SBML Model Report

Model name: "Hatakeyama2003_MAPK"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Enuo He¹ and Lukas Endler² at July 16th 2008 at one o' clock in the afternoon. and last time modified at May 26th 2014 at 11:17 p. m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	36
events	0	constraints	0
reactions	34	function definitions	0
global parameters	75	unit definitions	1
rules	7	initial assignments	0

Model Notes

Figure 4 and Figure 5 can be simulated by Copasi. Figure 4 can be simulated in MathSBML as well. There are some typos in the paper:K29=234, is it should k_29; Table 2, reaction 17, is there are "slash,, missing in between the rate equation; reaction 33,,,Akt-PI-PP,, in the last term of denominator instead of "AktPI-P,, . For plotting figure 4, we create another extra parameter *_percent, and use assignment rule calculate percentage of each species.

¹University of Oxford, enuo.he@wolfson.ox.ac.uk

²EMBL-EBI, lukas@ebi.ac.uk

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name nM

Definition nmol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment_0000001	cell		3	1	litre	Z	

3.1 Compartment compartment_0000001

This is a three dimensional compartment with a constant size of one litre.

Name cell

4 Species

This model contains 36 species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Akt		compartment_0000001	$\operatorname{nmol} \cdot 1^{-1}$		
AktPIP3		compartment_0000001	$\operatorname{nmol} \cdot 1^{-1}$		\Box
AktPIP		compartment_0000001	$nmol \cdot l^{-1}$		
AktPIPP		compartment_0000001	$nmol \cdot l^{-1}$		
ERK		compartment_0000001	$nmol \cdot l^{-1}$		
ERKP		compartment_0000001	$nmol \cdot l^{-1}$		\Box
ERKPP		compartment_0000001	$\operatorname{nmol} \cdot 1^{-1}$		
GS		compartment_0000001	$\operatorname{nmol} \cdot 1^{-1}$		
HRG		${\tt compartment_0000001}$	$\operatorname{nmol} \cdot 1^{-1}$		\Box
MEK		${\tt compartment_0000001}$	$nmol \cdot l^{-1}$		\Box
MEKP		compartment_0000001	$nmol \cdot l^{-1}$		
MEKPP		compartment_0000001	$nmol \cdot l^{-1}$		\Box
PI3K		compartment_0000001	$nmol \cdot l^{-1}$		
PI3Kstar		compartment_0000001	$\operatorname{nmol} \cdot 1^{-1}$		
PIP3		compartment_0000001	$\operatorname{nmol} \cdot 1^{-1}$		
R		compartment_0000001	$\operatorname{nmol} \cdot 1^{-1}$		
RP		compartment_0000001	$nmol \cdot l^{-1}$		
RHRG		compartment_0000001	$nmol \cdot l^{-1}$		
RHRG2		compartment_0000001	$nmol \cdot l^{-1}$		\Box
RPI3K		compartment_0000001	$nmol \cdot l^{-1}$		\Box
RPI3Kstar		compartment_0000001	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		\Box
RShGS		compartment_0000001	$\operatorname{nmol} \cdot 1^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
RShP		${\tt compartment_0000001}$	$\operatorname{nmol} \cdot 1^{-1}$	\Box	
RShc		compartment_0000001	$nmol \cdot l^{-1}$	\Box	\Box
Raf		compartment_0000001	$nmol \cdot l^{-1}$		
Rafstar		compartment_0000001	$nmol \cdot l^{-1}$	\Box	
RasGDP		compartment_0000001	$nmol \cdot l^{-1}$	\Box	\Box
RasGTP		${\tt compartment_0000001}$	$nmol \cdot l^{-1}$		
ShGS		$compartment_0000001$	$nmol \cdot l^{-1}$		
ShP		compartment_0000001	$nmol \cdot l^{-1}$		
Shc		compartment_0000001	$nmol \cdot l^{-1}$		
$P_{-}I$		compartment_0000001	$nmol \cdot l^{-1}$		
internalizati	lon	compartment_0000001	$nmol \cdot l^{-1}$		
E		compartment_0000001	$nmol \cdot l^{-1}$		
MKP3		compartment_0000001	$nmol \cdot l^{-1}$	$ \overline{\checkmark} $	
PP2A		${\tt compartment_0000001}$	$nmol \cdot l^{-1}$		\Box

5 Parameters

This model contains 75 global parameters.

Table 4: Properties of each parameter.

