Statistical Foundation for Data Science – Sem 3

Unit I: Basics of Data Science & Role of Statistics

- 1. Define **Data Science** and explain the role of statistical foundations in solving data-driven problems.
- 2. What is structured thinking in data science? Why are statistics, probability, and optimization essential?
- 3. Explain the **typology of problems in data science**—classification, regression, clustering etc.

Unit II: Probability & Distributions

- 1. State the axioms of probability and differentiate between **discrete** and **continuous** random variables.
- 2. Explain key probability distributions (binomial, Poisson, normal)—their parameters, properties, and applications in analytics.
- 3. What do expectation, variance, covariance, and correlation measure? Why are they important?
- 4. Define PMF, PDF, and CDF. How are each of them used?
- 5. Discuss the **Central Limit Theorem** and its significance in sampling.

Unit III: Statistical Inference & Hypothesis Testing

- 1. Explain the concept of **sampling distributions** and its applications.
- 2. Describe hypothesis testing: state null and alternative hypotheses, errors, significance level, p-value interpretation.
- 3. How do you construct **confidence intervals** for means, proportions, variances, and correlation?
- 4. Explain hypothesis tests for means, proportions, variances, and correlation.
- 5. What is **A/B testing**? When can it be used, and what are its limitations? ([Scribd][1], [Reddit][2], [Reddit][3], [Towards Data Science][4])

Unit IV: Regression, Regularization & Model Selection

- 1. Discuss the formulation and solution of **linear regression**, including interpretation of coefficients.
- 2. Explain **regularization techniques** like **Ridge** and **Lasso regression**, and how they mitigate overfitting. ([KDnuggets][5])
- 3. What is empirical risk minimization and cross-validation? How do they help in model selection?

4. Discuss feature selection methods and overfitting vs underfitting trade-off.

Unit V: Advanced Topics & High-Dimensional Methods

- 1. Explain **dimensionality reduction** techniques like PCA and their use in high-dimensional data.
- 2. Define **Rademacher complexity**, uniform convergence, and concentration inequalities in context of learning theory. ([Scribd][1])
- 3. What are perceptron algorithms and linear threshold functions?
- 4. Discuss **Lasso vs Ridge regression**, and applications of minimax strategies in classification or portfolio optimization.
- 5. Overview of **stochastic gradient descent (SGD)** optimization in neural network learning.

> Short Answer / 2–5 Mark Questions

- * Define **random variable** and list key properties.
- * What is **standard deviation**? How is it different from variance?
- * What is **p-value**?
- * Define **confidence interval**.
- * What are type I and type II errors?
- * Differences between **Binomial and Poisson distributions**. ([Scribd][1], [guvi.io][6])
- * Explain **descriptive vs inferential statistics**. ([GUVI][7])