陈承勃

School of Mathematics Sun Yat-sen University

May 12, 2018

Outline

- 1 Task Description
- 2 Model Selection
 - Existing State-of-the-art Detection Systems
 - Advantages of YOLO architecture
- 3 Colon Polyps Detection System
- 4 Experiments
 - Training Settings
 - Testing
 - Evaluation of Classification
- Conclusions

Real-time Colon Polyps Detection Task

- Accurate classification
- Precise localization
- Real-time performance

Dataset

Figure 1: An example of colon endoscopy(结肠内镜) images. The whole dataset consists of 1,164 images of various sizes from different patients. 324 among them are discriminated to have at least one colon polyps(结肠息肉). The dataset comes from Doctor Zhong Dong.

```
    cannotation>

   <folder>FFOutput</folder>
   <filename>100001~19.png</filename>
   <path>E:\FFOutput\100001~19.png</path>
 - <source>
     <database>Unknown</database>
   </source>
 - <size>
    <width>568</width>
     <height>484</height>
     <depth>3</depth>
   </size>
   <segmented>0</segmented>
 - <object>
     <name>Colon polvps</name>
     <pose>Unspecified</pose>
     <truncated>0</truncated>
     <difficult>0</difficult>
   - <bndbox>
      <xmin>291</xmin>
      <ymin>9
      <xmax>432</xmax>
      <vmax>203
     </bndbox>
   </object>
 </annotation>
```

Figure 2: An example of labels.

Outline

- Model Selection
 - Existing State-of-the-art Detection Systems
 - Advantages of YOLO architecture
- - Training Settings
 - Testing
 - Evaluation of Classification

Task Description

- DPM (Deformable Parts Model)
 - Sliding window approach
 - Disjoint detection pipeline

- DPM (Deformable Parts Model)
 - Sliding window approach
 - Disjoint detection pipeline
- R-CNN series (R-CNN, Fast R-CNN, Faster R-CNN)
 - Region proposals approach
 - Disjoint detection pipeline

Task Description

- DPM (Deformable Parts Model)
 - Sliding window approach
 - Disjoint detection pipeline
- R-CNN series (R-CNN, Fast R-CNN, Faster R-CNN)
 - Region proposals approach
 - Disjoint detection pipeline
- YOLO series (YOLOv1, YOLOv2, YOLOv3)
 - Region proposals approach
 - A single fully convolutional network

Outline

- Task Description
- 2 Model Selection
 - Existing State-of-the-art Detection Systems
 - Advantages of YOLO architecture
- 3 Colon Polyps Detection System
- 4 Experiments
 - Training Settings
 - Testing
 - Evaluation of Classification
- Conclusions

End-to-end Architecture

Figure 3: YOLOv3 architecture

- End-to-end Architecture
- Real-time Performance

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

Figure 3: Real-time detection systems testing on PASCAL VOC 2007. This table is from [6].

- End-to-end Architecture
- Real-time Performance
- Better Generalizability

Figure 3: Generalization results on Picasso and People-Art work. The figure comes from [6].

- End-to-end Architecture
- Real-time Performance
- Better Generalizability
- Less False Positive Errors

Figure 3: Error analysis: Fast R-CNN vs. YOLO. The figure from [6].

- End-to-end Architecture
- Real-time Performance
- Better Generalizability
- Less False Positive Errors
- Comparable .5AP accuracy

Figure 3: Speed and mAP-50 accuracy comparisons. This figure is a screenshot from [8]

YOLOv3 Architecture

Figure 4: YOLOv3 architecture

- YOLOv3 Architecture
 - Fully convolutional network

- YOLOv3 Architecture
 - Fully convolutional network
 - Residual blocks

Figure 4: YOLOv3 architecture

- YOLOv3 Architecture
 - Fully convolutional network
 - Residual blocks
 - Multi-scale prediction

Figure 4: YOLOv3 architecture

- YOLOv3 Architecture
 - Fully convolutional network
 - Residual blocks
 - Multi-scale prediction
- Transfer Learning numfiters=18

Figure 4: YOLOv3 architecture

- - Existing State-of-the-art Detection Systems
 - Advantages of YOLO architecture
- 4 Experiments
 - Training Settings
 - Testing
 - Evaluation of Classification

Conclusions

Training Settings

- Dataset partitioning
 - Training set: 224 of the 324 labeled images.
 - Test set: the rest of the labeled images.
- Multi-scale training approach
- Data augmentation: rotation, saturation, exposure, etc.
- Learning rate: 0.1, momentum: 0.9, weight decay: 0.0005
- Batch size: 64, Max batches: 15000.
- 15.5 hours for training.
 - A Titan X GPU for the first 2500 batches.
 - Two Titan X GPUs for subsequent iterations.

