

Fluxos e Processos de Negócio com BPMN

Prof. Guilherme Lacerda

guilhermeslacerda@gmail.com

Roteiro

Introdução

Visões

Diagramas UML

Ferramentas

- É uma linguagem de modelagem para:
 - Visualizar, especificar, construir e documentar artefatos de sistemas de software
 - Proporcionar uma forma padrão para plano de arquitetura de projeto de software, incluindo regras de negócio e funções do sistema
 - Fornece múltiplas visões do SW, sob diferentes aspectos

- Surgiu na Rational Software Corp. (1994)
 - Grady Booch, James Rumbaugh e Ivar Jacobson
- Padronização OMG (1997)

Visões

Estruturais

Classes, Objetos, Pacotes e Subsistemas, Estrutura Composta*,
 Componentes e Implantação

Comportamentais

 Máquina de Estados, Casos de Uso, Atividades, Seqüência, Comunicação, Interação Geral* e Tempo*

- Casos de Uso
- Classes
- Pacotes e Subsistemas
- Seqüência e Comunicação
- Máquina de Estados
- Atividades
- Componentes
- Implantação
- Estrutura Composta, Interação Geral, Tempo*

Casos de Uso

- Representam regras de negócio
 - Usa perspectiva de atores

- Capturam requisitos
 - Atores necessitam dos requisitos para atuar no negócio
- Diagrama mais abstrato, flexível e informal
 - Serve de base para outros diagramas
 - Embora representado como diagrama UML, é um artefato textual

Atores

- Usam/interagem com o Sistema
 - Qualquer elemento externo que interaja com o sistema
- Podem ser usuários ou outros sistemas

- Diferenças entre Atores e Usuários:
 - Uma única pessoa pode assumir papéis diferentes
 - Atores representam papéis e usuários podem representar o negócio

Associações

Interações de atores com casos de uso

Cenários

- Descrição das atividades de um caso de uso (documentação)
- Descreve o que fazer, não como!
- Perspectiva do cliente

1. Cadastrar Usuários

Caso de Uso: 1.1 Incluir Usuário Atores: Administrador do Sistema

Pré-Condições: Existir uma prefeitura cadastrada

Ações do Ator	Resposta do Sistema
 Este caso de uso inicia quando o ator seleciona "Cadastrar Usuários" no menu 	
	2. Sistema apresenta tela de cadastro de usuários
 Ator preenche os dados do usuário (nome de usuário, login, senha, tipo de usuário – Administrador, Supervisor, Atendente) para cadastro e solicita gravação 	
	4. Sistema registra gravação do usuário (su: Prefeitura é identificada)

Alternativa 1: No passo 3, quando usuário solicita gravação, são validadas o preenchimento dos dados e a senha confirmada.

Alternativa 2: No passo 4, antes de efetuar gravação, são validados login e senha do usuário (não pode haver mais de um usuário com mesmo login e senha)

Pós-Condições: Usuário cadastrado no sistema

Caso de Uso: 1.2 Consultar Usuário Atores: Administrador do Sistema

Pré-Condições: Possuir pelo menos um usuário cadastrado no sistema

Ações do Ator	Resposta do Sistema
 Este caso de uso inicia quando o ator seleciona no "Cadastro de Usuários" a opção "Consultar" 	796 60' '700 85c 706
	2. Sistema lista todos os usuários cadastrados para Prefeitura, identificando nome, login e tipo d

Associações <<include>>

- Relação de uso, quando um caso de uso usa/inclui funcionalidades de outro
- O caso de uso que é chamado não tem a referência de quem o incluiu
- Só é relevante esta associação se for compartilhado entre outros casos de uso

Associações <<extends>>

- Relação de uso, quando um caso de uso usa/inclui funcionalidades de outro, de forma opcional
- O caso de uso estendido sabe como inserir seu extensor no fluxo de eventos

Associações do tipo Herança

O caso de uso filho pode:

- herdar todos os relacionamentos, atividades e todos os pontos de extensão do caso de uso pai
- acrescentar suas próprias atividades, relacionamentos e pontos de extensão do caso de uso pai
- Estender as atividades, relacionamentos e pontos de extensão do caso de uso pai
- Nota: Pode-se ter herança de atores

Subsistemas

- "Dividir para conquistar"!
- Problemas complexos devem ser simplificados
- Produzir diagramas de caso de uso que ressaltem as fronteiras do negócio

Dicas para Casos de Uso

Passos:

- Identificar os atores
- Identificar visões/responsabilidades
- Identificar relações em comum (tipos de associações)

Evite:

- Abusar de <<include>> e <<extend>> (somente quando houver um compartilhamento)
- Descrever requisitos físicos de implementação/detalhes de interface
- Abusar da abstração

- Casos de Uso
- Classes
- Pacotes e Subsistemas
- Seqüência e Comunicação
- Máquina de Estados
- Atividades
- Componentes
- Implantação
- Estrutura Composta, Interação Geral, Tempo*

Classes e Objetos

- Representam a estrutura estática do sistema
- Ilustram os conceitos importantes do domínio do problema, suas características e comportamento
- Projetam uma solução de implementação do problema

Visibilidade

- Separa/concede o acesso a atributos/métodos de uma classe
 - (+) Public: Acesso sem restrição para atributos/métodos
 - (#) Protected: Objetos definidos a partir de subclasses de uma superclasse que possui o atributo/método têm acesso a ele
 - (-) Private: Somente objetos de mesma classe podem ter acesso/invocar um atributo/método privado
 - (~) Package: Somente objetos contidos em um mesmo pacote podem acessar um atributo/método neste nível

Atributos

- Pertencem ao domínio do problema
- Possuem tipificação
- Dão características as classes
- Evoluem junto com o diagrama de classe, conforme a fase de projeto em que se encontra
- Atributos de classe: constantes, variáveis estáticas

Métodos

- Comportamento e responsabilidade das classes
- Também são registrados no diagrama de classes (porém são registrados em projeto)
- Podem executar operações ou retornar valores
- Dois tipos: de classe (referência) e de objeto (valor)

Associações

- Relacionamentos entre classes
- Aumentam a legibilidade do modelo

Papéis

 Nome dado ao relacionamento entre as classes, identificando sua forma de participação

Multiplicidade

- * = zero ou mais
- 1..* = um ou mais
- 1..40 = um a quarenta
- 5 = exatamente cinco
- 2,4,6 = exatamente dois, quatro ou seis

Encontrando Associações

- A é parte de B
- A é um detalhe de B
- A usa serviços de B
- A se comunica com B
- A acessa B

Atributos e Associações

- Uma associação é representada por um atributo na classe de origem da associação
- Contém a identificação da classe destino

Classes e Associações

 Associações complexas entre classes podem necessitar guardar algumas informações sobre a associação

Esteriótipos/Profiles

- São recursos da UML que indicam um comportamento específico
- É um metatipo
- Existem alguns esteriótipos conhecidos (<<include>>, <<extend>>, <<type>>, <<SessionBean>>, <<Http_Servlet>>...)

Dependências

- É um outro tipo de associação, indicando que uma classe/pacote/subsistema utiliza serviços de outra (podem virar futuras associações)
- Acomplamento e Coesão

Realização/Implementação

- É uma implementação de interfaces
- Mistura relacionamentos de dependência e generalização
- Utiliza o esteriótipo <<realize>>

Herança

- Tipo de relação de classes onde uma classe filho (subclasse) herda características e comportamento da classe pai (superclasse)
- Importante: Não confundir herança com transmutação de objetos (papéis)

Agregação e Composição

- Agregação
- Tipo de associação todo-parte onde a existência da parte não está condicionada à existência do todo

- Composição
- Tipo de associação todo-parte onde a existência da parte está condicionada à existência do todo

Diagrama de Objetos

- Complemento do diagrama de classes
- Fornece uma visão dos valores armazenados pelos objetos, em um dado tempo de execução
- Utilizados para simular um estado e comportamento de objetos

- Casos de Uso
- Classes
- Pacotes e Subsistemas
- Seqüência e Comunicação
- Máquina de Estados
- Atividades
- Componentes
- Implantação
- Estrutura Composta, Interação Geral, Tempo*

Pacotes e Subsistemas

- Aumentam a capacidade de compreensão do negócio, organizando o modelo
- Representam estruturas hierárquicas (subsistemas) e suas relações

- Casos de Uso
- Classes
- Pacotes e Subsistemas
- Seqüência e Comunicação
- Máquina de Estados
- Atividades
- Componentes
- Implantação
- Estrutura Composta, Interação Geral, Tempo*

Diagrama de Seqüência

- Apresenta duas dimensões
 - temporal (vertical) e objetos (horizontal)
- Muito utilizado para identificação de métodos das classes
- Nas interações usam-se "*" e condições são descritas entre colchetes
- Ajuda a mapear a interface do sistema
 - Elementos: Atores, objetos, linha de vida, Mensagens (auto-chamada, síncrona, assícrona e retorno)

Diagrama de Seqüência

Diagrama de Seqüência

Diagrama de Seqüência (UML2)

- Fragmentos Combinados e Operadores de Interação
 - Problemas com testes, laços e processos paralelos
- Permite uma modelagem semi-independente, focado nos problemas relatados
- São delimitados por um retângulo definindo seu contexto de atuação dentro do diagrama
- Alguns exemplos de Operadores de Interação
 - Opt (Option), Alt (Alternatives), Par (Parallel), Loop (Looping), Break,...
- Representam com maior eficácia os laços e decisões que precisam ser expressas nos diagramas

