자연어 처리를 활용한 서울 종로구 관광지 리뷰 분석

SNU Growth Hackers 고이경/김정은/최수연/현아영

	review	rating	neg	pos	neu	compound	label
0	great look feel stepped back century novelty b	4.0	0.000	0.301	0.699	0.8481	Positive
- 1	bad lot see fairly packed tourists even rainy	2.0	0.298	0.205	0.497	-0.1290	Negative
2	houses look great nice walk around absolutely	3.0	0.000	0.496	0.504	0.7845	Positive
3	people housing area resident time business ren	3.0	0.000	0.145	0.855	0.5994	Positive
4	bukchon hanok village situated middle modern p	3.0	0.000	0.272	0.728	0.7964	Positive
5	really enjoyed walk around hilly neighborhood	4.0	0.000	0.366	0.634	0.8858	Positive
6	beautful area hill small alleys many still in	5.0	0.000	0.326	0.674	0.8910	Positive
7	like nice relaxing quite walk around outside I	5.0	0.000	0.548	0.452	0.8176	Positive
8	nice romantic local korean village walk korean	5.0	0.000	0.444	0.586	0.9825	Positive
9	lucky enough walk streets less crowded ones co	5.0	0.000	0.128	0.872	0.4215	Positive
10	like transported back time definitely must obs	5.0	0.201	0.327	0.472	0.4939	Positive
11	place good visit great view peace cos resident	5.0	0.000	0.571	0.429	0.9231	Positive
12	place great see old homes however high tech do	5.0	0.000	0.194	0.806	0.6249	Positive
13	$\ minutes \ away \ gyeong bokgung \ palace \ chang deokung \dots$	3.0	0.192	0.123	0.685	-0.2500	Negative
14	glad accompanied guide explained background re	4.0	0.143	0.251	0.606	0.3612	Positive
	the second second second	- 0.0	0.000	0.000		0.0004	

01. Background

02. Data Crawling

03. Sentiment Analysis 04. Deep Learning (with VADER)

(LSTM)

05. Wordcloud & Topic Modeling

Background of Analysis

분석 배경

공통 관심사

"관광 데이터"

Q. 서울 관광지에 대한 외국인들의 생각? > 관광지 리뷰 데이터

중간 발표에서의 피드백

딥러닝 모델 구축을 통한 리뷰 데이터 라벨링 (긍정/부정)

분석 순서

긍정/부정으로 라벨링 된 관광지 후기 dataset 만들기

- → dataset으로 sentiment classification 모델 만들기
- → 분석하고자 하는 데이터(object data)에 모델 적용, 긍정/부정으로 분류
- → 분류된 후기를 바탕으로 긍정/부정 요인 추출

아. 관광지 매력도 만족도

● 관광지 매력도에 대한 '만족' 비율은 85.9%로 나타남

1) 전체 분석

- ▶ 2018년 관광지 매력도에 대해 살펴보면, 방한 외래관광객 중 85.9%가 '만족'(매우 만족: 41.7% + 만족: 44.2%)한 것으로 나타남
- ▶ 한편, '보통' 비율은 13.1%, '불만족' 비율은 1.0%(매우 불만족 : 0.2% + 불만족 : 0.8%)로 조사됨

|그림 3-53| 관광지 매력도 만족도

(단위: %)

기존 조사는 모든 관광지의 만족도를 단편적으로 조사한다는 한계, 개별 관광지의 어떤 부분이 만족/불만족스러운지를 분석!

