UFBA - IME - DMAT —- MÁLGEBRA LINEAR I(MATA07) - PROFA: ISAMARA RESPOSTAS - 1^a LISTA EXERCÍCIO

1.
$$A = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \end{bmatrix}$$

$$2. \ A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 35 & 70 \end{bmatrix}$$

- 3. (a) A é uma matriz simétrica.
 - (b) B é uma matriz anti-simétrica.
 - (c) C não é simétrica e nem anti-simétrica.
 - (d) D não é simétrica e nem anti-simétrica.
 - (e) E é uma matriz simétrica.
 - (f) F é uma matriz anti-simétrica.
- 4. Como hipótese temos que: $A \in \mathcal{M}_n(\mathbb{C})$, $B = A + A^t$ e $C = A A^t$; e como tese: $B = B^t$ e $C^t = -C$. Assim, considerando a hipótese e as propriedades :

$$(1)(A+B)^t = A^t + B^t, (2)(A^t)^t = A, (3)A + B = B + A, (4)\alpha(A+B) = \alpha A + \alpha B, \alpha \in \mathbb{C};$$
 temos que:

$$B^t = (A + A^t)^t \stackrel{(1)}{=} A^t + (A^t)^t \stackrel{(2)}{=} A^t + A \stackrel{(3)}{=} A + A^t = B$$
, ou seja, $B^t = B$; logo, B é uma matriz simétrica.

Do mesmo modo, $C^t = (A - A^t)^t \stackrel{(1)}{=} A^t - (A^t)^t \stackrel{(2)}{=} A^t - A \stackrel{(3)}{=} -A + A^t \stackrel{(4)}{=} -(A - A^t) = -C$, ou seja, $C^t = -C$; logo, C é uma matriz anti-simétrica.

- 5. Por hipótese temos que: $A \in \mathcal{M}_n(\mathbb{R})$, $A = A^t$ (ou $A = -A^t$); e como tese: A é uma matriz normal, ou seja, $A.\overline{A}^t = \overline{A}^t.A$. Assim, considerando a hipótese e as propriedades :
 - $(1)A \in \mathcal{M}_n(\mathbb{R}) \Rightarrow \overline{A} = A, \ (2)\alpha\beta(A.B) = \alpha A.\beta B; \alpha \in \mathbb{R}, \beta \in \mathbb{R}; \text{ temos que:}$
 - (i) para $A=A^t$: $A.\overline{A}^t\stackrel{(1)}{=}A.A^t=A^t.A\stackrel{(1)}{=}\overline{A}^t.A;$ e,
 - (ii) para $A = -A^t$: $A.\overline{A}^t \stackrel{(1)}{=} A.A^t = -A^t. A \stackrel{(2)}{=} A^t.A \stackrel{(1)}{=} \overline{A}^t.A$;

logo, por (i) e (ii), A é uma matriz normal.

- 6. Por hipótese temos que: $A \in \mathcal{M}_n(\mathbb{C})$, $A = \overline{A}^t$ (ou $A = -\overline{A}^t$); e como tese: A é uma matriz normal, ou seja, $A.\overline{A}^t = \overline{A}^t.A$. Assim, considerando a hipótese e a propriedade :
 - $(1)\alpha\beta(A.B) = \alpha A.\beta B; \alpha \in \mathbb{C}, \beta \in \mathbb{C};$ temos que:
 - (i) para $A = \overline{A}^t$: $A.\overline{A}^t = \overline{A}^t.A$; e,
 - (ii) para $A = -\overline{A}^t$: $A.\overline{A}^t = -\overline{A}^t. A \stackrel{(1)}{=} \overline{A}^t.A$;

logo, por (i) e (ii), A é uma matriz normal.

