Emory University

MATH 516 Numerical Analysis II

Learning Notes

Jiuru Lyu

May 13, 2025

Contents

Nı	Numerical Algorithms			
1	Solving Nonlinear Equations			
	1.1	Bisection Method	8	
	1.2	Fixed Point Iteration	11	
	1.3	Newton's Method	13	
	1.4	Secant Method	. 15	
	1.5	Convergence of Newton's & Secant Methods	16	
2	Optimization			
	2.1	Multivariable Calculus Review	19	
	2.2	Optimization Algorithms	22	
		2.2.1 Descent Direction	22	
		2.2.2 Gradient Descent	23	
		2.2.3 Newton's Method	23	
		2.2.4 BFGS (Quasi-Newton Method)	24	
		2.2.5 Step Size	26	
	2.3	Nonlinear Least Squares and Gauss-Newton	27	
3	Poly	nomial Interpolation	29	
	3.1	Basis Selection		
	3.2	Error in Polynomial Interpolation	34	
	3.3	Chebyshev Interpolation	37	

CONTENTS

	3.4	3.4 Interpolation with Derivative Info (Hermite)				
4	Piec	Piecewise Interpolation				
	4.1	Piecewise Polynomial Interpolation	42			
	4.2	Cubic Spline Interpolation	44			
	4.3	A Different Perspective on Piecewise Interpolation	46			
		4.3.1 Hat Functions (Finite Elements) <i>Think of Lagrange polynomials</i>	46			
		4.3.2 Hermite Cubic Basis <i>Adding smoothness</i>	47			
5	Best	t Approximate	49			
	5.1	Continuous Least Squares	49			
		5.1.1 Continuous Linear Algebra	49			
		5.1.2 Some Functional Analysis Background	50			
		5.1.3 Normal Equations of Continuous Least Squares	50			
		5.1.4 Orthogonal Basis Functions	53			
	5.2	Weighted Least Squares	54			
6	Nun	Numerical Differentiation				
	6.1	Taylor Series	58			
	6.2	Interpolate, then Differentiate	59			
7	Nun	Numerical Integration				
	7.1	Basic Quadrature Rules	61			
	7.2	Error in Quadrature	63			
	7.3	Composite Quadrature Rules	65			
	7.4	Gaussian Quadrature	65			
	7.5	Adaptive Quadrature	69			
8	Nun	Numerical ODEs				
	8.1	Differential Equations	72			
	8.2	Euler's Method	73			
	8.3	Numerical Considerations in Euler's Method	74			
	8.4	Runge-Kutta Methods	77			
	8.5	Absolute Stability and Stiffness	79			

List of Algorithms

1	Bisection Method	9
2	Fixed Point Iteration	11
3	Newton's Method	14
4	Secant Method	16
5	Gradient Descent (GD)	23
6	Newton's Method	23
7	BFGS, $G_k = B_k^{-1}$	26
8	Backtracking Line Search	27
9	Practical Lagrange Interpolation Through Barycentric Weights	32

Numerical Algorithms

What is this course about?

- Nonlinear equations (root finding, fixed point iteration): Find x s.t. f(x) = 0, where f(x) is nonlinear.
- Optimization (multivariate):

$$\min_{x \in \mathbb{R}^n} f(x)$$

First optimality condition: if f is differentiable, $\min_{x \in \mathbb{R}} f(x) \iff f'(x) = 0$

- Interpolation ("connecting the dots"): Given (x_i, y_i) . Find f s.t. $y_i = f(x_i)$.
- Differentiation and Integration:

$$f'(x_0)$$
 and $\int_a^b f(x) dx$

• ODEs: $Solve \ y' = f(y,t) \ with \ y(t_0) = y_0.$

Scientific Computing

Errors

- Modeling Errors: (often intentional) simplifications of real phenomena to make computation feasible:
 - Approximate of planets as spheres
 - Ignore minor chemical reactions
 - Ignore friction in Physics
 - Approximate a function with (locally) linear models
 - Add regularization
- Approximation errors:
 - Discretize:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

- Convergence: stop early
- Round-off errors:
 - Floating ponts arithmetic
 - Accumulation of error

Big-Oh and Big-⊖ **Notations**

• h: discritization size

$$e(h) = \mathcal{O}(h^q) \iff |e(h)| \leq Ch^q \quad \text{asymptotically as } h \to 0.$$

• n: size of the system/# of points:

$$w(n) = \mathcal{O}(n \log n) \iff |w(n)| \le Cn \log n \quad \text{as } n \to \infty$$

• $\varphi(n) = \Theta(\psi(n)) \iff c\psi(n) \le \varphi(n) \le C\psi(n)$.

Accessing an Algorithm

- Accuracy: error, correctness
- Efficiency:

- flops
- Rate of convergence
- Times
- Parallization/Memory Requirements/... (HPC things)
- Robustness: stability

Problem Conditioning

Let g be the problem:

A stable algorithm yields an exact solution to a nearby problem.

$$_{\rm algorithm}^{\rm stable} + {\scriptstyle {\rm well-conditioned}\atop {\rm problem}} = {\scriptstyle {\rm accurate}\atop {\rm computed \ solution}}.$$

Some useful Calculus

Definition 0.0.1 (Taylor Series). Assume that f(x) has k + 1 derivatives in an interval containing x_0 and $x_0 + h$. Then,

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \dots + \frac{h^k}{k!}f^{(k)}(x_0) + \frac{h^{k+1}}{(k+1)!}f^{(k+1)}(\xi),$$

where $\xi = \xi_{x_0,h}$ is some point between x_0 and $x_0 + h$.

Remark 1. (Taylor Approximation).

$$f(x_0 + h) \approx f(x_0) + h'f(x_0) + \frac{h^2}{2}f''(x_0) + \dots + \frac{h^k}{k!}f^{(k)}(x_0).$$

Theorem 0.0.2 Intermediate Value Theorem (IVT)

Suppose $f \in \mathcal{C}[a,b]$ and $\widehat{a},\widehat{b} \in [a,b]$. Let $f(\widehat{a}) \leq s \leq f(\widehat{b})$. Then, $\exists c \in [a,b] \ s.t. \ f(c) = s$.

Theorem 0.0.3 Mean Value Theorem (MVT)

Suppose $f \in \mathcal{C}([a,b])$ and f is differentiable on (a,b). Then, $\exists c \in (a,b) \ s.t.$

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Theorem 0.0.4 Integral Mean Value Theorem

Suppose $f \in \mathcal{C}([a,b])$, and w is non-negative and integrable on [a,b]. That is, $w(x) \geq 0 \quad \forall \ x \in [a,b]$. Then,

$$\int_{a}^{b} w(x)f(x) dx = f(\xi) \int_{a}^{b} w(x) dx$$

for some $\xi_{a,b} \in [a,b]$.

Remark 2. (Note). Take w(x) = 1. Then,

$$\int_{a}^{b} f(x) dx = f(\xi)(b - a).$$

By Fundamental Theorem of Calculus,

$$\frac{F(b) - F(a)}{b - a} = f(\xi), \quad \text{where } F(x) \text{ is the antiderivative of } f(x).$$

1 Solving Nonlinear Equations

Goal: Solve f(x) = 0 (rooting finding) or solve g(x) = x (fixed point).

- One can convert root finding to fixed point by setting G(x) = x f(x).
- Alternatively, fixed point problem is equivalent as a root finding problem if one considers F(x) = g(x) x.

Real World Examples:

• Studying planetary motion (Kepler)

$$x = a + b \sin x$$
 (no analytical solution)

• Population growth models:

$$N'(t) = \lambda N(t) + \nu,$$

where λ is the growth rate and ν is the immigration rate. Using ODE techniques, we can solve this equation exactly:

$$N(t) = N_0 e^{\lambda t} + \frac{\nu}{\lambda} (e^{\lambda t} - 1).$$

However, if one wants to find growth rate λ^* s.t. N(1)=1,000,000, they need to solve

$$N(1) = N_0 e^{\lambda} + \frac{\nu}{\lambda} (e^{\lambda} - 1) = 1,000,000.$$

This is a problem with no analytical solution.

1.1 Bisection Method

Goal: Solve f(x) = 0 over [a, b]. This method is also called the *enclosure method* or the *brack-eting method*.

Assumptions:

- $f \in \mathcal{C}([a,b])$
- f(a)f(b) < 0: function has different signs at endpoints.

Remark. Why does f have a root in [a, b] under these assumptions? By IVT!

Algorithm 1: Bisection Method

```
Input: f \in \mathcal{C}([a,b]), a, b

1 begin
2 | while not converged do
3 | compute midpoint c = \frac{a+b}{2};

// update brackets
4 | if f(b)f(c) \leq 0 then
5 | a \leftarrow c // pick the right half
6 | else
7 | b \leftarrow c // pick the left half
```

Output: $\frac{a+b}{2}$

1. Stopping Criteria:

- $|f(c)| < \varepsilon$
- $|b-a|<\varepsilon$
- number of iterations:

$$N = \left\lceil \log_2 \left(\frac{b - a}{2\varepsilon} \right) \right\rceil.$$

Proof 1. At k-th iteration, the length of the bracket is $(b-a)2^{-k}$. When we stop, we have

$$\frac{(b-a)2^{-k}}{2} < \varepsilon.$$

Then, $|x^* - c_k| < \varepsilon$. Solve for k, we have

$$k > \log_2\left(\frac{b-a}{2\varepsilon}\right).$$

So we can form a bound for maximum iterations needed to achieve desired level of accuracy.

- 2. Pros and Cons:
 - (+) Guaranteed convergence
 - (+) Convinient error bound
 - (-) Slow
 - (-) Can only find simple roots
- 3. Practical considerations
 - Avoid re-computing *f*
 - Adjusting tolerance carefully

Remark. In MATLAB, fzero uses a mix of bisection and interpolation methods.

Example 1.1.1

• Describe the convergence behavior of

$$f(x) = (x-3)^p$$
 on [2,4]

for different choices of p > 0.

Solution 2.

- 1. p even: can't use bisection.
- 2. p odd: convergence $|b-a|<\varepsilon$ will not depend on p. But if we use $|f(c)|<\varepsilon$ as the stopping criteria, the convergence will be dependent on p.

• Find a bracket for

$$g(\lambda) = \det(A - \lambda I),$$

where $A\mathbf{R}$ is SPD, that it is guaranteed to contain all roots.

Solution 3.

By the Gershgorin disk, we can choose $[0, \star]$, where g(0) > 0 (by SPD) and $g(\star) < 0$. One can pick $\star = ||A||_2^2$ to ensure $g(\star) < 0$.

1.2 Fixed Point Iteration

Algorithm 2: Fixed Point Iteration

Input: $g \in \mathcal{C}([a,b]])$, initial guess $x_0 \in [a,b]$;

ı begin

for
$$k=0,1,\ldots$$
 do $x_{k+1}=g(x_k);$ if stopping criteria then break;

Output: x_{k+1}

Theorem 1.2.1 Fixed Point Theorem/Contraction Mapping Theorem

- Existence: If $g \in \mathcal{C}([a,b])$ with $g(a) \geq a$ and $g(b) \leq b$, then \exists a fixed point $x^* \in [a,b]$.
- Uniqueness: If, in addition, g is Lipschitz continuous with Lipschitz constant ρ and $0 < \rho < 1$:

$$|g(x) - g(y)| \le \rho |x - y| \quad \forall \, x, y \in [a, b],$$

then the fixed point is unique in [a, b].

Proof 1.

• Existence: Define $\varphi(x)=g(x)-x$. Then, $\varphi(a)\geq 0$ and $\varphi(b)\leq 0$. Note that $\varphi(\cdot)$ is continuous. By IVT, $\exists \, x^*\in [a,b] \, s.t. \, \varphi(x^*)=0$. Then, by definition of $\varphi(\cdot)$, $g(x^*)-x^*=0$, which implies $g(x^*)=x^*$ is a fixed point. \square

• **Uniqueness**: Assume \exists another fixed point $y^* \in [a, b]$. Then, by definition of fixed point:

$$|g(x^*) - g(y^*)| \le |x^* - y^*|.$$

By Lipschitz continuity,

$$|g(x^*) - g(y^*)| \le \rho |x^* - y^*|.$$

So,

$$|x^* - y^*| \le \rho |x^* - y^*|.$$

Since $0 < \rho < 1$, we necessarily have $x^* = y^*$. So, the fixed point is unique.

Remark 2. (Another Way to Put Uniqueness). If g is differentiable, and $|g'(x)| \le \rho$ for all x, then we have unique fixed point.

1.2.2 Convergence. Assume g is differentiable and $\rho = |g'(x^*)|$ with $0 < \rho < 1$. Start with x_0 sufficiently close to x^* , we have

$$x_{k+1} = g(x_k)$$

$$\underbrace{x_{k+1} - x^*}_{\text{error}} = g(x_k) - x^*$$

$$x_{k+1} - x^* = g(x_k) - g(x^*)$$

$$x^* \text{ is a fixed point}$$

$$x_{k+1} - x^* \approx g'(x^*)(x_k - x^*)$$

$$|x_{k+1} - x^*| \approx \rho |x_k - x^*|.$$

So, the error is always decreasing by a factor of ρ .

Example 1.2.3 Another way to Conduct Convergence Analysis

Main Idea: Show error decreases: $e_n = x^* - x_n$.

Assume g is differentiable.

$$e_{n+1} = x^* - x_{n+1}$$

$$= x^* - g(x_n)$$

$$= g(x^*) - g(x_n)$$

$$= g'(\xi_n)(x^* - x_n)$$

$$e_{n+1} = g'(\xi_n)e_n.$$

$$x^* \text{ is a fixed point}$$

$$MVT$$

When do we converge? $|g'(\xi_n)| < 1 \quad \forall n$ eventually.

Definition 1.2.4 (One-sides and Two-sided Convergence). If $g'(x^*) > 0$, then the convergence is *one-sided*. If $g'(x^*) < 0$, then the convergence is *two-sided*.

Example 1.2.5

Consider $g_1(x) = e^{-x}$ and $g_2(x) = -\ln(x)$. Both have a fixed point $x^* \approx 0.56$.

Remark. If g is invertible,

$$fg(x^*) = x^* \implies g^{-1}(x^*) = x^*.$$

- Does FPI with g_1 converge?
 - 1. $|g_1'(x)| = |e^{-x}| < 1 \implies$ true if x > 0. So, we will converge if iterates are positive.
 - 2. Suppose we started with a bad guess: $x_0 < 0$. Then,

$$x_1 = g(x_0) = e^{-x_0} > 0.$$

So, we will always converge, no matter what x_0 we choose.

- Does FPI with g_2 converge?
 - 1. $|g_2'(x)| = \left|\frac{1}{x}\right| < 1 \implies$ we will converge if |x| > 1.
 - 2. However, $x^* \approx 0.56$ is less than 1. So, we will never converge.

1.3 Newton's Method

Goal: Find root of f: $f(x^*) = 0$.

Assumptions: $f \in C^2([a,b])$.

Idea of Newton's Method:

• Consider Taylor Expansion about x_n :

$$f(x) = f(x_n) + f'(x_n)(x - x_n) + f''(\xi_n^{(x)}) \frac{(x - x_n)^2}{2}.$$

• Find root of linear approximation:

$$f(x_n) + f'(x_n)(x - x_n) = 0$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Remark. It can also be viewed as a fixed point iteration with

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

Algorithm 3: Newton's Method

Input: $f \in C^2([a,b])$, initial guess x_0

1 begin

for
$$k=0,1,2,\ldots$$
 do
$$x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)};$$
until stopping criteria met.

Output: x_{k+1}

1.3.1 Potential Stopping Criteria.

• Function value:

$$|f(x_k)| < \varepsilon; \quad \frac{|f(x_k)|}{|f(x_0)|} < \varepsilon.$$

• Stagnate:

$$|x_{k+1} - x_k| < \varepsilon$$

• Derivative:

$$|f'(x_k)| < \varepsilon.$$

1.3.2 Pros and Cons.

- (+) Fast, converges quadratically (when close to a root)
- (+) Local convergence guaranteed
- (+) Can find repeated roots
- (-) Require smoothness of f
- (-) Require derivative evaluations
- (-) Sensitive to initial guess.

Remark. If we want to relax the requirement of smoothness of f and derivative evaluations while enjoying the fastness of newton's method, then we need to use the *secant method*.

