Análise Espectral do Heat Kernel em Grafos

Juan, Giulia, Vitor

Resumo

Resumo do trabalho

Conteúdo

1	Intr	odução
2	Met	odologia
	2.1	Decomposição de uma função polinomial sobre uma matriz
	2.2	Base de uma Transformada de Fourier como o caso especial dos
		autovetores da matriz de adjacências
	2.3	Transformada de Fourier em Grafos
	2.4	Ordem Espectral
		2.4.1 Matriz de Adjacências
		2.4.2 Matriz Laplaciana
	2.5	Filtros
	2.6	Aprendizado de Máquina
	2.7	Graph Convolutional Networks
	2.8	Heat Kernel
	2.9	Simple Graph Convolutional Networks
	2.10	Análise Espectral do Kernel
3	3 Referências	
1	Iı	ntrodução

$\mathbf{2}$ Metodologia

Decomposição de uma função polinomial sobre uma matriz

A decomposição espectral de uma matriz de adjacência ${\cal A}^2$ é dada por

$$A^{2} = U\Lambda U^{-1}U\Lambda U^{-1} = U\Lambda^{2}U^{-1}$$

Podemos generalizar para qualquer potência A^n :

$$A^n = U\Lambda^n U^{-1}$$

Em geral, para qualquer função de matriz f(A) que possui forma polinomial:

$$f(A) = h_0 A^0 + h_1 A^1 + h_2 A^2 + \dots + h_{N-1} A^{N-1}$$

a decomposição espectral é:

$$f(A) = Uf(\Lambda)U^{-1}$$

2.2 Base de uma Transformada de Fourier como o caso especial dos autovetores da matriz de adjacências

A transformada de Fourier é uma ferramenta para decompor uma imagem complexa em componentes fundamentais utilizando funções ortogonais. Para sinais contínuos, a transformada é uma soma infinita. Já no caso discreto, encontramos uma soma finita de vetores ortogonais que representa o sinal original.

No processamento de sinais, diversos algoritmos - DFT, Wavelets - consideram que o sinal é cíclico: a última amostra x(N-1) é procedida por x(0). Assim, um sinal discreto pode ser representado por um grafo cíclico, onde cada vértice possui o valor do sinal no ponto correspondente e as arestas conectam pontos imediatamente vizinhos. A matriz de adjacência para esse caso é definida como:

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \end{pmatrix}$$

Autovalores e autovetores para a matriz A são respectivamente definidos por u_k e λ_k em que $\mathbf{A}\mathbf{u}_k = \lambda_k\mathbf{u}_k$. Podemos reescrever a equação utilizando a matriz de adjacências do grafo cíclico para obter

$$u_k(n-1) = \lambda_k u_k(n)$$

Onde $u_k(n)$ são os elementos do vetor u_k . Uma solução para essa equação é: $u_k(n)=\frac{1}{\sqrt{N}}e^{j2\pi nk/N} \text{ e } \lambda_k=e^{-j2\pi k/N}$

para
$$k = 0, 1, ..., N - 1$$

Esses autovetores correspondem as bases de uma Transformada de Fourier Discreta nesse caso.

2.3 Transformada de Fourier em Grafos

Tradicionalmente, sinais são frequentemente analisados e processados no domínio espectral. Essa abordagem também pode ser estendida a grafos. Representações no domínio espectral se baseiam na matriz de adjacências ou na Laplaciana.

A Transformada de Fourier em Grafos (GFT) de um sinal x é definida como:

$$X = U^{-1}x$$

Onde U é uma matriz com os autovetores da matriz de adjacência (ou Laplaciana) em suas colunas. Assim, a Transformada de Fourier de Grafo pode ser entendida como uma decomposição de sinal no conjunto de autovetores como funções base ortonormais.

A Transformada Inversa de Fourier em Grafos (IGFT) é:

$$x = UX$$

2.4 Ordem Espectral

Para estabelecer filtros em grafos, precisamos estabelecer uma **ordem espectral**. Isso significa que devemos definir autovetores que correspondem a variação lenta ou variação rápida.

Na análise de Fourier clássica, a base é ordenada de acordo com a frequência. A inspiração vem da análise de Fourier clássica. Nesse caso, em vez da frequência, utilizamos a energia da mudança do sinal como um indicador da velocidade de uma mudança de sinal no tempo.

