Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

PATIENT					
Name: 陳儒忠			Patient ID: 48120554		
Date of Birth: Apr 15, 1949			Gender: Male		
Diagnosis: Neuroendocrine carcino	ma				
ORDERING PHYSICIAN	ORDERING PHYSICIAN				
Name: 陳明晃醫師			Tel: 886-228712121		
Facility: 臺北榮總					
Address: 臺北市北投區石牌路二段 201 號					
SPECIMEN					
Specimen ID: S11170224 Collection site: Liver			Type: FFPE tissue		
Date received: Mar 09, 2022 Lab ID: AA-22-01138			D/ID: NA		

ABOUT ACTORCO®4

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in F	Probable Sensitive in Other		
Alterations/Biomarkers	Sensitive Resistant		Cancer Types	
Not detected				

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant	
KRAS G12D	-	Afatinib, Dacomitinib, Erlotinib, Gefitinib, Osimertinib, Panitumumab, Cetuximab	
RB1 R358*	-	Abemaciclib, Palbociclib, Ribociclib	

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 1 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
KRAS	G12D	37.7%
RB1	R358*	47.7%
RBM10	R230*	69.7%
TP53	R342*	66.4%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
Chr11	MRE11	Heterozygous deletion	1
Chr13	BRCA2	Heterozygous deletion	1
Chr18	SMAD4	Heterozygous deletion	1
Chr4	FBXW7	Heterozygous deletion	1
Chr9	CDKN2A	Heterozygous deletion	1
Chr19	CCNE1	Amplification	7 [¥]

^{*} Increased gene copy number was observed.

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results	
Tumor Mutational Burden (TMB)	1.2 muts/Mb	
Microsatellite Instability (MSI)	Microsatellite stable (MSS)	

Note:

- Variant(s) enlisted in the SNV table may currently exhibit no relevance to treatment response prediction. Please refer to INTERPRETATION for more biological information and/or potential clinical impacts of the variants.
- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 67% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **2** of **36**

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations Therapies		Effect
Level 3A		
KRAS G12D	Afatinib, Dacomitinib, Erlotinib, Gefitinib, Osimertinib, Panitumumab, Cetuximab	resistant
Level 4		
RB1 R358*	Abemaciclib, Palbociclib, Ribociclib	resistant

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
ЗА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **3** of **36**

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
	Not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
	Cisplatin	Sensitive	Clinical	Bladder carcinoma
RB1 R358*	FAC T/FAC taxane/doxorubicin	Sensitive	Clinical	Breast cancer

HORMONAL THERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
RB1	Tomovifon	Decistant	Clinical	Dragat concer
R358*	Tamoxifen	Resistant	Clinical	Breast cancer

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 4 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138 ONC

Date Reported: Mar 22, 2022

VARIANT INTERPRETATION

KRAS G12D

Biological Impact

The V-Ki-Ras2 Kirsten Rat Sarcoma 2 Viral Oncogene Homolog (KRAS) gene encodes a small GTPase protein, a member of the RAS family of small GTPases, which catalyze the hydrolysis of GTP to GDP. RAS proteins cycle between an active (GTP-bound) and an inactive (GDP-bound) state, to activate the downstream oncogenic pathways, including the PI3K/AKT/mTOR and MAPK pathways[1]. KRAS mutations occur primarily in three hotspots G12, G13 and Q61, and less frequently in codon A146^{[1][2]}. These are activating mutations that lead to constitutive activation and persistent stimulation of the downstream signaling pathways[3][4]. Mutations in KRAS have been reported in a diverse spectrum of human malignancies, including pancreatic carcinomas (>80%)[1][5], colon carcinomas (40-50%)[6][7], and lung carcinomas (30-50%)[8][9], but are also present in biliary tract malignancies, endometrial cancer, cervical cancer, bladder cancer, liver cancer, myeloid leukemia and breast cancer[2].

G12D is a hotspot mutation located in the GTP binding region of the KRAS protein (UniProtKB). This mutation results in decreased KRAS GTPase activity, increased activation of downstream signaling, and promotes tumor formation in preclinical studies[10][11][12].

Therapeutic and prognostic relevance

Except for KRAS G12C, other KRAS mutants are not currently targetable, but the downstream MEK serves as a potential target[13]. MEK inhibitors trametinib, cobimetinib, and binimetinib were approved by the U.S. FDA for patients with advanced metastatic melanoma whose tumors harbor BRAF V600 mutations^{[14][15][16][17]}.

There are case reports indicated that patients harboring a KRAS mutation may benefit from MEK inhibitor treatment. A patient with small cell neuroendocrine carcinoma (SCNEC) of the cervix harboring a KRAS G12D mutation showed significant response with trametinib[18]. Another low-grade serous carcinoma case with KRAS G12D also has sustained response to trametinib (Am J Clin Exp Obstet Gynecol 2015;2(3):140-143). In addition, a low-grade serous ovarian cancer patient harboring KRAS G12V mutation showed stable disease after 8 weeks of binimetinib treatment, and demonstrated a partial response after another 26 weeks of treatment[19]. However, trametinib did not demonstrate superiority to docetaxel in KRAS-mutant non-small cell lung cancer (NSCLC) patients, based on results from a randomized Phase II study[20].

Both clinical and preclinical studies demonstrated a limited response to monotherapy using MEK inhibitors[21]. Moreover, several clinical trials are in progress to evaluate the combination of MEK and mTOR inhibition as a new potential therapeutic strategy in CRC[22], and in patient-derived xenografts of RAS-mutant CRC, inhibition of MEK and mTOR suppressed tumor growth, but not tumor regression[23]. A study using the CRC patient-derived xenograft (PDX) model showed that the combination of trametinib, a MEK inhibitor, and palbociclib, a CDK4/6 inhibitor, was well tolerated and resulted in objective responses in all KRAS mutant models^[24].

KRAS mutation has been determined as an inclusion criterion for the trials evaluating MEK inhibitors efficacies in various types of solid tumors (NCT03704688, NCT02399943, NCT02285439, NCT03637491, NCT04214418).

Cetuximab and panitumumab are two EGFR-specific antibodies approved by the U.S. FDA for patients with KRAS wildtype metastatic colorectal cancer (NCT00154102, NCT00079066, NCT01412957, NCT00364013). Results from the PRIME and FIRE-3 trials indicated that panitumumab and cetuximab did not benefit patients with KRAS or NRAS mutations and may even have a detrimental effect in these patients[25]. Taken together, the National Comprehensive Cancer Network (NCCN) recommended that, cetuximab and panitumumab should only be used if both KRAS and NRAS genes are normal (NCCN guidelines)[26][27]. Numerous studies have demonstrated the presence of KRAS or NRAS mutations at exon 2, 3 or 4 as a predictor of resistance to anti-EGFR therapies [28][29][30][31][32][33][34].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 5 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138 ONC

Date Reported: Mar 22, 2022

Sorafenib, a multi-kinase inhibitor, has been shown to be beneficial in KRAS-mutant CRC^[35], KRAS-mutant NSCLC^[36], and KRAS-amplified melanoma^[37].

There has been conflicting data on the effect of KRAS mutation on the efficacy of bevacizumab in metastatic CRC patients(J Clin Oncol 34, 2016 (suppl; abstr 3525))[38][39].

In NCCN guidelines for NSCLC (version 5. 2021), KRAS mutations have been suggested as an emerging biomarker for EGFR TKIs in NSCLC patients. KRAS mutations are associated with a lack of efficacy of EGFR TKIs, including erlotinib, gefitinib, afatinib, and osimertinib, in NSCLC patients^{[40][41][42]}.

Studies have shown that KRAS mutation, especially those occurs in exon 2 (codon 12 or 13) and codon 61 indicated a poor prognosis for patients with CRC^[43].

In low-grade serous carcinoma of the ovary or peritoneum, patients with KRAS or BRAF mutations (n=21) had a significantly better OS than those with wild-type KRAS or BRAF (n=58) (106.7 months vs 66.8 months), respectively^[44]. In ovarian serous borderline tumor with recurrent low-grade serous carcinoma, patient harboring KRAS G12V mutation appeared to have shorter survival time^[45].

