Recurrent neural networks

Marcel Bollmann
Department of Computer and Information Science (IDA)

Watch Marco's lectures from last year

youtube.com/playlist?list=PLvWwkcdbWwLWIyTnPOGOk7U8f82OCtgwx

(Main difference: Lab content!)

Prelude: Word embeddings

Sentiment analysis

The gorgeously elaborate continuation of "The Lord of the Rings" trilogy is so huge that a column of words cannot adequately describe co-writer/director Peter Jackson's expanded vision of J.R.R. Tolkien's Middle-earth positive

... is a sour little movie at its core; an exploration of the emptiness that underlay the relentless gaiety of the 1920's, as if to stop would hasten the economic and global political turmoil that was to come.

The continuous bag-of-words (CBOW) classifier

Word embeddings

• A word embedding is a mapping from a finite set of words V to a d-dimensional vector space, where $d \ll |V|$.

- Embedding vectors can be initialised with random numbers and trained alongside the weights of a network.
- Training tunes the embedding vectors to the task at hand.

Embedding layers are linear transformations

• A **one-hot vector** is a vector where one component has value 1, and all other components have value o.

• A word embedding can be viewed as a linear transformation from one-hot vectors into the d-dimensional embedding space.

values of the embedding vector = weights for the non-zero component

CNN architecture for sentence classification

Structure of this unit

- Prelude: Word embeddings
- Introduction to recurrent neural networks
- The LSTM architecture
- Use case 1: Part-of-speech tagging
- Use case 2: Machine translation
- Attention

Recurrent neural networks

- Recurrent neural networks (RNNs) can process variable length sequences of inputs, such as sequences of letters or words.
- For any input sequence, a recurrent neural network is 'unrolled' into a deep feedforward network.
 - Depth is proportional to the length of the sequence.
- In contrast to the situation with deep feedforward networks, all parameters are shared across all positions of the sequence.

RNN, recursive view

$$h_i = H(h_{i-1}, x_i)$$
 $y_i = O(h_{i-1}, x_i)$

RNN, unrolled view

Properties of recurrent neural networks

- The parameters of the model are shared across all positions.

 The number of parameters does not grow with the sequence length.
- The output can be influenced by the entire input seen so far.

 Contrast this with the locality constraint of CNNs.
- The hidden state can be a 'lossy summary' of the input sequence.

 Hopefully, it will encode useful information for the task at hand.

Training recurrent neural networks

- Unrolled recurrent neural networks are just feedforward networks, and can therefore be trained using backpropagation.
 No specialised algorithm necessary!
- This way of training recurrent neural networks is called backpropagation through time.
- Shared weights are updated by summing over the gradients computed for each position.

Common usage patterns for RNNs

encoder

example: text classification

transducer

example: part-of-speech tagging

decoder

example: text generation

Stacked RNNs

• RNNs with several layers, where the outputs of one layer become the inputs of the next.

Bidirectional RNNs

• Combine one RNN that moves forward through the input with another RNN that moves backward.

outputs at each position are concatenated

The LSTM architecture

Challenges with recurrent neural networks

- In principle, recurrent neural networks are capable of learning long-distance dependencies in input sequences.
- In practice, training recurrent neural networks is challenging due to the large depth of the unrolled networks.

Vanishing and exploding gradients

$$\delta_k = \frac{\partial E}{\partial z_k} = \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial z_k} = \frac{\partial E}{\partial y_k} f'(z_k)$$

$$\delta_{j} = \frac{\partial E}{\partial z_{j}} = \frac{\partial y_{j}}{\partial z_{j}} \sum_{k} \frac{\partial E}{\partial z_{k}} \frac{\partial z_{k}}{\partial y_{j}} = f'(z_{j}) \sum_{k} \delta_{k} w_{jk}$$

Vanishing and exploding gradients

- In backpropagation there is a risk of gradients either vanishing or exploding, depending on the magnitude of the weights.
- This problem is exacerbated in recurrent networks, whose unrolled computation graphs can be very deep.
- Research on recurrent networks has proposed various methods to mitigate this problem.

weight scaling and clipping, specialised architectures

Long Short-Term Memory (LSTM)

- The Long Short-Term Memory (LSTM) architecture was specifically designed to adress the vanishing gradients problem.
- Metaphor: The hidden state of the neural network can be considered as a short-term memory.
- The LSTM architecture tries to make this short-term memory last as long as possible by preventing vanishing gradients.

Memory cell and gating mechanism

The crucial innovation in an LSTM is the design of its memory cell.

- Information is written into the cell if its INPUT gate is open.
- Information stays in the cell as long as its forget gate is closed.
- Information is read from the cell if its READ gate is open.

Gating mechanism

$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \odot \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 5 \\ 6 \\ 7 \\ 8 \end{bmatrix} \odot \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ 3 \\ 8 \end{bmatrix}$$

$$h_{t-1} \quad g \quad x_t \quad 1-g \quad h_t$$

The gating masks g are learned values between 0 and 1.

