CLAIMS

What is claimed is:

- 1. A method for collecting, assimilating and utilizing data from a variety of sources for determining the regulatory requirements and for generating the related compliance reports for an industry, the method comprising the steps of:
 - a. collecting external data required for compliance requirements of a compliance model;
 - b. collecting data from a user;
 - c. assimilating the external data and the user data in a processor to determine compliance by the user;
 - d. automatically generating a report unique to the user data containing required compliance information.
 - 2. The method of claim 1, wherein the external data is public data.
- 3. The method of claim 1, wherein the compliance model is a government agency compliance requirement.
- 4. The method of claim 1, further including the step of electronically submitting the generated report to a relevant agency.
 - 5. The method of claim 1, wherein the collected public data is industry specific.
 - 6. The method of claim 1, wherein the collected user data is facility specific.
 - 7. The method of claim 6, wherein the collected user data is equipment specific.
 - 8. The method of claim 6, wherein the collected user data is location specific.
- 9. The method of claim 1, further including the step of creating a library of available data from the collected public data and non-confidential portions of the collected

user data.

- 10. The method of claim 1, further including the steps of linking the public data to on-line databases and importing data from said databases into the collected public data.
- 11. The method of claim 1, wherein there is further included a mathematical database and wherein data in the collected public data and in the collected user data is imported into the mathematical database for calculating compliance data in the generation of a report.
- 12. The method of claim 11, wherein the mathematical database is an air module database for calculating hydrocarbon emissions from a crude oil storage tank.
- 13. The method of claim 12, wherein the mathematical database includes the following primary calculation formulas for calculating hydrocarbon emissions from storage tanks:

$$\begin{split} L_T &= L_S + L_W \\ L_S &= 365 V_V \ W_V \ K_E \ K_S \\ V_V &= \frac{\pi}{4} \ D^2 (H_S - H_L + H_{RO}) \\ W_V &= \frac{M_V P_{VA}}{R T_{LA}} \\ T_{LA} &= .044 T_{AA} + 0.56 T_B + 0.0079 aI \\ T_B &= T_{AA} + 6a - 1 \\ K_E &= \frac{d T_V}{T_{LA}} + \frac{d P_V - d P_B}{P_A - P_{VA}} \\ d T_V &= .072 d T_A + 0.028 I \\ K_S &= \frac{1}{1 + 0.053 P_{VA} H_{VO}} \\ H_{VO} &= H_S - H_L + H_{RO} \\ L_W &= 0.0010 \ M_V P_{VA} Q K_N K_P \end{split}$$

24/33

Symbol	Name	Description	Туре	Source
Q	Annual net production through-put	The annual volume of hydrocarbons, e.g. crude oil, that is stored in the tank being considered. This figure is taken from actual lease production volumes. Volumetric units, e.g. bbls	Numeric	Client data stored in System Database
R	Ideal Gas Constant	Ideal gas constant calculated as (standard atmospheric pressure - ideal molar volume of gas / mole - standard temperature) (e.g. psia - ft ³ / lb-mole - °R (Rankine) = 10.731)	Numeric	Calculated from constants / Almost always used in USA as 10.731. Stored in System Library.
dT _A	Daily average temperature range (°R, °K)	The difference between daily minimum and maximum temperatures taken from Table 12.3-6 as determined by regional location.	Numeric	Taken from Table 12.3-6 in AP42 reference. Stored in System Library.
T_{AA}	Daily average ambient temperature	Average of daily maximum and minimum ambient temperatures. Measured in °R or °K.	Numeric	Table 12.3 in AP42 reference. Stored in System Library.
T _B	Liquid bulk temperature	Liquid bulk temperature at standard temp Units = °R or °K	Numeric	Result of Equation 3.1.6
T_{LA}	Daily average liquid surface temperature	The average temperature measured at the surface of the liquid in the tank. In this case the temperature is calculated from ambient temperatures rather that measured. Units = °R(Rankine)	Numeric	Result of Equation 3.1.5
dTv	Daily vapor temperature range	The daily range in temperature of the vapor in the vapor space of the tank as described above; calculated.	Numeric	Result of Equation 3.1.8
Vv	Vapor space volume	Volumetric calculation of the average amount of space in the tank (overhead) that is not occupied by liquids. Measurement = 1 ³	Numeric	Result of Equation 3.1.3
Wv	Vapor density	Calculated density of the gases(vapors) in the vapor space calculated in equation (1)(a) Units=mass/unit volume (m/l³) (e.g. lb/ft³)	Numeric	Result of Equation 3.1.4

14. The method of claim 12, wherein the mathematical database includes the following primary calculation formulas for calculating hydrocarbon emissions from internal combustion engines:

Symbol	Name	Description	Туре	Source
EF	Emission Factor lb / mmscf	Amount of pollutant species generated per unit of fuel used or burned, e.g. lbs (pounds) per mmscf (Million standard cubic feet) of gas burned.	Numeric	Client data stored in System Database
mmbtu	BTU rating of the unit	The size of the combustion unit as measured in BTU's per hour. mmbtu = million British Thermal Units	Numeric	Client data stored in System Database

17. The method of claim 16, wherein the primary formula is repeated for each of the following pollutants:

NOx	Nitrous Oxides	Nitrous oxide emissions	Calculated from AP-42 emission factors or manufacturers data.
СО	Carbon Monoxide	Carbon monoxide emissions	Calculated from AP-42 emission factors or manufacturers data.
SO_2	Sulfur dioxide	Sulfur dioxide emissions	Calculated from AP-42 emission factors or manufacturers data.
PA or PM ₁₀	Particulates	Particulate emission from fuel combustion	Calculated from AP-42 emission factors or manufacturers data.
VOCnm	Non-methane Volatile Organic Compounds	Measurement of emissions of VOC's as tons per year.	AP-42 emission factors or manufacturers data.

18. The method of claim 12, wherein the mathematical database includes the following primary calculation formulas for calculating emissions for valves, flanges piping and compressor seals:

$$\sum_{i=1 \text{ to n}} \frac{EF_i \ lb}{hr_i} \times \frac{VOC\%_i}{1} \times \frac{24 \text{ hrs}}{\text{day}} \times \frac{365 \text{ days}}{\text{year}} \times \frac{1 \text{ ton}}{2,000 \text{ lbs}} = \frac{\text{Emissions tons}}{\text{year}}$$

19. The method of claim 18, wherein the primary formula is repeated for each fitting in each piece of equipment:

Symbol	Name	Description	Туре	Source
EF	Emission Factor	Amount of volatile organic emissions generated per fugitive component or source. E.G. lbs / hour / source	Numeric	Provided by reference from AP42 and SOCMI.

28/33

Symbol	Name	Description	Туре	Source
	Lean TEG/ EG flow rate	The pumping rate of the lean or fresh tri-ethylene glycol (or ethylene glycol) solution in gallons per minute	Numeric	Client data stored in System Database
	Water content	The allowable water concentration in the lean or fresh glycol stream. A default value of 1.5% may be chosen if the user does not have this value	Numeric	Client data stored in System Database or chosen by default
	Re-circulation ratio	The gallons of glycol solution circulated per pound of water removed from the wet gas stream if known. May be chosen in place of the lean TEG/EG flow rate. Default value of 0.3 may be chosen in the program.	Numeric	Client data stored in System Database
-	Wet Gas Temperature	Temperature of the incoming wet gas stream in °F.	Numeric	Client data stored in System Database
	Wet gas pressure	Pressure of the incoming wet gas stream in psig.	Numeric	Client data stored in System Database
	Glycol pump type	May be gas driven or electric	Text	Client data stored in System Database
ACFM / gal	Gas driven pump volume ratio	ACFM (air cubic feet per minute) gas / gallon per minute glycol pumped (only for gas driven pumps) May choose default values of 0.03 for wet gas pressures greater than 40 psig and 0.08 for units with wet gas pressures less than 400 psig.	Numeric	Client data stored in System Database
	Flash Tank	Yes or no question. Is a flash tank involved with this unit.	Text	Client data stored in System Database
	Flash tank temperature	Operating temperature of the flash tank if used in °Fahrenheit (°F)	Numeric	Client data stored in System Database
PSIG	Flash tank pressure	Operating pressure of the flash tank if used. Psig (pounds per square inch gauge)	Numeric	Client data stored in System Database
	Stripping gas option	Yes or no question. Is a gas stream used to remove the hydrocarbons from the glycol vent stream?	Text	Client data stored in System Database
	Stripping gas flow rate	Flow rate of the stripping gas stream, scfm	Numeric	Client data stored in System Database
	Control device option	Choose a control device as either a vent condenser or vapor incinerator, or choose no control device.	Text	Client data stored in System Database

Symbol	Name	Description	Туре	Source
	Vent condenser temperature	Operating temperature of the vent condenser (if used) in °F	Numeric	Client data stored in System Database
	Vent condenser pressure	Operating pressure of the vent condenser (if used) in absolute pressure, e.g. psia	Numeric	Client data stored in System Database
	Incinerator ambient air temperature	Average ambient air temperature for the location in °F	Numeric	Selected from climatic data stored in System Library
	Excess oxygen	% excess oxygen used in combustion process if a vapor incinerator is chosen as a control device.	Numeric	Provided by the manufacturer of the combustion unit and included in the System Library
	Combustion efficiency	% efficiency of the vapor control incinerator unit.	Numeric	Provided by the manufacturer of the combustion unit and included in the equipment data base.
VOCs	Volatile Organic Compounds	Measurement of emissions of VOC's as tons per year from the Glycalc Program Printout in tons/year	Numeric	Glycalc® program output
HAPs	Hazardous Air Pollutants	Volumetric measurement of a group of air constituents that have been determined by the Environmental Protection Agency (EPA) to be considered categorically hazardous to health and the human environment. Measured in tons/year	Numeric	Glycalc® program output or information gained from the EPA speciation program for HAP's.

