Lexikon für die Theoretische Informatik

Felix Ichters, Lukas Dzielski* Sommersemester 2023

Begleitmaterial mit den wichtigsten Definitionen und Aufgabenstellungen zur Vorlesung 'Einführung in die Theoretische Informatik'.

^{*}Universität Heidelberg

Inhaltsverzeichnis

I.	Definitionen	3
1.	Homomorphismus	3
2.	Längenlexikographische Ordnungen	3
3.	bin(i)	3
4.		3 4 4 4 5 5 5 5 5 6 6 6 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8
II.	Aufgabenstellungen	8

Teil I.

Definitionen

1. Homomorphismus

Für Sprachen L, M heißt eine Funktion $\varphi: L \to M$ Homomorphismus von Sprachen, wenn gilt:

$$\varphi(uv) = \varphi(u)\varphi(v)$$

2. Längenlexikographische Ordnungen

Es gilt $u \leq_{llex} v$ wenn eine der folgenden Bedingungen erfüllt ist:

- 1. |u| < |v|
- 2. |u| = |v| und ist $i \in [|u|]$ minimal mit $u(i) \neq v(i)$, so gilt $u(i) \leq v(i)$

3. bin(i)

bin(i) ist die Funktion für das in Längenlexikopraphischer Reihnfolge i + 1-te Binärwort. 1bin(i) beschreibt die Binärdarstellung von i + 1.

4. Turingmaschiene

Eine k-Band Turingmaschiene ist ein Tupel

$$M = (Q, \Sigma, \Gamma, \Delta, s, F)$$

- ullet Q ist die endliche Zustandsmenge
- \bullet Σ ist das Eingabealphabet
- Γ das Bandalphabet mit $\Sigma \subseteq \Gamma$ und $\square \in \Gamma \backslash \Sigma$
- $\Delta \subseteq Q \times \Gamma^k \times Q \times \Gamma^k \times \{L, S, R\}^k$ die Übergangsrelation
- $s \in Q$ der Startzustand
- $F \subseteq Q$ die Menge der akzeptierten Zustände

Die Elemente von Δ heißen Instruktionen, eine Instruktion sieht wie folgt aus:

$$(q, a_1, \ldots, a_k, q', a'_1, \ldots, a'_k, B_1, \ldots, B_k)$$

Eine TM ist eine DTM, wenn es $\forall b \in Q \times \Gamma^k$ höchstens eine Instruktion $i \in \Delta$ mit Bedingungsteil b gibt

4.1. Konfiguration

Eine Konfiguration einer k-TM (4) ist ein Tupel

$$C = (q, w_1, \dots, w_k, p_1, \dots, p_k) \in Q \times (\Gamma^*)^k \times \mathbb{N}^k$$

Die Startkonfiguration zur Eingabe $(u_1, \ldots, u_n) \in (\Sigma^*)^n$ mit $n \in \mathbb{N}$, ist die Konfiguration

$$start(u_1,\ldots,u_n)=(s,u_1\square u_2\square\ldots\square u_n,\square,\ldots,\square,1,\ldots,1)$$

Die Stoppkonfiquartion ist die Konfiguration zu der es keine Nachfolgekonfiquation gibt

4.1.1. Nachfolgekonfiguration

Für Konfigurationen $C = (q, w_1, \dots, w_k, p_1, \dots, p_k)$ und $C' = (q', w'_1, \dots, w'_k, p'_1, \dots, p'_k)$ einer k-TM, ist die Konfiguration C' Nachfolgekonfiguration von C, wenn es eine Instruktion

$$(q, w_1(p_1), \dots, w_k(p_k), q', a'_1, \dots, a'_k, B_1, \dots, B_k) \in \Delta$$

gibt sodass

$$w_{i} = \begin{cases} \Box a'_{i}w_{i}(2) \dots w_{i}(|w_{i}|) & \text{falls } p_{i} = 1 \text{ und } B_{i} = L \\ w_{i}(1) \dots w_{i}(|w_{i}| - 1)a'_{i}\Box & \text{falls } p_{i} = |w_{i}| \text{ und } B_{i} = R \\ w_{i}(1) \dots w_{i}(p_{1} - 1)a'_{i}w_{i}(p_{i} + 1) \dots w_{i}(|w_{i}|) & \text{sonst} \end{cases}$$

und

$$w_i = \begin{cases} 1 & \text{falls } p_i = 1 \text{ und } B_i = L \\ p_i - 1 & \text{falls } p_i \ge 2 \text{ und } B_i = L \\ p_i & \text{falls } B_i = S \\ p_i + 1 & \text{falls } B_i = R \end{cases}$$

für alle $i \in [k]$ gelten.

4.2. Rechnung

Es bezeichne \to_M die Relation auf der Menge der Konfigurationen einer k-TM M, sodass $C \to_M C'$ falls C, C' Konfigurationen von M sind wobei C' eine Nachfolgekonfiguration von C ist.

Eine **endliche partielle Rechnung** ist eine endliche Folge C_1, \ldots, C_n von Konfigurationen von M mit $C_i \to_M C_{i+1} \forall i \in [n-1]$.

