Fonctions primitives

EL KYAL MOHAMED

> <u>Définition</u>:

Soit f une fonction définie sur un intervalle I

On dit que F est **une fonction primitive** de f sur I si :

- \bullet F est derivable sur I
- $\bullet \quad \forall x \in I \qquad F'(x) = f(x)$

> Existence et unicité des primitives:

Toute fonction continue sur un intervalle I admet des primitives sur I

Si f admet une primitive F sur un intervalle I alors toute fonction G définie sur I

 $par: G\left(x\right) = F\left(x\right) + k \qquad \left(k \in \mathbb{R}\right) \text{ est aussi une primitive de } f \text{ sur } I$

Soit f une fonction admettant des primitives sur un intervalle ${\cal I}$

soit $x_{\scriptscriptstyle 0}$ un élément de I et $y_{\scriptscriptstyle 0}$ un réel, ll existe une seule primitive F de f sur I

vérifiant la condition $\,F\left(x_{_{\scriptstyle 0}}\right)=\,y_{_{\scriptstyle 0}}$

> Propriété de linéarité des primitives :

Si F et G des fonctions primitives respectives de f et g sur un intervalle I et si k un réel alors :

- ullet $\left(F+G\right)$ est une fonction primitive de $\left(f+g\right)$ sur I
- ullet kF est une fonction primitive de $k\!f$ sur I

> Formulaire: primitives des fonctions usuelles :

f x	$oldsymbol{F}^{-} oldsymbol{x}$
$a\in\mathbb{R}$	ax + k
x	$\frac{1}{2}x^2 + k$
$\frac{1}{x^2}$	$\frac{-1}{x} + k$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x} + k$
x^r	$\frac{x^{r+1}}{r+1} + k$
$\frac{1}{x}$	$\ln \left x \right + k$
e^x	$e^x + k$
$\sin x$	$-\cos x + k$
$\cos x$	$\sin x + k$
$1 + \tan^2 x = \frac{1}{\cos^2 x}$	$\tan x + k$

 $k \in \mathbb{R}$

> Primitives des fonctions composés :

 $\left(r\in\mathbb{Q}^*\!-\!\left\{-1\right\}\right)$

	f x	$oldsymbol{F}^{-}x$
	$\frac{u' \ x}{\sqrt{u \ x}}$	$2\sqrt{u \ x} + k$
$(r \in \mathbb{Q}^* - \{-1\})$	$u' x \times [u \ x]^r$	$\frac{\left[\begin{array}{c c} u & x\end{array}\right] r+1}{r+1}+k$
	$\frac{u' x}{u x}$	$\ln \left u \right x + k$
	$u' x \times e^{u x}$	$e^{u x} + k$
	$u' x \times \sin \left[u x \right]$	$-\cos\left[u\ x\ \right]+k$
	$u' x \times \cos \left[u x \right]$	$\sin \left[u \ x \ \right] + k$

 $k \in \mathbb{R}$

Résumé maths bac

 $@: \underline{elkyalmaths@gmail.com}\\$

D: 0628481487

Page 21