- · Continue the discussion of Projection
- · Present the projection theorem
- · Introduce fre Grahm matrix
- "Do a real-world example

Recall: lost time we discussed the idea of a generalized angle between two vectors fig in an inner product space:

(os ("0") = (fig) = (fig) and used this to

11f111g11 (fif)" = (gig)"

Then we saw that we comp define \hat{f} to be the componer of f or thousand to f as: $\hat{f} = \hat{f} - \text{proj}(\hat{f})$ and that $(\hat{f}, g) = D$.

The Projection theorem (3.4.2)

Now we want to discuss know to use the idea of projections to build " for best" approximations possible in a vector space V.

Let V be a verter space with inner product (-, -)v. Let W & V

be a finite dimensional subspace of V with dim(W) 5 dim(V)

We would to find a vector we W sum that "w is the closest

Vector in the subspace W to the vector v".

Pecali: by "close" we are implicitly falking about distance as mensured by the inner product norm: 9/1/11 = (00,00) 1/2

So in mathematical towns we want to find we W that minimizes 11V-yll where y is any vector in W. That is
we want to find we W such that 11 v-w11 & 11v-y11 for any geW.

Here can be understood this intitively? Lets go to our good friend and constant companion $V=\mathbb{R}^3$. The dot product (214) = 2-4 gives rise to fue notion of geometry to which we are pay since my accompanied. Let W= R2 be our subspace: we will me too x-y plane but any 2d surface in TR2 was work.

Suppose we have X = (1, 2, 7) and we want to find the best approximation we \mathbb{R}^2 to X how would you find the closest vector on the x-y axis?

That's right! you would "project" X on to the x-y axis.

what if we took W to be a pieue oriented different by

The approach, intuitively, would be the same. We would want to drop a horizontal line from the tip of \vec{X} down to \vec{X} and take our approximation \vec{W} to

be the vector whose tail was at the wight and whose tip was at the point where this "projection" by I touched W.

Ley idea: we can find the vector wo w hat best approximates \vec{x} if we can find the horizontal (perpendicular) vector that turns a 90° angle between W and \vec{x} .

- The pioture is: Notice that if we find \hat{L} we can note: $\hat{Z} = \hat{\omega} + \hat{L} \Rightarrow \hat{Z} \hat{\omega} = \hat{L}$ Notice that Such an \hat{L} is perpendicular to all of the Subspace \hat{W} Combining these observations means that
 - The projection of x on to W is orthogonal to w eg: h.y= (x-w) · y=0 for all yoM

Another way to write this is: (x-w, y) = 0 for every $y \in W$. Here $x-h=\omega \in W$ is called the projection of x onto the space W and is written as $w=x-h=proj_W(x)$.

- D So when $V = \mathbb{R}^3$ and $W = \mathbb{R}^2$ we can make nixe in in the Sense of the problem of finding the closest vector weW to X
 - a: Can we recost this idea into a result for general inner product spaces?
 - A: Theorem: (the projection theorem)? Let V be a vector space with inner product (1,1), and let W be a finite dimensional subspace. Let VEV be fixed.
 - 1) There is a unique weW satisfying

 11 V-WII = minimum 11 V-YII

 4 EW
 - 2) A vector $w \in W$ is the best approximation in W to $v \in W$ if and only if: (V-w, y) = 0 for every $y \in W$.
 - B) Let {\(\omega_1, \omega_2, ..., \omega_j \) be a basis for \(\omega_-\) Then the Projection of V onto \(\omega_1 \) (e.g. the best approximation to vin \(\omega_1 \) in qiven by the formula:
 - $W = \text{Proj}(V) = \sum_{i=1}^{N} x_i \vec{w}_i$ where the x_i solve the matrix equation $G\vec{x} = \vec{b}$. The matrix G is $G_{ij} = (w_i, w_j)$ and the vector \vec{b} is $\vec{b}_{i} = (V_i w_i)$
 - The matrix $G = (w_1, w_1) (w_1, w_2) ... (w_1, w_j)$ (w_2, w_2) $(w_3, w_1) (w_3, w_2) ... (w_3, w_j)$

is called the Grahm matrix.

Where does the Grahm metrix come from? It is a direct result of part (2) of the freezen. We know we should have that $\vec{V} - \vec{\omega}$ is vitrogonal to every vector in \vec{W} The $\vec{V} - \vec{\omega}$ so a consequence is that $\vec{V} - \vec{\omega} = \vec{h}$ where does the Grahm metrix come from? It is a sector in \vec{W} The $\vec{V} - \vec{\omega}$ is vitrogonal to every vector in \vec{W} must be orthogonal to each of the basis elements \vec{v} with \vec{v} and \vec{v} where \vec{v} is a linear combination of the basis vectors \vec{v} can be uvitten as a linear combination of the basis vectors \vec{v} with \vec{v} where \vec{v} is \vec{v} and \vec{v} in \vec{v} and \vec{v} and \vec{v} in \vec{v} and \vec{v} is \vec{v} and \vec{v} and \vec{v} and \vec{v} is \vec{v} and \vec{v} a

Written in matrix fun this is

union is exactly the equation $G\tilde{x}=\tilde{b}$ where G is the Grahm which

Example: (pg 65 of text) Linear regression

y soor vector y is some vector froating in the

of and e are both vectors in PES as well but together frey span a two dimensional subspace

one vector is miniting the distance between if and W = Span { it, e} will be of the form W= a z + be for some coefficients arb.

· The line floor ax+b will then be the best fit line to the datepoints since the points fixed will be the entries to the vector is. i.e. flikis = wi

 \longrightarrow So the abstract setup for our problem is: Let $V=\mathbb{R}^S$ and (., .) y be the usual dot product. Find w = proj W (V) Where W = span { x, }?

Solution: We know $G\vec{n} = \vec{r}$ where $G = \begin{bmatrix} (\vec{x}, \vec{x}) & (\vec{x}, \vec{e}) \end{bmatrix} = \begin{bmatrix} \vec{x} \cdot \vec{x} & \vec{x} - \vec{e} \\ (\vec{e}, \vec{x}) & (\vec{e}, \vec{e}) \end{bmatrix} = \begin{bmatrix} \vec{x} \cdot \vec{x} & \vec{x} - \vec{e} \\ \vec{e} \cdot \vec{x} & \vec{e} \cdot \vec{e} \end{bmatrix}$

and $\vec{r} = \begin{bmatrix} \vec{y} \cdot \vec{x} \end{bmatrix}$ $\vec{y} \cdot \vec{e} \end{bmatrix}$. We have $\begin{bmatrix} 1.6325 & 2.45 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 7.4370 \\ 13.196 \end{bmatrix}$

The Soution is: $\omega = \begin{bmatrix} 2.2411 \end{bmatrix}$. Hence by taking $a = \omega_1$ 1.5409 and $b = \omega_2$ we get that the best fit line is fix) = ax+b = 2.24112+ 1.5409