

**UTILITY
PATENT APPLICATION
TRANSMITTAL**

(Only for new nonprovisional applications under 37 C.F.R. § 1.53(b))

Attorney Docket No. 00AB123

First Inventor or Application Identifier FLORO, William E.

Title System for identifying valid connections between electrical system components and responding to invalid connections

Express Mail Label No.

JC927 U.S.P.T.O.
09/69939

10/31/00

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

1. *Fee Transmittal Form (e.g., PTO/SB/17)
(Submit an original and a duplicate for fee processing)
2. Specification [Total Pages 26]
(preferred arrangement set forth below)
 - Descriptive title of the Invention
 - Cross References to Related Applications
 - Statement Regarding Fed sponsored R & D
 - Reference to Microfiche Appendix
 - Background of the Invention
 - Brief Summary of the Invention
 - Brief Description of the Drawings (*if filed*)
 - Detailed Description
 - Claim(s)
 - Abstract of the Disclosure
3. Drawing(s) (35 U.S.C. 113) [Total Sheets 7]
4. Oath or Declaration [Total Sheets 3]
 - a. Newly executed (original or copy)
 - b. Copy from a prior application (37 C.F.R. § 1.63(d))
(for continuation/divisional with Box 16 completed)
 - i. **DELETION OF INVENTOR(S)**
Signed statement attached deleting inventor(s) named in the prior application, see 37C.F.R. §§ 1.63(d)(2) and 1.33(b)

* NOTE FOR ITEMS 1 & 13: IN ORDER TO BE ENTITLED TO PAY SMALL ENTITY FEES, AS SMALL ENTITY STATEMENT IS REQUIRED (37 C.F.R. § 1.27), EXCEPT IF ONE FILED IN A PRIOR APPLICATION IS RELIED UPON (37 C.F.R. § 1.28)

ADDRESS TO:
Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

5. Microfiche Computer Program (Appendix)
6. Nucleotide and/or Amino Acid Sequence Submission
(if applicable, all necessary)
 - a. Computer Readable
 - b. Paper Copy (identical to computer copy)
 - c. Statement verifying identity of above copies

ACCOMPANY APPLICATION PARTS

7. Assignment Papers (cover sheet & document(s))
8. 37 C.F.R. §3.73(b) Statement Power of Attorney
(when there is an assignee)
9. English Translation Document (if applicable)
10. Information Disclosure Statement (DS)/PTO-1499 Copies of IDS Citations
11. Preliminary Amendment
12. Return Receipt Postcard (MPEP 503)
(Should be specifically itemized)
 - * Small Entity
13. Statement(s) Statement filed in prior application,
(PTO/SB/09-12) Status still proper and Desired
14. Certified Copy of Priority Document(s)
(if foreign priority is claimed)
15. Other
.....
.....

16. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment:

Continuation Divisional Continuation-in-part (CIP) of prior application No.: _____ / _____
Prior Application information: Examiner: _____ Group/Art Unit: _____

For CONTINUATION or DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied under Box 4b, is considered a part of the disclosure of the accompanying continuation or divisional application and is hereby incorporated by reference. The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts.

17. CORRESPONDENCE ADDRESS

Customer Number or Bar Code Label (Insert Customer No. or Attach bar code label here) or Correspondence address below

Name	Attn: John J. Horn Rockwell Automation				
Address	Intellectual Property Department 1201 South Second Street				
City	Milwaukee	State	WI	Zip Code	53204
Country	U.S.A.	Telephone	414.382.3561		Fax 414.382.3900

Name (Print/Type)	Alexander Porat	Registration No. (Attorney/Agent)	43,372
Signature	Alexander Porat, Blake, Cassels & Graydon LLP		Date October 30, 2000

FEE TRANSMITTAL for FY 2000

Complete if Known

Application Number	
Filing Date	
First Named Inventor	FLORO, William E.
Examiner Name	
Group/Art Unit	

TOTAL AMOUNT OF PAYMENT

(\$816)

Attorney Docket No. 00AB123

METHOD OF PAYMENT (check one)

The Commissioner is hereby authorized to charge indicated fees and credit any over payments to:

Deposit Account Number 02-2553

Deposit Account Name Blake, Cassels & Graydon LLP

Charge Any Additional Fee Required Under
37 CFR §§1.16 and 1.17

Payment Enclosed:

Check Money Order Other

FEE CALCULATION (continued)

3. ADDITIONAL FEES

Large Fee Code	Entity Fee (\$)	Small Fee Code	Entity Fee (\$)	Fee Description	Fee Paid
105	130	205	65	Surcharge – late filing fee or oath	
127	50	227	25	Surcharge – late provisional filing fee or cover sheet	
139	130	139	130	Non-English specification	
147	2,520	147	2,520	For filing a request for reexamination	
112	920*	112	920*	Requesting publication of SIR prior to Examiner action	
113	1,840*	113	1,840*	Requesting publication of SIR after Examiner action	
115	110	215	55	Extension for reply within first month	
116	380	216	190	Extension for reply within second month	
117	870	217	435	Extension for reply within third month	
118	1,360	218	680	Extension for reply within fourth month	
128	1,850	228	925	Extension for reply within fifth month	
119	300	219	150	Notice of Appeal	
120	300	220	150	Filing a brief in support of an appeal	
121	260	221	130	Request for oral hearing	
138	1,510	138	1,510	Petition to institute a public use proceeding	
140	110	240	55	Petition to revive – unavoidable	
141	1,210	241	605	Petition to revive – unintentional	
142	1,210	242	605	Utility issue fee (or reissue)	
143	430	243	215	Decision issue fee	
144	580	244	290	Plant issue fee	
122	130	122	130	Petitions to the Commissioner	
123	50	123	50	Petitions related to provisional applications	
126	240	126	240	Submission of Information Disclosure Stmt	
581	40	581	40	Recording each patent assignment per property (times number of properties)	
146	760	246	345	Filing a submission after final rejection (37 CFR §1.129(a))	
149	760	249	345	For each additional invention to be examined (37 CFR §1.129(b))	
Other fee (specify) _____					
Other fee (specify) _____					
*Reduced by Basic Filing Fee Paid				SUBTOTAL (3)	(\$)

