第十二讲 子空间的交与和

一、子空间的交

二、子空间的和

三、子空间交与和的有关性质

一、子空间的交

1、定义

设 V_1 、 V_2 为线性空间V的子空间,则集合 $V_1 \mid V_2 = \{a \mid a \in V_1 \coprod a \in V_2\}$

也为V的子空间,称之为 V_1 与 V_2 的交空间.

事实上, $Q 0 \in V_1, 0 \in V_2, :: 0 \in V_1 \mid V_2 \neq \emptyset$ 任取 $\alpha, \beta \in V_1 \mid V_2$,即 $\alpha, \beta \in V_1, \mathbb{L}\alpha, \beta \in V_2$, 则有 $\alpha + \beta \in V_1, \alpha + \beta \in V_2, :: \alpha + \beta \in V_1 \mid V_2$ 同时有 $k\alpha \in V_1, k\alpha \in V_2, :: k\alpha \in V_1 \mid V_2, \forall k \in P$ 故 $V_1 \mid V_2$ 为V的子空间. 显然有, $V_1 \Vdash V_2 = V_2 \Vdash V_1$, $(V_1 \Vdash V_2) \Vdash V_3 = V_1 \Vdash (V_2 \Vdash V_3)$

2、推广——多个子空间的交

 V_1,V_2,L,V_s 为线性空间V的子空间,则集合

$$V_1 \, \mathsf{I} \ V_2 \, \mathsf{I} \ \mathsf{L} \ \mathsf{I} \ V_s = \prod_{i=1}^s V_i = \left\{ \alpha \, | \, \alpha \in V_i, i = 1, 2, 3, \mathsf{L} \ , s \right\}$$

也为V的子空间,称为 V_1,V_2,L , V_s 的交空间.

二、子空间的和

1、定义

设V₁、V₂为线性空间V的子空间,则集合

$$V_1 + V_2 = \{a_1 + a_2 \mid a_1 \in V_1, a_2 \in V_2\}$$

也为V的子空间,称之为 V_1 与 V_2 的和空间.

事实上,Q0
$$\in$$
 V_1 , $0 \in$ V_2 , \therefore $0 =$ $0 +$ $0 \in$ $V_1 +$ $V_2 \neq \emptyset$
任取 $\alpha, \beta \in$ $V_1 +$ V_2 , 设 $\alpha = \alpha_1 + \alpha_2, \beta = \beta_1 + \beta_2$,
其中, $\alpha_1, \beta_1 \in$ $V_1, \alpha_2, \beta_2 \in$ V_2 , 则有
 $\alpha + \beta = (\alpha_1 + \alpha_2) + (\beta_1 + \beta_2)$
 $= (\alpha_1 + \beta_1) + (\alpha_2 + \beta_2) \in$ $V_1 +$ V_2
 $k\alpha = k(\alpha_1 + \alpha_2) = k\alpha_1 + k\alpha_2 \in$ $V_1 +$ V_2 , $\forall k \in$ P

显然有,
$$V_1 + V_2 = V_2 + V_1$$
,
$$(V_1 + V_2) + V_3 = V_1 + (V_2 + V_3)$$

2、推广 —— 多个子空间的和

 V_1,V_2,L,V_s 为线性空间V的子空间,则集合

$$\sum_{i=1}^{s} V_{i} = V_{1} + V_{2} + L + V_{s}$$

$$= \{ \alpha_{1} + \alpha_{2} + L + \alpha_{s} \mid \alpha_{i} \in V_{i}, i = 1, 2, 3, L, s \}$$

也为V的子空间,称为 V_1,V_2,L,V_s 的和空间.

