1,2-ETHANEDIOL IVATIVE AND ITS SALT

Patent number:

JP3232830

Publication date:

1991-10-16

Inventor:

ONO SATORU; others: 05

Applicant:

TOYAMA CHEM CO LTD

Classification:

- international:

C07C31/20

- european:

Application number:

JP19900024503 19900205

Priority number(s):

Abstract of JP3232830

NEW MATERIAL: The compound of formula I [R<1> is (substituted) heterocyclic group; R<2> is H, lower alkyl or OH-protecting group; R<3> is H or lower alkyl; nXR<4> and R<5> groups are same or different H or lower alkyl; R<6> is (substituted) amino or nitrogen-containing heterocyclic group or ammonio; (n) is 0-61 and its salt.

EXAMPLE:2-[2-(N,N-dimethylamino)ethoxy]-1-(benzo[b]thiophen-5-yl)ethanol.

USE:It has excellent anti-amnesic action and antihypoxic action and is extremely useful as a cerebral function improver. It is useful not only as a treating agent for the sequela of ischemic cerebral disorder and cerebral apoplexy but also as a therapeutic agent or preventive for amnesia and dementia. PREPARATION:The objective compound of formula I wherein R<2> is H or its salt can be produced e.g. by reacting a compound of formula II with a compound of formula III or its salt.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

Best Available Copy

THIS PAGE BLANK (USPTO)

19 日本国特許庁(JP)

⑩特許出願公開

® 公開特許公報(A) 平3-232830

⑤Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成3年(1991)10月16日

C 07 C 31/20

A 6958-4H

審査請求 未請求 請求項の数 1 (全 24 頁)

母発明の名称

1,2-エタンジオール誘導体およびその塩

②特 願 平2-24503

②出 願 平2(1990)2月5日

 ⑩発明者·小野哲

 ⑩発明者山藤哲夫

富山県富山市中島3-2-5

富山県婦負郡婦中町吉谷1-3

⑫発明者 茶木 久晃

富山県上新川郡大山町小原屋455-1

富山県富山市下熊野65-5 富山県富山市石坂2091-12

 ⑩発明者 藤堂 洋三

 ⑩発明者 成田 弘和

富山県富山市奥田本町 6-40

⑪出 願 人 富山化学工業株式会社

東京都新宿区西新宿3丁目2番5号

明細書

1. 発明の名称

1,2-エタンジオール誘導体およびその塩

2. 特許請求の範囲

(1) 一般式

$$\begin{array}{ccc}
R^3 & R^4 \\
R^1 - CHCH - O - (C)_n R^6 \\
OR^2 & R^5
\end{array}$$

「式中、 R^1 は、置換されていてもよい複素環式基を; R^2 は、水素原子または低級アルキルもしくはヒドロキシル保護基を; R^3 は、水素原子または低級アルキル基を; R^5 は、周一または異なって水素原子または低級アルキル基を; R^6 は、置換されていてもよいアミノもしくは含窒素複素環式基またはアンモニオ基を;および R^6 のまたは R^6 のまたは R^6 のを数を、それぞれ示す。」

で表わされる1,2-エタンジオール誘導体およ びその塩。

3. 発明の詳細な説明

[産業上の利用分野]

本発明は、新規な1。2-エタンジオール誘導体およびその塩に関し、さらに、詳細には 一般式[I]

「式中、R¹ は、置換されていてもよい複素環式基を;R² は、水素原子または低級アルキルもしくはヒドロキシル保護基を;R³ は、水素原子または低級アルキル基を;n個のR⁴ およびR⁵ は、同一または異なって水素原子または低級アルキル基を;R⁶ は、置換されていてもよいアミノもしくは含窒素複素環式基またはアンモニオ基を;およびnは、Oまたは1~6の整数を、それぞれ示す。」

で表わされる1.2-エタンジオール誘導体およびその塩に関する。

- 1 -

[従来の技術]

従来、1,2-エタンジオール誘導体としては、たとえば、米国特許第2,928,845 号、ジャーナル・オブ・ファーマシューティカル・サイエンス(J.Pharm.Sci.)、第50巻、第769 ~771 頁(1961年)およびファルマコ・エディジオン・サイエンティフィカ(Farmaco.Ed.Sci)、第19巻、第1056~1065頁(1964年)などに記載されているものが知られている。

しかし、これらの化合物は、局所麻酔剤または その中間体として利用されているが、脳機能改善 剤、抗健忘症剤および抗痴呆剤としての用途につ いては全く知られていない。

また、国際特許出願公開88/8424 には、アルツハイマー病およびその他の変性神経障害などの治療に用いられる1,2-エタンジオール誘導体が記載されている。しかし、その明細書には、それらの誘導体の具体的記載および実施例が全く見当らない。

[発明が解決しようとする課題]

- 3 -

で表わされる新規な1.2~エタンジオール誘導体およびその塩が優れた抗健忘作用および抗ハイポキシア作用を発揮し、脳機能改善剤として極めて有用であることを見出し、本発明を完成した。

なお、本明和書における用語"脳機能改善剤"は、虚血性脳障害の後還症および脳卒中などの治療に有用な通常の脳機能改善剤としての用途のみならず、健忘および痴呆(たとえば、脳血管性痴呆、各種老年性痴呆およびアルツハイマー病など)の治療または予防剤を意味する。

以下、本発明について詳述する。

本明細書において、特にことわらない限り、各用語は、つぎの意味を有する。

ハロゲン原子とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子を;低級アルキル基とは、たとえば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソプチル、n-ブチル、イソプチル、n-ブチル、イソプチル、n-ブチル、n-ブチル、n-ブチル、n-ブチル、n-ブチル、n-ブチル、n-ブチル、n-ブチル、n-ブチル、n-ブチル、n-ブリー n-ブリー n-ブリー

現在、各種痴呆、アルツハイマー型痴呆および脳血管性痴呆の治療には、脳代謝賦活剤または脳循環改善剤などが使用されている。

しかし、脳血管性痴呆、老年性痴呆、アルツハイマー病、虚血性脳障害の後遺症および脳卒中の 治療に有用な脳機能改善剤として用いることがで きる化合物は、未だに見出されていない。

本発明の目的は、上記課題を解決し、かつ副作用の少ない有用な脳機能改善剤として用いることができる化合物を提供することにある。

[課題を解決するための手段]

本発明者らは、上記課題を解決することを目的 として鋭意研究を行った結果、下記の一般式[I]

「式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 およびnは、それぞれ、前記と同様の意味を有する。」

- 4 -

キセニル基などの $C_2 \sim_6$ アルケニル基を;低級 アルケニルオキシ基とは、 C_2 \sim_6 アルケニルー 〇-基を:シクロアルキル基とは、たとえば、シ クロプロピル、シクロプチル、シクロペンチ ルおよびシクロヘキシル基などの $C_3 \sim_6$ シクロ アルキル基を;低級アルコキシ基とは、 $C_1 \sim 6$ アルキルー〇一基を;低級アルキルチオ基とは、 $C_{1 \sim 6}$ アルキルーS-基を:アリール基とは、 フェニル、ナフチル、インダニルおよびインデニ ル基を;アリールオキシ基とは、アリールー〇-基を;アル低級アルキル基とは、たとえば、ベン ジル、ジフェニルメチル、トリチルおよびフ ェネチル基などのアルC1~4 アルキル基を:ア ル低級アルコキシ基とは、アル $C_1 \sim 4$ アルキル -0-基を;アル低級アルキルチオ基とは、アル C_{1~A} アルキルーS-基を;低級アルキレンジ オキシ基とは、たとえば、メチレンジオキシ およびエチレンジオキシ基などのC_{1~4}アルキ レンジオキシ基を:低級アシル基とは、たとえ ば、ホルミル、アセチルおよびブチリル基などの

C_{1 ~6} アシル基を: イル基とは、アリール - CO-基を;低級アルキルスルホニル基とは、 $C_{1} \sim_{6}$ アルキルー SO_{2} 一基を:アル低級アル キルスルホニル基とは、アル $C_1 \sim_6$ アルキルー SO_2 -基を:アリールスルホニル基とは、アリ $-ル-SO_2$ -基を:低級アルキルスルホニルオ キシ基とは、 $C_{1\sim 6}$ アルキル- SO_{2} -O-基 を:アリールスルホニルオキシ基とは、アリール -SO2 -O-基を:アリールスルホニルアミノ 基とは、アリールー SO_2 NH-基を:低級アル キルスルホニルアミノ基とは、 $C_1 \sim_6$ アルキル -SO, NH-基を;ジ低級アルキルアミノ基と は、 $orall_{C_1}$ \sim_6 アルキルアミノ基を;アンモニオ 基とは、たとえば、トリメチルアンモニオおよび トリエチルアンモニオ基などのトリ低級アルキル アンモニオ基を;含窒素複素原式基とは、たとえ ば、ピロリル、ピロリジニル、ピペリジル、ピペ ラジニル、イミダソリル、ピラソリル、ピリジル、 テトラヒドロピリジル、ピリミジニル、モルホリ ニル、チオモルホリニル、キノリル、キノリジニ

- 7 -

イソチアゾリル、イソオキサゾリル、チアジアゾリル、オキサジアゾリル、ピリダジニル、イソインドリルおよびイソキノリル基などの該環を形成する異項原子として1つ以上の酸素原子もしくは硫黄原子を含んでいてもよい、窒素、酸素もしくは硫黄原子から選ばれる少なくとも1つ以上の異項原子を含有する5員もしくは6員環、縮合環または架橋環の複素環式基を;そして複素環式カルボニル基とは、複素環式-CO-基を意味する。

