Name:		

CSCI 403 - Database Management Midterm Exam

October 26, 2015

Instructions:

This exam has 6 pages, make sure you have them all. The last page may be detached for easier reference, if desired.

There are 20 multiple choice questions below, worth 5 points each. Circle **one** answer for each question.

Questions:

These questions concern the air travel database relational schema shown in figure 1.

- 1. Which constraint would be violated if we inserted the tuple ('Knuth, Donald', 111222333) into the customer relation?
 - (a) Primary key on the customer relation.
 - (b) Primary key on the airline_customer relation.
 - (c) Foreign key on the airline_customer relation referencing customer(name).
 - (d) No constraints would be violated.
- 2. Which constraint would be violated if we updated the tuple (1337, 'Delta', 3333) in the trip_flight relation to be (1337, 'Delta', 2222)?
 - (a) Primary key on the trip_flight relation.
 - (b) Primary key on the flight relation.
 - Foreign key on the trip_flight relation referencing flight(airline, flight_no).
 - (d) No constraints would be violated.
- 3. Which constraints on the airline_customer relation would be violated if we inserted the tuple ('American', NULL, NULL) into it?
 - (a) Primary key.
 - (b) Primary and both foreign keys.
 - (c) Primary key and foreign key referencing customer(name).
 - (d) No constraints would be violated.
- 4. In general, what kind of constraints can we violate by deleting a tuple?
 - (a) Primary keys only.
 - (b) Foreign keys only.
 - (c) Both primary and foreign keys.

- 5. Which of these relational algebra expressions is valid?
 - (a) $\pi_{airline,dep_time,arr_time,fare}(\sigma_{dep_airport='CHI'}(flight))$
 - $(b) \sigma_{dep_airport='CHI'}(\pi_{airline,dep_time,arr_time,fare}(flight))$
 - (c) Both (a) and (b).
 - (d) None of the above.
- 6. How many tuples (based just on the sample data provided) would be returned by the expression $\pi_{airline,trip_id}(trip_flight)?$
 - (a) 0

(d) 6

- 7. Which of these relational algebra expressions is equivalent to $\pi_{website}(airline \bowtie_{name=airline} (\sigma_{arr_airport='DEN'}(flight)))?$
 - (a) $\pi_{website}(\sigma_{arr_airport='DEN'}(airline * flight))$ (b) $\pi_{website}(\sigma_{(arr_airport=`DEN'\ AND\ name=airline)}(airline \times flight))$ (c) Both (a) and (b).

 - (d) None of the above.
- 8. Which best describes the output of the SQL query below? SELECT airline, airplane, COUNT(*) FROM flight GROUP BY airplane;
 - (a) Report on how many airplane types there are.
 - (b) Report on how many airline and airplane pairings there are.
 - (c) Report on how many flights on each airline use each type of airplane each day.
 - (d) None of the above, query is invalid.
- 9. Which SQL query would be used to answer the question, "When will Dijkstra land in Denver?"
 - (a) SELECT DISTINCT flight.arr_time FROM flight, trip, trip_flight WHERE trip.customer = 'Dijkstra, Edsger' AND flight.arr_airport = 'DEN';
 - (b) SELECT flight.arr_time FROM flight, trip, trip_flight AS tf WHERE flight.flight_no = tf.flight_no AND flight.airline = tf.airline AND tf.trip_id = trip.trip_id AND trip.customer = 'Dijkstra, Edsger' AND flight.arr_airport = 'DEN';
 - (c) SELECT flight.arr_time FROM flight, trip, trip_flight AS tf WHERE flight.flight_no = tf.flight_no AND flight.airline = tf.airline AND tf.trip_id = trip.trip_id AND trip.customer = 'Dijkstra, Edsger';
 - (d) Any of the above.

- 10. Which of the following SQL queries is equivalent to the query below?

 SELECT website FROM airline WHERE name IN (SELECT airline FROM flight WHERE fare < 300);
 - (a) SELECT website FROM airline WHERE name NOT IN (SELECT airline FROM flight WHERE fare >= 300);
 - (b) SELECT website FROM airline, flight WHERE name = airline AND fare < 300;
 - (c) SELECT website FROM airline WHERE name = (SELECT airline FROM flight WHERE fare < 300);
 - (d) None of the above.
- 11. It turns out that the passport information for Alan Turing is incorrect, and must be corrected. Why would it be a poor solution to delete Turing's record from the customer table and then insert a corrected record?
 - (a) The operations are in the incorrect order; the insertion should come before the deletion.
 - (b) The deletion would either cause a key constraint violation, or worse (if the key was set up this way), would silently delete Turing's frequent flier information from airline_customer.
 - (c) Both (a) and (b).
 - (d) None of the above, it is a brilliant solution.

These questions concern the WidgetCo entity-relationship diagram in figure 2.

- 12. Which of the following statements about WidgetCo's supply chain is most likely true?
 - (a) Each supplier contributes a single widget to each of WidgetCo's products.
 - (b) Assemblies may be made of multiple widgets; some widgets are used in more than one assembly.
 - (c) Each widget is used in no more than a single WidgetCo product.
 - (d) WidgetCo markets assemblies as different products in different markets.
- 13. Considering the relationship sells, what would be the best choice to map the relationship into a relational schema?
 - (a) Make one relation combining attributes from supplier and widget.
 - (b) Add a column widget_id into the supplier relation and make it a foreign key back to the id attribute of widget.
 - (c) Add a column supplier_id into the widget relation and make it a foreign key back to the id attribute of supplier.
 - (d) Nothing needs to be done to capture the relationship in the schema.
- 14. Considering the relationship is part of, what would be the best choice to map the relationship into a relational schema?
 - (a) Make one relation combining attributes from assembly and widget.
 - (b) Add a column widget_id into the assembly relation and make it a foreign key back to the id attribute of widget.
 - (c) Add a column assembly_id into the widget relation and make it a foreign key back to the id attribute of assembly.
 - Make a cross-reference relation containing columns widget_id and assembly_id as foreign keys back to the widget and assembly relations, and use both columns as the primary key for the new relation.

