Kurs:Mathematik für Anwender/Teil I/14/Klausur

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \sum

Punkte 3322324532 2 4 6 4 4 2 3 4 4 62

Aufgabe * (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

- 1. Der Binomialkoeffizient $\binom{n}{k}$.
- 2. Der Körper der komplexen Zahlen (mit den Verknüpfungen).
- 3. Die eulersche Zahl e.
- 4. Das Oberintegral einer nach oben beschränkten Funktion

$$f:I\longrightarrow \mathbb{R}$$

auf einem beschränkten Intervall $I \subseteq \mathbb{R}$.

- 5. Ein Erzeugendensystem v_1, \ldots, v_n eines K-Vektorraumes V.
- 6. Eine $m \times n$ -Matrix über einem Körper K.

Aufgabe * (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Der Satz über die Quadratwurzel von 2.
- 2. Der Satz über die Charakterisierung von Extrema mit höheren Ableitungen.
- 3. Der Satz über den Rang von einer Matrix und einer linearen Abbildung.

Aufgabe * (2 Punkte)

Anfang März beträgt die Zeitdifferenz zwischen Deutschland und Paraguay 4 Stunden (in Paraguay wurde es 4 Stunden später hell). Am 25. März 2018 wurde in Deutschland die Uhr von der Winterzeit auf die Sommerzeit umgestellt, die Uhr wurde also um eine Stunde nachts von 2 auf 3 vorgestellt. In der gleichen Nacht wurde die Uhr in Paraguay umgestellt. Wie groß war die Zeitdifferenz nach der Umstellung?

Aufgabe * (2 Punkte)

Seien L, M, N Mengen und

$$f:L\longrightarrow M ext{ und } g:M\longrightarrow N$$

Abbildungen mit der Hintereinanderschaltung

$$g\circ f{:}L\longrightarrow N,\, x\longmapsto g(f(x)).$$

Zeige: Wenn $g \circ f$ injektiv ist, so ist auch f injektiv.

Aufgabe * (3 Punkte)

Beweise den Satz, dass es unendlich viele Primzahlen gibt.

Aufgabe * (2 Punkte)

Bestimme für das Polynom

$$P = 7X^{11} - 3X^8 + \frac{3}{2}X^6 - X + 5$$

den Grad, den Leitkoeffizienten, den Leitterm und den Koeffizienten zu $oldsymbol{X^5}$.

Aufgabe * (4 Punkte)

Beweise den Satz, dass der Limes einer konvergenten Folge in $\mathbb R$ eindeutig bestimmt ist.

Aufgabe * (5 Punkte)

Zu $n\in\mathbb{N}_+$ sei a_n die Summe der ungeraden Zahlen bis n und b_n die Summe der geraden Zahlen bis n. Entscheide, ob die Folge

$$x_n=rac{a_n}{b_n}$$

in Q konvergiert, und bestimme gegebenenfalls den Grenzwert.

Aufgabe * (3 Punkte)

Wir betrachten die Funktion

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \ x \longmapsto x^3 - 4x + 2.$$

Bestimme, ausgehend vom Intervall [1,2], mit der Intervallhalbierungsmethode ein Intervall der Länge 1/8, in dem eine Nullstelle von f liegen muss.

Aufgabe * (2 Punkte)

Es sei $u \in \mathbb{R}$ fixiert. Zeige, dass die Potenzfunktion

$$f: \mathbb{R}_+ \longrightarrow \mathbb{R}, \ x \longmapsto x^u,$$

stetig ist.

Aufgabe * (2 Punkte)

Beweise elementargeometrisch den *Sinussatz*, also die Aussage, dass in einem Dreieck die Gleichheiten

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

gelten, wobei a,b,c die Seitenlängen gegenüber den Ecken mit den Winkeln α,β,γ sind.

Aufgabe * (4 (1+3) Punkte)

- 1. Zeige, dass eine ungerade Funktion $f: \mathbb{R} \to \mathbb{R}$ im Nullpunkt ein globales Extremum haben kann.
- 2. Zeige, dass eine ungerade Funktion $f: \mathbb{R} \to \mathbb{R}$ im Nullpunkt kein isoliertes lokales Extremum haben kann.

Aufgabe * (6 (1+1+4) Punkte)

- 1. Es sei a>1 und $g(x)=a^x$ die Exponentialfunktion zur Basis a. Zeige, dass es ein $w\in\mathbb{R}_+$ mit g(x+w)=2g(x) für alle $x\in\mathbb{R}$ gibt.
- 2. Es sei w>0 vorgeben. Zeige, dass es eine Exponentialfunktion b^x mit b>1 und mit $b^{x+w}=2b^x$

für alle $x \in \mathbb{R}$ gibt.

3. Man gebe ein Beispiel für eine stetige, streng wachsende Funktion $f: \mathbb{R} \to \mathbb{R}$ mit f(x+1) = 2f(x) für alle $x \in \mathbb{R}$, die keine Exponentialfunktion ist.

Aufgabe * (4 Punkte)

Beweise die Newton-Leibniz-Formel.

Aufgabe * (4 Punkte)

Löse das inhomogene Gleichungssystem

Aufgabe * (2 Punkte)

Wir betrachten das kleine Einmaleins (ohne die Zehnerreihe) als eine Familie von 9-Tupeln der Länge 9. Welche Dimension besitzt der durch diese Tupel aufgespannte Untervektorraum des \mathbb{R}^9 ?

Aufgabe * (3 Punkte)

Es sei $m{K}$ ein Körper und es seien $m{V}$ und $m{W}$ Vektorräume über $m{K}$ der Dimension $m{n}$ bzw. $m{m}$. Es sei

$$\varphi : V \longrightarrow W$$

eine lineare Abbildung, die bezüglich zweier Basen durch die Matrix $M \in \operatorname{Mat}_{m \times n}(K)$ beschrieben werde. Zeige, dass φ genau dann surjektiv ist, wenn die Spalten der Matrix ein Erzeugendensystem von K^m bilden.

Aufgabe * (4 Punkte)

Bestimme die komplexen Zahlen z, für die die Matrix

$$\begin{pmatrix} z & 2 & 2z+1 \\ 3 & 1 & 4 \\ z & 5 & z \end{pmatrix}$$

nicht invertierbar ist.

Aufgabe * (4 Punkte)

Es sei M eine untere Dreiecksmatrix. Zeige, ausgehend von der Definition der Determinante, dass die Determinante von M das Produkt der Diagonaleinträge ist (es darf verwendet werden, dass die Determinante zu einer Matrix mit einer Nullzeile gleich $\mathbf{0}$ ist).