. Pathol. Microbiol. Scand., 27, 51-64.
  - Rossi 1994 Current Biology, 4(5), 469-471.
  - Rossi 1995 Tibtech, 13, 301-305.
- 25 Rossi <u>et al.</u>, 1992 Aids Res. Hum. Retroviruses, 8, 183-189.
  - Ruffner et al., 1990Nucleic Acids Research, 18, 6025.
  - Ruffner, et al., 1990 Biochemistry, 29, 10695- 10702.
- Rhyu 1995 Journal Of The National Cancer Institute, 30 87(12), 884-894.
  - Sambrook 1989 Molecular Cloning: A Laboratory Manual, Second Edition, Vols 1, 2 &3. Cold Srings Harbor, Laboratory Press.
  - Scaringe et al., 1990 Nucleic Acids Research, 18, 5433-

5441.

Scott et al., 1995 Cell, 81, 991-1002.

- Sczakiel 1996 Nucleic Acids And Molecular Biology, 10, 231-241.
- 5 Sczakiel <u>et al.</u>, 1994 Biol. Chem. Hoppe-Seyler, 375, 745-746.
  - Sczakiel<u>et al.</u>,1993 Antisense Research And Development, 3, 45-52.
- Shaw et al., 1991 Nucleic Acids Research, 19 (4), 747-10 750.
  - Shibahara et al., 1986 Nucleic Acids Research, 17, 239-242.
  - Shimayama et al., 1993 Nucleic Acids Research, 21, 2605-2611.
- 15 Shimayama et al., 1995Biochemistry, 34, 3649-3654.

  Shoil et al., 1991 Nucleic Acids Research, 19 (20)
  - Shoji <u>et al.</u>, 1991 Nucleic Acids Research, 19 (20), 5543-5550.
  - Shoji et al., 1996 Antimicrobial Agents And Chemotherapy, 40 (7), 1670-1675.
- 20 Sioud et al., 1992 Journal Of Molecular Biology, 223, 831-835.

Snyder et al., 1993 Blood, 82, 600-605.

Sporn et al., 1985 Nature, 313, 745-747.

Sproat 1996 Nucleic Acids And Molecular Biology, 10,

25 265-281.

Stein et al., 1988 Gene, 72, 333-341.

Stein et al., 1993 Science, 261, 1004-1006.

Stein et al., 1993 Biochemistry, 32, 4855-4861.

Suh et al., 1993 Febs Letters, 326 (1,2,3), 158-162.

- 30 Sullinger et al., 1993 Science, 262, 1566-1569.
  - Sullivan, 1993 A Companion To Methods In Enzymology, 5, 61-66.
  - Sullivan, 1994 The Journal Of Investigative Dermatology, 100(5), 85s-89s.

- Symons, R.H. (1992) Small Catalytic Rnas. Annual Review Of Biochemistry, 61, 641-671.
- Symon, 1994 Current Biology, 4, 322-330.
- Szostak 1993 Nature, 361, 119-120.
- 5 Tayler et al., 1992 Nucleic Acids Research, 20 (17), 4559-4565.
  - Thierry et al., 1995 In: Akhtar, S (Ed), Delivery Strategies For Antisnse Oligonucleotide Therapeutics, London, Crc Press.
- 10 Thomson <u>et al.</u>, 1993 Nucleic Acids Research, 21, 5600-5603.
  - Thomson et al., 1996 Nucleic Acids And Molecular Biology, 19, 172-196
  - Thompson et al., 1995 Nature Medicine, 1(3), 277-278.
- 15 Tidd <u>et al.</u>, 1989 British Journal Of Cancer, 60, 343-350.
  - Tsuchihashi et al., 1993 Science, 262, 99-102.
  - Tuschl et al., 1993 Proceedings Of The National Acadamy Of Sciences, Usa, 90, 6991-6994.
- Tuschl, T., Gohlke, C., Jovin, T.M., Westhof, E., Eckstein, F. (1995) A Three Dimentional Model For The Hammerhead Ribozyme Based On Fluorescence Measurements. Science, 266, 785-788.
  - Uhlenbeck, 1987 Nature, 328, 596-600.
- 25 Usman et al., 1992 Trends In Biochemical Science, 17, 334-339.
  - Usman et al., 1996 Annual Reports In Medicinal Chemistry, 30, 285-294.
- Usman <u>et al.</u>, 1996 Nucleic Acids And Molecular Biology, 30 10, 243-263.
  - Werner et al., 1995 Nucleic Acids Research, 23, 2092-2096.
  - Williams et al., 1992 Proceedings Of The National Acadamy Of Science, Usa, 89, 918-921.

Wincott et al., 1995 Nucleic Acids Research, 23 (14) 2677-2684.

Wong et al., 1994 Seminars In Oncology, 21(2), 139-148
Wu et al., 1989 Proceeding Of The National Acadamy Of
Sciences, Usa, 86, 18

Wu-Pong et al., 1994 Antisense Research And Development, 4, 155-163.

Yakubov et al., 1989 Proceedings Of The National Academy Of Sciences, Usa, 86, 6454-6458.

Yang et al., 1992 Biochemistry, 31, 5005-5009.
Young et al., 1993 Febs Letters, 326, 158
Yu et al., 1993 Proceedings Of Th National Academy Of Science, Usa, 90, 6340-6344.

Zuker et al., (1991) Nucleic Acids Research, 19(10), 2707-2714

## Diagnostic uses

Ribozymes of this invention may be used as diagnostic tools to examine genetic drift and mutations within diseased cells or to detect the presence of EGFR RNA in a The close relationship between ribozyme activity and the structure of the target RNA allows the detection of mutations in any region of the molecule which alters the base-pairing and three-dimensional structure of the target RNA. By using multiple ribozymes described in this 25 invention, one may map nucleotide changes which are important to RNA structure and function in vitro, as well as in cells and tissues. Cleavage of target RNAs with ribozymes may be used to inhibit gene expression and define the role (essentially) of specified gene products 30 in the progression of disease. In this manner, other genetic targets may be defined as important mediators of the disease. These experiments will lead to better treatment of the disease progression by affording the

possibility of combinational therapies (e.g., multiple ribozymes targeted to different genes, ribozymes coupled with known small molecule inhibitors, or intermittent treatment with combinations of ribozymes and/or other chemical or biological molecules). Other in vitro uses of ribozymes of this invention are well known in the art, and include detection of the presence of mRNAs associated with <a href="EGFR">EGFR</a> related condition. Such RNA is detected by determining the presence of a cleavage product after treatment with a ribozyme using standard methodology.

In a specific example, ribozymes which can cleave only wild-type or mutant forms of the target RNA are used for the assay. The first ribozyme is used to identify wild-type RNA present in the sample and the second 15 ribozyme will be used to identify mutant RNA in the As reaction controls, synthetic substrates of both wild-type and mutant RNA will be cleaved by both ribozymes to demonstrate the ribozyme relative efficiencies in the reactions and the absence of cleavage 20 of the "non-targeted" RNA species. The cleavage products from the synthetic substrates will also serve to generate size markers for the analysis of wild-type and mutant RNAs in the sample population. Thus each analysis will require two ribozymes, two substrates and one unknown 25 sample which will be combined into six reactions. presence of cleavage products will be determined using an RNAse protection assay so that full-length and cleavage fragments of each RNA can be analyzed in one lane of a polyacrylamide gel. It is not absolutely required to 30 quantify the results to gain insight into the expression of mutant RNAs and putative risk of the desired phenotypic changes in target cells. The expression of mRNA whose protein product is implicated in the development of the phenotype (i.e., EGFR) is adequate to establish risk. If probes of comparable specific activity are used for both transcripts, then a qualitative comparison of RNA levels will be adequate and will decrease the cost of the initial diagnosis. Higher mutant form to wild-type ratios will be correlated with higher risk whether RNA levels are compared qualitatively or quantitatively.

Other embodiments are within the following claims.

## Table 1:

## Characteristics of naturally occurring ribozymes

## Group I Introns

- Size: ~150 to >1000 nucleotides.
- 5 Requires a U in the target sequence immediately 5' of the cleavage site.
  - Binds 4-6 nucleotides at the 5'-side of the cleavage site.
- Reaction mechanism: attack by the 3'-OH of guanosine
   to generate cleavage products with 3'-OH and 5'-guanosine.
  - Additional protein cofactors required in some cases to help folding and maintainance of the active structure [1].
- Over 300 known members of this class. Found as an intervening sequence in <a href="Tetrahymena">Tetrahymena</a> thermophila rRNA, fungal mitochondria, chloroplasts, phage T4, bluegreen algae, and others.
- Major structural features largely established through
   phylogenetic comparisons, mutagenesis, and biochemical studies [2,3].
  - Complete kinetic framework established for one ribozyme [4,5,6,7].
- Studies of ribozyme folding and substrate docking underway [8,9,10].
  - Chemical modification investigation of important residues well established [11,12].
  - The small (4-6 nt) binding site may make this ribozyme too non-specific for targeted RNA cleavage, however,

5

15

the Tetrahymena group I intron has been used to repair a "defective"

 $\circ$   $\beta$ -galactosidase message by the ligation of new  $\beta$ -galactosidase sequences onto the defective message [13].

## RNAse P RNA (M1 RNA)

- Size: ~290 to 400 nucleotides.
- RNA portion of a ubiquitous ribonucleoprotein enzyme.
- Cleaves tRNA precursors to form mature tRNA [14].
- 10 Reaction mechanism: possible attack by M<sup>2+</sup>-OH to generate cleavage products with 3'-OH and 5'-phosphate.
  - RNAse P is found throughout the prokaryotes and eukaryotes. The RNA subunit has been sequenced from bacteria, yeast, rodents, and primates.
  - Recruitment of endogenous RNAse P for therapeutic applications is possible through hybridization of an External Guide Sequence (EGS) to the target RNA [15,16]
- 20 Important phosphate and 2' OH contacts recently identified [17,18]

#### Group II Introns

- Size: >1000 nucleotides.
- Trans cleavage of target RNAs recently demonstrated
   [19,20].
  - · Sequence requirements not fully determined.
  - Reaction mechanism: 2'-OH of an internal adenosine generates cleavage products with 3'-OH and a "lariat" RNA containing a 3'-5' and a 2'-5' branch point.

- Only natural ribozyme with demonstrated participation in DNA cleavage [21,22] in addition to RNA cleavage and ligation.
- Major structural features largely established through
   phylogenetic comparisons [23].
  - Important 2' OH contacts beginning to be identified [24]
  - Kinetic framework under development [25]

## Neurospora VS RNA

- 10 Size: ~144 nucleotides.
  - Trans cleavage of hairpin target RNAs recently demonstrated [26].
  - · Sequence requirements not fully determined.
- Reaction mechanism: attack by 2'-OH 5' to the scissile
   bond to generate cleavage products with 2',3'-cyclic phosphate and 5'-OH ends.
  - Binding sites and structural requirements not fully determined.
- Only 1 known member of this class. Found in
   Neurospora VS RNA.

## Hammerhead Ribozyme

## (see text for references)

- Size: ~13 to 40 nucleotides.
- Requires the target sequence UH immediately 5'of the cleavage site.
  - Binds a variable number nucleotides on both sides of the cleavage site.
  - Reaction mechanism: attack by 2'-OH 5' to the scissile bond to generate cleavage products with 2',3'-cyclic
- 30 phosphate and 5'-OH ends.

- 14 known members of this class. Found in a number of plant pathogens (virusoids) that use RNA as the infectious agent.
- Essential structural features largely defined,
- 5 including 2 crystal structures []
  - Minimal ligation activity demonstrated (for engineering through <u>in</u> <u>vitro</u> selection) []
  - Complete kinetic framework established for two or more ribozymes [].
- 10 Chemical modification investigation of important residues well established [].

## Hairpin Ribozyme

- Size: ~50 nucleotides.
- Requires the target sequence GUC immediately 3' of the
   cleavage site.
  - Binds 4-6 nucleotides at the 5'-side of the cleavage site and a variable number to the 3'-side of the cleavage site.
- Reaction mechanism: attack by 2'-OH 5' to the scissile
   bond to generate cleavage products with 2',3'-cyclic phosphate and 5'-OH ends.
  - 3 known members of this class. Found in three plant pathogen (satellite RNAs of the tobacco ringspot virus, arabis mosaic virus and chicory yellow mottle
- 25 virus) which uses RNA as the infectious agent.
  - Essential structural features largely defined [27,28,29,30]
  - Ligation activity (in addition to cleavage activity)
     makes ribozyme amenable to engineering through in
- 30 <u>vitro</u> selection [31]
  - Complete kinetic framework established for one ribozyme [32].

 Chemical modification investigation of important residues begun [33,34].

## Hepatitis Delta Virus (HDV) Ribozyme

- Size: ~60 nucleotides.
- 5 Trans cleavage of target RNAs demonstrated [35].
  - Binding sites and structural requirements not fully determined, although no sequences 5' of cleavage site are required. Folded ribozyme contains a pseudoknot structure [36].
- 10 Reaction mechanism: attack by 2'-OH 5' to the scissile bond to generate cleavage products with 2',3'-cyclic phosphate and 5'-OH ends.
  - Only 2 known members of this class. Found in human HDV.
- 15 Circular form of HDV is active and shows increased nuclease stability [37]
  - Mohr, G.; Caprara, M.G.; Guo, Q.; Lambowitz, A.M.
     Nature, 370, 147-150 (1994).
- 20 2. Michel, Francois; Westhof, Eric. Slippery substrates. Nat. Struct. Biol. (1994), 1(1), 5-7.
  - 3. Lisacek, Frederique; Diaz, Yolande; Michel, Francois. Automatic identification of group I intron cores in genomic DNA sequences. J. Mol.
- 25 Biol. (1994), 235(4), 1206-17.
  - 4. Herschlag, Daniel; Cech, Thomas R.. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site.
- 30 Biochemistry (1990), 29(44), 10159-71.
  - 5. Herschlag, Daniel; Cech, Thomas R.. Catalysis of RNA cleavage by the Tetrahymena thermophila

10

30

- ribozyme. 2. Kinetic description of the reaction of an RNA substrate that forms a mismatch at the active site. Biochemistry (1990), 29(44), 10172-80.
- 6. Knitt, Deborah S.; Herschlag, Daniel. pH

  Dependencies of the Tetrahymena Ribozyme Reveal an Unconventional Origin of an Apparent pKa.

  Biochemistry (1996), 35(5), 1560-70.
  - 7. Bevilacqua, Philip C.; Sugimoto, Naoki; Turner, Douglas H.. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme. Biochemistry (1996), 35(2), 648-58.
  - 8. Li, Yi; Bevilacqua, Philip C.; Mathews, David; Turner, Douglas H.. Thermodynamic and activation parameters for binding of a pyrene-labeled
- substrate by the Tetrahymena ribozyme: docking is not diffusion-controlled and is driven by a favorable entropy change. Biochemistry (1995), 34(44), 14394-9.
- 9. Banerjee, Aloke Raj; Turner, Douglas H.. The time
  20 dependence of chemical modification reveals slow
  steps in the folding of a group I ribozyme.
  Biochemistry (1995), 34(19), 6504-12.
- 10. Zarrinkar, Patrick P.; Williamson, James R.. The P9.1-P9.2 peripheral extension helps guide folding of the Tetrahymena ribozyme. Nucleic Acids Res. (1996), 24(5), 854-8.
  - 11. Strobel, Scott A.; Cech, Thomas R. Minor groove recognition of the conserved G.cntdot.U pair at the Tetrahymena ribozyme reaction site. Science (Washington, D. C.) (1995), 267(5198), 675-9.
  - 12. Strobel, Scott A.; Cech, Thomas R.. Exocyclic Amine of the Conserved G.cntdot.U Pair at the Cleavage Site of the Tetrahymena Ribozyme Contributes to 5'-

5

- Splice Site Selection and Transition State Stabilization. Biochemistry (1996), 35(4), 1201-11.
- 13. Sullenger, Bruce A.; Cech, Thomas R.. Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature (London) (1994), 371(6498), 619-22.
- 14. Robertson, H.D.; Altman, S.; Smith, J.D. J. Biol. Chem., 247, 5243-5251 (1972).
- 15. Forster, Anthony C.; Altman, Sidney. External guide 10 sequences for an RNA enzyme. Science (Washington, D. C., 1883-) (1990), 249(4970), 783-6.
  - 16. Yuan, Y.; Hwang, E. S.; Altman, S. Targeted cleavage of mRNA by human RNase P. Proc. Natl. Acad. Sci. USA (1992) 89, 8006-10.
- 15 17. Harris, Michael E.; Pace, Norman R.. Identification of phosphates involved in catalysis by the ribozyme RNase P RNA. RNA (1995), 1(2), 210-18.
  - 18. Pan, Tao; Loria, Andrew; Zhong, Kun. Probing of tertiary interactions in RNA: 2'-hydroxylbase
- contacts between the RNase P RNA and pre-tRNA.

  Proc. Natl. Acad. Sci. U. S. A. (1995), 92(26),
  12510-14.
  - 19. Pyle, Anna Marie; Green, Justin B.. Building a Kinetic Framework for Group II Intron Ribozyme
- Activity: Quantitation of Interdomain Binding and Reaction Rate. Biochemistry (1994), 33(9), 2716-25.
  - 20. Michels, William J. Jr.; Pyle, Anna Marie. Conversion of a Group II Intron into a New Multiple-Turnover Ribozyme that Selectively Cleaves
- Oligonucleotides: Elucidation of Reaction Mechanism and Structure/Function Relationships. Biochemistry (1995), 34(9), 2965-77.

- 21. Zimmerly, Steven; Guo, Huatao; Eskes, Robert; Yang, Jian; Perlman, Philip S.; Lambowitz, Alan M. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell (Cambridge, Mass.) (1995), 83(4), 529-38.
- 22. Griffin, Edmund A., Jr.; Qin, Zhifeng; Michels, Williams J., Jr.; Pyle, Anna Marie. Group II intron ribozymes that cleave DNA and RNA linkages with similar efficiency, and lack contacts with
- 10 substrate 2'-hydroxyl groups. Chem. Biol. (1995), 2(11), 761-70.
  - 23. Michel, Francois; Ferat, Jean Luc. Structure and activities of group II introns. Annu. Rev. Biochem. (1995), 64, 435-61.
- 15 24. Abramovitz, Dana L.; Friedman, Richard A.; Pyle, Anna Marie. Catalytic role of 2'-hydroxyl groups within a group II intron active site. Science (Washington, D. C.) (1996), 271(5254), 1410-13.
- Daniels, Danette L.; Michels, William J., Jr.;
  Pyle, Anna Marie. Two competing pathways for self-splicing by group 11 introns: a quantitative analysis of in vitro reaction rates and products.
  J. Mol. Biol. (1996), 236(1), 31-49.
- 26. Guo, Hans C. T.; Collins, Richard A.. Efficient trans-cleavage of a stem-loop RNA substrate by a ribozyme derived from Neurospora VS RNA. EMBO J. (1995), 14(2), 368-76.
  - 27. Hampel, Arnold; Tritz, Richard; Hicks, Margaret; Cruz, Phillip. 'Hairpin' catalytic RNA model: evidence for helixes and sequence requirement for
- evidence for helixes and sequence requirement for substrate RNA. Nucleic Acids Res. (1990), 18(2), 299-304.

20

- 28. Chowrira, Bharat M.; Berzal-Herranz, Alfredo;
  Burke, John M.. Novel guanosine requirement for
  catalysis by the hairpin ribozyme. Nature (London)
  (1991), 354(6351), 320-2.
- Berzal-Herranz, Alfredo; Joseph, Simpson; Chowrira,
  Bharat M.; Butcher, Samuel E.; Burke, John M..
  Essential nucleotide sequences and secondary
  structure elements of the hairpin ribozyme. EMBO
  J. (1993), 12(6), 2567-73.
- 10 30. Joseph, Simpson; Berzal-Herranz, Alfredo; Chowrira, Bharat M.; Butcher, Samuel E.. Substrate selection rules for the hairpin ribozyme determined by in vitro selection, mutation, and analysis of mismatched substrates. Genes Dev. (1993), 7(1), 130-8.
  - 31. Berzal-Herranz, Alfredo; Joseph, Simpson; Burke,
    John M. In vitro selection of active hairpin
    ribozymes by sequential RNA-catalyzed cleavage and
    ligation reactions. Genes Dev. (1992), 6(1), 12934.
  - 32. Hegg, Lisa A.; Fedor, Martha J.. Kinetics and Thermodynamics of Intermolecular Catalysis by Hairpin Ribozymes. Biochemistry (1995), 34(48), 15813-28.
- 25 33. Grasby, Jane A.; Mersmann, Karin; Singh, Mohinder; Gait, Michael J.. Purine Functional Groups in Essential Residues of the Hairpin Ribozyme Required for Catalytic Cleavage of RNA. Biochemistry (1995), 34(12), 4068-76.
- 30 34. Schmidt, Sabine; Beigelman, Leonid; Karpeisky,
  Alexander; Usman, Nassim; Sorensen, Ulrik S.; Gait,
  Michael J.. Base and sugar requirements for RNA
  cleavage of essential nucleoside residues in

10

internal loop B of the hairpin ribozyme: implications for secondary structure. Nucleic Acids Res. (1996), 24(4), 573-81.

- 35. Perrotta, Anne T.; Been, Michael D.. Cleavage of oligoribonucleotides by a ribozyme derived from the hepatitis .delta. virus RNA sequence. Biochemistry (1992), 31(1), 16-21.
  - 36. Perrotta, Anne T.; Been, Michael D.. A pseudoknotlike structure required for efficient self-cleavage of hepatitis delta virus RNA. Nature (London) (1991), 350(6317), 434-6.
- 37. Puttaraju, M.; Perrotta, Anne T.; Been, Michael D., A circular trans-acting hepatitis delta virus ribozyme. Nucleic Acids Res. (1993), 21(18), 4253-8.

Table II

Table II: 2.5 µmol RNA Synthesis Cycle

| Reagent            | Equivalents | Amount  | Wait<br>Time* |
|--------------------|-------------|---------|---------------|
| Phosphoramidites   | 6.5         | 163 µL  | 2.5           |
| S-Ethyl Tetrazole  | 23.8        | 238 µL  | 2.5           |
| Acetic Anhydride   | 100         | 233 µL  | 5 sec         |
| N-Methyl Imidazole | 186         | 233 µL  | 5 sec         |
| TCA                | 83.2        | 1.73 mL | 21 sec        |
| Iodine             | 8.0         | 1.18 mL | 45 sec        |
| Acetonitrile       | NA          | 6.67 mL | NA            |

 $<sup>^{\</sup>star}$  Wait time does not include contact time during delivery.

Table III

TABLE III: Human EGF-R Hammerhead Ribozyme and Target Sequences

| nt.      | Substrate          | Seq. ID | Ribosyme                        | Seq. ID |
|----------|--------------------|---------|---------------------------------|---------|
| Position |                    | NOs.    |                                 | NOS.    |
| 19       | GCCGGAGUC CCGAGCUA | 1       | UAGCUCGG CUGAUGA X GAA ACUCCGGC | 824     |
| 27       | CCCGAGCUA GCCCCGGC | 2       | GCCGGGGC CUGAUGA X GAA AGCUCGGG | 825     |
| 70       | GGCCACCUC GUCGGCGU | 3       | ACGCCGAC CUGAUGA X GAA AGGUGGCC | 826     |
| 73       | CACCUCGUC GGCGUCCG | 4       | CGGACGCC CUGAUGA X GAA ACGAGGUG | 827     |
| 79       | GUCGGCGUC CGCCCGAG | 5       | CUCGGGCG CUGAUGA X GAA ACGCCGAC | 828     |
| 89       | GCCCGAGUC CCCGCCUC | 6       | GAGGCGGG CUGAUGA X GAA ACUCGGGC | 829     |
| 97       | CCCCGCCUC GCCGCCAA | 7       | UUGGCGGC CUGAUGA X GAA AGGCGGGG | 830     |
| 137      | CCCUGACUC CGUCCAGU | 8       | ACUGGACG CUGAUGA X GAA AGUCAGGG | 831     |
| 141      | GACUCCGUC CAGUAUUG | 9       | CAAUACUG CUGAUGA X GAA ACGGAGUC | 832     |
| 146      | CGUCCAGUA UUGAUCGG | 10      | CCGAUCAA CUGAUGA X GAA ACUGGACG | 833     |
| 148      | UCCAGUAUU GAUCGGGA | 11      | UCCCGAUC CUGAUGA X GAA AUACUGGA | 834     |
| 152      | GUAUUGAUC GGGAGAGC | 12      | GCUCUCCC CUGAUGA X GAA AUCAAUAC | 835     |
| 172      | AGCGAGCUC UUCGGGGA | 13      | UCCCCGAA CUGAUGA X GAA AGCUCGCU | 836     |
| 174      | CGAGCUCUU CGGGGAGC | 14      | GCUCCCCG CUGAUGA X GAA AGAGCUCG | 837     |
| 175      | GAGCUCUUC GGGGAGCA | 15      | UGCUCCCC CUGAUGA X GAA AAGAGCUC | 838     |
| 197      | GCGACCCUC CGGGACGG | 16      | CCGUCCCG CUGAUGA X GAA AGGGUCGC | 839     |
| 219      | GCAGCGCUC CUGGCGCU | 17      | AGCGCCAG CUGAUGA X GAA AGCGCUGC | 340     |
| 240      | GCUGCGCUC UGCCCGGC | 18      | GCCGGGCA CUGAUGA X GAA AGCGCAGC | 841     |
| 253      | CGGCGAGUC GGGCUCUG | 19      | CAGAGCCC CUGAUGA X GAA ACUCGCCG | 842     |
| 259      | GUCGGGCUC UGGAGGAA | 20      | UUCCUCCA CUGAUGA X GAA AGCCCGAC | 843     |
| 276      | AAGAAAGUU UGCCAAGG | 21      | CCUUGGCA CUGAUGA X GAA ACUUUCUU | 844     |
| 277      | AGAAAGUUU GCCAAGGC | 22      | GCCUUGGC CUGAUGA X GAA AACUUUCU | 845     |
| 292      | GCACGAGUA ACAAGCUC | 23      | GAGCUUGU CUGAUGA X GAA ACUCGUGC | 846     |
| 300      | AACAAGCUC ACGCAGUU | 24      | AACUGCGU CUGAUGA X GAA AGCUUGUU | 847     |
| 308      | CACGCAGUU GGGCACUU | 25      | AAGUGCCC CUGAUGA X GAA ACUGCGUG | 848     |
| 316      | UGGGCACUU UUGAAGAU | 26      | AUCUUCAA CUGAUGA X GAA AGUGCCCA | 849     |
| 317      | GGGCACUUU UGAAGAUC | 27      | GAUCUUCA CUGAUGA X GAA AAGUGCCC | 850     |
| 318      | GGCACUUUU GAAGAUCA | 28      | UGAUCUUC CUGAUGA X GAA AAAGUGCC | 851     |
| 325      | UUGAAGAUC AUUUUCUC | 29      | GAGAAAAU CUGAUGA X GAA AUCUUCAA | 852     |
| 328      | AAGAUCAUU UUCUCAGC | 30      | GCUGAGAA CUGAUGA X GAA AUGAUCUU | 853     |
| 329      | AGAUCAUUU UCUCAGCC | 31      | GGCUGAGA CUGAUGA X GAA AAUGAUCU | 854     |
| 330      | GAUCAUUUU CUCAGCCU | 32      | AGGCUGAG CUGAUGA X GAA AAAUGAUC | 855     |
| 331      | AUCAUUUUC UCAGCCUC | 33      | GAGGCUGA CUGAUGA X GAA AAAAUGAU | 856     |
| 333      | CAUUUUCUC AGCCUCCA | 34      | UGGAGGCU CUGAUGA X GAA AGAAAAUG | 857     |
| 339      | CUCAGCCUC CAGAGGAU | 35      | AUCCUCUG CUGAUGA X GAA AGGCUGAG | 858     |
| 350      | GAGGAUGUU CAAUAACU | 36      | AGUUAUUG CUGAUGA X GAA ACAUCCUC | 859     |
| 351      | AGGAUGUUC AAUAACUG | 37      | CAGUUAUU CUGAUGA X GAA AACAUCCU | 860     |
| 355      | UGUUCAAUA ACUGUGAG | 38      | CUCACAGU CUGAUGA X GAA AUUGAACA | 861     |
| 369      | GAGGUGGUC CUUGGGAA | 39      | UUCCCAAG CUGAUGA X GAA ACCACCUC | 862     |
| 372      | GUGGUCCUU GGGAAUUU | 40      | AAAUUCCC CUGAUGA X GAA AGGACCAC | 863     |
| 379      | UUGGGAAUU UGGAAAUU | 41      | AAUUUCCA CUGAUGA X GAA AUUCCCAA | 864     |
| 380      | UGGGAAUUU GGAAAUUA | 42      | UAAUUUCC CUGAUGA X GAA AAUUCCCA | 865     |

# SUBSTITUTE SHEET (RULE 26)

Table III

| 387 | UUGGAAAUU ACCUAUGU | 43   | ACAUAGGU CUGAUGA X GAA AUUUCCAA | 866 |
|-----|--------------------|------|---------------------------------|-----|
| 388 | UGGAAAUUA CCUAUGUG | 44   | CACAUAGG CUGAUGA X GAA AAUUUCCA | 867 |
| 392 | AAUUACCUA UGUGCAGA | 45   | UCUGCACA CUGAUGA X GAA AGGUAAUU | 868 |
| 406 | AGAGGAAUU AUGAUCUU | 46   | AAGAUCAU CUGAUGA X GAA AUUCCUCU | 869 |
| 407 | GAGGAAUUA UGAUCUUU | 47   | AAAGAUCA CUGAUGA X GAA AAUUCCUC | 870 |
| 412 | AUUAUGAUC UUUCCUUC | 48   | GAAGGAAA CUGAUGA X GAA AUCAUAAU | 871 |
| 414 | UAUGAUCUU UCCUUCUU | 49   | AAGAAGGA CUGAUGA X GAA AGAUCAUA | 872 |
| 415 | AUGAUCUUU CCUUCUUA | 50   | UAAGAAGG CUGAUGA X GAA AAGAUCAU | 873 |
| 416 | UGAUCUUUC CUUCUUAA | 51   | UUAAGAAG CUGAUGA X GAA AAAGAUCA | 874 |
| 419 | UCUUUCCUU CUUAAAGA | 52   | UCUUUAAG CUGAUGA X GAA AGGAAAGA | 875 |
| 420 | CUUUCCUUC UUAAAGAC | 53   | GUCUUUAA CUGAUGA X GAA AAGGAAAG | 876 |
| 422 | UUCCUUCUU AAAGACCA | 54   | UGGUCUUU CUGAUGA X GAA AGAAGGAA | 877 |
| 423 | UCCUUCUUA AAGACCAU | 55 . | AUGGUCUU CUGAUGA X GAA AAGAAGGA | 878 |
| 432 | AAGACCAUC CAGGAGGU | 56   | ACCUCCUG CUGAUGA X GAA AUGGUCUU | 879 |
| 448 | UGGCUGGUU AUGUCCUC | 57   | GAGGACAU CUGAUGA X GAA ACCAGCCA | 880 |
| 449 | GGCUGGUUA UGUCCUCA | 58   | UGAGGACA CUGAUGA X GAA AACCAGCC | 881 |
| 453 | GGUUAUGUC CUCAUUGC | 59   | GCAAUGAG CUGAUGA X GAA ACAUAACC | 882 |
| 456 | UAUGUCCUC AUUGCCCU | 60   | AGGGCAAU CUGAUGA X GAA AGGACAUA | 883 |
| 459 | GUCCUCAUU GCCCUCAA | 61   | UUGAGGC CUGAUGA X GAA AUGAGGAC  | 884 |
| 465 | AUUGCCCUC AACACAGU | 62   | ACUGUGUU CUGAUGA X GAA AGGGCAAU | 885 |
| 483 | GAGCGAAUU CCUUUGGA | 63   | UCCAAAGG CUGAUGA X GAA AUUCGCUC | 886 |
| 484 | AGCGAAUUC CUUUGGAA | 64   | UUCCAAAG CUGAUGA X GAA AAUUCGCU | 887 |
| 487 | GAAUUCCUU UGGAAAAC | 65   | GUUUUCCA CUGAUGA X GAA AGGAAUUC | 888 |
| 488 | AAUUCCUUU GGAAAACC | 66   | GGUUUUCC CUGAUGA X GAA AAGGAAUU | 889 |
| 504 | CUGCAGAUC AUCAGAGG | 67   | CCUCUGAU CUGAUGA X GAA AUCUGCAG | 890 |
| 507 | CAGAUCAUC AGAGGAAA | 68   | UUUCCUCU CUGAUGA X GAA AUGAUCUG | 891 |
| 517 | GAGGAAAUA UGUACUAC | 69   | GUAGUACA CUGAUGA X GAA AUUUCCUC | 892 |
| 521 | AAAUAUGUA CUACGAAA | 70   | UUUCGUAG CUGAUGA X GAA ACAUAUUU | 893 |
| 524 | UAUGUACUA CGAAAAUU | 71   | AAUUUUCG CUGAUGA X GAA AGUACAUA | 894 |
| 532 | ACGAAAAUU CCUAUGCC | 72   | GGCAUAGG CUGAUGA X GAA AUUUUCGU | 895 |
| 533 | CGAAAAUUC CUAUGCCU | 73   | AGGCAUAG CUGAUGA X GAA AAUUUUCG | 896 |
| 536 | AAAUUCCUA UGCCUUAG | 74   | CUAAGGCA CUGAUGA X GAA AGGAAUUU | 897 |
| 542 | CUAUGCCUU AGCAGUCU | 75   | AGACUGCU CUGAUGA X GAA AGGCAUAG | 898 |
| 543 | UAUGCCUUA GCAGUCUU | 76   | AAGACUGC CUGAUGA X GAA AAGGCAUA | 899 |
| 549 | UUAGCAGUC UUAUCUAA | 77   | UUAGAUAA CUGAUGA X GAA ACUGCUAA | 900 |
| 551 | AGCAGUCUU AUCUAACU | 78   | AGUUAGAU CUGAUGA X GAA AGACUGCU | 901 |
| 552 | GCAGUCUUA UCUAACUA | 79   | UAGUUAGA CUGAUGA X GAA AAGACUGC | 902 |
| 554 | AGUCUUAUC UAACUAUG | 80   | CAUAGUUA CUGAUGA X GAA AUAAGACU | 903 |
| 556 | UCUUAUCUA ACUAUGAU | 81   | AUCAUAGU CUGAUGA X GAA AGAUAAGA | 904 |
| 560 | AUCUAACUA UGAUGCAA | 82   | UUGCAUCA CUGAUGA X GAA AGUUAGAU | 905 |
| 571 | AUGCAAAUA AAACCGGA | 83   | UCCGGUUU CUGAUGA X GAA AUUUGCAU | 906 |
| 604 | UGAGAAAUU UACAGGAA | 84   | UUCCUGUA CUGAUGA X GAA AUUUCUCA | 907 |
| 605 | GAGAAAUUU ACAGGAAA | 85   | UUUCCUGU CUGAUGA X GAA AAUUUCUC | 908 |
| 606 | AGAAAUUUA CAGGAAAU | 86   | AUUUCCUG CUGAUGA X GAA AAAUUUCU | 909 |
| 615 | CAGGAAAUC CUGCAUGG | 87   | CCAUGCAG CUGAUGA X GAA AUUUCCUG | 910 |
| 635 | CGUGCGGUU CAGCAACA | 88   | UGUUGCUG CUGAUGA X GAA ACCGCACG | 911 |
| 636 | GUGCGGUUC AGCAACAA | 89   | UUGUUGCU CUGAUGA X GAA AACCGCAC | 912 |
| 672 | GAGAGCAUC CAGUGGCG | 90   | CGCCACUG CUGAUGA X GAA AUGCUCUC | 913 |
| L   | <u> </u>           |      |                                 |     |

