0.1 Décorer facilement un tableau

Motivation

Considérons le tableau suivant et imaginons que nous voulions l'expliquer à un débutant.

x	$-\infty$		$\frac{3}{2}$		5		$+\infty$
Signe de $2x - 3$		_	0	+		+	
Signe de $-x + 5$		+		+	0	_	
Signe de $(2x-3)(-x+5)$		_	0	+	0	_	

Deux options s'offrent à nous pour justifier comment a été rempli le tableau.

- 1. Classiquement on résout par exemple juste les deux inéquations 2x 3 > 0 et -x + 5 > 0 puis on complète les deux premières lignes ¹ pour en déduire la dernière via la règle des signes d'un produit.
- 2. On peut proposer une méthode moins sujette à la critique qui s'appuie sur la représentation graphique d'une fonction affine en produisant le tableau suivant.

x	$-\infty$		$\frac{3}{2}$		5		$+\infty$	\leftarrow Valeurs utiles de x
Signe de $2x - 3$		_	0	+		+		$\frac{3}{2}$
Signe de $-x + 5$		+		+	0	_		<u>+</u> 5
Signe de $(2x-3)(-x+5)$		_	0	+	0	_		\leftarrow Signe d'un produit.

Pour produire le 2^e tableau, en plus du code tkz-tab pour le tableau de signe qui utilise les réglages optionnels lgt = 3.5 et espcl = 2.5 de \tkzTabInit², il a fallu ajouter les lignes données cidessous où sont utilisées les macros \graphSign et \comLine proposées par lymath (la syntaxe simple à suivre sera expliquée dans la section suivante).

^{1.} Notons que cette approche est un peu scandaleuse car il faudrait en toute rigueur aussi résoudre 2x-3<0, -x+5<0, 2x-3=0 et -x+5=0. Personne ne le fait car l'on pense aux variations d'une fonction affine. Dans ce cas pourquoi ne pas juste utiliser ce dernier argument? C'est ce que propose la $2^{\rm e}$ méthode.

^{2.} Ceci permet d'avoir de la place dans la 1^{re} colonne pour le dernier produit et de réduire la largeur des colonnes pour les signes.

```
\text{\lambda_constraints}
\text{\lambda_constra
```

Remarque. Les lignes pour les signes doivent utiliser un coefficient minimal de 1.5 pour la hauteur afin d'éviter que la superposition des graphiques.

Commenter une ligne

L'ajout de commentaires courts se fait via la macro \comLine pour com-ment a line soit « commenter une ligne » en anglais ³. Cette macro possède un argument optionnel et deux obligatoires.

1. L'argument optionnel : choix de la couleur du texte.

Ci-dessus, nous avons utilisé \comLine[gray]{0}{...} pour avoir un texte en gris.

2. Le 1^{er} argument : numéro de ligne.

Par convention 0 est le numéro de la toute 1^{re} ligne contenant les valeurs utiles de la variable. \comLine{3}{...} correspond donc à la 3^e ligne de signes ou moins intuitivement à la (3+1)^e ligne pour un humain non codeur.

3. Le 2^e argument : texte du commentaire.

Par défaut aucun retour à la ligne n'est possible. Si besoin se reporter à la page 4 où est montré comment écrire sur plusieurs lignes (voir le tout dernier exemple de cette section).

Graphiques pour expliquer des signes

Pour le moment, la macro \graphSign propose deux types de graphiques ⁴. Rappelons au passage que la convention est de prendre 0 pour numéro de la toute 1^{re} ligne contenant les valeurs utiles de la variable.

1. Fonctions affines non constantes.

Pour les fonctions du type f(x) = ax + b avec $a \neq 0$, nous devons connaître le signe de a et la racine r de f.

Le codage est assez simple. Par exemple, $\graphSign{2}{ax+b}$, an}{\$5\$} indique pour la 2e ligne d'ajouter le graphique d'une fonction affine, ce qu'indique le code ax+b sans espace, avec la condition a < 0 via an pour a négatif, et enfin avec 5 pour racine.

Donc si l'on veut ajouter pour la 4^e ligne de signe le graphique de f(x) = 3x, on utilisera dans ce cas \graphSign{4}{ax+b, ap}{\$0\$} où ap pour a positif code la condition a > 0.

