

Capstone Project-2

Seoul Bike Sharing Demand Prediction

-Team members

- Babu
- Manoj
- Aman

The Bike Sharing Analysis follows:

- Problem Statements
- Data Information
- Analysis of Data
- Data Cleaning/ Imputation
- Data Preparation
- Model Training
- Evaluation Metrics
- Challenges
- Conclusion

Problem Statements

- What can we learn from predictions? (ex: Days, Temperature, seasons,etc).
- Prediction of bike count required at each hour for the stable supply of rental bikes.
- Highest Booking counts in Season, Month and Week.
- Finding Variations in data
- Finding the best estimating algorithm

Data summary

Dataset file: Seoulbikedata.CSV file from Dec2017 to Jan2018 **Shape:**

Columns:14Rows:8760

Important Columns and Units

Date
Rented Bike Count
Hour 24units
Temperature (°C)
Humidity (%)
Wind speed (m/s)
Visibility (10m)
Solar Radiation (MJ/m2)
Seasons
Holidays
Functioning Day

Data Cleaning and imputation

- Checking for Duplication in Data frame columns.
- Checking for Nan/Null Values.

0	# checking	for 1	null	values
df.isnull().sum()				

C→	Date	0
	Rented Bike Count	0
	Hour	0
	Temperature (°C)	0
	Humidity(%)	0
	Wind speed (m/s)	0
	Visibility (10m)	0
	Dew point temperature (°C)	0
	Solar Radiation (MJ/m2)	0
	Rainfall (mm)	0
	Snowfall (cm)	0
	Seasons	0
	Holiday	0
	Functioning Day	0
	dtype: int64	

What time in a day is highest bike rented?

Which Season has most bike Rents?

Rented Bike Count

S		_	•	
-71				-

Summer	2283234
Autumn	1790002
Spring	1611909
Winter	487169

Which Date in a month has highest booking count?

Which Month has highest booking count?

Which day in a week has highest booking?

Rented Bike Count

Day	
Friday	950334
Vednesday	923956
Monday	911743
Saturday	885492
Thursday	861999
Tuesday	858596
Sunday	780194

Is there any bookings on Holiday?

Is there any Variations in Rainfall(mm) Data?

Is there any Variations in Snowfall(cm) Data?

Line plot of Temperature vs Rented bike count

Rented bike Count During Different Seasons

Distribution Plot of Bikes taken for rental

Distribution of Bikes taken for rental after applying log transformation

Heatmap

CONVERT THE DATASET INTO THE DEPENDENT AND THE INDEPENDENT VARIABLE

```
Independent Variable (X): Temperature, Humidity, Wind speed, Visibility, Solar, Holiday, Functioning Day, hour_1, hour_2, hour_3, hour_4, hour_5, hour_6, hour_7, hour_8, hour_9, hour_10, hour_11, hour_12, hour_13, hour_14, hour_15, hour_16, hour_17, hour_18, hour_19, hour_20, hour_21, hour_22, hour_23, season_Spring, season Summer, season Winter, month_2, month_3, month_4, month_5, month_6, month_7, monthweekDay_4, weekDay_5, month_8, month_9, month_10, month_11, month_12, weekDay_2, weekDay_3, weekDay_4, weekDay_5, weekDay_6, weekDay_7
```

Dependent Variable (Y): Rented Bike Count'

SPLIT THE DATA INTO TRAINING SET AND THE TEST SET

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split( X,Y, test_size = 0.2, random_state = 0)

print(X_train.shape)

print(X_test.shape)
```


Linear Regression


```
[ ] from sklearn.linear model import LinearRegression
    reg = LinearRegression().fit(X_train, y_train)
[ ] # Predicting the Test set results
    y_pred = reg.predict(X_test)
[ ] from sklearn.metrics import mean_squared_error
    MSE = mean_squared_error((y_test),(y_pred))
    print("MSE :" , MSE)
    RMSE = np.sqrt(MSE)
    print("RMSE :" ,RMSE)
    MSE: 0.5064503030007469
    RMSE: 0.7116532182184993
from sklearn.metrics import r2_score
    r2 = r2_score((y_test),(y_pred))
    print("R2 :" ,r2)
    print("Adjusted R2 : ",1-(1-r2_score((y_test),(y_pred)))*((X_test.shape[0]-1)/(X_test.shape[0]-X_test.shape[1]-1)))
R2: 0.6349747136136711
    Adjusted R2: 0.6238594491073882
```



