تنش (محوري):

. چنانچه نیروی F بر یک سطح A اثر کند، نسبت نیرو به واحد سطح را تنش σ گویند

با توجه به اینکه در بار کششی/ فشاری شکل روبرو، نیرو عمود بر سطح اثر می

کند، باعث ایجاد یک تنش محوری می شود.

تنش های کششی را مثبت و تنش های فشاری را منفی می گیریم.

اگر نیرو عمود بر سطح نباشد، آن را به مولفه هایش تجزیه می نماییم. هریک از نیرو های تجزیه شده گویای نیروی محوری F_n و نیروی عرضی F_t می باشند.

نیروی محوری و عمود بر سطح مقطع جسم، تنش محوری σ را می دهد. F_n نیروی موجود در سطح مقطع جسم که باعث تنش برشی (سایشی) τ می گردد. F_t

$$\sigma_{\max} = \frac{F}{A_{\min}}$$

$$\left[\frac{N}{mm^2} \text{ or } \frac{N}{cm^2}\right]$$

کرنش عمودی در یک میله تحت بارگذاری محوری، با تغییر شکل در طول واحد آن میله تعریف می شود. (بدون بعد می باشد.)

طول نهایی قطعه ${
m L}$

طول اولیه قطعه ${
m L0}$

$$\Delta L = L - L_0 / mm$$

$$\mathcal{E} = \frac{\Delta L}{L_0} \cdot 100 / \%.$$

$$\sigma = E * \epsilon$$

ضریب تناسب است که به ضریب ارتجاعی نیز معروف است که بستگی به جنس مواد دارد. ${
m E}$

این نسبت برای تغییرات در راستای نیرو می باشد.

تغییرات در راستای عمود بر نیروی محوری (ضریب پواسون):

$$\Delta I = I - I_0$$
 [mm]

$$\varepsilon_{l} = \frac{\Delta l}{l_{o}} [\%]$$

$$\varepsilon_{q} = \frac{\Delta d}{d_{0}} [\%]$$

$$\nu = \frac{\epsilon_q}{\epsilon_l}$$

$$\varepsilon = \frac{1}{E} \, \sigma$$

$$\varepsilon = \frac{1}{E} \, \sigma \qquad \qquad \varepsilon_{\mathsf{q}} = -\frac{\nu}{E} \, \sigma$$

در شکل روبرو ضخامت قطعه بالایی بازوی ABC برابر ۳/۸ اینچ و ضخامت مابقی قسمت ها اینچ است. $\frac{1}{4}$

قطعات در B به هم چسبانده شده اند.

قطر پین A برابر $^{1/4}$ اینچ است و قطر پین C برابر $^{1/4}$ اینچ است. موارد زیر را تعیین نمایید:

الف) تنش برشی در پین A

ب) تنش برشی در پین C

ج) بزرگترین تنش محوری در اتصال ABC

د) تنش برشی میانگین در سطح B

ه) تنش در بازو در نقطه C

حل مثال ١:

دیاگرام آزاد بصورت روبرو می باشد: چون عضو ABC دو نیرویی است واکنش در A به صورت عمودی است.

$$+ \upgamma \ \Sigma M_{D} = 0 \ (500 \ \text{lb}) (15 \ \text{in.}) - F_{AC} (10 \ \text{in.}) = 0 \\ F_{AC} = +750 \ \text{lb} \qquad F_{AC} = 750 \ \text{lb} \qquad \textit{tension}$$

$$au_A = rac{F_{AC}}{A} = rac{750 ext{ lb}}{rac{1}{4}\pi (0.375 ext{ in.})^2} ag{ au_A} = 6790 ext{ psi}$$

ب) تنش برشی در پین C با توجه به اینکه اتصال دوبل می باشد.

$$\tau_C = \frac{\frac{1}{2}F_{AC}}{A} = \frac{375 \text{ lb}}{\frac{1}{4}\pi (0.25 \text{ in.})^2}$$
 $\tau_C = 7640 \text{ psi}$

الف) تنش برشی در پین A

ج) بزرگترین تنش محوری در اتصال ABC بزرگترین تنش در کمترین سطح مقطع اتفاق می افتد. که این سطح مقطع در نقطه A است که سوراخی با قطر π/Λ اینچ وجود دارد.

$$\sigma_A = \frac{F_{AC}}{A_{\text{net}}} = \frac{750 \text{ lb}}{(\frac{3}{8} \text{ in.})(1.25 \text{ in.} - 0.375 \text{ in.})} = \frac{750 \text{ lb}}{0.328 \text{ in}^2}$$
 $\sigma_A = 2290 \text{ psi}$

تمرین ۱:

قسمت د) و ه) مثال ۱ را بصورت تمرین حل نمایید.

دو قطعه چوبی از محل نشان داده شده با زاویه ۴۵ درجه به هم چسبانده شده اند، و تحت بار محوری ۱۲ کیلونیوتن قراردارند. تنش محوری و برشی را در این مقطع محاسبه نمایید.

هدف:

تعیین رفتار مواد تحت بار محوری کششی و بدست آوردن شاخص های مواد که به راحتی برای سایر انواع بار ها قابل انتقال هستند. روند آزمایش:

۱ – آماده سازی نمونه (پراب)

بخاطر تاثیر شکل نمونه بر نتایج آزمایشات فرم و ابعاد آن استاندارد می باشد:

-فرم (گرد و یا تخت)

- نسبت طول به قطر آن برای نمونه های کوتاه ۵ و برای نمونه های بلند ۱۰ می باشد.

- كلگى سيلندر ها (صاف يا رزوه اى)

- سطح روئين نمونه

۲ - نمونه را بطور آهسته و بدون برگشت تا مرحله شکست کشیده و روند نیرو و ازدیاد طول ثبت و رسم می گردد.