RB1 R358*

Biological Impact

The Retinoblastoma (RB1) gene encodes a tumor suppressor that negatively regulates the cell cycle, cell division, and DNA replication^[46]. Loss-of-function RB1 could lead to unregulated cell division and growth, abrogation of multiple mechanisms that safeguard against cellular transformation, and tumorigenesis^[47]. RB1 has also been implicated as a haploinsufficient tumor suppressor with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[48][49][50]}. Deletion or inactivating mutation of RB1 is found in a number of tumors, including lung, prostate, bladder, breast cancers and sarcomas. RB1 mutations are found in approximately half of all retinoblastoma cases^[51].

R358* mutation results in a premature truncation of the RB1 protein at amino acid 358 (UniProtKB). This mutation is predicted to lead to a loss of RB1 function, despite not having characterized in the literature.

Therapeutic and prognostic relevance

A deleterious mutation in one or more of the three DNA repair genes ATM, RB1, and FANCC predicted pathologic response and better overall survival to cisplatin-based chemotherapy for muscle-invasive bladder cancer patients^[52]. High RB loss was found to be associated with improved pathologic clinical response in breast cancer patients treated with 5-fluorouracil/adriamycin/cytoxan (FAC), T/FAC, and Taxane/Adriamycin neoadjuvant therapy^[53].

Clinical and experimental data suggested that a non-functional retinoblastoma pathway is associated with resistance to tamoxifen in breast cancer^{[54][55]}.

Acquired RB1 mutations were found in hormone receptor positive breast cancer patients who developed resistance to palbociclib or ribociclib treatment^[56]. Preclinical data also showed that knockdown of RB1 would impair antitumor activity of CDK4/6 inhibitor, abemaciclib^[57].

Two large-scale genome-sequencing projects have identified a high prevalence of mutations in TP53 and RB1 in small cell lung cancer (SCLC)^{[58][59]}. Analyses of repeat biopsy samples from patients with EGFR-mutant adenocarcinoma that had transformed to the SCLC subtype have revealed that 100% of these patients have loss of RB1 and may be the alteration that induces this non-small-cell to small-cell transformation^{[55][60]}.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 6 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138 ONC

Date Reported: Mar 22, 2022

RBM10 R230*

Biological Impact

RBM10 (RNA binding motif protein 10) gene encodes a nuclear protein of the RNA-binding motif gene family which plays essential roles in alternative splicing[61][62]. Loss-of-function of RBM10 has been reported as the causes of TARP syndrome which results in pre- or postnatal death in affected males^{[63][64][65]}. Mutations of RBM10 have been reported in lung adenocarcinoma^{[66][67][68]}, bladder and colorectal cancer^[69].

R230* mutation results in a premature truncation of the RBM10 protein at amino acid 230 (UniProtKB). This mutation is predicted to lead to a loss of RBM10 function, despite not having characterized in the literature.

Therapeutic and prognostic relevance

Low expression of RBM10 was associated with shorter overall survival in lung adenocarcinoma patients[70].

TP53 R342*

Biological Impact

TP53 encodes the p53 protein, a crucial tumor suppressor that orchestrates essential cellular processes including cell cycle arrest, senescence and apoptosis[71]. TP53 is a proto-typical haploinsufficient gene, such that loss of a single copy of TP53 can result in tumor formation[72].

R342* mutation results in a premature truncation of the p53 protein at amino acid 342 (UniProtKB). This mutation is predicted to lead to a loss of p53 function, despite not having characterized in the literature.

Therapeutic and prognostic relevance

Despite having a high mutation rate in cancers, there are currently no approved targeted therapies for TP53 mutations. A phase II trial demonstrated that Wee1 inhibitor (AZD1775) in combination with carboplatin was well tolerated and showed promising anti-tumor activity in TP53-mutated ovarian cancer refractory or resistant (< 3 months) to standard first-line therapy (NCT01164995)[73].

In a retrospective study (n=19), advanced sarcoma patients with TP53 loss-of-function mutations displayed improved progression-free survival (208 days versus 136 days) relative to patients with wild-type TP53 when treated with pazopanib^[74]. Results from another Phase I trial of advanced solid tumors (n=78) demonstrated that TP53 hotspot mutations are associated with better clinical response to the combination of pazopanib and vorinostat^[75].

Advanced solid tumor and colorectal cancer patients harboring a TP53 mutation have been shown to be more sensitive to bevacizumab when compared with patients harboring wild-type TP53[76][77][78]. In a pilot trial (n=21), TP53-negative breast cancer patients demonstrated increased survival following treatment with bevacizumab in combination with chemotherapy agents, Adriamycin (doxorubicin) and Taxotere (docetaxel)[79]. TP53 mutations were correlated with poor survival of advanced breast cancer patients receiving tamoxifen or primary chemotherapy[80][81]. In a retrospective study of non-small cell lung cancer (NSCLC), TP53 mutations were associated with high expression of VEGF-A, the primary target of bevacizumab, offering a mechanistic explanation for why patients exhibit improved outcomes after bevacizumab treatment when their tumors harbor mutant TP53 versus wild-type TP53[82].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 7 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

BRCA2 Heterozygous deletion

Biological Impact

The BRCA2 gene encodes a tumor suppressor involved in the homologous recombination pathway for double-strand DNA repair^[83]. BRCA2 has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^[84]. BRCA2 germline mutations confer an increased lifetime risk of developing breast, ovarian, prostate and pancreatic cancer, limited reports of related gastric cancer, and Fanconi anemia subtype D1-associated risk of brain cancer, medulloblastoma, pharyngeal cancer, chronic lymphocytic leukemia and acute myeloid leukemia^[85]. Somatic mutations in BRCA2 are highest in colorectal, non-small cell lung cancer (NSCLC), and ovarian cancers^[86].

Therapeutic and prognostic relevance

The U.S. FDA has approved olaparib in advanced ovarian cancer under several settings including (1) first-line maintenance treatment for patients with deleterious or suspected deleterious germline or somatic BRCA mutation who are in complete or partial response to first-line platinum-based chemotherapy^[87]; (2) in combination with bevacizumab as first-line maintenance treatment for patients with homologous recombination deficiency (HRD)-positive status^[88]; (3) maintenance treatment for patients with germline BRCA-mutated recurrent ovarian cancer who are in complete or partial response to platinum-based chemotherapy^{[89][90]}; (4) treatment for patients with germline BRCA-mutated advanced ovarian cancer who have been treated with three or more prior lines of chemotherapy^[91]. In addition, olaparib has also been approved in patients with deleterious or suspected deleterious germline BRCA-mutated, HER2-negative metastatic breast cancer who have been treated with chemotherapy in either neoadjuvant, adjuvant, or metastatic setting^[92]and germline BRCA-mutated metastatic pancreatic cancer^[93]. Of note, in May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate^[94].

Rucaparib has been approved for the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in a complete or partial response to platinum-based chemotherapy and patients with BRCA-mutated epithelial ovarian, fallopian tube, or primary peritoneal cancer, who have been treated with two or more chemotherapies^{[95][96]}. In May 2020, the U.S. FDA also approved rucaparib to treat adult patients with a deleterious BRCA mutation-associated metastatic castration-resistant prostate cancer (mCRPC) who have been treated with androgen receptor-directed therapy and a taxane-based chemotherapy (TRITON2, NCT02952534).

The U.S. FDA also approved niraparib for the maintenance treatment of patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in response to platinum-based chemotherapy and patients who have been treated with three or more prior lines of chemotherapy and associated with HRD positive status^{[97][98][99]}. In addition, talazoparib for patients with deleterious or suspected deleterious germline BRCA-mutated, HER2 negative locally advanced or metastatic breast cancer^[100].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 8 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138 ONC

Date Reported: Mar 22, 2022

CCNE1 Amplification

Biological Impact

The CCNE1 gene encodes the cyclin E1 protein, a regulator of the cell cycle that activates the cyclin-dependent protein kinase 2 (CDK2) and plays a role in regulating cells' transition from G1 to S phase and the maintenance of genomic stability[101]. Increasing in cyclin E1 level, either by gene amplification or overexpression, is found in a diverse range of cancers and can be indicative of poor prognosis[102].