# SUBSTITUTE SHEET (RULE 26)

Table III

| 602   |                    |     |                                 |     |
|-------|--------------------|-----|---------------------------------|-----|
| 687   | CGGGACAUA GUCAGCAG | 91  | CUGCUGAC CUGAUGA X GAA AUGUCCCG | 914 |
| 690   | GACAUAGUC AGCAGUGA | 92  | UCACUGCU CUGAUGA X GAA ACUAUGUC | 915 |
| 701   | CAGUGACUU UCUCAGCA | 93  | UGCUGAGA CUGAUGA X GAA AGUCACUG | 916 |
| 702   | AGUGACUUU CUCAGCAA | 94  | UUGCUGAG CUGAUGA X GAA AAGUCACU | 917 |
| 703   | GUGACUUUC UCAGCAAC | 95  | GUUGCUGA CUGAUGA X GAA AAAGUCAC | 918 |
| 705   | GACUUUCUC AGCAACAU | 96  | AUGUUGCU CUGAUGA X GAA AGAAAGUC | 919 |
| 716   | CAACAUGUC GAUGGACU | 97  | AGUCCAUC CUGAUGA X GAA ACAUGUUG | 920 |
| 725   | GAUGGACUU CCAGAACC | 98  | GGUUCUGG CUGAUGA X GAA AGUCCAUC | 921 |
| 726   | AUGGACUUC CAGAACCA | 99  | UGGUUCUG CUGAUGA X GAA AAGUCCAU | 922 |
| 760   | AGUGUGAUC CAAGCUGU | 100 | ACAGCUUG CUGAUGA X GAA AUCACACU | 923 |
| 769   | CAAGCUGUC CCAAUGGG | 101 | CCCAUUGG CUGAUGA X GAA ACAGCUUG | 924 |
| 825   | ACCAAAAUC AUCUGUGC | 102 | GCACAGAU CUGAUGA X GAA AUUUUGGU | 925 |
| 628   | AAAAUCAUC UGUGCCCA | 103 | UGGGCACA CUGAUGA X GAA AUGAUUUU | 926 |
| 845   | GCAGUGCUC CGGGCGCU | 104 | AGCGCCCG CUGAUGA X GAA AGCACUGC | 927 |
| 866   | UGGCAAGUC CCCCAGUG | 105 | CACUGGGG CUGAUGA X GAA ACUUGCCA | 928 |
| 936   | UGCCUGGUC UGCCGCAA | 106 | UUGCGGCA CUGAUGA X GAA ACCAGGCA | 929 |
| 947   | CCGCAAAUU CCGAGACG | 107 | CGUCUCGG CUGAUGA X GAA AUUUGCGG | 930 |
| 948   | CGCAAAUUC CGAGACGA | 108 | UCGUCUCG CUGAUGA X GAA AAUUUGCG | 931 |
| . 987 | CCCCCACUC AUGCUCUA | 109 | UAGAGCAU CUGAUGA X GAA AGUGGGGG | 932 |
| 993   | CUCAUGCUC UACAACCC | 110 | GGGUUGUA CUGAUGA X GAA AGCAUGAG | 933 |
| 995   | CAUGCUCUA CAACCCCA | 111 | UGGGGUUG CUGAUGA X GAA AGAGCAUG | 934 |
| 1010  | CACCACGUA CCAGAUGG | 112 | CCAUCUGG CUGAUGA X GAA ACGUGGUG | 935 |
| 1040  | GGGCAAAUA CAGCUUUG | 113 | CAAAGCUG CUGAUGA X GAA AUUUGCCC | 936 |
| 1046  | AUACAGCUU UGGUGCCA | 114 | UGGCACCA CUGAUGA X GAA AGCUGUAU | 937 |
| 1047  | UACAGCUUU GGUGCCAC | 115 | GUGGCACC CUGAUGA X GAA AAGCUGUA | 938 |
| 1072  | AGAAGUGUC CCCGUAAU | 116 | AUUACGGG CUGAUGA X GAA ACACUUCU | 939 |
| 1078  | GUCCCCGUA AUUAUGUG | 117 | CACAUAAU CUGAUGA X GAA ACGGGGAC | 940 |
| 1081  | CCCGUAAUU AUGUGGUG | 118 | CACCACAU CUGAUGA X GAA AUUACGGG | 941 |
| 1082  | CCGUAAUUA UGUGGUGA | 119 | UCACCACA CUGAUGA X GAA AAUUACGG | 942 |
| 1096  | UGACAGAUC ACGGCUCG | 120 | CGAGCCGU CUGAUGA X GAA AUCUGUCA | 943 |
| 1103  | UCACGGCUC GUGCGUCC | 121 | GGACGCAC CUGAUGA X GAA AGCCGUGA | 944 |
| 1110  | UCGUGCGUC CGAGCCUG | 122 | CAGGCUCG CUGAUGA X GAA ACGCACGA | 945 |
| 1133  | CGACAGCUA UGAGAUGG | 123 | CCAUCUCA CUGAUGA X GAA AGCUGUCG | 946 |
| 1155  | GACGGCGUC CGCAAGUG | 124 | CACUUGCG CUGAUGA X GAA ACGCCGUC | 947 |
| 1165  | GCAAGUGUA AGAAGUGC | 125 | GCACUUCU CUGAUGA X GAA ACACUUGC | 948 |
| 1183  | AAGGCCUU GCCGCAAA  | 126 | UUUGCGGC CUGAUGA X GAA AGGCCCUU | 949 |
| 1198  | AAGUGUGUA ACGGAAUA | 127 | UAUUCCGU CUGAUGA X GAA ACACACUU |     |
| 1206  | AACGGAAUA GGUAUUGG | 128 | CCAAUACC CUGAUGA X GAA AUUCCGUU | 950 |
| 1210  | GAAUAGGUA UUGGUGAA | 129 | UUCACCAA CUGAUGA X GAA ACCUAUUC | 951 |
| 1212  | AUAGGUAUU GGUGAAUU | 130 | AAUUCACC CUGAUGA X GAA AUACCUAU | 952 |
| 1220  | UGGUGAAUU UAAAGACU | 131 | AGUCUUUA CUGAUGA X GAA AUUCACCA | 953 |
| 1221  | GGUGAAUUU AAAGACUC | 132 | GAGUCUUU CUGAUGA X GAA AUUCACCA | 954 |
| 1222  | GUGAAUUUA AAGACUCA | 133 | UGAGUCUU CUGAUGA X GAA AAAUUCAC | 955 |
| 1229  | UAAAGACUC ACUCUCCA | 134 |                                 | 956 |
| 1233  | GACUCACUC UCCAUAAA | 135 | UGGAGAGU CUGAUGA X GAA AGUCUUUA | 957 |
| 1235  | CUCACUCUC CAUAAAUG | 136 | UUUAUGGA CUGAUGA X GAA AGUGAGUC | 958 |
| 1239  | CUCUCCAUA AAUGCUAC |     | CAUUUAUG CUGAUGA X GAA AGAGUGAG | 959 |
| 1246  | UAAAUGCUA CGAAUAUU | 137 | GUAGCAUU CUGAUGA X GAA AUGGAGAG | 960 |
|       | JARAUGEUA CGAAUAUU | 138 | AAUAUUCG CUGAUGA X GAA AGCAUUUA | 961 |

# SUBSTITUTE SHEET (RULE 26)

Table III

| 1254 ACGANUAUU AAACACUU 140 AAG                                                                                                                                                              | UUUAA CUGAUGA X GAA AUUCGUAG 962  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|                                                                                                                                                                                              |                                   |
| 1255 CGANIANIA ABCREUIC 141 CAS                                                                                                                                                              | UGUUU CUGAUGA X GAA AUAUUCGU 963  |
| CONNONUN MACACUUC 141 GAA                                                                                                                                                                    | GUGUU CUGAUGA X GAA AAUAUUCG 964  |
| 1262 UAAACACUU CAAAAACU 142 AGU                                                                                                                                                              | UUUUG CUGAUGA X GAA AGUGUUUA 965  |
| 1263 AAACACUUC AAAAACUG 143 CAG                                                                                                                                                              | UUUUU CUGAUGA X GAA AAGUGUUU 966  |
| 1277 CUGCACCUC CAUCAGUG 144 CAC                                                                                                                                                              | UGAUG CUGAUGA X GAA AGGUGCAG 967  |
| 1281 ACCUCCAUC AGUGGCGA 145 UCG                                                                                                                                                              | CCACU CUGAUGA X GAA AUGGAGGU 968  |
| 1291 GUGGCGAUC UCCACAUC 146 GAU                                                                                                                                                              | GUGGA CUGAUGA X GAA AUCGCCAC 969  |
| 1293 GGCGAUCUC CACAUCCU 147 AGG                                                                                                                                                              | AUGUG CUGAUGA X GAA AGAUCGCC 970  |
| 1299 CUCCACAUC CUGCCGGU 148 ACC                                                                                                                                                              | GGCAG CUGAUGA X GAA AUGUGGAG 971  |
| 1313 GGUGGCAUU UAGGGGUG 149 CAC                                                                                                                                                              | CCCUA CUGAUGA X GAA AUGCCACC 972  |
|                                                                                                                                                                                              | CCCCU CUGAUGA X GAA AAUGCCAC 973  |
|                                                                                                                                                                                              | ACCCC CUGAUGA X GAA AAAUGCCA 974  |
|                                                                                                                                                                                              | UGAAG CUGAUGA X GAA AGUCACCC 975  |
|                                                                                                                                                                                              | GUGUG CUGAUGA X GAA AGGAGUCA 976  |
|                                                                                                                                                                                              | UGUGU CUGAUGA X GAA AAGGAGUC 977  |
|                                                                                                                                                                                              | AGGAG CUGAUGA X GAA AUGUGUGA 978  |
|                                                                                                                                                                                              |                                   |
|                                                                                                                                                                                              |                                   |
| 1000                                                                                                                                                                                         |                                   |
|                                                                                                                                                                                              | AUCCA CUGAUGA X GAA AGGAGGAG 981  |
|                                                                                                                                                                                              | CUGUG CUGAUGA X GAA AUCCAGAG 982  |
|                                                                                                                                                                                              | CAGAA CUGAUGA X GAA AUCCAGUU 983  |
|                                                                                                                                                                                              | UUCAG CUGAUGA X GAA AUAUCCAG 984  |
|                                                                                                                                                                                              | UUUCA CUGAUGA X GAA AAUAUCCA 985  |
|                                                                                                                                                                                              | UCCUU CUGAUGA X GAA ACGGUUUU 986  |
|                                                                                                                                                                                              | CCUGU CUGAUGA X GAA AUUUCCUU 987  |
|                                                                                                                                                                                              | GCAAA CUGAUGA X GAA ACCCUGUG 988  |
| 1398 ACAGGGUUU UUGCUGAU 166 AUC                                                                                                                                                              | AGCAA CUGAUGA X GAA AACCCUGU 989  |
| 1399 CAGGGUUUU UGCUGAUU 167 AAU                                                                                                                                                              | CAGCA CUGAUGA X GAA AAACCCUG 990  |
| 1400 AGGGUUUUU GCUGAUUC 168 GAA                                                                                                                                                              | UCAGC CUGAUGA X GAA AAAACCCU 991  |
| 1407 UUGCUGAUU CAGGCUUG 169 CAA                                                                                                                                                              | GCCUG CUGAUGA X GAA AUCAGCAA 992  |
| 1408 UGCUGAUUC AGGCUUGG 170 CCA                                                                                                                                                              | AGCCU CUGAUGA X GAA AAUCAGCA 993  |
| 1414 UUCAGGCUU GGCCUGAA 171 UUC                                                                                                                                                              | AGGCC CUGAUGA X GAA AGCCUGAA 994  |
| 1437 ACGGACCUC CAUGCCUU 172 AAG                                                                                                                                                              | GCAUG CUGAUGA X GAA AGGUCCGU 995  |
| 1445 CCAUGCCUU UGAGAACC 173 GGU                                                                                                                                                              | UCUCA CUGAUGA X GAA AGGCAUGG 996  |
| 1446 CAUGCCUUU GAGAACCU 174 AGG                                                                                                                                                              | UUCUC CUGAUGA X GAA AAGGCAUG 997  |
| 1455 GAGAACCUA GAAAUCAU 175 AUG                                                                                                                                                              | AUUUC CUGAUGA X GAA AGGUUCUC 998  |
|                                                                                                                                                                                              | CGUAU CUGAUGA X GAA AUUUCUAG 999  |
|                                                                                                                                                                                              | CCGCG CUGAUGA X GAA AUGAUUUC 1000 |
|                                                                                                                                                                                              | AAACU CUGAUGA X GAA ACCAUGUU 1001 |
|                                                                                                                                                                                              | GAGAA CUGAUGA X GAA ACUGACCA 1002 |
|                                                                                                                                                                                              | AGAGA CUGAUGA X GAA AACUGACC 1003 |
|                                                                                                                                                                                              | AAGAG CUGAUGA X GAA AAACUGAC 1004 |
|                                                                                                                                                                                              | CAAGA CUGAUGA X GAA AAAACUGA 1005 |
|                                                                                                                                                                                              | UGCAA CUGAUGA X GAA AGAAAACU 1006 |
|                                                                                                                                                                                              |                                   |
| 1498 AGUUUUCUC UUGCAGUC 183 GAC                                                                                                                                                              |                                   |
| 1498 AGUUUUCUC UUGCAGUC 183 GAC<br>1500 UUUUCUCUU GCAGUCGU 184 ACG                                                                                                                           | ACUGC CUGAUGA X GAA AGAGAAAA 1007 |
| 1498         AGUUUUCUC UUGCAGUC         183         GAC           1500         UUUUUCUCUU GCAGUCGU         184         ACC           1506         CUUGCAGUC GUCAGCCU         185         AGC |                                   |

Table III

| 1521 | CUGAACAUA ACAUCCUU | 187 | AAGGAUGU CUGAUGA X GAA AUGUUCAG | 1010 |
|------|--------------------|-----|---------------------------------|------|
| 1526 | CAUAACAUC CUUGGGAU | 188 | AUCCCAAG CUGAUGA X GAA AUGUUAUG | 1011 |
| 1529 | AACAUCCUU GGGAUUAC | 189 | GUAAUCCC CUGAUGA X GAA AGGAUGUU | 1012 |
| 1535 | CUUGGGAUU ACGCUCCC | 190 | GGGAGCGU CUGAUGA X GAA AUCCCAAG | 1013 |
| 1536 | UUGGGAUUA CGCUCCCU | 191 | AGGGAGCG CUGAUGA X GAA AAUCCCAA | 1014 |
| 1541 | AUUACGCUC CCUCAAGG | 192 | CCUUGAGG CUGAUGA X GAA AGCGUAAU | 1015 |
| 1545 | CGCUCCCUC AAGGAGAU | 193 | AUCUCCUU CUGAUGA X GAA AGGGAGCG | 1016 |
| 1554 | AAGGAGAUA AGUGAUGG | 194 | CCAUCACU CUGAUGA X GAA AUCUCCUU | 1017 |
| 1572 | GAUGUGAUA AUUUCAGG | 195 | CCUGAAAU CUGAUGA X GAA AUCACAUC | 1018 |
| 1575 | GUGAUAAUU UCAGGAAA | 196 | UUUCCUGA CUGAUGA X GAA AUUAUCAC | 1019 |
| 1576 | UGAUAAUUU CAGGAAAC | 197 | GUUUCCUG CUGAUGA X GAA AAUUAUCA | 1020 |
| 1577 | GAUAAUUUC AGGAAACA | 198 | UGUUUCCU CUGAUGA X GAA AAAUUAUC | 1021 |
| 1591 | ACAAAAAUU UGUGCUAU | 199 | AUAGCACA CUGAUGA X GAA AUUUUUGU | 1022 |
| 1592 | CAAAAAUUU GUGCUAUG | 200 | CAUAGCAC CUGAUGA X GAA AAUUUUUG | 1023 |
| 1598 | UUUGUGCUA UGCAAAUA | 201 | UAUUUGCA CUGAUGA X GAA AGCACAAA | 1024 |
| 1606 | AUGCAAAUA CAAUAAAC | 202 | GUUUAUUG CUGAUGA X GAA AUUUGCAU | 1025 |
| 1611 | AAUACAAUA AACUGGAA | 203 | UUCCAGUU CUGAUGA X GAA AUUGUAUU | 1026 |
| 1628 | AAAACUGUU UGGGACCU | 204 | AGGUCCCA CUGAUGA X GAA ACAGUUUU | 1027 |
| 1629 | AAACUGUUU GGGACCUC | 205 | GAGGUCCC CUGAUGA X GAA AACAGUUU | 1028 |
| 1637 | UGGGACCUC CGGUCAGA | 206 | UCUGACCG CUGAUGA X GAA AGGUCCCA | 1029 |
| 1642 | CCUCCGGUC AGAAAACC | 207 | GGUUUUCU CUGAUGA X GAA ACCGGAGG | 1029 |
| 1656 | ACCAAAAUU AUAAGCAA | 208 | UUGCUUAU CUGAUGA X GAA AUUUUGGU | 1030 |
| 1657 | CCAAAAUUA UAAGCAAC | 209 | GUUGCUUA CUGAUGA X GAA AAUUUUGG | 1031 |
| 1659 | AAAAUUAUA AGCAACAG | 210 | CUGUUGCU CUGAUGA X GAA AUAAUUUU |      |
| 1701 | GGCCAGGUC UGCCAUGC | 211 | GCAUGGCA CUGAUGA X GAA ACCUGGCC | 1033 |
| 1712 | CCAUGCCUU GUGCUCCC | 212 | GGGAGCAC CUGAUGA X GAA AGGCAUGG | 1034 |
| 1718 | CUUGUGCUC CCCCGAGG | 213 | CCUCGGGG CUGAUGA X GAA AGCACAAG | 1035 |
| 1758 | GACUGCGUC UCUUGCCG | 214 | CGGCAAGA CUGAUGA X GAA ACGCAGUC | 1036 |
| 1760 | CUGCGUCUC UUGCCGGA | 215 |                                 | 1037 |
| 1762 | GCGUCUCUU GCCGGAAU | 216 | UCCGGCAA CUGAUGA X GAA AGACGCAG | 1038 |
| 1773 | CGGAAUGUC AGCCGAGG | 217 | AUUCCGGC CUGAUGA X GAA AGAGACGC | 1039 |
| 1809 | UGCAAGCUU CUGGAGGG | 217 | CCUCGGCU CUGAUGA X GAA ACAUUCCG | 1040 |
| 1810 | GCAAGCUUC UGGAGGGU | l   | CCCUCCAG CUGAUGA X GAA AGCUUGCA | 1041 |
| 1832 |                    | 219 | ACCCUCCA CUGAUGA X GAA AAGCUUGC | 1042 |
| 1833 | AAGGGAGUU UGUGGAGA | 220 | UCUCCACA CUGAUGA X GAA ACUCCCUU | 1043 |
| 1844 | AGGGAGUUU GUGGAGAA | 221 | UUCUCCAC CUGAUGA X GAA AACUCCCU | 1044 |
| 1854 | GGAGAACUC UGAGUGCA | 222 | UGCACUCA CUGAUGA X GAA AGUUCUCC | 1045 |
| 1879 | GAGUGCAUA CAGUGCCA | 223 | UGGCACUG CUGAUGA X GAA AUGCACUC | 1046 |
|      | GCCUGCCUC AGGCCAUG | 224 | CAUGGCCU CUGAUGA X GAA AGGCAGGC | 1047 |
| 1893 | AUGAACAUC ACCUGCAC | 225 | GUGCAGGU CUGAUGA X GAA AUGUUCAU | 1048 |
| 1924 | ACAACUGUA UCCAGUGU | 226 | ACACUGGA CUGAUGA X GAA ACAGUUGU | 1049 |
| 1926 | AACUGUAUC CAGUGUGC | 227 | GCACACUG CUGAUGA X GAA AUACAGUU | 1050 |
| 1940 | UGCCCACUA CAUUGACG | 228 | CGUCAAUG CUGAUGA X GAA AGUGGGCA | 1051 |
| 1944 | CACUACAUU GACGGCCC | 229 | GGGCCGUC CUGAUGA X GAA AUGUAGUG | 1052 |
| 1962 | CACUGCGUC AAGACCUG | 230 | CAGGUCUU CUGAUGA X GAA ACGCAGUG | 1053 |
| 1983 | GCAGGAGUC AUGGGAGA | 231 | UCUCCCAU CUGAUGA X GAA ACUCCUGC | 1054 |
| 2007 | ACCCUGGUC UGGAAGUA | 232 | UACUUCCA CUGAUGA X GAA ACCAGGGU | 1055 |
| 2015 | CUGGAAGUA CGCAGACG | 233 | CGUCUGCG CUGAUGA X GAA ACUUCCAG | 1056 |
| 2050 | UGUGCCAUC CAAACUGC | 234 | GCAGUUUG CUGAUGA X GAA AUGGCACA | 1057 |

Table III

| 2062 |                    |     |                                 |      |
|------|--------------------|-----|---------------------------------|------|
| 2063 | CUGCACCUA CGGAUGCA | 235 | UGCAUCCG CUGAUGA X GAA AGGUGCAG | 1058 |
| 2083 | GGCCAGGUC UUGAAGGC | 236 | GCCUUCAA CUGAUGA X GAA ACCUGGCC | 1059 |
| 2085 | CCAGGUCUU GAAGGCUG | 237 | CAGCCUUC CUGAUGA X GAA AGACCUGG | 1060 |
| 2095 | AAGGCUGUC CAACGAAU | 238 | AUUCGUUG CUGAUGA X GAA ACAGCCUU | 1061 |
| 2110 | AUGGGCCUA AGAUCCCG | 239 | CGGGAUCU CUGAUGA X GAA AGGCCCAU | 1062 |
| 2115 | CCUAAGAUC CCGUCCAU | 240 | AUGGACGG CUGAUGA X GAA AUCUUAGG | 1063 |
| 2120 | GAUCCCGUC CAUCGCCA | 241 | UGGCGAUG CUGAUGA X GAA ACGGGAUC | 1064 |
| 2124 | CCGUCCAUC GCCACUGG | 242 | CCAGUGGC CUGAUGA X GAA AUGGACGG | 1065 |
| 2148 | GGGCCCUC CUCUUGCU  | 243 | AGCAAGAG CUGAUGA X GAA AGGGCCCC | 1066 |
| 2151 | GCCCUCCUC UUGCUGCU | 244 | AGCAGCAA CUGAUGA X GAA AGGAGGGC | 1067 |
| 2153 | CCUCCUCUU GCUGCUGG | 245 | CCAGCAGC CUGAUGA X GAA AGAGGAGG | 1068 |
| 2178 | CUGGGGAUC GGCCUCUU | 246 | AAGAGGCC CUGAUGA X GAA AUCCCCAG | 1069 |
| 2184 | AUCGGCCUC UUCAUGCG | 247 | CGCAUGAA CUGAUGA X GAA AGGCCGAU | 1070 |
| 2186 | CGGCCUCUU CAUGCGAA | 248 | UUCGCAUG CUGAUGA X GAA AGAGGCCG | 1071 |
| 2187 | GGCCUCUUC AUGCGAAG | 249 | CUUCGCAU CUGAUGA X GAA AAGAGGCC | 1072 |
| 2205 | CGCCACAUC GUUCGGAA | 250 | UUCCGAAC CUGAUGA X GAA AUGUGGCG | 1073 |
| 2208 | CACAUCGUU CGGAAGCG | 251 | CGCUUCCG CUGAUGA X GAA ACGAUGUG | 1074 |
| 2209 | ACAUCGUUC GGAAGCGC | 252 | GCGCUUCC CUGAUGA X GAA AACGAUGU | 1075 |
| 2250 | AGGGAGCUU GUGGAGCC | 253 | GGCUCCAC CUGAUGA X GAA AGCUCCCU | 1076 |
| 2260 | UGGAGCCUC UUACACCC | 254 | GGGUGUAA CUGAUGA X GAA AGGCUCCA | 1077 |
| 2262 | GAGCCUCUU ACACCCAG | 255 | CUGGGUGU CUGAUGA X GAA AGAGGCUC | 1078 |
| 2263 | AGCCUCUUA CACCCAGU | 256 | ACUGGGUG CUGAUGA X GAA AAGAGGCU | 1079 |
| 2281 | GAGAAGCUC CCAACCAA | 257 | UUGGUUGG CUGAUGA X GAA AGCUUCUC | 1080 |
| 2293 | ACCAAGCUC UCUUGAGG | 258 | CCUCAAGA CUGAUGA X GAA AGCUUGGU | 1081 |
| 2295 | CAAGCUCUC UUGAGGAU | 259 | AUCCUCAA CUGAUGA X GAA AGAGCUUG | 1082 |
| 2297 | AGCUCUCUU GAGGAUCU | 260 | AGAUCCUC CUGAUGA X GAA AGAGAGCU | 1083 |
| 2304 | UUGAGGAUC UUGAAGGA | 261 | UCCUUCAA CUGAUGA X GAA AUCCUCAA | 1084 |
| 2306 | GAGGAUCUU GAAGGAAA | 262 | UUUCCUUC CUGAUGA X GAA AGAUCCUC | 1085 |
| 2321 | AACUGAAUU CAAAAAGA | 263 | UCUUUUUG CUGAUGA X GAA AUUCAGUU | 1086 |
| 2322 | ACUGAAUUC AAAAAGAU | 264 | AUCUUUUU CUGAUGA X GAA AAUUCAGU | 1087 |
| 2331 | AAAAAGAUC AAAGUGCU | 265 | AGCACUUU CUGAUGA X GAA AUCUUUUU | 1088 |
| 2345 | GCUGGGCUC CGGUGCGU | 266 | ACGCACCG CUGAUGA X GAA AGCCCAGC | 1089 |
| 2354 | CGGUGCGUU CGGCACGG | 267 | CCGUGCCG CUGAUGA X GAA ACGCACCG | 1090 |
| 2355 | GGUGCGUUC GGCACGGU | 268 | ACCGUGCC CUGAUGA X GAA AACGCACC | 1091 |
| 2366 | CACGGUGUA UAAGGGAC | 269 | GUCCCUUA CUGAUGA X GAA ACACCGUG | 1092 |
| 2368 | CGGUGUAUA AGGGACUC | 270 | GAGUCCCU CUGAUGA X GAA AUACACCG | 1093 |
| 2376 | AAGGGACUC UGGAUCCC | 271 | GGGAUCCA CUGAUGA X GAA AGUCCCUU | 1094 |
| 2382 | CUCUGGAUC CCAGAAGG | 272 | CCUUCUGG CUGAUGA X GAA AUCCAGAG | 1095 |
| 2400 | GAGAAAGUU AAAAUUCC | 273 | GGAAUUUU CUGAUGA X GAA ACUUUCUC | 1095 |
| 2401 | AGAAAGUUA AAAUUCCC | 274 | GGGAAUUU CUGAUGA X GAA AACUUUCU | 1097 |
| 2406 | GUUAAAAUU CCCGUCGC | 275 | GCGACGGG CUGAUGA X GAA AUUUUAAC | 1097 |
| 2407 | UUAAAAUUC CCGUCGCU | 276 | AGCGACGG CUGAUGA X GAA AAUUUUAA | 1098 |
| 2412 | AUUCCCGUC GCUAUCAA | 277 | UUGAUAGC CUGAUGA X GAA ACGGGAAU | 1100 |
| 2416 | CCGUCGCUA UCAAGGAA | 278 | UUCCUUGA CUGAUGA X GAA ACCGACGG |      |
| 2418 | GUCGCUAUC AAGGAAUU | 279 | AAUUCCUU CUGAUGA X GAA AUAGCGAC | 1101 |
| 2426 | CAAGGAAUU AAGAGAAG | 280 | CUUCUCUU CUGAUGA X GAA AUUCCUUG | 1102 |
| 2427 | AAGGAAUUA AGAGAAGC | 281 | GCUUCUCU CUGAUGA X GAA AAUUCCUU | 1103 |
| 2441 | AGCAACAUC UCCGAAAG | 282 |                                 | 1104 |
|      |                    | 202 | CUUUCGGA CUGAUGA X GAA AUGUUGCU | 1105 |

