Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US05/003165

International filing date: 01 February 2005 (01.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/583,173

Filing date: 25 June 2004 (25.06.2004)

Date of receipt at the International Bureau: 31 March 2005 (31.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

'40) And 40) vardh andse, pressents, suam, (cones;

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

March 18, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/583,173

FILING DATE: June 25, 2004

RELATED PCT APPLICATION NUMBER: PCT/US05/03165

1298127

Certified by

Under Secretary of Commerce for Intellectual Property and Director of the United States Patent and Trademark Office

PROVISIONAL APPLICATION FOR PATENT **COVER SHEET**

Address to:

Mail Stop Provisional Application

Commissioner for Patents

PO Box 1450

Alexandria, VA 22313-1450

(703) 308-4357

This is a request for filing a Provisional Application for Patent under 37 CFR 1.53(c)

Certificate Under 37 CFR 1.10

Date of Deposit: June 25, 2004

I hereby certify that this correspondence is being deposited with the United States Postal Service as "Express Mail" service under 37 CFR 1.10 on the date indicated above addressed to Mail Stop Provisional Application, Commissioner for Patents, PO Box 1450, Alexandria, VA 22313-1450

Express Mail No. ER 689 342 402 US

Inventor(s) and Residence(s) (city and either state or foreign country):

Last Name

First Name

Middle Initial

City

State or Country

Rekosh

David

Earlysville

Virginia

Hammarskjöld

Marie-Louise

Earlysville

Virginia

COMPOUNDS THAT INHIBIT HIV PARTICLE FORMATION FOR THE TREATMENT OF AIDS

Sheets of specification.

Sheets of drawings.

University of Virginia Patent Foundation claims small entity status as a nonprofit organization (37 CFR §§1.27(a)(3) and (c)). The Commissioner is hereby authorized to charge the Small Entity Fee of \$80 to Deposit Account No. 50-0423.

an agency of the United States Government. The government has certain rights in the invention.

Please direct all communication relating to this application to:

John P. Breen, Esq.

Customer No. 34444

Patent Counsel

Telephone: (434) 243-6103

University of Virginia Patent Foundation

Fax: (434) 924-2493

1224 West Main Street, Suite 1-110

Charlottesville, VA 22903

This invention was made by an agency of the United States Government or under a contract with

YES ⊠

NO □ Grant No.

R21 AI54213-01 and R21 AI54213-02

Dated: June 25, 2004

Respectfully submitted,

Compounds that inhibit HIV particle formation for the treatment of AIDS

US Government Rights

This invention was made with United States Government support under Grant Nos. R21 AI54213-01, and R21 AI54213-02, awarded by National Institutes of Health. The United States Government has certain rights in the invention.

Background

The present invention is directed to a safe quantitative *in vitro* high-throughput assay to screen library compounds for effects on Rev-dependent p24 production. Two cell lines derived from COS cells provide the means of determining whether a library compound has anti-Rev activity; 5BD.1 and 2A.22. These cell lines constitutively express HIV-like particles that contain the HIV core proteins as well as HIV envelope protein. The non-infectious virions created by these cells are secreted into the media, where a simple p24 ELISA can quantitatively determine virion production.

The Production of these virus-like particles is totally dependent on the expression of the Rev protein (for the 5BD.1 cell line), which is also made in these cell lines, or independent of Rev protein expression (the 2A.22 cell line). The cell lines are useful as packaging cells for HIV vectors, and also for drug screening using the HIV Rev protein as a target. The 5BD.1 and 5BA.1 cell lines described here are a considerable improvement over the previous B4.14 cell line, in that they express the HIV envelope protein, which the B4.14 cell lines does not and the cell also produces higher levels of p24.

The HIV virus particle consists of internal proteins that make up the viral core and two proteins that are part of the lipid envelope that surrounds the core. These proteins are expressed from precursor molecules called Pr55gag and Pr160gagpol for the core proteins and gp160 for the envelope proteins. Studies in our laboratory and elsewhere have demonstrated expression of these proteins normally requires co-expression of the HIV Rev protein. Without the Rev protein, the mRNAs encoding each of these proteins remains in the nucleus. In order for the Rev protein to work, it is also essential to have an element present in the RNA that binds to Rev. This element is called the RRE.

Using a vector that expressed Pr55gag and Pr160 and a vector that expressed Rev, we originally created the cell line called B4.14. This cell line was made at the State University of New York in Buffalo. B4.14 expressed HIV-like particles without the envelope protein. The creation of this cell line was described in the following publication: Srinivasakumar, N., Chazal, N., Helga-Maria, C., Prasad, S., Hammmarskjöld, M.-L., and Rekosh, D. (1997) The effect of viral regulatory protein expression on gene delivery by human immunodeficiency virus type 1 vectors produced in stable packaging cell lines. J. Virol 71:5841-5848

At the University of Virginia, the B4.14 cell line was modified to also express the HIV envelope protein, by transfecting the cell line with a vector that expressed the protein. The resulting cell lines isolated are called 5BD.1 and 5BA.1. 5BA.1 is simply a different clone that was isolated at the same time as 5BD.1. There appears to be little difference in the properties of the two cell lines. One feature of these cell lines, relative to the parental B4.14, is that they express 2-4 times more p24 (HIV core) protein depending on the culture conditions.

Work in our laboratory led to the identification of a small RNA element from Mason-Pfizer Monkey Virus. When this element is present in the RNA that is expressed from a gene that normally requires Rev co-expression the need for Rev is overcome.

Our initial findings are described in detail in two patents and published paper: "Purified retroviral constitutive transport enhancer elements that enhance nucleocytoplasmic transport of mRNA and methods of making and using the elements" US Patent # 5880276 Issued 3/9/99.

"A purified retroviral constitutive transport enhancer and its use to facilitate mRNA transport, and to produce recombinant, attenuated HIV" US Patent # 5585263 Issued 12/17/96.

Bray, M., Prasad, S. Dubay, J.W., Hunter, E. Jeang, K.T., Rekosh, D. and Hammarskjöld-M-L. (1994) A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent. Proc. Natl. Acad.Sci.(USA) 91: 1256-1260.

Using the CTE as a component of our expression vectors has allowed us to, create a series of expression vectors that allows expression of HIV proteins in a Rev-independent fashion. The vectors were then used to create stable cell lines that expressed the proteins. One cell line in particular has proved extremely useful. It is called 2A.22. The cell line expressed HIV proteins (Gag-GagPol and Envelope) in a Rev-independent fashion. The creation of this cell line and its properties was described in the following publication: Srinivasakumar, N., Chazal, N., Helga-Maria, C., Prasad, S., Hammmarskjöld, M.-L., and Rekosh, D. (1997) The effect of viral regulatory protein expression on gene delivery by human immunodeficiency virus type 1 vectors produced in stable packaging cell lines. J. Virol 71:5841-5848.

We are currently modifying 2A.22 by transfection with a vector that produces secreted alkaline phosphatase (SEAP). Since the SEAP to p24 ratio can readily be measured simply by assaying the medium. having such a modification will allow us, in a drug screening assay, to readily identify compounds that inhibit p24 production, but not the control SEAP gene.

One of the two necessary regulatory genes in the HIV genome, Rev initiates export of full length and partially processed HIV RNAs from the nucleus to the cytoplasm, a necessary event for HIV replication. Rev functions through the binding of RNA encoded Rev responsive element (RRE), an approximately 230 nucleotide sequence, followed by binding to cellular CRM1. This ribonuclear protein complex is then shuttled out of the nucleus using other cellular machinery in the nuclear pore.

RNA export elements are found in other RNA viruses. One example is the Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE). Similar to the RRE, the CTE is a small nucleotide sequence found on full length and partially processed MPMV RNAs. Circumventing the need for an MPMV analog of Rev, the CTE attaches directly to cellular machinery to initiate nuclear export. Experiments have shown that replacing the HIV RRE with a MPMV CTE leads to Rev-independent HIV-1 RNA export to the cytoplasm.

The cell line 5BD.1 was created by transfecting COS cells with the wild type HIV-1 structural and regulatory genes gag, gagpol, rev, and env. Each of these genes are necessary but not sufficient for producing infectious HIV virions. Non-infectious virions are produced

in 5BD.1 cells via the same pathways as in CD4⁺ cells. Inhibition of Rev with a library compound would therefore have the same effect on viral production in 5BD.1 cells as in CD4⁺ cells.

2A.22 was created by transfecting COS cells with modified HIV-1 structural genes gag, gagpol, and env. These genes were modified to replace the Rev binding site with the MPMV CTE. This cell line produces non-infectious virions in a Rev-independent manner. The Rev-independence of 2A.22 is useful as a negative control while testing library compounds. When both cell lines 5BD.1 and 2A.22 are grown and tested with the same compound under similar conditions, a reduction in viral production in 5BD.1 and not in 2A.22 indicates a potentially positive score for that compound as a Rev-specific inhibitor. Alternately, if a compound reduced p24 levels in both 5BD.1 and 2A.22, this could indicate a possible harmful interaction with cellular machinery and would rule out that specific compound from further studies.

There is clear evidence that Human Immunodeficiency Virus (HIV) is the cause of AIDS and that drugs that inhibit the replication and production of infectious HIV particles are efficacious in the treatment of AIDS. This disclosure describes 12 compounds that we have discovered that are very effective inhibitors of HIV particle formation. The compounds may act by inhibiting HIV Rev function, HIV assembly, HIV particle budding or some other part of the HIV life cycle. The compounds are therefore likely to form the chemical basis for new drugs that could be used for the treatment of AIDS.

The inhibitory compounds of the present invention were identified using the 5BD.1 cell line to screen for drugs that inhibit HIV particle formation without showing toxicity in a 5 day cell survival assay. The amount of HIV particles released by budding from the 5BD.1 cell line into the culture medium was measured using a simple and straightforward ELISA assay. 40,000 compounds were screened and 12 were selected as "hits" based on their ability to inhibit HIV particle formation without showing toxicity in a 5 day cell survival assay.

Brief Summary

The present invention is directed to novel HIV inhibitory compounds and the use of those compounds to treat patients that are HIV positive.

Brief Summary of the Drawings

Fig. 1 parts A- I show the ELISA data readout from the primary screen of 40,000 compounds plotted as a percentage of the control. Compounds that gave an inhibition of HIV particle formation below 50% were chosen for further study. There are 192 compounds that give values below 50%.

Fig. 2 shows the chemical structures and names of the 12 compounds being disclosed.

Fig. 3 shows a three concentration dose response experiment for the compounds added to the cell line. Each compound is named with an identifier along the X-axis of the graph. The Y-axis shows the percent inhibition of HIV particle release into the medium. The different concentrations of compound utilized are represented by the different color bars as shown in the figure legend. Details of the assay are given in part E.

Fig. 4 shows a six concentration dose response curve of the same compounds. Details are the same as for Fig 3 except that six concentrations of compound were tested.

Figs. 5 and 6 show 2 day MTS toxicity assays for the compounds in 5 BD.1 cells, the same cell line used for the drug screening. A three concentration MTS toxicity assay is shown in Fig 5 and a six concentration assay is shown in Fig 6. The Y-axis represents the percentage of live cells after two days of treatment with the compounds. The same concentrations used in Fig 3 and 4 are used in this figure, as indicated by the different colors. Details of the assay are given in part E.

Fig. 7 shows a six concentration cell viability assay using the MT-4 T-cell line. The Y-axis shows the number of cells surviving after 5 days of incubation with each compound. The concentration of each compound used is indicated by the different colors. The data is expressed as the percentage of the starting number of cells. Details of this assay are given in part E.

Detailed Description of Embodiments

Definitions

In describing and claiming the invention, the following terminology will be used in accordance with the definitions set forth below.

As used herein, the term "purified" and like terms relate to an enrichment of a molecule or compound relative to other components normally associated with the molecule or compound in a native environment. The term "purified" does not necessarily indicate that complete purity of the particular molecule has been achieved during the process. A "highly purified" compound as used herein refers to a compound that is greater than 90% pure.

As used herein, the term "pharmaceutically acceptable carrier" includes any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, emulsions such as an oil/water or water/oil emulsion, and various types of wetting agents. The term also encompasses any of the agents approved by a regulatory agency of the US Federal government or listed in the US Pharmacopeia for use in animals, including humans.

As used herein, the term "treating" includes prophylaxis of the specific disorder or condition, or alleviation of the symptoms associated with a specific disorder or condition and/or preventing or eliminating said symptoms.

As used herein, the term "halogen" or "halo" includes bromo, chloro, fluoro, and iodo.

The term "haloalkyl" as used herein refers to an alkyl radical bearing at least one halogen substituent, for example, chloromethyl, fluoroethyl or trifluoromethyl and the like.

The term " C_1 - C_n alkyl" wherein n is an integer, as used herein, represents a branched or linear alkyl group having from one to the specified number of carbon atoms. Typically C_1 - C_6 alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, butyl, iso-butyl, sec-butyl, tert-butyl, pentyl, hexyl and the like.

The term "C₂-C_n alkenyl" wherein n is an integer, as used herein, represents an olefinically unsaturated branched or linear group having from 2 to the specified number of carbon atoms and at least one double bond. Examples of such groups include, but are not limited to, 1-propenyl, 2-propenyl, 1,3-butadienyl, 1-butenyl, hexenyl, pentenyl, and the like.

The term " C_2 - C_n alkynyl" wherein n is an integer refers to an unsaturated branched or linear group having from 2 to the specified number of carbon atoms and at least one triple bond. Examples of such groups include, but are not limited to, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, and the like.

The term " C_3 - C_n cycloalkyl" wherein n = 8, represents cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.

As used herein the term "aryl" refers to a mono- or bicyclic carbocyclic ring system having one or two aromatic rings including, but not limited to, phenyl, benzyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl, and the like.

The term $(C_5-C_8$ alkyl)aryl refers to any aryl group which is attached to the parent moiety via the alkyl group.

The term "heterocyclic group" refers to a mono- or bicyclic carbocyclic ring system containing from one to three heteroatoms wherein the heteroatoms are selected from the group consisting of oxygen, sulfur, and nitrogen.

As used herein the term "heteroaryl" refers to a mono- or bicyclic carbocyclic ring system having one or two aromatic rings containing from one to three heteroatoms and includes, but is not limited to, furyl, thienyl, pyridyl and the like.

The term "bicyclic" represents either an unsaturated or saturated stable 7- to 12-membered bridged or fused bicyclic carbon ring. The bicyclic ring may be attached at any carbon atom which affords a stable structure. The term includes, but is not limited to, naphthyl, dicyclohexyl, dicyclohexenyl, and the like.

The term "pharmaceutically-acceptable salt" refers to salts which retain the biological effectiveness and properties of the S1P analogs of the present invention and which are not biologically or otherwise undesirable. In many cases, the S1P analogs of the present invention are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto.

Embodiments

One aspect of the present invention is directed to novel compounds that inhibit the formation of HIV particles. In accordance with one embodiment an HIV inhibitor is provided wherein the compound has the general structure:

$$R_8$$
 R_8
 R_{10}
 R_8
 R_{10}
 R_8
 R_{10}
 R_8
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}

wherein

A is selected from the group consisting of N, CR₁, and $C = C - \frac{R_{12}}{C} = C - \frac{R_{11}}{C}$

B is selected from the group consisting of N, S, $-\frac{R_{12}}{CHN} - \frac{R_{12}}{and} - \frac{R_{11}}{C=C} = C - \frac{R_{12}}{C}$

Y is selected from the group consisting of Se, N, CH and CR₄;

X is selected from the group consisting of CH, CR₇ and N;

Z is selected from the group consisting of C₀-C₄ alkyl, —NHC — and

 R_1 and R_{12} are independently selected from the group consisting of H, halo, CO, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, NR_5R_6 , optionally substituted C_5 - C_6 aryl and

$$-NH$$
 R_{2}
 R_{3}

 R_2 and R_3 are independently selected from the group consisting of H, halo, hydroxy and C_1 - C_4 alkyl;

R₄ is selected from the group consisting of H, halo, hydroxy, C₁-C₄ alkyl and C₁-C₄ haloalkyl;

R₅ and R₆ are independently selected from the group consisting of H and C₁-C₄ alkyl; R₇ and R₈ are independently selected from the group consisting of H, halo, hydroxy, C₁-C₄ alkyl, C₁-C₄ alkoxy, -C(O)CH₃, -NHC(O)CH₃ and -O(C₁-C₄ alkyl)(C₅-C₆ heterocyclic) or R₇ and R₈ together with the atoms to which they are attached form an optionally substituted C₅-C₆ aryl, wherein the aryl ring is optionally substituted with halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkyl(C₅-C₆ aryl) and -O(C₁-C₄ alkyl)(C₅-C₆ heterocyclic);

 R_{10} is selected from the group consisting of H, halo, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, acyl, -CN, C_1 - C_4 alkoxy, -NHC(O)CH₃, optionally substituted C_5 - C_6 aryl, optionally substituted C_5 - C_6 heteroaryl and -O(C_1 - C_4 alkyl)(C_5 - C_6 heterocyclic); and

 R_{11} is selected from the group consisting of H, halo, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 alkoxy and -CN.

In one embodiment Y is CR₄, R₇ is H or C₁-C₄ alkoxy, R₈ is halo or

$$-O(CH_2)_n$$
, wherein n is an integer ranging from 1-5, and P, W and Z are independently selected from the group consisting of O, S, CH_2 and NH .

In another embodiment a compound is provided wherein the compound has the general structure:

$$R_8$$
 or R_8 R_7 R_8 R_8 R_8

wherein

X is selected from the group consisting of CH and N;

R₁ is selected from the group consisting of H, NR₅R₆ and

$$-NH$$
 R_2
 R_3

 R_2 and R_3 are independently selected from the group consisting of H, halo, hydroxy and C_1 - C_4 alkyl;

R₄ is selected from the group consisting of H, halo, hydroxy and C₁-C₄ alkyl,

 R_5 and R_6 are independently selected from the group consisting of H and C_1 - C_4 alkyl; R_7 and R_8 are independently selected from the group consisting of H, halo, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, -NHC(O)CH₃ and -O(C_1 - C_4 alkyl)(C_5 - C_6 heterocyclic) or R_7 and R_8 together with the atoms to which they are attached form an optionally substituted C_5 - C_6 aryl, wherein the aryl ring is optionally substituted with halo, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkyl(C_5 - C_6 aryl) and -O(C_1 - C_4 alkyl)(C_5 - C_6 heterocyclic). In one embodiment R_1 is NR_5R_6 or

$$-NH$$
 R_2 R_3

R₇ is H or C₁-C₄ alkoxy, and

R₈ is halo or

$$-O(CH_2)_n$$
, wherein n is an integer ranging from 1-5, and P, W and Z are independently selected from the group consisting of O, S, CH_2 and NH . Another embodiment of the invention is directed to the compounds of Fig. 2.

In accordance with one embodiment a compound is provided having the general formula

$$R_8$$
 R_{10}
 R_{10}
 R_{10}

wherein

A is selected from the group consisting of N, and $C = C - \frac{12 \times 11}{1}$

B is selected from the group consisting of N, S, —CHN— and—C=C—

Y is selected from the group consisting of N, CH and CR₄;

Z is selected from the group consisting of C_0 - C_4 alkyl, —NHC — and

 R_1 and R_{12} are independently selected from the group consisting of H, halo, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl and NR_5R_6 ;

 R_4 is selected from the group consisting of H, halo, hydroxy and C_1 - C_4 alkyl, C_1 - C_4 haloalkyl;

 R_5 and R_6 are independently selected from the group consisting of H and C_1 - C_4 alkyl; R_7 and R_8 are independently selected from the group consisting of H, halo, hydroxy, C_1 - C_4 alkyl and C_1 - C_4 alkoxy;

R₁₀ is H; and

R₁₁ is selected from the group consisting of H, halo, hydroxy, C₁-C₄ alkyl, C₁-C₄ alkoxy and -CN.

