

Topics to be covered

- (1) H/W
- 2 Parabola, eliipse, Circle.
- Variation of slope
- 4

Not Son oul

(9) Two straight line Perpendicular to each other then prove that Product of their Slope is -1.

Post	8:14	.ıı । क्∳5×
(1)	Aryan • an hour ago done	
	▲1 → Reply	Δ
0	Dipandita • an hour ago done sir	
	▲ 0	Δ
S	Sakha • an hour ago	A
0	Tasmiya • an hour ago done	
Ac	ld a comment here	<i>a</i> •

ObJect is moving on the stought line (JEE) 4y+3n = 5 and force acting on it is equation F=3i+4T, then work done will be ?? # F=3î+4ĵ 4y = -3x + 5form 0 = 3 tomo = 4 method · Both are 18 to each oth 32 $M = -\frac{3}{4} = tan \theta$

D= 1430

$$(a) + 2$$

(d) None of they

Ams (d)

H/W

1	X
0	0
±1_	1
±2	4
±3	9
±4	16
X	-4

lateral Parabula

_ aluxy tre x/ $\sqrt{-x}$ < alway x is-ve $\sqrt{-(-2)} = \sqrt{2}$

KE (M)

K.E & V Ka graph.

$$\frac{K \cdot E = \left(\frac{1}{2} m\right) v^{2}}{y = K n^{2}}$$

MR* Box > Jis Physical quantity of x & Y axis Par arakha hai, USKO formula me Y & & Se Replace Karea Draw Graph B/W

45x2 14=x2 y= 5x = n/2 we know $T = 2T\sqrt{\frac{g}{g}} \leftarrow given.$

(i) Draw graph 10/10 T & &

Kepplers Law:

Psquare of time period is proportional to cube of yaquing, T2 & R3 Draw Graph between IT'and'R'.

T2 & R3

T2 & R3

Y=x/2

MT T & R 3/2 / Y & x 3/2

T & R 1-5

Like uphood
Purabu.

Y= x¹2

Kepplers Law:

**Square of time period is proportional to cube of square of time period is proportional to cube of radius, $T^2 \propto R^3$ Draw Graph between I_1^2 and I_2^3 .

$$K.E = \frac{p^2}{2m} \leftarrow given formula.$$

Draw graph
$$B/W$$
 K-E SM

(1) 1 K-E

 $X = \frac{(x)^2}{2m}$
 $Y = \frac{x}{2}$

$$K.E = \frac{p^2}{2m} \leftarrow given formula.$$

1 Draw grain B/W K-ES P

Quadratic equation.

$$ax^2 + 6x + C = 0$$

$$\chi = \frac{-b + \sqrt{b^2 - 4ac}}{2 \times a}$$

$$d_2 = -b - \sqrt{b^2 - 4aC}$$

wheren a, b & c are (ostantan)

2 - varible value (for this quadratic equation)

$$\frac{1}{x}$$
 $x_1 + x_2 = -\frac{5}{2a} - \frac{5}{2a}$ $= -\frac{76}{7a} = -\frac{5}{a}$

$$(\chi_1,\chi_2 = \frac{c}{a})$$

. .