R¹ における複素環式基の置換基としては、たとえば、ハロゲン原子、置換されていてもよいアミノ、低級アルキル、アリール、アル低級アルキル、低級アルコキシ、アル低級アルコキシ、カルパモイルオキシ、低級アルキルオ、低級アルケニル、低級アルケニルオキシ、アル低級アルキルスルホニル、アリールスルホニル、低級アルキルスルホニルアミノ、アリールスルホニルアミノ、アリールスルホニルアミノ、アリールスルホニルアミノ、保護されているアミノ基、保護されていてもよいヒドロキシル基、ニトロ基、オ

ル、テトラヒドローノリニル、テトラヒドロイソ キノリニル、キヌクリジニル、チアゾリル、テト ラゾリル、チアジアゾリル、ピロリニル、イミダ ゾリニル、イミダゾリジニル、ピラゾリニル、ピ ラゾリジニル、プリニルおよびインダゾリル基な どの該環を形成する異項原子として1つ以上の窒 素原子を含み、さらに1つ以上の酸素原子または 硫黄原子を含んでいてもよい5貫もしくは6貫環、 縮合環または架橋環の複素環式基を;また、複素 **現式基とは、上記した含窒素複素環式基並びにた** とえば、フリル、チエニル、ベンゾチエニル、ピ ラニル、イソベンゾフラニル、オキサゾリル、ベ ンゾフラニル、インドリル、ベンズイミダゾリル、 ベンゾオキサゾリル、ベンゾチアゾリル、キノキ サリル、ジヒドロキノキサリニル、2.3-ジヒ ドロベソチエニル、2,3-ジヒドロベンソビロ リル、2.3-ジヒドロ-4H-1-チアナフチ ル、2,3-ジヒドロベンゾフラニル、ベンゾ [b] ジオキサニル、イミダゾ [2.3-a] ピ リジル、ベンソ [b] ピペラジニル、クロメニル、

- 8 -

キソ基および低級アルキレンジオキシ基などが挙 げられ、また、 R^1 の複素環式基の置換基におけ る低級アルキル、アリール、アル低級アルキル、 低級アルコキシ、アル低級アルコキシ、アリール オキシ、カルバモイルオキシ、低級アルキルチオ、 低級アルケニル、低級アルケニルオキシ、アル低 級アルキルチオ、アル低級アルキルスルホニル、 アリールスルホニル、低級アルキルスルホニルア ミノ、アリールスルホニルアミノおよび複素原式 基並びにR6 における含窒素複素環式基の置換基 としては、ハロゲン原子、保護されていてもよい ヒドロキシル基、保護されていてもよいカルポキ シル基、保護されていてもよいアミノ基、保護さ れていてもよいヒドロキシル基で置換されていて もよい低級アルキル基、ハロゲンで置換されてい てもよいアリール基、ハロゲンで置換されていて もよいアロイル基、低級アルコキシ基で置換され ていてもよい低級アルコキン基、低級アシル基、 アル低級アルキル基、アル低級アルケニル基、複 素環式基、複素環式-CO-基、オキソ基、低級

アルキルスルホニル基おアリールスルホニル 基が挙げられ、これら1程以上の置換基で置換されていてもよい。

また、R¹ における 置換基のアミノ基および R⁶ におけるアミノ基の置換基としては、保護されていてもよいヒドロキシル基、保護されていてもよいになアルキル基、シクロアルキル基、アリール基、低級アルキル基、シクロアルキル基、アリール基、低級アルキル基、アル低級アルキル基、複素環式基、オキソ 基で 置換されていてもよい複素 環式 一〇〇一基、アダマンチル基、低級アルキルスルホニル基およびアリールスルホニル基が挙げられ、これら1種以上の置換基で置換されていてもよい。

また、 R^2 におけるヒドロキシル保護基並びに上述した R^1 および R^6 の置換基中にあるヒドロキシル基、カルボキシル基およびアミノ基の保護基としては、プロテクティブ・グループス・イン・オーガニック・シンセシス (Proctective Groups in Organic Synthesis)、[セオドラ・ダ

- 11 -

またはその塩において、異性体(たとえば、光学 異性体、幾何異性体および互変異性体など)が存 在する場合、本発明は、それらすべての異性体を 包含し、また水和物、溶媒和物およびすべての結 品形を包含するものである。

つぎに、一般式 [I] の1、2-エタンジオール誘導体またはその塩の製造法について説明する。

一般式[I]の1.2-エタンジオール誘導体またはその塩は、自体公知の方法またはそれらを適宜組み合わせることによって、たとえば、以下に示す各製造法によって製造することができる。

(以下余白)

アリュー・グリーン eodra W. Green) (1981年)、ジョン・ウィー・アンド・サンズ・インコーポレイテッド (John Wiley & Sons. Inc.)] に記載された通常のヒドロキシル基、カルボキシル基およびアミノ基の保護基が挙げられ、特に、ヒドロキシル基の保護基としては、たとえば、低級アルキル、低級アシルおよび2-テトラヒドロピラニル基並びに置換されていてもよいベンジルのようなアル低級アルキル基が挙げられる。

一般式[I]の1,2一エタンジオール誘導体の塩としては、医薬として許容される塩であればよく、たとえば、塩酸、臭化水素酸、硫酸およびリン酸などの鉱酸との塩;ギ酸、酢酸、シュウ酸、フマル酸、マレイン酸、リンゴ酸、酒石酸およびアスパラギン酸などのカルボン酸との塩;メタンスルホン酸、ペンゼンスルホン酸、D-トルエンスルホン酸およびナフタレンスルホン酸などのスルホン酸との塩並びにナトリウムおよびカリウムなどのアルカリ金属との塩などが挙げられる。

一般式[I]の1,2-エタンジオール誘導体

製造法1
$$R^{4}$$

$$HO-CC \rightarrow R^{6}$$

$$R^{5} \qquad R^{3} \qquad R^{4}$$

$$R^{1}-CHCHR^{3} \qquad (間) もしくはその塩 \qquad R^{1}-CHCH-O+CC \rightarrow R^{3}$$

$$HO-R^{6a} \qquad OH \qquad R^{5}$$

もしくはその塩

[Ia]またはその塩

[Ib]またはその塩

- 13 -

--222--

の塩としては、一般式 [I] の化合物の塩で述べたと同様の塩が挙げられる。

ついで、上で述べた方法を名製造法について説明する。

製造法1

一般式 [Ⅱ] の化合物に一般式 [Ⅲ] の化合物 もしくはその塩または一般式 [Ⅲa]の化合物もしくはその塩を、塩基の存在下または不存在下で反応させることにより、一般式 [Ⅱa]の化合物またはその塩を製造することができる。

この反応に使用される溶媒としては、反応に悪影響を及ぼさないものであればよく、たとえば、ベンゼン、トルエンおよびキシレンなどの芳香族炭化水素類;ジメチルスルホキシドのようなスルホキシド類:N、Nージメチルホルムアミドのようなアミド類:並びにテトラヒドロフランおよびジオキサンなどのエーテル類などが挙げられ、これらの溶媒を1種または2種以上混合して使用してもよい。また、一般式[III]の化合物または一般式[III]の化合物を溶媒として用いることもで

〔式中、R¹、R \mathbf{R}^{3} \mathbf{R}^{4} \mathbf{R}^{5} \mathbf{R}^{6} \mathbf{B}^{6} よびnは、前記したと同様の意味を有し:R^{2a} は、 R^2 と同様のヒドロキシル保護基を: R^{6a} は、 R^6 と同様の置換されていてもよい含窒素 複素環式基のうち該環を形成する炭素原子に遊 **離原子価をもつ基を;R^{6b}は、R⁶ と同様の置** 換されていてもよい含窒素複素環式基のうち該 魔を形成する窒素原子に遊離原子価をもつ基ま たは置換されていてもよいアミノ基を:R⁷ は、 R^2 と同様のヒドロキシル保護基を: X^1 およ UX^2 は、同一または異なってハロゲン原子を: Yは、ハロゲン原子、低級アルキルスルホニル オキシ基またはアリールスルホニルオキシ基な どの脱離基を;Yau、アリールスルホニルオ キシ基を;およびmは、1~6の整数を、それ ぞれ示す。」

また、一般式 [II] 、 [II a] 、 [IV] 、 [V] 、 [VI] 、 [IX] 、 [XI] 、 [XI] 、 [XI] 、 [XI] 、 [Id] の化合物

- 16 -

きる。

また、必要に応じて用いられる塩基としては、 たとえば、水素化ナトリウム、金属ナトリウムお よびtert-プトキシカリウムなどが挙げられる。

この反応において、一般式 $[\Pi]$ の化合物もしくはその塩または一般式 $[\Pi a]$ の化合物もしくはその塩の使用量は、一般式 $[\Pi]$ の化合物に対して、 $1\sim100$ 倍モル、好ましくは、 $1\sim10$ 倍モルである。

