Contents

Handling numbers

Section outline

- Handling numbers
 - Radix number systems
 - Complementation
 - Conversion of bases

- Binary to BCD
- Binary codes
- Error detecting code
- Error correcting code
- Mininum bits for 1-bit ECC
- Mininum bits for 1-bit EDC

- $N = a_m b^m + \ldots + a_1 b + a_0 + a_{-1} b^{-1} + \ldots + a_{-p} b^{-p}$ $0 \le a_i < b$, MSB: a_m , LSB: a_{-p}
- \bullet 123.45 = 1 × 10² + 2 × 10¹ + 3 × 10⁰ + 4 × 10⁻¹ + 5 × 10⁻²

- $N = a_m b^m + \ldots + a_1 b + a_0 + a_{-1} b^{-1} + \ldots + a_{-p} b^{-p}$ $0 \le a_i < b$, MSB: a_m , LSB: a_{-p}
- Integer part: $a_m b^m + \ldots + a_1 b + a_0$
- Fractional part: $a_{-1}b^{-1} + \ldots + a_{-p}b^{-p}$

- $N = a_m b^m + \ldots + a_1 b + a_0 + a_{-1} b^{-1} + \ldots + a_{-p} b^{-p}$ $0 \le a_i < b$, MSB: a_m , LSB: a_{-p}
- \bullet 123.45 = 1 × 10² + 2 × 10¹ + 3 × 10⁰ + 4 × 10⁻¹ + 5 × 10⁻²
- Integer part: $a_m b^m + \ldots + a_1 b + a_0$
- Fractional part: $a_{-1}b^{-1} + ... + a_{-p}b^{-p}$
- Common bases: 10 decimal, 2 binary, 8 octal, 16 hexadecimal
- $\bullet \ 1101.01 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} = 13.25$

- $N = a_m b^m + \ldots + a_1 b + a_0 + a_{-1} b^{-1} + \ldots + a_{-p} b^{-p}$ $0 \le a_i < b$, MSB: a_m , LSB: a_{-p}
- \bullet 123.45 = 1 × 10² + 2 × 10¹ + 3 × 10⁰ + 4 × 10⁻¹ + 5 × 10⁻²
- Integer part: $a_m b^m + \ldots + a_1 b + a_0$
- Fractional part: $a_{-1}b^{-1} + ... + a_{-p}b^{-p}$
- Common bases: 10 decimal, 2 binary, 8 octal, 16 hexadecimal
- $\bullet \ 1101.01 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} = 13.25$
- 31.1₄ =?

- $N = a_m b^m + \ldots + a_1 b + a_0 + a_{-1} b^{-1} + \ldots + a_{-p} b^{-p}$ $0 \le a_i < b$, MSB: a_m , LSB: a_{-p}
- \bullet 123.45 = 1 × 10² + 2 × 10¹ + 3 × 10⁰ + 4 × 10⁻¹ + 5 × 10⁻²
- Integer part: $a_m b^m + \ldots + a_1 b + a_0$
- Fractional part: $a_{-1}b^{-1} + ... + a_{-p}b^{-p}$
- Common bases: 10 decimal, 2 binary, 8 octal, 16 hexadecimal
- $\bullet \ 1101.01 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} = 13.25$
- 31.1₄ =?
- 15.2₈ =?

Numbers in some bases

	Base				
2	4	8	10	12	16
0000	0	0	0	0	0
0001	1	1	1	1	1
0010	2	2	2	2	2
0011	3	3	3	3	3
0100	10	4	4	4	4
0101	11	5	5	5	5
0110	12	6	6	6	6
0111	13	7	7	7	7

Numbers in some bases

Base					
2	4	8	10	12	16
0000	0	0	0	0	0
0001	1	1	1	1	1
0010	2	2	2	2	2
0011	3	3	3	3	3
0100	10	4	4	4	4
0101	11	5	5	4 5	5
0110	12	6	6	6	6
0111	13	7	7	7	7
1000	20	10	8	8	8
1001	21	11	9	9	9
1010	22	12	10	α	Α
1011	23	13	11	β	В
1100	30	14	12	10	С
1101	31	15	13	11	D
1110	32	16	14	12	E
1111	33	17	15	13	F

- Complement of a digit a, denoted a', in base b is a' = (b-1)a
- Binary: $a_2' = 1_2 a_2$, 0' = 1, 1' = 0
- Decimal: $a'_{10} = 9_{10} a_{10}$ 0' = 9, 1' = 8, 2' = 7, 3' = 6, 4' = 5, 5' = 4, 6' = 3, 7' = 2, 8' = 1, 9' = 0
- Octal: $a_8' = 7_8 a_8$

- Complement of a digit a, denoted a', in base b is a' = (b-1)a
- Binary: $a_2' = 1_2 a_2$, 0' = 1, 1' = 0
- Decimal: $a'_{10} = 9_{10} a_{10}$ 0' = 9, 1' = 8, 2' = 7, 3' = 6, 4' = 5, 5' = 4, 6' = 3, 7' = 2, 8' = 1,9' = 0
- Octal: $a'_8 = 7_8 a_8$ 0' = 7, 1' = 6, 2' = 5, 3' = 4, 4' = 3, 5' = 2, 6' = 1, 7' = 0

- Complement of a digit a, denoted a', in base b is a' = (b-1)a
- Binary: $a_2' = 1_2 a_2$, 0' = 1, 1' = 0
- Decimal: $a'_{10} = 9_{10} a_{10}$ 0' = 9, 1' = 8, 2' = 7, 3' = 6, 4' = 5, 5' = 4, 6' = 3, 7' = 2, 8' = 1, 9' = 0
- Octal: $a'_8 = 7_8 a_8$ 0' = 7, 1' = 6, 2' = 5, 3' = 4, 4' = 3, 5' = 2, 6' = 1, 7' = 0
- For, $N = a_m b^m + \ldots + a_1 b + a_0$, let $M = a'_m b^m + \ldots + a'_1 b + a'_0$ $= (b - 1 - a_m) b^m + \ldots + (b - 1 - a_1) b + (b - 1 - a_0)$ $= \sum_{i=1}^{m+1} b^i - \sum_{i=0}^m b^i - N = (b^{m+1} - 1) - N$
- Diminished radix complement of N is $(b^{m+1} 1) N = M$
- Radix complement of N is $b^{m+1} N = M + 1 = N'$

January 28, 2020

- Complement of a digit a, denoted a', in base b is a' = (b-1)a
- Binary: $a_2' = 1_2 a_2$, 0' = 1, 1' = 0
- Decimal: $a'_{10} = 9_{10} a_{10}$ 0' = 9, 1' = 8, 2' = 7, 3' = 6, 4' = 5, 5' = 4, 6' = 3, 7' = 2, 8' = 1, 9' = 0
- Octal: $a_8 = 7_8 a_8$ 0' = 7, 1' = 6, 2' = 5, 3' = 4, 4' = 3, 5' = 2, 6' = 1, 7' = 0
- For, $N = a_m b^m + \ldots + a_1 b + a_0$, let $M = a'_m b^m + \ldots + a'_1 b + a'_0$ $= (b-1-a_m)b^m + \ldots + (b-1-a_1)b + (b-1-a_0)$ $=\sum_{m=1}^{m+1}b^{j}-\sum_{m=1}^{m}b^{j}-N=(b^{m+1}-1)-N$
- Diminished radix complement of N is $(b^{m+1} 1) N = M$
- Radix complement of N is $b^{m+1} N = M + 1 = N'$
- $P N = P + N' \mod b^m$ (for m digits)

Example (Decimal subtraction)

- \bullet 321 123 = 198
- Ten's complement of 123:

Example (Decimal subtraction)

- \bullet 321 123 = 198
- Ten's complement of 123: 876 + 1 = 877
- \bullet 321 + 876 = 1198 = 198 mod 10³

Example (Decimal subtraction)

- \bullet 321 123 = 198
- Ten's complement of 123: 876 + 1 = 877
- \bullet 321 + 876 = 1198 = 198 mod 10³

Example (Binary subtraction)

- \bullet 1 0100 0001 0 0111 1011 = 0 1100 0110
- 2's complement of 0 0111 1011:

Example (Decimal subtraction)

- \bullet 321 123 = 198
- Ten's complement of 123: 876 + 1 = 877
- \bullet 321 + 876 = 1198 = 198 mod 10³

Example (Binary subtraction)

- \bullet 1 0100 0001 0 0111 1011 = 0 1100 0110
- 2's complement of 0 0111 1011: 1 1000 0100 + 1 = 1 1000 0101
- ullet 1 0100 0001 + 1 1000 0101 = 10 1100 0110 = 0 1100 0110 mod 2^9

	Num	twos'	two's
0	0000	1111	0000
1	0001	1110	1111
2	0010	1101	1110
			l

	Num	twos'	two's
0	0000	1111	0000
1	0001	1110	1111
2	0010	1101	1110
3	0011	1100	1101
	ļ.	ļ!	,

	Num	twos'	two's
0	0000	1111	0000
1	0001	1110	1111
2	0010	1101	1110
3	0011	1100	1101
4	0100	1011	1100
	'	1	'

	Num	twos'	two's
0	0000	1111	0000
1	0001	1110	1111
2	0010	1101	1110
3	0011	1100	1101
4	0100	1011	1100
5	0101	1010	1011
			'

	Num	twos'	two's
0	0000	1111	0000
1	0001	1110	1111
2	0010	1101	1110
3	0011	1100	1101
4	0100	1011	1100
5	0101	1010	1011
6	0110	1001	1010
	•	•	

