Autovalores e Autovetores

1. Para cada uma das matrizes abaixo encontre todos os autovalores e autovetores associados:

(a)
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
. (b) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. (d) $\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. (d) $\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

- 2. Explique porque a matriz $\begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 12 & 0 & 4 \\ 1 & 0 & 1 & 0 \end{pmatrix}$ tem pelo menos dois autovalores reais.
- 3. Sejam A uma matriz, λ um autovalor de $A, c \in \mathbb{C}$ e $k \in \mathbb{N}$. Prove que:

 - (a) λ é um autovalor de A^T . (b) $c\lambda$ é um autovalor de cA.

 - (c) λ^r é um autovalor de A^r . (d) $\lambda + c$ é um autovalor de A + cI.
 - (e) Se A é não singular então $1/\lambda$ é um autovalor de A^{-1} .
- 4. Sejam A uma matriz quadrada e $\alpha \in \mathbb{C}$. Prove que v é um autovetor de A se e somente se v é um autovetor de $A - \alpha I$.
- 5. Seja $A \in \mathbb{R}^{n \times n}$ com elementos $a_{ii} = n$ e $a_{ij} = 1$ para $i \neq j$. Prove que A não tem autovalores nulos e, portanto, é não singular.
- 6. Sejam $A \in \mathbb{R}^{m \times m}$, $B \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{n \times n}$ e defina $T = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$. Prove que $\Lambda(T) = \Lambda(A) \cup \Lambda(C)$.
- 7. Seja $A \in \mathbb{R}^{n \times n}$ simétrica e defina $r(x) = \frac{x^T A x}{x^T x}$ para todo $0 \neq x \in \mathbb{R}^n$. Prove que $\max_{x \in \mathbb{R}^n} r(x) = \max_{x \in \mathbb{R}^n} r(x)$ $\max \Lambda(A) \in \min_{x \in \mathbb{R}^n} r(x) = \min \Lambda(A).$
- 8. Prove ou dê um contra-exemplo para a seguinte afirmação: A tem todos os seus autovalores iguais se e somente se A é uma matriz escalar, isto é, A = aI para algum $a \in \mathbb{C}$.
- 9. Seja $A \in \mathbb{R}^{n \times n}$ diagonalizável. Prove que $\rho(A) < 1$ se e somente se $\lim_{k \to \infty} A^k = 0$.
- 10. Seja $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$ e $x^0 = (1,0)^T$.
 - (a) Determine os autovalores/autovetores de A.
 - (b) Aplique o Método das Potências.
 - (c) Aplique o Método das Potências Inverso.
 - (d) Aplique o Método de Rayleigh.
 - (e) Analise os resultados obtidos.