

Unité Arithmétique Et Logique (UAL 4bits)

I. Introduction:

L'UAL (Unité d'Arithmétique et de Logique) est l'élément de base d'un microprocesseur. Comme son nom l'indique, son rôle est la réalisation d'opérations arithmétiques (additions, soustractions...), logiques (OR, AND, NOR...), mais aussi de décalage, et de transfert.

II. Principe de fonctionnement :

Sous sa forme la plus simple, l'UAL possède une entrée reliée au bus de données du microprocesseur, une autre reliée à un registre interne, et une sortie reliée au même registre et au bus de données. Elle possède également un bus destinée à la sélection des opérations à réaliser.

Le cycle pour la réalisation d'une opération est le suivant :

- -Présentation d'une donnée sur la première entrée.
- -Sélection de l'opération de chargement dans le registre interne. La donnée est ainsi véhiculée vers la sortie de l'UAL, chargée dans le registre, et présentée sur la seconde entrée.
- -Présentation d'une nouvelle donnée sur la première entrée.
- -Sélection de l'opération à réaliser.
- -Récupération du résultat en sortie de l'UAL et sur le bus de données du microprocesseur.

Figure 1 : principe de fonctionnement d'UAL

Objectifs III.

Réaliser une unité arithmétique et logique (UAL) qui permet de réaliser un ensemble d'opérations

Arithmétiques et logiques sur des opérandes de 4 bits.

Figure 1: Architecture d'UAL

INDP1 F

- IV. Réalisation du travail
- A. Additionneur
- a) Présentation

On a basé sur le principe d'un additionneur 4 bits du fait que la conception d'un additionneur 4 bits peut être réalisé en cascadant 4 additionneurs 1 bits et en propageant la retenue d'un étage à l'autre.

b) Input et output

*input:

A=(A1, A2, A3, A4)

B=(B1,B2,B3,B4)

*output:

S=(S1,S2,S3,S4),C0

c) Table de vérité:

Il est composée par 2^8=256 cases. Il est difficile de la dessiner.

- d) Logigramme
- i) 1ère méthode :

Figure 2: logigramme 1 Addition

2éme méthode : on utilise directement la plaque 7483

Figure 3: logigramme 2 Addition

e) Simulation

Figure 4: Simulation Addition

B. Soustraction

a) Présentation

Pour effectuer des soustractions on utilise les propriétés du complément à 2. Soit Y le nombre binaire obtenu en remplaçant les 1 de Y par un 0 et les 0 par un 1. Effectuer D = X - Y est équivalent à D = X + Y + 1 en complément à 2.

Le bit de poids faible de l'additionneur n'a pas de retenue d'entrée. Pour ajouter le 1 à D, il suffit de mettre un 1 comme retenue dans l'additionneur de poids faible.

Soit C un signal de contrôle valant 0 si on veut faire une addition, et 1 si on veut faire une soustraction.

On utilise ce signal C comme retenue du bit de poids faible de l'additionneur.

Pour avoir Y il suffit d'ajouter une porte XOR réalisant (Y XOR C) en entrée de chacun des additionneurs complets : Si C vaut 0, la valeur d'entrée de l'additionneur n est Yn (suiveur) et si C vaut 1, la valeur d'entrée est Yn (inverseur).

Donc, si C vaut 0, l'opération effectuée par le circuit est l'addition X + Y, et si C vaut 1, l'opération effectuée est X – Y.

Le bit de la retenue finale devient un bit de signe. (bit à 1 résultat positif, bit à 0 résultat négatif).

```
b) input output
```

*input:

A=(A1, A2, A3, A4)

B=(B1,B2,B3,B4)

*output:

S=(S1,S2,S3,S4),C4

c) Logigramme

la soustraction d'opérandes sur 4 bits (Addition et Complément Vrai)

Figure 5: Logigramme Soustraction

d) Simulation

Figure 6: Simulation Soustraction

SUPCOM

INDP1 F

C. Multiplieur 4 bits

a) Présentation

Le multiplieur 4 bits est réalisé avec 16 portes AND et 3 additionneurs de 4 bits, les portes AND permettent de faire les multiplications logiques entre les entrées, après ces opérations de multiplication les additionneurs vont réaliser l'addition logique verticalement, puis on obtient les résultats de sortie. Ce multiplieur 4 bits a 8 entrées et 8 sorties et il est capable de faire n'importe qu'elle multiplication arithmétique de 4 bits.

