

Unsupervised Learning and Modeling of Knowledge and Intent for Spoken Dialogue Systems

YUN-NUNG (VIVIAN) CHEN HTTP://VIVIANCHEN.IDV.TW

COMMITTEE: ALEXANDER I. RUDNICKY (CHAIR) ANATOLE GERSHMAN (CO-CHAIR)

ALAN W BLACK

DILEK HAKKANI-TÜR (Research)

2015 DECEMBER

Outline

Introduction

Ontology Induction [ASRU'13, SLT'14a]

Structure Learning [NAACL-HLT'15]

Surface Form Derivation [SLT'14b]

Semantic Decoding [ACL-IJCNLP'15]

Intent Prediction [SLT'14c, ICMI'15]

Knowledge Acquisition

SLU Modeling

SLU in Human-Human Conversations [ASRU'15]

Conclusions & Future Work

Outline

Introduction

- Ontology Induction [ASRU'13, SLT'14a]
- Structure Learning [NAACL-HLT'15]
 - Surface Form Derivation [SLT'14b]
 - Semantic Decoding [ACL-IJCNLP'15]
- Intent Prediction [SLT'14c, ICMI'15]
- SLU in Human-Human Conversations [ASRU'15]
 - Conclusions & Future Work

Intelligent Assistants

Apple Siri

(2011)

Google Now

(2012)

Microsoft Cortana

(2014)

Amazon Alexa/Echo

(2014)

Facebook M

(2015)

https://www.apple.com/ios/siri/

https://www.google.com/landing/now/

http://www.windowsphone.com/en-us/how-to/wp8/cortana/meet-cortana

http://www.amazon.com/oc/echo/

Large Smart Device Population

Global Digital Statistics (2015 January)

Global Population
7.21B

Active Internet Users
3.01B

Active Social Media Accounts 2.08B

Active Unique Mobile Users

3.65B

The more **natural** and **convenient** input of the devices evolves towards **speech**.

Spoken Dialogue System (SDS)

Spoken dialogue systems are intelligent agents that are able to help users finish tasks more efficiently via <u>spoken interactions</u>.

Spoken dialogue systems are being incorporated into various devices (smart-phones, smart TVs, in-car navigating system, etc).

JARVIS – Iron Man's Personal Assistant

Baymax – Personal Healthcare Companion

Good SDSs assist users to organize and access information conveniently.

SDS Architecture

ASR: Automatic Speech Recognition

SLU: Spoken Language Understanding

DM: Dialogue Management

NLG: Natural Language Generation

Knowledge Representation/Ontology

Traditional SDSs require **manual annotations** for **specific domains** to represent domain knowledge.

Restaurant Domain

Node: semantic concept/slot

Edge: relation between concepts

Movie Domain

Utterance Semantic Representation

An SLU model requires a domain ontology to decode utterances into semantic forms, which contain **core content** (a set of slots and slot-fillers) of the utterance.

target="movie", genre="action", director="james cameron"

Challenges for SDS

Utterances labelled with semantic representations /

An SDS in a new domain requires

1) A hand-crafted domain ontology

find a cheap eating place for asian food \rightarrow $target{price}$

seeking="find"
target="eating place"
price="cheap"
food="asian food"

Prior Focus

An SLU component for mapping utterances into semantic representations

Manual work results in **high cost**, **long duration** and **poor scalability** of system development.

The goal is to enable an SDS to

- 1) automatically infer domain knowledge and then to
- 2) create the data for SLU modeling

in order to handle the open-domain requests.

fully unsupervised

Questions to Address

- 1) Given unlabelled conversations, how can a system automatically induce and organize domain-specific concepts?
- With the automatically acquired knowledge, how can a system understand utterance semantics and user intents?

Interaction Example

User

Cheap Asian eating places include Rose Tea Cafe, Little Asia, etc. What do you want to choose? I can help you go there. (navigation)

Intelligent Agent

Q: How does a dialogue system process this request?

