## Variational inference (part 2)

**Brooks Paige** 

COMP0171 Week 5

#### Variational inference recap

Last week we looked at a fairly "general" variational inference formulation:

1. Define the ELBO, a lower bound on the marginal log likelihood, as

$$\mathcal{L}(\lambda, \mathcal{D}) = \mathbb{E}_{q_{\lambda}(\mathbf{z})} \left[ \log \frac{p(\mathbf{z}, \mathcal{D})}{q_{\lambda}(\mathbf{z})} \right] \leq \log p(\mathcal{D})$$

- 2. Use the "reparameterization trick" to re-write  $q_{\lambda}(\mathbf{z})$  in terms of an independent noise distribution  $p(\boldsymbol{\epsilon})$  and a transformation function  $\mathbf{z} = r(\lambda, \boldsymbol{\epsilon})$
- 3. Using samples from  $p(\epsilon)$ , compute a stochastic gradient estimate of

$$\nabla_{\lambda} \mathcal{L}(\lambda, \mathcal{D}) = \mathbb{E}_{p(\epsilon)} \left[ \nabla_{\lambda} \log \frac{p(r(\lambda, \epsilon), \mathcal{D})}{q_{\lambda}(r(\lambda, \epsilon))} \right].$$

#### This lecture

- Simple demo and practical notes on reparameterization gradients in pytorch
- What is "approximate" about this sort of approximate inference?
- Using the ELBO for maximum likelihood estimation in latent variable models
- How to handle discrete variables (or not)

Demo #1: fit a Gaussian

#### One-dimensional Gaussian

Suppose our data  $\mathcal{D} = \{x_1, \dots, x_N\}$  is drawn from a 1-d Gaussian distribution with unknown mean  $\mu$  and unknown precision  $\tau$ .

We will define a model

$$\mu \sim \mathcal{N}(0, 1)$$
 $\tau \sim \operatorname{Gamma}(2, 2)$ 
 $x_i | \mu, \tau \sim \mathcal{N}(\mu, \tau^{-1})$  for  $i = 1, \dots, N$ .

#### One-dimensional Gaussian

Suppose our data  $\mathcal{D} = \{x_1, \dots, x_N\}$  is drawn from a 1-d Gaussian distribution with unknown mean  $\mu$  and unknown precision  $\tau$ .

We will define a model

$$\mu \sim \mathcal{N}(0, 1)$$
 $\tau \sim \text{Gamma}(2, 2)$ 
 $x_i | \mu, \tau \sim \mathcal{N}(\mu, \tau^{-1})$  for  $i = 1, \dots, N$ .

Following the example in Bishop, Ch. 10, we will learn an approximate posterior  $q(\mu,\tau)=q(\mu)q(\tau)$  where

$$q(\mu) = \mathcal{N}(\mu|m, s^2)$$
  $q(\tau) = \text{Gamma}(\tau|a, b).$ 

We then optimize the ELBO for  $\lambda = \{m, s, a, b\}$ .

#### Before we look at the code (1/2)

We will be optimizing the ELBO

$$\mathcal{L}(\mathcal{D}; \lambda) = \mathbb{E}_{q(\mu|m,s)q(\tau|a,b)} \left[ \log \frac{p(\mu)p(\tau) \prod_{i=1}^{N} p(x_i|\mu,\tau)}{q(\mu|m,s)q(\tau|a,b)} \right]$$

with respect to m, s, a, b. Three of these parameters have constraints:

$$s > 0, \qquad a > 0, \qquad b > 0.$$

To avoid "issues" we will optimize with respect to unconstrained transformed parameters  $s' = \log s$ ,  $a' = \log a$ , and  $b' = \log b$ .

