

Resonant Level Enhancement of the Thermoelectric Power of Bi₂Te₃ with Tin

Joseph P. Heremans and Christopher M. Jaworski
The Ohio State University
Vladimir A. Kulbachinskii
Moscow State University

Ackn. Vladimir Jovovic, Yibin Gao, Hyungyu Jin, Michele Nielsen, Yun Zhang

OHIO STATE UNIVERSITY

Outline

The physics of resonant levels: mechanisms by which they enhance ZT

The Pisarenko (thermopower versus carrier density) relation in Bi₂Te₃

Tin is a resonant level in the valence band of Bi₂Te₃

- 1. Band structure
- 2. Resistivity, Seebeck, Hall and Nernst effects

Enhancement in thermopower in single-crystal Bi2Te3

Application to practical p-type thermoelectric (Bi₃₀Sb₇₀)₂Te₃ alloys for heat pumps

Resonant energy levels: definition

Resonant levels in metals and semiconductors

- Concept comes from atomic physics
- First in metals: "Friedel States" or "Virtual bound states"

Friedel: "It is useful to think of the bound state as still existing, with a positive energy. But as it has now the same energy as an extended state, it will resonate with the *l*th spherical component, to build up two extended states of slightly different energies; these in turn will have the same energies as the extended states with whom they will resonate, etc..."

Similar to Kondo and thermocouple alloys

- 1. Isolated atoms, Friedel state, dilute limit
- 1 bis. with magnetic moment: Kondo effect (Au+0.02% Fe) *Prog. Theo. Phys.* 34 372, 1965
- 2. Resonant levels (Pb₉₈Tl₂Te): semi-dilute alloys: states can intereact

Constantan: main effect from g(E)Thermocouple material up to 750°C

Resonant levels increase thermopower

Mott relation for degenerate statistics

Mechanism 2: Resonant scattering

A. Blandin & J. Friedel, Le Journal de Physique et le Radium **20** 160, 1959 In PbTe: Yu. Ravich, CRC Handbook on Thermoelectrics, D. M. Rowe, Ed. 1995 In Bi₂Te₃: M. K. Zhitinskaya, S. A. Nemov and T. E. Svechnikova, Phys. Solid State **40** 1297, 1998

- Works great at cryogenic temperatures
- ullet Will NOT give high zT at operating temperatures where acoustic/optic phonon scattering dominates

Which dominates? Can be proven experimentally by measuring Nernst effect

Nernst coefficient can determine mechanism

Nernst:

Slow-diffusing carriers are more deflected by magnetic field than fast-diffusing carriers

=> Lower energy carriers condense on one side

 \Rightarrow cools down $\Rightarrow \Delta T_y$

Seebeck coefficient x ΔT_y => Nernst coefficient Nernst gives energy-dependence of scattering mechanism

Very schematically for non-degenerate system:

Define:
$$\tau = \tau_o E^{\Lambda} = N \approx \Lambda \mu \left(\frac{k_B}{|q|} \right)$$

If resonant scattering => Large Λ => Large N If ac. phonon scattering => Λ =-1/2 => - $N/(88\mu V/K) \sim \mu/2$

<u>Bi₂Te₃:Sn</u>

- Kulbachinskii identifies Sn as resonant level in Bi₂Te₃
 V. Kulbachinskii, N. B. Brandt et al., Phys. Stat. Sol. 150 237 (1988)
- Zhitinskaya suggests resonant SCATTERING boosts thermopower at 120 K (will NOT work when phonon scattering dominates, at 300K)
 M.K. Zhitinskaya, S.A. Nemov, T.E. Svechnikova, p 72, 16th International Conference on Thermoelectrics (1997)
- We use Kulbachinskii's Bridgeman Bi_{2-x}Sn_xTe₃ single crystals with x=0.0025, 0.0075, 0.015 (0.05, 0.15, 0.30 at% Sn)
- Measure four transport properties— S,N,R_H,ρ (2-400K) and use method of 4 coefficients
- Calculate Pisarenko relation (Thermopower vs. carrier concentration) for Bi₂Te₃
- Measure Shubnikov-de Haas to determine area of the Fermi surface $B \perp <001>$ axis, current // <100> axis for all measurements

