

HE
18.5
.A37
no.
DOT-
TSC-
UMTA-
80-15

10. UMTA-MA-06-0051-80-2

IDENTIFICATION AND EVALUATION OF OPERATIONAL ALTERNATIVES FOR MATERIALS DATA BANK

W. T. Hathaway
C. E. Bogner
I. Litant

U.S. DEPARTMENT OF TRANSPORTATION
RESEARCH AND SPECIAL PROGRAMS ADMINISTRATION
Transportation Systems Center
Cambridge MA 02142

JULY 1980
FINAL REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC
THROUGH THE NATIONAL TECHNICAL
INFORMATION SERVICE, SPRINGFIELD,
VIRGINIA 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
URBAN MASS TRANSPORTATION ADMINISTRATION
Office of Technology Development and Deployment
Office of Safety and Product Qualifications
Washington DC 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

1. Report No. UMTA-MA-06-0051-80-2	2. Government Accession No. PB 81-124869	3. Recipient's Catalog No. •	
4. Title and Subtitle IDENTIFICATION AND EVALUATION OF OPERATIONAL ALTERNATIVES FOR MATERIALS DATA BANK		5. Report Date July 1980	
7. Author(s) W.T. Hathaway, C.E. Bogner, I. Litant		6. Performing Organization Code DTS-331	
9. Performing Organization Name and Address U.S. Department of Transportation Research and Special Programs Administration Transportation Systems Center Cambridge MA 02142		8. Performing Organization Report No. DOT-TSC-UMTA-80-15	
12. Sponsoring Agency Name and Address U.S. Department of Transportation Urban Mass Transportation Administration Office of Technology Development and Deployment Office of Safety and Product Qualifications Washington DC 20590		10. Work Unit No. (TRAIS) UM-021/R-0735	
15. Supplementary Notes MA-124869		11. Contract or Grant No.	
		13. Type of Report and Period Covered Final Report April 1979 - September 1979	
		14. Sponsoring Agency Code UTD-50	
16. Abstract A review of the organization and operation of the Urban Mass Transportation Administration's Materials Data Bank is presented. Alternatives to the current system of Data Bank Operation are identified and evaluated. It is recommended that the best method for managing and disseminating the technical data will be accomplished via the Transportation Systems Center. A notice of the availability of this system will be published in the Federal Register.			
17. Key Words Computerized Data Bank, Combustible Materials; Flammability; Alternatives		18. Distribution Statement DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 36	22. Price

PREFACE

The Urban Mass Transportation Administration (UMTA) has expended considerable effort in assessing the fire performance characteristics of materials used in transit vehicles. The collection and dissemination of pertinent flammability information are an important part of this research. In this document the computerized materials flammability data system is described; its benefits to potential users are assessed and recommendations to improve its accessibility are presented.

The authors wish to thank William J. Rhine and Robert I. Haught, for valuable guidance and comments. They also wish to acknowledge the support and contributions of James M. Peterson, Boeing Commercial Airplane Company.

METRIC CONVERSION FACTORS

Approximate Conversions to Metric Measures

Symbol	When You Know	Multiply by	To Find	Symbol	When You Know	Multiply by	To Find	Symbol	When You Know	Multiply by	To Find
LENGTH											
inches											
feet											
yards											
in	inches	2.5	centimeters	mm	millimeters	0.04	inches	in	inches	inches	in
ft	feet	30	centimeters	mm	centimeters	0.4	feet	ft	feet	feet	ft
yd	yards	0.9	meters	m	meters	3.3	yards	yd	yards	yards	yd
mi	miles	1.6	kilometers	km	kilometers	1.1	miles	mi	miles	miles	mi
AREA											
square inches											
square feet											
square yards											
square miles											
in²	square inches	6.6	square centimeters	cm²	square centimeters	0.16	square inches	in²	square inches	square inches	in²
ft²	square feet	0.09	square meters	m²	square meters	1.2	square feet	ft²	square feet	square feet	ft²
yd²	square yards	0.8	square meters	m²	square meters	0.4	square yards	yd²	square yards	square yards	yd²
mi²	square miles	2.5	square kilometers	km²	square kilometers	2.5	square miles	mi²	square miles	square miles	mi²
acres	acres	0.4	hectares	ha	hectares	-	acres	acres	acres	acres	acres
MASS (weight)											
ounces											
pounds											
short tons (2000 lb)											
oz	ounces	28	grams	g	grams	0.035	ounces	oz	ounces	ounces	oz
lb	pounds	0.48	kilograms	kg	kilograms	2.2	pounds	lb	pounds	pounds	lb
ton	short tons	0.9	tonnes	t	tonnes	1.1	short tons	ton	short tons	short tons	ton
VOLUME											
teaspoons											
tablespoons											
fluid ounces											
cups											
pints											
quarts											
gallons											
cubic feet											
cubic yards											
ts	teaspoons	15	milliliters	ml	milliliters	0.03	fluid ounces	fl oz	fluid ounces	fluid ounces	fl oz
tb	tablespoons	30	milliliters	ml	milliliters	2.1	pints	pt	pints	pints	pt
fl oz	fluid ounces	0.24	liters	l	liters	1.06	quarts	qt	quarts	quarts	qt
cup	cups	0.47	liters	l	liters	0.26	gallons	gal	gallons	gallons	gal
pt	pints	0.95	liters	l	liters	2.6	cubic meters	m³	cubic meters	cubic meters	m³
qt	quarts	1.9	liters	l	liters	1.3	cubic meters	m³	cubic meters	cubic meters	m³
gal	gallons	3.8	liters	l	liters	-	-	-	-	-	-
cu ft	cubic feet	0.03	cubic meter	m³	cubic meter	-	-	-	-	-	-
cu yd	cubic yards	0.76	cubic meter	m³	cubic meter	-	-	-	-	-	-
TEMPERATURE (exact)											
Fahrenheit											
temperature											
°F											
Celsius											
°C											
°F (when added 32)											
°C											

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
1.	INTRODUCTION.....	1
	Background.....	1
2.	DATA BANK ORGANIZATION AND OPERATION.....	2
2.1	Data Bank Organization.....	2
2.1.1	Materials Identifiers.....	2
2.1.2	Identification of Data Sources.....	3
2.1.3	Materials Data.....	3
2.2	Data Bank Operation.....	4
2.2.1	Data Retrieval.....	5
2.2.2	Display and Printout of Data.....	5
2.2.3	Maintenance of Data.....	5
3.	ALTERNATIVES TO THE PRESENT SYSTEM OF DATA BANK OPERATION.....	9
3.1	General Discussion.....	9
3.2	The Present System.....	9
3.2.1	Advantages.....	9
3.2.2	Disadvantages.....	9
3.3	Operational Alternatives.....	9
3.3.1	Access from Outside Terminals on "Read Only" Basis.....	9
3.3.1.1	Advantages.....	10
3.3.1.2	Disadvantages.....	10
3.3.2	Requested Data Provided by TSC Transportation Information Division.....	10
3.3.2.1	Advantages.....	10
3.3.2.2	Disadvantages.....	10
3.3.3	Cost Sharing with Other DOT Administrations.....	10
3.3.3.1	Advantages.....	10
3.3.3.2	Disadvantages.....	11
3.3.4	Combination with Another System.....	11
3.3.4.1	Advantages.....	11
3.3.4.2	Disadvantages.....	11
3.3.5	Periodic Publication of Data.....	11
3.3.5.1	Advantages.....	12
3.3.5.2	Disadvantages.....	12
3.3.6	Discontinuation of Data Bank.....	12
3.3.6.1	Advantages.....	12
3.3.6.2	Disadvantages.....	12
4.	RECOMMENDATIONS.....	13
APPENDIX -- LIST OF TESTS AND MEASUREMENTS.....		A-1

LIST OF ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1.	Carpet Material Ranked According to Critical Radiant Panel Heat Flux..	6
2.	Sample of Print-Out Format No. 1.....	7
3.	Sample of Print-Out Format No. 2.....	8

Technical Report Documentation Page

1. Report No. UMTA-MA-06-0051-80-2	2. Government Accession No. PB 81-124869	3. Recipient's Catalog No.	
4. Title and Subtitle IDENTIFICATION AND EVALUATION OF OPERATIONAL ALTERNATIVES FOR MATERIALS DATA BANK		5. Report Date July 1980	
7. Author(s) W. T. Hathaway, C. E. Bogner, and I. Litant		6. Performing Organization Code DTS-331	
9. Performing Organization Name and Address U.S. Department of Transportation Research and Special Programs Administration Transportation Systems Center Cambridge, Massachusetts 02142		8. Performing Organization Report No. DOT-TSC-UMTA-80-15	
12. Sponsoring Agency Name and Address U.S. Department of Transportation Urban Mass Transportation Administration 400 Seventh Street, S.W. Washington, DC 20590		10. Work Unit No. (TRAIS) MA-06-0051(UM021/R-0735)	
		11. Contract or Grant No. MA-06-0051	
		13. Type of Report and Period Covered Final Report April 1979-September 1979	
15. Supplementary Notes		14. Sponsoring Agency Code UTD-50	
16. Abstract The Urban Mass Transportation Administration (UMTA) has expended considerable effort in assessing the fire performance characteristics of materials used in transit vehicles. The collection and dissemination of pertinent flammability information are an important part of this research. The large volume of data associated with the flammability characteristics necessitated the establishment of a system for storing the data in such a manner that it would be easily available upon request. In the past, a request for such data required a search of files, journal articles, and manufacturers' literature. To address these problems, a plan for a computerized information storage and retrieval system was devised to accommodate such data queries. This report is intended to provide a review of the organization and operation of UMTA's Materials Data Bank which was established and is maintained by the Transportation Systems Center (TSC). Contained within the Materials Data Bank are two basic categories of information: 1) non-metallic materials flammability data and 2) fire extinguisher data. Included in this review are the reasons for the Bank's establishment, details of its contents, present operational status, and the identification and evaluation of operational alternatives directed at improving its visibility and its usefulness to the technical community.			
It is recommended that the best method for managing and disseminating the technical data will be accomplished through TSC. A notice of the availability of this system will be published in the Federal Register.			
17. Key Words Combustible Materials; Computerized Data Bank; Data Bank; Fire Extinguisher Data; Flammability; Materials Data Bank; Non-Metallic Materials Flammability Data	18. Distribution Statement Available to the public through the National Technical Information Service, Springfield, Virginia 22161.		
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 35	22. Price A03