	Num	twos'	two's
0	0000	1111	0000
1	0001	1110	1111
2	0010	1101	1110
3	0011	1100	1101
4	0100	1011	1100
5	0101	1010	1011
6	0110	1001	1010
7	0111	1000	1001
7	0111	1000	1001

	Num	twos'	two's
0	0000	1111	0000
1	0001	1110	1111
2	0010	1101	1110
3	0011	1100	1101
4	0100	1011	1100
5	0101	1010	1011
6	0110	1001	1010
7	0111	1000	1001
8	1000	0111	1000

	Num	twos'	two's
0	0000	1111	0000
1	0001	1110	1111
2	0010	1101	1110
3	0011	1100	1101
4	0100	1011	1100
5	0101	1010	1011
6	0110	1001	1010
7	0111	1000	1001
8	1000	0111	1000
9	1001	0110	0111

	Num	twos'	two's
0	0000	1111	0000
1	0001	1110	1111
2	0010	1101	1110
3	0011	1100	1101
4	0100	1011	1100
5	0101	1010	1011
6	0110	1001	1010
7	0111	1000	1001
8	1000	0111	1000
9	1001	0110	0111

	Num	twos'	two's
0	0 0000	1 1111	0 0000
1	0 0001	1 1110	1 1111
2	0 0010	1 1101	1 1110
3	0 0011	1 1100	1 1101
4	0 0100	1 1011	1 1100
5	0 0101	1 1010	1 1011
6	0 0110	1 1001	1 1010
7	0 0111	1 1000	1 1001
8	0 1000	1 0111	1 1000
9	0 1001	1 0110	1 0111
10	0 1010	1 0101	1 0110
11	0 1011	1 0100	1 0101
12	0 1100	1 0011	1 0100
13	0 1101	1 0010	1 0011
14	0 1110	1 0001	1 0010
15	0 1111	1 0000	1 0001

- Number in base b₁ to be converted to base b₂
- If $b_1 < b_2$, use arithmetic of b_2

•
$$N = a_m b^m + \ldots + a_1 b + a_0 + a_{-1} b^{-1} + \ldots + a_{-p} b^{-p}$$

- Number in base b₁ to be converted to base b₂
- If $b_1 < b_2$, use arithmetic of b_2
- $N = a_m b^m + \ldots + a_1 b + a_0 + a_{-1} b^{-1} + \ldots + a_{-p} b^{-p}$

Example (432.28 to decimal)

- Number in base b₁ to be converted to base b₂
- If $b_1 < b_2$, use arithmetic of b_2
- $N = a_m b^m + \ldots + a_1 b + a_0 + a_{-1} b^{-1} + \ldots + a_{-p} b^{-p}$

Example (432.28 to decimal)

$$432.2_8 = 4 \times 8^2 + 3 \times 8^1 + 2 \times 8^0 + 2 \times 8^{-1} = 282.25_{10}$$

- Number in base b₁ to be converted to base b₂
- If $b_1 < b_2$, use arithmetic of b_2
- $N = a_m b^m + \ldots + a_1 b + a_0 + a_{-1} b^{-1} + \ldots + a_{-p} b^{-p}$

Example (432.28 to decimal)

$$432.2_8 = 4 \times 8^2 + 3 \times 8^1 + 2 \times 8^0 + 2 \times 8^{-1} = 282.25_{10}$$

Example (1101.01₂ to decimal)

- Number in base b₁ to be converted to base b₂
- If $b_1 < b_2$, use arithmetic of b_2
- $N = a_m b^m + \ldots + a_1 b + a_0 + a_{-1} b^{-1} + \ldots + a_{-p} b^{-p}$

Example (432.28 to decimal)

$$432.2_8 = 4 \times 8^2 + 3 \times 8^1 + 2 \times 8^0 + 2 \times 8^{-1} = 282.25_{10}$$

Example (1101.01₂ to decimal)

$$1101.01_2 = 1 \times 23 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} = 13.25_{10}$$

- Number in base b₁ to be converted to base b₂
- If $b_1 > b_2$, use arithmetic of b_1

•
$$N_{b_1} = \underbrace{a_m b_2^m + \ldots + a_1 b_2 + a_0}_{A} + \underbrace{a_{-1} b_2^{-1} + \ldots + a_{-p} b_2^{-p}}_{B}$$

- $\bullet \ \ \frac{A}{b_2} = \underbrace{a_m b_2^{m-1} + \ldots + a_1}_{Q_0} + \frac{a_0}{b_2}$
- Least significant digit of A_{b_2} is the remainder of $\frac{a_0}{b_2}$

- Number in base b₁ to be converted to base b₂
- If $b_1 > b_2$, use arithmetic of b_1

•
$$N_{b_1} = \underbrace{a_m b_2^m + \ldots + a_1 b_2 + a_0}_{A} + \underbrace{a_{-1} b_2^{-1} + \ldots + a_{-p} b_2^{-p}}_{B}$$

- $\bullet \ \ \frac{A}{b_2} = \underbrace{a_m b_2^{m-1} + \ldots + a_1}_{Q_0} + \frac{a_0}{b_2}$
- Least significant digit of A_{b_2} is the remainder of $\frac{a_0}{b_2}$
- ullet If $Q_0=0$, terminate, otherwise, apply procedure recursively to Q_0

Conversion of bases (contd.

Example (548₁₀ to octal (base 8))

Conversion of bases (contd.

Example (548₁₀ to octal (base 8))

$$\begin{array}{c|cccc} Q_i & r_i \\ \hline 68 & 4 & a_0 \end{array}$$

Conversion of bases (contd.

Example (548₁₀ to octal (base 8))

Example (548₁₀ to octal (base 8))

$$egin{array}{ccccc} Q_i & r_i \ \hline 68 & 4 & a_0 \ & 8 & 4 & a_1 \ & 1 & 0 & a_2 \ & 1 & a_3 \ \end{array}$$

Example $(345_{10} \text{ to base 6})$

Example (548₁₀ to octal (base 8))

```
\begin{array}{ccccc}
Q_i & r_i \\
\hline
68 & 4 & a_0 \\
8 & 4 & a_1 & 548_{10} = 1044_8 \\
1 & 0 & a_2 \\
& 1 & a_3
\end{array}
```

Example (345₁₀ to base 6)

$$Q_i$$
 r_i q_0

Example (548₁₀ to octal (base 8))

```
\begin{array}{ccccc}
Q_i & r_i \\
\hline
68 & 4 & a_0 \\
8 & 4 & a_1 & 548_{10} = 1044_8 \\
1 & 0 & a_2 \\
& 1 & a_3
\end{array}
```

Example (345₁₀ to base 6)

•
$$b_2B = a_{-1} + \underbrace{a_{-1}b_2^{-1} + \ldots + a_{-p}b_2^{1-p}}_{F}$$

- The first digit of fractional part is the integer part of the product
- Continue recursively until F is non-zero

Example (0.3125₁₀ to base 8)

•
$$b_2B = a_{-1} + \underbrace{a_{-1}b_2^{-1} + \ldots + a_{-p}b_2^{1-p}}_{F}$$

- The first digit of fractional part is the integer part of the product
- Continue recursively until F is non-zero

Example (0.3125₁₀ to base 8)

- $0.3125 \times 8 = 2.5000$
- \bullet 0.5000 \times 8 = 4.0000
- \bullet $a_{-1} = 2$, $a_{-2} = 4$
- \bullet 0.3125₁₀ = 0.24₈

d = 0 - 9: binary and BCD are identical

d = 0 - 9: binary and BCD are identical

d = 10 - 15: 1 goes to the next higher place, d - 9 in current place


```
d = 0 - 9: binary and BCD are identical
```

d = 10 - 15: 1 goes to the next higher place, d - 9 in current place

Alternately $d + 6 \mod 16$ in current place, if $d \ge 10$

d = 12: $d + 6 = 18 \mod 16 = 2$, 1 goes to next higher place

12 / 29


```
d=0-9: binary and BCD are identical d=10-15: 1 goes to the next higher place, d=9 in current place Alternately d+6 \mod 16 in current place, if d \ge 10 d=12: d+6=18 \mod 16=2, 1 goes to next higher place 12_{10}=1100_2, 1100+0110=10010
```



```
d = 0 - 9: binary and BCD are identical
```

d = 10 - 15: 1 goes to the next higher place, d - 9 in current place

Alternately $d + 6 \mod 16$ in current place, if $d \ge 10$

d = 12: $d + 6 = 18 \mod 16 = 2$, 1 goes to next higher place $12_{10} = 1100_2$, 1100 + 0110 = 10010

NB: LSB is unaffected, because LSB of $6_{10} = 0$ If bits are handled sequentially, 3 can be added (instead of 6) and then shifted left

of 6) and then shifted left


```
d = 0 - 9: binary and BCD are identical
```

d = 10 - 15: 1 goes to the next higher place, d - 9 in current place

Alternately $d + 6 \mod 16$ in current place, if $d \ge 10$

d = 12: $d + 6 = 18 \mod 16 = 2$, 1 goes to next higher place $12_{10} = 1100_2$, 1100 + 0110 = 10010

NB: LSB is unaffected, because LSB of $6_{10}=0$

If bits are handled sequentially, 3 can be added (instead of 6) and then shifted left

$$110 + 011 = 1001 \longrightarrow 10010$$

To be repeated until conversion is complete

Name Shift-and-add-3 or double-dabble

Ор	B4	В3	B2	B1	B0	48748
L Sft	0000	0000	0000	0000	0001	1011111001101100

Ор	B4	В3	B2	B1	B0	48748
L Sft	0000	0000	0000	0000	0001	1011111001101100
L Sft	0000	0000	0000	0000	0010	1011111001101100

