18.100A Assignment 3

Octavio Vega

February 16, 2023

Problem 1

Proof. Let $x, y \in \mathbb{R}$ with x < y. By the density of \mathbb{Q} , we have that $\exists r \in \mathbb{Q}$ such that x < r < y.

Then $x + \sqrt{2} < y + \sqrt{2}$. Then $\exists r \in \mathbb{Q}$ such that

$$x + \sqrt{2} < r < y + \sqrt{2} \tag{1}$$

$$\implies x < r - \sqrt{2} < y. \tag{2}$$

But since $r \in \mathbb{Q}$ and $\sqrt{2} \notin \mathbb{Q}$, then the number $i := r - \sqrt{2} \notin \mathbb{Q}$.

So
$$x < i < y$$
 with $i \in \mathbb{R} \setminus \mathbb{Q}$, as desired.

Problem 2

Proof. Define the function $f: E \to \wp(\mathbb{N})$ such that if $x = 0.d_{-1}d_{-2}...$, then

$$f(x) = \{ j \in \mathbb{N} \mid d_{-j} = 2 \}. \tag{3}$$

We want to show that f is a bijection. First, we show that f is injective.

Let $x_1=0.d_{-1}^{(1)}d_{-2}^{(1)}...$ and $x_2=0.d_{-1}^{(2)}d_{-2}^{(2)}...$ for $x_1,x_2\in E.$ Suppose $f(x_1)=f(x_2).$ Then

$$\{j \in \mathbb{N} \mid d_{-j}^{(1)} = 2\} = \{k \in \mathbb{N} \mid d_{-k}^{(2)} = 2\}. \tag{4}$$

Since each digit $d_{-j} \in \{1, 2\}$, then the sets of digits must be the same:

$$\{d_{-j}^{(1)} \mid j \in \mathbb{N}\} = \{d_{-k}^{(2)} \mid k \in \mathbb{N}\}. \tag{5}$$

But by the theorem from class, we know that for every set of digits $\exists! x \in [0,1]$ such that $x = 0.d_{-1}d_{-2}...$ So if all of the digits are the same, then the numbers must be the same, i.e.

$$f(x_1) = f(x_2) \implies x_1 = x_2.$$
 (6)

Thus f is injective.

Next, we show that f is surjective.

Let $S \in \wp(\mathbb{N})$ with

$$S := \{ j \in \mathbb{N} \mid d_{-j} = 2 \}. \tag{7}$$

Since this corresponds to the indices for a set of digits, then by the theorem from class $\exists x \in [0,1]$ such that $x = 0.d_{-1}d_{-2}...$; i.e. for any $S \in \wp(\mathbb{N})$, $\exists x \in E$ such that f(x) = S.

Hence, f is also surjective, which means that it is bijective.

Therefore we conclude that $|E| = |\wp(\mathbb{N})|$.

Problem 3

(a)

Proof. We want to show that there exists a bijection $h: A \cup B \to \mathbb{N}$.

Recall that we can construct the sets of even and odd natural numbers as follows:

$$\mathcal{O} := \{2n+1 \mid n \in \mathbb{N}\}, \text{ and } \mathcal{E} := \{2n \mid n \in \mathbb{N}\}. \tag{8}$$

We also know that $|\mathcal{O}| = |\mathcal{E}| = |\mathbb{N}|$ because the functions defined via $f_e(n) = 2n$ and $f_o(n) = 2n+1$, mapping \mathcal{E} to \mathbb{N} and \mathcal{O} to \mathbb{N} , respectively, are both bijective. Finally, we note that $\mathcal{O} \cup \mathcal{E} = \mathbb{N}$.

Since A and B are both countably infinite, i.e. $|A|=|B|=|\mathbb{N}|,$ then \exists bijections f,g such that

$$f: a \to \mathbb{N}$$
, and $g: B \to \mathbb{N}$. (9)

Then $\forall a \in A, \, 2f(a)$ is even, and $\forall b \in B, \, 2g(b)+1$ is odd. So we define the even and odd sets

$$\mathcal{E} := \{ 2f(a) \mid a \in A \}, \text{ and } \mathcal{O} := \{ 2g(b) + 1 \mid b \in B \}.$$
 (10)

Then we construct the function h defined via

$$h(x) = \begin{cases} 2f(x) & \text{if } x \in A \\ 2g(x) + 1 & \text{if } x \in B. \end{cases}$$
 (11)

First, we show that h is injective.

