

STEINMETZ TESLA

La **alterna senoidal** es una señal o función que depende del tiempo de la siguiente manera:

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

 $U_{m\acute{a}x}$: amplitud en [V], si fuera tensión ω : pulsación en [rad/s] Además $T=2\pi T/\omega$

En el estudio que sigue deben tenerse en cuenta las ecuaciones constitutivas de los elementos de circuito

$$u_{R} = i \cdot R$$

$$i_{R} = \frac{u}{R}$$

$$u_{C}(t) = \frac{1}{C} \int i(t) \cdot dt$$

$$i_{C}(t) = C \cdot \frac{du}{dt}$$

$$i_{L}(t) = \frac{1}{L} \int u(t) \cdot dt$$

$$u_{L}(t) = L \cdot \frac{di}{dt}$$

EXCITACIONES Y RESPUESTAS

Si se **excita** un resistor de resistencia R mediante una tensión senoidal, la **respuesta** es una corriente, también senoidal, que está **en fase** con la tensión y cuya amplitud $I_{máx}$ vale $U_{máx}/R$ \nearrow Por qué?

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

$$i(t) = I_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

EXCITACIONES Y RESPUESTAS

Si se **excita** un capacitor de capacitancia C mediante una tensión senoidal, la **respuesta** es una corriente, también senoidal, que está **adelantada** 90° respecto de la tensión y cuya amplitud $I_{máx}$ vale $U_{máx}$

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

$$i(t) = I_{m\acute{a}x} \cdot sen(\omega \cdot t + \frac{\pi}{2})$$

EXCITACIONES Y RESPUESTAS

Si se **excita** un inductor de inductancia L mediante una tensión senoidal, la **respuesta** es una corriente, también senoidal, que está **atrasada** 90° respecto de la tensión y cuya amplitud $I_{máx}$ vale $U_{máx}$

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

$$i(t) = I_{m\acute{a}x} \cdot sen(\omega \cdot t - \frac{\pi}{2})$$

¿De dónde salen?

EXCITACIONES Y RESPUESTAS

Para la combinación resistor-capacitor en serie

$$u_f(t) = U_{f m\acute{a}x} \cdot sen(\omega t)$$

$$u_f(t) = u_R(t) + u_C(t)$$
 por LKT

Luego
$$u_f(t) = R \cdot i(t) + \frac{1}{C} \int i(t) dt$$

$$\frac{du_f(t)}{dt} = R \cdot \frac{di(t)}{dt} + \frac{1}{C} \cdot i(t)$$

La solución particular para el **estado permanente** vale

$$i(t) = I_{max} \cdot sen(\omega t + \theta)$$

$$I_{m\acute{a}x} = \frac{U_{f\,m\acute{a}x}}{\sqrt{R^2 + \left(\frac{1}{\omega \cdot C}\right)^2}} \qquad \theta = arc\,tg\left(\frac{1/\omega \cdot C}{R}\right)$$

$$\theta = arctg\left(\frac{1/\omega \cdot C}{R}\right)$$

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega t)$$

$$i(t) = I_{m\acute{a}x} \cdot sen(\omega t + \theta)$$

$$I_{m\acute{a}x} = \frac{U_{f\,m\acute{a}x}}{\sqrt{R^2 + \left(\frac{1}{\omega \cdot C}\right)^2}}$$

$$\theta = arctg\left(\frac{1/\omega \cdot C}{R}\right)$$

EXCITACIONES Y RESPUESTAS

Para la combinación resistor-inductor en serie

$$u_{f}(t) = U_{f m \acute{a}x} \cdot sen(\omega t)$$

$$u_{f}(t) = u_{f}(t) + u_{f}(t) \qquad \text{por } I KT$$

Luego
$$u_f(t) = R \cdot i(t) + L \cdot \frac{di(t)}{dt}$$

La solución particular para el **estado permanente** vale

$$i(t) = I_{m\acute{a}x} \cdot sen(\omega t - \theta)$$

$$I_{m\acute{a}x} = \frac{U_{f\,m\acute{a}x}}{\sqrt{R^2 + \left(\omega \cdot L\right)^2}} \qquad \theta = arc\,tg\left(\frac{\omega \cdot L}{R}\right)$$

