SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

ZAVRŠNI RAD br. 2021-72

Programska potpora za upravljanje kamerom na CubeSat nanosatelitu

Nikola Gudan

Umjesto ove stranice umetnite izvornik Vašeg rada.

Da bi ste uklonili ovu stranicu obrišite naredbu \izvornik.

Hannon le.

SADRŽAJ

1.	Uvo	d		1
2.	Arhi	itektura	a sustava	3
3.	Suče	elja za k	comunikaciju	6
	3.1.	I ² C suc	čelje	6
		3.1.1.	I^2C protokol	6
		3.1.2.	Razlika I ² C periferije na STM32L471VGT6 i	
			STM32F407VGT6 mikrokontrolerima	9
	3.2.	SPI su	čelje	11
		3.2.1.	SPI protokol	11
		3.2.2.	Prilagodba programske podrške sa STM32F407VGT6 miro-	
			kontrolera na STM32L471VGT6 mikrokontroler	16
		3.2.3.	DMA prijenos	18
	3.3.	CAN p	orotokol	22
		3.3.1.	Opis protokola	23
		3.3.2.	CAN periferijsko sklopovlje na STM32L471VGT6 mikrokon-	
			troleru	31
4.	Prog	gramska	a podrška	32
5.	Zak	ljučak		33
Li	teratu	ıra		34

1. Uvod

Ovaj završni projekt se izvodi u sklopu projekta FERSAT, koji se od 2018. godine provodi na Fakultetu elektrotehnike i računarstva Sveučilišta u Zagrebu [9]. Cilj projekta je izrada, lansiranje i korištenje jednog nanosatelita u CubeSat formatu, dimenzija 10 cm x 10 cm, volumena jedne litre i težine ne veće od 4/3 kg. Navedene dimenzije satelita odgovaraju formatu CubeSat 1U. Planirana visina orbite satelita je između 500 i 600 km, a očekivano trajanje misije je 3 godine. Korisni teret satelita (engl. *payload*) se sastoji od tri podsustava:

- kamera za snimanje površine Zemlje i zemaljskog horizonta,
- detektori svjetla u vidljivom i ultraljubičastom dijelu spektra za mjerenje svjetlosnog onečišćenja i debljine stupca ozona,
- komunikacijski sustav u radijskom X-pojasu (10.45 GHz) za prijenos podataka na Zemlju.

Kako bi se moglo upravljati radom korisnog tereta, na satelit će biti ugrađeno PDH (engl. *Payload Data Handler*) računalo, čija će zadaća biti prikupljanje podataka s kamere i senzorskog podsustava, pohranjivanje prikupljenih podataka u trajnu memoriju (engl. *non-volatile memory*), te slanje podataka na Zemlju pomoću komunikacijskog sustava. Izabrani mikrokontroler za ulogu PDH računala je STM32L471VGT6 proizvođača ST Microelectronics.

Ostalim podsustavima, koji nisu direktno vezani uz koristan teret, upravlja CDH (engl. *Command and Data Handler*) računalo. CDH računalo može upravljati položajem i orijentacijom satelita, slanjem telemetrijskih podataka na Zemlju, a također upravlja i napajanjem korisnog tereta i šalje naredbe PDH računalu preko CAN (engl. *Controller Area Network*) sučelja. U trenutku pisanja ove dokumentacije, konkretno CDH računalo još nije odabrano.

Slika 1.1 prikazuje blok dijagram cijelog sustava. U okviru ovog projekta razvijena je programska potpora PDH računala za upravljanje kamerom i *flash* memorijom.

Slika 1.1: Blok dijagram FERSAT-a i komunikacija sa zemaljskom postajom [3]

Sustav za upravljanje kamerom se sastoji od Arducam Mini 5MP Plus kamere. Upravljanje kamerom se sastoji od konfiguracije kamere i samog korištenja kamere, odnosno slikanja i spremanja slike. Konfiguracija kamere je nužna kako bi se ispravno podesili parametri trajanja ekspozicije, pojačanje i formata u kojem se slika želi spremiti.

2. Arhitektura sustava

Slanjem određenog signala na sklop za kameru može se uslikati slika, a nakon slikanja slika se spremi na vlastiti međuspremnik kamere. Cilj je spremljenu kameru pročitati iz međuspremnika kamere i spremiti ju na *flash* memoriju koja se nalazi na pločici PDH-a, gdje može biti spremljena dok se ne zatraži slanje slike preko X-band predajnika na Zemlju.

Flash memorija, osim što služi za pohranu slike, služi i za pohranu podataka s drugih senzora. Ona prima i šalje podatke ovisno o poslanoj naredbi putem SPI komunikacije s mikrokontrolerom.

Upravljačko sklopovlje PDH računala se sastoji od STM32F471VGT6 mikrokontrolera, spomenute vanjske *flash* memorije, konektora za povezivanje s ostalim dijelovima sustava (uključujući i konektor za povezivanje s kamerom), sustava za napajanje, upravljačkog sklopovlja za CAN komunikaciju i sklopa za kontrolu izvođenja programa (engl. *watchdog*) [1]. Izgled tiskane pločice upravljačkog sklopovlja PDH računala prikazan je na slikama 2.1 i 2.2. Konektor X1 služi za povezivanje sustava s kamerom.

Slika 2.1: Prikaz gornje strane tiskane pločice upravljačkog sklopovlja PDH računala [1]

Slika 2.2: Prikaz donje strane tiskane pločice upravljačkog sklopovlja PDH računala [1]

Programska podrška za PDH računalo već je razvijena [3]. Međutim, u međuvre-

menu je došlo do promjene izbora mikrokontrolera PDH računala, te je stoga postojeću programsku podršku bilo potrebno prilagoditi trenutačnom sklopovlju.

S obzirom na prirodu ovog završnog projekta, gdje je naglasak bio na prilagođavanju postojeće programske podrške, u ovom radu će biti raspravljeni izazovi i izmjene do kojih je došlo tijekom prilagođavanja programske podrške. U poglavlju 2 dan je detaljan opis I²C (engl. *Inter-Integrated Circuit*) komunikacije, te su istaknute razlike između starog i novog sklopovlja koje su bile ključne za prilagođavanje programske podrške. Na isti način opisani su SPI (engl. *Serial Peripheral Interface*) komunikacija i DMA (engl. *Direct Memory Access*) prijenos u poglavlju x. Detaljan pregled razvijene programske podrške dan je u poglavlju y, gdje je opisana integracija programske podrške za kameru i *flash* memorija u FreeRTOS operacijski sustav za rad u stvarnom vremenu.

3. Sučelja za komunikaciju

3.1. I²C sučelje

Za konfiguraciju kamere Arducam 5MP Mini Plus PDH računalo koristi I²C komunikaciju. U nastavku slijedi općeniti opis I²C protokola kao i razlike između I²C periferijski sklopova na prethodno korištenom (STM32F407VGT6) i trenutačnom (STM32L471VGT6) mikrokontroleru.

