CS3 Case Study Rubric - Chest X-Ray Classification

Purpose

This case study puts you in the role of a data scientist building a diagnostic tool to assist in identifying pneumonia from chest X-rays. You'll engage with deep learning tools, evaluate classification performance, and consider model interpretability in a healthcare context. The aim is to replicate and understand the decisions made in the original project while contributing new insights or visualizations.

What You'll Do

You will:

- Review the original project and code using the provided GitHub repository.
- Analyze the model's architecture (EfficientNetV2S) and its training pipeline.
- Evaluate model performance using confusion matrices, accuracy, and loss graphs.
- Write a short reflection (~1 page) that summarizes the project and adds your own analysis, suggestions, or critiques.
- Submit all work in the form of a Jupyter/Colab notebook and a short written case study.

Deliverables

1. Colab Notebook

- Includes: model summary, visualizations (e.g., loss curves, confusion matrix), and comments explaining your findings.
- Optional: experiment with modifications (e.g., try transfer learning or change loss function).

2. Mini Case Study Write-up (PDF)

- Executive summary of the project
- Your critique (what worked well, what could be improved)
- Reflections on model performance and applicability to healthcare

3. Submission

- o Add your notebook and PDF to the GitHub repo
- o Ensure the repo README is updated to include your name and section
- Submit the GitHub link via Canvas

Assessment Criteria

Criterion	Excellent (90–100%)	Good (80–89%)	Satisfactory (70–79%)	Needs Improvement (<70%)
Data Preparation	Data thoroughly preprocessed; steps clearly documented and reproducible.	Data preprocessed adequately; most steps documented.	Basic preprocessing with minimal documentation.	Preprocessing incomplete or poorly documented.
Model Implementation	Model implemented clearly and correctly; code is well-commented and easy to follow.	Model implemented with minor errors or incomplete comments.	Model implemented but unclear or with significant gaps.	Model contains major errors or is poorly constructed.
Evaluation & Visualization	Thorough evaluation using multiple metrics (accuracy, loss, confusion matrix); insightful visualizations included.	Evaluation includes key metrics and visuals with minor gaps.	Basic evaluation; visuals present but could be clearer or deeper.	Evaluation is missing, unclear, or lacks meaningful visuals.
Final Report	Concise, well-structured, and insightful; clearly explains results and implications.	Clear and informative report with some issues in clarity or depth.	Covers main points but lacks strong analysis or reflection.	Report is incomplete, vague, or lacks key insights.