注意:

V的两子空间的并集未必为V的子空间。例如

$$V_1 = \{(a,0,0) | a \in R\}, V_2 = \{(0,b,0) | b \in R\}$$

皆为R3的子空间,但是它们的并集

$$V_1 \cup V_2 = \{(a,0,0),(0,b,0) | a,b \in R \}$$

= $\{(a,b,0) | a,b \in R \perp a,b$ 中至少有一是0}

并不是R3的子空间. 因为它对R3的运算不封闭,如

$$(1,0,0), (0,1,0) \in V_1 \cup V_2$$

但是
$$(1,0,0)+(0,1,0)=(1,1,0)\notin V_1$$
 U V_2

三、子空间的交与和的有关性质

- 1、设 V_1,V_2,W 为线性空间V的子空间
- 1) 若 $W \subseteq V_1, W \subseteq V_2$, 则 $W \subseteq V_1 \mid V_2$.
- 2) 若 $V_1 \subseteq W$, $V_2 \subseteq W$, 则 $V_1 + V_2 \subseteq W$.
- 2、设 V_1 , V_2 为线性空间V的子空间,则以下三条件等价:
- 1) $V_1 \subseteq V_2$
- 2) $V_1 \mid V_2 = V_1$
- 3) $V_1 + V_2 = V_2$

3、 α_1,α_2 , L, α_s ; β_1,β_2 , L, β_t 为线性空间V中两组向量,则

$$L(\alpha_1,\alpha_2,L,\alpha_s) + L(\beta_1,\beta_2,L,\beta_t)$$

$$= L(\alpha_1, \alpha_2, L, \alpha_s, \beta_1, \beta_2, L, \beta_t)$$

4、维数公式 (定理7)

设 V_1,V_2 为线性空间V的两个子空间,则

$$\dim V_1 + \dim V_2 = \dim(V_1 + V_2) + \dim(V_1 \mid V_2)$$

或
$$\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \mid V_2)$$

注: 从维数公式中可以看到,子空间的和的维数往往比子空间的维数的和要小.

例如,在R3中,设子空间

$$V_1 = L(\varepsilon_1, \varepsilon_2), \ V_2 = L(\varepsilon_2, \varepsilon_3)$$

其中,
$$\varepsilon_1 = (1,0,0)$$
, $\varepsilon_2 = (0,1,0)$, $\varepsilon_3 = (0,0,1)$

则, $\dim V_1 = 2$, $\dim V_2 = 2$

但,
$$V_1 + V_2 = L(\varepsilon_1, \varepsilon_2) + L(\varepsilon_2, \varepsilon_3) = L(\varepsilon_1, \varepsilon_2, \varepsilon_3) = R^3$$

$$\dim(V_1 + V_2) = 3$$

由此还可得到, $\dim(V_1 \mid V_2) = 1$, $V_1 \mid V_2$ 是一直线.

推论: 设 V_1, V_2 为n维线性空间V的两个子空间,若 $\dim V_1 + \dim V_2 > n$,则 V_1, V_2 必含非零的公共向量. 即 $V_1 \mid V_2$ 中必含有非零向量.

证: 由维数公式有

例1、在 P^n 中,用 W_1,W_2 分别表示齐次线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + L + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + L + a_{2n}x_n = 0 \\ L L L L L L L L L L L \\ a_{s1}x_1 + a_{s2}x_2 + L + a_{sn}x_n = 0 \end{cases}$$

$$\Rightarrow \begin{cases} b_{11}x_1 + b_{12}x_2 + L + b_{1n}x_n = 0 \\ b_{21}x_1 + b_{22}x_2 + L + b_{2n}x_n = 0 \\ L L L L L L L \\ b_{t1}x_1 + b_{t2}x_2 + L + b_{tn}x_n = 0 \end{cases}$$

$$\Rightarrow \begin{cases} b_{11}x_1 + b_{12}x_2 + L + b_{2n}x_n = 0 \\ L L L L L L L L \\ b_{t1}x_1 + b_{t2}x_2 + L + b_{tn}x_n = 0 \end{cases}$$

的解空间,则 $W_1 \parallel W_2$ 就是齐次线性方程组③

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + L + a_{1n}x_n = 0 \\ L L L L L L L L L \\ a_{s1}x_1 + a_{s2}x_2 + L + a_{sn}x_n = 0 \\ b_{11}x_1 + b_{12}x_2 + L + b_{1n}x_n = 0 \\ L L L L L L L \\ b_{t1}x_1 + b_{t2}x_2 + L + b_{tn}x_n = 0 \end{cases}$$

$$(3)$$

的解空间.

