6 An electron travelling horizontally in a vacuum enters the region between two horizontal metal plates, as shown in Fig. 6.1.

Fig. 6.1

The lower plate is earthed and the upper plate is at a potential of $+400\,V$. The separation of the plates is 0.80 cm.

The electric field between the plates may be assumed to be uniform and outside the plates to be zero.

- (a) On Fig. 6.1,
 - (i) draw an arrow at P to show the direction of the force on the electron due to the electric field between the plates,
 - (ii) sketch the path of the electron as it passes between the plates and beyond them. [3]
- (b) Determine the electric field strength E between the plates.

(c)	Cal	Calculate, for the electron between the plates, the magnitude of	
	(i)	the force on the electron,	
	410	force = N	
	(ii)	its acceleration.	
		$acceleration = \dots m s^{-2}$ [4]	
(d)		te and explain the effect, if any, of this electric field on the horizontal component of motion of the electron.	
	••••		
		[2]	

6 Two horizontal metal plates are situated 1.2 cm apart, as illustrated in Fig. 6.1.

Fig. 6.1

The electric field between the plates is found to be $3.0 \times 10^4 \, N \, C^{-1}$ in the downward direction.

- (a) (i) On Fig. 6.1, mark with a + the plate which is at the more positive potential.
 - (ii) Calculate the potential difference between the plates.

(b) Determine the acceleration of an electron between the plates, assuming there is a vacuum between them.

acceleration =
$$m s^{-2}$$
 [3]

A sphere has volume V and is made of metal of density ρ .					
(a)	Wri	te down an expression for the mass m of the sphere in terms of V and $ ho$.			
		[1]			
(b)	The	sphere is immersed in a liquid. Explain the apparent loss in the weight of the sphere.			
	••••				
		[3]			
(c)		e sphere in (b) has mass 2.0×10^{-3} kg. When the sphere is released, it eventually in the liquid with a constant speed of 6.0cm s^{-1} .			
	(i)	For this sphere travelling at constant speed, calculate			
		1. its kinetic energy,			
		kinetic energy = J			
		2. its rate of loss of gravitational potential energy.			
		rate = $J s^{-1}$ [5]			
	(ii)	Suggest why it is possible for the sphere to have constant kinetic energy whilst losing potential energy at a steady rate.			
		[2]			

6 An electron travelling horizontally in a vacuum enters the region between two horizontal metal plates, as shown in Fig. 6.1.

Fig. 6.1

The lower plate is earthed and the upper plate is at a potential of $+400\,V$. The separation of the plates is 0.80 cm.

The electric field between the plates may be assumed to be uniform and outside the plates to be zero.

- (a) On Fig. 6.1,
 - (i) draw an arrow at P to show the direction of the force on the electron due to the electric field between the plates,
 - (ii) sketch the path of the electron as it passes between the plates and beyond them. [3]
- (b) Determine the electric field strength E between the plates.

(c)	Cal	Calculate, for the electron between the plates, the magnitude of	
	(i)	the force on the electron,	
	410	force = N	
	(ii)	its acceleration.	
		$acceleration = \dots m s^{-2}$ [4]	
(d)		te and explain the effect, if any, of this electric field on the horizontal component of motion of the electron.	
	••••		
		[2]	

6 Two horizontal metal plates are situated 1.2 cm apart, as illustrated in Fig. 6.1.

Fig. 6.1

The electric field between the plates is found to be $3.0 \times 10^4 \, N \, C^{-1}$ in the downward direction.

- (a) (i) On Fig. 6.1, mark with a + the plate which is at the more positive potential.
 - (ii) Calculate the potential difference between the plates.

(b) Determine the acceleration of an electron between the plates, assuming there is a vacuum between them.

acceleration =
$$m s^{-2}$$
 [3]

A sphere has volume V and is made of metal of density ρ .					
(a)	Wri	te down an expression for the mass m of the sphere in terms of V and $ ho$.			
		[1]			
(b)	The	sphere is immersed in a liquid. Explain the apparent loss in the weight of the sphere.			
()					
	••••				
		[3]			
(c)		s sphere in (b) has mass 2.0×10^{-3} kg. When the sphere is released, it eventually in the liquid with a constant speed of 6.0cm s^{-1} .			
	(i)	For this sphere travelling at constant speed, calculate			
		1. its kinetic energy,			
		kinetic energy =			
		2. its rate of loss of gravitational potential energy.			
		wata 1a−1 [5]			
		rate = $J s^{-1}$ [5]			
	(ii)	Suggest why it is possible for the sphere to have constant kinetic energy whilst losing potential energy at a steady rate.			
		[0]			