

Introduction to Adversarial Search and Game Play

Outline

- Agents
- ► Environment
- ▶ Search Strategies
- Search Methods

Solving two-Player Games with Search Strategies

- The goal is to develop methods that can make decisions in game play as humans think
- Problems
 - "Unpredictable" opponent
 - Specifying a move for every possible opponent reply
 - ▶ Time limits
 - Unlikely to find a goal on time, must approximate

Slides to be added Summer 2022

MINIMAX-DECISION Algorithm

- Search the tree to the end
- Assign utility values to terminal nodes
- Find the best move for MAX (this is MAX's turn) assuming:
 - MAX will make the move that maximizes utility
 - MIN will make the move that minimizes MAX's utility

Russell and Norvig, 2020

MINIMAX-DECISION Algorithm Cont.

- MiniMax the heart of almost every computer board game
- Idea:
 - Choose the move/position with highest minimax value. This achieves the best payoff against the best play
- Applies to games where:
 - Perfect play for deterministic games
 - Players take turns, e.g., 2-player game Have perfect information
 - - Chess, Checkers, Tic-Tac-Toe
- But can work for games without perfect information or chance
 - Poker, Monopoly, Dice
- Can work in real-time (i.e., not turn based) with timer (*iterative deepening*)

Russell and Norvig, 2020

Properties of MINIMAX-DECISION

- Complete? Yes (if tree is finite)
- Optimal? Yes (against an optimal opponent)
- ightharpoonup Time complexity? $O(b^m)$
- ightharpoonup Space complexity? $O(b^m)$ (depth-first exploration)
- Standard approach is
 - Apply a cutoff test (depth limit, quiescence)
 - Evaluate nodes at cutoff (evaluation function estimates desirability of position)

Russell and Norvig, 2020

MINIMAX-SEARCH Algorithm

```
function MINIMAX-SEARCH(game, state) returns an action
       player \leftarrow game.TO-MOVE(state)
       value, move \leftarrow MAX-VALUE(game, state)
       return move
function MAX-VALUE(game, state) returns a (utility, move) pair
       if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
       v \leftarrow -\infty
       for each a in game.ACTIONS(state) do
              v2, a2 \leftarrow MIN-VALUE(game, game.RESULT(state, a))
               if v2 > v then
                      v. move \leftarrow v2. a
       return v, move
function MIN-VALUE(game, state) returns a (utility, move) pair
       if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
       v \leftarrow +\infty
       for each a in game.ACTIONS(state) do
              v2, a2 \leftarrow MAX-VALUE(game, game.RESULT(state, a))
              if v2 < v then
                      v, move \leftarrow v2, a
       return v. move
```

MINIMAX-DECISION Example (Winston, 1992)

Minimizing Level

Complete Example of MINIMAX-DECISION

MINIMAX-DECISION Example Cont.

Partial Game Tree for Tic-Tac-Toe

- Two players, MAX and MIN
- In this case, assume we are searching ahead 5 moves (ply=5) Moves (and levels) alternate between two players

Russell and Norvig, 2020


```
function MIN-MAX-SEARCH(game, state) returns an action
  player \leftarrow game.To-Move(state)
  value, move \leftarrow Max-Value(game, state)
  return move
function Max-Value(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow -\infty
  for each a in game.Actions(state) do
     v2, a2 \leftarrow Min-Value(game, game.Result(state, a))
     if v2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns returns a(utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow +\infty
  for each a in game. Actions (state) do
     v2, a2 \leftarrow \text{Max-Value}(game, game. \text{Result}(state, a))
     if v2 < v then
       v, move \leftarrow v2, a
  return v, move
```

Figure 1: An algorithm for calculating the optimal move using min-max - the move that leads to a terminal state with maximum utility, under the assumption that the opponent plays to minimize utility. The functions Max-Value and Min-Value go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state and the move to get there.

0 3 6 1 4 7 2 5 8

Numbers indicates unique location on the board


```
function MIN-MAX-SEARCH(game, state) returns an action
  player \leftarrow game.To-Move(state)
  value, move \leftarrow Max-Value(game, state)
  return move
function Max-Value(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow -\infty
  for each a in game.Actions(state) do
     v2, a2 \leftarrow Min-Value(game, game.Result(state, a))
     if v2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns returns a(utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow +\infty
  for each a in game. Actions (state) do
     v2, a2 \leftarrow \text{Max-Value}(game, game. \text{Result}(state, a))
     if v2 < v then
       v, move \leftarrow v2, a
  return v, move
```

Figure 1: An algorithm for calculating the optimal move using min-max - the move that leads to a terminal state with maximum utility, under the assumption that the opponent plays to minimize utility. The functions Max-Value and Min-Value go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state and the move to get there.