21. The method of claim 12, wherein the mathematical database includes the following primary calculation formulas for calculating flash emissions caused by the transfer of higher pressure liquids from a process vessel to a storage tank of less pressure:

$$\begin{split} \log R_{st} &= 0.4896 - 4.916 \log \gamma_{ost} + 3.496 \log \gamma_{sp} + 1.501 \log P_{sp} \\ &- 0.9213 \log T_{sp} \end{split}$$

and the Vasquez Beggs GOR Correlation.

$$GOR = C1 \times SG100 \times (P_{str} + P_{atm})^{C2} \times e^{\frac{C3 \times ^{\circ} API}{T_{gas} \circ F + 460}}$$

$$SG100 = SG \times (1.0 + 5.912 \times 10^{-5} \times T_{gas} \circ F \times \log \frac{P_{sep} + P_{atm}}{114.7}$$

30/33

Symbol	Name	Description	Туре	Source
R _{st}	Stock Tank Gas Oil Ratio (GOR)	The ratio of the volume of gas generated per barrel of oil produced as a result of the pressure drop between the pressurized separator and the oil storage (stock) tank. Units = volume gas / volume oil, e.g standard cubic feet / barrel	Numeric	Calculated by Black Oil GOR equation, 3.6.1
Yost	Stock Tank Oil specific gravity	Measurement of the ratio of the weight of the oil relative to water at standard temperature and pressure. E.g. units = lb/gal per lb/gal or SG=6.5 lb/gal oil / 8.34 lb/gal water @STP = 0.78	Numeric	Calculated using the physical data of the materials being stored
$\gamma_{ m sp}$	Separator specific gravity	Measurement of the ratio of the weight of the air relative to	Numeric	Calculated using the physical data of the gas being measured
P _{sp}	Separator pressure	The operating pressure of the vessel used to separate the oil, water and gas in the produced fluid stream	Numeric	Measured at the equipment by the user
$T_{\sf sp}$	Separator temperature	The operating temperature of the separator measured in °F	Numeric	Provided by the user from field measurements
$V_{ m MW}$	Vapor Molecular Weight	The weight of one mole (or Avogadro's number of molecules) of the gas being measured.	Numeric	Determined by reference or measurement. May use default value or actual gas analysis.
C1, C2, C3	Vasquez Beggs Constants	Constants calculated for the use in this relationship using stastical empirical data. Dimensionless	Numeric	Provided by reference to the relationship based on degree API gravity range of the crude being stored.
SG	Specific Gravity of the gas	Same as γ_{sp} or separator specific gravity as described above.	Numeric	Calculated using the physical data of the gas being measured
SG100	Specific gravity of the gas referenced to 100 psig	A calculated quantity based on the temperature and pressure measured at the separator referenced to 100 pounds per square inch gauge (psig) pressure.	Numeric	Result of equation 3.6.3
P_{str}	Pressure of the upstream fluid	Pressure of the fluid stream as it leaves the separator or the separator pressure.	Numeric	Measured in the field by the user.
P _{atm}	Atmospheric pressure	The measured pressure of ambient conditions or in the atmosphere outside the separator.	Numeric	Measured at the field location using a barometer or by default at ST&P.

Symbol	Name	Description	Туре	Source
M	Vapor Molecular Weight	The weight per mole of gases being emitted, e.g lb/lb mole. One mole = weight of 10 ²³ molecules (Avogadro's number) of the gas or 359 standard cubic feet. (SCF)	Numeric	By reference from AP-42 Table 7.1-2. Stored in System Library.
Т	Bulk Liquid Temperature	The temperature of the liquid being loaded in °R (Rankine) = °F +460.	Numeric	Supplied from the tank calculation data.

23. The method of claim 12, wherein the mathematical database includes the following primary calculation formulas for calculating emission fees:

$$\sum Emissions \frac{tons}{year} \times \$ per ton = Annual Emissions Fee$$

Symbol	Name	Description	Туре	Source
\$	Price per ton	The dollar price per tons of emissions as established by the particular state of operation	Numeric	Established by law
NOx	Nitrous Oxides	Nitrous oxide emissions	Numeric	Calculated
СО	Carbon Monoxide	Carbon monoxide emissions	Numeric	Calculated
SO_2	Sulfur dioxide	Sulfur dioxide emissions	Numeric	Calculated
PA or PM ₁₀	Particulates	Particulate emission from fuel combustion	Numeric	Calculated
VOCs	Volatile Organic Compounds	VOC emissions	Numeric	Calculated