3.1.1. I^2C protokol

I²C je jednostavna dvosmjerna sinkrona serijska sabirnica razvijena od strane *Philips Semiconductors* (sada *NXP Semiconductors*) 1982. godine [7]. Koristi dvije linije:

- serijska podatkovna linija (SDA, Serial Data Line),
- serijska taktna linija (SCL, Serial Clock Line).

Obje linije su pritegnute na visoku logičku razinu preko *pull-up* otpornika. Moguće brzine prijenosa su:

- do 100 kbit/s u Standard-mode načinu rada,
- do 400 kbit/s u Fast-mode načinu rada,
- do 1 Mbit/s u Fast-mode Plus načinu rada,
- do 3.4 Mbit/s u *High-speed* načinu rada.

Navedene brzine se koriste kod dvosmjernog prijenosa, a moguća je i brzina do 5 Mbit/s u jednosmjernom prijenosu. Više uređaja se može spojiti na jednu sabirnicu, a svaki uređaj je prepoznatljiv po svojoj jedinstvenoj adresi i može se ponašati kao prijamnik ili odašiljač, ovisno o funkciji uređaja [2]. Protokol najčešće, a tako i u ovom slučaju, koristi 7-bitno adresiranje, a moguće je i korištenje 10-bitnog adresiranja. Osim konfiguracije prijamnika i odašiljača, uređaj također može biti *master* uređaj ili *slave* uređaj tijekom prijenosa podataka. *Master* uređaj je uređaj koji inicijalizira

prijenos podataka na sabirnici i generira signal takta kako bi omogućio prijenos. U tom trenutku, bilo koji uređaj koji je adresiran smatra se *slave* uređajem.

Na I²C sabirnicu se također može spojiti više *master* uređaja, a primjer jednog takvog spoja sa dva mikrokontrolera dan je na slici 3.1. Prijenos podataka bi možda

Slika 3.1: Primjer I²C sabirnice sa spojena dva mikrokontrolera [2]

mogao izgledati ovako:

- 1. Mikrokontroler A želi poslati podatke mikrokontroleru B:
 - mikrokontroler A (master uređaj) adresira mikrokontroler B (slave uređaj)
 - mikrokontroler A (*master*-odašiljač) šalje podatke mikrokontroleru B (*slave* uređaj-prijamnik)
 - mikrokontroler A prekida prijenos
- 2. Mikrokontroler A želi primiti podatke sa mikrokontrolera B:
 - mikrokontroler A (master uređaj) adresira mikrokontroler B (slave)
 - mikrokontroler A (*master*-prijamnik) prima podtke sa mikrokontrolera B (*slave*-odašiljač)
 - mikroknotroler A prekida prijenos.

U svakom od navedenih slučajeva mikrokontroler A je generirao takt i prekidao prijenos. Kod prijenosa podataka na I²C sabirnici, *master* uređaj uvijek generira signal takta. U ovom radu korišten je samo jedan mikrokontroler, odnosno *master* uređaj, pa će se u daljnjem tekstu podrazumijevati samo taj slučaj.

Opis komunikacije i vremenski dijagram

I²C komunikacija započinje sa *start* simbolom i završava sa *stop* simbolom. Komunikacijom se može čitati ili pisati ovisno o R/W bitu u adresi. Struktura adresiranja kod

7-bitne adrese je prikazana u tablici 3.1.

Tablica 3.1: Struktura adresiranja kod 7-bitne adrese [7]	

		A	dre	sno	polj	e		R\W
Pozicija bita u bajtu	7	6	5	4	3	2	1	0
Značenje	MSB						LSB	1=READ, 0=WRITE

Iz tablice je vidljivo da najmanje značajan bit označava želi li se podatak čitati ili pisati. Imajući na umu izgled adresnog bajta, vremenski dijagram tipčne I²C komunikacije prikazan je na slici 3.2.

Slika 3.2: Vremenski dijagram I²C komunikacije [7]

- Prijenos podataka se inicijalizira *start* uvjetom (S) tako da SDA linija prijeđe u nisku logičku razinu dok SCL linija ostaje u visokoj logičkoj razini.
- (Plavo područje) SCL prelazi u nisku logičku razinu i SDA postavlja prvi podatkovni bit dok je SCL u niskoj logičkoj razini.
- (Zeleno područje) Podaci se primaju dok SCL poraste za prvi bit (B₁). Kako bi
 podaci bili valjani, SDA se ne smije promijeniti između rastućeg brida SCL-a i
 sljedećeg padajućeg brida.
- Postupak se ponavlja, SDA se postavlja dok je SCL u niskoj razini, a podaci se čitaju dok je SCL u visokoj razini (B₂ do B_n).
- Nakon posljednjeg bita slijedi taktni impuls, tijekom kojeg SDA prelazi u nisku razinu pripremajući se za *stop* uvjet.
- Signalizira se *stop* uvjet kada SCL prijeđe u visoku logički razinu, nakon čega slijedi prelazak u visoku logičku razinu SDA signala.
- (Plavo područje) SCL prelazi u nisku logičku razinu i SDA postavlja

Start i stop uvjete uvijek generira master uređaj. Nakon svakog bajta prijamnik šalje odašiljaču ACK bit kojim se signalizira uspješno primanje podatka, odnosno NACK bit kojim se signalizira neuspješno primanje podatka. ACK i NACK bitovi se nazivaju signalom potvrde i definiraju se na sljedeći način: odašiljač otpušta SDA liniju tijekom potvrdnog takta kako bi prijamnik mogao spustiti SDA na nisku razinu na kojoj i ostaje tijekom visoke razine takta. Ako SDA ostaje u visokoj razini tijekom devete periode takta, to predstavlja NACK (engl. Not Acknowledge) signal, a suprotan slučaj predstavlja ACK (engl. Acknowledge) signal. Ako je došlo do NACK signala, master uređaj može generirati stop uvjet kako bi prekinuo prijenos ili može ponovno generirati start uvjet kako bi započeo novi prijenos. Vremenski dijagram cijele komunikacije s potvrdnim signalima prikazan je na slici 3.3.

Figure 6. Data transfer on the I²C-bus

Slika 3.3: Prijenos podataka na I²C sabirnici [2]

3.1.2. Razlika I²C periferije na STM32L471VGT6 i STM32F407VGT6 mikrokontrolerima

Tijekom prijenosa koda sa starog mikrokontrolera na novi, primjećeno je da postoji razlika između struktura I²C periferija. Točnije, postoji razlika između registarskih mapa na dvama periferijama, koje su vidljive usporedbom tablica 3.2 i 3.3 (*napomena*: u tablicama nisu prikazani svi registri, jer se neki registri niti ne koriste, ili se koriste samo tijekom konfiguracije periferija. Za puni prikaz tablica treba provijeriti dokumentacije mikrokontrolera [4], [5]).