Average loss curves

Figure 5: Curve of exponentially weighted average loss with coefficient being 0.9

Figure 6: Curve of logarithm of average loss

Testing

- 2 Model Selection
 - Existing State-of-the-art Detection Systems
 - Advantages of YOLO architecture
- 3 Colon Polyps Detection System
- 4 Experiments
 - Training Settings
 - Testing
 - Evaluation of Classification
- Conclusions

Testing

Testing

- Testing on a Titan X GPU.
- 75.26% recall and 70.87% precision
- 0.0306 seconds per image (32.6 fps). Real-time performance.

Figure 7: Examples of correctly detected colon polyps.

- Task Description
- 2 Model Selection
 - Existing State-of-the-art Detection Systems
 - Advantages of YOLO architecture
- 3 Colon Polyps Detection System
- 4 Experiments
 - Training Settings
 - Testing
 - Evaluation of Classification
- Conclusions

Task Description

- Regarded as a classifier
- Dataset: test set + 100 normal images
- Comments on the classifier
 - Capable of classifying colon polyps images from normal images.
 - Struggling to precisely localize the colon polyps.

	Ground Truth		Total	
Prediction	Normal	Colon Polyp(s)	TOLAI	
Normal	93	11	104	
Colon Polyp(s)	13	83	96	
Total	106	94	200	

Table 1: Results of classification evaluation. recall=83/94=88.30%, precision=83/96=86.46%

- Mistakes other polyps as colon polyps.
- Need further improvement to learn more detailed features of colon polyps.

Figure 8: An example of true positive predictions

Figure 9: An example of false positive predictions

Conclusions

- Our colon polyps detection system:
 - achieves real-time performance
 - performs quite well in distinguishing images of colon polyps from normal images
 - struggles to figure out the exact lesion(病灶) locations.
 - tend to mistake other polyps as colon polyps

Conclusions

- Our colon polyps detection system:
 - achieves real-time performance
 - performs quite well in distinguishing images of colon polyps from normal images
 - struggles to figure out the exact lesion(病灶) locations.
 - tend to mistake other polyps as colon polyps
- Future work:
 - Collect More training data
 - Try other network architecture or transfer learning architecture

Bibliography I

Shie C K, Chuang C H, Chou C N, et al.

Transfer representation learning for medical image analysis International Conference of the IEEE Engineering in Medicine & Biology Society., Conf Proc IEEE Eng Med Biol Soc, 2015:711.

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.

Object detection with discriminatively trained part based models.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9):1627 - 1645, 2010. 1, 4

Bibliography II

R. Girshick, J. Donahue, T. Darrell, and J. Malik.

Rich feature hierarchies for accurate object detection and semantic segmentation.

In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 580 – 587. IEEE, 2014. 1, 4, 7

Girshick, Ross.

Fast r-cnn.

Proceedings of the IEEE International Conference on Computer Vision. 2015.

Bibliography III

Ren S, He K, Girshick R, et al.

Faster r-cnn. Towards real-time object detection with region proposal networks

[C]. NIPS,2015.

Redmon, Joseph; Divvala, Santosh; Girshick, Ross; Farhadi, Ali

You Only Look Once: Unified, Real-Time Object Detection. arXiv:1506.02640. 06/2015.

Redmon, Joseph and Farhadi, Ali.

YOLO9000: Better, Faster, Stronger arXiv:1612 08242 2016

Bibliography IV

Redmon, Joseph and Farhadi, Ali.
YOLOv3: An Incremental Improvement.

arXiv, 2018.

Kermany et al., 2018, Cell 172, 1122 - 1131 February 22, 2018
 2018 Elsevier Inc. https://doi.org/10.1016/j.cell.2018.02.010