1.4 Secant Method

Main Idea: Newton's method with derivative approximation:

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} \equiv f[x_{k-1}, x_k] \leftarrow \text{first-order difference}$$

Assumptions:

$$\bullet \ f \in \mathcal{C}^1([a,b])$$

•
$$f(x_0) \neq f(x_1)$$
.

Algorithm 4: Secant Method

Input: $f \in C^1([a,b])$, initial guesses x_0, x_1

1 begin

Output: x_{k+1}

1.4.1 Pros and Cons.

- (+) Fast, converges superlinearly
- (+) Local convergence guaranteed
- (+) Only required function evaluations; No need derivative information
- (+) Can find repeated roots
- (-) Require two initial guesses
- (-) Sensitive to initial guesses

1.5 Convergence of Newton's & Secant Methods

Definition 1.5.1 (Rate/Speed of Convergence). Suppose sequence $\{x_n\}_{n=0}^{\infty}$ converges to x^* with $x_n \neq x^* \quad \forall n$. We denote this convergence as $x_n \to x^*$. If $\exists \lambda \in (0, \infty)$ for $\alpha > 1$ and $\lambda \in (0, 1)$ for $\alpha = 1$ s.t.

$$\lim_{n \to \infty} \frac{|x^* - x_{n+1}|}{|x^* - x_n|^{\alpha}} = \frac{|e_{n+1}|}{|e_n|^{\alpha}} = \lambda,$$

then $x_n \to x^*$ with order/rate α .

Example 1.5.2 Linearly/Quadratically/Superlinearly Convergent

• Linearly convergent:

$$|x^* - x_{n+1}| \le \lambda |x^* - x_n|, \quad \lambda \in (0, 1).$$

• Quadratically convergent:

$$|x^* - x_{n+1}| \le \lambda |x^* - x_n|^2$$

• Superlinearly convergent:

$$|x^* - x_{n+1}| \le \lambda_n |x^* - x_n|,$$

with $\lambda_n \to 0$. For example, $\lambda_n = \lambda |x^* - x_{n-1}|$ or $\lambda_n = \lambda |x^* - x_n|$ (this is actually quadratically convergent! So, quadratically convergent is a special case of superlinearly convergent).

Theorem 1.5.3 Convergence of Newton's Method

Assume $f'(x^*) \neq 0$. Newton's method converges quadratically if x_0 is sufficiently close to x^* .

Proof 1.

• Taylor's series:

$$f(x) = f(x_n) + f'(x_n)(x - x_n) + f''(\xi_n) \frac{(x - x_n)^2}{2}.$$

Replace x with x^* :

$$f(x^*) = f(x_n) + f'(x_n)(x^* - x_n) + f''(\xi_n) \frac{(x^* - x_n)^2}{2}$$

$$0 = f(x_n) + f'(x_n)(x^* - x_n) + f''(\xi_n) \frac{(x^* - x_n)^2}{2}$$

$$x^* \text{ is a root}$$

$$0 = \frac{f(x_n)}{f'(x_n)} + (x^* - x_n) + \frac{f''(\xi_n)}{f'(x_n)} \frac{(x^* - x_n)^2}{2}$$

$$x^* = \underbrace{x_n - \frac{f(x_n)}{f'(x_n)} - \frac{f''(\xi_n)}{f'(x_n)} \frac{(x^* - x_n)^2}{2}}_{x_{n+1}}$$

$$x^* - x_{n+1} = -\frac{f''(\xi_n)}{f'(x_n)} \frac{(x^* - x_n)^2}{2}$$

 $x' - x_{n+1} = -\frac{f'(x_n)}{f'(x_n)} \frac{2}{2}$ $\implies |x^* - x_{n+1}| = \frac{|f''(\xi_n)|}{2|f'(x_n)|} |x^* - x_n|^2$

quadratically convergent

• What does "sufficiently close" mean?

Let $x_0 \in B_{\delta}[x^*] \equiv [x^* - \delta, x^* + \delta]$. Choose δ small enough s.t. $f'(x) \neq 0 \quad \forall x \in B_{\delta}[x^*]$. We

can do so because f' is continuous. Define

$$M = \frac{\max\limits_{x \in B_{\delta}[x^*]} |f''(x)|}{2\min\limits_{x \in B_{\delta}[x^*]} |f'(x)|}$$
 (the worst case constant)

Then,

$$|x^* - x_{n+1}| \le M|x^* - x_n|^2.$$

Refining δ : choose δ small enough $s.t. M \cdot \delta < 1$.

Recall: when we start, $|x^* - x_0| < \delta$. \implies convergence.

Example 1.5.4 Importance of Initial Guess

$$f(x) = \arctan(x)$$
 with $x^* = 0$.

Newton's method will converge for any $x_0 \in (x^* - \delta, x^* + \delta)$, for δ small enough.

• What is the largest choice of δ for which we converge?

If $\exists \delta s.t.$ Newton's method oscillates, this is the largest one.

• How do we find this δ ?

$$x_0 = \delta$$

$$x_1 = -\delta = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$-\delta = \delta - \frac{f(\delta)}{f'(\delta)}$$

Define $h(\delta) = 2\delta - \frac{f(\delta)}{f'(\delta)}$. Find the root of $h(\delta) = 0$.

Use Newton's method on h to find δ^* , $\delta^* \approx 1.39$.

2 Optimization

Goal:

$$\min_{x \in \mathbb{R}^n} \varphi(x) \quad \text{where } \varphi(x) : \mathbb{R}^n \to \mathbb{R}, \ \varphi \in \mathcal{C}^2.$$

2.1 Multivariable Calculus Review

Definition 2.1.1 (Directional Derivative). If it exists, the *directional derivative* of φ : $\mathbb{R}^n \to \mathbb{R}$ at $x \in \mathbb{R}^n$ in direction $d \in \mathbb{R}^n$, $d \neq 0$ is

$$\varphi'(x; d) = \lim_{t \to 0} \frac{\varphi(x + td) - \varphi(x)}{t}.$$

Definition 2.1.2 (Partial Derivative). *Partial derivative* is a directional derivative in coordinate direction e_i ,

$$\frac{\partial \varphi}{\partial x_i} = \varphi'(x; e_i).$$

Definition 2.1.3 (Gradient). *Gradient,* $\nabla \varphi : \mathbb{R}^n \to \mathbb{R}^n$, is defined as

$$\nabla \varphi = \begin{bmatrix} \frac{\partial \varphi}{\partial x_1} \\ \vdots \\ \frac{\partial \varphi}{\partial x_n} \end{bmatrix}.$$

Lemma 2.4 Directional Derivative:

$$\varphi'(x;d) = \nabla \varphi(x)^{\top} d,$$

a linear combination of changes in each coordinate.

Theorem 2.1.5 Taylor Series in Several Variables

Given $x \in \mathbb{R}^n$. Assume φ has bounded derivatives up to order at least e. Then, for direction vector $p \in \mathbb{R}^n$, we can write

$$\varphi(x+p) = \varphi(x) + \nabla \varphi(x)^{\top} p + \frac{1}{2} p^{\top} \nabla^2 \varphi(x) p + \mathcal{O}(\|p\|^3).$$

Alternatively,

$$\varphi(x+p) = \varphi(x) + \boldsymbol{\nabla}\varphi(x)^{\top}p + \frac{1}{2}p^{\top}\boldsymbol{\nabla}^{2}\varphi(\xi)p, \quad \text{where } \xi \text{ is between } x \text{ and } x+p.$$

Definition 2.1.6 (Hessian/ $\nabla^2 \varphi(x)$ **).** The *Hessian* of $\varphi(x)$, denoted $\nabla^2 \varphi(x)$, is given by

$$\nabla^{2}\varphi(x) = \begin{bmatrix} \frac{\partial^{2}\varphi(x)}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2}\varphi(x)}{\partial x_{1}\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2}\varphi(x)}{\partial x_{n}\partial x_{1}} & \cdots & \frac{\partial^{2}\varphi(x)}{\partial x_{n}^{2}} \end{bmatrix} \in \mathbb{R}^{n \times n},$$

where $\left[\mathbf{\nabla}^2 \varphi(x) \right]_{i,j} = \frac{\partial^2 \varphi(x)}{\partial x_i \partial x_j}$.

Example 2.1.7

$$p^{\top} \nabla^2 \varphi(x) p = \sum_{j=1}^n \sum_{i=1}^n \frac{\partial^2 \varphi(x)}{\partial x_i \partial x_j} p_i p_j.$$

Definition 2.1.8 (Jacobian). Suppose $F: \mathbb{R}^n \to \mathbb{R}^m$, a vector-valued function,

$$F(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{pmatrix}, \text{ where } f_i : \mathbb{R}^n \to \mathbb{R}.$$

Then, the *gradient* of F(x) is

$$\nabla F(x) = \begin{bmatrix} | & | & | \\ \nabla f_1(x) & \nabla f_2(x) & \cdots & \nabla f_m(x) \\ | & | & | \end{bmatrix} \in \mathbb{R}^{n \times m}.$$

The Jacobian is

$$J(x) = \nabla F(x)^{\top} \in \mathbb{R}^{m \times n}.$$

Example 2.1.9 Linear Approximation of F(x)

$$F(x+p) \approx F(x) + J(x)p = F(x) + \begin{pmatrix} \nabla f_1(x)^{\top} p \\ \vdots \\ \nabla f_m(x)^{\top} p \end{pmatrix}.$$

Remark.

 $\nabla^2 \varphi(x) = \text{Jacobian of } \nabla \varphi \text{ evaluated at } x.$

Example 2.1.10 Taylor Series for Testing Implementation

We can evaluate φ and $\nabla \varphi$

1. Evaluate at some *x*:

$$\varphi_0 = \varphi(x)$$
 and $g_0 = \nabla \varphi(x)$.

- 2. Choose search direction $p \neq 0$.
- 3. Test the linear approximation

$$arphi_1 = arphi(x + hp), \quad h \in \mathbb{R}$$

$$\mathbf{err}_0 = |arphi_0 - arphi_1|$$

$$\mathbf{err}_1 = \left| arphi_0 + hg_0^\top p - arphi_1 \right|$$

4. Decrease *h*:

$$\varphi(x+p) = \varphi(x) + \mathcal{O}(h)$$
 (0-th Order Approx.)

 \implies cut h in half, err₀ will be cut in half.

$$\varphi(x+p) = \varphi(x) + \nabla \varphi(x)^{\top} p + \mathcal{O}(h^2)$$
 (1-st Order Approx.)

 \implies cut h in half, err₁ will be divided by 4.

Theorem 2.1.11 Optimality Conditions

- First Order (Necessary) Optimality: If x^* is a local minimum, then $\nabla \varphi(x^*) = 0$ (or, x^* is a critical point).
- Second Order (Sufficient) Optimality:

If x^* is a critical point, and

- $\nabla^2 \varphi(x^*)$ ≻ 0, then x^* is a local minimum;
- $\nabla^2 \varphi(x^*) \prec 0$, then x^* is a local maximum;
- $\boldsymbol{\nabla}^2\varphi(x^*)$ is indefinite, then x^* is a saddle point.

2.2 Optimization Algorithms

General Algorithm:

$$\min_{x \in \mathbb{R}^n} \varphi(x), \quad \varphi(x) \in \mathcal{C}^2.$$
$$x_{k+1} = x_k + \alpha_k p_k,$$

where α_k is the step size and p_k is the descent direction.

2.2.1 Descent Direction

For a descent direction p, we want $\varphi(x+p) < \varphi(x)$. By Taylor's Series, we have

$$\varphi(x+p) = \varphi(x) + \nabla \varphi(x)^{\top} p + \mathcal{O}(\|p\|^2).$$

Definition 2.2.1 (Descent Direction). If $\nabla \varphi(x)^{\top} \neq 0$ and ||p|| is sufficiently small (i.e., we have not met FOC), then a *descent direction* satisfies

$$\nabla \varphi(x)^{\top} p < 0.$$

Claim 2.2 Suppose $p_k = -B_k^{-1} \nabla \varphi(x_k)$. If B_k is SPD, then p_k is a descent direction. **Proof 1.** Since B_k is SPD, B_k^{-1} is also SPD. Then, $y^{\top} B_k^{-1} y > 0$ if y is nonzero.

$$\nabla \varphi(x_k)^{\top} p_k = \nabla \varphi(x_k)^{\top} \left(-B_k^{-1} \nabla \varphi(x_k) \right)$$
$$= -\underbrace{\nabla \varphi(x_k)^{\top} B_k^{-1} \nabla \varphi(x_k)}_{>0} < 0.$$

2.2.3 Ways to Choose B_k .

• $B_k = I$: gradient descent

$$p_k = -\nabla \varphi(x_k).$$

• $B_k = \nabla^2 \varphi(x_k)$: Newton's method

$$p_k = -\nabla^2 \varphi(x_k)^{-1} \nabla \varphi(x_k).$$

• B_k : secant approximation to Hessian – BFGS (Quasi-Newton's method).

2.2.2 Gradient Descent

Algorithm 5: Gradient Descent (GD)

ı begin

while not converged do

$$p_k = -\nabla \varphi(x_k);$$

Pros and Cons:

- (+) Simple, only need gradient information
- (-) Slow
- (-) Sensitive to step size

Remark. One can prove that GD convergence if φ is convex and if $\nabla \varphi$ is Lipschitz continuous (smoothness).

2.2.3 Newton's Method

Algorithm 6: Newton's Method

1 begin

while not converged do $\nabla^2 \cdot (x_0)^{-1} \nabla \cdot (x_0)$

$$p_k = -\mathbf{\nabla}^2 \varphi(x_k)^{-1} \mathbf{\nabla} \varphi(x_k);$$

Proof 2. By FOC, we find the root of $\nabla \varphi(x) = 0$. Build a linear approximation:

$$\nabla \varphi(x+p) \approx \nabla \varphi(x) + \nabla^2 \varphi(x)p = 0$$

Then, in each iteration, we need to solve the system

$$\nabla^2 \varphi(x) p = -\nabla \varphi(x).$$
 (Newton)

Remark. We can solve (Newton) using Krylov methods, and we don't need to form Hessian explicitly.

Pros and Cons:

(+) Fast, locally quadratic convergence

- (+) Scale invariant (we have the curvature information, so $-\nabla^2 \varphi(x)^{-1}$ is rescaling our $\nabla \varphi(x)$ to the right scale. Theoretically, we don't need a line search.)
- (-) Existence of Hessian
- (-) Evaluating Hessian is expensive
- (-) Solving a linear system at each iteration
- (-) Hessian may not be SPD \implies negative curvature (non-descent direction)

2.2.4 BFGS (Quasi-Newton Method)

Definition 2.2.4 (Quasi-Newton Method). The *quasi-Newton method* family approximates the Hessian (so that we don't encounter situations when Hessian does not exist or Hessian is not SPD).

2.2.5 Building up BFGS.

- $x_{k+1} = x_k + p_k$ and $p_k = x_{k+1} x_k$.
- Taylor's expansion on $\nabla \varphi$:

$$\nabla \varphi(x_{k+1}) \approx \nabla \varphi(x_k) + \nabla^2 \varphi(x_k) p_k$$

We want to estimate the action of Hessian on p_k .

• Iteratively update B_{k+1} to create better and better estimates of $\nabla^2 \varphi(x_{k+1})$: Assume we already have B_k , and we have computed

$$x_{k+1} = x_k + B_k^{-1} p_k.$$

• We want B_{k+1} to satisfy the secant approximation:

$$B_{k+1}(x_{k+1} - x_k) = \nabla \varphi(x_{k+1}) - \nabla \varphi(x_k).$$

In 1-D, we have

$$b_{k+1} = \frac{\varphi'(x_{k+1}) - \varphi'(x_k)}{x_{k+1}x_k}$$

is an estimation for $\varphi''(\xi)$.

• What properties do we want B_k to satisfy?

- SPD
- Easy to solve
- Easy to update
- Not too far from B_{k-1} .

2.2.6 Nocedal and Wright Derivation of BFGS.

Main Idea:

$$\min_{B} \|B - B_k\|_W,$$
 such that $B = B^{\top}$ and $B(\underbrace{x_{k+1} - x_k}_{p_k}) = \underbrace{\boldsymbol{\nabla} \varphi(x_{k+1} - \varphi(x_k)}_{y_k}.$

Definition 2.2.7 (Weighted Frobenius Norm). We choose the *weighted Frobenius norm* as follows:

$$||A||_W = ||W^{1/2}AW^{1/2}||_F,$$

so that we get unique solution for B and scale invariant rule for W:

$$W \approx -\nabla^2 \varphi(\xi)^{-1} \implies p_k = W y_k.$$

The BFGS choice of W can be derived from MVT

$$\nabla \varphi(x+p) = \nabla \varphi(x) + \int_0^1 \nabla^2 \varphi(x+tp) p \, dt = \nabla \varphi(x) + \nabla^2 \varphi(\xi) p.$$

Then,

$$W_k = \int_0^1 \nabla^2 \varphi(x_k + tp_k) p_k \, \mathrm{d}t.$$

In this way, W_k captures the curvature information of φ .