k1 0.001 ✓ k2 0.010 ✓ k3 1.000 ✓ k6 20.000 ✓ k7 60.000 ✓ k8 2040.000 ✓ k9 40.800 ✓ v10 0.015 ✓ k11 0.222 ✓ v12 0.289 ✓ k13 1.530 ✓ k14 0.007 ✓ k15 3.500 ✓ k16 0.058 ✓ k17 2.900 ✓ k20 0.300 ✓ k18 0.058 ✓ k19 9.500 ✓ k21 16.000 ✓ k22 0.270 ✓ k23 0.100 ✓ k24 9.850 ✓ k25 45.800 ✓ k27 16.900 ✓ V26 2620.000 ✓ V28 17000.000 ✓ k31 0.107	Id	Name	SBO	Value	Unit	Constant
k2 0.010 \$\frac{7}{8}\$ k5 0.100 \$\frac{7}{8}\$ k6 20.000 \$\frac{7}{8}\$ k7 60.000 \$\frac{7}{8}\$ k8 2040.000 \$\frac{7}{8}\$ k9 40.800 \$\frac{7}{8}\$ V10 0.015 \$\frac{7}{8}\$ k11 0.222 \$\frac{7}{2}\$ V12 0.289 \$\frac{7}{2}\$ k13 1.530 \$\frac{7}{2}\$ k14 0.007 \$\frac{7}{2}\$ k15 3.500 \$\frac{7}{2}\$ k16 0.058 \$\frac{7}{2}\$ k17 2.900 \$\frac{7}{2}\$ k20 0.300 \$\frac{7}{2}\$ k18 0.058 \$\frac{7}{2}\$ k21 16.000 \$\frac{7}{2}\$ k22 0.270 \$\frac{7}{2}\$ k23 0.100 \$\frac{7}{2}\$ k24 9.850 \$\frac{7}{2}\$ k25 45.800 \$\frac{7}{2}\$ v26 2620.000 \$\frac{7}{2}\$ v28 17000.000 \$\frac{7}{2}\$	k1			0.001		\checkmark
k3 1.000 \$\frac{7}{8}\$ k6 20.000 \$\frac{7}{8}\$ k7 60.000 \$\frac{7}{8}\$ k8 2040.000 \$\frac{7}{8}\$ k9 40.800 \$\frac{7}{8}\$ v10 0.015 \$\frac{7}{8}\$ k11 0.222 \$\frac{7}{8}\$ v12 0.289 \$\frac{7}{8}\$ k13 1.530 \$\frac{7}{8}\$ k14 0.007 \$\frac{7}{8}\$ k15 3.500 \$\frac{7}{8}\$ k16 0.058 \$\frac{7}{8}\$ k20 0.300 \$\frac{7}{8}\$ k19 9.500 \$\frac{7}{8}\$ k21 16.000 \$\frac{7}{8}\$ k22 0.270 \$\frac{7}{8}\$ k23 0.100 \$\frac{7}{8}\$ k24 9.850 \$\frac{7}{8}\$ k25 45.800 \$\frac{7}{8}\$ k27 16.900 \$\frac{7}{8}\$ v28 1700.000 \$\frac{7}{8}\$ k29 507.000 \$\frac{7}{8}\$ v32 20000.000 \$\frac{7}{8}\$ <td>k2</td> <td></td> <td></td> <td>0.010</td> <td></td> <td></td>	k2			0.010		
k5 0.100 \$\frac{7}{86}\$ k6 20.000 \$\frac{7}{8}\$ k7 60.000 \$\frac{7}{8}\$ k8 2040.000 \$\frac{7}{8}\$ k9 40.800 \$\frac{7}{8}\$ V10 0.015 \$\frac{7}{8}\$ k11 0.222 \$\frac{7}{8}\$ V12 0.289 \$\frac{7}{8}\$ k13 1.530 \$\frac{7}{8}\$ k14 0.007 \$\frac{7}{8}\$ k15 3.500 \$\frac{7}{8}\$ k16 0.058 \$\frac{7}{8}\$ k17 2.900 \$\frac{7}{8}\$ k20 0.300 \$\frac{7}{8}\$ k18 0.058 \$\frac{7}{8}\$ k19 9.500 \$\frac{7}{8}\$ k21 16.000 \$\frac{7}{8}\$ k22 0.270 \$\frac{7}{8}\$ k23 0.100 \$\frac{7}{8}\$ k24 9.850 \$\frac{7}{8}\$ k27 16.900 \$\frac{7}{8}\$ v28 17000.000 \$\frac{7}{8}\$ k29 507.000 \$\frac{7}{8}\$	k3			1.000		
k6 20.000 Image: square process of the content of	k5			0.100		
k7 60.000 \$\frac{7}{88}\$ k9 40.800 \$\frac{7}{2}\$ k11 0.222 \$\frac{7}{2}\$ V12 0.289 \$\frac{7}{2}\$ k13 1.530 \$\frac{7}{2}\$ k14 0.007 \$\frac{7}{2}\$ k15 3.500 \$\frac{7}{2}\$ k16 0.058 \$\frac{7}{2}\$ k17 2.900 \$\frac{7}{2}\$ k20 0.300 \$\frac{7}{2}\$ k18 0.058 \$\frac{7}{2}\$ k19 9.500 \$\frac{7}{2}\$ k21 16.000 \$\frac{7}{2}\$ k22 0.270 \$\frac{7}{2}\$ k23 0.100 \$\frac{7}{2}\$ k24 9.850 \$\frac{7}{2}\$ k25 45.800 \$\frac{7}{2}\$ k27 16.900 \$\frac{7}{2}\$ V28 17000.000 \$\frac{7}{2}\$ v30 20000.000 \$\frac{7}{2}\$ v31 0.107 \$\frac{7}{2}\$ v32 20000.000 \$\frac{7}{2}\$ v33 0.211 \$\frac{7}{2}\$	k6			20.000		
k8 2040.000 k9 40.800 V10 0.015 k11 0.222 V12 0.289 k13 1.530 k14 0.007 k15 3.500 k16 0.058 k17 2.900 k20 0.300 k18 0.058 k19 9.500 k21 16.000 k22 0.270 k23 0.100 k24 9.850 k25 45.800 k27 16.900 V26 2620.000 V28 17000.000 k29 507.000 V30 20000.000 k31 0.107 V32 20000.000 k33 0.211 k34 0.001 k.1 7.6·10 ⁻⁴ k.2 0.100 k.3 0.010	k7			60.000		
k9 40.800 V10 0.015 k11 0.222 V12 0.289 k13 1.530 k14 0.007 k15 3.500 k16 0.058 k17 2.900 k20 0.300 k18 0.058 k19 9.500 k21 16.000 k22 0.270 k23 0.100 k24 9.850 k27 16.900 V26 2620.000 V28 17000.000 K29 507.000 V30 20000.000 K31 0.107 V32 20000.000 K33 0.211 K34 0.001 K-1 7.6·10 ⁻⁴ K-2 0.100 K-3 0.010	k8			2040.000		
V10 0.015 k11 0.222 V12 0.289 k13 1.530 k14 0.007 k15 3.500 k16 0.058 k17 2.900 k20 0.300 k18 0.058 k19 9.500 k21 16.000 k22 0.270 k23 0.100 k24 9.850 k25 45.800 k27 16.900 V26 2620.000 V28 17000.000 k29 507.000 V30 20000.000 k31 0.107 V32 20000.000 k33 0.211 k34 0.001 k.1 7.6·10 ⁻⁴ k.2 0.100 k.3 0.010	k9			40.800		
k11 0.222 \$\frac{1}{2}\$ k13 1.530 \$\frac{1}{2}\$ k14 0.007 \$\frac{1}{2}\$ k15 3.500 \$\frac{1}{2}\$ k16 0.058 \$\frac{1}{2}\$ k17 2.900 \$\frac{1}{2}\$ k20 0.300 \$\frac{1}{2}\$ k18 0.058 \$\frac{1}{2}\$ k19 9.500 \$\frac{1}{2}\$ k21 16.000 \$\frac{1}{2}\$ k22 0.270 \$\frac{1}{2}\$ k23 0.100 \$\frac{1}{2}\$ k24 9.850 \$\frac{1}{2}\$ k25 45.800 \$\frac{1}{2}\$ k27 16.900 \$\frac{1}{2}\$ V26 2620.000 \$\frac{1}{2}\$ V28 17000.000 \$\frac{1}{2}\$ V30 20000.000 \$\frac{1}{2}\$ V31 0.107 \$\frac{1}{2}\$ V32 20000.000 \$\frac{1}{2}\$ k34 0.001 \$\frac{1}{2}\$ k-1 7.6.10-4 \$\frac{1}{2}\$ k-2 0.100 \$\frac{1}{2}\$	V10			0.015		
