Aprendizagem Profunda (Deep Learning)

Marcondes Ricarte e Aluizio Fausto Ribeiro Araújo
Universidade Federal de Pernambuco
Centro de Informática

Conteúdo

- Motivação
- Por que aprendizagem profunda?
- Redes Neurais Convolucionais
- Ferramentas

- Permitir aos computadores modelar nosso mundo bem o suficiente para exibir o que nós chamamos de inteligência tem sido o foco de pesquisas de mais da metade de um século.
- Para alcançar esse objetivo, é claro que a grande quantidade de informação sobre o nosso mundo deve ser de alguma forma armazenada, explicitamente ou implicitamente, no computador:
 - Para isto se utiliza algoritmos de aprendizagem.

- Muito esforço (e progresso!) tem sido feito em entender e melhorar algoritmos de aprendizagem, mas o desafio permanece:
 - Há algoritmos capazes de entender cenas e descrevê-las em linguagem natural?
 - Há algoritmos capazes de inferir conceitos semânticos suficientes a ponto de interagir com humanos?

- Um modo plausível e comum de extrair informação útil a partir de imagens naturais envolve transformar gradualmente os pixels com valores "brutos" em representações mais abstratas:
 - Detecção de borda, detecção de formas locais, identificação de categorias;
- Assim, uma máquina que expresse "inteligência" requer funções matemáticas que expressem variabilidade:
 - Não-linearidades para processar entradas cruas, sendo capazes de apresentar muitas variações.

- Redes Neurais Artificiais feed-forward:
 - Maldição da dimensionalidade;

- Uma das soluções encontradas para maldição de dimensionalidade é pré-processamento de dados:
 - Redução da dimensionalidade (às vezes por humanos);
 - Desafiante e altamente dependente da tarefa;
- Não há indícios de que o cérebro humano trabalhe com préprocessamento;
- Aprender características automaticamente em múltiplos níveis de abstração permite ao sistema mapear funções complexas sem depender de características intermediárias inteligíveis aos humanos.

- O MLP pode não funcionar bem por causa de:
 - Difusão do gradiente;
 - Treinamento muito lento;
 - Camadas mais distantes da saída tendem a fazer um mapeamento aleatório;
 - Frequentemente há mais dados não rotulados do que dados rotulados em problemas reais;
 - Existência de mínimo locais.

- Aprendizagem Profunda aprende em vários níveis de abstração;
 - Representações mais abstratas extraem informações para classificadores ou preditores;
 - Características intermediárias aprendidas podem ser compartilhadas entre diferentes tarefas;
- Por décadas, diversos pesquisadores tentaram, sem sucesso esperado, treinar redes neurais de múltiplas camadas profundas,
 - Inicializações com pesos aleatórios levavam a mínimos locais;
- Hinton *et al* (2006) melhoraram o desempenho de uma rede neural profunda com etapa de pré-treinamento por aprendizagem não-supervisionada, uma camada após outra a partir da primeira.

- Teorema de Kolmogorov-Smirnov: Uma única camada escondida pode resolver qualquer função e generalizar,
 - Grande número de nodos pode inviabilizar solução do problema.
- Múltiplas camadas constroem melhor espaço de características:
 - Primeira camada aprende as características de primeira ordem (por exemplo, bordas em imagem);
 - Segunda camada aprende características de maior ordem (por exemplo, combinação de bordas e outras características);
 - Camadas são treinadas por método não-supervisionado e as características alimentam uma camada supervisionada;
 - A rede inteira é então ajustada de modo supervisionado.

Profunda: Magra e alta

DBN: # de camadas X tamanho	Taxa de erro das palavras (%)	BP# de camadas X tamanho	Taxa de erro das palavras (%)
1 X 2k	24.2	1 X 2k	24.3
2 X 2k	20.4	1 X 2k	22.2
3 X 2k	18.4	1 X 2k	20.0
4 X 2k	17.8	1 X 2k	18.7
5 X 2k	17.2	1 X 3772	18.2
7 X 2k	17.1	1 X 4634	17.4

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

- Primeiras MLPs com muitas camadas, constatações do treinamento:
 - Gradiente é muito reduzido com retropropagação dos erros para primeiras camadas, causando lentidão excessiva no treinamento;
 - As camadas superiores costumam aprender bem, reduzindo o erro, portanto, o erro retropropagado para camadas anteriores cai rapidamente, logo as primeiras camadas não conseguem se adaptar para melhorar os resultados, elas fazem o papel de um mapa aleatório de características;
 - Necessidade de um modo efetivo de treinar as camadas iniciais.

