Project #2 Assignment

03.06.2021

Project #2 Assignment

20 instructions

- R-format (6): balrz, brn, brz, sll, sllv, srlv
- I-format (11): andi, nori, xori, bgez, bgezal, bgtz, bltz, jalm, jm, jsp, jspal
- J-format (3) :balz, bz, jal

especially, jump and branches

Project #2 Assignment

You must

- 1) determine which instructions are actual in the current ISA.
- determine which instructions are already implemented in the 'MIPS-lite' processor.
- design the revised single-cycle datapath and revised control units which make a processor that executes all your instructions.
- 4) implement "your" single cycle processor in Verilog HDL.
- 5) prepare a simulation for the demo.

Some existing instructions

Single-cycle Datapath

- Your Goal&Task
 - extend MIPS ISA (instruction set architecture)
 - modify datapath and control
 - single-cycle processor implementation

We already have in the course book

- page 279
- MIPS Reference Data Card
- Appendix B

3 steps

1) RTL

2) Changes to the Datapath

3) Design the Control table(s)

3 aspects of control Instructions

1. the change of control is conditional or unconditional

2. a return address link is stored or not

3. which option for the target address is chosen

3 aspects of control Instructions

Status register

<u>Conditional change of control (branch)</u> if Status [Z] = 1

instruction	syntax	branch address	link address
balrz	balrz \$rs, \$rd	PC ← R[rs]	R[rd] ← PC + 4
brz	brz \$rs	$PC \leftarrow R[rs]$	
bz	bz Target	Pseudo-direct address PC ← BAddr PC ← PC[31:28] [25:0] 00	
balz	balz Target	Pseudo-direct address PC ← Baddr	$R[31] \leftarrow PC + 4$

<u>Unconditional change of control (jump)</u>

instruction	syntax	jump address	link address
jm	jm imm16(\$rs)	PC ← M	
jalm	jalm \$rt, imm16(\$rs)	PC ← M	$R[rt] \leftarrow PC + 4$
jsp	jsp	PC ← R[29]	
jspal	jspal	PC ← R[29]	$M[R[29]] \leftarrow PC + 4$

R-format

balrz rs, rd

0	rs	0	rd	0	22
6	5	5	5	5	6

I-format

xori rs, rt, Imm

14	rs	rt	immediate
6	5	5	16

J-format

jal target

3	target
6	26

Control Units

