Consideraciones sobre los objetos

Importancia

- ¿Cómo decide qué componentes son necesarios para algo que va a crear, como una casa o un mueble?
- ¿Qué es una taxonomía?
- ¿Cómo se relacionan los organismos de una taxonomía?
- ¿Cuál es la diferencia entre atributos y valores?

Análisis de un problema mediante el análisis orientado a objetos

Duke's Choice vende ropa de su catálogo. El negocio crece un 30% al año y es necesario un nuevo sistema de introducción de pedidos.

Proceso de pedido de Duke's Choice

dacion@proydesa.org) has a

Identificación de un dominio de problemas

- Un dominio de problemas es el ámbito del problema que va a solucionar.
- Ejemplo: "crear un sistema que permita el método de introducción de pedidos en línea para aceptar y verificar el pago de un pedido".

Identificación de objetos

- Los objetos pueden ser físicos o conceptuales.
- Los objetos tienen atributos (características) como el tamaño, el nombre, la forma, etc.
- Los objetos tienen operaciones (cosas que pueden hacer) como la definición de un valor, la visualización de una pantalla o el aumento de la velocidad.

Identificación de objetos

Criterios adicionales para reconocer objetos

- Importancia del dominio de problemas:
 - ¿Existe el objeto en los límites del dominio de problemas?
 - ¿Es necesario el objeto para que se termine la solución?
 - ¿Es necesario el objeto como parte de una interacción entre un usuario y el sistema?
- Existencia independiente

Posibles objetos en el caso práctico de Duke's Choice

Identificación de atributos y operaciones de objetos

- Los atributos son datos, como:
 - ID
 - Objeto de pedido
- Las operaciones son acciones, como:
 - Suprimir elemento
 - Cambiar ID

Objeto con otro objeto como atributo

Posibles atributos y operaciones para objetos en el caso práctico de Duke's Choice

Shirt

add shirt to order

submit the order

remove shirt from order

shirt ID

description

price

Solución del caso práctico: Clases

Clase	Order	Shirt	Customer	Form of	Catalog	CSR
				Payment		

Solución del caso práctico: Atributos

Clase	Order	Shirt	Customer
Atributos	order ID date *Shirt(s) total price *Form of payment *CSR status	shirt ID price description size color code	customer ID name address phone number email address *Order

Solución del caso práctico: Atributos

Clase	Form of Payment	Catalog	CSR
Atributos	customer ID name address phone number email address *Order	*Shirt(s)	name extension

Solución del caso práctico: Comportamientos

Clase	Order	Shirt	Customer
Atributos	customer ID name address phone number email address *Order	*Shirt(s)	name extension
Comporta- mientos	verify credit card number verify check payment	add a shirt remove a shirt	process order

Solución del caso práctico: Comportamientos

Clase	Form of Payment	Catalog	CSR
Atributos	customer ID name address phone number email address *Order	*Shirt(s)	name extension
Comporta- mientos	verify credit card number verify check payment	add a shirt remove a shirt	process order

Diseño de clases

Clases y objetos resultantes

Shirt

shirtID price description size colorCode R=Red, B=Blue, G=Green

calculateShirt ID () displayShirtInformation()

> Clase Shirt

Modelado de clases

Sintaxis:

```
ClassName
attributeVariableName [range of values]
attributeVariableName [range of values]
attributeVariableName [range of values]
methodName()
methodName()
methodName()
```

Modelado de clases

Ejemplo:

```
Shirt
shirtID
price
description
size
colorCode R=Red, B=Blue, G=Green
                     tacion@proydesa. Guide.
calculateShirtID()
displayInformation()
```

Uso del modelado similar a UML

UML: Unified Modeling Language

- UML se utiliza para:
 - Modelar los objetos, los atributos, las operaciones y las relaciones en programas orientados a objetos.
 - Modelar el comportamiento dinámico del sistema mostrando colaboraciones entre objetos y cambios en los estados internos de objetos.
- Hay muchos cursos disponibles que enseñan UML. Jacion@proydesa.org) has a lacion@proydesa. Guide.