```
from sklearn.linear_model import LinearRegression, Ridge, HuberRegressor, ElasticNetCV
    from sklearn.tree import DecisionTreeRegressor
    from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, ExtraTreesRegressor
    models = [LinearRegression(),
             Ridge(),
             ElasticNetCV(),
             DecisionTreeRegressor(),
             RandomForestRegressor(),
             ExtraTreesRegressor(),
             GradientBoostingRegressor()]
[ ] from sklearn import model selection
    def train(model):
        kfold = model selection.KFold(n splits=5, random state=42)
        pred = model selection.cross val score(model, X, Y, cv=kfold, scoring='neg mean squared error')
        cv score = pred.mean()
        print('Model:', model)
        print('CV score:', abs(cv score))
    for model in models:
        train(model)
    Model: LinearRegression(copy X=True, fit intercept=True, n jobs=None, normalize=False)
    CV score: 0.561815448863636
    Model: Ridge(alpha=1.0, copy X=True, fit intercept=True, max iter=None,
          normalize=False, random state=None, solver='auto', tol=0.001)
```



```
Model: HuberRegressor(alpha=0.0001, epsilon=1.35, fit intercept=True, max iter=100,
              tol=1e-05, warm start=False)
CV score: 1.269821534132796
Model: ElasticNetCV(alphas=None, copy X=True, cv=None, eps=0.001, fit intercept=True,
             l1_ratio=0.5, max_iter=1000, n_alphas=100, n_jobs=None,
             normalize=False, positive=False, precompute='auto',
             random_state=None, selection='cyclic', tol=0.0001, verbose=0)
CV score: 0.8465942024148123
Model: DecisionTreeRegressor(ccp alpha=0.0, criterion='mse', max depth=None,
                      max features=None, max leaf_nodes=None,
                      min impurity decrease=0.0, min impurity split=None,
                      min_samples_leaf=1, min_samples_split=2,
                      min weight fraction leaf=0.0, presort='deprecated',
                      random state=None, splitter='best')
CV score: 0.8330128063441314
Model: RandomForestRegressor(bootstrap=True, ccp alpha=0.0, criterion='mse',
                      max depth=None, max features='auto', max leaf nodes=None,
                      max samples=None, min impurity decrease=0.0,
                      min_impurity_split=None, min_samples_leaf=1,
                      min samples split=2, min weight fraction leaf=0.0,
                      n_estimators=100, n_jobs=None, oob_score=False,
                      random state=None, verbose=0, warm start=False)
CV score: 0.4909116591048976
Model: ExtraTreesRegressor(bootstrap=False, ccp alpha=0.0, criterion='mse',
                    max_depth=None, max_features='auto', max_leaf_nodes=None,
                    max_samples=None, min_impurity_decrease=0.0,
                    min impurity split=None, min samples leaf=1,
                    min_samples_split=2, min_weight_fraction_leaf=0.0,
                    n estimators=100, n jobs=None, oob score=False,
                   random state=None, verbose=0, warm start=False)
CV score: 0.4409953642506461
Model: GradientBoostingRegressor(alpha=0.9, ccp_alpha=0.0, criterion='friedman_mse',
                          init=None, learning rate=0.1, loss='ls', max_depth=3,
                          max features=None, max leaf nodes=None,
                          min_impurity_decrease=0.0, min_impurity_split=None,
                          min samples leaf=1, min samples split=2,
                          min weight fraction leaf=0.0, n estimators=100.
                          n_iter_no_change=None, presort='deprecated',
                          random state=None, subsample=1.0, tol=0.0001,
                          validation fraction=0.1, verbose=0, warm start=False)
CV score: 0.4155874268064301
```


Gradient Boosting Algorithm:


```
grad_bos=GradientBoostingRegressor(alpha=0.9, ccp_alpha=0.0, criterion='friedman_mse',
                              init=None, learning rate=0.1, loss='ls', max depth=3,
                              max features=None, max leaf nodes=None,
                              min_impurity_decrease=0.0, min_impurity_split=None,
                              min_samples_leaf=1, min_samples_split=2,
                              min_weight_fraction_leaf=0.0, n_estimators=100,
                              n_iter_no_change=None, presort='deprecated',
                              random_state=None, subsample=1.0, tol=0.0001,
                              validation_fraction=0.1, verbose=0, warm_start=False)
[ ] grad_bos.fit(X_train, y_train)
    y_pred_gradboosting = grad_bos.predict(X_test)
[ ] MSE = mean_squared_error((y_test),(y_pred_gradboosting))
     print("MSE :" , MSE)
     RMSE = np.sqrt(MSE)
     print("RMSE :" ,RMSE)
     r2 = r2_score((y_test),(y_pred_gradboosting))
     print("R2 :" ,r2)
     print("Adjusted R2 : ",1-(1-r2_score((y_test),(y_pred_gradboosting)))*((X_test.shape[0]-1)/(X_test.shape[0]-X_test.shape[1]-1)))
    MSE: 0.31484789811233843
     RMSE: 0.561113088523462
     R2: 0.7730726124643654
     Adjusted R2: 0.7661625214919039
```


Let's Apply Random Forest

```
ΑI
```

```
from sklearn.ensemble import RandomForestRegressor
     rf_exp = RandomForestRegressor(n_estimators= 1000, random_state=100)
     rf_exp.fit(X_train,y_train)
RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',
                          max depth=None, max features='auto', max leaf nodes=None,
                          max samples=None, min impurity decrease=0.0,
                          min_impurity_split=None, min_samples_leaf=1,
                          min samples split=2, min weight fraction leaf=0.0,
                          n_estimators=1000, n_jobs=None, oob_score=False,
                          random_state=100, verbose=0, warm_start=False)
[ ] predictions = rf_exp.predict(X_test)
     # Performance metrics
    errors = abs(predictions - y_test)
[ ] print('Metrics for Random Forest Trained on Expanded Data')
    print('Average absolute error:', round(np.mean(errors), 2), 'degrees.')
    Metrics for Random Forest Trained on Expanded Data
    Average absolute error: 0.27 degrees.
[ ] mape = np.mean(100 * (errors / y_test))
accuracy = 100 - np.mean(mape)
```


Accuracy: 94.0% RMSE: 0.4765

R2: : 0.8362

MSE: 0.2271

Adjusted R2: 0.8313

```
[ ] accuracy = 100 - np.mean(mape)
    print('Accuracy:', round(accuracy, 2), '%.')
    Accuracy: 94.0 %.
MSE = mean_squared_error((y_test),(predictions))
    print("MSE :" , MSE)
    RMSE = np.sqrt(MSE)
    print("RMSE :" ,RMSE)
    r2 = r2_score((y_test),(predictions))
    print("R2 :" ,r2)
    print("Adjusted R2 : ",1-(1-r2_score((y_test),(predictions)))*((X_test.shape[0]-1)/(X_test.shape[0]-X_test.shape[1]-1)))
MSE : 0.22713231786046767
    RMSE: 0.47658400923705746
    R2: 0.8362938300493313
    Adjusted R2: 0.8313088675051574
[ ] features = X_train.columns
    importances = rf_exp.feature_importances_
    indices = np.argsort(importances)
```

ΑI

Random Forest with some Parameter


```
import numpy as np
     import matplotlib.pyplot as plt
     from sklearn.model selection import train test split
     from sklearn.ensemble import RandomForestRegressor
     from sklearn.model selection import GridSearchCV
     from pylab import rcParams
     rcParams['figure.figsize'] = 8, 8
    randomForestAlgo = RandomForestRegressor()
     param = {\( 'n \) estimators' : [int(x) for x in np.linspace(start=10, stop=100, num=10)],
              'max_depth' : [60,70,80,90,100],
              'min_samples_split':[2,4,6,8],
              'min samples leaf':[1,2,3,4],
              'bootstrap' : [True, False]
     gridSearch RandomForest=GridSearchCV(randomForestAlgo,param,scoring='r2',cv=5,verbose=2,n jobs=-1)
     best mode try=gridSearch RandomForest.fit(X train,y train)
[89] best_mode_try.best_params_
     {'bootstrap': True,
      'max depth': 70,
      'min samples leaf': 1,
      'min samples split': 2,
      'n_estimators': 90}
```


MSE: 0.2326 RMSE: 0.4823 R2: 0.8323 Adjusted R2: 0.82722


