

Estatística Descritiva Análise Bidimensional Aula 4

17/12

Plano de aula

	Carga horária	Dias
Módulo 1 - Estatística Descritiva	08h	08 a 15/12/21
Módulo 2 - Probabilidades	10h	12/01 a 26/01/22
Módulo 3 - Inferência Estatística	20h	31/01 a 14/03/22
Módulo 4 - BI e Metodologias de Projetos de Dados	04h	16/03 a 21/03/22
Módulo 5 - Bancos de Dados Relacionais - SQL	12h	23/03 a 04/04/22
Módulo 6 - Visualização de Dados (Data Viz) e Storytelling	10h	06/04 a 13/04/22
Módulo 7 - Apresentação de Projeto final (Capstone)	06h	18/04 a 20/04/22

Carga horária (h) 70h

Análise Bidimensional

Já sabemos como resumir e analisar cada variável de um conjunto de dados, mas:

"E se tivermos que analisar o comportamento de **2 variáveis** simultaneamente?

Por exemplo:

- Qual a taxa de turnover por nível de formação?
- Qual o percentual de compra do novo livro do Flávio Augusto por região do Brasil?

Análise Bidimensional

A Análise Bidimensional é o nome dado a um conjunto de técnicas utilizadas para:

Analisar o comportamento conjunto de duas variáveis

Considerando os diferentes tipos de variáveis, podemos ter 3 situações:

- 1. Duas variáveis quantitativas
- 2. Uma variável qualitativa e outra variável quantitativa
- 3. Duas variáveis qualitativas

Análise Bidimensional

2 Variáveis Quantitativas

Análise Bidimensional: 2 variáveis quantitativas

A análise de 2 variáveis quantitativas inicia-se com o **Gráfico de Dispersão**. Nele uma das variáveis fica no eixo X e a outra no eixo Y.

Exemplo: Em uma pesquisa com os suecos, foram obtidos os dados de peso e altura de cada habitante. O gráfico de dispersão com essas variáveis é apresentado abaixo.

Podemos perceber que existe uma relação entre altura e peso, ou seja, quanto maior a altura, maior o peso.

A essa relação damos o nome de correlação, logo Altura e Peso estão correlacionados.

Análise Bidimensional: 2 variáveis quantitativas

O **Gráfico de Dispersão** fornece a **distribuição conjunta** da Altura e Peso, e junto com ela a visualização de uma possível **correlação entre essas duas variáveis**.

Nesse caso, a correlação entre Altura e Peso aparenta ser linear, ou seja, é possível definir uma equação linear em que dada a Altura encontramos o Peso, e vice-versa.

Entender a **correlação entre variáveis** é algo bastante **poderoso**! Mas é preciso ter cautela.

Vamos entender isso logo mais...

Análise Bidimensional: 2 variáveis quantitativas

Uma forma de **medirmos a força da correlação** entre duas variáveis quantitativas, como Altura e Peso, é calculando o **Coeficiente de Correlação de Pearson**:

$$corr(X,Y) = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{dp(X)} \right) \cdot \left(\frac{y_i - \bar{y}}{dp(Y)} \right)$$

O Coeficiente de Correlação de Pearson varia entre -1 e +1 e indica:

- Correlação positiva forte: coeficiente próximo a 1
- Correlação inexistente: coeficiente próximo a zero
- Correlação negativa forte: coeficiente próximo a -1

Análise Bidimensional: 2 variáveis quantitativas

O Coeficiente de Correlação de Pearson varia entre -1 e +1 e indica:

- Correlação positiva: quando a variável X aumenta, a variável Y também aumenta
- Correlação inexistente: quando a variável X aumenta, a variável Y não se altera
- Correlação negativa: quando a variável X aumenta, a variável Y diminui

Análise Bidimensional: 2 variáveis quantitativas

No Excel: CORREL(X;Y)

X: observações da variável 1

Y: observações da variável 2

Intervalo	Força
- 1,0 < r < - 0,7	Fortemente Negativa
- 0,6 < r < 0,6	Fraca
0,7 < r < 1,0	Fortemente Positiva

Neste exemplo, vamos considerar **X** = **Altura e Y** = **Peso**.

Utilizando CORREL(Altura; Peso) = 0,85

Logo, existe uma forte correlação positiva entre Altura e Peso.

Demonstração

Análise Bidimensional Correlação vs. Causalidade

Análise Bidimensional: Correlação vs. Causalidade

É fundamental dominarmos a **diferença entre esses 2 conceitos** para não cairmos em algumas **armadilhas** de Analytics.