b) input output

*input:

A= (A1, A2, A3, A4)

B= (B1, B2, B3, B4)

*output:

S=(S1,S2,S3,S4,S5,S6,S7,S8)

c) Logigramme

Opération multiplication d'opérandes sur 4 bits avec un résultat sur 8 bits

Figure 7: Logigramme Multiplieur 4 Bits

Figure 8: Simulation multiplueur 4 1bits

D. Comparateur

a) Présentation

Un comparateur binaire est un circuit logique qui effectue la comparaison entre 2 nombres binaires généralement notés A et B.

Il possède 3 sorties notées A = B, A > B et A < B qui indiquent le résultat de la comparaison comme suit:

- ▶ Si le nombre A est égal au nombre B (A = B), la sortie A = B passe à l'état 1 tandis que les sorties A > B et A < B passent à l'état 0.
- ▶ Si le nombre A est strictement supérieur au nombre B, seule la sortie A > B passe à l'état 1.
- ▶ Si le nombre A est strictement inférieur au nombre B, seule la sortie A < B passe à l'état 1.

Nous allons voir comment réaliser à l'aide de portes logiques un comparateur de 2 chiffres binaires.

Le circuit intégré 7485 est un comparateur 4 bits, c'est-à-dire qu'il effectue la comparaison de

SUP COM

INDP1 F

deux nombres de 4 bits.

De plus, il dispose de 3 entrées notées A = B, A > B et A < B qui autorisent la mise en cascade de plusieurs circuits comparateurs du même type.

b) input_output

*input:

A = (A0, A1, A2, A3)

B= (B0, B1, B2, B3)

*output:

S = (S1, S2, S3)

c) Logigramme

Figure 9: Logigramme comparateur 4 bits

INDP1 F

d) Table de vérité

Entrées des nombres				Entrées cascadables			Sorties		
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A=B	A > B	A <b< th=""><th>A = B</th></b<>	A = B
A3 > B3	х	Х	Х	Х	Х	Х	1	0	0
A3 < B3	Х	Х	Х	Х	Х	Х	0	1	0
A3 = B3	A2 > B2	х	Х	Х	Х	х	1	0	0
A3 = B3	A2 < B2	Х	Х	Х	Х	Х	0	1	0
A3 = B3	A2 = B2	A1 > B1	Х	X	Х	Х	1	0	0
A3 = B3	A2 = B2	A1 < B1	Х	Х	Х	Х	0	1	0
A3 = B3	A2 = B2	A1 = B1	A0 > B0	Х	Х	Х	1	0	0
A3 = B3	A2 = B2	A1 = B1	A0 < B0	х	х	х	0	1	0
A3 = B3	A2 = B2	A1 = B1	A0 = B0	1	0	0	1	0	0
A3 = B3	A2 = B2	A1 = B1	A0 = B0	0	1	0	0	1	0
A3 = B3	A2 = B2	A1 = B1	A0 = B0	0	0	1	0	0	1
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Х	Х	1	0	0	1
A3 = B3	A2 = B2	A1 = B1	A0 = B0	1	1	0	0	0	0
A3 = B3	A2 = B2	A1 = B1	A0 = B0	0	0	0	1	1	0

Figure 10: Table de vérité d'un comparateur

S _i =1	Signification
SO	A <b< td=""></b<>
S1	A=B
S2	A>B

SUPCC

INDP1 F

e) Simulation

Figure 11: Simulation Comparateur 4 Bits

- E. Opération logique de 4 bits
- 1. Porte And
- a) input_output

*input:

A= (A0, A1, A2, A3)

B= (B0, B1, B2, B3)

*output:

S= (S0, S1, S2, S3)

b) Logigramme

Figure 12: Logigramme And 4 Bits

c) Simulation

Figure 13: Simulation And 4 Bits

2. Porte Nor

a) input_output

*input:

