Otázky ku skúške Matematická analýza I.

1. Definícia limity funkcie v bode

Definícia 12 Nech $f : A \to \mathbb{R}$, $a, b \in \mathbb{R}^*$ a a je hromadným bodom množiny A. Ak pre každé $\mathcal{O}_{\varepsilon}(b)$ existuje $\mathcal{O}_{\delta}^{o}(a)$ také, že $f(\mathcal{O}_{\delta}^{o}(a) \cap A) \subset \mathcal{O}_{\varepsilon}(b)$, hovoríme, že funkcia $f : A \to \mathbb{R}$ má v bode a limitu b. Píšeme $\lim_{x\to a} f(x) = b$.

2. Veta o limite zúženia funkcie

Definícia 14 Nech $f: A \to \mathbb{R}$ a $C \subset A$. Potom funkciu $(f|C): C \to \mathbb{R}$, (f|C)(x) = f(x) pre každé $x \in C$, nazývame zúženie funkcie f na množine C.

Veta 2 Nech $f: A \to \mathbb{R}$, $C \subset A$ a $a \in \mathbb{R}^*$ je hromadným bodom množiny C. Nech $\lim_{x\to a} f(x) = b$. Potom aj $\lim_{x\to a} (f|C)(x) = b$.

3. Veta o limite zloženej funkcie

Veta 6 Nech $f: A \to B \subset \mathbb{R}$ a $g: B \to \mathbb{R}$. Nech $\lim_{x\to a} f(x) = b$ a $\lim_{x\to b} g(x) = c$. Nech je splnená aspoň jedna z nasledujúcich podmienok:

- Pre každé $x \in A \setminus \{a\}$ je $f(x) \neq b$.
- Funkcia g je spojitá v bode b.

Potom $\lim_{x\to a} (g \circ f)(x) = \lim_{x\to a} g(f(x)) = c$.

4. Definícia spojitosti funkcie v bode, na množine a spojitosti

Definícia 13 Nech $f: A \to \mathbb{R}$ a $a \in A$ je hromadným bodom množiny A. Ak $\lim_{x\to a} f(x) = f(a)$, budeme hovoriť, že funkcia $f: A \to \mathbb{R}$ je spojitá v bode a.

Ak funkcia f je spojitá v každom bode $a \in C \subset A$, tak budeme hovoriť, že funkcia f je spojitá na množine C.

Ak funkcia f je spojitá v každom bode $a \in A$, tak budeme hovoriť, že funkcia f je spojitá.

5. Definícia postupnosti reálnych čísel. Definícia konvergentnej postupnosti

Definícia 18 Postupnosť (reálnych čísel) je funkcia $f : \mathbb{N}^+ \to \mathbb{R}$. Hodnotu $f(n) = a_n$ nazývame n-tý člen postupnosti. V tomto prípade postupnosť zapisujeme v tvare $(a_n)_{n=1}^{\infty}$.

Ak existuje $\lim_{n\to\infty} a_n = a \in \mathbb{R}$, tak hovoríme, že postupnosť $(a_n)_{n=1}^{\infty}$ je konvergentná. Vo zvyšných prípadoch hovoríme, že postupnosť je divergentná.

6. Definícia nekonečného radu, jeho konvergencie a súčtu

Definícia 21 Nech $(a_n)_{n=1}^{\infty}$ je postupnosť reálnych čísel. Potom symbol

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \ldots + a_n + \ldots$$

nazývame nekonečný číselný rad. Číslo a_n nazývame n-tý člen radu. K radu $\sum_{n=1}^{\infty} a_n$ je priradená taká postupnosť $(s_n)_{n=1}^{\infty}$, že platí

$$s_n = a_1 + a_2 + \ldots + a_n$$

pre každé $n \in \mathbb{N}^+$. Postupnosť $(s_n)_{n=1}^{\infty}$ nazývame postupnosť čiastočných súčtov radu $\sum_{n=1}^{\infty} a_n$.