Tablica 3.2: Registarska mapa I²C periferije STM32L471VGT6 mikrokontrolera [5]

Offset	Register name	31		30	59	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	œ	7	9	w	4	8	7	1	0
0x0	I2C_CR1					R	es.	1	ı		PECEN	ALERTEN	SMBDEN	SMBHEN	GCEN	WUPEN	NOSTRETCH	SBC	RXDMAEN	TXDMAEN	Res.	ANFOFF	1	DNF	[3:0]]	ERRIE	TCIE	STOPIE	NACKIE	ADDRIE	RXIE	TXIE	PE
UXU	Reset value										0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
0x4	I2C_CR2				Res.			PECB YTE	AUTOEND	RELOAD			NE	BYTI	ES[7	:0]			NACK	STOP	START	HEAD10R	ADD10	RD_WRN				s	ADI	D[9:0	0]		•	
0.4	Reset value		Τ					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.10	I2C_ISR					R	es.					A	DDO	COD	E[6:	0]		DIR	BUSY	Res.	ALERT	TIMEOUT	PECERR	OVR	ARLO	BERR	TCR	TC	STOPF	NACKF	ADDR	RXNE	TXIS	TXE
0x18	Reset value		Τ								0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x1C	I2C_ICR				•		•	•		1	Re	es.							•		ALERTCF	TIMOUTCF	PECCF	OVRCF	ARLOCF	BERRCF	Re	es.	STOPCF	NACKCF	ADDRCF		Res.	
OXIC	Reset value		T																		0	0	0	0	0	0			0	0	0			\Box
0x24	I2C_RXDR													R	es.														RX	(DA	TA[7	:0]		П
UX24	Reset value		I																								0	0	0	0	0	0	0	0
0x28	I2C_TXDR													Re	es.														TX	DA	ΓA[7	:0]		
UX28	Reset value																										0	0	0	0	0	0	0	0

Tablica 3.3: Registarska mapa I²C periferije STM32F407VGT6 mikrokontrolera [4]

Offset	Register name	31	30	29	28	27	26	25	72	23	22	21	20	19	18	17	16	15	41	13	12	11	10	6	æ	7	9	w	4	е	2	1	0
0x0	I2C_CR1								Re	s.					ı			SWRST	Res.	ALERT	PEC	POS	ACK	STOP	START	NOSTRETCH	ENGC	ENPEC	ENARP	SMBTYPE	Res.	SMBUS	PE
UXU	Reset value																	0		0	0	0	0	0	0	0	0	0	0	0		0	0
0x4	I2C_CR2										Res.										LAST	DMAEN	ITBUFEN	ITEVTEN	ITERREN	Re	es.		F	REC	Q[5:0)]	
UX4	Reset value																				0	0	0	0	0			0	0	0	0	0	0
0.10	I2C_DR			•	•		•					•	R	es.						•			•	•			•		DR[7:0]	•		
0x10	Reset value																									0	0	0	0	0	0	0	0
0x14	I2C_SR1								Re	es.								SMBALERT	TIMEOUT	Res.	PECERR	OVR	AF	ARLO	BERR	TxE	RxNE	Res.	STOPF	ADD10	BTF	ADDR	SB
0.114	Reset value																	0	0		0	0	0	0	0	0	0		0	0	0	0	0
0x18	I2C_SR2		•						Re	es.											PEC	[7:0]]			DUALF	SMBHOST	SMBDEFAUL	GENCALL	Res.	TRA	BUSY	MSL
0.00.18	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0

Vidljiva je razlika između količine registara, raspodjele i značenja njihovih bitova, kao i njihovih imena, što implicira različite funkcionalnosti pojedinih registara. Tako, npr. I²C periferija kod STM32F407VGT6 sadržava 2 status registra: I2C_SR1 i I2C_SR2, dok kod STM32L471VGT6 postoji samo jedan status registar I2C_ISR. Ta razlika je bitna zato što se tijekom prijenosa podataka na I²C sabirnici trebaju

provjeravati razne zastavice koje se mijenjaju tijekom komunikacije, kao što je npr. zastavica za prazni odašiljački registar (STM32F407VGT6: registar I2C_SR1 bit 7, STM32L471VGT6: bit 0), zastavica za puni prijamnički registar (STM32F407VGT6: registar I2C_SR1, bit 6, STM32L471VGT6: bit 2), zastavica za završetak prijenosa (STM32F407VGT6: ne postoji, STM32L471VGT6: bit 6) itd.

Vidljivo je također da kod STM32L471VGT6 postoji zastavica ADDR, koja inače kod STM32F407VGT6 signalizira uspješan primitak adrese uređaja mete, a kod STM32L471VGT6 ta zastavica se koristi isključivo u *slave* načinu rada, tako da ta zastavica nije bitna za ovaj projekt. Kako onda mikrokontroler zna da je poslana adresa točna? Naime, STM32L471VGT6 ima poseban registar za pohranu adrese uređaja mete, pa kada mikrokontroler pošalje *start* uvjet on automatski nakon završetka *start* uvjeta pošalje i adresu uređaja mete, a uspješan primitak adrese signalizira zastavica I2C_ISR_TXIS kod slanja podataka, odnosno I2C_ISR_RXNE zastavica kod primitka podataka.

Vidljive su i razlike u raspodjeli zastavica u registrima, kao i razlike u funkcijama koje zastavice signaliziraju. Inače bi te razlike stvarale probleme kod konfiguracije I²C periferije, no, kako je tu brigu riješio kod generator ugrađen u STM32CubeIDE razvojno okruženje, nije bila posvećena pažnja tim razlikama. Način implementacije spomenutih razlika u programsku podršku opisan je u poglavlju z.

3.2. SPI sučelje

Protokol SPI se koristi za prijenos podataka između *flash* memorije i mikrokontrolera, odnosno međuspremnika kamere. Kako bi se oslobodili resursi na mikrokontroleru, za prijenos podataka između kamere i *flash* memorije se, u kombinaciji sa SPI protokolom, koristi i DMA prijenos. U ovom poglavlju bit će opisan SPI protokol i DMA prijenos i bit će istaknute razlike i problemi kod prilagođavanja programske podrške za STM32L471VGT6 mikrokontroler.

3.2.1. SPI protokol

SPI je sinkrono serijsko komunikacijsko sučelje koje se koristi za komunikaciju na kratkim udaljenostima, pretežito u ugradbenim računalnim sustavima [8].

SPI uređaji komuniciraju u *full-duplex* načinu rada koristeći *master-slave* arhitekturu, obično sa jednim *master* uređajem. Više *slave* uređaja može biti spojeno na jedan upravljač tako da se aktivira određeni *chip select* signal za pojedini uređaj.

Opis sučelja

SPI sabirnica se sastoji od četiri signala:

- SCLK: Serijski takt (izvor je *master* uređaj),
- MOSI: Master Output Slave Input (izvor podataka iz master uređaja),
- MISO: Master Input Slave Output (izvor podataka iz slave uređaja),
- CS/SS: *Chip/Slave Select* (aktivan nisko, signal iz *master* uređaja, označava da se prenose podaci).

