Name = GAUTAM Kumar roll =B19EE031

Lab 8 report

Head of dataset

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

Dataset after applying standard scaler

ANALYSIS

PCA feature reduction by 90%

```
array([[-2.26454173, 0.5057039],

[-2.0864255, -0.65540473],

[-2.36795045, -0.31847731],

[-2.30419716, -0.57536771],

[-2.38877749, 0.6747674]])
```

- Model: PCA (copy=True, iterated_power='auto', n_components=0.9, random_state=None, svd_solver='auto', tol=0.0, whiten=False)
- Ratio of variance in each column: array([0.72770452, 0.23030523])
- Contribution of each feature in PCA1 and PCA2 respectively: array([
 [0.52237162, -0.26335492, 0.58125401, 0.56561105],
 [0.37231836, 0.92555649, 0.02109478, 0.06541577]])
- Variance of both columns: array([2.93035378, 0.92740362])

ANALYSIS

- So we can see that feature 1,3 and 4 have higher values of eigenvalues for PC1 and the eigenvalues are positive. Feature 2 has low negative eigenvalue.
- For second principal component, feature2 has very high contribution.
- We can also see that both PC1 and PC2 are orthogonal to each other.

CLUSTERING BY PCA

	PC1	PC2	target
PC1	1.000000e+00	5.988877e-17	0.944763
PC2	5.988877e-17	1.000000e+00	-0.014869
target	9.447635e-01	-1.486929e-02	1.000000

Analysis of principal components of PCA

We can see the variation corresponding to each class in the second component of resultant PCA is higher than the first component.

As class is increasing from 0 to 2, the average value of PCA1 is also increasing (high correlation).

PCA2 is neither increasing nor decreasing with increase in class value. Hence, we can say that PCA1 is the most important principal component for clustering the dataset.

CLUSTERING BY LDA

Analysis of principal components of LDA

We can see the variation in the second component of resultant LDA is lower than the first component.

As class is increasing from 0 to 2, the average value of LDA1 is decreasing.

LDA2 is neither increasing nor decreasing with increase in class value. Hence, we can say that LDA1 is the most important component for clustering the dataset.

PCA vs LDA

Accuracy of PCA = 0.8Accuracy of LDA = 0.9

Analysis

- The LDA model preformed better than PCA model.
- LDA takes the output into account while PCA perform feature reduction only based on input variables.
- In PCA 90% data conservation came through 2 eigen vectors.
- In nutshell we can say that PCA is concerned with differences in x-values while LDA is concerned with differences in x-values with respect to y.
- Both the models are used for feature reduction.

Feature Selection

- Method 1: RFE (Recursive Feature Ellimination)
- Parameters:

```
RFE(estimator=LinearDiscriminantAnalysis(n_components=2,
priors=None, shrinkage=None, solver='svd',
store_covariance=False, tol=0.0001), n_features_to_select=2,
step=1, verbose=0)
```

Selected Features: ['SepalWidthCm', 'PetalWidthCm']

Feature Selection Method 2

- Model 2: Select k-best, score function: Chi Squared
- Parameters: SelectKBest(k=2, score_func=<function chi2)
- Score of each feature: array([10.81782088, 3.59449902, 116.16984746, 67.24482759])
- Selected Features: ['PetalLengthCm', 'PetalWidthCm']

Classification report of feature selection by RFE model

	precision	recall	f1-score	support	
0	1.00	1.00	1.00	11	
1	0.91	0.71	0.80	14	
2	0.75	0.92	0.83	13	
accuracy			0.87	38	
macro avg	0.89	0.88	0.88	38	
weighted avg	0.88	0.87	0.87	38	

Accuracy: 0.9210526315789473, f1-score: 0.87

Classification report of feature selection by Select-KBest model

	precision	recall	f1-score	support
0	1.00	1.00	1.00	9
1	0.93	0.93	0.93	15
2	0.93	0.93	0.93	14
accuracy			0.95	38
macro avg	0.95	0.95	0.95	38
weighted avg	0.95	0.95	0.95	38

Accuracy: 0.9736842105263158, f1-score: 0.95

For PCA model correlation greater than 0.7

	PC1	PC2	target
PC1	1.000000e+00	5.988877e-17	0.944763
PC2	5.988877e-17	1.000000e+00	-0.014869
target	9.447635e-01	-1.486929e-02	1.000000

	PC1	PC2	target
PC1	1.000000	NaN	0.944763
PC2	NaN	1.0	NaN
target	0.944763	NaN	1.000000

For LDA model correlation greater than 0.7

For RFE model correlation greater than 0.7

	RFE1	RFE2	target
RFE1	1.0	NaN	NaN
RFE2	NaN	1.000000	0.956464
target	NaN	0.956464	1.000000

For kbest model correlation greater than 0.7

	KB1	KB2	target
KB1	1.000000	0.962757	0.949043
KB2	0.962757	1.000000	0.956464
target	0.949043	0.956464	1.000000

Applying 70% filter

	KB1	KB2	target
KB1	1.000000	0.962757	0.949043
KB2	0.962757	1.000000	0.956464
target	0.949043	0.956464	1.000000

Unchanged

ANALYSIS

- In PCA model, PC1 is more correlated to target than PC2. Hence, we can say that most important component of a PCA model is the first set of eigen vectors.
- Similarly, in LDA model, first axis is more correlated to target than second.
 Hence, the priority decreases with increasing column number.
- In RFE second attribute had higher correlation but this cannot be generalised for such models.
- In k-best model, both the selected features had higher correlation than 70%.
 - K-best model performed better than RFE in terms of both parameters, accuracy as well as f1-score.

CONCLUSION

- We learnt about dimension reduction.
- We analyzed PCA (Principal Component Analysis) model.
- We compared PCA with LDA model and found their differences and similarities.
- We learnt about feature selection.
- We analysed and compared RFE model and k-best model.
- Lastly, we analysed the correlation matrix of all the models and their principal components.