Economic Complexity for Innovation Policy

Pierre-Alexandre Balland

Utrecht University Toulouse Artificial Intelligence Institute ESIR Group

The Century of Complexity

2021's physics Nobel Prize on complexity science

What is Economic Complexity?

Economic complexity is the application of **complex systems** and **network thinking** to economics

Paradigm shift from *isolated characteristics* to **systemic interactions**

 To understand emerging patterns of growth, regional evolution, technological change, inequality, sustainability...

Economic complexity produces useful **heuristics** and **metrics** to make better business and policy decisions

Founding parents

Recent reads

Research Policy

Volume 51, Issue 3, April 2022, 104450

The new paradigm of economic complexity ☆

Pierre-Alexandre Balland a, b, Tom Broekel c, Dario Diodato $d, \# \cong B$, Elisa Giuliani d, Ricardo Hausmann d, Neave O'Clery d, David Rigby d

Research Policy

Supports open access

Special Issue on Economic Complexity

Edited by Pierre-Alexandre Balland, Tom Broekel, Dario Diodato, Ricardo Hausmann, Neave O'Clery, David Rigby Last update 17 January 2022

INNOVATION POLICY FOR A COMPLEX WORLD

Pierre-Alexandre Balland

SCIENCE, RESEARCH AND INNOVATION PERFORMANCE OF THE EU 2022

Building a sustainable future in uncertain times

Programme

THURSDAY 27 April 2023		FRIDAY 28 April 2023	
08.45	Registration of Participants		RELATEDNESS & COMPLEXITY
09.00	Welcome and Introduction to the Course	09.00	Relatedness and economic complexity index
	COMPLEXITY THINKING	10.00	Mapping knowledge in countries/regions
09.15	Using complexity thinking to solve real-world problems	11.00	Coffee break
10.00	Key concepts for research and innovation policy	11.15	A framework to prioritize EU investments
11.00	Coffee break	12.30	Lunch
11.15	A framework to improve the EU innovation system	12.50	
12.00	Lunch		COMPUTING RELATEDNESS & ECI
	STRUCTURAL NETWORK ANALYSIS	13.30	Computing Relatedness (EconGeo Package)
13.00	Introduction to the R programming language	14.30	Computing the ECI (EconGeo Package)
14.00	Network analysis of complex networks	15.30	Plotting treemaps and the knowledge space
15.00	Advanced network visualization	16.30	Evaluation, wrap-up & discussion
16.00	End of first day	17:00	End of second day

Programme

r--- Design better systems (of innovation)

THURSDAY 27 April 2023		FRIDAY 28 April 2023	
08.45	Registration of Participants		RELATEDNESS & COMPLEXITY
09.00	Welcome and Introduction to the Course	09.00	Relatedness and economic complexity index
	COMPLEXITY THINKING	10.00	Mapping knowledge in countries/regions
09.15	Using complexity thinking to solve real-world problems	11.00	Coffee break
10.00	Key concepts for research and innovation policy	11.15	A framework to prioritize EU investments
11.00	Coffee break		·
11.15	A framework to improve the EU innovation system	12.30	Lunch
12.00	Lunch		COMPUTING RELATEDNESS & ECI
	STRUCTURAL NETWORK ANALYSIS	13.30	Computing Relatedness (EconGeo Package)
13.00	Introduction to the R programming language	14.30	Computing the ECI (EconGeo Package)
14.00	Network analysis of complex networks	15.30	Plotting treemaps and the knowledge space
15.00	Advanced network visualization	16.30	Evaluation, wrap-up & discussion
16.00	End of first day	17:00	End of second day

Programme

Better prioritization

THURSDAY 27 April 2023		FRIDAY 28 April 2023	
08.45	Registration of Participants		RELATEDNESS & COMPLEXITY
09.00	Welcome and Introduction to the Course	09.00	Relatedness and economic complexity index
	COMPLEXITY THINKING	10.00	Mapping knowledge in countries/regions
09.15	Using complexity thinking to solve real-world problems	11.00	Coffee break
10.00	Key concepts for research and innovation policy	11.15	A framework to prioritize EU investments
11.00	Coffee break	11.10	A framework to prioritize 20 investments
11.15	A framework to improve the EU innovation system	12.30	Lunch
12.00	Lunch		COMPUTING RELATEDNESS & ECI
	STRUCTURAL NETWORK ANALYSIS	13.30	Computing Relatedness (EconGeo Package)
13.00	Introduction to the R programming language	14.30	Computing the ECI (EconGeo Package)
14.00	Network analysis of complex networks	15.30	Plotting treemaps and the knowledge space
15.00	Advanced network visualization	16.30	Evaluation, wrap-up & discussion
16.00	End of first day	17:00	End of second day

PART I: COMPLEX SYSTEMS THINKING

Stuart Kauffman (biology)

John Holland (psychology and electrical engineering)

Ilya Prigogine (chemistry)

Albert-László Barabási (physics)

Warren Weaver (mathematics)

Claude Shannon (information theory)

Influential contributors

Complex systems thinking

Recognize that our society, economy, climate are **complex systems** and should be treated as such

Complex systems are understood by studying the **interrelationships** and **interactions** between different components or agents, rather than by analyzing the properties of individual components in isolation

The awareness and analysis of **inter-connectivity** is the starting point of complex systems thinking.