$$\theta = arctg\left(\frac{\omega \cdot L}{R}\right)$$

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega t)$$

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega t)$$
 $i(t) = I_{m\acute{a}x} \cdot sen(\omega t - \theta)$

$$I_{m\acute{a}x} = \frac{U_{f\,m\acute{a}x}}{\sqrt{R^2 + (\omega L)^2}}$$

$$\theta = arctg\left(\frac{\omega \cdot L}{R}\right)$$

EXCITACIONES Y RESPUESTAS

Para la combinación resistor-inductor-capacitor en serie

$$u_{f}(t) = U_{f m \acute{a} x} \cdot sen(\omega t)$$

$$u_{f}(t) = u_{R}(t) + u_{L}(t) + u_{C}(t) \quad por LKT$$

$$Luego \quad u_{f}(t) = R \cdot i(t) + L \cdot \frac{di(t)}{dt} + \frac{1}{C} \int i(t) dt$$

$$\frac{du_{f}(t)}{dt} = R \cdot \frac{di(t)}{dt} + L \cdot \frac{d^{2}i(t)}{dt^{2}} + \frac{1}{C} \cdot i(t)$$

La solución particular para el **estado permanente** vale

$$i(t) = I_{m\acute{a}x} \cdot sen(\omega t \pm \theta)$$

$$I_{m\acute{a}x} = \frac{U_{f\,m\acute{a}x}}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} \qquad \theta = arc\,tg\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right)$$

$$\theta = arctg \left(\frac{\omega \cdot L - \frac{1}{\omega \cdot C}}{R} \right)$$

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega t)$$

$$i(t) = I_{m\acute{a}x} \cdot sen(\omega t \pm \theta)$$

Predomina el efecto inductivo

$$I_{m\acute{a}x} = \frac{U_{f\,m\acute{a}x}}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} \qquad \theta = arc\,tg\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right)$$

$$\theta = arctg\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right)$$

Predomina el efecto capactivo

EJERCICIO: Resolver planteando todos los circuitos duales de los vistos

Figuras de Lissajous

FASOR

Las complicaciones para el análisis de circuitos en CA senoidal justifica la utilización de una herramienta matemática relacionada con los números complejos en la aplicación de las leyes de Ohm y Kirchhoff.

Surge así el concepto del FASOR.

El fasor es una función armónica compleja dependiente del tiempo, compuesta por la combinación de dos funciones, seno y coseno, respectivamente.

Matemáticamente se representa mediante la identidad de Euler, la cual surge de la teoría de los números complejos, resultando:

$$\dot{U} = U_{m\acute{a}x} \cdot e^{j(\omega \cdot t + \phi)} = U_{m\acute{a}x} \cdot cos(\omega t + \phi) + jU_{m\acute{a}x} \cdot sen(\omega t + \phi)$$

FASOR

Por lo tanto, para vincular un fasor con su correspondiente función trigonométrica pueden utilizarse las equivalencias ya vistas:

$$Re(\dot{U}) = U_{m\acute{a}x} \cdot cos(\omega t + \phi)$$
 \acute{o} $Im(\dot{U}) = U_{m\acute{a}x} \cdot sen(\omega t + \phi)$

$$con \quad \dot{U} = U_{m \acute{a} x} \cdot e^{j(\omega \cdot t + \phi)} = U_{m \acute{a} x} \cdot cos(\omega t + \phi) + jU_{m \acute{a} x} \cdot sen(\omega t + \phi)$$

