1, total Sample Variance = TR [Sx], Generalized Sample Variance = [Sx] $\mathbb{O}[0,0]$, $\mathbb{I}[0,0]$ = 3, $\mathbb{I}[0,0]$ = $\mathbb{O}[0,0]$ = $\mathbb{I}[0,0]$ = A for queition 4.5.6. I write a R mark dun file to domonitrate it. 2. Show that |S|=|R|17/1=|Sir Yxy= Cor (x, y) , A Sxx=Var(X). \$ P=2. F=[rxy], S=[w(x) www.] $V_{or}(X)V_{ol}(Y)-\left[fo_{v}(X,Y)\right]^{2}=\left(1-\frac{\left(f_{ol}(X,Y)\right)^{2}}{V_{ol}(X)V_{ol}(Y)}\right)X\left(v_{ol}(X)\left(v_{ol}(Y)\right)$ = Var[1)Var[4) - [(UV(X,Y)] #

let R=[京、山) Sx[京、京、 det(ABC)=detA·detB·detC,

[. |R|= () |S|- ()

 $\frac{1}{3}$ (D Sample man $\frac{1}{2}$ = $\frac{1}{8}$ + $\frac{1}{8}$ = 0.768+0.508 + 0.43.8 + 0.161=1.875.4 = 6.88+0.88+0.17 +0.043+2[0.685+a19340.1844.496+0.667+4.639]=3.914#

2) Sample Mean of 1/2 = 1/1 - 1/2 = 0,7/11-0,508= 0,258 # Sample Variance of yz = Var (k1) +Var (k2) -> cov (k1, Y2) = 0.856+0.568-0.635X2=0.154#.

= 0.587+0.336+0.123-0.258-0.223-0.082=0.483.

0,43-0,258x[.875=,-0.00075=,0, A TIK

G(N)=6, E(X)= (4764+76+64)=42. 92-36=6.

4. (I concentrate this in R, too). (12) = (12,9,19) => (x-G(N)) = 2. (9.72= h(x-M) 5-1 (x-M). (0/(K,K) = - 10 X=[\frac{1}{3}], \text{X=[6,10], Mo=[0,11], (\text{X-Mo]=(4,+). N=4, S=[\frac{8}{3}-\frac{9}{3}]=\frac{4}{4}[\frac{2}{3}-\frac{9}{3}] 72 = 9 [+ +] [= 8] [+] = 9 [+] = 9 [+] = 9 [+] = 50 (b). T2~T2,3 = 3.4 F2,2=3. F2,2. (et's d=95%) T2~ Tqsq,23 = 3. Fqq,22 =31/9=57. (c) = $\frac{50}{11}$ < 57: We and reject Ho = $\left(\frac{40}{40}\right) = \left(\frac{40}{40}\right)$. I demonstrate in R.

5. i = ||f|| ||f||by using MANOVA, we reject to because Pi (7F) is 1.768e-0.9 <<0.001. From the output above, it can be seen that the variables are highly significantly ditant among tartles. of I demonstrate in R. b. by asing MANOVA, we con't reject to and say there are not a significant species effect and nutrients effect one the spectral reflectance.

by taking two-way ANOVA twice, we get the same insights. The realts of the two way ANOVA and MANOVA are consistent with each other. > Nutricute effect. Not significant in either the MANOVA or the two way Anovas for each 560 CM And No CM. Spaies effat: those was no significant interaction effect in either of the two-way ANOVA.

Var(1,1 = {2,6,6,8} =) 1,-1 = (1.50) = 8

Untitled

柯宥圻

2023-03-25

HW4

#Question 4

QUESTION 4 I calculate the T2 value by hand on the second page, and I just use the package to confirm whether I calculate right.

data <- read.csv(file="C:/Users/user/Desktop/HW4-4.csv")</pre>

```
## x1 x2
## 1 2 12
## 2 8 9
## 3 6 9
## 4 8 10
# install.packages("ICSNP")
library(ICSNP)
## Warning: 套件 'ICSNP' 是用 R 版本 4.2.3 來建造的
## 載入需要的套件: mvtnorm
## 載入需要的套件: ICS
## Warning: 套件 'ICS' 是用 R 版本 4.2.3 來建造的
HotellingsT2(data, mu=c(7,11))
## Hotelling's one sample T2-test
##
```

Question 5

since the P value is 0.1803, we can't reject H0 and say that true location is not equal to c(7,11).

alternative hypothesis: true location is not equal to c(7,11)

T.2 = 4.5455, df1 = 2, df2 = 2, p-value = 0.1803

we want to know the relationship between man's turtle and woman's turtle. Therefore, we have three dimensions. We take MANOVA to see if the

44

45

46

47

48

sex

Residuals 46

Response width :

MANOVA for the species effect

summary(species_manova)

Question 6-b

2

2

2

2

set.seed(1234)

125

127

128

131

135

install.packages("dplyr")

dplyr::sample_n(turtle, 48)

93

96

95

106

45

45

45

46

data: data

two populations are equal.

```
turtle <- read.csv(file="C:/Users/user/Desktop/HW4-5.csv")</pre>
turtle
      sex length width height
## 1 1 98 81
## 2 1 103 84
                             38
              103
                     86
                             42
## 4
        1
              105
                     86
                             44
## 5
        1
              109
                     88
                             50
## 6
        1
             123
                     92
                             46
## 7
        1
             123
                     95
                             51
## 8
        1
             133
                     99
                             51
## 9
        1
              133
                    102
                             51
        1
## 10
             133
                    102
                             48
## 11
        1
             134
                    100
                             49
## 12
        1
              136
                    102
                             51
## 13
        1
             138
                     98
                             51
## 14
        1
             138
                     99
                             51
## 15
        1
              141
                    105
                             53
## 16
        1
             147
                    108
                             57
## 17
        1
             149
                    107
                             55
## 18
        1
              153
                    107
                             56
## 19
        1
             155
                    115
                             63
## 20
        1
             155
                    117
                             60
## 21
        1
              158
                    115
                             62
        1
## 22
             159
                    118
                             63
##
   23
        1
              162
                    124
                             61
##
   24
        1
                    132
                             67
              177
              93
## 25
        2
                     74
                             37
##
   26
        2
               94
                     78
                             35
              96
## 27
        2
                             35
                     80
        2
## 28
              101
                     84
                             39
##
   29
        2
              102
                     85
                             38
        2
                             37
##
              103
   30
                     81
##
   31
        2
              104
                     83
                             39
        2
##
   32
              106
                     83
                             39
        2
##
             107
                             38
   33
                     82
## 34
              112
                             40
##
   35
        2
             113
                             40
        2
##
   36
             114
                     86
                             40
   37
              116
                     90
                             43
        2
##
   38
              117
                     90
                             41
## 39
        2
             117
                     91
                             41
## 40
        2
              119
                             41
        2
             120
## 41
                     89
                             40
        2
## 42
             120
                     93
                             44
## 43
        2
              121
                             42
```

```
##
      sex length width height
## 1
        2
                             39
             101
                     84
## 2
        1
             147
                    108
                             57
```

```
## 3
       1
            159
                  118
                          63
       2
## 4
            116
                   90
                          43
## 5
       2
            125
                   93
                          45
## 6
       1
            133
                  102
                          51
            109
                          50
## 7
       1
                   88
## 8
       2
            117
                          41
                   90
## 9
       2
            131
                   95
                          46
## 10
       1
            105
                          44
       2
## 11
            112
                          40
## 12
## 13 2
                   78
                          35
## 14 1
                          46
            141
## 15
                  105
                          53
## 16 1
            138
                  99
                          51
## 17
            155
                  117
            107
## 18
                   82
                          38
## 19
            103
                   81
                         37
## 20
       1
            177
                  132
                          67
            117
## 21
                   91
                         41
## 22
       2
            135
                  106
                         47
## 23
      1
            158
                  115
## 24
            133
                  99
                          51
## 25
       2
            106
                   83
                         39
## 26
      1
            103
                         42
                         35
## 27
            96
                   80
## 28
            120
                   93
                         44
## 29
            103
                   84
                         38
## 30
            120
                   89
                         40
## 31
                   74
                         37
## 32
            119
                   93
                         41
## 33
       1
            136
                  102
                          51
## 34
       1
            162
                  124
                          61
## 35
            123
                          51
       1
                  95
## 36
       2
            121
                   95
                         42
            155
## 37
                  115
                          63
       2
            113
                         40
## 38
                   88
## 39
                         45
## 40
       1
            153
                  107
                          56
## 41
      1
            138
                  98
                          51
## 42
            102
                  85
## 43
            149
                  107
                          55
## 44
      2
            104
                  83
                         39
## 45 1
            98
                   81
                         38
## 46
      1
            134
                  100
                         49
## 47 2
            114
                  86
                         40
## 48 1
            133
                  102
res.man <- manova(cbind(length, width, height) ~ sex, data = turtle)</pre>
summary(res.man)
```

```
By using MANOVA, it can be seen that the P value is quite small, and the variables are not all the same. We use the summary.aov() to see which
differ.
```

44 1.768e-09 ***

Df Pillai approx F num Df den Df Pr(>F)

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

species_manova <- manova(cbind(x1, x2) ~ species, data = CM_mean)</pre>

Df Pillai approx F num Df den Df Pr(>F)

species 2 1.4034 3.5281 4 6 0.08244.

1 0.62562 24.509

```
summary.aov(res.man)
## Response length:
            Df Sum Sq Mean Sq F value
                                       Pr(>F)
            1 6165.3 6165.3 20.889 3.656e-05 ***
## sex
## Residuals 46 13576.6 295.1
```

```
##
                 Df Sum Sq Mean Sq F value Pr(>F)
 ## sex
                  1 2451.0 2451.02 22.104 2.376e-05 ***
 ## Residuals 46 5100.8 110.89
 ## ---
 ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 ## Response height:
 ## Df Sum Sq Mean Sq F value Pr(>F)
## sex 1 1645.0 1645.02 46.006 1.931e-08 ***
 ## Residuals 46 1644.8 35.76
 ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
as the code shown, the three variables are all highly significantly different among those drawn turtles.
Question 6-a
we want to study whether the spectral reflectance at wavalength 560nm and 720nm has the species effect and nutrient effect on the alpha 5%. We
first do the MANOVA test to see whether the data has these effect.
 CM_mean < - data.frame(x1 = c(10.35, 13.41, 7.78, 10.4, 17.78, 10.4),
                         x2 = c(25.93, 38.63, 25.15, 24.25, 41.45, 29.2),
                         species = factor(c(1, 2, 3, 1, 2, 3)),
                         nutrient = factor(c(1,1,1,2,2,2)))
```

```
## Residuals 3
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# MANOVA for the nutrient effect
nutrient_manova <- manova(cbind(x1, x2) ~ nutrient, data = CM_mean)</pre>
summary(nutrient_manova)
```

```
Df Pillai approx F num Df den Df Pr(>F)
 ## nutrient 1 0.38864 0.95353 2 3 0.478
 ## Residuals 4
Based on the MANOVA results, we can conclude that there is no significant species effect on the spectral reflectance, but no significant nutrient
effect.
```

Based on the MANOVA results, we fail to reject the null hypothesis for the species effect, but we can still perform the two-way ANOVAs for both the 560CM and the 720CM observations to check for any significant effects of the nutrients and their interaction. # two-way ANOVA for 560CM

```
anov560 <- aov(CM_mean$x1 ~ CM_mean$species + CM_mean$nutrient + CM_mean$species:CM_mean$nutrient)</pre>
summary(anov560)
```

Df Sum Sq Mean Sq ## CM_mean\$species 2 47.48 23.738 ## CM_mean\$nutrient 1 8.26 8.260 ## CM_mean\$species:CM_mean\$nutrient 2 4.72 2.361

anov720 <- aov(CM_mean\$x2 ~ CM_mean\$species + CM_mean\$nutrient + CM_mean\$species:CM_mean\$nutrient)</pre>

```
summary(anov720)
                                 Df Sum Sq Mean Sq
## CM_mean$species
                                  2 262.24 131.12
## CM_mean$nutrient
                                  1 4.49
                                              4.49
## CM_mean$species:CM_mean$nutrient 2 9.10
                                              4.55
```

The output of each ANOVA includes the Sum of Squares (SS), the Degrees of Freedom (DF), the Mean Square (MS), the F statistic, and the pvalue for each main effect and interaction. Here is the expected output:

```
CM_mean$species
```

two-way ANOVAs.

two-way ANOVA for 720CM

```
Df Sum Sq Mean Sq F value Pr(>F)
                              2 47.48 23.738 1.0357 0.42410
                            1 8.26 8.260 0.3596 0.57989
CM_mean$nutrient
CM_mean$species:CM_mean$nutrient 2 4.72 2.361 0.1026 0.90992
Residuals
                             3 73.17 24.389
                              Df Sum Sq Mean Sq F value Pr(>F)
CM_mean$species
                              2 262.24 131.120 2.0359 0.22498
CM_mean$nutrient
                             1 4.49 4.490 0.0698 0.80434
CM_mean$species:CM_mean$nutrient 2 9.10 4.550 0.0707 0.80155
Residuals
                              3 158.13 52.710
```

The results of the MANOVA test and the two-way ANOVAs are consistent with each other. Specifically, the species effect was not significant in either the MANOVA or the two-way ANOVAs for either the 560CM or the 720CM observations. The nutrient effect was not significant in either the MANOVA or the two-way ANOVAs for either the 560CM or the 720CM observations. There was also no significant interaction effect in either of the