Tarea 5

Fecha de publicación: Septiembre 25, 2020

Fecha de entrega: Domingo 4 de octubre de 2020.

Ejercicio 1. (2 puntos)

Considere la matriz

$$\mathbf{A} = \begin{bmatrix} a^2 & a & a/2 & 1 \\ a & -9 & 1 & 0 \\ a/2 & 1 & 10 & 0 \\ 1 & 0 & 0 & a \end{bmatrix}$$

Dé algún rango de valores de a para los cuales se garantice la convergencia del método de Jacobi.

Ejercicio 2. (2 puntos)

Suponga que $A \in \mathbb{R}^{n \times n}$ es una matriz tridiagonal y las tres diagonales de interés se almacenan en un arreglo B que tiene n filas y tres columnas:

$$\mathbf{A} = \begin{bmatrix} a_{00} & a_{01} & 0 & \cdots & 0 & 0 & 0 \\ a_{10} & a_{11} & a_{12} & \cdots & 0 & 0 & 0 \\ 0 & a_{21} & a_{22} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-3,n-3} & a_{n-3,n-2} & 0 \\ 0 & 0 & 0 & \cdots & a_{n-2,n-3} & a_{n-2,n-2} & a_{n-2,n-1} \\ 0 & 0 & 0 & \cdots & 0 & a_{n-1,n-2} & a_{n-1,n-1} \end{bmatrix}$$

$$\boldsymbol{B} = \begin{bmatrix} b_{00} & b_{01} & b_{02} \\ b_{10} & b_{11} & b_{12} \\ b_{20} & b_{21} & b_{22} \\ \vdots & \vdots & \vdots \\ b_{n-3,0} & b_{n-3,1} & b_{n-3,2} \\ b_{n-2,0} & b_{n-2,1} & b_{n-2,2} \\ b_{n-1,0} & b_{n-1,1} & b_{n-1,2} \end{bmatrix} = \begin{bmatrix} 0 & a_{00} & a_{01} \\ a_{10} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} \\ \vdots & \vdots & \vdots \\ a_{n-3,n-4} & a_{n-3,n-3} & a_{n-3,n-2} \\ a_{n-2,n-3} & a_{n-2,n-2} & a_{n-2,n-1} \\ a_{n-1,n-2} & a_{n-1,n-1} & 0 \end{bmatrix}$$

Escriba las expresiones para calcular las actualizaciones de las componentes del vector $\boldsymbol{x}^{(t+1)} = \left(x_0^{(t+1)}, ..., x_{n-1}^{(t+1)}\right)^{\top}$ de acuerdo con el método de Gauss-Seidel. Específicamente escriba la expresión para actualizar $x_0^{(t+1)}$, $x_i^{(t+1)}$ para i=1,...,n-2, y $x_{n-1}^{(t+1)}$ usando los coeficientes a_{ij} de la matriz \boldsymbol{A} y usando los coeficientes b_{ij} del arreglo \boldsymbol{B} .

Ejercicio 3. (6 puntos)

Programar el método de Gauss-Seidel para resolver un sistema de ecuaciones en el que la matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ del sistema es tridiagonal.

Para este ejercicio vamos a extraer de una matriz tridiagonal las tres diagonales de interés y almacenarlas en un arreglo que tiene n filas y tres columnas, para formar el arreglo \boldsymbol{B} como el que se describe en el ejercicio anterior.

Nota. El objetivo es implementar el algoritmo sin requiera que le pase la matriz \boldsymbol{A} , sino sólo la información que es relevante, es decir, las diagonales que tiene a los elementos distintos de cero. Aunque podría proporcionar directamente el arreglo \boldsymbol{B} , pero voy a proporcionar la matriz \boldsymbol{A} para que puedan resolver el sistema de ecuaciones por algún método y comparar con el resultado que devuelve su implementación del método de Gauss-Seidel.

- 1. Escriba una función que recibe como parámetros una matriz cuadrada \boldsymbol{A} , el tamaño de la matriz n. La salida de la función es la matriz \boldsymbol{B} descrita en el ejercicio anterior que tiene las tres diagonales de \boldsymbol{A} .
- 2. Escriba la función que implementa el método de Gauss-Seidel. Esta función recibe como parámetros el apuntador al arreglo \boldsymbol{B} , el número de filas n de este arreglo, un vector inicial $\boldsymbol{x}^{(0)}$, el vector de términos independientes \boldsymbol{b} , una tolerancia τ y un número máximo de iteraciones N. Use las expresiones del ejercicio anterior para hacer la actualización del vector. El algoritmo se detiene cuando se cumple el número máximo de iteraciones o cuando el error $e_{t+1} = \|\boldsymbol{A}\boldsymbol{x}^{(t+1)} \boldsymbol{b}\| < \tau$ en alguna norma. Note que tiene que calcular $\boldsymbol{A}\boldsymbol{x}^{(t+1)}$ usando los elementos del arreglo \boldsymbol{B} .

La función debe devolver el vector $\boldsymbol{x}^{(t+1)}$, el número t+1 de iteraciones realizadas y el valor del error e_{t+1} .

- 3. Escriba un programa que reciba desde la línea de comandos
 - El nombre del archivo que tiene los elementos de la matriz A.
 - El nombre del archivo que tiene los elementos del vector \boldsymbol{b} .
 - \bullet El número máximo de iteraciones N.

Use las funciones anteriores para obtener el vector $\boldsymbol{x}^{(t+1)}$. Fije el valor de la tolerancia $\tau = \sqrt{\epsilon_m}$ e inicialice $\boldsymbol{x}^{(0)}$ como el vector cero.

Haga que el programa imprima el número de iteraciones t+1 realizadas por el algoritmo, el error e_{t+1} y las primeras y últimas componentes del vector $\boldsymbol{x}^{(t+1)}$ (con

la función que ya deben tener implementada en una tarea anterior). Si $e_{t+1} < \tau$ imprima la cadena "El método de Gauss-Seidel converge". Calcule la solución del sistema $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ usando algún otro método y reporte el valor $\|\boldsymbol{x} - \boldsymbol{x}^{(t+1)}\|$.

4. Use los datos del archivo datosTarea05.zip para probar el programa. Primero pruebe el programa usando pocas iteraciones, para que pueda ver si el error e_{t+1} va disminuyendo y esto le indique si el algoritmo puede converger. Si ese es el caso, dé un valor grande de N para permitir que el algoritmo termine cuando se cumpla el criterior de la tolerancia.

Reporte los resultados en el archivo de respuestas.