

Report No: CCIS15110089003

FCC REPORT

(WIFI)

Applicant: Antel Communications LLC

Address of Applicant: 21 Bennetts Road, Suite 201 Setauket, NY 11733, USA

Equipment Under Test (EUT)

Product Name: Rugged Mobile Phone

Model No.: TLR500

Trade mark: OLE

FCC ID: 2AE62-TLR500

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 17 Nov., 2015

Date of Test: 17 Nov., to 01 Dec., 2015

Date of report issued: 01 Dec., 2015

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	01 Dec., 2015	Original

Cavey (hen
Test Engineer Tested by: Date: 01 Dec., 2015

Reviewed by: Date: 01 Dec., 2015

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
5		NERAL INFORMATION	
•			
	5.1	CLIENT INFORMATION	
	5.2 5.3	GENERAL DESCRIPTION OF E.U.T	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	
6		T RESULTS AND MEASUREMENT DATA	
•			
	6.1	ANTENNA REQUIREMENT:	_
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4 6.5	OCCUPY BANDWIDTHPOWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	67
8		CONSTRUCTIONAL DETAILS	68
_		CUNDIRUCIUNAL DETAILS	h×

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Antel Communications LLC
Address of Applicant:	21 Bennetts Road, Suite 201 Setauket, NY 11733, USA
Manufacturer/ Factory:	SHENZHEN TIANLONG CENTURY DEVELOPMENT CO LTD.
Address of Manufacturer/ Factory:	4/F, BCI BLDG, BEIHUAN AVENUE, NANSHAN DIST., SHENZHEN, CHINA

5.2 General Description of E.U.T.

Product Name:	Rugged Mobile Phone
Model No.:	TLR500
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0dBi
AC adapter:	Model: CR-UP01 Input:100-240V AC, 50/60Hz 500mA Output:5V DC MAX 1A
Power supply:	Rechargeable Li-ion Battery DC3.8V/3400mAh

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9 2452MHz			

Operation Frequency each of channel For 802.11n(H40)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency	
The lowest channel	2412MHz	
The middle channel	2437MHz	
The Highest channel	2462MHz	

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCIS15110089003

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016	
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207				
Test Method:	ANSI C63.4: 2009				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	Fraguency range (MILIT)	Limit (d	dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	 Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 				
Test setup:	LISN 40cm		ter — AC power		
Test Uncertainty:			±3.28 dB		
Test Instruments:	Refer to section 5.6 for details	3			
Test mode:	Refer to section 5.3 for details	3			
Test results:	Passed				
	·	·	·		

Measurement Data

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS151100890RF

Page 10 of 68

Neutral:

Trace: 15

Site

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL : 890RF Condition

: Rugged Mobile Phone : V4 EUT

Model

: WIFI mode Test Mode Power Rating: AC 120V/ 60 Hz Environment: Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

ROMATE	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>	dB	dBu₹	——dBu∇		
1	0.171	22.98	0.25	10.77	34.00	54.90	-20.90	Average
1 2 3	0.174	41.02	0.25	10.77	52.04	64.77	-12.73	QP
3	0.230	19.84	0.25	10.75	30.84	52.44	-21.60	Average
4	0.234	35.57	0.25	10.75	46.57	62.30	-15.73	QP
4 5 6 7	0.343	18.02	0.26	10.73	29.01	49.13	-20.12	Average
6	0.398	16.69	0.25	10.72	27.66			Average
7	0.822	30.62	0.20	10.82	41.64	56.00	-14.36	QP
8 9	0.822	16.55	0.20	10.82	27.57	46.00	-18.43	Average
9	1.117	31.25	0.23	10.88	42.36	56.00	-13.64	QP
10	1.918	34.69	0.29	10.95	45.93	56.00	-10.07	QP
11	1.949	18.75	0.29	10.96	30.00	46.00	-16.00	Average
12	2.500	29.19	0.29	10.94	40.42	56.00	-15.58	QP

