Теория принятия решений

Лисид Лаконский

October 2023

Содержание

1	Практическое занятие $-\ 27.10.2023$			2	
	1.1	Решен	ние задач линейного программирования	2	
		1.1.1	Геометрический способ решения	2	
		1.1.2	Аналитические методы решение	•	
		1.1.3	Домашнее задание	(

1 Практическое занятие -27.10.2023

1.1 Решение задач линейного программирования

1.1.1 Геометрический способ решения

Пример №4 Найти геометрически решение ЗЛП:

$$F(\overline{x}) = x_1 + 4x_2 + x_3 - x_4 \to max$$

При ограничениях:

$$\begin{cases} 2x_1 - x_3 + x_4 = 4\\ x_1 - 2x_2 - 2x_3 + x_4 = -1\\ x_i \ge 0, i = \overline{1, 4} \end{cases}$$

 $n = 4, m = 2 \implies n - m = 2$ — следовательно, геометрическое решение возможно.

Выберем переменные x_1 , x_2 в качестве свободных, выразим через них переменные x_3 , x_4 : вычтем из первого уравнения второе, получим

$$x_1 + x_3 + 2x_2 = 5 \implies x_3 = 5 - x_1 - 2x_2 \ge 0$$

Вычтем из второго уравнения два первых уравнения:

$$-3x_1 - 2x_2 - x_4 = -9 \implies x_4 = 9 - 3x_1 - 2x_2 \ge 0$$

Таким образом, мы получили систему неравенств на две переменные x_1, x_2 :

$$\begin{cases} 5 - x_1 - 2x_2 \ge 0 \\ 9 - 3x_1 - 2x_2 \ge 0 \\ x_1, x_2 \ge 0 \end{cases} \implies \begin{cases} x_1 + 2x_2 \le 5 \\ 3x_1 + 2x_2 \le 9 \\ x_1, x_2 \ge 0 \end{cases}$$

Построим на плоскости $x_1 o x_2$ область, отвечающую двум данным неравенствам. Получаем четырехугольник. Чтобы найти оптимальное решение, необходимо найти градиент. Перепишем $F(\overline{x})$:

$$F(\overline{x}) = x_1 + 4x_2 + 5 - x_1 - 2x_2 - (9 - 3x_1 - 2x_2) = -4 + 3x_1 + 4x_2$$

$$gradient F = \{3, 4\}$$

Обозначим на графике в качестве точки и проведем из нуля вектор. Кроме того, необходимо найти линию уровня, имеющую наибольшее пересечение с угловой точкой. Линия уровня в нашем случае имеет уравнение:

$$3x_1 + 4x_2 = c$$

Решение является т. A — пересечение двух прямых:

$$\begin{cases} x_1 + 2x_2 = 5 \\ 3x_1 + 2x_2 = 9 \end{cases} \implies \begin{cases} x_1 = 5 - 2x_2 \\ 4x_2 = 6 \end{cases} \implies \begin{cases} x_1 = 2 \\ x_2 = \frac{3}{2} \end{cases}$$

 x_3, x_4 в данной точке будет равняться нулю. Так что имеем вектор решения: $x^*=(2;\frac{3}{2};0;0),$ $F(x^*)=-4+3*2+1*\frac{3}{2}=8$ — максимальное значение

1.1.2 Аналитические методы решение

Одним из аналитических методов решения ЗЛП является так называемый **симплекс-метод**. Его суть заключается в том, что мы обходим угловые точки, но делаем это не геометрически, а аналитическим способом. Для его реализации необходимо установить следующие элементы:

1. **Способ определения** какого-либо изначального допустимого базисного решения — то есть, удовлетворяющего системе ограничений:

$$AX = B$$

$$X=(\beta_1,\ldots,\beta_m,0,\ldots,0),\ \beta_i\geq 0,\ \forall i=\overline{1,m}$$
 — допустимое базисное решение;

- 2. Набор правил, определющих переход к наилучшему по сравнению с предыдущим решению;
- 3. Критерий проверки оптимальности найденного решения.

