P525/1 CHEMISTRY PAPER 1 2 3/4 HOURS JULY/AUGUST 2024

OLILA HIGH SCHOOL INTERNAL MOCK EXAMINATION

Uganda Advanced Certificate of Education

CHEMISTRY

PAPER 1

2 Hours: 45 Minutes

INSTRUCTIONS TO CANDIDATES

- This paper consists of two section A and B
- · Section A is compulsory
- · Attempt Only six questions in section B
- · Answers must be written in the spaces provided only
- The periodic table and its atomic masses are attached at the last page of this paper.

SECTION A (46 MARKS)

1.	Cor	nplete	the following equations of nuclear reactions	
	a)	(i)	$^{223}_{91}Pa \longrightarrow \beta + \dots \qquad ^{4}_{2}He + \dots$	
		(ii)	$^{25}_{12}Mg + \alpha \longrightarrow \dots + ^{1}_{1}H$	(01 mark)
	b)	minut	dioactive isotope decays from an initial count of tes to 20 counts per minutes in 27 days. Calculate its h narks)	160 counts per nalf life.
		••••••		
<u>.</u> .		centrat	ueous solution of Manganese (II) nitrate is added ted nitric acid followed by solid sodium bismuthate	
	a)	(i)	State what was observed	(01 mark)
		(ii)	Write an ionic equation for the reaction that took pla	ce (1 ½ marks)
	b)	Chlor	rine gas was bubbled through an aqueous solution	on of potassium
		Mang	ganate (VI) solution.	
		(i)	State the observation (01 mark)	
		(ii)	Write aqueous for the reaction that took place in b (i) above
				(1 ½ marks)

•

 Complete the equations below and each case outline an accepted mechanism for the reaction.

a)
$$CH_3C - CH_3 \xrightarrow{NaOH_{(aq)}} (2 \frac{1}{2} \text{ marks})$$

b) HC
$$\equiv$$
 CH $HgSO_4$ /dil H+ H_2O , 60° (2 $1/2$ marks)

- 4. Calculate the pH of a 0.01M solution of sodium ethanoate if the dissociation constant of ethanoic acid is 1.8x10⁻⁵moldm⁻³ (Kw = 1.0x10⁻¹⁴mol²dm⁻⁶)
- (a) When ice cold concentrated hydrochloric acid was added to lead (IV) oxide, a yellow liquid was forms. On addition of excess hydrochloric

		acid, a yellow solution was formed. Explain this observation with equation(s) that is/are necessary (2 ½ marks)
		7
	(b)	Manganese (II) sulphate was added to sodium hydroxide solution and the resultant solution left to stand in the open for some 10 minutes. Write equations (s) to describe the reaction (s) that took place (2 ½ marks)
6.	Refo	rm the following synthesis reaction
	a)	BrCH ₂ CH ₂ Br to CH ₂ OH
	b)	\bigcirc to \bigcirc

For the reactio	n <i>A_(g) + B_(g)</i>	→ produc	cts ·	
The following	g date was obta	ined		
Experiment	[A] (moldm ⁻³)	[B] (moldm ⁻³)	Initial rate (moldm ⁻³ s ⁻¹)
1	2.5 X 10 ⁻¹	4.0 X 10 ⁻¹	1.5 X 10 ⁻³	
2	2.5 X 10 ⁻¹	8.0 X 10 ⁻¹	3.0 X 10 ⁻³	
3	5.0 X 10 ⁻¹	4.0 X 10 ⁻¹	6.0 X 10 ⁻³	
b) Write th	e rate equation	·····	(⅓ ma	rK)
c) Calculat	e the rate constar	nt and state its uni	its (2 mar	·ks)

9.		tions for some half – cells are given below	
		$Cl_2(s) + 2e \longrightarrow 2Hg(l) + 2Cl^-(aq) E^{\theta} = +00.3$	
	Cr_2O	$^{2-}(aq) + 14H^{+}(aq) + 6e \longrightarrow 2Cr^{3+}(aq) + 7H_2O(l)$	$E^{\theta} = +1.33V$
	a)	Write the convention for the cell	(2 marks)
	b)	Write equation for the overall reaction	(1 ½ marks)
	c)	Calculate the cell voltage and state whether the reaction is	s spontaneous o
		not	(2 ½ marks)
		SECTION B (54 MARKS)	
10.	room	of a hydrocarbon Z was exploded with 200cm ³ of oxygentemperature, the residual gases occupied 160cm ³ . When the passed through sodium hydroxide solution, the volume red	he residual dase
	a)	Write equation for the reaction between Z and oxygen	(1 ½ marks)
	b)	Determine the molecular formula of Z	(3 marks)

