UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE INFORMÁTICA BACHARELADO EM ENGENHARIA DE COMPUTAÇÃO

TELMO FRIESEN

CLASSIFICAÇÃO DE OBJETOS METÁLICOS E MEDIDA DE SUA RESPECTIVA POSIÇÃO ANGULAR

TRABALHO DE CONCLUSÃO DE CURSO

CURITIBA

TELMO FRIESEN

CLASSIFICAÇÃO DE OBJETOS METÁLICOS E MEDIDA DE SUA RESPECTIVA POSIÇÃO ANGULAR

Trabalho de Conclusão de Curso apresentado ao Departamento Acadêmico de Informática como requisito parcial para obtenção do grau de Engenheiro no Bacharelado em Engenharia de Computação da Universidade Tecnológica Federal do Paraná.

Orientador: Gustavo Benvenutti Borba

CURITIBA

AGRADECIMENTOS

Agradeço primeiramente à Deus pela inspiração para realização deste trabalho. Agradeço a meus pais pelo amor e dedicação ao me dar a oportunidade de cursar Engenharia de Computação. E finalmente agradeço ao professor Gustavo Benvenutti Borba pela orientação do trabalho.

RESUMO

FRIESEN, Telmo. Classificação de objetos metálicos e medida de sua respectiva posição angular. 52 f. Trabalho de Conclusão de Curso – Bacharelado em Engenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba, 2013.

Técnicas de visão computacional podem ser ferramentas úteis para a automação de linhas de produção em tarefas como, por exemplo, a fabricação de componentes eletrônicos, a inspeção do acabamento em objetos metálicos, a produção de circuitos impressos, entre outros. Muitas vezes, existem etapas da produção em indústrias metalúrgicas, nas quais se necessita identificar objetos metálicos e sua respectiva orientação angular, seja para análise, separação ou mesmo somente para classificação desses objetos. O objetivo deste trabalho é desenvolver um sistema capaz de classificar objetos metálicos e medir seu respectivo ângulo de rotação com relação ao eixo x do plano cartesiano, sendo os objetos previamente conhecidos pelo sistema utilizando-se técnicas de aprendizagem de máquina. O desenvolvimento do projeto é dividido em três etapas. A primeira etapa consiste no estudo de técnicas de segmentação de imagem e implementação no software MATLAB. A segunda etapa consiste no estudo de técnicas de descrição de imagens e também implementação no MATLAB. Finalmente, na terceira etapa é implementado no MATLAB um sistema de redes neurais capazes de classificar o objeto e medir seu ângulo. Para cada etapa do desenvolvimento do projeto adota-se a metodologia de desenvolvimento em espiral, onde a cada ciclo de desenvolvimento são agregadas novas funcionalidades ao sistema. Para o teste e a validação do sistema é desenvolvido um ambiente de testes, onde objetos especificamente selecionados são posicionados de forma automática, possibilitando a captura de imagens do objeto em diversas posições angulares. O sistema é dividido em três módulos: segmentação, descrição e classificação dos objetos. Após a aquisição da imagem do objeto a ser classificado o módulo de segmentação seleciona a área de interesse da imagem. No módulo de descrição são extraídas características da área de interesse da imagem, as quais são fornecidas ao terceiro módulo do sistema que classifica o objeto e mede a sua respectiva orientação angular. Portanto, o resultado do trabalho é um sistema capaz de classificar objetos e medir o ângulo desses objetos utilizando técnicas de processamento de imagens e aprendizado de máquina.

Palavras-chave: Processamento de Imagens, Análise de Componentes Principais, Descritores de Fourier, Classificação de Objetos, Reconhecimento de Padrões, Redes Neurais

ABSTRACT

FRIESEN, Telmo. Classification of metallic objects and measure of their respective angular position. 52 f. Trabalho de Conclusão de Curso – Bacharelado em Engenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba, 2013.

TODO: TRADUZIR

Keywords: Image Processing, Principal Components Analysis, Fourier Descriptors, Object Classification, Pattern Recognition, Neural Networks

LISTA DE FIGURAS

FIGURA 1 – IMAGENS COM E SEM RUÍDO E SEUS RESPECTIVOS HISTOGRA	A-
MAS	S-
PECTIVOS HISTOGRAMAS	
FIGURA 3 – EXEMPLOS DE ELEMENTOS ESTRUTURANTES	13
FIGURA 4 - IMAGEM BINÁRIA, ELEMENTO ESTRUTURANTE E OPERAÇÃ	
DE <i>B</i> EM <i>A</i>	14
FIGURA 5 – EXEMPLO DE EROSÃO DO CONJUNTO A POR B	
FIGURA 6 – EXEMPLO DE DILATAÇÃO DO CONJUNTO A POR B	15
FIGURA 7 – CONJUNTO A	
FIGURA 8 – CONJUNTO A o B.	17
FIGURA 9 – CONJUNTO A • B	
FIGURA 10 - CONJUNTO A, DISCO MÁXIMO CENTRADO EM DIVERSOS POI	N-
TOS Z E ESQUELETO COMPLETO	18
FIGURA 11 – EXEMPLO DE ESQUELETONIZAÇÃO E PODA	19
FIGURA 12 – IMAGENS DE EXEMPLO E SUAS RESPECTIVAS MATRIZES DE CO	
VARIÂNCIA	21
FIGURA 13 – IMAGENS DE EXEMPLO E SEUS RESPECTIVOS AUTOVETORES	. 22
FIGURA 14 – IMAGENS NORMALIZADAS	23
FIGURA 15 – REPRESENTAÇÃO DA ÁREA PARA CÁLCULO DO MOMENTO D	ÞΕ
INÉRCIA	
FIGURA 16 – IMAGEM ORIGINAL E IMAGENS RECONSTITUÍDAS UTILIZAND	
N DESCRITORES DE FOURIER	27
FIGURA 17 – MODELO DE PERCEPTRON	29
FIGURA 18 – GRÁFICO DA FUNÇÃO DE ATIVAÇÃO SIGMOIDE	30
FIGURA 19 – MODELO DE <i>MULTI-LAYER FEEDFORWARD NETWORK</i>	31
FIGURA 20 – ESTRUTURAS DE REDES NEURAIS E SUA RESPECTIVA CAPAC	
DADE DE DECISÃO	
FIGURA 21 – VISÃO GERAL DO SISTEMA DESENVOLVIDO	
FIGURA 22 – PRIMEIRA ETAPA DA SEGMENTAÇÃO	39
FIGURA 23 – SEGUNDA ETAPA DA SEGMENTAÇÃO	40
FIGURA 24 – PRIMEIRA ETAPA DA DESCRIÇÃO	41
FIGURA 25 – ETAPA DE CLASSIFICAÇÃO	43
FIGURA 26 – IMAGENS NORMALIZADAS PARA DIFERENTES ENTRADAS D	Ю
MESMO OBJETO.	44
FIGURA 27 – SEGUNDA ETAPA DA DESCRIÇÃO	44
FIGURA 28 – REPRESENTAÇÃO DO AUTOVETOR (EM VERMELHO), DOS E	
XOS DA IMAGEM (EM AMARELO) E DO EIXO DO OBJETO (EM AZI	UL). 46
FIGURA 29 – SEGUNDA ETAPA DA CLASSIFICAÇÃO	47

SUMÁRIO

1 INTRODUÇÃO	7
1.1 MOTIVAÇÃO E JUSTIFICATIVA	7
1.2 OBJETIVOS	7
1.3 METODOLOGIA	8
1.4 ESTRUTURA DO DOCUMENTO	8
2 FUNDAMENTAÇÃO TEÓRICA	9
2.1 SEGMENTAÇÃO	9
2.1.1 Subtração de fundo	9
2.1.2 Limiarização	10
Limiarização global pelo método de Otsu	11
2.1.3 Operações morfológicas básicas	12
Erosão	14
Dilatação	15
Abertura e Fechamento	16
2.1.4 Esqueletonização	17
Poda (Pruning)	19
2.1.5 Normalização	20
Matriz de covariâncias	20
Autovetores e autovalores	21
Analise de componentes principais	21
Normalização	22
2.2 DESCRIÇÃO	23
2.2.1 Propriedades de regiões	23
Área	24
Área convexa	24
Área Preenchida	24
Solidez	24
Extensão	24
Excentricidade	24
Tamanho do eixo principal e eixo secundário	25
Número de Euler	25
Centroide	25
2.2.2 Descritores de <i>fourier</i>	26
2.3 CLASSIFICAÇÃO	28
	28
Treinamento de perceptrons	32
Treinamento de multi-layer perceptrons	34
2.4 CONSIDERAÇÕES	36
3 DESENVOLVIMENTO	37
3	38
3.2 SEGMENTAÇÃO: ETAPA 2	40