Debe destacarse que un fasor $\dot{U} = U_{m\acute{a}x} \cdot e^{j\omega \cdot t}$ es equivalente a $u(t) = U_{m\acute{a}x} \cdot sen(\omega t)$

$$\dot{U} = U_{m \acute{a} r} \cdot e^{j\omega \cdot t}$$

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega t)$$

Se puede representar un fasor por un número complejo simplemente teniendo en cuenta lo siguiente:

$$\dot{U} = U_{m\acute{a}x} \cdot e^{j(\omega \cdot t + \phi)} = U_{m\acute{a}x} e^{j\omega \cdot t} e^{j\phi} = U_{e}^{j\omega \cdot t}$$

$$\underline{U} = U_{m\acute{a}x} \cdot e^{j\phi}$$

Además, la pulsación de **TODAS** las señales presentes en el circuito debe ser la misma.

FASOR

Si $u(t)=U_{m\acute{a}x}sen(\omega t+\phi)$ es una tensión, luego $\mathring{U}=U_{m\acute{a}x}e^{j(\omega t+\phi)}$ es su fasor equivalente, y $\underline{U}=U_{m\acute{a}x}e^{j\phi}$ es su número complejo equivalente.

Igualmente, si i(t) es una corriente que varía en función del tiempo, $\dot{I}=I_{m\acute{a}x}e^{j(\omega t+\phi+\alpha)}$ es una corriente desfasada de la tensión anterior un ángulo α , y expresada por su fasor equivalente.

Un fasor **no** es un vector

FASOR E IMPEDANCIA COMPLEJA

La aplicación de la ley de Ohm a los dos fasores anteriores da como resultado:

$$\frac{\dot{U}}{\dot{I}} = \frac{U_{m\acute{a}x} \cdot e^{j\omega t}}{I_{m\acute{a}x} \cdot e^{j(\omega t + \alpha)}} = \frac{U_{m\acute{a}x}}{I_{m\acute{a}x}} e^{-j\alpha} = |\underline{Z}| \cdot e^{-j\alpha} = \underline{Z}$$

Z es un número complejo (no es un fasor)

IMPEDANCIA COMPLEJA

La impedancia compleja es una expresión que caracteriza el comportamiento de una red pasiva en función de la relación entre la tensión y la corriente cuando éstas son de forma senoidal

NÚMEROS COMPLEJOS

En función de los resultados anteriores, se puede resumir:

$$U = U_{m\acute{a}x} \cdot e^{j0}$$

Número complejo que representa a la tensión

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega t)$$

$$\underline{I} = I_{m\acute{a}x} \cdot e^{j\alpha}$$

Número complejo que representa a la corriente

$$i(t) = I_{m\acute{a}x} \cdot sen(\omega t + \alpha)$$

$$\underline{Z} = |\underline{Z}| \cdot e^{-j\alpha}$$

Impedancia compleja, donde:

(número complejo)

$$\left|\underline{Z}\right| = \frac{U_{m\acute{a}x}}{I_{m\acute{a}x}} = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

$$\alpha = arctg \left(\frac{\omega \cdot L - \frac{1}{\omega \cdot C}}{R} \right)$$

El fasor es una función que permite relacionar una función sinusoidal (corriente o tensión) con un número complejo equivalente

La impedancia es siempre un número complejo, no es un fasor.

¿Unidades?

PARTES DE UNA IMPEDANCIA

Además de la forma polar, la impedancia compleja obtenida puede expresarse en forma binómica, por ejemplo:

$$\underline{Z} = R + j\left(\omega L - \frac{1}{\omega C}\right) = R + j\omega L - j\frac{1}{\omega C} = R + j\omega L + \frac{1}{j\omega C}$$

Se puede asociar cada componente de esta impedancia a los respectivos elementos de circuito (conectados "en serie"):

R RESISTENCIA: parte real, asociada a la característica de transformación irreversible de la energía

 $\omega L = X_L$ REACTANCIA INDUCTIVA: parte imaginaria, asociada a la inductancia

$$\frac{1}{\omega C} = X_C$$
 REACTANCIA CAPACITIVA: parte imaginaria, asociada a la capacitancia

¿Unidades?

¿Representación gráfica?

