Machine Learning Random Forests and Bagging

Edgar F. Roman-Rangel. edgar.roman@itam.mx

Digital Systems Department. Instituto Tecnológico Autónomo de México, ITAM.

May 14th, 2021.

Outline

Decision trees •000000

Decision trees

Reminder

Decision trees

- ▶ Break data down, by a series of decisions.
- Intuitive (good interpretability).
- ▶ Work with numeric, rank, and categorical features.

Can be turn into regression trees.

▶ Prone to overfitting.

Feature space

Decision trees 0000000

Good interpretability: partitioning of the feature space.

Training

Decision trees 0000000

- 1. Start with the **root**. Split data using the feature with the largest information gain.
- 2. Repeat the process iteratively, creating new **nodes** until **leaves** are **pure**.

- Might produce very deep trees.
- Might result in overfitting.

Regularize by pruning:

- Limiting depth, or
- Number of points in a leave.

Information gain

Decision trees

Difference between the impurity of a parent node (N_P) and the sum of its children (N_i) impurities.

$$G(f|N_p) = I(N_p) - \sum_{j=1}^{J} \frac{|N_j|}{|N_p|} I(N_j),$$

where,

- $ightharpoonup G(\cdot)$: information gain.
- ▶ f: feature being evaluated:
- $ightharpoonup I(\cdot)$: impurity function.
- ightharpoonup j: index of the j-th children (often, J=2 for simplicity).
- ▶ | · |: cardinality function.

Impurity functions

Decision trees 0000000

Entropy (I_H)

$$I_H = -\sum_{c=1}^{C} p(c|n) \log p(c|n),$$

where, p(c|n): proportion of samples from class c at node n.

Gini index (I_G)

$$I_G = \sum_{c=1}^{C} p(c|n) (1 - p(c|n))$$
$$= 1 - \sum_{c=1}^{C} p(c|n)^2.$$

Regression trees

Decision trees 000000

For regression problems.

- Nodes are intervals of the independent variables.
- Leaves are the average of dependent variables.
- ▶ Minimize residual error metrics, e.g., mse.

Outline

Decision tree

Random forest

Bagging

Boosting

Intuition

Limitation of a single decision tree, might be overcome by an assemble of trees, a.k.a., forest.

"Combine weak learners to build a strong learner".

Training

- 1. Draw a random <u>bootstrap</u> sample set from the training set (with replacement).
- 2. Grow a decision tree from the bootstrap sample set.
 - 2.1 Randomly select <u>d</u> features at each step (without replacement).
 - 2.2 Split data using information gain.
- 3. Repeat 1., and 2., k times (create k random trees).
- 4. Aggregate results by majority voting.

Forest

- ► Training results in a wide variety of trees. <
- Often leading to better performance.
- Limited interpretability. ~

n=N=teneño miciel ded sed

- Hyperparameters: \underline{k} , size of bootstrap set (N), number of features $(d = \sqrt{D})$. D: # interest in source M
- Often used with shallow trees (depth ≈ 2).

Bagging •000

Bagging

Bootstrap + aggregating

Bagging: bootstrap dataset with aggregation (majority voting).

Can be extended beyond assemble of trees (use different methods).

Voting

Consider: unanimity vs., majority vs., plurality.

Prediction

$$\hat{y} = \mathsf{mode}\{f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_M(\mathbf{x})\},\$$

this is, the most voted output among all models f_m .

Alternatively, we can use a weighted vote, as

$$\hat{y} = \arg\max_{\mathcal{C}} \sum_{m=1}^{M} \underline{\omega_m} \mathbb{1} \left(\underline{f_m(\mathbf{x})} = c \right), \quad \mathbf{v}$$

where,

- C: is the set of classes.
- $\triangleright \omega_m$: is the weight for the *m*-th model,
- ▶ $\mathbb{1}(\cdot)$: is the indicator function (1 if $f(\mathbf{x}) = c$ or 0 otherwise).

(ロ) (個) (重) (重) (重) の(で)

Outline

Decision tree

Random fores

Bagging

Boosting

Intuition

Combine a set of weak learners. Subsequently learn from misclassified training samples to improve the performance.

Model 1,2,..., N are individual models (e.g. decision tree)

Initial idea

- 1. Draw a random subset $X_1 \subset X$, without replacement.
- 2. Train a weak learner $f_1(\cdot)$.
- 3. Draw second random subset $\underline{\mathbf{X}}_2 \subset \mathbf{X}$, without replacement, and add 50% of previously misclassified samples.
- 4. Train a second weak learner $f_2(\cdot)$.
- 5. Find training set $X_3 \subset X$ on which $f_1(\cdot)$ and $f_2(\cdot)$ disagree.
- 6. Train a third weak learner $f_3(\cdot)$.
- 7. Combine $f_1(\cdot)$, $f_2(\cdot)$, and $f_3(\cdot)$ via majority voting.

Adaptive boosting

Adaboost: adaptive reweighting of samples.

Training Adaboost

My cleudos 16 constructions

- 1. Set weight vector $\underline{\mathbf{w}}$ to uniform weights, where $\sum_{n} \omega_{n} = 1$.
- 2. For m = 1, ..., M boosting rounds, do:
 - 2.1 Train a weighted weak learner $f_m(\cdot)$.
 - 2.2 Predict class labels: $\hat{\mathbf{y}} = f_m(\mathbf{X})$.
 - 2.3 Compute weighted error rate: $\varepsilon = \mathbf{w}^T (\hat{\mathbf{y}} = \mathbf{y})$.
 - 2.4 Compute coefficient: $\alpha_m = 0.5 \log \frac{1-\varepsilon}{\varepsilon}$.
 - 2.5 Update weights: $\mathbf{w} = \mathbf{w} \times \exp(-\alpha_m \times \hat{\mathbf{y}} \times \mathbf{y})$.
 - 2.6 Normalize weights: $\mathbf{w} = \frac{\mathbf{w}}{\sum_{n} \mathbf{w}_{n}}$.
- 3. Compute final prediction: $\hat{\mathbf{y}} = \sum_{m=1}^{M} \alpha_m \times f_m(\mathbf{X})$.

Q&A

Thank you!

edgar.roman@itam.mx