fn counting_query_stability_map

Michael Shoemate

October 15, 2025

This document proves that the implementation of counting_query_stability_map in mod.rs at commit f5bb719 (outdated¹) satisfies its proof definition.

1 Hoare Triple

Preconditions

Compiler-verified

- Argument public_info must be Keys, Lengths or None
- Generic M must implement UnboundedMetric
- Const generic P must be of type usize

User-verified

None

Pseudocode

```
def counting_query_stability_map(
      public_info: Literal["Keys"] | Literal["Lengths"] | None,
  ) -> StabilityMap[PartitionDistance[M], LpDistance[P, f64]]:
      if public_info == "Lengths": #
          return StabilityMap.new(lambda _: 0.)
      def norm_map(d_in: f64) -> f64: #
          if P == 1:
9
              return d_in
10
          if P == 2:
11
              return d_in.inf_sqrt()
12
          raise ValueError("unsupported Lp norm. Must be an L1 or L2 norm.")
14
      def stability_map(d_in: tuple[u32, u32, u32]) -> f64:
15
          10, 11, l_inf = d_in #
16
          10_p = norm_map(f64.from_(10)) #
17
          11_p = f64.from_(11)
18
          l_inf_p = f64.from_(l_inf)
19
          return l1_p.total_min(l0_p.inf_mul(l_inf_p)) #
20
21
      return StabilityMap.new_fallible(stability_map) #
```

¹See new changes with git diff f5bb719..cabbe21 rust/src/transformations/make_stable_expr/expr_count/mod.rs

Postcondition

Definition 1.1. For any setting of the input parameters $\texttt{public_info}$, M and P, returns a StabilityMap where for any predicate $p(\cdot)$ and $f(x) = [\sum_i \mathbbm{1}_{p(x_{1i})}, \sum_i \mathbbm{1}_{p(x_{2i})}, \dots]$, if $d_{\texttt{PartitionDistance} < M >}(x, x') \le d_{in}$, then $d_{LP}(f(x), f(x')) \le d_{out}$, where $d_{out} = \texttt{StabilityMap.eval}(d_{in})$.

Proof. Since the input metric is PartitionDistance<M>, and M is an unbounded dataset distance metric (with associated distance type u32), the distance type is a tuple of the L_0 , L_1 and L_{∞} distances between the per-partition distances with respect to the input metric M, as shown on 16.

$$d_{LP}(f(x), f(x')) \tag{1}$$

$$= d_{LP} \left(\left[\sum_{j=1}^{\text{len}(x_1)} \mathbb{1}_{p(x_{1j})}, \sum_{j=1}^{\text{len}(x_2)} \mathbb{1}_{p(x_{2j})}, \dots \right], \left[\sum_{j=1}^{\text{len}(x_1)} \mathbb{1}_{p(x'_{1j})}, \sum_{j=1}^{\text{len}(x_2)} \mathbb{1}_{p(x'_{2j})}, \dots \right] \right)$$
(2)

$$= \left(\sum_{i}^{\operatorname{len}(x)} \left(\sum_{j}^{\operatorname{len}(x_{i})} \mathbb{1}_{p(x_{ij})} - \mathbb{1}_{p(x'_{ij})}\right)^{P}\right)^{1/P}$$
(3)

Consider two cases. First, when substituting the Δ_0 and Δ_∞ bounds:

$$= \left(\sum_{i}^{\operatorname{len}(x)} \left(\sum_{j}^{\operatorname{len}(x_{i})} \mathbb{1}_{p(x_{ij})} - \mathbb{1}_{p(x'_{ij})}\right)^{P}\right)^{1/P}$$

$$(4)$$

$$\leq \left(\sum_{i}^{\Delta_0} \left(\Delta_{\infty}\right)^P\right)^{1/P} \tag{5}$$

$$=\Delta_0^{1/P}\Delta_{\infty} \tag{6}$$

Alternatively, apply the Δ_1 bound, considering that distance is maximized when all Δ_1 contributions are made to the same partition:

$$= \left(\sum_{i}^{\operatorname{len}(x)} \left(\sum_{j}^{\operatorname{len}(x_{i})} \mathbb{1}_{p(x_{ij})} - \mathbb{1}_{p(x'_{ij})}\right)^{P}\right)^{1/P}$$

$$(7)$$

$$\leq (\Delta_1^P)^{1/P} \tag{8}$$

$$=\Delta_1 \tag{9}$$

The sensitivity is no greater than the smaller of these two bounds:

$$d_{LP}(f(x), f(x')) \le \min(\Delta_1, \Delta_0^{1/P} \Delta_\infty)$$
(10)

We now switch to the pseudocode. If partition length is invariant (via public_info), then $\Delta_1 = \Delta_{\infty} = 0$, making the query insensitive. This invariant is reflected in 5, where an insensitive stability map is returned, satisfying the postcondition.

norm_map on line 8 computes $x^{1/P}$, and is used on line 17 to compute $\Delta^{1/P}$. Line 20 then returns the bound from equation 10. Therefore, the stability map returned on line 22 also satisfies the postcondition.