#### (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-182254

(P2000 - 182254A)

(43)公開日 平成12年6月30日(2000.6.30)

(51) Int.Cl.7

識別記号

FΙ

テーマコート\*(参考)

G11B 7/09

7/135

G11B 7/09

5D118 В

7/135

5D119

審査請求 未請求 請求項の数3 OL (全 8 頁)

(21)出願番号

特願平10-356392

(22)出願日

平成10年12月15日(1998.12.15)

(71) 出顧人 000005016

パイオニア株式会社

東京都目黒区目黒1丁目4番1号

(72)発明者 菊池 育也

埼玉県鶴ヶ島市富士見6丁目1番1号パイ

オニア株式会社総合研究所内

(74)代理人 100079119

弁理士 藤村 元彦

Fターム(参考) 5D118 AA11 AA16 CC12 CD02 CF04

CG03 CG15 DA20 DC03

5D119 AA28 ECO1 ECO2 JA24 JA43

**JA47** 

## (54) 【発明の名称】 ピックアップ装置

#### (57)【要約】

【課題】 高開口数の対物レンズを用いた光学系であっ ても記録/未記録ディスクに拘わらずその透過基板の厚 さ誤差によって発生する球面収差を補正することができ るピックアップ装置を提供する。

【解決手段】 光ディスクの記録面から対物レンズを介 して得られた反射光のうち、第1の所定開口数より小な る第2の所定開口数以下の部分のみを介して照射された 第1照射光による第1反射光を検出し、記録面における 第1照射光の焦点ずれを示す第1エラー信号を生成し、 その得られた反射光のうち、第2の所定開口数より大な る所定開口数以下の部分を介して照射された第2照射光 による第2反射光を検出し、記録面における第2照射光 の焦点ずれを示す第2エラー信号を生成し、第1及び第 2エラー信号の少なくとも一方を用いて球面収差に対応 する信号を得る。



BEST AVAILABLE COPY

1

## 【特許請求の範囲】

【請求項1】 記録面上を透過基板で覆われた光ディスクに対して情報の書き込み或いは読み取りを行なうピックアップ装置であって、

光ビームを第1の所定開口数の対物レンズを介して前記 記録面に照射し、前記記録面からの反射光を前記対物レ ンズを介して得る反射光抽出手段と、

前記反射光抽出手段から得られた反射光のうち、第1の 所定開口数より小なる第2の所定開口数以下の部分のみ を介して照射された第1照射光による第1反射光を検出 し、前記記録面における前記第1照射光の焦点ずれを示 す第1エラー信号を生成する第1焦点誤差検出手段と、 前記反射光抽出手段から得られた反射光のうち、前記第 2の所定開口数より大なる所定開口数以下の部分を大 て照射された第2照射光による第2反射光を検出し、前 記記録面における前記第2照射光の焦点ずれを示す第2 エラー信号を生成する第2焦点誤差検出手段と、

前記第1及び第2エラー信号の少なくとも一方を用いて 球面収差に対応する信号を得る手段と、を備えたことを 特徴とするピックアップ装置。

【請求項2】 前記第1及び第2エラー信号を比較して その比較結果に応じて球面収差に対応する信号を得る手 段を備えたことを特徴とする請求項1記載のピックアッ プ装置。

【請求項3】 前記第1及び第2エラー信号の少なくとも一方と異なる他方を少なくとも用いて前記対物レンズを駆動するフォーカス制御手段を備えたことを特徴とする請求項1記載のピックアップ装置。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、光ディスクに対して情報の書き込み或いは読み取りを行なうためのピックアップ装置に関する。

#### [0002]

【従来の技術】光ディスクに対して情報の書き込み或い は読み取りを行なう場合には、その記録層面を直接露出 すると傷が付いたり或いはヘッドとの衝突で損傷が与え られると、記録や再生ができなくなってしまうので、所 定の厚さの透過基板を介して書き込み又は読み取りをす ることが行なわれている。このときの基板は例えば、射 40 出成形によって形成されるが、基板の厚さを全面に亘っ て正確に規定値にすることは困難であり、通常、数十μ mの厚さ誤差が生じている。従来、このような厚さ誤差 が生じても問題とならないように対物レンズの開口数を 決定してシステムを構成していた。しかしながら、情報 量の増大と共に、記録密度を高くすることが求められて いるので、対物レンズの開口数を増大させてディスク上 でのスポット径を縮小して記録することが考えられてい る。この場合、透過基板の厚さ誤差によって発生する球 面収差を補正することが行なわれている。これは、例え 50 2