2.2.8 Updating B_k .

Given B_0 , we have

$$B_{k+1} = \left(I - \rho_k y_k p_k^{\mathsf{T}}\right) B_k \left(I - \rho_k y_k p_k^{\mathsf{T}}\right)^{\mathsf{T}} + \rho_k y_k y_k^{\mathsf{T}},$$

where

$$\rho_k = \frac{1}{y_k^\top p_k}, \quad \text{and} \quad y_k = \nabla \varphi(x_{k+1}) - \nabla \varphi(x_k)$$

Then, $y_k^{\top} p_k = (\nabla \varphi(x_{k+1}) - \nabla \varphi(x_k))^{\top} (x_{k+1} - x_k)$ indicates how much $\nabla \varphi$ changes over the

step, and thus is an indication of the curvature information.

Algorithm 7: BFGS, $G_k = B_k^{-1}$ Input: φ , $\nabla \varphi$, x_0 , $G_0 = \mu I$

1 begin

$$\begin{array}{c|c} \mathbf{for} \ k = 0, 1, \dots \ \mathbf{do} \\ \mathbf{3} & p_k = -G_k \boldsymbol{\nabla} \varphi(x_k); \\ \mathbf{4} & \text{Find step size } \alpha_k; \\ \mathbf{5} & x_{k+1} = x_k + \alpha_k p_k; \\ \mathbf{6} & w_k = \alpha_k p_k; \\ \mathbf{7} & y_k = \boldsymbol{\nabla} \varphi(x_{k+1}) - \boldsymbol{\nabla} \varphi(x_k); \\ \mathbf{8} & p_k = \frac{1}{y_k^\top w_k}; \\ \mathbf{9} & G_{k+1} = \left(I - \rho_k w_k y_k^\top\right)^\top G_k \left(I - \rho_k w_k y_k^\top\right)^\top + \rho_k w_k w_k^\top; \\ \end{array}$$

Output: x_{k+1}

Step Size 2.2.5

Goal: Choose $\alpha s.t.$

$$\varphi(x_k + \alpha p_k) < \varphi(x_k).$$

We need to satisfy:

• Sufficient decrease condition (Armijo Condition):

$$\varphi(\underbrace{x_k + \alpha p_k}_{x_{k+1}}) \leq \underbrace{\varphi(x_k) + c_1 \alpha \nabla \varphi(x_k)^{\top} p_k}_{\text{linear approximation}}, \quad c_1 \in (0, 1).$$

Usually, we take c_1 very small: $c_1 = 10^{-4}$.

Remark. If c_1 is small, we accept more α . If c_1 is large, we reject more α .

Problem: we can take tiny step sizes \implies We need a second condition to avoid so.

• Curvature condition (Wolfe Condition):

$$\underbrace{\boldsymbol{\nabla}\varphi(\boldsymbol{x} + \alpha p_k)^\top p_k}_{\psi'(\alpha)} \geq c_2 \underbrace{\boldsymbol{\nabla}\varphi(\boldsymbol{x}_k)^\top p_k}_{\text{slope of linear approximation}}, \quad 0 < c_1 < c_2 < 1$$

Usually, we take c_2 close to 1: $c_2 = 0.9$.

Algorithm 8: Backtracking Line Search

Input: x_k , p_k , φ , $\nabla \varphi$

ı begin

$$\begin{array}{c|c} \mathbf{\widetilde{\alpha}}_{k} = 1; \\ \mathbf{3} & \textbf{while } \textit{true } \textbf{do} \\ \mathbf{4} & \textbf{if } \varphi(x_{k} + \widetilde{\alpha}_{k}p_{k}) \leq \varphi(x_{k}) + c_{1}\widetilde{\alpha}_{k}\boldsymbol{\nabla}\varphi(x_{k})^{\top}p_{k} \\ \mathbf{5} & \textit{and } \boldsymbol{\nabla}\varphi(x_{k} + \widetilde{\alpha}_{k}p_{k})^{\top}p_{k} \geq c_{2}\boldsymbol{\nabla}\varphi(x_{k})^{\top}p_{k} \textbf{ then} \\ & \alpha_{k} = \widetilde{\alpha}_{k}; \\ \mathbf{7} & \textbf{Break}; \\ \mathbf{8} & \textbf{else} \\ \mathbf{9} & \textbf{Set } \widetilde{\alpha}_{k} = \widetilde{\alpha}_{k}/2; \end{array}$$

2.3 Nonlinear Least Squares and Gauss-Newton

Set-up:

$$\min_{x \in \mathbb{R}^n} \varphi_{LS}(x) \equiv \frac{1}{2} \|g(x) - b\|_2^2, \quad \text{where } g : \mathbb{R}^n \to \mathbb{R}^m$$
 (NLS)

- Linear Least Square: g(x) = Ax
- General case:

$$\nabla \varphi_{LS}(x) = \nabla g(x)(g(x) - b) \implies \nabla^2 \varphi_{LS}(x) = \nabla g(x) \nabla g(x)^{\top} + L(x)$$

• But what is L? Let's rewrite $\nabla \varphi_{LS}$ element-wise:

$$\nabla \varphi_{\text{LS}}(x) = \sum_{j=1}^{m} \nabla g_j(x) r_j(x), \quad \text{where } r(x) = g(x) - b.$$

Then,

$$\nabla^2 \varphi_{\mathrm{LS}}(x) = \nabla g(x) \nabla g(x)^{\top} + \underbrace{\sum_{j=1}^m \nabla g_j^2(x) r_j(x)}_{L(x)}.$$

We can view the L(x) as the messy part of Hessian.

2.3.1 Newton's Method for NLS.

$$p = -(\nabla g(x)\nabla g(x)^{\top} + L(x))^{-1}\nabla \varphi(x).$$

2.3.2 Gauss-Newton: Just use the nice stuff.

$$p = -(\nabla g(x)\nabla g(x)^{\top})^{-1}\nabla \varphi(x),$$

where $\nabla g(x)\nabla g(x)^{\top}$ is a Hessian approximation.

- (+) Hessian approx. is symmetric positive semidefinite \implies guaranteed descent direction.
- (+) Only need Jacobians $\nabla g(x)^{\top} \implies$ only first-order derivatives
- (+) Converge fast (like Newton) when residual is small
- (-) Slower than Newton.

Remark. If the problem is underdetermined, i.e., $n \gg m$, we will get many 0 eigenvalues for $\nabla g(x) \nabla g(x)^{\top}$. Then, we can introduce regularization

$$\min_{x \in \mathbb{R}^n} \varphi_{LS}(x) \equiv \frac{1}{2} \|g(x) - b\|_2^2 + \frac{\lambda}{2} \|x\|_2^2,$$

and Gauss Newton becomes $p = -(\nabla g(x)\nabla g(x)^{\top} + \lambda I)^{-1}\nabla \varphi(x)$, where $\nabla g(x)\nabla g(x)^{\top} + \lambda I$ is SPD.

3 Polynomial Interpolation

Goal: Given data points $\{x_i, f(x_i)\}_{i=0}^n$ (n+1) data points and f is unknown). We want to find a polynomial of degree less than or equal to n, p_n , s.t. $p_n(x_i) = f(x_i)$, $i = 0, 1, \ldots, n$.

Procedure:

- Collect the data
- Choose a linearly independent polynomial basis $\{\varphi_0, \varphi_1, \dots, \varphi_n\}$, where φ_i is a polynomial of degree $\leq n$.
- Construct p_n by fining coefficients c_0, \ldots, c_n s.t.

$$p_n(x) = \sum_{j=0}^n c_j \varphi_j(x)$$
 and $p_n(x_i) = f(x_i), \quad i = 0, \dots, n$
interpolation condition

To do so, solve a linear system:

$$\begin{bmatrix} \varphi_0(x_0) & \varphi_1(x_0) & \varphi_2(x_0) & \cdots & \varphi_n(x_0) \\ \varphi_0(x_1) & \varphi_1(x_1) & \varphi_2(x_1) & \cdots & \varphi_n(x_1) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \varphi_0(x_n) & \varphi_1(x_n) & \varphi_2(x_n) & \cdots & \varphi_n(x_n) \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}.$$

• Evaluate p_n at any point x.

Theorem 3.0.1 Uniqueness of Interpolants

For real data points $\{(x_i, y_i)\}_{i=0}^n$ with distinct abscissa x_i , \exists a unique polynomial of degree at most n, p_n , which interpolates the data.

3.1 Basis Selection

3.1.1 Monomials.

- Basis: $\{1, x, x^2, \dots, x^n\}$.
- Construct Coefficients: Vandermonde matrix and solve:

$$X = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix}$$

• One can show:

$$\det(X) = \prod_{i=0}^{n-1} \left[\prod_{j=i+1}^{n} (x_j - x_i) \right].$$

When is det(X) = 0? When $\exists j \neq i \ s.t. \ x_j = x_i$. i.e., when x_i 's are not distinct.

- Pros and Cons:
 - (+) Simple and intuitive
 - (+) Evaluate is cheap in nested form (Horner's form): $\sim \mathcal{O}(2n)$. For example, $3x^2 + 2x + 1 = x(3x+2) + 1$. In each layer, we only need 2 operations.
 - (-) Coefficients are hard to interpret
 - (-) Have to resolve with slight modification of data points
 - (-) Construction is expensive: $\sim \mathcal{O}\left(\frac{2}{3}n^3\right)$, especially for large n. Think of using Gaussian-Elimination.
 - (-) Vandermonde matrix is often ill-conditioned. (When the interpolation interval is side (round-off or magnitude error) or large n or close x_i 's).

3.1.2 Lagrange.

• Basis: $\{L_0(x), L_1(x), \dots, L_n(x)\}$, where

$$L_i(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0)(x_i - x_1) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}$$

- Properties:
 - degree of L_i : n
 - $L_i(x_j) = 0$ for $j \neq i$.
 - $L_i(x_i) = 1$.
- "Standard basis polynomial":

• Construct Coefficients:

$$\begin{bmatrix} L_0(x_0) & L_1(x_0) & \cdots & L_n(x_0) \\ L_0(x_1) & L_1(x_1) & \cdots & L_n(x_1) \\ \vdots & \vdots & \ddots & \vdots \\ L_0(x_n) & L_1(x_n) & \cdots & L_n(x_n) \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$\implies \underbrace{\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}}_{I} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

So,

$$c_i = y_i, \quad \forall i = 0, \dots, n.$$

• The interpolant:

$$p_n(x) = \sum_{i=0}^n y_i L_i(x)$$

• Practice Implementation: Barycentric Weights

$$\rho_{j} = \prod_{i \neq j} (x_{j} - x_{i})$$

$$= (x_{j} - x_{0})(x_{j} - x_{1}) \cdots (x_{j} - x_{j-1})(x_{j} - x_{j+1}) \cdots (x_{j} - x_{n})$$

$$w_{j} = \frac{1}{\rho_{j}}, \quad j = 0, \dots, n$$

$$L_{j}(x) = w_{j} \frac{\psi_{n}(x)}{(x - x_{j})}, \quad \text{where} \quad \psi_{n}(x) = \prod_{i=0}^{n} (x - x_{i}).$$

Then,

$$p_n(x) = \psi_n(x) \sum_{j=0}^n \frac{w_j y_j}{(x - x_j)}.$$

Imagine f(x)=1, $y_j=1$, $p_n(x)=1$ (by uniqueness of interpolants). Then,

$$1 = \psi_n(x) \sum_{j=0}^n \frac{w_j \cdot 1}{(x - x_j)}$$
$$\psi_n(x) = \frac{1}{\sum_{j=0}^n \frac{w_j}{(x - x_j)}}.$$

Algorithm 9: Practical Lagrange Interpolation Through Barycentric Weights

- 1 Construct barycentric weights w_j and precompute $w_j y_j$ // $\sim \mathcal{O}(n^2)$
- 2 Evaluate

$$p_n(x) = \frac{\sum_{j=0}^n \frac{w_j y_j}{(x - x_j)}}{\sum_{j=0}^n \frac{w_j}{(x - x_j)}}$$
 (Barycentric Interpolation)

// In numerator and denominator, involves n subtraction, n division, and n summation. So, in total, we have $2\times 3n=6n$ operations. Thus, $\sim O(n)$

3.1.3 Newton Polynomials.

• Basis: $\{\varphi_0, \varphi_1, \dots, \varphi_n\}$, where

$$\varphi_j(x) = \prod_{i=0}^{j-1} (x - x_i).$$

For example, $\varphi_0(x)=1$, $\varphi_1(x)=(x-x_0)$, and $\varphi_2(x)=(x-x_0)(x-x_1)$

• Constructing Coefficients:

$$\begin{bmatrix} \varphi_0(x_0) & \varphi_1(x_0) & \cdots & \varphi_n(x_0) \\ \varphi_0(x_1) & \varphi_1(x_1) & \cdots & \varphi_n(x_1) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_0(x_n) & \varphi_1(x_n) & \cdots & \varphi_n(x_n) \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$\implies \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 1 & (x_1 - x_0) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \cdots & \cdots & \prod_{j=1}^{n-1} (x_n - x_j) \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \quad \text{lower-triangular system}$$

• Divided Differences:

$$f[x_0,x_1]=\frac{f(x_1)-f(x_0)}{x_1-x_0}$$
 Secant Line
$$f[x_0,x_1,x_2]=\frac{f[x_1,x_2]-f[x_0,x_1]}{x_2-x_0}$$
 Approximation of second derivative
$$\vdots$$

$$f[x_0,x_1,\dots,x_k]=\frac{f[x_1,x_2,\dots,x_k]-f[x_0,x_1,\dots,x_{k-1}]}{x_k-x_0}$$

• Connecting divided differences with Newton polynomial:

$$c_0 = f[x_0] = f(x_0)$$

$$c_1 = f[x_0, x_1]$$

$$c_2 = f[x_0, x_1, x_2]$$

$$\vdots$$

$$c_n = f[x_0, x_1, \dots, x_n].$$

Specifically, if $0 \le i \le j \le n$:

$$f[x_1, \dots, x_j] = \frac{f[x_{i+1}, \dots, x_j] - f[x_i, \dots, x_{j-1}]}{x_j - x_i}$$

• Then, we can rewrite Newton's polynomial as

$$p_n(x) = \sum_{j=0}^n \left[f[x_0, \dots, x_j] \prod_{i=0}^{j-1} (x - x_i) \right]$$

• An analogy to Taylor's approximation:

$$\widetilde{p}_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$

Newton's polynomial is a secant-like Taylor approximation:

$$p_n(x) = f[x_0] + \underbrace{f[x_0, x_1]}_{\text{secant}}(x - x_0) + \underbrace{f[x_0, x_1, x_2]}_{\text{curvature info}}(x - x_0)(x - x_1) + \dots + f[x_0, \dots, x_n](x - x_0)(x - x_{n-1})$$

When $x_1, \ldots, x_{n-1} \to x_0$, $f[x_0, x_1] \to f'(x_0)$ and $(x - x_0)(x - x_1) \to (x - x_0)^2$. Also, $f[x_0, x_1, x_2] \to f''(x_0)$, but we differ from Taylor's approximation by the coefficients.

Table 1: Summary of bases						
Basis	$\varphi_j(x)$	Construction Cost	Evaluation Cost	Pros		
Monomial	x^{j}	$\frac{2}{3}n^{3}$	2n	Simple		
Lagrange	$L_j(x)$	n^2	5n	$c_j = y_j$; most stable		
Newton	$\prod_{i=0}^{j-1} (x - x_i)$	$\frac{3}{2}n^2$	2n	Adaptive (adding new points, no need to reconstruct		

Table 1. Summary of Races

Error in Polynomial Interpolation 3.2

Notation 3.1.

