Algorithms

Insertion sort

Emanuele Rodolà rodola@di.uniroma1.it

Exercises

In pseudocode or in your favorite language, write an algorithm to solve each of the following problems.

1 Reverse any given sequence of length n:

$$(3,7,9,14) \rightarrow (14,9,7,3)$$

② Given a number x and a sequence $(a_i)_{i=1}^n$, find the closest number to x in the sequence.

$$12.1, (3, 31, 7, 11, 52) \rightarrow 11$$

3 Given a sequence $(a_i)_{i=1}^n$ and a smaller sequence $(b_i)_{i=1}^m, m < n$, find the latter inside the former, and return the index of the first occurrence as output.

$$(C,G,A,T,T,G,C,\ldots), (T,T,G\ldots) \rightarrow 4$$

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Output: A reordered sequence $(a'_1, a'_2, \dots, a'_n)$ such that:

$$a_1' \le a_2' \le \dots \le a_n'$$

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Output: A reordered sequence $(a'_1, a'_2, \dots, a'_n)$ such that:

$$a_1' \le a_2' \le \dots \le a_n'$$

Intuition: Take one key at a time from the sequence, and insert it into the correct position in the new sequence.

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Output: A reordered sequence $(a'_1, a'_2, \dots, a'_n)$ such that:

$$a_1' \le a_2' \le \dots \le a_n'$$

Intuition: Take one key at a time from the sequence, and insert it into the correct position in the new sequence.

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Output: A reordered sequence $(a'_1, a'_2, \dots, a'_n)$ such that:

$$a_1' \le a_2' \le \dots \le a_n'$$

Intuition: Take one key at a time from the sequence, and insert it into the correct position in the new sequence.

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Output: A reordered sequence $(a'_1, a'_2, \dots, a'_n)$ such that:

$$a_1' \le a_2' \le \dots \le a_n'$$

Intuition: Take one key at a time from the sequence, and insert it into the correct position in the new sequence.

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Output: A reordered sequence $(a'_1, a'_2, \dots, a'_n)$ such that:

$$a_1' \le a_2' \le \dots \le a_n'$$

Intuition: Take one key at a time from the sequence, and insert it into the correct position in the new sequence.

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Output: A reordered sequence $(a'_1, a'_2, \dots, a'_n)$ such that:

$$a_1' \le a_2' \le \dots \le a_n'$$

Intuition: Take one key at a time from the sequence, and insert it into the correct position in the new sequence.

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Output: A reordered sequence $(a'_1, a'_2, \dots, a'_n)$ such that:

$$a_1' \le a_2' \le \dots \le a_n'$$

Intuition: Take one key at a time from the sequence, and insert it into the correct position in the new sequence.

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Output: A reordered sequence $(a'_1, a'_2, \dots, a'_n)$ such that:

$$a_1' \le a_2' \le \dots \le a_n'$$

Intuition: Take one key at a time from the sequence, and insert it into the correct position in the new sequence.

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Output: A reordered sequence $(a'_1, a'_2, \dots, a'_n)$ such that:

$$a_1' \le a_2' \le \dots \le a_n'$$

Intuition: Take one key at a time from the sequence, and insert it into the correct position in the new sequence.

Pseudocode

```
INSERTION-SORT(A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 \triangleright Insert A[j] into the sorted sequence A[1..j-1].
```

Remark: The sequence is sorted in-place.

Pseudocode

```
INSERTION-SORT (A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 \triangleright Insert A[j] into the sorted sequence A[1 ... j - 1].

4 i \leftarrow j - 1

5 while i > 0 and A[i] > key

6 do A[i + 1] \leftarrow A[i]

7 i \leftarrow i - 1

8 A[i + 1] \leftarrow key
```

Remark: The sequence is sorted in-place.

We want to predict the resources that the algorithm requires.

- Memory
- Bandwidth
- Time
- ...

We want to predict the resources that the algorithm requires.