1. INTRODUCTION

This report is intended to provide a review of the organization and operation of the Urban Mass Transportation Administration's (UMTA) Materials Data Bank established and maintained by the Transportation Systems Center (TSC). Included in this review are the reasons for its establishment, details of the data bank contents, present operational status, and the identification and evaluation of a series of operational alternatives directed at improving its visibility and its usefulness to the technical community. Resulting from this review are a series of recommendations for implementation of a system for enhancing the usefulness of the Materials Data Bank.

BACKGROUND

The Materials Data Bank was developed in support of the UMTA fire safety program. A part of this fire safety program is directed at the flammability characteristics of the materials used in transit systems and has resulted in the development of guidelines for these characteristics. The large volume of data associated with these flammability characteristics necessitated the establishment of a system for storing the data in such a manner that it would be easily available upon request. In the past a request for such data required a search of files, journal articles and manufacturers' literature. The comparison of flammability data on several materials was an even more arduous task. To address these problems a plan for a computerized information storage and retrieval system was devised to accommodate such data queries. To implement this plan, a contract was awarded to the Boeing Commercial Airplane Company on November 1, 1974 (DOT-TSC-926), and initial work was completed eight months later. An additional contract was awarded to the Boeing Co. in April 1978 (DOT-TSC-1534) for the purpose of updating the system, modifying the software program and adding data.

2. DATA BANK ORGANIZATION AND OPERATION

Contained within the Materials Data Bank are two basic categories of information: (1) non-metallic materials flammability data and (2) fire extinguisher data. The materials data stored in the bank addresses the following data types: (1) Materials Descriptions, (2) Materials Data and (3) Data Source Identification. The fire extinguisher data stored in the bank addresses the following data types: (1) type of fire on which specific extinguishers can be used, (2) extinguishing agent type and (3) toxicity of agent. As the fire extinguisher data is at present quite limited, this report addresses only the category of non-metallic materials flammability data.

2.1 DATA BANK ORGANIZATION

The design of the data bank (see Reference 1)* allows for storage and rapid retrieval of the desired data. The structure of the data bank was determined by the requirement that it should house and allow ready access to materials properties needed for designing a variety of items used in transit systems (seats, wall and ceiling panels, flooring, etc.).

Three separate types of information are stored for each material:

Materials identifiers (which identify the material by its manufacturer's designation, materials type, materials use, etc.).

Identification of data sources or where the data was obtained (report number, etc.).

Materials data and the test methods and results.

This information provides a comprehensive data base for use by system designers, planners, and regulatory officials concerned with operational safety.

2.1.1 Materials Identifiers

The materials are identified by manufacturer, commercial designation, material utilization, material type (form), and material composition.

The manufacturer and associated commercial designation are entered in the data bank in their entirety or suitably abbreviated to fit the allotted space.

Material utilization (component type, i.e. flooring, wall), and material composition are all entered in coded form. The use of codes permits conservation of computer storage and simplification of input. A large number of codes have been provided for these items. New codes can be entered by the programmer to cover those materials aspects not previously included. The component use type categories and codes consist of the following:

<u>Component Use Type</u>	<u>Component Use Type Code</u>
ADHESIVE	AD
ACOUSTICAL INSULATION	AI
CEILING PANELS	CP
CARPET	CT
DRAPERIES/CURTAINS	DP
ELECTRICAL INSULATION	EI
ELECTRICAL WIRE	EW
FLOORING	FL
GLASS WINDOWS	GW
LIGHTING DIFFUSERS	LD
LINERS	LR
PLASTIC WINDOWS	PW
SEAT CUSHIONS	SC

*1. Boeing Commercial Airplane Co., "Transportation System Center Material Data Bank User's Manual," DCT-TSC-1534-2, Nov. 1978. Material on File.

<u>Component Use Type</u>	<u>Component Use Type Code</u>
SEAT FRAMES	SF
THERMAL INSULATION	TI
UPHOLSTERY	UP
WALL PANELS	WP
PANELS, NOT OTHERWISE CLASSIFIED	XP
OTHER COMPONENTS	XX
NOT SPECIFIC	YY

An example of the procedure utilized in interpreting the materials identifiers' codes is shown below.

<u>Manufacturer's Designation</u>	<u>Manufacturer</u>	<u>Component Use</u>	<u>Material Code</u>
EPON 828/VERS ^R	Shell Chem/ Gen Mills	YY	AEBLGS ^R

This means that the material EPON 828/VERS 125, manufactured by Shell Chemical/General Mills, is not specific to any particular component (component use YY) and is a two-part, polyamide cured liquid epoxy adhesive (AEBLGS). Reference 1* provides more detail.

2.1.2 Identification of Data Sources

The data source is entered in the form of a report number, and the identification of the performing facility is entered in code. Several facilities have been identified as shown below and others may be added. Currently, the data are obtained principally from the FAA/NAFEC Fire Safety Branch and the materials testing area of the Boeing Company Chemical Technology Group. A limited amount of data comes from other sources, including material suppliers and their designated testing laboratories.

<u>Data Source</u>	<u>Code</u>
AIRRESEARCH MFG. CO.	AR
BOEING	BO
DOT/TSC	DT
ROCKWELL	FA
FLIGHT SAFETY OFFICE, MSC	FS
GAEC	GA
GENERAL MOTORS, AC ELECTRONICS DIVISION	GM
MCDONNELL - DOUGLAS	MD
NAFEC	NA
NATIONAL BUREAU OF STANDARDS	NB
NR/SD	NR
CREW SYSTEMS DIVISION JSC	PL
UNITED STATES TESTING CO.	US
VENDOR	VR
WHITE SANDS	WS

At present data from NASA's Non-Metallic Materials Design Guidelines Test Handbook are not included for two reasons: (1) The NASA test procedures are standard only to NASA, and (2) The test environments are at other than atmospheric pressure or at other than the normal oxygen/nitrogen ratio.

2.1.3 Materials Data

The data bank has been designed so that a broad variety of materials data acquired by different test methods can be stored. Test types include flame spread indices; smoke emission; toxic gas evolution; chemical, physical, mechanical and electrical properties; and maintainability and durability. Cost has not been included because of the difficulty in updating. The Appendix contains a complete listing of all the test types, their respective test codes and the test measurements for each test type. The data required to describe the results of a test normally consist of more than one measurement, so for each type of test, there may be several measurements taken; these measurements may be either test parameters or test results. With the present design of the data bank, it is possible to store up to twelve measurements

*1. op. cit.

for each type of test. This provides the system with its unique versatility, since each of the twelve measurements contains a piece of information such as the example shown below:

F14	ASTM E 162:MATL SURFACE FLAMM USING RADIANT ENERGY
F14A	MATERIAL THICKNESS
F14B	NUMBER OF SPECIMENS
F14C	FLAME SPREAD FACTOR F_s
F14D	STANDARD DEVIATION OF FLAME SPREAD FACTOR F_s
F14E	HEAT EVOLUTION FACTOR Q
F14F	STANDARD DEVIATION OF HEAT EVOLUTION FACTOR Q
F14G	FLAME SPREAD INDEX I_s
F14H	STANDARD DEVIATION OF FLAME SPREAD INDEX I_s

The test code F14 is the ASTM E162 test for material surface flammability using a radiant energy source. The codes F14A thru F14H refer to eight measurements that may be used to fully describe the test and its results. Although it is possible to make up to twelve measurements with each test only eight are used in conjunction with the ASTM E162 test..

Individual materials may be retrieved by the use of an assigned identification number. For comparison purposes, groups of materials may be retrieved based on a variety of categories, for example, by specific manufacturer, chemical composition, test procedure, data source, or use category. Moreover, the items may be retrieved by specific upper and lower values of test data in ascending or descending order.

In summary, the following items are included under the following identifiers:

Manufacturer's Designation

Manufacturer

Component Use

Material Type and Composition

Flame Spread Index

Smoke Evolution

Toxic Gas Evolution

Physical, Mechanical and Electrical Properties

Chemical Properties

Maintainability and Durability.

Test results are listed by the particular test procedure that was used as well as the testing organization and the date of the test. The data are available in the English system or in the equivalent metric system. Periodically, test data are forwarded to product manufacturers for review.

2.2 DATA BANK OPERATION

The operation of the data bank from a user's point of view is described by Reference 1,* an unpublished User's Manual, DOT-TSC-1534-2, Section 4. The detailed software construction is described by Reference 2,** an unpublished Programmer's Manual, DOT-TSC-1534-1. Principal features of the data bank operation are described in the following sections.