Therapeutic and prognostic relevance

There are no FDA-approved therapies targeting cyclin E1 currently available^[103]. Dinaciclib, a CDK1/2 specific inhibitor, is currently under clinical evaluation[104]. A combination of dinaciclib, a small molecule CDK2 inhibitor, and AKT inhibitors that may selectively target patients with CCNE1-amplified high-grade serous ovarian cancer (HGSC) in preclinical setting[105]. A preclinical study in breast cancer cell lines showed that amplification of CCNE1 is associated with acquired resistance to CDK4/6 inhibition by palbociclib[106]. A study of HER2-amplified breast cancer patients indicated that amplification of CCNE1 was associated with trastuzumab resistance and shorter progression-free survival[107].

There are retrospective study and meta-analysis demonstrated that amplification and overexpression of CCNE1 are associated with poor survival in cancer patients [108][109]. From the result of PALOMA-3 phase III trial, pre-treated hormone receptor-positive/HER2-negative metastatic breast cancer patients were resistant to palbociclib treatment when CCNE1 was highly expressed (median PFS: CCNE1 high, 7.6 months; CCNE1 low, 14.1 months)[110]. CCNE1 amplification has been selected as an inclusion criteria for the trial examining palbociclib in malignant solid tumor (NCT02896335, NCT03155620, NCT01037790, NCT03526250).

CDKN2A Heterozygous deletion

Biological Impact

The Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) gene encodes the p16 (p16INK4a) and p14 (ARF) proteins. p16INK4a binds to CDK4 and CDK6, inhibiting these CDKs from binding D-type cyclins and phosphorylating the retinoblastoma (RB) protein whereas p14 (ARF) blocks the oncogenic activity of MDM2 by inhibiting MDM2-induced degradation of p53[111][112][113]. CDKN2A has been reported as a haploinsufficient tumor suppressor with one copy loss that may lead to weak protein expression and is insufficient to execute its original physiological functions[114]. Loss of CDKN2A has been frequently found in human tumors that result in uncontrolled cell proliferation[115][116].

Therapeutic and prognostic relevance

Intact p16-Cdk4-Rb axis is known to be associated with sensitivity to cyclin-dependent kinase inhibitors[117][118]. Several case reports also revealed that patients with CDKN2A-deleted tumors respond to the CDK4/6-specific inhibitor treatments[119][120][121]. However, there are clinical studies that demonstrated CDKN2A nuclear expression, CDKN2A/CDKN2B co-deletion, or CDKN2A inactivating mutation was not associated with clinical benefit from CDK4/6 inhibitors, such as palbociclib and ribociclib, in RB-positive patients[123][123][123]. However, CDKN2A loss or mutation has been determined as an inclusion criterion for the trial evaluating CDK4/6 inhibitors efficacy in different types of solid tumors (NCT02693535, NCT02187783).

Notably, the addition of several CDK4/6 inhibitors to hormone therapies, including palbociclib in combination with letrozole, ribociclib plus letrozole, and abemaciclib combines with fulvestrant, have been approved by the U.S. FDA for the treatment of ER+ and HER2- breast cancer^{[118][125][126]}.

In a Phase I trial, a KRAS wild-type squamous non-small cell lung cancer (NSCLC) patient with CDKN2A loss had a partial response when treated with CDK4/6 inhibitor abemaciclib[120]. Administration of combined palbociclib and MEK inhibitor PD-0325901 yield promising progression-free survival among patients with KRAS mutant non-small cell lung cancer (NSCLC) (AACR 2017, Abstract CT046). Moreover, MEK inhibitor in combination with CDK4/6 inhibitor

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 9 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

demonstrates significant anti-KRAS-mutant NSCLC activity and radiosensitizing effect in preclinical models[127].

A retrospective analysis demonstrated that concurrent deletion of CDKN2A with EGFR mutation in patients with non-small cell lung cancer (NSCLC), predicts worse overall survival after EGFR-TKI treatment^[128].

FBXW7 Heterozygous deletion

Biological Impact

The F-box/WD repeat-containing protein 7 (FBXW7) gene encodes a protein that belongs to the SCF (SKP1-CUL1-F-box protein) E3 ligase complex. FBXW7 is recognized as a tumor suppressor which is involved in the negative regulation of oncogenes such as c-Myc^{[129][130]}, c-Jun^[131], cyclin E^[132], Notch family members^{[133][134]}, Aurora-A^[135], mTOR^[136], KLF5^[137], and MCL-1^[138]. Inactivating FBXW7 mutation or copy number loss may result in the accumulation of oncoproteins and therefore lead to malignant transformation^[139]. FBXW7 is a haploinsufficient tumor suppressor gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[137][138][140]}.

Therapeutic and prognostic relevance

Clinical efficacy of mTOR inhibitors was seen in patients harboring aberrations in the FBXW7 gene (one patient with refractory fibrolamellar hepatocellular carcinoma, and one patient with lung adenocarcinoma)^{[141][142]}. Moreover, in vitro assay also suggested that loss or inactivation of FBXW7 may confer sensitivity to mTOR inhibitor^[136].

Preclinical studies suggested that mutations or loss of FBXW7 were associated with regorafenib and oxaliplatin resistance in CRC cell lines and gefitinib resistance in lung cancer cells^{[143][144][145][146]}.

Retrospective studies have indicated that a relatively low expression level of FBXW7 is an independent prognostic marker of poor survival for patients with hepatocellular carcinoma, lung adenocarcinoma and squamous cell carcinoma^{[147][145]}.

MRE11 Heterozygous deletion

Biological Impact

The MRE11 gene encodes a protein that forms the MRE11-RAD50-NBS (MRN) complex involved in sensing and repairing DNA double-strand breaks via homologous recombination and non-homologous end joining^{[148][149]}. MRE11 has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological function^[148]. The carrier of MRE11 mutation may confer elevated risks for numerous types of cancers including breast cancer, ovarian cancer, endometrial cancer, colorectal cancer, and lymphoid cancer^{[148][149][150][151][152][153][154]}.

Therapeutic and prognostic relevance

In a Phase II clinical trial (n=50), one castration-resistant prostate cancer patient harboring an MRE11 inactivating mutation responded to olaparib^[155]. Preclinically, loss of MRE11 also predicted sensitivity to PARP inhibitor talazoparib and ABT-888 in endometrial cancer^[156] and microsatellite unstable colorectal cancer (CRC) cell lines^[157].

CRC patients with tumor deficient of MRE11 showed initially reduced disease-free survival (DFS) and overall survival (OS) but improved long-term DFS and OS compared with patients with an intact MRE11^[158].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 10 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

SMAD4 Heterozygous deletion

Biological Impact

The SMAD family member 4 (SMAD4) gene encodes a transcription factor that acts as a downstream effector in the TGF- β signaling pathway. Upon phosphorylated and activated by serine-threonine receptor kinase, Smad4 is the Co-Smad which recruits other activated R-Smad proteins to the Smad transcriptional complex and regulate TGF- β -targeted genes^[159]. Smad4 has been identified as a haploinsufficient gene with one copy loss may lead to a weak protein expression and is insufficient to execute its original physiological function^[160]. SMAD4 germline mutations are associated with juvenile polyposis syndrome (JPS)^{[161][162][163][164]}. Somatic mutations of SMAD4 are commonly observed in pancreatic cancer^[165], colorectal cancer (CRC)^{[163][166][167]}, and less frequently seen in other cancers such as lung adenocarcinoma^[168], head and neck cancer^{[169][170]}, and cutaneous squamous cell carcinoma^[171].

