

128Mbyte (32Mx32) 72-pin Fast Page Mode 4K Ref. SIMM Design 5V Part No. HMD32M32M16G

GENERAL DESCRIPTION

The HMD32M32M16G is a 32M x 32bit dynamic RAM high-density memory module. The module consists of sixteen CMOS 16M x 4bit DRAMs in 32-pin TSOPII packages mounted on a 72-pin, double-sided, FR-4-printed circuit board. A 0.1uF decoupling capacitor is mounted on the printed circuit board for each DRAM components. The module is a Single In-line Memory Module with edge connections and is intended for mounting in to 72-pin edge connector sockets. All module components may be powered from a single 5V DC power supply and all inputs and outputs are TTL-compatible.

FEATURES

wPart Identification

HMD32M32M16G-- 4K Cycles/64ms Ref. Gold

w Access times: 50, 60ns

- w High-density 128MByte design
- w Single + 5V ±0.5V power supply
- w JEDEC standard pinout
- w Fast Page mode operation
- w TTL compatible inputs and outputs
- w FR4-PCB design

OPTIONS	MARKING
w Timing	
50ns access	-5
60ns access	-6
w Packages	
72-pin SIMM	M

PERFORMANCE RANGE

SPEED	tRAC	tCAC	tRC
-5	50ns	13ns	90ns
-6	60ns	15ns	110ns

PRESENCE DETECT PINS

Pin	50ns	60ns
PD1	NC	NC
PD2	Vss	Vss
PD3	Vss	NC
PD4	Vss	NC

PIN ASSIGNMENT

PIN	SYMBOL	PIN	SYMBOL	PIN	SYMBOL
1	Vss	25	DQ22	49	DQ8
2	DQ0	26	DQ7	50	DQ24
3	DQ16	27	DQ23	51	DQ9
4	DQ1	28	A7	52	DQ25
5	DQ17	29	A11	53	DQ10
6	DQ2	30	Vcc	54	DQ26
7	DQ18	31	A8	55	DQ11
8	DQ3	32	A9	56	DQ27
9	DQ19	33	/RAS3	57	DQ12
10	Vcc	34	/RAS2	58	DQ28
11	NC	35	NC	59	Vcc
12	A0	36	NC	60	DQ29
13	A1	37	NC	61	DQ13
14	A2	38	NC	62	DQ30
15	А3	39	Vss	63	DQ14
16	A4	40	/CAS0	64	DQ31
17	A5	41	/CAS2	65	DQ15
18	A6	42	/CAS3	66	NC
19	A10	43	/CAS1	67	PD1
20	DQ4	44	/RAS0	68	PD2
21	DQ20	45	/RAS1	69	PD3
22	DQ5	46	NC	70	PD4
23	DQ21	47	/WE	71	NC
24	DQ6	48	NC	72	Vss

72 PIN SIMM TOP VIEW

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING
Voltage on Any Pin Relative to Vss	V _{IN ,OUT}	-1V to 7.0V
Voltage on Vcc Supply Relative to Vss	Vcc	-1V to 7.0V
Power Dissipation	P_{D}	16W
Storage Temperature	T _{STG}	-55 ^o C to 150 ^o C
Short Circuit Output Current	I _{os}	50mA

w Permanent device damage may occur if " Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS

(Voltage reference to V_{SS}, T_A=0 to 70 $^{\rm O}$ C)

PARAMETER	SYMBOL	MIN	TYP.	MAX	UNIT
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input High Voltage	V _{IH}	2.4	-	Vcc+1	V
Input Low Voltage	V _{IL}	-1.0	-	0.8	V

DC AND OPERATING CHARACTERISTICS

SYMBOL	SPEED	MIN	MAX	UNITS
	-5	-	1920	mA
I _{CC1}	-6	-	1760	mA
I _{CC2}	Don't care	-	32	mA
	-5	-	1920	mA
I _{CC3}	-6	-	1760	mA
	-5	-	1120	mA
I _{CC4}	-6	-	960	mA
I _{CC5}	Don't care	-	16	mA
	-5	-	1920	mA
I _{CC6}	-6	-	1760	mA
I _{I(L)}		-10	10	μΑ
I _{O(L)}		-5	5	μΑ
V _{OH}		2.4	-	V
V _{OL}		-	0.4	V

