Segmentation des clients d'un site e-commerce

Campagne de communication - Olist

Besoins

- Classification non-supervisée
- Segmentation exploitable, facile d'utilisation
- Contrat de maintenance
- Suivre la norme PEP8

Problématique

- Quelles sont les variables pertinentes ? Faut-il les transformer ?
- Quel algorithme de classification sera le plus efficace ?
- Comment évaluer la qualité de la classification ?
- Comment évaluer sa stabilité ?
- Quel outil pour formater le code ?

Réponse

- Essayer différentes entrées et visualiser les données
- Tester plusieurs classificateurs et les comparer
- Utiliser l'indice de silhouette et d'autres indices
- Vérifier la stabilité :
 - Sur plusieurs itérations
 - Sur l'ajout de données
- Utiliser l'extension auto-pep8

I- La base de données

- Fournie par le site d'e-commerce Olist
- Anonymisée
- Contient plusieurs tables, liées par des clés étrangères
 - Clients
 - Géolocalisations
 - Produits
 - Commandes
 - Items des commandes
 - Paiements

II- Nettoyage - Valeurs aberrantes

- Suppression des doublons
- Suppression des valeurs extrêmes
- Supprimer les valeurs incohérentes
- Vérification de la cohérence entre les tables

II- Nettoyage – Valeurs aberrantes

- Catégories : 'cool_stuff'
- Catégories non-référencées
- Cohérence entre les prix et les paiements

II- Nettoyage - Imputation

- Taux de remplissage minimal : 97 %
- Mis à part les commentaires avec les notes
- On ne fait pas d'imputation

III- Exploration

Nombre d'items achetés

III- Exploration

- Analyse factorielle non-négative
 - Coordonnées d'un axe

moveis_decoracao	10.176362
ferramentas_jardim	0.111993
beleza_saude	0.060263
relogios_presentes	0.035623
casa_construcao	0.034349

III- Exploration

Effectifs par code postal

IV- Construction des profils

- Variables prises en compte :
 - RFM
 - Dimensions moyennes des produits
 - Longueur de la description du produit
 - Notes moyennes données
 - Proximité à la ville

V- Segmentation

Évolution du nombre de clients

Pente: 143.43

R2 = 0.97

→ Échantillon: 73886

V- Classification RFM

 La fréquence est la même pour tous, on ne l'utilise pas

V- Classification RFM

V- Classification RSM

Récence, Score, Montant

V- Classification RSM

Si on met les notes en couleur :

V- Classification RSMD

Récence, Score, Montant, Distance

V- Classification RSMDT

Récence, Score, Montant, Distance, Texte

V- Classification RSMDT

V- Classification RSMDT

- Critères d'évaluation des segmentations
 - Indice de Davies-Bouldin
 - Indice de silhouette
 - Indice de Calinski-Harabasz
- Critères supplémentaires
 - Interprétabilité
 - Stabilité

V- Algorithmes testés

- K-Means
- DBSCAN
- Classification agglomérative

V- K-Means: Nombre de clusters

V- K-Means: Performances

- Score de sihouette: 0.25
- Score de Davis-Bouldin: 1.15
- Score de calinski-harabasz: 19080.11

V-K-Means: Profils Moyen

	recency	total_spent	review_score	distance_city	product_description_lenght	proportion
class_kmeans						
0	238.939851	96.414424	1.426272	0.044878	649.616291	13.495500
1	220.334383	85.372200	4.357561	0.155019	656.352629	12.064776
2	233.421942	293.568459	4.314093	0.041238	793.130124	9.477528
3	396.100886	76.008131	4.613352	0.033036	583.693016	24.663020
4	216.567258	124.639651	4.329035	0.045247	2432.331990	7.578493
5	119.096038	75.402231	4.639038	0.032946	619.123522	32.720683

V- K-means : Visualisations

V-DBSAN: Paramétrage

Davies-Bouldin

Calinski-Harabasz

Silhouette

Davies-Bouldin	1.05
Calinski-Harabasz	176.53
Silhouette	0.42

Davies-Bouldin	3.64
Calinski-Harabasz	3776.04
Silhouette	0.02

Davies-Bouldin	1.05
Calinski-Harabasz	176.64
Silhouette	0.44

V- Classification agglomérative : Paramétrage

V- Classification agglomérative : Paramétrage

- Silhouette: 0.14
- Davis-Bouldin: 1.38
- Calinski-Harabasz: 3155.99

V- Choix de l'algorithme

- K-Means
 - Meilleurs résultats
- DBSCAN
 - Classes disproportionnées
 - Classes selon la note
- Agglomératif
 - Nécessite beaucoup de mémoire

V- Stabilité de la classification

- Sur plusieurs itérations :
 - Les clusters sont stables à 99.9 %
- Sur ajout de données (~60 jours) :
 - Les clusters sont stables à 99.25 %

Conclusion

- Classification avec K-Means
- Interprétable
- Performante : Score au minimum 200x supérieur
- Clusters stables
- Maintenance: Tous les 2 mois c'est suffisant

Limites

- Anonymisation des données
- Nombre de clusters limités
- Fréquence des achats faible