

Europäisches
Patentamt

European
Patent Office

Office européen
des brevets

10.10.04

REC'D 1 APR 2004

WIPO PCT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

03100839.4

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets
p.o.

R C van Dijk

Anmeldung Nr:
Application no.: 03100839.4
Demande no:

Anmeldetag:
Date of filing: 31.03.03
Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Koninklijke Philips Electronics N.V.
Groenewoudseweg 1
5621 BA Eindhoven
PAYS-BAS

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention:
(Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung.
If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer à la description.)

Display device and a method of displaying data thereon

In Anspruch genommene Priorität(en) / Priority(ies) claimed /Priorité(s)
revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/
Classification internationale des brevets:

G02B27/22

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of
filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL
PT SE SI SK TR LI

Display device and a method of displaying data thereon

FIELD OF THE INVENTION

The invention relates to a display device and a method of displaying data thereon and in particular to a display device suitable for mobile use.

5 BACKGROUND OF THE INVENTION

A common method for displaying images on a screen of a mobile device is to use a screen comprising a liquid crystal display (LCD). In an LCD colour screen substantially white light is emitted from a light source and transmitted through the screen, i.e. the LCD is backlit. The screen comprises an array of pixels, and each pixel further comprises three capacitors in connection with three colour filters, a red, a green and a blue filter. By carefully controlling the voltages of each capacitor, a specific colour can be produced on the individual pixels, and by controlling all the pixels a screen image is produced. Such a display normally produces 2D images.

Viewing two slightly different images on each eye may produce a 3D vision. This is the so-called stereoscopic effect. One approach for producing stereoscopic images is shown in the EP application 1 001 300. Here two light sources are proposed in conjunction with a mirror system. Light emitted by one light source is directed towards the right eye and light emitted by the other light source is directed to the left eye. A control means displays alternately an image for the right eye and an image for the left eye on the image-reproducing element. The control means activates the source emitting light for the right eye only when the image for the right eye is displayed, and activates the source emitting light for the left eye only when the image for the left eye is displayed.

Such a display device and other display devices of the prior art comprise complex optical systems, are voluminous, inflexible, expensive and/or difficult to implement.

25

SUMMARY OF THE INVENTION

It is an object of the invention to provide a display device having a relatively simple and cheap optical system.

This object is achieved, in a first aspect of the invention, by a display device comprising

- a display panel;
- a light redirection element for directing light through the display panel;
- 5 - a light guide for directing light towards the light redirection element;
- a first light source coupled to the light guide so as to couple light to the light guide in a first direction; and
- a second light source coupled to the light guide so as to couple light to the light guide in a second direction;

10 wherein the light redirection element comprises a first groove structure and the light guide comprises a second groove structure and the first and second groove structures are arranged in a configuration operable to direct light from the first light source through the display panel with a first angular distribution and light from the second light source with a second angular distribution.

15 The invention enables a display device suitable for generating directional images. The display device may be flexible, easy to implement and/or have a low volume. Specifically, the invention enables a display device which has an integrated optical system and which may be suitable for mobile use.

The display device may be a liquid crystal display (LCD), and is preferentially 20 a display device for one or a few users with more or less known position with respect to the display. The device may be a lap top computer, a tablet PC, a flat screen device, a mobile phone, a personal digital assistant (PDA), a handheld organiser, a global positioning (GPS) device, a handheld game computer, etc.

The first and second light sources, may be backlight sources, i.e. light sources 25 emitting light towards the backside of the display panel. Backlighting may be necessary if the display panel is an LCD panel or any other type of transmissive image reproducing panel.

The display device may further comprise means for alternating between illumination of the first and second light sources and means for alternating between displaying a first and second image on the display panel substantially synchronously with 30 alternating between illumination of the first and second light source. The display device may be capable of switching between the first and second images, so fast that it is not perceivable by a user, i.e. so fast that a user does not perceive any flickering due to the switching between the first and second image. This may provide for a display device where different images

may be sent to a user, e.g. different images may be sent to the left and the right eye of a user. Furthermore, this enables that a single display device may be used by more than one user.

The display device may comprise an optical system, where the optical system comprises a first and a second groove structure arranged in an opposed configuration. This 5 may be a robust and flexible way of arranging the first and second groove structures since no additional components may be necessary for directing the light between the two groove structures.

The first groove structure may be a prism structure with a substantially triangular cross- section, wherein an angle of the joining sides forming the triangular cross 10 section of the prism structure may be between 10° and 70°, and may preferentially be 60°, or in the vicinity of 60°. An angle of 60° may be suitable for directing light through the display panel.

