Sistemas de Computação

Mestrado Integrado em Engenharia de Comunicações

2012/2013

Introdução (I)

- Há uma grande variedade de dispositivos de I/O (Periféricos)
 - Comportamento: Input, output ou armazenamento
 - Com quem interagem: humanos ou com máquinas;
 - Velocidade de transferência
 - Vejamos o exemplo do teclado: input, humanos, cerca de 10 bytes por segundo

Dispositivo	Comportamento	Mbit/seg
Teclado	Input	0,0001
Rato	Input	0,0038
Scanner	Input	3,2000
Ecran/placa gráfica	Output	800,0000-8000,0000
Placa de rede	Input/output	100,0000-10000,0000
Placa de rede sem fios	Input/output	11,0000-54,0000

Introdução (II)

Periféricos

- Há periféricos que exigem uma taxa de transferência fixa (F.C. Fluxo Contínuo)
- Os periféricos facultam informação sobre estado, em complemento à informação relativa à sua função específica. Exemplos:
 - Impressora sem papel; Drive sem diskette; Modem não está presente ...

Performance de um sistema

- Como se mede?
- Frequentemente a performance em I/O depende da aplicação/utilização que é dada ao sistema
 - Aplicações multimédia
 - Aplicação para registo de impostos
 - Aplicação para processamento dos pagamentos em terminais ATM

Discos (I)

http://aldyputra.net/2011/09/cara-format-hardisk-beserta-langkah-dan-tahapannya/

http://qqgockil.blogspot.pt/2011/08/perbedaan-jenis-

harddisk-ide-ata-sata.html

Discos (II)

Discos (III)

- Estrutura dos discos duros
 - 1 a 20 discos numa estrutura de suporte rígida
 - 5400 a 10000 RPM
 - Raio: 1,8" 2,5" 3,5" 5,25"
 - Divisão lógica:
 - faces
 - pistas
 - sectores
 - cilindro é o conjunto de pistas homólogas em todos os discos
 - Originalmente todas as pistas tinham o mesmo número de sectores.
 - Qual é o problema?
 - Tamanho variável das pistas (em função do raio)
 - Número de sectores/pista varia em função da "zona" do disco Multiple zone recording; zone bit recording (ZBR) ou zone-CAV recording (Z-CAV)

Discos (IV)

- Tempo de acesso:
 - Procura seek time posicionamento das cabeças (limitações mecânicas!). Os fabricantes incluem, nos manuais, os valores mínimo, máximo e médio do seek time.
 - seek time médio: calculado com base em todas as possíveis operações de procura !!! Valores típicos teóricos 12 a 20 ms; na prática 25% a 33% desses valores, dependendo da localidade dos acessos (SO/aplicação)
 - Espera pelo sector rotational delay 1/2 do tempo de rotação: 8.3 a 3 ms
 - 5,6 ms para os discos de 5400 RPM
 - 4,2 ms para os discos de 7200 RPM
 - 2,0 ms para os discos de 15000 RPM
 - Tempo de transferência transfer time função do tamanho de bloco a transferir, velocidade de rotação, densidade e existência ou não de cache
 - Até 40 MBytes por segundo, em 1997
 - Até 125 Mbytes por segundo, em 2008
 - Tempo de transferência do controlador controller time overhead no acesso a I/O

Discos (V)

- Interfaces:
 - SCSI (Small Computer System Interface)
 - Usado em servidores, workstations, computadores Apple, etc.
 - Usado também por dispositivos externos (discos, scanners, etc.)
 - IDE (Integrated Device Electronics)
 - ou melhor, ATA (AT Attachment) norma ANSI!!!
 - EIDE (Enhanced IDE) ou ATA-2 é uma extensão da norma para suportar o modo LBA (Logical Block Addressing); endereçamento através do número do sector (um valor de 28 bits - 0 a 268.435.455 - o que implica um limite de 256Msectores ou 128Gbytes)
 - Desadaptação entre o BIOS dos PCs e a norma ATA impôs o famoso limite de 512MBytes para os discos IDE!
 - FC (Fibre channel) sucessor do SCSI para o mercado empresarial. O SCSI funciona em paralelo ao passo que o FC agora funciona em serie
 - Serial ATA (SATA)
 - Desenhado para substituir o interface ATA (também designado de PATA Parallel ATA) oferecendo várias vantagens:
 - cabos mais pequenos (7 condutores em vez de 40);
 - hot swapping;
 - maior largura de banda
 - Muito popular no mercados de PC desktop
 - eSATA versão para uso externo

