

Batch details	PGPDSE-FT Offline BLR AUG-22
Team members	Bharath N Raju
	Niranjan
	Vishal Choudhary
	Nikhil Kondapalli
	Reshma RA
Domain of Project	Retail
Proposed project title	Telecom Churn
Group Number	4
Team Leader	Vishal Choudhary
Mentor Name	Mr. Jatinder Bedi

Table of Contents:

S. No	Topic	Page No	
1	Project Details	4	
2	Dataset Information	6	
3	Data Exploration (EDA)	10	
4	All Base Models	27	
5	Decision Tree	30	
6	Random Forest	33	

PROJECT DETAILS

Overview

The telecommunication sector has become one of the main industries in developed countries. The technical progress and the increasing number of operators have raised the level of competition. Companies are working hard to survive in this competitive market depending on multiple strategies.

Customer churn is a considerable concern in service sectors with highly competitive services. On the other hand, predicting the customers who are likely to leave the company will represent potentially large additional revenue source if it is done in the early phase.

Industry Review

Introduction to domain:

Telecommunications are the means of electronic transmission of information over distances. The information may be in the form of telephone calls, data, text, images, or video. Today, telecommunications are used to organize more or less remote computer systems into telecommunications networks.

Nowadays, telecom industry faces fierce competition in satisfying its customers. The role of churn prediction system is not only restricted to accurately predict churners but also to interpret customer churn behavior.

To stay competitive, TELCOMs must continuously refine everything from customer service to plan pricing and use the power of highly targeted data analytics in helping the company secure or improve their standing in the highly competitive marketplace.

Impact in Business:

Telecommunications is an important tool for businesses. It enables companies to communicate effectively with customers and deliver high standards of customer service. Telecommunications is a key element in allowing employees to collaborate easily from wherever they are located, remote or local.

Telecommunications affects how people connect and do business on a global scale. For businesses, in particular, reliable and timely communication is the lifeblood of your company's brand reputation, productivity, and overall success.

Problem Statement:

Customer churn is a major problem and one of the most important concerns for large companies. Due to the direct effect on the revenue of the companies, especially in the telecom field, companies are seeking to develop means to predict potential customer to churn. Therefore, finding factors that increase customer churn is important to take necessary actions to reduce this churn.

Dataset Information:

Target Variable:

FEATURE	DATA TYPE	DESCRIPTION
CHURN	Object	Detecting which customers are likely to leave a service or to cancel a subscription to a service

Features Understanding:

Feature	DATA	Description
	TYPE	
Customer ID	Integer	Primary key of the record.
Churn	Object	Detecting which customers are likely to leave a service or to
		cancel a subscription to a service
Monthly	Float	Revenue of each Customer
Revenue		
Monthly	Float	Number of Minutes call spoken by Customer
Minutes		
Total Recurring	Float	The Charges for the Service
Charge		
Director	Float	When we call an operator to request a telephone number
Assisted Calls		
Overage	Float	Count of Call used over duration to particular post-paid cell
Minutes		phone plan.
Roaming Calls	Float	The ability to get access to the Internet when away from home
		at the price of a local call or at a charge considerably less than
		the regular long-distance charges.
Three-way	Float	A way of adding a third party to your conversation without the
Calls		assistance of a telephone operator.
Dropped Calls	Float	Count of Phone calls gets disconnected somehow from the

		cellular network.
Blocked Calls	Float	Count of Telephone call that is unable to connect to an
		intended recipient.
Un-answered	Float	Count of Calling that an individual perceives but is not
Calls		currently pursuing.

half of
ll from
ed in a
erver.

Feature name	Data Type	Description
Age HH1	Float	User aged below 45
Age HH2	Float	User aged above 45
Children in HH	Integer	Whether there are Children in House hold
Handset Refurbished	Object	Are the handsets refurbished or not
Handset Web Capable	Object	Are the handsets capable of internet connectivity
Truck Owner	Object	Is the user a Truck Owner
RV Owner	Object	Is the user an RV owner
Home Ownership	Object	Is the house the user is staying, his own
Buys Visa Mail Order	Object	Does the user buy Visa Mail order
Responds to Mail Offers	Object	Does the user respond to Mail offers
Opt-out Mailings	Object	Did he opt out of the mail offers sent to him
Non-US-Travel	Object	Does the user travel to other countries
Owns-Computer	Object	Does he have a computer or not
Has-Credit Card	Object	Does he have a credit card or not
Retention Calls	Integer	No of Retention Calls
Retention Offers Accepted	Integer	Customers accepting retaining the retaining offers given by the company.
New Cell phone User	Object	Number of customers buying new cell phone.
Not New cell phone User	Object	Number of customers uses existing cell phone
Referrals Made by Subscriber	Integer	Referrals made by the existing customer to the other customer.
Income Group	Integer	The column talks about the customer saying to which category the customer belongs to.
Adjustments To Credit Rating	Integer	Rating Scale

Handset Price	Object	Its amount paid by the customer for his cell phone.
Made call to retention team	Object	User call to Retention in same company
Credit Rating	Object	Credit card user rating (out of 7)
PrimzCode	object	Grouping of regions according to users
Occupation	Object	Occupation of User
Marital status	Object	Marital Status Indicated by Yes/No/Unknown

Dataset Information:

Data is taken from Kaggle (Telecom(churn))

No. of features: 57

No. of records: 51047

Target Column: churn

Redundant columns: Customer Id, NotNewCellphoneUser, ServiceArea.

