```
In [1]: # Importing libraries
   import pandas as pd
   import numpy as np

#importing datasets
   import json
   import csv

#importing visualization datasets
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [2]: #Loading the csv files on the directory ! ls *.csv

bom.movie_gross.csv name.basics.csv title.akas.csv title.basics.csv title.crew.csv title.principals.csv title.ratings.csv tmdb.movies.csv tn.movie_budgets.csv

```
In [3]: # Loading the datasets onto the notebook
          df1 = pd.read_csv("bom.movie_gross.csv")
          df1
                                           Toy Story 3
              0
                                                            BV
                                                                    415000000.0
                                                                                    652000000 2010
              1
                                                            BV
                                                                    334200000.0
                              Alice in Wonderland (2010)
                                                                                    691300000 2010
              2 Harry Potter and the Deathly Hallows Part 1
                                                            WB
                                                                    296000000.0
                                                                                    664300000 2010
              3
                                                            WB
                                             Inception
                                                                    292600000.0
                                                                                    535700000 2010
              4
                                    Shrek Forever After
                                                          P/DW
                                                                    238700000.0
                                                                                    513900000 2010
           3382
                                           The Quake
                                                          Magn.
                                                                         6200.0
                                                                                         NaN 2018
                              Edward II (2018 re-release)
           3383
                                                            FΜ
                                                                         4800.0
                                                                                         NaN 2018
           3384
                                             El Pacto
                                                           Sony
                                                                         2500.0
                                                                                         NaN 2018
           3385
                                            The Swan Synergetic
                                                                         2400.0
                                                                                         NaN 2018
           3386
                                     An Actor Prepares
                                                                         1700.0
                                                           Grav.
                                                                                         NaN 2018
          3387 rows × 5 columns
```

Interpretation: This dataset has 3387 entries and 5 columns The information captured is the movie titles, the studios the production happened and the revenues made in different years

```
# Loading the datasets onto the notebook
In [4]:
          df2 = pd.read_csv("name.basics.csv")
          df2
                                    Mary Ellen
                 0 nm0061671
                                                    NaN
                                                                NaN
                                                                             miscellaneous,production_manager,producer tt0837562,tt2398241,tt084447
                                      Bauder
                 1 nm0061865
                                 Joseph Bauer
                                                    NaN
                                                                NaN
                                                                           composer,music_department,sound_department tt0896534,tt6791238,tt028707
                 2 nm0062070
                                  Bruce Baum
                                                    NaN
                                                                NaN
                                                                                             miscellaneous, actor, writer tt1470654, tt0363631, tt010403
                 3 nm0062195
                                Axel Baumann
                                                                      camera_department,cinematographer,art_department tt0114371,tt2004304,tt161844
                                                    NaN
                   nm0062798
                                   Pete Baxter
                                                    NaN
                                                                NaN
                                                                        production_designer,art_department,set_decorator tt0452644,tt0452692,tt345803
                                                      ...
           606643
                   nm9990381
                                Susan Grobes
                                                    NaN
                                                                NaN
                                                                                                              actress
           606644 nm9990690
                                  Joo Yeon So
                                                    NaN
                                                                NaN
                                                                                                                                        tt909093
                                                                                                              actress
                                     Madeline
           606645 nm9991320
                                                    NaN
                                                                NaN
                                                                                                                                        tt873443
                                                                                                              actress
                                        Smith
                                      Michelle
           606646 nm9991786
                                                                NaN
                                                    NaN
                                                                                                            producer
                                    Modigliani
```

Interpretation: This dataset has 606648 entries and 6 columns The information captured is the names of professional involved, their individual professional contribution and what film's (title's) they are known for.