• Divided Differences:

$$f[z_0, z_1, \dots, z_k] = \frac{f[z_1, \dots, z_k] - f[z_0, \dots, z_{k-1}]}{z_k - z_0}$$

• Degree n + 1 magic polynomial:

$$\psi_n(x) = \prod_{i=0}^n (x - x_i)$$
$$= (x - x_0)(x - x_1) \cdots (x - x_n)$$

Theorem 3.2.2 Helper Theorem

Let f be defined and have k bounded derivatives in an interval [a, b]. z_0, z_1, \dots, z_k be k+1 distinct points in [a, b]. Then, there is a point $\zeta \in [a, b]$ s.t.

$$f[z_0, z_1, \dots, z_k] = \frac{f^{(k)}(\zeta)}{k!}.$$

Remark 1. (Intuition). Suppose we have z_0 and z_1 :

$$f[z_0, z_1] = f'(\zeta)$$

$$\frac{f(z_1) - f(z_0)}{z_1 - z_0} = f'(\zeta)$$
 [by MVT!]

Proof 2. Note that divided differences are invariant to the order of z_i 's:

$$f[z_0, z_1, \dots, z_k] = f[\widehat{z}_0, \widehat{z}_1, \dots, \widehat{z}_k],$$

where $(\widehat{z}_0, \widehat{z}_1, \dots, \widehat{z}_k)$ is a permutation of (z_0, z_1, \dots, z_k) . One can prove this claim using induction:

$$f[z_0, z_1] = \frac{f(z_1) - f(z_0)}{z_1 - z_0} = \frac{f(z_0) - f(z_1)}{z_0 - z_1} = f[z_1, z_0].$$

Because we can re-order, we can assume: $a \le z_0 < z_1 < \cdots < z_k \le b$. Our approach: construct a Newton interpolant and differentiate. Let p_k be the Newton interpolant with degree at most k. Then,

$$p_k(z_i) = f(z_i)$$
 for $i = 0, ..., k$.

Denote the error $e_k(x) = f(x) - p_k(x)$. \leftarrow We will differentiable this!

• Notethat $e_k(z_i) = 0$ as $p_k(z_i) = f(x_i)$

• Note that $p_k(x)$ is of degree at most k:

$$p_k(x) = c_k x^k + q_{k-1}(x)$$

Then, $p_k^{(k)}(x) = k!c_k = k!f[z_0, z_1, \dots, z_k]$ WTS: $e_k^{(k)}(x) = f^{(k)}(x) - p_k^{(k)}(x)$ and $\exists \zeta \in [a, b] \ s.t. \ e_k^{(k)}(\zeta) = 0$. That is,

$$f^{(k)}(\zeta) - k! f[z_0, z_1, \dots, z_k] = 0.$$

• Scratch: $e_k(z_i)$ has at least z_0, z_1, \ldots, z_k as its roots. So, we have k-1 interval. In each interval, we can apply the Rolle's Theorem to find a x^* s.t. $e^{(1)}(x^*) = 0$. Continuing doing so, we evaluate $e^{(k)}$, and there must be a $\zeta \in (a,b)$ s.t. $e^{(k)}(\zeta) = 0$.

Theorem 3.2.3 Error in Polynomial Interpolation

If p_n interpolates f at n+1 points x_0, \ldots, x_n and f has n+1 bounded derivatives in [a, b], then for each $x \in [a, b]$, $\exists \xi = \xi(x) \in [a, b]$ s.t.

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \psi_n(x),$$

where $\psi_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$.

Proof 3.

- Error function: $e(x) = f(x) p_n(x)$. Minimum # of roots of e(x): n + 1 root at x_0, \ldots, x_n . That is, $e(x_i) = 0$ for $i = 0, \ldots, n$.
- Special function:

$$g(x) = e(x) - \frac{\psi_n(x)}{\psi_n(t)}e(t), \quad t \in [a, b]$$

t is fixed, and we want an expression for e(t) in terms of t. x is the helper variable.

 $-q(x_i) = 0$ for i = 0, ..., n.

$$g(x_i) = e(x_i) - \frac{\psi_n(x_i)}{\psi_n(t)}e(t) = 0.$$

$$-g(t) = 0.$$

$$g(t) = e(t) - \frac{\psi_n(t)}{\psi_n(t)}e(t) = e(t) - e(t) = 0.$$

– If $t = x_i$, g(t) is not defined, but we define it to be g(t) = 0.

$$\lim_{t \to x_i} g(t) = 0.$$

- If $t \neq x_i$, we have (n+2) roots of g.
- g is differentiable on (a,b). Composition of differentiable functions: e(x) and $\psi_n(x)$ are differentiable.
- If g has at least n+2 roots, then g' has at least n+1 roots. Continuing, we know $g^{(n+1)}$ has at least 1 root (repeat Rolle's Theorem). That is, $\exists \ \xi = \xi(t) \in [a,b] \ s.t.$

$$g^{(n+1)}(\xi(t)) = 0.$$

Note that

$$g^{(n+1)}(x) = e^{(n+1)}(x) - \frac{\psi_n^{(n+1)}(x)}{\psi_n(t)}e(t).$$

Since $e(x) = f(x) - p_n(x)$ and $p_n(x)$ has degree at most n,

$$e^{(n+1)}(x) = f^{(n+1)}(x) - \underbrace{p_n^{(n+1)}(x)}_{=0}$$
$$= f^{(n+1)}(x).$$

Since $\psi_n(x)=(x-x_0)(x-x_1)\cdots(x-x_n)=x^{n+1}+q_n(x)$, we know

$$\psi_n^{(n+1)} = (n+1)!$$

So,

$$g^{(n+1)}(x) = e^{(n+1)}(x) - \frac{\psi_n^{(n+1)}(x)}{\psi_n(t)}e(t)$$
$$= f^{(n+1)}(x) - \frac{(n+1)!}{\psi_n(t)}e(t).$$

Plug-in a root $\xi(t)$, we have

$$g^{(n+1)}(\xi(t)) = f^{(n+1)}(\xi(t)) - \frac{(n+1)!}{\psi_n(t)}e(t) = 0.$$

Hence,

$$e(t) = \frac{f^{(n+1)}(\xi(t))}{(n+1)!} \psi_n(t).$$

Theorem 3.2.4 Worst Case Error

The worst case error of polynomial interpolation is given by

$$\max_{a \le x \le b} |f(x) - p_n(x)| \le \frac{1}{(n+1)!} \cdot \max_{a \le t \le b} |f^{(n+1)}(t)| \cdot \max_{a \le s \le b} |\psi_n(s)|.$$

3.3 Chebyshev Interpolation

Can we choose x_i 's to get smaller error?

Definition 3.3.1 (Chebyshev Points/Nodes). On interval [-1, 1],

$$x_i = \cos\left(\frac{2i+1}{2(n+1)}\pi\right), \quad i = 0, \dots, n.$$

On a general interval $\left[a,b\right]$, we apply an affine transformation:

$$x = a + \frac{(b-a)}{2}(t+1), \quad t \in [-1, 1].$$

3.3.2 Goal: Minimize maximum absolute error.

$$\max_{-1 < x < 1} |f(x) - p_n(x)|$$
 (Worst Case Error)

From Theorem 3.2.4, we know

$$\max_{-1 \leq x \leq 1} |f(x) - p_n(x)| \leq \frac{1}{(n+1)!} \underbrace{\max_{-1 \leq z \leq 1} \left| f^{(n+1)}(z) \right|}_{\text{Hard to predict and hard to control}} \cdot \underbrace{\frac{\psi_n(t) = (t-x_0) \cdots (t-x_0), \text{ we get to choose } x_0 m \dots, x_n}{\text{We can control this}}}_{\text{Location}}$$

So, we want to minimize

$$\max_{-1 \le x \le 1} |\psi_n(x)| = \max_{-1 \le x \le 1} |(x - x_0)(x - x_1) \cdots (x - x_n)|.$$

With Chebyshev points x_0, \ldots, x_n ,

$$\beta = \min_{x_0, \dots, x_n} \max_{-1 \le x \le 1} |(x - x_0)(x - x_1) \cdots (x - x_n)| = 2^{1-n}.$$

Definition 3.3.3 (Chebyushev Polynomial). On the interval [-1, 1]:

- Closed form: $T_n(x) = \cos(n\cos^{-1}(x))$
- Recursive form: $T_0(x) = 1$, $T_1(x) = x$, and

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 for $n = 1, 2, ...$

Example 3.3.4 Chebyshev Polynomial

- $T_0(x) = 1$, $T_1(x) = 1 \cdot x$
- $T_2(x) = 2xT_1(x) T_0(x) = 2x^2 1$
- $T_3(x) = 2xT_2(x) T_1(x) = 4x^3 3x$
- $T_4(x) = 2xT_3(x) T_2(x) = 8x^4 8x^2 + 1$.

The coefficient of the leading term increase by 2 each time.

3

Remark 1. (Why Chebyshev Polynomial?).

$$T_{n+1}(x) = \cos\left((n+1)\cos^{-1}(x_i)\right) \leftarrow \text{degree } n+1, \text{ has } n+1 \text{ roots.}$$

 $x_i = \cos\left(\frac{2i+1}{2(n+1)}\pi\right)$

So,

$$T_{n+1}(x_i) = \cos\left((n+1)\cos^{-1}\left(\cos\left(\frac{2i+1}{2(n+1)}\pi\right)\right)\right)$$
$$= \cos\left((n+1)\cdot\frac{2i+1}{2(n+1)}\pi\right)$$
$$= \cos\left((2i+1)\frac{\pi}{2}\right)$$
$$= 0.$$

Chebyshev points are roots of Chebyshev polynomials.

Then, one can write

$$T_{n+1}(x) = \alpha(x - x_0)(x - x_1) \cdots (x - x_n),$$

where x_0, x_1, \ldots, x_n are Chebyshev points and $\alpha = 2^{n-1}$.

Theorem 3.3.5 Chebyshev Polynomial is the Best

Let p_n be a monic polynomial (leading coefficient = 1) of degree n. Then,

$$\max_{-1 \le x \le 1} |p_n(x)| \ge 2^{1-n} \left(= \frac{1}{2^{n-1}} \right).$$

Remark. We are essentially showing that $\forall p_n, \max |p_n(x)|$ has a lower bound, and we attempt to show Chebyshev polynomials attain this lower bound. So, we minimize $\max |p_n(x)|$ with Chebyshev polynomials. This only proves existence and we are not showing uniqueness here.

Proof 2. (by contradiction).

Suppose p_n is monic of degree n, and

$$|p_n(x)| < 2^{1-n} \quad \forall x \in [-1, 1].$$

• Let $q_n(x) = 2^{1-n}T_n(x)$ (normalized Chebyshev polynomial). Note that

$$\max_{-1 \le x \le 1} |q_n(x)| = 2^{1-n} \max_{-1 \le x \le 1} |T_n(x)| = 2^{1-n}.$$

Why we normalize Chebyshev polynomial? Because q_n needs to be monic of degree n.

For
$$y_i = \cos\left(\frac{i}{n}\pi\right)$$
, $i = 0, \dots, n$ we have

$$|q_n(y_i)| = 2^{1-n}$$
.

- Look at polynomial $q_n(x) p_n(x)$, degree n-1. Both monic, the n-th degree cancels.
- At y_i 's,

$$\underbrace{(-1)^{i}q_{n}(y_{i})}_{=2^{1-n}} - \underbrace{p_{n}(y_{i})}_{<2^{1-n}} > 0 \qquad T_{n}(y_{i}) = \cos(i\pi) = \begin{cases} +1, & i \text{ is even} \\ -1, & i \text{ is odd.} \end{cases}$$
$$(-1)^{i}[q_{n}(y_{i}) - p_{n}(y_{i})] > 0, \quad i = 0, \dots, n.$$

- $q_n p_n$ changes signs at least n times in [-1, 1].
- $\implies q_n p_n$ has n roots. \divideontimes This contradicts with the fact that $q_n p_n$ is degree n 1.

3.4 Interpolation with Derivative Info (Hermite)

Given t_0, \ldots, t_q abscissae and non-negative integers m_0, \ldots, m_q .

Goal: Find the unique *osculating* polynomial of lowest degree *s.t.*

$$p_n^{(k)}(t_i) = f^{(k)}(t_i), \quad i = 0, \dots, q \text{ and } k = m_0, \dots, m_i.$$

So, each abscissa could have different # of derivative information available.

3.4.1 What is the Minimal Degree n?.

- $m_i = 0$ for i = 0, ..., q. Only interpolate f, not derivatives \implies lowest degree n = q (regular old interpolation).
- q = 0. Only one abscissa t_0
 - \implies Taylor approximation of degree m_0 .

- n = 2q + 1 and $m_i = 1$. Evaluate f and f' at each t_i \Longrightarrow Hermite interpolation
- In general:

$$n = q + \sum_{k=0}^{q} m_k.$$

3.4.2 Hermite Cubic Interpolation.

- We want to construct $p_3(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3$.
 - In regular interpolation: use cubic interpolant for 4 abscissae t_0, t_1, t_2, t_3 .
 - In Hermite cubic interpolation: only need 2 abscissae t_0 and t_1 . $m_0 = 1$ and $m_1 = 1$. Then, $n = q + m_0 + m_1 = 1 + 1 + 1 = 3$ (q counts from 0).
- Finding coefficients:

$$\begin{cases} p_3(t_0) &= f(t_0) \\ p_3(t_1) &= f(t_1) \\ p_3'(t_0) &= f'(t_0) \\ p_3'(t_1) &= f'(t_1) \end{cases} \implies \begin{cases} c_0 + c_1 t_0 + c_2 t_0^2 + c_3 t_0^3 &= f(t_0) \\ c_0 + c_1 t_1 + c_2 t_1^2 + c_3 t_1^3 &= f(t_1) \\ c_1 + 2c_2 t_0 + 3c_3 t_0^2 &= f'(t_0) \\ c_1 + 2c_2 t_1 + 3c_3 t_1^2 &= f'(t_1) \end{cases}$$

4 Piecewise Interpolation

Previously, we do global interpolant: only one polynomial to connect all dots. Interpolation error is given by

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)(x - x_1) \cdots (x - x_n).$$

- (-) Higher order polynomials ten to oscillate
- (-) Data may only be piecewise smooth, but polynomial is infinitely smooth.

(-) No locality: changing one data point can drastically change entire interpolant.

4.1 Piecewise Polynomial Interpolation

4.1.1 Overview.

- t_i : break points. From t_0, \ldots, t_r , we have r+1 break points.
- r: number of subintervals $[t_{i-1}, t_i]$, where $i = 1, \dots, r$.
- $s_i(x)$: polynomial piece, i = 1, ..., r.
- v(x): interpolant

$$v(x) = s_i(x)$$
 for $t_{i-1} \le x \le t_i$, $i = 1, ..., r$.

4.1.2 Piecewise Linear.

• Break points: $t_i = x_i$

• Interpolant:

$$v(x) = f(x_{i-1}) + f[x_{i-1}, x_i](x - x_{i-1}), \quad x \in [x_{i-1}, x_i].$$

- (+) Simple
- (+) Max/Min of v(x) are data points \implies No "fake" extrema
- (-) Not differentiable (Give up some smoothness)
- (-) How to extrapolate? (Hard to go beyond the data points)
- Claim (Error of Piecewise Linear Interpolant)

$$|f(x) - v(x)| \le \frac{h^2}{8} \max_{a < \xi < b} |f''(\xi)|,$$

where $h = \max_{i=1,\dots,r} (t_i - t_{i-1})$, max subinterval length.

Proof 1. On subinterval $[t_{i-1}, t_i]$, we have a linear interpolant. The error is given by

$$f(x) - v(x) = \frac{f''(\xi_i)}{2!}(x - t_{i-1})(x - t_i)$$

Consider $w(x) = (x - t_{i-1})(x - t_i)$. w(x) is minimized at $\frac{t_i + t_{i-1}}{2}$. So,

$$|w(x)| = |(x - t_{i-1})(x - t_i)| \le \left(\frac{t_i - t_{i+1}}{2}\right)^2$$

 $\le \frac{h^2}{4},$

where h denotes the largest length of subinterval.

Now, combine everything on interval [a, b]:

$$|f(x) - v(x)| \le \max_{i=1,\dots,r} \frac{|f''(\xi_i)|}{2} \cdot \frac{h^2}{4}$$

= $\frac{h^2}{8} \max_{a \le \xi \le b} |f''(\xi)|$.

Remark 2. (**Implication of This Error Bound**). If we double the points, we get quadratic decrease on the error bound.

4.1.3 Piecewise Constant.

• Break points: $t_0 = a$, $t_{i+1} = \frac{x_{i-1} + x_i}{2}$ for i = 1, ..., n, and $t_{n+1} = b$.

