Ch 5. 特征值与特征向量

钟友良

zhongyl@scut.edu.cn

Outline

5.0 引言

5.1 矩阵的特征值和特征向量

5.2 相似矩阵与矩阵可对角化

5.3 实对称矩阵的对角化

Outline

5.0 引言

- 5.1 矩阵的特征值和特征向量
- 5.2 相似矩阵与矩阵可对角化
- 5.3 实对称矩阵的对角化

例子

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$$
, $\alpha = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\beta = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\gamma = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$Alpha = -lpha$$
 $Aeta = eta$
 $A\gamma \neq k\gamma$
 Π
 Π

注意到
$$\gamma = \frac{1}{2}(\alpha + \beta)$$
, 可得

$$A\gamma = A(\frac{1}{2}(\alpha + \beta)) = \frac{1}{2}(A\alpha + A\beta)$$
$$= \frac{1}{2}(-\alpha + \beta).$$

Outline

5.0 引言

5.1 矩阵的特征值和特征向量

5.2 相似矩阵与矩阵可对角化

5.3 实对称矩阵的对角化

特征值与特征向量

定义 1.1

对于矩阵 $A \in F^{n \times n}$, 一个数 $\lambda \in F$ 称为 A 的一个 特征值, 如果存在列向量 $\alpha \neq \mathbf{0}$, s.t.

eigenvalue

 $A\alpha = \lambda \alpha$.

我们称 α 为 A 属于 λ 的一个特征向量 (简称 特征向量).

例子

回顾
$$A = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$$
.

- ► $A\alpha = -\alpha \Rightarrow \alpha \Rightarrow A$ 属于 -1 的特征向量
- ► $A\beta = \beta \Rightarrow \beta$ 为 A 属于 1 的特征向量

方程组形式

向量 $\alpha \neq 0$ 为 A 属于 λ 的特征向量

$$A\alpha = \lambda \alpha$$

当且仅当方程组

$$(\lambda E - A)\alpha = 0$$

有非零解 $\alpha \neq 0$. 即以下齐次方程组有非零解

$$egin{pmatrix} \lambda-a_{1,1} & -a_{1,2} & \dots & -a_{1,n} \ -a_{2,1} & \lambda-a_{2,2} & \dots & -a_{2,n} \ & & \ddots & & \ -a_{n,1} & -a_{n,2} & \dots & \lambda-a_{n,n} \end{pmatrix} egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix} = \mathbf{0}$$

特征矩阵

齐次方程组有非零解, 当且仅当, 行列式为零

$$\begin{vmatrix} \lambda - a_{1,1} & -a_{1,2} & \dots & -a_{1,n} \\ -a_{2,1} & \lambda - a_{2,2} & \dots & -a_{2,n} \\ \vdots & & \ddots & \vdots \\ -a_{n,1} & -a_{n,2} & \dots & \lambda - a_{n,n} \end{vmatrix} = 0,$$

即

$$|\lambda E - A| = 0.$$

特征多项式

定义 1.2

矩阵 A 关于 λ 的 特征矩阵 定义为

$$\lambda E - A$$
, $(\lambda E - A) \Omega = a$

其行列式称为 A 关于 λ 的 特征多项式

$$f(\lambda) = |\lambda E - A|.$$

入是A的一个特征值

简述代数基本定理

$$\lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0 = 0$$

总能化为
$$\frac{\lambda^2-1-0}{\lambda^2-2-0}$$
 $\frac{\lambda^2-(-1)-0}{\lambda^2-2-0}$ $\frac{\lambda^2-(-1)-0}{\lambda^2-2-0}$ $\frac{\lambda^2-(-1)-0}{(\lambda^{n_1}-b_1)\dots(\lambda^{n_N}-b_N)}=0$,

- $ightharpoonup n_1 + \cdots + n_N = n_1$
- ▶ n_i 个不同的复数根满足 $\lambda^{n_i} = b_i$

 - b_i 可能等于 b_j, 则有重根b_i 可能为负, 则没有对应实根

例题 1.1

例题 1.1

求下列矩阵的特征值和特征向量

$$A = \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ 7 & 5 & 1 \end{pmatrix}$$

解

特征多项式

$$|\lambda E - A| = \begin{vmatrix} \lambda + 3 & -4 & 0 \\ 1 & \lambda - 1 & 0 \\ -7 & -5 & \lambda - 1 \end{vmatrix} = (\lambda - 1)(\lambda + 1)^{2}$$

例题 1.1 续

解 $\lambda = 1$ 下的方程 $(\lambda E - A)X = 0$ i.e.

