

Management Degree

Statistics 2

SPSS aplications

Linear regression model with SPSS

NA EXAMPLE OF MULTIPLE LINEAR REGRESSION

We will use the data set SAMPLE RLM.sav, in order to explain the wages of a set of workers in a given activity sector (Wages) as a function of the number of years of study (YearsStudy), the number of years of specific training (YearsSpecialization), the number of years of professional experience (YearsExperience).

Some descriptive statistics were obtained:

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Wage	70	139	1355	667,17	223,567
Years of Study	70	2	18	9,30	3,200
Years of Specialization	70	0	5	1,70	1,312
Years of professional experience	70	4	24	11,77	4,709
Valid N (listwise)	70				

Degree of linear correlation between quantitative variables under study:

Cor	re	lati	lons

		Correlations			
					Years of
				Years of	professional
		Wage	Years of study	Specialization	experience
Wage	Pearson Correlation	1	,946**	,324**	,191
	Sig. (2-tailed)		<,001	,006	,114
	N	70	70	70	70
Years of study	Pearson Correlation	,946**	1	,277*	,183
	Sig. (2-tailed)	<,001		,020	,130
	N	70	70	70	70
Years of Specialization	Pearson Correlation	,324**	,277*	1	,228
	Sig. (2-tailed)	,006	,020		,058
	N	70	70	70	70
Years of professional experience	Pearson Correlation	,191	,183	,228	1
	Sig. (2-tailed)	,114	,130	,058	
	N	70	70	70	70

^{**.} Correlation is significant at the 0.01 level (2-tailed).

^{*.} Correlation is significant at the 0.05 level (2-tailed).

MULTIPLE LINEAR REGRESSION MODEL

→ Scatterplot for each pair of variables

Graphs Scatter/Dot Matrix Scatter Define

Matrix variables: Wage, Years Study, YearsSpecialization, YearsExperience

→ Multiple Linear Regression Model Estimation (forcing all quantitative variables into the model - Enter method)

Analize Regression Linear

The (standardized) residuals can be saved in the database for later analysis:

Linear Regression: Save	×					
Predicted Values Unstandardized Standardized Adjusted S.E. of mean predictions	Residuals Unstandardized Standardized Studentized Deleted Studentized deleted					
Distances Mahalanobis Cook's Leverage values Prediction Intervals Mean Individual Confidence Interval: 95 %	Influence Statistics ☐ DfBetas ☐ Standardized DfBetas ☐ DfFits ☐ Standardized DfFits ☐ Covariance ratios					
Confidence Interval: 95 % Coefficient statistics Create coefficient statistics Create a new dataset Dataset name: Write a new data file File Export model information to XML file						
☐ Browse ☐ Browse ☐ Include the covariance matrix						
<u>C</u> ontinue Cancel	Help					

OUTPUTS

Variables Entered/Removed^a

Model	Variables Entered	Variables Removed	Method
1	Years of professional experience, Years of study, Years of Specialization ^b		Enter

- a. Dependent Variable: Wageb. All requested variables entered.

Model Summary^b

			,	
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.948ª	.898	.894	72.909

- a. Predictors: (Constant), Years of professional experience, Years of study, Years of Specialization b. Dependent Variable: Wage

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	3097922,903	3	1032640,968	194,261	,000 ^b
	Residual	350839,040	66	5315,743		
	Total	3448761,943	69			

a. Dependent Variable: Wage

b. Predictors: (Constant), Years of professional experience, Years of study, Years of Specialization

