Computational approaches to semantic change detection Day 5

Part I: Applications

Andrey Kutuzov, Lidia Pivovarova

University of Oslo, University of Helsinki

- Language Studies
- 2 Historical Studies
- Media Montiroting
- 4 Summary
- 5 Laws of Semantic Change

Language Studies

[Keidar et al., 2022]:

- Study of differences between slang and standard language
- Slang words tends to preserve their meaning over time but may have large variety in frequency

Language Studies

[Zimmermann, 2019]: a chain of semantic change FOOD -> MEAT -> FLESH

- Language Studies
- Mistorical Studies
- Media Montiroting
- Summary
- 5 Laws of Semantic Change

Historical Studies

[Castano et al., 2022]: Vatican publications study

Historical Studies

[Timmermans et al., 2022]: nation building as presented in the 18th century Dutch fiction

- Language Studies
- Pistorical Studies
- Media Montiroting
- 4 Summary
- 5 Laws of Semantic Change

Media Montiroting

[Montariol et al., 2020]: tracking word usage change in financial domain

0 liquidity, funding, contingency, cash, collateral, outflows 1 marketing, business, management, design, advertising, media 2 european, debt, credit, sovereign, countries, eurozone, banks 3 financial, accident, capital, regulatory, loss, liquidity, funding 4 credit, financial, global, markets, debt, european, recession	N^o	Keyword examples - Word = <i>crisis</i>
	1 2 3	marketing, business, management, design, advertising, media european, debt, credit, sovereign, countries, eurozone, banks financial, accident, capital, regulatory, loss, liquidity, funding

Media Montiroting

[Martinc et al., 2021]: same techniques can be used to track difference across other dimensions, e.g. conservative vs. liberal media

- Language Studies
- 2 Historical Studies
- Media Montiroting
- Summary
- Laws of Semantic Change

- Computational approaches to semantic shift detection have a large potential for applications in
 - ► Linguistics
 - Digital humanities
 - ► Computational social science
 - ▶ Media monitoring

- Computational approaches to semantic shift detection have a large potential for applications in
 - Linguistics
 - Digital humanities
 - ► Computational social science
 - ► Media monitoring
- ► Interpretable methods are strogly preferred in downstream applications

Summary

- Computational approaches to semantic shift detection have a large potential for applications in
 - Linguistics
 - Digital humanities
 - ► Computational social science
 - ► Media monitoring
- ► Interpretable methods are strogly preferred in downstream applications
- ► Currently, most of this research are rather at the proof-of-concept stage

- Language Studies
- 2 Historical Studies
- Media Montiroting
- 4 Summary
- Laws of Semantic Change

- ► In addition to classifying *individual words* as either changing or non-changing it would be interesting to find *general regularities* of word meaning change
 - ► i.e. laws of semantic change

- ► In addition to classifying *individual words* as either changing or non-changing it would be interesting to find *general regularities* of word meaning change
 - ▶ i.e. laws of semantic change
- ► This is a much more complex task, as explaining language phenomena is more difficult than studying specific use cases

- ► In addition to classifying *individual words* as either changing or non-changing it would be interesting to find *general regularities* of word meaning change
 - ► i.e. laws of semantic change
- ► This is a much more complex task, as explaining language phenomena is more difficult than studying specific use cases
 - for example, usually earlier corpora are much smaller in size that ones collected in later periods, which skews many standard measures for change detection

- ► In addition to classifying *individual words* as either changing or non-changing it would be interesting to find *general regularities* of word meaning change
 - ▶ i.e. laws of semantic change
- ► This is a much more complex task, as explaining language phenomena is more difficult than studying specific use cases
 - for example, usually earlier corpora are much smaller in size that ones collected in later periods, which skews many standard measures for change detection
- ► We discuss the **latest** papers on this topic, since it learns from previous studies and correct their drawbacks

- ► In addition to classifying *individual words* as either changing or non-changing it would be interesting to find *general regularities* of word meaning change
 - ▶ i.e. laws of semantic change
- ► This is a much more complex task, as explaining language phenomena is more difficult than studying specific use cases
 - for example, usually earlier corpora are much smaller in size that ones collected in later periods, which skews many standard measures for change detection
- ► We discuss the **latest** papers on this topic, since it learns from previous studies and correct their drawbacks
 - ▶ If you interested, read the paper and then look at the previous work it is referring to

Research Question

- ► Whether a tendency to change meaning correlates with
 - ► frequency,
 - ► length,
 - ► polysemousness?

Research Question

► Whether a tendency to change meaning correlates with frequency, length and polysemousness?

Cognate Study

► Spanish, French, and Italian cognates, 794 in total

Research Question

► Whether a tendency to change meaning correlates with frequency, length and polysemousness?

