2009-2010 学年 第一学期末试卷(A)

字号	学号		姓名	成绩
----	----	--	----	----

考试科目:《 矩阵理论 》(A)

考试日期: 2010年 1 月 14 日

注意事项: 1、考试7个题目共8页

2、考试时间 120 分钟

题目:

- 一、(本题 39 分)
- 二、(本题 20 分)
- 三、(本题 6 分)
- 四、(本题 9 分)
- 五、(本题 11 分)
- 六、(本题 8 分)
- 七、(本题 7分)
- 八、(附加题)

Α

一. 填空(**39** 分) (注: 【代表单位阵, A^H表示 H 转置, det(A) 指行列式)

$$(1)e^{-tr(A)}\cdot \det(e^{A}) = \underline{\qquad}, \quad (e^{A})^{+}e^{-A} - e^{-A}(e^{A})^{-1} = \underline{\qquad}$$

(2)若 $A^2-3A+2I=0$,则A有一个无重根零化式为f(x)= (x-1)(x-1)

(2)若
$$\mathbf{A}^2 - 3\mathbf{A} + 2\mathbf{I} = 0$$
,则 \mathbf{A} 有一个无重根零化式为 $\mathbf{f}(\mathbf{x}) = \underbrace{\begin{pmatrix} \mathbf{Y} - \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{X} - \mathbf{X} \end{pmatrix} \mathbf{A}^{H}}_{\mathbf{A}^{H}} = \mathbf{A}^{H}}_{\mathbf{A}^{H}} \mathbf{A}^{H} = \mathbf{A}^{H}}_{\mathbf{A}^{H}} \mathbf{A}^{H} = \mathbf{A}^{H}}$ (3)若 $\mathbf{A} = \mathbf{A}^2 = \mathbf{A}^H$,则 $\mathbf{A}^+ = \underbrace{\mathbf{A}^{H}}_{\mathbf{A}^{H}} \mathbf{A}^{H} = \mathbf{A}^{H}}_{\mathbf{A}^{H}} \mathbf{A}^{H} = \underbrace{\mathbf{A}^{H}}_{\mathbf{A}^{H}} \mathbf{A}^{H} = \underbrace{$

$$(5) A = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}, B = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}, A \otimes B$$
的特征根为 3 a, 3 b, 3 a, 3 b

$$\mathbf{tr}(A \otimes B) = \underbrace{\begin{pmatrix} 6(a+b) \\ b \end{pmatrix}}_{A \otimes A \otimes B}$$

(6)
$$A = \begin{pmatrix} \frac{2}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{4} & \frac{2}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}, x = \begin{bmatrix} i \\ i \\ i \end{bmatrix}, i = \sqrt{-1}, 则谱半径$$

 $\rho(A)$ 取值范围是 / ξ / , 且 $\|Ax\|_1 = \frac{\zeta}{\xi}$; $\|A\|_{\infty} =$

(8)
$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
则 $Ax = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 的最佳极小二乘解是 $X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$; $A^{+} = \begin{bmatrix} 1 \\ -1 & 1 \end{bmatrix}$...

(9)矩阵 A中各列都可用 B的列线性表示($\mathbf{R}(\mathbf{A})$ ⊂ $\mathbf{R}(\mathbf{B})$),则有矩阵 P 使 $\mathbf{B}\mathbf{P} = \triangle$

(10)n 阶阵 A 的特征根 λ ,谱半径 $\rho(A)$ 与范数 $\|A\|$ 的大小关系是 $\frac{|A|< 2(A)< |A|}{2}$

(11) n 阶阵 A(k 是自然数), $\rho(A^k)$, $\rho(A)^k$, $\|A^k\|$, $\|A\|^k$ 之间关系为

$$(12) \mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & -2 & 3 \end{pmatrix}$$
的满秩分解为
$$A = bC = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & -2 & 3 \end{pmatrix}$$

(13)设 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 是R³的基, $A \in \mathbf{R}^{3 \times 3}$ 满足: $A \varepsilon_1 = \varepsilon_2, A \varepsilon_2 = \varepsilon_3, A \varepsilon_3 = 2 \varepsilon_2 - \varepsilon_3$.

则有矩阵 B 使得 $A(\varepsilon_1, \varepsilon_2, \varepsilon_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3) B$, $B = (0.5) \times (0.5)$

二.(20分)计算下列各题

1. 设列满(高)阵 $A = A_{m \times n}$ 的 QR 分解为 A = QR , Q 为次酉阵 $(Q^H Q = I_n)$.

2.设
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
, (1) 求 A^3 , (2) 由 $e^{tA} \triangleq I + tA + \frac{(tA)^2}{2} + \frac{(tA)^3}{3!} + \cdots$ 直接计算 e^{tA}

,并求 $(e^{tA})^+=e^{-tA}$.

$$A^{2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

3.设
$$A = \begin{pmatrix} 0.5 & 0.5 \\ 0 & 0.5 \end{pmatrix}$$
, 计算: $(I - A) \cdot \left(\sum_{k=0}^{\infty} A^{k}\right)^{2}$

$$C^{(A) = \cup S < I} = A^{k} \cdot A = (I + A)^{-1}$$

$$= \left(\sum_{i=0}^{\infty} A^{i}\right)^{-1}$$

②已知 8 阶阵 A 适合: rank(A-2I)=4, $rank(A-2I)^2=1$, $(A-2I)^3=0$.求 A 的 Jordan 形 J.

