Implementación de un oscilador en ADS utilizando líneas de transmisión.

Luis Guillermo Macias Rojas

28 de febrero de 2025

Resumen: En este trabajo se explora la implementación de un oscilador a partir de una línea de transmisión modelada en ADS aprovechando el alto número de reflexiones que suceden cuando la carga y la fuente están desacopladas. Se observa que la prevalencia de las oscilaciones está directamente relacionada con la diferencia entre las impedancias de entrada y de salida en un punto, sin embargo no es posible obtener oscilaciones sostenidas debido a la atenuación que experimenta la onda de voltaje al propagarse a través de la línea de transmisión. Para obtener oscilaciones sostenidas es necesario agregar un elemento activo que contribuya con una resistencia negativa y compense las pérdidas de la línea de transmisión.

Introducción

El coeficiente de reflexión determina la cantidad del voltaje incidente que va a ser reflejado al nodo anterior, está delimitado por la ecuación (1) y se puede calcular a partir de (2).

$$\Gamma \in \mathbb{R} : -1 \le \Gamma \le 1$$
 (1)

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{V^-}{V^+} = \frac{V_{reflejado}}{V_{incidente}}$$
 (2)

Haciendo que en todo momento se tenga un coeficiente de reflexión con magnitud igual a 1 sería posible implementar un oscilador.

Metodología

La implementación de un oscilador a partir de una línea de transmisión requiere que $\Gamma_L = \Gamma_S = 1$, y para cumplir con esta condición es necesario que $Z_S \gg Z_0 \gg Z_L$. El esquemático de la figura 1 muestra el sistema realizado en ADS, en este se observa una resistencia de carga (Z_L) de 50 Ω , una impedancia caracteristica (Z_0) de 500 k Ω y una impedancia de fuente (Z_S) de 5 G Ω , es decir, se escala cada impedancia por un factor de 10000.

Figura 1: Esquemático de la linea de transmision.

El instrumento utilizado en esta simulación es un TDR/TDT, el cual actúa como una fuente de voltaje con una resistencia en serie (Z_S) que entrega un escalón de 1 V y analiza la respuesta transitoria del sistema.

Resultados

Los resultados del análisis transitorio pueden observarse en la figura 2, en donde se muestra el voltaje incidente, el voltaje reflejado en la carga y el voltaje medido. Nótese como el voltaje reflejado es muy cercano a -1, lo cual indica que $|\Gamma_L|\approx 1.$

Figura 2: Respuesta transitoria del sistema. La figura 2 demuestra el correcto diseño de la línea de transmisión para que $\Gamma\approx 1$, sin embargo no permite ver las oscilaciones del sistema debido a la baja amplitud de la señal, en la figura 3 se observan estas oscilaciones durante 50 ciclos (100 reflexiones).

Figura 3: Voltaje medido del oscilador.

Conclusiones

Es posible diseñar un oscilador LC utilizando líneas de transmisión y variando los coeficientes de reflexión, sin embargo, no es posible obtener oscilaciones sostenidas debido a la atenuación que sufre el sistema por las no idealidades de la línea. Para compensar esto es necesario incluir un elemento activo (p. ej, un transistor) que introduzca una resistencia negativa y elimine estas pérdidas.