Variations of the Turing Machine

The Standard Model

Infinite Tape

Read-Write Head (Left or Right)

Control Unit

Deterministic

Variations of the Standard Model

Turing machines with:

- Stay-Option
 - · Semi-Infinite Tape
 - · Off-Line
 - Multitape
 - Multidimensional
 - Nondeterministic

The variations form different Turing Machine Classes

We want to prove:

Each Class has the same power with the Standard Model

Same Power of two classes means:

Both classes of Turing machines accept the same languages

Same Power of two classes means:

For any machine $\,M_1\,$ of first class there is a machine $\,M_2\,$ of second class

such that:
$$L(M_1) = L(M_2)$$

And vice-versa

Simulation: a technique to prove same power

Simulate the machine of one class with a machine of the other class

First Class
Original Machine

 M_1

Second Class
Simulation Machine

Configurations in the Original Machine correspond to configurations in the Simulation Machine

Original Machine:
$$d_0 \succ d_1 \succ \cdots \succ d_n$$

$$\uparrow \qquad \uparrow \qquad \qquad \uparrow$$

$$* \qquad * \qquad *$$
Simulation Machine: $d_0' \succ d_1' \succ \cdots \succ d_n'$

Final Configuration

$$d_f$$

Simulation Machine:

$$d_f'$$

The Simulation Machine and the Original Machine accept the same language

Turing Machines with Stay-Option

The head can stay in the same position

Left, Right, Stay

L,R,S: moves

Example:

Time 1

Time 2

$$q_1 \xrightarrow{a \to b, S} q_2$$

Theorem:

Stay-Option Machines have the same power with Standard Turing machines

Proof:

Part 1: Stay-Option Machines are at least as powerful as Standard machines

Proof: a Standard machine is also a Stay-Option machine (that never uses the S move)

Proof:

Part 2: Standard Machines

are at least as powerful as

Stay-Option machines

Proof: a standard machine can simulate a Stay-Option machine

Stay-Option Machine

Simulation in Standard Machine

$$\underbrace{q_1} \xrightarrow{a \to b, L} \underbrace{q_2}$$

Stay-Option Machine

Simulation in Standard Machine

For every symbol X

Example

Stay-Option Machine:

Simulation in Standard Machine:

Standard Machine--Multiple Track Tape

one symbol

track 1 track 2

$$\underbrace{q_1} \xrightarrow{(b,a) \to (c,d),L} \underbrace{q_2}$$

Semi-Infinite Tape

Standard Turing machines simulate Semi-infinite tape machines:

Trivial

Semi-infinite tape machines simulate Standard Turing machines:

Semi-infinite tape machine

Semi-infinite tape machine with two tracks

Standard machine

Semi-infinite tape machine

Standard machine

$$\underbrace{q_1} \quad \stackrel{a \to g, R}{\longrightarrow} \underbrace{q_2}$$

Semi-infinite tape machine

Right part
$$q_1^R \xrightarrow{(a,x) \to (g,x),R} q_2^R$$

Left part

$$\underbrace{q_1^L} \xrightarrow{(x,a) \to (x,g),L} \underbrace{q_2^L}$$

For all symbols X

Time 1

Semi-infinite tape machine

Time 2

Semi-infinite tape machine

At the border:

Semi-infinite tape machine

Right part
$$q_1^R$$
 $(\#,\#) \rightarrow (\#,\#), R$ q_1^L

Left part

$$\overbrace{q_1^L} \xrightarrow{(\#,\#) \to (\#,\#), R} \overbrace{q_1^R}$$

Semi-infinite tape machine

Theorem:

Semi-infinite tape machines have the same power with Standard Turing machines

The Off-Line Machine

Off-line machines simulate Standard Turing Machines:

Off-line machine:

1. Copy input file to tape

2. Continue computation as in Standard Turing machine

Standard machine

Off-line machine

1. Copy input file to tape

Standard machine

Off-line machine

2. Do computations as in Turing machine

Standard Turing machines simulate Off-line machines:

Use a Standard machine with four track tape to keep track of the Off-line input file and tape contents

Off-line Machine

Four track tape -- Standard Machine

	#	\boldsymbol{a}	b	C	d		
	#	0	0	1	0		
		e	f	g			
		0	1	0			
A							

Input File
head position
Tape
head position

Reference point

Repeat for each state transition:

- Return to reference point
- · Find current input file symbol
- Find current tape symbol
- Make transition

Theorem: Off-line machines have the same power with Stansard machines

Multitape Turing Machines

Time 2

$$\underbrace{q_1}^{(b,f) \to (g,d),L,R} \underbrace{q_2}$$

Multitape machines simulate Standard Machines:

Use just one tape

Standard machines simulate Multitape machines:

Standard machine:

· Use a multi-track tape

 A tape of the Multiple tape machine corresponds to a pair of tracks

Multitape Machine

Standard machine with four track tape

	a	b	C		Tape 1
	0	1	0		head position
	e	f	g	h	Tape 2
	0	0	1	0	head position
-	1	I		1	<u> </u>

Reference point

Repeat for each state transition:

- ·Return to reference point
- ·Find current symbol in Tape 1
- ·Find current symbol in Tape 2
- Make transition

Theorem:

Multi-tape machines
have the same power with
Standard Turing Machines

Same power doesn't imply same speed:

Language
$$L = \{a^n b^n\}$$

Acceptance Time

Standard machine

 n^2

Two-tape machine

 \boldsymbol{n}

$$L = \{a^n b^n\}$$

Standard machine:

Go back and forth n^2 times

Two-tape machine:

```
Copy b^n to tape 2 (n steps)

Leave a^n on tape 1 (n steps)

Compare tape 1 and tape 2 (n steps)
```

MultiDimensional Turing Machines

U: up D: down

Position: +2, -1

Multidimensional machines simulate Standard machines:

Use one dimension

Standard machines simulate Multidimensional machines:

Standard machine:

- Use a two track tape
- Store symbols in track 1
- Store coordinates in track 2

Two-dimensional machine

\overline{a}				b					C	
1	#	1	#	2	#	_	1	#		1
•										

symbols coordinates

Standard machine:

Repeat for each transition

- Update current symbol
- · Compute coordinates of next position
- · Go to new position

Theorem:

MultiDimensional Machines have the same power with Standard Turing Machines

NonDeterministic Turing Machines

Non Deterministic Choice

Time 0

Time 1

Choice 1

Choice 2

Input string W is accepted if this a possible computation

NonDeterministic Machines simulate Standard (deterministic) Machines:

Every deterministic machine is also a nondeterministic machine

Deterministic machines simulate NonDeterministic machines:

Deterministic machine:

Keeps track of all possible computations

Non-Deterministic Choices

Non-Deterministic Choices

Simulation

Deterministic machine:

Keeps track of all possible computations

 Stores computations in a two-dimensional tape

NonDeterministic machine

Deterministic machine

#	#	#	#	#	#	
#	a	b	\mathcal{C}	#		
#	q_1			#		
#	#	#	#	#		

Computation 1

NonDeterministic machine

Deterministic machine

-	#	#	#	#	#	#	
#		b	b	C	#	,,	 Computation
#	q_2				#		Comparation
#		C	b	С	#		Computation
#			q_3		#		Computation

Repeat

- · Execute a step in each computation:
- If there are two or more choices in current computation:
 - 1. Replicate configuration
 - 2. Change the state in the replica

Theorem: NonDeterministic Machines have the same power with Deterministic machines

Remark:

The simulation in the Deterministic machine takes time exponential time compared to the NonDeterministic machine

Polynomial Time in NonDeterministic Machine:

NP-Time

Polynomial Time in Deterministic Machine:

P-Time

Fundamental Problem: P = NP?