```
In [5]: # Loading the datasets onto the notebook
    df3 = pd.read_csv("title.akas.csv")
    df3
```

Out[5]:

	title_id	ordering	title	region	language	types	attributes	is_original_title
0	tt0369610	10	Джурасик свят	BG	bg	NaN	NaN	0.0
1	tt0369610	11	Jurashikku warudo	JP	NaN	imdbDisplay	NaN	0.0
2	tt0369610	12	Jurassic World: O Mundo dos Dinossauros	BR	NaN	imdbDisplay	NaN	0.0
3	tt0369610	13	O Mundo dos Dinossauros	BR	NaN	NaN	short title	0.0
4	tt0369610	14	Jurassic World	FR	NaN	imdbDisplay	NaN	0.0
331698	tt9827784	2	Sayonara kuchibiru	NaN	NaN	original	NaN	1.0
331699	tt9827784	3	Farewell Song	XWW	en	imdbDisplay	NaN	0.0
331700	tt9880178	1	La atención	NaN	NaN	original	NaN	1.0
331701	tt9880178	2	La atención	ES	NaN	NaN	NaN	0.0
331702	tt9880178	3	The Attention	XWW	en	imdbDisplay	NaN	0.0

Interpretation: This dataset has 331703 entries and 8 columns The information captured is the titles, the film's language, the film's attributes and whether the film is an original title of not.

Out[6]:

	tconst	primary_title	original_title	start_year	runtime_minutes	genres
0	tt0063540	Sunghursh	Sunghursh	2013	175.0	Action,Crime,Drama
1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.0	Biography,Drama
2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	Drama
3	tt0069204	Sabse Bada Sukh	Sabse Bada Sukh	2018	NaN	Comedy,Drama
4	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80.0	Comedy,Drama,Fantasy
146139	tt9916538	Kuambil Lagi Hatiku	Kuambil Lagi Hatiku	2019	123.0	Drama
146140	tt9916622	Rodolpho Teóphilo - O Legado de um Pioneiro	Rodolpho Teóphilo - O Legado de um Pioneiro	2015	NaN	Documentary
146141	tt9916706	Dankyavar Danka	Dankyavar Danka	2013	NaN	Comedy
146142	tt9916730	6 Gunn	6 Gunn	2017	116.0	NaN

Interpretation: This dataset has 146144 entries and 6 columns The information captured is the original titles, the start year of sale, how long the film is and the film's genre.

```
In [7]: # Loading the datasets onto the notebook
df5 = pd.read_csv("title.crew.csv")
df5
```

0	tt0285252	nm0899854	nm0899854
1	tt0438973	NaN	nm0175726,nm1802864
2	tt0462036	nm1940585	nm1940585
3	tt0835418	nm0151540	nm0310087,nm0841532
4	tt0878654	nm0089502,nm2291498,nm2292011	nm0284943
146139	tt8999974	nm10122357	nm10122357
146140	tt9001390	nm6711477	nm6711477
146141	tt9001494	nm10123242,nm10123248	NaN
146142	tt9004986	nm4993825	nm4993825
146143	tt9010172	NaN	nm8352242
146144	rows × 3 co	olumns	
		olali ili lo	

Interpretation: This dataset has 146144 entries and 3 columns The information captured is the directors and writers of the film title

```
In [8]: # Loading the datasets onto the notebook
    df6 = pd.read_csv("title.principals.csv")
    df6
```

Out[8]:

	tconst	ordering	nconst	category	job	characters
0	tt0111414	1	nm0246005	actor	NaN	["The Man"]
1	tt0111414	2	nm0398271	director	NaN	NaN
2	tt0111414	3	nm3739909	producer	producer	NaN
3	tt0323808	10	nm0059247	editor	NaN	NaN
4	tt0323808	1	nm3579312	actress	NaN	["Beth Boothby"]
1028181	tt9692684	1	nm0186469	actor	NaN	["Ebenezer Scrooge"]
1028182	tt9692684	2	nm4929530	self	NaN	["Herself","Regan"]
1028183	tt9692684	3	nm10441594	director	NaN	NaN
1028184	tt9692684	4	nm6009913	writer	writer	NaN
1028185	tt9692684	5	nm10441595	producer	producer	NaN

1028186 rows × 6 columns

Interpretation: This dataset has 1028186 entries and 6 columns The information captured is the characters and their jobs in the production of the movies.