1. BASIC FILING FEE

Large Fee Code	Entity Fee (\$)	Small Fee Code	Entity Fee (\$)	Fee Description	Fee Paid
101	690	201	345	Utility filing fee	690
106	310	206	155	Design filing fee	
107	480	207	240	Plant filing fee	
108	690	208	345	Reissue filing fee	
114	150	214	75	Provisional filing fee	
SUBTOTAL (1) (\$690)					

2. EXTRA CLAIM FEES

Total Claims	27	-20**=	7	Extra Claims	Fee from below	Fee Paid
Independent Claims	3	-3**=	0	X	18	= 126

**or number previously paid, if greater; For Reissues, see below

Large Fee Code	Entity Fee (\$)	Small Fee Code	Entity Fee (\$)	Fee Description
103	18	203	9	Claims in excess of 20
102	78	202	39	Independent claims in excess of 3
104	260	204	130	Multiple dependent claim, if not paid
109	78	209	39	**Reissue independent claims over original patent
110	18	210	9	**Reissue claims in excess of 20 and over original patent
SUBTOTAL (2) (\$126)				

SUBMITTED BY

Complete (if applicable)

Name (Print/Type)	Alexander Porat	Registration No. (Attorney/Agent)	43,372	Telephone	416.863.2731
Signature	<i>Alex Porat, Blake, Cassels & Graydon, LLP</i>			Date	October 30, 2000

SYSTEM FOR IDENTIFYING VALID CONNECTIONS BETWEEN ELECTRICAL SYSTEM COMPONENTS AND RESPONDING TO INVALID CONNECTIONS

FIELD OF INVENTION

5

The invention generally relates to a system for identifying valid connections between components of an electrical system and for preventing damage which may be caused as a result of invalid connections. More particularly, the invention relates to a method and system for detecting a valid connection between a processor and an adapter in a programmable logic controller (PLC) system and for protecting the components thereof in the event of an invalid connection.

10
15
20
25

BACKGROUND OF THE INVENTION

Programmable logic controllers are used to control a wide variety of industrial processes and machines. Typically, a PLC comprises a processing module (the “processor”) which is connected to one or more input/output (I/O) modules via a system bus. The I/O modules provide input and output ports or lines which are directly connected to external machinery or sensors. In a typical PLC system the processor continuously polls the input bits of the I/O modules, processes the input data and sets output bits of the I/O modules accordingly.

The system bus which allows the processor and the I/O modules to communicate with one another consists of a number of lines or electrical paths. These lines carry data signals between the processor and the I/O modules, and enable the processor to select a particular I/O module when the processor needs to establish communications with the I/O module. The bus may also provide power, reset and ground lines to the I/O modules.

One example of a PLC system is the FLEXLOGIC™ system marketed by Rockwell Automation of Milwaukee, WI. The system bus in this PLC system includes:

- two lines (DIN and DOUT) for the bidirectional transmission of serial data;

- two lines (CLK HIGH and CLK LOW) for carrying a differential clock signal generated by the processor;
- eight (8) I/O module select signals;
- one line (RESET) which functions as a system reset signal;
- 5 • one line (PWR) for supplying power generated by a power supply on the processor to various I/O modules; and
- one line (GND) which connects the processor and the I/O modules to a common ground point.

10 In a typical PLC system, including the FLEXLOGIC™ system mentioned above, each I/O module includes two connector ports (hereinafter “bus” ports) that allow the module to plug into adjacent preceding and receding I/O modules in daisy chain fashion. The two bus ports in each I/O module are internally connected in order to provide a contiguous system bus across the chain of I/O modules. The processor also includes a bus port in order to allow the first I/O module in the chain (which can be any I/O module since the bus ports are typically identical aside from their polarity) to directly plug into the processor.

20 Mechanically, the processor and the I/O modules may be mounted onto a rail which in turn may be mounted onto a wall or some other such support structure. The chain of I/O modules which directly plugs into the processor may be referred to as the “local rail”. The local rail may be physically split into two (or potentially more) units or parts through the use of a multi-wired cable. The cable essentially forms an extension of the system bus in order to interconnect the bus ports of spaced apart, but logically adjacent, I/O modules. This allows the system components to be mounted onto two physical rails and hence occupy a smaller horizontal footprint, thereby providing installation flexibility.

The maximum number of I/O modules in the local rail is typically limited due to various constraints such as the number of I/O module select lines provided by the system bus and electrical noise. So, in the event the processor has the capacity to handle additional I/O modules, it may be desirable to connect another chain of I/O modules to the processor in addition to the local rail. This second chain of I/O may be referred to as the “remote rail”. In the FLEXLOGIC™ system, an adapter is required to connect the processor to the remote rail as discussed in greater detail below. This adapter has two bus ports. The first I/O module of the remote rail plugs into one adapter bus port. The second adapter bus port is used to connect the adapter to the processor through another multi-wired cable. Other I/O modules in the remote rail may be plugged into adjacent I/O modules through the bus ports on each I/O module. In addition, the remote rail may be split into two (or potentially more) units or parts through a multi-wired cable.

In the FLEXLOGIC™ system, the processor includes a power supply which provides power to the I/O modules on the local rail. This power supply generally does not have a sufficient power rating to drive more I/O modules than the maximum number permitted on the local rail. While it is possible to increase the output of the power supply on the processor, the extra cost would be borne by all customers, even those which have no need for a remote rail in their applications. For this reason the adapter has its own power supply which provides power to the I/O modules on the remote rail.

