Алгебра

Содержание

1	Решение уравнений и неравенств.	2
	1.1 Иррациональные уравнения	2
	1.2 Иррациональные неравенства	2
	1.3 Неравенства с модулем	2
2	Многочлены	2
3	Множества	4
4	Числовые последовательности	4
	4.1 Аксиоматика действительных чисел	4
	4.2 Прогрессии	5
5	Эквивалентность и группы	6
6	Пределы	7
7	Тригонометрия	8
8	Комплексные числа 8.1 Матрицы поворота	16 17
	ол матрицы поворота	11
9	Логарифмы	17
	9.5 Показательные уравнения и неравенства	19
	9.6 Логарифмические уравнения и неравенства	19
10) Линейная алгебра	19
	10.1 Координаты на плоскости	19
	10.2 Векторы	20
	10.3 Линейные пространства	20
	10.4 Матрицы	21
	10.4.1 Произведение матриц	22
	10.4.2 Определитель	22
	10.4.3 Ранг матрицы	22

1 Решение уравнений и неравенств.

1.1 Иррациональные уравнения

$$\sqrt{f(x)} = g(x) \Longleftrightarrow \begin{cases} f(x) = (g(x))^2 \\ g(x) \ge 0 \end{cases} \qquad \sqrt{f(x)} = \sqrt{g(x)} \Longleftrightarrow \begin{cases} f(x) = g(x) \\ f(x) \ge 0 \end{cases}$$

1.2 Иррациональные неравенства

$$\frac{f(x)}{g(x)} \le 0 \Longleftrightarrow \begin{cases} \begin{cases} f(x) \ge 0 \\ g(x) < 0 \end{cases} \\ \begin{cases} f(x) \le 0 \\ g(x) > 0 \end{cases} \end{cases} \qquad \sqrt{f(x)} > g(x) \Longleftrightarrow \begin{cases} \begin{cases} g(x) < 0 \\ f(x) \ge 0 \\ g(x) \ge 0 \end{cases} \\ \begin{cases} f(x) \le 0 \end{cases} \\ \begin{cases} f(x) \le 0 \end{cases} \end{cases}$$

$$\sqrt{f(x)} < g(x) \Longleftrightarrow \begin{cases} f(x) \ge 0 \\ f(x) > 0 \end{cases} \end{cases}$$

$$\sqrt{f(x)} > \sqrt{g(x)} \Longleftrightarrow \begin{cases} f(x) > g(x) \\ g(x) \ge 0 \end{cases}$$

$$\sqrt{f(x)} > \sqrt{g(x)} \Longleftrightarrow \begin{cases} f(x) > g(x) \\ g(x) \ge 0 \end{cases}$$

1.3 Неравенства с модулем

$$|f(x)| < a, \ a > 0 \Longleftrightarrow \begin{cases} f(x) > -a \\ f(x) < a \end{cases} \qquad |f(x)| > a \Longleftrightarrow \begin{cases} f(x) > a \\ f(x) < -a \end{cases}$$

$$|f(x)| \le |g(x)| \Longleftrightarrow (f(x) - g(x)) \cdot (f(x) + g(x)) \le 0$$

$$|f(x)| + |g(x)| > |f(x) + g(x)| \Longleftrightarrow f(x) \cdot g(x) < 0$$

$$|f(x)| + |g(x)| \le |f(x) + g(x)| \Longleftrightarrow f(x) \cdot g(x) \ge 0$$

2 Многочлены

Определение 1. Многочленом от переменной x над K называется выражение вида: $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, \ a_k \in K$ – коэффициент многочлена, $a_n \neq 0$.

Определение 2. Наибольшее k такое, что $a_k \neq 0$, называется степенью многочлена f:

$$k = \deg f$$
 $a_0 -$ свободный член $a_n x^n -$ старший член $a_n -$ старший коэффициент

Определение 3. Два многочлена называются равными, если их коэффициенты при соответственных степенях x равны.

2

Определение 4.

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$g(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$$

Суммой многочленов f(x) и g(x) называется:

$$n(x) = (a_n + b_n)x^n + (a_{n-1} + b_{n-1})x^{n-1} + \dots + (a_1 + b_1)x + (a_0 + b_0)$$

Произведением многочленов f(x) и g(x) называется:

$$S(x) = d_{2n}x^{2n} + d_{2n-1}x^{2n-1} + \ldots + d_1x + d_0$$
, где $d_k = a_0b_k + a_1b_{k-1} + \ldots + a_{k-1}b_1 + a_kb_0 = \sum_{i=0}^k a_ib_{k-i}$

Утверждение 2.1. Пусть deg $f(x) \neq 0$, deg $g(x) \neq 0$, тогда:

1.
$$\deg(f(x) + g(x)) \le \max\{\deg f, \deg g\}$$

2.
$$f(x) \cdot g(x) \neq 0$$

3.
$$deg(f(x) \cdot g(x)) = deg f(x) + deg g(x)$$

Доказательство.

1. Пусть deg $f = \deg g = n$ $f(x) + g(x) = (a_n + b_n)x^n + (a_{n-1} + b_{n-1})x^{n-1} + \ldots + (a_1 + b_1)x + (a_0 + b_0)$ Если k > n, то $a_k = 0$, $b_k = 0$, то есть $(a_k + b_k) = 0$

Пусть $\deg f=n, \deg g=m, m< n$ Если k>n, то $a_k+b_k=0,$ так как $b_{m+1}=b_{m+2}=\ldots=b_{n-1}=b_n=0$ Тогда $a_n+b_n=a_n\neq 0$

2.
$$f(x) \cdot g(x) = a_n b_m x^{n+m} + \underbrace{\cdots}_{\text{степень} < n}$$

Определение 5. Многочлен f(x) делится на многочлен g(x), если существует такой многочлен h(x), что $h(x) \cdot g(x) = f(x)$.

Утверждение 2.2. Всякий многочлен $f(x) \neq 0$ делится на самого себя.

Утверждение 2.3. Если f(x) делится на g(x), а g(x) делится на f(x), то $f(x) = c \cdot g(x)$, $c \in K$.

Определение 6. Число x_0 является корнем f(x), если $f(x_0) = 0$.

Теорема 2.4 (Теорема Безу). Остаток от деления многочлена P(x) на двучлен (x-a) равен P(a).

Доказательство.

$$P(x) = (x - a) \cdot q(x) + r$$

$$P(a) = 0 \cdot p(x) + r = r$$

Следствие 2.4.1. Число a является корнем многочлена P(x) тогда и только тогда, когда P(x) делится на (x-a).

3 Множества

Определение 7. Множества равномощны, если между ними существует биекция.

Определение 8. Множества A и B называются равными, если $A \subseteq B, B \subseteq A$.

Определение 9. Множества, равномощные №, называются счетными.

Определение 10. Декартовым произведением множеств A и B называется множество $A \times B = \{x \mid x = (a, b), \ a \in A, \ b \in B\}.$

Определение 11. Число a называется числом кратности k многочлена f(x), если f(x) делится на $(x-a)^k$, но не делится на $(x-a)^{k+1}$.

4 Числовые последовательности

Определение 12. Бесконечной числовой последовательностью (a_n) называется отображение $\mathbb{N} \to \mathbb{R}$.

Определение 13. Конечной числовой последовательностью (a_n) называется отображение $a: \{1, 2, \ldots, k\} \to \mathbb{R}$.

Определение 14. Множество $M, M \subset \mathbb{R}$ называется ограниченным сверху, если $\exists c : \forall x \in M : x \leq c$.

Определение 15. Множество $M,\,M\subset\mathbb{R}$ называется ограниченным снизу, если $\exists\,c:\,\forall x\in M:\,x\geq c.$

Определение 16. Множество $M, M \subset \mathbb{R}$ называется ограниченным, если оно ограничено сверху и снизу.

