PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-055069

(43)Date of publication of application: 22.02.2000

(51)Int.Cl.

F16D 3/20 F16C 19/18

(21)Application number : 10-226142

(71)Applicant: NIPPON SEIKO KK

(22)Date of filing:

10.08.1998

(72)Inventor: OUCHI HIDEO

(54) CONSTANT VELOCITY JOINT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a constant velocity joint which is small-sized and which has excellent durability.

SOLUTION: A small sized and durable constant speed joint satisfies the following formula: (0.054/rt)*Da≤w≤ (0.16/rt)*Da where Da is the outer diameter of balls 4, 4, w is the circumferential width of a columnar part 30 interposed between circumferentially adjacent pockets 10a, 10b in a cage 9b, and rt is a ratio between the thickness to of each of columnar parts 30 in the diametrical direction of the cage 9b and the diameter Da of the balls 4, 4.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-55069

(P2000-55069A)

(43)公開日 平成12年2月22日(2000.2.22)

(51) Int.Cl.7 識別記号 FΙ テーマコート (参考) F16D 3/20 F16D 3/20 3 J 1 0 1 Z F 1 6 C 19/18 F 1 6 C 19/18

審査請求 未請求 請求項の数1 OL (全 11 頁)

(21)出願番号 特願平10-226142

(22)出顧日 平成10年8月10日(1998.8.10) (71)出顧人 000004204

日本精工株式会社

東京都品川区大崎1丁目6番3号

(72) 発明者 大内 英男

神奈川県藤沢市鵠沼神明一丁目5番50号

日本精工株式会社内

(74)代理人 100087457

弁理士 小山 武男 (外1名)

Fターム(参考) 3J101 AA02 AA32 AA62 BA22 FA31

FA53 GA13

(54)【発明の名称】 等速ジョイント

(57)【要約】

【課題】 小型でしかも優れた耐久性を有する等速ジョ イントを実現する。

【解決手段】 各ボール4、4の外径をDa とし、保持 器9bのうちで円周方向に隣り合うポケット10a、1 0 6 同士の間に存在する柱部30の円周方向に亙る幅を wとし、上記保持器9bの直径方向に関するこれら各柱 部30の厚さ tcと上記各ボール4、4の外径 Da との 比をrtとした場合に、(O. 054/rt)・Da≦ w≦(0.16/rt)·Da を満たす。

【特許請求の範囲】

【請求項1】 内輪と、この内輪の外周面の円周方向等 間隔位置に存在する8個所に、それぞれ円周方向に対し 直角方向に形成された断面円弧形の内側係合溝と、上記 内輪の周囲に設けられた外輪と、この外輪の内周面で上 記各内側係合溝と対向する位置に、円周方向に対し直角 方向に形成された断面円弧形の外側係合溝と、上記内輪 の外周面と外輪の内周面との間に挟持され、上記内側、 外側両係合溝に整合する位置にそれぞれ円周方向に長い 8個のポケットを形成した保持器と、これら各ポケット の内側に 1 個ずつ保持された状態で内側、外側両係合溝 に沿う転動を自在とされた、8個のボールとから成り、 これら各ポールを、上記内輪の中心軸と上記外輪の中心 軸との軸交角を二等分し、これら両中心軸を含む平面に 対し直交する二等分面内に配置した等速ジョイントに於 いて、上記各ボールの外径をDaとし、上記保持器のう ちで円周方向に隣り合うポケット同士の間に存在する柱 部の円周方向に亙る幅をwとし、上記保持器の直径方向 に関するこれら各柱部の厚さ t c と上記各ボールの外径 Da との比tc / Da をrt とした場合に、(O. 05 4/rt)・Da ≦w≦(0. 16/rt)・Da を満 たす事を特徴とする等速ジョイント。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明に係る等速ジョイントは、例えば独立懸架式サスペンションに駆動輪を支持する為の転がり軸受ユニットに一体的に組み込み、トランスミッションから駆動輪に駆動力を伝達するのに利用する。

[0002]

【従来の技術】自動車のトランスミッションと、独立懸架式サスペンションにより支持した駆動輪との間には等速ジョイントを設けて、デファレンシャルギヤと駆動輪との相対変位や車輪に付与された舵角に拘らず、エンジンの駆動力を駆動輪に、全周に亙り同一角速度で伝達自在としている。この様な部分に使用される等速ジョイントとして従来から、例えば実開昭57-145824~5号公報、同59-185425号公報、同62-12021号公報等に記載されたものが知られている。

【0003】この様な従来から知られた等速ジョイント1は、例えば図6~8に示す様に、内輪2と外輪3との間の回転力伝達を6個のボール4、4を介して行なう様に構成している。上記内輪2は、トランスミッションにより回転駆動される一方の軸5の外端部に固定する。又、上記外輪3は、駆動輪を結合する他方の軸6の内端部に固定する。上記内輪2の外周面2aには、断面円弧形の内側係合溝7、7を6本、円周方向等間隔に、それぞれ円周方向に対し直角方向に形成している。又、上記外輪3の内周面3aで、上記各内側係合溝7、7と対向する位置には、やはり断面円弧形の外側係合溝8、8を

6本、円周方向に対し直角方向に形成している。

【0004】又、上記内輪2の外周面2aと外輪3の内周面3aとの間には、断面が円弧状で全体が円環状の保持器9を挟持している。この保持器9の円周方向6箇所位置で、上記内側、外側両係合溝7、8に整合する位置には、それぞれポケット10、10を形成し、各ポケット10、10の内側にそれぞれ1個ずつ、合計6個のボール4、4を保持している。これら各ボール4、4は、それぞれ上記各ポケット10、10に保持された状態で、上記内側、外側両係合溝7、8に沿い転動自在である。