DATA EXPLORATION (EDA)

Summary of Dataset:

1 df1.describe().T

	count	mean	std	min	25%	50%	75%	max
MonthlyRevenue	50891.000000	58.834492	44.507336	-6.170000	33.610000	48.460000	71.065000	1223.380000
MonthlyMinutes	50891.000000	525.653416	529.871063	0.000000	158.000000	366.000000	723.000000	7359.000000
TotalRecurringCharge	50891.000000	46.830088	23.848871	-11.000000	30.000000	45.000000	60.000000	400.000000
DirectorAssistedCalls	50891.000000	0.895229	2.228546	0.000000	0.000000	0.250000	0.990000	159.390000
OverageMinutes	50891.000000	40.027785	96.588076	0.000000	0.000000	3.000000	41.000000	4321.000000
RoamingCalls	50891.000000	1.236244	9.818294	0.000000	0.000000	0.000000	0.300000	1112.400000
PercChangeMinutes	50680.000000	-11.547908	257.514772	-3875.000000	-83.000000	-5.000000	66.000000	5192.000000
PercChangeRevenues	50680.000000	-1.191985	39.574915	-1107.700000	-7.100000	-0.300000	1.600000	2483.500000
DroppedCalls	51047.000000	6.011489	9.043955	0.000000	0.700000	3.000000	7.700000	221.700000
BlockedCalls	51047.000000	4.085672	10.946905	0.000000	0.000000	1.000000	3.700000	384.300000
UnansweredCalls	51047.000000	28.288981	38.876194	0.000000	5.300000	16.300000	36.300000	848.700000
CustomerCareCalls	51047.000000	1.868999	5.096138	0.000000	0.000000	0.000000	1.700000	327.300000
ThreewayCalls	51047.000000	0.298838	1.168277	0.000000	0.000000	0.000000	0.300000	66.000000
ReceivedCalls	51047.000000	114.800121	166.485896	0.000000	8.300000	52.800000	153.500000	2692.400000
OutboundCalls	51047.000000	25.377715	35.209147	0.000000	3.300000	13.700000	34.000000	644.300000
InboundCalls	51047.000000	8.178104	16.665878	0.000000	0.000000	2.000000	9.300000	519.300000
PeakCallsInOut	51047.000000	90.549515	104.947470	0.000000	23.000000	62.000000	121.300000	2090.700000
OffPeakCallsInOut	51047.000000	67.650790	92.752699	0.000000	11.000000	35.700000	88.700000	1474.700000
DroppedBlockedCalls	51047.000000	10.158003	15.555284	0.000000	1.700000	5.300000	12.300000	411.700000
CallForwardingCalls	51047.000000	0.012277	0.594168	0.000000	0.000000	0.000000	0.000000	81.300000
CallWaitingCalls	51047.000000	1.840504	5.585129	0.000000	0.000000	0.300000	1.300000	212.700000
MonthsInService	51047.000000	18.756264	9.800138	6.000000	11.000000	16.000000	24.000000	61.000000
UniqueSubs	51047.000000	1.532157	1.223384	1.000000	1.000000	1.000000	2.000000	196.000000
ActiveSubs	51047.000000	1.354340	0.675477	0.000000	1.000000	1.000000	2.000000	53.000000
Handsets	51046.000000	1.805646	1.331173	1.000000	1.000000	1.000000	2.000000	24.000000
HandsetModels	51046.000000	1.558751	0.905932	1.000000	1.000000	1.000000	2.000000	15.000000
CurrentEquipmentDays	51046.000000	380.545841	253.801982	-5.000000	205.000000	329.000000	515.000000	1812.000000
AgeHH1	50138.000000	31.338127	22.094635	0.000000	0.000000	36.000000	48.000000	99.000000
AgeHH2	50138.000000	21.144142	23.931368	0.000000	0.000000	0.000000	42.000000	99.000000
RetentionCalls	51047.000000	0.037201	0.206483	0.000000	0.000000	0.000000	0.000000	4.000000
RetentionOffersAccepted	51047.000000	0.018277	0.142458	0.000000	0.000000	0.000000	0.000000	3.000000
ReferralsMadeBySubscriber	51047.000000	0.052070	0.307592	0.000000	0.000000	0.000000	0.000000	35.000000
IncomeGroup	51047.000000	4.324524	3.138236	0.000000	0.000000	5.000000	7.000000	9.000000
AdjustmentsToCreditRating	51047.000000	0.053911	0.383147	0.000000	0.000000	0.000000	0.000000	25.000000

Interpretation:

- 1. Count of all features are not equal so we can say that there are missing values in the Dataset.
- 2. The difference Between mean and median of each variable is more, so we can say that data is not normally distributed.
- 3. The difference Between min and max of each variable is more, so we can say that Some of the features also contains potential outliers.

