CS 6630: Project Process Book TED talks topic trend visualization

Hsuan Lee and Chien-Wei Sun
School of Computing, University of Utah

November 30, 2017

Contents

1	Ove	verview 2											
	1.1	Overview and Motivation	2										
	1.2	Related Work	2										
	1.3	Questions	3										
2 Data													
	2.1	Dataset	4										
	2.2	Exploratory Data Analysis	5										
3	Des	ign Evolution	8										
	3.1	Prototype	8										
	3.2	Evolution	8										
		3.2.1 Network Chart	8										
		3.2.2 Word Cloud Chart	9										
		3.2.3 Line Chart	10										
		3.2.4 Video List	10										
Ri	blios	graphy 1	13										

Chapter 1

Overview

1.1 Overview and Motivation

TED is a leading organization which provides influential and understandable talk to the world. These talks cover a lot of fields, from anthropology to machine learning, and also from biology to sociology. We are interested in the relationship between technology and world market, and we want to know if TED somehow shows the trend of popular technology or it provides a platform for topics which do not get much attention in the world.

The relevance of different categories is also what we want to discover. For example, several years ago, it was popular that researchers tried to innovate theory according to the behavior of insects, like ants and bees. There are many theories developed based on the cooperation pattern of those animals. In the past, people did not consider that there is a strong relevence between insects and learning theory. We also wonder if we can find situation which is similar to the example.

1.2 Related Work

When we are searching useful data for this project, we found the TED talks dataset and also a visulization by Sean Miller[3]. In this visualization, it shows statistics of the dataset and also allow user to search video by one tag. However, this visualization does not answer the questions we mention in the above. That's why we decide to build our own visualization of the dataset.

1.3 Questions

Here are questions we expect to answer at the end of this project:

- What are the trend of category tags appeared on TED talks?
- Is there any relationship between the TED talks and the big events happened in the world?
- Is there a strong relevence between two topics that in general people will not think they are related?
- Can we learn the trend of research on a specific field by analyzing the popularity of keywords? Or it shows the topics which people do not put attention on for now but will become important in the future?

Chapter 2

Data

2.1 Dataset

We find the dataset from Dataset Distribution Portal[4]. This dataset include the video recording from the TED website from 1972 to 2017. For each video, its data contains the following attributes:

id	speaker	URL	URL	description	transcript_URI	. monti	year_film	event	duration	date_publis	tags
1	Al Gore	Averting the climate crisis	http://www.ted.com	With the same humor	http://www.ted.	2	2006	TED2006	0:16:17	6/27/06	cars,alternative energy,culture,politics,science,climate change,environment,su
2	Amy Smith	Simple designs to save a life	http://www.ted.com	Fumes from indoor co	http://www.ted.	2	2006	TED2006	0:15:06	8/15/06	MacArthur grant, simplicity, industrial design, alternative energy, invention, engine
3	Ashraf Ghani	How to rebuild a broken stat	http://www.ted.com	Ashraf Ghani's passio	http://www.ted.	7	2005	TEDGlobal 2	0:18:45	10/18/06	corruption,poverty,economics,investment,military,culture,politics,policy,global
4	Burt Rutan	The real future of space expl	http://www.ted.com	In this passionate talk	http://www.ted.	2	2006	TED2006	0:19:37	10/25/06	aircraft,flight,industrial design,NASA,rocket science,invention,engineering,entre
5	Chris Bangle	Great cars are great art	http://www.ted.com	American designer Ch	http://www.ted.	2	2002	TED2002	0:20:04	2004/05/07	cars,industrial design,transportation,invention,design,technology,business,art
6	Craig Venter	Sampling the ocean's DNA	http://www.ted.com	Genomics pioneer Cra	http://www.ted.	7	2005	TEDGlobal 2	0:16:51	2004/05/07	biotech,invention,oceans,genetics,DNA,biology,science,entrepreneur,biodivers
7	David Pogue	Simplicity sells	http://www.ted.com	New York Times colur	http://www.ted.	2	2006	TED2006	0:21:26	6/27/06	simplicity,computers,software,interface design,music,media,entertainment,per
8	David Rockwell	A memorial at Ground Zero	http://www.ted.com	In this emotionally cha	http://www.ted.	2	2002	TED2002	0:24:37	2006/12/07	New York,memory,interview,death,culture,architecture,disaster relief,cities,urb
9	Dean Kamen	To invent is to give	http://www.ted.com	Inventor Dean Kamen	http://www.ted.	2	2002	TED2002	0:20:07	2004/05/07	robots,cars,industrial design,transportation,invention,education,innovation,soc
10	Dean Ornish	The killer American diet that	http://www.ted.com	Forget the latest disea	http://www.ted.	2	2006	TED2006	0:03:18	12/14/06	obesity,disease,health,health care,culture,food,science,global issues
11	Jane Goodall	What separates us from chin	http://www.ted.com	Jane Goodall hasn't fo	http://www.ted.	2	2003	TED2002	0:27:25	2004/05/07	primates,Africa,culture,science,environment,animals,nature,global issues
12	Eva Vertes	Meet the future of cancer res	http://www.ted.com	Eva Vertes only 19	http://www.ted.	2	2005	TED2005	0:18:49	10/02/06	wunderkind,cancer,disease,health,science,technology
13	Frank Gehry	A master architect asks, Nov	http://www.ted.com	In a wildly entertaining	http://www.ted.	2	2002	TED2002	0:22:00	1/17/08	invention,interview,culture,architecture,design,creativity,business
14	Golan Levin	Software (as) art	http://www.ted.com	Engineer and artist Go	http://www.ted.	2	2004	TED2004	0:14:53	2004/05/07	invention,software,music,entertainment,performance,technology,art
16	Helen Fisher	Why we love, why we cheat	http://www.ted.com	Anthropologist Helen	http://www.ted.	2	2006	TED2006	0:23:27	2009/06/06	love,gender,relationships,cognitive science,psychology,evolution,culture,science
18	Janine Benyus	Biomimicry's surprising lesse	http://www.ted.com	In this inspiring talk at	http://www.ted.	2	2005	TED2005	0:23:19	2004/05/07	biomimicry,DNA,evolution,biology,fish,science,environment,animals,design,tec
19	Kevin Kelly	How technology evolves	http://www.ted.com	Tech enthusiast Kevin	http://www.ted.	2	2005	TED2005	0:20:00	11/14/06	philosophy,evolution,culture,choice,history,science,future,technology
20	Malcolm Gladwel	Choice, happiness and spag	http://www.ted.com	"Tipping Point" author	http://www.ted.	2	2004	TED2004	0:17:30	9/19/06	consumerism,marketing,economics,culture,media,food,choice,storytelling,bus
21	Mena Trott	Meet the founder of the blog	http://www.ted.com	The founding mother	http://www.ted.	2	2006	TED2006	0:16:46	8/25/06	software, culture, design, entertainment, story telling, business, communication, co
22	Michael Shermer	Why people believe weird th	http://www.ted.com	Why do people see th	http://www.ted.	2	2006	TED2006	0:13:25	11/08/06	faith,illusion,culture,religion,science,entertainment
23	Peter Gabriel	Fight injustice with raw video	http://www.ted.com	Musician and activist	http://www.ted.	2	2006	TED2006	0:14:08	12/06/06	TED Brain Trust, film, culture, music, activism, social change, storytelling, global is:
24	Pilobolus	A dance of "Symbiosis"	http://www.ted.com	Two Pilobolus dancers	http://www.ted.	2	2005	TED2005	0:13:45	2002/09/07	dance, science and art, science, nature, entertainment, performance
25	Richard Baraniuk	The birth of the open-source	http://www.ted.com	In 2006, open-learning	http://www.ted.	2	2006	TED2006	0:18:34	8/21/06	open-source, library, education, culture, global issues, technology, business, collab
26	Rives	If I controlled the Internet	http://www.ted.com	How many poets coul	http://www.ted.	11	2006	TEDSalon 2	0:04:07	12/14/06	love,poetry,philosophy,culture,entertainment,performance
27	Ross Lovegrove	Organic design, inspired by a	http://www.ted.com	Designer Ross Lovegr	http://www.ted.	2	2005	TED2005	0:19:30	8/15/06	industrial design,invention,product design,science and art,DNA,biology,nature
28	Seth Godin	How to get your ideas to spr	http://www.ted.com	In a world of too many	http://www.ted.	2	2003	TED2003	0:17:01	2004/05/07	TED Brain Trust,marketing,culture,choice,storytelling,business
20	Stavan I avitt	The freekonomics of creck d	http://www.tad.com	"Freekonomice" quithr	http://www.tad		2004	TED5004	0-21-15	9/19/NR	narrotice raca aconomice cultura citiae bueinace