Therapeutic and prognostic relevance

In Chinese patients with metastatic colorectal cancer, SMAD4 or NF1 mutations are suggested as a potential biomarker for poor prognosis to cetuximab-based therapy^[172]. Preclinical data demonstrated that depletion of SMAD4 by shRNA knockdown increased clonogenic survival and cetuximab resistance in HPV-negative head and neck squamous cell carcinoma cells^[173].

SMAD4 is also suggested as a predictive marker for 5-fluorouracil-based chemotherapy in colorectal cancer (CRC)^{[174][175]}. CRC patients with normal SMAD4 diploidy exhibited three-fold higher benefit of 5-FU/mitomycin-based adjuvant therapy when compared with those with SMAD4 deletion^[176].

Results from clinical and meta-analyses showed that loss of SMAD4 in CRC, pancreatic cancer was correlated with poor prognosis^{[177][178][179][180][181][182][183][184]}. In cervical cancer patients, weak cytoplasmic SMAD4 expression and absent nuclear SMAD4 expression were shown to be significantly associated with poor disease-free and overall 5-year survival^[185]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 11 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Abemaciclib (VERZENIO)

Abemaciclib is a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor. Abemaciclib is developed and marketed by Eli Lilly under the trade name VERZENIO.

- FDA Approval Summary of Abemaciclib (VERZENIO)

monarchE	Breast cancer (Approved on 2021/10/12) HR-positive, HER2-negative				
	months(%): 86.1 vs. 79.0]				
MONAPOU 0[186]	Breast cancer (Approved on 2018/02/26)				
MONARCH 3 ^[186]	HR-positive, HER2-negative				
NCT00246621	Abemaciclib + anastrozole/letrozole vs. Placebo + anastrozole/letrozole [PFS(M): 28.2 vs. 14.				
MONAPOU 0[126]	Breast cancer (Approved on 2017/09/28)				
MONARCH 2 ^[126] NCT02107703	HR-positive, HER2-negative				
NC102107703	Abemaciclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 16.4 vs. 9.3]				
MONAPOU 4[187]	Breast cancer (Approved on 2017/09/28)				
MONARCH 1 ^[187]	HR-positive, HER2-negative				
NCT02102490	Abemaciclib [ORR(%): 19.7 vs. 17.4]				

Everolimus (AFINITOR)

Everolimus, a derivative of sirolimus, works as an inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and blocks mTORC1-mediated downstream signals for cell growth, proliferation, and survival. Everolimus is developed and marketed by Novartis under the trade name AFINITOR.

- FDA Approval Summary of Everolimus (AFINITOR)

RADIANT-4 ^[188]	Lung or gastrointestinal neuroendocrine tumor (Approved on 2016/02/26)
NCT01524783	-
NC101324763	Everolimus vs. Placebo [PFS(M): 11 vs. 3.9]
BOLERO-2 ^[189]	Breast cancer (Approved on 2012/07/20)
	ER+/HER2-
NCT00863655	Everolimus + exemestane vs. Placebo + exemestane [PFS(M): 7.8 vs. 3.2]
	Tuberous sclerosis complex (tsc)-associated renal angiomyolipoma (Approved on
EXIST-2	2012/04/26)
NCT00790400	-
	Everolimus vs. Placebo [ORR(%): 41.8 vs. 0]
DADIANT 2[190]	Pancreatic neuroendocrine tumor (Approved on 2011/05/05)
RADIANT-3 ^[190] NCT00510068	-
	Everolimus vs. Placebo [PFS(M): 11 vs. 4.6]
EXIST-1 ^[191]	Subependymal giant cell astrocytoma (Approved on 2010/10/29)
NCT00789828	-
NC 100709020	Everolimus vs. Placebo [ORR(%): 35.0]
DECODD 4[192]	Renal cell carcinoma (Approved on 2009/05/30)
RECORD-1 ^[192]	-
NCT00410124	Everolimus vs. Placebo [PFS(M): 4.9 vs. 1.9]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 12 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

PRIMA NCT02655016	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2020/04/29)
	Niraparib vs. Placebo [PFS (overall population)(M): 13.8 vs. 8.2]
QUADRA ^[99] NCT02354586	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2019/10/23)
	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation and/or genomic instability)
	Niraparib [ORR(%): 24.0, DOR(M): 8.3]
189]4\(\alpha\)	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)
NOVA ^[98] NCT01847274	
	Niraparib vs. Placebo [PFS (overall population)(M): 11.3 vs. 4.7]

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

	Prostate cancer (Approved on 2020/05/19)		
PROfound ^[94]	ATMm, BRCA1m, BRCA2m, BARD1m, BRIP1m, CDK12m, CHEK1m, CHEK2m, FANCLm,		
NCT02987543	PALB2m, RAD51Bm, RAD51Cm, RAD51Dm, RAD54Lm		
	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]		
	Ovarian cancer (Approved on 2020/05/08)		
PAOLA-1 ^[88] NCT02477644	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation, and/or genomic instability)		
	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]		
POLO ^[93]	Pancreatic adenocarcinoma (Approved on 2019/12/27)		
NCT02184195	Germline BRCA mutation (deleterious/suspected deleterious)		
NC102104195	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]		
SOLO-1 ^[87]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)		
NCT01844986	Germline or somatic BRCA-mutated (gBRCAm or sBRCAm)		
NC101844986	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]		
Ol: A D[92]	Breast cancer (Approved on 2018/02/06)		
OlympiAD ^[92] NCT02000622	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative		
NC102000622	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]		
SOL O 2/ENCOT 0x24[193]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)		
SOLO-2/ENGOT-Ov21 ^[193] NCT01874353	gBRCA+		
NC1010/4353	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]		

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 13 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

Study 4 0[194]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)
Study19 ^[194] NCT00753545	-
NC100753545	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]
O4I 40[195]	Ovarian cancer (Approved on 2014/12/19)
Study 42 ^[195] NCT01078662	Germline BRCA mutation (deleterious/suspected deleterious)
NC101078002	Olaparib [ORR(%): 34.0, DOR(M): 7.9]

Palbociclib (IBRANCE)

Palbociclib is an oral, cyclin-dependent kinase (CDK) inhibitor specifically targeting CDK4 and CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Palbociclib is developed and marketed by Pfizer under the trade name IBRANCE.

- FDA Approval Summary of Palbociclib (IBRANCE)

PALOMA-2 ^[196]	Breast cancer (Approved on 2017/03/31)
NCT01740427	ER+, HER2-
NC101740427	Palbociclib + letrozole vs. Placebo + letrozole [PFS(M): 24.8 vs. 14.5]
DAL ONA 0[197]	Breast cancer (Approved on 2016/02/19)
PALOMA-3 ^[197]	ER+, HER2-
NCT01942135	Palbociclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 9.5 vs. 4.6]

Ribociclib (KISQALI)

Ribociclib is a cyclin-dependent kinase (CDK) inhibitor specifically targeting cyclin D1/CDK4 and cyclin D3/CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Ribociclib is developed by Novartis and Astex Pharmaceuticals and marketed by Novartis under the trade name KISQALI.

- FDA Approval Summary of Ribociclib (KISQALI)

MONAL FEO A 0[125]	Breast cancer (Approved on 2017/03/13)
MONALEESA-2 ^[125]	HR+, HER2-
NCT01958021	Ribociclib vs. Letrozole [PFS(M): NR vs. 14.7]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **14** of **36**

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TRITON2	Prostate cancer (Approved on 2020/05/15)
NCT02952534	gBRCA+, sBRCA
NC102952554	Rucaparib [ORR(%): 44.0, DOR(M): NE]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)
ARIEL3 [95]	AlijHRDjtBRCA
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS
	(tBRCA)(M): 16.6 vs. 5.4]
ARIEL2 [198]	Ovarian cancer (Approved on 2016/12/19)
NCT01482715,	Germline and/or somatic BRCA mutation
NCT01891344	Rucaparib [ORR(%): 54.0]

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

51100 4 0 4 [100]	Breast cancer (Approved on 2018/10/16)
EMBRACA ^[100]	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative
NCT01945775	Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

Temsirolimus (TORISEL)

Temsirolimus is a soluble ester of sirolimus (rapamycin, brand-name drug Rapamune) and functions as an inhibitor of mammalian target of rapamycin complex (mTORC). The inhibitory molecular mechanism is similar to Everolimus. Temsirolimus is developed by Wyeth Pharmaceuticals and marketed by Pfizer under the trade name TORISEL.

