

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Álgebra Linear e Geometria Analítica — Lista 11 Prof. Adriano Barbosa

- (1) Encontre a matriz canônica para cada composição abaixo:
 - (a) Uma rotação de 90° seguida de uma reflexão em torno do eixo y.
 - (b) Uma reflexão em torno do eixo x seguida de uma escala de razão k=3.
 - (c) Uma rotação de 60° , seguida de uma projeção ortogonal sobre o eixo x, seguida de uma reflexão em torno do eixo y.
 - (d) Uma rotação de 15°, seguida de uma rotação de 105°, seguida de uma rotação de 60°.
- (2) Determine se $T_1 \circ T_2 = T_2 \circ T_1$:
 - (a) $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ é a projeção ortogonal sobre o eixo $x \in T_2: \mathbb{R}^2 \to \mathbb{R}^2$ é a projeção ortogonal

 - (b) $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ é a rotação por um ângulo θ_1 e $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ é a rotação por um ângulo θ_2 . (c) $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ é a rotação por um ângulo θ e $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ é a projeção ortogonal sobre o
- (3) Definimos as projeções ortogonais de \mathbb{R}^3 sobre os eixos $x, y \in x$, respectivamente, por

$$T_x(x, y, z) = (x, 0, 0), T_y(x, y, z) = (0, y, 0) e T_z(x, y, z) = (0, 0, z).$$

Mostre que as projeções acima são transformações lineares.

- (4) Mostre que a reflexão de vetores de \mathbb{R}^2 em torno da reta y=x é uma transformação linear e encontre sua matriz canônica.
- (5) Mostre que a projeção ortogonal de vetores de \mathbb{R}^2 sobre a reta y=x é uma transformação linear e encontre sua matriz canônica.
- (6) Mostre que os vetores $v \in v T(v)$ são ortogonais, onde $T : \mathbb{R}^2 \to \mathbb{R}^2$ é uma projeção ortogonal sobre os eixos coordenados ou sobre a reta y = x.
- (7) Calcule o núcleo e a imagem das transformações lineares abaixo:
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (2x 3y, 3x)
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^4$, T(x, y) = (x y, x, y, y x)(c) $T: \mathbb{R}^3 \to \mathbb{R}$, T(x, y, z) = x y + z
- (8) Determine se as transformações lineares do exercício anterior são injetivas e se são sobrejetivas.
- (9) O operador linear $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (2x+y,3x+4y) é invertível? Encontre sua inversa se possível.
- (10) Determine se os conjuntos de vetores abaixo são LI ou LD
 - (a) $\{(1,2),(-2,1)\}$ em \mathbb{R}^2
 - (b) $\{(1,1,1),(1,1,0),(1,0,0)\}$ em \mathbb{R}^3
 - (c) $\{(1,2,3),(1,1,1)\}$ em \mathbb{R}^3
 - (d) $\{(1,0),(1,1),(1,2)\}$ em \mathbb{R}^2
- (11) Para quais conjuntos de vetores do exercício anterior é possível escrever qualquer vetor dos espaços vetoriais dados como combinação linear de seus elementos?
- (12) Determine quais dos conjuntos de vetores do primeiro exercício são base dos espaços vetoriais dados.