Spécification et Vérification de protocoles cryptographiques

Steve Kremer

Laboratoire Spécification et Vérification ENS Cachan

Première partie l

Introduction (informelle) aux Protocoles Cryptographiques

Protocoles Cryptographiques

Protocole

But

 \hookrightarrow sécuriser les communications : secret, authentification, anonymat ...

Applications

 \hookrightarrow téléphonie mobile, vote électronique, homebanking, commerce électronique,

. . .

Protocoles Cryptographiques

Protocole

But

 \hookrightarrow sécuriser les communications : secret, authentification, anonymat ...

Applications

 \hookrightarrow téléphonie mobile, vote électronique, homebanking, commerce électronique,

. . .

Chiffrement et Signature numérique

• Chiffrement à clé symétrique

Chiffrement et Signature numérique

• Chiffrement à clé symétrique

• Chiffrement à clé asymétrique

Chiffrement et Signature numérique

• Chiffrement à clé symétrique

• Chiffrement à clé asymétrique

Signature numérique

Le protocole de paiement par carte bleue

- L'acheteur introduit sa CB
- \bigcirc Le commerçant saisit le montant m de la transaction
- Le terminal authentifie la carte
- L'acheteur entre son code
- \bullet Si m > 100 EUR (et dans seulement 20% des cas)
 - Le terminal demande l'authentification de la carte à la banque
 - La banque donne l'autorisation

Le protocole de paiement par CB en détails

- 4 acteurs : la Banque, l'Acheteur, la Carte et le Terminal
 - La Banque possède
 - une clé de signature K_{P}^{-1}
 - une clé de vérification K_B
 - une clé secrète pour chaque carte bancaire K_{CB}
 - La Carte possède
 - Data : nom, prénom, numéro de carte, date de validité
 - Valeur de signature $VS = \{hash(Data)\}_{K_B^{-1}}$
 - clé secrète K_{CB}
 - ullet le Terminal possède la clé de vérification K_B des signatures de la banque

Le protocole de paiement par CB

Le terminal lit la CB

1. $C \to T$: Data, $\{hash(Data)\}_{K_{\mathcal{B}}^{-1}}$

Le terminal demande

- 2. $T \rightarrow A$: code secret ?
- 3. $A \rightarrow C$: 1234
- 4. $C \rightarrow T$: ok

Le terminal contacte la banque

- 5. $T \rightarrow B$: auth?
- 6. $B \rightarrow T$: 456761428345362139456
- 7. $T \rightarrow C$: 456761428345362139456
- 8. $C \to T$: $\{456761428345362139456\}_{K_{CB}}$
- 9. $T \rightarrow B$: $\{456761428345362139456\}_{K_{CB}}$
- 10. $B \rightarrow T$: ok

Failles de la Carte Bleue

La sécurité est initialement assurée par :

- le fait que les cartes sont difficilement réplicables
- le secret des clés et du protocole

Mais:

- faille cryptographique : la taille des clés (1988) de 320 bits est trop courte
- faille logique : pas de lien entre le code secret à 4 chiffres et l'authentification
- réplicabilité des cartes

Failles de la Carte Bleue

La sécurité est initialement assurée par :

- le fait que les cartes sont difficilement réplicables
- le secret des clés et du protocole

Mais:

- faille cryptographique : la taille des clés (1988) de 320 bits est trop courte
- faille logique : pas de lien entre le code secret à 4 chiffres et l'authentification
- réplicabilité des cartes

En 1998, Serge Humpich crée la "Yescard"!

La Yescard

- 1. $C \rightarrow T$: Data, $\{hash(Data)\}_{K_B^{-1}}$
- 2. $T \rightarrow A: code secret ?$
- 3. $A \rightarrow C$: 1234
- 4. $C \rightarrow T: ok$

La Yescard

- 1. $C \rightarrow T$: Data, $\{hash(Data)\}_{K_n^{-1}}$
- 2. $T \rightarrow A$: code secret ? 3. $A \rightarrow C'$: 2345 4. $C' \rightarrow T$: ok

Remarque:

Il y a toujours quelqu'un à débiter!

La Yescard

- 1. $C \rightarrow T$: Data, $\{hash(Data)\}_{K^{-1}}$
- 2. $T \rightarrow A$: code secret ? 3. $A \rightarrow C'$: 2345 4. $C' \rightarrow T$: ok

Remarque:

Il y a toujours quelqu'un à débiter!