- FDA Approval Summary of Temsirolimus (TORISEL)

	[199]	Renal cell carcinoma (Approved on 2007/05/30)
	NCT00065468	
		Temsirolimus vs. Ifn-α [OS(M): 10.9 vs. 7.3]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 15 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 16 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138 ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
KRAS	G12D	2	c.35G>A	NM_004985	COSM521	37.7%	1585
RB1	R358*	11	c.1072C>T	NM_000321	COSM879	47.7%	344
RBM10	R230*	8	c.688C>T	NM_005676	COSM371213	69.7%	498
TP53	R342*	10	c.1024C>T	NM_000546	COSM11073	66.4%	304

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

AA-22-01138

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 17 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
ADAMTS9	R1459Q	29	c.4376G>A	NM_182920	COSM7662835	19.0%	856
CYP2B6	R187*	4	c.559C>T	NM_000767	-	45.5%	176
DOT1L	V467A	15	c.1400T>C	NM_032482	-	46.4%	821
MUC6	D638N	16	c.1912G>A	NM_005961	-	50.4%	278
NEFH	S787R	4	c.2361C>G	NM_021076	-	50.3%	318
PRKCI	Splice region	-	c.1497+9del	NM_002740	-	50.1%	867
PSMB9	M24V	2	c.70A>G	NM_002800	-	42.6%	1832
PTCH1	R893H	16	c.2678G>A	NM_000264	-	50.2%	1967
SDHA	Splice region	-	c.1064+5G>A	NM_004168	-	51.9%	912
SETD2	H266R	3	c.797A>G	NM_014159	-	66.2%	364
SYNE1	E1312D	31	c.3936G>C	NM_182961	-	35.8%	987
SYNE1	E1318Q	31	c.3952G>C	NM_182961	-	55.4%	635
TSHR	S305R	10	c.915T>A	NM_000369	-	47.2%	1014

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **18** of **36**

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

TEST DETAILS SPECIMEN RECEIVED AND PATHOLOGY REVIEW

Collection date: Feb 2022Facility retrieved: 臺北榮總

LIOF at a language Allen Na Country

H&E-stained section No.: S11170224

Collection site: Liver

Examined by: Dr. Yeh-Han Wang

- 1. The percentage of viable tumor cells in total cells in the whole slide (%): 20%
- 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 70%
- 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
- 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
- 5. Additional comment: NA
- Manual macrodissection: Performed on the highlighted region
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

- Panel: ACTOnco®+

DNA test

- Mean Depth: 725x
- Target Base Coverage at 100x: 93%

RNA test

Average unique RNA Start Sites per control GSP2: 103

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-50

AG4-QP4001-02(06) page 19 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138 ONC

Date Reported: Mar 22, 2022

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 25, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at 100x ≥ 85% with a mean coverage ≥ 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 20 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or lon S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師張筑芜 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號 Sign Off

醫檢師張筑芫 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **21** of **36**

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	ВТК	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	ЕРНА7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA1
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	КМТ2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	МАРЗК7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	МИТҮН	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	РІКЗСЗ
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

ALK	BRAF	EGFR	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **22** of **36**

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Gene	Therapies	Possible effect
CDKN2A	Abemaciclib, Palbociclib, Ribociclib	sensitive
FBXW7	Everolimus, Temsirolimus	sensitive
BRCA2	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
MRE11	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
SMAD4	Cetuximab	resistant
FBXW7	Gefitinib, Regorafenib	resistant

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Palbociclib, Ribociclib, Abemaciclib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 23 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

1: Olaparib, Niraparib, Rucaparib, Talazoparib

1: Everolimus, Temsirolimus

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **24** of **36**

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報 告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **25** of **36**

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

REFERENCE

- PMID: 2453289; 1988, Cell;53(4):549-54
 Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.
- PMID: 2114981; 1990, Eur J Clin Invest;20(3):225-35 ras oncogenes: their role in neoplasia.
- PMID: 20617134; 2010, J Biomed Biotechnol;2010():150960
 Clinical relevance of KRAS in human cancers.
- PMID: 21993244; 2011, Nat Rev Cancer;11(11):761-74 RAS oncogenes: weaving a tumorigenic web.
- PMID: 3047672; 1988, Nucleic Acids Res;16(16):7773-82
 KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas.
- PMID: 3587348; 1987, Nature;327(6120):293-7
 Prevalence of ras gene mutations in human colorectal cancers.
- PMID: 1942608; 1991, Nihon Shokakibyo Gakkai Zasshi;88(8):1539-44
 [Prevalence of K-ras gene mutations in human colorectal cancers].
- PMID: 2252272; 1990, Am Rev Respir Dis;142(6 Pt 2):S27-30
 The ras oncogenes in human lung cancer.
- PMID: 1486840; 1992, Environ Health Perspect;98():13-24
 Role of proto-oncogene activation in carcinogenesis.
- PMID: 16474405; 2006, Nat Genet;38(3):331-6
 Germline KRAS mutations cause Noonan syndrome.
- PMID: 26037647; 2015, Mol Cancer Res;13(9):1325-35
 Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations.
- 12. PMID: 22871572; 2012, Mol Cancer Res;10(9):1228-39
 KRAS(G12D)- and BRAF(V600E)-induced transformation of murine pancreatic epithelial cells requires MEK/ERK-stimulated IGF1R signaling.
- PMID: 25414119; 2014, Drugs;74(18):2111-28
 The biology and clinical development of MEK inhibitors for cancer.
- PMID: 25265492; 2014, N Engl J Med;371(20):1877-88
 Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma.
- PMID: 22663011; 2012, N Engl J Med;367(2):107-14
 Improved survival with MEK inhibition in BRAF-mutated melanoma.
- PMID: 25265494; 2014, N Engl J Med;371(20):1867-76
 Combined vemurafenib and cobimetinib in BRAF-mutated melanoma.
- 17. PMID: 29573941; 2018, Lancet Oncol;19(5):603-615
 Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial.
- PMID: 26075998; 2014, Gynecol Oncol Rep;10():28-9
 Response to MEK inhibitor in small cell neuroendocrine carcinoma of the cervix with a KRAS mutation.
- PMID: 29946554; 2018, Gynecol Oncol Rep;25():41-44
 Binimetinib (MEK162) in recurrent low-grade serous ovarian cancer resistant to chemotherapy and hormonal treatment.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 26 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

20. PMID: 25722381; 2015, Ann Oncol;26(5):894-901

A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)†.

21. PMID: 24947927; 2014, Clin Cancer Res;20(16):4251-61

Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RAS-RAF mutations.

22. PMID: 27340376; 2016, Curr Colorectal Cancer Rep;12():141-150

Molecular Subtypes and Personalized Therapy in Metastatic Colorectal Cancer.

23. PMID: 22392911; 2012, Clin Cancer Res;18(9):2515-25

Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas.

24. PMID: 26369631; 2016, Clin Cancer Res;22(2):405-14

Sensitivity of KRAS-Mutant Colorectal Cancers to Combination Therapy That Cotargets MEK and CDK4/6.

25. PMID: 25937522; 2015, Eur J Cancer;51(10):1243-52

FOLFOX4 plus cetuximab treatment and RAS mutations in colorectal cancer.

26. PMID: 19188670; 2009, J Clin Oncol;27(12):2091-6

American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy.

27. PMID: 18802721; 2008, Virchows Arch;453(5):417-31

KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program.

28. PMID: 25605843; 2015, J Clin Oncol;33(7):692-700

Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer.

