પ્રશ્ન 1(અ) [3 ગુણ]

નેગેટીવ કીડબેક એમ્પ્લીકાયરના કાયદા અને ગેરકાયદા લખો.

જવાબ:

ફાયદા	ગેરફાયદા
બેન્ડવિડ્થ વધારે છે	ગેઇન ઘટાડે છે
ગેઇન સ્થિર કરે છે	વધારે કોમ્પોનન્ટ્સ જરૂરી પડે છે
ડિસ્ટોર્શન ઘટાડે છે	ખર્ચ વધારે છે
ઇનપુટ ઇમ્પીડન્સ વધારે છે (વોલ્ટેજ સીરીઝ)	જો યોગ્ય રીતે ડિઝાઇન ન કરવામાં આવે તો ઓસિલેશન થઈ શકે છે
આઉટપુટ ઇમ્પીડન્સ ઘટાડે છે (વોલ્ટેજ સીરીઝ)	કાળજીપૂર્વક ફેઝ કમ્પેન્સેશન જરૂરી છે

મેમરી ટ્રીક: "GRASS ઊગે પણ ડ્રાય સોઇલ પર" (Gain Reduction, Amplifies Stability, Stops distortion, Better impedance)

પ્રશ્ન 1(બ) [4 ગુણ]

નેગેટીવ ફીડબેક એમ્પ્લીફાયરનુ ઓવરઓલ ગેઇન સૂત્ર મેળવો અને નેગેટીવ ફીડબેકની એપ્લીકેશન જણાવો.

જવાબ:

નેગેટીવ ફીડબેક સાથે ઓવરઓલ ગેઇનની મેળવણી:

- એમ્પ્લીફાયર ગેઇન A અને ફીડબેક ફેક્ટર β માટે:
 - o ઇનપુટ સિગ્નલ = Vin
 - ૦ ફીડબેક સિગ્નલ = βVout
 - ૦ એમ્પ્લીફાયરમાં વાસ્તવિક ઇનપુટ = Vin βVout
 - ૦ આઉટપુટ = A(Vin βVout)
 - ૦ આથી, Vout = A(Vin βVout)
 - Vout + AβVout = AVin
 - Vout $(1 + A\beta) = AVin$
 - ઓવરઓલ ગેઇન = Vout/Vin = A/(1 + Aβ)

નેગેટીવ કીડબેકની એપ્લીકેશન:

• ઓપરેશનલ એમ્પ્લીફાયર

- વોલ્ટેજ રેગ્યુલેટર્સ
- ઓડિયો એમ્પ્લીફાયર્સ
- ઇન્સ્ટ્રુમેન્ટેશન એમ્પ્લીફાયર્સ

મેમરી ટ્રીક: "AVOI" (Amplifiers, Voltage regulators, Oscillation control, Instrumentation)

પ્રશ્ન 1(ક) [7 ગુણ]

કરંટ શન્ટ નેગેટીવ ફીડબેક એમ્પ્લીફાયર દોરી ને સમજાવો અને ઈનપુટ અને આઉટપુટ ઈમ્પપીડન્સ નું સૂત્ર મેળવો.

જવાબ:

કરંટ શન્ટ નેગેટીવ ફીડબેક એમ્પ્લીફાયર:

કરંટ શન્ટ ફીડબેકમાં, આઉટપુટ વોલ્ટેજનું સેમ્પલિંગ કરવામાં આવે છે અને તેને કરંટમાં રૂપાંતરિત કરીને ઇનપુટ કરંટમાંથી બાદ કરવામાં આવે છે.

સર્કિટ ડાયાગ્રામ:

લાક્ષણિકતાઓ:

• ફીડબેક પ્રકાર: ઇનપુટ પર કરંટ સેમ્પલિંગ, ઇનપુટ પર શન્ટ મિક્સિંગ

• સેમ્પલ્સ: આઉટપુટ વોલ્ટેજ

• ફીડબેક ટુ: ઇનપુટ કરંટ

ઇનપુટ ઇમ્પીડન્સનું સૂત્ર:

- ફીડબેક વિના: Zin
- કરંટ શન્ટ ફીડબેક સાથે: Zin' = Zin/(1 + Aβ)
- આથી, ઇનપુટ ઇમ્પીડન્સ (1 + Αβ) ફેક્ટર દ્વારા ઘટે છે

આઉટપુટ ઇમ્પીડન્સનું સૂત્ર:

- ફીડબેક વિના: Zo
- કરંટ શન્ટ ફીડબેક સાથે: Zo' = Zo/(1 + Aβ)
- આથી, આઉટપુટ ઇમ્પીડન્સ (1 + Aβ) ફેક્ટર દ્વારા ઘટે છે

મેમરી ટ્રીક: "DISCO" (Decreased Impedances with Shunt Current Operation)

પ્રશ્ન 1(ક) OR [7 ગુણ]

વોલ્ટેજ સીરીઝ નેગેટીવ ફીડબેક એમ્પ્લીફાયર દોરી ને સમજાવો અને ઈનપુટ અને આઉટપુટ ઈમ્પપીડન્સ નું સૂત્ર મેળવો.

જવાબ:

વોલ્ટેજ સીરીઝ નેગેટીવ ફીડબેક એમ્પ્લીફાયર:

વોલ્ટેજ સીરીઝ ફીડબેકમાં, આઉટપુટ વોલ્ટેજનું સેમ્પલિંગ કરવામાં આવે છે અને તેને ઇનપુટ વોલ્ટેજ સાથે સીરીઝમાં ફીડબેક કરવામાં આવે છે.

