Homework 1

The questions below are due on Sunday September 17, 2017; 11:00:00 PM.

You are not logged in.

If you are a current student, please Log In (https://introml.mit.edu/fall17/homework /hw01?loginaction=login) for full access to this page.

1) PERCEPTRON MISTAKES

Let's apply the perceptron algorithm (through the origin) to a small training set containing three points:

i	Data Points $x^{(i)}$	Labels $y^{(i)}$
1	[1, -1]	1
2	[0, 1]	-1
3	[-1.5, -1]	1

Given that the algorithm starts with $\theta^{(0)}=0$, the first point that the algorithm sees is always a mistake. The algorithm starts with *some* data point (to be specified in the question), and then cycles through the data until it makes no further mistakes.

1.1) Take 1

1) How many mistakes does the algorithm make until convergence if the algorithm starts with data point $x^{(1)}$?

Number of mistakes is 2

2) Which plot(s) correspond to the progression of the hyperplane as the algorithm cycles? Ignore the initial 0 weights.

Please provide the plot number(s) in the order of progression as a Python list.

[2,3]

3) How many mistakes does the algorithm make if it starts with data point $x^{(2)}$ (and then does $x^{(3)}$ and $x^{(1)}$)?

Number of mistakes is 1

4) Which plot(s) correspond to the progression of the hyperplane as the algorithm cycles? Ignore the initial 0 weights.

Please provide the plot number(s) in the order of progression as a Python list.

[1]

1.2) Take 2

Now assume that $x^{(3)} = [-10, -1]$, with label 1.

1) How many mistakes does the algorithm make until convergence if cycling starts with data point $x^{(1)}$?

2 of 9

Number of mistakes is	6		

2) How many mistakes if it starts with data point $x^{(2)}$?

lumber of mistakes is 1	·

2) DUAL VIEW

The following table shows a data set and the number of times each point is misclassified during a run of the perceptron algorithm (with offset). θ is initialized to zero.

i	$x^{(i)}$	$y^{(i)}$	times misclassified
1	[-3,2]	1	2
2	[-1, 1]	-1	4
3	[-1,-1]	-1	2
4	[2,2]	-1	1
5	[1,-1]	-1	0

1) What is the post training θ ?

2) What is the post training θ_0 ?

3) DECISION BOUNDARIES

3.1) AND

Consider the AND function defined over three binary variables: $f(x_1,x_2,x_3)=(x_1\wedge x_2\wedge x_3)$.

We aim to find a heta such that, for any $x=[x_1,x_2,x_3]$, where $x_i\in\{0,1\}$:

$$\theta \cdot x + \theta_0 > 0$$
 when $f(x_1, x_2, x_3) = 1$, and

$$\theta \cdot x + \theta_o < 0 \text{ when } f(x_1, x_2, x_3) = 0.$$

1) For each of the combination of values of (x_1, x_2, x_3) , that is, [(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)] enter the values of $f(x_1,x_2,x_3)$.

2) Assuming $\theta_0=0$ (no offset), enter θ as a Python list of length 3 or enter 'none' as a Python string (with quotes) if none exists.

```
Enter a Python list of 3 numbers or the string 'none'

'none'
```

3) Assuming θ_0 is non-zero (offset), enter a θ and θ_0 as a Python list of length 4 (θ_0 last) or enter 'none' as a Python string (with quotes) if none exists.

```
Enter a Python list with 4 numbers or the string 'none'.

[4, 3, 2, -8]
```

3.2) Families

You are given the following labeled data points:

- ullet Positive examples: [-1,1] and [1,-1],
- \bullet Negative examples: [1,1] and [2,2].

For each of the following parameterized families of classifiers, find the parameters of a family member that can correctly classify the above data, or think about why no such family member exists.

Is there a classifier of the following forms that can correctly classify the above data?

1) Inside or outside of an origin-centered circle with radius r

```
Enter a value for r or the string 'none' if none exists.'

'none'
```

2) Inside or outside of a circle centered on x_0 with radius r

Enter a list with 3 entries for coordinates of x_0 and r ([x0_1,x0_2,r]) or the string 'none' if
none exists. [2, 2, 2]

3) On one side of a line through the origin with normal heta

```
Enter a list with 2 entries for coordinates of \theta or the string 'none' if none exists.'
```

4) On one side of a line with normal θ and offset θ_0 .

```
Enter a list with 3 entries for coordinates of \theta and \theta_0 ([theta_1, theta_2, theta0])or the string 'none' if none exists.'
```

5) Which of the above are families of linear classifiers?

```
Enter a Python list with a subset of the numbers 1, 2, 3, 4.
```

4) INITIALIZATION

1) If we were to initialize the perceptron algorithm with $\theta = [1000, -1000]$, how would it effect the number of mistakes made in order to separate the data set from question 1?

2) Provide a value of $\theta^{(0)}$ for which running the perceptron algorithm (through origin) on the data set from question 1 returns a different result then using $\theta^{(0)}=0$. The data set is repeated below:

i	Data Points $x^{(i)}$	Labels $y^{(i)}$
1	[1,-1]	1
2	[0, 1]	-1
3	[-1.5,-1]	1

Enter 2 values for θ as a Python list or the string 'none' if none exists.'

3) This question is a placeholder. Please ignore it.

5) MISTAKES AND GENERALIZATION

5.1) Plots

Consider the following plots. For each one estimate plausible values of R and γ . Consider values of R in the range [1,10] and values of γ in the range [0.01,2].

[0.1, 2.1]

Enter a Python list with 2 floats, a value of R and a value of gamma

[0.4, 2.1]

Enter a Python list with 2 floats, a value of R and a value of gamma

[0.01, 2.1]

7/17/2018, 11:10 AM

Enter a Python list with 2 floats, a value of R and a value of gamma $\,$

[0.2, 10]

5.2) Mistake Bound

1) What is an upper bound on mistakes when R=1, d=4, n=1000 for each of the following values of γ ?

Enter a Python list with 7 floats.

[9999999999.999996, 100000000.0, 1000000.0, 10000.

2) Here is a plot, for R=1, d=4, n=1000 of the actual numbers of mistakes made by the perceptron on one particular run, as a function of γ .

The actual numbers of mistakes (on y axis) are: [862, 414, 446, 198, 14, 8, 4].

Are the data consistent with the theory? Yes.

6) SEPARATION

Write a Python procedure that takes as input a dataset that is:

- not linearly separable without an offset
- linearly separable with an offset

and returns a new data set such that running perceptron without offset on this new data set should enable us to find a separator for the original data set. This transformation should be the same independent of the data values; in particular, it should not need to know the separator.

The input data set is specified by a d by n data array and a 1 by n labels array. The output of the procedure should be a tuple of a data array and a label array, but possibly with a dimension different from d.

```
1 import numpy as np
2
3 #row of 1s on the original data, that accounts for the theta_o.
4 #output: (d+1,n)|
5 def new_data(data, labels):
6    n = data.shape[1]
7    return np.vstack((np.array([[1]*n]), data)), labels
8
```

9 of 9