 $I_{\text{CC1}}\!:$ Operating Current * (/RAS , /CAS , Address cycling $@t_{\text{RC}}\!\!=\!\!\text{min.})$

I_{CC2}: Standby Current (/RAS=/CAS=V_{IH})

 $I_{\text{CC3}}\!:$ /RAS Only Refresh Current * (/CAS=V $_{\text{IH}}$, /RAS, Address cycling @t $_{\text{RC}}\!=\!$ min)

I_{CC4}: Fast Page Mode Current * (/RAS=V_{IL}, /CAS, Address cycling @t_{PC}=min)

I_{CC5}: Standby Current (/RAS=/CAS=Vcc-0.2V)

 I_{CC6} : /CAS-Before-/RAS Refresh Current * (/RAS and /CAS cycling @ t_{RC} =min)

 I_{IL} : Input Leakage Current (Any input $0V \le V_{IN} \le 6.5V$, all other pins not under test = 0V)

 I_{OL} : Output Leakage Current (Data out is disabled, $0V \le V_{OUT} \le 5.5V$

 V_{OH} : Output High Voltage Level (I_{OH} = -5mA) V_{OL} : Output Low Voltage Level (I_{OL} = 4.2mA)

* NOTE: I_{CC1}, I_{CC3}, I_{CC4} and I_{CC6} are dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{CC} is specified as an average current. In I_{CC1} and I_{CC3}, address cad be changed maximum once while /RAS=V_{IL}. In I_{CC4}, address can be changed maximum once within one page mode cycle.

CAPACITANCE $(T_A=25^{\circ}C, Vcc = 5V, f = 1Mz)$

DESCRIPTION	SYMBOL	MIN	MAX	UNITS
Input Capacitance (A0-A11)	C _{IN1}	-	90	pF
Input Capacitance (/W)	C _{IN2}	-	122	pF
Input Capacitance (/RAS0)	C _{IN3}	-	38	pF
Input Capacitance (/CAS0-/CAS3)	C _{IN4}	-	38	pF
Input/Output Capacitance (DQ0-31)	C_{DQ1}	-	17	pF

AC CHARACTERISTICS ($0^{\circ}C \le T_A \le 70^{\circ}C$, Vcc = 5V±10%, See notes 1,2.)

			-5		-6	
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNIT
Random read or write cycle time	t _{RC}	84		104		ns
Access time from /RAS	t _{RAC}		50		60	ns
Access time from /CAS	t _{CAC}		13		15	ns
Access time from column address	t _{AA}		25		30	ns
/CAS to output in Low-Z	t _{CLZ}	3		3		ns
Output buffer turn-off delay	t _{OFF}	3	13	3	15	ns
Transition time (rise and fall)	t _T	1	50	1	50	ns
/RAS precharge time	t _{RP}	30		40		ns
/RAS pulse width	t _{RAS}	50	10K	60	10K	ns
/RAS hold time	t _{RSH}	13		15		ns
/CAS hold time	t _{CSH}	38		45		ns
/CAS pulse width	t _{CAS}	8	10K	10	10K	ns
/RAS to /CAS delay time	t _{RCD}	20	37	20	45	ns
/RAS to column address delay time	t _{RAD}	15	25	15	30	ns
/CAS to /RAS precharge time	t _{CRP}	5		5		ns
Row address set-up time	t _{ASR}	0		0		ns

Row address hold time	t _{RAH}	10		10		ns
Column address set-up time	t _{ASC}	0		0		ns
Column Address to /RAS lead time	t _{RAL}	25		30		ns
Read command set-up time	t _{RCS}	0		0		ns
Read command hold referenced to /CAS	t _{RCH}	0		0		ns
Read command hold referenced to /RAS	t _{RRH}	0		0		ns
Write command hold time	t _{WCH}	10		10		ns
Write command hold referenced to /RAS	t _{WCR}	50		55		ns
Write command pulse width	t _{WP}	10		10		ns
Write command to /RAS lead time	t _{RWL}	13		15		ns
Write command to /CAS lead time	t _{CWL}	8		10		ns
Data-in set-up time	t _{DS}	0		0		ns
Data-in hold time	t _{DH}	8		10		ns
Refresh period	t _{REF}		64		64	ns
Write command set-up time	t _{WCS}	0		0		ns
/CAS setup time (C-B-R refresh)	t _{CSR}	5		5		ns
/CAS hold time (C-B-R refresh)	t _{CHR}	10		10		ns
/RAS precharge to /CAS hold time	t _{RPC}	5		5		ns

