Санкт-Петербургский Национально Исследовательский Университет информационных технологий, механики и оптики Кафедра систем управления и информатики

Электромеханические системы

Отчет по лабораторной работе №2 Выбор двигателя для САУ

Вариант №8

Работу выполнили:

Зенкин А.М.

Карпов К.В.

Группа: Р3335

Преподаватель:

Чежин М.С.

Содержание

1.	Цел	ь работы	2
2.	Bap	ианты параметров	2
3.	Ход	выполнения работы	2
	3.1.	Схема объекта управления:	2
	3.2.	Расчёты требуемых параметров двигателя:	2
	3.3.	Бесколлекторный двигатель FL57BL01:	3
		3.3.1. Расчёт параметров двигателя:	3
		3.3.2. Рассчёт оптимального передаточного числа:	3
		3.3.3. Рассчёт требуемого момента на валу двигателя:	3
		3.3.4. Рассчёт требуемой минимальной мощности, развиваемой на валу дви-	
		гателя:	4
		3.3.5. Проверка перегрузочной способности и требуемой скорости:	4
		3.3.6. Произведём тепловой расчет по эквивалентному моменту:	4
	3.4.	Бесколлекторный двигатель FL57BL02:	4
		3.4.1. Расчёт параметров двигателя:	5
		3.4.2. Рассчёт требуемой мощности, развиваемой на валу двигателя:	5
		3.4.3. Проверка перегрузочной способности и требуемой скорости:	5
	3.5.	Моделирование бесколлекторного электродвигателя FL57BL01:	5
	3.6.	Расчёт параметров математической модели и графики переходных процессов:	5
	3.7.	Схема моделирования и графики переходных процессов:	6
4	Вы	зол	8

1. Цель работы

Выборать двигатель для САУ.

2. Варианты параметров

 $m=0,62\ kg;\ R=0,35\ m;$ Плоскость перемещения: вертикальная $g=g_0\cdot\sin(\omega t),$ где $g_0=30^\circ,\omega=7.5\ c^{-1}$

3. Ход выполнения работы

3.1. Схема объекта управления:

Схема объектра управления приведена на рисунке 3.1.

Рисунок 3.1. - схема объекта управления

3.2. Расчёты требуемых параметров двигателя:

$$J_{H} = mR^{2} = 0.62 \cdot 0, 35^{2} = 0.07595 \ kg \cdot m^{2};$$

$$\varepsilon = \frac{d\omega}{dt} = 0.523598 \cdot 7.5 = 29.4356 \ red/s;$$

$$M = mgR = 2.12 \ H \cdot m;$$

$$M_{TP} = M_{d} + M_{c} = 2.24 + 2.12 = 4.36 \ H \cdot m;$$

$$P_{H} = (M_{H} + J_{H}\varepsilon_{M}) \omega_{M} = 4.36 \cdot 3.92 = 17.12 \ W;$$

$$P_{dv} = 2P_{H} = 17.12 \cdot 2 = 34.24 \ W;$$

$$(1)$$

3.3. Бесколлекторный двигатель FL57BL01:

Характеристики бесколлекторного электродвигателя приведены на рисунке 3.2.

	FL57BL01
Число полюсов	4
Число фаз	3
Напряжение питания, В	36
Номинальная скорость, об/мин	4000
Номинальный крутящий момент, кг • см	1,1
Мощность, Вт	46
Максимальный крутящий момент, кг• см	3,9
Максимальный ток, А	6,8
Сопротивление между линиями, Ом	1,5
Индуктивность между линиями, мГн	4,2
ЭДС обратной связи, В/1000об/мин	6,6
Момент инерции ротора, г∙ см2	75
Длина А, мм	55
Масса, кг	0,5

Рисунок 3.2. - технические характеристики бесколекторного электродвигателя

3.3.1. Расчёт параметров двигателя:

$$M_{eng.n} = 0.1078 Nm;$$

$$\omega_{eng.n} = 418.879 \ rad/s;$$

$$J_{eng} = 0.0000075 \ kg \cdot m^{2};$$

$$J_{p} = 0.2J_{eng} = 0.0000015 \ kg \cdot m^{2};$$
(2)

3.3.2. Рассчёт оптимального передаточного числа:

$$M'_{H} = \frac{M_{H}}{\eta} = \frac{0.1078}{0.8} = 0.1348 \ Nm;$$

$$i_{0} = \sqrt{\frac{M'_{H} + J_{H}\varepsilon_{M}}{1.2J_{eng}\varepsilon_{M}}} = \sqrt{\frac{2.79 + 2.2369}{1.2 \cdot 0.0000075 \cdot 29.45}} = 95$$
(3)

3.3.3. Рассчёт требуемого момента на валу двигателя:

$$M_{req} = \left(1.2 \cdot J_{eng} + \frac{J_H}{i^2}\right) \cdot \varepsilon_M \cdot i + \frac{M'_H}{i};$$

$$M_{req} = \left(1.2 \cdot 7.5 \cdot 10^{-6} + \frac{0.07595}{95^2}\right) \cdot 29.45 \cdot 95 + \frac{0.1348}{95} = 0.0501 \ Nm;$$
(4)

3.3.4. Рассчёт требуемой минимальной мощности, развиваемой на валу двигателя:

$$P_{req.min} = 2('M'_H + J_H \epsilon_M) \omega = 2(0.1078 + 0.07595 \cdot 29.45) \cdot 3.9269 = 18.627 W;$$
 (5)