29. PMID: 27422777; 2016, Tumour Biol;37(9):11645-11655

Potential biomarkers for anti-EGFR therapy in metastatic colorectal cancer.

30. PMID: 24024839; 2013, N Engl J Med;369(11):1023-34

Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer.

31. PMID: 24666267; 2014, Acta Oncol;53(7):852-64

The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis.

32. PMID: 27722750; 2017, JAMA Oncol;3(2):194-201

Prognostic and Predictive Relevance of Primary Tumor Location in Patients With RAS Wild-Type Metastatic Colorectal Cancer: Retrospective Analyses of the CRYSTAL and FIRE-3 Trials.

33. PMID: 27736842; 2016, Br J Cancer;115(10):1206-1214

A phase 3 trial evaluating panitumumab plus best supportive care vs best supportive care in chemorefractory wild-type KRAS or RAS metastatic colorectal cancer.

34. PMID: 20921465; 2010, J Clin Oncol;28(31):4697-705

Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study.

35. PMID: 24407191; 2014, Br J Cancer;110(5):1148-54

Sorafenib and irinotecan (NEXIRI) as second- or later-line treatment for patients with metastatic colorectal cancer and KRAS-mutated tumours: a multicentre Phase I/II trial.

36. PMID: 23224737; 2013, Clin Cancer Res;19(3):743-51

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 27 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

A phase II study of sorafenib in patients with platinum-pretreated, advanced (Stage IIIb or IV) non-small cell lung cancer with a KRAS mutation.

- PMID: 26307133; 2016, Clin Cancer Res;22(2):374-82
 Copy Number Changes Are Associated with Response to Treatment with Carboplatin, Paclitaxel, and Sorafenib in Melanoma.
- 38. PMID: 23828442; 2013, Med Oncol;30(3):650
 KRAS as prognostic biomarker in metastatic colorectal cancer patients treated with bevacizumab: a pooled analysis of 12 published trials.
- 39. PMID: 28632865; 2017, JAMA;317(23):2392-2401 Effect of First-Line Chemotherapy Combined With Cetuximab or Bevacizumab on Overall Survival in Patients With KRAS Wild-Type Advanced or Metastatic Colorectal Cancer: A Randomized Clinical Trial.
- PMID: 18349398; 2008, J Clin Oncol;26(9):1472-8
 Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib.
- 41. PMID: 23401440; 2013, J Clin Oncol;31(8):1112-21 KRAS mutation: should we test for it, and does it matter?
- 42. PMID: 18024870; 2007, J Clin Oncol;25(33):5240-7
 Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer.
- PMID: 15923428; 2005, Ann Oncol;16 Suppl 4():iv44-49
 Prognostic and predictive factors in colorectal cancer: Kirsten Ras in CRC (RASCAL) and TP53CRC collaborative studies.
- PMID: 26484411; 2015, Br J Cancer;113(9):1254-8
 Impact of mutational status on survival in low-grade serous carcinoma of the ovary or peritoneum.
- 45. PMID: 24549645; 2013, J Pathol;231(4):449-56
 KRAS (but not BRAF) mutations in ovarian serous borderline tumour are associated with recurrent low-grade serous carcinoma.
- PMID: 22293180; 2012, J Clin Invest;122(2):425-34
 Understanding pRb: toward the necessary development of targeted treatments for retinoblastoma.
- 47. PMID: 6320372; 1984, Science;223(4640):1028-33 Retinoblastoma: clues to human oncogenesis.
- PMID: 27308386; 2015, Mol Cell Oncol;2(1):e968069
 Conditional haploinsufficiency of the retinoblastoma tumor suppressor gene.
- PMID: 23687339; 2013, Cancer Res;73(14):4247-55
 Rb1 haploinsufficiency promotes telomere attrition and radiation-induced genomic instability.
- PMID: 28169375; 2017, Sci Rep;7():42056
 The Rb1 tumour suppressor gene modifies telomeric chromatin architecture by regulating TERRA expression.
- 51. PMID: 15884040; 2005, Hum Mutat;25(6):566-74
 Sensitive multistep clinical molecular screening of 180 unrelated individuals with retinoblastoma detects 36 novel mutations in the RB1 gene.
- 52. PMID: 26238431; 2015, Eur Urol;68(6):959-67
 Defects in DNA Repair Genes Predict Response to Neoadjuvant Cisplatin-based Chemotherapy in Muscle-invasive Bladder Cancer.
- 53. PMID: 22811582; 2012, Clin Cancer Res;18(18):5110-22
 RB-pathway disruption is associated with improved response to neoadjuvant chemotherapy in breast cancer.
- 54. PMID: 21358261; 2011, Cell Cycle;10(6):956-62
 A non-functional retinoblastoma tumor suppressor (RB) pathway in premenopausal breast cancer is associated with resistance to tamoxifen.
- PMID: 17160137; 2007, J Clin Invest;117(1):218-28
 The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer.

CAP

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 28 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

- 56. PMID: 29236940; 2018, Ann Oncol;29(3):640-645
 Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer.
- 57. PMID: 29483214; 2018, Mol Cancer Ther;17(5):897-907
 Preclinical Activity of Abemaciclib Alone or in Combination with Antimitotic and Targeted Therapies in Breast Cancer.
- 58. PMID: 22941188; 2012, Nat Genet;44(10):1104-10
 Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer.
- PMID: 22941189; 2012, Nat Genet;44(10):1111-6
 Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer.
- 60. PMID: 25846096; 2015, Lancet Oncol;16(4):e165-72
 Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin.
- PMID: 24530524; 2014, FEBS Lett;588(6):942-7
 RBM10 regulates alternative splicing.
- 62. PMID: 24332178; 2013, Mol Cell;52(5):720-33
 RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation.
- 63. PMID: 20451169; 2010, Am J Hum Genet;86(5):743-8

 Massively parallel sequencing of exons on the X chromosome identifies RBM10 as the gene that causes a syndromic form of cleft palate.
- PMID: 21910224; 2011, Am J Med Genet A;155A(10):2516-20
 Long-term survival in TARP syndrome and confirmation of RBM10 as the disease-causing gene.
- 65. PMID: 24000153; 2013, EMBO Mol Med;5(9):1431-42
 Integrative analysis revealed the molecular mechanism underlying RBM10-mediated splicing regulation.
- PMID: 26853560; 2016, RNA Biol;13(4):466-72
 Tumor suppressor properties of the splicing regulatory factor RBM10.
- PMID: 22980975; 2012, Cell;150(6):1107-20
 Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing.
- PMID: 25079552; 2014, Nature;511(7511):543-50
 Comprehensive molecular profiling of lung adenocarcinoma.
- PMID: 28481359; 2017, Nat Med;23(6):703-713
 Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients.
- PMID: 28091594; 2017, Sci Rep;7():40488
 Functional analysis reveals that RBM10 mutations contribute to lung adenocarcinoma pathogenesis by deregulating splicing.
- 71. PMID: 24739573; 2014, Nat Rev Cancer;14(5):359-70 Unravelling mechanisms of p53-mediated tumour suppression.
- 72. PMID: 21125671; 2011, J Pathol;223(2):137-46 Haplo-insufficiency: a driving force in cancer.
- 73. PMID: 27998224; 2016, J Clin Oncol;34(36):4354-4361
 Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months.
- PMID: 26646755; 2016, Ann Oncol;27(3):539-43
 TP53 mutational status is predictive of pazopanib response in advanced sarcomas.
- 75. PMID: 25669829; 2015, Ann Oncol;26(5):1012-8

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 29 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation.