MOSI na *master* uređaju se spaja na MOSI na *slave* uređaju, dok se MISO na *master* uređaju se spaja na MISO na *slave* uređaju. CS/SS se koristi za pokretanje komunikacije između *slave* i *master* uređaja. Za svaki *slave* uređaj postoji zaseban CS/SS priključak na *master* uređaju. Takav način spajanja se naziva neovisni *slave* uređaj. Primjer spajanja tri *slave* uređaja na jedan *master* uređaj u konfiguraciji neovisnog *slave* uređaja prikazan je na slici 3.4.

Slika 3.4: Spoj tri *slave* uređaja na jedan *master* uređaj u konfiguraciji neovisnog *slave* uređaja. Vidljivo je da *master* uređaj ima tri SS priključka, a svaki odgovara jednom *slave* uređaju, dok se SCLK, MOSI i MISO linije međusobno dijele između *slave* uređaja [8]

Moguće je još spojiti uređaje u konfiguraciju ulančavanog *slave* uređaja. U toj konfiguraciji *slave* uređaji dijele isti CS/SS, a ulančavanjem preko MISO/MOSI linija podaci se prenose prema načelu posmačnog registra, koji je objašnjen u sljedećem potpoglavlju. Prikaz spajanja tri *slave* uređaja se nalazi na slici 3.5.

Slika 3.5: Spoj tri *slave* uređaja na jedan *master* uređaj u konfiguraciji ulančavanog *slave* uređaja [8]

Način rada

SPI sabirnica radi s jednim *master* uređajem i jednim ili više *slave* uređaja. Ako se koristi jedan *slave* uređaj, onda CS signal može biti postavljen u nisku logičku razinu, ako *slave* uređaj to dopušta. Neki *slave* uređaji zahtijevaju padajući brid CS signala kako bi započela komunikacija. Ako se koristi više *slave* uređaja potreban je zaseban CS signal *master* uređaja za svaki *slave* uređaj.

Prijenos podataka Za početak komunikacije *master* uređaj konfigurira takt koristeći frekvenciju koju podržava *slave* uređaj, obično do nekoliko MHz. *Master* uređaj zatim odabire *slave* uređaj postavljanjem CS linije u nisko logičko stanje. Ako je potreban period čekanja, npr. za AD (analogno-digitalnu) pretvorbu, *master* uređaj mora pričekati minimalno taj period vremena prije puštanja takta.

Tijekom svakog perioda takta obavlja se prijenos podataka u *full-duplex* načinu rada. To znači da *master* uređaj pošalje jedan bit na MOSI liniju, koji *slave* uređaj pročita, dok u isto vrijeme *slave* uređaj šalje jedan bit na MISO liniju, koji *master* uređaj pročita. Takva sekvenca se održava čak i kada se izvodi jednosmjerni prijenos podataka.

Prijenosi podataka uključuju dva posmačna registra zadane veličine, npr. 8 bitova, jedan u *master* i drugi u *slave* uređaju. Registri su spojeni u topologiji virtualnog prstena (slika 3.6).

Slika 3.6: Tipičan spoj dvaju posmačna registra koji formiraju kružni međuspremnik [8]

Podaci se obično pomiču tako da se prvo pomakne najznačajniji bit. Na brid takta, *master* i *slave* uređaj pomaknu bit i pošalju ga na prijenosnu liniju. Na sljedeći brid takta, na svakom prijamniku bit se uzorkuje s prijenosne linije i postavlja se kao novi najmanje značajni bit u posmačnom registru. *Master* i *slave* uređaji u potpunosti razmjene podatke u registrima nakon što se svi bitovi u registrima prebace. Ako je potrebno razmijeniti još podataka, posmačni registri se ponovno napune te se postupak ponavlja, a prijenos se može obavljati za bilo koji broj perioda takta. Kada je prijenos dovršen, *master* uređaj prestaje davati takt i obično isključi CS signal, odnosno postavi ga na visoku razinu.

Prijenos se obično obavlja u riječima širine 8 bitova, no moguća je i širina riječi od 16 bita, ili čak 12 bitova, koji se koristi za digitalno-analogne i analogno-digitalne pretvornike.

Polaritet takta i faza Osim što mora podesiti frekvenciju takta, *master* uređaj mora isto tako podesiti polaritet takta (CPOL, engl. *Clock Polarity*) i fazu (CPHA, engl. *Clock Phase*) ovisno o podacima. Vremenski dijagram je prikazan na slici 3.7.

Slika 3.7: Vremenski dijagram koji pokazuje polaritet takta i fazu. Crvene linije označuju vodeće bridove, a plave linije označavaju prateće bridove [8].

CPOL određuje polaritet kanala. Polaritet može biti invertiran jednostavnim inverterom.

- Ako je CPOL = 0, onda takt miruje u niskom logičkom stanju, a svaki period se sastoji od impulsa visokog logičkog stanja. To znači da je vodeći brid rastući brid, a prateći brid padajući brid.
- Ako je CPOL = 1, onda takt miruje u visokom logičkom stanju, a svaki period se sastoji od impulsa niskog logičkog stanja. To znači da je vodeći brid padajući brid, a prateći brid rastući brid.

CPHA određuje fazu podatkovnih bitova u odnosu na takt.

- Ako je CPHA = 0, strana koja šalje podatke mijenja podatak na prateći brid
 prethodnog perioda takta, dok strana koja prima podetke prihvaća podatak na
 (ili ubrzo nakon) vodeći brid perioda takta. Izlazna strana zadržava valjani
 podatak sve do pojave pratećeg brida trenutnog perioda takta.
- Ako je CPHA = 1, strana koja šalje podatke mijenja podatak na vodeći brid trenutnog perioda takta, dok strana koja prima podatke prihvaća podatak na (ili ubrzo nakon) pratećeg brida perioda takta. Izlazna strana zadržava valjani podatak do pojave vodećeg brida sljedećeg perioda takta. Na zadnji period, slave uređaj zadržava valjani podatak na MISO liniji sve dok slave uređaj ne bude deselektiran.

MOSI i MISO signali su obično stabilni za vrijeme pola perioda takta, sve do sljedeće promjene takta. SPI *master* i *slave* uređaji mogu uzorkovati podatke u bilo kojem

vremenu unutar te polovice periode takta.

Kombinacije različitih konfiguracija CPOL i CPHA bitova predstavljaju načine rada. Konvecija je da CPOL predstavlja viši bit, dok CPHA predstavlja niži bit. Načini rada kod ARM-ovih mikrokontrolera su prikazani u tablici 3.4.

Tablica 3.4: SPI načini rada kod ARM-ovih mikrokontrolera [8]

SPI način rada	CPOL	СРНА
0	0	0
1	0	1
2	1	0
3	1	1

3.2.2. Prilagodba programske podrške sa STM32F407VGT6 mirokontrolera na STM32L471VGT6 mikrokontroler

Što se tiče programske podrške za SPI komunikaciju između mikrokontrolera, *flash* memorije i kamere, nije došlo do nikakvih poteškoća kod prijenosa programske podrške s prethodno korištenog mikrokontrolera na trenutni. Pogledom na blok dijagrame SPI periferije (slike 3.8 i 3.9) vidljiva je velika sličnost između mikrokontrolera. Razlike između kontrolnih registara nisu problem, s obzirom na to da njih podešava generator koda, dok se razlike u statusnim registrima mogu zanemariti radi korištenja definicija registara i zastavica u programskoj podršci koju je pružao proizvođač mikrokontrolera.

