Variables aléatoires sur un espace probabilisé fini

Dans tout ce chapitre (Ω, P) désigne un espace probabilisé fini.

I. Variables aléatoires

Définition. On appelle variable aléatoire définie sur Ω à valeurs dans un ensemble E toute application de Ω dans E.

Lorsque $E \subset \mathbb{R}$, on dit que la variable aléatoire est réelle.

Remarque.

- Une variable aléatoire n'a rien d'aléatoire
- On peut définir la somme, X + Y, et le produit, XY, de deux variables aléatoires réelles X et Y.

Exemple. Tout application constante définie sur Ω est appelée variable aléatoire constante ou certaine.

Soit $A \in \mathcal{P}(\Omega)$, la variable aléatoire, $\mathbf{1}_A : \Omega \to \mathbb{R}$, $\omega \mapsto \begin{cases} 1 & si \ \omega \in A \\ 0 & sinon \end{cases}$ est appelée variable aléatoire indicatrice de A.

Définition. Soit X une variable aléatoire définie sur Ω à valeurs dans un ensemble E.

Pour toute partie A de A, $X^{-1}(A) = \{\omega \in \Omega : \omega \in A\}$ est un évènement qui est souvent noté plus simplement $(X \in A)$ ou « $X \in A$ ».

On notera $P(X \in A)$ sa probabilité plutôt que $P(X^{-1}(A))$ qui serait la notation rigoureuse.

Remarque. Si $A = \{a\}$, on notera P(X = a) plutôt que $P(X^{-1}(\{a\}))$ qui serait la notation rigoureuse.

Si $A = [a, +\infty[\cap E, \text{ on notera } P(X \leq a) \text{ plutôt que } P(X^{-1}(A)) \text{ qui serait la notation rigoureuse } L'événement } (X \in A) \text{ est égal à l'évènement } (X \in A) \cap X(\Omega).$ En pratique, on ne s'intéresse donc qu'aux évènement $X \in A$ avec $A \in \mathcal{P}(X(\Omega))$.

Proposition. Soit X une variable aléatoire définie sur Ω . L'application

$$P_X: \mathcal{P}(X(\Omega)) \to [0,1], A \mapsto P(X \in A)$$

est une probabilité sur $X(\Omega)$ appelé loi de probabilité de X ou, plus simplement, loi de X.

Proposition. Soit X une variable aléatoire définie sur Ω . L'ensemble $X(\Omega)$ est fini. P_X est donc entièrement déterminée par la donnée des probabilités

$$P_X(\lbrace x \rbrace) = P(X = x) \ avec \ x \in X(\Omega).$$

Plus précisément, $\forall A \in \mathcal{P}(\Omega), \ P(A) = \sum_{x \in A} P(X = x)$

Se donner la loi de X revient donc à se donner des réels $(p_x)_{x\in X(\Omega)}$ positifs vérifiant :

$$\sum_{x \in X(\Omega)} p_x = 1.$$

Remarque.

- Lorsque l'on demande de déterminer la loi d'une variable aléatoire X, il faut donner $X(\Omega)$ et, pour tout $x \in X(\Omega)$, P(X = x).
- Lorsque l'on demande de vérifier que la loi donnée par l'énoncé est bien une loi, il faut vérifier que pour tout $x \in X(\Omega)$, $P(X = x) \ge 0$ et que $\sum_{x \in X(\Omega)} P(X = x) = 1$.

Proposition. Soit X une variable aléatoire définie sur Ω et f une fonction définie sur $X(\Omega)$. L'application f(X) est une variable aléatoire sur Ω et sa loi est définie par :

$$\forall y \in f(X)(\Omega), \quad P(f(X)=y) = \sum_{x \in f^{-1}(\{y\})} P(X=x) = \sum_{x \in X(\Omega): f(x)=y} P(X=x)$$

II. Lois usuelles

Définition. Soient n_1 et n_2 deux entiers tels que $n_1 < n_2$.

