재활 치료 운동 자세 가이드

박세현 장지수 반지류

Contents

- 1. Problem Definition
- 2. Related Work & Technical Challenges
- 3. Target Scenario & Pipeline
- 4. Application Architecture
- 5. Demo
- 6. Future Works

Problem Definition

스마트폰 사용량 및 전자기기 사용량 증가

근골격계 질환 환자 증가

중증 상체 근골격계 질환 뿐만 아니라 거북목, 척추 측만증 등 경도의 질환 환자 증가

Problem Definition

• 근골격계 질환 치료 방법

환자 개인이 스스로 <mark>본인을 촬영</mark>하는 것과 동시에 <mark>올바른 자세 예시</mark>를 보면서 운동 자세를 할 수 있을까?

→ 재활 운동 자세를 가이드 하는 시스템을 만들자!

Related Work

Venture

- 운동 가이드 어플리케이션
- 자세에 대한 피드백 + 올바른 자 세 예시 부족

Research

- Kinect, Vicon과 같은 센서에 의 존
- 개인의 사용보다 병원용 사용에 초점

kaia health"

Artificial Intelligence-Based Wearable Robotic Exoskeletons for Upper Limb Rehabilitation: A Review

Target Scenario

User Interface

- 실제 올바른 동작 제시
- 본인의 관절 좌표 제시

Model

- Kinect Sensor을 이용한 관절 좌표 데이터 학습
- 실시간으로 모델이 사용자의 자 세가 제대로 이루어지는지 판단

Mediapipe

- Using Blazepose to track the real-time body pose to predict the location 33 keypoints
 - Estimation: Utilize two-step detector tracker ML pipeline
 - Find the pose Region-of-interest (ROI)
 - Video case: run only first frame
 - Pose Estimation Component
 - Three degrees of freedom: x,y location and visibility two virtual alignment keypoints
- Pose Detection by Extending BlazeFace
 - Trained a face detector as a proxy for <u>a pose detector</u>
- Combined heat map/offset prediction of all keypoints
 - Employ a heatmap and offset loss to train the center and left tower of the network
 - Remove the heatmap output and train the regression encoder
 - Heatmap to supervise a lightweight embedding

Target Scenario

Dataset

Labelling된 Kinect 3D 관 절 좌표 위치

Model

올바른 Landmark 위치 좌표 학습된 mediapipe 모델

Application

사용자 재활 운동 시작

Landmark 좌표 추출

사용자에게서 Model이 학습한 landmark 좌표 추 출 & 올바른 좌표와 비교

피드백

올바른 동작을 수행했다

Technical Challenges

프로젝트 초기 방향

- nose 1. right eye inner

- 9. mouth right
- 11. right shoulder 12. left shoulder
- 15. right wrist left wrist

- 17. right pinky knuckle #1 18. left pinky knuckle #1
 - 19. right index knuclke #1
 - 20. left index knuckle #1
 - 21, right thumb knuckle #2
 - 22. left thumb knuckle #2
 - 23. right hip
 - 24. left hip
 - 25. right knee 26. left knee

 - 27. right ankle
 - 28. left ankle 29. right heel
 - 30. left heel 31. right foot index
 - 32. left foot index

Mediapipe

ML Solution using BlazePose for extracting coordinates from human

UI-PRMD: Kinect Coordinate

15 Healthy, 14 Unhealthy Subject, 10 movements, 10 Repetition, Label on Correct Movement

Technical Challenges

API 전체를 수정해야 하는 문제

Mediapipe

ML Solution using BlazePose for extracting coordinates from human

UI-PRMD: Kinect Coordinate

15 Healthy, 14 Unhealthy Subject, 10 movements, 10 Repetition, Label on Correct Movement

Application Architecture [User Case]

Application Architecture [초기]

Application Architecture

PoseResultGLRendering() + Program GLES Attribute Value + PositionHandle + ProjectionMatrixHandle + ColorHandle + PoseDetectionValue + CameraInput - glsurfaceView Camera Input 값으로 GI FS + SetupRendering() MediaPipe을 Rendering 해주 + RenderResult() modeling을 하 + DrawConnection(handLandmarkList, colorArray) 는 set up과 여 GLSurface Landmark 해주 + DrawCircle(x,y,ColorArray) View로 는 것 - DrawHollowCircle(x, y, colorArray) Landmark 구현 + SetupstreamingModePipeLine method + startCamera

Main() + Check Person insideFrame

- + Compare_between_clipAndmotion
- + Load CameraSurfaceView User Motion
- + Load GroundTurth YoutubeClip
- + Evalution movement

- Check Pesrson InsideFrame: user가 Frame 틀 안에 있는지 확
- Load CameraSurfaceView User Motion: PoseResultGLRendering 구현되어진 surfaceview 호출
- Load GroudTruth YoutbeClip: Groud truth 설정으로 되어진 Youtue Clip 동영상 load
- Compare_bewteen_clipandMotion: 두 동영상의 angle value 을 비교
- Evalution movement: 비교된 pred 값들을 토대로 result 값 return

Application Architecture

PoseResultGLRendering()

+ Program
+ PositionHandle
+ ProjectionMatrixHandle

CameraX와 MediaPipe Sync 문제

CameraX와 MediaPipe sync 문제

Cannot resolve symbol 'mediapipe' 17 Cannot resolve symbol 'mediapipe' 18 Cannot resolve symbol 'mediapipe' 19 Cannot resolve symbol 'mediapipe' :20 Cannot resolve symbol 'mediapipe' :21 Cannot resolve symbol 'mediapipe' 22 Cannot resolve symbol 'mediapipe' :23 Cannot resolve symbol 'mediapipe' :24 Cannot resolve symbol 'mediapipe' :25 Cannot resolve symbol 'mediapipe' 26 Cannot resolve symbol 'mediapipe' 27 Cannot resolve symbol 'mediapipe' :28 Cannot resolve symbol 'CameraHelper' :45 Cannot resolve symbol 'CameraHelper' :45

Cannot resolve symbol 'EalManager' :63

Build successful을 하였음에도 sync error 가 나옴.

Sync Issue 확인하고 다시 설정 후 진행 test가 필요함

Web Architecture

Frame 안에 User가 들어오면 마스킹이 빨간색-> 초록색으로 변환하여 Ground Truth인 동영상이 옆에 열린다. 그 후, 3초 Count 후 진행

Demo

Rehabilitation Treatment Guide System

Please, first look at the following short video, then start to train!

Arguments

- . Inference frequency (IF): Inferecne with MediaPipe Model for every IF number of frame
- Angle Threshold: Threshold for allowance of error angle degree between USER and TARGET
- Box Padding: Number of padding pixels to start based on TARGET person bounding box
- . Left Arm: Check if you want to train the left arm
- Do not start: If you check this box, you will always not start the training program. For Debugging.

USER

TARGET

Count/Frame: 9 | Match Accuracy: 0.4286

Thank you