It should be noted from the foregoing that because the bus ports are identical, it is possible to connect cables between any two bus ports of a processor, an adapter, and I/O modules. As both a processor and an adapter have their own power supply, connecting these electronic components incorrectly may introduce inappropriate voltages or currents to the processor, the adapter, or the I/O modules. This is particularly problematic because the I/O modules are connected to a variety of external devices such as sensors or external machinery. Inappropriate connections may introduce false signals to the I/O

modules and cause the sensors or machinery to operate erratically which could pose serious hazards or dangerous conditions.

In particular, a problem exists when a powered-up processor is connected to an unpowered adapter. In this case, the adapter will pass clock signals from the processor through to the I/O modules. Referring to Fig. 8, each I/O module is controlled by an ASIC 802 which has input clamp diodes 804 connected from an input signal (e.g., clock signals) to the positive power line 806 and ground line 808, as shown. The purpose of these clamp diodes is to provide input protection so that the input signal is limited to a pre-determined voltage range. However, when no power voltage is applied to the positive power line of an I/O module, the clock signal may “leak” to the positive power line through these clamp diodes. This may in effect “bring up” the I/O module because it will appear that power has been supplied over the power lines. Consequently, the I/O module may operate on or produce spurious and incoherent data which may cause equipment connected to the I/O module to operate erratically. In addition, the clamp diodes may be damaged because they are not rated for relatively large power line currents that may arise when the clock signals “bring up” the I/O modules. A similar problem arises when an unpowered processor is connected to a powered-up adapter.

In addition, as PLC systems typically use a positive voltage to represent an unasserted RESET line, a similar problem may arise when a powered-up processor or any I/O on the local rail thereof is connected to a second dead or unpowered PLC system. In this case, the RESET signal on the local rail which is driven by the processor may “leak” through the clamp diodes of the unpowered I/O modules to the positive power line thereof and may “bring up” I/O modules of the second PLC system. Here too, the input clamp diodes of these I/O modules may be damaged due to excessive current flow therethrough. A similar problem arises when a second, powered, PLC system is connected to the processor when it is in an unpowered state.

Usually, different cables and connection ports are used for different connections in order to prevent such miswirings from occurring. A cable can only be physically plugged into a mating connection port. Wrong connections are thus eliminated because they would entail plugging a cable into a connection port that does not physically match. This method requires the use of differently configured connection ports and cables, thus increasing manufacturing, inventory and maintenance costs.

To reduce these costs, it is desirable to use the same type of cable for the different types of connections in a PLC system. Using the same cable for different connections reduces manufacturing, inventory and maintenance costs. However, it also introduces the possibility of miswirings such as connecting two processors or two adapters together, or connecting a processor or an adapter to another PLC system that is powered down. In addition, as mentioned above, a problem exists when connecting a processor to an unpowered adapter, or when connecting an adapter to an unpowered processor. It is desirable to minimize any damage that may occur as a result of such invalid connections.

SUMMARY OF THE INVENTION

It is therefore desirable to have a method of validating cable connections to ensure the appropriateness thereof, thus making it possible to reap the benefits associated with using the same cable for all connections without incurring many of the risks associated with improper or undesired connections (i.e., invalid connections). Additionally, because invalid connections may cause physical damage to hardware, it is also desirable to have protection circuitry to prevent such physical damage.

One aspect of the invention provides a method and circuitry for validating the connection of a multi-wired cable bridging first and second electrical components. According to the method, a pre-specified voltage level is generated when the cable is properly connected between the first and second components and at least the first

component is powered up. Each of the components tests for the presence of the pre-specified voltage level and if any component does not detect the pre-specified voltage level the component asserts an error signal. The pre-specified voltage level may be generated by providing a voltage divider in the first component and a circuit element, such as a resistor, in the second component. The circuit element, when connected to the first component via a wire in the cable, modifies the output of the voltage divider to yield the pre-specified voltage level. The testing for the pre-specified voltage level may be implemented using a window comparator for testing whether the output of the voltage divider falls within a pre-specified voltage range. When applied to a PLC system such as the FLEXLOGIC™ system described above, the second component may be a processing module and the first component may be an adapter.

The illustrative embodiment provides means for short circuiting the circuit element such as the resistor in the second component when it is powered down. As a result the pre-specified voltage level is not produced thereby enabling the first component to determine whether the second component is powered up.

Alternatively or additionally, the first component can determine whether the second component is powered up by detecting the state of a normally high reset (or other such) signal which is intended to be received from the second component via the cable. The first component asserts its error signal if it does not detect the reset signal to be in a non-zero, unasserted state.

If the error signal on either component is asserted, in the illustrative embodiment the component blocks the transmission of bus signals via the multi-wired cable or with other components such as I/O modules.

Another aspect of the invention provides circuitry for protecting a first electrical system when connected via a cable or bus to a second electrical system. The cable or bus

provides a current-carrying signal, such as a clock signal, to the first electrical system and includes a reset signal which is monitored by the second electrical system. According to this aspect of the invention an energy storage component such as a capacitor is connected to the current-carrying signal of the cable or bus. A first switch is electrically connected between a node of the capacitor and a ground point. The circuitry keeps the first switch on or closed when the first electrical system is powered-up. The first switch is off or open when the first electrical system is powered down. A second switch is electrically connected between the reset signal of the cable or bus and the ground point. The second switch is activated or closed by the energy accumulated by the capacitor when the first switch is off or open. This causes the second electrical system to enter a reset state. In preferred embodiments the reset signal is logically high when unasserted and the current-carrying signal may be a clock signal.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other aspects of the invention will become more apparent from the following description of a specific embodiment thereof and the accompanying drawings which illustrate, by way of example only, the principles of the invention. In the drawings, where like elements feature like reference numerals (which may bear unique alphabetical suffixes in order to identify specific instances of like elements):

Figure 1 shows a PLC system comprising a processor, an adapter and I/O modules which are connected together through multi-wired cables;

Figure 2 is a schematic block diagram of validation and protection circuitry located on the processor;

Figure 3 is a schematic block diagram of validation and protection circuitry located on the adapter;

