Number representation

Bit Pattern	0000	0001	0010		ı	0101	0110	0111 eçt	1000	1001	1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	3138	4	ent l	6	cç t	8	9	10	11	12	13	14	15
Sign & Magnitude	+0	+1	+2	†h	ttps	://e	dua	ssis	tpr	o.gi	thul	oi.c	/ -4	-5	-6	-7
1s Complement	+0	+1	+2	+3	đđ			t ec	_	ass	5	-4 Dro	-3	-2	-1	-0
2s Complement	+0	+1	+2	+3	+4	+5	+6	+7	-8	-7	-6	-5	-4	-3	-2	-1
Excess-8	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
BCD	0	1	2	3	4	5	6	7	8	9	ı	-	-	-	-	-

Number representation Excess-n

- Excess-n TO Decimal number: convert to decimal, substract the n from the decimal
- Decimal number TO Excess-n: add the n to the decimal and convert result to binary

```
-3 in Excess-8?
-3 + 8 = 5
5 in unsigned = 0101 = 5 in one-complement = 9 in two-complement = -3 in Excess 8
5 in Excess-8?
                                                                                                                       https://eduassistpro.github.io/
5 + 8 = 13
13 in unsigned: 1101 (beyond 2s complement rang ft like a ci in 2s complement!). No further professional formula in 2s complement for the first and first an
                                                                                                                                                                                                                                                                                                ft like a circular linked list
-7 in excess-6?
-7 + 6 = -1 = -1 in 1s complement: 0001 -> (negative number bit inversion rule) -> 1110 =
 -1 in 2s complement: 1110 + 1 = 1111 = -7 in excess-6
-8 in excess-6?
-8+6 = -2 ->
2 in unsigned: 0010 -> 1s complement = 0010 -> (negative number bit inversion rule) -> 1101
 In 2s complement = 1110 = -8 in excess-6
```

Number representation

Bit Pattern	0000	0001	0010	•	l	l -	0110 D ro	0111	1000		1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	3138	4	ent.	6	eçt	8	1111	10	11	12	13	14	15
Sign & Magnitude	+0	+1	+2	†h	ttps	:://e	dua	ssis	tpr	o.gi	thul	oi.c	/ -4	-5	-6	-7
1s Complement	+0	+1	+2	+3	đđ		Cha		-	ass	5	-4 Dr O	-3	-2	-1	-0
2s Complement	+0	+1	+2	+3	+4	+5	+6	+7	-8	-7	-6	-5	-4	-3	-2	-1
Excess-8	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
BCD	0	1	2	3	4	5	6	7	8	9	-	-	-	-	-	-
Excess-6	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	-8	-7

FLOATING POINT NUMBERS

Assignment Project Exam Help

Introduction

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Bernhard Kainz (with thanks to

N. Dulay and E.

Edwards)

b.kainz@imperial.ac.uk

Why do we need this: large, small and fractional numbers

World population >7, 200, 000, 000 people

One light year 9, 130, 000, 000, 000 km

One solar mass Assignmento Projecto Ecoamob Lebp, 000, 000, 000 kg

Electron diameter https://eduassistpro.githubl.io/

Electron mass , 000, 000, 000, 000, 000, 9 kg

Smallest measurable Adoptive Date, edu_assist, 4000000, length of time 000, 000, 00 00, 1 sec

Pi (to 14 decimal places) 3.14159 26535 8979...

Standard rate of VAT 20%

Googol 1 followed by a 100 zeros ©

Large integers

Example: How can we represent integers up to 30 decimal digits long?

Assignment Project Exam Help

• Binary: $2^X = 10$ 100 bits (1 decimal digit \approx https://eduassistpro.github.io/

Add WeChat edu_assist_pro

• **BCD**: $30 \times 4 = 120$ bits

• **ASCII**: $30 \times 8 = 240$ bits

Floating point numbers

Recall scientific notation:

$$M \times 10^{E}$$
 Assignment Project Exam Help Binary

This is the basis for

https://eduassistpro.github.io/ ation schemes

Add WeChat edu_assist_pro

M is the coefficient (aka. significan

- r mantissa)
- E is the exponent (aka. characteristic)
- 10 (or for binary, 2) is the radix (aka. base)
- No. of bits in exponent determines the range (bigness/smallness)
- No. of bits in coefficient determines the precision (exactness)

Real vs. floating point numbers

		Mathematical real	Floating point number
Range		-∞ + ∞	Finite
No. of values	Δeciant	(Uncountably) infinite	Finite Help Gap between numbers
Spacing	Assigin		Gap between numbers
	httr	os://eduassistpro.o	rithub io/
Errors			
	Ad	d WeChat edu_as	sist_pro

Some questions (assume signed 3-digit coefficient and a signed 2-digit exponent as before):

- What are the **closest** floating point numbers to .001 \times 10⁻⁹⁹ ? What is the **gap** between this number and them?
- What about $.001 \times 10^{-50}$?

