МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Отчёт о выполнении лабораторной работы 3.2.2

Резонанс напряжений

Автор: Сенокосов Арсений Олегович Б02-012

Долгопрудный 21 октября 2021 г.

1 Введение

Цель работы: изучение последовательной цепи переменного тока, наблюдение резонанса напряжений.

В работе используются: регулировочный автотрансформатор, катушка индуктивности с выдвижным сердечником, магазин ёмкостей, реостат, резистор, амперметр, три вольтметра, ваттметр, осциллограф, универсальный мост.

2 Теоретические сведения

Рассмотрим электрическую цепь, состоящую из резистора R и катушки индуктивности L с импедансом $Z_L = r_L + i\Omega L$, последовательно подключённых к внешнему источнику, ЭДС которого меняется по синусоидальному закону с частотой Ω (рис. 1).

Рис. 1: Схема установки для изучения закона Ома в цепи переменного тока.

Обозначим через U_R напряжение на резисторе, через U_L – напряжение на катушке и через U_{R+L} — суммарное напряжение на катушке и на резисторе. Для этих напряжений справедливы комплексные соотношения:

$$\widehat{U}_R = \widehat{I}R, \quad \widehat{U}_L = \widehat{I}(r_L + i\Omega L), \quad \widehat{U}_{R+L} = \widehat{I}(R + r_L + i\Omega L).$$
 (1)

Напомним, что здесь r_L – активное сопротивление катушки, которое характеризует суммарные потери энергии в катушке, в том числе потери в её ферромагнитном сердечнике.

Переходя к модулям и фазам токов и напряжений, найдём из (1):

$$U_R = I \cdot R, \quad \text{tg } \psi_1 = 0; \tag{2}$$

$$U_L = I \cdot \sqrt{r_L^2 + (\Omega L)^2}, \quad \operatorname{tg} \psi_2 = \frac{\Omega L}{r_L};$$
 (3)

$$U_{R+L} = I\sqrt{(R+r_L)^2 + (\Omega L)^2}, \quad \text{tg } \psi_3 = \frac{\Omega L}{R+r_L}.$$
 (4)

В этих формулах U и I обозначают эффективные значения напряжений и токов (показания приборов), как принято в электротехнике.

Измеряя с помощью трёх вольтметров значения U_R , U_L и U_{R+L} и зная сопротивление резистора R, нетрудно вычислить, пользуясь формулами (2), (3) и (4), силу тока в цепи, активное сопротивление катушки r_L , её индуктивность L, мощность P_L , выделяемую на катушке, и сдвиг фаз между током и напряжением на катушке.

Рассчитаем мощность переменного тока, выделяемую в катушке. Мгновенное значение мощности равно

$$P = U(t) \cdot I(t).$$

Средняя мощность за период T определяется формулой

$$\overline{P} = \frac{1}{T} \int_{0}^{T} U(t) \cdot I(t) dt.$$

Полагая $I(t) = I\sqrt{2}\cos\Omega t$, $U(t) = U\sqrt{2}\cos(\Omega t + \psi)$, получим после интегрирования:

$$P_L = U_L \cdot I \cos \psi = I^2 \cdot r_L. \tag{5}$$

Средняя мощность, выделяющаяся в катушке самоиндукции, определяется, таким образом, действительной частью её импеданса.

Активное сопротивление катушки r_L можно определить, если включить её в последовательный колебательный контур с известными параметрами – сопротивлением R и ёмкостью C (рис. 2). В контуре, настроенном в резонанс на частоту Ω внешнего источника (собственная частота контура и внешняя совпадают: $\omega_0 = \Omega$, реактивные сопротивления индуктивности и ёмкости одинаковы:

$$\omega_0 L = \frac{1}{\omega_0 C}.\tag{6}$$

Определив каким-либо экспериментальным способом добротность Q этого контура, можно рассчитать полное сопротивление контура R_{Σ} в резонансе, поскольку

$$Q = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}}.$$
 (7)

Резонансное сопротивление контура R_{Σ} , включает в себя известное со противление резистора R и активное сопротивление катушки r_L :

$$R_{\Sigma} = R + r_L. \tag{8}$$

3 Экспериментальная установка

Схема установки для исследования закона Ома в цепи переменного тока представлена на рис. 1. Цепь, состоящая из резистора $R_1 \simeq 100$ Ом и катушки L с выдвижным сердечником, подключена к автотрансформатору, выходное напряжение которого можно менять от 0 до 127 В. Напряжения на каждом из элементов и суммарное напряжение цепи измеряются тремя вольтметрами: V_R , V_L и V_{R+L} . Амперметр A измеряет ток в цени, а ваттметр P — мощность, выделяющуюся на катушке.