Coefficients^a

	ocinicints .							
		_	dardized cients	Standardized Coefficients			Collinearity	Statistics
Mod	lel	В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	42,724	32,202		1,327	,189		
	Years of study	64,708	2,878	,926	22,484	,000	,908	1,101
	Years of Specialization	11,116	7,091	,065	1,568	,122	,891	1,123
	Years of professional experience	,320	1,930	,007	,166	,869	,933	1,072

a. Dependent Variable: Wage

Collinearity Diagnostics^a

				Variance Proportions				
						Years od	Years of professional	
Model	Dimension	Eigenvalue	Condition Index	(Constant)	Years of study	specialization	experience	
1	1	3,587	1,000	,01	,01	,02	,01	
	2	,266	3,675	,03	,02	,96	,04	
	3	,100	5,976	,02	,36	,00	,74	
	4	,047	8,698	,95	,61	,01	,21	

a. Dependent Variable: Wage

Normal P-P Plot of Regression Standardized Residual

→ Exploratory analysis of the residuals

Analize Descriptive Statistics Explore

OUTPUTS

Descriptives

	Desc	ripuves	1	
			Statistic	Std. Error
Standardized	Mean		,0000000	,11689566
Residual	95% Confidence Interval for	Lower Bound	-,2332005	
	Mean	Upper Bound	,2332005	
	5% Trimmed Mean	-,0082780		
	Median	,0086494		
	Variance	,957		
	Std. Deviation	,97801929		
	Minimum	-2,18698		
	Maximum	2,39583		
	Range	Range		
	Interquartile Range	Interquartile Range		
	Skewness	,156	,287	
	Kurtosis		-,265	,566

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Standardized Residual	,085	70	,200*	,990	70	,857

- *. This is a lower bound of the true significance.
- a. Lilliefors Significance Correction

→ Interpretation of the results

A. Modelo:
$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_m X_{mi} + \varepsilon_i \operatorname{com} \varepsilon_i \sim N(0; \sigma)$$

In our case

 $Wage = \beta_0 + \beta_1 YearsStudy + \beta_2 YearsSpecialization + \beta_3 YearsExperience + \varepsilon_i$

B. Checking the Assumptions:

1. Linear relation between each variable X and Y

(verify with scatterplots for (Xi, Yi); correlations analysis)

Correlations

		Wage	Years of Study	Years of Specialization	Years of professional experience
Wage	Pearson Correlation	1	,946**	,324**	,191
	Sig. (2-tailed)		,000	,006	,114
	N	70	70	70	70
Years of Study	Pearson Correlation	,946**	1	,277*	,183
	Sig. (2-tailed)	,000		,020	,130
	N	70		70	70
Years of Specialization	Pearson Correlation	,324**	,277*	1	,228
	Sig. (2-tailed)	,006	,020		,058
	N	70	70	70	70
Years of professional experience	Pearson Correlation	,191	,183	,228	1
	Sig. (2-tailed)	,114	,130	,058	
	N	70	70	70	70

^{**.} Correlation is significant at the 0.01 level (2-tailed).

^{*.} Correlation is significant at the 0.05 level (2-tailed).

2. Normality: $\boldsymbol{\mathcal{E}_i}$ follow na approximate normal distribution

(verify with Normal P-P plot or Kolmogorov-Smirnov normality test for the residuals)

Normal P-P Plot of Regression Standardized Residual

Tests of Normality

	Kolı	nogorov-Smir	nov ^a		Shapiro-Wilk	
	Statistic Df Sig.		Statistic	df	Sig.	
Standardized Residual	,085	70	,200*	,990	70	,857

^{*.} This is a lower bound of the true significance.

3. The expected value of the residuals is null: $\mathbf{E}[\pmb{arepsilon_i}] = \mathbf{0}$

(this assumption is not verifiable because the residuals <u>are estimated in such a way that the sum of</u> the estimates is always zero, which can be seen in the mean of the Residual variable when calculating the *Residuals Statistics*)

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	175,98	1234,50	667,17	211,890	70
Residual	-159,451	174,678	,000	71,307	70
Std. Predicted Value	-2,318	2,677	,000	1,000	70
Std. Residual	-2,187	2,396	,000	,978	70

a. Dependent Variable: Wage

a. Lilliefors Significance Correction

4. Homoscedasticity: The variance of $m{arepsilon}_i$ is constant, i.e., $Var[m{arepsilon}_i] = m{\sigma}^2$

(check with a scatterplot $(\widehat{ZY}_i; ze_i)$ and see if it increases, or not, the dispersion of the e_i)