- 7. Por hipótese temos que: $A \in \mathcal{M}_n(\mathbb{C})$, $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$; e como tese: C e D são matrizes hermitianas, ou seja, $C = \overline{C}^t$ e $D = \overline{D}^t$. Assim, considerando a hipótese e as propriedades:
 - $(1)\overline{A}^t = \overline{(A^t)}, (2)\overline{(A+B)} = \overline{A} + \overline{B}, (3)\overline{\overline{A}} = A, (4)(A+B)^t = A^t + B^t, (5)(A^t)^t =$
 - $A, (6)A + B = B + A, (7)\overline{(A.B)} = \overline{A}.\overline{B}, (8)(A.B)^t = B^t.A^t;$ temos que:
 - $(i) \ \overline{C}^t \stackrel{(1)}{=} \overline{(C^t)} = \overline{((A + \overline{A}^t)^t)} \stackrel{(4)}{=} \overline{(A^t + (\overline{A}^t)^t)} \stackrel{(5)}{=} \overline{(A^t + \overline{A})} \stackrel{(2)}{=} \overline{(A^t)} + \overline{\overline{A}} \stackrel{(3)}{=} \overline{(A^t)} + A \stackrel{(6)}{=} A + \overline{(A^t)} = C ; e,$
 - $(ii) \ \overline{D}^t \stackrel{(1)}{=} \overline{(D^t)} = \overline{((A.\overline{A}^t)^t)} \stackrel{(8)}{=} \overline{((\overline{A}^t)^t.A^t)} \stackrel{(5)}{=} \overline{(\overline{A}.A^t)} \stackrel{(7)}{=} \overline{\overline{A}}.\overline{(A^t)} \stackrel{(3)}{=} A.\overline{(A^t)} = D;$

logo, por (i)e $(ii),\,C$ eDsão matrizes hermitianas.

- 8. (a) A não é hermitiana, não é anti-hermitiana e nem normal.
 - (b) B não é hermitiana, não é anti-hermitiana e nem normal.
 - (c) ${\cal C}$ é uma matriz complexa anti-hermitiana e normal.
 - (d) D é uma matriz complexa hermitiana e normal.
 - (e) E é uma matriz real simétrica e normal.
 - (f) ${\cal F}$ é uma matriz real anti-simétrica e normal.

9. Por hipótese temos que: $A \in \mathcal{M}_n(\mathbb{C})$; e como tese: $tr(\overline{A}^t) = \overline{tr(A)}$. Pela hipótese e utilizando as propriedades do traço de uma matriz:

$$(1)tr(\overline{A}) = \overline{tr(A)}, (2)tr(A^t) = tr(A); \text{ temos que: } tr(\overline{A}^t) \stackrel{(1)}{=} \overline{(tr(A^t))} \stackrel{(2)}{=} \overline{tr(A)}.$$

10. Por hipótese temos que: $A \in \mathcal{M}_n(\mathbb{C})$ tal que A é invertível. Pela definição de matrizes invertíveis: $A.A^{-1} = A^{-1}.A = I_n$ (1).

Por tese:
$$(\overline{A})^{-1} = \overline{(A^{-1})}$$
.

Assim, considerando a hipótese e as propriedades $(2)\overline{(A.B)} = \overline{A}.\overline{B}, (3)\overline{I_n} = I_n$; vamos aplicar o conjugado em (1):

$$\overline{(A.A^{-1})} = \overline{(A^{-1}.A)} = \overline{(I_n)} \overset{(2),(3)}{\Longrightarrow} (\overline{A}).\overline{(A^{-1})} = \overline{(A^{-1})}.(\overline{A}) = I_n \overset{(1)}{\Longrightarrow} \overline{(A)}^{-1} = \overline{(A^{-1})}; \text{ ou seja,}$$
 as matrizes (\overline{A}) e $\overline{(A^{-1})}$ comutam e o produto resultante é a matriz $I_n \overset{(1)}{\Longrightarrow} (\overline{A})^{-1} = \overline{(A^{-1})}.$

11. Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$ tais que A e B são invertíveis e ainda, $A^{-1} = A^t; B^{-1} = B^t$ (1). Tese: $(AB)^{-1} = (AB)^t$.

Propriedades:
$$(2)(A.B)^{-1} = B^{-1}.A^{-1}, (3)(A.B)^t = B^t.A^t.$$

Considerando as hipóteses(1) e aplicando as propriedades(2), (3) acima temos que:

$$(AB)^{-1} = B^{-1}A^{-1} = B^tA^t = (AB)^t$$
; logo, o produto (AB) é uma matriz ortogonal.

