Quiz 3

Département de génie électrique et de génie informatique GEL-3000 – Électronique des composants intégrés Le 3 avril 2020

Toute documentation permise

Durée: 3h (9h00 - 12h00)

Suivez ces instructions:

- 1) Veuillez signer et joindre la <u>déclaration d'intégrité relative aux travaux et aux examens</u> réalisés à distance.
- 2) Répondez aux questions suivantes :
- (a) Soit le générateur d'onde carrée et triangulaire vu dans les notes. Ajoutez un circuit écrêteur à ce circuit afin de garantir des valeurs de L₊ et L₋ symétriques. Dessinez le schéma de votre réponse.
- (b) Proposez une façon d'obtenir un signal sinusoïdal à partir du circuit de générateur d'onde carrée et triangulaire vu en (a). Illustrez votre réponse à l'aide d'un schéma.
- (c) Expliquez la fonction et le principe de fonctionnement du circuit montré à la Figure 1. Illustrez les signaux v_{trigger}, V_{CC}, v_c, V_{TL}, V_{TH}, R, S, Q, Q_{bar}, pour chacun des deux états pris par v_o.
- (d) Utilisez un circuit intégré 555 pour produire un signal d'horloge d'une fréquence de 10 kHz. Illustrez votre circuit à l'aide d'un schéma et donnez les valeurs de R_A et R_B requises pour un condensateur de 1 μ F, sous la condition $R_A = R_B$.
- (e) **(Bonus)** On conçoit un circuit multivibrateur astable à l'aide d'un circuit 555 (comme celui montré dans les notes). i) Expliquez pourquoi il est pratiquement impossible d'obtenir un *duty cycle* de 50% (T_H=T_L) avec ce circuit. ii) Comment doit-on choisir R_A et R_B pour s'approcher le plus de possible de T_H=T_L? **Parlez de R_A**, **R_B**, **C et V_{CC} dans vos réponses.**
- (f) Soit le circuit vu dans les notes montré à la Figure 2. Si V_{in} = 2.1 V, V_{ref} = 3.3 V, N = 10 bits, T_{clk} = 1 μ s, R_1 = 1 μ F pour ce circuit, i) dessinez V_x (voir Figure 2) en fonction du temps pour T_1 et T_2 (voir les notes) et ii) donnez V_x à t= T_1 et déterminez la valeur finale du compteur.
- (g) **(Bonus)** Un circuit utilisant un ADC de 8 bits possède un SNR global de 33 dB. Calculez le ENOB de ce circuit.
- 3) Photographiez ou numérisez votre formulaire de réponses bien identifié, joignez-le avec votre déclaration signée et téléversez le tout dans la boîte de dépôt prévue à cet effet avant 12h00.

Figure 1.

Figure 2.

Hiver 2020 - 0	Quiz 3	,
----------------	--------	---

-					
Nom	•				
10111	_				