Arithmétique dans \mathbb{Z}

I. Division euclidienne dans \mathbb{Z}

Définition. Soit $(n,p) \in \mathbb{Z}^2$ on dit que p divise n ou que p est un diviseur de n ou que n est un multiple de p et l'on note p/n s'il existe un entier relatif q tel que n=pq. L'ensemble des multiples de p est noté $p\mathbb{Z} = \{pq, q \in \mathbb{Z}\}$

Remarque: Ainsi, 0 est un multiple de tous les entiers et tous les entiers divise 0.

Par contre, n'a qu'un seul multiple : lui-même.

Remarque: Si p divise n et si n est non nul, alors $|p| \leq |n|$.

Définition. Deux entiers relatifs n et p sont dits associés lorsque n/p et p/n.

Proposition. Deux entiers relatifs n et p sont associés si et seulement si $n = \pm p$.

Proposition. Soit $(n,p) \in \mathbb{Z}^2$ alors p divise n si et seulement si $n\mathbb{Z} \subset p\mathbb{Z}$.

Théorème. (*) Soient $(m, n) \in \mathbb{Z} \times \mathbb{N}^*$.

Il existe un unique couple d'entiers $(q,r) \in \mathbb{Z} \times \mathbb{N}$ tels que $0 \le r < m$ et m = nq + r. On dit que r est le reste de la division Euclidienne de m par n et que q en est le quotient.

Théorème. (*) Tout sous-groupe de \mathbb{Z} est de la forme $a\mathbb{Z}$ avec $a \in \mathbb{N}$ unique.

II. PGCD et PPCM

1. PGCD

Définition. Soient a et b deux entiers naturels non nuls. On appelle Plus Grand Diviseur Commun de a et b et l'on note pqcd(a,b) ou $a \land b$, le plus grand des diviseurs communs à a et b.

Remarque : Cette définition a un sens car l'ensemble des diviseurs communs à a et b est une partie de \mathbb{Z} non vide (elle contient 1) et majorée par a (car $a \neq 0$). Elle possède donc un plus grand élément.

En pratique pour obtenir le PGCD de deux entiers naturels a et b non nuls tels que a < b, on utilise l'algorithme d'Euclide.

On pose $r_0 = b$, $r_1 = a$, $r_2 = r_0 \% r_1$ et tant que r_k est non nul, $r_{k+1} = r_{k-1} \% r_k$.

Proposition. (*) L'algorithme d'Euclide se termine et le dernier reste non nul est égal à $a \wedge b$.

Proposition. (*) Soient a et b deux entiers naturels non nuls.

L'ensemble $a\mathbb{Z} + b\mathbb{Z} = \{au + bv, (u, v) \in \mathbb{Z}^2\}$ est un groupe égal à $(a \wedge b)\mathbb{Z}$.

Théorème. (*) avec l'algorithme d'Euclide et avec les groupes

Soient a et b deux entiers naturels non nuls. Leur PGCD vérifie les propriétés suivantes :

- pqcd(a,b) est un diviseur commun à a et b
- tout diviseur commun à a et b divise pqcd(a,b)

De plus il existe des entiers relatifs u et v tels que $a \wedge b = au + bv$

Cette relation est appelée relation de Bézout.

Définition. Si a et b sont deux entiers relatifs non nuls, alors on appelle PGCD de a et b celui de |a| et |b|

 $Si \ a \in \mathbb{Z}^* \ alors \ a \wedge 0 = a.$

Remarque : Il n'y a pas de plus grand diviseur de zéro donc on ne peut pas parler du PGCD de 0 et 0.

Remarque : Soient $(a,b) \in \mathbb{Z}^2$ et $c \in \mathbb{N}$ alors $c = a \wedge b$ si et seulement si

$$c/a$$
, c/b et $\forall d \in \mathbb{Z}$, $(d/a \text{ et } d/b) \Rightarrow d/c$

On dit que le PGCD de a et b est le plus grand diviseur positif de a et b au sens de la divisibilité.

Remarque : Soient $(a,b) \in \mathbb{Z}^2$ et $c \in \mathbb{N}$ alors $c=a \wedge b$ si et seulement si

$$\forall d \in \mathbb{Z}, \quad (d/a \text{ et } d/b) \Leftrightarrow d/c$$

Définition. Deux entiers relatifs a et b sont dits premiers entre eux si $a \land b = 1$

Proposition. (*) Soient $(a, b, c) \in \mathbb{Z}^3$ alors $(ac) \land (bc) = |c|(a \land b)$

Proposition. (*) Soient $(a,b) \in \mathbb{Z}^2$ et d un diviseur commun à a et b alors $\frac{a}{d} \wedge \frac{b}{d} = \frac{a \wedge b}{d}$ En particulier $\frac{a}{a \wedge b}$ et $\frac{b}{a \wedge b}$ sont premiers entre eux.

