HÀNG CÂY (TREELINE.*)

Con đường dọc vườn thượng uyển vương quốc X có n cây cổ thụ đánh số từ 1 tới n từ đầu đến cuối đường. Cây thứ i có chiều cao h_i .

Nhà vua muốn chặt bớt một vài cây trên con đường để nếu đi từ đầu đến cuối đường, chiều cao của các cây đi qua được xếp theo thứ tự tăng dần. Tuy nhiên nhà vua không nói rõ ý mình cho những người làm vườn...

Vào buổi sáng mỗi ngày, nhà vua đi dọc con đường và đánh dấu "x" vào những cây có chiều cao nhỏ hơn hay bằng chiều cao cây đứng liền trước nó. Vào buổi chiều cùng ngày, những người làm vườn được lệnh chặt bỏ tất cả các cây được đánh dấu "x" và họ phải hoàn thành công việc đó ngay trong ngày.

Yêu cầu: Xác định số ngày mà những người làm vườn phải làm việc.

Dữ liệu: Vào từ file văn bản TREELINE.INP

- Dòng 1 chứa số nguyên dương $n \le 10^5$
- Dòng 2 chứa n số nguyên dương $h_1, h_2, ..., h_n \ (\forall i: h_i \le 10^9)$

Kết quả: Ghi ra file văn bản TREELINE.OUT một số nguyên duy nhất là số ngày những người làm vườn phải làm việc

Ví du

TREELINE.INP							TREELINE.OUT		
9									3
4	3	2	1	8	6	7	8	9	

Giải thích:

Ngày 1: 4, 3, 2, 1, 8, 6, 7, 8, 9

Ngày 2: 4, 8, 7, 8, 9

Ngày 3: 4, 8, 8, 9

Còn lại 3 cây có độ cao là (4,8,9)

TRONG SỐ KHOẢNG (WEIGHT.*)

Định nghĩa trọng số của một dãy số nguyên là độ chênh lệch giữa phần tử lớn nhất và phần tử nhỏ nhất trong dãy. Ví dụ trọng số của dãy (3,1,7,2) là 6, trọng số của dãy (40,40) là 0.

Yêu cầu: Cho dãy số nguyên $A = (a_1, a_2, ..., a_n)$. Hãy tính tổng trọng số của tất cả các dãy con gồm các phần tử liên tiếp trong A.

Ví dụ với A = (1,2,3), những dãy con gồm các phần tử liên tiếp trong A là:

- Dãy rỗng và các dãy (1), (2), (3): trong số 0
- Dãy (1,2) và dãy (2,3): trọng số 1
- Dãy (1,2,3): trọng số 2

Tổng trọng số cần tìm: 4

Dữ liêu: Vào từ file văn bản WEIGHT.INP

- Dòng 1 chứa số nguyên dương $n \le 10^6$
- Dòng 2 chứa n số nguyên dương $a_1, a_2, ..., a_n$ có giá trị không vượt quá 10^6 .

Các số trên một dòng của input file được ghi cách nhau ít nhất một dấu cách.

Kết quả: Ghi ra file văn bản WEIGHT.OUT một số nguyên duy nhất là kết quả tìm tìm được **Ví du**

WEIGHT.INP	WEIGHT.OUT
3	4
1 2 3	
4	31
3 1 7 2	

TẬP ĐỘC LẬP (INDEP.*)

Người ta mô hình hoá một mạch điện một chiều theo cách đệ quy như sau:

Một mạch điện có một đầu vào I và một đầu ra O với một dây dẫn nối từ I tới O được ký hiệu bằng một ký tự g.

Nếu G_1 là mạch điện có đầu vào I_1 và đầu ra O_1 , G_2 là mạch điện có đầu vào I_2 và đầu ra O_2 thì mạch điện nhận được bằng cách chập đầu ra O_1 và đầu vào I_2 thành một điểm sẽ trở thành mạch điện nối tiếp có đầu vào I_1 và đầu ra O_2 , ký hiệu bằng xâu ký tự SG_1G_2

Nếu G_1 là mạch điện có đầu vào I_1 và đầu ra O_1 , G_2 là mạch điện có đầu vào I_2 và đầu ra O_2 thì mạch điện nhận được bằng cách chập hai đầu vào I_1 , I_2 thành một đầu vào (ký hiệu I_{12}) và chập hai đầu ra O_1 , O_2 thành một đầu ra (ký hiệu O_{12}) sẽ trở thành mạch điện song song có đầu vào I_{12} và đầu ra O_{12} , ký hiệu PG_1G_2

Một tập các điểm được gọi là tập độc lập nếu nó không chứa hai điểm nào có dây dẫn trực tiếp. Hãy xác định số lượng điểm trong tập độc lập lớn nhất của một mạng điện cho bởi xâu ký tư gồm các chữ cái P, S, g theo quy tắc trên

Dữ liệu: Vào từ file văn bản INDEP.INP gồm một dòng chứa không quá 10^6 ký tự **Kết quả:** Ghi ra file văn bản INDEP.OUT số lượng điểm trong tập độc lập lớn nhất **Ví du:**

INDEP.INP	INDEP.OUT
SPSgggPgg	2

TẮT MÁY

Bản đồ sàn nhà hình chữ nhật kích thước $m \times n$ được chia thành lưới ô vuông đơn vị, mỗi ô có đặt một máy tính. Các máy tính được đánh số từ 1 tới $m \times n$ và máy tính ở mỗi ô có kênh nối hai chiều với các máy tính nằm ở ô chung cạnh. Ta nói máy tính i có thể truyền tin tới máy tính j nếu giữa hai máy đó có kênh nối trực tiếp hoặc truyền qua một số máy trung gian.

Ban đầu các máy tính đều bật và người ta lần lượt tắt các máy từ máy 1 tới máy $m \times n$. Việc tắt một máy mất đúng 1 đơn vị thời gian và khi máy đó tắt xong thì không cho gửi, nhận và truyền tin qua máy đó nữa.

Nhiệm vụ của bạn là cho k cặp máy $(s_1, t_1), (s_2, t_2), \dots, (s_k, t_k)$. Với mỗi cặp máy (s_i, t_i) xác định thời điểm q_i mà bắt đầu từ thời điểm đó máy s_i không thể truyền tin tới máy t_i nữa.

Dữ liêu: Vào từ file văn bản SHUTDOWN.INP

- Dòng 1 chứa ba số nguyên dương $m \le 500$; $n \le 500$; $k \le 2.10^5$
- m dòng tiếp theo, dòng thứ x chứa n số nguyên, số nguyên thứ y là số hiệu máy đặt ở ô (x, y) của sàn.
- k dòng tiếp theo, dòng thứ i chứa hai số nguyên dương s_i , t_i

Các số trên một dòng của Input/Output files được/phải ghi cách nhau ít nhất một dấu cách **Kết quả:** Ghi ra file văn bản SHUTDOWN.OUT k dòng, dòng thứ i ghi một số nguyên duy nhất q_i .

SHUTDOWN.I	NP SHUTDOWN.OUT
4 4 2	4
15 16 1	9 6
14 13 4	8
6 5 3	7
12 11 2 1	0
14 10	
15 11	