

KE UNIT 3 DATA WAREHOUSING FOR BUSINESS ANALYTICS

DAY 1

Dr TIAN Jing tianjing@nus.edu.sg

© 2018 National University of Singapore. All Rights Reserved

Monday 16 July	Tuesday 17 July	Wednesday 18 July	Thursday 19 July	Friday 20 July
9.00 - 12.00	9.00 - 12.00	9.00 - 12.00	9.00 - 12.00	9.00 - 12.00
1b. Introduction to Data Modelling (I)	2a. Relational Database and SQL (I)	3a. Introduction to Data Warehousing	4a. Data Visualisation and Storytelling (II)	5a. Project Consultation and Presentation
Tian Jing	Tian Jing	Brandon	Brandon	Brandon / Tian Jing
13.30 - 17.00	13.30 - 17.00	13.30 - 17.00	13.30 - 17.00	13.30 - 17.00
1b. Introduction	2b. Relational	3b. Data	4b. Data	5b. Project
to Data	Database and	Visualisation and	Visualisation and	Consultation and
Modelling (II)	SQL (II)	Storytelling (I)	Storytelling (III)	Presentation
Tian Jing	Tian Jing	Brandon	Brandon	Brandon / Tian Jing

- Team: 4-5 students
- CA1 project presentation (5%)
 - 10 minutes per team
 - 5th day 20 July (Friday)
 - Concept and architecture design ONLY
- CA1 submission (15%)
 - Due date: 12 August (Sunday)
 - Refer to CA1 briefing document in IVLE
- Exam (part A): 30%

- Introduction to data modelling
- Relational data modelling
 - Entity relationship diagram (ERD).
 - Normalization, a technique that helps analysts validate the data models
 - Logical data modelling
 - Data management and query (Day 2)
- Dimensional data modelling (Day 3)
- Non-relational data modelling (part B)

- Introduction to data modelling
- Data analysis
 - Entity relationship diagram (ERD)
 - Attribute analysis
- Data design
 - Normalization
 - Logical data model

Data	Data are raw unprocessed facts. By itself data has no meaning and no structure.
Information	Information is interpreted or processed data.
Data	Create - adding new data
Management	•Read - retrieving information
	•Update - modifying existing data
	•Delete - removing data
Metadata	Data structure and category
Query	Asking questions of data in search of a specific answer.

- 1. A Telephone book
- 2. Organizing the Phone Book in Alphabetical Order
- 3. Looking up 'Michael Fudge' yields the phone number 555-1234
- 4. How many 'Fudges' are there in the phone book?

- 5. Employee records (in a file cabinet)
- 6. Filing a new employee under "W" because their last name is "Williams"
- 7. The average employee salary is \$40,000

Data?	
Information?	
Data Management?	
Metadata?	
Query?	

Transactional

- Captures data describing and event
- An exchange between actors
- Real-time

Analytical

- Captures data to support analysis and reporting
- An aggregated view of the business
- Historical

© 2018 National University of Singapore. All Rights Reserved

- What is a database?
 - · A collection of files storing related data
- What is a database management system (DBMS)?
 - An application program that allows us to manage efficiently the collection of data files.
- What is data model?
 - Mathematical formalism (or conceptual way) for describing the data

Requirement analysis

What information needs to be stored?
 How will it be used? What integrity constraints should be imposed?

Conceptual data modelling

 Define/describe/discuss the semantic modeling of data in the application (Entities Relations Diagrams)

Logical data modelling

 Enhance the Entities Relations Diagrams by optimizations and relationships

Physical data modelling

 Translate the database schema into a physical storage plan on available hardware (DBMS, SQL, day 2)

© 2018 National University of Singapore. All Rights Reserved

Page 13

Data analysis and data design

Data Analysis

- Develop a data model for data required by the business requirements
- · A data model consists of
 - Entities Relations Diagram
 - Data Dictionary

Data Design

- Restructure the data model so that it is optimised or suitable for data accesses
 - Required before designing and implementing physical database
- Logical data model (through normalization)

- Introduction to data modelling
- Data analysis
 - Entity relationship diagram (ERD)
 - Attribute analysis
- Data design
 - Normalization
 - · Logical data model

- Entities
- Relationships
- Cardinality

- A distinguishable objects in the problem domain that we want to model.
- You need to distinguish:
 - Entity Type (or Entity)
 - Entity Occurrence