સર્કિટ ડાયાગ્રામ:

લાક્ષણિકતાઓ:

• ફ્રીડબેક પ્રકાર: આઉટપુટ પર વોલ્ટેજ સેમ્પલિંગ, ઇનપુટ પર સીરીઝ મિક્સિંગ

• સેમ્પલ્સ: આઉટપુટ વોલ્ટેજ

• ફીડબેક ટુ: ઇનપુટ વોલ્ટેજ

ઇનપુટ ઇમ્પીડન્સનું સૂત્ર:

• ફીડબેક વિના: Zin

• વોલ્ટેજ સીરીઝ ફીડબેક સાથે: Zin' = Zin × (1 + Aβ)

• આથી, ઇનપુટ ઇમ્પીડન્સ (1 + Αβ) ફેક્ટર દ્વારા વધે છે

આઉટપુટ ઇમ્પીડન્સનું સૂત્ર:

• ફીડબેક વિના: Zo

• વોલ્ટેજ સીરીઝ ફીડબેક સાથે: Zo' = Zo/(1 + Aβ)

• આથી, આઉટપુટ ઇમ્પીડન્સ (1 + Αβ) ફેક્ટર દ્વારા ઘટે છે

ਮੇਮਣੀ ਟ੍ਰੀਡ: "ISDO" (Increased input impedance, Series feedback, Decreased output impedance, Output voltage sampled)

પ્રશ્ન 2(અ) [3 ગુણ]

UJT રીલેક્ષેશન ઓસીલેટરનો સરકીટ ડાયાગ્રામ દોરીને સમજાવો.

જવાબ:

UJT રીલેક્ષેશન ઓસીલેટર:

આ સર્કિટમાં:

- C1 ચાર્જ થાય છે R1 દ્વારા
- જ્યારે કેપેસિટર વોલ્ટેજ UJT ના પીક પોઇન્ટ સુધી પહોંચે છે, UJT ચાલુ થાય છે
- કેપેસિટર UJT દ્વારા ઝડપથી ડિસ્ચાર્જ થાય છે
- પ્રક્રિયા પુનરાવર્તિત થાય છે અને ઓસિલેશન ઉત્પન્ન થાય છે

મેમરી ટ્રીક: "CURD" (Capacitor charges Until Reaching Discharge point)

પ્રશ્ન 2(અ) OR [3 ગુણ]

હાર્ટલી ઓસીલેટર દોરી ને સમજાવો.

જવાબ:

હાર્ટલી ઓસીલેટર:


```
|
+-----+
|
GND
```

કાર્યપ્રણાલી:

- LC ટેન્ક સર્કિટ સાથે ટેપ્ડ ઇન્ડક્ટર (L1 અને L2) વાપરે છે
- ટ્રાન્ઝિસ્ટર એમ્પ્લિફાય કરે છે અને ટેન્ક સર્કિટને ઊર્જા પૂરી પાડે છે
- ઓસિલેશન ફ્રીક્વન્સી: f = 1/[2π√(L×C)] જ્યાં L = L1 + L2
- ઇન્ડક્ટિવ કપલિંગ દ્વારા ફીડબેક

ਮੇਮਣੀ ਟ੍ਰੀਡ: "TIC" (Tapped inductor Circuit)

પ્રશ્ન 2(બ) [4 ગુણ]

કોલપીટ ઓસીલેટરનો સરકીટ ડાયાગ્રામ દોરો અને વિસ્તૃત માં સમજાવો. તેના ફાયદા અને ગેરફાયદા પણ જણાવો.

જવાબ:

કોલપીટ્સ ઓસીલેટર:

સર્કિટ ડાયાગ્રામ:

કાર્યપ્રણાલી:

- કેપેસિટિવ વોલ્ટેજ ડિવાઇડર (C1 અને C2) સાથે LC ટેન્ક સર્કિટ વાપરે છે
- ટ્રાન્ઝિસ્ટર એમ્પ્લિફાય કરે છે અને ટેન્ક સર્કિટને ઊર્જા પૂરી પાડે છે
- ઓસિલેશન ફ્રીક્વન્સી: f = 1/[2π√(L×(C1×C2)/(C1+C2))]

ફાયદા	ગેરફાયદા
સારી ફ્રીક્વન્સી સ્થિરતા	બે કેપેસિટર (C1, C2) જરૂરી છે
ઉચ્ચ ફ્રીક્વન્સી પર સારું કામ કરે છે	અન્ય ઓસિલેટર કરતાં ટ્યુન કરવું વધુ મુશ્કેલ છે
ઓછા હાર્મોનિક્સ	ટ્રાન્ઝિસ્ટર પેરામીટર્સ પ્રત્યે સંવેદનશીલ
સરળ ડિઝાઇન	સીમિત ફ્રીક્વન્સી રેન્જ

મેમરી ટ્રીક: "FAST Circuits" (Frequency stable, Appropriate for high frequencies, Simple design, Two capacitors needed)

પ્રશ્ન 2(બ) OR [4 ગુણ]

વિએન બ્રીજ ઓસીલેટર દોરીને સમજાવો.

જવાબ:

વિએન બ્રીજ ઓસીલેટર:

કાર્યપ્રણાલી:

- ફ્રીક્વન્સી-સિલેક્ટિવ ફીડબેક તરીકે RC વિએન બ્રીજ નેટવર્ક વાપરે છે
- સૌથી સરળ ડિઝાઇન માટે R1=R2 અને C1=C2
- ઓસિલેશન ફ્રીક્વન્સી: f = 1/(2πRC)
- સતત ઓસિલેશન માટે ગેઇન ≥ 3 હોવું જરૂરી છે
- ઓછા ડિસ્ટોર્શન સાથે ઓડિયો ફ્રીક્વન્સી જનરેશન માટે વપરાય છે

મેમરી ટ્રીક: "FEAR" (Frequency selective, Equal RC components, Audio range, Reduced distortion)

પ્રશ્ન 2(ક) [7 ગુણ]

Crystal ઓસીલેટર સમજાવો.

