DEEP RL FROM HUMAN PREFERENCES

Paul F Christiano

OpenAI paul@openai.com

Jan Leike

DeepMind leike@google.com

Tom B Brown

nottombrown@gmail.com

Miljan Martic

DeepMind miljanm@google.com

Shane Legg

DeepMind legg@google.com

Dario Amodei

OpenAI damodei@openai.com

OVERVIEW

■ Rewards: -1 per time-step

Actions: N, E, S, W

■ States: Agent's location

■ Arrows represent policy $\pi(s)$ for each state s

RECENT WORK

Many tasks involve goals that are complex and hard to specify

design a simple reward function not s

not satisfy our preference

capture the intended behavior

misalignment between the value and human preferences

RECENT WORK

The premise: have demonstrations of the desired task

Inverse Reinforcement Learning (IRL)

MOTIVATION

Original RL

RL by human feedback

Set of Comparisons (Human feedback)

Learn a reward function from human feedback and then to optimize that reward function.

Objective

Goal: RL agent produces trajectories which are preferred by the human while making as few queries as possible to human

Two neural networks

1. policy $\pi: O \rightarrow A$

2. <u>reward predictor</u> $r \in \mathcal{E}$: $O \times A \rightarrow \mathbb{R}$

RL agent(policy π) interacts with the environment to produce trajectories $\{\tau^1, ..., \tau^i\}$.

No environment reward

Trajectory segment:

- $\sigma = ((o_0, a_0), (o_1, a_1), \dots (o_{k-1}, a_{k-1})) \in (O \times A)^k$
- $\sigma^1 > \sigma^2$: The human preferred trajectory segment σ^1

Method

Reward predictor r

Human's probability of preferring a segment 1

$$\hat{P}(\sigma^1 > \sigma^2) = \frac{\exp \sum_{t=1}^K \hat{r}(o_t^1, a_t^1)}{\exp \sum_{t=1}^K \hat{r}(o_t^1, a_t^1) + \exp \sum_{t=1}^K \hat{r}(o_t^2, a_t^2)}$$

Bradley-Terry model

$$loss(\hat{r}) = -\sum_{(\sigma^1, \sigma^2, \mu) \in D} \mu(1) log \hat{P}(\sigma^1 > \sigma^2) + \mu(2) log \hat{P}(\sigma^1 < \sigma^2)$$

minimize cross-entropy between these predictions (\hat{P}) and the actual human labels (μ)

Challenge

only recognize the desired behavior, non-expert users but not necessarily demonstrate it challenge is economical with user feedback scales to large problem

THANKS FOR LISTENING