Contents

捌	\$\ 0, \$ \$Ш	2
	ì入 & 输出	_
	特殊格式	. 2
	文件和流同步....................................	. 2
	程序计时	
	整行读入	
	读到文件尾	. 3
	int128	. 3
		_
	读入挂	. 3
数	放据结构	4
	并查集	. 4
	RMQ	. 4
	A A Desire A	
	树状数组	
	线段树	. 7
	动态开点线段树	9
	主席树	
	Splay	. 11
	Treap	. 12
	CDQ 分治	
	CDQ J/H	. 13
-	314	4.5
图i	ii:	13
	链式前向星	. 13
	最短路	. 14
	- 拓扑排序	
	最小生成树	. 15
	LCA	. 16
	无向图最小割	
	树链剖分	. 19
	Tarjan	. 20
	支配树	. 21
字符	2符串	23
	哈希	. 23
	Manacher	
	KMP	. 25
	最小表示法	. 26
	Trie	. 26
	AC 自动机	
	回文自动机	. 27
	后缀数组	28
	, <u>, , , , , , , , , , , , , , , , , , </u>	29
***	· · · · · · · · · · · · · · · · · · ·	
数	GCD & LCM	. 29
数	快速乘 & 快速幂	
数		. 29
数	· · · · · · · · ·	
数:	矩阵快速幂	. 29
数	· · · · · · · · ·	. 29
数	矩阵快速幂	. 29 . 30
数	矩阵快速幂 素数判断 线性筛	. 29 . 30 . 30
数	短阵快速幂 素数判断	. 29 . 30 . 30 . 32
数	短阵快速幂 素数判断 线性筛 区间筛	. 29 . 30 . 30 . 32
数	短阵快速幂 素数判断	. 29 . 30 . 30 . 32 . 32
数	短阵快速幂 素数判断 线性筛 区间筛 找因数 找质因数	. 29 . 30 . 30 . 32 . 32
数	短阵快速幂 素数判断 线性筛 线性筛 区间筛 找因数 找因数 Pollard-Rho	. 29 . 30 . 32 . 32 . 32 . 33
数:	短阵快速幂 素数判断 线性筛 线性筛 区间筛 找因数 找质因数 Pollard-Rho 欧拉函数	. 29 . 30 . 32 . 32 . 32 . 33
数:	短阵快速幂 素数判断 线性筛 线性筛 区间筛 找因数 找因数 Pollard-Rho	. 29 . 30 . 32 . 32 . 32 . 33
数:	短阵快速幂 素数判断 线性筛 线性筛 区间筛 找因数 找质因数 Pollard-Rho 欧拉函数	. 29 . 30 . 32 . 32 . 32 . 33 . 34
数	短阵快速幂 素数判断 线性筛 线性筛 区间筛 找因数 找质因数 Pollard-Rho 欧拉函数 EXGCD	29 30 30 32 32 32 33 34 34
数	短阵快速幂 素数判断 线性筛 线性筛 区间筛 找因数 找质因数 Pollard-Rho 欧拉函数 EXGCD 类欧几里得	. 29 . 30 . 32 . 32 . 32 . 33 . 34 . 34
数:	短阵快速幂 素数判断 线性筛 线性筛 区间筛 找因数 找质因数 Pollard-Rho 欧拉函数 EXGCD	. 29 . 30 . 32 . 32 . 32 . 33 . 34 . 34 . 35 . 35
数:	短阵快速幂 素数判断 线性筛 线性筛 区间筛 找因数 找质因数 Pollard-Rho 欧拉函数 EXGCD 类欧几里得	. 29 . 30 . 32 . 32 . 33 . 34 . 34 . 35 . 36
数:	短阵快速幂 素数判断 线性筛 区间筛 找因数 找质因数 Pollard-Rho 欧拉函数 EXGCD 类欧几里得 逆元 组合数 康托展开	29 30 30 32 32 32 33 34 34 34 35 36
数等	短阵快速幂 素数判断 线性筛 区间筛 找因数 找因数 Pollard-Rho 欧拉函数 EXGCD 类欧几里得 逆元 组合数 康托展开 高斯消元	. 29 . 30 . 32 . 32 . 32 . 33 . 34 . 34 . 35 . 36 . 36
数:	短阵快速幂 素数判断 线性筛 区间筛 找因数 找因数 Pollard-Rho 欧拉函数 EXGCD 类欧几里得 逆元 组合数 康托展开 高斯消元 线性基	. 29 . 30 . 32 . 32 . 32 . 33 . 34 . 34 . 35 . 36 . 36 . 37
数:	短阵快速幂 素数判断 线性筛 区间筛 找因数 找因数 Pollard-Rho 欧拉函数 EXGCD 类欧几里得 逆元 组合数 康托展开 高斯消元	. 29 . 30 . 32 . 32 . 32 . 33 . 34 . 34 . 35 . 36 . 36 . 37
数等	短阵快速幂 素数判断 线性筛 区间筛 找因数 找质因数 Pollard-Rho 欧拉函数 EXGCD 类欧几里得 逆元 组合数 康托展开 高斯消元 线性基 中国剩余定理	29 30 30 32 32 32 33 34 34 35 36 36 37 38
数等	短阵快速幂 素数判断 线性筛 区间筛 找因数 找质因数 Pollard-Rho 欧拉函数 EXGCD 类欧几里得 逆元 组合数 康托展开 高斯消元 线性基 中国剩余定理	299 300 300 320 320 320 320 320 320 320 330 344 344 355 366 367 378 388 388 388 388
数等	短阵快速幂 素数判断 线性筛 区间筛 找因数 找质因数 Pollard-Rho 欧拉函数 EXGCD 类欧几里得 逆元 组合数 康托展开 高斯消元 线性基 中国剩余定理 原根	299 300 300 320 322 322 323 334 344 355 366 377 388 389 399
数等	短阵快速幂 素数判断 线性筛 区间筛 找因数 找质因数 Pollard-Rho 欧拉函数 EXGCD 类欧几里得 逆元 组合数 康托展开 高斯消元 线性基 中国剩余定理	299 300 300 320 320 320 320 320 320 320 320

自适应 Simpson 积分	
拉格朗日插值	
14.1月以口1用目 · · · · · · · · · · · · · · · · · · ·	4
计算几何	4
二维几何基础	
多边形	4
圆	4
カバエ	4
杂项	·
防爆 vector	
pair_hash	
updmax/min	
离散化	
加强版优先队列	
分数	
二分答案	
三分	
日期	
子集枚举	
最长上升子序列	
数位 dp	
表达式求值	
对拍	
Java	
pb_ds	5
待验证	5
	_
二分图最大权匹配 KM	
上下界网络流	
上ink-Cut Tree	
后缀自动机	
任意模数 NTT	
计算几何	
ᄓᄝᅲᄼᄓᅖ	
本模板未涉及的专题	6
ECNU	6
kuangbin	6
-	
t⇔ \ 0. t⇔山	
输入 & 输出	

特殊格式

```
long double %Lf
unsigned int %u
unsigned long long %llu
cout << fixed << setprecision(15);</pre>
```

文件和流同步

```
freopen("in.txt", "r", stdin);
ios::sync_with_stdio(false);
cin.tie(0);
```

程序计时

(double)clock() / CLOCKS_PER_SEC

整行读入

```
scanf("%[^\n]", s) // 需测试是否可用
getline(cin, s)
读到文件尾
while (cin) {}
while (~scanf) {}
int128
// 需测试是否可用
inline __int128 get128() {
   __int128 x = 0, sgn = 1;
   char c = getchar();
   for (; c < '0' || c > '9'; c = getchar()) if (c == '-') sgn = -1;
   for (; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';</pre>
   return sgn * x;
}
inline void print128(__int128 x) {
   if (x < 0) {
       putchar('-');
       x = -x;
   if (x >= 10) print128(x / 10);
   putchar(x % 10 + '0');
读入挂
class Scanner {
#ifdef qdd
   static constexpr int BUF_SIZE = 1;
   static constexpr int BUF_SIZE = 1048576; // 1MB
#endif
    char buf[BUF_SIZE], *p1 = buf, *p2 = buf;
    char nc() {
        if (p1 == p2) {
           p1 = buf; p2 = buf + fread(buf, 1, BUF_SIZE, stdin);
            // assert(p1 != p2);
       }
       return *p1++;
   }
public:
    int nextInt() {
       int x = 0, sgn = 1;
        char c = nc();
       for (; c < '0' || c > '9'; c = nc()) if (c == '-') sgn = -1;
       for (; c >= '0' && c <= '9'; c = nc()) x = x * 10 + (c - '0');
        return sgn * x;
    double nextDouble() {
       double x = 0, base = 0.1;
       int sgn = 1;
       char c = nc();
```

```
for (; c < '0' || c > '9'; c = nc()) if (c == '-') sgn = -1;
        for (; c >= '0' && c <= '9'; c = nc()) x = x * 10 + (c - '0');
        for (; c < '0' || c > '9'; c = nc()) if (c != '.') return sgn * x;
        for (; c >= '0' && c <= '9'; c = nc()) x += base * (c - '0'), base *= 0.1;
        return sgn * x;
    }
} in;
数据结构
并查集
int find(int x) { return (x == pa[x]) ? x : pa[x] = find(pa[x]); }
void merge(int a, int b) { pa[find(a)] = find(b); }
   • 动态开点并查集
// pa 为负数表示集合大小
unordered_map<int, int> pa;
void _{set(int x)} \{ if (!pa.count(x)) pa[x] = -1; \}
int find(int x) { return (pa[x] < 0) ? x : pa[x] = find(pa[x]); }
void merge(int a, int b) {
    int x = find(a), y = find(b);
    if (x == y) return;
    if (pa[x] > pa[y]) swap(x, y);
    pa[x] += pa[y];
    pa[y] = x;
}
RMQ
   一维
// 下标从 0 开始
struct RMQ {
    int st[MAXN][22]; // 22 = ((int)log2(MAXN) + 1)
    int xlog(int x) { return 31 - __builtin_clz(x); }
    void init(int *a, int n) {
        for (int i = 0; i < n; i++) {</pre>
            st[i][0] = a[i];
        for (int j = 1; (1 << j) <= n; j++) {</pre>
            for (int i = 0; i + (1 << j) - 1 < n; i++) {
                st[i][j] = max(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]);
            }
        }
    }
    int query(int l, int r) {
        int x = x\log(r - l + 1);
        return max(st[l][x], st[r - (1 << x) + 1][x]);</pre>
    }
```

