Решения на задачите по алгебра

Този материал е изготвен със съдействието на школа Sicademy

C1. По колко начина числата $1, 2, \dots, 2n$ могат да бъдат разположени в таблица $2 \times n$, така че числата във всеки ред (отляво надясно) и във всеки стълб (отгоре надолу) да са в нарастващ ред.

Решение. Да подредим числата в редица и под всяко число да запишем 1, ако то е в първия ред и 0, ако е във втория. Лесно се вижда, че ако под числата $1, 2, \ldots, k$ нулите са повече (можем да считаме, че под k е записана нула), то числото над k е по-голямо от k. Вярно е и обратното: ако в $1, 2, \ldots, k$ единиците са поне колкото нулите, то числото над k е по-малко от k.

Следователно редицата от 0 и 1 е с дължина 2n и изпълнява следното свойство: Във всяка частична редица $1,2,\ldots,k$ броя на единиците е не по-малък от броя на нулите. Известно е, че броят на тези редици е числото на Каталан

 $\frac{1}{n+1} \binom{2n}{n}$.

 ${\bf C2.}$ В страна има n града, някои от които са съединени с директни пътища. Известно е, че:

- 1. Няма град свързан с всички останали градове.
- 2. За произволни градове A и B съществува единствен начин да се стигне от A до B, като се мине по не повече от два пътя.

Да се докаже, че n-1 е точен квадрат.

Peшение. Да разгледаме графа G, образуван от градовете и пътищата между тях. От условие 2. следва, че в него няма цикли с дължина 3 и 4.

Да изберем произволен връх на графа v и нека v_1, v_2, \ldots, v_k да са свързаните с него върхове на G. От условие 1. следва, че множеството $G_2 = G \setminus \{v, v_1, v_2, \ldots, v_k\}$ не е празно. От условие 2. следва, че няма ребра $v_i v_j$.

Ако съществува връх v_i , който не е свързан с нито един връх от G_2 , то условие 2. не е изпълнено за v_i и произволен връх от G_2 .

Също така не е възможно да има ребра v_iA и v_jA за $A \in G_2$, защото тогава има цикъл с дължина 4. Освен това произволен връх A от G_2 трябва да е свързан с връх v_i за някое i, защото в противен случай условие 2. не е изпълнено за v и A.

От горното следва, че G_2 се разбива на непресичащи се множества T_1, T_2, \ldots, T_k , като v_i е свързан с всички върхове от T_i . Да изберем произволен връх w от T_1 . Ако от w няма ребро към връх от T_2 , условие 2. не е изпълнено за w и v_2 . Ако от w има две ребра към T_2 ще имаме цикъл с дължина 4, противоречие.

Следователно от всеки връх от T_i излиза точно по едно ребро към всяко $T_j, j \neq i$. От тук следва, че ребрата между T_i и T_j са $|T_i|$ (като броим ребрата от върховете в T_i) и $|T_j|$ (като броим ребрата от върховете в T_i), т.е. $|T_1| = |T_2| = \ldots = |T_s| = m$. Следователно степента на всеки от върховете v_1, v_2, \ldots, v_k е m+1.

Степента на всеки връх w от T_i е k защото от него излиза по едно ребро към всяко от множествата $T_i, j \neq i$ и едно ребро към v_i . Степента на v също е k, т.е. степените на v и върховете от G_2 са равни.

Като повторим горните разсъждения за върха v_1 , получаваме, че v_1 и всеки от върховете от T_2, \ldots, T_k имат равни степени. Следователно m+1=k и тогава $n=k(k-1)+k+1=k^2+1$.

СЗ. В пространството са дадени 200 точки, всеки две от които са съединени с отсечка и k цвята. Двама играчи оцветяват точките и отсечките по следния начин. Първият играч оцветява всяка от отсечките в един от цветовете. След това вторият играч оцветява всяка от точките в един от цветовете. Ако след тези оцветявания има две точки оцветени в един и същи цвят и отсечката между тях е оцветена в същия цвят, печели първият играч. Да се докаже, че първият играч има печеливша стратегия при:

- a) k = 7
- б) k = 10.

Решение.

- a) Ще докажем, че ако има k цвята и броят на точките е по-голям от 2^k , то първият играч има печеливша стратегия. При k=1 твърдението е очевидно. Нека твърдението е вярно за някое k. Да разгледаме оцветяване с k+1 цвята и множество с 2^{k+1} точки. Разделяме това множество на две с по 2^k точки и оцветяваме отсечките на всяко от тях съгласно индуктивната хипотеза в цветове $1,2,\ldots,k$. Всички отсечки между двете множества оцветяваме в цвят k+1. Ако вторият оцвети два върха от различни мно- жества в цвят k+1, печели първият, а ако в някое от множествата не се среща цвят k+1, твърдението следва от индукционното допускане.
- б) Ще докажем, че твърдението е вярно за 121 точки. Да означим точките с двойки (a,b) за $1 \le a,b \le 11$. За две точки (a_1,b_1) и (a_2,b_2) съществува не повече от едно k, за което $(a_2-a_1)-k(b_2-b_1)$ се дели на 11 (следва лесно с допускане на противното и използване, че 11 е просто число). При $k=0,1,2,\ldots,9$ оцветяваме съответната отсечка в цвят k+1.

Лесно се вижда, че ако отсечките AB и AC са от един цвят, то и BC е от същия цвят. Следователно точките се разделят на групи, като във всяка група всички отсечки са от един цвят. От друга страна за произволна точка (a_1, b_1) произволно b_2 съществува точно едно a_2 , за което отсечката свързваща точките (a_1, b_1) и (a_2, b_2) е в даден цвят.

Следователно за всеки цвят точките се разбиват на 11 множества с по 11 точки във всяко, като във всяко множество всички отсечки са в този цвят. При всяко оцветяване на точките в 10 цвята ще има 12 точки от един и същи цвят. Разглеждаме 11-те множества, съответстващи на този цвят. Някои две от тези 12 точки ще попаднат в едно множество и тогава първият печели.