Teoria Axiomática dos Conjuntos

Beatriz de Faria, 11201810015

Abril, 2021

1 Exercício 5.16.

1.1 δ é um ordinal

Para mostrarmos que δ é um ordinal, vamos dividir em 3 partes:

1.1.1 δ é transitivo

Tome um $x \in \delta$ qualquer. Por hipótese temos que:

$$\forall x (x \in \delta \Leftrightarrow \forall \alpha \in B (x \in \alpha))$$

Em particular, temos que $x \in \alpha$. Note que, como B é um conjunto de ordinais, α é um ordinal, portanto:

$$\forall x \in \alpha(\wp(x) \in \alpha)$$

Como isto é válido $\forall \alpha$ então, $\wp(x) \in \delta$.

1.1.2 $\forall x \in \delta(x \notin x)$

Tome um $x \in \delta$ qualquer, pelo mesmo raciocínio do item anterior, sabemos que $x \in \alpha$ e α é um ordinal. Como α é um ordinal:

$$\forall y \in \alpha (y \notin y)$$

Como isto é válido $\forall y$, em particular, vale para x. Portanto $x \notin x$

1.1.3 $\forall x, y \in \delta(x \le y \Leftrightarrow (x \in y \lor y = x))$

Tome $x, y \in \delta$ quaisquer. Sabemos que $x, y \in \alpha (\forall \alpha \in B)$, como α é um ordinal:

$$\forall z, w \in \alpha (z \le w \Leftrightarrow (z \in w \lor z = w))$$

Como isto é válido para quaisquer z, w podemos dizer, sem perda de generalidade, que isto vale para z=x e w=y. Temos que:

$$\forall x, y \in \alpha (x \le y \Leftrightarrow (x \in y \lor x = y))$$

Como queríamos.

1.2 $\delta \in B$

Sabemos (na real ainda não sabemos, mas decorre da parte 1.3 deste exercício) que $\delta \in \alpha \vee \delta = \alpha$ para todo $\alpha \in B$.

Caso 1. $\delta \in \alpha$

Como $\alpha \in B$ e $\delta \in \alpha$ logo,

$$\delta \subseteq B$$

Note que, se ocorre $\delta = B$, então $\alpha \in \delta$ e como δ é um ordinal, $\alpha \subseteq \beta$, ou seja $\delta = \alpha$, o que contradiz nossa hipótese de que $\delta \in \alpha : \delta \notin \delta$. Portanto, podemos dizer que $\delta \subsetneq B$ e, pela proposição 5.9:

$$\delta \subsetneq B \Rightarrow \delta \in B$$

Caso 2. $\delta = \alpha$

Como $\alpha \in B \Rightarrow \delta \in B$

1.3 $\forall \alpha \in B(\delta \leq \alpha)$

Suponha por absurdo que isto não ocorre, isto é: $\alpha \in \delta$ (proposição 5.12), para algum $\alpha \in B$. Note que,

$$\forall x (x \in \delta \Leftrightarrow \forall A \in B (x \in A))$$

Como isto vale $\forall A$, em particular, vale para α , portanto:

$$\forall x \in \delta \Rightarrow x \in \alpha$$

Como isto vale $\forall x \in \delta$, em particular, vale para $x = \alpha$. Teremos que:

$$\alpha \in \alpha$$

$$\exists x \in \delta(x \in x)$$

O que contradiz o fato de que δ é um ordinal

q.e.d

2 Exercício 5.28.

2.1 Prove que, se $y \in a$ e $y' \in a$ são sucessores de $x \in a$, então y = y'.

Suponha, por absurdo, que $y \neq y'$. Suponha também, sem perca de generalidade, que:

$$y \triangleleft y'$$

Como $x \triangleleft y$, então:

$$x \triangleleft y \triangleleft y'$$

O que é um absurdo, pois $y \in a$ e y' é um sucessor de x, então, $\nexists z \in a : x \triangleleft z \triangleleft y'$.

q.e.d

2.2 Prove que (a, \preceq) e (ω, \leq) são ordens isomorfas

Queremos mostrar que existe uma função bijetora satisfazendo:

$$\forall x \in a \forall y \in a (x \le y \Leftrightarrow f(x) \le f(a))$$

Construa a função $f: a \to \omega$ da seguinte maneira:

1. $f(x) = \emptyset$ se $x = \min_{\leq}(a)$

A existência de um elemento mínimo é garantida pois ≤ é uma boa ordem sobre a.