3.3 DESCRIÇÃO: ETAPA 1	
3.4 CLASSIFICAÇÃO	. 42
3.5 DESCRIÇÃO: ETAPA 2	. 43
3.6 ESTIMATIVA DE ÂNGULO	. 45
3.7 CONSIDERAÇÕES	. 48
4 TESTES E ANÁLISE DE RESULTADOS	
4.1 AMBIENTE DE TESTES	. 49
4.2 TESTES	. 49
4.3 CONSIDERAÇÕES	. 49
5 CONSIDERAÇÕES FINAIS	
5.1 CONSIDERAÇÕES FINAIS	
5.2 TRABALHOS FUTUROS	
REFERÊNCIAS	. 51

1 INTRODUÇÃO

Técnicas de visão computacional podem ser ferramentas úteis para a automação de linhas de produção em tarefas como, por exemplo, a fabricação de componentes eletrônicos (LIN, 2008), (LIN, 2007) a inspeção do acabamento em objetos metálicos (ZHENG; KONG; NAHAVANDI, 2002), a produção de circuitos impressos (MAR; YARLAGADDA; FOOKES, 2011), (ZENG; MA; ZHENG, 2011), entre outros.

Muitas vezes, existem etapas da produção em indústrias metalúrgicas, nas quais se necessita identificar objetos metálicos e sua respectiva orientação angular, seja para análise, separação ou mesmo somente para classificação desses objetos.

A grande quantidade de objetos distintos que podem estar em uma mesma linha de produção ou linha de montagem podem confundir os trabalhadores, estando estes portanto sujeitos a erros e falhas. A identificação automática de objetos, assim como a identificação automática de sua posição, tendem a diminuir o erro cometido na classificação ou reposicionamento manual para cada objeto. Diminuindo o erro de classificação diminui-se consequentemente o custo gerado por uma linha de montagem parada e dispensa-se a necessidade de parte dos operadores.

1.1 MOTIVAÇÃO E JUSTIFICATIVA

A principal motivação para o desenvolvimento deste projeto é a posterior aplicação em uma linha de produção real. Espera-se que a utilização do projeto reduza os custos operacionais da linha de produção, diminua a margem de erro e aumente a velocidade da produção. A aplicação específica do projeto não será detalhada devido ao posterior interesse comercial do autor do projeto.

1.2 OBJETIVOS

O objetivo geral deste trabalho é desenvolver um sistema capaz de classificar objetos metálicos e medir seu respectivo ângulo de rotação com relação ao eixo x do plano cartesiano, sendo os ob-

jetos previamente conhecidos pelo sistema utilizando-se técnicas de aprendizagem de máquina.

Para tanto, temos como objetivos específicos três objetivos que possibilitarão o cumprimento do objetivo geral. O primeiro objetivo específico é analisar e aplicar técnicas de segmentação de imagens, como algoritmos de detecção de bordas, algoritmos de limiarização, segmentação baseada em crescimento de regiões. O segundo objetivo é analisar e aplicar técnicas de descrição de imagens, como algoritmos de descrição de contornos, descrição de regiões, entre outros. O terceiro objetivo é o emprego de uma técnica de aprendizagem de máquina, como redes neurais, que possibilite a classificação de objetos previamente conhecidos pelo sistema.

1.3 METODOLOGIA

O desenvolvimento do projeto é dividido em três etapas. A primeira etapa consiste no estudo de técnicas de segmentação de imagem e implementação no software MATLAB. A segunda etapa consiste no estudo de técnicas de descrição de imagens e também implementação no MATLAB. Finalmente, na terceira etapa é implementado no MATLAB um sistema de redes neurais capazes de classificar o objeto e medir seu ângulo. Para cada etapa do desenvolvimento do projeto adota-se a metodologia de desenvolvimento em espiral, onde a cada ciclo de desenvolvimento são agregadas novas funcionalidades ao sistema.

Para o teste e a validação do sistema é desenvolvido um ambiente de testes, onde objetos especificamente selecionados são posicionados de forma automática, possibilitando a captura de imagens do objeto em diversas posições angulares.

1.4 ESTRUTURA DO DOCUMENTO

Esta monografia está dividida em cinco capítulos: o primeiro corresponde à introdução, na qual são apresentadas a motivação, os objetivos e a metodologia empregada. O segundo capítulo contém a fundamentação teórica do projeto, ou seja, o estudo das técnicas e algoritmos utilizados durante o trabalho. Nesse capitulo são abordados técnicas de segmentação de imagens, de descrição e de classificação de imagens. O terceiro capítulo apresenta o desenvolvimento do projeto, detalhando cada parte do sistema desenvolvido. O quarto capitulo apresenta o ambiente de testes desenvolvido para validar o sistema, os testes efetuados e os resultados obtidos. Finalmente o quinto capítulo contém considerações finais sobre o projeto.

2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo apresenta a fundamentação teórica, ou seja, o estudo das técnicas e algoritmos utilizados durante o trabalho. O capitulo divide-se em três seções.

A seção 2.1 apresenta técnicas e algoritmos que serão úteis para para realizar a segmentação de imagens. A segmentação de imagens consiste em subdividir a imagem original em regiões ou objetos até que se tenha identificado a região ou objeto de interesse.

A seção 2.2 apresenta técnicas e algoritmos para realizar a descrição de imagens. Após a segmentação de uma imagem é necessário representar a imagem para que se possa processá-la. Existem duas abordagem para esse problema (GONZALEZ; WOODS, 2006): representação por meio de características externas da região, como bordas, ou representação por meio de características internas, como textura. A representação por características externas normalmente é utilizada quando se está interessado na forma da região. Já a representação por características internas é utilizada quando o foco está na cor ou textura da região. Nessa seção aborda-se principalmente a representação por meio de características externas de imagens.

Finalmente a seção 2.3 apresenta uma visão geral de reconhecimento de padrões utilizando redes neurais. O reconhecimento de padrões é feito tomando como base descritores, que podem ser obtidos a partir de técnicas como as vistas na seção 2.2.

2.1 SEGMENTAÇÃO

Esta seção apresenta técnicas e algoritmos para realizar a segmentação de imagens, tais como técnicas de subtração de fundo, limiarização, operações morfológicas, esqueletonização e análise de componentes principais.

2.1.1 Subtração de fundo

Técnicas de subtração de fundo são amplamente empregadas para a detecção de movimento em sequencias de imagens de vídeo. A detecção do movimento se dá pela subtração da imagem

de referencia chamada "fundo", ou em inglês *background image*, da imagem a ser segmentada. A imagem de fundo não deve possuir objetos em movimento e deve estar sempre atualizada com relação à variações de iluminação (PICCARDI, 2004).

O método mais simples de subtração de fundo consiste em subtrair a imagem de fundo da imagem a ser segmentada e em seguida aplicar um limiar no resultado. Pode-se resumir esse método na equação 1. Onde, D(t+1) é a imagem segmentada, V(x,y,t+1) é a imagem de entrada, V(x,y,t) é a imagem de referencia, ou fundo e Th é um limiar, que pode ser escolhido conforme os métodos apresentados na seção 2.1.2.

$$D(t+1) = |V(x, y, t+1) - V(x, y, t)| > Th$$
(1)

Existem outros métodos mais complexos, como *Running Gaussian average*, *Temporal median filter*, entre outros, que geram melhores resultados com fundos que não são completamente estáticos (PICCARDI, 2004), porém não são de interesse para este projeto.

