Übung 4: Rosennachfrage, Teil II Lösungen

Durch Diskussionen mit anderen CAS-Teilnehmern haben Sie folgende Regressionsmodelle gesammelt:

- 1. Modell 1: $\ln y_t = \beta_1 + \beta_2 \ln PR_t + \beta_3 \ln PN_t + u_t$ t = 1,...,16
- 2. Modell 2: $\ln y_t = \beta_1 + \beta_2 \ln(PR_t/PN_t) + u_t$ t = 1,...,16
- 3. Modell 3: $\ln y_t = \beta_1 + \beta_2 \ln PR_t + \beta_3 \ln PN_t + \beta_4 \ln EINK_t + u_t$ t = 1,...,16
- 4. Modell 4: $\ln v_t = \beta_1 + \beta_2 \ln PR_t + \beta_3 \ln PN_t + \beta_4 \ln EINK_t + \beta_5 T + u_t$ t = 1,...,16
- 5. Modell 5: $\ln y_t = \beta_1 + \beta_2 \ln PR_t + \beta_3 \ln PN_t + \beta_4 \ln EINK_t + \beta_5 \ln T + u_t$ t = 1,...,16

Es gelte $u_t \sim iid\ N(0;\sigma^2)$. iid: independent and identically distributed (unabhängig identisch verteilten Zufallsvariablen)

- 1. Definieren Sie folgende logarithmierte Variablen:
 - I_y, I_PR, I_PN, I_EINK, I_RelP wobei I_ der natürliche Logarithmus symbolisiert.

gretl: Hinzufügen / Logs gewählter Variablen→ wählen Sie jeweils Y,PR, PN, EINK,T, RelP

- 2. Welche Vorzeichen für die Regressionskoeffizienten erwarten Sie für das Modell 4?
 - Rosenpreis: Je höher der Rosenpreis, desto kleiner die Rosennachfrage, ceteris paribus (c.p.) Nelkenpreis: Je höher der Nelkenpreis, desto höher die Rosennachfrage (Substitutionsgut) Einkommen: Je höher das Einkommen, desto höher die Nachfrage nach Rosen, c.p. Zeit: Beim Zeitablauf sollte der Rosenabsatz sinken, wie in der Graphik über die Absatzentwicklung bei Übung 3 ersichtlich war.
- 3. Schätzen Sie diese 5 Regressionsmodelle. Speichern Sie jeweils die geschätzten Werte
 →yhat1, ...yhat5. Diese neuen Variablen erscheinen im Hauptfenster.

gretl Output-Fenster: Speichern / geschätzte Werte

	Koeffizient	Stdfe	hler	t-Quotient	p-Wert	
const	9,22776	0,5683	90	16,23	5,18e-010	·) **:
1 PR	-1,76072	0,2982	06	-5,904	5,20e-05	**
1_PN	1,33978	0,5273	324	2,541	0,0246	**
Mittel d. a	bh. Var.	8,902209	Stdal	ow. d. abh. V	ar. 0,30	687
Summe d. qu	ad. Res.	0,382569	Stdfe	ehler d. Regr	ess. 0,17	154
R-Quadrat		0,729174	Korr:	igiertes R-Qu	adrat 0,68	750
(2, 13)		17,50066	P-Wei	rt(F)	0,00	020
Log-Likelih	ood	7,164472	Akail	ce-Kriterium	-8,32	894
Schwarz-Kri	terium -	6,011178	Hanna	an-Quinn-Krit	erium -8,21	025
rho	_	0,052667	Durb:	in-Watson-Sta	t 2,05	881

Modell 1

Abhängige V	ariable: 1_Y					
	Koeffizient	Stdfe	hler	t-Quotient	p-Wert	;
const	8,71319	0,0533	3773	163,2	2,31e-0)24 ***
1_RelP	-1,73605	0,2951	29	-5,882	3,99e-0)5 ***
Mittel d. a	bh. Var.	8,902209	Stda	bw. d. abh. Va	ar. 0,	306877
Summe d. qu	ad. Res.	0,406905	Stdf	ehler d. Regre	ess. O,	170484
R-Quadrat		0,711946	Korr	igiertes R-Qua	adrat 0,	691370
F(1, 14)		34,60194	P-We	rt(F)	0,	000040
Log-Likelih	ood	6,671089	Akai	ke-Kriterium	-9,	342178
Schwarz-Kri	terium -	7,797001	Hann	an-Quinn-Krite	erium -9,	263053
rho	-	0,158187	Durb	in-Watson-Stat	2,	276028

