Simulating Prolog-based BDI agents on Alchemist

Tesi in: Sistemi Autonomi

Relatore:

Presentata da:

Chiar.mo Prof. Andrea Omicini Filippo Nicolini

Correlatori:

Dott. Giovanni Ciatto Dott. Danilo Pianini

> ALMA MATER STUDIORUM – Università di Bologna Campus di Cesena

> > 12 Dicembre 2019

L'obiettivo della tesi

Obiettivo della tesi

Unificare piattaforme orientate alla programmazione di agenti con ambienti di simulazione di agenti.

Interprete tuProlog

Estensione modello BDI di AgentSpeak sfruttando tuProlog per poter implementare interpreti sia su ambienti reali che simulati.

Interprete Alchemist

Realizzazione di un interprete nel simulatore Alchemist che utilizza le logiche del ciclo di ragionamento di Jason.

AgentSpeak e modello BDI

Modello BDI

Modello BDI (Beliefs, Desires, Intentions) implementa gli aspetti principali del ragionamento umano per programmare agenti intelligenti.

AgentSpeak

Linguaggio orientato agli agenti basato su modello BDI e programmazione logica.

tuProlog

tuProlog

Libreria che permette di utilizzare Prolog all'interno di applicazioni e infrastrutture distribuite sfruttando un core minimale.

Caratteristiche

Supporta integrazioni semplice e pervasiva multi-linguaggio e multi-paradigma (es. Prolog – linguaggi OO).

Interprete tuProlog di AgentSpeak

Formalizzazione

Estenzione di AgentSpeak realizzando un'interprete attraverso definizione di alcune sintassi.

API

- inizializzazione agente
- invocazioni verso linguaggio OO
- gestione 'belief base'
- gestione eventi e posizionamento

Jason

Jason

Interprete di una versione estesa di AgentSpeak, implementa linguaggio e piattaforma per sviluppare sistemi multi-agente.

Ciclo di ragionamento

Percezioni

Informazioni ricevute tramite un apparato con le quali l'agente percepisce i cambiamenti dell'ambiente.

Eventi

Sono relativi a percezioni che l'agente ha ricevuto e possono essere catturati dall'agente.

Piani

Definiscono come l'agente agisce per raggiungere goal.

Intenzioni

Operazioni che l'agente vuole eseguire per portare a termine un certo goal.

Ciclo di ragionamento

Alchemist

Alchemist

Simulatore per il calcolo pervasivo, aggregato e naturale che si basa su un meta-modello flessibile e che permette implementazioni di modelli diversi tra loro.

Meta-modello

- Node
- Environment
- Reaction (Time Distribution, Condition, Action)
- Linking Rule

Meta-modello

Unione modelli

Mapping

Agente mappato come reazione, quindi l'ambiente è contenitore di nodi che a loro volta contengono uno o più agenti.

Caratteristiche

Ricercata la massima espressività lavorando su più strati: nodo può essere inteso come device contenitore di agenti.

Simulating Prolog-based BDI agents on Alchemist

Tesi in: Sistemi Autonomi

Relatore:

Presentata da: Filippo Nicolini

Chiar.mo Prof.

Andrea Omicini

Correlatori:

Dott. Giovanni Ciatto Dott. Danilo Pianini

> ALMA MATER STUDIORUM – Università di Bologna Campus di Cesena

> > 12 Dicembre 2019