Figure 2.1.1: Data get from idiap.ch

id month filmed
Speaker year filmed
headline event
URL duration
description date published
transcript URL tags

To better understand the impact of TED videos, we develop web crawlers to collect attributes like **rates**(how do people feel after watching a video), **views**(how many time a video has been played), and some potentially valuable data like datetime, redirected urls, and transcripts. We use **Scrapy**[2] as our crawler. Figure 2.1.2 displays the rating options on TED website.

Figure 2.1.2: How people rate one video in TED website

Furthermore, in order to load data easily, we transfer our data from csv file to json form. We found this preprocessing can be accomplished painlessly by using **Pandas**[1] toolkit. Figure 2.1.3 shows what kind of data one video contains.

We plan to visualize the data according to the tags/keywords of the video. It is not efficient to search all the data to find which videos are related with one specific tag on javascript. For practical implementation, we will preprocess the dataset based on tags, which means to use tag as key to create input data.

2.2 Exploratory Data Analysis

In our design, the main chart user interact with is the network chart, which present the co-occurrence of tags. Hence, after we finish the job of collecting data, we move forward to build the co-occurrence matrix of tags. During this procedure, we observe that some tags

```
"id": 7,
    "speaker": "David Pogue",
    "headline": "Simplicity sells",
    "URL": "http://www.ted.com/talks/view/id/7",
    "description": "New York Times columnist David Pogue takes aim at technologyâ€"s worst
    "transcript_URL": "http://www.ted.com/talks/view/id/7/transcript?language=en",
    "month_filmed": 2,
    "year_filmed": 2006,
    "event": "TED2006",
    "duration": "0:21:26",
    "date_published": "6/27/06",
    "tags": "simplicity,computers,software,interface design,music,media,entertainment,perf
    "newURL": "https://www.ted.com/talks/david_pogue_says_simplicity_sells",
    "date": "2006-06-27",
    "views": "1646773",
    "rates": [
    "id": 7,
        "name": "Funny",
        "count": 968
    },
    {
        "id": 3,
        "name": "Courageous",
        "count": 46
    },
    {
        "id": 9,
        "name": "Beautiful",
        "count": 60
    },
    {
        "id": 1,
        "name": "Beautiful",
        "count": 104
    },
    {
        "id": 21,
        "name": "Unconvincing",
        "count": 104
},
    "id": 11,
        "name": "Longwinded",
        "count": 78
```

Figure 2.1.3: Data of one video in JSON

appear in too many videos so that their existences are not meaningful to the matrix. These tags are 'science', 'technology', 'global issue'. Since they show up in most of talks, we remove them from the matrix so that the network chart will look clear.

