This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

F-009

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出關公開番号

特開平6-53049 (43)公開日 平成6年(1994) 2月25日

審査請求 未請求 請求項の数2(全 5 頁)

(71)出廣人 000006264 (21)出版番号 特勝平4-219725 三菱マテリアル株式会社 (22) 出顧日 平成4年(1992)7月27日 東京都千代田区大手町1丁目5番1号 (72) 発明者 内田 彰 新潟県南魚沼郡大和町浦佐972番地 三菱 マテリアル株式会社セラミックス研究所補 佐分宮内 (72) 発明者 小島 靖 新潟県南魚州郡大和町浦佐972番地 三菱 マテリアル株式会社セラミックス研究所請 佐分宝内 (74)代理人 弁理士 須田 正義 品終官に続く

(54) 【発明の名称】 チップ型LCフィルタ

(57) 【要約】

【目的】 高周波ノイスを吸収しπ型のLC機能を発揮 することができ、小型で一体化して高密度の表面実装を 可能にする。

- 10 第1 諸尾体シート (第1 セラミックグリーンシート) 11 第1 内部運体
- 11 20 1730000
- 12 第2內部導体
- 15 蛇行導体
- 20 第2課電体シート(第2セラミックグリーンシート)
- 21 第 1 接地導体
- 22 第2接地導体
- 23.24 電気的に競器される間隔
- 30 第3 誘電体シート (第3 ヤラミックグリーンシート)
- 51 第1信号用電極
- 52 第2個号用電磁

【特許請求の範囲】

1 【請求項1】 方形状の第1誘電体シート(10)と前配シ ート(10)と同形同大の第2誘電体シート(20)とを積層し て一体化された積層体(40)を含み、

前記第1誘電体シート(10)は、一対の辺に電気的にそれ ぞれ接続され前記一対の辺とは別の一対の辺に電気的に それぞれ絶縁される間隔(13,14)を有する第1及び第2 内部導体(11.12)と、前配第1及び第2内部導体(11.12) の間に配置され前配第1及び第2内部導体(11,12)に電 気的にそれぞれ接続されかつ前配別の一対の辺とは電気 10 的にそれぞれ絶縁される間隔(13.14)を有する蛇行状に 形成された蛇行導体(15)とをシート表面にそれぞれ備

前記第2 誘電体シート(20)は、前記第1 誘電体シート(1 0) の第1及び第2内部導体(11,12) が電気的に接続され る一対の辺に対応する一対の辺に電気的にそれぞれ絶縁 される間隔(23,24)を有しかつ別の一対の辺とは電気的 にそれぞれ接続される第1及び第2接地導体(21,22)を シート方面に備え、

前記第1誘電体シート(10)の蛇行導体(15)は、高周波ノ イズに対しインダクタンス成分となるように構成され、 前記第2誘電体シート(20)を介して前配第1及び第2内 部導体(11,12)と前記第1及び第2接地導体(21,22)との 間でキャパシタンスを形成するように構成され、

前記積層体(40)の側面に露出した前記第1及び第2内部 導体(11,12)にそれぞれ接続する第1及び第2信号用電 復(51,52)がこの側面に形成され、

前記積層体(40)の別の側面に露出した前記第1及び第2 接地導体(21,22)にそれぞれ接続する接地用電極(61,62) がこの側面に形成されたことを特徴とするチップ型LC 30 フィルタ.

【糖求項2】 箱層体(40)はその最上層にシート表面に 導体の形成されない第3誘電体シート(30)が積層して一 体化された請求項1記載のチップ型LCフィルタ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、信号輸路における高周 波ノイズを吸収するに適したチップ型LCフィルタに関 する。更に詳しくはπ型LCフィルタに関するものであ

[0002]

【従来の技術】コンピュータ等のデジタル機器では、高 層波のノイズが凝入すると麒動作を生じ易く、しかも他 の電子機器等に障害をもたらす恐れのある不要な電磁波 を配線から放射する問題点がある。このため、信号線路 には高周波ノイズを除去するノイズフィルタが用いられ ている。ノイズフィルタにはLCフィルタが用いられて いる。このLCフィルタの電子部品はそれぞれ信号線路 毎に設けられ、コンデンサ素子とインダクタ素子とを粗 合わせたLCフィルタが使用されている。

