Portfolio Project #1 COVID-19 Deaths by Medical Condition

Data Source:

https://healthdata.gov/dataset/Conditions-Contributing-to-COVID-19-Deaths-by-Stat/uvkj-kpue/about_data

Questions:

- Which age group has the most deaths caused by COVID-19?
- Which condition has the most deaths? Condition group?
- Which condition leads to the most deaths by age group?

Key Variables:

- Condition.group
- Condition
- Age.Group
- COVID.19.Deaths

Which age group has the most deaths caused by COVID-19?

- 1. First filter the data so that only Age.Group and COVID.19.Deaths are left in dataset
- 2. Combine all Age groups by various conditions together into total count
- 3. Plot bar graph representing each age group on x-axis and number of deaths on y-axis

CODE:

```
#Installing tidyverse package
install.packages("tidyverse")
library(tidyverse)
#Reading CSV
Covid19 data <-
read.csv("D://Conditions Contributing to COVID-19 Deaths by State and Age Provisional 2020-2023.csv")
#Filtering data to only have Age.Group and COVID.19.Death Variables
Question 1 <- Covid19 data %>% select(Age.Group, COVID.19.Deaths)
#Combining number of deaths by age group
Grouped Question 1 <- Question 1 %>% filter(!is.na(COVID.19.Deaths)) %>% group by(Age.Group) %>%
summarise(sumDeaths = sum(COVID.19.Deaths))
#Cleaning data to exclude 'All Ages' and 'Not Stated' as they are not relevant
Clean Grouped Question 1 <- Grouped Question 1[-c(9,10), ]
#Plotting data on a bar chart
#Adding Color, Title (Centered), X-axis Label, Y-axis Label
#Changing Y-axis scale to display comma number instead of exponent
ggplot(Clean Grouped Question 1, aes(x=Age.Group, y=sumDeaths, fill=Age.Group)) + geom bar(stat="identity") +
scale y continuous (labels = scales::comma) + labs(title="COVID-19 Deaths by Age Group", x="Age Group",
y="Number of Deaths") + theme(plot.title = element text(hjust=0.5))
```

COVID-19 Deaths by Age Group

Which condition has the most deaths? Condition group?

- 1. Group together the number of deaths in each condition (combining all age groups)
- 2. Plot bar graph representing each condition on x-axis and number of deaths on y-axis
- 3. Repeat with condition group

CODE: Condition

```
#Installing tidyverse package
install.packages("tidyverse")
library(tidyverse)
#Reading CSV
Covid19 data <-
read.csv("D://Conditions Contributing to COVID-19 Deaths by State and Age Provisional 2020-2023.csv")
#Filtering data to only have Condition and COVID.19.Death Variables
Question 2 <- Covid19 data %>% select(Condition, COVID.19.Deaths)
#Combining number of deaths by Condition
Grouped Question 2 <- Question 2 %>% filter(!is.na(COVID.19.Deaths)) %>% group by(Condition) %>%
summarise(sumDeaths = sum(COVID.19.Deaths))
#Cleaning data to exclude COVID-19 as it is not relevant
Clean Grouped Question 2 <- Grouped Question 2[-c(4), ]
#Plotting the data
#Adding Color, Title, X-axis Label, Y-axis Label
#Changing Y-axis scale to display comma number instead of exponent
#Wrapping x-axis labels at 25 characters
```

ggplot(Clean_Grouped_Question_2, aes(x=reorder(Condition, sumDeaths), y=sumDeaths, fill=Condition)) +
geom_bar(stat="identity") + scale_y_continuous(labels = scales::comma) + labs(title="COVID-19 Deaths by
Condition", x="Condition", y="Number of Deaths") + theme_minimal() + theme(legend.position = "none") +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + scale_x_discrete(labels =
label_wrap(25))

CODE: Condition Group

```
#Installing tidyverse package
install.packages("tidyverse")
library(tidyverse)
#Reading CSV
Covid19 data <-
read.csv("D://Conditions Contributing to COVID-19 Deaths by State and Age Provisional 2020-2023.csv")
#Filtering data to only have Condition Group and COVID.19.Death Variables
Question 2 Group <- Covid19 data %>% select(Condition.Group, COVID.19.Deaths)
#Combining number of deaths by Condition
Grouped Question 2 Group <- Question 2 Group %>% filter(!is.na(COVID.19.Deaths)) %>% group by(Condition.Group)
%>% summarise(sumDeaths = sum(COVID.19.Deaths))
#Cleaning data to exclude COVID-19 as it is not relevant
Clean Grouped Question 2 Group <- Grouped Question 2 Group[-c(3), ]</pre>
#Plotting the data
#Adding Color, Title, X-axis Label, Y-axis Label
#Changing Y-axis scale to display comma number instead of exponent
#Wrapping x-axis labels at 25 characters
ggplot(Clean Grouped Question 2 Group, aes(x=reorder(Condition.Group,sumDeaths), y=sumDeaths,
fill=Condition.Group)) + geom bar(stat="identity") + scale y continuous(labels = scales::comma) +
labs(title="COVID-19 Deaths by Condition Group", x="Condition Group", y="Number of Deaths") +
theme minimal() + theme(legend.position = "none") + theme(axis.text.x = element text(angle = 90, vjust =
0.5, hjust=1)) + scale x discrete(labels = label wrap(25))
```


Which condition leads to the most deaths by age group?