Trace: 17

: CCIS Shielding Room : FCC CLASS-B QP LISN LINE Site Condition

: 890RF

: Rugged Mobile Phone : V4 EUT

Model Test Mode : WIFI mode

Power Rating: AC 120V/ 60 Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB	₫B	dBu₹	₫₿uѶ	dB	
1	0.174	40.31	0.27	10.77	51.35	64.77	-13.42	QP
2	0.174	25.91	0.27	10.77	36.95	54.77	-17.82	Average
3	0.238	35.32	0.27	10.75	46.34	62.17	-15.83	QP
4	0.299	31.22	0.26	10.74	42.22	60.28	-18.06	QP
5	0.398	29.25	0.28	10.72	40.25	57.90	-17.65	QP
6	0.398	19.45	0.28	10.72	30.45	47.90	-17.45	Average
7	0.510	18.81	0.28	10.76	29.85	46.00	-16.15	Average
8	0.739	17.68	0.22	10.79	28.69	46.00	-17.31	Average
9	0.904	29.06	0.24	10.84	40.14	56.00	-15.86	QP
10	0.963	17.43	0.25	10.86	28.54	46.00	-17.46	Average
11	1.898	28.52	0.26	10.95	39.73	56.00	-16.27	QP
12	1.898	17.80	0.26	10.95	29.01	46.00	-16.99	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH	Ma	ximum Conduct	Limit(dBm)	Result		
	802.11b	802.11g	802.11g 802.11n(H20) 802.11n(H40)			
Lowest	15.75	13.10	13.17	11.15		
Middle	14.97	12.32	12.32	10.86	30.00	Pass
Highest	15.18	12.60	12.62	10.57		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH		6dB Emission	Limit(kHz)	Result		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Lillit(Ki iz)	Rosult
Lowest	8.72	16.56	17.76	35.52		
Middle	8.24	16.48	17.76	36.20	>500	Pass
Highest	8.64	16.56	17.72	35.44		

Test CH		99% Occupy	Limit(kHz)	Result		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	LIIIII(KI IZ)	Nesuit
Lowest	12.96	16.64	17.84	36.00		
Middle	12.96	16.72	17.76	36.16	N/A	N/A
Highest	12.80	16.64	17.76	35.84		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 15.NOV.2015 21:25:59

Lowest channel

Date: 15.NOV.2015 21:26:38

Middle channel

Date: 15.NOV.2015 21:27:09

Highest channel

Date: 15.NOV.2015 21:29:16

Lowest channel

Date: 15.NOV.2015 21:28:29

Middle channel

Date: 15.NOV.2015 21:27:51

Highest channel

Test mode: 802.11n(H20)

Date: 15.NOV.2015 21:32:28

Lowest channel

Date: 15.NOV.2015 21:33:04

Middle channel

Date: 15.NOV.2015 21:33:36

Highest channel

Test mode: 802.11n(H40)

Date: 15.NOV.2015 21:34:38

Lowest channel

Date: 15.NOV.2015 21:35:09

Middle channel

Date: 15.NOV.2015 21:35:47

Highest channel

99% OBW

Test mode: 802.11b

Date: 15.NOV.2015 21:23:02

Lowest channel

Date: 15.NOV.2015 21:23:42

Middle channel

Date: 15.NOV.2015 21:24:03

Highest channel

Test mode: 802.11g

Date: 15.NOV.2015 21:29:36

Lowest channel

Date: 15.NOV.2015 21:30:14

Middle channel

Date: 15.NOV.2015 21:30:26

Highest channel

Test mode: 802.11n(H20)

Date: 15.NOV.2015 21:31:53

Lowest channel

Date: 15.NOV.2015 21:31:15

Middle channel

Date: 15.NOV.2015 21:31:03

Highest channel

Test mode: 802.11n(H40)

Date: 15.NOV.2015 21:37:02

Lowest channel

Date: 15.NOV.2015 21:36:48

Middle channel

Date: 15.NOV.2015 21:36:09

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH		Power Spec	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Elithit(dBitt)	Nesuit
Lowest	6.74	0.18	-0.03	-4.27		
Middle	5.65	-0.01	0.05	-4.27	8.00	Pass
Highest	6.27	0.14	0.11	-4.68		

