HumanActivityRecognition

This project is to build a model that predicts the human activities such as Walking, Walking_Upstairs, Walking_Downstairs, Sitting, Standing or Laying.

This dataset is collected from 30 persons(referred as subjects in this dataset), performing different activities with a smartphone to their waists. The data is recorded with the help of sensors (accelerometer and Gyroscope) in that smartphone. This experiment was video recorded to label the data manually.

How data was recorded

By using the sensors(Gyroscope and accelerometer) in a smartphone, they have captured '3-axial linear acceleration'(_tAcc-XYZ_) from accelerometer and '3-axial angular velocity' (_tGyro-XYZ_) from Gyroscope with several variations.

prefix 't' in those metrics denotes time.

suffix 'XYZ' represents 3-axial signals in X, Y, and Z directions.

Feature names

- 1. These sensor signals are preprocessed by applying noise filters and then sampled in fixed-width windows (sliding windows) of 2.56 seconds each with 50% overlap. ie., each window has 128 readings.
- 2. From Each window, a feature vector was obtianed by calculating variables from the time and frequency domain.

In our dataset, each datapoint represents a window with different readings

- 3. The accelertion signal was saperated into Body and Gravity acceleration signals(tBodyAcc-XYZ and tGravityAcc-XYZ) using some low pass filter with corner frequecy of 0.3Hz.
- 4. After that, the body linear acceleration and angular velocity were derived in time to obtian jerk signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ).
- 5. The magnitude of these 3-dimensional signals were calculated using the Euclidian norm. This magnitudes are represented as features with names like tBodyAccMag_, _tGravityAccMag_, _tBodyAccJerkMag_, tBodyGyroMag and tBodyGyroJerkMag.
- 6. Finally, We've got frequency domain signals from some of the available signals by applying a FFT (Fast Fourier Transform). These signals obtained were labeled with *prefix 'f'* just like original signals with *prefix 't'*. These signals are labeled as *fBodyAcc-XYZ*, *fBodyGyroMag* etc.,.
- 7. These are the signals that we got so far.
 - tBodyAcc-XYZ
 - tGravityAcc-XYZ
 - tBodyAccJerk-XYZ
 - tBodyGyro-XYZ
 - tBodyGyroJerk-XYZ
 - tBodyAccMag
 - tGravityAccMag
 - tBodyAccJerkMag
 - tBodyGyroMag
 - tBodyGyroJerkMag
 - fBodyAcc-XYZ
 - fBodyAccJerk-XYZ
 - fBodyGyro-XYZ
 - fBodyAccMag

- fBodyAccJerkMag
- fBodyGyroMag
- fBodyGyroJerkMag
- 8. We can esitmate some set of variables from the above signals. ie., We will estimate the following properties on each and every signal that we recoreded so far.
 - mean(): Mean value
 - std(): Standard deviation
 - mad(): Median absolute deviation
 - max(): Largest value in array
 - min(): Smallest value in array
 - sma(): Signal magnitude area
 - energy(): Energy measure. Sum of the squares divided by the number of values.
 - iqr(): Interquartile range
 - entropy(): Signal entropy
 - arCoeff(): Autorregresion coefficients with Burg order equal to 4
 - correlation(): correlation coefficient between two signals
 - maxinds(): index of the frequency component with largest magnitude
 - meanFreq(): Weighted average of the frequency components to obtain a mean frequency
 - **skewness()**: skewness of the frequency domain signal
 - kurtosis(): kurtosis of the frequency domain signal
 - bandsEnergy(): Energy of a frequency interval within the 64 bins of the FFT of each window.
 - angle(): Angle between to vectors.
- 9. We can obtain some other vectors by taking the average of signals in a single window sample. These are used on the angle() variable'
 - gravityMean
 - tBodyAccMean
 - tBodyAccJerkMean
 - tBodyGyroMean
 - tBodyGyroJerkMean

Y_Labels(Encoded)

- In the dataset, Y labels are represented as numbers from 1 to 6 as their identifiers.
 - WALKING as 1
 - WALKING UPSTAIRS as 2
 - WALKING DOWNSTAIRS as 3
 - SITTING as 4
 - STANDING as 5
 - LAYING as 6

Train and test data were saperated

• The readings from 70% of the volunteers were taken as trianing data and remaining 30% subjects recordings were taken for test data

Data

- All the data is present in 'UCI HAR dataset' folder in present working directory.
 - Feature names are present in 'UCI_HAR_dataset/features.txt'
 - Train Data
 - 'UCI_HAR_dataset/train/X_train.txt'

- 'UCI HAR dataset/train/subject train.txt'
- 'UCI_HAR_dataset/train/y_train.txt'
- Test Data
 - 'UCI HAR dataset/test/X test.txt'
 - 'UCI_HAR_dataset/test/subject_test.txt'
 - 'UCI_HAR_dataset/test/y_test.txt'

Data Size:

27 MB

Quick overview of the dataset:

- Accelerometer and Gyroscope readings are taken from 30 volunteers(referred as subjects) while performing the following 6 Activities.
 - Walking
 - 2. WalkingUpstairs
 - 3. WalkingDownstairs
 - 4. Standing
 - 5. Sitting
 - 6. Lying.
- Readings are divided into a window of 2.56 seconds with 50% overlapping.
- Accelerometer readings are divided into gravity acceleration and body acceleration readings, which has x,y and z components each.
- Gyroscope readings are the measure of angular velocities which has x,y and z components.
- · Jerk signals are calculated for BodyAcceleration readings.
- Fourier Transforms are made on the above time readings to obtain frequency readings.
- Now, on all the base signal readings., mean, max, mad, sma, arcoefficient, engerybands, entropy etc., are calculated for each window.
- We get a feature vector of 561 features and these features are given in the dataset.
- Each window of readings is a datapoint of 561 features.