Vejamos a definição destes 2 termos:

- Correlação: relação de dependência ou associação entre duas variáveis.
- Causalidade: relação entre um evento A e um evento B, sendo que o evento B é consequência do evento A.

Ou seja, Correlação está relacionada com a dependência ou associação e a Causalidade relacionada a consequência.

Análise Bidimensional: Correlação vs. Causalidade

Vamos avaliar a Correlação entre Venda de Sorvetes e Incêndio nas Florestas:

Fonte: https://www.decisionskills.com/blog/how-ice-cream-kills-understanding-cause-and-effect

Você acha que a **venda de sorvetes** pode **causar incêndios nas florestas**?

Neste caso há uma 3º variável não avaliada e que faz mais sentido ser a causadora do aumento no consumo de sorvete e dos incêndios nas florestas: o clima quente!

Análise Bidimensional: Correlação vs. Causalidade

Vamos avaliar a Correlação entre Venda de Sorvetes e Incêndio nas Florestas:

Fonte: https://www.decisionskills.com/blog/how-ice-cream-kills-understanding-cause-and-effect

A Correlação entre Venda de Sorvetes e Incêndio nas Florestas é conhecida como Correlação Espúria.

As **Correlações Espúrias** podem ser uma armadilha para **falsas conclusões**.

Vejamos alguns outros exemplos.

Análise Bidimensional: Correlação vs. Causalidade

Exemplo 1: Gasto em Pesquisa no EUA vs. Suicídios

US spending on science, space, and technology

correlates with

Suicides by hanging, strangulation and suffocation

Fonte: https://www.tylervigen.com/spurious-correlations

Análise Bidimensional: Correlação vs. Causalidade

Exemplo 2: Divórcios em Maine vs. Consumo de margarina

Divorce rate in Maine

correlates with

Per capita consumption of margarine

Fonte: https://www.tylervigen.com/spurious-correlations

Análise Bidimensional: Correlação vs. Causalidade

Exemplo 3: Consumo de frango vs. Importação de petróleo

Per capita consumption of chicken

correlates with

Total US crude oil imports

Fonte: https://www.tylervigen.com/spurious-correlations

Análise Bidimensional: Correlação vs. Causalidade

Conclusões:

- Se 2 variáveis estão correlacionadas, pode ou não haver causalidade
- Se houver correlação e não houver causalidade entre essas 2 variáveis, possivelmente há uma 3º
 variável que não foi observada
- Mantenha-se cético: busque fortes evidências para assumir a causalidade
- Antes de assumir a causalidade responda as seguintes perguntas:
 - Por que a variável A causa a variável B?
 - Como a variável A causa a variável B?

Análise Bidimensional: 2 variáveis quantitativas

Portanto, a existência de **correlação entre duas variáveis** indica que elas estão de alguma forma **associadas**, mas nem sempre isso quer dizer que **uma variável "causa" a outra**.

Em nosso exemplo:

- As pessoas são mais pesadas porque são mais altas?
- As pessoas são mais altas porque são mais pesadas?
- As pessoas são mais **altas** e mais **pesadas** devido a outro fator não observado? Genético, por exemplo.

Essa é a grande diferença entre correlação e causalidade!

Ou seja, nem toda correlação é causalidade mas toda causalidade gera uma correlação.

Análise Bidimensional

- 1 Variável Qualitativa e
- 1 Variável Quantitativa

Análise Bidimensional: 1 Qualitativa e 1 Quantitativa

Voltemos a nossa pesquisa com os suecos, mas agora vamos analisar a variável Altura por sexo. No gráfico, o *boxplot* vermelho corresponde a distribuição da altura das mulheres e o *boxplot* azul corresponde a distribuição da altura dos homens.

<u>Insights</u>

- 1. As **medidas de posição** da altura dos homens são ligeiramente superiores as das mulheres.
- As duas distribuições de altura possuem dispersão semelhante.
- 3. Poucas observações discrepantes (outliers).

Uma outra forma de analisarmos os dados é criar uma tabela com as medidas resumo separadas por sexo.

sexo	N	Média de altura	Variância de altura	Desvio Padrão de altura	Mínimo de altura	Máximo de altura	1º Quartil de altura	Mediana de altura	3º Quartil de altura
Feminino	600	1,60	0,010	0,10	1,33	1,91	1,53	1,59	1,67
Masculino	400	1,85	0,010	0,10	1,45	2,14	1,78	1,85	1,92
Total	1.000	1,70	0,025	0,16	1,33	2,14	1,57	1,68	1,82

Utilizando essa tabela podemos:

- 1. Identificar que a quantidade de mulheres é maior do que a quantidade de homens.
- 2. Confirmamos as informações extraídas anteriormente utilizando os boxplots.