2. PPCM

Définition. Soient a et b deux entiers naturels non nuls. On appelle Plus Petit Multiple Commun de a et de b et noté ppcm(a,b) ou $a \lor b$, le plus petit des multiples strictement positifs communs a a et b.

Remarque : Cette définition a un sens car l'ensemble des multiples strictement positifs communs à a et b est une partie de $\mathbb N$ non vide (elle contient ab car $a \neq 0$ et $b \neq 0$). Elle possède donc un plus petit élément.

Définition. Si a et b sont deux entiers relatifs non nuls, alors on appelle PPCM de a et b celui de |a| et |b|

Théorème. (*) Soient $(a,b) \in (\mathbb{Z}^*)^2$. Leur PPCM vérifie les propriétés suivantes :

- -ppcm(a,b) est un multiple commun à a et b
- tout multiple commun à a et b est un multiple de ppcm(a, b)

Remarque: Soient $(a,b) \in (\mathbb{Z}^*)^2$ et $c \in \mathbb{N}$ alors $c = a \vee b$ si et seulement si

$$a/c$$
, b/c et $\forall m \in \mathbb{Z}$, $(a/m \text{ et } b/m) \Rightarrow c/m$

On dit que le PPCM de a et b est le plus petit multiple strictement positif commun de a et b au sens de la divisibilité.

Proposition. Soient $(a,b) \in \mathbb{Z}^2$ et $c \in \mathbb{N}$ alors $c = a \vee b$ si et seulement si

- c est un multiple commun à a et b
- tout multiple commun à a et b est un multiple c

Proposition. (*) Soient $(a, b, c) \in \mathbb{Z}^3$ alors $(ac) \vee (bc) = |c|(a \vee b)$

Proposition. (*) Soient $(a,b) \in \mathbb{Z}^2$ et d un diviseur commun à a et b alors $\frac{a}{d} \vee \frac{b}{d} = \frac{a \vee b}{d}$

Proposition. (*) Soient $(a,b) \in \mathbb{Z}^2$ alors $(a \wedge b)(a \vee b) = |ab|$

III. Entiers premiers entre eux

Proposition. (Théorème de Bezout) (*)

Soit $(a,b) \in \mathbb{Z}^2$ alors a et b sont premiers entre eux si et seulement si $\exists (u,v) \in \mathbb{Z}^2 : au + bv = 1$.

Corollaire. (*) Soit
$$(a_1,...,a_r,b) \in \mathbb{Z}^{r+1}$$
 tel que $\forall k \in [1,r], a_k \land b = 1$. Alors $\left(\prod_{k=1}^r a_i\right) \land b = 1$.

Remarque: La réciproque est évidemment vraie.

Proposition. (Lemme de Gauss) (*) Soit $(a, b, c) \in \mathbb{Z}^3$ alors $(a/bc \ et \ a \land b = 1) \Rightarrow a/c$

Proposition. (Forme irréductible d'un rationnel) Soit $r \in \mathbb{Q}$ alors

$$\exists ! (p,q) \in \mathbb{Z} \times \mathbb{N}^* \, : \, r = \frac{p}{q} \ et \ p \wedge q = 1$$

On dit alors que p/q est la forme irréductible de r.

Corollaire. (*) Soit $(a_1,...,a_r,b) \in \mathbb{Z}^{r+1}$ tel que

$$\forall k \in [1, r], \ a_k/b \ \ et \ \ \forall (k, k') \in [1, r]^2, \ k \neq k' \Rightarrow a_k \land a_{k'} = 1$$

alors
$$\prod_{k=1}^{r} a_k/b$$
.

Corollaire. Si $n_1 \wedge n_2 = 1$, alors $\forall (\alpha_1, \alpha_2) \in \mathbb{N}^2$, $n_1^{\alpha_1} \wedge n_2^{\alpha_2} = 1$.

IV. Nombres premiers

Définition. Un entier naturel p est dit premier s'il a exactement deux diviseurs dans \mathbb{N} , 1 et lui-même.

Remarque: 1 n'est pas premier.

Proposition. Soit $(n,p) \in \mathbb{N}^2$ tel que p soit premier alors soit p/n soit $p \wedge n = 1$.

