Data Engineer INTERN at HACKVEDA LIMITED

AUTHOR: BANDANA PRAKASH
TASK 1: Insights-Driven_sales

PURPOSE: to analyze sales transactions and derive actionable insights that can enhance sales strategies.

Specifically, the dataset contains information about customers, their demographics, purchase behaviors, and transaction details.

Here are the key objectives:

Customer Analysis: Understand customer demographics, including age, gender, marital status, and location.

Sales Performance: Analyze sales data to identify trends in orders and revenue generation.

Insight Generation: Generate insights that can inform marketing strategies and improve customer targeting.

Data Visualization: Use visual tools to present findings clearly, making it easier to interpret data trends.

Overall, the goal is to leverage this data for informed decision-making that drives sales growth and enhances customer engagement.

Steps Involved:

Import Libraries: Load essential Python libraries like numpy, pandas, matplotlib, and seaborn for data manipulation and visualization.

Load Dataset: Import the sales dataset (Insights-Driven_sales-main.csv) into a Pandas DataFrame.

Check Dataset Dimensions: Verify the shape of the dataset to understand its size (rows and columns).

Explore Data: Inspect the dataset structure, including column names and sample records, to understand its contents.

Statistical Summary: Analyze statistical metrics (count, mean, min, max, etc.) for numerical columns like Age, Orders, and Amount.

Data Cleaning: Handle missing values or anomalies in the dataset (if required).

Data Visualization: Use tools like Matplotlib and Seaborn to create graphs and charts for better insights into sales trends and customer behavior.

Generate Insights: Derive actionable insights such as top-performing products, customer demographics, and purchasing patterns.

```
# import python libraries
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # visualizing data
%matplotlib inline
import seaborn as sns
```

Raw URL of the CSV file

url = 'https://raw.githubusercontent.com/bandanaprakash/finalYearProject/main/MarketMinder%7C%20Real-Time%20Market%20Analysis%20and%20Fraud%20Defense/Ta

```
# Read the CSV file
df = pd.read_csv(url, encoding='unicode_escape')
```

df.shape

→ (11251, 15)

df.head()

→	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Marital_Status	State	Zone	Occupation	Product_Category	0rders	Amount	Status	unnam
	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Western	Healthcare	Auto	1	23952.0	NaN	
	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southern	Govt	Auto	3	23934.0	NaN	
	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Central	Automobile	Auto	3	23924.0	NaN	1
	3 1001425	Sudevi	P00237842	M	0-17	16	0	Karnataka	Southern	Construction	Auto	2	23912.0	NaN	
	1000588	Joni	P00057942	M	26-35	28	1	Gujarat	Western	Food Processing	Auto	2	23877.0	NaN	I

Next steps: Generate code with df View recommended plots New interactive sheet

df.info()

RangeIndex: 11251 entries, 0 to 11250 Data columns (total 15 columns): Non-Null Count Dtype # Column 0 User_ID 11251 non-null int64 Cust_name 11251 non-null object 11251 non-null object Product_ID 11251 non-null object Gender 11251 non-null object Age Group Age 11251 non-null int64 Marital_Status 11251 non-null int64 11251 non-null object State 11251 non-null object 11251 non-null object Occupation Product Category 11251 non-null object 11251 non-null int64 11 Orders 12 Amount 11239 non-null float64 13 Status 0 non-null float64 14 unnamed1 0 non-null float64 dtypes: float64(3), int64(4), object(8)

memory usage: 1.3+ MB

#drop unrelated/blank columns
df.drop(['Status', 'unnamed1'], axis=1, inplace=True)

#check for null values
pd.isnull(df).sum()

drop null values
df.dropna(inplace=True)

change data type
df['Amount'] = df['Amount'].astype('int')

df['Amount'].dtypes

dtype('int64')

df.columns

#rename column

df.rename(columns= {'Marital_Status':'Shaadi'})

$\overline{\Rightarrow}$		User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Shaadi	State	Zone	Occupation	Product_Category	0rders	Amount	
	0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Western	Healthcare	Auto	1	23952	11.
	1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southern	Govt	Auto	3	23934	
	2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Central	Automobile	Auto	3	23924	
	3	1001425	Sudevi	P00237842	M	0-17	16	0	Karnataka	Southern	Construction	Auto	2	23912	
	4	1000588	Joni	P00057942	M	26-35	28	1	Gujarat	Western	Food Processing	Auto	2	23877	
	11246	1000695	Manning	P00296942	M	18-25	19	1	Maharashtra	Western	Chemical	Office	4	370	
	11247	1004089	Reichenbach	P00171342	M	26-35	33	0	Haryana	Northern	Healthcare	Veterinary	3	367	
	11248	1001209	Oshin	P00201342	F	36-45	40	0	Madhya Pradesh	Central	Textile	Office	4	213	
	11249	1004023	Noonan	P00059442	M	36-45	37	0	Karnataka	Southern	Agriculture	Office	3	206	
	11250	1002744	Brumley	P00281742	F	18-25	19	0	Maharashtra	Western	Healthcare	Office	3	188	
	11239 ro	ws × 13 col	umns												

describe() method returns description of the data in the DataFrame (i.e. count, mean, std, etc) df.describe()

$\overline{\Rightarrow}$		User_ID	Age	Marital_Status	0rders	Amount
	count	1.123900e+04	11239.000000	11239.000000	11239.000000	11239.000000
	mean	1.003004e+06	35.410357	0.420055	2.489634	9453.610553
	std	1.716039e+03	12.753866	0.493589	1.114967	5222.355168
	min	1.000001e+06	12.000000	0.000000	1.000000	188.000000
	25%	1.001492e+06	27.000000	0.000000	2.000000	5443.000000
	50%	1.003064e+06	33.000000	0.000000	2.000000	8109.000000
	75%	1.004426e+06	43.000000	1.000000	3.000000	12675.000000
	max	1.006040e+06	92.000000	1.000000	4.000000	23952.000000

df[['Age', 'Orders', 'Amount']].describe()

Amount	0rders	Age		$\overline{\Rightarrow}$
11239.000000	11239.000000	11239.000000	count	
9453.610553	2.489634	35.410357	mean	
5222.355168	1.114967	12.753866	std	
188.000000	1.000000	12.000000	min	
5443.000000	2.000000	27.000000	25%	
8109.000000	2.000000	33.000000	50%	
12675.000000	3.000000	43.000000	75%	
23952.000000	4.000000	92.000000	max	

Exploratory Data Analysis

→ Gender

```
# plotting a bar chart for Gender and it's count
ax = sns.countplot(x = 'Gender',data = df)
for bars in ax.containers:
    ax.bar_label(bars)
```


plotting a bar chart for gender vs total amount

sales_gen = df.groupby(['Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.barplot(x = 'Gender',y= 'Amount', data = sales_gen)

→ <Axes: xlabel='Gender', ylabel='Amount'>

From above graphs we can see that most of the buyers are females and even the purchasing power of females are greater than men

✓ Age

```
ax = sns.countplot(data = df, x = 'Age Group', hue = 'Gender')
for bars in ax.containers:
    ax.bar_label(bars)
```


Total Amount vs Age Group sales_age = df.groupby(['Age Group'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False) sns.barplot(x = 'Age Group',y= 'Amount' ,data = sales_age)

<Axes: xlabel='Age Group', ylabel='Amount'>

From above graphs we can see that most of the buyers are of age group between 26-35 yrs female