Figure 4 is a circuit diagram showing the cable validation circuitry, a portion of which is located on the adapter and a portion of which is located on the processor, in greater detail;

5

Figures 5A & 5B are circuit diagrams showing various portions of the protection circuitry residing on the adapter in greater detail;

10

Figures 6A & 6B are circuit diagrams showing various portions of the protection circuitry residing on the processor in greater detail;

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
997
998
999
999
1000
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
18

Each I/O module **14** includes two bus ports (not clearly visible in Figure 1) that allow the module to plug into adjacent preceding and receding I/O modules in daisy chain fashion. As discussed earlier, these ports enable a system bus to be formed between the processor **10** and each I/O module **14**. Alternatively, as shown, the multi-wired cable **16a** may be used to interconnect bus ports on adjacent I/O modules. The cable **16a** thus enables the system bus to be contiguous over the local rail or remote rail and enables the system to be mounted within a more confined horizontal space. This adds a certain degree of flexibility in mounting the PLC system to a wall or some other such support structure.

The invention allows the same type of cable to be used to connect the processor to the adapter or to split the local rail or remote rail into two or more units. Since the I/O ports on the processor, adapter and I/O modules are identical, it is also possible to accidentally connect two processors together, two adapters together, or any component of a first PLC system to a component in a second PLC system. In order to minimize damage caused by invalid connections, validation and protection circuitry is distributed over the processor **10** and adapter **12** to ensure that cable **16b** is properly connected between these two components and that both are powered up and functioning normally.

Referring to Figure 2, the validation and protection circuitry on the processor 10 comprises an interlock circuit 200 which detects whether the processor is validly connected to a powered adapter 12. Generally speaking, this is accomplished by generating a pre-specified voltage level when the cable 16b is properly connected and both components are powered up. The interlock circuit 200 tests for the existence of the pre-specified voltage level and asserts a signal, A-indicator 202, if the pre-specified voltage level is not detected.

The A-indicator signal **202** is applied to processing logic **204** which consequently asserts an error signal **206** that is fed into a data transfer control circuit **208**. When the

error signal **206** is asserted the data transfer control circuit **208** turns electronic switches **210** (only one is shown) off. This blocks the transmission of various bus signals between the processing logic **204** and a bus port **212** (i.e., between lines **220** to lines **230**). The switches **210** remain on when the error signal **206** is unasserted in order to allow data transfer. In this manner the interlock circuit **200** ensures that the processor **10** is validly connected to the adapter **12** via cable **16b** properly connected to the bus port **212** since this is the only intended use for the port **212**.

However, as mentioned previously, when the processor **10** is powered up it may be accidentally connected to a second, unpowered PLC system through another bus port **214** which is intended only for connecting the processor to the first I/O module of the local rail. Alternatively, one of the I/O modules of the local rail may be accidentally connected to the second, unpowered, PLC system. In either case, a relatively large amount of current may be drawn from a reset (to local rail) line **216b**. For this reason a current detector **218** senses the presence of excess current drawn on the reset (to local rail) line **216b** and generates a fault signal **224** when an over-current condition is detected. When asserted, the fault signal **224** interrupts the processing logic **204**. In response, the processing logic **204** preferably asserts the reset (to local rail) line **216a,b** in order to place the local rail in the reset state and may also assert a reset (to remote rail) line **228** in order to place the remote rail in a reset state. The processing logic **204** may also assert the error signal **206** in order to block the transmission of certain signals to the adapter **12**.

A situation may also arise where a second, powered-up, PLC system is connected via cable **16b** to the processor **10** when it is in an unpowered state. To prevent potential damage that may occur in this case the processor **10** includes a "sleeper" circuit **240** which, as explained in greater detail below, uses the energy from the second PLC system to bring down or ground the reset (to remote rail) line **228** carried by cable **16b**, thereby

shutting down the second system. The sleeper circuit is not active and has no effect on the reset (to remote rail) line 228 when the processor 10 is in a powered-up state.

Referring to Figure 3, the validation and protection circuitry on the adapter 12 comprises an interlock circuit 300 which tests for the pre-specified voltage level that should be present when the cable 16b is properly connected between the processor 10 and the adapter 12. The interlock circuit 300 asserts a signal, P-indicator 302, if the pre-specified voltage is not detected. The P-indicator signal 302 is applied to an AND gate 304 which has as its other input the reset signal 228 that is generated by the processor 10 and carried by cable 16b. As explained in greater detail below, the output 306 of the AND gate 304 is an error signal which indicates whether the adapter is properly connected to a powered-up processor. This error signal 306 is applied to a data transfer control circuit 308. When the error signal 306 is asserted the data transfer control circuit 308 turns off electronic switches 310 (only one is shown) in order to block the transmission of certain bus signals from lines 344 to lines 346. When the error signal 306 is unasserted, the switches 310 remain on allowing signal transmission. In this manner the interlock circuit 300 in conjunction with the AND gate 304 ensure that the adapter 10 is only connected via bus port 312 to a powered-up processor 10.

However, the adapter 12 can be accidentally connected to a second, unpowered, PLC system through bus port 314 which is intended only for connecting the adapter 12 to the first I/O module of the remote rail. Alternatively, one of the I/O modules of the remote rail may be accidentally connected to the second, unpowered PLC system. In either case, a relatively large amount of current may be drawn from a reset (to remote rail) line 316. For this reason, a current detector 318 senses the presence of excess current on the reset (to remote rail) line 316 and generates a fault signal 324 when an over-current condition is present. The fault signal 324 causes the interlock circuit 300 to assert the P-indicator signal 302, which in turn causes the data transfer circuit 308 to turn off switches 310 and inhibit the transmission of problematic bus signals.

The manner in which the interlock circuits 200 and 300 co-operate to generate the pre-specified voltage is explained in greater detail with reference to Figure 4. Note that the circuitry shown above the broken line in Figure 4 resides on the adapter 12, and the circuitry shown below the broken line resides on the processor 10. These two portions of the validation and protection circuitry are electrically connected through an interlock line 18 in the multi-wired cable 16b, which connects a terminal 420 on the adapter with a terminal 430 on the processor.

