- Ho rieseguito tutti i test per le reti singole provando ad utilizzare global average pooling (GAP) invece che global max pooling (GMP) per l'ottenimento delle features
- I risultati fino ad oggi sono ottenuti con GMP e qui ho messo il confronto solo nel caso numero features fisse.
- Pensavo in ogni caso di confrontare i due modelli uguali con GMP e GAP e prendere fra i due il modello con il validation migliore in modo da giustificare la scelta tra i due metodi
- Ad esempio nel caso 1A confrontare VGG con GMP e GAP e tenere uno dei due
- I modelli con GAP che ottengono un validation più alto sono pochi in generale ma l'ultimo porta risultati buoni
- Nelle prossime slide evidenzio la riga del modello che terrei tra GAP e GMP
- Scelti poi i modelli definitivi se l'approccio può sembrare corretto ri eseguirei
 le combinazioni features + radiomica e l'ensemble con i modelli aggiornati

CLASSIFICATORI MIGLIORI GLOBALI 1) a) GMP

type of features	Classifier	Selector	numbe r feature s	roc auc val avg	bal accurac y val avg	roc auc test	bal accurac y test	f1 test	accurac y	confusion matrix test
VGG19	ensembl e	logistic	2	0.711 (std = 0.09)	0.724 (std = 0.11)	0.611	0.588	0.467	0.59	[[16 11] [5 7]]
Resnet50	Random Forest	logisti c	25	0.829(s td= 0.11)	0.77(std = 0.12)	0.745	0.731	0.625	0.692	[[17 10] [2 10]]
InceptionV3	XgBoost	lasso	9 (test) alpha = 0.189655 17241379 31	0.784(s td= 009)	0.722 (std= 0.07)	0.42	0.431	0.3125	0.436	[[[12 15] [7 5]]

CLASSIFICATORI MIGLIORI GLOBALI 1) a) GAP

Dalla cross validation fisso le features in at least 3 fold

type of features	Classifier	Selector	numbe r feature s	roc auc val avg	bal accurac y val avg	roc auc test	bal accurac y test	f1 test	accurac y	confusion matrix test
VGG19	XGBoost	logistic	5	0.728 (std = 0.11)	0.696 (std = 0.15)	0.636	0.588	0.467	0.59	[[16 11] [5 7]]
Resnet50	Random Forest	logisti c	25	0.768(s td= 0.08)	0.761(st d= 0.06)	0.512	0.504	0.357	0.538	[[16 11] [7 5]]
InceptionV3	SVM	lasso	14 (test) alpha = 0.189655 17241379 31	0.691(s td= 009)	0.681 (std= 0.07)	0.478	0.449	0.323	0.462	[[[13 14] [7 5]]

CLASSIFICATORI MIGLIORI GLOBALI caso 2) a) GMP

type of features	Classifier	Selector	numbe r feature s	roc auc val avg	bal accurac y val avg	roc auc test	bal accurac y test	f1 test	accurac y	confusion matrix test
Inception	Logistic	logistic	25	0.698(s td= 0.1)	0.666 (std = 0.1)	0.472	0.472	0.364	0.462	[[12 15] [6 6]]
Resnet	SVM	logistic	22	0.793 (std = 0.1)	0.778 (std = 0.09)	0.268	0.315	0.228	0.308	[[8 19] [8 4]]
Resnet Inception	XgBoost	logisti c	23	0.783(s td= 0.15)	0.717(st d= 0.11)	0.469	0.463	0.296	0.513	[[16 11] [8 4]]

CLASSIFICATORI MIGLIORI GLOBALI caso 2) a) GAP

type of features	Classifier	Selector	numbe r feature s	roc auc val avg	bal accurac y val avg	roc auc test	bal accurac y test	f1 test	accurac y	confusion matrix test
Inception	Logistic	lasso	12	0.731(s td= 0.13)	0.688 (std = 0.12)	0.407	0.38	0.16	0.462	[[16 11] [10 2]]
Resnet	SVM	Logisti c	27	0.668 (std = 0.14)	0.707 (std = 0.15)	0.463	0.532	0.424	0.513	[[13 14] [5 7]]
Resnet Inception	XgBoost	lasso	11	0.656(s td= 0.14)	0.687(st d= 0.13)	0.299	0.329	0.194	0.359	[[11 16] [9 3]]

CLASSIFICATORI MIGLIORI GLOBALI caso 2) b) GMP

type of features	Classifier	Selector	numbe r feature s	roc auc val avg	bal accurac y val avg	roc auc test	bal accurac y test	f1 test	accurac y	confusion matrix test
Inception	Logistic	rf	2	0.755(s td= 0.12)	0.679 (std = 0.08)	0.775	0.75	0.667	0.846	[[27 0] [6 6]]
Resnet	Logistic	mrmr	4	0.625 (std = 0.04)	0.644 (std = 0.05)	0.873	0.833	0.8	0.897	[[27 0] [4 8]]
Resnet Inception	Random Forest	logisti c	26	0.756(s td= 0.13)	0.724(st d= 0.15)	0.821	0.769	0.667	0.744	[[19 8] [2 10]]

