

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	3	sequenc\$4 same visit\$4 same order\$1 same brow\$4 same web same page\$1 same session\$1	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2005/10/25 16:30
L2	0	1 and interven\$4	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2005/10/25 16:31
L3	1	data same struct\$4 same web same page\$1 same node\$1 same children\$1 same lowest same level\$1	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2005/10/25 16:32
L4	0	remov\$4 same nod\$1 same data same struct\$4 same sequenc\$4 same web\$1 same page\$1 same tree\$1 same frequent\$4 same visit\$4	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2005/10/25 16:34
L5	447369	interact\$4 same data same struct\$4 same candidat\$1 same sequenc\$4 same lowest same level\$1 same interaction\$1	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2005/10/25 16:36
L11	0	ssme interaction\$1 interact\$4 same data same structur\$4 same candidat\$2 same sequenc\$4 same lowest same level\$1 same interaction\$1 same children\$1 same generat\$4 same longest\$1 same element\$1 same root\$1 same identif\$4 same add\$4 same represent\$4 same expand\$4 same length\$1	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2005/10/25 16:41

[Subscribe \(Full Service\)](#) [Register \(Limited Service, Free\)](#) [Login](#)

Search: The ACM Digital Library The Guide

interact\$4 same data same structur\$4 same candidat\$2 same

Terms used

interact\$4 same data same structur\$4 same candidat\$2 same sequenc\$4 same lowest same level\$1 same j

Sort results by relevance ▾
Display results expanded form ▾

 [Save results](#)
 [Search Tips](#)
 [Open results](#)

Results 1 - 20 of 200

Result page: 1 2 3

Best 200 shown

1 Fortran 8X draft
Loren P. Meissner
December 1989 **ACM SIGPLAN Fortran Forum**, Volume 8 Issue 4
Publisher: ACM Press
Full text available: [pdf\(21.36 MB\)](#) **Addi**

Standard Programming Language Fortran. This standard specifies the form and establishes previous standard, commonly known as "FORTRAN 77", is entirely contained within this standard.

2 Computing curricula 2001
September 2001 **Journal on Educational Resources in Computing (JERIC)**
Publisher: ACM Press
Full text available: [pdf\(613.63 KB\)](#) [html\(2.78 KB\)](#) Additional Information: [full citation](#), [references](#), [citations](#), **Addi**

3 Range queries in OLAP data cubes
Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, Ramakrishnan Srikant
June 1997 **ACM SIGMOD Record , Proceedings of the 1997 ACM SIGMOD**
Publisher: ACM Press , ACM Press
Full text available: [pdf\(1.91 MB\)](#) **Addi**

A range query applies an aggregation operation over all selected cells of an OLAP data cube with operations: SUM and MAX. These two operations cover techniques required for most popular applications.

4 Abstract state machines capture parallel algorithms
Andreas Blass, Yuri Gurevich
October 2003 **ACM Transactions on Computational Logic (TOCL)**, Volume 4 Issue 4
Publisher: ACM Press
Full text available: [pdf\(610.28 KB\)](#) Additional Information:

We give an axiomatic description of parallel, synchronous algorithms. Our main result is that every

Keywords: ASM thesis, Parallel algorithm, abstract state machine, postulates for parallel computation

5 Status report of the graphic standards planning committee of ACM/SIGGRAPH: State-of-the-art report on computer graphics
Computer Graphics staff
September 1977 **ACM SIGGRAPH Computer Graphics**, Volume 11 Issue 3
Publisher: ACM Press
Full text available: pdf(9.03 MB) Additional Information: [full citation](#), [references](#)

6 Using nonspeech sounds to provide navigation cues
Stephen A. Brewster
September 1998 **ACM Transactions on Computer-Human Interaction (TOCHI)**, Volume 5 Issue 3
Publisher: ACM Press
Full text available: pdf(298.94 KB) Additional Information: [full citation](#), [references](#)
This article describes 3 experiments that investigate the possibility of using structured nonspeech sounds to provide navigation cues. Rules were defined for the creation of hierarchical earcons at each node. Participants had to identify the sound source based on the earcon structure.
Keywords: auditory interfaces, earcons, navigation, nonspeech audio, telephone-based interfaces

7 Special issue: AI in engineering
D. Sriram, R. Joobbani
April 1985 **ACM SIGART Bulletin**, Issue 92
Publisher: ACM Press
Full text available: pdf(8.79 MB) Additional Information: [full citation](#), [references](#)
The papers in this special issue were compiled from responses to the announcement in the July/August 1984 issue of the ACM SIGART Newsletter. About half the papers were received over the computer network.

8 Scalable packet classification
Florin Baboescu, George Varghese
February 2005 **IEEE/ACM Transactions on Networking (TON)**, Volume 13 Issue 1
Publisher: IEEE Press
Full text available: pdf(501.73 KB) Additional Information: [full citation](#), [references](#)
Packet classification is important for applications such as firewalls, intrusion detection, and diffServ. Current solutions such as TCAMs do not scale to large classifiers. However, even for large classifiers (several million entries), it is possible to achieve good performance.