(a)
$$\chi^2 - 5x + 6 = 0$$

$$\frac{5017}{400} = \frac{2}{400} = 0$$

$$\frac{5017}{400} = 0$$

$$\chi = \frac{-6 \pm \sqrt{6^2 - 4ac}}{2a}$$

$$= \frac{-(-5) + \sqrt{25 - 4 \times 1 \times 6}}{2 \times 1}$$

$$= \frac{5 + 1}{2} = \frac{5 + 1}{2}$$

$$= \frac{5 + 1}{2}$$

Sum of root =
$$-\frac{b}{a}$$

= $-\left(-\frac{5}{2}\right) = +5$

Product of run
$$\frac{3}{2} = \frac{5}{9}$$

$$= \frac{6}{1}$$

(a)
$$\chi^2 - 5x + 6 = 0$$

$$\chi^2 - 3x - 2x + 6 = 0$$

$$\chi(\chi-3)-2(\chi-3)=0$$

$$(x-3)$$
 $(x-2) = 0$

$$\frac{\chi_{-3}=0}{\chi_{-2}=0}$$

(i)
$$\chi^2 + 7\chi + 12 = 0$$

$$\chi^2 + 4n + 3x + 12 = 0$$

(ii)
$$n^{2}-4n = 0$$

 $n(x-4)=0$
 $n(x-4)=0$
 $n(x-4)=0$
 $n(x-4)=0$
 $n=4$

$$y = \chi^2 - 4\chi - 12$$

Draw graph b/w y and x.

$$y = \chi^2 - 4\chi - 12$$

11 x - Intercept = value of x when y is zero

$$\# 2^2 - 4x - 12 = 0$$

$$\# 2^2 - 6x + 2x - 12 = 0$$

$$\chi - 6 = 0$$
 $\chi = +6$
 $\chi = -2$

$$y = \chi^2 - 4$$

$$y = \chi^2 - 4$$

$$\chi = \chi^2 - 4 = 0$$

Draw graph.

Equation of circle ___ distance formula.

$$R = \sqrt{(n-N_0)^2 + (1-N_0)^2}$$

$$R^2 = (x-N_0)^2 + (y-N_0)^2$$

$$= \sqrt{(x-N_0)^2 + (y-N_0)^2}$$

Roxy Varible (MI)

R= Ja2+12

012)

R= Radius cente at oris. dian=R=\((x-1/0)^2+(1/-1/0)^2

Question

$$(x-4)^2 + (y-3)^2 = 25$$
. Find radial and centre of circle.

$$R = \sqrt{(2-x_0)^2 + (y-y_0)^2}$$

$$R = \int (2(-x_0)^2 + (y-y_0)^2 dx$$

$$R^2 = (2(-x_0)^2 + (y-y_0)^2 + (y-y_0)^2$$

$$8^{2} = 4$$
 $8^{2} = 25$
 $8^{2} = 25$
 $8^{2} = 25$
 $8^{2} = 25$
 $8^{2} = 25$

Som

$$(#) y = 7000 + C \rightarrow 540 \text{ wigh line}$$

$$(#) y = 70^2 + C \leftarrow Parked.$$

$$(#) y = 70 \rightarrow 1 \text{ laterul}$$

$$(#)$$

Equation of circle

$$\frac{\chi^{2}}{R^{2}} + \frac{\chi^{2}}{R^{2}} = 1$$

Area = MRR

Circm ference = 2MR

Circm ference = MRR

सरात circle -> elipse

$$\frac{\chi^2}{a^2} + \frac{y^2}{b^2} = 1$$

of a=b=R

.

, ,

ellipse -> elliptical Graph

Question

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

Draw graph between x and y

Relation 8/10 Velocity & Position of oscillator particus.

Square both side.

$$\frac{V^2}{\omega^2} = A^2 - \chi 2$$

$$\frac{V^2}{4\nu^2} + \chi^2 = A^2$$

divided by A2 both side

У	a_
	0
	1
	2
	-1
	-2

Y	
>	1

Discussion on alope

2 lope at Point A et oxigin (0,0) = tano = tvc

Slope Maflab X Sy Ki Value Nahi hal.

. . .

Curved

m=0 mc=tre D < 90 X MA = infinite

wy > wb > wg

Slope +ve s deeres. magnitude of slope -> decresing

MD=D

Tany

compair slope at a, b & c

4/2.

= A^{m}

If *y* :

 n/Ω

Question

Match the matrix:

Point	Slope
Α	Zero
В	negative
С	Maximum
D	Positive

9f
$$T=2\pi \int_{9}^{4}$$
 Draw graph b/w
(i) T 8 g
(ii) T 3 $\left(\frac{1}{4}\right)$

T= f Draw Graph Blw Tand f

S T Sand /f

