Pàgina 1 de 41 **Química**

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Sèrie 1

L'alumnat ha de respondre 4 preguntes de les 7 proposades.

Cada pregunta (qüestió) consta de dos apartats (a i b) que valen sempre 1,25 punts.

Com a norma general, tingueu en compte que un error no s'ha de penalitzar dues vegades. Si un càlcul necessita un resultat anterior, i aquest és erroni, cal valorar la resposta independentment del valor numèric, i tenir en compte el procediment de resolució (sempre que els valors emprats i/o els resultats no siguin absurds).

Un error en la formulació penalitza 0,5 punts en aquell apartat, com s'explicita en la pauta. En cap cas un apartat pot tenir una puntuació "negativa".

Pàgina 2 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 1a

Reaccions de combustió

1. Reacció de combustió de la hidrazina

$$N_2H_4(I) + O_2(g) \rightarrow N_2(g) + 2 H_2O(g)$$

[0,20 p.]

2. Reacció de combustió de la dimetilhidrazina

$$N_2H_2(CH_3)_2(1) + 4 O_2(g) \rightarrow N_2(g) + 4 H_2O(g) + 2 CO_2(g)$$

[0,20 p.]

Càlcul de les entalpies estàndard de reacció

$$\Delta H^{o}_{reacció} = (\sum n_{p} \Delta H^{o}_{f \, productes}) - (\sum n_{r} \Delta H^{o}_{f \, reactius})$$

1. Entalpia estàndard de combustió de la hidrazina

$$(\Sigma \operatorname{\mathsf{n}}_{\mathsf{p}} \Delta H^{\mathsf{o}}_{f, \operatorname{productes}}) = [(1 \times \Delta H^{\mathsf{o}}_{f, \operatorname{\mathsf{N}}_{2}}) + (2 \times \Delta H^{\mathsf{o}}_{f, \operatorname{\mathsf{H}}_{2}} \mathsf{O})]$$

$$(\Sigma n_r \Delta H^o_{f, \text{ reactius}}) = [(1 \times \Delta H^o_{f, N_2H_4}) + (1 \times \Delta H^o_{f, O_2})]$$

$$\Delta H^{0}_{\text{reacció}} = [0 + 2 \times (-241,8 \text{ kJ mol}^{-1})] - [1 \times (50,6 \text{ kJ mol}^{-1}) + 0]$$

 $\Delta H^{\circ}_{\text{reacció}} = -534,2 \text{ kJ mol}^{-1}$

[0,30 p.]

2. Entalpia estàndard de combustió de la dimetilhidrazina

$$(\Sigma n_p \Delta H^o_{f, productes}) = [(1 \times \Delta H^o_{f, N_2}) + (4 \times \Delta H^o_{f, H_2O}) + (2 \times \Delta H^o_{f, CO_2})]$$

$$(\Sigma n_r \Delta H^o_{f, reactius}) = [(1 \times \Delta H^o_{f, N_2} H_2 (CH_3)_2) + (4 \times \Delta H^o_{f, O_2})]$$

$$\Delta H^{o}_{reacció} = [0 + 4 \times (-241.8 \text{ kJ mol}^{-1}) + 2 \times (-393.5 \text{ kJ mol}^{-1}] - [1 \times (42.0 \text{ kJ mol}^{-1}) + 4 \times 0]$$

 $\Delta H^{o}_{reacció} = -1.796,2 \text{ kJ mol}^{-1}$

[0,30 p.]

Pàgina 3 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Elecció d'un dels combustibles

Canvi $\Delta H^{o}_{reacció}$ de kJ mol⁻¹ a kJ g⁻¹:

Massa molar del N₂H₄: $2 \times 14 + 4 \times 1 = 32 \text{ g mol}^{-1}$

Massa molar del N₂H₂(CH₃)₂: $2 \times 14 + 8 \times 1 + 2 \times 12 = 60 \text{ g mol}^{-1}$

Hidrazina $\Rightarrow \Delta H^{\circ}_{\text{reacció}} = -534,2 \text{ kJ mol}^{-1} \times 1 \text{ mol } N_2H_4/32 \text{ g} = -16,7 \text{ kJ g}^{-1}$

Dimetilhidrazina $\Rightarrow \Delta H^{o}_{reacció} = -1.796,2 \text{ kJ mol}^{-1} \times 1 \text{ mol } N_2H_2(CH_3)_2/60 \text{ g} = -29,9 \text{ kJ g}^{-1}$

Justificació:

Com que la limitació és de pes, serà preferible utilitzar aquell combustible que generi més energia per unitat de massa. Es **recomana** utilitzar **dimetilhidrazina**, ja que **produeix més energia per unitat de massa** (–29,9 kJ g⁻¹).

[0,25 p.]

Pàgina 4 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 1b

Diagrama entàlpic del procés de combustió de la hidrazina

$$N_2H_4(I) + O_2(g) \rightarrow N_2(g) + 2 H_2O(g)$$
 $\Delta H^0_{reacció} < 0$

[0,65 p.]

Pictogrames

Perillós per aspiració: aquest producte pot arribar a l'organisme per inhalació i causar efectes greus, aguts o crònics molt diversos en la salut. Es recomana evitar el contacte amb el cos humà.

[0,30 p.]

Irritació cutània: aquest producte, per contacte breu, perllongat o repetitiu amb la pell o les mucoses, pot provocar una reacció inflamatòria.

[0,30 p.]

Pàgina 5 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 2a

Formulació

Etanol: CH₃CH₂OH

Acetona o propanona: CH₃COCH₃

(-0,5 p. si no formulen bé qualsevol dels compostos.)

Identificació del pic base i el pic de l'ió molecular

Mostra I

Pic base: m/z= 31

Pic de l'ió molecular: m/z= 46

[0,25 p.]

Mostra II

Pic base: m/z = 43

Pic de l'ió molecular: m/z= 58

[0,25 p.]

Informació que donen els pics

- El pic base és el fragment més estable i s'hi assigna sempre una intensitat relativa del 100%, ja que és el més abundant en la mescla d'ions que es produeix.
- El pic d'ió molecular (o ió pare) apareix com el pic de massa més gran i correspon a la massa molar del compost. La molècula s'ha ionitzat, però no s'ha trencat.

[0,25 p.]

Identificació justificada dels espectres

Càlcul de la massa molar

- Massa molar del CH₃CH₂OH: 6 x 1 + 2 x 12 + 1 x 16 = 46 g mol⁻¹
- Massa molar del CH₃COCH₃: $6 \times 1 + 3 \times 12 + 1 \times 16 = 58 \text{ g mol}^{-1}$

[0,10 p.]

Pàgina 6 de 41 Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Identificació i justificació

- La mostra l és l'etanol, perquè el pic del seu ió molecular coincideix amb la massa molar de l'etanol 46 g mol⁻¹.
- La mostra II és l'acetona, perquè el pic del seu ió molecular coincideix amb la massa molar de l'acetona o propanona 58 g mol⁻¹.

[0,40 p.]

Pàgina 7 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 2b

Càlcul de la longitud d'ona

Nombre d'ona = 1.700 cm⁻¹

- El nombre d'ona és l'invers de la longitud d'ona:

$$\bar{\nu} = \frac{1}{\lambda}$$

[0,10 p.]

$$\lambda = \frac{1}{\bar{\nu}} \quad \Rightarrow \quad \lambda = \frac{1}{1.700 \ cm^{-1}} = 5,882 \ x \ 10^{-4} \ cm$$

$$\lambda = 5.882 \times 10^{-4} cm$$

[0,35 p.]

