

Project Goals Original: Build a real time face detection system for hyperspectral instrument Desired: Fast Matlab facial recognition of hyperspectral images Objective: Use specific wavelengths from hyperspectral cube to narrow down a face

Hypersprectral Imaging [1]

- Hyperspectral images also called "image cubes"
- Have large spectral dimensionsFiner granularity
- Have two spatial dimensions
- Combine spectral and spatial information

Hypersprectral Imaging Contd.

- Generally contain dozens to hundreds of bands
- Can sense electromagnetic radiation between 400nm and 2500 nm depending on the sensor
- Can provide unique spectral signatures of objects and materials

Hyperspectral Applications

- Surveillance
 - Human face detection
 - Human face recognition
- Non-intrusive medical applications
- Target detection
- Material mapping
- Material identification
- Mapping details of surface properties
-more

Facial Recognition Different from face detection Applications Identity verification Surveillance Smart environments [3] Human Actions Intention Behavior

Facial Recognition [4] • Elastic face matching • Warp images • Compensates for facial expression

- Compensates for facial expressions and pose
- Better than Geometry based
- Problems
 - Rank based system
 - Needs maneuvering of warping parameters

Facial Recognition [4]

- Neural networks
 - Input unit, gray scale images
 - Training unit
 - Output unit, one per person
 - Uses thresholding and Euclidian distance
 - Better than previous techniques
- Problems
 - Need to have training set
 - Need to train the system

Hyperspectral Facial Recognition [5] Hyperspectral cameras provide useful discriminants for human face recognition [5] Near Infra Red (NIR) images Larger penetration depth Spectral measurements over NIR sense subsurface tissue structure Stable over time Significantly different from person to person

Process Initialization New image Calculate weights of new image and eigenfaces Is a face? Classify whether the face is known or unknown

Future Work

- Multi-level skin thresholding
 - Good for Caucasian/Asian/African decent
- Different sized faces
- Fast blob linking
- Better aspect ratio
 - Diagonal orientation
- Better test environment, more robust
 - More people
 - Better lighting
 - Trying NIR

Conclusions Our system works with an accuracy of • Detection: 83.333% • Recognition: 50% Hyperspectral images are useful Potential fine tuning for skin based analysis

References

- http://www.asprs.org/publications/pers/2004journal/april/highlight.pdf
- http://www.asprs.org/publications/persi/2UJ-ijournal/april/highight.pdr
 http://www.pojepomatics.com/products/Hyperspectral_primer.pdf
 http://wip.com/products/Hyperspectral_primer.pdf
 http://wismod.media.mit.edu/tech-reports/TR-516/node11.html
 V.V. Staroviotov, D.I. Samal, D.V. Brilluk, "Three Approaches for Face Recognition",
 The 6-th International Conference on Pattern Recognition and Image Analysis October
 21-26, 2002, Velikiy Novgorod, Russia, pp. 707-711
 Pan, Z., Healey, G., Prasad, M., and Tromberg, B. 2003. Face Recognition in
 Hyperspectral Images. IEEE Trans. Pattern Anal. Mach. Intell. 25, 12 (Dec. 2003),
 1552-1560. DOI= http://dx.doi.org/10.1109/TPAMI.2003.1251148