State

```
# total number of orders from top 10 states
sales_state = df.groupby(['State'], as_index=False)['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)
sns.set(rc={'figure.figsize':(18,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Orders')
```



```
# total amount/sales from top 10 states
sales_state = df.groupby(['State'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False).head(10)
sns.set(rc={'figure.figsize':(18,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Amount')
```


From above graphs we can see that most of the orders & total sales/amount are from Uttar Pradesh, Maharashtra and Karnataka respectively

Marital Status

```
ax = sns.countplot(data = df, x = 'Marital_Status')
sns.set(rc={'figure.figsize':(7,3)})
for bars in ax.containers:
    ax.bar_label(bars)
```


sales_state = df.groupby(['Marital_Status', 'Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.set(rc={'figure.figsize':(6,5)})
sns.barplot(data = sales_state, x = 'Marital_Status',y= 'Amount', hue='Gender')

From above graphs we can see that most of the buyers are married (women) and they have high purchasing power

Occupation

```
sns.set(rc={'figure.figsize':(25,5)})
ax = sns.countplot(data = df, x = 'Occupation')
```

for bars in ax.containers:
 ax.bar_label(bars)

sales_state = df.groupby(['Occupation'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Occupation',y= 'Amount')

From above graphs we can see that most of the buyers are working in IT, Healthcare and Aviation sector

Product Category

```
sns.set(rc={'figure.figsize':(30,5)})
ax = sns.countplot(data = df, x = 'Product_Category')
for bars in ax.containers:
```


sales_state = df.groupby(['Product_Category'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False).head(10)
sns.set(rc={'figure.figsize':(25,5)})
sns.barplot(data = sales_state, x = 'Product_Category',y= 'Amount')

From above graphs we can see that most of the sold products are from Food, Clothing and Electronics category

sales_state = df.groupby(['Product_ID'], as_index=False)['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Product_ID',y= 'Orders')

top 10 most sold products (same thing as above)

fig1, ax1 = plt.subplots(figsize=(12,7))
df.groupby('Product_ID')['Orders'].sum().nlargest(10).sort_values(ascending=False).plot(kind='bar')

Conclusion:

Married women age group 26-35 yrs from UP, Maharastra and Karnataka working in IT, Healthcare and Aviation are more likely to buy products from Food, Clothing and Electronics category

Thank you!

Data Engineer INTERN at HACKVEDA LIMITED

AUTHOR: BANDANA PRAKASH TASK 2: STOCK PREDICTION

PURPOSE: TO PREDICT THE STOCK PRICE OF A COMPANY USING LSTM.

ABOUT DATASET

Google Stock Prediction This dataset contains historical data of Google's stock prices and related attributes. It consists of 14 columns and a smaller subset of 1257 rows. Each column represents a specific attribute, and each row contains the corresponding values for that attribute.

The columns in the dataset are as follows:

Symbol: The name of the company, which is GOOG in this case.

Date: The year and date of the stock data.

Close: The closing price of Google's stock on a particular day.

High: The highest value reached by Google's stock on the given day.

Low: The lowest value reached by Google's stock on the given day.

Open: The opening value of Google's stock on the given day.

Volume: The trading volume of Google's stock on the given day, i.e., the number of shares traded.

adjClose: The adjusted closing price of Google's stock, considering factors such as dividends and stock splits.

adjHigh: The adjusted highest value reached by Google's stock on the given day.

adjLow: The adjusted lowest value reached by Google's stock on the given day.

adjOpen: The adjusted opening value of Google's stock on the given day.

adjVolume: The adjusted trading volume of Google's stock on the given day, accounting for factors such as stock splits.

divCash: The amount of cash dividend paid out to shareholders on the given day.

splitFactor: The split factor, if any, applied to Google's stock on the given day. A split factor of 1 indicates no split.

STEPS INVOLVED:

- 1. IMPORTING LIBRARIES AND DATA TO BE USED
- 2. GATHERING INSIGHTS
- 3. DATA PRE-PROCESSING
- 4. CREATING LSTM MODEL
- 5. VISUALIZING ACTUAL VS PREDICTED DATA
- 6. PREDICTING UPCOMING 15 DAYS

STEP 1: IMPORTING LIBRARIES AND DATA TO BE USED

```
#importing libraries to be used
import numpy as np # for linear algebra
import pandas as pd # data preprocessing
import matplotlib.pyplot as plt # data visualization library
import seaborn as sns # data visualization library
%matplotlib inline
import warnings
warnings.filterwarnings('ignore') # ignore warnings

from sklearn.preprocessing import MinMaxScaler # for normalization
from keras.models import Sequential
from keras.layers import Dense, Dropout, LSTM, Bidirectional
```

```
# Raw URL of the CSV file
```

url = 'https://raw.githubusercontent.com/bandanaprakash/finalYearProject/main/MarketMinder%7C%20Real-Time%20Market%20Analysis%20and%20Fraud%20Defense/Task2_STOCK%20PREDICTION/(

```
# Read the CSV file
df = pd.read_csv(url)
```

Display the first 10 rows of the dataset

print(df.head(10))

```
symbol
                            date close
                                           high
                                                     low
                                                           open \
0 G00G 2016-06-14 00:00:00+00:00 718.27 722.47 713.1200 716.48
   GOOG 2016-06-15 00:00:00+00:00 718.92 722.98 717.3100
   GOOG 2016-06-16 00:00:00+00:00 710.36 716.65 703.2600
   GOOG 2016-06-17 00:00:00+00:00 691.72 708.82 688.4515 708.65
   GOOG 2016-06-20 00:00:00+00:00 693.71 702.48 693.4100
                                                         698.77
   GOOG 2016-06-21 00:00:00+00:00 695.94 702.77 692.0100 698.40
   GOOG 2016-06-22 00:00:00+00:00 697.46 700.86 693.0819 699.06
6
   GOOG 2016-06-23 00:00:00+00:00 701.87 701.95 687.0000
                                                         697.45
   GOOG 2016-06-24 00:00:00+00:00 675.22 689.40 673.4500 675.17
   GOOG 2016-06-27 00:00:00+00:00 668.26 672.30 663.2840
                                                         671.00
   volume adjClose adjHigh
                              adjLow adjOpen adjVolume divCash \
0 1306065
            718.27
                    722.47 713.1200 716.48
                                               1306065
                                                           0.0
                    722.98 717.3100 719.00
1 1214517
            718.92
                                               1214517
                                                           0.0
            710.36 716.65 703.2600 714.91
2 1982471
                                               1982471
                                                           0.0
            691.72
                     708.82 688.4515 708.65
                                               3402357
3 3402357
                                                           0.0
  2082538
            693.71
                     702.48 693.4100
                                      698.77
                                               2082538
                                                           0.0
            695.94
                     702.77 692.0100 698.40
                                               1465634
5 1465634
                                                           0.0
                     700.86 693.0819 699.06
6 1184318
            697.46
                                               1184318
                                                           0.0
                     701.95 687.0000 697.45
7 2171415
            701.87
                                               2171415
                                                           0.0
8 4449022
             675.22
                     689.40 673.4500 675.17
                                               4449022
                                                           0.0
9 2641085
            668.26
                     672.30 663.2840 671.00
                                               2641085
                                                           0.0
  splitFactor
0
```

 \rightarrow Shape of data: (1258, 14)

statistical description of data
df.describe()