The interlock line 18 in cable 16b is the same line which, when the cable is used to split a rail, carries power to the I/O modules. When the cable is used to connect the processor 10 to the adapter 12, the PWR line for supplying positive power voltage to the I/O modules is remapped into the interlock line 18. This is possible because the adapter has its own power supply making the power supply line between the processor and adapter redundant.

On the adapter side, a voltage divider 410 is formed by resistors R1 (412) and R2 (414). The positive power voltage Vcc is applied to the voltage divider through a transistor Q1 (401), the function of which is described in greater detail below. Resistor R2 has a fairly high resistance compared to resistor R1 such that in the absence of the electrical connection between terminal 420 and terminal 430 the output of the voltage divider 410 is very close to Vcc. The common node or output of the voltage divider 410 is connected to terminal 420. When cable 16b is properly connected, the interlock line 18 connecting terminals 420 and 430 causes a resistor R3 (432) on the processor side to be connected in parallel with resistor R2. Thus, the output of the voltage divider 410 can be lowered to a pre-specified voltage level by choosing a resistor R3 with a resistance much smaller than that of resistor R2. In the illustrated embodiment, that pre-specified voltage is approximately two volts (plus or minus about 0.5 volts) and the positive power voltage Vcc is approximately 5 volts.

The terminals **420** and **430** (and hence the output of the voltage divider **410**) are respectively connected to a window comparator **408** on the adapter and a window comparator **409** on the processor. A window comparator tests whether its voltage input is within a pre-specified voltage range or window. In the illustrated embodiment, the pre-specified voltage window has a range of about 1.4 to 2.7 volts. If the voltage input is within that range, it is assumed that a valid cable connection has been made, and neither window comparator **408** or **409** will assert the indicator signals **302** or **202**.

When the adapter and processor are not connected via cable **16b** the output at the voltage divider **410** is determined solely by the resistances of resistors **R1** and **R2**. As mentioned earlier, the voltage output of the voltage divider **410** is very close to **Vcc** in such a situation. Therefore, the window comparator **408** sees a voltage input much higher than 2.7 volts, which is outside the pre-specified voltage window of 1.4 to 2.7 volts. The window comparator **408** on the adapter **12** consequently asserts the P-indicator signal **302** to indicate an invalid connection with the processor. Similarly, without an electrical connection between terminal **430** and terminal **420**, there is substantially no voltage at processor terminal **430** because it only has an unconnected passive resistor **R3**. As a result, the window comparator **409** on the processor sees a voltage input far less than 1.4 volts, which is also outside the voltage window of 1.4 to 2.7 volts. The window comparator **409** on the processor consequently asserts the A-indicator signal **202** to indicate an invalid connection with the adapter. In this manner, when either window comparator sees an out-of-range input voltage, the other window comparator is also aware of the error condition.

Note that the adapter does not always have to be connected to the processor in order for the latter to operate. This is because the processing logic **204** on the processor polls the A-indicator line **202**. When line **202** is asserted, the processing logic establishes a state which presumes that the adapter is not connected and prevents the transmission of

problematic bus signals to the bus port **212**. Likewise, the processing logic **204** can also determine when an adapter has just been connected to the processor.

Figure 5A shows the data transfer control circuit **308** of the adapter **12** in greater detail. An N-P-N transistor **502** is connected in series with a P-N-P transistor **504**. The emitter of transistor **504** is connected to a voltage doubler **508**, which in turn is connected to the positive power line **Vcc**. The gate terminals of four field effect transistor (FET) pairs **506** are connected to the collector of transistor **504**. (Note that N-channel FETs are used in series with their internal parasitic diodes pointing in opposite directions as shown in Fig. 5A so that no current flows through the diodes when the FETs are off). Therefore, transistor **504** controls the gate voltages of FETs **506**. The FET pairs **506** function as electrical switches in the electrical paths of data signals. The FET pairs are switched electronically by transistor **504** to control the blocking of four signals transmitted through the multi-wired cable **16b**, namely DIN, DOUT, CLK HIGH, and CLK LOW.

In the absence of any connection error, the P-indicator signal **302** is not asserted (i.e., is high). As will be described in greater detail below, when the processor is powered-up and in its normal operating state, the error signal **306**, which is connected to transistor **502**, is also not asserted (i.e., is high). Transistor **502** then has bias current applied to it. This switches on transistor **502**, which consequently switches on transistor **504**. Because transistor **504** is switched on, gate voltage is applied to the FET isolation transistors **506**. As is well known to those skilled in the art, this puts the N-channel FET isolation transistors in their “ON” state, allowing all four bus signals to pass through. If the window comparator **408** asserts the P-indicator error signal **302** (i.e., it goes low), the signal **306** is also asserted (i.e., goes low). This turns transistor **502** off which consequently turns transistor **504** off thereby removing gate voltage from all FET isolation transistors **506**. This turns off these FET isolation transistors and blocks the transmission of the DIN, DOUT, CLK HIGH, and CLK LOW signals through the adapter **12** to the remote rail.

Figure 6A shows the data transfer control circuit **208** on the processor **10** in greater detail. An N-P-N transistor **602** is connected in series with a P-N-P transistor **604**. The emitter of transistor **604** is connected to a voltage doubler **608**, which in turn is connected to **Vcc**. The collector of transistor **604** is connected to the gate terminals of two FET pairs **606**. These two FET pairs control the transmission of two signals transmitted through the multi-wired cable **16b**, namely DOUT and CLK LOW.

