LECTURER: DR. TAI LE QUY

ANALYTICAL SOFTWARE AND FRAMEWORKS

INTRODUCTORY ROUND

Who am I?

- Name: Tai Le Quy
- PhD at L3S Research Center Leibniz
 University Hannover
 - Research topic: Fairness-aware machine learning in educational data mining
- MSc in Information Technology at National University of Vietnam
- Profile: <u>tailequy.github.io</u>
- Email: tai.le-quy@iu.org
- Materials: https://github.com/tailequy/IU-SoftwareFrameworks

INTRODUCTORY ROUND

Who are you?

- Name
- Employer
- Position/responsibilities
- Fun Fact
- Previous knowledge? Expectations?

TOPIC OUTLINE

Introduction to Analytical Software and Frameworks	1
Data Storage	2
Statistical Modeling Frameworks	3
Machine Learning and Artificial Intelligence Frameworks	4
Cloud Computing Platforms, On-Premise Solutions, Distributed Computing	5
Database Technology	6

UNIT 1

INTRODUCTION TO ANALYTICAL SOFTWARE AND FRAMEWORKS

- Understand what is meant by a software system and a framework
- Understand how frameworks support implementing data analytics
- Have an overview of advantages and challenges of distributed computing systems
- Understand how data warehousing differs from transactional database architectures

- 1. What is a software system?
- 2. How do frameworks and libraries support data analytics?
- 3. What are benefits and challenges of distributed computing systems?
- 4. What separates data warehousing from other database architectures?

A Software System is "a system made up of software, hardware, and data that provides its primary value by the execution of the software."

 In data analytics we use AND (may) build software systems, at least if it's not just about one-off tasks/analyses.

The main objectives of choosing a software system:

- achieve higher level of productivity,
- gain greater insight into a specific application, and
- obtain advantage of new opportunities.

EXAMPLE OF SOFTWARE SYSTEMS

Software system	Description	Examples
Customer relationship management (CRM)	Store and analyze important customers' interactive data and facilitate monitoring of sales processes	Salesforce, HubSpot, Monday sale CRM
Enterprise resource planning (ERP)	Simplify management of dozens of projects and resources, and to ensure an effective, real-time allocation of elements in the processes	Microsoft Dynamics 365, Oracle Netsuite, SAP S/4HANA
Project management	Manage resources and execute related projects: scheduling, cost analysis, etc.	Monday, Microsoft Project, Asana
Business process management (BPM)	Analyze complex data and quick automation of strategic business processes through web-based modeling and a user interface	Oracle BPM, MS Power Automat, IBM Business Automation Workflow
Database management	Allows user interaction to create and modify the associated business's data	Oracle, MySQL, Microsoft SQL Server, MongoDB
Scheduling management	Assign jobs and create machine schedules.	Monday.com, Workday

FRAMEWORK

"A model of a particular domain or an important aspect thereof providing a reusable design and implementation to be extended and customized by clients to produce specialized applications."

SOFTWARE FRAMEWORK

- A software framework is a reusable, semi-complete application that can be customized to produce specialized applications.
- It contains a collection of classes, which are object-oriented code modules written in a specific programming language. There are a set of actions spread over these classes, which may require further subclasses to be performed.
- A developer will normally customize a framework to a specific application by "subclassing" and composing instances of framework classes
- In conventional subroutine calls, we write the main procedure and call the code we want to reuse. However, in frameworks, we reuse the main procedure and write the code it calls.

FRAMEWORKS

Examples in data analytics

- Function of a framework
 - manage information
 - manipulate data
 - construct visuals
 - coordinate resources
 - calculate statistics
 - produce learning models

FRAMEWORKS

Significantly **reduce effort and accelerate development** of highquality software systems

- Built to be *reused*, to be adapted and extended where needed
- Simplify development by defining conventions, restrictions, and guidelines
- Reduce code writing focused on higher level functionality
- Embed knowledge and best practices

FRAMEWORK PROPERTIES

Property	Description	
Modularity	 Stable interfaces that encapsulate volatile implementation details Points of planned variability to extended behavior (hotspots) Design and implementation changes limited to these points to reduce the effort required to understand/sustain the framework 	
Reusability	 Stable interfaces define generic components that can be extended Reuse of framework components improves developer efficiency 	
Extensibility	 Providing explicit hook methods for planned variability, essential to ensure rapid customization of new application features 	
Inversion of control	 The flow of control not dictated by users, but by the framework itself Enables canonical application processing steps to be customized by hotspots 	
Non-modifiable code	 The framework source code supposed to be extended but not modified 	