二维

};

```
struct RMQ {
    int st[11][11][MAXN][MAXN]; // 11 = ((int)log2(MAXN) + 1)
    int xlog(int x) { return 31 - __builtin_clz(x); }
```

```
void init(int n, int m) {
        for (int i = 0; i < n; i++) {</pre>
            for (int j = 0; j < m; j++) {
                st[0][0][i][j] = a[i][j];
        for (int i = 0; (1 << i) <= n; i++) {</pre>
            for (int j = 0; (1 << j) <= m; j++) {</pre>
                if (i == 0 && j == 0) continue;
                for (int r = 0; r + (1 << i) - 1 < n; r++) {
                    for (int c = 0; c + (1 << j) - 1 < m; c++) {
                        if (i == 0) {
                            st[i][j][r][c] = max(st[i][j - 1][r][c], st[i][j - 1][r][c + (1 << (j - 1))]);
                        } else {
                            st[i][j][r][c] = max(st[i - 1][j][r][c], st[i - 1][j][r + (1 << (i - 1))][c]);
                        }
                    }
                }
           }
        }
    }
    int query(int r1, int c1, int r2, int c2) {
        int x = x\log(r2 - r1 + 1);
        int y = x\log(c2 - c1 + 1);
        int m1 = st[x][y][r1][c1];
        int m2 = st[x][y][r1][c2 - (1 << y) + 1];
        int m3 = st[x][y][r2 - (1 << x) + 1][c1];
        int m4 = st[x][y][r2 - (1 << x) + 1][c2 - (1 << y) + 1];
        return max({m1, m2, m3, m4});
    }
};
   · 滑动窗口 RMQ
// k 为滑动窗口的大小
deque<int> q;
for (int i = 0, j = 0; i + k \le n; i++) {
    while (j < i + k) {
        while (!q.empty() && a[q.back()] < a[j]) q.pop_back(); // 最小值取'>'号
        q.push_back(j++);
    while (q.front() < i) q.pop front();</pre>
    rmq.push_back(a[q.front()]);
}
树状数组
   • 单点修改,区间和
// 支持第 k 大的 BIT
// 下标从 1 开始
struct Tbit {
    int size;
    ll t[MAXN];
    int lowbit(int x) { return x & (-x); }
    void init(int sz) {
        size = sz + 1;
        memset(t, 0, (sz + 2) * sizeof(ll));
    void add(int p, ll x) {
        if (p <= 0) return;</pre>
```

```
for (; p <= size; p += lowbit(p)) t[p] += x;</pre>
    }
    ll get(int p) {
        ll sum = 0;
        for (; p > 0; p \rightarrow lowbit(p)) sum += t[p];
        return sum;
    }
    void update(int p, ll x) { add(p, x - query(p, p)); }
    ll query(int l, int r) { return get(r) - get(l - 1); }
    int kth(ll k) {
        int p = 0;
        for (int i = 20; i >= 0; i--) {
            int p_{-} = p + (1 << i);
            if (p_ \le size \&\& t[p_] \le k) {
                 k \leftarrow t[p];
                 p = p_{\cdot};
        return p + 1;
    }
};
   • 区间加, 单点查询
void range_add(int l, int r, ll x) {
    add(l, x);
    add(r + 1, -x);
}
   • 区间加,区间和
Tbit t1, t2;
void range_add(int l, int r, ll x) {
    t1.add(l, x);
    t2.add(l, l * x);
    t1.add(r + 1, -x);
    t2.add(r + 1, (r + 1) * -x);
}
ll range_sum(int l, int r) {
    return (r + 1) * t1.get(r) - t2.get(r) - l * t1.get(l - 1) + t2.get(l - 1);
   二维
struct Tbit {
    ll t[MAXN][MAXN];
    int lowbit(int x) { return x & (-x); }
    void add(int x, int y, int d) {
        for (int i = x; i <= n; i += lowbit(i))</pre>
            for (int j = y; j \leftarrow m; j \leftarrow lowbit(j)) t[i][j] \leftarrow d;
    }
    ll get(int x, int y) {
        ll sum = 0;
        for (int i = x; i > 0; i -= lowbit(i))
            for (int j = y; j > 0; j -= lowbit(j)) sum += t[i][j];
        return sum;
    }
```

```
ll query(int x, int y, int xx, int yy) {
        return get(xx, yy) - get(x - 1, yy) - get(xx, y - 1) + get(x - 1, y - 1);
};
   • 二维区间加,区间和
Tbit t0, t1, t2, t3;
void add4(int x, int y, ll d) {
    t0.add(x, y, d);
    t1.add(x, y, d * x);
    t2.add(x, y, d * y);
    t3.add(x, y, d * x * y);
}
void range_add(int x, int y, int xx, int yy, ll d) {
    add4(x, y, d);
    add4(x, yy + 1, -d);
    add4(xx + 1, y, -d);
    add4(xx + 1, yy + 1, d);
}
ll get4(int x, int y) {
    return (x + 1) * (y + 1) * t0.get(x, y)
    - (y + 1) * t1.get(x, y)
    -(x + 1) * t2.get(x, y)
    + t3.get(x, y);
}
ll range_sum(int x, int y, int xx, int yy) {
    return get4(xx, yy) - get4(x - 1, yy) - get4(xx, y - 1) + get4(x - 1, y - 1);
}
线段树
   • 单点修改, RMQ
// 下标从 1 开始
struct Node {
    int val;
    Node(int val = -INF) : val(val) {}
};
Node merge(const Node& a, const Node& b) {
    return Node(max(a.val, b.val));
}
struct SegT {
#define lc (p \ll 1)
#define rc (p \ll 1 | 1)
#define mid ((pl + pr) >> 1)
    int size;
    vector<Node> t;
    SegT(int sz) {
        size = 1;
        while (size < sz) size <<= 1;</pre>
        t.resize(2 * size);
    }
    Node ask(int p, int l, int r, int pl, int pr) {
        if (l > pr || r < pl) return Node();</pre>
        if (l <= pl && r >= pr) return t[p];
        return merge(ask(lc, l, r, pl, mid), ask(rc, l, r, mid + 1, pr));
```

```
}
    void update(int k, int val) {
        int p = size + k - 1;
        t[p] = Node(val);
        for (p >>= 1; p > 0; p >>= 1) {
            t[p] = merge(t[lc], t[rc]);
    }
    Node query(int l, int r) { return ask(1, l, r, 1, size); }
#undef lc
#undef rc
#undef mid
};
   • 权值线段树: 单点修改, 第 k 大
void add(int x, ll val) {
    int p = size + x - 1;
    t[p].val += val;
    for (p >>= 1; p > 0; p >>= 1) {
        t[p].val += val;
}
int ask(int p, ll k, int pl, int pr) {
    if (pl == pr) return pl;
    if (k <= t[lc].val) return ask(lc, k, pl, mid);</pre>
    return ask(rc, k - t[lc].val, mid + 1, pr);
int query(ll k) { return ask(1, k, 1, size); }
   • 区间加,区间和
struct Node {
    ll val, lazy;
};
void pushdown(int p, int pl, int pr) {
    if (!t[p].lazy) return; // 如果是区间赋值,选取一个数据范围外的值
    t[lc].val += t[p].lazy * (mid - pl + 1);
    t[rc].val += t[p].lazy * (pr - mid);
    t[lc].lazy += t[p].lazy;
    t[rc].lazy += t[p].lazy;
    t[p].lazy = 0;
}
ll ask(int p, int l, int r, int pl, int pr) {
    if (l > pr \mid | r < pl) return 0;
    if (l <= pl && r >= pr) return t[p].val;
    pushdown(p, pl, pr);
    ll\ vl = ask(lc, l, r, pl, mid);
    ll vr = ask(rc, l, r, mid + 1, pr);
    return vl + vr;
}
void modify(int p, int l, int r, int val, int pl, int pr) {
    if (l > pr \mid | r < pl) return;
    if (l <= pl && r >= pr) {
        t[p].val += 1LL * val * (pr - pl + 1);
        t[p].lazy += val;
        return;
    }
```

```
pushdown(p, pl, pr);
    modify(lc, l, r, val, pl, mid);
    modify(rc, l, r, val, mid + 1, pr);
    t[p].val = t[lc].val + t[rc].val;
}
void update(int l, int r, int val) { modify(1, l, r, val, 1, size); }
ll query(int l, int r) { return ask(1, l, r, 1, size); }
   • 区间乘混加,区间和取模
struct Node {
    ll val, mul, add;
    Node(): val(0), add(0), mul(1) {}
};
void pushdown(int p, int pl, int pr) {
    if (t[p].mul == 1 && t[p].add == 0) return;
    t[lc].val = (t[lc].val * t[p].mul % MOD + (mid - pl + 1) * t[p].add % MOD) % MOD;
    t[rc].val = (t[rc].val * t[p].mul % MOD + (pr - mid) * t[p].add % MOD) % MOD;
    t[lc].mul = t[p].mul * t[lc].mul % MOD;
    t[rc].mul = t[p].mul * t[rc].mul % MOD;
    t[lc].add = (t[lc].add * t[p].mul % MOD + t[p].add) % MOD;
    t[rc].add = (t[rc].add * t[p].mul % MOD + t[p].add) % MOD;
    t[p].mul = 1;
    t[p].add = 0;
}
ll ask(int p, int l, int r, int pl, int pr) {
    if (l > pr || r < pl) return 0;</pre>
    if (l <= pl && r >= pr) return t[p].val;
    pushdown(p, pl, pr);
    ll vl = ask(lc, l, r, pl, mid);
    ll vr = ask(rc, l, r, mid + 1, pr);
    return (vl + vr) % MOD;
}
// x' = ax + b
void modify(int p, int l, int r, int a, int b, int pl, int pr) {
    if (l > pr || r < pl) return;
    if (l <= pl && r >= pr) {
        t[p].val = (t[p].val * a % MOD + 1LL * (pr - pl + 1) * b % MOD) % MOD;
        t[p].mul = t[p].mul * a % MOD;
        t[p].add = (t[p].add * a % MOD + b) % MOD;
        return;
    }
    pushdown(p, pl, pr);
    modify(lc, l, r, a, b, pl, mid);
    modify(rc, l, r, a, b, mid + 1, pr);
    t[p].val = (t[lc].val + t[rc].val) % MOD;
}
void update(int l, int r, int a, int b) { modify(1, l, r, a, b, 1, size); }
ll query(int l, int r) { return ask(1, l, r, 1, size); }
动态开点线段树
struct Node {
    int lc, rc, val;
    Node(int lc = 0, int rc = 0, int val = 0) : lc(lc), rc(rc), val(val) {}
} t[20 * MAXN];
int cnt;
struct SegT {
```

```
#define mid ((pl + pr) >> 1)
    int rt, size;
    SegT(int sz) : rt(0) {
        size = 1;
        while (size < sz) size <<= 1;</pre>
    }
    int modify(int p, int k, int val, int pl, int pr) {
        if (pl > k || pr < k) return p;
        if (!p) p = ++cnt;
        if (pl == pr) t[p].val = val;
        else {
            t[p].lc = modify(t[p].lc, k, val, pl, mid);
            t[p].rc = modify(t[p].rc, k, val, mid + 1, pr);
            t[p].val = max(t[t[p].lc].val, t[t[p].rc].val);
        return p;
    int ask(int p, int l, int r, int pl, int pr) {
        if (l > pr || r < pl) return -INF;</pre>
        if (l <= pl && r >= pr) return t[p].val;
        int vl = ask(t[p].lc, l, r, pl, mid);
        int vr = ask(t[p].rc, l, r, mid + 1, pr);
        return max(vl, vr);
    void update(int k, int val) { rt = modify(rt, k, val, 1, size); }
    int query(int l, int r) { return ask(rt, l, r, 1, size); }
#undef mid
};
主席树
struct Node {
    int lc, rc, val;
    Node(int lc = 0, int rc = 0, int val = 0) : lc(lc), rc(rc), val(val) {}
} t[40 * MAXN]; // (4 + log(size)) * MAXN / 나 MLE
int cnt;
struct FST {
#define mid ((pl + pr) \gg 1)
    int size;
    vector<int> root;
    FST(int sz) {
        size = 1:
        while (size < sz) size <<= 1;</pre>
        root.push_back(N(0, 0, 0));
    }
    int N(int lc, int rc, int val) {
        t[cnt] = Node(lc, rc, val);
        return cnt++;
    }
    int ins(int p, int x, int pl, int pr) {
        if (pl > x \mid | pr < x) return p;
        if (pl == pr) return N(0, 0, t[p].val + 1);
        return N(ins(t[p].lc, x, pl, mid), ins(t[p].rc, x, mid + 1, pr), t[p].val + 1);
```

```
}
    int ask(int p1, int p2, int k, int p1, int pr) {
        if (pl == pr) return pl;
        ll vl = t[t[p2].lc].val - t[t[p1].lc].val;
        if (k \le vl) return ask(t[p1].lc, t[p2].lc, k, pl, mid);
        return ask(t[p1].rc, t[p2].rc, k - vl, mid + 1, pr);
   }
    void add(int x) {
        root.push_back(ins(root.back(), x, 1, size));
    int query(int l, int r, int k) {
        return ask(root[l - 1], root[r], k, 1, size);
#undef mid
};
Splay
// 正常 Splay
struct Node {
   int val, size;
   Node *pa, *lc, *rc;
   Node(int val = 0, Node *pa = nullptr) : val(val), size(1), pa(pa), lc(nullptr), rc(nullptr) {}
   Node*& c(bool x) { return x ? lc : rc; }
    bool d() { return pa ? this == pa->lc : 0; }
} pool[MAXN << 2], *tail = pool;</pre>
struct Splay {
   Node *root;
   Splay() : root(nullptr) {}
    Node* N(int val, Node *pa) {
        return new (tail++) Node(val, pa);
   }
    void upd(Node *o) {
        o->size = (o->lc ? o->lc->size : 0) + (o->rc ? o->rc->size : 0) + 1;
    void link(Node *x, Node *y, bool d) {
        if (x) x - pa = y;
        if (y) y \rightarrow c(d) = x;
   }
    void rotate(Node *o) {
        bool dd = o->d();
        Node *x = o->pa, *xx = x->pa, *y = o->c(!dd);
        link(o, xx, x->d());
        link(y, x, dd);
        link(x, o, !dd);
        upd(x);
        upd(o);
   }
    void splay(Node *o) {
        for (Node *x = o->pa; x = o->pa, x; rotate(o)) {
            if (x->pa) rotate(o->d() == x->d() ? x : o);
        root = o;
   }
```

};

Treap

```
// split_x 左侧元素 < x
// split_k 左侧分割出 k 个元素
{\tt namespace \ tr} \ \{
    using uint = unsigned int;
    uint rnd() {
        static uint A = 1 << 16 | 3, B = 33333331, C = 1091;
        return C = A * C + B;
    }
    struct Node {
        uint key;
        int val, size;
        Node *lc, *rc;
        Node(int val = 0) : key(rnd()), val(val), size(1), lc(nullptr), rc(nullptr) {}
    } pool[MAXN << 2], *tail = pool;</pre>
    Node* N(int val) {
        return new (tail++) Node(val);
    }
    void upd(Node *o) {
        o->size = (o->lc ? o->lc->size : 0) + (o->rc ? o->rc->size : 0) + 1;
    Node* merge(Node *1, Node *r) {
        if (!l) return r;
        if (!r) return l;
        if (l->key > r->key) {
            l->rc = merge(l->rc, r);
            upd(l);
            return l;
        } else {
            r->lc = merge(l, r->lc);
            upd(r);
            return r;
        }
    }
    void split_x(Node *o, int x, Node*& l, Node*& r) {
        if (!o) { l = r = nullptr; return; }
        if (o->val < x) {
            l = o;
            split_x(o->rc, x, l->rc, r);
            upd(l);
        } else {
            r = o;
            split_x(o->lc, x, l, r->lc);
            upd(r);
        }
    }
    void split_k(Node *o, int k, Node*& l, Node*& r) {
        if (!o) { l = r = nullptr; return; }
        int lsize = o->lc ? o->lc->size : 0;
        if (lsize < k) {</pre>
            l = o;
            split_k(o->rc, k - lsize - 1, o->rc, r);
            upd(l);
        } else {
            r = o;
```

```
split_k(o->lc, k, l, o->lc);
            upd(r);
        }
    }
}
CDQ 分治
   • 三维偏序 (不严格)
struct Node {
    int x, y, z, sum, ans;
} p[MAXN], q[MAXN];
void CDQ(int l, int r) {
    if (l == r) return;
    int mid = (l + r) \gg 1;
    CDQ(l, mid);
    CDQ(mid + 1, r);
    int i = l, j = mid + 1;
    for (int t = l; t <= r; t++) {</pre>
        if (j > r || (i <= mid && p[i].y <= p[j].y)) {</pre>
            q[t] = p[i++];
            bit.add(q[t].z, q[t].sum);
        } else {
            q[t] = p[j++];
            q[t].ans += bit.get(q[t].z);
    }
    for (i = l; i <= r; i++) {</pre>
        p[i] = q[i];
        bit.update(p[i].z, 0);
    }
}
void go() {
    sort(p + 1, p + n + 1, [](const Node &a, const Node &b) {
        if (a.x != b.x) return a.x < b.x;
        if (a.y != b.y) return a.y < b.y;</pre>
        return a.z < b.z;</pre>
    });
    auto eq = [](const Node& a, const Node& b) {
        return a.x == b.x && a.y == b.y && a.z == b.z;
    };
    int k = n;
    for (int i = 1, j = 1; i <= n; i++, j++) {</pre>
        if (eq(p[i], p[j - 1])) j--, k--;
        else if (i != j) p[j] = p[i];
        p[j].sum++;
    bit.init(m);
    CDQ(1, k);
}
图论
链式前向星
int ecnt, mp[MAXN];
struct Edge {
    int to, nxt;
```

Edge(int to = 0, int nxt = 0) : to(to), nxt(nxt) {}

} es[MAXM];

```
void mp_init() {
    memset(mp, -1, (n + 2) * sizeof(int));
    ecnt = 0;
}
void mp_link(int u, int v) {
    es[ecnt] = Edge(v, mp[u]);
    mp[u] = ecnt++;
}
for (int i = mp[u]; i != -1; i = es[i].nxt)
最短路
    · Dijkstra
struct Edge {
    int to, val;
    Edge(int to = 0, int val = 0) : to(to), val(val) {}
};
vector<Edge> G[MAXN];
ll dis[MAXN];
void dijkstra(int s) {
    using pii = pair<ll, int>;
    memset(dis, 0x3f, sizeof(dis));
    priority_queue<pii, vector<pii>, greater<pii> > q;
    dis[s] = 0;
    q.emplace(0, s);
    while (!q.empty()) {
        pii p = q.top();
         q.pop();
         int u = p.second;
        if (dis[u] < p.first) continue;</pre>
        for (Edge& e : G[u]) {
             int v = e.to;
              \textbf{if} \; ( \texttt{updmin}( \texttt{dis}[\texttt{v}], \; \texttt{dis}[\texttt{u}] \; + \; \texttt{e.val})) \; \{ \\
                  q.emplace(dis[v], v);
        }
    }
}

    SPFA

void spfa(int s) {
    queue<int> q;
    q.push(s);
    memset(dis, 0x3f, sizeof(dis));
    memset(in, 0, sizeof(in));
    in[s] = 1;
    dis[s] = 0;
    while (!q.empty()) {
         int u = q.front();
         q.pop();
         for (Edge& e : G[u]) {
             int v = e.to;
             if (dis[v] > dis[u] + e.val) {
                 dis[v] = dis[u] + e.val;
                  if (!in[v]) {
                      in[v] = 1;
                      q.push(v);
                 }
             }
```

```
in[u] = 0;
    }
}
   • Floyd 最小环
// 注意 INF 不能超过 1/3 LLONG_MAX
for (int k = 0; k < n; k++) {</pre>
    for (int i = 0; i < k; i++) {</pre>
        for (int j = 0; j < i; j++) {</pre>
            ans = min(ans, G[i][k] + G[k][j] + dis[i][j]);
    for (int i = 0; i < n; i++) {</pre>
        for (int j = 0; j < n; j++) {
            dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
    }
}
拓扑排序
int n, deg[MAXN], dis[MAXN];
vector<int> G[MAXN];
bool topo(vector<int>& ans) {
    queue<int> q;
    for (int i = 1; i <= n; i++) {</pre>
        if (deg[i] == 0) {
            q.push(i);
            dis[i] = 1;
        }
    while (!q.empty()) {
        int u = q.front();
        q.pop();
        ans.push_back(u);
        for (int v : G[u]) {
            deg[v]--;
            dis[v] = max(dis[v], dis[u] + 1);
            if (deg[v] == 0) q.push(v);
        }
    }
    return ans.size() == n;
}
最小生成树
// 前置: 并查集
struct Edge {
    int from, to, val;
    Edge(int from = 0, int to = 0, int val = 0) : from(from), to(to), val(val) {}
};
vector<Edge> es;
ll kruskal() {
    sort(es.begin(), es.end(), [](Edge& x, Edge& y) { return x.val < y.val; });</pre>
    iota(pa, pa + n + 1, 0);
    ll ans = 0;
    for (Edge& e : es) {
        if (find(e.from) != find(e.to)) {
```

```
merge(e.from, e.to);
            ans += e.val;
        }
    }
    return ans;
}
LCA
int dep[MAXN], up[MAXN][\frac{22}{2}]; // 22 = ((int)log2(MAXN) + 1)
void dfs(int u, int pa) {
    dep[u] = dep[pa] + 1;
    up[u][0] = pa;
    for (int i = 1; i < 22; i++) {</pre>
        up[u][i] = up[up[u][i - 1]][i - 1];
    for (int i = 0; i < G[u].size(); i++) {</pre>
        if (G[u][i] != pa) {
            dfs(G[u][i], u);
    }
}
int lca(int u, int v) {
    if (dep[u] > dep[v]) swap(u, v);
    int t = dep[v] - dep[u];
    for (int i = 0; i < 22; i++) {</pre>
        if ((t >> i) & 1) v = up[v][i];
    if (u == v) return u;
    for (int i = 21; i >= 0; i--) {
        if (up[u][i] != up[v][i]) {
            u = up[u][i];
            v = up[v][i];
        }
    return up[u][0];
}
网络流
   • 最大流
const int INF = 0x7fffffff;
struct DEdge {
    int to, cap;
    DEdge(int to, int cap) : to(to), cap(cap) {}
};
struct Dinic {
    int n, s, t;
    vector<DEdge> es;
    vector<vector<int> > G;
    vector<int> dis, cur;
    Dinic(int n, int s, int t) : n(n), s(s), t(t), G(n + 1), dis(n + 1), cur(n + 1) {}
    void add_edge(int u, int v, int cap) {
        G[u].push_back(es.size());
        es.emplace_back(v, cap);
        G[v].push_back(es.size());
        es.emplace_back(u, 0);
```

```
}
    bool bfs() {
        dis.assign(n + 1, 0);
        queue<int> q;
        q.push(s);
        dis[s] = 1;
        while (!q.empty()) {
            int u = q.front();
            q.pop();
            for (int i : G[u]) {
                DEdge& e = es[i];
                if (!dis[e.to] && e.cap > 0) {
                    dis[e.to] = dis[u] + 1;
                    q.push(e.to);
                }
            }
        return dis[t];
    }
    int dfs(int u, int cap) {
        if (u == t || cap == 0) return cap;
        int tmp = cap, f;
        for (int& i = cur[u]; i < G[u].size(); i++) {</pre>
            DEdge& e = es[G[u][i]];
            if (dis[e.to] == dis[u] + 1) {
                f = dfs(e.to, min(cap, e.cap));
                e.cap -= f;
                es[G[u][i] ^ 1].cap += f;
                cap -= f;
                if (cap == 0) break;
            }
        }
        return tmp - cap;
    }
    ll solve() {
        Il flow = 0;
        while (bfs()) {
            cur.assign(n + 1, 0);
            flow += dfs(s, INF);
        return flow;
    }
};
   • 最小费用流
const int INF = 0x7fffffff;
struct MEdge {
    int from, to, cap, cost;
    MEdge(int from, int to, int cap, int cost) : from(from), to(to), cap(cap), cost(cost) {}
};
struct MCMF {
    int n, s, t, flow, cost;
    vector<MEdge> es;
    vector<vector<int> > G;
    vector<int> d, p, a, in; // dis, prev, add
    MCMF(int n, int s, int t) : n(n), s(s), t(t), flow(0), cost(0), G(n + 1), p(n + 1), a(n + 1) {}
    void add_edge(int u, int v, int cap, int cost) {
        G[u].push_back(es.size());
```

```
es.emplace_back(u, v, cap, cost);
        G[v].push_back(es.size());
        es.emplace_back(v, u, 0, -cost);
    }
    bool spfa() {
        d.assign(n + 1, INF);
        in.assign(n + 1, 0);
        d[s] = 0;
        in[s] = 1;
        a[s] = INF;
        queue<int> q;
        q.push(s);
        while (!q.empty()) {
            int u = q.front();
            q.pop();
            in[u] = 0;
            for (int& i : G[u]) {
                MEdge& e = es[i];
                if (e.cap && d[e.to] > d[u] + e.cost) {
                    d[e.to] = d[u] + e.cost;
                    p[e.to] = i;
                    a[e.to] = min(a[u], e.cap);
                    if (!in[e.to]) {
                        q.push(e.to);
                        in[e.to] = 1;
                    }
                }
            }
        }
        return d[t] != INF;
    }
    void solve() {
        while (spfa()) {
            flow += a[t];
            cost += a[t] * d[t];
            int u = t;
            while (u != s) {
                es[p[u]].cap -= a[t];
                es[p[u] ^ 1].cap += a[t];
                u = es[p[u]].from;
            }
       }
    }
};
```