- 1. Filter dataset to include each age group one by one
- 2. Filter that data further in ascending order to show which conditions lead to the most deaths
- 3. Repeat for all age groups

CODE:

```
#Reading CSV
```

```
Covid19_data <- read.csv("D://Conditions Contributing to COVID-19 Deaths by State and Age Provisional 2020-2023.csv")
```

#Filtering data to only have Condition, COVID.19 Deaths, and Age.Group Variables

```
Question 3 <- Covid19 data %>% select(Age.Group, COVID.19.Deaths, Condition)
```

#Grouping Age Group and Condition by Number of Deaths

```
Grouped_Question_3 <- Question_3 %>% filter(!is.na(COVID.19.Deaths)) %>% group_by(Age.Group, Condition) %>%
summarise(sumDeaths = sum(COVID.19.Deaths))
```

#Cleaning data to exclude COVID-19 as it is not relevant

```
Clean_Grouped_Question_3 <- Grouped_Question_3[-c(2,4,25,27,48,50,71,73,94,96,117,119,140,142,163,165), ]
```

#Creating Age 0-24 group dataset

```
Age_Group_0_24 <- Clean_Grouped_Question_3 %>%
filter(Age.Group == "0-24")
```

#Arrange to show conditions leading to most deaths in Age 0-24 group

4	0-24	Adult respiratory distress syndrome	<u>2</u> 042
5	0-24	Cardiac arrest	<u>1</u> 990
6	0-24	Other diseases of the circulatory system	<u>1</u> 936
7	0-24	Intentional and unintentional injury, poisoning, and other adverse events	<u>1</u> 701
8	0-24	Sepsis	<u>1</u> 685
9	0-24	Other diseases of the respiratory system	<u>1</u> 546
10	0-24	Renal failure	<u>1</u> 057

#Creating Age 25-34 group dataset

```
Age_Group_25_34 <- Clean_Grouped_Question_3 %>%
filter(Age.Group == "25-34")
```

#Arrange to show conditions leading to most deaths in Age 25-34 group

arrange(Age_Group_25_34, desc(sumDeaths))

Z	Age.Group	Condition	sumDeaths
	<chr></chr>	<chr></chr>	<int></int>
1	25-34	Influenza and pneumonia	<u>32</u> 298
2	25-34	Respiratory failure	<u>21</u> 975
3	25-34	Obesity	<u>15</u> 077
4	25-34	Adult respiratory distress syndrome	<u>9</u> 117
5	25-34	Cardiac arrest	<u>8</u> 218
6	25-34	Sepsis	<u>6</u> 852
7	25-34	Diabetes	<u>6</u> 013
8	25-34	Renal failure	<u>5</u> 843
9	25-34	Other diseases of the circulatory system	n <u>5</u> 536
10	25-34	Hypertensive diseases	<u>4</u> 124

#Creating Age 35-44 group dataset

```
Age_Group_35_44 <- Clean_Grouped_Question_3 %>%
filter(Age.Group == "35-44")
```

#Arrange to show conditions leading to most deaths in Age 35-44 group

arrange(Age Group 35 44, desc(sumDeaths))

I	Age.Group	Condition	sumDeaths
	<chr></chr>	<chr></chr>	<int></int>
1	35-44	Influenza and pneumonia	<u>87</u> 411
2	35-44	Respiratory failure	<u>62</u> 326
3	35-44	Obesity	<u>32</u> 734
4	35-44	Adult respiratory distress syndrome	<u>25</u> 886
5	35-44	Diabetes	<u>23</u> 279
6	35-44	Cardiac arrest	<u>22</u> 339
7	35-44	Sepsis	<u>20</u> 828
8	35-44	Hypertensive diseases	<u>19</u> 437
9	35-44	Renal failure	<u>18</u> 062
10	35-44	Other diseases of the circulatory system	m <u>13</u> 577

#Creating Age 45-54 group dataset

```
Age_Group_45_54 <- Clean_Grouped_Question_3 %>%
filter(Age.Group == "45-54")
```

#Arrange to show conditions leading to most deaths in Age 45-54 group

arrange(Age_Group_45_54, desc(sumDeaths))

Age.Group	Condition	sumDeaths
<chr></chr>	<chr></chr>	<int></int>
1 45-54	Influenza and pneumonia	<u>221</u> 872
2 45-54	Respiratory failure	<u>166</u> 170
3 45-54	Diabetes	<u>70</u> 350
4 45-54	Adult respiratory distress syndrome	<u>65</u> 874
5 45-54	Hypertensive diseases	<u>60</u> 533
6 45-54	Cardiac arrest	<u>57</u> 151
7 45-54	Obesity	<u>56</u> 158