5. (1)画出矩阵 A 的盖尔圆盘; (2)说明 A 有 3 个互异特征根.

$$A = \begin{pmatrix} 18 & 1 & 2 \\ 1 & 9 & 1 \\ 1 & i & 9i \end{pmatrix}. \qquad \begin{cases} 2-4\delta \mid \leq \delta \\ 2-4\delta \mid \leq \delta \end{cases}$$

- Ξ .(6分)设**A**是 n 阶正规矩阵, σ (A)= $\{\lambda_1, \dots, \lambda_n\}$ (全体特征根).
- (1)写出正规阵A的含有对角阵与两个U(酉)阵的乘积分解公式;
- (2)若 \mathbf{A} 是 2 阶正规矩阵, $\sigma(\mathbf{A}) = \{1, i\}$, $X = \begin{pmatrix} i \\ 1 \end{pmatrix}$ 使得 $\mathbf{A}X = X$,求一个 \mathbf{U} (酉)阵
- Q, 将A写成Q,Q⁴与对角阵的乘积形式.

四.(任选3题共9分)简证下列各题

1.设 $\|\bullet\|$ 是 $\mathbb{C}^{n\times n}$ 上相容的矩阵范数,列向 $\alpha\in\mathbb{C}^n$, $\alpha\neq 0$.任取 $x\in\mathbb{C}^n$,令 $\|x\|$ 如下:

 $\|x\|$ 定义为 $\|x\alpha^H\|$, $x \in \mathbb{C}^n$. 证明: $\|Ax\| \le \|A\| \cdot \|x\|$, $(A \in \mathbb{C}^{n \times n})$.

/ 1

- 2.设 $\|\bullet\|$ 是矩阵范数, $x \in \mathbb{C}^n$, $x \neq 0$ 使得 $Ax=\lambda x$; 令 $B=(x,0,0,\cdots,0)_{n\times n}$

- 3. 设 $A \in \mathbb{C}^{n \times n}$, ||A|| 是相容的矩阵范数, 证明
- (1) $\|\mathbf{I}\| \ge 1$ (**I** 是单位矩阵); (2)若A可逆,则 $\|A^{-1}\| \ge \frac{1}{\|A\|}$

4. 若 A 为 n 阶正规阵, $\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$ (全体特征根),证明 $\sigma(A^H) = \{\overline{\lambda_1}, \dots, \overline{\lambda_n}\}$ (A^H 的全体特征根).

五.(11 分) 1.设
$$A_1 = \begin{pmatrix} 1 & 1 & -1 \\ -2 & -2 & 2 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 & 1 & 0 & 1 \end{pmatrix}^T$, $A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}_{4\times 5}$.

求 A^+ 与 Ax=b 的极小范数解或最佳极小二乘解

At =
$$\begin{pmatrix} A^{\dagger} & A^{\dagger} \end{pmatrix}$$

At = $\begin{pmatrix} A^{\dagger} & A^{\dagger} \end{pmatrix}$

$$A^{\dagger} = \begin{pmatrix} A^{\dagger} & A^{\dagger} \end{pmatrix}$$

$$A^{\dagger} = \begin{pmatrix} A^{\dagger} & A^{\dagger} \end{pmatrix}$$

$$A^{\dagger} = \begin{pmatrix} A^{\dagger} & A^{\dagger} \end{pmatrix}$$

2.已知
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 2 & -1 \end{pmatrix}$$
 (1)求 A 的短音异值分解; (2)求音异值分解 $\begin{pmatrix} b & 2 \\ 2 & 3 \end{pmatrix}$ ($\sqrt{b} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} &$

七.
$$(7 \, \beta)$$
设 $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, 求一个矩阵 B (具有正的特征根), 使得 $B^2 = A$.

附加题(8分)

1.设
$$A \in \mathbb{C}^{m \times m}$$
, $B \in \mathbb{C}^{n \times n}$, $X = X(t) \in \mathbb{C}^{m \times n}$, 验证 $X = e^{At}Ce^{Bt}$ 是微分方程:
$$\frac{dX}{dt} = AX + XB$$
, $X(0) = C$ 的唯一解.

2.设单位列向量 $\varepsilon \in \mathbb{C}^3$ ($|\varepsilon|^2 = \varepsilon^H \varepsilon = 1$). 令 $A = \varepsilon \varepsilon^H$, $B = I - 2\varepsilon \varepsilon^H$)

(1)求 $A = \varepsilon \varepsilon^H$ 的特征多项式、验证 42

(2)求 B 的谱 $\sigma(B)$ 与谱半径 $\rho(B)$, 验证 $B^2 = I$. $\begin{pmatrix} \Box \\ \Box \\ \Box \end{pmatrix}$

(3) f(x)是解析函数,求谱分解公式 $f(B) = f(\lambda_1)G_1 + f(\lambda_2)G_2$ 中的谱阵 G_1, G_2