Определение 17. Последовательность a_n называется ограниченной, если $a(\mathbb{N})$ ограничено.

Определение 18. Последовательность a_n называется монотонно возрастающей, если $\forall n \in \mathbb{N}$: $a_{n+1} > a_n$.

Теорема 4.1. Пусть все элементы последовательности a_n положительны. Последовательность a_n возрастает тогда и только тогда, когда $\frac{a_{n+1}}{a_n} > 1$.

4.1 Аксиоматика действительных чисел

Определение 19. Пусть $M \subset \mathbb{R}$, M ограничено. Тогда наименьшая из верхних граней множества M называется точной верхней гранью (супремумом):

$$a = \sup M \iff \forall x \in M : x \le a, \forall \varepsilon > 0 \ \exists x \in M : x > a - \varepsilon$$

Определение 20. Пусть $M \subset \mathbb{R}$, M ограничено. Тогда наибольшая из нижних граней множества M называется точной нижней гранью (инфинумом):

$$a = \inf M \iff \forall x \in M : x \ge a, \ \forall \varepsilon > 0 \ \exists x \in M : x < a + \varepsilon$$

Теорема 4.2. Пусть $a: \mathbb{N} \to \mathbb{R}$, $a(\mathbb{N})$ ограничена. Тогда:

$$\exists x_0 \in \mathbb{R} : \forall \varepsilon > 0 : a^{-1}((x_0 - \varepsilon; x_0 + \varepsilon))$$
 бесконечно $\bigcup_{U_{\varepsilon}(x_0)}$

Доказательство. Если $\exists x_0: a^{-1}(x_0)$ бесконечно, то доказано. Если $\exists x_0: a^{-1}(x_0)$ конечно или пусто, то:

Отметим на числовой прямой $a_0=\inf a(\mathbb{N})$ и $b_0=\sup a(\mathbb{N})$, а также середину a_0b_0 , то есть $c_0=\frac{a_0+b_0}{2}$. Разделим один из получившихся отрезков (отметим c_0 и b_0 , как a_1 и b_1 соответственно) пополам, получив $c_1=\frac{a_1+b_1}{2}$. Данный процесс можно продолжать, получая следующую конструкцию:

$$[a_0; b_0] \supset [a_1; b_1] \supset \ldots \supset [a_n; b_n] \supset \ldots$$

Теперь необходимо доказать следующее:

$$\bigcap_{n=0}^{\infty} [a_n; b_n] \neq \emptyset$$

- 1. $a_0 \le a_1 \le \ldots \le a_n \le \ldots$
- 2. $a(\mathbb{N})$ ограничена сверху b_i элементом
- 3. $a(\mathbb{N})$ имеет точную верхнюю грань $M_1 = \sup a(\mathbb{N})$ и точную нижнюю грань $M_2 = \inf a(\mathbb{N})$
- 4. $M_1 \leq M_2$
- 5. $[M_1; M_2] \subset \bigcap_{n=0}^{\infty} [a_n; b_n]$
- 6. Пусть $M_1 < M_2$, тогда $\exists n : b_n a_n < M_2 M_1$. Получаем противоречие, значит $M_1 = M_2 = M$.
- 7. Возьмем такое n, что $b_n-a_n<\varepsilon$. Тогда $[a_n;\,b_n]\subset U_\varepsilon(M)$. То есть $\forall \varepsilon>0:\,a^{-1}(U_\varepsilon(M))$ бесконечно.

Определение 21. Число x называется частичным пределом последовательности $a(\mathbb{N}) \to \mathbb{R}$, если $\forall \varepsilon > 0 : a^{-1}(U_{\varepsilon}(x))$ бесконечно.

4.2 Прогрессии

Определение 22. Арифметической прогрессией называется числовая последовательность, заданная формулой n-го члена:

$$a_n = a_1 + (n-1) \cdot d$$

Определение 23. Разностью арифметической прогрессии называется разность a_{n+1} и a_n .

Утверждение 4.3. Пусть (a_n) – арифметическая прогрессия, тогда:

$$a_{n+2} - a_{n+1} = a_{n+1} - a_n$$

Утверждение 4.4. Пусть (a_n) – арифметическая прогрессия, тогда:

$$\forall n \in \mathbb{N}, \ n \ge 2 \ \forall k \in \mathbb{N}, \ k < n : \ a_n = \frac{a_{n+k} + a_{n-k}}{2}$$

Теорема 4.5. Сумма первых n членов арифметической прогрессии равна:

$$S_n = n \cdot \left(a_1 + \frac{(n-1) \cdot d}{2}\right) = n \cdot \frac{a_1 + a_n}{2}$$

Доказательство.

$$S_n = a_1 + a_2 + a_3 + \dots + a_n =$$

$$= a_1 + (a_1 + d) + (a_1 + 2d) + \dots + (a_1 + (n - 1) \cdot d) =$$

$$= n \cdot a_1 + d \cdot \left(\frac{(n - 1) \cdot n}{2}\right) =$$

$$= n \cdot \left(a_1 + \frac{(n - 1) \cdot d}{2}\right) =$$

$$= n \cdot \frac{a_1 + (a_1 + (n - 1) \cdot d)}{2} =$$

$$= n \cdot \frac{a_1 + a_n}{2}$$

Определение 24. Геометрической прогрессией называется числовая последовательность, заданная формулой n-го члена:

$$b_n = b_1 \cdot q^{n-1}, b_1 \neq 0, q \neq 0$$

Утверждение 4.6. Пусть (b_n) – геометрическая прогрессия, тогда:

$$\forall n \in \mathbb{N}, n \geq 2: b_n^2 = b_{n-1} \cdot b_{n+1}$$

Доказательство.

$$b_{n-1} \cdot b_{n+1} = b_1 \cdot q^{n-2} \cdot b_1 \cdot q^n = b_1^2 \cdot q^{2n-2} = (b_1 \cdot q^{n-1})^2$$

Теорема 4.7. Сумма первых n членов геометрической прогрессии равна:

$$S_n = b_1 \cdot \frac{1 - q^n}{1 - q}, \ q \neq 1$$

Доказательство.

$$S_n = b_1 + b_2 + b_3 + \dots + b_n =$$

$$= b_1 + b_1 \cdot q + b_1 \cdot q^2 + \dots + b_1 \cdot q^{n-1} =$$

$$= b_1 \cdot (1 + q + q^2 + \dots + q^n) =$$

$$= b_1 \cdot \frac{1 - q^n}{1 - q}$$

5 Эквивалентность и группы

Определение 25. Пусть M – множество, тогда множество $R \subset \{(a, b) \mid a, b \in M\}$ упорядоченных пар элементов M называется бинарным отношением на M.

Определение 26. Бинарное отношение называется отношением эквивалентности, если оно удовлетворяет свойствам:

- 1. Рефлексивность $a \sim a$
- 2. Симметричность $a \sim b \Longleftrightarrow b \sim a$
- 3. Транзитивность $a \sim b, b \sim c \Longleftrightarrow a \sim c$

Теорема 5.1 (Малая теорема Ферма). $\forall n \in \mathbb{N}, p \in \mathbb{P} : n^{p-1} \equiv_p 1$

Определение 27. Бинарной операцией \times на множестве M называется отображение из множества упорядоченных пар $M^2 = \{(a, b) | a, b \in M\}$ в множество M.

