Конспекты по математической логике

Анатолий Коченюк, Георгий Каданцев, Константин Бац $2022\ {\rm год,\ cemectp}\ 4$

1 Введение

Логика – довольно старая наука, но наш предмет довольно молодой В какой-то момент логики как дисциплиниы, которая учит просто правильно рассуждать, стало нехватать. Появилась теория множеств. Общего здравого смысла не хватает, нужен строгий математичесий язык. Это рубеж 19-20 веков.

У нас теория множеств не будет фокусом, как это могло бы быть на мат. факультете.

Теория множеств, когда она была впервые сформулирована, была противоречива (как матан, сформулированный Ньютоном). Чтобы уверенно и эффективно заниматься матаном, нужно суметь его формализовать.

<Парадокс Рассела / парадокс брадобрея> Мы приписываем элементу-человеку свойство, которое невыполнимо. Объекта, выходит, не существует. Мы смогли очень быстро определить противоречие в этом определении. Но, может быть, мы не смогли его определить в других наших определениях? (конструкциях вещественной прямой, и т.д и т.д)

Программа Гильберта.

- 1. Формализуем математику! Сформулируем теорию на языке (не на русском или английском), который не будет допускать парадоксов,
- 2. ... и на котором можно будует доказать непротиворечивость.

В 1930 году становится понятно, что сколько-нибудь сильная (= в ней можно построить формальную арифметику) теория не может быть доказана непротиворечивой.

Возможно, сама наша логика неправильная? Эта идея будет нам полезна, и к ней мы ещё вернемся. Возможно, что это просто свойство мира, и мы хотим невозможного.

Из этих рассуждений выросло большое множество хороших идей, которые оказались полезны в других местах. Матлогика служит широкому кругу нужд.

Мы можем доказывать, что программа работае корректно. Именно доказывать, а не проверять тестами!

Мы можем изучать свойства самих языков. Изоморфизм Карри-Говарда— доказательство это программа, утверждения это тип. Можно изучать языки программирования и можно развернуть изоморфизм: изучать математкиу как язык программирования.

 Φ ункциональные языки: окамль + хаскель. Ознакомление с этими языками преставляет собой способ ознакомиться с предметом немного с другой стороны.

2 Исчисление высказываний

Мы говоирм на двух языках: на предметном языке и метаязыке. Предметный язык – это то, что изучается, а метаязык – это язык, НА котором это изучается.

На уроках английского предметным является сам английский, а метаязыком может быть русский. Метаязык — это язык исследователя, а предметный язык — это язык исследоваемого. Что такое язык вообще? Хороший вопрос.

Высказывание — это одно из двух:

- 1. Большая латниская буква начала алфавита, возможно с индексами и штрихами это пропозициональные переменные.
- 2. Выражение вида $(\alpha \wedge \beta)$, $(\alpha \vee \beta)$, $(\alpha \to \beta)$, $(\neg \alpha)$.

В определении выше альфа и бета это метапеременные— места, куда можно подставить высказывание.

- 1. α, β, γ метапеременные для всех высказываний.
- 2. X, Y, Z метапеременные для пропозициональных переменных.

Метапеременные являются частью языка исследователя.

В формализации мы останавливаемся до места, в котором мы можем быть уверены, что сможем написать программу, которая всё проверяет.

Сокращение записи, приоритет операций: сначала ¬, потом &, потом ∨, потом →. Если скобки опущены, мы восстанавливаем их по приоритетам. Выражение без скобок является частью метаязыка, и становится частью предметного, когда мы восстанавливаем их. Скобки последовательных импликаций расставляются по правилу правой ассоциативности — справа налево.

2.1 Теория моделей

У нас есть истинные значения $\{T,F\}$ в классической логике. И есть оценка высказываний $[\![\alpha]\!]$. Например $[\![A\vee\neg A]\!]$ истинно. Всё, что касается истинности высказываний, касается теории моделей.

Определение 2.1.1. Оценка — это функция, сопоставляющая высказыванию его истинное (истинностное) значение.

2.2 Теория доказательств

Определение 2.2.1. Аксиомы — это список высказываний. Схема аксиомы — высказывание вместе с метопеременными; при любой подстановке высказываний вместо метапеременной получим аксиому.

Определение 2.2.2. Доказательство (вывод) — последовательность высказываний $\gamma_1, \gamma_2 \dots$ где γ_i — любая аксиома, либо существуют j, k < i такие что $\gamma_j \equiv (\gamma_k \to \gamma_i)$. (знак \equiv здесь сокращение для "имеет вид"). Это правило "перехода по следствию" или Modus ponens.

Определим следующие 10 схем аксиом для того исчисления высказываний, которое мы рассматриваем.

- 1. $\alpha \to \beta \to \alpha$ добавляет импликацию
- 2. $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$ удаляет импликацию
- 3. $\alpha \wedge \beta \rightarrow \alpha$ удаление конъюнкции
- 4. $\alpha \wedge \beta \rightarrow \beta$ удаление конъюнкции
- 5. $\alpha \to \beta \to \alpha \land \beta$ внесение конъюнкции
- 6. $\alpha \rightarrow \alpha \lor \beta$ внесение дизъюнкции
- 7. $\beta \rightarrow \alpha \vee \beta$ внесение дизъюнкции
- 8. $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$
- 9. $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to (\neg \alpha)$
- 10. $\neg \neg \alpha \to \alpha$ очень спорная штука.

Пример. Доказательство $\vdash A \rightarrow A$.

