Towards a Fast Direct Solver for Maxwell Scattering

Srinath Kailasa 1,2 Manas Rachh 2

¹ Department of Mathematics, University College London

²Centre for Computational Mathematics, Flatiron Institute

September 5, 2022

Overview

Fast Algorithms

Fast Direct Solvers

Future Directions

Overview

Fast Algorithms

Fast Direct Solvers

Future Directions

Team

My Research Focus:

- High Performance & Scientific Computing
- Fast algorithms for Integral Equations
- 3. Software Engineering

Find our Software on GitHub:

https://github.com/betckegroup https://github.com/fastalgorithms

Srinath Kailasa GitHub: skailasa

Manas Rachh GitHub: mrachh

Overview

Fast Algorithms

Fast Direct Solvers

Future Directions

Motivation

- 1. solving PDE as BIE leads to small, dense matrices.
- 2. Benefits → for unbounded problems, integrate over fixed domain, however main tradeoff are dense matrices.
- 3. BIE \rightarrow so called fast algorithms, accelerated application and inversion of system matrices that arise upon discretization (Galerkin, Nystrom etc)
- 4.

Problem setting for BIE of Helmholtz scattering in exterior.

History

Timeline of fast algorithms, beginning with FMM and latest FDS methods

FMM - an $\mathcal{O}(N)$ matvec

Brief overview of FMM and its underlying operational principle in its analytic form.

From Analytic to Algebraic Fast algorithms

Drawbacks of analytic FMM, and analytic fast algorithms. Give sketch of semi-analytic methods, and what might be accomplished by a fully algebraic method.

Algebraic Fast Algorithms for Matrix Inversion

Fast direct solvers, overview of what they are trying to accomplish, and of course the major pros and cons.

Summary

Summarise the motivation for fast algorithms, and briefly discuss their other applications outside of integral equations.

Overview

Fast Algorithms

Fast Direct Solvers

Future Directions

FMM-LU: A fast direct solver for BIEs

Introduce motivation behind FMM-LU (RS-S).

Proxy Compression I

Proxy Compression II

Laplace

Helmholtz - Sound Hard

Numerical Results - Sound Hard

Helmholtz - Transmission

Towards Maxwell

Overview

Fast Algorithms

Fast Direct Solvers

Future Directions

Open Problems & Future Directions

- 1. Unification of fragmented software landscape for fast-solvers. Offer overview of what's out there and who's working on what, what is parallelized and what's not.
- 2. FDS for high-frequency problems.
- 3. Complete a first FDS for maxwell. What kind of problems would this allow us to solve? How close are we to this goal?

Overview

Fast Algorithms

Fast Direct Solvers

Future Directions

Conclusion

References I