ば、特開平10-106012号公報に示されたように、ディスクからの再生信号の変調度やそのジッタ、エラーレートを監視してその監視内容に応じて球面収差補正手段(レンズ)を駆動するものである。

#### [0003]

【発明が解決しようとする課題】しかしながら、未記録ディスクに記録を行なう場合には再生信号が得られないので、球面収差を補償することができない。また、ジッタ、エラーレート、変調度等は例えば、基板の傾き、複屈折等によっても影響を受け、このような要因が存在する場合にはジッタ、エラーレート、変調度等が増大してサーボ系が誤動作してしまうという問題があった。

【0004】そこで、本発明の目的は、高開口数の対物 レンズを用いた光学系であっても記録/未記録ディスク に拘わらずその透過基板の厚さ誤差によって発生する球 面収差を補正することができるピックアップ装置を提供 することである。

#### [0005]

【課題を解決するための手段】本発明のピックアップ装 置は、記録面上を透過基板で覆われた光ディスクに対し て情報の書き込み或いは読み取りを行なうピックアップ 装置であって、光ビームを第1の所定開口数の対物レン ズを介して記録面に照射し、記録面からの反射光を対物 レンズを介して得る反射光抽出手段と、反射光抽出手段 から得られた反射光のうち、第1の所定開口数より小な る第2の所定開口数以下の部分のみを介して照射された 第1照射光による第1反射光を検出し、記録面における 第1照射光の焦点ずれを示す第1エラー信号を生成する 第1焦点誤差検出手段と、反射光抽出手段から得られた 反射光のうち、第2の所定開口数より大なる所定開口数 以下の部分を介して照射された第2照射光による第2反 射光を検出し、記録面における第2照射光の焦点ずれを 示す第2エラー信号を生成する第2焦点誤差検出手段 と、第1及び第2エラー信号の少なくとも一方を用いて 球面収差に対応する信号を得る手段と、を備えたことを 特徴としている。

【0006】かかる本発明のピックアップ装置によれば、光ディスクの記録面からの反射光のうち、対物レンズ上で第1の所定開口数より小なる第2の所定開口数以下の部分を透過した第1反射光を検出して第1エラー信号を生成し、また反射光のうち、対物レンズ上で第2の所定開口数より大なる所定開口数以下の部分を透過した第2反射光を検出して第2エラー信号を生成するので、第1及び第2エラー信号の少なくとも一方を用いて透過基板の厚さの誤差によって生じる球面収差を示す信号を得ることができる。

### [0007]

【発明の実施の形態】以下、本発明の実施例を図面を参照しつつ詳細に説明する。図1は本発明によるピックアップ装置の光学系を示している。このピックアップ装置

10

において、光源11は図示しない駆動回路により駆動さ れてレーザ光を発射し、光源11から発射されたレーザ 光はビームスプリッタ12によって光ディスク15側の 光軸OA方向に反射された後、コリメータレンズ13を 介して平行レーザビームとして対物レンズ14に到達す る。対物レンズ14はレーザビームを光ディスク15の 記録面に収束させる。光ディスク15の記録面で反射し た光ビームは対物レンズ14、そしてコリメータレンズ 13で平行レーザビームにされた後、ビームスプリッタ 12を直線的に通過してホログラム素子18に到達す る。ホログラム素子18には更にホログラム素子19が 連続して配置されている。この2つのホログラム素子1 8、19を通過したレーザビームは受光器20に到達す る。対物レンズ14、コリメータレンズ13、ビームス プリッタ12及びホログラム素子18、19は光軸OA がそれらの中心を通るように配置されている。