- PMID: 27466356; 2016, Mol Cancer Ther;15(10):2475-2485
 TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics.
- 77. PMID: 23670029; 2013, Oncotarget;4(5):705-14 P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy.
- PMID: 17145525; 2006, Semin Oncol;33(5 Suppl 10):S8-14
 Bevacizumab in combination with chemotherapy: first-line treatment of patients with metastatic colorectal cancer.
- PMID: 21399868; 2011, Int J Oncol;38(5):1445-52
 p53, HER2 and tumor cell apoptosis correlate with clinical outcome after neoadjuvant bevacizumab plus chemotherapy in breast cancer.
- 80. PMID: 20549698; 2011, Int J Cancer;128(8):1813-21 p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines.
- 81. PMID: 10786679; 2000, Cancer Res;60(8):2155-62
 Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer.
- 82. PMID: 25672981; 2015, Cancer Res;75(7):1187-90
 VEGF-A Expression Correlates with TP53 Mutations in Non-Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy.
- PMID: 11239455; 2001, Mol Cell;7(2):263-72
 BRCA2 is required for homology-directed repair of chromosomal breaks.
- PMID: 17597348; 2007, Ann Surg Oncol;14(9):2510-8
 Heterogenic loss of the wild-type BRCA allele in human breast tumorigenesis.
- PMID: 22193408; 2011, Nat Rev Cancer;12(1):68-78
 BRCA1 and BRCA2: different roles in a common pathway of genome protection.
- 86. PMID: 27283171; 2016, J Natl Compr Canc Netw;14(6):795-806
 The Relevance of Hereditary Cancer Risks to Precision Oncology: What Should Providers Consider When Conducting Tumor Genomic Profiling?
- PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505
 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428
 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.
- PMID: 28884698; 2017, Lancet Oncol;18(9):e510
 Correction to Lancet Oncol 2017; 18: 1274-84.
- PMID: 22452356; 2012, N Engl J Med;366(15):1382-92
 Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer.
- 91. PMID: 26187614; 2015, Clin Cancer Res;21(19):4257-61 FDA Approval Summary: Olaparib Monotherapy in Patients with Deleterious Germline BRCA-Mutated Advanced Ovarian Cancer Treated with Three or More Lines of Chemotherapy.
- PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- PMID: 31157963; 2019, N Engl J Med;381(4):317-327
 Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 30 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- 95. PMID: 28916367; 2017, Lancet;390(10106):1949-1961
 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- 96. PMID: 28882436; 2017, Gynecol Oncol;147(2):267-275

 Antitumor activity and safety of the PARP inhibitor rucaparib in patients with high-grade ovarian carcinoma and a germline or somatic BRCA1 or BRCA2 mutation: Integrated analysis of data from Study 10 and ARIEL2.
- PMID: 31562799; 2019, N Engl J Med;381(25):2391-2402
 Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- 99. PMID: 30948273; 2019, Lancet Oncol;20(5):636-648
 Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial.
- 100. PMID: 30110579; 2018, N Engl J Med;379(8):753-763Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.
- PMID: 1833068; 1991, Cell;66(6):1217-28
 Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family.
- 102. PMID: 22186781; 2012, Cell Cycle;11(1):57-64
 An integrated view of cyclin E function and regulation.
- 103. PMID: 20336084; 2010, J Invest Dermatol;130(7):1914-21 UVR-induced regulatory T cells switch antigen-presenting cells from a stimulatory to a regulatory phenotype.
- 104. PMID: 25395429; 2015, Blood;125(3):443-8
 Dinaciclib, a novel CDK inhibitor, demonstrates encouraging single-agent activity in patients with relapsed multiple myeloma.
- 105. PMID: 27663592; 2017, Clin Cancer Res;23(7):1862-1874
 Selective Targeting of Cyclin E1-Amplified High-Grade Serous Ovarian Cancer by Cyclin-Dependent Kinase 2 and AKT Inhibition.
- PMID: 27020857; 2016, Cancer Res;76(8):2301-13
 Early Adaptation and Acquired Resistance to CDK4/6 Inhibition in Estrogen Receptor-Positive Breast Cancer.
- 107. PMID: 21321214; 2011, Proc Natl Acad Sci U S A;108(9):3761-6
 Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients.
- 108. PMID: 20336784; 2010, Cancer;116(11):2621-34
 Gene amplification CCNE1 is related to poor survival and potential therapeutic target in ovarian cancer.
- 109. PMID: 30026836; 2018, J Cancer;9(13):2397-2407
 Prognostic Values of CCNE1 Amplification and Overexpression in Cancer Patients: A Systematic Review and Meta-analysis.
- PMID: 30807234; 2019, J Clin Oncol;37(14):1169-1178
 Cyclin E1 Expression and Palbociclib Efficacy in Previously Treated Hormone Receptor-Positive Metastatic Breast Cancer.
- PMID: 17055429; 2006, Cell;127(2):265-75
 The regulation of INK4/ARF in cancer and aging.
- 112. PMID: 8521522; 1995, Cell;83(6):993-1000

 Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest.
- 113. PMID: 9529249; 1998, Cell;92(6):725-34

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 31 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.

114. PMID: 16115911; 2005, Clin Cancer Res;11(16):5740-7

Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype.

115. PMID: 7550353; 1995, Nat Genet;11(2):210-2

Frequency of homozygous deletion at p16/CDKN2 in primary human tumours.

116. PMID: 24089445; 2013, Clin Cancer Res;19(19):5320-8

The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma.

117. PMID: 27849562; 2017, Gut;66(7):1286-1296

Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma.

118. PMID: 25524798; 2015, Lancet Oncol;16(1):25-35

The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.

119. PMID: 28283584; 2017, Oncologist;22(4):416-421

Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common CDKN2A Alteration.

120. PMID: 27217383; 2016, Cancer Discov;6(7):740-53

Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non-Small Cell Lung Cancer, and Other Solid Tumors.

121. PMID: 26715889; 2015, Curr Oncol;22(6):e498-501

Does CDKN2A loss predict palbociclib benefit?

122. PMID: 25501126; 2015, Clin Cancer Res;21(5):995-1001

CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment.

123. PMID: 27542767; 2016, Clin Cancer Res;22(23):5696-5705

A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas.

124. PMID: 24797823: 2014. Oncologist:19(6):616-22

Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel.

125. PMID: 27717303; 2016, N Engl J Med;375(18):1738-1748

Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer.

126. PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884

MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.

127. PMID: 26728409; 2016, Clin Cancer Res;22(1):122-33

Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo.

128. PMID: 31401335; 2019, Transl Oncol;12(11):1425-1431

Concomitant Genetic Alterations are Associated with Worse Clinical Outcome in EGFR Mutant NSCLC Patients Treated with Tyrosine Kinase Inhibitors.

129. PMID: 15498494; 2004, Curr Biol;14(20):1852-7

A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size.

130. PMID: 15103331; 2004, EMBO J;23(10):2116-25

 $Phosphorylation-dependent \ degradation \ of \ c-Myc \ is \ mediated \ by \ the \ F-box \ protein \ Fbw7.$

131. PMID: 16023596; 2005, Cancer Cell;8(1):25-33

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 32 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase.

- PMID: 11533444; 2001, Science;294(5540):173-7
 Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase.
- 133. PMID: 11461910; 2001, J Biol Chem;276(38):35847-53
 The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog.
- 134. PMID: 11425854; 2001, J Biol Chem;276(37):34371-8
 Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor.
- 135. PMID: 16863506; 2006, Cancer Sci;97(8):729-36 Fbxw7 contributes to tumor suppression by targeting multiple proteins for ubiquitin-dependent degradation.
- 136. PMID: 18787170; 2008, Science;321(5895):1499-502 FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression.
- 137. PMID: 20484041; 2010, Cancer Res;70(11):4728-38
 The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation.
- PMID: 21368833; 2011, Nature;471(7336):104-9
 SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction.
- 139. PMID: 18094723; 2008, Nat Rev Cancer;8(2):83-93
 FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation.
- 140. PMID: 23032637; 2012, Cancer Inform;11():157-71 Haploinsufficiency of Tumor Suppressor Genes is Driven by the Cumulative Effect of microRNAs, microRNA Binding Site Polymorphisms and microRNA Polymorphisms: An In silico Approach.
- 141. PMID: 24586741; 2014, PLoS One;9(2):e89388
 FBXW7 mutations in patients with advanced cancers: clinical and molecular characteristics and outcomes with mTOR inhibitors.
- 142. PMID: 24360397; 2014, Lung Cancer;83(2):300-1 Temsirolimus therapy in a patient with lung adenocarcinoma harboring an FBXW7 mutation.
- 143. PMID: 27399335; 2017, Oncogene;36(6):787-796
 FBW7 mutations mediate resistance of colorectal cancer to targeted therapies by blocking Mcl-1 degradation.
- 144. PMID: 25860929; 2015, Oncotarget;6(11):9240-56
 FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15.
- 145. PMID: 29633504; 2018, Mol Oncol;12(6):883-895
 FBXW7 deletion contributes to lung tumor development and confers resistance to gefitinib therapy.
- 146. PMID: 28522751; 2017, Cancer Res;77(13):3527-3539
 Targeting FBW7 as a Strategy to Overcome Resistance to Targeted Therapy in Non-Small Cell Lung Cancer.
- 147. PMID: 24884509; 2014, Mol Cancer;13():110