NOTES

- 1.An initial pause of 200µs is required after power-up followed by any 8 /RAS-only or /CAS-before-/RAS refresh cycles before proper device operation is achieved.
- $2.V_{IH (min)}$ and $V_{IL (max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH (min)}$ and $V_{IL (max)}$ and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2TTL loads and 100pF
- 4.Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that $t_{RCD} \ge t_{RCD(max)}$
- 6. t_{AR} , t_{WCR} , t_{DHR} are referenced to $t_{RAD(max)}$
- 7. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .
- 8. t_{WCS}, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameter.
 They are included in the data sheet as electrical characteristic only. If t_{WCS} ≥ t_{WCS(min)} the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle.
- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 10. These parameters are referenced to the /CAS leading edge in early write cycles and to the /W leading edge in readwrite cycles.
- 11. Operation within the $t_{RAD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RAD(max)}$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD(max)}$ limit. then access time is controlled by t_{AA} .

AC CHARACTERISTICS (0 $^{\circ}$ C \leq T_A \leq 70 $^{\circ}$ C , Vcc = 5V±10%)

			-5		-6		
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNIT	NOTE
Hyper page mode cycle time	t _{HPC}	20		25		ns	11
/CAS precharge time (Hyper page cycle)	t _{CP}	8		10		ns	
/RAS pulse width (Hyper page cycle)	t _{RASP}	50	200K	60	200K	ns	
/RAS hold time from /CAS precharge	t _{RHCP}	30		35		ns	
/W to RAS precharge time (C-B-R refresh)	t _{WRP}	10		10		ns	
/W to RAS hold time (C-B-R refresh)	t _{WRH}	10		10		ns	
Output data hold time	t _{DOH}	5		5		ns	
Output buffer turn off delay from /RAS	t _{REZ}	3	13	3	15	ns	6,12
Output buffer turn off delay from W	t _{WEZ}	3	13	3	15	ns	6
/W to data delay	t _{WED}	15		15		ns	
/W puls width	t _{WPE}	5		5		ns	

NOTES

- 1. An initial pause of 200us is required after power-up followed by any 8 /RAS-only or /CAS-before-/RAS refresh cycles before proper device operation is achieved.
- 2. Input voltage levels are Vih/Vil. V_{IH}(min) and V_{IL}(max) are reference levels for measuring timing of input signals.

 Transition times are measured between V_{IH}(min) and V_{IL}(max) and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 1 TTL loads and 100pF.
- 4. Operation within the $t_{RCD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RCD}(max)$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD}(max)$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that $t_{RCD} \ge t_{RCD}(max)$.
- 6. This parameter defines the time at which the output achieves the open circuit and is not referenced for V_{OH} or V_{OL}.
- 7. t_{WCS} is non-restrictive operating parameter. It is included in the data sheet as electrical characteristics only. If $t_{WCS} \ge t_{WCS}$ (min), the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle.
- 8. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 9. These parameters are referenced to the /CAS leading edge in early write cycles.
- 10. Operation within the t_{RAD}(max) limit insures that t_{RAC}(max) can be met. t_{RAD}(max) is specified as reference point only. If t_{RAD} is greater than the specified t_{RAD}(max) limit access time is controlled by t_{AA}.
- 11. tASC ≥6ns, Assume t T=2.0ns.
- 12. If /RAS goes high before /CAS high going, the open circuit condition of the output is achieved by /CAS high going.
 If /CAS goes high before /RAS high going, the open circuit condition of the output is achieved by /RAS going.

PACKAGING INFORMATION

ORDERING INFORMATION

Part Number	Density	Org.	Package	Component Number	Vcc	MODE	SPEED
HMD32M32M16G-5	128Byte	x 32	72 Pin-SIMM	16EA	5V	FPM	50ns
HMD32M32M16G-6	128Byte	x 32	72 Pin-SIMM	16EA	5V	FPM	60ns