Análise Bidimensional: 1 Qualitativa e 1 Quantitativa

Para medir a associação entre variáveis qualitativas e quantitativas utilizamos o Coeficiente de

Determinação, também conhecido como R². Neste exemplo, calcularíamos:

$$R^2 = 1 - \frac{\overline{var(Altura)}}{var(Altura)}$$
 Sendo, $\overline{var(Altura)} = \frac{\sum_{i=1}^{k} n_i \cdot var_i(Altura)}{\sum_{i=1}^{k} n_i}$

(Média das variâncias para cada sexo)

Intuitivamente, o R² mede quanto da **variância total** é explicada pela **introdução da variável qualitativa** e é uma medida que **varia entre 0 e 1**.

Dessa forma:

- R² igual a zero: indica a **inexistência** de associação entre as variáveis
- R² igual a 1: indica **forte associação** entre as variáveis

Análise Bidimensional: 1 Qualitativa e 1 Quantitativa

Calculando o R² para este exemplo:

$$\overline{var(Altura)} = \underbrace{\frac{600}{0,010} + 400}_{600 + 400} \underbrace{0,010}_{0,010} = 0,010 \qquad R^2 = 1 - \underbrace{\frac{0,010}{0,025}}_{0,025} = 0,6 = 60\%$$

sexo	N	Média de altura	Variância de altura	Desvio Padrão de altura	Mínimo de altura	Máximo de altura	1º Quartil de altura	Mediana de altura	3º Quartil de altura
Feminino	600	1,60	0,010	0,10	1,33	1,91	1,53	1,59	1,67
Masculino	400	1,85	0,010	0,10	1,45	2,14	1,78	1,85	1,92
Total	1.000	1,70	0,025	0,16	1,33	2,14	1,57	1,68	1,82

Análise Bidimensional: 1 Qualitativa e 1 Quantitativa

Calculando o R² para este exemplo:

$$\overline{var(Altura)} = \frac{600 \cdot 0,010 + 400 \cdot 0,010}{600 + 400} = 0,010 \qquad R^2 = 1 - \frac{0,010}{0,025} = 0,6 = 60\%$$

Nesse exemplo, vemos que a associação entre Altura e sexo existe, e o R² igual a 60% indica que essa associação **é forte**.

Ou seja, o sexo explica 60% da diferença de altura entre homens e mulheres.

Análise Bidimensional

- 2 Variáveis Qualitativas,
- 1 Binária

Análise Bidimensional: 2 Variáveis Qualitativas, 1 Binária

Outro tipo de medida de associação muito útil é o Information Value (IV). Essa medida é responsável por fornecer o "poder de separação" que uma variável qualitativa de duas ou mais categorias possui sobre outra variável de duas categorias (variável binária).

Exemplos de variáveis binárias:

- 1. Bons clientes x Maus clientes
- 2. Comprou x Não comprou
- 3. Doente x Não doente
- 4. Verdadeiro x Falso
- 5. Entre outros...

Em vários problemas de Analytics, estamos interessados em descobrir quais fatores, isto é, quais variáveis são responsáveis por separar as categorias das variáveis binárias.

Ex: Qual variável separa um Bom cliente de um Mau cliente para um empréstimo? Profissão? Comprometimento de Renda?

Análise Bidimensional: 2 Variáveis Qualitativas, 1 Binária

Vamos calcular o Information Value (IV) para um exemplo no qual queremos avaliar se a variável Comprometimento de Renda é útil para separar os clientes que Pagaram e Atrasaram em um financiamento de veículos:

Comprometimento		Classific	Frequência	% Freq			
comprometimento	Qte Pagou	Qte Atrasou	% Pagou	% Atrasou	rrequencia	70 FIEY	
Maior que 40%	4	127	0,8%	6,2%	131	5%	
Entre 30 e 40%	92	710	17,4%	34,4%	802	31%	
Entre 20 e 30%	102	432	19,2%	20,9%	534	21%	
Menor que 20%	332	795	62,6%	38,5%	1127	43%	
Total Geral	530	2064	100%	100%	2594	100%	

Frequência: Quantidade de clientes em cada um dos níveis de comprometimento. Por exemplo, na categoria Maior que 40% temos **131** clientes.

