Simulating EXPSPACE Turing machines using P systems with active membranes

Artiom Alhazov^{1,2} Alberto Leporati¹ Giancarlo Mauri¹
Antonio E. Porreca¹ Claudio Zandron¹

¹Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di Milano-Bicocca

²Institute of Mathematics and Computer Science Academy of Sciences of Moldova

13th Italian Conference on Theoretical Computer Science 19–21 September 2012, Varese, Italy

Outline

- 1. P systems
- 2. Space complexity and the time-space trade-off
- 3. Simulating Turing machines
- 4. Conclusions and open problems

P systems (with restricted elementary active membranes)

Computation rules

Parallelism and efficiency

- ► The rules are applied in a maximally parallel way
- ▶ There may be nondeterminism, but we require confluence
- Division may create exponentially many processing units in linear time
- So we can solve hard problems in polynomial time by trading space for time

Parallelism and efficiency

- ► The rules are applied in a maximally parallel way
- ► There may be nondeterminism, but we require confluence
- Division may create exponentially many processing units in linear time
- So we can solve hard problems in polynomial time by trading space for time

Parallelism and efficiency

- ► The rules are applied in a maximally parallel way
- ► There may be nondeterminism, but we require confluence
- Division may create exponentially many processing units in linear time
- So we can solve hard problems in polynomial time by trading space for time

Membrane division is provably needed

Uniformity

We decide membership in some language L by using a uniform family of P systems

Uniformity

We decide membership in some language L by using a uniform family of P systems

Formalising the time-space trade-off

What's the exact meaning of trading space for time?

 $\mathsf{time} = \#\mathsf{computation} \ \mathsf{steps}$

Formalising the time-space trade-off

```
What's the exact meaning of trading space for time? time = \#computation \ steps space = \#membranes + \#objects
```

Known results on space complexity

Theorem

Polynomial-space P systems and polynomial-space Turing machines solve the same class of decision problems, namely **PSPACE**

Known results on space complexity

Theorem

Polynomial-space P systems and polynomial-space Turing machines solve the same class of decision problems, namely **PSPACE**

Proof.

A family of P systems working in space f(n) can be simulated by a TM working in $O(f(n) \log f(n))$ space

Known results on space complexity

Theorem

Polynomial-space P systems and polynomial-space Turing machines solve the same class of decision problems, namely **PSPACE**

Proof.

- A family of P systems working in space f(n) can be simulated by a TM working in $O(f(n) \log f(n))$ space
- A TM working in space f(n) can be simulated by a family of P systems in space O(f(n)) as long as f is a polynomial

Simulating polynomial-space TMs

Simulating polynomial-space TMs

The problem with superpolynomial space bounds

- We cannot use exponentially many labels (polytime uniformity)
- We must create the tape-membranes at runtime via membrane division
- ▶ But the new membranes are indistinguishable from the outside (they all have the same label)
- Solution: order and identify membranes according to their contents

Encoding exponential space configurations

Encoding exponential space configurations

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

$$\delta(q,\sqcup)=(r,b,\triangleleft)$$

Initialising the system

Initialising the system

Initialising the system

Main result

Theorem

Let M be a single-tape deterministic Turing machine working in time t(n) and space s(n), where $s(n) \leq n + 2^{p(n)}$ for some polynomial p. Then there exists a uniform family of confluent P systems with restricted elementary active membranes Π operating in time $O(t(n)s(n)\log s(n))$ and space $O(s(n)\log s(n))$ such that $L(\Pi) = L(M)$

Corollary

Both exponential-space TMs and exponential-space P systems solve exactly the problems in **EXPSPACE**

Conclusions and open problems

- P systems and TMs have identical computing power both in polynomial and in exponential space
- Preliminary results for sub-polynomial space
 - A weaker uniformity condition is needed
- ▶ Is there a general equivalence in power wrt all space bounds?
 - Probably, though the simulation must be improved
 - Possible solution: unary encoding of tape cell numbers

Grazie per l'attenzione!

Thanks for your attention!