На начальном этапе необходимо выбрать m базисных переменных и выразить эти переменные через оставшиеся, свободные (количество которых равно n-m)

Пусть базисными являются переменные x_1, x_2, \ldots, x_m :

$$x_i = \alpha i_{m+1} x_{m+1} + \dots + \alpha i_n + \beta i, \ i = \overline{1.m}$$

Начальное допустимое базисное решение:

$$X^{(0)} = \{\beta_1, \beta_2, \dots, \beta_m, 0, \dots, 0\}$$

где

$$x_{m+1} = \cdots = x_n = 0, \beta_i \ge 0, \forall i = \overline{1, m}$$

В изначальное уравнение подставляем базисные переменные, выраженные через свободные:

$$F(\overline{x}) = \sum_{i=m+1}^{n} \gamma_i x_i + \gamma_0 \to max$$

Критерий оптимальности: если все коэффициенты γ_i в выражении $F(\overline{x})$ через свободные переменные будет отрицательным, то данное решение будет оптимальным; если же существуют $\gamma_k > 0$, то решение не является оптимальным. И номер k показывает, какую переменную необходимо перевести в базис. Но в базисе **не может быть** больше n переменных. Следовательно, необходимо убрать одну из предыдущих базисных переменных. Это и есть переход к наилучшему по сравнению с предыдущим решению.

Пример №1 Решить аналитически ЗЛП:

$$F(\overline{x}) = 2x_1 + 3x_2 \rightarrow max$$

При ограничениях:

$$\begin{cases} x_1 + 3x_2 \le 18 \\ 2x_1 + x_2 < 16 \\ x_2 \le 5 \\ 3x_1 \le 21 \\ x_1x_2 \ge 0 \end{cases}$$

Мы не можем запустить симплекс-метод для данной системы неравенств. Необходимо выполнить переход к канонической ЗЛП:

$$\begin{cases} x_1 + 3x_2 + x_3 = 18 \\ 2x_1 + x_2 + x_4 = 16 \\ x_2 + x_5 = 5 \\ 3x_1 + x_6 = 21 \end{cases}$$

Все данные переменные неотрицательны. Далее необходимо выбрать базисные переменные. Пусть ими будут x_3, x_4, x_5, x_6 , так как они легко выражаются через x_1, x_2 :

$$\begin{cases} x_3 = 18 - x_1 - 3x_2 \ge 0 \\ x_4 = 16 - 2x_1 - x_2 \ge 0 \\ x_5 = 5 - x_2 \ge 0 \\ x_6 = 21 - 3x_1 \ge 0 \end{cases}$$

Необходимо проверить решение на оптимальность. Для этого в $F(\overline{x})$ необходимо подставить только свободные переменные — так уже есть. Видим, что коэффициенты в $F(\overline{x}) = 2x_1 + 3x_2$ положительны.

Если $x_1 = x_2 = 0$, то $x^{(0)} = (0, 0, 18, 16, 5, 21)$ — допустимое базисное решение. Не является оптимальным, так как $\gamma_1 > 0$ и $\gamma_i > 0$

В базис вводят переменную, у которой γ_i максимально. В нашем случае $max \ \gamma_i = \gamma_2 = 3$. Следовательно, вводим x_2 в базис. Подставим в систему выше $x_1 = 0$:

$$\begin{cases} x_2 \leq 6 \\ x_2 \leq 16 \\ x_2 \leq 5 \\ \text{нет ограничений}: x_2 \geq 0 \end{cases}$$

Надо выбрать минимальное ограничение: $x_2 \le 5$. Следовательно, с строчки $x_5 = 5 - x_2 \ge 0$ необходимо начать. Следовательно, заменим x_5 в базисе на x_2 (уберем x_5 , введем x_2)

$$\begin{cases} x_5 = 5 - x_5 \ge 0 \\ x_3 = 18 - x_1 - 3(5 - x_5) = 3 - x_1 + 3x_5 \ge 0 \\ x_4 = 16 - 2x_1 - (5 - x_5) = 11 - 2x_1 + x_5 \ge 0 \\ x_6 = 21 - 3x_1 \ge 0 \end{cases}$$