また、必要に応じて用いられる塩基の使用量は、 一般式 [Ⅱ] の化合物に対して、0.01~1.2 倍モ ルである。

この反応は通常、20~150 ℃、好ましくは、70~90℃で、1分~24時間、好ましくは、5分~5時間実施すればよい。

製造法2

(1) 一般式 [II] の化合物に一般式 [IV] の化合物またはその塩を、塩基の存在下または不存在下で反応させることにより、一般式 [V] の化合物またはその塩を製造することができる。

この反応は、製造法で実施すればよい。

得られた一般式 [V] の化合物またはその塩は 単離せずにそのままつぎの反応に用いてもよい。 (2) 一般式 [V] の化合物またはその塩を、通 常のヒドロキシル基の保護反応に付すことにより、 一般式 [V] の化合物を製造することができる。 得られた一般式 [V] の化合物は、単離せずに

さらに、一般式 [VI]の化合物を、選択的なヒドロキシル保護基の脱離反応に付すことにより、一般式 [VI]の化合物またはその塩を製造することができる。

そのままつぎの反応に用いてもよい。

得られた一般式 [VI] の化合物またはその塩は、 単魮せずにそのままつぎの反応に用いてもよい。

これらの反応は、自体公知の方法、たとえば、 プロテクティブ・グループス・イン・オーガニッ ク・シンセシス(Proctective Groups in Organic Synthesis)、[セオドラ・ダブリュー・グリー ン(Theodra W. Green) (1981 年)、ジョン・ウィ

- 19 -

チルアミン、1.8-ジアザビシクロー[5.4.0]ウンデクー7-エン(DBU)、ピリジン、tert-プトキシカリウム、炭酸ナトリウム、炭酸カリウムおよび水素化ナトリウムなどの有機または無機塩基が挙げられる。

ハロゲン化剤としては、たとえば、オキシ塩化 リン、オキシ臭化リン、三塩化リン、五塩化リン および塩化チオニルなどが挙げられる。

スルホニル化剤としては、たとえば、メタンス ルホニルクロリドおよびp-トルエンスルホニルク ロリドなどが挙げられる。

ハロゲン化剤またはスルホニル化剤および必要に応じて用いられる塩基の使用量は、一般式 [VI] の化合物またはその塩に対して、それぞれ、等モル以上、好ましくは、1~2倍モルである。

この反応は通常、-10~100 ℃、好ましくは、 O~40℃で、10分~30時間実施すればよい。

得られた一般式[Vii]の化合物は、単離せずに そのままつぎの反応に用いてもよい。

(4) 一般式 [VII] の化合物に一般式 [IX] の化

リー・アンド・サーデ・インコーポレイテッド (John Wiley & Son c.)] に記載されている方 法またはそれに準じた方法で実施すればよい。

これらの反応に使用されるヒドロキシル保護基 (R^7) および R^{2a})の組み合わせは適宜選択すればよい。

(3) 一般式 [VII] の化合物またはその塩に溶媒中、ハロゲン化剤またはスルホニル化剤を、塩基の存在下または不存在下で反応させることにより、一般式 [VII] の化合物を製造することができる。

この反応に使用される溶媒としては、反応に悪 影響を及ぼさないものであればよく、たとえば、 塩化メチレンおよびクロロホルムなどのハロゲン 化炭化水素類:テトラヒドロフランおよびジオキ サンなどのエーテル類:アセトニトリルのような ニトリル類:並びにN.Nージメチルホルムアミ ドのようなアミド類などが挙げられ、これらの溶 媒を1種または2種以上混合して使用してもよい。

また、必要に応じて用いられる塩基としては、 たとえば、トリエチルアミン、ジイソプロピルエ

- 20 -

合物またはその塩を、触媒の存在下または不存在 下および塩基の存在下または不存在下で反応させ ることにより、一般式 [I b] の化合物またはその 塩を製造することができる。

この反応に使用される溶媒としては、反応に悪 影響を及ぼさないものであればよく、たとえば、 前述の製造法2の(3)で述べたと同様の溶媒が挙 げられる。

また、必要に応じて用いられる触媒としては、 たとえば、ヨウ化カリウムおよびョウ化ナトリウ ムなどが挙げられる。

必要に応じて用いられる触媒の使用量は、一般式 $\{ v_1 \}$ の化合物に対して、 $0.1 \sim 1$ 倍モルである。

また、必要に応じて用いられる塩基としては、 たとえば、前述の製造法2の(3) で述べたと同様 の塩基が挙げられる。

一般式 [IX] の化合物もしくはその塩または必要に応じて用いられる塩基の使用量は、一般式 [VII] の化合物に対して、それぞれ、等モル以上、

- 21 -

好ましくは、1~20倍 である。

この反応は通常、10~150 ℃、好ましくは、20 ~100 ℃で、10分~20時間実施すればよい。

製造法3

(1) 一般式 [II] の化合物に一般式 [X] の化合物またはその塩を、塩基の存在下または不存在下で反応させることにより、一般式 [XI] の化合物またはその塩を製造することができる。

この反応は、製造法1と同様の方法で実施すればよい。

(2) 一般式 [XI] の化合物またはその塩に溶媒中、スルホニル化剤を、塩基の存在下または不存在下で反応させることにより、一般式 [XI] の化合物またはその塩を製造することができる。

この反応に使用される溶媒としては、反応に悪 影響を及ぼさないものであればよく、たとえば、 前述の製造法2の(3)で述べたと同様の溶媒が挙 げられる。

また、必要に応じて用いられる塩基としては、 たとえば、前述の製造法2の(3)で述べたと同様

- 23 -

(John Wiley & Sons.Inc.)] に記載されている方法またはそれに準じた方法で実施すればよい。

得られた一般式 [XII] の化合物は、単離せずに そのままつぎの反応に用いてもよい。

(4) 一般式 [XII] の化合物もしくはその塩または一般式 [XII] の化合物に一般式 [IX] の化合物またはその塩を、塩基の存在下または不存在下で反応させることにより、一般式 [Ic]の化合物またはその塩を製造することができる。

この反応は、製造法2の(4) と同様の方法で実施すればよい。

製造法4

(1) 一般式 [XV] の化合物に一般式 [XV] の化合物を反応させることにより、一般式 [XV] の化合物またはその塩を製造することができる。

この反応に使用される溶媒としては、反応に悪 影響を及ぼさないものであればよく、たとえば、 ジエチルエーテル、テトラヒドロフランおよびジ オキサンなどのエーテル類:ベンゼンおよびトル エンなどの芳香族炭化水素類などが挙げられ、こ の塩基が挙げられる。

スルホニル化剤としては、たとえば、p-トルエンスルホニルクロリドなどが挙げられる。

スルホニル化剤および必要に応じて用いられる 塩基の使用量は、一般式[XI]の化合物またはそ の塩に対して、それぞれ、0.95倍モル以上、好ま しくは、1~2倍モルである。

この反応は通常、-10~100 ℃、好ましくは、 O~40℃で、10分~30時間実施すればよい。

得られた一般式 [XI] の化合物またはその塩は、 単離せずにそのままつぎの反応に用いてもよい。

(3) 一般式 [XII] の化合物またはその塩を、通常のヒドロキシル基の保護反応に付すことにより、一般式 [XII] の化合物を製造することができる。

この反応は、自体公知の方法、たとえば、プロテクティブ・グループス・イン・オーガニック・シンセシス(Proctective Groups in Organic Synthesis)、[セオドラ・ダブリュー・グリーン(Theodra M. Green) (1981 年)、ジョン・ウィリー・アンド・サンズ・インコーポレイテッド

- 24 -

れらの溶媒を1種または2種以上混合して使用してもよい。

この反応において、一般式 [XV] の化合物の使用量は、一般式 [XV] の化合物に対して0.8 ~100 倍モル、好ましくは、0.8 ~10倍モルである。

また、この反応は通常、-78℃~100 ℃、好ま しくは、-78℃~50℃で、5分間~24時間実施す ればよい。

得られた一般式 [XN] の化合物またはその塩は、 単離せずにそのままつぎの反応に用いてもよい。

なお、ここで使用される一般式 [XV] の化合物は、自体公知の方法、たとえば、プレティン・ド・ラ・ソシエテ・シミク・ド・フランセ (Bull. Soc. Chim. Fr.), 1967(5), 第1533-1540 頁に記載されている方法で製造することができる。

(2) 一般式 [XII] の化合物またはその塩に一般式 [IX] の化合物またはその塩を、触媒の存在下または不存在下、および塩基の存在下または不存在下で反応させることにより、一般式 [Id]の化合物またはその塩を製造することができる。

この反応に使用され 影響を及ぼさないものであればよく、たとえば、 塩化メチレンおよびクロロホルムなどのハロゲン 化炭化水素類;テトラヒドロフランおよびジオキ サンなどのエーテル類;エタノール、プロパノー ルおよびブタノールなどのアルコール類;アセト ニトリルのようなニトリル類;N.Nージメチル ホルムアミドのようなアミド類;並びに水などが 挙げられ、これらの溶媒を1種または2種以上混 合して使用してもよい。

また、必要に応じて用いられる触媒としては、 たとえば、ヨウ化カリウムおよびョウ化ナトリウ ムなどが挙げられる。

必要に応じて用いられる触媒の使用量は、一般式 [XN] の化合物またはその塩に対して、0.1 ~ 1倍モルである。

また、必要に応じて用いられる塩基としては、 たとえば、前述の製造法2の(3)で述べたと同様 の塩基が挙げられ、また、一般式[IX]の化合物 またはその塩を塩基として用いることもできる。