Test plot as follows:

Date: 15.NOV.2015 21:24:56

Lowest channel

Date: 15.NOV.2015 21:24:37

Middle channel

Date: 15.NOV.2015 21:24:17

Highest channel

Date: 15.NOV.2015 21:29:49

Lowest channel

Date: 15.NOV.2015 21:30:04

Middle channel

Date: 15.NOV.2015 21:30:40

Highest channel

Test mode: 802.11n(H20)

Date: 15.NOV.2015 21:31:43

Lowest channel

Date: 15.NOV.2015 21:31:31

Middle channel

Date: 15.NOV.2015 21:30:54

Highest channel

Test mode: 802.11n(H40)

Date: 15.NOV.2015 21:37:16

Lowest channel

Date: 15.NOV.2015 21:36:39

Middle channel

Date: 15.NOV.2015 21:36:22

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:			
	Spectrum Analyzer		
	E.U.T		
	Non-Conducted Table		
	Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Date: 15.NOV.2015 21:22:29

Lowest channel

Date: 15.NOV.2015 21:17:57

Highest channel

802.11g

Date: 15.NOV.2015 21:21:56

Lowest channel

Date: 15.NOV.2015 21:17:24

Highest channel

802.11n(H20)

Date: 15.NOV.2015 21:21:25

Lowest channel

Highest channel

Date: 15.NOV.2015 21:18:34

802.11n(H40)

Date: 15.NOV.2015 21:20:07

Lowest channel

Highest channel

Date: 15.NOV.2015 21:19:14

6.6.2 Radiated Emission Method

	T						
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205 ANSI C63.10: 2009 and KDB 558074v03r03 section 12.1 2.3GHz to 2.5GHz Measurement Distance: 3m						
Test Method:							
Test Frequency Range:							
Test site:							
Receiver setup:					_		
	Frequency Detector		RBW	VBW	Remark		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
Limit:		RMS	1MHz	3MHz	Average Value		
LIIIII.	Frequency		Limit (dBuV/m @3m)		Remark		
			54.00		Average Value		
	Above 1GHZ 74.00				Peak Value e 0.8 meters above		
Test setup:	to determin 2. The EUT wantenna, wantenna, wantenna, wantenna and the ground Both horizon make the number of the test-re Specified E 6. If the emission to the limit spof the EUT have 10dB	rence-receiving able-height antenna our meters above the field strength. Intenna are set to a					
Test setup:	AE SOCIM (TO						
Test Instruments:	Refer to section 5.6 for details Refer to section 5.3 for details						
Test mode:							
Test results:	Passed						

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Rugged Mobile Phone

Model : V4

: 802.11B-L Mode Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK

		Antenna Factor						Remark	
MHz	—dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBu√/m	$\overline{dBuV/m}$	<u>dB</u>		-
2390.000 2390.000				0.00 0.00					

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Rugged Mobile Phone : V4 EUT Model

: 802.11B-L Mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

THE									
	Freq		Antenna Factor						Remark
-	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000 2390.000				0.00				

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Rugged Mobile Phone EUT Model

Test mode : 802.11B-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

MAK	K :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	$\overline{dB/m}$	<u>dB</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	18.73	27.52	6.85	0.00	53.10	74.00	-20.90	Peak
2	2483.500	7.76	27.52	6.85	0.00	42.13	54.00	-11.87	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Rugged Mobile Phone

: V4 Model

: 802.11B-H Mode Test mode Power Rating: AC 120V/60Hz
Environment: Temp: 25.5°C Huni: 55%
Test Engineer: Carey
REMARK:

ш	CK:								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500	19.73	27.52	6.85	0.00	54.10	74.00	-19.90	Peak
	2483 500	7 71	27 52	6 85	0.00	42 08	54 00	-11 92	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Rugged Mobile Phone EUT

Model

: 802.11G-L Mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

יונידר		Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						Remark
	MHz	—dBu∇	$\overline{-dB/m}$	āB	d <u>B</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1	2390, 000 2390, 000								NEW PROPERTY.

