DSI SEA5, jf.omhover, Sep 21, 2016

DSI SEA5, jf.omhover, Sep 21, 2016

STANDARDS

- Describe, interpret, and visualize the model form of linear regression: Y = B0+B1X1+B2X2+....
- Relate Beta vector solution of Ordinary Least Squares to the cost function (residual sum of squares)
- State and troubleshoot the assumptions of linear regression model
- Perform OLS with statsmodels and interpret the output: Beta coefficients, p-values, R^2
- How can one detect outliers?

DSI SEA5, jf.omhover, Sep 21, 2016

OBJECTIVES

- Relate linear regression with general machine learning
- State assumptions of linear regression
- Estimate a linear regression model
- Evaluate a linear regression model
- Recognize and fix common problems

What's the Big Idea?

Learning / Estimating FUNCTIONS

Reality VS Model: assumption, learning and error

REALITY

	type	income	education	prestige
accountant	prof	62	86	82
pilot	prof	72	76	83
architect	prof	75	92	90
author	prof	55	90	76
chemist	prof	64	86	90
minister	prof	21	84	87
professor	prof	64	93	93
dentist	prof	80	100	90
reporter	wc	67	87	52
engineer	prof	72	86	88
undertaker	prof	42	74	57
lawyer	prof	76	98	89

 (x_1, y_1)

 (x_n, y_n)

x y

data

descriptive predictive normative

MODEL

$$y = f(x) + \epsilon$$

take a function as an assumption

of the function

Reality VS Model: LINEAR functions

MODEL

REALITY

	type	income	education	prestige
accountant	prof	62	86	82
pilot	prof	72	76	83
architect	prof	75	92	90
author	prof	55	90	76
chemist	prof	64	86	90
minister	prof	21	84	87
professor	prof	64	93	93
dentist	prof	80	100	90
reporter	wc	67	87	52
engineer	prof	72	86	88
undertaker	prof	42	74	57
lawyer	prof	76	98	89

data

 (x_1, y_1)

...

 (x_n, y_n)

x y

OBJECTIVE:

descriptive predictive normative

..

 $y \approx \beta_0 + \beta_1 x_1 + \beta_1 x_2 + \ldots + \beta_p x_p$

We make the assumption that we have a linear relation

From reality to model : general process

REALITY

1) Having a data sample Observing an underlying behavior

3) **Find** the instance of the model that **fits** with data sample

MODEL

2) Make an assumption on the <u>model</u> underlying the data

$$y \approx \beta_0 + \beta_1 x_1 + \beta_1 x_2 + \ldots + \beta_p x_p$$

linear relation (+ assumptions)

Framing the problem : linear regression

MODEL

REALITY

	type	income	education	prestige
accountant	prof	62	86	82
pilot	prof	72	76	83
architect	prof	75	92	90
author	prof	55	90	76
chemist	prof	64	86	90
minister	prof	21	84	87
professor	prof	64	93	93
dentist	prof	80	100	90
reporter	wc	67	87	52
engineer	prof	72	86	88
undertaker	prof	42	74	57
lawyer	prof	76	98	89

data

X : independant variables Y: dependant variable

DEFINE A CRITERIA OPTIMIZE IT OVER PARAMETERS

verify assumptions

PROBLEM 1: identify model class

$$y \approx \beta_0 + \beta_1 x_1 + \beta_1 x_2 + \ldots + \beta_p x_p$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$

PROBLEM 2:

find actual coefficients/parameters values

The Simple Linear Case

Framing the problem: SIMPLE linear regression

REALITY

DATA

 (x_1, y_1)

 (x_n, y_n)

x y

COST FUNCTION (Residual Sum of Squares)

$$RSS = \sum (y_i - \hat{f}(x))^2 = \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x)^2$$

MODEL

model class

$$y \approx \beta_0 + \beta_1 x$$

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x$$

model instance estimator parameters

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})} \qquad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Figure from [ISL]