Table III

| 2463 AAGGAARUC CUCGAUGA 284 UCADCAG CUGAUGA X GAA AUUUCCUU 1107 2466 GAAAUCCUC GAUGAAGG 285 GCUUCAUC CUGAUGA X GAA AUUUCCUU 1108 2467 UGAAGGCUA CUGAUGAG 285 GCUUCAUC CUGAUGA X GAA AGGAUUUC 1109 2477 UGAAGGCUA CUGAUGAG 286 CCAUCACG CUGAUGA X GAA AGGAUUC 1109 2526 CUGGGCAUC UGCCUCAC 286 GUGAGGA CUGAUGA X GAA AGGCCAGU 1110 2537 CCUCACCUC CACCGUGC 289 GUGAGGG CUGAUGA X GAA AGGCCAGU 1111 2537 CCUCACCUC CACCGUGC 289 GCACGGU CUGAUGA X GAA AGGCCAGU 1111 2537 CCUCACCUC CACCGUGC 289 GCACGGU CUGAUGA X GAA AGGCCAGU 1111 2537 CCUCACCUC CACCGUGC 289 GCACGGU CUGAUGA X GAA AGGCCAGU 1111 2538 CAACUCAUC ACGCCACCU 291 AGCUGCAG CUGAUGA X GAA AGGCCAGU 1111 2539 CAACUCAUC AGCACCCU 292 AAGGCCA CUGAUGA X GAA AGGCCAGU 1111 2551 CAUCCCUC UGGCUGCC 293 GCACGCC CUGAUGA X GAA AGGCCAGU 1111 2552 ACGCACCUC GCGCUGC 293 GCACGCC CUGAUGA X GAA AGGCCAGU 1111 2551 AUGCCCUC CUGACCAC 293 GCACGCC CUGAUGA X GAA AGGCCAGU 1111 2551 AUGCCCUC CUGACCAC 293 UAGUCCAC CUGAUGA X GAA AGGCCAGU 1111 2552 GACUAUGUC CGGCUGCC 294 AGGCACCC CUGAUGA X GAA AGGCCAGU 1111 2553 GCACAAUCAU UGUCCCGC 293 GCACGCC CUGAUGA X GAA AGGCCAGU 1111 2554 GCCUGACACU UGUCCCGC 295 UAGUCCAC CUGAUGA X GAA AGGCCAGU 1111 2552 GACUAUGUC CGGGAACA 297 UGUUCCCG CUGAUGA X GAA AGGCCAGU 1112 2561 AAGACAAUA UGUCCCGC 298 GCACCCA CUGAUGA X GAA AGCCACCA 1112 2561 AAGACAAUA UGCUCCCA 299 UGGGGAGCC CUGAUGA X GAA AGCAACCU 1122 2611 AAGACAAUA GCUCCCA 299 UGGGGAGCC CUGAUGA X GAA ACAUAGUC 1122 2618 UAUUGGCUC CAGUACC 300 GGUACCG CUGAUGA X GAA ACAUAGUC 1122 2618 UAUUGGCUC CAGUACC 300 GGUACCG CUGAUGA X GAA AUUGUCUU 1121 2619 AGACAAUAU GGCUCCA 390 UGGAGAGC CUGAUGA X GAA AUUGUCUU 1121 2611 AACCCACA CUCACGGG 301 UACCCAG CUGAUGA X GAA AUUGUCCAC 1122 2618 UAUUGGCUC CAGUACC 300 GGUACCC CUGAUGA X GAA AUUGUCCAC 1122 2619 UACCCAGGU ACUCCACC 390 UGGACCC CUGAUGA X GAA AUUGUCCA 1122 2610 AACACAU GCUCCAC 390 UGCACCC CUGAUGA X GAA AUCUCCAC 1122 2611 AACCCCACU CAGUACC 300 GCUACCC CUGAUGA X GAA AUCUCCAC 1122 2612 UACCCAGGU GAGGACC 301 UACCCAC CUGAUGA X GAA AUCUCCAC 1122 2613 CACACAUU GAGGGAC 310 CCCCCAGGC CUGAUGA X GAA AUCUCCAC 1 | 2112 |                    |     |                                 |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------|-----|---------------------------------|------|
| 2466 GARAUCCUC GAUGARGC 285 GCUUCARC CUGAUGA X GAA AGGAUUUC 1109 2477 UGAAGCUU GGCUCAC 287 GUGAGGCA CUGAUGA X GAA AGGCUUCA 1109 2526 CUGGGCAUC UGCCUCAC 287 GUGAGGCA CUGAUGA X GAA AGGCUCCA 1109 2527 ADCUGCCCUC ACCUCCAC 288 GUGGAGGCA CUGAUGA X GAA AGGCUCCA 11109 2532 ADCUGCCCUC ACCUCCAC 288 GUGGAGGCA CUGAUGA X GAA AGGCUCCA 11110 2537 CCUCACCUC CACCGGCC 289 GUGAGGGCA CUGAUGA X GAA AGGCAGAU 11111 2537 CCUCACCUC CACCGGCC 289 GUGCAGGGCA CUGAUGA X GAA AGGUCAGAC 1113 2555 GACACUCAUC ACCGCACC 290 UGCGUGAUGA X GAA AGGUCAGAC 1113 2556 CACCCUCACCU CACCGCAC 291 AGCGCCGC CUGAUGA X GAA AGCGCAGGC 1111 2557 CACCCUCACCUC CACCGCAC 291 AGCGCCC CUGAUGA X GAA AGCGCACGC 1111 2557 CACCCUCACCUC CACCGCAC 292 AGGGCAC CUGAUGA X GAA AGCGCACGC 1111 2557 CAUGCCCU CGGCUGCC 293 GGCAGCCC CUGAUGA X GAA AGCGCACGC 1111 2558 GCUGACUA UGUCCGGC 293 GGCACCCC CUGAUGA X GAA AGCGCACC 1111 2558 CCUGGACUA UGUCCGGG 295 UAGCCACC CUGAUGA X GAA AGCGCAC 1111 2558 CCUGGACUA UGUCCGGG 295 UAGCCACC CUGAUGA X GAA AGCCACC 1111 2558 CCUGGACUA UGUCCGGG 295 UAGCCACC CUGAUGA X GAA AGCCACC 1111 2558 CCUGGACUA UGUCCGGG 295 UAGCCACC CUGAUGA X GAA AGCCACC 1111 2558 CCUGGACUA UGUCCGGG 295 UAGCCACC CUGAUGA X GAA AUUCUCUU 1112 2561 AAGACAAUG UUGCCGGG 298 GGAGCCAC CUGAUGA X GAA AUUCUCUU 1121 2613 GACAAUGUC CGGCAACAC 299 UGGCACCC CUGAUGA X GAA AUUCUCUU 1121 2614 AAGACAAUA UUGCCCGG 298 UGGCACCC CUGAUGA X GAA AUUCUCUU 1121 2615 UAUUGGCCC CACCUACC 299 UGGCACCC CUGAUGA X GAA AUUCUCUU 1122 2616 UAUUGGCCC CACCUACC 299 UGGCACCC CUGAUGA X GAA AUUCUCUU 1122 2617 UACCCCCC CACCUACC 299 UGCACCC CUGAUGA X GAA AUUCUCUU 1122 2618 UAUUGGCCC CACCUACC 299 UGCACCC CUGAUGA X GAA AUUCUCUU 1122 2619 UAUCACCA CUGAUGA CACCAGGC 1112 2610 UACCCAC CUGAUGA X GAA ACUCGCAC 1122 2611 AAGACAGUA CUUGAGGG 301 CCCCCCUUGAC X GAA ACUCGCAC 1122 2611 UACCCCCC CACCAGCC 300 GGCACCC CUGAUGA X GAA AUUCUCUU 1122 2612 UACCACGC CCACACCC 300 GGCACCC CUGAUGA X GAA AUUCUCUC 1122 2613 CACCAGGU CACAACGG 301 CCCCCC CUGAUGA X GAA AUUCUCACC 11123 2614 CUCCCCC CACCAGCC 300 GGCACCC CUGAUGA X GAA AUUCUCAC 1123 2615 CACCACCUU CACCAGGCC  | 2443 | CAACAUCUC CGAAAGCC | 283 | GGCUUUCG CUGAUGA X GAA AGAUGUUG | 1106 |
| 1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109   1109      |      |                    | 284 | UCAUCGAG CUGAUGA X GAA AUUUCCUU | 1107 |
| 2526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | GAAAUCCUC GAUGAAGC | 285 | GCUUCAUC CUGAUGA X GAA AGGAUUUC | 1108 |
| 2532 ANCUGECCUE ACCUCCAE 288 GUGGAGGU CUGAUGA X GAA AGGCAGAU 2537 CCUCACCUE CACCUCAE 289 GEAGGUG CUGAUGA X GAA AGGCAGAU 2550 GUGCACCUE CACCUCAE 2550 GUGCACCUE CACCUCAE 2550 GUGCACCUE CACCUCAE 2550 GUGCACCUE CACCUCAE 2551 AGGCAGCUE AUGACCEA 2590 UGCGUGAU CUGAUGA X GAA AGGUGAGG 2511 AGGCAGCU 251 AGGCAGCUE CACCUCAE 252 AAGGCAGU CUGAUGA X GAA AGCUGCGU 251 AGGCAGCU CUGAUGA X GAA AGCUGCGU 251 AGGCAGCU CUGAUGA X GAA AGCUGCGU 252 AAGGCACU CUGAUGA X GAA AGCUGCGU 2537 CAUGCCCUU CGGCUGCC 253 AGGCAGCU CUGAUGA X GAA AGGCAGCU 251 AGGCAGCU CUGAUGA X GAA AGGCAGCU 251 AGGCAGCU CUGAUGA X GAA AGGCAGCU 251 AGGCAGCU CUGAUGA X GAA AGGCAGCU 252 AGGCAGCCU CUGAUGA X GAA AGGCAGCU 2530 GGCAGCCA CUGAUGA X GAA AGGCAGCA 2530 GGCUGCCU CUGACUA 2550 GGCUGCCUC CUGAUGA X GAA AGGCCAGC 1118 2588 CCUGGACUA UUUGCGGG 256 CCCGGACA CUGAUGA X GAA AGGCCAGC 1119 2592 GAGUAUGGU CCGGAACA 257 UGGUUCCCG CUGAUGA X GAA AGCCCAGG 1112 2611 AAGCACAUA UUGGCUCC 259 GGCAGCCA CUGAUGA X GAA AGUGCCAG 1112 2613 GACAUAAUU GGCUCCCA 259 UGGGAGCC CUGAUGA X GAA AUGUGCUU 1121 2614 UAUUGGCUC CCAGUACC 300 GGGAGCCA CUGAUGA X GAA AUGUGCUU 1122 2618 UAUUGGCUC CCAGUACC 300 GGGACCCA CUGAUGA X GAA AUCUGCCA 2618 UAUUGGCUC CCAGUACC 300 GGGACCCA CUGAUGA X GAA ACCUGCAGA 1124 2624 CUCCCAGUAC CUGAUGC 300 GGGACCCA CUGAUGA X GAA ACCUGCAG 1125 2631 UACCUGCUCA 301 GGGCAGAUC GCAAAGGG 302 CCCUUUCC CUGAUGA X GAA ACCUGCAC 1126 2669 GAACUACUU GAGGACC 301 CCCUUUCC CUGAUGA X GAA ACCUGCCA 1127 2669 GAACUACUU GAGGACC 302 CCCUUCCAGAG CUGAUGA X GAA ACCUGCCA 1126 2669 GAACUACUU GGAGGACC 303 CCCUUUCC CUGAUGA X GAA ACCUGCCA 1127 2669 GAACACACU CUGAGGAC 304 CCCUCCAGAC CUGAUGA X GAA ACCUCCAC 1127 2669 GAACACAC CUGAGGAC 305 GGCCCUCC CUGAUGA X GAA ACCUCCAC 1128 2660 GAACUACU CAGAGGAC 306 CCCUUCAGAG CUGAUGA X GAA ACCUCCAC 1129 2660 GAACACAC CUGGGUG 307 GGGCCCCC CUGAUGA X GAA ACCUCCAC 1129 2713 AGGACCGUC CUGGGGG 306 CCCUUCAGAG X GAA ACCUCCAC 1129 2714 ACCACACCU GGGGCCC 307 GGGCCCCC 307 GGCCCCCC 307 GGCCCCCC 307 GGCCCCCCCCCC |      | UGAAGCCUA CGUGAUGG | 286 | CCAUCACG CUGAUGA X GAA AGGCUUCA | 1109 |
| 2537 CCUCACCUC CACCGUC 289 GCACGGUC CUGAUGA X GAA AGGUGAGG 11112 2550 GUGCAACUC AUCACGCA 290 UGCGUGAU CUGAUGA X GAA AGGUGAGG 11113 2553 CAACUCAUC AUCACGCA 290 UGCGUGAU CUGAUGA X GAA AGGUGACG 11113 2553 CAACUCAUC AUCACGCU 291 AGGUGACGU CUGAUGA X GAA AGGUGACGU 1115 2550 CAUGCCCUU CGGCUGCC 291 AGGCCACGU CUGAUGA X GAA AGGUGACGU 1115 2570 CAUGCCCUU CGGCUGCC 293 GGCAGCCC CUGAUGA X GAA AGGUGACGU 1116 2571 AUGCCCUU CGGCUGCCU 294 AGGCAGCC CUGAUGA X GAA AGGCCAUG 1117 2580 GGCUGCCCC CUGAACAU 295 UAGUCACA CUGAUGA X GAA AGGCCAUG 1117 2580 CGCUGGCCC CUGAACAU 295 UAGUCACA CUGAUGA X GAA AGGCCAUG 1117 2580 CCUGGACAU MUCCCGGG 296 CCCGGACCA CUGAUGA X GAA AGGCCAUG 1119 2592 GACUAUGU CGGGAACA 297 UGUUCCCG CUGAUGA X GAA AGUCCAGG 1119 2592 GACUAUGU CGGGAACA 299 UGGGAGCC CUGAUGA X GAA AGUCCAGG 1119 2613 GACACAAUAU GGCUCCC 299 GGAGCCAA CUGAUGA X GAA AGUCCAGG 1119 2614 AGACCAAUA UUGCCUCC 299 UGGGAGCC CUGAUGA X GAA AGUCCAGG 1112 2615 UAUUGGCU CCAGUACC 300 GGUACUGG CUGAUGA X GAA AUUGUCUU 1121 2616 UAUUGGCU CCAGUACC 300 GGUACUGG CUGAUGA X GAA AUUGUCUU 1122 2617 UACCUGCUCA ACUGGUG 301 UGAGCAGG CUGAUGA X GAA ACUGGGAG 1112 2618 UAUUGGCU CCAGUGAC 300 GGUACUGG CUGAUGA X GAA ACUGGGAG 1112 2619 UACCGGCUC AACUGGUG 302 CACCAGUU CUGAUGA X GAA ACUGCAGA 1123 2624 CUCCCAGUA CCUGCUCA 301 UGAGCAGG CUGAUGA X GAA ACUGCAGA 1123 2631 UACCUGCUC AACUGGUG 302 CACCAGUU CUGAUGA X GAA ACUGCAGA 1123 2649 GUGCAGAUC CUGAUGA 302 CACCAGUU CUGAUGA X GAA ACUGCACA 1126 2656 CAUGAACUA CUUGGUGA 302 CACCAGUU CUGAUGA X GAA ACUGCACA 1126 2656 GAACUACUU GGAGGACC 305 GGUCCCC CUGAUGA X GAA ACUGCACA 1126 2656 GAACUACUU GGAGGACC 305 GGUCCCC CUGAUGA X GAA ACUGCACA 1126 2656 GAACUACUU GGAGGACC 305 GGUCCCC CUGAUGA X GAA ACUGCACC 1126 2656 GAACUACUU GGAGGACC 305 GGUCCCC CUGAUGA X GAA ACUGCACC 1126 2650 GAACUACUU GGAGGACC 307 GGUCCCCC CUGAUGA X GAA ACUGCACC 1126 2650 GAACUACUU GGAGGGCC 307 GGUCCCCC CUGAUGA X GAA ACUGCACC 1126 2650 GAACUACUU GGAGGGCC 307 GGUCCCCC CUGAUGA X GAA ACUGCACC 11131 2715 AGCAACUU UACCAGA 309 GUCACCC CUGAUGA X GAA ACUCUCCA 11131 2715 AGCAACUU UACCAGA 309 GUGACCC  | 2526 | CUGGGCAUC UGCCUCAC | 287 | GUGAGGCA CUGAUGA X GAA AUGCCCAG | 1110 |
| 2550 GUGCARCUC AUCACGCA 250 UGCGIGAU CUGAUGA X GAA AGUUGCAC 251 AGCUCAUC AGCAGGCU 251 AGCUCAUC AGCAGGCU 252 AGGCAGCUC AUCACCCUU 252 AGGCAGCUC CUGAUGA X GAA AGUUGCAC 2552 ACGCAGCUC AUCACCCUU 252 AGGCAGCUC CUGAUGA X GAA AGCUCCCU 253 GCCAGCCC CUGAUGA X GAA AGCUCCCU 254 AGGCAGCC CUGAUGA X GAA AGCUCCCU 2551 AUGCCCUUC GGCUGCCC 254 AGGCAGCC CUGAUGA X GAA AGCGCACC 2551 AUGCCCUUC GGCUGCCC 254 AGGCAGCC CUGAUGA X GAA AGGCACC 2551 AUGCCCCUUC GGCUGCCC 254 AGGCAGCC CUGAUGA X GAA AGGCCAGC 2550 GCCUGGACUA UGUCCCGG 256 CCCGGACA CUGAUGA X GAA AGGCCAGC 257 UAGUCCCC GUGAUGA X GAA AGGCCAGC 2588 CCUGGACUA UGUCCCGG 258 GACAUAUGUC CCGGACAC 259 UAGUCCCC GUGAUGA X GAA AGCCCAGC 2511 AAGACAAUA UUGGCUCCA 259 UAGGCACC CUGAUGA X GAA AGUCCCAG 2511 AAGACAAUA UUGGCUCCA 259 UAGGCACC CUGAUGA X GAA AUAUGUCCU 1121 2613 GACAUAUUC GCGCAACA 257 UAGUCCCC GUGAUGA X GAA AUAUGUCCU 1122 2614 UAUUGGCUC CCAGUACC 259 UAGGCACC CUGAUGA X GAA ACUGGCAG 2618 UAUUGGCUC CCAGUACC 250 UAGACAUA CUUGCUCCA 250 UAGACAUA CUUGGUG 264 GUCCAGAU CUUGAUGA X GAA ACUGGCAC 2650 GACUAACAU CUUGGUG 2660 CAUGAACAU CUUGGUG 2660 CAUGAACAU CUUGGUG 2660 GAACUACUU GAAGGAC 2660 GAACUACUU GAAGACA 2660 GAACUACUU UAGACACA 2660 GAACUACUU UAGACACA 2660 GAACUACUU UAGACCAC 2660 GAACUACUU UAGACACA 2660 GAACUACUU UACACACA 2660 GAACUACUU UACACACA 2660 GAACCACUU UAACACACA 2660 GAACCAUUU UACACACA 2660 GAACCACUU UAACACACA 2660 GAACCACUU UAACACACA 2660 GAACCACUU UAACA | 2532 | AUCUGCCUC ACCUCCAC | 288 | GUGGAGGU CUGAUGA X GAA AGGCAGAU | 1111 |
| 2553 CAACUCAUC ACGCAGCU 291 AGCUCCU CUGAUGA X GAA AGCUCCU 1111 25502 AAGGACCU AUGCCCUU 292 AAGGGAU CUGAUGA X GAA AGCGCAUG 1115 25701 CAUGCCCUU CGGCUGCC 293 GGCACCCG CUGAUGA X GAA AGCGCAUG 1115 2571 AUGCCCUU CGGCUGCC 293 AGGGCAUG X GAA AGCGCAUG 1117 2580 GGCUGCCU CUGGACUA 295 UACUCCAG CUGAUGA X GAA AAGGCAUG 1117 2580 GGCUGCCU CUGGACUA 295 UACUCCAG CUGAUGA X GAA AAGGCACC 1118 2580 CGCUGCACUA CUUCAGGA X GAA AGCCCACC 1118 2580 CCUGAACAU AUGCCGG 294 AGGCAGCC CUGAUGA X GAA AGGCCACC 1118 2591 GACUAUGU CGGGAACA 297 UGUUCCGG CUGAUGA X GAA AGUACCU 1112 2592 GACUAUGU CGGGAACA 297 UGUUCCGG CUGAUGA X GAA AGUACCU 1122 2613 GACAAUAUU GGCUCCCA 299 UGGGAGCC CUGAUGA X GAA ACUAGCUC 1122 2614 UAUUGCCU CACHACC 300 GGUACUGA X GAA AUAUUCUU 1122 2618 UAUUGCCU CACHACC 300 GGUACUGA X GAA AUAUUCUU 1122 2618 UAUUGCCU CACHACC 301 UGACCAG CUGAUGA X GAA AUAUGCUC 1122 2624 CUCCCUGCUCA 301 UGACCAG CUGAUGA X GAA ACUCGGAGA 1123 2631 UACCUGCUC AACUGGUG 302 CACCAGUU CUGAUGA X GAA ACUCGGAGA 1123 2649 GUGCAGAU CUUGCUCA 301 UGACCAG CUGAUGA X GAA ACUCGCAC 1126 2666 CAUGAACU CUUGGAGG 302 CACCAGUU CUGAUGA X GAA ACUCGCAC 1126 2666 CAUGAACU CUUGGAGG 304 CCUCCCAG CUGAUGA X GAA ACUCGCAC 1126 2666 CAUGAACU CUUGGAGG 304 CCUCCCAG CUGAUGA X GAA ACUCGCAC 1126 2666 CAUGAACU CUUGGAGG 304 CCUCCCAG CUGAUGA X GAA ACUCGCAC 1126 2666 CAUGAACU CUUGGAGG 306 CACCAAGC CUGAUGA X GAA ACUCGCAC 1127 2669 GAACUACUU GGGCAGC 305 GGUCCUCC CUGAUGA X GAA ACUCGCCU 1127 2660 GAACUACUU CUUGGAGG 304 CCUCCCAG CUGAUGA X GAA ACUCGCCU 1127 2660 GAACACACAC CUGAUGA X GAA ACUCGCCU 1127 2660 GAACCAAC CUGAUGA X GAA ACUCGCCU 1129 2660 GAACACACAC CUGAUGA X GAA ACUCGCCU 1129 2660 GAACCACAC CUGAUGA X GAA ACUCGCCU 1129 2660 GAACCACAC CUGAUGA X GAA ACUCGCCU 1129 2715 ACCACAGUU CUGGGGG 305 CCCCCAC CUGAUGA X GAA ACUCGCCU 1129 2716 GACACAGUU CUGAGGA 308 UUCACCAC CUGAUGA X GAA ACUCGCCU 1121 2717 CACCAGAUU CUGAGGA 308 UUCACCAC CUGAUGA X GAA ACUCGCCU 1121 2718 CACCAGAUU CACAGA 308 UUCACCAC CUGAUGA X GAA ACUCGUCU 1131 2719 CACCAGAUU CACAGA 308 UUCACCAC CUGAUGA X GAA ACUCGUCU 1131 2719 CACCAGAUU CACAGA 311 CA | 2537 | CCUCACCUC CACCGUGC | 289 | GCACGGUG CUGAUGA X GAA AGGUGAGG | 1112 |
| 2562 ACGCACCUC AUGCCCUU 292 AAGGCCAU CUGAUGA X GAA AGCUGCGU 1115 2570 CAUGCCCUU CGGCUGCC 293 GGCAGCCG CUGAUGA X GAA AGCUGCGU 1116 2571 AUGCCCUUC GGCUGCC 294 AGGCAGCC CUGAUGA X GAA AGGCCAUG 1117 2580 GGCUGCCCU CUGAGUA 295 UAGUCCAG CUGAUGA X GAA AGGCCAUG 1117 2580 CCUGGACUA UGUCCGGG 296 CCCGGACCA CUGAUGA X GAA AGCGCACC 1117 2580 CCUGGACUA UGUCCGGG 296 CCCGGACCA CUGAUGA X GAA AGCCACCG 1119 2592 GACUAUGUC CGGGAACA 297 UGUUCCGG CUGAUGA X GAA AGUCCACG 1119 2592 GACUAUGUC CGGGAACA 297 UGUUCCGG CUGAUGA X GAA AGUCCUCU 1120 2611 AAGACAAUA UGGCUCC 298 GGAGCCAA CUGAUGA X GAA ACUAUGUC 1122 2618 UAUUGGCUC CCAGUACC 300 GGGAGCC CUGAUGA X GAA ACUAUGUC 1121 2618 UAUUGGCUC CCAGUACC 300 GGGACCC UGAUGA X GAA ACUAUGUC 1122 2618 UAUUGGCUC CCAGUACC 300 GGGACCC UGAUGA X GAA ACCAGGAG 1112 2624 CUCCCAGUA CCUGCUCA 301 UGAGCAGG CUGAUGA X GAA ACCAGGAG 1124 2631 UACCUGCUC AACUGGUG 302 CACCAGUU CUGAUGA X GAA ACCAGGAG 1122 2649 CUGCCAGUA CCUGCUCA 301 UGAGCAGG CUGAUGA X GAA ACCAGGAG 1122 2650 CAUGAACAC CUAAGGAG 303 CCCUUUGG CUGAUGA X GAA ACCUGCAC 1125 2660 CAUGAACAC CUAAGGAG 303 CCCUUUGG CUGAUGA X GAA ACCUGCAC 1125 2669 GAACUACUU GGAGGACC 305 GGUCCUC CUGAUGA X GAA ACGUUCCAC 1127 2669 GAACUACUU GGAGGACC 305 GGUCCUC CUGAUGA X GAA ACGUUCCAC 1128 2660 AGGACCGU GGUGAACC 306 GGUCCUC CUGAUGA X GAA ACGUUCCU 1128 2660 AGGACCGU GGUGAACC 307 GGUGCCCC CUGAUGA X GAA ACGUUCCU 1129 2660 AGGACCGU GGUGAA 308 UUCACCAG CUGAUGA X GAA ACGUUCCU 1129 2660 AGGACCGU GGUGGAA 308 UUCACCAG CUGAUGA X GAA ACGUUCCU 1139 2715 AGGAACGUA CUGGUGAA 308 UUCACCAG CUGAUGA X GAA ACGUUCCU 1131 2719 CACCAGUUU UGGCCUC 307 GGUGCCC CUGAUGA X GAA ACCGUCCU 1131 2719 CACCAGUU UGGGCUG 311 CAGCCCAC CUGAUGA X GAA ACGUUCCU 1131 2719 CACCAGUU UGGCCUG 311 CAGCCCAC CUGAUGA X GAA ACCUCCCU 1131 2719 CACCAGUU UGGCCUG 311 CAGCCCAC CUGAUGA X GAA ACUCUCCAC 1131 2719 CACCAGUU UGACCC 312 CACCUCCAC CUGAUGA X GAA ACUCUCCAC 1131 2719 CACCAGUU CAAGAUCA 311 CAGCCCAC CUGAUGA X GAA ACUCUCCAC 1131 2719 CACCAGUU CAAGAUCA 311 CUCCACCA CUGAUGA X GAA ACUCUCCU 1131 2719 CACCAGUU CAAGAGGA 311 CUCCACCA CUGAUGA X GAA AACU | 2550 | GUGCAACUC AUCACGCA | 290 | UGCGUGAU CUGAUGA X GAA AGUUGCAC | 1113 |
| 2570 CAUGCCCUU CGGCUGCC 293 GGCAGCCG CUGAUGA X GAA AGGGCAGU 1116 2571 AUGCCCUUC GGCUGCCU 294 AGGCAGCC CUGAUGA X GAA AGGGCAGC 1117 2580 GGCUGCCUC CUGGACUA 295 UAGUCCAG CUGAUGA X GAA AGGCAGCC 1118 2588 CCCCGGACA UGUCCGGG 296 CCCCGGACA CUGAUGA X GAA AGGCAGCC 1118 2589 CACUAGUGU CGGGAACA 297 UGUUCCGG CUGAUGA X GAA AGCAGCCC 1112 2611 AAGACAAUA UUGGCUCC 298 GGAGCCA CUGAUGA X GAA ACUAGUCUU 1121 2611 AAGACAAUA UUGGCUCC 298 GGAGCCA CUGAUGA X GAA ACUAGUCU 1122 2611 AUGUCCCG CUGAUGA X GAA ACUAGUCU 1122 2612 UAUGGCUC CAGUAGA 299 UGGGAGCC CUGAUGA X GAA AUAUUGUC 1122 2613 GACAAUAUU GGCUCCA 299 UGGGAGCC CUGAUGA X GAA AUAUUGUC 1122 2614 UAUUGGCUC CAGUAGA 300 GGUACUGA X GAA AUAUUGUC 1122 2615 UAUUGGCUC CAGUAGCA 300 GGUACUGA X GAA AUAUUGUC 1122 2626 CUGCCAGUA CCUGCUCA 301 UGAGCAGG CUGAUGA X GAA AUAUUGUC 1122 2631 UACCUGCUC AACUGGUG 302 CACCAGUU CUGAUGA X GAA AUCUGCAC 1126 2649 GUGCAGAUC GCAAAGGG 303 CCCUUUGC CUGAUGA X GAA AUCUGCAC 1126 2666 CAUGAACUA CUUGGAGG 301 CCUCCAG CUGAUGA X GAA AUCUGCAC 1126 2666 CAUGAACUA CUUGGAGG 304 CCUCCAG CUGAUGA X GAA AUCUGCAC 1126 2666 CAUGACUU GGAGGAC 305 GGUCCUC CUGAUGA X GAA AUCUGCAC 1127 2669 GAACUACUU GGAGGAC 305 GGUCCUCC CUGAUGA X GAA ACUGCUCU 1127 2660 AGGACCGU  GGUGCACC 307 GGUCCCC CUGAUGA X GAA ACGUCCUU 1127 2660 CACCAAGCU  GGUGCACC 307 GGUCCCC CUGAUGA X GAA ACGUCCUU 1129 2660 AGGACCGU  GGUGCACC 307 GGUCCCC CUGAUGA X GAA ACGUCCUU 1129 2660 CACCAAGUU  GGUGCACC 307 GGUCCAC CUGAUGA X GAA ACGUCCUU 1129 2715 AGGAACGUA CAGCAGUU 310 AAAUCUGU  CUGAUGA X GAA ACGUCCCU 1129 2726 CACCAGAUU  UGGGCUGG 311 CAGCACAC CUGAUGA X GAA ACGUCCCU 1131 2739 CACCAGAUU  UGGGCUGG 311 CAGCACAC CUGAUGA X GAA ACUCUGCU 1131 2752 UCACAGAUU  UGGGCUGG 312 CAGCACCC CUGAUGA X GAA ACUCUGAC 1133 2753 CACCAGAUU  UGGGCUGG 312 CAGCACCC CUGAUGA X GAA ACUCUGCU 1131 2754 ACGCAUGU  GGAGCAC 309 GUGAUCA X GAA ACUCUGAC 1133 2755 CACCAGAUU  UGAGCGG 311 CAGCCCC CUGAUGA X GAA ACUCUGCU 1131 2818 AAGUCCAU  UCACAGA 312 CCACCCC CUGAUGA X GAA ACUCUGU 1136 2820 GUGCCUAU  CAAGUGG 312 CACCACCC CUGAUGA X GAA ACUCUGU 1144 2847 CACAGAUU  UACACAGA 320  | 2553 | CAACUCAUC ACGCAGCU | 291 | AGCUGCGU CUGAUGA X GAA AUGAGUUG | 1114 |
| 2570 CAUGCCCUU CGGCUGCC 293 GGCAGCC CUGAUGA X GAA AGGCCAUG 1116 2571 AUGCCCUUC GGCUGCCU 294 AGCACGC CUGAUGA X GAA AGGGCAUG 1117 2580 GGCUGCCCU CUGAGUA 295 UAGUCCAG CUGAUGA X GAA AGGGCAU 1117 2580 CCUGGACUA UGUCCGGG 296 CCCGGACAC CUGAUGA X GAA AGGCCAGC 1119 2592 GACUAUGUC CGGGACAC 297 UGUUCCGG CUGAUGA X GAA ACAUAGUC 1120 2611 AAGACAAUA UGGCUCC 298 GGAGCCA CUGAUGA X GAA ACAUAGUC 1120 2611 AAGACAAUA UGGCUCC 299 UGGGAGCC CUGAUGA X GAA ACAUAGUC 1121 2613 GACAALAUU GGCUCCC 299 UGGGAGCC CUGAUGA X GAA ACAUAGUC 1121 2614 UAUUGGCUC CCAGUACC 300 GGUACGG CUGAUGA X GAA ACAUAGUC 1122 2618 UAUUGGCUC CCAGUACC 300 GGUACGG CUGAUGA X GAA ACAUGGCAG 1112 2624 CUCCCAGUA CCUGCUCA 301 UGAGCAGG CUGAUGA X GAA ACCAGGAG 1112 2624 CUCCCAGUA CCUGGUCA 301 UGAGCAGG CUGAUGA X GAA ACCAGGAG 1124 2631 UACCUGCUC AACUGGUG 302 CCCCUUGGC CUGAUGA X GAA ACCAGGAG 1124 2631 UACCUGCUC CAACGGG 303 CCCCUUUGC CUGAUGA X GAA ACCAGGAG 1125 2666 CAUGAACUA CUUGGAGG 304 CCCUCCAAG CUGAUGA X GAA ACCAGGUA 1125 2669 GAACUACUU GGAGGACC 305 GGUCCUCC CUGAUGA X GAA ACCUGCAC 1127 2669 GAACUACUU GCAGGACC 305 GGUCCUCC CUGAUGA X GAA ACGUUCCU 1128 2680 AGGACCGUC GCUUGGUG 306 CACCAAGC CUGAUGA X GAA ACGUUCCU 1129 2680 AGGACCGUC GCUUGGUG 306 CACCAAGC CUGAUGA X GAA ACGUUCCU 1129 2668 CCGCCCUC GGUGACA 308 UUCACCAG CUGAUGA X GAA ACGUUCCU 1129 2715 AGGAACGUA CUGGUGAA 308 UUCACCAG CUGAUGA X GAA ACGUUCCU 1139 2716 AGGAACGUA CUGGUGAA 309 GUGAUCUC CUGAUGA X GAA ACGUUCCU 1131 2717 AGGAACGUA CUGGUGAA 309 GUGAUCUC CUGAUGA X GAA ACGUUCCU 1131 2718 CACCAAGUU UGGGCUG 311 CAGCCCAC CUGAUGA X GAA ACGUUCCU 1131 2719 CACCAGUCU GAUGGACC 307 GGUGCACC CUGAUGA X GAA ACGUUCCU 1131 2719 CACCAGUCU GAUGGACC 307 GGUGCACC CUGAUGA X GAA ACCUUCCU 1131 2719 CACCAGUCU CACAGGAG 311 CAGCCCAC CUGAUGA X GAA ACCUUCCU 1131 2719 CACCAGUCU CACAGGAG 311 CAGCCCAC CUGAUGA X GAA ACCUUCCU 1131 2719 CACCAGUCA CACAGAUU UGGGCUGG 311 CAGCCCAC CUGAUGA X GAA ACCUUCCU 1131 2719 CACCAGUCA CACAGAA 311 CUCCACUG CUGAUGA X GAA AACCUCCU 1131 2719 CACCAGUU CACAGGAG 311 CCCCUCCAAGA X GAA AACGUCCU 1140 2814 CAUCACAU UUCACCA 312 CCCCCCCCCCCC | 2562 | ACGCAGCUC AUGCCCUU | 292 | AAGGGCAU CUGAUGA X GAA AGCUGCGU | 1115 |
| 2580 GCCUGCCUC CUGGACUA 295 UAGUCCAG CUGAUGA X GAA AGGCACCC 1118 2588 CCUGGACUA UGUCCGGG 296 CCCGGACA CUGAUGA X GAA AGGCACCC 1119 2592 GACUAUGUC CGGCAACA 297 UGUUCCGG CUGAUGA X GAA ACAUAGUC 1120 2611 AAGACAAUA UUGGCUCC 298 GGACCAA CUGAUGA X GAA ACAUAGUC 1120 2613 GACAAUAAUU GGCUCCA 299 UGGGACCC CUGAUGA X GAA AUAUUGUCU 1121 2613 GACAAUAAUU GGCUCCA 299 UGGGACCC CUGAUGA X GAA AUAUUGUCU 1121 2618 UAUUGGCUC CCAGUACC 300 GGUACUGG CUGAUGA X GAA AUAUUGUCU 1122 2618 UAUUGGCUC CCAGUACC 300 GGUACUGG CUGAUGA X GAA AUAUUGUCU 1122 2624 CUCCCAGUA CCUGCUCA 301 UGAGCAGG CUGAUGA X GAA ACOGGGAG 1124 2631 UACCUGCUC AACUGGUG 302 CACCAGUU CUGAUGA X GAA ACOGGGAG 1124 2649 GUGCAGAUC GCAAAGGG 303 CCCCUCAUGA X GAA AGCCAGUA 1125 2666 CAUGAACUA CUUGCAGG 304 CCUCCCAAG CUGAUGA X GAA AGCGAGUA 1125 2667 GAACUACUU GGAGGACC 305 GGUCCUCC CUGAUGA X GAA AGCGGUCA 1126 2668 GAACUACUU GGAGGACC 305 GGUCCUCC CUGAUGA X GAA ACGGUCCU 1129 2680 AGGACCGUC GCUGAGGG 306 CACCAAGC CUGAUGA X GAA ACGGUCCU 1129 2680 AGGACCGUC GCUGAGGG 306 CACCAAGC CUGAUGA X GAA ACGGUCCU 1129 2715 AGGAACGUA CUGGUGAA 308 UUCACCAG CUGAUGA X GAA ACGGUCCU 1129 2715 AGGAACGUA CUGGUGAA 308 UUCACCAG CUGAUGA X GAA ACGGUCCU 1129 2715 GUCAAGAUU UUGGGCUG 306 UUCACCAG CUGAUGA X GAA ACGGUCCU 1129 2715 CACCAAGUU UUGGGCUG 310 AAAUCUGU CUGAUGA X GAA ACGGUCCU 1132 2715 CACCAAGAUU UUGGGCUG 311 CAGCCCAA CUGAUGA X GAA ACGUUCCU 1133 2715 CACCAGAUU UUGGGCUG 311 CAGCCCAA CUGAUGA X GAA AUCUUGAC 1133 2715 CACCAGAUU UUGGGCUG 312 CACCAGCC CUGAUGA X GAA AUCUUGAC 1133 2715 CACAGAUUU UGGGCUGG 312 CACCAGCC CUGAUGA X GAA AUCUUGAC 1133 2715 CACAGAUUU UGGGCUGG 312 CACCAGCC CUGAUGA X GAA AUCUUGAC 1133 2715 CACAGAUUU UGGGCUGG 312 CACCAGCC CUGAUGA X GAA AUCUUGAC 1136 2716 GUCAAGAC AUCUUACACG 314 CUGAUGA X GAA AUCUUGAC 1136 2717 ACGGACUA CAAGAUCA 317 CUGAUGA X GAA AUCUUGU 1136 2718 CACAGAUUU UGACCAG 319 CCAGCCC CUGAUGA X GAA AUCUUGU 1136 2718 CACAGAUUU UACACAG 319 CCAGCCC CUGAUGA X GAA AUCUUGU 1136 2718 CACAGAUUU UACACAG 319 CUGAUGA X GAA AUCUUGU 1144 2718 CACAGAUUU UACACAG 319 CUGAUGA X GAA AUCUUGU 1144 2718 CACAGAUUU | 2570 | CAUGCCCUU CGGCUGCC | 293 | GGCAGCCG CUGAUGA X GAA AGGGCAUG | 1116 |
| 2580 GGCUGCCUC CUGGACUA 295 UAGUCCAG CUGAUGA X GAA AGGCAGCC 1118 2588 CCUGGACUA UGUCCAGG 296 CCCGGACA CUGAUGA X GAA AGUCCAGG 1119 2592 GACUAUGUC CGGGAACA 297 UGUUCCCG CUGAUGA X GAA AGUCCAGG 1119 2611 AAGACAAUA UUGCCUCC 298 GAGCCAA CUGAUGA X GAA AUGUCUU 1120 2613 GACAAUAUU GGCUCCA 299 UGGGAGCC CUGAUGA X GAA AUGUCUU 1122 2618 UAUUGGCUC CCAGUACC 300 GGUACUGA X GAA AUGUCUU 1122 2618 UAUUGGCUC CCAGUACC 300 GGUACUGA X GAA AUAUUGUC 1122 2619 UGCCAGUA CCUGCUCA 301 UGAGCAGC CUGAUGA X GAA AUAUUGUC 1122 2610 UAUUGGCUC CACGUACC 300 GGUACUGA X GAA ACGCGAGA 1124 2624 CUCCCAGUA CCUGCUCA 301 UGAGCAGC CUGAUGA X GAA ACGCGAGA 1125 2639 UGCCAGAUC CUCAAGGG 302 CCCUUUGC CUGAUGA X GAA ACUGGGAG 1125 2649 GGCCAGAUC CUCAAGGG 303 CCCUUUGC CUGAUGA X GAA ACUGGGAC 1125 2666 CAUGAACUA CUUGGAGG 304 CCCUCCAG CUGAUGA X GAA ACUGCACC 1126 2666 CAUGAACUA CUUGGAGG 304 CCCUCCAG CUGAUGA X GAA AGUUCAUC 1127 2669 GAACUACUU GGAGGACC 305 GGUCCUC CUGAUGA X GAA AGUUCAUC 1128 2680 AGGACCGUC GCUUGGUG 306 CACCAAGC CUGAUGA X GAA AGUUCAUC 1129 2680 AGGACCGUC GCUUGGUG 306 CACCAAGC CUGAUGA X GAA ACGUUCCU 1129 2680 AGGACCGUC GCUUGGUG 306 CACCAAGC CUGAUGA X GAA ACGUUCCU 1129 2715 AGGAACGU CUGGUGAA 309 UUCACCAG CUGAUGA X GAA ACGUUCCU 1129 2726 CAGCAUGU UUGGCCUC 309 UUCACCAG CUGAUGA X GAA ACGUUCCU 1129 2739 CAGCAUGU CUGGCUGA 309 UUCACCAG CUGAUGA X GAA ACGUUCCU 1130 2739 CAGCAUGU UUGGCCUG 310 AAAUCUG CUGAUGA X GAA ACCUUCCU 1131 2739 CAGCAUGU UUGGCCUG 311 CACCCCAA CUGAUGA X GAA ACCUUCCU 1131 2752 UUGAAGAU CACAGAUU 310 AAAUCUG CUGAUGA X GAA ACCUUCGU 1131 2753 CACCAGAUU UUGGCCUG 311 CACCCCAA CUGAUGA X GAA ACCUUCCU 1131 2754 ACCAAGAUU UUGGCCUG 311 CACCCCCAC CUGAUGA X GAA ACCUUCGU 1131 2755 CACCAGAUU UUGGCCUG 311 CACCCCCAC CUGAUGA X GAA AUCUGUG 1136 2754 ACAGAUUU UCACCAG 311 CACCCCCA CUGAUGA X GAA AUCUGUC 1136 2754 ACAGAUUU UCACACGA 312 CCGCCCC CUGAUGA X GAA AUCUGUC 1136 2754 ACAGAUUU UCACACAG 313 CCCUUCAUGA X GAA AUCUGUC 1137 2754 ACGCAACA CUGAUGA X GAA AUCCACU 1136 2755 CACGACAC CUGAUGA X GAA AUCCACU 1141 2840 AUUGACAC AUUUCACCA 317 UUGAUCC CUGAUGA X GAA AUCCACU 1141 284 | 2571 | AUGCCCUUC GGCUGCCU | 294 | AGGCAGCC CUGAUGA X GAA AAGGGCAU |      |
| 2598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2580 | GGCUGCCUC CUGGACUA | 295 |                                 |      |
| 2592   GACUAUGUC CGGGAACA   297   UGUUCCCG CUGAUGA X GAA ACAUAGUC   1120   2611   AAGACAAUA UUGGCUCCC   298   GGACCCAA CUGAUGA X GAA AUUUGUCU   1121   2613   GACAAUAUU GGCUCCCA   299   UGGGACCC CUGAUGA X GAA AUUUGUCU   1122   2618   UAUUGGCUC CAGUACC   300   GGGACCC CUGAUGA X GAA AUAUUGUC   1122   2618   UAUUGGCUC CAGUACC   300   GGGACCC CUGAUGA X GAA ACAUAGUGUC   1124   2624   CUCCCAGUA CCUGCUCA   301   UGAGCAGG CUGAUGA X GAA ACUGGGAG   1124   2631   UACCUGCUC AACUGGUG   302   CACCAGUU CUGAUGA X GAA AGCAGGUA   1125   2649   GUGCAGAUC GCAAAGGG   303   CCCUUUGC CUGAUGA X GAA AUCUGGAC   1126   2666   CAUGAACUA CUUGGAGG   304   CCUCCAAG CUGAUGA X GAA AUCUGGAC   1127   2680   AGACUACUU GGAGGACC   305   GGUCCUCC CUGAUGA X GAA AGUACAUC   1127   2680   AGACUACUU GGAGGACC   305   GGUCCUCC CUGAUGA X GAA AGUACAUC   1128   2684   CCGUCGCUU GGUGCACC   307   GGUGCACC CUGAUGA X GAA AGGGACGG   1130   2715   AGGAACGUA CUGGUGAA   308   UUCACCAG CUGAUGA X GAA AGCGACGG   1130   2715   AGGAACGUA CUGGUGAA   308   UUCACCAG CUGAUGA X GAA ACGUUCCU   1131   2739   CAGCAUGU CAGAUUU   310   AAAUCUGU CUGAUGA X GAA ACCUUCCU   1131   2745   GUCAAGAUU UGGGCUG   311   CAGCCCAA CUGAUGA X GAA ACCUUCCU   1132   2752   UCACAGAUU UGGGCUG   311   CAGCCCAA CUGAUGA X GAA ACCUUGAC   1132   2753   CACAGAUUU UGGGCUG   311   CAGCCCAA CUGAUGA X GAA ACUUGUGA   1134   2753   CACAGAUUU UGGGCUG   312   CCAGCCCC CUGAUGA X GAA AUCUUGAC   1136   2754   ACAGAUUU UGGGCUG   312   CCAGCCCC CUGAUGA X GAA AUCUUGUC   1136   2754   ACAGAUUU UGGGCUG   312   CCAGCCCC CUGAUGA X GAA AUCUUGUC   1136   2754   ACAGAUUU UGGGCUG   312   CCAGCCCC CUGAUGA X GAA AUCUUGUG   1136   2754   ACAGAUUU UACACAG   314   CUGCAUGA X GAA AUCUUGUC   1137   2752   GAAAGAAU CAUCAGA   314   CUGCAUGA X GAA AUCUUGUG   1136   2754   ACAGAUUU UACACAG   314   CUGCAUGA X GAA AUCUUGUG   1137   2764   ACAGAUUU UACACAG   314   CUGCAUGA X GAA AUCUGUG   1136   2785   GUGCCUAU CAAGUGG   315   CACUUG CUGAUGA X GAA AUCUCUG   1137   2781   GAGCCAU CUAAGUGG   316   CACCAGCC CUGAUGA X GAA AUGCAUC   1140   2846     | 2588 | CCUGGACUA UGUCCGGG | 296 |                                 |      |
| 2611 AAGACANUN UUGGCUCC 298 GGAGCCAA CUGAUGA X GAA AUUUGUCU 1121 2613 GACAAUAUU GGCUCCCA 299 UGGGAGCC CUGAUGA X GAA AUAUUGUC 1122 2618 UAUUGGCUC CCAGUACC 300 GGUACUGA CUGAUGA X GAA AUAUUGUC 1122 2624 CUCCCAGUA CCUGCUCCA 301 UGAGCAGG CUGAUGA X GAA AGCCAAUA 1123 2624 CUCCCAGUA CCUGCUCA 301 UGAGCAGG CUGAUGA X GAA AGCCAAUA 1123 2631 UACCUGCUC AACUGGUG 302 CACCAGUU CUGAUGA X GAA AGCGAGGUA 1126 2649 GUGCAGAUC GCAAAGGG 303 CCCUUUGC CUGAUGA X GAA AGCGAGGUA 1125 2669 GUGCAGAUC GCAAAGGG 303 CCCUUUGC CUGAUGA X GAA AGUUCACC 1126 2660 CAUGAACUA CUUGGAGG 304 CCCCCAAG CUGAUGA X GAA AGUUCACC 1126 2660 GAACUACUU GGAGGACC 305 GGUCCUCC CUGAUGA X GAA AGUUCAUG 1127 2680 AGGACCGUU GGUGGUG 306 CACCAAGC CUGAUGA X GAA AGUUCAUG 1129 2680 AGGACCGUU GGUGACC 307 GGUGCACC CUGAUGA X GAA AGGGCCCU 1129 2680 AGGACCGUU GGUGAA 308 UUCACCAG CUGAUGA X GAA ACGGUCCU 1129 2715 AGGAACGUA CUGGGGAA 309 GUGAUCCU CUGAUGA X GAA ACGGUCCU 1131 2739 CAGCAUGUC AAGAUCAC 309 GUGAUCCU CUGAUGA X GAA ACGUUCCU 1131 2739 CAGCAUGUU UGGGCUGG 310 AAAUCUGU CUGAUGA X GAA ACGUUCCU 1131 2745 GUCAAGAUU UUGGGCUGG 311 CAGCCCAA CUGAUGA X GAA ACCUUCGAC 1132 2752 UCACAGAUU UUGGGCUGG 311 CAGCCCAA CUGAUGA X GAA AUCUUGAC 1133 2753 CACAGAUUU UGGGCUGG 312 CCCACCCCA CUGAUGA X GAA AUCUUGAC 1136 2754 AACAGAUUUU GGGCUGG 312 CCCACCCCA CUGAUGA X GAA AUCUUGAC 1136 2755 CACAGAUUU UGGGCUGG 312 CCCACCCCA CUGAUGA X GAA AUCUUGAC 1136 2754 AACAGAUUUU GGGCUGG 313 CCCACCCC CUGAUGA X GAA AUCUUGU 1136 2754 AACAGAUUU GGGCUGG 313 CCCACCCC CUGAUGA X GAA AUCUUGU 1136 2754 AACAGAUUU GGGCUGG 313 CCCACCCC CUGAUGA X GAA AUCUUGU 1136 2754 AACAGAUUU AGCCCAA 314 CUGCAUGA CUGAUGA X GAA AUCUUGU 1136 2754 AACAGAUUU ACACAGA 314 CUGCAUGA CUGAUGA X GAA AUCUUGU 1136 2818 AAGUGCCUA UCAAGUGG 315 CCCACCUGAUGA X GAA AUCUCUU 1137 2818 AAGUGCCUA UCAAGUGG 315 CCCACCCC CUGAUGA X GAA AUCUCUT 1139 2818 AAGUGCUA CAAGAAU 317 UUCUAUCACAG X GAA AUCUCUT 1139 2818 AAGUGCUA CAAGAAU 317 UUCUAUCACAG X GAA AUCUCUT 1140 2844 GAUCAAUU UACACAG 319 CUGUGUA CUGAUGA X GAA AUAGGCAC 1139 2846 AUCAAUUUU ACACAGA 321 UUCUGUG CUGAUGA X GAA AUAGGUC 114 | 2592 | GACUAUGUC CGGGAACA | 297 |                                 |      |
| 2613 GACAAUAUU GGCUCCCA 299 UGGGAGCC CUGAUGA X GAA AUAUUGUC 1122 2616 UAUUGGCUC CCAGUACC 300 GGUACUGG CUGAUGA X GAA AGCCAAUA 1123 2624 CUCCCAGUA CCUGCUCA 301 UGACCAGG CUGAUGA X GAA AGCCAAUA 1123 2631 UACCUGCUC AACUGGUG 302 CACCAGUU CUGAUGA X GAA ACUGGGAG 1124 2631 UACCUGCUC AACUGGUG 302 CACCAGUU CUGAUGA X GAA ACUGGGAG 1125 2649 GUGCAGAUC GCAAAAGGG 303 CCCUUUGC CUGAUGA X GAA AUCUGCAC 1126 2666 CAUGAACUA CUUGGAGG 304 CCUCCAG CUGAUGA X GAA AUCUGCAC 1126 2669 GAACUACUU GGAGGACC 305 GGUCCUC CUGAUGA X GAA AGCUACUG 1127 2680 AGGACCGUC GCUUGGUG 306 CACCAAGC CUGAUGA X GAA AGUAGUUC 1128 2684 CCGUCCGCUU GGUGCACC 307 GGUCCACC CUGAUGA X GAA AGUAGUUC 1129 2684 CCGUCCGCUU GGUGCACC 307 GGUCCACC CUGAUGA X GAA ACGGUCCU 1129 2715 AGGAACGUA CUGGUGAA 308 UUCACCAG CUGAUGA X GAA ACGUUCCU 1131 2739 CAGCAUGUC AAGAUCAC 309 GUGAUCUU CUGAUGA X GAA ACCUUCCAC 1132 2745 GUCAAGAUC ACAGAUUU 310 AAAUCUGU CUGAUGA X GAA ACCUUCGAC 1132 2752 UCACAGAUU UUGGGCUGG 311 CAGCCCAA CUGAUGA X GAA ACCUUCGAC 1133 2753 CACAGAUUU UGGGCUGG 311 CAGCCCAA CUGAUGA X GAA AUCUGUGA 1134 2753 CACAGAUUU UGGGCUGG 312 CCACCCCA CUGAUGA X GAA AUCUGUGA 1134 2754 ACAGAUUUU GGGCUGG 313 CCCACCCCA CUGAUGA X GAA AUCUGUGA 1136 2754 ACAGAUUU UGGGCUGG 314 CUGCAUGA X GAA AUCUGUGU 1137 2754 ACAGAUUU UGGGCUGG 315 CCACCCCC CUGAUGA X GAA AUCUGUGU 1136 2759 GAAAGAAUA CCAUGCAG 314 CUGCAUGA CUGAUGA X GAA AUCUGUGU 1137 2818 AAGUGCCUA UCAAGUGG 315 CCACCCCC CUGAUGA X GAA AUCUGUUC 1137 2818 AAGUGCCUA UCAAGUGG 315 CCACCCCC CUGAUGA X GAA AUCUGUUC 1137 2818 AAGUGCCUA UCAAGUGG 315 CCACCCCC CUGAUGA X GAA AUCUGUUC 1137 2818 AAGUGCCUA UCAAGUGG 316 CUGAUGA X GAA AUUCCUUC 1137 2818 AAGUGCCUA UCAAGUAGA 317 UUGAUUCC CUGAUGA X GAA AUACGCAC 1139 2820 GUGCCUAUC AAGUGGA 316 AUCCACCU CUGAUGA X GAA AUACGCAC 1139 2834 GAUGCAUC AAGUGGA 316 AUCCACCU CUGAUGA X GAA AUACGCAC 1139 2840 AUUCGAAUC AAUUUU ACACAGA 320 UCUGUGG CUGAUGA X GAA AUACGCAC 1139 2840 AUUCGAAUC UUACACAG 319 CUGUUGA X GAA AUACGCAC 1140 2846 AUCAAUUUU ACACAGA 320 UCUGUGG CUGAUGA X GAA AUUCGAUC 1144 2846 AUCAAUUUU ACACAGA 320 UCUGUGG CUGAUGA X GAA AUAC | 2611 | AAGACAAUA UUGGCUCC | 298 |                                 |      |
| 2618         UAUUGGCUC CCAGUACC         300         GGUACUGG CUGAUGA X GAA AGCCAAUA         1123           2624         CUCCCAGUA CCUGCUCA         301         UGAGCAGG CUGAUGA X GAA ACUGGGGG         1124           2631         UACCUGCUC AACUGGUG         302         CACCAGUU CUGAUGA X GAA ACUGGGG         1125           2649         GUGCAGAUC GCAAAGGG         303         CCCUUDGC CUGAUGA X GAA AGUACUG         1125           2666         CAUGACUU GGAGGAGC         304         CCUCCAAG CUGAUGA X GAA AGUACUG         1127           2669         GAACUACUU GGAGGACC         305         GGUCCUCC CUGAUGA X GAA AGUACUG         1128           2680         AGGACGUC GCUUGGUG         306         CACCAAGC CUGAUGA X GAA AGCGUCCU         1129           2684         CCGUCGCUU GGUGCACC         307         GGUGACCC CUGAUGA X GAA ACGGUCCU         1129           2715         AGGAACGUU GGUGCAC         307         GGUGAUCUU CUGAUGA X GAA ACUGCUG         1131           2739         CACCAAGUU UUGGGCUG         310         AAAUCUGU CUGAUGA X GAA ACUGCUG         1132           2745         GUCAAGAUU ACAGAUUU JGGGCUGG         311         CAGCCCCA CUGAUGA X GAA AUCUGUGA         1134           2752         UCACAGAUU UUGGGCUGG         313         GCCAGCCC CUGAUGA X GAA AUCUGUG         1136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2613 | GACAAUAUU GGCUCCCA | 299 |                                 |      |
| 2624         CUCCCAGUA CCUGCUCA         301         UGAGCAGG CUGAUGA X GAA ACUGGGAG         1124           2631         UACCUGCUC AACUGGUG         302         CACCAGUU CUGAUGA X GAA AGCAGGUA         1125           2649         GUGCAGAUC GCAAAGGG         303         CCCUUGGC CUGAUGA X GAA AUCUGCAC         1126           2666         CAUGAACUA CUUGAGGG         304         CCUCCAAG CUGAUGA X GAA AGUGGUCCU         1127           2669         GAACUACUU GGAGGACC         305         GGUCCUCC CUGAUGA X GAA AGGUCCU         1128           2680         AGGACCGU GCUUGGUG         306         CACCAAGC CUGAUGA X GAA ACGUUCCU         1129           2684         CCGUCGCUU GGUGCACC         307         GGUGCACC CUGAUGA X GAA ACGUUCCU         1130           2715         AGGAACGUA CUGGUGAA         308         UUCACCAG CUGAUGA X GAA ACGUUCCU         1131           2739         CAGCAGAUU UAGGGCUGA         310         AAAUCUGU CUGAUGA X GAA AUCUUGGA         1132           2745         GUCAAGAUU UGGGCUGG         311         CAGCCCAA CUGAUGA X GAA AUCUUGUGA         1134           2752         CACAGAUUU UGGGCUGG         312         CCAGCCCA CUGAUGA X GAA AUCUUGUGA         1135           2754         ACAGAUUUU GGGCUGGC         313         GCCAGCCC CUGAUGA X GAA AUUCUUGU         1136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2618 | UAUUGGCUC CCAGUACC | 300 |                                 |      |
