HARMINDER SAINI

(647)720-3728 | saini.h@queensu.ca | LinkedIn | GitHub

Data science enthusiast with expertise in Python, PyTorch, and financial analysis, looking to apply analytical skills to solve complex financial challenges and deliver actionable insights

EDUCATION

Bachelor of Applied Science: Computer Engineering Queen's University, Smith Engineering, Kingston, Ontario

Bachelor of Arts and Science: Economics Queen's University, Kingston, Ontario

SKILLS

Python | C Programming | PyTorch | Neural Networks | Java (Object Oriented) | JavaScript | SQL | Assembly Language (Nios II) | Verilog | Data Structures | SolidWorks | Android Studio | Econometrics | Financial Analysis | Statistical Analysis | Data Analysis | Economic Theory

WORK EXPERIENCE/ PROJECTS

Capstone Project: Machine Learning System for Emotion Recognition and Adaptive Tracking

Kingston, Ontario

September 2024 – April 2025

Team Member

- Developed a real-time detection algorithm using Python, PyTorch, and OpenCV, integrating a YOLOv11-based emotion recognition system with adaptive camera tracking.
- Engineered a servo-controlled camera mount with a 1-meter vertical range, ensuring precise facial alignment and improved detection accuracy.
- Developed and trained a model on a diverse 15,000-image dataset with augmented preprocessing, achieving over 90% classification accuracy.
- Achieved sub-1-second response times for emotion detection and camera adjustments, improving system responsiveness and user experience.
- Developed an adaptive feedback system to improve camera alignment using facial orientation and tracking data.

Financial Analysis of The Coca-Cola Company

Kingston, Ontario

Project

June 2024 – August 2024

- Conducted a three-year financial analysis of Coca-Cola, examining profitability, liquidity, and solvency using key financial ratios (ROE, ROA, current ratio, debt-to-equity).
- Identified a 12.3% increase in net income and improved debt-to-equity from 1.41 to 1.29, reflecting stronger capital management.
- Analyzed segment performance across North America, recommending strategic adjustments to improve market positioning.
- Delivered a detailed report summarizing financial trends and strategic insights, demonstrating analytical and communication skills.

Machine Learning System for Automated Detection of Surgical Instruments

Kingston, Ontario

Team Leader

September 2024 - December 2024

- Developed an object detection system to identify and classify surgical instruments in real-time using Python, PyTorch, and the YOLO framework.
- Achieved mean average precision (mAP) scores of 0.991 (validation) and 0.988 (testing) by training on a dataset of over 3,000 images.
- Enhanced the dataset with data augmentations to address class imbalance and improve detection in challenging conditions, reducing overfitting.
 Improved detection precision by 2% and computational efficiency by 15% through advanced attention and feature extraction modules.
- Optimized detection under occlusion, achieving a 94% true positive rate for distinguishing visually similar tools.

Design and Implementation of a Reduced Instruction Set Computer (RISC)

Kingston, Ontario

Team Leader

January 2024 – April 2024

- Led a team project focused on designing, simulating, implementing, and verifying a RISC Computer (Mini SRC).
- Developed a 32-bit machine with a 32-bit datapath, 16 registers, and dedicated registers for multiplication and division.
- Defined instruction formats and categorized instructions into load/store, arithmetic/logical, branch/jump, and input/output.
- Designed and implemented a RISC computer with 95% simulation accuracy and 100% hardware functionality on the Cyclone V chip.
- Reduced development time by 20% through efficient use of Quartus Prime and ModelSim

EXTRA-CURRICULAR EXPERIENCE

Queens's Space Engineering Team

Onboard Computer Systems Team Member

Kingston, Ontario

September 2023 - December 2023

- Implemented microprocessors, memory banks, and interfacing chips to establish connections between components in a mini satellite.
- Coordinated tasks among satellite components, achieving a 95% efficiency in system integration.

Queens's Robotics Team

3D Modeling Lead

Kingston, Ontario

January 2021 – April 2022

- Designed, modeled, and created a robot for the VEX U Robotics Competition using SolidWorks.
- Built and programmed a robot with precise object manipulation, autonomous motion, human driver support.