```
In [9]: # Loading the datasets onto the notebook
df7 = pd.read_csv("title.ratings.csv")
df7
```

Out[9]:

	tconst	averagerating	numvotes
0	tt10356526	8.3	31
1	tt10384606	8.9	559
2	tt1042974	6.4	20
3	tt1043726	4.2	50352
4	tt1060240	6.5	21
73851	tt9805820	8.1	25
73852	tt9844256	7.5	24
73853	tt9851050	4.7	14
73854	tt9886934	7.0	5
73855	tt9894098	6.3	128

73856 rows × 3 columns

Interpretation: This table has 73856 entries with only 3 columns

• The columns point out the rating and the number of votes for each movie title

df8 = pd df8												
1	I	16, 10751]	10191	еп	Dragon	Z0.13 4	ZU IU-U3-Z0	Dragon	1.1			
2	2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8			
3	3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22	Toy Story	7.9			
4	4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Inception	8.3			
26512	26512	[27, 18]	488143	en	Laboratory Conditions	0.600	2018-10-13	Laboratory Conditions	0.0			
26513	26513	[18, 53]	485975	en	_EXHIBIT_84xxx_	0.600	2018-05-01	_EXHIBIT_84xxx_	0.0			
26514	26514	[14, 28, 12]	381231	en	The Last One	0.600	2018-10-01	The Last One	0.0			
26515	26515	[10751, 12, 28]	366854	en	Trailer Made	0.600	2018-06-22	Trailer Made	0.0			

Interpretation: This dataset has 26517 entries and 10 columns The information captured is the popularity of each movie, the release date of each and the vote count

```
In [11]: # Loading the datasets onto the notebook
df9 = pd.read_csv("tn.movie_budgets.csv")
df9
```

Out[11]:

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross
0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747
5777	78	Dec 31, 2018	Red 11	\$7,000	\$0	\$0
5778	79	Apr 2, 1999	Following	\$6,000	\$48,482	\$240,495
5779	80	Jul 13, 2005	Return to the Land of Wonders	\$5,000	\$1,338	\$1,338
5780	81	Sep 29, 2015	A Plague So Pleasant	\$1,400	\$0	\$0
5781	82	Aug 5, 2005	My Date With Drew	\$1,100	\$181,041	\$181,041

5782 rows × 6 columns

Interpretation: This dataset has 5782 entries and 6 columns The information captured is the title of each movie, the release date of each, the production budget and the gross profit made from each

Basic Analysis: There are 9 different datasets with varying columns hence analysis of the same is essential to determine which ones can be merged easily

```
In [12]: #Analysing the columns in the 8th dataset
         print(df8.columns)
         print()
         Index(['Unnamed: 0', 'genre_ids', 'id', 'original_language', 'original_title',
                  'popularity', 'release_date', 'title', 'vote_average', 'vote_count'],
                dtype='object')
In [13]: #Analysing the columns in the 9th dataset
         print(df9.columns)
         Index(['id', 'release_date', 'movie', 'production_budget', 'domestic_gross',
                 'worldwide_gross'],
                dtype='object')
In [14]: #Renaming the title for proper alignment of the columns
         df9.rename(columns={'movie':'title'}, inplace = True)
         df9.head(1)
Out[14]:
                             title production_budget domestic_gross worldwide_gross
             id release_date
          0 1 Dec 18, 2009 Avatar
                                       $425,000,000
                                                     $760,507,625
                                                                  $2,776,345,279
```

In [15]: #My resolve is to work with the 8th and 9th datasets since the columns are almost similar hence easier concate #Merging datasets df8 and df9 and naming the output df89 df89 = df8.merge(df9, how = 'outer', on ='title', suffixes=('_f8', '_f9')) df89.head(1)

Out[15]:

	Unnamed: 0	genre_ids	id_f8	original_language	original_title	popularity	release_date_f8	title	vote_average	vote_count	id_f9
0	0.0	[12, 14, 10751]	12444.0	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	7.7	10788.0	NaN
4											•

Merging of datasets df8 and df9 has been done along the column title. This has been done under the condition outer in order to retain the various columns that shall assist with analysis

In [16]: # Subject dataset under review
df89

Out[16]:

	Unnamed: 0	genre_ids	id_f8	original_language	original_title	popularity	release_date_f8	title	vote_average	vote_count
0	0.0	[12, 14, 10751]	12444.0	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	7.7	10788.0
1	1.0	[14, 12, 16, 10751]	10191.0	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	7.7	7610.0
2	2.0	[12, 28, 878]	10138.0	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8	12368.0
3	3.0	[16, 35, 10751]	862.0	en	Toy Story	28.005	1995-11-22	Toy Story	7.9	10174.0
4	2473.0	[16, 35, 10751]	862.0	en	Toy Story	28.005	1995-11-22	Toy Story	7.9	10174.0
30406	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Red 11	NaN	NaN
30407	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Following	NaN	NaN
30408	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Return to the Land of Wonders	NaN	NaN
30409	NaN	NaN	NaN	NaN	NaN	NaN	NaN	A Plague So Pleasant	NaN	NaN
30410	NaN	NaN	NaN	NaN	NaN	NaN	NaN	My Date With Drew	NaN	NaN

30411 rows × 15 columns

DATA PREVIEW

