[2]:	<pre>from gurobipy import * import numpy as np import csv import os import matplotlib.pyplot as plt import warnings import math import pandas as pd import random warnings.filterwarnings("ignore") # To ignore warnings produced zips_df = pd.read_csv('Zipcode.csv') # zips_df zips_df = zips_df.loc[(zips_df['COUNTYNAME'] == 'ALLEGHENY') & (zips_df['population'] > 0)] zips_df</pre>
	<pre>zips_df = pd.read_csv('Zipcode.csv') # zips_df zips_df = zips_df.loc[(zips_df['COUNTYNAME'] == 'ALLEGHENY') & (zips_df['population'] > 0)]</pre>
	OR JECTID 71D NAME 71DTVDE STATE STATEFIDS COUNTVEIDS COUNTVNAME S2D71D LAT MEDIL S
	OBJECTID ZIP NAME ZIPTYPE STATE STATEFIPS COUNTYFIPS COUNTYNAME S3DZIP LAT MFDU S1 0 4 15057 BAKERSTOWN NON- UNIQUE PA 42.0 42003.0 ALLEGHENY 150.0 40.361610 0.0 1 1 4 15206 BAKERSTOWN NON- UNIQUE PA 42.0 42003.0 ALLEGHENY 150.0 40.467710 0.0 1
	2 4 15214 BAKERSTOWN NON- UNIQUE PA 42.0 42003.0 ALLEGHENY 150.0 40.483220 0.0 1 3 4 15229 BAKERSTOWN NON- UNIQUE PA 42.0 42003.0 ALLEGHENY 150.0 40.517330 0.0 1
	4 4 15228 BAKERSTOWN NON-UNIQUE PA 42.0 42003.0 ALLEGHENY 150.0 40.368810 0.0 1
	121 65828 15032 CURTISVILLE PO BOX PA 42.0 42003.0 ALLEGHENY 150.0 40.382820 346.0 41 123 65837 15221 PITTSBURGH NON-UNIQUE PA 42.0 42003.0 ALLEGHENY 152.0 40.467750 3486.0 122
	124 65839 15205 PITTSBURGH NON-UNIQUE PA 42.0 42003.0 ALLEGHENY 152.0 40.483220 1718.0 89 125 65841 15202 PITTSBURGH NON-UNIQUE PA 42.0 42003.0 ALLEGHENY 152.0 40.370729 2933.0 108 96 rows × 23 columns
[3]:	<pre>zips = zips_df['ZIP'].to_list() # zips all_n = np.array(zips) # # zips # np.inld(POD_zips, all_n) # 0,1,5,9,10,13,15,16,21,22,24,27,29,36 # POD_zips[[0,1,5,9,10,13,15,16,21,22,24,27,29,36]]</pre>
[4]:	<pre>zipcodes_path = 'pittsburgh-allegheny-county.csv' data = np.genfromtxt(zipcodes_path, dtype=str, delimiter=',', encoding='utf-8-sig') # neighborhoods = data.astype(np.int) neighborhoods = all_n.astype(np.int) POD_sites_path = 'POD Sites.xlsx' POD_df = pd.read_excel(POD_sites_path) POD_df = POD_df[['SCHOOL/FACILITY NAME', 'STRIP MAP']]</pre>
	<pre>POD_df['ZIPCODE'] = POD_df['STRIP MAP'].apply(lambda x: str(x)[-5:]) POD_df = POD_df[:47] POD_df POD_zips = np.array(pd.to_numeric(POD_df.ZIPCODE).values) print(POD_zips) print(neighborhoods) [15237 15236 15102 15216 15227 15106 15210 15220 15025 15108 15024 15110</pre>
	15137 15037 15238 15146 15101 15065 15216 15132 15136 15108 15228 15090 15229 15202 15235 15214 15044 15206 15217 15239 15056 15139 15209 15133 15057 15129 15144 15120 15136 15025 15241 15126 15122 15221 15221] [15057 15206 15214 15229 15228 15108 15101 15146 15037 15024 15106 15236 15237 15007 15014 15015 15018 15025 15034 15030 15035 15046 15049 15064 15065 15082 15110 15112 15129 15131 15132 15133 15135 15137 15144 15148 15203 15211 15213 15224 15225 15232 15239 15275 15006 15051 15223 15227 16229 15282 15083 15088 15116 15122 15204 15216 15102 15234 15120 15017
