3.2.1. **Dissolved Gas Analysis Factor (DGAF).** The DGAF is a representative factor of the oil-paper insulation condition from the dissolved gases perspective. The DGAF is an integer score value from zero to four, which indicates the degree of danger or degradation of the oil-paper system based on DGA. A score of zero indicates a poor DGA condition, while a score of four indicates a healthy DGA condition. In order to calculate the DGAF, a scoring system for each of the seven key gas elements is used to indicate the extent of the respective dissolved gases in the oil sample. Table 8 indicates the score system which is used for the key gas elements. Based on the score value, the DGAF is calculated using [26]

$$DGAF = \frac{\sum_{i=1}^{7} S_i \times W_i}{\sum_{i=1}^{7} W_i}$$
 (1)

where S_i is the score outcome of each of the seven key gas elements based on Table 8, and W_i is the key gas associated weight or significance factor. The DGAF will be a real positive number that will be converted to an integer value from zero to four based on the DGAF scoring system shown in Table 9. As an example, the DGAF for the key gas elements of the samples, shown in Table 4 (from UTILA), will be computed as per the explained procedure. Table 10 shows the obtained DGAF values for these samples.

Table 8: DGAF score and weight system [26]

Hydrogen Methane		Ethane		Ethylene		Acetylene		Carbon Monoxide		Carbon Dioxide			
$W_{I}=2$		$W_2 = 3$		$W_3 = 3$		$W_4 = 3$		$W_5 = 5$		$W_6=I$		$W_7=I$	
ppm	S_I	ppm	S_2	ppm	S_3	ppm	S_4	ppm	S_5	ppm	S_6	ppm	S_7
<155	1	<103	1	<92.5	1	<75	1	<5	1	<500	1	<2,750	1
<225	2	<145	2	<95.5	2	<85	2	<15	2	<850	2	<3,500	2
<365	3	<240	3	<96.5	3	<95	3	<25	3	<1,050	3	<4,500	3
<585	4	<400	4	<97.5	4	<105	4	<35	4	<1,250	4	<6,000	4
<700	5	<600	5	<100	5	<130	5	<60	5	<1,400	5	<7,000	5
>700	6	>600	6	>100	6	>130	6	>60	6	>1,400	6	>7,000	6

Table 9: DGAF final scoring system [26]

DGAF Calculated	DGAF Final			
< 1.2	4			
< 1.5	3			
< 2	2			
< 3	1			
≥ 3	0			

Table 10: Computed DGAF for UTILA Data Subset

Sample =	Hydro	ogen	Methane		Ethane		Ethylene		Acetylene		Carbon Monoxide		Carbon Dioxide		DGAF	DGAF
1	ppm	S_1	ррт	S_2	ррт	S_3	ррт	S_4	ррт	S_5	ррт	S_6	ррт	S_7	Calc.	Final
1	15.6	1	14.4	1	2.5	1	0.3	1	0	1	1019.6	3	2619.3	1	1.11	4
2	19.9	1	15.6	1	3	1	0.4	1	0	1	1240.8	4	3323.2	2	1.22	3
3	7.9	1	0	1	0.7	1	0.5	1	0	1	132.5	1	1770.7	1	1.00	4
4	9.6	1	2.8	1	7.1	1	20.6	1	0	1	126.4	1	2126.5	1	1.00	4
5	19.2	1	2.4	1	2.3	1	6.5	1	34.8	4	237.6	1	3654.1	3	1.94	2
6	27.1	1	236.8	3	202.1	6	628.1	6	27.7	4	230.5	1	4810.7	4	4.00	0
7	18.7	1	2.5	1	41.4	1	55	1	58.2	5	165.8	1	5123.8	4	2.28	1

3.2.2. **Oil Quality Factor (OQF).** The OQF represents the health condition of the transformer oil. The OQF value is also an integer value which ranges from zero to four. An OQF of four indicates an excellent level of oil quality, while an OQF of zero indicates a very poor level of oil quality. Computation of the OQF is based on the scores and weights of the six oil quality parameters respectively. The OQF calculation is done using [26]

$$OQF = \frac{\sum_{i=1}^{6} S_i \times W_i}{\sum_{i=1}^{6} W_i}$$
 (2)

Table 11 indicates the weights (W_i) and score values (S_i) for the oil quality parameters. The OQF will be a real positive number that will be converted to an integer score from zero to four based on the OQF scoring system shown in Table 12. The computed OQF values for the UTILA data subset (of Table 4) is shown in Table 13.