```
#Reviewing the basic data info in the columns of the df89 dataset
In [17]:
        df89.info()
        Data COTAMIIS (COCAT TO COTAMIIS).
            Column
                               Non-Null Count Dtype
         --- -----
                               -----
         0
             Unnamed: 0
                               26606 non-null float64
         1
             genre ids
                               26606 non-null object
         2 id f8
                               26606 non-null float64
             original language
                               26606 non-null object
                               26606 non-null object
             original title
             popularity
                               26606 non-null float64
         5
             release date f8
                               26606 non-null object
         7
             title
                               30411 non-null object
             vote average
                               26606 non-null float64
                               26606 non-null float64
             vote count
         10 id f9
                               6190 non-null float64
         11 release date f9
                               6190 non-null object
         12 production budget
                               6190 non-null object
         13 domestic gross
                               6190 non-null object
         14 worldwide gross
                               6190 non-null object
        dtypes: float64(6), object(9)
        memory usage: 3.7+ MB
```

Out[18]:

	Unnamed: 0	id_f8	popularity	vote_average	vote_count	id_f9
count	26606.000000	26606.000000	26606.000000	26606.000000	26606.000000	6190.000000
mean	13252.894234	294812.769601	3.155421	5.991220	199.429039	50.466236
std	7654.629576	153702.703736	4.407785	1.851133	977.486054	28.752526
min	0.000000	27.000000	0.600000	0.000000	1.000000	1.000000
25%	6625.250000	157803.250000	0.600000	5.000000	2.000000	26.000000
50%	13255.500000	309153.500000	1.376000	6.000000	5.000000	51.000000
75%	19882.750000	419438.250000	3.734000	7.000000	28.000000	75.000000
max	26516.000000	608444.000000	80.773000	10.000000	22186.000000	100.000000

In [19]: #Data preview
df89.head()

Out[19]:

	Unnamed: 0	genre_ids	id_f8	original_language	original_title	popularity	release_date_f8	title	vote_average	vote_count	id_f9
0	0.0	[12, 14, 10751]	12444.0	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	7.7	10788.0	NaN
1	1.0	[14, 12, 16, 10751]	10191.0	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	7.7	7610.0	30.0
2	2.0	[12, 28, 878]	10138.0	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8	12368.0	15.0
3	3.0	[16, 35, 10751]	862.0	en	Toy Story	28.005	1995-11-22	Toy Story	7.9	10174.0	37.0
4	2473.0	[16, 35, 10751]	862.0	en	Toy Story	28.005	1995-11-22	Toy Story	7.9	10174.0	37.0
4											•

In [20]: #Data preview
df89.tail()

Out[20]:

	Unnamed: 0	genre_ids	id_f8	original_language	original_title	popularity	release_date_f8	title	vote_average	vote_count	id_
30406	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Red 11	NaN	NaN	78
30407	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Following	NaN	NaN	79
30408	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Return to the Land of Wonders	NaN	NaN	8(
30409	NaN	NaN	NaN	NaN	NaN	NaN	NaN	A Plague So Pleasant	NaN	NaN	81
30410	NaN	NaN	NaN	NaN	NaN	NaN	NaN	My Date With Drew	NaN	NaN	82
4											•

In [21]: #Data preview df89.dtypes

Out[21]: Unnamed: 0 float64 object genre_ids float64 id_f8 object original_language original_title object float64 popularity release_date_f8 object title object float64 vote_average vote_count float64 id_f9 float64 release_date_f9 object production_budget object domestic_gross object worldwide_gross object dtype: object