The second groove structure may be a prism structure with a substantially triangular cross-section, wherein an angle of the joining sides forming the triangular cross 15 section of the prism structure may be between 150° and 179°, and may preferentially be 175°, or in the vicinity of 175°. An angle of 175° may be suitable for directing light towards the redirection element.

The first and second groove structures may extend in a direction pointing substantially perpendicular to an axis extending between the eyes of a user of the display 20 panel, when the display device is maintained in a position of use. The display device may be a handheld device, where a position of use is normally well defined. For example, a mobile phone is normally held in such a way that an axis extending from the display to the keypad is substantially perpendicular with an axis extending between the eyes of a user. In the case that a position of use is not well defined, the user may reposition and/or reorient the device until 25 the direction of the groove structures extend in a direction pointing substantially perpendicular to an axis extending between the eyes of a user. If the device is not a handheld device, e.g. a flat screen for presenting images, such as a video film, the device may comprise means for changing the orientation and position of the device.

In the case that the display panel is an LCD panel, the first and second groove 30 structures may extend in a direction substantially perpendicular to the rows in the LCD panel.

The first and second light sources may produce a first and second light cone. These light cones may contain light with a certain angular spread, i.e. the light cones may be characterized by a first and second angular distribution. The first angular distribution may contain light, which have passed through the display panel while the display panel was

showing a first image, and the second angular distribution may contain light, which have passed through the display panel while the display panel was showing a second image. The light with the first angular distribution may be emitted in a first view area predominantly containing light from the first light source, and the light with the second angular distribution 5 may be emitted in a second view area predominantly containing light from the second light source. By separating the first and the second view areas so that they do not overlap, the first and second images may be viewed separately.

The first and second images may be a first and second image of a 3D stereoscopic image. This may be achieved by sending the first image in a light cone with the 10 first angular distribution and by sending the second image in a light cone with a second angular distribution. In this way, the first image may be sent to one eye of a user, and the second image may be sent to the other eye of the user.

The first image may also be dedicated for a first user and the second image may be dedicated for a second user, whereby at least the first and the second users can view 15 different images from a single display device. This may be achieved by sending the first image in a light cone with a first angular distribution and by sending the second image in a light cone with a second angular distribution. In this way, the first image may be sent to the first user, and the second image may be sent to the second user. The same images may also be send to the at least first and second users, if the first and second images are the same 20 images.

The first and the second light sources may be illuminated simultaneously, in this way a 2D image may be displayed on the display device. Since the same image may be sent to both eyes of a user.

The display device may comprises means for switching between illuminating 25 the first and the second light sources simultaneously, and illuminating the first and second light sources substantially synchronously with displaying the first and second images on the display panel. In this way means for switching between displaying a 2D image and a 3D stereoscopic image on the display panel may be provided for. The switching means may be operated by the user, or by a electronic control system.

30 The first and second light sources may be light emitting diodes (LED) or cold cathode fluorescent lamps.

According to a second aspect of the invention, there is provided a method for displaying data on a display device comprising the steps of:

- coupling light from a first and a second light source into a light guide so as to couple light from the first light source to the light guide in a first direction and to couple light from the second light source to the light guide in a second direction;
- redirecting the light coupled into the light guide towards a light redirection element by coupling light out of the light guide by an out-coupling surface with a first groove structure;
- further redirecting the light coupled into the light redirection element by coupling light into the light redirection element by an in-coupling surface with a second groove structure such that light from the first light source is directed through the display panel with a first angular distribution and light from the second light source is directed through the display panel with a second angular distribution.

10 An image of the display panel may be switched between a first and a second image.

15 The first and second light sources may be sequentially operating in synchronisation with displaying the first and second image on the display panel.

These and other aspects, features and/or advantages of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

20 Embodiments of the invention will be described, by way of example only, with reference to the drawings, in which

Fig. 1 illustrates a schematic cross-sectional view of a preferred embodiment of the display device;

25 Fig. 2 illustrates a schematic representation of a sequence for the light sources and the first and second images;

Fig. 3 illustrates an example of a requirement of the angular separation of the light cones;

Fig. 4 illustrates details of the first and the second prism structures;

Fig. 5 illustrates an angular distribution plot of a prototype of a display device;

30 and

Fig. 6 illustrates a schematic drawing of two users viewing images from the same device.