Desempenho vs Tamanho dos dados

- Plausibilidade biológica córtex visual
- Problemas que podem ser representados com um número polinomial de nodos com k camadas podem requerer número exponencial de nodos com k-1 camadas:
 - Funções muito variáveis podem ser eficientemente representadas com arquiteturas profundas.

MIT Technology Review, April 23rd, 2013

- Alguns modelos importantes:
 - Supervisionado:
 - Convolutional NN (LeCun);
 - Recurrent Neural Nets (Schmidhuber);
 - Não-supervisionado:
 - Deep Belief Nets / Stacked Restrited Boltzmann Machines RBMs (Hinton);
 - Stacked denoising autoencoders (Bengio);
 - Sparse AutoEncoders (LeCun, A. Ng);

(Convolutional Neural Networks)

- Operações básicas empregadas no modelo:
 - Convolução;
 - Inserção de não-linearidade;
 - Sub-amostragem.

(Convolutional Neural Networks) - Convolução

(Convolutional Neural Networks) - Convolução

• Convolução é um operador linear que toma duas funções no domínio do tempo e produz uma terceira função que calcula a área subentendida pela superposição delas em função do deslocamento existente entre elas.

• Continua:
$$(f * g)(x) = h(x) = \int_{-\infty}^{\infty} f(u) \cdot g(x - u) \ du$$

• Discreta:

$$(f * g)(k) = h(k) = \sum_{j=0}^{k} f(j) \cdot g(k-j)$$

(Convolutional Neural Networks) - Convolução

Example 10-16: Graphical Convolution

(e) t = 2 s

- Muda-se a variável independente;
- Escolhe-se uma das funções que é invertida com respeito ao eixo vertical e defasada no tempo;
- Move-se a 'função móvel' com respeito à "função fixa', integrandose os intervalos de coexistência das funções.

(d) t = 1.5 s

(Convolutional Neural Networks) - Convolução

Convolução discreta:

```
>> x = [1 1 -1 1 1 2 1 -1 1 2 -1 -1 2];
>> y = [1 -1 1];
>> z = conv(x,v)
```


Centro de Informatica

(Convolutional Neural Networks) - Convolução

Convolução 2D (para imagens):

$$g_{\rm f}(l,p) = \sum_{m=-int(w/2)}^{int(w/2)} \sum_{n=-int(w/2)}^{int(w/2)} g(l+m,p+n) \; h(m,n)$$

(Convolutional Neural Networks) - Convolução

• Convolução 2D (para imagens):

(Convolutional Neural Networks) - Convolução

• Convolução 2D (para imagens):

máscara

1	1	1	
0	0	0	
1	1	1	

Imagem

Resultado

	0	0	0	0	0
_	0	> 11	15	17	0
	0	8	17	22	0
	0	13	21	20	0
	0	0	0	0	
	U	U	U	U	0

(Convolutional Neural Networks) - Convolução

(Convolutional Neural Networks) - Inserção de não linearidade

- Definições das funções de ativação:
 - ReLU: Rectified Linear Unit: f(x) = Max(0,x), derivada constante ou nula;
 - Leaky ReLU f(x) = x if x > 0 else ax para $0 \le a \le 1$, assim a derivada fica constante negativa mas não vai para zero;
- Ativação esparsa para produzir um saída, i.e., muitas unidades escondidas não produzem saída;

(Convolutional Neural Networks) - Inserção de não linearidade

Exemplo com ReLU:

Output = Max(zero, Input)

(Convolutional Neural Networks) - Subamostragem

- *Pooling* (junção, agrupamento):
 - Esse passo comprime e suaviza os dados;
 - Normalmente toma a média ou o máximo entre trechos disjuntos;
 - Dá robustez a pequenas variações espaciais dos dados.

(Convolutional Neural Networks) - Evidências

- Hubel e Wiesel em 1968, estudaram o sistema visual de felinos e constataram o papel importante das chamadas *Receptive Cells* que agiam sobre como filtros locais sobre o espaço de entrada e tinham dois comportamentos:
 - Simple Cells: Respondem a padrões de bordas na imagem;
 - Complex Cells: Possuem campos receptivos grandes e são invariantes à posição do padrão.

(Convolutional Neural Networks) - Evidências

A bit of history:

Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...

