Quantum Mechanics

Algebraic Methods

Harmonic Oscillator

■ 1D Harmonic Oscillator

Hamiltonian

Hamiltonian for the 1D harmonic oscillator

$$H = \frac{1}{2m} p^2 + \frac{1}{2} m \omega^2 x^2. \tag{1}$$

- Coordinate operator x,
- Momentum operator p,

Defined by their commutation relation

$$[x, p] = i \,\hbar. \tag{2}$$

Let us **rescale the operators** p and x

$$p \to p \sqrt{\hbar m \omega}, \ x \to x \sqrt{\frac{\hbar}{m \omega}},$$
 (3)

then the Hamiltonian looks simpler

$$H = \frac{1}{2} \hbar \omega \left(p^2 + x^2 \right). \tag{4}$$

- Energy scale set by $\hbar \omega$.
- New operators x and p are dimensionless.
- Commutation relation for the rescaled operators

$$[x, p] = i. ag{5}$$

■ The Idea of Boson

It turns out the eigen energies of the harmonic oscillator Eq. (4) is given by $E_n = \hbar \omega (n + 1/2)$

(accept it for now, and we will prove it later).

- Levels are equally spaced: oscillator can only absorb/emit energy in integer multiples of $\hbar \omega$.
- Each unit (quantum) of energy is a **boson**:
 - For mechanical oscillation (sound), the boson is also called a **phonon**.
 - For electromagnetic oscillation (light), the boson is also called a **photon**.
- Each boson carries energy $\hbar \omega \Rightarrow$ can be considered as a particle.

Interpretation of boson: elementary excitation

oscillator boson state
$$|n\rangle = E_n/\hbar \omega$$
 |0\rangle (ground) 1/2 vacuum |1\rangle 3/2 1 boson |2\rangle 5/2 2 bosons | : : : :

The boson can be

- created by the operator $a^{\dagger}: |0\rangle \rightarrow |1\rangle \rightarrow |2\rangle \rightarrow ...$
- annihilated by the operator $a: ... \rightarrow |2\rangle \rightarrow |1\rangle \rightarrow |0\rangle$.

Annihilation and Creation Operator

Introduce the boson annihilation and creation operators

$$a = \frac{1}{\sqrt{2}} (x + i p), \ a^{\dagger} = \frac{1}{\sqrt{2}} (x - i p).$$
 (7)

- a and a^{\dagger} are Hermitian conjugate to each other.
- Analogy: complex numbers z = x + i y, $z^* = x i y \Rightarrow$ coordinate \sim real part, momentum \sim imaginary part.

Commutation relation

$$\left[a, a^{\dagger}\right] = 1,\tag{8}$$

meaning $a a^{\dagger} = a^{\dagger} a + 1$.

Boson Number Basis

Let $|n\rangle$ be the state of n boson excitations (n = 0, 1, 2, ...). They form a set of basis known as the **Fock state** basis or the boson number basis. Representation of a and a^{\dagger} on this basis:

$$a \mid n \rangle = \sqrt{n} \mid n - 1 \rangle,$$

$$a^{\dagger} \mid n \rangle = \sqrt{n+1} \mid n+1 \rangle.$$
(9)

One can verify that

$$a^{\dagger} a | n \rangle = n | n \rangle, \ a a^{\dagger} | n \rangle = (n+1) | n \rangle, \tag{10}$$

- therefore $a a^{\dagger} = a^{\dagger} a + 1$ indeed holds for all states, as an operator identity.
- a^{\dagger} a is the boson **number operator**, which counts the number of bosons in the Fock state.
- The Hilbert space spanned by Fock states is called the **Fock space**.

Can we construct the Fock space from scratch?

Define the operator $\hat{n} = a^{\dagger} a$,

- \hat{n} is Hermitian $(\hat{n}^{\dagger} = \hat{n})$,
- \hat{n} is positive (semi)definite: $\forall |\psi\rangle : \langle \psi| \hat{n} |\psi\rangle = \langle \psi| a^{\dagger} a |\psi\rangle \ge 0$,
- $\Rightarrow \hat{n}$ has a set of orthogonal eigenstates (denoted as $|n\rangle$, labeled by $n=0,1,2,\ldots$)

$$\hat{n} |n\rangle = \lambda_n |n\rangle. \tag{11}$$

with $\lambda_n \geq 0$. Because the spectrum is bounded from below, we can always arrange the eigenvalues in ascending order $0 \leq \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq ..., |0\rangle$ is the "ground state" of \hat{n} .

From the following operator identity (use Eq. (8))

$$\hat{n} \ a = a (\hat{n} - 1), \ \hat{n} \ a^{\dagger} = a^{\dagger} (\hat{n} + 1),$$
 (12)

one can show that

$$\hat{n}(a|n\rangle) = (\lambda_n - 1) (a|n\rangle), \quad \hat{n}(a^{\dagger}|n\rangle) = (\lambda_n + 1) (a^{\dagger}|n\rangle). \tag{13}$$

If $|n\rangle$ is an eigenstate of \hat{n} with eigenvalue λ_n , then $a|n\rangle$ and $a^{\dagger}|n\rangle$ are also eigenstates of \hat{n} with eigen values $\lambda_n \mp 1$. But there is a caveat: we must make sure that the state is normalizable (the sate has a finite norm). For example $a|0\rangle$ must have zero norm, otherwise $a|0\rangle$ would be an eigenstate of \hat{n} with eigenvalue $\lambda_0 - 1 < \lambda_0$, which contradict the with the fact that λ_0 is the smallest eigenvalue, therefore $a|0\rangle = 0 \Rightarrow \hat{n}|0\rangle = 0 \Rightarrow \lambda_0 = 0$.

Then we consider $a|1\rangle$, it is an eigenstate with eigenvalue $\lambda_1 - 1$, but λ_0 is the only eigenvalue smaller than λ_1 , so $\lambda_1 - 1 = \lambda_0 \Rightarrow \lambda_1 = 1$. Iteratively apply similar argument, one can build up the entire Fock state representation.

■ Energy Spectrum

In terms of a and a^{\dagger} , the oscillator Hamiltonian becomes

$$H = \hbar \,\omega \left(a^{\dagger} \, a + \frac{1}{2} \right), \tag{14}$$

So the eigen energies are given by

$$E_n = \hbar \,\omega \left(n + \frac{1}{2} \right). \tag{15}$$

The constant $\hbar \omega/2$ is known as the **zero-point energy** or the **vacuum energy**. The corresponding eigenstate $|n\rangle$ can be raised from the ground state by

$$|n\rangle = \frac{1}{\sqrt{n!}} \left(a^{\dagger}\right)^n |0\rangle. \tag{16}$$

■ Wave Functions

The ground state is defined by $a|0\rangle = 0 \Rightarrow (x+ip)|0\rangle = 0$, where $p = -i\partial_x$, so the ground state wave function $\psi_0(x)$ must satisfy the differential equation

$$(x + \partial_x)\psi_0(x) = 0, (17)$$

the solution is

$$\psi_0(x) = \frac{1}{\pi^{1/4}} e^{-\frac{1}{2}x^2}.$$
(18)