DESCRIPTION OF PREFERRED EMBODIMENTS

Fig. 1 illustrates a schematic cross-sectional view of a display device in accordance with a preferred embodiment of the invention. An LCD display 1 is used as a display panel. Light 2, 3 is emitted from light sources 4, 5, e.g. cold cathode fluorescent lamps or light emitting diodes. The light emitted from the first light source 4 is directed through the display panel 1 with a first angular distribution 2, i.e. in a first light cone, and light from the second light source 5 is directed through the display panel 1 with a second angular distribution 3, i.e. in a second light cone. Light emitted from the light sources 4, 5 is guided from the light sources by a light guide 6, which comprises an out-coupling surface with a second groove structure 7. The light, which is coupled out of the light guide 6, is coupled into a light redirection element 8. The light redirection element 8 comprises an in-coupling surface with a first groove structure 9. The light guide 6 and the light redirection element 8 are arranged in an opposing configuration whereby light is coupled from the light guide to the light redirection element. The light guide 6 and the light redirection element 8 may, however, also be placed with respect to each other in other ways if this is desirable, for example by means of mirrors or additional light guides, placed so that light is directed from the light guide 6 and into the light redirection element 8. A user 10 of the display device may be positioned such that the light emitted in the first light cone hits one of the user's eyes 11, whereas light emitted in the second light cone hits the other of the user's eyes 12. By operating the light source synchronously with a first and a second image switching on the display panel 8, a first image may be directed to one of the eyes, e.g. the left eye 11, whereas a second image may be directed to the other of the eyes, e.g. the right eye 12. The images may be updated continuously so that a dynamic view is obtained.

The sequence 20 for the light sources and the first and second images is shown in Fig. 2. As a first step in the sequence, the first image is written 21 on the display panel. This is followed by that the first light source, or light source one (ls 1), is switched on 22 for a given period of time. Then the second image is written 23 on the display panel. This is followed by that the second light source, or light source two (ls 2), is switched on 24 for a given period of time. The sequence is repeated while the display device is in use. Thus light is sequentially sent into a first light cone and a second light cone. The switching of the light sources as well as the images on the display panel may be controlled by an electronic circuit incorporated in the display device. The electronic circuit may be connected to, or may include a timer circuit for controlling the synchronicity of the sequence.

The requirement of the angular separation of the light cones depends on the viewing distance. Angles and distances are indicated in Fig. 3 for a user 30 a certain distance from the display device 31. With an eye distance of 60 mm and a viewing distance of 200 mm the angular separation between the eyes is: $2 \operatorname{Arctan}(30/200) = 17^\circ$. For a viewing 5 distance of 300 mm this angular separation reduces to 11.4° . From the right hand side of the display, and a viewing distance of 200 mm, the right eye is at -6° , the left eye at -22° . From the centre of the display, the right and left eyes are symmetrically at $\pm 8.5^\circ$.

In Fig. 4 details of the two prism structures 40 are given. Light 44 from the first light source 42 is coupled into the light guide 46. The light guide comprises an out-coupling surface 47 with a second groove structure. The second groove structure is a prism structure with a substantially triangular cross-section. The prism structure of the out-coupling surface 47 of the light guide 46 is rather flat, characterized by an angle 48 between 150° and 179° of the joining sides forming the triangular cross-section, the so-called top angle. The purpose of the out-coupling surface is to direct light 44 from the first light source 42, and 10 light 45 from the second light source 43 in substantially counter-propagating cones. It is advantageous to obtain light cones which at this stage are counter-propagating with small rise angles 49 to obtain optimal separation of the cones 44, 45.

The light is coupled into the display panel via light redirection element 400. The light redirection element comprises an in-coupling surface 401 with a first groove structure. The first groove structure is like the second groove structure a prism structure with a substantially triangular cross section. The prism structure of the light redirection element 400 is steeper than the prism structure of the light guide 46. The prism structure of the light redirection element is characterized by an angle between 10° and 70° of the joining sides forming the triangular cross-section, the so-called top angle. The purpose of the light 15 redirection element is to redirect the light 44, 45 so that light is coupled into the display panel at proper angles.

Controlling the direction of the light through the display panel is a matter of controlling the refractive indices along the ray path, as well as the top angles 48 of the out-coupling surface of the light guide and the in-coupling surface of the light redirection element 30 402. The angle of refraction is a function of the refractive indices on the two sides of the refracting surface, and likewise is also the transmission coefficient as a function of the refractive angle, a function of the refractive indices. Furthermore, by using materials which are surface treated so that the refractive index is a function of the position away from the

surface, the angle of refraction, as well as the coefficient of transmission may be tuned.

Therefore by choosing materials with specific refractive indices as well as specific top angles, the light may be directed from the emitting light sources to the user at an optimal angle separation.

