	from matplotlib import pyplot as plt %matplotlib inline # 設定圖形大小; DPI越大圖越大 plt.rcParams["figure.dpi"] = 100 import seaborn as sns import pandas as pd import numpy as np import scipy.stats as stats import statsmodels.api as sm
	import statsmodels.api as sm import statsmodels.stats.api as sms import statsmodels.formula.api as smf import math as math Exercise 7.13
	a. (2%) X: the number of jobs a university graduate will be offered $P(X<2)=P(0)+P(1)=.05+.43=.48$
	b. (2%) X: the number of jobs offered $P(X>1)=P(2)+P(3)=.31+.21=.52$
	Exercise 7.27 a. (2%)
	X:the number of times a student walks into the library $P(X>=20) = P(20) + P(25) + P(30) + P(40) + P(50) + P(75) + P(100) = .08 + .05 + .04 + .04 + .03 + .03 + .01 = .28$ b. (2%)
	X:the number of times a student walks into the library P(X=60)=0 C. (2%)
	X:the number of times a student walks into the library $P(X>50)=P(75)+P(100)=.03+.01=.04$
	X:the number of times a student walks into the library P(X>100)=0 Exercise 7.35 (2% for mean, 2% for standard deviation)
	mean = $E(X) = 0(.10) + 1(.20) + 2(.25) + 3(.25) + 4(.20) = 2.25$ variance = $(.10)(0-2.25)^2 + (.20)(1-2.25)^2 + (.25)(2-2.25)^2 + (.13)(3-2.25)^2 + (.20)(4-2.25)^2 = 1.59$ standard deviation = $\sqrt{1.59} = 1.26$
	Y/X 0 1 1 0.04 0.16 2 0.08 0.32
	3 0.08 0.32 Exercise 7.59
	a. (2%) P(CMD = 0 and SD = 2) = .06 b. (2%)
	P(CMD = 2 and SD = 0) = 0 c. (2%)
In [2]:	$P(CMD \ge 1 \text{ and } SD \ge 1) = .07 + .01 + .10 + .05 + .04 + .02 = .29$ Exercise 7.79 $df_{xr07nyse} = pd_{read}('xr07-nyse_xlsx')$
	<pre>display(df_xr07nyse.head()) GE_Mean=df_xr07nyse["GE"].mean() JNJ_Mean=df_xr07nyse["JNJ"].mean() MCD_Mean=df_xr07nyse["MCD"].mean() MRK_Mean=df_xr07nyse["MRK"].mean()</pre>
	<pre>cov_mat = np.cov(df_xr07nyse[['GE','JNJ','MCD','MRK']].values,rowvar=False,ddof=0) print(cov_mat)</pre> <pre>Year Month MMM AXP BA CAT CVX KO DIS DD MRK NKE PFE PG</pre> 0 2011.0 January 0.055331 0.004380 0.042435 0.061025 0.101130 0.017025 0.125290 0.0909080.018089 0.079413 0.067086 -0.001267 0.06 1 NaN February 0.013770 0.037411 0.026663 0.081803 0.036048 0.045385 -0.014861 0.001823 0.025352 -0.146730 0.055613 -0.022998 -0.00
	2 NaN March 0.039679 0.090161 0.079129 0.040778 0.018141 0.016883 0.000232 0.033109 0.089064 0.087451 0.032496 0.062309 0.06 3 NaN April -0.023390 0.051345 -0.016770 -0.083268 -0.033980 -0.009635 -0.034107 -0.054519 0.022253 0.025875 0.032792 0.032357 -0.01 4 NaN May 0.004980 0.005571 -0.052544 0.006238 -0.019731 0.014476 -0.062215 0.0140710.029323 0.069519 -0.039627 -0.051194 -0.05
	[[0.00303843 0.0009583 0.0008295 0.00086191] [0.0009583 0.0013647 0.00069022 0.00084199] [0.0008295 0.00069022 0.0013038 0.00047924] [0.00086191 0.00084199 0.00047924 0.00212063]]
in [3]:	<pre>a. (3% for mean, 3% for standard deviation) weight=[0.25,0.25,0.25,0.25] portfolio_mean=GE_Mean*weight[0]+JNJ_Mean*weight[1]+MCD_Mean*weight[2]+MRK_Mean*weight[3] portfolio_variance=0 for i in range(4):</pre>
