Analysis-III

Aditya Dwarkesh, 19MS047

Spivak's Calculus on Manifolds, Chapter II

- **2-1.** Let $\lim_{h\to 0}\frac{|f(a+h)-f(a)|}{|h|}=|Df(a)|\Longrightarrow \lim_{h\to 0}|f(a+h)-f(a)|=\lim_{h\to 0}|hDf(a)|\le \lim_{h\to 0}|hM|$ (for some $M\in\mathbb{R}$) $\Longrightarrow \lim_{h\to 0}|f(a+h)-f(a)|=0$. Hence, proved.
- **2-2.** If f is independent of the second variable, we can define g(x) = f(x,0). Conversely, if $f(x,y_1) = g(x) = f(x,y_2)$, f is independent of the second variable. f'(a,b) = (g'(a),0).
- **2-3.** f is independent of the first variable if f'(a,b) = (0,g'(b)), where $g: \mathbb{R} \to \mathbb{R}$. If f is independent of both variables, it must be the constant function.

2-4.

- 1. $h(t) = f(tx) = |tx|g(\frac{tx}{||tx||}) = tf(x)$, since g is an odd function. Thus, h'(t) = f(x).
- $\begin{array}{ll} 2. & \lim_{h \to 0} \frac{|f(h,0) f(0,0)|}{|(h,0)|} = \lim_{h \to 0} g(\frac{(h,0)}{|h|}) = g(\pm 1,0) = 0 \text{ (given)}. \text{ Similarly, } g(0,\pm 1) = 0 \\ & \lim_{k \to 0} \frac{|f(0,k) f(0,0)|}{|(0,k)|} = 0. \text{ Thus, if it exists, } Df(0,0) = 0. \\ & \text{However, } \lim_{(h,k) \to 0} \frac{|(f(h,k) f(0,0)|}{|(h,k)|} = \lim_{x \to 0} g(\frac{x}{||x||}) \text{ (replacing } (h,k) \text{ with } x). \text{ Since } g \text{ is an odd function, this limit exists only if } g = 0. \text{ Hence, proved.} \end{array}$
- **2-5.** Defining $g(\frac{(x,y)}{|(x,y)|}) = \frac{x|y|}{|(x,y)|^2}$ shows the required.
- **2-6.** It is clear that $\lim_{x\to 0}\frac{|f(x,0)|}{|x|}=\lim_{y\to 0}\frac{|f(0,y)|}{|y|}=0$. Thus, if it exists, the derivative is 0. However, $\lim_{h\to 0}\frac{|f(h,h)|}{|(h,h)|}=\frac{1}{\sqrt{2}}\neq 0$. Thus, the derivative does not exist.
- **2-7.** Note that f(0) = 0. Thus, $\lim_{h \to 0} \frac{|f(h) f(0)|}{|h|} \le \lim_{h \to 0} |h| = 0$. Thus, Df(0) = 0.
- **2-8.** First, suppose f is differentiable. Note that $f_j = p_j o f$, where p is the projection map onto the first component. Being a linear map, p_j is differentiable. Thus, being the composition of two differentiable functions, f_j is differentiable.

Conversely, suppose each f_j is differentiable. Then, for $\lambda = (Df_1(a), ...Df_n(a)), \lim_{h \to 0} \frac{||f(a+h) - f(a) - \lambda h||}{||h||} \le \sum_{j=1}^n \lim_{h \to 0} \frac{|f_j(a+h) - f_j(a) - Df_j(a)|}{||h||} = 0$ (using problem 1-1 and interchanging limit and finite sum).

2-9.

- 1. If f is differentiable, we can define the function as g(x) = f(a) + f'(a)(x a). Alternatively, we have $\lim_{h\to 0} \frac{f(a+h)-a_0}{h} = a_1$; but also, $f(a) = g(a) = a_0$. Thus, this gives $f'(a) = a_1$, and we are done.
- 2. By Taylor's theorem, $f(x) = \frac{f^n(y)}{n!}(x-a)^n + \sum_{i=1}^{n-1} \frac{f^i(x)}{i!}(x-a)^i, y \in (x,a)$. Thus, $\lim_{x \to a} \frac{f(x) g(x)}{(x-a)^n} = \lim_{x \to a} \frac{f^n(y)(x-a)^n f^n(x)(x-a)^n}{(x-a)^n} = 0$.

2-10.