- 27 -

[XI]、[XI]、[XI]、[XV]、[XV]、[XM]、
[I]、[Ia]、[Ib]、[Ic] および[Id]の
化合物において、ヒドロキシル基、アミノ基また
はカルボキシル基を有する化合物は、あらかじめ
これらのヒドロキシル基、アミノ基またはカルボ
キシル基を通常の保護基で保護しておき、反応後、
必要に応じて自体公知の方法でこれらの保護基を
脱離することもできる。 このようにして得られ
た一般式[I]の1,2ーエタンジオール誘導体
またはその塩は、抽出、高出よびカラム
クロマトグラフィーなどの通常の方法によって単
離精製することができる。

また、一般式[I]の1,2一エタンジオール 誘導体またはその塩を、たとえば、酸化反応、湿 元反応、付加反応、アシル化反応、アルキル化反 応、スルホニル化反応、脱アシル化反応、置換反 応、脱水反応および加水分解反応など自体公知の 方法を適宜組み合わせることによって、他の一般 式[I]の1,2一エタンジオール誘導体または その塩に誘導することができる。 一般式 [IX] の 物もしくはその塩または必要に応じて用いられる塩基の使用量は、一般式 [XN] の化合物またはその塩に対して、それぞれ、等モル以上、好ましくは、1~20倍モルである。

この反応は通常、10~150 ℃、好ましくは、20 ~100 ℃で、10分~20時間実施すればよい。

また、上記各製造法において用いられる反応試 薬または塩基は、それらの性質に応じ、それらを 溶媒として用いることもできる。

一般式[I]、[II]、[IIa]、[IV]、 [V]、[VI]、[VII]、[VII]、[IX]、

-28-

なお、本発明化合物を製造するための原料である一般式 [II] の化合物は、自体公知の方法、たとえば、ジャーナル・オブ・アメリカン・ケミカル・ソサエティ(JACS)、第87巻、第1353頁(1965年)、新実験化学講座、第14巻、第579 頁(1977 年、丸善)などにより製造することができる。

本発明化合物を医薬として用いる場合、医薬上 許容され得る賦形剤、担体および希釈剤などの製 削助剤を適宜混合してもよく、これらは、常法に より錠剤、カプセル剤、散剤、顆粒剤、細粒剤、 丸剤、懸濁剤、乳剤、液剤、シロップ剤または注 射剤などの形態で経口または非経口で投与するこ とができる。また、投与方法、投与量および投与 回数は、思者の年齢、体重および症状に応じて適 宜選択できるが、経口投与の場合、通常成人に対 して1日0.01~500 mgを1回から数回に分割して 投与すればよい。

つぎに、本発明の代表的化合物の薬理作用について述べる。

なお、以下の薬理試験使用する試験化合物番 号は、製造例中の化合物番号を引用した。

1. 抗ハイポキシア作用

1群10匹の ddY系雌マウス (5~6週齢) に、 生理食塩液に溶解させた試験化合物100 mg/kgを 経口投与する。投与30分間後に、マウスを300 ㎡ のガラス容器に入れ、このガラス容器に4%酸素 および96%窒素からなる混合気体を5 ℓ/min で 通気し、通気開始からマウスが死亡するまでの時 間を測定した。

対照群には、生理食塩液のみを経口投与した。 試験化合物の抗ハイポキシア作用は、次式:

投与群のマウスの生存時間 $\times 100(\%)$ 対照群のマウスの生存時間 より求めた。

その結果を表一1に示す。

	表一	(統合)
Γ	58	143
1	6 4	156
1	66	221
1	72	293
1	7 4	161
1	75	169
1	76	228
1	77	213
ł	79	248
١	83	2 4 1
1	85	316
ı	87	171
L	9 4	137
Г	対照	100

化合物番号	抗ハイポキシア作用
1	2 2 1
2	154
9	212
14	217
16	160
19	242
21	230
23	246
25	224
26	309
2 7	144
28	131
29	1.63
3 1	157
3 2	160
33	268
3 4	185
36	162
3 7	251
38	209
39	147
4 2	132
46	189
47	211
5 4	155
5 7	135

32 -

2. 抗健忘作用

a)電気痙攣ショック(ECS)誘発健忘モデル 1 詳10匹の ddY系雄マウス(5~6週齢)に、 生理食塩液に溶解させた試験化合物を腹腔内投 与し、投与1時間後にマウスを明暗2室から成 るステップ・スルー (Step-through)式受動回 遊訓練箱 (HPA-100H、室町機械社製)の明室に 入れ、暗室に入るとギロチンドアを閉じ、 0.5 秒後に電流(1.6mA、3秒間)を床のグリッド に通電して、獲得試行を行い、その直後に両眼 を介してECS (25mA、 0.5秒間)を負荷した。 テスト試行として、24時間後に再びマウスを明 室に入れ、マウスが暗室に四肢を入れるまでの 時間(反応潜時)を最大 300秒間測定した。

生理食塩液のみを腹腔内投与した対照群のマ ウスについても同様にして反応潜時を測定した。 また、抗健忘作用は反応潜時の中央値とし、以 下の記号で表わした。

-:0~60秒

+:61~100 秒

++:101~150秒 +++:151~300秒

- 34

表-2

化合物番号	投与量 (略/Kg)	抗健忘作用
4	3	++
5	3	+
8	10	++
対照	_	_

に降りた直後から2mAの電流を2秒間、床グリッドに通電し、直ちにマウスをホームケージに戻すことにより獲得試行を行った。テスト試行として、24時間後に、シクロヘキシミド処理マウスに対して、生理食塩液に溶解させた各試験化合物を経口投与し、投与30分後にマウスを上記装置内の台上に置き、マウスが台から降りるまでの時間(反応潜時)を最大 300秒間測定した。

生理食塩液のみを経口投与した対照群のマウスについても同様にして反応潜時を測定した。 また、抗健忘作用は反応潜時の中央値とし、 以下の記号で表わした。

-:0~60秒 +:61~100 秒 ++:101 ~150 秒 +++:151 ~300 秒 その結果を表-3に示す。

b) シクロヘキシ (Cycloheximide) 誘発健忘 モデル

シクロヘキシミドによりマウスの記憶の検索 過程が障害されることが、山崎ら〔薬物・精神 ・行動、第3巻、第 127~136 頁(1983年)] によって報告されている。そこで、以下の試験 を行った。

方法: 薬物・精神・行動、第3巻、第 127~ 136 頁(1983年) および日本楽理学雑誌、 第89巻、第 243~252 頁(1987 年) に記 載の方法に準じて行った。

なお、装置として床部分がステンレスのグリッドからなる縦22cm、横22cm、高さ21cmの黒色アクリル製の箱で床のグリッドの一隅に縦7cm、高さ2cmの台を設けたステップ・ダウン(Step-down) 式受動回避訓練箱を用いた。

1群10匹の ddY系雄マウス(5~6週齢)に対して、生理食塩液に溶解させたシクロヘキシミド(120mg/Kg)を皮下投与し、投与15分後にマウスを上記装置内の台上に膨く。マウスが床

- 36 -

表 - 3

化合物番号	投与量 (mg / Kg)	抗促忘作用
1	10	+
6	3	++
9	3	++
13	10	++
14	10	++
2 2	3	+
23	3	+
27	3	++
28	10	+
29	3	+
30	3	+
32	10	++
35	3	+
39	3	· ++
40	3	+
41	з .	++
42	3	. +
47	. 10	++
49	10	+
5 4	3	+
56	3	+++
5 7	3	+
対照	-	

3. アセチルコリンコラーゼ阻害作用

イールマン (Ellman) らの方法 [バイオケミカル・ファーマコロジー(Biochem. Pharmacol.) 第7巻、第88~95頁、1961年] に準じて行った。 すなわち、5、5 ´ージチオピスー(2ーニトロ安息香酸) [DTNB]、試験化合物およびアセチルコリンエステラーゼ源としてのマウス脳ホモジネートを含むリン酸緩衝液に基質としてのアセチルチオコリンを加え、インキュベーションし、生成する5ーチオー2ーニトロ安息香酸を412 mmで測定した。

アセチルコリンエステラーゼ阻害活性は、試験化合物の最終濃度が10*pg/配*のときの抑制率として表わした。

その結果を表-4に示す。

4. 急性毒性

1 群 3 匹の ddY系雄マウス (5~6週齢)に、 生理食塩液に溶解させた試験化合物を静脈内投与 し、急性毒性を検討した。

その結果、試験化合物番号1、2、4、5、8、14、16、26、49、57、58、64、66、74、79および85の化合物は、50mg/Kgで死亡例は認められなかった。

以上の試験結果から、本発明化合物は優れた抗ハイポキシア作用、抗健忘作用およびアセチルコリンエステラーゼ阻害作用を有し、かつ低毒性であることが容易に理解できる。

[発明の効果]

よって、本発明化合物は、脳血管性痴呆、老年性痴呆、アルツハイマー病、虚血性脳障害の後遺症および脳卒中などの治療に極めて有用な脳機能改善剤として用いることができる化合物であることが明らかである。

つぎに、本発明化合物の製造法を具体的に製造 例をもって示す。

化合物番号	抑制率 (%)
8	30
11	20
18	4 5
25	2 1
30	61
31	67
. 39	4 2
41	26
61	30
66	23
75	47
94	59

