Curso Corto de hidrogeología

Andrew S. Reeve

Day 1: Groundwater parameters; Darcy's Law and it's variations; Determining flow directions and rates; Hydrogeologic units.

Flujos y Embalses Hidrológicos

Figure 1: Different water fluxes that form the water cycle.

Figure 2: From the USGS (http://ga.water.usgs.gov/edu/watercyclehi.html)

Qué Controla el Flujo del Agua Subterránea

- Gradiente Hidráulico : la fuerza que impulsa el flujo del agua; cambia de nivel del agua sobre una distancia.
- El agua siempre fluye de carga hidráulica alta a baja
 - La carga hidráulica es una medida de energía

- Es el nivel del agua en un pozo abierto a al atmósfera
- tiene tres partes: presión, elevación, velocidad
 - pero en el agua subterránea, usualmente velocidad e despreciable (es importante en los sistemas kársticas)
- Conductividad Hidráulica : regulador del flujo, opuesta de resistencia
 - incluye las propiedades del medio poroso (permeabilidad) y el fluido (densidad, viscosidad)
 - mucha variabilidad, más que 8 órdenes de magnitud

El Ley de Darcy

$$Q = -K \cdot A \frac{dh}{dl}$$

Las limites del Ley de Darcy

- · Escala de muestra, volumen representativo
- flujo laminar (velocidad lente)

Figure 3: La descarga (Q) del agua por un medio poroso es una función de la conductividad (K), el gradiente hidráulico ($rac{dh}{dl}$), y la área (A).

- con creciente turbulencia hay pérdida de energía
- el Numero de Reynold

$$R_{e} = \frac{v \cdot d \cdot \rho}{\mu}$$

No represente

Expresiones alternativas al Ley de Darcy

Discharge

$$Q = K \cdot A \frac{dh}{dl}$$

Specific Discharge/Darcy Velocity: flujo sobre una area de uno por uno

$$q = K \frac{dh}{dl}$$

 Seepage Velocity/Average Linear Velocity, velocidad en un poro

$$v = \frac{K}{n_e} \frac{dh}{dl}$$

Unidades Hidrogeologicas

- El agua, como una persona, busca el camino más fácil.
- Pasa más tiempo en materiales de alta permeabilidad, y encuentra el camino más corto en materiales de baja permeabilidad.
- Metidos para calcular fluyo en un sistema heterogéneo:
 - Promedio sobre las capas de diferente conductividad
 - Refracción de la linea de corriente

Influencia de Heterogeneidad-Promedia al Granel

- · Conductividad hidrológica (K) 'con el
- Suma de los descargas (Q) en cada capa, Influencia de anisotropía promedio ponderado por grosor (b)

•
$$b_{total} = \sum_{i} b_{i}$$

$$K_H = \sum_{i} \frac{b_i \cdot K_i}{b_{total}}$$

- · Conductividad hidrológica 'a contrapelo'
- Promedio armónico, $q=q_1=q_2$

$$K_V = \frac{b_{total}}{\sum_{i} \frac{b_i}{K_i}}$$

Influencia de Heterogeneidad-Ley de Tangente

- El angulo de lineas fluyo dobla en (angulo 'más perpendicular' a las capas) las capas con conductividad hidrológica más pequeño
- Angulo theta es a una linea perpendicular a las capas
- · La regla está basado en un balancea entre la descarga en los tubos de corriente

- La anisotropía aumenta el fluyo en dirección de máxima K
- · Dobla la dirección de fluyo
- ¿En que situación la anisotropía no cambia la dirección de fluyo?

Red de Fluyo (Winter, 1977)

Salt Water Intrusion

- Suposiciones
 - agua salada es estática
 - homogénea y isotropía
 - interfaz fino/brusco
 - la carga hidrológica no cambia con profundidad
 - $-H = h \frac{\rho_s \rho_f}{\rho_f}$ $-H \approx 40 \cdot h$

- El modelo de Ghijben-Herzberg es útil pero imposible
- · Un modelo un poco más realista tiene 'una ventana' para la descarga del agua al mar

Salt Water Intrusion

- Un modelo con un interfaz dispersa (Cooper et al. 1964)
- Hay recirculación del agua salida debido a la cambia de densidad

Salt Water Intrusion

· Bajar el nivel freático producirá un cambio de 40 veces en la posición de la interfaz

Salt Water Intrusion

