INFERENCIA EN EL MODELO DE REGRESIÓN LINEAL CLÁSICO

Notas de clase de Econometría I Material estrictamente académico

ESQUEMA

- 1. Introducción
- 2. Estimación por Intervalos
- 3. Pruebas de Hipótesis
- 4. Pruebas de Hipótesis Individuales sobre "β": t-estadístico
- 5. Pruebas de Hipótesis Conjuntas sobre " β ": el estadístico F
- 6. Aplicación: La Demanda por Dinero en el Perú

1. INTRODUCCIÓN

Supuestos explícitos:

- Se cumplen los supuestos clásicos.
- Los supuestos 2 y 5 se resumen en el supuesto de que las perturbaciones son Ruido Blanco o White Noise independientes:

$$u_{i} \sim iid(0, \sigma_{u}^{2})$$

Supuesto adicional:

En muestras pequeñas, cada perturbación se distribuye Normal:

$$u_{i} \sim iid N(0, \sigma_{u}^{2})$$

1. INTRODUCCIÓN

Bajo los supuestos clásicos y el supuesto de normalidad:

$$\hat{\alpha} \sim N \left(\alpha, \sigma_u^2 \left(\frac{1}{n} + \frac{\bar{X}}{\sum_{i=1}^n x_i^2} \right) \right)$$

$$\hat{\beta} \sim N \left(\beta, \frac{\sigma_{\varepsilon}^2}{\sum_{i=1}^n x_i^2} \right)$$

- Los estimadores "puntuales" toman valores diferentes en muestreo repetido (dependen de la muestra analizada).
- Error de estimación, que es una variable aleatoria, se define como:

$$e \equiv \left| \hat{\theta} - \theta \right| \qquad , \qquad e \equiv \left| \hat{\beta}_{MCO} - \beta \right|$$

- La probabilidad P(e < a)
 - Proporciona una medida de la bondad de una sola estimación.
 - Proporción de veces que, en muestreo repetido, el estimado obtenido con el estimador $\hat{\theta}$ es diferente de θ .

• Para un problema de estimación, si se conociera la distribución muestral del estimador, sería sencillo calcular P(e < a):

$$\int_{\theta-a}^{\theta+a} f(\hat{\theta}) d\hat{\theta}$$

• En un contexto de estimación, es importante encontrar un valor de a tal que: $P(e < a) \equiv P(\left|\hat{\theta} - \theta\right| < a) = \int_{0}^{\theta + a} f(\hat{\theta}) d\hat{\theta} = 0.95$

De esta manera, se puede obtener un **estimador por intervalos** para
$$\theta$$

$$P(\left|\hat{\theta} - \theta\right| < a) = 0.95$$

$$\theta \in [\hat{\theta} - a, \hat{\theta} + a] \quad con \quad 95\% \ de \ probabilidad$$

- La mayoría de variables aleatorias observadas en la naturaleza caen en un intervalo de dos desvíos estándar alrededor de su media con una probabilidad aproximada de 0.95.
- Esto significa que: $Y \in [\mu_Y 2\sigma, \mu_Y + 2\sigma]$ con 95% de probabilidad

• En la práctica esto significa que una buena aproximación del error de predicción de un estimador insesgado es $a=2\sigma_{\hat{\theta}}$, lo cual implica que:

$$\theta \in [\hat{\theta} - 2\sigma_{\hat{\theta}}, \hat{\theta} + 2\sigma_{\hat{\theta}}]$$
 con 95% de probabilidad

- El objetivo es encontrar un estimador por intervalo que genere intervalos angostos que contengan a θ con una alta probabilidad.
- Los estimadores por intervalo se denominan usualmente intervalos de confianza.
- La probabilidad de que un intervalo de confianza contenga a θ se denomina coeficiente de confianza:
 - En muestreo repetido: proporción de veces que los intervalos construidos para cada muestra contienen al parámetro θ :

$$P(\hat{\theta}_{L} < \theta < \hat{\theta}_{U}) = 1 - \varepsilon$$

$$P(\hat{\theta}_{L} < \theta) = 1 - \varepsilon$$

$$P(\theta < \hat{\theta}_{U}) = 1 - \varepsilon$$

Método Pivote

- Útil para obtener intervalos de confianza.
- Depende de la determinación de una variable pivote, la cual presenta dos características:
 - Es función de los datos muestrales (estadístico) y de θ .
 - Su distribución de probabilidades es conocida y no depende de θ .