જવાબ:

ક્રિસ્ટલ ઓસીલેટર:

સર્કિટ ડાયાગ્રામ:

કાર્યપ્રણાલી સિદ્ધાંત:

- ક્વાર્ટ્ઝ ક્રિસ્ટલના પિઝોઇલેક્ટ્રિક ઇફેક્ટ પર આદ્યારિત છે
- જ્યારે વોલ્ટેજ લાગુ કરવામાં આવે ત્યારે ક્રિસ્ટલ તેની કુદરતી રેઝોનન્ટ ફ્રીક્વન્સી પર કંપન કરે છે

- અત્યંત ઊંચા Q ફેક્ટર સાથે ખૂબ જ સ્થાયી રેઝોનેટર તરીકે કામ કરે છે
- સચોટ ફ્રીક્વન્સી પર ફીડબેક પ્રદાન કરે છે

લાક્ષણિકતાઓ:

- રેઝોનન્ટ ફ્રીક્વન્સી: ક્રિસ્ટલ કટ અને પરિમાણો દ્વારા નક્કી થાય છે
- **Q ફેક્ટર**: સામાન્ય રીતે 10,000-100,000 (LC સર્કિટ્સ કરતાં ઘણું વધારે)
- ફ્રીક્વન્સી સ્થિરતા: સામાન્ય રીતે 0.001% થી 0.01%
- **તાપમાન કોએફિશિયન્ટ**: સામાન્ય રીતે ઓછો, ઝીરો તાપમાન કોએફિશિયન્ટ માટે વિશેષ રીતે કાપી શકાય છે

એપ્લિકેશન્સ:

- કમ્પ્યુટર્સમાં ક્લોક જનરેશન
- ફ્રીક્વન્સી સ્ટાન્ડર્ડ્સ
- રેડિયો ટ્રાન્સમિટર/રિસીવર
- ડિજિટલ ઘડિયાળ અને ક્લોક્સ
- માઇક્રોકન્ટોલર ટાઇમિંગ

મેમરી ટ્રીક: "STOP Precisely" (Stable, Temperature-resistant, Oscillates, Piezoelectric, Precisely)

પ્રશ્ન 2(ક) OR [7 ગુણ]

UJT નું સ્ટ્રક્ચર, સીમ્બોલ, એક્વીવેલેન્ટ સરકીટ દોરો અને સમજાવો.

જવાબ:

યુનિજંક્શન ટ્રાન્ઝિસ્ટર (UJT):

સ્ટ્રક્ચર:

સિમ્બોલ:

В2

એક્વિવેલેન્ટ સર્કિટ:

કાર્યપ્રણાલી સિદ્ધાંત:

- UJT એ એક એમિટર અને બે બેઝ સાથેનું ત્રણ-ટર્મિનલ ડિવાઇસ છે
- P-ટાઇપ એમિટર જંક્શન સાથે N-ટાઇપ સિલિકોન બાર
- આંતરિક રેસિસ્ટન્સ RB1 અને RB2 સાથે વોલ્ટેજ ડિવાઇડર બનાવે છે
- એમિટર કરંટ વહેવાનું શરૂ થાય છે જ્યારે VE > ŋ×VBB + VD
- જ્યાં η ઇન્ટ્રિન્સિક સ્ટેન્ડઓફ રેશિયો = RB1/(RB1+RB2)

લાક્ષણિકતાઓ:

- **ઇન્ટ્રિન્સિક સ્ટેન્ડઓફ રેશિયો (ŋ)**: સામાન્ય રીતે 0.5 થી 0.8
- નેગેટિવ રેઝિસ્ટન્સ રીજન: વોલ્ટેજ ઘટે છે ત્યારે કરંટ વધે છે
- પીક પોઇન્ટ: નેગેટિવ રેઝિસ્ટન્સ રીજનની શરૂઆત

• વેલી પોઇન્ટ: નેગેટિવ રેઝિસ્ટન્સ રીજનનો અંત

એપ્લિકેશન્સ:

- રિલેક્ઝેશન ઓસિલેટર્સ
- ટાઇમિંગ સર્કિટ્સ
- ટ્રિગર જનરેટર્સ
- SCR ટ્રિગરિંગ સર્કિટ્સ
- સૉટૂથ જનરેટર્સ

મેમરી ટ્રીક: "NEVER" (Negative resistance, Emitter-triggered, Valley and peak points, Easily timed, Relaxation oscillator)

પ્રશ્ન 3(અ) [3 ગુણ]

વોલ્ટેજ અને પાવર એમ્પ્લીફાયર વચ્ચેનો તફાવત સમજાવો.

જવાબ:

પેરામીટર	વોલ્ટેજ એમ્પ્લીફાયર	પાવર એમ્પ્લીફાયર	
ઉદ્દેશ	વોલ્ટેજને એમ્પ્લિફાય કરે છે	લોડને પાવર પહોંચાડે છે	
આઉટપુટ ઇમ્પીડન્સ	ઊંચી	નીચી	
ઇનપુટ ઇમ્પીડન્સ	ઊંચી	તુલનાત્મક રીતે નીચી	
કાર્યક્ષમતા	મહત્વપૂર્ણ નથી	ખૂબ મહત્વપૂર્ણ છે	
હીટ ડિસિપેશન	ઓછી	ઊંચી (હીટ સિંક જરૂરી)	
સર્કિટમાં સ્થાન	શરૂઆતના તબક્કામાં	છેલ્લા તબક્કામાં	

મેમરી ટ્રીક: "PEHIP" (Power for Efficiency and Heat, Impedance matters, Position differs)

પ્રશ્ન 3(અ) OR [3 ગુણ]