Data Crawling

크롤링할 관광지 선정

Shopping **Travel Highlights** Home > Attractions > Travel Highlights Print TOP 10 Most Popular Korean Attractions of 2018 O K | Date 01/17/2019 | Hit 394255

Food

About Korea

Imagine your Coreà

Accommodations

Transportation

-한국관광공사 2019년에 한국에서 꼭 가봐야 할 100곳

-Visit seoulnet 서울의 top10 관광지

서울 주요 14개 관광지 리뷰 tripadvisor에서 크롤링

명동쇼핑거리 (5626) 동대문시장 (5077) DDP (884) 남대문시장 (1264) 남산타워 (4995) 전쟁기념관 (2840) 홍대 쇼핑거리 (1039) 코엑스몰(307) 롯데월드 (1317) 롯데월드타워 (258)

경복궁 (5724) 인사동거리 (4901) 북촌한옥마을 (2488) 청계천 (1787)

종로구 관광지 리뷰 데이터 (object data)

해외 유명 관광지 7곳 부정적인 리뷰만 크롤링

british

eiffel

grand

guell

louvre

timesquare

trevi

데이터 전처리 1)불용문 제거, 소문자화

```
from nltk.corpus import wordnet
def get wordnet pos(pos tag):
  if pos tag.startswith('J'):
     return wordnet.ADJ
  elif pos tag.startswith('V'):
     return wordnet.VERB
  elif pos tag.startswith('N'):
     return wordnet.NOUN
  elif pos_tag.startswith('R'):
     return wordnet.ADV
  else:
     return wordnet NOLIN
impor
        def clean text(text):
nltk.do
           # lower text
           text = text.lower()
impor
           #문자 제외 다 제거
from r
          text= re.sub('[^a-zA-Z]', ' ', str(text))
from r
           #토크나이즈
from r
           text = [word.strip(string.punctuation) for word in text.split
from r
           #토크나이즈 뒤에 stopwords 제거
impor
           stop = stopwords.words('english')
impor
           text = [x for x in text if x not in stop]
           # remove empty tokens
          text = [t for t in text if len(t) > 0]
           # pos tag text
           pos tags = pos tag(text)
           # remove words with only one letter
           text = [t for t in text if len(t) > 1]
           # join all
           text = " ".join(text)
           return(text)
```

clean text data
coex = coexmall['review_body'].apply(lambda x: clean_text(x))
print(coex)

0

4

5

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

lots typical mall including movie theatre agua... normally frequent several favorite stores mall... library huge nice almost books korean unless k... walk least one saturday month shop brands hyun... coex mall upmarket underground shopping mall s... came visit library good mix restaurants fast f... seoul famous markets relaxed shopping experien... mall tours perfect place also library gangnam ... located busiest territory gangnam district mal... staving near visited mall frequently shopping ... went mall wanted take photos library lots shop... underground mall great place go winter months ... given mall spread wide take much walking cover... seoul gangnam gu area mall visit reasons seoul definitely come coex spend day afternoon... really largest underground mall asia despite I... place carries cheap dollar store well foreign ... prettiest library ever seen library located mi... building coex area intercontinental hotel calt... mall reached via subway stations samseong bong... limited time visiting korea made sure visit co... great place eat shop stayed hotel connected co...

big underground shopping mall lots things lot ...
coex huge mall lots shops restaurants entertai...
quite lot see full shops restaurants even beau...
seen movie beauty beast know scene beast takes...
place everything want spectacular tarfield lib...