(Convolutional Neural Networks) - Evidências

Hubel & Weisel topographical mapping hyper-complex cells complex cells simple cells low level

(Convolutional Neural Networks) - História

- Fukushima (1980) *Neo-Cognitron*;
- MLP (Rumelhart et al., 1986): marco importante;
- Novos modelos relevantes com SVM, final dos 1990s;
- Convolutional Neural Nets (LeCun, 1998): Aplicado a imagens, fala;
 - Apresenta similaridades com Neo-Cognitron;
- MLP treinada com BP com muitas camadas:
 - As primeiras tentativas tiveram baixo índice de sucesso pois
 - Eram muito lentas;
 - Havia gradiente que ia para zero.

(Convolutional Neural Networks) - História

- Trabalhos mais recentes mostraram avanços com treinamento lento de MLPs com BP profundas usando máquinas com GPUs;
- Deep Belief nets (Hinton) and Stacked auto-encoders (Bengio), ambas em 2006: Pré-treinamento não-supervisionado precede treinamento supervisionado;
- Sucessos iniciais em 2012 com aprendizagem supervisionada que conseguiu superar gradientes que desaparecem e se torna mais aplicável.

(Convolutional Neural Networks) - História

A bit of history:

Neurocognitron [Fukushima 1980]

"sandwich" architecture (SCSCSC...) simple cells: modifiable parameters complex cells: perform pooling

(Convolutional Neural Networks) - História

A bit of history: Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

(Convolutional Neural Networks)

- Redes Neurais Convolucionais são uma extensão de MLPs tradicionais a partir de 3 ideias:
 - Campos receptivos locais (local receive fields);
 - Pesos compartilhados (shared weights);
 - Sub-amostragem espaço-temporal (Spatial / temporal subsampling).

Artigo de LeCun paper (1998) sobre reconhecimento de texto:

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

(Convolutional Neural Networks)

Arquitetura da CNN:

- Camada convolucional + Não-linear (ReLU);
- Camada de subamostragem;
- Camada convolucional + Não-linear (ReLU);
- Linearização da camada + camadas totalmente conectadas de treinamento supervisionado.

(Convolutional Neural Networks)

Parâmetros:

- Margens: (Ignorar/Replicar/Zerar);
- Tamanho do *kernel*;
- Tamanho do passo (stride);
- Quantidade de núcleos;
- Configuração dos núcleos (aprendidos).

- Conectividade esparsa: CNN explora correlações espaciais focando em conectividade entre unidades de processamento próximas. Os campos receptivos são contíguos.
 - Os nodos são insensíveis às variações fora do seu campo receptivo.
- Analogia (quando a entrada são imagens):
 - Pixels -> Neurônios;
 - Kernel -> Sinapses;
 - Convolução -> Operação básica de um neurônio.

- Procedimento *ad-hoc* para considerar conhecimento prévio no projeto (*design*) de uma RNA:
 - Restringir a arquitetura da rede através do uso de conexões locais conhecidas como campos receptivos;
 - Limitar a escolha dos pesos sinápticos através do uso do compartilhamento de pesos.
- Essas duas técnicas, especialmente a segunda, têm um efeito colateral benéfico:
 - Número de parâmetros livres na rede é reduzido significativamente.

- Seja a rede *feedforward* parcialmente conectada cuja arquitetura é restringida por construção:
 - Por exemplo, os 6 primeiros nodos de entrada constituem o campo receptivo para o neurônio escondido 1.

(Convolutional Neural Networks)

- Para satisfazer a restrição do compartilhamento de pesos, deve-se usar o mesmo conjunto de pesos sinápticos (a janela de convolução) para cada um dos neurônios da camada escondida.
- Portanto, para seis conexões locais por nodo escondido e quatro nodos escondidos (figura anterior), pode-se expressar o campo local induzido do neurônio escondido *j* como (soma de convolução):

$$v_j = \sum_{i=1}^6 w_i x_{i+j-1}, \qquad j = 1, 2, 3, 4$$

• Onde $\{w_i\}_{i=1}^6$, constitui o mesmo conjunto de pesos compartilhados por todos os quatro nodos escondidos e x_k é o sinal do nó fonte k=i+j.

- Uma rede CNN é uma MLP projetada para reconhecer formas bidimensionais com um alto grau de invariância para translação, mudança de escala, e outras formas de distorção.
- Esta tarefa difícil é aprendida de maneira supervisionada por uma rede cuja estrutura inclui as seguintes operações:
 - Extração de características;
 - Mapeamento de características;
 - Sub-amostragem.