When the A-indicator signal **202** is not asserted (i.e., is high), transistor **602** will have bias current applied to it. This switches on transistor **602**, which consequently switches on transistor **604**. Because transistor **604** is switched on, gate voltage is applied to the FET isolation transistors **606**. As a result, the FET isolation transistors are kept in their “ON” state, allowing both bus signals to pass through. If the window comparator **409** asserts the A-indicator signal **202** (i.e., it goes low), then transistor **602** is turned off thereby turning off transistor **604**. When transistor **604** is switched off, gate voltage is removed from both N-channel FET isolation transistors **606**. This turns off these FET isolation transistors and blocks the transmission of DOUT and CLK LOW through the processor to the I/O modules of the local rail.

In addition to detecting an invalid connection between the processor and adapter, the validation and protection circuitry also detects and responds to miswirings. As mentioned earlier, these include connecting two processors or two adapters together, or connecting a processor or an adapter to another PLC system that is powered down.

Connecting two processors **10** together using the multi-wired cable **16** may be detected as follows. Referring to Figure 4, the processor **10** provides only the passive resistor **R3**. Without the connection to the voltage divider **410**, the voltage at terminal **430**, electrically connected to resistor **R3**, is substantially zero. So connecting two terminals **430** of two processors through interlock line **18** has no effect on the voltage

thereat. Consequently, the window comparator **409** still sees an input voltage much lower than 1.4 volts, as if the processor is not connected to any other electrical component.

Hence, the window comparator **409** asserts the A-indicator signal **202**.

5 Similarly, connecting two adapters together using the cable **16** may be detected as follows. When two adapters are connected together, the resistor **R3** from the processor side is not present to lower the output voltage of the voltage divider **410**. The window comparator **408** on the adapter will see a voltage input higher than the upper limit of the voltage window and thus will assert the P-indicator signal **302**.

10 As mentioned earlier, a problem would exist without the circuitry of the preferred embodiment when the processor **10** is connected to the adapter **12**, but the adapter **12** is in an unpowered state. In this event the clock signals from the processor could pass through the unpowered adapter and cause the I/O modules to operate erratically. This invalid connection can be detected as follows. Referring to Figure 4, because the adapter **12** is unpowered, the output of the voltage divider **410** at terminal **420** will be zero or very low. As the interlock line **18** electrically connects terminal **420** with terminal **430** the window comparator **409** on the processor will see the same voltage as at terminal **430**, which will be much lower than 1.4 volts. This is outside the pre-specified voltage window and therefore causes the window comparator **409** on the processor **10** to assert the A-indictor signal **202**.

20 Likewise, without the circuitry of the preferred embodiment connecting a powered adapter **12** to an unpowered processor **10** could also lead to damage as previously described. In order to detect this condition a diode **D1** in the processor interlock circuit **200** is connected between resistor **R3** and **Vcc**, as shown in Figure 4. When terminal **430** is electrically connected to terminal **420** via the cable **16b**, the diode **D1** presents a path to ground (since **Vcc** on the processor **10** is zero volts) which bypasses the parallel

connection of resistors **R2** and **R3**. Consequently the window comparator **408** will see substantially less than 1.4 volts and assert the P-indicator signal **302**.

In alternative or in addition to the foregoing, the connection of a powered adapter 5 **12** to an unpowered processor **10** can be detected by the adapter through the reset signal **228** (Figures 2 & 3) which is generated by the processor when it is powered up and in normal operating condition. Referring to Figure 3, the reset signal **228** is fed to the AND gate **304**. The other input to the AND gate is the P-indicator signal **302**. When the processor **10** is in an unpowered state the reset (to remote rail) signal **228** is zero volts, causing the output **306** of the AND gate **304** to go to zero. The output of **306** of the AND gate controls the date transfer control circuit **308** as previously described so as to prevent the transmission of various problematic signals to the I/O modules of the remote rail. Those skilled in the art will appreciate that while the reset signal **228** has been employed for this purpose, any other bus signal which is normally high (i.e., non-zero volts) when the processor is powered on may be used to the same effect.

In addition to the foregoing, the current detector **218** on the processor and the current detector **318** on the adapter determine whether the amount of current drawn on reset lines **216b** or **316** exceed a pre-determined limit and generate fault signals **224** and **324** for responding to over-current conditions. Referring to Fig. 6B the current detector 20 **218** is shown in greater detail. The detector **218** comprises a current source **620**, such as part no. MAX892, available from the Maxim Integrated Circuits company. This part is able to source a current and measure the level of the output current. Once the current level exceeds a programmable limit, the part will assert the fault line **224**. The output of the current source **620** is connected to a switch **622** which is controlled by the reset line 25 **216a** generated by the processor. When the processor is operating normally, the switch **622** is on or closed allowing the current source **620** to source the current for the normally high (to local rail) reset line **216b**. When the fault signal **224** is asserted, the processor

turns off the switch **622** by bringing line **216a** to zero. As a result, switch **622** is opened and another switch **624** is closed thereby grounding the reset (to local rail) line **216b**.

The current detector **318** on the adapter is constructed in a similar manner, as shown in Fig. 5B. On the adapter, the fault signal **324** is also an input to the interlock circuit **300**. More particularly and referring to Figure 4, the fault signal **324** is applied to the base of transistor **Q1**, thereby removing bias current from transistor **Q1** when the fault signal **324** is asserted. This switches off transistor **Q1**. The connection from the positive power voltage **Vcc** to the voltage divider **410** is thus cut off. The voltage divider will have no input voltage and no output voltage. The window comparator **408** on the adapter therefore generates the P-indicator signal **302** in response to the detected over-current condition. Additionally, because terminal **420** and terminal **430** are connected via the interlock line **18**, the window comparator **409** on the processor also does not see the input voltage from the voltage divider **410** and therefore generates the A-indicator signal **202**.