 $2. \ f(S(y)) = s(i_y)$

Onde o sucessor de um elemento y de a denotado por := S(y) (se $x \neq \min_{\leq}(a)$, então $\exists y : x = S(y)$) e i_y é o y-ésimo elemento de ω , de modo que:

Se $y = \min_{\leq}(a), \ s(i) = s(\emptyset)$

Se $y = S(\min_{\leq}(a)), s(i) = s(s(\emptyset))$

Se $y = S(S(\min_{a}(a))), s(i) = S(S(s(\emptyset)))$

E assim por diante (espero que tenha ficado claro, acho que é a primeira vez que estou definindo uma função por recursão). Vamos provar que essa função é bijetora.

1. Ela é injetora

Sejam $s(i_m), s(i_n) \in \omega$ tais que $s(i_m) = s(i_n)$.

$$\therefore i_m = i_n \Rightarrow m = n \Rightarrow S(m) = S(n)$$

2. Ela é sobrejetora

Decorre do fato de que a não possui elemento máximo na ordem \leq , portanto, $\forall s(i) \in \omega(\exists n \in a: f(S(n) = s(i))$, além disso $\emptyset = \min_{\leq} (a)$. Então, $\forall m \in \omega(\exists n \in a: m = f(n))$

q.e.d

2.3 Mostre, por meio de contraexemplos, que o resultado do item 2.2 seria falso se qualquer uma das três condições listadas fosse omitida.

1. a possui elemento máximo na ordem ≤

Seja (a, \leq) um segmento inicial próprio de ω (note que este conjunto respeita as demais condições impostas sobre a), temos pela proposição 4.15 que o resultado anterior é falso.

2. ⊴ não é uma boa-ordem sobre a

Se $\forall x \in a(x = s(\alpha))$ para algum $\alpha \in a$, então a não é indutivo pois $\emptyset \notin a$. Se ocorre:

$$\exists x \in a : f(x) = \emptyset$$

Note que $x = s(\alpha)$, portanto, $f(\alpha) = n$ e $n \in \emptyset$ (pela ordem de ω), o que é um absurdo 3. \neg (para todo $y \in a$, se não existe $x \in a$ tal que y é o sucessor de x, então y $= \min_{\neg}(a)$)

Seja $a = \omega \cup \{\omega\}$

Se a e ω fossem ordens isomorfas, então existe uma função bijetora de modo que:

$$\exists x \in \omega : f(x) = \omega$$

Como ω é indutivo $s(x) \in \omega$, então, precisamos de $c \in a$ de modo que $\omega \triangleleft c$ (para respeitar que as ordens sejam isomorfas), e dado que $a = \omega \cup \{\omega\}$ e $c \neq \omega$, portanto $c \in \omega \Rightarrow \omega \subsetneq \omega$, o que é um absurdo.

3 Exercício 5.44.

3.1 $s(\alpha) \in \beta$

Vamos provar que se $s(\alpha) \notin \beta \Rightarrow \alpha \notin \beta$

Sabemos que $s(\alpha) = \alpha \cup \{\alpha\}$. Como $s(\alpha) \notin \beta$, $s(\alpha) \nsubseteq \beta$ (note que $\beta \neq s(\alpha)$ pois β é um ordinal limite), então $\exists x : x \in s(\alpha) \land x \notin \beta$, o que é o mesmo que dizer que:

$$\alpha \notin \beta \vee \{\alpha\} \notin \beta$$

Caso 1. $\alpha \notin \beta$

É imediado

Caso 2. $\{\alpha\} \notin \beta$

Se $\{\alpha\} \notin \beta$ então, dado que beta é um ordinal, $\alpha \notin \beta : \forall y \in \beta (y \subseteq \beta)$

$3.2 \Rightarrow$

Suponha, por absurdo, que para um ordinal limite β , $\exists m \in \beta : \forall x \in \beta (x \leq m)$. Como isto vale $\forall x$, em particular, vale para x = m, porém, como $m \in \beta \Rightarrow s(m) \in \beta$ e m < s(m), o que é um absurdo.

