MATH H113: Honors Introduction to Abstract Algebra

2016-04-18

- gcd's
- P.I.D.'s

Skip universal side divisors (p. 277) and Dedekind-Hasse norms (p. 281 - 2)

Correction: Last time I mentioned Ex 8.4.14 (when showing that F[x] is a Euclidean domain). That should have been 7.4.14.

Definition: Let R be a commutative ring, and let $a, b \in R$

- a. We say $a \mid b$ (or a divides b or a is a divisor of b, or b is a multiple of a) if ax = b for some $x \in R$.
- b. A common divisor of a and b is an element $d \in R$ such that $d \mid a$ and $d \mid b$.
- c. A greatest common divisor of a and b is an element $d \in R$ such that
 - i. d is a common divisor of a and b, and
 - ii. if d' is another common divisor of a and b, then $d' \mid d$

(common multiples and least common multiples are defined similarly, see the homework). Compare with the definition in \mathbb{Z} : i. There is no " \leq " in R (usually), so we don't require gcd's to be > 0. ii. w define gcd(0,0) (it's 0)

Existence: there exists ring in which not all gcd's exist.

Uniqueness: Lemma: Let R be a commutative ring, and let $a, b \in R$. Then:

- a. $a \mid b \iff b \in (a) \iff (b) \subseteq (a)$
- b. $d \in R$ is a common divisor of a and $b \iff (d) \supseteq (a, b)$.
- c. $d \in R$ is a gcd of a and b if and only if (d) is the smallest principal ideal containing (a, b).

Proof: (a) and (b) should be easy exercises.

(c). d is a gcd \iff d is a common divisor and d' a common divisor \implies d' | d (a), (b) \iff (d) \supseteq (a, b) and if (d') \supseteq (a, b) then (d') \supseteq (d).

 \iff (d) is the smallest principal ideal containing (a, b).

Corollary: If both d and d' are gcd's of a and b, then (d) = (d'). Furthermore, if R is an integral domain, then d = ud' for some unit $u \in R$.

Proof: first part: the smallest element of a poset is unique (if it exists).

The second part is then by Ex. 7.4.8 $((d) = (d') \iff d = ud' for some unit u)$

Definition: Let R be a commutative ring with 1. Then elements $a, b \in R$ are associates if a = ub for some unit u of R. This is an equivalence relation.

Examples: In \mathbb{Z} , a and b are associates $\iff a = \pm b$. In a Euclidean domain, a and b are associates $\iff a = b = 0$ or $b \neq 0$ and $\frac{a}{b}$ is a unit.

So, gcd's in an integral domain are unique up to associates.

So, for this definition of gcd, in \mathbb{Z} , gcd's are only unique up to sign.

But, in a Euclidean domain, we can still use the Euclidean algorithm to compute gcd's . (See homework.)

In a Euclidean domain, gcd's exist (to be proved shortly).

Principal Ideal Domains

Definition: A principal ideal domain is an integral domain in which every ideal is principal.

Proposition: Let R be a Euclidean domain with (Euclidean) norm N. Let I be a non-zero ideal in R, and let d be a nonzero element of I having minimal norm (among nonzero elements of I).

Then I = (d).

Proof: First of all d exists because the $\{N(d): d \in I, d \neq \emptyset\}$ is a nonempty subset of \mathbb{N} , so it has a smallest element.

Then $(d) \subseteq I$ because $d \in I$.

On the other hand, let $a \in I$. Write a = qd + r with $q, r \in R$ and $(r \neq 0)$ or N(r) < N(d). Then we must have r = 0 (otherwise, since r = a - qd and $a, d \in I$, $r \in I$, and $r \neq 0$ with N(r) < N(d), contradicting the choice of d). Then a = qd, so $a \in (d)$. This shows $I \subseteq (d)$. Therefore I = (d).

Theorem: If R is a Euclidean domain, then R is a P.I.D.

Proof: Let R be a Euclidean domain, and let I be an ideal of R. If I = 0 then I = (0) is principal. Otherwise $I \neq 0$, so I = (d) for d as in the proposition.

Proposition: IN a P.I.D. (or a Euclidean domain) gcd's exist.

Proof: Let R be a P.I.D. and let $a, b \in R$. Then (a, b) = (d) for some $d \in R$. That shows that d is a gcd of a and b.

Examples:

- 1. \mathbb{Z} is a P.I.D., so are all Euclidean domains
- 2. $\mathbb{R}[x,y]$ is not a P.I.D., because its ideal (x,y) is not principal. Therefore, it's not a Euclidea domain, either. However, $\gcd(x,y)$ exists (=1, or any nonzero constant polynomial).

Proposition Let R be a P.I.D. and let $a, b \in R$. Then:

- a. gcd(a, b) exists, and equals d for any d such that (d) = (a, b).
- b. FOr such d, d = ax + by for some $a, b \in R$.

Proof:

- a. Was already noted (if (a, b) = (d) then (d) is the smallest principal ideal containing (a, b)).
- b. With d as above, $d \in (a,b) = \{ax + by : x, y \in R\}$ The = is true because any ideal containing a and b must also contain $ax + by \ \forall x, y \in R$. So $(a,b) \supseteq \{ax + by : x, y \in R\}$. On the other hand, $a,b \in \{ax + by : x,y \in R\}$, and $\{ax + by : x,y \in R\}$ is an ideal in R.

Note: in $\mathbb{R}[x,y]$, you can't write gcd(x,y) as an R-linear combination of x and y.

Proposition: In a P.I.D., every nonzero prime ideal is a maximal ideal.

Proof: Let P be a nonzero prime ideal. Then P=(p) for some $p \in R$, $p \neq 0$. Let I be some ideal of R with $P \subseteq I \subseteq R$. We want to show that I=P or I=R.

Then I = (m).

Since $p \in P$ and $P \subseteq I$, $p \in I$, so p = mx for some $x \in R$. Since P is prime and $mx \in P$, either $m \in P$ or $x \in P$.

If $m \in P$ then $(m) \subseteq P$, so $I \subseteq P$, $\therefore I = P$ because $I \supseteq P$.

If $x \in P$ then x = ps for some $s \in R$, so p = mx = mps, $\therefore ms = 1$, so m is a unit and (m) = R. $\therefore I = P$ or I = R, so P is maximal.