$$\begin{pmatrix} 4 & -4 & 0 \\ 1 & 0 & 0 \\ -7 & -5 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0.$$

得一个基础解系 $(0,0,1)^T$. A $\begin{pmatrix} e \\ i \end{pmatrix} = \begin{pmatrix} e \\ i \end{pmatrix}$ 解 $\lambda = -1$ 下的方程 $(\lambda E - A)X = 0$ i.e.

$$\begin{pmatrix} 1 & -2 \\ -19 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \begin{pmatrix} 2 & -4 & 0 \\ 1 & -2 & 0 \\ -7 & -5 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0.$$

得一个基础解系 $(2,1,\frac{19}{2})^T$. $A\begin{pmatrix} 2\\1\\1\\2\\2\end{pmatrix} = -\begin{pmatrix} 2\\1\\1\\4\\2\end{pmatrix}$

例题 1.2

回顾习题 Ch2 1 (5)

例题 1.2

求下列矩阵的特征值和特征向量

Ad= Ad.

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

例题 1.2 解 1

特征多项式

$$|\lambda E - A| = (\lambda - \cos \theta)^2 + \sin^2 \theta. \frac{2}{2}$$

如果 $\theta \neq k\pi$, 那么 $\sin^2 \theta > 0$, 特征多项式无实根. 仅考虑 $\theta = k\pi$ 的情况.

例题 1.2 解 2

考虑 $\theta = 2k\pi$, 则

$$A = \begin{pmatrix} 1 & \\ & 1 \end{pmatrix}$$

可得特征值为 1 (特征多项式的二重根), 可取特征向量 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 和 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

例题 1.2 解 3

考虑 $\theta = \pi + 2k\pi$, 则

$$A = \begin{pmatrix} -1 & \\ & -1 \end{pmatrix}$$

可得特征值为 -1 (特征多项式的二重根), 可取特征向量 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 和 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

转置保持特征值

性质 1.1

对于 $n \times n$ 矩阵 A 与其转置 A^T 有相同的特征值.

性质 1.2

设 $A \in \mathbb{C}^{n \times n}$, 记它的 n 个特征值为 $\lambda_1, \ldots, \lambda_n$, 我们有

- ▶ A 的迹 $\operatorname{tr}(A)$ 等于 $\lambda_1 + \cdots + \lambda_n$
- ▶ A 的行列式 |A| 等于 $\lambda_1 \ldots \lambda_n$

Q: 特征值 $\lambda_1, \ldots, \lambda_n$ 的存在性?

性质 1.2 证明

一方面, 由于 $\lambda_1, \ldots, \lambda_n$ 为 $f(\lambda)$ 的根, 所以

$$f(\lambda) = (\lambda - \lambda_1) \dots (\lambda - \lambda_n)$$

$$= \lambda^n - (\sum_i \lambda_i) \lambda^{n-1} + \dots + (\prod_i \lambda_i)$$

另一方面, 特征多项式

$$f(\lambda) = |\lambda E - A| = \begin{vmatrix} \lambda - a_{1,1} & -a_{1,2} & \dots & -a_{1,n} \\ -a_{2,1} & \lambda - a_{2,2} & \dots & -a_{2,n} \\ & & \ddots & \\ -a_{n,1} & -a_{n,2} & \dots & \lambda - a_{n,n} \end{vmatrix}$$

$$= \lambda^{n} - (\sum_{i} a_{i,i}) \lambda^{n-1} + \dots + (\prod_{i} a_{i,i})$$

$$= \lambda^{n} - \sum_{i} a_{i,i} \lambda^{n-1} + \dots + (\prod_{i} a_{i,i})$$

例题 1.3

例题 1.3

$$A\alpha = \lambda \alpha \Rightarrow A^n \alpha = \lambda^n \alpha.$$

一般地, 对于多项式

$$f(x) = a_m x^m + \cdots + a_1 x + a_0$$

有

$$f(A) = a_m A^m + \cdots + a_1 A + a_0 E$$

可得

$$f(A)\alpha = a_m\lambda^n\alpha + \cdots + a_1\lambda\alpha + a_0\alpha.$$

特征向量线性无关。

Adi = Didi

性质 1.3

 $\lambda_1 \neq \lambda_2$

- $\lambda_1, \ldots, \lambda_t$ 为 A 的两两不同的特征值 $\lambda_1, \ldots, \lambda_t$

那么所有特征向量 $\alpha_{1,1}$, $\alpha_{1,2}$, ..., α_{t,r_t} 都线性无关.