Yescard de Serge Humpich: Ajout d'une fausse signature sur une fausse carte

- 1. $C \rightarrow T : XXXX, \{hash(XXXX)\}_{K_{\alpha}^{-1}}$
- 2. $T \rightarrow A$: code secret?
- 3. $A \rightarrow C: 0000$
- 4. $C \rightarrow T: ok$

 $\begin{array}{ccccc} A & \rightarrow & B: & \{A, N_a\}_{\mathsf{pub}(B)} \\ \bullet & B & \rightarrow & A: & \{N_a, N_b\}_{\mathsf{pub}(A)} \\ A & \rightarrow & B: & \{N_b\}_{\mathsf{pub}(B)} \end{array}$

$$\begin{array}{ccccc} A & \rightarrow & B: & \{A, N_a\}_{\mathsf{pub}(B)} \\ B & \rightarrow & A: & \{N_a, \frac{N_b}{b}\}_{\mathsf{pub}(A)} \\ \bullet & A & \rightarrow & B: & \{\frac{N_b}{b}\}_{\mathsf{pub}(B)} \end{array}$$

$$\begin{array}{ccccc} A & \rightarrow & B: & \{A, N_a\}_{\mathsf{pub}(B)} \\ B & \rightarrow & A: & \{N_a, N_b\}_{\mathsf{pub}(A)} \\ A & \rightarrow & B: & \{N_b\}_{\mathsf{pub}(B)} \end{array}$$

Questions

- Est-ce que N_b est un secret partagé entre A et B?
- Quand B reçoit $\{N_b\}_{pub(B)}$, ce message provient-il réellement de A?

$$\begin{array}{cccc} A & \rightarrow & B: & \{A, N_a\}_{\mathsf{pub}(B)} \\ B & \rightarrow & A: & \{N_a, N_b\}_{\mathsf{pub}(A)} \\ A & \rightarrow & B: & \{N_b\}_{\mathsf{pub}(B)} \end{array}$$

Questions

- Est-ce que N_b est un secret partagé entre A et B?
- Quand B reçoit $\{N_b\}_{pub(B)}$, ce message provient-il réellement de A?

Une attaque sur ce protocole a été trouvée 17 ans après sa publication!

Agent A

Intruder *I*

Agent ${\it B}$

$$\begin{array}{ccccc} A & \longrightarrow & B & & : \{N_a, A\}_{\mathsf{pub}(B)} \\ B & \longrightarrow & A & : \{N_a, N_b\}_{\mathsf{pub}(A)} \\ A & \longrightarrow & B & : \{N_b\}_{\mathsf{pub}(B)} \end{array}$$

Agent A

Intruder 1

Agent B

 $\begin{array}{ccccc} \bullet & A & \longrightarrow & B & : \{N_a, A\}_{\mathsf{pub}(B)} \\ & B & \longrightarrow & A & : \{N_a, N_b\}_{\mathsf{pub}(A)} \\ & A & \longrightarrow & B & : \{N_b\}_{\mathsf{pub}(B)} \end{array}$

Intruder 1

Agent B

 $\begin{array}{ccccc} \bullet & A & \longrightarrow & B & : \{N_a, A\}_{\mathsf{pub}(B)} \\ & B & \longrightarrow & A & : \{N_a, N_b\}_{\mathsf{pub}(A)} \\ & A & \longrightarrow & B & : \{N_b\}_{\mathsf{pub}(B)} \end{array}$

Agent A Intruder I Agent B

 $\begin{array}{ccccc} A & \longrightarrow & B & : \{N_a, A\}_{\mathsf{pub}(B)} \\ \bullet & B & \longrightarrow & A & : \{N_a, N_b\}_{\mathsf{pub}(A)} \\ A & \longrightarrow & B & : \{N_b\}_{\mathsf{pub}(B)} \\ \end{array}$

 $\frac{\{N_a,A\}_{\text{pub}(B)}}{\{N_a,N_b\}_{\text{pub}(A)}}$

Agent A

Intruder 1

Agent B

Intruder I

 $\begin{array}{cccc}
A & \longrightarrow & B & : \{N_a, A\}_{\text{pub}(B)} \\
B & \longrightarrow & A & : \{N_a, N_b\}_{\text{pub}(A)} \\
\bullet & A & \longrightarrow & B & : \{N_b\}_{\text{pub}(B)}
\end{array}$

