Grupa Podstawowa

Marcin Wierzbiński

Uniwersytet Warszawski | Wydział Matematyki, Mechaniki i Informatyki

WPROWADZENIE

Rozważmy dwa połączone okręgi A i B_2 (jak na obrazku). Nasza intuicja podpowiada nam, że skoro dwa okręgi są ze sobą A połączone, jest to niemożliwe, aby oddzielić B od A dowolnym ciągłym ruchem. Intuicja ta znajduje odzwierciedlenie A B_{-3} w matematycznym pojęciu **grupy podstawowej**. Ustalmy więc orientację pętli B_2 i B_{-3} . **Stopień** oznacza, ile razy, zachowując orientację, pętla owinie się wokół okręgu A. Zatem np. B_0 jest pętla niepołączoną z A.

Czy możemy wprowadzić operację dodawania pętli? Zorientowana pętla może być interpretowana jako droga przemierzona w czasie, począwszy z dowolnego punktu x_0 na pętli. Dwie różne pętle B i B' zaczynające się i kończące w tym samym punkcie x_0 mogą zostać "dodane" tworząc nową pętlę, która przebiega po B, a potem po B'.

W ogólności $B_m + B_n$ tworzy pętlę B_{m+n} .

Rozważmy jeszcze jeden przykład, znany jako *pierścienie Boromeuszy*. Pierścienie są połączone w taki sposób, że usunięcie dowolnego spowoduje rozpad pozostałych.

Możemy przekształcić ciągle pętle C jak na rysunku powyżej. Czy pętla C może być w sposób ciągły dalej odkształcana, aby całkowicie ją odłączyć od A i B?

WPROWADZENIE

W nowym ustawieniu ustalając punkt startu oraz kierunek, możemy wyróżnić 4 pętelki: (a) pod A, (b) pod B, (-a) nad A, (-b) nad B. Gdy rozpatrzymy sekwencje

uporządkowaną i oznaczymy jak na obrazku, możemy zdeformować ją do sumy a+b+(-a)+(-b). Tak przedstawione działanie nie tworzy pętli **zerowej** B_0 , wobec czego "dodawanie" pętli nie jest **przemienne**. Piszemy -a, aby zaznaczyć orientacje pętli. W tym wyrażeniu występuje a i -a to uzasadnia, że ta pętla nie jest bezpośrednio połączona z A. Jeśli zmierzymy zapętlenie dwoma liczbami, wtedy "nad" i "pod" usuną się do zera. Odzwierciedla to fakt, że C nie jest bezpośrednio połączone z A lub B.

W następnym przykładzie modyfikujemy pętle A i B, tak aby były teraz połączone. Pętle C deformujemy jak na obrazku poniżej.

Powtarzając procedurę jak wyżej, tworzymy reprezentacje C: a+b-a-b. Tutaj działanie "dodawania" jest przemienne, bo C jest pętlą rozłączną z A i B.

HOMOTOPIA PĘTLI

 (X,\mathcal{T}) – przestrzeń topologiczna z wyróżnionym punktem x_0 .

Pętlą w X zaczepioną w x_0 nazywamy dowolne ciągłe przekształcenie $f:[0,1]\mapsto X$ takie, że $f(0)=x_0=f(1).$

Homotopia pętli jest rodziną ciągłych przekształceń, które jedną pętle deformują w drugą $f_t: [0,1] \mapsto X$, $t \in [0,1]$, takich, że $f_t(0) = x_0 = f_t(1)$.

PODSTAWOWA KONSTRUKCJA

 (X,\mathcal{T}_x) , (T,\mathcal{T}_y) , - przestrzenie topologiczne. Zbiór pętli w X zaczepionych w x_0 oznaczmy jako $\Omega(X,x_0)$. W tym zbiorze wprowadzimy operacje mnożenia i odwracania pętli.

lloczynem pętli $f,g\in\Omega(X,x_0)$ nazywamy pętlę:

$$f \cdot g(s) = \begin{cases} f(2s), & 0 \le s \le \frac{1}{2} \\ g(2s-1), \frac{1}{2} \le s \le 1 \end{cases}$$
 (1)

Pętla odwrotna do f jest określona formułą $\bar{f}(t)=f(1-t)$, gdzie $t\in[0,1]$

Pętla stała ozn. $\epsilon_{x_0}(t)=x_0$

Nasz iloczyn $f \cdot g$ definiuje działanie wewnętrzne, pokazuje się że:

- działanie to nie zależy od wyboru reprezentantów
- spełnione jest prawo łączności
- $\overline{f}(t)$ jest elementem odwrotnym do f(t)
- ϵ_{x_0} jest elementem neutralnym działania

Działanie grupowe składania pętli tworzy **grupę podstawowa** przestrzeni. Oznaczenie: $\pi_1(X, x_0)$

Niech $f_0, f_1 : X \mapsto Y$, ciągłe funkcje, nazwiemy je **homotopijne**, jeśli możemy w "sposób ciągły przekształ-

cić jedną w drugą". Piszemy wówczas $f_0 \sim f_1$. Przestrzenie (X, \mathcal{T}_x) , (T, \mathcal{T}_y) , są **homotopijnie równoważne**, jeśli istnieją ciągłe przekształcenia, $f: X \mapsto Y, \ g: Y \mapsto X$ takie, że $f \circ g \sim id_Y$, oraz $g \circ f \sim id_X$.

Przykłady: Okrąg jest homotopijnie równoważny z płaszczyzną bez punktu $\mathbb{R}^2\setminus\{0\}$. Wstęga Mobiusa jest homotopijnie równoważna z okręgiem.

Grupa podstawowa jest **niezmiennikiem homoto- pii**, czyli jeśli X i Y są homotopijnie równoważne, to ich grupy podstawowe są izomorficzne.

GRUPA PODSTAWOWA OKRĘGU

Twierdzenie: Grupa podstawowa $\pi_1(S^1, x_0)$ jest izomorficzna z grupa addytywną liczb całkowitych \mathbb{Z} . Co więcej pętlę w S^1 są homotopijne, jeśli mają równe stopnie.

Wniosek: Okrąg S^1 nie jest homotopijnie równoważny z przestrzenią jednopunktową.

ZASTOSOWANIE $\pi_1(S^1, x_0)$

- (Twierdzenie Brouwera o punkcie stałym dla dysku). Dla każdego przekształcenia ciągłego $h:D^2\mapsto D^2$ istnieje $x\in D^2$ taki, że h(x)=x.
- (Zasadnicze twierdzenie algebry). Każdy wielomian $P(z)=a_0+a_1z+\cdots+z^n$ o współczynnikach zespolonych ma pierwiastek zespolony.

PRZYKŁADY

- Grupa podstawowa sfery $\pi_1(S^2) \cong 0$
- Grupa podstawowa torusa $\pi_1(T^2=S^1 imes S^1)\cong \mathbb{Z} imes \mathbb{Z}$
- Grupa podstawowa płaszczyzny rzutowej $\pi_1((\mathbb{R}P^2))\cong \mathbb{Z}_2$

REFERENCJE

[1] Allen Hatcher.

Algebraic Topology.

Allen Hatcher, 1th edition, 2001.

[2] Elżbieta Pol i Roman Pol Stanisław Betley, Józef Chaber. TOPOLOGIA I.

1th edition, 2013.

KONTAKT

Email: m.wierzbinski@student.uw.edu.pl