5 In Fig. 5, an angular distribution plot 50 of a prototype of a display device is shown. The intensity of emitted light is shown as a function of the angle in the same plane as the cross sections of the two prism structures 47, 401 illustrated in Fig. 4. In the prototype the top angle of the light guide was chosen to be 175°, whereas the top angle of the light redirection element was chosen to be 60°. It is important that the first angular distribution 52
10 is emitted in a first view area, and that the second angular distribution 51 is emitted in a second view area, so that at least one area 55 exist where the first and the second angular distributions do not overlap. It is less important that the distributions spread in the directions 53 and 54, or any directions not contained within the area 55 limited by the two view areas. It
15 may, however, be an advantage to avoid a spread in the directions 53 and 54 due to energy considerations, since a broad distribution requires more energy than a narrow distribution.

The angular separation of the light cones is a function of a number of parameters, including the top angles and the material choices of the light guide and the light redirection element. The light guide and the light redirection element are preferably made of transparent, or semitransparent, materials, e.g. glass or a transparent, or semitransparent, plastic material such as poly-methyl methacrylate (PMMA). The exact design depends, therefore upon the position of use for the device, as well as the mode of operation. Two modes of operation are envisioned.

In a preferred embodiment of the invention, the display device, is a display device capable of displaying 3D stereoscopic images on the display device. By directing the first light cone to the left eye of a user, and the second light cone to the right eye of the user,
25 synchronously with displaying the image for the left eye and the image for the right eye on the display panel. Thus in Fig. 2, the first image should be the image for the left eye, and the second image should be the image for the right eye. If a user maintains the display device at a distance so the first light cone hits the left eye and the second light cone hit the right eye, e.g.
30 as in Fig. 3, the user would then be able to see 3D stereoscopic images on the display panel of the display device. If the user at the same time, orients the device so that it is maintained in a position of use. A position of use is where the first and second groove structures extend in a direction pointing substantially perpendicular to an axis extending between the eyes of a user of the display panel.

Not all images generated on a display device are suitable for 3D stereoscopic viewing, such as images consisting of text, or the user may not want to view the images in a 3D stereoscopic mode. The display device may therefore comprise means for switching between displaying a 3D stereoscopic image and a 2D image on the display panel. A 2D 5 image is displayed on the display device when the first and the second light sources are illuminated simultaneously, since both eyes receive the same information. Alternatively the images for the left and the right eye are the same images. Another possibility is that the first and the second light sources are illuminated simultaneously *and* the images for the left and the right eye are the same images. The switching means may be user controlled as well as 10 apparatus controlled. The user may press a switch, a button or the like, or the switching may be controlled by a control software, an operating system, or the like.

In another embodiment of the invention, the display device, is a display device capable of displaying 2D images for at least two users. The images may be different images, so that more users can view different images from a single display device. Or, the images 15 may be the same images, so that more users can use a single display device. This is illustrated in Fig. 6.

In Fig. 6 a schematic drawing of two users viewing images from the same device is shown. The groove structures of the display device 60 is in this embodiment adapted so that the first light cone 61 is directed to a first user 63, whereas the second light 20 cone 62 is directed to a second user 64.

The embodiment presented in Fig. 6 enables multiple user to share one display device, for example in connection with a vehicle. The advantage of a vehicle is that the positions of the users are relatively fixed. A display device may, e.g., be mounted in the ceiling of a car, in this way the backseat passenger may view a film while transported. The 25 display device may be extended to include a number of light sources and groove structures, so that more than two users may use a single display device. For example four passengers in a car may use a single display device. The driver of the car may view an image with a map, e.g. connected to a GPS, whereas the passengers may watch a film.

Although the present invention has been described in connection with 30 preferred embodiments, it is not intended to be limited to the specific form set forth herein. Rather, the scope of the present invention is limited only by the accompanying claims.

CLAIMS:

1. A display device comprising

- a display panel (1);
- a light redirection element (8) for directing light through the display panel (1);
- a light guide (6) for directing light towards the light redirection element (8);
- 5 – a first light source (4) coupled to the light guide (6) so as to couple light to the light guide (6) in a first direction; and
- a second light source (5) coupled to the light guide (6) so as to couple light to the light guide (6) in a second direction;

wherein the light redirection element (8) comprises a first groove structure (9)

10 and the light guide (8) comprises a second groove structure (7) and the first and second groove structures (9, 7) are arranged in a configuration operable to direct light from the first light source (4) through the display panel (1) with a first angular distribution (2) and light from the second light source (5) with a second angular distribution (3).

