

Kanokkorn Pimcharoen

Separating Hyperplanes

1D Feature space

2D Feature space

3D Feature space

Linearly Separable

Non-Linearly Separable

Linearly Separable

SVM selects the **separating hyperplane** with **maximum margin**.

Separating Hyperplane

Decision Boundary

SVM selects the **separating hyperplane** with **maximum margin**.

Non-Linearly Separable

Non-Linearly Separable

SVM selects the **separating hyperplane** with **maximum margin**.

Non-Linearly Separable

Linearly Separable

Non-Linear Decision Boundary

สร้างคน ข้ามพรมแดน

sklearn.svm.SVC

class sklearn.svm.**svc**(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None) 1

Parameters:

kernel: {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} or callable, default='rbf'

Specifies the kernel type to be used in the algorithm. If none is given, 'rbf' will be used.

degree: int, default=3

Degree of the polynomial kernel function ('poly').

Rhys, H. (2020). Machine Learning with R, the Tidyverse, and Mlr. United States: Manning.

[source]

sklearn.svm.SVC

class sklearn.svm.**svc**(*, <u>C=1.0</u>, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None) 1

[source]

Parameters:

C: float, default=1.0

Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared I2 penalty.

$$\mathcal{L}(x,y) + \lambda R(w) \longrightarrow C \mathcal{L}(x,y) + R(w)$$

Setting C to high value will reduce the effect of regularization

sklearn.svm.SVC

class sklearn.svm.**svc**(*, <u>C=1.0</u>, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None) 1

Attributes:

coef_: ndarray of shape (n_classes * (n_classes - 1) / 2, n_features)
Weights assigned to the features when kernel="linear".

dual_coef_: ndarray of shape (n_classes -1, n_SV)
Dual coefficients of the support vector in the decision function

intercept_: ndarray of shape (n_classes * (n_classes - 1) / 2,)
Constants in decision function.

support_: ndarray of shape (n_SV)
Indices of support vectors.

support_vectors_: ndarray of shape (n_SV, n_features)
Support vectors.

n_support_: ndarray of shape (n_classes,), dtype=int32

Number of support vectors for each class.

Decision Boundary

Support Vectors

[source]

Dataset $(x_{1,1},x_{1,2},y_1),(x_{2,1},x_{2,2},y_2),(x_{3,1},x_{3,2},y_3),...,(x_{n,1},x_{n,2},y_n)$


```
# Import a necessary modules
from sklearn.svm import SVC

# Create the model with linear kernel
clf = SVC(kernel='linear')

# Train the model
clf.fit(X,y)

# Make prediction
y_pred = clf.predict(X_test)
```

```
# Create the model with non-linear kernel
clf = SVC(kernel='poly', degree=2)
clf = SVC(kernel='rbf')
```


-20

-15

Feature 1

Support Vector Machine

Thus, polynomial (degree 2) and RBF kernels can fit this dataset better than linear kernels.