| 2631         UACCUGCUC AACUGGUG         302         CACCAGUU CUGAUGA X GAA AGCAGGUA         1125           2649         GUGCAGAUC GCAAAGGG         303         CCCUUUGC CUGAUGA X GAA AGCAGGUA         1126           2666         CAUGAACUA CUUGGAGG         304         CCUCCAAG CUGAUGA X GAA AGUUCAUG         1127           2669         GAACUACUU GGAGGACC         305         GGUCCUCC CUGAUGA X GAA AGUAGUUC         1128           2680         AGGACCGUC GCUUGGUG         306         CACCAAGC CUGAUGA X GAA ACGGUCCU         1129           2684         CCGUCGCUU GGUGCACC         307         GGUGCACC CUGAUGA X GAA ACGGUCCU         1130           2715         AGGACGGU CUGGUGAA         308         UUCACCAG CUGAUGA X GAA ACGUUCCU         1131           2739         CAGCAUGUC AAGAUCA         309         GUGAUCUU CUGAUGA X GAA ACAUCCUC         1132           2745         GUCAAGAUU UUGGGCUG         311         CAGCCCA CUGAUGA X GAA ACUCUCGAC         1132           2752         UCACAGAUU UUGGGCUG         311         CAGCCCC CUGAUGA X GAA AAUCUUGU         1135           2753         CACAGAUUU UGGGCUGG         312         CCAGCCCC CUGAUGA X GAA AAUCUUGU         1136           2754         ACAGAUUUU GGGCUGG         312         CCAGCCCC CUGAUGA X GAA AAUCUUGU         1136 <td< td=""><td>2624</td><td>CUCCCAGUA CCUGCUCA</td><td>301</td><td><u></u></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2624 | CUCCCAGUA CCUGCUCA | 301 | <u></u>                         |      |
| 2649         GUGCAGAUC GCANAGGG         303         CCCUUUGC CUGAUGA X GAA AUCUGCAC         1126           2666         CAUGAACUA CUUGGAGG         304         CCUCCAAG CUGAUGA X GAA AGUUCAUG         1127           2669         GAACUACUU GGAGGACC         305         GGUCCUC CUGAUGA X GAA AGUAGUUC         1128           2680         AGGACCGUU GGUGCACC         307         GGUGCACC CUGAUGA X GAA ACGGUCCU         1129           2684         CCGUCGCUU GGUGCACC         307         GGUGCACC CUGAUGA X GAA ACGGUCCU         1130           2715         AGGAACGAC CUGGUGAA         308         UUCACCAG CUGAUGA X GAA ACGUUCCU         1131           2739         CAGCAUGUC AAGAUCAC         309         GUGAUCUU CUGAUGA X GAA ACCUCCU         1132           2745         GUCAAGAUC ACACAUUU         310         AAAUCUGU CUGAUGA X GAA AUCUGUGA         1132           2752         UCACAGAUU UUGGGCUGG         311         CAGCCCA CUGAUGA X GAA AUCUGUG         1135           2753         CACAGAUUU UGGGCUGG         312         CCAGCCCC CUGAUGA X GAA AUCUGUG         1136           2754         ACAGAUUUU GGGCUGGC         313         GCCAGCCC CUGAUGA X GAA AUCUGUG         1136           2792         GAAAGAAUA CCAUGAGG         314         CUGCAUGA X GAA AUCUGU         1137           2818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2631 | UACCUGCUC AACUGGUG |     |                                 |      |
| 2666 CAUGAACUA CUUGGAGG 304 CCUCCAAG CUGAUGA X GAA AGUUCAUG 1127 2669 GAACUACUU GGAGGACC 305 GGUCCUCC CUGAUGA X GAA AGUUCAUG 1128 2680 AGGACCGUC GCUUGGUG 306 CACCAAGC CUGAUGA X GAA AGUACUCC 1129 2684 CCGUCGCUU GGUGCACC 307 GGUGCACC CUGAUGA X GAA AGCGCCCU 1129 2684 CCGUCGCUU GGUGCACC 307 GGUGCACC CUGAUGA X GAA AGCGACCG 1130 2715 AGGAACGUA CUGGUGAA 308 UUCACCAG CUGAUGA X GAA ACGUCCU 1131 2739 CAGCAUGUC AAGAUCAC 309 GUGAUCUU CUGAUGA X GAA ACGUCCU 1131 2739 CAGCAUGU AAGAUCAC 309 GUGAUCUU CUGAUGA X GAA ACAUGCUG 1132 2745 GUCAAGAUU UUGGGCUGG 311 CAGCCCAA CUGAUGA X GAA AUCUGUGA 1133 2752 UCACCAGAUU UUGGGCUGG 311 CAGCCCAA CUGAUGA X GAA AUCUGUGA 1134 2753 CACAGAUUU UGGGCUGG 312 CCCAGCCCA CUGAUGA X GAA AAUCUGUGA 1135 2754 ACAGAUUU UGGGCUGG 313 GCCAGCCC CUGAUGA X GAA AAUCUGUG 1135 2792 GAAAGAAUA CCAUGCAG 314 CUGCAUGA CUGAUGA X GAA AAUCUGU 1136 2792 GAAAGAAUA CCAUGCAG 314 CUGCAUGA CUGAUGA X GAA AAUCUGU 1137 2818 AAGUGCCUA UCAAGUGG 315 CCACCUGA CUGAUGA X GAA AAUCUGUU 1137 2818 AAGUGCCUA UCAAGUGG 315 CCACCUUGA CUGAUGA X GAA AAUCUGUU 1137 2818 AAGUGCCUA UCAAGUGG 316 AUCCACUU CUGAUGA X GAA AUCCUUU 1138 2820 GUGCCUAUC AAGUGGAU 316 AUCCACUU CUGAUGA X GAA AUGCCAUC 1140 2840 AUUGGAAUC AAUUUUAC 318 GUAAAAUU CUGAUGA X GAA AUGCCAUC 1140 2840 AUUGGAAUC AAUUUUAC 318 GUAAAAUU CUGAUGA X GAA AUUCCAAU 1141 2844 GAAUCAAUU UACACAGA 319 CUGGUUAA CUGAUGA X GAA AUUCCAAU 1141 2844 GAAUCAAUUU ACACAGA 320 UCUGUUGU CUGAUGA X GAA AAUUCAUU 1142 2846 AUCAAUUUU ACACAGA 320 UCUGUUGU CUGAUGA X GAA AAUUGAUUC 1142 2846 AUCAAUUUU ACACAGA 321 UUCUGUGU CUGAUGA X GAA AAUUGAUU 1143 2846 AUCAAUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2847 UCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2847 UCAAUUUU ACACAGAA 322 UCGGGUUA CUGAUGA X GAA AAAUUGAU 1144 2856 CACAGAAUC UAUACCCAC 323 UGGGUUAA CUGAUGA X GAA AAAUUGAU 1144 2856 CACAGAAUC UAUACCCAC 324 GGUGGGGU CUGAUGA X GAA AAAUUGAU 1146 2858 CAGAAUCUA UAUCCCAC 324 GGUGGGGU CUGAUGA X GAA AAAUUGUU 1146 2858 CAGAAUCUA UAUCCCAC 325 UGGGGGCUA CUGAUGA X GAA AACGGUCAC 1150 2898 GUGACCGUU GGGAGUU 328 AACUC | 2649 | GUGCAGAUC GCAAAGGG |     |                                 |      |
| 2669 GAACUACUU GGAGGACC  2680 AGGACUACUU GGAGGACC  2680 AGGACCGUC GCUUGGUG  2680 AGGACCGUC GCUUGGUG  2684 CCGCCCAGC GCUUGGUG  2684 CCGUCGCUU GGUGCACC  207 GGUGCACC CUGAUGA X GAA AGGGUCCU  2715 AGGAACGUA CUGGUGAA  308 UUCACCAG CUGAUGA X GAA AGCGUCCU  1131  2739 CAGCAUGUC AAGAUCAC  309 GUGAUCUU CUGAUGA X GAA ACGGUCCU  1132  2745 GUCAAGAUU UAGGCUGG  310 AAAUCUGU CUGAUGA X GAA ACUUUCAC  2745 GUCAAGAUU UAGGCUGG  311 CAGCCCAA CUGAUGA X GAA AUCUUGAC  1133  2752 UCACAGAUU UAGGCUGG  311 CAGCCCAA CUGAUGA X GAA AUCUUGAC  1134  2753 CACAGAUUU UGGGCUGG  312 CCAGCCCA CUGAUGA X GAA AAUCUGUG  1135  2754 ACAGAUUU UGGGCUGG  313 GCCAGCCC CUGAUGA X GAA AAUCUGUG  1136  2792 GAAAGAAUA CCAUGCAG  314 CUGCAUGA X GAA AAUCUGUU  1137  2818 AAGUGCCUA UCAAGUGG  315 CCACCUGA CUGAUGA X GAA AUCUGUUC  1137  2818 AAGUGCCUA UCAAGUGG  315 CCACCUUGA CUGAUGA X GAA AUCUGUUC  1137  2820 GUGCCUAUC AAGUGGAU  316 AUCCACUU CUGAUGA X GAA AUGCCACU  1138  2820 GUGCCUAUC AAGUGGAU  316 AUCCACUU CUGAUGA X GAA AUGCCACU  1139  2834 GAUGGCUA UGAAGUGG  315 CCACCUUGA CUGAUGA X GAA AUGCCACU  1140  2840 AUUGGAAUC GAAUCAA  317 UUGAUUCC CUGAUGA X GAA AUGCCACU  1140  2844 GAAUCAAUU UACACAGA  319 CUGUGUGA CUGAUGA X GAA AUGCCACU  1141  2844 GAAUCAAUU UACACAGA  310 UCUGUGU CUGAUGA X GAA AUUCCAAU  1141  2844 GAAUCAAUU UACACAGA  320 UCUGUGUA CUGAUGA X GAA AUUCCAAU  1141  2845 AAUCAAUUU UACACAGA  320 UCUGUGUA CUGAUGA X GAA AAUUCCAAU  1142  2846 AUCAAUUU ACACAGAA  321 UUCUGUG CUGAUGA X GAA AAUUCCAAU  1143  2846 AUCAAUUU ACACAGAA  321 UUCUGUG CUGAUGA X GAA AAAUUGAUC  1144  2847 UCAAUUUU ACACAGAA  321 UUCUGUG CUGAUGA X GAA AAAUUGAUC  1146  2847 UCAAUUUU ACACAGAA  321 UUCUGUG CUGAUGA X GAA AAAUUGAU  1148  2846 AUCAAUUU ACACAGAA  321 UUCUGUG CUGAUGA X GAA AAAUUGAU  1147  2847 UCAAUUUU ACACAGAA  321 UUCUGUG CUGAUGA X GAA AAAUUGAU  1148  2847 UCAAUUUU ACACAGAA  321 UCCUGUGAUA CUGAUGA X GAA AAAUUCUG  1146  2856 CAGAAUCUA UACCCAC  324 GGUGGGUA CUGAUGA X GAA AAAUUCUG  1147  2866 GAAUCUAU ACCCACCA GCGAGUA  326 GUGGGGUA CUGAUGA X GAA AAAUUCUG  1149  2856 CAGAAUCUA UACCCACC GCGGUGA  327 UC | 2666 |                    |     |                                 |      |
| 2680 AGGACCGUC GCUUGGUG 306 CACCAAGC CUGAUGA X GAA ACGGUCCU 1129 2684 CCGUCGCUU GGUGCACC 307 GGUGCACC CUGAUGA X GAA ACGGUCCU 1129 2715 AGGAACGUA CUGGUGAA 308 UUCACCAG CUGAUGA X GAA ACGUUCCU 1131 2739 CAGCAUGUC AAGAUCAC 309 GUGAUCUU CUGAUGA X GAA ACGUUCCU 1131 2745 GUCAAGAUC ACAGAUUU 310 AAAUCUGU CUGAUGA X GAA ACAUGCUG 1132 2752 UCACAGAUU UUGGGCUG 311 CAGCCCAA CUGAUGA X GAA AUCUUGAC 1133 2753 CACAGAUUU UGGGCUGG 312 CCAGCCCA CUGAUGA X GAA AUCUUGAC 1136 2754 ACAGAUUU UGGGCUGG 312 CCAGCCCA CUGAUGA X GAA AUCUUGUG 1136 2792 GAAAGAAUA CCAUGCAG 314 CUGCAUGA X GAA AAUCUUGU 1136 2792 GAAAGAAUA CCAUGCAG 314 CUGCAUGA X GAA AAUCUUCU 1137 2818 AAGUGCCUA UCAAGUGG 315 CCACCUGAUGA X GAA AUCUUCU 1138 2820 GUGCCUAU CAAGUGGAU 316 AUCCACUU CUGAUGA X GAA AUGCCAUC 1140 2840 AUUGGAAUC AAGUGGAU 317 UUGAUUCC CUGAUGA X GAA AUGCCACU 1140 2840 AUUGGAAUC AAUUUUAC 318 GUAAAAUU CUGAUGA X GAA AUGCCACU 1140 2844 GAAUCAAUU UUACACAGA 317 UUGUUUCC CUGAUGA X GAA AUGCCACU 1141 2844 GAAUCAAUU UUACACAGA 319 CUGUGUAA X GAA AUGCAUC 1140 2845 AAUCAAUU UUACACAGA 320 UCUGUGUA X GAA AUUGAUUC 1142 2845 AAUCAAUU UACACAGA 320 UCUGUGUA X GAA AUUGAUUC 1142 2846 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AUUGAUUC 1142 2847 UCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AUUGAUUC 1144 2847 UCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAUUGAUU 1143 2846 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2847 UCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2847 UCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2847 UCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2856 CACAGAAUC UAUACCCA 323 UGGGUAUA CUGAUGA X GAA AAAUUCAU 1146 2857 AGUGAUCU UAUACCCA 323 UGGGUAUA CUGAUGA X GAA AAAUUCAU 1146 2858 CAGAAUCUA UACACAGAA 321 UCCGGUGA X GAA AAAUUCAU 1146 2858 CAGAAUCUA UACACAGAA 322 UGGGUAUA CUGAUGA X GAA AAAUUCAU 1146 2858 CAGAAUCUA UACACCAC 324 GGUGGGUA CUGAUGA X GAA AAAUUCAC 11149 2860 GAACCGUU UGGAGCUA 326 UAGCCCC CUGAUGA X GAA ACAUCACU 1149 2860 GAACCGUU UGGAGCUU 326 CUGAUGA X GAA ACAGUCAC 1151                                      | 2669 |                    |     |                                 |      |
| 2684         CCGUCGCUU GGUGCACC         307         GGUGCACC CUGAUGA X GAA AGCGACGG         1130           2715         AGGAACGUA CUGGUGAA         308         UUCACCAG CUGAUGA X GAA ACGUCCU         1131           2739         CAGCAUGUC AAGAUCAC         309         GUGAUCUU CUGAUGA X GAA ACAUGCUG         1132           2745         GUCAAGAUU UUGGGCUG         311         CAGCCCA CUGAUGA X GAA AUCUUGAC         1133           2752         UCACAGAUU UUGGGCUGG         312         CCAGCCCA CUGAUGA X GAA AUCUUGUGA         1134           2753         CACAGAUUU UGGGCUGG         312         CCAGCCCC CUGAUGA X GAA AAUCUUGU         1136           2754         ACAGAUUUU GGGCUGGC         313         GCCAGCCC CUGAUGA X GAA AAUCUUGU         1136           2792         GAAAGAAUA CCAUGCAG         314         CUGCAUGG CUGAUGA X GAA AUCUUUC         1137           2818         AAGUGCCUA UCAAGUGG         315         CCACUUGA CUGAUGA X GAA AUCCCAUC         1139           2820         GUGCCUAUC AAGUGAU         316         AUCCACUU CUGAUGA X GAA AUCCCAUC         1140           2841         GAUGGCAUU GAAUCAA         317         UUGAUGA X GAA AUUCCCAUC         1140           2842         GAUCAAUU UACACAG         319         CUGUGUAA CUGAUGA X GAA AUUCCAAU         1141           2844 <td>2680</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2680 |                    |     |                                 |      |
| 2715 AGGAACGUA CUGGUGAA 308 UUCACCAG CUGAUGA X GAA ACGUUCCU 1131 2739 CAGCAUGUC AAGAUCAC 309 GUGAUCUU CUGAUGA X GAA ACAUGCUG 1132 2745 GUCAAGAUC ACAGAUUU 310 AAAUCUGU CUGAUGA X GAA ACAUGCUG 1132 2752 UCACAGAUU UUGGGCUG 311 CAGCCCAA CUGAUGA X GAA AUCUGUGAC 1133 2753 CACAGAUUU UGGGCUGG 312 CCAGCCCA CUGAUGA X GAA AAUCUGUGA 1134 2754 ACAGAUUUU GGGCUGG 312 CCAGCCCA CUGAUGA X GAA AAUCUGUG 1135 2754 ACAGAUUUU GGGCUGGC 313 GCCAGCCC CUGAUGA X GAA AAUCUGUU 1136 2792 GAAAGAAUA CCAUGCAG 314 CUGCAUGG CUGAUGA X GAA AAUCUGUU 1137 2818 AAGUGCCUA UCAAGUGG 315 CCACUUGA CUGAUGA X GAA AAUCUGUU 1137 2818 AAGUGCCUA UCAAGUGG 315 CCACUUGA CUGAUGA X GAA AUAGGCAC 1139 2820 GUGCCUAUC AAGUGGAU 316 AUCCACUU CUGAUGA X GAA AUAGGCAC 1139 2834 GAUGGCAUU GGAAUCAA 317 UUGAUUCC CUGAUGA X GAA AUAGGCAC 1139 2840 AUUGGAAUC AAUUUUAC 318 GUAAAAUU CUGAUGA X GAA AUAGCCAUC 1140 2840 AUUGGAAUC AAUUUUAC 318 GUAAAAUU CUGAUGA X GAA AUUCCAAU 1141 2844 GAAUCAAUU UUACACAG 319 CUGUGUAA CUGAUGA X GAA AUUGAUUC 1142 2845 AAUCAAUUU UACACAGA 320 UCUGUGUA CUGAUGA X GAA AUUGAUUC 1142 2846 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAUUGAUU 1143 2846 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2847 UCAAUUUUA CACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2847 UCAAUUUUA CACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2848 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1145 2856 CACAGAAUC UAUACCCA 323 UGGGUAUA CUGAUGA X GAA AAAUUGAU 1146 2858 CAGAAUCUA UACCCACC 324 GGUGGGUA CUGAUGA X GAA AAAUUGAU 1146 2858 CAGAAUCUA UACCCACC 324 GGUGGGUA CUGAUGA X GAA AAAUUCUG 1147 2860 GAAUCUAUA CCCACCC 324 GGUGGGUA CUGAUGA X GAA AAAUUCUG 1149 2885 CUGGACGUU UGGAGGUA 326 UAGCUCCA CUGAUGA X GAA AAAUUCUC 1149 2885 CUGGACGUU UGGAGGUA 326 UAGCUCCA CUGAUGA X GAA AAAUUCCACC 1150 2889 GUGACCGUU GGGAGGUA 327 UCACCCCG CUGAUGA X GAA AACGGUCA 1150 2899 UGACCGUU GGGAGGUU 328 AACCCCC CUGAUGA X GAA AACGGUCA 1151                                                                                                                                                                    | 2684 | <del></del>        |     |                                 |      |
| 2739         CAGCAUGUC AAGAUCAC         309         GUGAUCUU CUGAUGA X GAA ACAUGCUG         1132           2745         GUCAAGAUC ACAGAUUU         310         AAAUCUGU CUGAUGA X GAA ACAUGCUG         1133           2752         UCACAGAUU UUGGGCUG         311         CAGCCCAA CUGAUGA X GAA AUCUGUGA         1134           2753         CACAGAUUU UGGGCUGG         312         CCAGCCCA CUGAUGA X GAA AAUCUGUG         1135           2754         ACAGAUUUU GGGCUGGC         313         GCCAGCCC CUGAUGA X GAA AAUCUGU         1136           2792         GAAAGAAUA CCAUGCAG         314         CUGCAUGA X GAA AUUCUUC         1137           2818         AAGUGCCUA UCAAGUGG         315         CCACUUGA CUGAUGA X GAA AUUCUUUC         1138           2820         GUGCCUAUC AAGUGGAU         316         AUCCACUU CUGAUGA X GAA AUGCCAC         1139           2834         GAUGGCAUU GAAUCAA         317         UUGAUUCC CUGAUGA X GAA AUGCCAC         1140           2840         AUUGGAAUC AAUUUUAC         318         GUAAAAUU CUGAUGA X GAA AUUCCAAU         1141           2844         GAAUCAAUU UUACACAGA         319         CUGUGUAUA CUGAUGA X GAA AAUUGAUU         1142           2845         AAUCAAUUU ACACAGAA         320         UCUGUGU CUGAUGA X GAA AAUUGAU         1143           2846 <td>2715</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2715 |                    |     |                                 |      |
| 2745 GUCAAGAUC ACAGAUUU 310 AAAUCUGU CUGAUGA X GAA AUCUUGAC 1133 2752 UCACAGAUU UUGGGCUG 311 CAGCCCAA CUGAUGA X GAA AUCUUGAC 1134 2753 CACAGAUUU UGGGCUGG 312 CCAGCCCA CUGAUGA X GAA AUCUGUGA 1134 2754 ACAGAUUUU GGGCUGGC 313 GCCAGCCC CUGAUGA X GAA AAUCUGUG 1135 2754 ACAGAUUUU GGGCUGGC 313 GCCAGCCC CUGAUGA X GAA AAUCUGUU 1136 2792 GAAAGAAUA CCAUGCAG 314 CUGCAUGG CUGAUGA X GAA AUUCUUUC 1137 2818 AAGUGCCUA UCAAGUGG 315 CCACUUGA CUGAUGA X GAA AUUCUUUC 1137 2818 AAGUGCCUA UCAAGUGG 315 CCACUUGA CUGAUGA X GAA AUGCCACU 1138 2820 GUGCCUAUC AAGUGGAU 316 AUCCACUU CUGAUGA X GAA AUAGGCAC 1139 2834 GAUGGAUU GGAAUCAA 317 UUGAUUCC CUGAUGA X GAA AUGCCAUC 1140 2840 AUUGGAAUC AAUUUUAC 318 GUAAAAUU CUGAUGA X GAA AUUCCAAU 1141 2844 GAAUCAAUU UUACACAG 319 CUGUGUAA CUGAUGA X GAA AUUGAUUC 1142 2845 AAUCAAUUU UACACAGA 320 UCUGUGUA CUGAUGA X GAA AUUGAUUC 1142 2846 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAUUGAUU 1143 2847 UCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAUUGAUU 1144 2847 UCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2856 CACAGAAUC UAUACCCA 323 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1145 2856 CACAGAAUC UAUACCCA 323 UGGGUAUA CUGAUGA X GAA AAAUUGAU 1145 2858 CAGAAUCUA UACCCACC 324 GGUGGGUA CUGAUGA X GAA AAAUUCUG 1146 2858 CAGAAUCUA UACCCACC 324 GGUGGGUA CUGAUGA X GAA AAAUUCUC 1148 2877 AGUGUUUU CCCACCAG 325 CUGGUGGG CUGAUGA X GAA AGAUUCUC 1149 2865 CUGGAGCUA CCGCCOAG 325 CUGGUGGA CGAA ACAUCACU 1149 2887 AGUGCUCUA CCGCCOAG 326 UAGCUCCA CUGAUGA X GAA ACAUCACU 1149 28885 CUGGACCUU UGGAGCUA 326 UACCCCC CUGAUGA X GAA ACAUCACU 1149 28898 GUGACCGUU UGGAGCUA 328 AACUCCCA CUGAUGA X GAA ACCGCCAC 1150 28998 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACCGCUCAC 1151                                                                                                                                                                                                                                                                                                                                                                                | 2739 |                    |     |                                 |      |
| 2752         UCACAGAUU UUGGGCUG         311         CAGCCCAA CUGAUGA X GAA AUCUGUGA         1134           2753         CACAGAUUU UGGGCUGG         312         CCAGCCCA CUGAUGA X GAA AAUCUGUG         1135           2754         ACAGAUUU GGGCUGGC         313         GCCAGCCC CUGAUGA X GAA AAAUCUGU         1136           2792         GAAAGAAUA CCAUGCAG         314         CUGCAUGG CUGAUGA X GAA AUCUGUU         1137           2818         AAGUGCCUA UCAAGUGG         315         CCACUUGA CUGAUGA X GAA AUGGCACU         1138           2820         GUGCCUAUC AAGUGGAU         316         AUCCACUU CUGAUGA X GAA AUGCCAUC         1140           2840         AUUGGAAUC AAUUUUAC         318         GUAAAAUU CUGAUGA X GAA AUUCCAAU         1141           2844         GAAUCAAUU UUACACAG         319         CUGUGUAA CUGAUGA X GAA AUUGAUUC         1142           2845         AAUCAAUUU UACACAGA         320         UCUGUGUA CUGAUGA X GAA AAUUGAUU         1143           2846         AUCAAUUUU ACACAGAA         321         UUCUGUGU CUGAUGA X GAA AAAUUGAU         1144           2847         UCAAUUUUA CACAGAAU         322         AUUCUGUG CUGAUGA X GAA AAAUUGAU         1145           2856         CACAGAAUC UAUACCCA         323         UGGGUAUGA X GAA AAUUCUGG         1146           2858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2745 |                    |     | 1                               |      |
| 2753 CACAGAUUU UGGGCUGG 312 CCAGCCCA CUGAUGA X GAA AAUCUGUG 1135 2754 ACAGAUUUU GGGCUGGC 313 GCCAGCCC CUGAUGA X GAA AAUCUGUU 1136 2792 GAAAGAAUA CCAUGCAG 314 CUGCAUGG CUGAUGA X GAA AAUCUGUU 1137 2818 AAGUGCCUA UCAAGUGG 315 CCACUUGA CUGAUGA X GAA AUUCUUUC 1137 2820 GUGCCUAUC AAGUGGAU 316 AUCCACUU CUGAUGA X GAA AUGCCACU 1138 2820 GUGCCUAUC AAGUGGAU 316 AUCCACUU CUGAUGA X GAA AUGCCACU 1139 2834 GAUGGCAUU GGAAUCAA 317 UUGAUUCC CUGAUGA X GAA AUGCCAUC 1140 2840 AUUGGAAUC AAUUUUAC 318 GUAAAAUU CUGAUGA X GAA AUUCCAAU 1141 2844 GAAUCAAUU UUACACAG 319 CUGUGUAA CUGAUGA X GAA AUUGAUUC 1142 2845 AAUCAAUUU UACACAGA 320 UCUGUGUA CUGAUGA X GAA AAUUGAUU 1143 2846 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAUUGAUU 1144 2847 UCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2847 UCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1145 2856 CACAGAAUC UAUACCCA 323 UGGGUAUA CUGAUGA X GAA AAAUUGA 1145 2858 CAGAAUCUA UACCCCA 324 GGUGGGUA CUGAUGA X GAA AAAUUCUGUG 1146 2858 CAGAAUCUA UACCCACC 324 GGUGGGUA CUGAUGA X GAA AAAUUCUGUG 1147 2860 GAAUCUAUA CCCACCAC 325 CUGGUGGG CUGAUGA X GAA AUGCUCUG 1149 2877 AGUGAUGUC UGGAGCUA 326 UAGCUCCA CUGAUGA X GAA AUGAUCUG 1149 2885 CUGGAGCUA CGGGGUGA 327 UCACCCCG CUGAUGA X GAA ACAUCACU 1149 2886 GUGACCGUU UGGGAGUU 328 AACUCCCA CUGAUGA X GAA ACCGCCCAG 1150 2898 GUGACCGUU UGGGAGUU 328 AACUCCCC CUGAUGA X GAA ACCGCCCAG 1150 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACCGCCCAG 1151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2752 | ļ                  |     | <u> </u>                        |      |
| 2754 ACAGAUUUU GGGCUGGC 313 GCCAGCCC CUGAUGA X GAA AAAUCUGU 1136 2792 GAAAGAAUA CCAUGCAG 314 CUGCAUGG CUGAUGA X GAA AAAUCUGU 1137 2818 AAGUGCCUA UCAAGUGG 315 CCACUUGA CUGAUGA X GAA AUUCUUUC 1137 2820 GUGCCUAUC AAGUGGAU 316 AUCCACUU CUGAUGA X GAA AUAGGCACC 1139 2834 GAUGGCAUU GGAAUCAA 317 UUGAUUCC CUGAUGA X GAA AUAGCCAUC 1140 2840 AUUGGAAUC AAUUUUAC 318 GUAAAAUU CUGAUGA X GAA AUUCCAAU 1141 2844 GAAUCAAUU UUACACAG 319 CUGUGUAA CUGAUGA X GAA AUUCCAAU 1141 2845 AAUCAAUUU UACACAGA 320 UCUGUGUA CUGAUGA X GAA AUUGAUUC 1142 2846 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAUUGAUU 1143 2847 UCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2847 UCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1145 2856 CACAGAAUC UAUACCCA 323 UGGGUAUA CUGAUGA X GAA AAAUUGA 1145 2858 CAGAAUCUA UACCCACC 324 GGUGGGUA CUGAUGA X GAA AAAUUGG 1146 2858 CAGAAUCUA UACCCACC 324 GGUGGGUA CUGAUGA X GAA AAAUUCUG 1147 2860 GAAUCUAUA CCCACCAG 325 CUGGUGGG CUGAUGA X GAA AAAUUCU 1148 2877 AGUGAUGUC UGGAGCUA 326 UAGCUCCA CUGAUGA X GAA ACAUCACU 1149 2885 CUGGAGCUA CGGGGUGA 327 UCACCCCC CUGAUGA X GAA ACAUCACU 1149 2886 GUGACCGUU UGGAGCUA 328 AACUCCCA CUGAUGA X GAA ACGGUCAC 1150 2898 GUGACCGUU UGGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                    |     |                                 |      |
| ### GRANGANA CCAUGCAG 314 CUGCAUGA X GAA ANAUCUGU 1137  2818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                    |     |                                 |      |
| 2818 AAGUGCCUA UCAAGUGG 315 CCACUUGA CUGAUGA X GAA AGUCCUUC 1138 2820 GUGCCUAUC AAGUGGAU 316 AUCCACUU CUGAUGA X GAA AUAGGCAC 1139 2834 GAUGGCAUU GGAAUCAA 317 UUGAUUCC CUGAUGA X GAA AUAGGCAC 1140 2840 AUUGGAAUC AAUUUUAC 318 GUAAAAUU CUGAUGA X GAA AUUCCAAU 1141 2844 GAAUCAAUU UUACACAG 319 CUGUGUAA CUGAUGA X GAA AUUCCAAU 1142 2845 AAUCAAUUU UACACAGA 320 UCUGUGUA CUGAUGA X GAA AUUGAUUC 1142 2846 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAUUGAUU 1143 2846 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2847 UCAAUUUUA CACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2856 CACAGAAUC UAUACCCA 322 AUUCUGUG CUGAUGA X GAA AAAUUGA 1145 2856 CACAGAAUC UAUACCCA 323 UGGGUAUA CUGAUGA X GAA AAAUUGA 1146 2858 CAGAAUCUA UACCCACC 324 GGUGGGUA CUGAUGA X GAA AGAUUCUG 1147 2860 GAAUCUAUA CCCACCAG 325 CUGGUGGG CUGAUGA X GAA AUAGAUUC 1148 2877 AGUGAUGU UGGAGCUA 326 UAGCUCCA CUGAUGA X GAA AUAGAUUC 1148 2877 AGUGAUGU UGGAGCUA 326 UAGCUCCA CUGAUGA X GAA ACAUCACU 1149 2885 CUGGACCGUU UGGAGCUA 327 UCACCCCG CUGAUGA X GAA ACAUCACU 1149 2885 CUGGACCGUU UGGGAGUU 328 AACUCCCA CUGAUGA X GAA ACGGUCAC 1150 2898 GUGACCGUU UGGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                    |     |                                 |      |
| 2820 GUGCCUAUC AAGUGGAU 316 AUCCACUU CUGAUGA X GAA AUGGCACU 1139 2834 GAUGGCAUU GGAAUCAA 317 UUGAUUCC CUGAUGA X GAA AUAGGCAC 1140 2840 AUUGGAAUC AAUUUUAC 318 GUAAAAUU CUGAUGA X GAA AUUCCAAU 1141 2844 GAAUCAAUU UUACACAG 319 CUGUGUAA CUGAUGA X GAA AUUCCAAU 1142 2845 AAUCAAUUU UACACAGA 320 UCUGUGUA CUGAUGA X GAA AUUGAUUC 1142 2846 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAUUGAUU 1143 2846 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2847 UCAAUUUUA CACAGAAU 322 AUUCUGUG CUGAUGA X GAA AAAAUUGAU 1145 2856 CACAGAAUC UAUACCCA 323 UGGGUAUA CUGAUGA X GAA AAAAUUGA 1145 2858 CAGAAUCUA UACCCACC 324 GGUGGGUA CUGAUGA X GAA AUUCUGUG 1146 2858 CAGAAUCUA UACCCACC 324 GGUGGGUA CUGAUGA X GAA AUAGAUUC 1147 2860 GAAUCUAUA CCCACCAG 325 CUGGUGGG CUGAUGA X GAA AUAGAUUC 1148 2877 AGUGAUGUC UGGAGCUA 326 UAGCUCCA CUGAUGA X GAA AUAGAUUC 1149 2885 CUGGAGCUA CGGGGUGA 327 UCACCCCG CUGAUGA X GAA ACAUCACU 1149 2885 CUGGACCGUU UGGGAGUU 328 AACUCCCA CUGAUGA X GAA ACGUCCAC 1150 2898 GUGACCGUU UGGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                    |     |                                 |      |
| 2634 GAUGGCAUU GGAAUCAA 317 UUGAUUCC CUGAUGA X GAA AUAGGCAC 1139 2840 AUUGGAAUC AAUUUUAC 318 GUAAAAUU CUGAUGA X GAA AUUCCAAU 1141 2844 GAAUCAAUU UUACACAG 319 CUGUGUAA CUGAUGA X GAA AUUGAUUC 1142 2845 AAUCAAUUU UACACAGA 320 UCUGUGUA CUGAUGA X GAA AAUUGAUUC 1143 2846 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAUUGAUU 1144 2847 UCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2847 UCAAUUUUA CACAGAAU 322 AUUCUGUG CUGAUGA X GAA AAAUUGAU 1145 2856 CACAGAAUC UAUACCCA 323 UGGGUAUA CUGAUGA X GAA AAAUUGAU 1146 2858 CAGAAUCUA UACCCACC 324 GGUGGGUA CUGAUGA X GAA AGAUUCUG 1147 2860 GAAUCUAUA CCCACCAG 325 CUGGUGGG CUGAUGA X GAA AGAUUCUG 1147 2860 GAAUCUAUA CCCACCAG 325 CUGGUGGG CUGAUGA X GAA AUAGAUUC 1148 2877 AGUGAUGUC UGGAGCUA 326 UAGCUCCA CUGAUGA X GAA ACAUCACU 1149 2885 CUGGACGUU UGGGAGUU 328 AACUCCCA CUGAUGA X GAA ACAUCACU 1149 2885 CUGGACCGUU UGGGAGUU 328 AACUCCCA CUGAUGA X GAA ACGGUCAC 1150 2898 GUGACCGUU UGGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                    |     |                                 |      |
| 2840 AUUGGAAUC AAUUUUAC 318 GUAAAAUU CUGAUGA X GAA AUUCCAAU 1141 2844 GAAUCAAUU UUACACAG 319 CUGUGUAA CUGAUGA X GAA AUUGAUUC 1142 2845 AAUCAAUUU UACACAGA 320 UCUGUGUA CUGAUGA X GAA AAUUGAUU 1143 2846 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2847 UCAAUUUUA CACAGAAU 322 AUUCUGUG CUGAUGA X GAA AAAUUGAU 1145 2856 CACAGAAUC UAUACCCA 323 UGGGUAUA CUGAUGA X GAA AAAUUGAU 1146 2858 CAGAAUCUA UACCCAC 324 GGUGGGUA CUGAUGA X GAA AUUCUGUG 1147 2860 GAAUCUAUA CCCACCAG 325 CUGGUGGG CUGAUGA X GAA AGAUUCUG 1147 2860 GAAUCUAUA CCCACCAG 325 CUGGUGGG CUGAUGA X GAA AUAGAUUC 1148 2877 AGUGAUGUC UGGAGCUA 326 UAGCUCCA CUGAUGA X GAA ACAUCACU 1149 2885 CUGGACCUU UGGGAGUA 327 UCACCCCG CUGAUGA X GAA ACAUCACU 1149 2885 CUGGACCGUU UGGGAGUU 328 AACUCCCA CUGAUGA X GAA ACGGUCAC 1150 2898 GUGACCGUU UGGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                    |     |                                 | 1139 |
| 2844 GAAUCAAUU UUACACAG 319 CUGUGUAA CUGAUGA X GAA AUUGAUUC 1142 2845 AAUCAAUUU UACACAGA 320 UCUGUGUA CUGAUGA X GAA AAUUGAUUC 1143 2846 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAUU 1144 2847 UCAAUUUUA CACAGAAU 322 AUUCUGUG CUGAUGA X GAA AAAUUGAU 1145 2856 CACAGAAUC UAUACCCA 323 UGGGUAUA CUGAUGA X GAA AAAUUGA 1145 2858 CAGAAUCUA UACCCAC 324 GGUGGGUA CUGAUGA X GAA AUUCUGUG 1147 2860 GAAUCUAUA CCCACCAG 325 CUGGUGGG CUGAUGA X GAA AGAUUCUG 1147 2860 GAAUCUAUA CCCACCAG 325 CUGGUGGG CUGAUGA X GAA AUAGAUUC 1148 2877 AGUGAUGUC UGGAGCUA 326 UAGCUCCA CUGAUGA X GAA ACAUCACU 1149 2885 CUGGACGUU CGGGGUGA 327 UCACCCCG CUGAUGA X GAA ACAUCACU 1150 2898 GUGACCGUU UGGGAGUU 328 AACUCCCA CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                    |     | 11                              |      |
| 2845 AAUCAAUUU UACACAGA 320 UCUGUGUA CUGAUGA X GAA AAUUGAUU 1143 2846 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2847 UCAAUUUUA CACAGAAU 322 AUUCUGUG CUGAUGA X GAA AAAUUGAU 1145 2856 CACAGAAUC UAUACCCA 323 UGGGUAUA CUGAUGA X GAA AUUCUGUG 1146 2858 CAGAAUCUA UACCCACC 324 GGUGGGUA CUGAUGA X GAA AGAUUCUG 1147 2860 GAAUCUAUA CCCACCAG 325 CUGGUGGG CUGAUGA X GAA AGAUUCUG 1148 2877 AGUGAUGUC UGGAGCUA 326 UAGCUCCA CUGAUGA X GAA ACAUCACU 1149 2885 CUGGAGCUA CGGGGUGA 327 UCACCCCG CUGAUGA X GAA ACAUCACU 1149 2886 GUGACCGUU UGGGAGUU 328 AACUCCCA CUGAUGA X GAA ACGGUCAC 1150 2898 GUGACCGUU UGGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                    |     |                                 |      |
| 2846 AUCAAUUUU ACACAGAA 321 UUCUGUGU CUGAUGA X GAA AAAUUGAU 1144 2847 UCAAUUUUA CACAGAAU 322 AUUCUGUG CUGAUGA X GAA AAAUUGAU 1145 2856 CACAGAAUC UAUACCCA 323 UGGGUAUA CUGAUGA X GAA AUUCUGUG 1146 2858 CAGAAUCUA UACCCACC 324 GGUGGGUA CUGAUGA X GAA AUUCUGUG 1147 2860 GAAUCUAUA CCCACCAG 325 CUGGUGGG CUGAUGA X GAA AGAUUCUG 1148 2877 AGUGAUGUC UGGAGCUA 326 UAGCUCCA CUGAUGA X GAA ACAUCACU 1149 2885 CUGGAGCUA CGGGGUGA 327 UCACCCCG CUGAUGA X GAA ACAUCACU 1149 2885 CUGGACCGUU UGGGAGUU 328 AACUCCCA CUGAUGA X GAA ACGGUCAC 1150 2898 GUGACCGUU UGGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | <u></u>            |     | 1 '                             |      |
| 2847 UCAAUUUUA CACAGAAU 322 AUUCUGUG CUGAUGA X GAA AAAUUGAU 1145 2856 CACAGAAUC UAUACCCA 323 UGGGUAUA CUGAUGA X GAA AUUCUGUG 1146 2858 CAGAAUCUA UACCCACC 324 GGUGGGUA CUGAUGA X GAA AGAUUCUG 1147 2860 GAAUCUAUA CCCACCAG 325 CUGGUGGG CUGAUGA X GAA AGAUUCUG 1148 2877 AGUGAUGUC UGGAGCUA 326 UAGCUCCA CUGAUGA X GAA ACAUCACU 1149 2885 CUGGAGCUA CGGGGUGA 327 UCACCCCG CUGAUGA X GAA ACAUCACU 1149 2886 GUGACCGUU UGGGAGUU 328 AACUCCCA CUGAUGA X GAA ACGUCCAG 1150 2898 GUGACCGUU UGGGAGUU 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA AACGGUCA 1152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | <u> </u>           | l   |                                 |      |
| 2856 CACAGAAUC UAUACCCA 323 UGGGUAUA CUGAUGA X GAA AUUCUGUG 1146 2858 CAGAAUCUA UACCCACC 324 GGUGGGUA CUGAUGA X GAA AGAUUCUG 1147 2860 GAAUCUAUA CCCACCAG 325 CUGGUGGG CUGAUGA X GAA AUAGAUUC 1148 2877 AGUGAUGUC UGGAGCUA 326 UAGCUCCA CUGAUGA X GAA ACAUCACU 1149 2885 CUGGAGCUA CGGGGUGA 327 UCACCCCG CUGAUGA X GAA ACCUCCAG 1150 2898 GUGACCGUU UGGGAGUU 328 AACUCCCA CUGAUGA X GAA ACGGUCCA 1151 2899 UGACCGUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCCA 1151 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACCGGUCA 1152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | <u></u>            |     | 1 '                             | 1144 |
| 2858 CAGAAUCUA UACCCACC 324 GGUGGGUA CUGAUGA X GAA AGAUUCUG 1147 2860 GAAUCUAUA CCCACCAG 325 CUGGUGGG CUGAUGA X GAA AUAGAUUC 1148 2877 AGUGAUGUC UGGAGCUA 326 UAGCUCCA CUGAUGA X GAA ACAUCACU 1149 2885 CUGGACCUA CGGGGUGA 327 UCACCCCG CUGAUGA X GAA ACAUCACU 1150 2898 GUGACCGUU UGGGAGUU 328 AACUCCCA CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA AACGGUCA 1152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                    |     |                                 | 1145 |
| 2860 GAAUCUAUA CCCACCAG 325 CUGGUGGG CUGAUGA X GAA AUAGAUUC 1148 2877 AGUGAUGU UGGAGCUA 326 UAGCUCCA CUGAUGA X GAA ACAUCACU 1149 2885 CUGGAGCUA CGGGGUGA 327 UCACCCCG CUGAUGA X GAA ACAUCACU 1150 2898 GUGACCGUU UGGGAGUU 328 AACUCCCA CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA AACGGUCA 1152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                    |     |                                 | 1146 |
| 2877 AGUGAUGUC UGGAGCUA 326 UAGCUCCA CUGAUGA X GAA ACAUCACU 1149 2885 CUGGAGCUA CGGGGUGA 327 UCACCCCG CUGAUGA X GAA ACGUCCAG 1150 2898 GUGACCGUU UGGGAGUU 328 AACUCCCA CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA AACGGUCA 1152 2890 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA AACGGUCA 1152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |     | <u> </u>                        | 1147 |
| 2885 CUGGAGCUA CGGGGUGA 327 UCACCCCG CUGAUGA X GAA ACGCUCCAG 1150 2898 GUGACCGUU UGGGAGUU 328 AACUCCCA CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA AACGGUCAC 1152 2996 UUGGGACUU GAUGACCU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                    |     | <u> </u>                        | 1148 |
| 2898 GUGACCGUU UGGGAGUU 328 AACUCCCA CUGAUGA X GAA ACGGUCAC 1151 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA AACGGUCA 1152 2906 UUGGGAGUU GAUGACCU 330 ACCUCCO CUGAUGA X GAA AACGGUCA 1152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | <u> </u>           |     | 1                               | 1149 |
| 2899 UGACCGUUU GGGAGUUG 329 CAACUCCC CUGAUGA X GAA AACGGUCA 1151 2906 UUGGGACUU GAUGACCU 330 AACUCCC CUGAUGA X GAA AACGGUCA 1152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                    |     | <u> </u>                        | 1150 |
| 2906 UNGGREUM GANGREUM 330 ACCURATE TO THE ACCURATE THE STATE OF THE S |      |                    |     | I                               | 1151 |
| UUGGGAGUU GAUGACCU 330 AGGUCAUC CUGAUGA X GAA ACUCCCAA 1153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                    |     |                                 | 1152 |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2906 | UUGGGAGUU GAUGACCU | 330 | AGGUCAUC CUGAUGA X GAA ACUCCCAA | 1153 |