Modell 2

Abhängige Var	riable: l_Y					
	Koeffizient	Stdfel	nler t	t-Quotient	t p-We	rt
const	6,28769	4,8745	 9	1,290	0,22	14
1 PR	-1,85624	0,34378	30	-5,399	0,00	02 ***
1 PN	1,45408	0,57241	11	2,540	0,02	59 **
1_EINK	0,559553	0,9210	79	0,6075	0,55	48
Mittel d. abh	. Var. 8	3,902209	Stdabw	. d. abh.	Var.	0,306877
Summe d. quad	l. Res. (0,371154	Stdfehl	ler d. Reg	gress.	0,175868
R-Quadrat	(737255	Korrigi	iertes R-(Quadrat	0,671568
F(3, 12)	1	11,22387	P-Wert	(F)		0,000849
Log-Likelihoo	od 7	7,406800	Akaike-	-Kriteriu	m ·	-6,813600
Schwarz-Krite	rium -:	3,723245	Hannan-	-Quinn-Kr	iterium ·	-6,655348
rho	-(0,013701	Durbin-	-Watson-Si	tat	2,004954

Modell 3

Abhängige V	ariable: l_Y					
	Koeffizient	Stdfel	nler t-	-Quotient	p-Wert	
const	3,57216	4,6951	6	0,7608	0,4628	
1 PR	-1,17073	0,4883	24 -	-2,397	0,0354	**
1_PN	0,737938	0,6528	63	1,130	0,2824	
1_EINK	1,15321	0,9019	89	1,279	0,2274	
T	-0,0301108	0,0164	188 -	-1,834	0,0938	*
Mittel d. al	bh. Var. 8	3,902209	Stdabw.	d. abh. Var	c. 0,	306877
Summe d. qu	ad. Res. (,284245	Stdfehle	er d. Regres	ss. O,	160750
R-Quadrat	0	,798779	Korrigie	rtes R-Quad	irat 0,	725607
F(4, 11)	1	10,91654	P-Wert(E	?)	0,	000798
Log-Likelih	ood 9	9,541038	Akaike-K	Kriterium	-9,	082076
Schwarz-Kri	terium -5	,219132	Hannan-Ç	uinn-Kriter)	rium -8,	884262
rho	-0	,067449	Durbin-W	Natson-Stat	2,	049078

Modell 4

Abhängige Va	riable: l_Y					
	Koeffizient	Stdfe	hler	t-Quotient	p-Wert	
const	0,626824	6,1482	 6	0,1020	0,9206	
1_PR	-1,27355	0,5266	49	-2,418	0,0341	**
1 PN	0,937305	0,6591	91	1,422	0,1828	
1_EINK	1,71298	1,2008	4	1,426	0,1815	
1_T	-0,181597	0,1278	93	-1,420	0,1833	
Mittel d. ab	h. Var.	8,902209	Stdab	w. d. abh. V	7ar. 0	,306877
Summe d. qua	d. Res.	0,313664	Stdfe	hler d. Regr	ess. 0	,168864
R-Quadrat		0,777953	Korri	giertes R-Qu	adrat 0	,697208
F(4, 11)		9,634745	P-Wer	t(F)	0	,001343
Log-Likeliho	od	8,753157	Akaik	e-Kriterium	-7	,506314
Schwarz-Krit	erium -	3,643370	Hanna	n-Quinn-Krit	erium -7	,308499
rho		0,091730	Durbi	n-Watson-Sta	it 1	,782659

Modell 5

4. Interpretieren Sie die Regressionskoeffizienten des Regressionsmodells 4 und beurteilen Sie, ob die Parameterschätzungen plausibel sind.

 b_2 = -1.17: Eine Erhöhung des Rosenpreises um 1% bewirkt einen Rückgang des Rosenabsatzes um durchschnittlich 1.17% erwarten, ceteris paribus.

Vorzeichen ist plausibel → bei steigendem Rosenpreis fällt der Rosenabsatz.

b₃ = 0.74: Eine Erhöhung des Nelkenpreises um 1% bewirkt einen Anstieg der Rosenabsatzes um durchschnittlich 0.74%, ceteris paribus.

Vorzeichen ist plausibel: Werden die Nelken relativ zu Rosen teurer, werden die Konsumenten substituieren und mehr Rosen kaufen, ceteris paribus →Substitutionseffekt.

