新確率統計 問題集 模範解答

第1章 確率

§1.1 確率の定義と性質

Basic

1 数字が2であるカードは4枚あるから

$$P(A) = \frac{4}{52} = \frac{1}{13}.$$

数字が 8 以下であるカードは 32 枚あるから

$$P(B) = \frac{32}{52} = \frac{8}{13}.$$

ハートの絵札は 3 枚 (ハートの Jack, Queen, King) あるから

$$P(C) = \frac{3}{52}.$$

2 (1) それぞれの硬貨が表である確率はそれぞれ $\frac{1}{2}$ であり、求め る確率はこれが同時に起こる確率だから

$$\left(\frac{1}{2}\right)^4 = \frac{1}{16}$$

(2) 4 枚の硬貨のうち, 1 枚だけ表である場合は:

表, 裏, 裏, 裏

裏、表、裏、裏

裏, 裏, 表, 裏

裏、裏、裏、表

の4通りである. それぞれが起こる確率は

$$\frac{1}{2} \cdot \left(\frac{1}{2}\right)^3 = \frac{1}{16}$$

$$4 \cdot \frac{1}{16} = \frac{1}{4}.$$

- **3** 1 回のジャンケンの A の結果は、勝ち、あいこ、負け の 3 通り だから $\frac{1}{3}$.
- **4** (1) 2 個のさいころの出る目の差は表のようになるから, $\frac{4}{36}$ = $\frac{1}{9}$.

(2) 2 個のさいころの出る目の和は表のようになるから, $\frac{3}{36}$ = $\overline{12}$

- **5** 袋から同時に 4 個の玉を取り出す取り出し方は $_8\mathrm{C_4}=70$ 通り
 - (1) 取り出した 4 個の玉がすべて白玉である場合は ${}_5\mathrm{C}_4=5$ 通りだから $\frac{5}{70} = \frac{1}{14}$
 - (2) 取り出した 4 個の玉に白玉が 1 個だけ含まれる場合は

$$_5C_1 \cdot _3C_3 = 5$$

より 5 通りだから $\frac{5}{70}=\frac{1}{14}$. (3) 取り出した 4 個の玉に白玉が 2 個だけ含まれる場合は

$$_5C_2 \cdot _3C_2 = 10 \cdot 3 = 30$$

より 30 通りだから $\frac{30}{70} = \frac{3}{7}$.

- 6 (1) 800 以上の奇数ができるのは、1 枚目に8 のカードを引き、 3 枚目に 1, 3, 5, 7 のいずれかのカードを引いた場合で
 - 1 枚目に8のカードを引き,2枚目に偶数,3枚目に奇数の カードを引く確率は

$$\frac{1}{8} \cdot \frac{3}{7} \cdot \frac{4}{6} = \frac{1}{28}.$$

1 枚目に 8 のカードを引き, 2 枚目に奇数, 3 枚目に奇数の カードを引く確率は

$$\frac{1}{8} \cdot \frac{4}{7} \cdot \frac{3}{6} = \frac{1}{28}.$$

すなわち、求める確率はこれらの和をとって

$$\frac{1}{28} + \frac{1}{28} = \frac{1}{14}.$$

(2) 200 以下の奇数ができるのは, 1 枚目に 1 のカードを引き, 3 枚目に 3, 5, 7 のいずれかのカードを引いた場合である. 1 枚目に 1 のカードを引き, 2 枚目に偶数, 3 枚目に奇数の カードを引く確率は

$$\frac{1}{8} \cdot \frac{4}{7} \cdot \frac{3}{6} = \frac{1}{28}.$$

1枚目に1のカードを引き,2枚目に奇数,3枚目に奇数の カードを引く確率は

$$\frac{1}{8} \cdot \frac{3}{7} \cdot \frac{2}{6} = \frac{1}{56}$$

すなわち、求める確率はこれらの和をとって

$$\frac{1}{28} + \frac{1}{56} = \frac{3}{56}.$$

7 4 個のさいころのうち, 3 個だけ同じ目になる場合は:

同,同,同,異

同,同,異,同

同、異、同、同

異,同,同,同

のような組み合わせの場合である. それぞれが起こる確率は

$$6 \cdot \left(\frac{1}{6}\right)^3 \cdot \frac{5}{6} = \frac{5}{216}$$

であるから

$$4 \cdot \frac{5}{216} = \frac{5}{54}.$$

8

$$\frac{4623}{10000} = 0.4623 \simeq 0.46.$$

9 (1) $A \cap B$ 大きいさいころの目が奇数かつ. 出る目の和が偶数 である事象 ⇔ 大きいさいころの目が奇数, 小さいさい ころの目が奇数である事象.

 \overline{B} 出る目の和が奇数である事象.

