

Ejercicios de Lógica

Conectivos lógicos:

- Conjunción , se simboliza por ∧. La proposición compuesta p∧q es verdadera sólo cuando ambas proposiciones p y q lo son.
- 2.- Disyunción , se simboliza por ∨. La proposición compuesta p∨q es verdadera si al menos una de las proposiciones p o q lo es.
- Implicancia , se simboliza por ⇒. La proposición compuesta p⇒q es falsa cuando el antecedente p es verdadero y el consecuente q es falso.
- 4.- Equivalencia , se simboliza por ⇔. La proposición compuesta p⇔q es verdadera cuando ambas proposiciones p y q tienen el mismo valor de verdad.

Leyes fundamentales del algebra proposicional:

Taulogias Básicas:

Principios Lógicos:

a) del Tercero Excluído: $p \lor \sim p \equiv T$

b) de No contradicción: $\sim (p \land \sim p) \equiv T$

c) de Identidad: $p \Rightarrow p \equiv T$

2) Inferencias inmediatas:

de Simplificación y Amplificación:

a)
$$(p \land q) \Rightarrow p \equiv T$$

Modus Ponens y Tollens:

c)
$$[(p \Rightarrow q) \land p] \Rightarrow q \equiv T$$

d)
$$[(p \Rightarrow q) \land \sim q] \Rightarrow \sim p \equiv T$$

- 3) Silogismos: a) Hipotético: $[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r) \equiv T$
 - b) Disyuntivo: $[(p \Rightarrow q) \land (r \Rightarrow s) \land (p \lor r)] \Rightarrow (q \lor s) \equiv T$

capTiC

Equivalencias Logicas:

- 1) De la negación: a) \sim (T) \equiv C; \sim (C) \equiv T; \sim (\sim p) \equiv p
 - b) ~(p∨q) = ~p∧~q
 - c) $\sim (p \wedge q) \equiv \sim p \vee \sim q$, Leyes de Morgan
 - d) $\sim (p \Rightarrow q) \equiv p \land \sim q$; $\sim (p \Leftrightarrow q) \equiv (p \land \sim q) \lor (q \land \sim p)$
- De la Alternación y la Conjunción:
 - a) $p \lor T \equiv T$; $p \lor C \equiv p$; $p \land T \equiv p$; $p \land C \equiv C$
 - b) $p \lor p \equiv p$; $p \land p \equiv p$ (Idempotencia)
 - c) $p \lor q \equiv q \lor p$; $p \land q \equiv q \land p$ (Conmutativa)
 - d) $(p \lor q) \lor r \equiv p \lor (q \lor r)$; $(p \land q) \land r \equiv p \land (q \land r)$ (Asociativa)
 - e) $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$; $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ (Distributiva)
 - f) $p \lor (p \land q) \equiv p$; $p \land (p \lor q) \equiv p$ (Leyes de Absorción)
- Del Condicional y el Bicondicional:
 - a) $p \Rightarrow q \equiv \neg p \lor q$; $p \Leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$ (Conversiones)
 - b) p ⇒ q ≡ ~q ⇒ ~p; p ⇔ q ≡ ~q ⇔ ~p (Contrapositivas)
 - c) $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$ (Bicondicional)

Ley De Morgan Para Cuantificadores:

La proposición "Es falso que para cada x de S, p (x)" es equivalente a la proposición "Existe x de S tal que es falso que p(x)". Simbólicamente:

$$\sim$$
[$\forall x \in S: p(x)$] \Leftrightarrow [$\exists x \in S / \sim p(x)$]

De donde se deduce, negando ambas proposiciones y reemplazando $\sim p(x)$ por p(x), que:

$$\sim$$
[$\exists x \in S/p(x)$] \Leftrightarrow [$\forall x \in S: \sim p(x)$]

Ejercicios:

- 1. Considere los enunciados representados por las proposiciones p y q: y
 - p: 4 es un número primo
- q: 4 es divisor de 32

Exprese en español los emmciados representados por:

- a) p∧q
- b) q⇒~p
- c) ~p⇔q

- d) ~p∨q
- e) ~p ⇒ ~q
- f) (q ∧ ~p) ∨ ~q
- 2. Si se sabe que p es falsa, q es verdadera y que r es falsa, determine el valor de verdad de las siguientes proposiciones :
 - a) (p ∧ ~q) ⇒ r
- b) (~p⇒~r)∧q
- c) (p ∧ ~r) ⇔ q
- d) ~(~p⇒r) ∧ (~r∨p)
- Considere las proposiciones, p: Él es Ingeniero Comercial, q: Él es Informático, r: Él es empresario. Escriba en forma simbólica los siguientes enunciados:
 - a) Él no es Ingeniero Comercial ni Informático, pero si Empresario.
 - b) Él no es Ingeniero Comercial y es Informático.
 - c) Ser Ingeniero Comercial o Empresario es lo mismo que ser Informático.
 - d) Si él es Ingeniero Comercial e Informático, entonces es Empresario.
 - e) Si no es Ingeniero Comercial y es Informático, entonces es Empresario.
 - f) Es Ingeniero Comercial sólo si es Economista y Empresario.
- Si se sabe que ~p ∧ q ≡ C, demuestre, usando álgebra proposicional, que: 4.