V12 0.289 k13 1.530 k14 0.007 k15 3.500 k16 0.058 k17 2.900 k20 0.300 k18 0.058 k19 9.500 k21 16.000 k22 0.270 k23 0.100 k24 9.850 k25 45.800 k27 16.900 V26 2620.000 V28 17000.000 k29 507.000 V30 20000.000 k31 0.107 V32 20000.000 k33 0.211 k34 0.001 k-1 7.6·10 ⁻⁴ k-2 0.100 k-3 0.010	k11			0.222		
k13 1.530 k14 0.007 k15 3.500 k16 0.058 k17 2.900 k20 0.300 k18 0.058 k19 9.500 k21 16.000 k22 0.270 k23 0.100 k24 9.850 k25 45.800 k27 16.900 V26 2620.000 V28 17000.000 k29 507.000 V30 20000.000 k31 0.107 V32 20000.000 k33 0.211 k34 0.001 k-1 7.6·10 ⁻⁴ k-2 0.100 k-3 0.010	V12			0.289		
k14 0.007 k15 3.500 k16 0.058 k17 2.900 k20 0.300 k18 0.058 k19 9.500 k21 16.000 k22 0.270 k23 0.100 k24 9.850 k25 45.800 k27 16.900 V26 2620.000 V28 17000.000 k29 507.000 V30 20000.000 k31 0.107 V32 20000.000 k33 0.211 k34 0.001 k-1 7.6·10 ⁻⁴ k-2 0.100 k-3 0.010	k13			1.530		
k16 3.500 k17 2.900 k20 0.300 k18 0.058 k19 9.500 k21 16.000 k22 0.270 k23 0.100 k24 9.850 k25 45.800 k27 16.900 V28 17000.000 v29 507.000 V30 20000.000 k31 0.107 V32 20000.000 k33 0.211 k34 0.001 k-1 7.6·10 ⁻⁴ k-2 0.100 k-3 0.010	k14			0.007		
k16 0.058 Ø k17 2.900 Ø k20 0.300 Ø k18 0.058 Ø k19 9.500 Ø k21 16.000 Ø k22 0.270 Ø k23 0.100 Ø k24 9.850 Ø k25 45.800 Ø k27 16.900 Ø V26 2620.000 Ø V28 17000.000 Ø k29 507.000 Ø V30 20000.000 Ø k31 0.107 Ø V32 20000.000 Ø k33 0.211 Ø k34 0.001 Ø k-1 7.6 · 10 ⁻⁴ Ø k-2 0.100 Ø k-3 0.010 Ø	k15			3.500		
k17 2.900 k20 0.300 k18 0.058 k19 9.500 k21 16.000 k22 0.270 k23 0.100 k24 9.850 k25 45.800 k27 16.900 V26 2620.000 V28 17000.000 k29 507.000 V30 20000.000 k31 0.107 V32 20000.000 k33 0.211 k34 0.001 k.1 7.6 · 10 ⁻⁴ k.2 0.100 k.3 0.010	k16			0.058		
k20 0.300 ✓ k18 0.058 ✓ k19 9.500 ✓ k21 16.000 ✓ k22 0.270 ✓ k23 0.100 ✓ k24 9.850 ✓ k25 45.800 ✓ k27 16.900 ✓ V26 2620.000 ✓ V28 17000.000 ✓ k29 507.000 ✓ V30 20000.000 ✓ k31 0.107 ✓ V32 20000.000 ✓ k33 0.211 ✓ k34 0.001 ✓ k.1 7.6 · 10 · 4 ✓ k.2 0.100 ✓ k.3 0.010 ✓	k17			2.900		
k18 0.058 k19 9.500 k21 16.000 k22 0.270 k23 0.100 k24 9.850 k25 45.800 k27 16.900 V26 2620.000 V28 17000.000 k29 507.000 V30 20000.000 k31 0.107 V32 20000.000 k33 0.211 k34 0.001 k.1 7.6·10 ⁻⁴ k.2 0.100 k.3 0.010	k20			0.300		
k19 9.500 k21 16.000 k22 0.270 k23 0.100 k24 9.850 k25 45.800 k27 16.900 V26 2620.000 V28 17000.000 k29 507.000 V30 20000.000 k31 0.107 V32 20000.000 k33 0.211 k34 0.001 k.1 7.6·10 ⁻⁴ k.2 0.100 k.3 0.010	k18			0.058		
k21 16.000 Image: square part of the part	k19			9.500		
k22 0.270 k23 0.100 k24 9.850 k25 45.800 k27 16.900 V26 2620.000 V28 17000.000 k29 507.000 V30 20000.000 k31 0.107 V32 20000.000 k33 0.211 k34 0.001 k.1 7.6 ⋅ 10 ⁻⁴ k.2 0.100 k.3 0.010	k21			16.000		
k23 0.100 k24 9.850 k25 45.800 k27 16.900 V26 2620.000 V28 17000.000 k29 507.000 V30 20000.000 k31 0.107 V32 20000.000 k33 0.211 k34 0.001 k.1 7.6·10 ⁻⁴ k.2 0.100 k.3 0.010	k22			0.270		
k24 9.850 k25 45.800 k27 16.900 V26 2620.000 V28 17000.000 k29 507.000 V30 20000.000 k31 0.107 V32 20000.000 k33 0.211 k34 0.001 k.1 7.6 · 10 ⁻⁴ k.2 0.100 k.3 0.010	k23			0.100		
$k25$ 45.800 $k27$ 16.900 $V26$ 2620.000 $V28$ 17000.000 $k29$ 507.000 $V30$ 20000.000 $k31$ 0.107 $V32$ 20000.000 $k33$ 0.211 $k34$ 0.001 $k.1$ $7.6 \cdot 10^{-4}$ $k.2$ 0.100 $k.3$ 0.010	k24			9.850		
k27 16.900 V26 2620.000 V28 17000.000 k29 507.000 V30 20000.000 k31 0.107 V32 20000.000 k33 0.211 k34 0.001 k_1 $7.6 \cdot 10^{-4}$ k_2 0.100 k_3 0.010	k25			45.800		
V26 2620.000 V28 17000.000 k29 507.000 V30 20000.000 k31 0.107 V32 20000.000 k33 0.211 k34 0.001 k_1 $7.6 \cdot 10^{-4}$ k_2 0.100 k_3 0.010	k27			16.900		
V28 17000.000 \checkmark k29 507.000 \checkmark V30 20000.000 \checkmark k31 0.107 \checkmark V32 20000.000 \checkmark k33 0.211 \checkmark k34 0.001 \checkmark k_1 $7.6 \cdot 10^{-4}$ \checkmark k_2 0.100 \checkmark k_3 0.010 \checkmark	V26			2620.000		
k29 507.000 V30 20000.000 k31 0.107 V32 20000.000 k33 0.211 k34 0.001 k_1 $7.6 \cdot 10^{-4}$ k_2 0.100 k_3 0.010	V28			17000.000		
V30 20000.000 k31 0.107 V32 20000.000 k33 0.211 k34 0.001 k_1 $7.6 \cdot 10^{-4}$ k_2 0.100 k_3 0.010	k29			507.000		
k31 0.107 \checkmark V32 20000.000 \checkmark k33 0.211 \checkmark k34 0.001 \checkmark k_1 $7.6 \cdot 10^{-4}$ \checkmark k_2 0.100 \checkmark k_3 0.010 \checkmark	V30			20000.000		
V32 20000.000 k33 0.211 k34 0.001 k_1 $7.6 \cdot 10^{-4}$ k_2 0.100 k_3 0.010	k31			0.107		
k33 0.211 k34 0.001 k_1 $7.6 \cdot 10^{-4}$ k_2 0.100 k_3 0.010	V32			20000.000		
k_{-1} $7.6 \cdot 10^{-4}$ \checkmark k_{-2} 0.100 \checkmark k_{-3} 0.010 \checkmark	k33			0.211		
k_{-1} $7.6 \cdot 10^{-4}$ \checkmark k_{-2} 0.100 \checkmark k_{-3} 0.010 \checkmark	k34					
k_3 0.010	$k_{-}1$			$7.6 \cdot 10^{-4}$		$ \mathbf{Z} $
k_3 0.010	$k_{-}2$			0.100		$ \overline{\checkmark} $
K4 50.000	$k_{-}3$			0.010		
	K4			50.000		

