

INFORMS 2016: Business Analytics and Text Mining - Control Number 5228

Extracting Signals from Social Media Text with Natural Language Processing, Machine Learning and Domain Adaptation

Wenli Zhang, Sudha Ram

INSITE: Center for Business Intelligence and Analytics, Eller College of Management, University of Arizona

https://www.insiteua.org/

{wenlizhang, sram}@email.arizona.edu

An extension of our previous work in Zhang, W., Ram, S. WITS 2015.

Background

- Methodology
 - Text preprocessing
 - Feature extraction
 - Feature reduction
 - Feature generation
- Classification
- Domain Adaptation
- Experiments & results
- Implications & contributions

- Social media are widely used
- Using social media data for predictive analytics
 - Disease surveillance
 - Targeted marketing
 - Political campaigns
- Great potential for revealing latent population characteristics

Accuracy of These Systems

- Commonly used techniques:
 - Keyword matching
 - Linear regression
- Many of the predictions and analyses produced misrepresent the real world.

- •Flu surveillance
 - Not been correlated with CDC infection data in recent seasons
- Google's flu-tracking service
 - Wildly overestimated

Noise from Social Media Data (1)

Bias machine learning techniques toward misclassification of text

(A) loosely structured informal language:

Misspellings / abbreviations / urban slangs / emoticons

Noise from Social Media Data (2)

Overestimate population characteristics

(B) Anomalous media spikes:

- Retweet asthma news stories
- Do not necessarily reflect actual disease affliction

(C) Use of misleading terms and phrases:

 Tweets indicating awareness of disease; clearly about the disease but not about an infection.

Research Objective

- Effective methodology to extract signal from social media text
- Clearly distinguish relevant text on a specific topic
 - Accurate
 - Timely
 - Economical

- Background
- Methodology
 - Text preprocessing
 - Feature extraction
 - Feature reduction
 - Feature generation
- Classification
- Domain Adaptation
- Experiments & results
- Implications & contributions

Methodology for Signal Extraction from Social Media Text

Feature Vector

	dance	so	hard	i	get	an	asthma	attack	just	hope	will	not	tonight
tweet1	1	1	1	1	1	1	1	1					
tweet2				1	1		1	1	1	1	1	1	1

• Directly determines how successful the signals could be extracted from social media text.

- Background
- Methodology
 - Text preprocessing
 - Feature extraction
 - Feature reduction
 - Feature generation
- Classification
- Domain Adaptation
- Experiments & results
- Implications & contributions

- **Tokenize:** e.g., Hewlett-Packard / San Francisco
- **Change case**: lowercase.
- Additional white spaces: multiple whitespaces → single whitespace

Preprocess (2)

- Repeated letters: Any letter
 occurring more than two times in
 a row is replaced with two
 occurrences: haaaaappy →
 haappy.
- **Stem word**: Porter's algorithm.

Pre-processing can effectively reduce lexical noise.

	haappy	birthday
tweet1	1	1
tweet2	1	1

Word stem examples:

Rule			Example		
SSES	\rightarrow	SS	caresses	\rightarrow	caress
IES	\rightarrow	1	ponies	\rightarrow	poni
SS	\rightarrow	SS	caress	\rightarrow	caress
S	\rightarrow		cats	\rightarrow	cat

- Background
- Methodology
 - Text preprocessing
 - Feature extraction
 - Feature reduction
 - Feature generation
- Classification
- Domain Adaptation
- Experiments & results
- Implications & contributions

Feature Reductions

<u>DCStarMagazine</u> @DCStarMagazine · 14m
Happy birthday @thegob70! #CowboysNation

Like Us @https://www.facebook.com/d2kfanz fb.me/2iE7MvMin

Original	happy	20	birthday	@thegob70!	#CowboysNation	like	us	http://fb.me/2i E7MvMin
Feature Reduction	happy	NUMBER	birthday	USERNAME	CowboysNation	like	us	URL

- <u>Usernames</u>: equivalence class token (USERNAME) replaced all words that start with the @
- **Numbers**: all the numbers were replaced with the token (NUMBER).
- <u>URLs</u>: equivalence class was used for all URLs, token (URL).

Effect of feature reductions: Shrink the feature set down to 45% of its original size.

Hugely improve the efficiency of machine learning algorithms.

- Background
- Methodology
 - Text preprocessing
 - Feature extraction
 - Feature reduction
 - Feature generation
- Classification
- Domain Adaptation
- Experiments & results
- Implications & contributions

	i	just	hope	will	not	not_get	not_asthma	not_attack	not_tonight
Negation	1	1	1	1	1	1	1	1	1
Bigram	i_just	just_hope	hope_will	will_not	•••	•••	•••	•••	•••

- **Unigram**
- **<u>Bigram</u>**: every sequence of two adjacent elements in a string of tokens
- <u>Negation</u>: Prefix all words between a negation word and a punctuation sign with (NOT).

Feature Generation (2)

Short (length < 10)

Asthma training dataset

Feature Generation (3)

Text: I got an asthma attack.

Part-of-Speech tag:

Tokens	Part-of-speech	Tags
i	List item marker	LS
got	Verb, past tense	VBD
an	Determiner	DT
asthma	Noun, singular or mass	NN
attack	Noun, singular or mass	NN

Feature extracted:

an_DT \ asthma_NN \ attack_NN

Part-of-Speech Tag

- Background
- Methodology
 - Text preprocessing
 - Feature extraction
 - Feature reduction
 - Feature generation
- Classification
- Domain Adaptation
- Experiments & results
- Implications & contributions

Classification: Extracting Signal from Noisy Dataset

- Identifying categories a new observation belongs
- Training set of data

- Background
- Methodology
 - Text preprocessing
 - Feature extraction
 - Feature reduction
 - Feature generation
- Classification
- Domain Adaptation
- Experiments & results
- Implications & contributions

Domain Adaptation by Feature Augmentation

- Domain Adaptation by feature augmentation
 - Take each feature in the original problem and make three versions of it: a general version, a source-specific version and a target-specific version
 - The augmented source data will contain only general and source-specific versions
 - The augmented target data contains general and target-specific versions

$$\Phi^s(\mathbf{x}) = \langle \mathbf{x}, \mathbf{x}, \mathbf{0} \rangle, \quad \Phi^t(\mathbf{x}) = \langle \mathbf{x}, \mathbf{0}, \mathbf{x} \rangle$$

Reference: daumé III, hal. "Frustratingly easy domain adaptation." Arxiv preprint arxiv:0907.1815 (2009).

- Background
- Methodology
 - Text preprocessing
 - Feature extraction
 - Feature reduction
 - Feature generation
- Classification
- Domain Adaptation
- Experiments & results
- Implications & contributions

Experiments and Results

Dataset Description

	# of	Collection	Geographical	# of	Keywords
	tweets	period	area	keywords	examples
Asthma dataset	5,513,368	11/1/2013- 6/30/2014	All over the	18	asthma, inhaler, wheezing
E-cigarette dataset	921,173	5/1/2014- 5/31/2014	word	50	e-cigarette, e- juice, e-vapor

Not used during classifier development

Training Datasets

	# of tweets	Category		# of relevant	# of irrelevant	
Asthma training dataset	4,500	•	asthma relevant asthma irrelevant	814 (18%)	3,686 (82%)	Unbalanced dataset
E-cigarette training dataset	3,149	•	e-cigarette relevant e-cigarette irrelevant	1,396 (44%)	1,753 (56%)	Balanced dataset

Performance of Baseline Method

	26611267	asthma	relevant	asthma irrelevant		
	accuracy	precision	recall	precision	recall	
ANN	0.86	0.67	0.20	0.87	0.98	

ANN: artificial neural network

Classifier Performance Evaluation

# of features		asthma relevant			hma evant	# of features		0	e-cigarette relevant		arette evant
Unigram	a	p	r	p	r	Unigram	a	p	r	p	r
	0.88	0.61	0.63	0.93	0.92		0.88	0.84	0.86	0.90	0.89
	0.89	0.67	0.60	0.92	0.94		0.87	0.82	0.86	0.90	0.87
	0.82	0.44	0.34	0.88	0.91		0.89	0.87	0.86	0.90	0.91
5564	0.86	0.63	0.43	0.91	0.94	4212	0.87	0.82	0.86	0.90	0.87
	0.87	0.62	0.68	0.94	0.92		0.87	0.85	0.82	0.88	0.90
	0.87	0.64	0.47	0.90	0.95		0.89	0.87	0.86	0.90	0.91
	0.87	0.62	0.47	0.90	0.94		0.88	0.86	0.86	0.90	0.90
	(a) Asthma training data set					(b) E-cigarette training data set					
	a: accuracy p: precision "				r: reca	ll					