- 40 -

なお、溶媒の混合比はすべて容量比であり、また、カラムクロマトグラフィーにおける担体はメルク社製のシリカゲル [+-ゼルゲル60、アート.7734(Kieselgel 60, Art.7734)]を用いた。

また、以下に使用される略号はつぎの意味を有 する。

Me:メチル、Et:エチル、I-Pr:イソプロピル、t-Bu: tert-プチル、Ac:アセチル、Ph:フェニル、DPM:ジフェニルメチル、Bz:ベンジル、Tr:トリチル、IPA:イソプロピルアルコール、IPE;ジイソプロピルエーテル、PTS:p-トルエンスルホン酸

また、文中および表中の[]は再結晶溶媒を示す。

実施例1

2-(N, N-ジメチルアミノ) エタノール31 **心にtertープトキシカリウム 1.7gを加え、80℃** まで昇温させる。この混合物に、予め2-(ベン **ゾ[b]チオフェンー5ーイル)オキシラン 5.2** gをジメチルスルホキシド8 心に溶解させた溶液 を、80~85℃で 1.5時間を要して滴下した後、褥 られた混合物を同温度で1時間撹拌する。ついで、 反応混合物を冷却し、酢酸エチル60減および氷水 60配の混合物に導入し、有機層を分取する。水層 をさらに酢酸エチル30歳で抽出する。抽出液を、 先に分取した有機層と合わせて、氷水50歳を加え た後、6N塩酸でpH 1.5に調整し、水層を分取す る。分取した水層にクロロホルム50歳を加え、炭 酸カリウムでpH10.5に調整した後、有機層を分取 する。分取した有機層を水で洗浄した後、無水硫 酸マグネシウムで乾燥させる。滅圧下に溶媒を留 去し、得られた油状物をアセトン50㎡に溶解させ、 この溶液に5N乾燥塩化水素-エタノール溶液 4.3㎡を加え、室温で1時間撹拌する。この混合

- 43 -

		配点(で)	139 /	165. 5 / 166 [EtOH- Et ₂ 0]	143
		针加塩	HCI	•	2HC!
		_	2	•	•
R¹ R⁴ R¹—cH—cH—o—←cH→nR° OR²		R ⁶	Me Me	•	•
† 0	表5	R4	Ή	•	
~~ <u>^</u>	收	R3	r	•	•
-CH- OR2		R2	I		R.
<u>"</u> "		-A	Ď		€
		化合物 中	7	ь	4

物にジェチルエー 0 mlを加え、さらに1時間 撹拌した後、析出品を存取し、乾燥すれば、1ー (ベンソ [b] チオフェンー5ーイル)ー2ー [2ー(N, Nージメチルアミノ) エトキシ] エ タノールの塩酸塩(化合物番号1)3.3gを得る。

融点: 191.5~192.5 ℃

[EtOH-Me, CO]

同様にして、表-5の化合物を得る。

なお、表 - 5中の R^1 、 R^2 、 R^3 、 R^4 、 R^6 および R^4 、 R^4 、 R^6 および R^4 、 R^4 、 R^4 、 R^4 、 R^4 、 R^6 および R^4 、 R^4 、 R

	(以下余白)
\times	
. /	

- 44 -

-				
	128. 5 2 130 [EtOH]	185 2 185, 5 (EtOH -1PA)	128 - 130	136 2 136. 5 [1PA]
	нсі	2HC1	нсі	フマル融
	2			•
	-N Me	•	•	•
	π	•	•	*
	Ξ	k	k	•
	Ξ		*	
			(J)	
	52	9	7	8

	¥	·	167. 5 / 169	知识
		2HC (нсі	2461
	2	15	•	•
(2)	**************************************	•	Ŷ	W W
要~5 (焼き)	x	•		
67\$. π	•		•
	н	•		•
	(N)	N H		N. W.
	17	18	19	20

207. 5 210 (EtOH)	190. 5 2 192 (EtOH-	171 2 172 (1PA- Ac0Et]	知
HCI	ts.	•	ı
8		4	•
₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	•	•	
I		*	•
Ξ.	•	•	•
н	٠.	ď	•
<u>(La</u>	<u> () </u>	(O'S)	
21	22	23	24

_ 40 _

聚-5(既登)

	166.5 167.5 167.5 198- Acoet]	168. 5 	169 2	益
	~		•	
(F)	W W	•	•	•
表-5(概念)	Ξ	•	•	
EK.	Ŧ	•	•	•
	Ι		•	•
	Ø ^s ì		OLN P	N. W.
	თ	10	11	12

	<u></u>						188. 5
± ±		I	 I	®W N	~	1 2 1 2 1	189 [EtOH- AcOEt]
	•	•	•	•			168 2 169.5 [1PA- Ac0Et]
· NA	•	•	•	,	*	*	169 / 172 (EtOH)
	-	•	•	Ç		•	166. 5 2 167. 5 [EtOH- Me ₂ CO]

	81. 5 85~.5	105 	123 / 124.5 (EtOH- AGOEt]
	ı	HCI	フマル酸
	е	4	
称-5 (KR)	N N N		√ NMe ₂
7.	Ξ		¥ ¥-
1862	Ξ	20	}-≥
	Ξ	•	탕
		•	
	25	26	27

この化合物は、化合物番号17の化合物を、通常の水素板加皮のた付すことによって移ることができる。

- 51 -

なお、表-6中の R^1 、 R^2 、 R^3 、 R^4 、 R^6 およびRは、それぞれ、つぎの式の置換基または整数を示す。

実施例2

3-ピリジンメダブール 1.6g、tertープトキ シカリウム 1.7g およびジメチルスルホキシド23 心の混合物を80℃まで昇温させ、この混合物に2 - (ベンゾ [b]フラン-5-イル)オキシラン 2.4gを加え、得られた混合物を85~90℃で15分 間撹拌する。ついで、反応混合物を氷水50心およ び酢酸エチル50㎡の混合物に導入し、6 N塩酸で pH1に調整した後、水層を分取する。分取した水 層に酢酸エチル30㎡を加え、炭酸カリウムでpH 9.5 に調整した後、有機層を分取する。分取した 有機層を水および飽和食塩水で順次洗浄した後、 無水硫酸マグネシウムで乾燥させる。減圧下に溶 媒を留去し、得られた残留物をカラムクロマトグ ラフィー(溶離液:クロロホルム:エタノール= 50:1)で精製すれば、1-(ペンソ[b]フラン -5-イル)-2-(ピリジン-3-イルメトキ シ) エタノール (化合物番号28) 0.56gを得る。

融点:85~86℃[]PE-EtOH] 同様にして、衷-6の化合物を得る。

- 52 -

		配点(で)	108. 5 107. 5 [Acoet -1PE]	英	•
		3	ر ر≼ا		
		frioria.	ŧ	нсі	1
		u	1	•	2
· R³ R⁴ -CH-CH-OCH-3 R ⁶ OR²		R ⁶	(•	- N-B z
4	卷-6	R	Ξ	,	•
-CH-CH- OR2	100	R³	I	•	•
-CH- OR ²		R²	I		•
_		R1		O H O	
		化合物 电电	. 58	30	31

- 53 -

	121. 5 / 125 [AcOEt]	127 2 129, 5 [EtOH_	95. 5 / 98 [AcOEt]	181
	1	ār .	•	нсі
	_	•	•	0
(P)	\$	_3-∞ ∞	∑z- ^N	(3)
졌-6 (됐는)	Ξ		•	I
既	I			•
	Ŧ	•	• .	•
		•	•	•
	32	33	34	35

- 55 --

(2) 1-(ベンゾ[b]チオフェン-5-イル) -2-(2-ヒドロキシエトキシ)エタノール 9.0gをピリジン54配に溶解させ、この溶液に、 -25℃でp-トルエンスルホニルクロリド 7.2gを 加え、得られた混合物を0~5℃で24時間、さら に室温で4時間静置する。ついで、反応混合物を 6N塩酸 103ml、氷水50mlおよびジエチルエーテ ル 100mLの混合物に導入し、6 N塩酸でpH 2.0に 調整した後、有機層を分取する。水層をさらにジ エチルエーテル30㎡で抽出する。抽出液を、先に 分取した有機層と合わせて、水および飽和食塩水 で順次洗浄した後、無水硫酸マグネシウムで乾燥 させる。減圧下に溶媒を留去し、得られた残留物 をカラムクロマトグラフィー(溶土液;トルエン: 酢酸エチル=10:1)で精製すれば、無色油状の1 - (ベンゾ [b] チオフェン-5-イル) - 2-[2-(p-トルエンスルホニルオキシ)エトキシ] エタノール 7.7gを得る。

(3) 1-(ベンゾ[b]チオフェン-5-イル) -2-[2-(p-トルエンスルホニルオキシ)エ 実施例3

(1) tertープトキシカリウム 5.7g およびエチ レングリコール57歳の混合物を80℃まで昇温させ、 予め2-(ベンゾ[b]チオフェン-5-イル) オキシラン18gをジメチルスルホキシド30mlに溶 解させた溶液を 1.5時間を要して滴下した後、得 られた混合物を同温度で30分間撹拌する。ついで、 反応混合物を氷水120 心および酢酸エチル80心の 混合物に導入し、有機圏を分取する。水層をさら に酢酸エチル30㎡ずつで2回抽出する。抽出液を、 先に分取した有機層と合わせて、水および飽和食 塩水で順次洗浄した後、無水硫酸マグネシウムで 乾燥させる。減圧下に溶媒を留去し、得られた残 留物をカラムクロマトグラフィー(溶離液:クロ ロホルム:エタノールー20:1)で精製すれば、1 - (ベンゾ[b]チオフェン-5-イル)-2-(2-ヒドロキシエトキシ) エタノール 9.1gを 得る。