[5]:	15215 15139 15028 15145 15104 15086 15142 15241 15226 15207 15075 15076 15209 15243 15136 16046 15056 15045 15090 15084 15147 15235 15238 15220 15217 15233 15143 15210 15289 15044 15126 15047 15032 15221 15205 15202] num_neighborhoods = len(neighborhoods) num_sites = len(POD_zips)
	<pre>random.seed(20) zipcodes_df = pd.read_csv('Zipcode.csv') # zipcodes_df = zipcodes_df.loc[zipcodes_df['type'].isin(['STANDARD', 'UNIQUE'])] zipcodes_df = zipcodes_df.loc[(zipcodes_df['population'] > 0)] zipcodes_df_filtered = zipcodes_df[['ZIP', 'NAME', 'LAT', 'LON', 'population']] from math import sin, cos, sqrt, atan2, radians</pre>
	<pre>def calcDistBetweenTwoPoints(pt1, pt2): # approximate radius of earth in km R = 6373.0 lat1 = radians(pt1[0]) lon1 = radians(pt1[1]) lat2 = radians(pt2[0]) lon2 = radians(pt2[1]) dlon = lon2 - lon1</pre>
	<pre>dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance = R * c return(distance) def getLatLongFromZip_graph(zipcode, df): lat = df.loc[df['ZIP'] == zipcode]['LAT'].values[0] long = df.loc[df['ZIP'] == zipcode]['LON'].values[0]</pre>
	<pre>return((lat, long)) def getLatLongFromZip(zipcode, df): lat = df.loc[df['ZIP'] == zipcode]['LAT'].values[0] long = df.loc[df['ZIP'] == zipcode]['LON'].values[0] return((lat, long)) problematic_n = [] problematic_s = []</pre>
	<pre>distances = [] # nomi.query_postal_code()['latitude'] for i in range(num_neighborhoods): temp = [] for j in range(num_sites): try: # print(POD_zips[j]) pt1 = getLatLongFromZip(neighborhoods[i], zips_df) # pt1 = (nomi.query_postal_code(str(neighborhoods[i]))['latitude'], nomi.query_postal_code</pre>
	<pre>(str(neighborhoods[i]))['longitude']) #</pre>
	<pre>problematic_s.append(POD_zips[j]) #</pre>
[0].	<pre>POD_lats = [] POD_longs = [] for z in POD_zips: lat, long = getLatLongFromZip_graph(z, zips_df) POD_lats.append(lat) POD_longs.append(long) neighborhood_lats = [] neighborhood_longs = []</pre>
	<pre>for z in neighborhoods: lat, long = getLatLongFromZip_graph(z, zips_df) neighborhood_lats.append(lat) neighborhood_longs.append(long) plt.scatter(neighborhood_longs, neighborhood_lats, marker='o', c = 'blue') plt.scatter(POD longs, POD lats, marker='x', c = 'red')</pre>
[6]:	plt.xlabel('Longitude') plt.ylabel('Latitude') plt.title('Neighborhoods (blue) vs possible POD sites (red)') Text(0.5, 1.0, 'Neighborhoods (blue) vs possible POD sites (red)') Neighborhoods (blue) vs possible POD sites (red) 40.7
	40.6 - 40.5 - 40.4 -
[7]:	40.3 - 80.2 -80.1 -80.0 -79.9 -79.8 -79.7 Longitude population = [] for i in range(num_neighborhoods):
	<pre>try:</pre>
	<pre>#for i in range(len(population)): # if(population[i] == 0): # population[i] = pop_mean print(population) [6738 22090 12010 13410 17180 37850 24110 25680 9730 7970 16810 29410 42230 360 2650 1290 750 15150 1350 850 1770 2360 860 310 9890 386 3950 2650 10260 7280 14700 5460 4510 8540 3580 1860</pre>
