IF4054 Pengoperasian Perangkat Lunak

CUSTOMER CHURN PREDICTION WORKFLOW

Disusun oleh:

Alexander Jason 13521100

Nathania Calista 13521139

Haziq Abiyyu Mahdy 13521170

Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung 2024

Daftar Isi

Daftar Isi	
Daftar Tabel	2
Daftar Gambar	
A. Pendahuluan	
B. Machine Learning Workflow	6
C. Model Deployment	
D. Implementasi	8
E. Hasil Implementasi	
F. Kesimpulan	13
G. Referensi	
H. Pembagian Kerja	15
I. Lampiran	

Daftar Tabel

Tabel 1.1. Deskripsi kolom dataset	4
Tabel 8.1. Pembagian Kerja	.15

Daftar Gambar

Gambar 2.1 Experiment DAG	6
Gambar 2.2 Production DAG	7
Gambar 5.1 Experiment DAG Runs	9
Gambar 5.2 Production DAG Runs	9
Gambar 5.3 Datasets di MinIO	10
Gambar 5.4 Artefak di MinIO	10
Gambar 5.5 MLFlow Experiment	11
Gambar 5.6 MLFlow Model	11
Gambar 5.7 [Bonus] Prediction API Request	12
Gambar 5.8 [Bonus] Prediction API Response	12

A. Pendahuluan

Dataset "Telco Customer Churn" merupakan kumpulan data pelanggan dari sebuah perusahaan telekomunikasi yang bertujuan untuk menganalisis faktor-faktor yang memengaruhi pelanggan berhenti berlangganan layanan mereka (*churn*). Dataset ini dapat digunakan untuk membangun model prediktif yang membantu mengidentifikasi pelanggan yang berpotensi churn. Berikut ini merupakan deskripsi kolom dari dataset:

Tabel 1.1. Deskripsi kolom dataset

No.	Nama Kolom	Tipe Data	Deskripsi
1	customerId	object	ID unik untuk setiap pelanggan.
2	gender	object	Jenis kelamin pelanggan (Male/Female)
3	SeniorCitizen	int64	Indikator apakah pelanggan adalah warga senior (1 = Ya, 0 = Tidak)
4	Partner	object	Apakah pelanggan memiliki pasangan (Yes/No)
5	Dependents	object	Apakah pelanggan memiliki tanggungan (Yes/No)
6	tenure	int64	Jumlah bulan pelanggan telah menggunakan layanan
7	PhoneService	object	Apakah pelanggan memiliki layanan telepon (Yes/No)
8	MultipleLines	object	Apakah pelanggan memiliki beberapa jalur telepon (Yes/No/No phone service)
9	InternetService	object	Jenis layanan internet (DSL, Fiber optic, No)
10	OnlineSecurity	object	Apakah pelanggan memiliki layanan keamanan online (Yes/No/No internet service)
11	OnlineBackup	object	Apakah pelanggan memiliki layanan pencadangan online (Yes/No/No internet service)
12	DeviceProtectio n	object	Apakah pelanggan memiliki layanan perlindungan perangkat (Yes/No/No internet service)
13	TechSupport	object	Apakah pelanggan memiliki layanan dukungan teknis (Yes/No/No internet service)
14	StreamingTV	object	Apakah pelanggan memiliki layanan streaming TV (Yes/No/No internet service)

15	StreamingMovi es	object	Apakah pelanggan memiliki layanan streaming film (Yes/No/No internet service)
16	Contract	object	Jenis kontrak pelanggan (Month-to-month, One year, Two year)
17	PaperlessBilling	object	Apakah pelanggan menggunakan penagihan tanpa kertas (Yes/No)
18	PaymentMetho d	object	Metode pembayaran (Electronic check, Mailed check, Bank transfer, Credit card)
19	MonthlyCharge s	float64	Biaya bulanan yang dibayarkan pelanggan
20	TotalCharges	object	Total biaya yang telah dibayarkan pelanggan selama ini
21	Churn	object	Apakah pelanggan berhenti berlangganan (Yes/No)

B. Machine Learning Workflow

1. Experiment DAG

Gambar 2.1 Experiment DAG

Diagram ini menunjukkan alur kerja yang dilakukan hanya satu kali untuk eksperimen. Berikut penjelasan langkah-langkahnya:

a) Generate Filename

Pada tahap ini, nama file dibangkitkan berdasarkan *timestamp*. Nama file ini berguna sebagai *object key* dari data yang akan dibersihkan pada tahap setelahnya.

b) Preprocess Training Data (Menggunakan Spark)

Pada tahap ini, dataset diambil dari volume dan diproses untuk membersihkan dan mempersiapkannya untuk langkah berikutnya. Proses mencakup:

- Menghapus data duplikat.
- Mengisi atau menghapus nilai yang kosong (N/A).
- Seleksi fitur untuk memilih atribut yang relevan.
- Transformasi untuk menyesuaikan format data (seluruh data kategorikal diubah menjadi numerik)
- Data yang telah diproses akan disimpan ke MinIO menggunakan object key dari tahap sebelumnya

c) Ingest Clean Data

Data yang telah dibersihkan diambil dari MinIO dan dikonversi menjadi DataFrame yang akan disimpan pada XCom untuk diakses pada tahap Train Model. Setiap kali dataset di-ingest untuk melakukan training, dataset yang di-ingest akan dicatat sebagai last_used_dataset untuk dijadikan referensi pada perhitungan PSI.

d) Train Model

Pada tahap ini, dilakukan eksperimen dengan beberapa algoritma seperti Random Forest dan Logistic Regression. Tiap model akan di-log ke MLFlow beserta konfigurasi model seperti algoritma dan parameter serta metrik yang dihitung. Artefak model dengan metrik terbaik akan dicatat sebagai last_used_artifact_path agar dapat diakses oleh service lain.

