

A New Model to Capture the Impact of * Behaviours on the Spread of Infectious Diseases

Riccardo Tessarin - 222819

Supervisor: Prof. Giulia Giordano **Co-Supervisor:** Dr. Daniele Proverbio

Presentation outlook

Introduction

Why epidemiology is important

01

04

The model

- 1. SIRS model
- 2. Behavioral model
- 3. SAHCIR model

Objectives

Summary and thesis goals

02

05

Reproduction number and simulations

The SIR model class, key parameters

03

06

Conclusion

01

Introduction: Why studying Epidemiology

- Humanity has faced epidemic throughout its history
- Diseases impact health and social aspects of societies
- Advances in medicine and hygiene, yet new diseases still emerge.

Definitions: the SIR model class

Mean field approximation

Homogeneous mixing

Population conservation

$$S + I + R = 1$$

Transitions rates

- β transmission rate
- γ recovery rate
- δ immunity waning rate

Definitions: key parameters

Basic reproduction number

$$R_0 = \frac{\beta}{\gamma + \delta}$$

Treshold value

• $R_0 > 1$: epidemic outbreak

• $R_0 \le 1$: disease-free equilibrium

SIRS model

epidemic layer

$$\frac{ds}{dt} = -\beta s i + \delta i$$

$$\frac{di}{dt} = \beta s i - \gamma i$$

$$\frac{dr}{dt} = \gamma i - \delta i$$

04

Behavioral model

Heedless - Compliant - Against

dynamic

 k_1 , k_2 persuasion rate λ_1 , λ_2 fatigue to maintain behavior B_1 , B_2 behavior conversion number

$$\begin{split} \frac{dH}{dt} &= -k_1 C H - k_2 A H + \lambda_1 C + \lambda_2 A \\ \frac{dC}{dt} &= k_1 C H - \lambda_1 C \\ \frac{dA}{dt} &= k_2 A H - \lambda_2 A \end{split}$$

Design method:

04 SAHCIR model

$$S'_{H} = - \psi k_{1}S_{H}C - k_{2}S_{H}A + \lambda_{1}S_{C} + \lambda_{2}S_{A} + \delta(1 - \phi)R_{C} - \beta S_{H}I$$

$$S'_{C} = \psi k_{1}S_{H}C + \delta\phi R_{C} - \lambda_{1}S_{C} - \beta\rho S_{C}I$$

$$S'_{A} = k_{2}S_{H}A - \lambda_{2}S_{A} - \beta S_{A}I + \delta R_{A}$$

$$I'_{C} = \beta\rho S_{C}I + \beta S_{H}I + \psi k_{3}I_{A}C - \lambda_{3}I_{C} - k_{4}I_{C}A + \lambda_{4}I_{A} - \gamma I_{C}$$

$$I'_{A} = \beta S_{A}I - \psi k_{3}I_{A}C + \lambda_{3}I_{C} + k_{4}I_{C}A - \lambda_{4}I_{A} - \gamma I_{A}$$

$$R'_{C} = \gamma I_{C} - k_{6}R_{C}A + \lambda_{6}R_{A} + \psi k_{5}R_{A}C - \lambda_{5}R_{C} - \delta R_{C}$$

$$R'_{A} = \gamma I_{A} + k_{6}R_{C}A - \lambda_{6}R_{A} - \psi k_{5}R_{A}C + \lambda_{5}R_{C} - \delta R_{A}$$

$$A = S_A + I_A + R_A$$

$$C = S_C + I_C + R_C$$

$$I = \epsilon I_C + I_A$$

$$0 \le \rho \le 1$$
$$0 \le \epsilon \le 1$$
$$0 < \phi \le 1$$
$$\rho \ge 1$$

Epidemic- behavior Reproduction number E_0

$$E_0 = spec(FV^{-1})$$

$$F = \left[\frac{dF_i}{dx_j}(x_0)\right] \text{ with } 1 \le i, j \le m$$

$$E_0 = spec(FV^{-1})$$

$$V = \begin{bmatrix} \frac{dV_i}{dx_j}(x_0) \end{bmatrix} \text{ with } 1 \le i, j \le m$$

$$V = \begin{bmatrix} \frac{dV_i}{dx_i}(x_0) \end{bmatrix} \text{ with } 1 \le i, j \le m$$