Example: In a ISS Course Registration System

- Teacher is an Entity Type
- Brandon and I are the Entity Occurrences

Teacher

© 2018 National University of Singapore. All Rights Reserved

- Depends on the business rules
- Every Relationship is bi-directional
 - · a teacher teaches one or more students
 - a student is taught by one or more teacher

- There may be more than one important relationships
 - · a teacher counsels zero, one or more students
 - · a teacher teaches one or more students
- Every Relationship is described in terms of a verb

- Cardinality of relationships: How many
 - The number of occurrences of one entity type that relate to the occurrences of another entity type

- Optional Relationships
 - · one to zero or one
 - · one to zero or many
 - many to zero or many

Page 19

An education institute management system

- Data modelling is similar to diagramming a sentence
 - Place boxes around the 'nouns', or entities.
 - Underline the 'verbs'.
 - Circle the 'how many' qualifier.
 - Look for optionality words such as 'may/must'.

Page 21

A project management system with objective to keep track of

- all the projects undertaken by the company
- assignments of projects to departments
 - a project can be assigned to one or more departments
 - each department can take on one or more projects
 - one or more employee of a department may work on a project
 - a employee can only take on one project at any one time

- Introduction to data modelling
- Data analysis
 - Entity relationship diagram (ERD)
 - Attribute analysis
- Data design
 - Normalization
 - · Logical data model

- Meta Data
 - Data about data
- Data Dictionary
 - a repository to store all information, description about the data
 - · Contains metadata

ATTRIBUTE NAME	TYPE	LENGTH	DEFINITIONS AND BUSINESS RULES
EMP-M	Α	25	Employee Name (full name, start with the surname)
Emp-JOB-T	Α	25	Employee Job title (Programmer, Analyst, Project Manager, Department Manager)
EMP-JOB-DESC	Α	60	Simple short description
PROJ-M	Α	10	A unique short name given to the project
MTH-SAL-A	N	6.2	Monthly salary (999999.99)
EMP-PROJ-START-D	D	8	Start date of the project (DDMMYYYY)
EMP-PROJ-END-D	D	8	End date of the project (DDMMYYYY)

Note: A – Alphanumeric, N – Numeric, D - date

© 2018 National University of Singapore. All Rights Reserved

- Recall for the project management system, possible attributes of each entity are
 - Employee
 - employee name,job title, job description, project name, employee skill type, employee skill type description, employee monthly salary etc
 - Department
 - department name, department manager number, department manager name, department employee size, project name, project-department budget allocated, department employee number, department employee name
 - Project
 - project name, project description, project budget allocated, project start date, project end date

Attributes of the Project Management system

ENTITY	ATTRIBUTE NAME	ТУРЕ	LEN	DEFINITION AND BUSINESS RULES
Employee	EMP-N	N	6	Employee number. Unique for each employee.
	EMP-M	Α	25	Employee name in the form of the last name and two initials.
	EMP-JOB-T	Α	25	Employee job Title (analyst, programmer, project manager, department manager)
	EMP-JOB-DESC	Α	60	Short description of job title
	SAL-CHNG-D	N	8	The effective date of the employee's salary Employee salary history is kept for 3 years.
	MTH-SAL-A	Ν	6.2	Monthly salary (in the form of 999999.99).
	PROJ-M	Α	10	Name of project currently assigned to employee Each project has a unique name
	EMP-PROJ-START-D	D	8	Start date of the employee on the project
	EMP-PROJ-END-D	D	8	End date of the employee on the project
	SKILL-TYPE-C	Α	6	Skill type code
	SKILL-TYPE-DESC	Α	20	Description of the skill (usually an employee has more than one skill

© 2018 National University of Singapore. All Rights Reserved

ENTITY	ATTRIBUTE NAME	ТУРЕ	LEN	DEFINITION AND BUSINESS RULES
Department	DEPT-M	Α	10	A unique name for each department
	DEPT-MGR-N	Ν	6	Employee number of the manager in charge of department
	DEPT-MGR-M	Α	25	Name of the manager in charge of department
	DEPT-EMP-SIZE-Q	Ν	3	Number of employee in the department
	DEPT-PROJ-M	Α	10	Project (name) currently assigned to department
	DEPT-PROJ-BUDGT-A	Ν	6.2	Allocated budget(money) for the project for that department
	DEPT-EMP-N	Ν	6	Employee Numbers of all employees working in the department
	DEPT-EMP-M	Α	25	Employee names of all employees working in the department
Project	PROJ-M	Α	10	Unique name assigned to project. Project currently work on by
	PROJ-DESC	Α	100	company. Short description of the project
	PROJ-BUDGT-A	Ν	6.2	Total budget (money) allocated to the entire project
	PROJ-START-D	D	8	Project start date (DDMMYYYY)
	PROJ-END-D	D	8	Project end date (DDMMYYY). The project must end by this date.