A= (A0, A1, A2, A3)

B= (B0, B1, B2, B3)

SUPCOM

INDP1 F

*output:

S= (S0, S1, S2, S3)

b) Logigramme

Figure 14: Logigramme Nor 4 Bits

c) Simulation

Figure 15: Simulation Nor 4 Bits

SUPCOM

INDP1 F

3. Porte XOR

a) input_output

*input:

*output:

b) Logigramme

Figure 16: Logigramme Xor 4 Bits

INDP1 F

c) Simulation

Figure 17: Simulation XOR 4 Bits

4. Porte OR

a) input_output:

*input:

A= (A0, A1, A2, A3)

B= (B0, B1, B2, B3)

*output:

S=(S0, S1, S2, S3)

INDP1 F

b) Logigramme

Figure 18: Logigramme OR 4 bits

c) Simulation

Figure 19: Logigramme OR 4 Bits

F. Décalage à gauche à droite

a) Présentation

Le circuit intégré 74 194 est un registre à décalage bidirectionnel 4 bits ayant deux entrées de commande (S0 et S1), une entrée d'horloge (CK), une entrée de données série pour le décalage à gauche (ESG), une entrée de données série pour le décalage à droite (ESD), quatre entrées parallèles (E1 à E4), une entrée asynchrone de remise à zéro générale prioritaire (CLR) et quatre sorties parallèles (Q1 à Q4).

b) Logigramme

Figure 20: Logigramme Décalage 4 Bits

S0 et S1 sont deux bits de sélection

Mode 0 : rien ne se passe

Mode1: Décalage à droite

Mode2 : Décalage à gauche

Mode3: Chargement en parallèle de A,B,C et D

c) Simulation

1^{er} cas : Décalage à gauche

Figure 21: Simulation Décalage à gauche

2ème cas : Décalage à droite

Figure 22: Simulation Décalage à droite

INDP1 F

- V. 1ère Unité arithmétique obtenue
- 1. Présentation :

On a utilisé 8 multiplexeurs 8-1 afin d'obtenir l'unité arithmétique composé par 8 Opérations qu'on a déjà définies ci-dessus.

81mux comporte:

- 8 entrées de données D0 à D7 et GN
- 3 entrées de sélection A, B et C
- 2sorties

Dans cette unité on a choisi 4 Opérations :

- i. Soustraction
- ii. Addition
- iii. Multiplication
- iv. Comparaison

Opération	Réference
Soustraction	100
Addition	101
Multiplication	110
Comparaison	111

INDP1 F

2. Logigramme

Figure 23: Logigramme Unité arithmétique n°1

SUPCOM

INDP1 F

3. Simulation

A chaque fois on fixe les valeurs de bits de sélection pour choisir l'opération à effectuer et cela en respectant le tableau situé au début de cette partie.

Figure 24: Simulation soustraction

Figure 25: Simulation Addition

SUPCOM

INDP1 F

Figure 26: Simulation Multiplication

Figure 27: Simulation Comparaison

SUPCOM

INDP1 F

4. Implémentation

Figure 28: Implémentation sur la carte

INDP1 F

VI. 2^{ème} unité arithmétique :

1. Présentation

Dans cette unité on a choisi 4 Opérations :

- i. XOR
- ii. AND
- iii. NOR
- iv. DECALAGE:
 - droite
 - gauche

<u>Remarque</u>: Concernant le Décalage On a utilisé B0 et B1 comme les deux bits de sélection du circuit 74194.

Opération	Référence
XOR	100
And	101
NOR	110
Décalage	111

2. Logigramme

Figure 29: Logigramme de l'unité n°2

SUPCOM

INDP1 F

3. Simulation

Figure 30: Simulation de la porte XOR

Figure 31: Simulation de la porte AND

SUPCOM

INDP1 F

Figure 32: Simulation de la porte NOR

Figure 33: Simulation Décalage à Droite

SUPCOM

INDP1 F

Figure 34: Simulation Décalage à gauche

4. Implémentation

Figure 35: Implémentation de la 2ème unité

VII. Conclusion:

On a construit l'UAL en utilisant des circuits combinatoires.