A energia da mudança de um sinal (uma função base) u(n) pode ser definida como a energia da primeira diferença:

$$E_{\Delta u} = \sum_{n=0}^{N-1} |u(n) - u(n-1)|^2$$

Valores menores de $E_{\Delta u}$ significam que u(n) varia lentamente. O valor $E_{\Delta u}=0$ indica, na análise de sinal clássica, que o sinal é constante. Já valores grandes de $E_{\Delta u}$ estão associados a mudanças rápidas de sinal no tempo. Intuitivamente, isso faz sentido - funções mais homogêneas possuem energia 0. Já funções com maior variação possuem alta frequência.

2.4.1 Matriz de Adjacências

Em grafos, a primeira diferença pode ser definida como a diferença entre o sinal de grafo e a versão deslocada do sinal pela matriz de adjacências. Para um autovetor u, sua forma é:

$$\Delta u = u - u_1 = u - A_{norm}u$$

A energia da mudança do sinal é:

$$\begin{split} E_{\Delta u} &= \|u - A_{norm}u\|_2^2 \\ &= \left\|u - \frac{1}{\lambda_{max}}Au\right\|_2^2 \\ &= \left\|u - \frac{1}{\lambda_{max}}\lambda u\right\|_2^2 \\ &= \left|1 - \frac{\lambda}{\lambda_{max}}\right|^2 \end{split}$$

A energia do sinal é mínima para $\lambda=\lambda_{\max}$ e aumenta a medida que λ decai.

Figura 1: A GFT sobre o Grafo acima gera 8 autovetores e os correspondentes autovalores. Na imagem, é possível observar a alta frequência associada ao autovetor de menor autovalor $u_0(n)$ e a baixa frequência associada ao autovetor de maior autovalor $u_7(n)$.

2.4.2 Matriz Laplaciana

Uma abordagem similar pode ser utilizada para a decomposição baseada na Laplaciana. É evidente que os autovetores u(n) com pequenas mudanças devem ter uma pequena energia cumulativa da diferença de segunda ordem $E_u = \sum_n ((u(n) - u(n-1))^2 + (u(n) - u(n+1))^2)/2$. Este valor corresponde à forma quadrática do autovetor u definida por $E_u = u^T L u$. Por definição,

$$Lu = \lambda u$$

e assim,

$$u^T L u = \lambda u^T u = \lambda = E_u$$

Os autovetores associados aos menores autovalores são de baixa frequência. A frequência aumenta de acordo com o autovalor.

Figura 2: A GFT da Laplaciana sobre o Grafo acima gera 8 autovetores e os correspondentes autovalores. O autovetor correspondente ao menor autovalor é 0, já que o grafo é conexo e não possui importância para análise. Assim, na imagem, é possível observar a baixa frequência associada ao autovetor de segundo menor autovalor $u_1(n)$ e a alta frequência associada ao autovetor de maior autovalor $u_7(n)$.

2.5 Filtros

Antes de apresentar filtros em grafos, mostramos como é a filtragem em imagens. Os filtros são utilizados para livrar-se de detalhes que não são importantes. Na imagem abaixo, frequência elevadas representam ruído e são filtradas utilizando a transformada de Fourier.

Figura 3: Filtro sobre image para diminuição de ruído

Para grafos, analisamos um filtro no domínio espectral. Um filtro passa-baixa ideal no domínio espectral da matriz de Laplaciana, com um autovalor de corte λ_c , é definido como:

$$f(\lambda) = \begin{cases} 1 & \text{para } \lambda < \lambda_c \\ 0 & \text{para outras } \lambda. \end{cases}$$

Note que o mesmo filtro não funciona para a matriz de Adjacências já que a ordenação dos nós é inversa. O objetivo de assinalar 1 para certos valores e 0 para outros, é retirar frequências altas - ou seja, realizar uma filtragem.

2.6 Aprendizado de Máquina

Um modelo de aprendizado de máquina aprende uma função f dado um conjunto de vetores de entrada X_i e respostas Y_i com a melhor aproximação $Y_i = f(X_i), \forall i$. Um exemplo simples é o modelo linear, onde aprendemos pesos W tal que Y = XW.