12. Para A ser ortogonal, consideramos que $A^{-1}=A^t$. Pela definição de matrizes invertíveis:

$$A.A^{-1} = A^{-1}.A = I_n$$
; substituindo: $A.A^t = A^t.A = I_n$; aplicando neste caso particular para $A = \begin{bmatrix} \sqrt{2} & \mathbf{x} \\ \mathbf{y} & \sqrt{2} \end{bmatrix}$; obtemos

$$A.A^{t} = \begin{bmatrix} x^{2} + 2 & \sqrt{2}y + \sqrt{2}x \\ \sqrt{2}y + \sqrt{2}x & y^{2} + 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \text{ pela igualdade de matrizes:}$$

$$x^2+2=1;\ y^2+2=1;\ \mathrm{e}\ \sqrt{2}y+\sqrt{2}x=0 \Rightarrow x=\pm i;\ y=\pm i;\ x=-y;$$
 desta forma, podemos afirmar que não existem $x,y\in\mathbb{R}$ para que a matriz A seja ortogonal.

13. Por hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$ tais que $A^2 = A$ e $B = I_n - A$.

Tese: (i) $B^2 = B$ e (ii) $AB = BA = O_n$.

Propriedades: $(2)A.(B+C) = A.B+A.C, (3)A_n.I_n = A_n, (4)(I_n)^2 = I_n, (5)(\alpha.A).(\beta.B) = (\alpha.\beta).A.B; \alpha, \beta \in \mathbb{C}, (6)(\alpha+\beta).A = (\alpha.A) + (\beta.A); \alpha, \beta \in \mathbb{C}.$

Então, vamos utilizar a definição de potenciação para a matriz B, as hipóteses e as propriedades definidas acima: (i) $B^2 = B.B = (I_n - A).(I_n - A) = (I_n)^2 - I_n.A - A.I_n + (-A)^2 = I_n - A - A + A^2 = I_n - 2A + A = I_n - A = B$; logo, $B^2 = B$.

(ii) $AB = A.(I_n - A) = A.I_n - A.A = A - A^2 = A - A = O_n$; do mesmo modo, $BA = (I_n - A)A = I_n.A - A.A = A - A^2 = A - A = O_n$, assim, provamos que A comuta com B e resulta na matriz nula O_n de mesma ordem.

- 14. As matrizes A e B são IDEMPOTENTES, porém C não o é.
- 15. As matrizes A e B são AUTOREFLEXIVAS, porém C não o é.
- 16. (F) Por hipótese temos que: $A \in \mathcal{M}_n(\mathbb{C})$, $A = A^t$; e como tese: A é uma matriz normal, ou seja, $A.\overline{A}^t = \overline{A}^t.A$. Assim, considerando a hipótese; vamos supor que $A.\overline{A}^t = \overline{A}^t.A \Longrightarrow A.\overline{A} = \overline{A}.A \Longrightarrow (F)$ pois não podemos afirmar que $A = \overline{A}$; logo, A não é uma matriz normal.
 - (V) Por hipótese temos que: $A \in \mathcal{M}_n(\mathbb{R})$, $A = A^t$; e como tese: A é uma matriz normal, ou seja, $A.\overline{A}^t = \overline{A}^t.A$. Considerando a hipótese e a propriedade $A \in \mathcal{M}_n(\mathbb{R}) \Rightarrow \overline{A} = A$; vamos supor que $A.\overline{A}^t = \overline{A}^t.A \Longrightarrow A.\overline{A} = \overline{A}.A \Longrightarrow A.A = A.A \Longrightarrow A^2 = A^2$; logo, A é uma matriz normal.
 - (F) Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$; tais que $A = A^t$ e $B = B^t$; Tese: $\overline{(A+B)^t}.\overline{(A+B)} = \overline{(A+B)}.\overline{(\overline{A+B})^t}.$ Aplicando as propriedades (1) $\overline{(A+B)}^t = \overline{A}^t + \overline{B}^t$; (2) $\overline{(\overline{A+B})} = \overline{A} + \overline{B} = A + B$; e fazendo $C = \overline{(A+B)}$ e $\overline{C}^t = \overline{(\overline{A+B})^t}$; temos, $\overline{C}^t.C = \overline{(\overline{A+B})^t}.\overline{(A+B)} = (\overline{A}^t + \overline{B}^t).\overline{(A^t+B^t)} = (A^t + B^t).\overline{(A^t+B^t)} = (A + B^t).\overline{(A+B)}^t = \overline{C}.C^t.$

$$C.\overline{C}^t = \overline{(A+B)}.\overline{(\overline{A+B})^t} = \overline{(A^t+B^t)}.\overline{(\overline{A^t}+\overline{B^t})} = (\overline{A}^t+\overline{B}^t).(A^t+B^t) = \overline{(A+B)}^t.(A+B) = C^t.\overline{C}.$$