Process Pipeline

Required Domain-Specific Information

Ontology Induction (semantic slot)


```
SELECT restaurant {
    restaurant.price="cheap"
    restaurant.food="asian food"
}
```

Predicted intent: navigation


```
(inter-slot relation)
```

```
SELECT restaurant {
   restaurant.price="cheap"
   restaurant.food="asian food"
}
```

Predicted intent: navigation

Ontology Induction

Semantic Decoding

Intent Prediction

Structure Learning

find a cheap eating place for asian food

- ✓ Ontology Induction
- ✓ Structure Learning
- ✓ Surface Form Derivation

Knowledge Acquisition

- Semantic Decoding
- ✓ Intent Prediction

SLU Modeling

Knowledge Acquisition

1) Given unlabelled conversations, how can a system automatically induce and organize domain-specific concepts?

Knowledge Acquisition

- ✓ Ontology Induction
- ✓ Structure Learning
- ✓ Surface Form Derivation

SLU Modeling

2) With the automatically acquired knowledge, how can a system understand utterance semantics and user intents?

SDS Architecture – Contributions

Outline

Introduction

- Ontology Induction [ASRU'13, SLT'14a]
- Structure Learning [NAACL-HLT'15]
 - Surface Form Derivation [SLT'14b]
 - Semantic Decoding [ACL-IJCNLP'15]
 - Intent Prediction [SLT'14c, ICMI'15]

SLU Modeling

Knowledge Acquisition

- SLU in Human-Human Conversations [ASRU'15]
- Conclusions & Future Work

Outline

- Introduction
- Ontology Induction [ASRU'13, SLT'14a]
- Structure Learning [NAACL-HLT'15]
 - Surface Form Derivation [SLT'14b]
 - Semantic Decoding [ACL-IJCNLP'15]
 - Intent Prediction [SLT'14c, ICMI'15]
- SLU in Human-Human Conversations [ASRU'15]
 - Conclusions & Future Work

Ontology Induction ** [ASRU'13, SLT'14a]

Input: Unlabelled user utterances

Output: Slots that are useful for a domain-specific SDS

Idea: select a subset of FrameNet-based slots for domain-specific SDS

Chen et al., "Unsupervised Induction and Filling of Semantic Slots for Spoken Dialogue Systems Using Frame-Semantic Parsing," in Proc. of ASRU, 2013. (Best Student Paper Award) Chen et al., "Leveraging Frame Semantics and Distributional Semantics for Unsupervised Semantic Slot Induction in Spoken Dialogue Systems," in Proc. of SLT, 2014.

Step 1: Frame-Semantic Parsing (Das et al., 2014)

Task: differentiate domain-specific frames from generic frames for SDSs

Das et al., "Frame-semantic parsing," in Proc. of Computational Linguistics, 2014.

Step 2: Slot Ranking Model

Compute an importance score of a slot candidate s by

$$w(s) = (1 - \alpha) \log \underline{f(s)} + \alpha \cdot \log \underline{h(s)}$$

slot frequency in the domain-specific conversation

slots with higher frequency → more important

semantic coherence of slot fillers

domain-specific concepts → fewer topics

measured by cosine similarity between their word embeddings

Step 3: Slot Selection

Rank all slot candidates by their importance scores

$$w(s) = (1 - \alpha) \log \underline{f(s)} + \alpha \cdot \log \underline{h(s)}$$
 frequency semantic coherence

Output slot candidates with higher scores based on a threshold

Experiments of Ontology Induction

Dataset

- Cambridge University SLU corpus [Henderson, 2012]
 - Restaurant recommendation (WER = 37%)
 - 2,166 dialogues
 - 15,453 utterances
 - dialogue slot:

addr, area, food, name, phone, postcode, price range, task, type

The mapping table between induced and reference slots

Henderson et al., "Discriminative spoken language understanding using word confusion networks," in Proc. of SLT, 2012.

Experiments of Ontology Induction

Experiment: Slot Induction

 Metric: Average Precision (AP) and Area Under the Precision-Recall Curve (AUC) of the slot ranking model to measure quality of induced slots via the mapping table

Approach	Word Embedding	ASR		Transcripts	
		AP (%)	AUC (%)	AP (%)	AUC (%)
Baseline: MLE		58.2	56.2	55.0	53.5
Proposed: + Coherence	In-Domain Word Vec.	67.0	65.8	58.0	56.5
	External Word Vec.	74.5 (+39.9%)	73.5 (+44.1%)	65.0 (+18.1%)	64.2 (+19.9%)

Semantic relations help decide domain-specific knowledge.

