Escuela Rafael Díaz Serdán Liencias y Tecnología: Química

Ciencias y Tecnología: Química Melchor Pinto, J.C.

Soluciones propuestas

3° de Secundaria Unidad 2

2022-2023

Preparación para el Examen de la Unidad 2

Nombre del alumno:			Fec	ha:				
Aprendizajes:			Pun	tuac	ión:			
☑ Deduce información acerca de la es	<u>*</u>	Pregunta	1	2	3	4	5	6
experimentales sobre propiedades a	tómicas periódicas.	Puntos	10	10	10	10	10	10
Representa y diferencia mediante es mica, elementos y compuestos, así o	. , , , , , , , , , , , , , , , , , , ,	Obtenidos						
Explica y predice propiedades físic	v	Pregunta	7	8	9	10		Total
modelos submicroscópicos sobre la	estructura de átomos, moléculas o	Puntos	10	10	10	10		100
iones, y sus interacciones electrostá	ticas.	Obtenidos						
Ejercicio 1						do 10)	otos
Ejercicio i						Je it	pui	ntos
Relaciona cada elemento con las cara	cterísticas que le corresponden.							
	A Elemento metaloide del grupo	III, subgru	ро А	de la	a tab	la pe	riódi	ca.
O I Radón	igotimes Elemento metálico con Z = 3	1.						
b D Helio	© Elemento metaloide, ubicado	en el tercer p	eríoc	lo de	la ta	bla p	erióc	lica.
c B Galio	(D) Elemento conocido como gas	noble y se e	ncue	$_{ m ntra}$	en el	perí	odo	1 de
d F Yodo	la tabla periódica.	v				-		
e <u>H</u> Bismuto	Elemento con 22 protones y 2	2 electrones.						
f <u>G</u> Radio	F Elemento de la familia de los	Halógenos c	on 74	l neu	$ ext{tron}\epsilon$	es.		
9 <u>C</u> Silicio	© Elemento de la familia de mer	tales alcalino	-terr	eos c	on 1	38 ne	utroi	nes.
hJ Oro	\bigoplus Elemento no metálico con Z =	=83.						
i <u>E</u> Titanio	(I) Gas inerte (gas noble) que se periódica.	e encuentra	en e	l per	íodo	6 de	la t	abla
j <u>A</u> Boro	(J) Metal brillante utilizado en jo	yería.						

Ejercicio 2 de 10 puntos

Relaciona la especie química con la cantidad de protones y electrones de valencia.

 \bigcirc Ión de Nitrógeno (N^{3-})

B Ión de Berilio (Be⁻)

C Ión de Flúor (F⁻)

 \bigcirc Ión de Hierro (Fe³⁺)

(E) Ión de Potasio (K⁺)

- <u>C</u> 9 protones y 8 electrones de valencia.
- ______ 15 protones y 5 electrones de valencia.
- **c** <u>B</u> 4 protones y 3 electrones de valencia.
- <u>H</u> 16 protones y 4 electrones de valencia.
- e A 7 protones y 8 electrones de valencia.

 \bigcirc Ión de Aluminio (Al^{3+})

(G) Ión de Cloro (Cl⁻)

 \bigoplus Ión de Azúfre (S^{2+})

(I) Litio (Li)

J Fósforo (P)

- f <u>G</u> 17 protones y 8 electrones de valencia.
- 9 F 13 protones y 8 electrones de valencia.
- h <u>E</u> 19 protones y 8 electrones de valencia.
- i ____ 26 protones y 2 electrones de valencia.
- _____ 3 protones y 1 electrón de valencia.

Ejercicio 3	de 10 puntos
Relaciona cada concepto con su definición.	

- (A) Las sustancias se representan con símbolos atómicos y líneas que simbolizan a los enlaces químicos.
- (B) Esquema tridimensional en el que no es posible identificar a los enlaces químicos.
- © Esquema tridimensional en el que es posible identificar a los enlaces químicos.
- D Las sustancias se representan sólo con símbolos atómicos.