\Rightarrow		close	high	low	open	volume	adjClose	adjHigh	adjLow	adj0pen	adjVolume	divCash	splitFactor	
	count	1258.000000	1258.000000	1258.000000	1258.000000	1.258000e+03	1258.000000	1258.000000	1258.000000	1258.000000	1.258000e+03	1258.0	1258.0	
	mean	1216.317067	1227.430934	1204.176430	1215.260779	1.601590e+06	1216.317067	1227.430936	1204.176436	1215.260779	1.601590e+06	0.0	1.0	
	std	383.333358	387.570872	378.777094	382.446995	6.960172e+05	383.333358	387.570873	378.777099	382.446995	6.960172e+05	0.0	0.0	
	min	668.260000	672.300000	663.284000	671.000000	3.467530e+05	668.260000	672.300000	663.284000	671.000000	3.467530e+05	0.0	1.0	
	25%	960.802500	968.757500	952.182500	959.005000	1.173522e+06	960.802500	968.757500	952.182500	959.005000	1.173522e+06	0.0	1.0	
	50%	1132.460000	1143.935000	1117.915000	1131.150000	1.412588e+06	1132.460000	1143.935000	1117.915000	1131.150000	1.412588e+06	0.0	1.0	
	75%	1360.595000	1374.345000	1348.557500	1361.075000	1.812156e+06	1360.595000	1374.345000	1348.557500	1361.075000	1.812156e+06	0.0	1.0	
	max	2521.600000	2526.990000	2498.290000	2524.920000	6.207027e+06	2521.600000	2526.990000	2498.290000	2524.920000	6.207027e+06	0.0	1.0	

summary of data
df.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 1258 entries, 0 to 1257
 Data columns (total 14 columns):

Data	columns (tota	al 14 columns):	
#	Column	Non-Null Count	Dtype
0	symbol	1258 non-null	object
1	date	1258 non-null	object
2	close	1258 non-null	float64
3	high	1258 non-null	float64
4	low	1258 non-null	float64
5	open	1258 non-null	float64
6	volume	1258 non-null	int64
7	adjClose	1258 non-null	float64
8	adjHigh	1258 non-null	float64
9	adjLow	1258 non-null	float64
10	adj0pen	1258 non-null	float64
11	adjVolume	1258 non-null	int64
12	divCash	1258 non-null	float64
13	splitFactor	1258 non-null	float64
dtype	es: float64(1	0), int64(2), ob	ject(2)
memo	ry usage: 137	.7+ KB	

checking null values
df.isnull().sum()

 \Rightarrow 0 symbol 0 date 0 close high 0 low 0 open 0 volume adjClose 0 adjHigh 0 adjLow 0 adjOpen 0 adjVolume 0 divCash 0 splitFactor 0 dtype: int64

There are no null values in the dataset

df = df[['date','open','close']] # Extracting required columns
df['date'] = pd.to_datetime(df['date'].apply(lambda x: x.split()[0])) # converting object dtype of date column to datetime dtype
df.set_index('date',drop=True,inplace=True) # Setting date column as index
df.head(10)

Next steps: Generate code with df View recommended plots New interactive sheet

```
ax[0].plot(df['open'], label='Open', color='green')
ax[0].set_xlabel('Date',size=15)
ax[0].set_ylabel('Price',size=15)
ax[0].legend()
ax[1].plot(df['close'],label='Close',color='red')
ax[1].set_xlabel('Date',size=15)
ax[1].set_ylabel('Price',size=15)
ax[1].legend()
fig.show()
\overline{\Rightarrow}
                   Open
                                                                                                             Close
                                                                                                   2500
        2500
                                                                                                   2250
        2250
                                                                                                   2000
        2000
        1750
                                                                                                   1750
     Price 1500
                                                                                                Price 1500
                                                                                                   1250
        1250
                                                                                                   1000
        1000
         750
                                                                                                    750
                                    2010
                                                                วกวก
                                                                             วกวา
                                                                                                                                            2010
                                                                                                                                                          วกวก
STEP 3: DATA PRE-PROCESSING
# normalizing all the values of all columns using MinMaxScaler
MMS = MinMaxScaler()
df[df.columns] = MMS.fit_transform(df)
df.head(10)
\overline{\Rightarrow}
                           close
          date
     2016-06-14 0.024532 0.026984
     2016-06-15 0.025891 0.027334
     2016-06-16 0.023685 0.022716
     2016-06-17 0.020308 0.012658
     2016-06-20 0.014979 0.013732
     2016-06-21 0.014779 0.014935
     2016-06-22 0.015135 0.015755
     2016-06-23 0.014267 0.018135
     2016-06-24 0.002249 0.003755
     2016-06-27 0.000000 0.000000
                                View recommended plots
 Next steps: ( Generate code with df )
                                                           New interactive sheet
# splitting the data into training and test set
training_size = round(len(df) * 0.75) # Selecting 75 % for training and 25 % for testing
training_size
→ 944
train_data = df[:training_size]
test_data = df[training_size:]
train_data.shape, test_data.shape
→ ((944, 2), (314, 2))
# Function to create sequence of data for training and testing
def create_sequence(dataset):
  sequences = []
  labels = []
  start_idx = 0
  for stop_idx in range(50,len(dataset)): # Selecting 50 rows at a time
    sequences.append(dataset.iloc[start_idx:stop_idx])
    labels.append(dataset.iloc[stop_idx])
    start_idx += 1
  return (np.array(sequences),np.array(labels))
train_seq, train_label = create_sequence(train_data)
test_seq, test_label = create_sequence(test_data)
train_seq.shape, train_label.shape, test_seq.shape, test_label.shape
```

STEP 4: CREATING LSTM MODEL

model = Sequential()

