PRÁCTICA 1 - Números y operaciones aritméticas en binario

1) Convertir los siguientes valores decimales a binario y a hexadecimal:

Decimal	Binario	Hexadecimal
27	11011	1B
54		
170		
542		
1084		
2048		
2168		
	1011000111001	
		2C9
	1000111101010	
		FECB
		1B2C

2) Para cada fila, ordene los números de menor a mayor

A ₁₆	1012	810	1102
1010	102	10 ₁₆	B ₁₆
C1 ₁₆	19010	101111002	4B ₁₆
010000002	4A ₁₆	A4 ₁₆	12810

3) Interpretar las siguientes cadenas de dígitos binarios como números codificados en Binario Sin Signo (BSS) o Binario Con Signo (BCS).

Resultado	BSS	BCS
10000010	130	-2
10110011		
00000010		
00110011		
10101110		

4) Realizar las siguientes operaciones de suma y resta indicando el estado de las banderas de Z(cero) y C(carry). Interpretar el resultado obtenido considerando que la operación trabaja con valores binarios que representaban números enteros sin signo. Determinar cuáles resultados son correctos y cuáles no. El resultado de la operación es del mismo tamaño de los operandos, es decir 8 bits.

	Resultado	ZC	interpretados como sin signo	¿Correcto?
00000001 + 10000000 =	10000001(2	00	1 + 128 = 129 ₍₁₀	Si
10000001 + 10000000 =	0000001(2	01	129 + 128 = 1 ₍₁₀	No
01110000 + 00101111 =				
01000000 + 01000000 =				
11111111 + 00000001 =				
01111111 + 00000001 =				
11111111 + 11111110 =				
10011111 + 11110000 =				
00100000 - 01100000 =	11000000 (2	01	32 - 96 = 192 ₍₁₀	No
01110000 - 01111000 =				
10110111 - 00011110 =				
01111111 - 11110000 =				

- 5) Suponga que tiene una computadora que posee un bus de direcciones de 6 bits.
 - a) ¿Cuántas direcciones distintas puede representar?
 - b) ¿Cuál es el número más grande que puede representar en BSS?
 - c) ¿Qué capacidad total tendrá la memoria RAM si la Unidad Mínima Direccionable es el Byte?
- 6) Realice el mismo ejercicio anterior, pero ahora suponiendo que el bus de direcciones posee 32 bits.
 - a) Exprese la capacidad de la memoria en Bytes, KB, MB y GB.

PRÁCTICA 2 - Operaciones y Circuitos Lógicos

1) Realizar las siguientes operaciones lógicas:

Nota: Se opera lógicamente con los bits ubicados en la misma posición de cada operando

AND 01010101 01010101 01010101 AND 01010101 AND 01010101

11110000 AND 11111111=
01010101 OR 01010101 =
01010101 OR 10101010 =
11110001 NOR 11110010 =
01010101 XOR 01010101 =
01010101 XOR 10101010 =
00001111 XNOR 00000000 =
NOT 11111111 =
NOT 01000000 =
NOT 00001110 =

2) Complete el operador faltante para obtener el resultado deseado.

00010001	01010101	01010101
01011100	11110000	00101011
01011101	10100101	10000001

3) Una máscara permite dejar pasar ciertos bits deseados en un circuito lógico. Por ejemplo, la primera fila de la siguiente tabla deja pasar los bits 3 y 4, manteniendo sus valores originales, y poniendo el resto de los bits en 1. Determine la operación lógica y el valor de la máscara para obtener el resultado indicado:

DATO	Op. lógica	Máscara	=	RESULTADO
$D_7D_6D_5D_4D_3D_2D_1D_0$	OR	11100111	=	111D ₄ D ₃ 111
D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀			=	D ₇ D ₆ D ₅ D ₄ 1 D ₂ D ₁ D ₀
D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀			=	0 D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀
D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀			=	D_7 $\overline{(D_6)}$ D_5 $\overline{(D_4)}$ $D_3D_2D_1D_0$

4) Complete la tabla de verdad y las ecuaciones lógicas de los siguientes circuitos lógicos. Puede ayudarse realizando las operaciones intermedias en la tabla.

Α	В	A.B	C= A+A.B
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

C = A + AB = A

Por ley de absorción

Α	В	A.B	С
0	0	0	
0	1	0	
1	0	0	
1	1	1	

- (A.b) · (A.b) -

Por ley distributiva

Por ley de absorción

Α	В	С
0	0	
0	1	
1	0	
1	1	

Α	В	С
0	0	
0	1	
1	0	
1	1	

C=

Α	В	С
0	0	
0	1	
1	0	
1	1	

C=

f) Sumador Completo. Dados 3 bits realiza la suma artimética de los mismos.

Α	В	С	Out1	Out0
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

g) Decodificador 2 a 4. Dado un número en binario, permite seleccionar una posición específica.

A ₁	A ₀	D ₃	D ₂	D ₁	D ₀
0	0				
0	1				
1	0				
1	1				

PRÁCTICA 3 - Dispositivos Periféricos

- 1) ¿Cuánta memoria requieren las siguientes terminales? Responder en Bytes, Kbyte o Mbyte, dependiendo si los resultados son mayores a 1024.
 - a. Alfanumérica ASCII extendida (8bits) de 2 filas x 80 columnas: monocromo.
 - b. Alfanumérica ASCII extendida (8bits) de 24 filas x 80 columnas con 16 colores y con 4 atributos.
 - c. Gráfica de 640 x 480 píxeles monocromo.
 - d. Gráfica de 640 x 480 píxeles True Color (24bits).
 - e. Gráfica de 1024 x 768 píxeles con 8 colores.
 - f. Gráfica 4K (4096×2160 píxeles) True Color.
- 2) Considere una imagen en blanco y negro de 8,5" x 11" con una resolución de 2400 dpi (puntos por pulgada lineal).
 - a. ¿Cuántos bytes de memoria hacen falta para almacenarla?
 - b. ¿Cuánto ocuparía si tuviese 256 tonos de gris?
 - c. ¿Y si fuese True Color?
- 3) Calcule la velocidad mínima que debe tener la comunicación entre una computadora y un scanner si éste puede digitalizar una página de 10" x 15" monocromo con una resolución de 600 dpi en 30 segundos.
- 4) Se debe transmitir una imagen de 30 x 50 pixeles con 4 colores a través de una interfaz serie de 1000 bps. ¿En cuánto tiempo se transmitirá?
- 5) Se debe transmitir una imagen de 20 x 20 pixeles a través de una interfaz serie de 1000 bps en no más de 2 segundos. ¿Cuál es la máxima cantidad de colores que pueden utilizarse?
- 6) Un disco rígido tiene 512 bytes/sector, 1000 sectores/pista, 5000 pistas/cara y 8 platos (16 caras). Calcular la capacidad total del disco. Exprese el resultado en notación científica.
- 7) Un disco rígido tiene dos caras (1 plato). El radio de la pista más interna es 1 cm y el radio de la pista más externa es 5 cm. Cada pista mantiene el mismo número de bits. La máxima densidad de almacenamiento es 10.000 bits/cm, el espaciamiento entre pistas es 0,1mm. Asuma que la separación entre sectores es despreciable y en el borde exterior hay una pista.

- a) ¿Cuál es el máximo número de bits que puede almacenarse en el disco?
- b) ¿Cuál es la velocidad de transferencia en bits/seg si la velocidad de rotación es de 3600 rpm? ¿y si es 7200 rpm?