- o _____ Diagrama de esferas.
- **b** _____ Fórmula estructural.
- c _____ Fórmula condensada.
- d _____ Diagrama de esferas y barras.

Ejercicio 4	de 10 puntos

Ejercicio 5 de 10 puntos

Completa la siguiente tabla determinando para cada especie, el número de protones, neutrones, electrones, número de masa y número atómico.

	Símbolo	Protones	Neutrones	Electrones	Masa atómica
Plutonio					
Ión positivo de Estaño					
Niobio					
Uranio					
Ión positivo de Plata					
Tecnesio					
Circonio					
Cobalto					
Curio					
Torio					

Ejercicio 6 de 10 puntos

Escribe el grupo, subgrupo, período y clasificación de los siguientes elementos. Después de realizar este ejercicio, ubica a cada elemento en la tabla periódica que se muestra abajo.

	Grupo	Subgrupo	Período	Tipo de elemento
Oro				
Plata				
Bario				
Talio				
Potasio				
Niquel				
Paladio				
Yodo				
Argón				
Samario				

Ejercicio) /	de 10 puntos
Señala en	cada uno de los enunciados si la sentencia es fa	lsa o verdadera.
el últ	electrones de valencia se encuentran siempre en zimo nivel de energía.	f En una fórmula química, los coeficientes indican el número de moléculas o unidades fórmula; así como también el número de moles presentes de la sustancia.
	metales son maleables, dúctiles y buenos con- ores del calor y la electricidad.	✓ Verdadero □ Falso
☑ V	Terdadero	9 El neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico.
está	ormula H ₂ O expresa que la molécula de agua constituida por dos átomos de oxígeno y uno	☐ Verdadero ☑ Falso
	drógeno. erdadero ☑ Falso	 h La masa de un neutrón es similar a la del protón. ✓ Verdadero □ Falso
ro 4 i	a fórmula de la Taurina, $4C_2H_7NO_3S$, el númeindica que hay 4 átomos de carbono. Terdadero \square Falso	 i El número de masa representa la suma de protones y neutrones. ✓ Verdadero □ Falso
	subíndices expresan el número de átomos de lementos presentes en una molécula o unidad ula.	j El número total de electrones en un átomo lo determina el grupo al que pertenece.
✓ V	Terdadero 🗌 Falso	☐ Verdadero ☑ Falso
Ejercicio	o 8	de 10 puntos
		amente tu respuesta. ermite deducir el número de electrones presentes en un
El	lución: número atómico Z se relaciona con la cantidad ctricamente neutro, la cantidad de electrones de	de protones en un átomo. Si consideramos un átomo eberá ser la misma.
átom	· · · · · · · · · · · · · · · · · · ·	oximadamente 10,000 veces mayor que su núcleo. Si un e su núcleo midiera 2 mm (lo que mide un grano de sal),
So	lución: $10,000\times2~\mathrm{mm} =$	= 20,000 mm = 20m

Ejercicio 9 de 10 puntos

Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:

- Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - A El carácter metálico y la electronegatividad
 - B El potencial de Ionización y el carácter metálico
 - © El carácter no metálico y el potencial de ionización
 - D La electronegatividad y la afinidad electrónica
 - (E) Ninguna de las anteriores
- b ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a dere- cha en la tabla periódica?
 - A La electronegatividad y el tamaño atómico
 - B El radio atómico y el radio iónico
 - © El carácter metálico y la afinidad electrónica
 - D Potencial de ionización y electronegatividad
 - E Ninguna de las anteriores
- c En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - A Derecha y hacia arriba
 - (B) Derecha y hacia abajo
 - C Izquierda y hacia arriba
 - D Izquierda y hacia abajo