【0005】上記各ポケット10、10は図8に示す様 に、円周方向に長い矩形とし、次述する軸交角αの変化 に伴って、円周方向に隣り合うボール4、4同士の間隔 が変化した場合でも、この変化を吸収できる様にしてい る。即ち、上記内側係合溝フ、7の底面7a、7a同士 の位置関係、並びに上記各外側係合溝8、8の底面8 a、8a同士の位置関係は、図9に一点鎖線で示す様 に、地球儀の経線の如き関係になっている。上記内輪2 の中心軸と外輪3の中心軸とが一致している(軸交角α =180°)場合に上記各ボール4、4は、図9に二点 鎖線で示した、地球儀の赤道に対応する位置の近傍に存 在する。これに対して、上記内輪2の中心軸と外輪3の 中心軸とが不一致になる(軸交角α<180°)と、等 速ジョイント1の回転に伴って上記各ボール4、4が、 図9の上下方向に往復変位(地球儀の北極方向と南極方 向とに交互に変位)する。この結果、円周方向に隣り合 うボール4、4同士の間隔が拡縮するので、上記各ポケ ット10、10を、それぞれ円周方向に長い矩形とし て、上記間隔の拡縮を行なえる様にしている。尚、上記 内側係合溝7、7の底面7a、7aと上記各外側係合溝 8、8の底面8a、8aとは、前述の説明から明らかな 通り、互いに同心ではない。従って、上記経線に相当す る線は、これら各係合溝7、8毎に、互いに少しずれた 位置に存在する。

【0006】更に、図6に示す様に、前記一方の軸5と他方の軸6との変位に拘らず、上記各ボール4、4を、これら両軸5、6の軸交角α、即ち、上記一方の軸5の中心線 a と他方の軸6の中心線 b との交点 o で両線 a と他方の軸6の中心線 b との交点 o で両線 a とのなす角度αを二等分する、二等分面 c 内に配置している。この為に、上記内側係合溝7、7の底面7 a は、上記中心線 a 上記交点 o から h だけ離れた点 e を中心とする球面上に位置させ、上記外側係合溝8、8の底面8 a、8 a は、上記中心線 b 上記外側係合溝8、8の底面8 a、8 a は、上記中心線 b 上記外側係合溝2のから h だけ離れた点 e を中心とする球面上に位置でさせている。但し、前記内輪2の外周面2 a 、外輪3の内周面3 a と保持器9の外周面との摺動を自在外輪3の内周面3 a と保持器9の外周面との摺動を自在

としている。

【0007】上述の様に構成する等速ジョイント1の場合、上記一方の軸5により内輪2を回転させると、この回転運動は6個のボール4、4を介して外輪3に伝達され、他方の軸6が回転する。両軸5、6同士の位置関係(上記軸交角α)が変化した場合には、上記各ボール4、4が内側、外側両係合溝7、8に沿って転動し、上記一方の軸5と他方の軸6との変位を許容する。

【0008】等速ジョイントの基本的な構造及び作用は上述の通りであるが、この様な等速ジョイントと、車輪を懸架装置に対して回転自在に支持する為の車輪用転がり軸受ユニットとを一体的に組み合わせる事が、近回転自在に支持する為には、外輪と内輪とを転動体を介してして支持する為には、外輪と内輪とを転動体を介してして支持する為には、外輪と内輪とを転動体を介してして使転自在に組み合わせた車輪用転がり軸受ユニットととを一体的に組み合わせれば、この様な車輪用転がり軸受ユニットと等速ジョイントとを一体的に組み合わせれば、コーツトと等速ジョイントとを一体的に組み合わせた、所謂第四世代のハブユニットとを呼ばれる車輪用転がり軸受ユニットともでできる。この様な車輪用をがり軸受ユニットと等速ジョイントとを一体的に組み合わせた、所謂第四世代のハブユニットと呼ばれる車輪用転がり軸受ユニットとして従来から、特開平フー317754号公報に記載されたものが知られている。

【0009】図10は、この公報に記載された従来構造 を示している。車両への組み付け状態で、懸架装置に支 持した状態で回転しない外輪11は、外周面にこの懸架 装置に支持する為の第一の取付フランジ12を、内周面 に複列の外輪軌道13、13を、それぞれ有する。上記 外輪11の内側には、第一、第二の内輪部材14、15 を組み合わせて成るハブ16を配置している。このうち の第一の内輪部材14は、外周面の一端寄り(図10の 左寄り)部分に車輪を支持する為の第二の取付フランジ 17を、同じく他端寄り(図10の右寄り)部分に第一 の内輪軌道18を、それぞれ設けた円筒状に形成してい る。これに対して、上記第二の内輪部材15は、一端部 (図10の左端部)を、上記第一の内輪部材14を外嵌 固定する為の円筒部19とし、他端部(図10の右端 部)を等速ジョイント1aの外輪3Aとし、中間部外周 面に第二の内輪軌道20を設けている。そして、上記各 外輪軌道13、13と上記第一、第二の内輪軌道18、 20との間にそれぞれ複数個ずつの転動体21、21を 設ける事により、上記外輪11の内側に上記ハブ16 を、回転自在に支持している。

【0010】又、上記第一の内輪部材14の内周面と上記第二の内輪部材15の外周面との互いに整合する位置には、それぞれ係止溝22、23を形成すると共に、止め輪24を、これら両係止溝22、23に掛け渡す状態で設けて、上記第一の内輪部材14が上記第二の内輪部材15から抜け出るのを防止している。更に、上記第二の内輪部材15の一端面(図10の左端面)外周縁部

