CS4102 Algorithms

Nate Brunelle

Spring 2018

Warm up

Show that finding the minimum of an unordered list requires $\Omega(n)$ comparisons

Find Min, Lower Bound Proof

Show that finding the minimum of an unordered list requires $\Omega(n)$ comparisons

Suppose (toward contradiction) that there is an algorithm for Find Min that does fewer than $\frac{n}{2} = \Omega(n)$ comparisons.

This means there is at least one "uncompared" element We can't know that this element wasn't the min!

Today's Keywords

- Sorting
- Linear time Sorting
- Counting Sort
- Radix Sort

CLRS Readings

Chapter 8

Homeworks

- Hw3 Due 9am Saturday Sept. 30
 - Divide and conquer
 - Written (use LaTeX!)
- Hw4 released Thursday Sept. 28
 - Sorting
 - Written

HW1 Graded

Average: 28.2/32

- 88%

• Median: 29.5/32

- 92%

Midterm

- Monday March 19 in class
 - Covers all content through sorting
 - We will have a review session the weekend before

Sorting in Linear Time

- Cannot be comparison-based
- Need to make some sort of assumption about the contents of the list
 - Small number of unique values
 - Small range of values
 - Etc.

Idea: Count how many things are less than each element

$$L = \begin{bmatrix} 3 & 6 & 6 & 1 & 3 & 4 & 1 & 6 \\ & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}$$

1.Range is [1, k] (here [1,6])

make an array C of size k+1populate with counts of each value

For
$$i$$
 in L :
 $+ + C[L[i]]$

2.Take "running sum" of *C* to count things less than each value

For
$$i = 1$$
 to len(C):

$$C[i] = C[i-1] + C[i]$$

To sort: last item of value 3 goes at index 4

Idea: Count how many things are less than each element

For each element of L (last to first): Use C to find its proper place in B Decrement that position of C

For
$$i = 1$$
 to len(L):
$$B\left[C\left[L[i]\right]\right] = A[i]$$

$$C\left[A[i]\right] = C\left[A[i]\right] - 1$$

Idea: Count how many things are less than each element

For each element of L (last to first): Use C to find its proper place in B Decrement that position of C

For
$$i = 1$$
 to len(L):
$$B\left[C\left[L[i]\right]\right] = A[i]$$

$$C\left[A[i]\right] = C\left[A[i]\right] - 1$$

$$B = \begin{bmatrix} 1 & & & & & 6 \\ & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}$$

Run Time: O(n + k)

Memory: O(n + k)

- Why not always use counting sort?
- For 64-bit numbers, requires an array of length $2^{64} > 10^{19}$
 - 5 GHz CPU will require > 116 years to initialize the array
 - 18 Exabytes of data
 - Total amount of data that Google has

12 Exabytes

13

Radix Sort

 Idea: Stable sort on each digit, from least significant to most significant

Place each element into a "bucket" according to its 1's place

Radix Sort

 Idea: Stable sort on each digit, from least significant to most significant

Place each element into a "bucket" according to its 10's place

Radix Sort

 Idea: Stable sort on each digit, from least significant to most significant

Place each element into a "bucket" according to its 100's place

Run Time: O(d(n+b)) d =digits in largest value b =base of representation

End of Midterm Exam Materials!

"Mr. Osborne, may I be excused? My brain is full."

CS4102 Algorithms

Nate Brunelle

Spring 2018

Warm up

How many ways are there to tile a $2 \times n$ board with dominoes?

How many ways to tile this:

With these?

Today's Keywords

- Dynamic Programming
- Log Cutting

CLRS Readings

• Chapter 15

How many ways are there to tile a $2 \times n$ board with dominoes?

Two ways to fill the final column:

$$Tile(n) = Tile(n-1) + Tile(n-2)$$

$$Tile(0) = Tile(1) = 1$$

How to compute Tile(n)?

```
Tile(n):

if n < 2:

return 1

return Tile(n-1)+Tile(n-2)
```

Problem?

Recursion Tree

Many redundant calls!

Run time: $\Omega(2^n)$

Better way: Use Memory!

Computing Tile(n) with Memory

```
Initialize Memory M
                                             M
Tile(n):
     if n < 2:
           return 0
     if M[n] is filled:
                                                3
           return M[n]
     M[n] = Tile(n-1) + Tile(n-2)
     return M[n]
```

Computing Tile(n) with Memory "Top Down"

Initialize Memory M M Tile(n): if n < 2: return 1 if M[n] is filled: 3 return M[n] 5 M[n] = Tile(n-1) + Tile(n-2)return M[n] 13

Recursive calls happen in a predictable order

Better Tile(n) with Memory "Bottom Up"

Tile(n):

```
Initialize Memory M
M[0] = 1
M[1] = 1
for i = 2 to n:
M[i] = M[i-1] + M[i-2]
return M[n]
```


Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first