The data bank is operated on the TSC DEC System 10 computer and utilizes the resident System 1022 software. The computer is accessed from teletype-compatible

* 1. op. cit.

**2. Boeing Commercial Airplane Co., "Transportation Systems Center Materials Data Bank Programmer's Manual," DOT-TSC-1534-1, Jan. 1979. Material on file.

terminals currently available at TSC (such as the Hazeltine 2000 or the CID 1030, both of which have hard copy printed output capabilities). The data bank is protected from unauthorized usage by System 1022 software passwords and, at present, is accessible only from TSC and the Boeing Commercial Airplane Co.

Three logical groups of data manipulation capabilities are provided in the data bank design:

Data retrieval

Display and Printout of Data

Maintenance of Data.

2.2.1 Data Retrieval

The data bank is accessible on TSC computing equipment in a conversational mode to personnel with a minimal background in computers.

An inquirer seeking information from the data bank is requested by the computer to respond to a series of questions, which the computer uses to identify and recall the appropriate data. The data are then displayed at the terminal. Data from several materials or an entire category of materials can be arranged using simple and appropriate conversational commands to the computer, to rank materials in either increasing or decreasing order of merit. Such ranking can be done on the basis of any of several criteria (each generally the result of a test type), so that design tradeoffs can be effected. With this ability it is then possible to select all the materials within a particular component category and to arrange them on the basis of certain fire test result priorities. Figure 1 shows an example where several carpet materials were ranked in the data bank printout according to their critical radiant heat flux (meas. #2).

2.2.2 Display and Printout of Data

After the desired set of data has been identified and selected, the values of the data can be displayed immediately at the terminal. One feature which should be emphasized is the user's ability to specify the order in which the data is displayed. Data may be sorted and displayed in several forms depending on the desired data use (see Section 2.2.1). A printed copy may then be obtained at the terminal printer or through the TSC computer center.

A high volume display capability has been provided so that a high-speed printer can be used when the entire data base or a selected set is to be displayed.

Figures 2 and 3 represent a sample of the type of printout available for a specific material. Displayed in the left column of both figures is the material identification number (MAT ID, BWP016). Each material in the data base has its own unique identification number. The remaining information in the Figures is self-explanatory.

2.2.3 Maintenance of Data

Maintenance involves deleting, changing, or adding new information to the data base. Maintenance operations are protected by special passwords. These operations allow a programmer to make alterations to any record in the data base. This may involve changing any data item for any record in the data base, adding records, and deleting records. Capability is also provided to add, change, or delete any of the test methods or materials identification codes.

For batch updating, the capability to add records that have been previously placed on a disk data set is provided. This can lessen the amount of typing required at the terminal if data to be added exist on computer readable media. Normally, some support from data processing personnel may be required to edit and reformat available data. See Section 2.3.2 of the Programmer's Manual (Reference 2) for a complete description of this capability.

MAT ID	MANUFACTURER'S DESIGNATION	MANUFACTURER	TEST METHOD	MEAS.
TOT003	CARPET, FIBERGLASS/WOOL	CAROLINA NARROW FABRIC	F22	1.2000
TOT002	CARPET, FIBERGLASS/WOOL	CAROLINA NARROW FABRIC	F22	1.2000
TOT001	CARPET, FIBERGLASS/N	CAROLINA NARROW FABRICS	F22	1.1000
TOT004	CARPET, FIBERGLASS/WOOL	CAROLINA NARROW FABRIC	F22	1.1000
TOT008	LEVEL LOOP	LEES CARPET (No Underpad)	F22	0.9700
TOT015	CARPET	BURLINGTON IND. (LEES)	F22	0.7500
TOT016	CARPET	BURLINGTON IND. (LEES)	F22	0.7200
TOT014	CARPET	BURLINGTON IND. (LEES)	F22	0.6700
TOT013	CARPET	BURLINGTON (ND. (LEES)	F22	0.6600
TOT010	LOOP	COMMERCIAL CARPET CO. (No Underpad)	F22	0.5400
TOT006	VELVET	LEES CARPET	F22	0.2700
TOT009	LEVEL LOOP	LEES CARPET (With Under pad)	F22	0.2700
TOT007	VELVET	LEES CARPET	F22	0.1300
TOT011	LOOP	COMMERCIAL CARPET CO. (With Underpad)	F22	0.1000

FIGURE 1. CARPET MATERIAL RANKED ACCORDING TO CRITICAL RADIANT PANEL HEAT FLUX

DOT / TSC MATERIALS DATA BANK		REPORT FORMAT 3A (ENGLISH UNITS)		DATE 13-Mar-80	
MAT ID BWP016 MANUFACTURER'S DESIGNATION SHEET-MOLDING COMPOUND 9300-30				MANUFACTURER H	
FIELD COMPONENT USE CODE MATERIAL TYPE CODE MATERIAL COMPOSITION 1 MATERIAL COMPOSITION 2		CODE WP AZ CB PV		INTERPRETATION WALL PANELS COMPOUND, MOLDING POLYESTER, N.O.C. FIBERGLASS FABRIC	
MAT ID	TEST METH CODE	TEST FAC CODE	DATA SOURCE CODE	TEST DATE	INTEGER OF IDENTIFICATION
BWP016	F00	BD		7/12/1978	1517
TEST PROCEDURE 25, VERTICAL TESTS				TEST REPORT NUMBER	MISCELLANEOUS NOTES
FEDERAL AIR REGULATION 25, VERTICAL TESTS				BMT 78-00168	
TEST RESULT		UNIT OF MEASURE		TEST RESULT NAME	
60,000 1.7000 1.8000 0.0000 1.9000 1.7000 0.0030		SECONDS INCHES INCHES SECONDS SECONDS INCHES SECONDS		IGNITION TIME SELF-EXTINGUISHING TIME, ISOTROPIC/WARP BURNED LENGTH, ISOTROPIC/WARP Drip EXTINGUISHING TIME, ISOTROPIC/WARP SELF EXTINGUISHING TIME, FILL BURNED LENGTH, FILL Drip EXTINGUISHING TIME, FILL	
MAT ID	TEST METH CODE	TEST FAC CODE	DATA SOURCE CODE	TEST DATE	INTEGER OF IDENTIFICATION
BWP016	F14	BD		7/21/1978	1518
TEST PROCEDURE 1621MATL SURFACE FLAME USING RADIANT ENERGY				TEST REPORT NUMBER	MISCELLANEOUS NOTES
		TEST RESULT		TEST RESULT NAME	
		0.0150 4.0000 2.8000 1.4000 4.7000 0.2000 13.2000 6.7000		MATERIAL THICKNESS NUMBER OF SPECIMENS FLAME SPREAD FACTOR P ₈ STANDARD DEVIATION OF FLAME SPREAD FACTOR P ₈ HEAT EVOLUTION FACTOR Q STANDARD DEVIATION OF HEAT EVOLUTION FACTOR Q FLAME SPREAD INDEX IS STANDARD DEVIATION OF FLAME SPREAD INDEX IS	

FIGURE 2. SAMPLE OF PRINT-OUT FORMAT NO. 1

DOT / TSC MATERIALS DATA BANK REPORT FORMAT 3A (ENGLISH UNITS)						DATE: 13-Mar-80
MAT ID	TEST METH CODE	TEST FAC CODE	DATA SOURCE CODE	TEST DATE	INTEGER OF IDENTIFICATION	
BWP016	811	BO		6/ 1/1978	1519	MISCELLANEOUS NOTES
			TEST PROCEDURE			
	NATIONAL BUREAU OF STANDARDS SHOCK DENSITY CHAMBER			TEST REPORT NUMBER		
				BMT 78-0068		
			TEST RESULT	UNIT OF MEASURE	MATERIAL THICKNESS TEST RESULT NAME	
			0.0150	INCH	Thermal Flux of Heater	
			2.5000	WATT/SQCM	Specific Optical Density at 1.5 MINUTE, FLAMING	
			13.1000		STD DEV DS AT 1.5 MINUTE, FLAMING	
			5.1000		STD DEV DS AT 4.0 MINUTE, FLAMING	
			150.0000		STD DEV DS AT 4.0 MINUTE, FLAMING	
			21.3000		MAXIMUM SPECIFIC OPTICAL DENSITY, FLAMING	
			276.2000		STD DEV DS AT MAX FLAMING	
			27.1000		TIME TO MAXIMUM SPECIFIC OPTICAL DENSITY, FLAMING	
			10.8000	HIN	STD DEV TIME TO DMAX, FLAMING	
			-1.0000	HIN	STD DEV TIME TO DMAX, FLAMING	
					
			TEST PROCEDURE			
	NAS SMOKE CHAMBER CONCENTRATION OF EVOLVED GASES			TEST REPORT NUMBER		
				BMT 78-900		
			TEST RESULT	UNIT OF MEASURE	CARBON MONOXIDE, TEST RESULT NAME	
			135.0000	PARTS/MILLION	OXIDES OF NITROGEN, FLAMING	
			0.0000	PARTS/MILLION	HYDROGEN FLUORIDE, FLAMING	
			0.0000	PARTS/MILLION	HYDROGEN CYANIDE, FLAMING	
			17.0000	PARTS/MILLION	SULFUR DIOXIDE, FLAMING	
			2.0000	PARTS/MILLION	CARBON MONOXIDE, SOLDERING	
			0.0000	PARTS/MILLION	OXIDES OF NITROGEN, SOLDERING	
			-1.0000	PARTS/MILLION	HYDROGEN FLUORIDE, SMOKING	
			-1.0000	PARTS/MILLION	HYDROGEN CYANIDE, SMOKING	
			-1.0000	PARTS/MILLION	HYDROGEN CHLORIDE, SMOKING	
			-1.0000	PARTS/MILLION	SULFUR DIOXIDE, SMOKING	
					

FIGURE 3. SAMPLE OF PRINT-OUT FORMAT NO. 2

3. ALTERNATIVES TO THE PRESENT SYSTEM OF DATA BANK OPERATION

As noted in section 2.2, the data bank is accessible only at TSC and to the contractor presently involved in updating the data bank. To obtain data on a material, an organization must contact the TSC data bank operator and request the desired data. Since the existence of the bank is not widely known this arrangement has tended to limit its usefulness to a small sector of the technical community. This section identifies the available alternatives to improve the data bank's utility and also presents the advantages and disadvantages associated with each alternative.

