Part 1. Temperature corrections of standard molar thermodynamic properties of condensed substances and gases using data in DComp records of GEM-Selektor

This calculation is derived from integration of the heat capacity equation Cp = f(T) which has the following form:

$$Cp = a_0 + \sum_i a_i T^{n_i}, \quad i = 1, ..., 9$$
 (1-1)

where a_i are the empirical coefficients, and power coefficients n_i are: $n_0 = 0$; $n_1 = 1$; $n_2 = -2$; $n_3 = -0.5$; $n_4 = 2$; $n_5 = 3$; $n_6 = 4$; $n_7 = -3$; $n_8 = -1$; $n_9 = 0.5$. Some of these terms are used in most published databases. The corresponding isobaric heat capacity equation is:

$$Cp = a_0 + a_1 T + a_2 T^{-2} + a_3 T^{-0.5} + a_4 T^2 + a_5 T^3 + a_6 T^4 + a_7 T^{-3} + a_8 T^{-1} + a_9 T^{0.5}.$$
 (1-2).

As known from chemical thermodynamics [e.g. Anderson and Crerar, 1993], the increment of standard molar Gibbs energy G^o at the reference pressure $P_r = 1$ bar from reference temperature T_r to temperature of interest T (in K) can be found by integrating the absolute molar entropy S^o :

$$G_T^o - G_{T_r}^o = -\int_{T_r}^T S_T^o dT (1-3),$$

where $S_T^o = \int_0^T \frac{Cp}{T} dT = S_{T_r}^o + \int_{T_r}^T \frac{Cp}{T} dT$. Equation (1-3) can be transformed as follows:

$$G_{T}^{o} - G_{T_{r}}^{o} = -S_{T_{r}}^{o} (T - T_{r}) - \int_{T_{r}}^{T} \int_{T_{r}}^{C} P / T dT dT = -S_{T_{r}}^{o} (T - T_{r}) - T \sum_{i} M_{n_{i}} a_{i}$$
(1-4),

where the M_{n_i} terms stand for the Temkin-Shwarzman functions of temperature [Dorogokupets et al., 1988]:

$$M_{n_i} = \frac{T^{n_i}}{n_i(n_i+1)} + \frac{T_r^{n_i+1}}{T(n_i+1)} - \frac{T_r^{n_i}}{n_i}.$$

Using these functions and coefficients n_i from eqn. (1-1), separate terms can be defined:

$$F_{G0} = TM_o = T \ln \frac{T}{T_r} - T + T_r;$$

$$F_{G1} = TM_1 = \frac{1}{2} (T - T_r)^2;$$

$$F_{G2} = TM_{-2} = (T - T_r)^2 / (2T \cdot T_r^2);$$

$$F_{G3} = TM_{-0.5} = 2(\sqrt{T} - \sqrt{T_r})^2 / \sqrt{T_r};$$

$$F_{G4} = TM_2 = (T^3 + 2T_r^3 - 3T \cdot T_r^2)/6;$$

$$\begin{split} F_{G5} &= TM_3 = \left(T^4 + 3T_r^4 - 4T \cdot T_r^3\right) / 12; \\ F_{G6} &= TM_4 = \left(T^5 + 4T_r^5 - 5T \cdot T_r^4\right) / 20; \\ F_{G7} &= TM_{-3} = \left(T_r^3 - 3T^2T_r + 2T^3\right) / \left(6T^2T_r^3\right); \\ F_{G8} &= TM_{-1} = \frac{T}{T_r} - 1 - \ln \frac{T}{T_r}; \\ F_{G9} &= TM_{0.5} = \frac{2}{3} \left(2T\sqrt{T} - 3T\sqrt{T_r} + T_r\sqrt{T_r}\right). \end{split}$$

Now, the standard molar apparent Gibbs energy function g^o_T of a substance can be calculated easily at reference pressure $P_r = 1$ bar and temperature of interest $T \neq T_r$ (usually, reference temperature $T_r = 298.15$ K):

$$g_T^o = G_{T_r}^o - S_{T_r}^o (T - T_r) - T \sum_i M_{n_i} a_i =$$

$$= G_{T_r}^o - S_{T_r}^o (T - T_r) - a_0 F_{G0} - a_1 F_{G1} - a_2 F_{G2} - a_3 F_{G3} - a_4 F_{G4} -$$

$$- a_5 F_{G5} - a_6 F_{G6} - a_7 F_{G7} - a_8 F_{G8} - a_9 F_{G9}$$
(1-5)

In a similar way, the standard molar entropy S_T^o at P_r and T can be calculated

$$S_{T}^{o} = \int_{0}^{T} \frac{Cp}{T} dT = S_{T_{r}}^{o} + \int_{T_{r}}^{T} \frac{Cp}{T} dT = S_{T_{r}}^{o} + a_{0} \ln \frac{T}{T_{r}} + a_{1}(T - T_{r}) + \frac{1}{2} a_{2} \left(\frac{1}{T_{r}^{2}} - \frac{1}{T^{2}} \right) + 2a_{3} \left(\frac{1}{\sqrt{T_{r}}} - \frac{1}{\sqrt{T}} \right) + \frac{1}{2} a_{4} \left(T^{2} - T_{r}^{2} \right) + \frac{1}{3} a_{5} \left(T^{3} - T_{r}^{3} \right) + \frac{1}{4} a_{6} \left(T^{4} - T_{r}^{4} \right) + \frac{1}{3} a_{7} \left(\frac{1}{T_{r}^{3}} - \frac{1}{T^{3}} \right) + \frac{1}{4} a_{8} \left(\frac{1}{T_{r}} - \frac{1}{T} \right) + 2a_{9} \left(\sqrt{T} - \sqrt{T_{r}} \right)$$

