黑孔/镀铜工站技术手册

目录

1、	工站简介
2、	制程原理
3、	药水简介11
4、	设备简介12
5、	异常分析及改善对策

资料收集: http://www.maihui.net 邮址: killmai@163.net

1、工站简介

1.1 概述

本工站为黑孔/镀铜工站,是富葵厂 FPC 产品制程中对**软件电路板** (FPC)进行前处理的工作。我们所作的产品**双面铜箔基材**(CCL),实质就是在铜箔基材表面以及钻孔后之孔壁上镀铜,使原本上下不能导电的铜箔基材导通,对后期工艺线路形成,上下线路导通有重大作用,直接关系到此电器的好与坏。而镀铜就是线路板之前处理的**首要工站,电镀铜的品质决定产品的最终品质**(膜厚),膜厚不均对后期线路成形之良率有关键作用。

1.2 黑孔/镀铜流程简介:

在介绍黑孔/镀铜流程之前先让我们看一下公司的产品---**FPC** 的简单流程图(如下):

图中红圈标示处为黑孔镀铜在整个产品流程中的位置, 本工站只生产双面板.

____ 1.2.1 黑孔流程简介:

下料流程: 由原料仓库根据生管排配直接发放相应的铜箔、干膜、生产流 程单. 生产单位由上一工站 NC 转入

作业流程:黑孔线根据当日生产排配进行收放料作业.放料前确认铜箔类型,生产条件,槽液浓度.确认后进行作业.参看《黑孔制造作业规范》,《黑孔槽液管理办法》.

转料流程:将填写完整的生产流程单随黑孔后铜箔转入下一流程(镀铜).

1.2.2 镀铜流程简介:

下料流程:由原料仓库根据生管排配发放铜箔、生产流程单由镀铜上一流程(黑孔)转入;

槽液浓度调整作业: 取样 → 分析 → 添加 → 添加后分析. 参看 《镀铜槽液 管理办法》

夹板上挂架流程:确认基材,将挂架调整至相同尺寸将铜箔基材夹入挂架 夹条内,放入台车,由上挂架人员将其挂飞靶电镀.参看《镀铜制造作业规范》

下料流程:下料时确认镀铜后之基材是否有折伤,手指纹,水纹,以及光泽度等.参看《镀铜制造作业规范》

转料流程:将填写完整的生产流程单随镀铜后铜箔转入下一工站(微蚀)

1.3 黑孔/镀铜工站生产要求:

由于黑孔/镀铜工站对生产条件要求严格(如槽液,温度等),对周边环境无 太多要求

- 温:室内正常室温 1、 室
- 槽液温度:由加热器,冰水机控制.参看《槽液管理办法》 2、
- 槽液浓度: 由厂商建议浓度, 分析室每日分析. 参看《槽液管理办法》 3、
- 各压力表范围:参照条件设定表规定,参看《条件设定表》 4、

2、黑孔/镀铜工序原理说明

2.1 超音波清洁原理

是一种微碱性水溶液,其 Ph 值约为 10.7~11.2,并含有微弱的复合剂。 主要功能是在清洁铜面,并除掉钻孔孔壁的残屑、清洁孔壁,以配合后站

2.2 整孔原理

是一种微碱性水溶液, 其 Ph 值约为 10.7~11.2,并含有微弱的复合剂。 主要功能是在对玻璃纤维和树脂表面上原有的负电荷,渔以调整成正电性, 然后可促进 Black Hole 带负电微粒的吸附, 如下图所示

Carbon Black Colloids

黑孔制程也必须先将孔壁调整为正电性,然后带负电的黑碳粒子才能被 吸附干孔壁。

2.3 黑孔原理

微碱性水溶液 Ph 值约为 10.5~10.8 左右,黏度和水接近。碳之固态成份 含量约 1.35%,主要功能是在孔壁上沉积一曾黑碳皮膜,以完成导电功能, 使续电镀铜能顺利进行。本流程有两道黑孔,清洁,整孔后各有一道,目的为 了更好的将黑孔附着在基材孔壁上.

在基材表面及孔壁上沉积一层黑碳

注: 黑碳孔的导电度不是很强, 其电流是由导体体向黑膜表面逐渐延伸。 对孔体而言,是由孔口两端向孔中央慢慢伸长进去的。对于六层以上的深 孔。其镀不满与出现楔口的机会自然比化学铜高很多,其它 DP 也有相同的 烦恼。因而凡采用各种直接电镀代替化学铜进行"孔壁金属化"时,千万 要注意内层黑孔能否耐得住镀铜中硫酸的攻击。

2.4 烘干原理

主要功能是将孔壁及铜面上已均布之黑碳层加以烘干,此处需特别注意 温度(温度为65℃左右),否则若孔内水份未完全干燥时(尤其是小孔或深 孔内部,厂内暂无此基材),则其布碳层很容易被后处理制程的微蚀段所喷 洗冲掉。但必须特别强调的是,此处的烘干作业并不牵涉到任何热聚合反 应,只为了除水而已。故烘干条件应正确,甚至稍有过度尚不致造成表层 会脆化的现象。 (烘干段)