Zones of expressibility

 Example: assume numbers are formed with a signed 3digit coefficient and a signed 2-digit exponent

Assignment Project Exam Help

Zones of expre

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Normalised floating point numbers

 Depending on how you interpret the coefficient, floating point numbers can have multiple forms, e.g.:

https://eduassistpro.github.io/

- For hardware implementations ble for each number to have a unique floati edu_assist_pro presentation, a normalised form
- We'll normalise coefficients in the range [1, ... R) where R is the base, e.g.:

```
[1, ..., 10) for decimal [1, ..., 2) for binary
```

Number	Normalised form
23.24xs1gn4ment Pro	ject Exam Help
https://edua	assistpro.github.io/ at edu_assist_pro

Number	Normalised form
23.24xs1ghment Pro	ject Exam. Blely 10 ⁵
	assistpro.github.io/ at edu_assist_pro

Number	Normalised form
23.2Axs1gn4ment Pro	ject Exam. Blely 10 ⁵
-4.01 × https://edua	
Add wech	at edu_assist_pro

Number	Normalised form
23.24xs1gn4ment Pro	ject Exam. Rely 10 ⁵
$-4.01 \times \frac{-4.01}{\text{https://edua}}$	assistpro.github.io/
	at edu_assist_pro

Number	Normalised form
23.24xs1gn4ment Pro	ject Exam. Bely 10 ⁵
$-4.01 \times \frac{\text{https://edua}}{\text{https://edua}}$	assistant althub 10^{-3}
343000×10	3×10^5
-4.01 × https://edua 343 000 × 10 Add WeCha 0.000 000 098 9 × 10	at edu_assist_pro

Number	Normalised form
23.24xs1gn4ment Pro	ject Exam. Bely 10 ⁵
$-4.01 \times \frac{\text{https://edua}}{\text{https://edua}}$	01×10^{-3}
-4.01 × https://edua 343 000 × 10 Add WeCha	3×10^5
$0.000\ 000\ 098\ 9 \times 10^{-12}$	at edu_assist_pro × 10 ⁻⁸

Number	Normalised form
100. Als signment Pro	ject Exam (HOO) × 23
1010.11 https://edua	1011×2^5
$\begin{array}{c} 1010.11 \\ 0.00101 \times 2 \\ \hline 1100101 \times 2 \\ \end{array}$	1×2^{-5}
1100101×2^{-2}	at edu_assist_pro T01 × 2 ⁴

Binary	Decimal
0.1 Assignment Pro	ject Exam Help
https://edua	assistpro.github.io/
Add WeCh	at edu_assist_pro

Binary	Decimal
0.1 Assignment Pro	ject Exam Help
https://edua	assistpro.github.io/
Add WeCh	at edu_assist_pro

Binary	Decimal
0.1 Assignment Pro 0.01	0.5 ject Exam Help
https://edua	assistpro.github.io/
Add WeCh	at edu_assist_pro

Binary	Decimal
0.1	0.5
Assignment Pro 0.01	ject Exam Help 0.25
https://edua	assistpro.github.io/
Add WeCh	at edu_assist_pro

Binary	Decimal
0.1	0.5
Assignment Pro 0.01	ject Exam Help 0.25
0.00 https://edua	assistpro.github.io/
Add WeCh	at edu_assist_pro

Binary	Decimal
0.1	0.5
Assignment Pro 0.01	ject Exam Help 0.25
0.00 https://edua	assistpro.githubjig/
Add WeCh	at edu_assist_pro

Binary	Decimal
0.1	0.5
Assignment Pro 0.01	Ject Exam Help 0.25
0.00 https://edua	assistpro.githubzig/
0.11 Add WeCh	at edu_assist_pro

Binary	Decimal
0.1	0.5
Assignment Pro 0.01	ject Exam Help 0.25
0.00 https://edua	assistpro.github.ig/
0.11 Add WeCh	at edu_assistt_pto

Binary	Decimal
0.1	0.5
Assignment Pro 0.01	ject Exam Help 0.25
0.00 https://edua	assistpro.githubjig/
0.11 Add WeCh	at edu_assist_p5o
0.111	

Binary	Decimal	
0.1	0.5	
Assignment Pro 0.01	ject Exam Help 0.25	
0.00 https://edua	assistpro.githubzig/	
0.11 Add WeChat edu_assis_ நூ		
0.111	0.875	

Binary	Decimal
0.1	0.5
Assignment Pro 0.01	ject Exam Help 0.25
0.00 https://edua	assistpro.githubzig/
0.11 Add WeCh	at edu_assist_pto
0.111	0.875
0.011	