CLASSIFICATORI MIGLIORI GLOBALI caso 2) b) GAP

Dalla cross validation fisso selector e num_features/ alpha

type of features	Classifier	Selector	numbe r feature s	roc auc val avg	bal accurac y val avg	roc auc test	bal accurac y test	f1 test	accurac y	confusion matrix test
Inception	ensembl e	lasso	4	0.701(s td= 0.05)	0.686 (std = 0.05)	0.809	0.741	0.64	0.769	[[22 5] [4 8]]
Resnet	XGBoost	lasso	5	0.651 (std = 0.12)	0.639(st d = 0.1)	0.836	0.69	0.581	0.667	[[17 1 0] [3 9]]
Resnet Inception	Logistic	mrmr	25	0.750(s td= 0.09)	0.707(st d= 0.09)	0.846	0.625	0.4	0.769	[[27 0] [9 3]]

In questo caso le due resnet stanno performando quasi uguale, con la prima che supera di soli 0.05 la seconda. Scegliere comunque la prima vista la std. inferiore rispetto al caso GAP

CLASSIFICATORI MIGLIORI GLOBALI caso 1) c) GMP

type of features	Classifier	Selector	numbe r feature s	roc auc val avg	bal accurac y val avg	roc auc test	bal accurac y test	f1 test	accurac y	confusion matrix test
VGG	Random Forest	mrmr	21	0.713(s td= 0.08)	0.752 (std = 0.07)	0.887	0.806	0.714	0.795	[[21 6] [2 10]]
Resnet	Random Forest	rf	27	0.673 (std = 0.03)	0.69 (std = 0.07)	0.878	0.838	0.783	0.872	[[25 2] [3 9]]
Inception	ensembl e	logisti c	15	0.746(s td= 0.06)	0.723(st d= 0.05)	0.852	0.80	0.72	0.821	[[23 4] [3 9]]

CLASSIFICATORI MIGLIORI GLOBALI caso 1) c) GAP

type of features	Classifier	Selector	numbe r feature s	roc auc val avg	bal accurac y val avg	roc auc test	bal accurac y test	f1 test	accurac y	confusion matrix test
VGG	ensembl e	lasso	9	0.688(s td= 0.15)	0.710 (std = 0.09)	0.873	0.745	0.643	0.744	[[20 7] [3 9]]
Resnet	ensembl e	lasso	4	0.683 (std = 0.05)	0.659 (std = 0.08)	0.793	0.759	0.667	0.759	[[23 4] [4 8]]
Inception	Logistic	logisti c	9	0.748(s td= 0.06)	0.712(st d= 0.05)	0.744	0.63	0.516	0.615	[[16 11] [4 8]]

CLASSIFICATORI MIGLIORI GLOBALI caso 2) c) GMP

Dalla cross validation fisso selector e num_features/ alpha Normalizzando le immagini

type of features	Classifier	Selector	numbe r feature s	roc auc val avg	bal accurac y val avg	roc auc test	bal accurac y test	f1 test	accurac y	confusion matrix test
Resnet	SVM	lasso	13 (sul test) alpha= 0.015103 44827586 207	0.754(s td= 0.11)	0.671 (std = 0.08)	0.926	0.768	0.667	0.744	[[19 8] [2 10]]
Inception	XgBoost	logistic	8	0.751 (std = 0.14)	0.739 (std = 0.13)	0.697	0.63	0.516	0.615	[[16 11] [4 8]]
Resnet Inception	XgBoost	lasso	19	0.661(s td= 0.21)	0.668(st d= 0.191)	0.747	0.63	0.516	0.615	[[16 11] [4 8]]

CLASSIFICATORI MIGLIORI GLOBALI caso 2) c) GAP

type of features	Classifier	Selector	numbe r feature s	roc auc val avg	bal accurac y val avg	roc auc test	bal accurac y test	f1 test	accurac y	confusion matrix test
Resnet	XgBoost	mrmr	3	0.646(s td= 0.10)	0.674 (std = 0.09)	0.673	0.731	0.625	0.692	[[17 10] [2 10]]
Inception	XgBoost	rf	10	0.642 (std = 0.17)	0.676 (std = 0.15)	0.70	0.69	0.571	0.692	[[19 8] [4 8]]
Resnet Inception	ensembl e	mrmr	6	0.671(s td= 0.09)	0.70(std = 0.07)	0.87	0.917	0.909	0.949	[[27 0] [2 10]]