

#### Pacman – Ghosts activate on sight

Mao L., Wang C., Sebastian G.



### **Problem specification**



#### Given

- A graph G = (V, E) describing a landscape with obstacles modeled through
- simple polygons with n vertices in total
- A straight-line drawing of the landscape  $\Gamma: V \to R^2$
- The position  $P \in \mathbb{R}^2$  (Pacman)
- The positions  $(Q_i \in R^2)_{i \in \{1,...,m\}}$  of m ghosts

#### Problem

- Find an efficient way to determine if P is visible from  $Q_i$  for each  $i \in \{1, ..., m\}$
- For positions  $A, B ∈ R^2$ , A is *visible* from B iff the segment  $\overline{AB}$  has no intersection with any polygon in Γ

### Our approach



- OpenStreetMap data for realistic input geometry
- Java
- Outline:
  - 1. Parse an OSM file for polygons of buildings
  - 2. Triangulate the input polygons
  - 3. Build a *kd*-tree on the triangle soup
  - 4. Perform the m visibility checks with the help of the kdtree in  $O(m \log n)$  time



#### DEMO



### **Polygon Triangulation**

## **EAR CLIPPING**

### **Task**



Decompose polygons into a collection of triangle



## Types of polygons



### Simple polygon:

Traverse the edges the interior bounded region is always to one side

### Polygon with holes:

Consists of one outer polygon and at least one inner polygon



Simple polygon



Polygon with holes

# Ear Clipping for the simple polygon



#### **Definition:**

- Polygon an ordered sequence of n vertices, Vo through Vn-1
- Ear Vi

Three consecutive vertices V<sub>i-1</sub>, V<sub>i</sub>, V<sub>i+1</sub>. V<sub>i</sub> is a convex

vertex

No vertices of the polygon are contained in Triangle (Vi-1, Vi, Vi+1)

#### Theorem:

- Any triangulation of n vertices polygon has n-2 triangles
- A polygon has at least two nonoverlapping ears

# **Algorithm Ear Clipping**



- Step1 Initiate the Earlist
- Step2 Get ear Vi from ear list, if Vi is ear, go Step3, else repeat Step2
- Step3 Create triangle (V<sub>i-1</sub>, V<sub>i</sub>, V<sub>i+1</sub>)
- Step4 Judge, whether V<sub>i-1</sub> and V<sub>i+1</sub> are ears. If so, add them into
  Earlist
- Step5 Remove ear
- Step6 If the vertices less than four end
- else
  go Step2

## **Example**





The initial list of ears is  $E = \{3, 4, 6, 9\}$ 



The ear at vertex 3 is removed,  $E = \{4, 6, 9\}$ 



Added vertex 5, removed vertex 4,  $E = \{ 6, 9 \}$ 

# **Example**



Repeat the process





The number of vertices less than four, then end



The full triangulation of the original polygon

## **Time Complexity**



There are O(n) ears. Each update of an adjacent vertex involves an earnesstest, a process that is O(n) per update. Thus, the total removal process is O(n\*n).

## Polygon with holes



Idea

Connect two vertex, one vertex from the outer polygon and one vertex from the inner polygon



#### **Algorithm**

- Find the vertex in inner polygon M of maximum x-value
- Find the vertex P with most left segment of the outer polygon
- Find the vertex R that minimizes the angle
- Connect M and R

## **Polygons with Multiple Holes**





#### Algorithm

- Find the inner polygon with the vertex of maximum x-value
- Use the previously mentioned algorithm to combine the outer polygon and the select inner polygon
- Repeated with the new outer polygon and the remaining inner polygons

## **Time Complexity**



There are O(m) inner polygons. Each connection building needs O(n). Thus, the total process is O(m\*n).



Example polygon with holes to simple polygon



### **Bounding Volume Hierarchy**

## **BVH**

16-02-01

### **BVH Structure**





#### **BVH Introduction**



Tree structure on a set of geometric objects

### **BVH Introduction**



- Tree structure on a set of geometric objects
- Leaf nodes of the tree:

Geometric objects (wrapped in bound volumes)

#### **BVH Introduction**



- Tree structure on a set of geometric objects
- Leaf nodes of the tree:
   Geometric objects ( wrapped in bound volumes )
- Child Nodes → Small sets
  - → Father node ( with larger bounding volumes )

# **BVH** in the project



#### Leaves of the tree

Triangles (triangulated form the polygons)



## **BVH** in the project



#### Leafs of the tree

Triangles (triangulated form the polygons)



# **BVH** in the project



#### Leafs of the tree

Triangles (triangulated form Binary tree the polygons)

#### Structure of the tree





## **BVH** build up



#### Method:

- Find the nearest bounding volumes
- Combination new BVH node generated
- .....
- When only one activated node exists
  - →BVH completed

### **BVH** search



#### Method:

- When node A need to be searched:
  - Segment intersects A's bounding volume?
    - Yes
      - A is a leaf node
        → report A
      - A is not a leaf node
        Search A's children























































