T4 - Programación Lineal con n variables: SIMPLEX

Planteamiento General de un Problema de Programación Lineal

$$Maximizar z = c_1x_1 + c_2x_2 + \dots + c_nx_n$$

$$s.a: \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_1 \\ x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0 \end{cases}$$

$$c_j, b_i, a_{ij} \in R, \qquad i = 1, 2, ..., m. \qquad j = 1, 2, ..., n.$$

Supuestos:

Los términos independientes no son negativos

Hay menos restricciones de igualdad que variables

Las m restricciones de igualdad son linealmente independientes

Solución factible: Valores de X que cumplen las restricciones.

Conjunto factible: Conjunto de todos los posibles valores de X que cumplen las restricciones

Solución factible básica: n-m variables igual a 0. Resolviendo para las m variables restantes.

SFB: n variables, m restricciones $\begin{cases} n-m & variables = 0 \\ m & variables & differentes & de & 0 \end{cases}$

Minimizar $f(ar{x})$	\rightarrow	Maximizar $-f(\bar{x})$

Minimizar $f(ar{x})$	\rightarrow	Maximizar $-f(\bar{x})$
$a_{11}x_1 + \dots + a_{1n}x_n = b_1 (b_1 < 0)$	\rightarrow	$-a_{11}x_1 - \dots - a_{1n}x_n = -b_1 (-b_1 > 0)$

Minimizar $f(ar{x})$	\rightarrow	Maximizar $-f(\bar{x})$
$a_{11}x_1 + \dots + a_{1n}x_n = b_1 \ (b_1 < 0)$	\rightarrow	$-a_{11}x_1 - \dots - a_{1n}x_n = -b_1 (-b_1 > 0)$
$a_{11}x_1 + \dots + a_{1n}x_n < b_1$	\rightarrow	$a_{11}x_1 + \dots + a_{1n}x_n + x_{n+1} = b_1$

Minimizar $f(ar{x})$	\rightarrow	Maximizar $-f(\bar{x})$
$a_{11}x_1 + \dots + a_{1n}x_n = b_1 \ (b_1 < 0)$	\rightarrow	$-a_{11}x_1 - \dots - a_{1n}x_n = -b_1 (-b_1 > 0)$
$a_{11}x_1 + \dots + a_{1n}x_n < b_1$	\rightarrow	$a_{11}x_1 + \dots + a_{1n}x_n + x_{n+1} = b_1$
$a_{11}x_1 + \dots + a_{1n}x_n > b_1$	\rightarrow	$a_{11}x_1 + \dots + a_{1n}x_n - x_{n+1} = b_1$

Minimizar $f(ar{x})$	\rightarrow	Maximizar $-f(\bar{x})$
$a_{11}x_1 + \dots + a_{1n}x_n = b_1 \ (b_1 < 0)$	\rightarrow	$-a_{11}x_1 - \dots - a_{1n}x_n = -b_1 \ (-b_1 > 0)$
$a_{11}x_1 + \dots + a_{1n}x_n < b_1$	\rightarrow	$a_{11}x_1 + \dots + a_{1n}x_n + x_{n+1} = b_1$
$a_{11}x_1 + \dots + a_{1n}x_n > b_1$	\rightarrow	$a_{11}x_1 + \dots + a_{1n}x_n - x_{n+1} = b_1$
Variable x_i sin restricción en signo	\rightarrow	$x_i = x_i' - x_i''$ $x_i' \ge 0, x_i'' \ge 0$

Minimizar $f(\bar{x})$	\rightarrow	Maximizar $-f(\bar{x})$
$a_{11}x_1 + \dots + a_{1n}x_n = b_1 \ (b_1 < 0)$	\rightarrow	$-a_{11}x_1 - \dots - a_{1n}x_n = -b_1 (-b_1 > 0)$
$a_{11}x_1 + \dots + a_{1n}x_n < b_1$	\rightarrow	$a_{11}x_1 + \dots + a_{1n}x_n + x_{n+1} = b_1$
$a_{11}x_1 + \dots + a_{1n}x_n > b_1$	\rightarrow	$a_{11}x_1 + \dots + a_{1n}x_n - x_{n+1} = b_1$
Variable x_i sin restricción en signo	\rightarrow	$x_i = x_i' - x_i''$ $x_i' \ge 0, x_i'' \ge 0$
$x_i \le 0$	\rightarrow	$x_i' = -x_i \ge 0$

Maximizar $2x_1 + x_2$

$$s. a: \begin{cases} x_1 + 4x_2 \le 6 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

$$\begin{cases} x_1 + 4x_2 \le 6 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

$$\downarrow$$

$$\begin{cases} x_1 + 4x_2 + x_3 = 6 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$

1º: Variables

	x_1	x_2	x_3

2º: Coeficientes en la función objetivo

	$c_1 = 2$	$c_2 = 1$	$c_3 = 0$
	x_1	x_2	x_3

3º: Coeficientes de las restricciones

	2	1	0
	x_1	x_2	x_3
	1	4	1

4º: Términos independientes de las restricciones

	2	1	0
b	x_1	x_2	x_3
6	1	4	1

5º: Elegimos solución factible básica, variables que formen la matriz unidad

		2	1	0
χ_B	b	x_1	x_2	x_3
x_1	6	1	4	1

6º: Coeficientes de las variables elegidas en la función objetivo

			2	1	0
C_B	x_B	b	x_1	x_2	x_3
2	x_1	6	1	4	1

 $Z = c_B * b$. $z_i = c_B * (columna de <math>x_i)$. $z_1 = 0 * 1 + 0 * 2$, $z_2 = 0 * 2 + 0 * 4$...