- Memory
- Bandwidth
- Time
- ...

Most of these factors ultimately depend on the size of the input.

As we have seen, we will measure the running time (i.e., the number of steps) as a function of size.

Insertion-Sort (A)		times
1 for $j \leftarrow 2$ to $length[A]$	c_1	n

IN	SERTION-SORT (A)	cost	times
1	for $j \leftarrow 2$ to $length[A]$	c_1	n
2	do $key \leftarrow A[j]$	c_2	n - 1

IN	SERTION-SORT (A)	cost	times
1	for $j \leftarrow 2$ to $length[A]$	c_1	n
2	do $key \leftarrow A[j]$	c_2	n - 1
3	\triangleright Insert $A[j]$ into the sorted		
	sequence $A[1j-1]$.	0	n-1

IN	SERTION-SORT (A)	cost	times
1	for $j \leftarrow 2$ to $length[A]$	c_1	n
2	$\mathbf{do}\ key \leftarrow A[j]$	c_2	n-1
3	\triangleright Insert $A[j]$ into the sorted		
	sequence $A[1j-1]$.	0	n - 1
4	$i \leftarrow j-1$	c_4	n-1

IN	INSERTION-SORT (A)		times
1	for $j \leftarrow 2$ to $length[A]$	c_1	n
2	$\mathbf{do}\ key \leftarrow A[j]$	c_2	n-1
3	\triangleright Insert $A[j]$ into the sorted		
	sequence $A[1j-1]$.	0	n-1
4	$i \leftarrow j-1$	c_4	n-1
5	while $i > 0$ and $A[i] > key$	C5	
6	$\mathbf{do}\ A[i+1] \leftarrow A[i]$	c_6	
7	$i \leftarrow i - 1$	c_7	

IN	Insertion-Sort (A)		times
1	for $j \leftarrow 2$ to $length[A]$	c_1	n
2	$\mathbf{do}\ key \leftarrow A[j]$	c_2	n - 1
3	\triangleright Insert $A[j]$ into the sorted		
	sequence $A[1j-1]$.	0	n - 1
4	$i \leftarrow j-1$	c_4	n - 1
5	while $i > 0$ and $A[i] > key$	c_5	
6	$\mathbf{do}\ A[i+1] \leftarrow A[i]$	c_6	
7	$i \leftarrow i - 1$	c_7	
8	$A[i+1] \leftarrow key$	c_8	n-1

INSERTION-SORT (A)		cost	times
1	for $j \leftarrow 2$ to $length[A]$	c_1	n
2	$\mathbf{do}\ key \leftarrow A[j]$	c_2	n-1
3	\triangleright Insert $A[j]$ into the sorted		
	sequence $A[1j-1]$.	0	n-1
4	$i \leftarrow j-1$	c_4	n-1
5	while $i > 0$ and $A[i] > key$	C5	
6	$\mathbf{do}\ A[i+1] \leftarrow A[i]$	c_6	
7	$i \leftarrow i - 1$	c_7	
8	$A[i+1] \leftarrow key$	c_8	n-1

The $\mbox{\it while}$ instruction is not executed a fixed number of times. It depends on the current number j.

INSERTION-SORT (A)		cost	times
1	for $j \leftarrow 2$ to $length[A]$	c_1	n
2	$\mathbf{do}\ key \leftarrow A[j]$	c_2	n - 1
3	\triangleright Insert $A[j]$ into the sorted		
	sequence $A[1j-1]$.	0	n - 1
4	$i \leftarrow j-1$	c_4	n - 1
5	while $i > 0$ and $A[i] > key$	C_5	
6	$\mathbf{do}\ A[i+1] \leftarrow A[i]$	c_6	
7	$i \leftarrow i - 1$	c_7	
8	$A[i+1] \leftarrow key$	c_8	n-1

The **while** instruction is not executed a fixed number of times. It depends on the current number j.

We define t_j the number of times **while** is executed for the value j.

