

AnomalyGFM: Graph Foundation Model for Zero/Few-shot Anomaly Detection

Hezhe Qiao, Chaoxi Niu, Ling Chen, Guansong Pang

Background-Introduction to Anomalies and Graph Anomalies

Anomalies (a.k.a., outliers, novelties): Instances that are significantly different from most of the data.

Graph Anomalies: Unexpected, irregular, or suspicious instance in graph-structured data that significantly different from most of the data.

Background-Introduction to GAD

Social network

Bank transaction

Web client-server

Social spam

Financial fraud

Network intrusion

•••••

Graph Anomaly Detection (GAD), which aims to identify the rare observations in graphs.

Introduction to Generalist GAD

Generalist GAD: Pre-train a graph neural network designed to generalize across diverse graph domains and anomaly types.

Conventional GAD

Generalist GAD

Challenges of Generalist GAD

Generalist Node Classification Generalist GAD

- > Feature Heterogeneity
- Domain Difference
- > Fine Tuning Mechanism

Challenges of General Node Classification

- - -

- > Abnormality/Normality
 Difference
- Generalized Scoring Measurement

Motivation-Residual Feature

☐ The residual features essentially project the node information into a unified feature space where we can effectively measure the abnormality of nodes from different graphs in a consistent way.

Residual Feature

$$\mathbf{r}_i = \mathbf{h}_i - rac{1}{\left|\mathcal{N}\left(v_i
ight)
ight|} \sum_{v_j \in \mathcal{N}\left(v_i
ight)} \mathbf{h}_j$$

Abnormality Measure

$$s_i = \exp\left(\mathbf{r}_i^{ ext{T}}\mathbf{p}_a
ight) + eta_{ ext{exp}}\left(-\mathbf{r}_i^{ ext{T}}\mathbf{p}_n
ight)$$

Preliminaries

Feature Unification

☐ Due to the feature dimension difference across the graphs, we need to align the node features/attributes into a shared feature space

$$\mathbf{X}^{(i)} \in \mathbb{R}^{\mathbb{N}^{(i)} imes d^{(i)}} egin{array}{c} ext{Feature} \ ext{Projection} \end{array}$$

GNN for Representation Learning

☐ We adopt a 2-layer GCN to model the graph due to its efficient and simple architecture.

$$\mathbf{H}^{(\ell)} = ext{GNN}\left(\mathbf{A}, \mathbf{H}^{(\ell-1)}; \mathbf{W}^{(\ell)}
ight)$$

AnomalyGFM-Pre-training Loss

☐ Learn the graph-agnostic, discriminative prototypes for the normal and abnormal classes using alignment

data-independent, learnable class prototypes

Supervised Loss

$$L_{BCE} = \sum_{i=1}^{|
u|} y_i \log \left(p_i
ight) + \left(1-y_i
ight) \log \left(1-p_i
ight)$$

Alignment Loss

$$egin{align} L_{ ext{Alignment}} &= \sum_{i=1}^{|\mathcal{V}|} I_{y_{i=0}} \|\mathbf{r}_i - \mathbf{p}_n\|_2^2 + I_{y_{i=1}} \|\mathbf{r}_i - \mathbf{p}_a\|_2^2 \ L_{ ext{total}} &= L_{BCE} + lpha L_{ ext{Alignment}} \end{aligned}$$

AnomalyGFM Zero-shot Inference

☐ During the inference, we use the similarity between node representation and prototypes of normal and abnormal class as the anomaly score.

AnomalyGFM Few-shot Inference

A small learnable prompt and adaptivation layer were involved into the normal class prototype to better align it with the normal node representation residuals on the test graph during a prompt fine-tuning step

AnomalyGFM Few-shot Inference

☐ During the inference, we use the similarity between node representation and abnormal class and refined prototypes of normal as the anomaly score.