On dit qu'une variable aléatoire X suit une loi uniforme sur $[n_1, n_2]$ si $X(\Omega) = [n_1, n_2]$ et si

$$\forall k \in [n_1, n_2], \quad P(X = k) = \frac{1}{n_2 - n_1 + 1}$$

On note $X \sim \mathcal{U}(\llbracket n_1, n_2 \rrbracket)$.

Définition. Soit $p \in [0,1]$.

On dit qu'une variable aléatoire X suit une loi de Bernoulli de paramètre p si $X(\Omega) = \{0, 1\}$ et si P(X = 1) = p.

On note $X \sim \mathcal{B}(p)$.

Définition. Soient $n \in \mathbb{N}^*$ et $p \in [0,1]$.

On dit qu'une variable aléatoire X suit une loi binomiale de paramètre (n,p) si $X(\Omega) = \llbracket 0,n \rrbracket$ et si

$$\forall k \in [1, n], \quad P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}.$$

On note $X \sim \mathcal{B}(n, p)$.

III. Variables aléatoires indépendantes

Définition. Soient X et Y deux variables aléatoires définies sur Ω à valeurs respectivement dans E et F. Les variables aléatoires X et Y sont dites indépendantes S

$$\forall (A, B) \in \mathcal{P}(E) \times \mathcal{P}(F), \quad P((X \in A) \cap (Y \in B)) = P(X \in A)P(Y \in B)$$

Proposition. Soient X et Y deux variables aléatoires définies sur Ω . Les variables aléatoires X et Y sont indépendantes si, et seulement si,

$$\forall (A,B) \in \mathcal{P}\left(X(\Omega)\right) \times \mathcal{P}\left(Y(\Omega)\right), \quad P((X \in A) \cap (Y \in B)) = P(X \in A)P(Y \in B)$$

Proposition. Soient X et Y deux variables aléatoires définies sur Ω . Les variables aléatoires X et Y sont indépendantes si, et seulement si,

$$\forall (x,y) \in X(\Omega) \times Y(\Omega), \quad P((X=x) \cap (Y=y)) = P(X=x)P(Y=y)$$

Proposition. Soient X et Y deux variables aléatoires réelles définies sur Ω indépendantes. La loi de X+Y est donnée par :

$$\forall z \in (X+Y)(\Omega), \quad P(X+Y=z) = \sum_{(x,y) \in X(\Omega) \times Y(\Omega) : x+y=z} P(X=x)P(Y=y)$$

soit

$$\forall z \in (X+Y)(\Omega), \quad P(X+Y=z) = \sum_{x \in X(\Omega)} P(X=x)P(Y=z-x)$$

ou

$$\forall z \in (X+Y)(\Omega), \quad P(X+Y=z) = \sum_{y \in Y(\Omega)} P(Y=y)P(X=z-y)$$

Proposition. Soient X et Y deux variables aléatoires réelles définies sur Ω indépendantes. La loi de Max(X,Y) est donnée par :

$$\forall z \in \mathbb{R}, \quad P(Max(X,Y) \le z) = P(X \le z)P(Y \le z)$$

La loi de Min(X,Y) est donnée par :

$$\forall z \in \mathbb{R}, \quad P(Min(X,Y) \ge z) = P(X \ge z)P(Y \ge z)$$

Proposition. Soient X et Y deux variables aléatoires définies sur Ω à valeurs respectivement dans E et F; et f, g deux fonctions respectivement définies sur $X(\Omega)$ et $Y(\Omega)$. Si les variables aléatoires X et Y sont indépendantes, alors les variables aléatoires f(X) et g(Y) aussi.

Définition. Les variables aléatoires $X_1, ..., X_n$ définies sur Ω sont dites indépendantes deux à deux si pour tout $(i, j) \in [\![1, n]\!]^2$ tel que $i \neq j$, les variables aléatoires X_i et X_j sont indépendantes.