Cognate Study

- Spanish, French, and Italian cognates, 794 in total
 - ► Cognates by definition originated from the same (Latin) word
 - ► If cognates have different meanings at least one of them experienced a semantic change e.g. Latin LONGU -> French *long* (long) vs. Spansh *luengo* (erudite wording)
 - ► If cognates still share the same meaning, they likely remain unchanged

Research Question

► Whether a tendency to change meaning correlates with frequency, length and polysemousness?

Cognate Study

- ► Spanish, French, and Italian cognates, 794 in total
 - ► Cognates by definition originated from the same (Latin) word
 - ► If cognates have different meanings at least one of them experienced a semantic change e.g. Latin LONGU -> French *long* (long) vs. Spansh *luengo* (erudite wording)
 - ► If cognates still share the same meaning, they likely remain unchanged

Main idea

► Regression analysis to predict semantic distance between cognates in a pair of languages from their frequency, length, polysemy, etc.

Research Question

Whether a tendency to change meaning correlates with frequency, length and polysemousness?

Main idea

- ► Regression analysis to predict semantic distance between cognates in a pair of languages from their frequency, length, polysemy, etc.
 - Semantic distance is measured as a cosine similarity between vectors that represent cognates in an aligned embedding space

Research Question

► Whether a tendency to change meaning correlates with frequency, length and polysemousness?

Results

35% of variety in data can be explained by

- ► the polysemy of Latin etymon (*POLY*_{lat}),
- ▶ the length of Latin etymon (LEN_{lat}),
- an averaged frequency in Romance languages (FREQ_{rom}),
- and an averaged edit distance between Latin etymon and Romance cognates (EDIT).

	Coef.	SE	t	p > t
Intercept	0.00	0.03	0.00	1.00
$FREQ_{lat}$	-0.08	0.04	-1.82	0.07
\mathtt{POLY}_{lat}	0.10	0.04	2.28	0.02
LEN_{lat}	-0.21	0.03	-6.29	0.00
$FREQ_{rom}$	-0.54	0.03	-18.40	0.00
$NORM_{rom}$	_	_	_	_
EDIT	0.13	0.03	4.07	0.00

Research Question

► Whether a tendency to change meaning correlates with frequency, length and polysemousness?

Results

The negative correlation with the frequency of a Latin etymon ($FREQ_{lat}$) is not significant

	Coef.	SE	t	p > t
Intercept	0.00	0.03	0.00	1.00
$FREQ_{lat}$	-0.08	0.04	-1.82	0.07
\mathtt{POLY}_{lat}	0.10	0.04	2.28	0.02
\mathtt{LEN}_{lat}	-0.21	0.03	-6.29	0.00
$FREQ_{rom}$	-0.54	0.03	-18.40	0.00
$NORM_{rom}$	_	_	_	_
EDIT	0.13	0.03	4.07	0.00

Research Question

► Whether a tendency to change meaning correlates with frequency, length and polysemousness?

Results

The negative correlation with the frequency of a Latin etymon ($FREQ_{lat}$) is not significant

► Most probably because length, polysemy and frequency are interdependent

	Coef.	SE	t	p > t
Intercept	0.00	0.03	0.00	1.00
$FREQ_{lat}$	-0.08	0.04	-1.82	0.07
\mathtt{POLY}_{lat}	0.10	0.04	2.28	0.02
\mathtt{LEN}_{lat}	-0.21	0.03	-6.29	0.00
$FREQ_{rom}$	-0.54	0.03	-18.40	0.00
$NORM_{rom}$	_	_	_	_
EDIT	0.13	0.03	4.07	0.00

Research Question

► Whether a tendency to change meaning correlates with frequency, length and polysemousness?

Results

Edit distance indicates the difference between words that were in the language from the very beginning

CAPUT (head) -> chef (fr), jefe (es)

from those that were borrowed from the Medieval Latin

ANIMAL (animal) -> animal (fr), animal (es)

Coef.	SE	t	p > t
0.00	0.03	0.00	1.00
-0.08	0.04	-1.82	0.07
0.10	0.04	2.28	0.02
-0.21	0.03	-6.29	0.00
-0.54	0.03	-18.40	0.00
_	_	_	_
0.13	0.03	4.07	0.00
	0.00 -0.08 0.10 - 0.21 - 0.54	0.00 0.03 -0.08 0.04 0.10 0.04 - 0.21 0.03 - 0.54 0.03	0.00 0.03 0.00 -0.08 0.04 -1.82 0.10 0.04 2.28 -0.21 0.03 -6.29 -0.54 0.03 -18.40

Research Question

► Whether a tendency to change meaning correlates with frequency, length and polysemousness?

Results

Is it possible to predict meaning change from the state of word in the origin language only?

Research Question

► Whether a tendency to change meaning correlates with frequency, length and polysemousness?

Results

Is it possible to predict meaning change from the state of word in the origin language only?