FRAMEWORKS CATEGORIES

Category	Description
Technology frameworks	provide a standard and generic software foundationexamples: COM, CORBA, and Java
Application frameworks	 implement the standard structure of an application examples: ModelView Controller, Microsoft Foundation Classes, Mac-App/ACS
Business frameworks	 domain-specific, business solution that can be extended into an organization examples: Enterprise Resource Planning (ERP), San Francisco Business Objects (Taligent/IBM), Oracle Enterprise Architecture Framework
Web-based frameworks	 designed to support development of dynamic websites, web applications, web services, and web resources examples: Zope (Zope Corporation), Apache Struts, Django, Ruby on Rails, Symfon

FRAMEWORKS IN DATA ANALYTICS SUPPORT AT

DISTRIBUTED COMPUTING AND SYSTEMS

"A distributed system is a collection of autonomous computing elements [or 'nodes'] that appears to its users as a single coherent system."

- Nodes are able to behave independently of each other.
- Nodes collaborate to serve a common goal.
- Nodes are interconnected to collaborate.

DISTRIBUTED COMPUTING AND SYSTEMS

IT Services of a Bank's Distributed System Authorization services Customer information services Network **Trading services** ATM services

	Centralized System	Distributed System Availability AP Partition tolerance	
Autonomy	One central system with non-autonomous components	Multiple autonomous computers (nodes)	
Homogeneity	Built using homogenous technology	(May be) built using heterogenous technology	
Point(s) of control and failure	Single point of control/failure	Multiple points of control/failure, failing node(s) may not cause a failing system at whole	
Availability	_All resources are consistently available or not at all (CA)	Some resources may not be available at all times (CP)	
Consistency		Some resources may not be consistent at all times (AP)	

Advantages

- Potential for improved reliability,
 resilience, availability,
 performance by avoiding single
 point of control and failure
- Expandability by adding new nodes to the system (horizontal scaling/scaling out)
- Potential for cost reductions

Challenges

- Network reliance and latency
- Added complexity with overhead for coordination and communication of nodes,
- Added security threats
- Multiple points of failure (some potentially out of your control)
- Harder to monitor, develop, test, maintain

THREE DIMENSIONS OF A DISTRIBUTED SYSTEMS

TRADITIONAL FILE APPROACH

Example of the Traditional File Approach Index 5 6 9 10 n Record#1 S M T H APR 12 Record#2 JAN M 03 A Record#m E R S 17 OCT A N D 0 N Family name Birth date

"[A **database** is] any collection of data, or information, that is specially organized for rapid search and retrieval by a computer. Databases are structured to facilitate the storage, retrieval, modification, and deletion of data [...]"

 Database Management Systems (DBMS) provide operations for reliable, secure, flexible, and comfortable access and management of the data stored in a database.

DATABASE HIERARCHY

DIFFERENT VIEWS

Different Views on the Same Database View of human resource manager Hourly rate D.O.B. Hire date Marital status Benefits code SSN Name View of payroll personnel View of project manager Hourly rate Hours worked SSN Benefits code Hours worked Name

RATIONAL DATABASE MODELS

- Assigns the data into tables
 with rows to represent the
 records and columns to
 represent the fields.
- There are "primary keys" that are considered as unique identifiers for each record and can be used to link fields among several tables
- "Foreign keys" with relationships to the other table

Workout Studio database

OBJECT-ORIENTED DATABASE (ODB) MODEL

- Combines the storage of data and their associated procedures to access/retrieve them
- ODBs store data objects, not records.

TODAY, WE MAY CHOOSE FROM A WIDE VARIETY OF HIGH-QUALITY DATABASE SYSTEMS

DATABASE SYSTEMS

	STANDARD DATABASE MODEL	DATA WAREHOUSE
	Online Transaction Processing (OLTP)	Online Analytical Processing (OLAP)
Focus	Operational support of business processes	Strategical (analytical) support of business processes
Primary data access	Creates, reads, updates, or deletes data records (CRUD)	Mostly reads data records
Transaction size	Many small transactions with megabytes to gigabytes of data	Long queries with gigabytes to terabytes of data
Time focus	Focus on current data	Focus on historical and aggregated data
User#	Available for thousands of users (e.g., operating users)	Available for hundreds of users (e.g., decision makers and analysts)
Data dimensions	Data in two-dimensional tables of columns and rows (in RDBMS)	Data in multi-dimensional layers

DATA WAREHOUSE (DWH)

"A data warehouse is a [...] data architecture that tracks integrated, consistent, and detailed data over time, establishing relationships between them using metadata and schema."