Ak postupnosť $(s_n)_{n=1}^{\infty}$ je konvergentná, tak hovoríme, že rad $\sum_{n=1}^{\infty} a_n$ je konvergentný. Ak je divergentná, tak aj rad je divergentný.

7. Bolzano - Cauchyho kritérium konvergencie nekonečného radu

Veta 21 (Bolzano-Cauchyho kritérium konvergencie nekonečného radu) Rad $\sum_{n=1}^{\infty} a_n$ je konvergentný práve vtedy, keď pre každé $\varepsilon > 0$ existuje $n_0 \in \mathbb{N}$ také, že pre každé $m > n > n_0$, $m, n \in \mathbb{N}^+$ platí

$$|a_{n+1} + a_{n+2} + \ldots + a_m| < \varepsilon.$$

8. Nutná podmienka konvergencie nekonečného radu. Uviesť príklad, že nie je postačujúcou podmienkou (harmonický rad)

Veta 22 (Nutná podmienka konvergencie nekonečného radu) Ak rad $\sum_{n=1}^{\infty} a_n$ je konvergentný, tak

$$\lim_{n\to\infty} a_n = 0.$$

harmonický rad je rad tvaru

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots = \sum_{n=1}^{\infty} \frac{1}{n}$$

9. Definícia majorantného radu, majorantné kritérium konvergencie nekonečného radu

Definícia 25 Nech rady $\sum_{n=1}^{\infty} a_n \ a \sum_{n=1}^{\infty} b_n \ sú \ také, že \ |a_n| \le b_n \ pre \ každé \ n \in \mathbb{N}^+$. (Je zrejmé, že $0 \le b_n$.) Potom hovoríme, že rad $\sum_{n=1}^{\infty} b_n$ je majorantným radom radu $\sum_{n=1}^{\infty} a_n$. Píšeme

$$\sum_{n=1}^{\infty} a_n \ll \sum_{n=1}^{\infty} b_n.$$

Veta 24 Nech

$$\sum_{n=1}^{\infty}a_n\ll\sum_{n=1}^{\infty}b_n.$$

2

Ak rad $\sum_{n=1}^{\infty} b_n$ je konvergentný, tak je konvergentný aj rad $\sum_{n=1}^{\infty} a_n$.

Dôsledok 3 Nech

$$\sum_{n=1}^{\infty} a_n \ll \sum_{n=1}^{\infty} b_n.$$

Ak rad $\sum_{n=1}^{\infty} a_n$ je divergentný, tak je divergentný aj rad $\sum_{n=1}^{\infty} b_n$.

10. D' Alembertovo (podielové) kritérium konvergencie nekonečného radu

Veta 25 (d'Alembertovo kritérium konvergencie radu) Nech $a_n \neq 0$ pre každé $n \in \mathbb{N}^+$. Ak

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1,$$

potom je rad $\sum_{n=1}^{\infty} a_n$ absolútne konvergentný.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1,$$

tak rad $\sum_{n=1}^{\infty} a_n$ je divergentný.

11. Cauchyho (odmocninové) kritérium konvergencie nekonečného radu

Veta 26 (Cauchyho kritérium konvergencie radu) Nech

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1.$$

Potom je rad $\sum_{n=1}^{\infty} a_n$ absolútne konvergentný. Ak

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1,$$

tak rad $\sum_{n=1}^{\infty} a_n$ je divergentný.

12. Definícia radu so striedavými znamienkami, kritérium o jeho konvergencii

Definícia 27 Nech $a_n > 0$ pre každé $n \in \mathbb{N}^+$. Potom rad

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n+1} a_n + \dots$$

nazývame radom so striedavým znamienkom.

Veta 27 (Leibnitzovo kritérium konvergencie radu) Nech $a_n > 0$ pre každé $n \in \mathbb{N}^+$ a postupnosť $(a_n)_{n=1}^{\infty}$ je klesajúca. Ak $\lim_{n\to\infty} a_n = 0$, tak rad $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ je konvergentný.

