ELEMENTOS DE CÁLCULO NUMÉRICO / CÁLCULO NUMÉRICO Segundo Cuatrimestre 2020

Práctica N° 9: Integración Numérica - Métodos Multipaso

Ejercicio 1 Interpolando las funciones de base de Lagrange, hallar una fórmula de cuadratura por interpolación de la forma

$$\int_0^{2h} f(x) \ dx \sim A_0 f(0) + A_1 f(h).$$

Para f una función C^2 probar que el error cometido no excede el valor $\frac{\|f''\|_{\infty}}{2}h^3$.

Ejercicio 2 Usar el método de coeficientes indeterminados para dar una fórmula de cuadratura por interpolación:

$$\int_0^{3h} f(x) \ dx \sim A_0 f(0) + A_1 f(h) + A_2 f(3h).$$

Ejercicio 3 Construir la fórmula abierta de Newton-Cotes para calcular $\int_{-1}^{1} f(x) dx$ con nodos -1/2, 0, 1/2, y la fórmula cerrada de Newton-Cotes con nodos en los puntos -1, -1/3, 1/3, 1.

Ejercicio 4 Considerar la función definida en [-h, h] (h > 0):

$$f(x) = \begin{cases} 0, & \text{si } -h \le x \le 0 \\ x, & \text{si } 0 < x \le h. \end{cases}$$

Hallar el error de la regla de trapecios aplicada a f(x). ¿El orden es igual al obtenido para una función suficientemente suave?

Ejercicio 5 La fórmula de cuadratura

$$\int_{a}^{b} f(x) \ dx \sim f\left(\frac{a+b}{2}\right) (b-a)$$

es conocida como Regla de los Rectángulos. Para $f \in C^1[a,b]$ acotar el error que se comete al utilizarla.

Ejercicio 6 a) Hallar una fórmula de cuadratura del tipo:

$$\int_{-1}^{1} f(x) \ dx \sim Af(-2) + Bf(0) + Cf(2).$$

b) Para $f \in C^3[-2,2]$ probar que el error cometido no excede el valor $\frac{7}{12} ||f^{(3)}||_{\infty}$.

Ejercicio 7 Escribir programas que reciban una función f y los límites del intervalo [a, b], y utilicen las reglas de trapecios y de Simpson para aproximar $\int_a^b f$.

Ejercicio 8 Escribir programas que reciban una función f, los límites del intervalo [a, b] y un parámetro n, y utilicen las reglas de trapecios y de Simpson compuestas para aproximar $\int_a^b f$, partiendo [a, b] en n intervalos.

Ejercicio 9 Se sabe que $\int_{0}^{1} \frac{1}{1+x^{2}} dx = \frac{\pi}{4}$.

- a) Para $n=1,\ldots,100$, utilizar las reglas de trapecios y Simpson compuestas para aproximar numéricamente la integral y dar un valor cercano a π .
- b) Graficar las sucesiones obtenidas junto con el valor de π que arroja Octave y el valor que se obtiene al aplicar el programa del ejercicio anterior.

Ejercicio 10 a) Calcular exactamente la integral

$$I = \int_0^{2\pi} [1 - \cos(32x)] \ dx.$$

b) Aproximar el valor de I usando el programa del Ejercicio 7 con los métodos de los trapecios, Simpson, trapecios compuesta y Simpson compuesta para n=2,4,8 y 16.

Ejercicio 11 Se quiere calcular $\int_{-1}^{1} e^{-x^2} dx$ utilizando la regla de trapecios compuesta, partiendo el intervalo [-1,1] en n subintervalos. Hallar n de modo que el error sea menor que 10^{-3} .

Ejercicio 12 Determinar el grado de precisión de las fórmulas para $\int_{-1}^{1} f(x) dx$:

- a) $\frac{4}{3}f(-0.5) \frac{2}{3}f(0) + \frac{4}{3}f(0.5)$.
- b) $\frac{1}{4}f(-1) + \frac{3}{4}f(-\frac{1}{3}) + \frac{3}{4}f(\frac{1}{3}) + \frac{1}{4}f(1)$.

Ejercicio 13 Hallar reglas de cuadratura de grado de precisión máximo para aproximar $\int_{-3}^{3} f(x) dx$, de las siguientes formas:

- a) $A[f(x_0) + f(x_1)]$ (repitiendo el coeficiente).
- b) $Af(x_0) + Bf(x_0 + 4)$.

y determinar cuáles son dichos grados.