2.1.2 Limiarização

Pela simplicidade na implementação e pela baixa complexidade computacional os algoritmos de limiarização são bastante utilizados na segmentação de imagens. Os métodos de limiarização consistem na partição da imagem baseado na intensidade dos pixeis. Caso a partição seja feita com base em um único limiar de intensidade a limiarização se diz global. Caso a partição seja feita levando em conta os valores de intensidade dos pixeis em uma região de vizinhança de um certo pixel, então o método é chamado de limiarização local (GONZA-LEZ; WOODS, 2006). A equação 2 descreve esse processo, g(x,y) é a imagem limiarizada, f(x,y) é a imagem de entrada e T é um limiar, que pode variar para diferentes valores de x e y caso a limiarização seja local.

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > T \\ 0 & \text{if } f(x,y) \le T \end{cases}$$
 (2)

Na figura 1 mostra-se duas imagens e seus respectivos histogramas. A figura 1c mostra o histograma para a imagem sem ruído e a figura 1d mostra o histograma para a imagem com ruido gaussiano. Como pode-se ver na figura 1c, a escolha de um valor para o limiar T para a imagem sem ruído é uma tarefa fácil, porém a escolha do limiar para a imagem com ruído da figura 1d não é mais trivial. A seguir descreve-se um métodos para obtenção de limiar para limiarização global que pode ser aplicado nos dois casos.

Figura 1: Imagens com e sem ruído e seus respectivos histogramas

Limiarização global pelo método de Otsu

O método para determinar o valor do limiar T proposto por Otsu é um método ótimo que busca maximizar a variância entre as duas classes. Isso baseia-se no fato de que classes bem divididas possuem valores de intensidades distintos, e o valor ótimo para T é o valor tal que haja maior separação entre as intensidades (GONZALEZ; WOODS, 2006).

O cálculo do valor limiar pelo método de *Otsu* se dá pela equação 3.

$$\sigma_B^2(t) = \frac{[m_G P_1(t) - m(t)]^2}{P_1(t) [1 - P_1(t)]}$$
(3)

Onde:

- $\sigma_B^2(t)$ é a variância entre as classes para um valor limiar t;
- m_G é a média global de intensidades da imagem;

- $P_1(t)$ é a probabilidade de um pixel qualquer da imagem estar na classe 1 dado o valor limiar t.
- m(t) é a média acumulada das intensidades de t = 0 até a intensidade t;

Portanto, para o cálculo do valor limiar pelo método de Otsu basta encontrar o valor limiar ttal que q
 variância entre as classes, $\sigma_{B}^{2}(t),$ é máximo. A dedução da equação 3 está for
a do escopo deste projeto, mas pode ser encontrada em (GONZALEZ; WOODS, 2006).

Na figura 2 mostram-se as imagens da figura 1 limiarizadas pelo método de *Otsu* e seus respectivos valores de limiarização.

(b) Imagem com ruido limiarizada

- (c) Histograma da imagem sem ruido com (d) Histograma da imagem com ruido o valor do limiar T
 - com o valor do limiar T

Figura 2: Imagens limiarizadas pelo método de Otsu e seus respectivos histogramas Fonte: Autoria própria

2.1.3 Operações morfológicas básicas

Operações morfológicas como abertura e fechamento podem ser úteis para filtrar imagens. Principalmente para filtrar imagens binárias onde a operação de fechamento pode ser aplicada para diminuir ruido.

Para o estudo das operações morfológicas de abertura e fechamento precisa-se primeiramente esclarecer alguns pontos:

- Podemos representar imagens binárias como sendo um conjunto de pixeis no espaço Z^2 , onde cada pixel é representado por uma tupla (x,y) e x e y são as coordenadas do pixel.
- A translação de um conjunto B para um ponto $z=(z_1,z_2)$, denotado por $(B)_z$ é o conjunto de pontos em B com as respectivas coordenas (x,y) tendo sido substituídas pela coordenadas $(x+z_1,y+z_2)$.
- Elemento estruturante é um conjunto de pixeis que é utilizado para fazer operações sobre uma imagem. Cada elemento estruturante possui um pixel de origem. A figura 3 mostra exemplos de elementos estruturantes e suas respectivas origens.

Figura 3: Exemplos de elementos estruturantes.

Fonte: Autoria própria

• O elemento estruturante pode ser utilizado para fazer operações sobre uma imagem binária. Considere por exemplo a operação no conjunto *A*, feita pelo elemento estruturante *B* (figuras 4a e 4b): Cria-se um novo conjunto *C* sobrepondo *B* em *A* da maneira que a origem de *B* passe por todos os pixeis de *A*. Em cada ponto que a origem de *B* passa verifica-se se *B* está completamente contido em *A*. Se estiver marca-se esse ponto no conjunto *C*. A figura 4c mostra o resultado da operação, ou seja, o conjunto *C*.

(c) C, resultado da operação de B em A

Figura 4: Imagem binária, elemento estruturante e operação de *B* em *A* **Fonte: Autoria própria**

A seguir apresentam-se as operações de erosão e de dilatação, que são necessárias para as operações de abertura e fechamento que são apresentadas na sequencia.

Erosão

Sendo A e B conjuntos no espaço Z^2 , a erosão do conjunto A pelo elemento estruturante B, denotada por $A \ominus B$, é definida na equação 4 (GONZALEZ; WOODS, 2006).

$$A \ominus B = \{ z \mid (B)_z \subseteq A) \} \tag{4}$$

Ou seja, a erosão de A por B é o conjunto de todos os pontos z tal que B, transladado por z, está completamente contido em A. Pode-se ver melhor esse processo na figura 5, onde o conjunto A é erodido pelo elemento estruturante B formando o conjunto $A \ominus B$.

Figura 5: Exemplo de erosão do conjunto A por B.

Dilatação

Sendo A e B conjuntos no espaço Z^2 , a dilatação do conjunto A pelo elemento estruturante B, denotada por $A \oplus B$, é definida na equação 5 (GONZALEZ; WOODS, 2006).

$$A \oplus B = \{ z \mid \left[(\hat{B})_z \cap A \right] \subseteq A \} \tag{5}$$

Onde \hat{B} é o conjunto B espelhado. Quando o elemento estruturante é simétrico então $\hat{B} = B$.

A equação 5 diz que a dilatação do conjunto A pelo elemento estruturante B é o conjunto de todos os pontos z tal que se \hat{B} e A se sobrepõem em pelo menos um ponto, então z faz parte de $A \oplus B$. Pode-se ver melhor esse processo na figura 6, onde o conjunto A é dilatado pelo elemento estruturante B formando o conjunto $A \oplus B$.

Figura 6: Exemplo de dilatação do conjunto A por B.

Fonte: (GONZALEZ; WOODS, 2006)

Abertura e Fechamento

A abertura do conjunto *A* pelo elemento estruturante *B* é definida pela equação 6 (GONZA-LEZ; WOODS, 2006).

$$A \circ B = (A \ominus B) \oplus B \tag{6}$$

O fechamento do conjunto *A* pelo elemento estruturante *B* é definido pela equação 7 (GONZALEZ; WOODS, 2006).

$$A \bullet B = (A \oplus B) \ominus B \tag{7}$$

Na figura 8 pode-se ver o resultado da execução da operação de abertura em cima do conjunto *A* da figura 7. Em seguida na figura 9 pode-se ver o resultado da execução da operação de fechamento em cima do mesmo conjunto da figura 7. Como pode-se ver, a operação de abertura "abre" a imagem em pontos estreitos, já a operação de fechamento "fecha" a imagem onde existem cavidades pequenas.

Figura 7: Conjunto *A*.

Fonte: (GONZALEZ; WOODS, 2006)

Figura 8: Conjunto $A \circ B$.

Figura 9: Conjunto $A \bullet B$.

Fonte: (GONZALEZ; WOODS, 2006)

2.1.4 Esqueletonização

Define-se esqueleto conforme segue (GONZALEZ; WOODS, 2006).

