Energy research to provide solutions for the dual challenge

Adam Usadi Energy Center Advisor

ExonMobil

Decarbonisation Technical Workshop of Energy Innovation

IPCC expects a diverse energy mix in achieving 2°C

2040 global energy demand mix across IPCC Lower 2°C scenarios (Exajoules)

IPCC expects a diverse energy mix in achieving 2°C

- Substantial efficiency gains needed to offset population and economic growth
- Significant growth in low carbon energy
- Oil and natural gas remain essential

Actual signposts suggests 2°C pathway is challenging

Summary of demand growth rates Mean annual demand growth rate 2010-2040	Average of the IPCC Lower 2°C ^[19]		ExxonMobil 2019 Outlook for Energy		IEA World Energy Outlook 2010-2019		Annual reduction carbon intensity/GDP ⁽²⁸⁾	
Energy demand	A	0.3%	A	0.9%	A	1.3%	(monitoring implementation of	
Oil	₩	(0.5)%	A	0.8%	A	1.1%	7.7% Needed to stay within 2°C global carbon budget	2.4% In 2019
Natural gas	₩	(0.1)%	A	1.4%	A	2.2%		
Coal	₩	(4.5)%	₩	(0.2)%	A	0.4%		
Nuclear	\blacktriangle	2.5%	A	1.5%	A	0.1%		
Bioenergy	\blacktriangle	2.3%	A	0.8%	_	1.3%		
Non-bio renewables	A	6.9%	A	4.1%	A	6.0%		

CO₂ emissions mitigation requires focus on large scale challenges

R&D focused on enabling and increasing options by reducing costs, physical footprint

Materials (Construction + Operations)

Hydrocarbons+ batteries + H_2 + Biofuels

Catalysts + Processes + CCUS + H₂

(Heating, cooling, pumping)

Natural Gas + CCUS + Renewables + Energy Storage

Source: 2019 Energy Outlook

Global pandemic and economic downturn may affect details of future projections, but not technical focus of emissions reduction effort

CCS R&D focused on reducing costs, complexity, footprint

Singapore Energy Center – Example R&D projects/topics

Core Research Projects

Moisture-Resistant MOFs for CO₂ Capture.

Low-cost robust self-supported catalyst beads for CH₄ cracking

CCU using incineration bottom ash and seawater desalination brine wastes.

Novel membranes for hydrogen separation and CO₂ capture.

Seawater (photo)-electrolysis for renewable H₂ production

SgEC: https://sgec.sg/coreprojects/year-2019/

ExxonMobil Collaborative Topics

Develop novel, advanced, stable Materials for CO₂ capture.

Elucidate CO₂ sequestration options for ASEAN

Explore hydrogen development pathways for Singapore / ASEAN

Discover novel biomaterials, and synthesis pathways

EXCONNObil

Supplemental information

- **Lower 2°C scenarios**. The Intergovernmental Panel on Climate Change (IPCC) published a Special Report on "Global Warming of 1.5°C" and identified 74 scenarios as "Lower 2°C," which are pathways limiting peak warming to below 2°C during the entire 21st century with greater than 66 percent likelihood.
- This presentation includes a number of third party scenarios such as the 74 Lower 2°C scenarios, made available through the IPCC SR 1.5 scenario explorer data, and the IEA's Stated Policies Scenario as well as the IEA's Sustainable Development Scenario. These third party scenarios reflect the modeling assumptions and outputs of their respective authors, not ExxonMobil, and their use and inclusion herein is not an endorsement by ExxonMobil of their likelihood or probability. The analysis done by ExxonMobil on the IPCC Lower 2°C scenarios and the representation thereof aims to reflect the average or trends across a wide range of pathways. Where data was not or insufficiently available, further analysis was done to enable a more granular view on trends within these IPCC Lower 2°C scenarios.