0 3 6 1 4 7 Numbers indicates unique location on the board


```
function MIN-MAX-SEARCH(game, state) returns an action
  player \leftarrow game.To-Move(state)
  value, move \leftarrow Max-Value(game, state)
  return move
function Max-Value(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow -\infty
  for each a in game. ACTIONS (state) do
     v2, a2 \leftarrow Min-Value(game, game.Result(state, a))
     if v2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns returns a(utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow +\infty
  for each a in game. Actions (state) do
     v2, a2 \leftarrow \text{Max-Value}(game, game. \text{Result}(state, a))
     if v2 < v then
       v, move \leftarrow v2, a
  return v, move
```

Figure 1: An algorithm for calculating the optimal move using min-max - the move that leads to a terminal state with maximum utility, under the assumption that the opponent plays to minimize utility. The functions Max-Value and Min-Value go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state and the move to get there.

0 3 6 1 4 7

Numbers indicates unique location on the board


```
function MIN-MAX-SEARCH(game, state) returns an action
  player \leftarrow game.To-Move(state)
  value, move \leftarrow Max-Value(game, state)
  return move
function Max-Value(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow -\infty
  for each a in game. ACTIONS (state) do
     v2, a2 \leftarrow Min-Value(game, game.Result(state, a))
     if v2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns returns a(utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow +\infty
  for each a in game. Actions (state) do
     v2, a2 \leftarrow \text{Max-Value}(game, game. \text{Result}(state, a))
     if v2 < v then
       v, move \leftarrow v2, a
  return v, move
```

Figure 1: An algorithm for calculating the optimal move using min-max - the move that leads to a terminal state with maximum utility, under the assumption that the opponent plays to minimize utility. The functions Max-Value and Min-Value go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state and the move to get there.

0 3 6 1 4 7 Numbers indicates unique location on the board


```
function MIN-MAX-SEARCH(game, state) returns an action
  player \leftarrow game.To-Move(state)
  value, move \leftarrow Max-Value(game, state)
  return move
function Max-Value(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  for each a in game. ACTIONS (state) do
     v2, a2 \leftarrow Min-Value(game, game.Result(state, a))
     if v2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns returns a(utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow +\infty
  for each a in game. Actions (state) do
     v2, a2 \leftarrow \text{Max-Value}(game, game. \text{Result}(state, a))
    if v2 < v then
       v, move \leftarrow v2, a
  return v, move
```

Figure 1: An algorithm for calculating the optimal move using min-max - the move that leads to a terminal state with maximum utility, under the assumption that the opponent plays to minimize utility. The functions Max-Value and Min-Value go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state and the move to get there.

0 3 6 1 4 7 Numbers indicates unique location on the board


```
function Min-max-Search(game, state) returns an action
  player \leftarrow game.To-Move(state)
  value, move \leftarrow Max-Value(game, state)
  return move
function Max-Value(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  for each a in game. ACTIONS (state) do
     v2, a2 \leftarrow \text{Min-Value}(game, game. Result(state, a))
    if v2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns returns a(utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow +\infty
  for each a in game. Actions (state) do
     v2, a2 \leftarrow \text{Max-Value}(game, game. \text{Result}(state, a))
    if v2 < v then
       v, move \leftarrow v2, a
  return v, move
```

Figure 1: An algorithm for calculating the optimal move using min-max - the move that leads to a terminal state with maximum utility, under the assumption that the opponent plays to minimize utility. The functions Max-Value and Min-Value go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state and the move to get there.

Numbers indicates unique location on the board


```
function MIN-MAX-SEARCH(game, state) returns an action
  player \leftarrow game.To-Move(state)
  value, move \leftarrow Max-Value(game, state)
  return move
function Max-Value(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  for each a in game. ACTIONS (state) do
     v2, a2 \leftarrow \text{Min-Value}(game, game. Result(state, a))
     if v2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns returns a(utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow +\infty
  for each a in game. ACTIONS (state) do
     v2, a2 \leftarrow \text{Max-Value}(game, game. \text{Result}(state, a))
     if v2 < v then
       v, move \leftarrow v2, a
  return v, move
```

Figure 1: An algorithm for calculating the optimal move using min-max - the move that leads to a terminal state with maximum utility, under the assumption that the opponent plays to minimize utility. The functions Max-Value and Min-Value go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state and the move to get there.

0 3 6 1 4 7 Numbers indicates unique location on the board


```
function Min-max-Search(game, state) returns an action
  player \leftarrow game.To-Move(state)
  value, move \leftarrow Max-Value(game, state)
  return move
function Max-Value(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow -\infty
  for each a in game. ACTIONS (state) do
     v2, a2 \leftarrow \text{Min-Value}(game, game. Result(state, a))
    if v2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns returns a(utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow +\infty
  for each a in game. ACTIONS (state) do
     v2, a2 \leftarrow \text{MAX-VALUE}(game, game. Result(state, a))
    if v2 < v then
       v, move \leftarrow v2, a
  return v, move
```

Figure 1: An algorithm for calculating the optimal move using min-max - the move that leads to a terminal state with maximum utility, under the assumption that the opponent plays to minimize utility. The functions Max-Value and Min-Value go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state and the move to get there.