- 1. $A \rightarrow (A \rightarrow A) \rightarrow A \text{ (cxema 1)}$
- 2. $A \rightarrow A \rightarrow A$ (cxema 1)

3.
$$(\underbrace{A}_{\alpha} \to \underbrace{A \to A}_{\beta}) \to (\underbrace{A}_{\alpha} \to \underbrace{(A \to A)}_{\beta} \to \underbrace{A}_{\gamma}) \to (\underbrace{A}_{\alpha} \to \underbrace{A}_{\gamma})$$
 (cxema 2)

- 4. $(A \rightarrow (A \rightarrow A) \rightarrow A) \rightarrow (A \rightarrow A) \text{ (m.p 2, 3)}$
- 5. $A \to A \text{ (m.p 1, 4)}$

2.3 Теорема о дедукции

Определение 2.3.1. (Метаметаопределение). Будем большими греческими буквами $\Gamma, \Delta, \Sigma \dots$ списки формул, неупорядоченные.

Определение 2.3.2. Вывод из гипотез: $\Gamma \vdash \alpha$.

To есть существует $\delta_1, \ldots, \delta_n, \delta_n \equiv \alpha$, где $delta_i$ или схема аксиом, или m.p. из j и k и j, k < i.

Теорема 2.3.1. $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \to \gamma$.

Доказательства новыми высказываниями: $\delta_{n+1} \equiv \alpha$ (дано нам в гипотезе), $\gamma_{n+2} \equiv \beta$ (МР шагов n, n+1) — это и требовалось.

 \Rightarrow Пусть $\Gamma, \alpha \vdash \beta$. Напишем программу, которая построит $\Gamma \vdash \alpha \to \beta$. Инвариант, который мы будем поддерживать: всё до $\alpha \to \delta_i$ — док-во. Доказательство индукцией по n

- 1. База: n = 1 без комментариев.
- 2. Если $\delta_1, \dots, \gamma_n$ можно перестроить в доказательство $\alpha \to \gamma_n$, то $\gamma_1 \dots \gamma_{n+1}$ тоже можно перестроить. Разберём случаи:
 - (a) δ_i аксиома или гипотиза из Γ . $(i-0.6) \ \delta_i \ (i-0.3) \ \delta_i \to \alpha \to \delta_i$

(i) $\alpha \to \delta_i$ (m.р из i - 0.6 и i - 0.3)

(b) $\delta_i = \alpha$, то есть надо построить $\alpha \to \alpha$ (i - 0.8, i - 0.6, i - 0.4, i - 0.2) (доказательство $\alpha \to \alpha$)

(i) $\alpha \to \alpha$ (c) δ_i получено из δ_i и δ_k ($\delta_k \equiv \delta_i \to \delta_i$)

по индукционному предположению, уже есть строчки вида $\alpha \to \delta_j, \alpha \to \delta_k$

 $(j) \alpha \rightarrow \delta_j$

 $(k) \ \alpha \to (\delta_j \to \delta_i)$

(i-0.6) $(\alpha \to \delta_j) \to (\alpha \to \delta_j \to \delta_i) \to (\alpha \to \delta_i)$ (cxema 2)

(i - 0.3) $(\alpha \to \delta_j \to \delta_i) \to (\alpha \to \delta_i)$ (m.p.)

(i) $(\alpha \to \delta_i)$ (m.p.)

3 Теория моделей

Мы можем докаывать модели или оценивать их. "Мы можем доказать, что мост не развалится или можем выйти и попрыгать на нём."

Определение 3.0.1. \mathbb{V} — истинностное множество.

F — множество высказываний нашего исчисления высказываний.

P — множество пропозициональных переменных.

$$\llbracket \cdot \rrbracket : F \to \mathbb{V}$$
 — оценка

Определение 3.0.2. Для задания оценки необходимо задать оценку пропозициональных переменных.

$$\llbracket \cdot \rrbracket : P \to \mathbb{V} \quad f_P$$

Тогда:

$$[\![x]\!] = f_p(x)$$

Замечание. Обозначение: значения пропозициональных переменных будем определять в верхнем индексе: $[\![\alpha]\!]^{A=T,B=F...}$

Определение 3.0.3. α — общезначна (истинна), если $[\![\alpha]\!] = T$ при любой оценке P.

 α — невыполнима (ложна), если $[\![\alpha]\!] = F$ при любой оценке P.

 α — выполнима, если $\llbracket \alpha \rrbracket = T$ при некоторой f_P .

 α — опровержима, если $\llbracket \alpha \rrbracket = F$ при некоторой f_P .

Определение 3.0.4. Теория корректна, если доказуемость влечёт общезначимость. Теория полна, если общезначимость влечёт доказуемость.

Определение 3.0.5. $\Gamma \models \alpha$ означает, что α следует из $\Gamma = \{\gamma_1, \dots, \gamma_n\}$, если $[\![\alpha]\!] = T$ всегда при $[\![\gamma_i]\!] = T$ при всех i.

3.1 Корректность исчисления высказываний

Теорема 3.1.1. Исчисление высказываний корректно. $\vdash \alpha$ влечёт $\models \alpha$.

Доказательства. Индукция по длине доказательства $\delta_1, \dots, \delta_n$.

Разбор случаев:

- 1. δ_i аксиома \implies построить таблицу истинности, проверить, что все верно.
- 2. $\delta_i \text{м.п.}$ δ_i , $\delta_k \equiv \delta_i \rightarrow \delta_i \implies$ также рассмотрим таблицу истинности.