In accordance with one embodiment a compound is provided having the general formula

$$R_8$$
 R_8
 R_8
 R_8
 R_8

wherein

A is selected from the group consisting of
$$CR_1$$
, and $C=C-$;
B is selected from the group consisting of N and S:

B is selected from the group consisting of N and S:

Y is selected from the group consisting of N, CH and CR₄;

X is selected from the group consisting of CH and N;

R₁ and R₁₂ are independently selected from the group consisting of H, halo, C₁-C₄ alkyl, C_1 - C_4 haloalkyl and NR_5R_6 ;

R₄ is selected from the group consisting of H, halo, hydroxy and C₁-C₄ alkyl, C₁-C₄ haloalkyl;

$$\begin{array}{c} O \\ \parallel \\ -S = O \\ \mid \\ CH_3 \end{array}, \quad \begin{array}{c} O \\ \parallel \\ -P = O \\ \mid \\ CH_3 \end{array}, \quad \begin{array}{c} O \\ \parallel \\ -P = O \\ \mid \\ OH \end{array} \right. \quad \text{and} \quad \begin{array}{c} O \\ \parallel \\ -C - NR_5R_6 \end{array}$$

R₅ and R₆ are independently selected from the group consisting of H and C₁-C₄ alkyl; R₇ and R₈ are independently selected from the group consisting of H, halo, hydroxy, C₁-C₄ alkyl, C₁-C₄ alkoxy, -NHC(O)CH₃ and -O(C₁-C₄ alkyl)(C₅-C₆ heterocyclic) or R₇ and

R₈ together with the atoms to which they are attached form an optionally substituted C₅-C₆ aryl, wherein the aryl ring is optionally substituted with halo, C1-C4 alkyl, C1-C4 alkoxy, C1-

 C_4 alkyl(C_5 - C_6 aryl) and -O(C_1 - C_4 alkyl)(C_5 - C_6 heterocyclic);

R₁₀ is selected from the group consisting of H, halo, hydroxy, C₁-C₄ alkyl, C₁-C₄ alkoxy, and C₁-C₄ haloalkyl; and

 R_{11} is selected from the group consisting of H, halo, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 alkoxy and -CN.

The present invention is also directed to pharmaceutical compositions comprising the HIV inhibitory compounds of the present invention. More particularly, such compounds can be formulated as pharmaceutical compositions using standard pharmaceutically acceptable carriers, fillers, solublizing agents and stabilizers known to those skilled in the art. Pharmaceutical compositions comprising the present compounds are administered to an individual in need thereof by any number of routes including, but not limited to, topical, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In accordance with one embodiment, a method of treating HIV is provided. The method comprises the steps of administering a composition comprising an HIV inhibitory compound of the present invention to a patient in need thereof.

Example 1

Compounds were identified using a primary screening assay that involved the use of a cell line (5BD.1) that was continuously expressing HIV virus-like particles. To measure inhibition, supernatants containing HIV virus-like particles were obtained from the tissue culture assay described herein. The amount of HIV particles in the assay was then measured using the ELISA Assay that is also described below. The final ELISA data from the screening of approximately 40,000 compounds (commercially available from SPECS and BioSPECS, Rijswijk, The Netherlands) is shown in Figs 1A-I.

Compounds that reduced HIV particle formation by at least 50% as measured by these assays were screened further in the 3 and 6 point dose response assays and toxicity assays.

Primary Screening Assays

Tissue Culture Assay:

- 5BD.1 cells were passaged in 2 T225 flasks in medium (IMDM/10% FCS/0.2 mg/ml HygromycinB/1.5 mg/ml G418/0.05 mg/ml gentamycin). Cells were trypsinized and harvested from 2 90% confluent flasks with 28.4x106 cells recovered.
- 2. 4500 cells per well were plated into columns of tissue culture treated clear 384 well plates in 40 ul per well of medium.
- 3. The plate was placed into the incubator for one hour.
- 4. Compounds were diluted from 2 ul of 1 mM DMSO stocks in 384 well polypropylene plates by adding 38 ul per well of medium.
- 5. 10 ul of each diluted compound was transferred to the cell plates.
- 6. The plates were then incubated overnight for 16 hours.
- 7. In the morning of the next day the plates were aspirated on a plate washer.
- 8. 40 ul of fresh medium was added to each well followed by 10 ul of diluted as in step 5.
- 9. The plates were then incubated for 8 hours.
- 10. 25 ul of supernatant per well from all wells was added to the plates coated and blocked below as described in step 14 below.

p24 ELISA Assay

- 11. Dilute primary antibody to 4 ug/ml in DPBS without calcium and magnesium, add 25 ul per well of a 384 well Maxisorp plate, incubate overnight at 4oC.
- 12. Aspirate coating solution, block for 30-60 minutes with 100 ul ELISA buffer (4 mg/ml BSA, 0.01% Tween20 in DPBS without calcium and magnesium).
- 13. Wash plates 2X.
- 14. Add 25ul of supernatant from step 10 above.
- 15. Add 10 ul of a 1:250 dilution of biotinylated secondary antibody in 25% lysis buffer/ELISA buffer.
- 16. Incubate overnight in the refrigerator.
- 17. Wash plates 3X.

- 18. Add 25 uL/well of a 1:10,000 dilution of detection SA-HRP. Incubate at room temp for 30 minutes.
- 19. Wash plates 3X. Add 25 uL/well of TMB substrate solution to all wells and develop for approximately 5 minutes until blue.
- 20. Stop the reaction with 25 uL/well 0.18M sulfuric acid.
- 21. Read plate at 450nm.

Compounds that gave 50% reduction in optical density as measured by this assay were identified and selected in this manner. The structure of each of twelve of these compounds being claimed in this disclosure is shown in Fig 2. (192 were selected originally).

Dose Response Assays

Each of the 192 compounds were then subjected to a 3 point dose response assay using the cell line. 33 compounds scored positive in the three dose response and were then subjected to a 6 point dose response. The data from these assays for the 12 compounds being disclosed here are given in figures 3 and 4. The two assays were performed as follows:

3 and 6 point Dose Response Assays

Tissue Culture

- 1. 5BD.1 cells were carried in 2 T175 flasks in medium (IMDM/10% FCS/0.2 mg/ml HygromycinB/1.5 mg/ml G418/0.05 mg/ml gentamycin). Cells were trypsinized and harvested from a 90% confluent flask.
- 20,000 cells per well were plated into rows A-G of 8 tissue culture treated clear 96well plates in 135 ul per well of medium without G418 (assay medium). 135 ul of medium only was added to row H.
- 3. The plates were placed into the incubator for one hour.
- 4. Compounds were serially diluted 1:3 two times from 1 mM DMSO stocks in DMSO in 96 well polypropylene plates. 8 ul of the DMSO solutions were transferred to another plate and 72 ul of assay medium was added.
- 5. 15 ul of each diluted compound was transferred to the cell plates in duplicate with the high (10 uM final concentration in rows A-B, 3 uM concentration in rows C-D, 1 uM concentration in rows E-F and DMSO only in rows G-H).
- 6. The plates were then incubated overnight for 16 hours.
- 7. In the morning of the next day the medium was removed by hand from all wells.
- 8. 135 ul of fresh assay medium was added to each well followed by 15 ul of diluted compounds as described in step 5.
- 9. The plates were then incubated for 24 hours.
- 10. 50 ul of supernatant per well from all wells was harvested and added to the ELISA plates in step 15 below.

p24 ELISA Assay

- Dilute primary antibody to 4 ug/ml in DPBS without calcium and magnesium, add 50 ul per well of a 96 well Maxisorp plate, incubate overnight at 4oC.
- 12. Aspirate coating solution, block for 30-60 minutes with 200 ul ELISA buffer (4 mg/ml BSA, 0.01% Tween20 in DPBS without calcium and magnesium).
- 13. Wash plates 2X.
- 14. Add 50 ul of the supernatants from step 10 above.

- 15. Add 15 ul of a 1:750 dilution of biotinylated secondary antibody in 40% lysis buffer/ELISA buffer.
- 16. Incubate 2 hours room temp with shaking.
- 17. Wash plates 3X.
- 18. Add 50 uL/well of a 1:10,000 dilution of detection SA-HRP. Incubate at room temperature with shaking for 30 minutes.
- 19. Wash plates 3X. Add 50 uL/well of TMB substrate solution to all wells and develop for approximately 15 minutes until blue.
- 20. Stop the reaction with 50 uL/well 0.18M sulfuric acid.
- 21. Read plate at 450nm.

Toxicity Assays:

MTS-Assay

MTS-based toxicity assays were performed in parallel to the 3 and 6 point dose response assays. The assay uses MTS a tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS(b)] and an electron coupling reagent (phenazine ethosulfate; PES) and was performed according to the directions of its manufacturer Promega, Madison Wisconsin. (see attached protocol Technical Bulletin #245 from Promega). The MTS assay data for the 12 compounds disclosed here after two days of incubation with 5BD.1 cells are shown in figures 5 and 6 and after incubation for 5 days with MT-4 T cells are shown in Figure 7.

Example 2

Additional compounds suitable for use in accordance with the present invention are included on the following pages:

Message Name: 89246

Speks Name: AG-690/40701421

Chemical Name: 7-methoxy-1H-pyrazolo[3,4-b]quinolin-3-ylamine

Message Name: 91161

Speks Name: AP-501/40888738

Chemical Name: 2-chloro-N-(4-methylphenyl)-4-(trifluoromethyl)-1,3-thazole-5-carboxamide

Message Name: 103833

Speks Name: AE-848/34435011

Chemical Name: 3-amino-5-ethyl-4,6-dimethylthieno[2,3-b]pyridine-2-carboxamide

Message Name: 104366

Speks Name: AG-687/25019010

Chemical Name: 4-amino-6-methoxy-2-(trifluoromethyl)-3-quinolinecarbonitrile

Message Name: 107129

Speks Name: AC-907/25005415

Chemical Name:

Message Name: 107740

Speks Name: AF-399/40653810

Chemical Name: 3,6-dichloro-N-(3-methoxyphenyl)-4-pyridazinecarboxamide

89246 AG-690/40701421 AH-034/34961017

AH-283/08743005

AG-205/40649270

AG-205/41004335

91161 AP-501/40888738 AP-501/40804729

AP-501/40804757

AP-501/40888737

AP-501/42861930

AP-501/42861939

103833 AE-848/34435011 AE-641/15124054

AE-848/11105217

AE-848/34405027

AG-205/08592044

AG-205/11781740

AG-205/31312022

AG-205/33137032

AG-205/33139015

AG-205/33140013

AG-205/33156001

AG-205/33684025

AG-205/36992106

AG-690/13704140

AG-690/34037018

AH-262/34335029

AH-262/36083007

AK-777/11500050

AK-777/36935027

AK-968/37156085

AM-807/12740245

AM-807/13614287

AM-807/14147906

AM-807/42004022

AM-807/42860050

AN-329/05740035

AN-919/14791006

AO-799/42008042

AO-799/43115183

AQ-750/42052143

104366 AG-687/25019010

106904 AG-390/09686016 AE-641/30178019

AG-390/09686016

AG-690/09708030

AG-690/34152022

AO-476/40672158

AN-848/40633652

107129 AC-907/25005415 AC-907/25005415

AC-907/30063010

AC-907/34128001

AF-936/31262044

AG-670/33926007

AE-848/32726016

Al-942/42301997

AI-942/42301998

107740: AF-399/40653810 AF-399/40653811

AF-399/40653841

AF-399/40653842

AF-399/40653844

AF-399/40653847

AM-944/40947865

Rev Assay Description

The HIV-1 Rev assay is based upon the use of a reporter for detecting whether drug candidates are capable of inhibiting the function of the viral Rev protein. The reporter used for these assays is the Renilla Luciferase protein, which is an enzyme that produces detectable light when mixed with certain chemicals. For this assay, a cell line has been developed in which the production of the reporter by the cells requires the function of HIV-1 Rev. Therefore, if a drug candidate inhibits the function of Rev, it decreases the amount of the reporter produced by the cells. By using Renilla Luciferase as the reporter, the inhibition of Rev is easily detected as a decrease in the amount of light produced by the cells when mixed with the appropriate chemicals. Furthermore, the cell line for this assay has been engineered to use a second similar reporter (Firefly Luciferase) that detects whether drug candidates are toxic. By using this two reporter, or Dual-Luciferase, approach, compounds that specifically inhibit HIV-1 Rev can be identified. More detailed information about the assay is provided in the table below.

Parameter 2	HIV-1 Rev Assay
Assay Principal	HIV-1 Rev-dependent Luciferase reporter expression construct engineered into a stable cell line.
Reference for Assay Principal	Hope et al. (1990) Proc. Natl. Acad. Sci. USA 87:7787-7791.
Cell Line	HeLa (cervix; epithelial; adenocarcinoma)
Genetic Modifications	Stably integrated bicistronic expression construct for both the HIV-1 _{nm} Rev gene and Firefly Luciferase gene under the control of a single Tet-Off promoter, Stably integrated HIV-1 _{SF2} Rev-dependent Renilla Luciferase reporter expression construct for monitoring Rev function.
Cell Line Maintenance Media	DMEM supplemented with 10% Tet-Free FBS, L-Glutamine, Pen/Strep, Geneticin (G418), Hygromycin B and Puromycin.
Passage	Trypsonized and split 1:5 twice weekly; Fresh cells thawed from LN ₂ storage routinely to minimize loss of reporter gene expression upon serial passage.
Assay Media	DMEM supplemented with 10% Tet-Free FBS, L-Glutamine, Pen/Strep.
Standard Assay Conditions	 2x10⁴ cells/well; 96 well format. Drugs tested at 6 concentrations in triplicate assay wells. Cells and drug added to wells in 200 μL total volume. Plates incubated for 24 hours at 37°C in humidified 5% CO₂ atmosphere. Drugs/media removed, cells lysed and assayed for Dual-Luciferase^Φ reporter expression according to manufacturers kit instructions (Promega, Madison, WI).
Endpoint Detection	 Firefly Luciferase: luminescence (relative light units) for detection of Tat expression and compound cytotoxicity/non-specificity Renilla Luciferase: luminescence (relative light units) for detection of compound inhibition of Rev function
Assay Controls	 Doxycycline: turns off Tet-Off promoter to shut down both Firefly and Renilla Luciferase Expression and verify assay system functioning properly Leptomycin B: Positive control; inhibitor of hCRM1 mediated Rev nuclear export. Other positive controls: Currently being identified and tested.
Data Analysis	Calculations of compound efficacy for inhibiting Rev function as 50% inhibition of Renilla Luciferase (IC ₅₀), compound toxicity/non-specificity as 50% inhibition of Firefly Luciferase (TC ₅₀) and Therapeutic Index (TI = TC ₅₀ /IC ₅₀).

Compound Information

Compound	Stock Concentration Provided (mM)	High-Test Concentration Used (µM)
49611	25.4	63.5
73497	36.25	90.625
74377	16.7	41.75
74378	17.3	43.25
75168	10.7	26.75
89246	21.8	54.5
91161	15.8	39.5
103833	15.04	37.6
104366	31.8	79.5
107129	21.2	53.0
107740	11.7	29.25
109020	16.3	40.75

Compounds were tested using the maximum high-test concentration possible based on the supplied stocks. Compounds were prepared at a 2X high-test concentration by combining drug stock with tissue culture media at a ratio of 5 μ L of drug to 995 μ L of media. This 2X high-test sample was subsequently serially diluted in tissue culture media using ½-log dilutions. This series of 2X concentrated drug was subsequently diluted 1:1 by combining with an equal volume of cells in media in the 96-well plates used for the assay.

Results for Rekosh/Hammarskjöld Candidate Rev Inhibitors

Compound	: Setup Date	IC‰ (µM)	IC _{s6} (μΜ)	TC₃ (µM)	-/TT-/ (TC₅₀/IC₅₀)	Comments
49611	3/17/04	16.1	1.43	3.61	2.52	Activity parallels toxicity
73497	3/17/04	61.4	8.99	51.6	5.74	Activity parallels toxicity
74377	3/17/04	>41.8	11.2	>41.8	>3.73	Activity parallels toxicity
74378	3/17/04	>43.2	11.0	33.0	3.00	Activity parallels toxicity
75168	3/17/04	13.0	2.42	7.91	3.27	Activity parallels toxicity
89246	3/17/04	2.88	0.48	8.41	17.52	Specific anti-Rev activity
91161	3/17/04	27.0	9.73	>39.5	>4.06	Specific anti-Rev activity
103833	3/17/04	6.75	1.07	>37.6	>35.14	Specific anti-Rev activity
104366	3/17/04	7.67	2.24	17.2	7.68	Specific anti-Rev activity
107129	3/17/04	28.4	7.48	30.9	4.13	Specific anti-Rev activity
107740	3/17/04	22.2	8.00	18.5	2.31	Activity parallels toxicity
109020	3/17/04	32.5	8.98	>40.8	>4.54	Specific anti-Rev activity
Leptomycin B	3/17/04	0.0227	0.00822	0.0200	2.43	Control 1
Leptomycin B	3/17/04	0.0230	0.00817	0.0192	2.35	Control 2
Leptomycin B	3/17/04	0.0206	0.00776	0.0214	2.76	Control 3
Leptomycin B	3/17/04	0.0210	0.00752	0.0209	2.78	Control 4

NOTE: "Toxicity" in this assay reflects non-specific compound activity in the assay as demonstrated by a reduction in the Firefly Luciferase signal, which is Rev-independent. This does not necessarily correlate with cell killing.