Определение 28. Пара $G(M; \times)$, M – множество, \times – бинарная операция, называется группой, если выполняются свойства:

- 1. $\forall a, b \in M : (a \times b) \in M$
- $2. \exists e \in M \ \forall a \in M : e \times a = a$
- 3. $\forall a \in M \ \exists a^{-1} \in M : a \times a^{-1} = a^{-1} \times a = e$
- 4. $\forall a, b, c \in M : (a \times b) \times c = a \times (b \times c) = (a \times c) \times b$

6 Пределы

Определение 29. A называется пределом (x_n) , если:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N \ |x_n - A| < \varepsilon$$

Теорема 6.1.

$$\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} (x_n) + \lim_{n \to \infty} (y_n)$$

Доказательство. Пусть $x_n \to a$; $y_n \to b$. По определению $N_a(\varepsilon): \forall n > N_a(\varepsilon) |x_n - a| < \varepsilon, N_b(\varepsilon): \forall n > N_b(\varepsilon) |y_n - b| < \varepsilon$. Рассмотрим $N_c(\varepsilon): \forall n > N_c(\varepsilon) |x_n + y_n - a - b| < \varepsilon: |x_n + y_n - a - b| \le |x_n - a| + |y_n - b| \le 2\varepsilon$ при $N_c = \max(N_a(\varepsilon); N_b(\varepsilon))$, то есть $2N_c(\varepsilon)$ – это номер, с которого утверждение точно выполняется.

Теорема 6.2 (Теорема Вейерштрасса). Пусть (x_n) монотонна, тогда:

- 1. Она имеет предел в $\mathbb{\bar{R}} = \mathbb{R} \cup \{-\infty; +\infty\}$
- 2. Если она ограничена, то она имеет предел в \mathbb{R}

Доказательство. Пусть (x_n) монотонно возрастает. По определению монотонно возрастающей последовательности: $\forall n: x_{n+1} > x_n$, пусть (x_n) не ограничена, то есть $\nexists m: \forall n: x_n < m$, тогда $\sup(x_n) = +\infty$, а значит $(x_n) \to \infty$. Пусть $\exists m: \forall n: x_n \leq m$ и $m = \sup(x_n)$. Тогда $m = \lim_{n \to \infty} (x_n)$. Доказательство для монотонно убывающей последовательности аналогично.

Теорема 6.3. Пусть (x_n) , (y_n) , (z_n) – последовательности, причем $x_n \leq y_n \leq z_n$, кроме того $\lim_{n\to\infty}(x_n) = a = \lim_{n\to\infty}(z_n)$, тогда $\lim_{n\to\infty}(y_n) = a$.

Лемма 6.4 (Неравенство Бернулли).

$$(1+x)^n \ge 1 + xn, n \in \mathbb{N}, x > 0$$

Доказательство. Докажем по индукции: $(1+x)^1 \ge 1+1\cdot x$ верно, пусть $(1+x)^n \ge 1+xn$ верно, тогда:

$$(1+x)^{n+1} = (1+x)(1+x)^n \ge (1+x)(1+xn) = 1+x+nx+x^2n > 1+(n+1)x$$

Определение 30.

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Доказательство. Рассмотрим $E_n = \left(1 + \frac{1}{n}\right)^{n+1} = \left(\frac{n+1}{n}\right) \cdot e_n$:

 $\left(1+\frac{1}{n}\right)^{n+1} \ge 1+\frac{n+1}{n} > 2$ — последовательность ограничена снизу.

$$\frac{E_{n+1}}{E_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+2}}{\left(1 + \frac{1}{n}\right)^{n+1}} = \frac{\left(\frac{n+2}{n+1}\right)^{n+2}}{\left(\frac{n+1}{n}\right)^{n+1}} = \left(\frac{n+2}{n+1}\right) \cdot \left(\frac{n^2 + 2n}{n^2 + 2n + 1}\right)^{n+1}$$

Рассмотрим $\left(\frac{n^2+2n+1}{n^2+2n}\right)^{n+1}$ и используем неравенство Бернулли:

$$\left(\frac{n^2 + 2n + 1}{n^2 + 2n}\right)^{n+1} = \left(1 + \frac{1}{n^2 + 2n}\right)^{n+1} \ge 1 + \frac{n+1}{n^2 + 2n} = \frac{n^3 + 3n + 1}{n^2 + 2n}$$

То есть $\left(\frac{n^2+2n}{n^2+2n+1}\right)^{n+1} < \frac{n^2+2n}{n^3+3n+1}$, а значит E_n монотонно возрастает. Тогда по теореме Вейерштрасса $\exists !$ предел E_n , а значит $\exists !$ предел e_n .

7 Тригонометрия

Определение 31. Синусом угла в прямоугольном треугольнике называется отношение его противолежащего катета к гипотенузе.

Определение 32. Косинусом угла в прямоугольном треугольнике называется отношение его прилежащего катета к гипотенузе.

Определение 33. Тангенсом угла в прямоугольном треугольнике называется отношение его противолежащего катета к прилежащему или синуса этого угла к его косинусу.

Определение 34. Котангенсом угла в прямоугольном треугольнике называется отношение его прилежащего катета к противолежащему или косинуса этого угла к его синусу.

Утверждение 7.1.

$$\sin^2\alpha + \cos^2\alpha = 1$$

Доказательство. По теореме Пифагора в прямоугольном треугольнике с катетами a и b и гипотенузой c:

$$\sin^2 \alpha + \cos^2 \alpha = \left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 = \frac{a^2 + b^2}{c^2} = 1$$

Утверждение 7.2.

$$tg^2 \alpha + 1 = \frac{1}{\cos^2 \alpha}$$

Доказательство. Если выражение из утверждения 7.1 разделить на $\cos^2 \alpha$, то получим данное выражение.

Утверждение 7.3.

$$\operatorname{ctg}^2 \alpha + 1 = \frac{1}{\sin^2 \alpha}$$

Доказательство. Если выражение из утверждения 7.1 разделить на $\sin^2 \alpha$, то получим данное выражение.

Утверждение 7.4.

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

Доказательство.

По теореме Пифагора:

$$MN = \sqrt{(\cos \alpha - \cos \beta)^2 + (\sin \alpha - \sin \beta)^2} = \sqrt{2 \cdot (1 - \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta)^2}$$

Введем оси координат, повернутые относительно начальной на угол β , тогда:

$$MN = \sqrt{(\cos(\alpha - \beta) - 1)^2 + \sin^2(\alpha - \beta)} = \sqrt{2 \cdot (1 - \cos(\alpha - \beta))}$$

To есть $\sqrt{2 \cdot (1 - \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta)^2} = \sqrt{2 \cdot (1 - \cos(\alpha - \beta))}$, а значит $\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$.

Утверждение 7.5.

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

Доказательство.

$$\cos(\alpha+\beta) = \cos(\alpha-(-\beta)) = \cos\alpha \cdot \cos(-\beta) + \sin\alpha \cdot \sin(-\beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

Утверждение 7.6.

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$$

Доказательство.

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \cos\frac{\pi}{2} \cdot \cos\alpha + \sin\frac{\pi}{2} \cdot \sin\alpha = \sin\alpha$$

Утверждение 7.7.