Càlcul de la freqüència

 $\lambda = c / v$

[0,10 p.]

- És necessari canviar les unitats de la longitud d'ona de cm a m:

$$5,882 \times 10^{-4} \, cm = 5,882 \times 10^{-6} \, m$$

$$\nu$$
 = c / $\lambda \implies \nu$ = 3,0 × 108 m s⁻¹ / 5,882 × 10-6 m

$$v = 5,10 \times 1013 \text{ s}^{-1}$$
 (o 5,10 × 1013 Hz)

[0,30 p.]

Càlcul de l'energia

L'equació de Planck relaciona l'energia de la radiació amb la freqüència:

E = h v

[0,10 p.]

$$E = h v \Rightarrow E = 6.63 \times 10^{-34} \text{ J s} \times 5.10 \times 10^{13} \text{ s}^{-1}$$

$$E = 3.38 \times 10^{-20} \text{ J}$$

[0,30 p.]

Pàgina 8 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 3a

Càlcul de la constant d'equilibri en concentracions (Kc)

$$Cl_2(g) \ + \ SO_2(g) \ \rightleftarrows \ SO_2Cl_2(g)$$
 Mols inici -- -- -- --
$$Mols \ equilibri \ 0.5 \ 0.1 \ 0.4$$

Càlcul de les concentracions en equilibri (en M) de cada compost (V=1 L):

Concentració de Cl₂ en l'equilibri = 0,5 mol / 1 L = **0,5 M**

Concentració SO_2 en l'equilibri = 0,1 mol / 1 L = **0,1 M**

Concentració SO₂Cl₂ en l'equilibri = 0,4 mol / 1 L = **0,4 M**

[0,15 p.]

Càlcul de la constant d'equilibri (Kc):

$$K_c = \frac{[SO_2Cl_2]}{[Cl_2][SO_2]} = \frac{0.4 M}{0.5 M \cdot 0.1 M} = 8.0$$

 $\Rightarrow \text{ Kc} = 8.0 \quad [0.25 \text{ p.}]$

Es penalitzarà 0,1 p. si expressen la constant d'equilibri amb unitats.

Nova concentració en l'equilibri després d'afegir 0,3 mols de SO2

$$Cl_2(g) \ + \ SO_2(g) \ \rightleftarrows \ SO_2Cl_2(g)$$
 Mols inici 0,5 0,1+0,3 0,4
 Mols equilibri 0,5-x 0,4-x 0,4+x
 Concentracions (0,5-x)/1 (0,4-x)/1 (0,4+x)/1
 Equilibri

[0,15 p.]

Pàgina 9 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Càlcul valor de x:

$$K_c = 8 = \frac{[SO_2Cl_2]}{[Cl_2][SO_2]} = \frac{(0.4+x)}{(0.5-x)\cdot(0.4-x)} = \frac{(0.4+x)}{0.2-0.9x+x^2}$$

[0,25 p.]

Reordenant termes s'obté una equació de segon grau:

$$(0.4 + x) = 8 (0.2 - 0.9 x + x^2) \Rightarrow 8 x^2 - 8.2 x + 1.2 = 0$$

Resolent l'equació de segon grau s'obté $x_1 = 0.848$ i $x_2 = 0.177$.

El valor x_1 = 0,848 donaria concentracions negatives, només el valor 0,177 donarà resultats coherents. $\Rightarrow x = 0,177$

[0,20 p.]

Càlcul de la concentració (en M) en equilibri del clorur de sulfuril (V=1,0 L):

 $[SO_2Cl_2]$ l'equilibri = (0.4 mol + x) / 1 L = (0.4 mol + 0.177 mol) / 1 L =**0.577 M**

⇒ La concentració de clorur de sulfuril en l'equilibri és 0,557 M.

[0,25 p.]

Pàgina 10 de 41 Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 3b

Com afecta el rendiment de la reacció

Un augment de temperatura

La reacció és exotèrmica (ΔH^{o} < 0). Això ens indica que la reacció desprèn calor en la reacció directa per formar els productes (cap a la dreta) i absorbeix calor en la reacció inversa per formar els reactius (cap a l'esquerra). Un augment de temperatura implica aportar calor al sistema i afavorir la reacció endotèrmica.

- ⇒ **Afavorim la reacció inversa** (cap a l'esquerra), formació de diòxid de sofre i clor gasós, i es produirà menys SO₂Cl₂.
- ⇒ Disminueix el rendiment de la reacció.

[0,30 p.]

Un augment del volum del recipient

En augmentar el volum del recipient, disminueix la pressió en el seu interior. La reacció es desplaçarà cap a on hi ha més mols de gasos (*coeficients* estequiomètrics) per tornar a una nova situació d'equilibri.

Mols de gasos reactius = 1 + 1 = 2 i mols de gasos productes = 1.

- ⇒ La reacció es desplaçarà cap a l'esquerra i es produirà menys SO₂Cl₂.
- ⇒ Disminueix el rendiment de la reacció.

[0,30 p.]

Pàgina 11 de 41 **Química**

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Eliminació del catalitzador

Els catalitzadors modifiquen la velocitat de la reacció i no afecten l'equilibri químic.

⇒ El rendiment de la reacció no quedarà afectat.

[0,25 p.]

Com afecta el valor de la constant d'equilibri en concentracions (K_c) l'augment de temperatura i volum, i l'eliminació del catalitzador.

Per a una determinada reacció, la constant d'equilibri *K*_c només depèn de la temperatura, ni la variació de volum, ni la presència o no d'un catalitzador l'afectaran.

⇒ La variació de volum i la presència o no d'un catalitzador no varien la K_{c.}

En ser una reacció exotèrmica ($\Delta H^0 < 0$), l'augment de temperatura afavoreix la reacció cap a l'esquerra (reactius).

 \Rightarrow La K_c disminueix.

[0,40 p.]

Pàgina 12 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 4a

Constant d'acidesa de l'àcid hipoclorós (HCIO)

L'àcid hipoclorós en solució aquosa es dissocia:

$$HCIO(aq) + H2O $\rightleftharpoons CIO^{-}(aq) + H3O^{+}(aq)$$$

Càlcul de concentració d'ió d'hidroni (oxidani/oxoni)

$$[H_3O^+] = 10^{-pH}$$
 i pH = 4,02 \Rightarrow $[H_3O^+] = 10^{-4,02} = 9,55 \cdot 10^{-5}$ M \Rightarrow $[H_3O^+] = 9,55 \cdot 10^{-5}$ M \Rightarrow $[0,25 p.]$

Concentracions de totes les espècies en l'equilibri

	HCIO	CIO-	H₃O⁺
Concentració inicial	0,30	0	0
Canvis	- x	+ x	+ x
Concentració equilibri	0,30 - 9,55.10-5	9,55.10 ⁻⁵	9,55.10 ⁻⁵

 \Rightarrow Es pot fer la consideració següent: 0,3 – 9,55-10⁻⁵ \simeq 0,3

El valor de la constant d'acidesa per a l'àcid hipoclorós serà el següent:

$$K_a = \frac{[ClO^-] \cdot [H_3O^+]}{[HClO]} = \frac{(9,55 \cdot 10^{-5}M) \cdot (9,55 \cdot 10^{-5}M)}{0,30 M} = 3,04 \times 10^{-8}$$

⇒ L'àcid hipoclorós té una $K_a = 3.04 \cdot 10^{-8}$.