Id	Name	SBO	Value	Unit	Constant
k_5			1.000		
k_6			5.000		
$k_{-}7$			546.000		
$k_{-}8$			15700.000		
k_9			0.000		
K10			340.000		
K11			0.181		
K12			0.057		
K13			11.700		
K14			8.070		
K15			317.000		
K18			60.000		
K19			146000.000		
K20			160.000		
K21			146000.000		
K22			60.000		
$k_{-}23$			2.000		
k_24			0.099		\square
k_25			0.047		\square
K26			3680.000		
K27			39.100		\square
K28			9.020		\square
K30			8000.000		
K31			4.350		
K32			8000.000		
K33			12.000		\square
k_34			0.000		
V4			62.500		
K17			317.000		
K16			2200.000		
k_29			234.000		
$\mathtt{RP}_{\mathtt{percent}}$			0.000		
AktPP-			0.000		
$_{ extsf{ extsf{-}}}\mathtt{percent}$					
MEKPP-			0.000		
$_\mathtt{percent}$					
ERKPP-			0.000		
$_{ extstyle e$					
Rafstar-			0.000		
$_{ t percent}$					
ShP_percent			0.000		

Id	Name	SBO	Value	Unit	Constant
PI3Kstar-			0.000)	\Box
$_\mathtt{percent}$					

6 Rules

This is an overview of seven rules.

6.1 Rule RP_percent

Rule RP_percent is an assignment rule for parameter RP_percent:

$$RP_percent = \frac{([RP] + [RPI3K] + [RPI3Kstar] + [RShGS] + [RShP] + [RShC]) \cdot 200}{80} \quad (1)$$

Notes RP%

6.2 Rule ERKPP_percent

Rule ERKPP_percent is an assignment rule for parameter ERKPP_percent:

$$ERKPP_percent = \frac{[ERKPP] \cdot 100}{1000}$$
 (2)

Notes ERKPP%

6.3 Rule AktPP_percent

Rule AktPP_percent is an assignment rule for parameter AktPP_percent:

$$AktPP_percent = \frac{[AktPIPP] \cdot 100}{10}$$
 (3)

Notes AktPP%

6.4 Rule MEKPP_percent

Rule MEKPP_percent is an assignment rule for parameter MEKPP_percent:

$$MEKPP_percent = \frac{[MEKPP] \cdot 100}{120}$$
 (4)

Notes MEKPP%

6.5 Rule ShP_percent

Rule ShP_percent is an assignment rule for parameter ShP_percent:

$$ShP_percent = \frac{[ShP] \cdot 100}{1000} \tag{5}$$

Notes ShP%

6.6 Rule PI3Kstar_percent

Rule $PI3Kstar_percent$ is an assignment rule for parameter $PI3Kstar_percent$:

$$PI3Kstar_percent = \frac{[PI3Kstar] \cdot 100}{10}$$
 (6)

Notes PI3Kstar%

6.7 Rule Rafstar_percent

Rule Rafstar_percent is an assignment rule for parameter Rafstar_percent:

$$Rafstar_percent = \frac{[Rafstar] \cdot 100}{100} \tag{7}$$

Notes Rafstar%

7 Reactions

This model contains 34 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
12	reaction- _0000012		$RasGTP \longrightarrow RasGDP$	
13	reaction- _0000013		$Raf \xrightarrow{RasGTP} Rafstar$	
14	reaction- _0000014		Rafstar $\xrightarrow{\text{AktPIPP, E}}$ Raf	
15	reaction- _0000015		$MEK \xrightarrow{Rafstar} MEKP$	
16	reaction- _0000016		MEKP MEKPP, AktPIP, AktPIPP, PP2A MEK	
17	reaction- _0000017		$MEKP \xrightarrow{MEK, Rafstar} MEKPP$	
18	reaction- _0000018		$MEKPP \xrightarrow{AktPIP, AktPIPP, PP2A} MEKP$	
19	reaction- _0000019		$ERK \xrightarrow{MEKPP} ERKP$	
20	reaction- _0000020		$ERKP \xrightarrow{ERKPP, MKP3} ERK$	
21	reaction- _0000021		$ERKP \xrightarrow{MEKPP, \; ERK} ERKPP$	
22	reaction- _0000022		$ERKPP \xrightarrow{MKP3} ERKP$	
23	reaction- _0000023		$RP + PI3K \Longrightarrow RPI3K$	

$N_{\bar{0}}$	Id	Name	Reaction Equation SBC
24	reaction- _0000024		RPI3K ← RPI3Kstar
25	reaction-		$RPI3Kstar \rightleftharpoons RP + PI3Kstar$
26	_0000025		$PI3Kstar \longrightarrow PI3K$
27	_0000026		$PIP3 + Akt \Longrightarrow AktPIP3$
28	_0000029 reaction- _0000028		$PIP3 \longrightarrow P_I$
29	reaction-		$P_{-}I \xrightarrow{PI3Kstar} PIP3$
30	reaction- _0000030		$AktPIP3 \longrightarrow AktPIP$
31	reaction- _0000031		$AktPIP \xrightarrow{MEKP, MEKPP, AktPIPP, PP2A} AktPIP3$
32	reaction- _0000032		$AktPIP \xrightarrow{AktPIP3} AktPIPP$
33	reaction-		$AktPIPP \xrightarrow{MEKP, MEKPP, PP2A} AktPIP$
34	reaction-		$RP \Longrightarrow internalization$

7.1 Reaction reaction_0000001

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$R + HRG \rightleftharpoons RHRG$$
 (8)

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
R		
HRG		

Product

Table 7: Properties of each product.

Id	Name	SBO
RHRG		

Kinetic Law

Derived unit contains undeclared units

$$v_1 = vol(compartment_0000001) \cdot (k1 \cdot [R] \cdot [HRG] - k_1 \cdot [RHRG])$$
 (9)

7.2 Reaction reaction_0000002

This is a reversible reaction of one reactant forming one product.

Reaction equation

$$2RHRG \Longrightarrow RHRG2$$
 (10)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
RHRG		

Product

Table 9: Properties of each product.

