GSOE9210 Engineering Decisions

Problem Set 07

- 1. Show that an irreflexive and transitive relation is asymmetric.
- 2. An equivalence relation on a set A is any binary relation which is: a) reflexive; b) symmetric; and c) transitive

Show that for any fixed $m \in \mathbb{N}$, the relation $R_m \subseteq \mathbb{Z} \times \mathbb{Z}$ such that xR_my iff x - y = km for some $k \in \mathbb{Z}$, is an equivalence relation.

Define $[n]_m = [n]_{R_m}$. Describe the equivalence class $[3]_0$, $[3]_1$, and $[3]_2$, $[3]_3$. In general, describe the equivalence classes $[n]_m$? Show that $[m]_4 \subseteq [m]_2$, for any $m \in \mathbb{Z}$. More generally, show that if for some $k, n, p \in \mathbb{Z}$, n = kp, then $[m]_n \subseteq [m]_p$

- 3. Verify that for any finite (or indeed infinite) sets A and B, the relation $A \simeq B$ iff |A| = |B|, where |A| is the *cardinality* of A (i.e., the number of elements in A) is an equivalence relation.
- 4. A partial order is any relation which is reflexive, antisymmetric, and transitive.

Define the relation $|\subseteq \mathbb{N} \times \mathbb{N}$ by x|y iff x divides y (or x is a factor of y, or y is a multiple of x). Show that | is a partial order (i.e., that it is reflexive, antisymmetric, and transitive).

- 5. For a weak preference relation \succeq , verify the following:
 - (a) If an agent's preferences are consistent then \sim is an equivalence relation
 - (b) The corresponding strict preference relation ≻ is a strict total order
 - (c) Strict preference satisfies an 'indifference version' of the trichotomy law; i.e., exactly one of the following holds between any $x, y \in A$: $x \succ y$ or $x \sim y$ or $y \succ x$.
- 6. Verify that the following properties hold from the axiomatisation of \gtrsim given in lectures.
 - Strict preference properties:
 - if $x \succ y$, then it should be that $y \succ x$
 - if $x \succ y$ and $y \succ z$, then it should not be that $z \succ x$
 - $\bullet\,$ In difference properties:
 - if $x \sim y$, then $y \sim x$
 - if $x \sim y$ and $y \sim z$, then $x \sim z$
 - $-x \sim x$ holds for any $x \in A$
 - Combined properties:

- if $x \sim y$ and $z \succ x$, then $z \succ y$
- if $x \sim y$ and $x \succ z$, then $y \succ z$
- for any x, y either $x \succ y$ or $x \sim y$ or $y \succ x$
- 7. Let [x] be an abbreviation for $[x]_{\sim}$, show that:
 - (a) if $x \sim y$, then [x] = [y]
 - (b) if $[x] \cap [y] \neq \emptyset$, then [x] = [y]
 - (c) if $x \succ y$, then if $a \in [x]$ and $b \in [y]$, then $a \succ b$
- 8. Left the left-to-right edges in the Hasse diagram below represent \succ .

In terms of \succ what is the relationship between:

- (a) d and a
- (b) a and e
- (c) a and b
- (d) f and d
- 9. Consider the following preferences on the set $A = \{a, b, c, d, e\}$:

$$c \succeq a$$
 $b \succeq d$ $e \succeq d$ $d \succeq a$ $d \succeq e$ $a \succeq c$

- (a) What additional instances of \succsim can be inferred from the axioms given in lectures?
- (b) Assume that any inference not present above, or inferred from them, is false. From the definition of \succ in terms of \succsim , what are the instances of \succ ?
- (c) For an equivalence relation (A, \sim) , denote the set of all equivalence classes of A by A/\sim . (Sometimes A/\sim is called the *quotient class* of A.) List the indifference classes in A/\sim ?
- (d) Draw the Hasse diagram for \succ .
- (e) Draw the Hasse diagram for \succ_I : the preference relation on indifference classes.
- (f) Define an ordinal function V on the members of A/\sim (i.e., $V:A/\sim\to\mathbb{R}$) and hence, one on A ($v:A\to\mathbb{R}$).
- 10. Show that the weak preference ordering \succeq_I on indifference classes is antisymmetric.
- 11. Show that for the weak preference relation \succeq_I on indifference classes:
 - (a) for any $X,Y\in A/\!\!\sim,\, X\succsim_I Y$ iff for every $x\in X$ and $y\in Y,\, x\succsim y$
 - (b) \succeq_I is a weak total order

- 12. Show that for any ordinal value function v:

 - $\begin{array}{ll} \text{(a)} \ v(x) > v(y) \ \text{iff} \ x \succ y. \\ \text{(b)} \ v(x) = v(y) \ \text{iff} \ x \sim y. \end{array}$