	c)	Compalkali	oound Z burns with a sooty flame. When Z was connected as the potassium manganate (VII) solution follow	ved by dilute
			ochloric acid, compound R was formed R reacts v	vith Magnesium
			n liberating hydrogen gas.	
		(i)	Identify Z and R (2 marks)	
		(ii)	Write equation to show how Z can be obtained from	an alkyne (2 ½ marks)
				•••••
11.	-	ain the	e following observations with relevant equations of	reactions where
	a)		bonds in carbon tetrachloride are polar yet carb	on tetrachloride
			cule is non-polar.	(3 marks)
			o fluoric acid is a weak acid in dilute solution but its st	renath increases
	b)	-	increasing concentration.	(3 marks)
	c)	Wher (III)	sodium carbonate solution was added to a solut Sulphate, bubbles of a colorless gas and a green ved	ion of chromiun

12.	a)	(i)	Define the term	n enthalpy of solution		(1 mark)
	/	(-)		· · · · · · · · · · · · · · · · · · ·		
		(ii)	Explain two fac	ctors that affect the e	enthalpy of hydrati	on of a soluble (3 marks)
	b)		enthalpies of for below	mation of some selec	ted compounds ar	e shown in the
		Con	npound	H_2O	CO(g)	$C_8H_{18}(g)$
			(KJmol-1)	-242	-111	-169
			(g) + 17H _{2(g)}		$C_8H_{18(g)} + 8H_2O(g)$	
	c)	-57.	ain why the ent 1 kJmol ⁻¹ where ydrocyanic acid		on of sodium hydroneutralization of so	odium hydroxide (2 ½ marks)
13.		plete :		quations with an acc	eptable mechanis	m for reaction in

a)	CH ₃ COCH ₃ NaHSO ₃	(3 marks)
b)	OH +CH₃Cl NaOH _(aq)	(3 marks)
c)	$\frac{Concentrated}{H_2SO_4 \ heat}$	(3 marks)
State a)	e what was observed and in each case write the equat Acidified potassium dichromate (VI) solution was peroxide solution. Observation	

14.

,,,,,,,,	ion	(2 marks)
acid a	n aqueous solution of Iron (II) sulphate wa and concentrated nitric acid and the resultant ervation.	as added dilute sulp solution heated. (1 mark)
Equa	ation	(2 marks)
	hur dioxide gas was bubbled through acidif solution.	ied potassium dichro
	ervation	(1 mark)
Equ	ation	(2 marks
	······································	
Wha	at is meant by the term Specific conductivity?	(1 mark
(ii)	Calculate the mass of ethanoic acid that water to make a solution of molar cond	
(ii) and	water to make a solution of molar cond	
and	water to make a solution of molar cond	
and	water to make a solution of molar condelectrolytic conductivity $0.027\Omega^{-1}$ cm ⁻¹	luctivity $75.08\Omega^{-1}$ cr
and	water to make a solution of molar cond electrolytic conductivity 0.027Ω ⁻¹ cm ⁻¹ marks)	luctivity 75.08Ω ⁻¹ cr
and	water to make a solution of molar cond electrolytic conductivity 0.027Ω ⁻¹ cm ⁻¹ marks)	luctivity 75.08Ω ⁻¹ cr
and	water to make a solution of molar cond electrolytic conductivity 0.027Ω ⁻¹ cm ⁻¹ marks)	luctivity 75.08Ω ⁻¹ cr

	b)	The electrolytic conductivity of a saturated solution of 25°C is $8.486 \times 10^{-7}\Omega^{-1}cm^{-1}$. The electrolytic conductivity 25°C is $7.5 \times 10^{-7}\Omega^{-1}cm^{-1}$, Calculate the solubility productivities at infinite dilution of potassinitrate and potassium nitrate at infinite dilution are $131\Omega^{-1}cm^{-2}\text{mol}^{-1}$ respectively at 25°C)	t of silver bromide. Sium bromide, silver
			(1 /2
		, , , , , , , , , , , , , , , , , , , ,	
	c)	State Kolrausch's law independent migration of ions	(1 mark)
16.	com	ne one reagent that can be used to distinguish between the pounds. In each case state what would be observed if e is treated with the named reagent.	• .
	a)	and ,	
		Reagent	(1 marks)
		Observation	(2 marks)
		Observation	,
	b)	HCOOH and CH₃COOH	
		Reagent	(1 marks)

ii) The solubility of lead (II) Chloride in cold water decreases of addition of dilute hydrochloric acid but increases on addition of oncentrated hydrochloric acid. (2 marks)

EMURIA 0778422061

*** END***