2. Production DAG

Gambar 2.2 Production DAG

Diagram ini menunjukkan alur kerja yang dijalankan secara berkala (misalnya, setiap beberapa menit). *Workflow* ini dioptimalkan untuk dalam proses *production*, di mana data selalu dihasilkan secara berkala.

- a) Generate Production Filename
 - Pada tahap ini, nama file dibangkitkan berdasarkan *timestamp*. Nama file ini berguna sebagai *object key* dari data yang akan dibersihkan pada tahap setelahnya.
- b) Get and Preprocess Production Data (Menggunakan Spark)
 Pada tahap ini, dataset diambil dari *script* untuk meng-*generate* data untuk mensimulasikan data *production* dan diproses seperti tahapan Preprocess Training Data pada Experiment DAG. Data yang telah diproses akan disimpan ke MinIO menggunakan *object key* dari tahap sebelumnya.
- c) Get Last Used Dataset
 - Dataset yang terakhir digunakan untuk *training* (*last_used_dataset*) diambil dari minIO untuk dijadikan referensi pada perhitungan PSI.
- d) Detect Drift
 - Perhitungan PSI membandingkan antara data *production* yang dihasilkan pada tahap b dengan *last_used_dataset*. Apabila PSI di atas ambang tertentu, maka terdapat *data drift* dan diperlukan *training* ulang dengan *dataset* baru.
- e) Branch Based On Drift
 - Pada tahap ini, digunakan BranchPythonOperator untuk menentukan *task* selanjutnya yang akan dijalankan berdasarkan *data drift*.
- f) Skip Training
 - Apabila tidak terdapat data drift, maka tidak diperlukan training ulang.
- g) Ingest Clean Data
 - Apabila terdapat data *drift*, maka diperlukan *training* ulang. Oleh karena itu, data *production* yang telah diproses sebelumnya akan diambil dari MinIO.
- h) Train Model
 - Pada tahap ini, dilakukan eksperimen dengan beberapa algoritma seperti Random Forest dan Logistic Regression. Tiap model akan di-log ke MLFlow beserta konfigurasi model seperti algoritma dan parameter serta metrik yang dihitung. Artefak model dengan metrik terbaik akan dicatat sebagai last_used_artifact_path agar dapat diakses oleh service lain.

C. Model Deployment

Model di-deploy menggunakan FastAPI yang menyediakan API untuk memprediksi churn berdasarkan data yang dimasukkan. Terdapat endpoint POST /predict yang menerima data pada request body dan mengembalikan hasil prediksi (True/False). Dokumentasi API dapat diakses melalui http://localhost:5555/docs. Endpoint ini akan mengambil artefak model terbaru dari MinIO, serta memprediksi churn berdasarkan data input.

D. Implementasi

Projek ini diimplementasikan dengan Docker pada satu *node*. Berikut merupakan komponen dari projek.

- Airflow (sleek-airflow)
 Digunakan untuk mengatur dan mengelola ML Workflow.
- 2. Apache Spark (spark-master, spark-worker-1 dan spark-worker-2) Framework untuk pemrosesan data secara terdistribusi. Terdiri dari satu master (spark-master) dan dua worker (spark-worker-1 dan spark-worker-2).
- MinIO (minio dan minio-client)
 Berfungsi sebagai S3-compatible object storage untuk menyimpan artefak model dan dataset
- 4. MLflow (mlflow dan mlflow-db)
 Digunakan untuk melacak eksperimen, menyimpan model yang dilatih, dan mengelola metadata eksperimen. Database backend (PostgreSQL) digunakan untuk menyimpan metadata eksperimen, sedangkan artifact disimpan di MinIO.
- Model Deployment (model-deploy)
 Layanan berbasis FastAPI untuk menyediakan layanan prediksi menggunakan model yang telah dilatih

E. Hasil Implementasi

Berikut merupakan status eksekusi DAG (Directed Acyclic Graph) bernama experiment_dag di Apache Airflow. DAG ini digunakan untuk mengatur alur eksperimen, termasuk preprocessing data, pelatihan model, dan logging ke MLflow. Dari grafik dan statistik, terlihat jumlah eksekusi berhasil (hijau), gagal (merah), dan total waktu eksekusi.

