```
# Carque de Librerías básicas
1
2
    import pandas as pd
3
    import matplotlib.pyplot as plt
4
    import seaborn as sns
5
6
    # Importar tensorflow
7
    import tensorflow as tf
    print("TF version : ", tf.__version__)
8
9
10
    # Necesitaremos GPU
    print("GPU available: ", tf.config.list_physical_devices('GPU'))
11
12
13
    # keras version is 2.11.0
14
    import keras
15
    print("Keras version : ", keras.__version__)
```

→ TF version : 2.15.0 GPU available: []

Keras version : 2.15.0

```
#-----#
debido a que estoy usando COLAB #
#-----#

from google.colab import drive
drive.mount('/content/drive') #/content/drive/MyDrive/pec2/data/xl.pickle
print("GPU available: ", tf.config.list_physical_devices('GPU'))
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call GPU available: []

```
1
   import pandas as pd
2
3
   home = '/content/drive/MyDrive/TFM/'
4
5
   file_path = home + "2017_2023DSTrabajo.xlsx"
6
7
   dsXls = pd.read excel(file path)
   dsXls.head(5)
8
9
   dsXls.info()
10
11
```

```
12
   # LIMPIEZA DE DATOS
13
   #1. validar duplicados
14
   dsXls.nunique()
15
16
17
   #2. validar nulos, rellenar valores faltantes con la mediana
   #dsXls.isnull().sum()
18
   dsXls['Dist'].fillna(dsXls['Dist'].median(), inplace=True)
19
   dsXls['Attendance'].fillna(dsXls['Attendance'].median(), inplace=True)
20
21
   dsXls.isnull().sum()
22
23
24
   25
   # ESTADISTICAS
26
   27
   #dsXls.describe().T
28
   dsXls.iloc[:,1:].describe()
29
```


<class 'pandas.core.frame.DataFrame'> RangeIndex: 4092 entries, 0 to 4091 Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	Date	4092 non-null	datetime64[ns]
1	Round	4092 non-null	object
2	Day	4092 non-null	object
3	Venue	4092 non-null	object
4	Result	4092 non-null	object
5	GF	4092 non-null	float64
6	GA	4092 non-null	float64
7	Opponent	4092 non-null	object
8	xG	4092 non-null	float64
9	xGA	4092 non-null	float64
10	Poss	4092 non-null	float64
11	Attendance	3212 non-null	float64
12	Season	4092 non-null	int64
13	Team	4092 non-null	object
14	Sh	4092 non-null	float64
15	SoT	4092 non-null	float64
16	Dist	4089 non-null	float64
17	SCA	4092 non-null	float64
18	KP	4092 non-null	float64
19	PPA	4092 non-null	float64
20	CrsPA	4092 non-null	float64
• •			

dtypes: datetime64[ns](1), float64(13), int64(1), object(6)

memory usage: 671.5+ KB

	GF	GA	хG	хGA	Poss	Attendance	
count	4092.000000	4092.000000	4092.000000	4092.000000	4092.000000	4092.000000	4(
mean	1.377810	1.377810	1.346163	1.346163	50.001222	36912.650049	20
std	1.277631	1.277631	0.796551	0.796551	12.726702	15301.262664	
min	0.000000	0.000000	0.000000	0.000000	18.000000	2000.000000	20
25%	0.000000	0.000000	0.700000	0.700000	41.000000	29296.000000	20
50%	1.000000	1.000000	1.200000	1.200000	50.000000	32092.500000	20
75%	2.000000	2.000000	1.800000	1.800000	59.000000	51237.000000	20
max	9.000000	9.000000	5.900000	5.900000	82.000000	83222.000000	20

² from sklearn.decomposition import PCA

```
3 from sklearn.preprocessing import StandardScaler
 4 from sklearn.linear_model import LogisticRegression, LinearRegression
 5 from sklearn.model selection import train test split
 6 from sklearn.metrics import mean squared error, r2 score
 7 from sklearn.preprocessing import LabelEncoder
9 dataReg = dsXls.drop(['Date', 'Round', 'Day', 'Venue', 'Result', 'Team', 'Opp
10
11 from sklearn.preprocessing import OneHotEncoder
12 # Estandarizando los datos
13 scaler = StandardScaler()
14
15 # Aplicando PCA
16 pca = PCA()
17 X_pcaReg = pca.fit_transform(dataReg)
18
19 from sklearn.model_selection import train_test_split
21 # Codificar las etiquetas categóricas
22 encoderREG = LabelEncoder()
23 y_encodedReg = encoderREG.fit_transform(dsXls[['Result']]) #dsXls['Result'] #
24
25
26 # Dividir el dataset
27 X_trainReg, X_testReg, y_trainReg, y_testReg = train_test_split(X_pcaReg, y_e
28
29 # Crear el modelo de regresión logística para multiclase
30 #model = LogisticRegression(max_iter=10000, multi_class='ovr')
31 model = LinearRegression()
32 model.fit(X_trainReg, y_trainReg) #model.fit(X_train, y_train)
33 y_predReg = model.predict(X_testReg)
34
35 #print("dats",y_predReg)
36 #labels = ['D', 'L', 'W']
37 #plt.xticks([0, 1, 2], labels)
38 plt.figure(figsize=(10, 6))
39 plt.scatter(y_testReg, y_predReg, alpha=0.5)
40 plt.xlabel('Valores Reales')
41 plt.ylabel('Predicciones')
42 plt.title('Comparación de Valores Reales vs. Predicciones')
43 plt.plot([y_testReg.min(), y_testReg.max()], [y_testReg.min(), y_testReg.max(
44 plt.show()
45
46
47 from sklearn.metrics import classification_report, confusion_matrix, accuracy
```

