Importing the required libraries

```
import pandas as pd
import matplotlib.pyplot as plt
import plotly.express as px
import joblib
import seaborn as sns
#scoring and tuning
from sklearn.metrics import r2 score
from sklearn.model selection import cross val score
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import mean absolute error
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
#models
from sklearn.linear model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
```

Data Collection and Preprocessing

```
df = pd.read_csv('car_data.csv')
df.head()
```

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Tr
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	
3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	
4	swift	2014	4.60	6.87	42450	Diesel	Dealer	

df.dtypes

Car_Name object

```
Year
                    int64
Selling_Price
                 float64
Present_Price
                 float64
Kms_Driven
                   int64
Fuel_Type
                   object
Seller_Type
                   object
Transmission
                   object
Owner
                    int64
dtype: object
```

checking the number of rows and columns
df.shape

(301, 9)

getting some information about the dataset
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 301 entries, 0 to 300
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Car_Name	301 non-null	object
1	Year	301 non-null	int64
2	Selling_Price	301 non-null	float64
3	Present_Price	301 non-null	float64
4	Kms_Driven	301 non-null	int64
5	Fuel_Type	301 non-null	object
6	Seller_Type	301 non-null	object
7	Transmission	301 non-null	object
8	Owner	301 non-null	int64
dtyp	es: float64(2),	int64(3), objec	t(4)
memo	ry usage: 21.3+	KB	

df.isna().any()

```
False
Car Name
Year
                 False
Selling_Price
                 False
Present_Price
                 False
Kms_Driven
                 False
Fuel_Type
                 False
Seller_Type
                 False
Transmission
                 False
Owner
                 False
dtype: bool
```

This implies we do not have any missing value

```
f, axes = plt.subplots(2,2, figsize=(19,8))
sns.countplot(x='Transmission',data=df, ax=axes[1,0])
```

```
sns.countplot(x='Fuel_Type',data=df,ax=axes[1,1])
sns.countplot(x='Owner',data=df,ax=axes[0,1])
sns.countplot(x='Seller_Type',data=df,ax=axes[0,0])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f38a84d8f50>


```
# checking the distribution of categorical data
print(df.Fuel_Type.value_counts())
print(df.Seller_Type.value_counts())
print(df.Transmission.value_counts())
```

Petrol 239 Diesel 60 CNG 2

Name: Fuel_Type, dtype: int64

Dealer 195 Individual 106

Name: Seller_Type, dtype: int64

Manual 261 Automatic 40

Name: Transmission, dtype: int64

Encoding the Categorical Data

```
# encoding "Fuel_Type" Column
df.replace({'Fuel_Type':{'Petrol':0,'Diesel':1,'CNG':2}},inplace=True)
# encoding "Seller_Type" Column
df.replace({'Seller_Type':{'Dealer':0,'Individual':1}},inplace=True)
```

```
# encoding "Transmission" Columdn
df.replace({'Transmission':{'Manual':0,'Automatic':1}},inplace=True)
df.head()
```

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type T
0	ritz	2014	3.35	5.59	27000	0	0
1	sx4	2013	4.75	9.54	43000	1	0
2	ciaz	2017	7.25	9.85	6900	0	0
3	wagon r	2011	2.85	4.15	5200	0	0
4	swift	2014	4.60	6.87	42450	1	0

Splitting the data and Target

```
X = df.drop(['Car_Name','Selling_Price'],axis=1)
Y = df['Selling_Price']
print(X)
```

	Year	Present_Price	Kms_Driven	 Seller_Type	Transmission	Owner
0	2014	5.59	27000	 0	0	0
1	2013	9.54	43000	 0	0	0
2	2017	9.85	6900	 0	0	0
3	2011	4.15	5200	 0	0	0
4	2014	6.87	42450	 0	0	0
• •		• • •	• • •	 • • •		
296	2016	11.60	33988	 0	0	0
297	2015	5.90	60000	 0	0	0
298	2009	11.00	87934	 0	0	0
299	2017	12.50	9000	 0	0	0
300	2016	5.90	5464	 0	0	0

[301 rows x 7 columns]

print(Y)

```
0 3.35
1 4.75
2 7.25
3 2.85
4 4.60
...
296 9.50
297 4.00
```

```
298 3.35
299 11.50
300 5.30
Name: Selling_Price, Length: 301, dtype: float64
```

Splitting the dataset into the Training set and Test set

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.1, random_state=2)
```

Model Training

```
cv=5
r2=[]
cv_score=[]
mae=[]
mse=[]
def results(model, X train, X test, y train, y test):
    model.fit(X_train,y_train)
    predicts=model.predict(X test)
    prediction=pd.DataFrame(predicts)
    R_2=r2_score(y_test,model.predict(X_test))
    mean_sqare_E =mean_squared_error(y_test,model.predict(X_test))
    mean_abso_E =mean_absolute_error(y_test,model.predict(X_test))
    cv_mean = -cross_val_score(model,X_train,y_train,cv=cv, scoring='neg_mean_squared_error')
    # Appending results to Lists
    r2.append(r2_score(y_test,model.predict(X_test)))
    cv_score.append(-cross_val_score(model,X,Y,cv=cv, scoring='neg_mean_squared_error').mean(
    mse.append(mean squared error(y test,predicts))
    mae.append(mean_absolute_error(y_test,predicts))
    # Printing results
    print(model,"\n")
    print("r^2 value :",R 2,"\n")
    print('mean square error',mean_sqare_E,"\n")
    print('mean absolute error',mean abso E,"\n")
    print("CV score:",cv_mean,"\n")
    print('#'*40)
    # Plot for prediction vs originals
    plt.style.use('ggplot')
    test_index=y_test.reset_index()["Selling_Price"]
    ax=test_index.plot(label="originals",figsize=(16,8),linewidth=2,color="r",marker='o')
    ax=prediction[0].plot(label = "predictions",figsize=(16,8),linewidth=2,color="b",marker='
    plt.legend(loc='upper right')
```

```
plt.title("ORIGINALS VS PREDICTIONS")
plt.xlabel("index")
plt.ylabel("values")
plt.show()
```

1-Linear Regression

```
# loading the linear regression model
lin_reg_model = LinearRegression()
```

results(lin_reg_model,X_train,X_test,Y_train,Y_test)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

r^2 value : 0.8365766715027051

mean square error 2.1501299189836294

mean absolute error 1.1516382156613783

CV score: 4.287358694010678

2-Random Forest

random forest model = RandomForestRegressor()

results(random_forest_model,X_train,X_test,Y_train,Y_test)

r^2 value: 0.9787087888440023

mean square error 0.2801244506451625

mean absolute error 0.3448225806451614

CV score: 2.732727596666667

3-Decision Tree Regressor

decision tree model =DecisionTreeRegressor()

results(decision_tree_model,X_train,X_test,Y_train,Y_test)

r^2 value : 0.9247381133608102

mean square error 0.9902064516129032

mean absolute error 0.56

CV score: 4.100063703703704

Compering ALL Results

```
Results = pd.DataFrame({
    'model':['linear','random Forest','Dicision Tree'],
    'r^2':r2,
    'cv_score':cv_score,
    'mae':mae,
    'mse':mse
})
```

Results

	model	r^2	cv_score	mae	mse
0	linear	0.836577	5.249308	1.151638	2.150130
1	random Forest	0.973647	3.410647	0.375881	0.346715
2	Dicision Tree	0.949029	5.303040	0.468065	0.670610

Hence from above results we can clearly see that Random Forest Model gave the best results with least errors.