Ор	B4	В3	B2	B1	B0	48748
L Sft	0000	0000	0000	0000	0001	1011111001101100
L Sft	0000	0000	0000	0000	0010	1011111001101100
L Sft	0000	0000	0000	0000	0101	1011111001101100

Ор	B4	В3	B2	B1	B0	48748
L Sft	0000	0000	0000	0000	0001	1011111001101100
L Sft	0000	0000	0000	0000	0010	1011111001101100
L Sft	0000	0000	0000	0000	0101	1011111001101100
Add 3	0000	0000	0000	0000	1000	1011111001101100
L Sft	0000	0000	0000	0001	0001	1011111001101100

Ор	B4	В3	B2	B1	В0	48748
L Sft	0000	0000	0000	0000	0001	1011111001101100
L Sft	0000	0000	0000	0000	0010	1011111001101100
L Sft	0000	0000	0000	0000	0101	1011111001101100
Add 3	0000	0000	0000	0000	1000	1011111001101100
L Sft	0000	0000	0000	0001	0001	101 <mark>1</mark> 111001101100
L Sft	0000	0000	0000	0010	0011	10111111001101100

Ор	B4	В3	B2	B1	В0	48748
L Sft	0000	0000	0000	0000	0001	1011111001101100
L Sft	0000	0000	0000	0000	0010	1011111001101100
L Sft	0000	0000	0000	0000	0101	1011111001101100
Add 3	0000	0000	0000	0000	1000	1011111001101100
L Sft	0000	0000	0000	0001	0001	1011111001101100
L Sft	0000	0000	0000	0010	0011	1011111001101100
L Sft	0000	0000	0000	0100	0111	10111 <mark>1</mark> 1001101100

Ор	B4	В3	B2	B1	В0	48748
L Sft	0000	0000	0000	0000	0001	1011111001101100
L Sft	0000	0000	0000	0000	0010	1011111001101100
L Sft	0000	0000	0000	0000	0101	1011111001101100
Add 3	0000	0000	0000	0000	1000	1011111001101100
L Sft	0000	0000	0000	0001	0001	101 <mark>1</mark> 1111001101100
L Sft	0000	0000	0000	0010	0011	1011111001101100
L Sft	0000	0000	0000	0100	0111	10111 <mark>1</mark> 1001101100
Add 3	0000	0000	0000	0100	1010	101111 <mark>1</mark> 001101100
L Sft	0000	0000	0000	1001	0101	101111 <mark>1</mark> 001101100

Ор	B4	В3	B2	B1	В0	48748
L Sft	0000	0000	0000	0000	0001	1011111001101100
L Sft	0000	0000	0000	0000	0010	1011111001101100
L Sft	0000	0000	0000	0000	0101	1011111001101100
Add 3	0000	0000	0000	0000	1000	1011111001101100
L Sft	0000	0000	0000	0001	0001	101 <mark>1</mark> 1111001101100
L Sft	0000	0000	0000	0010	0011	1011111001101100
L Sft	0000	0000	0000	0100	0111	10111 <mark>1</mark> 1001101100
Add 3	0000	0000	0000	0100	1010	101111 <mark>1</mark> 001101100
L Sft	0000	0000	0000	1001	0101	101111 <mark>1</mark> 001101100
Add 3	0000	0000	0000	1100	1000	1011111 <mark>0</mark> 01101100
L Sft	0000	0000	0001	1001	0000	1011111 <mark>0</mark> 01101100

Ор	B4	B3	B2	B1	B0	48748
L Sft	0000	0000	0000	0000	0001	1011111001101100
L Sft	0000	0000	0000	0000	0010	1011111001101100
L Sft	0000	0000	0000	0000	0101	1011111001101100
Add 3	0000	0000	0000	0000	1000	1011111001101100
L Sft	0000	0000	0000	0001	0001	1011111001101100
L Sft	0000	0000	0000	0010	0011	1011111001101100
L Sft	0000	0000	0000	0100	0111	10111111001101100
Add 3	0000	0000	0000	0100	1010	101111 <mark>1</mark> 001101100
L Sft	0000	0000	0000	1001	0101	101111 <mark>1</mark> 001101100
Add 3	0000	0000	0000	1100	1000	1011111001101100
L Sft	0000	0000	0001	1001	0000	1011111 <mark>0</mark> 01101100
Add 3	0000	0000	0001	1100	0000	1011111001101100
L Sft	0000	0000	0011	1000	0000	10111110 <mark>0</mark> 1101100

Ор	B4	B3	B2	B1	B0	48748
Add 3	0000	0000	0011	1011	0000	101111100 <mark>1</mark> 101100
L Sft	0000	0000	0111	0110	0001	101111100 <mark>1</mark> 101100

Ор	B4	B3	B2	B1	В0	48748
Add 3	0000	0000	0011	1011	0000	101111100 <mark>1</mark> 101100
L Sft	0000	0000	0111	0110	0001	1011111100 <mark>1</mark> 101100
Add 3	0000	0000	1010	1001	0001	1011111001101100
L Sft	0000	0001	0101	0010	0011	1011111001 <mark>1</mark> 01100

Ор	B4	В3	B2	B1	B0	48748
Add 3	0000	0000	0011	1011	0000	101111100 <mark>1</mark> 101100
L Sft	0000	0000	0111	0110	0001	1011111100 <mark>1</mark> 101100
Add 3	0000	0000	1010	1001	0001	10111111001101100
L Sft	0000	0001	0101	0010	0011	10111111001 <mark>1</mark> 01100
Add 3	0000	0001	1000	0010	0011	1011111001101100
L Sft	0000	0011	0000	0100	0110	101111110011 <mark>0</mark> 1100

Op B4 B3 B2 B1 B0 48748 Add 3 0000 0000 0011 1011 0000 1011111001101100 L Sft 0000 0000 0111 0110 0001 10111111001101100 Add 3 0000 0001 0101 0001 10111111001101100 L Sft 0000 0001 1000 0011 10111111001101100 L Sft 0000 0011 0000 0100 0110 10111111001101101 Add 3 0000 0011 0000 0100 1001 10111111001101100 L Sft 0000 0110 0000 1001 10111111001101100 L Sft 0000 0110 0000 1001 10111111001101100	-					•	
L Sft 0000 0000 0111 0110 0001 1011111001101100 Add 3 0000 0000 1010 1001 0001 10111111001101100 L Sft 0000 0001 0101 0010 0011 10111111001101100 Add 3 0000 0001 1000 0100 0110 10111111001101101 L Sft 0000 0011 0000 0100 1001 10111111001101101 Add 3 0000 0011 0000 0100 1001 10111111001101101	Ор	B4	B3	B2	B1	B0	48748
Add 3 0000 0000 1010 1001 0001 10111111001101100 L Sft 0000 0001 0101 0010 0011 10111111001101100 Add 3 0000 0001 1000 0010 0011 10111111001101101 L Sft 0000 0011 0000 0100 0110 10111111001101101 Add 3 0000 0011 0000 0100 1001 10111111001101101	Add 3	0000	0000	0011	1011	0000	101111100 <mark>1</mark> 101100
L Sft 0000 0001 0101 0010 0011 1011111001101100 Add 3 0000 0001 1000 0010 0011 10111111001101101 L Sft 0000 0011 0000 0100 0110 10111111001101101 Add 3 0000 0011 0000 0100 1001 10111111001101101	L Sft	0000	0000	0111	0110	0001	1011111100 <mark>1</mark> 101100
Add 3 0000 0001 1000 0010 0011 10111111001101100 L Sft 0000 0011 0000 0100 0110 10111111001101100 Add 3 0000 0011 0000 0100 1001 10111111001101100	Add 3	0000	0000	1010	1001	0001	1011111001 <mark>1</mark> 01100
L Sft 0000 0011 0000 0100 0110 1011111001101100 Add 3 0000 0011 0000 0100 1001 1011111001101100	L Sft	0000	0001	0101	0010	0011	10111111001 <mark>1</mark> 01100
Add 3 0000 0011 0000 0100 1001 10111110011011	Add 3	0000	0001	1000	0010	0011	1011111001101100
	L Sft	0000	0011	0000	0100	0110	101111110011 <mark>0</mark> 1100
L Sft 0000 0110 0000 1001 0011 1011111001101100	Add 3	0000	0011	0000	0100	1001	1011111001101100
	L Sft	0000	0110	0000	1001	0011	101111100110 <mark>1</mark> 100

Ор	B4	В3	B2	B1	В0	48748
Add 3	0000	0000	0011	1011	0000	101111100 <mark>1</mark> 101100
L Sft	0000	0000	0111	0110	0001	1011111100 <mark>1</mark> 101100
Add 3	0000	0000	1010	1001	0001	1011111001101100
L Sft	0000	0001	0101	0010	0011	1011111001 <mark>1</mark> 01100
Add 3	0000	0001	1000	0010	0011	1011111001101100
L Sft	0000	0011	0000	0100	0110	1011111001101100
Add 3	0000	0011	0000	0100	1001	101111100110 <mark>1</mark> 100
L Sft	0000	0110	0000	1001	0011	101111100110 <mark>1</mark> 100
Add 3	0000	1001	0000	1100	0011	1011111001101100
L Sft	0001	0010	0001	1000	0111	1011111001101 <mark>1</mark> 00