imported Sequential from keras.models

```
# importing Dense, Dropout, LSTM, Bidirectional from keras.layers
model.add(LSTM(units=50, return_sequences=True, input_shape = (train_seq.shape[1], train_seq.shape[2])))
model.add(Dropout(0.1))
model.add(LSTM(units=50))
model_add(Dense(2))
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mean_absolute_error'])
model.summary()
→ Model: "sequential"
                                       Output Shape
      Layer (type)
                                                                    Param #
      lstm (LSTM)
                                       (None, 50, 50)
                                                                     10,600
                                       (None, 50, 50)
      dropout (Dropout)
      lstm_1 (LSTM)
                                       (None, 50)
                                                                     20,200
      dense (Dense)
                                       (None, 2)
                                                                        102
     Total params: 30,902 (120.71 KB)
     Trainable params: 30,902 (120.71 KB)
     Non-trainable params: 0 (0.00 B)
# fitting the model by iterating the dataset over 100 times(100 epochs)
model.fit(train seq, train label, epochs=100, validation data=(test seq, test label), verbose=1)
                            — 2s 57ms/step - loss: 1.5238e-04 - mean_absolute_error: 0.0089 - val_loss: 0.0030 - val_mean_absolute_error: 0.0448
    28/28 -
    Epoch 73/100
    28/28 -
                            — 3s 65ms/step - loss: 1.5071e-04 - mean_absolute_error: 0.0089 - val_loss: 0.0029 - val_mean_absolute_error: 0.0427
    Epoch 74/100
                            — 1s 52ms/step – loss: 1.5754e-04 – mean_absolute_error: 0.0093 – val_loss: 0.0037 – val_mean_absolute_error: 0.0498
    28/28 -
    Epoch 75/100
                            — 3s 53ms/step - loss: 1.2796e-04 - mean_absolute_error: 0.0084 - val_loss: 0.0030 - val_mean_absolute_error: 0.0449
    28/28 —
    Epoch 76/100
    28/28 —
                            ── 1s 52ms/step - loss: 1.4075e-04 - mean_absolute_error: 0.0087 - val_loss: 0.0029 - val_mean_absolute_error: 0.0425
    Epoch 77/100
                            — 3s 51ms/step - loss: 1.5298e-04 - mean_absolute_error: 0.0092 - val_loss: 0.0016 - val_mean_absolute_error: 0.0302
    28/28 -
    Epoch 78/100
                           —— 3s 84ms/step – loss: 1.4958e-04 – mean absolute error: 0.0088 – val loss: 0.0017 – val mean absolute error: 0.0318
    28/28 —
    Epoch 79/100
    28/28 —
                            — 2s 58ms/step – loss: 1.4603e–04 – mean_absolute_error: 0.0087 – val_loss: 0.0018 – val_mean_absolute_error: 0.0334
    Epoch 80/100
    28/28 -
                            — 1s 51ms/step - loss: 1.4834e-04 - mean_absolute_error: 0.0090 - val_loss: 0.0012 - val_mean_absolute_error: 0.0270
    Epoch 81/100
    28/28 —
                            — 3s 51ms/step - loss: 1.3472e-04 - mean_absolute_error: 0.0083 - val_loss: 0.0050 - val_mean_absolute_error: 0.0594
    Epoch 82/100
    28/28 -
                            — 3s 53ms/step - loss: 1.3095e-04 - mean_absolute_error: 0.0084 - val_loss: 0.0054 - val_mean_absolute_error: 0.0618
    Epoch 83/100
    28/28 -
                            — 1s 52ms/step – loss: 1.4732e–04 – mean_absolute_error: 0.0091 – val_loss: 0.0054 – val_mean_absolute_error: 0.0614
    Epoch 84/100
                           — 4s 87ms/step - loss: 1.5452e-04 - mean_absolute_error: 0.0088 - val_loss: 0.0036 - val_mean_absolute_error: 0.0494
    28/28 —
    Epoch 85/100
                            — 1s 51ms/step – loss: 1.2542e–04 – mean_absolute_error: 0.0080 – val_loss: 0.0034 – val_mean_absolute_error: 0.0474
    28/28 -
    Epoch 86/100
    28/28 -
                            — 3s 51ms/step - loss: 1.3994e-04 - mean_absolute_error: 0.0085 - val_loss: 0.0039 - val_mean_absolute_error: 0.0509
    Epoch 87/100
                            28/28 —
    Epoch 88/100
                            – 1s 51ms/step – loss: 1.3139e-04 – mean_absolute_error: 0.0082 – val_loss: 0.0012 – val_mean_absolute_error: 0.0258
    28/28 -
    Epoch 89/100
    28/28 -
                             - 3s 51ms/step - loss: 1.4381e-04 - mean_absolute_error: 0.0083 - val_loss: 0.0011 - val_mean_absolute_error: 0.0260
    Epoch 90/100
                          —— 2s 75ms/step - loss: 1.2231e-04 - mean_absolute_error: 0.0079 - val_loss: 0.0027 - val_mean_absolute_error: 0.0405
    28/28 —
    Epoch 91/100
                            — 2s 69ms/step − loss: 1.2541e−04 − mean_absolute_error: 0.0082 − val_loss: 0.0028 − val_mean_absolute_error: 0.0427
    28/28 –
    Epoch 92/100
    28/28 —
                            — 1s 51ms/step - loss: 1.1055e-04 - mean_absolute_error: 0.0077 - val_loss: 0.0014 - val_mean_absolute_error: 0.0289
    Epoch 93/100
                           —— 2s 67ms/step – loss: 1.3745e-04 – mean_absolute_error: 0.0085 – val_loss: 0.0019 – val_mean_absolute_error: 0.0348
    28/28 —
    Epoch 94/100
    28/28 —
                           —— 4s 115ms/step - loss: 1.2206e-04 - mean absolute error: 0.0080 - val loss: 0.0012 - val mean absolute error: 0.0263
    Epoch 95/100
    28/28 —
                           —— 4s 82ms/step - loss: 1.4256e-04 - mean_absolute_error: 0.0090 - val_loss: 9.3829e-04 - val_mean_absolute_error: 0.0232
    Epoch 96/100
                           -- 2s 59ms/step - loss: 1.1209e-04 - mean absolute error: 0.0075 - val loss: 7.4422e-04 - val mean absolute error: 0.0206
    28/28 —
    Epoch 97/100
    28/28 –
                            — 1s 49ms/step - loss: 1.2002e-04 - mean absolute error: 0.0078 - val loss: 0.0021 - val mean absolute error: 0.0376
    Epoch 98/100
    28/28 —
                            — 1s 51ms/step - loss: 1.0345e-04 - mean_absolute_error: 0.0075 - val_loss: 0.0015 - val_mean_absolute_error: 0.0305
    Epoch 99/100
    28/28 —
                           Epoch 100/100
    28/28 —
                        ———— 1s 50ms/step - loss: 1.0687e-04 - mean absolute error: 0.0074 - val loss: 0.0019 - val mean absolute error: 0.0335
    <keras.src.callbacks.history.History at 0x7a68db5db9d0>
# predicting the values after running the model
test_predicted = model.predict(test_seq)
test_predicted[:5]
                 1s 49ms/step
    array([[0.40194753, 0.40702906],
           [0.40166208, 0.4065613],
           [0.39763585, 0.40240565],
           [0.4002833 , 0.4054701 ],
           [0.40377948, 0.40909466]], dtype=float32)
```

```
# Inversing normalization/scaling on predicted data test_inverse_predicted = MMS.inverse_transform(test_predicted) test_inverse_predicted[:5]

array([[10.40194753, 0.4067613], [0.39763585, 0.40240565], [0.4002833 , 0.4054701], [0.4002833 , 0.40909466]], dtype=float32)

# Inversing normalization/scaling on predicted data test_inverse_predicted = MMS.inverse_transform(test_predicted) test_inverse_predicted[:5]

array([[1416.1785, 1422.6233], [1415.6493, 1421.7562], [1408.185 , 1414.0544], [1413.0931, 1419.734],
```

[1419.5748, 1426.4515]], dtype=float32)

```
# Merging actual and predicted data for better visualization
df_merge = pd.concat([df.iloc[-264:].copy(),
                           pd.DataFrame(test_inverse_predicted, columns=['open_predicted','close_predicted'],
                                          index=df.iloc[-264:].index)], axis=1)
# Inversing normalization/scaling
df_merge[['open','close']] = MMS.inverse_transform(df_merge[['open','close']])
df_merge.head()
\overline{\Rightarrow}
                        close open_predicted close_predicted
          date
                                      1416.178467
      2020-05-27 1417.25 1417.84
                                                        1422.623291
      2020-05-28 1396.86 1416.73
                                     1415.649292
                                                        1421.756226
      2020-05-29 1416.94 1428.92
                                     1408.185059
                                                        1414.054443
      2020-06-01 1418.39 1431.82
                                      1413.093140
                                                        1419.734009
      2020-06-02 1430.55 1439.22
                                      1419.574829
                                                        1426.451538
                                         View recommended plots
 Next steps: ( Generate code with df_merge
                                                                     New interactive sheet
```

plotting the actual open and predicted open prices on date index
df_merge[['open','open_predicted']].plot(figsize=(10,6))
plt.xticks(rotation=45)
plt.xlabel('Date',size=15)
plt.ylabel('Stock Price',size=15)
plt.title('Actual vs Predicted for open price',size=15)
plt.show()

plotting the actual close and predicted close prices on date index
df_merge[['close','close_predicted']].plot(figsize=(10,6))
plt.xticks(rotation=45)
plt.xlabel('Date',size=15)
plt.ylabel('Stock Price',size=15)
plt.title('Actual vs Predicted for close price',size=15)
plt.show()