• Interpolant:

$$v(x) = s_i(x) = f(x_{i-1})$$
 $t_{i-1} \le x < t_i$, $i = 1, ..., n+1$.

- (+) Cheap
- (-) No smoothness
- Error bound:

$$|f(x) - v(x)| \le \frac{h}{2} \max_{a \le \xi \le b} |f'(\xi)|.$$

4.1.4 Piecewise Cubic Hermite (Derivative Information).

• Interpolant:

$$v(x) = s_i(x) = a_i + b_i(x - t_{i-1}) + c_i(x - t_{i-1})^2 + d_i(x - t_{i-1})^3, \quad x \in [t_{i-1}, t_i], \quad i = 1, \dots, r.$$

• Error bound:

$$|f(x) - v(x)| \le \frac{h^4}{4! \cdot 2^4} \max_{a \le \xi \le b} |f^{(4)}(\xi)| = \frac{h^4}{384} \max_{a \le \xi \le b} |f^{(4)}(\xi)|.$$

- number of unknowns: 4r. So, we need 4r conditions to solve:
 - 1. Interpolate condition:

$$s_i(t_i) = f(t_i)$$

2. Continuity condition:

$$s_i(t_i) = s_{i+1}(t_i) = f(t_i)$$

With 1 and 2, we have 2r conditions.

3. Additional condition: Derivative information:

$$s'_{i}(t_{i}) = s'_{i+1}(t_{i}) = f'(t_{i})$$

This yields another 2r conditions. So, we can solve.

4.2 Cubic Spline Interpolation

4.2.1 What is a Spline?. Consider a spline of order m:

- Knots: $a = x_0 < x_1 < \cdots < x_n = b$
- v(x) is a polynomial of degree $\leq m$ on every subinterval $[x_{i-1}, x_i]$.

• $v^{(r)}(x)$ is continuous on (a,b) for $r=0,\ldots,m-1$. That is, $v\in\mathcal{C}^{m-1}[a,b]$.

Example 4.2.2 Cubic Spline

$$s_i(x) = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2 + d_i(x - x_{i-1})^3.$$

We impose the following conditions:

- Continuous: $s_i(x_i) = s_{i+1}(x_i)$
- Global smoothness:

$$s'_i(x_i) = s'_{i+1}(x_i)$$
 and $s''_i(x_i) = s''_{i+1}(x_i)$.

4.2.3 Cubic Spline Interpolation.

$$s_i(x) = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2 + d_i(x - x_{i-1})^3, \quad i = 1, \dots, n.$$

- In total, we have 4r unknowns.
- Interpolate condition (left endpoint):

$$s_i(x_{i-1}) = f(x_{i-1}). (r conditions)$$

• Continuity condition (right endpoint):

$$s_i(x_i) = f(x_i).$$
 (r conditions)

- Additional condition: (global) smoothness at interior points:
 - 1. First derivative condition:

$$s_i'(x_i) = s_{i+1}'(x_i)$$
 (r-1 condition)

2. Second derivative condition:

$$s_i''(x_i) = s_{i+1}''(x_i)$$
 (r-1 condition)

Totally, we have r + r + r - 1 + r - 1 = 4r - 2 conditions. So, we need 2 more conditions.

• The last two conditions: (Why we need 2 more? We don't have smoothness at endpoints)

1. Free boundary (Natural spline):

$$v''(x_0) = 0$$
 and $v''(x_n) = 0$

2. Clamped boundary (Complete spline):

$$v'(x_0) = f'(x_0)$$
 and $v'(x_n) = f'(x_n)$.

Remark. If we don't have derivative information, this approach does not work. We can also use second order derivative information if we have it.

3. Not-a-knot:

$$s_1'''(x_1) = s_2'''(x_1)$$
 and $s_{n-1}'''(x_{n-1}) = s_n'''(x_{n-1})$.

Remark. This condition makes s_1 and s_2 upto 3 derivatives at x_1 . Therefore, the four conditions of s_1 and s_2 match at x_1 . Therefore, s_1 and s_2 form a simple cubic, and x_1 is not a knot anymore.

Interpolant	Local?	Order	Smooth?	Selling features
Piecewise constant	yes	1	bounded	Accommodates general f
Broken line	yes	2	\mathcal{C}^0	Simple, max and min at data values
Piecewise cubic Hermite	yes	4	\mathcal{C}^1	Elegant and accurate
Spline (not-a-knot)	not quite	4	\mathcal{C}^2	Accurate, smooth, requires only f data

4.3 A Different Perspective on Piecewise Interpolation

$$v(x) = \sum_{j=0}^{n} c_j \varphi_j(x)$$

Goal: Choose basis functions φ_j that lead to a piecewise approximation. That is, each φ_j has compact support.

4.3.1 Hat Functions (Finite Elements) Think of Lagrange polynomials

$$\varphi_j(x_i) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
 and φ_j has compact support,

Having compact support means φ_j is non-zero on a compact set.

$$\varphi_{j}(x) = \begin{cases} \frac{x - x_{i-1}}{x_{i} - x_{i-1}} & x \in [x_{i-1}, x_{i}] \\ \frac{x - x_{i+1}}{x_{i} - x_{i+1}} & x \in [x_{i}, x_{i+1}] \\ 0 & \text{otherwise} \end{cases}$$

To interpolate $(x_i, f(x_i))$,

$$v(x) = \sum_{i=1}^{n} f(x_i)\varphi_i(x).$$

- (+) Simple, no need to solve coefficient
- (+) Equivalent to linear piecewise interpolation
- (-) No smoothness

4.3.2 Hermite Cubic Basis Adding smoothness

Goal:

$$v(x) = \sum_{j=0}^{r} \left[f(x_j) \cdot \xi_j(x) + f'(x_j) \cdot \eta_j(x) \right] \quad s.t.$$

$$v(x_i) = f(x_i) \quad \text{and} \quad v'(x_i) = f'(x_i) \quad \text{for } i = 0, \dots, r.$$

Some properties that would be good:

$$\xi_j(x_i) = \delta_{i,j} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} \quad \text{and} \quad \eta_j(x_i) = 0$$
$$\xi'_j(x_i) = 0 \quad \text{and} \quad \eta'_j(x_i) = \delta_{i,j} = \begin{cases} 1, & i = j \\ 0, & i \neq j. \end{cases}$$

To find the basis, let's start on [0, 1]:

Let $\psi_1, \psi_2, \psi_3, \psi_4$ be cubic polynomials that satisfy:

$$\begin{cases} \psi_1(0) = 1, & \psi_1'(0) = 0, & \psi_1(1) = 0, & \psi_1'(1) = 0 \\ \psi_2(0) = 0, & \psi_2'(0) = 1, & \psi_2(1) = 0, & \psi_2'(1) = 0 \\ \psi_3(0) = 0, & \psi_3'(0) = 0, & \psi_3(1) = 1, & \psi_3'(1) = 0 \\ \psi_4(0) = 0, & \psi_4'(0) = 0, & \psi_4(1) = 0, & \psi_4'(1) = 1 \end{cases}$$

Each $\psi_j(x) = a_i + b_i x + c_i x^2 + d_i x^3 \implies 4$ unknowns. In total, we have 16 unknowns and 16 conditions, so we can solve this system:

$$\Rightarrow \begin{cases} \varphi_1(z) = 1 - 3x^2 + 2x^3 \\ \psi_2(z) = z - 2z^2 + z^3 \\ \psi_3(z) = 3z^2 - 2z^3 \\ \psi_4(z) = -z^2 + z^3. \end{cases}$$

Now, extend everything to our original goal:

$$\xi_i(x) = \begin{cases} \psi_3 \left(\frac{x - x_{i-1}}{x_i - x_{i-1}} \right) & x \in [x_{i-1}, x_i] \\ \psi_1 \left(\frac{x - x_i}{x_{i+1} - x_i} \right) & x \in [x_i, x_{i+1}] \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad \eta_j = \begin{cases} \psi_4 \left(\frac{x - x_{i-1}}{x_i - x_{i-1}} \right) & x \in [x_{i-1}, x_i] \\ \psi_2 \left(\frac{x - x_i}{x_{i+1} - x_i} \right) & x \in [x_i, x_{i+1}] \\ 0 & \text{otherwise} \end{cases}$$

5 Best Approximate

5.1 Continuous Least Squares

Recall: Least squares:

$$\min_{x} \|Ax - b\|_2^2.$$

To solve, we solve a normal equation: $A \top Ax = A^{\top}b$.

Goal: Approximate a function $f \in \mathcal{F}$ with $v \in \mathcal{F}$ that minimizes

$$\min_{v \in \mathcal{F}} \|f - v\|.$$

5.1.1 Continuous Linear Algebra

• Originally, given b = Ax, where $b \in \mathbb{R}^{m \times 1}$, $A \in \mathbb{R}^{m \times n}$, and $x \in \mathbb{R}^{n \times 1}$, we can write

$$b(i) = A(i, :)x = \sum_{j=1}^{n} A(i, j)x(j)$$
 for $i = 1, ..., m$.

•

• Suppose $x(j) \in [\ell, u]$ form a uniform discretization. Then,

$$x(j) = \ell + \left(\frac{u - \ell}{n - 1}\right)(j - 1)$$
 for $j = 1, ..., n$.

At the limit $n \to \infty$, we capture the entire interval (continum). So,

$$\lim_{n \to \infty} \sum_{j=1}^{n} A(i,j)x(j) = \int_{\ell}^{u} A(i,x)x \, \mathrm{d}x.$$

We can view b continuously as well:

$$b(y) = \int_{\ell}^{u} A(y, x) x \, dx \quad \leftarrow \text{ function of } y.$$

In this case, we call A(y,x) a kernel function. To solve for x under this continuous setting, we have

$$x = \int_{\ell}^{u} G(y, x)b(y) \, \mathrm{d}y,$$

where G(y,x) is the Green's function and can be viewed as $x=A^{-1}b$ in the discrete case.

5.1.2 Some Functional Analysis Background

Definition 5.1.1 (Norm). A *norm* for functions on [a, b], $\|\cdot\|$, is a scalar function for all appropriately integrable functions g, f on [a, b] s.t.

- $||g|| \ge 0$ and $||g|| = 0 \iff g = 0$.
- $\bullet \ \ \|\alpha g\| = |\alpha| \cdot \|g\| \quad \forall \ \text{scalar} \ \alpha$
- $||g + f|| \le ||g|| + ||f||$

Example 5.1.2 Examples of Norms on [a, b]

The following norms form functional spaces.

• L_2 norm:

$$||g||_2 = \left(\int_a^2 g(x)^2 \, \mathrm{d}x\right)^{1/2}$$
 (least squares)

• L_1 norm:

$$||g||_1 = \int_a^b |g(x)| \, \mathrm{d}x$$

• L_{∞} norm:

$$||g||_{\infty} = \max_{a \le x \le b} |g(x)| \tag{maximum}$$

Remark. The higher power we require, we have more regularity on functions (i.e., smoother). So, L_2 is the most restrict one.

Definition 5.1.3 (Orthogonality). Two square-integrable functions, $f, g \in L_2$, are *orthogonal* if $\langle f, g \rangle = 0$, where

$$\langle f, g \rangle = \int_a^b f(x)g(x) \, \mathrm{d}x.$$

5.1.3 Normal Equations of Continuous Least Squares

Goal: Given $f \in L_2$,

$$\min_{v \in V \subset L_2} \|f - v\|_2^2 \quad \to \text{ infinite dimensional},$$

where $V = \operatorname{span} \{\varphi_0, \varphi_1, \dots, \varphi_n\}$ is a subspace of L_2 . So,

$$v \in V \iff v(x) = \sum_{j=0}^{n} c_j \varphi_j(x).$$

The optimization problem becomes

$$\min_{c \in \mathbb{R}^{n+1}} \left\| f - \sum_{j=0}^{n} c_j \varphi_j \right\|_2^2 \quad \to \text{ finite dimensional,}$$

where $f - \sum_{j=0}^{n} c_j \varphi_j$ is called *residual*, denoted as r.

• Define $\psi(c) \coloneqq \left\| f - \sum_{j=0}^n c_j \varphi_j \right\|_2^2$ By first order optimality condition: $\nabla \psi(c) = 0$.

$$\frac{\partial \psi}{\partial c_k} = \frac{\partial}{\partial c_k} \left\| f - \sum_{j=0}^n c_j \varphi_j \right\|_2^2$$

$$= \frac{\partial}{\partial c_k} \left[\int_a^b \left(f(x) - \sum_{j=0}^n c_j \varphi_j(x) \right)^2 dx \right]$$

$$= \int_a^b \frac{\partial}{\partial c_k} \left(f(x) - \sum_{j=0}^n c_j \varphi_j(x) \right)^2 dx$$

$$= \int_a^b 2 \left(f(x) - \sum_{j=0}^n c_j \varphi_j(x) \right) (-\varphi_k(x)) dx$$

$$= -2 \int_a^b \left(f(x) - \sum_{j=0}^n c_j \varphi_j(x) \right) \varphi_k(x) dx.$$

So, by optimality condition, set

$$\frac{\partial \psi}{\partial c_k} = -2 \int_a^b \left(f(x) - \sum_{j=0}^n c_j \varphi_j(x) \right) \varphi_k(x) \, \mathrm{d}x = 0.$$

• Form a linear system to solve for c: Normal Equations

$$\sum_{j=0}^{n} c_j \left[\int_a^b \varphi_j(x) \varphi_k(x) \, dx \right] = \int_a^b f(x) \varphi_k(x) \, dx, \quad k = 0, \dots, n$$
$$\widetilde{B}c = \widetilde{b},$$

where

$$\widetilde{B}_{j,k} = \int_a^b \varphi_j(x)\varphi_k(X) \, dx = \langle \varphi_j(x), \varphi_k(x) \rangle$$

$$\widetilde{b}_j = \langle f, \varphi_j(x) \rangle.$$

Example 5.1.4

Suppose we are given problem $\|Ax - b\|_2^2$, where $A = \begin{bmatrix} \varphi_0(t) & \varphi_1(t) & \cdots & \varphi_n(t) \end{bmatrix}$. Then, the normal equation is $A \top Ax = A^\top b$, with

$$\widetilde{B}_{j,k} = \left(A^{\top} A \right)_{j,k} = \varphi_j(t)^{\top} \varphi_k(t) = \left\langle \varphi_j, \varphi_k \right\rangle.$$

- Claim (Property of \widetilde{B}) \widetilde{B} is SPD if $\{\varphi_0, \dots, \varphi_n\}$ is L.I..
- Residual perspective to solve the system:

$$\frac{\partial \psi(c)}{\partial c_k} = \langle r, \varphi_k \rangle = 0.$$

This implies that residual is orthogonal to basis at the least square solution.

Example 5.1.5 Motivation of Working with Continum

Suppose monomial basis $\varphi_j(x) = x^j$ on [0, 1]. Then,

$$\widetilde{B}_{j,k} = \langle \varphi_j, \varphi_k \rangle = \int_0^1 x^{j+k} \, \mathrm{d}x = \frac{1}{j+k+1} \quad \text{for } j, k = 0, \dots, n.$$

So,

$$\widetilde{B}_{j,k} = \begin{bmatrix} 1 & 1/2 & 1/3 & 1/4 & \cdots \\ 1/2 & 1/3 & 1/4 & \dots \\ 1/3 & 1/4 & \cdots & & \\ 1/4 & \dots & & & \\ \vdots & & & & \end{bmatrix} \rightarrow \text{Hilbert matrix; ill-conditioned}$$

Advantage of continuous case: construct better bases.

5.1.6 Two Schools and Thoughts.

- DTO: discretize then optimize.
- OTD: optimize then discretize.

5.1.4 Orthogonal Basis Functions

Goal:

$$\langle \varphi_i, \varphi_k \rangle = 0 \quad j \neq k$$

If we can find such a basis, then \widetilde{B} is diagonal.

Definition 5.1.7 (Legendre Polynomials). On [-1,1], *Legendre polynomials* are defined recursively as

$$\varphi_0(x) = 1$$

$$\varphi_1(x) = x$$

$$\varphi_{j+1}(x) = \frac{2j+1}{j+1}x\varphi_j(x) - \frac{j}{j+1}\varphi_{j-1}(x), \quad j = 1, 2, \dots$$

Theorem 5.1.8 Properties of Legendre Polynomials

• Orthogonality:

$$\langle \varphi_j, \varphi_k \rangle = \begin{cases} 0, & j \neq k \\ \frac{2}{2j+1}, & j = k. \end{cases}$$

So, the solution to continuous least square is

$$c_j^* = \frac{2j+1}{2} \left[\int_{-1}^1 f(x) \varphi_j(x) \, dx \right].$$

Inverting \widetilde{B} is easy. The work is in computing RHS integrals.