[0,35 p.]

pH d'una solució 0,30 M de HClO₂

L'àcid clorós en solució aquosa es dissocia:

$$HCIO_2(aq) + H_2O \Rightarrow CIO_2^{-1}(aq) + H_3O^{+}(aq)$$
 $K_a = 1,00 \times 10^{-2}$

Pàgina 13 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Concentracions de totes les espècies en l'equilibri:

	HCIO ₂	CIO ₂ -	H ₃ O ⁺
Concentració inicial	0,30	0	0
Canvis	- x	+ x	+ X
Concentració equilibri	0,30 - x	х	х

$$K_a = \frac{[ClO_2^-] \cdot [H_3O^+]}{[HClO_2]} = \frac{(x)^2}{(0.3 - x)} = 1,00 \times 10^{-2}$$
 (equació 1)

[0,35 p.]

Resolent l'equació de segon grau, $x^2 + 1,00 \cdot 10^{-2}$ $x - 3,00 \cdot 10^{-3} = 0 \implies \mathbf{x} = \mathbf{0},\mathbf{05}$ M

$$x = [H_3O^+] = 0.05 M$$
 \Rightarrow $pH = -\log [H_3O^+] = -\log [0.05] = 1.30$ $\Rightarrow pH = 1.30$

[0,30 p.]

Pàgina 14 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 4b

Reacció de valoració

$$HCIO(aq) + OH-(aq) \square CIO-(aq) + H2O$$

[0,20 p.]

Concentració de HCIO en el desinfectant

A partir de la reacció igualada (estequiometria 1 a 1 perquè es tracta d'un àcid monopròtic) i sabent que:

[NaOH] = 0,05 M;
$$V_{NaOH}$$
 = 33,0 mL = 0,033 L V_{HCIO} = 40,0 mL = 0,040 L

es pot calcular [HClO]:

[HCIO]
$$\times$$
 0,040 L = (0,05 mol/L) \times (0,033 L)
[HCIO] = (0,05 mol/L) \times (0,033 L) / 0,040 L = 0,041 M d'HCIO

⇒ La concentració de l'àcid hipoclorós és 0,041 M.

[0,50 p.]

- És correcte si ho fan amb factors de conversió.
- És correcte si utilitzen la fórmula: $M_{HCIO} \times V_{HCIO} = M_{NaOH} \times V_{NaOH}$ (vàlida quan l'estequiometria és 1 a 1).

[HCIO] és major o menor que la concentració habitual en els desinfectants?

És una concentració menor que l'habitual en els desinfectants emprats:

[0,15 p.]

Pàgina 15 de 41 Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Justificació del pH en el punt d'equivalència

En el punt d'equivalència s'ha afegit una quantitat de base (NaOH) suficient perquè tot l'àcid reaccioni, sense que sobri NaOH. En la solució hi ha: **ió hipoclorit** (ClO⁻), **ió sodi** (Na⁺) i **aigua**:

- Dels dos ions, només tindrà hidròlisi l'ió hipoclorit: CIO⁻.
- El Na⁺ no té hidròlisi, ja que és neutre i no pot formar una base forta (NaOH) en aigua.

El pH serà bàsic, ja que l'ió ClO⁻ és la base conjugada de l'àcid hipoclorós (àcid feble) i amb aigua genera ions OH⁻ (dona lloc a una hidròlisi bàsica):

$$CIO^{-}(aq) + H_2O \rightleftharpoons HCIO(aq) + OH^{-}(aq)$$

[0,40 p.]

Pàgina 16 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Problema 5a

Tipus de reacció

⇒ La reacció és **exotèrmica** perquè ∆*H*°_{reacció} < **0** i és desprèn calor.

[0,15 p.]

Càlcul de l'entalpia estàndard de formació de l'acetaldehid a 298 K

$$CH_3CHO(g) \rightarrow CH_4(g) + CO(g)$$

$$\Delta H^{o}_{reacció} = (\sum n_{p} \Delta H^{o}_{f \, productes}) - (\sum n_{r} \Delta H^{o}_{f \, reactius})$$

[0,10 p.]

$$(\Sigma n_p \Delta H^o_{f, \text{ productes}}) = [(1 \times \Delta H^o_{f, \text{ CH}_4}) + (1 \times \Delta H^o_{f, \text{ CO}})]$$

$$(\Sigma n_r \Delta H^o_{f, reactius}) = (1 \times \Delta H^o_{f, CH_3CHO})$$

$$\Delta H^{o}_{reacci6} = -20 \text{ kJ mol}^{-1} = [(-75 \text{ kJ mol}^{-1}) + (-111 \text{ kJ mol}^{-1})] - \Delta H^{o}_{f} \text{ CH}_{3}\text{CHO}$$

[0,25 p.]

Esquema energètic: energia en funció de la coordenada de reacció

[0,75 p.]

Cada ítem compta 0,15 p. [ΔH°, energia d'activació de la reacció sense catalitzador (Ea¹), energia d'activació de la reacció catalitzada (Ea²), estat de transició (complex activat) de la reacció sense catalitzador i estat de transició (complex activat) de la reacció catalitzada].

Pàgina 17 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Problema 5b

Energies d'activació de la reacció de síntesi de l'acetaldehid del procés catalitzat i no catalitzat

La reacció inversa és el procés de transformació de productes en reactius. L'energia d'activació del procés catalitzat i no catalitzat és l'energia que és necessari subministrar als nous reactius (CH₄ + CO) per passar a producte (CH₃CHO). Per un procés exotèrmic ($\Delta H^0_{\rm reacció} < 0$):

$$E_a$$
 (reacció inversa) = E_a (directa) + ΔH^o _{reacció directa}

 E_a^1 (reacció no catalitzada) = 188 kJ/mol + 20 kJ/mol = 208 kJ/mol

 $\Rightarrow E_a^1$ (reacció no catalitzada) = 208 kJ/mol

[0,30 p.]

$$E_a^2$$
 (reacció catalitzada) = 135 kJ/mol + 20 kJ/mol = 155 kJ/mol

$$\Rightarrow E_a^2$$
 (reacció catalitzada) = 155 kJ/mol

[0,30 p.]

Què és un catalitzador?

Un catalitzador és una substància que s'afegeix a la reacció (sense consumir-se) i modifica la cinètica de la reacció (velocitat), però no altera la constant d'equilibri de la reacció, ni les concentracions dels compostos (reactius i productes) en equilibri.

[0,25 p.]

Efecte del catalitzador en la velocitat de reacció

Segons el model cinètic de l'estat de transició, la velocitat d'una reacció depèn de l'energia d'activació o energia que han d'assolir les molècules de reactius per arribar a l'estat de transició o complex activat (espècie inestable per la seva elevada energia): com més petita sigui l'energia d'activació més alta serà la velocitat.

⇒ Un catalitzador modifica el mecanisme de la reacció, aconseguint que el nou mecanisme disminueixi l'energia d'activació i augmenti la velocitat de reacció.

[0,40 p.]

Pàgina 18 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 6a

Càlcul de la solubilitat del sulfat de bari

A partir de l'equilibri de solubilitat del sulfat de bari:

$$BaSO_4$$
 (s) $\rightleftarrows Ba^{2+}$ (aq) + SO_4^{2-} (aq)

S

0,10 p.]

$$K_{ps}$$
 (BaSO₄) = [Ba²⁺] [SO₄²⁻] = 1,1 x 10⁻¹⁰

$$K_{ps}$$
 (BaSO₄) = [s] [s] = 1,1 × 10⁻¹⁰

[0,25 p.]

$$s^2 = 1.1 \times 10^{-10}$$
 \Rightarrow $s = 1.05 \times 10^{-5} M$

[0,20 p.]