Check the Data Type:

Check the data type of each variable. If the data type is not as per the data definition, change the data type.

Churn MonthlyRevenue MonthlyMinutes TotalRecurringCharge DirectorAssistedCalls OverageMinutes RoamingCalls PercChangeMinutes PercChangeRevenues DroppedCalls BlockedCalls UnansweredCalls CustomerCareCalls ThreewayCalls ReceivedCalls OutboundCalls InboundCalls InboundCalls PeakCallsInOut OffPeakCallsInOut DroppedBlockedCalls CallForwardingCalls CallWaitingCalls MonthsInService UniqueSubs ActiveSubs Handsets HandsetModels CurrentEquipmentDays AgeHH1 AgeHH2 ChildrenInHH	object float64 int64 int64 int64 int64 float64	HandsetRefurbished HandsetWebCapable TruckOwner RVOwner Homeownership BuysViaMailOrder RespondsToMailOffers OptOutMailings NonUSTravel OwnsComputer HasCreditCard RetentionCalls RetentionOffersAccepted NewCellphoneUser NotNewCellphoneUser ReferralsMadeBySubscriber IncomeGroup OwnsMotorcycle AdjustmentsToCreditRating HandsetPrice MadeCallToRetentionTeam CreditRating PrizmCode Occupation MaritalStatus dtype: object	object object object object object object object object object int64 int64 object int64 object

Data Cleaning:

Duplicate value check:

```
#checking for duplicate values
print(df12.duplicated().sum())
print(')
print(f'Dataset have {df1.duplicated().sum()} duplicate values.')
Dataset have 0 duplicate values.
```

Treating few columns which are having inappropriate data:

1) Handsetprice variable

2)

Treating credit rating variable

Treating AgeHH1 and AgeHH2 variables:

AgeHH1	AgeHH2	Age
62.000000	0.000000	62.000000
40.000000	42.000000	41.000000
26.000000	26.000000	26.000000
30.000000	0.000000	30.000000
46.000000	54.000000	50.000000

• We are dropping AgeHH1 and AgeHH2 since they are redundant, having the new column Age.

Missing Values Treatment:

Missing values plays a prominent role in the dataset. Generally, we can drop the columns or rows depending the percentage of missing values. We can also replace the missing values with optimum values. In order to perform such operations, we will first look into the overall missing values in each column using the below python code.


```
# calculating percentage of null values.
n/df1.shape[0]*100
MonthlyRevenue
                        0.305607
MonthlyMinutes
                        0.305607
TotalRecurringCharge
                      0.305607
DirectorAssistedCalls
                       0.305607
OverageMinutes
                        0.305607
RoamingCalls
                       0.305607
PercChangeMinutes
                       0.718959
PercChangeRevenues
                       0.718959
                       29.042432
dtype: float64
```

Dropping the rows of missing values in the column which is having less than 1% missing values in it.

dropping the rows which contain null values less than 1%.

Imputing Null values in age column using KNN-Imputers;

Imputing null values in age column using KNN Imputers

```
: from sklearn.impute import KNNImputer
from sklearn.preprocessing import StandardScaler
ss=StandardScaler()
num_scaled=ss.fit_transform(num_cols)

: imputer=KNNImputer(n_neighbors=1000)
df_filled=imputer.fit_transform(num_scaled)

: df_filled=pd.DataFrame(df_filled,columns=num_cols.columns)
df_filled
```


Imputing null values in MaritalStatus using KNN Classifier

```
df1['MaritalStatus'].value_counts()
: Unknown
             19556
  Yes
             18520
  No
             12603
  Name: MaritalStatus, dtype: int64
 dict_1={ 'Unknown':np.nan, 'Yes':1, 'No':0 }
: mar=df1['MaritalStatus']
 mar=mar.map(dict_1)
: mar.isnull().sum()
: 19556
 from sklearn.neighbors import KNeighborsClassifier
 knn = KNeighborsClassifier(n_neighbors=5)
 knn.fit(x_train,y_train)
 y_pred = knn.predict(x_test)
 y_pred.shape
 (19556,)
 index_list=df_mar[df_mar['MaritalStatus'].isnull()==True].index
 df_mar['MaritalStatus'][index_list]=y_pred
 df_mar.shape
 (50679, 34)
 dict_2={1:'Yes',0:'No' }
 df_mar['MaritalStatus']=df_mar['MaritalStatus'].map(dict_2)
 df_mar['MaritalStatus'].value_counts()
 No
        25388
        25291
 Yes
```


Outlier Analysis:

Inference: By Visualizing above boxplot, we can see that all the Features have potential outliers and some features there are extreme values as well.

Outliers: Outliers is an observation which deviates so much from the other observations, that it become suspicious that it was generated by different mechanism or simply by error

Extreme Values: Extreme Values is an observation with value at the boundaries of the domain

Reason for outliers exist in the data:

- 1. Variability in the Data
- 2. An experimental measurement errors

Impact of outliers on Dataset:

- 1. It causes various problem during statistical analysis.
- 2. It effects the mean and standard deviation.