Finally, an unpowered processor may be accidentally connected to a live second PLC system. Referring to Figure 2, the processor includes a sleeper circuit **240** to detect this miswire and in response assert the reset signal **228** to the second system through cable **16b**. Referring to Figure 7, the sleeper circuit **240** receives the CLK line **222** from the second system and uses the energy from this clock line (or any other signal which regularly carries current) to charge up a capacitor **702**. The capacitor, in turn, is connected to the gate terminal of an N-channel FET **704** that is connected between the reset line **228** and common ground. Once the capacitor **702** is sufficiently charged it will activate the FET **704**. This grounds the reset line **228** leading to the live second system thereby causing the second system to reset itself. It will be quite clear that the sleeper circuit **240** should only be activated when the processor **10** is powered off as otherwise the adapter could not be connected to the processor. For this reason the sleeper circuit **240** includes a transistor **706** connected at its collector to the base of the FET **704**. The

base of the transistor **706** is connected to **Vcc** so that when the processor is powered up the transistor **706** is kept in its "on" state. This has the effect of essentially grounding the base of FET **704** and hence switching it off so that it has no effect on the reset line **228**. Conversely, when the processor is powered off the transistor **706** has no effect on the sleeper circuit. If desired, the base of the transistor **706** can also be activated by other hardware or firmware to selectively control usage of the sleeper circuit.

The present invention has been described with respect to the preferred embodiments. However, it will be appreciated that various modifications and alterations might be made by those of ordinary skill in the art without departing from the spirit and scope of the invention.

00192000000000000000000000000000

CLAIMS

1. A method of validating the connection of a multi-wired cable between first and second electrical components, the method comprising:

5 generating a pre-specified voltage level when the first component is properly connected to the second component through the cable and at least the first component is powered up;

testing for the existence of the pre-specified voltage level on each of the components; and

10 asserting an error signal on any component if that component does not detect the pre-specified voltage level.

2. The method according to claim 1, wherein:

the first and second components transmit signals carried by the cable to other electrical components; and

at least one of the first and second components inhibits the transmission of at least one such signal if the error signal on the at least one component is asserted.

3. The method according to claim 1, wherein the first component and the second component must be powered up in order to generate the pre-specified voltage level.

4. The method according to claim 1, wherein the generation of the pre-specified voltage level includes:

25 applying power to a voltage divider in the first component and supplying the output of the voltage divider at a terminal of the first component;

connecting the first component terminal with a terminal in the second component via a wire in the cable; and

providing a circuit element connected to the second component terminal in order to modify the output of the voltage divider and yield the pre-specified voltage level.

5. The method according to claim 4, including means for short circuiting the circuit element in the second component in the event the second component is not powered up.

6. The method according to claim 4, wherein the voltage divider comprises two resistors connected in series and the circuit element is a third resistor that connects in parallel with one of the first and second resistors when the cable is properly connected between the first and second components.

7. The method according to claim 6, including a diode connected between the third resistor and a power supply in the second component for short circuiting said parallel connection of the third resistor and one of the first and second resistors in the event the second component is not powered up.

8. The method according to claim 7, wherein testing for the pre-specified voltage level includes:

testing to determine if the voltage at the first component terminal falls within a pre-determined voltage range; and

testing to determine if the voltage at the second component terminal falls within the pre-determined voltage range.

9. The method according to claim 4, further comprising:

detecting on the first component the state of a pre-determined signal which is intended to be received from the second component via the cable and which is normally at a non-zero voltage level; and

asserting the error signal on the first component if it does not detect the pre-determined signal to have a non-zero voltage level.

10. The method according to claim 9, wherein the intended signal is a normally high reset signal which is:

unasserted when the second component is powered up and operating normally.

11. The method according to claim 9, wherein the voltage divider comprises two resistors connected in series and the circuit element is a third resistor that connects in parallel with one of the first and second resistors when the cable is properly connected between the first and second components.

12. The method according to claim 9, wherein:

the first and second components transmit signals carried by the cable to other components; and

at least one of the first and second components inhibits the transmission of at least one such signal if the error signal on the at least one component is asserted.

13. The method according to claim 9, wherein each component detects the amount of current flowing in the reset signal and asserts the corresponding error signal when said current flow exceeds a pre-specified value.

14. The method according to claim 9, wherein the components are elements of a programmable logic control system, the second component being a processing module and the first component being an adapter.

15. Apparatus for confirming that a multi-wired cable is validly connected between first and second electrical components, the apparatus comprising:

a voltage divider connected to a power supply in the first component, wherein the voltage divider comprises two resistors connected in series and having a common node thereof connected to a terminal of the first component;

a third resistor in the second component connected to a terminal thereof so as to be disposed in parallel with one of the two resistors and yield a pre-specified voltage at

the output of the voltage divider when the cable is properly connected between the first and second components;

circuitry connected to the first component terminal in order to test for the presence of the pre-specified voltage and assert an error signal in the absence thereof; and

5 circuitry connected to the second component terminal in order to test for the presence of the pre-specified voltage and assert an error signal in the absence thereof.

10 16. The apparatus according to claim 15, including a diode connected between the third resistor and a power supply in the second component for short circuiting said parallel connection of the third resistor and one of the first and second resistors in the event the second component is not powered up.

15 17. The apparatus according to claim 16, wherein the testing circuitry on each electrical component comprises a window comparator for determining if the voltage at the corresponding terminal falls within a pre-determined voltage range.

20 18. The apparatus according to claim 15, further comprising circuitry for detecting on the first component the state of a reset signal which is intended to be received from the second component via the cable and for asserting the error signal on the first component if the reset signal is not in a non-zero unasserted state.

25 19. The apparatus according to claim 18, wherein the first and second components transmit signals carried by the cable to other electrical components, and including circuitry for enabling at least one of the first and second components to inhibit the transmission of at least one such signal in the event the error signal on the at least one of the first and second components is asserted.

22. The PLC system according to claim 21, wherein a second cable, identical to the first cable, is used to split the local group or the remote group of I/O modules.

5 23. The PLC system according to claim 21, wherein the testing circuitry includes a window comparator for determining if the voltage at the corresponding terminal falls within a pre-determined voltage range.

10 24. The PLC system according to claim 21, including a diode connected between the third resistor and a power supply in the other of said pair for short circuiting said parallel connection of the third resistor and one of the first and second resistors in the event the other of said electrical component pair is not powered up.

