	Математичес	ский анализ III
Конспек	г основан на лекциях	Константина Петровича Кохас

Оглавление

Λ1	Диффеоморфизмы																																	0
()	Λ MMCMMONMUSMLI																																	
0.1	Диффсоморфизмы	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	_

0.1 Диффеоморфизмы

Определение. Областью называют открытое связное множество.

Определение. Топологические пространства X, Y гомеомор ϕ ны, если существует обратимое и в обе стороны непрерывное $f: X \to Y$. f называют гомеомор ϕ измом.

Определение. $\Delta u \phi \phi e o mop \phi u s mom гладких многообразий <math>M,N$ называется обратимое и в обе стороны гладкое отображение $f:M\to N$.

Лемма 0.1.1. (О почти локальной инъективности)

Пусть $f: \mathbb{O} \subseteq \mathbb{R}^m \to \mathbb{R}^m$, $\mathbf{x}_0 \in \mathbb{O}$, f дифференцируемо в \mathbf{x}_0 , $\det f'(\mathbf{x}_0) \neq 0$, тогда $\exists c, \delta > 0$ такие, что $\forall \mathbf{h} \colon \|\mathbf{h}\| < \delta \ \|f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0)\| \ge c \|\mathbf{h}\|$

Доказательство.

$$\|f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0)\| = \|f'(\mathbf{x}_0)\mathbf{h} + \alpha(\mathbf{h})\|\mathbf{h}\|\| \ge \|f'(\mathbf{x}_0)\mathbf{h}\| - \|\alpha(\mathbf{h})\|\mathbf{h}\|\| \ge \frac{c}{2}\|\mathbf{h}\|$$

Последнее неравенство выполнено по следующим причинам:

- $||f'(\mathbf{x}_0)\mathbf{h}|| \ge c ||\mathbf{h}||$, так как $f'(\mathbf{x}_0)$ обратим
- $\|\alpha(\mathbf{h})\|\mathbf{h}\|\| \leqslant \frac{c}{2}\|\mathbf{h}\|$ при достаточно малых \mathbf{h} , так как $\alpha(\mathbf{h})$ бесконечно малое.

Теорема 0.1.2. (О сохранении области)

Пусть $f: \emptyset \subseteq \mathbb{R}^m \to \mathbb{R}^m$, $\forall \mathbf{x} \in \emptyset$ det $f'(\mathbf{x}) \neq 0$, тогда f открыто.

Доказательство. Достаточно рассмотреть случай, когда \emptyset открыто. Тогда нужно показать, что $f(\emptyset)$ открыто. Зафиксируем $\mathbf{x}_0 \in \emptyset$ и $\mathbf{y}_0 = f(\mathbf{x}_0) \in f(\emptyset)$. По лемме о почти локальной инъективности имеем $c, \delta > 0$ такие, что

$$\forall \mathbf{h} \in \overline{B(0, \delta)} \| f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) \| \ge c \| \mathbf{h} \|$$

Положим

$$r = \frac{1}{2}\operatorname{dist}(\mathbf{y}_0, f(S(\mathbf{x}_0, \delta)))$$

Поскольку f непрерывно, а сфера — компакт, имеем, что $f(S(\mathbf{x}_0, \delta))$ — компакт. В свою очередь, ρ является метрикой, то есть непрерывно. Тогда ρ достигает минимума, то есть r реализуется, а значит, не равно нулю (см. оценку выше). Раз r > 0, то $B(\mathbf{y}_0, r)$ — полноправный шар, проверим, что он входит в образ f целиком, что и закончит доказательство. Пусть $\mathbf{y} \in B(\mathbf{y}_0, r)$. Положим $g(\mathbf{x}) = \|f(\mathbf{x}) - \mathbf{y}\|$ на $\overline{B(\mathbf{x}_0, \delta)}$; g непрерывно, поэтому достигает минимума. Попробуем этот минимум найти:

• Рассмотрим поведение $g(\mathbf{x})$ на $S(\mathbf{x}_0, \delta)$:

$$g(\mathbf{x}) = ||f(\mathbf{x}) - \mathbf{y}|| \ge ||f(\mathbf{x}) - \mathbf{y}_0|| - ||\mathbf{y}_0 - \mathbf{y}|| \ge 2r - r = r$$

•
$$g(\mathbf{x}_0) = ||\mathbf{y}_0 - \mathbf{y}|| < r$$
, так как $\mathbf{y} \in B(\mathbf{y}_0, r)$

Тогда понятно, что минимум достигается не на границе. Раз так, он достигается во внутренности. Отображение $l: \mathbf{x} \mapsto g^2(\mathbf{x})$ достигает минимума в той же точке, что и g, при этом $l'(\mathbf{x}) = f'(\mathbf{x})(f(\mathbf{x}) - \mathbf{y})$. Из невырожденности производного оператора следует, что $f(\mathbf{x}) = \mathbf{y}$, что и требовалось.