To create groups of tags, we apply k-means to divide them into 11 clusters, and one of them restore the outliers. Figure 2.2.1 are the results of two groups. One is the group whose center is tag 'computers', the other is the group whose center is 'universe'. Color is used to distinguish the group in our design.

```
computers": [
 "simplicity",
"computers",
"software",
"interface design",
 "Interface design",
"robots",
"library",
"one laptop per child",
"complexity",
"intelligence",
 "Intell:
"code",
"math",
"web",
"ai",
"moon",
"literat
                                                                        "universe": [
                                                                           "nasa",
"cosmos",
"universe",
"astronomy",
                                                                          "astronomy,
"time",
"physics",
"exploration",
"planets",
  "literature",
  "drones",
  "hack",
 "programming",
"prediction",
                                                                          "planets",
"space",
"solar system",
"string theory",
"big bang",
"extraterrestrial life",
 "data",
"internet",
 "internet",
"iran",
"bullying",
"algorithm",
"machine learning",
"augmented reality",
                                                                           "dark matter",
"mars",
"nobel prize",
"asteroid",
"telescopes"
  "surveillance",
  "sexual violence"
```

Figure 2.2.1: Clustering result

Chapter 3

Design Evolution

3.1 Prototype

Our design is based on the network layout, as shown in Figure 3.1.1. This network is composed of tags, and user can choose several tags they are interested in to through interaction with the network node. Next, the line chart in the middle of Figure 3.1.1 will display the tendency of chosen tags versus time/year. The last part help user to search for TED talks including these tags. User can decide the result is sorted by views or popularity.

We also want to compare the statistic of the tags between years, so we design a bar chart as shown in Figure 3.1.2. By making use of the sliding bar on the top, the statistics of two years is displayed. Figure 3.1.3 helps us to figure out what attributes are needed in each chart. It also shows the relationship of charts.

3.2 Evolution

3.2.1 Network Chart

First, we generate the network chart according the co-occurrence matrix. Each node represent a tag, and the thickness of one link is decided by the co-occurrence value between two tags. However, there are 403 tags and 19488 links on this chart, which make the network look crazy and take a lot of time to draw these lines, as shown in Figure 3.2.1.

We discuss how to fix this issue and propose two solution for that. One is to draw chord layout in the beginning. Chord layout help people understand the relationship between two groups. We can let user to click ribbon to then show the network layout of tags in these two

Figure 3.1.1: Category of data, and it relationship with the layout

groups. However, this design does not allow us to observe all the related tags of one tag we choose. The other solution is to reduce the amount of links and nodes. We can provide an overview of network chart with nodes and links whose frequencies and value of co-occurence are bigger than threshold. Then, to zoom in on this chart, user can double-click on the tag they interested in to find all the other tag which is related to the chosen one. After applying the second method, our network chart looks better, as you can find in Figure 3.2.2.

3.2.2 Word Cloud Chart

After we draw the network chart and color each node according to category, we suddenly find that we did not explain the category and which tags are classified to. Therefore, we decide to add a word cloud chart on the top of page, which provides the information about the members each category includes, and the color of text follow the ordinal color scale we define in network chart.

Figure 3.1.2: Design of Optional features

- 3.2.3 Line Chart
- 3.2.4 Video List

Figure 3.1.3: Category of data, and it relationship with the layout

Figure 3.2.1: Network chart with Over 19,000 links

TEDmap TED talks topic trend visualization

 $\textbf{Figure 3.2.2:} \ \, \text{Network chart with link vale bigger than } 15$

Bibliography

- [1] Pandas. http://pandas.pydata.org/.
- [2] Scrapy. https://scrapy.org/.
- [3] MILLER, S. Visualization of ted tals on tableau. https://public.tableau. com/views/TEDTalks-IdeasWorthSharing/TED-IdeasWorthSpreading?:embed=y&: display_count=yesTED-IdeasWorthSpreading?:embed=y&:display_count=yes&: showVizHome=no.
- [4] PAPPAS, N. Ted dataset. https://www.idiap.ch/dataset/ted.