The excited state can be raised from the ground state by applying a^{\dagger} . For example $|1\rangle = a^{\dagger} |0\rangle$ implies

$$\psi_1(x) = \frac{1}{\sqrt{2}} (x - \partial_x) \psi_0(x) = \frac{1}{\pi^{1/4}} \sqrt{2} x e^{-\frac{1}{2}x^2}.$$
 (19)

Iteratively, we can obtain the wave functions for all eigenstates

$$\psi_n(x) = \frac{1}{\pi^{1/4} \sqrt{2^n n!}} H_n(x) e^{-\frac{1}{2}x^2},\tag{20}$$

where $H_n(x)$ is known as the **Hermite polynomial**.

n	$\psi_{n} (x)$	$H_n(x)$	plot of ψ_n (x)
0	$\frac{e^{-\frac{x^2}{2}}}{\pi^{1/4}}$	1	
1	$\frac{\sqrt{2} e^{-\frac{x^2}{2}} x}{\pi^{1/4}}$	2 x	
2	$\frac{e^{-\frac{x^2}{2}}\left(-1+2\ x^2\right)}{\sqrt{2}\ \pi^{1/4}}$	$2 \left(-1 + 2 x^2\right)$	
3	$\frac{e^{-\frac{x^2}{2}} x \left(-3+2 x^2\right)}{\sqrt{3} \pi^{1/4}}$	$4 \times \left(-3 + 2 \times^{2}\right)$	
4	$\frac{e^{-\frac{x^2}{2}} \left(3-12 \ x^2+4 \ x^4\right)}{2 \ \sqrt{6} \ \pi^{1/4}}$	$4 \left(3 - 12 \ x^2 + 4 \ x^4 \right)$	
5	$\frac{e^{-\frac{x^2}{2}} \times (15-20 \ x^2+4 \ x^4)}{2 \ \sqrt{15} \ \pi^{1/4}}$	$8 \times (15 - 20 \times^2 + 4 \times^4)$	

Momentum space wave function

$$\tilde{\psi}_n(p) = \frac{1}{\pi^{1/4} \sqrt{2^n n!}} H_n(p) e^{-\frac{1}{2} p^2}.$$
(21)

- Comparing Eq. (20) and Eq. (21), there is an SO(2) rotational symmetry in the 2D **phase** space of (x, p), which is evident in Eq. (4).
 - ullet This also corresponds to the U(1) symmetry:

$$a \to e^{i\theta} a, \ a^{\dagger} \to e^{-i\theta} a^{\dagger}.$$
 (22)

• U(1) symmetry \Rightarrow conservation of the boson number.

■ 3D Harmonic Oscillator

Hamiltonian

Hamiltonian of a 3D harmonic oscillator

$$H = \frac{\hbar \,\omega}{2} \left(\boldsymbol{p}^2 + \boldsymbol{x}^2 \right). \tag{23}$$

- Coordinate $\boldsymbol{x} = (x_1, x_2, x_3),$
- Momentum $p = (p_1, p_2, p_3)$.

The boson now has three **polarizations**

• boson annihilation $a = (a_1, a_2, a_3)$ and creation $a^{\dagger} = (a_1^{\dagger}, a_2^{\dagger}, a_3^{\dagger})$ operators

$$a = \frac{1}{\sqrt{2}} (x + i p), \ a^{\dagger} = \frac{1}{\sqrt{2}} (x - i p).$$
 (24)

They satisfy the commutation relation

$$\left[a_a, a_b^{\dagger}\right] = \delta_{ab},\tag{25}$$

In terms of the boson operators,

$$H = \hbar \,\omega \left(\boldsymbol{a}^{\dagger} \,\, \boldsymbol{a} + \frac{3}{2} \right). \tag{26}$$

■ Energy Levels

Each boson (regardless of polarization) carries the same energy $\hbar \omega$, so the total energy is proportional to the **total number** N of bosons.

$$E = \hbar \omega \left(N + \frac{3}{2} \right),$$

$$N = n_1 + n_2 + n_3.$$
(27)

- Eigen state: $|n_1 n_2 n_3\rangle$
- Degeneracy

Questions: How are the *degenerate state* differed from each other?

Classical picture: they have the same energy \Rightarrow oscillation amplitude is the same, but oscillation direction can be different \Rightarrow rotational degrees of freedom may help to explain the degeneracy (but only partially).

Angular Momentum

The angular momentum $L = (L_1, L_2, L_3)$ operators

$$L = x \times p. \tag{29}$$

In component form, $L_a = \epsilon_{abc} x_b p_c$. (ϵ_{abc} : Levi-Civita tensor, totally antisymmetric tensor) (Einstein summation is assumed here).

In terms of the boson operators,

$$L_a = -i\,\epsilon_{abc}\,a_b^\dagger\,a_c. \tag{30}$$

• The angular momentum operator generates the SO(3) rotation among different polarization modes.

• The (quadratic) Casimir operator (the square of angular momentum) L^2 .

$$\mathbf{L}^2 = L_1^2 + L_2^2 + L_3^2 = \sum_{i \neq j} (\hat{n}_i(\hat{n}_j + 1) - a_i^{\dagger} a_i^{\dagger} a_j a_j).$$
(31)

■ Fock State Basis

Represent the angular momentum operator in each subspace of fixed total boson number $N = n_1 + n_2 + n_3$.

$$L_{1} = -i \sqrt{(n_{2} + 1) n_{3}} |n_{1}, n_{2} + 1, n_{3} - 1\rangle \langle n_{1} n_{2} n_{3}| + h.c.,$$

$$L_{2} = -i \sqrt{(n_{3} + 1) n_{1}} |n_{1} - 1, n_{2}, n_{3} + 1\rangle \langle n_{1} n_{2} n_{3}| + h.c.,$$

$$L_{3} = -i \sqrt{(n_{1} + 1) n_{2}} |n_{1} + 1, n_{2} - 1, n_{3}\rangle \langle n_{1} n_{2} n_{3}| + h.c..$$
(32)

For example in the N = 1 sector, we have 3 basis states

$$\{|100\rangle, |010\rangle, |001\rangle\}. \tag{33}$$

The angular momentum operators $L_{1,2,3}$ are represented as 3×3 matrices.

$$L_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, L_{2} = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}, L_{3} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

$$(34)$$

The $L^2 = L_1^2 + L_2^2 + L_3^2$ operator can be obtained by matrix square and summation,

$$L^{2} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}. \tag{35}$$

Show Eq. (34) and Eq. (35). Use the explicit matrix representation to verify the commutation relation $[L_a, L_b] = i \epsilon_{abc} L_c$.