Table III

| 2915 | GAUGACCUU UGGAUCCA | 331 | UGGAUCCA CUGAUGA X GAA AGGUCAUC                                 | 1154 |
|------|--------------------|-----|-----------------------------------------------------------------|------|
| 2916 | AUGACCUUU GGAUCCAA | 332 | UUGGAUCC CUGAUGA X GAA AAGGUCAU                                 | 1155 |
| 2921 | CUUUGGAUC CAAGCCAU | 333 | AUGGCUUG CUGAUGA X GAA AUCCAAAG                                 | 1156 |
| 2930 | CAAGCCAUA UGACGGAA | 334 | UUCCGUCA CUGAUGA X GAA AUGGCUUG                                 | 1157 |
| 2940 | GACGGAAUC CCUGCCAG | 335 | CUGGCAGG CUGAUGA X GAA AUUCCGUC                                 | 1158 |
| 2955 | AGCGAGAUC UCCUCCAU | 336 | AUGGAGGA CUGAUGA X GAA AUCUCGCU                                 | 1159 |
| 2957 | CGAGAUCUC CUCCAUCC | 337 | GGAUGGAG CUGAUGA X GAA AGAUCUCG                                 | 1160 |
| 2960 | GAUCUCCUC CAUCCUGG | 338 | CCAGGAUG CUGAUGA X GAA AGGAGAUC                                 | 1161 |
| 2964 | UCCUCCAUC CUGGAGAA | 339 | UUCUCCAG CUGAUGA X GAA AUGGAGGA                                 | 1162 |
| 2985 | GAACGCCUC CCUCAGCC | 340 | GGCUGAGG CUGAUGA X GAA AGGCGUUC                                 | 1163 |
| 2989 | GCCUCCCUC AGCCACCC | 341 | GGGUGGCU CUGAUGA X GAA AGGGAGGC                                 | 1164 |
| 3000 | CCACCCAUA UGUACCAU | 342 | AUGGUACA CUGAUGA X GAA AUGGGUGG                                 | 1165 |
| 3004 | CCAUAUGUA CCAUCGAU | 343 | AUCGAUGG CUGAUGA X GAA ACAUAUGG                                 | 1166 |
| 3009 | UGUACCAUC GAUGUCUA | 344 | UAGACAUC CUGAUGA X GAA AUGGUACA                                 | 1167 |
| 3015 | AUCGAUGUC UACAUGAU | 345 | AUCAUGUA CUGAUGA X GAA ACAUCGAU                                 | 1168 |
| 3017 | CGAUGUCUA CAUGAUCA | 346 | UGAUCAUG CUGAUGA X GAA AGACAUCG                                 | 1169 |
| 3024 | UACAUGAUC AUGGUCAA | 347 | UUGACCAU CUGAUGA X GAA AUCAUGUA                                 | 1170 |
| 3030 | AUCAUGGUC AAGUGCUG | 348 | CAGCACUU CUGAUGA X GAA ACCAUGAU                                 | 1171 |
| 3045 | UGGAUGAUA GACGCAGA | 349 | UCUGCGUC CUGAUGA X GAA AUCAUCCA                                 | 1172 |
| 3055 | ACGCAGAUA GUCGCCCA | 350 | UGGGCGAC CUGAUGA X GAA AUCUGCGU                                 | 1172 |
| 3058 | CAGAUAGUC GCCCAAAG | 351 | CUUUGGGC CUGAUGA X GAA ACUAUCUG                                 | 1174 |
| 3068 | CCCAAAGUU CCGUGAGU | 352 | ACUCACGG CUGAUGA X GAA ACUUUGGG                                 | 1175 |
| 3069 | CCAAAGUUC CGUGAGUU | 353 | AACUCACG CUGAUGA X GAA AACUUUGG                                 | 1175 |
| 3077 | CCGUGAGUU GAUCAUCG | 354 | CGAUGAUC CUGAUGA X GAA ACUCACGG                                 | 1177 |
| 3081 | GAGUUGAUC AUCGAAUU | 355 | AAUUCGAU CUGAUGA X GAA AUCAACUC                                 | 1178 |
| 3084 | UUGAUCAUC GAAUUCUC | 356 | GAGAAUUC CUGAUGA X GAA AUGAUCAA                                 | 1176 |
| 3089 | CAUCGAAUU CUCCAAAA | 357 | UUUUGGAG CUGAUGA X GAA AUUCGAUG                                 | 11/9 |
| 3090 | AUCGAAUUC UCCAAAAU | 358 | AUUUUGGA CUGAUGA X GAA AAUUCGAU                                 | 1181 |
| 3092 | CGAAUUCUC CAAAAUGG | 359 | CCAUUUUG CUGAUGA X GAA AGAAUUCG                                 | 1182 |
| 3119 | CCAGCGCUA CCUUGUCA | 360 | UGACAAGG CUGAUGA X GAA AGCGCUGG                                 |      |
| 3123 | CGCUACCUU GUCAUUCA | 361 | UGAAUGAC CUGAUGA X GAA AGGUAGCG                                 | 1183 |
| 3126 | UACCUUGUC AUUCAGGG | 362 | CCCUGAAU CUGAUGA X GAA ACAAGGUA                                 |      |
| 3129 | CUUGUCAUU CAGGGGGA | 363 | UCCCCCUG CUGAUGA X GAA AUGACAAG                                 | 1185 |
| 3130 | UUGUCAUUC AGGGGGAU | 364 | AUCCCCCU CUGAUGA X GAA AAUGACAA                                 | 1186 |
| 3151 | GAAUGCAUU UGCCAAGU | 365 | ACUUGGCA CUGAUGA X GAA AUGCAUUC                                 | 1187 |
| 3152 | AAUGCAUUU GCCAAGUC | 366 | GACUUGGC CUGAUGA X GAA AAUGCAUU                                 | 1188 |
| 3160 | UGCCAAGUC CUACAGAC | 367 | <u> </u>                                                        | 1189 |
| 3163 | CAAGUCCUA CAGACUCC | 368 | GUCUGUAG CUGAUGA X GAA ACUUGGCA GGAGUCUG CUGAUGA X GAA AGGACUUG | 1190 |
| 3170 | UACAGACUC CAACUUCU | 369 | AGAAGUUG CUGAUGA X GAA AGUCUGUA                                 | 1191 |
| 3176 | CUCCAACUU CUACCGUG | 370 | CACGGUAG CUGAUGA X GAA AGUUGGAG                                 | 1192 |
| 3177 | UCCAACUUC UACCGUGC | 371 | GCACGGUA CUGAUGA X GAA AAGUUGGA                                 | 1193 |
| 3179 | CAACUUCUA CCGUGCCC | 372 | GGGCACGG CUGAUGA X GAA AGAAGUUG                                 | 1194 |
| 3233 | CGACGAGUA CCUCAUCC | 373 | GGAUGAGG CUGAUGA X GAA ACUCGUCG                                 | 1195 |
| 3237 | GAGUACCUC AUCCCACA | 374 | UGUGGGAU CUGAUGA X GAA ACCUCGUCG                                | 1196 |
| 3240 | UACCUCAUC CCACAGCA | 375 | UGCUGUGG CUGAUGA X GAA AUGAGGUA                                 | 1197 |
| 3254 | GCAGGGCUU CUUCAGCA | 376 | UGCUGAAG CUGAUGA X GAA AGCCCUGC                                 | 1198 |
| 3255 | CAGGGCUUC UUCAGCAG | 377 | CUGCUGAA CUGAUGA X GAA AAGCCCUG                                 | 1199 |
| 3257 | GGGCUUCUU CAGCAGCC | 378 | GGCUGCUG CUGAUGA X GAA AGAAGCCC                                 | 1200 |
|      | 1 2222222          | 3,0 | COCOGCOG COGNOGA A GAA AGAAGCCC                                 | 1201 |

Table III

| 3258     | GGCUUCUUC AGCAGCCC | 379 | GGGCUGCU CUGAUGA X GAA AAGAAGCC  | 1202 |
|----------|--------------------|-----|----------------------------------|------|
| 3269     | CAGCCCCUC CACGUCAC | 380 | GUGACGUG CUGAUGA X GAA AGGGGCUG  | 1203 |
| 3275     | CUCCACGUC ACGGACUC | 381 | GAGUCCGU CUGAUGA X GAA ACGUGGAG  | 1204 |
| 3283     | CACGGACUC CCCUCCUG | 382 | CAGGAGGG CUGAUGA X GAA AGUCCGUG  | 1205 |
| 3288     | ACUCCCCUC CUGAGCUC | 383 | GAGCUCAG CUGAUGA X GAA AGGGGAGU  | 1206 |
| 3296     | CCUGAGCUC UCUGAGUG | 384 | CACUCAGA CUGAUGA X GAA AGCUCAGG  | 1207 |
| 3298     | UGAGCUCUC UGAGUGCA | 385 | UGCACUCA CUGAUGA X GAA AGAGCUCA  | 1208 |
| 3319     | GCAACAAUU CCACCGUG | 386 | CACGGUGG CUGAUGA X GAA AUUGUUGC  | 1209 |
| 3320     | CAACAAUUC CACCGUGG | 387 | CCACGGUG CUGAUGA X GAA AAUUGUUG  | 1210 |
| 3331     | CCGUGGCUU GCAUUGAU | 388 | AUCAAUGC CUGAUGA X GAA AGCCACGG  | 1211 |
| 3336     | GCUUGCAUU GAUAGAAA | 389 | UUUCUAUC CUGAUGA X GAA AUGCAAGC  | 1212 |
| 3340     | GCAUUGAUA GAAAUGGG | 390 | CCCAUUUC CUGAUGA X GAA AUCAAUGC  | 1213 |
| 3361     | AAAGCUGUC CCAUCAAG | 391 | CUUGAUGG CUGAUGA X GAA ACAGCUUU  | 1214 |
| 3366     | UGUCCCAUC AAGGAAGA | 392 | UCUUCCUU CUGAUGA X GAA AUGGGACA  | 1215 |
| 3380     | AGACAGCUU CUUGCAGC | 393 | GCUGCAAG CUGAUGA X GAA AGCUGUCU  | 1216 |
| 3381     | GACAGCUUC UUGCAGCG | 394 | CGCUGCAA CUGAUGA X GAA AAGCUGUC  | 1217 |
| 3383     | CAGCUUCUU GCAGCGAU | 395 | AUCGCUGC CUGAUGA X GAA AGAAGCUG  | 1218 |
| 3392     | GCAGCGAUA CAGCUCAG | 396 | CUGAGCUG CUGAUGA X GAA AUCGCUGC  | 1219 |
| 3398     | AUACAGCUC AGACCCCA | 397 | UGGGGUCU CUGAUGA X GAA AGCUGUAU  | 1220 |
| 3416     | AGGCGCCUU GACUGAGG | 398 | CCUCAGUC CUGAUGA X GAA AGGCGCCU  | 1221 |
| 3432     | GACAGCAUA GACGACAC | 399 | GUGUCGUC CUGAUGA X GAA AUGCUGUC  | 1222 |
| 3443     | CGACACCUU CCUCCCAG | 400 | CUGGGAGG CUGAUGA X GAA AGGUGUCG  | 1223 |
| 3444     | GACACCUUC CUCCCAGU | 401 | ACUGGGAG CUGAUGA X GAA AAGGUGUC  | 1224 |
| 3447     | ACCUUCCUC CCAGUGCC | 402 | GGCACUGG CUGAUGA X GAA AGGAAGGU  | 1225 |
| 3461     | GCCUGAAUA CAUAAACC | 403 | GGUUUAUG CUGAUGA X GAA AUUCAGGC  | 1226 |
| 3465     | GAAUACAUA AACCAGUC | 404 | GACUGGUU CUGAUGA X GAA AUGUAUUC  | 1227 |
| 3473     | AAACCAGUC CGUUCCCA | 405 | UGGGAACG CUGAUGA X GAA ACUGGUUU  | 1228 |
| 3477     | CAGUCCGUU CCCAAAAG | 406 | CUUUUGGG CUGAUGA X GAA ACGGACUG  | 1229 |
| 3478     | AGUCCGUUC CCAAAAGG | 407 | CCUUUUGG CUGAUGA X GAA AACGGACU  | 1230 |
| 3497     | CGCUGGCUC UGUGCAGA | 408 | UCUGCACA CUGAUGA X GAA AGCCAGCG  | 1231 |
| 3508     | UGCAGAAUC CUGUCUAU | 409 | AUAGACAG CUGAUGA X GAA AUUCUGCA  | 1231 |
| 3513     | AAUCCUGUC UAUCACAA | 410 | UUGUGAUA CUGAUGA X GAA ACAGGAUU  | 1232 |
| 3515     | UCCUGUCUA UCACAAUC | 411 | GAUUGUGA CUGAUGA X GAA AGACAGGA  | 1234 |
| 3517     | CUGUCUAUC ACAAUCAG | 412 | CUGAUUGU CUGAUGA X GAA AUAGACAG  | 1235 |
| 3523     | AUCACAAUC AGCCUCUG | 413 | CAGAGGCU CUGAUGA X GAA AUUGUGAU  | 1236 |
| 3529     | AUCAGCCUC UGAACCCC | 414 | GGGGUUCA CUGAUGA X GAA AGGCUGAU  | 1236 |
| 3560     | CCCACACUA CCAGGACC | 415 | GGUCCUGG CUGAUGA X GAA AGUGUGGG  |      |
| 3599     | CCCCGAGUA UCUCAACA | 416 | UGUUGAGA CUGAUGA X GAA ACUCGGGG  | 1238 |
| 3601     | CCGAGUAUC UCAACACU | 417 | AGUGUUGA CUGAUGA X GAA AUACUCGG  | 1239 |
| 3603     | GAGUAUCUC AACACUGU | 418 | ACAGUGUU CUGAUGA X GAA AGAUACUC  | 1240 |
| 3612     | AACACUGUC CAGCCCAC | 419 | GUGGGCUG CUGAUGA X GAA ACAGUGUU  | 1241 |
| 3627     | ACCUGUGUC AACAGCAC | 420 | GUGCUGUU CUGAUGA X GAA ACACAGGU  | 1242 |
| 3638     | CAGCACAUU CGACACCC | 421 | GGCUGUCG CUGAUGA X GAA AUGUGCUG  | 1243 |
| 3639     | AGCACAUUC GACAGCCC | 422 | GGGCUGUC CUGAUGA X GAA AAUGUGCU  | 1244 |
| 3681     | CACCAAAUU AGCCUGGA | 423 | UCCAGGCU CUGAUGA X GAA AUUUGGUG  | 1245 |
| 3682     | ACCAAAUUA GCCUGGAC | 424 | GUÇCAGGC CUGAUGA X GAA AAUUUGGUG | 1246 |
| 3701     | CCCUGACUA CCAGCAGG | 425 | CCUGCUGG CUGAUGA X GAA AGUCAGGG  | 1247 |
| 3713     | GCAGGACUU CUUUCCCA | 426 | UGGGAAAG CUGAUGA X GAA AGUCCUGC  | 1248 |
| <u> </u> |                    |     | COGNOGA X GAA AGUCCUGC           | 1249 |

