

Section 10

Lavender Jiang

See references for sources of images

PART 01

Prompt Engineering

Temperature

$$p(x_i) = \frac{e^{\frac{x_i}{T}}}{\sum_{j=1}^{V} e^{\frac{x_j}{T}}}$$

What happens when T approach 0? How about infinity?

Top-p

How does the following work on the left example:

- 1. Greedy search
- 2. beam search with n_beam=2
- 3. Top-k sampling
- 4. Top-p sampling

Max Length, Stop Sequences

Predict common sense results of the following actions.

==

Action: I didn't water the plant for 3 weeks.

Result: The plant died.

==

Action: I went to school.

Result: I got a diploma.

==

Action: I left the AC on all day.

Result: I got a high utility bill.

==

Action: I helped my neighbors when their car broke down.

Result: My neighbors were grateful.

==

Action: I put the ice cream outside for an hour.

Result: The ice cream melted.

Frequency Penalty

"Write a poem where every word starts with Z"

Frequency Penalty = 0	Frequency Penalty = 2
Zebras zigzagging zealously, Zephyrs zipping, zesty, zestfully. Zodiac's zenith, zeal's zodiac, Zinnias zigzag, zircon's zodiac.	Zealous zephyrs zoom, zigzagging zestily, Zinnia zones, zenith zeppelins' zone precisely. Zenith's ziggurats zealously zap, Zirconium zebras zip-zap on Zanz
Zeppelin zooming, zigzag	Zircomum zepras zip-zap on zanz

Basic Prompt

Prompt:

The sky is

Output:

Dutput:

Dutput:

Output:

Output:

So beautiful today.

Prompt Formatting

```
This is awesome! // Positive
This is bad! // Negative
Wow that movie was rad! // Positive
What a horrible show! //
```

<Question>?

<Answer>

<Question>?

<Answer>

<Question>?

<Answer>

<Question>?

Elements of Prompts

Instruction - a specific task or instruction you want the model to perform

Context - external information or additional context that can steer the model to better responses

Input Data - the input or question that we are interested to find a response for

Output Indicator - the type or format of the output.

Homework: 7-digit addition

Instruction - control with your_prompt
Context - control with your_prompt and your_post_processing
Input Data - given by autograder, can format with your_pre_processing
Output Indicator - controlled by your choice of prompt. Can be further
processed with your_post_processing

Other knobs: your_config

Metrics: accuracy, mean absolute error, prompt length

Autograder is slow. Recommend local testing with test_prompts.py

(Exact same code as autograder, but different random seeds)

Note: for submission do not read prompts from files, autograder cannot find it

Huffman Coding

Compression

Which is harder to compress?

Quality = 100

Less Compression

Entropy
$$H = -\sum p(x) \log p(x)$$

Redundancy

Smoothness/locality prior for image

Periodic prior for sound

Small-world / six-degree prior for social networks

Redundancy in English Text & Entropy of English

Example Rules:

- 1. i before e except after c. Hippie, Fries, Field. cake
- 2. q must always be followed by a u Quick, quiche, question, quarrel
- 3. grammar Cannot do "subject subject" as a sentence
- 4. dictionary Hufamomina is not a word

Shannon tried calculating English's entropy using n-gram $p(x_{n}| x_{< n})$. Is this a good approach? O complexity?

Another approach: take a set of English words (8000), calculate the word-level entropy based on the subset. Then divide by average number of characters to get Character-level entropy.

Maximum entropy: ~4.7 bit/letter Approximated entropy of English: 2.63 bit/letter (why?) Is English redundant? Is it good or bad?

Infinite Monkey Theorem

Almost surely, he would type up Shakespeare.

7	XFOML RXKHRJFFJUJ ALPWXFWJXYJ			
Zero-order approximation	FFJEYVJCQSGHYD			
	QPAAMKBZAACIBZLKJQD			
First-order approximation	OCRO HLO RGWR NMIELWIS			
	EU LL NBNESEBYA TH EEI			
	ALHENHTTPA OOBTTVA NAH			
	BRL			
Second-order approximation	ON IE ANTSOUTINYS ARE T			
	INCTORE ST BE S DEAMY			
	ACHIN D ILONASIVE			
	TUCOOWE AT TEASONARE			
	FUSO TIZIN ANDY TOBE			
	SEACE CTISBE			
	IN NO IST LAT WHEY CRATICT			
	FROURE BIRS GROCID			
Third-order approximation	PONDENOME OF			
Tillid-order approximation	DEMONSTURES OF THE			
	REPTAGIN IS REGOACTIONA			
	OF CRE			
	REPRESENTING AND SPEEDILY			
	IS AN GOOD APT OR COME			
	CAN DIFFERENT NATURAL			
First-order word approximation	HERE HE THE A IN CAME THE			
	TO OF TO EXPERT GRAY COME			
	TO FURNISHES THE LINE			
	MESSAGE HAD BE THESE			
	THE HEAD AND IN FRONTAL			
Second-order word approximation	ATTACK ON AN ENGLISH			
	WRITER THAT THE			
	CHARACTER OF THIS POINT IS			
	THEREFORE ANOTHER METHOD FOR THE LETTERS			
	THAT THE TIME OF WHO EVER			
	TOLD THE PROBLEM FOR AN			
	UNEXPECTED			
	UNEAFECTED			

Compression relies on redundancy

Fixed length v.s. variable length encoding

	a	b	c	d	e	f
Freq in '000s	45	13	12	16	9	5
a fixed-length	000	001	010	011	100	101
a variable-length	0	101	100	111	1101	1100

Which scheme uses fewer bits to encode the corpus?

How do we encode "bad"?

How do we decode 11000101? (Is the decoding unique? Why?)

Designing Unique Prefixes with Prefix Tree

Idea:

Greedy bottom-up construction of tree Read encoding based on path from root to leaves.

Why it works:

Each token traces the path of a leave.

A leave has no children.

So each token has unique prefix.

Why it's efficient:

Greedy algorithm always look for least frequent token Less frequent tokens become leaves earlier Less frequent tokens -> longer path -> longer code

Walkthrough

a/20, b/15, c/5, d/15, e/45

- 1. Pick two least frequent words
- 2. Use them as leaves of a subtree
- 3. Merge frequency on their common parent
- 4. Add common parent back to list
- 5. Repeat

Walkthrough

The tokens here (a,b,c,d,e) can be bigrams! e.g., $a = cat \mid the, b = on \mid was$

- 1. Pick two least frequent words
- 2. Use them as leaves of a subtree
- 3. Merge frequency on their common parent
- 4. Add common parent back to list
- 5. Repeat

References

https://medium.com/@lazyprogrammerofficial/what-is-temperature-in-nlp-llms-aa2a7212e687

https://medium.com/nlplanet/two-minutes-nlp-most-used-decoding-methods-for-language-models-9d44b2375612

https://docs.ai21.com/docs/when-the-generation-stops

https://towardsdatascience.com/guide-to-chatgpts-advanced-settings-top-p-

<u>frequency-penalties-temperature-and-more-b70bae848069</u>

https://www.promptingguide.ai/introduction/basics

https://www.mathworks.com/help/images/jpeg-image-deblocking-using-deep-learning.html

https://www.researchgate.net/figure/Top-The-CNN-trained-for-the-task-of-full-face-detection-Bottom-The-CNN-trained-for-the fig2 308944615

https://cs.stanford.edu/people/eroberts/courses/soco/projects/1999-00/information-theory/entropy_of_english_9.html

https://home.cse.ust.hk/faculty/golin/COMP271Sp03/Notes/MyL17.pdf