$$(1-6),$$

as well as the standard molar apparent enthalpy function i_T^o :

$$i_{T}^{o} = H_{T_{r}}^{o} + \int_{T_{r}}^{T} Cp \, dT = H_{T_{r}}^{o} + a_{0}(T - T_{r}) + \frac{1}{2} a_{1}(T^{2} - T_{r}^{2}) + a_{2}(\frac{1}{T_{r}} - \frac{1}{T}) + 2a_{3}(\sqrt{T} - \sqrt{T_{r}}) + \frac{1}{3} a_{4}(T^{3} - T_{r}^{3}) + \frac{1}{4} a_{5}(T^{4} - T_{r}^{4}) + \frac{1}{5} a_{6}(T^{5} - T_{r}^{5}) + (1-7) + \frac{1}{2} a_{7}(\frac{1}{T_{r}^{2}} - \frac{1}{T^{2}}) + a_{8} \ln \frac{T}{T_{r}} + \frac{2}{3} a_{9}(T\sqrt{T} + T_{r}\sqrt{T_{r}})$$

For any compound substance, the apparent molar g_T^o and i_T^o can be converted into standard molar Gibbs energy $G_{f,T}^o$ and enthalpy $H_{f,T}^o$ of formation from elements, respectively:

$$G_{f,T}^o = g_T^o(\text{compound}) - \sum g_T^o(\text{elements});$$
 (1-8)

$$H_{f,T}^o = i_T^o \text{(compound)} - \sum_i i_T^o \text{(elements)}.$$
 (1-9)

It follows that at T_r =298.15 K, $g_{298}^o = G_{f,298}^o$ and $i_{298}^o = H_{f,298}^o$ because, for any element at its standard state, $g_{T_r}^o = G_{f,T_r}^o = 0$ and $i_{T_r}^o = H_{f,T_r}^o = 0$ by convention. Note that in Selektor codes (as well as in SUPCRT92 [Johnson et al., 1992]), apparent molar functions g_T^o and i_T^o , but not the formation functions $G_{f,T}^o$ and $H_{f,T}^o$ are calculated throughout at elevated temperatures.

It is possible that, within a wide temperature range, the heat capacity function Cp = f(T) is approximated by more than one set of coefficients of the form eqns (1-1) and (1-2). In the DComp data format, up to 10 such sets are allowed, and each set of coefficients must be supplied with a temperature applicability interval $[T_{min}; T_{max}]$. No break is allowed within the whole temperature range covered by n(Q) sets; i.e. $T_{min}^{(q)} = T_{max}^{(q-1)}, q > 0, q = 0, 1, ..., n(Q)$.

For simplicity, let T_0 be the lowest temperature for the first Cp approximation interval; T_1 be the upper temperature for the latter (T_0 to T_1) and at the same time – the lower boundary for the next interval (T_1 to T_2), and so on. Usually, T_0 equals 273.15 or 298.15 K, and some of the intermediate temperature boundaries refer also to temperatures of phase transitions at $P = P_r$.

Let k be the index of the temperature interval containing the temperature of interest T_{int} . Obviously, if k=0 and $T_0 \le T_r < T_1$ then $T_0 \le T_{int} \le T_1$ and eqns (1-2) and (1-5) to (1-7) apply directly using the first set of Cp=f(T) coefficients. If k>0 then the value of molar Cp at $T=T_{int}$ where $T_k \le T_{int} \le T_{k+1}$ is still found from eqn (1-2) applied directly to the k-th set of Cp coefficients. However, the values of g_T^o , i_T^o and S_T^o must be calculated incrementally in k loops, as shown in the flow chart below, which also includes accounting for optional molar increments S_{FT} , H_{FT} , G_{FT} at phase transitions. It is required that the temperature of any phase transition T_{FT} (at P_r) always co-insides with one of the boundary temperatures T_{j+1} .

Note that usage of GEM solvers of equilibria does not really require representing phase transitions in a single DComp record as for a single dependent component. Polymorph modifications, as well as solid, liquid and gaseous states of a substance can be represented as different phases or phase components (i.e. separate DComp records), because GEM will always select the most stable one at T,P of interest. Besides, this also allows circumventing the problem of pressure dependence of the phase transition temperature.

References to Part 1.

Anderson G.M. and Crerar D.A. (1993): *Thermodynamics in geochemistry: The equilibrium model*. Oxford Univ. Press, N.Y.,Oxford.

Dorogokupets P.I., Karpov I.K., Lashkevich V.V., Naigebauer V.A. and Kazmin L.A. (1988): Isobaric-isothermal potentials of minerals, gases and aqueous species in the "Selektor" program package. In: *Physicochemical models in geochemistry* (eds. Kiselev A.I. and Karpov I.K.), Nauka Publ., Novosibirsk, p. 124-147 (in Russian).

Johnson J.W., Oelkers E. and Helgeson H.C. (1992): SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. *Computers and Geosciences* **18**, 899-947.