Agent A

Agent B

Intruder I

 $A \longrightarrow B : \{N_a, A\}_{pub(B)}$

 $\begin{array}{cccc}
A & \longrightarrow & B & : \{N_a, A\}_{\mathsf{pub}(B)} \\
B & \longrightarrow & A & : \{N_a, N_b\}_{\mathsf{pub}(A)} \\
\bullet & A & \longrightarrow & B & : \{N_b\}_{\mathsf{pub}(B)}
\end{array}$

Agent A

Agent B

Agent A Intruder I Agent B

Réponses

Réponses

- Est-ce que N_b est un secret partagé entre A et B?
 → Non
- Quand B reçoit {N_b}_{pub(B)}, ce message provient-il réellement de A?
 → Non

Agent A Intruder I Agent B

Réponses

- Quand B reçoit {N_b}_{pub(B)}, ce message provient-il réellement de A?
 → Non

Remarque : les algorithmes de chiffrement n'ont pas été cassés → Attaque sur la logique du protocole

'Man-in-the-middle' et SSH

RSA host key for localhost has changed and you have requested strict checking.

Host key verification failed.

Le protocole d'Otway-Rees

Le protocole d'Otway-Rees

But : une clé partagée entre A et B (et S)

Mais : il existe une attaque de confusion de type

Le protocole d'Otway-Rees

Confusion entre la clé partagé K_{AB} et le triplet M, A, B

 $M, \{N_A, M, A, B\}_{K_{AS}}$

Deuxième partie II

Les modèles à la Dolev-Yao : adversaire passif

Vérification des protocoles "à la Dolev-Yao"

En 1978, Needham et Schroeder évoquent le besoin de vérification formelle de protocoles

En 1982, Dolev et Yao formalisent les bases de ce qu'on appelle aujourd'hui le modèle "Dolev-Yao"

- un intrus ayant un contrôle total du réseau :
 - l'intrus peut intercepter tout message
 - l'intrus peut modifier tout message
 - l'intrus peut insérer des nouveaux messages calculés à partir de sa connaissance
- primitive cryptographique parfaite :
 - idéalisation de la cryptographie : algèbre de termes
 - par exemple, l'unique façon de déchiffrer un message est de connaître la clé de déchiffrement
- le protocole a
 - un nombre arbitraire de participants
 - un nombre arbitraire de sessions parallèles
 - des messages de taille arbitraire

Dans un premier temps : adversaire passif (écoute tous les messages)

Modélisation des messages par des termes

Définition (signature)

Une signature est un couple (\mathcal{F}, Ar) . \mathcal{F} est un ensemble fini de symboles de fonctions et $Ar : \mathcal{F} \to \mathbb{N}$ est une fonction associant une arité à chaque élément de \mathcal{F} .

L'ensemble des fonctions d'arité p est noté $\mathcal{F}_p = \{f \in \mathcal{F} \mid Ar(f) = p\}$.

En particulier l'ensemble \mathcal{F}_0 est l'ensemble des constantes.

Exemple

Soit
$$\mathcal{F} = \{enc, pair, k_1, k_2, 0, 1\}$$

$$Ar(enc) = Ar(pair) = 2$$

$$Ar(\mathbf{k_1}) = Ar(\mathbf{k_2}) = Ar(\mathbf{0}) = Ar(\mathbf{1}) = 0$$

On notera également $\mathcal{F} = \{ enc/2, pair/2, k_1/0, k_2/0, 0/0, 1/0 \}$

Termes

Définition (Termes)

Soit une signature (\mathcal{F},Ar) et un ensemble de variables \mathcal{X} , tels que $\mathcal{X}\cap\mathcal{F}=\emptyset$. L'ensemble des termes sur la signature (\mathcal{F},Ar) et les variables \mathcal{X} , noté $\mathcal{T}(\mathcal{F},\mathcal{X})$, est le plus petit ensemble tel que

