

ĐẠI HỌC QUỐC GIA TP. HCM TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

ĐÒ ÁN

CHUYÊN ĐỀ NGHIÊN CỨU VÀ ỨNG DỤNG VỀ THỊ GIÁC MÁY TÍNH

ỨNG DỤNG SWIN TRANSFORMER TRONG PHÂN LOẠI VẤN ĐỀ CỦA CHẤT LƯỢNG HÌNH ẢNH

Giảng viên bộ môn: TS. Mai Tiến Dũng

Học viên: Đinh Văn Hoàn

Vũ Bảo Quốc

- Optimize Transformer to achieve the better performance.
- Patch problem: different patch partition between two layers -- cyclic shift
- Have the ability to replace Convolution

	ImageNet		COCO		ADE20k
	top-1	top-5	AP ^{box}	AP^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1
rel. pos.	81.3	95.6	50.5	43.7	46.1

Swin Transformer (Shifted Window Transformer)

Figure 4. Illustration of an efficient batch computation approach for self-attention in shifted window partitioning.

Swin Transformer (Shifted Window Transformer)

(a) Self-attention within each window

(b) Self-attention across non-overlapping windows

Overall Architecture

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

EXPERIMENT

Dataset

Dataset	Số lượng ảnh (train/test)	Nguồn thu thập
Defocused-blurred	734 (734/315)	DPDD (Dual-Pixel Defocus Deblurring)
Motion-blurred	5.199 (5.039/2.160)	GoPro, HIDE, RealBlurR, RealBlurJ_test
Noise images	3,160 (2.212/948)	SIDD (Smartphone-image-denoising-dataset)
Rain images	13,711 (9.597/4.114)	Synthetic rain datasets (tập Rain13K)

EXPERIMENT

Validation

Evaluation

Test loss: 0.48

Test accuracy: 95.49%

Test top 5 accuracy: 100.0%

EXPERIMENT

1/1 [======] - 0s 27ms/step Predicted Label: Defocused blur

1/1 [======] - 0s 27ms/step Predicted Label: Noise

1/1 [======] - 0s 27ms/step Predicted Label: Rain

1/1 [======] - 0s 26ms/step Predicted Label: Rain

Hình 3.2. Kết quả thử nghiệm ngẫu nhiên trên 4 ảnh được thu thập ngẫu nhiên trên internet.

CONCLUSION

- Mô hình Swin Transformer đạt hiệu suất cao trong quá trình huấn luyện, với độ chính xác và độ tin cậy tăng đáng kể qua các epoch.
- Khả năng học tốt của Swin Transformer trên dữ liệu chất lượng hình ảnh được thể hiện rõ.
- Kết quả kiểm thử cho thấy mô hình có khả năng tổng quát hóa tốt trên dữ liệu mới, với độ chính xác ổn định và loss thấp.
- Mặc dù hiệu suất cao, mô hình vẫn mắc phải một số sai sót trong việc phân loại ảnh từ dữ liệu ngẫu nhiên thu thập từ internet.

REFERENCES

- Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S., & Yang, M. H. (2022). Restormer: Efficient transformer for high-resolution image restoration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5728-5739).
- Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 10012-10022).
- Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S., Yang, M. H., & Shao, L. (2022). Learning enriched features for fast image restoration and enhancement. IEEE transactions on pattern analysis and machine intelligence, 45(2), 1934-1948.
- Cai, Y., Hu, X., Wang, H., Zhang, Y., Pfister, H., & Wei, D. (2021). Learning to generate realistic noisy images via pixel-level noise-aware adversarial training. Advances in Neural Information Processing Systems, 34, 3259-3270.
- Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., & Li, H. (2022). Uformer: A general u-shaped transformer for image restoration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 17683-17693).
- Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., ... & Gao, W. (2021). Pre-trained image processing transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 12299-12310).

