ทางลัดบนลวดลาย

1 second, 256MB

บนระนาบสองมิติมีการเชื่อมโยงจุดเป็นทางเดินในรูปแบบดังนี้ จุด (x,y) ใด ๆ จะมีทางเชื่อมไปยัง จุดอื่น ๆ อีก 6 จุดดังนี้ (x-1,y), (x+1,y), (x-1,y-1), (x+1,y-1), (x-1,y+1), (x+1,y+1) ลักษณะการ เชื่อมโยงแสดงดังรูปด้านล่าง การเดินทางผ่านทางเชื่อมแต่ละเส้นจะใช้เงิน 1 หน่วย

นอกจากทางเดินเหล่านี้แล้ว ยังมีทางลัดอีกจำนวน M เส้น (0<=M<=100) เส้นที่ i สำหรับ
1<=i<=M เชื่อมระหว่างจุด (a,b,) ไปยังจุด (c,d,) การเดินทางผ่านทางลัดเหล่านี้จะใช้เงิน 1 หน่วย
เช่นเดียวกัน อาจมีทางลัดหลายทางที่มีจุดปลายร่วมกัน

คุณต้องการตอบคำถามจำนวน Q ข้อ (1<=Q<=300) แต่ละข้อระบุจุดสองจุด ($\mathbf{x}_1,\mathbf{y}_1$) และ ($\mathbf{x}_2,\mathbf{y}_2$) และต้องการทราบว่าถ้าต้องการเดินทางจากจุด ($\mathbf{x}_1,\mathbf{y}_1$) ไปยังจุด ($\mathbf{x}_2,\mathbf{y}_2$) จะใช้เงินน้อยที่สุดได้ เท่าใด

พิกัดทั้งหมดในข้อนี้มีค่าระหว่าง -500,000,000 ถึง 500,000,000

ข้อมูลนำเข้า

บรรทัดแรกระบุจำนวนเต็ม M (0<=M<=100) และ Q (1<=Q<=300) จากนั้นอีก M บรรทัดระบุ ข้อมูลทางลัด โดยบรรทัดที่ 1+i สำหรับ 1<=i<=M ระบุจำนวนเต็ม 4 จำนวน a, b, c, และ d,

อีก Q บรรทัดถัดไประบุคำถามอีก Q คำถาม แต่ละคำถามระบุจำนวนเต็ม 4 จำนวน x1, y1, x2, y2

ข้อมูลส่งออก

มีทั้งสิ้น Q บรรทัด แต่ละบรรทัดระบุเงินน้อยที่สุดที่ต้องใช้ในการเดินทางระหว่างจุดที่ระบุ

ปัญหาย่อย

- ปัญหาย่อย 1 (10%): M = 0, Q = 1, พิกัดทั้งหมดอยู่ในขอบเขต -300 ถึง 300
- ปัญหาย่อย 2 (20%): M = 0
- ปัญหาย่อย 3 (20%): Q = 1, พิกัดทั้งหมดอยู่ในขอบเขต -300 ถึง 300
- ปัญหาย่อย 4 (50%): ไม่มีเงื่อนไขเพิ่มเติมจากโจทย์

ตัวอย่าง 1

Input	Output
0 1	2
0 0 0 1	

ตัวอย่าง 2

Input	Output
1 2	3
0 0 10 10	3
1 0 11 10	
10 0 11 2	