 $x_1,\,x_2$ — свободные переменные. Следовательно, $x^{(1)}=(0,5,3,11,0,21),\,F(x^0)=2x_1+3(5-x_5)=15+2x_1-3x_5.$ Решение не является оптимальным, так как $\gamma_1>0$ — следовательно, x_1 переводим в базис. $x_5=0$:

$$\begin{cases} 5 \ge 0 \\ x_1 \le 3 \\ x_1 \le \frac{11}{2} \\ x_1 \le \frac{21}{3} \end{cases}$$

Меньшим является $x_1 \le 3$, соответствующее строке $x_3 = 18 - x_1 - 3(5 - x_5) = 3 - x_1 + 3x_5 \ge 0$ в предыдущей системе. Следовательно, необходимо удалить x_3 . Перепишем данное уравнение. Необходимо x_1 выразить через x_3, x_5 :

$$\begin{cases} x_1 = 3 - x_3 + 3x_5 \ge 0 \\ x_2 = 5 - x_5 \ge 0 \\ x_4 = 11 - 2(3 - x_3 + 3x_5) + x_5 = 5 + 2x_3 - 5x_5 \ge 0 \\ x_6 = 21 - 3(3 - x_3 + 3x_5) = 12 + 3x_3 - 9x_5 \ge 0 \end{cases}$$

 $x_3 = x_5 = 0 \implies x^{(2)} = (3, 5, 0, 5, 0, 12)$

 $F(\overline{x}) = 15 + 2 * (3 - x_3 + 3x_5) - 3x_5 = 21 - 2x_3 + 3x_5$. В этом решении $F(x^{(2)}) = 21 > F(x^{(1)})$. Решение неоптимально, необходимо переводить x_5 в базис.

Подставим $x_3 = 0$:

$$\begin{cases} 3+3x_5\geq 0 \implies x_5\geq -1 \implies \text{ ограничений нет}\\ x_5\leq 5\\ x_5\leq 1\\ x_5\leq \frac{12}{9}\leq \frac{4}{3} \end{cases}$$

Меньшим является $x_5 \le 1$, соответствующее строке $x_4 = 11 - 2(3 - x_3 + 3x_5) + x_5 = 5 + 2x_3 - 5x_5 \ge 0$ в предыдущей системе. Необходимо x_5 выразить через x_4 , x_3 :

$$x_5 = 1 + \frac{2}{5}x_3 + \frac{1}{5}x_4$$

Теперь это уравнение подставим в оставшиеся:

$$\begin{cases} x_1 = 3 - x_3 + 3(1 + \frac{2}{5}x_3 + \frac{1}{5}x_4) = 6 + \frac{1}{5}x_3 - \frac{3}{5}x_4 \\ x_2 = 5 - (1 + \frac{2}{5}x_3 + \frac{1}{5}x_4) = 4 - \frac{2}{5}x_3 + \frac{1}{5}x_4 \\ x_6 = 12 + 3x_3 - 9(1 + \frac{2}{5}x_3 + \frac{1}{5}x_4) = 3 - \frac{3}{5}x_3 + \frac{9}{5}x_4 \ge 0 \end{cases}$$

 $x_3 = x_4 = 0 \implies x^{(3)} = (6, 4, 0.0, 1, 3)$

 $F(\overline{x})=21-2x_3+3(1+\frac{2}{5}x_3+\frac{1}{5}x_4)=24-\frac{4}{5}x_3-\frac{3}{5}x_4$. Оптимальное решение достигнуто: $x^*=x^{(3)}=(6,4,0,0,1,3)$. Решение исходной задачи: $x^*_{\text{исх}}=(6,4)$