The **while** instruction is not executed a fixed number of times. It depends on the current number j.

We define t_j the number of times **while** is executed for the value j.

INSERTION-SORT (A)
$$cost times$$

1 for $j \leftarrow 2$ to $length[A]$ c_1 n

2 do $key \leftarrow A[j]$ c_2 $n-1$

3 \triangleright Insert $A[j]$ into the sorted sequence $A[1..j-1]$. 0 $n-1$

4 $i \leftarrow j-1$ c_4 $n-1$

5 while $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^{n} t_j$

6 do $A[i+1] \leftarrow A[i]$ c_6 $\sum_{j=2}^{n} (t_j-1)$

7 $i \leftarrow i-1$ c_7 $\sum_{j=2}^{n} (t_j-1)$

8 $A[i+1] \leftarrow key$ c_8 $n-1$

Total running time T(n):

$$c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1) + c_7 \sum_{j=2}^n (t_j - 1) + c_8 (n-1)$$

"We define t_j the number of times \mathbf{while} is executed for the value j"

This means that there is a best-case running time, obtained with $t_j=1$.

"We define t_i the number of times **while** is executed for the value j"

This means that there is a best-case running time, obtained with $t_j = 1$.

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j$$
$$+ c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

"We define t_j the number of times **while** is executed for the value j"

This means that there is a best-case running time, obtained with $t_j=1$.

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5(n-1) + c_8(n-1)$$

"We define t_j the number of times **while** is executed for the value j"

This means that there is a best-case running time, obtained with $t_j=1$.

$$T(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

"We define t_j the number of times **while** is executed for the value j"

This means that there is a best-case running time, obtained with $t_i = 1$.

$$T(n) = \underbrace{(c_1 + c_2 + c_4 + c_5 + c_8)}_{a} n - \underbrace{(c_2 + c_4 + c_5 + c_8)}_{b}$$

"We define t_j the number of times **while** is executed for the value j"

This means that there is a best-case running time, obtained with $t_i = 1$.

$$T(n) = an + b$$

where a and b are constants.

The best-case cost of insertion sort is linear in n.

"We define t_j the number of times **while** is executed for the value j"

This means that there is a best-case running time, obtained with $t_i = 1$.

$$T(n) = an + b$$

where a and b are constants.

The best-case cost of insertion sort is linear in n.

When does the best case happen?

"We define t_j the number of times **while** is executed for the value j"

This means that there is a best-case running time, obtained with $t_j = 1$.

$$T(n) = an + b$$

where a and b are constants.

The best-case cost of insertion sort is linear in n.

When does the best case happen?

When the input sequence is already sorted.

Worst-case analysis

What if the input sequence is sorted in decreasing order?

Worst-case analysis

What if the input sequence is sorted in decreasing order?

In this case, $t_j=j$ since we will compare each number with the entire sorted subsequence.

What if the input sequence is sorted in decreasing order?

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j$$
$$+ c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$

What if the input sequence is sorted in decreasing order?

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} j$$
$$+ c_6 \sum_{j=2}^{n} (j-1) + c_7 \sum_{j=2}^{n} (j-1) + c_8 (n-1)$$

What if the input sequence is sorted in decreasing order?

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} j$$
$$+ c_6 \sum_{j=2}^{n} (j-1) + c_7 \sum_{j=2}^{n} (j-1) + c_8 (n-1)$$

$$\sum_{i=1}^{n} i =$$

What if the input sequence is sorted in decreasing order?

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} j$$
$$+ c_6 \sum_{j=2}^{n} (j-1) + c_7 \sum_{j=2}^{n} (j-1) + c_8 (n-1)$$

$$\sum_{i=1}^{n} i = (1+n) +$$

What if the input sequence is sorted in decreasing order?