			2	1	0
c_B	x_B	b	x_1	x_2	x_3
2	x_1	6	1	4	1
		Z=12	$z_1 = 2$	$z_2 = 8$	$z_3 = 2$

8º: Restamos a cada z los coeficientes c

			2	1	0
c_B	x_B	b	x_1	x_2	x_3
2	x_1	6	1	4	1
		12	2	8	2
			0	7	2

En la columna b tenemos la solución

			2	1	0
c_B	x_B	b	x_1	x_2	x_3
2	x_1	6	1	4	1
		12	2	8	2
			0	7	2

Se acaba el Simplex cuando en la última fila todos los valores son positivos

$$Minimizar -x_1 + 4x_2$$

$$\begin{cases} -x_1 + 5x_2 \le 1 \\ x_1 - 4x_2 \le 8 \end{cases}$$

$$\begin{cases} x_1 - 4x_2 \le 8 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

 $Maximizar \quad x_1 - 4x_2$

$$s. a: \begin{cases} -x_1 + 5x_2 + x_3 = 1 \\ x_1 - 4x_2 + x_4 = 8 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0 \end{cases}$$

1º: Variables

	x_1	x_2	x_3	x_4

2º: Coeficientes en la función objetivo

	1	-4	0	0
	x_1	x_2	x_3	x_4

3º: Coeficientes de las restricciones

	1	-4	0	0
	x_1	x_2	x_3	x_4
	-1	5	1	0
	1	-4	0	1

4º: Términos independientes de las restricciones

		1	-4	0	0
	b	x_1	x_2	x_3	x_4
	1	-1	5	1	0
	8	1	-4	0	1

5º: Elegimos solución factible básica, variables que formen la matriz unidad

		1	-4	0	0
x_B	b	x_1	x_2	x_3	x_4
x_3	1	-1	5	1	0
x_4	8	1	-4	0	1

6º: Coeficientes de las variables elegidas en la función objetivo

			1	-4	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4
0	x_3	1	-1	5	1	0
0	x_4	8	1	-4	0	1

 $Z = c_B * b$. $z_i = c_B * (columna de <math>x_i)$. $z_1 = 0 * (-1) + 0 * 1$, $z_2 = 0 * 5 + 0 * (-4)$

			1	-4	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4
0	x_3	1	-1	5	1	0
0	x_4	8	1	-4	0	1
		Z = 0	$z_1 = 0$	$z_2 = 0$	$z_2 = 0$	$z_2 = 0$

8º: Restamos a cada z los coeficientes c

			1	-4	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4
0	x_3	1	-1	5	1	0
0	x_4	8	1	-4	0	1
		0	0	0	0	0
			-1	4	0	0

No son todo positivos. No hemos acabado (veremos más adelante como seguir)

 $Maximizar - 2x_1 - x_2$

$$s. a: \begin{cases} 2x_1 + 4x_2 \le -6 \\ x_1 \le 0, x_2 \le 0 \end{cases}$$

$$Maximizar$$
 $2x_1 + x_2$

$$\begin{cases} 2x_1 + 4x_2 - x_3 = 6 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$

1º: Variables

	x_1	x_2	x_3	

2º: Coeficientes en la función objetivo

	2	1	0	
	x_1	x_2	x_3	

3º: Coeficientes de las restricciones

	2	1	0	
	x_1	x_2	x_3	
	2	4	-1	

4º: Términos independientes de las restricciones

		2	1	0	
		x_1	x_2	x_3	
	6	2	4	-1	

5º: Elegimos solución factible básica, variables que formen la matriz unidad

		2	1	0	-M
		x_1	x_2	x_3	x_4
x_4	6	2	4	-1	1

No se puede. Nos inventamos una variable artificial, con coeficiente en la función: -M

6º: Coeficientes de las variables elegidas en la función objetivo

			2	1	0	-M
			x_1	x_2	x_3	x_4
-M	x_4	6	2	4	-1	1

Maximizar $2x_1 + x_2 - Mx_4$

$$\begin{cases} 2x_1 + 4x_2 - x_3 + x_4 = 6 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0 \end{cases}$$

 $Z = c_B * b$. $z_i = c_B * (columna de <math>x_i)$. $z_1 = 0 * (-1) + 0 * 1$, $z_2 = 0 * 5 + 0 * (-4)$

			2	1	0	-M
			x_1	x_2	x_3	x_4
-M	x_4	6	2	4	-1	1
		-6M	-2M	-4M	M	-M

8º: Restamos a cada z los coeficientes c

			2	1	0	-M
			x_1	x_2	x_3	x_4
-M	x_4	6	2	4	-1	1
		-6M	-2M	-4M	M	-M
			-2M-2	-4M-1	M	0

No son todo positivos. No hemos acabado (veremos más adelante como seguir)

Tres posibilidades

- 1) Llegar a una tabla final donde la última fila son todo valores positivos → Solución Óptima
- 2) Si no se puede llegar a una tabla final → Solución no finita o ilimitada
- 3) Si en la solución óptima aparece una variable artificial con un valor distinto de $0 \rightarrow No$ hay solución