Мы даём доказательство на метаязыке, не пускаясь в отчаянный формализм. Такая строгость нас устраевает.

В матлогике бесмысленно формализовывать русский язык. Она нужна, чтобы дать ответы на сложные вопросы в математике, где здравого смысла недостаточно и нужна формализация.

3.2 Полнота исчисления высказываний

Теорема 3.2.1. Исчисление высказываний полно.

Определение 3.2.1. $[\beta]\alpha = \begin{cases} \alpha, & [\![\beta]\!] = T \\ \neg \alpha, & [\![\beta]\!] = F \end{cases}$

Лемма 3.2.1.1. $[\alpha]^{\alpha}$,

$$_{[\beta]}\beta \vdash_{[\alpha\star\beta]}\alpha\star\beta,$$
$$_{[\alpha]}\alpha \vdash_{[\neg\alpha]}\neg\alpha$$

Пример. $[\![\alpha]\!] = T, [\![\beta]\!] = F \implies \alpha \land \neg \beta \vdash \neg (\alpha \land \beta).$

Лемма 3.2.1.2. Если $\Gamma \vdash \alpha$, то $\Gamma, \Delta \vdash \alpha$.

Лемма 3.2.1.3. Пусть дана α, X_1, \dots, X_n — её переменные.

$$[X_1]X_1, \ldots, [X_n]X_n \vdash_{[\alpha]} \alpha$$

Доказатель ство. Пусть $\widetilde{X} =_{[X_1]} X_i \dots_{[X_n]} X_n$.

Индукция по длинне формулы α .

База: $\alpha = X_i$.

Переход: есть α, β . По предположению $\widetilde{X} \vdash_{\lceil \alpha \rceil} \alpha$ $\widetilde{X} \vdash_{\lceil \beta \rceil} \beta$.

По леме 1 тогда $\widetilde{X} \vdash_{[\alpha \star \beta]} \alpha \star \beta$.

Лемма 3.2.1.4. Если $\models \alpha$, то $\widetilde{X} \vdash \alpha$. То есть при любых подстановках значнией α будет истинна.

Лемма 3.2.1.5.

$$\Gamma, Y \vdash \alpha, \quad \Gamma, \neg Y \vdash, \text{ To } \Gamma \vdash \alpha$$

Доказательство было в дз.

Лемма 3.2.1.6. Если $\widetilde{X} \vdash \alpha$ при всех оценках X_1, \ldots, X_n , то $\vdash \alpha$.

Доказательство индукцией по п.

Теорема 3.2.2. Если $\models \alpha$, то $\vdash \alpha$.

Доказательство. По лемме 4 и лемме 6.

4 Интуиционистская логика

Мы не хотим дурацких коснтрукций вроде парадокса брадобрея. Мы не хотим странных, но логически верных утверждений вроде $A \to B \lor B \to A$. Интуиционисткая логика предлагает свою математику, в которой своя интерпретация логических связок. ВНК-интерпретация (Брауер-Гейтинг-Колмогоров).

- $\alpha, \beta, \gamma \dots$ это конструкции.
- $\alpha \wedge \beta$ если мы умеем строить и α , и β .
- $\alpha \vee \beta$, если мы умеем строить α, β и знаем, что именно.
- $\alpha \to \beta$, если мы умеем перестроить α в β .
- \bullet \perp не имеет построения
- $\neg \alpha \equiv \alpha \rightarrow \bot$

"Теория доказательств". Рассмотрим классическое исчисление высказываний и заменим схему аксиом 10 на следующую

$$\alpha \to \neg \alpha \to \beta$$

В этой формализации мы следуем не сути интуиционисткой логики, а традиции. В интуиционисткой логике формализм это не источник логики.

Примеры моделей.

- 1. Модели КИВ подходят: корректны, но не полны ($[\![A \lor \neg A]\!] = H$, но $\not\vdash_H A \lor \neg A$).
- 2. Пусть X топологическое пространство.

Пусть истоинностные значения — все открыте пространства в классической топологии.

- $\bullet \ \llbracket \alpha \& \beta \rrbracket = \llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket.$
- $\llbracket \alpha \vee \beta \rrbracket = \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket$.
- $\llbracket \alpha \to \beta \rrbracket = (X \setminus \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket)^o$.
- $\llbracket \neg \alpha \rrbracket = (X \setminus \llbracket \alpha \rrbracket)^o$.

Теорема 4.0.1. Топологические модели — корректные модели ИИВ.

Утверждение **4.0.1.** ot
odots ot

Доказатель ство. Пусть $A = (0, +\infty), \neg A = (-\infty, 0), A \vee \neg A = \mathbb{R} \setminus \{0\} \neq \mathbb{R}$.

4.1 Общая топология

Раньше были телевизоры с *бесконченым* количеством пикселей (это зависит от химических свойств вещества кинескоп).

Возьмем множество X. Определим на нем топологию как подмножество множества всех подмножеств $\Omega \subseteq \mathcal{P}(X)$. Ω — топология, если это множество открытых множеств и выполнены следующие условия:

- 1. $\varnothing, X \in \Omega$;
- 2. $\bigcup_{i} \in \Omega$, если все $A_i \in \Omega$;
- 3. $\bigcap_{i=1}^{n} A_i \in \Omega$, если $A_1, \dots, A_n \in \Omega$.

То есть топологическое пространство — пара $\langle X,\Omega \rangle$ и про Ω верны приведенные выше три утверждения.

Определение 4.1.1 (Замкнутое мноежство). Множество B такое, что $X \backslash B \in \Omega$ называется замкнутым.