3

13. Definícia diferencovateľ nosti funkcie v bode

Definícia 29 Nech $f: A \to \mathbb{R}$ a $a \in A$ je hromadným bodom množiny A. Nech existuje vlastná limita

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a).$$

Vtedy hovoríme, že funkcia f je diferencovateľná v bode a. Hodnotu f'(a) nazývame derivácia funkcie f v bode a.

Ak funkcia f je diferencovateľná v každom bode $a \in M \subseteq A$, potom hovoríme, že funkcia f je diferencovateľná na množine M. Ak funkcia $f: A \to \mathbb{R}$ je diferencovateľná na množine A, tak hovoríme, že f je diferencovateľná funkcia.

14. Veta o vzťahu diferencovateľnosti a spojitosti funkcie

Veta 30 (Nutná podmienka diferencovateľnosti funkcie v bode) Nech $f : A \rightarrow \mathbb{R}$ je diferencovateľná v bode $a \in A$. Potom je v tomto bode spojitá.

15. Veta Rolleho, Lagrangeova a Cauchyho

Veta 36 (Rolleho veta) Nech je daná funkcia $f : \langle a, b \rangle \to \mathbb{R}$, o ktorej platí:

- Je spojitá (na uzavretom intervale (a, b)).
- Je diferencovateľná na otvorenom intervale (a, b).
- 3. f(a) = f(b).

Potom existuje $c \in (a, b)$ také, že f'(c) = 0.

Veta 37 (Lagrangeova veta) Nech je daná funkcia $f : \langle a, b \rangle \to \mathbb{R}$, o ktorej platí:

- Je spojitá (na uzavretom intervale (a, b)).
- Je diferencovateľná na otvorenom intervale (a, b).

Potom existuje $c \in (a, b)$ také, že

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Veta 38 (Cauchyho veta) Nech sú dané funkcie $f : \langle a, b \rangle \to \mathbb{R}$ a $g : \langle a, b \rangle \to \mathbb{R}$, o ktorých platí:

- Sú spojité (na uzavretom intervale (a, b)).
- Sú diferencovateľné na otvorenom intervale (a, b).
- 3. $g'(x) \neq 0$ pre každé $x \in (a, b)$.

Potom existuje $c \in (a, b)$ také, že

$$\left(\frac{f'}{g'}\right)(c) = \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

16. Veta o l'Hospitalových pravidlách

Veta 39 (l'Hospitalovo pravidlo) Nech sú dané také funkcie $f:(a,b) \to \mathbb{R}$ a $g:(a,b) \to \mathbb{R}$, že o nich platí:

- Sú diferencovateľné (na intervale (a, b)).
- 2. $g(x) \neq 0$ a $g'(x) \neq 0$ pre každé $x \in (a, b)$.
- 3. $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0.$

Ak za týchto predpokladov existuje $\lim_{x\to a} \left(\frac{f'}{g'}\right)(x) = \lim_{x\to a} \left(\frac{f'(x)}{g'(x)}\right)$, tak existuje aj $\lim_{x\to a} \left(\frac{f}{g}\right)(x) = \lim_{x\to a} \left(\frac{f(x)}{g(x)}\right)$ a platí

$$\lim_{x \to a} \left(\frac{f'}{g'}\right)(x) = \lim_{x \to a} \left(\frac{f'(x)}{g'(x)}\right) = \lim_{x \to a} \left(\frac{f}{g}\right)(x) = \lim_{x \to a} \left(\frac{f(x)}{g(x)}\right).$$

Poznámka 2 Veta platí v tom istom znení, keď v nej tretiu podmienku $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ nahradíme podmienkou $\lim_{x\to a} g(x) = \infty$.

