

AC Controller Modules

 $I_{RMS} = 2x 45 A$ $V_{RRM} = 800-1600 V$

V _{RSM}	$oldsymbol{V}_{RRM} \ oldsymbol{V}_{DRM}$	Туре
٧	V	
800	800	VW2x45-08io1
1200	1200	VW2x45-12io1
1400	1400	VW2x45-14io1
1600	1600	VW2x45-16io1

Symbol	Test Conditions	Maximum Ratings		
I _{RMS}	T _c = 85°C, (per phase)		45	Α
ITRMS			32	Α
I _{TAVM}	$T_{\rm c} = 85^{\circ} \text{C}; (180^{\circ} \text{ s})$	$T_{VJ} = T_{VJM}$ $T_{C} = 85^{\circ}C$; (180° sine ; per thyristor)		
I _{TSM}	$T_{VJ} = 45^{\circ}C;$	t = 10 ms (50 Hz), sine	300	Α
	$V_R = 0$	t = 8.3 ms (60 Hz), sine	320	Α
	$T_{V,I} = T_{V,IM}$	t = 10 ms (50 Hz), sine	270	Α
	$V_R = 0$	t = 8.3 ms (60 Hz), sine	290	Α
l²t	T _{v.j} = 45°C	t = 10 ms (50 Hz), sine	450	A ² s
	$V_R = 0$	t = 8.3 ms (60 Hz), sine	430	A^2s
	$T_{VJ} = T_{VJM}$	t = 10 ms (50 Hz), sine	360	A ² s
	$V_R = 0$	t = 8.3 ms (60 Hz), sine	350	A ² s
(di/dt) _{cr}	$T_{VJ} = T_{VJM}$ f =50 Hz, t _P =200	repetitive, $I_T = 45 \text{ A}$ μs	100	A/μs
	$V_{D} = 2/3 V_{DRM}$ $I_{G} = 0.45 A$ $di_{G}/dt = 0.45 A/\mu s$	non repetitive, $I_T = I_{TAVM}$	500	A/μs
(dv/dt) _{cr}	$T_{VJ} = T_{VJM};$ $R_{GK} = \infty;$ method 1	$V_{DR} = 2/3 V_{DRM}$ (linear voltage rise)	1000	V/μs
P _{GM}	$T_{VJ} = T_{VJM}$	t ₀ = 30 μs	10	W
	$I_{T} = I_{TAVM}$	t ₀ = 300 μs	5	W
P _{GAVM}		r	0.5	W
V _{RGM}			10	V
T _{vJ}			-40+125	°C
I _{V.IM}			125	°C
T _{stg}			-40+125	°C
V _{ISOL}	50/60 Hz, RMS	t = 1 min	3000	V~
1002	$I_{ISOL} \le 1 \text{ mA}$	t = 1 s	3600	V~
M _d		Mounting torque (M5)		Nm/lb.in.
Weight	typ.		35	g

Features

- Thyristor controller for AC (circuit W2C acc. to IEC) for mains frequency
- Soldering connections for PCB mounting
- Isolation voltage 3600 V~
- Planar passivated chips
- UL applied

Applications

- Switching and control of three phase AC circuits
- · Softstart AC motor controller
- · Solid state switches
- · Light and temperature control

Advantages

- Easy to mount with two screws
- Space and weight savings
- Improved temperature and power cycling

Data according to IEC 60747 refer to a single thyristor/diode unless otherwise stated. IXYS reserves the right to change limits, test conditions and dimensions

Symbol	Test Conditions	Characte	eristic	Values
I _D , I _R	$T_{VJ} = T_{VJM}; V_{R} = V_{RRM}; V_{D} = V_{DRM}$	≤	5	mA
V _T	I _T = 45 A; T _{VJ} = 25°C	≤	1.52	V
V _{to}	For power-loss calculations only		0.85 15	V mΩ
V _{GT}	$V_D = 6 \text{ V};$ $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = -40^{\circ}\text{C}$ $V_D = 6 \text{ V};$ $T_{VJ} = 25^{\circ}\text{C}$	≤ ≤ ≤	1.5 1.6 100	V V mA
I _{GT}	$V_{D} = 0 \text{ V},$ $I_{VJ} = 23 \text{ C}$ $I_{VJ} = -40^{\circ}\text{C}$	≤ ≤	200	mA
V _{GD}	$T_{VJ} = T_{VJM}$; $V_D = 2/3 V_{DRM}$	≤ ≤	0.2 5	V mA
I _L	$T_{VJ} = 25^{\circ}\text{C}; t_{P} = 10 \mu\text{s}$ $I_{G} = 0.45 \text{ A}; di_{G}/dt = 0.45 \text{ A}/\mu\text{s}$	≤	450	mA
I _H	$T_{VJ} = 25^{\circ}C; V_{D} = 6 V; R_{GK} = \infty$	≤	200	mA
t _{gd}	$T_{VJ} = 25^{\circ}\text{C}; \ V_{D} = 1/2 \ V_{DRM}$ $I_{G} = 0.45 \ A; \ di_{G}/dt = 0.45 \ A/\mu s$	≤	2	μS
t _q	$T_{VJ} = T_{VJM}$; $I_{T} = 20$ A, $t_{P} = 200$ μ s; $di/dt = -10$ A/ μ V _R = 100 V; $dv/dt = 15$ V/ μ s; $V_{D} = 2/3$ V _{DRM}	ıs typ.	150	μS
R _{thJC}	per thyristor; DC per module per thyristor; DC		1.25 0.31 1.55	K/W K/W K/W
R_{thJK}	per tryristor, DC per module		0.39	K/W
d _s d _A a	Creeping distance on surface Creepage distance in air Max. allowable acceleration		12.7 9.4 50	mm mm m/s²

Fig. 1 Gate trigger characteristics

Fig. 2 Gate trigger delay time

Dimensions in mm (1 mm = 0.0394")

Fig. 3 Forward current versus voltage drop per leg

Fig. 4 Rated RMS current versus time (360° conduction)

Fig. 5 Load current capability for two phase AC controller

Fig. 6 Surge overload current

Fig. 7 Power dissipation versus direct output current and ambient temperature cyclo converter, four quadrant operation

Fig. 8 I2t versus time (per thyristor)

Fig. 9 Transient thermal impedance junction to heatsink (per thyristor)

Fig. 10 Maximum forward current at case temperature