 $b_4 = 1.15$: Eine Erhöhung des Einkommens um 1% bewirkt einen Anstieg des Rosenabsatzes um durchschnittlich 1.15% erwarten, ceteris paribus.

Vorzeichen ist plausibel: Steigt das verfügbare Einkommen, steigt der Rosenabsatz.

 $b_5 = -0.03$: Mit einem zusätzlichen Quartal reduziert sich die Rosenabsatz im Durchschnitt um 3%, ceteris paribus.

5. Sind diese Koeffizienten 4 statistisch signifikant auf dem 5%-Signifikanzniveau?

Nur der Regressionskoeffizient b₂ ist auf dem 5% statistisch signifikant → zwei Sternchen.

Sie wissen, dass R² dem Quadrat des Korrelationskoeffizienten zwischen den tatsächlichen und geschätzten Werten entspricht: R² = $\rho(y_i, \hat{y}_i)$

Sie haben jeweils die geschätzten Werte yhat1,...,yhat5 gespeichert. Berechnen Sie jetzt die entsprechenden Exponentialwerte in gretl: expy1 = exp(yhat1),...,expy5 = exp(yhat5).

6. Öffnen Sie die Korrelationsmatrix

gretl Hauptfenster: Ansicht Korrelationsmatrix, wählen Sie die Variablen $\exp(I_y)$ i = 1,..5, und y aus.

Hinweis: Wählen Sie die erste Zeile aus der Korrelationsmatrix

Korrelation von v mit den berechneten Exponentialwerten:

exp(l_yhat1)	exp(l_yhat1)	exp(l_yhat1)	exp(l_yhat1)	exp(l_yhat1)		
0.8558	0.8413	0.8503	0.8985	0.8764)	У

7. Berechnen Sie die quadrierten Korrelationskoeffizienten

$ ho_1^2$	$ ho_2^2$	$ ho_3^2$	$ ho_4^2$	$ ho_5^2$	
0.7324	0.7078	0.7230	0.8073	0.7680	у

8. Welches Regressionsmodell würden Sie auswählen. Begründen Sie Ihre Auswahl.

Folgende Tabelle enthält eine Zusammenstellung der zur vergleichenden Kennzahlen mit den entsprechenden Kriterien.

	Modell 1	Modell 2	Modell 3	Modell 4	Modell 5
# Regressoren	K = 3	K = 2	K = 4	K = 5	K =5
Regressoren	I_PR, I_PN	I_PR/PN	I_PR, I_PN, I_EINK	I_PR, I_PN, I_EINK, T	I_PR, I_PN, I_EINK, InT
\overline{R}^2	0.6875	0.6913	0.6715	0.7256	0.6972
Akaike	-8.328	-9.34	-6.81	-9.08	-7.506
SIC	-6	-7.79	-3.72	-5.21	-3.64
R ²	0.7324	0.7078	0.7230	0.8073	0.7680

Modell 4 weist das höchste R² und adjustierte Bestimmtheitsmass auf. Problematisch ist, dass nur der logarithmierte Rosenpreis (PR) statistisch signifikant ist. Um eine

Modellfehlspezifikation zu vermeiden, könnte es dennoch Sinn machen, diese Regressoren zu berücksichtigen und Modell 4 auswählen. Anhand der Informationskriterien sollte das Modell 2 vorgezogen werden, ignoriert aber die Zeitkomponente und das Einkommen. Die Spezifikation in Logarithmen hat den Vorteil, dass die Koeffizienten als Elastizitäten interpretiert werden können.

9. Folgende Modelle wurden aus der Übung 3 und 4 ausgewählt:

Teil I, Modell 2: $y_t = \beta_1 + \beta_2 RelP + u_t$

Teil II, Modell 2: $lny_t = \beta_1 + \beta_2 lnRelP + u_t$

Wie können jetzt diese Modelle miteinander verglichen werden? Welches Modell würden Sie vorziehen? Begründen Sie Ihre Antwort.

Die Informationskriterien können zum Vergleich der Modelle 2 nicht herangezogen werden, da eine Spezifikation als log-log und die andere ohne Transformation dargestellt wird.

In diesem Fall kann R² herangezogen werden:

Ausgewählte Modelle	R ²
$y_t = \beta_1 + \beta_2 ReIP + u_t$	0.7823
$Iny_t = \beta_1 + \beta_2 InReIP + u_t$	0.7078

Die log-log Spezifikation ist nicht besser als das Modell 2 aus Übung 3.

