TP 4 : Fiabilité

Exercice 1

On s'intéresse aux durées de vie de n = 16 matériels identiques et indépendants :

31.7	39.2	57.5	65*	65.8	70	75*	75.2*
87.7*	88.3*	94.2*	101.7^{\star}	105.8	109.2*	110	130*

Table 1 – Durées de vie en mois (les censures sont notées avec une étoile)

- 1. Calculer l'estimateur de Kaplan-Meier et le représenter graphiquement.
- 2. Faire de même pour celui de Nelson.
- 3. Les durées de vie vous semblent-elles distribuées selon une loi exponentielle? de Weibull? Justifiez.

Exercice 2

On s'intéresse aux durées de vie de n=22 matériels identiques et indépendants :

3.66	48.25	82.24*	5.19	20.92*	182.06	44.39	117.34*	38.22	74.71	176.78
84.47^{\star}	201.68	152.84^{\star}	215.18	101.56*	349.26	23.28	190.58*	159.75	216.77	17.26*

Table 2 – Durées de vie en mois (les censures sont marquées d'une étoile)

- 1. Calculer l'estimateur de Kaplan-Meier et le représenter graphiquement.
- 2. On suppose que les durées de vie sont distribuées selon une loi exponentielle. Donner l'estimation de λ par maximum de vraisemblance. En déduire une estimation du MTTF dans ce cadre.
- 3. A partir de la question précédente, donner une estimation de la fonction de survie avec l'hypothèse exponentielle. Comparer avec la première question.
- 4. On suppose que les durées de vie sont issues d'une loi de Weibull. Donner les estimations par maximum de vraisemblance des paramètres de la loi de Weibull.
- 5. Donner une estimation du MTTF dans le cadre Weibull.
- 6. Donner une estimation de la fonction de survie avec l'hypothèse Weibull.
- 7. Superposer les trois graphes donnant les estimations de la fonction de survie (Kaplan-Meier, exponentielle et Weibull).