$$[(p \lor q) \Leftrightarrow (p \land \sim q)] \lor p \equiv T$$

- Si $\sim p \lor q \equiv T$, demuestre que $[(p \lor q) \Leftrightarrow (\sim p \land q)] \lor q \equiv T$ 5.
- 6. Demuestre que los esquemas $p \Rightarrow (q \lor r) \quad y \quad (p \land \neg q) \Rightarrow r \quad \text{son lógicamente}$ equivalentes.
- 7. Determine el valor de verdad de las proposiciones p, q y r en cada uno de los siguientes casos, sabiendo que el valor de verdad del esquema propuesto es el que se indica.
 - [~(p⇒q)∧(r∨q)]:V a)
 - $\{[(p \land q) \Rightarrow (p \land r)] \lor (p \Rightarrow r)\} : F$ b)
 - $\{[(p \Leftrightarrow q) \Leftrightarrow (p \lor r)] \land \sim [p \Rightarrow (q \land r)]\} : V$ c)
 - d) $\{[(p \lor q) \land (p \Rightarrow r)] \Rightarrow [(p \land q) \lor (q \Rightarrow r)]\} : F$
 - $\{ \sim [p \land (q \Rightarrow r)] \lor [(p \lor q) \Rightarrow \sim (p \land r)] \}$: F. Comente su resultado. e)

Demuestre que si q tiene el valor de verdad F, entonces la proposición compuesta

- Considere tres proposiciones p, q y r de las cuales se sabe que p ∧ q es Verdadero, y que q ∧ r es Falso. Determine el valor veritativo del esquema (r ∨ p) ⇒ (r ∧ p).
- Demuestre, usando álgebra lógica, las siguientes equivalencias entre esquemas.
 - a) q ⇒ [~p ⇒ (p ∨ q)] ≡~(p ∧ ~p)
 - b) p∧[~(p∨q) ∨ ~(~q∨p)]≡~(p⇒p)
 - c) p ∨ ~ [p ∧ (q ∨ ~p)] ≡ T
 - d) $[(\sim p \vee \sim q) \Rightarrow (p \wedge \sim q)] \equiv p$
 - e) $\sim p \vee \sim q$) $\Rightarrow (p \wedge \sim q)$] $\equiv p$
 - e) [(p ∧ ~q) ∨ (~q ∧ ~p)] ≡~q
 - f) $q \wedge \sim [(p \wedge q) \Rightarrow (\sim p \vee \sim q)] \equiv p \wedge q$
- Demuestre que los siguientes enunciados son lógicamente equivalentes:
 - I "Si Juan termina de solucionar ese problema y el horario de trabajo terminó, entonces se retira muy satisfecho"
 - II "Juan no terminó de solucionar ese problema o el horario de trabajo no terminó, o Juan se retira muy satisfecho"
- Demuestre que el valor de verdad de ~(p ⇒ ~q) ∧ [(p ∧ r) ⇒ (q ∨ ~r)] es independiente del valor de verdad de la proposición r.
- Dado el conjunto A = { 1, 2, 3, 4, 5 }, determine el valor de verdad de las siguientes proposiciones:
 - a) $\exists ! x \in A / x + 3 = 10$
- b) ∀x ∈A: x+3≤10
- c) ∃x ∈A/x+3<5</p>
- d) ∀x ∈A: x+3≤7
- 14. Dado el conjunto A = { 1, 3, 5, 7 }, determine el valor de verdad de las siguientes proposiciones:
 - a) $(\exists x \in A / 4x^2 19x 5 = 0) \lor (\exists x \in A / x^2 = x)$
 - b) $(\exists x \in A/2x + 3y = 5x) \land (\exists x \in A/2x = x)$
- Simplifique, obteniendo una proposición de tipo afirmativo.
 - a) $\sim \{ [\exists x \text{ en } U/p(x)] \Rightarrow [\exists x \text{ en } U/\sim q(x)] \}$
 - b) \sim { $\exists x \in U / [p(x) \land \sim q(x)]$ }
 - c) $\sim \{ [\exists x \text{ en } U/p(x)] \land [\forall x \text{ en } U/\sim q(x)] \}$
 - d) $\sim \{ [\forall x \text{ en } U/p(x)] \Rightarrow [\forall x \text{ en } U/q(x)] \}$
 - e) ~{ [∃x en U/~p(x)] ⇒ [∀x en U/~q(x)]}

- Traduzca a lenguaje simbólico, luego niegue y finalmente escriba la frase que corresponda a la negación, de las siguientes proposiciones:
 - a) Todos los números son racionales y existen números que no son enteros.
 - Algunas leyes no son legítimas pero deben ser respetadas.
 - Algunos ingenieros cantan y hacen deportes.
 - d) Existe al menos una empresa que hace pernos pero no tuercas.
 - e) Ningún hombre rico es feliz.
 - f) De las personas presentes en la reunión de Directorio, ninguno era fumador.
 - g) Si todos los Ingenieros Civiles tuviesen una segunda fuente de ingreso podrían proyectarse profesionalmente y aumentar sus rentas.

Algunas respuestas:

2. a) V

c) F

d) V

- a) ~p ∧~q ∧ r
- d) (p∧q)⇒r
 e) (~p∧q)⇒r
- 7. a) p: V q: F r: V
- b) p: V q: V r: F d) p: F q: V r: F

- 9. F
- 13. a) F
- b) V c) V
- 15. a) $[\exists x \in \cup/p(x)] \land [\forall x \in \cup/q(x)]$
 - c) $[\forall x \in \cup / \sim p(x)] \lor [\exists x \in \cup / q(x)]$
 - e) $[\exists x \in \cup / \sim p(x)] \land [\exists x \in \cup / q(x)]$