Ejemplo: Bajo el supuesto de normalidad, se tiene que en el MRLC2:

$$Z = \frac{\hat{\beta} - \beta}{\sigma_u / \sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2}} \sim N(0, 1)$$

Si conocemos σ², podemos encontrar un intervalo de confianza para β a partir del intervalo de confianza para esta variable pivote:

$$\begin{split} &P(\left|Z\right| < Z_{\varepsilon/2}) = 1 - \varepsilon \\ &P(-Z_{\varepsilon/2} < Z < Z_{\varepsilon/2}) = 1 - \varepsilon \\ &P\left(\hat{\beta} - Z_{\varepsilon/2}\sigma\sqrt{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}} < \beta < \hat{\beta} + Z_{\varepsilon/2}\sigma\sqrt{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}}\right) = 1 - \varepsilon \\ &P\left(\hat{\beta} - Z_{\varepsilon/2}s.e.(\hat{\beta}) < \beta < \hat{\beta} + Z_{\varepsilon/2}s.e.(\hat{\beta})\right) = 1 - \varepsilon \end{split}$$

Entonces, el estimador por intervalos para β es:

$$\beta \in [\hat{\beta} - Z_{\varepsilon/2}s.e.(\hat{\beta}), \hat{\beta} + Z_{\varepsilon/2}s.e.(\hat{\beta})]$$

el cual tiene un *coeficiente de confianza de* $1-\varepsilon$ o $1-\alpha$

- La variable pivote anterior puede usarse a pesar que no se cumpla el supuesto de normalidad en muestras pequeñas apelando al TLC.
- Si *no conocemos* σ^2 , se usa como pivote una variable cuya distribución no dependa de éste parámetro desconocido.
- Se elige una variable pivote con distribución "t-Student", definida como el cociente de una variable normal estándar (Z) y la raíz cuadrada de una variable chi-cuadrado con "S" grados de libertad, independientes entre sí:

$$t = \frac{Z}{\sqrt{\chi^2(S)/S}}$$

 Para esto, en el MRLC2 se requieren dos resultados adicionales que permitirán obtener dos variables aleatorias independientes entre sí, una con distribución chi-cuadrado y una con distribución normal estándar:

$$\frac{\sum_{i=1}^{n} e_i^2}{\sigma_u^2} = \frac{(n-2)S^2}{\sigma_u^2} \sim \chi^2(n-2)$$

$$\frac{\sum_{i=1}^{n} e_{i}^{2}}{\sigma_{u}^{2}} independiente de \hat{\alpha}, \hat{\beta} y f(\hat{\alpha}, \hat{\beta})$$

Para el MRLC2:

$$t = \frac{\hat{\beta} - \beta}{S / \sqrt{\sum_{i=1}^{n} x_i^2}} \sim t(n - 2)$$

Esta variable aleatoria t se usa para la estimación por intervalos y las pruebas de hipótesis. En particular, se puede establecer que:

$$P(|t| \le t_{\varepsilon/2}) = (1 - \varepsilon)$$

$$P(\left|t\right| \le t_{\varepsilon/2}) = (1 - \varepsilon)$$

$$P(-t_{\varepsilon/2} \le t \le t_{\varepsilon/2}) = (1 - \varepsilon)$$

El estimador por intervalos para β es:

$$\beta \in [\hat{\beta} - t_{\varepsilon/2} s.e.(\hat{\beta}) \le \beta \le \hat{\beta} + t_{\varepsilon/2} s.e.(\hat{\beta})] = 1 - \varepsilon$$

El estimador por intervalos de β está dado por:

$$\beta \in \left[\hat{\beta} \pm t_{\varepsilon/2} \frac{S}{\sqrt{\sum_{i=1}^{n} x_{i}^{2}}} \right] = \left[\hat{\beta} \pm t_{\varepsilon/2} \, s.e.(\hat{\beta}) \right]$$

Este intervalo, con puntos aleatorios, tiene 1- ε de probabilidad de contener el verdadero pero desconocido parámetro poblacional β. Cuando se conocen exactamente los valores límites del intervalo, se denomina intervalo de confianza al 100(1-ε) por ciento para β

Significado de: $P(|t| \le t_{\varepsilon/2}) = (1-\alpha)$

- La interpretación del estimador por intervalos, que para cada muestra específica genera un intervalo de confianza, se hace en el contexto del muestreo repetido:
 - Si se eligen muchas muestras de tamaño S cada una, se estima β y luego se calcula el intervalo estimado o intervalo de confianza para cada muestra, entonces el $(1-\varepsilon)100$ por ciento de todos los intervalos deberían contener el verdadero parámetro poblacional.
- Así, la justificación del uso de los estimadores por intervalos se basa en las propiedades de éste procedimiento en muestras repetidas y no en un intervalo de confianza específico para una muestra.