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} j$$
$$+ c_6 \sum_{j=2}^{n} (j-1) + c_7 \sum_{j=2}^{n} (j-1) + c_8 (n-1)$$

$$\sum_{i=1}^{n} i = (1+n) + \underbrace{(2+(n-1))}_{1+n} +$$

What if the input sequence is sorted in decreasing order?

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} j$$
$$+ c_6 \sum_{j=2}^{n} (j-1) + c_7 \sum_{j=2}^{n} (j-1) + c_8 (n-1)$$

$$\sum_{i=1}^{n} i = (1+n) + \underbrace{(2+(n-1))}_{1+n} + \underbrace{(3+(n-2))}_{1+n} + \cdots$$

What if the input sequence is sorted in decreasing order?

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} j$$
$$+ c_6 \sum_{j=2}^{n} (j-1) + c_7 \sum_{j=2}^{n} (j-1) + c_8 (n-1)$$

$$\sum_{i=1}^{n} i = (1+n) + \underbrace{(2+(n-1))}_{1+n} + \underbrace{(3+(n-2))}_{1+n} + \dots = (1+n)^{\frac{n}{2}}$$

What if the input sequence is sorted in decreasing order?

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} j$$
$$+ c_6 \sum_{j=2}^{n} (j-1) + c_7 \sum_{j=2}^{n} (j-1) + c_8 (n-1)$$

What if the input sequence is sorted in decreasing order?

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

What if the input sequence is sorted in decreasing order?

In this case, $t_j=j$ since we will compare each number with the entire sorted subsequence.

$$T(n) = an^2 + bn + c$$

where a, b, c are constants.

The worst-case cost of insertion sort is quadratic in n.

For a given random sequence of numbers, we observe that, on average:

- $\bullet \ A[j] > \mathsf{half}$ the elements in $A[1 \dots j-1]$, and
- ullet $A[j] < \mathsf{half}$ the elements in $A[1 \dots j-1]$

For a given random sequence of numbers, we observe that, on average:

- ullet $A[j] > \mathsf{half}$ the elements in $A[1 \dots j-1]$, and
- ullet $A[j] < \mathsf{half}$ the elements in $A[1 \dots j-1]$

So, on average, $t_j = \frac{j}{2}$.

For a given random sequence of numbers, we observe that, on average:

- A[j] > half the elements in $A[1 \dots j-1]$, and
- ullet $A[j] < \mathsf{half}$ the elements in $A[1 \dots j-1]$

So, on average, $t_j = \frac{j}{2}$.

Following the steps from the worst case, we get again:

$$T(n) = an^2 + bn + c$$

for some constants a, b, c.

For a given random sequence of numbers, we observe that, on average:

- ullet $A[j] > \mathsf{half}$ the elements in $A[1 \dots j-1]$, and
- ullet $A[j] < \mathsf{half}$ the elements in $A[1 \dots j-1]$

So, on average, $t_j = \frac{j}{2}$.

Following the steps from the worst case, we get again:

$$T(n) = an^2 + bn + c$$

for some constants a, b, c.

In our analysis, we will often concentrate on studying the worst case, since it gives us a guaranteed upper bound on the total cost.

Order of growth

 an^2 dominates the lower-order terms.

Order of growth

 an^2 dominates the lower-order terms.

We say that insertion sort has worst-case running time of $\Theta(n^2)$.

Exercises

Solve the following exercises:

- Write an algorithm in pseudocode to perform linear search.
 - Given a sequence of numbers $A=(a_1,\ldots,a_n)$ and a number v, find an index i such that v=A[i]. Return a special number if v can not be found in the sequence.
 - The search must be done by simple linear scanning through the sequence.
- 2 How many elements must be checked on average, and in the best and worst cases?
- **3** What are the average-case, best-case, and worst-case running times of linear search in Θ -notation?

Suggested reading

"Introduction to Algorithms – 2nd Ed.", Cormen et al.

- Chapter 2.1, skipping the "Loop invariants" and "Pseudocode conventions" paragraphs
- Chapter 2.2