ANTI-REV ACTIVITY: Renilla Luciferase Values (relative light units)							
(FM) 登	三次0.00	建筑0.20 学改聚	172 0.6 TAG	2 2 0 5 2 2	6.47	201201	63.535
*SAMPLE IN	0.1270	0.1340	0.1411	0.0662	0.0350	0.0075	0.0000
與SAMPLE2章		0.1127	0.0774	0.0440	0.0270	0.0085	0.0000
SAMPLE 31		0.1146	0.0830	0.0485	0.0432	0.0087	0.0000
年至MEANSE	0.1337	0.1205	0.1005	0.0529	0.0351	0.0083	0.0000
#X CONTROLS		90.1	75.2	39.6	26.2	6.2	0.0
#% STD DEV	8.2	8.8	26.4	8.8	6.1	0.5	0.0

TOXICITY: Firefly Luciferase Values (relative light units)							
☆CONC (μM)篷	0.00	公园0.20 名公	0.6	是 2.0 发生	6.45	20.1	63.5
SAMPLE	17.0550	12.2300	12.4700	8.3400	5.5700	2.4840	1.9340
SAMPLE 2		16.3600	13.9700	9.8200	5.9910	3.7490	2.8670
SAMPLE 3		16.7800	14.7000	9.8300	6.3400	4.4800	3.0250
WEAN WE		15.1233	13.7133	9.3300	5.9670	3.5710	2.6087
\$%;CONTROL®	100.0	99.3	90.0	61.2	39.2	23.4	17.1
3% STD DEV	14.5	16.5	7.5	5.6	2.5	6.6	3.9

-#.1C50 (μM) ≡1.43 .	
(pM)≡1641	

	TC50	(Mu)	≡3.6	i 💮
Į, j	C90 (μM)	>63	5

T150	€ 2.52	
T 190	>39	48

3277	THE RESERVE OF THE PARTY OF THE	W	THE PARTY CANADA THE PARTY OF THE	PROTECTION CONTRACTOR OF THE PROTECTION OF THE P
75577	ox Renil			
100000000000000000000000000000000000000	oxerenii	au onin	11 S = 21 1 7 T	JUL 3102 42
0222				
- Sec. 1 25 April 1			the state of the s	Carried March 1981
100	1000	AND DESCRIPTION AND DESCRIPTIO	Shows a Grand Ch	
W444-1-	ox Firefi			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MY::HIPOTII	KINDOW	VIEW-1015	
		racounc	ルボニックノッコ	111111111111111111111111111111111111111
1000	TO STREET STREET, STRE	A COMPANY OF PARTY		

Client: Rekosh/Hammarskjöld

Contract: IR&D Project: 1085 HIV-1 Rev Assay Southern Research Institute

ANTI-REV ACTIVITY: Renilla Luciferase Values (relative light units)							
强CONC (PM) 律	2000元章	学是0.29 文建	F-10.9	经第29票款	8 1 9 1 V	联进28 才表现	90.6
ESAMPLE JE		0.1665	0.1428	0.1422	0.0764	0.0299	0.0038
DSAMPLE 25		0.1412	0.1583	0.1158	0.0710	0.0303	0.0048
SAMPLE 3		0.1983	0.1599	0.0896	0.0520	0.0332	0.0041
MEAN ACT	0.1337	0.1687	0.1537	0.1159	0.0665	0.0312	0.0043
%,CONTROL	100.0	126.1	114.9	86.7	49.7	. 23.3	3.2
表%STD.DEV	8.2	21.4	7.1	19.7	9.6	1.3	0.4

TOXICITY: Firefly Luciferase Values (relative light units)							
意CONC (PM) 强	4 0.00 kg	後之0.29表	0.9	2.9	9.12.92	28.7	90.6
SAMPLE	17.0550	17.7000	17.2100	17.0700	12.6400	8.1500	7.1740
SAMPLE 2		17.3200	18.7900	16.4400	12.3300	8.0600	7. 3 930
SAMPLE 3		17.4900	18.2800	16.1800	11.7100	8.2100	6.7830
会 生MEAN 認定	15.2350	17.5033	18.0933	16.5633	12.2267	8.1400	7.1167
SK CONTROL	100.0	114.9	118.8	108.7	80.3	53.4	46.7
%STD DEV	14.5	1.2	5.3	3.0	3.1	0.5	2.0

(IW) = 014	==(Can((hw))=>a(Can()	
© (C90 (ÚM) ≡ 61.4	© 7 000/ (/W)=≥90.6	
¹⁹ (IC50 (µM) ≡ 8.99)	TC50 (μM) ≡ 51:6≒	

&Ti90 =>1.48 Renilla\Background = 0.0003

Dox Renilla Control = 0:0295

Renilla Background = 0:0003; Firefly, Background = 0:0002

Client: Rekosh/Hammarskjöld

Contract: IR&D Project: 1085 HIV-1 Rev Assay Southern Research Institute

ANTI-REV ACTIVITY: Renilla Luciferase Values (relative light units)									
きCONC (pm)電	20.00%医胃	隐藏0.13 重新	美型菜0 次型套	HERIOTER	49TV42TEE	編3413.2	325418		
學SAMPLE对定		0.1255	0.1717	0.1323	0.0903	0.0613	0.0249		
SAMPLE 2		0.1706	0.1213	0.1207	0.1012	0.0702	0.0427		
SAMPLE 3		0.1547	0.1396	0.1623	0.1281	0.0495	0.0488		
SAXMEAN 完整	0.1337	0.1503	0.1442	0.1385	0.1066	0.0604	0.0388		
% CONTROL	100.0	112.4	107.9	103.5	79.7	45.1	29.0		
%STD DEV	8.2	17.1	19.1	16.1	14.5	7.8	9.3		

TOXICITY: Firefly Luciferase Values (relative light units)								
真CONC (μM) 語		0.13	6520426計	和公司 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	45 42	经13.2 完整	41.8	
SAMPLE 1€		18.6500	19.1400	16.8100	14.9300	10.5400	9.6000	
SAMPLE 2		17.3200	18.5500	17.5500	15.0500	11.1300	9.0400	
ASAMPLE 35		17.7400	18.3300	16.6900	14.7500	10.6300	8.9200	
THE MEAN THE	15.2350	17.9033	18.6733	17.0167	14.9100	10.7667	9.1867	
\$% CONTROL®	100.0	117.5	122.6	111.7	97.9	70.7	60.3	
%STD.DEV	14.5	4.5	2.7	3.1	1.0	2.1	2.4	

The state of the s				****			_
IC50 (μM) = 11.2 (C90 (μM) = 541.8		ТС50 (µМ 4ТС90 (µМ)=>41.8 ==)=>41.8 ==		9150 190	>3.73 ≘N/A	_
Dox: Renilla Control	0.0295			Renilla	Background :=	0.0003	

	Dox Renilla Dox Eirefly	Control	= 0.0295 = 2.5100	The state of the s
Į,				ė

Client: Rekosh/Hammarskjöld

Contract: IR&D Project: 1085 HIV-1 Rev Assay Southern Research Institute

ANTI-REV ACTIVITY: Renilla Luciferase Values (relative light units)									
雲CONC (μ̄M) 注	0.00	劳第0.14.3 533	旅游至074系统	新港的 3年時	\$2543 M	### 13.7 # 13	210(33)		
製SAMPLE可能	0.1270	0.1353	0.1485	0.1759	0.0998	0.0447	0.0548		
想SAMPLE 2以		0.1560	0.1556	0.1356	0.0968	0.0669	0.0357		
SAMPLE		0.1338	0.1398	0.1136	0.0978	0.0665	0.0268		
MEAN		0.1417	0.1480	0.1417	0.0982	0.0594	0.0391		
% CONTROL	1	106.0	110.7	106.0	73.4	44.4	29.3		
%STD DEV进	8.2	9.3	5.9	23.6	1.1	9.5	10.7		

TOXICITY: Firefly Luciferase Values (relative light units)									
CONC (µM)		A 0.14	建筑0.4 高层	製造12等時	3 43	\$27013772E	43.3		
SAMPLE	17.0550	16.7000	16.4400	15.8800	13.8500	9.6100	7.6500		
怎SAMPLE 2 另		17.4600	15.8500	14.4800	13.9400	9.7800	7.6700		
#SAMPLE 3		16.5100	14.7500	10.4700	12.7000	8.4600	5.9900		
MEAN TA	15.2350	16.8900	15.6800	13.6100	13.4967	9.2833	7.1033		
SKICONTROLE		110.9	102.9	89.3	88.6	60.9	46.6		
%STD DEV	14.5	3.3	5.6	18.4	4.5	4.7	6.3		

, == IC50 (μM) = 11.02 · · ·	
#£2IG90 (µM) ≡>432	

.: TC50 (μM) =33.0 TC90 (μM) =>43.2 - -

1	Doy Repilla Controls 0.0005	
1	Dox Renilla Control 0.0295 Dox Firefly Control 25100	17.6
	Dova Eirofly Confine - 2 F100	
1	POX TIME BY COMOUNT ZO 1003	

Renilla Background \$\infty\$ 0.0003 \times Firefly Background \$\infty\$ 0.0002 \times

Client: Rekosh/Hammarskjöld

Contract: IR&D Project: 1085 HIV-1 Rev Assay Southern Research Institute

	ANTI-R	EV ACTIVITY:	Renilla Luci	iferase Values	(relative ligh	nt units)	
CONC (µM)	20.00定数	M.E0.08	10.03 图 10.00 10.0	**************************************	277	G7685752	26.8
MSAMPLEが記	0.1140	0.1202	0.0981	0.0772	0.0502	0.0225	0.0000
SAMPLE 2 W	0.1219	0.1361	0.1336	0.1120	0.0486	0.0166	0.0000
SAMPLES	0.1300	0.1195	0.1310	0.1165	0.0723	0.0195	0.0000
SE MEAN ES	0.1220	0.1253	0.1209	0.1019	0.0571	0.0196	0.0000
EXICONTROL	100.0	102.7	99.1	83.6	46.8	16.0	0.0
\$% STD DEV	6.6	7.7	16.2	17.6	10.9	2.4	0.0
		OXICITY: Fire					
夏CONC (pm)型	0.00	© 0.08 ±±	20.3 主节	\$ 20.8 € ¥	27	8.5	126.8 ≠ 1
SAMPLE 1	14.6240	17.2690	15.8690	14.2690	10.7490	7.5320	5.9110

17.2690 16.9490	15.8690 17.6090	14.2690	10.7490	7.5320	5.9110
17.2690	15.8690	14.2690			
16.9490	17 6090				
	11.0000	14.6490	11.0390	6.8760	4.6100
18.1990	17.8590	15.4290	10.4790	6.8060	5.3360
17.4723	17.1123	14.7823	10.7557	7.0713	5.2857
119.9	117.4	101.4	73.8	48.5	36.3
4.5	7.4	4.1	1.9	2.7	4.5
	17.4723 119.9	17.4723 17.1123 119.9 117.4	17.4723 17.1123 14.7823 119.9 117.4 101.4	17.4723 17.1123 14.7823 10.7557 119.9 117.4 101.4 73.8	17.4723 17.1123 14.7823 10.7557 7.0713 119.9 117.4 101.4 73.8 48.5

9)	50 (µM) = 2.4	2
ic P	90 (µM)≘13	Ó,

Į į	C50	(µM)	E 7	91	N.
Ţ	C90 (μM)	≣ ≥2	6.8	

T.	题	50	3.2	7	
	Ť	30 =	>2(6	

Dox Renilla Contro iDox Firefly Contro	-0.000
The state of the s	(UZO41-
	The second
Landox Firelly Como	是2.4610定
	THE REPORT OF THE PARTY AND ADDRESS.

Client: Rekosh/Hammarskjöld

Contract: IR&D Project: 1085 HIV-1 Rev Assay Southern Research Institute

ANTI-REV ACTIVITY: Renilla Luciferase Values (relative light units)							
更CONC (µM)	经表0.00 美雄	建築0.17 建造	\$2.0.5 Tax	起或白果醬	SC#25.57	数 数 172 第 2	建築54.5 高語
MSAMPLE 1	0.1140	0.1060	0.0513	0.0178	0.0000	0.0000	0.0000
€SAMPLE2		0.0911	0.0636	0.0298	0.0000	0.0000	0.0000
SAMPLES	0.1300	0.1106	0.0513	0.0183	0.0000	0.0000	0.0000
SEMEAN	0.1220	0.1026	0.0554	0.0220	0.0000	0.0000	0.0000
SK"CONTROL	100.0	84.1	45.4	18.0	0.0	0.0	0.0
% STD DEV	6.6	8.4	5.8	5.6	0.0	0.0	0.0

TOXICITY: Firefly Luciferase Values (relative light units)							
₩CONC (μM)	0.00	(当20.17)	0.5	\$1.7.865A	/6/56 5.5 € 66 €	(新夏17.2 美 多	54.5
SAMPLE 1	14.6240	14.7090	12.3290	11.8090	8.5890	5.8900	1.4300
SAMPLE 2		13.6290	11.7390	11.4290	8.2390	5.7910	1.3820
#SAMPLE3	14.4240	14.4390	11.1490	11.2390	7.8690	5.4750	1.1120
MEAN SO	14.5723	14.2590	11.7390	11.4923	8.2323	5.7187	1.3080
S% CONTROLS	100.0	97.8	80.6	78.9	56.5	39.2	9.0
STD DEV	0.9	3.9	4.0	2.0	2.5	1.5	1.2
		•					

= I C 50 (μM) = 0.48 <	, TC50 (μM) ≡
// (IC90 (µM) =2.88	TC90 (μM)≔

T150 = 17/52 (T190 = 18/19)

Dox Ren	lla Control	0 0284
		(1) FILE (2)
Dox Fire	fly Control	= 24610
The state of the s	er a become and the	

Renilla Background = 0.0003 Firefly: Background = 0.0001

Client: Rekosh/Hammarskjöld

Contract: IR&D Project: 1085 HIV-1 Rev Assay Southern Research Institute

ANTI-REV ACTIVITY: Renilla Luciferase Values (relative light units)							
ECONC (PM)	第一位0.00	基础0.12至19	基础 0.4 2 接 更	1251254	32440 TA	###12.5 #5##	30'5 25
例のAMPLEは説	0.1140	0.1191	0.1498	0.1664	0.1668	0.0384	0.0000
#ISAMPLE2第		0.1642	0.1256	0.1832	0.1378	0.0430	0.0000
#SAMPLE3		0.1402	0.1752	0.1426	0.1375	0.0298	0.0000
MEAN	0.1220	0.1412	0.1502	0.1641	0.1474	0.0371	0.0000
**CONTROL		115.8	123.2	134.5	120.8	30.4	0.0
後%STD DEV為	6.6	18.5	20.3	16.7	13.8	5.5	0.0
TOXICITY: Firefly Luciferase Values (relative light units)							

TOXICITY: Firefly Luciferase Values (relative light units)							
CONC (µM)	。 差0.00	0.12	30.4 公司	12	4.0	12.5	395 55
SESAMPLE知识	14.6240	16.7690	16.9890	17.8990	17.1690	21.0890	7.6990
SAMPLE 2		16.6990	16.0990	16.5690	16.2290	20.2890	7.0500
\$ISAMPLE 3		15.7190	15.6790	16.1190	16.1190	19.6990	7.7590
MEAN SE		16.3957	16.2557	16.8623	16.5057	20.3590	7.5027
WICONTROL 男		112.5	111.6	115.7	113.3	139.7	51.5
X STD DEV	0.9	4.0	4.6	6.4	4.0	4.8	2.7

LIC	50 (µM)	≣9.73
	ก็กัน	27:0
		発売表

TC50 (µM) =>39.5 TC90 (µM) =>39.5 1150=×106 190=×1/46

Dox Renilla Control = 0.0284	
Dox Firefly Control = 2 4610	

Renilla Background = 0:0003 Firefly Background = 0:0001

Client: Rekosh/Hammarskjöld

Contract: IR&D Project: 1085 HIV-1 Rev Assay
Southern Research Institute

0.00	294012 E	AREA CONT. PLANTER TO				
	CHERON CONTRACTOR	被正在07万万	起車12萬線	14 33 8 14 E	联级109至 卫	建筑37/6里层 3
0.1140	0.1570	0.1322	0.0554	0.0244	0.0016	0.0000
0.1219	0.1290	0.1080	0.0602	0.0228	0.0035	0.0000
0.1300	0.1262	0.0967	0.0518	0.0215	0.0004	0.0000
0.1220	0.1374	0.1123	0.0558	0.0229	0.0019	0.0000
100.0	112.7	92.1	45.8	18.8	1.5	0.0
6.6	14.0	14.9	3.5	1.2	1.3	0.0
	0.1219 0.1300 0.1220 100.0	0.1219 0.1290 0.1300 0.1262 0.1220 0.1374 100.0 112.7	0.1219 0.1290 0.1080 0.1300 0.1262 0.0967 0.1220 0.1374 0.1123 100.0 112.7 92.1	0.1219 0.1290 0.1080 0.0602 0.1300 0.1262 0.0967 0.0518 0.1220 0.1374 0.1123 0.0558 100.0 112.7 92.1 45.8	0.1219 0.1290 0.1080 0.0602 0.0228 0.1300 0.1262 0.0967 0.0518 0.0215 0.1220 0.1374 0.1123 0.0558 0.0229 100.0 112.7 92.1 45.8 18.8	0.1219 0.1290 0.1080 0.0602 0.0228 0.0035 0.1300 0.1262 0.0967 0.0518 0.0215 0.0004 0.1220 0.1374 0.1123 0.0558 0.0229 0.0019 100.0 112.7 92.1 45.8 18.8 1.5

TOXICITY: Firefly Luciferase Values (relative light units)									
CONC (µM)	0.00	0.12	# k = 0.4	是 911.2 定。	3.8	11.9	37.6		
SAMPLE 1	14.6240	13.8990	11.4690	10.1290	8.6890	7.9690	6.3870		
SAMPLE 2		13.2590	11.7290	9.9690	8.7790	7.6190	7.8590		
SAMPLE'3		12.8890	11.4090	9.4990	8.2090	8.0390	7.6190		
SE MEAN ES	14.5723	13.3490	11.5357	9.8657	8.5590	7.8757	7.2883		
#XICONTROL#	100.0	91.6	79.2	67.7	58.7	54.0	50.0		
E%STD DEV	0.9	3.5	1.2	2.2	2.1	1.5	5.4		

					1	V
IC50 (µM) = 1:07		: Τ C 50 (μΝ	day kasasa day.		Sales peralessa	
Dox Renilla Control =	0:0284	- I C90 (μλ	1)=>37.6	Rénilla l	ackground	≡≥5.57/ ≡ 0.0003

Dox Renilla Control = 0.0284

Dox Firefly Control = 2.4610

INHIBITION OF HIV-1 REV BY COMPOUND 103833 140 140 120 120 PERCENT OF CONTROL 100 100 80 80 60 60 40 40 20 20 0.00 0.12 0.4 1.2 3.8 11.9 37.6 CONCENTRATION (µM) Rev Activity - Toxicity

Client: Rekosh/Hammarskjöld

Contract: IR&D Project: 1085 HIV-1 Rev Assay Southern Research Institute

ANTI-REV ACTIVITY: Renilla Luciferase Values (relative light units)									
家CONC(PM) 質	经 差0.002360	表现0.25 建氯	全点50.8至7里	25 A Car	217.97.97E	3022251325	381379 Kings		
数SAMPLEST接	0.1452	0.1004	0.0973	0.0516	0.0059	0.0000	0.0000		
第SAMPLE 2第		0.1347	0.1403	0.0811	0.0190	0.0000	0.0000		
题SAMPLE多形		0.1450	0.1126	0.0785	0.0147	0.0000	0.0000		
MEAN 2%		0.1267	0.1167	0.0704	0.0132	0.0000	0.0000		
EX CONTROLS		84.5	77.8	46.9	8.8	0.0	0.0		
12% STD DEV	8.8	15.6	14.5	10.9	4.5	0.0	0.0		

TOXICITY: Firefly Luciferase Values (relative light units)								
≅CONC (μM) ∰	0.00	基準0.25 消息	.0.8	2.5	7.9		79.5	
SAMPLEA	14.7155	15.0805	15.4105	13.1405	12.4105	5.0215	0.0000	
SAMPLE 2		17.0805	15.1605	14.4505	12.9905	4.8665	0.0000	
SAMPLE 3		17.7505	16.3305	14.1805	12.3605	5.2375	0.0000	
GAMEAN 基金		16.6372	15.6338	13.9238	12.5872	5.0418	0.0000	
&%:CONTROL®		110.7	104.0	92.6	83.7	33.5	0.0	
% STO DEV	2.6	9.2	4.1	4.6	2.3	1.2	0.0	
** (C50) (µ)	/l) ≡ 2.24\$		TC50 (iii	VN = 17-2		200		

10.5	
	ic90 (μM) ≡7.67
53553	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSON NA
785E	TOTAL CONTROL OF THE PARTY OF T

TC50 (μM) ≡ 17:2	
TC90 (µM) ≡ 56.4	TO WELL

TI50 ≡	7:68	
T 90'≡	7:35	

Dox Renilla Control = 0.0255
Dox Firefly Control = 2:1195

Client: Rekosh/Hammarskjöld

Contract: IR&D Project: 1085 HIV-1 Rev Assay Southern Research Institute

ANTI-REV ACTIVITY: Renilla Luciferase Values (relative light units)									
章CONC (PM) 含	5550.00 高麗	2017E	科型0.5万里	医数型加速	1230 5.3 E.S.	5 16.8 E	25553.0 TO		
ESSAMPLE 16等	_ 0.1452	0.1917	0.1264	0.1527	0.1017	0.0454	0.0000		
签SAMPLE 2等		0.1151	0.1294	0.1384	0.0961	0.0193	0.0000		
#SAMPLE 3		0.1607	0.1318	0.1558	0.0877	0.0184	0.0000		
MEAN		0.1558	0.1292	0.1490	0.0952	0.0277	0.0000		
##CONTROL®		103.9	86.1	99.3	63.5	18.5	0.0		
%STD DEV	8.8	25.7	1.8	6.2	4.7	10.2	0.0		

TOXICITY: Firefly Luciferase Values (relative light units)									
€СОИС (µм)	0.00	李仙位0.17-3 5.55	0.5	\$3051.7US	5.3 13.95	16.8	442 53 0 CEST		
愛SAMPLE 如您	14.7155	18.0605	15.3305	17.2605	19.5005	17.1105	0.0000		
SAMPLE 2		15.5205	16.4605	17.2705	17.9805	15.6405	0.0000		
SAMPLE 3		17.1105	16.2105	17.4505	18.2105	15.2705	0.0000		
推議 MEAN 登場		16.8972	16.0005	17.3272	18.5638	16.0072	0.0000		
*CONTROL!		112.4	106.4	115.3	123.5	106.5	0.0		
%STD DEV	2.6	8.5	3.9	0.7	5.4	6.5	0.0		

(C50 (μM) ≡ 7.48 = 4	TC50.(µM) = 30.9
C90)(µM)=28.4	TC90(pM)≡47/6

7150=413 74 T190=1.68

Dox Renilla Control = 0.0255 Dox Firefly (Control = 2.1195 = 2.