【0008】ホログラム素子18は光軸OA方向から見ると図2に示すように、円形の外形を有し、その中央部に円形のホログラムパターン21が形成されている。ホログラムパターン21は有効光路に相当する外周部22 20よりも内側に小さく形成され、光ビームを所定の角度で回折させるように形成されている。このパターンは直線状であり、回折光エネルギーを特定の方向に集中させるようにブレーズ(blaze)形状の表面とされている。なお、ここではホログラムパターン21の部分は、対物レンズ14上での開口数NAが0.31以下に相当する領域を透過して光ディスク15に照射された光ビームの反射光が透過するように形成されており、外周部22は対物レンズ14上での開口数NAが0.85以下に相当する領域を透過して光ディスク15に照射された光ビーム 30の反射光が透過するように形成されている。

【0010】光検出器31の3分割の光検出素子31a ~31c及び光検出器32の3分割の光検出素子32a ~32cには差動増幅器35が接続されている。また、\* 1

\*光検出器33の3分割の光検出素子33a~33c及び 光検出器34の3分割の光検出素子34a~34cには 差動増幅器36が接続されている。差動増幅器35は第 1のエラー信号FE1を生成し、差動増幅器36は第2 のエラー信号FE2を生成する。第2のエラー信号FE 2はフォーカスエラー信号FEとして光ディスクプレー ヤのフォーカスサーボ系(図示せず)に供給される。

【0011】差動増幅器35の出力には更に差動増幅器39が接続されている。また、差動増幅器36の出力は増幅器38を介して差動増幅器39に接続されている。差動増幅器39の出力信号がディスク15の過透基板の厚さ誤差信号THとなる。厚さ誤差信号THは駆動回路40は厚さ誤差信号THに応じてコリーメータレンズ13を図1に矢印Xで示すように光軸OA方向において駆動する。

【0012】かかる構成においては、光ディスク15の記録面で反射した光ビームが対物レンズ14、コリメータレンズ13、そしてビームスプリッタ12を介してホログラム素子18に到達する。そのホログラム素子18への入射光のうちからホログラムパターン21で回折されずそのまま光軸OA方向に透過光(0次の回折光)となるものと、ホログラムパターン21での回折によって1次の回折光とが得られる。

【0013】ホログラム素子18からホログラム素子19への透過光については、ホログラム素子19はそのまま透過光として出力してその透過光によるスポットS1を光検出器31の受光面に形成させる他、1次の回折光として出力してその1次の回折光によるスポットS2を光検出器32の受光面に形成させる。ホログラム素子18からホログラム素子19へ至る1次の回折光については、ホログラム素子19はそのまま透過光として出力してその透過光によるスポットS3を光検出器33の受光面に形成させる他、1次の回折光として出力してその1次の回折光によるスポットS4を光検出器34の受光面に形成させる。

【0014】光ディスク15への照射光の球面収差が小さく合焦状態にあるときには、光検出器31及び32に形成されるスポット径はほぼ等しい大きさとなり、また光検出器33及び34に形成されるスポット径はほぼ等しい大きさとる。よって、差動増幅器35では光検出器31の光検出素子31a~31c及び光検出器32の光検出素子32a~32cの各出力レベルに応じて第1のエラー信号FE1が生成される。光検出素子31a~31cの各出力レベルを31aOUT~31cOUT、光検出素子32a~32cの各出力レベルを32aOUT~32cOUTとすると、第1のエラー信号FE1は次の式(1)の如く表すことができる。

[0015]

F E 1 = (31a0UT + 31c0UT - 31b0UT) - (32a0UT + 32c0UT - 32b0UT) .....(1)

差動増幅器36では光検出器33の光検出素子33a~ 33 c 及び光検出器 34の光検出素子 34 a~34 cの 各出力レベルに応じて第2のエラー信号FE2が生成さ れる。光検出素子33a~33cの各出力レベルを33a0\*