Se S(A) é o esqueleto de A e $(D)_z$ o maior disco centrado em z e contido em A, pode se dizer que :

• Se z faz parte de S(A) então não é possível encontrar um disco maior que $(D)_z$, não necessariamente centrado em z, que contenha $(D)_z$ e que esteja completamente incluso em A;

• O disco $(D)_z$ toca a borda de A em pelo menos dois pontos distintos.

Isso pode ser visto melhor na figura 10.

Figura 10: Conjunto *A*, disco máximo centrado em diversos pontos *z* e esqueleto completo. **Fonte:** (GONZALEZ; WOODS, 2006)

Pode-se definir também o esqueleto S(A) em função de erosões e aberturas sucessivas como mostrado nas equações 8, 9, 10 e 11 (GONZALEZ; WOODS, 2006).

$$S(A) = \bigcup_{k=0}^{K} S_k(A) \tag{8}$$

Com:

$$S_k(A) = (A \ominus kB) - (A \ominus kB) \circ B \tag{9}$$

Onde B é um elemento estruturante e $(A \ominus kB)$ indica k sucessivas erosões de A:

$$(A \ominus kB) = ((...((A \ominus B) \ominus B) \ominus ...) \ominus B)$$

$$(10)$$

Sendo K o ultimo passo antes de A erodir para um conjunto vazio. Ou seja:

$$K = \max\{k \mid (A \ominus kB) \neq \varnothing\} \tag{11}$$

Poda (Pruning)

Aplicando-se o método de esqueletonização mencionado anteriormente em figuras reais, como a figura 11a, pode-se obter resultados como a figura 11b. Devido a esse tipo de resultados aplica-se após a esqueletonização um método de poda. A poda do esqueleto consiste em avaliar o tamanho dos ramos gerados, caso sejam menores que um valor limiar são removidos. A figura 11c mostra o método de poda aplicado com um limiar de 20 pixeis.

(a) Imagem de entrada

- (b) Imagem esqueletonizada
- (c) Imagem esqueletonizada e podada

Figura 11: Exemplo de esqueletonização e poda.

Fonte: Autoria própria

2.1.5 Normalização

A análise de componentes principais pode ser empregada para normalizar imagens em função de rotação, translação e tamanho (GONZALEZ; WOODS, 2006). Explica-se a seguir alguns conceitos necessários para efetuar a normalização utilizando a analise de componentes principais e em seguida o processo de normalização utilizando componentes principais.

Matriz de covariâncias

Considere as imagens da figura 12. Os pontos da imagem, podem ser considerados como sendo vetores $x_k = (x_1, x_2)^T$, onde x_1 e x_2 são as coordenadas do ponto x_k , e T indica a matriz transposta. Os pontos x portanto formam uma população de vetores no espaço Z^2 . Sendo assim pode-se calcular a matriz de covariâncias C_x e o vetor da média m_x para a população de vetores.

Para K amostras de uma população aleatória pode-se aproximar a média m_x pela equação 12 (GONZALEZ; WOODS, 2006).

$$m_{\mathcal{X}} = \frac{1}{K} \sum_{k=1}^{K} x_k \tag{12}$$

Agora utilizando a média m_x , pode-se aproximar a matriz de covariâncias C_x pela equação 13 (GONZALEZ; WOODS, 2006).

$$C_{x} = \frac{1}{K} \sum_{k=1}^{K} (x_{k} x_{k}^{T}) - m_{x} m_{x}^{T}$$
(13)

Na matriz de covariâncias os elementos c_{ii} de C_x representam a variância entre os valores na coordenada x_i . Os elementos c_{ij} representam a covariância entre os valores na coordenada x_i com os valores da coordenada x_j . Portanto, a matriz de covariância possui informações que dizem respeito à distribuição dos pixeis da imagem.

Pode-se ver isso melhor nas matrizes de covariância apresentadas nas figuras 12d, 12e e 12f que foram calculadas para as imagens das figuras 12a, 12b e 12c respectivamente. Percebe-se que na figura 12d a maior variância ocorre entre os elementos da coordenada x_1 , visto que c_{11} possui o maior valor na matriz de covariâncias. Semelhantemente percebe-se que na figura 12e a maior variância ocorre entre os elementos da coordenada x_2 . A terceira imagem, figura 12f, mostra uma distribuição mais continua em x_1 e x_2 , mas valores maiores para as covariâncias entre os elementos das coordenadas x_1 e x_2 . A terceira imagem mostra portanto o relacionamento entre as duas coordenadas da imagem: quando x_1 aumenta, x_2 tende a aumentar também,

e vice-versa.

Figura 12: Imagens de exemplo e suas respectivas matrizes de covariância.

Fonte: Autoria própria

Autovetores e autovalores

Um autovetor de uma matriz A é um vetor não nulo v, que quando a matriz é multiplicada por v tem-se um vetor que é múltiplo de v por uma constante λ denominada autovalor. Ou seja, a equação 14 é verdadeira (LEON, 1998).

$$Av = \lambda v \tag{14}$$

Algumas propriedades de autovetores:

- Os autovetores podem ser calculados apenas para matrizes quadradas (LEON, 1998);
- Para uma matriz *nxn* existem *n* autovetores (LEON, 1998);
- Todos os autovetores são ortogonais entre si (GONZALEZ; WOODS, 2006).

Analise de componentes principais

Pode-se demonstrar que o autovetor associado ao maior autovalor de uma matriz de covariâncias aponta na direção de maior variação dos dados (GHAOUI, 2013). Pode-se demonstrar também que o segundo autovetor, associado ao segundo maior autovalor, aponta na segunda direção de maior variação dos dados. A esses autovetores se dá o nome de componentes principais da imagem.

Considere por exemplo as imagens da figura 13. Calculamos os autovetores para cada uma das imagens tomando como base as matrizes de covariância apresentadas nas figuras 12d, 12e e 12f. Os autovetores podem ser vistos nas figuras 13d, 13e e 13f. O autovetor associado ao maior autovalor está na primeira linha de cada matriz e o segundo autovetor está na segunda linha. Os autovetores foram representados sobre as respectivas imagens nas figuras 14a, 14b e 14c.

Figura 13: Imagens de exemplo e seus respectivos autovetores.

Fonte: Autoria própria

Vê-se portanto que é possível definir um eixo absoluto para cada imagem com base na distribuição dos pixeis sobre a imagem.

Normalização

A normalização das imagens pode ser feita por meio de uma matriz de transformação que mapeia valores do sistema de coordenadas original da imagem para o sistema de coordenadas formado pelos autovetores da imagem (GONZALEZ; WOODS, 2006). A transformação em questão podes ser expressa pela equação 15.

$$y = A(x - m_x) \tag{15}$$

Onde:

- y é o valor no novo sistema de coordenadas formado pelos autovetores.
- x o valor da coordenada no sistema original.
- A a matriz de autovetores.
- m_x vetor da média.

As imagens da figura 12 podem ser vistas normalizadas na figura 14.

Figura 14: Imagens normalizadas.

Fonte: Autoria própria

Caso se deseje normalizar a imagem com relação ao tamanho pode-se dividir o valor das coordenadas y pelos autovalores correspondentes (GONZALEZ; WOODS, 2006).

2.2 DESCRIÇÃO

Esta seção apresenta técnicas e algoritmos para realizar a descrição de imagens, tais como extração de propriedades básicas de regiões e descritores de *fourier*.

2.2.1 Propriedades de regiões

Propriedades básicas de regiões, como área e excentricidade, podem ser usadas para descrever imagens. A seguir descreve-se algumas propriedades básicas de regiões, principalmente aquelas que possuem como saída um valor escalar, visto que são facilmente adicionados à um vetor descritor.

Área

A área de uma região é o número de pixeis da região (MATHWORKS, 2013e).

Área convexa

A área convexa é dada pela área do menor polígono capaz de conter a região (MATHWORKS, 2013e).

Área Preenchida

Área preenchida corresponde a área da região cujas cavidades foram todas preenchidas (MATHWORKS, 2013e).