Ваттметр электродинамической системы состоит из двух катушек, одна из которых вращается в магнитном поле другой, если через них течёт ток. Токовая катушка ваттметра II^* включается последовательно в исследуемую цепь, а катушка напряжений (потенциальная) VV^* – параллельно к элементу, в котором измеряется выделяемая мощность.

Два из четырёх зажимов ваттметра помечены звёздочкой (*). Эти зажимы надо соединить вместе. Предел измерений устанавливается при помощи переключателей или штепселей, которые вставляются в соответствующие гнёзда: произведение цифр против штепселя токовой катушки II^* и против переключателя катушки напряжений VV^* определяет мощность, соответствующую отклонению стрелки на всю шкалу. Отсчёт мощности ведётся но любой из шкал, обозначенных буквой P.

Рис. 2: Схема установки для наблюдения резонанса напряжений.

Схема установки для изучения резонанса напряжений изображена на рис. 2. Последовательно соединены резистор $R_2 \approx 5$ Ом, катушка L и магазин ёмкостей C. Амперметр A измеряет ток в цепи, вольтметр V_C — напряжение на ёмкости, вольтметр V_{Σ} — суммарное напряжение на контуре. Резонанс можно зафиксировать с помощью осциллографа, если подать на вход X напряжение с контура, а на вход Y — напряжение с резистора R_2 , пропорциональное току в цепи. В общем случае на экране виден эллипс. При резонансе эллипс вырождается в прямую линию. Резонансные напряжения на контуре $U_{\Sigma, \text{ рез}}$ и на ёмкости $U_{C, \text{ рез}}$ равны соответственно

$$U_{\Sigma, \text{ pe3}} = I_{\text{pe3}} R_{\Sigma}, \quad U_{C, \text{ pe3}} = \frac{I_{\text{pe3}}}{\Omega C}.$$
 (9)

Сравнивая (7) и (9), получим

$$Q = \frac{U_{C, \text{ pe3}}}{U_{\Sigma, \text{ pe3}}}, \quad \sigma_Q = Q\sqrt{\left(\frac{\sigma_{U_{C, \text{ pe3}}}}{U_{C, \text{ pe3}}}\right)^2 + \left(\frac{\sigma_{U_{\Sigma, \text{ pe3}}}}{U_{\Sigma, \text{ pe3}}}\right)^2}.$$
 (10)

Формула (10) показывает, что добротность контура может быть найдена по измеренным значениям напряжений на контуре и на конденсаторе при резонансе. Зная добротность контура и ёмкость C, можно рассчитать R_{Σ} , по формуле (7), а затем определить r_L .

4 Ход работы

4.1 Закон Ома в цепи переменного тока

Соберём цепь согласно рисунку 1. Реостат подключим без движка $R_1 = (98,00 \pm 0,01)$ Ом. Указатель положения сердечника катушки L установим на отметку x = 5 мм. Перемещая сердечник шагами по 2 мм, снимем зависимости тока I, напряжений U_R , U_L , U_{R+L} и мощности от координаты сердечника x. Полученные результаты занесём в таблицу 1.

x, MM	I, A	U_R , B	U_L , B	U_{R+L} , B	P_L , BT
5	0,53	42	123	104	15,5
7	0,59	49	121	100	14,8
9	0,65	55	121	95	14,3
11	0,69	59	119	92	14,0
13	0,73	62	118	88	13,3
15	0,75	65	117	86	13,0
17	0,78	67	116	83	12,8
20	0,80	70	116	80	12,3
22	0,83	72	115	77	12,0
24	0,85	73	114	76	11,8
26	0,88	74	114	74	11,8
28	0,88	76	114	72	11,5
30	0,90	77	113	70	11,3
32	0,90	77	113	69	11,3
34	0,90	78	112	67	11,3
36	0,90	79	112	66	11,0
38	0,93	80	112	65	11,0
40	0,93	81	112	64	11,0

Таблица 1: Результаты измерений

Измерения производились со следующими погрешностями: $\sigma_x=0.5$ мм, $\sigma_I=0.025$ A, $\sigma_{P_L}=0.125$ Вт, $\sigma_U=0.5$ В.