STEP 6. PREDICTING UPCOMING 10 DAYS

```
new_index = pd.date_range(start=df_merge.index[-1] + pd.Timedelta(days=1), periods=10, freq='D')
new_rows = pd.DataFrame(columns=df_merge.columns, index=new_index)
df_merge = pd.concat([df_merge, new_rows])
```

```
\overline{\Rightarrow}
                         close open_predicted close_predicted
     2021-06-09 2499.50 2491.40
                                      2355.756104
                                                         2317.685059
     2021-06-10 2494.01 2521.60
                                      2362.784912
                                                         2322.546387
     2021-06-11 2524.92 2513.93
                                      2374.123047
                                                         2333.229492
     2021-06-12
                   NaN
                           NaN
                                             NaN
                                                                NaN
     2021-06-13
                   NaN
                           NaN
                                                                NaN
                                             NaN
     2021-06-14
                   NaN
                           NaN
                                             NaN
                                                                NaN
     2021-06-15
                   NaN
                           NaN
                                             NaN
                                                                NaN
     2021-06-16
                   NaN
                           NaN
                                             NaN
                                                                NaN
```

creating a DataFrame and filling values of open and close column
upcoming_prediction = pd.DataFrame(columns=['open','close'],index=df_merge.index)
upcoming_prediction.index=pd.to_datetime(upcoming_prediction.index)

1/1 ______ 0s 38ms/step 1/1 ______ 0s 42ms/step

inversing Normalization/scaling
upcoming_prediction[['open','close']] = MMS.inverse_transform(upcoming_prediction[['open','close']])

```
# plotting Upcoming Open price on date index
fig,ax=plt.subplots(figsize=(10,5))
ax.plot(df_merge.loc['2021-04-01':,'open'],label='Current Open Price')
ax.plot(upcoming_prediction.loc['2021-04-01':,'open'],label='Upcoming Open Price')
plt.setp(ax.xaxis.get_majorticklabels(), rotation=45)
ax.set_xlabel('Date',size=15)
ax.set_ylabel('Stock Price',size=15)
ax.set_title('Upcoming Open price prediction',size=15)
ax.legend()
fig.show()
```



```
# plotting Upcoming Close price on date index
fig,ax=plt.subplots(figsize=(10,5))
ax.plot(df_merge.loc['2021-04-01':,'close'],label='Current close Price')
ax.plot(upcoming_prediction.loc['2021-04-01':,'close'],label='Upcoming close Price')
plt.setp(ax.xaxis.get_majorticklabels(), rotation=45)
ax.set_xlabel('Date',size=15)
ax.set_ylabel('Stock Price',size=15)
ax.set_title('Upcoming close price prediction',size=15)
ax.legend()
fig.show()
```


Data Engineer INTERN at HACKVEDA LIMITED

AUTHOR: BANDANA PRAKASH

TASK 3: SALES PREDICTION USING PYTHON

PURPOSE: Predict sales based on advertising expenditure using the given dataset. The dataset contains information about advertising spending on different platforms (TV, Radio, and Newspaper) and the corresponding sales amount.

IMPORTING IMPORTANT LIBRARIES

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

IMPORTING DATASET

```
# Raw URL of the CSV file
url = 'https://raw.githubusercontent.com/bandanaprakash/finalYearProject/main/MarketMinder%7C%20Real-Time%20Market%20Analysi
# Read the CSV file
df = pd.read_csv(url)
# Display the first few rows of the dataset
print(df.head())
          TV
              Radio Newspaper Sales
      230.1
       44.5
               39.3
                          45.1
        17.2
               45.9
                          69.3
                                 12.0
    3 151.5
              41.3
                          58.5
                                 16.5
    4 180.8
                          58.4
              10.8
```

Aim:- Sales prediction involves forecasting the amount of a product that customers will purchase, taking into account various factors such as advertising expenditure, target audience segmentation, and advertising platform selection.

Given dataset consist of the advertising platform and the related sales.Let's visulalize each platform

df.shape

⇒ (200, 4)

df.describe()

$\overline{\Rightarrow}$		TV	Radio	Newspaper	Sales
	count	200.000000	200.000000	200.000000	200.000000
	mean	147.042500	23.264000	30.554000	15.130500
	std	85.854236	14.846809	21.778621	5.283892
	min	0.700000	0.000000	0.300000	1.600000
	25%	74.375000	9.975000	12.750000	11.000000
	50%	149.750000	22.900000	25.750000	16.000000
	75%	218.825000	36.525000	45.100000	19.050000
	max	296.400000	49.600000	114.000000	27.000000

Basic Observation

Avg expense spend is highest on TV Avg expense spend is lowest on Radio Max sale is 27 and min is 1.6

```
sns.pairplot(df, x\_vars=['TV', 'Radio', 'Newspaper'], y\_vars='Sales', kind='scatter') \\ plt.show()
```


Pair Plot Observation

When advertising cost increases in TV Ads the sales will increase as well. While the for newspaper and radio it is bit unpredictable.

df['TV'].plot.hist(bins=10)

df['Radio'].plot.hist(bins=10, color="green", xlabel="Radio")

df['Newspaper'].plot.hist(bins=10,color="purple", xlabel="newspaper")

=> <Axes: xlabel='newspaper', ylabel='Frequency'>

Histogram Observation

The majority sales is the result of low advertising cost in newspaper

sns.heatmap(df.corr(),annot = True)
plt.show()

SALES IS HIGHLY COORELATED WITH THE TV

Lets train our model using linear regression as it is coorelated with only one variable TV

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(df[['TV']], df[['Sales']], test_size = 0.3,random_state=0)

print(X_train)

```
\overline{z}
              TV
    131 265.2
    96
181
          197.6
          218.5
     19
          147.3
    153
          171.3
    67
          139.3
    192
           17.2
     117
           76.4
    47
          239.9
     172
           19.6
```

[140 rows x 1 columns]

```
print(y_train)
         Sales
    131
         17.7
    96
          16.7
          17.2
    19
          14.6
    153
          16.0
    67
          13.4
          5.9
9.4
    192
    117
    47
          23.2
    172
           7.6
    [140 rows x 1 columns]
print(X_test)
⇒ 107 90.4
98 289.7
    177 170.2
182 56.2
           8.7
    146 240.1
    12
         23.8
    152
         197.6
    61
         261.3
    125
    180 156.6
    154 187.8
    80
          76.4
         120.2
    33
         265.6
         0.7
74.7
    130
    37
    74
         213.4
    183 287.6
    145 140.3
    45
         175.1
    159 131.7
    60
          53.5
    123
         123.1
    179
         165.6
    185 205.0
    122 224.0
    44
          25.1
    16
          67.8
    55
         198.9
    150 280.7
    111 241.7
    22
          13.2
         18.7
59.6
    189
    129
    4
83
         180.8
          68.4
         25.0
36.9
    106
    134
    66
          31.5
    26
         142.9
    113 209.6
    168
        215.4
         102.7
8.6
16.9
    63
    8
    75
    118 125.7
         104.6
    143
    71
124
         109.8
         229.5
    184 253.8
```

print(y_test)