#### Before we look at the code (2/2)

There are two ways to sample from a pytorch distribution:

```
>>> a = torch.tensor(1.0, requires_grad=True)
>>> dist.Gamma(a, 1).sample()
tensor(1.0297)
>>> dist.Gamma(a, 1).rsample()
tensor(0.7706, grad_fn=<DivBackward0>)
```

If you call .rsample, then internally sampling will be done such that gradients can be computed, i.e. internally it samples a value z by performing

$$\epsilon \sim p(\epsilon)$$
  $z = r(\epsilon)$ 

with appropriate transform r (may depend on parameters of the distribution!)

# (Switch to notebook for demo now!)

### if $q_{\lambda}$ is too simple?

What are we "missing"

#### Variational inference goal

If all went well, after maximizing the ELBO, we have estimated parameters  $\boldsymbol{\lambda}$  such that

$$q_{\lambda}(\mathbf{z}) \approx p(\mathbf{z}|\mathcal{D}).$$

- How can we tell if it worked?
- What if we picked a  $q_{\lambda}$  family that was too "simple"?

#### KL divergence is asymmetric

Maximizing the ELBO as defined minimizes

$$D_{KL}(q_{\lambda}(\mathbf{z})||p(\mathbf{z}|\mathcal{D})) = \mathbb{E}_{q_{\lambda}(\mathbf{z})} \left| \log \frac{q_{\lambda}(\mathbf{z})}{p(\mathbf{z}|\mathcal{D})} \right|.$$

This divergence is not symmetric: in general it differs from

$$D_{KL}(p(\mathbf{z}|\mathcal{D})||q_{\lambda}(\mathbf{z})) = \mathbb{E}_{p(\mathbf{z}|\mathcal{D})} \left[ \log \frac{p(\mathbf{z}|\mathcal{D})}{q_{\lambda}(\mathbf{z})} \right]$$

(though 
$$D_{KL}(p||q_{\lambda}) = D_{KL}(q_{\lambda}||p) = 0$$
 if  $q_{\lambda} = p$ ).

#### KL divergence is asymmetric

Maximizing the ELBO as defined minimizes

$$D_{KL}(q_{\lambda}(\mathbf{z})||p(\mathbf{z}|\mathcal{D})) = \mathbb{E}_{q_{\lambda}(\mathbf{z})} \left[ \log \frac{q_{\lambda}(\mathbf{z})}{p(\mathbf{z}|\mathcal{D})} \right].$$

This divergence is not symmetric: in general it differs from

$$D_{KL}(p(\mathbf{z}|\mathcal{D})||q_{\lambda}(\mathbf{z})) = \mathbb{E}_{p(\mathbf{z}|\mathcal{D})} \left[ \log \frac{p(\mathbf{z}|\mathcal{D})}{q_{\lambda}(\mathbf{z})} \right]$$

(though 
$$D_{KL}(p||q_{\lambda}) = D_{KL}(q_{\lambda}||p) = 0$$
 if  $q_{\lambda} = p$ ).

**Practical reason** for  $D_{KL}(q_{\lambda}||p)$ : computing expectations under  $p(\mathbf{z}|\mathcal{D})$  is hard.

#### If $q_{\lambda}$ is too simple (part 1)

- The target distribution (green): multivariate gaussian  $p(z_1, z_2)$  with positive correlation (non-diagonal covariance matrix)
- The approximating distribution (red):  $q(z_1, z_2) = q(z_1)q(z_2)$ , i.e. the product of two univariate Gaussians, with zero correlation between  $z_1, z_2$  (diagonal covariance matrix)



Figure: Bishop PRML, Ch. 10

#### If $q_{\lambda}$ is too simple (part 1)

- The target distribution (green): multivariate gaussian  $p(z_1, z_2)$  with positive correlation (non-diagonal covariance matrix)
- The approximating distribution (red):  $q(z_1, z_2) = q(z_1)q(z_2)$ , i.e. the product of two univariate Gaussians, with zero correlation between  $z_1, z_2$  (diagonal covariance matrix)
- (top)  $q_{\lambda}$  minimizes  $D_{KL}(q_{\lambda}||p)$
- (bottom)  $q_{\lambda}$  minimizes  $D_{KL}(p||q_{\lambda})$



