Z[I] = W[I] * A[I-1] + b[I] => Forward propagation

$$Z^{(1)}, \alpha^{(1)}: (n^{(2)}, 1)$$

$$Z^{(1)}, A^{(1)}: (n^{(2)}, m)$$

$$L=0 \quad A^{(0)}: (n^{(2)}, m)$$

$$Z^{(1)}, A^{(1)}: (n^{(2)}, m)$$

$$Z^{(1)}, A^{(1)}: (n^{(2)}, m)$$

Intuition about deep representation

Circuit theory and deep learning

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

Forward and backward functions x_1 x_2 x_3 x_4 x_4 x_5 x_6 $x_$

Forward and backward functions

Forward propagation for layer l

Backward propagation for layer l

- \rightarrow Input $da^{[l]}$
- \rightarrow Output $da^{[l-1]}$, $dW^{[l]}$, $db^{[l]}$

What are hyperparameters?

Parameters: $W^{[1]}$, $b^{[1]}$, $W^{[2]}$, $b^{[2]}$, $W^{[3]}$, $b^{[3]}$...

Applied deep learning is a very empirical process

Note that the formulas shown in the next video have a few typos. Here is the correct set of formulas.

$$\begin{split} dZ^{[L]} &= A^{[L]} - Y \\ dW^{[L]} &= \frac{1}{m} dZ^{[L]} A^{[L-1]^T} \\ db^{[L]} &= \frac{1}{m} np.sum (dZ^{[L]}, axis = 1, keepdims = True) \\ dZ^{[L-1]} &= W^{[L]^T} dZ^{[L]} * g'^{[L-1]} (Z^{[L-1]}) \end{split}$$

Note that * denotes element-wise multiplication)

:

$$dZ^{[1]} = W^{[2]} dZ^{[2]} * g'^{[1]}(Z^{[1]})$$

$$dW^{[1]} = \frac{1}{m} dZ^{[1]} A^{[0]^T}$$

Note that $A^{\left[0
ight]^T}$ is another way to denote the input features, which is also written as X^T

$$db^{[1]} = \tfrac{1}{m} np.sum \big(dZ^{[1]}, axis = 1, keepdims = True \big)$$

Figure 1

Figure 2 : [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID model

Figure 3: Forward and Backward propagation for LINEAR->RELU->LINEAR->SIGMOID

The purple blocks represent the forward propagation, and the red blocks represent the backward propagation.

Figure 4

The three outputs $(dW^{[l]},db^{[l]},dA^{[l-1]})$ are computed using the input $dZ^{[l]}$. Here are the formulas you need:

$$dW^{[l]} = \frac{\partial \mathcal{J}}{\partial W^{[l]}} = \frac{1}{m} dZ^{[l]} A^{[l-1]T}$$

$$db^{[l]} = \frac{\partial \mathcal{J}}{\partial b^{[l]}} = \frac{1}{m} \sum_{i=1}^{m} dZ^{[l](i)}$$

$$dA^{[l-1]} = \frac{\partial \mathcal{L}}{\partial A^{[l-1]}} = W^{[l]T} dZ^{[l]}$$

If g(.) is the activation function, sigmoid_backward and relu_backward compute

$$dZ^{[l]} = dA^{[l]} * g'(Z^{[l]})$$

.

As usual you will follow the Deep Learning methodology to build the model:

- 1. Initialize parameters / Define hyperparameters
 - 2. Loop for num_iterations:
 - a. Forward propagation
 - b. Compute cost function
 - c. Backward propagation
 - d. Update parameters (using parameters, and grads from backprop)
 - 4. Use trained parameters to predict labels