第1のエラー信号FE1はそのまま差動増幅器39に供 給され、第2のエラー信号FE2は増幅器38を介して

差動増幅器39に供給される。差動増幅器39の出力信 号である厚さ誤差信号THは、増幅器38の増幅率をa とすると、

.....(3)  $TH = \alpha \times FE2 - FE1$ となる。

【0017】図5は光ディスク15の透過基板の厚さが 基準値であるときのデフォーカス量に対する第2のエラ ー信号FE2の信号変化を示している。また、図6は第 2のエラー信号FE2に応じてフォーカスサーボ系を動 作させた場合、すなわち、ジャストフォーカス状態にお ける光ディスク15の透過基板の厚さの誤差に対する第 1のエラー信号FE1の信号変化を示している。この場 合に第2のエラー信号FE2はほぼ0に制御されている が、第1のエラー信号FE1は透過基板の厚さの誤差に 応じて変化している。よって、式(3)から算出される厚 さ誤差信号THは第2のエラー信号FE2はほぼ0に制 御されているときには第1のエラー信号FE1にほぽ比 例するので、光ディスク15の透過基板の厚さの誤差を 示すことになる。なお、図6において特性Aはホログラ ム素子18のホログラムパターン21で光がほとんど回 折した場合に外周部22からの光検出器31の出力に基 づいた第1のエラー信号FE1の信号変化であり、特性 Bはホログラムパターン21及び外周部22の両方から の光を受光した光検出器31の出力に基づいた第1のエ ラー信号FE1の信号変化である。

【0018】算出された厚さ誤差信号THは駆動回路4 0を介してコリーメータレンズ13を光軸〇A方向にお いて平行移動させる。なお、上記した実施例において は、厚さ誤差信号THに応じてコリーメータレンズを駆 動することにより球面収差補正を行なうが、この他にイ コライザ特性を変化させる、記録時のレーザパワーやス トラテジを制御する等の動作を行なう構成にすることが できる。構成例では必要な媒体照射パワー、記録感度、 使用する透過基板の厚さ、制御範囲等によって様々な設 計が可能である。

【0019】また、上記した実施例においては、小なる 開口数のパターン21の部分で回折された反射光の受光 量に基づいた第2のエラー信号FE2だけをフォーカス 制御のためにフォーカスサーボ系に供給しているが、第 2のエラー信号FE2に代えて大なる開口数の外周部2 2 の部分を通過した反射光の受光量に基づいた第1のエ ラー信号FE1だけをフォーカス制御のためにフォーカ スサーボ系に供給しても良い。また、第1及び第2のエ 50 一体化することにより1つの単体として設けることがで

\*UT~33c0UT、光検出素子34a~34cの各出力レベル を34a0UT~34c0UTとすると、第2のエラー信号FE2は 次の式(2)の如く表すことができる。

[0016]

.....(2) F E 2 = (33a0UT + 33c0UT - 33b0UT) - (34a0UT + 34c0UT - 34b0UT)

ラー信号FE1及びFE2の両方をフォーカス制御のた めに用いても良い。この場合の構成を図7に示してい る。加算器42及び増幅率βを有する増幅器41が新た に設けられ、第1のエラー信号FElは加算器42の一 方の入力端子に供給され、また第2のエラー信号FE2 は増幅器41を介して加算器42の他方の入力端子に供 給される。加算器42の出力信号をFEとすると、信号 FEは、

 $FE = \beta \times FE2 + FE1$ .....(4)

となる。この信号FEがフォーカス制御のためにフォー カスサーボ系に供給される。なお、増幅率βは第2のエ ラー信号FE2に含まれる球面収差の影響を低減させる ように設定される。

【0020】更に、上記した実施例においては、各エラ -信号の生成方法はスポット径を3分割の光検出器で測 定する方法を用いているが、この方法に限定する必要は なく、例えば、ホログラム素子19を非点収差を与える 形状として通過する光に対して非点収差を与えることに よりエラー信号を生成するようにしても良い。また、ホ ログラム素子19を用いないで異なる開口数によるそれ ぞれ1つずつのスポットの径を3分割の光検出器によっ て検出する従来の方法を用いてエラー信号FE1, FE 2を生成するようにしても良い。