По результатам измерений P_L и I вычислим значения r_L по формуле (5), а затем определим L по формуле (3). Частота сети $\nu_0 = 50$ Гц.

Т.к. $P_L = I^2 \cdot r_L$, то

$$\sigma_{r_L} = r_L \sqrt{\left(\frac{\sigma_{P_L}}{P_L}\right)^2 + 4\left(\frac{\sigma_I}{I}\right)^2}.$$
(11)

Из (3) получаем $L=rac{\sqrt{\left(rac{U_L}{I}
ight)^2-r_L^2}}{\Omega},$ где $\Omega=2\pi
u_0.$

Для вывода формулы погрешности:

$$\sigma_{r_L^2} = 2r_L\sigma_{r_L}, \quad \sigma_{U_L^2} = 2U_L\sigma_{U_L}, \quad \sigma_{I^2} = 2I\sigma_I,$$

$$\sigma_{\frac{U_L^2}{I^2}} = \frac{U_L^2}{I^2} \left(\frac{\sigma_{U_L^2}}{U_L^2} + \frac{\sigma_{I^2}}{I^2} \right), \quad \sigma_{\left(\frac{U_L^2}{I^2} - r_L^2\right)} = \frac{U_L^2}{I^2} \left(\frac{\sigma_{U_L^2}}{U_L^2} + \frac{\sigma_{I^2}}{I^2} \right) + 2r_L \sigma_{r_L},$$

И для σ_L получаем:

$$\sigma_L = \frac{L}{2} \frac{\sigma\left(\frac{U_L^2}{I^2} - r_L^2\right)}{\frac{U_L^2}{I^2} - r_L^2} = \frac{L}{2} \frac{\frac{U_L^2}{I^2} \left(\frac{\sigma_{U_L^2}}{U_L^2} + \frac{\sigma_{I^2}}{I^2}\right) + 2r_L \sigma_{r_L}}{\frac{U_L^2}{I^2} - r_L^2} = L \frac{U_L \sigma_{U_L} + \frac{U_L^2 \sigma_I}{I} + I^2 r_L \sigma_{r_L}}{U_L^2 - r_L^2 I^2}.$$
 (12)

Результаты вычислений величин и их погрешностей занесём в таблицу 2.

x, MM	I, A	U_L , B	P_L , BT	r_L , Om	σ_{r_L} , Om	L , Γ H	σ_L , Гн
5	0,53	123	15,5	56,24	5,37	0,72	0,04
7	0,59	121	14,8	42,73	3,65	0,64	0,03
9	0,65	121	14,3	33,73	2,61	0,58	0,03
11	0,69	119	14,0	29,62	2,17	0,54	0,02
13	0,73	118	13,3	25,21	1,75	0,51	0,02
15	0,75	117	13,0	23,11	1,56	0,49	0,02
17	0,78	116	12,8	21,23	1,39	0,47	0,02
20	0,80	116	12,3	19,14	1,21	0,46	0,02
22	0,83	115	12,0	17,63	1,08	0,44	0,02
24	0,85	114	11,8	16,26	0,97	0,42	0,01
26	0,88	114	11,8	15,35	0,89	0,41	0,01
28	0,88	114	11,5	15,02	0,87	0,41	0,01
30	0,90	113	11,3	13,89	0,79	0,40	0,01
32	0,90	113	11,3	13,89	0,79	0,40	0,01
34	0,90	112	11,3	13,89	0,79	0,39	0,01
36	0,90	112	11,0	13,58	0,77	0,39	0,01
38	0,93	112	11,0	12,86	0,71	0,38	0,01
40	0,93	112	11,0	12,86	0,71	0,38	0,01

Таблица 2: Результаты вычислений

По полученным данным построим на одном графике зависимости L и r_L от положения сердечника и определим по ним значения L и r_L , соответствующие резонансному (x=17 мм) положению сердечника.