- $\overline{A} \cap B$ 大きいさいころの目が偶数かつ、出る目の和が偶数 である事象 ⇔ 大きいさいころの目が偶数, 小さいさい ころの目が偶数である事象.
- $A \cup \overline{B}$ 大きいさいころの目が奇数または出る目の和が奇
- (2) $(A \cup B) \cap C = \emptyset$ $\exists b \ C = \overline{A \cup B} = \overline{A} \cap \overline{B}$ $\exists b \ \exists b \ C = \overline{A \cup B} = \overline{A} \cap \overline{B}$ から, 大きいさいころの目が偶数かつ, 出る目の和が奇数で ある事象 ⇔ 大きいさいころの目が偶数, 小さいさいころの 目が奇数.
- 10 (1) トランプ 52 枚のうち, 奇数のカードは 28 枚あるから

$$P(A) = \frac{28}{52} \cdot \frac{27}{51} = \frac{63}{221}$$

(2) カードの数の和が 9 となるのは, 2 枚のカードの数が (1,8), (2,7), (3,6), (4,5), (5,4), (6,3), (7,2), (8,1) の 8 通りで あり、2 枚のカードのスートの組み合わせが $4^2 = 16$ 通り であるから

$$P(B) = \frac{8 \cdot 16}{52 \cdot 51} = \frac{32}{663}.$$

(3) 奇数の和は偶数であり、9 は奇数だから A と B は互いに 排反であるから

$$P(A \cup B) = P(A) + P(B) = \frac{63}{221} + \frac{32}{663} = \frac{1}{3}.$$

11 (1) トランプ 52 枚のうち, 絵札のカードは 12 枚あるから

$$\frac{12}{52} \cdot \frac{11}{51} = \frac{11}{221}.$$

(2) "少なくとも 1 枚は絵札でない"事象の余事象は"2 枚とも 絵札である"事象であるから、(1) より

$$1 - \frac{11}{221} = \frac{210}{221}$$

- 12 A,B の確率はそれぞれ $P(A)=\frac{5}{10},$ $P(B)=\frac{4}{10}$ である. (1) 10 枚のカードのうち、奇数かつ素数であるカードは 3,5,7 だから、 $A\cap B$ の確率は $P(A\cap B)=\frac{3}{10}$ である. すなわち

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= \frac{5}{10} + \frac{4}{10} - \frac{3}{10} = \frac{3}{5}.$$

(2) 10 枚のカードのうち、偶数かつ素数であるカードは 2 のみだから、 $\overline{A}\cap B$ の確率は $P\left(\overline{A}\cap B\right)=\frac{1}{10}$ である. すな

$$P\left(\overline{A} \cup B\right) = P\left(\overline{A}\right) + P(B) - P\left(\overline{A} \cap B\right)$$
$$= \left(1 - \frac{5}{10}\right) + \frac{4}{10} - \frac{1}{10} = \frac{4}{5}.$$

(3) 10 枚のカードのうち、奇数かつ素数でないカードは 1,9 だ から、 $A\cap \overline{B}$ の確率は $P\left(A\cap \overline{B}\right)=\frac{2}{10}$ である. すなわち

$$\begin{split} P\left(A \cup \overline{B}\right) &= P(A) + P\left(\overline{B}\right) - P\left(A \cup \overline{B}\right) \\ &= \frac{5}{10} + \left(1 - \frac{4}{10}\right) - \frac{2}{10} = \frac{9}{10}. \end{split}$$

13 (1) 3 枚の硬貨を投げ、1 枚も表が出ない確率は

$$\left(\frac{1}{2}\right)^3 = \frac{1}{8},$$

1 枚だけ表が出る確率は

$$3 \cdot \left(\frac{1}{2}\right)^3 = \frac{3}{8},$$

2 枚だけ表が出る確率は

$$3 \cdot \left(\frac{1}{2}\right)^3 = \frac{3}{8},$$

3 枚表が出る確率は

$$\left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

である. すなわち

$$0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = \frac{3}{2}.$$

(2) 2 個のさいころの出る目の差は表のようになる.

	1	2	3	3 2 1 0 1 2	5	6
1	0	1	2	3	4	5
2	1	0	1	2	3	4
3	2	1	0	1	2	3
4	3	2	1	0	1	2
5	4	3	2	1	0	1
6	5	4	3	2	1	0

$$0 \cdot \frac{6}{36} + 1 \cdot \frac{10}{36} + 2 \cdot \frac{8}{36} + 3 \cdot \frac{6}{36} + 4 \cdot \frac{4}{36} + 5 \cdot \frac{2}{36}$$

$$= \frac{35}{10}.$$

14 500 円の当たりくじを引く確率は $\frac{1}{12}$, 200 円の当たりくじを引 く確率は $\frac{2}{12}$, はずれくじを引く確率は $\frac{9}{12}$ だから

$$500 \cdot \frac{1}{12} + 200 \cdot \frac{2}{12} + 0 \cdot \frac{9}{12} = 75$$

15 取り出した 2 枚のカードから x の値を計算すると表のように なる.