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

Доказательство.

$$\sin(\alpha+\beta) = \cos\left(\left(\frac{\pi}{2} - \alpha\right) - \beta\right) = \cos\left(\frac{\pi}{2} - \alpha\right) \cdot \cos\beta + \sin\left(\frac{\pi}{2} - \alpha\right) \cdot \sin\beta = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

Утверждение 7.8.

$$\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

Доказательство.

$$\sin(\alpha - \beta) = \sin(\alpha + (-\beta)) = \sin\alpha \cdot \cos(-\beta) + \cos\alpha \cdot \sin(-\beta) = \sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta$$

Утверждение 7.9.

$$tg(\alpha + \beta) = \frac{tg \alpha + tg \beta}{1 - tg \alpha \cdot tg \beta}$$

Доказательство.

$$tg(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} = \frac{\sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta}{\cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta}$$

Тогда если разделить все на $\cos \alpha \cdot \cos \beta$, получим:

$$\frac{\sin\alpha \cdot \cos\beta}{\cos\alpha \cdot \cos\beta} + \frac{\cos\alpha \cdot \sin\beta}{\cos\alpha \cdot \cos\beta} = \frac{\tan\alpha + \tan\beta}{\cos\alpha \cdot \cos\beta} - \frac{\sin\alpha \cdot \sin\beta}{\cos\alpha \cdot \cos\beta} = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \cdot \tan\beta}$$

Утверждение 7.10.

$$tg(\alpha - \beta) = \frac{tg \alpha - tg \beta}{1 + tg \alpha \cdot tg \beta}$$

Доказательство.

$$tg(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} = \frac{\sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta}{\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta}$$

Тогда если разделить все на $\cos \alpha \cdot \cos \beta$, получим:

$$\frac{\sin\alpha \cdot \cos\beta}{\cos\alpha \cdot \cos\beta} - \frac{\cos\alpha \cdot \sin\beta}{\cos\alpha \cdot \cos\beta} = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \cdot \tan\beta} = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \cdot \tan\beta}$$

Утверждение 7.11.

$$\operatorname{ctg}(\alpha + \beta) = \frac{\operatorname{ctg} \alpha \cdot \operatorname{ctg} \beta - 1}{\operatorname{ctg} \alpha + \operatorname{ctg} \beta}$$

Доказательство.

$$\operatorname{ctg}(\alpha+\beta) = \frac{\cos(\alpha+\beta)}{\sin(\alpha+\beta)} = \frac{\cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta}{\sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta}$$

Тогда если разделить все на $\sin \alpha \cdot \sin \beta$, получим:

$$\frac{\frac{\cos\alpha\cdot\cos\beta}{\sin\alpha\cdot\sin\beta} - \frac{\sin\alpha\cdot\sin\beta}{\sin\alpha\cdot\sin\beta}}{\frac{\sin\alpha\cdot\cos\beta}{\sin\alpha\cdot\sin\beta} + \frac{\cos\alpha\cdot\sin\beta}{\sin\alpha\cdot\sin\beta}} = \frac{\cot\alpha\cdot\cot\beta - 1}{\cot\beta + \cot\alpha}$$

Утверждение 7.12.

$$\operatorname{ctg}(\alpha - \beta) = -\frac{\operatorname{ctg} \alpha \cdot \operatorname{ctg} \beta + 1}{\operatorname{ctg} \alpha - \operatorname{ctg} \beta}$$

Доказательство.

$$\operatorname{ctg}(\alpha - \beta) = \frac{\cos(\alpha - \beta)}{\sin(\alpha - \beta)} = \frac{\cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta}{\sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta}$$

Тогда если разделить все на $\sin \alpha \cdot \sin \beta$, получим:

$$\frac{\frac{\cos\alpha\cdot\cos\beta}{\sin\alpha\cdot\sin\beta} + \frac{\sin\alpha\cdot\sin\beta}{\sin\alpha\cdot\sin\beta}}{\frac{\sin\alpha\cdot\cos\beta}{\sin\alpha\cdot\sin\beta} - \frac{\cos\alpha\cdot\sin\beta}{\sin\alpha\cdot\sin\beta}} = \frac{\cot\alpha\cdot\cot\beta + 1}{\cot\beta - \cot\alpha} = -\frac{\cot\alpha\cdot\cot\beta + 1}{\cot\alpha-\cot\beta}$$

Утверждение 7.13.

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

Доказательство.

$$\cos(2\alpha) = \cos(\alpha + \alpha) = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

Утверждение 7.14.

$$\sin(2\alpha) = 2\sin\alpha \cdot \cos\alpha$$

Доказательство.

$$\sin(2\alpha) = \sin(\alpha + \alpha) = 2\sin\alpha \cdot \cos\alpha$$

Утверждение 7.15.

$$tg(2\alpha) = \frac{2 tg \alpha}{1 - tg^2 \alpha}$$

Доказательство.

$$tg(2\alpha) = tg(\alpha + \alpha) = \frac{tg \alpha + tg \alpha}{1 - tg \alpha \cdot tg \alpha} = \frac{2 tg \alpha}{1 - tg^2 \alpha}$$

Утверждение 7.16.

$$\operatorname{ctg}(2\alpha) = \frac{\operatorname{ctg}^2 \alpha - 1}{2\operatorname{ctg} \alpha}$$

Доказательство.

$$\operatorname{ctg}(2\alpha) = \frac{\operatorname{ctg}\alpha \cdot \operatorname{ctg}\alpha - 1}{\operatorname{ctg}\alpha + \operatorname{ctg}\alpha} = \frac{\operatorname{ctg}^2\alpha - 1}{2\operatorname{ctg}\alpha}$$

Утверждение 7.17.

$$\cos(3\alpha) = 4\cos^3\alpha - 3\cos\alpha$$

Доказательство.

$$\cos(3\alpha) =$$

$$= \cos(2\alpha + \alpha) =$$

$$= \cos(2\alpha) \cdot \cos \alpha - \sin(2\alpha) \cdot \sin \alpha =$$

$$= (2\cos^2 \alpha - 1) \cdot \cos \alpha - 2\sin \alpha \cdot \cos \alpha \cdot \sin \alpha =$$

$$= 2\cos^3 \alpha - \cos \alpha \cdot (1 + 2\sin^2 \alpha) =$$

$$= 2\cos^3 \alpha - \cos \alpha \cdot (3 - 2\cos^2 \alpha) =$$

$$= 4\cos^3 \alpha - 3\cos \alpha$$

Утверждение 7.18.

$$\sin(3\alpha) = 3\sin\alpha - 4\sin^3\alpha$$

Доказательство.

$$\sin(3\alpha) =$$

$$= \sin(2\alpha + \alpha) =$$

$$= \sin(2\alpha) \cdot \cos \alpha + \cos(2\alpha) \cdot \sin \alpha =$$

$$= 2\sin \alpha \cdot \cos \alpha \cdot \cos \alpha + (1 - 2\sin^2 \alpha) \cdot \sin \alpha =$$

$$= \sin \alpha \cdot (2\cos^2 \alpha + 1) - 2\sin^3 \alpha =$$

$$= \sin \alpha \cdot (3 - 2\sin^2 \alpha) - 2\sin^3 \alpha =$$

$$= 3\sin \alpha - 4\sin^3 \alpha$$

Утверждение 7.19.

$$\cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$

Доказательство.

$$cos(2\alpha) = 2cos^2 \alpha - 1 \Longleftrightarrow cos^2 \alpha = \frac{1 + cos(2\alpha)}{2}$$

Утверждение 7.20.

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2}$$

Доказательство.

$$\sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \frac{1 + \cos(2\alpha)}{2} = \frac{1 - \cos(2\alpha)}{2}$$

Утверждение 7.21.

