

Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 9483 CALIBRATION DATE: 10-Nov-18 Slocum Payload CTD CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

BATH TEMP	BATH TEMP BATH SAL		INSTRUMENT	INSTRUMENT	RESIDUAL	
	Section Control	BATH COND			KESIDUAL	
(° C)	(PSU)	(S/m)	OUTPUT (Hz)	COND (S/m)	(S/m)	
22.0000	0.0000	0.00000	2752.42	0.0000	0.00000	
1.0000	34.7918	2.97407	5454.00	2.97408	0.00001	
4.5000	34.7724	3.28099	5659.26	3.28098	-0.00001	
14.9999	34.7307	4.26221	6269.86	4.26221	-0.00000	
18.5000	34.7221	4.60722	6470.61	4.60721	-0.00001	
24.0000	34.7130	5.16496	6782.34	5.16499	0.00003	
29.0000	34.7084	5.68663	7061.11	5.68661	-0.00002	
32.5000	34.7059	6.05891	7253.35	6.05891	0.00000	

f = Instrument Output(Hz) * sqrt(1.0 + WBOTC * t) / 1000.0

 $t = temperature (°C); p = pressure (decibars); <math>\delta = CTcor; \epsilon = CPcor;$

Conductivity $(S/m) = (g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 9483 CALIBRATION DATE: 10-Nov-18

Slocum Payload CTD TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

COEFFICIENTS:

a0 = -1.990531e-004 a1 = 3.186770e-004 a2 = -5.016024e-006 a3 = 2.172682e-007

BATH TEMP	INSTRUMENT	INST TEMP	RESIDUAL
(° C)	OUTPUT (counts)	(° C)	(° C)
1.0000	567003.3	1.0000	0.0000
4.5000	486337.8	4.4999	-0.0001
14.9999	312888.5	15.0001	0.0002
18.5000	271777.8	18.4999	-0.0001
24.0000	219097.0	23.9999	-0.0001
29.0000	181207.3	29.0002	0.0002
32.5000	159180.3	32.4999	-0.0001

n = Instrument Output (counts)

Temperature ITS-90 (°C) = $1/{a0 + a1[ln(n)] + a2[ln^2(n)] + a3[ln^3(n)]} - 273.15$

Residual (°C) = instrument temperature - bath temperature

Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 9483 CALIBRATION DATE: 07-Nov-18 Slocum Payload CTD PRESSURE CALIBRATION DATA 1450 psia S/N 11145975

COEFFICIENTS:

PA0 =	1.631601e-001	PTCA0	=	5.244650e+005
PA1 =	4.534280e-003	PTCA1	=	2.008842e+000
PA2 =	-2.778209e-011	PTCA2	=	-2.210557e-002
PTEMPA0 =	-6.622376e+001	PTCB0	=	2.512738e+001
PTEMPA1 =	5.238114e-002	PTCB1	=	-5.250000e-004
PTEMPA2 =	-5.452579e-007	PTCB2	=	0.000000e+000

PRESSURE SPAN CALIBRATION

THERMAL CORRECTION

PRESSURE (PSIA)	INSTRUMENT OUTPUT (counts)	THERMISTOR OUTPUT (volts)	COMPUTED PRESSURE (PSIA)	RESIDUAL (%FSR)	TEMP (°C)	THERMISTOR OUTPUT (volts)	INSTRUMENT OUTPUT (counts)
14.78	527748.1	1724.6	14.90	0.01	32.50	1923	527809.25
302.25	591074.0	1727.1	302.05	-0.01	29.00	1854	527792.00
589.53	654513.5	1727.7	589.49	-0.00	24.00	1755	527826.75
876.93	718021.9	1728.2	877.02	0.01	18.50	1646	527798.50
1164.31	781532.4	1729.2	1164.34	0.00	15.00	1576	527771.75
1451.62	845053.2	1729.4	1451.48	-0.01	4.50	1370	527782.75
1164.36	781552.9	1729.3	1164.43	0.01	1.00	1301	527766.25
877.03	718066.5	1729.0	877.23	0.01			
589.83	654574.9	1729.2	589.77	-0.00	TEMPER	RATURE (°C)	SPAN
302.25	591073.9	1730.9	302.05	-0.01	-5.00		25.13
14.79	527748.6	1731.2	14.90	0.01		35.00	25.11

y = thermistor output (counts)

 $t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^2$

 $x = instrument output - PTCA0 - PTCA1 * t - PTCA2 * t^2$

 $n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t^2)$

pressure (PSIA) = $PA0 + PA1 * n + PA2 * n^2$