$$x = (x_1, x_2, \dots, x_n)^T$$

$$\frac{dx_i}{dt} = F_i(x) - V_i(x) \text{ for } i = 1, 2, \dots, m$$

$$F = \begin{bmatrix} \beta \epsilon (\rho S_C + S_H) & \beta (\rho S_C + S_A) \\ \beta \epsilon S_A & \beta S_A \end{bmatrix} \quad V = \begin{bmatrix} \lambda_3 + k_4 (S_A + I_A + R_A) + \gamma - \psi k_3 I_A & k_4 I_C - \lambda_4 - \psi k_3 (S_C + I_C + R_C) \\ \psi k_3 I_A - \lambda_3 - k_4 (S_A + I_A + R_A) & \psi k_3 (S_C + I_C + R_C) - k_4 I_C + \lambda_4 + \gamma \end{bmatrix}$$

Disease Free Equilibria x_0

	s_c	S_H	S_A	E_0
type- A	0	1	0	$\frac{\beta}{\gamma} \frac{\lambda_3 + \epsilon \gamma + \epsilon \lambda_4}{\lambda_3 + \lambda_4 + \gamma}$
type- B	0	$\frac{\lambda_2}{k_2}$	$1 - \frac{\lambda_2}{k_2}$	$\frac{\beta}{\gamma} \frac{\gamma + \lambda_3 + \epsilon \lambda_4 + S_H \gamma(\epsilon - 1) + k_4 S_A}{\lambda_3 + \lambda_4 + \gamma + k_4 S_A}$
Type- C	$1-\frac{\lambda_1}{k_1}$	$\frac{\lambda_1}{k_1}$	0	$\frac{\beta}{\gamma} \frac{(S_H + \rho S_C)(\lambda_3 + \epsilon \gamma + \epsilon \lambda_4 + \psi \epsilon k_3 S_C)}{\lambda_3 + \lambda_4 + \gamma + \psi k_3 S_C}$

 $R_C = 0, \overline{R_A = 0}$

Results Simulations with different E_0

t[days]

IC —IA -- Total I

 $\lambda_1 \ll \lambda_2$

Same B_1, B_2

12

Results Effect of ψ global mean field agent

Behavior-Epidemic 01 interactions

Thanks!

Insights from simulations E_0 effective to reproduce epidemic

02

SAHCIR MODEL

03

Framework flexibility

Adaptable to different scenarios

Future perspective:

fit empirical data, complex ψ , more investigation on k_i, λ_i

Possible limitations

Homogeneous mixing, H only in S

Introduction

Epidemic spreading: multiple layers and scales are involved

Population interconnections

Model people behavior during an epidemic

Population interactions

Microscopic, infection dynamic within a host

04

Behavioral model Heedless - Compliant - Against

*

01

Introduction: Why models

Powerful instruments

Study, understand, reconstruct patterns

Prediction

Generate insight into epidemic dynamics

Develop policies to minimize human life loss, economic costs, and hospital overcrowding.

Exploring disease incidence

	S_{C}	S_H	S_A	$\boldsymbol{E_0}$
type-A	0	1	0	$\frac{\beta}{\gamma} \frac{\lambda_3 + \epsilon \gamma + \epsilon \lambda_4}{\lambda_3 + \lambda_4 + \gamma}$
type-B	0	$\frac{\lambda_2}{k_2}$	$1 - \frac{\lambda_2}{k_2}$	$\frac{\beta}{\gamma} \frac{\gamma + \lambda_3 + \epsilon \lambda_4 + S_H \gamma (\epsilon - 1) + k_4 S_A}{\lambda_3 + \lambda_4 + \gamma + k_4 S_A}$
Type-C	$1 - \frac{\lambda_1}{k_1}$	$\frac{\lambda_1}{k_1}$	0	$\frac{\beta}{\gamma} \frac{(S_H + \rho S_C)(\lambda_3 + \epsilon \gamma + \epsilon \lambda_4 + \psi \epsilon k_3 S_C)}{\lambda_3 + \lambda_4 + \gamma + \psi k_3 S_C}$

Mapping prevalence

Snapshot

Mercury is the closest planet to the Sun and the smallest of them all

Venus has a beautiful name and is the second planet from the Sun

Factors

Despite being red, Mars is actually a cold place. It's full of iron oxide dust

Enhancing research credibility

- ✓ Mercury is a small planet
- Mercury is the closest planet to the Sun

- √ Venus is a very hot planet
- Venus is the second planet from the Sun

- **Jupiter**
 - ✓ Jupiter is a huge gas giant
 - Jupiter is the biggest planet of them all

Words

Icon pack