Discos (VI)

- Formatação lógica (discos magnéticos)
 - Discos são divididos em partições (1 a ...)
 - Cada partição é Formatada para um determinado Sistema de Ficheiros
 - Em todos os Sistemas de Ficheiros, os sectores são agrupados em blocos (clusters, na nomenclatura do DOS/Windows)
 - Exemplos: DOS-FAT16; DOS-FAT32; Linux Native; DOS-Extended; ...
 - Num sistema de ficheiros é instalado um Sistema Operativo (obviamente tem que ser compatível com o sistema de ficheiros em questão!)
 - É o Sistema Operativo que gere o espaço da "sua partição" e, eventualmente, de mais alguma(s) cujo formato suporte.

Discos (VII)

- Disk array / drive array Agrupar múltiplos discos
 - Melhorar a performance
 - · Aumentar a fiabilidade
- RAID Redudant Array of Inexpensive Disks
- RAID Redudant Array of Independent Disks...
- RAID: Um sistema de discos com capacidade de RAID protege os dados e faculta acesso permanente não obstante a ocorrência de falha num disco (ou mais que uma falha em mais que um disco!)

Discos (VIII)

RAID 0 até RAID 5

- RAID 0 De facto não é um verdadeiro RAID dado que não tem redundância nem verificação de erros. Os dados são "espalhados" pelos vários discos. Simplesmente diminui o tempo de acesso.
- RAID 1 redundância por *mirror* completo
- RAID 5

RAID 0+1

Discos (IX)

- RAID é parte de um conceito mais alargado: EDAP
- EDAP: Um sistema de armazenamento com capacidade de EDAP protege os dados e garante acesso permanente, não obstante a ocorrência de falhas no sistema de discos, em qualquer outro seu componente, ou mesmo no ambiente. O tipo de falha previsto define um nível EDAP, sendo o RAID o mais baixo.
 - Recuperação de falhas em um disco (FRDS)
 - Recuperação de falhas em mais que um disco (FRDS+)
 - Sistema de discos tolerante a falhas (FTDS)
 - Sistema de discos tolerante a falhas, ineterrupto (FTDS+)
 - Sistema de discos tolerante a falhas, ineterrupto e sem degradação (FTDS++)
 - Sistema de discos tolerante a desastres (DTDS)
 - Sistema de discos tolerante a desastres, geograficamente distanciados mais que 10 km (DTDS+)

Vídeo (I)

- Hardware para "Video"
 - Monitores
 - "Adaptador" (controlador) gráfico

Vídeo (II)

- Tecnologias utilizadas em monitores
 - CRT (Cathode Ray Tube)
 - Pixel e dot pitch distância mínima entre pixels
 - Necessidade de refrescamento da superfície recoberta de fósforo (propriedade intrínseca: persistência) a uma determinada frequência (refresh rate)
 - · Interlaced vs. non-interlaced
 - Dimensão (diagonal, em polegadas): 14", 15", 17", 19" e 21"
 - Forma do ecrã: curva (mais vulgar) ou plana (exemplo, o desenho Triniton é plano na direcção vertical
 - LCD (Liquid-Crystal Display)
 - um pixel é uma célula composta por um ou mais cristais líquidos que actuam como filtros polarizáveis, controlando o fluxo de luz proveniente de um outro filtro polarizável
 - Matriz passiva um transístor por linha e outro por coluna
 - Matriz activa um transístor por célula.
 - TFT Thin-film Transistor tecnologia mais eficiente utilizada na construção da matriz de transístores que controlam os painéis policromáticos (três transístores por célula).
 - LED

Vídeo (III)

- Controladores gráficos
 - "Standards"
 - CGA (Color Display Adapter)
 - EGA (Enhanced Display Adapter) 1984
 - 640x200x16
 - VGA (Video Graphics Array) 1987
 - Utiliza monitores analógicos!... melhor resolução de cor.
 - Introduz o VGA BIOS, um conjunto de rotinas destinado a facilitar a programação do controlador
 - 640x480x16
 - XGA (eXtended Graphics Array) e XGA-2
 - 1.024x768x256
 - SVGA (Super VGA)
 - 800x600x16 | 800x60x256 | 1.280x1.024x16 | 1.280x1.024x256
 - 1.024x768 com 32K ou 64K cores
 - ...