Ор	B4	В3	B2	B1	B0	48748
Add 3	0000	0000	0011	1011	0000	1011111100 <mark>1</mark> 101100
L Sft	0000	0000	0111	0110	0001	1011111100 <mark>1</mark> 101100
Add 3	0000	0000	1010	1001	0001	1011111001101100
L Sft	0000	0001	0101	0010	0011	1011111001 <mark>1</mark> 01100
Add 3	0000	0001	1000	0010	0011	1011111001101100
L Sft	0000	0011	0000	0100	0110	1011111001101100
Add 3	0000	0011	0000	0100	1001	1011111001101100
L Sft	0000	0110	0000	1001	0011	101111100110 <mark>1</mark> 100
Add 3	0000	1001	0000	1100	0011	1011111001101100
L Sft	0001	0010	0001	1000	0111	1011111001101 <mark>1</mark> 00
Add 3	0001	0010	0001	1011	1010	1011111001101100
L Sft	0010	0100	0011	0111	0100	10111110011011 <mark>0</mark> 0

Ор	B4	B3	B2	B1	B0	48748
Add 3	0000	0000	0011	1011	0000	101111100 <mark>1</mark> 101100
L Sft	0000	0000	0111	0110	0001	1011111100 <mark>1</mark> 101100
Add 3	0000	0000	1010	1001	0001	1011111001 <mark>1</mark> 01100
L Sft	0000	0001	0101	0010	0011	10111111001 <mark>1</mark> 01100
Add 3	0000	0001	1000	0010	0011	1011111001101100
L Sft	0000	0011	0000	0100	0110	101111110011 <mark>0</mark> 1100
Add 3	0000	0011	0000	0100	1001	101111100110 <mark>1</mark> 100
L Sft	0000	0110	0000	1001	0011	1011111100110 <mark>1</mark> 100
Add 3	0000	1001	0000	1100	0011	10111111001101100
L Sft	0001	0010	0001	1000	0111	1011111001101 <mark>1</mark> 00
Add 3	0001	0010	0001	1011	1010	1011111001101100
L Sft	0010	0100	0011	0111	0100	10111111001101100
Add 3	0010	0100	0011	1010	0100	10111111001101100
L Sft	0100	1000	0111	0100	1000	1011111001101100

Ор	B4	B3	B2	B1	В0	48748
Add 3	0000	0000	0011	1011	0000	101111100 <mark>1</mark> 101100
L Sft	0000	0000	0111	0110	0001	101111100 <mark>1</mark> 101100
Add 3	0000	0000	1010	1001	0001	10111111001 <mark>1</mark> 01100
L Sft	0000	0001	0101	0010	0011	1011111001 <mark>1</mark> 01100
Add 3	0000	0001	1000	0010	0011	10111111001101100
L Sft	0000	0011	0000	0100	0110	1011111001101100
Add 3	0000	0011	0000	0100	1001	10111111001101100
L Sft	0000	0110	0000	1001	0011	1011111001101100
Add 3	0000	1001	0000	1100	0011	1011111001101100
L Sft	0001	0010	0001	1000	0111	10111111001101100
Add 3	0001	0010	0001	1011	1010	10111111001101100
L Sft	0010	0100	0011	0111	0100	1011111001101100
Add 3	0010	0100	0011	1010	0100	10111111001101100
L Sft	0100	1000	0111	0100	1000	10111111001101100
End	4	8	7	4	8	405485435 3 4

- Given binary value is $B = b_{n-1}b_{n-2} \dots b_0$, n = 15 for the example
- Let *D* be the BCD number with digits $d_{m-1}...d_j...d_0$

- Given binary value is $B = b_{n-1}b_{n-2} \dots b_0$, n = 15 for the example
- Let *D* be the BCD number with digits $d_{m-1}...d_j...d_0$, $m \le 4\frac{n}{3}$
- Let D_i be the value of the BCD number after the j^{th} shift
- $D_0 = 00...0$ (*D* is initialised to 0)

- Given binary value is $B = b_{n-1}b_{n-2} \dots b_0$, n = 15 for the example
- Let *D* be the BCD number with digits $d_{m-1}...d_j...d_0$, $m \le 4\frac{n}{3}$
- Let D_j be the value of the BCD number after the j^{th} shift
- $D_0 = 00...0$ (*D* is initialised to 0)
- Initially, each BCD value y_i of digit d_i is valid (zero)
- Also, at least one bit of B is pending conversion

- Given binary value is $B = b_{n-1}b_{n-2} \dots b_0$, n = 15 for the example
- Let *D* be the BCD number with digits $d_{m-1}...d_j...d_0$, $m \le 4\frac{n}{3}$
- Let D_i be the value of the BCD number after the jth shift
- $D_0 = 00...0$ (*D* is initialised to 0)
- Initially, each BCD value y_i of digit d_i is valid (zero)
- Also, at least one bit of B is pending conversion
- On a left shift, each new BCD value of d'_i is $y'_i = 2y_i + m_{i-1}$ where m_{i-1} is the MSB of y_{i-1} if $i \ge 1$, otherwise the next input bit

- Given binary value is $B = b_{n-1}b_{n-2} \dots b_0$, n = 15 for the example
- Let *D* be the BCD number with digits $d_{m-1}...d_j...d_0$, $m \le 4\frac{n}{3}$
- Let D_i be the value of the BCD number after the j^{th} shift
- $D_0 = 00...0$ (*D* is initialised to 0)
- Initially, each BCD value y_i of digit d_i is valid (zero)
- Also, at least one bit of B is pending conversion
- On a left shift, each new BCD value of d'_i is $y'_i = 2y_i + m_{i-1}$ where m_{i-1} is the MSB of y_{i-1} if $i \ge 1$, otherwise the next input bit
- For the first three left shifts $D_j = 2D_{j-1} + b_{n-j}$ holds $(D_1 = 2D_0 + b_{15}, D_2 = 2D_1 + b_{14}, D_3 = 2D_2 + b_{13})$

- Given binary value is $B = b_{n-1}b_{n-2} \dots b_0$, n = 15 for the example
- Let *D* be the BCD number with digits $d_{m-1}...d_j...d_0$, $m \le 4\frac{n}{3}$
- Let D_i be the value of the BCD number after the j^{th} shift
- $D_0 = 00 \dots 0$ (*D* is initialised to 0)
- Initially, each BCD value y_i of digit d_i is valid (zero)
- Also, at least one bit of B is pending conversion
- On a left shift, each new BCD value of d'_i is $y'_i = 2y_i + m_{i-1}$ where m_{i-1} is the MSB of y_{i-1} if $i \ge 1$, otherwise the next input bit
- For the first three left shifts $D_j = 2D_{j-1} + b_{n-j}$ holds $(D_1 = 2D_0 + b_{15}, D_2 = 2D_1 + b_{14}, D_3 = 2D_2 + b_{13})$
- If the bits are exhausted, then the conversion correctly terminates

- Given binary value is $B = b_{n-1}b_{n-2} \dots b_0$, n = 15 for the example
- Let *D* be the BCD number with digits $d_{m-1}...d_j...d_0$, $m \le 4\frac{n}{3}$
- Let D_i be the value of the BCD number after the j^{th} shift
- $D_0 = 00...0$ (*D* is initialised to 0)
- Initially, each BCD value y_i of digit d_i is valid (zero)
- Also, at least one bit of B is pending conversion
- On a left shift, each new BCD value of d'_i is $y'_i = 2y_i + m_{i-1}$ where m_{i-1} is the MSB of y_{i-1} if $i \ge 1$, otherwise the next input bit
- For the first three left shifts $D_j = 2D_{j-1} + b_{n-j}$ holds $(D_1 = 2D_0 + b_{15}, D_2 = 2D_1 + b_{14}, D_3 = 2D_2 + b_{13})$
- If the bits are exhausted, then the conversion correctly terminates
- Otherwise, if any $y_i' \ge 5$, it's updated to $y_i' = 2y_i + m_{i-1} + 3$

- Given binary value is $B = b_{n-1}b_{n-2} \dots b_0$, n = 15 for the example
- Let *D* be the BCD number with digits $d_{m-1}...d_j...d_0$, $m \le 4\frac{n}{3}$
- Let D_i be the value of the BCD number after the j^{th} shift
- $D_0 = 00...0$ (*D* is initialised to 0)
- Initially, each BCD value y_i of digit d_i is valid (zero)
- Also, at least one bit of B is pending conversion
- On a left shift, each new BCD value of d'_i is $y'_i = 2y_i + m_{i-1}$ where m_{i-1} is the MSB of y_{i-1} if $i \ge 1$, otherwise the next input bit
- For the first three left shifts $D_j = 2D_{j-1} + b_{n-j}$ holds $(D_1 = 2D_0 + b_{15}, D_2 = 2D_1 + b_{14}, D_3 = 2D_2 + b_{13})$
- If the bits are exhausted, then the conversion correctly terminates
- Otherwise, if any $y_i' \ge 5$, it's updated to $y_i' = 2y_i + m_{i-1} + 3$
- MSB of d_j is the carry to be shifted into d_{j+1}