1.
$$(yx^{y-1} \quad x^y ln(x) \quad 0)$$

$$2. \begin{pmatrix} yx^{y-1} & x^y lnx & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 3. $(\sin(y)\cos(x\sin(y)) \quad x\cos(y)\cos(x\sin(y)))$
- 4. cos(x(sin(ysin(z))))((sin(ysin(z)) xcos(ysin(z))sin(z) xycos(ysin(z))cos(z))
- 5. $(y^z x^{y^z-1} \quad zy^{z-1} x^y ln(x) \quad y(x^{y^z}) ln(x))$
- 6. $((y+z)x^{y+z-1} \quad x^{y+z}ln(x) \quad x^{y+z}ln(x))$
- 7. $(z(x+y)^{z-1} \quad z(x+y)^{z-1} \quad (x+y)^z ln(x+y))$
- 8. $(y\cos(xy) \quad x\cos(xy))$
- 9. $(cos(3)xcos(xy)sin^{cos(3)-1}(xy) cos(3)ycos(xy)sin^{cos(3)-1}(xy))$
- 10. By 1, 3 and 8, we have: $\begin{pmatrix} ycos(xy) & xcos(xy) \\ sin(y)cos(xsin(y)) & xcos(y)cos(xsin(y)) \\ yx^{y-1} & x^yln(x) \end{pmatrix}$
- **2-11.** Let $h(t) = \int_a^t g$. We know that h'(x) = g(x).
 - 1. $f(x,y) = h(x+y) \implies Df(x,y) = (g(x+y), g(x+y)).$
 - 2. $f(x,y) = h(xy) \implies Df(x,y) = (yg(xy), xg(xy)).$
 - 3. $f(x,y,z) = h(\sin(x\sin(y\sin z))) = h(r) \implies Df(x,y) = (a_1g(r), a_2g(r), a_3g(r)), \text{ where } a_1, a_2, a_3$ are the components of the matrix in 2-10 4.

2-12.

1. We shall first show that $|f(h,k)| \leq M|h||k|$, where $M = \sum_{i,j} |f(e_i,e_j)|$, where $\{e_i\}$ are the basis vectors for \mathbb{R}^n and $\{e_j\}$ for \mathbb{R}^m .

Let $h = \sum_{i} a_{i}e_{i}, k = \sum_{j} b_{j}e_{j}$. Then, $|f(h,k)| = |f(\sum_{i} a_{i}e_{i}, \sum_{j} b_{j}e_{j})| = |\sum_{i,j} a_{i}b_{j}f(e_{i}, e_{j})| \le |f(\sum_{i} a_{i}e_{i}, \sum_{j} b_{j}e_{j})|$

 $|\max\{a_i\}\max\{b_j\}|M \le M|h||k|.$ Now, note that $\frac{|h||k|}{|(h,k)|} = \frac{|h||k|}{\sqrt{h^2 + k^2}} \le \sqrt{h^2 + k^2}$, since $(|h| - |k|)^2 \ge 0 \implies |h|^2 + |k|^2 \ge |h||k| \implies$ $|h||k| \le h^2 + k^2.$

Thus, $0 \le \lim_{(h,k)\to 0} \frac{|f(h,k)|}{|(h,k)|} \le \lim_{(h,k)\to 0} \frac{M|h||k|}{|(h,k)|} \le \lim_{(h,k)\to 0} M\sqrt{h^2+k^2} = 0$. Hence, proved.

- 2. Let $\lambda(h,k) = f(a,k) + f(h,b)$. Note that this is linear: $\lambda(c(h,k) + (x,y)) = f(a,ck+y) + f(ch+x,b) = cf(a,k) + f(a,y) + cf(h,b) + f(x,b) = c\lambda(h,k) + \lambda(x,y)$. Then, $\lim_{(h,k)\to 0} \frac{f(a+h,b+k) f(a,b) \lambda(h,k)}{|(h,k)|} = \lim_{(h,k)\to 0} \frac{f(a,k) + f(h,b) + f(h,b) f(a,b) \lambda(h,k)}{|(h,k)|} = \lim_{(h,k)\to 0} \frac{f(a,k) + f(h,b) \lambda(h,k)}{|(h,k)|} = 0$. Thus, Df(a,b)(x,y) = f(a,y) + f(x,b).
- 3. It is easy to check that p(a,b) = ab is bilinear: p(ca,b) = cab = cp(a,b) = p(a,cb); p(a+c,b) = cab = cabab+cb=p(a,b)+cb; p(a,b+d)=ab+ad=p(a,b)+p(a,d). Setting f(h,k)=hk, we obtain Df(a,b)(x,y) = f(a,y) + f(x,b) = ay + bx.

