

planetmath.org

Math for the people, by the people.

Ihara's theorem

Date of creation 2013-03-22 13:54:26 Last modified on 2013-03-22 13:54:26

Owner bwebste (988) Last modified by bwebste (988)

Numerical id 9

Author bwebste (988) Entry type Theorem Classification msc 20G25 Let Γ be a discrete, torsion-free subgroup of $\mathrm{SL}_2\mathbb{Q}_p$ (where \mathbb{Q}_p is the field of http://planetmath.org/PAdicIntegersp-adic numbers). Then Γ is free.

Proof, or a sketch thereof. There exists a p+1 regular tree X on which $\operatorname{SL}_2\mathbb{Q}_p$ acts, with stabilizer $\operatorname{SL}_2\mathbb{Z}_p$ (here, \mathbb{Z}_p denotes the ring of http://planetmath.org/PAdicIntegersp-adic integers). Since \mathbb{Z}_p is compact in its profinite topology, so is $\operatorname{SL}_2\mathbb{Z}_p$. Thus, $\operatorname{SL}_2\mathbb{Z}_p \cap \Gamma$ must be compact, discrete and torsion-free. Since compact and discrete implies finite, the only such group is trivial. Thus, Γ acts freely on X. Since groups acting freely on trees are free, Γ is free.