

Fall 2023

BIF524/CSC463 Data Mining

Linear Regression

Extensions of the linear model

- Two main restrictive assumptions are made on predictors in linear models:
 - the relationship between the predictors
 - the response is additive and linear

i.e., the effect of X_i on Y is independent of other predictors.

the change in Y due to a unit-change in X_i is constant, regardless of the value of X_i .

How can we relax these restrictions?

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

$$Y = \beta_0 + (\beta_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \epsilon$$

= $\beta_0 + \tilde{\beta}_1 X_1 + \beta_2 X_2 + \epsilon$

where
$$\tilde{\beta}_1 = \beta_1 + \beta_3 X_2$$

i.e., the coefficient of X_1 is dependent on X_2

A change in X_2 will change the effect of X_1 on Y.

Example – factory productivity

- The number of units produced based on the number of production lines and total number of workers.
- Obviously, increasing the number of lines also depends on the number of workers -> interaction term between lines and workers.

units
$$pprox 1.2 + 3.4 imes lines + 0.22 imes workers + 1.4 imes (lines imes workers)$$

How does the number of produced units change when we add a production line?

Example – factory productivity

- The number of units produced based on the number of production lines and total number of workers.
- Obviously, increasing the number of lines also depends on the number of workers -> interaction term between lines and workers.

$$\begin{array}{ll} \text{units} & \approx & 1.2 + 3.4 \times \text{lines} + 0.22 \times \text{workers} + 1.4 \times (\text{lines} \times \text{workers}) \\ & = & 1.2 + (3.4 + 1.4 \times \text{workers}) \times \text{lines} + 0.22 \times \text{workers}. \end{array}$$

How does the number of produced units change when we add a production line?

Example – factory productivity

- The number of units produced based on the number of production lines and total number of workers.
- Obviously, increasing the number of lines also depends on the number of workers -> interaction term between lines and workers.

units
$$\approx 1.2 + 3.4 \times \text{lines} + 0.22 \times \text{workers} + 1.4 \times (\text{lines} \times \text{workers})$$

= $1.2 + (3.4 + 1.4 \times \text{workers}) \times \text{lines} + 0.22 \times \text{workers}$.

How does the number of produced units change when we add a production line?

Adding one line will increase sales by $(3.4 + 1.4 \times workers)$ units.

• Previous regression for the advertising data -> average effect of unit increase in TV budget on sales is β_1 , regardless of the amount is spent on radio advertising.

Does spending money on radio increase the effectiveness of TV advertising?

• Previous regression for the advertising data -> average effect of unit increase in TV budget on sales is β_1 , regardless of the amount is spent on radio advertising.

What if spending money on radio increases the effectiveness of TV advertising?

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + \epsilon$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + \epsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \epsilon$.

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
${ t TV} { imes radio}$	0.0011	0.000	20.73	< 0.0001

The true relationship is not additive.

When the value of radio changes, the coefficient of TV will thus change.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + \epsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \epsilon$.

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
$TV \times radio$	0.0011	0.000	20.73	< 0.0001

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + \epsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \epsilon$.

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
TV×radio	0.0011	0.000	20.73	< 0.0001

 $R^2 = 96.8\%$ for this model, it was 89.7% for the previous model in which we only considered an additive effect among predictors.

Recall that \mathbb{R}^2 measures the proportion of variability in Y that can be explained using X.

 $\frac{96.8-89.7}{100-89.7} \approx 69\%$ of the variability in sales that remains after fitting the additive model has been explained by the interaction term.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + \epsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \epsilon$.

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	→ 0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
TV×radio	→ 0.0011	0.000	20.73	< 0.0001

What is the effect of a \$1000 increase in TV advertising?

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + \epsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \epsilon$.

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
${\tt TV}{ imes{\tt radio}}$	0.0011	0.000	20.73	< 0.0001

What is the effect of a \$1000 increase in TV advertising?

sales increase of $(\hat{\beta}_1 + \hat{\beta}_3 \times radio) \times 1000 = 19.1 + 1.1 \times radio$ units

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + \epsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \epsilon$.

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
${ t TV} imes { t radio}$	0.0011	0.000	20.73	< 0.0001

What is the effect of a \$1000 increase in radio advertising?

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + \epsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \epsilon$.

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
${\tt TV}{ imes{\tt radio}}$	0.0011	0.000	20.73	< 0.0001

What is the effect of a \$1000 increase in radio advertising?

sales increase of $(\hat{\beta}_2 + \hat{\beta}_3 \times TV) \times 1000 = 28.9 + 1.1 \times TV$ units

Comments

	Coefficient	Std. error	t-statistic	p-value	
Intercept	6.7502	0.248	27.23	< 0.0001	
TV	0.0191	0.002	12.70	< 0.0001	
radio	0.0289	0.009	3.24	- 0.0014	0.654
${\tt TV}{ imes{\tt radio}}$	0.0011	0.000	20.73	< 0.0001	

- In this example, all p-values are statistically significant -> all three should be included in the model.
- In some cases, we may have a significant p-value for the interaction term but insignificant p-values for the main effects.
- Based on the hierarchical principle, if we include the interaction in the model -> we should also include the main effects, even if they have insignificant p-values.