无向图最小割

```
namespace stoer_wagner {
   bool vis[MAXN], in[MAXN];
   int G[MAXN][MAXN], w[MAXN];

   void init() {
       memset(G, 0, sizeof(G));
       memset(in, 0, sizeof(in));
   }

   void add_edge(int u, int v, int w) {
       G[u][v] += w;
       G[v][u] += w;
   }

   int search(int& s, int& t) {
       memset(vis, 0, sizeof(vis));
}
```

```
memset(w, 0, sizeof(w));
        int maxw, tt = n + 1;
        for (int i = 0; i < n; i++) {</pre>
            maxw = -INF;
            for (int j = 0; j < n; j++) {
                if (!in[j] \&\& !vis[j] \&\& w[j] > maxw) {
                    maxw = w[j];
                     tt = j;
                }
            }
            if (t == tt) return w[t];
            s = t; t = tt;
            vis[tt] = true;
            for (int j = 0; j < n; j++) {</pre>
                if (!in[j] \&\& !vis[j]) {
                    w[j] += G[tt][j];
                }
            }
        return w[t];
    }
    int go() {
        int s, t, ans = INF;
        for (int i = 0; i < n - 1; i++) {</pre>
            s = t = -1;
            ans = min(ans, search(s, t));
            if (ans == 0) return 0;
            in[t] = true;
            for (int j = 0; j < n; j++) {</pre>
                if (!in[j]) {
                     G[s][j] += G[t][j];
                     G[j][s] += G[j][t];
                }
            }
        }
        return ans;
    }
}
树链剖分
// 点权
vector<int> G[MAXN];
int pa[MAXN], sz[MAXN], dep[MAXN], dfn[MAXN], maxc[MAXN], top[MAXN];
void dfs1(int u) {
    sz[u] = 1;
    maxc[u] = -1;
    int maxs = 0;
    for (int& v : G[u]) {
        if (v != pa[u]) {
            pa[v] = u;
            dep[v] = dep[u] + 1;
            dfs1(v);
            sz[u] += sz[v];
            if (updmax(maxs, sz[v])) maxc[u] = v;
        }
    }
}
void dfs2(int u, int tp) {
    static int cnt = 0;
    top[u] = tp;
    dfn[u] = ++cnt;
```

```
if (maxc[u] != -1) dfs2(maxc[u], tp);
    for (int& v : G[u]) {
        if (v != pa[u] && v != maxc[u]) {
             dfs2(v, v);
    }
}
void init() {
    dep[1] = 1;
    dfs1(1);
    dfs2(1, 1);
}
ll go(int u, int v) {
    int uu = top[u], vv = top[v];
    ll res = 0;
    while (uu != vv) {
        \textbf{if} \; (\mathsf{dep[uu]} \; \mathsf{<} \; \mathsf{dep[vv]}) \; \{
             swap(u, v);
             swap(uu, vv);
        res += segt.query(dfn[uu], dfn[u]);
        u = pa[uu];
        uu = top[u];
    if (dep[u] > dep[v]) swap(u, v);
    res += segt.query(dfn[u], dfn[v]);
    return res;
}
Tarjan
   • 割点
int dfn[MAXN], low[MAXN], clk;
void init() { clk = 0; memset(dfn, 0, sizeof(dfn)); }
void tarjan(int u, int pa) {
    low[u] = dfn[u] = ++clk;
    int cc = (pa != 0);
    \quad \text{for (int } v \,:\, G[u]) \,\, \{
        if (v == pa) continue;
        if (!dfn[v]) {
             tarjan(v, u);
             low[u] = min(low[u], low[v]);
             cc += low[v] >= dfn[u];
        } else low[u] = min(low[u], dfn[v]);
    if (cc > 1) // ...
}
   • 桥
int dfn[MAXN], low[MAXN], clk;
void init() { clk = 0; memset(dfn, 0, sizeof(dfn)); }
void tarjan(int u, int pa) {
    low[u] = dfn[u] = ++clk;
    int f = 0;
    for (int v : G[u]) {
        if (v == pa && ++f == 1) continue;
        if (!dfn[v]) {
             tarjan(v, u);
```

```
if (low[v] > dfn[u]) // ...
            low[u] = min(low[u], low[v]);
        } else low[u] = min(low[u], dfn[v]);
    }
}
   • 强连通分量缩点
int dfn[MAXN], low[MAXN], clk, tot, color[MAXN];
vector<int> scc[MAXN];
void init() { tot = clk = 0; memset(dfn, 0, sizeof dfn); }
void tarjan(int u) {
    static int st[MAXN], p;
    static bool in[MAXN];
    dfn[u] = low[u] = ++clk;
    st[p++] = u;
    in[u] = true;
    for (int v : G[u]) {
        if (!dfn[v]) {
            tarjan(v);
            low[u] = min(low[u], low[v]);
        } else if (in[v]) {
            low[u] = min(low[u], dfn[v]);
    if (dfn[u] == low[u]) {
        ++tot;
        for (;;) {
            int x = st[--p];
            in[x] = false;
            color[x] = tot;
            scc[tot].push_back(x);
            if (x == u) break;
    }
}

    2-SAT

// MAXN 开两倍
void two_sat() {
    for (int i = 1; i <= n * 2; i++) {</pre>
        if (!dfn[i]) tarjan(i);
    for (int i = 1; i <= n; i++) {</pre>
        if (color[i] == color[i + n]) {
            // impossible
    for (int i = 1; i <= n; i++) {</pre>
        if (color[i] < color[i + n]) {</pre>
            // select
    }
}
支配树
   • 有向无环图
// rt 是 G 中入度为 0 的点 (可能需要建超级源点)
int n, deg[MAXN], dep[MAXN], up[MAXN][22];
vector<int> G[MAXN], rG[MAXN], dt[MAXN];
```

```
bool topo(vector<int>& ans, int rt) {
    queue<int> q;
    q.push(rt);
    while (!q.empty()) {
        int u = q.front();
        q.pop();
        ans.push_back(u);
        for (int v : G[u]) {
             deg[v]--;
             if (deg[v] == 0) q.push(v);
        }
    }
    return ans.size() == n;
}
int lca(int u, int v) {
    if (dep[u] > dep[v]) swap(u, v);
    int t = dep[v] - dep[u];
    for (int i = 0; i < 22; i++) {</pre>
        if ((t >> i) & 1) v = up[v][i];
    if (u == v) return u;
    for (int i = 21; i >= 0; i--) {
        \textbf{if} \ (\texttt{up[u][i]} \ != \texttt{up[v][i]}) \ \{
            u = up[u][i];
             v = up[v][i];
        }
    }
    return up[u][0];
}
void go(int rt) {
    vector<int> a;
    topo(a, rt);
    dep[rt] = 1;
    for (int i = 1; i < a.size(); i++) {</pre>
        int u = a[i], pa = -1;
        for (int v : rG[u]) {
             pa = (pa == -1) ? v : lca(pa, v);
        dt[pa].push_back(u);
        dep[u] = dep[pa] + 1;
        up[u][0] = pa;
        for (int i = 1; i < 22; i++) {</pre>
             up[u][i] = up[up[u][i - 1]][i - 1];
    }
}
   • 一般有向图
vector<int> G[MAXN], rG[MAXN];
vector<int> dt[MAXN];
namespace tl {
    int pa[MAXN], dfn[MAXN], clk, rdfn[MAXN];
    int c[MAXN], best[MAXN], sdom[MAXN], idom[MAXN];
    void init(int n) {
        clk = 0;
        fill(c, c + n + \frac{1}{1}, -\frac{1}{1});
        fill(dfn, dfn + n + 1, 0);
        for (int i = 1; i <= n; i++) {</pre>
             dt[i].clear();
             sdom[i] = best[i] = i;
        }
```

```
}
void dfs(int u) {
    dfn[u] = ++clk;
     rdfn[clk] = u;
    for (int& v: G[u]) {
         if (!dfn[v]) {
              pa[v] = u;
               dfs(v);
         }
    }
}
int fix(int x) {
    if (c[x] == -1) return x;
     int& f = c[x], rt = fix(f);
     \textbf{if} \; (\mathsf{dfn}[\mathsf{sdom}[\mathsf{best}[\mathsf{x}]]] \; \mathsf{>} \; \mathsf{dfn}[\mathsf{sdom}[\mathsf{best}[\mathsf{f}]]]) \; \mathsf{best}[\mathsf{x}] \; \mathsf{=} \; \mathsf{best}[\mathsf{f}];
     return f = rt;
}
void go(int rt) {
     dfs(rt);
     for (int i = clk; i > 1; i--) {
         int x = rdfn[i], mn = clk + 1;
         for (int& u: rG[x]) {
              if (!dfn[u]) continue; // 可能不能到达所有点
               mn = min(mn, dfn[sdom[best[u]]]);
         c[x] = pa[x];
         dt[sdom[x] = rdfn[mn]].push_back(x);
         x = rdfn[i - 1];
         \quad \text{for (int& u: } dt[x]) \ \{
               fix(u);
               idom[u] = (sdom[best[u]] == x) ? x : best[u];
         dt[x].clear();
     for (int i = 2; i <= clk; i++) {</pre>
         int u = rdfn[i];
         if (idom[u] != sdom[u]) idom[u] = idom[idom[u]];
         dt[idom[u]].push_back(u);
    }
}
```

字符串

哈希

}

```
// open hack 不要用哈希
using ull = unsigned long long;

const int x = 135, p1 = 1e9 + 7, p2 = 1e9 + 9;
const ull mask32 = ~(0u);

ull xp1[MAXN], xp2[MAXN];

void init_xp() {
    xp1[0] = xp2[0] = 1;
    for (int i = 1; i < MAXN; i++) {
        xp1[i] = xp1[i - 1] * x % p1;
        xp2[i] = xp2[i - 1] * x % p2;
    }
}</pre>
```

```
struct Hash {
    vector<ull> h;
    Hash(): h(1) {}
    void add(const string& s) {
        ull res1 = h.back() >> 32;
        ull res2 = h.back() & mask32;
        for (char c : s) {
            res1 = (res1 * x + c) % p1;
            res2 = (res2 * x + c) % p2;
            h.push_back((res1 << 32) | res2);
        }
    }
    ull get(int l, int r) {
        г++;
        int len = r - l;
        ull l1 = h[l] >> 32, r1 = h[r] >> 32;
        ull 12 = h[1] \& mask32, r2 = h[r] \& mask32;
        ull res1 = (r1 - l1 * xp1[len] % p1 + p1) % p1;
        ull res2 = (r2 - l2 * xp2[len] % p2 + p2) % p2;
        return (res1 << 32) | res2;</pre>
    }
};
   • 二维哈希
const ll basex = 239, basey = 241, p = 998244353;
ll pwx[MAXN], pwy[MAXN];
void init_xp() {
    pwx[0] = pwy[0] = 1;
    for (int i = 1; i < MAXN; i++) {</pre>
        pwx[i] = pwx[i - 1] * basex % p;
        pwy[i] = pwy[i - 1] * basey % p;
    }
}
struct Hash2D {
    vector<vector<ll> > h;
    Hash2D(const\ vector< vector< int> > a, int n, int m) : h(n + 1, vector< ll>(m + 1)) {
        for (int i = 0; i < n; i++) {</pre>
            ll s = 0;
            for (int j = 0; j < m; j++) {
                s = (s * basey + a[i][j] + 1) \% p;
                h[i + 1][j + 1] = (h[i][j + 1] * basex + s) % p;
            }
        }
    }
    ll get(int x, int y, int xx, int yy) {
        ++xx; ++yy;
        int dx = xx - x, dy = yy - y;
        ll res = h[xx][yy]
            - h[x][yy] * pwx[dx]
            - h[xx][y] * pwy[dy]
            + h[x][y] * pwx[dx] % p * pwy[dy];
        return (res % p + p) % p;
    }
};
```

Manacher

```
// "aba" => "#a#b#a#"
string make(string& s) {
    string t = "#";
    for (int i = 0; i < s.size(); i++) {</pre>
        t.push_back(s[i]);
        t.push_back('#');
    return t;
}
void manacher(string& s, vector<int>& d) {
    int n = s.size();
    d.resize(n);
    for (int i = 0, l = 0, r = -1; i < n; i++) {
        int k = (i > r) ? 1 : min(d[l + r - i], r - i);
        while (i - k \ge 0 \&\& i + k < n \&\& s[i - k] == s[i + k]) k++;
        d[i] = --k;
        if (i + k > r) {
            l = i - k;
            r = i + k;
        }
    }
}
KMP
// 前缀函数 (每一个前缀的最长公共前后缀)
void get_pi(const string& s, vector<int>& a) {
    int n = s.size(), j = 0;
    a.resize(n);
    for (int i = 1; i < n; i++) {</pre>
        while (j \&\& s[j] != s[i]) j = a[j - 1];
        if (s[j] == s[i]) j++;
        a[i] = j;
    }
}
void kmp(const string& s, vector<int>& a, const string& t) {
    int j = 0;
    for (int i = 0; i < t.size(); i++) {</pre>
        while (j && s[j] != t[i]) j = a[j - 1];
        if (s[j] == t[i]) j++;
        if (j == s.size()) {
            // ...
            j = a[j - 1]; // 允许重叠匹配 j = 0 不允许
        }
    }
}
// Z 函数 (每一个后缀和该字符串的最长公共前缀)
void get_z(const string& s, vector<int>& z) {
    int n = s.size(), l = 0, r = 0;
    z.resize(n);
    for (int i = 1; i < n; i++) {</pre>
        if (i <= r) z[i] = min(r - i + 1, z[i - l]);</pre>
        while (i + z[i] < n \&\& s[z[i]] == s[i + z[i]]) z[i]++;
        if (i + z[i] - 1 > r) {
            l = i;
            r = i + z[i] - 1;
        }
    }
}
```

