

Course Handout (Part II)

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : EEE F111

Course Title : ELECTRICAL SCIENCES

Instructor-in-charge : DHEERENDRA SINGH (dhs@pilani.bits-pilani.ac.in)

Team of Instructors : --

- 1. Course Description: Course covers Basics of electrical circuit elements, Kirchhoff's law, Network analysis and Network theorems, Transient analysis of first order and second order circuits, Semiconductors and diodes, Basic operation and characterization of transistors (BJT and FET), Basics of operational amplifiers and its application, AC circuit analysis, Frequency response, Filters, Magnetic circuits and B-H curves, Transformer, Overview of electrical machines.
- 2. Scope and Objective of the course: The primary objective of this course is to teach the principles of three different aspects of electrical sciences: (1) Circuits (2) Electronics and (3) Electromagnetics, to the students of mixed disciplines.
- **Text Book: Leonard S. Bobrow and Navneet Gupta,** Foundations of Electrical Engineering, Oxford University Press, Asian Edition, 2015.

Course Plan:

Module	Lec	Coverage	Ref. (TB)	Learning Outcome
Basic	1-2	Voltage and current sources, basic	1.1-1.7	Students will learn basic circuit elements
electrical		circuit components , Kirchhoff's		and the laws of electrical science to solve
circuit laws		current law (KCL), Kirchhoff's		basic electrical circuits
and elements		voltage, law (KVL), Instantaneous		
		power, Inductors, Capacitors		
	3	Independent and dependent	1.8, 2.4	Students will learn independent and
		sources, Source transformation		dependent sources, source transformation
Principles of	4-5	Nodal analysis, Mesh analysis	2.1-2.3	Students will be able to solve circuits by
circuit				nodal and mesh analysis
analysis	6-8	Network theorems (Thevenin's	2.4,2.6	Students will be able to solve circuits using
		theorem, Norton's theorem,		network theorems.
		Maximum power transfer theorem,		
		Superposition theorem)		
Time domain	9-	Transient response of first and	3.2-3.5	Students will be able to perform time
analysis	12	second order circuits (natural and		domain analysis of first and second order
		forced response)		circuits.
AC analysis	13-	Time-domain analysis, Waveforms,	4.1-4.3	Students will learn concept of phasor,
	14	form factor, Phasor representation		phasor algebra, frequency domain analysis
		of alternating quantities, j operator		of AC circuits.
		and Phasor algebra, Frequency-		
		domain analysis		
	15-	Average power, apparent power and	4.4-4.5	Students will learn concepts of power in AC
	17	complex power		circuits.

Dated: 18/08/2020

	18-	Three phase circuits (Y and Δ	4.6	Students will learn concepts of three phase
	19	connections)		circuits (Y and Δ connection)
Frequency	20-	Frequency response, Filters (Low	5.1-5.2	Students will be able to perform frequency
response and	22	Pass, High Pass and Band Pass),		domain analysis of circuits and learn
resonance		Resonance and Quality factor		resonance and filters.
Diodes	23-	Basics of semiconductors, PN	6.2,	Students will study basics of
	25	junction, Junction diode, Ideal diode	(partly)	semiconductors, diodes and their use in
		and applications (rectifiers and clippers)	6.3,6.4,	various electronic circuits.
	26-	Zener diode (its model and	6.6	Students will learn applications of zener
	27	application as voltage regulator and		diodes in electronic circuits.
		clipper)		
Bipolar	28-	Basic operation and characteristics	7.1-7.3	Students will learn the construction and
Junction	30	of BJT		operation of bipolar junction transistors
Transistors				
Field-Effect	31-	Operation and characteristics of JFET	8.1-8.2	Students will learn construction and
Transistors	33	and MOSFET		operation of field effect transistors
(FET)				
Operational	34	Basics of operational amplifier and	10.1	Students will learn opamp circuits and their
amplifier		its application		applications
Magnetic	35-	Analogy between electrical and	13.1-	Students will learn the fundamental concept
circuits and	36	magnetic circuits, B-H curves	13.2	of electro-mechanics, magnetic circuits and
transformers			(partly)	transformers.
			13.3,	
			13.4	
	37-	Lenz's law, Transformers, Ideal	13.8,	Students will learn basic concepts of
	38	transformer	13.9	transformers, ideal transformer
Introduction	39-	Basics of rotating machines	15.1-	Students will learn physical structure and
to machines	40		15.2	operation of DC/AC machines
			(partly)	

4. Evaluation Scheme:

S	Evaluation	Duration	Marks	Weigh	Date & Time	Nature of Component
No.	Component		(100)	tage		
1.	Test-1	30 min.	15	15%	<test_1></test_1>	Closed Book
2.	Test-2	30 min.	15	15%	<test_2></test_2>	Closed Book
1.	Test-3	30 min.	15	15%	<test_3></test_3>	Open Book
2.	Assignments +	-	20	20%	Take Home	Open Book
	Surprise quizzes					
3.	Comprehensive	2 hrs.	35	35%	07-12-2020	Closed Book
					(AN)	

- 5. Chamber Consultation Hour: Will be displayed on Nalanda.
- 6. Course Notices: All notices of this course will be displayed on the Nalanda only
- **7. Make–up Examination:** No make-up will be given for surprise quizzes, however for other components; make-up will be given **ONLY** in cases of **sickness (hospitalization)** or **urgency** for going out of station. In such case student must produce the sufficient proof or must have taken the prior permission from the IC.

Instructor-in-Charge

EEE F111