2.5 微蚀原理

因为 Bl ack Hole 微粒不只会沉积在孔壁上,而且也会沉积在铜层表面上及内层铜环侧面上。这些附有黑碳层的铜面,必须要除尽碳膜露出底铜才能增加与孔壁电镀铜的附着力,并使得影像转移的干膜附着力增强。此微蚀以过硫酸讷水溶液(配置浓度 250g/I~300g/I)为主,其中可加入一些有机酸做为安定剂,且预先惨入约 3g/I 的铜量。此液的主要功能是将铜面上的黑碳层,以蚀铜方式将之连根拔除,其蚀刻深度控制在 35 μ "~45 μ"之间,即可完成此种使命。此微蚀步骤是一种穿透碳层蚀入铜面的反应机构,换句话说微蚀剂本身和黑碳层之间不会有任何化学反应,旦因黑碳层较薄,药水可穿过碳层的孔隙到达铜面,而把黑碳微薄片层由里向外整个剥离掉,剥离后黑碳残渣会悬浮在溶液中,故而必须使用过滤设备将废渣过滤掉。此动作必须要做得彻底,避免为后续电镀铜面出现"砂粒状"的镀层。另外在玻璃纤维及树脂表面的黑碳层,因底部无铜故将会继续保留住。

黑孔制程(Shadow)系以石墨(Grapphi te)做为导电的胶体粒子,其粒度比"黑孔"稍大。其在孔壁上附着的原理,除正负相吸的力量外,尚另备有机固着剂(Bi nder)的黏着,故一旦吸牢后还需妥善的微蚀及冲洗,以剥去外露出碳素来才能导电。

2.6 镀铜清洁,酸洗原理

传统的电镀制程里,清洁,酸洗都为电镀前处理,通常清洁槽主要起到一个清洁基材表面油污和指纹,去除基铜表面氧化膜及钝化膜,以及提高铜面亲水性能.酸洗槽主要就是活化待镀铜表面的作用.清洁温度控制在45℃±5℃,SE-250(酸性清洁剂)之浓度控制在300ml/L.酸洗无温度要求,浓度控制在110ml/L.两者都是通过铜座的摆动来使药液在孔内来回流动清洁活化孔壁.

2.7 电镀铜原理

2.7.1 通过电镀的基本原理, 本制程的基本电极反应如下:

2.7.2 酸性镀铜各成分功能:

硫酸铜(CuSO₄):主要作用是提供电镀所需的 Cu²⁺及提高导电能力

硫酸 (H₂SO₄):主要作用是提高镀液电电性能,提高通孔电镀的均匀

性

CL: :主要作用是帮助阳极溶解,协助改善铜的析出

添加剂:主要作用是改善均镀和镀层结晶细密性.现主要有用到两种.

1. 载运剂(Carrier)

对镀铜具有煞车效应,常用者有各种"聚醚类"(Polyethers)。会在阴极附近产生极化(Polarizing)作用,而有抑制(Inhibiting)镀铜的效应。也就是会抓住铜或亚铜以及氯离子形成一种错化物(Complexer)分子膜,此膜容易被吸附在"高电流区"于扩散层中成为屏障(Barrier)增加其电阻,使镀铜速率受到抑制而减缓。旦另一方面却可达到细晶(Grain Refining)的效果,并使电流转往"低电流区"提供填平凹陷的机会,发挥酸性镀铜特长的微分布力,日籍学者 Yokoi 等曾在 1984 年试对其机理(Mechanism)以图标说明如下:

Substrzte

2. 光泽剂: (Brigthener)

对镀铜有如油门作用,常用者以有机硫化物或氮化物等为主,如 Sul fopropyl Sul fi des 类。会在阴极附近出现"去极 化"(Depol ari zi ng)或催化(Catal yti c)作用。也就是其中的活性硫硫 团也会与亚铜形成一种错化物,能降低反应初期活化能(Acti vati on Energy)的们槛。对上述以吸附"载运剂"部位产生另一种解脱释放 (Desorpti on)作用,协助! 其晶粒的成长(Grain growth)。于是酸性镀铜在这种踏油门与放油门(或煞车)的双重作用下,使得原本微观高低不平的被镀表面变得更为平滑,产生反光性的光泽镀面。下图亦为 Yokoi 所所提出的机理说明。

Substrzte

Substrzte

上图为传统酸性直流电镀时光泽剂协助 Cu^{+®}登陆情形。下图为反脉冲过程中光泽剂破解运载剂的束缚并协助镀铜的想象。

2.7.3 铜槽简介

现镀铜工站所使用的龙门式电镀铜生产线,其内部结构主要有:左右阳极钛篮共20个,排列方式为由密到稀中间向两头散开,阳极挡板两个,槽液液位距离板边边缘3-5CM左右阴极挂板为夹板式挂架,其板面距左右槽壁不等(约1cm偏差).如下图所示:

以下为镀铜槽内部结构图

以下为镀铜槽立体图标

3. 黑孔镀铜药水简介

名称	化称	厂商	用途	
清洁整孔剂	15736	台湾麦特	黑孔超音波槽用于清洁孔壁.	
整孔剂	15737	台湾麦特	黑孔线整孔槽用清洁孔壁, 使之能更好的吸附黑炭.	
黑孔建浴剂	T0222	台湾麦特	黑孔槽用维持药液当量浓度, PH 值, 保证槽液位.	
黑孔补充剂	15741	台湾麦特	黑孔槽用维持黑孔槽液固形物的含量。	
微蚀剂	15702	台湾麦特	黑孔线微蚀槽用与硫酸混合使用起微蚀板面的作用.	
抗氧化剂	15711	台湾麦特	黑孔抗氧化槽用防止铜箔氧化。	
酸性清洁剂	SE-250	台湾希普励	镀铜线清洁槽用清洁板面油污及夹板时留下的指纹印.	
铜添加剂	Additive	台湾希普励	镀铜铜槽用保证镀后铜箔的光泽度, 均匀性.	
铜辅助剂	Carri er	台湾希普励		
硫酸	H ₂ SO ₄	NHK	1. 黑孔线清洗槽用清洗板面油污, 杂质. 2. 镀铜线酸洗槽用, 铜槽用在酸洗槽起活化的作用, 铜槽时充当一种介质.	
盐酸	HCL	NHK	镀铜线铜槽用增加铜槽内 CL-的浓度.	
硝酸	NHO ₃	NHK	镀铜线剥挂槽用剥除挂架在铜槽时表面镀上 的铜层.	

4. 黑孔/镀铜设备简介

名 称:黑孔线

型 号:黑孔 6520

水平式黑孔线,设有两道黑孔,主要 作用就是我们以上所讲的黑化孔壁,其 主要参数有:温度,压力,槽液浓度,溢流量 等.任何水平生产线都有卡板的现象.黑 孔线也不例外,由其是做软板,所以黑孔 的滚轮的保养更是重点,稍不小心,就有 大批的不良:其次是槽液,制程的不良,一 部分都来自槽液浓度(温度)不够等等.

称:龙门式电镀铜线 名

型 号:CP-004

在业界龙门垂挂式电镀铜技术以 经是比较成熟了,它是 PCB 层间互连 (Interconnection)中最重要的制程.制程简 单,室温操作(21℃-26℃)的酸性硫酸铜 制程,配方较简单,即"铜金属 18g/L+硫酸 180ml/L."

称:CMI 膜厚仪 名

型 号:CMI 401-M

探针电阻式膜厚测试仪,主要用于 镀铜基材膜厚量测.其它器件有感应指 针一个,脚踏式确认器一个等便于操作 的设备.

5. 制程异常及改善对策

在生产过程中各种各样的异常时常都会发生,有许多重复发生的老问题 ,为了减少这类问题的发生,我们对以往发生过的问题进行分析检讨找出一 些合适的方法解决,并预防问题的再度发生,以下为几个案例:

异常现状说明	异常原因分析	异常改善对策
	1. 放板动作不标准, 铜箔有卷角, 上翘	放板动作标准化,铜箔尽量平放
 黑孔线卡板	2. 吹干, 烘干段风刀风压, 间距	用油标卡尺反风刀标准化
	3. 风刀因残留药液硬化, 过板停顿	生产中利用吃饭时间清洗风刀
	4. 拆洗滚轮过后滚轮跳动卡板	保养过后点检滚轮是否跳动
	1. 因观察铜箔而无戴手指套	接触基材一律要戴手指套
 镀铜手指纹	2. 夹板时挂架上残留酸液过多	用抹布擦拭挂架
על און ניון און	3. 垫板有酸液, 沾于基材表面	用抹布擦拭垫板
	4. 指套无及时更换	手指套更换频率为 20mi n/一次
	1. 阳极钛篮位置移动	调整阳极位置,中间密,两端稀
	2. 阳极数量不对	阳极面积与阴极面积之比 1:2
 镀铜膜厚不均	3. 基材铜箔不够一挂生产时, 两端偏厚	两端挂上假镀板,防止高电流
	4. 挂架需锁紧,铜座循环水需打开	电流接触面加大,防止高电流
	5. 镀铜打气不够, 光泽剂效果不佳	调整打气
	6. 光泽剂浓度不够	哈氏槽分析频率加大,分析槽液浓度
	1. 清洁槽清洁能力不足	保养不确实, 更槽频率 2 周/次
	2. 清洁温度不够	加热器 24 小时不停加温
镀铜水纹	3. 清洁水洗不凈	加大潧流量, 打气开适中, 不能起泡
	4. 镀铜槽起泡	a 过滤机 24 小时不停运转
	·· MX NJIBAC/U	b 两周一次活性碳处理
 镀铜黑点	1. 清洁后水洗不干净	注意自来水品质,加装过滤机
MX 61 371117111	2. 镀铜槽被污染	清洗阳极铜泥,做倒槽保养