Prework 4.2b: More decidability and recognizability problems

Write your preliminary solutions to each problem and submit a PDF on Canvas. The names in brackets indicate the subset responsible for presenting the problem.

- 1. [Allie, Curtis, Connor] Suppose that A and its complement \overline{A} are both recognizable. Prove that A is decidable.
- 2. [Levi, Grace, Todd] Sometimes pushdown automata have states that are never entered on any input. Construct a TM decider that will input a PDA description $\langle P \rangle$ and accept if P has such a state and reject if P doesn't have such a state. (Hint: We know that E_{CFG} is decidable, so there is a TM decider M_{\emptyset} that decides $E_{PDA} = \{\langle P \rangle \mid P \text{ is a PDA and } L(P) = \emptyset\}$. Use M_{\emptyset} in your construction.)
- 3. [Andrew, Joshua, Meghan] We say that a language is *closed under reversal* if, for every w in the language, its reverse w^R is also in the language. Construct a TM decider that inputs a DFA description $\langle D \rangle$ and accepts iff L(D) is closed under reversal. (Hint: We have a decider for EQ_{DFA} .)
- 4. [Micah, Ben, David, Ky] Let $Q = \{\langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ contains a string with 01110 as a substring} \}$. Show that Q is decidable by building a TM decider for it. (Hint: We have a decider for E_{DFA} .)

BEGIN YOUR SOLUTIONS BELOW THIS LINE