10 Fold Cross Validation Training data set

Overfitting Analysis

	# of features		_	weets vant	500_tweets irrelevant	
	Unigram	a	р	r	р	r
LinearSVC		0.88	0.67	0.78	0.94	0.90
LogisticRegression		0.88	0.70	0.68	0.92	0.93
MultinomialNB		0.82	0.63	0.32	0.85	0.95
Perceptron	5564	0.87	0.66	0.76	0.94	0.90
DecisionTree		0.78	0.48	0.53	0.88	0.85
Ensemble: ExtraTrees		0.85	0.69	0.47	0.88	0.95
Ensemble: RandomForest		0.85	0.65	0.59	0.90	0.92
a: accur	acy p:	precision	r	: recall		

Training-Asthma Training Dataset; Testing-500 New Tweets

Not used during classifier development Not used in feature generation

Backward Feature Selection

features	classifier	# of features			hma vant		hma evant	classifier	# of features			arette vant		arette evant
			а	р	r	р	r			а	р	r	р	r
	LR		0.88	0.67	0.55	0.92	0.95	ET		0.89	0.86	0.86	0.91	0.90
U + N + L + P	LC	6789	0.87	0.59	0.56	0.92	0.93	NB	4913	0.89	0.87	0.86	0.91	0.91
	LR		0.87	0.63	0.56	0.92	0.94	ET		0.88	0.85	0.86	0.90	0.90
U + N + L	LC	5941	0.87	0.59	0.62	0.92	0.92	NB	4357	0.89	0.87	0.86	0.91	0.91
	LR		0.88	0.64	0.58	0.92	0.94	ET		0.89	0.87	0.87	0.91	0.91
U + N + P	LC	6774	0.87	0.60	0.60	0.92	0.92	NB	4902	0.89	0.87	0.86	0.91	0.91
	LR		0.89	0.69	0.55	0.92	0.95	ET		0.88	0.86	0.85	0.90	0.90
U+L+P	LC	6423	0.87	0.62	0.60	0.92	0.93	NB	4775	0.89	0.87	0.86	0.91	0.91
	LR		0.88	0.65	0.60	0.92	0.94	ET		0.89	0.87	0.86	0.90	0.91
U + N	LC	5938	0.85	0.55	0.56	0.91	0.91	ND	1951	0.02	0.07	0.06	0.21	0.21
	LR		0.88	0.64	0.58	0.92	0.94	ET		0.88	0.86	0.86	0.90	0.90
U + L	LC	5567	0.87	0.61	0.63	0.93	0.92	NB	4215	0.89	0.87	0.86	0.91	0.91
	LR		0.88	0.66	0.58	0.92	0.94	ET		0.89	0.86	0.86	0.90	0.91
U + P	LC	6408	0.87	0.61	0.62	0.93	0.92	NB	4763	0.87	0.90	0.87	0.91	0.91
	LR		0.89	0.69	0.58	0.92	0.95	ET		0.89	0.87	0.85	0.90	0.92
U+B	LC	26497	0.87	0.60	0.60	0.92	0.92	NB	17301	0.90	0.86	0.90	0.93	0.90
	LK		0.87	0.69	0.43	0.90	0.96	EI		0.87	0.85	0.83	0.89	0.90
B	LC	20933	0.87	0.64	0.51	0.91	0.94	NB	13089	0.88	0.84	0.88	0.91	0.89
	LR		0.89	0.67	0.60	0.92	0.94	ET		0.89	0.87	0.85	0.90	0.91
U	LC	5564	0.87	0.61	0.63	0.93	0.92	NB	4212	0.89	0.87	0.86	0.90	0.91
-			hma tra						(b) E-ci					
U: unigram	в: bigram	N: negai		\mathcal{L}	gth of tv	veets	P	II : lexical feati	. ,	_				
IR: LogisticRea		IS: Linear			ExtraTra			VR: Multinor		0				

