洛谷信息学竞赛课程

初赛(2)基础算法串讲 洛谷网校 - kkksc03

排序

计数排序 O(a+n) 不基于比较

选择排序 O(n^2), 不稳定

【2018普及】以下排序算法中,不需要进行关键字比较操作的算法是()。

- A. 基数排序
- B. 冒泡排序
- C. 堆排序
- D. 直接插入排序

解: A。

排序

冒泡排序 O(n²) 稳定

插入排序 O(n²),稳定

排序

归并排序 稳定 O(n log n) 需要额外辅助空间 快速排序 不稳定 O(n log n) 最坏 O(n²) 堆排序 不稳定 O(n log n)

【2019提高】排序的算法很多,若按排序的稳定性和不稳定性 分类,则()是不稳定排序。

- A. 冒泡排序
- B. 直接插入排序
- C. 快速排序
- D. 归并排序

解: C。

贪心

需要证明,有时候不正确

例子 - 哈夫曼编码: 5,14,13,10

方法1: 5×3+14×3+13×2+10=93

方法2: (5+10+13+14)×2=84

【2019入门】新学期开学了,小胖想减肥,健身教练给小胖制定了两个训练方案。

方案一:每次连续跑3公里可以消耗300千卡(耗时半小时);

方案二:每次连续跑5公里可以消耗600千卡(耗时1小时)。

小胖每周周一到周四能抽出半小时跑步,周五到周日能抽出一小时跑步。另外,教练建议小胖每周最多跑21公里,否则会损伤膝盖。

请问如果小胖想严格执行教练的训练方案,并且不想损伤膝盖,每周最多通过跑步消耗多少千卡? ()

A. 3000 / B. 2500 / C. 2400 / D. 2520

解: C。优先周末跑5公里(性价比高)。然后非周末2天

二分

顺序查找效率低,要找N次 折半查找,找需要 log(n) 次,要求有序

第1轮		mid 4 5 (1) 3 5 (1)	=6 5 7 7 9	8 11	9	10 15	r=11 11 15	a[mid]>=3成立(大了) 取左区间
第2轮			=6 6 7 7 9	8	9	10 15	11 15	a[mid]>=3成立(大了) 取左区间
第3轮	- - - - - - - - - - 	4 5 6	6 7 7 9	8	9	10 15	11 15	a[mid]>=3成立(大了) 取左区间
第4轮		4 5 6	6 7 7 9	8	9	10 15	11 15	a[mid]>=3不成立(小了) 取右区间
最终	l=2, r=2,	退出循环						

【2019入门】设有100个已排好序的数据元素,采用折半查找时,最大比较次数为()

A. 7

B. 10

C. 6

D. 8

解: A。 log(64)=6。 log(128)=7

递推递归分治

递推:从小到大顺推

斐波那契数列 11235813 21

f(0)=f(1)=1, f(i)=f(i-1)+f(i-2)

分治: 大问题拆成小问题, 递归解决

例如归并排序和快速排序

栈

小止是餐厅里的洗碗工。她身边有一叠餐盘要洗。客人们吃完饭之后,要洗的盘子会放在这叠餐盘的顶端; 而小止洗盘子的时候, 总会取出这叠餐盘最顶上的盘子来洗。

先进后出,入栈: 12345,出栈: 32541

应用:卡特兰数1251452,后缀表达式计算,括号匹配

真题练习

【2017提高,不定项】对于入栈顺序为 a, b, c, d, e, f, g 的序列,下列()不可能是合法的出栈序列。

A. a, b, c, d, e, f, g

B. a, d, c, b, e, g, f

C. a, d, b, c, g, f, e

D. g, f, e, d, c, b, a

解:C。经过模拟,d出栈是有压着c,b不可能比c先出。

队列

小止作为一个收银员在超市打工。收银员会给排在队伍最前面的顾客买单,然后服务队伍中下一个顾客。而队伍的末尾也一直会有更多的顾客依次加入队列。

先进先出,入、出都是12345

(a)1入队	1	(f)4入队 3 4
(b)2入队	1 2	(g)5入队 3 4 5
(c)3入队	1 2 3	(h)3结账 4 5
(d)1结账	2 3	(i)4结账 5
(e)2结账	3	(j)5结账 (空)