- d El tamaño de los átomos aumenta cuando:
 - (A) Se incrementa el número de período
 - B Disminuye el número de período
 - © Se incrementa el número de grupo
 - Disminuye el número de bloque
 - (E) Ninguna de las anteriores
- e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - (A) Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - B Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
 - C Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - (D) Todos son correctos

Soluciones propuestas 3° de Secundaria (2022-2023)

Ejercicio 10 de 10 puntos

Completa la siguiente tabla:

Sustancia	a) Tipo de sustancia	b) Fórmula condensada
H H H H H H H H H H H H H H H H H H H	molecular	CH₄
Cu²+ Cu²+ Cu²+ Cu²+ Cu²+ Cu²+ Cu²+ Cu²+	metálica	Cu
Cl· Cl· Mg²+ Mg²+ Cl· Cl·	iónica	MgCl ₂
O ²⁻ Ca ²⁺ O ²⁻ Ca ²⁺	metálica	Ag
Ag*Ag*_ Ag*Ag*_Ag*	iónica	CaO
H — H — H — H — H — H — H — H — H — H —	molecular	CH₄O

Tabla 1: Tabla Periódica de los Elementos.

																	18 VIIIA 2 4.0025
2	2 IIA			Sim	Simbología:	gía:						13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	$\mathrm{He}^{\mathrm{He}}$
S 65 =	$\overset{9.0122}{\mathrm{Be}}$			\mathbf{z} \mathbf{S}^{A_r} I	Negro: N Gris: Si	Negro: Naturales Gris: Sintéticos						5 10.811 Boro	6 12.011 Carbono	$\sum_{\text{Nitrógeno}}^{7} \frac{14.007}{}$	8 15.999 Oxígeno	9 18.998 Fluor	$\overset{10}{\text{Neón}}\overset{20.180}{\text{Neón}}$
2	$\overline{\mathrm{Mg}}^{2}$	3 III A	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	$\stackrel{13}{A}_{\text{Aluminio}}^{26.982}$	Si licio	$\sum_{F\'osforo}^{15~30.974}$	16 32.065 S Azúfre	17 35.453 Cloro	$\overset{18}{A}\overset{39.948}{r}$
	$\overset{20}{\text{Calcio}}$	$\overset{21}{\mathrm{SC}}\overset{44.956}{\mathrm{SC}}$	22 47.867 Titanio	$ \overset{23}{\overset{50.942}{\bigvee}} $ Vanadio	$\overset{24}{\text{Cromo}}^{51.996}$	$\overset{25}{\mathbf{M}}\overset{54.938}{\mathbf{m}}$	$\overset{26}{F}\overset{55.845}{e}_{\text{Hierro}}$	$\overset{27}{\overset{58.933}{\bigcirc}}$	\sum_{Niquel}^{28}	$\overset{29}{\mathbf{Cobre}}$	$\overset{30}{\operatorname{Zn}}\overset{65.39}{\operatorname{Sinc}}$	${\overset{31}{Galio}}_{Galio}^{69.723}$	${\rm Germanio}$	${^{33}}_{AS}$	$\overset{34}{\mathrm{Se}}$	$\overset{35}{\mathrm{Bromo}}$	$\overset{36}{K}\overset{83.8}{r}$
	$\overset{ ext{S}}{S}$	39 88.906 Y	$\overset{40}{Z}^{91.224}$ Circonio	$\overset{41}{N}\overset{92.906}{\overset{1}{\circ}}$		$\prod_{ ext{Tecnecio}}^{43}$	$\mathop{Ruthenio}^{44}$	$\mathop{Rodio}_{\text{Rodio}}$	$\Pr^{46 106.42}_{\text{Paladio}}$	${^{47}}_{^{107.87}}$	$\overset{48}{\mathrm{Cadmio}}$		$\sin \frac{118.71}{50}$	$\overset{51}{\mathbf{S}}\overset{121.76}{\mathbf{b}}$ Antimonio	$\prod_{Tellurio}^{52}$	53 126.9 Yodo	$\overset{54}{ ext{Xenón}}$