融点: 119~120.5 ℃

[EtOH-AGOEt]

- 56 -

トキシ] エタノール 7.6g および3, 4ージヒド ロー2 Hーピラン 3.5心を溶解させた塩化メチレ ン40mlの溶液に、室温でピリジニウムーp-トルエ ンスルホネート0.97gを加え、得られた混合物を 同温度で20分間、さらに40~45℃で30分間撹拌す る。ついで、反応混合物を水で洗浄した後、無水 硫酸マグネシウムで乾燥させる。減圧下に溶媒を 留去すれば、無色油状の1-(ペンソ[b]チオ フェンー5ーイル)ー1ー(2ーテトラヒドロピ ラニルオキシ)-2-[2-(p-トルエンスルホ ニルオキシ)エトキシ]エタン 8.7gを得る。 (4) 1-(ベンソ[b]チオフェン-5-イル) -1-(2-テトラヒドロピラニルオキシ)-2 - [2-(p-トルエンスルホニルオキシ)エトキ シ] エタン 1.5gをエタノール15㎡に溶解させ、 この溶液に40%メチルアミン水溶液 4.9心を加え、 得られた混合物を1時間退流する。ついで、反応 混合物を氷水20配およびジエチルエーテル20配の

混合物に導入し、有機層を分取する。水層をさら

先に分取した有機層と せて、水20歳を加え、 6 N塩酸でpH 1.5に調整した後、室温で20分間撹 **拌する。水層を分取し、有機層をさらに水10㎡で** 抽出する。抽出液を、先に分取した水層と合わせ て、塩化メチレン30㎡を加えた後、10%水酸化ナ トリウム水溶液でpH11に調整し、有機層を分取す る。水層をさらに塩化メチレン15㎡で抽出する。 抽出液を、先に分取した有機層と合わせて、無水 硫酸マグネシウムで乾燥させた後、減圧下に溶媒 を留去する。得られた残留物をアセトンフ心に溶 解させ、この溶液に5N乾燥塩化水素ーエタノー ル溶液 0.5 刷を加え、得られた混合物を室温で1 時間撹拌する。ついで、反応混合物にジエチルエ ーテル7㎡を加え、析出晶を炉取すれば、1ー (ベンソ[b]チオフェン-5-イル)-2-(N-メチルアミノエトキシ) エタノールの塩酸 塩(化合物番号36) 0.5gを得る。

融点: 201.5~202.5 ℃

[EtOH-Me₂ CO]

同様にして、表一7の化合物を得る。

- 59 -

		配点 (T)	196. 5 / 197. 5 [EtOH- Me ₂ CO]	232 234 [Me0H- Me ₂ CO]	219. 5 220 [EtOH- AcOEt]
		es filos	HC1	2HC1	нсі
		_	2	•	
R3 R4 		R ⁶	\ ∓×	N-N-W	-10 gor
†	7	R4	I	•	h
R3-1-CH-	表-7	R³	王	•	a
CH-CH-		R²	I	•	•
ج. آ		R¹		•	•
		化 合 物等	37	38	39

なお、表-7 R^1 、 R^2 、 R^3 、 R^4 、 R^6 および R^6 および R^6 ない R^6 および R^6 ない R^6 および R^6 ない $R^$

	(以下余白)
·	
X	
/ .	
•	

- 60 -

	138 149 [EtOH- AcOEt]	170.5 171.5 [EtOH- Acoet]	222. 5 223 [EtOH- Acoet]	
•	ジュウ	нсı	•	
	.2			
()	-N Me		€ ни-	
表-7 (統定)	Ξ	•		
	×		•	
	I	•	•	
		•	•	
	40	4.1	4 2	

実施例4

(1) 2-(ベンソ [b]フラン-5-イル)オキシランの代わりに、2-(ベンソ [b]チオフェン-5-イル)オキシランおよび3ーピリジンメタノールの代わりに、1.4ージホルミル-2ーピペラジンメタノールを用いて、実施例2と同様に反応させ、処理すれば、油状の1-(ベンソ [b]チオフェン-5-イル)-2-[(1,4-ジホルミルピペラジン-2-イル)メトキシ]エタノール(化合物番号43)を得る。

(2) 1ー(ペンソ [b] チオフェンー5ーイル) - 2ー [(1.4ージホルミルピペラジンー2ーイル)メトキシ] エタノール 270mgをメタノール 1.5 mlに溶解させ、この溶液に、5 N 乾燥塩化水 素ーエタノール溶液 1.5 mlを加え、得られた混合物を室温で一夜放置する。析出晶を沪取し、エタノールで洗浄した後、乾燥すれば、1ー(ペンソ [b] チオフェンー5ーイル)-2ー [(ピペラジン-2ーイル)メトキシ] エタノールの二塩酸塩(化合物番号44) 150 mgを得る。

- 63 -

回抽出する。抽出液を、先に分取した水圏と合わせて、塩化メチレン50㎡を加え、炭酸カリウムで pll10.5に調整した後、有機層を分取する。分取した有機層を水で洗浄した後、無水硫酸マグネシウムで乾燥させる。滅圧下に溶媒を留去すれば、1ー(ベンソ[b]チオフェンー5ーイル〉ー2ー(2ーアミノエトキシ)エタノール(化合物番号45) 1.2gを得る。

融点:87~90.5℃ [EtOH-IPE]
(2) 1-(ベンゾ [b] チオフェン-5-イル)
-2-(2-アミノエトキシ) エタノール 1.1g
をエタノール10㎡に溶解させ、この溶液にフマル
酸 290㎡を加え、得られた混合物を室温で30分間
撹拌する。ついで、反応混合物にジエチルエーテ
ル7㎡を加え、得られた混合物を同温度で1時間
撹拌する。析出晶を沪取し、乾燥すれば、1(ベンゾ [b] チオフェン-5-イル) -2(2-アミノエトキシ) エタノールの1/2・フマ
ル酸塩(化合物番号46) 1.2gを得る。

融点: 216~ 218℃ (分解)

実施例5

 (1) 2-(N-トリチルアミノ)エタノール10 g、tert-プトキシカリウム 3.7g およびジメチ ルスルホキシド30心の混合物を85℃まで昇温させ、 この混合物に、予め2~(ペンソ[b]チオフェ ン-5-イル) オキシラン 5.8g をジメチルスル ホキシド10心に溶解させた溶液を加え、同温度で 5分間撹拌する。ついで、反応混合物を氷水 150 **心および酢酸エチル 100心の混合物に導入し、有 榄層を分取する。水層をさらに酢酸エチル30㎡で** 抽出する。抽出液を、先に分取した有機層と合わ せて、水および飽和食塩水で順次洗浄した後、無 水硫酸マグネシウムで乾燥させる。減圧下に溶媒 を留去し、得られた残留物に50%半酸水溶液70元/ およびテトラヒドロフラン30心を加え、得られた 混合物を50~60℃で1時間撹拌する。減圧下に溶 媒を留去し、得られた残留物に酢酸エチル50mlお よび水30㎡を加え、6N塩酸でpH2に調整した後、 水層を分取する。有機層をさらに水10mlずつで2

- 64 -

融点:204.5 ~205.5 ℃

[MeOH-EtOH]

実施例6

 $2-(N-h)チルアミノ)エタノールの代わりに、(1ーhリチルイミダゾールー4ーイル)メタノールを用いて、実施例5と同様に反応させ、処理すれば、融点 <math>128\sim 129\%$ [ACOEt]を示す1-(ベンゾ [b]チオフェン-5ーイル)-2-[(イミダゾリル)メトキシ]エタノール(化合物番号47)を得る。

[この化合物の名称において、(イミダゾリル) メトキシなる表示は、イミダゾリル基の4または 5位のどの炭素原子とメトキシ基の炭素原子が結 合しているか未だ明らかでないため、このように 命名した。]

実施例7

1-(ベンゾ[b]チオフェン-5-イル)-2-(2-アミノエトキシ)エタノール0.46gを水5元のではよびジオキサン5元の混合物に溶解させ、この溶液に炭酸ナトリウム0.21gを加えた後、50

℃まで昇温させる。こ(物に2-クロロピリ ミジン0.22gを加え、得られた混合物を3時間還 流する。ついで、反応混合物を氷水30㎡および酢 酸エチル30配の混合物に導入し、有機層を分取す る。水麿をさらに酢酸エチル10㎡で抽出する。抽 出液を、先に分取した有機層と合わせて、水20歳 を加え、6N塩酸でpH 1.5に調整した後、水層を 分取する。有機層をさらに水10㎡で抽出する。抽 出液を、先に分取した水層と合わせて、塩化メチ レン50㎡を加え、炭酸カリウムでpH10.5に調整し た後、有機層を分取する。分取した有機層を水で 洗浄した後、無水硫酸マグネシウムで乾燥させる。 減圧下に溶媒を留去し、得られた残留物をカラム クロマトグラフィー(溶離液:クロロホルム:エ タノール=20:1)で精製すれば、油状物を得る。 **得られた油状物にエタノール2㎡およびマレイン** 酸70mgを加え、得られた混合物を室温で1時間撹 拌する。ついで、反応混合物にジエチルエーテル 2 心を加え、析出品を炉取し、乾燥すれば、1-(ベンソ[b]チオフェンー5ーイル)-2-

