SYDNEY TECHNICAL HIGH SCHOOL

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK 2

MARCH 2013

Mathematics Extension 1

General Instuctions

- Working time 70 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in questions 6 to 13
- Start each question on a new page
- A table of standard integrals is provided at the back of this paper

Total marks - 47

Section 1 - 5 marks

Attempt Questions 1-5. Allow about 7 minutes for this section.

Section 2 - 42 marks

Attempt Questions 6 - 11. Allow about 63 minutes for this section.

Name	•	
Feacher	<u>:</u>	

Section 1

5 marks

Attempt Questions 1 – 5

Allow about 7 minutes for this section

Use the multiple-choice answer sheet in your answer booklet for Questions 1-5. Do not remove the multiple-choice answer sheet from your answer booklet.

1

For the graph of y = f(x) shown above, f'(x) is negative when

- (A) -3 < x < 3
- (B) x < -3 or x > 3
- (C) 1 < x < 4
- (D) -5 < x < 1 or x > 4
- 2 The volume of the solid of revolution formed by rotating the graph of

 $y = \sqrt{9 - (x - 1)^2}$ about the x-axis is given by

(A)
$$\pi \int_{-3}^{3} (9 - (x - 1)^2) dx$$

(B)
$$\pi \int_{-2}^{4} \sqrt{9 - (x - 1)^2} dx$$

(C)
$$\pi \int_{-2}^{4} (9 - (x - 1)^2) dx$$

(D)
$$\pi \int_{-2}^{4} (9 - (x - 1)^2)^2 dx$$

3 A section of the graph of f is shown below.

The rule of f could be

- (A) $f(x) = \tan (x \frac{\pi}{4})$
- **(B)** $f(x) = \tan\left(2\left(x \frac{\pi}{4}\right)\right)$
- (C) $f(x) = \tan\left(2\left(x \frac{\pi}{2}\right)\right)$
- **(D)** $f(x) = \tan\left(\frac{1}{2}\left(x \frac{\pi}{2}\right)\right)$

4

The total area of the shaded regions in the diagram is given by

(A)
$$\int_{-1}^{6} f(x) dx$$

(B)
$$\int_1^4 f(x)dx + 2 \int_4^6 f(x)dx$$

(C)
$$-\int_{-1}^{1} f(x)dx + \int_{1}^{4} f(x)dx - \int_{4}^{6} f(x)dx$$

(D)
$$-\int_{1}^{-1} f(x)dx + \int_{1}^{4} f(x)dx - \int_{6}^{4} f(x)dx$$

5 If
$$\frac{d^2y}{dx^2} = x^2 - x$$
 and $\frac{dy}{dx} = 0$ at $= 0$, then the graph of y will have

- (A) A maximum turning point at x = 0 and a minimum turning point at x = 1
- (B) A horizontal point of inflexion at x = 0 and x = 1, and a minimum turning point at $x = \frac{3}{2}$
- (C) A horizontal point of inflection at x = 0, no other points of inflection and a minimum turning point at $x = \frac{3}{2}$
- (D) A horizontal point of inflexion at x = 0, a minimum turning point at $x = \frac{3}{2}$ and a point of inflexion at x = 1

Section 2

42 marks

Attempt Questions 6 – 11

Allow about 63 minutes for this section

Start each question on a new page

Question 6 (7 marks)

ii)
$$\lim_{x \to 0} \frac{4x}{\tan 2x}$$

1

b) Differentiate
$$\frac{\sin 2x}{x}$$

c) Find the area bounded by the curves
$$y = x^2$$
 and $y = 8x - x^2$.

Question 7 (7 marks) Start a new page

a) Use the substitution
$$u = 3x - 1$$
to find
$$\int \frac{x}{(3x-1)^3} dx$$

b) Let
$$f(x) = \frac{(x+10)^3}{x}$$
.

i) Find any stationary points of
$$y = f(x)$$
 and determine their nature.

ii) Sketch
$$y = f(x)$$
 clearly labelling any important features.

Question 8 (7 marks) Start a new page

a) Solve
$$2\log(x-1) - \log(x+3) = \log 2$$

b) i) Show that
$$\frac{d}{d\theta}(tan^3\theta) = 3 \sec^2\theta (\sec^2\theta - 1)$$

ii) Hence, or otherwise, evaluate
$$\int_{0}^{\frac{\pi}{4}} \sec^{4}\theta \ d\theta$$
 3

Question 9 (7 marks) Start a new page

a) Find a primitive of
$$\frac{1}{(2x-1)^3}$$

- b) i) Draw a neat sketch of the curves $y = \cos x$ and $y = \sin 2x$ 2

 for $0 \le x \le \pi$ on the same diagram.
 - ii) Find the x coordinates of the points of intersection of $y = \cos x$ 2 and $y = \sin 2x$ for $0 \le x \le \pi$.
 - iii) Find the area bound by $y = \cos x$, $y = \sin 2x$ and the x axis 2 for $0 \le x \le \pi$.