Càlcul de la quantitat d'ió bari en 200 mL d'una solució saturada

Aquest càlcul es pot resoldre per factors de conversió (a) o per factors successius (b).

(a) Per factors de conversió:

La solubilitat del BaSO₄ és d'1,05 × 10^{-5} mol L⁻¹. Per tant, en 200 mL (0,20 L) de solució saturada hi ha:

0,20 L solució saturada
$$\frac{1,05 \times 10^{-5} mol \ BaSO_4}{1 \ L} \frac{1 \ mol \ BaSO_4}{1 \ mol \ BaSO_4} \frac{137,3 \ g}{1 \ mol \ Ba^{2+}} \frac{1000 \ mg}{1 \ g} = 0,288 \ mg \ Ba^{2+}$$

⇒ En 200 mL d'una solució saturada de BaSO₄ hi ha 0,288 mg d'ió bari.

[0,70 p.]

(b) Per factors successius:

En 200 mL (0,20 L) d'aigua només se solubilitzaran 2,1 \times 10⁻⁶ mols BaSO₄. Per tant, només hi hauran dissolts 2,1 \times 10⁻⁶ mols Ba²⁺(aq):

Pàgina 19 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

$$0,20 \ L \ soluci\'o \ saturada \frac{1,05 \ x \ 10^{-5} mol \ BaSO_4}{1 \ L} \ \frac{1 \ mol \ BaSO_4}{1 \ mol \ BaSO_4} = 2,1 \ x \ 10^{-6} \ mol \ Ba^{2+}$$

[0,35 p.]

Si transformen mols d'ió bari en mg d'ió bari, s'obté:

$$2.1 \times 10^{-6} \ mol \ Ba^{2+} \frac{137.3 \ g}{1 \ mol \ Ba^{2+}} \frac{1000 \ mg}{1 \ g} = 0.288 \ mg \ Ba^{2+}$$

⇒ En 200 mL d'una solució saturada de BaSO₄ hi ha 0,288 mg d'ió bari.

[0,35 p.]

Pàgina 20 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Problema 6b

Addició de sulfat de sodi

$$Q_s$$
 (BaSO₄) = [Ba²⁺] [SO₄²⁻]

Si $Q_s > K_{ps}$ es formarà precipitat i si $Q_s < K_{ps}$ no es formarà precipitat.

Si s'addiciona **sulfat de sodi** (Na₂SO₄), estem afegint l'ió comú (**SO**₄²⁻), això farà que $Q_s > K_{os}$.

Segons el principi de Le Châtelier, el sistema evolucionarà cap a l'esquerra reduint la solubilitat de BaSO₄ i augmentant la quantitat de sòlid. Per tant, disminuirà la quantitat de Ba²⁺ en solució.

⇒ Seria beneficiós afegir sulfat de sodi per a les persones al·lèrgiques al Ba²+ perquè la concentració d'ió bari serà menor.

[0,50 p.]

Qui provoca més al·lèrgia: el sulfat de bari o el carbonat de bari?

Raonament 1. Càlcul de la solubilitat del carbonat de bari

$$BaCO_3$$
 (s) \rightleftharpoons Ba^{2+} (aq) + CO_3^{2-} (aq)

s s

[0,10 p.]

$$K_{ps}$$
 (BaCO₃) = [Ba²⁺] [CO₃²⁻] = 3,2 × 10⁻⁹

$$K_{ps}$$
 (BaCO₃) = [s] [s] = 3,2 × 10⁻⁹

[0,25 p.]

$$s^2 = 3.2 \times 10^{-9}$$
 \Rightarrow $s = 5.65 \times 10^{-5} M$

[0,20 p.]

⇒ La concentració de l'ió Ba²⁺ en el carbonat de bari és 5,65 x 10⁻⁵ M.

La concentració de l'ió Ba²⁺ en el sulfat de bari és $1,05 \times 10^{-5}$ M i la concentració de l'ió Ba²⁺ en el carbonat de bari és $5,65 \times 10^{-5}$ M.

⇒ El carbonat de bari serà més soluble en aigua. Per tant, hi haurà més ions Ba²+ en solució i provocarà més al·lèrgia.

[0,20 p.]

Pàgina 21 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Raonament 2. Relació Kps i solubilitat

Les dues sals són del tipus AB amb estequiometria 1:1 i, per tant, la seva relació entre la K_{ps} i la solubilitat és la mateixa.

Així, el carbonat de bari, que té major K_{ps} serà més soluble en aigua i provocarà més al·lèrgia:

- \Rightarrow $K_{ps} \uparrow \Rightarrow [Ba^{2+}] \uparrow$ perquè són sals amb la mateixa estequiometria.
- ⇒ El carbonat de bari serà més soluble en aigua. Per tant, hi haurà més ions Ba²+ en solució i provocarà més al·lèrgia.

[0,75 p.]

Pàgina 22 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Problema 7a

Reacció d'electrodeposició

$$Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$$

[0,20 p.]

Durada de l'electròlisi

Càlcul del volum per cobrir amb crom:

Superfície = 1.400 cm²

Gruix = 0.1 mm = 0.01 cm

$$V = s x h = 1.400 cm^2 x 0.01 cm = 14 cm^3$$

$$\Rightarrow$$
 V = 14 cm³

[0,15 p.]

Càlcul de la Q necessària:

$$14 \ cm^3 \ \frac{7,1 \ g}{cm^3} \ \frac{1 \ mol \ Cr}{52,0 \ g} \ \frac{3 \ mol \ e^-}{1 \ mol \ Cr} \ \frac{96500 \ C}{1 \ mol \ e^-} = 553390,38 \ C$$

$$\Rightarrow$$
 Q = 553390,38 C

[0,45 p.]

Càlcul del temps:

I = 20,0 A

$$Q = I x t \implies t = \frac{Q}{I} = \frac{553390,38 C}{20,0 A} = 27669,52 s$$

$$\Rightarrow$$
 t = 27669,52 s (1 h/ 3600 s) = 7,68 h

[0,45 p.]

Pàgina 23 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Problema 7b

Justifiqueu quins metalls podrien utilitzar-se com a ànodes de sacrifici

Per protegir el ferro (Fe) caldria utilitzar **metalls que s'oxiden abans** que el **ferro**, és a dir, que **tinguin potencials estàndard de reducció menors** que el ferro.

- \Rightarrow El ferro té un potencial estàndard de reducció: E° (Fe²⁺/Fe) = -0,44 V
- ⇒ El ferro es podria protegir amb zinc, alumini o magnesi perquè tenen E° menors:

⇒
$$E^{\circ}$$
 (Zn²⁺/Zn) = -0,76 V < E° (Fe²⁺/Fe) = -0,44 V
⇒ E° (Al³⁺/Al) = -1,66 V < E° (Fe²⁺/Fe) = -0,44 V
⇒ E° (Mg²⁺/Mg) = -2,37 V < E° (Fe²⁺/Fe) = -0,44 V

[0,60 p.]

Definició d'oxidant i de reductor

Oxidant és una espècie química que es redueix, és a dir, que capta electrons d'una altra espècie que s'oxida.

Opcional:
$$M^{n+}(aq) + n e \rightarrow M(s)$$

[0,25 p.]

