Lecture 11

CS 131: COMPILERS

Announcements

- HW3: LLVM lite
 - Available on Blackboard.
 - Due: November 6th at 11:59:59pm

you should have STARTED EARLY!!

- Midterm: November 19th (tentative)
 - In class
 - One-page, letter-sized, double-sided "cheat sheet" of notes permitted
 - Coverage: interperters, x86, LLVMlite, lexing, parsing
 - See examples of previous exam on Blackboard

Finite Automata

- Consider the regular expression: ""[^""]*""
- An automaton (DFA) can be represented as:
 - A transition table:

	III	Non-"
0	1	ERROR
1	2	1
2	ERROR	ERROR

– A graph:

RE to Finite Automaton?

- Can we build a finite automaton for every regular expression?
 - Yes!
- Strategy: consider every possible regular expression (by induction on the structure of the regular expressions):

Nondeterministic Finite Automata

- A finite set of states, a start state, and accepting state(s)
- Transition arrows connecting states
 - Labeled by input symbols
 - Or ε (which does not consume input)
- Nondeterministic: two arrows leaving the same state may have the same label

RE to NFA?

- Converting regular expressions to NFAs is easy.
- Assume each NFA has one start state, unique accept state

RE to NFA (cont'd)

Sums and Kleene star are easy with NFAs

DFA versus NFA

DFA:

- Action of the automaton for each input is fully determined
- Automaton accepts if the input is consumed upon reaching an accepting state
- Obvious table-based implementation

NFA:

- Automaton potentially has a choice at every step
- Automaton accepts an input string if there exists a way to reach an accepting state
- Less obvious how to implement efficiently

CS 131: Compilers

8

NFA to DFA conversion (Intuition)

- Idea: Run all possible executions of the NFA "in parallel"
- Keep track of a set of possible states: "finite fingers"
- Consider: -?[0-9]+
- NFA representation:

• DFA representation:

Summary of Lexer Generator Behavior

- Take each regular expression R_i and it's action A_i
- Compute the NFA formed by $(R_1 | R_2 | ... | R_n)$
 - Remember the actions associated with the accepting states of the R_i
- Compute the DFA for this big NFA
 - There may be multiple accept states (why?)
 - A single accept state may correspond to one or more actions (why?)
- Compute the minimal equivalent DFA
 - There is a standard algorithm due to Myhill & Nerode
- Produce the transition table
- Implement longest match:
 - Start from initial state
 - Follow transitions, remember last accept state entered (if any)
 - Accept input until no transition is possible (i.e. next state is "ERROR")
 - Perform the highest-priority action associated with the last accept state; if no accept state there is a lexing error

Lexer Generators in Practice

- Many existing implementations: lex, Flex, Jlex, ocamllex, ...
 - For example ocamllex program
 - see lexlex.mll, olex.mll, piglatin.mll on course website
- Error reporting:
 - Associate line number/character position with tokens
 - Use a rule to recognize '\n' and increment the line number
 - The lexer generator itself usually provides character position info.
- Sometimes useful to treat comments specially
 - Nested comments: keep track of nesting depth

Lexer generators are usually designed to work closely with parser generators...

Creating an abstract representation of program syntax.

PARSING

Parsing

Token stream:

if

b

==

0

a

=

0

Parsing

Lexical Analysis

Abstract Syntax Tree:

Intermediate code:

%cnd = icmp eq i64 %b, 0 br i1 %cnd, label %l2, label %l3 12: store i64* %a, 1 br label %13 13:

Analysis & **Transformation**

Backend

Assembly Code

11: cmpq %eax, \$0 jeq l2 jmp I3 12:

Parsing: Finding Syntactic Structure

Syntactic Analysis (Parsing): Overview

- Input: stream of tokens (generated by lexer)
- Output: abstract syntax tree
- Strategy:
 - Parse the token stream to traverse the "concrete" syntax
 - During traversal, build a tree representing the "abstract" syntax
- Why abstract? Consider these three different concrete inputs:

- Note: parsing doesn't check many things:
 - Variable scoping, type agreement, initialization, ...

Specifying Language Syntax

- First question: how to describe language syntax precisely and conveniently?
- Previously we described tokens using regular expressions
 - Easy to implement, efficient DFA representation
 - Why not use regular expressions on tokens to specify programming language syntax?
- Limits of regular expressions:
 - DFA's have only finite # of states
 - So... DFA's can't "count"
 - For example, consider the language of all strings that contain balanced parentheses – easier than most programming languages, but not regular.
- So: we need more expressive power than DFA's

CONTEXT FREE GRAMMARS

Context-free Grammars

Here is a specification of the language of balanced parens:

$$S \mapsto (S)S$$

 $S \mapsto \varepsilon$

Note: Once again we have to take care to distinguish meta-language elements (e.g. "S" and "→") from object-language elements (e.g. "(").*

- The definition is recursive S mentions itself.
- Idea: "derive" a string in the language by starting with S and rewriting according to the rules:
 - Example: $S \mapsto (S)S \mapsto ((S)S)S \mapsto ((\epsilon)S)S \mapsto ((\epsilon)S)E \mapsto ((\epsilon)E)E = (())E$
- You can replace the nonterminal S by one of its definitions anywhere
- A context-free grammar accepts a string iff there is a derivation from the start symbol

^{*} And, since we're writing this description in English, we are careful distinguish the meta-meta-language (e.g. words) from the meta-language and object-language (e.g. symbols) by using quotes.

