Step-1

Permutation matrix: Matrix *P* has single 1 in every row and every column. It has the rows of identity matrix *I* in any order.

Step-2

Consider P has 1s on the anti-diagonal from (1,n) to (n,1) and let A be any matrix then describe **PAP**.

Matrix P with 1s on the anti-diagonal from (1,n) to (n,1) will be:

$$P = \begin{bmatrix} 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

Here, $P = P^T$. Recall that $P^T = P^{-1}$, so $P = P^{-1}$.

Step-3

Let A be any matrix. Multiplication with matrix P, (PA) destroys the symmetry of matrix A. To recover the symmetry it is multiplied by a permutation matrix Q is none other than P^T . So, PAP^T guarantees to be symmetric.

Therefore, **PAP** becomes a symmetric matrix.