Clusters de alta disponibilidade

UFRGS Taisy Silva Weber

Cluster

- cluster ou agregado
 - computadores com múltiplos processadores
 - termo usado para vasta gama de configurações
 - número variável de nodos de computação convencionais: de 2 nodos a poucos milhares
 - opcionalmente alguns dispositivos de armazenamento compartilhados
 - interconexões de alta velocidade

exemplo de arquitetura tolerante a falhas exemplo da aplicação de conceitos de sistemas distribuídos

The Design and Architecture of the Microsoft Cluster Service - A Practical Approach to High-Availability and Scalability, Werner Vogels et al., IEEE 1998

Definição

- coleção de computadores que trabalham visando prover um sistema de grande capacidade.
 - deve ser tão fácil de programar e de gerenciar como um único computador de grande porte.

vantagens

- pode crescer muito mais do que um único computador (escalabilidade)
- pode tolerar defeitos em nodos e continuar a oferecer serviços (failover)
- pode ser construído a partir de componentes de baixo custo

Sistemas distribuídos versus cluster

- cluster são sistemas distribuídos
 - sem memória compartilhada
 - sem relógio global
 - comunicação por troca de mensagens
 - mas tem a vantagem da proximidade física
 - técnicas de TF em sistemas distribuídos são úteis em clusters
 - comunicação de grupo e membership
 - checkpointing, logging e recuperação
 - tratamento de particionamento

Tipos

- implementação
 - por hardware: mais eficiente, pouco adaptável
 - por software: menor custo
- objetivos
 - alto desempenho
 - balanceamento de carga
 - alta disponibilidade

alguns autores falam de mais um tipo: disponibilidade contínua

vários objetivos podem ser combinados

Combinações de tipos

- bons esquemas de balanceamento de carga podem contribuir para aumentar a disponibilidade
- em cluster de alto desempenho:
 - nodos críticos podem compor um núcleo de alta disponibilidade
 - todos os nodos podem contribuir mantendo réplicas de dados ou processos, checkpoints e logs uns dos outros
- redundância inerente no cluster facilita implementar tolerância a falhas

HA-Cluster

- alta disponibilidade
 - tempo de inicialização após falha (failover) pode variar de poucos minutos até uma hora
 - aplicações em sistemas de missão crítica
 - servidores primário e backups
- disponibilidade contínua
 - tempo de failover na ordem de 10 segundos

primário e backup executam mesmos processos (warm backup)

Compartilhamento de disco

- sistemas de disco compartilhado:
 - necessitam de um gerenciador de bloqueio
 - evitar conflitos devido a requisições de acesso simultâneo a arquivos
 - um arquivo sendo escrito por um nodo não pode ser aberto para escrita em outro nodo
- sistemas de armazenamento não compartilhado:
 - cada nodo é independente
 - toda a interação é por troca de mensagens

Sinal de vida (heartbeat)

- mensagem periódica enviada de um processo a outro para indicar que continua operacional
 - detecção de falhas: ausência de heartbeats

heartbeats são esperados a cada poucos segundos

modelo fail-stop

assume que se um nodo pára de enviar sinais, ele efetivamente não envia mensagens, nem altera dados no armazenamento estável

- técnica antiga
 - muito usada antes mesmo dos primeiros clusters (Tandem,...)

Arquitetura VAX Cluster

VAXcluster da Digital

- primeiro cluster de sucesso
- formado por nodos
 VAX
- se um VAX colapsa
 - todos os processos nele caem
 - serviços precisam ser reiniciados em outro servidor do cluster

não é transparente ao usuário

tempo longo de recuperação

Disponibilidade em HA-clusters

- qual a disponibilidade efetivamente alcançada?
 - promessa de 99,99%
 - o VAXCluster não chegava a isso
- como avaliar?
 - experimentalmente por injeção de falhas
 - analiticamente através de modelos
 - ou durante operação levantando registros de falha (em logs por exemplo) e analisando

Problemas

- split-brain
 - um computador detecta o outro como defeituoso e assume as funções de primário
 - modelo fail-stop
 - assumido pelos fabricantes mas raramente implementado
 - particionamento

split brain

Bibliografia

- Birman, K. Building secure and reliable network applications.
 Manning Publications Co, Geenwich, 1996
- Vogels, W. The Design and Architecture of the Microsoft Cluster Service - A Practical Approach to High-Availability and Scalability, FTCS-IEEE, 1998
- Azagury, Alain et al. Highly Available Cluster: a Case Study.
 FTCS-IEEE, 1994
- Hughes-Fenchel, Gary. A Flexible Clustered Approach to High Availablity. FTCS-IEEE, 1997
- links de fabricantes