Package 'pqrfe'

December 1, 2022

Type Package

Title Penalized Quantile Regression with Fixed Effects

Version 1.1
Date 2022-12-01
Description Quantile regression with fixed effects is a general model for longitudinal data. Here we proposed to solve it by several methods. The estimation methods include three loss functions as check, asymmetric least square and asymmetric Huber functions; and three structures as simple regression, fixed effects and fixed effects with penalized intercepts by LASSO.
License GPL (>= 2)
Imports Rcpp (>= 1.0.5), MASS (>= 7.3-49)
LinkingTo Rcpp, RcppArmadillo
Suggests tinytest (>= 1.3.1)
RoxygenNote 7.2.1
NeedsCompilation yes
Author Ian Meneghel Danilevicz [aut, cre] (https://orcid.org/0000-0003-4541-0524), Valderio A Reisen [aut], Pascal Bondon [aut]
Maintainer Ian Meneghel Danilevicz <i and="" anilevicz@gmail.com=""></i>
Repository CRAN
Date/Publication 2022-12-01 11:20:02 UTC
Pqrfe-package 2 check_lambda 4 choice_p 4 clean_data 5 d_psi_als 6 d_psi_mq 6

2 pqrfe-package

1_	den	. '
f_	tabtab	. 7
10	ss_er	. 8
10	ss_erfe	. 8
10	ss_erlasso	. 9
10	ss_mqr	. 10
10	ss_mqrfe	. 10
10	ss_mqrlasso	. 11
10	ss_qr	. 12
10	ss_qrfe	. 12
10	ss_qrlasso	. 13
n	pqr	. 13
o	otim_er	. 14
o	otim_erfe	. 15
o	otim_erlasso	. 16
o	otim_mqr	. 16
o	otim_mqrfe	. 17
o	otim_mqrlasso	. 18
o	otim_qr	. 18
o	otim_qrfe	. 19
0	otim_qrlasso	. 20
p	ot_taus	. 20
p	µr	. 22
p	int.PQR	. 23
p	ii_als	. 23
p	ii_mq	. 24
q	COV	. 24
rŀ	o_koenker	. 25
rŀ	o_mq	. 26
S	ff	. 26
		27

pqrfe-package

Penalized Quantile Regression with Fixed Effects

Description

Quantile regression with fixed effects is a general model for longitudinal data. Here we proposed to solve it by several methods. The estimation methods include three loss functions as check, asymmetric least square and asymmetric Huber functions; and three structures as simple regression, fixed effects and fixed effects with penalized intercepts by LASSO.

pqrfe-package 3

Package Content

q_cov

rho_mq

sgf

rho_koenker

Index of help topics:

check lambda check_lambda choice_p choice model clean_data Clean missings D Psi ALS d_psi_als d_psi_mq D Psi M-quantile f_den Kernel density f_tab Tabular function loss_er Loss expectile regression loss_erfe Loss expectile regression with fixed effects Loss lasso expectile regression with fixed loss_erlasso effects Loss M-quantile regression loss_mgr loss_mgrfe Loss M-quantile regression with fixed effects loss_mqrlasso Loss lasso M-quantile regression with fixed effects loss_qr Loss quantile regression Loss quantile regression with fixed effects loss_grfe loss_qrlasso Loss lasso quantile regression with fixed effects mpqr Multiple penalized quantile regression optim expectile regression optim_er optim_erfe optim expectile regression with fixed effects optim expectile regression with fixed effects optim_erlasso and LASSO optim_mqr optim M-quantile regression optim_mgrfe optim quantile regression with fixed effects optim_mqrlasso optim M-quantile regression with fixed effects and LASSO optim quantile regression optim_qr optim_qrfe optim quantile regression with fixed effects optim quantile regression with fixed effects optim_qrlasso and LASSO Plot multiple penalized quantile regression plot_taus Penalized quantile regression with fixed pqr effects pqrfe-package Penalized Quantile Regression with Fixed **Effects** print.PQR Print an PQR psi_als Psi ALS Psi M-quantile psi_mq

Covariance

Rho Koenker

Rho M-quantile

Identify significance

4 choice_p

Maintainer

NA

Author(s)

NA

check_lambda check_lambda

Description

check lambda

Usage

```
check_lambda(lambda, infb, supb)
```

Arguments

lambda Numeric, value of lambda.

infb Numeric, lower bound of lambda. supb Numeric, upper bound of lambda.

Value

lambda Numeric, valid value of lambda.

 ${\tt choice_p} \qquad \qquad {\tt choice\ model}$

Description

choice model

Usage

```
choice_p(effect)
```

Arguments

effect Factor, simple, fixed or lasso.

Value

penalty Numeric, 1, 2 and 3.

clean_data 5

clean_data

Clean missings

Description

Clean missings

Usage

```
clean_data(y, x, id)
```

Arguments

y Numeric vector, outcome.

x Numeric matrix, covariates

id Numeric vector, identifies the unit to which the observation belongs.

Value

list with the same objects y, x, id, but without missings.

Examples

```
n = 10
m = 4
d = 3
N = n*m
L = N*d
x = matrix(rnorm(L), ncol=d, nrow=N)
subj = rep(1:n, each=m)
alpha = rnorm(n)
beta = rnorm(d)
eps = rnorm(N)
y = x %*% beta + matrix(rep(alpha, each=m) + eps)
y = as.vector(y)
x[1,3] = NA
clean_data(y=y, x=x, id=subj)
```

d_psi_mq

d_psi_als

D Psi ALS

Description

Derivative of Psi asymetric least square

Usage

```
d_psi_als(x, tau)
```

Arguments

x generic vector tau percentile

Value

y vector, linear transformation by derivative ALS psi

 d_psi_mq

D Psi M-quantile

Description

Derivative of psi M-quantile

Usage

```
d_psi_mq(x, tau, c)
```

Arguments

x generic vectortau percentilec tuning

Value

y vector, linear transformation by second derivative m-rho

f_den 7

 f_den

Kernel density

Description

Kernel density

Usage

f_den(x)

Arguments

Χ

Numeric vector.

Value

y vector, kernel density estimation.

Examples

```
x = rnorm(10)
f_den(x)
```

 f_{tab}

Tabular function

Description

Tabular function

Usage

```
f_tab(N, n, d, theta, sig2, kind)
```

Arguments

N	sample size.
n	length of alpha.
d	length of beta.
theta	Numeric vector.
sig2	Numeric vector.

kind Numeric, 1 means alpha, 2 means beta

8 loss_erfe

Value

a list with a dataframe Core and a matrix Matx, both display the same information

loss_er	Loss expectile regression

Description

This function returns the core of expectile regression to be minimized

Usage

```
loss\_er(beta, x, y, tau, N, d)
```

Arguments

beta	initial values
x	design matrix
У	vector output
tau	percentile
N	sample size
d	columns of x

Value

eta Numeric, sum of expectile regression

loss_erfe	Loss expectile regression with fixed effects
ioss_erte	Loss expectue regression with fixed effects

Description

This function returns the core of expectile regression with fixed effects to be minimized

```
loss_erfe(theta, x, y, z, tau, n, d, mm)
```

loss_erlasso 9

Arguments

theta	initial values
x	design matrix
У	vector output
z	incident matrix
tau	percentile
n	N sample size
d	columns of x
mm	n columns of z

Value

eta Numeric, sum of expectile regression with fixed effects

loss_erlasso	Loss lasso expectile regression with fixed effects	

Description

This function returns the core of lasso expectile regression with fixed effects to be minimized

Usage

```
loss\_erlasso(theta, x, y, z, tau, n, d, mm, lambda)
```

Arguments

theta	initial values
x	design matrix
У	vector output
z	incident matrix
tau	percentile
n	N sample size
d	columns of x
mm	n columns of z
lambda	constriction parameter

Value

eta Numeric, sum of lasso expectile regression with fixed effects

loss_mqrfe

loss_mqr Loss M-quantile regression	
-------------------------------------	--

Description

This function returns the core of M-quantile regression to be minimized

Usage

```
loss_mqr(beta, x, y, tau, N, d, c)
```

Arguments

beta	initial values
X	design matrix
у	vector output
tau	percentile
N	sample size
d	columns of x
С	tuning

Value

eta Numeric, sum of M-quantile regression

loss_mqrfe	Loss M-quantile regression with fixed effects	

Description

This function returns the core of M-quantile regression with fixed effects to be minimized

```
loss_mqrfe(theta, x, y, z, tau, n, d, mm, c)
```

loss_mqrlasso 11

Arguments

theta	initial values
x	design matrix
У	vector output
Z	incident matrix
tau	percentile
n	N sample size
d	columns of x
mm	n columns of z
С	tuning

Value

eta Numeric, sum of M-quantile regression with fixed effects

loss_mqrlasso	Loss lasso M-quantile regression with fixed effects
•	1 0 0 00

Description

This function returns the core of lasso M-quantile regression with fixed effects to be minimized

Usage

```
loss_mqrlasso(theta, x, y, z, tau, n, d, mm, c, lambda)
```

Arguments

theta	initial values
X	design matrix
У	vector output
Z	incident matrix
tau	percentile
n	N sample size
d	columns of x
mm	n columns of z
С	tuning

lambda constriction parameter

Value

eta Numeric, sum of lasso M-quantile regression with fixed effects

loss_qrfe

Description

This function returns the core of quantile regression to be minimized

Usage

```
loss_qr(beta, x, y, tau, N, d)
```

Arguments

beta	initial values
x	design matrix
У	vector output
tau	percentile
N	sample size
d	columns of x

Value

eta Numeric, sum of quantile regression

loss_qrfe	Loss quantile re	egression w	vith fixed effects
-----------	------------------	-------------	--------------------

Description

This function returns the core of quantile regression with fixed effects to be minimized

Usage

```
loss_qrfe(theta, x, y, z, tau, n, d, mm)
```

Arguments

theta	initial values
X	design matrix
У	vector output
Z	incident matrix
tau	percentile
n	N sample size
d	columns of x
mm	n columns of z

loss_qrlasso 13

Value

eta Numeric, sum of quantile regression with fixed effects

-		
loss_	ar	lasso
1000_	. Ч -	LUJJU

Loss lasso quantile regression with fixed effects

Description

This function returns the core of lasso quantile regression with fixed effects to be minimized

Usage

```
loss_qrlasso(theta, x, y, z, tau, n, d, mm, lambda)
```

Arguments

theta	initial values
X	design matrix
у	vector output
z	incident matrix
tau	percentile
n	N sample size
d	columns of x
mm	n columns of z
lambda	constriction parameter

Value

eta Numeric, sum of lasso quantile regression with fixed effects

mpqr

Multiple penalized quantile regression

Description

Estimate penalized quantile regression for several taus

```
mpqr(x, y, subj, tau = 1:9/10, effect = "simple", c = 0)
```

optim_er

Arguments

x	Numeric matrix, covariates
У	Numeric vector, outcome.
subj	Numeric vector, identifies the unit to which the observation belongs.
tau	Numeric vector, identifies the percentiles.
effect	Factor, "simple" simple regression, "fixed" regression with fixed effects, "lasso" penalized regression with fixed effects.
С	Numeric, 0 is quantile, Inf is expectile, any number between zero and infinite is M-quantile.

Value

Beta Numeric array, with three dimmensions: 1) tau, 2) coef., lower bound, upper bound, 3) exploratory variables.

Beta array with dimension (ntau, 3, d), where Beta[i,1,k] is the i-th tau estimation of beta_k, Beta[i,2,k] is the i-th tau lower bound 95% confidence of beta_k, and Beta[i,3,k] is the i-th tau lower bound 95% confidence of beta_k.

Examples

```
n = 10
m = 5
d = 4
N = n*m
L = N*d
x = matrix(rnorm(L), ncol=d, nrow=N)
subj = rep(1:n, each=m)
alpha = rnorm(n)
beta = rnorm(d)
eps = rnorm(N)
y = as.vector(x %*% beta + rep(alpha, each=m) + eps)
Beta = mpqr(x,y,subj,tau=1:9/10, effect="fixed", c = 1.2)
Beta
```

optim_er

optim expectile regression

Description

This function solves a expectile regression

```
optim_er(beta, x, y, tau, N, d)
```

optim_erfe 15

Arguments

beta	Numeric vector, initials values beta.
х	Numeric matrix, covariates.
У	Numeric vector, output.
tau	Numeric scalar, the percentile.
N	Numeric integer, sample size.
d	Numeric integer, X number of columns.

Value

parametric vector and residuals.

optim_erfe	optim expectile regression with fixed effects	
------------	---	--

Description

This function solves a expectile regression with fixed effects

Usage

```
optim_erfe(beta, alpha, x, y, z, tau, N, d, n)
```

Arguments

beta	Numeric vector, initials values beta.
alpha	Numeric vector, initials values alpha.
x	Numeric matrix, covariates.
У	Numeric vector, output.
z	Numeric matrix, incidence matrix.
tau	Numeric scalar, the percentile.
N	Numeric integer, sample size.
d	Numeric integer, X number of columns.
n	Numeric integer, length of alpha.

Value

parametric vector and residuals.

optim_mqr

optim_erlasso optim expectile regression with fixed effects and LASSO	
---	--

Description

This function solves a expectile regression with fixed effects and LASSO

Usage

```
optim_erlasso(beta, alpha, x, y, z, tau, N, d, n)
```

Arguments

beta	Numeric vector, initials values beta.
alpha	Numeric vector, initials values alpha.
X	Numeric matrix, covariates.
У	Numeric vector, output.
z	Numeric matrix, incidence matrix.
tau	Numeric scalar, the percentile.
N	Numeric integer, sample size.
d	Numeric integer, X number of columns.
n	Numeric integer, length of alpha.

Value

parametric vector and residuals.

optim_mqr	optim M-quantile regression

Description

This function solves a M-quantile regression

```
optim_mqr(beta, x, y, tau, N, d, c)
```

optim_mqrfe 17

Arguments

beta	Numeric vector, initials values beta.
X	Numeric matrix, covariates.
у	Numeric vector, output.
tau	Numeric scalar, the percentile.
N	Numeric integer, sample size.
d	Numeric integer, X number of columns.
С	Numeric, positive real value.

Value

parametric vector and residuals.

optim_mqrfe optim quantile regression with fixed effects	
--	--

Description

This function solves a quantile regression with fixed effects

Usage

```
optim_mqrfe(beta, alpha, x, y, z, tau, N, d, n, c)
```

Arguments

beta	Numeric vector, initials values beta.
alpha	Numeric vector, initials values alpha.
X	Numeric matrix, covariates.
у	Numeric vector, output.
z	Numeric matrix, incidence matrix.
tau	Numeric scalar, the percentile.
N	Numeric integer, sample size.
d	Numeric integer, X number of columns.
n	Numeric integer, length of alpha.
С	Numeric, positive real value.

Value

parametric vector and residuals.

optim_qr

optim_mqrlasso	optim M-quantile regression with fixed effects and LASSO	

Description

This function solves a M-quantile regression with fixed effects and LASSO

Usage

```
optim_mqrlasso(beta, alpha, x, y, z, tau, N, d, n, c)
```

Arguments

beta	Numeric vector, initials values beta.
alpha	Numeric vector, initials values alpha.
х	Numeric matrix, covariates.
У	Numeric vector, output.
z	Numeric matrix, incidence matrix.
tau	Numeric scalar, the percentile.
N	Numeric integer, sample size.
d	Numeric integer, X number of columns.
n	Numeric integer, length of alpha.
С	Numeric, positive real value.

Value

parametric vector and residuals.

optim_qr	optim quantile regression	

Description

This function solves a quantile regression

```
optim_qr(beta, x, y, tau, N, d)
```

optim_qrfe 19

Arguments

beta	Numeric vector, initials values.
Х	Numeric matrix, covariates.
У	Numeric vector, output.
tau	Numeric scalar, the percentile.
N	Numeric integer, sample size.
d	Numeric integer, X number of columns.

Value

parametric vector and residuals.

opt	im_qrfe	optim quantile regression with fixed effects

Description

This function solves a quantile regression with fixed effects

Usage

```
optim_qrfe(beta, alpha, x, y, z, tau, N, d, n)
```

Arguments

beta	Numeric vector, initials values beta.
alpha	Numeric vector, initials values alpha.
X	Numeric matrix, covariates.
у	Numeric vector, output.
z	Numeric matrix, incidence matrix.
tau	Numeric scalar, the percentile.
N	Numeric integer, sample size.
d	Numeric integer, X number of columns.
n	Numeric integer, length of alpha.

Value

parametric vector and residuals.

20 plot_taus

optim quantile regression with fixed effects and LASSO

Description

This function solves a quantile regression with fixed effects and LASSO

Usage

```
optim_qrlasso(beta, alpha, x, y, z, tau, N, d, n)
```

Arguments

beta	Numeric vector, initials values beta.
alpha	Numeric vector, initials values alpha.
х	Numeric matrix, covariates.
У	Numeric vector, output.
z	Numeric matrix, incidence matrix.
tau	Numeric scalar, the percentile.
N	Numeric integer, sample size.
d	Numeric integer, X number of columns.
n	Numeric integer, length of alpha.

Value

parametric vector and residuals.

plot_taus

Plot multiple penalized quantile regression

Description

plot penalized quantile regression for several taus

```
plot_taus(
    Beta,
    tau = 1:9/10,
    D,
    col = 2,
    lwd = 1,
    lty = 2,
```

plot_taus 21

```
pch = 16,
  cex.axis = 1,
  cex.lab = 1,
  main = "",
  shadow = "gray90"
)
```

Arguments

Numeric array, with three dimmensions: 1) tau, 2) coef., lower bound, upper Beta bound, 3) exploratory variables. Numeric vector, identifies the percentiles. tau D covariate's number. col color. lwd line width. lty line type. point character. pch cex.axis cex axis length. cex axis length. cex.lab main title.

Value

None

shadow

Examples

```
n = 10
m = 5
d = 4
N = n*m
L = N*d
x = matrix(rnorm(L), ncol=d, nrow=N)
subj = rep(1:n, each=m)
alpha = rnorm(n)
beta = rnorm(d)
eps = rnorm(N)
y = as.vector(x %*% beta + rep(alpha, each=m) + eps)

Beta = mpqr(x,y,subj,tau=1:9/10, effect="lasso", c = Inf)
plot_taus(Beta,tau=1:9/10,D=1)
```

color of the Confidence Interval 95%

22 pqr

pqr	Penalized quantile regression with fixed effects	

Description

Estimate parameters and tuning parameter.

Usage

```
pqr(x, y, subj, tau = 0.5, effect = "simple", c = 1)
```

Arguments

Х	Numeric matrix, covariates
у	Numeric vector, outcome.
subj	Numeric vector, identifies the unit to which the observation belongs.
tau	Numeric scalar between zero and one, identifies the percentile.
effect	Factor, "simple" simple regression, "fixed" regression with fixed effects, "lasso" penalized regression with fixed effects.
С	Numeric, 0 is quantile, Inf is expectile, any number between zero and infinite is M-quantile.

Value

alpha Numeric vector, intercepts' coefficients.

beta Numeric vector, exploratory variables' coefficients.

lambda Numeric, estimated lambda.

res Numeric vector, percentile residuals.

tau Numeric scalar, the percentile.

penalty Numeric scalar, indicate the chosen effect.

c Numeric scalar, indicate the chosen c.

sig2_alpha Numeric vector, intercepts' standard errors.

sig2_beta Numeric vector, exploratory variables' standard errors.

Tab_alpha Data.frame, intercepts' summary.

Tab_beta Data.frame, exploratory variables' summary.

Mat_alpha Numeric matrix, intercepts' summary.

Mat_beta Numeric matrix, exploratory variables' summary.

References

Koenker, R. (2004) "Quantile regression for longitudinal data", J. Multivar. Anal., 91(1): 74-89, <doi:10.1016/j.jmva.2004.05.006>

print.PQR 23

Examples

```
n = 10
m = 5
d = 4
N = n*m
x = matrix(rnorm(d*N), ncol=d, nrow=N)
subj = rep(1:n, each=m)
alpha = rnorm(n)
beta = rnorm(d)
eps = rnorm(N)
y = as.vector(x %*% beta + rep(alpha, each=m) + eps)
m1 = pqr(x=x, y=y, subj=subj, tau=0.75, effect="lasso", c = 0)
m1$Tab_beta
```

print.PQR

Print an PQR

Description

Define the visible part of the object class PQR

Usage

```
## S3 method for class 'PQR'
print(x, ...)
```

Arguments

x An object of class "PQR"

... further arguments passed to or from other methods.

Value

None

psi_als

Psi ALS

Description

Psi asymetric least square

```
psi_als(x, tau)
```

24 q_cov

Arguments

x generic vector tau percentile

Value

y vector, linear transformation by ALS psi

 ${\tt psi_mq}$

Psi M-quantile

Description

Psi M-quantile

Usage

Arguments

x generic vectortau percentilec tuning

Value

y vector, linear transformation by m-rho derivative

q_cov

Covariance

Description

Estimate Covariance matrix

```
q_cov(n, N, d, Z, X, tau, res, penalty, c)
```

rho_koenker 25

Arguments

n	length of alpha.
N	sample size.
d	length of beta.
Z	Numeric matrix, incident matrix.
Χ	Numeric matrix, covariates.
tau	Numeric, identifies the percentile.
res	Numeric vector, residuals.
penalty	Numeric, 1 quantile regression, 2 quantile regression with fixed effects, 3 Lasso quantile regression with fixed effects
С	Numeric, tuning

Value

a list with two matrices: sig2_alpha (which is the matrix of covariance of estimated alpha) and sig2_beta (which is the matrix of covariance of estimated beta)

|--|

Description

Rho Koenker

Usage

```
rho_koenker(x, tau)
```

Arguments

X	generic vector
tau	percentile

Value

y vector, linear transformation by rho

26 sgf

rho_mq

Rho M-quantile

Description

Rho M-quantile

Usage

```
rho_mq(x, tau, c)
```

Arguments

x generic vectortau percentilec tuning

Value

y vector, linear transformation by m-rho

sgf

Identify significance

Description

Identify significance

Usage

sgf(x)

Arguments

Χ

Numeric vector.

Value

```
y vector Factor, symbol flag of significant p-values.
a vector of Factors, i.e., the symbols to help p-value interpretation
```

Examples

```
n = 10
pvalue = rgamma(10,1,10)
sgf(pvalue)
```

Index

* package	psi_mq, 24
pqrfe-package, 2	q_cov, 24
<pre>check_lambda, 4 choice_p, 4 clean_data, 5</pre>	rho_koenker, 25 rho_mq, 26
<pre>d_psi_als, 6 d_psi_mq, 6</pre>	sgf, 26
f_den, 7 f_tab, 7	
loss_er, 8 loss_erfe, 8 loss_erlasso, 9 loss_mqr, 10 loss_mqrfe, 10 loss_mqrlasso, 11 loss_qr, 12 loss_qrfe, 12 loss_qrlasso, 13	
mpqr, 13	
<pre>optim_er, 14 optim_erfe, 15 optim_erlasso, 16 optim_mqr, 16 optim_mqrfe, 17 optim_mqrlasso, 18 optim_qr, 18 optim_qrfe, 19 optim_qrlasso, 20</pre>	
plot_taus, 20 pqr, 22 pqrfe (pqrfe-package), 2 pqrfe-package, 2 print.PQR, 23 psi_als, 23	