1 Hensel lifts

Let p be a prime and suppose we have a polynomial factorization

$$u = \bar{v} \cdot \bar{w} \mod p$$

with p-prime, where \bar{v} and \bar{w} are relatively prime monic polynomials in the variable x. Set

$$\deg \bar{v} = m \quad \deg \bar{w} = n.$$

Our goal is to construct monic polynomials v, w of the same degrees as \bar{v}, \bar{w} with

$$u = v \cdot w \mod p^k$$
.

Since factorization mod p is unique, it follows that $v = \bar{v} \mod p$ and $w = \bar{w} \mod p$. Our secondary goal is to show that, mod p^k , these polynomials are unique. Proceed by induction. Suppose we have already found v, w as above and are looking for v', w' with

$$u = v' \cdot w' \mod p^{k+1}$$
.

Over \mathbb{Z} , we have that

$$u = vw + p^k z$$

for some polynomial z. Since u, v, w are monic, the leading monomials of u and vw are x^{m+n} and so $\deg z = m+n-1$. Since v, w are unique $\mod p^k$, it follows that v', w' must be of the form

$$v' = v + p^k a$$
 $w' = w + p^k b$

with $\deg a < \deg v = m$ and $\deg b < \deg w = n$.

$$v'w' = (v + p^{k}a) (w + p^{k}b)$$

$$= vw + p^{k}(aw + bv) + p^{2k}ab$$

$$= u + p^{k}z + p^{k}(aw + bv) + p^{2k}ab$$

$$= u + p^{k} (z + aw + bv) + p^{2k}ab$$
(1)

It follows that

$$z + aw + bv = 0 \mod p \tag{2}$$

Introduce notation for the coefficients of the polynomials in (2):

$$a = a_1 x^{m-1} + \dots + a_m$$

$$b = b_1 x^{n-1} + \dots + b_m$$

$$z = z_1 x^{m+n-1} + \dots + z_{m+n}$$

$$w = x^m + w_1 \cdot x^{m-1} + \dots + w_m$$

$$v = x^n + v_1 \cdot x^{n-1} + \dots + v_n$$
(3)

Then (2) is a linear system in the m+n variables $a_1, \ldots, a_m, b_1, \ldots, b_n$ with deg z+1=m+n equations. More precisely, the matrix form of the equation (2) is given by the Sylvester matrix:

$$\begin{pmatrix}
w_{0} & 0 & \cdots & 0 & v_{0} & 0 & \cdots & 0 \\
w_{1} & w_{0} & \cdots & 0 & v_{1} & v_{0} & \cdots & 0 \\
w_{2} & w_{1} & \ddots & 0 & v_{2} & v_{1} & \ddots & 0 \\
\vdots & \vdots & \ddots & w_{0} & \vdots & \vdots & \ddots & v_{0} \\
w_{m} & w_{m-1} & \cdots & \vdots & v_{n} & v_{n-1} & \cdots & \vdots \\
0 & w_{m} & \ddots & \vdots & 0 & v_{n} & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & w_{m-1} & \vdots & \vdots & \ddots & v_{n-1} \\
0 & 0 & \cdots & w_{m} & 0 & 0 & \cdots & v_{n}
\end{pmatrix}
\begin{pmatrix}
a_{1} \\ a_{2} \\ \vdots \\ a_{m} \\ b_{1} \\ b_{2} \\ \vdots \\ b_{n}
\end{pmatrix} = \begin{pmatrix}
z_{1} \\ z_{2} \\ \vdots \\ z_{m} \\ z_{m+1} \\ z_{m+2} \\ \vdots \\ z_{m+n}
\end{pmatrix} \mod p,$$
(4)

where for convenience we have set $v_0 = w_0 = 1$. The determinant of the matrix above, called the resultant, is known to equal $\operatorname{res}(v, w) = w_0^m v_0^n \prod_{i,j} (\nu_i - \mu_j)$,

where ν_i, μ_j are the roots of v and w over the algebraic closure of $\mathbb{Z}/p\mathbb{Z}$. In our starting factorization $u = \bar{v} \cdot \bar{w}$, the factors \bar{v}, \bar{w} are relatively prime and so have no common roots and we have that $\operatorname{res}(\bar{v}, \bar{w}) \neq 0$. At the same time we established that $v = \bar{v} \mod p$ and $w = \bar{w} \mod p$ and so $\operatorname{res}(\bar{v}, \bar{w}) = \operatorname{res}(v, w) \neq 0$. Since the determinant of (4) is non-zero, (4) has a unique solution. This shows both the existence and uniqueness of v', w'. This in turn concludes our inductive step.

1.1 Hensel lift for more than two factors

We want to extend the Hensel lift from the previous section to the case of more than two factors. Let

$$u = \bar{v}_1 \dots \bar{v}_l \mod p$$

be a factorization with p-prime. The considerations of the two factor case carry over to the multi-factor one. TODO(tmilev): spell out the notation. Equation (1) becomes

$$v'_1 \dots v'_k = u + p^k (z + a_1 v_2 \dots v_l + v_1 a_2 \dots v_l + \dots + v_1 \dots v_{l-1} a_l) + p^{2k} s$$

for some polynomial s. Let t_j be the polynomial obtained by removing the j^{th} multiplicand from $v_1 \dots v_l$, i.e., let

$$t_j = \frac{v_1 \dots v_l}{v_i}.$$

Then equation (4) carries over directly. Its matrix becomes

$$\begin{pmatrix} t_{1,0} & 0 & \cdots & 0 & t_{2,0} & 0 & \cdots & 0 & \dots \\ \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & \dots \\ \vdots & \ddots & \ddots & 0 & \vdots & \ddots & \ddots & 0 & \dots \\ t_{1,\deg t_1} & \ddots & \ddots & t_{1,0} & t_{2,\deg t_2} & \ddots & \ddots & t_{2,0} & \dots \\ 0 & \ddots & \vdots & 0 & \ddots & \ddots & \vdots & \dots \\ \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & \dots \\ 0 & \cdots & 0 & t_{1,\deg t_1} & 0 & \cdots & 0 & t_{2,\deg t_2} & \dots \end{pmatrix}$$