```
In [13]: import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         sns.set(style="whitegrid")
         # Load data
         customers = pd.read_csv("Customers.csv")
         products = pd.read_csv("Products.csv")
         transactions = pd.read_csv("Transactions.csv")
         # Convert date columns
         customers['SignupDate'] = pd.to_datetime(customers['SignupDate'])
         transactions['TransactionDate'] = pd.to_datetime(transactions['TransactionDate'])
         # Fix TotalValue discrepancies
         transactions['ComputedTotal'] = transactions['Quantity'] * transactions['Price']
         transactions.loc[transactions['TotalValue'] != transactions['ComputedTotal'], 'Tota
         transactions.drop(columns=['ComputedTotal'], inplace=True)
         # Customers EDA
         print("Customers Overview:")
         print(customers.describe())
         print("\nRegion Distribution:")
         print(customers['Region'].value_counts())
         plt.figure(figsize=(8, 5))
         region_counts = customers['Region'].value_counts().reset_index()
         region_counts.columns = ['Region', 'Count']
         sns.barplot(data=region_counts, x='Region', y='Count', palette="viridis")
         plt.title("Customer Distribution by Region", fontsize=14)
         plt.xlabel("Region", fontsize=12)
         plt.ylabel("Number of Customers", fontsize=12)
         plt.xticks(rotation=45)
         plt.show()
         # Signup trends
         customers['SignupYearMonth'] = customers['SignupDate'].dt.to_period('M')
         signup_trends = customers['SignupYearMonth'].value_counts().sort_index()
         plt.figure(figsize=(10, 6))
         signup_trends.plot(kind='line', marker='o', color='b', linestyle='-', linewidth=2)
         plt.title("Customer Signup Trends Over Time", fontsize=14)
         plt.xlabel("Year-Month", fontsize=12)
         plt.ylabel("Number of Signups", fontsize=12)
         plt.grid(True, linestyle='--', linewidth=0.5)
         plt.show()
         # Products EDA
         print("\nProducts Overview:")
         print(products.describe())
         print("\nCategory Distribution:")
         print(products['Category'].value_counts())
```

```
plt.figure(figsize=(8, 5))
sns.countplot(data=products, x='Category', palette='coolwarm', order=products['Cate
plt.title("Product Distribution by Category", fontsize=14)
plt.xlabel("Category", fontsize=12)
plt.ylabel("Number of Products", fontsize=12)
plt.xticks(rotation=45)
plt.show()
# Price distribution
plt.figure(figsize=(10, 6))
sns.histplot(products['Price'], kde=True, bins=30, color='purple')
plt.title("Price Distribution of Products", fontsize=14)
plt.xlabel("Price ", fontsize=12)
plt.ylabel("Count", fontsize=12)
plt.grid(True)
plt.show()
# Transactions EDA
print("\nTransactions Overview:")
print(transactions.describe())
print("\nTop 5 Most Sold Products:")
most_sold = transactions.groupby('ProductID')['Quantity'].sum().sort_values(ascendi
print(most_sold)
# Monthly revenue
transactions['YearMonth'] = transactions['TransactionDate'].dt.to_period('M')
monthly_revenue = transactions.groupby('YearMonth')['TotalValue'].sum()
plt.figure(figsize=(10, 6))
monthly_revenue.plot(kind='line', marker='o', color='g', linestyle='-', linewidth=2
plt.title("Monthly Revenue Trends", fontsize=14)
plt.xlabel("Year-Month", fontsize=12)
plt.ylabel("Total Revenue (USD)", fontsize=12)
plt.grid(True, linestyle='--', linewidth=0.5)
plt.show()
# Top customers by revenue
top_customers = transactions.groupby('CustomerID')['TotalValue'].sum().sort_values(
print("\nTop 5 Customers by Revenue:")
print(top_customers)
```

Customers Overview:

	S:	ignupDate
count		200
mean	2023-07-19	08:31:12
min	2022-01-22	00:00:00
25%	2022-09-26	12:00:00
50%	2023-08-31	12:00:00
75%	2024-04-12	12:00:00
max	2024-12-28	00:00:00

Region Distribution:

Region

South America 59 Europe 50 North America 46 Asia 45

Name: count, dtype: int64

C:\Users\shree\AppData\Local\Temp\ipykernel_12348\1480704442.py:30: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.1 4.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(data=region_counts, x='Region', y='Count', palette="viridis")

Products Overview:

Price count 100.000000 267.551700 mean std 143.219383 min 16.080000 25% 147.767500 50% 292.875000 75% 397.090000 497.760000 max

Category Distribution:

Category

Books 26 Electronics 26 Clothing 25 Home Decor 23

Name: count, dtype: int64

C:\Users\shree\AppData\Local\Temp\ipykernel_12348\1480704442.py:56: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.1 4.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

 $sns.countplot(data=products, \ x='Category', \ palette='coolwarm', \ order=products['Category'].value_counts().index)$

Transactions Overview:

	TransactionDate	Quantity	TotalValue	Price
count	1000	1000.000000	1000.000000	1000.00000
mean	2024-06-23 15:33:02.768999936	2.537000	689.995560	272.55407
min	2023-12-30 15:29:12	1.000000	16.080000	16.08000
25%	2024-03-25 22:05:34.500000	2.000000	295.295000	147.95000
50%	2024-06-26 17:21:52.500000	3.000000	588.880000	299.93000
75%	2024-09-19 14:19:57	4.000000	1011.660000	404.40000
max	2024-12-28 11:00:00	4.000000	1991.040000	497.76000
std	NaN	1.117981	493.144478	140.73639

Top 5 Most Sold Products:

ProductID P059 46 P054 46 P029 45 P079 43 P061 43

Name: Quantity, dtype: int64

Top 5 Customers by Revenue:

CustomerID

C0141 10673.87

C0054 8040.39

C0065 7663.70

C0156 7634.45

C0082 7572.91

Name: TotalValue, dtype: float64

```
In [10]: # Business Insights (Example)
    print("\nBusiness Insights:")
    print("1. The majority of customers are from South America, making it the key regio
    print("2. Signups have been increasing over time, peaking during certain months.")
    print("3. Certain product categories (e.g., Books and Electronics) dominate sales,
```

print("4. Revenue shows seasonal peaks, highlighting high-demand periods where mark
print("5. A few customers contribute the most to revenue, suggesting high-value tar

Business Insights:

- 1. The majority of customers are from South America, making it the key region for ta rgeted marketing and expansion.
- 2. Signups have been increasing over time, peaking during certain months.
- 3. Certain product categories (e.g., Books and Electronics) dominate sales, suggesting customer preferences or competitive pricing in these categories.
- 4. Revenue shows seasonal peaks, highlighting high-demand periods where marketing an d inventory strategies can be optimized.
- 5. A few customers contribute the most to revenue, suggesting high-value targets.

In []:	
---------	--