Concluimos que a igualdade é uma falsidade, ou ainda, podemos verificar se $C^t.\overline{C}=\overline{C}.C^t\Longrightarrow (\overline{A}^t+\overline{B}^t).(A+B)=(A+B).(\overline{A}^t+\overline{B}^t)\Longrightarrow \overline{A}^t.A+\overline{A}^t.B+\overline{B}^t.A+\overline{B}^t.B=A.\overline{A}^t+A.\overline{B}^t+B.\overline{A}^t+B.\overline{B}^t\Longrightarrow \overline{A}.A+\overline{A}.B+\overline{B}.A+\overline{B}.B=A.\overline{A}+A.\overline{B}+B.\overline{A}+B.\overline{B}\Longrightarrow (F).$

Observe que esta afirmação seria verdadeira se as matrizes fossem reais; pois, teríamos as identidades $\overline{A} = A$ e $\overline{B} = B$ o que resultaria na igualdade : $\overline{A}.A + \overline{A}.B + \overline{B}.A + \overline{B}.B = A.\overline{A} + A.\overline{B} + B.\overline{A} + B.\overline{B} \Longrightarrow A.A + A.B + B.A + B.B = A.A + A.B + B.A + B.A + B.B \Longrightarrow A^2 + A.B + B.A + B^2 = A^2 + A.B + B.A + B^2 \Longrightarrow (V)$

(F) Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$; tais que $A = A^t$ e $B = B^t$. Tese: $(AB)^t = (AB)$.

Assumindo uma matriz C=A.B devemos provar que C é uma matriz simétrica. Então, aplicando as propriedades de transposta do produto de matrizes, obtemos; $C^t=(A.B)^t=B^t.A^t=B.A\neq C$; logo, o produto de matrizes simétricas não é uma matriz simétrica.

(V) Hipótese: $A, B \in \mathcal{M}_n(\mathbb{R})$; tais que $A = \overline{A}^t$ e $B = \overline{B}^t$. Tese: $(A + B)^t = (A + B)$.

Assumindo uma matriz C = A + B devemos provar que C é uma matriz simétrica. Então, utilizando a hipótese e as seguintes propriedades: $(1)(A^t)^t = A, (2)(A+B)^t = A^t + B^t, (3)A \in \mathcal{M}_n(\mathbb{R}) \Rightarrow \overline{A} = A$; temos que, $C^t = (A+B)^t = A^t + B^t = (\overline{A}^t)^t + (\overline{B}^t)^t = \overline{A} + \overline{B} = A + B = C$; logo, a soma de matrizes simétricas é uma matriz simétrica.

(V) Hipótese: $A, B \in \mathcal{M}_n(\mathbb{R})$; tais que $A = -A^t$ e $B = -B^t$. Tese: $C = -C^t$ onde $C = (A + \alpha B)$; $\alpha \in \mathbb{R}$. Então, utilizando a hipótese e as seguintes propriedades: $(1)(A^t)^t = A, (2)(A+B)^t = A^t + B^t, (3)(\alpha.\beta)A = \alpha(\beta A)$; temos que, $-C^t = -(A + \alpha B)^t = -(-A^t - \alpha B^t)^t = -((-A^t)^t - (\alpha B^t)^t) = -(-A - \alpha B) = A + \alpha B = C$; logo, C é uma matriz antisimétrica.

(V) Hipótese: $A, B \in \mathcal{M}_n(\mathbb{R})$; tais que $A^{-1} = A^t$ e $B^{-1} = B^t$. Tese: $(A.B)^{-1} = (A.B)^t$.

Assumindo uma matriz C = A.B devemos provar que C é uma matriz ortogonal.