97

30

184.9 149 44.7 24

62.3

292.9 160 172.5 40 202.5 56

7.3

=	107	12.0
~	98	25.4
	177	16.7
	182	8.7
	5	7.2

```
UΤ
     125
           10.6
     180
           15.5
           20.6
     154
     80
           11.8
           13.2
     33
           17.4
     130
     37
           14.7
     74
           17.0
     183
           26.2
     145
           10.3
     45
           16.1
     159
           12.9
     60
            8.1
     123
           15.2
     179
           17.6
     185
           22.6
     122
           16.6
     44
            8.5
     16
           12.5
     55
           23.7
     150
           16.1
     111
           21.8
     22
            5.6
     189
            6.7
     129
            9.7
           17.9
     83
           13.6
     106
     134
           10.8
     66
     26
           15.0
     113
           20.9
     168
           17.1
     63
           14.0
     8
75
            4.8
            8.7
     118
           15.9
     143
           10.4
     71
           12.4
     124
           19.7
     184
           17.6
     97
           20.5
     149
           10.1
     24
            9.7
     30
           21.4
     160
           16.4
     40
           16.6
     56
            5.5
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train,y_train)
      ▼ LinearRegression ① ?
     LinearRegression()
res= model.predict(X_test)
print(res)
      [12.09159447]
      [22.99968079]
      [16.45920756]
      [10.21976029]
      [ 7.6199906
      [20.28497391]
      [ 8.4464437
      [17.95886418]
      [21.44529217]
      [11.91645209]
      [15.71485245]
```

[17.42249065] [11.32534656] [13.72260788] [21.68063975] [7.18213465] [11.23230217] [18.82362968] [22.88474361] [14.82272095] [16.72739433] [14.35202581] [10.07198391] [13.88133066] [13.402/0001] [8.51759529] [10.85465142] [18.03001578] [22.50709285] [20.3725451] [7.86628457] [8.16731053] [10.40584907] [17.03936669] [10.88749061] [8.51212209] 9.16343282] [8.86788005] [14.96502414] [18.61564811] [18.93309367] [12.76479799] [7.6145174] [8.06879294] [14.02363385] [12.86878878] [13.15339515] [19.70481478] [21.03480222] [17.26376787] [9.59034237] [10.55362545] [23.17482317] [16.58509115] [18.22705095] [7 54336581]]

model.coef_

→ array([[0.05473199]])

model.intercept_

⇒ array([7.14382225])

0.05473199* 69.2 + 7.14382225

→ 10.931275958

plt.plot(res)

→ [<matplotlib.lines.Line2D at 0x7ef74a4f3ad0>]


```
plt.scatter(X_test, y_test)
plt.plot(X_test, 7.14382225 + 0.05473199 * X_test, 'r')
plt.show()
```


Concluding with saying that above mention solution is successfully able to predict the sales using advertising platform datasets

Data Engineer INTERN at HACKVEDA LIMITED

AUTHOR: BANDANA PRAKASH

TASK 4: Stock_Market_Prediction_Model_Creation

PURPOSE: to develop a model for analyzing and predicting stock market trends.

It involves:

Data Collection: Fetching historical stock price data (e.g., Google stock) using yfinance.

Data Preparation: Cleaning and structuring the data for analysis. **Trend Analysis:** Identifying patterns in stock prices over time.

Prediction Modeling: Building a predictive model to forecast future stock prices based on historical data.

This project aims to assist in making informed investment decisions by leveraging data-driven insights and predictive analytics.

Steps Involved

Import Libraries: Load necessary libraries such as numpy, pandas, matplotlib, and yfinance.

Define Timeframe: Set the start and end dates for the historical data to be analyzed (from January 1, 2012, to December 21, 2022).

Fetch Data: Use yfinance to download historical stock data for Google (GOOG).

Reset Index: Prepare the data by resetting the index for easier manipulation.

Data Exploration: Inspect the dataset to understand its structure and contents.

data

Price	Date	Close	High	Low	0pen	Volume
Ticker		GOOG	GOOG	GOOG	GOOG	G00G
0	2012-01-03	16.513794	16.581795	16.190173	16.204321	147611217
1	2012-01-04	16.585020	16.633911	16.394919	16.504364	114989399
2	2012-01-05	16.354961	16.478056	16.285969	16.432392	131808205
3	2012-01-06	16.131853	16.379531	16.126144	16.358435	108119746
4	2012-01-09	15.447884	16.056905	15.417357	16.044495	233776981
2756	2022-12-14	94.968765	96.871931	93.603675	95.197945	26452900
2757	2022-12-15	90.873482	93.693352	90.106242	93.205108	28298800
2758	2022-12-16	90.534691	91.421504	89.687736	90.873470	48485500
2759	2022-12-19	88.830826	90.873482	88.606633	90.554628	23020500
2760	2022-12-20	89.309097	89.458562	87.724794	88.412326	21976800
	Ticker 0 1 2 3 4 2756 2757 2758 2759	Ticker 0 2012-01-03 1 2012-01-04 2 2012-01-05 3 2012-01-06 4 2012-01-09 2756 2022-12-14 2757 2022-12-15 2758 2022-12-16 2759 2022-12-19	Ticker 600G 0 2012-01-03 16.513794 1 2012-01-04 16.585020 2 2012-01-05 16.354961 3 2012-01-06 16.131853 4 2012-01-09 15.447884 2756 2022-12-14 94.968765 2757 2022-12-15 90.873482 2758 2022-12-16 90.534691 2759 2022-12-19 88.830826	Ticker G00G G00G 0 2012-01-03 16.513794 16.581795 1 2012-01-04 16.585020 16.633911 2 2012-01-05 16.354961 16.478056 3 2012-01-06 16.131853 16.379531 4 2012-01-09 15.447884 16.056905 2756 2022-12-14 94.968765 96.871931 2757 2022-12-15 90.873482 93.693352 2758 2022-12-16 90.534691 91.421504 2759 2022-12-19 88.830826 90.873482	Ticker 600G 600G 600G 0 2012-01-03 16.513794 16.581795 16.190173 1 2012-01-04 16.585020 16.633911 16.394919 2 2012-01-05 16.354961 16.478056 16.285969 3 2012-01-06 16.131853 16.379531 16.126144 4 2012-01-09 15.447884 16.056905 15.417357 2756 2022-12-14 94.968765 96.871931 93.603675 2757 2022-12-15 90.873482 93.693352 90.106242 2758 2022-12-16 90.534691 91.421504 89.687736 2759 2022-12-19 88.830826 90.873482 88.606633	Ticker 600G 600G 600G 600G 600G 0 2012-01-03 16.513794 16.581795 16.190173 16.204321 1 2012-01-04 16.585020 16.633911 16.394919 16.504364 2 2012-01-05 16.354961 16.478056 16.285969 16.432392 3 2012-01-06 16.131853 16.379531 16.126144 16.358435 4 2012-01-09 15.447884 16.056905 15.417357 16.044495 2756 2022-12-14 94.968765 96.871931 93.603675 95.197945 2757 2022-12-15 90.873482 93.693352 90.106242 93.205108 2758 2022-12-16 90.534691 91.421504 89.687736 90.873470 2759 2022-12-19 88.830826 90.873482 88.606633 90.554628