Easy to see that L^2 and L_3 commute \Rightarrow their simultaneous eigenstates span the degenerate subspace. Introduce l and m to label the common eigenstates.

$$L^{2} | l, m \rangle = l(l+1) | l, m \rangle,$$

$$L_{3} | l, m \rangle = m | l, m \rangle.$$
(36)

Diagonalize the matrices in Eq. (34),

$$|l=1, m=\pm 1\rangle = \frac{1}{\sqrt{2}} (|100\rangle \pm i |010\rangle),$$

$$|l=1, m=0\rangle = |001\rangle.$$
(37)

- Classical picture:
 - $|l = 1, m = \pm 1\rangle$ uniform circular rotation in the xy-plane, \pm sign corresponds to counterclockwise or clockwise.
 - $|l=1, m=0\rangle$ linear oscillation along the z-direction.
- Quantum wave function:
 - Fock state basis

• Angular momentum basis

l	m	N = 1 sector state	
1	1	$\frac{i 010\rangle + 100\rangle}{\sqrt{2}}$.
1	0	001⟩	-
1	-1	$\frac{-i \left 010\right\rangle + \left 100\right\rangle}{\sqrt{2}}$	•

More Examples

■ U(3) Symmetry

The SO(3) symmetry explains the 3-fold degeneracy of the *first* excited state. But the degeneracy of *higher* angular momentum states goes as 2 l+1 (like 1, 3, 5, 7, ...), which is *smaller* than the observed degeneracies (1, 3, 6, 10, ...) in Eq. (28). This suggest the 3D harmonic oscillator has *more symmetry*!

In fact, the following $U \in U(3)$ transformation leaves the Hamiltonian invariant,

$$a \to U a$$
. (39)

So the 3D harmonic oscillator actually has **U(3)** symmetry.

• The Abelian U(1) subgroup does not leads to degeneracy.

• The non-Abelian SU(3) subgroup \Rightarrow irreducible representations D_{pq} are labeled by two quantum numbers p, q = 0, 1, 2, ...

and their dimensions are

$$\dim D_{pq} = \frac{1}{2} (p+1) (q+1) (p+q+2). \tag{40}$$

For bosonic systems, only q = 0 representations can appear, the corresponding dimensions dim $D_{p0} = \frac{1}{2}(p+1)(p+2)$ (for p = 0, 1, 2, ...) fully explain the degeneracies of the entire spectrum, as in Eq. (28).

Angular Momentum

■ Operator Algebra

Definition

Motivation: classical mechanics: orbital angular momentum $\mathbf{L} = (L_1, L_2, L_3)$

$$L = x \times p. \tag{41}$$

In component form, $L_a = \epsilon_{abc} x_b p_c$. (ϵ_{abc} : Levi-Civita tensor, totally antisymmetric tensor) (Einstein summation is assumed here). From

$$[x_a, p_b] = i \delta_{ab}, \tag{42}$$

(set $\hbar=1$ for simplicity) \Rightarrow the angular momentum operators satisfy

$$[L_a, L_b] = i \epsilon_{abc} L_c. \tag{43}$$

We may treat this *commutation relation* as the definition for angular momentum.

Definition: the **angular momentum** operator $J = (J_1, J_2, J_3)$ consist of three Hermitian operators, satisfying

$$[J_a, J_b] = i \,\epsilon_{abc} \,J_c. \tag{44}$$

- Equivalently, in vector form, $\mathbf{J} \times \mathbf{J} = i \mathbf{J}$.
- This general definition applies to **orbital** and **spin** angular momenta. The spin angular momentum goes beyond the classical definition of $x \times p$.
- The Hermitian operators J generate a unitary group the SU(2) group.

Casimir Operator

A Casimir operator is a operator that commutes with all components of J. It turns out that for SU(2) group, there is only one such operator: the squared angular momentum $J^2 = J \cdot J$,

$$\mathbf{J}^2 = J_1^2 + J_2^2 + J_3^2. \tag{45}$$

(46)

- J^2 is Hermitian.
- By Eq. (44), one can verify that (for a = 1, 2, 3) $[J^2, J_a] = 0.$

Common Eigenstates

 J^2 and J_3 commute \Rightarrow they share the same set of eigenstates, which can be labeled by two independent quantum number: $|j, m\rangle \Rightarrow$ as a common eigenstate, $|j, m\rangle$ must satisfy the eigen equation for both operators

$$J^{2} |j, m\rangle = \lambda_{j} |j, m\rangle,$$

$$J_{3} |j, m\rangle = m |j, m\rangle,$$
(47)

where λ_j is a function of j (to be determined later).

- λ_j is the the eigenvalue of J^2 on $|j, m\rangle$,
- m is the the eigenvalue of J_3 on $|j, m\rangle$.

Raising and Lowering Operators

Define the raising J_+ and lowering J_- operators

$$J_{\pm} = J_1 \pm i \, J_2. \tag{48}$$

- In analogy to $e^{\pm i\theta} = \cos \theta \pm i \sin \theta$.
- J_{\pm} are not Hermitian. Under Hermitian conjugate: $J_{\pm}^{\dagger}=J_{\mp}$.
- Raising and lowering.

$$J_3 J_{\pm} = J_{\pm}(J_3 \pm 1). \tag{49}$$

• From Eq. (49), $J_3 J_{\pm} |j, m\rangle = J_{\pm}(J_3 \pm 1) |j, m\rangle = (m \pm 1) J_{\pm} |j, m\rangle \Rightarrow$ the state $J_{\pm} |j, m\rangle$ (as long as it is not zero) is also an eigenstate of J_3 but with the eigenvalue $(m \pm 1) \Rightarrow J_{\pm} |j, m\rangle$ is just the $|j, m \pm 1\rangle$ state (up to overall coefficient)

$$J_{\pm}|j, m\rangle = c_m^{\pm}|j, m \pm 1\rangle. \tag{50}$$

Therefore J_{\pm} is called the raising/lowering operator.

• Also note that, under the action of J_{\pm} , the quantum number m can only change by 1 (not change continuously) \Rightarrow angular momentum quantization.

• Bounds on quantum numbers.

$$J_{+} J_{-} = J^{2} - J_{3}^{2} + J_{3},$$

$$J_{-} J_{+} = J^{2} - J_{3}^{2} - J_{3}.$$
(51)

• $|j, m\rangle$ is also the eigenstate of $J_+ J_-$ and $J_- J_+$.

$$\langle j, m | J_{+} J_{-} | j, m \rangle = \lambda_{j} - m^{2} + m,$$

 $\langle j, m | J_{-} J_{+} | j, m \rangle = \lambda_{j} - m^{2} - m.$
(52)

• On the other hand

$$\langle j, m | J_{+} J_{-} | j, m \rangle = \langle j, m | J_{-}^{\dagger} J_{-} | j, m \rangle = |c_{m}^{-}|^{2} \ge 0,$$

$$\langle j, m | J_{-} J_{+} | j, m \rangle = \langle j, m | J_{+}^{\dagger} J_{+} | j, m \rangle = |c_{m}^{+}|^{2} \ge 0.$$
(53)

 \bullet Combining Eq. (52) and Eq. (53),

$$\lambda_{j} - m(m \pm 1) \ge 0 \Rightarrow$$

$$-\frac{1}{2} \left(\sqrt{1 + 4\lambda_{j}} - 1 \right) \le m \le \frac{1}{2} \left(\sqrt{1 + 4\lambda_{j}} - 1 \right). \tag{54}$$

So m is bounded from both above and below \Rightarrow denote the upper (lower) bound as m_{max} (m_{min}).

