Aufgabe 2 - Spule mit Selbst- und Gegeninduktivität

Ein Ring aus Ferrit (Annahme: $\mu_r=2000$) mit kreisförmigem Querschnitt besitzt einen inneren Radius von $r_i=10$ mm und einen äußeren Radius von $r_a=16$ mm. Auf dem Ring sind zwei Wicklungen mit $N_1=150$ und $N_2=200$ Windungen mit gleichem Wicklungssinn angebracht.

Gehen Sie von einem homogenen Feld im Inneren des Querschnitts aus. Streufelder sind zu vernachlässigen.

a) Berechnen Sie die Querschnittsfläche A_q des Rings sowie die mittlere Feldlinienlänge l. (4P)

Quelle: Reichelt

- b) Wie groß ist der magnetische Widerstand R_m der Anordnung? (2P)
- c) Wie groß sind die Induktivitäten L_1 und L_2 der Wicklungen? (3P)

d) Wie groß ist die Gegeninduktivität M? (5P)