KKT conditions, Lagrangian and duality

Alexandre Gramfort alexandre.gramfort@inria.fr

Master 2 Data Science, Univ. Paris Saclay Optimisation for Data Science

Constrained Convex optimization problem

Definition (Convex optimization problem)

$$(\mathcal{P})$$
: min $f(x), x \in \mathcal{C} \subset \mathbb{R}^n$

with f convex, $C = \{x/h(x) = 0, g(x) \leq 0\}$, where

- $h = [h_1 \dots h_p]$ are affine functions
- $g = [g_1 \dots g_q]$ are convex functions.

Remark: equality constraints must be affine and inequality constraints must be convex but one can have many.

Example

$$\min_{x \in \mathbb{R}^n} \|b - Ax\|_2^2$$
, s.t. $\|x\|_2 \le 1$

Lagrangian

Definition (Lagrangian)

• We call the Lagrangian of problem (\mathcal{P}) the function $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^p \times (\mathbb{R}^+)^q \to \mathbb{R}$ defined by

$$\mathcal{L}(x,\lambda,\mu) = f(x) + \sum_{i=1}^{p} \lambda_i h_i(x) + \sum_{j=1}^{q} \mu_j g_j(x)$$

Remark: λ and μ are commonly referred to as Lagrange multipliers (or dual variables, cf. below).

Remark: What is the Lagrangian for our constrained least square problem?

KKT conditions

Definition (Karush, Kuhn et Tucker (KKT) conditions)

- h(x) = 0 and $g(x) \le 0$ (primal constraints)
- $\mu \in \mathbb{R}^q_+$ (dual constraints)
- $\forall j \in \{1,\ldots,q\}, \; \mu_j g_j(x) = 0 \; \text{(complementarity)}$
- $\nabla f(x) + \sum_{i=1}^{p} \lambda_i \nabla h_i(x) + \sum_{j=1}^{q} \mu_j \nabla g_j(x) = 0$ (stationarity)

Optimality Conditions (convex case)

Theorem (First order necessary and sufficient conditions (KKT))

- Let us suppose that:
 - f, h and g are C^1 (smooth),
 - f and g are convex and h is affine,
 - problem is stricly feasible (cf. Slater's conditions).
- Then x^* is solution of (\mathcal{P}) iff $\exists \lambda^* \in \mathbb{R}^p$ and $\mu^* \in \mathbb{R}^q_+$ such that KKT conditions are satisfied.

Remark: Write the KKT conditions for our constrained least square problem. Express the Lagrange multiplier $\mu \in \mathbb{R}_+$ as a function of x.

Duality

Definition (Saddle point)

A saddle point of \mathcal{L} is a triplet (x^*, λ^*, μ^*) such that

$$\forall x, \lambda, \mu, \ \mathcal{L}(x^*, \lambda, \mu) \leq \mathcal{L}(x^*, \lambda^*, \mu^*) \leq \mathcal{L}(x, \lambda^*, \mu^*)$$

Duality

Definition (Saddle point)

A saddle point of \mathcal{L} is a triplet (x^*, λ^*, μ^*) such that

$$\forall x, \lambda, \mu, \ \mathcal{L}(x^*, \lambda, \mu) \leq \mathcal{L}(x^*, \lambda^*, \mu^*) \leq \mathcal{L}(x, \lambda^*, \mu^*)$$

Theorem (Property of saddle points for a convex problem)

- We suppose that f, h and g are C^1 (smooth), f, g are convex and h is affine.
- The triplet (x^*, λ^*, μ^*) is a saddle point of $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^p \times (\mathbb{R}^+)^q \to \mathbb{R}$ iff it satisfies the KKT conditions:
 - $h(x^*) = 0$ and $g(x^*) \le 0$
 - $\forall j \in \{1 \dots q\}, \ \mu_j^* \ge 0 \ \text{and} \ \mu_j^* g_j(x^*) = 0$
 - $\nabla f(x^*) + \sum_{i=1}^p \lambda_i^* \nabla h_i(x^*) + \sum_{j=1}^q \mu_j^* \nabla g_j(x^*) = 0$

Duality

Dual problem

dual function

$$g(\lambda,\mu) = \inf_{x} \mathcal{L}(x,\lambda,\mu)$$

• for $\mu_i \geq 0, \forall j$

$$g(\lambda,\mu) \le \inf_{x \in \mathcal{C}} f(x)$$

ullet dual problem (\mathcal{D}) associated to the primal problem (\mathcal{P})

$$\max_{\lambda \in \mathbb{R}^p, \mu \in \mathbb{R}^q_+} \mathsf{g}(\lambda, \mu)$$

- duality gap : $\inf_{x \in \mathcal{C}} f(x) \max_{\mu \geq 0} g(\lambda, \mu)$
- If duality gap at optimum is 0 we say that "strong duality holds".

Remark: Write in the dual to solve our constrained least square problem .

References

- Convex Optimization, Stephen Boyd and Lieven Vandenberghe, Cambridge University Press
- https://web.stanford.edu/~boyd/cvxbook/
- Read chapter 5.