- ➤ A negative correlation with the frequency and length of a Latin etymon is statistically significant
- ► However, only 6% of variance is explained, which means other factors play a more important role

	Coef.	SE	t	p > t
Intercept	0.00	0.03	0.00	1.00
$FREQ_{lat}$	-0.10	0.04	-2.74	0.01
$POLY_{lat}$	_	_	_	_
LEN_{lat}	-0.27	0.04	-7.10	0.00

Summary

► frequency is negatively correlated with semantic change

Summary

- ▶ frequency is negatively correlated with semantic change
- ▶ polysemy is positively correlated with semantic change

Summary

- ▶ frequency is negatively correlated with semantic change
- ▶ polysemy is positively correlated with semantic change
- ▶ word length is negatively correlated with semantic change

Summary

- ▶ frequency is negatively correlated with semantic change
- ▶ polysemy is positively correlated with semantic change
- word length is negatively correlated with semantic change
- ▶ the **longer** word exist in a language, the more it is prone to change

Summary

- ► frequency is negatively correlated with semantic change
- polysemy is positively correlated with semantic change
- word length is negatively correlated with semantic change
- ▶ the **longer** word exist in a language, the more it is prone to change
- effect is stronger for verbs than for nouns and adjectives:
 - ► **nouns** are more susceptible to extra-linguistic factors such as socio-cultural circumstances, technological advances, language contacts

- ► frequency is negatively correlated with semantic change
- ▶ polysemy is positively correlated with semantic change
- ▶ word length is negatively correlated with semantic change
- ▶ the longer word exist in a language, the more it is prone to change
- effect is stronger for verbs than for nouns and adjectives:
 - ► **nouns** are more susceptible to extra-linguistic factors such as socio-cultural circumstances, technological advances, language contacts
- ► All this corresponds to previous studies, common sense and linguistic theory.

- ► frequency is negatively correlated with semantic change
- ▶ polysemy is positively correlated with semantic change
- ▶ word length is negatively correlated with semantic change
- ▶ the longer word exist in a language, the more it is prone to change
- effect is stronger for verbs than for nouns and adjectives:
 - ► **nouns** are more susceptible to extra-linguistic factors such as socio-cultural circumstances, technological advances, language contacts
- ▶ All this corresponds to previous studies, common sense and linguistic theory.
- ► However, this is just one study on limited material

- ▶ frequency is negatively correlated with semantic change
- ▶ polysemy is positively correlated with semantic change
- ▶ word length is negatively correlated with semantic change
- ▶ the longer word exist in a language, the more it is prone to change
- effect is stronger for verbs than for nouns and adjectives:
 - ► **nouns** are more susceptible to extra-linguistic factors such as socio-cultural circumstances, technological advances, language contacts
- ► All this corresponds to previous studies, common sense and linguistic theory.
- However, this is just one study on limited materialWhy did not they use Latin embeddings?

- ► **frequency** is negatively correlated with semantic change
- ▶ polysemy is positively correlated with semantic change
- word length is negatively correlated with semantic change
- ▶ the longer word exist in a language, the more it is prone to change
- effect is stronger for verbs than for nouns and adjectives:
 - ► **nouns** are more susceptible to extra-linguistic factors such as socio-cultural circumstances, technological advances, language contacts
- ► All this corresponds to previous studies, common sense and linguistic theory.
- However, this is just one study on limited materialWhy did not they use Latin embeddings?
 - Many factors remain unexplained: a lot of work for all of you!

References I

Kawasaki, Y., Salingre, M., Karpinska, M., Takamura, H., and Nagata, R. (2022). Revisiting statistical laws of semantic shift in Romance cognates. In *Proceedings of the 29th International Conference on Computational Linguistics*, pages 141–151, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.

References II

Keidar, D., Opedal, A., Jin, Z., and Sachan, M. (2022). Slangvolution: A causal analysis of semantic change and frequency dynamics in slang.

In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1422–1442, Dublin, Ireland. Association for Computational Linguistics.

Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., and Pollak, S. (2021). EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of Slovenian news corpus on the topic of LGBTIQ+.

In *Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation*, pages 121–126, Online. Association for Computational Linguistics.

References III

Timmermans, M., Vanmassenhove, E., and Shterionov, D. (2022). "vaderland", "volk" and "natie": Semantic change related to nationalism in Dutch literature between 1700 and 1880 captured with dynamic Bernoulli word embeddings. In *Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change*, pages 125–130, Dublin, Ireland. Association for Computational Linguistics.

References IV

Zimmermann, R. (2019).

Studying semantic chain shifts with Word2Vec: FOOD>MEAT>FLESH.

In *Proceedings of the 1st International Workshop on Computational Approaches to Historical Language Change*, pages 23–28, Florence, Italy. Association for Computational Linguistics.