

Свежие комментарии

- SmNikolay к записи STM Урок 89. LAN. ENC28J60. TCP WEB Server. Подключаем карту SD
- Narod Stream к записи AVR Урок 3. Пишем код на СИ. Зажигаем светодиод
- strannik2039 к записи AVR Урок 3. Пишем код на СИ. Зажигаем светодиод
- Dmitriy к записи AVR Урок 1. Знакомство с семейством AVR
- Narod Stream к записи STM Урок 9. НАІ Шина І2С Продолжаем работу с DS3231

Форум. Последние ответы

- 🔊 Narod Stream в Программирование MK STM32
 - 1 неделя, 2 дн. назад
- 🔲 Zandy в Программирование МК STM32
 - 1 неделя, 3 дн. назад
- Narod Stream в Программирование MK STM32
 - 3 нед. назад
- 🌑 Narod Stream в Программирование MK STM32
 - 3 нед. назад
- Программирование МК STM32
 - 3 нед., 2 дн. назад

Январь 2018

Пн	Вт	Ср	Чт	Пт	Сб	Вс
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				
« Дек						

Архивы

- Январь 2018
- Декабрь 2017
- Ноябрь 2017
- Октябрь 2017
- Сентябрь 2017
- Август 2017 • Июль 2017

Главная > I2C > AVR Урок 17. Часы реального времени DS1307. Часть 1

AVR Урок 17. Часы реального времени DS1307. Часть

Stream Опубликовано в I2C, Программирование AVR — 1 комментарий !

Мета

- Регистрация
- Войти
- RSS записей
- RSS комментариев
- WordPress.org

искать здесь ..

Фильтровать

Одноплатные компьютеры от IPC2U! Процессорные модули, PC-104 платы, NANO-ITX, EPIC, PCI-ITX и многие

Сильный мороз в Минской области? Смотрите прогноз погоды на декабрь

vandex.bv

Урок 17 łасть 1

Часы реального времени **DS1307**

Продолжаем занятия программированию MK AVR.

И сегодня мы познакомимся с очень хорошей микросхемой DS1307. Данная микросхема представляет собой часы реального времени (real time clock или RTC).

Также, благодаря тому, что общение микроконтроллера микросхемой будет происходить с применением интерфейса І2С, мы ещё лишний раз на деле закрепим тему программирования данной шины.

Данная микросхема представлена компанией Dallas, вот её распиновка и основные технические характеристики

Заходите на канал **Narod Stream**

- Июнь 2017
- Май 2017
- Март 2017
- Февраль 2017
- Январь 2017
- Декабрь 2016
- Ноябрь 2016

DALLAS SEMICONDUCTOR

DS1307 64 x 8 Serial Real-Time Clock

Здесь мы видим, что есть у нас ножки SDA и SCL, назначение которых мы очень прекрасно знаем из предыдущего занятия. Также есть ножки Х1 и Х2 для подключения кварцевого резонатора на 32768 Гц, ножки питания — VCC и GND, выход для импульсов продолжительностью 1 секунда либо другой частоты в зависимости от настроек определенных регистров, а также плюсовой контак для батарейки, которая подключается для поддержания хода часов в момент отключения основного питания. Отрицательный контакт данной батарейки мы подключаем к общему проводу питания.

Также мы видим, что данная микросхема исполняется в планарных и DIP-корпусах.

Питаться данная микросхема может как и от 3 вольт, так и от 5 вольт.

Обращение к данной микросхеме по интерфейсу I2C происходит, в принципе, также. как и к микросхеме памяти, которую мы использовали на прошлом уроке. Конечно, будут свои нюансы, но об этом позже.

Так как данная микросхема у меня установлена в том же модуле, в котором установлена и микросхема EEPROM, а шина обмена у нас одна, то "узнавать" микросхема DS1307 о том, что обращаются именно к ней, будет, конечно, по адресу, который у неё другой, нежели у микросхемы ЕЕРКОМ.

Вот диаграммы приёма и передачи данных микросхемы

DATA WRITE - SLAVE RECEIVER MODE Figure 6

DATA READ - SLAVE TRANSMITTER MODE Figure 7

Адрес, по которому мы будем обращаться к данной микросхеме, выделен синим.