8	45-54	Sepsis	<u>56</u> 068
9	45-54	Renal failure	<u>51</u> 977
10	45-54	Other diseases of the circulatory system	33223

#Creating Age 55-64 group dataset

```
Age_Group_55_64 <- Clean_Grouped_Question_3 %>%
filter(Age.Group == "55-64")
```

Z	Age.Group	Condition	sumDeaths
	<chr></chr>	<chr></chr>	<int></int>
1	55-64	Influenza and pneumonia	<u>494</u> 167
2	55-64	Respiratory failure	<u>393</u> 528
3	55-64	Diabetes	<u>168</u> 843
4	55-64	Hypertensive diseases	<u>159</u> 316
5	55-64	Adult respiratory distress syndrome	<u>134</u> 393
6	55-64	Sepsis	<u>129</u> 194
7	55-64	Cardiac arrest	<u>125</u> 665
8	55-64	Renal failure	<u>120</u> 300
9	55-64	Obesity	<u>78</u> 892
10	55-64	Ischemic heart disease	<u>75</u> 709

#Arrange to show conditions leading to most deaths in Age 55-64 group arrange (Age Group 55 64, desc(sumDeaths))

#Creating Age 65-74 group dataset

```
Age_Group_65_74 <- Clean_Grouped_Question_3 %>%
filter(Age.Group == "65-74")
```

#Arrange to show conditions leading to most deaths in Age 65-74 group arrange (Age_Group_65_74, desc(sumDeaths))

Age.Group		Condition	sumDeaths
	<chr></chr>	<chr></chr>	<int></int>
1	65-74	Influenza and pneumonia	<u>773</u> 279
2	65-74	Respiratory failure	<u>646</u> 850
3	65-74	Hypertensive diseases	<u>279</u> 765
4	65-74	Diabetes	<u>271</u> 990
5	65-74	Renal failure	<u>193</u> 808
6	65-74	Sepsis	<u>192</u> 547
7	65-74	Cardiac arrest	<u>189</u> 865
8	65-74	Adult respiratory distress syndrome	<u>177</u> 502
9	65-74	Ischemic heart disease	<u>162</u> 939
10	65-74	Chronic lower respiratory diseases	<u>162</u> 936

#Creating Age 75-84 group dataset

```
Age_Group_75_84 <- Clean_Grouped_Question_3 %>%
filter(Age.Group == "75-84")
```

#Arrange to show conditions leading to most deaths in Age 75-84 group

arrange(Age_Group_75_84, desc(sumDeaths))

I	Age.Group	Condition	sumDeaths
	<chr></chr>	<chr></chr>	<int></int>
1	75-84	Influenza and pneumonia	<u>831</u> 481
2	75-84	Respiratory failure	<u>712</u> 050
3	75-84	Hypertensive diseases	<u>345</u> 036
4	75-84	Diabetes	<u>268</u> 955
5	75-84	Ischemic heart disease	<u>232</u> 827
6	75-84	Chronic lower respiratory disease	s <u>211</u> 851
7	75-84	Renal failure	<u>200</u> 007
8	75-84	Cardiac arrest	<u>199</u> 868
9	75-84	Sepsis	<u>173</u> 745
10	75-84	Heart failure	<u>168</u> 222

#Creating Age 85+ group dataset

```
Age_Group_85 <- Clean_Grouped_Question_3 %>%
filter(Age.Group == "85+")
```

#Arrange to show conditions leading to most deaths in Age 85+ group

arrange(Age Group 85, desc(sumDeaths))

Z	Age.Group	Condition	sumDeaths
	<chr></chr>	<chr></chr>	<int></int>
1	85+	Influenza and pneumonia	<u>727</u> 237
2	85+	Respiratory failure	<u>592</u> 044
3	85+	Hypertensive diseases	<u>392</u> 193
4	85+	Vascular and unspecified dementia	a <u>330</u> 541
5	85+	Ischemic heart disease	<u>247</u> 990
6	85+	Heart failure	<u>234</u> 030
7	85+	Cardiac arrhythmia	<u>208</u> 430
8	85+	Cardiac arrest	<u>185</u> 247
9	85+	Diabetes	<u>179</u> 043
10	85+	Renal failure	<u>164</u> 459

Key Takeaways

- Age is a significant factor in COVID-19 mortality: The 85+ age group experienced the most deaths due to COVID-19, closely followed by the 75-84 age group, indicating a strong correlation between increasing age and higher COVID-19 death tolls.
- Respiratory conditions are the primary contributors to COVID-19 deaths: "Influenza and pneumonia" was the most common
 co-condition leading to death across almost all age groups, with "Respiratory failure" consistently ranking as the second most
 frequent.
- Common pre-existing conditions play a role in leading to deaths by COVID-19. Beyond respiratory issues there are other significant contributing conditions across various age groups including but not limited to "Obesity," "Diabetes," "Hypertensive diseases," "Cardiac arrest," "Sepsis," and "Renal failure".