A look inside an LSTM cell

Forget gate

Input gate

Update candidate

Memory cell update

Output gate

Output

A look inside an LSTM cell

Gated Recurrent Unit (GRU)

Attribution: Chris Olah

Use case 1: Part-of-speech tagging

Parts of speech

- A **part of speech** is a category of words that play similar roles within the syntactic structure of a sentence.
- Commonly listed English parts of speech include noun, verb, adjective, adverb, pronoun, preposition, and conjunction.
- Determining the parts of speech of a sentence is one of the first steps in the traditional NLP analysis pipeline.

Part-of-speech tagging, example

'I only want to live in peace, plant potatoes, and dream!' – Moomin

Universal part-of-speech tags

Tag	Category	Examples
ADJ	adjective	big, old
ADV	adverb	very, well
INTJ	interjection	ouch!
NOUN	noun	girl, cat, tree
VERB	verb	run, eat
PROPN	proper noun	Mary, John

Tag	Category	Examples
ADP	adposition	in, to, during
AUX	auxiliary verb	has, was
CCONJ	conjunction	and, or, but
DET	determiner	a, my, this
NUM	cardinal numbers	o, one
PRON	pronoun	I, myself, this

Missing: PART, SCONJ, PUNCT, SYM, X

Source: <u>Universal Dependencies Project</u>

Part-of-speech tagging

- A part-of-speech tagger is a computer program that tags each word in a sentence with its part of speech.
- Part-of-speech tagging can be approached as a supervised machine learning problem. This requires training data. linguistic data sets with gold-standard part-of-speech annotation
- Part-of-speech taggers are commonly evaluated using accuracy, precision, and recall.

Ambiguity

'I only want to live in peace, plant potatoes, and dream!' – Moomin

Bidirectional RNN model

loss = sum or mean of the token-specific losses

Beyond part-of-speech tagging

Many other NLP tasks can be framed as sequence labelling,
 e.g. named entity recognition, event extraction.

"span-level" annotations can be transformed into BIO notation

```
ORG LOC

Taco Bell was founded in Irvine , California .

Taco Bell was founded in Irvine , California .

B-ORG I-ORG 0 0 B-LOC I-LOC 0
```

Use case 2: Machine translation

Machine translation

A timeline of machine translation

Neural Machine Translation (NMT)

- Neural machine translation (NMT) models the translation task through a single artificial neural network.
- The first systems for NMT were based on recurrent neural networks; more recent systems typically use Transformers.
- Many practical implementations are based on the OpenNMT ecosystem for neural machine translation.

Link to OpenNMT

The sequence-to-sequence model (seq2seq)

The sequence-to-sequence model consists of two components:

• The **encoder** is a neural network that produces a representation of the source sentence.

typically implemented as a bidirectional recurrent neural network

• The **decoder** is an autoregressive language model that generates the target sentence, conditioned on the output of the encoder.

autoregressive = takes its own outputs as new inputs

encoder decoder

encoder decoder

encoder decoder

encoder decoder

encoder decoder

Properties of the seq2seq model

- The seq2seq model directly learns and uses P(y|x), rather than decomposing it into P(x|y) and P(y) as in SMT.
- The model can be trained trained end-to-end using backpropagation, without alignments or auxiliary models.
 only needs parallel data
- The seq2seq model is useful for a range of other tasks, including text summarisation, dialogue, and code generation.

Training an encoder-decoder model

Training an encoder-decoder model

Decoding algorithms

Greedy decoding

At each step, predict the highest-probability word. Stop when the end-of-sentence marker is predicted.

Beam search

Keep a limited number of highest-scoring partial translations. Expand the items on the beam, score the new items, and prune.

Typical beam widths are between 2 and 16.

<BOS>

Attention

Recency bias in recurrent neural networks

encoder decoder

Recency bias in recurrent neural networks

encoder decoder

Recency bias in recurrent neural networks

encoder decoder

Attention

- In the context of machine translation, **attention** enables the model to learn 'soft' word alignments.
- Essentially, we compute a set of weights that allow us to score words based on how much the model should 'attend to them'.
- Attention was first proposed in the context of the sequence-tosequence architecture, but is now used in many architectures.

Just drink coffee

Just drink coffee

Just drink coffee

Just drink coffee

A more general characterisation of attention

- In general, attention can be described as a mapping from a query q and a set of key-value pairs k_i , v_i to an output.
- The output is the weighted sum of the v_i , where the weight of each v_i is given by the compatibility between q and k_i .
- In the translation architecture, the query q corresponds to the hidden state of the decoder; and the keys and values correspond to the hidden states of the encoder, h_i .

Attention as word alignments

In the context of the encoder—decoder architecture for neural machine translation, attention can be interpreted as word alignments.

Image source: <u>Bahdanau et al. (2015)</u>

Attention is all you need

- The attention mechanism allows the direct modelling of dependencies between words, without regard to their distance.
- However, recurrent neural networks implement a mode of computation that is essentially sequential.
 - precludes parallelisation
- The **Transformer** is an architecture that eschews recurrence and instead relies entirely on an attention mechanism.

Structure of this unit

- Prelude: Word embeddings
- Introduction to recurrent neural networks
- The LSTM architecture
- Use case 1: Part-of-speech tagging
- Use case 2: Machine translation
- Attention