• Para el caso del parámetro poblacional " α ", tenemos:

$$t = \frac{\hat{\alpha} - \alpha}{S\sqrt{\frac{1}{n} + \left(\frac{\overline{X}}{\sum_{i=1}^{n} x_i^2}\right)}} \sim t(n-2)$$

$$P(-t_{\varepsilon/2} < t < t_{\varepsilon/2}) = (1 - \varepsilon)$$

El intervalo de confianza al 100(1- ε) por ciento para α es:

$$\alpha \in \left[\hat{\alpha} \pm t_{\varepsilon/2} S \sqrt{\frac{1}{n} + \frac{\bar{X}}{\sum_{i=1}^{n} x_{i}^{2}}} \right] = \left[\hat{\alpha} \pm t_{\varepsilon/2} \ s. \ e. \ (\hat{\alpha}) \right]$$

 Para el caso del parámetro de la varianza poblacional del término de perturbación σ², se tiene:

$$\chi = \frac{S^2(n-2)}{\sigma_u^2} \sim \chi^2 (n-2)$$

$$P(\chi_{\varepsilon/2}^2 < \chi < \chi_{1-(\varepsilon/2)}^2) = (1-\varepsilon)$$

• El intervalo de confianza al $100(1-\epsilon)$ por ciento para σ^2 es:

$$\sigma_u^2 \in \left[\frac{(n-2)S^2}{\chi_{1-(\varepsilon/2)}^2}, \frac{(n-2)S^2}{\chi_{\varepsilon/2}^2}\right]$$

• Significado de: $P(\chi_{\varepsilon/2}^2 < \chi < \chi_{1-(\varepsilon/2)}^2) = (1-\varepsilon)$

• Para el MRLCK, bajo el supuesto de normalidad de las perturbaciones en muestras pequeñas: $\hat{\beta} \sim N[\beta, \sigma^2(X'X)^{-1}]$. Así:

$$\frac{(\hat{\beta} - \beta)'(X'X)(\hat{\beta} - \beta)}{\sigma_u^2} = \frac{u'Qu}{\sigma_u^2} \sim \chi^2(k)$$

$$\frac{e'e}{\sigma_u^2} = \frac{u'Mu}{\sigma_u^2} \sim \chi^2(n-k)$$

Dado que M y Q son ortogonales, entonces:

$$\frac{u'Qu}{\sigma_u^2} y \frac{u'Mu}{\sigma_u^2}$$
 son independientes

2. ESTIMACIÓN CONJUNTA POR INTERVALOS

 Se construye un intervalo k dimensional para los parámetros utilizando como variable pivote un estadístico F.

$$F = \frac{\frac{(\hat{\beta} - \beta)'(X'X)(\hat{\beta} - \beta)/k}{\sigma_u^2} \sim \chi^2(k)}{\frac{e'e/n - k}{\sigma_u^2} \sim \chi^2(n - k)} = \frac{u'Qu/k}{u'Mu/(n - k)} \sim F(k, n - k)$$

- A partir de dos estimadores por intervalos, se obtiene un estimador conjunto al 0.95*0.95=0.9025 de confianza. Por ello, es necesario "agrandar" la región de confianza de este estimador.
- Esto genera una región de confianza en forma de una elipse.

2. ESTIMACIÓN CONJUNTA POR INTERVALOS

 Los resultados de una prueba de hipótesis conjunta pueden ser diferentes a los de cada una de las hipótesis individuales que conforman la hipótesis conjunta.

Dado el MRLCK $y = X\beta + u$, si se estima por MCO se obtiene:

$$\hat{y} = X\hat{\beta}_{MCO}$$

- El siguiente paso es analizar la significancia de los parámetros estimados a través de:
 - Pruebas de *Hipótesis Individuales*, que pueden involucrar un solo parámetro o una combinación lineal de parámetros poblacionales.
 - Pruebas de Hipótesis Conjuntas, que involucran más de una Hipótesis Individual.

