Welcome to the CoGrammar Cryptography

The session will start shortly...

Questions? Drop them in the chat. We'll have dedicated moderators answering questions.

Cyber Security Session Housekeeping

 The use of disrespectful language is prohibited in the questions, this is a supportive, learning environment for all - please engage accordingly.
 (Fundamental British Values: Mutual Respect and Tolerance)

- No question is daft or silly ask them!
- There will be a Q&A at the end of the session, should you wish to ask any follow-up questions.
- If you have any questions outside of this lecture, or that are not answered during this lecture, please do submit these for upcoming Academic Sessions. You can submit these questions here: <u>Questions</u>

Cyber Security Session Housekeeping cont.

- For all non-academic questions, please submit a query:
 www.hyperiondev.com/support
- We would love your feedback on lectures: <u>Feedback on Lectures</u>
- Find all the lecture content in you <u>Lecture Backpack</u> on GitHub.
- If you are **hearing impaired**, please kindly **enable captions** on Google chrome/Microsoft Edge via the accessibility settings.

Safeguarding & Welfare

We are committed to all our students and staff feeling safe and happy; we want to make sure there is always someone you can turn to if you are worried about anything.

If you are feeling upset or unsafe, are worried about a friend, student or family member, or you feel like something isn't right, speak to our safeguarding team:

Ian Wyles Designated Safeguarding Lead

Simone Botes

Nurhaan Snyman

Ronald Munodawafa

Rafig Manan

Scan to report a safeguarding concern

or email the Designated Safeguarding Lead: Ian Wyles safeguarding@hyperiondev.com

Stay Safe Series:

Mastering Online Safety One Week/step at a Time

While the digital world can be a wonderful place to make education and learning accessible to all, it is unfortunately also a space where harmful threats like online radicalisation, extremist propaganda, phishing scams, online blackmail and hackers can flourish.

As a component of this BootCamp the *Stay Safe Series* will/is designed to guide you through essential measures in order to protect yourself & your community from online dangers, whether they target your privacy, personal information or even attempt to manipulate your beliefs.

Download with Caution: Avoiding Dangerous Files

- Use Trusted Sources Only
- Look for HTTPS
- Avoid Clicking on Pop-ups
- Scan Downloads with Antivirus
- Keep Software Updated
- Beware of Free Downloads
- Check File Extensions

Learning Objectives & Outcomes

- Define Cryptography
- Identify the Purposes of Cryptography
- Understand Key Cryptographic Concepts such as encryption, decryption, and hashing
- Recognise Real-World Applications of Cryptography

Cryptography

What are some reasons to want to hide information or data?

What is Cryptography?

Cryptography is the process of hiding or coding information so only the person who the message was intended for can read it.

Why do we use Cryptography?

- Privacy and Confidentiality
- Authentication
- Non-repudiation

Encryption

 Process of changing data, through mathematical processes, making it unreadable. The data can only be changed back by someone who has the correct key.

Encryption can be divided in 2 categories:

- Symmetrical
 - Uses the same key for both encryption and decryption
- Asymmetrical
 - Uses a private/public key pair for encryption and decryption.

Symmetrical Encryption

- Symmetrical encryption uses the same key for both encryption and decryption.
- **User A** encrypts a message using a key.
- User A can now send the encrypted message to User B
- User B can then use the key to decrypt the message and read it.

Advanced Encryption standard

- Block cipher used by the US government to protect classified information.
- Split the message into smaller blocks of 128 bits each.
- Uses same key to encrypt and decrypt.

Advanced Encryption standard

Transformation Stages

- 1: Involves data substitution with a predefined cipher and a substitution table.
- 2: Data rows get shifted except for the first row.
- 3: Uses the Hill cipher to mix columns.
- 4: Block of data uses a small portion of the encryption key.

Advantages of AES

- Security
- Cost
- Implementation

AES Vulnerabilities

- Incorrect configuration.
- Not enough encryption rounds.
- Side channel attacks.

Asymmetrical Encryption

Uses a private/public key pair for encryption and decryption.

User A wants to send a message to User B

- User A encrypts a message using User B's public key.
- User A can now send the encrypted message to User B
- **User B** can then use their private key to decrypt the message and read it.

Rivest Shamir Adleman (RSA)

- Protects data through encryption and decryption with private and public keys.
- Most widely used encryption mechanism in the world.
- Uses 2 very large prime numbers and performs a sequence of steps to produce a private and public key set that can be used.

Vulnerabilities

- Key sizes
- Future technology
- Side channel attacks
- Weak Random Number Generators

Use Cases

- Digital Signatures
- Digital Certificates
- Secure Communication Protocols

eys and Key Management

Keys are at the centre point of our cryptography and protecting them should be off highest priority.

Vulnerabilities

- Weak keys
- Overused keys
- Using keys for multiple purposes
- Keys stored alongside Data
- Insider threats

Mitigating Risks

• We can mitigate risks using a key management system.

Consequences of Key Leaks

- Investigation costs
- Loss of sensitive data
- Financial losses
- Fines
- Reputational damage
- Some cases the business closes.

Hashing

 Hashing is the process of changing data into a fixed size string value called a hash.

Benefits

- Data retrieval
- Digital Certificates
- Password storing

Disadvantages

- Risk of collisions.
- Very difficult to reverse.
- Not very friendly with data that requires sorting.

Cryptography

How would life change if cryptography didn't exist?

Polls

Please have a look at the poll notification and select an option.

What is the primary purpose of cryptography?

- A. Data compression
- B. Data protection
- C. Data deletion
- D. Data sorting

Polls

Please have a look at the poll notification and select an option.

What type of key pair is used in asymmetric cryptography?

- A. Two public keys
- B. Two private keys
- C. A public key and a private key
- D. No key is required

Questions and Answers

Thank you for attending