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cdot \cos \left(\frac{\alpha - \beta}{2}\right)$$

Доказательство.

$$\begin{aligned} &\cos\alpha + \cos\beta = \\ &= \cos\left(\frac{\alpha+\beta}{2} + \frac{\alpha-\beta}{2}\right) + \cos\left(\frac{\alpha+\beta}{2} - \frac{\alpha-\beta}{2}\right) = \\ &= \cos\left(\frac{\alpha+\beta}{2}\right) \cdot \cos\left(\frac{\alpha-\beta}{2}\right) - \sin\left(\frac{\alpha+\beta}{2}\right) \cdot \sin\left(\frac{\alpha-\beta}{2}\right) + \\ &+ \cos\left(\frac{\alpha+\beta}{2}\right) \cdot \cos\left(\frac{\alpha-\beta}{2}\right) + \sin\left(\frac{\alpha+\beta}{2}\right) \cdot \sin\left(\frac{\alpha-\beta}{2}\right) = \\ &= 2\cos\left(\frac{\alpha+\beta}{2}\right) \cdot \cos\left(\frac{\alpha-\beta}{2}\right) \end{aligned}$$

Утверждение 7.22.

$$\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2} \right) \cdot \sin \left(\frac{\alpha - \beta}{2} \right)$$

Доказательство.

$$\begin{aligned} &\cos\alpha + \cos\beta = \\ &= \cos\left(\frac{\alpha+\beta}{2} + \frac{\alpha-\beta}{2}\right) - \cos\left(\frac{\alpha+\beta}{2} - \frac{\alpha-\beta}{2}\right) = \\ &= \cos\left(\frac{\alpha+\beta}{2}\right) \cdot \cos\left(\frac{\alpha-\beta}{2}\right) - \sin\left(\frac{\alpha+\beta}{2}\right) \cdot \sin\left(\frac{\alpha-\beta}{2}\right) - \\ &- \cos\left(\frac{\alpha+\beta}{2}\right) \cdot \cos\left(\frac{\alpha-\beta}{2}\right) - \sin\left(\frac{\alpha+\beta}{2}\right) \cdot \sin\left(\frac{\alpha-\beta}{2}\right) = \\ &= -2\sin\left(\frac{\alpha+\beta}{2}\right) \cdot \sin\left(\frac{\alpha-\beta}{2}\right) \end{aligned}$$

Утверждение 7.23.

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cdot \cos \left(\frac{\alpha - \beta}{2}\right)$$

Доказательство.

$$\sin \alpha + \sin \beta =$$

$$= \sin \left(\frac{\alpha + \beta}{2} + \frac{\alpha - \beta}{2}\right) + \sin \left(\frac{\alpha + \beta}{2} - \frac{\alpha - \beta}{2}\right) =$$

$$= \sin \left(\frac{\alpha + \beta}{2}\right) \cdot \cos \left(\frac{\alpha - \beta}{2}\right) + \cos \left(\frac{\alpha + \beta}{2}\right) \cdot \sin \left(\frac{\alpha - \beta}{2}\right) +$$

$$+ \sin \left(\frac{\alpha + \beta}{2}\right) \cdot \cos \left(\frac{\alpha - \beta}{2}\right) - \cos \left(\frac{\alpha + \beta}{2}\right) \cdot \sin \left(\frac{\alpha - \beta}{2}\right) =$$

$$= 2\sin \left(\frac{\alpha + \beta}{2}\right) \cdot \cos \left(\frac{\alpha - \beta}{2}\right)$$

Утверждение 7.24.

$$\sin \alpha - \sin \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cdot \sin \left(\frac{\alpha - \beta}{2}\right)$$

Доказательство.

$$\sin \alpha - \sin \beta =$$

$$= \sin \left(\frac{\alpha + \beta}{2} + \frac{\alpha - \beta}{2}\right) - \sin \left(\frac{\alpha + \beta}{2} - \frac{\alpha - \beta}{2}\right) =$$

$$= \sin \left(\frac{\alpha + \beta}{2}\right) \cdot \cos \left(\frac{\alpha - \beta}{2}\right) + \cos \left(\frac{\alpha + \beta}{2}\right) \cdot \sin \left(\frac{\alpha - \beta}{2}\right) +$$

$$- \sin \left(\frac{\alpha + \beta}{2}\right) \cdot \cos \left(\frac{\alpha - \beta}{2}\right) + \cos \left(\frac{\alpha + \beta}{2}\right) \cdot \sin \left(\frac{\alpha - \beta}{2}\right) =$$

$$= 2\cos \left(\frac{\alpha + \beta}{2}\right) \cdot \sin \left(\frac{\alpha - \beta}{2}\right)$$

Утверждение 7.25.

$$tg \alpha + tg \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cdot \cos \beta}$$

Доказательство.

$$tg \alpha + tg \beta = \frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \beta} = \frac{\sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta}{\cos \alpha \cdot \cos \beta} = \frac{\sin(\alpha + \beta)}{\cos \alpha \cdot \cos \beta}$$

Утверждение 7.26.

$$tg \alpha - tg \beta = \frac{\sin(\alpha - \beta)}{\cos \alpha \cdot \cos \beta}$$

Доказательство.

$$tg \alpha - tg \beta = \frac{\sin \alpha}{\cos \alpha} - \frac{\sin \beta}{\cos \beta} = \frac{\sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta}{\cos \alpha \cdot \cos \beta} = \frac{\sin(\alpha - \beta)}{\cos \alpha \cdot \cos \beta}$$

Утверждение 7.27.

$$\operatorname{ctg} \alpha + \operatorname{ctg} \beta = \frac{\sin(\alpha + \beta)}{\sin \alpha \cdot \sin \beta}$$

Доказательство.

$$\operatorname{ctg} \alpha + \operatorname{ctg} \beta = \frac{\cos \alpha}{\sin \alpha} + \frac{\cos \beta}{\sin \beta} = \frac{\cos \alpha \cdot \sin \beta + \sin \alpha \cdot \cos \beta}{\sin \alpha \cdot \sin \beta} = \frac{\sin(\alpha + \beta)}{\sin \alpha \cdot \sin \beta}$$

Утверждение 7.28.

$$\operatorname{ctg} \alpha - \operatorname{ctg} \beta = -\frac{\sin(\alpha - \beta)}{\sin \alpha \cdot \sin \beta}$$

Доказательство.

$$\operatorname{ctg} \alpha - \operatorname{ctg} \beta = \frac{\cos \alpha}{\sin \alpha} - \frac{\cos \beta}{\sin \beta} = \frac{\cos \alpha \cdot \sin \beta - \sin \alpha \cdot \cos \beta}{\sin \alpha \cdot \sin \beta} = \frac{\sin(\beta - \alpha)}{\sin \alpha \cdot \sin \beta}$$

Утверждение 7.29.

$$\cos \alpha \cdot \cos \beta = \frac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{2}$$

Доказательство. Пусть $\tilde{\alpha}=\frac{\alpha+\beta}{2},\,\tilde{\beta}=\frac{\alpha-\beta}{2},$ тогда из утверждения 7.21:

$$2\cos\tilde{\alpha}\cdot\cos\tilde{\beta} = \cos\left(\tilde{\alpha} + \tilde{\beta}\right) + \cos\left(\tilde{\alpha} - \tilde{\beta}\right) \Longleftrightarrow \cos\tilde{\alpha}\cdot\cos\tilde{\beta} = \frac{\cos\left(\tilde{\alpha} + \tilde{\beta}\right) + \cos\left(\tilde{\alpha} - \tilde{\beta}\right)}{2}$$

Утверждение 7.30.

$$\sin \alpha \cdot \sin \beta = -\frac{\cos(\alpha + \beta) - \cos(\alpha - \beta)}{2}$$

Доказательство. Пусть $\tilde{\alpha}=\frac{\alpha+\beta}{2},\,\tilde{\beta}=\frac{\alpha-\beta}{2},\,$ тогда из утверждения 7.22:

$$-2\sin\tilde{\alpha}\cdot\sin\tilde{\beta} = \cos\left(\tilde{\alpha}+\tilde{\beta}\right) - \cos\left(\tilde{\alpha}-\tilde{\beta}\right) \Longleftrightarrow \sin\tilde{\alpha}\cdot\sin\tilde{\beta} = -\frac{\cos\left(\tilde{\alpha}+\tilde{\beta}\right) - \cos\left(\tilde{\alpha}-\tilde{\beta}\right)}{2}$$