Então, aplicando as propriedades de transposta e inversa do produto de matrizes, obtemos; $C^t = (A.B)^t = B^t.A^t = B^{-1}.A^{-1} = (A.B)^{-1} = C^{-1}$; logo, o produto também é uma matriz ortogonal.

(V) Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$; tais que $A^{-1} = A^t$ e $B^{-1} = B^t$. Tese: $(A.B)^{-1} = (A.B)^t$.

Assumindo uma matriz C = A.B devemos provar que C é uma matriz ortogonal. Então, aplicando as propriedades de transposta e inversa do produto de matrizes, obtemos; $C^t = (A.B)^t = B^t.A^t = B^{-1}.A^{-1} = (A.B)^{-1} = C^{-1}$; logo, o produto também é uma matriz ortogonal.

- (F) Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$; tais que $A^{-1} = A^t$ e $B^{-1} = B^t$. Tese: $(A.B)^t = (A^{-1}.B^{-1})$. Então, aplicando as propriedades de transposta e inversa do produto de matrizes, obtemos: $(A.B)^t = B^t.A^t = B^{-1}.A^{-1} \neq A^{-1}B^{-1}$.
- (V) Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$; tais que $A^{-1} = A^t$ e $B^{-1} = B^t$. Tese: $(A.B)^{-1} = (A.B)^t$. Assumindo uma matriz C = A.B devemos provar que C é uma matriz ortogonal. Então, aplicando as propriedades de transposta e inversa do produto de matrizes, obtemos; $C^t = (A.B)^t = B^t.A^t = B^{-1}.A^{-1} = (A.B)^{-1} = C^{-1}$; logo, o produto também é uma matriz ortogonal.
- (F) Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$; tais que $A^2 = A, B^2 = B$. Tese: $(A+B) = (A+B)^2$. por definição de produto e da propriedade distributiva entre matrizes: $(A+B)^2 = (A+B).(A+B) = A^2 + A.B + B.A + B^2$, como $A^2 = A, B^2 = B$, temos que $(A+B)^2 = A + A.B + B.A + B \neq (A+B)$; pois não podemos afirmar que $A.B = B.A = O_n$. Logo, a afirmação é falsa.
- (F) Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$; tais que $A^2 = A, B^2 = B$. Tese: $(A.B) = (A.B)^2$. aplicando a definição de produto entre matrizes, vamos supor que: $(A.B) = (A.B)^2 \implies A^2.B^2 = (A.B).(A.B) \implies A^2.B^2 = (A^2.B^2).(A^2.B^2) \implies$ $A^2.B^2 = (A^2.B^2)^2 \implies (F)$. Logo, chegamos numa contradição.

