Lesson 4 MATHEMATICAL INDUCTION

Vocabulary List

add, <i>v</i> arbitrary, <i>adj</i> assume, <i>v</i> data, <i>n pl</i> denote, <i>v</i> divide, <i>v</i>	illustration, <i>n</i> mathematical induction obtain, <i>v</i> polynomial, <i>n</i> , <i>adj</i> positive integer proof, <i>n</i>	set, <i>v</i> statement, <i>n</i> sum, <i>n</i> , <i>v</i> term, <i>n</i> theorem, <i>n</i> therefore, <i>adv</i>
data, $n pl$	polynomial, n, adj	term, n
denote, v	positive integer	theorem, n
divide, v	proof, <i>n</i>	therefore, adv
equation, n	proposition, n	thus, adv
express, v	prove, v	true, <i>adj</i>
expression, n	reasoning, n	valid, <i>adj</i>
factor, n, v	series, n	value, n

A. Pre-Reading

- How can you benefit from the knowledge of the English language of Mathematics and Computer Science in your studies and professional career?

B. Reading

Mathematical Induction

by Max Kurtz

Where a proposition is believed to be true but a direct proof is difficult to secure, an indirect proof is sometimes obtainable by a process of reasoning called *mathematical induction*. To illustrate the process, we shall prove the following:

$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$
 (d)

Let S_n denote the sum of the terms at the left, and set n = 1. The left and right sides of Eq. (*d*) yield the following values, respectively:

$$S_1 = 1 \cdot 2 = 2$$
 $S_1 = \frac{1 \cdot 2 \cdot 3}{3} = 2$

Thus, Eq. (d) is valid for n = 1. Now assume it is valid for n = k, where k is an arbitrary positive integer. Adding the (k + 1)th term in the series and expressing it as 3(k + 1)(k + 2)/3, we obtain

$$S_{k+1} = \frac{k(k+1)(k+2)}{3} + \frac{3(k+1)(k+2)}{3} = \frac{(k+1)(k+2)}{3}(k+3) = \frac{(k+1)(k+2)(k+3)}{3}$$

Comparing the expression for S_{k+1} with the expression in Eq. (*d*), we arrive at this conclusion: If Eq. (*d*) is valid for n = k, it is also valid for n = k + 1. We have already demonstrated that Eq. (*d*) is valid for n = 1. Therefore, it is valid for n = 2. Since it is valid for n = 2, it is also valid for n = 3, etc. It follows that Eq. (*d*) is valid for all positive integral values of n.

As a second illustration, we shall demonstrate that x - y is a factor of the expression $x^n - y^n$ for all positive integral values of n. For this purpose, we write

$$x^{k+1} - y^{k+1} = x(x^k - y^k) + y^k(x - y)$$

Therefore, if the proposition is true for n = k, it is also true for n = k + 1. The proposition is true for n = 1, and the proof is now complete.

C. Review Questions

Exercise 1. Text-Based Translation

Якщо твердження вважають істинним, але пряме доведення є складним; процес міркувань; позначимо через S_n суму членів; покладемо n рівним 1; ліва і права частини рівності (d) задають такі значення; відповідно; довільне додатне ціле число; рівність (d) виконується при n=k; тощо; звідси випливає; дільник виразу x^n-y^n ; що і треба було довести.

Exercise 2. Anagrams

Solve the anagrams by reading the clues and putting the letters of the words in order.

1.	Something that must be proved	POSPOORINIT
2.	Based on facts and not imagined or invented	UTRE
3.	Reasons that show a theorem (=statement) to be	
	true	FPORO
4.	Something you decide after considering some	
	data	NCSCUOIONL
5.	Connected with or using mathematics	EIMCMAALTHTA
6.	Any mathematical form expressed symbolically	ISEESOXNPR
7.	The result of an addition	UMS
8.	To be a sign of something	ENTOED
9.	Opposite of "right"	FETL
10.	A number or polynomial that divides a given	
	number or polynomial exactly	RATFCO
11.	A whole number	GIRTNEE
12.	To get	ATONBI
13.	To think that something is true, although you	
	have no proof of it	MSUASE
14.	To come directly after an event or as a result of it	WLOFOL
15.	A method of proving that each of an infinite	
	sequence of mathematical statements is true if	
	the first statement is proved to be true	ITNONIDCU
16.	Straightforward	RCETDI
17.	To show or prove something clearly	SDERENAMOTT
18.	Opposite of "left"	GIRTH

Exercise 3. *Translate the following into English using Continuous tenses.*

1) Зараз студенти пишуть тест з лінійної алгебри. 2) Ти будеш користуватись комп'ютером сьогодні увечері? 3) (*Мама синові*) Замість того, щоб готуватись до (to study for) іспитів, ти постійно сидиш в (to surf) Інтернеті! 4). Вони сказали, що упродовж трьох наступних днів будуть аналізувати ці статистичні дані. 5) Через вірус ми тимчасово не користуємось нашим комп'ютерним цент-ром. 6)

Інформація про їхню знахідку швидко поширювалась по (to spread over) глобальній комп'ютерній мережі. 7) Ти збираєшся брати участь в олімпіаді з (olympiad in) інформатики? 8) "Над чим зараз працює ваша команда?"— "Ми розробляємо програму вивчення мови за допомогою комп'ютера". 9) (Анекдот) Студент складає іспит з (to take exam in / on) програмування. Викладач його запитує: "Що таке поліморфізм?"… 10) Система зависла, коли я грав у цю гру.