7 7 10	$\overset{56}{\mathrm{Bario}}_{\mathrm{ario}}^{137.33}$	57-71 *	72 178.49 '	$\prod_{Tantalo}^{73} \mathbf{a}$		$\mathop{Re}_{\text{Renio}}^{75}$	$\overset{76}{\text{Osmio}}$	$\prod_{ ext{Iridio}}^{ ext{77}}$	$\Pr^{78 195.08}_{\textbf{P}}$	$\mathop{\mathrm{Au}}\limits_{^{Oro}}$	\overline{Hg}^{80}	81 204.38	\Pr_{Plomo}^{82}	$\overset{83}{\mathbf{Bismuto}}$	$\overset{84}{\text{Po}}_{\text{Onio}}$	$\mathop{ m At}_{\mathop{\sf Astato}}$	$\mathop{Rad\acute{e}}_{Rad\acute{en}}$
e e	$\mathop{\mathrm{Radio}}^{s}$. 89-103 .** ** Actinido	$rac{104}{R}$	$\bigcup_{\text{Dubnio}}^{105} b$	$\overset{106}{\mathrm{Seaborgio}}$	$\overset{107}{Bh}_{\text{Bohrio}}$	$\overset{108}{\text{Hassio}}_{\text{Assio}}$	109 268 IML	110 281 DS	$\frac{111}{RS}$		Nihonio	114 289 Flerovio	$\overline{\mathrm{Moscovio}}$	$\frac{116}{L}$	$\frac{117}{\mathrm{Ts}}$	118 294 Oganesón
	Metales Alcalinos Metales Alcalino-te Metal	Metales Alcalinos Metales Alcalino-terreos Metal	$\overset{57}{La}^{138.91}$	$\overset{58}{\overset{140.12}{\overset{12}{\overset{0}}{\overset{0}{\overset{0}{\overset{0}{\overset{0}}{\overset{0}{\overset{0}}{\overset{0}{\overset{0}}{\overset{0}{\overset{0}{\overset{0}{\overset{0}}{\overset{0}{\overset{0}}{\overset{0}{\overset{0}}{\overset{0}{\overset{0}}{\overset{0}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}}{\overset{0}}}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}}{\overset{0}}}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}{\overset{0}}}{\overset{0}}{\overset{0}}}{\overset{0}}{\overset{0}}}{\overset{0}}{\overset{0}}}{\overset{0}}}}{\overset{0}{\overset{0}}}{\overset{0}}}{\overset{0}}}}}}}}}$	$\sum_{ ext{Praseodymio}}^{ ext{59}}$	60 144.24 Neodimio	$\Pr_{\text{Prometio}}^{61}$	$\overset{62}{\mathrm{Sm}}_{\mathrm{mario}}^{150.36}$	$\mathbf{E}_{\mathbf{u}}^{63}$	$\overset{64}{\text{Gd}}\overset{157.25}{\text{Gdolinio}}$	$\overset{65}{\text{Terbio}}$	$\sum_{\text{Disprosio}}^{66}$	67 164.93 Holmio	$\underbrace{\mathbf{E}_{\mathbf{r}}}_{Erbio}^{68}$	69 168.93 Tm	$\overset{70}{\mathbf{Y}}\overset{173.04}{\mathbf{D}}$	171, 174.97 Luterio
				90 232.04 Torio	\mathbf{Pa}^{91}	92 238.03 Uranio	93 237 N D Neptunio	$\overset{94}{P}\overset{244}{u}$	95 243 Am	96 247 Curio	97 247 8 Bk Berkelio	$\inf_{Californio} Californio$	99 252 Einsteinio	100 257 Fm Fermio	$\overset{\text{101}}{\text{Nondelevio}}$	102 259 Nobelio	\overline{L}
, e	Gases Nobles Lantánidos/Actínidos	$_{ m los}$															