- Calibration: $|\varphi_j(x)| \le 1$ for $-1 \le x \le 1$, and $\varphi_j(1) = 1$.
- Oscillation: φ_j is degree j, and all zeros are simple and lie inside (-1,1); higher degree, more oscillations.

5.2 Weighted Least Squares

Definition 5.2.1 (Weight Function). A weight function is $w : [a, b] \to \mathbb{R}$ s.t.

- non-negative: $w(x) \ge 0$, $x \in [a, b]$.
- vanishes (w(x) = 0) only at isolated points (a few scattered points in [a, b]), if at all.

If w(x) vanishes, it is usually at the endpoints.

Focus: Weighted inner product:

$$\langle f, g \rangle_w = \int_a^b w(x) f(x) g(x) dx$$
 (Intergral mean value theorem)

Proof 1. $\langle f, g \rangle_w$ is a valid inner product:

- positive definiteness: vanishing at isolated points
- symmetry and linearity as we are integrating.

Goal: Find the best approximation $v \approx f$:

$$\min_{v \in V} \langle f - v, f - v \rangle_w \equiv \int_a^b w(x) (f(x) - v(x))^2 dx$$

If $w(x) \equiv 1$, then we are back to the continuous least square setting.

• If
$$V = \operatorname{span} \{\varphi_0, \dots, \varphi_n\}$$
, then $v(x) = \sum_{j=0}^n c_j \varphi_j(x)$.

$$\min_{c \in \mathbb{R}^n} \int_a^b w(x) \left(f(x) - \sum_{j=0}^n c_j \varphi_j(x) \right)^2 dx.$$

• Weighted normal equation: $\widetilde{B}c = \widetilde{b}$, where

$$\widetilde{B}_{j,k} = \langle \varphi_j, \varphi_k \rangle_w$$
$$\widetilde{b}_j = \langle \varphi_j, f \rangle_w.$$

We do almost everything the same as before. The only change is that we do a weighted inner product.

 $\bullet\,$ To make \widetilde{B} diagonal, choose orthogonal basis:

$$\langle \varphi_j, \varphi_k \rangle_w = 0 \quad \text{for } j \neq k.$$

Then,

$$c_j = \frac{\langle \varphi_j, f \rangle_w}{\langle \varphi_j, \varphi_j \rangle_w}.$$

Solving is cheap. Computing inner products is where the cost comes in.

Question: How does w(x) impact orthogonal basis?

5.2.2 Gram-Schmidt Process to Build an Orthogonal Basis of Functions.

• Recall: Gram-Schmidt process on vectors:

$$\{ec{\mathbf{a}}_1,\ldots,ec{\mathbf{a}}_r\} \implies ec{\mathbf{q}}_j = ec{\mathbf{a}}_j - \sum_{k=1}^{j-1} rac{\langle ec{\mathbf{q}}_k,ec{\mathbf{a}}_j
angle}{\langle ec{\mathbf{q}}_k,ec{\mathbf{q}}_k
angle} ec{\mathbf{q}}_k,$$

where the inner product for vectors: $\langle \vec{\mathbf{u}}, \vec{\mathbf{v}} \rangle = \vec{\mathbf{u}}^{\top} \vec{\mathbf{v}}$.

• Claim (Build an Orthogonal Set of Polynomial based on $\langle \cdot, \cdot \rangle_w$) The following procedure works:

$$\varphi_0(x) = 1$$

$$\varphi_1(x) = x - \beta_1$$

$$\varphi_j(x) = x\varphi_{j-1}(x) - \beta_j\varphi_{j-1}(x) - \gamma_j\varphi_{j-2}(x) \quad \text{for } j = 2, 3, \dots,$$

where

$$\beta_j = \frac{\langle x \varphi_{j-1}, \varphi_{j-1} \rangle_w}{\langle \varphi_{j-1}, \varphi_{j-1} \rangle_w} \quad \textit{for } j = 1, 2, \dots,$$

and

$$\gamma_j = \frac{\langle x\varphi_{j-1}, \varphi_{j-2}\rangle_w}{\langle \varphi_{j-2}, \varphi_{j-2}\rangle_w}$$

Then, $\{\varphi_0, \ldots, \varphi_n\}$ *is orthogonal in* $\langle \cdot, \cdot \rangle_m$.

Proof 2. We will prove by induction.

Base Case

$$\begin{split} \langle \varphi_0, \varphi_1 \rangle_w &= \langle 1, x - \beta_1 \rangle_w \\ &= \langle 1, x \rangle_w - \beta_1 \langle 1, 1 \rangle_w \\ &= \langle 1, x \rangle_w - \langle x, 1 \rangle_w \\ &= 0, \end{split}$$

where
$$\beta_1 = \frac{\langle x\varphi_0, \varphi_0 \rangle_w}{\langle \varphi_0, \varphi_0 \rangle_w} = \frac{\langle x, 1 \rangle_w}{\langle 1, 1 \rangle_w}$$
.

Inductive Steps Assume the claim holds for $\{\varphi_0, \dots, \varphi_{j-1}\}$.

Let
$$\varphi_j(x) = x\varphi_{j-1}(x) - \beta_j\varphi_{j-1}(x) - \gamma_j\varphi_{j-2}(x)$$
. Then, if $k < j$,

$$\begin{split} \langle \varphi_{j}, \varphi_{k} \rangle_{w} &= \langle x \varphi_{j-1} - \beta_{j} \varphi_{j-1} - \gamma_{j} \varphi_{j-2}, \varphi_{k} \rangle_{w} \\ &= \langle x \varphi_{j-1}, \varphi_{k} \rangle_{w} - \beta_{j} \left\langle \varphi_{j-1}, \varphi_{k} \rangle_{w} - \gamma_{j} \left\langle \varphi_{j-2}, \varphi_{k} \right\rangle_{w} \\ &= \langle x \varphi_{j-1}, \varphi_{k} \rangle_{w} - \frac{\left\langle x \varphi_{j-1}, \varphi_{j-1} \right\rangle_{w}}{\left\langle \varphi_{j-1}, \varphi_{j-1} \right\rangle_{w}} \left\langle \varphi_{j-1}, \varphi_{k} \right\rangle_{w} - \frac{\left\langle x \varphi_{j-1}, \varphi_{j-2} \right\rangle_{w}}{\left\langle \varphi_{j-2}, \varphi_{j-2} \right\rangle_{w}} \left\langle \varphi_{j-2}, \varphi_{k} \right\rangle_{w} \end{split}$$

– [Case I] k=j-1. Then, $\gamma_{j}\left\langle \varphi_{j-2},\varphi_{k}\right\rangle _{w}=0$ by orthogonality. So,

$$\langle \varphi_j, \varphi_k \rangle_w = \langle x \varphi_{j-1}, \varphi_{j-1} \rangle_w - \langle x \varphi_{j-1}, \varphi_{j-1} \rangle_w = 0.$$

– Case II k=j-2. Then, $\beta_j\left<arphi_{j-1}, arphi_k\right>_w=0$ by orthogonality. So,

$$\langle \varphi_j, \varphi_k \rangle_w = \langle x \varphi_{j-1}, \varphi_{j-2} \rangle_w - \langle x \varphi_{j-1}, \varphi_{j-2} \rangle_w = 0.$$

– Case III k < j - 2. Then, by orthogonality,

$$\beta_j \langle \varphi_{j-1}, \varphi_k \rangle_w = \gamma_j \langle \varphi_{j-2}, \varphi_k \rangle_w = 0.$$

Then,

$$\langle \varphi_j, \varphi_k \rangle_w = \langle x \varphi_{j-1}, \varphi_k \rangle_w$$

$$= \int_a^b w(x) x \varphi_{j-1}(x) \varphi_k(x) dx$$

$$= \int_a^b w(x) \varphi_{j-1}(x) [x \varphi_x(x)] dx$$

$$= \langle \varphi_{j-1}, x \varphi_k \rangle_w.$$

 φ_k is degree-k by construction. So, $x\varphi_k$ has degree $\leq j-2$. Then,

$$x\varphi_k = \sum_{i=0}^{j-2} d_i \varphi_i(x).$$

So,

$$\langle \varphi_j, \varphi_k \rangle_w = \left\langle \varphi_{j-1}, \sum_{i=0}^{j-2} d_i \varphi_i \right\rangle_w$$
$$= \sum_{i=0}^{j-2} d_i \left\langle \varphi_{j-1}, \varphi_i \right\rangle_w$$
$$= 0 \quad \text{by orthogonality.}$$

Example 5.2.3 Different Orthogonal Polynomials with Weighted Functions

• Legendre Polynomial: $w(x) \equiv 1$, [a,b] = [-1,1].

$$\varphi_0(x) = 1, \quad \varphi_1(x) = x$$

$$\varphi_j(x) = \left(\frac{2j+1}{j+1}\right)\varphi_{j-1}(x) - \left(\frac{j}{j+1}\right)\varphi_{j-2}(x).$$

• Non-compact intervals (Lagaene Polynomial): $w(x) = e^{-x}, \quad [a,b] \to [0,\infty)$.

$$\varphi_0(x) = 1, \quad \varphi_1(x) = 1 - x$$
$$\varphi_j(x) = \left(\frac{2j + 1 - x}{j + 1}\right) \varphi_{j-1}(x) - \left(\frac{j}{j + 1}\right) \varphi_{j-2}(x).$$

• Hermite Polynomials (not the same as Hermite cubic): $w(x) = e^{-x^2}$, $[a,b] \rightarrow (-\infty,\infty)$.

$$\varphi_0(x) = 1, \quad \varphi_1(x) = 2x$$
$$\varphi_j(x) = 2x\varphi_{j-1}(x) - 2j\varphi_{j-1}(x).$$

• Chebyshev Polynomials: $w(x) = \frac{1}{\sqrt{1-x^2}}, \quad [a,b] = [-1,1].$

$$\varphi_0(x) = 1, \quad \varphi_1(x) = 2x$$

$$\varphi_j(x) = 2x\varphi_{j-1}(x) - \varphi_{j-2}(x).$$

6 Numerical Differentiation

6.1 Taylor Series

Definition 6.1.1 (Derivative).

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Problem in numerical differentiation: we don't know how to evaluate limit. So, we will use *finite differencing* of function evaluations.

General Setting: We can evaluate f but we don't know f' or it is expensive to evaluate f'.

6.1.2 Two-Point Formulas.

• Backward Difference:

$$f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2}{2}f''(\xi) \quad \xi \in [x_0 - h, x_0]$$
$$f'(x_0) = \frac{f(x_0) - f(x_0 - h)}{h} + \underbrace{\frac{h}{2}f''(\xi)}_{\text{truncation error}}.$$

This method is *first order accurate*: associated truncation error is O(h). In other words, if h is cut in half, the error is also cut in half.

• Forward Difference

6.1.3 Three-Point Formulas.

Centered Formula:

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \frac{h^3}{6}f'''(\xi_1)$$
(1)

$$f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2}{2}f''(x_0) - \frac{h^3}{6}f'''(\xi_2)$$
 (2)

(1) - (2):

$$f(x_0 + h) - f(x_0 - h) = 2hf'(x_0) + \frac{h^3}{6} \underbrace{\left[f'''(\xi_1) + f'''(\xi_2)\right]}_{\substack{=2f'''(\xi) \text{ for some} \\ \xi \in [x_0 + h, x_0 - h] \text{ by IVT}}}$$
$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - \frac{h^2}{6}f'''(\xi).$$

This method is *second order* accurate: truncation error $\sim \mathcal{O}(h^2)$.

• Higher Order One-Sided Formula:

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \frac{h^3}{6}f'''(\xi_1)$$
(1)

$$f(x_0 + 2h) = f(x_0) + 2hf'(x_0) + \frac{4h^2}{2}f''(x_0) + \frac{8h^3}{6}f'''(\xi_2)$$
 (2)

4(1) - (2):

$$4f(x_0 + h) - f(x_0 + 2h) = 3f(x_0) + 2hf'(x_0) - \frac{2h^3}{3}f'''(\xi)$$
$$f'(x_0) = \frac{4f(x_0 + h) - 3f(x_0) - f(x_0 + 2h)}{2h} + \frac{h^2}{3}f'''(\xi).$$

This method is also *second order* accurate.

6.1.4 More Points Formula.

- *n*-points formula: $\sim \mathcal{O}(h^{n-1})$ for odd *n*.
- We can also try even number of points, but the truncation error can be different.
- We can use Taylor series for higher order derivatives too!

6.2 Interpolate, then Differentiate

Motivation:

- Not all functions are nicely differentiable.
- Taylor series is painful with many points and non-equispaced points.

General Idea: interpolate with Lagrange polynomial, and then differentiate the interpolant.

•
$$p_n(x) = \sum_{j=0}^n f(x_j) L_j(x)$$
.

•
$$p'_n(x) = \sum_{j=0}^n f(x_j) L'_j(x)$$
.

•
$$p'_n(x_0) = \sum_{j=0}^n f(x_j) L'_j(x_0).$$

No Matter Which Method We Use, We Will Get the Same Formula.

Example 6.2.1

• Abscissae: x_0 , $x_1 = x_0 + h$:

$$p_1(x) = f(x_0) + f[x_0, x_1](x - x_0)$$
 (one-sided formula)

• Interpolation error:

$$f(x) - p_1(x) = (x - x_0)(x - x_1)\frac{f''(\xi)}{2}.$$

As we know that $\frac{f''(\xi)}{2} \equiv f[x_0, x_1, x]$. Then, we have

$$f(x) = p_1(x) + (x - x_0)(x - x_1)f[x_0, x_1, x]$$

$$f'(x) = p'_1(x) + ((x - x_0) + (x - x_1))f[x_0, x_1, x] + (x - x_0)(x - x_1)\frac{\mathrm{d}}{\mathrm{d}x}f[x_0, x_1, x]$$

$$f'(x_0) = p'_1(x_0) + (x - x_0)\underbrace{f[x_0, x_1, x_0]}_{=\underbrace{f''(\xi)}_{2}}$$

7 Numerical Integration

• Basic Quadrature Rules:

$$I(f) = \int_a^b f(x) dx \approx \sum_{j=0}^n w_j f(x_j),$$

where x_j 's are abscissae and w_j 's are weights.

- Interpolate, then integrate
- Newton-Cotes formula (e.g., midpoint, trapezoidal, Simpson's)
- Stability and DOP.
- Composite Quadrature: integrate in pieces.
- Gaussian Quadrature:
 - Maximize precision by choosing good abscissae.
 - Legender polynomials (orthogonal polynomials).

7.1 Basic Quadrature Rules

7.1.1
$$f \approx p_n \implies I(f) \approx I(p_n)$$
.

• Recall: Lagrange interpolation:

$$p_n(x) = \sum_{j=0}^{n} f(x_j) L_j(x)$$
$$L_j(x) = \prod_{\substack{k=0\\k\neq j}}^{n} \frac{(x - x_k)}{(x_j - x_k)}.$$

• Integration:

$$I(f) \approx I(p_n) = \int_a^b \sum_{j=0}^n f(x_j) L_j(x) dx = \sum_{j=0}^n \int_a^b f(x_j) L_j(x) dx$$
$$= \sum_{j=0}^n f(x_j) \underbrace{\int_a^b L_j(x) dx}_{w_j}$$
$$= \sum_{j=0}^n w_j f(x_j).$$

Example 7.1.2 Trapezoidal Rule

Suppose n = 1, $x_0 = a$, and $x_1 = b$. Then,

$$L_0(x) = \frac{x-b}{a-b}$$
 and $L_1(x) = \frac{x-a}{b-a}$.

So,

$$w_0 = \int_a^b L_0(x) dx = \int_a^b \frac{x - b}{a - b} dx = \frac{b - a}{2}$$
$$w_1 = \int_a^b L_1(x) dx = \int_a^b \frac{x - a}{b - a} dx = \frac{b - a}{2}.$$

Then,

$$I(f) \approx \sum_{j=0}^{n} w_j f(x_j)$$

$$= \frac{b-a}{2} f(a) + \frac{b-a}{2} f(b)$$

$$= \frac{b-a}{2} (f(a) + f(b)).$$

(Trapezoidal Rule)

This method uses linear interpolant and abscissae include endpoints

Theorem 7.1.3 Midpoint Rule

$$I(f) \approx \sum_{j=0}^{n} w_j f(x_j) = (b-a) f\left(\frac{a+b}{2}\right).$$

- Constant interpolant (p_0)
- Abscissae do not include endpoints.