Id	Name	SBO
RHRG2		

Kinetic Law

Derived unit contains undeclared units

$$v_2 = vol\left(compartment_0000001\right) \cdot \left(k2 \cdot [RHRG]^2 - k_2 \cdot [RHRG2]\right) \tag{11}$$

7.3 Reaction reaction_0000003

This is a reversible reaction of one reactant forming one product.

Reaction equation

$$RHRG2 \rightleftharpoons RP \tag{12}$$

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
RHRG2		

Product

Table 11: Properties of each product.

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{compartment}_0000001) \cdot (\text{k3} \cdot [\text{RHRG2}] - \text{k}_3 \cdot [\text{RP}])$$
 (13)

7.4 Reaction reaction_0000004

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$RP \longrightarrow RHRG2$$
 (14)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
RP		

Product

Table 13: Properties of each product.

Id	Name	SBO
RHRG2		

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \frac{\text{vol}\left(\text{compartment}_0000001\right) \cdot \text{V4} \cdot [\text{RP}]}{\text{K4} + [\text{RP}]} \tag{15}$$

7.5 Reaction reaction_0000005

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$RP + Shc \Longrightarrow RShc$$
 (16)

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
Shc		

Product

Table 15: Properties of each product.

Id	Name	SBO
RShc		

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol} \left(\text{compartment_0000001} \right) \cdot \left(\text{k5} \cdot [\text{RP}] \cdot [\text{Shc}] - \text{k_5} \cdot [\text{RShc}] \right) \tag{17}$$

7.6 Reaction reaction_0000006

This is a reversible reaction of one reactant forming one product.

Reaction equation

$$RShc \rightleftharpoons RShP \tag{18}$$

Reactant

Table 16: Properties of each reactant.

Id	Name	SBO
RShc		

Product

Table 17: Properties of each product.

Id	Name	SBO
RShP		

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}\left(\text{compartment_0000001}\right) \cdot \left(\text{k6} \cdot [\text{RShc}] - \text{k_6} \cdot [\text{RShP}]\right) \tag{19}$$

7.7 Reaction reaction_0000007

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$RShP + GS \Longrightarrow RShGS \tag{20}$$

Reactants

Table 18: Properties of each reactant.

Id	Name	SBO
RShP		
GS		

Product

Table 19: Properties of each product.

Id	Name	SBO
RShGS		

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}\left(\text{compartment_0000001}\right) \cdot \left(\text{k7} \cdot [\text{RShP}] \cdot [\text{GS}] - \text{k_7} \cdot [\text{RShGS}]\right) \tag{21}$$

7.8 Reaction reaction_0000008

This is a reversible reaction of one reactant forming two products.

Reaction equation

$$RShGS \Longrightarrow ShGS + RP \tag{22}$$

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
RShGS		

Products

Table 21: Properties of each product.

Id	Name	SBO
ShGS		
RP		

Kinetic Law

Derived unit contains undeclared units

$$v_8 = vol\left(compartment_0000001\right) \cdot \left(k8 \cdot [RShGS] - k_8 \cdot [ShGS] \cdot [RP]\right) \tag{23}$$

7.9 Reaction reaction_0000009

This is a reversible reaction of one reactant forming two products.

Reaction equation

$$ShGS \rightleftharpoons GS + ShP \tag{24}$$

Reactant

Table 22: Properties of each reactant.

Id	Name	SBO
ShGS		

Table 23: Properties of each product.

Id	Name	SBO
GS		
ShP		

Derived unit contains undeclared units

$$v_9 = \text{vol} \left(\text{compartment_0000001} \right) \cdot \left(\text{k9} \cdot [\text{ShGS}] - \text{k_9} \cdot [\text{GS}] \cdot [\text{ShP}] \right) \tag{25}$$

7.10 Reaction reaction_0000010

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$ShP \longrightarrow Shc$$
 (26)

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
ShP		

Product

Table 25: Properties of each product.

Id	Name	SBO
Shc		

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \frac{\text{vol}\left(\text{compartment_0000001}\right) \cdot \text{V10} \cdot [\text{ShP}]}{\text{K10} + [\text{ShP}]} \tag{27}$$

7.11 Reaction reaction_0000011

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$RasGDP \xrightarrow{ShGS} RasGTP \tag{28}$$

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
RasGDP		

Modifier

Table 27: Properties of each modifier.

Id	Name	SBO
ShGS		

Product

Table 28: Properties of each product.

Id	Name	SBO
RasGTP		

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = vol(compartment_0000001) \cdot \frac{k11 \cdot [ShGS] \cdot [RasGDP]}{K11 + [RasGDP]}$$
 (29)

7.12 Reaction reaction_0000012

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$RasGTP \longrightarrow RasGDP \tag{30}$$

Reactant

Table 29: Properties of each reactant.

Id	Name	SBO
RasGTP		

Product

Table 30: Properties of each product.

Id	Name	SBO
RasGDP		

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol}\left(\text{compartment_0000001}\right) \cdot \frac{\text{V12} \cdot [\text{RasGTP}]}{\text{K12} + [\text{RasGTP}]}$$
(31)

7.13 Reaction reaction_0000013

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Raf \xrightarrow{RasGTP} Rafstar$$
 (32)

Reactant

Table 31: Properties of each reactant.

Id	Name	SBO
Raf		

Modifier

Table 32: Properties of each modifier.

Id	Name	SBO
RasGTP		

Product

Table 33: Properties of each product.

Id	Name	SBO
Rafstar		

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}\left(\text{compartment_0000001}\right) \cdot \frac{\text{k13} \cdot [\text{RasGTP}] \cdot [\text{Raf}]}{\text{K13} + [\text{Raf}]}$$
(33)

7.14 Reaction reaction_0000014

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Reaction equation

Rafstar
$$\xrightarrow{\text{AktPIPP, E}}$$
 Raf (34)

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
Rafstar		

Modifiers

Table 35: Properties of each modifier.

Id	Name	SBO
AktPIPP E		

Table 36: Properties of each product.

Id	Name	SBO
Raf		

Derived unit contains undeclared units

$$v_{14} = \frac{\text{vol}\left(\text{compartment_0000001}\right) \cdot \text{k14} \cdot \left(\left[\text{AktPIPP}\right] + \left[\text{E}\right]\right) \cdot \left[\text{Rafstar}\right]}{\text{K14} + \left[\text{Rafstar}\right]} \tag{35}$$

7.15 Reaction reaction_0000015

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$MEK \xrightarrow{Rafstar} MEKP$$
 (36)

Reactant

Table 37: Properties of each reactant.

Id	Name	SBO
MEK		

Modifier

Table 38: Properties of each modifier.

Id	Name	SBO
Rafstar		

Table 39: Properties of each product.

Id	Name	SBO
MEKP		

Derived unit contains undeclared units

$$v_{15} = \frac{\text{vol}\left(\text{compartment}_0000001\right) \cdot \text{k15} \cdot \left[\text{Rafstar}\right] \cdot \left[\text{MEK}\right]}{\text{K15} \cdot \left(1 + \frac{\left[\text{MEKP}\right]}{\text{K17}}\right) + \left[\text{MEK}\right]}$$
(37)

7.16 Reaction reaction_0000016

This is an irreversible reaction of one reactant forming one product influenced by four modifiers.

