Constrained delaunay tetrahedralization

Pranav Kant Gaur

January 21, 2014

Abstract

This document describes work of the author to develop and integrate module for *Constrained Delaunay tetrahedralization* into an *inhouse* developed data visualization framework **AnuVi**.

1 Problem definition

The problem can be decomposed into:

- 1. Understanding Constrained Delauney tetrahedralization problem
- 2. Studying other solutions
- 3. Selecting and implementing the solution most suited to the $\it real$ problem at hand

2 Analysing subparts of the problem

In this section, individual components of the problem will be analysed in detail.

2.1 Constrained Delaunay tetrahedralization

Input:

- 1. Set of points, $P \in \mathbb{R}^3$ over euclidean space
- 2. Set of segments, $S = \{(p_1, p_2) | p_1, p_2 \in P\}$ called constraint segments

Problem:

Compute connectivity over points in P called *volume mesh* say M, such that any tetrahedron T in M satisfies *empty sphere* criterion and M must *preserve* constraint segments.

2.1.1 Empty sphere criterion

It simply states that for any tetrahedron T in CDT, there must not be any vertex lying inside the circumsphere of T. If there are more than 4 vertices sharing a circumsphere then CDT for those set of points and constraint segments will not be unique.

2.2 Studying proposed solution(s)

In this work, author will implement and analyze CDT method described in paper 'Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations' by Hang Si and Klaus Gärtner.