^{3.} L'auteur de lymath n'est absolument pas un fan de la casse en bosses de chameau mais par souci de cohérence avec ce que propose tkz-tab, le nom \comLine a été proposé à la place de \comline.

^{4.} Le choix de la casse en bosses de chameau a été expliqué pour la macro \comLine.

2. Fonctions trinômiales du 2^e degré.

Pour les fonctions du type $f(x) = ax^2 + bx + c$ avec $a \neq 0$, nous devons connaître le signe de a, celui du discriminant $\Delta = b^2 - 4ac$, ce dernier pouvant être nul, et les racines réelles éventuelles du trinôme f.

Voici comment coder ceci. Par exemple \graphSign{5}{ax2+bx+c, an, dp}{\$r_1\$}{\$r_2\$} indique d'ajouter dans la 5^e ligne de signe le graphique d'un trinôme du 2^e degré via le code ax2+bx+c sans espace, avec les conditions a < 0 et $\Delta > 0$ via an et dp, le trinôme ayant r_1 et r_2 pour racines réelles.

En plus de dn et dp, il y a dz pour discriminant zéro. Ainsi pour indiquer dans la 3^e ligne de signe la courbe relative à $f(x) = -4x^2$, on utilisera \graphSign{3}{ax2+bx+c, an, dz}{\$0\$}. Enfin le graphique associé au trinôme $f(x) = 7x^2 + 3$, qui est sans racine réelle, s'obtiendra dans la 4^e ligne de signe via \graphSign{4}{ax2+bx+c, ap, dn}.

Exemple 1 – Un exemple avec une parabole

Il devient très facile de proposer un tableau décoré comme le suivant.

x	$-\infty$	-4		1		3		$+\infty$	Schémas
Signe de $-x + 3$	+		+		+	0	_		<u>+</u> 3
Signe de $f(x)$	_	0	+	0	+	0	_		Voir Q.1-a)
Signe de $x^2 + 3x - 4$	_	0	+	0	_		_		-4 - 1
Signe de $-x^2 + x - 4$	_		_		_		_		
Signe du produit	_	0	_	0	+	0	+		\leftarrow Conclusion

En plus des deux exemples de schémas de paraboles, il faut noter dans le code supplémentaire ajouté l'utilisation de \kern1.75em dans \comLine[gray]{0}{\kern1.75em Schémas} afin de mettre un espace horizontal précis pour centrer à la main le texte « Schémas ».

Exemple 2 – Commenter des variations

Pour finir, indiquons que les outils de décoration marchent aussi pour les tableaux de variation. Voici un exemple possible d'utilisation où le retour à la ligne a été obtenue affreusement, ou pas, via \parbox{11.5em}{Les limites sont hors programme pour cette année.}.

Les limites sont hors programme pour cette année.

0.2 Fiche technique

Tableaux de signes – Commentaires et graphiques explicatifs

\comLine <macro> [1 Option] (2 Arguments) où com = com-ment

- Option: couleur au format TikZ.
- Argument 1: le numéro de ligne où placer le commentaire, 0 étant le 1^{er} numéro.
- Argument 2: le texte du commentaire.

\graphSign <macro> [1 Option] (2..4 Arguments)

- Option: couleur au format TikZ.
- Argument 1: le numéro de ligne où placer le graphique, 0 étant le 1^{er} numéro.
- Argument 2: le type de fonctions avec des contraintes en utilisant la virgule comme séparateur d'informations.
 - 1. ax+b sans espace indique une fonction affine avec un unique paramètre a non nul à caractériser.
 - 2. ax2+bx+c sans espace indique une fonction trinôme du 2^e degré avec une paramètre a non nul à caractériser ainsi que d pour son discriminant.
 - 3. ap et an indiquent respectivement les conditions a > 0 et a < 0.
 - 4. dp, dz et dn indiquent respectivement les conditions d > 0, d = 0 et d < 0.
- Argument supplémentaire pour ax+b: la racine de ax + b.
- Arguments supplémentaires pour ax2+bx+c: si $ax^2 + bx + c$ admet une ou deux racines, on donnera toutes les racines de la plus petite à la plus grande ⁵.

^{5.} Notant $\Delta = b^2 - 4ac$, si $\Delta < 0$ il n'y aura pas d'argument supplémentaire, si $\Delta = 0$ il y en aura un seul et enfin si $\Delta > 0$ il faudra en donner deux, le 1^{er} étant le plus petit.