```
In [22]: #Data preview
         df89.columns
Out[22]: Index(['Unnamed: 0', 'genre_ids', 'id_f8', 'original_language',
                 'original_title', 'popularity', 'release_date_f8', 'title',
                 'vote_average', 'vote_count', 'id_f9', 'release_date_f9',
                 'production_budget', 'domestic_gross', 'worldwide_gross'],
               dtype='object')
In [23]: #Checking for duplicates
         df89.duplicated()# There are no duplicates
Out[23]: 0
                   False
         1
                   False
         2
                   False
         3
                   False
                   False
         4
                   . . .
         30406
                   False
         30407
                   False
         30408
                  False
         30409
                  False
         30410
                   False
         Length: 30411, dtype: bool
```

In [24]: # To check useful values we can use correlation analysis to see which columns have high correlation
import seaborn as sns
plt.figure(figsize = (10,8))
dataplot = sns.heatmap(df89.corr(), cmap=sns.color_palette("Blues",20), annot = True)
#unnamed has the lowest correlation with other columns hence should be dropped


```
In [25]: #Checking for missing values
df89.isnull().mean()*100
```

Out[25]:	Unnamed: 0 genre_ids id_f8 original_language original_title popularity release_date_f8 title vote_average vote_count id_f9 release_date_f9 production_budget domestic_gross worldwide_gross	12.511920 12.511920 12.511920 12.511920 12.511920 12.511920 0.000000 12.511920 79.645523 79.645523 79.645523 79.645523
	<pre>worldwide_gross dtype: float64</pre>	79.645523

In [26]: #Dropping unnecessary columns
df89.dropna(subset = ['popularity', 'production_budget'])

Out[26]:

	Unnamed: 0	genre_ids	id_f8	original_language	original_title	popularity	release_date_f8	title	vote_average	vote_co
1	1.0	[14, 12, 16, 10751]	10191.0	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	7.7	761
2	2.0	[12, 28, 878]	10138.0	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8	1236
3	3.0	[16, 35, 10751]	862.0	en	Toy Story	28.005	1995-11-22	Toy Story	7.9	1017
4	2473.0	[16, 35, 10751]	862.0	en	Toy Story	28.005	1995-11-22	Toy Story	7.9	1017
5	4.0	[28, 878, 12]	27205.0	en	Inception	27.920	2010-07-16	Inception	8.3	2218
							•••			
26192	26323.0		509316.0	en	The Box	0.600	2018-03-04	The Box	8.0	
26193	26425.0	[10402]	509306.0	en	The Box	0.600	2018-03-04	The Box	6.0	
26235	26092.0	[35, 16]	546674.0	en	Enough	0.719	2018-03-22	Enough	8.7	
26441	26322.0	0	513161.0	en	Undiscovered	0.600	2018-04-07	Undiscovered	8.0	
26599	26508.0	[16]	514492.0	en	Jaws	0.600	2018-05-29	Jaws	0.0	

2385 rows × 15 columns

```
In [27]: #dropping the column 'Unnamed:0' since it is of no significance in my analysis
df89 = df89.drop(columns = ['Unnamed: 0'])
```

```
In [28]: #checking the number of missing values
df89.original_language.isnull().sum()
```

Out[28]: 3805

In [31]: #The complete dataset but with missing values
df89

Out[31]:

	genre_ids	id_f8	original_language	original_title	popularity	release_date_f8	title	vote_average	vote_count	id_f9	rel
0	[12, 14, 10751]	12444.0	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	7.7	10788.0	NaN	1
1	[14, 12, 16, 10751]	10191.0	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	7.7	7610.0	30.0	ı
2	[12, 28, 878]	10138.0	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8	12368.0	15.0	
3	[16, 35, 10751]	862.0	en	Toy Story	28.005	1995-11-22	Toy Story	7.9	10174.0	37.0	
5	[28, 878, 12]	27205.0	en	Inception	27.920	2010-07-16	Inception	8.3	22186.0	38.0	•

In [32]: #Checking for duplicates
 df89.duplicated().sum()
 #No duplicates found

Out[32]: 0

5	12]	27205.0	en	Inception	27.920	2010-07-16	Inception	8.3	22186.0	38.0
	12]									
•••		•••								
30406	NaN	NaN	NaN	NaN	NaN	NaN	Red 11	NaN	NaN	78.0
30407	NaN	NaN	NaN	NaN	NaN	NaN	Following	NaN	NaN	79.0
30408	NaN	NaN	NaN	NaN	NaN	NaN	Return to the Land of Wonders	NaN	NaN	80.0
30409	NaN	NaN	NaN	NaN	NaN	NaN	A Plague So Pleasant	NaN	NaN	81.0
30410	NaN	NaN	NaN	NaN	NaN	NaN	My Date With Drew	NaN	NaN	82.0
29387 rd	ows × 14 c	olumns					Drew			

In [34]: #There's is a huge chunk of missing values especially in the financials part of most films but dropping the codf89.isna().mean()