Bi₂Te₃:Sn Proposed Valence Structure

Upper valence band with small mass

A. von Middendorff, G.Landwehr: Solid State Communications, 11 203 (1972)

• Lower valence band (LVB) position: Kohler - 20.5 meV H. Kohler, Physica Status Solidi (b), 74. 591 (1976)

In k space: LVB $|\Gamma A|$ UVB: $|\Gamma X|$

- Kulbachinski: Sn resonant impurity band 15meV below UVB *V.A.*. Kulbachinskii, Physica Status Solidi (b), **199** (1997)
- Zhitinskaya: Impurity Band (IB) is 10 meV wide

M. K. Zhitinskaya, Fizika Tverdogo Tela, 45, No. 7, (2003); Fizika i Tekhnika Poluprovodnikov 34 No 12 (2000)

Bi₂Te₃:Sn Proposed Valence Structure

Shubnikov-de Haas (SdH)

Oscillations in resistance periodic in 1/magnetic field

- Magnetic field quantizes allowable energy levels $E_n = n\hbar\omega_C = n\hbar\frac{2B}{m_C^*}$

Area of Fermi surface given by:

$$\Delta \frac{1}{B} = \frac{2\pi \cdot q}{\hbar A_E}$$

– Need mean free path longer than one cyclotron orbit: $\omega_C \tau = \mu B >> 1$

SdH oscillations in resistivity

Analysis of SdH oscillations

Evidence for resonant level from SdH alone is ambiguous: 2 harmonics or 2 periods?

	Oscillation	Fermi Surface	
Tin Content	Frequency	Area	
Bi _{2-x} Sn _x Te ₃	[Δ(1/B)] ⁻¹ T	(m ⁻²)	
x=0.0025	12.7	1.21E+17	
	23.5	2.24E+17	
x=0.0075	11.4	1.09E+17	
	22.3	2.13E+17	
x=0.015	13.5	1.29E+17	
	22.1	2.11E+17	

Tin Content	Hall 2K carrier density	Cyclotron mass	Fermi Level	m_D^st UVB	Carriers in 1 st band	Carriers in 2 nd band	m_D^* LVB
Bi _{2-x} Sn _x Te ₃	p (cm ⁻³) 10 ¹⁸	m_c^*/m_e	meV	m_D^*/m_e	p (cm ⁻³) 10 ¹⁸	p (cm ⁻³) 10 ¹⁸	m_D^*/m_e
x=0.0025	2.78	0.118	23.44	0.156	.966	1.814	1.89
x=0.0075	4.44	0.115	23.26	0.152	.917	3.523	3.29
x=0.015	5.63	0.113	23.14	0.149	.882	4.748	4.19

(●) Bi_{2-x}Sn_xTe₃ from (1),
 (○) Bi₂Te₃ from (2),
 (□ and ▷)Bi_{2-x}Sn_xTe₃ from this work using the method of 1(▷) and 2(□)
 The solid line is calculated from (2)

Assuming that LVB starts at 20.5 meV

Analysis after V. A. Kulbachinskii, Phys. Rev. B 50 16921 (1994); H. Kohler: Phys Stat Solidi (b) 74 (1976).

Transport Measurement Results

Method of the four parameters

Hypotheses:

- Single-carrier system not rigorously the case here
- Parabolic (Bi₂Te₃) or non-parabolic bands
- Degenerate or non-degenerate statistics

Four unknown parameters

- 1. Density of carriers *n*
- 2. Mobility of carriers μ
- 3. Effective mass m^*_{DOS}

•
$$(n) + (m^*_{DOS}) => (E_F)$$

4. Energy dependence of scattering $\tau = \tau_0 E^{\lambda}$

 λ = scattering exponent

Use four independent measurements at each temperature T

- 1. Resistivity $\rho(T)$
- 2. Hall coefficient $R_H(T)$
- 3. Thermopower S(T)
- 4. Transverse isothermal Nernst-Ettingshausen coefficient N(T)

T (K)

Results of 4-Parameter Fit

T (K)