SUBJECT-ORIENTED

Reflecting business entities and processes of the organization

INTEGRATED AND CONSISTENT

Standardized formats and values, complete, accurate and integer

TIME VARIANT AND NON-VOLATILE

Captures and tracks data changes over time

METADATA, SCHEMA, AND THE DATA DICTIONARY

Describing context of data and their structure

- Extracted from transactional databases
- Transformed and cleansed to follow unified formats using common set of enterprise definitions
- Loaded and transferred into the DWH

THREE-TIER ARCHITECTURE

- Bottom tier: data from many different sources
- Middle tier: OLAP server transforms the data into a structure better suited for analysis and complex querying
- Top tier: client layer high-level data analysis, querying reporting, and data mining

ETL VS. ELT

Extract, Transform, Load (ETL)

Extract Load Transform (ELT)

REVIEW STUDY GOALS

- Understand what is meant by a software system and a framework
- Understand how frameworks support implementing data analytics
- Have an overview of advantages and challenges of distributed computing systems
- Understand how data warehousing differs from transactional database architectures

SESSION 1

TRANSFER TASK

Gather in groups of 2—3 to work on the following question.

What could a transactional database (OLTP) for companies in the following sectors store to support their core business?

Banking, Airlines, Universities, Telecommunication, Finance, Sales & Production, Manufacturing, HR Management, Social Network

Gather in groups of 2—3 to work on the following question.

What could a Data Warehouse for companies in the following sectors store to support their core business?

Banking, Airlines, Universities, Telecommunication, Finance, Sales & Production, Manufacturing, HR Management, Social Network

Gather in groups of 2—3 to work on the following task.

Please discuss and decide if the following artefacts illustrate a (transactional) database or a Data Warehouse! What are the reasons supporting your decision?

TRANSFER TASK

Sales Reps

Sales Rep ID (PK)	Sales Rep Name	District

Customers

Customer ID (PK)	Customer Name	Sales Rep ID (FK)

Invoices

Invoice#	Customer ID	Date	•••

TRANSFER TASK

Sales Reps

Sales Rep ID (PK)	Sales Rep Name	District	

Customers

Customer ID (PK)	Customer Name	Sales Rep ID (FK)	Sales Rep Name

Invoices

Invoice#	Customer ID	Date	Sales Rep Name	District	•••

TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.

1. The software system used for analyzing complex data and quickly automating strategic business processes through web-based modeling and user interface is called ...

- a) project management.
- b) business process management.
- c) customer relation management.
- d) database management.

2. Which property of a software framework ensures the flow of control is dictated by the framework itself (not the users)?

- a) Non-modifiable code
- b) Modularity
- c) Inversion of control
- d) Extensibility

3. Which of the following is not an issue with a distributed computing system?

- a) Performance improvement
- b) Network reliability
- c) Security
- d) Multiple points of failure

LIST OF SOURCES

Britannica Encyclopaedia (2021). database. Encyclopedia Britannica. https://www.britannica.com/technology/database

Object Management Group (2018). Kernel and Language for Software Engineering Methods. http://semat.org/essence-1.2

Riehle, D. (2000). Framework Design: A Role Modeling Approach. Ph.D. Thesis, No. 13509. Zürich, Switzerland, ETH Zürich.

Statista (2021a). DB-Engines. (June 14, 2021). Popularity comparison of database management systems (DBMSs) worldwide as of June 2021, by category. https://www.statista.com/statistics/1131595/worldwide-popularity-database-management-systems-category/

Statista (2021b). DB-Engines. (June 14, 2021). Ranking of the most popular database management systems worldwide, as of June 2021. https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-systems/

Statista (2021c). DB-Engines. (June 14, 2021). Popularity comparison of database management systems (DBMSs) worldwide as of June 2021, by license. https://www.statista.com/statistics/1131575/worldwide-popularity-database-management-systems-license/

 $Teradata~(2021).~\textit{What is Data Warehousing?}~ \underline{\text{https://www.teradata.de/Glossary/What-is-Data-Warehousing}}$

Van Steen, M., & Tanenbaum, A.S. (2017). Distributed Systems (3rd ed.). https://distributed-systems.net

© 2021 IU Internationale Hochschule GmbH
This content is protected by copyright. All rights reserved.
This content may not be reproduced and/or electronically edited, duplicated, or distributed in any kind of form without written permission by the IU Internationale Hochschule GmbH.