	<pre>for 1 in range(4): for j in range(4): portfolio_variance=portfolio_variance+weight[i]*weight[j]*cov_mat[i][j] portfolio_std=math.sqrt(portfolio_variance) portfolio_std print("MEAN:",portfolio_mean) print("STANDARD DEVIATION:",portfolio_std)</pre>
	MEAN: 0.011631337567666477 STANDARD DEVIATION: 0.03273939175464404 b. (3% for mean, 3% for standard deviation)
n [4]:	<pre>weight=[0.05,0.3,0.4,0.25] portfolio_mean=GE_Mean*weight[0]+JNJ_Mean*weight[1]+MCD_Mean*weight[2]+MRK_Mean*weight[3] portfolio_variance=0 for i in range(4): for j in range(4): portfolio_variance=portfolio_variance+weight[i]*weight[j]*cov_mat[i][j]</pre>
	<pre>portfolio_std=math.sqrt(portfolio_variance) portfolio_std print("MEAN:",portfolio_mean) print("STANDARD DEVIATION:",portfolio_std) MEAN: 0.011967230262297802 STANDARD DEVIATION: 0.030705750109862536</pre>
n [5]:	c. (3% for mean, 3% for standard deviation) weight=[0.1,0.5,0.3,0.1] portfolio_mean=GE_Mean*weight[0]+JNJ_Mean*weight[1]+MCD_Mean*weight[2]+MRK_Mean*weight[3]
	<pre>portfolio_variance=0 for i in range(4): for j in range(4): portfolio_variance=portfolio_variance+weight[i]*weight[j]*cov_mat[i][j] portfolio_std=math.sqrt(portfolio_variance)</pre>
	<pre>portfolio_std print("MEAN:",portfolio_mean) print("STANDARD DEVIATION:",portfolio_std) MEAN: 0.012135638250193528 STANDARD DEVIATION: 0.03151132959681168</pre>
	 d. (2% for portfolio chosen, 2% for explaination) e. (2% for portfolio chosen, 2% for explaination)
	(b) Exercise 7.89
in [6]:	<pre>df_xr07tse = pd.read_excel('Xr07-TSE.xlsx') display(df_xr07tse.head()) BMO_Mean=df_xr07tse["BMO"].mean() MG_Mean=df_xr07tse["MG"].mean() POW_Mean=df_xr07tse["POW"].mean() RCLB_Mean=df_xr07tse["RCL.B"].mean()</pre>
	1 NaN February -0.056369 -0.017356 0.140800 -0.008416 0.016462 -0.008500 0.027613 0.034082 -0.011872 -0.064270 -0.023720 -0.044604 -0.02 2 NaN March 0.022808 -0.041080 -0.011220 0.006814 -0.002158 -0.021706 -0.020215 0.003281 0.026512 -0.011059 0.046041 -0.064199 -0.00
n [7]:	NaN April -0.047643 -0.037575 -0.039046 0.099831 -0.003540 0.028948 -0.019534 0.032429 0.043129 0.024044 -0.030499 0.021890 -0.02 NaN May -0.026345 -0.056047 0.029630 -0.016954 -0.009205 -0.012378 -0.041051 0.0225680.058778 -0.011002 0.111940 0.008422 -0.02 [[0.0011811 0.00036295 0.00070929 0.00033089] [[0.00036295 0.00685094 0.00091688 0.00054053] [[0.00070929 0.00091688 0.00264461 0.00047174] [[0.00033089 0.00054053 0.00047174 0.000223601]]
	4 NaN May -0.026345 -0.056047 0.029630 -0.016954 -0.009205 -0.012378 -0.041051 0.0225680.058778 -0.011002 0.111940 0.008422 -0.02 5 rows × 25 columns [[0.0011811 0.00036295 0.00070929 0.00033089] [0.00036295 0.00685094 0.00091688 0.00054053] [0.00070929 0.00091688 0.00264461 0.00047174]
	### ANN May -0.026345 -0.056047 0.029630 -0.016954 -0.009205 -0.012378 -0.041051 0.0225680.058778 -0.011002 0.111940 0.008422 -0.02 #### Frame > 25 Columns [[0.0011811