- Primary key (PK): unique identifier of a record
 - A simple key is a key consisting of a single attribute
 - A composite key is a key consisting of more than one attribute
 - No two rows must contain the same value for their primary keys
 - None of the component attributes of the identifier may have null values.

ENTITY	ATTRIBUTE NAME	TYPE	LEN	DEFINITION AND BUSINESS RULES
Employee	EMP-N	N	6	Employee number. Unique for each employee.
	EMP-M	Α	25	Employee name in the form of the last name and two initials.
	EMP-JOB-T	А	25	Employee job Title (analyst, programmer, project manager, department manager)
	EMP-JOB-DESC	Α	60	Short description of job title
	SAL-CHNG-D	D	8	Date an employee's salary was changed, in the form of 'DDMMYYYY'. Employee salary history is kept for 3 years.
	MTH-SAL-A	N	6.2	Monthly salary after change on a given date (in the form of 999999.99).
	PROJ-M	Α	10	Name of project assigned to employee Each project has a unique name
	EMP-PROJ-START-D	D	8	Start date of employee assignment to the project, DDMMYYYY (assignment period of employee to the project varies between employees)
	EMP-PROJ-END-D	D	8	End date of employee assignment to the project, DDMMYYYY (assignment period of employee to the project varies between employees)
	SKILL-TYPE-C	Α	6	Skill type code
	SKILL-TYPE-DESC	Α	20	Description of the skill

ATTRIBUTE NAME	TYPE	LEN	DEFINITION AND BUSINESS RULES
DEPT-M	Α	10	A unique name for each department
DEPT-MGR-N	N	6	Employee number of the manager in charge of department
DEPT-MGR-M	Α	25	Name of the manager in charge of department
DEPT-EMP-SIZE-Q	N	3	Number of employee in the department
DEPT-PROJ-M	Α	10	Project (name) assigned to department
DEPT-PROJ-BUDGT-A	N	6.2	Allocated budget(money) for the project for that department
DEPT-EMP-N	N	6	Employee Numbers of all employees working in the department
DEPT-EMP-M	Α	25	Employee names of all employees working in the department
PROJ-M_	Α	10	Unique name assigned to project
PROJ-DESC	Α	100	Short description of the project
PROJ-BUDGT-A	N	6.2	Total budget (money) allocated to the entire project
PROJ-START-D	D	8	Project start date (DDMMYYYY)
PROJ-END-D	D	8	Project end date (DDMMYYY). The project must end by this date.
	DEPT-M DEPT-MGR-N DEPT-MGR-M DEPT-EMP-SIZE-Q DEPT-PROJ-M DEPT-PROJ-BUDGT-A DEPT-EMP-N DEPT-EMP-M PROJ-M PROJ-DESC PROJ-BUDGT-A PROJ-START-D	DEPT-M DEPT-MGR-N DEPT-MGR-M A DEPT-EMP-SIZE-Q N DEPT-PROJ-M A DEPT-PROJ-BUDGT-A N DEPT-EMP-N DEPT-EMP-M A PROJ-DESC A PROJ-BUDGT-A N PROJ-START-D D	DEPT-M A 10 DEPT-MGR-N N 6 DEPT-MGR-M A 25 DEPT-EMP-SIZE-Q N 3 DEPT-PROJ-M A 10 DEPT-PROJ-BUDGT-A N 6.2 DEPT-EMP-N N 6 DEPT-EMP-M A 25 PROJ-M A 10 PROJ-DESC A 100 PROJ-BUDGT-A N 6.2 PROJ-START-D D 8

- Identify the entities
 - If you begin the data model using a use case, look at the major inputs and outputs of the use case.
 - If the process models are available, look at the data stores, external entities, and data flows.
- Add the appropriate attributes to each entity
 - One or more of the attributes will become the entity's identifier.
- Draw relationships among entities
 - Each relationship is labeled, and cardinality and modality are assigned.