Došlo je, međutim, do poteškoća kod prijenosa programske podrške za DMA prijenos, koje će biti objašnjene u sljedećem poglavlju.

Slika 3.8: SPI blok dijagram mikrokontrolera STM32407VGT6 [4, str. 876]

Slika 3.9: SPI blok dijagram mikrokontrolera STM32L471VGT6 [5, str. 1451]

3.2.3. DMA prijenos

DMA se koristi kako bi se omogućio prijenos podataka visokih brzina između periferijskih sklopova i memorije ili između dviju memorijskih jedinica [4]. Podatci se brzo mogu prenijeti bez posredovanja procesora. Na taj se način oslobađaju resursi procesora kako bi se mogle izvoditi druge operacije za vrijeme prijenosa.

U ovom projektu DMA prijenos se koristi između međuspremnika kamere i radne memorije mikrokontrolera.

Razlike DMA periferije na STM32F407VGT6 i STM32L471VGT6 mikrokontrolerima

STM32F407VGT6 mikrokontroler ima dva DMA kontrolera. Blok dijagram jednog DMA kontrolera je prikazan na slici 3.10.

Slika 3.10: Blok dijagram DMA kontrolera na STM32F407VGT6 mikrokontroleru [4]

DMA kontroler obavlja izravan prijenos memorije; kao AHB (engl. *AMBA High-performance Bus*, AMBA na engl. *Advanced Microcontroler Bus Architecture*) *master*, može u bilo kojem trenutku preuzeti kontrolu nad AHB sabirnicom i pokrenuti AHB transakcije. DMA kontroler može pokrenuti sljedeće transakcije:

• prijenos sa periferije na memoriju,

- prijenos sa memorije na periferiju,
- prijenos sa memorije na memoriju.

S obzirom na to da se u ovom radu koriste prijenosi s periferije na memoriju i obrnuto, u daljnjem tekstu će se podrazumijevati samo ti slučajevi.

DMA periferija ima dvije AHB *master* sabirnice, jedna se koristi za pristup memoriji, a druga za pristup periferijama. AHB *slave* sabirnica se koristi za programiranje DMA kontrolera.

Pojedini kontroler ima 8 tokova (engl. *stream*), te za svaki tok postoji 8 kanala (engl. *channel*). Svaki tok je spojen na određeni sklopovski DMA kanal. Tokovi i kanali služe kako bi se ostvarila veza između ostalih periferija i DMA mikokrontrolera, tako da periferije mogu slati zahtjev za DMA prijenos.

Svaki DMA prijenos se sastoji od tri operacije:

- učitavanje sa periferijskog podatkovnog registra ili lokacije u memoriji, čije su adrese zapisane u DMA_SxPAR ili DMA_SxM0AR registru
- spremanje podataka na periferijski podatkovni registar ili lokaciju u memoriji,
 čije su adrese zapisane u DMA_SxPAR ili DMA_SxMOAR registru
- naknadno dekrementiranje DMA_SxNDTR registra, koji sadržava broj podataka koji se još trebaju prenjeti

Spomenuti registri su prikazani u tablici 3.5. Kada periferija želi pristupiti DMA kontroleru, periferijski sklop šalje zahtjev DMA kontroleru. DMA kontroler poslužuje zahtjev ovisno o prioritetima kanala. Čim DMA kontroler pristupi periferiji, DMA kontroler periferiji šalje signal potvrde. Periferni uređaj ukida svoj zahtjev čim dobije potvrdni signal iz DMA kontrolera. Nakon što periferna jedinica ukine zahtjev, DMA kontroler ukida signal potvrde. Ako ima više zahtjeva, periferna jedinica može pokrenuti sljedeću transakciju.

Tablica 3.5: Registri DMA_SxPAR, DMA_SxM0AR i DMA_SxNDTR kod STM32F407VGT6 mikrokontrolera. *x* označava broj toka [4]

Register	31	30	59	78	27	56	25	75	23	22	21	20	61	81	17	91	12	14	13	12	=	9	6	×	_	9	w	4	3	2	_	
name	('	(,	`	•	(1	(1	` '	``	``	(1	` `	` `		-				_	_	_	_	_	,	~		-	۷,	7		•	_	
DMA_SxPAR																PA[3	31:0]															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DMA_M0AR															N	10A	[31:0)]														
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DMA_SxNDTR								R	es.														N	IDT	[15:0)]						
Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Svaki tok je povezan sa DMA zahtjevom, koji može biti odabran između 8 mogućih

kanalnih zahtjeva. Odabir kanala određuju bitovi CHSEL[2:0] u DMA_SxCR registru (tablica 3.6). Odabir kanala prikazan je na slici 3.11.

 Tablica 3.6: Registar DMA_SxCR kod STM32F407VGT6 mikrokontrolera [4]

Register	31	30	59	82	27	56	25	24	23	22	21	20	19	81	17	91	15	41	13	12	Ξ	10	6	&	_	9	w	4	8	2	1	
name		` '	``	``	l``	``	``	` '	l ` `	``	\ ` `	``	` `						` `		` '		•	••	`	-	"	,	``	` '		
DMA_SxPAR		Re	es.			CHSEL[2:0]		MRIBCTILO	ABONSILL.	_	UNSILL.	Res.	LJ	DBM	DI [1-0]	÷	PINCOS	-	1		SIZE[1:	MINC	PINC	CIRC	DIB11.01		PFCTRL	TCIE	HTIE	TEIE	DMEIE	EN
Reset value					0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Slika 3.11: Odabir kanala [4]

Proučavanjem dokumentacije mikrokontrolera, zaključeno je da je za SPI prijenos putem DMA sklopa potrebno koristiti kanal 0 i tokove 3 (SPI2_RX) i 4 (SPI2_TX) [4, str. 307]. Odabrani tokovi se koriste zato što je kamera spojena na SPI2 periferiju mikrokontrolera.

Blok dijagram DMA periferije na STM32L471VGT6 mikrokontroleru je prikazan na slici 3.12. Vidljivo je da oba mikrokontrolera sadržavaju dvije DMA periferije. Za razliku od SMT32F407VGT6 mikrokontrolera, trenutačni mikrokontroler, STM32L471VGT6, nema dvije AHB *master* sabirnice, već samo jednu AHB *master* sabirnicu.

STM32L471VGT6 nema tokove za ostvarivanje veze između periferija i DMA sklopa, već ima samo kanale, te se stoga veza između ostalih periferija i DMA kontrolera ostvaruje na drugačiji način, prikazan na slici 3.13. Iz slike je vidljivo da se na ovom mikrokontroleru trebaju koristiti kanali 4 (SPI2_RX) i 5 (SPI2_TX).