Reaction equation

$$MEKP \xrightarrow{MEKPP, AktPIP, AktPIPP, PP2A} MEK$$
 (38)

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
MEKP		

Modifiers

Table 41: Properties of each modifier.

Id	Name	SBO
MEKPP		
AktPIP		
AktPIPP		
PP2A		

Table 42: Properties of each product.

Id	Name	SBO
MEK		

Derived unit contains undeclared units

$$v_{16} = \frac{\text{vol}(\text{compartment}_0000001) \cdot \text{k16} \cdot [\text{PP2A}] \cdot [\text{MEKP}]}{\text{K16} \cdot \left(1 + \frac{[\text{MEKPP}]}{\text{K18}} + \frac{[\text{AktPIP}]}{\text{K31}} + \frac{[\text{AktPIPP}]}{\text{K33}}\right) + [\text{MEKP}]}$$
(39)

7.17 Reaction reaction_0000017

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Reaction equation

$$MEKP \xrightarrow{MEK, Rafstar} MEKPP$$
 (40)

Reactant

Table 43: Properties of each reactant.

Id	Name	SBO
MEKP		

Modifiers

Table 44: Properties of each modifier.

Id	Name	SBO
MEK		
Rafstar		

Product

Table 45: Properties of each product.

Id	Name	SBO
MEKPP		

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \frac{\text{vol}\left(\text{compartment_0000001}\right) \cdot \text{k17} \cdot \left[\text{Rafstar}\right] \cdot \left[\text{MEKP}\right]}{\text{K17} \cdot \left(1 + \frac{\left[\text{MEK}\right]}{\text{K15}}\right) + \left[\text{MEKP}\right]} \tag{41}$$

7.18 Reaction reaction_0000018

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Reaction equation

$$MEKPP \xrightarrow{AktPIP, AktPIPP, PP2A} MEKP$$
 (42)

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
MEKPP		

Modifiers

Table 47: Properties of each modifier.

Id	Name	SBO
AktPIP		
AktPIPP		
PP2A		

Product

Table 48: Properties of each product.

Id	Name	SBO
MEKP		

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \frac{\text{vol}(\text{compartment_0000001}) \cdot \text{k18} \cdot [\text{PP2A}] \cdot [\text{MEKPP}]}{\text{K18} \cdot \left(1 + \frac{[\text{MEKP}]}{\text{K16}} + \frac{[\text{AktPIPP}]}{\text{K31}} + \frac{[\text{AktPIPP}]}{\text{K33}}\right) + [\text{MEKPP}]}$$

$$(43)$$

7.19 Reaction reaction_0000019

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$ERK \xrightarrow{MEKPP} ERKP \tag{44}$$

Reactant

Table 49: Properties of each reactant.

Id	Name	SBO
ERK		

Modifier

Table 50: Properties of each modifier.

Id	Name	SBO
MEKPP		

Product

Table 51: Properties of each product.

Id	Name	SBO
ERKP		

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \frac{\text{vol}\left(\text{compartment}_0000001\right) \cdot \text{k19} \cdot [\text{MEKPP}] \cdot [\text{ERK}]}{\text{K19} \cdot \left(1 + \frac{[\text{ERKP}]}{\text{K21}}\right) + [\text{ERK}]} \tag{45}$$

7.20 Reaction reaction_0000020

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Reaction equation

$$ERKP \xrightarrow{ERKPP, MKP3} ERK \tag{46}$$

Reactant

Table 52: Properties of each reactant.

Id	Name	SBO
ERKP		

Modifiers

Table 53: Properties of each modifier.

Id	Name	SBO
ERKPP		
MKP3		

Product

Table 54: Properties of each product.

Id	Name	SBO
ERK		

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \frac{\text{vol}\left(\text{compartment}_0000001\right) \cdot \text{k20} \cdot [\text{MKP3}] \cdot [\text{ERKP}]}{\text{K20} \cdot \left(1 + \frac{[\text{ERKPP}]}{\text{K22}}\right) + [\text{ERKP}]}$$

$$(47)$$

7.21 Reaction reaction_0000021

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Reaction equation

$$ERKP \xrightarrow{MEKPP, ERK} ERKPP$$
 (48)

Reactant

Table 55: Properties of each reactant.

Id	Name	SBO
ERKP		

Modifiers

Table 56: Properties of each modifier.

Id	Name	SBO
MEKPP		
ERK		

Product

Table 57: Properties of each product.

Id	Name	SBO
ERKPP		

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \frac{\text{vol}\left(\text{compartment_0000001}\right) \cdot \text{k21} \cdot \left[\text{MEKPP}\right] \cdot \left[\text{ERKP}\right]}{\text{K21} \cdot \left(1 + \frac{\left[\text{ERK}\right]}{\text{K19}}\right) + \left[\text{ERKP}\right]}$$
(49)

7.22 Reaction reaction_0000022

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$ERKPP \xrightarrow{MKP3} ERKP \tag{50}$$

Reactant

Table 58: Properties of each reactant.

Id	Name	SBO
ERKPP		

Modifier

Table 59: Properties of each modifier.

Id	Name	SBO
MKP3		

Product

Table 60: Properties of each product.

Id	Name	SBO
ERKP		

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \frac{\text{vol}\left(\text{compartment_0000001}\right) \cdot \text{k22} \cdot [\text{MKP3}] \cdot [\text{ERKPP}]}{\text{K22} \cdot \left(1 + \frac{[\text{ERKP}]}{\text{K20}}\right) + [\text{ERKPP}]}$$
(51)

7.23 Reaction reaction_0000023

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$RP + PI3K \Longrightarrow RPI3K$$
 (52)

Reactants

Table 61: Properties of each reactant.

Id	Name	SBO
RP		
PI3K		

Product

Table 62: Properties of each product.

Id	Name	SBO
RPI3K		

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol}\left(\text{compartment_0000001}\right) \cdot \left(\text{k23} \cdot [\text{RP}] \cdot [\text{PI3K}] - \text{k_23} \cdot [\text{RPI3K}]\right) \tag{53}$$

7.24 Reaction reaction_0000024

This is a reversible reaction of one reactant forming one product.

Reaction equation

$$RPI3K \rightleftharpoons RPI3Kstar \tag{54}$$

Reactant

Table 63: Properties of each reactant.

Id	Name	SBO
RPI3K		

Product

Table 64: Properties of each product.

Id	Name	SBO
RPI3Kstar		

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol}\left(\text{compartment_0000001}\right) \cdot \left(\text{k24} \cdot [\text{RPI3K}] - \text{k_24} \cdot [\text{RPI3Kstar}]\right) \tag{55}$$

7.25 Reaction reaction_0000025

This is a reversible reaction of one reactant forming two products.