Representation Theory

■ Highest and Lowest Weight State

Denote:

- Highest weight state: $|j, m_{\text{max}}\rangle$, corresponds to $m = m_{\text{max}}$. It can not be further raised by $J_+ \Rightarrow J_+ |j, m_{\text{max}}\rangle = 0$.
- Lowest weight state: $|j, m_{\min}\rangle$, corresponds to $m = m_{\min}$. It can not be further lowered by $J_{-} \Rightarrow J_{-} |j, m_{\min}\rangle = 0$.

Therefore

$$0 = \langle j, m_{\min} | J_{+} J_{-} | j, m_{\min} \rangle = \lambda_{j} - m_{\min}^{2} + m_{\min},$$

$$0 = \langle j, m_{\max} | J_{-} J_{+} | j, m_{\max} \rangle = \lambda_{j} - m_{\max}^{2} - m_{\max}.$$
(55)

Eliminate λ_i ,

$$(m_{\text{max}} + m_{\text{min}})(m_{\text{max}} - m_{\text{min}} + 1) = 0,$$
 (56)

As $m_{\text{max}} \ge m_{\text{min}} \Rightarrow m_{\text{max}} - m_{\text{min}} + 1 \ge 1 > 0 \Rightarrow$ to satisfy Eq. (56), we must have $m_{\text{max}} + m_{\text{min}} = 0$, i.e. $m_{\text{max}} = -m_{\text{min}}$.

We have not specify the meaning of the quantum number j yet. According to the convention, we give j such a physical meaning that j is the maximal value that |m| can take, i.e.

$$m_{\text{max}} = j, \quad m_{\text{min}} = -j \Rightarrow -j \le m \le j.$$
 (57)

Then by Eq. (55)

$$\lambda_j = j(j+1). \tag{58}$$

This also makes Eq. (57) consistent with Eq. (54).

Angular Momentum Quantization

Because m can only change by $\pm 1 \Rightarrow$ the difference between m_{max} and m_{min} must be an integer $\Rightarrow m_{\text{max}} - m_{\text{min}} = 2 \ j = 0, 1, 2, ...$, therefore

- j can only be integer or half-integer: j = 0, 1/2, 1, 3/2, 2, ...
- m takes values in m = -j, -j + 1, ..., j 1, j.
- For **orbital** angular momentum j takes integer values. For **spin** angular momentum j can also be half-integer.

■ Representation

Now we want to determine the coefficients c_m^{\pm} in Eq. (50). From Eq. (52) and Eq. (53), $|c_m^{\pm}|^2 = j(j+1) - m(m\pm 1)$. It is a gauge choice to fix c_m^{\pm} to be real and positive, so we take

$$c_m^{\pm} = \sqrt{j(j+1) - m(m\pm 1)} \ . \tag{59}$$

In conclusion, we have obtained the following representations for angular momentum operators (from Eq. (47) and Eq. (50))

$$J^{2} |j, m\rangle = j(j+1) |j, m\rangle,$$

$$J_{3} |j, m\rangle = m |j, m\rangle,$$

$$J_{\pm} |j, m\rangle = \sqrt{j(j+1) - m(m\pm 1)} |j, m\pm 1\rangle.$$
(60)

Induction implies that all basis states can be

• either raised from the lowest weight state,

$$|j, m\rangle = \left(\frac{(j-m)!}{(2|j)!(j+m)!}\right)^{1/2} J_{+}^{j+m} |j, -j\rangle, \tag{61}$$

• or lowered from the highest weight state,

$$|j, m\rangle = \left(\frac{(j+m)!}{(2j)!(j-m)!}\right)^{1/2} J_{-}^{j-m} |j, j\rangle.$$
(62)

This is just like the Harmonic oscillator.

To make the analogy more precise, take the large-j limit,

$$\frac{J_{+}}{\sqrt{2j}} |j, -j + n\rangle = \sqrt{n+1} |j, -j + n + 1\rangle + O(j^{-1/2}),$$

$$\frac{J_{-}}{\sqrt{2j}} |j, -j + n\rangle = \sqrt{n} |j, -j + n - 1\rangle + O(j^{-1/2}).$$
(63)

Under the following correspondence

$$|j, -j + n\rangle \to |n\rangle,$$

 $(2 j)^{-1/2} J_{-} \to a, (2 j)^{-1/2} J_{+} \to a^{\dagger},$
(64)

the boson creation/annihilation algebra Eq. (9) can be reproduced approximately (to the leading order). In this sense, *spin excitations* can also be treated as bosons, called **magnons**.

■ Spin-1/2

In the j = 1/2 subspace, the (spin) angular momentum operators $\mathbf{S} = (S_1, S_2, S_3)$ can be represented as **Pauli matrices**,

$$S = \frac{1}{2}\sigma. \tag{65}$$

- Basis: $\{|\uparrow\rangle = |1/2, +1/2\rangle, |\downarrow\rangle = |1/2, -1/2\rangle\}.$
- Matrix representations:

$$S_1 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, S_2 = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, S_3 = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
 (66)

Eigenstates and eigenvalues

$$S_{1}: \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \rightarrow +\frac{1}{2}, \ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix} \rightarrow -\frac{1}{2},$$

$$S_{2}: \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\i \end{pmatrix} \rightarrow +\frac{1}{2}, \ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-i \end{pmatrix} \rightarrow -\frac{1}{2},$$

$$S_{1}: \begin{pmatrix} 1\\0 \end{pmatrix} \rightarrow +\frac{1}{2}, \begin{pmatrix} 0\\1 \end{pmatrix} \rightarrow -\frac{1}{2}.$$

$$(67)$$

■ Spin-1

The j=1 subspace: dimension = 3 \Rightarrow 3 basis states, and angular momentum operator represented as 3×3 matrices.

- Basis: $\{|1, +1\rangle, |1, 0\rangle, |1, -1\rangle\}$.
- Matrix representations (the same matrices also represent spin-1)

$$L_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, L_{2} = \frac{1}{\sqrt{2} i} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, L_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$
(68)

Switch to another set of basis (p-wave orbitals)

• Basis transformation

$$\begin{pmatrix}
|1, +1\rangle \\
|1, 0\rangle \\
|1, -1\rangle
\end{pmatrix} = \begin{pmatrix}
\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & -i \\
\frac{-i}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0
\end{pmatrix} \begin{pmatrix}
|x\rangle \\
|y\rangle \\
|z\rangle
\end{pmatrix}.$$
(69)

• Denote the transformation matrix by U, the operators transform as $L_a \to U^{\dagger} L_a U$,

$$L_{1} \simeq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, L_{2} \simeq \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}, L_{3} \simeq \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$
 (70)

■ Rotation Operators

Rotation operators are generated angular momentum operators by

$$R(\boldsymbol{\theta}) = e^{i\,\boldsymbol{\theta}\cdot\boldsymbol{L}}.\tag{71}$$

The physical meaning of $\theta = (\theta_1, \theta_2, \theta_3)$

- direction of θ : the direction of the rotational axis (following the right-handed rule),
- magnitude of θ : the amount of *angle* to rotate.