- 67 -

で乾燥させる。滅圧下に溶媒を留去し、得られた残留物をカラムクロマトグラフィー(溶離液:クロコホルム:エタノール=10:1)で精製する。得られた油状物をエタノール3 ㎡に溶解させ、この溶液に5 N乾燥塩化水素-エタノール溶液0.24㎡を加え、得られた混合物を室温で1時間撹拌する。反応混合物にジエチルエーテル1.5㎡を加え、さらに同温度で1時間撹拌する。析出晶を沪取し、乾燥すれば、1ー(ベンソ[b]チオフェンー5ーイル)-2-[2-(ニコチノイルアミノ)エトキシ]エタノールの塩酸塩(化合物番号49)0.31gを得る。

融点: 152~ 153℃ [EtOH-AcOEt] 実施例9

(1) 4-メチル-2-ホルミルチアゾール 1.6 gをテトラヒドロフラン30㎡に溶解させ、-30℃ に冷却する。この溶液に、 1.6H 2-クロロエト キシメチルマグネシウムクロリドのテトラヒドロ フラン溶液10㎡を10分間を要して滴下した後、得 られた混合物を氷冷下で1時間撹拌する。ついで、 ([2-(ピリミ: 2-イル)アミノ]エト キシ}エタノールの172・マレイン酸塩(化合物 番号48)0.28gを得る。

融点:113.5 ~114.5 ℃ [I PA – A c O E t] 実施例8

- 68 -

反応混合物を氷水50㎡、酢酸エチル50㎡および塩化アンモニウム2gの混合物に導入し、6N塩酸で川2に調整した後、同温度で5分間撹拌する。ついで、反応混合物を飽和炭酸水素ナトリウム水溶で叶6に調整した後、有機層を分取する。分取した有機層を水および飽和食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥させる。減圧下に溶媒を留去し、得られた残留物をカラムクロマトグラフィー(溶離液:トルエン:酢酸エチルマトグラフィー(溶離液:トルエン:酢酸エチルー・1)で精製すれば、油状の1ー(4ーメチル・2ーチアゾリル)ー2ー(2ークロロエトキシ)エタノール 1.3gを得る。

(2) 1ー(4ーメチルー2ーチアゾリル)ー2ー(2ークロロエトキシ)エタノール 1.2g、50%ジメチルアミン水溶液3 配、ヨウ化カリウム0.45gおよびエタノール20元の混合物を、3時間退流する。ついで、反応混合物に50%ジメチルアミン水溶液3 配を加え、得られた混合物をさらに3時間退流する。減圧下に溶媒を留去し、得られた残留物に酢酸エチル30元および水30元を加え、

6 N塩酸でph 1.5に調金とた後、水層を分取する。分取した水層を酢酸エチル10㎡で洗浄し、酢酸エチル30㎡を加え、炭酸カリウムでph10.5に調整した後、有機層を分取する。分取した有機層を水10㎡および飽和食塩水10㎡で流浄した後、無水硫酸マグネシウムで乾燥させる。減圧下に溶解を留去し、得られた残留物をエタノール6㎡を縮すさせ、この溶液に5 N乾燥塩化水素ーエタノール溶液 0.6㎡およびジエチルエーテル6㎡を加え、得られた混合物を室温で1時間覚拌する。析出晶を沪取し、ジエチルエーテルーエタノール(1:1)の混合液2㎡で洗浄した後、乾燥すれば、1ー(4ーメチルー2ーチアソリル)ー2ー[2ー(N・Nージメチルアミノ)エトキシ]エタールの塩酸塩(化合物番号50) 390㎜を得る。

融点: 159~ 160℃ [| PA - A c O E t] 同様にして、表 - 8 の化合物を得る。

なお、表-8中の R^1 、 R^2 、 R^3 、 R^4 、 R^6 および R^4 、それぞれ、つぎの式の置換基または整数を示す。

- 71 -

* *	175 176 [EtOH- Acoet]		182. 5 2 183 [EtOH- AcOEt]
1	HCI	2HC1	ПОН
8		la .	•
W W	•	•	•
I	•	20	•
Ţ	•	•	a.
Ŧ	•	•	
	Me (N)	z-g	c (S)
*2	55	56	57

		(の) 野曜	抽状	185 186. 5 EtOH- AcOEt]	類
		付加塩	1	2HC1	ı
		c	2	•	•
R3 R4 R1CH-CH-O-+-CH-3-R ⁶ OR2		R ⁶	W W W	•	•
†	聚-8	R ⁴	Н		•
£—₽,		R³	н		
-cH -cH		R²	H	ď	*
R- -		R¹	(N)	(N)	So ₂ Ph
		名 他 他 他	51	*1	53

- 72 -

170	116 117 [EtOH- Me ₂ CO]	179 179.5 (EtOH- Acoet]	155 2 156 [EtOH- Acoet]
1/2・フマル酸	2HC1	a a	•
2		*	æ
-NH2	-N Me	•	•
Ξ		•	•
I ·	•	d	d
Ξ			
	€ MOVING	Ğ	N N N N N N N N N N N N N N N N N N N
5.8	59	09	61
	H H -NH ₂ 2 775.	H H H -NH ₂ 2 77 LM	H H H -NH ₂ 2 77 MB

	194. 5 195 EtOH- AcOEt]	109 111 [AcOEt]	133.5 2 134.5 [EtOH- AcOEt]	136. 5 139. 5 [EtOH- AcOEt]
	HC		нст	•
	2	ဗ		•
(£U	→ HN-	H W	-NH	-N-H
表-8 (税金)	Ξ	*	•	a a
	Ξ	•	•	
	Ξ	•	•	le .
			•	t.
	02	7.1	72	73

193 193.5 EtOH- AcOEt]	171. 5 172 (Et0H- Ac0Et)	137. 5 139. 5 [EtOH- Acoet]	138. 5 139 [EtOH- Acoet]
НСІ	t	*	
8		ဗ	2
N M B	•	Ç	-N Et
π	•	•	
Ξ	•	•	•
Ŧ	b ;	•	•
Me OS	100°28		•
74	7.5	16	11

184 7 186 [EtOH- AcOEt]	196 797 [MeOH]	193 193.5 EtOH- AcOEt	162 } 163 [1PA]
2HC1	нсі	•	•
2	•	*	•
W We	•	W +	W W
Ξ	*	•	•
I	*		•
π	•	*	•
-(Q)	F TO WED	Q ₃ 1	F ∑ON Meo
62	63	84	#3 65

	ľ	Γ			Γ	ſ	
ق ق	Ξ	Ξ.	Ξ	W W	0	HCI	153. 5
	•		•	•	•	2HC1	176 179
	•			-N Et		ı	遊状
	•	•	ė.	M M M		•	

- 76 -

	81. 5 2 83 [1PA- [PE]	196 7 198 [EtOH Acoet	190 192. 5 [EtOH- Acoet]	無定形
	ı	I DH	•	1.2・1.7・1.5・ナフ タレンジ メルボン 関
	က	2	•	•
(Q)	H N-	•	→ HN-	W-Me
题-8 (既是)	I	•	•	•
既	Ξ	•	•	•
	I	•	•	•
	S	•	•	
	86	87	88	89

類	·	110
HCI	1	といってなっている。
~	-	•
W W W		°Ç≠≖
Ŧ	• .	•
I	•	• 3
Ac H	x.	•
	Ö	
06	11	32

我-8(孫老)

*1 この化合物は、化合物番号51の化合物を、塩酸を用いる加水分解反応に付すことによって、均ることができる。*2 この化合物は、化合物等号32の化合物を、水酸化ナトリウムを用いる加水分解反応に付すことによって、得ることができる。*3 この化合物は、化合物番号63の化合物を、適常の水素板加反応に付すことによって、得ることができる。*3 この化合物は、化合物番号63の化合物を、適常の水素板加反応に付すことによって、得ることができる。

- 81 -

- 82 -

. 78	Me OS	Ξ	Ξ	Ξ	-N_H	7	HC	184 2 184. 5 [EtOH- AcOEt]
62		•	•	•	N W W	င	1	68. 5 2 69. 5 [^#\$>]
80		•		•	-N-Bz	2	2HC1	. 250 252.5 (分開) [MeOH- H ₂ 0]
18	•	*	*	•	O'N N		a	155 / 157 (EtOH)

65 67.5 [1PA- 1PE]	234 234.5 [MeOH- AcOEt]	178 180. 5 [1PA- AcOEt]	52 / 53 [1PE]
ı	2HC1	HCI	1
က	2		9
H W	-N-Bz	H N	W W
I	•	•	•
I	• .	•	•
Ŧ	•	• .	
8	•		Ø,
82	83	4	85

表-8(秩金)

