

End-to-end speech recognition using lattice-free MMI

Hossein Hadian, Hossein Sameti, Daniel Povey, Sanjeev Khudanpur

Presented by Tamás Grósz

Outline

Introduction

MMI

LF-MMI

End-to-end LF-MMI

Results

Summary

End-to-end speech recognition

E2E models directly transcribe speech to text without requiring predefined alignment between acoustic frames and characters

- Single model is used
- New training methods are needed

The MMI method

- MMI stands for Maximum mutual Information
- It is a sequence discriminative training criteria

The MMI method

- MMI stands for Maximum mutual Information
- It is a sequence discriminative training criteria
- The objective takes into account the whole utterance -> sequence

The MMI method

- MMI stands for Maximum mutual Information
- It is a sequence discriminative training criteria
- The objective takes into account the whole utterance -> sequence
- We use an objective function that optimizes some criteria associated with the task -> discriminative

$$F_{MMI}(\lambda) = \sum_{u \in I} log \frac{P_{\lambda}(O_u|H_{w_u})P(w_u)}{\sum_{\hat{w}} P_{\lambda}(O_u|H_{\hat{w}_u})P(\hat{w}_u)}$$

$$F_{MMI}(\lambda) = \sum_{u \in U} log \frac{P_{\lambda}(O_u|H_{w_u})P(w_u)}{\sum_{\hat{w}} P_{\lambda}(O_u|H_{\hat{w}_u})P(\hat{w}_u)}$$

The numerator simply calculates the probability of the correct transcription (w_u) using the model (λ) .

$$F_{MMI}(\lambda) = \sum_{u \in U} log \frac{P_{\lambda}(O_u|H_{w_u})P(w_u)}{\sum_{\hat{w}} P_{\lambda}(O_u|H_{\hat{w}_u})P(\hat{w}_u)}$$

$$F_{MMI}(\lambda) = \sum_{u \in U} log \frac{P_{\lambda}(O_u|H_{w_u})P(w_u)}{\sum_{\hat{w}} P_{\lambda}(O_u|H_{\hat{w}_u})P(\hat{w}_u)}$$

The denominator calculates the summed probability of all possible sequences of words.

$$F_{MMI}(\lambda) = \sum_{u \in U} log \frac{P_{\lambda}(O_u|H_{w_u})P(w_u)}{\sum_{\hat{w}} P_{\lambda}(O_u|H_{\hat{w}_u})P(\hat{w}_u)}$$

- The denominator calculates the summed probability of all possible sequences of words.
- It requires decoding with the model.

$$F_{MMI}(\lambda) = \sum_{u \in U} log \frac{P_{\lambda}(O_u|H_{w_u})P(w_u)}{\sum_{\hat{w}} P_{\lambda}(O_u|H_{\hat{w}_u})P(\hat{w}_u)}$$

- The denominator calculates the summed probability of all possible sequences of words.
- It requires decoding with the model.
- Summing over all sequences is not practically feasible, instead:
 - N-best list (less used since it is too crude)

$$F_{MMI}(\lambda) = \sum_{u \in U} log \frac{P_{\lambda}(O_u|H_{w_u})P(w_u)}{\sum_{\hat{w}} P_{\lambda}(O_u|H_{\hat{w}_u})P(\hat{w}_u)}$$

- The denominator calculates the summed probability of all possible sequences of words.
- It requires decoding with the model.
- Summing over all sequences is not practically feasible, instead:
 - N-best list (less used since it is too crude)
 - Lattice structure

Lattice

Lattice

Lattice

MMI loss function

How do we train a DNN with the MMI method?

MMI loss function

How do we train a DNN with the MMI method?

$$\frac{\partial \textit{F}_{\textit{MMI}}}{\partial \textit{y}_{t}^{\textit{u}}} = \textit{^{\textit{NUM}}} \gamma_{t}^{\textit{u}} - \textit{^{\textit{DEN}}} \gamma_{t}^{\textit{u}}$$

MMI loss function

How do we train a DNN with the MMI method?

$$\frac{\partial F_{\textit{MMI}}}{\partial y_t^u} = {}^{\textit{NUM}}\gamma_t^u - {}^{\textit{DEN}}\gamma_t^u$$

where γ is the forward-backward algorithm.

Forward-backward algorithm

■ The goal is to find the alignment between the text and the audio

Forward-backward algorithm

The goal is to find the alignment between the text and the audio

Forward-backward algorithm

The goal is to find the alignment between the text and the audio

Relation to CTC

- Using the numerator is quite similiar to CTC
- The differences between CTC and MMI:

Relation to CTC

- Using the numerator is quite similiar to CTC
- The differences between CTC and MMI:
 - No decoding in CTC
 - CTC uses fixed and uniform state priors, observation priors, and transition probabilities
 - Different topology (blank label)

Lattice-free MMI

Problems:

- Requires initialization with a trained model
- Unique lattice for each utterance
- Computationally expensive

Lattice-free MMI

Problems:

- Requires initialization with a trained model
- Unique lattice for each utterance
- Computationally expensive

Solution:

- Represent the denominator as a graph
- Fit the graph in the GPU

Notations

Notations

H=HMM state graph, C=context-dependency, L=the lexicon, G=the language model

Traditional ASR systems use HCLG (composition)

Notations

- Traditional ASR systems use HCLG (composition)
- Composing a graph over all possible word sequences is not feasible

Notations

- Traditional ASR systems use HCLG (composition)
- Composing a graph over all possible word sequences is not feasible
- Phone-level LM, P instead of G

Notations

- Traditional ASR systems use HCLG (composition)
- Composing a graph over all possible word sequences is not feasible
- Phone-level LM, P instead of G-> no need for L

Notations

- Traditional ASR systems use HCLG (composition)
- Composing a graph over all possible word sequences is not feasible
- Phone-level LM, P instead of G-> no need for L
- LF-MMI uses HCP

Minimalization is needed to reduce the size of the denominator graph

Minimalization is needed to reduce the size of the denominator graph

- 1. Push the weights
- Minimize the graph
- 3. Reverse the arcs and swap initial and final states

Minimalization is needed to reduce the size of the denominator graph

- 1. Push the weights
- Minimize the graph
- 3. Reverse the arcs and swap initial and final states

Additional trick: chunks of 1-1.5 seconds are used instead of the entire utterance (alignment is needed)

In LF-MMI tied bi-phone or triphone HMM states are used -> alignments needed

- In LF-MMI tied bi-phone or triphone HMM states are used -> alignments needed
- E2E solution: monophones or full bi-phones

- In LF-MMI tied bi-phone or triphone HMM states are used -> alignments needed
- E2E solution: monophones or full bi-phones
- Phone language model for the denominator graph is estimated using the training transcriptions

- In LF-MMI tied bi-phone or triphone HMM states are used -> alignments needed
- E2E solution: monophones or full bi-phones
- Phone language model for the denominator graph is estimated using the training transcriptions
- Composite HMM (with self-loops) as the numerator graph
 - No prior alignment
 - No restriction on the self-loops

Tree-free full bi-phone

Separate HMM model for each and every possible pair of phonemes.

Tree-free full bi-phone

Separate HMM model for each and every possible pair of phonemes.

- The tree is not pruned at all -> no need for alignments
- Some bi-phones never occurs in the training data -> the network learns to ignore them.

Results

Table 5: Comparison of WER for character-based end-to-end LF-MMI (EE-LF-MMI) and related methods on WSJ.

Method	Parameters	Lexicon	LM	WER
Phone CTC [4]	_	Y	Word NG	7.3
Attention [35]	6.6M	Y	Word NG	6.7
EE-LF-MMI	8.2M	Y	Word NG	4.1
EE-LF-MMI no-SP	8.2M	Y	Word NG	5.3
EE-LF-MMI	8.2M	N	Char NG	5.4

Results

Method	Params	Lex.	LM	SW	CH	Tot†
CTC [32]	50M	N	Char NG	13.8	21.8	17.8
Attention* [33]	100M	N	N	8.6	17.8	13.2
RNN-T* [33]	120M	N	N	8.5	16.4	12.5
EE-LF-MMI	26M	N	Char NG	12.1	21.7	16.9
EE-LF-MMI	26M	N	Char RNN	12.0	21.9	17.0
CTC [32]	50M	Y	Word NG	11.3	18.7	15.0
RNN-T* [33]	120M	Y	Word NG	8.1	17.5	12.8
EE-LF-MMI	26M	Y	Word NG	9.3	18.6	14.0
EE-LF-MMI no-SP	26M	Y	Word NG	9.7	19.0	14.4
CTC [32]	50M	Y	Word RNN	10.2	17.7	14.0
EE-LF-MMI	26M	Y	Word RNN	8.0	17.6	12.8
Phone CTC [34]	_	Y	Word NG	10.2	16.5	13.3
Phone EE-LF-MMI	26M	Y	Word NG	8.6	15.5	12.0
Phone EE-LF-MMI	26M	Y	Word RNN	7.5	14.6	11.0

^{*} These use data augmentation by adding background noise.

[†] The total eval 2000 WER for CTC and Attention is the average of SW and CH (as it is not reported).

Summary

- MMI is a sequence-discriminative loss function
- The LF version tries to reduce the space and time complexity
- E2E LF-MMI requires a lot of modifications
 - Biphones
 - Composite HMM (numerator graph)
 - Phone language model

References

- Hadian, H., Sameti, H., Povey, D., Khudanpur, S. (2018) End-to-end Speech Recognition Using Lattice-free MMI. Proc. Interspeech 2018, 12-16, DOI: 10.21437/Interspeech.2018-1423.
- Povey, D., Peddinti, V., Galvez, D., Ghahremani, P., Manohar, V., Na, X., Wang, Y., Khudanpur, S. (2016) Purely Sequence-Trained Neural Networks for ASR Based on Lattice-Free MMI. Proc. Interspeech 2016, 2751-2755.
- On lattice free MMI and Chain models in Kaldi, https://desh2608.github.io/2019-05-21-chain/