Mapping & network analysis

Mapping innovation eco-systems

Institute

Figure 2 The Boston+ Network, 1988 45.7% of MAIN COMPONENT, TIES≥2 Boston DBFs Reachable MAIN COMPONENT, TIES ≥ 2, PROs REMOVED 57.1% of Boston DBFs COMPONENT Reachable Node Kev: Circles = DBFs Triangles = PROs Squares = VCsDiamonds = Pharma Red = Boston Gray = Other Area Brown = Government 45.7% of Boston DBFs Reachable

Mapping innovation eco-systems

From structure to predictions

Al applications extract information from 'complex' network structures

On complexity & growth

The division of knowledge and subsequent recombination is a necessary condition of **growth** and evolution.

On connectivity & systemic risk

Human connections: **spread of infectious** diseases to the point of human extinction

Social media: **misinformation**, hoaxes or conspiracy theories that can create panic, harm public health & geopolitical risk

Economy: large-scale bubbles, financial crises and contagion

Value chains: increased **dependence** of some countries on others for essential goods & single points of failure

Knowledge & data: AGI & singularity

Complex systems are highly unequal

Fat-tails

Other key concepts

Emergence: complex system behavior that arises from the interactions and feedback among individual components and not simply reducible to the sum of its parts.

Non-linearity: the relationship between two variables is not proportional or linear. A small changes in one variable can result in disproportionately large changes in the other variable.

Self-organization: spontaneous organization of a set of components into a coherent and functional whole, without the need for external direction, control or coordination.

Tipping points

The
TIPPING POINT

How Little Things Can Make a Big Difference

> MALCOLM GLADWELL

Scaling

Feedback loops

Second-order effects

System thinking at ESIR

Industry 5.0, a transformative vision for Europe : governing **systemic transformations** towards a sustainable industry

Global value chains: harnessing innovation to protect and transform the **backbone** of global trade

Protect, prepare and transform Europe - Recovery and **resilience** post COVID-19

Unpacking tensions

An advice network

- Emma (1) helps Mason (2)
- Emma (1) helps William (3)
- Mason (2) helps William (3)
- Mason (2) helps Sophia (4)

A graph

- Emma (1)
- Mason (2)
- William (3)
- Sophia (4)

- N = number of nodes (size of the network)
- N = 4
- The network is composed by the nodes i = 1, 2, ..., N
- *L* = number of links
- L = 4
- The connection between Mason and William [Mason (2) helps William (3)] is denoted as (2,3)
- A graph might be denoted as G, its vertex set as V(G), and its edge set as E(G)

Different types of networks

Directed network 1 2

Different types of networks

Directed network

Undirected network

Different types of networks

Directed network

1
2

Weighted network

Undirected network

Network representations

Directed graph (digraph)

Network representations

Directed graph (digraph)

Edge list

Vertex	Vertex
1	2
1	3
2	3
2	4

Network representations

Directed graph (digraph)

Edge list

Vertex	Vertex	
1	2	
1	3	
2	3	
2	4	

Adjacency matrix

Vertex	1	2	3	4
1	-	1	1	0
2	0	-	1	1
3	0	0	-	0
4	0	0	0	-

Ego networks and whole networks

Bipartite network (2-mode)

Multiplex networks

- Emma (1) helps Mason (2)
- Emma (1) is friends with Mason (2)
- Emma (1) works with Mason (2)
- ...

Key features of real-world networks

1. Short average path length

Geodesic distance = number of edges in a shortest path connecting two nodes

Key features of real-world networks

- 1. Short average path length
- 2. High **clustering** coefficient

Tendency of the network to form subgroups

Key features of real-world networks

- 1. Short average path length
- 2. High clustering coefficient
- 3. Highly unequal degree distribution

Policy problem: finding key players

Network ties: R&D projects (reg;nat; EU)

1. Degree centrality

- 1. Degree centrality
- 2. Betweenness centrality

- 1. Degree centrality
- 2. Betweenness centrality
- 3. Closeness centrality

- 1. Degree centrality
- 2. Betweenness centrality
- 3. Closeness centrality
- 4. Eigenvector centrality

Linking to policy

Monitor and fix **innovation system failures** (detect system failures, monitor system performance, target specific links)

- Describe the structure of networks and identify key actors (monitoring)
- Link network indicators and innovation performance (impact evaluation)
- Explain (predict) link formation (strategy)

Balland, P.A., Boschma, R., and Ravet, J. (2019) - European Planning Studies, 27 (9)

Balland, P.A., Boschma, R., and Ravet, J. (2019) - European Planning Studies, 27 (9)

YOUR POLICY CHALLENGES