Аппроксимируем полученные зависимости выражениями вида $x(y) = y_0 + A \exp(R_0 y)$ используя метод χ^2 и программу OriginPro 2021. Результаты аппроксимации занесём в таблицу

	y_0	σ_{y_0}	A	σ_A	R_0	σ_{R_0}
L	0,375 Гн	0,004 Гн	0,532 Гн	0,024 Гн	$-0,101 \text{ mm}^{-1}$	0.005 mm^{-1}
r_L	12,6 Ом	0,3 Ом	70,5 Ом	4,6 Ом	-0.125 mm^{-1}	$0,006 \text{ mm}^{-1}$

Таблица 3: Данные аппроксимации

4.2 Резонанс напряжений

4.2.1 Проведение измерений

Соберём схему согласно рис. 2. При помощи этой схемы запишем параметры контура в резонансе. Постоянное сопротивлением в цепи $R_2 = 5{,}600 \pm 0{,}005$ Ом.

Резонансный ток $I_{\text{рез}} = 2.2 \pm 0.01 \text{ A}$ и резонансные напряжения на ёмкости – $U_{C, \text{ рез}} = 250 \pm 5 \text{ B}$ и на контуре – $U_{\Sigma, \text{ рез}} = 33.5 \pm 1.5 \text{ B}$. По формуле (10) оценим добротность контура: $Q = 7.46 \pm 0.27$.

Резонансное значение ёмкости $C=28,1\pm1,4$ мк Φ , координата положения сердечника при резонансе: $x=17,0\pm0,5$ мм.

Таже при помощи мультиметра и RLC-метра измерим и запишем оммическое и индуктивное сопротивление катушки и её индуктивность: $\underline{R_{\rm kat}=4,900\pm0,005~{\rm Om}L=312,780\pm0,005~{\rm M}\Gamma{\rm H},}\\ r_L=9,530\pm0,005~{\rm Om}.$

4.2.2 Метод векторных диаграмм

Для резонансного положения сердечника построим векторную диаграмму напряжений (рис. 3): треугольник по трём сторонам при горизонтальном расположении U_R .

Рис. 3: Векторная диаграмма

Из получившегося треугольника найдём $U_{L, \text{ акт}}$ и $U_{L, \text{ peakt}}$:

$$\cos \psi = \frac{U_R^2 + U_{L+R}^2 - U_L^2}{2U_R U_{L+R}}, \quad U_{L, \text{ akt}} = U_{L+R} \cos \psi - U_R, \quad U_{L, \text{ peakt}} = U_L \sin \psi = U_L \sqrt{1 - \cos^2 \psi},$$

Получим значения:

$$\cos \psi = 0.73 \pm 0.15$$
, $U_{L, \text{ akt}} = 14.25 \pm 17.31 \text{ B}$, $U_{L, \text{ peakt}} = 55.68 \pm 11.44 \text{ B}$. (13)

Зная активное и реактивное напряжения, найдём L и r_L :

$$L = \frac{U_{L, \text{ peakt}}}{I\Omega} = \frac{U_{L, \text{ peakt}}}{2\pi I \nu_0} = 0.23 \pm 0.05 \text{ Гн}, \quad r_L = \frac{U_{L, \text{ akt}}}{I} = 18.39 \pm 22.35 \text{ Om}.$$
 (14)

Определим по диаграмме $\cos\theta$: $\cos\theta = \frac{U_{L,\text{ акт}}}{U_L} = 0,176 \pm 0,214$. Найдём этот косинус из экспериментальных данных: $\cos\theta_{\text{эксперимент}} = \frac{P_L}{U_L I} = 0,195 \pm 0,007$.

Результаты получились довольно близкие.

 ${\bf C}$ помощью векторной диаграммы по теореме косинусов выразим мощность P_L , выделяемую на катушке, через U_R , U_L , U_{R+L} и сопротивление R_1 :

$$P_L = U_L I \cos \theta = U_L \frac{U_R}{R_1} \cos \theta = 10.2 \pm 12.4 \text{ Bt.}$$
 (15)

Эксперимент показал, что мощность равна $P_{L, \text{ эксперимент}} = 12,250 \pm 0,125 \text{ Вт. Результат получен$ ный из векторной диаграммы нельзя рассматривать, т. к. он содержит огромную погрешность ввиду множества математических операций, каждая из которых увеличивает погрешность.