Renilla Background = 0 0004 s. Lirefly Background = 0 0006 by

Client: Rekosh/Hammarskjöld

Contract: IR&D Project: 1085 HIV-1 Rev Assay Southern Research Institute

ANTI-REV ACTIVITY: Renilla Luciferase Values (relative light units)									
膜CONC (μM) 注	是第0.00	#E-0.09	20 3 % ES	910.91	21.6.292.7	£2592 FF	12.029.3 XIVE		
STSAMPLE 132	0.1392	0.1477	0.1956	0.1849	0.1485	0.0571	0.0000		
SAMPLE 2		0.1290	0.1582	0.1421	0.1121	0.0478	0.0000		
SAMPLE 3		0.0999	0.1478	0.1717	0.1579	0.0620	0.0000		
MEAN		0.1256	0.1672	0.1663	0.1395	0.0557	0.0000		
SK CONTROL		94.8	126.3	125.6	105.4	42.0	0.0		
%STD DEV	4.5	18.2	19.0	16.6	18.3	5.4	0.0		

	TOXICITY: Firefly Luciferase Values (relative light units)							
∰CONC (μM) ⅓	(4) (0.00 美麗	2	集03 3000	美。0.9	○ 1029	9.2	29.3	
SAMPLE 1	14.1198	10.6248	14.9548	15.4148	15.0048	12.2348	3.6738	
SAMPLE 2		16.8848	18.2748	18.2548	16.9148	12.1048	4.1198	
ESAMPLE 3		16.2848	16.5248	17.9148	17.5348	12.1548	3.9238	
MEAN EX		14.5982	16.5848	17.1948	16.4848	12.1648	3.9058	
學》(CONTROL)		101.7	115.6	119.8	114.9	84.8	27.2	
X STD DEV	1.5	24.1	11.6	10.8	9.2	0.5	1.6	

IC50 (µM) ≡ 8.00
1C90 (µM)≡22.2. ⊬

TC50 (µM) = 18:5 (= 1 TC90 (µM) = >29.2 = 1

	Dox Renilla Control 0.0303
	Established Control Science Control Control Science Control Control Science Control Co
	Toy Fire Committee to a control
ľ	数数を終わり入意にはCIIVをCOIIIIO 第三次 1115 / 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ı	
- 1	

Renilla Background = 0.0004:--:
#2-- Firefly-Background = 0.0008; #2

Client: Rekosh/Hammarskjöld

Contract: IR&D Project: 1085 HIV-1 Rev Assay Southern Research Institute

ANTI-REV ACTIVITY: Renilla Luciferase Values (relative light units)							
裁CONC (μμ)意		多篇0.13 图数					40 8 3
至SAMPLE 4至	0.1392	0.1049	0.1391	0.1295	0.1050	0.0504	0.0000
ESAMPLE 21		0.1471	0.1397	0.1221	0.0778	0.0469	0.0085
#SAMPLE 3		0.1242	0.1421	0.1347	0.1055	0.0603	0.0025
PARMEAN ES		0.1254	0.1403	0.1288	0.0961	0.0526	0.0037
©% CONTROL®		94.7	106.0	97.3	72.6	39.7	2.8
#%STD DEV	4.5	16.0	1.2	4.8	12.0	5.2	3.3

TOXICITY: Firefly Luciferase Values (relative light units)							
CONC (hw)	0.00	£5.0.13.232	0.4	A 13 13 24	25-2417/65	12'9	40.8
在SAMPLE 13	14.1198	16.7448	17.7248	18.1848	19.2348	20.9648	18.0148
SAMPLE 2		14.2148	16.0648	17.1448	18.6248	21.2948	18.4048
SAMPLE 3		16.2648	17.0048	17.5648	19.8748	21.2948	18.4148
は MEAN 語説		15.7415	16.9315	17.6315	19.2448	21.1848	18.2782
\$% CONTROL		109.7	118.0	122.9	134.1	147.6	127.4
E%STD DEVE	1.5	9.4	5.8	3.6	4.4	1.3	1.6

E (C90 (µM) = 32:5	TC90
Dox Renilla Control € 0.0303	

≥IC50 (μM) = 8.98

ETI90 ≡ >1726
ALBERTA AND THE STATE OF THE ST

SERVICE STATES

Renil	la Backo y₌Backo	briuoni	0.000	4
Firefl	y Backo	round.	0.000	8 4

Client: Rekosh/Hammarskjöld

Contract: IR&D Project: 1085 HIV-1 Rev Assay Southern Research Institute

	ANTI-REV ACTIVITY: Renilla Luciferase Values (relative light units)						
	经产0.00 军制	型长0.32 图为	集型的0世里	表 32 0 英	10.0 M	422331.6 TOTAL	100.0
ESAMPLE Y監		0.1365	0.1476	0.1637	0.0539	0.0000	0.0000
SAMPLE 2	0.1398	0.1336	0.1764	0.2041	0.0445	0.0000	0.0000
SAMPLE 3	0.1650	0.1399	0.1574	0.1933	0.0577	0.0000	0.0000
MEAN	0.1500	0.1367	0.1605	0.1870	0.0520	0.0000	0.0000
% CONTROL	100.0	91.1	107.0	124.7	34.7	0.0	0.0
E% STD DEV 是	8.8	2.1	9.8	13.9	4.5	0.0	0.0
TOXICITY: Firefly Luciferase Values (relative light units)							
CONC (nm)		0.32	1.0	存終第3.2.2 課題	10.0	V 31.6 E	100.0
ESAMPLE		15.5305	15.8305	16.3305	15.0005	2.6545	0.4875
SAMPLE 2		15.5305	15.4205	15.4805	15.6705	2.7455	0.5335
SAMPLE 3		13.7705	15.2905	15.5305	14.6205	2.1725	0.4735
MEAN 教徒		14.9438	15.5138	15.7805	15.0972	2.5242	0.4982
*CONTROL	100.0	99.4	103.2	105.0	100.4	16.8	3.3
%STD DEV	2.6	6.8	1.9	3.2	3.5	2.0	0.2
1050 (nl	VI)≔8:22:		TC50 (n	M)≡20:0 -√		7150	∋2/43 =
LC90)(ñI	VI) = 22.7		TC90 (n	M))≡56.5		, TIPO	249
	nilla Control ⊨ efly Control ⊨					Backgrounds	40000

Client: Rekosh/Hammarskjöld

Contract: IR&D Project: 1085 HIV-1 Rev Assay Southern Research Institute

ECONC (nm)	0.00	55 0.32 V	語館のは影響	第二章32 扩张	进步0.0 0元	316 英文	100.0
ISAMPLE 計算	0.1452	0.1345	0.1531	0.1800	0.0644	0.0004	0.0000
SAMPLE 2		0.1368	0.1433	0.1603	0.0403	0.0000	0.0000
SAMPLES		0.1627	0.1415	0.1832	0.0565	0.0000	0.0000
MEAN	0.1500	0.1447	0.1460	0.1745	0.0537	0.0001	0.0000
% CONTROL	100.0	96.5	97.3	116.3	35.8	0.1	0.0
% STD DEV	8.8	10.4	4.2	8.3	8.2	0.2	0.0

	TOXICITY: Firefly Luciferase Values (relative light units)						
CONC (nm)	0.00	0.32	1.0	11 132 14 S	10.0	F 45 31 6 25 5	100.0
数SAMPLE 1 宝		14.0305	15.0105	15.3005	14.2305	2.9095	0.4055
SAMPLE 2		13.7705	14.8205	13.0905	12.3305	3.6635_	0.6475
表SAMPLE 3美		11.1805	13.9505	14.0605	12.6805	3.2605	0.5905
被MEAN 等	15.0338	12.9938	14.5938	14.1505	13.0805	3.2778	0.5478
學《CONTROL图		86.4	97.1	94.1	87.0	21.8	3.6
X STD DEV	2.6	10.5	3.8	7.4	6.7	2.5	0.8

1C50 (nM)	⊜8:17
第IC90 (nM)	≡23:0 .

. €1C50 (nM) ≡19.2 . €1C90 (nM) ≡66:8

150≡235 190≌290

A STATE OF THE PARTY OF THE PAR	A CONTRACTOR OF THE PARTY OF	CONTRACTOR CONTRACTOR CONTRACTOR	20000
Dox Rer			
I WESTERN MAKE	11112:11:00tm):		4.45
			W-64-77
THE PARTY OF THE P	the same of the sa	The state of the second principle of the second	ST 0000
		The second second second	20.00
AT INVESTIGATION OF THE PARTY O	atedes, but marked a state of the		22.2
Agreement and a second	and the state of t		
Dox: Fire		**************************************	100
			77. 4
The state of the s	Company of the second s		57.74

Renilla Background © 0.0004
Firefly Background © 0:0006

Client: Rekosh/Hammarskjöld

Contract: IR&D Project: 1085 HIV-1 Rev Assay
Southern Research Institute

ANTI-REV ACTIVITY: Renilla Luciferase Values (relative light units)									
F 20.00	25.0.32 TAB	35.21.0	推正13.2	274 10:02 NE	1	100.0			
0.1392	0.1237	0.2036	0.2014	0.0289	0.0000	0.0000			
0.1280	0.1333	0.1558	0.1592	0.0442	0.0000	0.0000			
0.1301	0.1202	0.1685	0.1638	0.0335	0.0000	0.0000			
0.1324	0.1258	0.1760	0.1748	0.0356	0.0000	0.0000			
100.0	95.0	132.9	132.0	26.8	0.0	0.0			
4.5	5.1	18.7	17.5	5.9	0.0	0.0			
	0.1392 0.1280 0.1301 0.1324 100.0	0.00 32 0.1392 0.1237 0.1280 0.1333 0.1301 0.1202 0.1324 0.1258 100.0 95.0	0.00 2 0.32 1.0 0.1392 0.1237 0.2036 0.1280 0.1333 0.1558 0.1301 0.1202 0.1685 0.1324 0.1258 0.1760 100.0 95.0 132.9	0.00 2 0.32 3.2 0.1392 0.1237 0.2036 0.2014 0.1280 0.1333 0.1558 0.1592 0.1301 0.1202 0.1685 0.1638 0.1324 0.1258 0.1760 0.1748 100.0 95.0 132.9 132.0	0.00 20.32 3.10 3.2 3.10 3.2 3.10 3.2 3.10 3.2 3.10 3.2 3.10 3.2 3.10 3.2 3.10 3.2 3.10 3.2	0.00 2 10 32 32 3 10 32 <t< td=""></t<>			

	TOXICITY: Firefly Luciferase Values (relative light units)									
CONC (nM)	(10.00)	0.32	1.0	#£3285	10.0	#22316FR	100.0			
SAMPLE 13		15.3348	16.9848	17.7048	15.5848	3.2068	0.6368			
SAMPLE 2		15.4748	17.4348	17.3248	15.4348	2.6648	0.4548			
SAMPLE 3		15.0548	16.9448	16.1448	15.6948	2.6478	0.6728			
EXEMEAN EX		15.2882	17.1215	17.0582	15.5715	2.8398	0.5882			
%(CONTROL		106.5	119.3	118.9	108.5	19.8	4.1			
%STD DEV	1.5	1.5	1.9	5.7	0.9	2.2	0.8			

(rM)≡776	
== IC90 (nM) ≡20.5	H,

TC50 (nM) = 21.4	
TC90 (nM) ≡ 64.9 ≡	

T150	276
T190	3.15

Dox Renilla Control = 0.0303 = Dox Firefly Control = 2.0152

Client: Rekosh/Hammarskjöld

Contract: IR&D Project: 1085 HIV-1 Rev Assay
Southern Research Institute

ANTI-REV ACTIVITY: Renilla Luciferase Values (relative light units)									
ONC (ñM)€	元本0.00	建 第10.321年最	20101年	##327FE	30.6410.0 克莱克	2016	100.0		
ESAMPLE 1	0.1392	0 .1300	0.1854	0.1848	0.0460	0.0000	0.0000		
SAMPLE 2		0.1432	0.1675	0.1474	0.0437	0.0000	0.0000		
WSAMPLE 3		0.1794	0.1781	0.1294	0.0224	0.0000	0.0000		
智思MEAN 理整	0.1324	0 .1509	0.1770	0.1539	0.0374	0.0000	0.0000		
CONTROL	100.0	113.9	133.7	116.2	28.2	0.0	0.0		
% STD DEV	4.5	19.3	6.8	21.3	9.8	0.0	0.0		

TOXICITY: Firefly Luciferase Values (relative light units)									
CONC (nM)	0.00	. 2 0.32	1.02	美国第32 [16]	10.0 × 2	24 0/31:69	100.0		
SAMPLE 130		14.9748	16.3648	17.0948	15.5248	2.8948	0.4688		
SAMPLE 2		15,1348	16.4948	16.0648	14.2248	3.0558	0.5468		
SAMPLE3		16.2048	16.7548	14.1348	14.0648	3.0888	0.7958		
造設MEAN 機能	14.3498	15.4382	16.5382	15.7648	14.6048	3.0132	0.6038		
数CONTROL	100.0	107.6	115.2	109.9	101.8	21.0	4.2		
%STD DEV	1.5	4.7	1.4	10.5	5.6	0.7	1.2		

#Webin'r	EAW	1.5	4./	1.4	10.5	5.6	0.7	1.2
SIC5	0 (nM))=	7.52	, <u>-</u> .	TG50(nl	VI)≡20i9		ं ता50	278
ic9	0 (nM))∈	21.0		TC90 (ni	M)≡67:2		== Ti90	≡3.20
Dox	Renilla	Control ⊨	0.0303			Renilla	Background =	0.0004

Client: Rekosh/Hammarskjöld Contract: IR&D

Dox Firefly Control = 2-0152

Project: 1085

HIV-1 Rev Assay Southern Research Institute

Anti-HIV Efficacy Evaluation in Fresh Human PBMCs

Fresh human PBMCs, seronegative for HIV and HBV, were isolated from screened donors (Interstate Blood Bank, Inc. Memphis, TN). Cells were pelleted/washed 2-3 times by low speed centrifugation and re-suspension in PBS to remove contaminating platelets. The Leukophoresed blood was then diluted 1:1 with Dulbecco's Phosphate Buffered Saline (DPBS) and layered over 14 mL of Lymphocyte Separation Medium (LSM; Cellgro® by Mediatech, Inc.; density 1.078+/-0.002 g/ml; Cat.# 85-072-CL) in a 50 mL centrifuge tube and then centrifuged for 30 minutes at 600 X g. Banded PBMCs were gently aspirated from the resulting interface and subsequently washed 2X with PBS by low speed centrifugation. After the final wash, cells were enumerated by trypan blue exclusion and re-suspended at 1 x 10⁷ cells/mL in RPMI 1640 supplemented with 15 % Fetal Bovine Serum (FBS), and 2 mM L-glutamine, 4 µg/mL Phytohemagglutinin (PHA-P, Sigma). The cells were allowed to incubate for 48-72 hours at 37°C. After incubation, PBMCs were centrifuged and resuspended in RPMI 1640 with 15% FBS, 2 mM L-glutamine, 100 U/mL penicillin, 100 μg/mL streptomycin, 10 μg/mL gentamycin, and 20 U/mL recombinant human IL-2 (R&D Systems, Inc). IL-2 is included in the culture medium to maintain the cell division initiated by the PHA mitogenic stimulation. PBMCs were maintained in this medium at a concentration of 1-2 x 10⁶ cells/mL with biweekly medium changes until used in the assay protocol. Cells were kept in culture for a maximum of two weeks before being deemed too old for use in assays and discarded. Monocytes were depleted from the culture as the result of adherence to the tissue culture flask.

For the standard PBMC assay, PHA-P stimulated cells from at least two normal donors were pooled (mixed together), diluted in fresh medium to a final concentration of 1 x 106 cells/mL, and plated in the interior wells of a 96 well round bottom microplate at 50 µL/well (5 x 10⁴ cells/well) in a standard format developed by the Infectious Disease Research department of Southern Research Institute. Pooling (mixing) of mononuclear cells from more than one donor is used to minimize the variability observed between individual donors, which results from quantitative and qualitative differences in HIV infection and overall response to the PHA and IL-2 of primary lymphocyte populations. Each plate contains virus/cell control wells (cells plus virus), experimental wells (drug plus cells plus virus) and compound control wells (drug plus media without cells, necessary for MTS monitoring of cytotoxicity). Since HIV-1 is not cytopathic to PBMCs, this allows the use of the same assay plate for both antiviral activity and cytotoxicity measurements. Test drug dilutions were prepared at a 2X concentration in microtiter tubes and 100 µL of each concentration was placed in appropriate wells using the standard format. 50 µL of a predetermined dilution of virus stock was placed in each test well (final MOI \approx 0.1). The PBMC cultures were maintained for seven days following infection at 37°C, 5% CO_{2.} After this period, cell-free supernatant samples were collected for analysis of reverse transcriptase activity or p24 antigen. Following removal of supernatant samples, compound cytotoxicity was measured by addition of MTS to the plates for determination of cell viability. Wells were also examined microscopically and any abnormalities were noted.

Reverse transcriptase activity assay

A microtiter plate-based reverse transcriptase (RT) reaction was utilized (Buckheit et al., AIDS Research and Human Retroviruses 7:295-302, 1991). Tritiated thymidine triphosphate (³H-TTP, 80 Ci/mmol, NEN) was received in 1:1 dH₂O:Ethanol at 1 mCi/mL. Poly rA:oligo dT

template:primer (Pharmacia) was prepared as a stock solution by combining 150 μL poly rA (20 mg/mL) with 0.5 mL oligo dT (20 units/mL) and 5.35 mL sterile dH₂O followed by aliquoting (1.0 mL) and storage at -20°C. The RT reaction buffer was prepared fresh on a daily basis and consisted of 125 μL 1.0 M EGTA, 125 μL dH₂O, 125 μL 20% Triton X100, 50 μL 1.0 M Tris (pH 7.4), 50 μL 1.0 M DTT, and 40 μL 1.0 M MgCl₂. The final reaction mixture was prepared by combining 1 part ³H-TTP, 4 parts dH₂O, 2.5 parts poly rA:oligo dT stock and 2.5 parts reaction buffer. Ten microliters of this reaction mixture was placed in a round bottom microtiter plate and 15 μL of virus containing supernatant was added and mixed. The plate was incubated at 37°C for 60 minutes. Following incubation, the reaction volume was spotted onto DE81 filtermats (Wallac), washed 5 times for 5 minutes each in a 5% sodium phosphate buffer or 2X SSC (Life Technologies). Next they were washed 2 times for 1 minute each in distilled water, 2 times for 1 minute each in 70% ethanol, and then dried. Incorporated radioactivity (counts per minute, CPM) was quantified using standard liquid scintillation techniques.

MTS staining for PBMC viability to measure cytotoxicity

At assay termination, assay plates were stained with the soluble tetrazolium-based dye MTS (CellTiter 96 Reagent, Promega) to determine cell viability and quantify compound toxicity. The mitochondrial enzymes of metabolically active cells metabolize MTS to yield a soluble formazan product. This allows the rapid quantitative analysis of cell viability and compound cytotoxicity. The MTS is a stable solution that does not require preparation before use. At termination of the assay, 20 µL of MTS reagent was added per well. The microtiter plates were then incubated 4-6 hrs at 37°C. The incubation intervals were chosen based on empirically determined times for optimal dye reduction. Adhesive plate sealers were used in place of the lids, the sealed plate was inverted several times to mix the soluble formazan product and the plate was read spectrophotometrically at 490/650 nm with a Molecular Devices Vmax or SpectraMaxPlus plate reader.