વ્યાખ્યા આપો: 1) Efficiency 2) Distortion 3) Power dissipation capability

જવાબ:

કાભ્દ	વ્યાખ્યા
Efficiency	લોડને પહોંચાડવામાં આવતી AC આઉટપુટ પાવરનો સપ્લાયમાંથી લેવામાં આવતી DC ઇનપુટ પાવર સાથેનો ગુણોત્તર. ગાણિતિક રીતે: η = (Pout/Pin) × 100%. ઉચ્ચ કાર્યક્ષમતા એટલે ઓછી પાવર ગરમી તરીકે વેડફાય છે.
Distortion	ઇનપુટ વેવફોર્મની તુલનામાં આઉટપુટ વેવફોર્મમાં અનિચ્છનીય ફેરફાર. Total Harmonic Distortion (THD) તરીકે માપવામાં આવે છે. હાર્મોનિક, ઇન્ટરમોડ્યુલેશન, ક્રોસઓવર અને એમ્પ્લિટ્યુડ ડિસ્ટોર્શન શામેલ છે.
Power Dissipation Capability	નુકસાન વિના એમ્પ્લિફાયર દ્વારા વેડફી શકાતી મહત્તમ પાવર. હીટ સિંક, થર્મલ રેઝિસ્ટન્સ અને ટ્રાન્ઝિસ્ટરના મહત્તમ જંક્શન તાપમાન પર આધાર રાખે છે.

મેમરી ટ્રીક: "EDP" (Efficiency converts, Distortion deforms, Power capability protects)

પ્રશ્ન 3(બ) [4 ગુણ]

ક્લાસ-બી પુશ પુલ પાવર એમ્પ્લીફાયર સમજાવો.

જવાબ:

ક્લાસ-B પુશ-પુલ એમ્પ્લિફાયર:

સર્કિટ ડાયાગ્રામ:

કાર્યપ્રણાલી:

- બે કોમ્પ્લિમેન્ટરી ટ્રાન્ઝિસ્ટરનો ઉપયોગ કરે છે
- Q1 પોઝિટિવ અર્ધ-સાયકલ દરમિયાન કન્ડક્ટ કરે છે
- Q2 નેગેટિવ અર્ધ-સાયકલ દરમિયાન કન્ડક્ટ કરે છે
- દરેક ટ્રાન્ઝિસ્ટર ઇનપુટ સાયકલના 180° માટે કન્ડક્ટ કરે છે

મેમરી ટ્રીક: "ECHO" (Efficiency high, Crossover distortion, Half-cycle operation, Output high power)

પ્રશ્ન 3(બ) OR [4 ગુણ]

ઓપરેશન મોડ નાં આદ્યારે પાવર એમ્પ્લીફાયરનું વર્ગીકરણ કરો અને વિવિદ્ય પ્રકારના પાવર એમ્પ્લીફાયરની કામગીરી સમજાવો.

જવાબ:

પાવર એમ્પ્લિફાયરનું વર્ગીકરણ:

ક્લાસ	કન્ડક્શન એંગલ	કાર્યપ્રણાલી
ક્લાસ A	360°	એમ્પ્લિફાયર સંપૂર્ણ ઇનપુટ સાયકલ માટે કન્ડક્ટ કરે છે. આઉટપુટ સિગ્નલ ઇનપુટની સચોટ પ્રતિકૃતિ હોય છે પરંતુ એમ્પ્લિફાય થયેલી. લિનિયર પરંતુ અકાર્યક્ષમ (25-30%).
ક્લાસ B	180°	બે ટ્રાન્ઝિસ્ટર દરેક અર્ધ સાયકલ માટે કન્ડક્ટ કરે છે. એક પોઝિટિવ અર્ધ, બીજો નેગેટિવ અર્ધ સંભાળે છે. વધુ કાર્યક્ષમ (70-80%) પરંતુ ક્રોસઓવર ડિસ્ટોર્શન છે.
ક્લાસ AB	180°-360°	ક્લાસ A અને B વચ્ચેનો સમાધાન. ક્રોસઓવર ડિસ્ટોર્શન ઘટાડવા માટે થોડું બાયસ. સારી કાર્યક્ષમતા (50-70%) સાથે સ્વીકાર્ય ડિસ્ટોર્શન.
ક્લાસ C	<180°	અર્ધ સાયકલથી ઓછા સમય માટે કન્ડક્ટ કરે છે. ખૂબ કાર્યક્ષમ (>80%) પરંતુ અત્યંત ડિસ્ટોર્ટેડ. મુખ્યત્વે RF ટ્યૂન્ડ એમ્પ્લિફાયર્સમાં વપરાય છે.

મેમરી ટ્રીક: "ABCE" (A-all cycle, B-both halves separately, C-compromise solution, E-efficiency with distortion)

પ્રશ્ન 3(ક) [7 ગુણ]

Complementary symmetry પુશ પુલ પાવર એમ્પ્લીફાયર દોરી ને સમજાવો અને તેના ગેરફાયદા લખો.

