Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

VİTMO

ЛАБОРАТОРНАЯ РАБОТА №3 ПРЕДМЕТ «ЭЛЕКТРОННЫЕ УСТРОЙСТВА СИСТЕМ УПРАВЛЕНИЯ» ТЕМА «ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ В ОСНОВНЫХ СХЕМАХ ВКЛЮЧЕНИЯ»

Вариант №11

Преподаватель: Жданов В. А.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ЭлУСУ R22 бак 1.2

Содержание

1	Цель работы	2					
2	Исходные данные						
3	Исследование дифференциального усилителя						
	3.1 Схема дифференциального усилителя	2					
		3					
4	ОУ в режиме суммирования постоянных сигналов 4.1 Схема инвертирующего сумматора на ОУ 4.2 Измерение выходного напряжения при входных напряжениях различной полярности	4 4 5					
5	Неинвертирующий сумматор для двух сигналов на ОУ	5					
	5.1 Измерение выходного напряжения при входных напряжениях различной полярности	5					

Цель работы

Цель работы – изучение характеристик операционного усилителя (ОУ) в различных режимах работы, исследование ОУ в различных схемах включения.

Исходные данные

Обозначения: K_u – коэффициент усиления, K_1 и K_2 весовые коэффициенты для неинвертирующего сумматора, $f_{i,d}$ – рабочая частота схемы интегратора, дифференциатора

ОУ	K_u	K_1	K_2	$f_{i,d}$, к Γ ц
LT1037	8	1.5	3.5	1

Исследование дифференциального усилителя

Схема дифференциального усилителя

Соберем схему усилителя с дифференциальным входом на ОУ для заданного значения коэффициента усиления K_u в таблице 1. В качестве резистора обратной связи используем резистор номиналом 10 кОм. Запитываем ОУ на 15В. Посчитаем параметры схемы: R4=R2=10кОм, R1=R3, тогда

$$K_u = \frac{R_2}{R_1} = \frac{R_4}{R_3}, \ 8 = \frac{10000}{R_1} \Rightarrow R_1 = R_3 = \frac{10000}{8} = 1250 \text{ Om}$$

Рис. 1: Дифференциальный усилитель

Измерение выходного напряжения при входных напряжениях различной полярности

Подаем на V1 отрицательный постоянный ток, на V2 положительный. Измеряем Vout. Считаем $U_{\text{вых. теор.}}=R_2/R_1\left(U_2-U_1\right)$

U_1 , B	-0.1	-0.3	-0.5	-1	-1.5	-0.9
U_2 , B	0.1	0.2	1	0.1	0.2	0.9
$U_{\text{вых. эксп.}}$, В	1.6	4	12	8.8	13.59	13.771
$U_{\text{вых. теор.}}$, В	1.6	4	12	8.8	13.6	14.4

Почти все результаты совпадают. Видим, что при приближении разницы входных напряжений к значению тока, питающего ОУ, деленного на коэффициент усиления $(U_{1,2\,\mathrm{крит}} = 15/8 = 1.875\;\mathrm{B})$, экспериментальные выходные напряжения отличаются от теоретически рассчитаных. У ОУ LT1037 есть ограничения на рабочий диапазон входов, он не Rail-to-Rail типа (не может выдать напряжение, равное его питанию).

Влияние синфазной помехи на работу ДУ

Подадим одновременно на инвертирующий и неинвертирующий входы ОУ гармонический сигнал SINE(0.1 0.1 1k). Схема приведена на рис. 2. Результат приведен на рис. 3

Рис. 2: Дифференциальный усилитель при имитации воздействия синфазной помехи

Рис. 3: Выходное напряжение при синфазной помехе

Видим, что синфазная помеха почти полностью подавлена, но есть очень маленький остаточный шум. Среднее значение $U_{\text{вых. эксп.}}$ по графику соответствует 1.6 В, что совпадает с результатом вычисления $U_{\text{вых. теор.}} = 8 \cdot (0.1 - (-0.1)) = 1.6$ В без учета гармонического шума (так как он подавится ДУ). В случае идеального ДУ на выходе было бы ровно 1.6 В без помех.

Влияние противофазной помехи на работу ДУ

Для имитации противофазной помехи подадим гармонический сигнал SINE(0.1 0.1 1k) на один из входов ОУ. Оставим подачу постоянного тока в 0.1 В на оба входа. Схема представлена на рис. 4. Результат представлен на рис. 5

Рис. 4: Дифференциальный усилитель при имитации воздействия противофазной помехи

Рис. 5: Выходное напряжение при противофазной помехе

ОУ усилил разницу между U_1, U_2 . Синусоида сместилась вверх и увеличила амплитуду. Среднее значение выходного напряжения составляет 1.5111 В. Это близко к значению $U_{\text{вых. теор.}} = 1.6$ В, вычисленному в пункте с синфазной помехой.

ОУ в режиме суммирования постоянных сигналов

Схема инвертирующего сумматора на ОУ

Соберем схему инвертирующего сумматора на ОУ AD549

Рис. 6: Инвертирующий сумматор на ОУ

Измерение выходного напряжения при входных напряжениях различной полярности

Подаем на V1 отрицательный постоянный ток, на V2 положительный. Измеряем Vout. Считаем $U_{\text{вых. теор.}} = -\left((R_2/R_1)U_1 + (R_2/R_3)U_2\right), \ R_2/R_1 = R_2/R_3 = 8$

U_1 , B	-0.1	-0.3	-0.5	-1	-1.5	-1.25
U_2 , B	0.1	0.2	1	0.1	1	0.05
<i>U</i> вых. эксп., В	$-6.1023 \cdot 10^{-6}$	0.79998	-3.9999	7.1999	3.9999	8.2148
$U_{\text{вых. теор.}}$, В	0	0.8	-4	7.2	4	9.6

Как видим экспериментальные и теоретические значения почти совпали. При приближении разности U_1, U_2 к $U_{1,2\,\mathrm{крит.}} = 10/8 = 1.25$ экспериментальные значения начинают отставать аналогично заданию с ДУ.

Неинвертирующий сумматор для двух сигналов на ОУ

Соберем схему неинвертирующего сумматора для двух сигналов с ОУ, обеспечивающего суммирование двух сигналов с заданными весовыми коэффициентами K_1, K_2

Рис. 7: Неинвертирующий сумматор на ОУ

Измерение выходного напряжения при входных напряжениях различной полярности

Подаем на V1 отрицательный постоянный ток, на V2 положительный. Измеряем Vout. Считаем $U_{\text{вых. теор.}}=(R_4/R_1)\,U_1+(R_4/R_3)\,U_2=K_1U_1+K_2U_2,\ R_2/R_5=K_1+K_2,\ R_5=R_4=100$ кОм

U_1 , B	-0.1	-0.3	-0.5	-1	-1.5	-2	-3
U_2 , B	0.1	0.2	1	0.1	0.2	3	5
$U_{\text{вых. эксп.}}$, В	0.2	0.25	2.75	-1.15	-1.55	7.5	13
$U_{\text{вых. теор.}}$, В	0.2	0.25	2.75	-1.15	-1.55	7.5	13

Видим, что экспериментальные и теоретические значения совпадают.