Binary	Decimal	
0.1	0.5	
Assignment Pro 0.01	ject Exam Help 0.25	
0.00 https://edua	assistpro.githubzig/	
0.11 Add WeChat edu_assist_pto		
0.111	0.875	
0.011	0.375	

Binary	Decimal	
0.1	0.5	
Assignment Pro 0.01	ject Exam Help 0.25	
0.00 https://edua	assistpro.githubjig/	
0.11 Add WeChat edu_assist_750		
0.111	0.875	
0.011	0.375	
0.101		

Binary	Decimal	
0.1	0.5	
Assignment Pro 0.01	ject Exam Help 0.25	
0.00 https://edua	assistpro.githubzig/	
0.11 Add WeChat edu_assisto.7550		
0.111	0.875	
0.011	0.375	
0.101	0.625	

Binary fraction to decimal fraction

What is the binary value 0.01101 in decimal?

•
$$\frac{1}{4} + \frac{1}{8} + \frac{1}{32} = \frac{13}{32} = \frac{13} = \frac{13}{32} = \frac{13}{32} = \frac{13}{32} = \frac{13}{32} = \frac{13}{32} =$$

$$\bullet \frac{8+4+1}{2^5} = \frac{13}{32}$$

What about 0.000 110 011?

• Answer:
$$\frac{32+16+2+1}{2^9} = \frac{51}{512} = 0.099609375$$

Decimal fraction to binary fraction

What is the decimal value 0.6875 in binary?

$$0.6875 = \frac{1.375}{Assignment} = \frac{1}{Project} = \frac{0.375}{Exam_4HeIp} = \frac{1.5}{8}$$

https://eduassistpro.glthub.io/
2 8 8
Add WeChat edu_assist_pro

So the answer is **0.1011**

What is the decimal value 0.1 in binary?

$$0.1 = \frac{1.6}{16} = \frac{1}{16} + \frac{0.6}{16} = \frac{1}{16} + \frac{1.2}{32} = \frac{1}{16} + \frac{1}{32} + \frac{0.2}{32} = \frac{1}{16} + \frac{1}{32} + \frac{1.6}{256}$$

. . .

Floating point multiplication

$$N_{1} \times N_{2} = \left(M_{1} \times 10^{E_{1}}\right) \times \left(M_{2} \times 10^{E_{2}}\right)$$

$$= \left(M_{1} \times M_{2}\right) \times \left(10^{E_{1}} \times 10^{E_{2}}\right)$$
Assignment Project Exam+Lelp

- That is, we mul https://eduassistpro.glthad.co/he exponents
- Example:

Add WeChat edu_assist_pro

$$(2.6 \times 10^6) \times (5.4 \times 10^{-3}) = (2.6 \times 5.4) \times (10^3)$$

= 14.04×10^3

• We must also **normalise the result**, so final answer is 1.404×10^4

Truncation and rounding

- For many computations, the result of a floating point operation is too large to store in the coefficient
- · Example (withs a gardigitt quession Help

```
(2.3 × https://eduassistpro.githuh.jp/
```

Add WeChat edu_assist_pro

- Truncation \rightarrow 5.2 × 10² rror)
- Rounding \rightarrow 5.3 × 10² (unbiased error)

Floating point addition

• A floating point addition such as $4.5 \times 10^3 + 6.7 \times 10^2$ is not a simple coefficient addition, unless the exponents are the same. Otherwise, we need to align them first

Assignment Project Exam Help

$$N_1$$
 + https://eduassistpro.githubrio/

Add WeChat edu_assist_pro

To align, choose the number wit
 shift its coefficient the corresponding number of digits to the right

$$4.5 \times 10^{3} + 6.7 \times 10^{2} = 4.5 \times 10^{3} + 0.67 \times 10^{3}$$

= $5.17 \times 10^{3} = 5.2 \times 10^{3}$
(rounded)

Exponent overflow and underflow

- Exponent overflow occurs when the result is too large i.e. when the result's exponent > maximum exponent
- Example: if massignments Project Examo Help0198 (overflow)

To handle overfhttps://eduassistpro.gitleubniexception

- Exponent underflow of curse when the result's exponent < smallest exponent
- **Example:** if min exponent is -99 then $10^{-99} \times 10^{-99} = 10^{-198}$ (underflow)

To handle **underflow**, set value as zero or raise an exception

Comparing floating point values

- Because of the potential for producing inexact results, comparing floating point values should account for close results
- If we know the **Seignmentagratiste and precision** of results, we can adjust for example:

https://eduassistpro.github.io/

$$a = b$$
 ($b - A$) We Chat edu_assist_pro

$$a = 1$$
 $1 - 0.000005 < a < 1 + 0.000005$ $0.9999995 < a < 1.000005$

 A more general approach is to calculate closeness of two numbers based on the **relative size** of the two numbers being compared