最小表示法

```
int get(const string& s) {
    int k = 0, i = 0, j = 1, n = s.size();
    while (k < n && i < n && j < n) {
        if (s[(i + k) % n] == s[(j + k) % n]) {
           k++;
        } else {
            s[(i + k) % n] > s[(j + k) % n] ? i = i + k + 1 : j = j + k + 1;
            if (i == j) i++;
            k = 0;
        }
    }
    return min(i, j);
}
Trie
// 01 Trie
struct Trie {
    int t[31 * MAXN][2], sz;
    void init() {
        memset(t, 0, 2 * (sz + 2) * sizeof(int));
        sz = 1;
    }
    void insert(int x) {
        int p = 0;
        for (int i = 30; i >= 0; i--) {
            bool d = (x >> i) & 1;
            if (!t[p][d]) t[p][d] = sz++;
            p = t[p][d];
    }
};
// 正常 Trie
struct Trie {
    int t[MAXN][26], sz, cnt[MAXN];
    void init() {
        memset(t, 0, 26 * (sz + 2) * sizeof(int));
        memset(cnt, 0, (sz + 2) * sizeof(int));
        sz = 1;
    }
    void insert(const string& s) {
        int p = 0;
        for (char c : s) {
            int d = c - 'a';
            if (!t[p][d]) t[p][d] = sz++;
            p = t[p][d];
        }
        cnt[p]++;
    }
};
AC 自动机
struct ACA {
    int t[MAXN][26], sz, fail[MAXN], nxt[MAXN], cnt[MAXN];
    void init() {
```

```
memset(t, 0, 26 * (sz + 2) * sizeof(int));
        memset(fail, 0, (sz + 2) * sizeof(int));
        memset(nxt, 0, (sz + 2) * sizeof(int));
        memset(cnt, 0, (sz + 2) * sizeof(int));
        sz = 1;
   }
    void insert(const string& s) {
        int p = 0;
        for (char c : s) {
            int d = c - 'a';
            if (!t[p][d]) t[p][d] = sz++;
            p = t[p][d];
        }
        cnt[p]++;
   }
    void build() {
        queue<int> q;
        for (int i = 0; i < 26; i++) {</pre>
            if (t[0][i]) q.push(t[0][i]);
        while (!q.empty()) {
            int u = q.front();
            q.pop();
            for (int i = 0; i < 26; i++) {</pre>
                int& v = t[u][i];
                if (v) {
                    fail[v] = t[fail[u]][i];
                    nxt[v] = cnt[fail[v]] ? fail[v] : nxt[fail[v]];
                    q.push(v);
                } else {
                    v = t[fail[u]][i];
                }
            }
       }
   }
};
```

回文自动机

```
// WindJ0Y
struct Palindromic_Tree {
   static constexpr int MAXN = 300005;
   static constexpr int N = 26;
   int next[MAXN][N]; // next 指针, next 指针和字典树类似, 指向的串为当前串两端加上同一个字符构成
   int fail[MAXN]; // fail 指针, 失配后跳转到 fail 指针指向的节点
   int cnt[MAXN]; // 表示节点 i 表示的本质不同的串的个数 aftre count()
   int num[MAXN]; // 表示以节点 i 表示的最长回文串的最右端点为回文串结尾的回文串个数。
   int len[MAXN]; // len[i] 表示节点 i 表示的回文串的长度
   int lcnt[MAXN];
   int S[MAXN]; // 存放添加的字符
   int last; // 指向上一个字符所在的节点, 方便下一次 add
   int n; // 字符数组指针
   int p; // 节点指针
   int newnode(int l, int vc) { // 新建节点
      for (int i = 0; i < N; ++i) next[p][i] = 0;</pre>
      cnt[p] = 0;
      num[p] = 0;
      len[p] = l;
      lcnt[p] = vc;
      return p++;
   }
```

```
void init() { // 初始化
       p = 0;
       newnode(0, 0);
       newnode(-1, 0);
       last = 0;
       n = 0:
       S[n] = -1; // 开头放一个字符集中没有的字符,减少特判
       fail[0] = 1;
   }
   int get_fail(int x) { // 和 KMP 一样, 失配后找一个尽量最长的
       while (S[n - len[x] - 1] != S[n]) x = fail[x];
       return x;
   }
   void add(int c) {
       S[++n] = c;
       int cur = get_fail(last); // 通过上一个回文串找这个回文串的匹配位置
       if (!next[cur][c]) { // 如果这个回文串没有出现过,说明出现了一个新的本质不同的回文串
          int now = newnode(len[cur] + 2, lcnt[cur] | (1 << c)); // 新建节点
          fail[now] = next[get_fail(fail[cur])][c]; // 和 AC 自动机一样建立 fail 指针,以便失配后跳转
          next[cur][c] = now;
          num[now] = num[fail[now]] + 1;
       }
       last = next[cur][c];
       cnt[last]++;
   }
   void count() {
       for (int i = p - 1; i >= 0; --i) cnt[fail[i]] += cnt[i];
       // 父亲累加儿子的 cnt, 因为如果 fail[v]=u, 则 u 一定是 v 的子回文串
} pt;
```

后缀数组

```
// 下标从 1 开始
// sa[i]: 排名为 i 的后缀位置
// rk[i]: 第 i 个后缀的排名
// ht[i]: LCP(sa[i], sa[i - 1])
struct SA {
    int n, m;
   vector<int> a, d, sa, rk, ht;
    void rsort() {
        vector<int> c(m + 1);
        for (int i = 1; i <= n; i++) c[rk[d[i]]]++;</pre>
        for (int i = 1; i <= m; i++) c[i] += c[i - 1];</pre>
        for (int i = n; i; i--) sa[c[rk[d[i]]]--] = d[i];
    }
    SA(const string  s) : n(s.size()), m(128), a(n + 1), d(n + 1), sa(n + 1), rk(n + 1), ht(n + 1) {
        for (int i = 1; i <= n; i++) { rk[i] = a[i] = s[i - 1]; d[i] = i; }</pre>
        rsort();
        for (int j = 1, i, k; k < n; m = k, j <<= 1) {
            for (i = n - j + 1, k = 0; i \le n; i++) d[++k] = i;
            for (i = 1; i <= n; i++) if (sa[i] > j) d[++k] = sa[i] - j;
            rsort(); swap(rk, d); rk[sa[1]] = k = 1;
            for (i = 2; i <= n; i++) {</pre>
                rk[sa[i]] = d[sa[i]] == d[sa[i - 1]] & d[sa[i] + j] == d[sa[i - 1] + j]) ? k : ++k;
            }
        int j, k = 0;
        for (int i = 1; i <= n; ht[rk[i++]] = k) {</pre>
```

```
for (k ? k-- : k, j = sa[rk[i] - 1]; a[i + k] == a[j + k]; ++k);
}
};
```

数学

GCD & LCM

```
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }
```

快速乘 & 快速幂

```
// 模数爆 int 时使用
ll mul(ll a, ll b, ll p) {
    ll ans = 0;
    for (a %= p; b; b >>= 1) {
        if (b & 1) ans = (ans + a) % p;
        a = (a << 1) \% p;
    return ans;
}
// 0(1)
ll mul(ll a, ll b, ll p) {
    return (ll)(__int128(a) * b % p);
}
ll qk(ll a, ll b, ll p) {
    ll ans = 1 \% p;
    for (a %= p; b; b >>= 1) {
       if (b & 1) ans = ans * a % p;
        a = a * a % p;
    }
    return ans;
}
// 十进制快速幂
ll qk(ll a, const string& b, ll p) {
    ll ans = 1;
    for (int i = b.size() - 1; i >= 0; i--) {
        ans = ans * qk(a, b[i] - '0', p) \% p;
        a = qk(a, 10, p);
    }
    return ans;
}
```

矩阵快速幂

```
const int M_SZ = 3;
using Mat = array<array<ll, M_SZ>, M_SZ>;
#define rep2 for (int i = 0; i < M_SZ; i++) for (int j = 0; j < M_SZ; j++)
void zero(Mat& a) { rep2 a[i][j] = 0; }
void one(Mat& a) { rep2 a[i][j] = (i == j); }

Mat mul(const Mat& a, const Mat& b, ll p) {
    Mat ans; zero(ans);
    rep2 if (a[i][j]) for (int k = 0; k < M_SZ; k++) {</pre>
```

```
(ans[i][k] += a[i][j] * b[j][k]) %= p;
   }
   return ans;
}
Mat qk(Mat a, ll b, ll p) {
   Mat ans; one(ans);
   for (; b; b >>= 1) {
       if (b & 1) ans = mul(a, ans, p);
        a = mul(a, a, p);
   }
    return ans;
}
// 十进制快速幂
Mat qk(Mat a, const string& b, ll p) {
   Mat ans; one(ans);
   for (int i = b.size() - 1; i >= 0; i--) {
        ans = mul(qk(a, b[i] - '0', p), ans, p);
        a = qk(a, 10, p);
    return ans;
}
#undef rep2
素数判断
bool isprime(int x) {
   if (x < 2) return false;
   for (int i = 2; i * i <= x; i++) {</pre>
       if (x % i == 0) return false;
   return true;
}
// O(logn)
// 前置: 快速乘、快速幂
// int 范围只需检查 2, 7, 61
bool Rabin_Miller(ll a, ll n) {
   if (n == 2 || a >= n) return 1;
   if (n == 1 || !(n & 1)) return 0;
   ll d = n - 1;
   while (!(d & 1)) d >>= 1;
   ll t = qk(a, d, n);
    while (d != n - 1 && t != 1 && t != n - 1) {
       t = mul(t, t, n);
        d <<= 1;
   }
    return t == n - 1 || d & 1;
}
bool isprime(ll n) {
    static vector<ll> t = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
    if (n <= 1) return false;</pre>
    for (ll k : t) if (!Rabin_Miller(k, n)) return false;
    return true;
}
线性筛
// 注意 0 和 1 不是素数
bool vis[MAXN];
int prime[MAXN];
```

```
void get_prime() {
    int tot = 0;
    for (int i = 2; i < MAXN; i++) {</pre>
        if (!vis[i]) prime[tot++] = i;
        for (int j = 0; j < tot; j++) {</pre>
            int d = i * prime[j];
            if (d >= MAXN) break;
            vis[d] = true;
            if (i % prime[j] == 0) break;
        }
    }
}
// 最小素因子
bool vis[MAXN];
int spf[MAXN], prime[MAXN];
void get_spf() {
    int tot = 0;
    for (int i = 2; i < MAXN; i++) {</pre>
        if (!vis[i]) {
            prime[tot++] = i;
            spf[i] = i;
        for (int j = 0; j < tot; j++) {</pre>
            int d = i * prime[j];
            if (d >= MAXN) break;
            vis[d] = true;
            spf[d] = prime[j];
            if (i % prime[j] == 0) break;
        }
    }
}
// 欧拉函数
bool vis[MAXN];
int phi[MAXN], prime[MAXN];
void get_phi() {
    int tot = 0;
    phi[1] = 1;
    for (int i = 2; i < MAXN; i++) {</pre>
        if (!vis[i]) {
            prime[tot++] = i;
            phi[i] = i - 1;
        for (int j = 0; j < tot; j++) {</pre>
            int d = i * prime[j];
            if (d >= MAXN) break;
            vis[d] = true;
            if (i % prime[j] == 0) {
                phi[d] = phi[i] * prime[j];
                break;
            else phi[d] = phi[i] * (prime[j] - 1);
    }
}
// 莫比乌斯函数
bool vis[MAXN];
int mu[MAXN], prime[MAXN];
void get_mu() {
    int tot = 0;
```

```
mu[1] = 1;
    for (int i = 2; i < MAXN; i++) {</pre>
        if (!vis[i]) {
            prime[tot++] = i;
            mu[i] = -1;
        for (int j = 0; j < tot; j++) {
            int d = i * prime[j];
            if (d >= MAXN) break;
            vis[d] = true;
            if (i % prime[j] == 0) {
                mu[d] = 0;
                break;
            }
            else mu[d] = -mu[i];
        }
    }
}
区间筛
// a, b <= 1e13, b - a <= 1e6
bool vis_small[MAXN], vis_big[MAXN];
ll prime[MAXN];
int tot = 0;
void get_prime(ll a, ll b) {
    ll c = ceil(sqrt(b));
    for (ll i = 2; i <= c; i++) {</pre>
        if (!vis_small[i]) {
            for (ll j = i * i; j <= c; j += i) {</pre>
                vis_small[j] = 1;
            for (ll j = max(i, (a + i - 1) / i) * i; j <= b; j += i) {</pre>
                vis_big[j - a] = 1;
            }
        }
    for (int i = max(OLL, 2 - a); i <= b - a; i++) {</pre>
        if (!vis_big[i]) prime[tot++] = i + a;
    }
}
找因数
// 0(sqrt(n))
vector<int> getf(int x) {
    vector<int> v;
    for (int i = 1; i * i <= x; i++) {</pre>
        if (x % i == 0) {
            v.push_back(i);
            if (x / i != i) v.push_back(x / i);
        }
    sort(v.begin(), v.end());
    return v;
}
找质因数
// O(sqrt(n)), 无重复
vector<int> getf(int x) {
```

```
vector<int> v;
    for (int i = 2; i * i <= x; i++) {</pre>
        if (x % i == 0) {
            v.push_back(i);
            while (x \% i == 0) x /= i;
        }
    }
    if (x != 1) v.push_back(x);
    return v;
}
// O(sqrt(n)), 有重复
vector<int> getf(int x) {
    vector<int> v;
    for (int i = 2; i * i <= x; i++) {</pre>
        while (x % i == 0) {
            v.push_back(i);
            x /= i;
        }
    if (x != 1) v.push_back(x);
    return v;
}
// 前置: 线性筛
// O(logn), 无重复
vector<int> getf(int x) {
    vector<int> v;
    while (x > 1) {
       int p = spf[x];
        v.push_back(p);
       while (x % p == 0) x /= p;
    }
    return v;
}
// O(logn), 有重复
vector<int> getf(int x) {
    vector<int> v;
    while (x > 1) {
        int p = spf[x];
        while (x \% p == 0) {
            v.push_back(p);
            x /= p;
    }
    return v;
}
Pollard-Rho
mt19937_64 mt_rand(time(0));
ll pollard_rho(ll n, ll c) {
    ll x = mt_rand() % (n - 1) + 1, y = x;
    auto f = [&](ll v) {
        ll t = mul(v, v, n) + c;
        return t < n ? t : t - n;</pre>
    };
    for (;;) {
        x = f(x); y = f(f(y));
        if (x == y) return n;
        ll d = gcd(abs(x - y), n);
        if (d != 1) return d;
    }
```

```
}
vector<ll> getf(ll x) {
    vector<ll> v;
    if (x <= 1) return v;</pre>
    function < void(ll) > f = [\&](ll n) {
        if (n == 4) { v.push_back(2); v.push_back(2); return; }
        if (isprime(n)) { v.push_back(n); return; }
        ll p = n, c = 19260817;
        while (p == n) p = pollard_rho(n, --c);
        f(p); f(n / p);
    };
    f(x);
    return v;
}
欧拉函数
// 前置: 找质因数 (无重复)
int phi(int x) {
    int ret = x;
    vector<int> v = getf(x);
    for (int f : v) ret = ret / f * (f - 1);
    return ret;
}
// O(nloglogn)
int phi[MAXN];
void get_phi() {
    phi[1] = 1;
    for (int i = 2; i < MAXN; i++) {</pre>
        if (!phi[i]) {
            for (int j = i; j < MAXN; j += i) {
                if (!phi[j]) phi[j] = j;
                phi[j] = phi[j] / i * (i - 1);
            }
        }
    }
}
EXGCD
// ax + by = gcd(a, b)
ll exgcd(ll a, ll b, ll &x, ll &y) {
    if (b == 0) {
       x = 1;
        y = 0;
        return a;
    ll d = exgcd(b, a \% b, y, x);
    y -= a / b * x;
    return d;
}
类欧几里得
// f(a,b,c,n) = \sum (i=[0,n]) (ai+b)/c
// g(a,b,c,n) = \sum(i=[0,n]) i*((ai+b)/c)
// h(a,b,c,n) = \sum(i=[0,n]) ((ai+b)/c)^2
ll f(ll a, ll b, ll c, ll n);
ll g(ll a, ll b, ll c, ll n);
```

```
ll h(ll a, ll b, ll c, ll n);
ll f(ll a, ll b, ll c, ll n) {
    if (n < 0) return 0;</pre>
    ll m = (a * n + b) / c;
    if (a >= c || b >= c) {
        return (a / c) * n * (n + 1) / 2
        + (b / c) * (n + 1)
        + f(a % c, b % c, c, n);
    } else {
        return n * m - f(c, c - b - 1, a, m - 1);
}
ll g(ll a, ll b, ll c, ll n) {
    if (n < 0) return 0;</pre>
    ll m = (a * n + b) / c;
    if (a >= c || b >= c) {
        return (a / c) * n * (n + 1) * (2 * n + 1) / 6
        + (b / c) * n * (n + 1) / 2
        + g(a % c, b % c, c, n);
    } else {
        return (n * (n + 1) * m
        - f(c, c - b - 1, a, m - 1)
        - h(c, c - b - 1, a, m - 1)) / 2;
    }
}
ll h(ll a, ll b, ll c, ll n) {
    if (n < 0) return 0;</pre>
    ll m = (a * n + b) / c;
    if (a >= c || b >= c) {
        return (a / c) * (a / c) * n * (n + 1) * (2 * n + 1) / 6
        + (b / c) * (b / c) * (n + 1)
        + (a / c) * (b / c) * n * (n + 1)
        + h(a % c, b % c, c, n)
        + 2 * (a / c) * g(a % c, b % c, c, n)
        + 2 * (b / c) * f(a % c, b % c, c, n);
    } else {
        return n * m * (m + 1)
        - 2 * g(c, c - b - 1, a, m - 1)
        - 2 * f(c, c - b - 1, a, m - 1)
        - f(a, b, c, n);
    }
}
逆元
ll inv(ll x) { return qk(x, MOD - 2, MOD); }
// EXGCD
// gcd(a, p) = 1 时有逆元
ll inv(ll a, ll p) {
    ll x, y;
    ll d = exgcd(a, p, x, y);
    if (d == 1) return (x % p + p) % p;
    return -1;
}
// 逆元打表
ll inv[MAXN];
void init_inv() {
    inv[1] = 1;
    for (int i = 2; i < MAXN; i++) {</pre>
```

```
inv[i] = 1LL * (MOD - MOD / i) * inv[MOD % i] % MOD;
}
```