1.1. <u>Hipótesis Individuales Lineales sobre "β"</u>.

Pueden ser agrupadas en los siguientes casos generales:

1.
$$H_0: \beta_i = 0$$

$$H_0: \beta_i = \beta_{i0}$$

$$H_0: \beta_2 + \beta_3 = 1$$

1.
$$H_0: \beta_i = 0$$

2. $H_0: \beta_i = \beta_{i0}$
3. $H_0: \beta_2 + \beta_3 = 1$
4. $H_0: \beta_3 = \beta_4 \quad o \quad H_0: \beta_3 - \beta_4 = 0$

En todos los casos, cada una de estas hipótesis puede ser evaluada a través de un estadístico *t-student*.

1.2. Hipótesis Conjuntas Lineales sobre "β".

- Las diversas hipótesis lineales conjuntas que pueden realizarse sobre los β's del MRLCK abarcan los siguientes casos:
 - 5. Prueba de significancia conjunta (excepto el intercepto).

$$H_0: \begin{bmatrix} \beta_2 \\ \beta_3 \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

6. Prueba de significancia parcial:

$$H_0: \begin{bmatrix} \beta_{k_1+1} \\ \beta_{k_1+2} \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

7. Hipótesis que establezcan simultáneamente dos o más hipótesis individuales como las descritas antes:

$$H_0: \begin{bmatrix} \beta_2 \\ \beta_2 + \beta_3 \\ \beta_3 - \beta_4 \\ \beta_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}$$

Todas estas hipótesis conjuntas lineales, así como las hipótesis individuales planteadas antes, pueden expresarse como:

$$H_0: R\beta - r = 0$$
 \acute{o} $H_0: R\beta = r$

- donde R es una matriz "q x k" (q= número de hipótesis individuales) y
 r un vector de constantes de orden "k x 1".
- El tipo de hipótesis lineal a evaluar determinará la forma específica de
 R y r.

- La estimación por intervalos o construcción de intervalos de confianza es una herramienta de estimación. Una técnica para hacer inferencia estadística está dada por las pruebas de hipótesis.
- Elementos: Una hipótesis nula, una hipótesis alternativa, un contraste (test) o prueba estadística y una región de rechazo.

Hipótesis Nula

 Es una creencia que se mantiene hasta que la evidencia muestral demuestre que no es así. Por ejemplo:

$$H_0: \beta = 0$$

Hipótesis Alternativa

Puede ser a una cola o a dos colas.

Contraste (Test) Estadístico

- La información muestral sobre la H₀ está contenida en el valor muestral de un *estadístico* (que es una variable aleatoria).
- Se caracteriza porque su función de densidad de probabilidades debe conocerse completamente cuando la hipótesis nula es cierta, y debe tener otra forma si la hipótesis nula no es cierta.

La Región de Rechazo

- En la práctica, se define como el conjunto de valores del estadístico tales que cuando la H₀ es cierta, tienen poca probabilidad de ser observados.
- Solamente es posible construirla si se conoce la función de densidad del estadístico cuando es cierta la hipótesis nula.
- La interpretación del resultado de una prueba estadística debe considerar el siguiente criterio: la hipótesis nula no necesariamente es cierta si para el contraste estadístico se obtiene un valor muestral que se encuentre en la región de no rechazo.

- Por ejemplo, si el verdadero valor del parámetro poblacional fuera muy cercano del establecido por la hipótesis, la probabilidad de que el valor del contraste estadístico pertenezca a la *región de no rechazo* es *alta*.
- En este caso, no se rechaza la Hipótesis Nula a pesar de que sea falsa (Error Tipo II).

REGLA: Si el valor del estadístico cae en la región de rechazo (colas de la distribución t), se rechaza la hipótesis nula. En caso contrario, no se puede rechaza la hipótesis nula.

Errores Tipo I y II

Error Tipo I: La H₀ es cierta y se decide *rechazarla. Tamaño del Test*

Error Tipo II: La H₀ es falsa y se decide aceptarla. Poder del Test

- La probabilidad del Error Tipo I se denomina nivel de significancia o ε. Cuando la H₀ es cierta, el estadístico toma un valor en la región de rechazo (colas) con una probabilidad igual a ε.
- Así, este procedimiento rechazará una H_0 "verdadera" con una probabilidad (o nivel de significancia) igual a ϵ .
- El investigador controla la probabilidad del Error Tipo I eligiendo el nivel de significancia del contraste: 0.01, 0.05 y 0.10.