Définition. Les variables aléatoires $X_1,...,X_n$ définies sur Ω à valeurs respectivement dans $E_1,...,E_n$ sont dites mutuellement indépendantes si, pour tout $(A_1,...,A_n) \in \mathcal{P}(E_1) \times ... \times \mathcal{P}(E_n)$, on a :

$$P((X_1 \in A_1) \cap ... \cap (X_n \in A_n)) = \prod_{i=1}^n P(X_i \in A_i)$$

Proposition. Toute sous-famille d'une famille de variables aléatoires mutuellement indépendantes est une famille de variables aléatoires mutuellement indépendantes

Proposition. Si les variables aléatoires $X_1, ..., X_n$ sont mutuellement indépendantes, alors elles sont indépendantes deux à deux.

Exercice. Soient X et Y deux variables aléatoires indépendantes suivant la même loi définie par P(X=1) = P(X=-1) = 1/2. Montrer que les variables X, Y et XY sont indépendantes deux à deux mais pas mutuellement indépendantes.

Proposition. Si les variables aléatoires X_1, \ldots, X_n sont mutuellement indépendantes, alors les variables aléatoires (X_1, \ldots, X_r) et (X_{r+1}, \ldots, X_n) sont indépendantes.

Proposition. Si les variables aléatoires X_1, \ldots, X_n sont mutuellement indépendantes, alors les variables aléatoires $f(X_1, \ldots, X_r)$ et $g(X_{r+1}, \ldots, X_n)$ sont indépendantes.

Proposition. Soient $X \sim \mathcal{B}(n_1, p)$ et $Y \sim \mathcal{B}(n_2, p)$.

Si X et Y sont indépendantes, alors $X + Y \sim \mathcal{B}(n_1 + n_2, p)$.

Corollaire. Soient $X_1 \sim \mathcal{B}(n_1, p), ..., X_r \sim \mathcal{B}(n_r, p)$. Si les variables aléatoires $X_1, ..., X_r$ sont mutuellement indépendantes, alors $X_1 + ... + X_r \sim \mathcal{B}(n_1 + ... + n_r, p)$.

Corollaire. Soient $X_1, ..., X_n$ mutuellement indépendantes suivant une loi de Bernoulli de paramètre p, alors $X_1 + ... + X_n \sim \mathcal{B}(n, p)$.

Proposition. Soient $X_1, ..., X_n$ des variables aléatoires réelles définies sur Ω mutuellement indépendantes.

La loi de $Max(X_1,...,X_n)$ est donnée par :

$$\forall z \in \mathbb{R}, \quad P(Max(X_1, ..., X_n) \le z) = \prod_{i=1}^n P(X_i \le z)$$

La loi de $Min(X_1,...,X_n)$ est donnée par :

$$\forall z \in \mathbb{R}, \quad P(Min(X_1, ..., X_n) \ge z) = \prod_{i=1}^n P(X_i \ge z)$$

IV. Espérance d'une variable aléatoire réelle

Définition. Soit X une variable aléatoire réelle définie sur Ω . On appelle espérance de X le réel

$$\mathbb{E}(X) = \sum_{x \in X(\Omega)} x P(X = x).$$

Exemple. Soit $A \in \mathcal{P}(\Omega)$, on a $\mathbb{E}(\mathbf{1}_A) = P(A)$.

Soit X la variable aléatoire constante à a, on a $\mathbb{E}(X) = a$.

Proposition. Soient n_1 et n_2 deux entiers tels que $n_1 \leq n_2$.

Si
$$X \sim \mathcal{U}(\llbracket n_1, n_2 \rrbracket)$$
, alors $\mathbb{E}(X) = \frac{n_1 + n_2}{2}$.

Proposition. Soit $p \in [0, 1]$.

Si $X \sim \mathcal{B}(p)$, alors $\mathbb{E}(X) = p$.

Proposition. Soient $n \in \mathbb{N}^*$ et $p \in [0,1]$.

Si $X \sim \mathcal{B}(n, p)$, alors $\mathbb{E}(X) = np$.

Proposition. Soit X une variable aléatoire définie sur Ω . On a :

$$\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) P(\{\omega\}).$$

Proposition (Linéarité de l'espérance). Soient X et Y deux variables aléatoires réelles définies sur Ω et $\lambda \in \mathbb{R}$. L'application X + Y est une variable aléatoire réelle sur Ω et :

$$\mathbb{E}(X + \lambda Y) = \mathbb{E}(X) + \lambda \mathbb{E}(Y)$$

Définition. Soit X une variable aléatoire définie sur Ω .