组合数

```
// 组合数打表
ll C[MAXN][MAXN];
void initC() {
    C[0][0] = 1;
    for (int i = 1; i < MAXN; i++) {</pre>
        C[i][0] = 1;
        for (int j = 1; j <= i; j++) {</pre>
            C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % MOD;
    }
}
// 快速组合数取模
// MAXN 开 2 倍上限
ll fac[MAXN], ifac[MAXN];
void init_inv() {
    fac[0] = 1;
    for (int i = 1; i < MAXN; i++) {</pre>
        fac[i] = fac[i - 1] * i % MOD;
    ifac[MAXN - 1] = qk(fac[MAXN - 1], MOD - 2, MOD);
    for (int i = MAXN - 2; i >= 0; i--) {
        ifac[i] = ifac[i + 1] * (i + 1);
        ifac[i] %= MOD;
    }
}
ll C(int n, int m) {
    if (n < m \mid \mid m < 0) return 0;
    return fac[n] * ifac[m] % MOD * ifac[n - m] % MOD;
// Lucas
ll C(ll n, ll m) {
    if (n < m \mid | m < 0) return 0;
    if (n < MOD && m < MOD) return fac[n] * ifac[m] % MOD * ifac[n - m] % MOD;
    return C(n / MOD, m / MOD) * C(n % MOD, m % MOD) % MOD;
}
// 可重复组合数
ll H(int n, int m) { return C(n + m - 1, m); }
康托展开
```

```
// 需要预处理阶乘
int cantor(vector<int>& s) {
    int n = s.size(), ans = 0;
    for (int i = 0; i < n - 1; i++) {
        int cnt = 0;
        for (int j = i + 1; j < n; j++) {
            if (s[j] < s[i]) cnt++;
        }
        ans += cnt * fac[n - i - 1];
    }
    return ans + 1;
```

```
}
vector<int> inv_cantor(int x, int n) {
    vector<int> ans(n), rk(n);
    iota(rk.begin(), rk.end(), 1);
    for (int i = 0; i < n; i++) {</pre>
        int t = x / fac[n - i - 1];
        x %= fac[n - i - 1];
        ans[i] = rk[t];
        for (int j = t; rk[j] < n; j++) {</pre>
            rk[j] = rk[j + 1];
    }
    return ans;
}
高斯消元
// n 方程个数, m 变量个数, a 是 n*(m+1) 的增广矩阵, free 是否为自由变量
// 返回自由变量个数, -1 无解
const double EPS = 1e-8;
const int MAXN = 2000 + 7;
double x[MAXN];
bool free_x[MAXN];
int sgn(double x) { return x < -EPS ? -1 : x > EPS; }
int gauss(vector<vector<double> >& a, int n, int m) {
    fill(x, x + m + 1, 0);
    fill(free_x, free_x + m + 1, true);
    // 求上三角矩阵
    int r = 0, c = 0;
    while (r < n \&\& c < m) {
        int mr = r;
        for (int i = r + 1; i < n; i++) {</pre>
           if (abs(a[i][c]) > abs(a[mr][c])) mr = i;
        if (mr != r) swap(a[r], a[mr]);
        if (!sgn(a[r][c])) {
            a[r][c] = 0;
            ++c:
            continue;
        for (int i = r + 1; i < n; i++) {</pre>
            if (a[i][c]) {
               double t = a[i][c] / a[r][c];
                for (int j = c; j \le m; j++) a[i][j] -= a[r][j] * t;
            }
        }
        ++r, ++c;
    for (int i = r; i < n; i++) {</pre>
        if (sgn(a[i][m])) return -1;
    }
    // 求解 x0, x1, ..., xm-1
    if (r < m) {
        for (int i = r - 1; i >= 0; i--) {
            int fcnt = 0, k = -1;
            for (int j = 0; j < m; j++) {
                if (sgn(a[i][j]) && free_x[j]) {
                    ++fcnt;
```

```
k = j;
                }
            if (fcnt > 0) continue;
            double s = a[i][m];
            for (int j = 0; j < m; j++) {
               if (j != k) s -= a[i][j] * x[j];
            x[k] = s / a[i][k];
            free_x[k] = 0;
        return m - r;
    for (int i = m - 1; i >= 0; i--) {
        double s = a[i][m];
        for (int j = i + 1; j < m; j++) s -= a[i][j] * x[j];
       x[i] = s / a[i][i];
    }
    return 0;
}
线性基
ll a[65];
void insert(ll x) {
    for (int i = 60; i >= 0; i--) {
        if ((x >> i) & 1) {
            if (a[i]) x ^= a[i];
            else { a[i] = x; break; }
    }
}
中国剩余定理
// 前置: exgcd
ll excrt(vector<ll>& m, vector<ll>& r) {
    ll M = m[0], R = r[0], x, y, d;
    for (int i = 1; i < m.size(); i++) {</pre>
        d = exgcd(M, m[i], x, y);
        if ((r[i] - R) % d) return -1;
        x = mul(x, (r[i] - R) / d, m[i] / d);
        R += x * M;
       M = M / d * m[i];
        R %= M;
    return R >= 0 ? R : R + M;
}
原根
// 前置: 找质因数 (无重复)
ll primitive_root(ll p) {
    vector<ll> facs = getf(p - 1);
    for (ll i = 2; i < p; i++) {</pre>
        bool flag = true;
        for (ll x : facs) {
            if (qk(i, (p - 1) / x, p) == 1) {
                flag = false;
                break;
            }
```

```
if (flag) return i;
    return -1;
}
离散对数
// a ^ x = b (mod p), 要求模数为素数
ll BSGS(ll a, ll b, ll p) {
    a %= p;
    if (!a && !b) return 1;
    if (!a) return -1;
    map<ll, ll> mp;
    ll m = ceil(sqrt(p)), v = 1;
    for (int i = 1; i <= m; i++) {</pre>
        (v *= a) %= p;
        mp[v * b % p] = i;
    }
    ll vv = v;
    for (int i = 1; i <= m; i++) {</pre>
       auto it = mp.find(vv);
        if (it != mp.end()) return i * m - it->second;
        (vv *= v) %= p;
    }
    return -1;
}
// 模数可以非素数
ll exBSGS(ll a, ll b, ll p) {
    a %= p; b %= p;
    if (a == 0) return b > 1? -1: (b == 0 && p != 1);
    ll c = 0, q = 1;
    for (;;) {
        ll g = gcd(a, p);
        if (g == 1) break;
        if (b == 1) return c;
        if (b % g) return -1;
        ++c; b /= g; p /= g; q = a / g * q % p;
    map<ll, ll> mp;
    ll m = ceil(sqrt(p)), v = 1;
    for (int i = 1; i <= m; i++) {</pre>
        (v *= a) %= p;
```

二次剩余

}

}

}

return -1;

// 已知 x, b, p, 求 a
ll SGSB(ll x, ll b, ll p) {
 ll g = primitive_root(p);

mp[v * b % p] = i;

(q *= v) %= p;
auto it = mp.find(q);

for (int i = 1; i <= m; i++) {</pre>

return qk(g, BSGS(qk(g, x, p), b, p), p);

if (it != mp.end()) return i * m - it->second + c;

```
ll Quadratic_residue(ll a) {
    if (a == 0) return 0;
    ll b;
    do b = mt_rand() % MOD;
    while (qk(b, (MOD - 1) >> 1, MOD) != MOD - 1);
    ll s = MOD - 1, t = 0, f = 1;
    while (!(s & 1)) s >>= 1, t++, f <<= 1;
    t--, f >>= 1;
    ll x = qk(a, (s + 1) >> 1, MOD), inv_a = qk(a, MOD - 2, MOD);
    while (t) {
        f >>= 1;
        if (qk(inv_a * x % MOD * x % MOD, f, MOD) != 1) {
            (x *= qk(b, s, MOD)) %= MOD;
        t--, s <<= 1;
    }
    if (x * x % MOD != a) return -1;
    return min(x, MOD - x);
}
FFT & NTT & FWT
   • FFT
const double PI = acos(-1);
using cp = complex<double>;
int n1, n2, n, k, rev[MAXN];
void fft(vector<cp>& a, int p) {
    for (int i = 0; i < n; i++) if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
    for (int h = 1; h < n; h <<= 1) {</pre>
        cp wn(cos(PI / h), p * sin(PI / h));
        for (int i = 0; i < n; i += (h << 1)) {</pre>
            cp w(1, 0);
            for (int j = 0; j < h; j++, w *= wn) {
                cp x = a[i + j], y = w * a[i + j + h];
                a[i + j] = x + y, a[i + j + h] = x - y;
            }
        }
    if (p == -1) for (int i = 0; i < n; i++) a[i] /= n;
}
void go(vector<cp>& a, vector<cp>& b) {
    n = 1, k = 0;
    while (n <= n1 + n2) n <<= 1, k++;</pre>
    a.resize(n); b.resize(n);
    for (int i = 0; i < n; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (k - 1));
    fft(a, 1); fft(b, 1);
    for (int i = 0; i < n; i++) a[i] *= b[i];</pre>
    fft(a, -1);
}

    NTT

const int MOD = 998244353, G = 3, IG = 332748118;
int n1, n2, n, k, rev[MAXN];
void ntt(vector<ll>& a, int p) {
    for (int i = 0; i < n; i++) if (i < rev[i]) swap(a[i], a[rev[i]]);
    for (int h = 1; h < n; h <<= 1) {</pre>
        ll wn = qk(p == 1 ? G : IG, (MOD - 1) / (h << 1), MOD);
        for (int i = 0; i < n; i += (h << 1)) {</pre>
            ll w = 1;
```

```
for (int j = 0; j < h; j++, (w *= wn) %= MOD) {
                ll x = a[i + j], y = w * a[i + j + h] % MOD;
                a[i + j] = (x + y) \% MOD, a[i + j + h] = (x - y + MOD) \% MOD;
            }
        }
    }
    if (p == -1) {
        ll ninv = qk(n, MOD - 2, MOD);
        for (int i = 0; i < n; i++) (a[i] *= ninv) %= MOD;</pre>
    }
}
void go(vector<ll>& a, vector<ll>& b) {
    n = 1, k = 0;
    while (n <= n1 + n2) n <<= 1, k++;
    a.resize(n); b.resize(n);
    for (int i = 0; i < n; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (k - 1));
    ntt(a, 1); ntt(b, 1);
    for (int i = 0; i < n; i++) (a[i] *= b[i]) %= MOD;</pre>
    ntt(a, -1);
}
   FWT
void AND(ll& a, ll& b) { a += b; }
void rAND(ll& a, ll& b) { a -= b; }
void OR(ll& a, ll& b) { b += a; }
void rOR(ll& a, ll& b) { b -= a; }
void XOR(ll& a, ll& b) {
    ll x = a, y = b;
    a = (x + y) \% MOD;
    b = (x - y + MOD) \% MOD;
void rXOR(ll& a, ll& b) {
    static ll inv2 = (MOD + 1) / 2;
    ll x = a, y = b;
    a = (x + y) * inv2 % MOD;
    b = (x - y + MOD) * inv2 % MOD;
}
\textbf{template}{<}\textbf{class} \ \top{>}
void fwt(vector<ll>& a, int n, T f) {
    for (int d = 1; d < n; d <<= 1) {</pre>
        for (int i = 0; i < n; i += (d << 1)) {</pre>
            for (int j = 0; j < d; j++) {
                f(a[i + j], a[i + j + d]);
        }
    }
}
自适应 Simpson 积分
double simpson(double l, double r) {
    double c = (l + r) / 2;
    return (f(l) + 4 * f(c) + f(r)) * (r - l) / 6;
}
double asr(double l, double r, double eps, double S) {
```

double mid = (l + r) / 2;

double L = simpson(l, mid), R = simpson(mid, r);

if (fabs(L + R - S) < 15 * eps) return L + R + (L + R - S) / 15;
return asr(l, mid, eps / 2, L) + asr(mid, r, eps / 2, R);</pre>

```
}
double asr(double l, double r) { return asr(l, r, EPS, simpson(l, r)); }
BM 线性递推
namespace BerlekampMassey {
    using V = vector<ll>;
    void up(ll & a, ll b) { (a += b) %= MOD; }
    V mul(const V& a, const V& b, const V& m, int k) {
       V r(2 * k - 1);
       for (int i = 0; i < k; i++)</pre>
            for (int j = 0; j < k; j++)
                up(r[i + j], a[i] * b[j]);
        for (int i = k - 2; i >= 0; i--) {
            for (int j = 0; j < k; j++)
                up(r[i + j], r[i + k] * m[j]);
            r.pop_back();
        }
        return r;
   }
    V pow(ll n, const V& m) {
        int k = (int)m.size() - 1;
        assert(m[k] == -1 || m[k] == MOD - 1);
        V r(k), x(k);
        \Gamma[0] = x[1] = 1;
        for (; n; n >>= 1, x = mul(x, x, m, k))
            if (n & 1) r = mul(x, r, m, k);
        return r:
   }
    ll go(const V& a, const V& x, ll n) {
       // a: (-1, a1, a2, ..., ak).reverse
        // x: x1, x2, ..., xk
        // x[n] = sum[a[i]*x[n-i],{i,1,k}]
       int k = (int)a.size() - 1;
       if (n \le k) return x[n - 1];
       if (a.size() == 2) return x[0] * qk(a[0], n - 1, MOD) % MOD;
        V r = pow(n - 1, a);
       ll ans = 0;
       for (int i = 0; i < k; i++) up(ans, r[i] * x[i]);
        return (ans + MOD) % MOD;
    V BM(const V& x) {
```

