Московский физико-технический институт (национальный исследовательский университет)

Лабораторная работа по общему курсу физики

Отчёт о выполнении лабораторной работы 1.2.4

Определение главных моментов инерции твердых тел с помощью крутильных колебаний.

Засимов Георгий Алексеевич Группа Б01-109

Долгопрудный 2021

1. Аннотация

В данной работе измеряется перид крутильных колебаний. С Его поиощью находятся моменты инерции различных тел (параллелепипеда, куба, диска) в соотвествующих главным осям положениях. Строятся эллипсоиды инерции этих тел, а также проверяется расчет теоретической зависимости периода крутильных колебаний от значений моментов инерции относительно различных осей.

2. Теоретические сведения и методика измерений

Тензор инерции - пространственное распределение массы тела и величина массы - характеристики, определяющие инерционные свойства тела. Геометрический образ тензора инерции - эллипсоид инерции, задаваемый уравнением:

$$I_x x^2 + I_y y^2 + I_z z^2 = 1 (1)$$

(координатные оси совпадают с главными осями тела - см рис.1, эллипсоид энерции центральный, если начало координат O совпадает с центром масс).

При помощи эллипсоида инериции можно найти момент инерции тела относительно любой оси, проходящей через ценр эллипсоида. Проведя вдоль выбранной оси радиус-вектор \vec{r} до пересечения с поверхностью эллипсоида найдем длину вектора \vec{r} , которая и определяет момент инерции тела относительно этой оси:

$$I = \frac{1}{r^2} \tag{2}$$

Уравнение, которое описывает крутильные колебания с телом (I_p - момент инерции рамки, ϕ - угол поворота рамки, зависящий от времени

t, f - модуль кручения проволоки):

$$(I+I_p)\frac{d^2\phi}{dt} = -f\phi \tag{3}$$

Период крутильных колебаний рамки с телом:

$$T = 2\pi \sqrt{\frac{I - I_p}{f}} \tag{4}$$

Момент инерции при вращении параллелепипеда относительно диагонали (α, β, γ - углы данной диагонали с главными осями):

$$I_d = I_x Cos\alpha^2 + I_y Cos^2\beta + I_z Cos^2\gamma \tag{5}$$

А через длины рёбер параллелепипеда a, b, c:

$$(a^{2} + b^{2} + c^{2})I_{d}^{2} = a^{2}I_{x} + b^{2}I_{y} + c^{2}I_{z}$$
(6)

А из уравнения (4) получаем:

$$(a^2 + b^2 + c^2)T_d^2 = a^2T_x^2 + b^2T_y^2 + c^2T_z^2$$
(7)

$$(b^2 + c^2)T_E^2 = b^2T_u^2 + c^2T_z^2 (8)$$

$$(a^2 + c^2)T_P^2 = a^2T_x^2 + c^2T_z^2 (9)$$

$$(a^2 + b^2)T_M^2 = a^2T_x^2 + b^2T_y^2 (10)$$

Эти соотношения необходимо проверить на основе расчётов по полученным данным.

Рис 1. Главные оси параллепипеда.

Рис 2.1. Эллипсоиды инерции для параллепипеда.

Рис 2.2. Эллипсоиды инерции для куба.

3. Оборудование и экспериментальные погрешности

3.1. Экспериментальная установка

В данной работе исползуется рамка крутильных колебаний (см рис.3). В рамке, жёстко закрепленной на проволоке, которая при помощи специальных зажимов может закручиваться и совершать крутильные колебания вдоль вертикальной оси, при помощи планки и гаек закрепляется тело так, чтобы оно было неподвижно во время колебаний самой рамки.

Рис 3. Схема экспериментальной установки.

3.2. Погрешности измерений

В данной работе мы пользовались: секундомером для определения времени совершения колебаний рамкой, весами для измерения массы куба, параллелепипеда и диска металической линейкой штанген-циркулем для измерения размера тел.

Соответствующие систематические погрешности приборов:

$$\sigma_t = 0.01c$$

$$\sigma_m = 0.01g$$

$$\sigma_l = 0.5mm$$

$$\sigma_{sh} = 0.1mm$$

Результаты данных измерений:

для параллелепипеда:

$$m = 2083.5 \pm 0.01g(\varepsilon = 0.0005\% \approx 0\%)$$

$$a = 50 \pm 0.5mm(\varepsilon = 1\%)$$

$$b = 100 \pm 0.5mm(\varepsilon = 0.5\%)$$

$$c = 150 \pm 0.5mm(\varepsilon = 0.3\%)$$

для куба:

$$m = 1089.7 \pm 0.01 g(\varepsilon = 0.001\% \approx 0\%)$$

 $a = b = c = 93 \pm 0.5 mm(\varepsilon = 0.5\%)$

для диска:

$$m = 1569.6 \pm 0.01 g(\varepsilon = 0.0006\% \approx 0\%)$$

 $a = b = 124.6 \pm 0.1 mm(\varepsilon = 0.08\%)$
 $c = 17.1 \pm 0.1 mm(\varepsilon = 0.5\%)$

4. Результаты измерений и обработка данных

Проведём пробный эксперимент с крутильными колебаниями одной рамки без тел для нахождения погрешности и определения периода крутильных колебаний.

N	n	t
1	10	24.53
2	10	24.25

Таблица 1.1. Результаты измерений для колебаний рамки без грузов.

Ось	N, раз	t, c	Т, с
D1B	10	33,94	3,394
D1B	10	33,94	3,394
D1B	10	33,69	3,369
D1B	10	33,84	3,384
D1B	10	33,75	3,375
D1B	10	34,06	3,406

 Таблица 1.2. Результаты пробного эксперимента для определения случайной погрешности.

