Loi des EMV

Marie-Anne Poursat

M1 Bioinformatique Université Paris-Saclay

30 janvier 2024

Estimateur du maximum de vraisemblance

Modéle non-linéaire en les paramètres : pas de calculs exacts.

- → l'étude asymptotique (n "grand") est la référence
- \hookrightarrow les calculs sont des approximations asymptotiques $(n \to \infty)$

Modèle :
$$(Y_1, \ldots, Y_n)$$
 i.i.d. de densité $f_{\theta}, \theta = (\theta_1, \ldots, \theta_p)^T$

L'EMV $\widehat{\theta}$ maximise $\log L(\theta) = \sum_{i=1}^{n} \log f_{\theta}(Y_i)$, solution des équations de vraisemblance :

$$G(\widehat{\theta}) = \frac{\partial \log L}{\partial \theta}(\widehat{\theta}) = 0$$

- Consistance (garantie d'un bon estimateur).
- Approximation de la loi de $\widehat{\theta}$?
 - \hookrightarrow indispensable pour calculer des intervalles de confiance ou des tests.

Comment calculer la variance de $\widehat{\theta}$?

Information de Fisher

On appelle information de Fisher de l'échantillon (Y_1, \ldots, Y_n) la quantité

$$I_n(\theta) = \operatorname{Var}\left[\frac{\partial \log L}{\partial \theta}(\theta)\right] = \operatorname{E}\left[\left(\frac{\partial \log L}{\partial \theta}(\theta)\right)^2\right]$$

- si θ est un réel, $I(\theta)$ est un nombre;
- si θ est un vecteur, $I(\theta)$ est une matrice $p \times p$, définie positive (en $\widehat{\theta}$)).

On peut montrer:

$$I(\theta) = -\mathbb{E}\left[H(\theta)\right] = -\mathbb{E}\left[\frac{\partial^2}{\partial \theta_j^2}\log L(\theta)\right]_j$$

Interprétation géométrique : plus $I(\theta)$ est grande, meilleure est la localisation du maximum de la log-vraisemblance.

Calcul de I

Comment calculer I? En général, on ne sait pas calculer l'espérance (dépend de θ inconnu, calcul analytique impossible), on l'estime par l'information de Fisher observée

$$\widehat{I} = -H(\widehat{\theta})$$

calculée au dernier pas de l'algorithme d'optimisation.

Exemple : échantillon de loi de Bernoulli.

Loi de l'EMV

Théorème ((généralisation du TLC))

Sous des hypothèses mathématiques de régularité du modèle ($\log L$ 2 fois dérivable, le support de la loi ne dépend pas de θ , $0 < I(\theta) < \infty$), dans le cas où θ est un réel,

1 L'EMV $\hat{\theta}$ est un estimateur consistant de θ ,

$$\widehat{\text{s.e.}} = \text{s.e.}(\widehat{\theta}) \approx \sqrt{\frac{1}{\widehat{I}}}$$

$$\frac{\widehat{\theta} - \theta}{\widehat{\text{s.e.}}} \stackrel{\text{Loi}}{\leadsto} \mathcal{N}(0, 1)$$

Ce qui se traduit par une approximation de la loi de $\widehat{\theta}$:

$$\operatorname{Loi}(\widehat{\theta}) \approx \mathcal{N}\left(\theta, \frac{1}{\widehat{I}}\right)$$

Les logiciels statistiques implémentent le calcul de l'écart-type (estimé) de l'EMV

IC de θ

On déduit de l'approximation de la loi de l'EMV l'intervalle de confiance de niveau (approché) 1 $-\alpha$ suivant :

$$(\widehat{\theta} - q_{1-\alpha/2} \widehat{\text{s.e.}}, \widehat{\theta} + q_{1-\alpha/2} \widehat{\text{s.e.}})$$

avec $q_{1-\alpha/2}$ le quantile d'ordre $(1-\alpha/2)$ d'une loi $\mathcal{N}(0,1)$.

Modèle multi-paramètres

$$\theta = (\theta_1, \dots, \theta_p)^T$$

$$I(\theta) = \begin{pmatrix} -E(H_{11}(\theta)) & -E(H_{12}(\theta)) & \dots & -E(H_{1p}(\theta)) \\ -E(H_{12}(\theta)) & -E(H_{22}(\theta)) & \dots & -E(H_{2p}(\theta)) \\ \vdots & & \vdots & & \vdots \\ -E(H_{p1}(\theta)) & -E(H_{p2}(\theta)) & \dots & -E(H_{pp}(\theta)) \end{pmatrix}$$

- $I(\theta)$ estimée par \hat{I} .
- La variance de $\hat{\theta}$ est estimée par \hat{I}^{-1} , matrice p x p

Modèle multi-paramètres

Loi de l'EMV

Si $\theta \in \mathbb{R}^p$, on peut montrer que dans les modèles réguliers,

$$\widehat{\theta}^{ML} \sim \mathcal{N}\left(\theta, I^{-1}(\theta)\right)$$

Cette approximation est encore valide si $I(\theta)$ est estimée par \hat{I} .

On peut donc calculer

$$\widehat{\text{s.e.}}(\widehat{\theta}_{j}^{\text{ML}}) \approx \sqrt{\widehat{I}_{jj}}$$

et

$$IC(\theta_j) = \left[\widehat{\theta}_j^{ML} - q_{1-\alpha/2} \ \widehat{\text{s.e.}}(\widehat{\theta}_j^{ML}); \quad \widehat{\theta}_j^{ML} + q_{1-\alpha/2} \ \widehat{\text{s.e.}}(\widehat{\theta}_j^{ML})\right]$$

est un intervalle de confiance de niveau $1 - \alpha$.

Exemple: données

Deux séquences ADN alignées de longueur $N \hookrightarrow match$ = positions qui présentent le même nucléotide A, C , G ou T (repérées par *)

Y = nombre de *matchs* consécutifs observés avant une position où les nucléotides diffèrent

- Observation : $n \le N$ réalisations Y_1, \ldots, Y_n de Y le long de l'alignement
- n est donc le nombre de positions de l'alignement qui ne sont pas des match
- Sur l'exemple : $y_1 = 1$, $y_2 = 1$, $y_3 = 0$, $y_4 = 1$, $y_5 = 0$, $y_6 = 3$, etc...

Exemple: estimation

On suppose que Y_1, \ldots, Y_n forme un échantillon indépendant et de même loi géométrique :

$$P(Y = y) = (1 - \theta)\theta^{y}, y = 0, 1, 2,$$

On a alors
$$E(Y) = \frac{\theta}{1 - \theta}$$
.

Paramètre : θ est la probabilité d'observer un *match*.

- Déterminer la log-vraisemblance des observations.
- ② Montrer que l'estimateur du maximum de vraisemblance de θ est $\widehat{\theta} = \frac{\overline{Y}}{\overline{Y}}$, où $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$.
- **3** Calculer l'information de Fisher des observations. En déduire une approximation de la loi de $\widehat{\theta}$.
- Donner le code R qui permet de calculer un intervalle de confiance pour θ de niveau 95%.