EPITA / InfoS3	Décembre 2017
NOM : Prénom :	Groupe:

Partiel Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Redresseur à point milieu (5 po	points)
Soit le montage ci-contre :	$v \mid \bigcup_{u} v_{D1}$
Les 2 sources \emph{v} sont absolument identiques et on p	rend $v(t) = V_M sin(\omega t)$
On utilise le modèle idéal pour les diodes.	$v \left[igoplus_{\mathcal{V}_{D2}} \right]$
a) Durant l'alternance positive ($0 \le t$ conductrice ? Justifiez votre réponse.	$\leq \frac{T}{2}$), quelle diode est
b) Quelle est alors l'expression de u ?	
c) Durant l'alternance négative $(\frac{T}{2} \le t \le t)$ votre réponse.	T), quelle diode est conductrice ? Justifiez
d) Quelle est alors l'expression de u ?	

e) Tracer alors u(t).

f) On remplace désormais les diodes par leur modèle à seuil. Tracer l'allure de u(t), en justifiant votre réponse. On notera V_0 la tension de seuil de chacune des diodes et on supposera que $V_M > V_0$.

Exercice 2. Diode Zéner (4 points)

On considère le schéma suivant. $V \in \mathbb{R}$

Tracez la caractéristique de transfert c'est-à-dire $\mathit{U} = f(\mathit{V})$ en substituant la diode par son modèle réel.

Vous préciserez les équations de chaque portion de caractéristique.

On notera V_0 la tension de seuil en direct, r_D , la résistance interne de la diode en direct, V_Z , la tension de seuil Zéner et r_Z , la résistance interne de la diode en inverse.

_	***************************************	···	3/6
I			
l			
1			

Exercice 3. Polarisation (4 points)

On considère le montage suivant.

On donne:

$$R_C = 4k\Omega, R_E = 1k\Omega, V_{CC} = 10V,$$

 $\beta=100$, $V_{BE}=0.6V$ si la jonction Base-Emetteur est passante.

1. Déterminer le courant de saturation $I_{C_{SAT}}$ du transistor (c'est-à-dire le courant de collecteur quand le transistor fonctionne en mode saturé)

2. En déduire la valeur minimale de la résistance R_B qui assure une polarisation du transistor dans sa zone de fonctionnement linéaire. On considèrera que $B+1 \approx B$.

		The infection of construct	
	_		-
į.			
1			

Exercice 4. Polarisation par contre-réaction au collecteur (5 points +1)	V_{CC}
On considère le montage suivant :	R_c
Déterminer le point de polarisation du transistor (c'est-à-dire les expressions des courants I_B , I_C et I_E , ainsi que des tensions V_{BE} , V_{BC} et V_{CE}). On considèrera que $\beta+1\approx\beta$.	A.C.
	m
	-
,	
Question Bonus: Le transistor peut-il être saturé, sachant que $V_{BE}=0.7V$ si la jonction Emetteur est passante et que $V_{CE_{SAT}}=0.2V$? Pourquoi? On rappelle o transistor fonctionne en mode linéaire si $V_{CE}>V_{CE_{SAT}}$	Base- que le

Exercice 5. QCM (2 points - Pas de point négatif)

- **Q1.** Le dopage permet de favoriser le phénomène de thermogénération.
 - a- VRAI

- b- FAUX
- Q2. Si on prend du silicium comme élément semi-conducteur et qu'on le dope avec du silicium, on a :
 - a- un dopage N

c- un dopage NP

b- un dopage P

- d- aucun dopage
- Q3. Dans un semi-conducteur intrinsèque, le nombre d'électrons libres est :
 - a- égal au nombre de trous

- c- plus petit que le nombre de trous
- b- plus grand que le nombre de trous
- d- aucun des cas précédents
- **Q4.** Soit le circuit ci-contre : Quelle type de porte logique réalise ce montage ?
 - a- ET
- c- NON ET
- b- OU
- d- NON OU