Рис. 1: Теорема о сохранении области

Следствие 0.1.3. Пусть $f: \mathcal{O} \subseteq \mathbb{R}^m \to \mathbb{R}^{l \leqslant m}, \ \forall \mathbf{x} \in \mathcal{O} \ \ \mathrm{rank} \ f'(\mathbf{x}) = l, \ \mathrm{тогда} \ f \ \ \mathrm{открыто}.$

Доказательство. Построим оторбражение $\tilde{f}: \mathfrak{O} \to \mathbb{R}^m$ следующим образом:

$$ilde{f_i} = f_i, \ 1 \leqslant i \leqslant l$$
 $ilde{f_i} = x_i, \$ иначе

Производный оператор тогда будет выглядеть так:

$$\tilde{f}' = \begin{pmatrix} & f' & \\ 0 & \cdots & 1 & \cdots & 0 \\ 0 & \cdots & 0 & \cdots & 1 \end{pmatrix}$$

Где первая сверху единица стоит на l+1-м месте. Тогда отображение \tilde{f} тоже дифференцируемо, и его производный оператор невырожден. Применяя предыдущую

теорему, получаем, что $\tilde{f}(A)$ открыто, если множество A открыто. Тогда f(A) тоже открыто.

Теорема 0.1.4. (О гладкости обратного отображения)

Пусть $\mathcal{O} \subseteq \mathbb{R}^m$ — область, $T \in C^r(\mathcal{O}, \mathbb{R}^m)$, $r \in \mathbb{N} \cup \{+\infty\}$, $\forall \mathbf{x} \in \mathcal{O} \det T'(\mathbf{x}) \neq 0$, T обратимо, тогда $T^{-1} \in C^r$ и $(T^{-1})'(\mathbf{y}_0) = (T'(\mathbf{x}_0))^{-1}$, при $\mathbf{y}_0 = T(\mathbf{x}_0)$.

Доказательство. Докажем теорему по индукции. В качестве базы рассмотрим случай r=1. Обозначим $S=T^{-1}$, $S\colon T(\mathfrak{O})\to\mathbb{R}^m$ непрерывно, так как по теореме о сохранении области T открыто. Зафиксируем $\mathbf{y}_0=T(\mathbf{x}_0)$ и проверим дифференцируемость S в точке \mathbf{y}_0 .

• По теореме о почти локальной инъективности имеем

$$\exists c, \delta > 0: \ \forall \mathbf{x} \in B(\mathbf{x}_0, \delta) \ \|T(\mathbf{x}) - T(\mathbf{x}_0)\| \ge c \|\mathbf{x} - \mathbf{x}_0\|$$

• Воспользуемся дифференцируемостью Т:

$$T(\mathbf{x}) - T(\mathbf{x}_0) = A(\mathbf{x} - \mathbf{x}_0) + \alpha(\mathbf{x} - \mathbf{x}_0) \|\mathbf{x} - \mathbf{x}_0\|$$

Здесь $A = T'(\mathbf{x}_0)$. Положим $\mathbf{y} = T(\mathbf{x})$:

$$y - y_0 = A(S(y) - S(y_0)) + \alpha(S(y) - S(y_0)) ||S(y) - S(y_0)||$$

Перепишем это равенство в виде, похожем на определение дифференцируемости S:

$$S(\mathbf{y}) - S(\mathbf{y}_0) = A^{-1}(\mathbf{y} - \mathbf{y}_0) + A^{-1}\alpha(S(\mathbf{y}) - S(\mathbf{y}_0)) \|S(\mathbf{y}) - S(\mathbf{y}_0)\|$$

