WreckingNet: Neural approach for the classification of audio signals in construction sites

Neural Networks Project A.Y 2018/2019

Alessandro Maccagno 1653200

Andrea Mastropietro 1652886

Umberto Mazziotta 1647818

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

- Introduction
- Dataset and Data Preprocessing
- Architecture
- Experiment and Results
- Conclusions and Future Work

- Introduction
- Dataset and Data Preprocessing
- Architecture
- Experiment and Results
- Conclusions and Future Work

Introduction

- Perform classification of vehicles and tools in construction sites using audio signals
- Neural approach
 - Combination of two CNNs (raw data and spectrogram)
- Working on real data
 - Provided by Professor Yongcheol Lee from Louisiana State University
- Based on the work of Li et al. that performed environmental sound classification with a neural approach
- High classification accuracy (97-98%)

- Introduction
- Dataset and Data Processing
- Architecture
- Experiment and Results
- Conclusions and Future Work

Dataset (1/2)

- Provided by Prof. Yongcheol Lee of LSU
- Live recording of construction event sounds
 - Tools and machines performing a certain action
- Real world data
 - Difficulties arise: noise and low quality recordings
- Large number of classes (~20)

Dataset (2/2)

5 classes selected:

Excavator Cat 320E

Backhoe JD50D Compact

Excavator Hitachi 50U

Concrete Mixer

Compactor Ingersoll Rand

Data Preprocessing (1/2)

- Each track segmented in two partitions
 - 70% of the track for training, 30% for test
- Each partition split into smaller fragments of 30ms
 - 15ms overlap
- Training/Testing partition done before splitting
 - Done to avoid the model to be tested on samples on which it was trained due to the overlap
- Use pickle module to serialize data into files
 - No need to regenerate components from audio files
 - Noticeable reduction of the time required to obtain the dataset
 - Noticeable reduction of the size of the data

Data Preprocessing (2/2)

We use 2 types of information

- Raw data
 - Waveform of the audio
 - Resampling at 2*22500Hz
 - Value of the wave of each instant is in the interval [-1.0, 1.0]
 - 662 float values

Spectral data

- Log-scale mel-spectrogram of the audio
- 60 mel bands
- First-order time derivative of the mel-spectrogram
- 2 columns (time buckets)

- Introduction
- Dataset and Data Preprocessing
- Architecture
- Experiment
- Results
- Conclusions and Future Work

Architecture (1/4)

Inspired by the works of Li et al. and Piczak

An Ensemble Stacked Convolutional Neural Network Model for Environmental Event Sound Recognition

Shaobo Li 1,2 , Yong Yao 1,*, Jie Hu 3, Guokai Liu 3, Xuemei Yao 3 and Jianjun Hu 1,4,*

ENVIRONMENTAL SOUND CLASSIFICATION WITH CONVOLUTIONAL NEURAL NETWORKS

Karol J. Piczak

- Use two different convolutional neural networks
- Each neural network makes use of a different type of data
- Unify the results using Dempster-Shafer theory to improve results

Architecture (2/4) - RawNet

Uses the waveform of the audio fragment

Architecture (3/4) - SpectroNet

- Uses the spectrograms of the audio fragment
- CNN
- Optimizer: AdamOptimizer with a learning rate of 5e⁻⁴

Architecture (4/4) – DSE Module

Implements Dempster's rule of combination:

$$m(C) = \begin{cases} 0 & \text{if } C = \emptyset \\ \frac{1}{K} \sum_{C_1 \cap C_2 = C} m_1(C_1) m_2(C_2) & \text{otherwise} \end{cases}$$

$$K = \sum_{C_1 \cap C_2 = \emptyset} m(C_1) m(C_2)$$

- Classes are mutually exclusive
- Each network outputs a class probability distribution via its softmax layer
- The probability that a segment belongs to a single class is equal to the normalized product of the two networks probabilities

- Introduction
- Dataset and Data Preprocessing
- Architecture
- Experiment and Results
- Conclusions and Future Work

Experiment (1/5) - Setup

- Choice of the most suitable sample length
- Several models built and tested
- Chosen 30ms samples
 - High accuracy
 - Higher number of subsamples

RawNet Test Accuracy

Experiment (2/5) - Classification

- Perfomed 5-Fold cross validation
 - 80% training
 - 20% test
 - Disjoint subset

Network	Accuracy	Precision	Recall	F1
RawNet SpectroNet	93.59 97.08	93.68 97.34	93.55 97.30	93.61 97.32
WreckingNet (DSE)	98.27	97.84	97.10	97.46

Using DSE we obtain results higher than the highest of the two

Experiment (3/5) – Test Accuracy

Experiment (4/5) – Confusion Matrix

Experiment (5/5) - Prediction

- Audio track split into 30ms subsamples
- Each subsasmple is calssified by the network as belonging to one of the classes
- Overall classification determined by the majority of labels among all the fragment
- Performed on a sample of a concrete mixer recorded by us: correctly classified

- Introduction
- Dataset and Data Preprocessing
- Architecture
- Experiment and Results
- Conclusions and Future Work

Conclusions and Future Work

- Extension of a general environmental sound classification model to a more specific field
- High classification accuracy obtained on 5 classes

- Extension to a higher number of classes
- Activity monitoring
- Recognition of hazard during constrution activity

THANK YOU FOR YOUR ATTENTION