Esercitazioni di Analisi 2

INTEGRALI TRIPLI

1. Calcola i seguenti integrali tripli:

(a)
$$\iiint_{\Omega} (x+z) \, dx \, dy \, dz, \text{ con } \Omega = \{(x,y,z) \in \mathbb{R}^3 : x > 0, y > 0, z > 0, x+y+z < 1\}. \quad \left[\frac{1}{12}\right]$$

- (b) $\iiint_{\Omega} y \, dx \, dy \, dz$, con Ω limitata dal paraboloide $y = 4x^2 + 4z^2$ e dal piano y = 4. $\left[\frac{16}{3}\pi\right]$
- (c) $\iiint_{\Omega} z \, dx \, dy \, dz, \, \text{con } \Omega \text{ nel primo ottante, limitata dal piano } y = 3x \text{ e dal cilindro } y^2 + z^2 = 9.$ $\left[\frac{27}{8}\right]$
- 2. Sia $\Omega = \{(x,y,z) \in \mathbb{R}^3 : 0 \le z \le x^2 + y^2 \le 2\}$. Dopo aver disegnato Ω calcola $\int_{\Omega} x^2 z dx dy dz$. $[\pi$. Per strati: $\int_{\Omega} x^2 z dx dy dz = \int_{0}^{2} \left(\int_{\Omega_z} x^2 z dx dy\right) dz$, con $0 \le z \le 2$ e $\Omega_z = \{(x,y) \in \mathbb{R}^2 : z \le x^2 + y^2 \le 2\}$; per il calcolo dell'integrale doppio su Ω_z è conveniente utilizzare le coordinate polari. Per fili: $\int_{\Omega} x^2 z dx dy dz = \int_{C} \left(\int_{0}^{x^2 + y^2} x^2 z dz\right) dx dy$, con $0 \le z \le x^2 + y^2$ e $C = \{(x,y) \in \mathbb{R}^2 : 0 \le x^2 + y^2 \le 2\}$]
- 3. Dato $\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, 1 x^2 y^2 \le z \le 3\}$, calcola $\iiint_{\Omega} (x^2 + y^2) dx dy dz$ per fili e per strati. $\left[\frac{4}{3}\pi\right]$
- 4. Determina il baricentro di una lamina piana di densità costante (=1) descritta da $D = \{(x,y) \in \mathbb{R}^2 : x \geq 0, \frac{x^2}{4} + \frac{y^2}{9} \leq 1, x^2 + y^2 \geq 4\}.$ $\left[x_B = \frac{8}{3\pi}, y_B = 0\right]$
- 5. Data la lamina rappresentata in figura, determina le coordinate del baricentro, sapendo che la densità è uguale all'inverso della distanza dall'origine. $\begin{bmatrix} x_B = 0, y_B = \frac{4}{\pi} \end{bmatrix}$
- 6. Calcola $\iiint_{\Omega} x \, dx \, dy \, dz$, con Ω nel primo ottante, limitata dalle sfere di equazione $x^2 + y^2 + z^2 = 1$ e $x^2 + y^2 + z^2 = 4$. [Utilizza le coordinate sferiche; $\frac{15}{16}\pi$]

7. *Calcola l'integrale triplo
$$\int_{\Omega} x \log \sqrt{y^2 + z^2} dx dy dz, \text{ dove } \Omega = \{(x, y, z) \in \mathbb{R}^3 : 1 \leq y^2 + z^2 \leq e^2, z < y, 0 < x < \frac{1}{\sqrt{y^2 + z^2}} \}.$$

$$[\frac{\pi}{4}. \text{ Per fili: } \int_{\Omega} x \log \sqrt{y^2 + z^2} dx dy dz = \int_{D} \left(\int_{0}^{\frac{1}{\sqrt{y^2 + z^2}}} x \log \sqrt{y^2 + z^2} dx \right) dy dz, \text{ con } 0 < x < \frac{1}{\sqrt{y^2 + z^2}} \text{ e } C = \{(y, z) \in \mathbb{R}^2 : 1 \le \sqrt{y^2 + z^2} \le e^2, z < y\}]$$