Reductor és una espècie química que s'oxida, és a dir, que cedeix electrons a una altra espècie que es redueix.

Opcional:
$$N(s) \rightarrow N^{m+}(aq) + m$$
 e-

[0,25 p.]

Agents responsables de la corrosió dels metalls

Els principals agents causants de la corrosió són l'oxigen de l'aire i l'aigua.

[0,15 p.]

Pàgina 24 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

SÈRIE 5

L'alumne ha de respondre 4 preguntes de les 7 proposades.

Cada pregunta (qüestió) consta de dos apartats (a i b) que valen sempre 1,25 punts.

Com a norma general, tingueu en compte que un error no s'ha de penalitzar dues vegades. Si un càlcul necessita un resultat anterior, i aquest és erroni, cal valorar la resposta independentment del valor numèric, i tenir en compte el procediment de resolució (sempre que els valors emprats i/o els resultats no siguin absurds).

Un error en la formulació penalitza 0,5 punts en aquell apartat, <u>com s'explicita en la pauta</u>. En cap cas un apartat pot tenir una puntuació "negativa".

Pàgina 25 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 1a

Definició d'orbital atòmic

[0,3 p]

Un orbital atòmic, segons el model ondulatori de l'àtom, és una <u>funció d'ona</u> que ens descriu una <u>regió de l'espai on hi ha una alta probabilitat de trobar un electró</u> en un determinat estat energètic, <u>fixats els nombres quàntics (n, l i m)</u>.

Escriure la configuració electrònica del sodi

[0,2p]

 $Z(Na) = 11 \Rightarrow el sodité 11 electrons$

Configuració electrònica del sodi: 1s², 2s², 2p6, 3s¹

Definició d'energia d'ionització

[0,3 p]

L'energia d'ionització és l'energia que cal subministrar a un element en estat gasós per arrencar un electró.

Opcional:
$$X(g) \rightarrow X^{+}(g) + e^{-}$$

Calcular l'energia d'ionització

Dades del diagrama:

- L'energia de l'electró més extern, que es troba a l'orbital 3s, te una energia de -5,14 eV/àtom.
- Quan l'electró s'arrenca té una energia de 0.

Energia d'ionització: $E_i = E_{electró arrencat} - E_{electró, orbital 3s} = 0 - (-5,14)$

$$\Rightarrow$$
 E_i = 5,14 eV/àtom

[0,2 p]

Ho transformem a kJ/mol:

$$E_i = 5,14 \text{ eV/atom x } (1,60 \text{ x } 10^{-19} \text{ J} / 1 \text{ eV}) \text{ x } (1 \text{ kJ} / 1000 \text{ J}) \text{ x } (6,02 \text{ x } 10^{23} \text{ atom } / 1 \text{ mol})$$

$$\Rightarrow$$
 E_i = 495,1 kJ/mol

[0,25 p]

Pàgina 26 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 1b

Color de la transició 3p a 3s (espectre d'emissió del sodi)

Calculem l'energia de la transició 3p a 3s.

E transició 3p a 3s = E electró, orbital 3s - E electró, orbital 3p =
$$(-5,14) - (-3,04)$$

E transició 3p a 3s = -2,1 eV/àtom

[0,3p]

El valor "negatiu" ens indica que és energia despresa (en forma de radiació electromagnètica).

Ho transformem a J/àtom:

$$2,1 \text{ eV/atom } x (1,60 \text{ x } 10^{-19} \text{ J} / 1 \text{ eV}) = 3,36 \text{ x } 10^{-19} \text{ J/atom}$$

[0,2p]

Calculem la longitud d'ona de la radiació electromagnètica emesa.

Equació de Planck:
$$E = h v$$

 $v = E / h \implies v = 3,36 \times 10^{-19} / 6,63 \times 10^{-34}$

Frequència:
$$v = 5,068 \times 10^{14} \text{ s}^{-1}$$
 (ó Hz)

[0,2p]

Relació: longitud d'ona i freqüència: $\lambda = c / v$

Longitud d'ona:
$$\lambda = 3,00 \times 10^8 / 5,068 \times 10^{14}$$

Longitud d'ona:
$$\lambda = 5.92 \times 10^{-7} \text{ m}$$

[0,2p]

• També poden calcular directament la longitud d'ona a partir de l'expressió:

$$E = h v = h c/\lambda \implies \lambda = h c/E$$
 (0,4 punts directament)

Color de la radiació

Transformem la longitud d'ona a nm:

$$\lambda$$
= 5,92 x 10⁷ m x (1 nm / 10⁻⁹ m) = **592 nm**

[0,1 p]

Es troba en l'interval 590-620 nm ⇒ color taronja

[0,25 p]

Pàgina 27 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 2a

Formulació. Sulfat de coure(II): CuSO₄ i Clorur d'alumini: AlCl₃ [- 0,5 p si no formulen bé]

Justificar quin elèctrode farà de càtode i quin d'ànode

La reacció que tindrà lloc <u>espontàniament</u> serà la que doni una <u>FEM positiva</u> (E⁰> 0).

[0,2 p]

Opcional: si E° > 0 la variació d'energia lliure (ΔG°) serà negativa.

Per tenir una FEM positiva cal que la diferència de potencials de reducció entre el càtode (reducció) i l'ànode (oxidació) sigui positiva.

$$E^{\circ} = E^{\circ}_{\text{CATODE}} - E^{\circ}_{\text{ANODE}} > 0$$
 Dades: $E^{\circ}(\text{Cu}^{2+}/\text{Cu}) > E^{\circ}(\text{Al}^{3+}/\text{Al})$

El coure ha de ser el càtode ⇒ degut a que té el potencial estàndard més alt

L'alumini ha de ser l'ànode ⇒ degut a que té el potencial més baix

[0,2 p]

Escriure les semireaccions i la reacció iònica global

Semireaccions: Càtode: $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ Anode: $Al(s) \rightarrow Al^{3+}(aq) + 3e^{-}$

[0,2 p]

Multiplicant la reacció del càtode per 3 i la de l'ànode per 2 (per igualar els electrons):

$$3 \times (Cu^{2+}(aq) + 2 e^{-} \rightarrow Cu(s))$$

2 × (Al(s) $\rightarrow Al^{3+}(aq) + 3 e^{-})$

Sumem i obtenim la reacció iònica global:

$$3 \text{ Cu}^{2+} \text{ (aq)} + 2 \text{ Al(s)} \rightarrow 3 \text{ Cu(s)} + 2 \text{ Al}^{3+} \text{ (aq)}$$

[0,2 p]

Notació de la pila

$$Al(s) \mid Al^{3+}(aq, 1,0 M) \mid Cu^{2+}(aq, 1,0 M) \mid Cu(s)$$

[0,2 p]

És correcte si enlloc dels ions, escriuen les sals (CuSO₄ i AlCl₃).

Calcular la FEM estàndard

$$E^{o} = E^{o}_{CATODE} - E^{o}_{ANODE} = E^{o}(Cu^{2+}/Cu) - E^{o}(Al^{3+}/Al)$$

 $E^{o} = (0,34) - (-1,68) = 2,02 \text{ V}$
 $E^{o} = 2,02 \text{ V}$

Pàgina 28 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

[0,25 p]

Pregunta 2b

Explicar el muntatge experimental de la pila (indicant material i altres substàncies)

- Agafem dos vasos de precipitats: en un hi posem solució de sulfat de coure(II) 1,0 M i en l'altra solució de clorur d'alumini 1,0 M. A cada vas hi col·loquem, respectivament, una placa metàl·lica de Cu i una d'Al parcialment submergides (elèctrodes).