Još jedna razlika između DMA periferija dvaju mikrokontrolera se krije u prekidima koje DMA kontrolera i zastavicama za prekide. STM32F407VGT6 ima 5 razli-

čitih prekida: završetak prijenosa (TC, engl. *Transfer Complete*), obavljena polovica prijenosa (HT, engl. *Half Transfer*), greška u prijenosu (TE, engl. *Transfer Error*), FIFO greška (FE, engl. *FIFO Error*) i greška u direktnom načinu rada (DME, engl. *Direct Mode Error*). STM32L471VGT6 ima 3 različita prekida: završetak prijenosa završetak prijenosa (TC), obavljena polovica prijenosa (HT), greška u prijenosu (TE). Kod STM32L471VGT6 postoji još globalni prekid (GI, engl. *Global Interrupt*) koji se aktivira u svim slučajevima. Ako se, na primjer, želi DMA kontroler namjestiti da zahtijeva prekid kod završetka prijenosa, polovice prijenos i kod greške u prijenosu, to se može podesiti jednostavno aktiviranjem globalnih prekida. S obzirom na to STM32F407VGT6 sadržava više vrsta prekida, on sadržava i 2 prekidna registra, dok STM32L471VGT6 sadržava 1 prekidni registar.

Slika 3.12: Blok dijagram DMA periferije na STM32L471VGT6 mikrokontroleru [5]

Slika 3.13: Mapiranje zahtjeva za DMA1 kontroler kod STM32L471VGT6 mikrokontrolera [5, str. 338]

Što se tiče ostalih dijelova DMA periferija, mikrokontroleri funkcioniraju isto. Postoje, međutim, razlike u načinu konfiguracije DMA kontrolera, međutim, to nije predstavljalo problem, s obzirom na to da je konfiguracija prepuštena generatoru koda. Nazivi registara koji se koriste su također različiti između dva mikrokontrolera, iako su im funkcije iste. To također nije bio problem jer su se koristile definicije registara u programskoj podršci koju je pružao proizvođač mikrokontrolera, pa je bilo potrebno samo promijeniti nazive tih registara.

3.3. CAN protokol

S obzirom na nepredvidive poteškoće sa sklopovljem PDH računala, nije ostalo vremena za implementaciju CAN komunikacije. Međutim, u ovom poglavlju dati će se opis protokola, kao i njegova implementacija na mikrokontroleru, te će se izložiti mogućnosti implementacije u ovaj projekt.

3.3.1. Opis protokola

CAN je serijska komunikacijska sabirnica koju je standardizirao ISO (engl. *International Standardization Organization*), a razvijena je od strane BOSCH-a za automobilsku industriju s ciljem da se zamijeni komplicirani žičani kabel s dvožičnom sabirnicom [6]. Specifikacija zahtijeva su visoka otpornost na električne smetnje i sposobnost otkoravanja i ispravljanja greški kod prijenosa podataka.

Komunikacijski protokol CAN opisuje kako se informacija prenosi između uređaja na mreži i kako odgovara OSI (engl. *Open Systems Interconnection*) modelu koji je definiran u slojevima (slika 3.14). Stvarna komunikacija između uređaja spojenih fizičkim medijem je definirana fizičkim slojem modela.

Slika 3.14: OSI model CAN protokola [6, str. 2]

CAN komunikacijski protokol je protokol s višestrukim pristupom, osluškivanjem nosioca, detekcijom sudara i arbitraže na paritet poruka (CSMA/CD+AMP). CSMA znači da svaki čvor na sabirnici mora čekati određeni period neaktivnosti prije nego što pokuša poslati poruku. CD+AMP znači da se sudari rješavaju bitovnom (*bit-wise*) arbitražom, koja se temelji na prethodno namještenom prioritetu svake poruke u identifikacijskom polju poruke. Viši prioritet uvijek dobiva pristup sabirnici.

Standardni CAN protokol s identifikatorom širine 11 bita omogućava brzine prijenosa od 125 kb/s do 1 Mb/s. Standardni protokol je poslije zamijenjen s proširenim protokolom s identifikatorom širine 29 bita. Standardni 11-bitni identifikator omogućava 2¹¹, ili 2048 različitih identifikatora poruka, dok prošireni 29-bitni identifikator omogućava 2²⁹, ili 536870912 različitih identifikatora.

Standardni CAN protokol

Standardni CAN sa 11-bitnim identifikatorom je prikazan na slici 3.15.

S O F	Identifier ,	-	I D E	DLC	08 Bytes Data	CRC	ACK	E O F	I F S	
-------------	--------------	---	-------------	-----	---------------	-----	-----	-------------	-------------	--

Slika 3.15: Standardna CAN poruka: 11-bitni identifikator [6, str. 3]

Značenje pojedinih bitova na slici 3.15 su:

- SOF jedan bit, početak okvira (engl. *Start Of Frame*), označava početak poruke i koristi se za sinkronizaciju čvorova na sabirnici nakon mirovanja,
- Identifikator 11-bitni identifikator standardnog CAN protokola, uspostavlja prioritet poruke. Manja binarna vrijednost znači viši prioritet,
- RTR jedan bit, zahtjev za udaljenim prijenosom (engl. *Remote Transmission Request*) dominantan je kada se traži informacija s drugog čvora. Svi čvorovi prime zahtjev, ali identifikator određuje traženi čvor. Povratna informacija se također šalje na sve čvorove i svaki čvor ju može iskoristiti ako je potrebno. Na taj su način svi podatci koji se koriste u sustavu uniformni,
- IDE jedan bit, proširenje identifikatora (engl. *Identifier Extension*), označava da se šalje standardni CAN identifikator bez proširenja,
- r0 rezervirani bit (za moguću upotrebu kod budućih dopuna standarda),
- DLC 4-bitna širina podatkovnog koda (engl. *Data Length Code*), sadržava broj bajtova podatka koji se šalje,
- Podatci može se slati do 64 bitova aplikacijskih podataka,
- CRC 16-bitna (15 bitova plus granični bit) ciklička provjera redundancije (engl. *Cyclic Redundancy Check*) sadržava kontrolni zbroj (*checksum*, broj poslanih bitova) prethodnih aplikacijskih podataka za detekciju grešaka,
- ACK svaki čvor koji primi točnu poruku prepisuje ovaj recesivni bit u izvornoj poruci s dominantnim bitom, što znači da je poslana poruka bez greške. Ako prijemni čvor otkrije pogrešku i ostavi ovaj bit recesivnim, on odbacuje poruku i čvor koji šalje poruku ponavlja poruku nakon rearbitraže. Tako svaki čvor priznaje (ACK) integritet svojih podataka. ACK sadrži 2 bita, jedan je bit potvrde, a drugi je graničnik,

- EOF 7-bitno polje, kraj okvira (engl. *End Of Frame*), označava kraj poruke i onemogućuje trpanje bitova, ukazujući na grešku kod trpanja u slučaju da je dominantan. Kada 5 bitova iste logičke razine nastanu u slijedu kod normalne operacije, bit suprotne logičke razine se *natrpa* u podatke,
- IFS 7-bitno polje, međuokvirni prostor (engl. *Interframe Space*), sadržava vrijeme potrebno da kontroler pomakne ispravno primljen okvir na njegovu valjanu poziciju u međuspremniku poruka.