と、上記第一の内輪部材14の内周面に形成した段部2 5の内周縁部との間に溶接26を施して、上記第一、第 二の内輪部材14、15同士を結合固定している。

【0011】更に、上記外輪11の両端開口部と上記ハ ブ16の中間部外周面との間には、ステンレス鋼板等の 金属製で略円筒状のカパー27a、27bと、ゴムの如 きエラストマー等の弾性材製で円環状のシールリング2 8a、28bとを設けている。これらカバー27a、2 7 b 及びシールリング28a、28bは、上記複数の転 動体21、21を設置した部分と外部とを遮断し、この 部分に存在するグリースが外部に漏出するのを防止する と共に、この部分に雨水、塵芥等の異物が侵入する事を 防止する。又、上記第二の内輪部材15の中間部内側に は、この第二の内輪部材15の内側を塞ぐ隔板部29を 設けて、この第二の内輪部材15の剛性を確保すると共 に、この第二の内輪部材15の先端(図10の左端)開 口からこの第二の内輪部材15の内側に入り込んだ異物 が、前記等速ジョイント1a部分にまで達する事を防止 している。尚、この等速ジョイント1 a は、前述の図6 ~8に示した等速ジョイント1と同様に構成している。 【〇〇12】上述の様に構成する車輪用転がり軸受ユニ ットを車両に組み付ける際には、第一の取付フランジ1 2により外輪11を懸架装置に支持し、第二の取付フラ ンジ17により駆動輪である車輪を第一の内輪部材14 に固定する。又、エンジンによりトランスミッションを 介して回転駆動される、図示しない駆動軸の先端部を、 等速ジョイント1aを構成する内輪2の内側にスプライ ン係合させる。自動車の走行時には、この内輪2の回転 を、複数のボール4、4を介して第二の内輪部材15を 含むハブ16に伝達し、上記車輪を回転駆動する。

【0013】上述の様な第四世代のハブユニットをより 小型化する為には、上記等速ジョイント1aを構成する 複数個のポール4、4の外接円の直径を小さくする事が 有効である。そして、この外接円の直径を小さくする 為、上記各ボール4、4の直径を小さくし、しかも上記 等速ジョイント1aにより伝達可能なトルクを確保する 為には、上記ボール4、4の数を増やす必要がある。 又、この様な事情によりボール4、4の数を増やした場 合でも、これら各ポール4、4を保持する保持器9の耐 久性を確保する為には、この保持器9に設けた複数のポ ケット10、10同士の間に存在する柱部30、30 (図7、8、11~14参照)の円周方向に亙る幅を確 保する必要がある。何となれば、これら各柱部30、3 0の円周方向に亙る幅が不十分であると、上記保持器9 の強度が不足し、長期間に亙る使用に伴って、上記各ポ ケット10、10の周縁部から亀裂等の損傷が発生する 可能性が生じる為である。但し、これら各柱部30、3 0の幅を大きくする事は、ボール4、4との干渉防止の 面から規制を受ける。即ち、第一として上記各ポケット 10、10の円周方向に亙る長さは、上記等速ジョイン

ト1 a をジョイント角 (内輪2の中心軸と外輪3 A の中心軸との位置関係が直線状態からずれた角度。図6に示した軸交角αの補角)を付した状態で回転させた場合に、上記各ボール4、4が上記保持器9の円周方向に変位できる大きさである必要がある。又、第二として上記長さは、上記等速ジョイント1 a を組み立てるべく、内輪2と外輪3 A と保持器9とを組み合わせた後、この保持器9、9のポケット10、10内に、上記各ボール4、4を組み込める大きさでなければならない。

【0014】この様な点を考慮しつつ、上記ボール4、 4の数を6個よりも多くし、上記各柱部30、30の幅 を大きくする構造として、特開平9-177814号公 報には、図11~14に示す様な等速ジョイント16が 記載されている。この公報に記載された等速ジョイント 1bは、内輪2と外輪3との間の回転力伝達を8個のボ 一ル4、4を介して行なう様に構成している。そして、 この公報に記載された構造の場合には、保持器9aの円 周方向8個所に、円周方向に亙る長さ寸法が大きいポケ ット10a、10aと長さ寸法が短いポケット10b、 10bとを互いに等間隔に(分割ピッチ角を互いに等し くして)、且つ交互に配置している。これら2種類のポ ケット10a、10bのうち、長さ寸法が短いポケット 106、106は、ジョイント角を最大にしての上記等 速ジョイント1bの使用状態でも、これら各ポケット1 0 b 、 1 0 b の長さ方向両端部内側面とこれら各ポケッ ト106、106内に保持されたボール4、4の転動面 とが干渉しない大きさにしている。これに対して、長さ 寸法が長いポケット10a、10aは、上記各ポケット 10b、10b内に上記各ボール4、4を組み込むべ く、上記内輪2の中心軸と上記外輪3の中心軸とを、上 記使用状態でのジョイント角の最大値を越えて傾斜させ た状態でも、上記各ポケット10a、10aの長さ方向 |両端部内側面と、既にこれら各ポケット10a、10a 内に組み込んであるボール4、4とが干渉しない大きさ にしている。

【0015】上述の様に構成される、前記特開平9-17814号公報に記載された等速ジョイントによれば、長さ寸法が長いポケット10a、10aにボール4、4を組み込んだ後、長さ寸法が短いポケット10b、10b内にボールを組み込む事により、総てのポケット10a、10b内にボール4、4を組み込める。即ち、これら各ポケット10a、10b内にボール4、4を組み込む際には、図14に示す様に、上記内輪2の中心軸とを、上記使用状態でのう。長さ寸法が長いポケット10a、10aにボール4、4を組み込む際には、これら各ポケット10a、10a内へのボール4、4の1個分以上整合する。従って、これら各ポケット10a、10a内へのボール

