Тятя! Тятя! Нейросети заменили продавца!

Ппилиф Ульянкин

https://github.com/FUlyankin/neural_nets_prob

Листочек 3: пятьдесят оттенков градиентного спуска

Повторять до сходимости — это как жарить до готовности ${\it Heuзвестный\ cmydenm\ Bышкu}$

Упражнение 1 (50 оттенков спуска)

Маша Нестерова, хозяйка машин лёрнинга¹, собрала два наблюдения: $x_1 = 1, x_2 = 2, y_1 = 2, y_2 = 3$ и собирается обучить линейную регрессию $y = w \cdot x$. Маша очень хрупкая девушка, и ей не помещает помощь.

- а. Получите теоретическую оценку методом наименьших квадратов.
- б. Сделайте три шага градиентного спуска. В качестве стартовой точки используйте $w_0 = 0$. В качестве скорости обучения возьмите $\eta = 0.1$.
- в. Сделайте четыре шага стохастического градиентного спуска. Пусть в SGD сначала попадает первое наблюдение, затем второе.
- г. Если вы добрались до этого пункта, вы поняли градиентный спуск. Маша довольна. Начинаем заниматься тупой технической бессмыслицей. Сделайте два шага Momentum SGD. Возьмите $\alpha=0.9, \eta=0.1$
- д. Сделайте два шага Momentum SGD с коррекцией Нестерова.
- е. Сделайте два шага RMSprop. Возьмите $\alpha = 0.9, \eta = 0.1$
- ж. Сделайте два шага Adam. Возьмём $\beta_1 = \beta_2 = 0.9, \eta = 0.1$

Упражнение 2 (логистическая регрессия)

Маша решила, что нет смысла останавливаться на обычной регрессии, когда она знает, что есть ещё и логистическая:

¹Лёрнинг ей папа подарил

$$z = w \cdot x$$
 $p = P(y = 1) = \frac{1}{1 + e^{-z}}$
 $logloss = -[y \cdot ln p + (1 - y) \cdot ln(1 - p)]$

Запишите формулу, по которой можно пересчитывать веса в ходе градиентного спуска для логистической регрессии.

Оказалось, что x=-5, а y=1. Сделайте один шаг градиентного спуска, если $w_0=1$, а скорость обучения $\gamma=0.01$.

Упражнение 3 (вопросики)

Убедитесь, что вы можете дать ответы на следующие вопросы:

- Как вы думаете, почему считается, что SGD лучше работает для оптимизации функций, имеющих больше одного экстремума?
- Предположим, что у функции потерь есть несколько локальных минимумов. Как можно адаптировать градиентный спуск так, чтобы он находил глобальный минимум чаще?
- Что будет происходить со стохастическим градиентным спуском, если длина его шага не будет уменьшаться от итерации к итерации?

Упражнение 4 (скорости обучения)

В стохастическом градиентном спуске веса изменяются по формуле

$$w_{t} = w_{t-1} - \eta_{t} \cdot \nabla L(w_{t-1}, x_{i}, y_{i}),$$

где наблюдение і выбрано случайно, скорость обучения зависит от номера итерации.

Условия Роббинса-Монро гарантируют сходимость алгоритма к оптимуму для выпуклых дифференцируемых функций. Они говорят, что ряд из скоростей $\sum_{t=0}^{\infty} \eta_t$ должен расходиться, а ряд $\sum_{t=0}^{\infty} \eta_t^2$ сходиться. То есть скорость спуска должна падать не слишком медленно, но и не слишком быстро. Какие из последовательностей, перечисленных ниже, можно использовать для описания изменения скорости алгоритма?

a.
$$\eta_t = \frac{1}{t}$$

б.
$$\eta_t = \frac{0.1}{t^{0.3}}$$

B.
$$\eta_t = \frac{1}{\sqrt{t}}$$

r.
$$\eta_t = \frac{1}{t^2}$$

д.
$$\eta_t = e^{-t}$$

е.
$$\eta_t = \lambda \cdot \left(\frac{s_0}{s_0 + t}\right)^p$$
 , где λ, p и s_0 — параметры