- 15. Suppose WidgetCo decides they can improve their bottom line by taking competitive bids from suppliers for each type of widget. In what way should the ER diagram be modified?
 - (a) The sells relationship will become N:M, and the widget cost will become an attribute of the sells relationship.
 - (b) The sells relationship will become N:M, and the widget cost will become an attribute of the supplier entity.
 - (c) The supplier entity should be made into a weak entity identified by the sells relationship.
 - (d) No changes are necessary, the ER diagram is fine as is.
- 16. Why might the designer of the data model have decided to make product and assembly be separate entities, when there is a 1:1 relationship between them and they could be put into one relation?
 - (a) The two entities model different concepts; assembly models an item that can be manufactured, together with details about its manufacture, while product models the customer-facing product catalog.
 - (b) Not all of the possible assemblies will be part of the product catalog at all times.
 - (c) The product catalog will be updated often with changing prices and stock quantities, while the facts about a particular assembly are relatively static.
 - (d) All of the above.

These questions concern the relation and dependencies described below.

Relation fruit:

Attributes: {apple, banana, cherry, date, elderberry, fig}. Key: {apple, banana}. Dependencies: {apple, banana} \rightarrow {cherry, date, elderberry, fig} apple \rightarrow cherry apple \rightarrow date date \rightarrow elderberry fig \rightarrow date

- 17. This relation is:
 - (a) In Boyce-Codd Normal Form (BCNF).
 - (b) Is not in BCNF because it has a composite key.
 - s not in BCNF because it has a functional dependency "apple \rightarrow cherry", and apple is not a superkey.
 - (d) Is not in BCNF because it has a functional dependency "apple \rightarrow cherry", and cherry is not a superkey.
- 18. What is the closure of apple (apple⁺)?
 - (a) {apple, cherry, date}
 - (b) {apple, cherry, date, elderberry}
 - (c) {apple, banana, cherry, date, elderberry}
 - (d) {apple, banana, cherry, date, elderberry, fig}

- 19. Which of the following would be a "good" decomposition of fruit?
 - (a) R1 = {apple, cherry, date, fig}, R2 = {apple, banana, date, fig}
 - (b) $R1 = \{apple, banana\}, R2 = \{cherry, date, elderberry, fig\}$

 - (c) R1 = {date, fig}, R2 = {apple, banana, cherry, elderberry, fig} (d) R1 = {apple, banana, cherry, date}, R2 = {apple, banana, elderberry, fig}
- 20. Suppose we are given data for the fruit relation, but we suspect it doesn't conform to the constraints we were given. How might we verify whether or not {apple, banana} has duplicate values?
 - (a) Try to create a primary key constraint on (apple, banana); if there are duplicate values, the key creation will fail.
 - (b) Run the query SELECT DISTINCT apple, banana FROM fruit;. If the query returns fewer rows than in the data file given (or than a SELECT COUNT(*) FROM fruit; query), there are duplicate values.
 - (c) Run the query SELECT apple, banana FROM fruit GROUP BY apple, banana HAVING count(*) > 1; and see if any rows are returned.
 - Any of the above.

flight: Primary Key (airline, flight_no), Foreign Key (airline) on airline(name)

airline	flight_no	dep_airport	arr_airport	dep_time	arr_time	fare	airplane
Southwest	473	DEN	RDU	10:10	14:35	270	B737
Southwest	474	RDU	DEN	15:45	17:15	295	B737
Delta	1010	LAX	CHI	6:45	13:05	310	A320
Delta	3333	CHI	LAX	12:50	16:15	355	B777
Delta	702	CHI	JFK	16:00	20:20	260	RJ145
Delta	910	JFK	CHI	8:35	11:20	260	RJ145

airline: Primary Key (name)

name	website
Southwest	southwest.com
Delta	delta.com
American	aa.com

customer: Primary Key (name)

name	$passport_no$
Turing, Alan	273001431
Hopper, Grace	300420023
Dijkstra, Edsger	918340799

trip: Primary Key (trip_id), Foreign Key (customer) on customer(name)

trip_id	customer	from_city	to_city	departure_date	return_date
1337	Hopper, Grace	New York	Los Angeles	2015-10-26	2015-11-4
1338	Dijkstra, Edsger	Raleigh/Durham	Denver	2015-10-26	2015-11-2

airline_customer:

Primary Key (airline, customer), Foreign Key (airline) on airline(name), Foreign Key (customer) on customer(name)

airline	customer	freq_flier_id
Southwest	Hopper, Grace	10001
Southwest	Dijkstra, Edsger	71042
American	Turing, Alan	10393992
Delta	Hopper, Grace	272100-442

${\bf trip_flight}:$

Primary Key (trip_id, airline, flight_no), Foreign Key (trip_id) on trip(trip_id), Foreign Key (airline, flight_no) on flight(airline, flight_no)

trip_id	airline	flight_no
1337	Delta	910
1337	Delta	3333
1337	Delta	1010
1337	Delta	702
1338	Southwest	474
1338	Southwest	473

Figure 1: Relational schema and sample tuples for a (vastly simplified) air travel database

Figure 2: ERD for WidgetCo supply chain