```
[67] randomForestAlgo = RandomForestRegressor()
     param = {'bootstrap': [True],
              'max_depth': [70],
              'min_samples_leaf': [1],
             'min_samples_split': [2],
              'n_estimators': [90]}
     gridSearch\_RandomForest=GridSearchCV (randomForestAlgo,param,scoring='r2',cv=5,verbose=2,n\_jobs=-1)
     best mode try=gridSearch RandomForest.fit(X train,y train)
     Fitting 5 folds for each of 1 candidates, totalling 5 fits
     [Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
     [Parallel(n_jobs=-1)]: Done 5 out of 5 elapsed: 16.3s remaining: 0.0s
     [Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 16.3s finished
[68] y_random_pred=best_mode_try.predict(X_test)
                                                                                                                                      1 V 0 1
 MSE = mean_squared_error((y_test),(y_random_pred))
     print("MSE :" , MSE)
     RMSE = np.sqrt(MSE)
     print("RMSE :" ,RMSE)
     r2 = r2_score((y_test),(y_random_pred))
     print("R2 :" ,r2)
     print("Adjusted R2 : ",1-(1-r2_score((y_test),(y_random_pred)))*((X_test.shape[0]-1)/(X_test.shape[0]-X_test.shape[1]-1)))
 MSE : 0.23262969000795694
     RMSE: 0.48231700157464585
     R2: 0.8323315857173212
     Adjusted R2: 0.8272259701788718
```


Accuracy: 93.93 %


```
[69] MSE = mean_squared_error((y_test),(y_random_pred))
     print("MSE :" , MSE)
     RMSE = np.sqrt(MSE)
     print("RMSE :" ,RMSE)
     r2 = r2_score((y_test),(y_random_pred))
     print("R2 :" ,r2)
     print("Adjusted R2 : ",1-(1-r2\_score((y\_test),(y\_random\_pred)))*((X\_test.shape[\theta]-1)/(X\_test.shape[\theta]-X\_test.shape[1]-1)))
     MSE: 0.23262969000795694
     RMSE: 0.48231700157464585
     R2: 0.8323315857173212
     Adjusted R2: 0.8272259701788718
[70] errors = abs(y_random_pred - y_test)
     print('Metrics for Random Forest Trained on Expanded Data')
     print('Average absolute error:', round(np.mean(errors), 2), 'degrees.')
Metrics for Random Forest Trained on Expanded Data
     Average absolute error: 0.28 degrees.
[74] mape = np.mean(100 * (errors / y_test))
[75] accuracy = 100 - np.mean(mape)
     print('Accuracy:', round(accuracy, 2), '%.')
     Accuracy: 93.93 %.
```


Conclusion

- People like to ride bikes when it is pretty hot around 25°C in average
- In morning hours(8-9) and in evening hours (5-8), the bikes taken for rental are more.
- So let's focus on the seasons where we have the most rents because at the month of may (5) to july (7) bikes have the most rents.
- Bikes taken for rental are more in Summer and less in Winter
- Here we see at the weekend Bike goes to be rented less compare to the working days.
- During No Holidays, the bikes taken for rental are more than during holidays.
- Bikes for rental are very high during functioning days.
- · Number of Bike Rented in day is high as compare to the night
- During Summer ,rented bikes are more in each hour than other seasons
- During Winter ,rented bikes are less in each hour compared to other seasons.
- We see the Rainfall so most of the value is 0.0 and but some of the value we can say that people enjoyed ride with bike during rainfall.
- When snowfall more than 4 cm of snow, the bike rents is much lower

Conclusion

- At Saturday and Sunday we see the Bike rented is less but at the evening
 - time it goes bit up.
- Monday to friday all the hours seems like same for the Rented Bike count.
- Used many of the algorithm t check for the best predicted results but Random Forest model looks better as compare to the other model.

THANK YOU