Why audio features?

Description of sound

Why audio features?

- Description of sound
- Different features capture different aspects of sound

Why audio features?

- Description of sound
- Different features capture different aspects of sound
- Build intelligent audio systems

Audio feature categorisation

- Level of abstraction
- Temporal scope
- Music aspect
- Signal domain
- ML approach

Level of abstraction

High-level

Examples: instrumentation, key, chords, melody, rhythm, tempo, lyrics, genre, mood

Mid-level

Examples: pitch- and beat-related descriptors, such as note onsets, fluctuation patterns, MFCCs

Low-level

Examples: amplitude envelope, energy, spectral centroid, spectral flux, zero-crossing rate

Knees, P., & Schedl, M. (2016). *Music similarity* and retrieval: an introduction to audio-and web-based strategies

Temporal scope

- Instantaneous (~50ms)
- Segment-level (seconds)
- Global

Music aspect

- Beat
- Timbre
- Pitch
- Harmony
- ...

• Time domain

Time domain

Amplitude envelope Root-mean square energy Zero crossing rate

Time domain

- Time domain
- Frequency domain

- Time domain
- Frequency domain

Band energy ratio Spectral centroid Spectral flux

- Time domain
- Frequency domain

- Time domain
- Frequency domain
- Time-frequency representation

- Time domain
- Frequency domain
- Time-frequency representation

Spectrogram
Mel-spectrogram
Constant-Q transform

- Time domain
- Frequency domain
- Time-frequency representation

Machine learning approach

- Traditional machine learning
- Deep learning

Amplitude envelope
Root-mean square energy
Zero crossing rate
Band energy ratio
Spectral centroid
Spectral flux
Spectral spread
Spectral roll-off

- - -

Amplitude envelope

Root-mean square energy

Zero crossing rate

Band energy ratio

Spectral centroid

Spectral flux

Spectral spread

Spectral roll-off

- - -

Amplitude envelope Zero crossing rate Spectral flux

Amplitude envelope Zero crossing rate Spectral flux

Traditional ML algorithm

Amplitude envelope Zero crossing rate Spectral flux

 $\qquad \qquad \Longrightarrow$

Traditional ML algorithm

car engine"

DSP

What's up next?

• Feature extraction pipeline