[0,3 p]

- Es connecten les plaques metàl·liques entre elles amb un fil conductor (*opcionalment* es pot col·locar un voltímetre). El circuit es tanca amb un pont salí, tub que connecta els dos vasos i que conté una solució aquosa d'un electròlit.

[0,3 p]

- És correcte si enlloc d'indicar que en els vasos s'hi posen solucions de les sals (sulfat de coure(II) i clorur d'alumini) indiquen les solucions dels ions (Cu² i Alβ+).
- És correcte si enlloc de dir què és un pont salí, n'indiquen algun exemple (KCl(aq), NaNO₃(aq), ...).

Dibuix del muntatge experimental

[0,65 p]

- En l'esquema (dibuix) de la pila, <u>es pot posar</u> el recipient que conté el parell redox $A^{\beta+}/Al$ a la dreta i el parell redox Cu^{2+}/Cu a l'esquerra.
- En el dibuix es poden indicar els ions (Cu²⁺ i Al³⁺) o les sals (sulfat de coure(II) i clorur d'alumini).

Pàgina 29 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 3a

Calor despresa a pressió constant

Reacció de fermentació de la glucosa: $C_6H_{12}O_6 \rightarrow 2 CH_3CH_2OH + 2 CO_2 \Delta H^0$?

- Escriure i igualar les reaccions de combustió

Combustió de la glucosa:

$$C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O$$
 $\Delta H^0_{c,gl} = -2816,8 \text{ kJ}$

$$\Delta H^{\circ}_{c,gl} = -2816,8 \text{ kJ}$$

[0,25 p]

Combustió de l'etanol:

$$CH_3CH_2OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O$$
 $\Delta H^0_{c,et} = -1366,9 kJ$

$$\Delta H^{\circ}_{cet} = -1366.9 \text{ kJ}$$

[0,25 p]

- L'etanol el poden escriure com C₂H₆O enlloc de CH₃CH₂OH en qualsevol reacció química.
- Aplicar la llei de Hess

Combinem les dues reaccions de combustió perquè, en sumar-les, surti la reacció de fermentació de la glucosa.

$$C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O$$
 $\Delta H^0_1 = \Delta H^0_{c,gl} = -2816.8 \text{ kJ}$

$$\Delta H^{0}_{1} = \Delta H^{0}_{c,dl} = -2816.8 \text{ kJ}$$

$$2 \times (2 \text{ CO}_2 + 3 \text{ H}_2\text{O} \rightarrow \text{CH}_3\text{CH}_2\text{OH} + 3 \text{ O}_2) \quad \Delta H^0_2 = -2 \times \Delta H^0_{c,et} = -2 \times (-1366,9) = +2733,8 \text{ kJ}$$

Llei de Hess: $\Delta H^0 = \Delta H^0_1 + \Delta H^0_2$

$$\Delta H^{\circ} = -2816,8 + 2733,8$$

$$\Delta H^{\circ} = -83,0 \text{ kJ}$$

[0,4 p]

A pressió constant: $q_p = \Delta H$

[0,1 p]

⇒ la calor de la reacció de fermentació de la glucosa (tal com esta igualada) és de -83,0 kJ. El signe negatiu ens indica que la calor es desprèn.

Aquesta dada és per 2 mol d'etanol:

⇒ Calor despresa per mol d'etanol: 41,5 kJ (ó -41,5 kJ)

Pàgina 30 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

[0,25 p]

Pregunta 3b

Escriure la reacció química (entalpia estàndard de formació de l'etanol)

[0,4 p]

Reacció de formació l'etanol: 2 C(s) + 3 $H_2(g)$ + $\frac{1}{2}$ $O_2(g)$ \rightarrow $CH_3CH_2OH(g)$

• Ho considerem correcte encara que no indiquen l'estat físic de les substàncies:

$$2~C~+~3~H_2 + \frac{1}{2}~O_2~\rightarrow~CH_3CH_2OH$$

• No és correcte si l'igualen de forma diferent: penalitzarem 0,3 p.

Estimar el valor de l'entalpia estàndard de formació de l'etanol

L'entalpia estàndard d'una reacció es pot calcular a partir de les energies dels enllaços trencats (reactius) menys les energies dels enllaços formats (productes):

$$\Delta H^0 = \Sigma n_r E_{\text{trencats}} - \Sigma n_p E_{\text{formats}}$$

[0,2 p]

En els reactius cal trencar:

3 enllaços H-H

1/2 enllaç O=O

En els productes cal formar:

1 enllaç C-C

5 enllaços C-H

1 enllaç C-O

1 enllaç O-H

$$\Delta H^{0} = [(3 E_{H-H} + \frac{1}{2} \times E_{O=O})] - [(1 E_{C-C}) + (5 E_{C-H}) + (1 E_{C-O}) + (1 E_{O-H})]$$

[0,4 p]

$$\Delta H^{o} = [(3 \times 436) + (1/2 \times 498)] - [(1 \times 347) + (5 \times 414) + (1 \times 360) + (1 \times 464)]$$

$$\Delta H^0 = -1684 \text{ kJ mol}^{-1} \text{ (\'o } -1684 \text{ kJ)}$$

[0,25 p]

Pàgina 31 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 4a

Calcular les concentracions de les tres substàncies en transcórrer 2 h

Reacció: $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$ $K_c (a 703 K) = 54,3$

Dades.Temperatura = 703 K

Volum del reactor = 1,00 L

Inicial: t = 0 0,0130 mol H_{2} ; 0,0080 mol I_{2} ; 0,0440 mol HI

t = 2h 0,0480 mol HI

 $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$ $t=0 \quad 0.0130 \quad 0.0080 \quad 0.0440$ $t=2 \quad 0.0130-x \quad 0.0080-x \quad 0.0440 + 2x$

Sabem que a t=2 h \Rightarrow n_{HI} =0,0480 mol:

0.0440 + 2 x = 0.0480

 \Rightarrow x = 0,0020 mol (mols que reaccionen de cada reactiu)

[0,2 p]

Mol de cada substància (a t=2 h):

$$\begin{split} n_{hidrogen} &= 0.0130 - 0.0020 = 0.0110 \text{ mol} \\ n_{iode} &= 0.0080 - 0.0020 = 0.0060 \text{ mol} \\ n_{HI} &= 0.0480 \text{ mol} \end{split}$$

[0,1 p]

 És correcte si troben aquestes dades per estequiometria (amb factors de conversió).

Concentracions (a t=2 h)

$$[H_2]$$
 = $n_{hidrogen}$ / V = 0,0110 / 1,00 = **0,0110 M** $[I_2]$ = n_{iode} / V = 0,0060 / 1,00 = **0,0060 M** $[HI]$ = n_{HI} / V = 0,0480 / 1,00 = **0,0480 M**

[0,2 p]

És correcte si calculen directament les concentracions.

Calcular el quocient de reacció (Qc)

L'expressió de Q_c és com la constant d'equilibri (K_c) amb les concentracions de cada substància en un instant donat (fora de l'equilibri):

$$Q_c = ([HI]^2) / ([H_2] \times [I_2])$$

[0,3 p]

on les concentracions són a t= 2 h

 $Q_c = (0.0480)^2$ / [(0.0110) x (0.0060)]

Pàgina 32 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

 $Q_{c} = 34,9$

[0,2 p]

Raonament de si el contingut del reactor està en equilibri

Comparem la Q amb la K_c : $K_c = 54,3$ $Q_c = 34,9$

Q ≠ K_c ⇒ La reacció no està en equilibri

[0,25 p]

Pàgina 33 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 4b

Dades. A les 5 h, la reacció està en equilibri.

