

A P. STRATE INSHRIGHTED THE TRACE TO LOCKY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Department of CSE Data Science UNIT TEST – II

Academic Year 2023-24

Class: TEDS Semester: VI Subject: CSDLO6011 High Performance Computing

Date: 19th April 2024 Time: 2:00 to 3:30pm Max marks: 40

Note the following instructions

1. All questions are mandatory (Q.1, Q.2, Q.3)

2. Draw neat diagrams wherever necessary.

3. Write everything in Black ink (no pencil) only.

4. Assume data, if missing, with justification.

Q.	Questions	MARKS	CO	Blooms	PO2
N.				Taxonomy	
				Level	
Q.1.	Attempt any two				
1	Sketch and Explain OpenCL Device Architecture Diagram.	[5]	CO6	L2	
2	Draw and Explain OpenCL Platform Model.	[5]	CO6	L2	
3	List and Explain any five classes of OpenCL.	[5]	CO6	L2	
4	Sketch and Explain OpenCL Memory Model.	[5]	CO6	L2	
Q.2.	Attempt any two				
1	Develop an MPI program for addition of two arrays.	[10]	CO5	L3	PO1, PO12
2	Develop an MPI program for sum of n natural numbers.	[10]	CO5	L3	PO1, PO12
3	Develop an MPI program for calculating the factorial of a number.	[10]	CO5	L3	PO1,

					PO12
Q.3.	Attempt any one				
1	State and Explain Amdahl's Law.	[10]	CO4	L3	PO1,
	Suppose a serial program reads n data from a				PO12
	file, performs some computation and then				
	writes n data back out to another file. The I/O				
	time is measured and found to be 4500+n sec.				
	If the computation portion takes $n^2/200$ µsec.				
	Apply Amdahl's law to calculate the				
	maximum speed up we can expect when				
	n=10,000 and N processors are used.				
2	State and Explain Gustafson's Law.	[10]	CO4	L3	PO1,
	A parallel program takes 134 seconds to run				PO12
	on 32 processors. The total time spent in the				
	sequential part of the program was 12				
	seconds. Apply Gustafson's law to calculate				
	the scaled speedup.				

****** All The Best ************