Table III

| 3714 CAGGACUUC UUUCCCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 427                                                                                                                                             | UUGGGAAA CUGAUGA X GAA AAGUCCUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1250                                                                                                                                 |
| 3716 GGACUUCUU UCCCAAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 428                                                                                                                                             | CCUUGGGA CUGAUGA X GAA AGAAGUCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1251                                                                                                                                 |
| 3717 GACUUCUUU CCCAAGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 429                                                                                                                                             | UCCUUGGG CUGAUGA X GAA AAGAAGUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1252                                                                                                                                 |
| 3718 ACUUCUUUC CCAAGGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 430                                                                                                                                             | UUCCUUGG CUGAUGA X GAA AAAGAAGU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1253                                                                                                                                 |
| 3744 AAUGGCAUC UUUAAGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 431                                                                                                                                             | CCCUUAAA CUGAUGA X GAA AUGCCAUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1254                                                                                                                                 |
| 3746 UGGCAUCUU UAAGGGCU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 432                                                                                                                                             | AGCCCUUA CUGAUGA X GAA AGAUGCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1255                                                                                                                                 |
| 3747 GGCAUCUUU AAGGGCUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 433                                                                                                                                             | GAGCCCUU CUGAUGA X GAA AAGAUGCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1256                                                                                                                                 |
| 3748 GCAUCUUUA AGGGCUCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 434                                                                                                                                             | GGAGCCCU CUGAUGA X GAA AAAGAUGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1257                                                                                                                                 |
| 3755 UAAGGGCUC CACAGCUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 435                                                                                                                                             | CAGCUGUG CUGAUGA X GAA AGCCCUUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1258                                                                                                                                 |
| 3776 UGCAGAAUA CCUAAGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 436                                                                                                                                             | CCCUUAGG CUGAUGA X GAA AUUCUGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1259                                                                                                                                 |
| 3780 GAAUACCUA AGGGUCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 437                                                                                                                                             | GCGACCCU CUGAUGA X GAA AGGUAUUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1260                                                                                                                                 |
| 3786 CUAAGGGUC GCGCCACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 438                                                                                                                                             | UGUGGCGC CUGAUGA X GAA ACCCUUAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1261                                                                                                                                 |
| 3806 CAGUGAAUU UAUUGGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 439                                                                                                                                             | CUCCAAUA CUGAUGA X GAA AUUCACUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1262                                                                                                                                 |
| 3807 AGUGAAUUU AUUGGAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 440                                                                                                                                             | GCUCCAAU CUGAUGA X GAA AAUUCACU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                      |
| 3808 GUGAAUUUA UUGGAGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 441                                                                                                                                             | UGCUCCAA CUGAUGA X GAA AAAUUCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1263                                                                                                                                 |
| 3810 GAAUUUAUU GGAGCAUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 442                                                                                                                                             | CAUGCUCC CUGAUGA X GAA AUAAAUUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1264                                                                                                                                 |
| 3831 CGGAGGAUA GUAUGAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 443                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1265                                                                                                                                 |
| 3834 AGGAUAGUA UGAGCCCU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 | GCUCAUAC CUGAUGA X GAA AUCCUCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1266                                                                                                                                 |
| 3843 UGAGCCCUA AAAAUCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 444                                                                                                                                             | AGGGCUCA CUGAUGA X GAA ACUAUCCU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1267                                                                                                                                 |
| 3849 CUAAAAAUC CAGACUCU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 445                                                                                                                                             | UGGAUUUU CUGAUGA X GAA AGGGCUCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1268                                                                                                                                 |
| 33,223,00 (3,0,000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 446                                                                                                                                             | AGAGUCUG CUGAUGA X GAA AUUUUUAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1269                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 447                                                                                                                                             | UAUCGAAA CUGAUGA X GAA AGUCUGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1270                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 448                                                                                                                                             | GGUAUCGA CUGAUGA X GAA AGAGUCUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1271                                                                                                                                 |
| 3859 AGACUCUUU CGAUACCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 449                                                                                                                                             | GGGUAUCG CUGAUGA X GAA AAGAGUCU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1272                                                                                                                                 |
| 2070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                      |
| 3860 GACUCUUUC GAUACCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 450                                                                                                                                             | UGGGUAUC CUGAUGA X GAA AAAGAGUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1273                                                                                                                                 |
| 3864 CUUUCGAUA CCCAGGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 450<br>451                                                                                                                                      | UGGGUAUC CUGAUGA X GAA AAAGAGUC GUCCUGGG CUGAUGA X GAA AUCGAAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                      |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1273                                                                                                                                 |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 451                                                                                                                                             | GUCCUGGG CUGAUGA X GAA AUCGAAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1273<br>1274                                                                                                                         |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 451<br>452                                                                                                                                      | GUCCUGGG CUGAUGA X GAA AUCGAAAG GGAUGGAG CUGAUGA X GAA ACCUGCUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1273<br>1274<br>1275                                                                                                                 |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 451<br>452<br>453                                                                                                                               | GUCCUGGG CUGAUGA X GAA AUCGAAAG GGAUGGAG CUGAUGA X GAA ACCUGCUG UUGGGAUG CUGAUGA X GAA AGGACCUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1273<br>1274<br>1275<br>1276                                                                                                         |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 451<br>452<br>453<br>454                                                                                                                        | GUCCUGGG CUGAUGA X GAA AUCGAAAG GGAUGGAG CUGAUGA X GAA ACCUGCUG UUGGGAUG CUGAUGA X GAA AGGACCUG GCUGUUGG CUGAUGA X GAA AUGGAGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1273<br>1274<br>1275<br>1276<br>1277                                                                                                 |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC 3915 GCCCGCAUU AGCUCUUA                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 451<br>452<br>453<br>454<br>455                                                                                                                 | GUCCUGGG CUGAUGA X GAA AUCGAAAG  GGAUGGAG CUGAUGA X GAA ACCUGCUG  UUGGGAUG CUGAUGA X GAA AGGACCUG  GCUGUUGG CUGAUGA X GAA AUGGAGGA  UAAGAGCU CUGAUGA X GAA AUGCGGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1273<br>1274<br>1275<br>1276<br>1277<br>1278                                                                                         |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC 3915 GCCCGCAUU AGCUCUUA 3916 CCCGCAUUA GCUCUUAG                                                                                                                                                                                                                                                                                                                                                                                                                           | 451<br>452<br>453<br>454<br>455<br>456                                                                                                          | GUCCUGGG CUGAUGA X GAA AUCGAAAG GGAUGGAG CUGAUGA X GAA ACCUGCUG UUGGGAUG CUGAUGA X GAA AGGACCUG GCUGUUGG CUGAUGA X GAA AUGGAGGA UAAGAGCU CUGAUGA X GAA AUGCGGGC CUAAGAGC CUGAUGA X GAA AAUGCGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1273<br>1274<br>1275<br>1276<br>1277<br>1278<br>1279                                                                                 |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC 3915 GCCCGCAUU AGCUCUUAG 3916 CCCGCAUUA GCUCUUAG 3920 CAUUAGCUC UUAGACCC                                                                                                                                                                                                                                                                                                                                                                                                  | 451<br>452<br>453<br>454<br>455<br>456<br>457                                                                                                   | GUCCUGGG CUGAUGA X GAA AUCGAAAG  GGAUGGAG CUGAUGA X GAA ACCUGCUG  UUGGGAUG CUGAUGA X GAA AUGGACCUG  GCUGUUGG CUGAUGA X GAA AUGGAGGA  UAAGAGCU CUGAUGA X GAA AUGCGGGC  CUAAGAGC CUGAUGA X GAA AAUGCGGG  GGGUCUAA CUGAUGA X GAA AAUGCGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1273<br>1274<br>1275<br>1276<br>1277<br>1278<br>1279<br>1280                                                                         |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC 3915 GCCCGCAUU AGCUCUUA 3916 CCCGCAUUA GCUCUUAG 3920 CAUUAGCUC UUAGACCC 3922 UUAGCUCUU AGACCCAC                                                                                                                                                                                                                                                                                                                                                                           | 451<br>452<br>453<br>454<br>455<br>456<br>457<br>458                                                                                            | GUCCUGGG CUGAUGA X GAA AUCGAAAG GGAUGGAG CUGAUGA X GAA ACCUGCUG UUGGGAUG CUGAUGA X GAA AGGACCUG GCUGUUGG CUGAUGA X GAA AUGGAGGA UAAGAGCU CUGAUGA X GAA AUGCGGGC CUAAGAGC CUGAUGA X GAA AAUGCGGG GGGUCUAA CUGAUGA X GAA AGCUAAUG GUGGGUCU CUGAUGA X GAA AGAGCUAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1273<br>1274<br>1275<br>1276<br>1277<br>1278<br>1279<br>1280                                                                         |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC 3915 GCCCGCAUU AGCUCUUA 3916 CCCGCAUUA GCUCUUAG 3920 CAUUAGCUC UUAGACCC 3922 UUAGCUCUU AGACCCAC 3923 UAGCUCUUA GACCCACA                                                                                                                                                                                                                                                                                                                                                   | 451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459                                                                                     | GUCCUGGG CUGAUGA X GAA AUCGAAAG GGAUGGAG CUGAUGA X GAA ACCUGCUG UUGGGAUG CUGAUGA X GAA AGGACCUG GCUGUUGG CUGAUGA X GAA AUGGAGGA UAAGAGCU CUGAUGA X GAA AUGCGGGC CUAAGAGC CUGAUGA X GAA AAUGCGGG GGGUCUAA CUGAUGA X GAA AGCUAAUG GUGGGUCU CUGAUGA X GAA AGAGCUAA UGUGGGUC CUGAUGA X GAA AAGAGCUAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1273<br>1274<br>1275<br>1276<br>1277<br>1278<br>1279<br>1280<br>1281<br>1282                                                         |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC 3915 GCCCGCAUU AGCUCUUA 3916 CCCGCAUUA GCUCUUAG 3920 CAUUAGCUC UUAGACCC 3922 UUAGCUCUU AGACCCAC 3923 UAGCUCUUA GACCCACA 3939 AGACUGGUU UUGCAACG                                                                                                                                                                                                                                                                                                                           | 451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460                                                                              | GUCCUGGG CUGAUGA X GAA AUCGAAAG GGAUGGAG CUGAUGA X GAA ACCUGCUG UUGGGAUG CUGAUGA X GAA AGGACCUG GCUGUUGG CUGAUGA X GAA AUGGAGGA UAAGAGCU CUGAUGA X GAA AUGCGGGC CUAAGAGC CUGAUGA X GAA AAUGCGGG GGGUCUAA CUGAUGA X GAA AGCUAAUG GUGGGUCU CUGAUGA X GAA AGAGCUAA UGUGGGUC CUGAUGA X GAA AAGAGCUAA CGUUGCAA CUGAUGA X GAA AAGAGCUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1273<br>1274<br>1275<br>1276<br>1277<br>1278<br>1279<br>1280<br>1281<br>1282<br>1283                                                 |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC 3915 GCCCGCAUU AGCUCUUA 3916 CCCGCAUUA GCUCUUAG 3920 CAUUAGCUC UUAGACCC 3922 UUAGCUCUU AGACCCAC 3923 UAGCUCUUA GACCCACA 3939 AGACUGGUU UUGCAACGU                                                                                                                                                                                                                                                                                                                          | 451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461                                                                       | GUCCUGGG CUGAUGA X GAA AUCGAAAG  GGAUGGAG CUGAUGA X GAA ACCUGCUG  UUGGGAUG CUGAUGA X GAA AGGACCUG  GCUGUUGG CUGAUGA X GAA AUGGAGGA  UAAGAGCU CUGAUGA X GAA AUGCGGGC  CUAAGAGC CUGAUGA X GAA AAUGCGGG  GGGUCUAA CUGAUGA X GAA AGCUAAUG  GUGGGUCU CUGAUGA X GAA AGGCUAA  UGUGGGUC CUGAUGA X GAA AAGAGCUA  CGUUGCAA CUGAUGA X GAA AAGAGCUA  ACGUUGCA CUGAUGA X GAA AACCAGUC  AACGUUGC CUGAUGA X GAA AACCAGUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1273<br>1274<br>1275<br>1276<br>1277<br>1278<br>1279<br>1280<br>1281<br>1282<br>1283<br>1284                                         |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC 3915 GCCCGCAUU AGCUCUUAG 3916 CCCGCAUUA GCUCUUAG 3920 CAUUAGCUC UUAGACCC 3922 UUAGCUCUU AGACCCAC 3923 UAGCUCUUA GACCCACA 3939 AGACUGGUU UUGCAACGU 3940 GACUGGUUU UGCAACGU 3941 ACUGGUUUU GCAACGUU                                                                                                                                                                                                                                                                         | 451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461<br>462                                                                | GUCCUGGG CUGAUGA X GAA AUCGAAAG GGAUGGAG CUGAUGA X GAA ACCUGCUG UUGGGAUG CUGAUGA X GAA AGGACCUG GCUGUUGG CUGAUGA X GAA AUGGAGGA UAAGAGCU CUGAUGA X GAA AUGCGGGC CUAAGAGC CUGAUGA X GAA AAUGCGGG GGGUCUAA CUGAUGA X GAA AGCUAAUG GUGGGUCU CUGAUGA X GAA AGAGCUAA UGUGGGUCU CUGAUGA X GAA AAGAGCUA CGUUGCAA CUGAUGA X GAA AACAGUCU ACGUUGCA CUGAUGA X GAA AACCAGUC AACGUUGC CUGAUGA X GAA AACCAGUC AACGUUGC CUGAUGA X GAA AACCAGU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1273<br>1274<br>1275<br>1276<br>1277<br>1278<br>1279<br>1280<br>1281<br>1282<br>1283<br>1284<br>1285<br>1286                         |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC 3915 GCCCGCAUU AGCUCUUAG 3916 CCCGCAUUA GCUCUUAG 3920 CAUUAGCUC UUAGACCC 3922 UUAGCUCUU AGACCCAC 3923 UAGCUCUUA GACCCACA 3939 AGACUGGUU UUGCAACGU 3940 GACUGGUUU GCAACGUU 3941 ACUGGUUUU GCAACGUU                                                                                                                                                                                                                                                                         | 451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461<br>462<br>463<br>464                                                  | GUCCUGGG CUGAUGA X GAA AUCGAAAG GGAUGGAG CUGAUGA X GAA ACCUGCUG UUGGGAUG CUGAUGA X GAA AGGACCUG GCUGUUGG CUGAUGA X GAA AUGGAGGA UAAGAGCU CUGAUGA X GAA AUGCGGGC CUAAGAGC CUGAUGA X GAA AAUGCGGG GGGUCUAA CUGAUGA X GAA AGCUAAUG GUGGGUCU CUGAUGA X GAA AGAGCUAA UGUGGGUCU CUGAUGA X GAA AGAGCUAA CGUUGCAA CUGAUGA X GAA AACAGUCU ACGUUGCA CUGAUGA X GAA AACCAGUC AACGUUGC CUGAUGA X GAA AACCAGUC CUGGUGA CUGAUGA X GAA AACCAGUC UCGGUGUA CUGAUGA X GAA AACCAGUC GUCGGUGUA CUGAUGA X GAA AACGUUGCA GUCGGUGU CUGAUGA X GAA AACGUUGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1273<br>1274<br>1275<br>1276<br>1277<br>1278<br>1279<br>1280<br>1281<br>1282<br>1283<br>1284<br>1285<br>1286<br>1287                 |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC 3915 GCCCGCAUU AGCUCUUAG 3916 CCCGCAUUA GCUCUUAG 3920 CAUUAGCUC UUAGACCC 3922 UUAGCUCUU AGACCCAC 3923 UAGCUCUUA GACCCACA 3939 AGACUGGUU UUGCAACGU 3940 GACUGGUUU UGCAACGU 3941 ACUGGUUUU GCAACGUU 3949 UGCAACGUU UACACCGA                                                                                                                                                                                                                                                 | 451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461<br>462<br>463<br>464                                                  | GUCCUGGG CUGAUGA X GAA AUCGAAAG GGAUGGAG CUGAUGA X GAA ACCUGCUG UUGGGAUG CUGAUGA X GAA AGGACCUG GCUGUUGG CUGAUGA X GAA AUGGAGGA UAAGAGCU CUGAUGA X GAA AUGCGGGC CUAAGAGC CUGAUGA X GAA AAUGCGGG GGGUCUAA CUGAUGA X GAA AGCUAAUG GUGGGUCU CUGAUGA X GAA AGAGCUAA UGUGGGUC CUGAUGA X GAA AGAGCUAA CGUUGCAA CUGAUGA X GAA AAGAGCUA ACGUUGCA CUGAUGA X GAA AACCAGUC AACGUUGC CUGAUGA X GAA AAACCAGU UCGGUGUA CUGAUGA X GAA AAACCAGU GUCGGUGU CUGAUGA X GAA AAACCAGU ACGUUGCA CUGAUGA X GAA AAACGUUGC AGUCGGUGU CUGAUGA X GAA AACGUUGC AGUCGGUGU CUGAUGA X GAA AACGUUGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1273<br>1274<br>1275<br>1276<br>1277<br>1278<br>1279<br>1280<br>1281<br>1282<br>1283<br>1284<br>1285<br>1286<br>1287                 |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC 3915 GCCCGCAUU AGCUCUUAG 3916 CCCGCAUUA GCUCUUAG 3920 CAUUAGCUC UUAGACCC 3922 UUAGCUCUU AGACCCAC 3923 UAGCUCUUA GACCCACA 3939 AGACUGGUU UUGCAACGU 3940 GACUGGUUU UGCAACGU 3941 ACUGGUUUU GCAACGUU 3949 UGCAACGUU UACACCGAC 3950 GCAACGUUU ACACCGAC 3950 GCAACGUUU ACACCGAC                                                                                                                                                                                                | 451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461<br>462<br>463<br>464<br>465<br>466                                    | GUCCUGGG CUGAUGA X GAA AUCGAAAG GGAUGGAG CUGAUGA X GAA ACCUGCUG UUGGGAUG CUGAUGA X GAA AGGACCUG GCUGUUGG CUGAUGA X GAA AUGGAGGA UAAGAGCU CUGAUGA X GAA AUGCGGGC CUAAGAGC CUGAUGA X GAA AAUGCGGG GGGUCUAA CUGAUGA X GAA AGCUAAUG GUGGGUCU CUGAUGA X GAA AGAGCUAA UGUGGGUC CUGAUGA X GAA AGAGCUAA CGUUGCAA CUGAUGA X GAA AAGAGCUA ACGUUGCA CUGAUGA X GAA AACCAGUC AACGUUGC CUGAUGA X GAA AACCAGU UCGGUGUA CUGAUGA X GAA AACCAGU GUCGGUGU CUGAUGA X GAA AACGUUGC AGUCGGUGU CUGAUGA X GAA AACGUUGC AGUCGGUG CUGAUGA X GAA AACGUUGC AGUCGGUG CUGAUGA X GAA AACGUUGC AGUCGGUG CUGAUGA X GAA AACGUUGC CUGAUGA X GAA AACGUUGC                                                                                                                                                                                                                                                                                                                                                                                                                       | 1273<br>1274<br>1275<br>1276<br>1277<br>1278<br>1279<br>1280<br>1281<br>1282<br>1283<br>1284<br>1285<br>1286<br>1287<br>1288         |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC 3915 GCCCGCAUU AGCUCUUA 3916 CCCGCAUUA GCUCUUAG 3920 CAUUAGCUC UUAGACCC 3922 UUAGCUCUU AGACCCAC 3923 UAGCUCUUA GACCCACA 3939 AGACUGGUU UUGCAACG 3940 GACUGGUUU UGCAACGU 3941 ACUGGUUUU GCAACGUU 3949 UGCAACGUU UACACCGAC 3950 GCAACGUUU ACACCGAC 3951 CAACGUUUA CACCGACU 3951 CAACGUUUA CACCGACU 3960 CACCGACUA GCCAGGAA 3971 CAGGAAGUA CUUCCACC                                                                                                                          | 451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461<br>462<br>463<br>464<br>465<br>466<br>467                             | GUCCUGGG CUGAUGA X GAA AUCGAAAG GGAUGGAG CUGAUGA X GAA ACCUGCUG UUGGGAUG CUGAUGA X GAA AGGACCUG GCUGUUGG CUGAUGA X GAA AUGGAGGA UAAGAGCU CUGAUGA X GAA AUGCGGGC CUAAGAGC CUGAUGA X GAA AAUGCGGG GGGUCUAA CUGAUGA X GAA AGGCUAAU GUGGGUC CUGAUGA X GAA AGAGCUAA UGUGGGUC CUGAUGA X GAA AGAGCUAA CGUUGCAA CUGAUGA X GAA AACGGUCU ACGUUGCA CUGAUGA X GAA AACCAGUC AACGUUGC CUGAUGA X GAA AACCAGUC UCGGUGUA CUGAUGA X GAA AACCAGU UCGGUGUA CUGAUGA X GAA AACGUUGCA GUCGGUGU CUGAUGA X GAA AACGUUGC AGUCGGUG CUGAUGA X GAA AACGUUGC AGUCGGUG CUGAUGA X GAA AACGUUGC GUCGUGG CUGAUGA X GAA AACGUUGC GUCGUGG CUGAUGA X GAA AACGUUGC GGUGGG CUGAUGA X GAA AACGUUGC GGUGGAAG CUGAUGA X GAA AACGUUGC                                                                                                                                                                                                                                                                                                                                                  | 1273<br>1274<br>1275<br>1276<br>1277<br>1278<br>1279<br>1280<br>1281<br>1282<br>1283<br>1284<br>1285<br>1286<br>1287<br>1288<br>1289 |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC 3915 GCCCGCAUU AGCUCUUAG 3916 CCCGCAUUA GCUCUUAG 3920 CAUUAGCUC UUAGACCC 3922 UUAGCUCUU AGACCCAC 3923 UAGCUCUUA GACCCACA 3939 AGACUGGUU UUGCAACGU 3940 GACUGGUUU UGCAACGU 3941 ACUGGUUUU GCAACGUU 3949 UGCAACGUU UACACCGAC 3950 GCAACGUUU ACACCGAC 3951 CAACGUUU ACACCGAC 3951 CAACGUUUA CACCGACU 3960 CACCGACUA GCCAGGAA 3971 CAGGAAGUA CUUCCACC                                                                                                                         | 451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461<br>462<br>463<br>464<br>465<br>466<br>467<br>468                      | GUCCUGGG CUGAUGA X GAA AUCGAAAG  GGAUGGAG CUGAUGA X GAA ACCUGCUG  UUGGGAUG CUGAUGA X GAA AGGACCUG  GCUGUUGG CUGAUGA X GAA AUGGAGGA  UAAGAGCU CUGAUGA X GAA AUGCGGGC  CUAAGAGC CUGAUGA X GAA AAUGCGGG  GGGUCUAA CUGAUGA X GAA AAUGCGGG  GUGGGGUC CUGAUGA X GAA AGGCUAA  UGUGGGUC CUGAUGA X GAA AAGAGCUA  CGUUGCAA CUGAUGA X GAA AAGAGCUA  ACGUUGCA CUGAUGA X GAA AACCAGUC  AACGUUGC CUGAUGA X GAA AACCAGU  UCGGUGUA CUGAUGA X GAA AACCAGU  GUCGGUGU CUGAUGA X GAA AACCGUUGC  AGUCGGUG CUGAUGA X GAA AACGUUGC  AGUCGGUG CUGAUGA X GAA AACGUUGC  GUCGGUGC CUGAUGA X GAA AACGUUGC  GUCCUGGC CUGAUGA X GAA AACGUUGC  GGUGGAAG CUGAUGA X GAA AACGUUGC  GGUGGAAG CUGAUGA X GAA AACGUUCCUG  GGAGGUGG CUGAUGA X GAA ACGUUCCUG                                                                                                                                                                                                                                                                                                                        | 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1299 1290                                            |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC 3915 GCCCGCAUU AGCUCUUAG 3916 CCCGCAUUA GCUCUUAG 3920 CAUUAGCUC UUAGACCC 3922 UUAGCUCUU AGACCCACA 3939 AGACUGGUU UUGCAACGU 3940 GACUGGUUU UGCAACGU 3941 ACUGGUUUU GCAACGUU 3941 ACUGGUUUU AGACCCAC 3950 GCAACGUUU ACACCGAC 3951 CAACGUUU ACACCGAC 3951 CAACGUUU ACACCGAC 3951 CAACGUUU CCCCGAC 3960 CACCGACUA GCCAGGAA 3971 CAGGAAGUA CUUCCACC 3975 AAGUACUUC CACCUCGG                                                                                                    | 451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461<br>462<br>463<br>464<br>465<br>466<br>467<br>468<br>469               | GUCCUGGG CUGAUGA X GAA AUCGAAAG  GGAUGGAG CUGAUGA X GAA ACCUGCUG  UUGGGAUG CUGAUGA X GAA AGGACCUG  GCUGUUGG CUGAUGA X GAA AUGGAGGA  UAAGAGCU CUGAUGA X GAA AUGCGGGC  CUAAGAGC CUGAUGA X GAA AAUGCGGG  GGGUCUAA CUGAUGA X GAA AAUGCGGG  GUGGGUCU CUGAUGA X GAA AGGCUAA  UGUGGGUC CUGAUGA X GAA AAGAGCUAA  CGUUGCAA CUGAUGA X GAA AAGAGCUA  ACGUUGCA CUGAUGA X GAA AACCAGUCU  ACGUUGCA CUGAUGA X GAA AACCAGUC  UCGGUGUA CUGAUGA X GAA AACCAGU  UCGGUGUA CUGAUGA X GAA AACCGUUGC  AGUCGGUGU CUGAUGA X GAA AACCGUUGC  AGUCGGUG CUGAUGA X GAA AACCGUUGC  AGUCGGUG CUGAUGA X GAA AACCGUUGC  GGUGGAAG CUGAUGA X GAA AACCGUUGC  CGAGGUGG CUGAUGA X GAA AACCGUUCC  CGAGGUGG CUGAUGA X GAA ACGUUCCUG  CCGAGGUGG CUGAUGA X GAA AGUACUUC  CCGAGGUGG CUGAUGA X GAA AAGUACUUC                                                                                                                                                                                                                                                                             | 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1299 1290 1291                                       |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC 3915 GCCCGCAUU AGCUCUUAG 3916 CCCGCAUUA GCUCUUAG 3920 CAUUAGCUC UUAGACCC 3922 UUAGCUCUU AGACCCACA 3939 AGACUGGUU UUGCAACGU 3940 GACUGGUUU UGCAACGU 3941 ACUGGUUUU GCAACGUU 3941 ACUGGUUUU ACACCGAC 3950 GCAACGUUU ACACCGAC 3950 GCAACGUUU ACACCGAC 3951 CAACGUUUA CACCGACU 3960 CACCGACUA GCCAGCAC 3971 CAGGAAGUA CUUCCACC 3974 GAAGUACUU CCACCUCGG 3975 AAGUACUUC CACCUCGG 3975 AAGUACUUC CACCUCGG                                                                       | 451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461<br>462<br>463<br>464<br>465<br>466<br>467<br>468<br>469<br>470        | GUCCUGGG CUGAUGA X GAA AUCGAAAG GGAUGGAG CUGAUGA X GAA ACCUGCUG UUGGGAUG CUGAUGA X GAA AGGACCUG GCUGUUGG CUGAUGA X GAA AUGGAGGA UAAGAGCU CUGAUGA X GAA AUGCGGGC CUAAGAGC CUGAUGA X GAA AAUGCGGGC GGGUCUAA CUGAUGA X GAA AAUGCGGG GUGGGUCU CUGAUGA X GAA AGGCUAAU GUGGGUCU CUGAUGA X GAA AGAGCUAA UGUGGGUC CUGAUGA X GAA AAGAGCUA ACGUUGCA CUGAUGA X GAA AACCAGUCU ACGUUGCA CUGAUGA X GAA AACCAGUC UCGGUGU CUGAUGA X GAA AAACCAGU GUCGGUGU CUGAUGA X GAA AACCAGU UCCGGUGU CUGAUGA X GAA AACGUUGC AGUCGGUG CUGAUGA X GAA AACGUUGC GUCGGUG CUGAUGA X GAA AACGUUGC GGUGGAAG CUGAUGA X GAA AACGUUGC CGAGGUGG CUGAUGA X GAA ACUUCCUG CGAGGUGG CUGAUGA X GAA ACUUCCUG CGAGGUGG CUGAUGA X GAA AGUACUUC CCGAGGUGG CUGAUGA X GAA AGUACUUC CCGAGGUGC CUGAUGA X GAA AAGUACUUC CCGAGGUGC CUGAUGA X GAA AAGUACUUC CCGAGGUGC CUGAUGA X GAA AAGUACUUC                                                                                                                                                                                                       | 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291                                       |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CAACAGC 3915 GCCCGCAUU AGCUCUUAG 3916 CCCGCAUUA GCUCUUAG 3920 CAUUAGCUC UUAGACCC 3922 UUAGCUCUU AGACCCACA 3939 AGACUGGUU UUGCAACGU 3940 GACUGGUUU UGCAACGU 3941 ACUGGUUUU GCAACGUU 3941 ACUGGUUUU AGACCCACA 3950 GCAACGUUU ACACCGAC 3951 CAACGUUU ACACCGAC 3951 CAACGUUU ACACCGAC 3951 CAACGUUU ACACCGAC 3951 CAACGUUU CCACCGAC 3971 CAGGAAGUA CUUCCACC 3974 GAAGUACUU CCACCUCGG 3975 AAGUACUUC CACCUCGG 3975 AAGUACUUC CACCUCGG                                                   | 451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461<br>462<br>463<br>464<br>465<br>466<br>467<br>468<br>469<br>470<br>471 | GUCCUGGG CUGAUGA X GAA AUCGAAAG GGAUGGAG CUGAUGA X GAA ACCUGCUG UUGGGAUG CUGAUGA X GAA AGGACCUG GCUGUUGG CUGAUGA X GAA AUGGAGGA UAAGAGCU CUGAUGA X GAA AUGCGGGC CUAAGAGC CUGAUGA X GAA AAUGCGGGC GGGUCUAA CUGAUGA X GAA AGCCUAAUG GUGGGUCU CUGAUGA X GAA AGGCUAA UGUGGGUCU CUGAUGA X GAA AGAGCUAA CGUUGCAA CUGAUGA X GAA AACCAGUCU ACGUUGCA CUGAUGA X GAA AACCAGUC AACGUUGC CUGAUGA X GAA AACCAGUC UCGGUGU CUGAUGA X GAA AACCAGUC GUCGGUGU CUGAUGA X GAA AACCAGU UCCGGUGU CUGAUGA X GAA AACCGUUGC AGUCGGUG CUGAUGA X GAA AACGUUGC GUCGGUGU CUGAUGA X GAA AACGUUGC CGAGGUG CUGAUGA X GAA AACGUUGC GGUGGAAG CUGAUGA X GAA ACUUCCUG CGAGGUGG CUGAUGA X GAA ACUUCCUG CGAGGUGG CUGAUGA X GAA AGUACUUC CCGAGGUG CUGAUGA X GAA AGUACUUC CCGAGGUG CUGAUGA X GAA AAGUACUUC CCCGAGGUG CUGAUGA X GAA AAGUACUUC CCCGAGGUG CUGAUGA X GAA AAGUACUUC CCCGAGGUG CUGAUGA X GAA AGGUGGAA CUUCCCCAA CUGAUGA X GAA AGGUGGAA | 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1298 1299 1291 1292                                       |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CCAACAGC 3915 GCCCGCAUU AGCUCUUAG 3916 CCCGCAUUA GCUCUUAG 3920 CAUUAGCUC UUAGACCC 3922 UUAGCUCUU AGACCCAC 3923 UAGCUCUUA GACCCACA 3939 AGACUGGUU UUGCAACGU 3940 GACUGGUUU UGCAACGU 3941 ACUGGUUUU GCAACGUU 3941 ACUGGUUUU ACACCGAC 3950 GCAACGUUU ACACCGAC 3951 CAACGUUU ACACCGAC 3951 CAACGUUU ACACCGAC 3951 CAACGUUU CCACCUCG 3974 GAAGUACUUC CCACCUCG 3974 GAAGUACUUC CCACCUCG 3975 AAGUACUUC CACCUCGG 3981 UUCCACCUC GGGCACAU 3990 GGGCACAUU UUGGGAAGU 3991 GGCACAUUU UGGGAAGU | 451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461<br>462<br>463<br>464<br>465<br>466<br>467<br>468<br>469<br>470<br>471 | GUCCUGGG CUGAUGA X GAA AUCGAAAG GGAUGGAG CUGAUGA X GAA ACCUGCUG UUGGGAUG CUGAUGA X GAA AGGACCUG GCUGUUGG CUGAUGA X GAA AUGGAGGA UAAGAGCU CUGAUGA X GAA AUGCGGGC CUAAGAGC CUGAUGA X GAA AAUGCGGGC GGGUCUAA CUGAUGA X GAA AGGCUAAU GUGGGUCU CUGAUGA X GAA AGGCUAAA UGUGGGUCU CUGAUGA X GAA AGAGCUAA CGUUGCAA CUGAUGA X GAA AAGAGCUA ACGUUGC CUGAUGA X GAA AACCAGUC AACGUUGC CUGAUGA X GAA AACCAGUC UCGGUGUA CUGAUGA X GAA AACCAGU UCGGUGUA CUGAUGA X GAA AACCAGU GUCGGUGU CUGAUGA X GAA AACGUUGC AGUCGGUG CUGAUGA X GAA AACGUUGC AGUCGGUG CUGAUGA X GAA AACGUUGC CGAGGUG CUGAUGA X GAA AACGUUGC CGAGGUG CUGAUGA X GAA AGUCGUUG CCGAGGUG CUGAUGA X GAA AGUCGUUG CCGAGGUG CUGAUGA X GAA AGUACUUC CCGAGGUG CUGAUGA X GAA AGUACUUC CCGAGGUG CUGAUGA X GAA AAGUACUUC CCGAGGUG CUGAUGA X GAA AAGUACUUC CCGAGGUG CUGAUGA X GAA AAGUACUUC AUGUCCCA CUGAUGA X GAA AAGUACUUC                                                                                                                                                                            | 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294                        |
| 3864 CUUUCGAUA CCCAGGAC 3888 CAGCAGGUC CUCCAUCC 3891 CAGGUCCUC CAUCCCAA 3895 UCCUCCAUC CAACAGC 3915 GCCCGCAUU AGCUCUUAG 3916 CCCGCAUUA GCUCUUAG 3920 CAUUAGCUC UUAGACCC 3922 UUAGCUCUU AGACCCACA 3939 AGACUGGUU UUGCAACGU 3940 GACUGGUUU UGCAACGU 3941 ACUGGUUUU GCAACGUU 3941 ACUGGUUUU AGACCCACA 3950 GCAACGUUU ACACCGAC 3951 CAACGUUU ACACCGAC 3951 CAACGUUU ACACCGAC 3951 CAACGUUU ACACCGAC 3951 CAACGUUU CCACCGAC 3971 CAGGAAGUA CUUCCACC 3974 GAAGUACUU CCACCUCGG 3975 AAGUACUUC CACCUCGG 3975 AAGUACUUC CACCUCGG                                                   | 451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461<br>462<br>463<br>464<br>465<br>466<br>467<br>468<br>469<br>470<br>471 | GUCCUGGG CUGAUGA X GAA AUCGAAAG GGAUGGAG CUGAUGA X GAA ACCUGCUG UUGGGAUG CUGAUGA X GAA AGGACCUG GCUGUUGG CUGAUGA X GAA AUGGAGGA UAAGAGCU CUGAUGA X GAA AUGCGGGC CUAAGAGC CUGAUGA X GAA AAUGCGGGC GGGUCUAA CUGAUGA X GAA AGCCUAAUG GUGGGUCU CUGAUGA X GAA AGGCUAA UGUGGGUCU CUGAUGA X GAA AGAGCUAA CGUUGCAA CUGAUGA X GAA AACCAGUCU ACGUUGCA CUGAUGA X GAA AACCAGUC AACGUUGC CUGAUGA X GAA AACCAGUC UCGGUGU CUGAUGA X GAA AACCAGUC GUCGGUGU CUGAUGA X GAA AACCAGU UCCGGUGU CUGAUGA X GAA AACCGUUGC AGUCGGUG CUGAUGA X GAA AACGUUGC GUCGGUGU CUGAUGA X GAA AACGUUGC CGAGGUG CUGAUGA X GAA AACGUUGC GGUGGAAG CUGAUGA X GAA ACUUCCUG CGAGGUGG CUGAUGA X GAA ACUUCCUG CGAGGUGG CUGAUGA X GAA AGUACUUC CCGAGGUG CUGAUGA X GAA AGUACUUC CCGAGGUG CUGAUGA X GAA AAGUACUUC CCCGAGGUG CUGAUGA X GAA AAGUACUUC CCCGAGGUG CUGAUGA X GAA AAGUACUUC CCCGAGGUG CUGAUGA X GAA AGGUGGAA CUUCCCCAA CUGAUGA X GAA AGGUGGAA | 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1298 1299 1291 1292 1293                                  |