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3m chamber

FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Rugged Mobile Phone : V4 EUT

Model

: 802.11G-L Mode Test mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

Freq			Preamp Factor				
MHz	dBu₹	<u>dB</u> /m	 <u>ab</u>	dBuV/m	dBuV/m	<u>ab</u>	
2390.000 2390.000			0.00 0.00				

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Rugged Mobile Phone Condition

EUT

Model : V4

Test mode : 802.11G-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

Freq		Antenna Factor						
MHz	dBu∇	$\overline{-dB/m}$	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
2483.500 2483.500	TV	100 C		0.00 0.00				

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Rugged Mobile Phone Condition

EUT

Model : V4

Test mode : 802.11G-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

REMARK

Freq			Antenna Factor					Over Limit	Remark	
	MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
	2483,500 2483,500				0.00 0.00				Peak Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

802.11n (H20)

Test channel: Lowest

Horizontal:

3m chamber Site

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Rugged Mobile Phone

Model

: 802.11N20-L Mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK

м	ur . Freq		Antenna Factor					Remark	
	MHz	dBu₹	<u>dB</u> /m	 <u>ab</u>	dBuV/m	dBuV/m	<u>d</u> B		
	2390.000 2390.000	7445 C.		0.00 0.00				PERSONAL CONTRACTORS	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Rugged Mobile Phone Condition

EUT

Model

: 802.11N20-L Mode Test mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

ARAIN:	r :									
	Freq		Antenna Factor					Over Limit		
	MHz	dBu∜	<u>dB</u> /m	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
1	2390.000	22.12	27.58	6.63	0.00	56.33	74.00	-17.67	Peak	
2	2390, 000	8, 87	27, 58	6, 63	0.00	43, 08	54,00	-10.92	Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Rugged Mobile Phone Condition

EUT

Model : V4

Test mode : 802.11N20-H Mode Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK:

MA :									
	Read	Antenna	Cable	Preamp		Limit	Over		
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
2483.500	20.16	27.52	6.85	0.00	54.53	74.00	-19.47	Peak	
2483.500	8.14	27.52	6.85	0.00	42.51	54.00	-11.49	Average	

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Rugged Mobile Phone : V4 Condition

EUT

Model

: 802.11N20-H Mode Test mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

Tr .								
	Read	Antenna	Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∇	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2483.500								DESCRIPTION.

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Rugged Mobile Phone Condition

EUT

: V4 Model

: 802.11N40-L Mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Carey REMARK :

	*	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor						
	MHz	dBu∀	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBu√/m	$\overline{dBuV/m}$	<u>dB</u>	
1	2390.000								
2	2390.000	9.21	27.58	6.63	0.00	43.42	54.00	-10.58	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Rugged Mobile Phone Condition

EUT

Model V4 :

: 802.11N40-L Mode Test mode Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK:

П	TV :									
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>		
	2390.000	18.73	27.58	6.63	0.00	52.94	74.00	-21.06	Peak	
	2390.000	9.60	27.58	6.63	0.00	43.81	54.00	-10.19	Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Rugged Mobile Phone Condition

EUT

74 Model

: 802.11N40-H Mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

MA :								
	Read	Antenna	Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu₹	dB/m	<u>d</u> B	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
2483.500 2483.500				0.00 0.00				

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Rugged Mobile Phone : V4 Condition

EUT

Model

Test mode : 802.11N40-H Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

Freq		Antenna Factor							
 MHz	dBu₹		d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
		27.52 27.52						Peak Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer						
	E.U.T						
	Non-Conducted Table						
	C IN C DI						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Date: 15.NOV.2015 21:40:54