Evaluation as a model explaining the outcome

Residual Sum of Squares

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Total Sum of Squares

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Explained Sum of Squares

$$ESS = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

R squared statistic

$$R^2 = \frac{TSS - RSS}{TSS} \quad \text{in [0,1]}$$

$$y = f(x) + \epsilon$$
class $y \approx \beta_0 + \beta_1 x$
instance $\hat{y} = \hat{\beta_0} + \hat{\beta_1} x$

$$y = \hat{\beta_0} + \hat{\beta_1} x + \epsilon$$
$$v_i = \hat{\beta_0} + \hat{\beta_1} x_i + \epsilon_i, \forall i < n$$

residual
$$e_i = y_i - \mathring{\beta_0} + \mathring{\beta_1} x_i$$

Figure from [ISL]

Evaluation as for hypothesis

Stating the null hypothesis

H0: there is no relation between X and Y

H1: there is some linear relation between X and Y

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

$$y = f(x) + \epsilon$$
class $y \approx \beta_0 + \beta_1 x$
instance $\hat{y} = \hat{\beta_0} + \hat{\beta_1} x$

$$y = \hat{\beta}_0 + \hat{\beta}_1 x + \epsilon$$
$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \epsilon_i, \forall i < n$$

residual
$$e_i = y_i - \hat{\beta}_0 + \hat{\beta}_1 x_i$$

The Multi-Linear Case

Framing the problem: multi-linear regression

REALITY

DATA

		type	income	education	prestige	
	accountant	prof	62	86	82	
	pilot	prof	72	76	83	
	$\int x_{11}$.	••	x_{1}	,] [y_1	
X =	x_{21} ·	••	x_{2}	p	<i>y</i> ₂	- 11
71 —	i		:		:	— <i>у</i>
	x_{n1} .	••	x_{n_i}	, <u> </u> [y_n	
	lawyer	prof	76	98	89	
		•		•		

model class

$$y \approx \beta_0 + \beta_1 x_1 + \beta_1 x_2 + \dots + \beta_p x_p$$

PROBLEM

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$

model instance estimator parameters

SOLUTION

Framing the problem: multi-linear regression

COST FUNCTION (Residual Sum of Squares)

$$RSS(\beta) = (y - X\beta)^T (y - X\beta)$$

REALITY

DATA

			type	income	education	prestige	
	accounta	nt	prof	62	86	82	
T-1	pilot		prof	72	76	83	
1	$x_{1,1}$	•••	X	1,p-	1] [y_1	
1	$x_{2,1}$	•••	х	2,p-	1	<i>y</i> ₂	
i	:			į		:	= y
1	$x_{n,1}$	•••	X	n,p–	$_{1} \rfloor \lfloor$	y_n	
	lawyer		prof	76	98	89	
	1 1 : 1	$\begin{bmatrix} 1 & x_{1,1} \\ 1 & x_{2,1} \\ \vdots & \vdots \\ 1 & x_{n,1} \end{bmatrix}$	$\begin{bmatrix} 1 & x_{1,1} & \cdots \\ 1 & x_{2,1} & \cdots \\ \vdots & \vdots \\ 1 & x_{n,1} & \cdots \end{bmatrix}$	accountant profession $x_{1,1}$ \cdots $x_{n,1}$ \cdots $x_{n,n}$ $x_{n,n}$ $x_{n,n}$ $x_{n,n}$ $x_{n,n}$ $x_{n,n}$ $x_{n,n}$ $x_{n,n}$ $x_{n,n}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{bmatrix} rac{accountant & prof & 62 & 86 & 86 & prof \\ nilot & prof & 72 & 76 & 76 & 76 \\ 1 & x_{1,1} & \cdots & x_{1,p-1} \\ 1 & x_{2,1} & \cdots & x_{2,p-1} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n,1} & \cdots & x_{n,p-1} \end{bmatrix} egin{bmatrix} $	$egin{bmatrix} 1 & x_{1,1} & \cdots & x_{1,p-1} \ 1 & x_{2,1} & \cdots & x_{2,p-1} \ dots & dots & dots \ 1 & x_{n,1} & \cdots & x_{n,p-1} \end{bmatrix} egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix}$

parameters

model class

 $y \approx X\beta$

SOLUTION

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Figure from [ISL]