Examples: rotate along (0, 0, 1) axis by $\theta \Rightarrow \theta = (0, 0, \theta)$.

• Spin-1/2 representation, in the $\{|\uparrow\rangle, |\downarrow\rangle\}$ basis,

$$R_{1/2}(\boldsymbol{\theta}) = \begin{pmatrix} e^{i\,\theta/2} & 0\\ 0 & e^{-i\,\theta/2} \end{pmatrix}. \tag{72}$$

• Spin-1 representation, in the $\{|x\rangle, |y\rangle, |z\rangle\}$ basis,

$$R_1(\boldsymbol{\theta}) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}. \tag{73}$$

When $\theta = 2\pi$, a rotation by 2π should do nothing,

• This is indeed the case for spin-1 representation

$$R_1(0, 0, 2\pi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 1. \tag{74}$$

• But not for spin-1/2,

$$R_{1/2}(0, 0, 2\pi) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -1,$$
 (75)

The extra minus sign means that spin-1/2 is a **projective representation** of SO(3). Nevertheless, it is a **linear representation** of SU(2).

Addition of Angular Momentum

■ Example: Fusion of Spins

Combine two spin-1/2 systems together,

• State tensor products:

$$\{|\uparrow\rangle, |\downarrow\rangle\}_A \times \{|\uparrow\rangle, |\downarrow\rangle\}_B = \{|\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle\}. \tag{76}$$

• Angular momentum adds:

$$S = S_A + S_B, (77)$$

where S_A and S_B are represented as

$$\mathbf{S}_{A} = \frac{1}{2} \boldsymbol{\sigma}_{A} \otimes \mathbb{I}_{B} \simeq \frac{1}{2} (\sigma^{10}, \sigma^{20}, \sigma^{30}),$$

$$\mathbf{S}_{B} = \frac{1}{2} \mathbb{I}_{A} \otimes \boldsymbol{\sigma}_{B} \simeq \frac{1}{2} (\sigma^{01}, \sigma^{02} \sigma^{03}).$$

$$(78)$$

The operator S qualifies as an angular momentum operator, because it satisfies the defining relation $S \times S = i S \Rightarrow \text{In fact}$, S corresponds to the **total angular momentum** of the combined system. \Rightarrow They are **generators** of the global SU(2) symmetry.

$$S^{2} = (S_{A} + S_{B})^{2} = S_{A}^{2} + S_{B}^{2} + 2 S_{A} \cdot S_{B}$$

$$= \frac{3}{2} \mathbb{1} + 2 S_{A} \cdot S_{B}.$$
(79)

The operator $S_A \cdot S_B$ describes the *spin coupling*.

$$\mathbf{S}_{A} \cdot \mathbf{S}_{B} = \frac{1}{4} \left(\sigma^{11} + \sigma^{22} + \sigma^{33} \right) = \frac{1}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \tag{80}$$

Diagonalize $S_A \cdot S_B$:

• Spin singlet state, $S_A \cdot S_B = -3/4 \Rightarrow S^2 = 0 \ (s = 0)$:

$$|0,0\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle). \tag{81}$$

• Spin **triplet** states, $S_A \cdot S_B = 1/4 \Rightarrow S^2 = 2 \ (s = 1)$:

$$|1, +1\rangle = |\uparrow\uparrow\rangle,$$

$$|1, 0\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle),$$

$$|1, -1\rangle = |\downarrow\downarrow\rangle.$$
(82)

Under the basis transformation S is block diagonalized,

• The original basis $\{|\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle\}$ form a **reducible representation** of SU(2).

• The new basis $\{|0,0\rangle\}$ and $\{|1,+1\rangle, |1,0\rangle, |1,-1\rangle\}$ respectively form **irreducible representations** of SU(2).

The two bases are related by basis transformations:

• $1/2 \otimes 1/2 \rightarrow 0$ channel:

$$(|0,0\rangle) = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} |\uparrow\uparrow\rangle\rangle \\ |\uparrow\downarrow\rangle \\ |\downarrow\downarrow\rangle \end{pmatrix}. \tag{83}$$

• $1/2 \otimes 1/2 \rightarrow 1$ channel:

$$\begin{pmatrix}
|1, +1\rangle \\
|1, 0\rangle \\
|1, -1\rangle
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
|\uparrow \uparrow\rangle \\
|\uparrow \downarrow\rangle \\
|\downarrow \uparrow\rangle \\
|\downarrow \downarrow\rangle
\end{pmatrix}.$$
(84)

The matrix elements are called **Clebsch-Gordan coefficients**. They tell us how the composition of two spin-1/2 systems splits into a spin-0 and a spin-1 system.

• Fusion Rules

Spins are irreducible representations of the SU(2) group. They are building blocks for more general (reducible) representations. All **representations** of SU(2) form a **category**:

- Irreducible representations are *simple objects* in the category, labeled by their spin quantum numbers j = 0, 1/2, 1, ...
- Other reducible representations are not simple. They can be considered as *spin systems*.
 - **Semisimple property**: each reducible representation (spin system) can split in to direct sum of irreducible representations (spins).

Each representation can be associated with a **representation space** (which is a Hilbert space). For example, spin-1/2 has a 2-dim representation space, spanned by $\{|\uparrow\rangle, |\downarrow\rangle\}$. For an irreducible representation of spin-j, the **representation dimension** is 2j+1.

• Matrix representation of group element $q \in SU(2)$ in representation j can be depicted as

$$\frac{1}{j}g_{\overline{j}}$$

Example: rotation $\theta = (0, 0, \theta)$, c.f. Eq. (72) and Eq. (73)

$$\frac{1}{2}R(\theta) = \begin{pmatrix} e^{i\theta/2} & 0 \\ 0 & e^{-i\theta/2} \end{pmatrix},$$

$$\frac{1}{2}R(\theta) = \begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$
(85)

The representation category of SU(2) is actually a **tensor category**, i.e. a category equipped with **tensor product** structures, meaning that the tensor product two representations is still a representation (which can then be further decomposed into irreducible representations).

$$\frac{j_1}{j_2} \otimes \frac{j_2}{j_2} = \frac{j_1}{j_2}$$

• The tensor structure specifies the **fusion rule**:

$$j_1 \otimes j_2 \to |j_1 - j_2| \oplus (|j_1 - j_2| + 1) \oplus \dots \oplus (j_1 + j_2 - 1) \oplus (j_1 + j_2).$$
 (86)

- Composition of a spin- j_1 and a spin- j_2 systems is a spin system that contains irreducible representations ranging from $|j_1 j_2|$ to $j_1 + j_2$ (each of them appear once).
- Example: $1/2 \otimes 1/2 \rightarrow 0 \oplus 1$.
- Notice that the representation dimensions add up correctly

$$\dim \mathcal{H}_{j_1 \otimes j_2} = \sum_{j_3 = |j_1 - j_2|}^{j_1 + j_2} (2 \ j_3 + 1) = (2 \ j_1 + 1) (2 \ j_2 + 1). \tag{87}$$

• The decomposition is implemented by the **fusion vertex** (a *projective morphism*), which can be viewed as three-leg tensors preserving the SU(2) symmetry.

$$j_1$$
 π j_3

such that $\forall g \in SU(2)$:

$$\frac{\overline{j_1}}{j_2}g \xrightarrow{\overline{j_3}} = \frac{\overline{j_1}}{j_2} \pi - g \xrightarrow{\overline{j_3}}$$

• Example: fusion of two spin-1/2s, c.f. Eq. (83) and Eq. (84)

$$\pi_{0}: 1/2 \otimes 1/2 \to 0,$$

$$\pi_{0} = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix},$$

$$\pi_{1}: 1/2 \otimes 1/2 \to 1,$$

$$\pi_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$
(88)

Tensor elements of the fusion vertex are Clebsch-Gordan coefficients (CG coefficients).