- Introduction to data modelling
- Data analysis
 - Entity relationship diagram (ERD)
 - Attribute analysis
- Data design
 - Normalization
 - Logical data model

- A technique to organize "efficiently" organize data in a database
- · "Efficiently":
 - · Eliminating redundant data
 - Not storing the same data in more than one table
 - Ensuring that functional dependencies make sense

student_id	name	address	subject
401	Adam	133 Our Lane	Biology
402	Alex	123 Here Lane	Math
403	Stuart	123 My Lane	Math
404	Adam	123 Their Lane	Physics

- •Update Anomaly: To update address of a student who occurs twice or more than twice in a table, we will have to update address column in all the rows, else data will become inconsistent.
- •Insertion Anomaly: Suppose for a new admission, we have a Student id(S_id), name and address of a student but if student has not opted for any subjects yet then we have to insert **NULL** there, leading to Insertion Anamoly.
- •Deletion Anomaly: If (student_id) 401 has only one subject and temporarily he drops it, when we delete that row, entire student record will be deleted along with it.

Page 35

History of normal forms

Purchase Order

Customer ID: 5009

Customer Name: Lynn Wang

Date: 21/7/2011

 ItemCode | Description
 | Qty

 \$51001 | Pencil | 100
 \$1003 | Eraser

 200 | \$1005 | Ruler
 \$250 | Pencil | 100

Total Number of Items: 3

Business Rules:

- An order contain 1 to many products
- A product may be appear in multiple order
- A product may not be ordered if it is not popular!

© 2018 National University of Singapore. All Rights Reserved

Page 37

initial design of ERD

Orders

OrderID

CustomerID

CustomerName

OrderDate

ProductID

ProductName

Qty

ProductsTotal

Products

ProductID

ProductName

UnitPrice

ONF-> 1NF

- Multivalue Attributes/Repeating Groups?
 - Move multivalue/repeating group to a new entity
 -determine the key of the new relation

1NF ->2NF

- Are there attributes dependent on a partial key (of composite key)?
 - ·Move attribute(s) to a new entity
 - -determine the key of the new entity

2NF ->3NF

- Any non-key attribute dependent on any other non-key attribute?
 - Move attribute(s) to a new entity
 determine the key of the new entity

Optimization - combining entities with same primary key / remove derivable attribute

© 2018 National University of Singapore. All Rights Reserved

Page 39

Question: Check all tables with multivalue repeating attributes?

OrderID [PK]	Customerl D	Customer Name	Order Date	Productl	Product Name v	Qty	Products Total
A1091	S009	Lynn	21/7/2	S1001 1	Pencil	100	3
		Wang	011	S1003	Eraser	200	
				S1005	Ruler	250	
A1092	S010	Suzan Tan	12/1/2	S1001	Pencil	10	2
			011	S1004	Pen 😲	50	
A1093	S010	Suzan Tan	21/8/2	S1001 /	Pencil /	80 /	2
			011	S1005	Ruler,	90 ,	

Multivalue Multivalue attribute attribute

Repeating group (group of related multivalue attributes)

- If there are multivalue attributes and/or repeating groups
 - Place the each attribute/group into a separate new table
 - Copy the primary key from the original table to the new tables
- Examine the new table and determine which additional attribute(s) are needed to uniquely identify a single row of the new table. The primary key from the original table usually is insufficient to be the primary key in the new table
- Give a names to the new table

Page 41

Orders

Orderl D [PK]	Custo merID	CustomerN ame	Order Date	Produ ctsTot al
A1091	S009	Lynn Wang	21/7/2 011	3
A1092	S010	Suzan Tan	12/1/2 011	2
A1093	S010	Suzan Tan	21/8/2 011	2

OrderDetails

Order ID	Productl D	Product Name	Qty
[PK]	[PK]		
A1091	S1001	Pencil	100
A1091	S1003	Eraser	200
A1091	S1005	Ruler	250
A1092	S1001	Pencil	10
A1092	S1004	Pen	50
A1093	S1001	Pencil	80
A1093	S1005	Ruler	90

Orders

OrderID

CustomerID

CustomerName

OrderDate

ProductID

ProductName

Qty

ProductsTotal

Products

ProductID

ProductName

UnitPrice

0NF (top) → 1NF (bottom)

We have split table(s) with multi-value attributes or repeating group

Orders

OrderID

CustomerID

CustomerName

OrderDate

ProductsTotal

OrderDetails

OrderID

ProductID

ProductName

Qty

Products

ProductID

ProductName

UnitPrice

© 2018 National University of Singapore. All Rights Reserved

Page 43

Next step (1NF → 2NF)

ONF-> 1NF

Multivalue Attributes/Repeating Groups?

