

N102 产品硬件设计手册

版本: V3.0

上海零零智能科技有限公司

■ 法律申明

- 接收上海零零智能科技有限公司(以下称为"零零智能")的此份文档, 即表示您已同意以下条款。若不同意以下条款,请停止使用本文档。
- ■本文档版权所有上海零零智能科技有限公司,保留任何未在本文档中明示授予的权利。文档中涉及零零智能的有关信息。未经零零智能事先书面许可,任何单位和个人不得复制、传递、分发、使用和泄漏该文档以及该文档包含的任何图片、表格、数据及其他信息。

零零智能

■ RINLINK 是零零智能的注册商标,并授权零零智能合法使用, 零零智能的名称和标志同时也是零零智能的商标及注册商标。

- ■本产品符合有关环境保护和人身安全方面的设计要求,产品的存放、使用和弃置应遵照产品手册、相关合同及相关国法律、法规的要求执行。
- 本公司保留在不预先通知的情况下,对此手册中描述的产品进行修改和 改进的权利;同时保留随时修订及收回本手册的权利。
- ■本用户手册中如有文字不明之处,请您及时向本公司或者代理商、销售商咨询。

■ 修订记录

文档版本	更新日期	说明 ····································
V1.0	2018-03-09	初始版本
V2.0	2018-04-13	接口定义变更
V3.0	2018-05-30	尺寸,接口定义变更

■ 关于本文档

- 应用范围
- 此文档适用于 N102 无线通讯产品的硬件开发指导。用户需按照此文档要求和 指导进行设计,该文档仅适用于 N102 产品的硬件应用开发。本文档涵盖了 产品的硬件方面的二次开发项目,包括电气和机械性能。

■ 目的

■ 此文档给 N102 产品使用者提供了设计开发依据。通过阅读此文档,用户可以 对本产品有整体认识,对产品的技术参数有明确的了解,并可在此文档基础上 顺利完成无线通信上网类产品及设备的应用开发。

■ 缩略语

缩略语	全称	
3GPP	Third Generation Partnership Project	
АР	Another name of DTE	
СНАР	Challenge Handshake Authentication Protocol	
CE	European Conformity	
CMOS	Complementary Metal Oxide Semiconductor	
DCE	Data Communication Equipment	
DL	Downlink	
DTE	Data Terminal Equipment	
EIA	Electronic Industries Association	
EMC	Electromagnetic Compatibility	
ESD	Electro-Static discharge	
ESR	Equivalent Series Resistance	

FDD	Frequency Division Duplex		
GPIO	General-purpose I/O		
LCC	Leadless Chip Carrier		
LDO	Low-Dropout		
LED	Light Emitting Diode		
LTE	Long Term Evolution		
ME	Mobile Equipment		
MO	Mobile Origination Call		
MT	Mobile Termination Call		
MSB	Most Significant Bit		
PC	Personal Computer		
PCB	Printed Circuit Board		
PDA	Personal Digital Assistant		
PDU	Protocol Data Unit		
PAP	Password Authentication Protocol		
PPP	Point to Point Protocol		
RTC	Real Time Clock		
SMS	Short Messaging Service		
SMT	Surface Mount Technology		
SPI	Serial Peripheral Interface		
TBD	To Be Determined		
ТСР	Transmission Control Protocol		
TIS	Total Isotropic Sensitivity		
TRP	Total Radiated Power		
TVS	Transient Voltage Suppressor		
UART	Universal Asynchronous Receiver-Transmitter		
UDP	User Datagram Protocol		
UL	Up Link		
USB	Universal Serial Bus		
USIM	Universal Subscriber Identity Module		

URC	Unsolicited result code
VIH	Logic High level of input voltage
VIL	Logic Low level of input voltage
VOH	Logic High level of output voltage
VOL	Logic Low level of output voltage

