Welfare Gains and Distributional Dynamics: A "Carbon Charge" in New York State

Daniel F. Noriega

Structural Estimation 2019-1

Large-scale policies encouraging investment in renewable resources have become quite common

COPENHAGEN (Reuters) - Danish government proposals on Friday called for sourcing just over half of its electricity from wind turbines by 2020 and all of its

energy from renewable sources in 2050.

New York State should consider a welfare evaluation to decide on its "Carbon Charge"

- Should New York State implement a carbon tax now in its wholesale electricity markets based on a social- welfare evaluation?
- What are their distributional impacts? (i.e. who benefits more or bears a higher share of the cost?)
- Lever: Simulation model estimated using SMM. Uses data from the New York market.

The distributional impacts of a carbon tax would be significant

Results:

 Carbon taxes can be beneficial. However, consumers may suffer, and producers may capture most of the welfare gains.

_	Base Case	Carbon Charge	_
Electricity Cost	35.99	54.58	[\$/MWh]
Producer Surplus	1034	1581	
Wind	45	68	[MMUSD]
Nuclear	479	726	
Hydro	306	463	
Gas	205	323	
Consumer Expenditures	1777	2694	[MMUSD]
Tax Collected		372	_ [MMUSD]
Emissions	10366	10345	[000 ton CO2]
Externality Cost	0	0	[MMUSD]

Welfare gains are not evenly distributed

Analytical framework: the model

 Partial equilibrium with three demand sectors: residential, commercial and industrial.

Demand:
$$q_{sth} = \alpha_{sth} - \gamma_{sth} p_{sth}$$
 [level – price response]

Generation:

$$g_{ith} = \begin{cases} 0, & \text{if } p_{th}^w < mc_i(g_{ith}) \\ [0, K_i], & \text{if } p_{th}^w = mc_i(g_{ith}) \\ K_i, & \text{else,} \end{cases}$$
 [Thermal]

$$r_{jth} \leq \lambda_{jth} K_j$$
 [Renewable] $h_{th} = \overline{h}_{th}$ [Hydro, nuclear]

Estimation Model

Characterizing Equations

(i)
$$Load_t - Power_t = 0$$

(ii) $Power_t - \sum_{i=1}^{T} gen_i cap_i = 0$

(iii)
$$Price_t = c_{source,t} * gen_{T,"marginal"} * h_{heat\ rate}$$

$$(iv)gen_{i cost, t} - gen_{i}h_{i}c_{source, t} = 0$$

$$(v)c_{source, t} = \rho c_{source, t-1} + (1 - \rho)\mu + \varepsilon$$
$$\varepsilon \sim N(0, \sigma)$$

■ Variables:

- Load (exogenous)
- Price (endogenous)
- Emissions (end.)
- Cost of primary energy source (estimated), c

■ Variables (*):

- Generator, gen
- Installed capacity, cap
- Heat rate (i.e. efficiency), h
- Emissions rate

Parameters to be estimated

- 0
- $-\rho$
- **µ**

Moments considered

$$(i)\frac{\sum_{t=1}price_t}{t_{max}}$$

(ii)
$$var\left(\frac{price_t}{load_t}\right)$$

 $(iii) corr(price_t, Load_t)$

 $(iv)corr(price_t, price_{t+1})$

Minimizing criteria

$$\hat{\theta}_{SMM} = \theta : \min_{\theta} ||\hat{m}(\tilde{x}|\theta) - m(x)||$$

$$e(\tilde{x}, x | \theta) \equiv \frac{\hat{m}(\tilde{x} | \theta) - m(x)}{m(x)}$$

Error function (defined as percentage)

$$\hat{\theta}_{SMM} = \theta : \min_{\theta} e(\tilde{x}, x | \theta)^T W e(\tilde{x}, x | \theta)$$

SMM Estimator

Estimation Results

- Estimated parameters:
 - ρ : 0.56
 - $\mu: 3.87$
 - **σ**: 1.34
- Vector of Differences:
 - **-** [0.18 -0.12 -0.35 -0.0015]
- Standard Errors of Parameter Vector
 - [0.00018, 0.00335, 0.00043]
- Number of Simulations, number of periods
 - 1200, ~3000

Assumptions

- Natural Gas-fired plants, wind, hydro and nuclear plants combined provide the entirety of the power demanded (~95% in 2017)
- Imports and exports remain at the level they were in the actual market run
- Adjusted capacity for thermal units to average summer derating factor
- Modified wind capacity to attain a constant output that resulted in the same capacity factor as in 2017
- Hydro and Nuclear units will have a constant output (NG will usually be on the margin, consistent with data)

Improvements

Demand can also be modeled as elastic

Industrial

- Consistent with literature, an elasticity of -0.2 could be assumed
- Different sectors on the demand side consume electricity differently

-0.50

0.14%

^{*}Figures from Reguant, Mar, "The Efficiency and Sectoral Distributional Impacts of Large-Scale Renewable Policies", Journal of the Association of Environmental and Resource Economics, forthcoming

Data

Generation facilities participating in NYS wholesale energy markets (~500) [NYISO]

Load Historic and Forecast: Seasonal Peak load and total consumption (2019 – 2030) [NYISO] ***First simulation only leveraged 2017 data

Historic Load: Down to 5-minute granularity, 10 years [NYISO]

Social Cost of Carbon [Interagency Working Group on Social Cost of Greenhouse Gases]

eGRID: Plant level and State level emissions data [EPA, 2016]

Plant level efficiency/heat-rates [EPA, 2016]