		1	2	3	4	5	6	7	8	9	10
-		1									
	1	-	1	2	3	4	5	6	7	8	9
	2	1	-	1	2	3	4	5	6	7	8
	3	2	1	-	1	2	3	4	5	6	7
	4	3	2	1	-	1	2	3	4	5	6
	5	4	3	2	1	-	1	2	3	4	5
	6	5	4	3	2	1	-	1	2	3	4
	7	6	5	4	3	2	1	-	1	2	3
	8	7	6	5	4	3	2	1	-	1	2
	9	8	7	6	5	4	3	2	1	-	1
	10	9	8	7	6	5	4	3	2	1	-

(1) 表より, x = 2 となる確率は

$$\frac{16}{90} = \frac{8}{45}$$

(2) 表より, x = 6 となる確率は

$$\frac{8}{90} = \frac{4}{45}$$
.

(3) 表より, x の期待値は

$$1 \cdot \frac{18}{90} + 2 \cdot \frac{16}{90} + 3 \cdot \frac{14}{90} + 4 \cdot \frac{12}{90} + 5 \cdot \frac{10}{90} + 6 \cdot \frac{8}{90} + 7 \cdot \frac{6}{90} + 8 \cdot \frac{4}{90} + 9 \cdot \frac{2}{90} = \frac{11}{2}.$$

Check

- **16** (1) 偶数の玉は 2, 4, 6, 8 の 4 個だから $\frac{4}{9}$.
 - (2) 3 の倍数の玉は 3, 6, 9 の 3 個だから $\frac{3}{9} = \frac{1}{2}$.
- **17** (1) 出る目の積が 12 となるのは (2,6), (3,4), (4,3), (6,2) の
 - (1) 出る日の預か $\frac{4}{36} = \frac{1}{9}$.
 (2) 出る目の和が $\frac{4}{36} = \frac{1}{9}$.
 (5,5), (6,6) の 6 通りだから $\frac{6}{36} = \frac{1}{6}$.
- 18 (1) 5 本の当たりくじのうち 3 本を同時に引ければよいから

$$\frac{5}{20} \cdot \frac{4}{19} \cdot \frac{3}{18} = \frac{1}{114}.$$

(2) 2 本が当たり 1 本が外れる場合は $\frac{{}_{3}P_{3}}{{}_{2}P_{2}}=3$ 通りあり, それ ぞれが起こる確率は

$$\frac{5}{20} \cdot \frac{4}{19} \cdot \frac{15}{18} = \frac{5}{114}$$

であるから、求める確率は

$$3 \cdot \frac{5}{114} = \frac{5}{38}.$$

19 (i) "偶-偶-偶" の順にカードを取り出す確率は

$$\frac{4}{9} \cdot \frac{3}{8} \cdot \frac{2}{7} = \frac{24}{504}.$$

(ii) "偶-奇-偶" または "奇-偶-偶" の順にカードを取り出す確

$$\frac{4}{9} \cdot \frac{5}{8} \cdot \frac{3}{7} + \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{3}{7} = \frac{120}{504}.$$

(iii) "奇-奇-偶"の順にカードを取り出す確率は

$$\frac{5}{9} \cdot \frac{4}{8} \cdot \frac{4}{7} = \frac{80}{504}.$$

以上より

$$\frac{24}{504} + \frac{120}{504} + \frac{80}{504} = \frac{4}{9}.$$

20 "男-男" が選ばれる確率は

$$\frac{8}{14} \cdot \frac{7}{13} = \frac{56}{182}$$

であり、"女-女" が選ばれる確率は

$$\frac{6}{14} \cdot \frac{5}{13} = \frac{30}{182}$$

であるから

$$\frac{56}{182} + \frac{30}{182} = \frac{43}{91}$$

21 (1) (i) 赤玉が 0 個である確率は

$$\frac{5}{12} \cdot \frac{4}{11} \cdot \frac{3}{10} \cdot \frac{2}{9} = \frac{120}{11880}.$$

(ii) 赤玉が 1 個である場合は $\frac{_4P_4}{_3P_3}=4$ 通りあり、それぞ

$$\frac{7}{12} \cdot \frac{5}{11} \cdot \frac{4}{10} \cdot \frac{3}{9} = \frac{420}{11880}$$

であるから、赤玉が1個である確率は

$$4 \cdot \frac{420}{11880} = \frac{1680}{11880}$$

以上より, 求める確率は

$$\frac{120}{11880} + \frac{1680}{11880} = \frac{5}{33}$$

(2) "少なくとも 1 個は赤玉である" 事象の余事象は"赤玉が 0 個である"事象であるから、(1)-(i) より

$$1 - \frac{120}{11880} = \frac{98}{99}.$$

22 A,B の確率はそれぞれ $P(A)=\frac{50}{100}, P(B)=\frac{33}{100}$ である. (1) カードの数字が 6 の倍数である確率だから

$$P(A \cap B) = \frac{16}{100} = \frac{4}{25}.$$

(2) (1) より

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= \frac{50}{100} + \frac{33}{100} - \frac{16}{100} = \frac{67}{100}.$$

