Drzewa – cz. 1

10 kwietnia 2020

Definicja drzewa

Definicja

Drzewem nazywamy graf (nieskierowany) spójny i acykliczny. Graf niespójny i acykliczny nazywamy **lasem**.

Definicja drzewa

Definicja

Drzewem nazywamy graf (nieskierowany) spójny i acykliczny. Graf niespójny i acykliczny nazywamy **lasem**.

Z definicji wynika, że drzewo jest grafem prostym tzn. nie ma pętli i krawędzi wielokrotnych. W przeciwnym przypadku miałoby cykle, co przeczy definicji drzewa.

Definicja drzewa

Definicja

Drzewem nazywamy graf (nieskierowany) spójny i acykliczny. Graf niespójny i acykliczny nazywamy **lasem**.

Z definicji wynika, że drzewo jest grafem prostym tzn. nie ma pętli i krawędzi wielokrotnych. W przeciwnym przypadku miałoby cykle, co przeczy definicji drzewa.

Definicja

Wierzchołek stopnia pierwszego w drzewie nazywamy liściem.

Niech ${\cal T}$ będzie grafem mającym n wierzchołków. Wtedy następujące warunki są równoważne

- T jest drzewem,
- $oldsymbol{2}$ T jest acykliczny i ma n-1 krawędzi,
- \bullet T jest spójny i ma n-1 krawędzi,
- T jest spójny, ale przestaje być spójny po usunięciu dowolnej krawędzi,
- każde dwa wierzchołki T połączone są dokładnie jedną drogą,
- T jest grafem acyklicznym, ale po dodaniu dowolnej nowej krawędzi otrzymany graf ma dokładnie jeden cykl.

Własność

Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to graf G ma n-k krawędzi.

Własność

Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to graf G ma n-k krawędzi.

Dowód.

Niech n oznacza liczbę wierzchołków grafu G. Przypuśćmy, że i-ta składowa ma n_i wierzchołków, ponieważ jest drzewem więc ma n_i-1 krawędzi.

Własność

Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to graf G ma n-k krawędzi.

Dowód.

Niech n oznacza liczbę wierzchołków grafu G. Przypuśćmy, że i-ta składowa ma n_i wierzchołków, ponieważ jest drzewem więc ma n_i-1 krawędzi. Liczba krawędzi grafu wynosi więc

$$\sum_{i=1}^k (n_i - 1) = \sum_{i=1}^k n_i - k = n - k.$$

Twierdzenie

Dowolne drzewo \mathcal{T} , które posiada przynajmniej dwa wierzchołki, ma co najmniej dwa liście.

Twierdzenie

Dowolne drzewo \mathcal{T} , które posiada przynajmniej dwa wierzchołki, ma co najmniej dwa liście.

Dowód.

Niech $T = (V_T, E_T)$ będzie drzewem o n > 1 wierzchołkach.

Twierdzenie

Dowolne drzewo \mathcal{T} , które posiada przynajmniej dwa wierzchołki, ma co najmniej dwa liście.

Dowód.

Niech $T=(V_T,E_T)$ będzie drzewem o n>1 wierzchołkach. Niech w oznacza wierzchołek o najmniejszym stopniu w tym drzewie.

Twierdzenie

Dowolne drzewo \mathcal{T} , które posiada przynajmniej dwa wierzchołki, ma co najmniej dwa liście.

Dowód.

Niech $T=(V_T,E_T)$ będzie drzewem o n>1 wierzchołkach. Niech w oznacza wierzchołek o najmniejszym stopniu w tym drzewie. Ze spójności grafu i faktu, że ma co najmniej dwa wierzchołki wynika, że $\deg{(w)} \geq 1$.

Twierdzenie

Dowolne drzewo \mathcal{T} , które posiada przynajmniej dwa wierzchołki, ma co najmniej dwa liście.

Dowód.

Niech $T=(V_T,E_T)$ będzie drzewem o n>1 wierzchołkach. Niech w oznacza wierzchołek o najmniejszym stopniu w tym drzewie. Ze spójności grafu i faktu, że ma co najmniej dwa wierzchołki wynika, że $\deg{(w)} \geq 1$. Przypuśćmy, że $\deg{(v)} \geq 2$ dla $v \in V_T \setminus \{w\}$.

