REDES NEURONALES PRÁCTICA 6 - 2024

Memorias asociativas

- 1. Estimar la capacidad del modelo de Hopfield sin ruido.
 - Crear los patrones x_i^{μ} $(i = 1, ..., N; \mu = 1, ..., p)$. Cada uno de los valores es ± 1 con igual probabilidad.
 - Evaluar la matriz de conexiones: $w_{ij} = \frac{1}{N} \sum_{\mu=1}^{p} x_i^{\mu} x_j^{\mu}$ (tomar $w_{ii} = 0$).
 - Tomar uno de los patrones como condicion inicial e iterar la dinámica determinista hasta converger a un punto fijo (s_i^{μ}) . Comparar la dinámica secuencial con la paralela desde el punto de vista de la cinvergencia.
 - Para la dinámica secuencial:
 - Calcular el overlap $m^{\mu} = \frac{1}{N} \sum_{i=1}^{N} s_i^{\mu} x_i^{\mu}$.
 - Repetir para todos los patrones y calcular la distribución de los overlaps.
 - Realizar todos los puntos anteriores para N=500, 1000, 2000, 4000 y $\alpha=p/N=0.12, 0.14, 0.16, 0.18$
- 2. Simular la dinámica de Hopfield con ruido usando la regla

$$Pr(s_i(t+1) = \pm 1) = \frac{\exp(\pm \beta h_i(t))}{\exp(\beta h_i(t)) + \exp(-\beta h_i(t))}$$
(1)

donde $h_i(t) = \sum_{j=1}^N w_{ij} s_j(t)$. Tomar como condición inicial cada uno de los patrones (x_i^{μ}) . Recorrer toda la red aplicando esta regla y despues de visitar cada sitio 10 veces calcular el overlap. Tomar N = 4000, p = 40 y graficar el overlap medio como funcion de $T = 1/\beta$, para T = 0.1, 0.2, ..., 2.