4、4の組み込みを確実に行なえる。次いで、長さ寸法が短い4個のポケット10b、10b内にボール4、4を組み込むべく、上記内輪2の中心軸と上記外輪3の中心軸とを図14に示す様に傾斜させると、既に上記長さ寸法が長いポケット10a、10bに近づく方向に、長記とが短いポケット10b、10bに近づく方向に、上記長さ寸法が短い各ポケット10b、10bの中央部と、上記内輪2の外周面に形成した内側係合溝7、7の端部とが整合する。従って、これら各ポケット10b、10b内へのボール4、4の組み込みを確実に行なえる。

[0016]

【発明が解決しようとする課題】上述した特開平9-177814号公報に記載された等速ジョイント16の場合には、円周方向に亙る長さ寸法が異なる2種類のポケット10a、10bを、円周方向に亙って交互に且つ時間隔で配置している。この為、単一種類のポケットを使用した場合に比べれば、円周方向に隣り合うポケット同士の間に存在する各柱部30、30の円周方向に亙る幅を大きくできるが、これら各柱部30、30の幅を上記等速ジョイント16の他の構成部分の寿命を確保しつつ保持器9aの耐久性を確保する面からの考察は行なわれていない。

【0017】言い換えれば、上記等速ジョイント1bを構成する各ボール4、4の外径と上記各柱部30、30の幅との関係を、内側、外側各係合溝7、8の転がり疲れ寿命と保持器9aの強度との関係で最適に規制する考慮は全くなされていない。勿論、この様な事に関する考慮は全くなされていない。勿論を行なう意に関する考慮しつつ上記等速ジョンと1bの設計を行なうに就いても、上記公報には一切記載されていない。本発記は、上記柱部30、30の幅の取り得る範囲並びに上記内側、外側各係合溝7、8及び上記各ボール4、4の外径記内側、外側各係合溝7、8及び上記各ボール4、4の外径立びにピッチ円直径により変化する事に着目し、これらの数面の転がり疲れ寿命が、上記各ボール4、4の外径並びにピッチ円直径により変化する事に着目し、これらの最適な関係を求める事により、小型でしかも優れた耐久性を有する等速ジョイントを実現すべく発明したものである。

[0018]

【課題を解決する為の手段】本発明の等速ジョイントは、前述した従来の等速ジョイントと同様に、内輪と、この内輪の外周面の円周方向等間隔位置に存在する8個所に、それぞれ円周方向に対し直角方向に形成された断面円弧形の内側係合溝と、上記内輪の周囲に設けられた外輪と、この外輪の内周面で上記各内側係合溝と対向する位置に、円周方向に対し直角方向に形成された断面円弧形の外側係合溝と、上記内輪の外周面と外輪の内周面との間に挟持され、上記内側、外側両係合溝に整合する位置にそれぞれ円周方向に長い8個のポケットを形成した保持器と、これら各ポケットの内側に1個ずつ保持さ

れた状態で内側、外側両係合溝に沿う転動を自在とされ た、8個のボールとから成る。そして、これら各ボール を、上記内輪の中心軸と上記外輪の中心軸との軸交角を 二等分し、これら両中心軸を含む平面に対し直交する二 等分面内に配置している。特に、本発明の等速ジョイン トに於いては、上記各ボールの外径をDa とし、上記保 持器のうちで円周方向に隣り合うポケット同士の間に存 在する柱部の円周方向に亙る幅をwとし、上記保持器の 直径方向に関するこれら各柱部の厚さtcと上記各ボー ルの外径 Da との比 t c / Da を r t とした場合に、 $(0.054/rt) \cdot D_a \leq w \leq (0.16/rt)$ ・Da を満たす。

[0019]

【作用】上述の様に構成する本発明の等速ジョイントに よれば、内側、外側各係合溝の転がり疲れ寿命と保持器 の強度とを何れも十分に確保でき、等速ジョイントを小 型化して、この等速ジョイントの外輪と車輪支持用の転 がり軸受ユニットの内輪を一体化した所謂第四世代のハ ブユニットの実用化に寄与できる。

【0020】次に、上記各ボールの外径Da と、柱部の 円周方向に亙る幅wと、上記保持器の直径方向に関する これら各柱部の厚さ t_C と上記各ボールの外径 D_a との 比 r t (= t c / Da)との関係を、(O. O 5 4 / r t) ・Da ≦w≦ (O. 16/rt) ・Da なるものに 規制した理由に就いて、図1~4を参照しつつ説明す

【0021】先ず、等速ジョイントを構成するボール4~ の転動面と内側、外側両係合溝7、8との当接部に許容 される荷重と、このボール4の外径Da との関係に就い て説明する。上記両係合溝7、8の断面形状の曲率半径 は、通常は上記ボール4の外径Daの51%(O. 51 Da) 前後の値にする。この値が小さ過ぎる(O. 5D aに近い値になる)と、上記当接部に存在する接触楕円 が当該係合溝(内側係合溝7又は外側係合溝8)の肩部 に乗り上げ易くなる。そして、乗り上げた場合には、上 記ボール4の転動面にエッジロードが加わり、この転動 面が早期に剥離してしまう。反対に、値が大き過ぎる