2-13.

1. From the above, we have $D(IP)(a,b)(x,y) = \langle a,y \rangle + \langle x,b \rangle$. (IP)'(a,b) = (b,a), since $(b,a)(x,y)^t = \langle b,x \rangle + \langle a,y \rangle$.

- 2. Let h(t) = IP(u(t)), u(t) = (f(t), g(t)). Then $h'(a) = [DIP(f(a), g(a))][Du(a)] = (g(a), f(a)) * (f'_1(a), ..., f'_n(a), g'_1(a) ..., g'_n(a))^t = \langle f'(a)^t, g(a) \rangle + \langle f(a), g'(a)^t \rangle.$
- 3. Put $h(t) = \langle f(t), f(t) \rangle = 1$ in the previous problem. Since h(t) is a constant function, $\frac{dh}{dt} = 0 \implies \langle f'(t)^t, f(t) \rangle + \langle f(t), f'(t)^t \rangle = 2\langle f'(t)^t, f(t) \rangle = 0 \implies \langle f'(t)^t, f(t) \rangle = 0$ for all t.
- 4. Let f(t) = t |t| is not differentiable at 0.

2-14.

- 1. Let $g: E_i \times E_j \to \mathbb{R}^p, g(x,y) = f(a_1...a_{i-1}, x, a_{i+1}, ...a_{j-1}, y, a_{j+1}, ...a_k)$. This is clearly a bilinear map. Thus, $0 \le \lim_{(h_i,h_j)\to 0} \frac{|g(h_i,h_j)|}{|h|} \le \lim_{(h_i,h_j)\to 0} \frac{|g(h_i,h_j)|}{|(h_i,h_j)|} = 0$ (from 2-13, i) $\Longrightarrow \lim_{h\to 0} \frac{f(a_1,...h_i,...h_j,...a_k)}{|h|} = 0$.
- 2. $f(a_1+h_1,a_2+h_2,...a_k+h_k) = f(a_1,...a_k) + \sum_{i=1}^k f(a_1,...h_i,...a_k) + \sum_{1 \leq j_1 < j_2 \leq k}^k f(a_1,...h_{j_1},...h_{j_2},...a_k) + \text{other terms. The last set of other terms will each have three or more entries of } h_i \text{ in the function's argument.}$ We denote them collectively by R(h).

 We claim that $\lim_{h \to 0} \frac{|f(a_1+h_1,...a_k+h_k) f(a_1,...a_k) \sum_{i=1}^k f(a_1,...h_i,...a_k)|}{|h|} = 0$. This will show that $\lambda(h_1,...h_k) = \sum_{i=1}^k f(a_1,...h_i,...a_k). \text{ From the above, we have } 0 = \lim_{h \to 0} \frac{|f(a_1+h_1,...a_k+h_k) f(a_1,...a_k) \sum_{i=1}^k f(a_1,...h_i,...a_k) \sum_{1 \leq j_1 < j_2 \leq k}^k f(a_1,...h_{j_1},...h_{j_2},...a_k) R(h)|}{|h|} \geq \lim_{h \to 0} \frac{|f(a_1+h_1,...a_k+h_k) f(a_1,...a_k) \sum_{i=1}^k f(a_1,...h_i,...a_k)|}{|h|} \lim_{h \to 0} \sum_{1 \leq i < j \leq k}^k \frac{|f(a_1,...h_i,...h_j,...a_k)|}{|h|} \lim_{h \to 0} \frac{|R(h)|}{|h|}.$ The second term vanishes, by the previous part of this exercise. We can argue similarly for the third grouping of terms by holding one of the h_i components constant. Thus, $Df(a_1,...a_k)(x_1,...x_k) = \sum_{i=1}^k f(a_1,...x_i,...a_k).$

2-15.