Eine unendlich partielle Rechnung ist eine unendliche Folge C_1, C_2, \ldots von Konfigurationen von M mit $C_i \to_M C_{i+1} \forall i+1 \in \mathbb{N}$. Eine Rechnung zur Eingabe $(w_1, \ldots, w_n) \in (\Sigma^*)^n$ mit $n \in \mathbb{N}$ ist ein unendlich partielle Rechnung $start_M(w_1, \ldots, w_n) = C_1, C_2, \ldots, C_m$.

4.3. Total

Totale TMs, sind TMs die bei jeder Eingabe immer anhalten. Alle Rechnungen müssen endlich sein.

4.4. Akzeptierte Sprache

Eine Stoppkonfiguration ist akzeptiert, wenn $q \in F$.

Die akzeptierte Sprache L(M) ist die Sprache über dem Alphabet Σ , so dass $\forall w \in \Sigma^*$ genau dann $w \in L(M)$ gilt, wenn es eine endliche Rechnung C_1, \ldots, C_n zur Eingabe w gibt, bei der C_n eine akzeptierte Stoppkonfiguartion ist.

Für nicht-deterministische Tms heißt das, dass es für die Wörter in der akzeptierten Sprache nur mind. eine in einer akzeptierten Stoppkonfiguartion endende endliche Rechnungen zur Eingabe w geben muss.

Für Wörter w die nicht in L(M) sind, sind alle Rechnung von M zur Eingabe am Ende nicht in einer akzeptierten Stoppkonfiguartion oder unendlich

4.5. Entscheidbar

Eine Sprache L ist genau dann entscheidbar, wenn es eine totale k-TM mit L(M) = L gibt.

4.6. Rekursiv aufzählbar

Eine Sprache L ist genau dann rekursiv aufzählbar, wenn es eine k-TM mit akzeptierter Sprache L gibt.

4.7. Ausgabe

Die Ausgabe $out_M(C)$ bei Konfiguration C ist das Präfix $w \sqsubseteq w_1(p_1) \dots w_1(|w_1|)$ max. Länge mit $w \in (\Gamma \setminus \{\Box\})^*$.

Also das längst mögliche Wort, dass auf Band 1 rechts vom Lesekopf steht und nicht □ enthält.

4.8. Berechnete Funktion

Sei M eine k-DTM. Die von M berechnete n-äre partielle Funktion φ_M ist die partielle Funktion:

$$\varphi_M: (\Sigma^*)^n \leadsto (\Gamma \setminus \{\Box\})^*$$

sodass folgendes gilt:

- 1. Ist die Rechnung zur Eingabe w_1, \ldots, w_n die endliche Rechnung C_1, \ldots, C_m so gilt $\varphi_M(w_1, \ldots, w_n) = out_M(C_m)$
- 2. Ist die Rechnung zur Eingabe w_1, \ldots, w_n unendlich, so gilt $\varphi_M(w_1, \ldots, w_n) \uparrow$

Nur deterministische TMs können Funktionen berechnen.

4.9. Partiell Berechnbar

Für Σ , Γ und eine partielle Funktion $U: \Sigma^* \leadsto \Gamma^*$ ist φ berechenbar, wenn es ein $k \in \mathbb{N}$ gibt und eine k-DTM M mit $\varphi_M = \varphi$ gibt.

Ist φ total und partiell berechenbar, so ist φ berechenbar.

4.10. Charakteristische Funktion

Sei L eine Sprache über dem Alphabet Σ .

- 1. Die charakteristische Funktion von L als Sprache über Σ ist die Funktion $\mathbb{1}_L: \Sigma^* \to \{0,1\}$ mit $\mathbb{1}_L(w) = 1 \ \forall w \in L \ \text{und} \ \mathbb{1}_L(w) = 0 \ \forall w \in \Sigma^* \backslash L.$
- 2. Die partiell charakteristische Funktion von L als Sprache über Σ ist die partielle Funktion $\chi_L: \Sigma^* \leadsto \{1\}$ mit $\chi_L(w) = 1 \ \forall w \in L \ \text{und} \ \chi_L(w) \uparrow \forall w \in \Sigma^* \backslash L.$

4.11. Normiet

Eine 1-DTM M heißt normiert, wenn Q=0,...,n für ein $n \in \mathbb{N}_0$, $\Sigma = \{0,1\}$, $\Gamma = \{\square,0,1\}$, $\Delta = 0$, $F = \{s\}$.

Alle TMs mit Eingabealphabet 0,1 lassen sich mit folgenden Schritten in eine normierte TM mit gleicher erkannter Sprache und gleicher berechneten Funktion umwandeln.

• Von nicht-Determinismus zu Determinismus

Eine DTM kann die Rechnungen einer nicht-Deterministischen TM parallel im Sinne von abwechselnd schrittweise durchführen um schließlich das Verhalten der simulierten TM zu imitieren. Das entspricht einer Breitensuche im Rechnungsbaum.