実施例10

(1) 1-(2-4x-1)-2-[2-(N)]**N-ジメチルアミノ)エトキシ]エタノール 9.2** gおよび無水酢酸18心の混合物を10分間遠流する。 ついで、反応混合物を濃硝酸 7.8㎡および無水酢 酸27歳の混合物に○℃で30分間を要して滴下した 後、得られた混合物を同温度で2時間撹拌する。 ついで、反応混合物を飽和炭酸水素ナトリウム水 溶液に40%水酸化ナトリウム水溶液でpH7に調整 しながら導入する。得られた混合物を40%水酸化 ナトリウム水溶液でpH10に調整した後、クロロホ ルム 300畝を加え、有機磨を分取する。分取した 有機層に水 300㎡を加え、6N塩酸でpH2に調整 した後、水層を分取する。分取した水層にクロロ・ ホルム 300㎡を加え、40%水酸化ナトリウム水溶 彼でpH10に調整した後、有機層を分取する。分取 した有機層を水で洗浄した後、無水硫酸マグネシ ウムで乾燥させる。滅圧下に溶媒を留去すれば、 油状の1-(5-ニトロ-2-チェニル)-1-アセトキシー2-[2-(N, N-ジメチルアミ

- 83 -

ジメチルアミノ) エトキシ] エタノール (化合物 番号94) 170mgを得る。

融点: 189~ 191.5℃ (分解)

実施例11

(1) 2-[2-(N.N-ジメチルアミノ)エ トキシ]-1-(6-ベンジルオキシベンソ[b] フランー2-イル) エタノール 3.4gをピリジン 10㎡に溶解させ、この溶液に無水酢酸 1.8㎡を加 え、得られた混合物を室温で17.5時間撹拌する。 滅圧下に溶媒を留去し、得られた残留物に酢酸工 チル40心および水40心を加え、炭酸水素ナトリウ ムでpH7に調整した後、有機層を分取する。水層 をさらに酢酸エチル20㎡で抽出する。抽出液を、 先に分取した有機層と合わせて、水および飽和食 塩水で順次洗浄した後、無水硫酸マグネシウムで 乾燥させる。減圧下に溶媒を留去し、得られた残 留物をカラムクロマトグラフィー(溶離液:クロ ロホルム:エタノール=1:1)で精製すれば、 油状の1-アセトキシ-1-(6-ベンジルオキ シベンソ [b] フランー2ーイル) - 2 - [2 -

ノ) エトキシ] エ (化合物番号93) 10.4gを 得る。

(2) 1-(5-ニトロ-2-チェニル)-1-アセトキシー2ー[2-(N.N-ジメチルアミ ノ) エトキシ] エタン 320gをメタノール10㎖に 溶解させ、この溶液に1N水酸化ナトリウム水溶 液1.27㎡を加え、得られた混合物を室温で1時間 撹拌する。ついで、反応混合物にクロロホルム40 wdおよび水40mlを加え、有機層を分取する。分取 した有機層に水30mlを加え、6N塩酸でpll2に調 **撃した後、水層を分取する。分取した水層にクロ** ロホルム30㎡を加え、10%水酸化ナトリウム水溶 液でpH11に調整した後、有機層を分取する。分取 した有機層を水で洗浄した後、無水硫酸マグネシ ウムで乾燥させる。減圧下に溶媒を留去し、得ら れた残留物にメタノール3 配および5 N 乾燥塩化 水素-エタノール溶液1歳を加え、減圧下に溶媒 を留去する。得られた残留物にエタノール5歳を 加え、析出品を沪取し、乾燥すれば、1-(5-ニトロ-2-チエニル)-2-[2-(N.N-

- 84 -

(N, N-ジメチルアミノ)エトキシ]エタン (化合物番号95)3.25gを得る。

 $IR(=-1) cm^{-1} : \nu_{C=0}$ 1740

1-アセトキシー1-(6-ベンジルオキ シベンゾ [b] フランー2-イル) -2-[2-(N, N-ジメチルアミノ) エトキシ] エタン 3.2g、5%パラジウムー炭素 0.6g、濃塩酸 0.67㎡およびメタノール30㎡の混合物を常温、常 圧で 1.5時間水素添加する。反応終了後、パラジ ウムー炭素を沪去する。滅圧下に溶媒を留去し、 得られた残留物にクロロホルム20mlおよび水20ml を加え、炭酸水素ナトリウムでpH7に調整した後、 有機層を分取する。水層をさらにクロロホルム10 **戯で抽出する。抽出液を、先に分取した有機層と** 合わせて、水5㎡で洗浄した後、無水硫酸マグネ シウムで乾燥させる。滅圧下に溶媒を留去し、得 られた残留物をカラムクロマトグラフィー(溶離 液:クロロホルム:メタノール=7:1)で精製 すれば、油状の1-アセトキシ-1-(6-ヒド ロキシベンゾ [b] フラン-2-イル)-2-

· - 86 -

[2-(N, N-ジメアミノ) エトキシ] エタン (化合物番号96) 1.57g を得る。

IR (=-1) cm⁻¹: $\nu_{C=0}$ 1740

(3) 1ーアセトキシー1ー(6ーヒドロキシベンソ [b] フランー2ーイル)ー2ー [2ー(N. Nージメチルアミノ) エトキシ] エタン0.65gをベンゼン 3.5㎡に溶解させ、この溶液にイソシアン酸エチル0.33㎡を加え、得られた混合物を80℃で30分間撹拌する。減圧下に溶媒を留去し、得られた残留物をカラムクロマトグラフィー(溶離を1)で精製すれば、油状物を得る。この油状物を、常法によって乾燥塩化水素処理することにより、油状の1ーアセトキシー1ー(6ーNーエチルカルバモイルオキシベンソ [b] フランー2ーイル)ー2ー [2ー(N. Nージメチルアミノ) エトキシ の塩酸塩(化合物番号97)0.58gを得る。

IR (ニート) cm⁻¹; ν_{C=0} 1730 [製剤例]

つぎに、本発明を具体的に製剤例をもって示す

- '87 -

形錠に打錠する。

製剤例2(カプセル剤)

2-[2-(N, N-ジメチルアミノ) エトキシ]-1-(ベンゾ[b] チオフェン-5-イル) エタノールの塩酸塩(化合物番号1) 50gを含有するカプセル剤を、下記処方を用いて、以下の方法で調製する。

1カプセル当り:

化合物番号1の化合物	50mg —
乳糖	20mg ①
とうもろこし澱粉	53mg
コリドン CL(パスフ社製)	2 mg
ポリビニルピロリドンK-90	5mg
アピセルPH302 (旭化成社製)	18mg — 2
ステアリン酸マグネシウム	2 mg -
<u> </u>	150mg

上記①成分の混合物をポリビニルピロリドンK-90の8%水溶液で練合し、40℃で乾燥した後、②成分を混合し、1カプセル当たり 150gを3号ゼラチンカプセルに充塡し、カプセル剤を得る。

が、本発明はこれられるものではない。 製剤例1(錠剤)

2-[2-(N.N-ジメチルアミノ)エトキシ]-1-(ベンソ[b]チオフェン-5-イル)エタノールの塩酸塩(化合物番号1)50gを含有する錠剤を、下記処方を用いて、以下の方法で調製する。

1錠当り:

化合物番号1の化合物	50 <i>mg</i> —
乳糖	20 <i>mg</i> r
コリドン CL(バスフ社製)	15 <i>mg</i> ①
とうもろこし設粉	30 <i>mg</i>
アビセルPH101 (旭化成社製)	50mg —
ポリビニルピロリドンK-90	5 <i>mg</i>
軽質無水ケイ酸	18mg — ②
ステアリン酸マグネシウム	2 mg -
合 計	175 <i>mg</i>

上記①成分の混合物をポリビニルピロリドンK-90の8%水溶液で練合し、40℃で乾燥した後、②成分を混合し、1錠重量 175mg、直径8mmの円

- 88 -

製剤例3(錠剤)

2-【(N-メチル-1H-1.2.5.6-7トラヒドロピリジン-3ーイル)メチル]ー1ー(ベンソ[b]チオフェン-5ーイル)エタノール(化合物番号34)、2ー(2-アミノエトキシ)ー1ー(ベンソ[b]チオフェン-5ーイル)エタノールの1/2・フマル酸塩(化合物番号46)、2ー[2ー(N.Nージエチルアミノ)エトキシ]ー1ー(ベンソ[b]チオフェン-5ーイル)エタノールの塩酸塩(化合物番号77)または2ー[2ー(4ーベンジルピペラジン-1ーイル)エチル]ー1ー(ベンソ[b]フラン-5ーイル)エタノールの二塩酸塩(化合物番号83)を、製剤例1と同様にそれぞれ製剤化し、化合物50mgを含有する錠剤をそれぞれ得る。

製剤例4(カプセル剤)

2- [(N-メチル-1H-1, 2, 5, 6-テトラヒドロピリジン-3-イル)メチル]-1 -(ペンゾ[b]チオフェン-5-イル)エタノ -ル(化合物番号34)、2-(2-アミノエトキ

- 89 -

シ) - 1 - (ベンソ チオフェン - 5 - イル) エタノールの 1/2 ・フマル酸塩 (化合物番 号46)、2 - [2 - (N, N - ジエチルアミノ) エトキシ] - 1 - (ベンゾ [b] チオフェン - 5 - イル) エタノールの塩酸塩 (化合物番号77) または2 - [2 - (4 - ベンジルピペラジン - 1 - イル) エチル] - 1 - (ベンゾ [b] フラン - 5 - イル) エタノールの二塩酸塩 (化合物番号83)を、製剤例 2 と同様にそれぞれ製剤化し、化合物50mgを含有するカプセル剤をそれぞれ得る。

特許出願人 富山化学工業株式会社

- 91 -

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☑ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)