- $\mathcal{X} \subseteq \mathcal{T}(\mathcal{F}, \mathcal{X})$
- $\mathcal{F}_0 \subseteq \mathcal{T}(\mathcal{F}, \mathcal{X})$
- $f(t_1, \ldots, t_n) \subseteq \mathcal{T}(\mathcal{F}, \mathcal{X})$ si $f \in \mathcal{F}_n$, n > 0, $t_1, \ldots, t_n \in \mathcal{T}(\mathcal{F}, \mathcal{X})$

Exemple

Soit $\mathcal{F} = \{ \mathbf{enc}/2, \mathbf{pair}/2, \mathbf{k_1}/0, \mathbf{k_2}/0, \mathbf{0}/0, \mathbf{1}/0 \}$ et $\mathcal{X} = \{x, y, z\}$. $\mathbf{pair}(x, \mathbf{1}), \mathbf{enc}(\mathbf{pair}(y, z), \mathbf{k_1})$ et $\mathbf{enc}(\mathbf{0}, \mathbf{k_1})$ sont des termes dans $\mathcal{T}(\mathcal{F}, \mathcal{X})$

 $\mathsf{pair}(0,1)$, $\mathsf{enc}(0,\mathsf{k}_1)$ sont des termes dans $\mathcal{T}(\mathcal{F})$, i.e., des termes clos

On utilisera également les notations $\{_\}$ pour **enc** $(_,_)$ et $\langle_,_\rangle$ pour **pair** $(_,_)$.

Notations pour manipuler des termes

Définition (Positions)

L'ensemble des positions d'un terme t est un sous-ensemble de \mathbb{N}_+^* (l'ensemble des suites finies d'entiers positifs non nuls). Il est défini inductivement comme

$$Pos(x) = \{\epsilon\} \quad (x \in \mathcal{X}) \qquad Pos(f(t_1, \dots, t_n)) = \{\epsilon\} \cup_{1 \le i \le n} i \cdot Pos(t_i)$$

Exemple

Soit
$$t = pair(0, enc(pair(0, k), k))$$

$$Pos(t) = \{\epsilon, 1, 2, 21, 22, 211, 212\}$$

Notations pour manipuler des termes

Définition (Sous-termes)

Le sous-terme $t|_p$ de t à la position p $(p \in Pos(t))$ est

$$t\mid_{\epsilon}=t$$
 $t\mid_{i\cdot p}=t_i\mid_p$ si $t=f(t_1,\ldots,t_n),f\in\mathcal{F}_n$

On note $st(t) = \{t_p \mid p \in Pos(t)\}$ l'ensemble des sous-termes de t. On étend la notion de sous-termes à des ensembles de termes : $st(\{t_1, \dots t_n\}) = \bigcup_{1 \leq i \leq n} st(t_i)$

Exemple

 $\begin{aligned} & \mathsf{Soit}\ t = \mathsf{pair}(\mathbf{0}, \mathsf{enc}(\mathsf{pair}(\mathbf{0}, \mathsf{k}), \mathsf{k})) \\ & t|_{21} = \mathsf{pair}(\mathbf{0}, k) \\ & st(t) = \{t, \mathbf{0}, \mathsf{enc}(\mathsf{pair}(\mathbf{0}, \mathsf{k}), \mathsf{k}), \mathsf{pair}(\mathbf{0}, \mathsf{k}), \mathsf{k}\} \end{aligned}$

Taille (DAG) de termes

Définition (Taille d'un terme)

La taille d'un terme t, noté |t| est défini de façon inductive

$$\mid t \mid = 1 \text{ si } t \in \mathcal{F}_0 \cup \mathcal{X}$$

 $\mid f(t_1, \dots, t_n) \mid = 1 + \sum_{i=1}^n \mid t_i \mid \text{ si } f \in \mathcal{F}_n$

Définition (Taille DAG d'un terme)

La taille DAG d'un terme t, noté $|t|_{DAG}$ est le nombre de sous-termes différents, i.e., $|t|_{DAG} = |st(t)|$ (où |E| dénote la cardinalité de l'ensemble E).