【0021】また、上記した実施例においては、ディス ク15からの反射光がホログラム素子18を通過する際 に光束を2つの領域に分割するような構成としたが、こ の構成に代えて対物レンズの一方の面に、或いは対物レ ンズと共に駆動されるようにホログラム素子18に相当 するものを設ける構成であっても良い。このようにディ スクへの照射光とそれからの反射光とが通過する光路に ホログラム素子18等の光束を2つの領域に分割する手 段を配置した場合には、特定方向の偏光成分に対して効 果を表す偏光ホログラムを波長板と共に用いることによ って照射光の光路で発生する光量ロスを抑制することが できる。

【0022】更に、上記した実施例においては、ディス クのトラッキングについての説明を行なわなかったが、 ホログラム素子を例えば、半径方向に 2 分割して互いに 個別の位置に集光させることによってプッシュプルトラ ッキングエラー信号を得る構成、4分割形状として位相 差法によってトラッキングエラー信号を得る構成などの 従来から知られた構成を採用することができる。

【0023】また、上記した実施例においては、ホログ ラム素子18,19を個別に設けているが、パターンを きる。更に、上記した実施例は、対物レンズ14の瞳の開口が円形であるという前提の元に形成されているが、その開口は円形に限らず、楕円形などの縦長の開口でも良い。このような楕円形の瞳は異なる開口数を有する光学系に適用することができ、特に、開口数が異なる方向において分割することが有効である。例えば、楕円形の開口にする場合には、ホログラム素子18に代えて設けるホログラム素子45のパターンは図8に示すように、楕円瞳44の長軸方向において3分割された外側部45a、45bだけに形成すれば良く、このようにすることによりホログラム素子の横方向ずれの影響を減少させることができる。なお、楕円形の短軸方向がディスク上でのピット例方向、すなわち時間軸方向に相当する。

【0024】図9は本発明の他の実施例としてピックアップ装置の光学系を示している。このピックアップ装置において、光源51は図示しない駆動回路により駆動されてレーザ光を発射し、光源51から発射されたレーザ光はコリメータレンズ52で平行レーザビームにされた後、ビームスプリッタ53によって光ディスク57側の光軸OA方向に反射された後、補償レンズ56に到達する。対物レンズ56はレーザビームを光ディスク57の記録面に収束させる。光ディスク57の記録面で反射した光ビームは対物レンズ56及び補償レンズ55,54を経て、ビームスプリッタ53に到達する。ビームスプリッタ53を直線的に通過した反射光は集光レンズ58で集光されてホログラム素子59を通過したレーザビームは受光器60に到達する。

【0025】ホログラム素子59は光軸OA方向から見-30ると図10に示すように、円形の外形を有し、+1次光に対しては凸レンズとして作用し受光器60の手前で集光させ、-1次光に対しては凹レンズとして作用し受光器60の奥で集光させる。また、ホログラム素子59の内部部分の円パターン59aとその外周部分の円環パターン59bとは縞状に形成されており、その間隔が円パターン59aと円環パターン59bとでは図10に示したように異なり、これにより内部部分と外周部分との光ビームの屈折角度が異なっている。

【0026】受光器60は4つの光検出器61~64を備え、それら光検出器61~64は光軸OAに垂直な面上にその順番にて配置されている。光検出器62と63との間に光軸OAが位置している。また、その配置方向の分割線にて図12に示すように光検出器61~64各々の受光面は3分割され、3分割各々の出力が得られるようになっている。

【0027】図11は光検出器61~64各々への反射 光の集光を示している。この図11、更には図12から 分かるように、光検出器61にはホログラム素子59の 円環パターン59bを透過した+1次光による円環状の 50 R

スポットS11が生成され、光検出器62にはホログラム素子59の円パターン59aを透過した+1次光による円状のスポットS12が生成され、光検出器63にはホログラム素子59の円パターン59aを透過した-1次光による円状のスポットS13が生成され、光検出器64にはホログラム素子59の円環パターン59bを透過した-1次光による円環状のスポットS14が生成される。