 Fbxw7 is an independent prognostic marker and induces apoptosis and growth arrest by regulating YAP abundance in hepatocellular carcinoma.
- 148. PMID: 19910469; 2010, J Biol Chem;285(2):1097-104 MRE11-RAD50-NBS1 complex dictates DNA repair independent of H2AX.
- 149. PMID: 20655309; 2010, FEBS Lett;584(17):3682-95
 The MRN complex in double-strand break repair and telomere maintenance.
- 150. PMID: 24894818; 2014, Breast Cancer Res;16(3):R58
 Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: results from a

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 33 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

Breast Cancer Family Registry case-control mutation-screening study.

- 151. PMID: 23755103; 2014, PLoS One;8(6):e63313
 Sequencing of candidate chromosome instability genes in endometrial cancers reveals somatic mutations in ESCO1, CHTF18, and MRE11A.
- 152. PMID: 11196167; 2001, Cancer Res;61(1):23-6 Alterations of the double-strand break repair gene MRE11 in cancer.
- 153. PMID: 11850399; 2002, EMBO Rep;3(3):248-54 Human MRE11 is inactivated in mismatch repair-deficient cancers.
- 154. PMID: 16959974; 2006, Science;314(5797):268-74
 The consensus coding sequences of human breast and colorectal cancers.
- PMID: 26510020; 2015, N Engl J Med;373(18):1697-708
 DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer.
- 156. PMID: 24927325; 2014, PLoS One;9(6):e100041
 Effect of MRE11 loss on PARP-inhibitor sensitivity in endometrial cancer in vitro.
- 157. PMID: 21300766; 2011, Cancer Res;71(7):2632-42
 MRE11 deficiency increases sensitivity to poly(ADP-ribose) polymerase inhibition in microsatellite unstable colorectal cancers.
- 158. PMID: 25310185; 2014, PLoS One;9(10):e108483

 MRE11-deficiency associated with improved long-term disease free survival and overall survival in a subset of stage III colon cancer patients in randomized CALGB 89803 trial.
- 159. PMID: 25935112; 2015, Trends Biochem Sci;40(6):296-308 Structural determinants of Smad function in TGF-β signaling.
- PMID: 19014666; 2008, Pathogenetics;1(1):2
 Smad4 haploinsufficiency: a matter of dosage.
- 161. PMID: 9545410; 1998, Am J Hum Genet;62(5):1129-36 A gene for familial juvenile polyposis maps to chromosome 18q21.1.
- 162. PMID: 8553070; 1996, Science;271(5247):350-3 DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.
- 163. PMID: 8673134; 1996, Nat Genet;13(3):343-6 Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers
- 164. PMID: 18662538; 2008, Cell;134(2):215-30 TGFbeta in Cancer.
- PMID: 9135016; 1997, Cancer Res;57(9):1731-4
 Tumor-suppressive pathways in pancreatic carcinoma.
- PMID: 23139211; 2013, Cancer Res;73(2):725-35
 SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer.
- 167. PMID: 22810696; 2012, Nature;487(7407):330-7 Comprehensive molecular characterization of human colon and rectal cancer.
- 168. PMID: 25890228; 2015, World J Surg Oncol;13():128
 Clinical outcome and expression of mutant P53, P16, and Smad4 in lung adenocarcinoma: a prospective study
- 169. PMID: 19841540; 2009, J Clin Invest;119(11):3208-11 Smad4: gatekeeper gene in head and neck squamous cell carcinoma.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **34** of **36**

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

170. PMID: 15867212: 2005. Clin Cancer Res:11(9):3191-7

Differences in Smad4 expression in human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck squamous cell carcinoma.

171. PMID: 25589618; 2015, Clin Cancer Res;21(6):1447-56

Genomic analysis of metastatic cutaneous squamous cell carcinoma.

172. PMID: 29703253: 2018. BMC Cancer:18(1):479

SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients.

173. PMID: 28522603; 2017, Clin Cancer Res;23(17):5162-5175

SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells.

174. PMID: 16144935; 2005, Clin Cancer Res;11(17):6311-6

SMAD4 levels and response to 5-fluorouracil in colorectal cancer.

175. PMID: 24384683; 2014, Br J Cancer;110(4):946-57

Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway.

176. PMID: 12237773; 2002, Br J Cancer;87(6):630-4

SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer.

177. PMID: 25749173; 2015, Transl Oncol;8(1):18-24

A Meta-Analysis of SMAD4 Immunohistochemistry as a Prognostic Marker in Colorectal Cancer.

178. PMID: 19478385; 2009, Cell Oncol;31(3):169-78

Presence of a high amount of stroma and downregulation of SMAD4 predict for worse survival for stage I-II colon cancer patients.

179. PMID: 25681512; 2015, J Clin Pathol;68(5):341-5

Smad4 inactivation predicts for worse prognosis and response to fluorouracil-based treatment in colorectal cancer.

180. PMID: 26861460; 2016, Clin Cancer Res;22(12):3037-47

Reduced Expression of SMAD4 Is Associated with Poor Survival in Colon Cancer.

181. PMID: 26947875: 2016. Transl Oncol:9(1):1-7

Prognostic Value of SMAD4 in Pancreatic Cancer: A Meta-Analysis.

182. PMID: 25760429; 2015, Pancreas;44(4):660-4

SMAD4 expression predicts local spread and treatment failure in resected pancreatic cancer.

183. PMID: 22504380; 2012, Pancreas;41(4):541-6

SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma.

184. PMID: 19584151; 2009, Clin Cancer Res;15(14):4674-9

SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer.

185. PMID: 18425078; 2008, Mod Pathol;21(7):866-75

Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival.

186. PMID: 28968163; 2017, J Clin Oncol;35(32):3638-3646

MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer.

187. PMID: 28533223; 2017, Clin Cancer Res;23(17):5218-5224

MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2-Metastatic Breast Cancer.

188. PMID: 26703889; 2016, Lancet; 387(10022): 968-977

Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 35 of 36

Project ID: C22-M001-00655 Report No.: AA-22-01138_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

- 189. PMID: 22149876; 2012, N Engl J Med;366(6):520-9 Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.
- PMID: 21306238; 2011, N Engl J Med;364(6):514-23
 Everolimus for advanced pancreatic neuroendocrine tumors.
- 191. PMID: 23158522; 2013, Lancet;381(9861):125-32
 Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial.
- 192. PMID: 18653228; 2008, Lancet;372(9637):449-56
 Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.
- 193. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284
 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 194. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- 195. PMID: 25366685; 2015, J Clin Oncol;33(3):244-50 Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation.
- PMID: 27959613; 2016, N Engl J Med;375(20):1925-1936
 Palbociclib and Letrozole in Advanced Breast Cancer.
- PMID: 26030518; 2015, N Engl J Med;373(3):209-19
 Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.
- 198. PMID: 27908594; 2017, Lancet Oncol;18(1):75-87

 Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2
- 199. PMID: 17538086; 2007, N Engl J Med;356(22):2271-81 Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 36 of 36