Detekce, prokazatelnost a vizualizace extrémů demografických dat ve statistických souborech

VOŽENÍLEK Vít, KAŇOK Jaromír

& TUČEK

TUČEK Pavel

UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA GEOINFORMATIKY TR. SVOBODY 26, OLOMOUC

extrém

největší/nejmenší hodnota

Extrém = krajnost, výstřednost, mimořád nost.

- Konkrétní význam může být:
- Extrém funkce matematický pojem
- Extremismus
- Extrémní programování (XP) metoda vývoje SW
- Extrémní sporty

Statistika

zkoumaný jev – statistická náhodná veličina

detekce → prokazování → interpretace → vizualizace

EXTRÉMY Z POHLEDU MATEMATIKA A STATISTIKA

Extrém = obecně malá nebo velká hodnota

1. Datový extrém (DE) & 2. Frekvenční extrém (FE)

Teoretická mez X Naměřená data

$$\sigma = \sqrt{\frac{1}{n-1}} \prod_{i=1}^{n} (x_i - \overline{x})^2$$

Min, Max, Boxplot...

FE = data s velkou nebo malou četností výskytu bez ohledu na jejich hodnotu

Pozor na to, co mapa znázorňuje

OUTLIER

Pozorování x, se nazývá outlierem, jestliže se jedná o nápadně vybočující pozorování způsobené chybným měřením, chybným zápisem nebo o signifikantně vybočující a nesouvisející datový údaj

Zpracování dat

POSTprocessing

BOXPLOT - HISTOGRAM

Jednoduché a přitom velice sofistikované metody odhalení existence extré mů v datových sadách a teoretických modelech je založena na analýze pravděpodobnostního rozložení jednotlivých hodnot.

Jak již bylo řečeno, extrémy se nacházejí jak v datové tak ve frekvenční oblasti datové sady. Je tody více než zřejmé že podrobnou analýzou těchto

Jak již bylo řečeno, extrémy se nacházejí jak v datové tak ve frekvenční oblasti datové sady. Je tedy více než zřejmé že podrobnou analýzou těchto dvou oblastí dosáhneme identifikace extrémních hodnot.

VÝPOČET OPTIMÁLNÍHO POČTU INTERVALU

Metoda postupného dělení intervalů

 Metoda založená na využití míry informační entropie. Při tvorbě map hodnotíme míru zachované informace při postupné generalizaci

$$H(Jev) = -\sum_{i=1}^{n} P(x_i) \log_2 P(x_i)$$

Využíváme postupného dělení intervalů a výpočtu entropie v
poměru ku počtu zanechaných intervalů. Tento algoritmus vede
k navržení optimálního počtu intervalů, které při tvorbě mapy použít.

$$\frac{H(Jev)}{N(int)} \rightarrow max$$
 \vee Relativní entropie $\rightarrow max$

 V okamžiku, kdy známe optimální počet intervalů, pak nastává situace, kdy je třeba rozhodnout o jejich poloze a v tom nám pomůže znalost statistického chování zkoumaného jevu a hlavně hranice, od které považujeme hodnoty za extrémní.

POJMY

- Extrémní hodnoty v datové oblasti
 - a) Datová extrémní hodnota zjištěná, změřená
 - b) Datová extrémní hodnota teoretická, modelová
 - c) Nejvyšší zjištěná, nebo naměřená hodnota
- Extrémní hodnoty ve frekvenční oblasti
 - a) frekvenční extrémy skutečné
 - b) frekvenční extrémy teoretické

Najdeme všechny druhy extrémů na současných mapách ?

Hledejme odpověď

a) Extrémní hodnota –zjištěná, změřená ?

b) Nejvyšší zjištěná nebo naměřená hodnota?

 a) Extrémní hodnota –zjištěná, změřená
 b) Nejvyšší zjištěná nebo naměřená hodnota ?

a) Extrémní hodnota –zjištěná, změřená?

b) Nejvyšší zjištěná nebo naměřená hodnota?

Nejvyšší zjištěná hodnota (v grafu)

Nejvyšší zjištěná hodnota (v diagramu)

Nejvyšší zjištěná hodnota (v kartodiagramu)

Nejvyšší zjištěná hodnota (v kartodiagramu)

Natural population increase,

Nejvyšší zjištěná hodnota (Výška? Barva?)

Extrémní hodnoty–blízko teoretickému rozdělení

Generačná plodnosť podľa veku matky

Cohorte fertility by age of mother

Jana Marenčáková

Extrémní hodnotu nelze zjistit

Extrémní hodnotu nelze zjistit

Extrémní hodnotu nelze zjistit

Správně řešená stupnice provede regionalizaci

DOPORUČENÍ:

Rozlišovat termíny:

- frekvenční extrém
- datový extrém
- nejnižší naměřená (zjištěna) hodnota
- nejvyšší naměřená (zjištěna) hodnota

DOPORUČENÍ:

- V kartogramech a kartodiagramech,
 (v krajních intervalech), uvádět buď:
 - konkrétní naměřená maxima a minima,
 - nebo teoretické extrémy (pokud existují).
- A to graficky a hodnotou.
- Uvádět jak byla stupnice vytvořena.

ZÁVĚRY:

- Nejvyšší a nejnižší naměřená hodnota nemusí být extrém.
- Kartogram ani kartodiagram neukazují, "samy o sobě", extrémy.
- Pro extrémy musíme udělat zvláštní kartografické vyjádření.
- Nutno odlišit outlier.
- U každé stupnice uvádět, jakým způsobem byla vytvořena

PODĚKOVÁNÍ

Vít Voženílek vit.vozenilek@upol.cz 585634513 Jaromír Kaňok jaromir.kanok@upol.cz 585634519

Pavel Tuček
pavel.tucek@upol.cz
585634521

Děkujeme Vám za pozornost