Experiments of Ontology Induction

Sensitivity to Amount of Training Data

Different amount of training transcripts for ontology induction

Most approaches are not sensitive to training data size due to single-domain dialogues.

The external word vectors trained on larger data perform better.

Outline

- Introduction
 - Ontology Induction [ASRU'13, SLT'14a]
 - Structure Learning [NAACL-HLT'15]
 - Surface Form Derivation [SLT'14b]
 - Semantic Decoding [ACL-IJCNLP'15]
 - Intent Prediction [SLT'14c, ICMI'15]
- SLU in Human-Human Conversations [ASRU'15]
 - Conclusions & Future Work

Structure Learning [NAACL-HLT'15]

Input: Unlabelled user utterances

Output: Slots with relations

Domain-Specific Ontology

Idea: construct a knowledge graph and then compute slot importance based on relations

Chen et al., "Jointly Modeling Inter-Slot Relations by Random Walk on Knowledge Graphs for Unsupervised Spoken Language Understanding," in Proc. of NAACL-HLT, 2015.

Step 1: Knowledge Graph Construction

Syntactic dependency parsing on utterances

Step 2: Edge Weight Measurement

Compute edge weights to represent relation importance

- Slot-to-slot relation L_{SS} : similarity between slot embeddings
- Word-to-slot relation L_{ws} or L_{sw} : frequency of the slot-word pair
- Word-to-word relation L_{ww} : similarity between word embeddings

Step 2: Slot Importance by Random Walk

Assumption: the slots with more dependencies to more important slots should be more important

The random walk algorithm computes importance for each slot

slot importance
$$\begin{bmatrix} r_s^{(t+1)} = (1-\alpha)r_s^{(0)} + \alpha L_{ss}L_{sw}r_w^{(t)} \\ r_w^{(t+1)} = (1-\alpha)r_w^{(0)} + \alpha L_{ww}L_{ws}r_s^{(t)} \\ \text{original frequency score} \end{bmatrix}$$

scores propagated from word-layer then propagated within slot-layer

Converged scores can represent the importance.

Step 3: Identify Domain Slots w/ Relations

The converged slot importance suggests whether the slot is important (Experiment 1)

Rank slot pairs by summing up their converged slot importance

Select slot pairs with higher scores according to a threshold

(Experiment 2)

Experiments for Structure Learning

Experiment 1: Quality of Slot Importance

Dataset: Cambridge University SLU Corpus

Annyoosh	A	SR	Transcripts	
Approach	AP (%)	AUC (%)	AP (%)	AUC (%)
Baseline: MLE	56.7	54.7	53.0	50.8
Proposed: Random Walk via Dependencies	71.5 (+26.1%)	70.8 (+29.4%)	76.4 (+44.2%)	76.0 (+49.6%)

Dependency relations help decide domain-specific knowledge.

Experiments for Structure Learning

Experiment 2: Relation Discovery Analysis

Discover inter-slot relations connecting important slot pairs

The reference ontology with the most frequent syntactic dependencies

Experiments for Structure Learning

Experiment 2: Relation Discovery Analysis

Discover inter-slot relations connecting important slot pairs

The reference ontology with the most frequent syntactic dependencies

The automatically learned domain ontology aligns well with the reference one.

Outline

- Introduction
- Ontology Induction [ASRU'13, SLT'14a]
- Structure Learning [NAACL-HLT'15]
- Surface Form Derivation [SLT'14b]
 - Semantic Decoding [ACL-IJCNLP'15]
- Intent Prediction [SLT'14c, ICMI'15]
- SLU in Human-Human Conversations [ASRU'15]
 - Conclusions & Future Work

Surface Form Derivation [SLT'14b]

Input: a domain-specific organized ontology

Output: surface forms corresponding to entities in the ontology

Idea: mine patterns from the web to help understanding

Chen et al., "Deriving Local Relational Surface Forms from Dependency-Based Entity Embeddings for Unsupervised Spoken Language Understanding," in Proc. of SLT, 2014.