Ejercicio 14 Sea $w : \mathbb{R} \to \mathbb{R}$ una función estrictamente positiva. Se tiene una fórmula de cuadratura en el intervalo [a, b] de la forma:

$$\int_{a}^{b} f(x)w(x)dx \sim \sum_{i=1}^{n} A_{i}f(x_{i}). \tag{1}$$

Aplicando un cambio de variables, obtener, a partir de (1), una cuadratura para el intervalo [c,d], de la forma

$$\int_{c}^{d} f(x)w(x) \sim \sum_{i=1}^{n} B_{i}f(y_{i}).$$

Calcular los coeficientes B_i en función de los A_i y los nodos y_i en función de los x_i . ¿Tiene la cuadratura en [c,d] el mismo grado de precisión que la cuadratura en [a,b]?

Ejercicio 15 Calcular $\int_{-1}^{1} f(x)x^2 dx$ mediante una regla decuadratura de la forma

$$\int_{-1}^{1} f(x)x^2 dx \sim A_0 f(x_0) + A_1 f(x_1)$$

que sea exacta para polinomios de grado menor o igual que 3.

Ejercicio 16 a) Hallar una regla de cuadratura del siguiente tipo

$$\int_{-1}^{1} f(x)\sqrt{|x|}dx \sim A_0 f(x_0) + A_1 f(x_1).$$

que tenga grado de precisión máximo. ¿Cuál es dicho grado?

b) Hallar una regla de cuadratura del siguiente tipo

$$\int_0^4 f(x) \sqrt{\left| \frac{x-2}{2} \right|} dx \sim A_0 f(x_0) + A_1 f(x_1).$$

que tenga grado de precisión máximo. ¿Cuál es dicho grado? Sugerencia: Usar el ejercicio 14.

Ejercicio 17 Sea w una función de peso. Se considera la regla de cuadratura de 1 punto:

$$\int_a^b f(x)w(x) \ dx \sim A_0 f(s).$$

- a) Probar que, cualquiera sea w, la fórmula tiene grado de precisión máximo si $s=\frac{\int_a^b xw(x)\ dx}{\int_a^b w(x)\ dx}$.
- b) Probar que si $w(x) \equiv 1$, esta regla coincide con la regla de los rectángulos.
- c) Considerar el intervalo [-1,1] y $w(x) = (x-1)^2$. Acotar el error que produce el uso de esta regla para funciones C^1 .

Ejercicio 18 Hallar los pesos y los nodos de las fórmulas de Gauss-Legendre de dos y tres puntos. (Los polinomios de Legendre mónicos de grado dos y tres son $x^2 - \frac{1}{3}$ y $x^3 - \frac{3}{5}x$).

Ejercicio 19 Probar que una fórmula de cuadratura

$$\int_a^b f(x)w(x) \ dx \sim Q_n(f) = \sum_{j=0}^n A_j f(x_j)$$

no puede tener grado de precisión mayor que 2n+1, independientemente de la elección de los coeficientes (A_i) y de los nodos (x_i) .

Sugerencia: Hallar un polinomio $p \in \mathbb{R}_{2n+2}[X]$ para el cual $Q_n(p) \neq \int_a^b p(x)w(x) \ dx$.

Ejercicio 20 Considerar la ecuación y'(t) = f(t, y(t)).

a) Deducir la fórmula de Milne:

$$y_n = y_{n-2} + h(\frac{1}{3}f_n + \frac{4}{3}f_{n-1} + \frac{1}{3}f_{n-2}),$$

aproximando la integral

$$\int_{t_{n-2}}^{t_n} f(t, y(t))dt = \int_{t_{n-2}}^{t_n} y'(t)dt = y(t_n) - y(t_{n-2}),$$

con la fórmula de Simpson. Usar el Ejercicio 14.

b) Proceder en forma análoga al ítem anterior y dar un método multipaso de la forma

$$y_{n+1} - y_n = h[Af_n + Bf_{n-1} + Cf_{n-2}].$$

c) Analizar la convergencia (estabilidad y consistencia) de los métodos de los ítems anteriores y calcular su orden.

Ejercicio 21 Analizar la convergencia de los siguientes métodos y calcular su orden.

a) Adams-Bashforth.

$$y_{n+3} - y_{n+2} = \frac{h}{12}(23f_{n+2} - 16f_{n+1} + 5f_n).$$

b) Adams-Moulton.

$$y_{n+3} - y_{n+2} = \frac{h}{12} (5f_{n+3} + 8f_{n+2} - f_{n+1}).$$

Ejercicio 22 Considerar el método de 2 pasos

$$y_{n+2} + ay_{n+1} + ay_n = h(\beta_2 f_{n+2} + \beta_1 f_{n+1} + \beta_0 f_{n+1}).$$

Determinar $a, \beta_2, \beta_1, \beta_0$ de modo que el método resultante tenga orden 4.

Ejercicio 23 Decidir si existe algún valor de $a \in \mathbb{R}$ para el cual el siguiente método multipaso sea convergente:

$$y_{n+3} - 3y_{n+2} + (3-a^2)y_{n+1} + (a^2-1)y_n = h[5f_{n+2} + (-a^2-5)f_n].$$