- The same applies to qualitative variables and to combination of both types.
- Considering the credit data which we discussed earlier, let's assume that we want to predict balance using income and student variables.
- Without considering interaction:

Behnce ~ Bot Brincome + Bzxshubent + E

B. + Brincome + Bz

B. + Brincome

Gat Brincom

With interaction:

- The same applies to qualitative variables and to combination of both types.
- Considering the credit data which we discussed earlier, let's assume that we want to predict balance using income and student variables.
- With no interaction term, the model would be:

$$\begin{array}{lll} \mathbf{balance}_i & \approx & \beta_0 + \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_2 & \text{if ith person is a student} \\ 0 & \text{if ith person is not a student} \end{cases} \\ & = & \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_0 + \beta_2 & \text{if ith person is a student} \\ \beta_0 & \text{if ith person is not a student.} \end{cases}$$

How would the least squares lines look like?

$$\begin{array}{lll} \mathbf{balance}_i & \approx & \beta_0 + \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_2 & \text{if ith person is a student} \\ 0 & \text{if ith person is not a student} \end{cases} \\ & = & \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_0 + \beta_2 & \text{if ith person is a student} \\ \beta_0 & \text{if ith person is not a student} \end{cases}$$

if ith person is a student if ith person is not a student if ith person is not a student.

By adding an interaction term, the model would be:

$$\begin{array}{lll} \mathbf{balance}_i & \approx & \beta_0 + \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_2 + \beta_3 \times \mathbf{income}_i & \text{if student} \\ 0 & \text{if not student} \end{cases} \\ & = & \begin{cases} (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \times \mathbf{income}_i & \text{if student} \\ \beta_0 + \beta_1 \times \mathbf{income}_i & \text{if not student} \end{cases} \end{array}$$

How would the least squares lines look like?

By adding an interaction term, the model would be:

$$\begin{array}{lll} \mathbf{balance}_i & \approx & \beta_0 + \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_2 + \beta_3 \times \mathbf{income}_i & \text{if student} \\ 0 & \text{if not student} \end{cases} \\ & = & \begin{cases} (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \times \mathbf{income}_i & \text{if student} \\ \beta_0 + \beta_1 \times \mathbf{income}_i & \text{if not student} \end{cases} \end{array}$$

We can observe that the slope for student is different than the slope for non-student.

-> for student, smaller changes in credit balance when income is increased.

Non-linear relationships – polynomial regression

- The true relationship between predictors and response may not be linear in some cases.
- One simple way is to use polynomial regression to account for such non-linear relationships.

Non-linear relationships

- A simple way to approach non-linear associations in a linear model is to add transformed versions of the predictors.
- For instance, points in this graph show a quadratic shape.

$$mpg = \beta_0 + \beta_1 \times horsepower + \beta_2 \times horsepower^2 + \epsilon$$

- Such model may provide a better fit of the data.
- Note that it will predict mpg based on a non-linear function of horsepower, but it is still linear!
- In fact, it is a multiple linear regression model with $X_1 = \text{horsepower}$ and $X_2 = \text{horsepower}^2$

Non-linear relationships

$$mpg = \beta_0 + \beta_1 \times horsepower + \beta_2 \times horsepower^2 + \epsilon$$

So, it is like using a standard linear regression software to generate a non-linear fit by estimating the coefficients.

	Coefficient	Std. error	t-statistic	p-value
Intercept	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
${\tt horsepower}^2$	0.0012	0.0001	10.1	< 0.0001

Non-linear relationships

$$mpg = \beta_0 + \beta_1 \times horsepower + \beta_2 \times horsepower^2 + \epsilon$$

What if we increase the degree of polynomials in the model?

The curve tends to become unnecessarily wiggly...

	Coefficient	Std. error	t-statistic	p-value
Intercept	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
${\tt horsepower}^2$	0.0012	0.0001	10.1	< 0.0001

Linear regression – common problems

- 1. Non-linearity of the response-predictor relationships
- 2. Correlation of error terms
- 3. Non-constant variance of error terms
- 4. Outliers
- 5. High-leverage points
- 6. Collinearity

Non-linearity of the response-predictor relationships

- If the data that we are trying to fit is far from linear, using a linear regression would lead to erroneous conclusions as well as low prediction accuracy.
- One way to identify non-linearity of data in simple linear regression is to use residual plots.

$$e_i = y_i - \widehat{y}_i$$
 vs the predictor x_i

- In multiple linear regression, plot residuals against predicted values \hat{y}_i .
 - If you spot a pattern -> there may be a problem with some aspect of the linear model.

Non-linearity of the response-predictor relationships

- It is assumed in a linear regression that the error terms $\in_1, \in_2, ..., \in_n$ are uncorrelated.
- The standard errors are also computed based on this assumption.
- If error terms are correlated -> the estimated standard errors will tend to underestimate the true standard errors.
 - In such cases, the prediction intervals will be narrower than they should be.
 - One consequence could be that a 95% confidence interval may have a much lower probability than 0.95 of containing true value of a parameter.
 - p-values will be lower than they should be -> may incorrectly conclude that a parameter is statistically significant.

- How is it possible to have correlations among the error terms?
 - Think about time series data,
 - i.e., observations with measurements obtained as **discrete points in time.**
 - mostly end up with correlated errors between adjacent observations.
- So, we need a way to determine if we have such correlations in our data!
 - One way is to plot residuals from the model against time.
 - If no pattern observed -> errors are uncorrelated.
 - If they are positively correlated, we say that there is a tracking in the residuals.

- Such correlations could result from factors other than time series, e.g.?
- In general, a good statistical design seeks to ensure that errors are uncorrelated, starting from data collection.

Reference

Springer Texts in Statistics

Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

Second Edition