(3) $A \cap \overline{B}$ は 2 倍数のうち 6 の倍数を除いた事象だから、その

$$P(A \cap \overline{B}) = \frac{50}{100} - \frac{16}{100} = \frac{34}{100}$$

よって

$$\begin{split} P\left(A \cup \overline{B}\right) &= P(A) + P\left(\overline{B}\right) - P\left(A \cap \overline{B}\right) \\ &= \frac{50}{100} + \left(1 - \frac{33}{100}\right) - \frac{34}{100} = \frac{83}{100}. \end{split}$$

23 (i)赤玉をちょうど 1 個取り出す取り出し方は $\frac{_3P_3}{_3P_2}=3$ 通り あり、それぞれの確率は

$$\frac{3}{10} \cdot \frac{7}{9} \cdot \frac{6}{8} = \frac{126}{720}$$

だから、赤玉をちょうど1個取り出す確率は

$$3 \cdot \frac{126}{720} = \frac{378}{720}$$

(ii) 赤玉をちょうど 2 個取り出す取り出し方は $\frac{_3\mathrm{P}_3}{_2\mathrm{P}_2}=3$ 通り あり、それぞれの確率は

$$\frac{3}{10} \cdot \frac{2}{9} \cdot \frac{7}{8} = \frac{42}{720}$$

だから、赤玉をちょうど 2 個取り出す確率は

$$3 \cdot \frac{42}{720} = \frac{126}{720}$$

(iii) 赤玉を 3 個取り出す確率は

$$\frac{3}{10} \cdot \frac{2}{9} \cdot \frac{1}{8} = \frac{6}{720}.$$

以上より,賞金額の期待値は

$$100 \cdot \frac{378}{720} + 200 \cdot \frac{126}{720} + 300 \cdot \frac{6}{720} = 90$$

より,90円.

24 2 個のさいころの出た目から x の値を計算すると表のようになる.

	1	2	3	4	5	6
1	2 3 0 1 2 3	3	0	1	2	3
2	3	0	1	2	3	0
3	0	1	2	3	0	1
4	1	2	3	0	1	2
5	2	3	0	1	2	3
6	3	0	1	2	3	0

(1) 表より, x = 0 となる確率は

$$\frac{9}{36} = \frac{1}{4}$$
.

(2) 表より, x の期待値は

$$0 \cdot \frac{9}{36} + 1 \cdot \frac{8}{36} + 2 \cdot \frac{9}{36} + 3 \cdot \frac{10}{36} = \frac{9}{14}.$$

Step up

25 証明. 仮定より

$$\sqrt{P(A)P(B)} > \sqrt{\frac{1}{4}} = \frac{1}{2}.$$

相加平均と相乗平均の関係より

$$\frac{P(A) + P(B)}{2} \ge \frac{1}{2}$$

であるから

$$P(A) + P(B) \ge 1.$$

したがって, A, B は互いに排反でない.

- **26** (1) \overline{A} は "3 回とも裏である" 事象であり、これは B に含まれるから、 $A \cup B$ は全事象である. したがって $P(A \cup B) = 1$.
 - (2) B が起こるとき、3 回目が裏となるから、A が起こるのは 1 回目か 2 回目に少なくとも 1 回表が出る場合である。"1 回目か 2 回目に少なくとも 1 回表が出る"事象を A' とすると、その余事象 $\overline{A'}$ は、"1 回目と 2 回目ともに裏が出る"となり、この確率は

$$P\left(\overline{A'}\right) = (1-p)^2$$

である. これより, A' の起こる確率は

$$P(A') = 1 - P(\overline{A'}) = 1 - (1 - p)^2 = p(2 - p)$$

だから

$$P(A \cap B) = P(A') \cdot (1-p) = p(1-p)(2-p).$$

27 (1) n 人全員の誕生日が異なる確率を考える. 1 人目の誕生日 は 365 通りあり, 2 人目の誕生日は 1 人目の誕生日以外から選ぶので 364 通りある. これを n 人目まで繰り返すと, n 人全員の誕生日が異なる確率は

$$\underbrace{\frac{365}{365} \cdot \frac{364}{365} \cdot \dots \cdot \frac{365 - n + 1}{365}}_{365} = \underbrace{\frac{\frac{365!}{(365 - n)!}}{365^n}}_{365^n} = \underbrace{\frac{365}{365^n}}_{365^n}$$