```
48 from sklearn.model_selection import cross_val_score
49
50 ## Matriz de confusión
51 #cmReg = confusion_matrix(y_testReg, y_predReg)
52 #disp = ConfusionMatrixDisplay(confusion_matrix=cmReg, display_labels=['W','L
53 #disp.plot()
54 #plt.show()
55
56 ## Reporte de clasificación
57 #print("Classification Report:\n", classification_report(y_testReg, y_predReg
58
59 # Validación cruzada
60 #cross_val_accuracy = cross_val_score(model, X_pcaReg, y_encodedReg, cv=13, s
61 #print("Cross-validated Accuracy:", cross_val_accuracy.mean())
62
63 mse = mean_squared_error(y_testReg, y_predReg) #mse = mean_squared_error(y_te
64 r2 = r2_score(y_testReg, y_predReg)#r2 = r2_score(y_test, y_pred)
66 print(f'MSE: {mse}. R^2: {r2}')
```

 $\overline{\mathbf{x}}$

/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_label.py:116: [
 y = column_or_1d(y, warn=True)

1.00

Valores Reales

1.25

1.50

1.75

2.00

MSE: 0.4263752306424075, R^2: 0.29983627663982193

0.50

0.75

0.00

0.25

```
#regresión logistica
2
    from sklearn metrics import confusion matrix
3
    from sklearn.model_selection import train_test_split
4
    from sklearn.linear_model import LogisticRegression
5
6
    from sklearn.metrics import accuracy_score
7
    from sklearn.metrics import classification_report, confusion_matrix, accuracy_
8
    from sklearn.model_selection import cross_val_score
9
10
    import matplotlib.pyplot as plt
```

```
TT .... IT OHE'S K LEAFTH. HIGH TCS "THIPOTE" CONTROLUDIL HIGH TX, "CONTROLUDICH TXDTSP (AY
12
    # X_pcaReg, y_encodedReg
13
    #X_trainReg, X_testReg, y_trainReg, y_testReg
14
15
    # Crear y ajustar el modelo de regresión logística model = LogisticRegression(
    modelRL = LogisticRegression(max iter=10000, multi class='ovr')
16
17
    modelRL.fit(X_trainReg, y_trainReg)
18
19
    # Obtener predicciones de etiquetas de clase (no probabilidades)
    y_predRL = modelRL.predict(X_testReg)
20
21
    # Generar y mostrar la matriz de confusión
22
23
    cmRl = confusion_matrix(y_testReg, y_predRL)
    print(cmRl)
24
25
26
    disp = ConfusionMatrixDisplay(confusion_matrix=cmRl)
27
    print(disp)
28
29
    ####---
30
    # Reporte de clasificación
    print("Classification Report:\n", classification_report(y_testReg, y_predRL))
31
32
33
    # Validación cruzada
    cross_val_accuracyRl = cross_val_score(modelRL, X_pcaReg, y_encodedReg, cv=5,
34
35
    print("Cross-validated Accuracy:", cross_val_accuracyRl.mean())
36
37
    # reporte de clasificación
38
39
     reportRL = classification report(y testReg, y predRL)
40
41
    print(reportRL)
42
```

[[184 1 0] [0 289 0] [0 0 345]]

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay object at 0x7d2
Classification Report:</pre>

Classificatio	precision	recall	f1-score	support
0	1.00	0.99	1.00	185
1	1.00	1.00	1.00	289
2	1.00	1.00	1.00	345
accuracy			1.00	819
macro avg	1.00	1.00	1.00	819
weighted avg	1.00	1.00	1.00	819
Cross-validat	ed Accuracy:	0.9948703	8022052655	
Cross-validat	ed Accuracy: precision		022052655 f1-score	support
Cross-validat	•			support 185
	precision	recall	f1-score	
0	precision 1.00	recall 0.99	f1-score 1.00	185
0 1 2	1.00 1.00	recall 0.99 1.00	f1-score 1.00 1.00	185 289
0 1	1.00 1.00	recall 0.99 1.00	f1-score 1.00 1.00 1.00	185 289 345