Утверждение 7.31.

$$\sin \alpha \cdot \cos \beta = \frac{\sin(\alpha + \beta) + \sin(\alpha - \beta)}{2}$$

Доказательство. Пусть $\tilde{\alpha} = \frac{\alpha + \beta}{2}$, $\tilde{\beta} = \frac{\alpha - \beta}{2}$, тогда из утверждения 7.23:

$$2\sin\tilde{\alpha}\cdot\sin\tilde{\beta} = \sin\Bigl(\tilde{\alpha}+\tilde{\beta}\Bigr) + \sin\Bigl(\tilde{\alpha}-\tilde{\beta}\Bigr) \Longleftrightarrow \sin\tilde{\alpha}\cdot\cos\tilde{\beta} = \frac{\sin\Bigl(\tilde{\alpha}+\tilde{\beta}\Bigr) + \sin\Bigl(\tilde{\alpha}-\tilde{\beta}\Bigr)}{2}$$

Утверждение 7.32.

$$\sin \alpha + \cos \alpha = \sqrt{2} \cdot \sin \left(\frac{\pi}{4} + \alpha\right)$$

Доказательство.

$$\sin \alpha + \cos \alpha = \sqrt{2} \cdot \left(\frac{\sqrt{2}}{2} \cdot \sin \alpha + \frac{\sqrt{2}}{2} \cdot \cos \alpha\right) = \sqrt{2} \cdot \sin \left(\frac{\pi}{4} + \alpha\right)$$

Утверждение 7.33.

$$\operatorname{ctg} \alpha = \frac{1 + \cos(2\alpha)}{\sin(2\alpha)}$$

Доказательство.

$$\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha} = \frac{2 \cos^2 \alpha}{2 \sin \alpha \cdot \cos \alpha} = \frac{1 + \cos(2\alpha)}{\sin(2\alpha)}$$

Утверждение 7.34.

$$tg \alpha = \frac{1 - \cos(2\alpha)}{\sin(2\alpha)}$$

Доказательство.

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{2\sin^2 \alpha}{2\sin \alpha \cdot \cos \alpha} = \frac{1 - \cos(2\alpha)}{\sin(2\alpha)}$$

8 Комплексные числа

Определение 35. Мнимой единицей называется такое число i, что $i^2 = -1$.

Определение 36. Комплексным числом называется выражение вида z=a+bi, где $a={\rm Re}\,z$ – действительная часть, а $b={\rm Im}\,z$ – мнимая.

Определение 37. Число z_1 называется сопряженным к числу z, если $\operatorname{Re} z_1 = \operatorname{Re} z$; $\operatorname{Im} z_1 = -\operatorname{Im} z$. Обозначение: $z_1 = \bar{z}$.

Определение 38. Модулем $z\in\mathbb{C}$ называется $|z|=\sqrt{(\operatorname{Re}z)^2+(\operatorname{Im}z)^2}.$

Определение 39. Комплексная плоскость:

Теорема 8.1 (Формула Муавра).

$$z^n = r^n \cdot (\cos(n\varphi) + i\sin(n\varphi))$$

Доказательство. Докажем по индукции. $z = r \cdot (\cos \varphi + i \sin \varphi)$ верно. Пусть $z^n = r^n \cdot (\cos(n\varphi) + i \sin(n\varphi))$ верно, докажем, что $z^{n+1} = r^{n+1} \cdot (\cos((n+1)\varphi) + i \sin((n+1)\varphi))$ верно.

$$z^{n+1} = z^n \cdot z = r^n \cdot (\cos(n\varphi) + i\sin(n\varphi)) \cdot r \cdot (\cos\varphi + i\sin\varphi) =$$

$$= r^{n+1} \cdot ((\cos(n\varphi) \cdot \cos\varphi - \sin(n\varphi) \cdot \sin\varphi) + i(\cos(n\varphi) \cdot \sin\varphi + \sin(n\varphi) \cdot \cos\varphi)) =$$

$$= r^{n+1} \cdot (\cos((n+1)\varphi) + i\sin((n+1)\varphi))$$

Определение 40. Корнем из комплексного числа называется:

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \left(\frac{\varphi}{n} + \frac{2\pi k}{n} \right) + i \sin \left(\frac{\varphi}{n} + \frac{2\pi k}{n} \right) \right), \ k \in \{1, 2, \dots, n-1\}$$

8.1 Матрицы поворота

Определение 41. Матрицей поворота на угол α называется:

$$R_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} = \cos \alpha \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin \alpha \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \cos \alpha \cdot E + \sin \alpha \cdot I$$

Утверждение 8.2.

$$z = r \cdot (\cos \varphi + i \sin \varphi) \iff z = re^{i\varphi}$$

Доказательство.

$$e^{x} = \lim_{n \to \infty} \sum_{i=0}^{n} \frac{x^{i}}{i!}$$

$$\cos x = \lim_{n \to \infty} \sum_{i=0}^{n} \frac{x^{2i}}{(2i)!} \cdot (-1)^{i}$$

$$\sin x = \lim_{n \to \infty} \sum_{i=0}^{n} \frac{x^{2i+1}}{(2i+1)!} \cdot (-1)^{i}$$

$$e^{ix} = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{x^{k}}{k!} \cdot i^{k} = \cos x + i \sin x$$

9 Логарифмы

Определение 42. Пусть a>0; $a\neq 1,\ b>0$. Логарифмом $\log_a b$ числа b по основанию a называется такое число c, что $a^c=b$. Из этого, а также свойств степеней следует:

$$\log_a 1 = 0 \qquad \qquad \log_a a = 1 \qquad \qquad a^{\log_a b} = b$$

Утверждение 9.1.

$$\log_a b + \log_a c = \log_a(bc)$$

Доказательство.

$$a^{\log_a b + \log_a c} = a^{\log_a b} \cdot a^{\log_a c} = bc = a^{\log_a (bc)}$$

Утверждение 9.2.

$$\log_a b - \log_a c = \log_a \left(\frac{b}{c}\right)$$

Доказательство.

$$a^{\log_a b - \log_a c} = \frac{a^{\log_a b}}{a^{\log_a c}} = \frac{b}{c} = a^{\log_a \left(\frac{b}{c}\right)}$$

Утверждение 9.3.

$$\log_a(b^k) = k \cdot \log_a b$$

Доказательство.

$$a^{\log_a(b^k)} = b^k = (a^{\log_a b})^k = a^{k \cdot \log_a b}$$

Утверждение 9.4.

$$\log_{a^k} b = \frac{1}{k} \cdot \log_a b$$

Доказательство.

$$(a^k)^{\log_{a^k} b} = a^{k \cdot \log_{a^k} b} = b = a^{\log_a b}$$

Следствие 9.4.1.

$$\log_{a^k} \left(b^k \right) = \log_a b$$

Утверждение 9.5.

$$\log_a b = \frac{\log_c b}{\log_c a}, \ \log_c a \neq 0$$

Доказательство.

$$\log_a b = \frac{\log_c b}{\log_c a} \Longleftrightarrow \log_a b \cdot \log_c a = \log_c b$$

$$c^{\log_c b} = b = a^{\log_a b} = \left(c^{\log_c a}\right)^{\log_a b} = c^{\log_a b \cdot \log_c a}$$

Утверждение 9.6.

$$\log_a b = \frac{1}{\log_b a}$$

Доказательство.

$$a^{\frac{1}{\log_b a}} = (b^{\log_b a})^{\frac{1}{\log_b a}} = b = a^{\log_a b}$$

Утверждение 9.7.

$$a^{\log_b c} = c^{\log_b a}$$

Доказательство.

$$a^{\log_b c} = a^{\frac{\log_a c}{\log_a b}} = (a^{\log_a c})^{\frac{1}{\log_a b}} = c^{\frac{1}{\log_a b}} = c^{\log_b a}$$

Определение 43. Натуральным логарифмом $\ln x$ называется логарифм с основанием e.