3.1 GENERAL DISCUSSION

The majority of materials data contained in the data bank concerns information on materials common to all transportation modes and is not limited to transit systems. As such, the data bank is of value to the modal administrations. Other organizations may also find the data bank of use, since many of the materials are used in various sectors of society. At present the data bank usage is limited, as little effort has been made to publicize its existence. If expanded access to the bank is desired, an effort must be made to introduce potential users to the system via technical reports and announcements in NTIS, the Federal Register, Trade Journal and presentations at meetings and conferences.

3.2 THE PRESENT SYSTEM

The user contacts TSC personnel who access the data base and provide the requested information at no charge to the user.

3.2.1 Advantages

- a) Routine updating and maintenance of the data bank is easily accomplished and assures that the most recent data is provided to the user.
- b) Data are available on the frequency of data bank use, identity of user and type of data requested.
- c) Data additions and deletions performed only at TSC insure security of data in the data bank.

3.2.2 Disadvantages

- a) A high frequency of requests for data could involve a considerable investment of UMTA funds for staff and computer time to respond to the information and data requests. Although the expected number of requests cannot at present be estimated, it is possible that one labor year of effort would be required.
- b) The cost of providing data on request may result in the need to impose user charges which may decrease data bank usage and require the additional effort of setting up a bookkeeping system.

3.3 OPERATIONAL ALTERNATIVES

3.3.1 Access from Outside Terminals on "Read Only" Basis

With this alternative, any organization having the data bank telephone number, a compatible computer terminal and the appropriate password, could access the data bank directly. Such an arrangement would be on a "Read Only" basis where the user cannot add or delete any data in the data bank. This alternative would require that TSC only update and maintain the data bank, a task requiring a minimum level of effort. The cost to UMTA of such an arrangement will be dependent on the number of user requests.

3.3.1.1 Advantages

a) The expected cost to UMTA of the data bank operation may be decreased as TSC personnel will not be required to respond to all requests from users. Additional costs for computer time may increase if requests to the computer are substantial. These additional costs could be billed to the user.

b) For a properly equipped and knowledgeable user, this arrangement would provide a rapid response to requests and would be very convenient.

3.3.1.2 Disadvantages

- a) The user must acquire the necessary terminal hardware and train personnel in the hardware usage and the DEC 1022 software program.
- b) The cost to the user of acquiring the terminal hardware and understanding of the software program may not be justified if their usage rate is limited.
- c) UMTA costs for computer time will increase if user demands are substantial and not billed to user.

3.3.2 Requested Data Provided by TSC Transportation Information Division

This option could be designed to handle routine requests for information on a "charge-for-data" basis. In general, the funds collected would provide for a pay-as-you-go program.

3.3.2.1 Advantages

- a) The data bank would, with the exception of updating and maintenance, be largely self-supporting.
- b) Records identifying users, access frequencies and specific costs (connect time, disc access and search time) could be well documented and easily maintained.

3.3.2.2 Disadvantages

This alternative could possibly discourage potential users outside the transit community.

3.3.3 Cost Sharing with Other DOT Administrations

As noted in Section 3.1, the information in the materials data bank is applicable to all DOT agencies and their respective industries. Furthermore, the materials data bank is the only DOT data bank containing information on the flammability, smoke and toxicity characteristics of transportation materials. This alternative is directed at having all the DOT agencies participate in sharing the costs associated with maintaining the data bank. As such, all agencies and their respective industries would have access to and provide input for the data bank.

3.3.3.1 Advantages

- a) UMTA's cost to support the data bank would be minimized.
- b) Sharing with the other DOT agencies would encourage and enhance the usage and overall value of the data bank.

This alternative would promote UMTA's technology-sharing image.

3.3.3.2 Disadvantages

- a) The data bank will not be directed solely to the transit community.
- b) Any future data bank changes which UMTA desires may pose problems for other DOT agencies.

3.3.4 Combination with Another System

This alternative is directed at incorporating the materials data bank into another existing materials data bank or system. A search was recently made to seek out other materials data banks in both government and industry with the objective of a mutual exchange of information. The few data banks that were found were of two types:

- a) Those that contain only reference to technical journals, articles, and reports containing pertinent data.
- b) Those that contain only materials' physical properties data.

Data banks of the first type are cumbersome. They contain lists of documents, sometimes with short abstracts, with information on a particular type of material. One has to obtain these documents, cull them for the pertinent information, and then assemble the individual data into some meaningful arrangement.

The only data banks found of the second type were UMTA's and those at the NASA Johnson Space Center (JSC). These data banks store materials data in various categories, including manufacturer, trade name, application, material type, material composition source of data, and the results of a wide variety of test procedures. Data can be retrieved in any manner permitted by the software program.

The data sorted at JSC are not useful to the transit community for two reasons:

- 1) The test methods were developed by NASA and are used only by NASA. They differ from other standard test methods, and it is impossible to use a correlation factor.
- 2) The tests are made at other than normal atmospheric pressure and at oxygen concentrations that differ from atmospheric.

Although there is no totally compatible data bank or system with which the UMTA data bank may be combined, this alternative is still put forth as a possibility.

3.3.4.1 Advantages

- a) The present operational costs to UMTA would be reduced and possibly eliminated.
- b) Data response time to the user could be reduced.
- c) Potentially, more materials data would be available to the transit community.

3.3.4.2 Disadvantages

- a) May limit UMTA involvement in future changes to materials data bank.
- b) The difficulty in identifying and modifying the appropriate data bank or system with which to combine the materials data bank.
- c) If the data bank or system is accessed only from outside facilities, the disadvantages identified in Sections 3.3.1.1 and 3.3.1.2 will apply.

3.3.5 Periodic Publication of Data

This alternative is designed to reach the largest segment of the technical community by periodically publishing the data bank information through the National Technical Information Service (NTIS). The report format would be in the form shown in Figure 2. To limit the size of the report, there would be several volumes, each containing the available data on a specific component category or application (i.e., carpet material). Updated information could be provided to users to supplement the periodic publications.

3.3.5.1 Advantages

- a) This alternative would eliminate the need for users to contact TSC for data. UMTA costs would be reduced.
- b) All the materials information of a specific component application will be available in a single document.
- c) NTIS has a wide distribution and as such would provide a wide distribution for the data bank information.

3.3.5.2 Disadvantages

- a) NTIS charges a nominal fee for each report. Users desiring only a small portion of the information on a specific component will be required to obtain the entire report.
- b) Users would not be aware of data additions or deletions made between publication dates.

3.3.6 Discontinuation of Data Bank

3.3.6.1 Advantages

This alternative would eliminate the need for UMTA to support this segment of the Fire Safety in Transit Systems Program.

3.3.6.2 Disadvantages

The flammability and other physical characteristics of materials of interest, particularly to the modal administrations, would no longer be made available in a computerized fashion.

4. RECOMMENDATIONS

It is recommended that the alternative described in Section 3.3.2, "Requested Data Provided by TSC's Transportation Information Division" is the best method for managing and disseminating the information in the computerized materials data bank. This recommendation will be implemented by publishing in the Federal Register a notice of the availability of the data bank and the organizational contact at TSC with a telephone number and mailing address for obtaining additional information, or for obtaining information for specific materials applications. A minimum nominal fee will be charged for materials information.