જવાબ:

કોમ્પ્લિમેન્ટરી સિમેટ્રી પુશ-પુલ એમ્પ્લિફાયર:

સર્કિટ ડાયાગ્રામ:

કાર્યપ્રણાલી:

- કોમ્પ્લિમેન્ટરી પેર (NPN અને PNP ટ્રાન્ઝિસ્ટર) વાપરે છે
- સેન્ટર-ટેપ્ડ ટ્રાન્સફોર્મરની જરૂર નથી
- NPN પોઝિટિવ અર્ધ-સાયકલ સંભાળે છે
- PNP નેગેટિવ અર્ધ-સાયકલ સંભાળે છે
- બાયસિંગ નેટવર્ક ક્રોસઓવર ડિસ્ટોર્શન ઘટાડે છે
- સ્પીકર સાથે ડાયરેક્ટ કપલિંગ શક્ય છે

ગેરફાયદા:

- યોગ્ય રીતે બાયસ ન થાય તો થર્મલ રનવે
- કોમ્પ્લિમેન્ટરી મેચ્ડ ટ્રાન્ઝિસ્ટર જરૂરી છે
- ક્લાસ-B ઓપરેશનમાં ક્રોસઓવર ડિસ્ટોર્શન
- પોઝિટિવ અને નેગેટિવ બંને પાવર સપ્લાય જરૂરી છે
- સચોટ કોમ્પ્લિમેન્ટરી પેર શોધવામાં મુશ્કેલી

ਮੇਮਣੀ ਟ੍ਰੀਡ: "MATCH Precisely" (Matched transistors, Avoids transformers, Thermal issues, Crossover distortion, Heat dissipation needed)

પ્રશ્ન 3(ક) OR [7 ગુણ]

ક્લાસ-બી પુશ પુલ પાવર એમ્પ્લીફાયરનું કાર્યક્ષમતાનું સમીકરણ મેળવો.

જવાબ:

ક્લાસ-B પુશ-પુલ એમ્પ્લિફાયર કાર્યક્ષમતાની મેળવણી:

સર્કિટ ડાયાગ્રામ:

કાર્યક્ષમતા ગણતરી:

1. DC પાવર ઇનપુટ ગણતરી:

- ૦ દરેક ટ્રાન્ઝિસ્ટર અર્ધ સાયકલ માટે કન્ડક્ટ કરે છે
- ૦ એવરેજ DC કરંટ: ldc = lmax/π
- ο DC પાવર ઇનપુટ: Pdc = Vcc × Idc = Vcc × Imax/π

2. AC પાવર આઉટપુટ ગણતરી:

- ૦ કરંટની RMS વેલ્યુ: Irms = Imax/2
- ∘ AC પાવર આઉટપુટ: Pac = (Irms)² × RL = (Imax/2)² × RL

- ૦ મહત્તમ પાવર માટે: Imax × RL = Vcc
- ૦ આથી: Pac = (Vcc)²/(2π × RL)

3. કાર્યક્ષમતા ગણતરી:

- \circ $\eta = (Pac/Pdc) \times 100\%$
- $\circ \quad \eta = [(Vcc)^2/(2\pi \times RL)] \div [Vcc \times Imax/\pi] \times 100\%$
- $\circ \quad \eta = [(Vcc)^2/(2\pi \times RL)] \div [Vcc \times Vcc/(\pi \times RL)] \times 100\%$
- $\circ \quad \eta = [(Vcc)^2/(2\pi \times RL)] \times [\pi \times RL/Vcc^2] \times 100\%$
- \circ $\eta = \pi/4 \times 100\% \approx 78.5\%$

ક્લાસ-B પુશ-પુલ એમ્પ્લિફાયરની મહત્તમ સૈદ્ધાંતિક કાર્યક્ષમતા 78.5% છે

ਮੇਮਣੀ ਟ੍ਰੀਡ: "PIPE" (Power ratio, Input DC vs output AC, Pi in formula, Efficiency maximum 78.5%)

પ્રશ્ન 4(અ) [3 ગુણ]

IC 741 નો પીન ડાયાગ્રામ અને યોજનાકીય પ્રતિક દોરો અને તેને વિગતવાર સમજાવો.

જવાબ:

IC 741 ઓપ-એમ્પ પીન ડાયાગ્રામ અને સિમ્બોલ:

પીન ડાયાગ્રામ:

સ્ક્રેમેટિક સિમ્બોલ:

પીન વિગત:

- 1. ઓફસેટ નલ (NC1)
- 2. ઇન્વર્ટિંગ ઇનપુટ (-)

- 3. નોન-ઇન્વર્ટિંગ ઇનપુટ (+)
- 4. નેગેટિવ સપ્લાય (-Vcc)
- 5. ઓફસેટ નલ (NC2)
- 6. આઉટપુટ
- 7. પોઝિટિવ સપ્લાય (+Vcc)
- 8. NC (નો કનેક્શન)

મેમરી ટ્રીક: "ON-INO" (Offset Null, Inverting input, Negative supply, Input non-inverting, Output, No connection)

પ્રશ્ન 4(અ) OR [3 ગુણ]

ldeal Op-amp ની લાક્ષણિકતાની યાદી બનાવો.

જવાબ:

લાક્ષણિકતા	આદર્શ મૂલ્ચ
ઓપન-લૂપ ગેઇન	અ નંત
ઇનપુટ ઇમ્પીડન્સ	અનંત
આઉટપુટ ઇમ્પીડન્સ	શૂન્ય
બેન્કવિડ્થ	अनंत
CMRR	अनंत
સ્લ્યુ રેટ	अनंत
ઓફસેટ વોલ્ટેજ	શૂન્ચ
નોઇઝ	શૂન્ચ

મેમરી ટ્રીક: "ZINC BOSS" (Zero offset, Infinite bandwidth, No noise, CMRR infinite, Bandwidth unlimited, Output impedance zero, Slew rate unlimited, Speed unlimited)

પ્રશ્ન 4(બ) [4 ગુણ]

OPAMP નો ઉપયોગ કરીને differential એમ્પ્લીફાયર સમજાવો.