Определение 4.1.2 (Связное топологическое пространство). $\langle X,\Omega\rangle$ связно, если нет $A,B\in\Omega:A\cup B=X$ и $A\cap B=\varnothing$

Определение 4.1.3 (Подпространство). $\langle X_1, \Omega_1 \rangle$ — подпространство $\langle X, \Omega \rangle$, если $X_1 \subseteq X$ и $\Omega_1 = \{a \cap X_1 \mid a \in \Omega \}$

Определение 4.1.4 (Связное множество). Множество, являющееся связным подпространством.

4.2 Примеры топологических пространств

Возьмем дерево (граф). Множество X — множество вержин. Ω — множество всех вершин, что $B \in \Omega$, $\underline{ecлu}\ a \in B,\ x \leqslant a$ влечет $x \in B$. То есть Ω — семейство множеств вершин, которые входят вместе с поддеревом.

Теорема 4.2.1. Граф без цикла свяен тогда и только тогда, когда оно своязно как топологическое пространство.

Доказательство будет в дз.

Определение 4.2.1 (Решетки). X — частично упорядоченное множество отношением \leq .

Множество верхних граней $a, b \ a \sqcap b$ — множество $\{x \in X \mid a \leqslant x, b \leqslant x\}$.

Множество нижних граней a, b: $a \sqcup b$ — множество $\{x \in X \mid a \geqslant x, b \geqslant x\}$.

- a наименьший элемент $A\iff a\in A$ и не существует $b\in A,\,b\leqslant a.$
- a наибольший элемент $A \iff a \in A$ и не существует $b \in A, b \geqslant a$.
- a + b = наименьший элемент множества верхних граний.
- $a \cdot b =$ наибольший элемент множества нижних граний.

Решетка — частично упорядоченное множество, где для каждых двух элементов существуют a+b и $a\cdot b$.

Пример. Дерево — не решетка (в общем случае), так как a+b есть, а a*b может не быть. А вот такой граф является решеткой.

Теорема 4.2.2. Пусть $\langle X, \Omega \rangle$ топологическое пространство, $A, B \in \Omega$. $A \leq B$, если $A \subseteq B$. Тогда $\langle \Omega, \leq \rangle$ — решетка. $A \cdot B = A \cap B$, $A + B = A \cup B$.

Определение 4.2.2. Дистрибутивная решетка — это такая решетка, что $a,b,c\in\Omega,\ a+(b\cdot c)=(a+b)\cdot(a+c).$

Лемма 4.2.2.1. Для дистрибутивной решетки так же верно, что $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$.

Определение 4.2.3. Псевдодополнение $a \to b = \text{наибольшеe}\{c \mid a \cdot c \le b\}$.

Определение 4.2.4. Диамант — такая решетка, что там нет для кого-то псевдодопллнения.

Определение 4.2.5. Решетка с псевдодополнением для всех элементов называется импликативной

Определение 4.2.6. Определим 0 и 1 следующим образом:

- 0 элемент, что $0 \leqslant x$ при всех x;
- 1 элемент, что $x \le 1$ при всех x.

Теорема 4.2.3 (В импликативной решетке 1 есть всегда). $\langle X, \leqslant \rangle$ — импликативная решетка.

Доказатель ство. Рассмотрим $a \to a = \text{наиб}\{c \mid a \cdot c \leqslant a\} = \text{наиб}\{X\} = 1.$

Теорема 4.2.4. Рассмотрим $\langle X, \Omega \rangle$ — импликативная решетка с 0. Рассмотрим И.И.В. Определим оценки $\mathbb{V} = X$:

- $\bullet \ \llbracket \alpha \& \beta \rrbracket = \llbracket \alpha \rrbracket \cdot \llbracket \beta \rrbracket.$
- $\bullet \ \llbracket \alpha \vee \beta \rrbracket = \llbracket \alpha \rrbracket + \llbracket \beta \rrbracket.$
- $\bullet \ \llbracket \alpha \to \beta \rrbracket = \llbracket \alpha \rrbracket \to \llbracket \beta \rrbracket.$
- $\bullet \ \llbracket \neg \alpha \rrbracket = \llbracket \alpha \rrbracket \to 0.$

 α истинно, если $\llbracket \alpha \rrbracket = 1$.

 $\llbracket \bot \rrbracket = 0. \ \neg \alpha \equiv \alpha \to \bot.$

Полученная модель — корректная модель И.И.В.

У нас будет натуральный вывод, интуиция и все такое.

 $\overline{\Gamma, \varphi \vdash \varphi}$ (аксиома).

Вывод утверждения в доказательстве $\Gamma \vdash \varphi$.

Правила вывода (сверху — посылка, снизу — заключение):

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}, \quad \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \psi}, \quad \frac{\Gamma, \varphi}{\Gamma \vdash \varphi}, \quad \frac{\Gamma, \varphi}{\Gamma \vdash \varphi \& \psi}, \quad \frac{\Gamma, \vdash \varphi \& \psi}{\Gamma \vdash \varphi}, \quad \frac{\Gamma, \vdash \varphi \& \psi}{\Gamma \vdash \psi},$$

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi}, \quad \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi}, \quad \frac{\Gamma, \varphi \vdash \rho}{\Gamma \vdash \varphi}, \quad \frac{\Gamma, \varphi \vdash \rho}{\Gamma \vdash \rho}, \quad \frac{\Gamma \vdash \varphi \lor \psi}{\Gamma \vdash \varphi}.$$

Вот они, слева направо: введение \rightarrow , исключение \rightarrow , введение &, два исключения &, введения \vee в двух видах, исключение \vee и специальное правило для лжи.