APPENDIX
LIST OF TESTS AND MEASUREMENTS

A01 ASTM D1002: STRENGTH OF ADHESIVES IN SHEAR
A01A NUMBER OF SPECIMENS
A01B FAILURE LOAD
A01C STD DEV FAILURE LOAD
A02 ASTM D882: TENSILE PROPS. OF THIN PLASTIC SHEETING
A02A NUMBER OF SPECIMENS
A02B RATE OF HEAD MOVEMENT
A02C SPECIMEN LENGTH
A02D SPECIMEN WIDTH
A02E SPECIMEN THICKNESS
A02F TENSILE STRENGTH
A02G STD DEV TENSILE STRENGTH
A02H TENSILE STRENGTH AT BREAK
A02I ELONGATION AT BREAK
A02J YIELD STRENGTH
A02K ELONGATION AT BREAK
A02L ELASTIC MODULUS
A04 ASTM D1876: PEEL RESTNCE OF ADHESVES (T-PEEL TEST)
A04A NUMBER OF SPECIMENS-WARP
A04B T-PEEL STRENGTH-WARP
A04C STD DEV T-PEEL STRENGTH-WARP
A04D NUMBER OF SPECIMENS-FILL
A04E T-PEEL STRENGTH-FILL
A04F STD DEV T-PEEL STRENGTH-FILL
A05 FTMS 191, METH 5850: OVEN AGING OF CLOTH
A05A NUMBER OF SPECIMENS
A05B BREAKING STRENGTH CHANGE
A05C STD DEV BREAKING STRENGTH CHANGE
A06 ASTM D638; TENSILE PROPERTIES OF PLASTICS
A06A NUMBER OF SPECIMENS
A06B TENSILE STRENGTH
A06C STD DEV TENSILE STRENGTH
A06D TENSILE MODULUS
A06E STD DEV TENSILE MODULUS
A06F ULTIMATE ELONGATION
A06G STD DEV ULTIMATE ELONGATION
B02 FTMS 191, METH 5122: STRENGTH OF CLOTH, DIAPH BRST
B02A NUMBER OF SPECIMENS
B02B BURST STRENGTH
B02C STD DEV BURST STRENGTH
B03 FTMS 191, METH 5120: STRENGTH OF CLOTH, BALL BURST
B03A NUMBER OF SPECIMENS
B03B BURSTING STRENGTH
B03C STD DEV BURSTING STRENGTH
B04 FTMS 191, METH 5304.1: WYZENBEK ABRASION TEST
B04A NUMBER OF SPECIMENS
B04B LOSS OF STRENGTH IN WARP/ISOTROPIC DIRECTION
B04C STD DEV LOSS OF STRENGTH IN WARP/ISOTRPC DIRECTION
B04D LOSS OF STRENGTH IN FILL DIRECTION
B04E STD DEV LOSS OF STRENGTH IN FILL DIRECTION

B05 ASTM D1682: LOAD & ELONGATN OF TEXTILE FABRICS
B05A NUMBER OF SPECIMENS-WARP
B05B BREAKING LOAD-WARP
B05C STD DEV BREAKING LOAD-WARP
B05D APPARENT ELONGATION-WARP
B05E STD DEV APPARENT ELONGATION-WARP
B05F NUMBER OF SPECIMENS-FILL
B05G BREAKING LOAD-FILL
B05H STD DEV BREAKING LOAD-FILL
B05I APPARENT ELONGATION-FILL
B05J STD DEV APPARENT ELONGATION-FILL
B06 ASTM D1683: SEAM BREAKING STRNGTH OF WOVEN FABRICS
B06A NUMBER OF SPECIMENS-WARP
B06B BREAKING LOAD-WARP
B06C STD DEV BREAKING LOAD-WARP
B06D NUMBER OF SPECIMENS-FILL
B06E BREAKING LOAD-FILL
B06F STD DEV BREAKING LOAD-FILL
B11 ASTM D2136: COATED FABRICS-LOW TEMPRTURE BEND TEST
B11A NUMBER OF SPECIMENS
B11B EXPOSURE TEMPERATURE
B11C EXPOSURE TIME
B11D TEST RESULT (1=PASS: 0=FAIL)
C01 ASTM D395-69: COMPRESSION SET OF RUBBER
C01A NUMBER OF SPECIMENS
C01B SPECIMEN THICKNESS, ORIGINAL
C01C SPECIMEN DIAMETER, ORIGINAL
C01D HEAT TREATMENT TIME
C01E HEAT TREATMENT TEMPERATURE
C01F COMPRESSION SET, CONSTANT LOAD
C01G STD DEV COMPRESSION SET, CONSTANT LOAD
C01H COMPRESSION SET, CONSTANT DEFLECTION
C01I STD DEV COMPRESSION SET, CONSTANT DEFLECTION
C02 ASTM D412: PROPERTIES OF RUBBER IN TENSION
C02A NUMBER OF SPECIMENS
C02B SPECIMEN THICKNESS
C02C TENSILE STRENGTH
C02D STD DEV TENSILE STRENGTH
C02E ULTIMATE ELONGATION
C02F STD DEV ULTIMATE ELONGATION
C02G TENSILE SET AT 200% ELONGATION
C02H STD DEV TENSILE SET AT 200% ELONGATION
C03 ASTM D624: TEAR RESISTANCE OF RUBBER
C03A NUMBER OF SPECIMENS
C03B SPECIMEN THICKNESS
C03C TEAR RESISTANCE
C03D STD DEV TEAR RESISTANCE
C03E TEAR RESISTANCE PER ISO/R34
C03F STD DEV TEAR RESISTANCE PER ISO/R34
C05 FTMS 406, METHOD 1021: CMPRSSV PROPS RIGID PLASTCS

C05A NUMBER OF SPECIMENS - WARP
C05B COMPRESSIVE STRENGTH - WARP
C05C STD DEV COMPRESSIVE STRENGTH - WARP
C05D COMPRESSIVE MODULUS - WARP
C05E STD DEV COMPRESSIVE MODULUS - WARP
C05F NUMBER OF SPECIMENS - FILL
C05G COMPRESSIVE STRENGTH - FILL
C05H STD DEV COMPRESSIVE STRENGTH - FILL
C05I COMPRESSIVE MODULUS - FILL
C05J STD DEV COMPRESSIVE MODULUS - FILL
C06 ASTM C366: MEAS. OF THICKNESS OF SANDWICH CORES
C06A THICKNESS
C06B STD DEV THICKNESS
C09 ASTM D695: COMPRESSIVE PROPERTIES OF RIGID PLASTICS
C09A NUMBER OF SPECIMENS
C09B RATE OF HEAD MOVEMENT
C09C SPECIMEN LENGTH
C09D SPECIMEN WIDTH
C09E SPECIMEN THICKNESS
C09F COMPRESSIVE STRENGTH
C09G STD DEV COMPRESSIVE STRENGTH
C09H COMPRESSIVE YIELD STRENGTH
C09I STD DEV COMPRESSIVE YIELD STRESS
C09J OFFSET YIELD STRESS
C09K MODULUS OF ELASTICITY
C09L STD DEV MODULUS OF ELASTICITY
C12 ASTM D1621: COMPRESSIVE PROPS OF RGD CELLULAR PLASTIC
C12A NUMBER OF SPECIMENS
C12B COMPRESSIVE STRENGTH
C12C STD DEV COMPRESSIVE STRENGTH
C12D COMPRESSIVE MODULUS
C12E STD DEV COMPRESSIVE MODULUS
C12F DEFORMATION
C12G STD DEV DEFORMATION
C18 ASTM D575: PROPERTIES OF RUBBER IN COMPRESSION
C18A NUMBER OF SPECIMENS
C18B COMPRESSION DEFLECTION
C18C STD DEV COMPRESSION DEFLECTION
C18D COMPRESSION FORCE
C18E STD DEV COMPRESSION FORCE
C19 ASTM D1564: FLEXBL CELLULAR MATLS-SLAB URETHNE FOAM
C19A NUMBER OF SPECIMENS
C19B DENSITY
C19C STD DEV DENSITY
C19D COMPRESSION SET
C19E STD DEV COMPRESSION SET
C19F IMPACT RESILIENCE, PERCENT REBOUND
C19G STD DEV IMPACT RESILIENCE, PERCENT REBOUND
C19H COMPRESSIVE STRESS FOR 25% DEFLECTION
C19I COMPRESSIVE STRESS FOR 50% DEFLECTION

C21 AATCC TEST METH. 16E-1977: COLORFASTNESS TO LIGHT
C21A NUMBER OF SPECIMENS
C21B GRAY SCALE COLOR CHANGE
C22 AATCC TEST METH. 8-1977: COLORFASTNESS TO CROCKING
C22A NUMBER OF SPECIMENS
C22B GRAY SCALE COLOR CHANGE
CH1 GENERAL RESISTANCE TO CHEMICALS
CH1A STRONG ACIDS (-1=UNKNWN, 0=RST TO, 1=ATTACKED BY)
CH1B WEAK ACIDS (-1=UNKNWN, 0=RST TO, 1=ATTACKED BY)
CH1C STRONG ALKALI (-1=UNKNWN, 0=RST TO, 1=ATTACKED BY)
CH1D WEAK ALKALI (-1=UNKNWN, 0=RST TO, 1=ATTACKED BY)
CH1E WATER (-1=UNKNWN, 0=RST TO, 1=ATTACKED BY)
CH1F KETONES & ESTERS (-1=UNKNWN, 0=RST TO, 1=ATTACKED BY)
CH1G ALCOHOOLS (-1=UNKNWN, 0=RST TO, 1=ATTACKED BY)
CH1H HYDROCRBN SLVNTS (-1=UNKNWN, 0=RST TO, 1=ATTACKED BY)
CH1I CL HYDCBN SLVNTS (-1=UNKNWN, 0=RST TO, 1=ATTACKED BY)
CH1J PHENOLS (-1=UNKNWN, 0=RST TO, 1=ATTACKED BY)
CH1K LUBRICATING OILS (-1=UNKNWN, 0=RST TO, 1=ATTACKED BY)
CH1L SEE MISC NOTES (-1=UNKNWN, 0=RST TO, 1=ATTACKED BY)
D01 ASTM D2440: RUBBER PROPERTY - DUROMETER HARDNESS
D01A NUMBER OF SPECIMENS
D01B DUROMETER HARDNESS
D01C STD DEV DUROMETER HARDNESS
D03 ASTM D297: SPECIFIC GRAVITY OF RUBBER PRODUCTS
D03A NUMBER OF SPECIMENS
D03B SPECIFIC GRAVITY
D03C STD DEV SPECIFIC GRAVITY
D04 FTMS 406, METHOD 5012: SPECIFIC GRAVITY, WT & VOLM
D04A NUMBER OF SPECIMENS
D04B SPECIFIC GRAVITY
D04C STD DEV SPECIFIC GRAVITY
D05 ASTM D792: SPECIFIC GRAVITY AND DENSITY OF PLASTCS
D05A NUMBER OF SPECIMENS
D05B SPECIFIC GRAVITY
D05C STD DEV SPECIFIC GRAVITY
D05D DENSITY
D05E STD DEV DENSITY
D08 DIMENSIONAL STABILITY OF TEXTILES ON CLEANING
D08A NUMBER OF SPECIMENS
D08B DIMENSIONAL CHANGE - WARP/WALE
D08C STD DEV DIMENSIONAL CHANGE - WARP/WALE
D08D DIMENSIONAL CHANGE - FILL/COURSE
D08E STD DEV DIMENSIONAL CHANGE - FILL/COURSE
D09 ASTM D648: TEMPERATURE OF DEFLECTION ONSET, PLSTCS
D09A NUMBER OF SPECIMENS
D09B FLEXURAL LOAD
D09C DEFLECTION TEMPERATURE
D09D STD DEV DEFLECTION TEMPERATURE
E02 FTMS 191, METH 5100.1: STRNGTH OF CLOTH: GRAB METH
E02A NUMBER OF SPECIMENS - WARP