Datasets and Competing Methods

Dataset	Domain	#Nodes	#Edges	#Feat.	Ano.	Sim.
Facebook	Social Networks	1,081	55,104	576	27(2.49%)	0.690
Reddit	Social Networks	10,984	168,016	64	366(3.33%)	0.997
Amazon	Co-review	10,244	175,608	25	693(6.66%)	0.645
Disney	Co-purchase	124	335	28	6(4.8%)	0.804
Amazon-all	Co-review	11,944	4,398,392	25	821(6.87%)	0.645
YelpChi-all	Co-review	45,941	3,846,979	32	6,674(14.52%)	0.905
Tolokers	Work Collaboration	11,758	519,000	10	2,566(21.8%)	0.814
Question	Social Networks	48,921	153,540	301	1,460(2.98%)	0.679
Elliptic	Bitcoin Transaction	46,564	73,248	93	4,545 (9.8%)	0.356
T-Finance	Transaction Record	39,357	21,222,543	10	1,803(4.6%)	0.107
T-Social	Social Friendship	5,781,065	73,105,508	10	174,280(3.0%)	0.307

- ☐ Unsupervised methods: AnomalyDAE, CoLA, TAM, and GADAM;
- ☐ Supervised methods: GCN, GAT, BWGNN, GHRN, and XGBGraph;
- ☐ General GFM methods:
 GraphPrompt for general graph tasks, and the one for zero-shot GAD UNPrompt

Main Results —— Zero-shot Inference

☐ AnomalyGFM performs inference based on two discriminative graphagonistic prototypes distilled from the node residual feature, supporting strong generalization across the datasets.

Matuic	Made 1	Dataset										70.70.0 1 .00	
Metric	Method	Reddit	Amazon	Disney	Aamzon-all	YelpChi-all	Tolokers	Question	Elliptic	T-Finance	Avg.	p-value	
					Unsuperv	ised Methods					X1: 11:11	.,,	
	AnomalyDAE (ICASSP'20)	0.5016	0.5818	0.4853	0.7228	0.5002	0.5948	0.4311	0.4197	0.2324	0.4966	0.007	
	CoLA (TNNLS'21)	0.4623	0.4580	0.4696	0.4091	0.4879	0.4501	0.4945	0.5572	0.4889	0.4752	0.003	
	TAM (NeurIPS'23)	0.5725	0.4720	0.4773	0.7543	0.4216	0.5351	0.5119	0.3282	0.2990	0.4857	0.003	
	GADAM (ICLR'24)	0.4532	0.6646	0.4288	0.5959	0.4829	0.4832	0.5594	0.3922	0.1382	0.4664	0.007	
					Supervis	sed Methods							
	GCN (ICLR'17)	0.5645	0.5988	0.5000	0.7195	0.5486	0.5319	0.5161	0.7640	0.2345	0.5531	0.039	
AUROC	GAT (ICLR'18)	0.5000	0.4981	0.5175	0.5005	0.4802	0.5030	0.4577	0.6588	0.5072	0.5136	0.007	
	BWGNN (ICML'22)	0.5208	0.4769	0.6073	0.3648	0.5282	0.4877	0.4404	0.5843	0.5457	0.5062	0.003	
	GHRN (WebConf'23)	0.5253	0.4560	0.5336	0.3382	0.5125	0.4860	0.4535	0.5400	0.5324	0.4863	0.003	
	XGBGraph (NeurIPS'23)	0.4601	0.4179	0.6692	0.7950	0.4945	0.5462	0.5095	0.4274	0.3402	0.5177	0.003	
		Generalist Methods											
	GraphPrompt (WebConf'23)	0.4677	0.4904	0.5192	0.3215	0.4976	0.4779	0.4204	0.3221	0.5405	0.4508	0.003	
	UNPrompt (Arxiv'24)	0.5337	0.7525	0.6412	0.7962	0.5558	0.6853	0.4757	0.5901	0.2318	0.5847	0.074	
	AnomalyGFM	0.5974	0.8417	0.6751	0.9032	0.5791	0.5843	0.5280	0.6195	0.5614	0.6544	- /	
					Unsuperv	ised Methods						. III.	
	AnomalyDAE (ICASSP'20)	0.0327	0.0833	0.0566	0.1921	0.1484	0.1876	0.0241	0.0798	0.0274	0.0924	0.003	
AUPRC	CoLA (TNNLS'21)	0.0391	0.0669	0.0701	0.0861	0.1466	0.0848	0.0292	0.0998	0.0430	0.0739	0.007	
	TAM (NeurIPS'23)	0.0413	0.0666	0.0628	0.1736	0.1240	0.0970	0.0307	0.0697	0.0332	0.0776	0.007	
	GADAM (ICLR'24)	0.0293	0.1562	0.0651	0.1595	0.1371	0.1001	0.0395	0.0733	0.0261	0.0873	0.003	
	Supervised Methods												
	GCN (ICLR'17)	0.0439	0.0891	0.0484	0.1536	0.1735	0.1060	0.0387	0.1963	0.0274	0.0974	0.074	
	GAT (ICLR'18)	0.0329	0.0688	0.0530	0.0696	0.1400	0.0822	0.0259	0.1366	0.0463	0.0728	0.003	
	BWGNN (ICML'22)	0.0389	0.0652	0.0624	0.0586	0.1605	0.1030	0.0257	0.1158	0.0479	0.0753	0.007	
	GHRN (WebConf 23)	0.0407	0.0633	0.0519	0.0569	0.1505	0.0957	0.0259	0.1148	0.0457	0.0717	0.007	
	XGBGraph (NeurIPS'23)	0.0330	0.0536	0.1215	0.2307	0.1449	0.1256	0.0306	0.0816	0.0754	0.0996	0.027	
	Generalist Methods												
	GraphPrompt (WebConf'23)	0.0334	0.0661	0.0610	0.0666	0.1542	0.2070	0.0266	0.0664	0.0492	0.0811	0.003	
_	UNPrompt (Arxiv'24)	0.0351	0.1602	0.1236	0.2430	0.1810	0.2219	0.0348	0.1278	0.0279	0.1283	0.003	
	AnomalyGFM	0.0387	0.5790	0.1242	0.6820	0.1819	0.2749	0.0397	0.1371	0.0593	0.2352	1	