જવાલ:

ઓપ-એમ્પનો ઉપયોગ કરીને ડિફરેન્શિયલ એમ્પ્લિફાયર:

સર્કિટ ડાયાગ્રામ:

કાર્યપ્રણાલી:

- આઉટપુટ ઇનપુટ્સ વચ્ચેના તફાવતને પ્રપોર્શનલ હોય છે
- જો R1 = R3 અને R2 = R4, તો: Vout = (R2/R1)(V2-V1)
- બંને ઇનપુટ્સ માટે સામાન્ય સિગ્નલ્સને રિજેક્ટ કરે છે (કોમન-મોડ રિજેક્શન)
- ઇન્સ્ટ્રુમેન્ટેશન એપ્લિકેશન્સમાં વપરાય છે

મેમરી ટ્રીક: "CARE" (Common-mode rejection, Amplifies difference, Resistor matching important, Equal resistors for balance)

પ્રશ્ન 4(બ) OR [4 ગુણ]

ઓપરેશનલ એમ્પ્લીફાયર (OP-AMP) નો બ્લોક ડાયાગ્રામ દોરીને વિસ્તૃતમાં સમજાવો.

જવાબ:

ઓપ-એમ્પ બ્લોક ડાયાગ્રામ:

વિગતવાર બ્લોક ડાયાગ્રામ:

બ્લોક્સની કાર્યપ્રણાલી:

- 1. **ઇનપુટ સ્ટેજ**: ઊંચા ઇનપુટ ઇમ્પીડન્સ સાથે ડિફરેન્શિયલ એમ્પ્લિફાયર
- 2. **ઇન્ટરમીડિયેટ સ્ટેજ**: ફ્રીક્વન્સી કોમ્પેન્સેશન સાથે હાઇ-ગેઇન વોલ્ટેજ એમ્પ્લિફાયર
- 3. **આઉટપુટ સ્ટેજ**: ઓછા આઉટપુટ ઇમ્પીડન્સ બફર, કરંટ ગેઇન પ્રદાન કરે છે
- 4. **બાયસિંગ સર્કિટ**: બધા સ્ટેજને યોગ્ય DC સ્તર પ્રદાન કરે છે
- 5. **કોમ્પેન્સેશન નેટવર્ક**: ઓસિલેશન અટકાવે છે, સ્થિરતા સુનિશ્ચિત કરે છે

મેમરી ટ્રીક: "DISCO" (Differential stage Input, Second stage amplifies, Compensation network, Output buffer)

પ્રશ્ન 4(ક) [7 ગુણ]

OP-Amp પેરામીટર સમજાવો: 1) ઈનપુટ ઓફસેટ વોલ્ટેજ 2) આઉટપુટ ઓફસેટ વોલ્ટેજ 3) ઈનપુટ ઓફસેટ કરંટ 4) ઈનપુટ બાયસ કરંટ 5) CMRR 6) સ્લુ રેટ 7) ગેઇન.

જવાબ:

ઓપ-એમ્પના પેરામીટર્સ:

પેરામીટર	વર્ણન	741 માટે ટિપિકલ વેલ્યુ
ઇનપુટ ઓફસેટ વોલ્ટેજ	આઉટપુટને શૂન્ય કરવા માટે ઇનપુટ પર જરૂરી વોલ્ટેજ	1-5 mV
આઉટપુટ ઓફસેટ વોલ્ટેજ	ઇનપુર્સ ગ્રાઉન્ડ કરવામાં આવે ત્યારે આઉટપુટ વોલ્ટેજ	ઇનપુટ ઓફસેટ અને ગેઇન પર આધારિત
ઇનપુટ ઓફસેટ કરંટ	ઇનપુટ બાયસ કરંટ્સ વચ્ચેનો તફાવત	3-30 nA
ઇનપુટ બાયસ કરંટ	બે ઇનપુટ કરંટ્સની સરેરાશ	30-500 nA
CMRR	કોમન-મોડ સિગ્નલ્સને રિજેક્ટ કરવાની ક્ષમતા	70-100 dB
સ્લ્યુ રેટ	આઉટપુટ વોલ્ટેજ પરિવર્તનનો મહત્તમ દર	0.5 V/µs
ગેઇન (Aol)	ઓપન-લૂપ વોલ્ટેજ ગેઇન	104-106 (80-120 dB)

ઇનપુટ ઓફસેટ વોલ્ટેજ માટે ડાયાગ્રામ:

ਮੇਮਰੀ ਟ੍ਰੀਡ: "VICS BGR" (Voltage offset at Input, Current offset, Slew rate, Bias current, Gain, Rejection ratio)

પ્રશ્ન 4(ક) OR [7 ગુણ]

Inverting અને Non-inverting Op-amp એમ્પ્લીફાયર આકૃતિ દોરી વોલ્ટેજ ગેઇન નું સૂત્ર તારવી સમજાવો.

જવાબ:

ઇન્વર્ટિંગ એમ્પ્લિફાયર:

ગેઇન મેળવણી:

- વર્ચ્યુઅલ ગ્રાઉન્ડ કન્સેપ્ટનો ઉપયોગ (V- ≈ 0)
- Rin ผูเลเ รล่อ: lin = Vin/Rin
- Rf દ્વારા કરંટ: If = Iin (ઓપ-એમ્પ ઇનપુટમાં કોઈ કરંટ નથી)
- Rf પર વોલ્ટેજ: Vout = -lf × Rf = -lin × Rf = -Vin × Rf/Rin
- આથી, ગેઇન = Vout/Vin = -Rf/Rin

નોન-ઇન્વર્ટિંગ એમ્પ્લિફાયર:

ગેઇન મેળવણી:

• નેગેટિવ ફીડબેકને કારણે, V- ≈ V+ = Vin

• Rin પર વોલ્ટેજ: V- = Vin

• Rin ผูเวเ ระ่ว: IRin = V-/Rin = Vin/Rin

• સમાન કરંટ Rf દ્વારા વહે છે: IRf = IRin

• Rf પર વોલ્ટેજ: VRf = IRf × Rf = Vin × Rf/Rin

• આઉટપુટ વોલ્ટેજ: Vout = V- + VRf = Vin + Vin × Rf/Rin = Vin(1 + Rf/Rin)