• Von mehreren Bändern zu einem Band

Intuitiv können k Bänder auf einem Band simuliert werden, indem die Felder des einen Bandes in k-Teilfelder unterteilt werden, die jeweils die gleichen Bandalphabetbuchstaben wie zuvor als Beschriftung zulassen und es zudem erlauben zu notieren, dass der simulierte Kopf des simulierten Bandes dort steht.

• Von beliebigem Bandalphabet zu $\{\Box, 0, 1\}$

Andere Bandalphabete können bei einem Alphabet Wechsel zum Bandalphabet $\{\Box,0,1\}$ simuliert werden, indem mehrere nebeneinander liegende Felder verwendet werden um ein Symbol des vorigen Bandalphabets durch ein Binärwort zu beschreiben . Die TM liest stets nur ein Feld, es wird daher also nötig sein die Zustandsmenge so zu erweitern, dass angrenzende Felder im Zustand gespeichert werden können.

4.12. Code

Wir betrachten die Funktion code mit geeigneter Definitionsmenge und Zielmenge $\{0,1\}$.

• Codieren der Bewegungsrichtung

$$code(L) = 10$$

 $code(S) = 00$
 $code(R) = 01$

• Codieren der einzelnen Instruktionen

$$I = (q, a, q', a', B)$$

$$code(I) = 0^{|bin(q)|} 1bin(q) a 0^{|bin(q')|} 1bin(q') a' code(B)$$

• Codieren des Instruktinssatzes

$$code(\Delta) = code_1(\Delta) \dots code_{|\Delta|}(\Delta)$$

• Codieren der normierten TM

$$code(M) = 0^{|bin(n)|} 1bin(n)code(\Delta)$$

Jede normierte TM hat einen Code und zwei verschiedene niemals den gleichen. Die Sprache der TMs ist entscheidbar.

4.13. Standardaufzählung

Sei $\hat{w}_0, \hat{w}_1, \ldots$ die Aufzählung aller Codes normierter TMs in längenlexikopraphischer Ordnung. Für

 $e \in \mathbb{N}$ sei \mathcal{M}_e die durch \hat{w}_e codierte TM und für $n \in \mathbb{N}$ sei $\Phi_e^n : \mathbb{N}_0^n \to \mathbb{N}_0$ die von \mathcal{M}_e berechnete n-äre partielle Funktion.

Für $n \in \mathbb{N}$ heißt die Folge $(\Phi_e^n)_e \in \mathbb{N}$ Standardaufzählung der n-ären partiell berechenbaren Funktion. Für $n \in \mathbb{N}$ und eine partiell berechenbare n-äre partielle Funktion $\varphi : \mathbb{N}_0^n \to \mathbb{N}_0$ heißt jede Zahl $e \in \mathbb{N}_0$ mit $\Phi_e^n = \varphi$ Index von φ .

4.14. U

Es bezeichne \mathcal{U} die normierte TM, bei Eingabe $(e, x_1, \ldots, x_n) \in \mathbb{N}_0^{n+1}$ wobei $n \in \mathbb{N}$ die normierte TM \mathcal{M}_e bei Eingabe x_1, \ldots, x_n simuliert und falls diese terminiert die Asugabe der Simulation ausgibt.

4.15. Universell

Eine DTM \mathcal{U} heßt universell, wenn es für alle $n \in \mathbb{N}$ und alle partiell berechenbaren Funktionen $\varphi : \mathbb{N}_0^n \leadsto \mathbb{N}_0$ ein $e \in \mathbb{N}_0$ gibt, sodass $mathcalU(e, x_1, \dots, x_n) = \varphi(x_1, \dots, x_n)$ für alle $x_1, \dots, x_n \in \mathbb{N}_0$ gilt.

4.16. $s_n^m - Theorem$

Für alle $m, n \in \mathbb{N}$ existiert eine berechenbare Funktion $s_n^m : \mathbb{N}_0^{m+1} \to \mathbb{N}_0$ mit

$$\Phi_e^{m+n}(x_1,\ldots,x_m,y_1,\ldots,y_n) = \Phi_{s_n^m(e,x_1,\ldots,x_m)}^n(y_1,\ldots,y_n)$$

für alle $e, x_1, \ldots, x_m, y_1, \ldots, y_n \in \mathbb{N}_0$.

4.17. Diagonales Halteproblem

Die Menge $H_{diag} := \{e \in \mathbb{N}_0 : \Phi_e(e) \downarrow \}$ heißt diagonales Halteproblem. Das diagonale Halteproblem ist rekursiv aufzählbar, jedoch nicht entscheidbar.

4.18. m-Reduktion

Für eine Sprache A über einem Alphabet Σ und eine Sprache B über einem Alphabet Γ ist A genau dann many-one-reduzierbar, auch m-reduzierbar, auf B, kurs $A \leq_m B$, wenn es eine berechenbare Funktion $f: \Sigma^* \to \Gamma^*$ gibt, so dass

$$w \in A \Leftrightarrow f(w) \in B$$

für alle $w \in \Sigma^*$ gilt.

- 4.19. Postsches Korrespondenzproblem
- 4.20. Fixpunkt
- 4.21. Indexmenge

Teil II. Aufgabenstellungen