10. Testen Sie das Regressionsmodell 1 mit dem F-Test!

Modell 1: $lny_t = \beta_1 + \beta_2 lnPR_t + \beta_3 lnPN_t + u_t$

Frage: Hat wenigstens einer der Preise (von Rosen oder Nelken) Einfluss auf die Rosenabsatzmenge?

i. Stellen Sie die Nullhypothese und alternative Hypothese auf.

Nullhypothese H_0 : $\beta_2 = \beta_3 = 0$

 H_1 : mindestens ein Koeffizient hat einen Einfluss $\Leftrightarrow H_1$: H_0 ist falsch

ii. Bestimmen Sie den kritischen F-Wert (Fc) auf dem 5%-Signifikanzniveau.

Kritischer Wert $F_c(0.95.2.13) = 3.81$

Knuscher Wert Fc(0.95,2,1	3) = 3.01
Zähler-Freiheitsgrade	K-1 = 3 - 1 = 2
Nenner-Freiheitsgrade	N – k = 16 -3 = 13

gretl Hauptfenster: Werkzeuge/Statistische Tabellen/F/ rechtsseitige Wahrsch. = 0.05

iii. Berechnen Sie den F-test mittels Bestimmtheitsmass $F = \frac{R^2}{1 - R^2} \frac{N - k}{L}$

$$F = \frac{R^2}{1 - R^2} \frac{N - k}{L} = \frac{0.72917}{0.27082} \cdot \frac{13}{2} = 17.5$$

Hinweis: R² ist hier aus der log-log Spezifikation zu entnehmen.

Diese Berechnung dient nur dem Umgang mit dieser Formel und ist nicht notwendig, da der F-Wert von gretl automatisch ermittelt wird.

iv. Was ist Ihre Schlussfolgerung?

```
F_e = 17.5 > F_c = 3.81 \rightarrow H_0 kann verworfen werden p-Wert \cong 0 < 5\% \rightarrow H_0 kann verworfen werden
```

- → Mindestens ein Koeffizient ist statistisch signifikant verschieden von 0!
- 11. Führen Sie in gretl den Test auf "Weglassen der Variablen" durch. Nehmen Sie die Variablen LPR und LPN vom Modell 1 weg. Was ist Ihre Schlussfolgerung?

gretl Output-Fenster: Test / variablen weglassen / I_PR und I_PN weglassen

p-Wert $\cong 0 \rightarrow H_0$ kann verworfen werden

→ Mindestens ein Koeffizient ist statistisch signifikant von 0 verschieden!

Hinweis: Dieser Schritt ist nicht notwendig, da gretl den F-Test mit dem p-Wert automatisch berechnet.

12. Interpretieren Sie beim Modell 1 konkret folgende Restriktion: $\beta_2 = -\beta_3$

Das Steigen des Rosenpreises um 1% hat die gleiche Wirkung auf den Rosenabsatz, wie das Sinken des Nelkenpreises um 1%, ceteris paribus.

13. Stellen Sie das restringierte Modell auf und schätzen Sie es.

$$\begin{split} \text{Regressionsmodell:} \quad & \text{Iny} = \beta_1 + \beta_2 \, \text{InPR}_t + \beta_3 \, \text{InPN}_t + u \\ \text{Restringiertes Modell:} & \text{Iny} = \beta_1 + \beta_2 \, \text{InPR}_t - \beta_2 \, \text{InPN}_t + u \\ & \longleftrightarrow & \text{Iny} = \beta_1 + \beta_2 \, [\text{InPR}_t - \text{InPN}_t] + u \end{split}$$

Definieren Sie die neue Variable: I diff = InPR - InPN.

Abhängige '	Variable: 1_Y					
	Koeffizient	Stdf	ehler	t-Quotient	p-Wert	
const	8,71319	0,053	3773	163,2	2,31e-024	**
l_diff	-1,73605	0,295	129	-5,882	3,99e-05	**
Mittel d.	abh. Var.	8,902209	Stdal	ow. d. abh. Va	ar. 0,306	87
Summe d. q	uad. Res.	0,406905	Stdfe	ehler d. Regre	ess. 0,170	48
R-Quadrat		0,711946	Korri	igiertes R-Qua	adrat 0,691	137
F(1, 14)		34,60194	P-Wei	rt(F)	0,000	04