Определение сопротивления катушки через параметры резонанса

Рассчитаем активное сопротивление катушки r_L через резонансные ток и напряжение на контуре:

$$r_L = \frac{U_{\sum, \text{ pes}} - I_{\text{pes}} R_2}{I_{\text{pes}}},$$
 (16)
 $\underline{r_L} = 9.6 \pm 0.7 \text{ Om}.$

Определение параметров катушки через добротность

Рассчитаем L и r_L через добротность Q, используя (6), (7), (8) и (10). Резонанс наступает, когда $\omega_0 = \Omega = 2\pi\nu_0$:

$$L = \frac{1}{\omega_0^2 C} = 0.36 \pm 0.02 \text{ Гн}, \quad r_L = R_{\Sigma} - R = \frac{\omega_0 L}{Q} - R = \frac{U_{\Sigma, \text{ pes}} \omega_0 L}{U_{C, \text{ pes}}} = 15.19 \pm 1.06 \text{ Om}.$$
 (17)

Полученные итоговые значения занесём в таблицу:

	Мульт-р и LRC-метр	Закон Ома	Вект. диаг.	$f(I_{\text{pes}}, U_{\Sigma, \text{pes}})$	f(Q)
r_L , OM	$9,53 \pm 0,01$	$21,23 \pm 1,39$	$18,39 \pm 22,35$	9.6 ± 0.7	$15,19 \pm 1,06$
L , Γ H	0.31 ± 0.01	$0,47 \pm 0,02$	0.23 ± 0.05	_	0.36 ± 0.02

Таблица 4: Результаты эксперимента

Вывод 5

Мы экспериментально исследовали резонанс напряжения в последовательной цепи переменного тока, а также нашли L и r_L с помощью прямых измерений и косвенных вычислений. Вычисление r_L из векторной диаграммы имеет огромную погрешность. Это происходит из-за применения теоремы косинусов, применение которой вносит значительный вклад в погрешность, поскольку после её применения мы вынуждены производить арифметические операции над числами, которые достаточно близки друг к другу. При этом их погрешность такова, что она не позволяет адекватно оценить значение искомой величины, что вырождается в погрешность $\varepsilon > 100\%$.

Остальные методы измерения сопротивления и индуктивности имеют право на существование, хотя и могут довольно сильно отличаться друг от друга. Кроме того, и измерения при помощи мультиметра и RLC-метра нельзя назвать идеальными, поскольку при измерении при

помощи этих приборов их показания достаточно сильно флуктуировали и бывало даже зависели от точки подключения к катушке, что может говорить о сопоставимом с сопротивлением и индуктивность катушки внешних помех и паразитных сопротивлениях и индуктивностях от внешних проводов, клейм приборов и т.д.

Таким образом, применённые методы позволяют оценить параметры катушки по порядку величины, однако они не дают возможности с точностью получить реальные характеристики элемента.

А Приложение

Некоторые формулы расчёта погрешности, которые были выпущены из текста работы в виду их неимоверной громоздкости.

$$\begin{split} \sigma_{\cos\psi} &= \frac{1}{2} \sqrt{ \left(\frac{1}{U_{L+R}} - \frac{U_{L+R}}{U_R^2} + \frac{U_L^2}{U_R^2 U_{L+R}} \right)^2 \sigma_{U_R}^2 + \left(-\frac{U_R}{U_{L+R}} + \frac{1}{U_R^2} + \frac{U_L^2}{U_R U_{L+R}^2} \right)^2 \sigma_{U_{L+R}}^2 + \left(\frac{2U_L}{U_R U_{L+R}} \right)^2 \sigma_{U_L}^2,} \\ \sigma_{U_{L, \text{ akt}}} &= \sqrt{\sigma_{U_R}^2 + \left(\cos \psi \sigma_{U_{L+R}} \right)^2 + \left(U_{L+R} \sigma_{\cos\psi} \right)^2}, \\ \sigma_{U_{L, \text{ peakt}}} &= \sqrt{\left(\sqrt{1 - \cos^2 \psi} \sigma_{U_L} \right)^2 + \left(\sigma_{\cos\psi} U_L \sqrt{\frac{1}{\cos^2 \psi} - 1} \right)^2}. \\ \sigma_{r_L}^{\text{pe3}} &= r_L \sqrt{\left(\frac{\sigma_{I_{\text{pe3}}}}{I_{\text{pe3}}} \right)^2 + \left(\frac{\sqrt{\sigma_{U_{\sum, \text{ pe3}}}^2 + \left(R_2 \sigma_{I_{\text{pe3}}} \right)^2 + \left(I_{\text{pe3}} \sigma_{R_2} \right)^2}}{U_{\sum, \text{ pe3}} - I_{\text{pe3}} R_2}} \end{split}$$