Lorsque E(X) = 0, on dit que X est un variable aléatoire centrée. $X - \mathbb{E}(X)$ est la variable aléatoire centré associée à X.

Proposition (Positivité de l'espérance).

Soit X une variable aléatoire positive définie sur Ω , i.e. $X(\Omega) \subset \mathbb{R}^+$. On a :

- $-\mathbb{E}(X) \geq 0$;
- $\mathbb{E}(X) = 0$ si, et seulement si, P(X = 0) = 1; ont dit que X est presque certainement nulle.

Proposition (Croissance de l'espérance). Soient X et Y deux variables aléatoires réelles définie sur Ω telle que $X \geq Y$, i.e. $\forall \omega \in \Omega$, $X(\omega) \leq Y(\omega)$. On a :

- $-\mathbb{E}(X) \leq \mathbb{E}(Y)$;
- $\mathbb{E}(X) = \mathbb{E}(Y)$ si, et seulement si, P(X = Y) = 1; ont dit que X et Y sont presque sûrement égales.

Proposition. (Inégalité de Markov)

Soit X une variable aléatoire réelle $\emph{positive}$ définie sur $\Omega.$ On a

$$\forall a > 0, \quad P(X \ge a) \le \frac{\mathbb{E}(X)}{a}.$$

Théorème. (de transfert)

Soit X une variable aléatoire définie sur Ω et f une fonction définie sur $X(\Omega)$. On a

$$\mathbb{E}(f(X)) = \sum_{x \in X(\Omega)} f(x)P(X = x)$$

Théorème. Si les variables X et Y sont indépendantes, alors

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$$

V. Variance d'une variable aléatoire

Définition. Soit X une variable aléatoire définie sur Ω et $k \in \mathbb{N}$. On appelle moment d'ordre k de X le réel $\mathbb{E}(X^k)$ et moment centré d'ordre k, le réel $\mathbb{E}((X - \mathbb{E}(X))^k)$.

Remarque. D'après le théorème de transfert, on a

$$\mathbb{E}(X^k) = \sum_{x \in X(\Omega)} x^k P(X = x) \ et \ \mathbb{E}((X - \mathbb{E}(X))^k) = \sum_{x \in X(\Omega)} (x - \mathbb{E}(X))^k P(X = x)$$

Définition. Soit X une variable aléatoire définie sur Ω . On appelle variance de X, le moment centré d'ordre deux de X i.e.

$$\mathbb{V}(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \sum_{x \in X(\Omega)} (x - \mathbb{E}(X))^2 P(X = x)$$

Proposition (Formule de Huygens). Soit X une variable aléatoire définie sur Ω . On a

$$\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

Proposition. Soit X une variable aléatoire définie sur Ω . On a :

- $\mathbb{V}(X) \geq 0$;
- $\mathbb{V}(X)=0$ si, et seulement s'il existe $m\in\mathbb{R}$ tel que P(X=m)=1; ont dit que X est presque sûrement constante. Dans ce cas, $m=\mathbb{E}(X)$.

On appelle écart-type le réel $\sigma_X = \sqrt{V(X)}$.

Remarque. La variance et l'écart-type sont des indicateurs de dispersion.

Proposition. Soit X une variable aléatoire définie sur Ω et $(a,b) \in \mathbb{R}^2$. On a

$$\mathbb{V}(aX + b) = a^2 \mathbb{V}(X)$$

Proposition. Soit $n \in \mathbb{N}^*$. Si $X \sim \mathcal{U}(\llbracket 1, n \rrbracket)$, alors $\mathbb{V}(X) = \frac{n^2 - 1}{12}$.