2761 rows × 6 columns

```
ma_100_days = data.Close.rolling(100).mean()
plt.figure(figsize=(8,6))
plt.plot(ma_100_days, 'r')
plt.plot(data.Close, 'g')
plt.show()
```


ma_200_days = data.Close.rolling(200).mean()

```
plt.figure(figsize=(8,6))
plt.plot(ma_100_days, 'r')
plt.plot(ma_200_days,'b')
plt.plot(data.Close,'g')
plt.show()
```


data.dropna(inplace=True)

```
data_train = pd.DataFrame(data.Close[0: int(len(data)*0.80)])
data_test = pd.DataFrame(data.Close[int(len(data)*0.80): len(data)])
```

data_train.shape[0]

→ 2208

data_test.shape[0]

→ 553

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0,1))
data_train_scale = scaler.fit_transform(data_train)
x = []
y = []
for i in range(100, data_train_scale.shape[0]):
   x.append(data_train_scale[i-100:i])
   y.append(data_train_scale[i,0])
x, y = np.array(x), np.array(y)
from keras.layers import Dense, Dropout, LSTM
from keras.models import Sequential
model = Sequential()
model.add(LSTM(units = 50, activation = 'relu', return_sequences = True,
              input\_shape = ((x.shape[1],1)))
model.add(Dropout(0.2))
model.add(LSTM(units = 60, activation='relu', return_sequences = True))
model.add(Dropout(0.3))
model.add(LSTM(units = 80, activation = 'relu', return_sequences = True))
model.add(Dropout(0.4))
model.add(LSTM(units = 120, activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(units =1))
model.compile(optimizer = 'adam', loss = 'mean_squared_error')
model.fit(x,y, epochs = 50, batch_size =32, verbose =1)
   Epoch 1/50
\overline{z}
    2025-01-23 18:37:52.856514: W tensorflow/tsl/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz
    66/66 [===
                       Epoch 2/50
    66/66 [====
                            ======== | - 8s 116ms/step - loss: 0.0075
    Epoch 3/50
    66/66 [====
                          ========== ] - 8s 118ms/step - loss: 0.0066
    Epoch 4/50
    66/66 [====
                          ========= ] - 8s 117ms/step - loss: 0.0053
    Epoch 5/50
    66/66 [===
                              =======] - 8s 118ms/step - loss: 0.0056
    Epoch 6/50
    66/66 [====
                           =========] - 8s 118ms/step - loss: 0.0046
    Epoch 7/50
    66/66 [===
                                 ======1 - 9s 141ms/step - loss: 0.0044
    Epoch 8/50
    66/66 [====
                            Epoch 9/50
    66/66 [====
                             ========] - 10s 153ms/step - loss: 0.0041
    Epoch 10/50
    66/66
                               =======] - 10s 147ms/step - loss: 0.0040
    Epoch 11/50
    66/66 [==
                             =======] - 10s 148ms/step - loss: 0.0041
    Epoch 12/50
    66/66
                                   =====l - 10s 149ms/step - loss: 0.0039
    Epoch 13/50
    66/66 [=====
                           ======== | - 10s 146ms/step - loss: 0.0037
    Epoch 14/50
    66/66
                              ========] - 10s 148ms/step - loss: 0.0037
    Epoch
         15/50
    66/66 [==
                              =======] - 9s 139ms/step - loss: 0.0040
    Epoch 16/50
    66/66 [====
                              =======] - 9s 139ms/step - loss: 0.0032
    Epoch 17/50
    66/66 [====
                               =======] - 9s 139ms/step - loss: 0.0033
    Epoch 18/50
    66/66 [====
                            ======== 1 - 9s 139ms/step - loss: 0.0034
    Epoch 19/50
    66/66 [====
                              ========] - 9s 140ms/step - loss: 0.0030
    Epoch 20/50
    66/66
                           ======== | - 9s 139ms/step - loss: 0.0029
    Epoch 21/50
    66/66 [====
                             ========] - 9s 143ms/step - loss: 0.0028
```

```
Epoch 22/50
Epoch 23/50
66/66 [=====
          Epoch 24/50
66/66 [====
            =========] - 9s 142ms/step - loss: 0.0028
Epoch 25/50
66/66 [====
          Epoch 26/50
66/66 [====
            ========] - 9s 141ms/step - loss: 0.0027
Epoch 27/50
66/66 [=====
           Epoch 28/50
            =========] - 9s 133ms/step - loss: 0.0026
66/66 [=====
```

model.summary()

→ Model: "sequential"

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 100, 50)	10400
dropout (Dropout)	(None, 100, 50)	0
lstm_1 (LSTM)	(None, 100, 60)	26640
dropout_1 (Dropout)	(None, 100, 60)	0
lstm_2 (LSTM)	(None, 100, 80)	45120
dropout_2 (Dropout)	(None, 100, 80)	0
lstm_3 (LSTM)	(None, 120)	96480
dropout_3 (Dropout)	(None, 120)	0
dense (Dense)	(None, 1)	121

Total params: 178,761 Trainable params: 178,761 Non-trainable params: 0

pas_100_days = data_train.tail(100)

```
data_test = pd.concat([pas_100_days, data_test], ignore_index=True)
```

data_test_scale = scaler.fit_transform(data_test)

```
y = []
for i in range(100, data_test_scale.shape[0]):
    x.append(data_test_scale[i-100:i])
    y.append(data_test_scale[i,0])
x, y = np.array(x), np.array(y)
```

y_predict = model.predict(x)

```
→ 18/18 [=======] - 1s 29ms/step
```

scale =1/scaler.scale_

y_predict = y_predict*scale

y = y*scale

x = []

```
plt.figure(figsize=(10,8))
plt.plot(y_predict, 'r', label = 'Predicted Price')
plt.plot(y, 'g', label = 'Original Price')
plt.xlabel('Time')
plt.ylabel('Price')
plt.legend()
plt.show()
```


model.save('Stock Predictions Model.keras')

Data Engineer INTERN at HACKVEDA LIMITED

AUTHOR: BANDANA PRAKASH

TASK 5: CREDIT CARD FRAUD DETECTION

PURPOSE: Build a machine learning model to identify fraudulent credit card transactions.

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score

file=pd.read_csv("creditcard.csv")

file.head(10)

\overline{z}	Ti	ime	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	V22	V.
-	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277838	-0.1104
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638672	0.1012
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771679	0.9094
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005274	-0.1903
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798278	-0.1374
	5	2.0	-0.425966	0.960523	1.141109	-0.168252	0.420987	-0.029728	0.476201	0.260314	-0.568671	 -0.208254	-0.559825	-0.0263
	6	4.0	1.229658	0.141004	0.045371	1.202613	0.191881	0.272708	-0.005159	0.081213	0.464960	 -0.167716	-0.270710	-0.1541
	7	7.0	-0.644269	1.417964	1.074380	-0.492199	0.948934	0.428118	1.120631	-3.807864	0.615375	 1.943465	-1.015455	0.0575
	8	7.0	-0.894286	0.286157	-0.113192	-0.271526	2.669599	3.721818	0.370145	0.851084	-0.392048	 -0.073425	-0.268092	-0.2042
	9	9.0	-0.338262	1.119593	1.044367	-0.222187	0.499361	-0.246761	0.651583	0.069539	-0.736727	 -0.246914	-0.633753	-0.1207

10 rows × 31 columns

file.describe()

→		Time	V1	V2	V3	V4	V5	V6	V7	1
	count	284807.000000	2.848070e+05	2.848070e+						
	mean	94813.859575	1.168375e-15	3.416908e-16	-1.379537e-15	2.074095e-15	9.604066e-16	1.487313e-15	-5.556467e-16	1.213481e-
	std	47488.145955	1.958696e+00	1.651309e+00	1.516255e+00	1.415869e+00	1.380247e+00	1.332271e+00	1.237094e+00	1.194353e+
	min	0.000000	-5.640751e+01	-7.271573e+01	-4.832559e+01	-5.683171e+00	-1.137433e+02	-2.616051e+01	-4.355724e+01	-7.321672e+
	25%	54201.500000	-9.203734e-01	-5.985499e-01	-8.903648e-01	-8.486401e-01	-6.915971e-01	-7.682956e-01	-5.540759e-01	-2.086297e-
	50%	84692.000000	1.810880e-02	6.548556e-02	1.798463e-01	-1.984653e-02	-5.433583e-02	-2.741871e-01	4.010308e-02	2.235804e-
	75%	139320.500000	1.315642e+00	8.037239e-01	1.027196e+00	7.433413e-01	6.119264e-01	3.985649e-01	5.704361e-01	3.273459e-
	max	172792.000000	2.454930e+00	2.205773e+01	9.382558e+00	1.687534e+01	3.480167e+01	7.330163e+01	1.205895e+02	2.000721e+

8 rows × 31 columns

file.isnull().sum()

$\overline{\Rightarrow}$	Time	0
	V1	0
	V2	0
	V3	0
	V4	0
	V5	0
	V6	0
	V7	0
	V8	0
	V9	0
	V10	0
	V11	0
	V12	0
	V13	0
	V14	0