Определение 44. Десятичным логарифмом $\lg x$ называется логарифм с основанием 10.

9.5 Показательные уравнения и неравенства

$$a^x = a^{x_0} \iff x = x_0$$

$$a^x = b \Longleftrightarrow x = \log_a b$$

$$a^x > a^{x_0} \iff x > x_0$$

$$a^x > b \iff \begin{array}{l} x > \log_a b, \ \mathrm{ec}$$
ли $a > 1$ $x > \log_a b, \ \mathrm{ec}$ ли $0 < a < 1$

9.6 Логарифмические уравнения и неравенства

$$\log_a x = b \iff x = a^b$$

$$\log_a x > b \iff \begin{array}{l} x > a^b, \ \text{если} \ a > 1 \\ x < a^b, \ \text{если} \ 0 < a < 1 \end{array}$$

$$\log_a f(x) < \log_a g(x) \iff \begin{cases} f(x) < g(x) & a > 1 \\ f(x) > 0 & 0 \end{cases}$$
$$\begin{cases} f(x) < g(x) & a > 1 \\ f(x) > g(x) & 0 < a < 1 \end{cases}$$

10 Линейная алгебра

10.1 Координаты на плоскости

Утверждение 10.1. Пусть даны $A(x_1;y_1)$ и $B(x_2;y_2)$. Тогда середина отрезка AB будет иметь координаты $(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2})$, а его длина будет равна $d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$.

Утверждение 10.2. Пусть $A(x_0; y_0) \in \omega(O; r)$, O(a; b), тогда $(x_0 - a)^2 + (y_0 - b)^2 = r^2$.

Утверждение 10.3. Пусть даны $A(x_1; y_1)$ и $B(x_2; y_2)$. Тогда каноническое уравнение прямой, проходящей через A и B будет иметь вид:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

Утверждение 10.4. Пусть даны точка $M(x_0; y_0)$ и прямая l: ax + by + c = 0. Тогда:

$$\rho(M;l) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

10.2 Векторы

Определение 45. Направленным отрезком \overrightarrow{AB} называется отрезок AB, у которого заданы начало A и конец B.

Определение 46. Направленные отрезки \overrightarrow{AB} и \overrightarrow{CD} называются коллинеарными, если $AB \parallel CD$.

Определение 47. Направленные отрезки \overrightarrow{AB} и \overrightarrow{CD} называются конгруэнтными, если они коллинеарны, B и D лежат в одной плоскости относительно AC и их длины равны.

Определение 48. Пусть $\vec{r_1}, \ldots, \vec{r_n}$ – векторы в \mathbb{R}^n . Они называются линейно зависимыми, если $\exists a_1, \ldots, a_n$, не равные одновременно нулю, что $a_1\vec{r_1} + \ldots + a_n\vec{r_n} = 0$.

Определение 49. Пусть X – множество, рассмотрим $X \times X = \{(x;y) \,|\, x,y \in X\}$. Тогда $\rho \subset X \times X$ – бинарное отношение.

Определение 50. Бинарное отношение $\sim \subset X \times X$ называется отношением эквивалентности на множестве X, если $\forall x, y, z \in X : x \sim x; x \sim y \iff y \sim x; x \sim y, y \sim z \iff x \sim z.$

10.3 Линейные пространства

Определение 51. Элементами поля F являются скаляры или векторы. L называется линейным пространством над полем F, если $\forall a, b \in L; \forall \lambda, \mu \in F$:

1.
$$a + b = b + a$$

5.
$$\lambda(\mu a) = (\lambda \mu)a$$

2.
$$(a+b)+c=a+(b+c)$$

6.
$$(\lambda + \mu)a = \lambda a + \mu a$$

$$\exists \vec{0} \in L : a + \vec{0} = a$$

7.
$$\lambda(a+b) = \lambda a + \lambda b$$

$$4. \ \forall a \ \exists b : a+b=\overrightarrow{0}$$

8.
$$1 \cdot a = a$$

Определение 52. Пусть L – линейное пространство над полем F; $u_1, \ldots, u_n \in L$; $\alpha_1, \ldots, \alpha_n \in F$, тогда $\alpha_1 u_1 + \ldots + \alpha_n u_n$ – линейная комбинация. Линейная комбинация называется тривиальной, если $\forall i : \alpha_i = 0$.

Определение 53. Пусть $U \subset L$, множество векторов $\langle U \rangle$, которые не выражаются через элементы U называется линейной оболочкой.

Определение 54. Пусть $\{x_1, \ldots, x_n\}$ – система векторов. Она называется линейно зависимой, если существует нетривиальная линейная комбинация, равная нулю.

Теорема 10.5. Система векторов является линейно зависимой тогда и только тогда, когда один из векторов является линейной комбинацией других.

Определение 55. Система $U = \{u_1, \dots, u_n\}$ линейно независимых векторов линейного пространства L называется базисом, если $\langle U \rangle = L$.

Определение 56. Скалярным произведением векторов $\vec{a} \neq \vec{0}$ и $\vec{b} \neq \vec{0}$ называется величина $|\vec{a}| \cdot |\vec{b}| \cdot \cos \angle (\vec{a}; \vec{b})$. Если \vec{a} и \vec{b} сонаправлены, то угол между ними равен нулю, а если коллинеарны, но не сонаправлены – π :

$$1. \ \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

3.
$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

2.
$$k \cdot (\overrightarrow{a}; \overrightarrow{b}) = (k \cdot \overrightarrow{a}) \cdot \overrightarrow{b} = \overrightarrow{a} \cdot (k \cdot \overrightarrow{b})$$

4.
$$\vec{a} \cdot \vec{b} = \frac{1}{2} \left(|\vec{a} + \vec{b}|^2 - |\vec{a}|^2 - |\vec{b}|^2 \right)$$

10.4 Матрицы

Определение 57. Квадратной матрицей называется матрица, у которой число строк равно числу столбцов.

Определение 58. Квадратная матрица называется верхней треугольной, если $\forall i, j; i > j:$ $a_{ij} = 0.$

Определение 59. Квадратная матрица называется нижней треугольной, если $\forall i, j; i < j: a_{ij} = 0.$

Определение 60. Квадратная матрица называется диагональной, если $\forall i, j; i \neq j: a_{ij} = 0$. Обозначение: $\operatorname{diag}(a_{11}, \dots, a_{nn})$.

Определение 61. Диагональная матрица порядка n, у которой все диагональные элементы равны 1, называется единичной. Обозначение: E или E_n . Элементы единичной матрицы обозначаются δ_{ij} :

$$\delta_{ij} = \begin{cases} 1, \text{ при } i = j \\ 0 \text{ при } i \neq j \end{cases}$$

Определение 62. Квадратная матрица A называется скалярной, если $A = \operatorname{diag}(\lambda, \dots, \lambda)$.

Определение 63. Сумма диагональных элементов матрицы A называется её шпуром или следом. Обозначение: Sp A или $\operatorname{tr} A$.

Определение 64. Матрица B называется транспонированной по отношению к матрице A, если $\forall i, j: b_{ij} = a_{ji}$. Обозначение: $B = A^T$.

Определение 65. Квадратная матрица A называется симметрической, если $A^T = A$.

Определение 66. Квадратная матрица A называется кососимметрической, если $A^T = -A$.

Определение 67. Матрица B называется комплексно сопряжённой по отношению к матрице A, если $\forall i,j: b_{ij} = \overline{a_{ij}}$. Обозначение: $B = \overline{A}$.

