Examen chimie analytique A. HALLIER

Conditions d'examen: Sans documents et avec calculatrice scientifique uniquement.

Remarque préalable: La concision et la précision de vos réponses seront prises en compte de manière importante dans la notation.

A) Partie cours (7 points - 40 minutes)

- 1) Dans une chromatographie sur couche mince, à quoi correspond l'étape du développement ? Quel nom « scientifique » porte cette étape dans une CPG ou une HPLC ? (1 point).
- 2) Après les avoir défini, expliquer ce qui différencie les chromatographies d'affinité et d'échange d'ions (1.25 points).
- 3) Décrire le mode d'injection par « vanne d'injection 6 voies » dans le cas d'une analyse chromatographique. Illustrer votre description par un ou plusieurs schémas si nécessaire (2 points).
- 4) Donner le principe de la chromatographie en phase gazeuse. En fonction de quel(s) critère(s) les différents composés sont-ils séparés si la colonne utilisée est une colonne chromatographique d'adsorption (0.75 point)?
- 5) Quels sont les 5 éléments qui composent l'appareillage de la spectrométrie infrarouge? Donner succinctement leur rôle respectif (1.25 points).
- 6) Quels sont les rôles de la source dans un spectromètre de masse (0.75 point)?

B) Partie exercice (13 points – 1h20)

Exercice 1 (3.5 points - 20 minutes):

Afin de caractériser un aliment, on souhaite connaître sa composition en acides aminés. La technique de séparation utilisée est la chromatographie liquide haute performance et les conditions opératoires sont les suivantes :

phase stationnaire en résine greffée SO3-	longueur de colonne : 15cm
pression en tête de colonne : 110 bars	température : 35°C
débit : 2mL/min	phase mobile : HCl/H ₂ O
temps mort: 0.85min	buotemano ana skapaka sum albumsa as

Les résultats sont les suivants :

Nom du soluté	Temps de rétention tr (min)	Hauteur H	Largeur ω (min)
GLU	1.68	49	0.26
SER	4.11	8	0.25
GLN	4.38	7	0.18
HIS	5.18 36		0.14
GLY	5.39	65	0.16
CIT	5.78 22		0.18
ILE			0.08
PHE	10.04	74	
LEU	10.37	65	0.18
LYS	10.60		0.27
	10.00	13	0.06

- 1) Quelle est la classification complète de la technique chromatographique utilisée (1 point)?
- 2) A partir d'une observation visuelle de ce chromatogramme, effectuer le ou les calcul(s) nécessaire(s) et suffisant(s) permettant de dire si les composés <u>présents dans le tableau</u> sont ou non correctement séparés (1 point)?
- 3) A partir des résultats obtenus à la question précédente, dire si la colonne chromatographique utilisée est adaptée à la séparation des acides aminés (0.5 point) ?
- 4) Calculez le « nombre de plateau théorique » et la « hauteur équivalente à un plateau théorique » pour le pic ILE. Quelle est la signification de ces résultats (1 point) ?

Exercice 2 (4.25 points – 25 minutes):

Suite au traitement de l'une de ses parcelles, un agriculteur souhaiterait évaluer les résidus de phytosanitaires présents dans le sol. Les phytosanitaires sont donc extraits d'un échantillon de terre de sa parcelle puis séparés par chromatographie en phase gazeuse.

La colonne est chauffée suivant la programmation de température suivante :

- maintien à 110°C pendant 1 minute
- augmentation à 2°C/min jusqu'à 133°C
- maintien à 133°C pendant 1 minute
- augmentation à 3°C/min jusqu'à 160°C
- maintien à 160°C pendant 0.5 minute

Le chromatogramme et le tableau ci-dessous regroupent les résultats relevés :

Chlorinated Pesticides

pic	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
t _R (min)	2.9	3.7	3.8	4.6	6.1	7.4	9.8	11.4	13.4	13.8	14.6	15.4	16.3	16.7	18.5	19.3
temp (°C)	113.8								133.0	arrison by Hall						

- 1) A l'aide de la programmation de température, remplir la ligne des températures du tableau ci-dessus (1.75 points).
- 2) La colonne utilisée sépare une série de composés homogènes (alcanes) conformément à la théorie. Les temps de rétention obtenus pour la chaîne d'alcanes utilisée sont regroupés dans le tableau suivant. Quels sont les valeurs des coefficients γ , δ , γ ' et δ ' présents dans les théories de Kovats et Van den Dool et Kratz (1.5 points)?

Alcanes	C ₃ H ₈	C ₄ H ₁₀	C ₅ H ₁₂	C ₆ H ₁₄	C7H16	C ₈ H ₁₈	C ₉ H ₂₀	C ₁₀ H ₂₂	C ₁₁ H ₂₄	C ₁₂ H ₂₆
t _R	3.2	7.8	12.0	12.6	12.9	13.2	13.5	17.8	22.5	22.7

3) Calculer les indices de rétention de l'heptachlor et du dieldrin (1 point).

Exercice 3 (2.75 points – 20 minutes):

Identifier, en expliquant votre démarche, le composé correspondant au spectre suivant (2.75 points).

La masse molaire de ce composé est de : 130g/mol.

Liaison	Composés	Fréquence (cm ⁻¹)
	Alcanes	2960-2850 (i)
	Alcalies	1470-1350 (v)
	CH ₃	1380 (m-f)
С-Н	Cycle aromatique	3100-3000 (m)
~ 11	Groupement phényl	870-675 (i)
	Alcynes	3333-3267 (i)
	Alcylics	700-610 (1)
	Aldéhydes	2800-2650 (m)
C=C	Alcènes	1680-1640 (m, f)
	Cycle aromatique	1615, 1510 (f)
C≡C	Alcynes	2260-2100 (f, i)
C-0	Alcools, Ethers, Acides carboxyliques, Esters	1260-1000 (i)
C=O	Aldéhydes, cétones, Acides carboxyliques, Esters	1760-1670 (i)
	Alcools, Phénols	3640-3160 (i, 1)
О-Н	Alcoois, Flichois	3600-3200 (1)
V/ 1-al confilence	Acides carboxyliques	3000-2970 (1)
N-H	Amines	3500-3300 (m)
a mana le la	Annies	1650-1580 (m)
C-N	Amines	1340-1020 (m)
C≡N	Nitriles	2260-2220 (v)
NO ₂	Composés nitrés	1660-1500 (i)
.,02	Composes mires	1390-1260 (i)

v - variable, m - moyen, i - intense, l - large, f - fin

Exercice 4 (2.5 points - 15 minutes):

Identifier, en expliquant votre démarche, le composé correspondant au spectre suivant (2.5 points).

m/z	Abondance relative
25	5.2
26	38.0
27	74.0
28	12.0
29	4.3
31	0.5
41	1.2
42	1.3
43	5.8
44	14.0
45	32.0
46	2.5
52	1.4
53	6.0
54	2.3
55	74.0
56	2.6
57	0.2
71	4.3
72	100.0
73	3.5
74	0.4

Elément	Symbole	Abondance relative
Hydrogène	¹ H	100
10 1 200 1 TO HOLD IN 10 10 10 10 10 10 10 10 10 10 10 10 10	² H	0.016
Carbone	¹² C	100
	¹³ C	1.11
Azote	¹⁴ N	100
	¹⁵ N	0.38
Oxygène	¹⁶ O	100
and the constant of the con-	¹⁷ O	0.04
	18O	0.20
Fluor	¹⁹ F	100