Virus Information

The low-passage, lymphotropic clinical isolate HIV-1_{ROJO} was obtained from a pediatric patient attending the AIDS Clinic at the University of Alabama at Birmingham and was isolated in the laboratories of Southern Research Institute as previously described (Buckheit, et al. AIDS Res Hum Retroviruses. 1994 10:1497-506). HIV-1_{ROJO} has been typed as syncytium inducing (SI) in MT-2 cells and is presumed to be a subtype B (X4) isolate. The HIV-1 clinical isolate BR/93/021 was obtained from the NIH AIDS Research and Reference Reagent Program. This virus was originally isolated from a seropositive individual in Brazil and has been characterized as an Envelope Subtype B and as an R5-tropic isolate. The HIV-1 molecular clone NL4-3 was obtained from the NIH AIDS Research and Reference Reagent Program. Virus stocks were prepared by transfection of plasmid DNA into cells using standard techniques. A Pre-titered aliquot of each virus was removed from the freezer (LN₂) and thawed rapidly to room temperature in a biological safety cabinet immediately before use.

Compound Information

Compound	Stock Concentration Provided (mM)	High Test; Concentration; Used (µM)
49611	25.4	63.5
73497	36.25	90.625
74377	16.7	41.75
74378	17.3	43.25
75168	10.7	26.75
89246	21.8	54.5
91161	15.8	39.5
103833	15.04	37.6
104366	31.8	79.5
107129	21.2	53.0
107740	11.7	29.25
109020	16.3	40.75

Compounds were tested using the maximum high-test concentration possible based on the supplied stocks. Compounds were prepared at a 2X high-test concentration by combining drug stock with tissue culture media at a ratio of 5 µL of drug to 995 µL of media. This 2X high-test sample was subsequently serially diluted in tissue culture media using ½-log dilutions. This series of 2X concentrated drug was subsequently diluted 1:1 by combining with an equal volume of cells in media in the 96-well plates used for the assay.

Results for Testing Rekosh/Hammarskjöld Candidate Rev Inhibitors Against HIV-1 in Fresh Human PBMCs

	HIV-1 BR/93/021			HIV-1 NL4-3			HIV-1 ROJO*		
Compound	IC₅₀ (µM)	TC ₅₀ (μΜ)	TI (TC ₅₀ /IC ₅₀)	IC ₅₀ (μΜ)	,TC ₅₀ : (μΜ)	TI (TC50/IC50)	IC ₅₀ (μΜ)	TC ₅₀ (μΜ)	TI (TC50/IC50)
49611	2.41	>63.5	>26.35	5.14	>63.5	>12.35	0.51	>63.5	>124.51
73497	34.0	>90.6	>2.66	7.82	>90.6	>11.59	12.2	>90.6	>7.43
74377	>41.8	>41.8	N/A	>41.8	>41.8	N/A	>41.8	>41.8	N/A
74378	>43.2	>43.2	N/A	>43.2	>43.2	N/A	>43.2	>43.2	N/A
75168	2.14	>26.8	>12.52	16.9	>26.8	>1.59	4.37	>26.8	>6.13
89246	0.47	32.7	69.57	1.47	21.9	14.90	1.19	21.9	18.40
91161	1.94	23.3	12.01	2.28	13.5	5.92	4.56	13.5	2.96
103833	0.29	>37.6	>129.66	2.22	>37.6	>16.94	18.6	>37.6	>2.02
104366	0.64	24.9	38.91	0.92	22.0	23.91	2.90	22.0	7.59
107129	1.80	6.26	3.48	2.12	4.13	1.95	2.17	4.13	1.90
107740	0.20	18.8	94.00	1.61	14.4	8.94	3.39	14.4	4.25
109020	13.2	>40.8	>3.09	26.4	>40.8	>1.55	15.6	>40.8	>2.62
AZT	0.00247	>1.0	>404.86	0.00062	>1.0	>1612.90	0.00316	>1.0	>316.46
LeptB (historical Data)	_		-	0.00187	0.00190	1.02	_		_

*HIV-1 ROJO Data included for comparison, however this assay contained significant variability in virus replication and should only be used for qualitative comparisons to other data.

INHIBITION OF HIV-1 BR 93 021 REPLICATION IN PBMC BY 49611

				RT Va	alues(cpm)					
СОИС (µМ)	0.00	0.006	0.020	0.064	0.202	0.64	2.01	6.35	20.08	63.5
SAMPLE 1	14637	11513	15424	11670	12674	11795	10630	6911	929	720
SAMPLE 2	15314	12111	16378	12483	11311	11062	5848	5390	728	569
SAMPLE 3	17039	11852	12266	9077	11054	13677	8176	4944	807	288
MEAN	15663.2	11825.3	14689.3	11076.7	11679.7	12178.0	8218.0	5748.3	821.3	525.7
% VC	100.0	75.5	93.8	70.7	74.6	77.7	52.5	36.7	5.2	3.4

CONC (µM)	0.00	0.006	0.020	0.064	0.202	D. D. @ 490 0.64	2.01	6.35	20.08	63.5
SAMPLE 1	0.868	0.939	1.129	0.998	0.990	0.897	0.926	0.867	0.701	0.540
SAMPLE 2	0.958	0.963	0.939	1.266	1.165	0.968	0.983	0.760	0.718	0.540
SAMPLE 3	0.931	1.099	1.014	1.019	0.952	0.992	0.703	0.783	0.598	0.56
MEAN	0.919	1.000	1.027	1.094	1.036	0.952	0.871	0.803	0.672	0.56
% CC	100.0	108.8	111.8	119.1	112.7	103.6	94.7	87.4	73.1	61.1

IC50 (μM) =2.41	TC50 (μM) =>63.5	TI = >26.35

Client: IR&D Investigator: Ptak Setup Date: 04/02/04

Virus/Strain: HIV-1 / BR 93 021 Virus Date/Titer: 10/18/99, 3.3 uL/well Technician: Mankowski

INHIBITION OF HIV-1 NL4-3 REPLICATION IN PBMC BY 49611

				RT Va	alues(cpm))				
CONC (µM)	0.00	0.006	0.020	0.064	0.202	0.64	2.01	6.35	20.08	63.5
SAMPLE 1	39777	39910	33022	36199	25437					63.5
SAMPLE 2	33324	48011	19495			18082	21866	19031	15891	728
				38056	22079	12374	20833	16426	10495	1852
SAMPLE 3	34624	44745	35557	30008	24323	35589	38262	12298	8029	
MEAN	35908.2	44222.0	29358.0	34754.3	23946.3	22015.0				4700
% VC	400.0	400.0			20040.0	22015.0	26987.0	15918.3	11471.7	2426.7
76 VC	100.0	123.2	81.8	96.8	66.7	61.3	75.2	44.3	31.9	6.8

	0.00	0.006	0.020	0.064	0.202	O. D. @ 490 0.64	2.01	C 25	22.22	
SAMPLE 1	0.761	0.638	0.779					6.35	20.08	63.5
SAMPLE 2	0.637			0.648	0.742	0.712	0.677	0.713	0.508	0.36
		0.728	0.723	0.616	0.562	0.670	0.576	0.541	0.516	0.36
SAMPLE 3	0.604	0.820	0.742	0.687	0.655	0.686	0,659	0.556	0.542	
MEAN	0.667	0.728	0.748	0.650	0.653	0.689	0.637	0.604	0.542	0.49

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

Virus/Strain: HIV-1 / NL4-3
Virus Date/Titer: 4/25/03, 1.2 uL/well

Technician: Mankowski

INHIBITION OF HIV-1 ROJO REPLICATION IN PBMC BY 49611

				RT Va	lues(cpm))				
CONC (µM)	0.00	0.006	0.020	0.064	0.202	0.64	2.01	6.35	20.08	63.5
SAMPLE 1	79707	89103	64976	61827	48932	41605	1844	15530	36409	1513
SAMPLE 2	84041	41714	33313	84689	42954	55999	17071	25731	41953	2652
SAMPLE 3	64377	13620	41864	53230	66033	5211	59426	28916	32104	612
MEAN	76041.5	48145.7	46717.7	66582.0	52639.7	34271.7	26113.7	23392.3	36822.0	1592.3
% VC	100.0	63.3	61.4	87.6	69.2	45.1	34.3	30.8	48.4	2.1

TOXICITY VALUES (Cell Titer 96 - O. D. @ 490/650 nm)										
CONC (µM)	0.00	0.006	0.020	0.064	0.202	0.64	2.01	6.35	20.08	63.5
SAMPLE 1	0.761	0.638	0.779	0.648	0.742	0.712	0.677	0.713	0.508	0.367
SAMPLE 2	0.637	0.728	0.723	0.616	0.562	0.670	0.576	0.541	0.516	0.367
SAMPLE 3	0.604	0.820	0.742	0.687	0.655	0.686	0.659	0.556	0.542	0.490
MEAN	0.667	0.728	0.748	0.650	0.653	0.689	0.637	0.604	0.522	0.408
% CC	100.0	109.2	112.1	97.4	97.8	103.3	95.5	90.4	78.2	61.1

IC50 (μM) =0.51	TC50 (μM) =>63.5	TI = >124.51

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

Virus/Strain: HIV-1 / ROJO
Virus Date/Titer: 12/16/02, 3.2 uL/well
Technician: Mankowski

INHIBITION OF HIV-1 BR 93 021 REPLICATION IN PBMC BY 73497

				RT Va	lues(cpm))				
CONC (µM)	0.00	0.009	0.029	0.091	0.288	0.91	2.87	9.06	28.66	90.6
SAMPLE 1	14637	12562	16475	15991	14327	12072	13877	9383	8713	2718
SAMPLE 2	15314	14361	13590	12249	14880	9130	12958	9687	9357	6110
SAMPLE 3	17039	16317	12753	13585	10511	17653	12212	14101	7283	4066
MEAN	15663.2	14413.3	14272.7	13941.7	13239.3	12951.7	13015.7	11057.0	8451.0	4298.0
% VC	100.0	92.0	91.1	89.0	84.5	82.7	83.1	70.6	54.0	27.4

TOXICITY VALUES (Cell Titer 96 - O. D. @ 490/650 nm)											
СОИС (µМ)	0.00	0.009	0.029	0.091	0.288	0.91	2.87	9.06	28.66	90.6	
SAMPLE 1	0.868	0.828	0.829	1.181	1.132	0.793	0.799	0.756	0.809	0.688	
SAMPLE 2	0.958	0.852	0.818	0.840	0.918	1.014	1.252	1.147	0.931	0.692	
SAMPLE 3	0.931	0.766	0.933	1.116	1.116	0.929	1.135	0.725	1.092	1.010	
MEAN	0.919	0.815	0.860	1.045	1.055	0.912	1.062	0.876	0.944	0.797	
% CC	100.0	88.7	93.6	113.8	114.8	89.2	115.5	95.3	102.7	86.7	

Î	IC50 (μM) =34.0	TC50 (μM) ⇒90.6	T1 = >2.66

Client: IR&D Investigator: Ptak Setup Date: 04/02/04 Virus/Strain: HIV-1 / BR 93 021
Virus Date/Titer: 10/18/99, 3.3 uL/well
Technician: Mankowski

INHIBITION OF HIV-1 NL4-3 REPLICATION IN PBMC BY 73497

				RT Va	lues(cpm))				
CONC (µM)	0.00	0.009	0.029	0.091	0.288	0.91	2.87	9.06	28.66	90.6
SAMPLE 1	39777	33329	38235	37370	35582	34293	29310	12855	18921	25858
SAMPLE 2	33324	26541	44611	45089	25475	24536	31073	8449	11505	16428
SAMPLE 3	34624	35459	39269	34175	27451	23463	31802	26951	15554	21621
MEAN	35908.2	31776.3	40705.0	38878.0	29502.7	27430.7	30728.3	16085.0	15326.7	21302.3
% VC	100.0	88.5	113.4	108.3	82.2	76.4	85.6	44.8	42.7	59.3

		TOX	ICITY VAL	UES (Cell	Titer 96 - 0	D. D. @ 490)/650 nm)			
CONC (µM)	0.00	0.009	0.029	0.091	0.288	0.91	2.87	9.06	28.66	90.6
SAMPLE 1	0.761	0.697	0.641	0.639	0.585	0.567	0.639	0.541	0.573	0.628
SAMPLE 2	0.637	0.756	0.708	0.736	0.819	0.772	0.685	0.721	0.741	0.661
SAMPLE 3	0.604	0.582	0.587	0.647	0.674	0.577	0.642	0.622	0.648	0.555
MEAN	0.667	0.678	0.645	0.674	0.693	0.638	0.655	0.628	0.654	0.614
% CC	100.0	101.6	96.7	101.0	103.8	95.7	98.2	94.1	98.0	92.1

IC50 (μM) =7.82 TC50 (μM) =>90.6 TI = >11.59

Client: IR&D Investigator: Ptak Setup Date: 03/19/04 Virus/Strain: HIV-1 / NL4-3
Virus Date/Titer: 4/25/03, 1.2 uL/well
Technician: Mankowski

INHIBITION OF HIV-1 ROJO REPLICATION IN PBMC BY 73497

				RT Va	ilues(cpm))				
CONC (µM)	0.00	0.009	0.029	0.091	0.288	0.91	2.87	9.06	28.66	90.6
SAMPLE 1	79707	20074	50030	86124	62707	23766	15672	72576	9137	945
SAMPLE 2	84041	54668	34395	64114	42361	12909	54680	850	396	9592
SAMPLE 3	64377	41248	67020	82451	42282	40068	84341	74573	6572	16713
MEAN	76041.5	38663.3	50481.7	77563.0	49116.7	25581.0	51564.3	49333.0	5368.3	9083.3
% VC	100.0	50.8	66.4	102.0	64.6	33.6	67.8	64.9	- 7.1	11.9

		тох	ICITY VAL	UES (Cell	Titer 96 - 0	D. D. @ 490	0/650 nm)		_	
CONC (µM)	0.00	0.009	0.029	0.091	0.288	0.91	2.87	9.06	28.66	90.6
SAMPLE 1	0.761	0.697	0.641	0.639	0.585	0.567	0.639	0.541	0.573	0.628
SAMPLE 2	0.637	0.756	0.708	0.736	0.819	0.772	0.685	0.721	0.741	0.661
SAMPLE 3	0.604	0.582	0.587	0.647	0.674	0.577	0.642	0.622	0.648	0.555
MEAN	0.667	0.678	0.645	0.674	0.693	0.638	0.655	0.628	0.654.	0.614
% CC	100.0	101.6	96.7	101.0	103.8	95.7	98.2	94.1	98.0	92.1

	· · · · · · · · · · · · · · · · · · ·	
IC50 (μM) =12.2	TC50 (µM) =>90.6	TI = >7.43
1030 (pin) -12.2	1 030 (μπ) ->30.0	11 11-10

Client: IR&D Investigator: Ptak Setup Date: 03/19/04 Virus/Strain: HIV-1 / ROJO Virus Date/Titer: 12/16/02, 3.2 uL/well Technician: Mankowski

INHIBITION OF HIV-1 BR 93 021 REPLICATION IN PBMC BY 74377

				RT Va	lues(cpm)					
CONC (µM)	0.00	0.004	0.013	0.042	0.133	0.42	1.32	4.17	13.20	41.8
SAMPLE 1	13361	14293	9797	12483	14235	12162	8609	11238	8887	13655
SAMPLE 2	14217	11246	11107	10073	7503	9810	8470	9673	9132	7510
SAMPLE 3	13903	9709	8880	8697	9612	11451	9751	8772	7388	8231
MEAN	13826.7	11749.3	9928.0	10417.7	10450.0	11141.0	8943.3	9894.3	8469.0	9798.7
% VC	100.0	85.0	71.8	75.3	75.6	80.6	64.7	71.6	61.3	70.9

TOXICITY VALUES (Cell Titer 96 - O. D. @ 490/650 nm)											
CONC (µM)	0.00	0.004	0.013	0.042	0.133	0.42	1.32	4.17	13.20	41.8	
SAMPLE 1	0.793	0.810	0.793	1.267	0.850	0.830	0.783	0.736	0.993	0.807	
SAMPLE 2	0.809	0.836	0.788	0.750	0.725	0.816	0.765	0.779	0.803	0.842	
SAMPLE 3	0.832	0.800	0.773	0.704	0.732	0.728	0.774	0.734	0.825	0.784	
MEAN	0.812	0.815	0.785	0.907	0.769	0.791	0.774	0.750	0.874	0.811	
% CC	100.0	100.4	96.7	111.7	94.8	97.5	95.4	92.4	107.7	100.0	

IC50 (μM) =>41.8 TC5	0 (188) -> 44 0	
1050 (hiii) =>41:0	$0 (\mu M) = >41.8$ $TI = N/A$	
		1

Client: IR&D Investigator: Ptak Setup Date: 04/02/04

Virus/Strain: HIV-1 / BR 93 021 Virus Date/Titer: 10/18/99, 3.3 uL/well

Technician: Mankowski

INHIBITION OF HIV-1 NL4-3 REPLICATION IN PBMC BY 74377

			RT Va	ilues(cpm))				
0.00	0.004	0.013	0.042	0.133	0.42	1.32	4.17	13.20	41.8
28873	18671	40971	32776	38929	39685				
27831	29377	40665	28232						58054
42164	42746	30145							43585
32955.8	30264.7								30864
100.0	04.0				30332.0	20300.3	32513.0	35416.7	44167.7
	28873 27831 42164	28873 18671 27831 29377 42164 42746 32955.8 30264.7	28873 18671 40971 27831 29377 40665 42164 42746 30145 32955.8 30264.7 37260.3	0.00 0.004 0.013 0.042 28873 18671 40971 32776 27831 29377 40665 28232 42164 42746 30145 21403 32955.8 30264.7 37260.3 27470.3	0.00 0.004 0.013 0.042 0.133 28873 18671 40971 32776 38929 27831 29377 40665 28232 16118 42164 42746 30145 21403 31535 32955.8 30264.7 37260.3 27470.3 28860.7	28873 18671 40971 32776 38929 39685 27831 29377 40665 28232 16118 21053 42164 42746 30145 21403 31535 48858 32955.8 30264.7 37260.3 27470.3 28860.7 36532.0	0.00 0.004 0.013 0.042 0.133 0.42 1.32 28873 18671 40971 32776 38929 39685 8257 27831 29377 40665 28232 16118 21053 41767 42164 42746 30145 21403 31535 48858 29501 32955.8 30264.7 37260.3 27470.3 28860.7 36532.0 26508.3	0.00 0.004 0.013 0.042 0.133 0.42 1.32 4.17 28873 18671 40971 32776 38929 39685 8257 28007 27831 29377 40665 28232 16118 21053 41767 38591 42164 42746 30145 21403 31535 48858 29501 30941 32955.8 30264.7 37260.3 27470.3 28860.7 36532.0 26508.3 32513.0	0.00 0.004 0.013 0.042 0.133 0.42 1.32 4.17 13.20 28873 18671 40971 32776 38929 39685 8257 28007 30885 27831 29377 40665 28232 16118 21053 41767 38591 33205 42164 42746 30145 21403 31535 48858 29501 30941 42160 32955.8 30264.7 37260.3 27470.3 28860.7 36532.0 26508.3 32513.0 35416.7 100.0 91.8 4324 2024 <td< td=""></td<>