데이터 전처리 2) stemming & lemmatizing

	review	snowball_stem	lemmatize
0	lots typical mall including movie theatre aqua	lot typic mall includ movi theatr aquarium lib	lot typical mall including movie theatre aquar
1	normally frequent several favorite stores mall	normal frequent sever favorit store mall store	normally frequent several favorite store mall
2	library huge nice almost books korean unless k	librari huge nice almost book korean unless kn	library huge nice almost book korean unless kn
3	walk least one saturday month shop brands hyun	walk least one saturday month shop brand hyund	walk least one saturday month shop brand hyund
4	coex mall upmarket underground shopping mall s	coex mall upmarket underground shop mall sever	coex mall upmarket underground shopping mall s
5	came visit library good mix restaurants fast f	came visit librari good mix restaur fast food	came visit library good mix restaurant fast fo
6	seoul famous markets relaxed shopping experien	seoul famous market relax shop experi coex muc	seoul famous market relaxed shopping experienc
7	mall tours perfect place also library gangnam	mall tour perfect place also librari gangnam s	mall tour perfect place also library gangnam s
8	located busiest territory gangnam district mal	locat busiest territori gangnam district mall	located busiest territory gangnam district mal
9	staying near visited mall frequently shopping	stay near visit mall frequent shop dine great	staying near visited mall frequently shopping
10	went mall wanted take photos library lots shop	went mall want take photo librari lot shop pha	went mall wanted take photo library lot shop p
11	underground mall great place go winter months	underground mall great place go winter month p	underground mall great place go winter month p
12	given mall spread wide take much walking cover	given mall spread wide take much walk cover gr	given mall spread wide take much walking cover
13	seoul gangnam gu area mall visit reasons	seoul gangnam gu area mall visit reason	seoul gangnam gu area mall visit reason
14	seoul definitely come coex spend day afternoon	seoul definit come coex spend day afternoon gr	seoul definitely come coex spend day afternoon
15	really largest underground mall asia despite I	realli largest underground mall asia despit la	really largest underground mall asia despite I
16	place carries cheap dollar store well foreign	place carri cheap dollar store well foreign ko	place carry cheap dollar store well foreign ko
17	nrettiest library ever seen library located mi	nrettiest lihrari ever seen lihrari locat midd	nrettiest library ever seen library located mi

stemming : flying -> fli, flies -> fli (어간 추출) lemmatizing : flying -> fly, flies -> fly (품사에 따라 사전형 추출)

Sentiment Analysis (with VADER)

감성 분석 with VADER

VADER란?

Python의 감성 분석 패키지로, "텍스트"의 감정을 나타내는 단어에 점수를 부여하여 Positive, neutral, negative, compound score로 점수화.

```
1. positive sentiment: compound score >= 0.05
```

- 2. neutral sentiment: (compound score > -0.05) and (compound score < 0.05)
- 3. negative sentiment: compound score <= -0.05

compound score의 값을 기준으로 (0.05, -0.05) 텍스트를 positive/neutral/negative로 구분

감성 분석 with VADER

In [12]:

def analyze sentiment(df): compound score에 sentiments = [] 따른 라벨링 label=[] analyser = SentimentIntensityAnalyzer() for i in rating compound label review neg pos neu line sent 0 great look feel stepped back century novelty b... 0.000 0.301 0.8481 4.0 0.699Positive #7 1 bad lot see fairly packed tourists even rainy ... 0.298 0.205 0.497 -0.1280Negative if se houses look great nice walk around absolutely ... 0.000 0.496 0.504 0.7845 Positive 2 3.0 elif: la 3 people housing area resident time business ren... 0.000 0.145 0.5994 Positive 0.855 else la 4 bukchon hanok village situated middle modern p... 0.000 0.272 0.728 0.7964 Positive sent 0.366 5 really enjoyed walk around hilly neighborhood ... 0.0000.634 0.8858 Positive df[[' beautiful area hill small alleys many still in... 6 0.000 0.326 0.674 0.8910 Positive return 0.548 0.8176 Positive 7 like nice relaxing guite walk around outside I... 0.000 0.452 nice romantic local korean village walk korean... 0.000 0.444 0.556 0.8625 Positive 8 9 lucky enough walk streets less crowded ones co... 0.000 0.128 0.4215 Positive 0.872 10 0.327 0.472 like transported back time definitely must obs... 0.201 0.4939 Positive 5.0 11 0.000 0.571 0.9231 Positive place good visit great view peace cos resident... 0.429 12 place great see old homes however high tech do... 0.000 0.194 0.806 0.6249 Positive 5.0 minutes away gyeongbokgung palace changdeokung... 0.192 0.123 -0.2500Negative 0.685 14 glad accompanied guide explained background re... 0.251 0.3612 Positive 0.606 0.143

0.000

0.0004

감성 분석(VADER 점수 + Rating 점수)

Vader 점수에 따라 나온 라벨링과, rating(1~5점 리뷰 점수)에 따른 라벨링모두 유효한 변수라고 판단!