【0003】コンデンサ素子とインダクタ素子とを組合 わせたLCフィルタとしては、図10に示すような三端 子型のコンデンサ5が使用されている。この三端子型の コンデンサ5は、ディスク状の誘電体6の両面に電極1 (反対側は図示せず) が形成され、両電極の間でキャバ シタンスが形成されるようになっている。 電極1はU字 状のリード線2に電気的に接続され、更にフェライトビ ーズ4を介して外部電極と接続される。また、図示しな い電極には接地用のリード線3が接続される。この三幅 子型のコンデンサ5の等価回路は図11のように表わさ れる。また、これ以外にチップコンデンサ等のチップ部 品とインダクタ素子とを組合わせて作られるLCフィル タがある.

[0004]

【発明が解決しようとする課題】三端子型のコンデンサ のような従来のLCフィルタは、リード線やフェライト ビーズが勝電体から突出するため、基板に高密度に実装 しにくく、結果として機器を小型化することができな い。このため、表面実装技術に対応でき、かつ広い部品 スペースを必要としないLCフィルタの開発が望まれて いた。また、二端子チップ部品とインダクタ業子を組合 わせて作られるLCフィルタでは、信号周波数の高速化 に伴いチップコンデンサの接地側の残留インダクタンス により共振し、高周波ノイズを除去することができない 問題点があった。

【0005】本発明の目的は、高周波ノイズを除去する ことができ、かつ基板に表面実装するときに広い部品ス ベースを必要としないチップ型LCフィルタを提供する ことにある。本発明の別の目的は、高速の信号周波数下 においても、高周波ノイズを除去することができるチッ プ型LCフィルタを提供することにある。

[0006]

【護服を解決するための手段】上配目的を達成するため の本発明の構成を図1~図4に基づいて説明する。な お、図1及び図3は説明を容易にするためにセラミック シート部分を厚さ方向に拡大して示している。本発明の 1. Cフィルタは、方形状の第1誘電体シート10とこの シート10と同形同大の第2誘電体シート20とを積層 して一体化された積層体40を含む。第1誘電体シート 10は、一対の辺に電気的にそれぞれ接続され一対の辺 とは別の一対の辺に電気的にそれぞれ絶縁される間隔 1 3, 14を有する第1及び第2内部導体11, 12と、 第1及び第2内部導体11,12の間に配置されこの第 1及び第2内部準体に電気的にそれぞれ接続されかつ別 の一対の辺とは電気的にそれぞれ絶縁される間隔13. 14を有する蛇行状に形成された蛇行導体15とをシー ト表面にそれぞれ備える。また、第2個電体シート20 は、第1誘電体シート10の第1及び第2内部導体1 1. 12が電気的に接続される一対の辺に対応する一対 50 の辺に電気的にそれぞれ絶縁される間隔23,24を有 しかつ別の一対の辺とは電気的にそれぞれ接続される第 1及び第2接地導体21、22をシート表面に備える。 また、第1誘電体シート10の第1及び第2内部導体1 1. 12は、高周波ノイズに対しインダクタンス成分と なるように構成され、また第2個電体シート20を介し て第1及び第2内部導体11,12と第1及び第2接地 導体21、22との間でキャパシタンスを形成するよう に構成される。更に、積層体40の側面に露出した第1 及び第2内部導体11,12にそれぞれ接続する第1及 層体40の別の側面に戯出した第1及び第2接地導体2 1. 22にそれぞれ接続する接地用電極61,62がこ の側面に形成される。なお、本発明のチップ型LCフィ ルタの等価回路は図9 (a) 又は図9 (b) のように表 わすことができる。

[0007]