```
V16
                                                    0
                V17
                                                    0
                V18
                                                    0
                V19
                                                    0
                V20
                                                    0
                V21
                                                    0
                V22
                 V23
                                                    0
                V24
                 V25
                                                    0
                V26
                                                    0
                V27
                                                    0
                V28
                                                    0
                Amount
                                                    0
                Class
                                                    0
                dtype: int64
file['Class'].value_counts()
             Class
                                  284315
                                           492
                Name: count, dtype: int64
normal=file[file.Class==0]
fraud=file[file.Class==1]
print(normal.shape)
 print(fraud.shape)
 normal.Amount.describe()
                                                 284315.000000
 → count
                                                              88.291022
                mean
                                                            250.105092
                std
                                                                  0.000000
                min
                25%
                                                                  5.650000
                                                               22.000000
                 50%
                 75%
                                                               77.050000
                                                    25691.160000
                Name: Amount, dtype: float64
fraud.Amount.describe()
             count
                                                    492.000000
                mean
                                                    122.211321
                                                    256,683288
                std
                min
                                                            0.000000
                 25%
                                                            1.000000
                 50%
                                                            9.250000
                 75%
                                                    105.890000
                                                 2125.870000
                 max
                Name: Amount, dtype: float64
file.groupby('Class').mean()
 \overline{z}
                                                                   Time
                                                                                                           V1
                                                                                                                                            V2
                                                                                                                                                                              V3
                                                                                                                                                                                                               V4
                                                                                                                                                                                                                                                V5
                                                                                                                                                                                                                                                                                 V6
                                                                                                                                                                                                                                                                                                                   ٧7
                                                                                                                                                                                                                                                                                                                                                    V8
                                                                                                                                                                                                                                                                                                                                                                                    V9 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                   V20
                   Class
                                                                                                                                                                                                                                                                                                                                                                                                       ... -0.000644 -0.00
                                           94838.202258 \quad 0.008258 \quad -0.006271 \quad 0.012171 \quad -0.007860 \quad 0.005453 \quad 0.002419 \quad 0.009637 \quad -0.000987 \quad -0.000
                                                                                                                                                                                                                                                                                                                                                                 0.004467
                           1
                                           80746.806911 -4.771948 3.623778 -7.033281 4.542029 -3.151225 -1.397737 -5.568731 0.570636 -2.581123
                                                                                                                                                                                                                                                                                                                                                                                                                    0.372319 0.713
                2 rows × 30 columns
normal_sample=normal.sample(n=492)
new_file=pd.concat([normal_sample,fraud],axis=0)
```

V15

0

_	new_file.head(10)													
\exists		Time	V1	V2	V3	V4	V5	V6	V7	V8	V9		V21	V22
	32993	37045.0	1.273090	-0.744403	1.083617	-0.682701	-1.537089	-0.502750	-1.064374	0.039786	-0.738666		0.465367	1.229640
	176252	122689.0	-0.619340	0.650909	0.853761	-0.441992	1.189456	0.079074	1.075137	-0.224906	-0.173498		-0.337960	-0.882839
	71866	54473.0	-1.459553	0.016956	1.063610	-1.484100	-0.244744	-1.080333	-0.089253	0.466594	1.243897		0.144194	0.459994
	189917	128610.0	1.778519	-0.112447	-1.234223	0.996746	0.961386	1.807237	-0.624287	0.614767	0.549400		-0.183639	-0.421276
	153148	98024.0	-0.557542	1.064676	0.524862	-1.771705	1.141241	-0.310842	0.624603	0.006453	1.478922		-0.514084	-1.286546
	91669	63576.0	0.910530	-1.359016	0.862437	-0.590947	-1.567072	0.005582	-0.959290	0.164846	-0.678745		0.586836	1.213314
	248153	153810.0	2.102483	-1.302057	0.379806	-0.486967	-1.830271	-0.165263	-1.633904	0.141010	1.060734		0.134621	0.697336
	175828	122505.0	-2.783805	-2.928222	-1.500618	-1.979360	1.645353	0.802380	1.036764	-0.020237	-1.068077		0.242157	1.411244
	201518	133915.0	2.006453	-1.760294	-0.688837	-1.337221	-1.645638	-0.848000	-0.970753	-0.328486	-1.233229		-0.044086	0.149755
	57869	48115.0	1.314915	-0.980378	-0.032665	-2.770975	-1.047365	-0.705180	-0.491240	-0.076395	0.571959		-0.416346	-0.481886
	10 rows × 31 columns													
<pre>new_file['Class'].value_counts()</pre>														
→	Class 0 49 1 49 Name: c	2	pe: int64											

new_file.groupby('Class').mean()

3		Time	V1	V2	V3	V4	V5	V6	V7	V8	V9		V20	
	Class													
	0	96327.323171	0.077345	-0.022423	0.081215	-0.129899	0.029804	-0.009543	0.086710	-0.040480	-0.027447		-0.071245	0.017
	1	80746.806911	-4.771948	3.623778	-7.033281	4.542029	-3.151225	-1.397737	-5.568731	0.570636	-2.581123		0.372319	0.713
2 rows × 30 columns														

X=new_file.drop(columns='Class',axis=1)

Y=new_file['Class']

 $\textbf{X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,stratify=Y,random_state=2)}$

model=LogisticRegression()

model.fit(X_train,Y_train)

 ▼ LogisticRegression LogisticRegression()

X_train_prediction=model.predict(X_train)

 $training_data_acuracy=accuracy_score(X_train_prediction,Y_train)*100$

 $\verb|print(f"Training Data Accuracy: {training_data_accuracy}%")|\\$

 \rightarrow Training Data Accuracy: 93.90088945362135%

X_test_prediction=model.predict(X_test)

 $\texttt{test_data_accuracy} = \texttt{accuracy_score}(\texttt{X_test_prediction}, \texttt{Y_test}) * 100$

print(f"Test Data Accuracy: {test_data_accuracy}%")

→ Test Data Accuracy: 91.87817258883248%