긍정적인 리뷰

result=pd.concat([coex_p,ddm_p,ddp_p,hong_p,loto_p,lowo_p,my_p,nam_p,ns_p])
result

#10,3017#

		review	rating	label	sent
1		normally frequent several favorite stores mall	5.0	Positive	Positive
	3	walk least one saturday month shop brands hyun	5.0	Positive	Positive
	4	coex mall upmarket underground shopping mall s	4.0	Positive	Positive
	6	seoul famous markets relaxed shopping experien	5.0	Positive	Positive
	7	mall tours perfect place also library gangnam	4.0	Positive	Positive
	8	located busiest territory gangnam district mal	4.0	Positive	Positive
	9	staying near visited mall frequently shopping	4.0	Positive	Positive
	10	went mall wanted take photos library lots shop	4.0	Positive	Positive
	14	seoul definitely come coex spend day afternoon	4.0	Positive	Positive
	15	really largest underground mall asia despite I	5.0	Positive	Positive
	16	place carries cheap dollar store well foreign	5.0	Positive	Positive
	17	prettiest library ever seen library located mi	5.0	Positive	Positive
	18	building coex area intercontinental hotel calt	4.0	Positive	Positive
	19	mall reached via subway stations samseong bong	4.0	Positive	Positive
	20	limited time visiting korea made sure visit co	5.0	Positive	Positive
	21	great place eat shop stayed hotel connected co	5.0	Positive	Positive
	22	big underground shopping mall lots things lot	4.0	Positive	Positive
	23	coex huge mall lots shops restaurants entertai	4.0	Positive	Positive
	24	quite lot see full shops restaurants even beau	4.0	Positive	Positive

모든 데이터에 대해 Vader → P 라벨링 rating → P 라벨링 된 데이터들 합침 → 총 10,301개의 리뷰

부정적인 리뷰

 $result = pd.concat([coex_n,ddm_n,ddp_n,hong_n,loto_n,lowo_n,my_n,nam_n,ns_n,british,eiffel,ts,tr,lou,guell]) \\ result$

#9,4867#

	review	rating	label	sent
144	frustrating way built quite mess really shops	2	Negative	Negative
159	hell find anything rhyme reason laid way thoug	2	Negative	Negative
207	bother visit mall pure waste time shops mall f	1	Negative	Negative
210	sells branded stuff things really expensive ma	2	Negative	Negative
227	right coex mall undergoing massive renovation	2	Negative	Negative
233	might well closed miles kilometers boarded sho	1	Negative	Negative
237	standard mall lousy dull came conference	1	Negative	Negative
239	decidied take advantage rainy day visiting coe	1	Negative	Negative
242	known renovation would avoided place walkathon	1	Negative	Negative
289	vast mean physicist complex seems expand outwa	2	Negative	Negative
302	five day vacation seoul went instead anything \dots	2	Negative	Negative
310	five day vacation seoul went instead anything \dots	2	Negative	Negative
25	horrible shopping experience like visited plac	1	Negative	Negative
125	really disappointed market food left baking su	1	Negative	Negative
146	absolutely nothing unique market sells fake br	2	Negative	Negative
162	dongdaemun market like many similar markets as	2	Negative	Negative
176	afraid nothing good say area markets seemed pr	2	Negative	Negative
54	remember monday closed one told even tripadvis	1	Negative	Negative
235	attention grabbing building little utility lit	2	Negative	Negative
200	nothing enocial place now overs enocial evhibi	2	Mogativo	Mogativo

모든 데이터에 대해 Vader → N 라벨링 rating → N 라벨링 된 데이터들 합침 → 총 9,486개의 리뷰

긍정, 부정 리뷰 각 5,000개씩 랜덤 추출

모델에 긍정, 부정 리뷰를 같은 비율로 넣어서 학습시키기 위해 긍정, 부정 리뷰에서 각각 5,000개씩 랜덤 추출

import random
random.seed(999)
s=random.sample(li_review,5000)
my_dict={'review':s,'label':'Positive'}
random_positive=pd.DataFrame(my_dict)
random_positive.head()