Efecte sobre els mols de HI en disminuir el volum del reactor

[0,35 p]

En disminuir el volum, augmenta la pressió.

Quan la pressió total del recipient augmenta, la reacció es desplaça cap a on hi ha menys mols de gasos (coeficients estequiomètrics) per tal d'assolir un nou estat d'equilibri.

Reacció: $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$

El nombre de mols de gasos (coeficients estequiomètrics) és el mateix en reactius i productes:

 $n_{reactius} = 1 + 1 = 2 i n_{productes} = 2.$

En aquesta reacció, **la pressió no afecta a l'equilibri** i no desplaça la reacció ni cap a reactius ni cap a productes.

⇒ la quantitat de mols de HI és la mateixa.

Efecte sobre els mols de HI en eliminar H₂(g)

[0,3 p]

Si disminueix la concentració d'un reactiu, la reacció deixa d'estar en equilibri. El sistema torna a un nou equilibri desplaçant la reacció cap a l'esquerra (reactius) -principi de Le Châtelier.-

Reacció: $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$

⇒ la quantitat de mols de HI disminueix.

Efecte sobre els mols de HI en introduir un catalitzador

[0,3 p]

La presència d'un catalitzador afecta a la velocitat de reacció, però no modifica l'equilibri químic. La constant d'equilibri no es modifica, ni tampoc les concentracions de reactius i productes a l'equilibri.

⇒ la quantitat de mols de HI és la mateixa.

Efecte sobre els mols de HI en augmentar la temperatura del reactor

[0,3 p]

L'entalpia estàndard de formació del HI és positiva (reacció endotèrmica):

Reacció: $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g) \Delta H > 0$

Una reacció endotèrmica absorbeix calor.

Pàgina 34 de 41 **Química**

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Un augment de temperatura implica que estem aportant més calor. La calor afavoreix la reacció cap a la dreta (productes).

⇒ la quantitat de mols de HI augmenta.

Pàgina 35 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 5a

Escriure la reacció de l'ió hipoclorit en aigua

[0,2 p]

Calcular el pH de la solució de NaCIO

Dades:[NaClO] = 0,1% en massa

Densitat de la solució de NaCIO al 0,1% = 1,00 g/mL

Massa molecular (NaClO) = 74,5 g/mol

Calculem la concentració inicial de NaCIO (o de CIO-) en mols/L

 $[NaClO]_{\circ}$ = (0,1 g NaClO / 100 g solució) x (1 mol NaClO / 74,5 g NaClO) x

x (1 g solució / 1 mL solució) x (1000 mL solució / 1 L solució)

$$\Rightarrow$$
 [NaClO]_o = [ClO⁻]_o = 0,0134 M

[0,2 p]

Càlcul de la Kb

$$K_a \cdot K_b = K_w \implies K_b = 1.0 \times 10^{-14} / 3.2 \times 10^{-8}$$

 $K_b = 3.1 \times 10^{-7}$

[0,2 p]

Reacció d'equilibri àcid – base de l'ió CIO- (suposem 1 L de solució)

Inicial 0,0134

Equilibri 0.0134 - x x x

[0,1 p]

Càlcul de la [OH-]

$K_b = [HCIO][OH^-]/[CIO^-]$

[0,1 p]

$$3.1 \times 10^{-7} = [(x) \cdot (x)] / (0.0134 - x)$$
 (Equació 1)

Suposant que $0.0134 - x \approx 0.0134$

$$\Rightarrow$$
 3,1x10⁻⁷ = x² / 0,0134 \Rightarrow x = (3,1x10⁻⁷ x 0,0134)^{1/2} \Rightarrow x = 6,45 x 10⁻⁵

$$\Rightarrow$$
 [OH⁻] = 6,45 x 10⁻⁵ M

[0,25 p]

Pàgina 36 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Càlcul del pH

$$\begin{split} K_w &= [H_3O^+] \cdot [OH^-] = 1,0 \cdot 10^{-14} \\ [H_3O^+] &= 1,0 \cdot 10^{-14} \, / \, \, 6,45 \times 10^{-5} \, \, \text{M} \\ [H_3O^+] &= 1,55 \times 10^{-10} \, \, \text{M} \\ pH &= -\log \, [H_3O^+] = -\log \, (1,55 \times 10^{-10}) \\ &\Rightarrow \, \, \textbf{pH} = \textbf{9,8} \end{split}$$

[0,2 p]

■ El procediment és correcte si després de calcular la concentració d'ions hidròxid, calculen el pOH com pOH = – log [OH], i el pH amb l'equació:

$$pH = 14 - pOH$$
.

Pàgina 37 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 5b

Concentració de Cl₂ a la cel·la electrolítica

Dades inicials i transformació d'unitats:

Volum solució: V= 2,00 L

Faraday: $F = 9,65 \times 10^4 \text{ C /mol e}^-$ Intensitat: I = 4,00 A (4,0 C/s)

Temps: t = 180 min x (60 s / 1 min) = 10800 s

[0,1 p]

Càlcul dels mols de Cl₂ formats

Cal tenir en compte l'estequiometria de la reacció per relacionar els mols d'electrons i els mols de Cl₂ formats (2 a 1).

Semireacció: $2 \text{ Cl}^- \rightarrow \text{ Cl}_2 + 2 \text{ e}^-$

 $n(Cl_2) = 10800 \text{ s} \times (4,00 \text{ C} / 1\text{s}) \times (1 \text{ mol d'e}^- / 9,65 \times 10^4 \text{ C}) \times (1 \text{ mol Cl}_2 / 2 \text{ mol d'e}^-)$

 \Rightarrow n(Cl₂) = **0,224 mol Cl₂**

[0,9 p]

- Es correcte si ho calculen per passos:
 - primer la càrrega elèctrica (Q= I·t), [0,2 p]
 - després els mols d'electrons amb el Faraday, [0,2 p]
 - després els mols de clor amb l'estequiometria de la reacció, [0,5 p]

Càlcul de la concentració de Cl2

$$[Cl_2] = n(Cl_2) / V = 0.224 \text{ mol} / 2.00 \text{ L}$$

$$\Rightarrow$$
 [CI₂] = 0,112 M

[0,25 p]

Si no indiquen les unitats (o són errònies) es penalitza 0,1 p.

Pàgina 38 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 6a

Escriure l'equació de velocitat

Reacció de destrucció de l'ozó: $2 \frac{O_3}{O_2}(g) \rightarrow 3 \frac{O_2}{O_2}(g)$

La velocitat d'una reacció és igual a la constant de velocitat multiplicada per la concentració de cada reactiu elevat al seu ordre de reacció, que en la reacció anterior és 2.

 \Rightarrow Equació velocitat: $v = k [O_3]^2$

[0,3 p]

Calcular la constant de velocitat

Dades. Velocitat de producció ozó = $7.2 \times 10^{-13} \text{ mol/L h}$ [O₃] = $2.0 \times 10^{-8} \text{ mol/ L}$

L'ozó es troba en estat estacionari: velocitat de producció ozó = velocitat destrucció ozó

 \Rightarrow velocitat destrucció ozó = 7,2 x 10⁻¹³ mol/L h k = v / [O₃]² \Rightarrow k = (7,2 x 10⁻¹³) / (2,0 x 10⁻⁸)² \Rightarrow k = 1800 mol⁻¹ L h⁻¹

[0,4 p]

Explicar com afecta la temperatura a la velocitat d'una reacció (model)

Un augment de temperatura de la reacció fa augmentar la velocitat de la reacció.