目录

1.	前言	9
	1.1. 说明	9
	1.2. 手册目的	9
2.	产品概述	9
		9
		9
	2.1. 产品简介	9
	2.2. 主要特性	9
3.	功能与应用	11
		11 -
	3.1. 引脚分布图	11 -
	3.1.1. 引脚描述	11 -
	3.2. 电源供电	12
	3.2.1. 电源特性	12 -
4.	开机/关机	14
	4.1. 开机	14
	4.2. 关机	
	4.2.1. PWRKEY 引脚关机	15
	4.3. 工作模式	15
	4.3.1. NB-IOT 工作模式	15
	4.4. 串口	16
	4.4.1. 主串口	16
	4.4.2. 升级调试串口	17 -
	4.5. SIM 卡接口	17 -
	4.6. 网络状态指示	18 -
5.	天线接口	19
		19
	5.1. NB_IOT 天线接口	19
	5.1.1. 参考设计	19
	5.1.2. RF 输出功率	20
	5.1.3. RF 接收灵敏度	20
	5.1.4. 工作频率	20
6.	电气性能,可靠性	21
		21 -
	6.1. 绝对最大值	21 -
	6.2. 工作温度	21 -
	6.3. 电源额定值	21 -
	6.4. 静电防护	22
7.	机械尺寸	24
	-7-	

7.1. N102 机械尺寸	- 2	24
	- 2	24

1. 前言

1.1. 说明

本手册描述了 N102 无线通信 MINI DTU 的电气特性、RF 性能、结构尺寸以及应用环境等方面的信息。它对 N102 的硬件特性和功能做了全面的概括。

1.2. 手册目的

N102 是一款基于 N256 NB-IOT 模块的多功能无线通信 MINI DTU,本文档通过介绍 N102 及其硬件接口规范,电气特性和机械规范产品等,用以指导用户对 N102 进行硬件设计,并在该 N102 基础上更方便快捷的进行各种终端无线产品的设计。

2. 产品概述

2.1. 产品简介

N102工业宽温 NB-IOT MINI DTU采用零零智能 N256 NB-IOT 模块(业内首款 MTK R14 NB-IOT) 为核心,集成电源管理、物联网 SIM 卡、串口通讯信号转换和工业级高可靠连接器的高度集成的宽温透传 DTU,以高度集成模式迅速实现各种串口透传应用。

N102 工业宽温 NB-IOT MINI DTU 可以实现:

- 2. 1~3. 6V 电池供电,或者 5~24V 直流稳压供电;
- ▶ 支持: Quad-Band FDD-LTE B1 / B3 / B5 / B8;
- ▶ UART 电平兼容转换, 可以支持 5V TTL 或 3.3V CMOS 电平串口通讯;
- 工业级宽温设计,可在-40~85℃宽温范围内稳定可靠工作;
- ▶ 支持各种可配置工作模式, Actice / IDEL / eDRX / PSM / Off等, PSM 模式下待机 功耗不超过 3.5uA;

工业级高可靠连接器, PIN 脚冗余设计, 包含 POW / TX / RX / GND 等;

N102 支持 PIN 脚冗余设计,可以用以下两种方式与底板连接

- ▶ 8pin 连接器:
- ➤ 2.54mm 间距排针

N102 具有 46.5mm \times 35mm \times 8.7mm 的超小尺寸,满足 M2M 的需求,包括白色家电、无线 遥控等。

2.2. 主要特性

特色

说明

供电	5~24V 直流稳压供电 或者 2.1~3.6V 电池供电(需要电阻跳线)		
频段	 ▶ 四频: B1, B3, B5, B8 ▶ N102可自动搜寻频率 频段选择可以通过 AT 命令来设置 		
发射功率	▶ 23dBm: Band5和Band8▶ 23dBm: Band1和Band3		
NB-IOT数据特性	NB-IOT数据下行传输:最大25kbit/sNB-IOT数据上行传输:最大16.7kbit/s		
温度范围	▶ 正常工作温度: -35°C ~ +75°C¹)▶ 扩展温度范围: -40°C ~ +85°C		
SIM 卡接口	▶ 支持Nano SIM卡: 1.8V,3.0V▶ 支持ESIM卡: 1.8V,3.0V		
主串口	▶ 可以支持5V TTL或3.3V CMOS电平串口通讯▶ 支持从 9600bps到115200bps 的波特率		
UARTO 串口	▶ 用于调试与软件升级▶ 软件升级支持921600的波特率▶ 调试支持115200的波特率▶ 可以2.8V CMOS电平串口通讯		
物理特性	尺寸: 46.5mm ×35mm ×8.7mm		
固件升级	通过 UARTO 口升级		
天线接口特征阻抗	50 欧姆		

表 1: 主要特性

备注:

1. 1) 在工作温度范围内, N102 符合 3GPP 标准。

3. 功能与应用

3.1. 引脚分布图

图 2 引脚分布图

3.1.1. 引脚描述

类型	描述
10	输入/输出
DI	数字输入
DO DO	数字输出
PI	电源输入
P0	电源输出
AI	模拟输入
AO	模拟输出

表 2: I/O 参数定义

引脚名	8pin插 座	2. 54mm 排 针接口	1/0	描述	备注	
Power_IN	1	1	PI	供电电源	默认供电: 5V-24V 电池供电: 2.1V-3.6V (需要 电阻跳线)	
UART1_RXD	2	2	DI	主串口输入	兼容 3.3V, 5V 电平	
UART1_TXD	3	3	DO	主串口输出	兼谷 3. 3V, 5V 电平	
POWRKEY	4	4	DI	开机	低电平持续 300ms 以上开机	
RTC_EINT	5	5	DI	中断 GP10	PSM 模式下中断唤醒功能	
GPIO	6	6	10	预留 GP10	预留	
GND	7, 8	7, 8, 9, 10, 11, 12, 13, 14	GND	GND		
UARTO_RXD		15	DI	升级串口输入	4.47.田中口 2 OV 中亚	
UARTO_TXD		16	DO	升级串口输出	升级用串口 2.8V 电平	

表 3: 引脚描述

3.2. 电源供电

3.2.1. 电源特性

在 N102 应用设计中, 的电源设计是很重要的一部分。 N102 由外部 POWER_IN 供电, 支持两种供电模式。

▶ 默认供电: 5V-24V.▶ 2.1V-3.6V 电池供电

3. 2. 1. 1. 5V-24V 供电方式

N102 默认支持 5V-24V 供电。内置宽压 DCDC, 无需外加外部降压电路。参考电路如下:

图 5: Power_IN 降压电路

电源设计对 N102 的供电至关重要,必须选择能够提供至少 4W 功耗的电源。为确保输出电源的稳定,当外部输入电源 12V 以上时,建议在底板 Power_IN 输入端预留一个稳压管,并且靠近 N102 Power_IN 管脚摆放。建议选择反向击穿电压为 26V,耗散功率为 1W 以上的稳压管。

3. 2. 1. 2. 2. 1V-3. 6V 电池供电方式

N102 也支持 2. 1V-3. 3V 电池供电方式。此时需要在 N102 上预留的跳线电阻短接。如下图所示 R116 电阻短接。

电池必须能够持续输出 500ma 电流, 瞬态电流 1A 的能力。

图 6: 跳线电阻位置

4. 开机/关机

4.1. 开机

N102 正常开机方式是通过将 PWRKEY 引脚拉低来开机。推荐使用开集驱动电路来控制 PWRKEY 引脚。下图为参考电路:

智能硬件物联专家

图 7: 开集驱动开机参考电路

另一种控制 PWRKEY 引脚的方法是直接使用一个按钮开关。按钮附近需放置一个 TVS 用以 ESD 保护。在按下键时,手指可能会产生静电,为达到最好的静电防护性能,TVS 组件必须放置在按钮附近。参考电路下图所示:

图 8: 按键开机参考电路

^{1.} 在拉低管脚 PWRKEY 之前,保证 VBAT 电压稳定。建议 VBAT 上电到管脚 PWRKEY 拉低之间的时间 T1 为 300ms 左右。

^{2.} 当 AT 命令可以正常响应后,表明 N102 已经开机成功,此时可以释放 PWRKEY 引脚,反之,则 N102 开机失败。

4.2. 关机

N102 可以通过以下方式关机:

▶ 正常关机:控制 PWRKEY 引脚关机

4. 2. 1. **PWRKEY** 引脚关机

DTU 在开机状态下, PWRKEY 管脚拉低一段时间, N102 关机。 关机过程中, 需要注销 NB-IOT 网络, 以确保在完全关机之前让软件保存好重要数据。

4.3. 工作模式

4. 3. 1. NB-IOT 工作模式

模式	功能	
正常工作	PSM	PSM模式中,只有32KHZ RTC工作,网络断开,不能接收信息及串口信息。模块可以通过T3412计时器跳出PSM模式;也可以通过PWRKEY或者RTC_EINT脚唤醒模块。
	IDLE	软件正常运行。模块注册上NB-IOT网络,能够接收和发送。
	ACTI VE	NB-IOT连接正常工作。此模式下,模块功耗取决于功率等级的配置,动态eDTX控制以及射频工作频率。
关机模 式		VBAT 上电情况下, 使用 PWRKEY 引脚来实现正常关机。关机模式下, 串口问, 软件不运行。