5. No autocorrelation: errors are independent, i.e., $Cov(\varepsilon_i; \varepsilon_j) = 0$ (its validation is only relevant if the data are chronological)

6. No multicolinearity: the predictor variables (X_i) are not strongly correlated (see the correlation matrix; see the *Tolerance* (ok if > 0,1) and *VIF* (ok if < 10), analyze *Condition*

Indexes (ok if ≤ 30))

Coefficients^a

				Standardized				
		Unstandardized Coefficients		Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	42,724	32,202		1,327	,189		
	Years of Study	64,708	2,878	,926	22,484	,000	,908	1,101
	Years of Specialization	11,116	7,091	,065	1,568	,122	,891	1,123
	Years of Experience	,320	1,930	,007	,166	,869	,933	1,072

a. Dependent Variable: Wage

Collinearity Diagnostics^a

				Variance Proportions				
						Years of	Years of professional	
Model	Dimension	Eigenvalue	Condition Index	(Constant)	Years of study	specialization	experience	
1	1	3,587	1,000	,01	,01	,02	,01	
	2	,266	3,675	,03	,02	,96	,04	
	3	,100	5,976	,02	,36	,00	,74	
	4	,047	8,698	,95	,61	,01	,21	

a. Dependent Variable: Wage

C. F-test for global significance of the model (ANOVA table):

H0: The MLRM is not adequate vs H1: The MLRM is adequate

Or

H0: $\beta_1 = \beta_2 = \cdots = \beta_m = 0$ vs H1: $\exists_i : \beta_i \neq 0, i=1,2,...,m$

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	3097922,903	3	1032640,968	194,261	<,001 ^b
	Residual	350839,040	66	5315,743		
	Total	3448761,943	69		ii.	

a. Dependent Variable: Wage

In this case *p-value* $< 0.001 < \alpha = 0.05$, levando à rejeição da H0. Assim, o modelo é adequado.

D. Percentagem de variância explicada pelo modelo

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,948ª	,898	,894	72,909

a. Predictors: (Constant), Years of professional experience, Years of study, Years of specialization

89,8% of the total variance is explained by the regression

b. Predictors: (Constant), Years of professional experience, Years of study, Years of specialization

b. Dependent Variable: Wage

E. Estimação dos parâmetros do modelo:

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	42,724	32,202		1,327	,189		
	Years of Study	64,708	2,878	,926	22,484	,000	,908	1,101
	Years of Specialization	11,116	7,091	,065	1,568	,122	,891	1,123
	Years of professional experience	,320	1,930	,007	,166	,869	,933	1,072

a. Dependent Variable: Wage

 $\widehat{Wage} = 42.7 + 64.7 \times YearsStudy + 11.1 \times YearsSpecialization + 0.32 \times YearsExperience$

The estimate of the error dispersion is s=72.9 (identified by Std. Error of Estimate).

Years of Specialization and Years of Professional Experience do not reveal coefficients significantly different from 0 (see *p-values* of t-tests). We would consider redoing the model WITHOUT these variables.

Interpretation of the coefficients

Coefficient	В	
(Constant)	42,724	The estimated average wage, without the influence of the
		independent variables considered is 42,7 m.u.
Years of Study	64,708	For each additional year of study we expect an increase of
		64,7 m.u. in salary, keeping the other variables constant
Years of Specialization	11,116	For each additional year of specific training an increase of
		11,1 m.u. in salary is expected, keeping everything else
		constant
Years of professional	,320	For each additional year of work experience a 0,3 m.u.
experience		increase in salary is expected, keeping everything else
		constant

The standardized coefficients (Beta) are used essentially to identify which variables are most influential for the model, in relative terms. The most important explanatory variable is Years of study. These coefficients are interpreted in terms of standard deviations. For example, if $Beta_1 = 0.926$, it means that for every one standard deviation increase in years of study, one expects an increase of 0.926 standard deviations in salary.