- El Error Tipo II no es controlable ni calculable, y depende del verdadero valor (desconocido) del parámetro poblacional:
 - La probabilidad del Error Tipo II varía inversamente con el nivel de significancia del test o prueba estadística.
 - El test pierde poder para discriminar entre el verdadero valor del parámetro y
 el valor establecido erróneamente en la hipótesis nula si estos valores son muy
 parecidos; es decir, el Error Tipo II es mayor.
 - Dado un nivel de significancia, a mayor tamaño de muestra, menor la probabilidad de cometer el Error Tipo II.
 - No existe un mejor test, en el sentido que tenga el menor Error Tipo II para cada nivel de Error Tipo I.

P-value o Probabilidad

• Es la probabilidad de que el valor del estadístico *t* pueda ser mayor o igual al *valor absoluto del valor muestral del estadístico*.

• Regla:

- Cuando el **p-value** de una prueba de hipótesis sea menor al nivel de significancia, entonces se rechaza la hipótesis nula.
- En caso contrario, no podemos rechazar la hipótesis nula.

4. HIPÓTESIS INDIVIDUALES: ESTADÍSTICO "t"

• Para probar la <u>hipótesis nula</u> de que β es igual a β_0 , H_0 : $\beta = \beta_0$, utilizamos el **estadístico calculado**:

$$|t| = \left| \frac{\hat{\beta} - \beta_0}{s.e.(\hat{\beta})} \right| > t_{\varepsilon/2}(S-2)$$

- Si se cumple la desigualdad, rechazamos la hipótesis nula a un nivel de significancia de 100ε %; es decir, con una probabilidad de cometer el Error Tipo I de 100ε %.
- Si no se cumple, no podemos rechazar la hipótesis nula a un nivel de significancia de 100ε %.

4. HIPÓTESIS INDIVIDUALES: ESTADÍSTICO "t"

• El Intervalo de Confianza y una prueba de hipótesis son las "caras opuestas de una misma moneda":

- Si el Test Estadístico nos dice que rechacemos la H_0 a un nivel de 100 ϵ , de significancia, entonces β está fuera del intervalo construido al 100(1– ϵ) por ciento de confianza.
- Si β está dentro del intervalo construido al 100(1–ε) por ciento de confianza, entonces el test estadístico nos dirá que *no podemos* rechazar H_0 a un nivel de 100 ε de significancia.

4. HIPÓTESIS INDIVIDUALES: ESTADÍSTICO "t"

• Para probar la hipótesis nula de que α es igual a α_0 , H_0 : α = α_0 , utilizamos:

$$|t| = \left| \frac{\hat{\alpha} - \alpha_0}{s.e.(\hat{\alpha})} \right| > t_{\varepsilon/2}(S - 2)$$

- Si se cumple la desigualdad, rechazamos la hipótesis nula a un nivel de significancia de 100ε %; es decir, con una probabilidad de cometer el Error Tipo I de 100ε %.
- Si no se cumple, no podemos rechazar la hipótesis nula a un nivel de significancia de 100ε %.

4. HIPÓTESIS INDIVIDUALES: ESTADÍSTICO "t"

Los estadísticos t-student y F de Fisher están relacionados:

$$t^2(m) = F(1,m)$$

- Rechazar una hipótesis nula es una conclusión más fuerte que no poder rechazarla:
 - En este último caso solo es posible afirmar que la información muestral es compatible con la hipótesis nula.
 - Usualmente, la hipótesis nula se establece de tal forma que, si la teoría que se utiliza es cierta, entonces se rechazará la hipótesis nula.

4. HIPÓTESIS INDIVIDUALES: ESTADÍSTICO "t"

Aplicación: La Demanda por Dinero en el Perú

Dependent Variable: LCR

Method: Least Squares

Sample: 1991:06 1999:12

Included observations: 103

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LY94	1.760349	0.055706	31.60064	0.0000
C	-5.241600	0.258403	-20.28463	0.0000
R-squared	0.908148	Mean deper	ndent var	2.920373
Adjusted R-squared	0.907239	S.D. dependent var		0.259639
S.E. of regression	0.079077	Akaike info	criterion	-2.217554
Sum squared resid	0.631576	Schwarz cri	terion	-2.166394
Log likelihood	116.2040	F-statistic		998.6004
Durbin-Watson stat	_ 0.503445_	Prob(F-stati	stic)	0.000000

5.1. <u>Hipótesis Individuales Lineales sobre "β"</u>.

