FMI, Mate, Anul I Logică matematică

Seminar 1

(S1.1) Fie X o mulţime. Să se arate că nu există o funcţie surjectivă cu domeniul X şi codomeniul $\mathcal{P}(X)$.

Demonstrație: Presupunem că ar exista și fie $f: X \to \mathcal{P}(X)$ surjectivă. Fie mulțimea

$$A = \{ x \in X \mid x \notin f(x) \} \in \mathcal{P}(X).$$

Dat fiind că f este surjectivă, există $y \in X$ cu f(y) = A. Dar atunci: $y \in A \Leftrightarrow y \notin f(y) = A \Leftrightarrow y \notin A$ ceea ce este o contradicție.

(S1.2) Fie $A = \{a, b, c, d\}$ și $R = \{(a, b), (a, c), (c, d), (a, a), (b, a)\}$ o relație binară pe A. Care este compunerea $R \circ R$? Care este inversa R^{-1} a lui R?

Demonstraţie: Obţinem

$$R \circ R = \{(a, a), (a, b), (a, c), (a, d), (b, a), (b, b), (b, c)\},\$$

$$R^{-1} = \{(a, a), (a, b), (b, a), (c, a), (d, c)\}.$$

(S1.3) Să se demonstreze asociativitatea compunerii relațiilor.

Demonstrație: Fie $R\subseteq A\times B,\ Q\subseteq B\times C,\ S\subseteq C\times D$ trei relații. Vrem să demonstrăm că

$$(R \circ Q) \circ S = R \circ (Q \circ S).$$

 \subseteq Fie $(a,d) \in (R \circ Q) \circ S$. Atunci există $c \in C$ cu $(a,c) \in R \circ Q$ şi $(c,d) \in S$. Din faptul că $(a,c) \in R \circ Q$ avem că există $b \in B$ cu $(a,b) \in R$ şi $(b,c) \in Q$. Din faptul că $(b,c) \in Q$ şi $(c,d) \in S$, avem $(b,d) \in Q \circ S$. Am obținut că $(a,b) \in R$ şi $(b,d) \in Q \circ S$. Prin urmare, $(a,d) \in R \circ (Q \circ S)$.

(S1.4) Fie A, B, C mulţimi. Demonstraţi că

(i)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
.

(ii)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
.

Demonstraţie:

(i) Avem că

$$x \in A \times (B \cup C)$$
 \iff există $a \in A$ şi $y \in B \cup C$ cu $x = (a, y)$ \iff există $a \in A$ şi $y \in B$ sau $y \in C$ cu $x = (a, y)$ \iff (există $a \in A$ şi $y \in B$ cu $x = (a, y)$) sau (există $a \in A$ şi $y \in C$ cu $x = (a, y)$) \iff $x \in A \times B$ sau $x \in A \times C$ \iff $x \in (A \times B) \cup (A \times C)$.

Prin urmare, $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

(ii) Demonstrăm prin dublă incluziune.

 \subseteq Fie $x \in A \times (B \cap C)$. Atunci există $a \in A$ şi $y \in B \cap C$ cu x = (a, y). Deoarece $y \in B$, rezultă că $x \in A \times B$. Deoarece $y \in C$, rezultă că $x \in A \times C$. Prin urmare, $x \in (A \times B) \cap (A \times C)$.

 \supseteq Fie $x \in (A \times B) \cap (A \times C)$. Atunci $x \in A \times B$ şi $x \in A \times C$, aşadar, $x = (a_1, y_1)$ cu $a_1 \in A, y_1 \in B$ şi $x = (a_2, y_2)$ cu $a_2 \in A, y_2 \in B$. Deoarece $x = (a_1, y_1) = (a_2, y_2)$, trebuie să avem $a_1 = a_2$ şi $y_1 = y_2$. Fie $a := y_1 = y_2$ şi $y := y_1 = y_2$. Atunci x = (a, y), cu $a \in A$ şi $y \in B \cap C$. Rezultă că $x \in A \times (B \cap C)$.

Am demonstrat că $A \times (B \cap C) = (A \times B) \cap (A \times C)$.