Теорема 4.2.5. Если $\vdash_{\mathbf{H}} \alpha \vee \beta$, то $\vdash_{\mathbf{H}} \alpha$ или $\vdash_{\mathbf{H}} \beta$.

Определение 4.2.7. Алгебра Гейтинга — импликативная решетка с 0.

Определение 4.2.8. Введем операцию $\sim a \equiv a \to 0$ — дополнение до 0.

Определение 4.2.9. Булева алегбра — Алгебра Гейтинга, где $a+\sim a=1$.

Пример. Булева Алгебра

- соответствует &,
- + cootbetctbyet \vee ,
- \rightarrow cootbetctbyet \rightarrow ,
- \sim cootbetctbyet \neg .

Далее α, β — выссказывания в ИИВ.

Определение 4.2.10. $\alpha \leq \beta$, если $\alpha \vdash \beta$

Определение 4.2.11. $\alpha \approx \beta$, если $\alpha \leqslant \beta$ и $\beta \leqslant \alpha$

Определение 4.2.12. Пусть ξ — множество всех высказываний ИИВ. Тогда $[\xi]$ — называется алгеброй Линденбаума \mathcal{L} .

Теорема 4.2.6. \mathcal{L} — Алгебра Гейтинга.

Лемма 4.2.6.1. $1 = [A \rightarrow A]$

Доказательство. $\alpha \vdash A \to A$, верно (очевидно), то есть $[\alpha] \leqslant [A \to A]$, то есть $[A \to A] = 1$.

Теорема 4.2.7. \mathcal{L} — корректная модель ИИВ.

Теорема 4.2.8. \mathcal{L} — полная модель ИИВ.

Теорема 4.2.9. $\models \alpha$, то есть $[\alpha] = 1$. $1 = [A \to A]$, то есть $[\alpha] = 1$, то есть $\beta \leqslant [\alpha]$ при всех β . Возьмем $\beta = A \to A$, $A \to A \vdash \alpha$, то есть $A \to A$, $(A \to A) \to \alpha$.

Теорема 4.2.10. Алгебра Гейтинга — полная и корректная модель ИИВ.

Определение 4.2.13. Исчисление дизъюнктно, если для любых $\alpha, \beta \vdash \alpha \lor \beta$ влечёт $\vdash \alpha$ или $\vdash \beta$.

Теорема 4.2.11. ИИВ дизъюнктно.

Определение 4.2.14. Пусть существует $f: A \to B$, A, B – алгебры Гейтинга. f – гомоморфизм, если $f(0_A) = 0_B$ $f(1_A) = 1_B$ и $f(\alpha \star_A \beta) = f(\alpha) \star_B f(\beta)$

Определение 4.2.15 (Геделева Алгебра). Это такая алгебра, где a+b=1 влечет a=1 или b=1.

Определение 4.2.16 $(\Gamma(A))$. Пусть A — алгебра Гейтинга. Определим $\gamma:A \to \Gamma(A)$ так: $\gamma(x) = \begin{cases} \omega, & x=1_A \\ x, & x<1_A \end{cases}$ и добавим $1_{\Gamma(A)}$: $t\leqslant 1_{\Gamma}(A)$, если $t\in \Gamma(A)$.

Замечание. $\Gamma(A)$ неофициально называется Γ еделеризацией.

Теорема 4.2.12. $\Gamma(A)$ – Гёделева алгебра.

Доказательство. Пусть $a+b=1_{\Gamma(A)}$, посмотрим на картинку.

Утверждение 4.2.1. $\Gamma(\mathcal{L}) - \Gamma$ ёделева алгебра.

Доказатель ство. Определим каноническое отображение $g(x):\Gamma(\mathcal{L})\to\mathcal{L}$

$$g(x) = \begin{cases} 1 & , x = 1 \text{ или } \omega \\ x & , \text{ иначе} \end{cases}$$

Утверждение 4.2.2. g(x) – гомоморфизм

Теорема 4.2.13. Рассмотрим ИИВ и алгебры Гейтинга $\mathcal{L}, \Gamma(\mathcal{L})$

Утверждение 4.2.3. Если $g:A\to B$ и $[\![\alpha]\!]_A=1_A$, то $[\![\alpha]\!]_B=g(1_A)$.

Доказательство теоремы. Рассмотрим $\vdash \alpha \lor \beta$.

 $\Gamma(\mathcal{L})$ — Геделва алгеба, то есть алгебра Гейтинга.

 $[\![\alpha\vee\beta]\!]_{\Gamma(\mathcal{L})}=1_{\Gamma(\mathcal{L})}$, т.е. либо $[\![\alpha]\!]=1_{\gamma}\mathcal{L}$ либо $[\![\beta]\!]_{\Gamma(\mathcal{L})}=1_{\Gamma(\mathcal{L})}$

Рассмотрим $g: \Gamma(\mathcal{L}) \to \mathcal{L}$

 $[\![\alpha]\!]_{\Gamma(\mathcal{L})}=1_{\Gamma(\mathcal{L})},$ тогда $[\![\alpha]\!]_{\mathcal{L}}=g(1_{\Gamma(\mathcal{L})})=1_{\mathcal{L}}$

T.e. $\vdash \alpha$.