Qte Pagou: Quantidade de clientes que fizeram o pagamento em cada um dos níveis de comprometimento. Por exemplo, na categoria Maior que 40%, dos **131** clientes, temos **4** que pagaram.

Análise Bidimensional: 2 Variáveis Qualitativas, 1 Binária

Vamos calcular o Information Value (IV) para um exemplo no qual queremos avaliar se a variável Comprometimento de Renda é útil para separar os clientes que Pagaram e Atrasaram em um financiamento:

Comprometimento		Classific	ação		Frequência	% Freq
comprometimento	Qte Pagou Qte Atras		sou % Pagou % Atr		rrequencia	70 TTEQ
Maior que 40%	4	127	0,8%	6,2%	131	5%
Entre 30 e 40%	92	710	17,4%	34,4%	802	31%
Entre 20 e 30%	102	432	19,2%	20,9%	534	21%
Menor que 20%	332	795	62,6%	38,5%	1127	43%
Total Geral	530	2064	100%	100%	2594	100%

% Pagou: Percentual de clientes pagantes em cada nível de comprometimento em relação ao total de clientes pagantes. Por exemplo, na categoria Maior que 40% temos 4 clientes pagantes de um total de **530** clientes pagantes, logo **0,8%** (4/530) dos clientes pagantes estão na categoria Maior que 40%.

% Atrasou: Mesmo conceito do % Pagou, mas aplicado aos clientes que atrasaram o pagamento.

Análise Bidimensional: 2 Variáveis Qualitativas, 1 Binária

Vamos calcular o Information Value (IV) para um exemplo no qual queremos avaliar se a variável Comprometimento de Renda é útil para separar os clientes que Pagaram e Atrasaram em um financiamento:

Comprometimento		Classific	ação	Frequência	% Freq	Taxa Pagou	
Comprometimento	Qte Pagou	Qte Atrasou	% Pagou	% Atrasou	Trequencia	70 11Eq	Taxa Fagou
Maior que 40%	4	127	0,8%	6,2%	131	5%	3,1%
Entre 30 e 40%	92	710	17,4%	34,4%	802	31%	11,5%
Entre 20 e 30%	102	432	19,2%	20,9%	534	21%	19,1%
Menor que 20%	332	795	62,6%	38,5%	1127	43%	29,5%
Total Geral	530	2064	100%	100%	2594	100%	20,4%

Taxa Pagou: Percentual de clientes pagantes em relação ao total de clientes em cada nível de comprometimento. Por exemplo, no Maior que 40% temos 4 clientes pagantes de um total de 131 clientes neste nível de comprometimento, logo 3,1% (4/131) dos clientes dessa categoria realizaram o pagamento.

Análise Bidimensional: 2 Variáveis Qualitativas, 1 Binária

Vamos calcular o Information Value (IV) para um exemplo no qual queremos avaliar se a variável Comprometimento de Renda é útil para separar os clientes que Pagaram e Atrasaram em um financiamento:

Comprometimento	Classificação				Frequência % Freq		Taxa Pagou	Odds	LN(Odds)
Comprometimento	Qte Pagou	Qte Atrasou	% Pagou	% Atrasou	riequencia	70 FIEQ	Taxa Pagou	Ouus	LIV(Odds)
Maior que 40%	4	127	0,8%	6,2%	131	5%	3,1%	0,12	-2,10
Entre 30 e 40%	92	710	17,4%	34,4%	802	31%	11,5%	0,50	-0,68
Entre 20 e 30%	102	432	19,2%	20,9%	534	21%	19,1%	0,92	-0,08
Menor que 20%	332	795	62,6%	38,5%	1127	43%	29,5%	1,63	0,49
Total Geral	530	2064	100%	100%	2594	100%	20,4%		

Odds: Razão entre %Pagou e %Atrasou. Por exemplo, na categoria Maior que 40% temos **0,8%** no %Pagou e **6,2%** no %Atrasou, logo a Odds de **0,12** (0,8%/6,2%) é a chance de encontrarmos um cliente que pagou nessa categoria. Ou seja, a proporção na categoria Maior que 40% é de aproximadamente 1 cliente que pagou para 6 clientes que atrasaram.

LN(Odds): Logarítimo Natural da Odds. Por exemplo, na categoria Maior que 40% temos LN(0,12) = -2,10.