Solidez

A solidez de uma região é dada pela razão Área / Área convexa (MATHWORKS, 2013e).

Extensão

Semelhantemente à área convexa, a extensão é dada pela razão entre a área da região (definida anteriormente) e a área do menor retângulo capaz de conter a região (MATHWORKS, 2013e).

Excentricidade

Para a obtenção da excentricidade de uma região deve-se primeiramente obter o momento de inércia de área da região (MATHWORKS, 2013e). O momento de inércia de área para uma região qualquer no sistema de coordenadas polares é definido pela equação 16:

$$J_{BB} = \int_{A} \rho^2 dA \tag{16}$$

Onde A é a área da região sobre a qual se deseja calcular o momento de inércia de área e ρ é a distância do centro do sistema de coordenadas até dA. Uma representação da área pode ser vista na figura 15.

Figura 15: Representação da área para cálculo do momento de inércia.

Fonte: (WIKIPEDIA, 2013)

A excentricidade da região é então a excentricidade da elipse que possui o mesmo momento de inércia que a área da região. A excentricidade para uma elipse com semi-eixo maior a e semi-eixo menor b é dada pela equação 17:

$$e = \sqrt{1 - \frac{b^2}{a^2}} \tag{17}$$

Tamanho do eixo principal e eixo secundário

O tamanho do eixo principal de uma região diz respeito ao tamanho do maior eixo da elipse que possui o mesmo momento de inércia de área que a área da região, conforme visto anteriormente na seção Excentricidade (MATHWORKS, 2013e). Da mesma forma o tamanho do eixo secundário diz respeito ao tamanho do menor eixo da elipse que possui o mesmo momento de inércia de área que a área da região.

Número de Euler

O número de Euler é dado pelo total de objetos desconexos da região subtraindo o total de cavidades da região (MATHWORKS, 2013e).

Centroide

O centroide de uma imagem é dado pelo centro de massa da imagem (MATHWORKS, 2013e).

2.2.2 Descritores de fourier

Considere a figura 16a. Os pixeis com valor 1 da imagem binária podem ser representados como sendo pares de coordenadas $(x_0, y_0), (x_1, y_1), (x_2, y_2), ..., (x_{K-1}, y_{K-1})$, onde K é o número de pixeis na imagem. Além disso os pixeis podem ser representados como uma sequencia $x(k) = x_k$ e $y(k) = y_k$ ou como s(k) = [x(k), y(k)] para k = 0, 1, 2, ..., K - 1. Além disso pode-se tratar as coordenadas dos pixeis como números complexos: s(k) = x(k) + jy(k).

Tem-se que a transformada discreta de *fourier* de um sinal s(k) é dado pela equação 18 (GONZALEZ; WOODS, 2006):

$$a(u) = \sum_{k=0}^{K-1} s(k)e^{-j2\pi uk/K} , u = 0, 1, 2, ..., K - 1$$
 (18)

Os coeficientes complexos a(u) da transformada discreta de *fourier* são chamados de descritores de *fourier* (GONZALEZ; WOODS, 2006).

Da mesma forma que se aplicou a transformada discreta de *fourier* para obter os descritores de *fourier* pode-se aplicar a transformada discreta inversa de *fourier* nos coeficientes complexos para obter novamente os números complexos representando as coordenadas dos pixeis (equação 19).

$$s(k) = \frac{1}{K} \sum_{u=0}^{K-1} a(u)e^{j2\pi uk/K} , k = 0, 1, 2, ..., K-1$$
 (19)

Suponha agora que ao invés de utilizar todos os descritores de *fourier* utiliza-se apenas os P primeiros descritores para reconstituir s(k). Tem-se portanto uma aproximação para s(k) dada por $\hat{s}(k)$ na equação 20.

$$\hat{s}(k) = \frac{1}{P} \sum_{u=0}^{P-1} a(u)e^{j2\pi uk/P} , k = 0, 1, 2, ..., K-1$$
 (20)

Quando os *P* coeficientes de menor frequência são escolhidos para reconstituir a imagem tem-se uma imagem aproximada da imagem original porém que mantém as principais características. Pode-se ver esse comportamento nas imagens da figura 16. A imagem da figura 16b foi forma utilizando todos os 19410 coeficientes da imagem original, a imagem 16c foi formada com 9705 coeficientes, e assim por diante, até apenas 2 coeficientes na figura 16o.

Figura 16: Imagem original e imagens reconstituídas utilizando n descritores de fourier.

Fonte: Autoria própria

2.3 CLASSIFICAÇÃO

Esta seção apresenta uma visão geral de reconhecimento de padrões utilizando redes neurais.

2.3.1 Redes neurais

Redes neurais são elementos não lineares (chamados neurônios) interconectados da mesma maneira que se acredita que os neurônios estão conectados no cérebro. Usam-se essas redes para tomadas de decisão após seus coeficientes terem sido ajustados por meio de apresentações sucessivas de conjuntos de dados de treinamento (GONZALEZ; WOODS, 2006).

Na forma mais simples no entanto a rede é um elemento linear e é composta por um único neurônio, também chamado *perceptron*. Esse neurônio então aprende uma função linear para separar dois conjuntos de dados de treinamento linearmente separáveis. A figura 17 apresenta o modelo básico para um *perceptron*. A resposta desse *perceptron* é baseada na soma ponderada das entradas, dada pela equação 21.

$$d(x) = \sum_{i=1}^{n} (\omega_{i} x_{i}) + \omega_{n+1}$$
 (21)

Os coeficientes w_i , i=1,2,...,n,n+1, são chamados de pesos e modificam a soma antes que os valores de entrada passem pelo elemento de ativação, também chamado de função de ativação. Os pesos podem ser comparados às sinapses que ocorrem no cérebro humano. No caso particular da figura 17 a saída do *perceptron* será +1 caso a entrada pertença a classe ω_1 e -1 caso a entrada pertença a classe ω_2 .

Figura 17: Modelo de perceptron.

Esse tipo de abordagem formada por um único *perceptron* não é capaz de separar mais do que duas classes e também não é capaz de separar classes que não são linearmente separáveis. Isso se dá devido ao fato de que a equação 21 quando expandida define um hiperplano em um espaço *n*-dimensional.

Utilizam-se portanto para problemas mais complexos redes de neurônios, também chamada de *multi-layer perceptron* ou *multi-layer feedforward network*. Cada neurônio é formado por uma estrutura do mesmo tipo da estrutura do *perceptron*, com a diferença de a função de ativação ser geralmente uma função sigmoide ao invés de um simples limiar. A função sigmoide pode ser vista na equação 22 e na figura 18. As saídas dos neurônios estão interconectadas com as entradas de outros neurônios. Essa estrutura pode ser vista na figura 19.

$$h_j(I_j) = \frac{1}{1 + e^{-(I_j + \theta_j)/\theta_O}}$$
 (22)

Figura 18: Gráfico da função de ativação sigmoide.

Figura 19: Modelo de multi-layer feedforward network.

Nesse tipo de rede a primeira camada, A, possui o mesmo número de neurônios que a dimensão do vetor descritor da entrada, $N_A = n$. Semelhantemente o número de neurônios da camada de saída, Q, é igual ao número de classes que a rede deve reconhecer, $N_Q = W$. A rede reconhece uma entrada como sendo parte de uma classe quando a saída da classe é um e as demais saídas são zero.

Pode-se demonstrar que redes desse tipo são capazes de separar regiões convexas no espaço *n*-dimensional de entradas utilizando duas camadas de neurônios. São também capazes de separar classes em regiões arbitrárias utilizando três camadas de neurônios (GONZALEZ; WOODS, 2006). A complexidade das regiões separadas por uma rede de três camadas se dá pelo número de neurônios em cada camada. Isso está resumido na figura 20.

Network structure	Type of decision region	Solution to exclusive-OR problem	Classes with meshed regions	Most general decision surface shapes
Single layer	Single hyperplane	(w ₂) (w ₁)		
Two layers	Open or closed convex regions	(W) (W) (W)		
Three layers	Arbitrary (complexity limited by the number of nodes)			

Figura 20: Estruturas de redes neurais e sua respectiva capacidade de decisão.

