Nome:		N.º	
Turma P 1 – Turno 1	Data: 17/novembro/2022	Duração: 45 min	

A integridade académica é um valor fundamental da Universidade de Coimbra e da FEUC. O Regulamento Pedagógico da FEUC proíbe e sanciona as várias formas de fraude académica.

Durante a realização de provas escritas, o/a Estudante compromete-se a:

- Não usar materiais de consulta, máquinas calculadoras gráficas ou quaisquer outros equipamentos eletrónicos, exceto se tal for explicitamente permitido pelo responsável da unidade curricular em causa;
- Não transmitir as questões da prova a outras pessoas;
- Manter desligados quaisquer equipamentos de comunicação;
- Utilizar exclusivamente as folhas de exame fornecidas pelos vigilantes da prova.

A comprovada fraude académica determina a anulação da prova, a impossibilidade de o/a Estudante concluir a unidade curricular com aproveitamento, a comunicação ao Diretor da FEUC e, eventualmente, a comunicação ao Reitor, para aplicação de sanções disciplinares.

Cada alínea vale 2,5 valores.

Indique os cálculos auxiliares, responda de forma clara e justifique as suas conclusões.

- 1. Sejam x = (2, 0, 1, -2) e y = (-3, -2, 0, 3) dois vetores de \mathbb{R}^4 .
- a) Calcule v = 3x + 2y e escolha um vetor $w = (w_1, w_2, w_3, w_4)$, não nulo e ortogonal a v, com norma igual a 1.

b) Determine a norma do vetor v e construa um vetor $u = (u_1, u_2, u_3, u_4)$ que seja múltiplo escalar de v e tenha norma igual a 1.

1.(continuação) Sejam x = (2, 0, 1, -2) e y = (-3, -2, 0, 3) dois vetores de \mathbb{R}^4 .

c) Verifique se $\{u, w\}$, sendo u e w os vetores obtidos nas alíneas anteriores, é um conjunto ortonormal e, em caso afirmativo, determine $z = (z_1, z_2, z_3, z_4)$ de modo que $\{u, w, z\}$ seja um conjunto ortonormal.

- 2. Considere a matriz $A = \begin{bmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix}$.
- a) Determine $(A 3I_3)^2(A + 3I_3)$.

- 2. (continuação) Considere a matriz $A = \begin{bmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix}$.
- b) Seja $X = \frac{1}{9}A$. Calcule AX e XA. Tendo em conta o resultado obtido, o que pode concluir sobre a existência de inversa para a matriz A?

c) Calcule $M \in \mathbb{R}^{1 \times 3}$ tal que $MA + \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}^T = \begin{bmatrix} -1 & -3 & 0 \end{bmatrix}$.

- 3. Seja (Σ_1) o sistema de equações lineares definido por $\begin{cases} 2x + y + 4z 3t = 7 \\ x + 2y + 5z = 5 \end{cases}$
- a) Escreva a matriz ampliada que representa (Σ_1) e, utilizando a eliminação de Gauss, calcule o conjunto solução do sistema dado.

b) Construa um sistema de equações lineares (Σ_2) , possível e determinado, de modo que (Σ_1) e (Σ_2) tenham uma solução comum.