Análise Bidimensional: 2 Variáveis Qualitativas, 1 Binária

Vamos calcular o Information Value (IV) para um exemplo no qual queremos avaliar se a variável Comprometimento de Renda é útil para separar os clientes que Pagaram e Atrasaram em um financiamento:

Comprometimento		Classifica	ação		Frequência	% Freq	Taxa Pagou	Odds	LN(Odds)	IV
Comprometimento	Qte Pagou	Qte Atrasou	% Pagou	% Atrasou	riequeillia	∕₀ rieq	iaxa Pagou	Ouus	LIN(Odds)	IV
Maior que 40%	4	127	0,8%	6,2%	131	5%	3,1%	0,12	-2,10	0,11
Entre 30 e 40%	92	710	17,4%	34,4%	802	31%	11,5%	0,50	-0,68	0,12
Entre 20 e 30%	102	432	19,2%	20,9%	534	21%	19,1%	0,92	-0,08	0,00
Menor que 20%	332	795	62,6%	38,5%	1127	43%	29,5%	1,63	0,49	0,12
Total Geral	530	2064	100%	100%	2594	100%	20,4%			0,35

IV: Produto da diferença entre %Pagou e %Atrasou pelo LN(Odds). Por exemplo, na categoria Maior que 40 % temos (0,8% - 6,2%) * -2,10 = 0,11.

Para fins de medida de associação, estamos interessados na soma dos IV's de cada categoria da variável.

Neste exemplo, o **IV Total** = 0.11 + 0.12 + 0.00 + 0.12 = 0.35

Análise Bidimensional: 2 Variáveis Qualitativas, 1 Binária

Após calcularmos o IV, como avaliamos se a variável possui um alto poder de separação?

Abaixo apresentamos uma referência bastante utilizada na prática:

IV Total	Poder de separação
< 0,02	Muito fraco
0,02 a 0,1	Fraco
0,1 a 0,3	Médio
0,3 a 0,5	Forte
> 0,5	Muito bom pra ser verdadeVerifique!

Em nosso exemplo, a variável **Comprometimento** obteve um IV = 0,35, ou seja, ela possui um **forte** poder de separação entre os bons e maus clientes.

Logo, ao perguntar o comprometimento de renda de um cliente, é possível ter uma estimativa se ele pagará em dia ou atrasará *.

^{*} Cuidado com a questão da causalidade. Não é possível inferir com **certeza** que o comprometimento é a real CAUSA da inadimplência. É preciso olhar a relação com outras variáveis, como bens, tipo de profissão, por exemplo.

Demonstração

Arquivo: "Demonstração - Análise Bidimensional.xlsx"

Revisão

Nesta última seção aprendemos:

- Como realizar Análises Bidimensionais com variáveis qualitativas e quantitativas.
- Visualizar a associação entre duas variáveis quantitativas utilizando o Gráfico de Dispersão.
- Medir a força da associação entre essas variáveis utilizando o Coeficiente de Correlação de Pearson, o Coeficiente de Determinação ou R² e o Information Value (IV).
- Nem toda correlação entre variáveis representa causalidade!

Hands On Turn Over RH

Turnover de funcionários em uma empresa de Tecnologia

Para quarta dia 12/01/22:

Parte 1) Faça um análise unidimensional das variáveis da base.

- a) Para variáveis qualitativas, crie tabelas de frequência absoluta, relativas e acumuladas.
- b) Para variáveis quantitativas, crie histogramas e box plots.
- c) Comente o mais relevante.

Parte 2) Faça a análise bidimensional das variáveis da base em relação à TurnOver. Dica: Utilize a análise de IV

- a) Crie um ranking de IV das variáveis da base
- b) Argumente a possível causalidade de cada variável acima de 0,1
- c) Será que não existe correlação entre as variáveis da base? Ex: As pessoas saem mais por que são solteiras ou saem mais por que ganham pouco e, nesta empresa, quem ganha pouco é em geral solteiro(a)?

Qual a sua conclusão? Quais as variáveis que mais têm relação de causalidade com o TurnOver na sua opinião? Dica: Tente buscar evidências externas (estudos, matérias de RH) que corroboram com sua conclusão.

Framework de Data Analytics e Data Science

Etapas de um projeto

Vamos encapsular todo o conhecimento que vimos anteriormente em uma metodologia de desenvolvimento. Uma abordagem comum é a chamada CRISP-DM. Veja:

Próximos passos

Agora que já sabemos como realizar uma boa **Análise Exploratória** de um conjunto de dados, pode surgir a dúvida: "E se eu quiser saber qual a **Probabilidade** de observar um determinado valor em uma variável do meu conjunto de dados?"

Esse será exatamente o assunto da próxima aula! Veremos como o estudo da **Probabilidade** pode nos ajudar a responder a essa e outras perguntas sobre **eventos de caráter aleatório**.