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = \langle j_3, m_3 \mid j_1, m_1; j_2, m_2 \rangle.$$
 (89)

They can be used to implement basis transformations

$$\pi(j_1 \otimes j_2 \to j_3) = \sum_{m_1, m_2, m_3} |j_3, m_3\rangle \begin{pmatrix} j_1 & j_2 \\ m_1 & m_2 \end{pmatrix} |j_3 \\ m_3 \rangle \langle j_1, m_1; j_2, m_2|.$$
(90)

To obtain the CG coefficient,

• either look up in *Mathematica*:

ClebschGordan[
$$\{1/2, -1/2\}, \{1/2, 1/2\}, \{1, 0\}$$
]
$$\frac{1}{\sqrt{2}}$$

• or calculate as eigenbasis of the Casimir operator J^2 :

$$\frac{j_1}{j_2} J^2 \frac{j_1}{j_2} = \sum_{j_3} \frac{j_1}{j_2} \pi^* j_3 \sqrt[3]{j_3} \pi \int_{j_2}^{j_1} \sqrt[3]{j_2} \pi^* j_2 \sqrt[3]{j_2} \pi^* j_2 \sqrt[3]{j_2} \pi^* j_3 \sqrt[3]{j_3} \pi^* j_2 \sqrt[3]{j_2} \pi^* j_3 \sqrt[3]{j_3} \pi^* j_3 \sqrt[3]{j_2} \pi^* j_3 \sqrt[3]{j_2} \pi^* j_3 \sqrt[3]{j_3} \pi^* j_3 \sqrt[3]{j_2} \pi^* j_$$

- Represent J^2 in the $j_1 \otimes j_2$ space.
- Diagonalize J^2 , group eigenvectors by eigenvalues.
- Within each degenerated subspace: the eigenvalue $\lambda_{j_3} = j_3(j_3 + 1)$ or the degeneracy $2 j_3 + 1$ infers the spin quantum number j_3 , the eigenvectors form the fusion vertex $\pi(j_1 \otimes j_2 \to j_3)$.

Code Example

■ F-Symbols

Fusion vertices can be **composed** to fuse *multiple* spins.

• The composition follows from the tensor network contraction.

Given incoming representations j_1 , j_2 , j_3 and the outgoing representation j_6 , there could still be multiple fusion channels, depending on the choice of j_4 .

Example:
$$(1/2 \otimes 1/2) \otimes 1/2 \rightarrow 1/2$$

• For $j_4 = 0$,

$$\alpha_0 = \pi(1/2 \otimes 1/2 \to 0) \circ \pi(0 \otimes 1/2 \to 1/2)$$

$$= \begin{pmatrix} 0 & 0 & -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 & 0 \end{pmatrix},$$

• For $j_4 = 1$,

$$\alpha_1 = \pi(1/2 \otimes 1/2 \to 1) \circ \pi(1 \otimes 1/2 \to 1/2)$$

However, we can also fuse the spin in a different order.

Now depending on j_5 , there could be multiple fusion channels.

Example: $1/2 \otimes (1/2 \otimes 1/2) \rightarrow 1/2$

• For $j_5 = 0$,

$$\beta_0 = \pi(1/2 \otimes 1/2 \to 0) \circ \pi(1/2 \otimes 0 \to 1/2)$$

• For $j_5 = 1$,

$$\beta_1 = \pi(1/2 \otimes 1/2 \to 1) \circ \pi(1/2 \otimes 1 \to 1/2)$$

The incoming and outgoing representation remains the same, just by changing the fusion order, the resulting fusion tensors are different. For consistency, the two different **fusion trees** must be related. The relation is a *natural transformation* in category theory, which is a *linear transformation* among fusion trees,

$$\underbrace{j_1}_{j_4} \underbrace{j_2}_{j_5} \underbrace{j_3}_{j_5} = \sum_{j_5} \left(F_{j_6}^{j_1 j_2 j_3} \right)_{j_5}^{j_4} \underbrace{j_2}_{j_5} \underbrace{j_3}_{j_5}.$$
(96)

In the example of $1/2 \otimes 1/2 \otimes 1/2 \rightarrow 1/2$

$$\begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}. \tag{97}$$

HW

Verify Eq. (92), Eq. (93), Eq. (94), Eq. (95), Eq. (97).

- The matrix $F_{j_6}^{j_1 j_2 j_3}$ is called **F-matrix**, whose elements are called **F-symbols**. The F-matrix is unitary.
- F-symbol is related to Wigner 6 j-symbol by a normalization factor

$$\left(F_{j_6}^{j_1 j_2 j_3}\right)_{j_5}^{j_4} = (-)^{j_1 + j_2 + j_3 + j_6} \sqrt{(2 j_4 + 1)(2 j_5 + 1)} \left\{ \begin{array}{cc} j_1 & j_2 & j_4 \\ j_3 & j_6 & j_5 \end{array} \right\}.$$
(98)

Mathematica knows how to calculate the 6 j-symbol.

 $SixJSymbol[{1/2, 1/2, 0}, {1/2, 1/2, 0}]$

Pentagon Relation: the consistency equation of F-symbols. The left-most and right-most fusion trees of four spins can be related to each other by F-moves in two different sequences. The diagram must commute.

$$\left(F_{j_5}^{j_6}{}^{j_3}{}^{j_4}\right)_{j_8}^{j_7} \left(F_{j_5}^{j_1}{}^{j_2}{}^{j_8}\right)_{j_9}^{j_6} = \sum_{j_{10}} \left(F_{j_7}^{j_1}{}^{j_2}{}^{j_3}\right)_{j_{10}}^{j_6} \left(F_{j_5}^{j_1}{}^{j_{10}}{}^{j_4}\right)_{j_9}^{j_7} \left(F_{j_9}^{j_2}{}^{j_3}{}^{j_4}\right)_{j_8}^{j_{10}}. \tag{99}$$

Fortunately, a mathematical theorem guarantees that the *pentagon relations* are all that need to be satisfied, i.e. all other consistencies are consequences of the pentagon relations.

■ Wigner-Eckart Theorem

Hydrogen Atom

Classical Mechanical Background

- Classical Equation of Motion
 - A hydrogen atom is a bound state of a single electron and a single proton.
 - The proton is much heavier than the electron (mass ratio $m_p/m_e \approx 1836$), it is essentially pinned at the center of mass.
 - Consider electron moving in the *electric static potential* created by the proton.

$$V(r) = -\frac{k}{r},\tag{100}$$

where $k = e^2/(4\pi\epsilon_0)$ describes the strength of the Coulomb force.