E02B BREAKING STRENGTH - WARP
 E02C STD DEV BREAKING STRENGTH - WARP
 E02D ELONGATION - WARP
 E02E STD DEV ELONGATION - WARP
 E02F NUMBER OF SPECIMENS - FILL
 E02G BREAKING STRENGTH - FILL
 E02H STD DEV BREAKING STRENGTH - FILL
 E02I ELONGATION - FILL
 E02J STD DEV ELONGATION - FILL
 E04 ASTM D696: LINEAR THERML EXPNSN COEFF. OF PLASTICS
 E04A NUMBER OF SPECIMENS
 E04B COEFFICIENT OF LINEAR THERMAL EXPANSION
 E04C STD DEV COEFFICIENT OF LINEAR THERMAL EXPANSION
 F00 FEDERAL AIR REGULATION 25, VERTICAL TESTS
 F00A IGNITION TIME
 F00B SELF-EXTINGUISHING TIME, ISOTROPIC/WARP
 F00C BURNED LENGTH, ISOTROPIC/WARP
 F00D DRIP EXTINGUISHING TIME, ISOTROPIC/WARP
 F00E SELF EXTINGUISHING TIME, FILL
 F00F BURNED LENGTH, FILL
 F00G DRIP EXTINGUISHING TIME, FILL
 F01 FEDERAL AIR REGULATIONS 25, NON-VERTICAL TESTS
 F01A SELF-EXTINGUISHNG TIME, HZNTL TEST,ISOTROPIC/WARP
 F01B BURNED LENGTH, HZNTL TEST, ISOTROPIC/WARP
 F01C BURNING RATE, HZNIL TEST, ISOTROPIC/WARP
 F01D SELF-EXTINGUISHING TIME, HZNTL TEST, FILL
 F01E BURNED LENGTH, HZNTL TEST, FILL
 F01F BURNING RATE, HZNIL TEST, FILL
 F01G AFTER-GLOW TIME, 45 DEGREE TEST
 F01H FLAME PENETRATION, 45 DEGREE TEST (0=NO, 1=YES)
 F02 ASTM D 350:FLAMM FLEX TREATD ELEC INSULATN SLEEVNG
 F02A TIME TO BURN A LENGTH OF ONE INCH
 F03 ASTM D 568: FLAMMABILITY OF FLEXIBLE PLASTICS
 F03A MATERIAL THICKNESS
 F03B BURNING RATE
 F03C SELF-EXTINGUISHING TIME
 F03D DISTANCE BURNED
 F03E PRESENCE OF BURNING DROPS (-1=UNKNOWN,0=NO,1=YES)
 F04 ASTM D 635: FLAMM. OF SELF-SUPPORTING PLASTICS
 F04A MATERIAL THICKNESS
 F04B BURNING RATE
 F04C SELF-EXTINGUISHING TIME
 F04D DISTANCE BURNED
 F04E PRESENCE OF BURNING DROPS (-1=UNKNOWN,0=NO,1=YES)
 F05 ASTM D 757: FLAMM. OF PLASTICS,SELF-EXTNGSHNG TYPE
 F05A BURNING RATE
 F05B BURNING TIME
 F05C OCCURRENCE OF MELTING OR BURNING DROPS(0=NO,1=YES)
 F06 ASTM D 777: FLAMM. OF TREATED PAPER AND PAPERBOARD
 F06A CHAR LENGTH

F06B DURATION OF AFTERGLOW
F07 ASTM D 1230: FLAMMABILITY OF CLOTHING TEXTILES
F07A FLAMMABILITY CLASS
F08 ASTM D 1433: FLAMM. OF FLEX. THIN PLASTIC SHEETING
F08A MATERIAL THICKNESS
F08B BURNING RATE
F08C PRESENCE OF BURNING DEOPS (0=NO,1=YES)
F09 ASTM D 1929: IGNITION PROPS OF PLASTICS(SETCHKIN)
F09A FLASH IGNITION TEMPERATURE
F09B SELF-EXTINGUISHING TEMPERATURE
F10 ASTM D 2859: FLAMM. OF TEXTL FLOOR COVERING MATLS
F10A NUMBER OF 8 SPECIMENS RESISTANT TO FLAMMABILITY
F11 ASTM D 2863:FLAMM. OF PLASTICS,OXYGEN INDEX METHOD
F11A NUMBER OF SPECIMENS
F11B OXYGEN INDEX
F11C STANDARD DEVIATION - OXYGEN INDEX
F12 ASTM D 69:COMBUSTBLE PROPS OF RTD WOOD, FIRE-TUBE
F12A MOISTURE CONTENT OF MATERIAL
F12B WEIGHT LOSS OF MATERIAL AFTER BURNING HAS CEASED
F13 ASTM E 84: SURFACE BURNING CHARACTERISTICS OF MATL
F13A FLAME SPREAD CLASSIFICATION - DISTANCE
F13B FLAME SPREAD CLASSIFICATION - FUEL CONTRIBUTION
F13C FLAME SPREAD CLASSIFICATION - SMOKE CONTRIBUTION
F14 ASTM E 162:MATL SURFACE FLAMM USING RADIANT ENERGY
F14A MATERIAL THICKNESS
F14B NUMBER OF SPECIMENS
F14C FLAME SPREAD FACTOR FS
F14D STANDARD DEVIATION OF FLAME SPREAD FACTOR FS
F14E HEAT EVOLUTION FACTOR Q
F14F STANDARD DEVIATION OF HEAT EVCLUTION FACTOR Q
F14G FLAME SPREAD INDEX IS
F14H STANDARD DEVIATION OF FLAME SPREAD INDEX IS
F15 ASTM E 286: SURFC FLAMM OF BLDNG MATLS,8-FT TUNNEL
F15A FLAME SPREAD INDEX
F15B FUEL CONTRIBUTED INDEX
F15C SMOKE DENSITY INDEX
F16 FTMS 191, METHOD 5900: FLAME RES. OF CLOTH; HZNTL
F16A FLAME RESISTANCE
F17 FTMS 191, METHOD 5903: FLAME RES. OF CLOTH; VRTCL
F17A AFTER-FLAME TIME
F17B AFTER-GLOW TIME
F17C CHAR LENGTH
F18 FTMS 191, METHOD 5905:FLAME RES OF MATL;HIGH HEAT
F18A REACTION OF MATERIAL TO FLAME:SEE USER'S MANUAL
F19 FTMS 191, METHOD 5906: BURNING RATE OF CLOTH;HZNTL
F19A BURNING RATE
F20 FTMS 191, METHOD 5908:BURNING RATE OF CLOTH;45 DEG
F20A FLAMMABILITY
F21 OHIO STATE UNIV RELEASE RATE APPARATUS, FLAMMABILITY
F21A THERMAL FLUX