【0028】また、図12に示すように光検出器61の 3分割の光検出素子61a~61c及び光検出器64の 3分割の光検出素子64a~64cには差動増幅器65 が接続されている。また、光検出器62の3分割の光検 出素子62a~62c及び光検出器63の3分割の光検 出素子63a~63cには差動増幅器66が接続されて いる。差動増幅器65は第1のエラー信号FE1を生成 し、第1のエラー信号FE1はディスク57の過透基板 の厚さ誤差信号THとなる。厚さ誤差信号THは駆動回 路67に供給されるように構成されており、駆動回路6 7は厚さ誤差信号THに応じて補償レンズ55を図9に 矢印Xで示すように光軸OA方向において駆動する。差 動増幅器66は第2のエラー信号FE2を生成する。第 2のエラー信号FE2はフォーカスエラー信号FEとし て光ディスクプレーヤのフォーカスサーボ系(図示せ ず)に供給される。

【0029】この実施例では、第1のエラー信号FE1のレベルから第2のエラー信号FE2を減算せずに、第1のエラー信号FE1を厚さ誤差信号THとして用いている。これは、第2のエラー信号FE2を用いてフォーカス制御をしているため、フォーカス制御をしている状態では、第2のエラー信号FE2のレベルは常に0となっていることを考慮したものである。すなわち、信号レベルが0の第2のエラー信号FE2をわざわざ減算せずに、第1のエラー信号FE1を厚さ誤差信号THとして用いたものである。

#### [0030]

【発明の効果】以上の如く、本発明のピックアップ装置によれば、光ディスクの記録面からの反射光のうち、対物レンズ上で第1の所定開口数より小なる第2の所定開口数以下の部分を透過した第1反射光を検出して第1 で第2の所定開口数より大なる所定開口数以下の部分を達過した第2反射光を検出して第2エラー信号を生成するので、第1及び第2エラー信号の少なくとも一方を生ので、第1及び第2エラー信号の少なくとも一方を用いて透過基板の厚さの誤差によって生じる球面収差を得ることができる。よって、高開口数の対物レンズを用いた光学系であっても記録/未記録ディスクに拘わらずその透過基板の厚さ誤差によって発生する球面収差を補正することができる。

#### 【図面の簡単な説明】

【図1】本発明によるピックアップ装置の光学系を示す

図である。

【図2】図1の光学系中のホログラム素子18のパター ンを示す図である。

9

【図3】図1の光学系中のホログラム素子19のパター ンを示す図である。

【図4】図1のピックアップ装置の回路構成を示すブロ ック図である。

【図5】第2のエラー信号FE2の信号変化を示す図で ある。

【図 6 】 第 1 のエラー信号 F E 2 の信号変化を示す図で 10 1 2 ビームスプリッタ ある。

【図7】本発明の他の実施例としてピックアップ装置の 回路構成を示すプロック図である。

【図8】本発明の他の実施例としてホログラム素子のパ ターンを示す図である。

【図9】本発明の他の実施例としてピックアップ装置の\*

\*光学系を示す図である。

【図10】図9の光学系中のホログラム素子59のパタ ーンを示す図である。

10

【図11】図9の光検出器61~64各々への反射光の 集光状態を示す図である。

【図12】図9のピックアップ装置の回路構成を示すブ ロック図である。

#### 【符号の説明】

11,59 光源

13, 52, 54 コリメータレンズ

14,56 対物レンズ

15,57 光ディスク

18, 19, 45, 59 ホログラム素子

20,60 受光器

31~34,61~64 光検出器

【図3】 【図2】 【図1】 【図5】 【図4】 \_\_34b\_\_34a. 32b 35 差動增幅器 FE2 FE1 【図10】

【図6】



【図8】



【図7】



【図9】



【図11】



【図12】



# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS                               |            |
|---------------------------------------------|------------|
| IMAGE CUT OFF AT TOP, BOTTOM OR SIDES       |            |
| FADED TEXT OR DRAWING                       | -          |
| BLURRED OR ILLEGIBLE TEXT OR DRAWING        |            |
| SKEWED/SLANTED IMAGES                       |            |
| COLOR OR BLACK AND WHITE PHOTOGRAPHS        |            |
| GRAY SCALE DOCUMENTS                        |            |
| LINES OR MARKS ON ORIGINAL DOCUMENT         |            |
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE PO | OR QUALITY |
|                                             |            |

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.