- Extração de características: Cada nodo recebe entradas de estímulos em um campo receptivo local, saídas da camada anterior, processando apenas características locais. A posição relativa de cada característica extraída em relação às outras é preservada.
- Mapeamento de características: Cada camada computacional da rede é composta de múltiplos mapas de características. Cada um forma um conjunto no qual os nodos individuais compartilham o mesmo conjunto de pesos sinápticos (janela para convolução).

- Os filtros são aprendidos pelo algoritmo;
- A inicialização dos filtros é aleatória;
- O pesos dos filtros são os mesmo em qualquer uma das regiões do mapa;
- A convolução é linear;
- Facilita o paralelismo do processo.

- Sub-amostragem: Cada camada da CNN é seguida por uma camada computacional que realiza cálculo da média local (ou determinação do valor mais alto) e sub-amostragem, onde a resolução do mapa de características é reduzida. Isto busca reduzir a sensibilidade da saída do mapa a deslocamentos e outras formas de distorção.
- Todos os pesos em todas as camadas de uma CNN são aprendidos através do treinamento.
- No entanto, a rede aprende a extrair suas próprias características automaticamente.

(Convolutional Neural Networks)

• Camada les dominita (h. (codes bilitação)) estima perístici discribidad di impresente dande tenéro de completa d

- |Camada convolutional:
 - Exemplo ilustrativo com uma imagem com 3 filtros (RGB):
 - Coletar a imagem e trabalhar com o hipervolume;

(Convolutional Neural Networks)

• |Camada convolutional:

Summary. To summarize, the Conv Layer:

- ullet Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - \circ Number of filters K,
 - o their spatial extent F,
 - \circ the stride S.
 - \circ the amount of zero padding P.
- ullet Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $\circ D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Filter W1 (3x3x3) w1[:,:,0] 0 1 -1 0 -1 0 0 -1 1 w1[:,:,1] 1 -1 0 1 -1 0 w1[:,:,2] -1 1 -1 0 -1 -1 Bias b1 (1x1x1)

toggle movement

b1[:,:,0]

$$W_1 = 5, H_1 = 5, D_1 = 3$$

$$K = 2, F = 3, S = 2, P = 1.$$

(Convolutional Neural Networks)

• |Camada de *pooling*:

Accepts a volume of size $W_1 imes H_1 imes D_1$

Requires two hyperparameters:

- o their spatial extent $oldsymbol{F}$,
- \circ the stride S,

Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

$$\circ D_2 = D_1$$

Introduces zero parameters since it computes a fixed function of the input Note that it is not common to use zero-padding for Pooling layers

- Exemplo: Camada convolucional de retropropagação
 - Input Image = Boat
 - Target Vector = [0, 0, 1, 0]

(Convolutional Neural Networks)

Passo 1: Inicializamos todos os filtros e parâmetros / pesos com valores aleatórios;

Passo 2: A rede recebe uma imagem de treinamento como entrada, passa pela etapa de propagação direta (convolução, ReLU e operações de agrupamento junto com a propagação direta na camada totalmente conectada) e localiza as probabilidades de saída para cada classe;

Vamos dizer que as probabilidades de saída para a imagem do barco acima são [0.2, 0.4, 0.1, 0.3]

Como os pesos são atribuídos aleatoriamente para o primeiro exemplo de treinamento, as probabilidades de saída também são aleatórias de início.

Passo 3: Calcular o erro total na camada de saída (soma das 4 classes) Erro total = $\sum \frac{1}{2}$ (probabilidade desejada - probabilidade de saída) ²

(Convolutional Neural Networks)

Passo 4: Use retropropagação para calcular os gradientes do erro em relação a todos os pesos na rede e use o gradiente descendente para atualizar todos os valores / pesos de filtro e valores de parâmetros para minimizar o erro de saída. Os pesos são ajustados proporcionalmente à sua contribuição no erro total.

Isso significa que a rede aprendeu a classificar corretamente essa imagem específica ajustando seus pesos / filtros de forma que o erro de saída seja reduzido.

Outros parâmetros (número de filtros, tamanhos de filtros, arquitetura da rede) foram ajustados antes da Etapa 1 e não são alterados durante o treinamento - somente os valores dos pesos de conexão são atualizados.

