Programación funcional I

Ricardo Pérez López

IES Doñana, curso 2019/2020

Índice general

1.	El lenguaje de programación Python 1.1. Historia	2 2 2
2.	Modelo de ejecución 2.1. Modelo de ejecución	2 2
	2.2. Modelo de sustitución	3
3.	Expresiones	3
	3.1. Evaluación de expresiones	3
	3.1.1. Transparencia referencial	4
	3.1.2. Valores, expresión canónica y forma normal	4
	3.1.3. Formas normales y evaluación	5
	3.2. Literales	6
	3.3. Operaciones, operadores y operandos	6
	3.3.1. Aridad de operadores	7
	3.3.2. Paréntesis	7
	3.3.3. Asociatividad de operadores	8
	3.3.4. Precedencia de operadores	8
	3.4. Tipos de datos	8
	3.4.1. Concepto	8
	3.4.2. Tipos de datos básicos	8
	3.5. Algebraicas vs. algorítmicas	9
	3.6. Aritméticas	9
	3.7. Operaciones predefinidas	9
	3.7.1. Operadores predefinidos	9
	3.7.2. Funciones predefinidas	9
	3.7.3. Métodos predefinidos	9
	3.8. Constantes predefinidas	9
4.	Álgebra de Boole	9
т.	4.1. El tipo de dato <i>booleano</i>	9
	4.2. Operadores relacionales	9
		, 10

	4.4.	Axiomas	0
		4.4.1. Traducción a Python	0
	4.5.	Teoremas fundamentales	1
		4.5.1. Traducción a Python	1
	4.6.	El operador ternario	
5.	Vari	bles y constantes 1	2
	5.1.	Definiciones	2
	5.2.	Identificadores	2
	5.3.	Ligadura (binding)	2
	5.4.	Estado	2
	5.5.	Tipado estático vs. dinámico	2
	5.6.	Evaluación de expresiones con variables	2
	5.7.	Constantes	2
6.	Doc	ımentación interna 1	2
	6.1.	Identificadores significativos	2
	6.2.	Comentarios	2
	6.3.	Docstrings	2
Re	spue	tas a las preguntas 1	2
Bil	Bibliografía		

1. El lenguaje de programación Python

1.1. Historia

1.2. Características principales

2. Modelo de ejecución

2.1. Modelo de ejecución

- Cuando escribimos programas (y algoritmos) nos interesa abstraernos del funcionamiento detallado de la máquina que va a ejecutar esos programas.
- Nos interesa buscar una metáfora, un símil de lo que significa ejecutar el programa.
- De la misma forma que un arquitecto crea modelos de los edificios que se pretenden construir, los programadores podemos usar modelos que *simulan* en esencia el comportamiento de nuestros programas.
- Esos modelos se denominan modelos de ejecución.
- Los modelos de ejecución nos permiten razonar sobre los programas sin tener que ejecutarlos.

Definición:

Modelo de ejecución:

Es una herramienta conceptual que permite a los programadores razonar sobre el funcionamiento de un programa sin tener que ejecutarlo directamente en el ordenador.

- Podemos definir diferentes modelos de ejecución dependiendo, principalmente, de:
 - El paradigma de programación utilizado (ésto sobre todo).
 - El lenguaje de programación con el que escribamos el programa.
 - Los aspectos que queramos estudiar de nuestro programa.

2.2. Modelo de sustitución

- En programación funcional, un programa es una expresión y lo que hacemos al ejecutarlo es evaluar dicha expresión, usando para ello las definiciones de operadores y funciones predefinidas por el lenguaje, así como las definidas por el programador y que el código fuente del programa.
- La **evaluación de una expresión**, en esencia, consiste en **sustituir**, dentro de ella, unas *sub-expresiones* por otras que, de alguna manera, estén más cerca del valor a calcular, y así hasta calcular el valor de la expresión al completo.
- Por ello, la ejecución de un programa funcional se puede modelar como un sistema de reescritura al que llamaremos modelo de sustitución.
- La ventaja de este modelo es que no necesitamos recurrir a pensar que debajo de todo esto hay un ordenador con una determinada arquitectura *hardware*, que almacena los datos en celdas de la memoria principal, que ejecuta ciclos de instrucción en la CPU, que las instrucciones modifican los datos de la memoria, etc.
- Todo resulta mucho más fácil que eso.
- Todo se reduce a evaluar expresiones.

3. Expresiones

3.1. Evaluación de expresiones

- Ya hemos visto que la ejecución de un programa funcional consiste, en esencia, en evaluar una expresión.
- **Evaluar una expresión** consiste en determinar el **valor** de la expresión. Es decir, una expresión representa o **denota** un valor.
- En programación funcional, el significado de una expresión es su valor, y no puede ocurrir ningún otro efecto, ya sea oculto o no, en ninguna operación que se utilice para calcularlo.