Skewness:

Inference: Here by visualizing dist plot we can see that the Features plotted in Teal colour are positively skewed and Features plotted in red colour are Negatively Skewed.

Descriptive Analysis (EDA)

Univariate Analysis:

Numerical Columns Visualization:

Categorical Columns Visualization:

```
#plotting countplot for some categorical variable

plt.figure(figsize=(15,25),dpi=100)
n=1
for i in df_cat:
   plot=plt.subplot(12,2,n)
n+=1
sns.countplot(df1[i],palette=sns.color_palette("hls", 8))
plt.title(f'{i.title()}',weight='bold')
plt.tight_layout()
annot_percent(plot)
```


Observations:

- 1) Churn Over 28 percent of people in the data have churned.
- 2) Handsetwebcapable More than 90 percent of the people in the data have internet support on their phone.
- 3) More than 65 percent of them don't have a credit card
- 4) Less than 2 percent of them own a motorcycle
- 5) Over 70 percent of the data has occupations other than the ones mentioned.

Bivariate Analysis:

observation:

- 1. In Handset web capability over 25% of people who have churned has more than 90% of Internet capability on their phone.
- 2. Less than 6% of people who own new phone have churned.
- 3. Data shows that people who have Credit Cards are more likely to Churn
- 4. Marital Status of people churning is independent

5. People who have responded mail offer are less likely to churn

Multivariate Analysis:

Observation:

According to plot, as Monthly Revenue Increases, then number of Monthly Minutes increases, but we could not draw any conclusion on churn.

Statistics (Stats)

Feature	Statistical Test	P-Value	Inference
MonthlyRevenue	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
MonthlyMinutes	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
TotalRecurringCharge	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
DirectorAssistedCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
OverageMinutes	kruskal wallis test	0.000009	Dependent numerical variable found after H-tes
RoamingCalls	kruskal wallis test	0.922785	Independent numerical variable found after H-t
PercChangeMinutes	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
PercChangeRevenues	kruskal wallis test	0.308102	Independent numerical variable found after H-t
DroppedCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
BlockedCalls	kruskal wallis test	0.000650	Dependent numerical variable found after H-tes
UnansweredCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
CustomerCareCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
ThreewayCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
ReceivedCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
OutboundCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
InboundCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
PeakCallsInOut	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
OffPeakCallsInOut	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
DroppedBlockedCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
CallForwardingCalls	kruskal wallis test	0.311887	Independent numerical variable found after H-t
CallWaitingCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
RetentionCalls	kruskal wallis te	est 0.0000	00 Dependent numerical variable found after H-tes
RetentionOffersAccepted	kruskal wallis te	est 0.0000	00 Dependent numerical variable found after H-tes
ReferralsMadeBySubscriber	kruskal wallis to	est 0.0248	63 Dependent numerical variable found after H-tes
IncomeGroup	kruskal wallis te	est 0.0260	27 Dependent numerical variable found after H-tes
AdjustmentsToCreditRating	kruskal wallis te	est 0.0006	46 Dependent numerical variable found after H-tes
HandsetPrice	kruskal wallis te	est 0.2424	33 Independent numerical variable found after H-t
ChildrenInHH	Chi-Square Test for Independen	ce 0.0301	95 Dependent categorical variable found after Chi
HandsetRefurbished	Chi-Square Test for Independen	ce 0.0000	00 Dependent categorical variable found after Chi
HandsetWebCapable	Chi-Square Test for Independen	ce 0.0000	00 Dependent categorical variable found after Chi
TruckOwner	Chi-Square Test for Independen	ce 0.3248	32 Independent categorical variable found after C
RVOwner	Chi-Square Test for Independent	ce 0.5008	51 Independent categorical variable found after C
Homeownership	Chi-Square Test for Independen	ce 0.0049	31 Dependent categorical variable found after Chi

	Feature	Statistical Test	P-Value	Inference
41	BuysViaMailOrder	Chi-Square Test for Independence	0.000002	Dependent categorical variable found after Chi
42	RespondsToMailOffers	Chi-Square Test for Independence	0.000000	Dependent categorical variable found after Chi
43	OptOutMailings	Chi-Square Test for Independence	0.837419	Independent categorical variable found after C
44	NonUSTravel	Chi-Square Test for Independence	0.562279	Independent categorical variable found after C
45	OwnsComputer	Chi-Square Test for Independence	0.810924	Independent categorical variable found after C
46	HasCreditCard	Chi-Square Test for Independence	0.071275	Independent categorical variable found after C
47	NewCellphoneUser	Chi-Square Test for Independence	0.141394	Independent categorical variable found after C
48	NotNewCellphoneUser	Chi-Square Test for Independence	0.106749	Independent categorical variable found after C
49	OwnsMotorcycle	Chi-Square Test for Independence	0.089071	Independent categorical variable found after C
50	MadeCallToRetentionTeam	Chi-Square Test for Independence	0.000000	Dependent categorical variable found after Chi
51	CreditRating	Chi-Square Test for Independence	0.000000	Dependent categorical variable found after Chi
52	PrizmCode	Chi-Square Test for Independence	0.000295	Dependent categorical variable found after Chi
53	Occupation	Chi-Square Test for Independence	0.253384	Independent categorical variable found after C
54	MaritalStatus	Chi-Square Test for Independence	0.000000	Dependent categorical variable found after Chi

We have used **Chi-Square Test for Independence** to test whether the categorical variables are independent or not.