[8]:	6410 8560 7230 7630 870 6760 20120 13 359 360 6180 26790 4790 16 900 631 13950 17260 6820 19990 28950 12670 15350 14880 11150 6080 170 5720 6020 560 1860 22040 11930 8780 207 810 10970 13340 20030 18170 950 3500 23900 8360 13980 30560 12850 16460 21290 2120 21220 20140 123 29140 6730 378 244 23860 20320 17220] population.shape (96,)
ſ	Find the min max distance possible # MODEL INITIALIZATION m1 = Model() sizes = range(3)
	<pre>zipcodes = range(distances.shape[0]) sites = range(distances.shape[1]) days = range(25) # CONSTANTS D = distances p = population total_pop = population.sum() e = np.array([72, 85, 100])</pre>
	o = 20000 v = 50 f = 8000 r = 206.76 h = 12.5 C = 1370 # DECISION VARIABLES
	<pre>A = m1.addVars(zipcodes, sites, vtype = GRB.BINARY) S = m1.addVars(sites, vtype = GRB.BINARY) M = m1.addVars(sites, vtype = GRB.BINARY) L = m1.addVars(sites, vtype = GRB.BINARY) U = m1.addVars(sites, days, vtype = GRB.BINARY) X = m1.addVars(sites, days) #, vtype = GRB.INTEGER) I = m1.addVars(sites, days) #, vtype = GRB.INTEGER) # OBJECTIVE</pre>
	<pre>MAX = m1.addVar(lb = 0.0) m1.setObjective(MAX) m1.modelSense = GRB.MINIMIZE # CONSTRAINTS for i in zipcodes: m1.addConstr(sum(A[i,j] for j in sites) == 1)</pre>
	<pre>for j in sites: m1.addConstr(MAX >= D[i,j]*A[i,j]) m1.addConstr(A[i,j] <= S[j] + M[j] + L[j]) m1.addConstr(A[i,j] >= 0) for j in sites: assigned_pop = sum(A[i,j] * p[i] for i in zipcodes) m1.addConstr(S[j] + M[j] + L[j] <= 1)</pre>
	<pre>m1.addConstr(sum(e[0]*X[j,t] for t in days) >= assigned_pop - (1-S[j])*total_pop) m1.addConstr(sum(e[1]*X[j,t] for t in days) >= assigned_pop - (1-M[j])*total_pop) m1.addConstr(sum(e[2]*X[j,t] for t in days) >= assigned_pop) m1.addConstr(S[j] >= 0) m1.addConstr(M[j] >= 0) m1.addConstr(L[j] >= 0) administered = [0,0,0]</pre>
	<pre>for t in days: administered[0] += e[0]*X[j,t] administered[1] += e[1]*X[j,t] administered[2] += e[2]*X[j,t] m1.addConstr(X[j,t] >= 10*M[j] + 20*L[j] - 20*(1-U[j,t])) m1.addConstr(X[j,t] <= 10*S[j] + 20*M[j] + C*L[j]) #The third term is redundant m1.addConstr(X[j,t] <= C*U[j,t]) m1.addConstr(U[j,t] <= S[j] + M[j] + L[j]) m1.addConstr(I[j,t] + (1-S[j])*total pop >= assigned pop - administered[0])</pre>
	<pre>m1.addConstr(I[j,t] + (1-M[j])*total_pop >= assigned_pop - administered[1]) m1.addConstr(I[j,t] + (1-L[j])*total_pop >= assigned_pop - administered[2]) m1.addConstr(X[j,t] >= 0) m1.addConstr(I[j,t] >= 0) m1.addConstr(U[j,t] >= 0) for t in days: m1.addConstr(sum(X[j,t] for j in sites) <= C)</pre>
ſ	Academic license - for non-commercial use only - expires 2022-08-29 Using license file C:\Users\Ben\gurobi.lic #m1.Params.MIPGap = 0.1 m1.Params.TimeLimit = 20*60 m1.optimize() Changed value of parameter TimeLimit to 1200.0 Prev: inf Min: 0.0 Max: inf Default: inf