	review	label
0	literally right next train station hongdae off	Positive
1	get top climb metres	Positive
2	best place get amazing view city well worth wa	Positive
3	opens late offers amazing view city mapped end	Positive
4	energy love going market place truly massive e	Positive

import random
random.seed(999)
s=random.sample(li_review,5000)
my_dict={'review':s,'label':'Negative'}
random_negative=pd.DataFrame(my_dict)
random_negative.head()

	review	label
0	book eiffel tower anything special boyfriend g	Negative
1	beautiful architecture way many people hot plu	Negative
2	main official residence thai royal family larg	Negative
3	scope size art louvre amazing however tourists	Negative
4	waited queue hour get tickets another mins go \dots	Negative

5000

len(random negative)

Deep Learning (LSTM)

LSTM이란?

LSTM이란?

자연어처리에 사용되는 딥러닝 패키지로, 인공신경망의 여러 종류(RNN, LSTM, Bi-LSTM) 중 하나. 특히 긴 문장에서 RNN 학습 능력이 떨어지는 것을 보완.

Embedding Layer LSTM units Softmax LSTM network

LSTM vs Bi-LSTM

LSTM 정확도

```
pos_cnt, neg_cnt, pos_correct, neg_correct = 0, 0, 0, 0
for x in range(len(X1 test)):
    result = model.predict(X1_test[x].reshape(1,X1_test.shape[1]),batch_size=1,verbose = 2)[0]
    if np.argmax(result) = np.argmax(Y1 test[x]):
        if np.argmax(Y1_{test}[x]) = 0:
            neg_correct += 1
        else:
            pos_correct += 1
    if np.argmax(Y1 test[x]) = 0:
        neg_cnt += 1
    else:
        pos_cnt += 1
print("pos_acc", pos_correct/pos_cnt*100, "%")
print("neg_acc", neg_correct/neg_cnt*100, "%")
pos acc 96.4622641509434 %
neg acc 95.84690553745928 %
```

pos_acc 96.4622641509434 % neg_acc 95.84690553745928 %

Bi-LSTM 정확도

pos_acc 97.64150943396226 % neg_acc 90.87947882736157 %

neg_acc 90.87947882736157 %

Word embedding

```
from keras.preprocessing.text import Tokenizer
t = Tokenizer()
t.fit on texts(df['review'])
vocab size = len(t.word index) + 1
X encoded = t.texts to sequences(df['review'])
max length=max(len(I) for I in X encoded)
from keras.preprocessing.sequence import pad sequences
X train=pad sequences(X encoded, maxlen=max length, padding='post')
print(X train)
Using TensorFlow backend.
[[ 557 208 247 ... 0 0 0]
[ 4 53 751 ... 0 0 0]
[72 1 4... 0 0 0]
[ 54 54 54 ... 0 0 0]
[ 82 1665 232 ... 0 0 0]
[ 13  1 135 ... 0 0 0]]
import numpy as np
embedding dict = dict()
f = open('C:\\Users\\USER\\Documents\\GH\\내부플젝\\glove.6B\\glove.6B.100d.txt', encoding="utf8")
# 예를 들어 윈도우 바탕화면에서 실습한 저자의 경우
# f = open(r'C:\Users\USER\Desktop\glove.6B.100d.txt', encoding="utf8") 였습니다.
for line in fa
  word vector = line.split()
  word = word vector[0]
  word_vector_arr = np.asarray(word_vector[1:], dtype='float32') # 100개의 값을 가지는 array로 변환
  embedding dict[word] = word vector arr
f.close()
print('%s개의 Embedding vector가 있습니다.' % len(embedding dict))
```

LSTM Modeling

Layer (type)	Output Shape	Param #	
embedding_1 (Embed	ding) (None, 251,	100) 1467700	
Istm_2 (LSTM)	(None, 128)	117248	
dense_2 (Dense)	(None, 2)	258 	