• The **Energy** (Hamiltonian) of the *electron* is given by

$$E = \frac{\mathbf{p}^2}{2m} - \frac{k}{r},\tag{101}$$

- r is the **displacement** from the proton and r = |r| is the electron-proton distance.
- $p = m \dot{r}$ is the momentum.
- *m* is the **mass** of electron (or more precisely the *reduced mass* of the electron in this two-body problem).
- The angular momentum

$$\boldsymbol{L} = \boldsymbol{r} \times \boldsymbol{p}. \tag{102}$$

• The classical equation of motion:

$$\dot{\boldsymbol{r}} = \frac{\boldsymbol{p}}{m}, \ \dot{\boldsymbol{p}} = -\frac{k \, \boldsymbol{r}}{r^3}.\tag{103}$$

• $\dot{\mathbf{L}} = \dot{\mathbf{r}} \times \mathbf{p} + \mathbf{r} \times \dot{\mathbf{p}} = 0$ from Eq. (103) \Rightarrow the angular momentum is conserved. (: the Hamiltonian has the SO(3) rotation symmetry)

■ Laplace-Runge-Lenz (LRL) Vector

• The Laplace-Runge-Lenz (LRL) vector is defined to be

$$A = p \times L - m k \frac{r}{r}.$$

1:
$$m k \hat{r}$$

$$p \times L$$

• The LRL vector is conserved (there must be an symmetry associate to it, what is it?)

$$\dot{A} = 0. \tag{105}$$

Using Eq. (103),

$$\dot{\mathbf{A}} = \dot{\mathbf{p}} \times \mathbf{L} - m \, k \, \frac{\dot{\mathbf{r}}}{r} + m \, k \, \frac{\mathbf{r}}{r^2} \, \dot{r}$$

$$= -\frac{k}{r^3} \, \mathbf{r} \times (\mathbf{r} \times \mathbf{p}) - \frac{k}{r} \, \mathbf{p} + m \, k \, \frac{\mathbf{r}}{r^2} \, \dot{r}$$

$$= -\frac{k}{r^3} \left(\mathbf{r} \, (\mathbf{r} \cdot \mathbf{p}) - r^2 \, \mathbf{p} \right) - \frac{k}{r} \, \mathbf{p} + m \, k \, \frac{\mathbf{r}}{r^2} \, \dot{r}$$

$$= -m \, k \, \frac{\mathbf{r}}{r^3} \left(\mathbf{r} \cdot \dot{\mathbf{r}} \right) + m \, k \, \frac{\mathbf{r}}{r^2} \, \dot{r} = 0$$

This conservation law can be used to derive the **Kepler orbit**. Consider

$$\mathbf{A} \cdot \mathbf{r} = A \, r \cos \theta = \mathbf{r} \cdot (\mathbf{p} \times \mathbf{L}) - m \, k \, r, \tag{106}$$

where θ is the angle between r and A. Permuting the scalar triple product $r \cdot (p \times L) = L \cdot (r \times p) = L^2$, Eq. (106) \Rightarrow the orbit equation

$$\frac{1}{r} = \frac{m\,k}{L^2} \left(1 + \frac{A}{m\,k} \cos\theta \right). \tag{107}$$

• Conservation of the magnitude $A = |A| \Rightarrow$ conservation of the eccentricity of the orbit (in fact $e \equiv c / a = A / m k$).

• Conservation of the direction of $A \Rightarrow$ conservation of the periapsis (the point of closest approach) with respect to the force center.

So the LRL vector is conserved.

- L and A are always perpendicular $(L \cdot A = 0)$, they fully specifies a unique Kepler orbit (shape and orientation are both determined).
- As the orbit is specified, its energy must be determined too \Rightarrow so the energy E is not an independent conserved quantity, in fact

$$A^2 = m^2 k^2 + 2 m E L^2. (108)$$

- Given the magnitude of L and A,
 - All orbits of different orientations are degenerated in energy \Rightarrow they are related by symmetry.
 - Each orbit orientation \Leftrightarrow a pair of perpendicular unit vectors $(L/L, A/A) \Leftrightarrow$ a particular rotation in 3D space, i.e., a group element of $SO(3) \Leftrightarrow$ a point on (half of) a **4D sphere!** (more precisely a point on RP^3)
 - The symmetry that keeps the 4D sphere invariant is SO(4) (more precisely, to keep RP³ invariant, the symmetry is actually $SO(4)/\mathbb{Z}_2$.
 - SO(4) group has six generators, all of them must be conserved \Rightarrow corresponding to the conservation of both \boldsymbol{L} and \boldsymbol{A} .

Let us represent the SO(4) group as 4×4 orthogonal matrices. (a) Show that orthogonal matrices $O = e^{i\theta A}$ are generated by imaginary antisymmetric matrices A (i.e., $A^{\mathsf{T}} = -A \in \mathbb{I}$). (b) Verify that the following six matrices form a complete basis of genera-

$$T_1 = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix}, \ T_2 = \frac{1}{2} \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i \\ i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \end{pmatrix}, \ T_3 = \frac{1}{2} \begin{pmatrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \\ 0 & i & 0 & 0 \end{pmatrix}, \ S_2 = \frac{1}{2} \begin{pmatrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \end{pmatrix}, \ S_3 = \frac{1}{2} \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & -i & 0 \\ 0 & 0 & 0 & i \\ i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \end{pmatrix}.$$

$$\text{(c) Verify the following commutation relations}$$

 $[T_i, T_j] = i \epsilon_{ijk} T_k, [S_i, S_j] = i \epsilon_{ijk} S_k, [T_i, S_j] = 0.$

Compare with Eq. (44), we learn that $so(4) \cong su(2) \times su(2)$.

Quantum Mechanical Treatment

■ Operator Algebra

We promote classical observables to Hermitian operators:

- Coordinate r and momentum p operators, satisfying $[r_a, p_b] = i \delta_{ab}$. See Eq. (42).
- Angular momentum operator $L = r \times p$. See Eq. (41).
- Quantum LRL operator

$$\mathbf{A} = \frac{1}{2} (\mathbf{p} \times \mathbf{L} - \mathbf{L} \times \mathbf{p}) - m k \frac{\mathbf{r}}{r}.$$
(109)

Compared with the classical case Eq. (104), the additional "anti-symmetrization" is to ensure \boldsymbol{A} to be Hermitian.

