Skriftlig eksamen på Økonomistudiet Sommeren 2017

MATEMATIK A

Tirsdag den 13. juni 2017

2 timers skriftlig prøve uden hjælpemidler

Dette sæt omfatter 2 sider med 3 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet og blive registeret som syg af vedkommende eksamensvagt. Derefter afleverer du en blank besvarelse i systemet og forlader eksamen. Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitet. Økonomisk Institut

1. årsprøve 2017 S-1A ex

Skriftlig eksamen i Matematik A Tirsdag den 13. juni 2017

2 sider med 3 opgaver.

Løsningstid: 2 timer.

Ingen hjælpemidler må medbringes ved eksamen.

Opgave 1. Integration ved substitution.

Lad $I \subseteq \mathbf{R}$ være et åbent, ikke-tomt interval, og lad $f,g:I \to \mathbf{R}$ være to kontinuerte funktioner. Lad $F:I \to \mathbf{R}$ være en stamfunktion til funktionen f, og antag, at funktionen g er differentiabel på hele intervallet I, og at den afledede funktion g' er kontinuert.

(1) Vis, at formlen

$$\int (f \circ g)(x)g'(x) dx = F(g(x)) + k, \text{ hvor } k \in \mathbf{R},$$

er opfyldt.

(2) Udregn f

ølgende ubestemte integraler

$$\int (x^2 + 2x - 3)^5 \cdot (2x + 2) \, dx, \int \frac{21x^2 + 4x}{7x^3 + 2x^2 + 9} \, dx \text{ og } \int x \ln(x^2 + 1) \, dx.$$

(3) Idet a > 0 skal man løse ligningen

$$\int_0^a \frac{4x}{x^2 + 1} dx = \int_0^a \frac{2x + 6x^5}{1 + x^2 + x^6} dx$$

med hensyn til a.

Opgave 2. Vi betragter den funktion $f: \mathbb{R}^2 \to \mathbb{R}$, som er defineret ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^4 + x^2 - y^2.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

i et vilkårligt punkt $(x, y) \in \mathbf{R}^2$.

- (2) Bestem det eneste stationære punkt for funktionen f.
- (3) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.
- (4) Afgør, om det stationære punkt er et maksimumspunkt, et minimumspunkt eller et sadelpunkt for funktionen f.
- (5) Bestem værdimængden for funktionen f.
- (6) Bestem en ligning for tangentplanen til grafen for funktionen f gennem punktet (1, 2, f(1, 2)).

Opgave 3. Vi betragter ligningen

(§)
$$F(x,y) = e^{xy} + e^x + y^2 - x - 3 = 0.$$

- (1) Vis, at punktet (x, y) = (0, 1) er en løsning til (\S) .
- (2) Vis, at ligningen (§) definerer den variable y implicit som en funktion y = y(x) i en omegn af punktet (0,1), og bestem y'(0).
- (3) Godtgør, at den implicit givne funktion y = y(x) er aftagende i en omegn U(0) af x = 0.

Vi betragter funktionen $z = z(x) = (y(x))^2$, som er defineret på omegnen U(0).

(4) Bestem differentialkvotienten z'(0).