H0: The variables are independent.

H1: The variables are not independent (i.e., variables are dependent).

We have used Jarque-bera test to check the normality of data

H0: The data is normally distributed.

*H*1: The data is not normally distributed.

We found that data is not normal therefore we use **Kruskal Wallis** test to check its dependency on the target variable

Insignificant variables:- 13

Class Imbalance and its Treatment:

Here we can see that our target variable is too imbalanced, and to treat that we are going to use oversampling techniques like smote.

Check of Multicollinearity:

	VIF_Factor	Features	17	2.531890	UniqueSubs
0	263.089483	DroppedBlockedCalls	18	2.492452	Call/VaitingCalls
1	133.129373	BlockedCalls	19	2.481722	CurrentEquipmentDays
2	91.210629	DroppedCalls	20	2.282738	RetentionCalls
3	11.198276	MonthlyRevenue	21	2.272071	RetentionOffersAccepted
4	6.651223	OverageMinutes	22	1.632257	PercChangeMinutes
5	6.217595	MonthlyMinutes	23	1.620044	PercChangeRevenues
6	5.514426	HandsetModels	24	1.601234	RoamingCalls
7	5.181104	OffPeakCallsInOut	25	1.344201	CustomerCareCalls
8	4.951826	Handsets	26	1.343533	DirectorAssistedCalls
9	4.506253	PeakCallsInOut	27	1.188184	ThreewayCalls
10	4.261220	ReceivedCalls	28	1.075708	IncomeGroup
11	4.122065	TotalRecurringCharge	29	1.071277	AdjustmentsToCreditRating
12	3.557968	OutboundCalls	30	1.045947	Age
13	2.661700	MonthsInService	31	1.013083	ReferralsMadeBySubscriber
14	2.622790	UnansweredCalls	32	1.001862	CallForwardingCalls
15	2.614363	ActiveSubs			
16	2.572323	InboundCalls			
17	2.531890	UniqueSubs		25	

Observation:

• The variable dropped blocked calls have high multicollinearity.

Transformation:

Transformation is a process that can be used to change the scale of the original data to get more accurate results. We used Power transformation, as we can see that there is large number of outliers present so we use Yeo-Johnson transformation technique to reduce the outliers and make the data more normally distributed.

Logistic Regression (Base Model)

Build a full logistic model on a training dataset.

```
# build the model on train data (x_train and y_train)
# use fit() to fit the logistic regression model
logreg = sm.Logit(y_train,x_train).fit()

# print the summary of the model
print(logreg.summary())
```

Logit Regression Results

==========			=========
Dep. Variable:	Churn	No. Observations:	35475
Model:	Logit	Df Residuals:	35415
Method:	MLE	Df Model:	59
Date:	Tue, 27 Dec 2022	Pseudo R-squ.:	0.03218
Time:	10:23:01	Log-Likelihood:	-2 0484.
converged:	False	LL-Null:	-21165.
Covariance Type:	nonrobust	LLR p-value:	5.454e-246

Interpretation: The Pseudo R-squ. obtained from the above model summary is the value of McFadden's R-squared. This value can be obtained from the formula:

McFadden's R-squared = 1-(Log-Likelihood/LL-Null)

Where.

Log-Likelihood: It is the maximum value of the log-likelihood function

LL-Null: It is the maximum value of the log-likelihood function for the model containing only the intercept

1. The LLR p-value is less than 0.05, implies that the model is significant.

Cox & Snell R-squared: The convergence of the logistic model can be determined by the R-squared value. It is one of the types of Pseudo R-square.

2. The maximum of Cox & Snell R-squared is always less than 1. By above model Cox & Snell R-squared is less than 1 i.e. (0.03456).

The AIC (Akaike Information Criterion) value:

It is a relative measure of model evaluation. It gives a trade-off between model accuracy and model complexity.

