CS25010 Basic Terminology and Concepts of Computer Communications - Part Two

David Price and Friends
Computer Science

PSTN - Public Switched Telephone Network

- Designed to carry the human voice
- frequencies for 20Hz to 20kHz present in voice but.....
- intelligibility o.k. if low frequencies and frequencies much above 3kHz lost
- PSTN typically has limits at about 300/400 Hz and above 3400/3500 Hz
- MODEMs must operate within these limits

Publicly Available Networks

- PSTN Public Switched Telephone Network
 - Originally full analogue dial-up network for voice
- PSS (GNS) Public Data Networks
 - packet switched data network (circuit networks also exist)
- Leased Lines
 - hired 24 hours/day analogue and digital
- ISDN Integrated Digital Services Network
 - fully digitally dial-up network

Modulation Methods

- Amplitude Modulation
- Frequency Modulation
- Phase Modulation

Amplitude Modulation

Analogue Carrier modulated by Analogue Data

Amplitude Shift Keying

Analogue Carrier modulated by Digital Data Carrier frequency fixed, two amplitudes

Frequency Shift Keying

Analogue Carrier modulated by Digital Data two carrier frequencies used

CCITT V21 Modem Standard

		Frequency	Centre
Originate	MARK	980	1080
End	SPACE	1180	
Answer	MARK	1650	1750
End	SPACE	1850	

Multiple Level Signalling

- One signal event does not have to represent a single binary digit
- Therefore one signal event might provide > 1 bit of data
- (bit means binary digit)

Phase Shift Keying

Carrier frequency fixed, but 180 degree phase changes occur

BELL 201C Modem Standard (USA)

Data	Phase Shift	
00	45 degrees	
01	135 degrees	
10	225 degrees	
11	315 degrees	

Another Example

Hybrid - Amplitude Modulated Phase Shift Keying

Baud Rate v Data Rate

- Baud Rate
 - The number of signalling events per second.
 - The number of times per second that a data transmission channel changes state
- Data Rate
 - The number of data bits transmitted per second
- IF &only IF
 - each signalling event gives 1 BIT of information then Baud Rate == Data Rate

Remember Earlier Examples...

- Phase Modulation with 4 different phase changes then each signalling event gives 2 bits of data and so...
- Data Rate == 2 * Baud Rate
- Phase / Amplitude hybrid had 4 different phase changes and 2 amplitudes and so...
- Data Rate == 3 * Baud Rate

Maximum Data Rates

- Information Theory lectures come later but...
- Two limits, calculated by Nyquist and Shannon/Hartley provide some real hard limits and what can be achieved via communications channels including the PSTN

Phase Modulation (0,90,180,270)

$$C = 2 * B \log_2 M$$

$$B = 3000$$

$$M = 4$$

$$C = 2 * 3000 \log_{2}(4)$$

$$= 6000 * 2$$

$$= 12000bps$$

Nyquist

Ignoring noise, the maximum date rate = C
 on a channel with a bandwidth B and with
 M levels per signalling element then ...

$$C = 2 * B \log_2 M$$

Shannon and Hartley

- B = Bandwidth
- S = signal power N = noise power
- SNR = signal-to-noise ratio in decibels (dB)

$$SVR = 10\log_{10}(\frac{S}{N})$$

THEN

$$C = B \log_2(1 + \frac{S}{N})bps$$

Typical values for PSTN

$$B = 3000$$

$$SNR = 20dB$$

$$SNR = 20 = 10\log_{10}(\frac{S}{N})$$

$$\therefore \frac{S}{N} = 10^{(\frac{20}{10})} = 10^2 = 100$$

$$\therefore C = 3000 \log_2(1+100) = 19963bps$$

Frequency v Time v Statistical Time Multiplexing

- Frequency
 - Bandwidth of media split into different frequency bands used for different channels
- Time
 - Whole bandwidth allocated to one channel for a small time slot then to another channel- fixed width time slots
- Statistical Time
 - Like `time' but with variable time slots, allows for busy and quiet channels.

Multiple Channels over Media

- Multiplexing versus Concentrating
- Multiplexer
 - Combines multiple channels in a transparent way
- Concentrator
 - Combines but processes data too, code compression takes place.