V C{-1}, B{-1};

ll d = 0;

V T = C;

return C;

}

ll L = 0, m = 1, b = 1;

for (int n = 0; $n < (int)x.size(); n++) {$

ll c = MOD - d * inv(b, MOD) % MOD;

if (2 * L > n) { ++m; continue; }
L = n + 1 - L; B.swap(T); b = d; m = 1;

reverse(C.begin(), C.end());

if (d == 0) { ++m; continue; }

for (int i = 0; $i \le L$; i++) up(d, C[i] * x[n - i]);

for (int i = 0; i < (int)B.size(); i++) up(C[i + m], c * B[i]);</pre>

C.resize(max(C.size(), size_t(B.size() + m)));

拉格朗日插值

```
// 求 f(k) 的值, O(n^2)
ll La(const vector<pair<ll, ll> >& v, ll k) {
    ll ret = 0;
    for (int i = 0; i < v.size(); i++) {</pre>
        ll up = v[i].second % MOD, down = 1;
        for (int j = 0; j < v.size(); j++) {</pre>
            if (i != j) {
                (up *= (k - v[j].first) % MOD) %= MOD;
                (down *= (v[i].first - v[j].first) % MOD) %= MOD;
        }
        if (up < 0) up += MOD;
        if (down < 0) down += MOD;
        (ret += up * inv(down) % MOD) %= MOD;
    }
    return ret;
}
// 求 f(x) 的系数表达式, O(n * 2^n) (适合打表)
vector<double> La(vector<pair<double, double> > v) {
    int n = v.size(), t;
    vector<double> ret(n);
    double p, q;
    for (int i = 0; i < n; i++) {</pre>
        p = v[i].second;
        for (int j = 0; j < n; j++) {</pre>
            p /= (i == j) ? 1 : (v[i].first - v[j].first);
        for (int j = 0; j < (1 << n); j++) {
            q = 1, t = 0;
            for (int k = 0; k < n; k++) {
                if (i == k) continue;
                if ((j >> k) & 1) q *= -v[k].first;
                else t++;
            ret[t] += p * q / 2;
        }
    }
    return ret;
}
```

计算几何

二维几何基础

```
#define y1 qwq

using ld = double;

const ld PI = acos(-1);
const ld EPS = 1e-8;

int sgn(ld x) { return x < -EPS ? -1 : x > EPS; }

// 不要直接使用 sgn

bool eq(ld x, ld y) { return sgn(x - y) == 0; }

bool lt(ld x, ld y) { return sgn(x - y) < 0; }

bool gt(ld x, ld y) { return sgn(x - y) > 0; }

bool leq(ld x, ld y) { return sgn(x - y) > 0; }

bool geq(ld x, ld y) { return sgn(x - y) >= 0; }

bool geq(ld x, ld y) { return sgn(x - y) >= 0; }

struct V {
```

```
ld x, y;
    V(ld x = 0, ld y = 0) : x(x), y(y) {}
    V(const V\& a, const V\& b) : x(b.x - a.x), y(b.y - a.y) {}
    V operator + (const V& b) const { return V(x + b.x, y + b.y); }
    V operator - (const V& b) const { return V(x - b.x, y - b.y); }
    V operator * (ld k) const { return V(x * k, y * k); }
    V operator / (ld k) const \{ return V(x / k, y / k); \}
    ld len() const { return hypot(x, y); }
    ld len2() const { return x * x + y * y; }
};
ostream& operator << (ostream& os, const V& p) { return os << "(" << p.x << ", " << p.y << ")"; }
istream& operator >> (istream& is, V& p) { return is >> p.x >> p.y; }
ld dist(const V& a, const V& b) { return (b - a).len(); }
ld dot(const V& a, const V& b) { return a.x * b.x + a.y * b.y; }
ld det(const V& a, const V& b) { return a.x * b.y - a.y * b.x; }
ld cross(const V& s, const V& t, const V& o) { return det(V(o, s), V(o, t)); }
ld to_rad(ld deg) { return deg / 180 * PI; }
// 象限
int quad(const V& p) {
    int x = sgn(p.x), y = sgn(p.y);
    if (x > 0 \&\& y >= 0) return 1;
    if (x <= 0 && y > 0) return 2;
    if (x < 0 && y <= 0) return 3;
    if (x >= 0 \&\& y < 0) return 4;
    assert(0);
}
// 极角排序
struct cmp_angle {
    V p;
    cmp\_angle(const V\& p = V()) : p(p) {}
    bool operator () (const V& a, const V& b) const {
        int qa = quad(a - p), qb = quad(b - p);
        if (qa != qb) return qa < qb;</pre>
        int d = sgn(cross(a, b, p));
        if (d) return d > 0;
        return dist(a, p) < dist(b, p);</pre>
    }
};
V unit(const V& p) { return eq(p.len(), 0) ? V(1, 0) : p / p.len(); }
// 逆时针旋转 「 弧度
V rot(const V& p, ld r) {
    return V(p.x * cos(r) - p.y * sin(r), p.x * sin(r) + p.y * cos(r));
V rot_ccw90(const V& p) { return V(-p.y, p.x); }
V rot_cw90(const V& p) { return V(p.y, -p.x); }
// 点在线段上 leq(dot(...), 0) 包含端点 lt(dot(...), 0) 则不包含
bool p_on_seg(const V& p, const V& a, const V& b) {
    return eq(det(p - a, b - a), 0) && leq(dot(p - a, p - b), 0);
}
// 点在射线上 geq(dot(...), 0) 包含端点 gt(dot(...), 0) 则不包含
bool p_on_ray(const V& p, const V& a, const V& b) {
    return eq(det(p - a, b - a), 0) && geq(dot(p - a, b - a), 0);
}
// 点到直线距离
ld dist_to_line(const V& p, const V& a, const V& b) {
```

```
return abs(cross(a, b, p) / dist(a, b));
}
// 点到线段距离
ld dist_to_seg(const V& p, const V& a, const V& b) {
    if (lt(dot(b - a, p - a), 0)) return dist(p, a);
    if (lt(dot(a - b, p - b), 0)) return dist(p, b);
    return dist_to_line(p, a, b);
}
// 求直线交点
V intersect(const V& a, const V& b, const V& c, const V& d) {
    ld s1 = cross(c, d, a), s2 = cross(c, d, b);
    return (a * s2 - b * s1) / (s2 - s1);
}
// 三角形重心
V centroid(const V& a, const V& b, const V& c) {
    return (a + b + c) / 3;
// 内心
V incenter(const V& a, const V& b, const V& c) {
    ld AB = dist(a, b), AC = dist(a, c), BC = dist(b, c);
    // ld r = abs(cross(b, c, a)) / (AB + AC + BC);
    return (a * BC + b * AC + c * AB) / (AB + BC + AC);
}
// 外心
V circumcenter(const V& a, const V& b, const V& c) {
    V \text{ mid1} = (a + b) / 2, \text{ mid2} = (a + c) / 2;
    // ld r = dist(a, b) * dist(b, c) * dist(c, a) / 2 / abs(cross(b, c, a));
    return intersect(mid1, mid1 + rot_ccw90(b - a), mid2, mid2 + rot_ccw90(c - a));
}
// 垂心
V orthocenter(const V& a, const V& b, const V& c) {
    return centroid(a, b, c) * 3 - circumcenter(a, b, c) * 2;
}
// 旁心 (三个)
vector<V> escenter(const V& a, const V& b, const V& c) {
    ld AB = dist(a, b), AC = dist(a, c), BC = dist(b, c);
    V p1 = (a * (-BC) + b * AC + c * AB) / (AB + AC - BC);
    V p2 = (a * BC + b * (-AC) + c * AB) / (AB - AC + BC);
    V p3 = (a * BC + b * AC + c * (-AB)) / (-AB + AC + BC);
    return {p1, p2, p3};
}
多边形
// 多边形面积
ld area(const vector<V>& s) {
    ld ret = 0;
    for (int i = 0; i < s.size(); i++) {</pre>
        ret += det(s[i], s[(i + 1) % s.size()]);
    }
    return ret / 2;
}
// 多边形重心
V centroid(const vector<V>& s) {
    V c;
    for (int i = 0; i < s.size(); i++) {</pre>
        c = c + (s[i] + s[(i + 1) % s.size()]) * det(s[i], s[(i + 1) % s.size()]);
```

```
return c / 6.0 / area(s);
}
// 点是否在多边形中
// 1 inside 0 on border -1 outside
int inside(const vector<V>& s, const V& p) {
    int cnt = 0;
    for (int i = 0; i < s.size(); i++) {</pre>
        V = s[i], b = s[(i + 1) \% s.size()];
        if (p_on_seg(p, a, b)) return 0;
        if (leq(a.y, b.y)) swap(a, b);
        if (gt(p.y, a.y)) continue;
        if (leq(p.y, b.y)) continue;
        cnt += gt(cross(b, a, p), 0);
    }
    return (cnt & 1) ? 1 : -1;
}
// 构建凸包 点不可以重复
// lt(cross(...), 0) 边上可以有点 leq(cross(...), 0) 则不能
// 会改变输入点的顺序
vector<V> convex_hull(vector<V>& s) {
    // assert(s.size() >= 3);
    sort(s.begin(), s.end(), [](V &a, V &b) { return eq(a.x, b.x) ? lt(a.y, b.y) : lt(a.x, b.x); });
    vector<V> ret(2 * s.size());
    int sz = 0;
    for (int i = 0; i < s.size(); i++) {</pre>
        while (sz > 1 && leq(cross(ret[sz - 1], s[i], ret[sz - 2]), 0)) sz--;
        ret[sz++] = s[i];
    int k = sz;
    for (int i = s.size() - 2; i >= 0; i--) {
        while (sz > k && leq(cross(ret[sz - 1], s[i], ret[sz - 2]), 0)) sz--;
        ret[sz++] = s[i];
    ret.resize(sz - (s.size() > 1));
    return ret;
}
// 多边形是否为凸包
bool is_convex(const vector<V>& s) {
    for (int i = 0; i < s.size(); i++) {</pre>
        if (lt(cross(s[(i + 1) % s.size()], s[(i + 2) % s.size()], s[i]), 0)) return false;
    }
    return true;
}
// 点是否在凸包中
// 1 inside 0 on border -1 outside
int inside(const vector<V>& s, const V& p) {
    for (int i = 0; i < s.size(); i++) {</pre>
        if (lt(cross(s[i], s[(i + 1) % s.size()], p), \theta)) return -1;
        if (p_on_seg(p, s[i], s[(i + 1) % s.size()])) return 0;
    return 1;
}
员
struct C {
    Vo;
    C(const V& o, ld r) : o(o), r(r) {}
};
```

```
// 过一点求圆的切线,返回切点
vector<V> tangent_point(const C& c, const V& p) {
    ld k = c.r / dist(c.o, p);
    if (gt(k, 1)) return vector<V>();
    if (eq(k, 1)) return {p};
    V = V(c.o, p) * k;
    return {c.o + rot(a, acos(k)), c.o + rot(a, -acos(k))};
}
// 最小圆覆盖
C min_circle_cover(vector<V> a) {
    shuffle(a.begin(), a.end(), mt_rand);
    V \circ = a[0];
    ld r = 0;
    int n = a.size();
    for (int i = 1; i < n; i++) if (gt(dist(a[i], o), r)) {</pre>
        o = a[i]; r = 0;
        for (int j = 0; j < i; j++) if (gt(dist(a[j], o), r)) {
            o = (a[i] + a[j]) / 2;
            r = dist(a[j], o);
            for (int k = 0; k < j; k++) if (gt(dist(a[k], o), r)) {
                o = circumcenter(a[i], a[j], a[k]);
                r = dist(a[k], o);
            }
        }
    }
    return C(o, r);
}
杂项
防爆 vector
template<class T>
class vector_s : public vector<T> {
public:
    vector_s(size_t n = 0, const T& x = T()) : vector<T>(n, x) {}
    T& operator [] (size_t n) { return this->at(n); }
    const T& operator [] (size_t n) const { return this->at(n); }
};
#define vector vector_s
pair hash
template<class T1, class T2>
struct pair_hash {
    size_t operator () (const pair<T1, T2>& p) const {
        return hash<T1>()(p.first) * 19260817 + hash<T2>()(p.second);
    }
};
unordered_set<pair<int, int>, pair_hash<int, int> > st;
unordered_map<pair<int, int>, int, pair_hash<int, int> > mp;
updmax/min
template<class T> inline bool updmax(T &a, T b) { return a < b ? a = b, 1 : 0; }</pre>
template<class T> inline bool updmin(T &a, T b) { return a > b ? a = b, 1 : 0; }
```