Diagrama de Seqüência (UML2)

Diagrama de Seqüência (UML2)

Diagrama de Comunicação

- Conhecido anteriormente como diagrama de colaboração (UML 1.5)
- Amplamente associado ao diagrama de seqüência
- Não se preocupam com a temporalidade do processo
- Não usam os fragmentos combinados e operadores de interação

Diagrama de Comunicação

- Casos de Uso
- Classes
- Pacotes e Subsistemas
- Seqüência e Comunicação
- Máquina de Estados
- Atividades
- Componentes
- Implantação
- Estrutura Composta, Interação Geral, Tempo*

Máquina de Estados

- Era conhecido como diagrama de estados em versões anteriores da UML
- Demonstra o comportamento de um elemento através de transições de estado
- O elemento modelado pode ser variado (instância, caso de uso...)
 - Elementos: Início, estados, transições, Atividades internas (Entry, Do, Exit), Fim
- Barras de sincronização/junção/estados compostos

Máquina de Estados

Estados de uma Consulta (Vagas)

- Casos de Uso
- Classes
- Pacotes e Subsistemas
- Seqüência e Comunicação
- Máquina de Estados
- Atividades
- Componentes
- Implantação
- Estrutura Composta, Interação Geral, Tempo*

Diagrama de Atividades

- Tipo especial de diagrama de máquina de estados
- Exibe o fluxo de uma atividade para outra
- Abrange a visão dinâmica das atividades, dando ênfase no fluxo de controle dos objetos
- Ótimo recurso para modelagem de workflows
 - Elementos: Início, Nós de ação, decisão, controle de fluxo (setas), fim

Diagrama de Atividades

- Casos de Uso
- Classes
- Pacotes e Subsistemas
- Seqüência e Comunicação
- Máquina de Estados
- Atividades
- Componentes
- Implantação
- Estrutura Composta, Interação Geral, Tempo*

- Componentes são partes físicas e substituíveis de um sistema
- Um SW abrange diferentes tipos de componentes (implantação, artefatos, código)
- Este diagrama serve para organizar as dependências existentes entre eles
- Abrange uma visão estática da implementação

- Casos de Uso
- Classes
- Pacotes e Subsistemas
- Seqüência e Comunicação
- Máquina de Estados
- Atividades
- Componentes
- Implantação
- Estrutura Composta, Interação Geral, Tempo*

Diagrama de Implantação

- Expressa a organização física dos componentes
- Recurso para definição de arquitetura do SW
- Define hardware, protocolos, softwares...

Diagrama de Implantação

- Casos de Uso
- Classes
- Pacotes e Subsistemas
- Seqüência e Comunicação
- Máquina de Estados
- Atividades
- Componentes
- Implantação
- Estrutura Composta, Interação Geral, Tempo*

Diagrama de Estrutura Composta

- Utilizado para modelar colaborações
- Expressa tempo de execução, padrões de uso e relacionamento dos elementos
 - A colaboração é representada por uma elipse
 - Os papéis das colaborações definem o uso das instâncias

Diagrama de Interação Geral

É uma variação do diagrama de atividades

Fornece uma visão geral do controle de fluxo

- Pode ser uma combinação de diagramas
 - A partir do diagrama de atividades, pode-se fazer uma chamada para uma diagrama de seqüência

Diagrama de Interação Geral

Diagrama de Tempo

 Apresenta semelhança com o diagrama de máquina de estados (seqüência + estados)

Enfoca a mudança de estado de um objeto ao longo do tempo

- Tem pouca utilidade para aplicações comerciais
 - Mais utilizado em sistemas de tempo real ou que utilizem recursos multimídia/hipermídia

Diagrama de Tempo

Ferramentas

- StarUML
 - http://staruml.sourceforge.net/
- ArgoUML
 - http://argouml.tigris.org
- Enterprise Architect
 - http://www.sparxsystems.com.au
- Posseidon UML
 - http://www.gentleware.com
- Rational Rose
 - http://www-306.ibm.com/software/awdtools/developer/rosexde/
- Astah [Indicado!]
 - http://www.astah.net
- Visual Paradigm for UML
 - http://www.visual-paradigm.com
- Umbrello
 - http://www.umbrello.org

Principais Dicas

Dicas

- O que a UML não é...
 - Uma linguagem de programação
 - Metodologia ou Processo
 - Suficiente para modelar completamente um SW
 - Proprietária
- Use a UML...
 - Como base da modelagem
 - Como um subconjunto de notações
 - Para educar os desenvolvedores!

Dicas

- O Software é o objetivo principal
- Adote a simplicidade na modelagem
 - Modele com propósito
 - Modele para entender e comunicar
 - Use mais de um modelo
 - Modele incrementalmente
 - Conheça seus modelos
- O Conteúdo é mais importante que a forma
- Valorize a comunicação
- Modele com as outras pessoas