(O. 51Da を大きく越える値にする) と、上記当接 部に存在する接触楕円の面積が小さくなり、この当接部 で当該係合溝の内面と上記ボール4の転動面とに加わる 面圧が過度に高くなってしまう。

【0022】一方、等速ジョイントは、一般的には、次 の①~③の条件を満たす事が必要である。

① 上記当接部に於ける許容最大面圧を、4200MP a (428kgf/mm²) とする。この理由は、ジョイント 角を付した状態で上記等速ジョイントを運転した場合

$$P_{max} = \frac{187}{\mu \cdot \nu} \sqrt[8]{(\Sigma \rho)^2 \cdot Q} (kgf/mm^2)$$

この(1)式及び以下に述べる(2)~(7)式中、Q は玉荷重(kgf)、Σρは主曲率の総和、Da はボール

に、上記ボール4の転動が円滑に行なわれる様にする為 である。即ち、上記両係合溝7、8の表面硬度は、炭素 鋼を焼き入れ硬化する事によりHRC 60~64程度に硬 化されている。この程度の表面硬度を有する上記両係合 溝7、8の内側面に、上記した4200MPa 程度の面 圧(接触応力)を加えると、上記ポール4と内側係合溝 7 又は外側係合溝8との永久変形量の和は、このボール 4の外径 DaのほぼO. OOO1倍となる。この様な永 久変形量の和が、この値 (O. OOO1倍) を超える と、上記ボール4の転動が円滑に行なわれなくなり、上 記等速ジョイント部分でのトルクロスが大きくなる。

② 等速ジョイントの運転時に於ける、上記両係合溝 7、8に対する上記ボール4の接触角 θ を約40度とす る。この接触角の値が大き過ぎる(40度を大きく越え る)と、上記接触楕円が内側係合溝7又は外側係合溝8 の肩部に乗り上げ易くなり、これら各係合溝7、8の断 面の曲率半径を小さくした場合と同様に、上記ボール4 の転動面にエッジロードが発生し、早期に剥離してしま う。反対に、上記接触角の値が小さ過ぎる(40度を大 きく下回る)と、上記ボール4に加わる荷重に $\sin heta$ を 乗じた値がトルク伝達方向の荷重成分になるので、上記 ボール4に加わる荷重が大きくなる割合に、このボール 4を介して伝達されるトルクが小さくなり、効率の悪い 設計となる。

③ 上記ボール4の外径Daと、複数のボール4のピッ チ円直径との比を、凡そ1/4とする。前述の様な理由 により、等速ジョイントに組み込むボールの数を8個と した場合には、これら各ボールの外径 Da と同じくピッ チ円直径との比は、凡そ1/4になる。この比が大き過 ぎる(1/4を大きく上回る)程、上記各ボールの外径 Da が大きくなると、その分、これら各ボールを保持す る為のポケットの円周方向に亙る長さが大きくなり、円 周方向に隣り合うポケット同士の間に存在する柱部の幅 が狭くなって、これら各柱部の強度が不足する。反対 に、上記比が小さ過ぎる(1/4を大きく下回る)程、 上記各ボールの外径 Da が小さくなると、等速ジョイン トのトルク容量が小さくなってしまう。

【0023】尚、上記①~③の条件のうち、③の条件 は、柱部の幅に関係する値であるが、この〇のに示した条 件の比(1/4) 自体が変動しても、前記当接部に存在 する接触楕円部分の最大面圧に対する影響は小さい。よ って、以下の計算は、上記比の1/4からのずれ分を無 視して行なう。上記接触楕円部分の最大面圧と玉荷重と の関係は、Hertz の式により、次の(1)式の様にな る。

4の外径(mm)、fは内側、外側両係合溝の断面形状の 曲率半径がこのボールの外径 Daに対する比で、前述の

【〇〇24】又、 cos t をパラメータとして、外輪に比

べて径が小さく、従って上記各ボール4との接触に基づ

く応力が高くなる内輪に就いて計算すると、次の(2)

(1) 式に代入すると、次の(3) 式を得られる。

様に0.51、 γ はDa ・ $\cos\theta$ / d_m により求められ る値で、この場合には O. 1915、 dm は上記各ボー ル4のピッチ円直径 (mm) 、θは上記内側、外側両係合 溝の内側面に対する上記各ボール4の接触角で、前述の 通り40度である。

$$\cos \tau = \frac{\frac{1}{f} + \frac{2\gamma}{1-\gamma}}{4 - \frac{1}{f} + \frac{2\gamma}{1-\gamma}} = 0.96878 \qquad \cdots \qquad (2)$$

式の様になる。

【数3】

この時、 μ は5.0、 ν は0.36、 $\Sigma \rho$ は(1/D a)・(2. 5129)である。前述した、P_{max} = 4 28kgf/mm 2 なる値を上記 μ 、 ν 、 Σ ρの値と共に上記

$$Q = \left(\frac{428 \times \mu \cdot \nu}{187}\right)^{3} \frac{D^{2}}{(2.5129)^{2}} = 11.07 \cdot D^{2} \cdots (3)$$

【0025】次に、保持器の板厚tc と、上記各ボール 4の直径Da との比rt (= t c /Da)は、次の $t_c/D_a = 0.16 \sim 0.30 = r$

上記比tc / Da がこの(4)式の範囲よりも小さくな る程、上記保持器の板厚 t c が小さくなり過ぎると、柱 部の強度不足を補う必要上、この柱部の幅を極端に大き くしなければならず、結果として上記各ボール4の直径 Da が小さくなり、等速ジョイントのトルク容量が小さ くなってしまう。反対に、上記比tc / Da がこの (4) 式の範囲よりも大きくなる程、上記保持器の板厚 tc が大きくなり過ぎると、この保持器の内径側に存在 する内側係合溝と同じく外径側に存在する外側係合溝と の一方又は双方の係合溝の深さを確保できなくなって、 上記各ボールの転動面が当該係合溝の肩部に乗り上げ易 くなる。そして、乗り上げた場合にはこの転動面にエッ ジロードが発生し、この転動面に早期剥離が発生する。 【0026】次に、等速ジョイントをジョイント角(1 80度-軸交角)を付した状態で運転した場合に、保持 器のリム部、即ち、軸方向両端部に存在し、上記各柱部 の軸方向両端部が結合される円環状部分に負荷される荷

(4) 式を満たす必要がある。

重Pに就いて説明する。前提条件として、ジョイント角 α´を45度以上に設定する。内側係合溝7の底面7a の中心と外側係合溝8の底面8aの中心がオフセットし ている(図6参照)事に伴って保持器に働く荷重は微小 であるので無視し、図1に示す様に、上記ジョイント角 lpha $^{\prime}$ によって上記リム部に作用する荷重のみを考慮す る。図2の左右両端部に示した柱部の様に、保持器の柱 部が駆動軸の中心と従動軸の中心とを含む平面に対し9 0 度の位相になった時、当該柱部とリム部との連続部に 最大の荷重が働く。等速ジョイントに8個の玉が組込ま れている時にはこの柱部 (最大の荷重が働く柱部) の両 隣のボール4、4の中心の、駆動軸の中心及び従動軸の 中心を含む平面からの位相は、それぞれ67.5度 (β)、112.5度である。そして、上記連続部には 上記両隣のボール4、4から、次の(5)式により求め られる、同じ荷重がそれぞれ作用する。

【数5】

$$P = 2 \operatorname{Qsin} \left\{ \frac{\tan^{-1} (\tan \alpha' \cdot \sin \beta)}{2} \right\}$$

$$= 2 \operatorname{Qsin} \left\{ \frac{\tan^{-1} (\tan 45 \cdot \sin 67.5 \cdot)}{2} \right\}$$

$$= 0.729 \operatorname{Q}$$
... (5)

【0027】次に、保持器の柱部に負荷される荷重に就 いて、図3~4を参照しつつ説明する。上記各ボール4 から保持器のリム部46に負荷される荷重は、このリム 部46にそれぞれの端部を結合した柱部30、30によ り支持するが、それぞれの柱部30、30に作用する荷 重の振り分けは、上記リム部46及び柱部30、30の 剛性に影響される為、厳密にはFEM等の計算が必要で ある。但し、通常は、上記各ポール4の外径 Da が 1 O m以上あり、柱部30、30同士のピッチが十分に広い

事を考慮すると、全部の柱部でこの荷重を受け持たず に、上記各ボール4からリム部46に負荷する荷重P を、当該ボール4の両隣の柱部30、30のみで、P/ 2ずつ均等に支承すると考えれば、安全率を高くする方 向で近似できる。

【0028】保持器の材質が、浸炭焼入れ或は高周波焼 入れされた鋼である場合には、引っ張り強さ σ_B を常時 150kgf/mm² 以上に保って生産する事は実用上困難と 思われる。従って、σ=P/(w·tc)の値が150

kgf/mm² の場合を、限界応力の目安として設計する事が好ましい。上述の様に、上記各柱部 30、 30に負荷される荷重を、安全率が高くなる方向で大き目に近似したので、この値は少し大き目に見積もる事が可能である。【0029】引っ張り強さ σ_B の約0. 3倍が疲れ \times σ_a となるので、上記引っ張り強さ σ_a を、 150 × σ_a となるをで、上記引っ張り強さ σ_a の値に余裕を取り過ぎる事は、上記各ボール4の外径 σ_a を小さくすい過ぎる事に結び付く為、前述の様に剥離寿命が低下し、バラン

$$50 \le \frac{P}{w \cdot t_c} \le 150$$

この(6)式中、wは、図4に示す様に、柱部30の内 径側の幅 w_1 と外径側の幅 w_2 との平均である。尚、板 厚 t_c が軸方向に亙り異なる保持器の場合には、断面積 $w\cdot t_c$ が最小となる位置での t_c の値を採用する。そ

$$\frac{0.054}{r_t}$$
D. $\leq w \leq \frac{0.16}{r_t}$ D.

即ち、前述の様に、各ボールの外径 D_a と、柱部の円周方向に亙る幅wと、上記保持器の直径方向に関するこれら各柱部の厚さtc と上記各ボールの外径 D_a との比rt $(=t_c/D_a)$ との関係を、(0.054/rt)・ $D_a \le w \le (0.16/rt)$ ・ D_a なるものに規制すれば、内側、外側各係合溝の転がり疲れ寿命と保持器の強度とを何れも十分に確保できて、等速ジョイントの外輪と車輪支持用の転がり軸受ユニットの内輪を一体化した所謂第四世代のバブユニットの実用化に寄与できる。尚、(7)式の算出に際しては、rt が0.16~0.30 の範囲になる様に設計すれば、前述の(4)式の説明から明らかな通り、バランスの良い設計を行なえる。

[0031]

【発明の実施の形態】図5は、本発明の実施の形態の1例として、本発明を第四世代のハブユニットを構成する等速ジョイントに適用した状態を示している。懸架装置に支持した状態で回転しない外輪11は、外周面にを持っる為の第一の取付フランジ12を、内周面に複列の外輪軌道13、13を、それぞれ有する。上記外輪11の内径側には、ハブ本体31と内輪32にから成るハブ33を、この外輪11と同心に配置している。このハブ33の外周面で上記各外輪軌道13、13に対向する部分には、それぞれ第一、第二の内輪軌道18、20を設けている。これら両内輪軌道18、20のうち、第一の内輪軌道18は、上記ハブ本体31の中間部のうち、上記第一の内輪軌道18を形成した部分

スの悪い設計となる。従って、保持器の柱部に負荷される荷重に基づく応力は、最悪条件で50kgf/mm²以上にすべきである。尚、以上は、柱部30、30に働く引っ張り荷重のみを考慮した。但し、これら各柱部30、30の付け根部分、即ち前記リム部46との接続部には大きな曲げモーメントも負荷されるので、この接続部の隅尺は、十分に大きな値(ボール4の外径Daの0.4~0.5倍)にし、この接続部でも保持器が破壊しない様にする必要がある。以上の検討結果により、上記各柱部30、30に加わる応力は、次の(6)式を満たす様にすべきである。

[0030]

【数6】

して、前述した(3)~(5)式を、上記(6)式に代 入すると、次の(7)式の様になる。

【数7】

よりも内端寄り(図5の右端寄り)部分に、上記内輪3 2を外嵌している。上記第二の内輪軌道20は、この内 輪32の外周面に形成している。そして、上記各外輪軌 道13、13と上記第一、第二の内輪軌道18、20と の間に、それぞれ複数個ずつの転動体21、21を転動 自在に設ける事により、上記外輪11の内側に上記ハブ 33を、回転自在に支持している。

【〇〇32】図示の例の場合には、上述の様に、上記第

一の内輪軌道18を上記ハブ本体31の外周面に直接形 成する事により、この第一の内輪軌道18の直径を、上 記内輪32の外周面に形成した第二の内輪軌道20の直 径よりも小さくしている。又、この様に第一の内輪軌道 18の直径を第二の内輪軌道20の直径よりも小さくし た事に伴い、上記第一の内輪軌道18と対向する外側 (自動車への組み付け状態で幅方向外側となる側を含 い、図5の左側)の外輪軌道13の直径を、内側(自動 車への組み付け状態で幅方向中央側となる側を言い、図 5の右側)の外輪軌道13の直径よりも小さくしてい る。更に、この外側の外輪軌道13を形成した、外輪1 1の外半部の外径を、上記内側の外輪軌道13を形成し た部分である、上記外輪11の内半部の外径よりも小さ くしている。又、図示の例では、この様に第一の内輪軌 道18及び外側の外輪軌道13の直径を小さくした事に 伴い、これら第一の内輪軌道18と外側の外輪軌道13 との間に設ける転動体21、21の数を、上記第二の内 輪軌道20と内側の外輪軌道13との間に設ける転動体 21、21の数よりも少なくしている。

【0033】又、上記ハブ本体31の外端部外周面には、このハブ本体31に車輪を支持固定する為の第二の

取付フランジ17を、このハブ本体31と一体に設けて おり、この第二の取付フランジ17に、上記車輪を結合 する為の複数本のスタッド34の基端部を固定してい る。図示の例の場合にこれら複数本のスタッド34のピ ッチ円直径は、上述の様に外輪11の外半部の外径を、 同じく内半部の外径よりも小さくした分だけ(上記各ス タッド34の頭部35が上記外輪11の外端部外周面と 干渉しない程度に)小さくしている。尚、上記ハブ本体 31の外周面のうちで、上記第一の内輪軌道18を形成 した部分よりも軸方向内方に存在する部分の直径は、こ の第一の内輪軌道18に対応する転動体21、21の内 接円の直径よりも小さくしている。この理由は、車輪用 転がり軸受ユニットの組み立て時に、外輪11の外端部 内周面に形成した外輪軌道13の内径側に複数の転動体 21、21を組み付けると共に、上記外輪11の外端部 内周面にシールリング36を内嵌固定した状態で、この 外輪11の内径側に上記ハブ本体31を挿入自在とする 為である。又、上記ハブ本体31の中間部外周面で、上 記第一の内輪軌道18と上記内輪32を外嵌した部分と の間部分には、全周に亙り凹溝状の肉盗み部37を形成 して、上記ハブ本体31の軽量化を図っている。

【0034】又、上記ハブ本体31に外嵌した内輪32 が軸方向内端側にずれ動くのを防止して、上記各外輪軌 道13、13と上記第一、第二の内輪軌道18、20と の間にそれぞれ複数個ずつ転動自在に設けた、上記各転 動体21、21に付与した予圧を適正値に保持すべく、 上記ハブ本体31の外周面内端寄り部分に全周に亙り形 成した係止凹溝38に、止め輪39を係止している。こ の止め輪39は、それぞれが半円弧状である、1対の止 め輪素子により構成している。この様な止め輪39は、 上記各転動体21、21に適正な予圧を付与すべく、上 記内輪32を上記ハブ本体31に対して軸方向外方に押 圧しつつ、その内周縁部を上記係止凹溝38に係合させ る。上記内輪32を軸方向外方に押圧している力を解除 した状態でも上記各転動体21、21に適正な予圧を付 与したままにすべく、上記止め輪39として、適切な厚 さ寸法を有するものを選択使用する。即ち、上記止め輪 39として、厚さ寸法が僅かずつ異なるものを複数種類 用意し、上記係止凹溝38の溝幅等、転がり軸受ユニッ トの構成各部材の寸法との関係で適切な厚さ寸法を有す る止め輪39を選択し、上記係止凹溝38に係合させ る。従って、この止め輪39を係止凹溝38に係止すれ ば、上記押圧している力を解除しても、上記内輪32が 軸方向内端側にずれ動くのを防止して、上記各転動体2 1、21に適切な予圧を付与したままに保持できる。

