Volume of Revolution: Shell, Washer and Cylinderical

Tuesday, 24 September 2024 3:46 pm

FIGURE 3

Definition of Volume Let S be a solid that lies between x = a and x = b. If the cross-sectional area of S in the plane P_x , through x and perpendicular to the x-axis, is A(x), where A is a continuous function, then the **volume** of S is

$$V = \lim_{n \to \infty} \sum_{i=1}^{n} A(x_i^*) \, \Delta x = \int_a^b A(x) \, dx$$

EXAMPLE 1 Show that the volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$.

is $y = \sqrt{r^2 - x^2}$. So the cross-sectional area is

$$A(x) = \pi y^2 = \pi (r^2 - x^2)$$

Using the definition of volume with a = -r and b = r, we have

$$V = \int_{-r}^{r} A(x) dx = \int_{-r}^{r} \pi(r^2 - x^2) dx$$

$$= 2\pi \int_{0}^{r} (r^2 - x^2) dx \qquad \text{(The integrand is even.)}$$

$$= 2\pi \left[r^2 x - \frac{x^3}{3} \right]_{0}^{r} = 2\pi \left(r^3 - \frac{r^3}{3} \right)$$

$$= \frac{4}{3}\pi r^3$$

oi rigure 5.

sums become closer to the true volume.

FIGURE 5 Approximating the volume of a sphere with radius 1

EXAMPLE 2 Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1. Illustrate the definition of volume by sketching a typical approximating cylinder.

$$A(x) = \pi \left(\sqrt{x}\right)^2 = \pi x$$

$$A(x) \Delta x = \pi x \Delta x$$

The solid lies between x = 0 and x = 1, so its volume is

$$V = \int_0^1 A(x) \, dx = \int_0^1 \pi x \, dx = \pi \frac{x^2}{2} \bigg]_0^1 = \frac{\pi}{2}$$

EXAMPLE 3 Find the volume of the solid obtained by rotating the region bounded by $y = x^3$, y = 8, and x = 0 about the *y*-axis.

$$A(y) = \pi x^2 = \pi (\sqrt[3]{y})^2 = \pi y^{2/3}$$

and the volume of the approximating cylinder pictured in Figure 7(b) is

$$A(y) \Delta y = \pi y^{2/3} \Delta y$$

Since the solid lies between y = 0 and y = 8, its volume is

$$V = \int_0^8 A(y) \, dy = \int_0^8 \pi y^{2/3} \, dy = \pi \left[\frac{3}{5} y^{5/3} \right]_0^8 = \frac{96 \, \pi}{5}$$

EXAMPLE 4 The region \Re enclosed by the curves y = x and $y = x^2$ is rotated about the x-axis. Find the volume of the resulting solid.

EXAMPLE 5 Find the volume of the solid obtained by rotating the region in Example 4 about the line y = 2.

• If the cross-section is a disk (as in Examples 1–3), we find the radius of the disk (in terms of x or y) and use

$$A = \pi(\text{radius})^2$$

■ If the cross-section is a washer (as in Examples 4 and 5), we find the inner radius r_{in} and outer radius r_{out} from a sketch (as in Figures 8, 9, and 10) and compute the area of the washer by subtracting the area of the inner disk from the area of the outer disk:

$$A = \pi (\text{outer radius})^2 - \pi (\text{inner radius})^2$$

Screen clipping taken: 26/10/2024 10:28 pm

EXAMPLE 6 Find the volume of the solid obtained by rotating the region in Example 4 about the line x = -1.

Volumes by Cylindrical Shells

$$V = V_2 - V_1$$

$$= \pi r_2^2 h - \pi r_1^2 h = \pi (r_2^2 - r_1^2) h$$

$$= \pi (r_2 + r_1) (r_2 - r_1) h$$

$$= 2\pi \frac{r_2 + r_1}{2} h (r_2 - r_1)$$

$$V = 2\pi r h \Delta r$$

V = [circumference][height][thickness]

$$\int_{a}^{b} (2\pi x) \left[f(x) \right] dx$$
circumference height thickness

EXAMPLE 1 Find the volume of the solid obtained by rotating about the *y*-axis the region bounded by $y = 2x^2 - x^3$ and y = 0.

EXAMPLE 2 Find the volume of the solid obtained by rotating about the *y*-axis the region between y = x and $y = x^2$.

EXAMPLE 4 Find the volume of the solid obtained by rotating the region bounded by $y = x - x^2$ and y = 0 about the line x = 2.