Step 1: Mining Query Snippets on Web

Query snippets including entity pairs connected with specific relations in KG

Avatar is a 2009 American epic science fiction film directed by James Cameron

directed_by

The Dark Knight is a 2008 superhero film directed and produced by Christopher Nolan.

directed by

Step 2: Training Entity Embeddings

Dependency parsing for training dependency-based embeddings

\$movie =
$$[0.8 \dots 0.24]$$

is = $[0.3 \dots 0.21]$
film = $[0.12 \dots 0.7]$
:

Levy and Goldberg, "Dependency-Based Word Embeddings," in Proc. of ACL, 2014.

Step 3: Deriving Surface Forms

Entity Surface Forms

- learn the <u>surface forms</u> corresponding to entities
- most similar word vectors for each entity embedding

```
$char: "character", "role", "who"
$director: "director", "filmmaker"
$genre: "action", "fiction"
```

→ with similar contexts

Entity Contexts

- learn the <u>important contexts</u> of entities
- most similar context vectors for each entity embedding

```
$char: "played"
$director: "directed"
```

→ frequently occurring together

Experiments of Surface Form Derivation

Knowledge Base: Freebase

670K entities; 78 entity types (movie names, actors, etc)

Entity Tag	Derived Word
\$character	character, role, who, girl, she, he, officier
\$director	director, dir, filmmaker
\$genre	comedy, drama, fantasy, cartoon, horror, sci
\$language	language, spanish, english, german
\$producer	producer, filmmaker, screenwriter

The web-derived surface forms provide useful knowledge for better understanding.

Integrated with Background Knowledge

Hakkani-Tür et al., "Probabilistic enrichment of knowledge graph entities for relation detection in conversational understanding," in Proc. of Interspeech, 2014.

Experiments of Surface Form Derivation

Relation Detection Data (NL-SPARQL): a dialog system challenge set for converting natural language to structured queries (Hakkani-Tür et al., 2014)

Crowd-sourced utterances (3,338 for self-training, 1,084 for testing)

Metric: micro F-measure (%)

Approach	Micro F-Measure (%)
Baseline: Gazetteer	38.9
Gazetteer + Entity Surface Form + Entity Context	43.3 (+11.4%)

The web-derived knowledge can benefit SLU performance.

Hakkani-Tür et al., "Probabilistic enrichment of knowledge graph entities for relation detection in conversational understanding," in Proc. of Interspeech, 2014.

Outline

- Introduction
- Ontology Induction [ASRU'13, SLT'14a]
- Structure Learning [NAACL-HLT'15]
 - Surface Form Derivation [SLT'14b]
 - Semantic Decoding [ACL-IJCNLP'15]
 - Intent Prediction [SLT'14c, ICMI'15]
 - SLU in Human-Human Conversations [ASRU'15]
 - Conclusions & Future Work

Knowledge Acquisition

SLU Modeling

Outline

- Introduction
- Ontology Induction [ASRU'13, SLT'14a]
- Structure Learning [NAACL-HLT'15]
 - Surface Form Derivation [SLT'14b]
- Semantic Decoding [ACL-IJCNLP'15]
- Intent Prediction [SLT'14c, ICMI'15]
- SLU in Human-Human Conversations [ASRU'15]
 - Conclusions & Future Work

Semantic Decoding [ACL-IJCNLP'15]

Input: user utterances, automatically acquired knowledge

Output: the semantic concepts included in each individual utterance

Idea: utilize the acquired knowledge to decode utterance semantics (fully unsupervised)

Chen et al., "Matrix Factorization with Knowledge Graph Propagation for Unsupervised Spoken Language Understanding," in Proc. of ACL-IJCNLP, 2015.

Matrix Factorization SLU (MF-SLU)

Feature Model

MF completes a partially-missing matrix based on a low-rank latent semantics assumption.

Matrix Factorization (Rendle et al., 2009)

The decomposed matrices represent latent semantics for utterances and words/slots respectively

The product of two matrices fills the probability of hidden semantics

Rendle et al., "BPR: Bayesian Personalized Ranking from Implicit Feedback," in Proc. of UAI, 2009.

Matrix Factorization SLU (MF-SLU)

Feature Model + Knowledge Graph Propagation Model

<u>Structure information</u> is integrated to make the self-training data more reliable before MF.