链表

n 名同学在排队,然后解散。希望知道当初排队的顺序,然而并没有记录队伍是怎么排。已经知道止止(编号是 1)排在最前面;除此之外,每人都记得自己后面是谁。

久洛谷网校

【2019入门】链表不具有的特点是()

- A. 插入删除不需要移动元素
- B. 不必事先估计存储空间
- C. 所需空间与线性表长度成正比
- D. 可随机访问任一元素

解: D。一个接着一个,没有连续的存储。

树

N个节点,N-1条边 可能有一个根节点,层次 所有节点之间都可以相互连 通,没有环

森林: 树的集合

【2018提高,不定项】下列说法中,是树的性质的有()。

- A. 无环
- B. 任意两个结点之间有且只有一条简单路径
- C. 有且只有一个简单环
- D. 边的数目恰是顶点数目减1

解: ABD

二叉树 (重点)

高度,节点数量,叶子节点数量。下一层数量是上一层2倍。 每层的数量 2⁽ⁱ⁻¹⁾,一共数量 2ⁱ⁻¹ 完美(满)二叉树、完全二叉树。完全二叉树的节点编号

【2019入门】一棵二叉树如右图所示,若采用顺序存储结构,即用一维数组元素存储该二叉树中的结点(根结点的下标为1,若某结点的下标为i,则其左孩子位于下标2i处、右孩子位于下标2i+l处),则该数组的最大下标至少为()。

A. 6

B. 10

C. 15

D. 12

解: C。将其补齐为完美二叉树,一共有15个节点

二叉树的遍历

前序遍历:首先访问根结点, 然后遍历左子树,最后遍历 右子树。

中序遍历: 首先遍历左子树, 然后访问根结点,最后遍历 右子树。

后序遍历: 首先遍历左子树, 然后遍历右子树,最后访问 根结点。

【2019入门】假设一棵二叉树的后序遍历序列为DGJHEBIFCA,中序遍历序列为DBGEHJACIF,则其前序遍历序列为()。

- A. ABCDEFGHIJ
- **B. ABDEGHJCFI**
- C. ABDEGJHCFI
- D. ABDEGHJFIC

解:B。后续遍历最后一个是根。然后在中序遍历中找到根, 分为左右子树,然后继续递归。

表达式树

中序表达式
(a+(b*c))+(d*e)
后缀表达式-后序遍历
前序表达式-前序遍历

【2018提高】表达式 `a * d - b * c ` 的前缀形式是()。

- A. `ad*bc*-`
- B. `- * a d * b c`
- C. `a * d b * c`
- D. `- * * adbc`

解: B。画成表达式树。然后前缀遍历。

冬

无向图,无向图(带权),有向图(带权)

顶点 V; 边 E; 完全图: n(n-1)/2

度数: 顶点连着边的条数,有向图分为入度和出度

重边:两个相同定点中间有多条边;自环:自己连自己

简单图: 无重边自环

【2019提高】G是一个非连通无向图(没有重边和自环),共有28条边,则该图至少有 () 个顶点。

A. 10

B. 9

C. 11

D. 8

解: 2个点: 1条边。3个点: 1+2。4个点: 1+2+3=6。

7个点: 21条边。8个点: 1+2+…+7=28条边。

但注意题目要求非联通。8个点不够

邻接矩阵

i∖j	1	2	3	4
1	0	5	2	3
2	1	0	0	1
3	2	0	0	4
4	3	1	4	0

邻接表

1: [{③,2}]

2: [{1,1}, {4,6}]

3: [{4,5}]

4: [{1,4},{2,3}]

【2019提高】以下哪个结构可以用来存储图()

- A. 栈
- B. 二叉树
- C. 队列
- D. 邻接矩阵

解: D, 邻接矩阵或者邻接表(链表)

深度优先遍历 (DFS)

广(宽)度优先遍历(BFS)

图论算法

单源最短路径: Dijkstra算法 O(n log n),SPFA 死了

全部点对最短路径: Floyd算法 O(n³)

最小生成树: Prim O(n²)、Kruskal O(e log e)

欧拉回路:一笔画问题,只能最多2个奇数度的定点

【2019提高】以下哪些算法不属于贪心算法? ()

- A. Dijkstra 算法
- B. Floyd 算法
- C. Prim算法
- D. Kruskal 算法

解: B。严格说是一种动态规划。

课程结束