Если мы поймем, что $\beta(\mathbf{y}-\mathbf{y}_0) = A^{-1}\alpha(S(\mathbf{y})-S(\mathbf{y}_0)) \|S(\mathbf{y})-S(\mathbf{y}_0)\|$ — бесконечно малое при $\mathbf{y} \to \mathbf{y}_0$, то мы получим определение дифференцируемости S в точке \mathbf{y}_0 . Проверим это:

$$\beta(\mathbf{y} - \mathbf{y}_0) \leq \|A^{-1}\| \|\alpha(S(\mathbf{y}) - S(\mathbf{y}_0))\| \cdot \|\mathbf{x} - \mathbf{x}_0\|$$

$$\leq \|A^{-1}\| \|\alpha(S(\mathbf{y}) - S(\mathbf{y}_0))\| \cdot \frac{1}{c} \|T(\mathbf{x}) - T(\mathbf{x}_0)\|$$

$$= \|A^{-1}\| \|\alpha(S(\mathbf{y}) - S(\mathbf{y}_0))\| \cdot \frac{1}{c} \|\mathbf{y} - \mathbf{y}_0\|$$

S непрерывно, поэтому $\|\alpha(S(\mathbf{y})-S(\mathbf{y}_0))\| \xrightarrow{\mathbf{y}-\mathbf{y}_0} 0$, тогда $\beta(\mathbf{y}-\mathbf{y}_0) \xrightarrow{\mathbf{y}-\mathbf{y}_0} 0$.

Теперь нужно доказать непрерывность S'. Из доказанного уже известно, что $S'(\mathbf{y}) = (T'(\mathbf{x}))^{-1}$:

$$\mathbf{y} \mapsto S(\mathbf{y}) = T^{-1}(\mathbf{y}) = \mathbf{x} \mapsto T'(\mathbf{x}) \mapsto (T'(\mathbf{x}))^{-1} = S'(\mathbf{y})$$

Эту схему можно переписать в привычном виде:

$$S'(\mathbf{y}) = (T'(\mathbf{x}))^{-1} = (T'(S(\mathbf{y})))^{-1}$$

Таким образом получаем, что S' — композиция непрерывных отображений, то есть непрерывно (в частности, отображение $GL(\mathbb{R}^m) \ni A \mapsto A^{-1}$ непрерывно). Таким образом, база доказана.

Для доказательства индукционного перехода нужно показать только гладкость S. Пусть $T \in C^n$, $S \in C^n$, покажем, что тогда если вдруг $T \in C^{n+1}$, то и $S \in C^{n+1}$. Для этого достаточно, чтобы $S' \in C^n$:

$$S'(\mathbf{y}) = (T'(\mathbf{x}))^{-1} = (T'(S(\mathbf{y})))^{-1}$$

 $S \in C^n$ по предположению индукции, $T' \in C^n$ потому, что $T \in C^{n+1}$, обращение матрицы — вообще класса C^∞ , то есть переход доказан.

Лемма 0.1.5. (О приближении оботражения его линеаризацией) Пусть $f \in C^1(\mathcal{O}, \mathbb{R}^m)$, $\mathbf{x}_0 \in \mathcal{O}$, тогда $\forall \mathbf{h}$

$$||f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)\mathbf{h}|| \le M ||\mathbf{h}||$$

где

$$M = \sup_{\mathbf{z} \in [\mathbf{x}_0, \mathbf{x}_0 + \mathbf{h}]} \left\| f'(\mathbf{z}) - f'(\mathbf{x}_0) \right\|$$

Доказательство. Положим $F(\mathbf{x}) = f(\mathbf{x}) - f'(\mathbf{x}_0)(\mathbf{x})$, тогда $F'(\mathbf{x}) = f'(\mathbf{x}) - f'(\mathbf{x}_0)$. Применим теорему Лагранжа к F:

$$\begin{aligned} \left\| f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0) \mathbf{h} \right\| &= \left\| F(\mathbf{x}_0 + \mathbf{h}) - F(\mathbf{x}_0) \right\| \leqslant \sup_{\mathbf{z} \in [\mathbf{x}_0, \mathbf{x}_0 + \mathbf{h}]} \left\| F'(\mathbf{z}) \right\| \cdot \left\| \mathbf{h} \right\| \\ &= \sup_{\mathbf{z} \in [\mathbf{x}_0, \mathbf{x}_0 + \mathbf{h}]} \left\| f'(\mathbf{z}) - f'(\mathbf{x}_0) \right\| \cdot \left\| \mathbf{h} \right\| \end{aligned}$$

Теорема 0.1.6. (О локальной обратимости)

Пусть $f \in C^1(\mathcal{O}, \mathbb{R}^m)$, $\mathbf{x}_0 \in \mathcal{O}$, $\det f'(\mathbf{x}_0) \neq 0$, тогда $\exists U(\mathbf{x}_0)$ такая, что $f \big|_U$ — диффеоморфизм.