 Move multivalue/repeating group to a new entity -determine the key of the new relation

1NF ->2NF

- Are there attributes dependent on a partial key (of composite key)?
 - ·Move attribute(s) to a new entity
 - -determine the key of the new entity

2NF ->3NF

- Any non-key attribute dependent on any other non-key attribute?
 - Move attribute(s) to a new entity
 determine the key of the new entity

Optimization - combining entities with same primary key / remove derivable attribute

Question: Check all tables with <u>composite</u> primary key: any attribute depends on part of whole-key?

© 2018 National University of Singapore. All Rights Reserved

Page 45

OrderDetails

Table with <u>composite</u> primary key

OrderID [PK]	ProductID [PK]	ProductName	Qty
A1091	S1001	Pencil	100
A1091	S1003	Eraser	200
A1091	S1005	Ruler	250
A1092	S1001	Pencil	10
A1092	S1004	Pen	50
A1093	S1001	Pencil	80
A1093	S1005	Ruler	90

ProductName depends on ProductID (part of composite key) and not OrderID

- Table with a single primary key is already 2NF
- Table with a compose primary key
 - · Check each attribute against the whole key, move attribute(s) and the part of the key on which it depends to form a new table
 - Name the new tables(s)
 - Decide on the primary key of the new table

Page 47

OrderDetails

Orderl D	ProductI D	Product Name	Qty
[PK]	[PK]		
A1091	S1001	Pencil	100
A1091	S1003	Eraser	200
A1091	S1005	Ruler	250
A1092	S1001	Pencil	10
A1092	S1004	Pen	50
A1093	S1001	Pencil	80
A1093	S1005	Ruler	90

OrderDetailsProduct

OrderID ProductID Qtv **OrderDetails**

	Oraciib	1 TOGGCCID	Qty
ils	[PK]	[PK]	
	A1091	S1001	100
	A1091	S1003	200
	A1091	S1005	250
,	A1092	S1001	10
	A1092	S1004	50
Split	A1093	S1001	80
table	A1093	S1005	90

ProductID	ProductName
[PK]	
S1001	Pencil
S1003	Eraser
S1005	Ruler

Orders

OrderID

CustomerID

CustomerName

OrderDate

ProductsTotal

OrderDetails

OrderID

ProductID

ProductName

Qty

Products

ProductID

ProductName UnitPrice

 $1NF (top) \rightarrow 2NF (bottom)$

We have split table(s) with attributes dependent on a partial key (of composite key)

Orders

OrderID

CustomerID CustomerNam

e OrderDate

ProductsTotal

OrderDetails

OrderID ProductID

Qty

OrderDetailsProduct

ProductID

ProductName

Products

ProductID

ProductName UnitPrice

© 2018 National University of Singapore. All Rights Reserved

Page 49

ONF-> 1NF

- Multivalue Attributes/Repeating Groups?
 - Move multivalue/repeating group to a new entity
 -determine the key of the new relation

1NF ->2NF

- Are there attributes dependent on a partial key (of composite key)?
 - ·Move attribute(s) to a new entity
 - -determine the key of the new entity

2NF ->3NF

- Any non-key attribute dependent on any other non-key attribute?
 - Move attribute(s) to a new entity
 determine the key of the new entity

Optimization - combining entities with same primary key / remove derivable attribute

 Check all tables: any attribute depends on non-key attribute

Orders

OrderID [PK]	CustomerID	CustomerName	OrderDate	ProductsTotal
A1091	S009	Lynn Wang	21/7/2011	3
A1092	S010	Suzan Tan	12/1/2011	2
A1093	S010	Suzan Tan	21/8/2011	2

CustomerName depends on CustomerID (non-key attribute)

© 2018 National University of Singapore. All Rights Reserved

- Examine each attribute
- If an attribute(s) does not depend on the whole key, or it depends on another non-key attribute, remove the attribute(s) and use attribute on which it depends on to form a new relation. i.e. create new table comprising the attribute(s) and the non-key attribute upon which it depends
- Determine the key(s) for the new table(s)
- Name the new table(s)

Orders

OrderID[PK]	CustomerID	CustomerName	OrderDate	ProductsTotal
A1091	S009	Lynn Wang	21/7/2011	3
A1092	S010	Suzan Tan	12/1/2011	2
A1093	S010	Suzan Tan	21/8/2011	2