15 2. A display device according to claim 1, further comprising means for alternating between illumination of the first and second light sources (4, 5) and means for alternating between displaying a first and second image (21, 23) on the display panel substantially synchronously with alternating between illumination (22, 24) of the first and second light sources (4, 5).

20 3. A display device according to claim 1, wherein the first and second groove structures (401, 47) of the light redirection element (400) and the light guide (46) are arranged in an opposed configuration.

25 4. A display device according to claim 1, wherein the first groove structure is a prism structure with a substantially triangular cross-section.

5. A display device according to claim 4, wherein an angle (402) of the joining sides forming the triangular cross section of the prism structure of the first groove structure (401) is between 10° and 70°.

5 6. A display device according to claim 1, wherein the second groove structure (47) is a prism structure with a substantially triangular cross-section.

7. A display device according to claim 6, wherein an angle (48) of the joining sides forming the triangular cross section of the prism structure of the second groove 10 structure is between 150° and 179°.

15. 8. A display device according to claim 1, wherein the first and second groove structures (9, 7) extend in a direction substantially perpendicular to an axis extending between the eyes (11, 12) of a user of the display panel when in use, when the display device is maintained in a position of use.

9. A display device according to claim 1, wherein the light with the first angular distribution (51) is emitted in a first view area predominantly containing light from the first light source (4), and wherein the light with the second angular distribution (52) is emitted in a 20 second view area predominantly containing light from the second light source (5).

10. A display device according to claim 2, wherein the first and second images are a first and second image of a 3D stereoscopic image.

25 11. A display device according to claim 2, wherein the first image is dedicated for a first user (63) and the second image is dedicated for a second user (64), whereby at least the first and the second user can view different images from a single display device (60).

30 12. A display device according to claim 10, wherein the first and the second light sources (4, 5) are illuminated simultaneously, whereby a 2D image is displayed on the display device.

13. A display device according to claim 12, wherein the display device comprises means for switching between illuminating the first and the second light sources

simultaneously, and illuminating the first and second light sources substantially synchronously with displaying the first and second images on the display panel.

14. A display device according to claim 1, wherein the first and second light
5 sources are light emitting diodes (LED) or cold cathode fluorescent lamps.

15. A display device according to claim 1, wherein the display panel is a liquid
crystal display (LCD) panel.

10 16. A display device according to claim 15, wherein the first and second groove
structures extend in a direction substantially perpendicular to the rows in an LCD panel.

17. A method for displaying data on a display device comprising the steps of:

- coupling light from a first and a second light source (4, 5) into a light guide (6) so as to couple light from the first light source (4) to the light guide (6) in a first direction and to couple light from the second light source (5) to the light guide (6) in a second direction;
- redirecting the light coupled into the light guide towards a light redirection element by coupling light out of the light guide by an out-coupling surface with a second groove structure (7); and
- further redirecting the light coupled into the light redirection element (8) by coupling light into the light redirection element (8) by an in-coupling surface with a first groove structure (9) such that light from the first light source (4) is directed through the display panel (1) with a first angular distribution and light from the second light source (5) is directed through the display panel (1) with a second angular distribution.

25 18. A method for displaying data on display device according to claim 17, wherein the first and second light sources (4, 5) are alternately illuminated substantially synchronously with displaying a first and second image on the display panel.

ABSTRACT:

The invention relates to a display device with directional backlight.

Stereoscopic images are produced by emitting light in two restricted and limited angular cones. Light is alternatively sent to the left and to the right eye of the observer synchronously with switching between images for the left and the right eyes on a fast switching LCD.

- 5 Alternatively, images may be produced for two or more observers and directed to a multitude of directions. The display device comprises: a display panel (1), a light redirection element (8) for directing light through the display panel (1), a light guide (6) for directing light towards the light redirection element (8), a first light source (4) coupled to the light guide (6) so as to couple light to the light guide (6) in a first direction, and a second light source (5) coupled to the light guide (6) so as to couple light to the light guide (6) in a second direction.
- 10 The light redirection element (8) comprises a first groove structure (9) and the light guide (8) comprises a second groove structure (7) and the first and second groove structures (9, 7) are arranged in a configuration operable to direct light from the first light source (4) through the display panel (1) with a first angular distribution (2) and light from the second light source
- 15 (5) with a second angular distribution (3).

Fig. 1

1/6

Fig. 1

2/6

Fig. 2

PHNL030300

3/6

Fig. 3

PHNL030300

4/6

Fig. 4

PHNL030300

5/6

Fig. 5

PHNL030300

6/6

Fig. 6

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.