Question 10 (7 marks) Start a new page

 $\int \sin^2 4x \, dx$

2

Find the volume of the solid formed when the shaded area under the curve $y = \sqrt{x}$, shown below, is rotated about the y axis.

3

Use Simpson's rule with 3 function values

2

to approximate
$$\int_0^4 \frac{3}{1 + \sqrt{x}} dx$$
 correct to 2 decimal places.

Question 11 (7 marks) Start a new page

a) Two sectors make up a company logo as shown below.

Both sectors have centre A, AB=CD, AB=x and AC bisects angle BAE. Let angle BAC= θ radians.

i) If the area of the logo is
$$8\pi$$
 square units, show that $\theta = \frac{16\pi}{5x^2}$

ii) Find an expression for the perimeter (P) of the logo in terms of
$$x$$
.

b) Evaluate
$$\int_0^{\frac{\pi}{3}} \frac{\sin 2x}{\left(1 + \sin^2 x\right)^2} dx$$
 using the substitution $u = \sin^2 x$ 4

End of paper

Student Name: _____ Teacher Name: _ SOLUTIONS - EXT | MARCH 2013 QUESTION 7 a) $\sqrt{\frac{3\alpha-1}{3\alpha-1}}$ doc $\alpha=3\alpha-1$ 4. C s. D $=\frac{1}{9}\int \frac{u+1}{u^3} du$ QUESTION 6 'a. 1) 1 = 1 (u + w -) du [-u-1-+u-2] b. doc (Sin 2oc) 2 sc. Cos 2 sc - Sin 2 sc b) $f(x) = \frac{(x+10)}{x}$ 1) f(x) = 3x(x+10) - (x+10) = (20+10) (200-10) Solve simultaneously. st. pts when y'=0 · 2c = 8 = 2c - 2c 2 201 (21-4)=0 x = 0-17. test x=5 : A= 54 8x - 22 - 22 doc 5 6 = 54 8x - 2x doc O +ve $= \left[\frac{4}{3} x^{2} - \frac{2}{3} x^{3} \right]_{0}$.. min at (5,675) = 21 \frac{1}{3} sq. units

b. 1)	QUESTION 10
y A.	ay Cos 2 A = 1 - 2 Sin A
	Sin A = & (1-Cos2A)
T	•
1 2 4 = Sin 23c	:. Sintta da
_1	= 1 (1-Cus 821 d2
y= Cos >c	= 1 [oc - 1 Sin 8 oc] + C
11) Cos x = Sin 2>c	2
Cos 20 - 2 Sin 20 Cos 20 = 0	b) V= Tx923-Tf y dy
Cos 2 (1-2 Sin 22) =0	$= 243\pi - \pi \int_{-\infty}^{\infty} \left[\frac{1}{2} \sqrt{3} \right]^{3}$
Cosoczo Smorzt.	25010
マニモ、モノを	$= 243\pi - \pi \left[\frac{1}{5} \cdot 3^{5} - 0 \right]$
T T	= 972TT cubic vinte
(11) A = 2 \ Sin 2 a d a +	5
0	c) x 0 2 4
2 (Cos xx d > c	4 3 1243 1
	4
$=2\left[-\frac{1}{2}\cos 2x\right]_{0}^{\frac{\pi}{6}}+2\left[\sin x\right]_{\frac{\pi}{6}}$	5 1+ 12
$= 2 \left(-\frac{1}{2} \cos \frac{\pi}{3} + \frac{1}{2} \cos 0.\right)$	$\approx \frac{2}{3} \left[341 + 4 \times 1.243 \right]$
+ 2 (Sm = - Sm =)	= S·98
$= 2(-\frac{1}{4} + \frac{1}{2}) + 2(1-\frac{1}{2})$	
= 3 = 59= unit	
*	
	•
•	

Teacher Name:

QUESTION 11

$$=\int_{0}^{\frac{3}{4}}\frac{da}{(1+u)^{2}}$$

$$= \left[-\left(1+u\right)^{-1}\right]_{0}^{2}$$

$$= \left(\frac{-1}{1+\frac{2}{3}}\right) - \left(\frac{-1}{1}\right)$$