Table III

| 4005 | AGUUGCAUU CCUUUGUC | 475      | GACAAAGG CUGAUGA X GAA AUGCAACU | 1298 |
|------|--------------------|----------|---------------------------------|------|
| 4006 | GUUGCAUUC CUUUGUCU | 476      | AGACAAAG CUGAUGA X GAA AAUGCAAC | 1299 |
| 4609 | GCAUUCCUU UGUCUUCA | 477      | UGAAGACA CUGAUGA X GAA AGGAAUGC | 1300 |
| 4010 | CAUUCCUUU GUCUUCAA | 478      | UUGAAGAC CUGAUGA X GAA AAGGAAUG | 1301 |
| 4013 | UCCUUUGUC UUCAAACU | 479      | AGUUUGAA CUGAUGA X GAA ACAAAGGA | 1302 |
| 4015 | CUUUGUCUU CAAACUGU | 480      | ACAGUUUG CUGAUGA X GAA AGACAAAG | 1303 |
| 4016 | UUUGUCUUC AAACUGUG | 481      | CACAGUUU CUGAUGA X GAA AAGACAAA | 1304 |
| 4031 | UGAAGCAUU UACAGAAA | 482      | UUUCUGUA CUGAUGA X GAA AUGCUUCA | 1305 |
| 4032 | GAAGCAUUU ACAGAAAC | 483      | GUUUCUGU CUGAUGA X GAA AAUGCUUC | 1306 |
| 4033 | AAGCAUUUA CAGAAACG | 484      | CGUUUCUG CUGAUGA X GAA AAAUGCUU | 1307 |
| 4045 | AAACGCAUC CAGCAAGA | 485      | UCUUGCUG CUGAUGA X GAA AUGCGUUU | 1308 |
| 4056 | GCAAGAAUA UUGUCCCU | 486      | AGGGACAA CUGAUGA X GAA AUUCUUGC | 1309 |
| 4058 | AAGAAUAUU GUCCCUUU | 487      | AAAGGGAC CUGAUGA X GAA AUAUUCUU | 1310 |
| 4061 | AAUAUUGUC CCUUUGAG | 488      | CUCAAAGG CUGAUGA X GAA ACAAUAUU | 1311 |
| 4065 | UUGUCCCUU UGAGCAGA | 489      | UCUGCUCA CUGAUGA X GAA AGGGACAA | 1312 |
| 4066 | UGUCCCUUU GAGCAGAA | 490      | UUCUGCUC CUGAUGA X GAA AAGGGACA | 1313 |
| 4077 | GCAGAAAUU UAUCUUUC | 491      | GAAAGAUA CUGAUGA X GAA AUUUCUGC | 1314 |
| 4078 | CAGAAAUUU AUCUUUCA | 492      | UGAAAGAU CUGAUGA X GAA AAUUUCUG | 1315 |
| 4079 | AGAAAUUUA UCUUUCAA | 493      | UUGAAAGA CUGAUGA X GAA AAAUUUCU | 1316 |
| 4081 | AAAUUUAUC UUUCAAAG | 494      | CUUUGAAA CUGAUGA X GAA AUAAAUUU | 1317 |
| 4083 | AUUUAUCUU UCAAAGAG | 495      | CUCUUUGA CUGAUGA X GAA AGAUAAAU | 1318 |
| 4084 | UUUAUCUUU CAAAGAGG | 496      | CCUCUUUG CUGAUGA X GAA AAGAUAAA | 1319 |
| 4085 | UUAUCUUUC AAAGAGGU | 497      | ACCUCUUU CUGAUGA X GAA AAAGAUAA | 1320 |
| 4094 | AAAGAGGUA UAUUUGAA | 498      | UUCAAAUA CUGAUGA X GAA ACCUCUUU | 1321 |
| 4096 | AGAGGUAUA UUUGAAAA | 499      | UUUUCAAA CUGAUGA X GAA AUACCUCU | 1322 |
| 4098 | ACGUAUAUU UGAAAAAA | 500      | UUUUUUCA CUGAUGA X GAA AUAUACCU | 1323 |
| 4099 | GGUAUAUUU GAAAAAA  | 501      | UUUUUUUC CUGAUGA X GAA AAUAUACC | 1324 |
| 4118 | AAAAAAGUA UAUGUGAG | 502      | CUCACAUA CUGAUGA X GAA ACUUUUUU | 1325 |
| 4120 | AAAAGUAUA UGUGAGGA | 503      | UCCUCACA CUGAUGA X GAA AUACUUUU | 1326 |
| 4130 | GUGAGGAUU UUUAUUGA | 504      | UCAAUAAA CUGAUGA X GAA AUCCUCAC | 1327 |
| 4131 | UGAGGAUUU UUAUUGAU | 505      | AUCAAUAA CUGAUGA X GAA AAUCCUCA | 1328 |
| 4132 | GAGGAUUUU UAUUGAUU | 506      | AAUCAAUA CUGAUGA X GAA AAAUCCUC | 1329 |
| 4133 | AGGAUUUUU AUUGAUUG | 507      | CAAUCAAU CUGAUGA X GAA AAAAUCCU | 1330 |
| 4134 | GGAUUUUUA UUGAUUGG | 508      | CCAAUCAA CUGAUGA X GAA AAAAAUCC | 1331 |
| 4136 | AUUUUUAUU GAUUGGGG | 509      | CCCCAAUC CUGAUGA X GAA AUAAAAAU | 1332 |
| 4140 | UUAUUGAUU GGGGAUCU | 510      | AGAUCCCC CUGAUGA X GAA AUCAAUAA | 1333 |
| 4147 | UUGGGGAUC UUGGAGUU | 511      | AACUCCAA CUGAUGA X GAA AUCCCCAA | 1334 |
| 4149 | GGGGAUCUU GGAGUUUU | 512      | AAAACUCC CUGAUGA X GAA AGAUCCCC | 1335 |
| 4155 | CUUGGAGUU UUUCAUUG | 513      | CAAUGAAA CUGAUGA X GAA ACUCCAAG | 1336 |
| 4156 | UUGGAGUUU UUCAUUGU | 514      | ACAAUGAA CUGAUGA X GAA AACUCCAA | 1337 |
| 4157 | UGGAGUUUU UCAUUGUC | 515      | GACAAUGA CUGAUGA X GAA AAACUCET | 1338 |
| 4158 | GGAGUUUUU CAUUGUCG | 516      | CGACAAUG CUGAUGA X GAA AAAACUCC | 1339 |
| 4159 | GAGUUUUUC AUUGUCGC | 517      | GCGACAAU CUGALNA X GAA AAAAACUC | 1340 |
| 4162 | UUUUUCAUU GUCGCUAU | 518      | AUAGCGAC CUGAUGA X GAA AUGAAAAA | 1341 |
| 4165 | UUCAUUGUC GCUAUUGA | 519      | UCAAUAGC CUGAUGA X GAA ACAAUGAA | 1341 |
| 4169 | UUGUCGCUA UUGAUUUU | 520      | AAAAUCAA CUGAUGA X GAA AGCGACAA | 1342 |
| 4171 | GUCGCUAUU GAUUUUUA | 521      | UAAAAAUC CUGAUGA X GAA AUAGCGAC | 1344 |
| 4175 | CUAUUGAUU UUUACUUC | 522      | GAAGUAAA CUGAUGA X GAA AUCAAUAG | 1345 |
|      |                    | <u> </u> |                                 | 2040 |

Table III

| 1176 |                    |     |                                  |      |
|------|--------------------|-----|----------------------------------|------|
| 4176 | UAUUGAUUU UUACUUCA | 523 | UGAAGUAA CUGAUGA X GAA AAUCAAUA  | 1346 |
| 4177 | AUUGAUUUU UACUUCAA | 524 | UUGAAGUA CUGAUGA X GAA AAAUCAAU  | 1347 |
| 4178 | UUGAUUUUU ACUUCAAU | 525 | AUUGAAGU CUGAUGA X GAA AAAAUCAA  | 1348 |
| 4179 | UGAUUUUUA CUUCAAUG | 526 | CAUUGAAG CUGAUGA X GAA AAAAAUCA  | 1349 |
| 4182 | UUUUUACUU CAAUGGC  | 527 | GCCCAUUG CUGAUGA X GAA AGUAAAAA  | 1350 |
| 4183 | UUUUACUUC AAUGGGCU | 528 | AGCCCAUU CUGAUGA X GAA AAGUAAAA  | 1351 |
| 4192 | AAUGGGCUC UUCCAACA | 529 | UGUUGGAA CUGAUGA X GAA AGCCCAUU  | 1352 |
| 4194 | UGGGCUCUU CCAACAAG | 530 | CUUGUUGG CUGAUGA X GAA AGAGCCCA  | 1353 |
| 4195 | GGGCUCUUC CAACAAGG | 531 | CCUUGUUG CUGAUGA X GAA AAGAGCCC  | 1354 |
| 4212 | AAGAAGCUU GCUGGUAG | 532 | CUACCAGC CUGAUGA X GAA AGCUUCUU  | 1355 |
| 4219 | UUGCUGGUA GCACUUGC | 533 | GCAAGUGC CUGAUGA X GAA ACCAGCAA  | 1356 |
| 4225 | GUAGCACUU GCUACCCU | 534 | AGGGUAGC CUGAUGA X GAA AGUGCUAC  | 1357 |
| 4229 | CACUUGCUA CCCUGAGU | 535 | ACUCAGGG CUGAUGA X GAA AGCAAGUG  | 1358 |
| 4238 | CCCUGAGUU CAUCCAGG | 536 | CCUGGAUG CUGAUGA X GAA ACUCAGGG  | 1359 |
| 4239 | CCUGAGUUC AUCCAGGC | 537 | GCCUGGAU CUGAUGA X GAA AACUCAGG  | 1360 |
| 4242 | GAGUUCAUC CAGGCCCA | 538 | UGGGCCUG CUGAUGA X GAA AUGAACUC  | 1361 |
| 4280 | CCACAAGUC UUCCAGAG | 539 | CUCUGGAA CUGAUGA X GAA ACUUGUGG  | 1362 |
| 4282 | ACAAGUCUU CCAGAGGA | 540 | UCCUCUGG CUGAUGA X GAA AGACUUGU  | 1363 |
| 4283 | CAAGUCUUC CAGAGGAU | 541 | AUCCUCUG CUGAUGA X GAA AAGACUUG  | 1364 |
| 4295 | AGGAUGCUU GAUUCCAG | 542 | CUGGAAUC CUGAUGA X GAA AGCAUCCU  | 1365 |
| 4299 | UGCUUGAUU CCAGUGGU | 543 | ACCACUGG CUGAUGA X GAA AUCAAGCA  | 1366 |
| 4300 | GCUUGAUUC CAGUGGUU | 544 | AACCACUG CUGAUGA X GAA AAUCAAGC  | 1367 |
| 4308 | CCAGUGGUU CUGCUUCA | 545 | UGAAGCAG CUGAUGA X GAA ACCACUGG  | 1368 |
| 4309 | CAGUGGUUC UGCUUCAA | 546 | UUGAAGCA CUGAUGA X GAA AACCACUG  | 1369 |
| 4314 | GUUCUGCUU CAAGGCUU | 547 | AAGCCUUG CUGAUGA X GAA AGCAGAAC  | 1370 |
| 4315 | UUCUGCUUC AAGGCUUC | 548 | GAAGCCUU CUGAUGA X GAA AAGCAGAA  | 1371 |
| 4322 | UCAAGGCUU CCACUGCA | 549 | UGCAGUGG CUGAUGA X GAA AGCCUUGA  | 1372 |
| 4323 | CAAGGCUUC CACUGCAA | 550 | UUGCAGUG CUGAUGA X GAA AAGCCUUG  | 1373 |
| 4338 | AAAACACUA AAGAUCCA | 551 | UGGAUCUU CUGAUGA X GAA AGUGUUUU  | 1374 |
| 4344 | CUAAAGAUC CAAGAAGG | 552 | CCUUCUUG CUGAUGA X GAA AUCUUUAG  | 1375 |
| 4356 | GAAGGCCUU CAUGGCCC | 553 | GGGCCAUG CUGAUGA X GAA AGGCCUUC  | 1376 |
| 4357 | AAGGCCUUC AUGGCCCC | 554 | GGGGCCAU CUGAUGA X GAA AAGGCCUU  | 1377 |
| 4378 | GGCCGGAUC GGUACUGU | 555 | ACAGUACC CUGAUGA X GAA AUCCGGCC  | 1378 |
| 4382 | GGAUCGGUA CUGUAUCA | 556 | UGAUACAG CUGAUGA X GAA ACCGAUCC  | 1379 |
| 4387 | GGUACUGUA UCAAGUCA | 557 | UGACUUGA CUGAUGA X GAA ACAGUACC  |      |
| 4389 | UACUGUAUC AAGUCAUG | 558 | CAUGACUU CUGAUGA X GAA AUACAGUAC | 1380 |
| 4394 | UAUCAAGUC AUGGCAGG | 559 | CCUGCCAU CUGAUGA X GAA ACUUGAUA  | 1381 |
| 4404 | UGGCAGGUA CAGUAGGA | 560 | UCCUACUG CUGAUGA X GAA ACCUGCCA  | 1382 |
| 4409 | GGUACAGUA GGAUAAGC | 561 | GCUUAUCC CUGAUGA X GAA ACCUGCCA  | 1383 |
| 4414 | AGUAGGAUA AGCCACUC | 562 | GAGUGGCU CUGAUGA X GAA AUCCUACU  | 1384 |
| 4422 | AAGCCACUC UGUCCCUU | 563 | AAGGGACA CUGAUGA X GAA AGUGGCUU  | 1385 |
| 4426 | CACUCUGUC CCUUCCUG | 564 | CAGGAAGG CUGAUGA X GAA ACAGAGUG  | 1386 |
| 4430 | CUGUCCCUU CCUGGGCA | 565 | UGCCCAGG CUGAUGA X GAA ACAGAGUG  | 1387 |
| 4431 | UGUCCCUUC CUGGGCAA | 566 | l .                              | 1388 |
| 4462 | GGAUGAAUU CUUCCUUA | 567 | UUGCCCAG CUGAUGA X GAA AAGGGACA  | 1389 |
| 4463 | GAUGAAUUC UUCCUUAG | 568 | UAAGGAAG CUGAUGA X GAA AUUCAUCC  | 1390 |
| 4465 | UGAAUUCUU CCUUAGAC |     | CUAAGGAA CUGAUGA X GAA AAUUCAUC  | 1391 |
| 4466 |                    | 569 | GUCUAAGG CUGAUGA X GAA AGAAUUCA  | 1392 |
| 7100 | GAAUUCUUC CUUAGACU | 570 | AGUCUAAG CUGAUGA X GAA AAGAAUUC  | 1393 |

Table III

| 4469   | UUCUUCCUU AGACUUAC | 571 | GUAAGUCU CUGAUGA X GAA AGGAAGAA | 1394 |
|--------|--------------------|-----|---------------------------------|------|
| 4470   | UCUUCCUUA GACUUACU | 572 | AGUAAGUC CUGAUGA X GAA AAGGAAGA | 1395 |
| 4475   | CUUAGACUU ACUUUUGU | 573 | ACAAAAGU CUGAUGA X GAA AGUCUAAG | 1396 |
| 4476   | UUAGACUUA CUUUUGUA | 574 | UACAAAAG CUGAUGA X GAA AAGUCUAA | 1397 |
| 4479   | GACUUACUU UUGUAAAA | 575 | UUUUACAA CUGAUGA X GAA AGUAAGUC | 1398 |
| 4480   | ACUUACUUU UGUAAAAA | 576 | UUUUUACA CUGAUGA X GAA AAGUAAGU | 1399 |
| 4481   | CUUACUUUU GUAAAAAU | 577 | AUUUUUAC CUGAUGA X GAA AAAGUAAG | 1400 |
| 4484   | ACUUUUGUA AAAAUGUC | 578 | GACAUUUU CUGAUGA X GAA ACAAAAGU | 1401 |
| 4492   | AAAAAUGUC CCCACGGU | 579 | ACCGUGGG CUGAUGA X GAA ACAUUUUU | 1402 |
| 4501   | CCCACGGUA CUUACUCC | 580 | GGAGUAAG CUGAUGA X GAA ACCGUGGG | 1403 |
| 4504   | ACGGUACUU ACUCCCCA | 581 | UGGGGAGU CUGAUGA X GAA AGUACCGU | 1404 |
| 4505   | CGGUACUUA CUCCCCAC | 582 | GUGGGGAG CUGAUGA X GAA AAGUACCG | 1405 |
| 4508   | UACUUACUC CCCACUGA | 583 | UCAGUGGG CUGAUGA X GAA AGUAAGUA | 1406 |
| 4529   | CCAGUGGUU UCCAGUCA | 584 | UGACUGGA CUGAUGA X GAA ACCACUGG | 1407 |
| 4530   | CAGUGGUUU CCAGUCAU | 585 | AUGACUGG CUGAUGA X GAA AACCACUG | 1408 |
| 4531   | AGUGGUUUC CAGUCAUG | 586 | CAUGACUG CUGAUGA X GAA AAACCACU | 1409 |
| 4536   | UUUCCAGUC AUGAGCGU | 587 | ACGCUCAU CUGAUGA X GAA ACUGGAAA | 1410 |
| 4545   | AUGAGCGUU AGACUGAC | 588 | GUCAGUCU CUGAUGA X GAA ACGCUCAU | 1411 |
| 4546   | UGAGCGUUA GACUGACU | 589 | AGUCAGUC CUGAUGA X GAA AACGCUCA | 1412 |
| 4555   | GACUGACUU GUUUGUCU | 590 | AGACAAAC CUGAUGA X GAA AGUCAGUC | 1413 |
| 4558   | UGACUUGUU UGUCUUCC | 591 | GGAAGACA CUGAUGA X GAA ACAAGUCA | 1414 |
| 4559   | GACUUGUUU GUCUUCCA | 592 | UGGAAGAC CUGAUGA X GAA AACAAGUC | 1415 |
| 4562   | UUGUUUGUC UUCCAUUC | 593 | GAAUGGAA CUGAUGA X GAA ACAAACAA | 1416 |
| 4564   | GUUUGUCUU CCAUUCCA | 594 | UGGAAUGG CUGAUGA X GAA AGACAAAC | 1417 |
| 4565   | UUUGUCUUC CAUUCCAU | 595 | AUGGAAUG CUGAUGA X GAA AAGACAAA | 1418 |
| 4569   | UCUUCCAUU CCAUUGUU | 596 | AACAAUGG CUGAUGA X GAA AUGGAAGA | 1419 |
| 4570   | CUUCCAUUC CAUUGUUU | 597 | AAACAAUG CUGAUGA X GAA AAUGGAAG | 1420 |
| 4574   | CAUUCCAUU GUUUUGAA | 598 | UUCAAAAC CUGAUGA X GAA AUGGAAUG | 1421 |
| 4577   | UCCAUUGUU UUGAAACU | 599 | AGUUUCAA CUGAUGA X GAA ACAAUGGA | 1422 |
| 4578 ` | CCAUUGUUU UGAAACUC | 600 | GAGUUUCA CUGAUGA X GAA AACAAUGG | 1423 |
| 4579   | CAUUGUUUU GAAACUCA | 601 | UGAGUUUC CUGAUGA X GAA AAACAAUG | 1424 |
| 4586   | UUGAAACUC AGUAUGCC | 602 | GGCAUACU CUGAUGA X GAA AGUUUCAA | 1425 |
| 4590   | AACUCAGUA UGCCGCCC | 603 | GGGCGGCA CUGAUGA X GAA ACUGAGUU | 1426 |
| 4603   | GCCCCUGUC UUGCUGUC | 604 | GACAGCAA CUGAUGA X GAA ACAGGGGC | 1427 |
| 4605   | CCCUGUCUU GCUGUCAU | 605 | AUGACAGC CUGAUGA X GAA AGACAGGG | 1428 |
| 4611   | CUUGCUGUC AUGAAAUC | 606 | GAUUUCAU CUGAUGA X GAA ACAGCAAG | 1429 |
| 4619   | CAUGAAAUC AGCAAGAG | 607 | CUCUUGCU CUGAUGA X GAA AUUUCAUG | 1430 |
| 4640   | UGACACAUC AAAUAAUA | 608 | UAUUAUUU CUGAUGA X GAA AUGUGUCA | 1431 |
| 4645   | CAUCAAAUA AUAACUCG | 609 | CGAGUUAU CUGAUGA X GAA AUUUGAUG | 1432 |
| 4648   | CAAAUAAUA ACUCGGAU | 610 | AUCCGAGU CUGAUGA X GAA AUUAUUUG | 1432 |
| 4652   | UAAUAACUC GGAUUCCA | 611 | UGGAAUCC CUGAUGA X GAA AGUUAUUA | 1433 |
| 4657   | ACUCGGAUU CCAGCCCA | 612 | UGGGCUGG CUGAUGA X GAA AUCCGAGU |      |
| 4658   | CUCGGAUUC CAGCCCAC | 613 | GUGGGCUG CUGAUGA X GAA AAUCCGAG | 1435 |
| 4669   | GCCCACAUU GGAUUCAU | 614 | AUGAAUCC CUGAUGA X GAA AUGUGGGC | 1436 |
| 4674   | CAUUGGAUU CAUCAGCA | 615 | UGCUGAUG CUGAUGA X GAA AUCCAAUG | 1437 |
| 4675   | AUUGGAUUC AUCAGCAU | 616 | AUGCUGAU CUGAUGA X GAA AAUCCAAU |      |
| 4678   | GGAUUCAUC AGCAUUUG | 617 | CARAUGCU CUGAUGA X GAA AUGAAUCC | 1439 |
| 4684   | AUCAGCAUU UGGACCAA | 618 | UUGGUCCA CUGAUGA X GAA AUGCUGAU | 1440 |
|        | L                  |     | TOTAL COUNTRY A GAM AUGUUGAU    | 1441 |

Table III

| ,    |                    |     |                                 |      |
|------|--------------------|-----|---------------------------------|------|
| 4685 | UCAGCAUUU GGACCAAU | 619 | AUUGGUCC CUGAUGA X GAA AAUGCUGA | 1442 |
| 4694 | GGACCAAUA GCCCACAG | 620 | CUGUGGGC CUGAUGA X GAA AUUGGUCC | 1443 |
| 4718 | UGUGGAAUA CCUAAGGA | 621 | UCCUUAGG CUGAUGA X GAA AUUCCACA | 1444 |
| 4722 | GAAUACCUA AGGAUAAC | 622 | GUUAUCCU CUGAUGA X GAA AGGUAUUC | 1445 |
| 4728 | CUAAGGAUA ACACCGCU | 623 | AGCGGUGU CUGAUGA X GAA AUCCUUAG | 1446 |
| 4737 | ACACCGCUU UUGUUCUC | 624 | GAGAACAA CUGAUGA X GAA AGCGGUGU | 1447 |
| 4738 | CACCGCUUU UGUUCUCG | 625 | CGAGAACA CUGAUGA X GAA AAGCGGUG | 1448 |
| 4739 | ACCGCUUUU GUUCUCGC | 626 | GCGAGAAC CUGAUGA X GAA AAAGCGGU | 1449 |
| 4742 | GCUUUUGUU CUCGCAAA | 627 | UUUGCGAG CUGAUGA X GAA ACAAAAGC | 1450 |
| 4743 | CUUUUGUUC UCGCAAAA | 628 | UUUUGCGA CUGAUGA X GAA AACAAAAG | 1451 |
| 4745 | UUUGUUCUC GCAAAAAC | 629 | GUUUUUGC CUGAUGA X GAA AGAACAAA | 1452 |
| 4756 | AAAAACGUA UCUCCUAA | 630 | UUAGGAGA CUGAUGA X GAA ACGUUUUU | 1453 |
| 4758 | AAACGUAUC UCCUAAUU | 631 | AAUUAGGA CUGAUGA X GAA AUACGUUU | 1454 |
| 4760 | ACGUAUCUC CUAAUUUG | 632 | CAAAUUAG CUGAUGA X GAA AGAUACGU | 1455 |
| 4763 | UAUCUCCUA AUUUGAGG | 633 | CCUCAAAU CUGAUGA X GAA AGGAGAUA | 1456 |
| 4766 | CUCCUAAUU UGAGGCUC | 634 | GAGCCUCA CUGAUGA X GAA AUUAGGAG | 1457 |
| 4767 | UCCUAAUUU GAGGCUCA | 635 | UGAGCCUC CUGAUGA X GAA AAUUAGGA | 1458 |
| 4774 | UUGAGGCUC AGAUGAAA | 636 | UUUCAUCU CUGAUGA X GAA AGCCUCAA | 1459 |
| 4788 | AAAUGCAUC AGGUCCUU | 637 | AAGGACCU CUGAUGA X GAA AUGCAUUU | 1460 |
| 4793 | CAUCAGGUC CUUUGGGG | 638 | CCCCAAAG CUGAUGA X GAA ACCUGAUG | 1461 |
| 4796 | CAGGUCCUU UGGGGCAU | 639 | AUGCCCCA CUGAUGA X GAA AGGACCUG | 1462 |
| 4797 | AGGUCCUUU GGGGCAUA | 640 | UAUGCCCC CUGAUGA X GAA AAGGACCU | 1463 |
| 4805 | UGGGGCAUA GAUCAGAA | 641 | UUCUGAUC CUGAUGA X GAA AUGCCCCA | 1464 |
| 4809 | GCAUAGAUC AGAAGACU | 642 | AGUCUUCU CUGAUGA X GAA AUCUAUGC | 1465 |
| 4818 | AGAAGACUA CAAAAAUG | 643 | CAUUUUUG CUGAUGA X GAA AGUCUUCU | 1466 |
| 4835 | AAGCUGCUC UGAAAUCU | 644 | AGAUUUCA CUGAUGA X GAA AGCAGCUU | 1467 |
| 4842 | UCUGAAAUC UCCUUUAG | 645 | CUAAAGGA CUGAUGA X GAA AUUUCAGA | 1468 |
| 4844 | UGAAAUCUC CUUUAGCC | 646 | GGCUAAAG CUGAUGA X GAA AGAUUUCA | 1469 |
| 4847 | AAUCUCCUU UAGCCAUC | 647 | GAUGGCUA CUGAUGA X GAA AGGAGAUU | 1470 |
| 4848 | AUCUCCUUU AGCCAUCA | 648 | UGAUGGCU CUGAUGA X GAA AAGGAGAU | 1471 |
| 4849 | UCUCCUUUA GCCAUCAC | 649 | GUGAUGGC CUGAUGA X GAA AAAGGAGA | 1472 |
| 4855 | UUAGCCAUC ACCCCAAC | 650 | GUUGGGGU CUGAUGA X GAA AUGGCUAA | 1473 |
| 4874 | CCCAAAAUU AGUUUGUG | 651 | CACAAACU CUGAUGA X GAA AUUUUGGG | 1474 |
| 4875 | CCAAAAUUA GUUUGUGU | 652 | ACACAAAC CUGAUGA X GAA AAUUUUGG | 1475 |
| 4878 | AAAUUAGUU UGUGUUAC | 653 | GUAACACA CUGAUGA X GAA ACUAAUUU | 1476 |
| 4879 | AAUUAGUUU GUGUUACU | 654 | AGUAACAC CUGAUGA X GAA AACUAAUU | 1477 |
| 4884 | GUUUGUGUU ACUUAUGG | 655 | CCAUAAGU CUGAUGA X GAA ACACAAAC | 1478 |
| 4885 | UUUGUGUUA CUUAUGGA | 656 | UCCAUAAG CUGAUGA X GAA AACACAAA | 1479 |
| 4888 | GUGUUACUU AUGGAAGA | 657 | UCUUCCAU CUGAUGA X GAA AGUAACAC | 1480 |
| 4889 | UGUUACUUA UGGAAGAU | 658 | AUCUUCCA CUGAUGA X GAA AAGUAACA | 1480 |
| 4898 | UGGAAGAUA GUUUUCUC | 659 | GAGAAAAC CUGAUGA X GAA AUCUUCCA | 1482 |
| 4901 | AAGAUAGUU UUCUCCUU | 660 | AAGGAGAA CUGAUGA X GAA ACUAUCUU | 1482 |
| 4902 | AGAUAGUUU UCUCCUUU | 661 | AAAGGAGA CUGAUGA X GAA AACUAUCU | 1483 |
| 4903 | GAUAGUUUU CUCCUUUU | 662 | AAAAGGAG CUGAUGA X GAA AAACUAUC |      |
| 4904 | AUAGUUUUC UCCUUUUA | 663 | UAAAAGGA CUGAUGA X GAA AAAACUAU | 1485 |
| 4906 | AGUUUUCUC CUUUUACU | 664 | AGUAAAAG CUGAUGA X GAA AGAAAACU | 1486 |
| 4909 | UUUCUCCUU UUACUUCA | 665 | UGAAGUAA CUGAUGA X GAA AGGAGAAA | 1487 |
| 4910 | UUCUCCUUU UACUUCAC | 666 | GUGAAGUA CUGAUGA X GAA AGGAGAA  | 1488 |
|      |                    | 1   | GUGARGUA CUGAUGA A GAR AAGGAGAA | 1489 |

Table III

| 4911 | UCUCCUUUU ACUUCACU | 667 | AGUGAAGU CUGAUGA X GAA AAAGGAGA | 1490 |
|------|--------------------|-----|---------------------------------|------|
| 4912 | CUCCUUUUA CUUCACUU | 668 | AAGUGAAG CUGAUGA X GAA AAAAGGAG | 1491 |
| 4915 | CUUUUACUU CACUUCAA | 669 | UUGAAGUG CUGAUGA X GAA AGUAAAAG | 1492 |
| 4916 | UUUUACUUC ACUUCAAA | 670 | UUUGAAGU CUGAUGA X GAA AAGUAAAA | 1493 |
| 4920 | ACUUCACUU CAAAAGCU | 671 | AGCUUUUG CUGAUGA X GAA AGUGAAGU | 1494 |
| 4921 | CUUCACUUC AAAAGCUU | 672 | AAGCUUUU CUGAUGA X GAA AAGUGAAG | 1495 |
| 4929 | CAAAAGCUU UUUACUCA | 673 | UGAGUAAA CUGAUGA X GAA AGCUUUUG | 1496 |
| 4930 | AAAAGCUUU UUACUCAA | 674 | UUGAGUAA CUGAUGA X GAA AAGCUUUU | 1497 |
| 4931 | AAAGCUUUU UACUCAAA | 675 | UUUGAGUA CUGAUGA X GAA AAAGCUUU | 1498 |
| 4932 | AAGCUUUUU ACUCAAAG | 676 | CUUUGAGU CUGAUGA X GAA AAAAGCUU | 1499 |
| 4933 | AGCUUUUUA CUCAAAGA | 677 | UCUUUGAG CUGAUGA X GAA AAAAAGCU | 1500 |
| 4936 | UUUUUACUC AAAGAGUA | 678 | UACUCUUU CUGAUGA X GAA AGUAAAAA | 1501 |
| 4944 | CAAAGAGUA UAUGUUCC | 679 | GGAACAUA CUGAUGA X GAA ACUCUUUG | 1502 |
| 4946 | AAGAGUAUA UGUUCCCU | 680 | AGGGAACA CUGAUGA X GAA AUACUCUU | 1503 |
| 4950 | GUAUAUGUU CCCUCCAG | 681 | CUGGAGGG CUGAUGA X GAA ACAUAUAC | 1504 |
| 4951 | UAUAUGUUC CCUCCAGG | 682 | CCUGGAGG CUGAUGA X GAA AACAUAUA | 1505 |
| 4955 | UGUUCCCUC CAGGUCAG | 683 | CUGACCUG CUGAUGA X GAA AGGGAACA | 1506 |
| 4961 | CUCCAGGUC AGCUGCCC | 684 | GGGCAGCU CUGAUGA X GAA ACCUGGAG | 1507 |
| 4981 | AACCCCCUC CUUACGCU | 685 | AGCGUAAG CUGAUGA X GAA AGGGGGUU | 1508 |
| 4984 | CCCCUCCUU ACGCUUUG | 686 | CAAAGCGU CUGAUGA X GAA AGGAGGGG | 1509 |
| 4985 | CCCUCCUUA CGCUUUGU | 687 | ACAAAGCG CUGAUGA X GAA AAGGAGGG | 1510 |
| 4990 | CUUACGCUU UGUCACAC | 688 | GUGUGACA CUGAUGA X GAA AGCGUAAG | 1511 |
| 4991 | UUACGCUUU GUCACACA | 689 | UGUGUGAC CUGAUGA X GAA AAGCGUAA | 1512 |
| 4994 | CGCUUUGUC ACACAAAA | 690 | UUUUGUGU CUGAUGA X GAA ACAAAGCG | 1513 |
| 5008 | AAAAGUGUC UCUGCCUU | 691 | AAGGCAGA CUGAUGA X GAA ACACUUUU | 1514 |
| 5010 | AAGUGUCUC UGCCUUGA | 692 | UCAAGGCA CUGAUGA X GAA AGACACUU | 1515 |
| 5016 | CUCUGCCUU GAGUCAUC | 693 | GAUGACUC CUGAUGA X GAA AGGCAGAG | 1516 |
| 5021 | CCUUGAGUC AUCUAUUC | 694 | GAAUAGAU CUGAUGA X GAA ACUCAAGG | 1517 |
| 5024 | UGAGUCAUC UAUUCAAG | 695 | CUUGAAUA CUGAUGA X GAA AUGACUCA | 1518 |
| 5026 | AGUCAUCUA UUCAAGCA | 696 | UGCUUGAA CUGAUGA X GAA AGAUGACU | 1519 |
| 5028 | UCAUCUAUU CAAGCACU | 697 | AGUGCUUG CUGAUGA X GAA AUAGAUGA | 1520 |
| 5029 | CAUCUAUUC AAGCACUU | 698 | AAGUGCUU CUGAUGA X GAA AAUAGAUG | 1521 |
| 5037 | CAAGCACUU ACAGCUCU | 699 | AGAGCUGU CUGAUGA X GAA AGUGCUUG | 1522 |
| 5038 | AAGCACUUA CAGCUCUG | 700 | CAGAGCUG CUGAUGA X GAA AAGUGCUU | 1523 |
| 5044 | UUACAGCUC UGGCCACA | 701 | UGUGGCCA CUGAUGA X GAA AGCUGUAA | 1524 |
| 5062 | CAGGGCAUU UUACAGGU | 702 | ACCUGUAA CUGAUGA X GAA AUGCCCUG | 1525 |
| 5063 | AGGGCAUUU UACAGGUG | 703 | CACCUGUA CUGAUGA X GAA AAUGCCCU | 1526 |
| 5064 | GGGCAUUUU ACAGGUGC | 704 | GCACCUGU CUGAUGA X GAA AAAUGCCC | 1527 |
| 5065 | GGCAUUUUA CAGGUGCG | 705 | CGCACCUG CUGAUGA X GAA AAAAUGCC | 1528 |
| 5083 | AUGACAGUA GCAUUAUG | 706 | CAUAAUGC CUGAUGA X GAA ACUGUCAU | 1529 |
| 5088 | AGUAGCAUU AUGAGUAG | 707 | CUACUCAU CUGAUGA X GAA AUGCUACU | 1530 |
| 5089 | GUAGCAUUA UGAGUAGU | 708 | ACUACUCA CUGAUGA X GAA AAUGCUAC | 1531 |
| 5095 | UUAUGAGUA GUGUGAAU | 709 | AUUCACAC CUGAUGA X GAA ACUCAUAA | 1532 |
| 5104 | GUGUGAAUU CAGGUAGU | 710 | ACUACCUG CUGAUGA X GAA AUUCACAC | 1533 |
| 5105 | UGUGAAUUC AGGUAGUA | 711 | UACUACCU CUGAUGA X GAA AAUUCACA | 1534 |
| 5110 | AUUCAGGUA GUAAAUAU | 712 | AUAUUUAC CUGAUGA X GAA ACCUGAAU | 1535 |
| 5113 | CAGGUAGUA AAUAUGAA | 713 | UUCAUAUU CUGAUGA X GAA ACUACCUG | 1536 |
| 5117 | UAGUAAAUA UGAAACUA | 714 | UAGUUUCA CUGAUGA X GAA AUUUACUA | 1537 |
|      |                    |     |                                 |      |

