# UNIT 4 Analog and Digital Electronics

## Sequential Circuit Synchronous Counter

Rajeev Pandey

**ECE** Department

### The procedure to design a synchronous counter is listed here.

- Obtain the truth table of the logic sequence for intended counter to be designed. Alternatively obtain the state diagram of the counter.
- Determine the number and type of flip-flop to be used.
- From the excitation table of the flip-flop, determine the next state logic.
- From the output state, use Karnaugh map for simplification to derive the circuit output functions and the flip-flop output functions.
- Draw the logic circuit diagram.

#### **Excitation Table of FFs**

| Qt | $Q_{t+1}$ | S | R |
|----|-----------|---|---|
| 0  | 0         | 0 | X |
| 0  | 1         | 1 | 0 |
| 1  | 0         | 0 | 1 |
| 1  | 1         | X | 0 |

| Qt | $Q_{t+1}$ | D |
|----|-----------|---|
| 0  | 0         | 0 |
| 0  | 1         | 1 |
| 1  | 0         | 0 |
| 1  | 1         | 1 |

Figure 9.7: Characteristic table of SR and D flip-flop

| Qt | $Q_{t+1}$ | J | K |
|----|-----------|---|---|
| 0  | 0         | 0 | X |
| 0  | 1         | 1 | X |
| 1  | 0         | X | 1 |
| 1  | 1         | X | 0 |

| Qt | $Q_{t+1}$ | T |
|----|-----------|---|
| 0  | 0         | 0 |
| 0  | 1         | 1 |
| 1  | 0         | 1 |
| 1  | 1         | 0 |

### Synchronous Decade Counter Using JK Flip-Flop

State Diagram



#### **Truth Table**

| P <sub>1</sub> | Present State |       |       | Next State |       |       | Output |       |       |       |       |                |       |                |       |
|----------------|---------------|-------|-------|------------|-------|-------|--------|-------|-------|-------|-------|----------------|-------|----------------|-------|
| $Q_3$          | $Q_2$         | $Q_1$ | $Q_0$ | $Q_3$      | $Q_2$ | $Q_1$ | $Q_0$  | $J_3$ | $K_3$ | $J_2$ | $K_2$ | $\mathbf{J_1}$ | $K_1$ | $\mathbf{J}_0$ | $K_0$ |
| 0              | 0             | 0     | 0     | 0          | 0     | 0     | 1      | 0     | X     | 0     | X     | 0              | X     | 1              | X     |
| 0              | 0             | 0     | 1     | 0          | 0     | 1     | 0      | 0     | X     | 0     | X     | 1              | X     | X              | 1     |
| 0              | 0             | 1     | 0     | 0          | 0     | 1     | 1      | 0     | X     | 0     | X     | X              | 0     | 1              | X     |
| 0              | 0             | 1     | 1     | 0          | 1     | 0     | 0      | 0     | X     | 1     | X     | X              | 1     | X              | 1     |
| 0              | 1             | 0     | 0     | 0          | 1     | 0     | 1      | 0     | X     | X     | 0     | 0              | X     | 1              | X     |
| 0              | 1             | 0     | 1     | 0          | 1     | 1     | 0      | 0     | X     | X     | 0     | 1              | X     | X              | 1     |
| 0              | 1             | 1     | 0     | 0          | 1     | 1     | 1      | 0     | X     | X     | 0     | X              | 0     | 1              | X     |
| 0              | 1             | 1     | 1     | 1          | 0     | 0     | 0      | 1     | X     | X     | 1     | X              | 1     | X              | 1     |
| 1              | 0             | 0     | 0     | 1          | 0     | 0     | 1      | X     | 0     | 0     | X     | 0              | X     | 1              | X     |
| 1              | 0             | 0     | 1     | 0          | 0     | 0     | 0      | X     | 1     | 0     | X     | 0              | X     | X              | 1     |