- Pueden ser agrupadas en los siguientes casos generales:
 - 1. $H_0: \beta_i = 0$ 2. $H_0: \beta_i = \beta_{i0}$

 - 3. $H_0: \beta_2 + \beta_3 = 1$
 - 4. $H_0: \beta_3 = \beta_4$ o $H_0: \beta_3 \beta_4 = 0$
- En todos los casos, cada una de estas hipótesis puede ser evaluada a través de un estadístico *t-student*.

5.2. Hipótesis Conjuntas Lineales sobre "β".

- Las diversas hipótesis lineales conjuntas que pueden realizarse sobre los β's del *MRLCK* abarcan los siguientes casos:
 - 5. Prueba de significancia conjunta (excepto el intercepto).

$$H_0: \begin{bmatrix} \beta_2 \\ \beta_3 \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

6. Prueba de significancia parcial:

$$H_0: \begin{bmatrix} \beta_{k_1+1} \\ \beta_{k_1+2} \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

7. Hipótesis que establezcan simultáneamente dos o más hipótesis individuales como las descritas antes:

$$H_0: \begin{bmatrix} \beta_2 \\ \beta_2 + \beta_3 \\ \beta_3 - \beta_4 \\ \beta_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}$$

Todas estas hipótesis conjuntas lineales, así como las hipótesis individuales planteadas antes, pueden expresarse como:

$$H_0: R\beta - r = 0$$
 \acute{o} $H_0: R\beta = r$

- donde R es una matriz "q x k" (q= número de hipótesis individuales) y r
 un vector de constantes de orden "q x 1".
- El tipo de hipótesis lineal a evaluar determinará la forma específica de R
 y r.

Caso 1:
$$H_0: \beta_i = 0$$

Caso 2:
$$H_0: \beta_i = \beta_{i0}$$

$$R\beta = r$$

$$\begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

$$\beta_i = 0$$

$$R\beta = r$$

$$\begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} \beta_{i0} \end{bmatrix}$$

$$\beta_i = \beta_{i0}$$

Caso 3: $H_0: \beta_2 + \beta_3 = 1$

$$R\beta = r$$

$$\begin{bmatrix} 0 & 1 & 1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$$

$$\beta_2 + \beta_3 = 1$$

Caso 4: $H_0: \beta_3 = \beta_4$ o $H_0: \beta_3 - \beta_4 = 0$

$$R\beta = r$$

$$\begin{bmatrix} 0 & 0 & 1 & -1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

$$\beta_3 - \beta_4 = 0$$

Caso 5:

$$H_0: \begin{bmatrix} \beta_2 \\ \beta_3 \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$R\beta = r$$

$$\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \vdots \\ \vdots & \vdots & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Caso 6:

$$\boldsymbol{H}_{0}:\begin{bmatrix}\boldsymbol{\beta}_{k_{1}+1}\\\boldsymbol{\beta}_{k_{1}+2}\\\vdots\\\boldsymbol{\beta}_{k}\end{bmatrix}=\begin{bmatrix}\boldsymbol{0}\\\boldsymbol{0}\\\vdots\\\boldsymbol{0}\end{bmatrix}$$

$$R\beta = r$$

$$\begin{bmatrix} 0 & 0 & \cdots & 0 & \vdots & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & \vdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & \vdots & 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & 1 & 0 \\ 0 & 0 & \cdots & 0 & \vdots & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_{k_1} \\ \beta_{k_1+1} \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Caso 7:

$$H_0: \begin{bmatrix} \beta_2 \\ \beta_2 + \beta_3 \\ \beta_3 - \beta_4 \\ \beta_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}$$

$$R\beta = r$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}$$

Para probar cada hipótesis podemos usar como *pivote*: $R\hat{\beta} - r$

$$R\hat{\beta} - r$$

- Para encontrar el estadístico adecuado para probar las hipótesis, necesitamos encontrar la distribución muestral relevante de la variable pivote *bajo la hipótesis nula*. Así, tenemos que: $\hat{\beta} \sim N(\beta, \sigma_u^2(X'X)^{-1})$
- A partir de lo cual deducimos:

$$R(\hat{\beta} - \beta) \sim N(0, \sigma_u^2 R(X'X)^{-1} R')$$

Si se cumple la hipótesis nula, $H_0: R\beta = r$, tenemos:

$$(R\hat{\beta} - r) \sim N(0, \sigma_u^2 R(X'X)^{-1} R')$$

 Para evitar la presencia de la varianza poblacional, se puede construir un estadístico F a partir de dos estadísticos chi-cuadrado:

$$(R\hat{\beta}-r)'\left[\sigma_u^2R(X'X)^{-1}R'\right]^{-1}(R\hat{\beta}-r)\sim\chi^2(q)$$

$$\left| \frac{e'e}{\sigma_u^2} \sim \chi^2(n-k) \right|$$

El estadístico F tendrá la siguiente forma final:

$$F = (R\hat{\beta} - r)' \left[\hat{\sigma}^2 R(X'X)^{-1} R'\right]^{-1} (R\hat{\beta} - r) / q \sim F(q, n - k)$$

 En la fórmula del estadístico F tenemos la matriz de varianzas y covarianzas del vector de parámetros estimados:

$$Var(\hat{\beta}) = \hat{\sigma}^{2}(X'X)^{-1} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1k} \\ c_{21} & c_{22} & \cdots & c_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ c_{k1} & c_{k2} & \cdots & c_{kk} \end{bmatrix}_{(kxk)}$$

 El estadístico F tomará diferentes formas, dependiendo el caso que se analice:

Caso 1:

$$F = \frac{\hat{\beta}_i^2}{c_{ii}} = \frac{\hat{\beta}_i^2}{Var(\hat{\beta}_i)} \sim F(1, n - k)$$

$$F = \left(\frac{\hat{\beta}_i}{\sqrt{c_{ii}}}\right)^2 = \left(\frac{\hat{\beta}_i}{s.e.(\hat{\beta}_i)}\right)^2 = t^2$$

$$F = \left(\frac{\hat{\beta}_{i}}{\sqrt{c_{ii}}}\right)^{2} = \left(\frac{\hat{\beta}_{i}}{s.e.(\hat{\beta}_{i})}\right)^{2} = t^{2}$$

Caso 2:

$$F = \frac{(\hat{\beta}_i - \beta_{i0})^2}{c_{ii}} = \frac{(\hat{\beta}_i - \beta_{i0})^2}{\text{Var}(\hat{\beta}_i)} \sim F(1, n - k)$$

$$F = \left(\frac{\hat{\beta}_i - \beta_{i0}}{\sqrt{c_{ii}}}\right)^2 = t^2$$

$$F = \left(\frac{\hat{\beta}_i - \beta_{i0}}{\sqrt{c_{ii}}}\right)^2 = t^2$$

Caso 3:

$$F = \frac{(\hat{\beta}_2 + \hat{\beta}_3 - 1)^2}{\hat{Var}(\hat{\beta}_2 + \hat{\beta}_3)} \sim F(1, n - k)$$

$$F = \left(\frac{\hat{\beta}_2 + \hat{\beta}_3 - 1}{s.e.(\hat{\beta}_2 + \hat{\beta}_3)}\right)^2 = t^2$$

$$F = \left(\frac{\hat{\beta}_2 + \hat{\beta}_3 - 1}{s.e.(\hat{\beta}_2 + \hat{\beta}_3)}\right)^2 = t^2$$

Caso 4:

$$F = \frac{(\hat{\beta}_3 - \hat{\beta}_4)^2}{Var(\hat{\beta}_3 - \hat{\beta}_4)} \sim F(1, n - k) \qquad F = \left(\frac{\hat{\beta}_3 - \hat{\beta}_4}{s.e.(\hat{\beta}_3 - \hat{\beta}_4)}\right)^2 = t^2$$

$$F = \left(\frac{\hat{\beta}_3 - \hat{\beta}_4}{s.e.(\hat{\beta}_3 - \hat{\beta}_4)}\right)^2 = t^2$$