- 1. We know that the determinant is a multilinear map. Thus, this result follows immediately from the above.
- 2. From the chain rule, we have $f'(t) = [Ddet(a_{ij}(t))]o[Da_{ij}(t)] = \sum_{i=1}^{n} \det \begin{pmatrix} a_1 \\ \cdot \\ a'_i \\ \cdot \\ a_n \end{pmatrix}$ where $a'_i = (a'_{i1}, ... a'_{in})$.
- 3. Let $A = (a_{ji}), s = s_i = b = b_i$, where s, b are column vectors. Then, we have As = b. Cramer's rule yields $s_i = \frac{\det A_i}{\det A} = \frac{g_i(t)}{f(t)}$ (say). Then, $s'_i(t) = \frac{f(t)g'_i(t) f'(t)g_i(t)}{(f(t))^2}$
- **2-16.** Define $h: \mathbb{R}^n \to \mathbb{R}^n$, h(x) = x. Clearly, $fof^{-1} = h$. Thus, $D(fof^{-1})(a) = Dh(a) = f'(f^{-1}(a)) * (f^{-1})'(a)$. But $Dh(a) = I \Longrightarrow (f^{-1})'(a) = [f'(f^{-1}(a))]^{-1}$.

2-17.

1.
$$\frac{\partial f}{\partial x} = yx^{y-1}, \frac{\partial f}{\partial y} = x^y \ln(x)$$

2.
$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0, \frac{\partial f}{\partial z} = 1.$$

3.
$$\frac{\partial f}{\partial x} = sin(y)cos(xsin(y)), \frac{\partial f}{\partial y} = xcos(y)cos(xsin(y))$$

4.
$$\frac{\partial f}{\partial x} = (sin(ysin(z))cos(x(sin(ysin(z))), \frac{\partial f}{\partial y} = cos(x(sin(ysin(z)))xcos(ysin(z))sin(z), \frac{\partial f}{\partial z} = cos(x(sin(ysin(z)))xycos(ysin(z))cos(z)$$

5.
$$\frac{\partial f}{\partial x} = y^z x^{y^z - 1}, \frac{\partial f}{\partial y} = z y^{z - 1} x^y ln(x), \frac{\partial f}{\partial z} = x^{y + z} ln(x)$$

6.
$$\frac{\partial f}{\partial x} = (y+z)x^{y+z-1}, \frac{\partial f}{\partial y} = \frac{\partial f}{\partial z} = x^{y+z}ln(x)$$

7.
$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = z(x+y)^{z-1}, \frac{\partial f}{\partial z} = (x+y)^z \ln(x+y)$$

8.
$$\frac{\partial f}{\partial x} = y\cos(xy), \frac{\partial f}{\partial y} = x\cos(xy)$$

9.
$$\frac{\partial f}{\partial x} = \cos(3)x\cos(xy)\sin^{\cos(3)-1}(xy), \\ \frac{\partial f}{\partial y} = \cos(3)y\cos(xy)\sin^{\cos(3)-1}(xy)$$

2-18.

1.
$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = g(x+y)$$
.

2.
$$\frac{\partial f}{\partial x} = g(x), \frac{\partial f}{\partial y} = -g(y).$$

3.
$$\frac{\partial f}{\partial x} = yg(x, y)$$
. $\frac{\partial f}{\partial y} = xg(x, y)$.

4.
$$\frac{\partial f}{\partial x} = 0, \frac{\partial f}{\partial y} = g(\int_a^y g)g(y).$$

2-19. Note that f(1,y) = 1 everywhere. Since it is constant, we have $D_2 f(1,y) = 0$.

2-20.

1.
$$f(x,y) = p(u,v) = uv, u = g(x), v = h(y).$$

 $\frac{\partial f}{\partial x} = \frac{\partial p}{\partial u} \frac{dg}{dx} + \frac{\partial p}{\partial v} \frac{dh}{dx} = vg'(x) + u * 0 = g'(x)h(y).$ By symmetry, we can also say $\frac{\partial f}{\partial y} = g(x)h'(y).$

2.
$$f(x,y) = p(u,v) = u^{v}, u = g(x), v = h(y).$$

$$\frac{\partial f}{\partial x} = \frac{\partial p}{\partial u} \frac{dg}{dx} + \frac{\partial p}{\partial v} \frac{dh}{dx} = vu^{v-1}g'(x) + 0 = g(x)^{h(y)-1}g'(x)h(y).$$

$$\frac{\partial f}{\partial y} = \frac{\partial p}{\partial u} \frac{dg}{dy} + \frac{\partial p}{\partial v} \frac{dh}{dy} = 0 + u^{v}ln(u)h'(y) = g(x)^{h(y)}h(y)ln(g(x)).$$