Dowolne drzewo \mathcal{T} , które posiada przynajmniej dwa wierzchołki, ma co najmniej dwa liście.

Dowód.

Niech $T=(V_T,E_T)$ będzie drzewem o n>1 wierzchołkach. Niech w oznacza wierzchołek o najmniejszym stopniu w tym drzewie. Ze spójności grafu i faktu, że ma co najmniej dwa wierzchołki wynika, że $\deg\left(w\right)\geq 1$. Przypuśćmy, że $\deg\left(v\right)\geq 2$ dla $v\in V_T\setminus\{w\}$. Z lematu o uściskach dłoni i faktu, że T ma n-1 krawędzi mamy

$$2(n-1) = \sum_{v \in V_T} \deg(v) \ge 1 + 2(n-1) = 2n-1,$$

Dowolne drzewo \mathcal{T} , które posiada przynajmniej dwa wierzchołki, ma co najmniej dwa liście.

Dowód.

Niech $T=(V_T,E_T)$ będzie drzewem o n>1 wierzchołkach. Niech w oznacza wierzchołek o najmniejszym stopniu w tym drzewie. Ze spójności grafu i faktu, że ma co najmniej dwa wierzchołki wynika, że $\deg{(w)} \geq 1$. Przypuśćmy, że $\deg{(v)} \geq 2$ dla $v \in V_T \setminus \{w\}$. Z lematu o uściskach dłoni i faktu, że T ma n-1 krawędzi mamy

$$2(n-1) = \sum_{v \in V_T} \deg(v) \ge 1 + 2(n-1) = 2n-1,$$

otrzymana sprzeczność oznacza, istnieje wierzchołek $v \neq w$ taki, że deg (v) < 2,

Dowolne drzewo \mathcal{T} , które posiada przynajmniej dwa wierzchołki, ma co najmniej dwa liście.

Dowód.

Niech $T=(V_T,E_T)$ będzie drzewem o n>1 wierzchołkach. Niech w oznacza wierzchołek o najmniejszym stopniu w tym drzewie. Ze spójności grafu i faktu, że ma co najmniej dwa wierzchołki wynika, że $\deg{(w)} \geq 1$. Przypuśćmy, że $\deg{(v)} \geq 2$ dla $v \in V_T \setminus \{w\}$. Z lematu o uściskach dłoni i faktu, że T ma n-1 krawędzi mamy

$$2(n-1) = \sum_{v \in V_T} \deg(v) \ge 1 + 2(n-1) = 2n-1,$$

otrzymana sprzeczność oznacza, istnieje wierzchołek $v \neq w$ taki, że $\deg(v) < 2$, a ponieważ w ma najmniejszy stopień, więc $\deg(v) = \deg(w) = 1$ i w konsekwencji T ma co najmniej dwa liście.

Definicja

Maksymalną odległością wierzchołka u do innych wierzchołków grafu nazywamy największą długość najkrótszej ścieżki wychodzącej z wierzchołka u. Oznaczamy ją s(u).

Definicja

Maksymalną odległością wierzchołka u do innych wierzchołków grafu nazywamy największą długość najkrótszej ścieżki wychodzącej z wierzchołka u. Oznaczamy ją s(u).

Definicja

Centrum spójnego grafu G, to taki wierzchołek v, dla którego s(v) jest możliwie najmniejsza.

Definicja

Maksymalną odległością wierzchołka u do innych wierzchołków grafu nazywamy największą długość najkrótszej ścieżki wychodzącej z wierzchołka u. Oznaczamy ją s(u).

Definicja

Centrum spójnego grafu G, to taki wierzchołek v, dla którego s(v) jest możliwie najmniejsza.

Graf spójny może posiadać kilka wierzchołków, które są centrami grafu.

Definicja

Maksymalną odległością wierzchołka u do innych wierzchołków grafu nazywamy największą długość najkrótszej ścieżki wychodzącej z wierzchołka u. Oznaczamy ją s(u).

Definicja

Centrum spójnego grafu G, to taki wierzchołek v, dla którego s(v) jest możliwie najmniejsza.

Graf spójny może posiadać kilka wierzchołków, które są centrami grafu.