Fonte: (GONZALEZ; WOODS, 2006)

Treinamento de perceptrons

O treinamento de *perceptrons* consiste em determinar os valores adequados de ω_i para que a soma ponderada das entradas forme a saída adequada para a função de ativação. Existem diversos métodos de treinamento para determinar os valores de ω_i para um único perceptron.

Apresenta-se a seguir o método denominado delta rule ou least-mean-square.

A principal característica do método *delta rule* é que ele minimiza o erro entre a saída desejada e a saída real do *perceptron* em cada passo de treinamento. Considere a função da equação 23.

$$J(w) = \frac{1}{2}(r - w^T y)^2 \tag{23}$$

J(w) representa o erro quadrático para um dado conjunto de pesos w. O erro é calculado como sendo a diferença entre a saída desejada do *perceptron* r e a saída real dada pelo produto do vetor de pesos transposto w^T com o valor de entrada do conjunto de treinamento y.

O objetivo do treinamento pelo método delta rule é minimizar J(w) ajustando os valores dos pesos w.

Se w(k) representa o vetor de pesos no passo de treinamento k, então pode-se calcular w(k+1) de forma a reduzir o valor de J(w) utilizando a equação 24 (GONZALEZ; WOODS, 2006).

$$w(k+1) = w(k) - \alpha \left[\frac{\partial J(w)}{\partial w} \right]_{w=w(k)}$$
(24)

Onde $\alpha > 0$ é uma constante escolhida de acordo com o grau de correção que se deseja a cada passo. Da equação 23 tem se que:

$$\frac{\partial J(w)}{\partial w} = -(r - w^T y)y\tag{25}$$

Substituindo a equação 25 na equação 24 resulta na equação 26 que pode ser utilizada para o cálculo dos coeficientes w(k+1) dados os coeficientes w(k), a saída desejada r e o valor de entrada do conjunto de treinamento y.

$$w(k+1) = w(k) + \alpha [r(k) - w^{T}(k)y(k)] y(k)$$
(26)

Pode-se demonstrar que utilizando esse método para calcular os coeficientes, tem-se a redução do erro do *perceptron* em um fator de $\alpha y(k)^T y(k)$ a cada ciclo de treinamento (GON-ZALEZ; WOODS, 2006).

Treinamento de multi-layer perceptrons

O treinamento de redes multicamadas pode ser efetuado de maneira semelhante ao treinamento de um único perceptron. Considere a equação 27. O erro quadrático E_Q obtido na camada de saída é dado pela soma dos erros quadráticos em todos os perceptrons da camada de saída (perceptrons de 1 a N_Q). O erro em cada perceptron é dado pela diferença entre a saída desejada r_q , no perceptron q, e a saída obtida O_q .

$$E_Q = \frac{1}{2} \sum_{q=1}^{N_Q} (r_q - O_q)^2$$
 (27)

Novamente deseja-se minimizar o erro E_Q em cada passo de treinamento. Minimizando a equação 27 chega-se a dois casos. O primeiro é quando o *perceptron* está na última camada da rede. Nesse casos sabe-se o valor esperando na saída do perceptron, que é dado por O_q . Por outro lado quando o *perceptron* está em uma camada intermediária é necessário que primeiro se defina o erro em função de parâmetros conhecidos na rede. Esse processo foi desenvolvido por (GONZALEZ; WOODS, 2006) e a seguir apresenta-se o resultado.

Para *perceptrons* na camada de saída Q os pesos w(k+1) podem ser calculado pelas equações 28 e 29. K é a camada que precede a camada de saída Q.

$$w_q(k+1) = w_q(k) + \alpha \delta_q O_K \tag{28}$$

$$\delta_q = (r_q - O_q)h'_q(I_q) \tag{29}$$

Onde:

- $w_q(k+1)$ são os pesos atualizados do perceptron q;
- $w_q(k)$ são os pesos antigos do perceptron q;
- α > 0 é uma constante escolhida de acordo com o grau de correção que se deseja a cada passo;
- O_K são as saídas dos *perceptrons* da camada K;
- r_q é a saída esperada do perceptron, dada pelo conjunto de treinamento;
- O_q é a saída atual no perceptron q;

• $h'_q(I_q)$ é a derivada da função de ativação do perceptron q para a entrada I_q .

Para *perceptrons* em uma camada intermediária J, onde a camada seguinte é a camada P e a camada antecedente é a camada K, os pesos w(k+1) podem ser calculados pelas equações 30 e 31.

$$w_j(k+1) = w_j(k) + \alpha \delta_j O_K \tag{30}$$

$$\delta_j = h'_j(I_j) \sum_{p=1}^{N_P} \delta_P \omega_{jp}$$
 (31)

Onde:

- $w_j(k+1)$ são os pesos atualizados do *perceptron j*;
- $w_j(k)$ são os pesos antigos do perceptron j;
- α > 0 é uma constante escolhida de acordo com o grau de correção que se deseja a cada passo;
- O_K são as saídas dos *perceptrons* da camada K;
- $h'_i(I_j)$ é a derivada da função de ativação para a entrada I_j ;
- p até N_P são todos os perceptrons da camada P;
- δ_P é o valor de δ que havia sido calculado para o perceptron p da camada P quando os pesos da camada P foram atualizados.
- ω_{jp} é o valor do peso ω que havia sido calculado para o *perceptron j* em cada perceptron da camada P.

Caso a função de ativação escolhida seja a função sigmoide da equação 22, com $\theta_O = 1$, pode-se demonstrar que $h'_j(I_j)$ assume o valor da equação 32 e semelhantemente $h'_q(I_q)$ assume o valor da equação 33 (GONZALEZ; WOODS, 2006).

$$h'_{i}(I_{j}) = O_{j}(1 - O_{j});$$
 (32)

Onde:

• O_j é a saída atual no perceptron j;

$$h'_q(I_q) = O_q(1 - O_q);$$
 (33)

Onde:

• O_q é a saída atual no perceptron q;

Como se pode ver é necessário iniciar o processo de atualização dos pesos da rede pela camada de saída. Na camada de saída da rede é o único lugar onde se sabe qual é a saída que cada *perceptron* deveria ter. Para as camadas antecedentes a atualização deve ser feita em função dessas saídas. Portanto cada camada depende de parâmetros da camada seguinte na rede. Esse processo de atualização dos pesos iniciando pela ultima camada e voltando até a primeira recebe o nome de *back propagation*. O método mencionado anteriormente recebe o nome de *delta rule*, no entanto existem diversos métodos diferentes mas que utilizam a mesma estratégia de propagação das correções na rede. Todos esses métodos são classificados como métodos de *back propagation*.

2.4 CONSIDERAÇÕES

Apresentou-se nesse capitulo embasamento teórico para o desenvolvimento do projeto, abrangendo as três áreas fundamentais de sistemas de processamento de imagens: segmentação, descrição e classificação. Foram estudadas técnicas de segmentação de imagens que permitem, através da combinação de diversas delas, a identificação de regiões de interesse. Além da identificação da região de interesse foi apresentada a técnica de normalização de imagens utilizando a análise de componentes principais. Foi fornecido embasamento para efetuar a descrição de imagens utilizando propriedades de regiões, como área, solidez, posição do centroide, entre outros além dos conceitos para efetuar a descrição utilizando descritores de *fourier*. Por fim apresentou-se uma visão geral de redes neurais e foram apresentadas noções sobre treinamento de redes utilizando algoritmos do tipo *back propagation*.

3 DESENVOLVIMENTO

Este capítulo apresenta o desenvolvimento do projeto, detalhando cada parte do sistema desenvolvido. A descrição apresentada a seguir referencia os conceitos apresentados no capítulo 2. A figura 21 apresenta uma visão geral do sistema desenvolvido.

Figura 21: Visão geral do sistema desenvolvido.

