서울공업고등학교	WORKBOOK	학년 반 번호
전기전자과	유도전동기	성명
	원리와 구조	0 0

유도전동기 원리

- (1) 아라고 원판 동작 순서
- ① 자석이 이동한다.
- ② 플레밍의 오른손 법칙에 의해 유기기전력 발생
- ③ 플레밍의 왼손 법칙에 의해 자속이 발생.
- ④ 전류가 발생한다.
- ⑤ 자속의 이동방향으로 회전한다.
- (2) 플레밍 오른손 법칙
- ① 엄지(F):
- ② 검지(B):
- ③ 중지(I):
- (3) 플레밍 왼손법칙
- ① 엄지(F):
- ② 검지(B):
- ③ 중지(I):

유도전동기 구조

- (1) 고정자 : 고정자 프레임 + 고정자 철심
- (2) 회전자
- ① 농형 회전자
- 구조 간단, 내구성 우수
- 큰 기동전류가 흐름 → 공급전원에 나쁜 영향
- 속도제어가 어려움

- ② 권선형 회전자
- 구조가 복잡하다.
- 농형과 달리 2차 저항 가변 가능 → 속도조정 용이
- 기동 전류를 줄여서 기동이 쉬움

유도 전동기의 속도와 슬립

- (1) 동기속도
- ① 회전 자계의 속도, 고정자 속도
- $② \ N_s = \frac{120f}{P}[rpm]$

f:

P:

(2) 회전속도와 상대속도

① _____ : 회전자의 회전속도 (N)

② _____ : 동기속도와 회전속도의 차 $(N_s - N)$

- (3) 슬립(slip)
- ① 동기속도와 회전속도의 차를 비율로 나눈 것
- ② 슬립

_

- (4) 유도전동기의 회전속도
- $\widehat{1}$ N =
- ② 전동기 정지 상태 :
 - 전동기 동기속도로 회전 :
 - 유도전동기 슬립 범위 :
- ③ 입력, 출력, 손실 간 비율

입력 : 출력 : 손실

 N_s : N : sN_s

1 : 1-s : s

유도 전동기의 유기기전력 (정지시-회전시 관계)

① 회전자 정지 시

$$E_1 = 4.44kw_1f_1N_1\Phi_1$$

$$E_2 = 4.44 k w_2 f_2 N_2 \Phi_2$$

$$f_1 = f_2$$

$$\Phi_1 = \Phi_2$$

$$a = \frac{E_1}{E_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1}$$

② 회전자 회전 시

$$E_1 = 4.44kw_1f_1N_1\Phi_1$$

$$E_{2s} = 4.44kw_2 s f_2 N_2 \Phi_2 = s E_2$$

③ 정지 시 – 회전 시 관계

주파수	정지시	
	회전시	
기전력	정지시	
	회전시	
مارات ،	정지시	
리액턴스	회전시	
권수비 (변압기)	정지시	
	회전시	

유도 전동기의 손실과 효율

- (1) 전력 변환도
- ① 1차 입력(=고정자입력)

$$P_1 = V_1 I_1 \cos \theta_1 [W]$$

② 1차 동손(=고정자 동손)

$$P_{c1} = I_1^2 r_1 [W]$$

③ 2차 입력(=회전자 입력, 공극출력)

$$P_2 = P_{c2} + P_k = E_2 I_2 \cos \theta_2 [W]$$

④ 2차 동손(=회전자 동손)

$$P_{c2} = I_2^2 r_2 = s P_2 [W]$$

⑤ 유효출력

$$P_o =$$

(기계적 출력 P_k , 기계적 손실 P_{ml} 은 무시한다.)

유도 전동기의 손실과 효율

⑥ 2차 효율

$$\eta_2 =$$

⑦ 2차 입력: 2차 동손: 2차 효율

유도 전동기의 등가회로와 회전자 전류

(1) 회전자 전류(2차 전류)

① 정지시 : $I_2 = \frac{E_2}{r_2 + jx_2}[A]$

- ② 회전시 : $I_{2}^{'}=\frac{E_{2}^{'}}{r_{2}+jx_{2}^{'}}=\frac{sE_{2}}{r_{2}+jsx_{2}}=\frac{E_{2}}{\dfrac{r_{2}}{s}+jx_{2}}$ $=\dfrac{E_{2}}{r_{2}+jx_{2}+\dfrac{r_{2}}{s}-r_{2}}$
- (2) 등가 부하저항 : $R = \frac{r_2}{s} r_2 = \frac{r_2(1-s)}{s}$
- (3) 2차 역률 : $\cos\theta_2 = \frac{r_2}{\sqrt{{r_2}^2 + (sx_2)^2}}$

유도 전동기의 토크 및 효율

(1) 토크

 $\tau =$

(2) 전체효율

 $\eta =$

(3) 2차 효율

 $\eta_2 =$