Definicja

Definicja

Maksymalną odległością wierzchołka u do innych wierzchołków grafu nazywamy największą długość najkrótszej ścieżki wychodzącej z wierzchołka u. Oznaczamy ją s(u).

Definicja

Centrum spójnego grafu G, to taki wierzchołek v, dla którego s(v) jest możliwie najmniejsza.

Graf spójny może posiadać kilka wierzchołków, które są centrami grafu.

$u \in V$	a	b	С	d	е
s(u)	9	8	8	9	8

Definicja

Definicja

Maksymalną odległością wierzchołka u do innych wierzchołków grafu nazywamy największą długość najkrótszej ścieżki wychodzącej z wierzchołka u. Oznaczamy ją s(u).

Definicja

Centrum spójnego grafu G, to taki wierzchołek v, dla którego s(v) jest możliwie najmniejsza.

Graf spójny może posiadać kilka wierzchołków, które są centrami grafu.

$u \in V$	а	b	С	d	е
s(u)	9	8	8	9	8

$$D(G) = \max_{v \in V} s(v) = 9$$

Definicja

Definicja

Maksymalną odległością wierzchołka u do innych wierzchołków grafu nazywamy największą długość najkrótszej ścieżki wychodzącej z wierzchołka u. Oznaczamy ją s(u).

Definicja

Centrum spójnego grafu G, to taki wierzchołek v, dla którego s(v) jest możliwie najmniejsza.

Graf spójny może posiadać kilka wierzchołków, które są centrami grafu.

$u \in V$	а	b	С	d	е
s(u)	9	8	8	9	8

$$D(G) = \max_{v \in V} s(v) = 9$$

Definicja

$$R(G) = \min_{v \in V} s(v) = 8$$

Twierdzenie

Każde drzewo ma albo dokładnie jedno centrum, albo dwa sąsiednie centra.

Twierdzenie

Każde drzewo ma albo dokładnie jedno centrum, albo dwa sąsiednie centra.

W wielu przypadkach drzewa, które wykorzystujemy do rozwiązywania problemów praktycznych mają strukturę hierarchiczną tzn. mają jeden wierzchołek wyróżniony zwany korzeniem. W takim drzewie liście nazywa się węzłami zewnętrznymi lub końcowymi. Pozostałe wierzchołki w drzewie nazywamy węzłami wewnętrznymi.

W wielu przypadkach drzewa, które wykorzystujemy do rozwiązywania problemów praktycznych mają strukturę hierarchiczną tzn. mają jeden wierzchołek wyróżniony zwany korzeniem. W takim drzewie liście nazywa się węzłami zewnętrznymi lub końcowymi. Pozostałe wierzchołki w drzewie nazywamy węzłami wewnętrznymi.

Niech {v, w} będzie krawędzią należąca do drzewa T. Wtedy jeżeli wierzchołek v jest bliżej korzenia, to v jest rodzicem w, a w jest dzieckiem v.

W wielu przypadkach drzewa, które wykorzystujemy do rozwiązywania problemów praktycznych mają strukturę hierarchiczną tzn. mają jeden wierzchołek wyróżniony zwany korzeniem. W takim drzewie liście nazywa się węzłami zewnętrznymi lub końcowymi. Pozostałe wierzchołki w drzewie nazywamy węzłami wewnętrznymi.

Niech {v, w} będzie krawędzią należąca do drzewa T. Wtedy jeżeli wierzchołek v jest bliżej korzenia, to v jest rodzicem w, a w jest dzieckiem v.

• Każdy wierzchołek (poza korzeniem) ma dokładnie jednego rodzica.

W wielu przypadkach drzewa, które wykorzystujemy do rozwiązywania problemów praktycznych mają strukturę hierarchiczną tzn. mają jeden wierzchołek wyróżniony zwany korzeniem. W takim drzewie liście nazywa się węzłami zewnętrznymi lub końcowymi. Pozostałe wierzchołki w drzewie nazywamy węzłami wewnętrznymi.

Niech {v, w} będzie krawędzią należąca do drzewa T. Wtedy jeżeli wierzchołek v jest bliżej korzenia, to v jest rodzicem w, a w jest dzieckiem v.

- Każdy wierzchołek (poza korzeniem) ma dokładnie jednego rodzica.
- Rodzic może mieć kilkoro dzieci.

W wielu przypadkach drzewa, które wykorzystujemy do rozwiązywania problemów praktycznych mają strukturę hierarchiczną tzn. mają jeden wierzchołek wyróżniony zwany korzeniem. W takim drzewie liście nazywa się węzłami zewnętrznymi lub końcowymi. Pozostałe wierzchołki w drzewie nazywamy węzłami wewnętrznymi.

Niech {v, w} będzie krawędzią należąca do drzewa T. Wtedy jeżeli wierzchołek v jest bliżej korzenia, to v jest rodzicem w, a w jest dzieckiem v.

- Każdy wierzchołek (poza korzeniem) ma dokładnie jednego rodzica.
- Rodzic może mieć kilkoro dzieci.
- Ogólnie: w jest potomkiem v jeśli w ≠ v oraz wierzchołek v należy do drogi prostej z w do korzenia.

Drzewo binarne

Definicja

Drzewem binarnym nazywamy drzewo, które posiada wierzchołki stopnia co najwyżej trzeciego (w którym każdy węzeł ma co najwyżej dwóch synów (lewy syn, prawy syn) lub w ogóle nie ma synów).

Definicja

Drzewem binarnym nazywamy drzewo, które posiada wierzchołki stopnia co najwyżej trzeciego (w którym każdy węzeł ma co najwyżej dwóch synów (lewy syn, prawy syn) lub w ogóle nie ma synów).

Definicja

Regularnym drzewem binarnym nazywamy niepuste drzewo binarne, którego każdy węzeł ma dokładnie dwóch synów.

Drzewo binarne

Definicja

Mówimy, że wierzchołek v w drzewie binarnym jest na poziomie l, jeżeli v jest w odległości l od korzenia (zakładamy, że korzeń jest na poziomie 0).

Definicja

Maksymalny poziom I_{max} wierzchołka w drzewie binarnym nazywamy wysokościa drzewa.

Drzewo binarne

Definicja

Mówimy, że wierzchołek v w drzewie binarnym jest na poziomie l, jeżeli v jest w odległości l od korzenia (zakładamy, że korzeń jest na poziomie 0).

Wysokość drzewa wynosi $I_{max} = 4$

Definicja

Maksymalny poziom I_{max} wierzchołka w drzewie binarnym nazywamy wysokościa drzewa.

Pełne drzewo binarne

Definicja

Pełnym drzewem binarnym nazywamy regularne drzewo binarne, w którym wszystkie liście mają ten sam numer poziomu, równy wysokości drzewa.

Własności regularnych drzew binarnych

Twierdzenie

Liczba wierzchołków w regularnym drzewie binarnym jest zawsze nieparzysta.

Twierdzenie

Liczba wierzchołków w regularnym drzewie binarnym jest zawsze nieparzysta.

Dowód.

Niech n oznacza liczbę wierzchołków regularnego drzewa binarnego.

Twierdzenie

Liczba wierzchołków w regularnym drzewie binarnym jest zawsze nieparzysta.

Dowód.

Niech *n* oznacza liczbę wierzchołków regularnego drzewa binarnego. Z definicji regularnego drzewa binarnego jedynym wierzchołkiem stopnia parzystego jest korzeń.

Twierdzenie

Liczba wierzchołków w regularnym drzewie binarnym jest zawsze nieparzysta.

Dowód.

Niech n oznacza liczbę wierzchołków regularnego drzewa binarnego. Z definicji regularnego drzewa binarnego jedynym wierzchołkiem stopnia parzystego jest korzeń. Pozostałe n-1 wierzchołków ma stopień nieparzysty.

Twierdzenie

Liczba wierzchołków w regularnym drzewie binarnym jest zawsze nieparzysta.

Dowód.

Niech n oznacza liczbę wierzchołków regularnego drzewa binarnego. Z definicji regularnego drzewa binarnego jedynym wierzchołkiem stopnia parzystego jest korzeń. Pozostałe n-1 wierzchołków ma stopień nieparzysty. Ze lematu o uściskach dłoni wynika, że liczba wierzchołków stopnia nieparzystego musi być parzysta.

Twierdzenie

Liczba wierzchołków w regularnym drzewie binarnym jest zawsze nieparzysta.

Dowód.

Niech n oznacza liczbę wierzchołków regularnego drzewa binarnego. Z definicji regularnego drzewa binarnego jedynym wierzchołkiem stopnia parzystego jest korzeń. Pozostałe n-1 wierzchołków ma stopień nieparzysty. Ze lematu o uściskach dłoni wynika, że liczba wierzchołków stopnia nieparzystego musi być parzysta. Więc n musi być liczba nieparzystą.

Niech p będzie liczbą liści w regularnym drzewie binarnym o n wierzchołkach. Wtedy

$$p=\frac{n+1}{2}$$

Niech p będzie liczbą liści w regularnym drzewie binarnym o n wierzchołkach. Wtedy

$$p=\frac{n+1}{2}$$

Dowód.

Zauważmy, że n-p-1 – jest liczbą wierzchołków stopnia trzeciego, stąd z lematu o uściskach dłoni, liczba krawędzi |E| w drzewie wynosi

$$|E| = \frac{1}{2} \cdot [1 \cdot p + 2 \cdot 1 + 3 \cdot (n - p - 1)].$$

Niech p będzie liczbą liści w regularnym drzewie binarnym o n wierzchołkach. Wtedy

$$p=\frac{n+1}{2}$$

Dowód.

Zauważmy, że n-p-1 – jest liczbą wierzchołków stopnia trzeciego, stąd z lematu o uściskach dłoni, liczba krawędzi |E| w drzewie wynosi

$$|E| = \frac{1}{2} \cdot [1 \cdot p + 2 \cdot 1 + 3 \cdot (n - p - 1)].$$

Z własności drzew mamy

$$|E| = n - 1.$$

Niech p będzie liczbą liści w regularnym drzewie binarnym o n wierzchołkach. Wtedy

$$p=\frac{n+1}{2}$$

Dowód.

Zauważmy, że n-p-1 – jest liczbą wierzchołków stopnia trzeciego, stąd z lematu o uściskach dłoni, liczba krawędzi |E| w drzewie wynosi

$$|E| = \frac{1}{2} \cdot [1 \cdot p + 2 \cdot 1 + 3 \cdot (n - p - 1)].$$

Z własności drzew mamy

$$|E| = n - 1.$$

Zatem

$$\frac{1}{2} \cdot (p+2+3n-3p-3) = n-1$$

Niech p będzie liczbą liści w regularnym drzewie binarnym o n wierzchołkach. Wtedy

$$p=\frac{n+1}{2}$$

Dowód.

Zauważmy, że n-p-1 – jest liczbą wierzchołków stopnia trzeciego, stąd z lematu o uściskach dłoni, liczba krawędzi |E| w drzewie wynosi

$$|E| = \frac{1}{2} \cdot [1 \cdot p + 2 \cdot 1 + 3 \cdot (n - p - 1)].$$

Z własności drzew mamy

$$|E| = n - 1.$$

Zatem

$$\frac{1}{2} \cdot (p+2+3n-3p-3) = n-1$$

$$2p = n + 1$$

Niech p będzie liczbą liści w regularnym drzewie binarnym o n wierzchołkach. Wtedy

$$p=\frac{n+1}{2}$$

Dowód.

Zauważmy, że n-p-1 – jest liczbą wierzchołków stopnia trzeciego, stąd z lematu o uściskach dłoni, liczba krawędzi |E| w drzewie wynosi

$$|E| = \frac{1}{2} \cdot [1 \cdot p + 2 \cdot 1 + 3 \cdot (n - p - 1)].$$

Z własności drzew mamy

$$|E| = n - 1.$$

Zatem

$$\frac{1}{2} \cdot (p+2+3n-3p-3) = n-1$$

$$2p = n + 1$$

$$p=\frac{n+1}{2}$$

Twierdzenie

Maksymalna liczba wierzchołków w drzewie binarnym o k poziomach wynosi

$$n_{max} = 2^0 + 2^1 + 2^2 + ... + 2^k = 2^{k+1} - 1$$

$$n_{\text{max}} = 2^0 + 2^1 + 2^2 + 2^3 = 1 + 2 + 4 + 8 = 15$$