Mathematik für Ingenieure C4: INF

2. Übung

4.05. - 7.05.2020Sommersemester 2020 Dr. Wigand Rathmann
Dr. Marius Yamakou
Department Mathematik
Universität Erlangen-Nürnberg

Präsenzaufgabe 9:

Es werden drei unterscheidbare Würfel geworfen, deren sechs Seiten jeweils mittels "Augen" durchnummeriert werden.

- a) Geben Sie die Ergebnismenge Ω in geeigneter Weise an.
- b) Beschreiben Sie die folgenden drei Ereignisse als Teilmenge von Ω :
 - A: Alle drei Würfel zeigen dieselbe Augenzahl.
 - B: Die Summe der Augenzahlen ist kleiner oder gleich drei.
 - C: Der Median der Augenzahlen ist echt kleiner als sechs.

Präsenzaufgabe 10:

Bestimmen Sie für $n \in \mathbb{N}$ eine geeigneten Ergebnismenge Ω zur Beschreibung des Zufallsexperiments "n-maliges Werfen eines unverfälschten Würfels". Beschreiben Sie diejenigen Teilmengen in Ω , die verbal durch die folgenden Aussagen beschrieben werden:

- a) A_k : "Der k-te Wurf ergibt 3." $(1 \le k \le n)$
- b) B_k : "Der k-te Wurf ergibt die erste 3." $(1 \le k \le n)$
- c) C_k : "Der k-te und der (k+1)-te Wurf ergeben die ersten beiden 3" $(1 \le k \le n)$
- d) D: "Es wird genau eine 3 geworfen."
- e) E: "Es wird mindestens eine 3 geworfen."
- f) F: "Es wird keine 3 geworfen."

Welche der Ereignisse B_k, C_k, D, E, F lassen sich durch die A_k ausdrücken? Gegebenenfalls wie?

Präsenzaufgabe 11:

Untersuchen Sie, ob die folgenden Mengensysteme \mathcal{A} eine σ -Algebra sind oder nicht:

- a) Ω beliebig, $\mathcal{A} = \{\emptyset, \Omega\}$
- b) Ω beliebig, $\mathcal{A} = \{\{\omega\} : \omega \in \Omega\} \cup \{\emptyset, \Omega\}$
- c) Ω beliebig, $\mathcal{A} = \mathcal{P}(\Omega)$
- d) $\Omega := \mathbb{R}, \ \mathcal{A} := \{ [a, b] \mid a, b \in \mathbb{R}, \ a \leqslant b \}$
- e) Ω beliebig, $A \subset \Omega$, $\mathcal{A} = \{\emptyset, \Omega, A, A^c\}$
- f) $\Omega = \{1, 2, 3\}, \mathcal{A} = \{\emptyset, \{1, 2\}, \{1, 3\}, \{3\}, \{2\}, \{1, 2, 3\}\}$

Hausaufgabe 12:

(4 Punkte)

Ein Bogenschütze schießt und trifft auf eine Zielscheibe mit dem Mittelpunkt (0,0) und Radius r (in Metern) mit r > 1. Von Interesse ist der Auftreffpunkt des Pfeils.

- a) Geben Sie die Ergebnismenge Ω in geeigneter Weise an.
- b) Beschreiben Sie die folgenden drei Ereignisse als Teilmenge von Ω :
 - A: Der Auftreffpunkt hat weniger als einen Meter Abstand vom Scheibenmittelpunkt.
 - B: Der Auftreffpunkt liegt im rechten oberen Viertel der Scheibe.
 - C: Der Auftreffpunkt hat mehr als 0.5 Meter Abstand vom Scheibenmittelpunkt.

Hausaufgabe 13:

(7 Punkte)

Es sei $\Omega = \{0,1\}^2.$ Zeigen Sie, dass das Mengensystem

$$\mathcal{E} = \{\emptyset, \Omega, A, B\}$$

mit

$$A = \{(0,1), (1,0), (1,1)\}$$
 und $B = \{(0,0), (0,1)\}$

nicht abgeschlossen ist (also keine $\sigma\text{-Algebra darstellt}).$

Welches abgeschlossene Mengensystem \mathcal{A} wird von \mathcal{E} erzeugt?

Ist
$$\mathcal{A} = \mathcal{P}(\Omega)$$
?

Zusatzaufgabe 14:

(keine Punkte)

Auf einem binären Kanal sollen Binärwörter der Länge 4 übertragen werden. Überlegen Sie, ob die nachfolgenden Mengen Ω_i , geeignete Ergebnismengen zur Beantwortung der Frage, ob ein zufällig ausgewähltes Binärwort $\omega = (\omega_1, \dots, \omega_4)$ korrekt übertragen wurde, darstellen.

- a) $\Omega_1 = \{ \omega \text{ korrekt "ubertragen"}, \omega \text{ nicht korrekt "ubertragen"} \}$
- b) $\Omega_2 = \left\{ \underbrace{,\omega_i \text{ korrekt "übertragen"}}_{=:K_i}, \underbrace{,\omega_i \text{ nicht korrekt "übertragen"}}_{=:N_i} | i=1,\ldots,4 \right\}$
- c) $\Omega_3 = \{(U_1, U_2, U_3, U_4) | U_i \in \{K_i, N_i\}, i = 1, 2, 3, 4\}$
- d) $\Omega_4 = \{(s, e) \in \{0, 1\}^4 \times \{0, 1\}^4\}$, wobei s bzw. e das gesendete bzw. das empfangene Binärwort bezeichnen.

Eine Menge Ω ist genau dann als Ergebnismenge geeignet, wenn sie alle Versuchsausgänge beschreibt und die Elemente disjunkt sind. Werden die Ergebnisse ω als Elementarereignisse $\{\omega\}$ aufgefasst, so sollten diese unvereinbar, also disjunkt sein.

Zusatzaufgabe 15:

(keine Punkte)

Es sei $\Omega = \mathbb{N}$ und

 $\mathcal{D} = \{ A \subset \mathbb{N} \mid A \text{ ist endlich oder } A^c \text{ ist endlich} \}.$

Zeigen Sie, dass \mathcal{D} keine σ -Algebra ist.

Zusatzaufgabe 16:

(keine Punkte)

Gegeben ist ein Datensatz der Form

$$z = ((x_i, y_i), (x_i, y_i), \dots, (x_n, y_n))$$

- a) Formulieren Sie das lineare Ausgleichsproblem für die Modellfunktion $\phi(x) = ax + b$. Lösen Sie die Normalengleichung $A^{\top}A \begin{pmatrix} a \\ b \end{pmatrix} = A^{\top}y$ und geben Sie a und b in Abhängigkeit von x_i und y_i $(i=1,\ldots,n)$ an.
- b) Zeigen Sie, dass $a = \frac{s_{xy}}{{s_{\bf x}}^2} \qquad {\rm und} \qquad b = \bar{y} a\bar{x}$ gilt.