Определение 4.2.17. Модель ИИВ называется табличной, если

- $\mathbb{V} = \mathcal{S}$;
- $\llbracket \alpha \star \beta \rrbracket = f_{\star} (\llbracket \alpha \rrbracket, \llbracket \alpha, \beta \rrbracket),$
- Существует $H \in \mathcal{S}$ выделенная истина $\llbracket \alpha \rrbracket = H$ тогда и только тогда, когда $\models \alpha$

Определение 4.2.18 (Модель Крипки). Некоторые факты, появившиеся на оси времени в истинном или ложном виде и больше не меняется

Замечание. W – частично упорядоченное множество миров.

Определение 4.2.19. ⊩

- 1. Вынужденность переменной A определяется моделью. При этом, если $W_x \leqslant W_y, \ W_x \Vdash A,$ то $W_y \models A.$
- 2. Доопределим ⊩ на все выражения:
 - (a) $W \Vdash A \land B$, если $W \Vdash A$ и $W \Vdash B$
 - (b) $W \Vdash A \lor B$, если $W \Vdash A$ или $W \Vdash B$
 - (c) $W \Vdash \neg A$, если нет $W \leqslant W_x$, что $W_x \Vdash A$
 - (d) $W \Vdash A \to B$, если во всех $W \leqslant W_x$ из $W_x \Vdash A$ следует $W_x \Vdash B$

Определение 4.2.20. $\models \alpha$ если $W \vdash \alpha$.

Теорема 4.2.14. У ИИВ нет полной конечной табличной модели.

Доказатель ство. $\varphi(u) = \bigvee_{i=1, j=1, i \neq j}^{n,n} A_i \to A_j$.

Пусть T — модель, |V| = n.

Рассмотрим $\varphi(n+1)$. По принципу Дирихле. Есть A_i и A_i : $[\![A_i]\!] = [\![A_i]\!]$.

Несложно показать $[\![A_i \to A_j]\!] = \mathcal{U} \implies [\![\varphi(n+1)]\!] = \mathcal{U}.$

Рассмотрим модель, где $\varphi(n)$ не доказуемо ни при каком n.

Теорема 4.2.15. Модель Крипке — корректная модель ИИВ.

4.3 Изоморфизм Кари-Ховарда

Утверждение 4.3.1. τ, σ – типы.

```
\tau \rightarrow \sigma
f(x : \tau) : \sigma \{
return g(x);
t \& \sigma
f(x : \tau, y : \sigma)
\tau \lor \sigma
f(x : std: variant < \tau, \sigma >)
```

Определение 4.3.1 (Изоморфизм Кари–Ховарда). Программа соответствует доказательству. Тип соответствует утверждению. ...

(всё в интуиционисткой логике)

Замечание. $f : \neg \neg \alpha \to \alpha$ – потом подумаем как это интерпретировать.

5 Исчисление предикатов

Нам нужен новый язык. В текущем языке всё хорошо, но он имеет малую выразитеьную силу. Косвенным свидетельством этого является то, что в нём всё легко разрешается.

В чём была исходная цель Гильберта: формализовать всю математику и доказывать всё, не боясь того, что будет противоречие где-нибудь.

Идея: нам нужно построить некоторый язык и затем поверх него построить теорию моделей и теорию доказательств.

Пример. $\forall x.\sin x = 0 \lor (\sin^2 x) + 1 > 1$.

• Предметные (здесь: числовые) выражения

- Предметные переменные x.
- Одно- и двуместные функциональные символы «синусы», «возведение в квадрат» и «сложение»
- Нульместные функциональные символы «ноль» (0) и «один» (1).
- Логическе выражения
 - Предикатные символы «равно» и «больше».

5.1 Язык исчисления предикатов

- 1. Два типа: предметные и логические выражения
- 2. Предметные выражения: метапеременная θ
 - Предметные переменные: a, b, c, ..., метапеременные x, y.
 - Функциональные выражения: $f(\theta_1,\ldots,\theta_n)$, метапеременные f,g,\ldots
 - Примеры: r, q(p(x,s),r)
- 3. Логические выражения: метапеременные $\alpha, \beta, \gamma, \dots$
 - Предикатные выражения: $P(\theta_1, \dots, \theta_n)$, метапеременная P. Имена: A, B, C, \dots ,
 - Связки: $(\varphi \lor \psi)$, $(\varphi \to \psi)$, $(\varphi \to \psi)$, $(\neg \varphi)$
 - Кванторы: $(\forall x.\varphi)$ и $(\exists x.\varphi)$.

Сокращенные записи, метаязык

- 1. Метепаременные:
 - ψ , ϕ , π , ... формулы
 - ullet $P,\,Q,\,\dots$ предикатные символы
 - *θ*, ... термы
 - \bullet $f, g, \dots функциональные символы$
 - x, y, ... предметные переменные
- 2. Скобки как в И.В.; квантор жадный:

$$(\forall a.\ A \lor B \lor C \to \exists b.\ \underbrace{D\&\neg E}_{\exists b....})\&F$$

- 3. Дополнительные обозначения при необходимости:
 - $(\theta_1 = \theta_2)$ вместо $E(\theta_1, \theta_2)$.
 - $(\theta_1 + \theta_2)$ вместо $p(\theta_1, \theta_2)$.
 - **0** вместо *z*.