【作用】第1誘電体シート10と第2誘電体シート20 との間の蛇行導体15は高周波信号が流れると、インダ クタとして機能する。これは蛇行導体15が蛇行してい シート20を介して第1誘電体シート10上の第1及び 第2内部導体11、12と第2誘電体シート20上の第 1及び第2接地導体21、22との間でキャパシタンス が形成されるため、通電状盤にある第1及び第2内部導 体11、12と第1及び第2接地導体21、22との間 に電位差が生じ、コンデンサとして機能し高周波ノイズ は吸収される。

[0008] 【実施例】 次に本発明の実施例を説明する。本発明はこ Cフィルタを図1~図4に基づいて説明する。先ず、誘 微体グリーンシートを3枚用重した。この誘電体グリー ンシートはポリエステルペースシートの上面に何えばチ タン酸パリウム系のJIS-R特性を有する誘電体スラ リーをドクタープレード法によりコーティングした後、 乾燥して形成される。それぞれ1枚ずつを第1セラミッ クグリーンシート、第2セラミックグリーンシート、及 び第3セラミックグリーンシートとした。

【0009】次いで第1セラミックグリーンシートと第 2セラミックグリーンシートの各表面にそれぞれ別々の 40 パターンでPdを主成分とする導電性ペーストをスクリ ーン印刷し、80℃で4分間乾燥した。即ち、図2に示 すように第1セラミックグリーンシート10には、一対 の辺に電気的にそれぞれ接続され一対の辺とは別の一対 の辺に戦気的にそれぞれ絶縁される間隔13,14を有 する第1及び第2内部導体11、12と、第1及び第2 内部導体11,12の間に配置されこの第1及び第2内 部導体に電気的にそれぞれ接続されかつ別の一対の辺と は電気的にそれぞれ絶縁される間隔13、14を存する 蛇行状に形成された蛇行導体15とが印刷形成される。

また、第2セラミックグリーンシート20には、第1誘 電体シート10の第1及び第2内部導体11,12が電 気的に接続される一対の辺に対応する一対の辺に電気的 にそれぞれ絶縁される間隔23、24を有しかつ別の一 対の辺とは電気的にそれぞれ接続される第1及び第2接 地導体21,22が印刷形成される。

【0010】スクリーン印刷した第1及び第2セラミッ クグリーンシート10,20の2枚のシートをこの順に 積層し、更に最上層には導電性ペーストを全く印刷して び第2信号用電極51、52がこの側面に形成され、積 10 いない第3セラミックグリーンシート30を重ね合わせ た。図3に示される積層体40を熱圧着して一体化した 後、1300℃で約1時間焼成して焼結体を得た。図3 に示すようにこの焼結体をパレル研磨して焼結体の周囲 側面に第1内部導体11、第2内部導体12(図3では 図示せず)、第1接地導体21及び第2接地導体22を 健出させた。

[0011]次に図4に示すように焼結体の周囲側面の 内部導体11,12と第1及び第2接地導体21,22 が露出した部分にAgを主成分とする導電性ペーストを るため幕体としての距離が長いことによる。第2誘電体 20 それぞれ塗布し、焼付けてそれぞれ信号用電板51,5 2及び接地用電極61,62を形成した。これにより第 1内部導体11が第1信号用電極51に、第2内部導体 12が第2信号用電艦52に、第1接地導体21が第1 接地用電極61に及び第2接地導体22が第2接地用電 概62にそれぞれ電気的に接続されたチップ型LCフィ ルタが得られた。なお、図5に示すように第1及び第2 接地用電腦を電気的に接続して一つの接地用電極63と する構造、関6に示すように第1及び第2接地用電板で 焼結体の各面を覆う構造、及び図7に示すように図6の の実施例に限られるものではない。実施例のチツブ型し 30 第1及び第2接地用電極を電気的に接続して一つの接地 用電板68とする構造でもよい。

【0012】 このチップ型LCフィルタの特性を調べる ために、別途用意した導体配線基板上にはんだを用いて このチップ型LCフィルタを実装した。信号用電極5 1、52は信号線路にはんだ付けされる。また、接地用 電極61、62は外部線路を介して接地される。