Main Results — Few-shot Inference

- ☐ Few shot methods: GPPT, GraphPrompt, and ARC
- □ AnomalyGFM achieves better sample-efficiency tuning due to the learning of class-level prototypes that are agnostic to different domains of graphs

Matria	Catting	Mathad	Dataset							A			
Metric Setting		Method	Reddit	Amazon	Disney	Aamzon-all	YelpChi-all	Tolokers	Question	Elliptic	T-Finance	Avg.	p-value
		GPPT (KDD'22)	0.5000	0.5303	0.4997	0.5010	0.5000	0.5061	0.4921	0.6162	0.3647	0.5011	0.003
	1-shot	GraphPrompt (WebConf'23)	0.4216	0.4882	0.4223	0.2631	0.4811	0.5328	0.4086	0.6001	0.4000	0.4464	0.004
	1-81101	ARC (NeurIPS'24)	0.4899	0.4571	0.3578	0.4570	0.4910	0.4667	0.5865	0.2904	0.2484	0.4272	0.008
38		AnomalyGFM	0.5922	0.8531	0.6649	0.8972	0.5872	0.5898	0.5303	0.6199	0.5916	0.6584	/
AUROC		GPPT (KDD'22)	0.5000	0.5098	0.5000	0.5051	0.5000	0.5181	0.4959	0.5736	0.2609	0.4848	0.003
	5-shot	GraphPrompt (WebConf'23)	0.4406	0.4900	0.6497	0.4726	0.5359	0.5381	0.4069	0.6012	0.4069	0.5046	0.003
	3-81101	ARC (NeurIPS'24)	0.4720	0.4458	0.4435	0.4473	0.5112	0.4746	0.5906	0.2714	0.2168	0.4303	0.007
		AnomalyGFM	0.6023	0.8600	0.6613	0.9011	0.5951	0.6095	0.5426	0.6119	0.6248	0.6676	/
		GPPT (KDD'22)	0.5000	0.5087	0.4769	0.5023	0.5000	0.4971	0.5047	0.4212	0.5539	0.4961	0.003
	10-shot	GraphPrompt (WebConf'23)	0.4321	0.4906	0.6314	0.7167	0.5367	0.5329	0.3826	0.6221	0.4260	0.5301	0.007
	10-51101	ARC (NeurIPS'24)	0.4867	0.4323	0.4769	0.4467	0.5145	0.4786	0.5901	0.2644	0.2208	0.4355	0.003
		AnomalyGFM	0.6252	0.8649	0.6649	0.9215	0.6064	0.6140	0.5611	0.6303	0.6283	0.6796	1
		GPPT (KDD'22)	0.0333	0.0766	0.0488	0.0687	0.1453	0.2204	0.0294	0.1239	0.0432	0.0877	0.003
	1-shot	GraphPrompt (WebConf'23)	0.0283	0.0680	0.0486	0.0426	0.1113	0.2321	0.0448	0.1108	0.0302	0.0796	0.012
		ARC (NeurIPS'24)	0.0332	0.0581	0.0453	0.0590	0.1402	0.2122	0.0468	0.0701	0.0277	0.0769	0.011
A		AnomalyGFM	0.0398	0.5801	0.1223	0.6921	0.1852	0.2786	0.0332	0.1401	0.0601	0.2368	/
AUPRC		GPPT (KDD'22)	0.0333	0.0692	0.0504	0.0716	0.1453	0.2265	0.0297	0.1127	0.0365	0.0861	0.004
-	5-shot	GraphPrompt (WebConf'23)	0.0285	0.0681	0.0892	0.0600	0.1661	0.2957	0.0327	0.1416	0.0360	0.1019	0.009
		ARC (NeurIPS'24)	0.0312	0.0571	0.0546	0.0572	0.1464	0.2150	0.0471	0.0726	0.0267	0.0786	0.011
		AnomalyGFM	0.0401	0.5831	0.1257	0.6985	0.1918	0.2866	0.0336	0.1437	0.0622	0.2405	/
		GPPT (KDD'22)	0.0334	0.0691	0.0526	0.0698	0.1453	0.2178	0.0301	0.0905	0.0511	0.0844	0.004
	10-shot	GraphPrompt (WebConf'23)	0.0278	0.0681	0.0848	0.1427	0.1649	0.2922	0.0263	0.1421	0.0382	0.1096	0.007
		ARC (NeurIPS'24)	0.0327	0.0557	0.0743	0.0583	0 1491	0.2168	0.0463	0.0677	0.0272	0.0809	0.011
		AnomalyGFM	0.0444	0.5895	0.1399	0.7124	0.1990	0.2897	0.0346	0.1570	0.0644	0.2478	1