Result: E, F reported

## **BVH** Summary



#### Advantage

- Simple structure
- Allows overlapped triangles
- Fast binary search

#### Disadvantage

Unexpected output (sometimes)

<reason : segment intersects
the bounding volumes but not
 intersects the triangles>

Long construction time ( O(n³) )

<reason : find the nearest
bounding volumes costs to
 much time O(n²)>



#### kd-tree

## **INTERSECTION TEST**

#### Intersection test



#### Given

- The line-of-sight segment AB to check for intersection with the triangles
- The currently visited node *n* in the *kd*-tree

#### If n is not a leaf

- 1. Split  $\overline{AB}$  into AC and CB, where C is the intersection of the line through AB with the splitting plane of n
- 2. Perform the intersection test with the child of *n* containing *A* and AC as line-of-sight segment
- 3. Perform the intersection test with the child of *n* containing *B* and CB as line-of-sight segment

#### If n is a leaf

1. Return the *nearest* intersection of  $\overline{AB}$  with any of the associated triangles of n, if any







Split  $\overline{AB}$  into  $\overline{AC}$  and  $\overline{CB}$ , where C is the intersection of the line through  $\overline{AB}$  with the splitting plane of n





Split  $\overline{AB}$  into  $\overline{AC}$  and  $\overline{CB}$ , where C is the intersection of the line through  $\overline{AB}$  with the splitting plane of n





Perform the intersection test with the child of n containing A and  $\overline{AC}$  as line-of-sight segment





Perform the intersection test with the child of n containing A and AC as line-of-sight segment





Perform the intersection test with the child of n containing A and  $\overline{AC}$  as line-of-sight segment





Return the *nearest* intersection of AB with any of the associated triangles of n, if any





Perform the intersection test with the child of n containing B and CB as line-of-sight segment





Perform the intersection test with the child of n containing B and  $\overline{CB}$  as line-of-sight segment













Return the nearest intersection of AB with any of the associated triangles of n, if any





Return the *nearest* intersection of AB with any of the associated triangles of n, if any





Return the *nearest* intersection of AB with any of the associated triangles of n, if any





#### kd-tree

## **CONSTRUCTION**

16-02-01

#### Construction



- Given a list of polygons, build a kd-tree such that average query time is low
- Different heuristics
  - Spatial median
  - Object median
  - Cost function (Surface Area Heuristic)
- Implemented kd-tree construction based on Surface Area Heuristic
- Based on the  $O(n \log^2 n)$  approach in [1]
  - Paper also describes  $O(n \log n)$  algorithm





### **Surface Area Heuristic**



- Assigns costs to splits
- Lowest scoring splits (perfect splits) are optimal under the following assumptions:
  - Assuming uniformly distributed rays penetrating the bounding box
  - kd-tree traversal costs and triangle intersection costs are known



#### **Surface Area Heuristic**



- The cost function depends on
  - The surface area of the current node's bounding box
  - The surface areas of the split bounding boxes
  - The number of triangles intersecting the right or left split bounding box



#### Construction



- SAH needs to evaluate the cost for each possible split
  - Perfect split will be at the begin or end of a triangle
  - O(n) split candidates to evaluate per recursion step
    - Naive: Compute number of triangles in right and left child in O(n), resulting in  $O(n^2)$  overall
- Sweep-line based algorithm for  $O(n \log^2 n)$ 
  - Sweep along dimension *d*
  - Regard begin and end of polygons as events  $(O(n \log n))$ for sorting)
  - Compute the numbers of triangles and the associated minimum SAH cost incrementelly in O(n)





Triangles left of sweep line: Contract Triangles right of sweep line: 4





Triangles left of sweep line: 1





Triangles left of sweep line: 2





Triangles left of sweep line: 2





Triangles left of sweep line: 3
Triangles right of sweep line: 3





Triangles left of sweep line: 3
Triangles right of sweep line: 2





Triangles left of sweep line:





Triangles left of sweep line: 4





Triangles left of sweep line: 4
Triangles right of sweep line: 0

#### Construction



- Branch or leaf it?
- Branch if and only if the perfect split costs less than intersecting every triangle
- Since tree depth is in  $O(\log n)$ , we construct the kd-tree in  $O(n \log^2 n)$
- By sorting only once and maintaining the sort order, construction could happen in  $O(n \log n)$  [1]





- Benchmark system:
  - Intel Xeon E3-1231v3 4x 3.40GHz
  - Windows
  - Java HotSpot 64-Bit Server VM (build 25.66-b18)
  - Max. JVM heap size: 4 GB

| number of triangles | naϊve<br>(μs per random query) | kd-tree<br>(ns per random query) |
|---------------------|--------------------------------|----------------------------------|
| 2,117               | 29.9                           | 902.2                            |
| 14,485              | 242.4                          | 1025.0                           |
| 305,662             | 18244.5                        | 1961.5                           |
| 1,283,858           | 48345.6                        | 3489.4                           |









#### References



[1] On building fast kd-Trees for Ray Tracing, and on doing that in O(N log N) (2006), Ingo Wald, Vlastimil Havran