Proposition. (*) Tout entier $n \geq 2$ possède un diviseur premier.

Théorème. (*) Il existe une infinité de nombres premiers.

Théorème. (*) Tout entier naturel non nul se décompose de façon unique, à l'ordre près, en produit de nombres premiers.

Remarque: Par convention 1 est le produit de zéro nombre premier

Remarque: Par convention, un nombre premier est le produit d'un nombre premier.

Remarque : Le théorème se traduit ainsi : pour tout entier naturel n > 1, il existe des nombres

premiers $p_1 < ... < p_r$ et des entiers naturels non nuls $\alpha_1,...,\alpha_r$ tels que $n = \prod_{i=1}^r p_i^{\alpha_i}$ et s'il existe

des nombres premiers $q_1 < ... < q_s$ et des entiers naturels non nuls $\beta_1,...,\beta_s$ tels que $n = \prod_{i=1}^s q_i^{\beta_i}$ alors r = s et pour tout $i \in [1, r], q_i = p_i$ et $\alpha_i = \beta_i$.

Définition. Soit $n \in \mathbb{N}^*$ et p un nombre premier. On appelle valuation p-adique de n, l'entier

$$v_n(n) = \max\{k \in \mathbb{N}, \ p^k/n\}$$

Proposition. Pour tout $n \in \mathbb{N}^*$, on a $n = \prod_{p \ premier} p^{v_p(n)}$.

Proposition. (*) Soit $(a, b) \in \mathbb{N}^2$ alors

$$v_p(ab) = v_p(a) + v_p(b)$$
 et $v_p(a+b) \ge \min(v_p(a), v_p(b))$

 $Si \ v_p(a) \neq v_p(b) \ alors \ l'inégalité \ est \ une \ égalité.$

Proposition. Soit $(a,b) \in \mathbb{N}^2$ alors a/b ssi, pour tout nombre premier p, on a $v_p(a) \leq v_p(b)$.

Proposition. Soit $(a,b) \in \mathbb{N}^2$ tels qu'il existe des nombres premiers $p_1 < ... < p_r$ et des entiers naturels $\alpha_1,..., \alpha_r$ et $\beta_1,..., \beta_s$ tels que $a = \prod_{i=1}^r p_i^{\alpha_i}$ et $b = \prod_{i=1}^r p_i^{\beta_i}$ alors :

$$a \wedge b = \prod_{i=1}^{r} p_i^{\min(\alpha_i, \beta_i)}$$
 et $a \vee b = \prod_{i=1}^{r} p_i^{\max(\alpha_i, \beta_i)}$

V. Congruences

Définition. Soit $n \in \mathbb{N}$. On définit sur \mathbb{Z} la relation de congruence modulo n par

$$\forall (a,b) \in \mathbb{Z}^2, \quad a \equiv b[n] \Leftrightarrow b-a \in n\mathbb{Z}$$

Proposition. Soit $n \in \mathbb{N}$ alors la relation de congruence modulo n est une relation d'équivalence possédant n classes d'équivalence.

Proposition. Soit $n \in \mathbb{N}$ et $(a, a', b, b') \in \mathbb{Z}^4$ alors

$$\begin{cases} a \equiv a'[n] \\ b \equiv b'[n] \end{cases} \Rightarrow \begin{cases} a+b \equiv a'+b'[n] \\ ab \equiv a'b'[n] \end{cases}$$

Théorème. (*) Théorème chinois : Soit $(m,n) \in (\mathbb{N}^*)^2$ premiers entre eux. Pour tout $(a,b) \in \mathbb{Z}^2$, il existe $c \in \mathbb{Z}$ tel que $c \equiv a[n]$ et $c \equiv b[m]$. Cet entier c n'est pas unique. Plus précisément, $\{k \in \mathbb{Z} : k \equiv a[n] \text{ et } k \equiv b[m]\} = c + nm\mathbb{Z}$

Proposition. (*) Soit $n \in \mathbb{N}$ tel que n > 2 alors

$$n \ est \ premier \ \Leftrightarrow \ \forall k \in [1, n-1], \ \binom{n}{k} \equiv 0[n]$$

Théorème. (*) (Petit théorème de Fermat) Soit p un nombre premier alors

$$\forall n \in \mathbb{N}, \quad n^p \equiv n[p]$$

ce qui est équivalent à

$$\forall n \in \mathbb{N}, \quad n \wedge p = 1 \Rightarrow n^{p-1} \equiv 1[p]$$