17. Definícia monotónnosti funkcie.

Definícia 34 Nech I je interval a $f: I \to \mathbb{R}$. Nech pre každé $x_1, x_2 \in I$ také, že $x_1 < x_2$ je

- f(x₁) < f(x₂). Potom hovoríme, že f je rýdzo rastúca funkcia.
- 2. $f(x_1) > f(x_2)$. Potom hovoríme, že f je rýdzo klesajúca funkcia.
- f(x₁) ≤ f(x₂). Potom hovoríme, že f je rastúca funkcia.
- f(x₁) ≥ f(x₂). Potom hovoríme, že f je klesajúca funkcia.

Všetky uvedené funkcie nazývame monotónne funkcie. Funkcie uvedené v prvých dvoch bodoch sa nazývajú rýdzo monotónne funkcie.

Definícia 35 Nech je daná funkcia $f: A \to \mathbb{R}$ a interval $I \subset A$. Ak zúženie $f|I: I \to \mathbb{R}$ je rýdzo rastúca (rýdzo klesajúca, rastúca, klesajúca) funkcia, tak budeme hovoriť, že funkcia f je rýdzo rastúca (rýdzo klesajúca, rastúca, klesajúca) na intervale I.

18. Postačujúca podmienka monotónnosti funkcie na intervale

Veta 40 Nech I je interval a je daná funkcia $f: I \to \mathbb{R}$. Nech

- Funkcia f je spojitá na intervale I.
- Funkcia f je diferencovateľná na vnútri Int(I) intervalu I.
- 3. Pre každé $x \in Int(I)$ je $f'(x) \ge 0$.

Potom je $f: I \to \mathbb{R}$ rastúca funkcia (na celom intervale I).

Veta 41 Nech I je interval a je daná funkcia $f: I \to \mathbb{R}$. Nech

- 1. Funkcia f je spojitá na intervale I.
- Funkcia f je diferencovateľná na vnútri Int(I) intervalu I.
- 3. Pre každé $x \in Int(I)$ je $f'(x) \ge 0$.
- Nech neexistuje podinterval J ⊂ I taký, že f'(x) = 0 pre každé x ∈ J.

Potom je $f: I \to \mathbb{R}$ rýdzo rastúca funkcia (na celom intervale I).

19. Definícia konvexnosti a konkávnosti funkcie

Definícia 36 Nech I je interval a $f: I \to \mathbb{R}$. Nech pre každé $x_1, x_2, x_3 \in I$ také, že $x_1 < x_2 < x_3$ platí:

- Bod (x₂, f(x₂)) leží pod priamkou určenou bodmi (x₁, f(x₁)) a (x₃, f(x₃)).
 Potom hovoríme, že f je rýdzo konvexná funkcia.
- Bod (x₂, f(x₂)) leží nad priamkou určenou bodmi (x₁, f(x₁)) a (x₃, f(x₃)).
 Potom hovoríme, že f je rýdzo konkávna funkcia.
- Bod (x₂, f(x₂)) leží pod, alebo na priamke určenej bodmi (x₁, f(x₁)) a (x₃, f(x₃)). Potom hovoríme, že f je konvexná funkcia.
- Bod (x₂, f(x₂)) leží nad, alebo na priamke určenej bodmi (x₁, f(x₁)) a (x₃, f(x₃)). Potom hovoríme, že f je konkávna funkcia.

Definícia 37 Nech je daná funkcia $f: A \to \mathbb{R}$ a interval $I \subset A$. Ak zúženie $f|I: I \to \mathbb{R}$ je rýdzo konvexná (rýdzo konkávna, konvexná, konkávna) funkcia, tak budeme hovoriť, že funkcia f je rýdzo konvexná (rýdzo konkávna, konvexná, konkávna) na intervale I.