Correctness of binary to BCD conversion

- Given binary value is $B = b_{n-1}b_{n-2} \dots b_0$, n = 15 for the example
- Let *D* be the BCD number with digits $d_{m-1}...d_i...d_0$, $m \le 4\frac{n}{3}$
- Let D_i be the value of the BCD number after the j^{th} shift
- $D_0 = 00...0$ (*D* is initialised to 0)
- Initially, each BCD value y_i of digit d_i is valid (zero)
- Also, at least one bit of B is pending conversion
- On a left shift, each new BCD value of d'_i is $y'_i = 2y_i + m_{i-1}$ where m_{i-1} is the MSB of y_{i-1} if $i \ge 1$, otherwise the next input bit
- For the first three left shifts $D_i = 2D_{i-1} + b_{n-i}$ holds $(D_1 = 2D_0 + b_{15}, D_2 = 2D_1 + b_{14}, D_3 = 2D_2 + b_{13})$
- If the bits are exhausted, then the conversion correctly terminates
- Otherwise, if any $y_i' \geq 5$, it's updated to $y_i' = 2y_i + m_{i-1} + 3$
- MSB of d_i is the carry to be shifted into d_{i+1}
- On the next left shift, $D_i = 2D_{i-1} + b_{n-i}$ again holds

Correctness of binary to BCD conversion

- Given binary value is $B = b_{n-1}b_{n-2} \dots b_0$, n = 15 for the example
- Let *D* be the BCD number with digits $d_{m-1}...d_j...d_0$, $m \le 4\frac{n}{3}$
- Let D_i be the value of the BCD number after the jth shift
- $D_0 = 00 \dots 0$ (*D* is initialised to 0)
- Initially, each BCD value y_i of digit d_i is valid (zero)
- Also, at least one bit of B is pending conversion
- On a left shift, each new BCD value of d'_i is $y'_i = 2y_i + m_{i-1}$ where m_{i-1} is the MSB of y_{i-1} if $i \ge 1$, otherwise the next input bit
- For the first three left shifts $D_j = 2D_{j-1} + b_{n-j}$ holds $(D_1 = 2D_0 + b_{15}, D_2 = 2D_1 + b_{14}, D_3 = 2D_2 + b_{13})$
- If the bits are exhausted, then the conversion correctly terminates
- Otherwise, if any $y_i' \ge 5$, it's updated to $y_i' = 2y_i + m_{i-1} + 3$
- MSB of d_i is the carry to be shifted into d_{i+1}
- On the next left shift, $D_i = 2D_{i-1} + b_{n-i}$ again holds
- Conversion algorithm is reversible

Ор	B4	B3	B2	B1	B0	
Input	0100	1000	0111	0100	1000	
R Sft	0010	0100	0011	1010	0100	0000000000000000
Sub 3	0010	0100	0011	0111	0100	0000000000000000

Ор	B4	B3	B2	B1	B0	
Input	0100	1000	0111	0100	1000	
R Sft	0010	0100	0011	1010	0100	0000000000000000
Sub 3	0010	0100	0011	0111	0100	0000000000000000
R Sft	0001	0010	0001	1011	1010	0000000000000000
Sub 3	0001	0010	0001	1000	0111	0000000000000000

			_	_		
Ор	B4	B3	B2	B1	B0	
Input	0100	1000	0111	0100	1000	
R Sft	0010	0100	0011	1010	0100	0000000000000000
Sub 3	0010	0100	0011	0111	0100	0000000000000000
R Sft	0001	0010	0001	1011	1010	0000000000000000
Sub 3	0001	0010	0001	1000	0111	0000000000000000
R Sft	0000	1001	0000	1100	0011	1000000000000000
Sub 3	0000	0110	0000	1001	0011	1000000000000000

B4	В3	B2	B1	B0	
0100	1000	0111	0100	1000	
0010	0100	0011	1010	0100	0000000000000000
0010	0100	0011	0111	0100	0000000000000000
0001	0010	0001	1011	1010	0000000000000000
0001	0010	0001	1000	0111	0000000000000000
0000	1001	0000	1100	0011	1000000000000000
0000	0110	0000	1001	0011	1000000000000000
0000	0011	0000	0100	1001	1100000000000000
0000	0011	0000	0100	0110	1100000000000000
	0100 0010 0010 0001 0001 0000 0000	0100 1000 0010 0100 0010 0100 0001 0010 0001 0010 0000 1001 0000 0110 0000 0011	0100 1000 0111 0010 0100 0011 0010 0100 0011 0001 0010 0001 0001 0010 0001 0000 1001 0000 0000 0110 0000 0000 0011 0000	0100 1000 0111 0100 0010 0100 0011 1010 0010 0100 0011 1011 0001 0010 0001 1011 0001 0010 0001 1000 0000 1001 0000 1100 0000 0110 0000 1001 0000 0011 0000 0100	0100 1000 0111 0100 1000 0010 0100 0011 1010 0100 0010 0100 0011 0111 0100 0001 0010 0001 1011 1010 0001 0010 0001 1000 0111 0001 0010 0001 1000 0111 0000 0110 0000 1001 0011 0000 0011 0000 0100 1001

Ор	B4	В3	B2	B1	B0	
Input	0100	1000	0111	0100	1000	
R Sft	0010	0100	0011	1010	0100	00000000000000000
Sub 3	0010	0100	0011	0111	0100	0000000000000000
R Sft	0001	0010	0001	1011	1010	000000000000000000000000000000000000000
Sub 3	0001	0010	0001	1000	0111	0000000000000000
R Sft	0000	1001	0000	1100	0011	1000000000000000
Sub 3	0000	0110	0000	1001	0011	1000000000000000
R Sft	0000	0011	0000	0100	1001	1100000000000000
Sub 3	0000	0011	0000	0100	0110	11000000000000000
R Sft	0000	0001	1000	0010	0011	0110000000000000
Sub 3	0000	0001	0101	0010	0011	0110000000000000

Ор	B4	B3	B2	B1	B0	
Input	0100	1000	0111	0100	1000	
R Sft	0010	0100	0011	1010	0100	0000000000000000
Sub 3	0010	0100	0011	0111	0100	0000000000000000
R Sft	0001	0010	0001	1011	1010	0000000000000000
Sub 3	0001	0010	0001	1000	0111	0000000000000000
R Sft	0000	1001	0000	1100	0011	1000000000000000
Sub 3	0000	0110	0000	1001	0011	1000000000000000
R Sft	0000	0011	0000	0100	1001	1100000000000000
Sub 3	0000	0011	0000	0100	0110	1100000000000000
R Sft	0000	0001	1000	0010	0011	0110000000000000
Sub 3	0000	0001	0101	0010	0011	0110000000000000
R Sft	0000	0000	1010	1001	0001	1011000000000000
Sub 3	0000	0000	0111	0110	0001	1011000000000000

Ор	B4	B3	B2	B1	B0	
Input	0100	1000	0111	0100	1000	
R Sft	0010	0100	0011	1010	0100	00000000000000000
Sub 3	0010	0100	0011	0111	0100	0000000000000000
R Sft	0001	0010	0001	1011	1010	000000000000000000000000000000000000000
Sub 3	0001	0010	0001	1000	0111	0000000000000000
R Sft	0000	1001	0000	1100	0011	1000000000000000
Sub 3	0000	0110	0000	1001	0011	1000000000000000
R Sft	0000	0011	0000	0100	1001	1100000000000000
Sub 3	0000	0011	0000	0100	0110	1100000000000000
R Sft	0000	0001	1000	0010	0011	0110000000000000
Sub 3	0000	0001	0101	0010	0011	0110000000000000
R Sft	0000	0000	1010	1001	0001	1011000000000000
Sub 3	0000	0000	0111	0110	0001	1011000000000000
R Sft	0000	0000	0011	1011	0000	1101100000000000
Sub 3	0000	0000	0011	1000	0000	110110 <mark>0</mark> 0000000000

R Sft	0000	0000	0001	1100	0000	0110110000000000
Sub 3	0000	0000	0001	1001	0000	0110110000000000

R Sft	0000	0000	0001	1100	0000	0110110000000000
Sub 3	0000	0000	0001	1001	0000	0110110000000000
R Sft	0000	0000	0000	1100	1000	0011011000000000
Sub 3	0000	0000	0000	1001	0101	00110110 <mark>0</mark> 0000000

R Sft	0000	0000	0001	1100	0000	0110110000000000
Sub 3	0000	0000	0001	1001	0000	0110110000000000
R Sft	0000	0000	0000	1100	1000	0011011000000000
Sub 3	0000	0000	0000	1001	0101	0011011000000000
R Sft	0000	0000	0000	0100	1010	1001101100000000
Sub 3	0000	0000	0000	0100	0111	100110110 <mark>0</mark> 000000

R Sft	0000	0000	0001	1100	0000	0110110000000000
Sub 3	0000	0000	0001	1001	0000	0110110000000000
R Sft	0000	0000	0000	1100	1000	0011011000000000
Sub 3	0000	0000	0000	1001	0101	00110110 <mark>0</mark> 0000000
R Sft	0000	0000	0000	0100	1010	1001101100000000
Sub 3	0000	0000	0000	0100	0111	100110110 <mark>0</mark> 000000
R Sft	0000	0000	0000	0010	0011	1100110110000000

R Sft	0000	0000	0001	1100	0000	0110110000000000
Sub 3	0000	0000	0001	1001	0000	0110110 <mark>0</mark> 00000000
R Sft	0000	0000	0000	1100	1000	0011011000000000
Sub 3	0000	0000	0000	1001	0101	00110110 <mark>0</mark> 0000000
R Sft	0000	0000	0000	0100	1010	1001101100000000
Sub 3	0000	0000	0000	0100	0111	100110110 <mark>0</mark> 000000
R Sft	0000	0000	0000	0010	0011	1100110110000000
R Sft	0000	0000	0000	0001	0001	1110011011000000