Определение 68. Матрица B называется эрмитово сопряжённой по отношению к матрице A, если $\forall i,j: b_{ij} = \overline{a_{ji}}$. Обозначение: $B = A^*$.

Определение 69. Квадратная матрица A называется эрмитовой, если $A^* = A$.

Определение 70. Квадратная матрица A называется косоэрмитовой, если $A^* = -A$.

Определение 71. Матрица называется нулевой, если все её элементы равны нулю. Обозначение: A=O.

Определение 72. Матрица называется неотрицательной, если $\forall i, j: a_{ij} \geq 0$.

Определение 73. Матрица называется стохастической, если:

$$\forall i, j : a_{ij} \ge 0; \forall i \in \{1, \dots, n\} : \sum_{k=1}^{n} a_{ik} = 1$$

10.4.1 Произведение матриц

Определение 74. Пусть даны матрица A размера $m \times n$ и матрица B размера $n \times k$. Их произведением будет матрица размера $m \times k$, в которой:

$$c_{ij} = \sum_{l=1}^{n} a_{il} \cdot b_{lj}$$

Утверждение 10.6. Произведение верхних треугольных матриц является верхней треугольной матрицей.

Определение 75. Пусть A – квадратная матрица порядка n. Матрица B называется обратной к A, если $A \cdot B = B \cdot A = E$. Обозначение: $B = A^{-1}$.

Определение 76. Квадратная матрица A называется ортогональной, если $A^T = A^{-1}$.

Определение 77. Квадратная матрица A называется унитарной, если $A^* = A^{-1}$.

Определение 78. Матрица A называется нильпотентной, если $A^k = O, k \in \mathbb{N}$. Наименьшее из таких k называется показателем нильпотентности матрицы A.

Определение 79. Матрица A называется периодической, если $A^k=E,\,k\in\mathbb{N}.$ Наименьшее из таких k называется периодом матрицы A.

10.4.2 Определитель

Определение 80. Пусть дана перестановка $\begin{pmatrix} 1 & 2 & \cdots & n \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{pmatrix}$. Инверсией называется число таких пар (i;j), что i>j; $\alpha_i<\alpha_j$.

Определение 81. Пусть дана квадратная матрица A порядка n. Если α_i – перестановка чисел от 1 до n, а $N(\alpha_i)$ – число инверсия в α_i перестановке, то определителем матрицы A называется:

$$\det A = \sum_{a_i} (-1)^{N(\alpha_i)} \cdot a_{1\alpha_1} \cdot a_{2\alpha_2} \cdot \ldots \cdot a_{n\alpha_n}$$

Теорема 10.7. Пусть дана квадратная матрица A, M_{ji} – дополнительный минор элемента a_{ji} . Элементы её обратной матрицы можно вычислить по формуле:

$$b_{ij} = \frac{(-1)^{i+j} \cdot M_{ji}}{\det A}$$

Определение 82. Квадратная матрица A называется вырожденной, если $\det A = 0$.

Определение 83. Квадратная матрица A называется невырожденной, если $\det A \neq 0$.

Определение 84. Квадратная матрица A называется унимодулярной, если $|\det A| = 1, \ a_{ij} \in \mathbb{Z}$.

Определение 85. Квадратная матрица A называется матрицей перестановки, если она получена из E перестановкой строк.

Определение 86. Квадратная матрица A называется элементарной, если она получена из E элементарным преобразованием.

10.4.3 Ранг матрицы

Определение 87. Рангом матрицы называется наибольший порядок из всех порядков её ненулевых миноров.

Теорема 10.8 (О базисном миноре). Пусть M_r – базисный минор матрицы A, строки соответствующей матрицы – базисные строки, а столбцы – базисные столбцы. Тогда:

- 1. Базисные строки линейно независимы.
- 3. Любая строка (столбец) матрицы A линейная комбинация базисных строк (столбцов).
- 2. Базисные столбцы линейно независимы.

Доказательство. Пункты 1 и 2 следуют из определения базиса. Без ограничения общности пусть базисный минор находится в левом верхнем углу матрицы A, то есть матрица имеет вид:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1r} & a_{1(r+1)} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2r} & a_{2(r+1)} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rr} & a_{r(r+1)} & \cdots & a_{rn} \\ a_{(r+1)1} & a_{(r+1)2} & \cdots & a_{(r+1)r} & a_{(r+1)(r+1)} & \cdots & a_{(r+1)n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mr} & a_{m(r+1)} & \cdots & a_{mn} \end{pmatrix}$$

Если расширить базисный минор до r+1 строки и r+1 столбца, при этом все его строки и столбцы останутся линейно независимыми, тогда $\operatorname{rank} A = r + 1$, но по условию $\operatorname{rank} A = r$, противоречие.

Теорема 10.9 (Кронекер-Капелли). Система линейных алгебраических уравнений $A \cdot \vec{x} = \vec{b}$ совместна тогда и только тогда, когда $\operatorname{rank} A = \operatorname{rank} \left(A \mid \overrightarrow{b} \right).$

Доказательство. Пусть система совместна, тогда:

$$b_i = \sum_j a_{ji} x_j; \ \overrightarrow{b} = \sum_j \overrightarrow{a_j} x_j$$

To есть, \overrightarrow{b} выражается через $\overrightarrow{a_i}$, а значит rank $A = \operatorname{rank}\left(A \mid \overrightarrow{b}\right)$. Пусть rank $A = \operatorname{rank}\left(A \mid \overrightarrow{b}\right)$. Тогда по теореме о базисном миноре она совместна.

Теорема 10.10 (Правило Крамера). Пусть дана система из n линейных уравнений с n неизвестным вида $A \cdot \vec{x} = \vec{b}$:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Тогда если Δ – определитель матрицы A, то $x_i = \frac{\Delta_i}{\Delta}$, где Δ_i – определитель матрицы A, в которой i-й столбец заменили на вектор свободных членов:

Если $\Delta=0$, то система имеет бесконечно много решений или несовместна.

Теорема 10.11 (Конечномерная альтернатива Фредгольма). Пусть дана система из m линейных уравнений с n неизвестными вида $A \cdot \vec{x} = \vec{b}$:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Тогда выполняется одно из двух условий:

- 1. Система имеет 1 решение для любого \vec{b} и соответствующая однородная система уравнений имеет только тривиальное решение.
- 2. Соответствующая однородная система уравнений имеет нетривиальное решение, тогда $\exists \ \overrightarrow{b} : A \cdot \overrightarrow{x} = \overrightarrow{b}$ не имеет решений.

Доказательство.

- 1. Пусть $\det A \neq 0$. Тогда все столбцы A называются векторами n-мерного пространства, при этом они линейно независимы, то есть они образуют в этом пространстве базис. Тогда $\overrightarrow{b} = x_1\overrightarrow{a_1} + x_2\overrightarrow{a_2} + \ldots + x_n\overrightarrow{a_n}$; любой вектор этого пространства выражается единственным образом через линейную комбинацию базисных векторов. Система имеет единственное решение. Поскольку векторы $\overrightarrow{a_1}, \overrightarrow{a_2}, \ldots, \overrightarrow{a_n}$ линейно независимы, то нулю может равняться только их тривиальная комбинация.
- 2. Пусть $\det A = 0$. Векторы $\overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_n}$ линейно зависимы, поэтому существует их нетривиальная линейная комбинация, равная нулю. $\dim \langle \overrightarrow{a_i} \rangle = k < n$. Пусть при любом \overrightarrow{b} система имеет решение. Тогда любой \overrightarrow{b} выражается через линейную комбинацию $\overrightarrow{a_i}$, то есть $\{\overrightarrow{a_i}\}$ базис в n-мерном пространстве. Противоречие.