

1. Consider the voltage amplifier circuit model, Avo = 100 V/V, under the following conditions; calculate the overall gain in each case and express in dB.

(a)
$$R_i = 10R_s$$
, $R_L = 10R_o$

(b)
$$R_i = R_s$$
, $R_L = R_o$

(c)
$$R_i = R_s/10$$
, $R_L = R_o/10$

2. You are given two amplifiers, A and B, to connect in cascade between a 10-mV, 100 k Ω source and a 100 Ω load. The amplifiers have voltage gain, input resistance, and output resistance as follows: for A, 100 V/V, 100 k Ω , 10 k Ω , respectively; for B, 10 V/V, 10 k Ω , 1 k Ω , respectively. Your problem is to decide how the amplifiers should be connected. To proceed, evaluate the two possible connections between source S and load L, namely, SABL and SBAL. Find the voltage gain for each both as a ratio and in decibels. Which amplifier arrangement is best?

3. A current amplifier for which $R_i = 100 \ \Omega$, $R_o = 10 \ \text{k} \ \Omega$, and $A_{is} = 100 \ \text{A/A}$ is to be connected between a 100 mV source with a resistance of 10 k Ω and a load of 1 k Ω . What are the values of current gain i_o/i_i , of voltage gain v_o/v_s , and of power gain expressed directly and in decibels?

4. A transconductance amplifier with R_i = 2 k Ω , G_m = 60 mA/V, and R_o = 20 k Ω is fed with a voltage source having a source resistance of 1 k Ω and is loaded with a 1k Ω resistance. Find the voltage gain realized.

5. Calculate current through each resistor, voltage at each terminal of the OP-

- 6. For the non-inverting configuration, determine the closed-loop gain of the op-amp circuits with following resistive networks, also determine the current through each resistor and voltage at each terminal of the op-amp.
- (i) $R_1 = 10$ KΩ; $R_f = 100$ K Ω.
- (ii) $R_1 = 1K\Omega$; $R_f = 1M\Omega$; $R_I = 5K\Omega$.

7. Express v_0 in terms of v_1 and v_2 .

8. Use superposition to determine v_0 in terms of v_1 and v_2 .

 $v_1 = 10\sin(2\pi \times 60t) - 0.1\sin(2\pi \times 1000t)$, volts $v_2 = 10\sin(2\pi \times 60t) + 0.1\sin(2\pi \times 1000t)$, volts