CSE 674 Advanced Data Structures

Background Review

Andrew C. Lee

EECS, Syracuse

Contents

- "Summations", "Products", "floors" and "ceilings"
- Sets etc.
- Counting
- Matrix etc.
- Reference: Appendix from Cormen's Text; Your course notes from discrete mathematics, calculus and linear algebra classes may help

Summations and other notations

Explain the meaning of the following expressions:

- $ightharpoonup \sum_{i=1}^n a_i$
- $\triangleright \sum_{i=1}^{\infty} a_i$
- $ightharpoonup \prod_{i=1}^n a_i$
- |x|
- ► [y]

Useful Identities

$$ightharpoonup \sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$
 for any $|x| < 1$

More identities are listed in Appendix A

Principle of Mathematical Induction

Questions:

- 1. Outline what it is
- 2. Identify the assumption(s)
- 3. Identify the conclusion(s)
- 4. Why you think it is correct? Explain
- 5. Give examples on how you apply this principle

Handling Limits

Given a sequence numbers

$$a_1, a_2, \ldots, a_k, \ldots$$

Question:

- 1. Does the limit $\lim_{k=1}^{\infty} a_k$ exist ?
- 2. Does the limit $\lim_{n=1}^{\infty} \sum_{i=1}^{n} a_k$ exist ?

Discrete Mathematics

List the definitions and basic facts for

- Sets
- Relations
- Functions

Explain the notation(s) you use.

How about Trees and Graphs?

Big-O notation

Question:

In your own words, explain what is Big-O notation (you probably have learned about it briefly when you were undergraduates).

More on Big-O and other asymptotics notations

Figure: Meanings of the asymptotics notations O, Ω and Θ