Um modelo de aprendizado em grafos recebe não apenas os dados X,Y, como também informações sobre a estrutura subjacente do Grafo G, como a Laplaciana ou Matriz de Adjacência.

$$Y = f(G, X)$$

2.7 Graph Convolutional Networks

As Graph Neural Networks (GNNs) representam um avanço significativo no aprendizado e na mineração de dados em grafos. Inicialmente, as redes convolucionais espectrais abriram caminho para aprender filtros de forma direta, mas enfrentavam desafios de complexidade computacional. A pesquisa então se moveu para otimizar esses filtros usando aproximações polinomiais, levando a modelos mais eficientes como as Graph Convolutional Networks (GCN), que simplificou drasticamente o processo e inspirou uma série de inovações, incluindo a incorporação de mecanismos de atenção e a fusão com aprendizado relacional. Nessa evolução, foi descoberto o problema de over-smoothing, onde o desempenho das GNNs pode diminuir com um número crescente de camadas. Em resposta a isso, abordagens inovadoras surgiram para linearizar o modelo, removendo as operações de ativação não-lineares entre as camadas sequenciais. Essa simplificação resulta em modelos GCNs mais eficientes e, surpreendentemente, igualmente eficazes, demonstrando que a linearização pode ser uma estratégia poderosa para otimizar o desempenho e a aplicabilidade das GNNs.

2.8 Heat Kernel

A equação do calor é um caso especial da equação de difusão utilizada para descrever como o calor se distribui e flui ao longo do tempo.

Imagine um cenário de grafo, no qual cada nó tem uma temperatura e a energia térmica só pode ser transferida ao longo das arestas. A propagação de calor entre o nó v_i e o nó v_j deve ser proporcional ao peso da aresta e a diferença de temperatura entre v_i e v_j . Seja $x(t)_i$ a temperatura de v_i no tempo t, a difusão de calor no grafo G pode ser descrita pela seguinte equação do calor:

$$\frac{dx(t)_i}{dt} = -k \sum_j A_{ij}(x(t)_i - x(t)_j) = -k[D_{ii}x(t)_i - \sum_j A_{ij}x(t)_j]$$

A equação na forma matricial é $\frac{dX(t)}{dt} = -kLX(t)$, onde L = D - A é a matriz Laplaciana do grafo. Reparametrizando t e k em um único termo t' = kt, a equação pode ser reescrita como:

$$\frac{dX(t')}{dt'} = -LX(t')$$

O heat kernel é a solução fundamental da equação do calor e é definido como a matriz

$$H_t = e^{-Lt}$$

Dado o status inicial X(0) = X, a solução para a equação do calor pode ser escrita como:

$$X(t) = H_t X(0)$$

Naturalmente, o Heat Kernel pode ser usado como a matriz de propagação de características em GCNs.

2.9 Simple Graph Convolutional Networks

No contexto de simplificação de modelos de GCN, removemos as não-linearidades para obter um modelo linear onde as propriedades dos nós são difundidas através do grafo. O modelo pode ser expresso como:

$$Y = H_t X W$$

onde $H_t = e^{-Lt}$ é o **Kernel de Calor**, funcionando como a matriz de difusão que propaga as características iniciais X (matriz de features dos nós) através da estrutura do grafo. W é uma matriz de pesos treinável, aprendida pelo modelo. Essa formulação permite uma difusão de características baseada em um processo de calor contínuo, sem as complexidades das ativações não-lineares.

Regressão: quando o $Y \in \mathbb{R}$, há uma regressão linear nos vértices e podemos escrever $Y = e^{-Lt}XW$.

Classificação: quando Y é categórico, passamos para uma regressão logística. Nesse caso, escrevemos $Y=\operatorname{softmax}(e^{-Lt}XW)$

Outros: é possível ajustar a função de acordo com a distribuição de Y.

2.10 Análise Espectral do Kernel

Como $f(L) = Uf(\Lambda)U^T$, o **kernel de calor** $H_t = e^{-Lt}$ também pode ser visto como um polinômio de L. Assim, seu filtro de kernel é $g(\lambda_i) = e^{-\lambda_i t}$. Os autovalores são positivos.

Para quaisquer i, j, se $\lambda_i < \lambda_j$, temos

$$\frac{f(\lambda_i)}{f(\lambda_j)} = e^{(\lambda_j - \lambda_i)t} > 1$$

Assim,

$$g(\lambda_i) > g(\lambda_j)$$

Isso mostra que o Heat Kernel atua como um filtro passa-baixa. À medida que t aumenta, a razão $e^{(\lambda_j-\lambda_i)t}$ também aumenta, atenuando cada vez mais as altas frequências.

3 Referências

- Introduction to Graph Signal Processing
- Heat Kernel Graph Convolutions
- Simplifying Graph Convolutions