LR: LogisticRegression a: accuracy p: precision

LS: LinearSVM r: recall

ET: ExtraTrees

NB: MultinomialNB

10 Fold Cross Validation Training datasets

Excluding Terms with Document Frequency Lower than Threshold

	# of features	time (sec.)			thma evant	asthma irrelevant		# of time features (sec.)			e-cigarette relevant		e-cigarette irrelevant	
	Unigram		a	p	r	p	r	Unigram		a	p	r	p	r
min_df: 0%	5564	3.16	0.89	0.67	0.60	0.92	0.94	4212	18.92	0.89	0.87	0.85	0.90	0.91
min_df: 3%	60	0.50	0.85	0.56	0.43	0.89	0.94	54	0.79	0.86	0.85	0.81	0.87	0.90
min_df: 6%	29	0.38	0.86	0.60	0.49	0.90	0.94	23	0.49	0.83	0.84	0.72	0.83	0.91
min_df: 9%	19	0.35	0.86	0.59	0.48	0.90	0.94	16	0.45	0.80	0.79	0.69	0.81	0.87
min_df: 12%	14	0.31	0.84	0.54	0.32	0.88	0.95	11	0.38	0.78	0.76	0.69	0.80	0.85
min_df: 15%	11	0.29	0.84	0.52	0.32	0.88	0.94	9	0.35	0.79	0.76	0.70	0.81	0.85
min_df: 18%	8	0.28	0.85	0.61	0.27	0.87	0.97	7	0.30	0.77	0.76	0.64	0.78	0.86
min_df: 21%	7	0.25	0.85	0.59	0.27	0.87	0.96	6	0.28	0.75	0.70	0.65	0.77	0.81
	(a) Asthma training data set (LogisticRegression) a: accuracy p: precision								(b) E-cigarette training data set (ExtraTrees) r: recall - 10 Fold Cross Validation / Training-data					

33

Ground Truth Based Evaluation: Geo-location Extraction

- 3.10% (171,165 / 5,513,368) of the tweets contained geographic coordinates
- 91.03% (5,019,319 / 5,513,368)
 tweets containing location
 information
- Identify 18.85% (63,093 /517,342)
 tweets as one of 50 US state names

8 months dataset

		After signal extraction	Before signal extraction
Asthma Prevalence 2013	Pearson Correlation	0.692**	0.303*
	N	50	50

^{**.} Correlation is significant at the 0.01 level *. Correlation is significant at the 0.05 level

8 months dataset

Domain Adaptation by Feature Augmentati	O

Category

News (1190 64%)

Ads (660 36%)

of tweets

1,850

Source dataset

Training dataset

Target dataset	# of tweets	Category
E-cigarette training dataset	3,149	 e-cigarette relevant First-person opinion (1,396 44%) e-cigarette irrelevant News (320 10%) Ads (1057 34%)
		 Ads (1057 34%) Other (376 12%)

Domain Adaptation by Feature Augmentation

	First-person opinion			Other				News		Ads		
Classifiers	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
Logisticregression	0.719	0.716	0.718	0.318	0.665	0.431	0.557	0.397	0.463	0.552	0.562	0.557
Linearsvc	0.771	0.860	0.813	0.536	0.798	0.641	0.518	0.470	0.493	0.661	0.582	0.619
Multinomialnb	0.774	0.824	0.798	0.507	0.745	0.603	0.505	0.457	0.480	0.626	0.582	0.603
Perceptron	0.719	0.797	0.756	0.354	0.612	0.448	0.453	0.384	0.416	0.575	0.509	0.540
Decisiontree	0.717	0.796	0.754	0.347	0.625	0.446	0.468	0.368	0.412	0.585	0.540	0.561
Extratrees	0.770	0.857	0.811	0.526	0.798	0.634	0.516	0.464	0.488	0.651	0.577	0.612
Randomforest	0.710	0.802	0.753	0.502	0.654	0.568	0.421	0.362	0.389	0.603	0.574	0.588

Without domain adaptation; target dataset; 10 fold cross validation

	First-pe	erson op	inion	Other			News			Ads		
Classifiers	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
Logisticregression	0.821	0.898	0.858	0.800	0.784	0.792	0.905	0.679	0.776	0.885	0.852	0.868
Linearsvc	0.830	0.875	0.852	0.800	0.784	0.792	0.870	0.714	0.784	0.860	0.852	0.856
Multinomialnb	0.856	0.883	0.869	0.854	0.686	0.761	0.808	0.750	0.778	0.819	0.880	0.848
Perceptron	0.905	0.820	0.861	0.792	0.824	0.808	0.880	0.786	0.830	0.831	0.907	0.867
Decisiontree	0.859	0.801	0.829	0.683	0.778	0.727	0.764	0.750	0.757	0.839	0.855	0.847
Extratrees	0.836	0.871	0.853	0.752	0.782	0.767	0.853	0.743	0.794	0.874	0.843	0.858
Randomforest	0.812	0.881	0.845	0.754	0.755	0.754	0.853	0.679	0.755	0.866	0.823	0.844

With domain adaptation; 10 fold cross validation

- Background
- Methodology
 - Text preprocessing
 - Feature extraction
 - Feature reduction
 - Feature generation
- Classification
- Domain Adaptation
- Experiments & results
- Implications & contributions

Contributions

- New framework to extract signal from social media text
- Accurate / timely / economical
- Robust to overfitting
- Applied in different domains

Implications

- Generating robust social media datasets for a variety of purposes
- Development of various types of predictive models.

- Population biases vary across different social media platforms
 - Teenagers and young adults
 - Gender bias
- Topic embedding

Thank you.