Orders

split table

Order ID [PK]	Customer ID	Order Date	Products Total
A1091	S009	21/7/20 11	3
A1092	S010	12/1/20 11	2
A1093	S010	21/8/20 11	2

Customers

CustomerID	Customer Name
S009	Lynn Wang
S010	Suzan Tan

© 2018 National University of Singapore. All Rights Reserved

Page 53

Orders

OrderID

CustomerID CustomerName OrderDate ProductsTotal

OrderDetails

OrderID ProductID

Qty

OrderDetailsProduct

ProductID

ProductName

Products

D 1 .TD

ProductID
ProductName
UnitPrice

$2NF (top) \rightarrow 3NF (bottom)$

We have split table(s) with any attribute depends on non-key attribute

	Orders
	OrderID
l	CustomerID
l	OrderDate

ProductsTotal

Customers
CustomerID
CustomerName

OrderDetails
OrderID
ProductID
Qty

OrderDetailsP
roduct
ProductID

ProductName

Products
ProductID
ProductName
UnitPrice

Orders	Customers	OrderDetails	OrderDetailsP	Products
OrderID CustomerID OrderDate ProductsTotal	CustomerID CustomerName	OrderID ProductID Qty	ProductID ProductName	ProductID ProductName UnitPrice

Optimization: Combine tables with same primary key

Orders	Customers	OrderDetails	Order Details P	Products
OrderID CustomerID OrderDate	CustomerID CustomerName	OrderID ProductID Oty	ProductID ProductName	ProductID ProductName UnitPrice
ProductsTotal			N.A	1

Merged (same primary key)

© 2018 National University of Singapore. All Rights Reserved

Page 55

Orders

OrderID [PK]	CustomerID	OrderDate	Products Total
A1091	S009	21/7/2011	3
A1092	S010	12/1/2011	2
A1093	S010	21/8/2011	2

OrderDetails

OrderDetails			
Orderl D	ProductI D	Qty	
[PK]	[PK]		
A1091	S1001	100	
A1091	S1003	200	
A1091	S1005	250	
A1092	S1001	10	
A1092	S1004	50	
A1093	S1001	80	
A1093	S1005	90	

Or	de	rs
_	_	_

OrderID
CustomerID
OrderDate
ProductsTotal

Customers

<u>CustomerID</u> CustomerName

OrderDetails

OrderID ProductID Qty

Products

ProductID

ProductName UnitPrice

Optimization: Remove derivable attributes

Orders

OrderID
CustomerID
OrderDate
ProductsTotal

Customers

<u>CustomerID</u> CustomerName **OrderDetails**

OrderID ProductID

Qty

Products

ProductID

ProductName UnitPrice

Removed (derivable Attribute)

Note: Optimization can be done at the end of each normalization step, or after 3NF.

© 2018 National University of Singapore. All Rights Reserved

Page 57

Orders

OrderID

CustomerID

CustomerName

OrderDate

ProductID

ProductName

Qty

ProductsTotal

Products

ProductID

ProductName

UnitPrice

0NF (top) → 3NF optimized (bottom)

OrderDetails

Orders

OrderID

CustomerID OrderDate Customers

<u>CustomerID</u> CustomerName

OrderID ProductID

Qty

Products

ProductID

ProductName UnitPrice

- For relational databases:
 - 1NF is required, at minimum for practical RDBMS implementations.
 - The majority of the time data models are normalized to 3NF.
 - Sometimes certain tables are left in 1NF or 2NF, for performance or practical reasons.
 - Higher normal forms BCNF, 4NF are rare.
- In General, the Higher the NF of your data model:
 - The more complicated the internal data model
 - The more "programming" required to reproduce the external data model.
 - But, the lesser the chance for data anomalies!!
- It's a total trade-off: Database complexity vs. data anomalies.

- Introduction to data modelling
- Data analysis
 - Entity relationship diagram (ERD)
 - Attribute analysis
- Data design
 - Normalization
 - · Logical data model

- Logical data model is a more detailed representation of data
 - Additional Entities (as a result) of normalization
 - Additional Relationships (linking new and existing entities)

Page 61

ERD (Before Normalisation)

- Design entity relation diagram
- Perform normalization on a conceptual data model
- Design logical data model

Page 63

Thank you!

Dr TIAN Jing Email: tianjing@nus.edu.sg