

Introduction to Algorithms

Semester 2, 2020 Kris Ehinger

Why study algorithms?

- Know how to choose best algorithm for a problem
- Analyse efficiency
- Understand why it works -- and when it won't

What is an algorithm?

- A set of steps to accomplish a task:
 - A series of steps to compute the product of two integers
 - A series of steps to prepare data for entry in a database
 - A recipe for cooking a meal
 - A procedure for doing laundry
 - A series of steps to drive a car to a destination
 - A procedure for applying to graduate school
 - Etc.

What is a *computer* algorithm?

- An algorithm with the following properties:
 - Precisely defined steps/conditions
 - Defined input
 - Defined output
 - Correct
 - Exactly correct?
 - Correct to within some ε
 - Terminates within a reasonable period of time

Algorithms

- Al-Khwarizmi (Baghdad, 9th century)
- "Founder of algebra"
- Textbook on arithmetic:
 - Arabic numerals
 - Decimal positional number system
 - Addition and multiplication
- Textbook on algebra:
 - Extract square roots
 - Solve linear and quadratic equations
- Contributions in astronomy, geography, trigonometry

Example: Addition

What algorithm do you use to add two numbers?

Example: Addition

- How would a computer add two numbers?
- Simple option: ripple carry adder
- Recall that computers represent numbers in binary:

Example: Addition

https://www.youtube.com/watch?v=OpLU bhu2w

Efficiency

- How long does it take to add two numbers?
- Depends on the speed of the "processor":
 - Computer >> human >> dominos
- Depends on how large the numbers are
 - Number of columns (decimal places or bits)
 - Bigger numbers also require more space (for all three "processors")
- Efficiency: how do the time/space requirements of the algorithm scale with the input?

Correctness

- Correct: algorithm returns the desired output every time, for every possible (legal) input
- Proving that an algorithm is correct can be difficult
- Proving an algorithm incorrect is often easy just come up with one case where it won't work!

Classifying algorithms

- Algorithms can be classified by task:
 - Numeric
 - Sorting
 - Searching
 - Routing
 - Scheduling
 - Etc.

Classifying algorithms

- Algorithms can be classified by approach:
 - Brute force
 - Divide and conquer
 - Decrease and conquer
 - Greedy
 - Etc.

Classifying algorithms

- Algorithms can be classified by solution type:
 - Exact
 - Approximate
 - Heuristic

Summary

- What is an algorithm?
- How can we classify algorithms?
- Correctness and efficiency