MITAL IS CLAIMED IS	What	is	claimed	is
---------------------	------	----	---------	----

	1.	Α	metho	d o	f vehi	cle	collisio	on av	oidance	using	satellite
5	nav	iga	ationa	l s	ignals	and	direct	radio	o commu	nicatio	on
	COM	pri	sing	the	steps	of:					

determining a first vehicle position with a plurality of satellite navigation signals;

10

determining a second vehicle position with a plurality of satellite navigation signals;

encoding and transmitting a direct radio messages

that includes said first vehicle identification and position;

receiving and decoding a direct radio message that includes said second vehicle identification and position;

determining by relative vehicle positions and headings an evasive maneuver to keep said vehicles separated a predetermined distance.

25

20

2. The method of claim 1 further comprising the steps of:

encoding and transmitting a direct radio message that includes said first vehicle evasive maneuver;

3. The method of dlaim 2 further comprising the steps of:

35 receiving and decoding a direct radio message that includes said sacond vehicle evasive maneuver.

7.	A	nethod	of	vehicle	e coll	isi	ion a	avoidano	ce usir	ng
navi	iga	tional	sat	tellite	signa	ls	and	direct	radio	wave
com	nun	ication	C	omprisir	ng the	st	eps	of:		

5

determining a fixed position with a plurality of navigational signals;

encoding and transmitting a direct radio message that includes said fixed position;

receiving and decoding said direct radio message;

determining by vehicle position and heading an evasive maneuver to direct said vehicle away from said fixed position.

8. The method of claim 7 further comprising the steps of:

20

displaying the relative bearing and distance of said fixed position on a display unit wherein: said fixed position marks a navigation obstacle and navigation marker.

25

9. The method of claim 7 wherein:

said encoding and transmitting a direct radio

message that includes said fixed position includes a
unique identification code and code representing the
type of nav₊gational hazard;

said venicle position is determined from a plurality of satellite navigation signals. "

48

		displaying the relative position of said vehicles
		as a graphic representation showing the relative bearing
5		and distance on a display unit.
		,
		symthesizing an audio alert that informs the pilot
		of said evasive maneuver.
		02 0020 0.002.0
10		
10	_	mba makhadi afi afi alaim 1 shawain.
	5.	The method of claim 1 wherein:
		said vehicle is an aircraft;
15		said satellite navigation signals are from earth
		based pseudo-satellites;
		said evasive maneuver is a directive to change the
		altitude of said vehicles.
20		
	6.	The method of claim 1 wherein:
25		said vehicle is a sea going yessel;
20		bala ventere is a sea geing obser,
		anid datallite pavigation gignals are from earth
		said satellite navigation signals are from earth
		based pseudo-satellites;
30		said evasive maneuver is a directive to change the
		course of said vehicle.

4. The method of claim 1 further comprising the steps of:

	emcoding and transmitting said evasive maneuver;
5	receiving and decoding an evasive maneuver confirmation signal.
10	11. An apparatus for vehicle collision avoidance with other like equipped vehicles using satellite navigation signals and a direct radio wave message comprising:
15	a satellite receiver for receiving satellite navigation signals;
10	a control program to format the direct radio wave message and determine an evasive maneuver;
20	a computer electrically connected to said satellite receiver for processing signals from said satellite receiver and executing said control program;
25	a modem electrically connected to said computer for transmitting and receiving the direct radio wave message from the other like equipped vehicles;
30	a transceiver electrically connected to said modem to transmit and receive data.
	12. The apparatus of claim 17 further comprising:
35	a display unit electrically connected to said computer to display the relative bearing and distance of the equipped vehicles;
	49

10. The method of claim 7 further comprising the steps of:

an a	udi	o interface	e elec	trically	${\tt connected}$	to	said
computer	to:	synthesize	audio	alarms;			

- a control unit electrically connected to said computer to program and control the collision avoidance apparatus.
 - 13. The apparatus of claim 12 wherein:

10

said direct radio message is a time division
multiple access protocol message;

said modem is synchronized to said satellite
receiver clock.

- 14. The apparatus of claim 11 wherein:
- 20 said direct radio message is a time division multiple access protocol message;

said modem is synchronized to said satellite receiver clock.

25

15. The apparatus of claim 11 wherein:

said tomputer comprises: a first microprocessor for satellite signal processing electrically connected to a second microprocessor for executing the control program.

16	mh a		~ E	-1-:-	1 =	£	comprising:
Το.	THE	apparacus	OI	Ciaim	ŢΣ	rurther	comprising:

a third microprocessor electrically connected between said second microprocessor and said modem for executing the direct radio wave communication protocol.

17. The apparaths of claim 11 wherein:

10

5

said direct radio wave is a skywave; and

said satellite navigation signals are from ground based pseudo-satellites.

15