Случайная погрешность измерения вычисляется по формуле:

$$\sigma_{occ} = \sqrt{\frac{1}{N} \sum (T - \langle \overline{T} \rangle)^2} = 0$$

Полученные данные удивительно точны, так как сумма со значениями периодов равна 0. Это значит, что влияние случайной погрешности на значения данных экспериманта можно не учитывать. Тогда итоговая погрешность измерения периода зависит только от систематической погрешности секундомера 0.01 с.

Период колебаний пустой рамки:

$$T_p = 2,439 \pm 0,01c$$

Приведём результаты измерений для параллелепипеда, куба и диска в таблицах 2, 3 и 4 соответственно. Количество колебаний п для каждого измерения = 10.Величину $\frac{1}{\sqrt{T^2-T_p^2}}$ обозначим за ro - она пропорциональна расстоянию от центра масс тела до точки пересечения эллипсоида инерции с соответствующей осью.

Ось	N, раз	t, c	Т, с	ro, 1/c
X	10	40,22	4,022	0,09777
X	10	32,94	3,294	0,20401
X	10	31,72	3,172	0,24314
Z	10	37	3,7	0,12918
Z	10	36,75	3,675	0,13233
Y	10	31,34	3,134	0,25818
Y	10	31,65	3,165	0,24579
K1K3	10	34,32	3,432	0,17153
K2K4	10	34,66	3,466	0,16490
M1M3	10	33,41	3,341	0,19181
M2M4	10	33,53	3,353	0,18890
P1P4	10	32,72	3,272	0,21020
P2P5	10	32,63	3,263	0,21284
A1C	10	33,72	3,372	0,18445
B1D	10	33,97	3,397	0,17886
C1A	10	34,04	3,404	0,17735
D1B	10	33,87	3,387	0,18106

Таблица 2. Результаты измерений для параллелепипеда.

Ось	N, раз	t, c	Т, с	ro, 1/c
X	10	30,31	3,031	0,3088
Y	10	30,12	3,012	0,3202
Z	10	30,22	3,022	0,3141
M1M3	10	30,35	3,035	0,3065
M2M4	10	30,06	3,006	0,3239
K1K3	10	30,37	3,037	0,3054
K2K4	10	30,35	3,035	0,3065
AC1	10	30,53	3,053	0,2966
B1D	10	30,37	3,037	0,3054
CA1	10	30,34	3,034	0,3071
BD1	10	30,88	3,088	0,2788
P1P4	10	30,38	3,038	0,3048
P2P5	10	30,41	3,041	0,3031

Таблица 3. Результаты измерений для куба.

Ось	N, раз	t, c	Т, с	ro, 1/c
X	10	30	3	0,3277
X	10	30,16	3,016	0,3177
Z	10	34	3,4	0,1782
Z	10	33,97	3,397	0,1789

Таблица 4. Результаты измерений для диска.

4.1. Проверка теоретических предположений

На основе полученных данных проверим правильность следующих формул:

$$(a^{2} + b^{2} + c^{2})T_{d}^{2} = a^{2}T_{x}^{2} + b^{2}T_{y}^{2} + c^{2}T_{z}^{2}$$
$$(b^{2} + c^{2})T_{E}^{2} = b^{2}T_{y}^{2} + c^{2}T_{z}^{2}$$
$$(a^{2} + c^{2})T_{P}^{2} = a^{2}T_{x}^{2} + c^{2}T_{z}^{2}$$
$$(a^{2} + b^{2})T_{M}^{2} = a^{2}T_{x}^{2} + b^{2}T_{y}^{2}$$

Рассчитаем погрешности полученных величин:

$$f = (a^2 + b^2 + c^2)T^2$$

$$\sigma_p^2 = \left(\frac{df}{da}\right)\sigma_a^2 + \left(\frac{df}{db}\right)\sigma_b^2 + \left(\frac{df}{dc}\right)\sigma_c^2 + \left(\frac{df}{dT}\right)\sigma_T^2 =$$

$$= (2aT^2)^2\sigma_a^2 + (2bT^2)^2\sigma_b^2 + (2cT^2)^2\sigma_c^2 + (2(a^2 + b^2 + c^2)T)^2\sigma_T^2$$

$$\sigma_p = 0,014m^2c^2$$

$$\sigma_k = 0,01m^2c^2$$

Полученные формулы для параллелепипеда:

$$0,4311 \pm 0,014 = 0,4313 \pm 0,014$$

 $0,3904 \pm 0,014 = 0,4051 \pm 0,014$
 $0,3041 \pm 0,014 = 0,3321 \pm 0,014$
 $0,1331 \pm 0,014 = 0,1284 \pm 0,014$

для куба:

$$0,2474 \pm 0,01 = 0,2369 \pm 0,01$$

 $0,1595 \pm 0,01 = 0,1575 \pm 0,01$
 $0,1593 \pm 0,01 = 0,1584 \pm 0,01$
 $0,1600 \pm 0,01 = 0,1579 \pm 0,01$

Все эти равентва выполняются в пределах 3 σ . Следовательно, теоретические предположения подтвердились на практике и оказались верны.

4.2. Построение эллипсоидов инерции

По вычисленным величинам $ro=\frac{1}{\sqrt{T^2-T_p^2}}$ построим сечения эллипсоидов энерции для параллелепипеда (по 3 главным плоскостям), куба (по одной - тк по всем плоскостям получается такая же окружность) и диска (по одной - остальные аналогичны) (см. рис. 4).

Рис 4. Сечения эллипсоидов энерции для параллелипипеда, куба и диска.

5. Обсуждение результатов и выводы

В ходе работы мы проверили верность формул зависимости периодов крутильных колебаний 2 твердых тел (параллелепипеда и куба), а также по полученным в ходе эксперимента данным построили сечения эллипсоидов инерции для них же и диска.