Let $f:[a,b] \to [a,b]$ be a continuous function and let $p \in [a, b]$. Define $p_0 = p$ and $p_{n+1} = f(p_n)$ for $n=0,1,2,\ldots$ Suppose that the set $T_p=\{p_n:n=1\}$ $0,1,2,\ldots$ is closed, i.e., if $x \notin T_p$ then there is a

 $\delta > 0$ such that for all $x' \in T_p$ we have $|x' - x| \ge \delta$.

Show that T_n has finitely many elements.