9 On variations of queue response for inputs with the same mean and autocorrelation function
Bruce Hajek, Linhai He
October 1998 **IEEE/ACM Transactions on Networking (TON)**, Volume 6 Issue 5
Publisher: IEEE Press
Full text available: pdf(446.05 KB) Additional Information: [full citation](#), [references](#), [citations](#), [index terms](#)

Keywords: multiplexing delay, queueing, spectral analysis

10 Graphs and trees: Efficiently mining frequent trees in a forest
Mohammed J. Zaki
July 2002 **Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining (KDD'02)**
Publisher: ACM Press
Full text available: pdf(1.26 MB) Additional Information: [full citation](#), [references](#)

Mining frequent trees is very useful in domains like bioinformatics, web mining, mining semistr algorithm to discover all frequent subtrees in a forest, using a new data structure called scope-

11 A model for recentralization of computing: (distributed processing comes home)

 Harold Lorin
March 1990

ACM SIGARCH Computer Architecture News, Volume 18 Issue 1

Publisher: ACM Press

Full text available: pdf(1.38 MB)

Addi

Distributed systems commonly contain heterogeneity at all levels of systems structure, differer their structures, even when they are multiprocessors. This paper explores a way of using the n

12 Equal rights for functional objects or, the more things change, the more they are the same

 Henry G. Baker
October 1993

ACM SIGPLAN OOPS Messenger, Volume 4 Issue 4

Publisher: ACM Press

Full text available: pdf(2.61 MB)

Addi

We argue that intensional *object identity* in object-oriented programming languages and datab analogous to the normal forms of relational algebra, provides cleaner semantics for the value-t

13 A prototype implementation of the SQL Ada module extension (SAME) method

 Allison LeClair, Susan Phillips
December 1990

Proceedings of the conference on TRI-ADA '90

Publisher: ACM Press

Full text available: pdf(1.20 MB)

Addi

As Ada becomes more widespread, the ability to access commercial database technologies thrc language bindings between Ada and SQL, a relational data base language. This paper presents

14 Powerlist: a structure for parallel recursion

 Jayadev Misra
November 1994

ACM Transactions on Programming Languages and Systems (

Publisher: ACM Press

Full text available: pdf(1.63 MB)

Addi

Many data-parallel algorithms—Fast Fourier Transform, Batcher's sorting schemes, and the pre parallelism and recursion. Simple algebraic properties of this data structure can be exploited to

Keywords: Batcher sort, Fast Fourier Transform, algebra of parallel programs, hypercube, pa

15 Are there advantages to high-dimension architectures?: Analysis of k-ary n-cubes for the

 Shantanu Dutt, Nam Trinh
January 1996

Proceedings of the 10th international conference on Supercomputing

Publisher: ACM Press

Full text available: pdf(1.24 MB)

Additional Information: full citation, references, index ter

16 Status report of the graphic standards planning committee

 Computer Graphics staff

August 1979 **ACM SIGGRAPH Computer Graphics**, Volume 13 Issue 3

Publisher: ACM Press

Full text available: pdf(15.01 MB)

Additional Information: full citation, references, citings

17 The implementation of procedurally reflective languages

 Jim des Rivières, Brian Cantwell Smith
August 1984

Proceedings of the 1984 ACM Symposium on LISP and functional programming

Publisher: ACM Press

Full text available: pdf(1.71 MB)

Addi

In a procedurally reflective programming language, all programs are executed not through the stack, therefore, there are an infinite number of levels at which programs are processed, all simultaneously.

18 External memory algorithms and data structures: dealing with massive data

 Jeffrey Scott Vitter
June 2001

ACM Computing Surveys (CSUR), Volume 33 Issue 2

Publisher: ACM Press

Full text available: pdf(828.46 KB)

Addi

Data sets in large applications are often too massive to fit completely inside the computers internal memory, creating a performance bottleneck. In this article we survey the state of the art in the design and analysis of external memory algorithms.

Keywords: B-tree, I/O, batched, block, disk, dynamic, extendible hashing, external memory, prefetching, space-time tradeoff.

19 When do bounds and domain propagation lead to the same search space?

 Christian Schulte, Peter J. Stuckey
May 2005

ACM Transactions on Programming Languages and Systems (TOPLAS)

Publisher: ACM Press

Full text available: pdf(380.67 KB)

Addi

This article explores the question of when two propagation-based constraint systems have the same search space. We first determine propagation behaviors for conjunctions of constraints. We then show how we can use this knowledge to determine when the two propagation systems have the same search space.

Keywords: Constraint (logic) programming, abstract interpretation, bounds propagation, domain propagation, propagation-based constraint systems.

20 Online tracking of mobile users

 Baruch Awerbuch, David Peleg
September 1995

Journal of the ACM (JACM), Volume 42 Issue 5

Publisher: ACM Press

Full text available: pdf(2.65 MB)

Addi

This paper deals with the problem of maintaining a distributed directory server, that enables users to track mobile hosts. Matching with certain parameters enables efficient tracking. The communication overhead of our solution is proportional to the number of tracked hosts.

Keywords: bounded packet header, bounded protocol, ideal transmission cost, lookahead, no intermediate storage.

Results 1 - 20 of 200

Result

The ACM

Useful d