30MHz~25GHz

Middle channel

Date: 15.NOV.2015 21:41:23

30MHz~25GHz

Date: 15.NOV.2015 21:41:46

30MHz~25GHz

Test mode: 802.11g Lowest channel

Date: 15.NOV.2015 21:43:15

30MHz~25GHz

Middle channel

Date: 15.NOV.2015 21:42:45

30MHz~25GHz

Highest channel

Date: 15.NOV.2015 21:43:39

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 15.NOV.2015 21:44:02

30MHz~25GHz

Middle channel

Date: 15.NOV.2015 21:44:29

30MHz~25GHz

Highest channel

Date: 15.NOV.2015 21:44:50

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 15.NOV.2015 21:45:17

30MHz~25GHz

Middle channel

Date: 15.NOV.2015 21:45:48

30MHz~25GHz

Highest channel

Date: 15.NOV.2015 21:46:13

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:2009							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement [Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
·	30MHz-1GHz	Quasi-peak	300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above 1G112	RMS	1MHz	3MHz	Average Value			
Limit:	Freque		Limit (dBuV/	/m @3m)	Remark			
	30MHz-8		40.0		Quasi-peak Value			
	88MHz-21		5	Quasi-peak Value				
	216MHz-960MHz 46.0 Quasi-p 960MHz-1GHz 54.0 Quasi-p							
	960MHz-	Quasi-peak Value						
	Above 1)	Average Value					
	/4.0 Peak Val							
Test Procedure:	the ground degrees to degrees to antenna, we tower. 3. The antendate ground Both horize make the reach search to find the search s	I at a 3 meters determine the vas set 3 meters which was more and height is value and vermeasurement to the rota tab maximum respected embers and width with sion level of the rould be responded to the rota tab maximum respected to the rotatable and with the	chamber. The position of the maximum that the position of the	e table was he highest of the interference of a varie meter to fund a value of the constant of the analysis of the emiter of the analysis of	rotated 360			

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Rugged Mobile Phone

Model : V4
Test mode : WIFI Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey

REMARK

	Freq		Antenna Factor						Remark
	MHz	dBu∇	<u>dB</u> /m	<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>d</u> B	
1	61.132	31.58	12.29	0.70	29.77	14.80	40.00	-25.20	QP
2	102.719	38.61	12.92	0.98	29.51	23.00	43.50	-20.50	QP
3	160.346	50.31	8.67	1.33	29.13	31.18	43.50	-12.32	QP
4	199.986	57.40	10.57	1.38	28.83	40.52	43.50	-2.98	QP
5	271.325	46.33	12.42	1.69	28.50	31.94	46.00	-14.06	QP
	601.427	40.34	18.46	2.63	28.93	32.50	46.00	-13.50	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT : Rugged Mobile Phone

: V4 Model

Test mode : VIFI Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

THEFT									
	Freq		Antenna Factor						
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	42.600	32.94	13.56	0.54	29.88	17.16	40.00	-22.84	QP
2	166.651	44.68	8.87	1.34	29.08	25.81	43.50	-17.69	QP
3	199.986	47.97	10.57	1.38	28.83	31.09	43.50	-12.41	QP
4	350.477	39.96	14.27	1.94	28.56	27.61	46.00	-18.39	QP
5	400.432	42.07	15.10	2.12	28.78	30.51	46.00	-15.49	QP
6	601.427	43.83	18.46	2.63	28.93	35.99	46.00	-10.01	QP

Above 1GHz

Test mode: 80	02.11b		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line	Over Limit	Polar.	
(IVITZ)	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/III)	(dBuV/m)	(dB)		
4824.00	54.91	31.54	10.58	40.22	56.81	74.00	-17.19	Vertical	
4824.00	54.81	31.54	10.58	40.22	56.71	74.00	-17.29	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	47.67	31.54	10.58	40.22	49.57	54.00	-4.43	Vertical	
102 1.00	17.07	01.01	. 0.00						

Test mode: 80	02.11b		Test char	Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	47.77	31.57	10.64	40.15	49.83	74.00	-24.17	Vertical		
4874.00	47.25	31.57	10.64	40.15	49.31	74.00	-24.69	Horizontal		
Test mode: 80	02.11b		Test channel: Middle			Remark: Ave	rage			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	41.40	31.57	10.64	40.15	43.46	54.00	-10.54	Vertical		
4874.00	40.41	31.57	10.64	40.15	42.47	54.00	-11.53	Horizontal		