0 3 6 1 4 7 2 5 8

Numbers indicates unique location on the board


```
function Min-max-Search(game, state) returns an action
  player \leftarrow game.To-Move(state)
  value, move \leftarrow Max-Value(game, state)
  return move
function Max-Value(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  for each a in game. ACTIONS (state) do
    v2, a2 \leftarrow Min-Value(game, game.Result(state, a))
    if v2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns returns a(utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow +\infty
  for each a in game. ACTIONS (state) do
    v2, a2 \leftarrow \text{Max-Value}(game, game. Result(state, a))
    if v2 < v then
       v, move \leftarrow v2, a
  return v, move
```

Figure 1: An algorithm for calculating the optimal move using min-max - the move that leads to a terminal state with maximum utility, under the assumption that the opponent plays to minimize utility. The functions Max-Value and Min-Value go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state and the move to get there.

Numbers indicates unique location on the board

We can see the **Depth-first search** nature in Min-Max Search so far


```
function Min-max-Search(game, state) returns an action
  player \leftarrow game.To-Move(state)
  value, move \leftarrow Max-Value(game, state)
  return move
function Max-Value(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow -\infty
  for each a in game.Actions(state) do
     v2, a2 \leftarrow \text{Min-Value}(game, game. Result(state, a))
     if v2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns returns a(utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow +\infty
  for each a in game. Actions (state) do
     v2, a2 \leftarrow \text{Max-Value}(game, game. Result(state, a))
    if v2 < v then
       v, move \leftarrow v2, a
  return v, move
```

Figure 1: An algorithm for calculating the optimal move using min-max - the move that leads to a terminal state with maximum utility, under the assumption that the opponent plays to minimize utility. The functions Max-Value and Min-Value go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state and the move to get there.

0 3 6 1 4 7 2 5 8 Numbers

Numbers indicates unique location on the board


```
function Min-max-Search(game, state) returns an action
  player \leftarrow game.To-Move(state)
  value, move \leftarrow Max-Value(game, state)
  return move
function Max-Value(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow -\infty
  for each a in game.Actions(state) do
     v2, a2 \leftarrow \text{Min-Value}(game, game. Result(state, a))
    if v2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns returns a(utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow +\infty
  for each a in game. Actions (state) do
     v2, a2 \leftarrow \text{Max-Value}(game, game. Result(state, a))
    if v2 < v then
       v, move \leftarrow v2, a
  return v, move
```

Figure 1: An algorithm for calculating the optimal move using min-max - the move that leads to a terminal state with maximum utility, under the assumption that the opponent plays to minimize utility. The functions Max-Value and Min-Value go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state and the move to get there.

0 3 6 1 4 7

Numbers indicates unique location on the board


```
function Min-max-Search(game, state) returns an action
  player \leftarrow game.To-Move(state)
  value, move \leftarrow Max-Value(game, state)
  return move
function Max-Value(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow -\infty
  for each a in game.Actions(state) do
     v2, a2 \leftarrow \text{Min-Value}(game, game. Result(state, a))
    if v2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns returns a(utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow +\infty
  for each a in game. Actions (state) do
     v2, a2 \leftarrow \text{Max-Value}(game, game. Result(state, a))
    if v2 < v then
       v, move \leftarrow v2, a
  return v, move
```

Figure 1: An algorithm for calculating the optimal move using min-max - the move that leads to a terminal state with maximum utility, under the assumption that the opponent plays to minimize utility. The functions Max-Value and Min-Value go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state and the move to get there.

0 3 6 1 4 7 2 5 8

Numbers indicates unique location on the board

far

Yujiang Wu, 2021 53

far

We can see the **recursion** nature in Min-Max Search so

Numbers indicates unique location on the board

We can see the **recursion** nature in Min-Max Search so far

far

We can see the **recursion** nature in Min-Max Search so

Figure 1: An algorithm for calculating the optimal move using min-max - the move that leads to a terminal state with maximum utility, under the assumption that the opponent plays to minimize utility. The functions Max-Value and Min-Value go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state and the move to get there.

far

We can see the **recursion** nature in Min-Max Search so

far

We can see the **recursion** nature in Min-Max Search so

far

far

We can see the **recursion** nature in Min-Max Search so

backed-up value of a state and the move to get there.

Numbers indicates unique location on the board

We can see the **recursion** nature in Min-Max Search so far

62 Yujiang Wu, 2021

Need to show the backing out of the recursion