ISIMA 1^{ère} année 16 juin 2004 Durée : 2 heures

Documents autorisés

AUTOMATES

Exercice:

Montrer que si L est un langage régulier non vide, alors $\forall m \in L, L - \{m\}$ est un langage régulier.

Solution:

Soit $L' = L - \{m\}$. Alors $\overline{L'} = \overline{L} \cup \{m\}$. Or L étant régulier, \overline{L} est régulier, et comme $\{m\}$ est régulier (comme tout langage fini), alors $\overline{L'}$ est régulier, donc L' est régulier.

Exercice:

Soit $V = \{a, b\}$. Pour tout mot m de V, on note $|m|_a$ (respectivement $|m|_b$) le nombre de a (respectivement de b) dans le mot m.

- 1°) Ecrire un APND acceptant le langage $L = \{ m \in V^* \text{ tels que } |m|_a = 2 |m|_b \}.$
- 2°) Ecrire une machine de Turing acceptant le langage $L' = \{>\}L$.

Solution:

- 1°) Il faut que les b "comptent double", c'est-à-dire que quand on rencontre un b :
- soit il y a eu plus de b que de a sur le ruban, et il y a donc des b sur la pile, alors on empile deux b;
- soit il y a eu plus de a que de b sur le ruban, et il y a donc des a sur la pile, alors on dépile deux a (dans le cas où il n'y a plus qu'un seul a, on le dépile et on rempile un b);

	а	b	3
e	(e, Z, aZ) (e, a, aa) (e, b, ε)	(e, Z, bbZ) (e, b, bbb) (e, aa, ɛ) (e, aZ, bZ)	(f, Z, Z)
f, état accepteur			

2°) L'algorithme est le suivant :

 e_0 : aller chercher un premier a et le marquer A $(\rightarrow e_1)$; si on arrive à la fin du ruban sans trouver de a, $\rightarrow e_5$;

 e_1 : aller chercher un deuxième a et le marquer $\mathbb{A} (\to e_3)$; si on arrive à la fin du ruban sans trouver le deuxième a, c'est que le nombre de a est impaire et que le mot doit être refusé ;

 e_2 : revenir au début du ruban $(\rightarrow e_3)$;

 e_3 : aller chercher un premier b et le marquer B $(\rightarrow e_4)$; si on arrive à la fin du ruban sans trouver de b, le mot doit être refusé;

 e_4 : revenir au début du ruban $(\rightarrow e_0)$;

 e_5 : revenir au début du ruban en contrôlant qu'il n'y a plus de a ni de b $(\rightarrow f)$;

f: état accepteur.

	>	а	b	А	В	#
e_0	\rightarrow	(e_1, A, \rightarrow)	\rightarrow	\rightarrow	\rightarrow	$(e_5, \#, \leftarrow)$
e_1		(e_2, A, \leftarrow)	\rightarrow	\rightarrow	\rightarrow	
e_2	$(e_3, >, \rightarrow)$	←	\leftarrow	←	←	
e_3		\rightarrow	(e_4, B, \leftarrow)	\rightarrow	\rightarrow	
e_4	$(e_0, >, \rightarrow)$	\leftarrow	\rightarrow	←	\leftarrow	
e ₅	$(f, >, \rightarrow)$			←	←	
f						