Reaction equation

$$RPI3Kstar \rightleftharpoons RP + PI3Kstar$$
 (56)

Reactant

Table 65: Properties of each reactant.

Id	Name	SBO
RPI3Kstar		

Products

Table 66: Properties of each product.

Id	Name	SBO
RP		
PI3Kstar		

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{vol}\left(\text{compartment_0000001}\right) \cdot \left(\text{k25} \cdot [\text{RPI3Kstar}] - \text{k_25} \cdot [\text{RP}] \cdot [\text{PI3Kstar}]\right)$$
 (57)

7.26 Reaction reaction_0000026

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$PI3Kstar \longrightarrow PI3K \tag{58}$$

Reactant

Table 67: Properties of each reactant.

Id	Name	SBO
PI3Kstar		

Product

Table 68: Properties of each product.

Id	Name	SBO
PI3K		

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \frac{\text{vol} \left(\text{compartment}_0000001\right) \cdot \text{V26} \cdot [\text{PI3Kstar}]}{\text{K26} + [\text{PI3Kstar}]}$$
(59)

7.27 Reaction reaction_0000029

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$PIP3 + Akt \Longrightarrow AktPIP3 \tag{60}$$

Reactants

Table 69: Properties of each reactant.

Id	Name	SBO
PIP3		
Akt		

Product

Table 70: Properties of each product.

Id	Name	SBO
AktPIP3		

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \text{vol}\left(\text{compartment_0000001}\right) \cdot \left(\text{k29} \cdot [\text{PIP3}] \cdot [\text{Akt}] - \text{k_29} \cdot [\text{AktPIP3}]\right) \tag{61}$$

7.28 Reaction reaction_0000028

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$PIP3 \longrightarrow P_I \tag{62}$$

Reactant

Table 71: Properties of each reactant.

Id	Name	SBO
PIP3		

Product

Table 72: Properties of each product.

Id	Name	SBO
P_I		

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = \text{vol}\left(\text{compartment}_0000001\right) \cdot \frac{\text{V28} \cdot [\text{PIP3}]}{\text{K28} + [\text{PIP3}]}$$
(63)

7.29 Reaction reaction_0000027

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$PJ \xrightarrow{PI3Kstar} PIP3$$
 (64)

Reactant

Table 73: Properties of each reactant.

Id	Name	SBO
$P_{-}I$		

Modifier

Table 74: Properties of each modifier.

Id	Name	SBO
PI3Kstar		

Product

Table 75: Properties of each product.

Id	Name	SBO
PIP3		

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \frac{\text{vol}\left(\text{compartment}_0000001\right) \cdot \text{k27} \cdot [\text{PI3Kstar}] \cdot [\text{P}_\text{I}]}{\text{K27} + [\text{P}_\text{I}]}$$
 (65)

7.30 Reaction reaction_0000030

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$AktPIP3 \longrightarrow AktPIP \tag{66}$$

Reactant

Table 76: Properties of each reactant.

Id	Name	SBO
AktPIP3		

Product

Table 77: Properties of each product.

Id	Name	SBO
AktPIP		

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = \frac{\text{vol}\left(\text{compartment}_0000001\right) \cdot \text{V30} \cdot [\text{AktPIP3}]}{\text{K30} \cdot \left(1 + \frac{[\text{AktPIP}]}{\text{K32}}\right) + [\text{AktPIP3}]}$$
(67)

7.31 Reaction reaction_0000031

This is an irreversible reaction of one reactant forming one product influenced by four modifiers.

Reaction equation

$$AktPIP \xrightarrow{MEKP, MEKPP, AktPIPP, PP2A} AktPIP3$$
 (68)

Reactant

Table 78: Properties of each reactant.

Id	Name	SBO
AktPIP		

Modifiers

Table 79: Properties of each modifier.

Id	Name	SBO
MEKP		
MEKPP		
AktPIPP		
PP2A		

Table 80: Properties of each product.

Id	Name	SBO
AktPIP3		

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \frac{\text{vol}\left(\text{compartment}_0000001\right) \cdot \text{k31} \cdot [\text{PP2A}] \cdot [\text{AktPIP}]}{\text{K31} \cdot \left(1 + \frac{[\text{MEKP}]}{\text{K16}} + \frac{[\text{MEKPP}]}{\text{K18}} + \frac{[\text{AktPIPP}]}{\text{K33}}\right) + [\text{AktPIP}]}$$
(69)

7.32 Reaction reaction_0000032

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$AktPIP \xrightarrow{AktPIP3} AktPIPP \tag{70}$$

Reactant

Table 81: Properties of each reactant.

Id	Name	SBO
AktPIP		

Modifier

Table 82: Properties of each modifier.

Id	Name	SBO
AktPIP3		

Table 83: Properties of each product.

Id	Name	SBO
AktPIPP		

Derived unit contains undeclared units

$$v_{32} = \frac{\text{vol}(\text{compartment_0000001}) \cdot \text{V32} \cdot [\text{AktPIP}]}{\text{K32} \cdot \left(1 + \frac{[\text{AktPIP3}]}{\text{K30}}\right) + [\text{AktPIP}]}$$
(71)

7.33 Reaction reaction_0000033

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Reaction equation

$$AktPIPP \xrightarrow{MEKP, MEKPP, PP2A} AktPIP$$
 (72)

Reactant

Table 84: Properties of each reactant.

Id	Name	SBO
AktPIPP		

Modifiers

Table 85: Properties of each modifier.

Id	Name	SBO
MEKP		
MEKPP		
PP2A		

Product

Table 86: Properties of each product.

Id	Name	SBO
AktPIP		

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \frac{\text{vol}\left(\text{compartment_0000001}\right) \cdot \text{k33} \cdot [\text{PP2A}] \cdot [\text{AktPIPP}]}{\text{K33} \cdot \left(1 + \frac{[\text{MEKP}]}{\text{K16}} + \frac{[\text{MEKPP}]}{\text{K18}} + \frac{[\text{AktPIP}]}{\text{K31}}\right) + [\text{AktPIPP}]}$$

$$(73)$$

7.34 Reaction reaction_0000034

This is a reversible reaction of one reactant forming one product.

Reaction equation

$$RP \Longrightarrow internalization$$
 (74)

Reactant

Table 87: Properties of each reactant.

Id	Name	SBO
RP		

Product

Table 88: Properties of each product.

