

Alan Chen, Andy Byun, Claire Liu, Sally Lee, Eric Pan

#### **AGENDA**

- 1. Solution Map
- 2. Introduction to Datasets
- 3. Basic Features
- 4. Model Selection Process
- 5. Advanced Features and Improvement
- 6. Best Model and Final Score

Solution Map



#### **SOLUTION MAP**

Dataset Introduction

What are the default features of datasets from Kaggle?

Basic Features Added

What additional basic features might affect player ratings?

Model Evaluation & Selection What models perform the best?



Compare Root Mean Square Error (RMSE) of Linear Regression, k-Nearest Neighbor model, XGBoost, and Random Forest

Advanced Features Added What advanced features affect player ratings?



Create features that represent a player's game play history

Final Deployment

Which model produces the lowest RMSE?



Introduction to Datasets



#### INTRODUCE THE DATA SET

All data used for the analysis have been sourced from the **Kaggle** competition The dataset comprises **four files** with one sample submission file



**GAMES** 

12 columns, 72,772 rows



9 columns, 2,005,497 rows





TRAIN

4 columns, 100,820 rows



**TEST** 

4 columns, 44,726 rows

#### INTRODUCE THE DATASET

#### Detail information about the files



#### **GAMES**

- Metadata about each game
- game ID, game's duration etc



#### **TURNS**

- Detailed information about every turn in each game
- Points, current rack, moves etc



#### **TRAIN**

Final scores and ratings for each player



#### **TEST**

- Final scores and ratings for each player
- Predicting the missing values in the test data



#### **SAMPLE SUBMISSION**

 Reference for the correct format when submitting predictions.







#### Letters \_\_\_\_ Assemblement

• Length of Moves



#### Letters \_\_\_\_ Assemblement

- Length of Moves
- Letters' Difficulty



#### Letters \_\_\_\_ Assemblement

- Length of Moves
- Letters' Difficulty
- Blank Tiles Used



#### Letters \_\_\_\_ Assemblement

- Length of Moves
- Letters' Difficulty
- Blank Tiles Used
- Bingo Moves











Model Selection Process



# How to evaluate model performances?

#### **Root Mean Squared Error (RMSE)**



Measure the average difference between predicted and actual values



Lower RMSE indicates better model performances



Sensitive to outliers

# What is overfitting?



# What is overfitting?

Overfitting Right Fit Underfitting

Classification

Regression

### How to perform model selection?

#### **Nested CV**



## What models did we try?



Advanced Features and Improvement



### Features Related Game History Added







#### Other Improvement







Best Model and Final Score



#### Best Model: XGBoost

- Better performance
  - Stronger algorithm among all models
- Robust
  - Handles large amounts of information well
- Convenience
  - No need to normalize features before utilizing

#### Final Score



xgboost\_submission\_8\_window30.csv

Complete (after deadline) · 2d ago

109.50917

111.07828

Thank you for your time