Evaluation as a model explaining the outcome

Residual Sum of Squares

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Total Sum of Squares

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Explained Sum of Squares

$$ESS = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

R squared statistic

$$R^2 = \frac{TSS - RSS}{TSS} \quad \text{in [0,1]}$$

$$y = f(x) + \epsilon$$
class
$$y \approx X\beta$$

instance
$$\hat{y} = X\hat{\beta}$$

$$y = X\hat{\beta} + \epsilon$$
$$y_i = X\hat{\beta} + \epsilon_i$$

$$e_i = y_i - X\hat{\beta}$$

Evaluation as for hypothesis

Stating the null hypothesis

H0: there is no relation between X and Y

H1: there is some linear relation between X and Y

$$H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0$$

$$H_1: \exists \beta_i \neq 0$$

$$y = f(x) + \epsilon$$

 $y \approx X\beta$ class

instance

$$y = X\hat{\beta} + \epsilon$$

$$y_i = X\hat{\beta} + \epsilon_i$$

 $e_i = y_i - X\hat{\beta}$ residual

Fitting a linear regression model in Python

OLS Regression Results

Dep. Variable:	prestige	R-squared:	0.828
Model:	OLS	Adj. R-squared:	0.820
Method:	Least Squares	F-statistic:	101.2
Date:	Tue, 20 Sep 2016	Prob (F-statistic):	8.65e-17
Time:	15:00:41	Log-Likelihood:	-178.98
No. Observations:	45	AIC:	364.0
Df Residuals:	42	BIC:	369.4
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
income	0.5987	0.120	5.003	0.000	0.357 0.840
education	0.5458	0.098	5.555	0.000	0.348 0.744
const	-6.0647	4.272	-1.420	0.163	-14.686 2.556

Omnibus:	1.279	Durbin-Watson:	1.458
Prob(Omnibus):	0.528	Jarque-Bera (JB):	0.520
Skew:	0.155	Prob(JB):	0.771
Kurtosis:	3.426	Cond. No.	163.

Assumptions

Assumptions underlying Linear Regression

Linearity

Independence

Normal distribution of residuals

Homoscedasticity

Lack of multicollinearity

Assumptions // Linearity

Take the function component of your model

$$y = f(x) + \epsilon$$

This function is assumed to be linear.

$$y = \beta_0 + \beta_1 x_1 + \beta_1 x_2 + \dots + \beta_{p-1} x_{p-1} + \epsilon$$

TROUBLESHOOTING

If it's not x, it might be 1/x or log(x) or $x^2...$

Assumptions // Linearity

Take the function component of your model

$$y = f(x) + \epsilon$$

This function is assumed to be linear.

$$y = \beta_0 + \beta_1 x_1 + \beta_1 x_2 + \dots + \beta_{p-1} x_{p-1} + \epsilon$$

TROUBLESHOOTING

If it's not x, it might be 1/x or log(x) or $x^2...$

Scatter plots

Assumptions // Linearity

Take the function component of your model

$$y = f(x) + \epsilon$$

This function is assumed to be linear.

$$y = \beta_0 + \beta_1 x_1 + \beta_1 x_2 + \dots + \beta_{p-1} x_{p-1} + \epsilon$$

TROUBLESHOOTING

If it's not x, it might be 1/x or log(x) or $x^2...$

Scatter plots

Residual / Studentized residual plot

$$e_i = y_i - X\hat{\beta}$$

$$s_e^2 = \frac{1}{n-1} \sum_i e_i^2$$
$$r_i = \frac{e_i}{s_e^2}$$

Assumptions // Independence

Each observation is independent

Assumptions // Residuals are normally distributed

Figure from Tammy Lee's slides

Assumptions // Residuals are normally distributed

the quantile-quantile (q-q) plot

determining if two data sets come from populations with a common distribution.