Experiments of Semantic Decoding

Experiment 1: Quality of Semantics Estimation

Dataset: Cambridge University SLU Corpus

Metric: MAP of all estimated slot probabilities for each utterance

	Approach	ASR	Transcripts
Baseline:	Support Vector Machine	32.5	36.6
SLU	Multinomial Logistic Regression	34.0	38.8

Experiments of Semantic Decoding

Experiment 1: Quality of Semantics Estimation

Dataset: Cambridge University SLU Corpus

Metric: MAP of all estimated slot probabilities for each utterance

	Approach	ASR	Transcripts
Baseline:	Support Vector Machine	32.5	36.6
SLU Multinomial Logistic Regression		34.0	38.8
Droposodi	Feature Model	37.6*	45.3 [*]
Proposed: MF-SLU	Feature Model +	43.5*	53.4 *
IVII -SLO	Knowledge Graph Propagation	(+27.9%)	(+37.6%)

The MF-SLU effectively models implicit information to decode semantics.

The <u>structure information</u> further improves the results.

^{*:} the result is significantly better than the MLR with p < 0.05 in t-test

Experiments of Semantic Decoding

Experiment 2: Effectiveness of Relations

Dataset: Cambridge University SLU Corpus

Metric: MAP of all estimated slot probabilities for each utterance

Approa	ch	ASR	Transcripts
Feature M	odel	37.6	45.3
Feature + Knowledge	Semantic	41.4*	51.6*
Graph Propagation	Dependency	41.6*	49.0*
All		43.5* (+15.7%)	53.4* (+17.9%)

In the integrated structure information, both semantic and dependency relations are useful for understanding.

^{*:} the result is significantly better than the MLR with p < 0.05 in t-test

Low- and High-Level Understanding

Semantic concepts for individual utterances do not consider high-level semantics (user intents)

The follow-up behaviors usually correspond to user intents

Outline

- Introduction
- Ontology Induction [ASRU'13, SLT'14a]
- Structure Learning [NAACL-HLT'15]
 - Surface Form Derivation [SLT'14b]
 - Semantic Decoding [ACL-IJCNLP'15]
- Intent Prediction [SLT'14c, ICMI'15]
- SLU in Human-Human Conversations [ASRU'15]
 - Conclusions & Future Work

Intent Prediction of Mobile Apps [SLT'14c]

Input: spoken utterances for making requests about launching an app

Output: the apps supporting the required functionality

Intent Identification

popular domains in Google Play

please dial a phone call to alex

Skype, Hangout, etc.

Chen and Rudnicky, "Dynamically Supporting Unexplored Domains in Conversational Interactions by Enriching Semantics with Neural Word Embeddings," in Proc. of SLT, 2014.

Intent Prediction – Single-Turn

Input: single-turn request

Output: the apps that are able to support the required functionality

The feature-enriched MF-SLU unifies manually written knowledge and automatically inferred semantics to predict high-level intents.

Intent Prediction – Multi-Turn Interaction [ICMI'15]

Input: multi-turn interaction

Output: the app the user plans to launch

Challenge: language ambiguity

- 1) User preference
- 2) App-level contexts

send to vivian

Communication

Idea: <u>Behavioral patterns in history</u> can help intent prediction.

Chen et al., "Leveraging Behavioral Patterns of Mobile Applications for Personalized Spoken Language Understanding," in Proc. of ICMI, 2015. Data Available at http://AppDialogue.com/.

Intent Prediction – Multi-Turn Interaction [ICMI'15]

Input: multi-turn interaction

Output: the app the user plans to launch

The *feature-enriched MF-SLU* leverages <u>behavioral patterns</u> to model <u>contextual information</u> and <u>user preference</u> for better intent prediction.

Chen et al., "Leveraging Behavioral Patterns of Mobile Applications for Personalized Spoken Language Understanding," in Proc. of ICMI, 2015. Data Available at http://AppDialogue.com/.