```
Out[34]: genre_ids
                               0.129479
         id_f8
                               0.129479
         original_language
                               0.129479
         original_title
                               0.129479
         popularity
                               0.129479
         release_date_f8
                               0.129479
         title
                               0.000000
         vote_average
                               0.129479
         vote_count
                               0.129479
         id_f9
                               0.795284
         release_date_f9
                               0.795284
         production_budget
                               0.795284
         domestic_gross
                               0.795284
         worldwide_gross
                               0.795284
         dtype: float64
```

```
In [35]: #A preview of the financial components of my data set for easier analysis
         finances = [
             'production_budget', 'domestic_gross',
             'worldwide gross']
         df89[finances].info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 29387 entries, 0 to 30410
         Data columns (total 3 columns):
          # Column
                                Non-Null Count Dtype
          0 production_budget 6016 non-null object
          1 domestic_gross
                                6016 non-null object
             worldwide gross
                                6016 non-null object
         dtypes: object(3)
         memory usage: 918.3+ KB
```

Observations:

There are inconsistencies in the foreign gross and worldwide gross columns in terms of values.

Convert the dtypes of the entries in production_budget, domestic_gross and worldwide_gross

```
In [36]: #A preview of the financial components of my data set for easier analysis
df89[finances].head(3)
```

Out[36]:

	production_badget	domestic_gross	worldwide_gross
0	NaN	NaN	NaN
1	\$165,000,000	\$217,581,232	\$494,870,992
2	\$170,000,000	\$312,433,331	\$621,156,389

production hudget domestic gross worldwide gross

POPULARITY SCORES

```
In [37]: #A preview of the popularity score of my data set for easier analysis
    popularity_scores = [
    'title', 'popularity', 'vote_average', 'vote_count'
    ]
    df89[popularity_scores].head()
```

Out[37]:

	title	popularity	vote_average	vote_count
0	Harry Potter and the Deathly Hallows: Part 1	33.533	7.7	10788.0
1	How to Train Your Dragon	28.734	7.7	7610.0
2	Iron Man 2	28.515	6.8	12368.0
3	Toy Story	28.005	7.9	10174.0
5	Inception	27.920	8.3	22186.0

In [38]: #A preview of the popularity score of my data set for easier analysis
df89[popularity_scores].info()

Popularity Scores Actionables

(i) The 3 columns, i.e. popularity, vote_average, vote_count, are related and they include a popularity score.

Guiding Questions:

- 1. Number of titles used
- 2. Original_title vs current title

- 3. Genre used
- 4. Production budget vs income earned(both domestic and worldwide gross)

1. NUMBER OF TITLES

2. Original Title

					the income generated from their sale worldwide_gross']].groupby('title')
4					
1]:	original_title	production_budget	domestic_gross	worldwide_gross	
title					_
Home	21	21	21	21	
The Gift	10	10	10	10	
Beauty and the Beast	6	6	6	6	
Robin Hood	6	6	6	6	
Eden	5	5	5	5	
The Box	5	5	5	5	
Truth or Dare	5	5	5	5	
Alice in Wonderland	4	4	4	4	
Brothers	4	4	4	4	
Carrie	4	4	4	4	

From the above analysis, we can infer that retaining the original title of the movie will impact the sales positively since the film sales are higher as compared to those whose title was changed

3. GENRE

title

Out[42]:

uue				
	title	worldwide_gross	domestic_gross	genre_ids
1	Christopher Robin	\$197,504,758	\$99,215,042	[12, 35, 10751, 14]
1	Hercules	\$250,700,000	\$99,112,101	[28, 12]
1	Olympus Has Fallen	\$172,878,928	\$98,927,592	[28, 53]
1	The Green Hornet	\$229,155,503	\$98,780,042	[28, 80, 35]
1	Date Night	\$152,269,033	\$98,711,404	[35]
1	Meek's Cutoff	\$1,869,928	\$977,772	[18, 37]
1	The Beaver	\$5,046,038	\$970,816	[18]
1	Sausage Party	\$141,344,255	\$97,670,358	[12, 16, 35, 14]
1	The Social Network	\$224,922,135	\$96,962,694	[18]
1	Hardflip	\$96,734	\$96,734	[18, 28]

My proposal is that Microsoft should incorporate various genres in their film production as the target audience is quite vast which shall increase the gross income

4. Original Language

'My Date With Drew']

My recommendation is that when engaging in movie production, Microsoft should incorporate the use of various languages in their films hence maximising on the audience reach out as this will increase the income earned.

Out[44]:

4:41 -	!		la condinunt		
แแย	genre las	production	buagei	aomestic gross	worldwide gross

original_language					
en	22462	22462	2087	2087	2087
fr	484	484	24	24	24
es	439	439	16	16	16
ru	299	299	16	16	16
zh	175	175	11	11	11
hi	171	171	10	10	10
de	231	231	8	8	8
sv	66	66	4	4	4
ja	244	244	3	3	3
ko	92	92	3	3	3
ar	32	32	2	2	2
it	119	119	2	2	2
nl	46	46	2	2	2
no	48	48	2	2	2
pl	51	51	2	2	2

My proposal to microsoft is to consider producing a huge chunk of their films in the English language to reach a wider audience while incorporating other languages to serve the minority. This is is well depicted in the first axis where English movies have made the most sales when compared to the rest

VISUALIZATION:

```
In [45]: #Creating a list of the top 10 movies for easier analysis
         x = df89.title[:10]
Out[45]: 0
                     Harry Potter and the Deathly Hallows: Part 1
                                         How to Train Your Dragon
         1
         2
                                                       Iron Man 2
         3
                                                        Toy Story
         5
                                                        Inception
               Percy Jackson & the Olympians: The Lightning T...
         6
         7
                                                           Avatar
         8
                                                      Toy Story 3
                                                    Despicable Me
         9
         10
                                                         Megamind
         Name: title, dtype: object
In [46]: #Creating a list of the popularity of the top 10 movies for easier analysis
         y = df89.popularity[:10]
Out[46]: 0
                33.533
               28.734
         1
         2
                28.515
         3
                28.005
         5
                27.920
               26.691
         6
               26.526
         7
         8
                24.445
         9
                23.673
                22.855
         10
         Name: popularity, dtype: float64
```


Recommendations:

I propose that microsoft builds it's studio and produce films guided by the template used in creating the following movies since they were the highest saught after in the industry and garnered a lot of p opularity:

0 Harry Potter and the Deathly Hallows: Part 1 1 How to Train Your Dragon 2 Iron Man 2 3 Toy Story 5 Inception 6 Percy Jackson & the

```
In [48]: #checking the production budget of the most expensive top 10 films
    df89_sorted = df89.sort_values(by = 'production_budget', ascending = False)
    top_10_production_budget = df89_sorted.head(10)

plt.figure(figsize=(10, 6))
    plt.scatter(top_10_production_budget['title'], top_10_production_budget['production_budget'])
    plt.title('Scatter plot of the production budget per movie')
    plt.xlabel('Movie Title')
    plt.ylabel('Production Budget')
    plt.xticks(rotation=45, ha='right') # Rotate x-axis labels for better readability
    plt.tight_layout()
    plt.show()
```



```
In [49]: #checking the correlation between domestic gross of the top 10 films with the highest production budget as sho
         df89_sorted1 = df89.sort_values(by = 'domestic_gross', ascending = False)
         top_10_domestic_gross = df89_sorted.head(10)
         top_10_domestic_gross_sorted = top_10_domestic_gross.sort_values(by='domestic_gross')
         plt.figure(figsize=(10, 6))
         plt.scatter(top_10_domestic_gross_sorted['title'], top_10_domestic_gross_sorted['domestic_gross'])
         plt.title('Scatter plot of the domestic_gross per movie')
         plt.xlabel('Movie Title')
         plt.ylabel('domestic_gross')
         plt.xticks(rotation=45, ha='right') # Rotate x-axis Labels for better readability
         plt.tight_layout()
         plt.show()
             $74,262,031
             $30,824,628
             $202,007,640
             $130,178,411
             $105,806,508
                    $0
                                                            Movie Title
```

From the 2 scatter plots above, it has been clearly depicted how essential it is to invest well in movie production and ensure that the product is of the best quality as that will greatly boost the sale. This is especially in the case of films such as: The Mummy Returns whose production costed \$98M but ended up generating \$202M in profit together with the Peanut Movie whose budget was \$99M but the sales were worth \$130M. However, that is not always the case since other films ended up generating very little in come with some, barely covering the production costs hence leading to losses. This is well illustrated in the case of the film Banshee whose production cost was \$950k but ended up not selling locally and Robin Hood whose production costed \$99M but ended up generating \$30M in local sales. That points out to the importance of considering other factors that may affect the sale of films which may include: 1. The target market, 2. Release timings(which should be strategic eg on weekends or holidays, 3. Runtime, 4. Production house or even 5. Directors used)

In [50]: #Affirmation that the plotted info is correct df89.loc[df89['title'].str.contains('Banshee Chapter')]

Out[50]:

	genre_ids	id_f8	original_language	original_title	popularity	release_date_f8	title	vote_average	vote_count	id_f9	releas
8774	[27, 53]	207769.0	en	Banshee Chapter	6.872	2013-11-06	Banshee Chapter	5.6	135.0	30.0	Ja