Case 1: $x, y \in A$. Then

$$h(x) = h(y) \tag{12}$$

$$\implies 2f(x) = 2f(y) \tag{13}$$

$$\implies f(x) = f(y) \tag{14}$$

$$\implies x = y,$$
 (15)

Since f is injective.

Case 2: $x, y \in B$. Then

$$h(x) = h(y) \tag{16}$$

$$\implies 2g(x) + 1 = 2g(y) + 1 \tag{17}$$

$$\implies g(x) = g(y) \tag{18}$$

$$\implies x = y,$$
 (19)

since g is injective.

<u>Case 3</u>: $x \in A$, $y \in B$ WOLOG, and h(x) = h(y). This case is vacuous because \mathcal{E} and \mathcal{O} are disjoint, whereas $2f(x) \in \mathcal{E}$ while $2g(x) + 1 \in \mathcal{O}$.

Thus, according to cases 1 and 2, h is injective.

Now we show that h is surjective. Let $n \in \mathbb{N}$.

<u>Case 1</u>: n is even. Then by surjectivity of f, $\exists a \in A$ such that $f(a) = \frac{n}{2}$, i.e. h(a) = n.

<u>Case 2</u>: n is odd. Then by surjectivity of g, $\exists b \in B$ such that $g(b) = \frac{n-1}{2}$, i.e. h(b) = n.

Thus, h is surjective as well.

Therefore we conclude that h is a bijection, hence $|A \cup B| = |\mathbb{N}|$.

(b)

Proof. (By contradiction). Suppose instead that $\mathbb{R}\setminus\mathbb{Q}$ is countable. We write:

$$\mathbb{R} = \mathbb{R} \backslash \mathbb{Q} \cup \mathbb{Q} \tag{20}$$

$$\implies |\mathbb{R}| = |\mathbb{R} \setminus \mathbb{Q} \cup \mathbb{Q}|. \tag{21}$$

We know that \mathbb{Q} is countably infinite, so $|\mathbb{Q}| = |\mathbb{N}|$. We also assumed that $\mathbb{R}\setminus\mathbb{Q}$ is countable, so $|\mathbb{R}\setminus\mathbb{Q}| = |\mathbb{N}|$. Then by part (a), we have that $|\mathbb{R}| = |\mathbb{N}|$, but the reals are uncountable, so contradiction ($\Rightarrow \Leftarrow$).

Hence $\mathbb{R}\backslash\mathbb{Q}$ must be uncountable.

Problem 4

Proof. (\Rightarrow) Suppose $a_0 = \sup A$. Then for any other upper bound $b \in \mathbb{R}$ of A, $a_0 \leq b$. Also, for any $a \in A$, $a \leq a_0$.

Let $\epsilon > 0$. Then $a_0 + \epsilon > a_0 \implies a_0 - \epsilon < a_0$, but $a_0 = \sup A$ so $a_0 - \epsilon \neq \sup A$. Then $\exists a \in A$ such that $a > a_0 - \epsilon$.

(\Leftarrow) Suppose a_0 is an upper bound for $A \subset \mathbb{R}$, and that for every $\epsilon > 0 \ \exists a \in A$ such that $a_0 - \epsilon < a$. Since A is bounded above by a_0 , then $\forall a \in A, \ a \leq a_0$. Then for every $\epsilon > 0$,

$$\implies a - \epsilon \le a_0 - \epsilon < a \tag{22}$$

$$\implies a \le a_0 < a + \epsilon. \tag{23}$$

But a_0 is an upper bound for A, so we have shown that for any $\epsilon > 0$, $\exists a \in A$ such that $a + \epsilon \notin A$ and $a_0 < a + \epsilon$. Thus a_0 is the smallest upper bound for A, which means that $a_0 = \sup A$ by definition.