となるから

$$p_n = 1 - \frac{365 P_n}{365^n} = 1 - \frac{365!}{365^n \cdot (365 - n)!}$$

(2)

$$p_5 = 1 - \frac{365}{365} \cdot \frac{364}{365} \cdot \frac{363}{365} \cdot \frac{362}{365} \cdot \frac{361}{365} \simeq 0.0271.$$

28 n 人がじゃんけんをして勝敗が決まる確率を考える. 勝敗が決まるのは、出された手が 2 種類のみのときであり、この手の選び方は $_3C_2=3$ 通りある. それぞれの確率は、n 人が 2 種類の手を出す出し方の 2^n 通りから、2 種類のどちらかの手で全員の手が揃う出し方を引けばよいから

$$\frac{2^n}{3^n} - \frac{1}{3^n} - \frac{1}{3^n} = \frac{2^n - 2}{3^n}.$$

すなわち、n人がじゃんけんをして勝敗が決まる確率は

$$3 \cdot \frac{2^n - 2}{3^n} = \frac{3 \cdot {}^n - 6}{3^n}.$$

したがって、求める確率は

$$p_n = 1 - \frac{3 \cdot 2^n - 6}{3^n} = \frac{3^n - 3 \cdot 2^n + 6}{3^n}.$$

29 (1) 1 枚目に偶数, 2 枚目に偶数のカードを引く確率は

$$\frac{4}{9} \cdot \frac{3}{8} = \frac{12}{72}$$

であり、1 枚目に奇数、2 枚目に偶数のカードを引く確率は

$$\frac{5}{9} \cdot \frac{4}{8} = \frac{20}{72}$$

であるから、求める確率は

$$\frac{12}{72} + \frac{20}{72} = \frac{4}{9}.$$

(2) 2 けたの数字が 3 の倍数となる条件は, 各けたの数字の和が 3 の倍数となることである. 1 枚目に 3 の倍数のカードを引いた場合, 和が 3 の倍数になるのは 2 枚目にも 3 の倍数のカードを引いた場合である. この場合の確率は

$$\frac{3}{9} \cdot \frac{2}{8} = \frac{6}{72}.$$

1 枚目に 3 の倍数以外のカードを引いた場合, 和を 3 の倍数にするために必要な 2 枚目のカードは 3 通りあり, この場合の確率は

$$\frac{6}{9} \cdot \frac{3}{8} = \frac{18}{72}$$

すなわち、求める確率は

$$\frac{6}{72} + \frac{18}{72} = \frac{24}{72} = \frac{1}{3}.$$

(3) 2 けたの数字の作られ方を考えると、十の位、一の位にはそれぞれ 1 から 9 の数字が 8 回ずつ出現するから、2 けたの数字の総和は

$$10 \cdot 8 \cdot (1 + \dots + 9) + 1 \cdot 8 \cdot (1 + \dots + 9) = 3960.$$

それぞれの数字の出現確率は等しく $\frac{1}{72}$ だから、求める期待値は

$$\frac{3960}{72} = 55.$$

- **30** 8 個の玉を円形に並べる並べ方は (8-1)! = 7! 通りである.
 - (1) 円形に並べた 5 個の白玉の間に赤玉を並べることを考える. 5 個の白玉を円形に並べる並べ方は (5-1)!=4! 通りあり, 5 箇所の白玉の間から 3 箇所選んで赤玉を並べればよいから, 求める確率は

$$\frac{4! \cdot {}_5 P_3}{7!} = \frac{4! \cdot (5 \cdot 4 \cdot 3)}{7!} = \frac{2}{7}.$$

(2) 3 個の赤玉をまとめて 1 個と捉えて, 6 個の玉を円形に並べることを考える. 6 個の玉を円形に並べる並べ方は (6-1)!=5! 通りあり, それぞれについてまとめた 3 個の赤玉の並べ方が $_3\mathrm{P}_3=3!$ 通りあるから, 求める確率は

$$\frac{5! \cdot 3!}{7!} = \frac{1}{7}.$$

- **31** 8 名が丸く並んで輪を作る作り方は (8-1)! = 7! 通りである.
 - (1) 4 組の親子が丸く並ぶ並び方は (4-1)! = 3! 通りである. それぞれについて、親子内での並び方が 2 通りあり、親子は 4 組あるから、求める確率は

$$\frac{3! \cdot 2^4}{7!} = \frac{2}{105}$$

(2) (1) の余事象だから

$$1 - \frac{2}{105} = \frac{103}{105}.$$

(3) 丸く並んだ 4 名の大人の間に子どもを並べることを考える. 4 名の大人を丸く並べる並べ方は (4-1)!=3! 通りあり, その間に 4 名の子どもを並べればよいから

$$\frac{3! \cdot {}_{4}P_{4}}{7!} = \frac{3! \cdot 4!}{7!} = \frac{1}{35}$$

(4) (1) の事象を A, (3) の事象を B とすると、考える事象は $\overline{A} \cup \overline{B} = \overline{A \cap B}$ であり, $A \cap B$ は "すべての親子が隣り合い,大人と子どもが交互になっている" ことを表す.4 名の 大人を丸く並べる並べ方は 3! 通りあり,それぞれの子ども の並べ方は親の右側か左側の 2 通りだから

$$P(A \cap B) = \frac{3! \cdot 2}{7!} = \frac{1}{420}$$

すなわち、求める確率は

$$P(\overline{A} \cup \overline{B}) = P(\overline{A \cap B}) = 1 - P(A \cap B)$$
$$= 1 - \frac{1}{420} = \frac{419}{420}.$$