F21B AIR FLOW
F21C MATERIAL THICKNESS
F21D ORIENTATION (-1=UNKNOWN,0=VERTICAL,1=HORIZONTAL)
F21E IGNITION (-1=UNKNOWN,0=NON-PILOTED,1=PILOTED)
F21F SLOPE E
F21H TIME TO MAXIMUM HEAT RELEASE RATE
F21I HEAT RELEASED AFTER 4 MINUTES
F21J TOTAL HEAT RELEASED
F22 NBS RADIANT PANEL FLOORING TEST
F22A MATERIAL THICKNESS
F22B CRITICAL RADIANT FLUX
F22C STANDARD DEVIATION, CRITICAL RADIANT FLUX
F22D NUMBER OF SPECIMENS TESTED
F23 FLAMMABILITY TEST FOR ELECTRICAL WIRE
F23A TIME TO IGNITION, VERTICAL
F23B TIME TO IGNITION, HORIZONTAL
F23C AFTER FLAME/GLOW TIME, VERTICAL
F23D AFTER FLAME/GLOW TIME, HORIZONTAL
F23E FLAME DAMAGE LENGTH, VERTICAL
F23F FLAME DAMAGE LENGTH, HORIZONTAL
F23G CONVEY FLAME, VERTICAL (0=NO;1=YES)
F23H CONVEY FLAME, HORIZONTAL (0=NO;1=YES)
F23I POST FLAME DIELECTRIC (VOLTS)
F24 ASTM E-119: FIRE TESTS OF BUILDING CONSTRUCTION AND
RESULTS (0=FAIL;1=PASS)
F25 ASTM D 3675: MTL SURFACE FLAMM USING RADIANT ENERGY
F25A MATERIAL THICKNESS
F25B NUMBER OF SPECIMENS
F25C FLAME SPREAD FACTOR FS
F25D STANDARD DEVIATION OF FLAME SPREAD FACTOR FS
F25E HEAT EVOLUTION FACTOR Q
F25F STANDARD DEVIATION OF HEAT EVOLUTION FACTOR Q
F25G FLAME SPREAD INDEX IS
F25H STANDARD DEVIATION OF FLAME SPREAD INDEX IS
G03 ASTM D523: SPECULAR GLOSS
G03A NUMBER OF SPECIMENS
G03B 20 DEGREE GLOSS
G03C STD DEV 20 DEGREE GLOSS
G03D 60 DEGREE GLOSS
G03E STD DEV 60 DEGREE GLOSS
G03F 85 DEGREE GLOSS
G03G STD DEV 85 DEGREE GLOSS
G04 ASTM C177: THERMAL CONDUCTIVITY BY GUARDED PLATE
G04A THERMAL CONDUCTIVITY
G04B STD DEV THERMAL CONDUCTIVITY
G05 ASTM C273: SHEAR PROPS. OF FLAT SANDWICH CONSTCTNS
G05A NUMBER OF SPECIMENS
G05B SHEAR STRENGTH
G05C STD DEV SHEAR STRENGTH
G05D ULTIMATE SHEAR STRAIN

G05E STD DEV ULTIMATE SHEAR STRAIN
G05F SHEAR MODULUS
G05G STD DEV SHEAR MODULUS
G06 HIGH IMPTURE (180F) RSTNCE FOR POLYMR COATED FABRC
G06A NUMBER OF SPECIMENS
G06B TACKINESS, EMBRITTLEMENT, PUNGENT ODOR (1=YES;0=NO)
I03 ASTM D2444: IMPACT RSTNCE OF PLASTIC PIPE USNG TUP
I03A NUMBER OF SPECIMENS
I03B IMPACT RESISTANCE
I03C STD DEV IMPACT RESISTANCE
I04 ASTM D256: IMPACT RESISTANCE OF PLASTICS
I04A IZOD IMPACT STRENGTH
I04B STD DEV IZOD IMPACT STRENGTH
I05 ASTM D2583: INDENTATION HARDNSS OF PLASTCS, BARCOL
I05A NUMBER OF SPECIMENS
I05B BARCOL HARDNESS
I05C STD DEV BARCOL HARDNESS
I08 ASTM D3029: IMPACT RSTNCE OF PLASTC SHEET USNG TUP
I08A NUMBER OF SPECIMENS
I08B SPECIMEN THICKNESS
I08C IMPACT RESISTANCE
I08D STD DEV IMPACT RESISTANCE
L01 MIL-STD-401B: FLEXURAL PROPS OF SANDWCH CONSTRCTNS
L01A NUMBER OF SPECIMENS
L01B CORE SHEAR STRESS
L01C STD DEV CORE SHEAR STRESS
L01D FACING STRESS
L01E STD DEV FACING STRESS
L01F P/Y - INITIAL SLOPE OF LOAD/DEFLECTION CURVE
L01G STD DEV P/Y-INITIAL SLOPE OF LOAD/DEFLECTION CURVE
L01H CORE SHEAR MODULUS
L01I STD DEV CORE SHEAR MODULUS
L03 MIL-STD-401B: PEEL STRENGTH OF SANDWICH CONSTRCTNS
L03A NUMBER OF SPECIMENS
L03B PEEL STRENGTH
L03C STD DEV PEEL STRENGTH
L07 MIL-STD-401B: TENSILE STRENGTH OF SNDWCH CNSTRCTNS
L07A NUMBER OF SPECIMENS
L07B TENSILE STRENGTH
L07C STD DEV TENSILE STRENGTH
M01 FTMS 406, METHOD 1011: TENSILE PROPRTS OF PLASTICS
M01A NUMBER OF SPECIMENS - WARP/ISOTROPIC
M01B TENSILE STRENGTH - WARP/ISOTROPIC
M01C STD DEV TENSILE STRENGTH - WARP/ISOTROPIC
M01D ELONGATION - WARP/ISOTROPIC
M01E STD DEV ELONGATION - WARP/ISOTROPIC
M01F ELASTIC MODULUS - WARP/ISOTROPIC
M01G NUMBER OF SPECIMENS - FIL
M01H TENSILE STRENGTH - FIL
M01I STD DEV TENSILE STRENGTH - FIL

M01J ELONGATION - FILL
M01K STD DEV ELONGATION - FILL
M01L ELASTIC MODULUS - FILL
M02 FTMS 406, METHOD 1031: FLEXURAL PROPS OF PLASTICS
M02A NUMBER OF SPECIMENS - WARP
M02B FLEXURAL STRENGTH - WARP
M02C STD DEV FLEXURAL STRENGTH - WARP
M02D FLEXURAL MODULUS - WARP
M02E STD DEV FLEXURAL MODULUS - WARP
M02F NUMBER OF SPECIMENS - FILL
M02G FLEXURAL STRENGTH - FILL
M02H STD DEV FLEXURAL STRENGTH - FILL
M02I FLEXURAL MODULUS - FILL
M02J STD DEV FLEXURAL MODULUS - FILL
M03 ASTM D790: FLEXURAL PROPERTIES OF PLASTICS
M03A NUMBER OF SPECIMENS
M03B MAXIMUM FIBER STRESS
M03C STD DEV MAXIMUM FIBER STRESS
M03D FLEXURAL STRENGTH
M03E STD DEV FLEXURAL STRENGTH
M03F FLEXURAL YIELD STRESS
M03G STD DEV FLEXURAL YIELD STRESS
M03H FLEXURAL OFFSET YIELD STRESS
M03I STD DEV FLEXURAL OFFSET YIELD STRESS
M03J TANGENT MODULUS OF ELASTICITY
M03K STD DEV TANGENT MODULUS OF ELASTICITY
M03L SECANT MODULUS OF ELASTICITY
M04 FTMS 191, METHOD 5134: TEARING STRENGTH OF CLOTH
M04A NUMBER OF SPECIMENS - WARP
M04B TEARING STRENGTH - WARP
M04C STD DEV TEARING STRENGTH - WARP
M04D NUMBER OF SPECIMENS
M04E TEARING STRENGTH - FILL
M04F STD DEV TEARING STRENGTH - FILL
M05 ASTM D3512: PILLING RSTNCE OF TXTILES-RANDM TUMBLR
M05A NUMBER OF SPECIMENS
M05B NUMBER OF PILLS
M05C STD DEV NUMBER OF PILLS
P01 PHYSICAL, MECHANICAL, AND ELECTRICAL PROPERTIES
P01A SPECIFIC GRAVITY
P01B THERMAL CONDUCTIVITY
P01C THERMAL EXPANSION COEFFICIENT
P01D TENSILE MODULUS
P01E COMPRESSIVE STRENGTH
P01F ULTIMATE TENSILE STRENGTH
P01G ULTIMATE ELONGATION
P01H IZOD NOTCHED IMPACT STRENGHT
P01I COMPRESSION SET, FLEXIBLE FOAMS AFTER 22 HRS, 158F
P01J DIELECTRIC STRENGTH
P01K DIELECTRIC CONSTANT AT 60 CYCLES/SEC

P01L DIELECTRIC CONSTANT AT 1,000,000 CYCLES/SEC
R03 ASTM D1329: RUBBER RETRACTION AT LOW TEMPERATURE
R03A NUMBER OF SPECIMENS
R03B SPECIMEN THICKNESS
R03C IR 10
R03D STD DEV TR 10
R03E IR 30
R03F STD DEV TR 30
R03G IR 50
R03H STD DEV TR 50
R03I IR 70
R03J STD DEV TR 70
R08 SNAG RESISTANCE OF TEXTILES
R08A NUMBER OF SPECIMENS
R08B NUMBER OF SNAGS
R08C STD DEV NUMBER OF SNAGS
R14 ASTM D573: DETERIORATION OF RUBBER IN AN AIR OVEN
R14A AGING TEMPERATURE
R14B AGING TIME
R14C DUROMETER HARDNESS
R14D STD DEV DUROMETER HARDNESS
R14E SPECIMEN THICKNESS FOR TENSILE PROPERTIES DETERMINATION
R14F TENSILE STRENGTH
R14G STD DEV TENSILE STRENGTH
R14H ULTIMATE ELONGATION
R14I STD DEV ULTIMATE ELONGATION
R14J SPECIMEN THICKNESS FOR COMPRESSION SET DETERMINATION
R14K SPECIMEN DIAMETER FOR COMPRESSION SET DETERMINATION
R14L COMPRESSION SET AT CONSTANT LOAD
S01 NFPA 258 (ASTM E662, NBS SMOKE CHAMBER)
S01A MATERIAL THICKNESS
S01B THERMAL FLUX OF HEATER
S01C SPECIFIC OPTICAL DENSITY AT 1.5 MIN, FLAMING
S01D SPECIFIC OPTICAL DENSITY AT 1.5 MIN, SMOLDERING
S01E SPECIFIC OPTICAL DENSITY AT 4.0 MIN, FLAMING
S01F SPECIFIC OPTICAL DENSITY AT 4.0 MIN, SMOLDERING
S01G MAXIMUM SPECIFIC OPTICAL DENSITY, FLAMING
S01H TIME TO MAXIMUM SPECIFIC OPTICAL DENSITY, FLAMING
S01I MAXIMUM SPECIFIC OPTICAL DENSITY, SMOLDERING
S01J TIME TO MAXIMUM SPECIFIC OPTICAL DENSITY, SMOLDERING
S02 ASTM D 2843: SMOKE DENSITY FROM BURNING PLASTICS
S02A MATERIAL THICKNESS
S02B SMOKE DENSITY RATING
S03 SURFACE BURNING CHARACTERISTICS OF BURNING MATERIAL
S03A SMOKE CONTRIBUTION RELATIVE TO RED OAK
S04 OHIO STATE UNIVERSITY RELEASE RATE APPARATUS, SMOKE
S04A THERMAL FLUX
S04B AIR FLOW
S04C MATERIAL THICKNESS
S04D ORIENTATION (-1=UNKNOWN;0=VERTICAL;1=HORIZONTAL)