В принципе. особой разницы с диаграммами микросхемы EEPROM мы на видим.

Ещё отличие в обращении будет в том, что адресация памяти будет уже однобайтная, так как ячеек памяти или регистров у данной микросхемы очень мало

Вот что из себя представляют данные

Рубрики

- 1-WIRE (3)
- ADC (6)
- DAC (4)
- GPIO (26)
- I2C (19)
- SPI (13)
- USART (8)
- Программирование AVR (131)
- Программирование РІС (7)
- Программирование STM32 (213)
- Тесты устройств и аксессуаров (1)

	7
	/ I
ЭІ ДЕНЬ	124 507 13 098
O DHEÛ	30 048 4 366
24 4ACA	5 253 1 071
сегодня	2 568 580
нвлинии	52 56

Яндекс.Директ Жаркая аниме игра 2017 года

Назначение данных регистров:

00h — секунды. Секунды хранятся в двоично-десятичном виде. То есть в младших 4 битах хранятся единицы секунд, а в более старших трёх — десятки. Также есть бит SH — это бит запуска микросхемы.

01h — минуты. Хранятся аналогично. 02h — более универсальный регистр. Здесь хранятся часы. В четырех младших битах — единицы чаов, в следующих более старших двух — десятки, в следующем 6 бите — флаг того, после полудня сейчас время или до полудня, в 7 бите — режим хранения — 12- часовой или 24-часовой.

03h — день недели. Хранится в младших 3 битах, остальные биты не используются.

04h — здесь хранится день месяца, также в двоично-десятичном формате. В четыреё малдших битах — единицы, в двух следующих постарше — десятки, остальные биты не используются.

05h — номер месяца в году — хранится в двоично-десятичном формате точно также. как и часы.

06h — номер года, причём не полный четырёхзначный, а только двузначный. В младших четырех битах — единицы, в старших — десятки.

Вот этими семью регистрами мы и будем пользоваться. Последний регистр предназначен для конфигурирования частоты импульсов на импульсном выходе микросхемы, это делается в младших двух битах регистра. по умолчанию он будет 1 гц частотой, нам этого достаточно, чтобы помигать двоеточием, поэтому мы не будем пользоваться данными битами. Биты SOWE и OUT также применяются для настройки и включения формирователя даннх квадратных импульсов.

Эта **аниме** игра затягивает с первых минут, начнешь играть и забудешь про сон 18+

Все об игре Выбери свой класс Следи за новостями Тебя ждет подарок promo.101xp.com

Разработка мобильных приложений.

Разрабатываем все типы мобильных приложений для любых нужд бизнеса. Звоните!

Стартапы Коммерческие приложения Справочные приложения narisuemvse.by Адрес и телефон

The Most Popular eCommerce Platform Get Started Today For Free

Проект для работы с данной микросхемой был создан обычным образом с именем MyClock1307, файлы, связанные с EEPROM оттуда убраны, а добавлены файлы RTC.c и RTC.h.

Содержание файла main.h у нас теперь вот такое

#ifndef MAIN_H_
#define MAIN_H_
#define F_CPU 8000000UL

```
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdio.h>
#include <stdlib.h>
#include "usart.h"
#include "twi.h"
#include "RTC.h"
#endif /* MAIN_H_ */
```

В главном файле **MyClock1307.c** создадим глобальные переменные для хранения показаний времени, даты и дня недели и после этого полное содержание после удаления всего лишнего в нём будет вот таким

```
#include "main.h"
unsigned char
sec,min,hour,day,date,month,year;
int main(void)
{
    I2C_Init();
    USART_Init (8);
    while(1)
    {
    }
}
```

От прошлого кода останется лишь инициализация I2C и USART.

Теперь нам надо как-то вообще запустить микросхему. Если микросхема новая, либо никогда не использовалась, либо кто-то специально для каких-то целей изменил значение бита СН, то она ещё не "ходит".

Ну, вообще, как только мы установим все значения в регистрах микросхемы, так она и запустится и наши часы пойдут.

Подключение или схема использована также вся из прошлого занятия, то есть время смотреть мы будем посредством шины USART в терминальной программе.

