

銀行客戶流失預測專案提供有效的業務策略與分析方法

1 數據預處理與分析

針對銀行客戶流失的數據清洗與處理方法如何實施

類別變數編碼

數據前處理程序

利用Pandas和Numpy進行資料清洗,確保 數據質量,提升預測準確性

Label Encoding技術處理類別變數,增強 模型的解釋力和效能

訓練測試集分割

合理劃分訓練集與測試集,確保模型的泛 化能力及評估的準確性

使用Pandas和Numpy進行流失預測的數據分析流程

選擇基準模型

Logistic Regression作為基準 模型,擁有良好的解釋性能, 便於理解

非線性模型應用

隨後應用Random Forest模型,處理非線性特徵及變數間的交互作用

模型表現評估

使用Accuracy、Precision、 Recall和F1score評估模型的綜 合表現與效果

結果視覺化方法

透過混淆矩陣和指標長條圖展 示模型預測結果,幫助業務分 析

如何有效進行類別變數的Label Encoding以提升模型性能

特徵重要性分析

識別影響預測的關鍵變數,包括信用評分、活躍會員標識和帳戶餘額

預警系統建議

建立高風險預警系統,及時介入減少客戶流失帶來的損失

高風險客群識別

結合分析結果,幫助業務團隊找出高風險 客戶群,以便進行針對性行銷

業務策略優化

透過保留獎勵機制提升客戶活躍度,聚焦 於高CLV客群,增強獲利能力

銀行客戶流失預測分析

2 模型選擇與評估

Logistic回歸與隨機森林模型在預測中的應用優勢

1

模型選擇的依據

選擇Logistic回歸作為基準模型,適合解釋性分析

隨機森林的優勢

隨機森林處理非線性與變數交 互作用的能力更強大 模型性能比較

整體而言,隨機森林優於 Logistic回歸,表現更佳 人員參與的重要性

數據分析師在模型選擇與評估 中扮演關鍵角色

流失預測模型效果比較的關鍵指標及其解釋

評估指標概述

指標意義解析

實際應用影響

業務決策支持

Accuracy、Precision、Recall和F1score是常見的評估指標

各指標對於模型的有效性和適 用性提供了不同視角 高精度模型能有效預測客戶流 失,提高商業回報 模型的指標結果為業務決策提供了數據支持

如何利用混淆矩陣視覺化模型結果以便於分析

混淆矩陣的功能

幫助分析模型預測結果的正確性和錯誤類型

深入分析錯誤

透過混淆矩陣可以針對錯誤預測進行深入 分析

視覺化的必要性

清晰的視覺化能讓團隊更快速理解預測效果

團隊協作的價值

資料視覺化助於促進團隊內的討論與決策

流失預測模型效果比較

Logistic回歸與隨機森林模型的效能比較(百分比)

THANK YOU

Alex Huang