Recurrent Neural Networks

CS 6956: Deep Learning for NLP

Overview

- 1. Modeling sequences
- 2. Recurrent neural networks: An abstraction
- 3. Usage patterns for RNNs
- 4. BiDirectional RNNs
- 5. A concrete example: The Elman RNN
- 6. The vanishing gradient problem
- 7. Long short-term memory units

Overview

- 1. Modeling sequences
- 2. Recurrent neural networks: An abstraction
- 3. Usage patterns for RNNs
- 4. BiDirectional RNNs
- 5. A concrete example: The Elman RNN
- 6. The vanishing gradient problem
- 7. Long short-term memory units

What can we do with such an abstraction?

- 1. The encoder: Convert a sequence into a feature vector for subsequent classification
- 2. A generator: Produce a sequence using an initial state
- 3. A transducer: Convert a sequence into another sequence
- 4. A conditioned generator (or an encoder-decoder): Combine 1 and 2

Convert a sequence into a feature vector for subsequent classification

Convert a sequence into a feature vector for subsequent classification

Convert a sequence into a feature vector for subsequent classification

Convert a sequence into a feature vector for subsequent classification

Example: Encode a sentence or a phrase into a feature vector for a classification

Produce a sequence using an initial state

Produce a sequence using an initial state

Produce a sequence using an initial state

Maybe the previous output becomes the current input

Produce a sequence using an initial state

Examples: Text generation tasks

3. A Transducer

Convert a sequence into another sequence

3. A Transducer

Convert a sequence into another sequence

4. Conditioned generator

Or an encoder-decoder: First encode a sequence, then generate another one

First encode a sequence

4. Conditioned generator

Or an encoder-decoder: First encode a sequence, then generate another one

Then decode it to produce a different sequence

4. Conditioned generator

Or an encoder-decoder: First encode a sequence, then generate another one

Example: A building block for neural machine translation

Stacking RNNs

- A commonly seen usage pattern
- An RNN takes an input sequence and produces an output sequence
- The input to an RNN can itself be the output of an RNN stacked RNNs, also called deep RNNs
- Two or more layers often seems to improve prediction performance