R Sft	0000	0000	0001	1100	0000	0110110000000000
Sub 3	0000	0000	0001	1001	0000	0110110000000000
R Sft	0000	0000	0000	1100	1000	0011011000000000
Sub 3	0000	0000	0000	1001	0101	0011011000000000
R Sft	0000	0000	0000	0100	1010	1001101100000000
Sub 3	0000	0000	0000	0100	0111	1001101100000000
R Sft	0000	0000	0000	0010	0011	1100110110000000
R Sft	0000	0000	0000	0001	0001	1110011011000000
R Sft	0000	0000	0000	0000	1000	1111001101100000
Sub 3	0000	0000	0000	0000	0101	1111001101100000

R Sft	0000	0000	0001	1100	0000	0110110000000000
Sub 3	0000	0000	0001	1001	0000	0110110 <mark>0</mark> 00000000
R Sft	0000	0000	0000	1100	1000	0011011000000000
Sub 3	0000	0000	0000	1001	0101	00110110 <mark>0</mark> 0000000
R Sft	0000	0000	0000	0100	1010	1001101100000000
Sub 3	0000	0000	0000	0100	0111	100110110 <mark>0</mark> 000000
R Sft	0000	0000	0000	0010	0011	1100110110000000
R Sft	0000	0000	0000	0001	0001	1110011011000000
R Sft	0000	0000	0000	0000	1000	1111001101100000
Sub 3	0000	0000	0000	0000	0101	1111001101100000
R Sft	0000	0000	0000	0000	0010	1111100110110000

R Sft	0000	0000	0001	1100	0000	0110110000000000
Sub 3	0000	0000	0001	1001	0000	0110110000000000
R Sft	0000	0000	0000	1100	1000	0011011000000000
Sub 3	0000	0000	0000	1001	0101	0011011000000000
R Sft	0000	0000	0000	0100	1010	1001101100000000
Sub 3	0000	0000	0000	0100	0111	1001101100000000
R Sft	0000	0000	0000	0010	0011	1100110110000000
R Sft	0000	0000	0000	0001	0001	1110011011000000
R Sft	0000	0000	0000	0000	1000	1111001101100000
Sub 3	0000	0000	0000	0000	0101	1111001101100000
R Sft	0000	0000	0000	0000	0010	1111100110110000
R Sft	0000	0000	0000	0000	0001	0111110011011000

R Sft	0000	0000	0001	1100	0000	0110110000000000
Sub 3	0000	0000	0001	1001	0000	0110110000000000
R Sft	0000	0000	0000	1100	1000	0011011000000000
Sub 3	0000	0000	0000	1001	0101	00110110 <mark>0</mark> 0000000
R Sft	0000	0000	0000	0100	1010	1001101100000000
Sub 3	0000	0000	0000	0100	0111	100110110 <mark>0</mark> 000000
R Sft	0000	0000	0000	0010	0011	1100110110000000
R Sft	0000	0000	0000	0001	0001	1110011011000000
R Sft	0000	0000	0000	0000	1000	1111001101100000
Sub 3	0000	0000	0000	0000	0101	1111001101100000
R Sft	0000	0000	0000	0000	0010	1111100110110000
R Sft	0000	0000	0000	0000	0001	0111110011011000
R Sft	0000	0000	0000	0000	0000	1011111001101100

R Sft	0000	0000	0001	1100	0000	0110110000000000
Sub 3	0000	0000	0001	1001	0000	0110110000000000
R Sft	0000	0000	0000	1100	1000	0011011000000000
Sub 3	0000	0000	0000	1001	0101	0011011000000000
R Sft	0000	0000	0000	0100	1010	1001101100000000
Sub 3	0000	0000	0000	0100	0111	1001101100000000
R Sft	0000	0000	0000	0010	0011	1100110110000000
R Sft	0000	0000	0000	0001	0001	1110011011000000
R Sft	0000	0000	0000	0000	1000	1111001101100000
Sub 3	0000	0000	0000	0000	0101	1111001101100000
R Sft	0000	0000	0000	0000	0010	1111100110110000
R Sft	0000	0000	0000	0000	0001	0111110011011000
R Sft	0000	0000	0000	0000	0000	1011111001101100
End		1	•	•	1	48748

- Binary coding scheme for decimal digits
- Sequence of bits x₃x₂x₁x₀ (say) for N is it's code word
- Each position *i* may have a weight w_i (weighted code); $N = \sum w_i x_i$
- For BCD $w_3 = 8$, $w_2 = 4$, $w_1 = 2$, $w_0 = 1$
- Sum of weights is 9 for self-complementing code

						wei	ghts					
N	8	4	2	1	2	4	2	1	6	4	2	-3
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1	0	1	0	1
2	0	0	1	0	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1	1	0	0	1
4	0	1	0	0	0	1	0	0	0	1	0	0
5	0	1	0	1	1	0	0	1	1	0	1	1
6	0	1	1	0	1	1	0	0	0	1	1	0
7	0	1	1	1	1	1	0	1	1	1	0	0
8	1	0	0	0	1	1	1	0	1	0	1	0
9	1	0	0	1	1	1	1	1	1	1	_1	_1

	Е	3CD			Exc	cess	-3		С	yclic	;		Gr	ay	
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	1
0	0	1	0	0	1	0	1	0	0	1	1	0	0	1	1
0	0	1	1	0	1	1	0	0	0	1	0	0	0	1	0
0	1	0	0	0	1	1	1	0	1	1	0	0	1	1	0
0	1	0	1	1	0	0	0	1	1	1	0	0	1	1	1
0	1	1	0	1	0	0	1	1	0	1	0	0	1	0	1
0	1	1	1	1	0	1	0	1	0	0	0	0	1	0	0
1	0	0	0	1	0	1	1	1	1	0	0	1	1	0	0
1	0	0	1	1	1	0	0	0	1	0	0	1	1	0	1

- Excess-3, Cyclic and Gray codes are unweighted codes
- Excess-3 code is formed by adding 3 (0011) to the BCD value
- It's is self-complementing

	E	3CD			Exc	cess	-3		С	yclic	;		Gr	ay	
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	1
0	0	1	0	0	1	0	1	0	0	1	1	0	0	1	1
0	0	1	1	0	1	1	0	0	0	1	0	0	0	1	0
0	1	0	0	0	1	1	1	0	1	1	0	0	1	1	0
0	1	0	1	1	0	0	0	1	1	1	0	0	1	1	1
0	1	1	0	1	0	0	1	1	0	1	0	0	1	0	1
0	1	1	1	1	0	1	0	1	0	0	0	0	1	0	0
1	0	0	0	1	0	1	1	1	1	0	0	1	1	0	0
1	0	0	1	1	1	0	0	0	1	0	0	1	1	0	1

- Excess-3, Cyclic and Gray codes are unweighted codes
- Excess-3 code is formed by adding 3 (0011) to the BCD value
- It's is self-complementing $(\frac{n+3}{n+3} + \frac{(9-n)+3}{n+3} = 15)$

	I	3CD			Exc	cess	-3		С	yclic	;		Gı	ay	
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	1
0	0	1	0	0	1	0	1	0	0	1	1	0	0	1	1
0	0	1	1	0	1	1	0	0	0	1	0	0	0	1	0
0	1	0	0	0	1	1	1	0	1	1	0	0	1	1	0
0	1	0	1	1	0	0	0	1	1	1	0	0	1	1	1
0	1	1	0	1	0	0	1	1	0	1	0	0	1	0	1
0	1	1	1	1	0	1	0	1	0	0	0	0	1	0	0
1	0	0	0	1	0	1	1	1	1	0	0	1	1	0	0
1	0	0	1	1	1	0	0	0	1	0	0	1	1	0	1

- Excess-3, Cyclic and Gray codes are unweighted codes
- Excess-3 code is formed by adding 3 (0011) to the BCD value
- It's is self-complementing $(\frac{n+3}{n+3} + \frac{(9-n)+3}{n+3} = 15)$
- Adjacent code words of a cyclic code differ only in one place in the range
 0..9, also, 0 and 9 are adjacent

Chittaranian Mandal (IIT Kharagpur)

What if the codes are: 8, 4, -2, -1

	E	3CD			Exc	cess	-3		С	yclic	;		Gı	ay	
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	1
0	0	1	0	0	1	0	1	0	0	1	1	0	0	1	1
0	0	1	1	0	1	1	0	0	0	1	0	0	0	1	0
0	1	0	0	0	1	1	1	0	1	1	0	0	1	1	0
0	1	0	1	1	0	0	0	1	1	1	0	0	1	1	1
0	1	1	0	1	0	0	1	1	0	1	0	0	1	0	1
0	1	1	1	1	0	1	0	1	0	0	0	0	1	0	0
1	0	0	0	1	0	1	1	1	1	0	0	1	1	0	0
1	0	0	1	1	1	0	0	0	1	0	0	1	1	0	1

 Gray code is cyclic (in the range 0..15, 0 and 15 being adjacent for a 4-bit code) and also a reflected code – not cyclic in 0..9

	E	3CD			Exc	cess	-3		С	yclic			Gr	ay	
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	1
0	0	1	0	0	1	0	1	0	0	1	1	0	0	1	1
0	0	1	1	0	1	1	0	0	0	1	0	0	0	1	0
0	1	0	0	0	1	1	1	0	1	1	0	0	1	1	0
0	1	0	1	1	0	0	0	1	1	1	0	0	1	1	1
0	1	1	0	1	0	0	1	1	0	1	0	0	1	0	1
0	1	1	1	1	0	1	0	1	0	0	0	0	1	0	0
1	0	0	0	1	0	1	1	1	1	0	0	1	1	0	0
1	0	0	1	1	1	0	0	0	1	0	0	1	1	0	1