• આથી, ગેઇન = Vout/Vin = 1 + Rf/Rin

तुसना:

પેરામીટર	ઇન્વર્ટિંગ એમ્પ્લિફાયર	નોન-ઇન્વર્ટિંગ એમ્પ્લિફાયર
ગેઇન ફોર્મ્યુલા	-Rf/Rin	1 + Rf/Rin
ફેઝ શિફ્ટ	180°	0°
ઇનપુટ ઇમ્પીડન્સ	Rin ની બરાબર	ખૂબ ઊંચી (≈ અનંત)
ન્યૂનતમ સંભવિત ગેઇન	<1 હોઈ શકે છે	હંમેશા ≥1 હોય છે

મેમરી ટ્રીક: "PING-PONG" (Phase Inverted Negative Gain vs Positive Output Non-inverted Gain)

પ્રશ્ન 5(અ) [3 ગુણ]

Op-Amp નો ઉપયોગ કરીને ઇન્ટીગ્રેટર દોરો અને સમજાવો.

જવાબ:

ઓપ-એમ્પ ઇન્ટીગ્રેટર:

સર્કિટ ડાયાગ્રામ:

કાર્યપ્રણાલી:

- આઉટપુટ વોલ્ટેજ ઇનપુટના ઇન્ટિગ્રલને પ્રપોર્શનલ છે
- Vout = -1/RC \(\)\Vin dt
- વેવફોર્મ જનરેટર્સ, એનાલોગ કમ્પ્યુટર્સમાં વપરાય છે
- -20dB/decade સ્લોપ સાથે લો-પાસ ફિલ્ટર તરીકે કાર્ય કરે છે

મેમરી ટ્રીક: "TIME" (Takes Input and Makes integral over time Exactly)

પ્રશ્ન 5(અ) OR [3 ગુણ]

Op-Amp નો ઉપયોગ કરી સમિંગ એમ્પ્લીફાયર દોરો અને સમજાવો.

જવાબ:

ઓપ-એમ્પ સમિંગ એમ્પ્લિફાયર:

કાર્યપ્રણાલી:

- મલ્ટિપલ ઇનપુટ્સ સાથે ઇન્વર્ટિંગ કોન્ફિગરેશન વાપરે છે
- દરેક ઇનપુટ તેના રેઝિસ્ટન્સના આધારે આઉટપુટમાં યોગદાન આપે છે
- જો R1 = R2 = R3 = R અને Rf = R, તો Vout = -(V1 + V2 + V3)
- જો રેઝિસ્ટર્સ અલગ હોય, તો વેઇટેડ સમ ઉત્પન્ન થાય છે: Vout = -Rf(V1/R1 + V2/R2 + V3/R3)
- ઇન્વર્ટિંગ ઇનપુટ પર વર્ચ્યુઅલ ગ્રાઉન્ડ એનાલિસિસને સરળ બનાવે છે

મેમરી ટ્રીક: "SWIM" (Summing Weighted Inputs with Mixing)

પ્રશ્ન 5(બ) [4 ગુણ]

વિવિદ્ય પ્રકારના પાવર એમ્પ્લીફાયરની સરખામણી કરો.

જવાબ:

પેરામીટર	ક્લાસ A	ક્લાસ B	ક્લાસ AB	ક્લાસ C
કન્ડક્શન એંગલ	360°	180°	180°-360°	<180°
કાર્યક્ષમતા	25-30%	70-80%	50-70%	>80%
ડિસ્ટોર્શન	ખૂબ ઓછું	ઊંચું (ક્રોસઓવર)	ઓછું	ખૂબ ઊંચું
બાયસિંગ	કટઓફ ઉપર	કટઓફ પર	કટઓફથી થોડું ઉપર	કટઓફથી નીચે
એપ્લિકેશન્સ	હાઇ ફિડેલિટી ઓડિયો	જનરલ પર્પઝ	ઓડિયો એમ્પ્લિફાયર્સ	RF એમ્પ્લિફાયર્સ

મેમરી ટ્રીક: "CABINET" (Conduction angle, Amplification quality, Biasing, Ideal applications, Noise/distortion, Efficiency, Temperature concerns)

પ્રશ્ન 5(બ) OR [4 ગુણ]

પુશ પુલ એમ્પ્લીફાયર અને કોમ્પ્લીમેન્ટરી પુશ પુલ એમ્પ્લીફાયર ની સરખામણી કરો.

જવાબ:

પેરામીટર	પુશ-પુલ એમ્પ્લિફાયર	કોમ્પ્લિમેન્ટરી પુશ-પુલ એમ્પ્લિફાયર
વપરાતા ટ્રાન્ઝિસ્ટર્સ	સમાન પ્રકાર (NPN અથવા PNP)	કોમ્પ્લિમેન્ટરી જોડી (NPN અને PNP)
ઇનપુટ ટ્રાન્સફોર્મર	જરૂરી (સેન્ટર-ટેપ્ડ)	જરૂરી નથી
આઉટપુટ ટ્રાન્સફોર્મર	જરૂરી	જરૂરી નથી
સર્કિટ જટિલતા	વધુ જટિલ	સરળ
พย์	ટ્રાન્સફોર્મર્સને કારણે ઊંચો	નીચો
ફ્રીક્વન્સી રિસ્પોન્સ	ટ્રાન્સફોર્મર્સ દ્વારા મર્યાદિત	વધુ સારું (વિશાળ રેન્જ)
ફેઝ ડિસ્ટોર્શન	ઊંચું	નીચું
પાવર સપ્લાય	સિંગલ પોલારિટી	સામાન્ય રીતે ક્યુઅલ પોલારિટી જરૂરી

ਮੇਮਣੀ ਟ੍ਰੀs: "TONIC" (Transformers vs None, One type vs complementary, Nice frequency response, Improved distortion, Cost effectiveness)

પ્રશ્ન 5(ક) [7 ગુણ]

IC555 ના ઉપયોગો લખો અને કોઈ પણ એક વિસ્તૃતમાં સમજાવો.