Caso 5:

$$F = (\hat{\beta}_{2}^{'} [\hat{\sigma}^{2} (X_{*}^{'} X_{*})^{-1}]^{-1} \hat{\beta}_{2}) / (k-1)$$

$$F = \frac{(\hat{\beta}_{2}' X_{*}' X_{*} \hat{\beta}_{2})/(k-1)}{\hat{\sigma}^{2}}$$

$$F = \frac{SCE/(k-1)}{e'e/(n-k)} = \frac{SCE/(k-1)}{SCR/(n-k)} \sim F(k-1, n-k)$$

$$F = \frac{(SCT)R^2/(k-1)}{SCR/(n-k)} = \frac{R^2/(k-1)}{\left(\frac{SCR}{SCT}\right)/(n-k)} = \frac{R^2/(k-1)}{(1-R^2)/(n-k)} \sim F(k-1, n-k)$$

Caso 6:

$$F = \frac{\hat{\beta}_{2}^{'}[(\mathbf{X}_{2}^{'}\mathbf{M}_{1}\mathbf{X}_{2}^{'})^{-1}]^{-1}\hat{\beta}_{2}/k_{2}}{e'e/(n-k)} = \frac{\hat{\beta}_{2}^{'}\mathbf{X}_{2}^{'}\mathbf{M}_{1}\mathbf{X}_{2}\hat{\beta}_{2}/k_{2}}{e'e/(n-k)}$$

$$y = \hat{y} + e$$

$$y = X_1 \hat{\beta}_1 + X_2 \hat{\beta}_2 + e$$

$$M_1 y = M_1 X_1 \hat{\beta}_1 + M_1 X_2 \hat{\beta}_2 + M_1 e$$

$$M_{1}y = M_{1}X_{2}\hat{\beta}_{2} + e$$

$$y'M_{1}y = \hat{\beta}_{2}X_{2}M_{1}M_{1}X_{2}\hat{\beta}_{2} + e'e$$

$$e'_{R}e_{R} = \hat{\beta}_{2}X_{2}M_{1}X_{2}\hat{\beta}_{2} + e'e$$

$$F = \frac{e'_{R}e_{R} - e'e/k_{2}}{e'e/(n-k)} \sim F(k_{2}, n-k)$$

- En la medida que el *F calculado tome valores muy grandes*, se concluye que las *restricciones impuestas bajo la hipótesis nula no son válidas*, pues el modelo restringido presentaría una SCR muy grande en comparación a la del modelo sin restricciones o modelo irrestricto.
- El F estadístico relevante toma la siguiente forma general:

$$F = \frac{e_R' e_R - e_I' e_I / q}{e_I' e_I / (S - k)}$$

- Cuando las restricciones (establecidas en las hipótesis) son verdaderas, estas no son sustentadas exactamente por los datos debido a la presencia de las perturbaciones:
 - Por ello, la SCR aumenta cuando se imponen restricciones a un modelo.
 - A pesar de esto, el incremento en la SCR no será grande en relación a la influencia de las perturbaciones.
 - Por ello, si las restricciones son verdaderas, el F tomaría valores pequeños.

6. APLICACIONES

Dependent Variable: LOG(EARNINGS)

Method: Least Squares

Date: 08/02/11 Time: 13:47

Sample: 1 540

Included observations: 540

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(S) LOG(ASVABC) AGE	-1.751657 1.291564 0.548691 -0.024005	0.575209 0.160356 0.144172 0.010297	-3.045252 8.054358 3.805811 -2.331279	0.0024 0.0000 0.0002 0.0201
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.257606 0.253451 0.526927 148.8215 -418.2450 61.99612 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watse	ent var riterion rion nn criter.	2.789022 0.609847 1.563870 1.595660 1.576303 1.764502

6. APLICACIONES

Coefficient Confidence Intervals Date: 08/02/11 Time: 13:50

Sample: 1 540

Included observations: 540

		909	6 CI	959	6 CI	99%	6 CI
Variable	Coefficient	Low	High	Low	High	Low	High
С	-1.751657	-2.699430	-0.803884	-2.881598	-0.621716	-3.238592	-0.2647
LOG(S)	1.291564	1.027345	1.555782	0.976561	1.606567	0.877038	1.7060
LOG(ASVABC)	0.548691	0.311139	0.786243	0.265480	0.831902	0.176002	0.9213
AGE	-0.024005	-0.040971	-0.007039	-0.044232	-0.003778	-0.050623	0.0026

Wald Test: Equation: EQ1

Test Statistic	Value	df	Probability
F-statistic	92.37585	(2, 536)	0.0000
Chi-square	184.7517	2	0.0000

Null Hypothesis: C(2)=C(3)=0 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.	
C(2)	1.291564	0.160356	
C(3)	0.548691	0.144172	

Restrictions are linear in coefficients.