Table 11: OQF score and weight system [26]

Water		Acidity		BDV		DDF		Color		IFT	
$W_l=4$		$W_2 = 1$		$W_3 = 3$		$W_4 = 3$		$W_5 = 2$		$W_6 = 2$	
ppm	S_I	mgKOH/g	S_2	kV	S_3	-	S_4	-	S_5	mN/m	S_6
≤30	1	≤0.05	1	≥45	1	≤0.1 ζ	<u> </u>	≤1.5	1	≥25	1
≤35	2	≤0.1	2	>35	2	≤0.5 ζ	\bigcirc^2	≤2	2	>20	2
<40	3	<0.2	3	>30	3	<1 (\bigcirc^3	<2.5	3	>15	3
≥40	4	≥0.2	4	≤30	4	≥1	4	≥2.5	4	≤15	4

Table 12: OQF final scoring system [26]

OQF Calculated	OQF Final
< 1.2	4
< 1.5	3
< 2	2
< 3	1
≥ 3	0

Table 13: Computed OQA for UTILA data subset

Sample	Water		Acidity		BDV		DDF		Color		IFT		OQA	OQA
	ppm	S_1	mgKOH/	$g S_2$	kV	S_3	-	S_4	-	S_5	mN/m	S_6	Calc.	Final
1	3	1	0.005	1	99	1	0	1	0	1	42	1	1.00	4
2	2	1	0.005	1	84	1	0	1	0	1	43	1	1.00	4
3	1	1	0.133	3	76	1	0.005	2	3	4	20	3	2.00	1
4	11	1	0.046	1	75	1	0.001	1	1	1	23	2	1.13	4
5	7	1	0.042	1	55	1	0.002	2	3	4	18	3	1.87	2
6	4	1	0.029	1	82	1	0.002	2	2	2	18	3	1.60	2
7	4	1	0.057	2	74	1	0.002	2	3	4	18	3	1.93	2

3.2.1. **Furan Factor (FFA).** One of the main numerical factors that indicates the extent of the paper insulation degradation is the FFA. Calculation of the FFA is based on the scoring system shown in Table 14. The FFA is an integer score value that ranges from zero to four. Similarly, a value of four indicates a healthy paper condition, while a value of zero indicated a very poor paper condition. The calculated FFA values for the UTILA data subset are shown in Table 15.

Table 14: FFA scoring system [26]

Furan - ppm	FFA
< 0.1	4
< 0.25	3
< 0.5	2
<1	1
≥ 1	0

Table 15: FFA for UTILA data subset

Sample	Furan	FFA Final
	ррт	Tinai
1	0.01	4
2	0.01	4
3	0.28	2
4	4.45	0
5	0.54	1
6	2.18	0
7	2.73	0

3.2.2. **Final Health Index (HI) value.** Based on the final insulation parameter scores (DGAF, OQF and FFA), a cumulative calculation for the HI is done. Each factor is assigned with a weight value (W_{DGAF} , W_{OQF} and W_{FFA}) that indicates the significance of the factor in the overall health of the transformer.

The cumulative calculation for the transformer HI is done using the following formula [26]

$$HI (\%) = 100 \times \frac{(DGAF \times W_{DGAF}) + (OQF \times W_{OQF}) + (FFA \times W_{FFA})}{4(W_{DGAF} + W_{OQF} + W_{FFA})} \%$$
(3)

The final HI values for the UTILA data subsets are shown in Table 16. The overall HI computation is illustrated as a block diagram shown in Figure 4.

Sample	DGAF	OQF	FFA	HI (%)	
	$W_{DGAF} = 10$	$W_{OQF} = 6$	$W_{FFA} = 5$		
1	4	4	4	100.00	
2	3	4	4	88.10	
3	4	1	2	66.67	
4	4	4	0	76.19	
5	2	2	1	44.05	
6	0	2	0	14.29	
7	1	2	0	26.19	

Figure 4: Overall HI computation using [26]