3.3.5. Проверка перегрузочной способности и требуемой скорости:

$$\gamma = \frac{M_{req}}{M_{eng,n}} = \frac{0.0501}{0.10787} = 0.4648;
\alpha = \frac{i_0 \omega_M}{\omega_{eng,n}} = \frac{95 \cdot 3.9269}{418.879} = 0.8906;$$
(6)

3.3.6. Произведём тепловой расчет по эквивалентному моменту:

$$M_{equiv} = \sqrt{\frac{M_{n.awg}^{2}}{i} + 1.2\left(J_{eng} + \frac{J_{eng}}{i^{2}}\right)^{2} i_{0}^{2} \varepsilon_{awg}^{2}} = 0.5732 \ H \cdot m$$

$$\varepsilon_{avg} = \frac{g_{0} \cdot \omega^{2}}{\sqrt{2}} = \frac{0.5235 \cdot 7.5^{2}}{\sqrt{2}} = 20.826 \ \frac{rad}{c^{2}};$$

$$M_{equiv} = \sqrt{\frac{4.3635^{2}}{95} + 1.2\left(7.5 \cdot 10^{-6} + \frac{7.5 \cdot 10^{-6}}{95^{2}}\right)^{2} \cdot 95^{2} \cdot 20.826^{2}} = 0.0575 \ N \cdot m;$$

$$(7)$$

3.4. Бесколлекторный двигатель FL57BL02:

Характеристики бесколлекторного электродвигателя приведены на рисунке 3.3.

	FL57BL02
Число полюсов	4
Число фаз	3
Напряжение питания, В	36
Номинальная скорость, об/мин	4000
Номинальный крутящий момент, кг• см	2,2
Мощность, Вт	99
Максимальный крутящий момент, кг• см	7
Максимальный ток, А	11,5
Сопротивление между линиями, Ом	0,7
Индуктивность между линиями, мГн	2,16
ЭДС обратной связи, В/1000об/мин	6,6
Момент инерции ротора, г• см2	119
Длина А, мм	75
Масса, кг	0,75

Рисунок 3.3. - технические характеристики бесколекторного электродвигателя

3.4.1. Расчёт параметров двигателя:

$$M_{eng.n} = 0.2157 \ Nm;$$

 $\omega_{eng.n} = 418.879 \ rad/s;$
 $J_{eng} = 0.0000119 \ kg \cdot m^2;$
 $J_p = 0.2J_{eng} = 0.000000238 \ kg \cdot m^2;$
(8)

3.4.2. Рассчёт требуемой мощности, развиваемой на валу двигателя:

$$P_{req.min} = 2 \left(M'_H + J_H \varepsilon_M \right) \omega = 19.686 W; \tag{9}$$

3.4.3. Проверка перегрузочной способности и требуемой скорости:

$$\gamma = \frac{M_{req}}{M_{eng,n}} = 0.3;$$

$$\alpha = \frac{i_0 \omega_M}{\omega_{eng,n}} = 0.7218;$$
(10)

Для выполнения поставленной задачи выбираем первый двигатель.

- 3.5. Моделирование бесколлекторного электродвигателя FL57BL01:
- 3.6. Расчёт параметров математической модели и графики переходных процессов:

$$K_{Y} = \frac{U_{H}}{U_{m}} = \frac{36}{10} = 3.6;$$

$$K_{d} = \frac{1}{R} = \frac{1}{1.5} = 0.667 \ Om^{-1};$$

$$K_{M} = \frac{M_{eng}}{I_{H}} = \frac{0.1078}{1.277} = 0.0844 \ \frac{Nm}{A};$$

$$J_{\sum} = J_{d} + J_{P} + \frac{J_{H}}{i_{p}^{2}} = 0.003533 \ kg \cdot m^{2};$$

$$K_{E} = \frac{U_{H}}{\omega} = \frac{36}{418.87} = 0.0859 \ \frac{B \cdot min}{rot};$$

$$K = \frac{K_{y}}{K_{E} \cdot i_{p}} = 0.4409 \ \frac{rot}{B \cdot min};$$

$$K_{f} = \frac{R}{K_{M}K_{E}i_{p}^{2}} = 0.0229 \ \frac{A \cdot V \cdot min \cdot Om}{N \cdot rot};$$

$$T_{m} = \frac{RJ_{\sum}}{K_{M}K_{E}} = 0.0036 \ \frac{A \cdot V \cdot min \cdot Om \cdot kg \cdot m^{2}}{N \cdot rot};$$

3.7. Схема моделирования и графики переходных процессов:

Схема моделирования бесколлекторного электродвигателя приведена на рисунке 3.4. Графики переходных процессов приведены на рисунках 3.5 и 3.6.

Рисунок 3.4. - схема моделироания электромеханического двигателя

Рисунок 3.5. - график переходного процесса alpha(t)

Рисунок 3.6. - график переходного процесса отеga(t)

4. Вывод

В данной лабораторной работе были рассмотрены два двигателя для САУ - бесколлекторного электродвигателя FL57BL01 и FL57BL02, после был выбран более подходящий двигатель для поставленной задачи - FL57BL01. Далее были построены графики переходных процессов угла и скорости от времнии. Данные графики практически полностью совпадают с условиями поставленной задачи=. Скорость отличается на 0.1 рад, а угол на 3 градуса.