- **32** (1) 2 点を選んでできる直線の総数は $_8{
 m C}_2=28$ 本である.このうち,円の直径となるのは 4 本だから $\frac{4}{28}=\frac{1}{7}$.
 - (2) 3 点を選んでできる三角形の総数は ${}_8{\rm C}_3=56$ 値である. 3 点を選んで直角三角形となるのは,三角形の 1 辺が円の直径を含む場合である *1 . 直角三角形となるものは,1 本の対角線に対して 6 通りあるから,求める確率は (1) より

$$\frac{4\cdot 6}{56} = \frac{3}{7}$$

(3) ある 1 点に対し、これを頂角とする二等辺三角形は 3 個あり、このうち 1 個は直角三角形になるから、直角三角形でない二等辺三角形は $8\cdot(3-1)=16$ 個である。すなわち、求める確率は (2) より

$$1 - \frac{24 + 16}{56} = \frac{2}{7}.$$

- (4) 4 点を選んでできる四角形の総数は ${}_8\mathrm{C}_4=70$ 個である. このうち、正方形となるのは 2 個だから $\frac{2}{70}=\frac{1}{35}$.
- (5) 隣り合う 2 点を結んでできる辺に対し、これを底辺とする台形は 3 個あり、このうち 1 個は長方形になるから、長方形でない台形は $8\cdot(3-1)=16$ 個である。隣り合う 2 点を結んでできる辺は 8 本あり、これらの中から向かい合わせの 2 辺を選ぶと長方形ができるから、長方形は $\frac{8}{2}=4$ 個である。1 点を挟んだ 2 点を結んでできる辺に対し、これを底辺とする台形は 2 個あり、このうち 1 個は正方形になるから、正方形でない台形は $8\cdot(2-1)=8$ 個である。(4) より、正方形は 2 個だから、求める確率は

$$\frac{16+4+8+2}{70} = \frac{3}{7}.$$

- **33** 3 点を選んでできる三角形の総数は $_{12}C_3=220$ 個である. また, 正十二角形の各頂点は同一円周上にある.
 - (1) 正三角形となる 3 点の選び方は 4 通りだから $\frac{4}{220} = \frac{1}{55}$.
 - (2) 3 点を選んで直角三角形となるのは、三角形の 1 辺が円の 直径を含む場合である. 2 点を選んでできる直線のうち、円 の直径になるのは 6 通りあり、それぞれの辺に対して直角 三角形となる頂点の選び方は 10 通りあるから、求める確 率は

$$\frac{6 \cdot 10}{220} = \frac{3}{11}$$

(3) ある 1 点に対し、これを頂点とする二等辺三角形は 5 個あり、このうち 1 個は正三角形だから、正三角形でない二等辺三角形は $12 \cdot (5-1) = 48$ 個である。 (1) より、正三角形は 4 個だから、求める確率は

$$\frac{48+4}{220} = \frac{13}{55}$$

- **34** 引いた 2 枚のカードを (i,j) と表す.
 - (1) x = k となるのは、(1, k 1),(2, k 2),...,(k 1, 1) の k 1 通りだから,求める確率は $\frac{k 1}{n^2}$.
 - (2) x = n + k となるのは、(k, n),(k + 1, n 1),...,(n, k) の n k + 1 通りだから、求める確率は $\frac{n k + 1}{n^2}$.

§1.2 いろいろな確率

Basic

35 $P(A) = \frac{6}{52} = \frac{3}{26}, P(B) = \frac{12}{52} = \frac{6}{26}$ である. また, $A \cap B$ は "スペードの素数かつ絵札" すなわち, "スペードの Jack または スペードの King" という事象だから

$$P(A \cap B) = \frac{2}{52} = \frac{1}{26}.$$

したがって

$$P_A(B) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{26}}{\frac{3}{26}} = \frac{1}{3},$$

$$P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{26}}{\frac{6}{26}} = \frac{1}{6}.$$

^{*1} 円周角の定理より, 円周上に直角が存在するためにはこれが 直径に対する円周角になっていることが必要である.