Single-Turn Request: Mean Average Precision (MAP) LM-Based IR Model (unsupervised)

Facture Matrix	ASR		Transcripts	
Feature Matrix	LM	MF-SLU	LM	MF-SLU
Word Observation	25.1		26.1	_

Multinomial Logistic Regression (supervised)

Multi-Turn Interaction: Mean Average Precision (MAP)

Feature Matrix		ASR	Tra	anscripts
		MF-SLU	MLR	MF-SLU
Word Observation	52.1		55.5	

Single-Turn Request: Mean Average Precision (MAP)

Feature Matrix		ASR	Ti	ranscripts
	LM	MF-SLU	LM	MF-SLU
Word Observation	25.1	29.2 (+16.2%)	26.1	30.4 (+16.4%)

Multi-Turn Interaction: Mean Average Precision (MAP)

Facture Matrix		ASR	Tr	anscripts
Feature Matrix	MLR	MF-SLU	MLR	MF-SLU
Word Observation	52.1	52.7 (+1.2%)	55.5	55.4 (-0.2%)

Modeling hidden semantics helps intent prediction especially for noisy data.

Single-Turn Request: Mean Average Precision (MAP)

Facture Matrix		ASR		ranscripts
Feature Matrix	LM	MF-SLU	LM	MF-SLU
Word Observation	25.1	29.2 (+16.2%)	26.1	30.4 (+16.4%)
Word + Embedding-Based Semantics	32.0		33.3	
Word + Type-Embedding-Based Semantics	31.5		32.9	

Multi-Turn Interaction: Mean Average Precision (MAP)

Footium Matuin	ASR		Transcripts	
Feature Matrix	MLR	MF-SLU	MLR	MF-SLU
Word Observation	52.1	52.7 (+1.2%)	55.5	55.4 (-0.2%)
Word + Behavioral Patterns	53.9		56.6	

Semantic enrichment provides rich cues to improve performance.

Single-Turn Request: Mean Average Precision (MAP)

Feature Matrix	ASR		Transcripts	
	LM	MF-SLU	LM	MF-SLU
Word Observation	25.1	29.2 (+16.2%)	26.1	30.4 (+16.4%)
Word + Embedding-Based Semantics	32.0	34.2 (+6.8%)	33.3	33.3 (-0.2%)
Word + Type-Embedding-Based Semantics	31.5	32.2 (+2.1%)	32.9	34.0 (+3.4%)

Multi-Turn Interaction: Mean Average Precision (MAP)

Feature Matrix	ASR		Transcripts	
	MLR	MF-SLU	MLR	MF-SLU
Word Observation	52.1	52.7 (+1.2%)	55.5	55.4 (-0.2%)
Word + Behavioral Patterns	53.9	55.7 (+3.3%)	56.6	57.7 (+1.9%)

Intent prediction can benefit from both <u>hidden information</u> and <u>low-level semantics</u>.

Outline

- Introduction
- Ontology Induction [ASRU'13, SLT'14a]
- Structure Learning [NAACL-HLT'15]
 - Surface Form Derivation [SLT'14b]
 - Semantic Decoding [ACL-IJCNLP'15]
 - Intent Prediction [SLT'14c, ICMI'15]

SLU Modeling

- SLU in Human-Human Conversations [ASRU'15]
- Conclusions & Future Work

Outline

- Introduction
- Ontology Induction [ASRU'13, SLT'14a]
- Structure Learning [NAACL-HLT'15]
 - Surface Form Derivation [SLT'14b]
 - Semantic Decoding [ACL-IJCNLP'15]
 - Intent Prediction [SLT'14c, ICMI'15]
 - SLU in Human-Human Conversations [ASRU'15]
 - Conclusions & Future Work

SLU in Human-Human Dialogues

Computing devices have been easily accessible during regular <u>human-human</u> <u>conversations</u>.

The dialogues include discussions for identifying speakers' next actions.

Is it possible to apply the techniques developed for human-machine dialogues to human-human dialogues?

Actionable Item Utterances

Will Vivian come here for the meeting? **Find Calendar Entry** Taken Diick Hallbary Sar

Actionable Item Detection [ASRU'15]

Goal: provide actions an existing system can handle w/o interrupting conversations

Assumption: some actions and associated arguments can be shared across genres

```
Human-Machine Genre create_calendar_entry schedule a meeting with John this afternoon contact_name start_time
```

Human-Human Genre create_calendar_entry

how about the three of us discuss this later this afternoon ?

→ more casual, include conversational terms

Task: multi-class utterance classification

- train on the available human-machine genre
- test on the human-human genre

Adaptation

- model adapation
- embedding vector adaptation

Chen et al., "Detecting Actionable Items in Meetings by Convolutional Deep Structred Semantic Models," in Proc. of ASRU, 2015.

Action Item Detection

Idea: human-machine interactions may help detect actionable items in human-human conversations

Convolutional deep structured semantic models for IR may be useful for this task.

Convolutional Deep Structured Semantic Models (CDSSM)

(Huang et al., 2013; Shen et al., 2014)

Huang et al., "Learning deep structured semantic models for web search using clickthrough data," in *Proc. of CIKM*, 2013. Shen et al., "Learning semantic representations using convolutional neural networks for web search," in Proc. of WWW, 2014.

Adaptation

Issue: mismatch between a source genre and a target genre

Solution:

- Adapting CDSSM
 - Continually train the CDSSM using the data from the target genre
- Adapting Action Embeddings
 - Moving learned action embeddings close to the observed corresponding utterance embeddings

Adapting Action Embeddings

The mismatch may result in inaccurate action embeddings

Idea: moving action embeddings close to the observed utterance embeddings from the target genre

Adapting Action Embeddings

Learning adapted action embeddings by minimizing an objective:

The actionable scores can be measured by the similarity between utterance embeddings and adapted action embeddings.

Iterative Ontology Refinement

Actionable information may help refine the induced domain ontology

- Intent: create_single_reminder
 - Higher score → utterance with more core contents
 - Lower score → less important utterance

$$w'(s) = (1 - \alpha)\log f'(s) + \alpha \cdot \log h(s)$$

weighted frequency

semantic coherence

The iterative framework can benefit understanding in both human-machine and human-human conversations.

Experiment 1: Actionable Item Detection

Dataset: 22 meetings from the ICSI meeting corpus (3 types of meeting: Bed, Bmr, Bro)

Identified action: find_calendar_entry, create_calendar_entry, open_agenda, add_agenda_item, create_single_reminder, send_email, find_email, make_call, search, open_setting

Annotating agreement: Cohen's Kappa = $0.64^{\circ}0.67$

Data & Model Available at http://research.microsoft.com/en-us/projects/meetingunderstanding/

Experiment 1: Actionable Item Detection

Metrics: the average AUC for 10 actions+others

then continually trained on meeting data

trained on Cortana data

Approach	Mismatch-CDSSivi	Adapt-CDSSM
Original Similarity	49.1	50.4 model a
action embedding ada Similarity based on	55.8	60.1
Adapted Embeddings	(+13.6%)	(+19.2%)

Two adaptation approaches are useful to overcome the genre mismatch.

Experiment 1: Actionable Item Detection

Baselines

Lexical: ngram

Semantic: paragraph vector (Le and Mikolov, 2014)

Classifier: SVM with RBF

	Model	AUC (%)
Baseline	N-gram (N=1,2,3)	52.84
	Paragraph Vector (doc2vec)	59.79
Proposed	CDSSM Adapted Vector	69.27

The CDSSM semantic features outperform lexical n-grams and paragraph vectors, where about 70% actionable items in meetings can be detected.

Le and Mikolov, "Distributed Representations of Sentences and Documents," in Proc. of JMLR, 2014.

Experiment 2: Iterative Ontology Refinement

Dataset: 155 conversations between customers and agents from the MetLife call center; 5,229 automatically segmented utterances (WER = 31.8%)

Annotating agreement of actionable utterances (customer intents or agent actions): Cohen's Kappa = 0.76

Reference Ontology

- Slot: frames selected by annotators
- Structure: slot pairs with dependency relations

FrameNet Coverage: 79.5%

- #additional important concepts: 8
 - o cancel, refund, delete, discount, benefit, person, status, care
- #reference slots: 31

Experiment 2: Iterative Ontology Refinement

Metric: AUC for evaluating the ranking lists about slot and slot pairs

Annroach	ASR		Transcripts	
Approach	Slot	Structure	Slot	Structure
Baseline: MLE	43.4	11.4	59.5	25.9
Proposed: External Word Vec	49.6	12.8	64.7	40.2

The proposed ontology induction significantly improves the baseline in terms of slot and structure performance for <u>multi-domain dialogues</u>.