离散化

```
// 重复元素 id 不同
template<class T>
vector<int> dc(const vector<T>& a, int start_id) {
    int n = a.size();
    vector<pair<T, int> > t(n);
    for (int i = 0; i < n; i++) {</pre>
        t[i] = make_pair(a[i], i);
    sort(t.begin(), t.end());
    vector<int> id(n);
    for (int i = 0; i < n; i++) {</pre>
        id[t[i].second] = start_id + i;
    }
    return id;
}
// 重复元素 id 相同
template<class T>
vector<int> unique_dc(const vector<T>& a, int start_id) {
    int n = a.size();
    vector<T> t(a);
    sort(t.begin(), t.end());
    t.resize(unique(t.begin(), t.end()) - t.begin());
    vector<int> id(n);
    for (int i = 0; i < n; i++) {</pre>
        id[i] = start_id + lower_bound(t.begin(), t.end(), a[i]) - t.begin();
    return id;
}
加强版优先队列
struct heap {
    priority_queue<int> q1, q2;
    void push(int x) { q1.push(x); }
    void erase(int x) { q2.push(x); }
        while (q2.size() && q1.top() == q2.top()) q1.pop(), q2.pop();
        return q1.top();
    }
    void pop() {
        while (q2.size() && q1.top() == q2.top()) q1.pop(), q2.pop();
        q1.pop();
    int size() { return q1.size() - q2.size(); }
};
分数
struct Frac {
    ll x, y;
    Frac(ll p = 0, ll q = 1) {
        ll d = \_gcd(p, q);
        x = p / d, y = q / d;
        if (y < 0) x = -x, y = -y;
    }
    Frac operator + (const Frac& b) { return Frac(x * b.y + y * b.x, y * b.y); }
    Frac operator - (const Frac& b) { return Frac(x * b.y - y * b.x, y * b.y); }
    Frac operator * (const Frac& b) { return Frac(x * b.x, y * b.y); }
```

```
Frac operator / (const Frac& b) { return Frac(x * b.y, y * b.x); }
};
ostream& operator << (ostream& os, const Frac& f) {
   if (f.y == 1) return os << f.x;
    else return os << f.x << '/' << f.y;</pre>
}
二分答案
// 二分闭区间 [l, r]
// 可行下界
while (l < r) {
   mid = (l + r) / 2;
   if (check(mid)) r = mid;
   else l = mid + 1;
}
// 可行上界
while (l < r) {
   mid = (l + r + 1) / 2;
   if (check(mid)) l = mid;
    else r = mid - 1;
}
三分
// 实数范围
double l, r, mid1, mid2;
for (int i = 0; i < 75; i++) {</pre>
   mid1 = (l * 5 + r * 4) / 9;
   mid2 = (l * 4 + r * 5) / 9;
   if (f(mid1) > f(mid2)) r = mid2; // 单峰函数取'>'号, 单谷函数取'<'号
    else l = mid1;
}
// 整数范围
int l, r, mid1, mid2;
while (l < r - 2) {
   mid1 = (l + r) / 2;
   mid2 = mid1 + 1;
    if (f(mid1) > f(mid2)) r = mid2; // 单峰函数取'>'号, 单谷函数取'<'号
    else l = mid1;
int maxval = f(l), ans = l;
for (int i = l + 1; i <= r; i++) {</pre>
   if (updmax(maxval, f(i))) ans = i;
}
日期
// 0 ~ 6 对应 周一 ~ 周日
int zeller(int y, int m, int d) {
    if (m <= 2) m += 12, y--;
    return (d + 2 * m + 3 * (m + 1) / 5 + y + y / 4 - y / 100 + y / 400) % 7;
}
// date_to_int(1, 1, 1) = 1721426
// date_to_int(2019, 10, 27) = 2458784
int date_to_int(int y, int m, int d) {
   return
    1461 * (y + 4800 + (m - 14) / 12) / 4 +
```

```
367 * (m - 2 - (m - 14) / 12 * 12) / 12 -
    3 * ((y + 4900 + (m - 14) / 12) / 100) / 4 +
    d - 32075;
}
void int_to_date(int jd, int &y, int &m, int &d) {
   int x, n, i, j;
   x = jd + 68569;
   n = 4 * x / 146097;
   x = (146097 * n + 3) / 4;
   i = (4000 * (x + 1)) / 1461001;
   x -= 1461 * i / 4 - 31;
    j = 80 * x / 2447;
   d = x - 2447 * j / 80;
   x = j / 11;
   m = j + 2 - 12 * x;
   y = 100 * (n - 49) + i + x;
}
子集枚举
// 枚举真子集
for (int t = (x - 1) & x; t; t = (t - 1) & x)
// 枚举大小为 k 的子集
// 注意 k 不能为 0
void subset(int k, int n) {
    int t = (1 << k) - 1;
   while (t < (1 << n)) {
        // do something
        int x = t \& -t, y = t + x;
        t = ((t \& \sim y) / x >> 1) | y;
}
最长上升子序列
vector<int> dp(n, INF);
for (int i = 0; i < n; i++) {</pre>
    // 最长不下降 upper_bound
    *lower_bound(dp.begin(), dp.end(), a[i]) = a[i];
}
数位 dp
// 小于等于 x 的 base 进制下回文数个数
ll dp[20][20][20][2], tmp[20], a[20];
ll dfs(ll base, ll pos, ll len, ll s, bool limit) {
    if (pos == -1) return s;
    if (!limit && dp[base][pos][len][s] != -1) return dp[base][pos][len][s];
    ll ret = 0;
    ll ed = limit ? a[pos] : base - 1;
    for (int i = 0; i <= ed; i++) {</pre>
        tmp[pos] = i;
       if (len == pos)
            ret += dfs(base, pos - \frac{1}{1}, len - (i == 0), s, limit && i == a[pos]);
        else if (s && pos < (len + 1) / 2)
            ret += dfs(base, pos - 1, len, tmp[len - pos] == i, limit && i == a[pos]);
           ret += dfs(base, pos - 1, len, s, limit && i == a[pos]);
```

```
if (!limit) dp[base][pos][len][s] = ret;
    return ret;
}
ll solve(ll x, ll base) {
    memset(dp, -1, sizeof(dp));
    ll sz = 0;
    while (x) {
        a[sz++] = x \% base;
        x /= base;
    return dfs(base, sz - 1, sz - 1, 1, true);
}
表达式求值
print(input()) # Python2
print(eval(input())) # Python3
对拍
   • *unix
#!/bin/bash
cd "$(dirname "${BASH_SOURCE[0]}")"
g++ gen.cpp -o gen -02 -std=c++11
g++ my.cpp -o my -02 -std=c++11
g++ std.cpp -o std -O2 -std=c++11
while true
do
    ./gen > in.txt
    ./std < in.txt > stdout.txt
    ./my < in.txt > myout.txt
    if test $? -ne 0
    then
        printf "RE\n"
        exit 0
    fi
    if diff stdout.txt myout.txt
    then
        printf "AC\n"
    else
        printf "WA\n"
        exit 0
    fi
done

    Windows

@echo off
g++ gen.cpp -o gen.exe -02 -std=c++11
g++ my.cpp -o my.exe -O2 -std=c++11
g++ std.cpp -o std.exe -02 -std=c++11
:loop
    gen.exe > in.txt
    std.exe < in.txt > stdout.txt
    my.exe < in.txt > myout.txt
    if errorlevel 1 (
```

```
echo RE
        pause
        exit
    fc stdout.txt myout.txt
    if errorlevel 1 (
        echo WA
        pause
        exit
goto loop
Java
   • Main
import java.io.*;
import java.util.*;
public class Main {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        PrintStream out = System.out;
    }
}
   • 皮特老师读入挂
public class Main {
    public static void main(String[] args) {
        InputStream inputStream = System.in;
        OutputStream outputStream = System.out;
        InputReader in = new InputReader(inputStream);
        PrintWriter out = new PrintWriter(outputStream);
        out.close();
    }
    static class InputReader {
        public BufferedReader reader;
        public StringTokenizer tokenizer;
        public InputReader(InputStream stream) {
            reader = new BufferedReader(new InputStreamReader(stream), 32768);
            tokenizer = null;
        }
        public String next() {
            while (tokenizer == null || !tokenizer.hasMoreTokens()) {
                try {
                    tokenizer = new StringTokenizer(reader.readLine());
                } catch (IOException e) {
                    throw new RuntimeException(e);
            }
            return tokenizer.nextToken();
        }
        public int nextInt() {
            return Integer.parseInt(next());
    }
}
```

大整数

```
import java.math.BigInteger;
BigInteger.ZERO
BigInteger.ONE
BigInteger.TWO // since Java 9
BigInteger.TEN
BigInteger.valueOf(2)
BigInteger abs()
BigInteger negate() // -this
BigInteger add(BigInteger x)
BigInteger subtract(BigInteger x)
BigInteger multiply(BigInteger x)
BigInteger divide(BigInteger x)
BigInteger pow(int exp)
BigInteger sqrt() // since Java 9
BigInteger mod(BigInteger m)
BigInteger modPow(BigInteger exp, BigInteger m)
BigInteger modInverse(BigInteger m)
boolean isProbablePrime(int certainty) // probability: 1 - (1/2) ^ (certainty)
BigInteger gcd(BigInteger x)
BigInteger not() // ~this
BigInteger and(BigInteger x)
BigInteger or(BigInteger x)
BigInteger xor(BigInteger x)
BigInteger shiftLeft(int n)
BigInteger shiftRight(int n)
int compareTo(BigInteger x) // -1, 0, 1
BigInteger max(BigInteger x)
BigInteger min(BigInteger x)
int intValue()
long longValue()
String toString()
public static BigInteger getsqrt(BigInteger n) {
    if (n.compareTo(BigInteger.ZERO) <= 0) return n;</pre>
    BigInteger x, xx, txx;
    xx = x = BigInteger.ZERO;
    for (int t = n.bitLength() / 2; t >= 0; t--) {
        txx = xx.add(x.shiftLeft(t + 1)).add(BigInteger.ONE.shiftLeft(t + t));
        if (txx.compareTo(n) <= 0) {</pre>
            x = x.add(BigInteger.ONE.shiftLeft(t));
            xx = txx;
        }
    }
    return x;
}
   • 浮点数格式
import java.text.DecimalFormat;
DecimalFormat fmt;
// String s = fmt.format(...)
// round to at most 2 digits, leave of digits if not needed
fmt = new DecimalFormat("#.##");
```

```
// 12345.6789 -> "12345.68"
// 12345.0 -> "12345"
// 0.0 -> "0"
// 0.01 -> ".1"
// round to precisely 2 digits
fmt = new DecimalFormat("#.00");
// 12345.6789 -> "12345.68"
// 12345.0 -> "12345.00"
// 0.0 -> ".00"
// round to precisely 2 digits, force leading zero
fmt = new DecimalFormat("0.00");
// 12345.6789 -> "12345.68"
// 12345.0 -> "12345.00"
// 0.0 -> "0.00"
// round to precisely 2 digits, force leading zeros
fmt = new DecimalFormat("000000000.00");
// 12345.6789 -> "000012345.68"
// 12345.0 -> "000012345.00"
// 0.0 -> "000000000.00"
pb_ds
// 平衡树
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
template<class T>
using rank_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<class Key, class T>
using rank_map = tree<Key, T, less<Key>, rb_tree_tag, tree_order_statistics_node_update>;
// 优先队列
#include <ext/pb_ds/priority_queue.hpp>
using namespace __gnu_pbds;
template<class T, class Cmp = less<T> >
```

待验证

版权归原作者所有 部分代码有风格调整 不保证内容的正确性

using pair_heap = __gnu_pbds::priority_queue<T, Cmp>;

约瑟夫问题

```
// n 个人, 1 至 m 报数, 问最后留下来的人的编号
// 公式: f(n,m)=(f(n-1,m)+m)%n, f(0,m)=0;
// O(n)
ll calc(int n, ll m) {
   ll p = 0;
    for (int i = 2; i <= n; i++) {</pre>
       p = (p + m) \% i;
    return p + 1;
}
// n 个人, 1 至 m 报数, 问第 k 个出局的人的编号
// 公式: f(n,k)=(f(n-1,k-1)+m-1)%n+1
// f(n-k+1,1)=m\%(n-k+1)
// if (f==0) f=n-k+1
// 0(k)
ll cal1(ll n, ll m, ll k) \{ // (k == n) \text{ equal(calc)} \}
   ll p = m \% (n - k + 1);
```

```
if (p == 0) p = n - k + 1;
    for (ll i = 2; i <= k; i++) {</pre>
       p = (p + m - 1) \% (n - k + i) + 1;
   return p;
}
// n 个人, 1 至 m 报数, 问第 k 个出局的人的编号
// O(m*log(m))
ll cal2(ll n, ll m, ll k) {
   if (m == 1)
       return k;
    else {
       ll a = n - k + 1, b = 1;
       ll c = m \% a, x = 0;
       if (c == 0) c = a;
       while (b + x \le k) {
           a += x, b += x, c += m * x;
           c %= a;
           if (c == 0) c = a;
           x = (a - c) / (m - 1) + 1;
       c += (k - b) * m;
       c %= n;
       if (c == 0) c = n;
       return c;
   }
}
// n 个人, 1 至 m 报数, 问编号为 k 的人是第几个出局的
// O(n)
ll n, k; //可做 n<=4e7, 询问个数<=100, 下标范围 [0,n-1]
ll dieInXturn(int n, int k, int x) { // n 个人, 报数 k, 下标为 X 的人第几个死亡
   ll tmp = 0;
   while (n) {
       x = (x + n) \% n;
       if (k > n) x += (k - x - 1 + n - 1) / n * n;
       if ((x + 1) \% k == 0) {
           tmp += (x + 1) / k;
           break;
       } else {
           if (k > n) {
               tmp += x / k;
               ll\ ttmp = x;
               x = x - (x / n + 1) * (x / k) + (x + n) / n * n - k;
               n -= ttmp / k;
           } else {
               tmp += n / k;
               x = x - x / k;
               x += n - n / k * k;
               n -= n / k;
           }
       }
   }
   return tmp;
}
二分图最大权匹配 KM
```

```
// ECNU
namespace R {
  int n;
  int w[MAXN][MAXN], kx[MAXN], ky[MAXN], py[MAXN], vy[MAXN], slk[MAXN], pre[MAXN];
  ll go() {
```

```
for (int i = 1; i <= n; i++)</pre>
              for (int j = 1; j <= n; j++)</pre>
                   kx[i] = max(kx[i], w[i][j]);
         for (int i = 1; i <= n; i++) {</pre>
              fill(vy, vy + n + 1, 0);
              fill(slk, slk + n + 1, INF);
              fill(pre, pre + n + \frac{1}{0});
              int k = 0, p = -1;
              for (py[k = 0] = i; py[k]; k = p) {
                   int d = INF;
                   vy[k] = 1;
                   int x = py[k];
                   for (int j = 1; j <= n; j++) {</pre>
                        if (!vy[j]) {
                             int t = kx[x] + ky[j] - w[x][j];
                            \textbf{if} \ (\texttt{t} < \texttt{slk[j]}) \ \{ \ \texttt{slk[j]} = \texttt{t}; \ \texttt{pre[j]} = \texttt{k}; \ \}
                            if (slk[j] < d) { d = slk[j]; p = j; }</pre>
                        }
                   for (int j = 0; j <= n; j++) {</pre>
                        if (vy[j]) { kx[py[j]] -= d; ky[j] += d; }
                        else slk[j] -= d;
                   }
              for (; k; k = pre[k]) py[k] = py[pre[k]];
         }
         ll ans = 0;
         for (int i = 1; i <= n; i++) ans += kx[i] + ky[i];</pre>
         return ans;
    }
}
```

上下界网络流

```
// wxh
const int INF = 0x3f3f3f3f;
struct edge {
    int to, cap, rev;
};
const int MAXN = 60003;
const int MAXM = 400003;
struct graph {
    int n, m;
    edge w[MAXM];
    int fr[MAXM];
    int num[MAXN], cur[MAXN], first[MAXN];
    edge e[MAXM];
    void init(int n) {
        this->n = n;
        m = 0;
    }
    void add_edge(int from, int to, int cap) {
        w[++m] = (edge)\{to, cap\};
        num[from]++, fr[m] = from;
        w[++m] = (edge)\{from, 0\};
        num[to]++, fr[m] = to;
    void prepare() {
        first[1] = 1;
```

```
for (int i = 2; i <= n; i++) first[i] = first[i - 1] + num[i - 1];</pre>
        for (int i = 1; i < n; i++) num[i] = first[i + 1] - 1;</pre>
        num[n] = m;
        for (int i = 1; i <= m; i++) {</pre>
            e[first[fr[i]] + (cur[fr[i]]++)] = w[i];
            if (!(i % 2)) {
                e[first[fr[i]] + cur[fr[i]] - 1].rev =
                    first[w[i].to] + cur[w[i].to] - 1;
                e[first[w[i].to] + cur[w[i].to] - 1].rev =
                    first[fr[i]] + cur[fr[i]] - 1;
            }
        }
    }
    int q[MAXN];
    int dist[MAXN];
    int t;
    bool bfs(int s) {
        int l = 1, r = 1;
        q[1] = s;
        memset(dist, -1, (n + 1) * 4);
        dist[s] = 0;
        while (l <= r) {
            int u = q[l++];
            for (int i = first[u]; i <= num[u]; i++) {</pre>
                int v = e[i].to;
                if ((dist[v] != -1) || (!e[i].cap)) continue;
                dist[v] = dist[u] + 1;
                if (v == t) return true;
                q[++r] = v;
            }
        }
        return dist[t] != -1;
    }
    int dfs(int u, int flow) {
        if (u == t) return flow;
        for (int& i = cur[u]; i <= num[u]; i++) {</pre>
            int v = e[i].to;
            if (!e[i].cap || dist[v] != dist[u] + 1) continue;
            int t = dfs(v, min(flow, e[i].cap));
            if (t) {
                e[i].cap -= t;
                e[e[i].rev].cap += t;
                return t;
            }
        }
        return 0;
    }
    ll dinic(int s, int t) {
        Il ans = 0;
        this->t = t;
        while (bfs(s)) {
            for (int i = 1; i <= n; i++) cur[i] = first[i];</pre>
            while (flow = dfs(s, INF)) ans += (ll)flow;
        }
        return ans;
    }
struct graph_bounds {
    int in[MAXN];
```

};

```
int S, T, sum, cur;
    graph g;
    int n;
    void init(int n) {
        this->n = n;
        S = n + 1;
        T = n + 2;
        sum = 0;
        g.init(n + 2);
    }
    void add_edge(int from, int to, int low, int up) {
        g.add_edge(from, to, up - low);
        in[to] += low;
        in[from] -= low;
    }
    void build() {
        for (int i = 1; i <= n; i++)</pre>
            if (in[i] > 0)
                g.add_edge(S, i, in[i]), sum += in[i];
            else if (in[i])
                g.add_edge(i, T, -in[i]);
        g.prepare();
    }
    bool canflow() {
        build();
        int flow = g.dinic(S, T);
        return flow >= sum;
    }
    bool canflow(int s, int t) {
        g.add_edge(t, s, INF);
        build();
        for (int i = 1; i <= g.m; i++) {</pre>
            edge& e = g.e[i];
            if (e.to == s && e.cap == INF) {
                cur = i;
                break;
            }
        }
        int flow = g.dinic(S, T);
        return flow >= sum;
    }
    int maxflow(int s, int t) {
        if (!canflow(s, t)) return -1;
        return g.dinic(s, t);
    }
    int minflow(int s, int t) {
        if (!canflow(s, t)) return -1;
        edge& e = g.e[cur];
        int flow = INF - e.cap;
        e.cap = g.e[e.rev].cap = 0;
        return flow - g.dinic(t, s);
} g;
void solve() {
    int n = read(), m = read(), s = read();
    g.init(n);
    while (m--) {
        int u = read(), v = read(), low = read(), up = read();
```

```
g.add_edge(u, v, low, up);
}
```

