Memory & Learning

SPICE 2024

Neuroscience & Computational Psychiatry Module Class VI

Center for Computational Psychiatry

8th of July 2024

Memory

1. As types

- Explicit memory
- Implicit memory

2. As stages

- Sensory memory
- Short-term memory
- Long-term memory

3. As processes

- Encoding
- Storage
- Retrieval

Memory as types: explicit & implicit memory

Memory as stages

Memory as processes

The hippocampus

- In the middle of the brain: medial temporal lobe
- Consolidates memories
- Important for navigation

 Damage to the hippocampus leads to trouble forming new memories and to navigate

Images: Wikipedia

The hippocampus – place cells

Place cells: Cells that help determine spatial location and allow navigation from one place to another.

Grid cells:

Neurons within the entorhinal cortex, fire at regular intervals when navigating an open area

Hippocampus

Encoding of New Memories

Memory Consolidation

Role of **Replay** in Consolidation

- Sharp-wave ripples
- Synchronization with neocortex
- Strengthening synaptic connections

Learning

Images: Structual Learning; Wikimedia

Rescola-Wagner Model

$$\Delta V = lpha eta(\lambda - V)$$

Prediction Error or PE

- ΔV : Change in associative strength.
- α : Learning rate for the CS (bell).
- β : Learning rate for the US (food).
- λ : Maximum associative strength (actual strength of the US).
- V: Current associative strength (prediction of the US by the CS).

Dopaminergic prediction errors (PEs)

- Prediction error: $\lambda V = 1 0.2 = 0.8$.
- Change in associative strength: $\Delta V = 0.5 imes 0.5 imes 0.8 = 0.2$.

Image: Suri, 2022

Model-based and model-free reinforcement learning (RL)

Model-Free Reinforcement Learning: Relies on updating values based on prediction errors without a cognitive map of the environment.

Prediction Errors: Differences between expected and received outcomes.

- Value Functions: Representation of the expected reward of actions or states.
- Habit Formation: Behavior becomes automatic with repeated actions.

Important Brain Areas:

- Dorsal Striatum: Involved in habit formation and procedural learning.
- Dopaminergic System: Ventral tegmental area (VTA) and substantia nigra for reward prediction.

Model-Based Reinforcement Learning: Involves building a cognitive map of the environment and planning based on anticipated future states.

- Cognitive Map: Internal representation of the environment and relationships between states.
- Planning: Evaluating possible future actions and outcomes before making decisions.
- Flexible Adaptation: Ability to adjust behavior based on new information and changing circumstances.

Important Brain Areas:

- Prefrontal Cortex (PFC): Dorsolateral PFC for planning and decision-making.
- Hippocampus: Spatial navigation and memory formation.
- Anterior Cingulate Cortex (ACC): Monitoring outcomes and adjusting behavior.

Thank you!

Any Questions?

Thank you!

Any Questions?

Next Class:

Tuesday the 9th of July 9:30am-10:30am

Characterizing a psychiatric symptom dimension related to deficits in goal-directed control

Claire M Gillan , Michal Kosinski, Robert Whelan, Elizabeth A Phelps, Nathaniel D Daw

New York University, United States; University of Cambridge, United Kingdom; Stanford University, United States; University College Dublin, Ireland; Nathan Kline Institute, United States; Princeton University, United States