Best threshold selection report:

	Probability Cutoff	AUC Score	Precision Score	Recall Score	Accuracy Score	Kappa Score	f1-score
0	0.100000	0.501590	0.292096	0.997517	0.294725	0.001859	0.451873
1	0.100000	0.501590	0.292096	0.997517	0.294725	0.001859	0.451873
2	0.100000	0.501590	0.292096	0.997517	0.294725	0.001859	0.451873
3	0.150000	0.517890	0.299186	0.978786	0.325638	0.021443	0.458287
4	0.150000	0.517890	0.299186	0.978786	0.325638	0.021443	0.458287
5	0.150000	0.517890	0.299186	0.978786	0.325638	0.021443	0.458287
6	0.200000	0.547673	0.314922	0.905890	0.398250	0.061420	0.467369
7	0.200000	0.547673	0.314922	0.905890	0.398250	0.061420	0.467369
8	0.200000	0.547673	0.314922	0.905890	0.398250	0.061420	0.467369
9	0.250000	0.582277	0.344974	0.751298	0.511773	0.122190	0.472836
10	0.260000	0.584886	0.350932	0.709546	0.532886	0.130514	0.469604
11	0.270000	0.590162	0.359961	0.671180	0.556367	0.143743	0.468605
12	0.300000	0.589415	0.382568	0.531934	0.613391	0.160396	0.445053
13	0.300000	0.589415	0.382568	0.531934	0.613391	0.160396	0.445053
14	0.300000	0.589415	0.382568	0.531934	0.613391	0.160396	0.445053
15	0.350000	0.573750	0.430589	0.323403	0.678177	0.159163	0.369377

Observation:-

• Threshold 0.27 is giving highest roc-auc score 0.59.

Roc-Curve:-

Inference:

- The red dotted line represents the ROC curve of a pure random classifier; a good classifier stays as far away from that line as possible (towards top-left corner).
- From the above plot, we can see that our classifier (logistic regression) is away from the dotted line; with the AUC score 0.5902.

Report for 0.5 cutoff and best cutoff (0.27)according to Auc-score:-

<pre>print(classification_report(y_test,y_pred))</pre>							
	precision	recall	f1-score	support			
ø	0.71	0.99	0.83	10773			
1	0.54	0.03	0.06	4431			
accuracy			0.71	15204			
macro avg	0. 63	0.51	0.44	15204			
weighted avg	0.66	0.71	0.60	15204			

<pre>print(classification_report(y_test,y_pred))</pre>									
	precision	recall	f1-score	support					
ø	0.79	0.51	0.62	10773					
1	0. 36	0.67	0.47	4431					
accuracy			0.56	15204					
macro avg	0.58	0.59	0.54	15204					
weighted avg	0.66	0.56	0.58	15204					

Interpretation:

From the above output, we can infer that the recall of the positive class is known as sensitivity and the recall of the negative class is specificity.

support is the number of observations in the corresponding class.

The macro average in the output is obtained by averaging the unweighted mean per label and the weighted average is given by averaging the support-weighted mean per label.

Confusion Matrix:-

Interpretation:

- By the logistic regression model the maximum roc_auc score obtained by 0.27 cutoff.
- The accuracy for the model for the 0.27 Threshold is 0.56.

Decision Tree

Build a full decision tree model on a train dataset using 'gini'.

```
# instantiate the 'DecisionTreeClassifier' object using 'gini' criterion
# pass the 'random_state' to obtain the same samples for each time you run the code
decision_tree_classification = DecisionTreeClassifier(criterion = 'gini', random_state = 10)

# fit the model using fit() on train data
decision_tree = decision_tree_classification.fit(x_train, y_train)
```

Model Performance: -

1. Confusion Matrix:

2.Report: -

Calculate performance measures on the train set.

Calculate performance measures on the test set.

<u>Inference: -</u>

- From The above model, our train accuracy is 1 and test accuracy is 0.62, result is Overfitting
- As the model is over fitted, our false Negative and false Positive is inaccurate
- In the next step we tuned the Hyperparameters and rebuild the model.

Tune the Hyperparameters using GridSearchCV (Decision Tree)

Model Performance after Tunning:

performance measures on train model

performance measures on test model

y_pred=dt_mod	lel.predict(x	_train)			: y_test_pred=c	dt_model.pred	lict(x_tes	t)	
<pre>print(classification_report(y_train,y_pred))</pre>					: print(classif	ication_repo	ort(y_test	,y_test_pro	ed))
	precision	recall	f1-score	support		precision	recall	f1-score	support
ø	0.74	0.97	0.84	25403	ø	0.72	0.96	0.82	10773
1	0.67	0.14	0.23	10072	1	0.47	0.10	0.16	4431
accuracy			0.74	35475	accuracy			0.70	15204
macro avg	0.71	0.56	0.53	35475	macro avg	0.59	0.53	0.49	15204
weighted avg	0.72	0.74	0.67	35475	weighted avg	0.65	0.70	0.63	15204

Confusion Matrix:

Inference: -

- The train and test Accuracy are comparable, which shows the reduction in overfitting.
- In this case the false negative and false positive values can be trusted and the FN value are quite High, but as our focus is on reduction of False negative values

Random forest for classification

from sklearn.ensemble import RandomForestClassifier
rnd=RandomForestClassifier(random_state=0)
random_model=rnd.fit(x_train,y_train)

Report:

results for the train data.