36 (1) 大きいさいころの出る目が偶数であるのは 2, 4, 6 の 3 通りだから

$$P(A) = \frac{3}{6} = \frac{1}{2}.$$

- (2) 大きいさいころの出る目が偶数であるとき、それぞれについて和を 7 にするための小さいさいころの出る目は 1 通りだから $P_A(B)=rac{1}{6}$.
- (3) 確率の乗法定理より

$$P(A \cap B) = P(A)P_A(B) = \frac{1}{2} \cdot \frac{1}{6} = \frac{1}{12}.$$

37 (1) 野球観戦が好きな会員のうち, 30% がサッカー観戦は好き ではない会員だから

$$\frac{40}{100} \cdot \frac{30}{100} = \frac{3}{25}.$$

(2) 野球観戦が好きな会員の 70% がサッカー観戦も好きで、 さらにその 80% がテニス観戦も好きな会員だから

$$\frac{40}{100} \cdot \frac{70}{100} \cdot \frac{80}{100} = \frac{28}{125}.$$

(3) 野球観戦もサッカー観戦も好きな会員のうち, 20% がテニス観戦は好きではない会員だから

$$\frac{40}{100} \cdot \frac{70}{100} \cdot \frac{20}{100} = \frac{7}{125}.$$

- **38** (1) A が引く時点では 20 本のくじの中に当たりくじが 4 本あるから $\frac{4}{20} = \frac{1}{5}$.
 - (2) A が当たっていた場合, B が引く時点では 19 本のくじの 中に当たりくじが 3 本あるから

$$\frac{1}{5} \cdot \frac{3}{19} = \frac{3}{95}$$

A が当たっていない場合, B が引く時点では 19 ほんのくじの中に当たりくじが 4 本あるから

$$\frac{4}{5} \cdot \frac{4}{19} = \frac{16}{95}.$$

すなわち, B が当たる確率は

$$\frac{3}{95} + \frac{16}{95} = \frac{1}{5}.$$

(3) A が当たった上で B も当たる確率は

$$\frac{1}{5} \cdot \frac{3}{19} = \frac{3}{95}.$$

この上で С も当たる確率は

$$\frac{3}{95} \cdot \frac{2}{18} = \frac{1}{285}.$$

(4) A が当たった上で B が外れる確率は

$$\frac{1}{5} \cdot \frac{16}{19} = \frac{16}{95}$$

この上で, C が当たる確率は

$$\frac{16}{95} \cdot \frac{3}{18} = \frac{8}{285}.$$

(5) A, B がともにはずれて C が当たる確率は

$$\frac{16}{20} \cdot \frac{15}{19} \cdot \frac{4}{18} = \frac{24}{171}$$

したがって, (3), (4) より

$$\frac{1}{285} + 2 \cdot \frac{8}{285} + \frac{24}{171} = \frac{1}{5}.$$

39 (1) (i) 1 から 600 までの整数から選ぶ場合:

A の起こる確率 P(A) は

$$P(A) = \frac{200}{600} = \frac{1}{3},$$

B の起こる確率 P(B) は

$$P(B) = \frac{120}{600} = \frac{1}{5}$$

である. また, $A \cap B$ の起こる確率 $P(A \cap B)$ は

$$P(A \cap B) = \frac{40}{600} = \frac{1}{15}.$$

である. したがって

$$P(A \cap B) = P(A)P(B).$$

すなわち, A, B は互いに独立である.

(ii) 1 から 400 までの整数から選ぶ場合:

$$A$$
 の起こる確率 $P(A)$ は

$$P(A) = \frac{133}{400}$$

B の起こる確率 P(B) は

$$P(B) = \frac{80}{400} = \frac{1}{5}$$

である. また, $A \cap B$ の起こる確率 $P(A \cap B)$ は

$$P(A \cap B) = \frac{26}{400} = \frac{13}{200}.$$

である. したがって

$$P(A \cap B) \neq P(A)P(B)$$
.

すなわち, A, B は \overline{D} いに独立でない.

(2) A, B, C のそれぞれが起こる確率 P(A), P(B), P(C) は

$$P(A) = \frac{3}{6} = \frac{1}{2},$$

$$P(B) = \frac{3}{6} = \frac{1}{2},$$

$$P(C) = \frac{2}{6} = \frac{1}{3}.$$

また, $A\cap B$, $B\cap C$, $C\cap A$ のそれぞれが起こる確率 $P(A\cap B)$, $P(B\cap C)$, $P(C\cap A)$ は

$$P(A \cap B) = \frac{1}{6},$$

$$P(B \cap C) = \frac{1}{6},$$

$$P(C \cap A) = \frac{1}{6}.$$

したがって

$$P(A \cap B) \neq P(A)P(B),$$

$$P(B \cap C) = P(B)P(C),$$

$$P(C \cap A) = P(C)P(A).$$

すなわち.

A と B: 互いに独立でない、 B と C: 互いに独立である、 C と A: 互いに独立である.