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

Без синтаксического сахара:

$$\forall x. E(f(x), z) \vee G(p(q(s(x)), o), o)$$

5.2 Два вида значений

- 1. Истинностные (логические) значения:
 - (а) предикаты (в том числе пропозициональные переменные = нульместные предикаты);
 - (b) логические связки и кванторы.
- 2. Предметные значения:
 - (а) предметные переменные;
 - (b) функциональные символы (в том числе константы = нульместные функциональные символы)

5.3 Оценка исчисления предикатов

Определение 5.3.1. Оценка — упорядоченная четвёрка $\langle D, F, T, E \rangle$, где:

- 1. D предметное множество;
- 2. F оценка для функциональных символов. Пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

3. T — оценка для предикатных символов. Пусть P_n — n-местный предикатный символ:

$$T_{P_n}: D^n \to V \qquad V = \{II, II\}$$

4. E — оценка для свободных предметных переменных.

$$E(x) \in D$$

Запись и сокращения записи подобны исчислению высказываний:

$$[\![\phi]\!] \in V, \quad [\![E(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=H} = H$$

- 1. Правила для связок \vee , &, \neg , \rightarrow остаются прежние;
- 2. $[f_n(\theta_1, \theta_2, \dots, \theta_n)] = F_{f_n}([\theta_1], [\theta_2], \dots, [\theta_n])$
- 3. $[P_n(\theta_1, \theta_2, \dots, \theta_n)] = T_{P_n}([\theta_1], [\theta_2], \dots, [\theta_n])$
- 4. $\llbracket \forall x.\phi \rrbracket = \left\{ \begin{array}{ll} \textit{И}\,, & \text{если } \llbracket \phi \rrbracket^{x:=t} = \textit{И} \text{ при всех } t \in \textit{D} \\ \textit{Л}\,, & \text{если найдётся } t \in \textit{D}\,, \text{ что } \llbracket \phi \rrbracket^{x:=t} = \textit{Л} \end{array} \right.$
- 5. $\llbracket\exists x.\phi\rrbracket = \left\{ \begin{array}{ll} \emph{II}, & \text{если найдётся $t\in D$, что } \llbracket\phi\rrbracket^{x:=t} = \emph{II} \\ \emph{\mathcal{I}}, & \text{если } \llbracket\phi\rrbracket^{x:=t} = \emph{\mathcal{I}} \text{ при всех $t\in D$} \end{array} \right.$

Пример. $\llbracket \forall x. \exists y. \neg x + 1 = y \rrbracket$

Зададим оценку:

- $D := \mathbb{N}$;
- $F_1 := 1, F_{(+)}$ сложение в \mathbb{N} ;
- $P_{(=)}$ равенство в \mathbb{N} .

Фиксируем $x \in \mathbb{N}$. Тогда $[x+1=y]^{y:=x}=\mathcal{J}$ поэтому при любом $x \in \mathbb{N}$:

$$\llbracket \exists y. \neg x + 1 = y \rrbracket = H.$$

Итого: $[\![\forall x. \exists y. \neg x + 1 = y]\!] = H$

Пример. Странная интерпретация $[\![\forall x.\exists y.\neg(x+1=y)]\!]$.

Зададим интерпретацию:

- $D := \{ \Box \};$
- $F_{(1)} := \square$, $F_{(+)}(x,y) := \square$;
- $P_{(=)}(x,y) := M$.

Тогда: $[x+1=y]^{x\in D, y\in D}= U$.

Итого: $\llbracket \forall x. \exists y. \neg x + 1 = y \rrbracket = \mathcal{J}I.$

Поэтому формулам оценки предикатов верить нельзя. Никакой интуиции за ними может и не стоять.

Определение 5.3.2. Формула общезначима, если истинна при любой оценке.

Утверждение 5.3.1. $[\![\forall x. Q(f(x)) \lor \neg Q(f(x))]\!] = H.$

Доказательство. Фиксируем D, F, P, E. Пусть $x \in D$. Обозначим $P_Q(F_f(E_x))$ за t. Ясно, что $t \in V$. Разберём случаи.

- Если t = H, то $[P(f(x))]^{P(f(x)):=t} = H$, потому $[P(f(x)) \vee \neg P(f(x))]^{P(f(x)):=t} = H$.
- Если $t = \mathcal{I}$, то $\neg P(f(x)) \rrbracket^{P(f(x)) := t} = \mathcal{U}$ потому всё равно $\llbracket P(f(x)) \vee \neg P(f(x)) \rrbracket^{P(f(x)) := t} = \mathcal{U}$.

5.4 Подстановки, свобода и связность

Определение 5.4.1. Рассмотрим формулу $\forall x.\psi$ (или $\exists x.\psi$). Здесь переменная x связзана в ψ . Все вхождения переменой x в ψ – **связанные**.

Определение 5.4.2. Переменная x входит свободно в ψ , если не находится в области действия никакого квантора по x. Все её вхождения в ψ — **свободные**.

Пример. $\exists y.(\forall x.P(x)) \lor P(x) \lor Q(y)$.

Единственное свободное вхождение прееменной x помеченно синим цветом.

Определение 5.4.3. Подстановка — это . . .

$$\psi[x := \theta] := \begin{cases} \psi, & \psi \equiv y, y \not\equiv x \\ \psi, & \psi \equiv \forall x.\pi \text{ или } \psi \equiv \exists x.\pi \\ \pi[x := \theta] \star \rho[x := \theta], & \psi \equiv \pi \star \rho \\ \theta, & \psi \equiv x \\ \forall y.\pi[x := \theta], & \psi \equiv \forall y.\pi \text{ и } y \not\equiv x \\ \exists y.\pi[x := \theta], & \psi \equiv \exists y.\pi \text{ и } y \not\equiv x \end{cases}$$

Определение 5.4.4. Терм θ свободен для подстановки вместо x в ψ ($\psi[x:=\Theta]$), если ни одно свободное вхождение переменной в Θ не станет связным после подстановки.