20. Postačujúca podmienka konvexnosti (konkávnosti) na intervale sformulovaná pomocou druhej derivácie

Veta 43 Nech I je interval a je daná funkcia $f: I \to \mathbb{R}$. Nech

- Funkcia f je spojitá na intervale I.
- Funkcia f je diferencovateľná na vnútri Int(I) intervalu I.
- Nech f': Int(I) → ℝ je rýdzo rastúca (rýdzo klesajúca, rastúca, klesajúca)

Potom $f: I \to \mathbb{R}$ je rýdzo konvexná (rýdzo konkávna, konvexná, konkávna) funkcia (na celom intervale I).

Veta 44 Nech I je interval a je daná funkcia $f : I \rightarrow \mathbb{R}$. Nech

- 1. Funkcia f je spojitá na intervale I.
- Funkcia f je dva razy diferencovateľná na vnútri Int(I) intervalu I.
- 3. Nech f''(x) > 0 $(f''(x) < 0, f''(x) \ge 0, f''(x) \le 0)$ pre každé $x \in Int(I)$.

Potom $f: I \to \mathbb{R}$ je rýdzo konvexná (rýdzo konkávna, konvexná, konkávna) funkcia (na celom intervale I).

21. Definícia integrovateľ nosti funkcie

Definícia 39 1. Nech $\langle a,b \rangle$ je uzavretý interval. Nech $x_0, x_1, x_2, \ldots, x_k$ sú také, že $a=x_0 < x_1 < x_2 < \ldots < x_k = b$. Potom k+1-ticu $D=(x_0,x_1,x_2,\ldots,x_k)$ nazývame delenie intervalu $\langle a,b \rangle$. Intervaly $\langle x_{i-1},x_i \rangle$ nazývame deliace intervaly.

- Nech D = (x₀, x₁, x₂,...,x_k) je delenie intervalu ⟨a, b⟩. Potom číslo ||D|| = max{x_i − x_{i-1} | i = 1, 2,...,k} nazývame norma delenia D.
- Nech (D_n)_{n=1}[∞] je postupnosť delení intervalu ⟨a, b⟩. Ak lim_{n→∞} ||D_n|| = 0, potom hovoríme, že postupnosť (D_n)_{n=1}[∞] je normálna postupnosť delení intervalu ⟨a, b⟩.
- 4. Nech funkcia $f: A \to \mathbb{R}$ je ohraničená na intervale $\langle a, b \rangle \subseteq A$ a $D = (x_0, x_1, x_2, \dots, x_k)$ je ľubovoľné delenie intervalu $\langle a, b \rangle$. Nech body $c_i \in \langle x_{i-1}, x_i \rangle$ sú ľubovoľne zvolené pre $i = 1, 2, \dots, k$. Potom číslo

$$S_D(f) = \sum_{i=1}^k f(c_i)(x_i - x_{i-1})$$

nazývame integrálny súčet funkcie f pre dané delenie D intervalu $\langle a, b \rangle$ a voľbu bodov $c_i \in \langle x_{i-1}, x_i \rangle$.

Definícia 40 Nech funkcia $f: A \to \mathbb{R}$ je ohraničená na intervale $\langle a,b \rangle \subseteq A$. Ak pre každú normálnu postupnosť delení $(D_n)_{n=1}^{\infty}$ intervalu $\langle a,b \rangle$ a každú voľbu bodov c_i v integrálnych súčtoch $S_{D_n}(f)$, postupnosť $(S_{D_n}(f))_{n=1}^{\infty}$ konverguje k tomu istému číslu J, tak hovoríme, že funkcia f je integrovateľná na intervale $\langle a,b \rangle$. Číslo

$$J = \lim_{n \to \infty} S_{D_n}(f)$$

nazývame určitý integrál funkcie f na intervale (a,b) a označujeme

$$J = \int_{-b}^{b} f = \int_{-b}^{b} f(x) dx.$$

22. Postačujúce podmienka integrovateľnosti funkcie

Veta 48 (Prvá postačujúca podmienka integrovateľnosti) Nech funkcia $f : A \rightarrow \mathbb{R}$ je spojitá na intervale $\langle a, b \rangle \subseteq A$. Potom je na tomto intervale integrovateľná.

