

4.4 电感式传感器 的应用介绍

知行合一、经世致用

计算机学院

一、位移测量

轴向式电 感测微器的外 形

知行合一、经世致用

其他电感测微头

模拟式及数字式电感测微仪比较

轴向式电感测微器的内部结构

1-引线电缆 2-固定磁筒 3-衔铁 4-线圈 5-测力弹簧

6-防转销 7-钢球导轨(直线轴承) 8-测杆 9-密封套

10-测端 11-被测工件 12-基准面

轴向式电感测微器特性

量程±3μm时的绝对误差: 0.1μm

长时间稳定性: ≤0.1 µ m/4h

(预热15min后, ±3μm档。)

温度特性: ≤1分度值/10℃

电源电压在170~253V

范围内变化对示值

的影响≤1/7分度值。

第四章 电感传感原理与测量

1-气缸 2-活塞 3-推杆 4-被测滚柱 5-落料管 6-电感测微器 7-钨钢测头8-限位挡板 9-电磁翻板 10-滚柱的公差分布 11-容器(料斗)12-气源处理三联件

知行合一、经世致用

电感式滚柱直径分选装置

圆柱滚子

电感式滚柱直径分选装置外形

滑道

轴承滚子外形

电感式滚柱直径 分选装置外形2

滑道

11个分选仓位

废料仓

电感式滚柱直径分选装置(机械结构放大)_直径测微装置

汽缸 控制键盘 长度测微装置 滑道

机械及气动元件

电感测微器

汽缸

气水分离器 (供气三联件)

气压表 (0.4MPa左右)

导气管

储气罐

二位五通电磁换向阀

出气孔A 进气孔P 出气孔B

直流电磁铁

交流电磁铁

衔铁

电感式滚柱直径分选界面

分选结果基本符合 正态分布

差动变压器式厚度测量原理

差动变压器式布匹张力控制

当卷取辊转动太快时, 布料的张力将增大, 导致 张力辊向上位移, 使差动 变压器的衔铁不再处于中 间位置。N21与N1之间的互 感量M₁增加,N₂₂与N₁的互 感量Ma減小,因此Ua1增大, U20减小,经相敏检波之后, 根据 $U_0 = \mp 2j\varpi \Delta M I_1, U_0 为$ 负值,去控制伺服电动机, 使它的转速变慢,从而使 张力恒定。

电感式不圆度计

采用旁向式电感测微头

电感式不圆度测量系统

测量头 旋转盘

不圆度测量打印

电感传感器式轮廓仪

旁向式 电感 测微头

第四章 电感传感原理与测量

1-压力输入接口 2-波纹膜盒 3-膜盒的自由端 4-印制电路板 5-差动绕组 6-衔铁 7-电源变压器 8-罩壳 9-指示灯 10-密封隔板 11-安装底座

知行合一、经世致用

第四章 电感传感原理与测量

压力变送器结构

膜盒由两片波纹膜片焊接而成。波纹膜片是一种压有同心波纹的圆形金属薄膜。当膜片四周固定,两侧面存在压差时,膜片将弯向压力低的一侧,因此能够将压力转换为位移。波纹膜片比平膜片柔软得多,因此多用作测量较小压力的弹性敏感元器件。

第四章 电感传感原理与测量

压力变送器 电路分析

220V电源变压器的二次侧经桥式整流、电解电容滤波后,输出电压经三端稳压集成块转变成稳定的18V直流电压,为差动变压器的交流激励源提供能源。也可以用开关电源来代替以上的降压、整流、稳压环节。当被测压力为标准值时,U₂₁= U₂₂,U_{AC} =0。当被测压力增大时,U₂₁增大,U₂₂减小,在滤波电容上合成的电压U_{AC} 为上正下负的直流电压。幅值与压力的增量成正比。再经U/I转换器,将输出电压转换成4~20mA的标准输出电流I₀。