plot of the quantiles of the first data set against the quantiles of the second data set.

in our case, the second data set is based on the normal pdf

Qqplots should align on a 45-degree reference line

statsmodels.graphics.gofplots.qqplot(residuals
, dist=norm, line='45', fit=True)

Assumptions // Homoscedasticity of residuals

Same Variance, Constant Variance

$$y = X\hat{\beta} + \epsilon$$

the error term is the same across all values of the independent variables

TROUBLESHOOTING

Using the log of the response-y?

Assumption // NO multicollinearity

We assume that there is

no underlying linear relationship

between independent variables

How to challenge that ?

Solution 1: correlation matrix

Assumption // NO multicollinearity

We assume that there is

no underlying linear relationship

between independent variables

How to challenge that?

Solution 2:???

We have an algorithm that and its name is...

Linear Regression!

$$X_1 = \alpha_2 X_2 + \alpha_3 X_3 + \dots + \alpha_k X_k + c_0 + e$$

$$VIF = \frac{1}{1 - R_i^2}$$

Rule of thumb, if VIF > 10, problem!

from statsmodels.stats.outliers_influence import variance_inflation_factor
variance inflation factor(x.values, index)

Outliers

What is an outlier?

Figure from [ISL]

Leverage of data points

To measure influence of an outlier:

- Compute the 'hat matrix': $H = X^T(X^TX)^{-1}X$
- i-th element on the diagonal, $h_{ii} \equiv (H)_{ii}$, is i-th feature's 'leverage'
- An observation with a large residual may not have a lot of influence

Figure from [ISL], slide B. Skrainka

DSI SEA5, jf.omhover, Sep 21, 2016

STANDARDS

- Describe, interpret, and visualize the model form of linear regression: Y = B0+B1X1+B2X2+....
- Relate Beta vector solution of Ordinary Least Squares to the cost function (residual sum of squares)
- State and troubleshoot the assumptions of linear regression model
- Perform OLS with statsmodels and interpret the output: Beta coefficients, p-values, R^2
- How can one detect outliers?

Useful snippets (soon on slack)

Ordinary Least Squares fit


```
import statsmodels

y = prestige['prestige']
x = prestige[['income', 'education']].astype(float)
x['const'] = 1

prestige_model = statsmodels.api.OLS(endog=y, exog=x).fit()
prestige_model.summary()
```

OLS Regression Results

Dep. Variable:	prestige	R-squared:	0.828
Model:	OLS	Adj. R-squared:	0.820
Method:	Least Squares	F-statistic:	101.2
Date:	Tue, 20 Sep 2016	Prob (F-statistic):	8.65e-17
Time:	15:00:41	Log-Likelihood:	-178.98
No. Observations:	45	AIC:	364.0
Df Residuals:	42	BIC:	369.4
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
income	0.5987	0.120	5.003	0.000	0.357 0.840
education	0.5458	0.098	5.555	0.000	0.348 0.744
const	-6.0647	4.272	-1.420	0.163	-14.686 2.556

Omnibus:	1.279	Durbin-Watson:	1.458
Prob(Omnibus):	0.528	Jarque-Bera (JB):	0.520
Skew:	0.155	Prob(JB):	0.771
Kurtosis:	3.426	Cond. No.	163.

Studentized residual plot


```
stdresids = prestige model.outlier test()['student resid']
plt.plot(prestige model.fittedvalues, resids, 'o')
plt.xlabel('predicted response')
plt.ylabel('studentized residuals')
plt.axhline(0, c='r', linestyle = '--')
                                                      studentized residuals
                                                       -2
                                                       -3
                                                               20
                                                                             60
                                                                                   80
                                                                                          100
                                                                     predicted response
```

QQPlot

statsmodels.graphics.gofplots.qqplot(residuals, dist=norm, line='45', fit=True)