14. Testen Sie die Signifikanz von b₂ mittels t-Tests.

Zweiseitiger Test: H_0 : $\beta_2 = 0$

 H_1 : $\beta_2 \neq 0$

K = 2 (Interzept + 1 erklärende Variablen)

Freiheitsgrade für t-Test: N-K = 16 - 2 = 14

 $t_e = -5.88 \rightarrow |t_e| > t_c = 2.178 \rightarrow H_0$ kann verworfen werden

p-Wert $\cong 0 < 0.05 \rightarrow H_0$ kann verworfen werden $\rightarrow \beta_2$ ist von null verschieden

 \rightarrow die Daten aus der Stichprobe sind mit der Restriktion $\beta_2 = -\beta_3$ kompatibel

15. Testen Sie anhand des F-Tests auf dem 5%-Signifikanzniveau, ob die Restriktion falsch ist.

Nur eine lineare Restriktion $\rightarrow L = 1$

Zähler-FG = L = 1

Nenner- FG = N - K = 16 - 3 = 13

$$F = \frac{(RSS_r - RSS)}{RSS} \frac{(N - K)}{L} = \frac{(0.406905 - 0.382569)}{0.382569} \cdot \frac{13}{1} = 0.827$$

$$F_e = 0.827 < F_c(0.95, 1, 13) = 4.66$$
 $\rightarrow H_0$ kann nicht verworfen werden!

Die Daten aus der Stichprobe sind mit der Restriktion $\beta_2 = -\beta_3$ kompatibel.

Hinweis: Diese Berechnung dient nur dem Umgang mit dieser Formel und ist in der Praxis nicht erforderlich, da gretl einen eingebauten Test besitzt.

16. Testen Sie diese Restriktion mittels gretl Restriktionen Funktion.

gretl output-Fenster: Test / lineare Restriktionen / b[2] + b[3] = 0

Normal t chi-Quadrat F binomial

rechtsseitige Wahrscheinlichkeit 0.025

Normal t chi-Quadrat F binomial

rechtsseitige Wahrscheinlichkeit 0.05

Zähler-FG 1 Nenner-FG 13

FG 14

p-Wert = $0.379 > \alpha = 5\% \rightarrow H_0$ kann nicht verworfen werden

Die Daten aus der Stichprobe sind mit der Restriktion $\beta_2 = -\beta_3$ kompatibel.

Hinweis: Das ist die effektivste Methode, um diese Restriktion zu testen.

17. Testen Sie im Regressionsmodel 4, ob die Variablen I_PN, I_EINK und T gemeinsam statistisch signifikant sind.

gretl: Tests / Variablen weglassen →I_PN, I_EINK und T auswählen

p-Wert = $4.5\% < 5\% \rightarrow H_0$: $b_3 = b_4 = b_5 = 0$ kann auf dem 5%-Niveau verworfen werden Konklusion: Diese Variablen sind gemeinsam statistisch signifikant \rightarrow mindestens eine Variable ist von null verschieden.

18. Testen Sie im Modell 4, ob die Preiselastizität -1 entspricht.

Die Preiselastizität ist das Verhältnis der prozentualen Änderung des Rosenabsatzes zur prozentualen Veränderung des Rosenpreises.

```
H<sub>0</sub>: b_2 = -1 H<sub>1</sub>: b_2 \neq -1

t_e = (-1.1707 + 1)/0.4883 = -0.349

|t_e| < 2 \rightarrow H_0 kann nicht verworfen werden
```

Die Daten sind mit einer Preiselastizität von 1 kompatibel → Wenn der Rosenpreis um 1% steigt, bildet sich der Rosenabsatz im Durchschnitt um 1% zurück, ceteris paribus.

19. Testen Sie im Modell 4, ob die Kreuzpreiselastizität 1 entspricht.

Die Kreuzpreiselastizität ist das Verhältnis der prozentualen Änderung des Rosenabsatzes zur prozentualen Veränderung des Nelkenpreises.

```
H<sub>0</sub>: b_3 = 1 H<sub>1</sub>: b_3 \ne 1

t_e = (0.7379 - 1)/0.6528 = -0.4015

|t_e| < 2 \rightarrow H_0 \text{ kann nicht verworfen werden}
```

Die Daten sind mit einer Kreuzpreiselastizität von 1 kompatibel → Wenn der Nelkenpreis um 1% steigt, erhöht sich der Rosenabsatz im Durchschnitt um 1%, ceteris paribus.