第16章 代数系统

中国海洋大学计算机系

习题十六: Exercises 2.

证 对于a 存在 $u_0, v_0 \in S$,使得 $a^*u_0 = v_0^*a = a$.

下面证明॥0为右单位元, 10为左单位元.

任取x∈S,∃u,v ∈S,使得

$$a^*u=v^*a=x$$

因此 $x^*u_0 = (v^*a)^*u_0 = v^*(a^*u_0) = v^*a = x;$ $v_0^*x = v_0^*(a^*u) = (v_0^*a)^*u = a^*u = x;$ 由定理可得 $u_0 = v_0^* = e$ 是V中的唯一单位元.

证 (1) 显然运算o在S上是封闭的.

 $\forall x,y,z \in S$,有 $(x \circ y) \circ z = x \circ z = x, x \circ (y \circ z) = x$

所以(x oy) oz=xo(yoz),满足结合律

(2) 取e∉S, 令A=S∪{e},定A上的运算*:

 $\forall x,y \in S, x^*y = xoy = x,$

eoe=e, xoe=eox=x

<A, *>是独异点.

证明
$$(a^{\circ} b)^{\circ} c = a^{\circ} (b^{\circ} c)$$
 $= a^{\circ} (c^{\circ} b)$
 $= (a^{\circ} c)^{\circ} b$
 $= (c^{\circ} a)^{\circ} b$
 $= c^{\circ} (a^{\circ} b)$
因此 $a^{\circ} b = c$ 可交换.

Exercises 5.

$$\mathbb{E}$$
 (1) $a*b=a*(a*a)=(a*a)*a=b*a$

(2) 假设b*b=a,若a*b=a,则

$$(a*b)*b=a*b=a, a*(b*b)=a*a=b$$

与结合律矛盾.

若a*b=b,则

$$(a*a)*b=b*b=a, a*(a*b)=a*b=b$$

与结合律矛盾.

因此b*b=b.

设V=<S,*>是可交换半群,若 $a,b\in S$ 是V中的幂等元,证明a*b也是V中的幂等元.

证明
$$(a*b)*(a*b)=a*(b*a)*b=a*(a*b)*b$$

= $(a*a)*(b*b)=a*b$
所以 $a*b$ 为幂等元.

10. $V = \langle Z_4, \otimes \rangle$,其中⊗表示模4乘法.找出V的所有子半群.并说明哪些子半群是V的子独异点.

解 V的所有子半群:

 $V = \langle A, * \rangle$ 是半群,其中 $A = \{a,b,c,d\}$,*运算由运算表 16.4给定,~为A上的同余关系,且同余类是[a] = [c], [b] = [d].试给出商代数V/~的运算表.

解 由同余类是[a]=[c],[b]=[d],可得

$$[a]=[c]=\{a,c\},[b]=[d]=\{b,d\}$$

$$\forall [x], [y] \in A/\sim, [x] \bullet [y] = [x*y]$$

运算表如下:

•	[a]	[<i>b</i>]
[<i>a</i>]		[<i>b</i>]
[<i>b</i>]	[b]	[<i>a</i>]

证明: (1) 先证R是等价关系。 $\forall x \in S, x = x \Leftrightarrow xRx,$ 所以R是自反关系 $xRy \Leftrightarrow (x = y) \lor (x \in I \land y \in I) \Leftrightarrow yRx,$ 所以R是对称的 $xRy \land yRz \Leftrightarrow ((x = y) \lor (x \in I \land y \in I)) \land ((y = z) \lor (y \in I \land z \in I))$ $\Leftrightarrow ((x = y) \land (y = z)) \lor (x \in I \land y \in I \land z \in I) \lor ((x = y) \land (x \in I \land y \in I))$ $\lor ((y = z) \land (x \in I \land y \in I))$ 所以xRz, R满足传递性。

再证R具有置换性.

任取xRy,uRv,考察x°u和y°v:

- 1) 当x=y, u=v时, $x^{\circ}u=y^{\circ}v$,有 $(x^{\circ}u)R(y^{\circ}v)$
- 2) 当 $x \in I, y \in I, u = v$ 时, $x^{\circ}u \in IS$ 且 $y^{\circ}v \in IS$,则 $x^{\circ}u \in I, y^{\circ}v \in I$, 所以 $(x^{\circ}u)R(y^{\circ}v)$
- 3) 当 $x \in I, y \in I, u = v$ 时, $x^{\circ}u \in IS$ 且 $y^{\circ}v \in IS$,则 $x^{\circ}u \in I, y^{\circ}v \in I$,所以 $(x^{\circ}u)R(y^{\circ}v)$
- 4) 当 $x=y, u\in I, v\in I, x^{\circ}u\in SI$ 且 $y^{\circ}v\in SI$,则 $x^{\circ}u\in I, y^{\circ}v\in I$, 所以 $(x^{\circ}u)R(y^{\circ}v)$

因此R具有置换性.

综上所述R是V上的同余关系.

(2) 先求同余类.

$$[x] = \{y|y \in S, xRy\} = \{y|y \in S, (x=y) \lor (x \in I \land y \in I)\}$$

当 $x \in I$ 时, $[x] = I$
当 $x \notin I$ 时, $[x] = \{x\}$
 $"$ 的运算如下:
 $[x] "[y] = [x"y]$,
当 $x \in I$ 时, $y \in S, fax"y \in IS, ppx"y \in I. pp[x] "[y] = [x"y] = I$
当 $x \notin I$, $y \in I$ 时, $fax"y \in SI$, $ppx"y \in I. pp[x] "[y] = [x"y] = I$
当 $x \notin I$, $y \notin I$ 时, $[x] "[y] = [x"y] = \{x"y\}$
因此, $[x] "[y] = [x"y] = \{x"y\}$
因此, $[x] "[y] = [x"y] = \{x"y\}$
其中 $[x,y] \in S$ - $[x] "[y] = \{x\} "[y] = \{x"y\}$,其中 $[x,y] \in S$ - $[x] "[y] = \{x"y\}$,其中 $[x,y] \in S$ - $[x] "[y] = \{x"y\}$,