Figure: Bishop PRML, Ch. 10

### If $q_{\lambda}$ is too simple (part 1)

- The target distribution (green): multivariate gaussian  $p(z_1, z_2)$  with positive correlation (non-diagonal covariance matrix)
- The approximating distribution (red):  $q(z_1, z_2) = q(z_1)q(z_2)$ , i.e. the product of two univariate Gaussians, with zero correlation between  $z_1, z_2$  (diagonal covariance matrix)
- (top)  $q_{\lambda}$  minimizes  $D_{KL}(q_{\lambda}||p)$
- (bottom)  $q_{\lambda}$  minimizes  $D_{KL}(p||q_{\lambda})$

VB systematically underestimates marginal variances!



Figure: Bishop PRML, Ch. 10

#### If $q_{\lambda}$ is too simple (part 2)



We also have a problem with multimodal targets.

- (left)  $q_{\lambda}$  minimizes  $D_{KL}(p||q_{\lambda})$
- ullet (middle, right)  $q_{\lambda}$  minimizes  $D_{KL}(q_{\lambda}\|p)$  and finds a single local optimum



 $D_{KL}(q_{\lambda}||p)$  has **mode-seeking** or **zero-forcing** behavior.



 $D_{KL}(q_{\lambda}||p)$  has **mode-seeking** or **zero-forcing** behavior. If you look at

$$\mathbb{E}_{q_{\lambda}(\mathbf{z})} \left[ \log \frac{q_{\lambda}(\mathbf{z})}{p(\mathbf{z}|\mathcal{D})} \right] = \mathbb{E}_{q_{\lambda}(\mathbf{z})} [\log q_{\lambda}(\mathbf{z})] - \mathbb{E}_{q_{\lambda}(\mathbf{z})} [\log p(\mathbf{z}|\mathcal{D})]$$

you will see a very large loss is assigned if there are any values  $\mathbf{z}$  where  $q_{\lambda}(\mathbf{z}) > 0$  and  $p(\mathbf{z}|\mathcal{D}) \approx 0$ .

Figure: Tuan-Anh Le



 $D_{KL}(p||q_{\lambda})$  has **mass-covering** or **mean-seeking** behavior, for the opposite reason:

$$\mathbb{E}_{p(\mathbf{z}|\mathcal{D})} \left[ \log \frac{p(\mathbf{z}|\mathcal{D})}{q_{\lambda}(\mathbf{z})} \right] = \mathbb{E}_{p(\mathbf{z}|\mathcal{D})} [\log p(\mathbf{z}|\mathcal{D})] - \mathbb{E}_{p(\mathbf{z}|\mathcal{D})} [\log q_{\lambda}(\mathbf{z})]$$



 $D_{KL}(p||q_{\lambda})$  has **mass-covering** or **mean-seeking** behavior, for the opposite reason:

$$\mathbb{E}_{p(\mathbf{z}|\mathcal{D})} \left[ \log \frac{p(\mathbf{z}|\mathcal{D})}{q_{\lambda}(\mathbf{z})} \right] = \mathbb{E}_{p(\mathbf{z}|\mathcal{D})} [\log p(\mathbf{z}|\mathcal{D})] - \mathbb{E}_{p(\mathbf{z}|\mathcal{D})} [\log q_{\lambda}(\mathbf{z})]$$

**Exercise**: Which is better as an approximate posterior? When? What about as an importance sampling proposal?

Figure: Tuan-Anh Le

Parameter estimation

#### Maximum likelihood in latent variable models

When we talked about maximum likelihood estimation before, it was in the context of models of the form  $p(\mathcal{D}|\theta)$ . (For example, in linear regression, the parameters were the regression weights.) We maximize

$$\theta_{MLE} = \underset{\theta}{\operatorname{arg max}} \log p(\mathcal{D}|\theta).$$

What happens if you have a mix of latent variables, and unknown parameters? In that case,

$$\log p(\mathcal{D}|\theta) = \log \int p(\mathcal{D}, \mathbf{z}|\theta) d\mathbf{z}.$$

How could we estimate  $\theta$ ?