Passo 5: Repita os passos 2-4 com todas as imagens no conjunto de treinamento.

$$\begin{split} & \delta_{n}^{(\prime)} = \frac{\partial J}{\partial x_{n}} = \frac{\partial J}{\partial y} \frac{\partial y}{\partial x_{n}} = \sum_{i=1}^{|\mathbf{v}|} \frac{\partial J}{\partial y_{n-i+1}} \frac{\partial y_{n-i+1}}{\partial x_{n}} = \sum_{i=1}^{|\mathbf{v}|} \delta_{n-i+1}^{(\prime)} w_{i} = \left(\delta^{(\prime)} * \mathrm{flip}(w)\right) [n], \ \delta^{(\prime)} = \left[\delta_{n}^{(\prime)}\right] = \delta^{(\prime)} * \mathrm{flip}(w) \\ & \frac{\partial J}{\partial w_{i}} = \frac{\partial J}{\partial y} \frac{\partial y}{\partial w_{i}} = \sum_{n=1}^{|\mathbf{v}|} \frac{\partial J}{\partial y_{n}} \frac{\partial y_{n}}{\partial w_{i}} = \sum_{n=1}^{|\mathbf{v}|} \delta_{n}^{(\prime)} x_{n+i-1} = \left(\delta^{(\prime)} * x\right) [i], \ \frac{\partial J}{\partial w} = \left[\frac{\partial J}{\partial w_{i}}\right] = \delta^{(\prime)} * x = x * \delta^{(\prime)} \end{split}$$

- Os ajustes dos parâmetros livres são feitos usando uma forma estocásticas (sequencial) do aprendizado *back-propagation*.
- O uso do compartilhamento de pesos torna possível implementar a CNN de forma paralela: outra vantagem sobre a MLP totalmente conectada.

(Convolutional Neural Networks)

- CNNs de sucesso:
 - LeNet, 1998
 - AlexNet, 2012
 - VGGNet, 2014
 - ResNet, 2015

- ILSVRC (https://www.image-net.org/challenges/LSVRC/):
 - Competição que avalia algoritmos para detecção de objetos e classificação de imagens em alta escala. a competição procura verificar avanços na detecção de vários objetos.

Centro de Informática

Demo

- http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
- http://www.cs.toronto.edu/~kriz/cifar.html

Ferramentas

Software	Creator	Platform	Written in	Interface
Apache MXNet	Apache Software Foundation	Linux, macOS, Windows,AWS, Android,iOS, JavaScript	Small C++core library	C++, Python, Julia, Matlab, JavaScript, Go, R, Scala, Perl
Apache SINGA	Apache Incubator	Linux, macOS, Windows	<u>C++</u>	Python, C++, Java
<u>Caffe</u>	Berkeley Vision and Learning Center	Linux, macOS, Windows	<u>C++</u>	Python, MATLAB, C++
Deeplearning4j	Skymind engineering team; Deeplearning4j community; originally Adam Gibson	Linux, macOS, Windows, Android (Cross-platform)	C++, Java	Java, Scala, Clojure, Python(Keras), Kotlin
Intel Data Analytics Acceleration Library	Intel	Linux, macOS, Windows on Intel CPU	C++, Python, Java	C++, Python, Java[10]
<u>Keras</u>	François Chollet	Linux, macOS, Windows	<u>Python</u>	Python, R
<u>PyTorch</u>	Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan	Linux, macOS	Python, C, CUDA	<u>Python</u>
TensorFlow	Google Brainteam	Linux, macOS, Windows, Android	C++, Python, CUDA	Python (Keras), C/C++, Java, Go, R, Julia
Theano	Université de Montréal	<u>Cross-platform</u>	<u>Python</u>	Python (Keras)
<u>Torch</u>	Ronan Collobert, Koray Kavukcuoglu, Clement Farabet	Linux, macOS, Windows, Android, iOS	C, Lua	Lua, LuaJIT,C, utility library for C++/OpenCL

Referências

- Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H., (2007). Greedy layer-wise training of deep networks. *Advances in neural information processing systems*, 19: 153.
- Deep Learning Tutorial. LISA Lab, University of Montreal.
- Du, K.-L. & Swamy M. N. S. (2019). *Neural Networks and Statistical Learning*. Springer, 2nd edition.
- Schmidhuber, J. (2015). Deep learning in neural networks: An overview. *Neural Networks*, 61: 85-117.
- Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A, (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. *The Journal of Machine Learning Research* 11: 3371-3408.
- https://cs.nju.edu.cn/wujx/paper/CNN.pdf