3.
$$\frac{\partial f}{\partial x} = g'(x), \frac{\partial f}{\partial y} = 0.$$

4.
$$\frac{\partial f}{\partial y} = g'(y), \frac{\partial f}{\partial x} = 0.$$

5.
$$f(x,y) = g(p), p = p(x,y) = x + y.$$

 $\frac{\partial f}{\partial x} = \frac{dg}{dp} \frac{\partial p}{\partial x} = g'(x+y).$ Similarly, $\frac{\partial f}{\partial y} = g'(x+y).$

2-21.

1.
$$\frac{\partial f(x,y)}{\partial y} = \frac{\partial \int_0^x g_1(t,0)dt}{\partial y} + \frac{\partial \int_0^y g_2(x,t)dt}{\partial y} = D_2g(x,y)$$
 (fundamental theorem of calculus).

2.
$$f(x,y) = \int_0^x g_1(t,y)dt + \int_0^y g_2(0,t)dt$$
.

3.
$$f(x,y) = \frac{x^2 + y^2}{2}$$
, $f(x,y) = xy$.

2-22. We apply the mean value theorem on one variable. So, $f(x, y_1) - f(x, y_2) = \frac{\partial f}{\partial y}(x, y_0)(y_1 - y_2)$ for some $y_0 \in [y_2, y_1]$. But we know that $\frac{\partial y}{\partial y} = 0 \forall (x, y) \implies f(x, y_1) = f(x, y_2) \forall x, y_1, y_2$. This shows that f is independent of the second variable. A similar argument can be used in case $D_1 f = 0$ to show that it is independent of the first variable; and if it is independent of both variables, it is just the constant function.

2-23.

1. Note that any two points in A can be connected by a sequence of lines parallel to one of the axes. Consider the endpoints of any one of the lines (parallel to the y-axis, without loss of generality) joining two arbitrary points in A. Applying the mean value theorem on it, we have $f(x_1, y) = f(x_2, y)$. Since this holds true for all the lines, the functional value will be equal at the two arbitrary points. Thus, f is constant.

2. Consider the function f(x,y) = 0 on the second and third quadrants, x^2 on the first and $-x^2$ on the fourth. This is continuous on A (in fact, if defined on \mathbb{R}^2 , it is discontinuous just on $\mathbb{R}^2 \setminus A$) but clearly not independent of the second variable.

2-24.

- 1. $\frac{\partial f}{\partial y} = \frac{\partial (xy\frac{x^2-y^2}{x^2+y^2})}{\partial y} = -\frac{x(y^4+4x^2y^2-x^4)}{(x^2+y^2)^2}$. Evaluating at (x,y) = (x,0), we have $\frac{\partial f}{\partial y} = x$. Also, $\lim_{h\to 0} \frac{f(h,0)-f(0,0)}{h} = 0$. $\frac{\partial f}{\partial x} = \frac{\partial (xy\frac{x^2-y^2}{x^2+y^2})}{\partial x} = \frac{y(x^4+4x^2y^2-y^4)}{(x^2+y^2)^2}$. Evaluating at (x,y) = (0,y), we have $\frac{\partial f}{\partial x} = -y$. Also, $\lim_{h\to 0} \frac{f(0,h)-f(0,0)}{h} = 0$.
- 2. $D_{1,2}f(0,0) = \frac{\partial D_2f(x,0)(0)}{x} = 1 \neq -1 = \frac{\partial D_1f(0,y)(0)}{\partial y} = D_{2,1}f(0,0).$
- **2-25.** Clearly, for $x \neq 0$, $f'(x) = \frac{2e^{-x^{-2}}}{x^3}$. Its higher order derivatives will be of the form $\frac{p(x)e^{-x^{-2}}}{x^n}$. Now, $f'(0) = \lim_{h \to 0} \frac{f(h) f(0)}{h} = \lim_{h \to 0} \frac{e^{-h^{-2}}}{h} = \lim_{h \to 0} \frac{\frac{1}{h}}{e^{h-2}} = \lim_{h \to 0} \frac{h}{2e^{\frac{1}{h^2}}} = 0$, using L'Hospital's rule. $f''(0) = \lim_{h \to 0} \frac{f'(h)}{h} = \lim_{h \to 0} \frac{1}{2e^{\frac{1}{h^2}}} = 0$. For higher order derivatives, we need only to apply L'Hospital's rule again.
- **2-27.** Note that $A = \{x \in \mathbb{R}^2 : |x| \le 1\}, B = \{x \in \mathbb{R}^3 : |x| = 1\} \implies B = g(A) \cup h(A)$. This completes the proof.