表 3: NB_IOT 工作模式

4. 3. 1. 1. PSM 模式

在 NB-IOT 系统中,在 IDLE 状态下再增加一个新的 PSM 模式。在此状态下,模块射频被关闭,相当于关机状态,但核心网还保留着用户上下文,用户进入空闲状态/连接状态时无须再进行附着 PDN 建立。

在 PSM 模式中,用户不仔接收寻呼信息,看起来模块与网络失联,但模块扔然注册在网络中。只有在周期 T3412 定时器超时后需要执行周期时,才会退出 PSM 模式。另外 PWERKEY 及 RTC_EINT 脚也可以唤醒模块退出 PSM 模式。

PSM 模式优点是可进行长时间休眠,可极大降低功耗。模块 PSM 耗流可以做到 4ua 以下。

4.4. 串口

4. 4. 1. 主串口

N102 提供了一路通用异步收发器: 主串口, 控制 MT2625 主控 IC。N102 称作 DCE 设备 (Data Communication Equipment), 按照传统的 DCE-DTE (Data Terminal Equipment)方式连接。N102 支持固定波特率, 支持范围 9600bps 到 115200bps。

主串口特点:

- ▶ UART1_TXD: 发送数据到 DTE 设备的 RXD 端。
- ➤ UART1_RXD: 从 DTE 设备 TXD 端接收数据。

串口内置电平转换电路, 兼容 3.3V, 5V TTL 电平

如下表所示:

参数	最小值	最大值	单位
V _{IL}	0	0. 25×VCC	V
V _{IH}	0. 75×VCC	VCC +0.2	V
$V_{\scriptscriptstyle OL}$	0	0. 15×VCC	V
V _{oH}	0. 85×VCC	VCC	V

表 4: 串口逻辑电平(VCC=底板串口上拉电平)

接口	名称	管脚	作用
主串口	UART1_TXD	3	串口发送数据
	UART1_RXD	2	串口接收数据

表 9: 串口管脚定义

4. 4. 1. 1. 串口参考设计

主串口的连接方式较为灵活。

三线制的串口请参考如下的连接方式:

图 9:串口三线制连接方式示意图

4. 4. 2. 升级调试串口

4.4.2.1. 软件升级

N102 通过串口 UARTO 升级软件。

串口支持 3.3V 电平

接口	名称	管脚	作用
шарто ф. п	UARTO_TXD	16	串口发送数据
UARTO 串口	UARTO_RXD	15	串口接收数据

表 5: UARTO 串口管脚定义

4.5. SIM 卡接口

N102 自带 SIM 卡接口。采用兼容 Nano SIM 卡和 ESIM 卡设计,用户可以自由选择哪种卡,方便调试。SIM 卡通过 N102 内部的电源供电,支持 1.8V 和 3.0V。

SIM卡不支持热插拔功能。

内部参考设计电路如下:

图 10:6-pin SIM 卡座参考电路图

4.6. 网络状态指示

NETLIGHT 管脚信号可以用来指示网络的状态,该管脚工作状态如下表所示(功能在实现中)。指示灯的连接参考电路如下图所示。.

NETLIGHT 高低电平状态	N102 工作状态
持续低电平(灯灭)	N102 没有运行
高电平 64ms (灯亮)/低电 平 800ms (灯灭)	N102 未注册到网络
高电平 64ms (灯亮)/低电 平 2000ms (灯灭)	N102 注册到网络
高电平 64ms(灯亮)/低电 平 600ms(灯灭)	NB-IOT 数据传输通讯

表 7: NETLIGHT 工作状态

参考电路如下所示:

图 11: NETLIGHT 参考电路

- 18 -

上海零零智能科技有限公司

5. 天线接口

N102 包含一个天线接口, NB-IOT 天线接口, 都是具有 50 欧姆特性阻抗的接口。

智能硬件物联专家

5.1. NB_IOT 天线接口

5.1.1. 参考设计

对于天线接口的外围电路设计,为了能够更好地调节射频性能, N102 预留匹配电路。天线连接参考电路如下图所示。

图 12: 射频参考电路

N102 提供了一个 RF 一代座供连接外部天线。为了最小化 RF 走线或者 RF 线缆损耗,必须谨慎设计。建议线损和天线要满足下述两个表格的要求。

频段	要求
850 900	线损<1dB
1800 1900	线损<1. 5dB

表 8: 线损要求

项目	要求		
频段	取决于网络运营商提供的频带		
驻波比	≤ 2		
增益(dBi)	1		
最大输入功率(W)	50		

输入阻抗 (Ω)	50
极化类型	垂直极化

表 9: 天线要求

5.1.2. **RF 输出功率**

频率	最大	
Band5	23dBm	
Band8	23dBm	
Band1	23dBm	
Band3	23dBm	

表 10: RF 传导功率

5. 1. 3. **RF 接收灵敏度**

频率	接收灵敏度
Band5	<-126dBm±1db
Band8	<-126dBm±1db
Band1	<-126dBm±1db
Band3	<-126dBm±1db

表 26: RF 传导灵敏度

5.1.4. 工作频率

频率	接收频率	发射频率	
Band5	869~894MHz	824~849MHz	
Band8	925~960MHz	880~915MHz	
Band1	1920~1980MHz	2110~2170MHz	
Band3	1710~1785MHz	1805~1880MHz	

表 11: N102 工作频率

6. 电气性能,可靠性

6.1. 绝对最大值

下表所示是 N102 数字、模拟管脚的电源供电电压电流最大耐受值。

一次////////////////////////////////////				
参数	最小	最大	单位	
Power_IN	-0.3	+28	V	
电源供电峰值电流	0	1.0	А	
电源供电平均电流(TDMA 一帧时间)	0	0.7	Α	
数字管脚处电压	-0.3	3.08	V	
模拟管脚处电压	-0.3	3.08	V	
关机模式下数字/模拟管脚处电压	-0.25	0.25	V	

表 12: 最大耐压值

6.2. 工作温度

下表所示为 N102 工作温度。

表 31: 工作温度

参数	最小	典型	最大	单位
正常工作温度	-35	+25	+80	°C
扩展温度范围 ²⁾	-40		+85	°C

表 13: 工作温度

备注:

1. $^{1)}$ 当 N102 工作在此温度范围时,工作性能可能会偏离 NB-IOT 规范,例如频率误差或者相位误差会增大,但是不会掉线。

6.3. 电源额定值

参数	描述	条件	最小	典型	最大	单位
Power_IN	供电电压	电压必须在该范围之内, 包括电压跌落,纹波和尖峰时	4.5	12	26	V
	突发发射时的 电压跌落	NB-IOT 最大发射功率等级时			400	mV
I _{VBAT}	平均供电 电流	PSM 模式休眠		3.5		uA
		IDLE 模 式 PSM:		233		uA
		RRC_IDLE2.56s		288		uA
		IDLE 模式 PSM: Active Time		3.5		uA
		2.56s				
		IDLE 模式 PSM				
		IDLE 模式 eDRX:20.48s		124.6		mA
		IDLE 模式 eDRX:81.92s		66.2		mA
		IDLE 模式 eDRX:655.36s		11.5		mA
		最大功率发射 B5; tx:23dBm		279.5		mA
		最大功率发射 B1; tx:23dBm		290.8		mA
		eDRX 接收 NRS EPRE:-88dbm		18.7		mA
		NRSEPRE:-97db		21.08		mA
		m NRS		42.73		mA
		EPRE:-132dbm				
	峰值电流(每个 发射时隙下)	最大功率等级时		1	1.0	A

表 14: NB_IOT 部分电源额定值

备注:

2. 在工作耗流标准 Ivbat 参考(N256 模块的输入电压)

6.4. 静电防护

在 N102 应用中,由于人体静电,微电子间带电摩擦等产生的静电,通过各种途径放电给 N102,可能会对 N102 造成一定的损坏,所以 ESD 保护必须要重视,不管是在研发、生产组装、测试等过程,尤其在产品设计中,都应采取防 ESD 保护措施。如电路设计在接口处或易受 ESD 点增加 ESD 保护,生产中佩戴防静电手套等。

测试点	接触放电	空气放电	
BATTERY, GND	±4KV	±6KV	
RF_ANT	±4KV	±6KV	

UART1	±2KV	±4KV
UARTO, UART2	±1KV	±2KV

表 15: ESD 性能参数 (温度: 25℃, 湿度: 45%)

7. 机械尺寸

7.1. N102 机械尺寸

智能硬件物联专家

图 13: N102 尺寸图(单位:毫米)