	4 NaN May -0.026345 -0.056047 0.029630 -0.016954 -0.009205 -0.012378 -0.041051 0.0225680.058778 -0.011002 0.111940 0.008422 -0.02 Example - 25 columns [[0.001181]
n [8]:	4 Nan May -0.026345 -0.056047 0.029630 -0.016954 -0.009205 -0.012378 -0.041051 0.0225680.058778 -0.011002 0.111940 0.008422 -0.02 Example 26 columns [[0.0011811
in [8]:	4 NaN May -0.028345 -0.056047 0.029830 -0.018954 -0.009205 -0.012378 -0.041051 0.0225880.058778 -0.011002 0.111940 0.008422 -0.06 Frame > 95 columns [[0.0011811 0.00036295 0.00070929 0.00033089]
	4 NaN May 0.028325 -0.058047 0.028200 -0.018054 -0.008205 -0.012378 -0.041051 0.0225680.058778 -0.011002 0.111940 0.008422 -0.05 Enter 0.05 Columns [(0.001181] 0.00036295 0.0005092 0.0003089] [(0.00037959 0.00050940 0.00091688 0.00024053] [(0.00037959 0.00059045 0.00054053] [(0.00037959 0.00059045 0.00054053 0.00047174] [(0.00033089 0.00054053 0.00047174 0.00223601]] a. (3% for mean, 3% for standard deviation) weight=[0.25, 0.25, 0.25, 0.25, 0.25] portfolio_wariance=0 for i in range(4):
	4 NaN May -0.026345 -0.059047 -0.02630 -0.016954 -0.002205 -0.012378 -0.041051 0.0225680.058778 -0.011002 0.111940 0.008422 -0.05 Exercise 25 Continuor [(0.0011811 0.00036285 0.00030828 0.00033089] [0.00036295 0.00058094 0.00051688 0.00034083] [0.00037092 0.00051686 0.00264461 0.00047174] [0.00033089 0.00054055 0.000074774 0.00023601]] a. (3% for mean, 3% for standard deviation) weight=[0.25, 0.25, 0.25, 0.25] portfolio_variance=0 for i in range(4);
	4 Nan May -0.008345 -0.08037
	# NAN
	4 WH May -0.0039/5 -cceeder 0.003805 -c.0-6664 -0.038285 -c.0-003878 -c.0-003878 -c.0-003878 -c.0-003878 -c.0-003878 -c.0-003878 -c.0-003878 -c.0-003878 -c.0-003888 -c.0-00388 -c.0-00
in [9]:	## New Part of Common Services Common Comm
in [9]:	4 No. May CLEBES CLEEKS OCCURS 3000004 200000 201000 0.20000 0.000000 0.000000 0.000000 0.000000
in [9]:	May 1.000
in [9]:	No. Common Section Section Section Section Common
in [9]:	May Address Control
in [10]:	
in [10]:	### 185 0000000 2000000 000000 0000000 0000000 000000
in [10]: in [11]:	# May Action Science Design Content
in [10]: in [11]: in [12]:	in the content of the
in [10]: in [11]: in [12]:	May 1990 1
in [9]: in [10]: in [11]: in [12]:	Note Second Control Amount of the control Amou
in [9]: in [10]: in [11]: in [12]:	No. More contents contents contents contents contents and the contents of
In [9]: in [10]: in [12]: in [14]: in [16]:	No. No. California Cali
In [9]: in [10]: in [12]: in [14]: in [16]:	1. 1. 1. 1. 1. 1. 1. 1.
in [10]: in [11]: in [12]: in [14]: in [16]:	See content and the content an
in [10]: in [11]: in [12]: in [14]: in [16]:	See the content of th

In [20]: print("The probability that a golfer loses 4 or more balls")
 print("p(mu =", mu, ", x <= 2)=", pp.cdf(2))</pre>

The probability that a golfer loses 4 or more balls $p(mu = 2 , x \le 2) = 0.6766764161830634$

Stat_HW6_Solution