Bewijzen - Inleveropgave 1

B.H.J. van Boxtel

21 september 2022 - Week 38

(a).
$$I = \{ [3 - \frac{1}{n}, 6] \}_{n \in \mathbb{N}}$$

(b).
$$n \neq m \implies \frac{1}{n} \neq \frac{1}{m} \implies [3 - \frac{1}{n}, 6] \neq [3 - \frac{1}{m}] \implies A_n \neq A_m$$
.

(c). Stel $n, m \in \mathbb{N}$ met n < m en $n \neq m$.

$$Dan n < m \implies \frac{1}{n} > \frac{1}{m} \implies 3 - \frac{1}{n} < 3 - \frac{1}{m}.$$

Dus $A_m \subseteq A_n$.

Omdat $1 \leq x$ voor alle $x \in \mathbb{N}$, $A_m \subseteq A_1$ voor elke $m \in \mathbb{N}$.

Dus
$$\bigcup_{n\in\mathbb{N}} A_n \subseteq A_1 \iff \bigcup_{n\in\mathbb{N}} A_n \subseteq [2,6].$$

$$n=1 \implies A_n = [2,6], \text{ dus } [2,6] \subseteq \bigcup_{n \in \mathbb{N}} A_n.$$

Dus
$$\bigcup_{n\in\mathbb{N}} A_n = [2,6].$$

- (d). Er bestaat geen getal $n \in \mathbb{N}$ waarvoor $3 \frac{1}{n} > 3$, dus $[3, 6] \subseteq A_n$ voor elke $n \in \mathbb{N}$. Dus $[3, 6] \subseteq \bigcap_{n \in \mathbb{N}} A_n$.
- (e). Omdat $|\mathbb{N}| = \infty$, geldt:

$$\bigcap_{n \in \mathbb{N}} A_n = \lim_{a \to \infty} \bigcap_{k=1}^a A_k \tag{1}$$

Neem nu $n, m \in \mathbb{N}$ met n < m en $n \neq m$.

$$\begin{array}{l} n < m \implies 3 - \frac{1}{n} < 3 - \frac{1}{m} \implies [3 - \frac{1}{m}, 6] \subseteq [3 - \frac{1}{n}, 6] \text{ en } [3 - \frac{1}{n}, 6] \not\subseteq [3 - \frac{1}{m}, 6] \\ \implies [3 - \frac{1}{m}, 6] \cap [3 - \frac{1}{n}, 6] = [3 - \frac{1}{m}, 6]. \end{array}$$

Dus
$$n < m \implies A_m \cap A_n = A_m \implies \bigcap_{k=1}^a A_k = A_a$$
.

Samen met (1) geeft dit:

$$\bigcap_{n \in \mathbb{N}} A_n = \lim_{a \to \infty} A_a = \lim_{a \to \infty} [3 - \frac{1}{a}, 6] = [3, 6]$$
 (2)