results for the test data

y_pred=random	_model.predi	ct(x_trai	(n)		y_test_pred=r	andom_model.	predict(x	_test)	
<pre>print(classification_report(y_train,y_pred))</pre>					print(classif	ication_repo	rt(y_test	,y_test_pre	ed))
	precision	recall	f1-score	support		precision	recall	f1-score	support
ø	1.00	1.00	1.00	25403	ø	0.72	0.98	0.83	10773
1	1.00	1.00	1.00	10072	1	0.56	0.07	0.13	4431
accuracy			1.00	35475	accuracy			0.71	152 0 4
macro avg	1.00	1.00	1.00	35475	macro avg	0.64	0.53	0.48	15204
weighted avg	1.00	1.00	1.00	35475	weighted avg	0.67	0.71	0.63	15204

Inferences:

- From The above model, our train accuracy is 0.1 and test accuracy is 0.71, result is Overfitting
- As the model is over fitted, our false Negative and false Positive is inaccurate
- In the next step we tuned the Hyperparameters and rebuild the model.

Tuned the Hyperparameters using GridSearchCV (Random Forest)

Hyper parameters tuning by Gridsearch cv

Model performance after tuning:

<pre>print(classification_report(ytest,test_predict))</pre>								
	precision	recall	f1-score	support				
0 1	0.72 0.48	0.95 0.12	0.82 0.19	10773 4431				
accuracy macro avg	0.60	0.53	0.71 0.51	15204 15204				
weighted avg	0.65	0.71	0.64	15204				

Confusion matrix:

Feature importance:

The method feature-importance returns the value corresponding to each feature which is defined as the ratio of total decrease in Gini impurity across every tree in the forest where the feature is used to the total count of trees in the forest. This is also called as, Gini importance.

Inference:

The train and test Accuracy are comparable, which shows the reduction in overfitting.

- In this case the false negative and false positive values can be trusted and the FN value are quite High, but as our focus is on reduction of False negative values
- Typically, Random Forest classifier is more accurate than a single decision tree, we rebuild the model using the same to reduce the FN and increase the accuracy.

KNN-CLASSIFIER

After Parameter Tuning:-

```
Best parameters for KNN Classifier: {'metric': 'manhattan', 'n_neighbors': 23}

CPU times: total: 59min 21s

Wall time: 1h 8min 9s

knn_class = KNeighborsClassifier(n_neighbors = 23,metric= 'manhattan')

knn_model_1 = knn_class.fit(xtrain, ytrain)
```

Report for test:-

# test report											
<pre>print(classification_report(ytest,test_predict))</pre>											
	precision	recall	f1-score	support							
0	0.71	0.97	0.82	10773							
1	0.45	0.05	0.10	4431							
accuracy			0.71	15204							
macro avg	0.58	0.51	0.46	15204							
weighted avg	0.64	0.71	0.61	15204							

Inference:-

- The accuracy is 71 % which is increased compared to previous models.
- But the Recall score for Churners is reduced to 0.05.
- We try with boosting Techniques to increase the recall score.

Naive Bayes -Classifier

Train and test report:-

#train report				
print(classif	ication_repo	rt(ytrain	train_pred	dict))
	precision	recall	f1-score	support
9	0.73	0.88	0.80	25403
1	0.39	0.19	0.26	10072
accuracy			0.68	35475
macro avg	0.56	0.54	0.53	35475
weighted avg	0.64	0.68	0.65	35475
#test report				
print(classif	ication_repo	rt(ytest,	test_predic	t))
	precision	recall	f1-score	support
ө	0.73	0.88	0.80	10773
1	0.41	0.21	0.28	4431
accuracy			0.68	15204
macro avg	0.57	0.54	0.54	15204
weighted avg	0.64	0.68	0.65	15204

Confusion Matrix:-

Inference:-

- Compare to previous models the Naïve Bayes is giving good recall score for churners.
- But there is slight decrease in the accuracy of the model.
- Boosting models would give good results.

Boosting Models

1. AdaBoost classifier:-

Test report:

<pre>print(classification_report(ytest,test_predict))</pre>										
	precision	recall	f1-score	support						
9	0.72	0.97	0.83	10773						
1	0.57	0.09	0.16	4431						
accuracy			0.71	15204						
macro avg	0.64	0.53	0.49	15204						
weighted avg	0.68	0.71	0.63	15204						

2. GradientBoost Classifier:-

Test report:

# test report				
print(classif	ication_repo	rt(ytest,	test_predio	t))
	precision	recall	f1-score	support
0	0.73	0.92	0.82	10773
1	0.49	0.19	0.27	4431
accuracy			0.71	15204
macro avg	0.61	0.55	0.54	15204
weighted ave	0.66	0.71	0.66	15204

3. XGBoost Classifier:-

Test report:-

<pre>print(classification_report(ytest,test_pred))</pre>										
	precision	recall	f1-score	support						
9 1	0.74 0.55	0.94 0.18	0.83 0.27	10773 4431						
accuracy macro avg weighted avg	0.64 0.68	0.56 0.72	0.72 0.55 0.66	15204 15204 15204						

Inference:-

- Compare to all Boosting models XGBoost model gave good Accuracy and Recall score.
- We will use Stacking Technique to increase the Recall score.