Experiment 2: Iterative Ontology Refinement

Metric: AUC for evaluating the ranking lists about slot and slot pairs

Approach		ASR		Transcripts	
		Slot	Structure	Slot	Structure
Baseline: MLE		43.4	11.4	59.5	25.9
+ Actionable Score	Proposed	← the estin	mation of actio	nable item	detection
	Oracle	← ground	truth of actiona	ble utterar	nces (upper bo
Proposed: External Word Vec		49.6	12.8	64.7	40.2
+ Actionable Score	Proposed				
	Oracle				

The proposed ontology induction significantly improves the baseline in terms of slot and structure performance for <u>multi-domain dialogues</u>.

Experiment 2: Iterative Ontology Refinement

Metric: AUC for evaluating the ranking lists about slot and slot pairs

Approach		ASR		Transcripts	
		Slot	Structure	Slot	Structure
Baseline: MLE		43.4	11.4	59.5	25.9
+ Actionable Score	Proposed	42.9	11.3		
	Oracle	44.3	12.2		
Proposed: External Word Vec		49.6	12.8	64.7	40.2
+ Actionable Score	Proposed	49.2	12.8		
	Oracle	48.4	12.9		

Actionable information does not significantly improve ASR results due to high WER.

Experiment 2: Iterative Ontology Refinement

Metric: AUC for evaluating the ranking lists about slot and slot pairs

Approach		ASR		Transcripts	
		Slot	Structure	Slot	Structure
Baseline: MLE		43.4	11.4	59.5	25.9
+ Actionable Score	Proposed	42.9	11.3	59.8	26.6
	Oracle			66.7 🚽	37.8 ┙
Proposed: External Word Vec		49.6	12.8	64.7	40.2
+ Actionable Score	Proposed	49.2	12.8	65.0 🧪	40.5
	Oracle			82.4	56.9

Actionable information significantly improves the performance for transcripts.

The iterative ontology refinement is feasible, and it shows the potential room for improvement.

Outline

- Introduction
- Ontology Induction [ASRU'13, SLT'14a]
- Structure Learning [NAACL-HLT'15]
 - Surface Form Derivation [SLT'14b]
 - Semantic Decoding [ACL-IJCNLP'15]
- Intent Prediction [SLT'14c, ICMI'15]
- SLU in Human-Human Conversations [ASRU'15]
- Conclusions & Future Work

Summary of Contributions

Knowledge Acquisition

- ✓ Ontology Induction → Semantic relations are useful.
- ✓ Structure Learning → Dependency relations are useful.
- ✓ Surface Form Derivation → Web-derived surface forms benefit SLU.

SLU Modeling

- ✓ Semantic Decoding → The MF-SLU decodes semantics.
- ✓ Intent Prediction \rightarrow The feature-enriched MF-SLU predicts intents.

SLU in Human-Human Conversations

✓ CDSSM learns intent embeddings to detect actionable utterances, which may help ontology refinement as an iterative framework.

Conclusions

The dissertation shows the feasibility and the potential for improving *generalization, maintenance, efficiency,* and *scalability* of SDSs, where the proposed techniques work for both human-machine and human-human conversations.

The proposed **knowledge acquisition** procedure enables systems to automatically produce domain-specific ontologies.

The proposed **MF-SLU** unifies the automatically acquired knowledge, and then allows systems to consider implicit semantics for better understanding.

- Better semantic representations for individual utterances
- Better high-level intent prediction about follow-up behaviors

Future Work

Apply the proposed technology to domain discovery

- not covered by the current systems but users are interested in
- guide the next developed domains

Improve the proposed approach by handling the uncertainty

Topic Prediction for ASR Improvement

- Lexicon expansion with potential OOVs
- LM adaptation
- Lattice rescoring

Active Learning for SLU

- w/o labels: data selection, filter uncertain instance
- w/ explicit labels: crowd-sourcing
- w/ implicit labels: successful interactions implies the pseudo labels

Take Home Message

Big Data without annotations is available

Main challenge: how to <u>acquire</u> and <u>organize</u> important knowledge, and further <u>utilize</u> it for applications

Unsupervised or weakly-supervised methods will be the future trend!

THANKS FOR YOUR ATTENTIONS!!

Q & A

THANKS TO MY COMMITTEE MEMBERS FOR THEIR HELPFUL FEEDBACK.

