

CSCI 3403 INTRO TO CYBERSECURITY

Lecture: 2-2

Topic:

Cryptography

Presenter: Matt

Niemiec

Announcements

- 新年快乐
- Don't forget about Wal-Mart talk next Tuesday
 - Details on next slide
 - Talk to Nolen Scaife for more details
- Much of the today's lecture is borrowed from Matt Bishop's "Introduction to Computer Security"
- Please submit your groups by 1/31/20
 - https://bit.ly/2G11c1G to submit your group

INDUSTRY LEADER
FOCUSED ON
BEST-IN-CLASS
INFORMATION
SECURITY PRACTICES,
INNOVATION
AND BUSINESS

JERRY GEISLER

Chief Information Security Officer

TUESDAY, JANUARY 28

Technology, Cybersecurity and Policy Program

UNIVERSITY OF COLORADO BOULDER

12:30-1:45 PM ECCR 150

ANYBODY IS WELCOME!

WALMART IS #1 ON FORBES
FORTUNE SOO LIST

LEARN ABOUT THEIR
AMAZING CYBERSECURITY
PROGRAM

Cryptography

What is Cryptography?

- We kind of know what it is...
- Can anyone give a definition?
- NOT the solution to all security problems

Types of Cryptography

- 1) Symmetric key encryption
- 2) Public/private key encryption
- 3) Hashing (one-way encryption)

Vocab

- Plaintext
- Encryption/decryption algorithm
- Secret key
- Ciphertext

Attack Vocab

- Brute force vs. cryptanalysis
- Types of cryptanalytic attacks
 - Ciphertext only
 - Known plaintext
 - Chosen plaintext/ciphertext
 - Man-in-the-middle
 - Side channel
 - Birthday attacks
- These all use weaknesses in the algorithm design

Symmetric Encryption

Symmetric Encryption

- Already discussed briefly in week 1
- Encryption key == Decryption key
- Requires sender and receiver to have same key

Decode the words from your spelling list using the secret code. Write your answer in the space provided.

CODE LETTER	q	W	е	r	t	У	u	i	0	p	a	S	d	f	g	h	j	k	1	Z	X	С	V	b	n	m
LETTER	a	b	C	d	е	f	g	h	i	j	k	1	m	n	0	p	q	r	S	t	u	V	W	X	У	Z

- 1. stdgf
- 2. kqwwoz
- 3. ixfudn
- 4. ygktlz
- 5. usqll

Image source: http://www.brailleauthority.org

Figure 2.1 Simplified Model of Symmetric Encryption

Example: Caesar Cipher

- Key is a number between 1 and 25
- "Rotate" the character that many times
- Let K=3
 - Plaintext = "HELLO WORLD"
- Caesar Cipher a type of substitution cipher

Problems: Caesar Cipher

- Ciphertext: "qcbtwrsbhwoz hslh"
 - Break it!

Improvement: Vigènere Cipher

- Caesar Cipher, but the key is a phrase
- Repeat key when out of characters
- Let K="abcde"
 - Encrypt "HELLO WORLD"

Problems: Vigènere Cipher

What's wrong here?

Improvement: One-Time Pad

- Completely random string
- Use only once
- Key is at least as long as the message
- Can XOR if working with bits

Problems: One-Time Pad

What's wrong with THAT?!

Cryptanalysis

Brute Force Caesar Cipher

- Try every single key
- Break: "KHOOR ZRUOG"
- https://cryptii.com/pipes/caesar-cipher

Cryptanalysis of Caesar Cipher

- Take advantage of weakness in English
- Some letters more common

- 1) Decrypt message with every key
- For each letter, multiply frequency by probability of occurring
- 3) Sum over all previous numbers. Yields arbitrary number
- 4) The highest number is most likely the key

Character Frequencies

a	0.080	h	0.060	n	0.070	t	0.090
b	0.015	i	0.065	О	0.080	u	0.030
c	0.030	j	0.005	p	0.020	V	0.010
d	0.040	k	0.005	q	0.002	W	0.015
e	0.130	1	0.035	r	0.065	X	0.005
f	0.020	m	0.030	S	0.060	У	0.020
g	0.015					Z	0.002

Statistical Analysis

- *f*(*c*) frequency of character *c* in ciphertext
- φ(i) correlation of frequency of letters in ciphertext with corresponding letters in English, assuming key is i
- p(x) is frequency of character x in English
- Formula: $\varphi(i) = \sum_{0 \le c \le 25} f(c) p(c i)$

Statistical Analysis, Cont.