#### K map for JO & KO





Figure 9.12: Karnaugh maps of J<sub>1</sub> and K<sub>1</sub>







### Design of a Synchronous Modulus-Six Counter Using SR Flip-Flop



| Qt | Q <sub>t+1</sub> | S | R |
|----|------------------|---|---|
| 0  | 0                | 0 | X |
| 0  | 1                | 1 | 0 |
| 1  | 0                | 0 | 1 |
| 1  | 1                | X | 0 |

| [Pres | ent S | tate  | Ne    | xt St | ate   | Output |       |       |       |       |       |
|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|
| $Q_2$ | $Q_1$ | $Q_0$ | $Q_2$ | $Q_1$ | $Q_0$ | $R_2$  | $S_2$ | $R_1$ | $S_1$ | $R_0$ | $S_0$ |
| 0     | 0     | 0     | 0     | 1     | 0     | 0      | X     | 1     | 0     | 0     | X     |
| 0     | 1     | 0     | 0     | 1     | 1     | 0      | X     | X     | 0     | 1     | 0     |
| 0     | 1     | 1     | 1     | 1     | 0     | 1      | 0     | X     | 0     | 0     | 1     |
| 1     | 1     | 0     | 1     | 0     | 1     | X      | 0     | 0     | 1     | 1     | 0     |
| 1     | 0     | 1     | 0     | 0     | 1     | 0      | 1     | 0     | X     | X     | 0     |
| 0     | 0     | 1     | 0     | 0     | 0     | 0      | X     | 0     | X     | 0     | 1     |



Figure 9.19: Karnaugh maps of R<sub>0</sub> and S<sub>0</sub>



Figure 9.20: Karnaugh maps of  $R_1$  and  $S_1$ 





#### Binary Up-Down Counters using D FF



If control input
X=0 counter act as
UP Counter

If the control input X=1 counter act as Down counter

| X | Α | В | An+1 | Bn+1 | DA | Dв |
|---|---|---|------|------|----|----|
| 0 | 0 | 0 | 0    | 1    | 0  | 1  |
| 0 | 0 | 1 | 1    | 0    | 1  | 0  |
| 0 | 1 | 0 | 1    | 1    | 1  | 1  |
| 0 | 1 | 1 | 0    | 0    | 0  | 0  |
| 1 | 0 | 0 | 1    | 1    | 1  | 1  |
| 1 | 0 | 1 | 0    | 0    | 0  | 0  |
| 1 | 1 | 0 | 0    | 1    | 0  | 1  |
| 1 | 1 | 1 | 1    | 0    | 1  | 0  |

| Qt | Q <sub>t+1</sub> | D |
|----|------------------|---|
| 0  | 0                | 0 |
| 0  | 1                | 1 |
| 1  | 0                | 0 |
| 1  | 1                | 1 |



$$DB = \overline{B}$$





$$DA=\overline{X}(\overline{A}B+A\overline{B})+X(\overline{A}\overline{B}+AB)$$
  
=  $X \oplus A \oplus B$ 

#### Johnson counter



| State | $Q_D$ | $Q_C$ | $Q_B$ | $Q_A$ | Binary<br>equivalent | Output decoding                              |
|-------|-------|-------|-------|-------|----------------------|----------------------------------------------|
| 1     | 0     | 0     | 0     | 0     | 0                    | $\overline{A}$ $\overline{D}$ $\overline{A}$ |
| 2     | 0     | 0     | 0     | 1     | 1                    | $\overline{B}$ —— $A\overline{B}$            |
| 3     | 0     | 0     | 1     | 1     | 3                    | B                                            |
| 4     | 0     | 1     | 1     | 1     | 7                    |                                              |
| 5     | 1     | 1     | 1     | 1     | 15                   | A — — AD                                     |
| 6     | 1     | 1     | 1     | 0     | 14                   | Ā                                            |
| 7     | 1     | 1     | 0     | 0     | 12                   | <u>B</u>                                     |
| 8     | 1     | 0     | 0     | 0     | 8                    | ¯cD<br>D———————————————————————————————————  |

#### Ring counter

Pre-set used to insert 1 in FF A at the same time all the FF reset to 0 then simply act shift register at each clock edge.



| States | Counter output |       |       |       |  |  |  |  |
|--------|----------------|-------|-------|-------|--|--|--|--|
|        | $Q_A$          | $Q_B$ | $Q_C$ | $Q_D$ |  |  |  |  |
| 1      | 1              | 0     | 0     | 0     |  |  |  |  |
| 2      | 0              | 1     | 0     | 0     |  |  |  |  |
| 3      | 0              | 0     | 1     | 0     |  |  |  |  |
| 4      | 0              | 0     | 0     | 1     |  |  |  |  |
| 5      | 1              | 0     | 0     | 0     |  |  |  |  |

#### **UNIT 4 END**