Table III

|               |                    |     | •                               |              |
|---------------|--------------------|-----|---------------------------------|--------------|
| 5125          | AUGAAACUA GGGUUUGA | 715 | UCAAACCC CUGAUGA X GAA AGUUUCAU | 1538         |
| 5130          | ACUAGGGUU UGAAAUUG | 716 | CAAUUUCA CUGAUGA X GAA ACCCUAGU | 1539         |
| 5131          | CUAGGGUUU GAAAUUGA | 717 | UCAAUUUC CUGAUGA X GAA AACCCUAG | 1540         |
| 5 <b>13</b> 7 | UUUGAAAUU GAUAAUGC | 718 | GCAUUAUC CUGAUGA X GAA AUUUCAAA | 1541         |
| 5141          | AAAUUGAUA AUGCUUUC | 719 | GAAAGCAU CUGAUGA X GAA AUCAAUUU | 1542         |
| 5147          | AUAAUGCUU UCACAACA | 720 | UGUUGUGA CUGAUGA X GAA AGCAUUAU | 1543         |
| 7775148       | UAAUGCUUU CACAACAU | 721 | AUGUUGUG CUGAUGA X GAA AAGCAUUA | 1544         |
| 5149          | AAUGCUUUC ACAACAUU | 722 | AAUGUUGU CUGAUGA X GAA AAAGCAUU | 1545         |
| 5157          | CACAACAUU UGCAGAUG | 723 | CAUCUGCA CUGAUGA X GAA AUGUUGUG | 1546         |
| 5158          | ACAACAUUU GCAGAUGU | 724 | ACAUCUGC CUGAUGA X GAA AAUGUUGU | 1547         |
| 5167          | GCAGAUGUU UUAGAAGG | 725 | CCUUCUAA CUGAUGA X GAA ACAUCUGC | 1548         |
| 5168          | CAGAUGUUU UAGAAGGA | 726 | UCCUUCUA CUGAUGA X GAA AACAUCUG | 1549         |
| 5169          | AGAUGUUUU AGAAGGAA | 727 | UUCCUUCU CUGAUGA X GAA AAACAUCU | 1550         |
| 5170          | GAUGUUUUA GAAGGAAA | 728 | UUUCCUUC CUGAUGA X GAA AAAACAUC | 1551         |
| 5184          | AAAAAAGUU CCUUCCUA | 729 | UAGGAAGG CUGAUGA X GAA ACUUUUUU | 1552         |
| 5185          | AAAAAGUUC CUUCCUAA | 730 | UUAGGAAG CUGAUGA X GAA AACUUUUU | 1553         |
| 5188          | AAGUUCCUU CCUAAAAU | 731 | AUUUUAGG CUGAUGA X GAA AGGAACUU | 1554         |
| 5189          | AGUUCCUUC CUAAAAUA | 732 | UAUUUUAG CUGAUGA X GAA AAGGAACU | 1555         |
| 5192          | UCCUUCCUA AAAUAAUU | 733 | AAUUAUUU CUGAUGA X GAA AGGAAGGA | 1556         |
| 5197          | CCUAAAAUA AUUUCUCU | 734 | AGAGAAAU CUGAUGA X GAA AUUUUAGG | 1557         |
| 5200          | AAAAUAAUU UCUCUACA | 735 | UGUAGAGA CUGAUGA X GAA AUUAUUUU | 1558         |
| 5201          | AAAUAAUUU CUCUACAA | 736 | UUGUAGAG CUGAUGA X GAA AAUUAUUU | 1559         |
| 5202          | AAUAAUUUC UCUACAAU | 737 | AUUGUAGA CUGAUGA X GAA AAAUUAUU | 1560         |
| 5204          | UAAUUUCUC UACAAUUG | 738 | CAAUUGUA CUGAUGA X GAA AGAAAUUA | 1561         |
| 5206          | AUUUCUCUA CAAUUGGA | 739 | UCCAAUUG CUGAUGA X GAA AGAGAAAU | 1562         |
| 5211          | UCUACAAUU GGAAGAUU | 740 | AAUCUUCC CUGAUGA X GAA AUUGUAGA | 1563         |
| 5219          | UGGAAGAUU GGAAGAUU | 741 | AAUCUUCC CUGAUGA X GAA AUCUUCCA | 1564         |
| 5227          | UGGAAGAUU CAGCUAGU | 742 | ACUAGCUG CUGAUGA X GAA AUCUUCCA | 1565         |
| 5228          | GGAAGAUUC AGCUAGUU | 743 | AACUAGCU CUGAUGA X GAA AAUCUUCC | 1566         |
| 5233          | AUUCAGCUA GUUAGGAG | 744 | CUCCUAAC CUGAUGA X GAA AGCUGAAU | 1567         |
| 5236          | CAGCUAGUU AGGAGCCC | 745 | GGGCUCCU CUGAUGA X GAA ACUAGCUG | 1568         |
| 5237          | AGCUAGUUA GGAGCCCA | 746 | UGGGCUCC CUGAUGA X GAA AACUAGCU | 1569         |
| 5247          | GAGCCCAUU UUUUCCUA | 747 | UAGGAAAA CUGAUGA X GAA AUGGGCUC | 1570         |
| 5248          | AGCCCAUUU UUUCCUAA | 748 | UUAGGAAA CUGAUGA X GAA AAUGGGCU | 1571         |
| 5249          | GCCCAUUUU UUCCUAAU | 749 | AUUAGGAA CUGAUGA X GAA AAAUGGGC | 1572         |
| 5250          | CCCAUUUUU UCCUAAUC | 750 | GAUUAGGA CUGAUGA X GAA AAAAUGGG | 1572         |
| 5251          | CCAUUUUUU CCUAAUCU | 751 | AGAUUAGG CUGAUGA X GAA AAAAAUGG |              |
| 5252          | CAUUUUUUC CUAAUCUG | 752 | CAGAUUAG CUGAUGA X GAA AAAAAAUG | 1574<br>1575 |
| 5255          | UUUUUCCUA AUCUGUGU | 753 | ACACAGAU CUGAUGA X GAA AGGAAAAA | 1576         |
| 5258          | UUCCUAAUC UGUGUGUG | 754 | CACACACA CUGAUGA X GAA AUUAGGAA | 1577         |
| 5273          | UGCCCUGUA ACCUGACU | 755 | AGUCAGGU CUGAUGA X GAA ACAGGGCA | 1578         |
| 5285          | UGACUGGUU AACAGCAG | 756 | CUGCUGUU CUGAUGA X GAA ACCAGUCA | 1579         |
| 5286          | GACUGGUUA ACAGCAGU | 757 | ACUGCUGU CUGAUGA X GAA AACCAGUC | 1579         |
| 5295          | ACAGCAGUC CUUUGUAA | 758 | UUACAAAG CUGAUGA X GAA ACUGCUGU | 1580         |
| 5298          | GCAGUCCUU UGUAAACA | 759 | UGUUUACA CUGAUGA X GAA AGGACUGC |              |
| 5299          | CAGUCCUUU GUAAACAG | 760 | CUGUUUAC CUGAUGA X GAA AAGGACUG | 1582         |
| 5302          | UCCUUUGUA AACAGUGU | 761 | ACACUGUU CUGAUGA X GAA ACAAAGGA | 1583<br>1584 |
| 5311          | AACAGUGUU UUAAACUC | 762 | GAGUUUAA CUGAUGA X GAA ACACUGUU |              |
|               | 1                  |     | SHOUGH COGREGA A GAR ACACUGUU   | 1585         |

Table III

| 5312 | ACAGUGUUU UAAACUCU | 763 | AGAGUUUA CUGAUGA X GAA AACACUGU | 1586 |
|------|--------------------|-----|---------------------------------|------|
| 5313 | CAGUGUUUU AAACUCUC | 764 | GAGAGUUU CUGAUGA X GAA AAACACUG | 1587 |
| 5314 | AGUGUUUUA AACUCUCC | 765 | GGAGAGUU CUGAUGA X GAA AAAACACU | 1588 |
| 5319 | UUUAAACUC UCCUAGUC | 766 | GACUAGGA CUGAUGA X GAA AGUUUAAA | 1589 |
| 5321 | UAAACUCUC CUAGUCAA | 767 | UUGACUAG CUGAUGA X GAA AGAGUUUA | 1590 |
| 5324 | ACUCUCCUA GUCAAUAU | 768 | AUAUUGAC CUGAUGA X GAA AGGAGAGU | 1591 |
| 5327 | CUCCUAGUC AAUAUCCA | 769 | UGGAUAUU CUGAUGA X GAA ACUAGGAG | 1592 |
| 5331 | UAGUCAAUA UCCACCCC | 770 | GGGGUGGA CUGAUGA X GAA AUUGACUA | 1593 |
| 5333 | GUCAAUAUC CACCCCAU | 771 | AUGGGGUG CUGAUGA X GAA AUAUUGAC | 1594 |
| 5342 | CACCCCAUC CAAUUUAU | 772 | AUAAAUUG CUGAUGA X GAA AUGGGGUG | 1595 |
| 5347 | CAUCCAAUU UAUCAAGG | 773 | CCUUGAUA CUGAUGA X GAA AUUGGAUG | 1596 |
| 5348 | AUCCAAUUU AUCAAGGA | 774 | UCCUUGAU CUGAUGA X GAA AAUUGGAU | 1597 |
| 5349 | UCCAAUUUA UCAAGGAA | 775 | UUCCUUGA CUGAUGA X GAA AAAUUGGA | 1598 |
| 5351 | CAAUUUAUC AAGGAAGA | 776 | UCUUCCUU CUGAUGA X GAA AUAAAUUG | 1599 |
| 5366 | GAAAUGGUU CAGAAAAU | 777 | AUUUUCUG CUGAUGA X GAA ACCAUUUC | 1600 |
| 5367 | AAAUGGUUC AGAAAAUA | 778 | UAUUUUCU CUGAUGA X GAA AACCAUUU | 1601 |
| 5375 | CAGAAAAUA UUUUCAGC | 779 | GCUGAAAA CUGAUGA X GAA AUUUUCUG | 1602 |
| 5377 | GAAAAUAUU UUCAGCCU | 780 | AGGCUGAA CUGAUGA X GAA AUAUUUUC | 1603 |
| 5378 | AAAAUAUUU UCAGCCUA | 781 | UAGGCUGA CUGAUGA X GAA AAUAUUUU | 1604 |
| 5379 | AAAUAUUUU CAGCCUAC | 782 | GUAGGCUG CUGAUGA X GAA AAAUAUUU | 1605 |
| 5380 | AAUAUUUUC AGCCUACA | 783 | UGUAGGCU CUGAUGA X GAA AAAAUAUU | 1606 |
| 5386 | UUCAGCCUA CAGUUAUG | 784 | CAUAACUG CUGAUGA X GAA AGGCUGAA | 1607 |
| 5391 | CCUACAGUU AUGUUCAG | 785 | CUGAACAU CUGAUGA X GAA ACUGUAGG | 1608 |
| 5392 | CUACAGUUA UGUUCAGU | 786 | ACUGAACA CUGAUGA X GAA AACUGUAG | 1609 |
| 5396 | AGUUAUGUU CAGUCACA | 787 | UGUGACUG CUGAUGA X GAA ACAUAACU | 1610 |
| 5397 | GUUAUGUUC AGUCACAC | 788 | GUGUGACU CUGAUGA X GAA AACAUAAC | 1611 |
| 5401 | UGUUCAGUC ACACACAC | 789 | GUGUGUGU CUGAUGA X GAA ACUGAACA | 1612 |
| 5412 | ACACACAUA CAAAAUGU | 790 | ACAUUUUG CUGAUGA X GAA AUGUGUGU | 1613 |
| 5421 | CAAAAUGUU CCUUUUGC | 791 | GCAAAAGG CUGAUGA X GAA ACAUUUUG | 1614 |
| 5422 | AAAAUGUUC CUUUUGCU | 792 | AGCAAAAG CUGAUGA X GAA AACAUUUU | 1615 |
| 5425 | AUGUUCCUU UUGCUUUU | 793 | AAAAGCAA CUGAUGA X GAA AGGAACAU | 1616 |
| 5426 | UGUUCCUUU UGCUUUUA | 794 | UAAAAGCA CUGAUGA X GAA AAGGAACA | 1617 |
| 5427 | GUUCCUUUU GCUUUUAA | 795 | UUAAAAGC CUGAUGA X GAA AAAGGAAC | 1618 |
| 5431 | CUUUUGCUU UUAAAGUA | 796 | UACUUUAA CUGAUGA X GAA AGCAAAAG | 1619 |
| 5432 | UUUUGCUUU UAAAGUAA | 797 | UUACUUUA CUGAUGA X GAA AAGCAAAA | 1620 |
| 5433 | UUUGCUUUU AAAGUAAU | 798 | AUUACUUU CUGAUGA X GAA AAAGCAAA | 1621 |
| 5434 | UUGCUUUUA AAGUAAUU | 799 | AAUUACUU CUGAUGA X GAA AAAAGCAA | 1622 |
| 5439 | UUUAAAGUA AUUUUUGA | 800 | UCAAAAAU CUGAUGA X GAA ACUUUAAA | 1623 |
| 5442 | AAAGUAAUU UUUGACUC | 801 | GAGUCAAA CUGAUGA X GAA AUUACUUU | 1624 |
| 5443 | AAGUAAUUU UUGACUCC | 802 | GGAGUCAA CUGAUGA X GAA AAUUACUU | 1625 |
| 5444 | AGUAAUUUU UGACUCCC | 803 | GGGAGUCA CUGAUGA X GAA AAAUUACU | 1626 |
| 5445 | GUAAUUUUU GACUCCCA | 804 | UGGGAGUC CUGAUGA X GAA AAAAUUAC |      |
| 5450 | UUUUGACUC CCAGAUCA | 805 | UGAUCUGG CUGAUGA X GAA AGUCAAAA | 1627 |
| 5457 | UCCCAGAUC AGUCAGAG | 806 | CUCUGACU CUGAUGA X GAA AUCUGGGA |      |
| 5461 | AGAUCAGUC AGAGCCCC | 807 | GGGGCUCU CUGAUGA X GAA ACUGAUCU | 1629 |
| 5471 | GAGCCCCUA CAGCAUUG | 808 | CAAUGCUG CUGAUGA X GAA AGGGGCUC | 1630 |
| 5478 | UACAGCAUU GUUAAGAA | B09 | UUCUUAAC CUGAUGA X GAA AUGCUGUA | 1631 |
| 5481 | AGCAUUGUU AAGAAAGU | 810 | ACUUUCUU CUGAUGA X GAA ACAAUGCU | 1632 |
| L    |                    |     | ACCOUNT COGRUGA X GAA ACAAUGCU  | 1633 |

Table III

| 5482 | GCAUUGUUA AGAAAGUA | 811 | UACUUUCU CUGAUGA X GAA AACAAUGC | 1634 |
|------|--------------------|-----|---------------------------------|------|
| 5490 | AAGAAAGUA UUUGAUUU | 812 | AAAUCAAA CUGAUGA X GAA ACUUUCUU | 1635 |
| 5492 | GAAAGUAUU UGAUUUUU | 813 | AAAAAUCA CUGAUGA X GAA AUACUUUC | 1636 |
| 5493 | AAAGUAUUU GAUUUUUG | 814 | CAAAAAUC CUGAUGA X CAA AAUACUUU | 1637 |
| 5497 | UAUUUGAUU UUUGUCUC | 815 | GAGACAAA CUGAUGA X GAA AUCAAAUA | 1638 |
| 5498 | AUUUGAUUU UUGUCUCA | 816 | UGAGACAA CUGAUGA X GAA AAUCAAAU | 1639 |
| 5499 | UUUGAUUUU UGUCUCAA | 817 | UUGAGACA CUGAUGA X GAA AAAUCAAA | 1640 |
| 5500 | UUGAUUUUU GUCUCAAU | 818 | AUUGAGAC CUGAUGA X GAA AAAAUCAA | 1641 |
| 5503 | AUUUUUGUC UCAAUGAA | 819 | UUCAUUGA CUGAUGA X GAA ACAAAAAU | 1642 |
| 5505 | UUUUGUCUC AAUGAAAA | 820 | UUUUCAUU CUGAUGA X GAA AGACAAAA | 1643 |
| 5515 | AUGAAAAUA AAACUAUA | 821 | UAUAGUUU CUGAUGA X GAA AUUUUCAU | 1644 |
| 5521 | AUAAAACUA UAUUCAUU | 822 | AAUGAAUA CUGAUGA X GAA AGUUUUAU | 1645 |
| 5523 | AAAACUAUA UUCAUUUC | 823 | GAAAUGAA CUGAUGA X GAA AUAGUUUU | 1646 |

Where "X" represents stem II region of a HH ribozyme (Hertel et al., 1992 Nucleic Acids Res. 20 3252). The length of stem II may be  $\geq$ 2 base-pairs.

Table IV

TABLE IV: Human EGF-R Hairpin Ribozyme and Target Sequence

| nt.      | Ribosyme                             | Seq. ID | Substrate        | Seq. ID |
|----------|--------------------------------------|---------|------------------|---------|
| Position |                                      | NOs.    |                  | NOs.    |
| 38       | GGCGGC AGAA GCGC                     | 1647    | GCGCC GCC GCCGCC | 1759    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |         |                  |         |
| 41       | CUGGGC AGAA GCGG                     | 1648    | CCGCC GCC GCCCAG | 1760    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |         |                  |         |
| 44       | GGUCUG AGAA GCGG                     | 1649    | CCGCC GCC CAGACC | 1761    |
|          | ACCAGAGAAACACGUUGUGGUACAUUACCUGGUA   |         |                  |         |
| 49       | CGUCCG AGAA GGGC                     | 1650    | GCCCA GAC CGGACG | 1762    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |         | ,                |         |
| 54       | CCUGUC AGAA GGUC                     | 1651    | GACCG GAC GACAGG | 1763    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |         |                  |         |
| 80       | GACUCG AGAA GACG                     | 1652    | CGUCC GCC CGAGUC | 1764    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |         | '                |         |
| 92       | CGGCGA AGAA GGGA                     | 1653    | UCCCC GCC UCGCCG | 1765    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |         |                  |         |
| 125      | UCAGGG AGAA GUGC                     | 1654    | GCACG GCC CCCUGA | 1766    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |         |                  |         |
| 132      | GACGGA AGAA GGGG                     | 1655    | CCCCU GAC UCCGUC | 1767    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | }       |                  |         |
| 138      | AUACUG AGAA GAGU                     | 1656    | ACUCC GUC CAGUAU | 1768    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |         |                  |         |
| 204      | UGCCCC AGAA GUCC                     | 1657    | GGACG GCC GGGGCA | 1769    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |         | :                |         |
| 227      | GCAGCC AGAA GCGC                     | 1658    | GCGCU GCU GGCUGC | 1770    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |         |                  |         |
| 241      | UCGCCG AGAA GAGC                     | 1659    | GCUCU GCC CGGCGA | 1771    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1       |                  |         |
| 305      | GUGCCC AGAA GCGU                     | 1660    | ACGCA GUU GGGCAC | 1772    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |         |                  |         |
| 334      | UCUGGA AGAA GAGA                     | 1661    | UCUCA GCC UCCAGA | 1773    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1       |                  |         |
| 500      | CUGAUG AGAA GCAG                     | 1662    | CUGCA GAU CAUCAG | 1774    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |         |                  |         |
| 546      | AGAUAA AGAA GCUA                     | 1663    | UAGCA GUC UUAUCU | 1775    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |         |                  |         |
| 577      | CCUUCA AGAA GGUU                     | 1664    | AACCG GAC UGAAGG | 1776    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |         |                  |         |
| 590      | CUCAUG AGAA GCUC                     | 1665    | GAGCU GCC CAUGAG | 1777    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |         |                  |         |
| 632      | UUGCUG AGAA GCAC                     | 1666    | GUGCG GUU CAGCAA | 1778    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |         |                  |         |
| 648      | GCACAG AGAA GGGU                     | 1667    | ACCCU GCC CUGUGC | 1779    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1       |                  | ••••    |
| 742      | UUUGGC AGAA GCCC                     | 1668    | GGGCA GCU GCCAAA | 1780    |
|          | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1       |                  | 1,00    |
| 766      | CAUUGG AGAA GCUU                     | 1669    | AAGCU GUC CCAAUG | 1781    |
|          |                                      |         |                  | /61     |

Table IV

| 781  | CACCCC AGAA GCUC                                     | 1670 | GAGCU GCU GGGGUG | 1782 |
|------|------------------------------------------------------|------|------------------|------|
|      | ACCAGAGAAACACGUUGUGGUACAUUACCUGGUA                   |      |                  |      |
| 815  | AUUUUG AGAA GUUU ACCAGAGAAACACACGUUGUGUACAUUACCUGGUA | 1671 | AAACU GAC CAAAAU | 1783 |
| 853  | UGCCAC AGAA GCGC                                     | 1672 | GCGCU GCC GUGGCA | 1784 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 877  | UGUGGC AGAA GUCA                                     | 1673 | UGACU GCU GCCACA | 1785 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 928  | AGACCA AGAA GUCG                                     | 1674 | CGACU GCC UGGUCU | 1786 |
| :    | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 | ĺ    |                  |      |
| 937  | AUUUGC AGAA GACC                                     | 1675 | GGUCU GCC GCAAAU | 1787 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 | ·    |                  |      |
| 976  | GUGGGG AGAA GGUG                                     | 1676 | CACCU GCC CCCCAC | 1788 |
| į    | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 1013 | ACAUCC AGAA GGUA                                     | 1677 | UACCA GAU GGAUGU | 1789 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 1042 | CACCAA AGAA GUAU                                     | 1678 | AUACA GCU UUGGUG | 1790 |
| 1    | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 1092 | GCCGUG AGAA GUCA                                     | 1679 | UGACA GAU CACGGC | 1791 |
| ĺ    | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 1099 | CGCACG AGAA GUGA                                     | 1680 | UCACG GCU CGUGCG | 1792 |
| 1    | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 1301 | GCCACC AGAA GGAU                                     | 1681 | AUCCU GCC GGUGGC | 1793 |
| 1    | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 1403 | GCCUGA AGAA GCAA                                     | 1682 | UUGCU GAU UCAGGC | 1794 |
| ı    | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 | 1    |                  |      |
| 1431 | AUGGAG AGAA GUCC                                     | 1683 | GGACG GAC CUCCAU | 1795 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 1490 | AGAGAA AGAA GACC                                     | 1684 | GGUCA GUU UUCUCU | 1796 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 | 1    |                  |      |
| 1503 | GCUGAC AGAA GCAA                                     | 1685 | UUGCA GUC GUCAGC | 1797 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 1510 | UGUUCA AGAA GACG                                     | 1686 | CGUCA GCC UGAACA | 1798 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 1625 | GUCCCA AGAA GUUU                                     | 1687 | AAACU GUU UGGGAC | 1799 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 1678 | CCUUGC AGAA GUUU                                     | 1688 | AAACA GCU GCAAGG | 1800 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 1729 | GGCCCC AGAA GCCC                                     | 1689 | GGGCU GCU GGGGCC | 1801 |
| 1274 | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 1774 | UGCCUC AGAA GACA                                     | 1690 | UGUCA GCC GAGGCA | 1802 |
| 1074 | ACCAGAGAAACACGUUGUGGUACAUUACCUGGUA                   |      |                  |      |
| 1874 | GCCUGA AGAA GGCA                                     | 1691 | UGCCU GCC UCAGGC | 1803 |
| 1949 | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 1948 | AGUGGG AGAA GUCA                                     | 1692 | UGACG GCC CCCACU | 1804 |
| 1969 | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 1909 | CUGCCG AGAA GGUC                                     | 1693 | GACCU GCC CGGCAG | 1805 |
| 2019 | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                 |      |                  |      |
| 2013 | GCCGGC AGAA GCGU                                     | 1694 | ACGCA GAC GCCGGC | 1806 |

Table IV

|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                  |      |                  |      |
|------|-------------------------------------------------------|------|------------------|------|
| 2065 | CAGUGC AGAA GUAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1695 | CUACG GAU GCACUG | 1807 |
| 2092 | UCGUUG AGAA GCCU                                      | 1696 | AGGCU GUC CAACGA | 1808 |
| 2117 | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA GCGAUG AGAA GGAU | 1697 | AUCCC GUC CAUCGC | 1809 |
| 2156 | ACCAGAGAAACACGUUGUGGUACAUUACCUGGUA ACCACC AGAA GCAA   | 1698 | UUGCU GCU GGUGGU | 1810 |
| 2179 | ACCAGAGAAACACGUUGUGGUACAUUACCUGGUA                    |      |                  |      |
| 2179 | UGAAGA AGAA GAUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1699 | GAUCG GCC UCUUCA | 1811 |
| 2231 | UCCUGC AGAA GCCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1700 | AGGCU GCU GCAGGA | 1812 |
| 2409 | GAUAGC AGAA GGAA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1701 | UUCCC GUC GCUAUC | 1813 |
| 2512 | CCAGCA AGAA GCAC ACCAGAGAAACACACGUUGUGUACAUUACCUGGUA  | 1702 | GUGCC GCC UGCUGG | 1814 |
| 2516 | AUGCCC AGAA GGCG                                      | 1703 | CGCCU GCU GGGCAU | 1815 |
| 2527 | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA AGGUGA AGAA GAUG | 1704 | CAUCU GCC UCACCU | 1816 |
| 2558 | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA GGCAUG AGAA GCGU | 1705 | ACGCA GCU CAUGCC | 1817 |
| 2572 | ACCAGAGARACACACGUUGUGGUACAUUACCUGGUA GGAGGC AGAA GAAG | 1706 | CUUCG GCU GCCUCC | 1818 |
| 2575 | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA                  |      |                  | 1010 |
|      | CCAGGA AGAA GCCG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1707 | CGGCU GCC UCCUGG | 1819 |
| 2627 | CAGUUG AGAA GGUA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1708 | UACCU GCU CAACUG | 1820 |
| 2645 | UUUGCG AGAA GCAC ACCAGAGAAACACACGUUGUGUACAUUACCUGGUA  | 1709 | GUGCA GAU CGCAAA | 1821 |
| 2677 | CCAAGC AGAA GUCC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1710 | GGACC GUC GCUUGG | 1822 |
| 2748 | CCCAAA AGAA GUGA ACCAGAGAAACACACGUUGUGUACAUUACCUGGUA  | 1711 | UCACA GAU UUUGGG | 1823 |
| 2768 | GCACCC AGAA GUUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1712 | AAACU GCU GGGUGC | 1824 |
| 2895 | CUCCCA AGAA GUCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1713 | UGACC GUU UGGGAG | 1825 |
| 3165 | GUUGGA AGAA GUAG ACCAGAGAAACACACGUUGUGUACAUUACCUGGUA  | 1714 | CUACA GAC UCCAAC | 1826 |
| 3188 | UCAUCC AGAA GGGC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1715 | GCCCU GAU GGAUGA | 1827 |
| 3225 | GUACUC AGAA GCAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1716 | AUGCC GAC GAGUAC | 1828 |
| 3262 | UGGAGG AGAA GCUG ACCAGAGAAACACACGUUGUGUACAUUACCUGGUA  | 1717 | CAGCA GCC CCUCCA | 1829 |
| 3278 | AGGGGA AGAA GUGA                                      | 1718 | UCACG GAC UCCCCU | 1830 |

Table IV

| 2252 3 |                                                          | 1 22.2 | · · · · · · · · · · · · · · · · · · · |      |
|--------|----------------------------------------------------------|--------|---------------------------------------|------|
| 3358   | UGAUGG AGAA GCUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA    | 1719   | AAGCU GUC CCAUCA                      | 1831 |
| 3376   | GCAAGA AGAA GUCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA    | 1720   | AGACA GCU UCUUGC                      | 1832 |
| 3394   | GGUCUG AGAA GUAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA    | 1721   | AUACA GCU CAGACC                      | 1833 |
| 3399   | UGUGGG AGAA GAGC ACCAGAGAAACACACGUUGUGUACAUUACCUGGUA     | 1722   | GCUCA GAC CCCACA                      | 1834 |
| 3470   | GGAACG AGAA GGUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA    | 1723   | AACCA GUC CGUUCC                      | 1835 |
| 3474   | UUUGGG AGAA GACU ACCAGAGAAACACACGUUGUGUACAUUACCUGGUA     | 1724   | AGUCC GUU CCCAAA                      | 1836 |
| 3489   | AGAGCC AGAA GGCC ACCAGAGAAACACACGUUGUGUACAUUACCUGGUA     | 1725   | GGCCC GCU GGCUCU                      | 1837 |
| 3510   | GUGAUA AGAA GGAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA    | 1726   | AUCCU GUC UAUCAC                      | 1838 |
| 3524   | UUCAGA AGAA GAUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA    | 1727   | AAUCA GCC UCUGAA                      | 1839 |
| 3609   | GGGCUG AGAA GUGU<br>ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1728   | ACACU GUC CAGCCC                      | 1840 |
| 3614   | CAGGUG AGAA GGAC ACCAGAGAAACACACGUUGGUACAUUACCUGGUA      | 1729   | GUCCA GCC CACCUG                      | 1841 |
| 3643   | GGGCAG AGAA GUCG ACCAGAGAAACACACGUUGGUACAUUACCUGGUA      | 1730   | CGACA GCC CUGCCC                      | 1842 |
| 3648   | CCAGUG AGAA GGGC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA    | 1731   | GCCCU GCC CACUGG                      | 1843 |
| 3696   | CUGGUA AGAA GGGU ACCAGAGAAACACACGUUGGUACAUUACCUGGUA      | 1732   | ACCCU GAC UACCAG                      | 1844 |
| 3759   | AUUUUC AGAA GUGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA    | 1733   | CCACA GCU GAAAAU                      | 1845 |
| 3851   | GAAAGA AGAA GGAU<br>ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1734   | AUCCA GAC UCUUUC                      | 1846 |
| 3931   | AAACCA AGAA GUGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA    | 1735   | CCACA GAC UGGUUU                      | 1847 |
| 3955   | UGGCUA AGAA GUGU<br>ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1736   | ACACC GAC UAGCCA                      | 1848 |
| 4310   | CCUUGA AGAA GAAC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA    | 1737   | GUUCU GCU UCAAGG                      | 1849 |
| 4374   | GUACCG AGAA GGCC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA    | 1738   | GGCCG GAU CGGUAC                      | 1850 |
| 4423   | GGAAGG AGAA GAGU<br>ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1739   | ACUCU GUC CCUUCC                      | 1851 |
| 4514   | UGGUCC AGAA GUGG<br>ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1740   | CCACU GAU GGACCA                      | 1852 |
| 4550   | AAACAA AGAA GUCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA    | 1741   | AGACU GAC UUGUUU                      | 1853 |
| 4594   | GACAGG AGAA GCAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA    | 1742   | AUGCC GCC CCUGUC                      | 1854 |
| 4600   | CAGCAA AGAA GGGG                                         | 1743   | CCCCU GUC UUGCUG                      | 1855 |

Table IV

|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |      |                  |      |
|------|--------------------------------------|------|------------------|------|
| 4653 | GCUGGA AGAA GAGU                     | 1744 | ACUCG GAU UCCAGC | 1856 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |      |                  |      |
| 4660 | AAUGUG AGAA GGAA                     | 1745 | UUCCA GCC CACAUU | 1857 |
| Ī    | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |      |                  |      |
| 4701 | AUUCUC AGAA GUGG                     | 1746 | CCACA GCU GAGAAU | 1858 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |      |                  |      |
| 4733 | AACAAA AGAA GUGU                     | 1747 | ACACC GCU UUUGUU | 1859 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |      |                  |      |
| 4775 | CAUUUC AGAA GAGC                     | 1748 | GCUCA GAU GAAAUG | 1860 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1    |                  |      |
| 4831 | UUUCAG AGAA GCUU                     | 1749 | AAGCU GCU CUGAAA | 1861 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |      |                  |      |
| 4962 | GGGGGC AGAA GACC                     | 1750 | GGUCA GCU GCCCCC | 1862 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |      |                  |      |
| 4965 | UUUGGG AGAA GCUG                     | 1751 | CAGCU GCC CCCAAA | 1863 |
|      | ACCAGAGAAACACGUUGUGGUACAUUACCUGGUA   | }    |                  |      |
| 5011 | ACUCAA AGAA GAGA                     | 1752 | UCUCU GCC UUGAGU | 1864 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | 1    |                  |      |
| 5040 | GGCCAG AGAA GUAA                     | 1753 | UUACA GCU CUGGCC | 1865 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |      |                  |      |
| 5161 | . UAAAAC AGAA GCAA                   | 1754 | UUGCA GAU GUUUUA | 1866 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA | -    | 1                |      |
| 5277 | UAACCA AGAA GGUU                     | 1755 | AACCU GAC UGGUUA | 1867 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |      |                  |      |
| 5292 | ACAAAG AGAA GCUG                     | 1756 | CAGCA GUC CUUUGU | 1868 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |      |                  |      |
| 5381 | ACUGUA AGAA GAAA                     | 1757 | UUUCA GCC UACAGU | 1869 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |      |                  |      |
| 5453 | UGACUG AGAA GGGA                     | 1758 | UCCCA GAU CAGUCA | 1870 |
|      | ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA |      |                  |      |

#### Claims

- 1. An enzymatic nucleic acid molecule which specifically cleaves RNA derived from an epidermal growth factor receptor (EGFR) gene.
- 2. The enzymatic nucleic acid molecule of claim 1, wherein said nucleic acid molecule is in a hairpin motif.
  - 3. The enzymatic nucleic acid molecule of claim 1, wherein said nucleic acid molecule is in a hammerhead motif.
- The enzymatic nucleic acid molecule of claim 3, wherein said nucleic acid molecule comprises a stem II region of length greater than or equal to 2 base pairs.
- The enzymatic nucleic acid molecule of claim 3, wherein the binding arms of said nucleic acid molecule
   comprises sequences complementary to any of SEQ ID NOs 1-823.
- The enzymatic nucleic acid molecule of claim 2, wherein the binding arms of said nucleic acid molecule comprises sequences complementary to any of SEQ ID NOs 20 1759-1870.
  - 7. The enzymatic nucleic acid molecule of claim 2, wherein said nucleic hairpin motif consists essentially of any ribozyme sequence shown as SEQ ID NOs 1647-1758.
- 8. The enzymatic nucleic acid molecule of claim 3, wherein said nucleic hammerhead motif consists essentially of any ribozyme sequence shown as SEQ ID NOs 824-1646.

- 9. The enzymatic nucleic acid molecule of claim 1, wherein said nucleic acid molecule is in a hepatitis delta virus, VS nucleic acid, group I intron, Group II intron, or RNase P nucleic acid motif.
- 5 10. The enzymatic nucleic acid molecule of claim 1, wherein said nucleic acid comprises between 12 and 100 bases complementary to said RNA.
- The enzymatic nucleic acid molecule of claim 1, wherein said nucleic acid comprises between 14 and 24
   bases complementary to said mRNA.
  - 12. A mammalian cell including an enzymatic nucleic acid molecule of claim 1.
  - 13. The cell of claim 12, wherein said cell is a human cell.
- 14. An expression vector comprising nucleic acid sequence encoding at least one of the enzymatic nucleic acid molecule of claim 1, in a manner which allows expression of that enzymatic nucleic acid molecule.
- 15. A mammalian cell including an expression vector 20 of claim 14.
  - 16. The cell of claim 15, wherein said cell is a human cell.
- 17. A method for treatment of cancer comprising the step of administering to a patient the enzymatic nucleic acid molecule of claim 1.

- 18. A method for treatment of a cancer comprising the step of administering to a patient the expression vector of claim 14.
- 19. A method for treatment of cancer comprising the 5 steps of: a) isolating cells from a patient; b) administering to said cells the enzymatic nucleic acid molecule of claim 1 or 14; and c) introducing said cells back into said patient.
- 20. A pharmaceutical composition comprising the 10 enzymatic nucleic acid molecule of claim 1.
  - 21. A method of treatment of a patient having a condition associated with the level of EGFR, wherein said patient is administered the enzymatic nucleic acid molecule of claim 1.
- 22. A method of treatment of a patient having a condition associated with the level of EGFR, comprising contacting cells of said patient with the nucleic acid molecule of claim 1, and further comprising the use of one or more drug therapies.
- 23. The enzymatic nucleic acid molecule of claim 3, wherein said nucleic acid molecule comprises at least five ribose residues, and wherein said nucleic acid comprises phosphorothicate linkages at at least three of the 5' terminal nucleotides, and wherein said nucleic acid comprises a 2'-C-allyl modification at position No. 4 of said nucleic acid, and wherein said nucleic acid comprises at least ten 2'-O-methyl modifications, and wherein said nucleic acid comprises a 3' end modification.

- 24. The enzymatic nucleic acid of claim 22, wherein said nucleic acid comprises a 3'-3' linked inverted ribose moeity at said 3' end.
- 25. The enzymatic nucleic acid molecule of claim 3, wherein said nucleic acid molecule comprises at least five ribose residues, and wherein said nucleic acid molecule comprises phosphorothioate linkages at at least three of the 5' terminal nucleotides, and wherein said nucleic acid comprises a 2'-amino modification at position No. 4 and/or at position No. 7 of said nucleic acid molecule, wherein said nucleic acid molecule comprises at least ten 2'-O-methyl modifications, and wherein said nucleic acid comprises a 3' end modification.
- 26. The enzymatic nucleic acid molecule of claim 3,
  wherein said nucleic acid molecule comprises at least five
  ribose residues, and wherein said nucleic acid molecule
  comprises phosphorothicate linkages at at least three of
  the 5' terminal nucleotides, and wherein said nucleic acid
  molecule comprises an abasic substitution at position No.
  4 and/or at position No. 7 of said nucleic acid molecule,
  wherein said nucleic acid comprises at least ten 2'-Omethyl modifications, and wherein said nucleic acid
  molecule comprises a 3'-end modification.
- 27. The enzymatic nucleic acid molecule of claim 3, wherein said nucleic acid molecule comprises of at least five ribose residues, and wherein said nucleic acid comprises phosphorothicate linkages at at least three of the 5' terminal nucleotides, and wherein said nucleic acid molecule comprises a 6-methyl uridine substitution at position No. 4 and/or at position No. 7 of said nucleic acid molecule, wherein said nucleic acid molecule

95

comprises at least ten 2'-O-methyl modifications, and wherein said nucleic acid molecule comprises a 3' end modification.





SUBSTITUTE SHEET (RULE 26)







# FIG. 6A.

S0 S1 0 1 2 3 5 10 15 20 30 60 +C





Fig. 6B

# FIG. 6C.



S

P

10nM ribozyme: 300nM substrate

C 0 2 5 10 20 30 60 90 120



FIG. 7A.

10nM ribozyme: 1µM substrate

C 0 0 2 5 10 20 30 60 90 120



FIG. 7B.



Fig. 7C



Fig. 8



Fig. 9