Поэтому, собственно, используя наши знания предыдущего занятия, напишем писать функцию установки времени.

Первым делом мы, само собой, передадим условие CTAPT

```
//Устанавливаем время
I2C_StartCondition();
```

Затем передаём адрес с битом записи 0

```
I2C_StartCondition();
I2C_SendByte(0b11010000);
```

Перейдём на адрес 0, а значит к той части памяти, где расположен самый первый регистр

```
I2C_SendByte(0b11010000);
I2C_SendByte(0);//Переходим на 0x00
```

Прежде чем писать какие-то значения в регистры микросхемы, мы вспомним, что числа мы сначала должны преобразовать в двоично-десятичный формат, который будет удобен для регистров. Для этого мы зайдём в файл

RTC.c и такую функцию и напишем. Она будет очень лёгкой и в объяснении не нуждается

```
unsigned char
RTC_ConvertFromBinDec(unsigned char
c)
{
  unsigned char ch = ((c/10)<<4)|
(c%10);
  return ch;
}</pre>
```

Ну и также давайте напишем и функцию обратного типа, переводящую число из двоично-десятичного формата в десятичный. С помощью неё мы, наоборот, будем считанные показания времени преобразовывать в вид, удобный нашему восприятию (ЧПИ — человеко-понятный интерфейс)

```
unsigned char
RTC_ConvertFromDec(unsigned char c)
{
  unsigned char ch = ((c>>4)*10+
(0b00001111&c));
  return ch;
}
```

Здесь также всё придельно ясно, мы сдвигаем вправо старшую тетраду байта, умножаем её на десять и прибавляем младшую тетраду (старшую отмаскировываем нулями)

Напишем прототипы данных функций в файле **RTC.c**

```
#include "main.h"
unsigned char
RTC_ConvertFromDec(unsigned char c);
//перевод двоично-десятичного числа
в десятичное
unsigned char
RTC_ConvertFromBinDec(unsigned char
c); //перевод десятичного числа в
двоично-десятичное
```

Соберём код, а прошивать контроллер пока не будем. Нам нужно ещё дописать код записи в регистры и написать в бесконечный цикл процедуру чтения времени и даты и отправку всего этого в USART, а затем уж прошьём полностью весь код, прописав правильные значения времени и даты в установку времени.

Сделаем мы всё это в следующей части занятия.

Документация на микросхему DS1307

Программатор, модуль RTC DS1307 с микросхемой памяти и переходник USB-TTL можно приобрести здесь:

Программатор (продавец надёжный)

USBASP USBISP 2.0

Модуль RTC DS1307 с микросхемой памяти

Переходник USB-TTL лучше купить такой (сейчас у меня именно такой и он мне больше нравится)

Смотреть ВИДЕОУРОК (нажмите на картинку)

Post Views: 625

« STM Урок 40.

Знакомство с

Один комментарий на РАМ РУРЫ ТЕО Часы реального времени DS1307. Часть 1" STM32F767ZI

AVR Урок 17.

Melamed: Часы реального Октябрь 4, 2017 в 11:39 дп времени DS1307.

Проанализировав вашиасть 2 функции RTC_ConvertFromBinDec и RTC_ConvertFromDec, пришел к выводу, что время и дата в микросхеме DS1307 хранятся в следующим формате: в младших четырех битах хранится десятичные единицы, а старших 4 битах — десятичные десятки. Поэтому достаточно для выделения десятичных единиц выполнить операцию побитного и с числом 0х0F, а десятков с помошью побитного сдвига на 4 бита ed = min & 0x0f; dec = min >> 4;И у меня это работает

Ответить

Добавить комментарий Ваш е-mail не будет опубликован. Обязательные поля помечены * Комментарий Имя * Е-mail * Сайт

Главная Новости Уроки по программированию МК Программирование микроконтроллеров AVR Программирование микроконтроллеров STM32 Программирование микроконтроллеров PIC Тесты устройств и аксессуаров						
Устройства и интерфейсы Ссылки Форум Помощь						
1 2 444 ◆ 695 ⊕ 542 ∯						

© 2018 Narod Stream