Programme n°22

MECANIQUE

M6 Moment cinétique

Cours et exercices

M7 Mouvement d'un solide en rotation autour d'un axe fixe (Cours uniquement)

- Le moment cinétique d'un système de points ou d'un solide
- Le théorème du moment cinétique pour un solide
- Couple de forces
- Liaison pivot d'axe
- Energie d'un solide en rotation autour d'un axe fixe
- Energie cinétique d'un solide
 - → Solide en translation
 - → Solide en rotation autour d'un axe fixe Oz
- Puissance d'une force appliquée à un solide en rotation
- Théorème de l'énergie cinétique d'un solide indéformable

- Le pendule pesant
- Position u problème
- Cas de faibles amplitudes
- Etude énergétique
- Portrait de phase

Reconnaître les cas de conservation du moment cinétique. Établir l'équation du mouvement.
Établir l'équation du mouvement
Établir l'águation du mouvement
Établir l'équation du mouvement
Etablir l'équation du mouvement
Ltabili Tequation du mouvement.
Expliquer l'analogie avec l'équation de l'oscillateur harmonique.
Établir une intégrale première du mouvement.
Lire et interpréter le portrait de phase : bifurcation entre un mouvement pendulaire et un mouvement révolutif.
Approche numérique: Utiliser les résultats fournis par un logiciel de résolution numérique ou des simulations pour mettre en évidence le non isochronisme des oscillations.
Réaliser l'acquisition expérimentale du portrait de phase d'un pendule pesant. Mettre en évidence une diminution de l'énergie mécanique.
Utiliser la relation $E_c = \frac{1}{2}J_{\perp}\omega^2$, l'expression
$\det J_{\scriptscriptstyle A}$ étant fournie.
Établir l'équivalence dans ce cas entre la loi scalaire du moment cinétique et celle de l'énergie cinétique.
Eh É Ler A psi: Foé

M8 Mouvement dans un champ de force centrale (Cours uniquement)

- Forces centrales conservatives
- Définition
- Energie potentielle associée
- Exemples → Int
 - → Interaction de gravitation→ Interaction électrostatique

- Lois générales de conservation
- Le moment cinétique → Conservation
 - → Le mouvement est plan
 - \rightarrow Loi des Aires
- L'énergie mécanique
- Cas du champ Newtonien

• Etude du mouvement circulaire

- La vitesse

- L'énergie

- La période

- Le mouvement des planètes

• Les satellites de la Terre

- Hypothèses

- Les vitesses cosmiques

- Le satellite géostationnaire

5. Mouvements dans un champ de force centrale	
Conservatif	Déduire de la loi du moment cinétique la
Point matériel soumis à un seul champ de force centrale.	Déduire de la loi du moment cinétique la conservation du moment cinétique.
centrale.	sonservation du moment ometique.
	Connaître les conséquences de la conservation du
	moment cinétique : mouvement plan, loi des aires.
Énergie potentielle effective. État lié et état de	Exprimer la conservation de l'énergie mécanique et
diffusion.	construire une énergie potentielle effective.
	Dissing and Pitchian and Income and an Italia Resident
	Décrire qualitativement le mouvement radial à l'aide
	de l'énergie potentielle effective. Relier le caractère borné à la valeur de l'énergie mécanique.
Champ newtonien. Lois de Kepler.	Énoncer les lois de Kepler pour les planètes et les
Champ nowtenien. Zole de Replei.	transposer au cas des satellites terrestres.
Cas particulier du mouvement circulaire : satellite,	Montrer que le mouvement est uniforme et savoir
planète.	calculer sa période.
	<u> </u>
	Etablir la troisième loi de Kepler dans le cas
	particulier de la trajectoire circulaire. Exploiter sans démonstration sa généralisation au cas d'une
	trajectoire elliptique.
Satellite géostationnaire.	Calculer l'altitude du satellite et justifier sa
	localisation dans le plan équatorial.
Énergie mécanique dans le cas du mouvement	Exprimer l'énergie mécanique pour le mouvement
circulaire puis dans le cas du mouvement elliptique.	circulaire.
	Exprimer l'énergie mécanique pour le mouvement elliptique en fonction du demi-grand axe.
Vitesses cosmiques : vitesse en orbite basse et	Exprimer ces vitesses et connaître leur ordre de
vitesse de libération.	grandeur en dynamique terrestre.
	g ayıramından terreti.

SOLUTIONS AQUEUSES

AQ2 Réactions de dissolution ou de précipitation

Cours et exercices

 $\frac{\textbf{TP}}{\text{Dosage du cocacola (repérage d'un point déquivalence)}}$ La iodométrie Mesure des forces de frottements fluides