Fonte: Autoria própria

O capitulo divide-se em sete seções. As primeiras seis seções apresentam com detalhes

os blocos da figura 21: A seção 3.1 e a seção 3.2 mostram como os conceitos da seção 2.1 foram aplicados para segmentar a imagem capturada. A seção 3.3 e a seção 3.5 apresentam como os descritores de *fourier* e as propriedades estudados na seção 2.2.1 foram aplicados para formar um descritor para as imagens. As seções 3.4 e 3.6 apresentam como os descritores foram utilizados para classificar e determinar o ângulo das imagens. Finalmente, na seção 3.7, algumas considerações sobre o desenvolvimento do projeto são apresentadas.

3.1 SEGMENTAÇÃO: ETAPA 1

A primeira etapa da segmentação consiste em uma série de limiarizações e filtros para localizar a região de interesse na imagem. A saída da primeira etapa é uma imagem binária contendo a região de interesse. O processo da primeira etapa pode ser visto na figura 22.

O processo inicia pela subtração da imagem RGB de fundo da imagem RGB com o objeto. Como resultado tem-se uma imagem RGB contendo as diferenças inseridas pelo objeto na imagem. Para não perder informações intrínsecas da imagem RGB no processo de conversão para escala de cinza dividem-se os canais R, G e B da imagem. Cada canal é processado separadamente. Primeiramente os canais são limiarizados utilizando o método global de *Otsu*, discutido na seção 2.1.2. Em seguida os canais são submetidos à operação morfológica de fechamento, vista na seção 2.1.3. A operação de fechamento é aplicado para reduzir o ruido do tipo pimenta (pixeis pretos espalhados aleatoriamente pela imagem). Na sequencia os três canais processados separadamente são unidos através da operação lógica OU para formar uma única imagem. Finalmente a maior região conexa da imagem é selecionada para ser a região de interesse.

Embora não se possa ver visualmente nenhum progresso significativo em alguns passos da sequencia de imagens da figura 22, a primeira etapa da segmentação necessita de todos eles. Todos os passos apresentados anteriormente garantem a robustez do sistema, fornecendo a região de interesse para a etapa seguinte.

Figura 22: Primeira etapa da segmentação.

3.2 SEGMENTAÇÃO: ETAPA 2

A segunda etapa da segmentação é responsável por normalizar a imagem. Esta etapa recebe como entrada a região de interesse e apresenta como saída duas opções de normalização, além de um autovetor e seu oposto. O processo pode ser visto na figura 23.

Figura 23: Segunda etapa da segmentação.

A região de interesse obtida da primeira etapa de segmentação é esqueletonizada e podada pelos processos descritos na seção 2.1.4. Em seguida o processo de normalização da seção 2.1.5 é aplicado.

Como dito na seção 2.1.5, o autovetor associado ao maior autovalor da matriz de covariâncias aponta na direção de maior variação dos dados. Porém o autovetor não aponta no sentido de maior variação dos dados. Empiricamente percebe-se que o autovetor aponta sempre no sentido positivo dos eixos da imagem. Esse comportamento leva a duas possíveis normalizações para cada imagem. A normalização obtida utilizando o autovetor A e a normalização pelo oposto do autovetor, A' = -A.

Essas duas opções de normalização são então apresentadas a etapa seguinte juntamente com os respectivos autovetores.

3.3 DESCRIÇÃO: ETAPA 1

Essa etapa de descrição é responsável por gerar um descritor para a imagem normalizada utilizando o autovetor A (chamada mais adiante de imagem pré-normalizada). A imagem normalizada utilizando o autovetor A' não é utilizada. A figura 24 resume o processo desta etapa.

O descritor é composto por 20 descritores de *fourier*, d1,d2,...,d20, concatenados com 9 propriedades básicas da imagem, p1,p2,...,p9. A tabela 1 detalha o descritor gerado.

Figura 24: Primeira etapa da descrição.

Tabela 1: Descritor para primeira etapa.

Descritor	Descrição
d1d20	20 descritores de fourier
p1	Área
p2	Área convexa
<i>p</i> 3	Excentricidade
p4	Número de Euler
<i>p</i> 5	Extensão
<i>p</i> 6	Área preenchida
<i>p</i> 7	Tamanho do eixo principal
p8	Tamanho do eixo secundário
<i>p</i> 9	Solidez

3.4 CLASSIFICAÇÃO

A função da etapa de classificação é tomar como entrada o descritor da imagem prénormalizada e fornecer como saída a classe a qual o objeto da imagem pertence. Além disso é responsável por dizer qual a normalização correta para a imagem. Ou seja, se a imagem normalizada corretamente utiliza o autovetor A ou o oposto A'. Esse processo é mostrado na figura 25.

Para essa tarefa foi utilizada uma rede neural de duas camadas, 29 entradas e 2N saídas. Onde N é o número de classes a serem identificadas pelo sistema. A primeira camada possui 20 perceptrons e a camada de saída possui 2N perceptrons. O número de perceptrons na primeira camada foi escolhido empiricamente. O número de saídas é 2N pois a rede deve ser capaz de identificar imagens normalizadas pelo autovetor A e imagens normalizadas pelo oposto A'. A função de ativação para as duas camadas é a função sigmoide vista na seção 2.3.1. A função sigmoide é uma boa escolha para redes de classificação pois possui uma transição rápida entre -1 e 1 para entradas de $-\infty$ a $+\infty$ (MATHWORKS, 2013d).

Para formar o conjunto de treinamento da rede é necessário que se obtenha amostras de imagens com as respectivas classes. Em seguida deve-se executar todos os passos até obter as duas possibilidades de normalização de cada imagem, e os descritores tomando a normalização dada pelo autovetor A. O descritor é então fornecido como entrada da rede e a saída da rede é dada pelo autovetor que leva a normalização correta da imagem. Por exemplo, se a normalização correta da classe n é dada pelo autovetor A, a posição 2n da saída é um e o restante zero. Se a normalização correta é dada pelo oposto do autovetor, A', então a posição "2n+1" é um e o restante zero. Esse último passo necessita ser executado manualmente para que se possa

"ensinar" a rede qual a normalização correta para cada classe.

A rede é treinada utilizando um algoritmo de *back propagation* conforme visto na seção 2.3.1. O algoritmo utilizado para esta rede em específico utiliza o método chamado *Bayesian regularization*. O método em questão não é aprofundado aqui. A escolha foi baseada na documentação presente em (MATHWORKS, 2013a) que afirma que redes treinadas utilizando essa otimização possuem boa capacidade de generalização.

Figura 25: Etapa de classificação.

Fonte: Autoria própria

3.5 DESCRIÇÃO: ETAPA 2

A segunda etapa da descrição recebe como entrada a imagem normalizada pelo autovetor correto. A função desta etapa é gerar um descritor para a imagem normalizada, que auxiliará na etapa de estimativa do ângulo do objeto.

Tanto esta etapa, quanto a estimativa de angulo descrita na próxima seção, seriam desne-

cessárias em ambientes ideais. Veja por exemplo as imagens da figura 26. Todas as imagens foram obtidas para um mesmo objeto, sujeito às mesmas condições gerais, mas em rotações diferentes. Mudanças pequenas, como ruído ou pequenas diferenças na iluminação, influenciaram a direção do autovetor calculado produzindo resultados diferentes.

Figura 26: Imagens normalizadas para diferentes entradas do mesmo objeto.

Fonte: Autoria própria

A diferença entre o autovetor calculado para cada caso é tratada na etapa de estimativa de ângulo que recebe como entrada o descritor calculado aqui. O descritor portanto deve conter informações relacionadas à posição do objeto na imagem normalizada. Utilizou-se para essa tarefa um descritor contendo 10 descritores de *fourier* juntamente com as coordenadas do centroide da imagem. O descritor pode ser visto na figura 27.

Figura 27: Segunda etapa da descrição.

3.6 ESTIMATIVA DE ÂNGULO

Finalmente a última etapa recebe como entrada um descritor da imagem normalizada, a classe a qual pertence o objeto e o autovetor utilizado na normalização. O objetivo dessa etapa é fornecer o ângulo de rotação do objeto na imagem.