Total params: 1,585,206 Trainable params: 117,506

Non-trainable params: 1,467,700

None

Testing

```
pos_cnt, neg_cnt, pos_correct, neg_correct = 0, 0, 0, 0
for x in range(len(X1 test)):
  result = model.predict(X1 test[x].reshape(1,X1 test.shape[1]),batch size=1,verbose = 2)[0]
  if np.argmax(result) == np.argmax(Y1_test[x]):
     if np.argmax(Y1\_test[x]) == 0:
        neg correct += 1
     else:
       pos correct += 1
  if np.argmax(Y1\_test[x]) == 0:
     nea cnt += 1
  else:
     pos cnt += 1
print("pos_acc", pos_correct/pos_cnt*100, "%")
print("neg acc", neg correct/neg cnt*100, "%")
```

```
pos_acc 96.4622641509434 %
neg_acc 95.84690553745928 %
```

```
pos_acc 96.4622641509434 % neg_acc 95.84690553745928 %
```

Result

	review	Istm_label	I
0	great look feel stepped back century novelty b	1	
1	bad lot see fairly packed tourist even rainy d	0	
2	house look great nice walk around absolutely p	1	
3	people housing area resident time business ren	_ 1	
4	bukchon hanok village situated middle modern p	i₁ re	elemmatized_cheong
5	really enjoyed walk around hilly neighborhood	_ lil re	elemmatized chon
6	beautiful area hill small alley many still inh		
7	like nice relaxing quite walk around outside I		elemmatized_gung
8	nice romantic local korean village walk korean	i₁ re	elemmatized_insadong
9	lucky enough walk street le crowded one come a	0	
10	like transported back time definitely must obs	0	
11	place good visit great view peace co resident	1	
12	place great see old home however high tech doo	1	
13	minute away gyeongbokgung palace changdeokung	0	
14	glad accompanied guide explained background re	0	

Wordcloud & Topic Modeling

Wordcloud란?

Wordcloud란?

텍스트를 시각화하는 툴로, 빈도수가 많은 단어를 크게 보여준다.

종로구 관광지 output data (object data)

경복궁 (P:1,452/N:1,098) 인사동거리 (P:1,117/N:53) 북촌한옥마을 (P:2,124/N:425) 청계천 (P:1,349/N:471)

부정적인 리뷰만 추출, 해당 관광지의 관광객들의 불만사항을 알아보자! 긍정적인 리뷰만 추출, 해당 관광지의 매력을 알아보자!

북촌한옥마을 wordcloud

긍정 리뷰 wordcloud 부정 리뷰 wordcloud

북촌한옥마을 wordcloud

provides certain. interestin month
suggested beautifully beautymyeongdong
beautifully beautymyeongdong
memorableknot. Mountain self. cake catholic
memorableknot. Mountain self. cake catholic
memorableknot. Mountain self. cake catholic
stuffbookchon
provide Contrast mix eating sold jeonju
provide Contrast mix eating sold jeon

blogspotstrange In uisance adked abound In Considerate wary hoping complain beaten assume Constant enoug citizen Constant enoug eno

부정단어 제외 긍정 리뷰 wordcloud 긍정단어 제외 부정 리뷰 wordcloud

북촌한옥마을 Bi-gram

문장에서 사용된 전/후 단어를 2개씩 조합하여 분석, 단어 간의 관계 파악

긍정 리뷰 Bi-gram

부정 리뷰 Bi-gram

Object data 리뷰에 대한 토픽 모델링

Topic modeling이란?

많은 양의 텍스트 정보에서 숨겨진 주제를 추출하는 기법. LDA가 토픽 모델링의 가장 유명한 알고리즘이며, Python의 Gensim 패키지를 활용하여 실행 가능하다.

종로구 관광지 output data (object data) 관광지 리뷰 대상으로, 해당 관광지의 숨겨진 주제를 알아보자!