On peut étendre ces deux notions de taille à des ensembles de termes

$$|\{t_1,\ldots,t_n\}| = \sum_{i=1}^n |t_i|$$
 $|\{t_1,\ldots,t_n\}|_{DAG} = |\bigcup_{i=1}^n st(t_i)|$

Représentation compacte d'ensembles de termes

Des ensembles de termes peuvent être représentés de façon compacte par des DAGs avec partage maximal

Exemple

$$T = \{ pair(k_1, pair(k_2, k_3)), \\ enc(pair(k_2, k_3), k_3), k_1 \}$$

 $||T||_d$ dénote the la taille DAG de l'ensemble de termes T

Formellement, $(\mathcal{V},\mathcal{E})$ est le DAG qui représente l'ensemble de termes \mathcal{T} où

$$\bullet \ \mathcal{E} = \{ v_s \xrightarrow{i} v_e \mid v_s, v_e \in \mathcal{V}, v_s = f(t_1, \dots, t_n), v_e = t_i \} \cup \{ \epsilon \xrightarrow{\epsilon} v \mid v \in T \}$$

Substitutions et unificateurs

Définition (Substitution)

Une substitution σ est une fonction de $X \subseteq \mathcal{X}$ (X fini) dans $\mathcal{T}(\mathcal{F}, \mathcal{X})$. On dénote $dom(\sigma)$ l'ensemble X et on étend les substitutions à des termes

$$\begin{array}{rcl} \sigma(x) & = & x \text{ si } x \not\in dom(\sigma) \\ \sigma(f(t_1, \dots, t_n)) & = & f(\sigma(t_1), \dots, \sigma(t_n)) \end{array}$$

Définition (Unificateurs)

Deux termes s et t sont unifiables s'il existe une substitution σ , telle que $t\sigma=s\sigma$. σ est appelé l'unificateur.

Un unificateur de s et de t est appelé l'unificateur le plus général, noté $\mathit{mgu}(s,t)$ si

$$\forall \sigma. \ s\sigma = t\sigma \quad \exists \theta. \ \sigma = mgu(s,t)\theta$$

Systèmes d'inférence

Définition (Règle et système d'inférence)

Une règle d'inférence est une règle de la forme

$$\frac{T_1 \quad \dots \quad T_n}{T} \gamma$$

avec $T_1, \ldots, T_n, T \in \mathcal{T}(\mathcal{F}, \mathcal{X})$.

Un système d'inférence est un ensemble de règles d'inférence.

Exemple

Nous définissons le système d'inférence \mathcal{I}_{DY} :

$$\frac{x}{\langle x, y \rangle}$$
 $\frac{x}{\langle x \rangle}$ $\frac{y}{\langle x \rangle}$ $\frac{\langle x, y \rangle}{x}$ $\frac{\langle x, y \rangle}{y}$ $\frac{\langle x \rangle}{x}$

qui correspond aux capacités d'un intrus classique (appelé "intrus Dolev-Yao").

Dérivation : définition

Définition (Définition)

Un terme clos t est dérivable en une étape d'un ensemble de termes S par un système d'inférence \mathcal{I} , noté $S \vdash_{\mathcal{I}}^{1} t$ si

$$\bullet \ \frac{T_1 \quad \dots \quad T_n}{T} \gamma \in \mathcal{I}$$

ullet $\exists t_1,\ldots,t_n\in S$ et $\exists \sigma$, tels que $T_i\sigma=t_i$, $T\sigma=t$, $\gamma\sigma=$ true

Un terme t est dérivable d'un ensemble de termes S par un système d'inférence \mathcal{I} , noté $S \vdash_{\mathcal{I}} t$ si

- $t \in S$ ou
- ullet $\exists t_1,\ldots,t_n$ tels que $t_n=t$ et $S\cup\{t_1,\ldots,t_i\}\vdash^1_{\mathcal{I}}t_{i+1}$

On appelle alors $\exists t_1, \ldots, t_n$ la preuve de dérivation.

Dérivation : exemple

Exemple

Soit
$$S = \{\{k_1\}_{k_2}, k_2, k_3\}$$

 $S \vdash_{\mathcal{I}_{DY}}^{?} \{k_2\}_{\{k_1\}_{k_3}}$

Dérivation : exemple

Exemple

Soit
$$S = \{\{k_1\}_{k_2}, k_2, k_3\}$$

 $S \vdash_{\mathcal{I}_{DY}}^{?} \{k_2\}_{\{k_1\}_{k_3}}$

La preuve de dérivation : $k_1, \{k_1\}_{k_3}, \{k_2\}_{\{k_1\}_{k_2}}$

$$\frac{\begin{cases} k_1 \}_{k_2} & \overline{k_2} \\ \hline k_1 & \overline{k_3} \end{cases}}{\begin{cases} k_2 \end{cases}} \frac{k_2}{\{k_1\}_{k_3}}$$

Problème de décision et complexité

Définition (Problème de dérivation)

Soit S un ensemble de termes clos, $\mathcal I$ un système de dérivation et t un terme clos. Le problème de dérivation pour $S, \mathcal I, t$ est le suivant.