【0013】この状態で信号線路の一端から高周波信号 を入力し、その他端で出力信号を設定し、挿入損失を求 めた。その結果、周波数が高くなるに従って、急峻に挿 入損失が大きくなり、 図8に示すように本発明のチップ 型LCフィルタは良好なフィルタ特性を有することが判

[0014] なお、実施例では、第1、第2セラミック グリーンシートをそれぞれ1枚ずつ積層したが、本発明 の第1セラミックグリーンシートと第2セラミックグリ ーンシートの積層数はこれに限るものではない。この積 **層敷を適宜増加させることにより、内部導体と接地導体** で形成されるキャパシタンスと蛇行導体で形成されるイ ンダクタンスが変化して挿入担失を変化させることがで 50 きる。例えば第1セラミックグリーンシートと第2セラ ミックグリーンシートとの合析何数を勿散としたり、或 いはインダクタンスとキャパシクンスの顕整のために又 は許容徴法量の顕整のために同・シートを連載して複数 を積隠してもよい。また、蛇戸塚水の蛇行した各々の導 体の幅又は曲率等の形状を変化させることにより、イン ダクタンスが変化して挿入類及を変化させることができ る。また、内部導体の戦極面の面積を変化させることに より、LCフィルシの破壊等がなく、許容物流減を変化 させることができる。更に、泉上屋の前3時後年シート が1枚の例を示したが、複数枚積度してもよい。また第 10 2 誘電体シート上上別の保護手段を設ける場合には、第 3務権なデート上比別の保護手段を設ける場合には、第 3務権なデートは終け機量しなそりもよい。また第

[0015]

「発明の効果」以上述べたように、本規則によれば、信 り伝達のために用いられる第1 前標体シートの第1 及び 第2 内部場体の間にインダクタンス成分を有する蛇行導 体が配配され、この第1 及び第2 内部場体と第1 及び第 2 接地機体との間で3 つのキャインタンスが成功を計 後にキャインタンスが成分を有する下窓間路を具着したチ カップ型してフィルタが得られる。また、接地側の風が デオることにより、従来のリード報付きしてフィルタと 比較して、高周弦ノイズ吸収性能が優れ、小型で一体化 した表現実姿が可能なテップ型してフィルタが得られる。

【図面の簡単な説明】

【図1】本発明実施例のチップ型LCフィルタの図4の A-A級断面図。

- 【図2】その積層体の積層前の斜視図。
- 【図3】その積層体を焼成した焼結体の斜視図。
- 【図4】その焼結体の周囲に外部電極を設けて作製され

たチップ型LCフィルタの斜視図。

【図 5】その焼結体の周囲に別の接地用外部電極を設け て作製されたチップ型LCフィルタの斜視図。

【図6】その焼結体の周囲にもう一つ別の接地用外部電 極を設けて作製されたチップ型LCフィルタの斜視図。 【図7】その焼結体の周囲に更にもう一つ別の接地用外 部電棚を設けて作製されたチップ型LCフィルタの斜視

- 【図 8】 L C フィルタの特性図
- 【図9】本発明のチップ型LCフィルタの等価回路図。
- 【図10】従来例のLCフィルタの構成図。
- 【図11】その等価回路図。
- 【符号の説明】 10 第1誘電体シート(第1セラミックグリーンシー
- ト) 11 第1内部導体
- 12 第2内部導体
- 13,14 電気的に絶縁される開照
- 15 蛇行導体
- 20 第2誘電体シート (第2セラミックグリーンシー
- F)
- 21 第1接地導体
- 22 第2接地導体
- 23,24 電気的に絶縁される間隔
- 30 第356億休シート (第3セラミックグリーンシート)
- 4.0 積層体
- 51 第1信号用電極
- 52 第2併号用電極 61,66 第1接地用電極
- 62.67 第2接地用電極
 - 63.68 接地用電板

フロントページの続き

(72)発明者 関 達雄 新潟県積魚和郡大和町浦佐972番地 三菱 マテリアル株式会社セラミックス研究所浦 佐分室内 (72)発明者 山田 津樹 新嶺県南魚田郡大和町池佐972番地 三菱 マテリアル株式会社セラミックス研究所徳 佐分宝内