토픽 모델링 과정

종로구 토픽 모델링

```
#tokenize sentence to words
def sent_to_words(sentences):
    for sentence in sentences:
        yield(gensim.utils.simple_preprocess(str(sentence), deacc=True)) # deacc=True removes punctuations

data_words = list(sent_to_words(n_gung_list))
print(data_words[:1])
```

[['timing', 'critical', 'want', 'see', 'changing', 'guard', 'tour', 'guide', 'vip', 'travel', 'susan', 'got', 'us', 'crowded', 'morning', 'get', 'good', 'standing', 'spot', 'ceremony', 'tour' hru', 'concierge', 'car', 'really', 'worth', 'every', 'single', 'showed', 'us', 'invented', 'heating', 'system', 'buildings', 'heated', 'floors', 'pretty', 'smart', 'miss', 'pretty', 'garden s', 'get', 'ceremony', 'viewing', 'buildings', 'hope', 'makes', 'visit', 'easier']]

→ Word 단위 tokenize

```
# WordCount _ word의 개수 세기
word_count = collections.Counter(nnp_list_1d)
result = word_count.most_common(1000)
print(len(word_count))
print(result)
```

4056

[('palace', 1917), ('visit', 474), ('see', 469), ('changing', 392), ('place', 391), ('tour', 348), ('around', 335), ('time', 327), ('free', 305), ('history', 299) t', 240), ('buildings', 229), ('take', 223), ('ceremony', 220), ('grounds', 217), ('many', 213), ('hanbok', 212), ('seoul', 208), ('palaces', 201), ('day', 25), ('great', 176), ('walk', 176), ('traditional', 174), ('museum', 169), ('must', 167), ('also', 166), ('well', 165), ('entrance', 163), ('visited', 161), ('mu 7), ('like', 156), ('hours', 152), ('huge', 151), ('english', 145), ('really', 138), ('interesting', 135), ('walking', 129), ('inside', 122), ('good', 121), ('lot', erience', 108), ('area', 106), ('big', 104), ('city', 103), ('photos', 102), ('pictures', 99), ('gate', 98), ('recommend', 97), ('rent', 96), ('us', 95), ('back' 88), ('visiting', 85), ('fee', 85), ('crowded', 84), ('taking', 84), ('wearing', 84), ('guided', 83), ('make', 83), ('quite', 82), ('entry', 81), ('dynasty', 81), ('d, 78), ('still', 78), ('dress', 78), ('sure', 77), ('historical', 77), ('joseon', 76), ('want', 73), ('pm', 72), ('outside', 71), ('first', 71), ('need', 68), ('look', ar', 66), ('going', 66), ('took', 65), ('tours', 63), ('definitely', 62), ('feel', 62), ('national', 61), ('complex', 53), ('part', 52), ('dressed', 52), ('several', 56), ('visitors', 55), ('tourist', 55), ('tourist', 55), ('though', 54), ('closed', 54), ('think', 54), ('complex', 53), ('part', 52), ('dressed', 52), ('several', 56), ('visitors', 55), ('tourist', 55), ('tourist', 55), ('several', 56), ('complex', 56), ('complex', 57), ('complex', 58), ('compl

→ 각 단어의 개수

종로구 토픽 모델링

```
#토픽모델링에 필요한 dictionary와 corpus 만들기

# Create Dictionary
id2word = corpora.Dictionary(data_lemmatized)

# Create Corpus
texts = data_lemmatized

# Term Document Frequency
corpus = [id2word.doc2bow(text) for text in texts]

# View
print(corpus[:1])
```

[[(0, 1), (1, 2), (2, 1), (3, 2), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (9, 1), (9, 1), (1, 2), (1

```
Dictionary, corpus 만들기
```

```
pprint(Ida model.print topics())
doc lda = lda model[corpus]
[(0,
 '0.038*"small" + 0.036*"look" + 0.031*"little" + 0.029*"interesting" + '
 '0.024*"old" + 0.015*"stuff" + 0.014*"bit" + 0.014*"still" + '
 '0.013*"touristv" + 0.012*"could"').
 '0.091*"shop" + 0.044*"souvenir" + 0.037*"insadong" + 0.034*"restaurant" + '
 '0.028*"art" + 0.022*"find" + 0.021*"buy" + 0.018*"sell" + 0.017*"tourist" + '
 '0.016*"local"').
(2,
 '0.029*"couple" + 0.024*"home" + 0.019*"cheonggyecheon" + 0.017*"high" + '
 '0.015*"center" + 0.014*"nothing" + 0.012*"dongdaemun" + 0.011*"bridge" + '
 '0.011*"kid" + 0.010*"life"'),
 '0.043*"street" + 0.034*"walk" + 0.027*"korean" + 0.026*"lot" + 0.025*"good" '
 '+ 0.023*"traditional" + 0.022*"many" + 0.021*"nice" + 0.020*"great" + '
 '0.019*"food"')1
```

