

APS 1 - Transferência de calor

CONTEÚDO E OBJETIVOS DE APRENDIZADO: Avaliar a troca de calor em aletas. Determinar a taxa, efetividade e eficiência.

- O grupo deverá submeter um PDF com as respostas da atividade com o nome "grupoXX_APS1" via Blackboard até às 23hs59 do dia 06/03/2023. Entregas feitas por outras plataformas **NÃO** serão consideradas.
- A inscrição no grupo será feita no Blackboard. Indicar o nome de todos os alunos do grupo que participaram da atividade no documento contendo as respostas.

ROTEIRO DE ATIVIDADES

Estamos interessados em avaliar o comportamento térmico de uma aleta tipo pino construída em Alumínio ($k_{Al}=240\frac{\rm W}{\rm mK}$) e utilizada para aumentar a troca térmica de uma superfície que se encontra a $100^{\circ}C$ imersa em um ambiente a $25^{\circ}C$ sem movimentação forçada de fluido. Outras informações sobre a geometria da aleta estão disponíveis na Tabela 1.

Para seção retangular considere $w=240~\mathrm{mm}$ e $t=20~\mathrm{mm}$; para seção circular considere $D=240~\mathrm{mm}$.

Fonte: Incropera (2008)

Tabela 1:			
Grupo	Comprimento	Seção	Coeficiente
	[mm]	transversal	de Convecção
			[W/m. K]
1	200	Retangular	25
2	150	Circular	25
3	175	Retangular	25
4	200	Retangular	20
5	150	Circular	20
6	175	Retangular	20
7	175	Circular	25
8	175	Circular	20
9	200	Circular	25
10	150	Retangular	25
11	200	Circular	20

RUBRICA DE AVALIAÇÃO

Cada item será avaliado, de acordo com a proficiência e organização apresentada na resolução, usando os conceitos: insuficiente, em desenvolvimento, essencial, esperado.

- I. Ajuste o modelo/condições de contorno e desenvolva um programa em Python que receba as informações necessárias para determinar cada um dos itens a seguir:
 - 1. [1,5 pontos] Qual a temperatura na extremidade da aleta? Apresente um gráfico da distribuição de temperatura ($T_{analítica}$) ao longo do comprimento da aleta. Use legenda, identifique os eixos e as unidades usadas.
 - 2. [1,0 pontos] Determine a taxa de transferência de calor.
 - 3. [0,5 pontos] Determine a eficiência da aleta.
 - 4. [0,5 pontos] Determine a efetividade da aleta.
 - 5. [1,0 pontos] Assumindo a hipótese de aleta infinita, determine a taxa de transferência de calor.
 - 6. [0,5 pontos] Compare o resultado obtido no item 2 com o resultado do item 5, assumindo que foram obtidos com modelos diferentes.
 - 7. [1,0 pontos] Apresente o desenvolvimento matemático para determinar qual deveria ser o comprimento da aleta para que a hipótese de aleta infinita forneça uma medida precisa para a taxa de transferência de calor.
- II. Um dispositivo experimental usado para medir a condutividade térmica de materiais sólidos, envolve o uso de aletas equivalentes em todos os aspectos, exceto pelo tipo de material em que são fabricadas. Nesse dispositivo, uma das aletas é fabricada com um material-padrão com condutividade térmica conhecida κ_A , enquanto a outra é fabricada com um material cuja condutividade térmica κ_B se deseja determinar. Para a execução das medidas, uma das extremidades dos dois bastões é fixada a uma mesma fonte de calor com uma temperatura fixa T_b . Em seguida, os bastões são expostos a um fluido com temperatura T_∞ de modo que cada um deles esteja instrumentado com termopares para medir a temperatura a uma distância fixa κ_1 da base (fonte de calor). De acordo com o exposto considere os itens abaixo:
 - 1. [2,0 pontos] Considere válida a condição de aleta infinita e desenvolva um modelo matemático que permita ao usuário do dispositivo determinar a condutividade do material desconhecido. Lembre-se que $m^2 = hP/kA_{tr}$.
 - 2. [2,0 ponto] Se o material-padrão for o alumínio, com $k_A=240~W/(m^2\cdot K)$ e as medições revelarem valores de $T_A=75^{\circ}\text{C}$ e $T_B=60^{\circ}\text{C}$ em x_1 , para $Tb=100^{\circ}\text{C}$ e $T_{\infty}=25^{\circ}\text{C}$, qual é a condutividade térmica κ_B do material em teste?