	0.00	0.004	0.013	0.042	0.133	0.42	1.32	4.17	13.20	44.0
SAMPLE 1	0.557	0.626	0.563	0.614	0.667	0.742	0.678			41.8
SAMPLE 2	0.704	0.663	0.631	0.539	0.609	0.742		0.622	0.663	0.74
SAMPLE 3	0.673	0.683	0.656	0.630	0.753	0.736	0.594	0.563	0.608	0.640
MEAN	0.644	0.657	0.616	0.594	0.733	0.674	0.671 0.648	0.654 0.613	0.609 0.627	0.719

IC50 (μM) =>41.8	70.00 (10)	
1050 (μπ) =>41.6	TC50 (μM) =>41.8	TI = N/A

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

Virus/Strain: HIV-1 / NL4-3 Virus Date/Titer: 4/25/03, 1.2 uL/well Technician: Mankowski

INHIBITION OF HIV-1 ROJO REPLICATION IN PBMC BY 74377

	٠			RT Va	lues(cpm))				
CONC (µM)	0.00	0.004	0.013	0.042	0.133	0.42	1.32	4.17	13.20	41.8
SAMPLE 1	80292	65211	3450	92317	77115	58099	49741	35780	61456	37230
SAMPLE 2	33041	12977	27436	63431	63221	53291	25482	51182	28646	91356
SAMPLE 3	58287	1654	40710	6976	20275	38796	31277	18171	35633	82994
MEAN	57206.5	26614.0	23865.3	54241.3	53537.0	50062.0	35500.0	35044.3	41911.7	70526.7
% VC	100.0	46.5	41.7	94.8	93.6	87.5	62.1	61.3	73.3	123.3

		TOX	ICITY VAL	UES (Cell	Titer 96 - C	D. D. @ 490)/650 nm)			
CONC (µM)	0.00	0.004	0.013	0.042	0.133	0.42	1.32	4.17	13.20	41.8
SAMPLE 1	0.557	0.626	0.563	0.614	0.667	0.742	0.678	0.622	0.663	0.746
SAMPLE 2	0.704	0.663	0.631	0.539	0.609	0.796	0.594	0.563	0.608	0.640
SAMPLE 3	0.673	0.683	0.656	0.630	0.753	0.674	0.671	0.654	0.609	0.719
MEAN	0.644	0.657	0.616	0.594	0.676	0.737	0.648	0.613	0.627	0.702
% CC	100.0	102.0	95.6	92.2	105.0	114.4	100.5	95.1	97.2	108.9

IC50 (μM) =>41.8 TC50 (μM) =>41.8 TI = N/A

Client: IR&D Investigator: Ptak Setup Date: 03/19/04 Virus/Strain: HIV-1 / ROJO Virus Date/Titer: 12/16/02, 3.2 uL/well Technician: Mankowski

	RT Values(cpm)												
СОИС (µМ)	0.00	0.004	0.014	0.043	0.136	0.43	1.37	4.33	13.68	43.3			
SAMPLE 1	13361	9443	11354	9441	10031	11775	9787	10171	8140	9357			
SAMPLE 2	14217	12687	11043	11620	13165	9381	13099	9812	9555	7173			
SAMPLE 3	13903	13664	10473	11967	14215	15428	14149	13243	9709	12136			
MEAN	13826.7	11931.3	10956.7	11009.3	12470.3	12194.7	12345.0	11075.3	9134.7	9555.3			
% VC	100.0	86.3	79.2	79.6	90.2	88.2	89.3	80.1	66.1	69.1			

		тох	ICITY VAL	UES (Cell	Titer 96 - 0	D. D. @ 490	0/650 nm)			
CONC (µM)	0.00	0.004	0.014	0.043	0.136	0.43	1.37	4.33	13.68	43.3
SAMPLE 1	0.793	0.873	0.803	0.816	0.766	0.792	0.710	0.783	0.742	0.770
SAMPLE 2	0.809	0.812	0.820	1.038	0.762	0.899	0.802	0.835	0.770	0.887
SAMPLE 3	0.832	0.821	0.832	0.825	0.791	0.878	0.787	0.820	0.803	0.868
MEAN	0.812	0.835	0.818	0.893	0.773	0.856	0.766	0.813	0.772	0.841
% CC	100.0	102.9	100.8	110.1	95.2	105.5	94.4	100.2	95.1	103.7

		<u></u>
IC50 (μM) =>43.2	TC50 (μM) =>43.2	TI = N/A
<u></u>		<u> </u>

Client: IR&D Investigator: Ptak Setup Date: 04/02/04

Virus/Strain: HIV-1 / BR 93 021 Virus Date/Titer: 10/18/99, 3.3 uL/well

				RT Va	lues(cpm)			-		
CONC (µM)	0.00	0.004	0.014	0.043	0.136	0.43	1.37	4.33	13.68	43.3
SAMPLE 1	28873	37415	25411	40517	19394	35123	17749	39958	31444	59654
SAMPLE 2	27831	25479	39704	46748	28933	29657	21263	23171	39198	49298
SAMPLE 3	42164	38785	51147	44181	26970	27177	25579	21496	32397	51337
MEAN	32955.8	33893.0	38754.0	43815.3	25099.0	30652.3	21530.3	28208.3	34346.3	53429.7
% VC	100.0	102.8	117.6	133.0	76.2	93.0	65.3	85.6	104.2	162,1

		тох	ICITY VAL	UES (Cell	Titer 96 - C	D. D. @ 490	0/650 nm)			
CONC (µM)	0.00	0.004	0.014	0.043	0.136	0.43	1.37	4.33	13.68	43.3
SAMPLE 1	0.557	0.641	0.627	0.648	0.615	0.613	0.792	0.660	0.589	0.636
SAMPLE 2	0.704	0.679	0.696	0.697	0.737	0.934	0.791	0.738	0.668	0.620
SAMPLE 3	0.673	0.630	0.647	0.597	0.693	0.633	0.651	0.659	0.611	0.736
MEAN	0.644	0.650	0.657	0.647	0.682	0.727	0.744	0.685	0.623	0.664
% CC	100.0	100.9	101.9	100.4	105.8	112.8	115.5	106.4	96.6	103.1

IC50 (μM) =>43.2 TI = N/A

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

Virus/Strain: HIV-1 / NL4-3
Virus Date/Titer: 4/25/03, 1.2 uL/well

		-		RT Va	lues(cpm))				
CONC (µM)	0.00	0.004	0.014	0.043	0.136	0.43	1.37	4.33	13.68	43.3
SAMPLE 1	80292	88179	47675	51458	16226	51880	40859	11011	20109	48046
SAMPLE 2	33041	20966	28454	43672	25468	50922	76532	7393	36109	65079
SAMPLE 3	58287	83430	77064	26369	8213	43027	11443	2344	16514	68682
MEAN	57206.5	64191.7	51064.3	40499.7	16635.7	48609.7	42944.7	6916.0	24244.0	60602.3
% VC	100.0	112.2	89.3	70.8	29.1	85.0	75.1	12.1	42.4	105.9

CONC (µM)	0.00	0.004	0.014	UES (Cell	0.136	0.43	1.37	4.33	13.68	43.3
SAMPLE 1	0.557	0.641	0.627	0.648	0.615	0.613	0.792	0.660	0.589	0.636
SAMPLE 2	0.704	0.679	0.696	0.697	0.737	0.934	0.791	0.738	0.668	0.620
SAMPLE 3	0.673	0.630	0.647	0.597	0.693	0.633	0.651	0.659	0.611	0.736
MEAN	0.644	0.650	0.657	0.647	0.682	0.727	0.744	0.685	0.623	0.664
% CC	100.0	100.9	101.9	100.4	105.8	112.8	115.5	106.4	96.6	103.1

IC50 (μM) =>43.2	TC50 (μM) =>43.2	TI = N/A

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

Virus/Strain: HIV-1 / ROJO Virus Date/Titer: 12/16/02, 3.2 uL/well

				RT Va	alues(cpm)					
CONC (hW)	0.00	0.003	0.009	0.027	0.085	0.27	0.85	2.68	8.46	26.8
SAMPLE 1	16603	16651	16281	12681	11318	11325	10366	7243	6219	6140
SAMPLE 2	13824	12562	12607	10483	11494	9670	9363	5924	3293	3776
SAMPLE 3	13535	9257	7735	10593	7634	6250	9721	7012	6025	5607
MEAN	14653.8	12823.3	12207.7	11252.3	10148.7	9081.7	9816.7	6726.3	5179.0	5174.3
% VC	100.0	87.5	83.3	76.8	69.3	62.0	67.0	45.9	35.3	35.3

		тох	ICITY VAL	UES (Cell	Titer 96 - 0	D. D. @ 490	0/650 nm)			
CONC (µM)	0.00	0.003	0.009	0.027	0.085	0.27	0.85	2.68	8.46	26.8
SAMPLE 1	0.838	0.780	0.751	0.773	0.877	0.835	0.756	0.875	0.880	0.815
SAMPLE 2	0.833	0.788	0.761	0.750	0.686	0.695	0.690	0.763	0.792	0.797
SAMPLE 3	0.922	0.637	0.807	0.703	1,206	1.028	0.762	0.782	0.799	0.826
MEAN	0.864	0.735	0.773	0.742	0.923	0.853	0.736	0.807	0.824	0.813
% CC	100.0	85.0	89.4	85.9	106.7	98.7	85.1	93.3	95.3	94.0

IC50 (μM) =2.14 TC50 (μM) =>26.8 TI =>12.52

Client: IR&D Investigator: Ptak Setup Date: 04/02/04 Virus/Strain: HIV-1 / BR 93 021 Virus Date/Titer: 10/18/99, 3.3 uL/well

				RT Va	lues(cpm)					
CONC (µM)	0.00	0.003	0.009	0.027	0.085	0.27	0.85	2.68	8.46	26.8
SAMPLE 1	17547	38117	11771	14761	9751	28561	12857	31721	21276	4396
SAMPLE 2	39386	43541	28183	21029	31175	23618	24132	23832	28246	16216
SAMPLE 3	44311	52804	40570	26258	35588	41237	29179	42291	23089	15545
MEAN	33747.8	44820.7	26841.3	20682.7	25504.7	31138.7	22056.0	32614.7	24203.7	12052.3
% VC	100.0	132.8	79.5	61.3	75.6	92.3	65.4	96.6	71.7	35.7

		тох	ICITY VAL	UES (Cell	Titer 96 - 0	D. D. @ 490)/650 nm)			
СОИС (нм)	0.00	0.003	0.009	0.027	0.085	0.27	0.85	2.68	8.46	26.8
SAMPLE 1	0.762	0.697	0.580	0.609	0.530	0.593	0.497	0.544	0.602	0.626
SAMPLE 2	0.806	0.764	0.632	0.741	0.609	0.785	0.548	0.563	0.573	0.609
SAMPLE 3	0.707	0.796	0.552	0.617	0.608	0.597	0.585	0.648	0.596	0.606
MEAN	0.758	0.752	0.588	0.656	0.582	0.658	0.543	0.585	0.591	0.614
% CC	100.0	99.2	77.5	86.5	76.8	86.8	71.7	77.1	77.9	80.9

IC50 (μM) =16.9 TC50 (μM) =>26.8 TI = >1.59

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

				RT Va	lues(cpm))				
СОИС (µМ)	0.00	0.003	0.009	0.027	0.085	0.27	0.85	2.68	8.46	26.8
SAMPLE 1	77999	19940	72194	43636	36089	33576	28844	42843	4194	26676
SAMPLE 2	36238	41261	42109	35824	22093	42750	68597	46291	12962	461
SAMPLE 3	46860	50804	55583	38130	30810	30748	53857	30824	9932	5088
MEAN	53698.8	37335.0	56628.7	39196.7	29664.0	35691.3	50432.7	39986.0	9029.3	10741.7
% VC	100.0	69.5	105.5	73.0	55.2	66.5	93.9	74.5	16.8	20.0

		TOX	ICITY VAL	UES (Cell	Titer 96 - 0	D. D. @ 490	0/650 nm)			
СОИС (РМ)	0.00	0.003	0.009	0.027	0.085	0.27	0.85	2.68	8.46	26.8
SAMPLE 1	0.762	0.697	0.580	0.609	0.530	0.593	0.497	0.544	0.602	0.626
SAMPLE 2	0.806	0.764	0.632	0.741	0.609	0.785	0.548	0.563	0.573	0.609
SAMPLE 3	0.707	0.796	0.552	0.617	0.608	0.597	0.585	0.648	0.596	. 0.606
MEAN	0.758	0.752	0.588	0.656	0.582	0.658	0.543	0.585	0.591	0.614
% CC	100.0	89.2	77.5	86.5	76.8	86.8	71.7	77.1	77.9	80.9

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

				RT Va	alues(cpm)					
CONC (µM)	0.00	0.005	0.017	0.054	0.171	0.54	1.72	5.45	17.23	54.5
SAMPLE 1	16603	10006	10168	6240	8900	8383	4069	2095	366	146
SAMPLE 2	13824	10406	10828	10370	10741	6654	4852	2725	549	168
SAMPLE 3	13535	11613	10243	10370	13127	5384	4564	1787	571	308
MEAN	14653.8	10675.0	10413.0	8993.3	10922.7	6807.0	4495.0	2202.3	495.3	207.3
% VC	100.0	72.8	71.1	61.4	74.5	46.5	30.7	15.0	3.4	1.4

		TOX	ICITY VAL	UES (Cell	Titer 96 - C	D. D. @ 49	0/650 nm)			
СОИС (µМ)	0.00	0.005	0.017	0.054	0.171	0.54	1.72	5.45	17.23	54.5
SAMPLE 1	0.838	0.703	0.679	0.747	0.846	0.759	0.696	1.001	0.859	0.238
SAMPLE 2	0.833	0.775	0.752	0.727	0.771	0.736	0.765	0.701	0.608	0.252
SAMPLE 3	0.922	0.741	0.754	0.765	0.736	0.784	0.741	0.752	0.575	0.214
MEAN	0.864	0.740	0.729	0.746	0.784	0.760	0.734	0.818	0.681	0.235
% CC	100.0	85.6	84.3	86.3	90.7	87.9	84.9	94.6	78.7	27.2

IC50 (μM) =0.47 TC50 (μM) =32.7 Ti = 69.57

Client: IR&D Investigator: Ptak Setup Date: 04/02/04 Virus/Strain: HIV-1 / BR 93 021 Virus Date/Titer: 10/18/99, 3.3 uL/well Technician: Mankowski

				RT Va	lues(cpm)	}				
CONC (µM)	0.00	0.005	0.017	0.054	0.171	0.54	1.72	5.45	17.23	54.5
SAMPLE 1	17547	34917	39963	28273	37278	18659	20590	22091	527	154
SAMPLE 2	39386	34080	45518	20288	13958	33731	9041	15355	395	139
SAMPLE 3	44311	45313	36429	16796	21620	24112	17009	11343	2292	198
MEAN	33747.8	38103.3	40636.7	21785.7	24285.3	25500.7	15546.7	16263.0	1071.3	163.7
% VC	100.0	112.9	120.4	64.6	72.0	75.6	46.1	48.2	3.2	0.5

		тох	ICITY VAL	UES (Cell	Titer 96 - 0	D. D. @ 49	0/650 nm)			
CONC (µM)	0.00	0.005	0.017	0.054	0.171	0.54	1.72	5.45	17.23	54.5
SAMPLE 1	0.762	1.042	0.741	1.088	1.105	0.630	0.596	0.511	0.440	0.144
SAMPLE 2	0.806	0.733	0.839	0.847	1.042	0.716	0.821	0.520	0.420	0.129
SAMPLE 3	0.707	0.660	0.656	0.611	0.920	0.747	0.796	0.633	0.467	0.144
MEAN	0.758	0.812	0.745	0.849	1.022	0.698	0.738	0.555	0.442	0.139
% CC	100.0	107.1	98.3	111.9	134.8	92.0	97.3	73.1	58.3	18.3

IC50 (μM) =1.47	TC50 (μM) =21.9	TI = 14.90]
		L	1

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

				RT Va	lues(cpm)	İ				
CONC (µM)	0.00	0.005	0.017	0.054	0.171	0.54	1.72	5.45	17.23	54.5
SAMPLE 1	77999	44713	69109	40320	45219	60905	15458	27663	469	388
SAMPLE 2	36238	65740	56807	31933	57191	25175	22841	7913	996	322
SAMPLE 3	46860	63284	42018	60974	68532	56731	13240	18546	395	461
MEAN	53698.8	57912.3	55978.0	44409.0	56980.7	47603.7	17179.7	18040.7	620.0	390.3
% VC	100.0	107.8	104.2	82.7	106.1	88.6	32.0	33.6	1.2	0.7

		тох	ICITY VAL	UES (Cell	Titer 96 - 0	D. D. @ 490	0/650 nm)			
CONC (µM)	0.00	0.005	0.017	0.054	0.171	0.54	1.72	5.45	17.23	54.5
SAMPLE 1	0.762	1.042	0.741	1.088	1.105	0.630	0.596	0.511	0.440	0.144
SAMPLE 2	0.806	0.733	0.839	0.847	1.042	0.716	0.821	0.520	0.420	0.129
SAMPLE 3	0.707	0.660	0.656	0.611	0.920	0.747	0.796	0.633	0.467	0.144
MEAN	0.758	0.812	0.745	0.849	1.022	0.698	0.738	0.555	0.442	0.139
% CC	100.0	107.1	98.3	111.9	134.8	92.0	97.3	73.1	58.3	18.3

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

				RT Va	lues(cpm)	•				
CONC (hW)	0.00	0.004	0.013	0.040	0.126	0.40	1.25	3.95	12.49	39.5
SAMPLE 1	13398	9908	11039	10454	10139	10410	9143	6190	195	202
SAMPLE 2	11871	8836	6907	9246	6243	6514 ⁻	6331	3552	115	144
SAMPLE 3	12162	8392	7291	6507	8440	7231	6411	3833	158	137
MEAN	12476.7	9045.3	8412.3	8735.7	8274.0	8051.7	7295.0	4525.0	156.0	161.0
% VC	100.0	72.5	67.4	70.0	66.3	64.5	58.5	36.3	1.3	1.3

		тох	ICITY VAL	UES (Cell	Titer 96 - 0	D. D. @ 490)/650 nm)			
CONC (µM)	0.00	0.004	0.013	0.040	0.126	0.40	1.25	3.95	12.49	39.5
SAMPLE 1	0.846	0.814	0.951	0.920	0.816	0.871	0.944	0.996	0.669	0.231
SAMPLE 2	0.823	0.827	0.872	0.841	0.727	1.001	0.779	0.798	0.598	0.217
SAMPLE 3	0.829	0.921	0.955	0.917	0.895	0.797	0.735	0.877	0.631	0.248
MEAN	0.832	0.854	0.926	0.893	0.813	0.890	0.819	0.890	0.633	0.232
% CC	100.0	102.6	111.2	107.2	97.6	106.9	98.4	106.9	76.0	27.9

IC50 (μM) =1.94 TC50 (μM) =23.3 Ti = 12.01

Client: IR&D Investigator: Ptak Setup Date: 04/02/04

Virus/Strain: HIV-1 / BR 93 021
Virus Date/Titer: 10/18/99, 3.3 uL/well
Technician: Mankowski

				RT Va	ılues(cpm)					
CONC (µM)	0.00	0.004	0.013	0.040	0.126	0.40	1.25	3.95	12.49	39.5
SAMPLE 1	44169	29258	37384	36242	51638	14616	22142	4165	180	252
SAMPLE 2	16907	21839	37229	26479	36550	17554	23140	6587	245	288
SAMPLE 3	37177	19560	31611	31893	29214	16872	30300	14284	649	259
MEAN	32750.7	23552.3	35408.0	31538.0	39134.0	16347.3	25194.0	8345.3	358.0	266.3
% VC	100.0	71.9	108.1	96.3	119.5	49.9	76.9	25.5	1.1	0.8