- (F) Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$; tais que $A = -\overline{A}^t$ e $B = -\overline{B}^t$; Tese: $(A.B)^t = \overline{(A.B)}$. Aplicando as propriedades (1) $(A.B)^t = B^t.A^t$; (2) $\overline{(A)} = A$; e, (3) $(\alpha A).(\beta B) = \alpha.\beta(AB)$; e supondo que, $(A.B)^t = \overline{(A.B)} \implies B^t.A^t = \overline{A}.\overline{B} \implies \overline{B^t.A^t} = \overline{\overline{A}.\overline{B}} \implies \overline{B^t.\overline{A}^t} = \overline{\overline{A}.\overline{B}} \implies -B. -A = A.B \implies B.A = A.B \implies (F)$. Logo, chegamos numa contradição.
- (V) Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$; tais que $A = \overline{A}^t$ e $B = \overline{B}^t$; Tese: $(A+B).\overline{(A+B)}^t = \overline{(A+B)}^t.(A+B)$. Aplicando as propriedades (1) $(A+B)^t = A^t + B^t$; (2) $\overline{(\overline{A+B})} = \overline{A} + \overline{B}$; (3) $(\alpha A).(\beta B) = \alpha.\beta(AB)$; e assumindo a matriz C = A + B, fazemos; $C.\overline{C}^t = (A+B).\overline{(A+B)}^t = (\overline{A}^t + \overline{B}^t).(\overline{A}^t + \overline{B}^t) = \overline{(A^t + B^t)}.(A+B) = \overline{(A+B)}^t.(A+B) = \overline{C}^t.C \Longrightarrow C$ é uma matriz normal.
- (V) ver exercício (7) resolvido.
- (F) Hipótese: $A \in \mathcal{M}_n(\mathbb{C})$; Tese: $tr(A) = tr(\overline{A}^t)$. temos por propriedades do traço de uma matriz que $tr(A) = tr(A^t)$ e $tr(\overline{A}) = \overline{tr(A)}$, assim; $tr(\overline{A^t}) = \overline{tr(A^t)} = \overline{tr(A)} \neq tr(A)$, pois A é matriz complexa. Logo, a afirmação é falsa.
- (V) Hipótese: $A \in \mathcal{M}_n(\mathbb{C})$; tal que $A^t = A^{-1}$. Tese: $tr(A) = tr(A^{-1})$; temos por propriedade do traço de uma matriz que $tr(A) = tr(A^t)$. Agora, utilizando a hipótese e a propriedade do traço da matriz transposta, obtemos; $tr(A) = tr(A^t) = tr(A^{-1})$, pois A é matriz ortogonal. Logo, a afirmação é verdadeira.
- (V) Hipótese: $A \in \mathcal{M}_n(\mathbb{C})$. Tese: $tr(A) = tr(A^t)$. temos por definição do traço de uma matriz que $tr(A) = \sum_{i=1}^n a_{ii}$; e, por definição da transposta de uma matriz, os seus elementos são obtidos $a_{ij} = a_{ji}$; $\forall i, j$. Então, para i = j, os elementos destas duas matrizes são iguais $(a_{ii} = a_{ii}; \forall i)$. Deste modo,

o cálculo do traço da matriz transposta utilizará os mesmos escalares da diagonal principal da matriz A. Por conseguinte, $tr(A^t) = \sum_{i=1}^n a_{ii} = tr(A)$.

- (V) Hipótese: $A \in \mathcal{M}_n(\mathbb{R})$; tal que $A = A^t$ Tese: $tr(A) = tr(\overline{A}^t)$. por hipótese temos que; $tr(A) = tr(A^t)$ mas, A sendo uma matriz real assume a propriedade: $A = \overline{A} \Longrightarrow tr(A) = tr(A^t) = tr(\overline{A^t})$. Logo, a afirmação é verdadeira.
- (V) Hipótese: $A \in \mathcal{M}_n(\mathbb{C})$; tal que $A = \overline{A}^t$ (1) Tese: $\overline{tr(A)} = tr(A)$. Considerando as propriedades do traço de uma matriz: (2) $tr(A) = tr(A^t)$; (3) $tr(\overline{A}) = \overline{tr(A)}$; vamos mostrar a tese: $tr(A) \stackrel{(1)}{=} tr(\overline{A}^t) \stackrel{(3)}{=} \overline{tr(A^t)} \stackrel{(2)}{=} \overline{tr(A)}$.
- Logo, a afirmação é verdadeira. (F) Hipótese: $A, B \in \mathcal{M}_n(\mathbb{C})$; Tese: $tr(A^t + \alpha(B^{-1}AB)) = 2\alpha tr(A)$. Considerando as seguintes propriedades entre matrizes e do traço de uma matriz (1) $tr(A^t) = tr(A)$; (2) tr(A+B) = tr(A)+tr(B); (3) tr(AB) = tr(BA); (4) $tr(\alpha A) = \alpha tr(A)$, $\alpha \in \mathbb{C}$; (5) A.(B.C) = (A.B).C; (6) $A.A^{-1} = A^{-1}.A = I_n$; (7) $A.I_n = A$; obtemos $tr(A^t + \alpha(B^{-1}AB)) \stackrel{(2)}{=} tr(A^t) + tr(\alpha(B^{-1}AB)) \stackrel{(1),(4),(5)}{=} tr(A) + \alpha(tr((B^{-1}A).B)) \stackrel{(3)}{=} tr(A) + \alpha(tr(B.(B^{-1}A))) \stackrel{(5)}{=} tr(A) + \alpha(tr((B.B^{-1}A))) \stackrel{(6),(7)}{=} tr(A) + \alpha(tr(A)) = (1 + \alpha)(tr(A)) \neq 2\alpha tr(A)$.