→ LDA 모델 만들기

Result

Result

	Topic # 01	Topic # 02	Topic # 03	Topic # 04
0	small	shop	couple	street
1	look	souvenir	home	walk
2	little	insadong	cheonggyecheon	korean
3	interesting	restaurant	high	lot
4	old	art	center	good
5	stuff	find	nothing	traditional
6	bit	buy	dongdaemun	many
7	still	sell	bridge	nice
8	touristy	tourist	kid	great
9	could	local	life	food
10	sit	craft	green	shopping
11	clean	house	live	tea
12	kind	cafe	special	enjoy
13	handicraft	alley	open	take
14	modern	main	fish	people
15	building	eat	music	store
16	road	spend	change	love
17	work	gallery	point	night
18	district	way	cross	go
19	line	quite	probably	item

Instagram

서울 종로구 관광지 소개 페이지

경복궁 #한복 #즐거움가득 #살짝지루해 인사동거리 #쇼핑몰 #걷기좋은곳 #북적북적 북촌한옥마을 #전통한국멋 #기념품많아요 #다닐땐조용히 청계천 #걷기좋은곳 #데이트로딱 #벌레가좀…

Reference

(2018 외래관광객 실태조사 최종보고서), 한국관광공사)

https://kto.visitkorea.or.kr/kor/notice/data/statis/tstatus/forstatus/board/view.kto?id=431236&isNotice=false&instanceId=295&rnum=4)

크롤링) https://github.com/Sentylic/Tripadvisor-Scraper

전처리) https://wikidocs.net/21707

감성분석)https://github.com/MOONJOOYOUNG/DataScience/blob/master/Sentiment9020Analysis/Sentiment9020Analysis.py

LSTM) https://machinelearningmastery.com/diagnose-overfitting-underfitting-lstm-models/

https://stackoverflow.com/questions/41816439/loss-function-in-lstm-neural-network

https://ratsgo.github.io/natural9020language9020processing/2017/03/09/rnnlstm/

https://www.kaggle.com/c/santander-product-recommendation/discussion/25802

https://towardsdatascience.com/tagged/lstm

https://towardsdatascience.com/understanding-lstm-and-its-quick-implementation-in-keras-for-sentiment-analysis-af410fd85b47 https://hackernoon.com/understanding-architecture-of-lstm-cell-from-scratch-with-code-8da40f0b71f4

워드클라우드, 바이그램) https://medium.com/myrealtrip-

Product/90EB90A7908890EC909D90B490EB90A690AC90EC909690BC90ED908A90B890EB90A690BD-90EC909790AC90ED90969089-90ED909B908A90EA90B890BD-90EB908D90BD90EC909D90BA90ED908A90BD-90EB90B6908A90EC908A90BD-90EB90B6908A90EC908A90BD-90EB90B690B690BC90BA90BD90BA90ED90BA90ED90BA90BD-90EB90B690BA90EC90BA90BD-90EB90B690BC90BA90EC90BA90BD90BA90ED90BA90BD-90EB90B690BC90BD90BA90ED90BA90ED90BA90BD-90EB90BB90BC90BD90BA90ED90BA90ED90BA90BD-90EB90BD-90EB90BD90BC90BD90BA90ED90BA90ED90BA90BD-90EBB90BD-90EBB90BD-

토픽모델링) https://www.machinelearningplus.com/nlp/topic-modeling-gensim-python/https://blog.naver.com/upennsolution/221437143732

Thanks for listening!

자유로운 질문 환영합니다 ◎