Definicia 41 Nech sú splnené nasledujúce podmienky:

- Funkcia f : A → R je ohraničená na intervale ⟨a, b⟩ ⊆ A.
- V intervale (a,b) existuje len konečný počet bodov, v ktorých táto funkcia nie je spojitá.
- V každom bode z intervalu (a,b) existuje vlastná limita funkcie f sprava a aj zľava.
- Existujú vlastné limity lim_{x→a+} f(x) a lim_{x→b-} f(x).

Potom hovoríme, že funkcia f je po čiastkach spojitá na intervale (a, b).

Veta 49 (Druhá postačujúca podmienka integrovateľnosti) Nech funkcia $f: A \to \mathbb{R}$ je po čiastkach spojitá na intervale $\langle a, b \rangle \subseteq A$. Potom je na tomto intervale integrovateľná.

23. Funkcia hornej hranice integrálu a jej základná vlastnosť

Definícia 42 Nech funkcia $f:\langle a,b\rangle\to\mathbb{R}$ je integrovateľná na intervale $\langle a,b\rangle.$ Potom funkciu

$$F: \langle a, b \rangle \to \mathbb{R}, \ F(x) = \int_{a}^{x} f = \int_{a}^{x} f(t) dt$$

nazývame funkcia hornej hranice integrálu funkcie f.

Veta 55 Nech funkcia $f : \langle a, b \rangle \to \mathbb{R}$ je integrovateľná na intervale $\langle a, b \rangle$. Potom funkcia

$$F: \langle a, b \rangle \to \mathbb{R}, \ F(x) = \int_{a}^{x} f(t)dt$$

je spojitá.

24. Hlavná veta integrálneho počtu

Veta 56 (Hlavná veta integrálneho počtu) Nech funkcia $f : \langle a, b \rangle \rightarrow \mathbb{R}$ je spojitá. Potom funkcia

$$F: \langle a, b \rangle \to \mathbb{R}, \ F(x) = \int_{a}^{x} f(t)dt$$

je diferencovateľná (na intervale (a,b)) a navyše

$$F'(x) = f(x)$$
 pre každé $x \in \langle a, b \rangle$.

25. Definícia primitívnej funkcie a vety o jej existencii

Definícia 43 Nech je daná funkcia $f: I \to \mathbb{R}$, kde I je interval. Nech existuje funkcia $F: I \to \mathbb{R}$ taká, že

$$F'(x) = f(x)$$
 pre každé $x \in I$.

Potom funkciu $F : I \to \mathbb{R}$ nazývame primitívna funkcia funkcie $f : I \to \mathbb{R}$.

Veta 57 Nech funkcia $F_1: I \to \mathbb{R}$ je primitívnou funkciou funkcie $f: I \to \mathbb{R}$. Potom funkcia $F_2: I \to \mathbb{R}$ je primitívnou funkciou funkcie $f: I \to \mathbb{R}$ práve vtedy, ak existuje $c \in \mathbb{R}$ také, že pre každé $x \in I$ je $F_2(x) = F_1(x) + c$. To znamená, že dve primitívne funkcie tej istej funkcie sa líšia iba o konštantu.

26. Newtonova - Leibnitzova formula

Veta 58 (Newtonov - Leibnitzov vzorec) Nech funkcia $f : \langle a, b \rangle \to \mathbb{R}$ je spojitá a $F : \langle a, b \rangle \to \mathbb{R}$ je jej ľubovoľná primitívna funkcia. Potom

$$\int_{a}^{b} f = \int_{a}^{b} f(x) \ dx = F(b) - F(a) = [F(x)]_{a}^{b}.$$

Poznámka 4 Definíciu určitého integrálu zovšeobecňujeme nasledujúcim spôsobom:

1.
$$\int_{a}^{a} f = 0$$
.