Scale up to Very Large Graphs

☐ AnonalyGFM can effectively infer the anomaly score without considering the entire graph structure, eliminating the bottleneck of loading the full graph for GAD inference.

$$\mathbf{r}_i = \mathbf{h}_i - rac{1}{\left|\mathcal{S}\left(v_i
ight)
ight|} \sum_{v_j \in \mathcal{S}\left(v_i
ight)} \mathbf{h}_j \, .$$

Privacy-sensitive settings where we do not want to reveal the entire graph structure

Table 4: Subgraph inference on the very large-scale graphs. '/' indicates that the model cannot handle the dataset.

Metric	Method	Dataset							
Metric	Method	T-Finance	T-Social						
	Unsupervised	Methods	111						
	TAM (NeurIPS'23)	0.2990	/						
	GADAM (ICLR'24)	0.1382	0.5155						
AUROC	Supervised Methods								
AURUC	BWGNN (ICML'22)	0.5457	0.4964						
	GHRN (WebConf'23)	0.5324	0.4934						
	XGBGraph (NeurIPS'23)	0.3402	0.4602						
	AnomalyGFM	0.7852	0.5991						
	Unsupervised Methods								
	TAM (NeurIPS'23)	0.0332	/						
	GADAM (ICLR'24)	0.0261	0.0285						
AUPRC	Supervised Methods								
AUPRC	BWGNN (ICML'22)	0.0479	0.0301						
	GHRN (WebConf'23)	0.0457	0.0303						
	XGBGraph (NeurIPS'23)	0.0754	0.0305						
	AnomalyGFM	0.1059	0.0398						

Figure 3: AnomalyGFM performance w.r.t subgraph size s.

Sensitivity of AnomalyGFM w.r.t common dimensionality

***** Feature Unification

$$\mathbf{X}^{(i)} \in \mathbb{R}^{\mathbb{N}^{(i)} imes d^{(i)}} \stackrel{ ext{Feature}}{\longrightarrow} \widetilde{\mathbf{X}}^{(i)} \in \mathbb{R}^{\mathbb{N}^{(i)} imes d'}$$

Conclusion

- ☐ We build a GAD-oriented graph foundation model, AnoamlyGFM, that can work effectively under both few-shot and zero-shot scenarios.
- ☐ AnomalyGFM is pre-trained to learn discriminative and dataindependent prototypes by aligning them with the graph-agnostic node representation residuals.
- ☐ This provides a consistent and identical way for abnormality measurement using the similarity between residual node representation and the learned class prototypes, facilitating the strong generalization in both zero-shot and few-shot inference.