Thème 5: Méthodes avancées – partie 3

Clustering Spectral

Les diapos de cette partie viennent de Dr. Jiawei Han et Dr. Ralf Möller Dr. Özgür L. Özçep

Le diapo de Jiawei Han suivant illustre sommairement le fonctionnement de « spectral clustering »

Clustering spectral: illustrations et commentaires

- ▶ Clustering spectral : efficace dans des tâches telles que le traitement d'images
- Défi d'extensibilité : le calcul de vecteurs propres sur une grande matrice est coûteux
- Peut être combiné avec d'autres méthodes de clustering, telles que le bi-clustering

Une autre présentation de clustering spectral

Prof. Dr. Ralf Möller Dr. Özgür L. Özçep Universität zu Lübeck Institut für Informationssysteme

Spectral Clustering

Acknowledgements for subsequent slides to

Xiaoli Fern

CS 534: Machine Learning 2011

http://web.engr.oregonstate.edu/~xfern/classes/cs534/

Clustering spectral

- Objets représentés comme sommets V d'un graphe G
- ▶ Sommets connectés par des arêtes E
- Les poids associés aux arêtes sont représentés par W
 - Grand W(i,j) signifie que les objets i et j sont très similiaires; petit W(i,j) signifie dissimilaires.

Les méthodes de clustering qui emploient le "spectre" de la matrice W sont des méthodes de clustering spectral.

Comment créer le graphe (de similitude)?

- On peut créer
 - Un graph à connexions complètes
 - Un graphe de K plus proches voisins (K-NN)
 - Un graphe de voisinage-ε (ε-neighborhood graph)
- En pratique, on utilise souvent le noyau gaussien pour calculer la similitude entre les objets :

$$W(i,j) = \exp \frac{-|x_i - x_j|^2}{\sigma^2}$$

Motivations / Objectives

- Il y a de différentes façons d'interpréter le clustering spectral
 - On peut considérer le clustering spectral comme la recherche de partitions du graphe qui minimisent la « coupe normalisée » (Nomalized Cut).
 - Alternativement, nous pouvons également considérer cela comme une marche aléatoire sur le graphe.

Partitionnement de graphe

Terminologies des graphes

Degree of nodes

$$d_i = \sum_j w_{i,j}$$

Volume of a set

$$vol(A) = \sum_{i \in A} d_i, A \subseteq V$$

Coupe de graphe (Graph Cut)

▶ Soit une partititon d'un graphe en deux parties A et B

Cut(A, B) : somme des poids de l'ensemble des arêtes reliant les deux groupes A et B

$$cut(A,B) = \sum_{i \in A, j \in B} w_{ij} = 0.3$$

 \blacktriangleright Objectif: trouver une partition A et B qui minimise Cut(A, B)

Coupe minimale (fonction objectif)

Mincut : vise à minimiser le poids des connexions entre groupes

$$\min_{A\cap B=\emptyset,A\cup B=V}Cut(A,B)$$

- Problème :
 - tend vers une solution dégénérative. Ex.

Nécessite donc une approche favorisant une solution plus équilibrée

Coupe normalisée (Normalized Cut)

 Considérez la connectivité entre les groupes par rapport au volume de chaque groupe

$$Ncut(A, B) = \frac{cut(A, B)}{Vol(A)} + \frac{cut(A, B)}{Vol(B)}$$

$$Ncut(A, B) = cut(A, B) \frac{Vol(A) + Vol(B)}{Vol(A)Vol(B)}$$

Le rapport des volumes ci-dessus est minimisé seulement lors que Vol(A) et Vol(B) sont équaux.

Objectif pour optimiser NCut

Comment minimiser NCut?

Let
$$W$$
 be the similarity matrix, $W(i, j) = W_{i,j}$;
Let D be the diag. matrix, $D(i, i) = \sum_{j} W(i, j)$;
Let x be a vector in $\{1,-1\}^N$, $x(i) = 1 \Leftrightarrow i \in A$.

Après implifications, on obtient

$$\min_{x} Ncut(x) = \min_{y} \frac{y^{T}(D - W)y}{y^{T}Dy}$$
Rayleigh quotient

Subject to: $y^T D1 = 0$ (y takes discrete values)

Résoudre Ncut

Relâcher le problème d'optimisation en résolvant un système de valeurs propres généralisé dans le continu

$$\min_{y} y^{T}(D - W)y \text{ subject to } y^{T}Dy = 1$$

Lagrangienne :

$$L(y,\lambda) = y^{T}(D - W)y - \lambda(y^{T}Dy - 1)$$

En imposant les dérivés partiels par rapport à y à zéro

$$(D - W)y = \lambda Dy$$

- Noter que (D W)1 = 0, donc the premier vecteur propre est $y_0 = 1$, avec valeur propre 0.
- Le deuxième plus petit vecteur propre est la solution à valeur réelle de ce problème

2-way Normalized Cuts

- 1. Compute the affinity matrix W, compute the degree matrix (D), D is diagonal and $D(i, i) = \sum_{j \in V} W(i, j)$
- 2. Solve $(D W)y = \lambda Dy$, where D W is called the Laplacian matrix
- Use the eigenvector with the second smallest eigen-value to bipartition the graph into two parts.

Spectral embedding of the data