#### Concrete example

In our previous Bayesian linear regression discussion, we assumed a few parameters were fixed, and only did inference over the weights.

The full model is

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$
$$p(y_i|\mathbf{x}_i, \mathbf{w}, \beta) = \mathcal{N}(y_i|\mathbf{w}^{\top}\phi(\mathbf{x}_i), \beta^{-1}) \qquad \text{for } i = 1, \dots, N.$$

In this model we have latent variables  $\mathbf{w}$ , for which we will compute  $p(\mathbf{w}|\mathcal{D})$ , as well as parameters  $\theta = \{\alpha, \beta\}$ .

#### Concrete example

In our previous Bayesian linear regression discussion, we assumed a few parameters were fixed, and only did inference over the weights.

The full model is

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$
$$p(y_i|\mathbf{x}_i, \mathbf{w}, \beta) = \mathcal{N}(y_i|\mathbf{w}^{\top}\phi(\mathbf{x}_i), \beta^{-1}) \qquad \text{for } i = 1, \dots, N.$$

In this model we have latent variables  $\mathbf{w}$ , for which we will compute  $p(\mathbf{w}|\mathcal{D})$ , as well as parameters  $\theta = \{\alpha, \beta\}$ .

**Note**: obviously, we could place priors on  $\alpha, \beta$  and also find their posterior! But for now, suppose we are content simply optimizing them.

#### Standard answer: Expectation-Maximization

The **EM algorithm** is the "classic" answer for how to perform maximum likelihood estimation in models with latent variables. It is done by alternately

- 1. Computing the posterior  $p(\mathbf{z}|\mathcal{D}, \theta^{\text{old}})$  for a current value  $\theta^{\text{old}}$
- 2. Maximizing  $Q(\theta, \theta^{\text{old}}) = \mathbb{E}_{p(\mathbf{z}|\mathcal{D}, \theta^{\text{old}})}[\log p(\mathcal{D}, \mathbf{z}|\theta)]$  with respect to  $\theta$

#### Standard answer: Expectation-Maximization

The **EM algorithm** is the "classic" answer for how to perform maximum likelihood estimation in models with latent variables. It is done by alternately

- 1. Computing the posterior  $p(\mathbf{z}|\mathcal{D}, \theta^{\text{old}})$  for a current value  $\theta^{\text{old}}$
- 2. Maximizing  $Q(\theta, \theta^{\text{old}}) = \mathbb{E}_{p(\mathbf{z}|\mathcal{D}, \theta^{\text{old}})}[\log p(\mathcal{D}, \mathbf{z}|\theta)]$  with respect to  $\theta$

This works incredibly well when either (or both!) of those steps are easy to do analytically.

(Examples: Gaussian mixture models; hidden Markov models)

#### Handling intractable posteriors

If the posterior  $p(\mathbf{z}|\mathcal{D},\theta)$  doesn't have a closed form, but we have an approximation  $q_{\lambda}(\mathbf{z})$ , then we can use the ELBO. Recall

$$\mathcal{L}(\lambda, \mathcal{D}, \theta) = \mathbb{E}_{q_{\lambda}(\mathbf{z})} \left[ \log p(\mathbf{z}, \mathcal{D}|\theta) - \log q_{\lambda}(\mathbf{z}) \right] \le \log p(\mathcal{D}|\theta).$$

Since  $\mathcal{L}(\lambda, \mathcal{D}, \theta)$  is a lower bound on  $\log p(\mathcal{D}|\theta)$ , we can use it as a surrogate objective for (approximate) maximum likelihood estimation.

#### Handling intractable posteriors

If the posterior  $p(\mathbf{z}|\mathcal{D},\theta)$  doesn't have a closed form, but we have an approximation  $q_{\lambda}(\mathbf{z})$ , then we can use the ELBO. Recall

$$\mathcal{L}(\lambda, \mathcal{D}, \theta) = \mathbb{E}_{q_{\lambda}(\mathbf{z})} \left[ \log p(\mathbf{z}, \mathcal{D}|\theta) - \log q_{\lambda}(\mathbf{z}) \right] \le \log p(\mathcal{D}|\theta).$$

Since  $\mathcal{L}(\lambda, \mathcal{D}, \theta)$  is a lower bound on  $\log p(\mathcal{D}|\theta)$ , we can use it as a surrogate objective for (approximate) maximum likelihood estimation.

Using gradient-based optimization, we maximize it following

$$\nabla_{\theta} \mathcal{L}(\lambda, \mathcal{D}, \theta) = \mathbb{E}_{q_{\lambda}(\mathbf{z})} \left[ \nabla_{\theta} \log p(\mathbf{z}, \mathcal{D} | \theta) \right].$$

(Note there are no issues here as  $q_{\lambda}(\mathbf{z})$  does not depend on  $\theta$ !)

#### Optimizing variational and model parameters

In this sense the ELBO is a unified objective: by gradient-based optimization on

$$abla_{\lambda, \theta} \mathcal{L}(\lambda, \mathcal{D}, \theta) = 
abla_{\lambda, \theta} \mathbb{E}_{q_{\lambda}(\mathbf{z})} \left[ \log \frac{p(\mathbf{z}, \mathcal{D}|\theta)}{q_{\lambda}(\mathbf{z})} \right].$$

we can simultaneously:

- maximize w.r.t.  $\lambda$  to fit an approximate posterior;
- ullet maximize w.r.t. heta to find maximum likelihood estimates.

#### Optimizing variational and model parameters

In this sense the ELBO is a unified objective: by gradient-based optimization on

$$\nabla_{\lambda,\theta} \mathcal{L}(\lambda, \mathcal{D}, \theta) = \nabla_{\lambda,\theta} \mathbb{E}_{q_{\lambda}(\mathbf{z})} \left[ \log \frac{p(\mathbf{z}, \mathcal{D}|\theta)}{q_{\lambda}(\mathbf{z})} \right].$$

we can simultaneously:

- maximize w.r.t.  $\lambda$  to fit an approximate posterior;
- maximize w.r.t.  $\theta$  to find maximum likelihood estimates.

It might not be as efficient as EM (nor is it exact), but it somehow has the same flavor.

#### Back to concrete example

For the Bayesian linear regression example, we had

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$
$$p(y_i|\mathbf{x}_i, \mathbf{w}, \beta) = \mathcal{N}(y_i|\mathbf{w}^{\top}\phi(\mathbf{x}_i), \beta^{-1}) \qquad \text{for } i = 1, \dots, N.$$

If we define an approximate posterior  $q_{\lambda}(\mathbf{w})$ , then we just need to perform stochastic gradient optimization on

$$\mathcal{L}(\mathcal{D}; \alpha, \beta, \lambda) = \mathbb{E}_{q_{\lambda}(\mathbf{w})} \left[ \sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i, \mathbf{w}, \beta) + \log p(\mathbf{w} | \alpha) - \log q_{\lambda}(\mathbf{w}) \right]$$

by computing  $\nabla_{\alpha,\beta,\lambda}\mathcal{L}(\mathcal{D};\alpha,\beta,\lambda)$  on (reparameterized) samples from  $q_{\lambda}(\mathbf{w})$ .

This simultaneously fits  $q_{\lambda}(\mathbf{w}) \approx p(\mathbf{w}|\mathcal{D})$  and estimates  $\hat{\alpha}_{MLE}, \hat{\beta}_{MLE}$ .

# (Switch to notebook for demo now!)

#### Sequential learning

If you are adding data points sequentially, your old posterior is your new prior.



Figure: Bishop PRML, Ch. 3

## What about discrete latent variables?

#### What if our latent variables are discrete?

Suppose the latent variable z has as its domain a subset of the integers.

Then we have a problem:  $\nabla_{\mathbf{z}} p(\mathbf{z}, \mathcal{D})$  does not exist: we cannot use the "reparameterization trick".

#### What if our latent variables are discrete?

Suppose the latent variable z has as its domain a subset of the integers.

Then we have a problem:  $\nabla_{\mathbf{z}} p(\mathbf{z}, \mathcal{D})$  does not exist: we cannot use the "reparameterization trick".

**Example**: Suppose  $z \sim \mathrm{Bernoulli}(\theta)$ , and suppose we would like to compute  $\frac{\partial}{\partial \theta} \mathbb{E}_{p(z|\theta)}[f(z,\theta)]$ . For a reparameterization we need to define an independent random variable  $p(\epsilon)$  and a transformation  $z = r(\theta, \epsilon)$ :

$$p(\epsilon) = \text{Uniform}([0, 1])$$
  $r(\theta, \epsilon) = \mathbb{I}[\epsilon \le \theta]$ 

#### What if our latent variables are discrete?

Suppose the latent variable z has as its domain a subset of the integers.

Then we have a problem:  $\nabla_{\mathbf{z}} p(\mathbf{z}, \mathcal{D})$  does not exist: we cannot use the "reparameterization trick".

**Example**: Suppose  $z \sim \mathrm{Bernoulli}(\theta)$ , and suppose we would like to compute  $\frac{\partial}{\partial \theta} \mathbb{E}_{p(z|\theta)}[f(z,\theta)]$ . For a reparameterization we need to define an independent random variable  $p(\epsilon)$  and a transformation  $z = r(\theta, \epsilon)$ :

$$p(\epsilon) = \text{Uniform}([0, 1])$$
  $r(\theta, \epsilon) = \mathbb{I}[\epsilon \le \theta]$ 

The problem is not that  $r(\theta, \epsilon)$  doesn't exist, but that it is non-differentiable;  $\frac{\partial r}{\partial \theta} = 0$  almost everywhere (and is undefined at  $\theta$ ).

#### (...confirming it doesn't work)

Let

$$p(\epsilon) = \text{Uniform}([0, 1])$$
  $r(\theta, \epsilon) = \mathbb{I}[\epsilon \le \theta].$ 

With  $z = r(\theta, \epsilon)$  we would have

$$\frac{\partial}{\partial \theta} \mathbb{E}_{p(z|\theta)}[f(z,\theta)] = \mathbb{E}_{p(\epsilon)} \left[ \frac{\partial}{\partial \theta} f(r(\theta,\epsilon),\theta) \right] 
= \mathbb{E}_{p(\epsilon)} \left[ \left( \frac{\partial}{\partial z} f(z,\theta) \right) \left( \frac{\partial}{\partial \theta} r(\theta,\epsilon) \right) \right]$$

Can't evaluate it at  $\theta$ ; zero everywhere else. . .

#### Approach #1: Score-function estimators

We talked about this briefly before, but the following can work:

$$\frac{\partial}{\partial \theta} \mathbb{E}_{p(z|\theta)}[f(z,\theta)] = \mathbb{E}_{p(z|\theta)} \left[ \frac{\partial}{\partial \theta} f(z,\theta) + f(z,\theta) \frac{\partial}{\partial \theta} \log p(z|\theta) \right]$$
$$\approx \frac{1}{L} \sum_{\ell=1}^{L} \frac{\partial}{\partial \theta} \left( f(z^{(\ell)},\theta) \log p(z^{(\ell)}|\theta) \right),$$

for  $z^{(\ell)} \sim p(z|\theta)$ .

**Good news**: we can apply it for any discrete z, even if the support is infinite (e.g.  $z \in \mathbb{Z}$  or  $z \in \mathbb{N}$ ), as long as f is differentiable w.r.t.  $\theta$ 

**Bad news**: it might require a much larger sample size L than we would like

#### Approach #2: Explicit marginalization

If the support for z is finite, then maybe we can just marginalize it out! In the Bernoulli example,  $z\in\{0,1\}$ . So

$$\frac{\partial}{\partial \theta} \mathbb{E}_{p(z|\theta)}[f(z,\theta)] = \frac{\partial}{\partial \theta} \sum_{z \in \{0,1\}} p(z|\theta) f(z,\theta)$$

$$= \sum_{z \in \{0,1\}} p(z|\theta) \frac{\partial}{\partial \theta} f(z,\theta) + f(z,\theta) \frac{\partial}{\partial \theta} p(z|\theta)$$

It's easy to forget this is an option, somehow!

**Bad news**: If the number of possible values z can take is very large, then this will be infeasible

#### Approach #2: Explicit marginalization

If the support for z is finite, then maybe we can just marginalize it out!

In the Bernoulli example,  $z \in \{0, 1\}$ . So

$$\frac{\partial}{\partial \theta} \mathbb{E}_{p(z|\theta)}[f(z,\theta)] = \frac{\partial}{\partial \theta} \sum_{z \in \{0,1\}} p(z|\theta) f(z,\theta)$$
$$= \sum_{z \in \{0,1\}} p(z|\theta) \frac{\partial}{\partial \theta} f(z,\theta) + f(z,\theta) \frac{\partial}{\partial \theta} p(z|\theta)$$

It's easy to forget this is an option, somehow!

**Bad news**: If the number of possible values z can take is very large, then this will be infeasible

**Exercise**: Show that this is identical to exact marginalization on the expectation in the previous slide

#### Explicit marginalization and the ELBO

Suppose we have both continuous latents  $\mathbf{z}_c$  and discrete latents  $\mathbf{z}_d$  in a model  $p(\mathcal{D}, \mathbf{z}_c, \mathbf{z}_d)$ .

If we marginalize out the discrete latent variable, we have

$$\log p(\mathcal{D}, \mathbf{z}_c) = \log \sum_{\mathbf{z}_d} p(\mathcal{D}, \mathbf{z}_c, \mathbf{z}_d).$$

We can then define the ELBO just on  $\mathbf{z}_c$  along, i.e. after marginalizing out the discrete variable, and fit  $q_{\lambda}(\mathbf{z}_c)$ .

#### Explicit marginalization and the ELBO

Suppose we have both continuous latents  $\mathbf{z}_c$  and discrete latents  $\mathbf{z}_d$  in a model  $p(\mathcal{D}, \mathbf{z}_c, \mathbf{z}_d)$ .

If we marginalize out the discrete latent variable, we have

$$\log p(\mathcal{D}, \mathbf{z}_c) = \log \sum_{\mathbf{z}_c} p(\mathcal{D}, \mathbf{z}_c, \mathbf{z}_d).$$

We can then define the ELBO just on  $\mathbf{z}_c$  along, i.e. after marginalizing out the discrete variable, and fit  $q_{\lambda}(\mathbf{z}_c)$ .

If we are later interested in the posterior over the discrete latent variables, we can consider

$$p(\mathbf{z}_d = k | \mathcal{D}) = \int p(\mathbf{z}_d = k | \mathbf{z}_c, \mathcal{D}) p(\mathbf{z}_c | \mathcal{D}) d\mathbf{z}_c \approx \frac{1}{C} \int p(\mathbf{z}_d = k, \mathbf{z}_c, \mathcal{D}) q_{\lambda}(\mathbf{z}_c) d\mathbf{z}_c.$$

#### Real-world usage

This is how discrete latent variables are handled in **STAN**.

Stan is a "probabilistic programming" system: it includes

- 1. a **modeling language**: a specialized programming language for specifying a probabilistic model
- 2. an **inference backend**: software which compiles the model into code which performs inference automatically

Stan is built around an efficient automatic differentiation implementation in C++. It is very easy to use for continuous latent variables, and performs MCMC and VB automatically.

But: it doesn't handle discrete latent variables natively, but instead requires them to be marginalized out "by hand".