证: 设方程组①,②,③分别为

$$AX = 0,$$
 $BX = 0,$ $\begin{pmatrix} A \\ B \end{pmatrix} X = 0$

设W为③的解空间,任取 $X_0 \in W$,有

$$\binom{A}{B}X_0=0$$
, 从而 $\binom{AX_0}{BX_0}=0$, 即

$$AX_0 = BX_0 = 0$$
. $\therefore X_0 \in W_1 \mid W_2$

反之,任取, $X_0 \in W_1 \mid W_2$,则有

$$AX_0 = BX_0 = 0$$
, $\lim_{A \to \infty} \begin{pmatrix} AX_0 \\ BX_0 \end{pmatrix} = \begin{pmatrix} A \\ B \end{pmatrix} X_0 = 0$,

$$X_0 \in W$$

故
$$W = W_1 \mid W_2$$
.

例2、在 P^4 中,设

$$\alpha_1 = (1,2,1,0), \quad \alpha_2 = (-1,1,1,1)$$

$$\beta_1 = (2,-1,0,1), \quad \beta_2 = (1,-1,3,7)$$

- 1) 求 $L(\alpha_1,\alpha_2)$ L (β_1,β_2) 的维数的与一组基;
- 2) 求 $L(\alpha_1,\alpha_2)+L(\beta_1,\beta_2)$ 的维数的与一组基.

解: 1) 任取
$$\gamma \in L(\alpha_1,\alpha_2)$$
 $L(\beta_1,\beta_2)$

设
$$\gamma = x_1 \alpha_1 + x_2 \alpha_2 = y_1 \beta_1 + y_2 \beta_2$$
,

则有
$$x_1\alpha_1 + x_2\alpha_2 - y_1\beta_1 - y_2\beta_2 = 0$$
,

$$\begin{cases} x_1 - x_2 - 2y_1 - y_2 = 0 \\ 2x_1 + x_2 + y_1 + y_2 = 0 \\ x_1 + x_2 - 3y_2 = 0 \\ x_1 - y_1 - 7y_2 = 0 \end{cases}$$

$$\left\{ egin{aligned} x_1 &= -t \\ x_2 &= 4t \\ y_1 &= -3t \\ y_2 &= t \end{aligned}
ight. \qquad (t 为任意数)$$

$$\therefore \quad \gamma = t(-\alpha_1 + 4\alpha_2) = t(\beta_2 - 3\beta_1)$$

令t=1,则得 $L(\alpha_1,\alpha_2)$ $L(\beta_1,\beta_2)$ 的一组基

$$\gamma = -\alpha_1 + 4\alpha_2 = (-5, 2, 3, 4)$$

$$\therefore L(\alpha_1,\alpha_2) \mid L(\beta_1,\beta_2) = L(\gamma)$$
 为一维的.

2)
$$L(\alpha_1,\alpha_2) + L(\beta_1,\beta_2) = L(\alpha_1,\alpha_2,\beta_1,\beta_2)$$

对以 $\alpha_1,\alpha_2,\beta_1,\beta_2$ 为列向量的矩阵A作初等行变换

$$A = \begin{pmatrix} 1 & -1 & 2 & 1 \\ 2 & 1 & -1 & -1 \\ 1 & 1 & 0 & 3 \\ 0 & 1 & 1 & 7 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 3 & -5 & -3 \\ 0 & 2 & -2 & 2 \\ 0 & 1 & 1 & 7 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & -2 & -6 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & 6 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} = B$$

由B知, $\alpha_1,\alpha_2,\beta_1$ 为 $\alpha_1,\alpha_2,\beta_1,\beta_2$ 的一个极大无关组.

$$\therefore L(\alpha_1,\alpha_2) + L(\beta_1,\beta_2) = L(\alpha_1,\alpha_2,\beta_1)$$
为3维的,

$$\alpha_1,\alpha_2,\beta_1$$
 为其一组基.