- Do the math!
- Plug in i for all 26 possible keys
- $\varphi(i) = 0.1p(6-i) + 0.1p(7-i) + 0.1p(10-i) + 0.3p(14-i) + 0.2p(17-i) + 0.1p(20-i) + 0.1p(25-i)$

Correlation: $\varphi(i)$ for $0 \le i \le 25$

i	$\varphi(i)$	i	$\varphi(i)$	i	$\varphi(i)$	i	$\varphi(i)$
0	0.0482	7	0.0442	13	0.0520	19	0.0315
1	0.0364	8	0.0202	14	0.0535	20	0.0302
2	0.0410	9	0.0267	15	0.0226	21	0.0517
3	0.0575	10	0.0635	16	0.0322	22	0.0380
4	0.0252	11	0.0262	17	0.0392	23	0.0370
5	0.0190	12	0.0325	18	0.0299	24	0.0316
6	0.0660					25	0.0430

The Result

- Most probable keys, based on φ:
 - -i = 6, $\varphi(i) = 0.0660$
 - plaintext EBIIL TLOLA
 - -i = 10, $\varphi(i) = 0.0635$
 - plaintext AXEEH PHKEW
 - -i = 3, $\varphi(i) = 0.0575$
 - plaintext HELLO WORLD
 - -i = 14, $\varphi(i) = 0.0535$
 - plaintext WTAAD LDGAS
- Only English phrase is for i = 3
 - That's the key (3 or 'D')

Cryptanalysis

- This is a simple example
- Cryptanalysis is extremely complex and math-heavy
- We can see how we'd use weaknesses
- We can see how longer texts would help the attacker

Modern Solutions

DES

- Invented in 1975
- Was most widely used until recently
- Algorithm has concerns
- Key length is 56 bits

Triple DES (3DES)

- Addresses large problem of small key
- Encrypt, decrypt, encrypt
- Provides backwards compatibility
- Sounds great!

Sweet32 Birthday Attack

- 3DES vulnerable because of small block size
- Discovery affected HTTPS, VPNs, etc.
- Requires hundreds of GBs of ciphertext
- NIST deprecated 3DES in 2017

Advanced Encryption Standard (AES)

Needed a replacement for 3DES

3DES was not reasonable for long term use

NIST called for proposals for a new AES in 1997

Should have a security strength equal to or better than 3DES

Significantly improved efficiency

Symmetric block cipher

128 bit data and 128/192/256 bit keys Selected
Rijndael in
November 2001

Published as FIPS 197

Average Time to Break Key

Key size (bits)	Cipher	Number of Alternative Keys	Time Required at 10 ⁹ decryptions/s	Time Required at 10 ¹³ decryptions/s
56	DES	$2^{56} \approx 7.2 \times 10^{16}$	2^{55} ns = 1.125 years	1 hour
128	AES	$2^{128} \approx 3.4 \times 10^{38}$	$2^{127} \text{ ns} = 5.3 \times 10^{21}$ years	$5.3 \times 10^{17} \text{ years}$
168	Triple DES	$2^{168} \approx 3.7 \times 10^{50}$	$2^{167} \text{ ns} = 5.8 \times 10^{33}$ years	$5.8 \times 10^{29} \text{ years}$
192	AES	$2^{192} \approx 6.3 \times 10^{57}$	$2^{191} \text{ ns} = 9.8 \times 10^{40}$ years	$9.8 \times 10^{36} \text{ years}$
256	AES	$2^{256} \approx 1.2 \times 10^{77}$	$2^{255} \text{ ns} = 1.8 \times 10^{60}$ years	$1.8 \times 10^{56} \text{ years}$

Block vs. Stream Ciphers

Block Cipher

- Processes the input one block of elements at a time
- Produces an output block for each input block
- Can reuse keys
- More common

Stream Cipher

- Processes the input elements continuously
- Produces output one element at a time
- Primary advantage is that they are almost always faster and use far less code
- Encrypts plaintext one byte at a time
- Pseudorandom stream is one that is unpredictable without knowledge of the input key