Prošireni CAN protokol

S O F	11-bit S R Identifier R	I D E	18-bit Identifier	R T R	r1	r 0	DLC	08 Bytes Data	CRC	ACK	E O F	I F S	
-------------	-------------------------	-------------	----------------------	-------------	----	-----	-----	---------------	-----	-----	-------------	-------------	--

Slika 3.16: Proširena CAN poruka: 29-bitni identifikator [6, str. 4]

Na slici 3.16 je vidljivo da je proširena CAN poruka ista kao i standardna, uz dodatak:

- SRR zamjenski udaljeni pristup (engl. Substitute Remote Request), zamjenjuje RTR bit u standardnoj poruci kao rezervirano mjesto u proširenom formatu,
- IDE recesivni bit u proširenju identifikatora (engl. *Identifier Extension* označava da slijedi još identifikatorskih bitova. 18-bitno proširenje slijedi nakon IDE,
- r1 nakon RTR i r0 bitova, dodan je još jedan rezervirani bit prije DLC bita.

CAN poruka

Arbitraža Temeljna karakteristika CAN protokola je suprotno logičko stanje između sabirnice, upravljačkog ulaza i izlaza prijamnika (slika 3.17). U općenitom slučaju visoka logička razina se poistovjećuje s jedinicom, a niska logička razina se poistovjećuje s nulom, međutim, tako nije na CAN sabirnici. Pristup sabirnici se događa nasumično. Ako dva čvora pokušavaju istovremeno zauzeti sabirnicu, pristup se omogućuje pomoću nedestruktivne bitovne arbitraže. Nedestruktivno znači da čvor koji dobije arbitražu nastavlja sa slanjem poruke bez uništenja ili kvarenja od strane drugog čvora.

Slika 3.17: Obrnuta logika CAN sabirnice [6, str. 4]. D je upravljački ulaz, a R je izlaz prijamnika

Alokacija prioriteta porukama u identifikatoru je svojstvo CAN protokola koje ga čini privlačnim za upotrebu u sustavima za rad u stvarnom vremenu. Što je binarni broj identifikatora poruke niži, to je prioritet poruke viši. Identifikator koji se u potpunosti sastoji od nula čini poruku najvišeg prioriteta na mreži jer zadržava sabirnicu dominantnom najdulje. Iz tog razloga, ako dva čvora počnu sa slanjem poruke istovremeno, čvor koji pošalje posljednji identifikatorski bit kao nulu (dominantan) dok drugi čvor pošalje jedinicu (recesivan) zadržava kontrolu nad CAN sabirnicom i nastavlja sa slanjem poruke. Dominantan bit uvijek prebriše recesivan bit na CAN sabirnici.

Treba imati na umu da čvor koji šalje poruku stalno nadzire svaki bit svog prijenosa. Ovo je razlog za konfiguraciju primopredajnika na slici 3.17 u kojoj su CANH i CANL izlazne stezaljke upravljačkog sklopa interno povezane s ulazom prijemnika. Kašnjenje radi propagacije signala u unutarnjoj petlji od upravljačkog ulaza do izlaza prijemnika se obično koristi kao kvalitativna mjera CAN primopredajnika. Ovo propagacijsko kašnjenje se naziva vrijeme petlje (engl. *loop time*).

Slika 3.18 prikazuje proces arbitraže kojim CAN kontroler automatski upravlja. Budući da svaki čvor kontinuirano nadzire vlastiti prijenos, dok dominantni bit čvora C prebrisuje recesivni bit čvora B, čvor B detektira da se stanje sabirnice ne poklapa sa bitom koji je poslao. Posljedično, čvor B prestaje sa prijenosom dok čvor C nastavlja sa slanjem poruke. Čvor B ponovno pokušava pristupiti sabirnici nakon što čvor C otpusti sabirnicu.

Slika 3.18: Arbitraža na CAN sabirnici [6, str. 5]

Tipovi CAN poruka Postoje četiri tipova poruka, odnosno okvira, a to su:

- Podatkovni okvir najčešći oblik poruka, sastoji se od arbitražnog polja, podatkovnog polja, CRC polja, i potvrdnog polja. Arbitražno polje se sastoji od 11-bitnog identifikatora na slici 3.15 i RTR bita, koji je dominantan za podatkovne okvire. Na slici 3.16 sadržava 29 bitova i RTR bit. Slijedi podatkovno polje koje sadržava od 0 do 8 bajtova podataka, a zatim slijedi CRC polje koje sadržava 16-bitni kontrolni zbroj koji se koristi za detekciju pogrešaka. Potvrdno polje je posljednje,
- Daljinski okvir svrha daljinskog okvira je traženje prijenosa podataka s drugog čvora. Daljinski okvir sličan je podatkovnom okviru, s dvije važne razlike.
 Prvo, ovaj tip poruke je eksplicitno označen kao daljinski okvir preko recesivnog RTR bita u arbitražnom polju, a druga razlika je da nema podataka,
- Okvir pogreške ovo je posebna poruka koja krši pravila formata CAN poruke.
 Odašilje ju čvor kada detektira pogrešku u poruci, i uzrokuje da svi ostali čvorovi u mreži počnu slati okvir pogreške. Izvorni odašiljač zatim automatski ponovno pošalje poruku. Sustav brojača pogrešaka u CAN kontroleru osigurava da čvor ne zauzima sabirnicu uzastopnim slanjem okvira pogreške,
- Okvir preopterećenja okvir preopterećenja se spominje radi cjelovitosti. Sličan je okviru pogreške u smislu formata, i odašilje ga čvor koji postane previše zauzet. Primarno se koristi kao dodatna odgoda između poruka.

Ispravan okvir Kada je posljednji bit završnog EOF polja primljen bez grešaka u recesivnom stanju, smatra se da je poruka bez greške. Dominantan bit u EOF polju uzrokuje da odašiljač ponovi slanje.

Provjera pogrešaka i ograničenje grešaka

Robusnost CAN protokola može se djelomično pripisati njegovim brojnim postupcima provjere pogrešaka. CAN protokol uključuje pet metoda provjere grešaka: tri na razini poruke i dvije na razini bita. Ako poruka ne uspije proći na bilo kojoj od ovih metoda otkrivanja pogreške, ona se ne prihvaća, te prijemni čvor generira okvir pogreške. Ovime se prisiljava odašiljački čvor da ponovno pošalje poruku dok se ne primi ispravna poruka. Ako neispravni čvor prekine sabirnicu kontinuiranim ponavljanjem pogreške, njegov kontroler uklanja sposobnost prijenosa nakon što se dosegne ograničenje broja pogrešaka.