8. Dato
$$D = \{(x, y, z) \in \mathbb{R}^3 : 1 \le x^2 + y^2 \le 4, 0 \le z \le \sqrt{4 - x^2 - y^2} \}$$
, calcola $\iiint_D \frac{z}{\sqrt{x^2 + y^2}} dx dy dz$. $\left[\frac{5}{3}\pi\right]$

9. Calcola
$$\int_C dx dy dz$$
, dove $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + z^2 \le 2, 0 \le y \le 3\}$. [6 π (Volume del cilindro)]

- 10. Calcola $\int_C x dx dy dz$, dove $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, \ 0 \le z \le 1\}$. [0. Funzione integranda dispari rispetto alla variabile x, insieme di integrazione simmetrico rispetto al piano yz]
- 11. Dato $\Omega = \{(x, y, z) \in \mathbb{R}^3 : x > 0, x^2 + y^2 \le 1, x^2 + y^2 \le 2y, 0 \le z \le 3\}$, calcola $\iiint_{\Omega} xy3^z \, dx \, dy \, dz.$ $\left[\frac{65}{24 \log 3}\right]$

12. Dato
$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le x^2 + y^2 \le 2\}$$
, disegna Ω e calcola $\iiint_{\Omega} z e^z dx dy dz$. $[4\pi]$

13. Calcola l'area della regione di piano $D = \{(x,y) \in \mathbb{R}^2 : 0 < y < 1 + 2x, \, 4x^2 + y^2 \le 1\}$; calcola poi $\int_T 48z \, dx \, dy \, dz$, dove $T = \{(x,y,z) \in \mathbb{R}^3 : z > 0, \, 0 < y < 1 + 2x, \, 4x^2 + y^2 + z^2 \le 1\}$. $[\text{Area} = \frac{\pi}{8} + \frac{1}{4}; \int_T 48z \, dx \, dy \, dz = \frac{3\pi}{2} + 4. \text{ Per fili: } \int_T 48z \, dx \, dy \, dz = \int_D \left(\int_0^{\sqrt{1 - (4x^2 + y^2)}} 48z \, dz \right) dx dy,$ $\cos 0 < z < \sqrt{1 - (4x^2 + y^2)}]$

14. Determina il volume del solido
$$D$$
 definito da $D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 - z \le 0, z \ge \sqrt{x^2 + y^2}\}.$ $\left[\frac{\pi}{8}\right]$

15. Sia
$$D = \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1, x \ge 0, y \ge 0, z \ge \frac{1}{2} \right\};$$
 calcola l'integrale $\iiint_D \frac{1}{x^2 + y^2 + z^2} \, dx \, dy \, dz. \quad \left[\frac{\pi}{4} (1 - \log 2) \right]$

16. Ricordando che
$$\int_0^a \sqrt{a^2 - t^2} dt = \frac{\pi}{4} a^2$$
, calcola $\iiint_{\Omega} e^y \sqrt{x^2 - z^2} \, dx \, dy \, dz$ su $\Omega = \{(x, y, z) \in \mathbb{R}^3 : 0 \le z; z \le x \le 1; 0 \le y \le x^3\}$. $\left[\frac{\pi}{12} (e - 2)\right]$

17. Calcola i seguenti integrali tripli:

(a)
$$\iiint_{\Omega} xyz \, dx \, dy \, dz, \, \Omega = [0,1] \times [-1,2] \times [0,2]. \qquad \left[\frac{3}{2}\right]$$

- (b) $\iiint_{\Omega} y \, dx \, dy \, dz, \text{ con } \Omega \text{ nel primo ottante, limitata dai piani } x + y = 1 \text{ e } y + z = 1. \quad \left[\frac{1}{12}\right]$
- (c) $\iiint_{\Omega} (x^2 + y^2) \, dx \, dy \, dz$, dove Ω è la regione contenuta all'interno del cilindro $x^2 + y^2 = 1$, al di sotto del piano z = 3 e al di sopra del paraboloide di equazione $x^2 + y^2 + z = 1$. $\left[\frac{4}{3}\pi\right]$