TOXICITY VALUES (Cell Titer 96 - O. D. @ 490/650 nm)										
CONC (µM)	0.00	0.004	0.013	0.040	0.126	0.40	1.25	3.95	12.49	39.5
SAMPLE 1	0.618	0.646	0.660	0.546	0.485	0.526	0.515	0.512	0.347	0.148
SAMPLE 2	0.725	0.889	0.764	0.514	0.527	0.558	0.572	0.533	0.344	0.123
SAMPLE 3	0.785	0.717	0.674	0.530	0.518	0.545	0.599	0.624	0.417	0.165
MEAN	0.710	0.750	0.699	0.530	0.510	0.543	0.562	0.556	0.369	0.145
% CC	100.0	105.7	98.5	74.7	71.8	76.5	79.2	78.4	52.0	20.5

		r
IC50 (μM) =2.28	TC50 (μM) =13.5	T1 = 5.92
	<u> </u>	l I

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

RT Values(cpm)										
CONC (µM)	0.00	0.004	0.013	0.040	0.126	0.40	1.25	3.95	12.49	39.5
SAMPLE 1	58850	64169	17969	16945	11304	43213	45831	25558	771	720
SAMPLE 2	14850	80121	47356	24198	45257	25316	63896	21509	555	403
SAMPLE 3	73048	35305	60845	45343	57268	56924	50950	36453	555	562
MEAN	48915.7	59865.0	42056.7	28828.7	37943.0	41817.7	53559.0	27840.0	627.0	561.7
% VC	100.0	122.4	86.0	58.9	77.6	85.5	109.5	56.9	1.3	1.1

TOXICITY VALUES (Cell Titer 96 - O. D. @ 490/650 nm)										
CONC (µM)	0.00	0.004	0.013	0.040	0.126	0.40	1.25	3.95	12.49	39.5
SAMPLE 1	0.618	0.646	0.660	0.546	0.485	0.526	0.515	0,512	0.347	0.148
SAMPLE 2	0.725	0.889	0.764	0.514	0.527	0.558	0.572	0.533	0.344	0.123
SAMPLE 3	0.785	0.717	0.674	0.530	0.518	0.545	0.599	0.624	0.417	0.165
MEAN	0.710	0.750	0.699	0.530	0.510	0.543	0.562	0.556	0.369	0.145
% CC	100.0	105.7	98.5	74.7	71.8	76.5	79.2	78.4	52.0	20.5

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

Virus/Strain: HIV-1 / ROJO Virus Date/Titer: 12/16/02, 3.2 uL/well

RT Values(cpm)										
CONC (µM)	0.00	0.004	0.012	0.038	0.120	0.38	1.19	3.76	11.89	37.6
SAMPLE 1	13398	8347	7170	6824	6720	6861	3677	1714	2608	835
SAMPLE 2	11871	8910	5867	6809	6159	4888	5265	3802	2307	710
SAMPLE 3	12162	10435	10405	10629	8923	6078	4659	4395	2564	1274
MEAN	12476.7	9230.7	7814.0	8087.3	7267.3	5942.3	4533.7	3303.7	2493.0	939.7
% VC	100.0	74.0	62.6	64.8	58.2	47.6	36.3	26.5	20.0	7.5

		TOX	ICITY VAL	UES (Cell	Titer 96 - C	D. D. @ 490	0/650 nm)			
CONC (µM)	0.00	0.004	0.012	0.038	0.120	0.38	1.19	3.76	11.89	37.6
SAMPLE 1	0.846	0.747	0.888	0.839	0.820	1.132	0.935	0.822	0.896	0.844
SAMPLE 2	0.823	0.858	0.938	0.878	0.774	0.799	0.856	0.876	1.017	0.706
SAMPLE 3	0.829	0.809	0.942	0.904	0.906	1.043	0.988	0.953	1,117	0.762
MEAN	0.832	0.805	0.923	0.874	0.833	0.991	0.926	0.884	1.010	0.771
% CC	100.0	96.7	110.9	104.9	100.1	119.1	111.3	106.2	121.4	92.6

IC50 (μM) =0.29 TC50 (μM) =>37.6 TI = >129.66

Client: IR&D Investigator: Ptak Setup Date: 04/02/04 Virus/Strain: HIV-1 / BR 93 021 Virus Date/Titer: 10/18/99, 3.3 uL/well Technician: Mankowski

RT Values(cpm)										
CONC (µM)	0.00	0.004	0.012	0.038	0.120	0.38	1.19	3.76	11.89	37.6
SAMPLE 1	44169	26982	26855	12877	24304	19361	18873	14842	8895	996
SAMPLE 2	16907	22134	22682	21255	13765	27178	21093	11879	5766	1091
SAMPLE 3	37177	30344	22207	30888	30975	38826	21056	12282	15443	549
MEAN	32750.7	26486.7	23914.7	21673.3	23014.7	28455.0	20340.7	13001.0	10034.7	878.7
% VC	100.0	80.9	73.0	66.2	70.3	86.9	62.1	39.7	30.6	2.7

TOXICITY VALUES (Cell Titer 96 - O. D. @ 490/650 nm)										
CONC (µM)	0.00	0.004	0.012	0.038	0.120	0.38	1.19	3.76	11.89	37.6
SAMPLE 1	0.618	0.536	0.698	0.624	0.584	0.584	0.724	0.527	0.604	0.451
SAMPLE 2	0.725	0.874	0.883	0.567	0.526	0.702	0.722	0.559	0.561	0.501
SAMPLE 3	0.785	0.879	0.923	0.904	0.710	0.666	0.843	0.614	0.555	0.430
MEAN	0.710	0.763	0.835	0.698	0.607	0.651	0.763	0.567	0.573	0.461
% CC	100.0	107.6	117.6	98.4	85.5	91.7	107.5	79.9	80.8	64.9

1		 	1 1	
	IC50 (μM) =2.22	TC50 (µM) =>37.6		TI = >16.94
	" '	" '		

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

RT Values(cpm)										
СОИС (µМ)	0.00	0.004	0.012	0.038	0.120	0.38	1.19	3.76	11.89	37.6
SAMPLE 1	58850	27193	18140	56582	48729	48652	1816	20602	32877	1158
SAMPLE 2	14850	37159	73934	25143	58763	71362	4491	49392	26990	9096
SAMPLE 3	73048	44112	15178	11761	58032	53533	39956	7547	43475	15666
MEAN	48915.7	36154.7	35750.7	31162.0	55174.7	57849.0	15421.0	25847.0	34447.3	8640.0
% VC	100.0	73.9	73.1	63.7	112.8	118.3	31.5	52.8	70.4	17.7

	TOXICITY VALUES (Cell Titer 96 - O. D. @ 490/650 nm)										
CONC (µM)	0.00	0.004	0.012	0.038	0.120	0.38	1.19	3.76	11.89	37.6	
SAMPLE 1	0.618	0.536	0.698	0.624	0.584	0.584	0.724	0.527	0.604	0.451	
SAMPLE 2	0.725	0.874	0.883	0.567	0.526	0.702	0.722	0.559	0.561	0.501	
SAMPLE 3	0.785	0.879	0.923	0.904	0.710	0.666	0.843	0.614	0.555	0.430	
MEAN	0.710	0.763	0.835	0.698	0.607	0.651	0.763	0.567	0.573	0.461	
% CC	100.0	107.6	117.6	98.4	85.5	91.7	107.5	79.9	80.8	64.9	

IC50 (µM) =18.6	TC50 (μM) =>37.6	Tl = >2.02
-----------------	------------------	------------

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

				RT Va	lues(cpm)	}				
CONC (µM)	0.00	800.0	0.025	0.079	0.250	0.79	2.51	7.95	25.14	79.5
SAMPLE 1	16149	15039	14876	13310	11187	10425	4091	893	166	223
SAMPLE 2	14353	12894	10380	13193	8850	7151	5767	1412	195	137
SAMPLE 3	16813	11985	11927	9172	8367	5020	3730	584	166	216
MEAN	15771.2	13306.0	12394.3	11891.7	9468.0	7532.0	4529.3	963.0	175.7	192.0
% VC	100.0	84.4	78.6	75.4	60.0	47.8	28.7	6.1	1.1	1.2

				oro (oen	Titer 96 - C	J. D. W 49	(mn ucovu			
CONC (µM)	0.00	800.0	0.025	0.079	0.250	0.79	2.51	7.95	25.14	79.5
SAMPLE 1	0.756	0.782	0.789	0.778	0.808	0.742	0.740	0.684	0.359	0.183
SAMPLE 2	0.795	0.677	0.676	0.740	0.746	0.825	0.743	0.697	0.365	0.181
SAMPLE 3	0.874	0.782	0.876	0.932	0.780	1.009	0.943	0.712	0.480	
MEAN	0.808	0.747	0.780	0.816	0.778	0.859	0.809	0.698	0.401	0.194

IC50 (μM) =0.64	TC50 (μM) =24.9	TI = 38.91

Client: IR&D Investigator: Ptak Setup Date: 04/02/04

Virus/Strain: HIV-1 / BR 93 021 Virus Date/Titer: 10/18/99, 3.3 uL/well

				RT Va	ilues(cpm)	1				
СОИС (µМ)	0.00	0.008	0.025	0.079	0.250	0.79	2.51	7.95	25.14	79.5
SAMPLE 1	26269	9450	24856	16432	8016	11633	3600	4410	231	209
SAMPLE 2	19305	22756	25716	18712	26337	11282	1529	1102	166	151
SAMPLE 3	28987	18219	17753	7239	8484	17348	13134	5420	173	130
MEAN	24853.5	16808.3	22775.0	14127.7	14279.0	13421.0	6087.7	3644.0	190.0	163.3
% VC	100.0	67.6	91.6	56.8	57.5	54.0	24.5	14.7	0.8	0.7

		тох	ICITY VAL	UES (Cell	Titer 96 - 0	D. D. @ 490	0/650 nm)			
CONC (µM)	0.00	800.0	0.025	0.079	0.250	0.79	2.51	7.95	25.14	79.5
SAMPLE 1	0.671	0.673	0.560	0.500	0.637	0.552	0.550	0.482	0.253	0.147
SAMPLE 2	0.601	0.848	0.584	0.593	0.594	0.805	0.544	0.479	0.338	0.136
SAMPLE 3	0.683	0.727	0.545	0.534	0.695	0.506	0.502	0.504	0.322	0.142
MEAN	0.652	0.749	0.563	0.542	0.642	0.621	0.532	0.489	0.304	0.142
% CC	100.0	114.9	86.4	83.2	98.5	95.2	81.6	75.0	46.7	21.7

IC50 (μM) =0.92	TC50 (μM) =22.0	TI = 23.91

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

			_	RT Va	lues(cpm))				
CONC (µM)	0.00	0.008	0.025	0.079	0.250	0.79	2.51	7.95	25.14	79.5
SAMPLE 1	62618	90093	32425	49677	76881	3015	22070	555	331	324
SAMPLE 2	26277	24278	67558	47184	1786	27065	26199	360	303	540
SAMPLE 3	47188	45835	83623	31207	58695	5819	29463	303	382	403
MEAN	45360.8	53402.0	61202.0	42689.3	45787.3	11966.3	25910.7	406.0	338.7	422.3
% VC	100.0	117.7	134.9	94.1	100.9	26.4	57.1	0.9	0.7	0.9

SAMPLE 1 0.671 0.673 0.560 0.500 0.637 0.552 0.550 0.482 0. SAMPLE 2 0.601 0.848 0.584 0.593 0.594 0.805 0.544 0.479 0. SAMPLE 3 0.602 0.707 0.60	25.14 79.5 0.253 0.14
SAMPLE 2 0.601 0.848 0.584 0.593 0.594 0.805 0.544 0.479 0.	
SAMPLE 3 0.603 0.707 0.515	0.253 0.147 0.338 0.130
SAMPLE 3 0.683 0.727 0.545 0.534 0.695 0.506 0.502 0.504 0.	0.322 0.14
MEAN 0.652 0.749 0.552 0.512 0.512	0.304 0.14

IC50 (μM) =2.90 TC50 (μM) =22.0 TI = 7.59

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

Virus/Strain: HIV-1 / ROJO Virus Date/Titer: 12/16/02, 3.2 uL/well

				RT Va	lues(cpm))				
CONC (µM)	0.00	0.005	0.017	0.053	0.168	0.53	1.68	5.30	16.76	53.0
SAMPLE 1	16149	12515	11360	9299	9410	7341	9195	2263	59	161
SAMPLE 2	14353	12686	13730	10363	8332	8353	6698	168	190	183
SAMPLE 3	16813	14841	12886	10274	9210	9920	9099	769	139	146
MEAN	15771.2	13347.3	12658.7	9978.7	8984.0	8538.0	8330.7	1066.7	129.3	163.3
% VC	100.0	84.6	80.3	63.3	57.0	54.1	52.8	6.8	0.8	1.0

_		тох	ICITY VAL	UES (Cell	Titer 96 - 0	D. D. @ 49	0/650 nm)			
CONC (µM)	0.00	0.005	0.017	0.053	0.168	0.53	1.68	5.30	16.76	53.0
SAMPLE 1	0.756	0.748	0.785	0.808	0.744	0.831	0.939	0.618	0.277	0.147
SAMPLE 2	0.795	0.942	0.884	1.015	0.851	0.897	0.874	0,162	0.223	0.158
SAMPLE 3	0.874	0.900	1.000	1.007	0.922	0.917	1.064	0.515	0.227	0.144
MEAN	0.808	0.863	0.890	0.943	0.839	0.882	0.959	0.431	0.242	0.150
% CC	100.0	106.8	110.0	116.7	103.8	109.1	118.6	53.4	30.0	18.5

IC50 (μM) =1.80	TC50 (μM) =6.26	TI = 3.48

Client: IR&D Investigator: Ptak Setup Date: 04/02/04

Virus/Strain: HIV-1 / BR 93 021
Virus Date/Titer: 10/18/99, 3.3 uL/well
Technician: Mankowski

				RT Va	alues(cpm)				
CONC (hW)	0.00	0.005	0.017	0.053	0.168	0.53	4.00			
SAMPLE 1	26269	37339	20924				1.68	5.30	16.76	53.0
SAMPLE 2	19305	24248		27604	26739	27567	17378	593	411	718
SAMPLE 3			21495	20205	32198	20996	761	264	1246	293
	28987	16656	23437	23667	18865	35305	28414			
MEAN	24853.5	26081.0	21952.0	23825.3				271	286	278
% VC	100.0	4040			25934.0	27956.0	15517.7	376.0	647.7	429.
	.50.0	104.9	88.3	95.9	104.3	112.5	62.4	1.5	2.6	

CONC (µM)	0.00	0.005	0.017	0.053			0/650 nm)			
SAMPLE 1	0.671	0.664			0.168	0.53	1.68	5.30	16.76	53.6
SAMPLE 2	0.601		0.686	0.517	0.606	0.544	0.458	0.307	0.107	0.08
SAMPLE 3		0.620	0.557	0.483	0.506	0.403	0.519	0.247	0.095	
	0.683	0.820	0.714	0.747	0.526	0,520	0.695			0.09
MEAN	0.652	0.701	0.652	0.583	0.546			0.232	0.104	0.08
% CC	100.0	107.6			0.546	0.489	0.557	0.262	0.102	0.08
		107.6	100.0	89.4	83.8	75.0	85.5	40.2	15.6	13.5

- 1			
- 1	IC50 (μM) =2.12	7070 (27	
L	(1)	TC50 (μM) =4.13	TI = 1.95
			11-1.35

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

				RT Va	- lues(cpm))				
CONC (µM)	0.00	0.005	0.017	0.053	0.168	0.53	1.68	5.30	16.76	53.0
SAMPLE 1	62618	93379	59371	66180	33168	6906	43350	447	352	315
SAMPLE 2	26277	5883	40351	15645	65097	19526	43462	388	410	593
SAMPLE 3	47188	17880	65949	90208	50424	49521	384	359	469	308
MEAN	45360.8	39047.3	55223.7	57344.3	49563.0	25317.7	29065.3	398.0	410.3	405.3
% VC	100.0	86.1	121.7	126.4	109.3	55.8	64.1	0.9	0.9	0.9

	TOXICITY VALUES (Cell Titer 96 - O. D. @ 490/650 nm)												
CONC (µM)	0.00	0.005	0.017	0.053	0.168	0.53	1.68	5.30	16.76	53.0			
SAMPLE 1	0.671	0.664	0.686	0.517	0.606	0.544	0.458	0.307	0.107	0.084			
SAMPLE 2	0.601	0.620	0.557	0.483	0.506	0.403	0.519	0.247	0.095	0.093			
SAMPLE 3	0.683	0.820	0.714	0.747	0.526	0.520	0.695	0.232	0.104	0.087			
MEAN	0.652	0.701	0.652	0.583	0.546	0.489	0.557	0.262	0.102	0.088			
% CC	100.0	107.6	100.0	89.4	83.8	75.0	85.5	40.2	15.6	13.5			

IC50 (μM) =2.17 TC50 (μM) =4.13 TI = 1.90

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

				RT Va	lues(cpm)	}				
CONC (µM)	0.00	0.003	0.009	0.029	0.093	0.29	0.93	2.93	9.25	29.3
SAMPLE 1	15509	15276	15505	9340	9993	7766	5540	4850		
SAMPLE 2	12428	12141	10840	7898	7524	7019	5885		346	144
SAMPLE 3	16750	9272	9309	8960	6858			3495	699	144
MEAN	14895.3	12229.7	11884.7			6609	4626	4251	670	108
			11004.7	8732.7	8125.0	7131.3	5350.3	4198.7	571.7	132.0
% VC	100.0	82.1	79.8	58.6	54.5	47.9	35.9	28.2	3.8	0.9

		тох	ICITY VAL	UES (Cell	Titer 96 - 0	D. D. @ 490	0/650 nm)			
CONC (µM)	0.00	0.003	0.009	0.029	0.093	0.29	0.93	2.93	9.25	29.3
SAMPLE 1	0.983	1.012	0.943	0.903	0.926	0.878	0.859	0.964	0.725	
SAMPLE 2	0.858	0.923	1.239	0.790	0.788	0.924	0.863	0.758	0.725	0.194
SAMPLE 3	0.805	0.981	0.854	0.898	0.814	0.925	1.035	0.771		0.195
MEAN	0.882	0.972	1.012	0.863	0.843	0.909	0.919	0.831	0.903 0.823	0.213
% CC	100.0	110,2	114.7	97.9	95.6	103.1				0.201
				07.0	83.0	103.7	104.2	94.2	93.3	22.8

IC50 (μM) =0.20	TC50 (μM) =18.8	TI = 94.00	

Client: IR&D Investigator: Ptak Setup Date: 04/02/04

Virus/Strain: HIV-1 / BR 93 021
Virus Date/Titer: 10/18/99, 3.3 uL/well

				RT Va	lues(cpm))				
CONC (µM)	0.00	0.003	0.009	0.029	0.093	0.29	0.93	2.93	9.25	29.3
SAMPLE 1	43455	8104	23939	23764	24652	7906	28223	18063	9327	187
SAMPLE 2	29494	27561	15698	26978	22159	7634	22862	22604	3343	252
SAMPLE 3	40549	7720	47620	21485	22032	41261	13955	7085	3106	403
MEAN	37832.3	14461.7	29085.7	24075.7	22947.7	18933.7	21680.0	15917.3	5258.7	280.7
% VC	100.0	38.2	76.9	63.6	60.7	50.0	57.3	42.1	13.9	0.7

		тох	ICITY VAL	UES (Cell	Titer 96 - 0	D. D. @ 490	0/650 nm)			
CONC (µM)	0.00	0.003	0.009	0.029	0.093	0.29	0.93	2.93	9.25	29.3
SAMPLE 1	0.628	0.480	0.495	0.459	0.556	0.483	0.514	0,538	0.482	0,120
SAMPLE 2	0.705	0.623	0.602	0.479	0.556	0.465	0.507	0.479	0.480	0.142
SAMPLE 3	0.703	0.580	0.577	0.521	0.557	0,464	0.454	0.477	0.443	0,142
MEAN	0.679	0.561	0.558	0.486	0.557	0.471	0.492	0.498	0.468	0.134
% CC	100.0	82.7	82.2	71.6	82.0	69.4	72.5	73.4	69.0	19.8

