UNIVERSIDAD DE GRANADA DEPARTAMENTO DE MATEMÁTICA APLICADA

ECUACIONES DIFERENCIALES I Primera prueba. 10 de diciembre de 2013

El número entre corchetes es la puntuación máxima de cada ejercicio.

[3] Ejercicio 1.- Resuelve la ecuación

$$t^2 + x^2 + 1 - 2txx' = 0.$$

Sugerencia: Busca un factor integrante de la forma $\mu(t,x) = \mu(x^2 - t^2)$.

[3] Ejercicio 2.-

1. Comprueba que la matriz fundamental principal en 0 del sistema $x' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} x$ es

$$\Phi(t) = \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix}.$$

2. Calcula de forma justificada e^{At} , siendo $A=\left(egin{array}{cc} a & b \\ b & a \end{array} \right)$ con a y b números reales.

[4] Ejercicio 3.- Se considera la ecuación lineal de Euler

$$x' = \frac{1}{t}Ax, \qquad t > 0. \tag{1}$$

- 1. Justifica que para cada $t_0 > 0$, $x_0 \in \mathbb{R}^N$ existe una única $x \in C^1((0, +\infty); \mathbb{R}^N)$ solución de (1) cumpliendo $x(t_0) = x_0$.
- 2. Encuentra un cambio de variable de la forma $t = \varphi(s)$ que trasforme (1) en

$$\frac{dx}{ds} = Ax.$$

3. Calcula la matriz fundamental principal en 0 del sistema

$$x' = \left(\begin{array}{rrr} -1 & 1 & 0\\ 0 & -1 & 0\\ 0 & 1 & -1 \end{array}\right) x.$$

4. Utilizando lo anterior, encuentra una matriz fundamental para el sistema

$$x' = \frac{1}{t} \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} x.$$

¿En qué punto es principal?