• Hamiltonian operator

$$H = \frac{\boldsymbol{p}^2}{2m} - \frac{k}{r}.\tag{110}$$

One can verify the following commutation relations

$$[H, L_{a}] = 0,$$

 $[H, A_{a}] = 0,$
 $[L_{a}, L_{b}] = i \epsilon_{abc} L_{c},$
 $[L_{a}, A_{b}] = i \epsilon_{abc} A_{c},$
 $[A_{a}, A_{b}] = -i 2 m \epsilon_{abc} L_{c} H,$

$$(111)$$

and the following operator equations

$$\mathbf{A} \cdot \mathbf{L} = \mathbf{L} \cdot \mathbf{A} = 0,$$

$$\mathbf{A}^2 = 2 m H(\mathbf{L}^2 + 1) + m^2 k^2.$$
(112)

■ SO(4) Generators

Suppose there exist bound states with energy E < 0. In the subspace of a fixed eigen energy E (i.e. replacing $H \to E$), it makes sense to rescale the quantum LRL operator \boldsymbol{A} by a scalar

$$\tilde{\boldsymbol{A}} = \frac{1}{\sqrt{-2 m E}} \, \boldsymbol{A},\tag{113}$$

then Eq. (111) is simplified to

$$[H, L_a] = 0,$$

$$[H, A_a] = 0,$$

$$\begin{split} [L_a,\,L_b] &= i\,\epsilon_{abc}\,L_c,\\ [L_a,\,\tilde{A}_b] &= i\,\epsilon_{abc}\,\tilde{A}_c,\\ [\tilde{A}_a,\,\tilde{A}_b] &= i\,\,\epsilon_{abc}\,L_c. \end{split}$$

Define the SO(4) generators

$$T = \frac{1}{2} (\mathbf{L} + \tilde{\mathbf{A}}), \ \mathbf{S} = \frac{1}{2} (\mathbf{L} - \tilde{\mathbf{A}}). \tag{115}$$

• How do we know they form SO(4) generators? We check their commutation relations

$$[H, T_{a}] = 0,$$

 $[H, S_{a}] = 0,$
 $[T_{a}, T_{b}] = i \epsilon_{abc} T_{c},$
 $[S_{a}, S_{b}] = i \epsilon_{abc} S_{c},$
 $[T_{a}, S_{b}] = 0.$ (116)

- $\mathbf{A} \cdot \mathbf{L} = \mathbf{L} \cdot \mathbf{A} = 0$ further implies $\mathbf{T}^2 = \mathbf{S}^2$.
- \bullet T and S are two sets of independent "angular-momentum like" operators.
- Common eigen states of T and S are labeled by three quantum numbers t, m_t , m_s :

$$\begin{array}{c}
\mathbf{T}^{2} | t, m_{t}, m_{s} \rangle = \mathbf{S}^{2} | t, m_{t}, m_{s} \rangle = t(t+1) | t, m_{t}, m_{s} \rangle, \\
T_{3} | t, m_{t}, m_{s} \rangle = m_{t} | t, m_{t}, m_{s} \rangle, \\
S_{3} | t, m_{t}, m_{s} \rangle = m_{s} | t, m_{t}, m_{s} \rangle,
\end{array}$$
(117)

- $t = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \dots$ For each fixed $t \Rightarrow (2t+1)^2$ degeneracy.
- m_t , $m_s = -t$, -t+1, ..., t-1, t.

■ Energy Levels

From Eq. (112), Eq. (113), Eq. (115),

$$4 \mathbf{T}^{2} = \mathbf{L}^{2} + \tilde{\mathbf{A}}^{2}$$

$$= \mathbf{L}^{2} + \frac{1}{-2 m E} \mathbf{A}^{2}$$

$$= \mathbf{L}^{2} - \frac{1}{2 m E} (2 m E(\mathbf{L}^{2} + 1) + m^{2} k^{2})$$

$$= -1 - \frac{m k^{2}}{2 E}.$$
(118)

• On the state $|t, m_t, m_s\rangle$, $\mathbf{T}^2 = t(t+1)$,

$$E = -\frac{m k^2}{2(4 \mathbf{T}^2 + 1)} = -\frac{m k^2}{2(2 t + 1)^2}.$$
(119)

• Given $t = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, ...,$ define the **principal quantum number**

$$n = 2 t + 1 = 1, 2, 3, 4, 5, \dots$$
 (120)

The energy levels are given by $n \in \mathbb{Z}_+$

$$E_n = -\frac{m \, k^2}{2 \, n^2}.\tag{121}$$

• The corresponding eigenstates $|t, m_t, m_s\rangle$ (with t = (n-1)/2) are labeled by $m_t, m_s = -t, -t+1, ..., t-1, t \Rightarrow$ level degeneracy: $(2 t+1)^2 = n^2$.

■ Ground State

Which state is the ground state?

- The energy $E_n = -m k^2/(2 n^2)$ is minimized when n = 1 (or t = 0).
- When t = 0, m_t and m_s has only one choice, i.e. $m_t = m_s = 0$.
- So the ground state corresponds to the $|0, 0, 0\rangle$ state.

How to find its wave function $\psi_{1s}(\mathbf{r})$? This amount to solve the differential equation $\mathbf{T}^2 \psi_{1s} = 0$, which is equivalent to

$$H\psi_{1s} = E_1\psi_{1s},$$
 (122)

or more explicitly as

$$\left(\frac{\mathbf{p}^2}{2m} - \frac{k}{r}\right)\psi_{1s} = -\frac{m\,k^2}{2}\,\psi_{1s}.\tag{123}$$

We guess a trial wave function

$$\psi_{1,s}(\mathbf{r}) \propto e^{-r/a},$$
 (124)

Eq. (123) implies a k m - 1 = 0, i.e. a = 1/(k m).

In conclusion, the (normalized) **ground state wave function** of the electron in the hydrogen atom reads

$$\psi_{1\,s}(\mathbf{r}) = \frac{2}{a^{3/2}} \,e^{-r/a},\tag{125}$$

- a = 1/(k m) is called the **Bohr radius**.
- The ground state energy is given by

$$E_1 = -\frac{k}{2 a},\tag{126}$$

as if the electron in orbiting the proton in a circular orbital of radius a (the classical picture).

• The electron is observed randomly in a probability cloud, called the **electron cloud**.

$$p(r) = |\psi(r)|^2 \propto e^{-2r/a}$$
. (127)

■ Excited States

Excited states are labeled by higher principal quantum numbers $n=2,3,\ldots$ (or $t=\frac{1}{2},1,\ldots$).

- States with the same principal quantum numbers are degenerated in energy.
- Within each degenerated sectors, the states $|t, m_t, m_s\rangle$ form a complete set of basis (with $m_t, m_s = -t, ..., t$), which can be viewed as a combined system of two "spins" of the same angular momentum t.

The *orbital* angular momentum \boldsymbol{L} of electron is the total angular momentum of the fictitious spins,

$$L = T + S. ag{128}$$

According to the fusion rules of spins, we anticipate their total angular momentum to take l = 0, 1, ..., 2t (each representation will appear once). So the excited states may as well be labeled by

$$|n, l, m\rangle$$
 (129)

- n principal quantum number (n = 1, 2, ...),
- l angular quantum number (l = 0, 1, ..., n-1)
- m magnetic quantum number (m = -l, -l+1, ..., l-1, l)

 $|n, l, m\rangle$ and $|t, m_t, m_s\rangle$ are just differed by a basis transformation, but the former basis is more commonly used as **atomic orbitals**, because the electron-electron interaction will break the SO(4) symmetry down to SO(3).

Code