Practical 6

Implementation of Logistic regression

```
#import pandas
import pandas as pd
#col_names = ['pregnant', 'glucose', 'bp', 'skin', 'insulin',
#'bmi', 'pedigree', 'age', 'label']
# load dataset
pima = pd.read_csv("diabetes.csv")
```

pima.head()

→		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigre
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	

Model Development and Prediction

First, import the Logistic Regression module and create a Logistic Regression classifier object using LogisticRegression() function.

Then, fit your model on the train set using fit() and perform prediction on the test set using predict().

```
# import the class
from sklearn.linear_model import LogisticRegression

# instantiate the model (using the default parameters)
logreg = LogisticRegression()
```

```
# predict the model
y_pred=logreg.predict(X_test)
```

fit the model with data

Model Evaluation using Confusion Matrix

A confusion matrix is a table that is used to evaluate the performance of a classification model. You can also visualize the performance of an algorithm.

The fundamental of a confusion matrix is the number of correct and incorrect predictions are summed up class-wise.

Here, you can see the confusion matrix in the form of the array object. The dimension of this matrix is 2*2 because this model is binary classification.

You have two classes 0 and 1. Diagonal values represent accurate predictions, while nondiagonal elements are inaccurate predictions.

In the output, 117 and 38 are actual predictions, and 24 and 13 are incorrect predictions.

Visualizing Confusion Matrix using Heatmap

Let's visualize the results of the model in the form of a confusion matrix using matplotlib and seaborn.

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
class_names=[0,1] # name of classes
fig, ax = plt.subplots()
tick_marks = np.arange(len(class_names))
plt.xticks(tick_marks, class_names)
plt.yticks(tick_marks, class_names)
# create heatmap
sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu" ,fmt='g')
ax.xaxis.set_label_position("top")
plt.tight_layout()
plt.title('Confusion matrix', y=1.1)
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
```

Text(0.5, 427.955555555555, 'Predicted label')

import required modules

Confusion matrix

Confusion Matrix Evaluation Metrics

Let's evaluate the model using model evaluation metrics such as accuracy, precision, and recall.

```
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
print("Precision:",metrics.precision_score(y_test, y_pred))
print("Recall:",metrics.recall_score(y_test, y_pred))
```

Well, you got a classification rate of 80%, considered as good accuracy.

Precision: Precision is about being precise, i.e., how accurate your model is. In other words, you can say, when a model makes a prediction, how often it is correct. In your prediction case, when your Logistic Regression model predicted patients are going to suffer from diabetes, that patients have 74% of the time.

Recall: If there are patients who have diabetes in the test set and your Logistic Regression model can identify it 61% of the time.

→ ROC Curve

Receiver Operating Characteristic(ROC) curve is a plot of the true positive rate against the false positive rate. It shows the tradeoff between sensitivity and specificity.

```
y_pred_proba = logreg.predict_proba(X_test)[::,1]
fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba)
auc = metrics.roc_auc_score(y_test, y_pred_proba)
plt.plot(fpr,tpr,label="data 1, auc="+str(auc))
plt.legend(loc=4)
plt.show()
```


AUC score for the case is 0.86. AUC score 1 represents perfect classifier, and 0.5 represents a worthless classifier.