Corollaire. Soient n_1 et n_2 deux entiers tels que $n_1 < n_2$.

$$Si \ X \sim \mathcal{U}([n_1, n_2]), \ alors \ \mathbb{V}(X) = \frac{(n_2 - n_1 + 1)^2 - 1}{12}.$$

Proposition. Soit $p \in [0, 1]$.

Si
$$X \sim \mathcal{B}(p)$$
, alors $\mathbb{V}(X) = p(1-p)$.

Proposition. Soient $n \in \mathbb{N}^*$ et $p \in [0,1]$.

Si
$$X \sim \mathcal{B}(n,p)$$
, alors $\mathbb{V}(X) = np(1-p)$.

Théorème (Inégalité de Bienaymé-Tchebychev).

Soit X une variable aléatoire définie sur Ω . On a :

$$\forall \varepsilon > 0, \quad P(|X - \mathbb{E}(X)| \ge \varepsilon) \le \frac{\mathbb{V}(X)}{\varepsilon^2}$$

Théorème. Si les variables X et Y sont indépendantes, alors

$$\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y)$$

VI. Covariance de deux variables aléatoires

Proposition. Soient X et Y deux variables aléatoires. On a :

$$\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y) + 2\left(\mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)\right)$$

Définition. Soient X et Y deux variables aléatoires réelles. On appelle covariance de X et Y, le réel :

$$Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

de sorte que

$$\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y) + 2Cov(X,Y)$$

Définition. Deux variables aléatoires réelles X et Y sont dites non corrélées si Cov(X,Y)=0

Proposition. Deux variables aléatoires réelles indépendantes sont non corrélées mais il n'y a pas de réciproque.

Exercice. Soient X et Y deux variables aléatoires indépendantes suivant une loi de Bernoulli de paramètre 1/2. Prouver que X+Y et |X-Y| sont non corrélées mais non indépendantes.

Proposition. Soient X et Y deux variables aléatoires réelles. On a :

$$Cov(X,Y) = \mathbb{E}(X - \mathbb{E}(X))\mathbb{E}(Y - \mathbb{E}(Y))$$

Proposition. Soient X, X', Y et Y' quatre variables aléatoires réelles définies sur Ω . On a :

- $Cov(X + \lambda X', Y) = Cov(X, Y) + \lambda Cov(X', Y);$
- $Cov(X, Y + \lambda Y') = Cov(X, Y) + \lambda Cov(X, Y');$
- -Cov(X,Y) = Cov(Y,X);
- $Cov(X, X) = V(X) \ge 0;$

 $Ainsi, (X,Y) \mapsto Cov(X,Y)$ est bilinéaire, symétrique et positive.

Proposition. Soient $X_1, ..., X_n$ n variables aléatoires réelles. On a :

$$\mathbb{V}(X_1+\ldots+X_n) = \sum_{1 \leq i,j \leq n} Cov(X_i,X_j) = \sum_{k=I}^n \mathbb{V}(X_k) + 2\sum_{1 \leq i < j \leq n} Cov(X_i,X_j)$$

Corollaire. Si on pose $C = (Cov(X_i, X_j))_{1 \le i,j \le n}$, alors

$$\mathbb{V}\left(\sum_{k=I}^{n} \lambda_k X_k\right) = \begin{pmatrix} \lambda_1 & \cdots & \lambda_n \end{pmatrix} C \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

Théorème. Soient X et Y deux variables aléatoires réelles. On a :

$$|Cov(X,Y)| \leq \sqrt{\mathbb{V}(X)}\sqrt{\mathbb{V}(Y)} = \sigma_X\sigma_Y$$

avec égalité si, et seulement s'il existe $(a,b,c) \in \mathbb{R}^3$ tel que P(aY+bX=c)=1.

Définition. Soient X et Y deux variables aléatoires réelles. On appelle facteur de corrélation le réel $\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$

Proposition. Soient X et Y deux variables aléatoires réelles. Si X et Y sont indépendantes, alors $\rho_{X,Y}=0$ mais il n'y a pas de réciproque. On a $\rho_{X,Y}=\pm 1$ si, et seulement s'il existe $(a,b,c)\in\mathbb{R}^3$ tel que P(aY+bX=c)=1.