Vídeo (IV)

Interfaces de I/O (I)

- Interfaces de I/O
 - Porta série: interface ponto-a-ponto série e assíncrono
 - Pacotes: start bit | 7 ou 8 bits | 1 ou 1½ stop bit +/- 20% overhead!
 - Velocidades desde 300bps (bit per second) até 921.6Kbps
 - Distância: a norma define 15.24m, mas pode ir até 150m com cabos e transceivers apropriados.
 - UART Universal Asynchronous Receiver/Transmiter:
 - 8250: até 19.2 Kbps; barramento de 8 bits
 - 16450: maior velocidade; barramento de 16 bits
 - 16550: buffer interno de 16 bytes (FIFO); 16550A... sem bugs!!!
 - 16650 e 16750: buffers maiores permitem velocidades até 460Kbps particularmente útil com adaptadores RDIS; buffers externos e maiores deram origem ao ESP (Enhanced Serial Ports)... até 921.6Kbps

Interfaces de I/O (II)

- Interfaces de I/O
 - Porta paralela: interface ponto-a-ponto, 8 bits em paralelo e síncrono, curtas distâncias
 (<10m)
 - uni-direccional (quase... 4 bits de entrada!); 40 a 60 K/s típico (140 K/s nalguns casos)
 - bi-direccional; modo standard ou extended; 80 a 300K/s
 - EPP (Enhanced Parallel Port) ou Fast mode parallel port; 1 a 2 M/s; requer hardware dedicado (por exemplo, Intel 82360SL); normalizado - EPP version 1.7 (Março, 1992); a "versão 1.9" faz parte da norma IEEE 1284
 - ECP (Enhanced Capabilities Port) iniciativa da Microsoft e da Hewlett-Packard. Semelhante a EPP, mas obriga à utilização de um canal de DMA; requer hardware dedicado; está incluida na norma IEEE 1284
 - IEEE 1284 (Março, 1994) "Standard Signaling Method for a Bidirectional Parallel Peripheral Interface for Personal Computers" (Uff!); inclui EPP e ECP; permite maiores velocidades (cabos de pares entrançados até 100 M/s e uma terceira ficha mais compacta ... impressoras HP)

Interfaces de I/O (III)

- Interfaces de I/O
 - USB Universal Serial Bus
 - Plug & Play a nível de periféricos e ligação dinâmica
 - Até 127 periféricos numa estrutura em árvore com alguns periféricos (Monitores ou teclados, por exemplo) a actuar como hubs
 - USB 1.1
 - Ano 1996
 - 1,5 Mbps (baixa velocidade) e 12 Mbps (Velocidade máxima)
 - USB 2.0
 - Ano: 2000
 - 480 Mbps
 - Vários tipos de conectores: A, B, Mini-A, Mini-B, Micro-A, Micro-B
 - Dimensão máxima dos cabos: 5 metros
 - Máximo: 500 mA
 - USB 3.0
 - Ano: 2009
 - USB SuperSpeed
 - 5 Gbps
 - Não especifica a dimensão máxima dos cabos (na prática: 3 metros)
 - Máximo: 900 mA
 - Há compatiblidade com o USB 2.0 (em alguns conectores)
 - As portas são azuis para se distinguir da versão 2.0

Interfaces de I/O (III)

- Interfaces de I/O
 - FireWire (IEEE 1394): barramento de alto desempenho especialmente adaptado à exigências de audio e video
 - Sucessor do SCSI?
 - Cabo com apenas seis condutores
 - Plug & Play a nível de periféricos e hot-swapping (1)
 - Suporta até 63 computadores ou dispositivos num único barramento.
 - Os dispositivos FireWire podem oferecer ou consumir até 45 W de potência
 - Poucos periféricos disponíveis (camcorders e VCRs com video digital), mas já com uma aplicação em "Home Audio Video Interoperability" bem definida.
 - Implementação da Sony: i.Link (usa apenas 4 condutores)
 - Firewire 400: 100, 200, ou 400 Mbit/s
 - FireWire 800
 - Norma IEEE 1394b
 - 786,432 Mbit/s
 - Conexão com 9 pinos