Свобода есть: $(\forall x.P(y))[y := z]$ или $(\forall x.\forall y.P(x))[y := z]$. Свободы нет: $(\forall x.P(y))[y := x]$ и $(\forall y.\forall x.P(t))[t := y]$.

5.5Теория доказательств

Рассмотрим язык исчисления предикатов. АксиомыЁ— все схемы аксиом для классического исчисления высказываний в данном языке.

1.
$$\alpha \to \beta \to \alpha$$

6.
$$\alpha \rightarrow \alpha \vee \beta$$

2.
$$(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

7.
$$\beta \to \alpha \vee \beta$$

3.
$$\alpha \wedge \beta \rightarrow \alpha$$

8.
$$(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$$

4.
$$\alpha \wedge \beta \rightarrow \beta$$

9.
$$(\alpha \to \beta) \to (\alpha \to \neg \beta) \to (\neg \alpha)$$

5.
$$\alpha \to \beta \to \alpha \land \beta$$

10.
$$\neg \neg \alpha \rightarrow \alpha$$

Добавим ещё две схемы аксиом (здесь везде θ свободен для подстановки вместо x в φ):

11.
$$(\forall x.\varphi) \to \varphi[x := \theta]$$

12.
$$\varphi[x := \theta] \to \exists x. \varphi$$

Добавим ещё два правила вывода (здесь везде x не входит свободно в φ):

1. Введение
$$\forall$$
: $\frac{\varphi \to \forall x.\psi}{\varphi \to \psi}$,

2. Введение
$$\exists: \frac{(\exists x.\psi) \to \varphi}{\psi \to \varphi}.$$

Утверждение 5.5.1. Доказыуемость, выводимость, полнота, корректность — аналогично исчислению высказыаваний.

5.6Теорема о дедукции для исчисления предикатов

Теорема 5.6.1. Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\gamma \vdash \alpha \rightarrow \beta$

Доказательство.

⇒ также как в К.И.В

💳 та же схема. У нас появились два новых случая аксиом. Ничего страшного, с ним проблем не возникнет.

Однако таже слоедует обработать два новых правила вывода.

Перестроим: $\delta_1, \delta_2, \dots, \delta_n \equiv \beta$ в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$.

Дополним: обоснуем $\alpha \to \delta_n$, если предыдущие уже обоснованы (по индукции).

Два новых похожих случая: правила для ∀ и ∃. Рассмотрим ∀. Для квантора существования аналогично.

Доказываем переходи к (n). $\alpha \to \psi \to \forall x.\varphi$ (правило для \forall), значит, доказано на шаге k, что $\alpha \to \psi \to \varphi$.

$$(n-0.9)\dots(n-0.8)$$
 $(\alpha \to \psi \to \varphi) \to (\alpha\&\psi) \to \varphi$ Т. о полноте КИВ

$$(n-0.4)$$
 $(\alpha \to \psi) \to \forall x. \varphi$ Правило для $\forall, n-0.6$

$$\begin{array}{llll} (n-0.6) & (\alpha\rightarrow\psi)\rightarrow\varphi & \text{M.P. }k,n-0.8\\ (n-0.4) & (\alpha\rightarrow\psi)\rightarrow\forall x.\varphi & \text{Правило для }\forall,\,n-0.8\\ (n-0.3)\dots(n-0.2) & ((\alpha\rightarrow\psi)\rightarrow\forall x.\varphi)\rightarrow(\alpha\rightarrow\psi\rightarrow\forall x.\varphi) & \text{T. о полноте КИВ}\\ (n) & \alpha\rightarrow\psi\rightarrow\forall x.\varphi & \text{M.P. }n-0.4,\,n-0.2 \end{array}$$

5.7 Отношение следования

Определение 5.7.1 (Следование). $\gamma_1, \gamma_2, \dots, \gamma_n \models \alpha$, если выполнено два условия:

- 1. α выполнено всегда, когда выполнено $\gamma_1, \gamma_2, \dots, \gamma_n$;
- 2. α не использует кванторов по переменным, входящим свободно в $\gamma_1, \gamma_2, \dots, \gamma_n$.

Теорема 5.7.1. Если $\Gamma \vdash \alpha$ и в доказательстве не используется кванторов по свободным переменным из Γ , то $\Gamma \models \alpha$.

Влажность второго условия.

Пример. Покажем, что $\Gamma \models \alpha$ ведёт себя неестественно, если в α используются кванторы по переменным, входящим свободно в Γ .

Легко показать, что $P(x) \vdash \forall x. P(x)$.

- (1) P(x) Гипотеза
- (2) $P(x) \rightarrow (A \rightarrow A \rightarrow A) \rightarrow P(x)$ Сх. акс. 1
- $(3) \quad (A \to A \to A) \to P(x) \qquad \text{M.P. 1, 2}$
- (4) $(A \to A \to A) \to \forall x. P(x)$ Правило для \forall , 3
- (5) $(A \to A \to A)$ Cx. akc. 1
- (6) $\forall x.P(x)$ M.P. 5, 4

Пусть $D = \mathbb{Z}$ и P(x) = x > 0. Тогда не будет выполнено $P(x) \models \forall x. P(x)$.

Зачем нам это потребовалось? Мы будем пользоваться, но не злоупотреблять.

Мы не хотим заранее сильно ограничивать язык. Поэтому мы выбираем такой вариант, чтобы он разрешал некоторые.