Pakorn Watanachaturaporn pakorn.wa@KMITL.ac.th

01076244 Advanced Digital System Design

Bachelor Program in Computer Engineering (B.Eng.) Faculty of Engineering

King Mongkut's Institute of Technology Ladkrabang

State-Machine Structure

input

change state at each tick of

the clock

The output logic G determines the output as a function of the current state and input

A set of n flip-flops that store the current state of the machine and has 2^n distinct states

F and G are strictly combinational logic circuits.

Next state = F (current state, input)
Output = G (current state, input)

Output Logic

Mealy machine: output depends on both state and input

Moore machine: the output depends on state alone

Characteristic Equations

A ________ is a formally description of a _______
The ______ suffix means the "_______"
Note: the characteristic equation does not describe detailed timing behavior of the device (latching vs. edge-triggered, etc.), only _____

Device Type	Characteristic Equation
S-R latch	$Q^* = S + R' \cdot Q$
D latch	Q* = D
Edge-triggered D flip-flop	Q* = D
D flip-flop with enable	$Q^* = EN \cdot D + EN' \cdot Q$
Edge-triggered J-K flip-flop	$Q^* = J \cdot Q' + K' \cdot Q$
T flip-flop	Q* = Q'
T flip-flop with enable	$Q^* = EN \cdot Q' + EN' \cdot Q$

Analysis of State Machines with D Flip-Flops

1. Determine the $___$ and $___$ F and G.

- 2. Use *F* and *G* to construct a ______ that completely specifies the _____ and ____ of the circuit for every possible combination of current state and input.
- 3. (Optional) Draw a _____ that presents the information from the previous step in graphical form.

Clocked synchronous state machine using positiveedge-triggered D flip-flops

Clocked synchronous state machine using positiveedge-triggered D flip-flops

The _____after a clock tick is denoted by ____ to the state-variable name.

Clocked synchronous state machine using positive-edge-triggered D flip-flops

S	EN			
	0	1		
Α	A,0	B , O		
В	B , O	C,0		
С	C,0	D,0		
D	D,0	A , 1		
	S*, MAX			

State/output table

State diagram

- A __
 the
- A circle (or
- An arrow (or
- presents the information from in a graphical format.
-) for each state.
 -) for each transition.

Clocked synchronous state machine using positive-edge-triggered D flip-flops

Redrawn logic diagram for a clocked synchronous state machine

s	E	N	
	0	1	
Α	A,0	B , O	
В	B , O	C,0	
С	C,0	D,0	
D	D,0	A,1	
	S* , MAX		

CLOCK												
EN .												
Q1												
Q0											\	
MAX								/			\	
MAXS											\	
STATE	1	Α	A	l B	С	C	C	D D	D	D	A	A

 $MAX = Q1 \cdot Q0 \cdot EN$

Timing diagram for example state machine

Summarizing detailed steps for analyzing a clocked synchronous state machine

1.	Determine	for the flip-flo	op control inputs.
2.	characteristic ed	the excitation equations in quations to obtain transitions	<u> </u>
3.	Use the	to construct a	a transition table.
4.	Determine the _		
5.	Add	to the transition table for e (Mealy) to create a	each state (Moore) or transition/output table.
6.		and the transition/output table	
7.	(Optional) Draw table.	a state diagram correspo	nding to the state/output

The excitation equations are :

$$Q0* = Q1' \cdot X + Q0 \cdot X' + Q2$$

$$Q1^* = Q2' \cdot Q0 \cdot X + Q1 \cdot X' + Q2 \cdot Q1$$

$$Q2* = Q2 \cdot Q0' + Q0' \cdot X' \cdot Y$$

Transition equation

ΧY					
Q2 Q1 Q0	00	01	10	11	Z1 Z2
000	000	100	001	001	10
001	001	001	011	011	10
010	010	110	000	000	10
011	011	011	010	010	00
100	101	101	101	101	11
101	001	001	001	001	10
110	111	111	111	111	11
111	011	011	011	011	11
Q2* Q1* Q0*					

 $Z2 = Q2 \cdot Q1 + Q2 \cdot Q0'$

Two output equation

			_			
	S	00	01	10	11	Z1 Z2
ľ	Α	Α	Е	В	В	10
	В	В	В	D	D	10
	C	C	G	Α	Α	10
	D	D	D	C	C	00
	Ε	F	F	F	F	11
	F	В	В	В	В	10
	G	Н	Н	Н	Н	11
	Н	D	D	D	D	11
	'		S	*		_

$$Z1 = Q2 + Q1' + Q0'$$

$$Z2 = Q2 \cdot Q1 + Q2 \cdot Q0'$$

Two output equation

S	00	01	10	11	Z1 Z2
Α	Α	Е	В	В	10
В	В	В	D	D	10
C	С	G	Α	Α	10
D	D	D	С	С	00
Ε	F	F	F	F	11
F	В	В	В	В	10
G	Н	Н	Н	Н	11
Н	D	D	D	D	11

State/output table

State diagram

Transition expression constraints

•	can equal 1 for the same
-	nation since a machine cannotfor one input
combination	
• For every po	ssible,
some	must equal 1, ext states are defined.
so mar an me	At states are defined.
'The transition o	expressions on arcs leaving a particular state

must be