CFGs Mathematically

- A Context-free Grammar (CFG) consists of
 - A set of *terminals* (e.g., a lexical token or ε)
 - A set of nonterminals (e.g., S and other syntactic variables)
 - A designated nonterminal called the start symbol
 - A set of productions: LHS \mapsto RHS
 - LHS is a nonterminal
 - RHS is a *string* of terminals and nonterminals
- Example: The balanced parentheses language:

$$S \mapsto (S)S$$

 $S \mapsto \varepsilon$

How many terminals? How many nonterminals? Productions?

Another Example: Sum Grammar

A grammar that accepts parenthesized sums of numbers:

$$S \mapsto E + S \mid E$$

$$E \mapsto number \mid (S)$$

e.g.:
$$(1+2+(3+4))+5$$

Note the vertical bar '|' is shorthand for multiple productions:

$$S \mapsto E + S$$
 4 productions
 $S \mapsto E$ 2 nonterminals: S, E
 $E \mapsto \text{number}$ 4 terminals: (,), +, number
 $E \mapsto (S)$ Start symbol: S

Derivations in CFGs

- Example: derive (1 + 2 + (3 + 4)) + 5
- $\underline{S} \mapsto \underline{E} + S$

$$\mapsto$$
 (S) + S

$$\mapsto$$
 (E + S) + S

$$\mapsto$$
 $(1 + \underline{S}) + S$

$$\mapsto$$
 (1 + E + S) + S

$$\mapsto$$
 (1 + 2 + S) + S

$$\mapsto$$
 (1 + 2 + E) + S

$$\mapsto$$
 (1 + 2 + (S)) + S

$$\mapsto$$
 (1 + 2 + (**E** + S)) + S

$$\mapsto$$
 (1 + 2 + (3 + **S**)) + S

$$\mapsto$$
 (1 + 2 + (3 + E)) + S

$$\mapsto$$
 (1 + 2 + (3 + 4)) + **S**

$$\mapsto$$
 (1 + 2 + (3 + 4)) + **E**

$$\mapsto$$
 (1 + 2 + (3 + 4)) + 5

$$S \mapsto E + S \mid E$$

 $E \mapsto \text{number} \mid (S)$

For arbitrary strings α , β , γ and production rule $A \mapsto \beta$ a single step of the derivation is:

$$\alpha A \gamma \mapsto \alpha \beta \gamma$$

(substitute β for an occurrence of A)

In general, there are many possible derivations for a given string.

Note: Underline indicates symbol being expanded.

From Derivations to Parse Trees

 $S \mapsto E + S \mid E$

- Tree representation of the derivation
- Leaves of the tree are terminals
 - In-order traversal yields the input sequence of tokens
- Internal nodes: nonterminals
- No information about the order of the derivation steps

$$(1 + 2 + (3 + 4)) + 5$$

From Parse Trees to Abstract Syntax

Derivation Orders

- Productions of the grammar can be applied in any order.
- There are two standard orders:
 - Leftmost derivation: Find the left-most nonterminal and apply a production to it.
 - Rightmost derivation: Find the right-most nonterminal and apply a production there.
- Note that both strategies (and any other) yield the same parse tree!
 - Parse tree doesn't contain the information about what order the productions were applied.

Example: Left- and rightmost derivations

- Leftmost Derivation
- $S \mapsto E + S$ \mapsto (S) + S \mapsto (E + S) + S \mapsto (1 + S) + S \mapsto (1 + E + S) + S \mapsto (1 + 2 + **S**) + S \mapsto (1 + 2 + E) + S \mapsto (1 + 2 + (**S**)) + S \mapsto (1 + 2 + (**E** + S)) + S \mapsto (1 + 2 + (3 + **S**)) + S \mapsto (1 + 2 + (3 + **E**)) + S \mapsto (1 + 2 + (3 + 4)) + **S** \mapsto (1 + 2 + (3 + 4)) + **E** \mapsto (1 + 2 + (3 + 4)) + 5

- Rightmost derivation:
- $S \mapsto E + S$ $\mapsto E + E$ \mapsto E + 5 \mapsto (S) + 5 \mapsto (E + S) + 5 \mapsto (E + E + S) + 5 \mapsto (E + E + E) + 5 \mapsto (E + E + (S)) + 5 \mapsto (E + E + (E + S)) + 5 \mapsto (E + E + (E + E)) + 5 \mapsto (E + E + (**E** + 4)) + 5 \mapsto (E + E + (3 + 4)) + 5 \mapsto (**E** + 2 + (3 + 4)) + 5 \mapsto (1 + 2 + (3 + 4)) + 5