Calculation of Pisarenko Relation

Qualitative (here for non-degenerate statistics, for didactic purposes only): S depends on scattering mechanism λ , carrier concentrations, effective masses, and mobility

$$S \approx \frac{k}{q} \left(A(\Lambda) + \ln \frac{2(2\pi \cdot m_1^* k_b T)^{3/2}}{h^3 p_1} \right)$$

Quantitative: use Fermi integrals, assume parabolic model, multi-carrier conduction

$$p_{UVB} = \frac{6}{3\pi^2\hbar^3} \left(2m_{UVB}^* k_B T\right)^{3/2} \int_0^{\infty} \left[\frac{x^{3/2} e^{x - x_F}}{\left(1 + e^{x - x_F}\right)^2} \right] dx \quad p_{LVB} = \frac{6}{3\pi^2\hbar^3} \left(2m_{LVB}^* k_B T\right)^{3/2} \int_0^{\infty} \left[\frac{x^{3/2} e^{x - (x_F - \Delta E_{UL})}}{\left(1 + e^{x - (x_F - \Delta E_{UL})}\right)^2} \right] dx$$

$$\Delta E_{UL} = 20 \, meV \\ S_{LVB,UVB} = \frac{k_B}{q} \int_{0}^{\infty} \left[\frac{x^{5/2 + \lambda} e^{x - x_F}}{(1 + e^{x - x_F})^2} \right] dx \\ T_{LVB,UVB} = \frac{k_B}{q} \int_{0}^{\infty} \left[\frac{x^{3/2 + \lambda} e^{x - x_F}}{(1 + e^{x - x_F})^2} \right] dx \\ T_{LVB,UVB} = \frac{\int_{0}^{\infty} \left[\frac{x^{3/2 + \lambda} e^{x - x_F}}{(1 + e^{x - x_F})^2} \right] dx}{\int_{0}^{\infty} \left[\frac{x^{3/2 + \lambda} e^{x - (x_F - \Delta E_{UL})}}{(1 + e^{x - (x_F - \Delta E_{UL})})^2} \right] dx} \right] dx$$

$$S = \frac{S_{UVB}\sigma_{UVB} + S_{LVB}\sigma_{LVB}}{\sigma_{UVB} + \sigma_{LVB}} = \frac{S_{UVB} \cdot \sigma_{ratio} + S_{LVB}}{\sigma_{ratio} + 1}$$

Pisarenko Relation for Bi₂Te₃ at 300K

- Calculation of thermopower as function of carrier density
- UVB: $\lambda = 1/2, 1$
- LVB: λ =1
- LVB starts at 20 meV below UVB

- 1. Ioffe, Physics of Semiconductors, 1961
- 2. Bergmann. 1169, s.l.: Z Natuforsch, 1963, Vol. 18a.
- 3. Philosophical Magazine, Volume 84, Issue 21 July 2004, pages 2217 2228

Pisarenko Relation for Bi₂Te₃ at 300K

- Middle Sn concentrations have increased Seebeck over Ge and Pb doped Bi₂Te₃
- Resonant level
- Highest Sn concentrations fall with 2nd valence band

Resonant level much narrower (10 meV) than thallium in PbTe (30meV)

=> Optimization of Fermi level more delicate

Consistent data: SdH / Pisarenko

Extend to (Bi₃₀ Sb₇₀)₂Te₃

Sb more prone to antisite defects than Bi

=> Fermi level optimization is harder.

OHIO SIAIE UNIVERSITY

Conclusions

- Correct picture for Bi2Te3 from SdH & method of 4 coefficients
- 2. Pisarenko relation for Bi2Te3 : Sn different from Bi2Te3 : (Ge, Sn, Pb)

- 3. Effect is due to an increase in effective mass, NOT resonant scattering as suggested by Zhitinskaya
- 4. Sn boosts thermopower EVEN at room temperature: Sn enhances power factor S²n at useful temperatures for Peltier coolers
- 5. Resonant level much narrower (10 meV) than thallium in PbTe (30meV)=> Optimization of Fermi level more delicate
- 6. Applicable to commercial $(Bi_{0.3}Sb_{0.7})_2Te_3$ type alloys? YES: **ONGOING WORK**

Resonant scattering

Scattering strong exactly when $E=E_0$ Resonance in scattering

Wave is reflected