```
In [51]: #Popularity vs the production budget of the films
    grouped_data = top_10_production_budget.groupby(['production_budget', 'popularity'])['title'].apply(list).rese
    plt.figure(figsize=(10, 5))
    for index, row in grouped_data.iterrows():
        production_budget = row['production_budget']
        popularity = row['popularity']
        titles = row['title']
        plt.scatter([production_budget] * len(titles), [popularity] * len(titles), label=titles)
    plt.title('Scatter plot of movie titles grouped by production budget and popularity')
    plt.xlabel('Production Budget')
    plt.ylabel('Popularity')
    # plt.tight_layout()
    plt.legend(loc='upper right', fontsize='small')
    plt.show()
```


From the above scatter plot, there's a clear demonstration of how popularity is a crucial factor in film production as it alludes to the tastes and preferences of the public. A lot was invested in the creation of Robin Hood which was clearly not in demand hence a huge loss was made. On the other hand, public opinion does not necessarily imply a favorable reaction to a movie as in the case of Alien:Covenant whose sales finally led to a loss. This is mostly in movie attendance which is a crude measure of public taste which may not translate to sales. It is therefore crucial that when it comes to production that Microsoft should not rely solely on public opinion since other factors might come into play

```
In [52]: #checking the worldwide_gross of the top 10 films
    df89_sorted1 = df89.sort_values(by = 'worldwide_gross', ascending = False)
    top_10_worldwide_gross = df89_sorted.head(10)
    top_10_worldwide_gross_sorted = top_10_worldwide_gross.sort_values(by='worldwide_gross')

plt.figure(figsize=(12, 6))
    plt.scatter(top_10_worldwide_gross_sorted['title'], top_10_worldwide_gross_sorted['worldwide_gross'])
    plt.title('Scatter plot of the worldwide_gross per movie')
    plt.xlabel('Movie Title')
    plt.ylabel('worldwide_gross')
    plt.xticks(rotation=45, ha='right') # Rotate x-axis labels for better readability
    plt.tight_layout()
    plt.show()
```


The above scatter plot has demonstrated how vast consumer preferences are hence the need for Microsoft to consider the international consumers in their production. For instance, Alien:Covenant did so well in the worldwide market and ended up

generating more than twice the budget of the production cost in sales. However, it failed terribly in the domestic market. More effort should be made in marketing the films worlwide for wider outreach. Other films such as The Mummy Returns ended up

```
In [53]: grouped_data = top_10_worldwide_gross_sorted.groupby(['worldwide_gross', 'popularity'])['title'].apply(list).r
    plt.figure(figsize=(12, 6))
    for index, row in grouped_data.iterrows():
        worldwide_gross = row['worldwide_gross']
        popularity = row['popularity']
        titles = row['title']
        plt.scatter([worldwide_gross] * len(titles), [popularity] * len(titles), label=titles)
    plt.title('Scatter plot of movie titles grouped by worldwide_gross and popularity')
    plt.xlabel('worldwide_gross')
    plt.ylabel('Popularity')
    # plt.tight_layout()
    plt.legend(loc='upper right', fontsize='small')
    plt.show()
```


We can observe that high popularity definitely plays a factor in movie sales as in the case of Alien:Covenant. Therefore, Microsoft should invest a lot in film quality, especially by working on the storyline, acting, directing and marketing compaigns.