Triángulo de impedancia

APLICACIONES

Fuente alterna senoidal de pulsación ω

¿Impedancia equivalente del circuito o "vista" por la fuente?

$$\underline{Z} = \frac{\dot{U}}{\dot{I}} = \frac{U_{m\acute{a}x} \cdot e^{j\omega t}}{I_{m\acute{a}x} \cdot e^{j(\omega t - \alpha)}} = \frac{U_{m\acute{a}x}}{I_{m\acute{a}x}} e^{j\alpha} = |\underline{Z}| \cdot e^{j\alpha}$$

Y como antes:
$$|\underline{Z}| = \frac{U_{m\acute{a}x}}{I_{m\acute{a}x}} = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
 Según la característica e triángulo de impedancia:

$$\alpha = arctg\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right)$$

Según la característica de **Z** se puede dibujar el R

APLICACIONES

La expresión de la impedancia también se podría escribir

$$\dot{U} = \underline{Z} \cdot \dot{I}$$

Recordando la forma binómica de la impedancia y desarrollando

$$\dot{U} = \underline{Z} \cdot \dot{I} = \left\{ R + j \left(\omega L - \frac{1}{\omega C} \right) \right\} \cdot \dot{I} = R\dot{I} + j\omega L\dot{I} - j\frac{1}{\omega C}\dot{I} = R\dot{I} + j\omega L\dot{I} + \frac{1}{j\omega C}\dot{I}$$

Finalmente, comparando con la expresión en función del tiempo para el circuito RLC, resulta:

$$\dot{U} = R\dot{I} + j\omega L\dot{I} + \frac{1}{j\omega C}\dot{I}$$

$$u_f(t) = R \cdot i(t) + L \cdot \frac{di(t)}{dt} + \frac{1}{C} \int i(t) dt$$

Por lo cual se puede asociar un operador j ω a las operaciones derivada e integral de la siguiente manera:

$$j\omega \to \frac{d}{dt}$$
 $y \frac{1}{j\omega} \to \int dt$

APLICACIONES

Y teniendo en cuenta la definición de **reactancia inductiva** y **reactancia capacitiva**, el circuito *RLC* se puede dibujar:

Además, \mathring{U}_f e $\emph{\emph{I}}$ se reemplazaron por \underline{U}_f e \underline{I} , respectivamente (¿por qué?)

Ahora se puede escribir:

$$\underline{U}_{f} = \underline{Z} \cdot \underline{I} = R \cdot \underline{I} + jX_{L} \cdot \underline{I} - jX_{C} \cdot \underline{I}$$
$$= \underline{U}_{R} + \underline{U}_{L} + \underline{U}_{C}$$

APLICACIONES

APLICACIONES

¿Si en lugar del cociente $\underline{U}/\underline{I}$ se hiciera $\underline{I}/\underline{U}$?

$$\frac{\dot{I}}{\dot{U}} = \frac{I_{m\acute{a}x} \cdot e^{j(\omega t + \alpha)}}{U_{m\acute{a}x} \cdot e^{j\omega t}} = \frac{I_{m\acute{a}x}}{U_{m\acute{a}x}} e^{j\alpha} = |\underline{Y}| \cdot e^{j\alpha} = \underline{Y}$$

ADMITANCIA COMPLEJA

¿Unidades y característica de \underline{Y} ?

Por lo tanto, para un caso general:

$$\underline{Y} = \frac{1}{\underline{Z}}$$

DUALIDAD

PARTES DE UNA ADMITANCIA

Además de la forma polar, una admitancia compleja puede expresarse en forma binómica:

$$\underline{Y} = G + j\left(\omega C - \frac{1}{\omega L}\right) = G + j\omega C - j\frac{1}{\omega L} = G + j\omega C + \frac{1}{j\omega L}$$

Se puede asociar cada componente de la admitancia a los respectivos elementos de circuito (conectados "en paralelo"):

 $oldsymbol{G}$ CONDUCTANCIA: parte real, asociada a la característica de transformación irreversible de la energía

 $\omega C = B_C$ SUSCEPTANCIA CAPACITIVA: parte imaginaria, asociada a la capacitancia

 $\frac{1}{\omega L} = B_L$ SUSCEPTANCIA INDUCTIVA: parte imaginaria, asociada a la inductancia

Además: $G = \frac{1}{R}$ $B_L = \frac{1}{X_L}$ $B_C = \frac{1}{X_C}$ ¿Unidades? ¿Representación gráfica? Triángulo de **admitancia**

¿DUALIDAD?