- 2. Ak a > b, definujeme $\int_a^b f = -\int_b^a f$.
- Nech f: ⟨a,b⟩ → ℝ je spojitá funkcia. Môžeme definovať funkciu

$$G:\langle a,b
angle
ightarrow\mathbb{R},\;G(x)=\int\limits_{x}^{b}f(t)dt.$$

Táto funkcia je diferencovateľná (na intervale (a,b)) a platí

$$G'(x) = -f(x)$$
 pre každé $x \in \langle a, b \rangle$.

4. Nech f: I → ℝ je spojitá funkcia, I je interval a bod a ∈ I. Definujme funkciu G: I → ℝ, G(x) = ∫_a f(t)dt. Nie je problém ukázať, že táto funkcia je diferencovateľná a G'(x) = f(x) pre každé x ∈ I.

27. Veta o integrovaní metódou per partes

Veta 60 Nech funkcie $f: I \to \mathbb{R}$ a $g: I \to \mathbb{R}$ sú spojito diferencovateľné na intervale I. Nech $H: I \to \mathbb{R}$ je primitívna funkcia funkcie $(f'g): I \to \mathbb{R}$. Potom $(fg - H): I \to \mathbb{R}$ je primitívna funkcia funkcie $(fg'): I \to \mathbb{R}$. V symbolike neurčitých integrálov to znamená, že

$$\int (fg') = fg - \int (f'g).$$

Dôsledok 5 Nech funkcie $f: I \to \mathbb{R}$ a $g: I \to \mathbb{R}$ sú spojito diferencovateľné na intervale I a body $a, b \in I$ sú ľubovoľne zvolené. Potom

$$\int_{a}^{b} f(x)g'(x) \ dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x) \ dx.$$

9

28. Prvá veta o integrovaní substitučnou metódou

Veta 61 (Prvá veta o substitučnej metóde) Nech I a J sú intervaly, $\varphi: J \to I \subseteq \mathbb{R}$ je spojito diferencovateľná a $f: I \to \mathbb{R}$ je spojitá funkcia. Nech $F: I \to \mathbb{R}$ je primitívna funkcia funkcia funkcie $f: I \to \mathbb{R}$. Potom $(F \circ \varphi): J \to \mathbb{R}$ je primitívna funkcia funkcie $((f \circ \varphi)\varphi'): J \to \mathbb{R}$.

Dôsledok 6 Nech I a J sú intervaly, $\varphi : J \to I \subseteq \mathbb{R}$ je spojito diferencovateľná a $f : I \to \mathbb{R}$ je spojitá funkcia. Nech $\alpha, \beta \in J$ sú ľubovoľné. Potom

$$\int\limits_{\alpha}^{\beta}((f\circ\varphi)\varphi')=\int\limits_{\alpha}^{\beta}f(\varphi(t))\varphi'(t)dt=\int\limits_{\varphi(\alpha)}^{\varphi(\beta)}f(x)\;dx=\int\limits_{\varphi(\alpha)}^{\varphi(\beta)}f.$$

29. Druhá veta o integrovaní substitučnou metódou

Veta 62 (Druhá veta o substitučnej metóde) Nech I a J sú intervaly, $\varphi: J \to I$ je spojito diferencovateľná bijekcia a $f: I \to \mathbb{R}$ je spojitá funkcia. Nech $G: J \to \mathbb{R}$ je primitívna funkcia funkcie $((f \circ \varphi)\varphi'): J \to \mathbb{R}$. Potom $(G \circ \varphi^{-1}): I \to \mathbb{R}$ je primitívna funkcia funkcie $f: I \to \mathbb{R}$.

Dôsledok 7 Nech I a J sú intervaly, $\varphi : J \to I$ je spojito diferencovateľná bijekcia a $f : I \to \mathbb{R}$ je spojitá funkcia. Potom pre každé $a, b \in I$ platí:

$$\int_a^b f = \int_a^b f(x) \ dx = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} ((f \circ \varphi)\varphi') = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(t))\varphi'(t)dt.$$