Données : S, \mathcal{I}, t Question : $S \vdash_{\mathcal{I}} t$?

Théorème (Localité)

Soit \mathcal{I} un système d'inférence, tel que pour tous termes clos t_1, \ldots, t_n, t si $\{t_1, \ldots, t_n\} \vdash_{\mathcal{I}} t$ alors il existe une preuve de dérivation qui n'utilise que des sous-termes de $\{t_1, \ldots, t_n, t\}$.

Le problème de dérivation pour S, \mathcal{I}, t est décidable en temps polynolmial en $|\{t_1, \ldots, t_n, t\}|_{DAG}$.

Rappel : Clauses de Horn propositionelles

Définition (Clause de Horn propositionelle)

Une clause de Horn propositionelle est une formule de la forme

$$p_1 \wedge \ldots \wedge p_n \rightarrow p$$

Définition (Le problème Horn-SAT propositionel)

Données : Un ensemble de clauses de Horn propositionelles H

Question : Est-ce qu'il existe une valuation ${\it V}$ telle que

$$\forall \phi \in H. \ V \models \phi$$

Théorème (Horn-SAT)

Horn-SAT propositionel est décidable en temps linéaire en |H|.

Preuve

Notons $S = st(\{t_1, \ldots, t_n, t\})$

Définissons l'ensemble des propositions $\{p_t \mid t \in S\}$ et l'ensemble des clauses de Horn

$$H = \left\{ \begin{array}{ccc} \top & \rightarrow \rho_u & u \in \{t_1, \dots t_n\} \\ \rho_{u_1}, \dots, \rho_{u_n} & \rightarrow \rho_u & \frac{T_1, \dots, T_n}{T} \gamma \in \mathcal{I} \\ & & \text{et } \exists \sigma. u_i = T_i \sigma, \gamma \sigma = \top, T \sigma = u \\ \rho_t & \rightarrow \bot \end{array} \right\}$$

L'encodage est de sorte que $\{t_1, \ldots, t_n\} \vdash_{\mathcal{I}} t$ ssi H n'est pas satisfaisable.

Horn-SAT est décidable en temps linéaire en $\mid H \mid$ et $\mid H \mid$ est polynomial en $\mid \{t_1,\ldots,t_n\}\mid_{DAG}$. (Le degré est $\max\{n\mid \frac{T_1,\ldots,T_n}{T}\gamma\in\mathcal{I}\}$)

Dolev-Yao est décidable en temps polynomial

Proposition (Décidabilité du système Dolev-Yao)

Le système d'inférence \mathcal{I}_{DY} vérifie que pour tous termes clos t_1,\ldots,t_n,t si $\{t_1,\ldots,t_n\}\vdash_{\mathcal{I}_{DY}}t$ alors il existe une preuve n'utilisant que des sous-termes de $\{t_1,\ldots,t_n,t\}$.

Preuve : Soit u_1, \ldots, u_n une preuve de dérivation de $\{t_1, \ldots, t_n\} \vdash_{\mathcal{I}_{DY}} t$. On appelle u_1, \ldots, u_n une preuve de composition si la dernière étape utilise la règle $\frac{x}{\langle x, y \rangle}$ ou $\frac{x}{\langle x \rangle_y}$. Sinon, on parle de preuve de décomposition.

On prouve un lemme plus fort :

Pour tous termes clos t_1, \ldots, t_n, t si $\{t_1, \ldots, t_n\} \vdash_{\mathcal{I}_{DY}} t$ alors il existe une preuve de taille minimale u_1, \ldots, u_ℓ , telle que si u_1, \ldots, u_ℓ est

- ullet une preuve de composition : $st(\{u_1,\ldots u_\ell\})\subseteq st(\{t_1,\ldots,t_n,t\})$
- une preuve de décomposition : $st(\{u_1, \ldots u_\ell\}) \subseteq st(\{t_1, \ldots, t_n\})$

Preuve par induction sur la taille ℓ de la preuve.