Stacking Technique

Build the stacking classifier using the Gradient Boost, Naive bayes and XGBoost as base learners (consider the hyperparameters tuned using GridSearchCV in the previous sessions).

Test Report:-

print(classif	ication_repor	^t(ytest,	test_pred))	
	precision	recall	f1-score	support
0 1	0.75 0.47	0.86 0.31	0.80 0.37	10773 4431
accuracy			0.70	15204
macro avg weighted avg	0.61 0.67	0.58 0.70	0.59 0.68	15204 15204

Confsion Matrix:-

Inference:-

- Compare to all models Stacking technique gave good accuracy of 70%.
- Recall score for churners as 0.31
- Auc_score as 0.59.
- Compare to all models this model is best.

Limitations:-

- The data which we have is highly imbalanced this might lead to inaccurate predictions.
- To enhance the data quality and to reduce errors we have transformed the data using power transformer, getting Business insights out of this would be difficult.
- To proceed with Feature Engineering, we need to have domain knowledge

Conclusion:-

- At first, we dealt with the null value imputation and then we proceeded with Exploratory data analysis to analyse the univariant and bivariant features to understand why the customers are churning.
- As the data was not normal, we use non parametrical statistical test Kruskal Wallis test
- This test is used to check features are dependent or independent to Target variables.
- We have built various classification algorithms and final outcomes are as follows
- Compare to base logistic model, the overfitting is reduced and FN errors are reduced by nearly 32%
- Comparatively the recall value has been boosted from 4% to 31%
- Compare to base Decision model, the overfitting is reduced and FN errors are reduced by nearly 30%

Report Card for all models:-

		Train Set							Test Set						
ALGORITHMS	Remark	Recall		Precision		F1 Score		Accuracy	Recall		Precision		F1 Score		Acouston
		0	1	0	1	0	1	Accuracy	0	1	0	1	0	1	Accuracy
Logistic Regresion	Threashold as 0.5								0.98	0.04	0.72	0.49	0.83	0.07	0.71
	Threashold as 0.3								0.51	0.67	0.79	0.36	0.79	0.31	0.57
Decision Tree	Overfit	1	1	1	1	1	1	1	0.72	0.36	0.74	0.35	0.73	0.35	0.71
Decision Tree	After Hyper tunning	0.99	0.03	0.72	0.58	0.83	0.06	0.71	0.96	0.1	0.71	0.56	0.83	0.05	0.7
Random Forest	Overfit (n-estimator=70)	1	0.98	0.99	1	1	0.99	0.99	0.92	0.17	0.7	0.45	0.81	0.24	0.7
Random Forest	After Hyper tunning	1	0	0.71	0	0.83	0	0.71	0.95	0.12	0.71	0.75	0.83	0	0.71
KNN	Only with numerical variables							0.71	0.96	0.05	0.79	0.25	0.83	0.17	0.71
Navie Bayes								0.71	0.87	0.22	0.73	0.39	0.79	0.28	0.68
XG Boost	max_depth = 10, gamma = 1							0.99	0.89	0.24	0.74	0.48	0.81	0.32	0.7
I Stack Model	XGBoost,Naïve Bayes,Gradient							0.72	0.85	0.31	0.75	0.46	0.8	0.38	0.7
	Boost							0.12	0.00	0.51	0.10	0.40	0.0	0.50	0.1

Reference:

1. Customer Churn Analysis

Brief Overview of Customer Churn Analysis and Prediction with Decision Tree Classifier. Retrieved from https://towardsdatascience.com/customer-churn-analysis-4f77cc70b3bd

2. Customer churn analysis: Churn determinants and mediation effects of partial defection in the Korean mobile telecommunications service industry (2006).

Retrieved from http://people.stern.nyu.edu/shan2/customerchurn.pdf

3. Kiran Dahiya, Surbhi Bhatia. Customer Churn Analysis in Telecom Industry. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7359318

4.Teemu Mutanen. Customer churn analysis – a case study. Retrieved from

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.7169&rep=rep1&type=pdf

5. Churn Analysis: 3-Step Guide to Analysing Customer Churn Dominique Jackson (March 31, 2020).

Retrieved from https://baremetrics.com/blog/churn-analysis

6.Customer Churn Analysis: A Comprehensive Guide Amit Phaujdar on Churn Analysis, Marketing Analytics (March 15th, 2021).

Retrieved from https://hevodata.com/learn/understanding-customer-churn-analysis/

7.Understanding Random Forest How the Algorithm Works and Why it Is So Effective. Retrieved from https://towardsdatascience.com/understanding-random-forest-58381e0602d2

8.Logistic Regression. Retrieved from https://www.sciencedirect.com/topics/computer-science/logistic-regression

9.Decision Tree Algorithm, explained. Retrieved from https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html

10.Prashant Gupta: Decision Trees in Machine Learning(May 18, 2017). Retrieved from https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052

11.Logistic regression.

Retrieved from https://www.ibm.com/topics/logistic-regression

12.Gradient Boosting from scratch.

Retrieved from https://blog.mlreview.com/gradient-boosting-from-scratch-1e317ae4587d