Пример №2 Найти аналитически решение ЗЛП:

$$F(\overline{x}) = x_1 + 4x_2 + x_3 - x_4 \to max$$

При ограничениях:

$$\begin{cases} 2x_1 - x_3 + x_4 = 4\\ x_1 - 2x_2 - 2x_3 + x_4 = -1\\ x_i \ge 0, i = \overline{1, 4} \end{cases}$$

Выберем переменные x_1 , x_2 в качестве свободных, выразим через них переменные x_3 , x_4 : вычтем из первого уравнения второе, получим

$$x_1 + x_3 + 2x_2 = 5 \implies x_3 = 5 - x_1 - 2x_2 > 0$$

Вычтем из второго уравнения два первых уравнения:

$$-3x_1 - 2x_2 - x_4 = -9 \implies x_4 = 9 - 3x_1 - 2x_2 \ge 0$$

Таким образом, мы получили систему неравенств на две переменные x_1, x_2 . $x_1 = x_2 = 0 \implies x^{(0)} = (0,0,5,9)$. Перепишем $F(\overline{x})$, получим $F(\overline{x}) = -4 + 3x_1 + 4x_2$ — решение неоптимально, $F(x^{(0)}) = -4$. Переводим в базис переменную x_2 , так как у нее наибольший коэффициент.

 $x_1 = 0$:

$$\begin{cases} x_3 = 5 - 2x_2 \ge 0 \implies x_3 \le \frac{5}{2} \\ x_4 = 3 - 2x_2 \ge 0 \implies x_2 \le \frac{3}{2} \end{cases}$$

Минимальное из них $\frac{5}{2}$. Следовательно, необходимо избавляться от x_3 .

$$\begin{cases} x_2 = \frac{5}{2} - \frac{1}{2}x_1 - \frac{1}{2}x_3 \ge 0\\ x_4 = 9 - 3x_1 - 2(\frac{5}{2} - \frac{1}{2}x_1 - \frac{1}{2}x_3) = 4 - 2x_1 + x_3 \ge 0 \end{cases}$$

Перепишем $F(\overline{x}) = -4 + 3x_1 + 4(\frac{5}{2} - \frac{1}{2}x_1 - \frac{1}{2}x_3) = 6 + x_1 - 2x_3$, $x^{(1)} = (0, \frac{5}{2}, 0, 4)$, $F(x^{(1)}) = 6$. Решение неоптимально, так как имеем положительный коэффициент. Переведём x_1 в базис. $x_3 = 0$:

$$\begin{cases} x_2 = \frac{5}{2} - \frac{1}{2}x_1 \ge 0 \implies x_1 \le 5 \\ x_4 = 4 - 2x_1 \ge 0 \implies x_1 \le 2 - \text{минимальное} \end{cases}$$

Следовательно, второе уравнение необходимо переписать. Получим:

$$\begin{cases} x_1 = 2 + \frac{1}{2}x_3 - \frac{1}{2}x_4 \ge 0\\ x_2 = \frac{5}{2} - \frac{1}{2}(2 + \frac{1}{2}x_3 - \frac{1}{2}x_4) - \frac{1}{2}x_3 = \frac{3}{2} - \frac{3}{4}x_3 + \frac{1}{4}x_4 \ge 0 \end{cases}$$

Перепишем $F(\overline{x}) = 6 + 2 + \frac{1}{2}x_3 - \frac{1}{2}x_4 - 2x_3 = 8 - \frac{3}{2}x_3 - \frac{1}{2}x_4$, $x^{(2)} = (2, \frac{3}{2}, 0, 0)$, $F(x^{(2)}) = 8$. Оптимальное решение, так как все с отрицательным коэффициентом.

1.1.3 Домашнее задание

Решить геометрически и аналитически ЗЛП:

$$F(\overline{x}) = x_1 + 3x_2 + 3x_4 \to max$$

При ограничениях:

$$\begin{cases} x_1 - 3x_2 + 3x_3 - 6x_4 = 0 \\ 3x_2 - 2x_3 + 6x_4 = 2 \\ x_i \ge 0, i = \overline{1, 4} \end{cases}$$