Gambar 5.1 Experiment DAG Runs

Berikut merupakan status eksekusi DAG production_dag yang dikhususkan untuk kondisi *production*, seperti pendeteksian data drift, pelatihan ulang model, dan pembaruan model di MLflow. Grafik menyoroti pola eksekusi, dengan informasi tentang task yang berhasil dan gagal, memastikan stabilitas pipeline produksi.

Gambar 5.2 Production DAG Runs

Kemudian, daftar dataset yang disimpan di MinIO, yang digunakan sebagai penyimpanan objek untuk pipeline. Dataset ini mencakup file CSV hasil preprocessing serta dataset terbaru yang digunakan untuk pelatihan atau validasi model. Struktur penyimpanan ini memastikan aksesibilitas dataset dalam alur kerja.

Gambar 5.3 Datasets di MinIO

Lalu artefak model disimpan di MinIO, seperti file model .pkl dan jalur artefak terakhir. Setiap artefak terkait dengan eksperimen atau versi model tertentu, memastikan replikasi dan manajemen artefak yang efisien dalam siklus hidup MLflow.

Gambar 5.4 Artefak di MinIO

Daftar eksperimen yang dilakukan akan dilog ke MLflow. Informasi seperti durasi eksekusi, sumber pipeline (Airflow), dan versi model terlihat di sini. Fitur ini membantu dalam memantau dan membandingkan performa berbagai eksperimen secara terpusat.

Gambar 5.5 MLFlow Experiment

Model yang sudah di-*train* akan diregistrasi di MLflow Model Registry. Setiap model memiliki versi unik (e.g., Version 10, Version 11), sehingga mempermudah pelacakan, promosi ke lingkungan produksi, atau rollback ke versi sebelumnya jika diperlukan.

Gambar 5.6 MLFlow Model

Sebagai pengujian model, kami mengembangkan API yang dibangun menggunakan FastAPI. Endpoint /predict menerima input data dalam format JSON, yang mencakup fitur-fitur seperti gender, Partner, InternetService, dan lainnya, yang digunakan oleh model untuk menghasilkan prediksi. Formulir ini memungkinkan pengguna untuk melakukan pengujian interaktif terhadap API langsung melalui dokumentasi yang dihasilkan secara otomatis oleh FastAPI.

Gambar 5.7 [Bonus] Prediction API Request

Lalu respons API dari endpoint /predict akan ditampilkan. API mengembalikan hasil prediksi dalam format JSON, seperti { "prediction": false }, yang menunjukkan bahwa model memprediksi pelanggan tidak akan berhenti berlangganan. Selain itu, detail header respons, payload JSON, dan curl command untuk menjalankan request juga ditampilkan, mempermudah debugging dan integrasi dengan sistem lain.

Gambar 5.8 [Bonus] Prediction API Response

F. Kesimpulan

Proyek ini mengintegrasikan MLflow, Airflow, Spark, dan Docker untuk membangun workflow data dan machine learning yang efisien, otomatis, dan skalabel.

- MLflow mengelola siklus hidup model
- Airflow mengorkestrasi setiap *task* pada *workflow*
- Spark menangani pemrosesan big data secara paralel
- Docker menyediakan lingkungan konsisten untuk pengembangan dan produksi.

Kombinasi teknologi ini menciptakan workflow yang dapat diandalkan untuk proses machine learning dari data preprocessing hingga deployment. Lesson Learned dari tugas ini:

- Orkestrasi dengan Airflow Airflow mempermudah pengelolaan alur kerja kompleks, tetapi membutuhkan pemahaman mendalam untuk konfigurasi dan debugging.
- Pengelolaan Model dengan MLFlow Logging, registrasi, dan *versioning* model dengan MLFlow meningkatkan reprodusibilitas dan transparansi eksperimen *machine learning*.
- Skalabilitas Spark
 Spark memungkinkan preprocessing data dengan cepat, tetapi memerlukan ketelitian ekstra dalam debugging.
- Pentingnya Logging dan Error Handling Logging sangat diperlukan untuk melihat status program serta *debugging*.

G. Referensi

https://mlflow.org/docs/latest/index.html https://spark.apache.org/docs/latest/ https://airflow.apache.org/docs/

H. Pembagian Kerja

Tabel 8.1. Pembagian Kerja

Nama Anggota	NIM Anggota	Pembagian Kerja
Haziq Abiyyu Mahdy	13521070	 Setup environment dan Docker Data Pre-processing menggunakan Apache Spark Experiment DAG (Airflow) Model Deployment Laporan Video
Alexander Jason	13521100	 Setup environment dan Docker Model Training & Retraining menggunakan MLflow Data Drift Detection Laporan Video
Nathania Calista	13521139	 Setup environment dan Docker Production DAG (Airflow) Integrasi Airflow dan MLflow Laporan Video

I. Lampiran

Berikut adalah daftar laman yang digunakan selama pengerjaan tugas besar ini:

- Repository Gitlab
 https://gitlab.informatika.org/nathaniaclista/if4054-xops
 https://github.com/nathaniacalista01/XOps (repo ini digunakan karena gitlab down pada saat mendekati pengumpulan)
- Video : https://youtu.be/ EBamoXhTyw