40 (1) A, B は互いに独立だから

$$P(A \cap B) = P(A)P(B) = \frac{1}{3} \cdot \frac{2}{5} = \frac{2}{15}.$$

(2) (1) より

$$\begin{split} P(A \cup B) &= P(A) + P(B) - P(A \cap B) \\ &= \frac{1}{3} + \frac{2}{5} - \frac{2}{15} = \frac{3}{5}. \end{split}$$

- 41 1回だけ赤玉である取り出し方は、"赤玉、白玉、白玉"の並べ方 を考えると $\frac{_3\mathrm{P}_3}{_2\mathrm{P}_2}=3$ 通りである. (1) 復元抽出で取り出す場合, それぞれが起こる確率は

$$\frac{3}{9} \cdot \left(\frac{6}{9}\right)^2 = \frac{4}{27}.$$

よって、求める確率は

$$3 \cdot \frac{4}{27} = \frac{4}{9}.$$

(2) 非復元抽出で取り出す場合、それぞれが起こる確率は

$$\frac{3}{9} \cdot \frac{6}{8} \cdot \frac{5}{7} = \frac{5}{28}.$$

よって、求める確率は

$$3 \cdot \frac{5}{28} = \frac{15}{28}.$$

42 (1) 1 の目がちょうど 3 回出る出方は、"1 の目, 1 の目, 1 の目, 1 の目, 1 の目ののは、1 の目以外"の並べ方を考えると $\frac{4P_4}{3P_3}=4$ 通りである。そ

$$\left(\frac{1}{6}\right)^3 \cdot \frac{5}{6} = \frac{5}{6^4}.$$

よって、求める確率は

$$4 \cdot \frac{5}{6^4} = \frac{5}{324}.$$

(2) 表がちょうど 2 回出る出方は、"表、表、裏、裏、裏、裏、裏、裏、の並べ方を考えると $\frac{^7P_7}{^2P_2\cdot _5P_5}=21$ 通りである.それぞ

$$\left(\frac{1}{2}\right)^2 \cdot \left(\frac{1}{2}\right)^5 = \frac{1}{128}.$$

よって、求める確率は

$$21 \cdot \frac{1}{128} = \frac{21}{128}.$$

(3) 白玉がちょうど 2 回出る出方は、"白玉、白玉、黒玉" の並べ 方を考えると $\frac{_3\mathrm{P}_3}{_2\mathrm{P}_2}=3$ 通りである.それぞれが起こる確

$$\left(\frac{2}{5}\right)^2 \cdot \frac{3}{5} = \frac{12}{125}.$$

よって、求める確率は

$$3 \cdot \frac{12}{125} = \frac{36}{125}.$$

43 (1) 1 の目が 1 回, 2 の目が 2 回出る出方は、"1 の目, 2 の目,2 の目" の並べ方を考えると $\frac{_3P_3}{_2P_2}=3$ 通りである。それぞ

$$\frac{1}{6} \cdot \left(\frac{1}{6}\right)^2 = \frac{1}{6^3}.$$

よって、求める確率は

$$3 \cdot \frac{1}{6^3} = \frac{1}{72}.$$

(2) 3 回とも奇数の目が出る確率は

$$\left(\frac{3}{6}\right)^3 = \frac{1}{8}.$$

(3) 3 回とも奇数の目が出ない確率は

$$\left(\frac{3}{6}\right)^3 = \frac{1}{8}$$

だから、求める確率は

$$1 - \frac{1}{8} = \frac{7}{8}.$$

(4) 奇数の目が出る回数が偶数の目が出る回数より多くなるの は、奇数が出る回数が2回または3回のときである。奇数 が 2 回出る出方は、"奇数の目,奇数の目,偶数の目" の並べ方を考えると $\frac{_3P_3}{_2P_2}=3$ 通りである.それぞれが起こる確

$$\left(\frac{3}{6}\right)^2 \cdot \frac{3}{6} = \frac{1}{8}.$$

よって, 奇数が 2 回出る確率は

$$3 \cdot \frac{1}{8} = \frac{3}{8}$$

であり, (2) より奇数が 3 回出る確率は $\frac{1}{8}$ であるから, 求める確率は

$$\frac{3}{8} + \frac{1}{8} = \frac{1}{2}.$$

(5) 1,2回目には6以外の目が出ればよいから、求める確率は

$$\left(\frac{5}{6}\right)^2 \cdot \frac{1}{6} = \frac{25}{216}.$$

(6) 1 回目または 2 回目に 1 度目の 6 の目が出ればよいから、 その出方は2通りであり、確率は

$$2 \cdot \frac{1}{6} \cdot \frac{5}{6} = \frac{5}{18}.$$

この上で2回目の6の目が出ればよいから、求める確率は

$$\frac{5}{18} \cdot \frac{1}{6} = \frac{5}{108}$$