2021年度暑期强化课程

卷积神经网络CNN

授课人:曹亚男

7. 卷积神经网络CNN

7.1 CNN模型简介

7.2 CNN的超参数

7.3 CNN for NLP

7. 卷积神经网络CNN

7.1 CNN模型简介

7.2 CNN的超参数

7.3 CNN for NLP

CNN模型的演化历程

基础模型结构

最早的CNN: LeNet-5模型结构

- Input: 二维数据,典型的数据类型是图片,包含*r*n*个像素点
- Convolution: 基于m*m的滤波器,对输入数据进行卷积操作,输出特征图
- Subsampling: 对特征图进行降采样(池化),生成更小的特征图
- Gaussian connection: 输出层使用高斯函数,目前常用的是softmax函数

卷积 (Convolution)

• 卷积操作

• 二维卷积
$$H(x,y) = I * K(x,y) = \sum_{m} \sum_{n} I(m,n)K(x-m,y-n)$$

1	0	1
0	1	0
1	0	1

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

filter

Image

Convolved feature

 对于某个时刻的窗口,通过神经网络的非线性变换,将 这个窗口内的输入值转换为某个特征值,随着窗口的移 动,形成这个滤波器的特征向量

卷积层的特点 (1)

• 稀疏连接(局部连接)

Example
1000*1000 image
1M hidden units
10*10 filter
10^8 parameters

传统神经网络层: 全连接

卷积层:稀疏连接

卷积层的特点 (2)

• 权值共享

稀疏连接:不共享权值

稀疏连接: 共享权值

池化(Pooling)

- 池化:一种降采样操作,用于降低特征维度并保留有效信息
 - 减少模型参数,避免过拟合,提高训练速度
 - 保证特征的位置、旋转、伸缩不变性(CV)
 - 将变长的输入转换成固定长度(NLP)

Softmax函数

- 函数形式 $y_i = e^{z_i} / \sum_{j=1}^{\infty} e^{z_j}$
- 因 $0 < y_i < 1$,且 $\sum_i y_i = 1$,softmax可以看作输出概率; 应用在分类问题中,选择概率最大的节点,作为预测结果

LeNet-5识别数字过程

7. 卷积神经网络CNN

7.1

CNN模型简介

7.2

CNN的超参数

7.3

CNN for NLP

通道

- 输入数据通道: 取决于输入数据的类型,如RGB图片的通道数是3
- 卷积操作输出的通道: 取决于卷积核的数量, 下图输出通道数是2

宽卷积 VS. 窄卷积

Figure. Narrow vs. Wide Convolution. Filter size 5, input size 7

	2				
	0	0	1,	1,0	1,
	0	1	1,0	1,	0,0
	1	1	1,	0,0	0,1
0-	0	1	1	0	0
	0	0	1	1	0
50.					

-padding
1

0
0
0
0
0
0
0
0
0

Input matrix size = nPadding size = pFilter size = f

Output matrix size=?
How to make it equal to *n*?

窄卷积

宽卷积

步长 (Stride Size)

Figure. Stride size 1 vs. Stride size 2. Filter size 3, input size 7

1	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
1	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0
0	0	0	0	1	1	1	0	0
0	0	0	0	1	1	0	0	0
0	0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Input matrix size = n
Padding size = p
Filter size = f
Stride size=s

Output matrix size=?
Constraints on strides?

宽卷积

输入层 <u>卷积层</u> 池化层 其它层

卷积核的数量和尺寸

原图

锐化 (3*3)

边缘检测(3*3)

原图

边缘检测(3*3)

边缘检测(5*5)

各类池化

probability matrix

激活函数

激活函数

正则: Dropout

- 随机正则化策略,提高模型泛化能力,避免过拟合
 - Dropout引入Bernoulli随机数u, p代表dropout ratio, 表示在训练 的前向传导中,让某个神经元激活值为0的概率

$$y_{train} = \begin{cases} \frac{x}{1-p} & \text{if } u > p \\ 0 & \text{otherwise} \end{cases}$$
 where, $u \sim U(0,1)$

$$E(y_{train}) = p \cdot 0 + (1-p) \frac{E(x)}{1-p} = E(x)$$

(b) After appling dropout

如何设置超参数?

AlexNet

- 非线性激活函数:ReLU
- 防止过拟合: Dropout
- 正则: LRN归一化层
- 其它: 百万级ImageNet图像数据、分Group实现双GPU并行

7. 卷积神经网络CNN

7.1 CNN模型简介

7.2 **CNN的超参数**

7.3 CNN for NLP

CNN for Sentence Classification

CNN for Sentence Classification —Hyperparameters

A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification, 2015

CNN for Sentence Classification —Hyperparameters

- 输入: GloVe、word2vec、one-hot
 - GloVe和word2vec在句子分类中的效果各有千秋
 - One-hot在文档分类中效果可以,句子分类中效果不好
- 卷积核大小
 - 不是越大越好,也不是越小越好(1~10)
 - 组合不同大小的卷积核效果更好
- 池化策略
 - 最大池化比平均池化好,1-max pooling最好
- 激活函数
 - 单层CNN 中Tanh、ReLU、Iden效果最好
- 正则
 - dropout和12-norm效果不大,可能由于单层CNN参数不多,使用word embedding也能很好地避免过拟合

New Ideas

- 改造输入层
- 改造卷积层
- 改造池化层
- CNN模型组合

扩展CNN的输入

在事件发现中,使用三种词向量的拼接:词向量、BIO实体类型向量、位置嵌入向量

对卷积层进行改造

- 将卷积操作由线性操作转换成非线性、非连续操作
- 将输入矩阵映射到不同层次上的特征表示,每个层次的特征求平均 后进行联结

对Pooling层进行改造

- 实体关系抽取:对输入序列中的两个实体之间的关系进行分类
- 两个实体把文本分成了三段,采用分段池化学习实体与实体之间的 结构特征

Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks, EMNLP 2015

对Pooling层进行改造

- 事件抽取:对事件中的论元关系进行分类
- 采用分段池化学习触发词与论元之间的结构特征

CNN模型的组合

- 在短文本匹配中,对query和document使用独立的卷积和池化操作, 得到它们的特征向量
- 对两个向量进行相似度计算,并将相似度值和query、document向量 拼接成一个向量,输入到全连接层和softmax层

CNN for NLP 小结

• 模型结构

- 大多沿用基础的CNN模型结构,包括1层卷积和1层池化
- ▶ 输入数据的不同通道采用不同的词向量表示
- 卷积核的宽度与输入词向量的维度相同

• 超参数

- 调参的作用有时大于模型本身
- 词向量、卷积核大小、池化策略、激活函数的选择都很重要

• 应用领域

- 各种分类任务: 文本分析、情感分析、实体关系抽取等等
- 用于其它任务的特征提取,与其它网络模型相结合

参考文献

Lectures

- CS231n Convolutional Neural Networks for Visual Recognition
- CS224d Lecture 13: Convolutional Neural Networks (for NLP)

Papers

- Gradient-Based Learning Applied to Document Recognition
- Convolutional Neural Networks for Sentence Classification
- Event Extraction via Dynamic Multi-Pooling Convolutional Neural Networks
- A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification
- Event Detection and Domain Adaptation with Convolutional Neural Networks
- Molding CNNs for text: non-linear, non-consecutive convolutions
- Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks
- Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks
- Learning Mid-Level Features For Recognition

欢迎加入DL4NLP!