【0035】又、上記止め輪39を構成する1対の止め 輪素子が直径方向外方に変位し、この止め輪39が上記 係止凹溝38から不用意に抜け落ちる事を防止すべく、 この止め輪39の周囲に、間座40の一部を配置してい る。この間座40は、上記ハブ本体31の内端部分に設 けた、等速ジョイント用の外輪41により構成する、本発明の対象である等速ジョイント1c内に、雨水、塵芥等の異物が入り込むのを防止する為のブーツ42の外端部を外嵌支持する為のものである。又、前記外輪11の外端部内周面と上記ハブ本体31の中間部外周面との間には前記シールリング36を、上記外輪11の内端部内周面と前記内輪32の内端部外周面との間には組み合わせシールリング43を、それぞれ設けて、前記複数の転動体21、21を設置した空間44の両端開口部を塞いでいる。

【0036】更に、上記ハブ本体31の内端部で、上記 内輪32と上記ブーツ42の外端部とを外嵌した部分 は、上述の様に、等速ジョイント1cの外輪となる外輪 41としている。この外輪41の内周面には、それぞれ 断面形状が円弧形である8本の外側係合溝8、8を、そ れぞれ円周方向に対し直角方向(図5の左右方向)に形 成している。又、上記外輪41の内側には、この外輪4 1と共にツェッパ型の上記等速ジョイント1cを構成す る為の、内輪2を配置している。そして、この内輪2の 外周面に8本の内側係合溝7、7を、それぞれ円周方向 に対し直角方向に形成している。そして、これら各内側 係合溝7、7と上記各外側係合溝8、8との間に、これ ら各係合溝7、8毎に1個ずつ、合計8個のボール4 を、保持器96のポケット10a、106内に保持した 状態で転動自在に設けている。更に、上記内輪2の中心 部には、スプライン孔45を軸方向に亙り形成してい る。自動車への組み付け状態でこのスプライン孔45に は、図示しない駆動軸の端部をスプライン係合させ、上 記内輪2及び上記8個のボール4、4を介して、上記ハ ブ本体31を回転駆動自在とする。

【0037】上述の様な構成を有する第四世代のハブユニットを構成する等速ジョイントで、前記8個のボール4、4の外径 D_a (図 1 参照)と、前記保持器9bを構成する各柱部30の幅wと、これら各柱部30の厚さtc(図4 参照)と上記各ボール4、4の外径 D_a との比rtとの関係を、(0.054/rt)・ D_a \leq w \leq (0.16/rt)・ D_a を満たす範囲に規制すれば、小型でしかも優れた耐久性を有する等速ジョイントを実現できる。

[0038]

【発明の効果】本発明の等速ジョイントは、以上に述べた通り構成され作用するので、回転力伝達用のボールの数を8個とする事により外径を小さくできる構造で、しかも小型でしかも優れた耐久性を有する等速ジョイントを実現できる。従って、第四世代のハブユニットと呼ばれる、等速ジョイントを一体的に組み込んだ車輪用転がり軸受ユニットの小型・軽量化を、十分な耐久性を確保しつつ実現できる。

【図面の簡単な説明】

【図1】運転時にボールからリム部に加わる力を説明す

る為の、図6の上部に相当する断面図。

【図2】同じく大きな応力が加わる柱部を説明する為の、保持器及びボールをこの保持器の軸方向から見た図。

【図3】運転時にボールからリム部に加わる力を説明する為の、図1の上方から見た図。

【図4】保持器の柱部の断面図。

【図5】本発明の等速ジョイントを組み込んだ車輪用転がり軸受ユニットの1例を示す断面図。

【図6】従来の等速ジョイントの第1例を、ジョイント 角を付与した状態で示す断面図。

【図7】同じくジョイント角を付与しない状態で示す、図6のA-A断面に相当する図。

【図8】保持器の一部を外周側から見た図。

【図9】内側、外側両係合溝の底面の位置関係を示す模式図。

【図10】等速ジョイントを一体的に組み込んだ車輪用 転がり軸受ユニットの1例を示す断面図。

【図11】従来の等速ジョイントの第2例を、ジョイント角を付与しない状態で示す断面図。

【図12】図11のB-B断面図。

【図13】従来構造の第2例に組み込む保持器の断面図。

【図14】保持器にボールを組み込むべく、内輪と外輪とを所定方向に変位させた状態を示す断面図。

【符号の説明】

1、1a、1b、1c 等速ジョイント

2 内輪

2 a 外周面

3、3A 外輪

3 a 内周面

4 ボール

5 軸

6 軸

7 内側係合溝

7 a 底面

8 外側係合溝

8 a 底面

9、9a、9b 保持器

10、10a、10b ポケット

11 外輪

12 第一の取付フランジ

13 外輪軌道

14 第一の内輪部材

15 第二の内輪部材

16 ハブ

17 第二の取付フランジ

18 第一の内輪軌道

19 円簡部

20 第二の内輪軌道

2.1 転動体

22 係止溝

23 係止溝

24 止め輪

25 段部

26 溶接

27a、27b カパー

28a、28b シールリング

29 隔板部

30 柱部

31 ハブ本体

32 内輪

33 ハブ

34 スタッド

35 頭部

36 シールリング

37 肉盗み部

38 係止凹溝

39 止め輪

40 間座

41 外輪

42 ブーツ

43 組み合わせシールリング

4.4 空間

45 スプライン孔

46 リム部

[図1]

【図4】

[図8]