Доказательство. Если мы докажем, что f обратимо в некоторой окрестности $U(\mathbf{x}_0)$, то по теореме о гладкости обратного отображения мы получим требуемое (невырожденность определителя в окрестности \mathbf{x}_0 следует из его непрерывности и того, что $\det f'(\mathbf{x}_0) \neq 0$). Для начала заметим. что из невырожденности оператора в точке \mathbf{x}_0 следует, что

$$\exists c > 0: \ \left\| f'(\mathbf{x}_0) \mathbf{h} \right\| \geqslant c \left\| \mathbf{h} \right\|$$

Попробуем построить окрестность. Пусть она будет содержать точки такие, что одновременно выполнены условия:

- $||f'(\mathbf{x}) f'(\mathbf{x}_0)|| \le \frac{c}{4}$. Эти точки есть вблизи \mathbf{x}_0 по теореме о непрерывно дифференцируемых отображениях.
- $\det f'(\mathbf{x}) \neq 0$. Такие точки есть из непрерывности \det .

Проверим, что в этой окрестности f не склеивает точки, что и будет означать его обратимость; пусть $\mathbf{y} = \mathbf{x} + \mathbf{h}$, тогда:

$$f(y) - f(x) = (f(y+h) - f(x) - f'(x)h) + (f'(x) - f'(x_0))h + f'(x_0)h$$

$$||f(\mathbf{y}) - f(\mathbf{x})|| \ge \underbrace{||f'(\mathbf{x}_0)|| ||\mathbf{h}||}_{\geqslant c||\mathbf{h}||} - \underbrace{||f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) - f'(\mathbf{x})\mathbf{h}||}_{\leqslant M||\mathbf{h}|| \leqslant \frac{c}{2}||\mathbf{h}||} - \underbrace{||f'(\mathbf{x}) - f'(\mathbf{x}_0)|| \cdot ||\mathbf{h}||}_{\leqslant \frac{c}{4}||\mathbf{h}||}$$

$$\ge \frac{c}{4} ||\mathbf{h}||$$

Где $M \|\mathbf{h}\| \leq \frac{c}{2} \|\mathbf{h}\|$ потому, что:

$$M \|\mathbf{h}\| = \|\mathbf{h}\| \sup \left\| f'(\mathbf{z}) - f'(\mathbf{x}) \right\| \leq \sup \left(\underbrace{\left\| f'(\mathbf{z}) - f'(\mathbf{x}_0) \right\|}_{\leq \frac{c}{4}} + \underbrace{\left\| f(\mathbf{x}_0) - f(\mathbf{x}) \right\|}_{\leq \frac{c}{4}} \right) \leq \frac{c}{2}$$

Теорема 0.1.7. (О неявном отображении)

Пусть \mathfrak{O} открыто, $f: \mathfrak{O} \subseteq \mathbb{R}^{m+n} \to \mathbb{R}^n$, $(\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n) \mapsto_f f(\mathbf{x}, \mathbf{y}), f \in C^r$,

 $(\mathbf{a},\mathbf{b})\in \mathfrak{O}\colon\ f(\mathbf{a},\mathbf{b})=0,\,\det\!f_{\mathbf{y}}'(\mathbf{a},\mathbf{b})\!\neq 0,\,$ тогда

- $\exists U(\mathbf{a}), \exists U(\mathbf{b}), \exists ! \varphi \colon U(\mathbf{a}) \to U(\mathbf{b}) \in C^r$ такое, что $\forall \mathbf{x} \in U(\mathbf{a}) \ f(\mathbf{x}, \varphi(\mathbf{x})) = 0$
- $\varphi'(\mathbf{x}) = -(f'_{\mathbf{y}}(\mathbf{x}, \varphi(\mathbf{x})))^{-1} \cdot f'_{\mathbf{x}}(\mathbf{x}, \varphi(\mathbf{x}))$

Доказательство. TBD

Определение. $M \subseteq \mathbb{R}^m$ называют k-мерным многообразием в \mathbb{R}^m , если оно локально гомеоморфно \mathbb{R}^k . Иными словами, $\forall \mathbf{x} \in M \ \exists U(\mathbf{x}) \ \exists \varphi$ — гомеоморфизм: $U(\mathbf{x}) \simeq_{\varphi} \mathbb{R}^k$.

Определение. k-мерное многообразие $M \subseteq \mathbb{R}^m$ называют *простым*, если оно гомеоморфно \mathbb{R}^k . Иными словами, в предыдущем определении можно выбрать $U(\mathbf{x}) = M$.