જવાબ:

IC 555 ના એપ્લિકેશન્સ:

- 1. એસ્ટેબલ મલ્ટિવાયબ્રેટર
- 2. મોનોસ્ટેબલ મલ્ટિવાયબ્રેટર
- 3. બાયસ્ટેબલ મલ્ટિવાયબ્રેટર
- 4. પલ્સ વિડ્થ મોડુલેટર
- 5. સિક્વેન્શિયલ ટાઇમર
- 6. ફ્રીક્વન્સી ડિવાઇડર
- 7. ટોન જનરેટર

IC 555 નો ઉપયોગ કરીને એસ્ટેબલ મલ્ટિવાયબ્રેટર:

સર્કિટ ડાયાગ્રામ:

+Vcc

કાર્યપ્રણાલી:

- R1, R2 અને C ફ્રીક્વન્સી નક્કી કરે છે
- આઉટપુટ HIGH અને LOW વચ્ચે ઓસિલેટ કરે છે
- યાર્જિંગ ટાઇમ: t1 = 0.693(R1+R2)C
- ડિસ્ચાર્જિંગ ટાઇમ: t2 = 0.693(R2)C
- કુલ પીરિયડ: T = t1 + t2 = 0.693(R1+2R2)C
- ફ્રીક્વન્સી: f = 1.44/[(R1+2R2)C]
- ક્યુટી સાયકલ: D = (R1+R2)/(R1+2R2)

એપ્લિકેશન્સ:

- LED ફ્લેશર્સ
- ક્લોક જનરેટર્સ
- ટોન જનરેટર્સ

• પલ્સ જનરેશન

મેમરી ટ્રીક: "FREE" (Frequency determined by Resistors and capacitor, Endless oscillation, Easy to configure)

પ્રશ્ન 5(ક) OR [7 ગુણ]

IC555 નો પીન ડાયાગ્રામ અને બ્લોક ડાયાગ્રામ દોરો અને વિસ્તૃતમાં સમજાવો.

જવાબ:

IC 555 ટાઇમર:

પીન ડાયાગ્રામ:

પીન વિગત:

- 1. ગ્રાઉન્ડ સર્કિટ ગ્રાઉન્ડથી જોડાયેલ
- 2. ટ્રિગર વોલ્ટેજ 1/3 Vcc થી નીચે પડે ત્યારે ટાઇમિંગ સાયકલ શરૂ કરે છે
- 3. આઉટપુટ આઉટપુટ સિગ્નલ પ્રદાન કરે છે, 200mA સુધી સોર્સ અથવા સિંક કરી શકે છે
- 4. રીસેટ લો પર ખેંચવામાં આવે ત્યારે ટાઇમિંગ સાયકલ સમાપ્ત કરે છે
- 5. કન્ટ્રોલ વોલ્ટેજ આંતરિક વોલ્ટેજ ડિવાઇડર (2/3 Vcc) ને ઍક્સેસ કરવાની મંજૂરી આપે છે
- 6. થ્રેશોલ્ડ વોલ્ટેજ 2/3 Vcc થી વધે ત્યારે ટાઇમિંગ સાયકલ સમાપ્ત કરે છે
- 7. ડિસ્યાર્જ આંતરિક ટ્રાન્ઝિસ્ટરના ઓપન કલેક્ટરથી જોડાયેલ
- 8. Vcc પોઝિટિવ સપ્લાય વોલ્ટેજ (4.5V થી 16V)

બ્લોક ડાયાગ્રામ:

કાર્યપ્રણાલી:

- 1. **વોલ્ટેજ ડિવાઇડર**: Vcc ના 1/3 અને 2/3 પર રેકરન્સ વોલ્ટેજ બનાવે છે
- 2. **કમ્પેરેટર્સ**: ઇનપુટ વોલ્ટેજને ટેફરન્સ વોલ્ટેજ સાથે સરખાવે છે
- 3. **ફિલપ-ફ્લોપ**: કમ્પેરેટર્સના આઉટપુટના આધારે ટાઇમિંગ સ્ટેટ સ્ટોર કરે છે
- 4. **આઉટપુટ સ્ટેજ**: ફિલપ-ફ્લોપ આઉટપુટને બફર અને એમ્પ્લિફાય કરે છે
- 5. **ડિસ્ચાર્જ ટ્રાન્ઝિસ્ટર**: ટાઇમિંગ કેપેસિટર ડિસ્ચાર્જ કરવા માટે ફિલપ-ફ્લોપ દ્વારા નિયંત્રિત

ઓપરેટિંગ મોડ્સ:

- 1. **મોનોસ્ટેબલ**: ઇનપુટ પલ્સ દ્વારા ટ્રિગર થયેલ વન-શોટ ટાઇમર
- 2. **એસ્ટેબલ**: પલ્સ જનરેશન માટે ફ્રી-રનિંગ ઓસિલેટર
- 3. **બાયસ્ટેબલ**: સેટ અને રીસેટ ફંક્શનાલિટી સાથે ફ્લિપ-ફ્લોપ

એપ્લિકેશન્સ:

- પલ્સ જનરેશન
- ટાઇમ ડિલે
- ઓસિલેટર્સ

- PWM કન્ટ્રોલર્સ
- સિક્વેન્શિયલ ટાઇમર્સ

મેમરી ટ્રીક: "VICTOR" (Voltage divider, Internal comparators, Control flip-flop, Timing capabilities, Output buffer, Reset function)