電子制御工学実験報告書

実験題目 : シーケンサによる自動制御

報告者 : 3年32番 平田蓮

提出日 : 2019年12月17日

実験日 : 2019 年 12 月 23 日, 1 月 6 日, 1 月 20 日

実験班 : 第4班

共同実験者 :

※指導教員記入欄

評価項目	配点	一次チェック・・・・	二次チェック・・・・・
記載量	20		
図・表・グラフ	20		
見出し、ページ番号、その他体裁	10		
その他の減点	_		
合計	50		

コメント:

1 目的

プログラマブルコントローラ (シーケンサ) による自動制御法 (リレーラダー方式, ステップラダー方式) を学び, 課題実験のシステムの設計, 確認実習を行うことで理解を深める.

2 クイズの解答表示システムの設計

次節に述べる仕様を満たすプログラムを作成する.

2.1 制御仕様

- 司会者の出題するクイズに対して、もっとも早くボタンを押したデスクのランプを点灯させる. 点灯後は司会者が押しボタン PB_4 を押すまで点灯している. ただし、子供チームの押しボタン PB_{11} と PB_{12} はどちらも押してもランプ L_1 を点灯させることができるよう、有利になっている. また、博士チームの押しボタン PB_{31} と PB_{32} は両方とも押さなければランプ L_3 は点灯しないよう、不利になっている.
- 司会者がスイッチ SW を ON にしたときに、10 秒以内に回答者のランプがついた場合、電磁石 SOL が働いてくす玉が割れるようなラッキーチャンスとなる。割れたくす玉はラッキーチャンスが終わった後もその状態を保持し、押しボタン PB_4 を押すともとに戻る。

2.2 設計

表 1 に上で示したボタン等とシーケンサのゲート番号との対応表,図 1,表 2 に設計したリレーラダー図,また,それのコーディングを示す.

記号	名前	シーケンサ	記号	名前	シーケンサ
PB_{11}	子供チームのボタン 1	X400	L_1	子供チームのランプ	Y431
PB_{12}	子供チームのボタン 2	X401	L_2	学生のランプ	Y432
PB_2	学生のボタン	X402	L_3	博士チームのランプ	Y433
PB_{31}	博士チームのボタン 1	X403	SW	司会者用スイッチ	X406
PB_{32}	博士チームのボタン 2	X404	SOL	くす玉の電磁石	Y434
PB_4	司会者用ボタン	X405			

表 1 入出力対応表

図1 リレーラダー図

表 2 コーディング

0	LDI	431	10	OUT	431	20	OUT	101	30	ORB		40	OUT	450
1	ANI	432	11	LD	402	21	LD	102	31	OUT	433	41	K	10
2	ANI	433	12	AND	100	22	ANI	405	32	LD	103	42	LD	103
3	OUT	100	13	LD	432	23	OR	404	33	ANI	405	43	ANI	100
4	LD	400	14	ANI	405	24	OUT	102	34	ANI	450	44	ANI	450
5	OR	401	15	ORB		25	LD	100	35	LD	406	45	LD	434
6	AND	100	16	OUT	432	26	AND	101	36	AND	100	46	ANI	405
7	LD	431	17	LD	101	27	AND	102	37	ORB		47	ORB	
8	ANI	405	18	ANI	405	28	LD	433	38	OUT	103	48	OUT	434
9	ORB		19	OR	403	29	ANI	405	39	LD	103	49	END	

3 押しボタン式横断歩道の設計

今回の実験を通して新しくステップラダー方式を学ぶ. ステップラダー方式はリレーラダー方式と違い, 状態遷移 図に基づいてプログラムを作成する. この節では, 以下の制御仕様を満たすようにステップラダー方式を使ってプログラムを作成する.

3.1 制御仕様

- 横断ボタン X400 または X401 が押されると、図 2 のパターンで信号灯が切り替わる. 一連の動作中に押しボタンを押しても無効とする.
- 設計には並進分岐のステップラダーを使用し、点滅にはカウンタを使用する. 使用するタイマーでは図の時間のみ使用する.

図2 信号の動作パターン

3.2 設計

まず,入出力対応表を示す.

表 3 入出力対応表

名前	シーケンサ	名前	シーケンサ		
押しボタン 1	X400	車用青信号	Y432		
押しボタン 2	X401	歩行者用赤信号	Y433		
車用赤信号	Y430	歩行者用青信号	Y434		
車用黄信号	Y431				

次に、状態遷移図、ステップラダー図、コーディングを示す.

図3 状態遷移図

図4 ステップラダー図

表 4 コーディング

0	LD	71	15	STL	601	30	K	5	45	S	607	60	STL	603
1	S	600	16	OUT	432	31	STL	604	46	STL	607	61	STL	610
2	OUT	671	17	OUT	450	32	OUT	433	47	OUT	434	62	LD	456
3	K	601	18	K	30	33	LD	452	48	OUT	455	63	S	600
4	OUT	672	19	LD	450	34	S	605	49	K	0.5	64	RET	
5	K	610	20	S	602	35	STL	605	50	LD	455	65	LD	71
6	OUT	670	21	STL	602	36	OUT	434	51	AND	460	66	OR	433
7	K	103	22	OUT	431	37	OUT	453	52	S	606	67	RST	460
8	STL	600	23	OUT	451	38	K	15	53	LD	455	68	K	5
9	OUT	432	24	K	10	39	LD	453	54	ANI	460	69	LD	434
10	OUT	433	25	LD	451	40	S	606	55	S	610	70	OUT	460
11	LD	400	26	S	603	41	STL	606	56	STL	610	71	END	
12	OR	401	27	STL	603	42	OUT	454	57	OUT	433			
13	S	601	28	OUT	430	43	K	0.5	58	OUT	456			
14	S	604	29	OUT	452	44	LD	454	59	K	5			

4 課題

今回の実験を通して、リレーラダー方式とステップラダー方式の違いについて考えてみた.

ステップラダー方式は状態遷移図をもとにプログラムを作成するので、一連の動作があるわけではない、状態ごとに入力と動作があるプログラムに適している。今回の実験で作成した二つのプログラムはどちらもこれである。実際に、クイズの解答システムをステップラダー方式で設計してみると、リレーラダー方式で設計するよりも簡単にできる。

逆に信号機のプログラムをリレーラダー方式で設計すると、とても手間がかかる.これは、状態の概念をリレーラダー方式で管理すると、それぞれの状態に対応するフラグ出力を用意して、全ての入力に対してそのフラグと論理積を取って回路を組む必要があるからである.

5 感想

今回のレポート作成において、表 2、4 などのコーディングがとても手間がかかった。 LATEX の表作成はそもそも手間がかかるが、今回のコーディングに関しては行番号があるので、自動でインデクシングをしてくれる方法などがあればいいなと思った。

参考文献

1. 令和元年度電子制御工学実験・3年後期テキスト