20 25. The PLC system according to claim 21, wherein the one of said pair is the adapter and the other of said pair is the processor, and further comprising circuitry for detecting on the adapter the state of a reset signal which is intended to be received from the processor via the first cable and for asserting the error signal on the adapter if the reset signal is not in a non-zero unasserted state.

25 26. The PLC system according to claim 25, including circuitry for enabling at least one of the processor and the adapter to inhibit the transmission of pre-specified bus signals in the event the error signal on the at least one of the processor and the adapter is asserted.

27. The PLC system according to claim 21, wherein the processor and the adapter each detect the amount of current flowing in the reset signal and assert the corresponding error signal in the event the current flow exceeds a pre-specified value.

Abstract

5 A method and circuitry for ensuring proper connections of a multi-wired cable
bridging two electrical components in a programmable logic controller (PLC) system.
The method involves: generating a pre-specified voltage level when the cable is properly
connected, testing for the existence of this pre-specified voltage level, and generating an
error signal if the pre-specified voltage level is not detected. The error signal generated
10 by a component causes the component to electronically switch off its data connection via
the multi-wired cable with the other component, and may cause the component to reset
itself.

GOVERNMENT EDITION

Fig. 1

Digital Electronics

Fig. 2

卷之三

Fig. 3

Fig. 4

Figure 6B

Fig. 6A

Fig. 8

Attorney's Docket No.
00AB123

DECLARATION
FOR UTILITY OR DESIGN PATENT APPLICATION (37 CFR 1.63)

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled **SYSTEM FOR IDENTIFYING VALID CONNECTIONS BETWEEN ELECTRICAL SYSTEM COMPONENTS AND RESPONDING TO INVALID CONNECTIONS**, the specification of which

Check One

is attached hereto.

was filed on _____ as

Application Serial No. _____

and was amended on _____ (if applicable)

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendments specifically referred to above. I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR 1.56. I hereby claim foreign priority benefits under 35 U.S.C. 119(a) - (d) or 365(b) of any foreign application(s) for patent or inventor's certificate, or 365(a) of any PCT international application which designated at least one country other than the United States of America, listed below and have also identified below any foreign application for patent or inventor's certificate, or of any PCT international application having a filing date before that of the application on which priority is claimed.

Application No.	Country	Date of Filing	Priority Yes✓	Claimed No✓

I hereby claim the benefit under 35 U. S.C. 119(e) of any United States provisional application(s) listed below:

Application No.	Date of Filing	Priority Yes✓	Claimed No✓

I hereby claim the benefit under 35 U.S.C. 120 of any United States application(s), or 365(c) of any PCT international application designating the United States of America, listed below, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT international application in the manner provided by the first paragraph of 35 U.S.C. 112, I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR 1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application.

Application No.	Date of Filing	Status - Patented, Pending or Abandoned

- 2 -

201	FULL NAME OF INVENTOR	First Name William	Middle Initial(s) E.	Last Name FLORO	
	RESIDENCE	City Willoughby	State/Province Ohio	Country U.S.A.	Citizenship U.S.A.
	POST OFFICE ADDRESS	38248 Poplar Drive	City Willoughby	State/Province Ohio	Country U.S.A.

202	FULL NAME OF INVENTOR	First Name Frank	Middle Initial(s) J.	Last Name PRIORE	
	RESIDENCE	City Willoughby Hills	State/Province Ohio	Country U.S.A.	Citizenship U.S.A.
	POST OFFICE ADDRESS	2972 Legend Lane	City Willoughby Hills	State/Province Ohio	Country U.S.A.

203	FULL NAME OF INVENTOR	First Name	Middle Initial(s)	Last Name	
	RESIDENCE	City	State/Province	Country	Citizenship
	POST OFFICE ADDRESS		City	State/Province	Country

204	FULL NAME OF INVENTOR	First Name	Middle Initial(s)	Last Name	
	RESIDENCE	City	State/Province	Country	Citizenship
	POST OFFICE ADDRESS		City	State/Province	Country

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Signature of Inventor 201	<i>William E Floro</i>
Date	10/30/00
Signature of Inventor 202	<i>Frank J Priore</i>
Date	10/30/00

Signature of Inventor 203	
Date	
Signature of Inventor 204	
Date	

Signatures should conform to names as presented at 201 et seq. above

- 3 -

Attorney's Docket No.
00AB123

POWER OF ATTORNEY

We, William E. Floro; Frank J. Priore owners of the application for United States Letters of Patent for **SYSTEM FOR IDENTIFYING VALID CONNECTIONS BETWEEN ELECTRICAL SYSTEM COMPONENTS AND RESPONDING TO INVALID CONNECTION** (Title)

by William E. Floro; Frank J. Priore
(Inventor)

executed on even date herewith, or
 having Serial No.

do hereby appoint as attorneys of record with full power of substitution and revocation, to prosecute this application and transact all business in the Patent and Trademark Office connected therewith John J. Horn, Reg. No. 28,803; John M. Miller, Reg. No. 38,560; William R. Walbrun, Reg. No. 37,464 and Alexander Porat, Reg. No. 43,372.

Please direct all communications to the following address

Rockwell Automation
Intellectual Property Department
1201 South Second Street
Milwaukee, WI 53204
U.S.A.

Attention: John J. Horn
Tel.: (414) 382-3561 Fax: (414) 382-3900

I, the undersigned, declare that I am the (an) owner of the above-identified application or, if the owner is a corporation, partnership or other association, I am authorized to make this appointment on behalf of the owner and I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Name of Owner	William E. Floro
Post Office Address	38248 Poplar Drive, Willoughby, Ohio, U.S.A. 44094
Signature	Date <i>William E. Floro</i> 10/30/00

Name of Owner	Frank J. Priore
Post Office Address	2972 Legend Lane, Willoughby Hills, Ohio, U.S.A. 44092
Signature	Date <i>Frank J. Priore</i> 10/30/00