南京大学数学系概率论期末试题(2020)

	2019)/2020	学年	第二学	期考	试形式_	闭卷	课	程名称	概	率论	
院系班级					学	号						
考试时间 2020/08/15				15 4	任课教师 代雄平 宋玉林 考试成							
绩												
	题号		\equiv	三	四	五.	六	七	八	九	+	总分
	得分											

一(15**分**). 1. 陈述"概率空间"的定义。(10分)

- 2. 设 (Ω, \mathscr{F}) 是一可测空间,函数 μ : $\mathscr{F} \to \mathbb{R}$ 满足条件:
- (a) $\mu(A) \ge 0 \ \forall A \in \mathscr{F}$.
- (b) $\mu(\Omega) = 1$.
- (c) (有限可加性) $\mu(A_1 + \cdots + A_n) = \mu(A_1) + \cdots + \mu(A_n)$ 。
- (d) μ 是下半连续。

问 $(\Omega, \mathscr{F}, \mu)$ 是否为一概率空间?(不必证明)(5分)

二(15分). 1. 证明抽签与顺序无关。(10分)

2. 设随机变量X服从超几何分布,求EX。(5分)

三(10分). 设 E_n 是 p_n -型n-重Bernoulli试验, $n=1,2,\ldots$,满足 $\lim_{n\to\infty}np_n=\lambda>0$ 。证明Poisson逼近:对 $k=0,1,2,\ldots$ 有 $\lim_{n\to\infty}b(k;n,p_n)=\frac{\lambda^k}{k!}e^{-\lambda}=p(k;\lambda)$ 。

四(10分). 设 $\xi \ge 0$ 是一连续型的随机变量。证明: $\xi \sim \text{Exp}(\lambda)$ 当且仅当 $P(\xi \ge s + t | \xi \ge s) = P(\xi \ge t) \quad \forall s, t \ge 0.$

七(10分). 若随机变量 ξ , η 独立。证明特征函数满足 $f_{\xi+\eta}(t)=f_{\xi}(t)+f_{\eta}(t)$ 。

六(10分). 设 $\xi \sim \Gamma(r_1, \lambda), \eta \sim \Gamma(r_2, \lambda)$ 且 ξ, η 独立。 令 $\alpha = \xi + \eta$ 和 $\beta = \frac{\xi}{\xi + \eta}$ 。 证明: α 与 β 独立。

八(10分). 设证明"Bernoulli弱大数定律": 设 ξ_1, ξ_2, \dots 是 i.i.d. 随机变量 s.t. $\xi_1 \sim B(1, p)$ 。则

$$P\left(\left|\frac{\xi_1 + \dots + \xi_n}{n} - p\right| < \varepsilon\right) \to 1 \text{ as } n \to \infty, \quad \forall \varepsilon > 0.$$

九(10分). 设证 明"中心 极限定理": 设 X_1, X_2, \dots 是 i.i.d. 随机变量 s.t. $EX_1 = \mu \pi D X_1 = \sigma^2$ 都是有限数。则对任意 $a \in \mathbb{R}$ 有

$$P\left(\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}} \le a\right) \to \Phi(a) \text{ as } n \to \infty.$$