- Una característica de la programación funcional es que toda expresión posee un valor definido, a diferencia de otros paradigmas en los que, por ejemplo, existen las sentencias, que no poseen ningún valor.
- Además, el orden en el que se evalúe no debe influir en el resultado.
- Podemos decir que las expresiones:

3

1 + 2

5 - 3

denotan todas el mismo valor (el número abstracto 3).

- Es decir: todas esas expresiones son representaciones diferentes del mismo ente abstracto.
- Lo que hace el sistema es buscar la representación más simplificada o reducida posible (en este caso, 3).
- Por eso a menudo usamos, indistintamente, los términos reducir, simplificar y evaluar.

3.1.1. Transparencia referencial

- En programación funcional, el valor de una expresión depende, exclusivamente, de los valores de sus sub-expresiones constituyentes.
- Dichas sub-expresiones, además, pueden ser sustituidas libremente por otras que tengan el mismo valor.
- A esta propiedad se la denomina transparencia referencial.
- En la práctica, eso significa que la evaluación de una expresión no puede provocar **efectos laterales**.
- Formalmente, se puede definir así:

Transparencia referencial:

Si p = q, entonces f(p) = f(q).

3.1.2. Valores, expresión canónica y forma normal

- Los ordenadores no manipulan valores, sino que sólo pueden manejar representaciones concretas de los mismos.
 - Por ejemplo: utilizan la codificación binaria en complemento a 2 para representar los números enteros.
- Pidamos que la representación del valor resultado de una evaluación sea única.
- De esta forma, seleccionemos de cada conjunto de expresiones que denoten el mismo valor, a lo sumo una que llamaremos **expresión canónica de ese valor**.

- Además, llamaremos a la expresión canónica que representa el valor de una expresión la **forma normal de esa expresión**.
- Con esta restricción pueden quedar expresiones sin forma normal.
- Ejemplo:
 - De las expresiones anteriores:
 - * 3
 - *1+2
 - *5 3

que denotan todas el mismo valor abstracto 3, seleccionamos una (la expresión 3) como la **expresión canónica** de ese valor.

- Igualmente, la expresión 3 es la **forma normal** de todas las expresiones anteriores (y de cualquier otra expresión con valor 3).
- Es importante no confundir el valor abstracto 3 con la expresión 3 que representa dicho valor.
- Hay valores que no tienen expresión canónica:
 - Las funciones (los valores de tipo función).
 - El número π no tiene representación decimal finita, por lo que tampoco tiene expresión canónica.
- Y hay expresiones que no tienen forma normal:
 - Si definimos inf = inf + 1, la expresión inf (que es un número) no tiene forma normal.
 - Lo mismo ocurre con $\frac{1}{0}$.

3.1.3. Formas normales y evaluación

- A partir de todo lo dicho, la ejecución de un programa será el proceso de encontrar su forma normal
- Un ordenador evalúa una expresión (o ejecuta un programa) buscando su forma normal y mostrando este resultado.
- Con los lenguajes funcionales los ordenadores alcanzan este objetivo a través de múltiples pasos de reducción de las expresiones para obtener otra equivalente más simple.
- El sistema de evaluación dentro de un ordenador está hecho de forma tal que cuando ya no es posible reducir la expresión es porque se ha llegado a la forma normal.

3.2. Literales

- Un literal es un valor escrito directamente en el código del programa (en una expresión).
- El literal representa un valor constante.
- Ejemplos:
 - -3, -2, -1, 0, 1, 2, 3 (literales que representan números enteros)
 - 3.5, -2.7 (literales que representan números reales)
 - "hola", "pepe", "25", "" (literales de tipo cadena)
- Los literales tienen que satisfacer las reglas de sintaxis del lenguaje.
- Gracias a esas reglas sintácticas, el intérprete puede identificar qué literales son, qué valor representan y de qué tipo son.
- Se deduce, pues, que un literal debe ser la expresión canónica del valor correspondiente.

3.3. Operaciones, operadores y operandos

- En una expresión puede haber:
 - Datos
 - Operaciones a realizar sobre esos datos
- A su vez, las operaciones se pueden representar en forma de:
 - Operadores
 - Funciones

- Métodos
- Empezaremos hablando de los operadores.
- Un **operador** es un símbolo o palabra clave que representa la realización de una *operación* sobre unos datos llamados **operandos**.
- Ejemplos:
 - Los operadores aritméticos: +, -, *, / (entre otros):

```
3 + 4
```

(aquí los operandos son los números 3 y 4)

```
9 * 8
```

(aquí los operandos son los números 9 y 8)

- El operador in para comprobar si un carácter pertenece a una cadena:

```
"c" in "barco"
```

(aquí los operandos son las cadenas "c" y "barco")

3.3.1. Aridad de operadores

- Los operadores se clasifican en función de la cantidad de operandos sobre los que operan en:
 - Unarios: operan sobre un único operando.