Theorem 7.1.4 Simpson's Rule

$$I(f) \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

- Quadratic interpolant
- Abscissae include endpoints.

Definition 7.1.5 (Newton-Cotes Formula). *Newton-Cotes formulas* refers to the quadrature rules that are based on interpolation with equispaced abscissae.

- Closed: abscissae include endpoints.
- Open: abscissae exclude endpoints.

7.2 Error in Quadrature

$$E(f) = I(f) - \sum_{j=0}^{n} w_j f(x_j)$$

$$= I(f) - I(p_n)$$

$$= I(f - p_n)$$
 [Integration is linear]
$$= \int_a^b f[x_0, \dots, x_n, x] \underbrace{(x - x_0)(x - x_1) \cdots (x - x_n)}_{\psi_n(x)} dx$$
 [Interpolation error]

Example 7.2.1 Error of Trapezoidal Rule

$$E(f) = \int_{a}^{b} f[a, b, x] \underbrace{(x - a)(x - b)}_{\psi_{1}(x) \leq 0 \ \forall x \in [a, b]} dx$$

$$= f[a, b, \xi] \int_{a}^{b} (x - a)(x - b) dx \quad \text{for some } \xi \in [a, b] \qquad \text{[Integral MVT]}$$

$$= \underbrace{f[a, b, \xi]}_{e} \left(-\frac{(b - a)^{3}}{6} \right)$$

$$= \frac{f''(\eta)}{12} (b - a)^{3}.$$

- The negative sign indicates that if $f''(\eta) > 0$, E(f) < 0, we are over estimating the integral. On the other hand, if $f''(\eta) < 0$, E(f) > 0, then we are under estimating.
- $(b-a)^3$: If the interval is cut in half, the accuracy will be improved by 8 times.

Theorem 7.2.2 Errors in Quadrature Rules

• Midpoint:

$$E(f) = \frac{f''(\eta)}{24} (b - a)^3$$

• Simpson's:

$$E(f) = -\frac{f^{(4)}(\eta)}{90} \left(\frac{b-a}{2}\right)^5$$

Example 7.2.3 Midpoint Rule is Superconvergence

Note that for midpoint rule: $I(f) = I(p_0)$. So, we don't make mistakes for linear terms and functions. We start to make mistakes for quadratic functions since the second derivative show up in the error term.

Therefore, we are using a degree 0 interpolant to exactly interpolate the integral of degree 1 polynomials. We call this property *superconvergence*.

Definition 7.2.4 (Precision/Degree of Accuracy/Degree of Precision (DOP)). The degree of precision is the largest integer ρ s.t.

$$E(q_n) = 0 \quad \forall \, n \le p,$$

where q_n is a degree-n polynomial.

In other words, we have $I(q_n) - I(p_k) = 0$, where p_k is a degree-k interpolant of q_n .

Theorem 7.2.5 Precision of Quadrature Rules

• Trapezoidal Rule: $\rho = 1$;

• Midpoint Rule: $\rho = 1$; and

• Simpson's Rule: $\rho = 3$.

The midpoint rule and Simpson's rule have superconvergence.

7.3 Composite Quadrature Rules

$$I(f) = \int_{a}^{b} f(x) dx$$
$$= \sum_{i=1}^{r} \int_{t_{i-1}}^{t_{i}} f(x) dx$$
$$\approx \sum_{i=1}^{r} \underbrace{\int_{t_{i-1}}^{t_{i}} p^{i}(x) dx}_{\text{some quadrature}}$$

7.4 Gaussian Quadrature

Goal: Maximize precision by choosing the right abscissae.

$$I(f) \approx \sum_{j=0}^{n} w_j f(x_j).$$

$$n+1$$
 abscissae x_j $n+1$ weights w_j

2n + 2 degree of freedom

 \implies exactly integrate degree (2n+1) polynomial

This degree-(2n+1) polynomial is our target max precision.

7.4.1 Error and Precision.

• A quadrature rule has DoP = m if

$$E(q_k) = \int_a^b q_k(x) \, dx - \sum_{i=0}^n w_i q_k(x_i) = 0$$

for k = 0, ..., m, where q_k is a degree-k polynomial.

• So,

$$E(f) = \int_a^b [f(x) - p_n(x)] dx = \int_a^b f[x_0, x_1, \dots, x_n, x] \underbrace{\prod_{i=0}^n (x - x_i)}_{\text{degree } n+1} dx$$

- We will choose abscissae to be the roots of Legendre polynomial $\varphi_{n+1}(x)$.
- Observation: Suppose $f[x_0, x_1, \dots, x_n, x]$ is a polynomial of degree n or less. Then, E(f) = 0.

Proof 1.

$$f[x_0, x_1, \dots, x_n, x] = \sum_{k=0}^n c_k \varphi_k(x).$$

$$E(f) = \sum_{k=0}^n c_k \int_{-1}^1 \underbrace{\varphi_k(x)\varphi_{n+1}(x)}_{\text{orthogonal}} dx = 0$$

• If f is a polynomial, what degree will ensure $f[x_0, x_1, \dots, x_n, x]$ is degree n? *Solution 2.*

$$\underbrace{f[x_0,x_1,\ldots,x_n,x]}_{\text{degree }n} = \underbrace{\frac{\overbrace{f[x_1,\ldots,x_n,x]}^{\text{degree }n+1} - f[x_0,\ldots,x_n]}{(x-x_0)}}_{\text{degree }n+2}$$

$$= \underbrace{\frac{\overbrace{f[x_2,\ldots,x_n,x]}^{\text{degree }n+2} - c_1}{(x-x_1)}}_{\text{degree }2n+1}$$

$$= \underbrace{\frac{\overbrace{f[x]}^{\text{degree }2n+1}}{(x-x_0)(x-x_1)\cdots(x-x_n)}}_{\text{degree }2n+1}.$$

• If we choose x_0, \ldots, x_n to be roots of $\varphi_{n+1}(x)$, then our interpolatory quadrature rule has DoP of 2n + 1. This way to choose the abscissae is called *Gauss Quadrature*.

Theorem 7.4.2 Properties of Legendre Polynomials

Orthogonal:

$$\int_{-1}^{1} \varphi_k(x)\varphi_j(x) \, \mathrm{d}x = 0 \quad k \neq j.$$

- $\varphi_j(x)$ is degree-j.
- $\varphi_n(x)$ has n real simple roots in (-1,1).
- Interlacing property:

- x roots for $\varphi_4(x)$

Example 7.4.3 Gauss Quadrature

On interval [-1, 1], Legendre polynomials:

$$\varphi_0(x) = 1$$
, $\varphi_1(x) = x$, $\varphi_2(x) = \frac{1}{2}(3x^2 - 1)$, $\varphi_3(x) = \frac{1}{2}(5x^3 - 3x)$.

- 1. n=0: abscissae: x_0 , weight w_0 .
 - x_0 : root of $\varphi_1(x)$: $x_0 = 0$.
 - Target DoP: 2n + 1 = 1.

$$E(x^{0}) = \int_{-1}^{1} 1 dx - \underbrace{w_{0}}_{=w_{0}f(x_{0})} = 0 \implies w_{0} = 2.$$

$$E(x^1) = \int_{-1}^1 x \, \mathrm{d}x - w_0 x_0 = 0 \implies \text{always true}$$

So, Gauss quadrature with n=0:

$$\int_{-1}^{1} f(x) \, \mathrm{d}x \approx 2f(0).$$

This is the *midpoint rule*.

2. n = 1. Abscissae: x_0 and x_1 ; weights w_0 and w_1 .

• Target DoP: 2n + 1 = 3.

$$E(x^{0}) = \int_{-1}^{1} 1 \, dx - w_{0} x_{0}^{0} - w_{1} x_{1}^{0} = 0 \implies w_{0} + w_{1} = 2$$

$$E(x^{1}) = \int_{-1}^{1} x \, dx - w_{0} x_{0} - w_{1} x_{1} = 0 \implies -w_{0} + w_{1} = 0$$

$$E(x^{2}) = \int_{-1}^{1} x^{2} \, dx - w_{0} x_{0}^{2} - w_{1} x_{1}^{2} = 0 \implies \frac{1}{3} w_{0} + \frac{1}{3} w_{1} = \frac{2}{3}$$

$$E(x^{3}) = \int_{-1}^{1} x^{3} \, dx - w_{0} x_{0}^{3} - w_{1} x_{1}^{3} = 0 \implies -w_{0} + w_{1} = 0.$$

We only need to solve

$$\begin{cases} w_0 + w_1 = 2 \\ -w_0 + w_1 = 0 \end{cases} \implies \begin{cases} w_0 = 1 \\ w_1 = 1 \end{cases}$$

So, Gauss quadrature with n = 1:

$$\int_{-1}^{1} f(x) \, \mathrm{d}x \approx f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right).$$

- Recall: Simpson's method also have DoP= 3. We used quadratic interpolant that requires 3 abscissae. However, with Gauss quadrature, we only need 2 abscissae.
- 3. Another way to derive Gauss quadrature: solve x_0, x_1, w_0, w_1 from the system.

Theorem 7.4.4 Weights of Gauss Quadrature

$$w_j = \frac{2(1-x_j)^2}{[(n+1)\varphi_n(x_j)]^2}$$
 for $j = 0, \dots, n$.

To compute the Gauss Quadrature on [a, b], we consider abscissae $t_j \in [a, b]$. Let $t \in [a, b]$ such that

$$t = \left(\frac{b-a}{2}\right)x + \left(\frac{b+a}{2}\right), \quad x \in [-1, 1]$$
$$dt = \left(\frac{b-a}{2}\right)dx$$

Then,

$$\int_{a}^{b} f(t) dt = \int_{-1}^{1} f\left(\frac{b-a}{2}x + \frac{b+a}{2}\right) \left(\frac{b-a}{2}\right) dx$$
$$\approx \sum_{j=0}^{n} \beta_{j} f(t_{j}),$$

where $t_j \in [a, b]$ are abscissae such that

$$t_{j} = \left(\frac{b-a}{2}\right)x_{j} + \left(\frac{b+a}{2}\right)$$
$$\beta_{j} = \left(\frac{b-a}{2}\right)w_{j}.$$

Definition 7.4.5 (Weighted Gauss Quadrature). when computing weighted integrals, we will use weighted Gauss quadrature. Procedure:

- Choose orthogonal basis based on weighted integral.
- Abscissae: roots of $\varphi_{n+1}^w(x)$
- General quadrature rule:

$$\int_a^b f(x)w(x) dx = \sum_{j=0}^n a_j f(x_j).$$

7.5 Adaptive Quadrature

Main Idea: We will continuing refining the partition on regions where the error is the largest.

Question: How do we compute error?

$$E(f) = E(f; h) = Kh^{q} + \mathcal{O}(h^{q+1}), \quad K = ||f^{(m)}(\eta)||$$

Let's choose two quadrature rules on each partition. One with step size h and the other with a finer step size $\frac{h}{2}$. Then,

$$E_1(f) = I(f) - R_1 \approx Kh^1$$

$$E_2(f) = I(f) - R_2 \approx K\left(\frac{h}{2}\right)^q \approx \frac{1}{2^q}E_1.$$

Then,

$$R_1 - R_2 \begin{cases} \text{large: we need to refine} \\ \text{small: we are close.} \end{cases}$$

Goal: Choose abscissae as we go such that

$$\underbrace{|I(f) - Q(f; t_0, \dots, t_r)|}_{\text{error}} < \text{tolerance},$$

where $Q(\cdot)$ is any quadrature rule, and t_0, \ldots, t_r are abscissae.

• Notation: Q(f;h) where $h = \max_{i=1,\dots,r} t_i - t_{i-1}$.

$$E(f;h) = I(f) - Q(f;h).$$

• Main idea: Use error estimates $E(f;h) = Kh^q + \mathcal{O}(h^{q+1})$, where K depends on f, f', a, and b, but K is independent of h.

Example 7.5.1 Priori Error Estimates

1. Composite trapezoid:

$$E(f;h) \le \underbrace{\frac{\|f''\|_{\infty}}{12}(b-a)}_{K} h^{2}$$

2. Composite midpoint:

$$E(f;h) \le \frac{\|f''\|_{\infty}}{24}(b-a)h^2$$

3. Composite Simpson:

$$E(f;h) \le \frac{\|f^{(4)}\|_{\infty}}{180}(b-a)h^4.$$

These are called a priori error estimates (before computation). *However, they are not useful in practice because we don't know much about f*

• We can relate error estimates for h and $\frac{h}{2}$:

$$E\left(f; \frac{h}{2}\right) \approx \frac{1}{2^q} E(f; h).$$

So, if $E(f; h) \approx Kh^q$, then

$$E\bigg(f;\frac{h}{2}\bigg)\approx\frac{Kh^q}{2^q}.$$

• Manipulating Error:

$$\begin{split} E(f;h) &= I(f) - Q(f;h) \\ &= \underbrace{I(f) - Q\left(f;\frac{h}{2}\right)}_{E\left(f;\frac{h}{2}\right)} + Q\left(f;\frac{h}{2}\right) - Q(f;h) \\ &\approx \underbrace{\frac{1}{2^q}E(f;h) + \left(Q\left(f;\frac{h}{2}\right) - Q(f;h)\right)}_{\text{a posteriori error estimate (computable)}}. \end{split}$$

- Implementation: Recursive Process. For each subinterval:
 - 1. check: $\left|Q\left(f;\frac{h}{2}\right) Q(f;h)\right| < \text{tolerance}.$
 - 2. If true: we are good;
 - 3. If false: we need to refine abscissae. Cut the subinterval in half and repeat.
 - 4. Stop when all subintervals satisfy the tolerance condition.
- Good implementation practice:
 - 1. Reuse computation
 - 2. Parallelism

8 Numerical ODEs

8.1 Differential Equations

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(t, y), \qquad a \le t \le b. \tag{ODE}$$

- (ODE) is a non-autonomous equation since f depends on t.
- If f(t, y) = f(y) is not dependent on t, we call it *autonomous*.

Example 8.1.1 Solving ODE Analytically

$$y' = -y + t, \qquad t \ge 0.$$

Solution 1.

A solution:

$$y(t) = t - 1 + \alpha e^{-t}.$$

This is a family of solutions. It is not unique as α can be anything. To verify this is the solution, we compute

$$y' = 1 - \alpha e^{-t} = -y + t.$$

To make the solution unique, we need an initial condition y(0) = C.

Theorem 8.1.2 General Procedure to Solve ODEs

$$y(t) = C + \int_a^t f(s, y(s)) \, \mathrm{d}s,$$

where C is a constant, and $\int_a^t f(s,y(s)) \,\mathrm{d}s$ is the *numerical integrator*. t is a moving bound.

• Initial value problem (IVP):

$$y(a)$$
 is given $\implies C = y(a)$.

• Terminal value problem (TVP):

$$y(b)$$
 is given

This can be transformed into IVP using mapping: $\tau = b - t$ where $0 \le \tau \le a$. So,

$$y(\tau) = C - \int_0^{\tau} f(s, y(s)) \, \mathrm{d}s.$$

• Boundary value problem (BVP): Given information about *y* at multiple time points.

Example 8.1.3 Go-To Example

$$y' = \lambda y, \quad y(0) = 1, \quad t \ge 0.$$

Solution: $y = e^{\lambda t}$.

8.2 Euler's Method

8.2.1 Approximate y_i , then update. Suppose we have an approximation $\underbrace{y(t_i)}_{\text{exact}} \approx \underbrace{y_i}_{\text{approx.}}$. What is $y(t_{i+1})$?

Assume $t_{i+1} = t_i + h$. Then, by Taylor's approximation,

$$y(t_{i+1}) = y(t_{i+h}) = y(t_i) + h \underbrace{y'(t_i)}_{=f(t_i, y(t_i))} + \frac{h^2}{2}y''(\xi_i).$$

$$y_{i+1} = y_i + hf(t_i, y_i)$$
 (Forward Euler)

8.2.2 Approximate y_i' , then update.

$$f(t_i, y_i) \approx \frac{y_{i+1} - y_i}{h}$$
 [derivative approximation]

Example 8.2.3 Test Problem

$$y' = \lambda y;$$
 $y_{\text{ex}}(t) = y(0)e^{\lambda t}, \quad y(0) = 1, \ t > 0.$

8.2.4 Explicit vs. Implicit Methods.

• Forward Euler: forward difference

$$f(t_i, y(t_i)) = y'(t_i) \approx \frac{y(t_{i+1}) - y(t_i)}{h}$$

$$y_{i+1} = y_i + hf(t_i, y_i)$$
(FE)

Explicit method: we can evaluate/compute. Only using information we have pre-computed.