S04E IGNITION (-1=UNKNOWN;0=NON-PILOTED;1=PILOTED)
 S04F SPECIFIC OPTICAL DENSITY AT 1.5 MINUTES
 S04G SPECIFIC OPTICAL DENSITY AT 4.0 MINUTES
 S04H MAXIMUM SPECIFIC OPTICAL DENSITY
 S05 SMOKE EMISSION: NAFEC PROJECT USING NBS CHAMBER
 S05A TOTAL NUMBER OF SPECIMENS TESTED OF MATERIAL TYPE
 S05B NUMBER OF SPECIMENS SHOWING DMAX IN RANGE 0-16
 S05C NUMBER OF SPECIMENS SHOWING DMAX IN RANGE 16-30
 S05D NUMBER OF SPECIMENS SHOWING DMAX IN RANGE 30-70
 S05E NUMBER OF SPECIMENS SHOWING DMAX IN RANGE 70-100
 S05F NUMBER OF SPECIMENS SHOWING DMAX IN RANGE 100-200
 S05G NUMBER OF SPECIMENS SHOWING DMAX IN RANGE 200-300
 S05H NUMBER OF SPECIMENS SHOWING DMAX IN RANGE 300-400
 S05I NUMBER OF SPECIMENS SHOWING DMAX GREATER THAN 400
 S05J NUMBER OF SPECIMENS NOT REACHING D= 16 IN 90 SECS
 S05K NUMBER OF SPECIMENS NOT REACHING D=100 IN 90 SECS
 S06 SMOKE EMISSION: NAFEC PROJECT USING XP2 CHAMBER
 S06A TOTAL NUMBER OF SPECIMENS TESTED OF MATERIAL TYPE
 S06B NUMBER OF SPECIMENS SHOWING PERCENT LA MAX 0-5
 S06C NUMBER OF SPECIMENS SHOWING PERCENT LA MAX 5-10
 S06D NUMBER OF SPECIMENS SHOWING PERCENT LA MAX 10-30
 S06E NUMBER OF SPECIMENS SHOWING PERCENT LA MAX 30-50
 S06F NUMBER OF SPECIMENS SHOWING PERCENT LA MAX 50-70
 S06G NUMBER OF SPECIMENS SHOWING PERCENT LA MAX 70-90
 S06H NUMBER OF SPECIMENS SHOWING PERCENT LA MAX 80-90
 S06I NUMBER OF SPECIMENS SHOWING PERCENT LA MAX 90-100
 S06J NR SPECIMENS NOT REACHING 10% LA MAX IN 90 SECS
 S06K NR SPECIMENS NOT REACHING 40% LA MAX IN 90 SECS
 S11 NFPA 258 (ASTM 3662, NBS SMOKE CHAMBER)
 S11A MATERIAL THICKNESS
 S11B THERMAL FLUX OF HEATER
 S11C SPECIFIC OPTICAL DENSITY AT 1.5 MINUTE, FLAMING
 S11D STD DEV DS AT 1.5 MINUTE, FLAMING
 S11E SPECIFIC OPTICAL DENSITY AT 4.0 MINUTE, FLAMING
 S11F STD DEV DS AT 4.0 MINUTE, FLAMING
 S11G MAXIMUM SPECIFIC OPTICAL DENSITY, FLAMING
 S11H STD DEV DMAX, FLAMING
 S11I TIME TO MAXIMUM SPECIFIC OPTICAL DENSITY, FLAMING
 S11J STD DEV TIME TO DMAX, FLAMING
 T01 NBS SMOKE CHAMBER: MGRM TOXICANT EVOLVED/GRAM MATL
 T01A CARBON MONOXIDE, FLAMING
 T01B OXIDES OF NITROGEN, FLAMING
 T01C HYDROGEN FLUORIDE, FLAMING
 T01D HYDROGEN CHLORIDE, FLAMING
 T01E HYDROGEN CYANIDE, FLAMING
 T01F SULFUR DIOXIDE, FLAMING
 T01G CARBON MONOXIDE, SMOLDERING
 T01H OXIDES OF NITROGEN, SMOLDERING
 T01I HYDROGEN FLUORIDE, SMOLDERING
 T01J HYDROGEN CHLORIDE, SMOLDERING

T01K HYDROGEN CYANIDE, SMOLDERING
T01L SULFUR DIOXIDE, SMOLDERING
T02 TOXIC GAS EVOLUTION: SEE TEST NOTES FOR TEST METHOD
T02A CARBON MONOXIDE
T02B OXIDES OF NITROGEN
T02C HYDROGEN FLUORIDE
T02D HYDROGEN CHLORIDE
T02E HYDROGEN CYANIDE
T02F SULFUR DIOXIDE
T03 NBS SMOKE CHAMBER: CONCENTRATION OF EVOLVED GASES
T03A CARBON MONOXIDE, FLAMING
T03B OXIDES OF NITROGEN, FLAMING
T03C HYDROGEN FLUORIDE, FLAMING
T03D HYDROGEN CHLORIDE, FLAMING
T03E HYDROGEN CYANIDE, FLAMING
T03F SULFUR DIOXIDE, FLAMING
T03G CARBON MONOXIDE, SMOLDERING
T03H OXIDES OF NITROGEN, SMOLDERING
T03I HYDROGEN FLUORIDE, SMOLDERING
T03J HYDROGEN CHLORIDE, SMOLDERING
T03K HYDROGEN CYANIDE, SMOLDERING
T03L SULFUR DIOXIDE, SMOLDERING
V01 ASTM D903: PEEL STRENGTH OF ADHESIVE BONDS
V01A PEEL STRENGTH-NYLON
V01B STD DEV PEEL STRENGTH-NYLON
V01C PEEL STRENGTH-MYLAR
V01D STD DEV PEEL STRENGTH-MYLAR
V01E PEEL STRENGTH AT ROOM TEMPERATURE
V01F STD DEV PEEL STRENGTH AT ROOM TEMPERATURE
V01G PEEL STRENGTH AT 120F AND 100% RELATIVE HUMIDITY
V01H STD DEV PEEL STRENGTH AT 120F AND 100% RH
V01I PEEL STRENGTH AT 160F
V01J STD DEV PEEL STRENGTH AT 160F
W02 WEIGHT OF TEXTILES AND SHEET MATERIALS
W02A NUMBER OF SPECIMENS
W02B THICKNESS
W02C STD DEV THICKNESS
W02D AREAL DENSITY
W02E STD DEV AREAL DENSITY
W02F SPECIFIC GRAVITY
W02G STD DEV SPECIFIC GRAVITY
W05 FTMS 406, METHOD 1091: TABER ABRASION TEST
W05A NUMBER OF SPECIMENS
W05B WEIGHT LOSS PER 1000 REVOLUTIONS
W05C STD DEV WEIGHT LOSS PER 1000 REVOLUTIONS
W07 ASTM D756: WEIGHT AND SHAPE CHANGES OF PLASTICS
W07A NUMBER OF SPECIMENS
W07B WEIGHT CHANGE
W07C STD DEV WEIGHT CHANGE
W07D LENGTH CHANGE

W07E STD DEV LENGTH CHANGE
W07F WIDTH CHANGE
W07G STD DEV WIDTH CHANGE
W07H THICKNESS CHANGE
W07I STD DEV THICKNESS CHANGE
W08 ASTM D570: WATER ABSORPTION BY PLASTICS
W08A NUMBER OF SPECIMENS
W08B WATER ABSORPTION
W08C STD DEV WATER ABSORPTION
W21 FTMS 406, METHOD 7031: WATER ABSORPTION BY PLASTCS
W21A NUMBER OF SPECIMENS
W21B WATER ABSORPTION
W21C STD DEV WATER ABSORPTION

HE 18.5 A3 / NO. DC
UMIA- 80-15
Hathaway, W. I.

Identification and
evaluation of oper

Form DOT F 1720.2 (8-70)
FORMERLY FORM DOT F 1700.11.1

DOT LIBRARY

11001000

U.S. DEPARTMENT OF TRANSPORTATION
RESEARCH AND SPECIAL PROGRAMS ADMINISTRATION
TRANSPORTATION SYSTEMS CENTER
KENDALL SQUARE, CAMBRIDGE, MA. 02142

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE. \$100

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF TRANSPORTATION
613