Ejemplo: el operador - que cambia el signo de su operando:

-5

- **Binarios**: operan sobre dos operandos.

Ejemplo: la mayoría de operadores aritméticos.

- **Ternarios**: operan sobre tres operandos.

Veremos un ejemplo más adelante.

3.3.2. Paréntesis

- Los paréntesis sirven para agrupar elementos dentro de una expresión.
- Se usan, sobre todo, para hacer que varios elementos actúen como uno solo en el contexto de una operación.
 - Por ejemplo:

```
(3 + 4) * 5 vale 35
3 + (4 * 5) vale 23
```

3.3.3. Asociatividad de operadores

• En ausencia de paréntesis, cuando un operando está afectado a derecha e izquierda por el **mismo operador**, se aplican las reglas de la **asociatividad**:

```
8 / 4 / 2
```

El 4 está afectado a derecha e izquierda por el mismo operador /, por lo que se aplican las reglas de la asociatividad. El / es *asociativo por la izquierda*, así que se actúa primero el operador que está a la izquierda. Equivale a hacer:

```
(8 / 4) / 2
```

Si hiciéramos

```
8 / (4 / 2)
```

el resultado sería distinto.

3.3.4. Precedencia de operadores

• En ausencia de paréntesis, cuando un operando está afectado a derecha e izquierda por distinto operador, se aplican las reglas de la prioridad:

```
8 + 4 * 2
```

El 4 está afectado a derecha e izquierda por distintos operadores (* y *), por lo que se aplican las reglas de la prioridad. El * tiene *más prioridad* que el *, así que actúa primero el *. Equivale a hacer:

```
8 + (4 * 2)
```

Si hiciéramos

```
(8 + 4) * 2
```

el resultado sería distinto.

3.4. Tipos de datos

3.4.1. Concepto

3.4.1.1. Tipo de un valor

3.4.1.2. Tipo de una expresión

3.4.2. Tipos de datos básicos

3.4.2.1. Números

3.4.2.1.1. Operadores aritméticos

3.4.2.2. Cadenas

- 3.5. Algebraicas vs. algorítmicas
- 3.6. Aritméticas
- 3.7. Operaciones predefinidas
- 3.7.1. Operadores predefinidos
- 3.7.2. Funciones predefinidas
- 3.7.3. Métodos predefinidos
- 3.8. Constantes predefinidas

4. Álgebra de Boole

4.1. El tipo de dato booleano

- Un dato **lógico** o *booleano* es aquel que puede tomar uno de dos posibles valores, que se denotan normalmente como **verdadero** y **falso**.
- Esos dos valores tratan de representar los dos valores de verdad de la **lógica** y el **álgebra booleana**.
- Su nombre proviene de **George Boole**, matemático que definió por primera vez un sistema algebraico para la lógica a mediados del S. XIX.
- En Python, el tipo de dato lógico se representa como bool y sus posibles valores son False y True (con la inicial en mayúscula).
- Esos dos valores son *formas especiales* para los enteros 0 y 1, respectivamente.

4.2. Operadores relacionales

- Los **operadores relacionales** son operadores que toman dos operandos (que usualmente deben ser del mismo tipo) y devuelven un valor *booleano*.
- Los más conocidos son los **operadores de comparación**, que sirven para comprobar si un dato es menor, mayor o igual que otro, según un orden preestablecido.
- Los operadores de comparación que existen en Python son:

4.3. Operadores lógicos

- Los operadores lógicos son operadores que toman uno o dos operandos booleanos y devuelven un valor booleano.
- Representan las operaciones básicas del álgebra de Boole llamadas suma, producto y complemento.
- En lógica proposicional (un tipo de lógica matemática que tiene estructura de álgebra de Boole), se llaman:
 - Disyunción (∨),
 - Conjunción (∧) y
 - Negación (¬).
- En Python se representan como or, and y not, respectivamente