Test mode: 80	02.11b		Test char	Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	53.89	31.61	10.70	40.08	56.12	74.00	-17.88	Vertical	
4924.00	54.39	31.61	10.70	40.08	56.62	74.00	-17.38	Horizontal	
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	46.56	31.61	10.70	40.08	48.79	54.00	-5.21	Vertical	
4924.00	47.80	31.61	10.70	40.08	50.03	54.00	-3.97	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode: 80)2.11g		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	49.93	31.54	10.58	40.22	51.83	74.00	-22.17	Vertical	
4824.00	49.95	31.54	10.58	40.22	51.85	74.00	-22.15	Horizontal	
Test mode: 80	02.11g		Test channel: Lowest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	41.68	31.54	10.58	40.22	43.58	54.00	-10.42	Vertical	
4824.00	41.85	31.54	10.58	40.22	43.75	54.00	-10.25	Horizontal	

Test mode: 80)2.11g		Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.40	31.57	10.64	40.15	49.46	74.00	-24.54	Vertical	
4874.00	47.69	31.57	10.64	40.15	49.75	74.00	-24.25	Horizontal	
Test mode: 80)2.11g		Test char	nel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	38.61	31.57	10.64	40.15	40.67	54.00	-13.33	Vertical	
4874.00	38.70	31.57	10.64	40.15	40.76	54.00	-13.24	Horizontal	

Test mode: 8	Test mode: 802.11g		Test channel: Highest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	48.91	31.61	10.70	40.08	51.14	74.00	-22.86	Vertical		
4924.00	48.92	31.61	10.70	40.08	51.15	74.00	-22.85	Horizontal		
Test mode: 8	Test mode: 802.11g			Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	40.96	31.61	10.70	40.08	43.19	54.00	-10.81	Vertical		
4924.00	41.18	31.61	10.70	40.08	43.41	54.00	-10.59	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	40.39	31.54	10.58	40.22	42.29	74.00	-31.71	Vertical	
4824.00	50.97	31.54	10.58	40.22	52.87	74.00	-21.13	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	40.08	31.54	10.58	40.22	41.98	54.00	-12.02	Vertical	
4824.00	42.87	31.54	10.58	40.22	44.77	54.00	-9.23	Horizontal	

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.48	31.57	10.64	40.15	49.54	74.00	-24.46	Vertical	
4874.00	46.60	31.57	10.64	40.15	48.66	74.00	-25.34	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	38.35	31.57	10.64	40.15	40.41	54.00	-13.59	Vertical	
4874.00	37.80	31.57	10.64	40.15	39.86	54.00	-14.14	Horizontal	

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	48.13	31.61	10.70	40.08	50.36	74.00	-23.64	Vertical		
4924.00	48.21	31.61	10.70	40.08	50.44	74.00	-23.56	Horizontal		
Test mode: 80	Test mode: 802.11n(H20)			Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	38.33	31.61	10.70	40.08	40.56	54.00	-13.44	Vertical		
4924.00	38.46	31.61	10.70	40.08	40.69	54.00	-13.31	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	47.07	31.55	10.61	40.19	49.04	74.00	-24.96	Vertical	
4844.00	45.44	31.55	10.61	40.19	47.41	74.00	-26.59	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	37.50	31.55	10.61	40.19	39.47	54.00	-14.53	Vertical	
4844.00	36.89	31.55	10.61	40.19	38.86	54.00	-15.14	Horizontal	

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.04	31.57	10.64	40.15	49.10	74.00	-24.90	Vertical	
4874.00	46.65	31.57	10.64	40.15	48.71	74.00	-25.29	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.58	31.57	10.64	40.15	38.64	54.00	-15.36	Vertical	
4874.00	36.14	31.57	10.64	40.15	38.20	54.00	-15.80	Horizontal	

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4904.00	45.60	31.59	10.67	40.10	47.76	74.00	-26.24	Vertical		
4904.00	47.59	31.59	10.67	40.10	49.75	74.00	-24.25	Horizontal		
Test mode: 80	Test mode: 802.11n(H40)			Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4904.00	36.61	31.59	10.67	40.10	38.77	54.00	-15.23	Vertical		
4904.00	37.91	31.59	10.67	40.10	40.07	54.00	-13.93	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.