Provjeru pogreške na razini poruke provode CRC i ACK bitovi prikazani na slikama 3.15 i 3.16. 16-bitni CRC sadrži kontrolni zbroj podataka prethodne aplikacije za otkrivanje pogreške s 15-bitnim kontrolnim zbrojem i 1-bitnim graničnikom. Polje ACK je dugo dva bita i sastoji se od bita potvrde i graničnog bita.

Na razini poruke je također i provjera formata. Ova provjera pretražuje polja u poruci koja uvijek moraju sadržavati recesivne bitove. Ako se detektira dominantan bit, stvara se pogreška. Bitovi koji se provjeravaju su SOF, EOF, ACK granični bit i CRC granični bit.

Na razini bita svaki odaslani bit nadzire odašiljač poruke. Ako je podatkovni bit (ne arbitražni bit) zapisan na sabirnicu, a pročitan je suprotan bit, generira se pogreška. Jedine iznimke su kod identifikatorskog polja poruke koja se koriste kod arbitraže i potvrdno polje koje zahtjeva da recesivni bit bude prebrisan od strane dominantnog bita.

Posljednja metoda detekcije pogreške je pravilo trpanja bitova, gdje nakon pet uzastopnih bitova iste logičke razine, ako sljedeći bit nije komplement, generira se pogreška. Trpanje osigurava dostupnost rastućih bridova za tekuću sinkronizaciju mreže. Trpanje također osigurava da se tok bitova ne zamijeni s okvirom pogreške ili 7-bitnim međuokvirnim prostorom koji predstavlja kraj poruke. Natrpane bitove miče kontroler prijemnog čvora prije nego se podatci proslijede aplikaciji. S ovom logikom, aktivni okvir pogreške sastoji se od šest bitova, što krši pravilo trpanja bitova. Ovo se tumači kao pogreška od strane svih CAN čvorova koji zatim generiraju vlastiti okvir pogreške. To znači da okvir pogreške može biti dugačak od originalnih šest do dvanaest bitova sa

svim odgovorima. Nakon ovog okvira pogreške slijedi polje razgraničenja od osam recesivnih bitova i razdoblje mirovanja sabirnice prije ponovnog slanja oštećene poruke. Važno je napomenuti da se ponovno poslana poruka još uvijek mora boriti za arbitražu na sabirnici.

CAN sabirnica

Podatkovna veza i slojevi fizičke signalizacije na slici 3.14, koji su inače transparentni operateru sustava, uključeni su u svaki kontroler koji implementira CAN protokol. Veza s fizičkim medijem se onda implementira kroz linijski primopredajnik kako bi se formirao sistemski čvor prikazan na slici 3.19

Slika 3.19: Detalji CAN sabirnice [6, str. 7]

Signalizacija je diferencijalna, odakle CAN dobiva svoju robusnu otpornost na šum i toleranciju na pogreške. Uravnoteženo diferencijalno signaliziranje smanjuje šum i dopušta visoku brzinu signalizacije preko kabela s upletenom paricom. Uravnoteženo znači da je tok struje u svakoj signalnoj liniji jednak, ali suprotan po smjeru, što rezultira efektom poništavanja polja, što je ključno za niske emisije šuma.

Specifikacije standarda visoke brzine ISO 11898 dane su za maksimalnu brzinu prijenosa 1 Mbps s duljinom sabirnice od 40 m, s najviše 30 čvorova. Preporučuje se da se linije terminiraju na oba kraja s otpornicima R_L, koji odgovaraju karakterističnoj impedanciji linije kako bi se spriječila refleksija signala.

Izgled recesivnih i dominantnih bitova na signalnim linijama CANH i CANL CAN sabirnice prikazan je na slici 3.20.

Slika 3.20: Dominantno i recesivno stanje na CAN sabirnici [6, str. 8]

CAN standard definira komunikacijsku mrežu koja povezuje sve čvorove spojene na sabirnicu i omogućava im međusobnu komunikaciju. Može, ali ne mora, postojati središnji kontrolni čvor, a čvorovi se mogu dodavati u bilo kojem trenutku, čak i kad mreža radi (engl. *hot-plugging*).

Primjer komunikacije između tri čvora dan je na slici 3.21. Čvor A završi slanje svoje poruke kada čvorovi B i C potvrde primitak ispravne poruke. Čvorovi B i C zatim započnu arbitražu, čvor C dobiva arbitražu i pošalje svoju poruku. Čvorovi A i B potvrde primitak poruke čvora C, te zatim čvor B nastavi sa slanjem svoje poruke. Obratiti pažnju na suprotni polaritet upravljačkog ulaza i izlaza na sabirnici.

Slika 3.21: Promet na CAN sabirnici [6, str. 9]

3.3.2. CAN periferijsko sklopovlje na STM32L471VGT6 mikrokontroleru

4. Programska podrška

5. Zaključak

LITERATURA

- [1] Filip Jurić. Upravljačko sklopovlje za prikupljanje i obradu senzorskih signala na CubeSat nanosatelitu. Završni rad, Sveučilište u Zagrebu, Fakultet elektrotehnike i računarstva, 2021.
- [2] *UM10204 I²C-bus specification and user manual*. NXP Semiconductors, 2021. Rev. 7.0.
- [3] Goran Petrak. Programska potpora ugradbenog računalnog sustava za udaljeno prikupljanje fotografija putem satelita. Diplomski rad, Sveučilište u Zagrebu, Fakultet elektrotehnike i računarstva, 2021.
- [4] RM0090 Reference manual STM32F405/415, STM32F407/417, STM32F427/437 and STM32F429/439 advanced Arm®-based 32-bit MCUs. ST Microelectronics, 2021. Rev. 9.
- [5] RM0351 Reference manual STM32L47xxx, STM32L48xxx, STM32L49xxx and STM32L4Axxx, advanced Arm®-based 32-bit MCUs. ST Microelectronics, 2021. Rev. 9.
- [6] SLOA101B Introduction to the Controller Area Network (CAN). Texas Instruments, 2002. Revised May 2016.
- [7] Wikipedia. I^2 c, 2022. URL https://en.wikipedia.org/wiki/I%C2%B2C. Preuzeto: 30.05.2022.
- [8] Wikipedia. Serial peripheral interface, 2022. URL https://en.wikipedia.org/wiki/Serial_Peripheral_Interface. Preuzeto: 20.06.2022.
- [9] FER ZKIST. FERSAT opis projekta, 2022. URL https://www.fer.unizg.hr/zkist/FERSAT/projekt. Preuzeto: 18.06.2022.

Programska natnava z	ya unravljanja kamaram na CuhaSat nana
т годганізка рогрога z	za upravljanje kamerom na CubeSat nano
	Sažetak
Sažetak na hrvatskom jez	ziku.
Aljučne riječi: Ključne riječ	Si, odvojene zarezima.
Software for C	Camera Control on CubeSat Nanosatellite
	Abstract
Abstract.	