→ Data Visualization with Matplotlib and Seaborn using the Iris Dataset

import seaborn as sns
import matplotlib.pyplot as plt

LOADING IRIS DATASET

iris=sns.load_dataset('iris')
iris

_							
→		sepal_length	sepal_width	petal_length	petal_width	species	\blacksquare
	0	5.1	3.5	1.4	0.2	setosa	ıl.
	1	4.9	3.0	1.4	0.2	setosa	+/
	2	4.7	3.2	1.3	0.2	setosa	
	3	4.6	3.1	1.5	0.2	setosa	
	4	5.0	3.6	1.4	0.2	setosa	
	145	6.7	3.0	5.2	2.3	virginica	
	146	6.3	2.5	5.0	1.9	virginica	
	147	6.5	3.0	5.2	2.0	virginica	
	148	6.2	3.4	5.4	2.3	virginica	
	149	5.9	3.0	5.1	1.8	virginica	
	150 ==						

150 rows × 5 columns

Next steps: Generate code with iris View recommen

✓ 1. General Statistics Plot (Matplotlib or Seaborn):

```
sns.pairplot(iris, hue='sepal_width', height=2.0)
plt.show()
```


→ 2. Pie Plot for Species Frequency:

```
species_counts = iris['species'].value_counts()
plt.figure(figsize=(4,4))
plt.pie(species_counts, labels=species_counts.index, autopct='%1.1f%%', startangle=90)
plt.title('Species Frequency in Iris Dataset')
plt.show()
```

Species Frequency in Iris Dataset

→ 3. Relationship Between Sepal Length and Sepal Width:

```
plt.figure(figsize=(6, 4))
sns.scatterplot(x='sepal_length', y='sepal_width', hue='species', data=iris)
plt.title('Sepal Length vs Sepal Width')
plt.xlabel('Sepal Length (cm)')
```

```
plt.ylabel('Sepal Width (cm)')
plt.show()
```


4. Distribution of Sepal and Petal Features:

```
sns.pairplot(iris, hue='petal_width', height=2.0)
plt.show()
```


5. Jointplot of Sepal Length vs Sepal Width:

10.0

7.5

petal_length

2.5

5.0

sepal_length

```
sns.jointplot(x='sepal_length', y='sepal_width', data=iris, kind='scatter')
plt.show()
```

sepal_width

7.5

2.5

5.0

petal_length

√ 6. KDE Plot for Setosa Species (Sepal Length vs Sepal Width):

```
setosa = iris[iris['species'] == 'setosa']
sns.kdeplot(x='sepal_length', y='sepal_width', data=setosa, fill=True)
plt.title('KDE Plot of Sepal Length vs Sepal Width (Setosa)')
plt.show()
```


→ 7. KDE Plot for Setosa Species (Petal Length vs Petal Width):

```
sns.kdeplot(x='petal_length', y='petal_width', data=setosa, fill=True)
plt.title('KDE Plot of Petal Length vs Petal Width (Setosa)')
plt.show()
```


