Introduction to Machine Learning

Fall 2019

University of Science and Technology of China

Lecturer: Jie Wang Homework 1

Posted: Seq. 20, 2019

Name: Bowen Zhang

Due: Seq. 30, 2019

ID: PB17000215

Exercise 1: Rank of matrices 20pts

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$.

- 1. Please show that
 - (a) $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{\top});$
 - (b) $\operatorname{rank}(\mathbf{AB}) \leq \operatorname{rank}(\mathbf{A});$
 - (c) $\operatorname{rank}(\mathbf{AB}) \leq \operatorname{rank}(\mathbf{B});$
 - (d) $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{\top}\mathbf{A}).$
- 2. The *column space* of \mathbf{A} is defined by

$$C(\mathbf{A}) = {\mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x}, \, \mathbf{x} \in \mathbb{R}^n}.$$

The $null\ space$ of **A** is defined by

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = 0 \}.$$

Notice that, the rank of A is the dimension of the column space of A.

Please show that:

- (a) $\operatorname{rank}(\mathbf{A}) + \dim(\mathcal{N}(\mathbf{A})) = n;$
- (b) let $\mathbf{y} \in \mathbb{R}^m$, show that $\mathbf{y} = 0$ if and only if $\mathbf{a}_i^{\top} \mathbf{y} = 0$ for i = 1, ..., m, where $\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m\}$ is a basis of \mathbb{R}^m .

Solution:

1. 设rank(A) = r