Определение. Пара $\langle U(\mathbf{x}), \varphi \rangle$ из определения называется *картой*, или *параметризацией* многообразия в точке \mathbf{x} . Набор карт, который покрывает все M, называется *атласом*.

Определение. Простое k-мерное многобразие M называют C^r -гладким, если $\varphi \in C^r$ — параметризация M и $\forall \mathbf{x} \in \mathcal{O}$ rank $\varphi'(\mathbf{x}) = k$.

Теорема 0.1.8. (О задании гладкого многообразия системой уравнений) Пусть $M \subseteq \mathbb{R}^m$, $1 \le k < m$, $r \in \mathbb{N} \cup \{+\infty\}$, тогда $\forall \mathbf{p} \in M$ эквивалентны утверждения:

- $\exists U(\mathbf{p})\subseteq \mathbb{R}^m$ открытое такое, что $M\cap U$ простое k-мерное C^r -гладкое многообразие.
- $\exists \tilde{U}(\mathbf{p}) \subseteq \mathbb{R}^m$ открытое такое, что $M \cap \tilde{U}$ можно задать системой C^r -гладких уравнений, иначе говоря: $\exists f_1, \dots, f_{m-k} \colon \tilde{U} \to \mathbb{R} \in C^r$ такие, что $\mathbf{x} \in M \cap \tilde{U} \iff \forall i \ f_i(\mathbf{x}) = 0$, причем $\{ \operatorname{grad} f_i(\mathbf{p}) \}$ линейно независимы.

Доказательство. TBD

Следствие 0.1.9. (О двух параметризациях)

Пусть $M \longrightarrow k$ -мерное простое C^r -гладкое многообразие, $\mathbf{p} \in M$, причем $C^r \ni \varphi_1 \colon \mathcal{O}_1 \subseteq \mathbb{R}^k \to U \cap M$, $C^r \ni \varphi_2 \colon \mathcal{O}_2 \subseteq \mathbb{R}^k \to U \cap M$ — параметризации $U(\mathbf{p}) \cap M$. Тогда φ_1 и φ_2 отличаются на диффеоморфизм, а именно, $\exists \psi \colon \mathcal{O}_1 \to \mathcal{O}_2$ — диффеоморфизм, причем $\varphi_1 = \varphi_2 \circ \psi$.

Доказательство. TBD

Определение. Пусть $M C^r$ -гладкое k-мерное многообразие в \mathbb{R}^m , $\mathbf{p} \in M$, $\varphi \colon \mathcal{O} \subseteq \mathbb{R}^k \to \mathbb{R}^m$ — параметризация окрестности $U(\mathbf{p})$, причем $\varphi(\mathbf{a}) = \mathbf{p}$. Тогда касательным пространством к M в точке \mathbf{p} называется $T_p(M) = \operatorname{Im} \varphi'(\mathbf{a})$.

Теорема 0.1.10. (О корректности определения касательного пространства) Касательное пространство не зависит от выбора параметризации.

Доказательство. TBD

Теорема 0.1.11. (О касательном пространстве к гладкому пути) Пусть M — гладкое многообразие. Тогда $\mathbf{v} \in T_p(M) \Longleftrightarrow \exists$ гладкий путь $\gamma \colon [-1,1] \to \mathbb{R}^m \colon \gamma([-1,1]) \subseteq M$ такой, что $\gamma(0) = p$ и $\gamma'(0) = v$.

Доказательство. TBD

Теорема 0.1.12. (О касательном пространстве к графику функции) Касательное пространство к графику $C^r \ni f: \mathcal{O} \subseteq \mathbb{R}^m \to \mathbb{R}$ в точке $\mathbf{p} = (\mathbf{x}_0, f(\mathbf{x}_0))$ задается уравнением

$$y - f(\mathbf{x}_0) = f_1'(\mathbf{x}_1)(\mathbf{x} - \mathbf{x}_1) + \dots + f_m'(\mathbf{x}_m)(\mathbf{x} - \mathbf{x}_m)$$

Доказательство. TBD

Теорема 0.1.13. (О касательном пространстве к поверхности уровня) Касательное пространство к поверхности уровня функции $f: \mathbb{R}^3 \to \mathbb{R}$ задается уравнением

$$f_x'(x_0)(x-x_0) + f_y'(y_0)(y-y_0) + f_z'(z_0)(z-z_0) = 0$$

Доказательство. TBD