VALORES INSTANTÁNEO, MEDIO, EFICAZ

Si la función es senoidal:

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega t)$$

VALOR INSTANTÁNEO

Para un caso general se define:

VALOR MEDIO

$$U_m = \frac{1}{T} \int_0^T u(t) . dt$$

¿Interpretación?

Si u(t) es sinusoidal, U_m resulta igual a ${\it cero}$

$$U_{\it ef}$$

VALOR EFICAZ
$$U_{ef} = \sqrt{\frac{1}{T} \int_{o}^{T} u^{2}(t) . dt}$$

¿Interpretación?

Si u(t) es sinusoidal, U_{ef} resulta igual a $U_{m\acute{a}x}/\!\!\sqrt{2}$

INSTRUMENTOS

VOLTÍMETRO

Ideal

Real

AMPERÍMETRO

Ideal

De continua

De valor eficaz

RESOLUCIÓN DE CIRCUITOS EN ALTERNA

Valen las leyes fundamentales y todas las metodologías de resolución

Ley de Ohm (en alterna se generaliza como $\underline{Z} = \frac{\underline{U}}{\underline{I}}$ ó $\underline{Y} = \frac{\underline{I}}{\underline{U}}$)

Leyes de Kirchhoff

Análisis nodal

Análisis de malla

Principio de superposición

En el caso particular de los equivalentes de Thèvenin y Norton, los mismos pueden generalizarse de la siguiente manera:

$$\underline{I}_{N}$$
 \underline{I}_{A} \underline{I}_{A}

RESUMEN

Circuitos con señal alterna senoidal en estado permanente

EXCITACIONES y RESPUESTAS en circuitos R, RL, RC, RLC

FASOR, equivalencias con la señal senoidal

DIAGRAMA FASORIAL

Relación entre dos fasores: **IMPEDANCIA COMPLEJA** y sus componentes

Impedancia equivalente o "vista" entre dos bornes

Característica de una IMPEDANCIA: inductiva, capacitiva

Inversa de una impedancia: *ADMITANCIA* y sus componentes

Característica de una ADMITANCIA: inductiva, capacitiva

INSTRUMENTOS

BIBLIOGRAFÍA

- □ Circuitos eléctricos. Parte 1. Deorsola-Morcelle. Cap 4.
- □ Principios de electrotecnia. Tomo I. Zeveke Ionkin. Cap VII, VIII y IX.
- □ Principios y aplicaciones de ingeniería eléctrica. G. Rizzoni. Cap 4.
- □ Circuitos eléctricos. Nilsson. Cap 10.
- □ Circuitos en ingeniería eléctrica. Skilling. Cap 3 y 4.
- □ Análisis básico de circuitos eléctricos. Johnson-Hilburn-Johnson. Cap 10 y 11.
- □ Teoría de circuitos eléctricos. Sanjurjo Lázaro de Miguel. Cap 3 y 4.
- □ Análisis de circuitos en ingeniería. Hayt-Kemmerly. Cap 7, 8 y 9.
- □ Análisis de modelos circuitales. H.O. Pueyo G. Marco. Cap 6 y 7.
- □ Circuitos eléctricos. Dorf. Cap 11.
- □ Circuitos. Carlson. Cap 6.
- □ Análisis introductorio de circuitos. Boylestad. Cap 13 a 18.
- □ Circuitos eléctricos y magnéticos. E. Spinadel. Cap 3.