- Gray code is cyclic (in the range 0..15, 0 and 15 being adjacent for a 4-bit code) and also a reflected code – not cyclic in 0..9
- $g_i = b_i \oplus b_{i+1}, g_{n-1} = b_{n-1}; b_i = ?$

	E	3CD			Exc	cess	-3		С	yclic	;		Gr	ay	
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	1
0	0	1	0	0	1	0	1	0	0	1	1	0	0	1	1
0	0	1	1	0	1	1	0	0	0	1	0	0	0	1	0
0	1	0	0	0	1	1	1	0	1	1	0	0	1	1	0
0	1	0	1	1	0	0	0	1	1	1	0	0	1	1	1
0	1	1	0	1	0	0	1	1	0	1	0	0	1	0	1
0	1	1	1	1	0	1	0	1	0	0	0	0	1	0	0
1	0	0	0	1	0	1	1	1	1	0	0	1	1	0	0
1	0	0	1	1	1	0	0	0	1	0	0	1	1	0	1

- Gray code is cyclic (in the range 0..15, 0 and 15 being adjacent for a 4-bit code) and also a reflected code – not cyclic in 0..9
- $g_i = b_i \oplus b_{i+1}, g_{n-1} = b_{n-1}; b_i = ?$
- $\bullet \ g_i \oplus b_{i+1} = b_i \oplus b_{i+1} \oplus b_{i+1} = b_i \oplus 0 = b_i$

Ν	Binary				Gray			
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
1 2 3 4 5 6 7	0	0	1	0	0	0	1	1
3	0	0	1	1	0 0 0	0	1	0
4	0	1	0	0	0	1	1	0
5	0	1	0	1	0	1	1	1
6	0	1	1	0	0	1	0	1
7	0	1	1	1	0	1	0	0
8 9	1	0	0	0	1	1	0	0
	1	0	0	1	1	1	0	1
10	1	0	1	0	1	1	1	1
11	1	0	1	1	1	1	1	0
12	1	1	0	0	1	0	1	0
13	1	1	0	1	1	0	1	1
14	1	1	1	0	1	0	0	1
15	1	1	1	1	1	0	0	0

- \bullet $g_i = b_i \oplus b_{i+1}, g_{n-1} = b_{n-1}$
- n and it's bitwise complement n
 are placed symmetrically about the middle of the table

Ν	Binary				Gray				
0	0	0	0	0	0	0	0	0	
1	0	0	0	1	0	0	0	1	
1 2 3 4 5 6 7	0	0	1	0	0	0	1	1	
3	0	0	1	1	0	0	1	0	
4	0	1	0	0	0	1	1	0	
5	0	1	0	1	0	1	1	1	
6	0	1	1	0	0	1	0	1	
7	0	1	1	1	0	1	0	0	
8 9	1	0	0	0	1	1	0	0	
	1	0	0	1	1	1	0	1	
10	1	0	1	0	1	1	1	1	
11	1	0	1	1	1	1	1	0	
12	1	1	0	0	1	0	1	0	
13	1	1	0	1	1	0	1	1	
14	1	1	1	0	1	0	0	1	
15	1	1	1	1	1	0	0	0	

- \bullet $g_i = b_i \oplus b_{i+1}, g_{n-1} = b_{n-1}$
- n and it's bitwise complement n
 are placed symmetrically about the middle of the table
- Their Gray codes should differ only in the MSB
- Let $n \equiv b_{n-1}b_{n-2}\dots b_0$ and it's Gray code be $g_{n-1}g_{n-2}\dots g_0$
- By the rule the gray code of \tilde{n} is

Ν	Binary				Gray			
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
1 2 3 4 5 6	0	0	1	0	0	0	1	1
3	0	0	1	1	0	0	1	0
4	0	1	0	0	0	1	1	0
5	0	1	0	1	0	1	1	1
6	0	1	1	0	0	1	0	1
7	0	1	1	1	0	1	0	0
8 9	1	0	0	0	1	1	0	0
	1	0	0	1	1	1	0	1
10	1	0	1	0	1	1	1	1
11	1	0	1	1	1	1	1	0
12	1	1	0	0	1	0	1	0
13	1	1	0	1	1	0	1	1
14	1	1	1	0	1	0	0	1
15	1	1	1	1	1	0	0	0

$$\bullet$$
 $g_i = b_i \oplus b_{i+1}, g_{n-1} = b_{n-1}$

- n and it's bitwise complement ñ are placed symmetrically about the middle of the table
- Their Gray codes should differ only in the MSB
- Let $n \equiv b_{n-1}b_{n-2}\dots b_0$ and it's Gray code be $g_{n-1}g_{n-2}\dots g_0$
- By the rule the gray code of \tilde{n} is

Thus the Gray codes of n and n
differ only in the MSB

Is the Gray code weighted?

Is the Gray code weighted?

- Can we find weights such that $\sum_i w_i x_{i,j} = j$?
- Suppose it's weighted
- Utilise the property that adjacent codes differ in one place only

Is the Gray code weighted?

- Can we find weights such that $\sum_i w_i x_{i,j} = j$?
- Suppose it's weighted
- Utilise the property that adjacent codes differ in one place only

•
$$\forall i \exists j | (j+1) - j = \sum_i w_i (x_{i,j+1} - x_{i,j}) = \pm w_i = 1 \text{ (why?)}$$

Is the Gray code weighted?

- Can we find weights such that $\sum_i w_i x_{i,j} = j$?
- Suppose it's weighted
- Utilise the property that adjacent codes differ in one place only
- $\forall i \exists j | (j+1) j = \sum_i w_i (x_{i,j+1} x_{i,j}) = \pm w_i = 1 \text{ (why?)}$
- This precludes representation of 2ⁿ values for a *n*-bit Gray code

22 / 29

Is the Gray code weighted?

- Can we find weights such that $\sum_i w_i x_{i,j} = j$?
- Suppose it's weighted
- Utilise the property that adjacent codes differ in one place only
- $\forall i \exists j | (j+1) j = \sum_i w_i (x_{i,j+1} x_{i,j}) = \pm w_i = 1 \text{ (why?)}$
- This precludes representation of 2ⁿ values for a *n*-bit Gray code

Is the Excess-3 code weighted?

• Can we find weights such that $\sum_i w_i x_{i,j} = j$?

Is the Gray code weighted?

- Can we find weights such that $\sum_i w_i x_{i,j} = j$?
- Suppose it's weighted
- Utilise the property that adjacent codes differ in one place only
- $\forall i \exists j | (j+1) j = \sum_i w_i (x_{i,j+1} x_{i,j}) = \pm w_i = 1 \text{ (why?)}$
- This precludes representation of 2ⁿ values for a *n*-bit Gray code

Is the Excess-3 code weighted?

- Can we find weights such that $\sum_i w_i x_{i,j} = j$?
- $w_2 = 1 [1 \mapsto 4 (0100)]$
- $w_3 = 5 [5 \mapsto 8 (1000)]$
- $w_1 + w_0 = 0 [0 \mapsto 3 (0011)]$

Is the Gray code weighted?

- Can we find weights such that $\sum_i w_i x_{i,j} = j$?
- Suppose it's weighted
- Utilise the property that adjacent codes differ in one place only
- $\forall i \exists j | (j+1) j = \sum_i w_i (x_{i,j+1} x_{i,j}) = \pm w_i = 1 \text{ (why?)}$
- This precludes representation of 2ⁿ values for a *n*-bit Gray code

Is the Excess-3 code weighted?

- Can we find weights such that $\sum_i w_i x_{i,j} = j$?
- $w_2 = 1 [1 \mapsto 4 (0100)]$
- $w_3 = 5 [5 \mapsto 8 (1000)]$
- $w_1 + w_0 = 0 [0 \mapsto 3 (0011)]$
- But, $w_2 + w_1 + w_0 = 5 \neq 4$ [4 \mapsto 7 (0111)] inconsistent

Excess-3 arithmetic

Example (Excess-3 addition)

	0	0	1	1	1	0	1	1	0	1	0	1	1	0	0	0
+	0	0	1	1	1	0	0	0	0	1	0	1	1	0	1	1
	0	1	1	1	10	0	1	1	1	0	1	1	10	0	1	1
	0	1	0	0	0	1	1	0	1	0	0	0	0	1	1	0

Example (Excess-3 subtraction)

$$\bullet$$
 825 - 528 = 297 \rightarrow 825 + 471 + 1 = 1297 = 297 mod 1000

	0	0	1	1	1	0	1	1	0	1	0	1	1	0	0	0
+	0	0	1	1	0	1	1	1	1	0	1	0	0	1	0	10
	0	1	1	1	10	0	1	0	1	1	1	1	1	1	0	1
	0	1	0	0	0	1	0	1	1	1	0	0	1	0	1	0

Error detecting code

Ν	Е	ven	Par	ity E	3CD)	2-out-of-5, $\binom{5}{2} = 10$					0	63210 BCD					
	8	4	2	1	р		0	1	2	4	7		6	3	2	1	0	
0	0	0	0	0	0		0	0	0	1	1		0	0	1	1	0	
1	0	0	0	1	1		1	1	0	0	0		0	0	0	1	1	
2	0	0	1	0	1		1	0	1	0	0		0	0	1	0	1	
3	0	0	1	1	0		0	1	1	0	0		0	1	0	0	1	
4	0	1	0	0	1		1	0	0	1	0		0	1	0	1	0	
5	0	1	0	1	0		0	1	0	1	0		0	1	1	0	0	
6	0	1	1	0	0		0	0	1	1	0		1	0	0	0	1	
7	0	1	1	1	1		1	0	0	0	1		1	0	0	1	0	
8	1	0	0	0	1		0	1	0	0	1		1	0	1	0	0	
9	1	0	0	1	0		0	0	1	0	1		1	1	0	0	0	