3.3 ⇐

Seja $a=s(\alpha)$ para algum α . Queremos mostrar que $\forall x\in a\exists m\in a(x\leq m)$. Seja $m=\{\alpha\},$ como $a=s(\alpha)=\alpha\cup\{\alpha\}.$

Caso 1. $\mathbf{x} = \alpha$

$$x \in \{\alpha\} : x < m \Rightarrow x \le m$$

Caso 2. $\mathbf{x} = \{\alpha\}$

$$x = m \Rightarrow x \le m$$

q.e.d

4 Exercício 5.47.

Seja α um conjunto de ordinais que não possui elemento máximo. Queremos mostrar que $\bigcup \alpha$ é um ordinal limite.

$$x \in \bigcup \alpha \Leftrightarrow \exists z (z \in \alpha \land x \in z)$$

Note que, $\nexists m \in \alpha \forall z \in \alpha : z \leq m$, portanto $m \notin \bigcup \alpha$, então, $\bigcup \alpha$ não possui elemento máximo e, vimos no exercício 5.44 que isso ocorre somente se $\bigcup \alpha$ é um ordinal limite.

q.e.d

5 Exercício 6.17.

Queremos mostrar que:

$$\forall n \in \omega (n \preceq a \backslash t)$$

Seja o conjunto:

$$\alpha = \{ n \in \omega : n \preceq a \backslash t \}$$

Note que, $\forall n \in \alpha \Rightarrow n \in \omega : \alpha \subseteq \omega$, ou seja, se demonstrarmos que α é indutivo, pelo produto da indução finita, teremos o resultado esperado.

Parte 1:

$$\emptyset \in \alpha$$

Queremos que exista uma $f: \emptyset \to a \setminus t$ de modo que $\forall x, y \in \emptyset (x \neq y \Rightarrow f(x) \neq f(y))$. O que vale por vacuidade.

Parte 2:

$$\forall n \in \alpha(s(n) \in \alpha)$$

Fixe um $n \in \alpha$ qualquer, sabemos que existe uma função $f: n \to a \setminus t$ de modo que $\forall x, y \in n (x \neq y \Rightarrow f(x) \neq f(y))$. Queremos mostrar que existe uma função $g: s(n) \to a \setminus t$ de modo que $\forall x, y \in s(n) (x \neq y \Rightarrow g(x) \neq g(y))$

Sabemos que $s(n) = n \cup \{n\}$, se $x \in n$, sabemos pela nossa hipótese da indução que isto vale, ou seja g(x) = f(x) se $x \in n$. Queremos demonstrar que $\exists \beta \in a \setminus t : \beta \notin f[n]$, e assim, poderemos construir a função de modo que se $x = n \Rightarrow g(x) = \beta$.

Por hipótese: $\exists r \in \omega : t \approx r$. Além disso, a é infinito, então $\omega \lesssim a$. Portanto, $\omega \backslash r \lesssim a \backslash t$. Então, o que queremos provar é, na verdade:

$$\exists \beta' \in \omega \backslash r : \beta' \notin f[n]$$

Suponha, por absurdo que:

$$\forall \beta' \in \omega \backslash r (\exists z \in n : f(z) = \beta')$$

Note que, para que isto ocorra, precisamos que:

$$\forall \beta' \in \omega (\exists z \in n + r : f(z) = \beta')$$

Como $n,r\in\omega$, então $n+r\in\omega$, então, nosso resultado contradiz a proposição 6.12. Garantindo a existência de β

q.e.d

6 Exercício 6.18.

Eu tentei fazer pela sugestão que você deu e não deu certo, então eu meio que chutei, com certeza está errado

Queremos demonstrar que f[t] é finito. Para tanto, suponha por absurdo que:

$$f[t] \approx \omega$$

Temos por hipótese que:

$$t\approx n\in\omega$$

Sabemos que:

$$y \in f[t] \Leftrightarrow \exists x \in t : f(x) = y$$

Sejam $g: f[t] \to \omega$ e $h: t \to n$ funções bijetoras. Temos:

$$y \in g(f[t]) \Leftrightarrow \exists x \in g(t) : g(f(x)) = y$$

Note que $y \in g(f[t]) \Leftrightarrow y \in \omega$ (pois a função é bijetora)

$$\therefore y \in \omega \Leftrightarrow \exists h(x) \in h(g(t)) : h(g(f(x))) = h(y)$$

$$h(y) \in n \Rightarrow \omega \subseteq n$$

O que é um absurdo.

q.e.d

 $Erradasso,\ eu\ sei,\ s\'o\ n\~ao\ quis\ deixar\ em\ branco\ mesmo\ :S$