Link-Cut Tree

```
// Chestnut
const int MAXN = 50005;
#define lc son[x][0]
#define rc son[x][1]
struct Splay {
    int fa[MAXN], son[MAXN][2];
    int st[MAXN];
    bool rev[MAXN];
    inline int which(int x) {
        for (int i = 0; i < 2; i++)</pre>
            if (son[fa[x]][i] == x) return i;
        return -1;
    }
    inline void pushdown(int x) {
        if (rev[x]) {
            rev[x] ^= 1;
            rev[lc] ^= 1;
            rev[rc] ^= 1;
            swap(lc, rc);
    }
    inline void rotate(int x) {
        int f = fa[x], w = which(x) ^ 1, c = son[x][w];
        fa[x] = fa[f];
        if (which(f) != -1) son[fa[f]][which(f)] = x;
        fa[c] = f;
        son[f][w ^ 1] = c;
        fa[f] = x;
        son[x][w] = f;
    }
    inline void splay(int x) {
        int top = 0;
        st[++top] = x;
        for (int i = x; which(i) != -1; i = fa[i]) {
            st[++top] = fa[i];
        for (int i = top; i; i--) pushdown(st[i]);
        while (which(x) != -1) {
            int f = fa[x];
            if (which(f) != -1) {
                if (which(x) ^ which(f)) rotate(x);
                else rotate(f);
            }
            rotate(x);
        }
    }
    void access(int x) {
        int t = 0;
        while (x) {
            splay(x);
            rc = t;
            t = x;
            x = fa[x];
```

```
}
    }
    void rever(int x) {
        access(x);
        splay(x);
        rev[x] ^= 1;
    }
    void link(int x, int y) {
        rever(x);
        fa[x] = y;
        splay(x);
    }
    void cut(int x, int y) {
        rever(x);
        access(y);
        splay(y);
        son[y][0] = fa[x] = 0;
    }
    int find(int x) {
        access(x);
        splay(x);
        int y = x;
        while (son[y][0]) y = son[y][0];
        return y;
} T;
int n, m;
int main() {
    char ch[10];
    int x, y;
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= m; i++) {</pre>
        scanf("%s", ch);
        scanf("%d%d", &x, &y);
        if (ch[0] == 'C') T.link(x, y);
        else if (ch[0] == 'D') T.cut(x, y);
        else {
            if (T.find(x) == T.find(y)) printf("Yes\n");
            else printf("No\n");
    }
}
后缀自动机
// Chestnut
char s[50100];
struct samnode {
    samnode *par, *ch[26];
    int val;
    samnode() {
        par = 0;
        memset(ch, 0, sizeof(ch));
       val = 0;
} node[100100], *root, *last;
int size = 0;
```

```
inline void init() { last = root = &node[0]; }
inline void add(int c) {
    samnode *p = last;
    samnode *np = &node[++size];
    np->val = p->val + 1;
    while (p && !p->ch[c])
        p->ch[c] = np, p = p->par;
    if (!p) np->par = root;
        samnode *q = p - > ch[c];
        if (q->val == p->val + 1)
            np - par = q;
        else {
            samnode *nq = &node[++size];
            nq->val = p->val + 1;
            memcpy(nq->ch, q->ch, sizeof(q->ch));
            nq->par = q->par;
            q->par = np->par = nq;
            while (p \&\& p->ch[c] == q)
                p->ch[c] = nq, p = p->par;
        }
    }
    last = np;
}
int main() {
    init();
    scanf("%s", s);
    int n = strlen(s), ans = 0;
    for (int i = 0; i < n; i++) add(s[i] - 'A');
    for (int i = 1; i <= size; i++) ans += node[i].val - node[i].par->val;
    printf("%d\n", ans);
    return 0;
}
   • 广义后缀自动机
// Chestnut
int v[100005], head[100005], tot, d[100005];
struct node {
    node *fa, *go[11];
    int max;
} *root, pool[4000005], *cnt;
struct edge {
    int go, next;
} e[100005];
void add(int x, int y) {
    e[++tot] = (edge)\{y, head[x]\}; head[x] = tot;
    e[++tot] = (edge)\{x, head[y]\}; head[y] = tot;
}
void init() { cnt = root = pool + 1; }
node *newnode(int _val) {
    (++cnt)->max = _val;
    return cnt;
}
ostream& operator , (ostream& os, int a) {}
node *extend(node *p, int c) {
    node *np = newnode(p->max + 1);
```

```
if (!p) np->fa = root;
    else {
        node *q = p->go[c];
        if (p->max + 1 == q->max) np->fa = q;
        else {
            node *nq = newnode(p->max + 1);
            memcpy(nq->go, q->go, sizeof q->go);
            nq->fa = q->fa;
            np->fa = q->fa = nq;
            while (p && p->go[c] == q) p->go[c] = nq, p = p->fa;
        }
    }
    return np;
}
ll solve() {
    Il ans = 0;
    for (node *i = root + 1; i <= cnt; i++)</pre>
        ans += i->max - i->fa->max;
    return ans;
}
void dfs(int x, int fa, node *p) {
    node *t = extend(p, v[x]);
    for (int i = head[x]; i; i = e[i].next)
        if (e[i].go != fa)
            dfs(e[i].go, x, t);
}
int n, c, x, y;
int main() {
    init();
    scanf("%d%d", &n, &c);
    for (int i = 1; i <= n; i++) scanf("%d", &v[i]);</pre>
    for (int i = 1; i < n; i++) {</pre>
        scanf("%d%d", &x, &y);
        add(x, y);
        d[x]++, d[y]++;
    for (int i = 1; i <= n; i++)</pre>
        if (d[i] == 1) dfs(i, 0, pool + 1);
    printf("%lld", solve());
}
任意模数 NTT
// memset0
const int MAXN = 4e5 + 10, G = 3, P[3] = \{469762049, 998244353, 1004535809\};
int n1, n2, k, n, p, p1, p2, M2;
int a[MAXN], b[MAXN], f[3][MAXN], g[MAXN], rev[MAXN], ans[MAXN];
void ntt(int *a, int g, int p) {
    for (int i = 0; i < n; i++) if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
    for (int len = 1; len < n; len <<= 1) {</pre>
        int wn = qk(g, (p - 1) / (len << 1), p);
        for (int i = 0; i < n; i += (len << 1)) {</pre>
```

for (int j = 0; j < len; j++, w = (ll)w * wn % p) {
 int x = a[i + j], y = (ll)w * a[i + j + len] % p;</pre>

a[i + j] = (x + y) % p, a[i + j + len] = (x - y + p) % p;

int w = 1;

}

}

while (p && !p->go[c]) p->go[c] = np, p = p->fa;

```
}
int merge(int a1, int a2, int A2) {
    ll M1 = (ll)p1 * p2;
    ll A1 = ((ll)inv(p2, p1) * a1 % p1 * p2 + (ll)inv(p1, p2) * a2 % p2 * p1) % M1;
    ll K = ((A2 - A1) \% M2 + M2) \% M2 * inv(M1 % M2, M2) % M2;
    int ans = (A1 + M1 % p * K) % p;
    return ans:
}
void go() {
    read(n1), read(n2), read(p);
    p1 = P[0], p2 = P[1], M2 = P[2];
    for (int i = 0; i <= n1; i++) read(a[i]);</pre>
    for (int i = 0; i <= n2; i++) read(b[i]);</pre>
    n = 1; while (n <= (n1 + n2)) n <<= 1, ++k;
    for (int i = 0; i < n; i++) {</pre>
        rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (k - 1));
    for (int k = 0; k < 3; k++) {
        for (int i = 0; i < n; i++) f[k][i] = a[i] % P[k];</pre>
        for (int i = 0; i < n; i++) g[i] = b[i] % P[k];</pre>
        ntt(f[k], G, P[k]), ntt(g, G, P[k]);
        for (int i = 0; i < n; i++) f[k][i] = (ll)f[k][i] * g[i] % P[k];</pre>
        ntt(f[k], inv(G, P[k]), P[k]);
        for (int i = 0; i < n; i++) f[k][i] = (ll)f[k][i] * inv(n, P[k]) % P[k];
    for (int i = 0; i \le n1 + n2; i++) ans[i] = merge(f[0][i], f[1][i], f[2][i]);
}
计算几何
// 经纬度球面最短距离
// Voleking
ld Dist(ld la1, ld lo1, ld la2, ld lo2, ld R) {
    la1 *= PI / 180, lo1 *= PI / 180, la2 *= PI / 180, lo2 *= PI / 180;
    ld x1 = cos(la1) * sin(lo1), y1 = cos(la1) * cos(lo1), z1 = sin(la1);
    ld x2 = cos(la2) * sin(lo2), y2 = cos(la2) * cos(lo2), z1 = sin(la2);
    return R * acos(x1 * x2 + y1 * y2 + z1 * z2);
}
// jiry_2
int cmp(ld k1, ld k2) {
    return sgn(k1 - k2);
V proj(V k1, V k2, V q) { // q 到直线 k1,k2 的投影
    V k = k2 - k1;
    return k1 + k * (dot(q - k1, k) / k.abs2());
V reflect(V k1, V k2, V q) {
    return proj(k1, k2, q) * 2 - q;
}
int clockwise(V k1, V k2, V k3) { // k1 k2 k3 逆时针 1 顺时针 -1 否则 0
    return sgn(det(k2 - k1, k3 - k1));
}
int checkLL(V k1, V k2, V k3, V k4) { // 求直线 (L) 线段 (S) k1,k2 和 k3,k4 的交点
    return cmp(det(k3 - k1, k4 - k1), det(k3 - k2, k4 - k2)) != 0;
V getLL(V k1, V k2, V k3, V k4) {
    ld w1 = det(k1 - k3, k4 - k3), w2 = det(k4 - k3, k2 - k3);
    return (k1 * w2 + k2 * w1) / (w1 + w2);
vector<line> getHL(vector<line>& L) { // 求半平面交,半平面是逆时针方向,输出按照逆时针
    sort(L.begin(), L.end());
    deque<line> q;
```

```
for (int i = 0; i < (int) L.size(); i++) {</pre>
        if (i && sameDir(L[i], L[i - 1])) continue;
        while (q.size() > 1 \& !checkpos(q[q.size() - 2], q[q.size() - 1], L[i])) q.pop_back();
        while (q.size() > 1 \& !checkpos(q[1], q[0], L[i])) q.pop_front();
        q.push_back(L[i]);
    while (q.size() > 2 \& !checkpos(q[q.size() - 2], q[q.size() - 1], q[0])) q.pop_back();
    while (q.size() > 2 \&\& !checkpos(q[1], q[0], q[q.size() - 1])) q.pop_front();
    vector<line> ans;
    for (int i = 0; i < q.size(); i++) ans.push_back(q[i]);</pre>
    return ans;
ld closepoint(vector<V>& A, int l, int r) { // 最近点对, 先要按照 x 坐标排序
    if (r - l <= 5) {
        ld ans = 1e20;
        for (int i = l; i <= r; i++)</pre>
            for (int j = i + 1; j \leftarrow r; j \leftrightarrow min(ans, A[i].dis(A[j]));
        return ans:
    int mid = l + r \gg 1;
    ld ans = min(closepoint(A, l, mid), closepoint(A, mid + 1, r));
    vector<V> B;
    for (int i = l; i <= r; i++)</pre>
        if (abs(A[i].x - A[mid].x) <= ans) B.push_back(A[i]);</pre>
    sort(B.begin(), B.end(), [](V k1, V k2) {
        return k1.y < k2.y;</pre>
    }):
    for (int i = 0; i < B.size(); i++)</pre>
        for (int j = i + 1; j < B.size() && B[j].y - B[i].y < ans; <math>j++) ans = min(ans, B[i].dis(B[j]));
int checkposCC(circle k1, circle k2) { // 返回两个圆的公切线数量
   if (cmp(k1.r, k2.r) == -1) swap(k1, k2);
    ld dis = k1.o.dis(k2.o);
    int w1 = cmp(dis, k1.r + k2.r), w2 = cmp(dis, k1.r - k2.r);
    if (w1 > 0) return 4;
    else if (w1 == 0) return 3;
    else if (w2 > 0) return 2;
    else if (w2 == 0) return 1;
    else return 0;
}
vector<V> getCL(circle k1, V k2, V k3) { // 沿着 k2->k3 方向给出,相切给出两个
   V k = proj(k2, k3, k1.0);
    ld d = k1.r * k1.r - (k - k1.o).abs2();
    if (sgn(d) == -1) return {};
    V del = (k3 - k2).unit() * sqrt(max((ld) 0.0, d));
    return {k - del, k + del};
}
vector<line> TangentoutCC(circle k1, circle k2) {
    int pd = checkposCC(k1, k2);
    if (pd == 0) return {};
    if (pd == 1) {
        V k = getCC(k1, k2)[0];
        return { (line){k, k} };
    if (cmp(k1.r, k2.r) == 0) {
        V del = (k2.o - k1.o).unit().turn90().getdel();
        return {
            (line)\{k1.o - del * k1.r, k2.o - del * k2.r\},\
            (line){k1.o + del * k1.r, k2.o + del * k2.r}
        };
    } else {
        V p = (k2.0 * k1.r - k1.0 * k2.r) / (k1.r - k2.r);
        vector<V> A = TangentCP(k1, p), B = TangentCP(k2, p);
        for (int i = 0; i < A.size(); i++) ans.push_back((line){A[i], B[i]});</pre>
```

```
return ans;
    }
}
vector<line> TangentinCC(circle k1, circle k2) {
    int pd = checkposCC(k1, k2);
    if (pd <= 2) return {};</pre>
    if (pd == 3) {
        V k = getCC(k1, k2)[0];
        return { (line){k, k} };
    V p = (k2.0 * k1.r + k1.0 * k2.r) / (k1.r + k2.r);
    vector<V> A = TangentCP(k1, p), B = TangentCP(k2, p);
    vector<line> ans;
    for (int i = 0; i < A.size(); i++) ans.push_back((line){A[i], B[i]});</pre>
    return ans;
}
vector<line> TangentCC(circle k1, circle k2) {
    int flag = 0;
    if (k1.r < k2.r) swap(k1, k2), flag = 1;
    vector<line> A = TangentoutCC(k1, k2), B = TangentinCC(k1, k2);
    for (line k: B) A.push_back(k);
    if (flag) for (line& k: A) swap(k[0], k[1]);
    return A;
ld convexDiameter(vector<V> A) {
    int now = 0, n = A.size();
    ld ans = 0;
    for (int i = 0; i < A.size(); i++) {</pre>
        now = max(now, i);
        while (1) {
            ld k1 = A[i].dis(A[now % n]), k2 = A[i].dis(A[(now + 1) % n]);
            ans = max(ans, max(k1, k2));
            if (k2 > k1) now++;
            else break;
        }
    }
    return ans;
}
vector<V> convexcut(vector<V> A, V k1, V k2) { // 保留 k1,k2,p 逆时针的所有点
    int n = A.size();
    A.push_back(A[0]);
    vector<V> ans;
    for (int i = 0; i < n; i++) {</pre>
        int w1 = clockwise(k1, k2, A[i]), w2 = clockwise(k1, k2, A[i + \frac{1}{2});
        if (w1 >= 0) ans.push_back(A[i]);
        if (w1 * w2 < 0) ans.push_back(getLL(k1, k2, A[i], A[i + 1]));
    }
    return ans;
}
```

本模板未涉及的专题

ECNU

数据结构

- 均摊复杂度线段树
- K-DTree
- 树状数组套主席树
- 左偏树
- Treap-序列
- 可回滚并查集
- 舞蹈链
- 笛卡尔树
- 莫队

数学

- min_25
- 杜教筛
- 伯努利数和等幂求和
- 单纯形
- 数论分块

图论

- zkw 费用流
- 树上点分治
- 二分图匹配虚树
- 欧拉路径
- 一般图匹配
- 点双连通分量/广义圆方树
- 圆方树
- 最小树形图
- 三元环、四元环

计算几何

- 圆与多边形交
- 圆的离散化、面积并
- 圆的反演
- 三维计算几何
- 旋转
- 线、面
- 凸包

kuangbin

数学

- 整数拆分
- 求 A^B 的约数之和对 MOD 取模
- 斐波那契数列取模循环节

图论

- 次小生成树
- 生成树计数
- 曼哈顿最小生成树