Id	Name	SBO
internalization		

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = \text{vol} \left(\text{compartment} _0000001 \right) \cdot \left(\text{k34} \cdot [\text{RP}] - \text{k} _34 \cdot [\text{internalization}] \right)$$
 (75)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- · parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

8.1 Species Akt

Initial concentration $10 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in reaction_0000029).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Akt} = -v_{27} \tag{76}$$

8.2 Species AktPIP3

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction_0000030 and as a product in reaction_0000029, reaction_0000031 and as a modifier in reaction_0000032).

$$\frac{d}{dt}AktPIP3 = |v_{27}| + |v_{31}| - |v_{30}| \tag{77}$$

8.3 Species AktPIP

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in reaction_0000031, reaction_0000032 and as a product in reaction_0000030, reaction_0000033 and as a modifier in reaction_0000016, reaction_0000018).

$$\frac{d}{dt}AktPIP = |v_{30}| + |v_{33}| - |v_{31}| - |v_{32}|$$
 (78)

8.4 Species AktPIPP

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction_0000033 and as a product in reaction_0000032 and as a modifier in reaction_0000014, reaction_0000016, reaction_0000031).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AktPIPP} = v_{32} - v_{33} \tag{79}$$

8.5 Species ERK

Initial concentration $1000 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_0000019 and as a product in reaction_0000020 and as a modifier in reaction_0000021).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ERK} = |v_{20}| - |v_{19}| \tag{80}$$

8.6 Species ERKP

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction_0000020, reaction_0000021 and as a product in reaction_0000019, reaction_0000022).

$$\frac{d}{dt}ERKP = v_{19} + v_{22} - v_{20} - v_{21}$$
 (81)

8.7 Species ERKPP

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in reaction_0000022 and as a product in reaction_0000021 and as a modifier in reaction_0000020).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ERKPP} = v_{21} - v_{22} \tag{82}$$

8.8 Species GS

Initial concentration 10 nmol·1⁻¹

This species takes part in two reactions (as a reactant in reaction_0000007 and as a product in reaction_0000009).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GS} = |v_9| - |v_7| \tag{83}$$

8.9 Species HRG

Notes The value comes from the author of the paper

Initial concentration 330 nmol·1⁻¹

This species takes part in one reaction (as a reactant in reaction_0000001).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{HRG} = -v_1 \tag{84}$$

8.10 Species MEK

Initial concentration 120 nmol·l⁻¹

This species takes part in three reactions (as a reactant in reaction_0000015 and as a product in reaction_0000016 and as a modifier in reaction_0000017).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MEK} = |v_{16}| - |v_{15}| \tag{85}$$

8.11 Species MEKP

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in reaction_0000016, reaction_0000017 and as a product in reaction_0000015, reaction_0000018 and as a modifier in reaction_0000031, reaction_0000033).

$$\frac{d}{dt}MEKP = |v_{15}| + |v_{18}| - |v_{16}| - |v_{17}|$$
(86)

8.12 Species MEKPP

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in seven reactions (as a reactant in reaction_0000018 and as a product in reaction_0000017 and as a modifier in reaction_0000016, reaction_0000019, reaction_0000021, reaction_0000031, reaction_0000033).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MEKPP} = |v_{17}| - |v_{18}| \tag{87}$$

8.13 Species PI3K

Initial concentration $10 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000023 and as a product in reaction_0000026).

$$\frac{d}{dt}PI3K = |v_{26}| - |v_{23}|$$
 (88)

8.14 Species PI3Kstar

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_0000026 and as a product in reaction_0000025 and as a modifier in reaction_0000027).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PI3Kstar} = |v_{25}| - |v_{26}| \tag{89}$$

8.15 Species PIP3

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_0000029, reaction_0000028 and as a product in reaction_0000027).

$$\frac{\mathrm{d}}{\mathrm{d}t} PIP3 = |v_{29}| - |v_{27}| - |v_{28}| \tag{90}$$

8.16 Species R

Initial concentration $80 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in reaction_0000001).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{R} = -v_1 \tag{91}$$

8.17 Species RP

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in seven reactions (as a reactant in reaction_0000004, reaction_0000005, reaction_00000023, reaction_00000034 and as a product in reaction_0000003, reaction_0000008, reaction_00000025).

$$\frac{\mathrm{d}}{\mathrm{d}t}RP = |v_3| + |v_8| + |v_{25}| - |v_4| - |v_5| - |v_{23}| - |v_{34}|$$
(92)

8.18 Species RHRG

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000002 and as a product in reaction_0000001).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RHRG} = |v_1| - 2|v_2| \tag{93}$$

8.19 Species RHRG2

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_0000003 and as a product in reaction_0000002, reaction_0000004).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RHRG2} = |v_2| + |v_4| - |v_3| \tag{94}$$

8.20 Species RPI3K

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000024 and as a product in reaction_0000023).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RPI3K} = |v_{23}| - |v_{24}| \tag{95}$$

8.21 Species RPI3Kstar

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000025 and as a product in reaction_0000024).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RPI3Kstar} = v_{24} - v_{25} \tag{96}$$

8.22 Species RShGS

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000008 and as a product in reaction_0000007).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RShGS} = v_7 - v_8 \tag{97}$$

8.23 Species RShP

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000007 and as a product in reaction_0000006).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RShP} = v_6 - v_7 \tag{98}$$

8.24 Species RShc

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000006 and as a product in reaction_0000005).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RShc} = v_5 - v_6 \tag{99}$$

8.25 Species Raf

Initial concentration $100 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000013 and as a product in reaction_0000014).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Raf} = |v_{14}| - |v_{13}| \tag{100}$$

8.26 Species Rafstar

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in reaction_0000014 and as a product in reaction_0000013 and as a modifier in reaction_0000015, reaction_0000017).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Rafstar} = |v_{13}| - |v_{14}| \tag{101}$$

8.27 Species RasGDP

Initial concentration $120 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000011 and as a product in reaction_0000012).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RasGDP} = |v_{12}| - |v_{11}| \tag{102}$$

8.28 Species RasGTP

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_0000012 and as a product in reaction_0000011 and as a modifier in reaction_0000013).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RasGTP} = v_{11} - v_{12} \tag{103}$$

8.29 Species ShGS

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_0000009 and as a product in reaction_0000008 and as a modifier in reaction_0000011).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ShGS} = |v_8| - |v_9| \tag{104}$$

8.30 Species ShP

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000010 and as a product in reaction_0000009).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ShP} = v_9 - v_{10} \tag{105}$$

8.31 Species Shc

Initial concentration $1000 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000005 and as a product in reaction_0000010).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Shc} = |v_{10}| - |v_5| \tag{106}$$

8.32 Species P_I

Initial concentration $800 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000027 and as a product in reaction_0000028).

$$\frac{d}{dt}P_{-}I = |v_{28}| - |v_{29}| \tag{107}$$

8.33 Species internalization

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in one reaction (as a product in reaction_0000034).

$$\frac{d}{dt} internalization = v_{34}$$
 (108)

8.34 Species E

Initial concentration $7 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in reaction_0000014).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E} = 0\tag{109}$$

8.35 Species MKP3

Initial concentration $2.4 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in reaction_0000020, reaction_0000022).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MKP3} = 0\tag{110}$$

8.36 Species PP2A

Initial concentration $11.4 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a modifier in reaction_0000016, reaction_0000018, reaction_0000031, reaction_0000033).

$$\frac{\mathrm{d}}{\mathrm{d}t}PP2A = 0 \tag{111}$$

 $\mathfrak{BML2}^{lAT}$ EX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany