MAPS OF 1-COHOMOLOGIES

Proposition 1. Let $f: K' \to K$, K' an algebraic group also acting on V by group automorphisms. Then $\alpha \circ f$ is a 1-cocycle from $K' \to V$.

$$\square$$

The map $\zeta: Z^1(K,V) \to Z^1(K',V)$ defined by

$$\zeta(\alpha) = \alpha \circ f$$

is a map of 1-cocycles.

Proposition 2. Let $g: V \to V'$ be an equivariant homomorphism. Then $g \circ \alpha$ is a 1-cocycle from $K \to V'$.

Proof.
$$\Box$$

The map $\xi: Z^1(K, V) \to Z^1(K, V')$ defined by

$$\xi(\alpha) = g \circ \alpha$$

is a map of 1-cocycles. More generally, we have the following Definition.

Definition 1. Define the map

$$Z^1(\zeta,\xi):Z^1(K,V)\to Z^1(K',V')$$

by

$$Z^1(\zeta,\xi)(\alpha)=g\circ\alpha\circ f.$$

Then, for example,

 $Z^{1}(\zeta, id) = \zeta,$ where $id: V \to V$ is the identity map, and

 $Z^{1}(\mathrm{id},\xi) = \xi$, where $\mathrm{id}: H \to H$ is the identity map.

Proposition 3. The map $Z^1(\zeta,\xi)$ descends to give a well-defined map

$$H^1(\zeta,\xi):H^1(K,V)\to H^1(K',V')$$

of 1-cohomologies, defined by

$$H^1(\zeta,\xi)\left(\psi(\alpha)\right) = \left(\psi' \circ Z^1(\zeta,\xi)\right)(\alpha),$$

where $\psi: Z^1(K,V) \to H^1(K,V)$ and $\psi': Z^1(K',V') \to H^1(K,V)$ are the canonical projections. Moreover, the following diagram commutes.

$$Z^{1}(K,V) \xrightarrow{Z^{1}(\zeta,\xi)} Z^{1}(K',V')$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi'}$$

$$H^{1}(K,V) \xrightarrow{H^{1}(\zeta,\xi)} H^{1}(K',V')$$

Proof.