In [70]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LogisticRegression
 from sklearn.metrics import accuracy_score

In [71]: ## Loading the data from csv file too a panda Dataframe
titanic_data = pd.read_csv(r"C:\Users\Kamal Kant\OneDrive\Documents\Titanic-Dat

In [72]: titanic_data.head()

Out[72]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cal
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	N.
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	N:
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C1
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	N:
	4		_		_							•

In [73]: # checking the number of columns and column in data frame
titanic_data.shape

Out[73]: (891, 12)

```
# getting some information about the data
In [74]:
         titanic_data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
         Data columns (total 12 columns):
              Column
                           Non-Null Count
                                           Dtype
             -----
                            _____
          0
              PassengerId 891 non-null
                                            int64
          1
              Survived
                           891 non-null
                                            int64
          2
              Pclass
                           891 non-null
                                            int64
          3
              Name
                           891 non-null
                                            object
          4
              Sex
                           891 non-null
                                            object
          5
              Age
                           714 non-null
                                            float64
                           891 non-null
                                            int64
          6
              SibSp
          7
              Parch
                           891 non-null
                                            int64
          8
                           891 non-null
              Ticket
                                            object
          9
              Fare
                           891 non-null
                                            float64
          10 Cabin
                           204 non-null
                                            object
          11 Embarked
                           889 non-null
                                            object
         dtypes: float64(2), int64(5), object(5)
         memory usage: 83.7+ KB
In [75]: | # check the number of missing values in each column
         titanic data.isnull().sum()
Out[75]: PassengerId
                           0
         Survived
                           0
         Pclass
                           0
         Name
                           0
         Sex
                           0
         Age
                        177
         SibSp
                          0
         Parch
                           0
         Ticket
                           0
         Fare
                           0
         Cabin
                         687
         Embarked
                           2
         dtype: int64
In [76]: # drop the Cabin column from dataframe
         titanic_data = titanic_data.drop(columns='Cabin', axis=1)
In [77]: titanic_data['Age'].fillna(titanic_data['Age'].mean(), inplace=True)
In [78]: # finding the mod value of embarked column
         print(titanic_data['Embarked'].mode())
         Name: Embarked, dtype: object
```

```
In [79]: titanic_data['Embarked'].fillna(titanic_data['Embarked'].mode()[0], inplace=Tru
```

In [80]: # check the number of missing values in each column titanic_data.isnull().sum()

Out[80]: PassengerId 0 Survived 0 Pclass 0 Name 0 Sex Age SibSp Parch Ticket Fare Embarked dtype: int64

In [81]: | titanic data.describe()

T11	[01].	CICATII	 C3C1 IDC	. ,

Out[81]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	13.002015	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [82]: | titanic_data['Survived'].value_counts()
```

Out[82]: Survived 549 0

342

Name: count, dtype: int64

In [83]: sns.set()

In [84]: sns.countplot(x='Survived',data=titanic_data)
 plt.show()

In [85]: titanic_data['Sex'].value_counts()

Out[85]: Sex

male 577 female 314

Name: count, dtype: int64

In [86]: sns.countplot(x='Sex',data=titanic_data)
plt.show()

In [87]: sns.countplot(x='Sex', hue='Survived', data=titanic_data)

Out[87]: <Axes: xlabel='Sex', ylabel='count'>

In [88]: sns.countplot(x='Pclass',data=titanic_data)

Out[88]: <Axes: xlabel='Pclass', ylabel='count'>


```
In [89]: sns.countplot(x='Pclass', hue='Survived', data=titanic_data)
```

Out[89]: <Axes: xlabel='Pclass', ylabel='count'>


```
In [90]: titanic_data['Sex'].value_counts()
Out[90]: Sex
    male    577
    female    314
```

Name: count, dtype: int64

In [91]: titanic_data['Embarked'].value_counts()

Out[91]: Embarked S 646 C 168 Q 77

Name: count, dtype: int64

In [92]: titanic_data.replace({'Sex':{'male':0, 'female':1}, 'Embarked':{'S':0,'C':1,'Q'

In [93]: titanic_data.head()

Out[93]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Emba
	0	1	0	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171	7.2500	
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599	71.2833	
	2	3	1	3	Heikkinen, Miss. Laina	1	26.0	0	0	STON/O2. 3101282	7.9250	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	35.0	1	0	113803	53.1000	
	4	5	0	3	Allen, Mr. William Henry	0	35.0	0	0	373450	8.0500	
	4 (. IOIII y							>

In [94]: #Seprating the features and target
x = titanic_data.drop(columns = ['PassengerId', 'Name', 'Ticket', 'Survived'],
y = titanic_data['Survived']

In [95]: print(x)

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	0	22.000000	1	0	7.2500	0
1	1	1	38.000000	1	0	71.2833	1
2	3	1	26.000000	0	0	7.9250	0
3	1	1	35.000000	1	0	53.1000	0
4	3	0	35.000000	0	0	8.0500	0
			• • •				• • •
886	2	0	27.000000	0	0	13.0000	0
887	1	1	19.000000	0	0	30.0000	0
888	3	1	29.699118	1	2	23.4500	0
889	1	0	26.000000	0	0	30.0000	1
890	3	0	32.000000	0	0	7.7500	2

[891 rows x 7 columns]

```
In [96]: |print(y)
                  0
           0
           1
                  1
           2
                  1
           3
                  1
           4
                  0
           886
                  0
           887
                  1
           888
                  0
           889
                  1
           890
          Name: Survived, Length: 891, dtype: int64
 In [97]: # Spliting the data into traning data and test data
          x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random
 In [98]: print(x.shape)
          print(x_train.shape)
          print(x_test.shape)
           (891, 7)
           (712, 7)
           (179, 7)
 In [99]: # Traning model
          # Logistic Regression
In [100]:
          model = LogisticRegression(max_iter=1000)
          model.fit(x_train, y_train)
Out[100]: LogisticRegression(max_iter=1000)
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust
          the notebook.
           On GitHub, the HTML representation is unable to render, please try loading this page with
           nbviewer.org.
In [101]: #Accuracy of traning data
          x_train_prediction = model.predict(x_train)
          print(x_train_prediction)
In [102]:
          traning_data_accuracy = accuracy_score(y_train, x_train_prediction)
          print('Accuracy score of Traning data :',traning_data_accuracy )
          Accuracy score of Traning data: 0.8089887640449438
```