	Gurobi Optimizer version 9.1.2 build v9.1.2rc0 (win64) Thread count: 6 physical cores, 12 logical processors, using up to 12 threads Optimize a model with 25736 rows, 8179 columns and 465901 nonzeros Model fingerprint: 0x52a4fd94 Variable types: 2351 continuous, 5828 integer (5828 binary) Coefficient statistics: Matrix range [2e-01, 1e+06] Objective range [1e+00, 1e+00]
	Bounds range [1e+00, 1e+00] RHS range [1e+00, 1e+06] Presolve removed 11853 rows and 1175 columns Presolve time: 0.30s Presolved: 13883 rows, 7004 columns, 66250 nonzeros Variable types: 1176 continuous, 5828 integer (5828 binary) Found heuristic solution: objective 47.6903713 Found heuristic solution: objective 35.9605456 Found heuristic solution: objective 32.0191374
	Nodes Current Node Objective Bounds Work Expl Unexpl Obj Depth IntInf Incumbent BestBd Gap It/Node Time 0 0 2.84985 0 228 32.01914 2.84985 91.1% - Os H 0 0 31.3664648 2.84985 90.9% - Os H 0 0 28.7704195 2.84985 90.1% - Os
	H 0 0 17.5052689 2.84985 83.7% - 0s H 0 0 14.6579122 2.84985 80.6% - 0s Cutting planes: MIR: 6 Flow cover: 6 GUB cover: 1 RLT: 32 Relax-and-lift: 24
	Explored 1 nodes (7170 simplex iterations) in 1.04 seconds Thread count was 12 (of 12 available processors) Solution count 7: 14.6579 17.5053 28.7704 47.6904 Optimal solution found (tolerance 1.00e-04) Best objective 1.465791215778e+01, best bound 1.465791215778e+01, gap 0.0000%
l	m1.objval 14.657912157781494 The minimum max distance possible is 14.66

	timeline = np.arange(100)+1 plt.bar(timeline[:18], vaccinations[:18]) plt.ylabel("Number of days") plt.slabel("Number of days") plt.show() Number of people vaccinated every day") plt.show() Number of people vaccinated every day Number of days = 1,000,000,000,000,000,000,000,000,000,0			
. [28]:				
n [29]:	vaccinations [137000.0, 137000.0, 137000.0, 137000.0, 137000.0, 136998.0, 136941.0, 45716.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,			
n [30]:	0.0, 0.0, 0.0, 0.0, 0.0] for j in sites: print("Site Site: 1 Site: 2 Site: 3 Site: 4 Site: 5 Site: 6 Site: 7 Site: 8 Site: 9 Site: 10 Site: 11 Site: 12 Site: 13 Site: 14	23060.0 0.0 0.0 0.0 0.0 0.0 351582.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
	Site: 15 Site: 16 Site: 17 Site: 18 Site: 19 Site: 20 Site: 21 Site: 22 Site: 23 Site: 24 Site: 25 Site: 26 Site: 27 Site: 28 Site: 29 Site: 30 Site: 31 Site: 32 Site: 33 Site: 34 Site: 35 Site: 36 Site: 37	37210.0 0.0 45716.0 0.0 0.0 310300.0 0.0 99788.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
n [31]:	<pre>Site: 38 Site: 39 Site: 40 Site: 41 Site: 42 Site: 43 Site: 44 Site: 45 Site: 46 Site: 47</pre> j = 32 for t in days: print(I[j,t) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
in [32]:	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
	<pre>for i in zipcodes: for j in sites: f.write(str(A[i,j].x) + ',') f.write('\n') print('Done') with open('Dij_Ben_max_distance.csv', 'w') as f: for i in zipcodes: for j in sites: f.write(str(D[i,j]) + ',') f.write('\n') print('Done')</pre> Done Done Done			