2-28.

- 1. $D_1F(x,y) = D_1f(u,v)k(y)g'(x) + D_2f(u,v)g'(x)$ $D_2F(x,y) = D_1f(u,v)k'(y)g(x) + D_2f(u,v)k'(y)$
- 2. $D_1F(x,y,z) = D_1f(u,v)k(y)g'(x+y)$ $D_2F(x,y,z) = D_1f(u,v)k(y)(x+y) + D_2f(u,v)h'(y+z)$ $D_3F(x,y,z) = D_2f(u,v)h'(y+z)$
- 3. $D_1F(x,y,z) = D_1f(u,v,w)yx^{-1} + D_3f(u,v,w)ln(z)z^x$ $D_2F(x,y,z) = D_1f(u,v,w)ln(y)x^y + D_2f(u,v,w)zy^{z-1}$ $D_3F(x,y,z) = D_2f(u,v,w)ln(y)y^z + D_3f(u,v,w)xz^{x-1}$
- 4. $D_1F(x,y) = D_1f(u,v,w) + D_2f(u,v,w)g'(x) + D_3f(u,v,w)D_1h(x,y)$ $D_2F(x,y) = D_3f(u,v,w)D_2h(x,y)$

2-29.

- 1. Follows from definition.
- 2. $D_{tx}f(a) = \lim_{h\to 0} \frac{f(a+htx)-f(a)}{h}$. Substituting u = ht, we have $D_{tx}(a) = \lim_{u\to 0} \frac{f(a+ux)-f(a)}{(\frac{u}{t})} = tD_xf(a)$.
- 3. $\lim_{h\to 0} \left| \frac{f(a+h)-f(a)-Df(a)h}{h} \right| = 0$. Replacing h with tx, we have $\lim_{t\to 0} \left| \frac{f(a+tx)-f(a)-tDf(a)x}{tx} \right| = 0$ $\implies D_x f(a) = Df(a)x$. Linearity follows from linearity of the derivative.
- **2-30.** $D_x f(0,0) = \lim_{t\to 0} |\frac{f(tx)}{t}| = \frac{|tx|g(\frac{tx}{|tx|})}{|t|} = f(x)$. Thus, it exists. If we let x = (1,0), y = (0,1), then $D_x f(0,0) = f(1,0) = 0, D_y f(0,0) = f(0,1) = 0$, but $D_{x+y} f(0,0) = f(1,1) = \sqrt{2}g(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}) \neq 0$ necessarily.

2-32.

- 1. $\lim_{h\to 0} \frac{f(h)-f(0)}{h} = \lim_{h\to 0} \frac{h^2 \sin(\frac{1}{h})}{h} = \lim_{h\to 0} h \sin(\frac{1}{h}) = 0$. Thus, f is differentiable at 0 and f'(0) = 0. Elsewhere, $f'(x) = 2x\sin(\frac{1}{x}) \cos(\frac{1}{x})$, which has no limit as $x\to 0$. Thus, f' is not continuous at 0.
- 2. Rewriting $\sqrt{x^2 + y^2} = |z|$, the argument runs unchanged.
- **2-33.** Continuity of $D_j f$ at a is used to infer that, as $h \to 0 \equiv c_j \to a$, $D_j f(c_j) \to D_j f(a)$. Supposing $D_1 f$ is not continuous at a, we may still apply the same argument for the remaining components. Then we have $\lim_{h\to 0} \frac{|f(a+h)-f(a)-\sum_{j=1}^n \frac{\partial f}{\partial x_j}(a)h_j|}{||h||} \le \lim_{h\to 0} \frac{|f(a+h_1)-f(a)-D_1 f(a)h_1|}{||h||} + \sum_{j=2}^n \frac{|D_j f(c^j)-D_j f(a)||h_j|}{||h||} = \lim_{h\to 0} |Df_1(a)-Df_1(a)| \frac{|h_1|}{||h||} = 0$, and we are done.
- **2-36.** The inverse function theorem tells us that for any a, there is an open set $V \subset f(A)$ containing f(a). Thus, we have found an open ball around every point $x \in f(A)$ such that $B \subset f(A)$. It follows that f(A) is open. The same argument on the restriction of f to B works to show that f(B) is open. It follows from the inverse function theorem that an inverse exists and is differentiable at each point $y \in f(A)$. Since we are given the existence of a global inverse, the result follows.

