MLL 100

Introduction to Materials Science and Engineering

Lecture-11 (January 29, 2022)

Dr. Sangeeta Santra (<u>ssantra@mse.iitd.ac.in</u>)

What have we learnt in Lecture-10?

- ☐ Condensed Gibb's phase rule
- ☐ Tie-line
- ☐ Lever rule

How to construct a phase diagram?

• Determination of phase boundary ---- > liquidus, solidus, solvus, etc.

Cooling curve

- Pure metals melt at a single temperature (melting point).
- Alloys melt over a range of temperature.

Variation of electrical resistivity of alloys as a function of composition

...... Can you think of any other method using which you may be able to identify the phase boundaries?

Microstructure

Microstructure obtained through an Optical microscopy

Structural features observed at the micron level in a material

Phases, Defects, Phase morphology

Edge dislocation

Vacancy

Microstructure obtained through a Scanning Electron Microscopy (SEM)

Azeotropes

How will a cooling curve look like for an alloy '1'?

- Ethanol-water
- Nitric acid-water
- Benzene-water

Fractional distillation

Solid solution

Diamond cubic structure

Solid solution

• Consider a system with a total of one mole of atoms $(X_R \text{ and } X_G : \text{mole fractions of element } R \text{ and } G \text{ respectively})$

$$X_R + X_G = 1$$

(1 mole of solution)

(After mixing)

Solid solution (Random configuration): 'R' and 'G' care the least about their environments.

Solid solution (No preference for any bond,

- Variation in composition
- Crystal structure same as that of one of the solid components.

Compound formation (Ordered configuration): 'R' and 'G' feel strongly comfortable in other's space.

Intermetallic compound (Unlike bonds are preferred)

- Fixed composition
- Crystal structure different than those of the solid components.

Types of Solid solution

Substitutional Solid solution

Interstitial Solid solution

Hume Rothery rule

(i) Size factor

When the atomic radii of solute and solvent differ by less than 15%, solid solution is favourable, which otherwise will result in lattice strain.

(ii) Crystal structure

Crystal structures of both the components should be the same.

(iii) Valency

If valency is the same for both the solvent and solute, then a complete miscibility is possible. Solubility is higher when the solvent has a higher valence.

(iv) Electronegativity

Similar electronegativity favours a higher solubility. The higher the difference, the greater the possibility for the formation of new compound phase.

Elements	Atomic size	Electronegativity	Crystal structure	Valency
Cu	140 pm	1.9	FCC	+2
Ni	149 pm	1.91	FCC	+2
	$\Delta AS = 6\%$			

Cu	140 pm	1.9	FCC	+2
Ag	165 pm	1.93	FCC	+1
	$\Delta AS = 18\%$			