Course Content

Course Code: 18EMAB101	Course Title: Single Variable Calculus	
L-T-P : 4-1-0	Credits: 5	Contact Hrs: 50
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 4		Exam Duration: 3

Content	Hrs	
Unit - 1		
Chapter No. 1. Introduction to Mathematical Modeling	4 hrs	
What is Mathematical modeling, why Mathematical modeling, use of Mathematical		
modeling, process of mathematical modeling, types of modeling with simple examples.		
Chapter No. 2. Functions and Graphs	5 hrs	
Functions, types of functions, transformations and models (Linear, exponential,		
trigonometric)		
MatLab: Graphing functions, Domain-Range and interpreting the models.		
Chapter No. 3. Calculus of functions and models	11hrs	
Limit of a function, Infinite limits- graph, Continuity and discontinuity, Intermediate value		
theorem statement, Roots of the equation using Bisection Method and Newton- Raphson		
$\label{eq:Method.} \textbf{Method. Interpretation of derivate as a rate of change, All the rules of derivatives (List only),}$		
Maxima, Minima, and optimization problems. Curvature and Radius of Curvature,		
Indeterminate forms, L-Hospital's rule-Examples		
MatLab: Optimization problems. Curvature problems		
Unit - 2		
Chapter No. 4. Infinite Series	06hrs	
Definition, Convergence of series, Tests of convergence – p-series, comparison test, ratio		
test Representation of a function as a power series, radius of convergence, Taylor's and		
Maclaurin's series, Applications of Taylor's and Maclaurin's series		
Chapter No. 5. Integral calculus	14hrs	
Tracing of standard curves in Cartesian form ,Parametric form and Polar form; Beta and		
gamma function, relation between them, evaluation of integrals using Beta and gamma		
functions; Applications to find arc length, Area, Volume and surface area (Cartesian,		
parametric and polar curves). Approximate integration- Trapezoidal rule, Simpson's $1/3$		
rule.		

Unit - 3

Chapter No.5 Ordinary differential Equations of first order

10hrs

- 1. Introduction to Initial Value problems. Linear and Bernoulli's equations, Exact equations and reducible to exact form. Orthogonal trajectories
- 2. Applications of first order differential equations-, growth and decay problems, mixture problems, Electrical circuits, Numerical solution to Initial Value problems-Euler's method, Modified Euler's method and Runge-Kutta method

Matlab: Solve differential equations

Text Books (List of books as mentioned in the approved syllabus)

1. James Stewart, Early Transcendental Calculus, 7ed, Cengage 2010.

References

- 1. Hughues- Hallett Gleason, Calculus Single and Multivariable, 4ed, Wiley India, 2009.
- 2. Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010