	IC50 (μM) =1.61	TC50 (μM) =14.4	TI = 8.94
ı			

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

	_			RT Va	lues(cpm)					
CONC (µM)	0.00	0.003	0.009	0.029	0.093	0.29	0.93	2.93	9.25	29.3
SAMPLE 1	41114	61289	70465	60820	80047	35555	34947	9161	699	504
SAMPLE 2	38153	37405	25194	9751	4530	28240	10638	22509	713	497
SAMPLE 3	29862	10966	4650	6220	1807	11450	41909	30556	382	396
MEAN	36376.0	36553.3	33436.3	25597.0	28794.7	25081.7	29164.7	20742.0	598.0	465.7
% VC	100.0	100.5	91.9	70.4	79.2	69.0	80.2	57.0	1.6	1.3

	TOXICITY VALUES (Cell Titer 96 - O. D. @ 490/650 nm)												
CONC (µM)	0.00	0.003	0.009	0.029	0.093	0.29	0.93	2.93	9.25	29.3			
SAMPLE 1	0.628	0.480	0.495	0.459	0.556	0.483	0.514	0.538	0.482	0.120			
SAMPLE 2	0.705	0.623	0.602	0.479	0.556	0.465	0.507	0.479	0.480	0.142			
SAMPLE 3	0.703	0.580	0.577	0.521	0.557	0.464	0.454	0.477	0.443	0,142			
MEAN	0.679	0.561	0.558	0.486	0.557	0.471	0.492	0.498	0.468	0.134			
% CC	100.0	82.7	82.2	71.6	82.0	69.4	72.5	73.4	69.0	19.8			

IC50 (μM) =3.39	TC50 (μM) =14.4	TI = 4.25
	<u> </u>	

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

				RT Va	lues(cpm)					
CONC (µM)	0.00	0.004	0.013	0.041	0.130	0.41	1.29	4.08	12.89	40.8
SAMPLE 1	15509	7444	8095	8641	7087	7119	7592	6806	7198	2417
SAMPLE 2	12428	11391	9102	11265	8199	7400	7843	7649	6308	1890
SAMPLE 3	16750	11449	9673	16546	11894	9699	7969	12758	9107	4344
MEAN	14895.3	10094.7	8956.7	12150.7	9060.0	8072.7	7801.3	9071.0	7537.7	2883.7
% VC	100.0	67.8	60.1	81.6	60.8	54.2	52.4	60.9	50.6	19.4

		тох	ICITY VAL	UES (Cell	Titer 96 - C	D. D. @ 49	0/650 nm)			
CONC (µM)	0.00	0.004	0.013	0.041	0.130	0.41	1.29	4.08	12.89	40.8
SAMPLE 1	0.983	1.027	0.900	0.981	0.889	0.775	0.907	0.817	0.847	0.813
SAMPLE 2	0.858	0.937	0.928	1.033	0.850	0.900	0.869	0.805	0.810	0.872
SAMPLE 3	0.805	0.932	0.835	0.819	0.784	0.773	0.855	0.838	0.974	0.802
MEAN	0.882	0.966	0.887	0.944	0.841	0.816	0.877	0.820	0.877	0.829
% CC	100.0	109.5	100.6	107.1	95.4	92.5	99.4	93.0	99.5	94.0

1		· · · · · · · · · · · · · · · · · · ·	
Ì	lC50 (μM) =13.2	TC50 (μM) =>40.8	TI = >3.09

Client: IR&D Investigator: Ptak Setup Date: 04/02/04 Virus/Strain: HIV-1 / BR 93 021 Virus Date/Titer: 10/18/99, 3.3 uL/well Technician: Mankowski

				RT Va	alues(cpm)	F	•			
СОИС (µМ)	0.00	0.004	0.013	0.041	0.130	0.41	1.29	4.08	12.89	40.8
SAMPLE 1	43455	24885	9221	13637	18067	18740	14614	28060	36905	7195
SAMPLE 2	29494	29215	26514	16139	12141	14577	13912	36908	22372	11681
SAMPLE 3	40549	8636	16515	15997	36245	10024	21491	23193	41739	11065
MEAN	37832.3	20912.0	17416.7	15257.7	22151.0	14447.0	16672.3	29387.0	33672.0	9980.3
% VC	100.0	55.3	46.0	40.3	58.6	38.2	44,1	77,7	89.0	26.4

		тох	ICITY VAL	UES (Cell	Titer 96 - 0	D. D. @ 490	0/650 nm)			
CONC (µM)	0.00	0.004	0.013	0.041	0.130	0.41	1.29	4.08	12.89	40.8
SAMPLE 1	0.628	0.809	0.504	0.539	0.789	0.508	0.594	0.513	0.478	0.451
SAMPLE 2	0.705	0.662	0.520	0.486	0.547	0.478	0.470	0.493	0.457	0.451
SAMPLE 3	0.703	0.772	0.703	0.528	0.718	0.616	0.632	0.617	0.589	0.490
MEAN	0.679	0.748	0.576	0.518	0.685	0.534	0.565	0.541	0.508	0.464
% CC	100.0	110.2	84.8	76.3	100.9	78.7	83.3	79.7	74.9	68.4

1			
	IC50 (μM) =26.4	TC50 (μM) =>40.8	TI = >1.55
- 1			

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

	RT Values(cpm)												
CONC (µM)	0.00	0.004	0.013	0.041	0.130	0.41	1.29	4.08	12.89	40.8			
SAMPLE 1	41114	72439	11377	39100	45869	48889	33748	13751	19163	1531			
SAMPLE 2	38153	27192	33743	13794	16484	20311	6685	55388	4102	491			
SAMPLE 3	29862	19969	43511	18680	14266	52876	63653	44004	41713	637			
MEAN	36376.0	39866.7	29543.7	23858.0	25539.7	40692.0	34695.3	37714.3	21659.3	886.3			
% VC	100.0	109.6	81.2	65.6	70.2	111.9	95.4	103.7	59.5	2.4			

		тох	ICITY VAL	UES (Cell	Titer 96 - 0	D. D. @ 490	0/650 nm)			
CONC (µM)	0.00	0.004	0.013	0.041	0.130	0.41	1.29	4.08	12.89	40.8
SAMPLE 1	0.628	0.809	0.504	0.539	0.789	0.508	0.594	0.513	0.478	0.451
SAMPLE 2	0.705	0.662	0.520	0.486	0.547	0.478	0.470	0.493	0.457	0.451
SAMPLE 3	0.703	0.772	0.703	0.528	0.718	0.616	0.632	0.617	0.589	0.490
MEAN	0.679	0.748	0.576	0.518	0.685	0.534	0.565	0.541	0.508	0.464
% CC	100.0	110.2	84.8	76.3	100.9	78.7	83.3	79.7	74.9	68.4

	F ** *********************************	
1050 (134) -45 6	TC50 (141) ->40 0	T1 = >2.62
IC50 (μM) =15.6	TC50 (μM) =>40.8	11-72.02

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

	RT Values(cpm)												
CONC (nM)	0.00	0.101	0.320	1.000	3.160	10.00	31.62	100.00	316.20	1000.0			
SAMPLE 1	17550	17694	13145	10124	8718	6375	1602	238	187	115			
SAMPLE 2	16422	10558	9582	12190	8074	2978	1288	144	101	231			
SAMPLE 3	21459	9146	10528	11325	9318	4281	1376	216	216	144			
MEAN	18477.0	12466.0	11085.0	11213.0	8703.3	4544.7	1422.0	199.3	168.0	163.3			
% VC	100.0	67.5	60.0	60.7	47.1	24.6	7.7	1.1	0.9	0.9			

		тох	ICITY VAL	UES (Cell	Titer 96 - C	D. D. @ 490	0/650 nm)			
CONC (nM)	0.00	0.101	0.320	1.000	3.160	10.00	31.62	100.00	316.20	1000.0
SAMPLE 1	0.834	0.850	0.796	0.779	0.809	0.817	0.749	0.893	0.755	0.837
SAMPLE 2	0.764	0.691	0.882	0.646	0.837	0,747	0.762	0.759	0.767	0.763
SAMPLE 3	0.801	0.716	0.662	0.693	0.732	0.770	0.689	0.710	0.738	0.873
MEAN	0.800	0.752	0.780	0.706	0.792	0.778	0.733	0.787	0.753	0.824
% CC	100.0	94.0	97.5	88.3	99.1	97.3	91.6	98.4	94.2	103.1

IC50 (nM) =2.47 TC50 (nM) =>1000.0 Ti = >404.86

Client: IR&D Investigator: Ptak Setup Date: 04/02/04

Virus/Strain: HIV-1 / BR 93 021 Virus Date/Titer: 10/18/99, 3.3 uL/well

RT Values(cpm)										
CONC (nM)	0.00	0.101	0.320	1.000	3.160	10.00	31.62	100.00	316.20	1000.0
SAMPLE 1	38042	28813	31077	17751	23015	4742	717	303	252	310
SAMPLE 2	22726	20019	31795	4369	9084	7993	2590	187	721	4387
SAMPLE 3	42230	38989	19520	7569	8440	3630	461	764	209	346
MEAN	34332.3	29273.7	27464.0	9896.3	13513.0	5455.0	1256.0	418.0	394.0	1681.0
% VC	100.0	85.3	80.0	28.8	39.4	15.9	3.7	1.2	1.1	4.9

TOXICITY VALUES (Cell Titer 96 - O. D. @ 490/650 nm)										
CONC (nM)	0.00	0.101	0.320	1.000	3.160	10.00	31.62	100.00	316.20	1000.0
SAMPLE 1	0.633	0.649	0.631	0.639	0.516	0.580	0.523	0.567	0.617	0.641
SAMPLE 2	0.738	0.830	0.705	0.494	0.518	0.514	0.519	0.493	0.511	0.553
SAMPLE 3	0.702	0.792	0.651	0.605	0.529	0.543	0.521	0.623	0.471	0.539
MEAN	0.691	0.757	0.663	0.579	0.521	0.546	0.521	0.561	0.533	0.578
% CC	100.0	109.5	95.9	83.8	75.3	78.9	75.4	81.2	77.2	83.6

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

RT Values(cpm)										
CONC (nM)	0.00	0.101	0.320	1.000	3.160	10.00	31.62	100.00	316.20	1000.0
SAMPLE 1	68105	39025	39118	80185	36096	9377	263	418	511	468
SAMPLE 2	38159	53577	22089	1368	15875	2671	263	339	411	555
SAMPLE 3	74099	30952	29627	26983	38250	28136	10798	274	252	468
MEAN	60121.0	41184.7	30278.0	36178.7	30073.7	13394.7	3774.7	343.7	391.3	497.0
% VC	100.0	68.5	50.4	60.2	50.0	22.3	6.3	0.6	0.7	0.8

		TOX	ICITY VAL	UES (Cell	Titer 96 - 0	D. D. @ 490	0/650 nm)			
CONC (nM)	0.00	0.101	0.320	1.000	3.160	10.00	31.62	100.00	316.20	1000.0
SAMPLE 1	0.633	0.649	0.631	0.639	0.516	0.580	0.523	0.567	0.617	0.641
SAMPLE 2	0.738	0.830	0.705	0.494	0.518	0.514	0.519	0.493	0.511	0.553
SAMPLE 3	0.702	0.792	0.651	0.605	0.529	0.543	0.521	0.623	0.471	0.539
MEAN	0.691	0.757	0.663	0.579	0.521	0.546	0.521	0.561	0.533	0.578
% CC	100.0	109.5	95.9	83.8	75.3	78.9	75.4	81.2	77.2	83.6

Client: IR&D Investigator: Ptak Setup Date: 03/19/04

INHIBITION OF HIV-1 NL4-3 REPLICATION IN PBMC BY LEPTOMYCIN B

RT Values(cpm)										
CONC (nM)	0.00	0.010	0.032	0.101	0.320	1.00	3.16	10.00	31.62	100.0
SAMPLE 1	2271	10013	5431	487	4113	9750	561	132	168	88
SAMPLE 2	7854	11856	2796	7341	7289	6417	221	51	59	59
SAMPLE 3	7552	444	6059	7939	5745	2185	103	59	110	59
MEAN	5892.2	7437.7	4762.0	5255.7	5715.7	6117.3	295.0	80.7	112.3	68.7
% VC	100.0	126.2	80.8	89.2	97.0	103.8	5.0	1.4	1.9	1.2

TOXICITY VALUES (Cell Titer 96 - O. D. @ 490/650 nm)										
CONC (nM)	0.00	0.010	0.032	0.101	0.320	1.00	3.16	10.00	31.62	100.0
SAMPLE 1	1.144	0.771	0.782	0.807	0.925	0.900	0.237	0.058	0.000	0.000
SAMPLE 2	0.880	0.795	1.021	0.764	0.825	0.790	0.208	0.065	0.000	0.000
SAMPLE 3	0.911	0.872	1.136	0.657	0.802	0.788	0.226	0.060	0.000	0.000
MEAN	0.978	0.813	0.980	0.743	0.851	0.826	0.223	0.061	0.000	0.000
% CC	100.0	83.1	100.1	75.9	86.9	84.4	22.8	6.2	0.0	0.0

IC50 (nM) =1.87 TC50 (nM) =1.90 TI = 1.02

Client: IR&D Investigator: Ptak Setup Date: 03/10/03 Virus/Strain: HIV-1 / NL4-3 Virus Date/Titer: 7/17/02, 0.1 UL Technician: Mankowski

MESSAGE ID	Specs ID-Number	Structure
		H ₃ C NH Se
73497	AG-670/31512036	
	AG-690/15441907	O N N N S
	AG-690/15441921	H ₃ C N N N S
	AG-670/31544015	N N S
		H ₃ C NH ₂ O NH ₂
75168	AE-848/34435026	

AE-848/33206051	H ₃ C_O
	NH ₂
	H ₃ C N S O
AE-848/33207002	H,C O
	NH ₂ O Br
AE-848/34089006	
	NH ₂ N-Br
AE-848/07783052	H,C_O
·	NH ₂ NH ₃ O CH ₃
AE-848/08335035	o CH ₃
	NH ₂ S
AE-848/33766041	H ₃ C ₀ NH ₃
AE-848/34779006	
	O CI NH ₂ CI
	, , ,

ANALOGS2NDSET(CLAIMED).xls

 140.00540040007	
AG-205/12010037	O CH3
	└
	H ₃ C N S
İ	
AC 205 (12040400	<u> </u>
AG-205/12010120	о сн,
	NH ₂
	H,C N S
·.	осн,
 AG-205/41004925	
10 - LUU/T 100 T 3 LU	н,с сн,
	Br
	(
	N Y Y
	CH ₃ H ₃ C N S
 AG-690/12888651	
	O CH, NH,
	N Y
	H,C N S O
	Cı
AO-799/42868384	ÇI
	NH ₂
	130
	H,C N S CH,
	0
AO-799/42007947	O_CH3
	• 🕌
	H ₃ C O NH ₂
	l - - - - - - - - - - - - -
	H,C N S
 AO-799/42007949	<u>`</u>
. CO TOOTEDOTO	о ^{СН} а
	O NH
	H ₃ C O NH ₃
	H,C N S N
	о Сн,
 	!

	TT = =================================	
·	AO-799/42007950	H ₂ C O NH ₂
	AO-799/42007953	H,C N S CH,
		H ₃ C N S NH ₂
	AO-799/42007955	H ₃ C O NH ₂
	AO-799/42007991	H ₃ C NH ₂
	AO-799/42007992	H ₃ C NH ₂
		H ₃ C CH ₃
74377	AH-262/37288007	

Page 4

74378	AH-262/37288008	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$
	AH-262/37093024	/=N
		H ₃ C NH ₂
	AH-262/37093030	H ₃ C NH ₂
	AH-262/37240009	CH ₃ NH ₂ O CH ₃
	AH-262/37295014	H ₂ N O CH ₃
	AH-262/37329001	H ₃ C N NH ₂ CH ₃

		HN CI
109020	AP-906/41641102	N N
	AA-504/33316031	HO Z
	AE-641/14179112	H ₃ C Z
	AE-641/14825192	CH ₅ O O O
	AE-641/40975424	CH ₃ Br N CH ₃
	AE-641/40975489	CH ₃

Page 6

AE-641/40975518	∧ ,α
	ңс. Д
	v N []
	√ `с ң
AE-641/41040179	
·	
	, ž
	CH,
AE-641/41508835	
	`` `N
	Ņ
Ì i	CH ₃
AF-399/13428453	Cu Cu
	CH ₃
	N CH ₃
	N
AF-399/13428463	o
	N CH ₃
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	N
AF-399/13565053	
[H ₂ C O
	N
AF-399/13565054	F
	F F
	
	l

ANALOGS2NDSET(CLAIMED).xls

AF-399/13567392	Сн
WL-288/1320/387	сн _я
AF-399/15036519	
	N V
	N
	CH ₃
	H ₃ C
AF-399/15036537	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	СН
	N
	N CH ₃
	н,с
AF-399/15284598	OH
	a l
AF-399/15284599	ÇH,
71 -000/10204088	
	7
AF-399/15284600	ОСН
	~ N
AF-399/41147834	a d
73 000/41147004	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	СН

145 444 1144	
AF-399/41147837	H,C O
	CH .
AJ-292/11896050	CH,
	N Br
AJ-292/13162008	C
	Z CI
AJ-292/13162009	
AJ-292/13162013	Br Z
AJ-292/13162014	Br Ci
AJ-292/13162017	CH ₃

AJ-292/13162020	" " " " " " " " " "
AJ-292/13162021	a
AJ-292/13102021	
	CI
AJ-292/13162022	CI
	CI
AJ-292/13162025	
AJ-292/13162051	
AJ-292/13162052	
7 & 252 18 18265E	N F CI
AJ-292/13162055	H ₂ C N
	CI

ANALOGS2NDSET(CLAIMED).xls

<u> </u>	A 1 202/42462057	
	AJ-292/13162057	
		**
	1	▽ `cı
	AJ-292/13162059	сн,
		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
		N
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		CI
	AJ-292/13162060	сн,
		H ₃ C N
		Ca Ca
	AJ-292/13163134	F
	•	
		N
		l √n
	AJ-292/41722570	F,F
	,	
		N F
	AJ-292/41722653	СН
		N T
		(
	AJ-292/41722682	F
		F
		N ~
		· · · · · · · · · · · · · · · · · · ·
	·	
		но′ Ў

AJ-292/41722689	CH,
AJ-292/41722693	но
Pu-23241122093	O CH ₃
	HO
AP-906/41641069	N O O
	CI
AP-906/41641088	CH3 NO
AP-906/41641089	H ₃ C O
AE-562/12222957	N CH ₃
	o .

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
 - GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Figure 2

ID-Number	Name
74377	methyl 4-amino-1-(4-methylphenyl)-1H-imidazole-5-carboxylate
74378	ethyl 4-amino-1-phenyl-1H-imidazole-5-carboxylate
73497	N-(2,1,3-benzoselenadiazol-4-yl)acetamide
75168	3-amino-4-ethyl-6-methyl-N~5~-phenylthieno[2,3-b]pyridine-2,5-dicarboxamide
89246	7-methoxy-1H-pyrazolo[3,4-b]quinolin-3-ylamine
91161	2-chloro-N-(4-methylphenyl)-4-(trifluoromethyl)-1,3-thiazole-5-carboxamide
103833	3-amino-5-ethyl-4,6-dimethylthieno[2,3-b]pyridine-2-carboxamide
104366	4-amino-6-methoxy-2-(trifluoromethyl)-3-quinolinecarbonitrile
106904	4-amino-6-fluoro-2-(trifluoromethyl)-3-quinolinecarbonitrile
107129	5-(4-aminophenyl)-2-pyrimidinethiol
107740	3,6-dichloro-N-(3-methoxyphenyl)-4-pyridazinecarboxamide
109020	N-(3-chloro-4-fluorophenyl)-N-(4-quinazolinyl)amine