Considere a figura 28. Os eixos x, y são as coordenadas da imagem. O eixo x' é o eixo que foi assumido como sendo o zero para o objeto da figura. A é o autovetor calculado na etapa de normalização. Pela figura tem-se então a equação 34.

$$\beta = \alpha - k \tag{34}$$

Onde:

- β é o ângulo entre as coordenadas da imagem e o zero do objeto. Ou seja, o valor que se deseja obter;
- α é o ângulo dado pelo autovetor;
- *k* é a diferença entre o angulo do autovetor e o zero do objeto. Este valor pode variar de normalização para normalização, conforme visto na figura 26.

Figura 28: Representação do autovetor (em vermelho), dos eixos da imagem (em amarelo) e do eixo do objeto (em azul).

É necessário portanto determinar o valor de k para cada imagem normalizada. Utilizouse para essa tarefa uma segunda rede neural. Essa rede recebe como entrada um descritor da imagem normalizada e informa na saída o valor de k. Para cada classe é gerada uma rede diferente, visto que as variações são diferentes de classe para classe. Após obter o valor k da rede basta utilizar a equação 34 para determinar o angulo β do objeto. Esse processo está resumido na figura 29.

Figura 29: Segunda etapa da classificação.

A rede utilizada nessa etapa possui duas camadas, 12 entradas e uma saída. A primeira camada é formada por 7 *perceptrons*. A melhor quantidade de perceptrons foi determinada empiricamente. A saída da rede possui um único perceptron pois a única saída da rede é o valor de k. A função de ativação da primeira camada da rede é a sigmoide pois permite o aprendizado de não linearidades. A segunda camada da rede possui uma função linear, y = x, favorecendo uma ampla faixa de valores de saída para k (MATHWORKS, 2013d).

Para o processo de treinamento da rede são utilizadas as mesmas amostras que foram utilizadas para o treinamento da rede responsável pela classificação do objeto. Em seguida são executadas as etapas descritas nas seções anteriores até a obtenção do descritor de entrada da rede. Além disso é necessário o conhecimento do ângulo em que o objeto se encontra para o cálculo de k pela equação 34. Uma vez tendo o valor de k e o descritor de entrada é possível treinar a rede.

A rede é treinada utilizando um algoritmo de *back propagation* conforme visto na seção 2.3.1. O algoritmo utilizado para esta rede em específico utiliza a otimização de *Levenberg-Marquardt*. A escolha foi baseada na documentação presente em (MATHWORKS, 2013c) que

afirma que esta deveria ser a primeira opção de treinamento para qualquer rede devido a alta velocidade de convergência no treinamento.

3.7 CONSIDERAÇÕES

O ED-FCM projetado ofereceu a capacidade de o robô desviar obstáculos posicionados à direita, à esquerda e à frente do mesmo. Conforme será descrito na seção de testes, seção ??, esse algoritmo possibilitou ao robô navegar de forma autônoma recebendo como entrada as leituras dos sensores. Contudo, a versão final do ED-FCM foi obtida após diversos testes, nos quais erros de navegação foram encontrados, isolados e corrigidos repetidas vezes. Nesse processo, os pesos das relações causais foram modificados até chegarem aos valores das tabelas ?? e ??. A necessidade de implementação de um ED-FCM com evento surgiu durante a execução de um experimento dos testes avançados, como é descrito na seção ??. O evento foi implementado para resolver especificamente aquele problema de indecisão. Com isso, a versão final do projeto de ED-FCM apresentada nessa seção foi capaz de resolver os problemas propostos nos experimentos dos testes comparativos, seção ??, gerando resultados adequados para a comparação com o algoritmo *fuzzy*, apresentado na seção ??.

4 TESTES E ANÁLISE DE RESULTADOS

Este capitulo apresenta o ambiente de testes desenvolvido para validar o sistema, os testes efetuados e os resultados obtidos. Para testar o sistema foi necessário o desenvolvimento de um ambiente de testes que possibilitasse a captura de imagens de forma automatizada. O sistema desenvolvido é apresentado na seção 4.1. Em seguida, na seção 4.2, são apresentados os testes aos quais o sistema foi submetido e os respectivos resultados obtidos. Ao final, na seção 4.3, são apresentadas algumas considerações.

- 4.1 AMBIENTE DE TESTES
- 4.2 TESTES
- 4.3 CONSIDERAÇÕES

5 CONSIDERAÇÕES FINAIS

Este capítulo apresenta as considerações finais da monografia. Aqui são discutidos os objetivos do projeto e os resultados alcançados no sistema desenvolvido. Além de sugestões para trabalhos futuros.

5.1 CONSIDERAÇÕES FINAIS

5.2 TRABALHOS FUTUROS

Implementar em C, Java...

REFERÊNCIAS

- GHAOUI, L. E. **Hyper-Textbook: Optimization Models and Applications**. 2013. Disponível em: https://inst.eecs.berkeley.edu/ ee127a/book/login/index.html>. Acesso em: 13 de novembro de 2013.
- GONZALEZ, R. C.; WOODS, R. E. **Digital Image Processing (3rd Edition)**. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006. ISBN 013168728X.
- LEON, S. Linear algebra with applications. [S.l.]: Prentice Hall, 1998. ISBN 9780138493080.
- LIN, H.-D. Computer-aided visual inspection of surface defects in ceramic capacitor chips. **Journal of Materials Processing Technology**, v. 189, p. 19 25, 2007. ISSN 0924-0136. Disponível em: http://www.sciencedirect.com/science/article/pii/S0924013607000052.
- LIN, H.-D. Tiny surface defect inspection of electronic passive components using discrete cosine transform decomposition and cumulative sum techniques. **Image and Vision Computing**, v. 26, n. 5, p. 603 621, 2008. ISSN 0262-8856. Disponível em: http://www.sciencedirect.com/science/article/pii/S0262885607001151.
- MAR, N.; YARLAGADDA, P.; FOOKES, C. Design and development of automatic visual inspection system for {PCB} manufacturing. **Robotics and Computer-Integrated Manufacturing**, v. 27, n. 5, p. 949 962, 2011. ISSN 0736-5845. Disponível em: http://www.sciencedirect.com/science/article/pii/S0736584511000457.
- MATHWORKS. **Bayesian regulation backpropagation**. 2013. Disponível em: http://www.mathworks.com/help/nnet/ref/trainbr.html>. Acesso em: 25 de novembro de 2013.
- MATHWORKS. **Image Enhancement and Analysis**. 2013. Disponível em: http://www.mathworks.com/help/images/image-enhancement-and-analysis.html. Acesso em: 06 de Março de 2012.
- MATHWORKS. **Levenberg-Marquardt backpropagation**. 2013. Disponível em: http://www.mathworks.com/help/nnet/ref/trainlm.html>. Acesso em: 25 de novembro de 2013.
- MATHWORKS. **Multilayer Neural Network Architecture**. 2013. Disponível em: http://www.mathworks.com/help/nnet/ug/multilayer-neural-network-architecture.html. Acesso em: 17 de novembro de 2013.
- PICCARDI, M. Background subtraction techniques: a review. In: **Systems, Man and Cybernetics, 2004 IEEE International Conference on**. [S.l.: s.n.], 2004. v. 4, p. 3099–3104 vol.4. ISSN 1062-922X.

WIKIPEDIA. **Second moment of area**. 2013. Disponível em: http://en.wikipedia.org/wiki/Second_moment_of_area. Acesso em: 15 de novembro de 2013.

ZENG, Z.; MA, L.; ZHENG, Z. Automated extraction of pcb components based on specularity using layered illumination. **Journal of Intelligent Manufacturing**, Springer US, v. 22, n. 6, p. 919–932, 2011. ISSN 0956-5515. Disponível em: http://dx.doi.org/10.1007/s10845-009-0367-6.

ZHENG, H.; KONG, L.; NAHAVANDI, S. Automatic inspection of metallic surface defects using genetic algorithms. **Journal of Materials Processing Technology**, v. 125-126, n. 0, p. 427 – 433, 2002. ISSN 0924-0136. Disponível em: http://www.sciencedirect.com/science/article/pii/S0924013602002947>.