2-38.

- 1. Suppose $f(x_1) = f(x_2), x_1 \neq x_2$. We know that f is continuous on $[x_1, x_2]$ and differentiable on (x_1, x_2) . Thus, from the mean value theorem, $f(x_2) f(x_1) = f'(a)(x_2 x_1) = 0 \implies f'(a) = 0$ for some $a \in (x_1, x_2)$, contradicting the fact that $f'(x) \neq 0 \forall x \in \mathbb{R}$. Hence, proved.
- 2. $Df(a,b) = \begin{pmatrix} e^x cos(y) & -e^x sin(y) \\ e^x sin(y) & e^x cos(y) \end{pmatrix}$

det $f'(x,y) = e^{2x}(\cos^2 y + \sin^2 y) = e^{2x} \neq 0 \forall (x,y) \in \mathbb{R}^2$. That f is not injective is clear from the fact that $f(x,y) = f(x,y+2n\pi)$.

- **2-39.** For $x \neq 0$, $f'(x) = \frac{1}{2} + 2xsin(\frac{1}{x}) cos(\frac{1}{x})$. Note that its limit as x tends to 0 does not exist due to the fluctuating cosine. However, $f'(0) = \lim_{h \to 0} \frac{\frac{h}{2} + h^2 sin(\frac{1}{h})}{h} = \frac{1}{2}$. The function is differentiable everywhere, but its derivative is not continuous at x = 0. This is not invertible around x = 0 because in any neighbourhood around the origin, we can find a point at which the derivative vanishes.
- **2-40.** Let $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n: f^i(t, \mathbf{s}) = \sum_{j=1}^n a_{ji}(t)s_j b_i(t) = 0$. Note that $\frac{\partial f^i}{\partial x_j} = a_{ij}(t)$ Thus, by the implicit function theorem, there is a function s(t) such that f(t, s(t)) = 0, and s(t) is differentiable.

2-41.

- 1. Note that $g_x'(y) = \frac{\partial f(x,y)}{\partial y}$. Thus, $\frac{\partial f(x,y)}{\partial y} = 0$ at (x,c(x)). Also, $\frac{\partial^2 f(x,y)}{\partial y^2} \neq 0$. Thus, we can apply the implicit function theorem on $D_2 f(x,y)$ to get differentiability of c. By the chain rule, we have $D_1(D_2 f(x,c(x))) = D_1(D_2 f(x,c(x))) + D_2(D_2 f(x,c(x)))c'(x) = 0 \implies c'(x) = \frac{-D_{2,1} f(x,c(x))}{D_{2,2} f(x,c(x))}$.
- 2. The first follows from the above result, with y=c(x). Also, by definition, $y=c(x) \implies D_2 f(x,y)=0$.
- 3. $\frac{\partial f(x,y)}{\partial y} = x \log y \log x = 0 \implies y = x^{\frac{1}{x}}$. $D_{2,2} = \frac{x}{y} > 0 \implies$ this is the minima we want. However, $\frac{1}{3} \le x^{\frac{1}{x}} \le 1$ only in the range [a,1] for some $a > \frac{1}{2}$.

- In the range $\left[\frac{1}{2},a\right)$, the quantity will be minimized by $y=\frac{1}{3}$. $f(x,\frac{1}{3})=-x(\frac{1+ln3}{3})-\frac{1}{3}lnx$ is maximized at $x=\frac{1}{2}$. $f(\frac{1}{2},\frac{1}{3})=\frac{ln(\frac{4}{3e})}{6}$.
- In the range [a,1), we wish to maximize $f(x,x^{\frac{1}{x}})=-x^{1+\frac{1}{x}}$, clearly maximized at x=a. It equals $-\frac{a}{3}$.
- In [1,2], it will be minimized by y = 1. $f(x,1) = -x \ln x$. This is a decreasing function, maximum at x = 1. f(1,1) = -1.

Comparing the three, we see that the required point is $(\frac{1}{2}, \frac{1}{3})$.