4.4. Axiomas

- 1. Ley asociativa: $\begin{cases} \forall a,b,c \in \mathfrak{B} : (a \lor b) \lor c = a \lor (b \lor c) \\ \forall a,b,c \in \mathfrak{B} : (a \land b) \land c = a \land (b \land c) \end{cases}$
- 2. Ley conmutativa: $\begin{cases} \forall a,b \in \mathfrak{B} : a \lor b = b \lor a \\ \forall a,b \in \mathfrak{B} : a \land b = b \land a \end{cases}$
- 3. Ley distributiva: $\begin{cases} \forall a,b,c \in \mathfrak{B}: a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c) \\ \forall a,b,c \in \mathfrak{B}: a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \end{cases}$ 4. Elemento neutro: $\begin{cases} \forall a \in \mathfrak{B}: a \vee F = a \\ \forall a \in \mathfrak{B}: a \wedge V = a \end{cases}$
- 5. Elemento complementario: $\begin{cases} \forall a \in \mathfrak{B}; \exists \neg a \in \mathfrak{B}: a \vee \neg a = V \\ \forall a \in \mathfrak{B}; \exists \neg a \in \mathfrak{B}: a \wedge \neg a = F \end{cases}$

Luego $(\mathfrak{B}, \neg, \vee, \wedge)$ es un álgebra de Boole.

4.4.1. Traducción a Python

1. Ley asociativa:

```
(a or b) or c == a or (b or c)
(a and b) and c == a and (b and c)
```

2. Ley conmutativa:

```
a \quad or \quad b == b \quad or \quad a
a and b == b and a
```

3. Ley distributiva:

```
a or (b and c) == (a or b) and (a or c)
a and (b or c) == (a and b) or (a and c)
```

4. Elemento neutro:

```
a or False == a
a and True == a
```

5. Elemento complementario:

```
a or (not a) == True
a and (not a) == False
```

4.5. Teoremas fundamentales

7. Ley de absorción:
$$\begin{cases} \forall a \in \mathfrak{B} : a \lor V = V \\ \forall a \in \mathfrak{B} : a \lor F = F \end{cases}$$

8. Ley de identidad:
$$\begin{cases} \forall a \in \mathfrak{B} : a \lor F = a \\ \forall a \in \mathfrak{B} : a \land V = a \end{cases}$$

6. Ley de idempotencia:
$$\begin{cases} \forall a \in \mathfrak{B} : a \lor a = a \\ \forall a \in \mathfrak{B} : a \land a = a \end{cases}$$
7. Ley de absorción:
$$\begin{cases} \forall a \in \mathfrak{B} : a \lor V = V \\ \forall a \in \mathfrak{B} : a \land F = F \end{cases}$$
8. Ley de identidad:
$$\begin{cases} \forall a \in \mathfrak{B} : a \lor F = a \\ \forall a \in \mathfrak{B} : a \land V = a \end{cases}$$
9. Ley de involución:
$$\begin{cases} \forall a \in \mathfrak{B} : \neg \neg a = a \\ \neg V = F \\ \neg F = V \end{cases}$$

9. Ley de involución:
$$\begin{cases} \forall a \in \mathfrak{B} : \neg \neg a = a \\ \neg V = F \\ \neg F = V \end{cases}$$
10. Leyes de De Morgan:
$$\begin{cases} \forall a, b \in \mathfrak{B} : \neg (a \lor b) = \neg a \land \neg b \\ \forall a, b \in \mathfrak{B} : \neg (a \land b) = \neg a \lor \neg b \end{cases}$$

4.5.1. Traducción a Python

6. Ley de idempotencia:

```
a or a == a
a and a == a
```

7. Ley de absorción:

```
a or True == True
a and False == False
```

8. Ley de identidad:

```
a or False == a
a and True == a
```

9. Ley de involución:

```
not (not a) == a
not True == False
not False == True
```

10. Leyes de De Morgan:

```
not (a or b) == (not a) and (not b)
not (a and b) == (not a) or (not b)
```

- 4.6. El operador ternario
- 5. Variables y constantes
- 5.1. Definiciones
- 5.2. Identificadores
- 5.3. Ligadura (binding)
- 5.4. Estado
- 5.5. Tipado estático vs. dinámico
- 5.6. Evaluación de expresiones con variables
- 5.7. Constantes
- 6. Documentación interna
- 6.1. Identificadores significativos
- 6.2. Comentarios
- 6.3. Docstrings

Respuestas a las preguntas

6.3.0.1. Respuestas a las preguntas

Bibliografía

Abelson, Harold, Gerald Jay Sussman, and Julie Sussman. 1996. Structure and Interpretation of Computer Programs. 2nd ed. Cambridge, Mass.: New York: MIT Press; McGraw-Hill.

Blanco, Javier, Silvina Smith, and Damián Barsotti. 2009. *Cálculo de Programas*. Córdoba, Argentina: Universidad Nacional de Córdoba.