Error detecting code

Ν	Е	ven	Par	ity E	3CD)	2-0	out-	of-5	$\binom{5}{2}$	= 1	0	63210 BCD)	
	8	4	2	1	р		0	1	2	4	7		6	3	2	1	0	
0	0	0	0	0	0		0	0	0	1	1		0	0	1	1	0	1
1	0	0	0	1	1		1	1	0	0	0		0	0	0	1	1	
2	0	0	1	0	1		1	0	1	0	0		0	0	1	0	1	
3	0	0	1	1	0		0	1	1	0	0		0	1	0	0	1	
4	0	1	0	0	1		1	0	0	1	0		0	1	0	1	0	
5	0	1	0	1	0		0	1	0	1	0		0	1	1	0	0	
6	0	1	1	0	0		0	0	1	1	0		1	0	0	0	1	
7	0	1	1	1	1		1	0	0	0	1		1	0	0	1	0	
8	1	0	0	0	1		0	1	0	0	1		1	0	1	0	0	
9	1	0	0	1	0		0	0	1	0	1		1	1	0	0	0	

- Hamming distance: number of bits differing between two codes
- If minimum Hamming distance between any two code words is d then d-1 single bit errors can be detected.

Correction for single bit error D_1 P_1 and P_2 affected, P_3 unaffected

- D₁ P₁ and P₂ affected, P₃ unaffected
- D₂ P₁ and P₃ affected, P₂ unaffected

- D_1 P_1 and P_2 affected, P_3 unaffected
- D_2 P_1 and P_3 affected, P_2 unaffected
- D₃ P₂ and P₃ affected, P₁ unaffected

- D_1 P_1 and P_2 affected, P_3 unaffected
- D_2 P_1 and P_3 affected, P_2 unaffected
- D_3 P_2 and P_3 affected, P_1 unaffected
- D_4 P_1 , P_2 and P_2 affected

- D_1 P_1 and P_2 affected, P_3 unaffected
- D_2 P_1 and P_3 affected, P_2 unaffected
- D_3 P_2 and P_3 affected, P_1 unaffected
- D_4 P_1 , P_2 and P_2 affected
- P₁ D₁, D₂, D₃, P₁ P₂ and P₂ unaffected, D₁, D₂, D₃

- D_1 P_1 and P_2 affected, P_3 unaffected
- D_2 P_1 and P_3 affected, P_2 unaffected
- D_3 P_2 and P_3 affected, P_1 unaffected
- D_4 P_1 , P_2 and P_2 affected
- P_1 D_1 , D_2 , D_3 , P_1 P_2 and P_2 unaffected, D_1 , D_2 , D_3
- P_2 D_1 , D_2 , D_3 , P_1 P_2 and P_3 unaffected

- D_1 P_1 and P_2 affected, P_3 unaffected
- D_2 P_1 and P_3 affected, P_2 unaffected
- D_3 P_2 and P_3 affected, P_1 unaffected
- D_4 P_1 , P_2 and P_2 affected
- P_1 D_1 , D_2 , D_3 , P_1 P_2 and P_2 unaffected, D_1 , D_2 , D_3
- P_2 D_1 , D_2 , D_3 , P_1 P_2 and P_3 unaffected
- P_3 D_1 , D_2 , D_3 , P_1 P_1 and P_2 unaffected

Relating data and parity bits

 Association of parity bits to the data bits may be done according to the table below

Bits indices	7	6	5	4	3	2	1
Binary	111	110	101	100	011	010	001
Data/parity	d ₄	<i>d</i> ₃	d_2	p ₃	d_1	p ₂	<i>p</i> ₁
Association	<i>p</i> ₃ , <i>p</i> ₂ , <i>p</i> ₁	<i>p</i> ₃ , <i>p</i> ₂	<i>p</i> ₃ , <i>p</i> ₁	p ₃	<i>p</i> ₂ , <i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₁

- Bit at 2ⁱ positions (1, 2, 4) are for parity, others for data
- p_1 covers data bit positions having 1 in LSB $(1:p_1, 3:d_1, 5:d_2, 7:d_4)$
- p_2 covers data bit positions having 1 in next higher bit position (2: p_2 , 3: d_1 , 6: d_3 , 7: d_4)
- p_3 covers data bit positions having 1 in next higher bit position (4: p_3 , 5: d_2 , 6: d_3 , 7: d_4)
- This scheme may be generalised

 Consider codes 000 and 111 and all possible single bit errors

- Consider codes 000 and 111 and all possible single bit errors
- Any single bit error code can be tracked backed to 000 or 111

- Consider codes 000 and 111 and all possible single bit errors
- Any single bit error code can be tracked backed to 000 or 111
- Achive by maintaining Hamming distance of 3 between the code words

- Consider codes 000 and 111 and all possible single bit errors
- Any single bit error code can be tracked backed to 000 or 111
- Achive by maintaining Hamming distance of 3 between the code words
- If d is the minimum Hamming distance between code words, up to $\lfloor \frac{d-1}{2} \rfloor$ -bit errors can be corrected

• Let there be m information bits in total of n bits; m + p = n

- Let there be m information bits in total of n bits; m + p = n
- *n* patterns for 1-bit error in a code word; 1 valid pattern

- Let there be m information bits in total of n bits; m + p = n
- n patterns for 1-bit error in a code word; 1 valid pattern
- Reserve n + 1 patterns for each code

- Let there be m information bits in total of n bits; m + p = n
- n patterns for 1-bit error in a code word; 1 valid pattern
- Reserve *n* + 1 patterns for each code
- $(n+1)2^m \le 2^n$

- Let there be m information bits in total of n bits; m + p = n
- n patterns for 1-bit error in a code word; 1 valid pattern
- Reserve *n* + 1 patterns for each code
- $(n+1)2^m \le 2^n$
- $n+1 \le 2^{n-m} = 2^p$

- Let there be m information bits in total of n bits; m + p = n
- n patterns for 1-bit error in a code word; 1 valid pattern
- Reserve n + 1 patterns for each code
- $(n+1)2^m \le 2^n$
- $n+1 \le 2^{n-m} = 2^p$
- $m + p + 1 \le 2^p$

- Let there be m information bits in total of n bits; m + p = n
- n patterns for 1-bit error in a code word; 1 valid pattern
- Reserve n + 1 patterns for each code
- $(n+1)2^m \le 2^n$
- $n+1 \le 2^{n-m} = 2^p$
- $m + p + 1 \le 2^p$
- For m = 4 p = ?

- Let there be m information bits in total of n bits; m + p = n
- n patterns for 1-bit error in a code word; 1 valid pattern
- Reserve n + 1 patterns for each code
- $(n+1)2^m \le 2^n$
- $n+1 \le 2^{n-m} = 2^p$
- $m + p + 1 \le 2^p$
- For m = 4 p = ?
- Say p = 3 then $2^p = 2^3 = 8 \ge 4 + 3 + 1 = 8$

 For single bit error, all codes at Hamming distance of 1 from a valid code are in error

- For single bit error, all codes at Hamming distance of 1 from a valid code are in error
- Since there is no recovery errorneous codes can be "shared" between valid codes

- For single bit error, all codes at Hamming distance of 1 from a valid code are in error
- Since there is no recovery errorneous codes can be "shared" between valid codes
- Adjacent codes must have separate colours (valid: ✓, error: ✗)

	000	001	011	010	110	111	101	100
00	✓	Х	1	X	✓	Х	✓	Х
01	Х	1	Х	1	Х	1	Х	1
11	1	Х	1	X	1	Х	1	X
10	Х	1	Х	1	Х	1	Х	1

- For single bit error, all codes at Hamming distance of 1 from a valid code are in error
- Since there is no recovery errorneous codes can be "shared" between valid codes
- Adjacent codes must have separate colours (valid: ✓, error: ✗)

	000	001	011	010	110	111	101	100
00	✓	Х	✓	X	✓	Х	✓	Х
01	Х	1	Х	1	X	1	Х	1
11	1	Х	1	X	✓	Х	1	Х
10	Х	1	X	1	X	1	X	1

For single bit error, at most half the codes are usable

- For single bit error, all codes at Hamming distance of 1 from a valid code are in error
- Since there is no recovery errorneous codes can be "shared" between valid codes
- Adjacent codes must have separate colours (valid: ✓, error: ✗)

	000	001	011	010	110	111	101	100
00	✓	Х	✓	X	✓	Х	✓	Х
01	Х	1	Х	1	Х	1	Х	1
11	1	Х	1	Х	1	Х	1	Х
10	Х	1	Х	✓	Х	1	Х	1

- For single bit error, at most half the codes are usable
- For m bits of data, n = m + 1 bits are needed for EDC

- For single bit error, all codes at Hamming distance of 1 from a valid code are in error
- Since there is no recovery errorneous codes can be "shared" between valid codes
- Adjacent codes must have separate colours (valid: ✓, error: ✗)

	000	001	011	010	110	111	101	100
00	/	Х	1	Х	1	Х	1	Х
01	Х	1	Х	1	Х	1	Х	1
11	✓	Х	1	Х	1	Х	✓	Х
10	X	1	Х	/	X	1	Х	/

- For single bit error, at most half the codes are usable
- For m bits of data, n = m + 1 bits are needed for EDC
- BCD cannot be accommodated in 4-bits