[0,15 p]

Raonaments: només cal que en proposin un.

[0,4 p]

Segons el model de col·lisions:

Un augment de temperatura provoca que hi hagi més molècules amb una energia cinètica mínima per xocar i reaccionar.

Segons el model de l'estat de transició o complex activat:

Un augment de temperatura fa que les molècules tinguin més energia per superar la barrera energètica que suposa l'energia d'activació (diferència d'energia entre reactius i estat de transició).

Pàgina 39 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 6b

Calcular l'energia lliure estàndard de la reacció de destrucció de l'ozó

Reacció de destrucció de l'ozó: $2 O_3(g) \rightarrow 3 O_2(g) \Delta G^{\circ}_{r}$?

Relació entre la energia lliure d'una reacció i les energies lliures estàndard de formació de reactius i productes:

$$\begin{split} &\Delta G^{o}_{\text{reacció}} = \left(\Sigma \text{ n}_{p} \Delta G^{o}_{f, \text{ productes}}\right) - \left(\Sigma \text{ n}_{r} \Delta G^{o}_{f, \text{ reactius}}\right) \\ &\Delta G^{o}_{\text{reacció}} = \left(3 \text{ x } \Delta G^{o}_{f, \text{ oxigen}}\right) - \left(2 \text{ x } \Delta G^{o}_{f, \text{ ozó}}\right) \end{split}$$

[0,2p]

$$\Delta G^{o}_{f, \text{ oxigen}} = 0$$

$$\Delta G^{o}_{f, ozo} = 142,7 \text{ kJ mol}^{-1}$$

$$\Delta G^{\circ}_{\text{reacció}} = (0) - (2 \times 142,7)$$

$$\Rightarrow \Delta G^{\circ}_{\text{reacció}} = -285,4 \text{ kJ}$$

(o - 285,4 kJ/mol)

[0,2p]

Raonar si la reacció de destrucció de l'ozó és endotèrmica o exotèrmica

Per determinar l'espontaneïtat d'una reacció, a p i T constant, es mesura la variació d'energia lliure (ΔG°), que es calcula: $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

[0,2 p]

$$\Rightarrow$$
 Si $\triangle G^{\circ} < 0 \Rightarrow$ reacció espontània

[0,2 p]

El signe de la <u>variació d'entropia serà positiva</u>, ja que el desordre en els productes és superior al dels reactius, degut a que el nombre de molècules de gas és major en els productes (3 molècules) que en els reactius (2 molècules).

$$\Rightarrow \Delta S^{\circ} > 0$$

[0,2p]

En la reacció de destrucció de l'ozó tenim:

T > 0 (temperatura en Kelvin)

 $\Delta S^{\circ} > 0$

 $\Delta G^{\circ} < 0$ (reacció espontània)

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

El segon terme (-T ΔS°) serà sempre negatiu.

Si el valor de ΔH^0 es negatiu (reacció exotèrmica), el valor de ΔG^0 sempre serà negatiu (independentment de la T).

⇒ Reacció exotèrmica

Pàgina 40 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

[0,25 p]

Pregunta 7a

Raonar, quantitativament, la possible dissolució del fosfat de calci

Càlcul de la solubilitat del fosfat de calci

Equilibri de solubilitat: (S és la solubilitat en mol/L)

$$Ca_3(PO_4)_2(s) \rightleftharpoons 3 Ca^{2+}(aq) + 2 PO_4^{3-}(aq)$$

[0,3p] a

Inicial

Equilibri a – S

3S

2S

L'expressió del producte de solubilitat és: $K_{ps} = [Ca^{2+}]^3 \cdot [PO_4^{3-}]^2$

[0,3 p]

D'aquí deduïm que: $K_{ps} = (3S)^3 \cdot (2S)^2 = 108 S^5$ Aïllem: $S = (K_{ps} / 108)^{1/5} = (2,07 \times 10^{-33} / 108)^{1/5}$

 $S = 1,1389 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$

⇒ es poden dissoldre, com a màxim, 1,1389 x 10⁻⁷ mol/L de fosfat de calci

[0,3 p]

Calculem quina quantitat màxima podem dissoldre en 10,0 L:

Massa molecular fosfat de calci = $(3 \times 40,1) + (2 \times 31,0) + (8 \times 16,0) = 310,3$ g/mol

10 L x
$$(1,1389 \times 10^{-7} \text{ mol} / 1 \text{ L}) \times (310,3 \text{ g} / 1 \text{ mol}) \times (1000 \text{ mg} / 1 \text{ g}) =$$
 = 0,353 mg fosfat de calci

[0,2 p]

Comparació

Tenim 1,25 mg de fosfat de calci; aquest valor és superior a la quantitat màxima soluble en 10,0 L (**0,353 mg fosfat de calci**).

⇒ no podem dissoldre 1,25 mg de fosfat de calci en 10,0 L d'aigua

[0,15 p]

Pàgina 41 de 41

Química

Proves d'accés a la Universitat 2023, convocatòria ordinària. Criteri específic d'avaluació

Pregunta 7b

Ca₃(PO₄)₂(s) en contacte amb 10 mL de solució saturada.

Reacció de solubilitat: $Ca_3(PO_4)_2(s) \rightleftarrows 3 Ca^{2+}(aq) + 2 PO_4^{3-}(aq)$

Què succeeix en el tub 1: afegim CaCl2(aq)

[0,35 p]

Afegim una sal que ens aporta més ions Ca²⁺. La reacció de solubilitat es desplaçarà cap a l'esquerra (reactius) per arribar a un nou estat d'equilibri.

⇒ observarem la formació de més precipitat de fosfat de calci.

Què succeeix en el tub 2: afegim HCl(aq)

[0,3 p]

Afegim un àcid. Aquest reaccionarà amb l'ió fosfat (base feble) per formar hidrogenfosfat. Aquesta reacció desplaça l'equilibri de solubilitat del fosfat de calci cap a la dreta (solubilització).

Reacció (opcional):
$$PO_4^{3-}(aq) + HCI(aq) \rightarrow HPO_4^{2-}(aq) + CI^{-}(aq)$$

⇒ observarem que es dissolt una part del fosfat de calci (o tot)

Què succeeix en el tub 3: afegim EDTA(aq)

[0,3 p]

Afegim un reactiu (Iligand EDTA) que forma un complex soluble amb l'ió Ca²⁺. El reactiu reacciona amb l'ió calci i desplaça l'equilibri de solubilitat del fosfat de calci cap a la dreta (solubilització).

Reacció (opcional):
$$Ca^{2+}(aq) + R(aq) \rightarrow CaR^{2+}(aq)$$

($R = EDTA$; la càrrega del complex depèn de la càrrega del reactiu)

⇒ observarem que es dissolt una part del fosfat de calci (o tot).

Què succeeix en el tub 4: afegim aigua

[0,3p]

Afegim més aigua (dissolvent). La solubilitat ens diu la quantitat màxima de mols (o grams) que es pot dissoldre en un volum determinat de dissolvent. Com més dissolvent tinguem, més quantitat de fosfat de calci dissoldrem.

⇒ observarem que es dissolt una part del fosfat de calci (o tot).