- (+) Faster to integrate
- (+) Easy to implement
- Backward Euler: backward difference

$$f(t_{i+1}, y(t_{i+1})) = y'(t_{i+1}) \approx \frac{y(t_{i+1}) - y(t_i)}{h}$$

$$y_{i+1} = y_i + h f(t_{i+1}, y_{i+1})$$
(BE)

Implicit method: we cannot evaluate/compute. We are trying to solve for y_{i+1} . (we can use fixed point iteration or other root finding methods).

(+) Other numerical benefits.

Example 8.2.5 Test Problem

$$y' = \lambda y; \qquad y(0) = 1, \qquad t > 0.$$

- FE: $y_{i+1} = y_i + h\lambda y_i = (1 + h\lambda)y_i$
- BE: $y_{i+1} = y_i + h\lambda y_{i+1} \implies y_{i+1} = \frac{1}{(1 h\lambda)} y_i$.

8.3 Numerical Considerations in Euler's Method

Definition 8.3.1 (Local Truncation Error). The amount by which the exact solution fails to satisfy the difference equation at integration step i.

$$d_{i} = \frac{y(t_{i+1}) - y(t_{i})}{h} - \underbrace{f'(t_{i}, y(t_{i}))}_{y'(t_{i})}.$$

Remark. For FE: $d_i \sim \mathcal{O}(h)$. That is, if we cut step size by half, the local truncation error decreases by half.

Definition 8.3.2 (Order of Accuracy). The smallest positive integer $q \ s.t.$

$$\max_{i} |d_i| = \mathcal{O}(h^q).$$

Definition 8.3.3 (Global Error).

$$e_i = y(t_i) - y_i.$$

Remark. Generally, order of accuracy is the same as local truncation error (when we have nice functions). For example, for FE, $\max_i |e_i| \sim \mathcal{O}(h)$.

Definition 8.3.4 (Convergence). A numerical ODE integrator is said to *converge* if the maximum global error $\rightarrow 0$ when $h \rightarrow 0$.

Theorem 8.3.5 FE Convergence

Suppose:

• f(t,y) have bounded partial derivatives in $\mathcal{D} = \{a \leq t \leq b, |y| < \infty\}$.

This implies Lipschitz continuity in y:

$$|f(t,y) - f(t,\widehat{y})| \le L|y - \widehat{y}| \quad \forall (t,y), (t,\widehat{y}) \in \mathcal{D}.$$

• y(t) has bounded second derivative:

$$||y''||_{\infty} \leq \text{constant}.$$

Then, FE converges and global error decreases linearly in h. i.e.,

$$\max_{i=0,\dots,N} |e_i| = \max_{i=0,\dots,N} |y(t_i) - y_i| \le Bh,$$

where $y(t_i)$ is the true solution, y_i is the approximation by FE $(y_i = y_{i-1} + hf(t_{i-1}, y_{i-1}))$, and $B = \frac{e^{(b-a)L} - 1}{L} \cdot \frac{\|y''\|_{\infty}}{2}$ is a constant.

Proof 1.

$$\begin{aligned} e_i &= y(t_i) - y_i \\ d_i &= \frac{y(t_{i+1}) - y(t_i)}{h} - \overbrace{f(t_i, y(t_i))}^{y'(t_i)} = \frac{h}{2} y''(\xi_i) & \text{ } \textcircled{1} \end{aligned} \quad \text{[Local truncation error (LTE)]} \\ d(h) &= \max_{i=0,\dots,N} |d_i| \\ 0 &= \frac{y_{i+1} - y_i}{h} - f(t_i, y_i) & \text{@} \end{aligned} \quad \text{[from FE: } y_{i+1} = y_i + h f(t_i, y_i)] \\ \textcircled{1} - \textcircled{2} : d_i &= \frac{y(t_{i+1}) - y(t_i)}{h} - f(t_i, y(t_i)) - \frac{y_{i+1} - y_i}{h} + f(t_i, y_i) \\ &= \frac{e_{i+1} - e_i}{h} - \left(f(t_i, y(t_i)) - f(t_i, y_i)\right) \end{aligned}$$

So,

$$\begin{aligned} e_{i+1} &= e_i + h \big(f(t_i, y(t_i)) - f(t_i, y_i) \big) + h d_i \\ |e_{i+1}| &= \big| e_i + h \big(f(t_i, y(t_i)) - f(t_i, y_i) \big) + h d_i \big| \\ &\leq |e_i| + h |f(t_i, y(t_i)) - f(t_i, y_i)| + h |d_i| & \text{[Triangle inequality]} \\ &\leq |e_i| + h L \underbrace{|y(t_i) - y_i|}_{|e_i|} + h |d_i| & \text{[Lipschitz]} \end{aligned}$$

$$= |e_i| + h L |e_i| + h |d_i|$$

$$= (1 + h L)|e_i| + h |d_i|$$

$$\leq (1 + h L)|e_i| + h |d_i|$$

$$\leq (1 + h L)|e_i| + h |d_i|$$

$$\left[d(h) = \max_{i=0,\dots,N} |d_i| \right]$$

If we iterate:

$$\begin{split} |e_{i+1}| & \leq (1+hL)|e_i| + hd(h) \\ & \leq (1+hL)\big[(1+hL)|e_{i-1}| + hd(h)\big] + hd(h) \\ & = (1+hL)^2|e_{i-1}| + hd(h)\big[1 + (1+hd(h))\big] \\ & \vdots \\ & \leq \underbrace{(1+hL)^{i+1}|e_0|} + hd(h) \cdot \sum_{k=0}^i (1+hL)^k \qquad \qquad [\text{with IVP: } e_0 = y(t_0) - y_0 = 0] \\ & = hd(h) \cdot \sum_{k=0}^i (1+hL)^k \\ & = hd(h) \cdot \left(\frac{1-(1+hL)^i}{-hL}\right) = \frac{d(h)}{L}\big[(1+hL)^i - 1\big]. \qquad \left[\text{finite geometric sum: } \frac{1-r^n}{(1-r)}\right] \end{split}$$

Lemma 8.6 : For any real x:

$$1 + x < e^x$$

and if $x \ge -1$, then

$$0 \le (1+x)^m \le e^{mx}.$$

Proof.
$$e^x = 1 + x + \frac{x^2}{2}e^{\xi} > 1 + x$$
. \Box So, by this Lemma,

$$(1+hL)^i \le e^{ihL} \le e^{NhL} = e^{(b-a)L}.$$

Further,

$$d(h) = \max_{i=0,...,N} |d_i| = \max_{i=0,...,N} \left| \frac{h}{2} y''(\xi_i) \right|$$

$$\leq \frac{h}{2} ||y''||_{\infty}.$$

Then,

$$|e_{i+1}| \le \frac{h}{2} ||y''||_{\infty} \cdot \left[\frac{e^{(b-a)L} - 1}{L} \right]$$
$$= \left[\frac{e^{(b-a)L} - 1}{L} \right] \cdot \frac{||y''||_{\infty}}{2} \cdot h$$
$$\sim \mathcal{O}(h).$$

8.4 Runge-Kutta Methods

Motivation: Higher order explicit method.

8.4.1 Implicit Trapezoidal Method.

$$y(t_{i+1}) = y(t_i) + \underbrace{\int_{t_i}^{t_{i+1}} f(s, y(s)) \, \mathrm{d}s}_{\text{quadrature rules}}$$
 (True solution)

• Use trapezoidal rule for integrals:

$$\int_{t_i}^{t_{i+1}} f(s, y(s)) ds = \frac{h}{2} (f(t_i, y_i) + f(t_{i+1}, y_{i+1}))$$
$$y_{i+1} = y_i + \frac{h}{2} (f(t_i, y_i) + f(t_{i+1}, y_{i+1})).$$

• Claim 8.2 The LTE

$$d_i = \frac{y(t_{i+1}) - y(t_i)}{h} - \frac{1}{2} \underbrace{\left(\underbrace{f(t_i, y(t_i))}_{y'(t_i)} + \underbrace{f(t_{i+1}, y(t_{i+1}))}_{y'(t_{i+1})} \right)}_{y'(t_{i+1})}$$

is of order h^2 .

Proof 1.

$$y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(t_i) + \frac{h^3}{3!}y'''(\xi_i)$$

$$y'(t_{i+1}) = y'(t_i) + hy''(t_i) + \frac{h^2}{2}y'''(\eta_i)$$
(Taylor expansion on derivative)

Then,

$$\begin{split} d_i &= \frac{y(t_{i+1}) - y(t_i)}{h} - \frac{1}{2} \left(f(t_i, y(t_i)) + f(t_{i+1}, y(t_{i+1})) \right) \\ &= y'(t_i) + \frac{h}{2} y''(t_i) + \frac{h^2}{3!} y'''(\xi_i) - \frac{1}{2} y'(t_i) - \frac{1}{2} y'(t_i) - \frac{h}{2} y'''(t_i) - \frac{h^2}{4} y'''(\eta_i) \\ &= \frac{h^2}{3!} y'''(\xi_i) - \frac{h^2}{4} y'''(\eta_i) \\ &\sim \mathcal{O}(h^2). \end{split}$$

8.4.3 Explicit Trapezoidal Methods.

$$\begin{cases} \widehat{y}_{i+1} = y_i + h f(t_i, y_i) \\ y_{i+1} = y_i + \frac{h}{2} (f(t_i, y_i) + f(t_{i+1}, \widehat{y}_{i+1})) \end{cases}$$

Order: $\mathcal{O}(h^2)$.

8.4.4 Midpoint Methods.

• Implicit Midpoint:

$$\int_{t_i}^{t_{i+1}} f(s, y(s)) ds = h f(t_{i+1/2}, y_{i+1/2}),$$

$$y_i + y_{i+1/2}$$

where $t_{i+1/2} = \frac{t_i + t_{i+1}}{2}$ and $y_{i+1/2} = \frac{y_i + y_{i+1}}{2}$. So,

$$y_{i+1} = y_i + hf\left(\frac{t_i + t_{i+1}}{2}, \frac{y_i + y_{i+1}}{2}\right)$$
$$= y_i + hf(t_{i+1/2}, y_{i+1/2}).$$

• Explicit Midpoint:

$$\begin{cases} \widehat{y}_{i+1/2} = y_i + \frac{h}{2} f(t_i, y_i) \\ y_{i+1} = y_i + h f(t_{i+1/2}, \widehat{y}_{i+1/2}) \end{cases}$$

Explicit midpoint and explicit trapezoidal methods are 2 *stage* methods.

• Order: $\mathcal{O}(h^2)$

8.4.5 Runge-Kutta (RK) 4 Method.

$$Y_{1} = y_{i} \qquad \approx y(t_{i})$$

$$Y_{2} = y_{i} + \frac{h}{2}f(t_{i}, Y_{1}) \qquad \approx y(t_{i+1/2})$$

$$Y_{3} = y_{i} + \frac{h}{2}f(t_{i+1/2}, Y_{2}) \qquad \approx y(t_{i+1/2})$$

$$Y_{4} = y_{i} + hf(t_{i+1/2}, Y_{3}) \qquad \approx y(t_{i+1})$$

$$y_{i+1} = y_{i} + \frac{h}{6}(f(t_{i}, Y_{1}) + 2f(t_{i+1/2}, Y_{2}) + 2f(t_{i+1/2}, Y_{3}) + f(t_{i+1}, Y_{4})).$$

Order: $\mathcal{O}(h^4)$.

8.5 Absolute Stability and Stiffness

Definition 8.5.1 (Test Equation).

$$y' = \lambda y, \qquad \lambda \in \mathbb{C}, \quad y(0) = y_0.$$

Exact solution: $y(t) = y_0 e^{\lambda t}$. (Recall: $e^{(a+bi)t} = e^{at} (\cos(bt) + i\sin(bt))$)

Definition 8.5.2 (Absolute Stability). A numerical integrator has *absolute stability* if the solution does not diverge in magnitude as $t \to \infty$. i.e.,

$$|y(t_{i+1})| \le |y(t_i)|$$
 eventually.

Example 8.5.3

• In test problem:

$$|y(t)| = |y_0|e^{\operatorname{Re}(\lambda)t}$$
.

If $Re(\lambda) \leq 0$, the solution is absolutely stable.

• FE stability:

$$y_{i+1} = y_i + h f(t_i, y_i).$$

For the test equation, we have

$$y_{i+1} = y_i + h\lambda y_i = (1 + h\lambda)y_i.$$

To make it absolutely stable: $|y_{i+1}| \leq |y_i|$. This happens when

$$|1 + h\lambda| \le 1.$$

This is the condition for absolute stability for FE.

- 1. $\lambda > 0$: no absolute stability at all.
- 2. $\lambda < 0$: need to choose h carefully to have absolute stability.

Definition 8.5.4 (Region of Stability). The set of complex numbers for which numerical solution is absolutely stable ($z = h\lambda \in \mathbb{C}$).

Example 8.5.5

- FE: $R = \{z \in \mathbb{C} : |1+z| < 1\}.$
- BE:

$$y_{i+1} = y_i + h f(t_{i+1}, y_{i+1})$$
$$y_{i+1} = \frac{1}{1 - h\lambda} y_i$$

Stability requires: $\left| \frac{1}{1 - h\lambda} \right| \le 1 \implies |1 - h\lambda| \ge 1$.

Denote $z = h\lambda \in \mathbb{C}$. Then, the region of stability: $R = \{z \in \mathbb{C} : |1 - z| \ge 1\}$.

• Some other explicit method (suspicious RK2 method):

$$\widehat{y}_{i+1} = (1 + h\lambda)y_i$$

$$y_{i+1} = y_i + hf(t_{i+1}, \widehat{y}_{i+1})$$

$$= y_i + h\lambda(1 + h\lambda)y_i$$

$$= (1 + h\lambda + (h\lambda)^2)y_i$$

Take $z = h\lambda \in \mathbb{C}$. Then, the region of stability is

$$R = \{ z \in \mathbb{C} : \left| 1 + z + z^2 \right| \le 1 \}.$$

Definition 8.5.6 (A-Stable Method). If the region of stability contains the entire left-half plane, the method is called *A-stable*.

Example 8.5.7

- BE is A-stable.
- In general, implicit methods tend to have A-stable property, but they are hard to implement.

Example 8.5.8

Consider y' = f(y), autonomous.

Suppose y(t) and $\widehat{y}(t)$ are two solutions. If y(t) and $\widehat{y}(t)$ are absolutely stable, then

$$\lim_{t \to \infty} \underbrace{y(t) - \widehat{y}(t)}_{w(t)} = 0.$$

Form a new ODE:

$$w(t) = y(t) - \widehat{y}(t)$$

$$w'(t) = y'(t) - \widehat{y}'(t)$$

$$= f(y) - f(\widehat{y}).$$

Using Taylor's expansion of f(y) around $f(\widehat{y})$:

$$f(y) = f(\widehat{y}) + \frac{\partial f}{\partial y}(\widehat{y})w(t) + \text{higher order terms}$$

So,

$$w'(t) = \underbrace{\frac{\partial f}{\partial y}(\widehat{y})w(t)}_{=\lambda(t)} + \text{higher order terms}.$$

That is,

$$w'(t) = \lambda(t)w(t).$$

Punchline: the test equation can be applied to a more general setting.

Definition 8.5.9 (Stiffness). An IVP is *stiff* if the step size needed to maintain absolute stability of FE is much smaller than the step size needed to represent the solution accurately.

Example 8.5.10

$$y' = -1000(y - \cos(t)) - \sin(t), \qquad y(0) = 1.$$

- Exact solution: $y(t) = \cos(t)$.
- The solution looks good for h = 0.1 i.e., by plotting $y(t_i)$.
- However, for stability of FE, we look at y' = -1000y, we require $h = \frac{1}{500}$.
- So, this is a stiff problem.

Remark 1. (Connection Between Optimization and ODE).

$$x_{i+1} = x_i - \alpha \nabla \varphi(x_i)$$
 (Gradient Descent)
 $x'(t) = -\nabla \varphi(x_i)$ (Gradient Flow)

So, GD is a FE discretization to gradient flow. One can even try other methods to solve the gradient flow problem.