Problem Framework

- 30 subjects(volunteers) data is randomly split to 70%(21) test and 30%(7) train data.
- Each datapoint corresponds one of the 6 Activities.

Problem Statement

· Given a new datapoint we have to predict the Activity

Get the handcrafted features

```
In [9]: ► 1 #### importing libraries
             2 import warnings
             3 warnings.filterwarnings("ignore")
             4 import numpy as np
             5 import pandas as pd
             6 import matplotlib.pyplot as plt
             7 import seaborn as sns
             8 import numpy as np
             9 from sklearn.manifold import TSNE
            10 import matplotlib.pyplot as plt
            11 import seaborn as sns
            12 from sklearn import linear_model
            13 from sklearn import metrics
            14 from sklearn.model_selection import GridSearchCV
            15 from datetime import datetime
            16 from sklearn.metrics import confusion_matrix
In [2]: | 1
             3 # get the features from the file features.txt
             4 features = list()
             5 with open('UCI_HAR_Dataset/features.txt') as f:
                   features = [line.split()[1] for line in f.readlines()]
             7 print('No of Features: {}'.format(len(features)))
```

No of Features: 561

Obtain the train data

In [4]:

```
In [3]: ► I # get the data from txt files to pandas dataffame
              2 X_train = pd.read_csv('UCI_HAR_dataset/train/X_train.txt', delim_whitespace=True, header=None, names=features)
              4 # add subject column to the dataframe
              5 X_train['subject'] = pd.read_csv('UCI_HAR_dataset/train/subject_train.txt', header=None, squeeze=True)
                 y_train = pd.read_csv('UCI_HAR_dataset/train/y_train.txt', names=['Activity'], squeeze=True)
              8 y_train_labels = y_train.map({1: 'WALKING', 2:'WALKING_UPSTAIRS',3:'WALKING_DOWNSTAIRS',\
                                         4: 'SITTING', 5: 'STANDING', 6: 'LAYING'})
             10
             11 # put all columns in a single dataframe
             12 train = X_train
             13 train['Activity'] = y_train
             14 train['ActivityName'] = y_train_labels
             15 train.sample()
    Out[3]:
                   tBodyAcc- tBodyAcc-
                                                                                                                        ... angle(tBodyAccMean,gravity) angle(tBodyAccJerkMean),gravityMean) angle(tBodyGy
                                                                                                               max()-X
                    mean()-X
                              mean()-Y
                                        mean()-Z
                                                    std()-X
                                                              std()-Y
                                                                        std()-Z
                                                                                 mad()-X
                                                                                           mad()-Y
                                                                                                     mad()-Z
             1264
                    0.353527
                              -0.036623
                                        -0.093492
                                                  -0.296752
                                                            0.187732
                                                                      -0.387994
                                                                                 -0.36065
                                                                                          0.218166
                                                                                                    -0.395419
                                                                                                              -0.192086 ...
                                                                                                                                          -0.727454
                                                                                                                                                                             0.2369
             1 rows × 564 columns
```

Obtain the test data

▶ 1 train.shape

Out[4]: (7352, 564)

```
1 # get the data from txt files to pandas dataffame
In [5]:
              2 X_test = pd.read_csv('UCI_HAR_dataset/test/X_test.txt', delim_whitespace=True, header=None, names=features)
              4 # add subject column to the dataframe
              5 X_test['subject'] = pd.read_csv('UCI_HAR_dataset/test/subject_test.txt', header=None, squeeze=True)
              7 | # get y labels from the txt file
              8 y_test = pd.read_csv('UCI_HAR_dataset/test/y_test.txt', names=['Activity'], squeeze=True)
                y_test_labels = y_test.map({1: 'WALKING', 2:'WALKING_UPSTAIRS',3:'WALKING_DOWNSTAIRS',\
                                         4: 'SITTING', 5: 'STANDING', 6: 'LAYING'})
             11
             12
             13 # put all columns in a single dataframe
             14 test = X test
             15 test['Activity'] = y_test
             16 | test['ActivityName'] = y_test_labels
             17 test.sample()
   Out[5]:
                   tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc-
                                                                                                                       ... angle(tBodyAccMean,gravity) angle(tBodyAccJerkMean),gravityMean) angle(tBodyGy
                    mean()-X
                              mean()-Y
                                        mean()-Z
                                                    std()-X
                                                             std()-Y
                                                                        std()-Z
                                                                                mad()-X
                                                                                          mad()-Y
                                                                                                     mad()-Z
                                                                                                              max()-X
             2560
                    0.303065
                              0.002404
                                       -0.084307
                                                  -0.012065
                                                            0.391696
                                                                     -0.224547
                                                                               -0.098529
                                                                                          0.468728
                                                                                                   -0.214721
                                                                                                              0.177449 ...
                                                                                                                                          0.026147
                                                                                                                                                                           -0.111198
            1 rows × 564 columns
             1 test.shape
In [6]:
   Out[6]: (2947, 564)
```

Data Cleaning

1. Check for Duplicates

2. Checking for NaN/null values

3. Check for data imbalance

```
In [9]: N 1
2
3 sns.set_style('whitegrid')
4 plt.rcParams['font.family'] = 'Dejavu Sans'

In [10]: N 1
2 plt.figure(figsize=(16,8))
2 plt.title('Per User Data', fontsize=20)
3 sns.countplot(x='subject',hue='ActivityName', data = train)
4 plt.show()
```


We have got almost same number of reading from all the subjects

Observation

11 plt.show()

Our data is well balanced.

4. Changing feature names

```
In [12]:
             1 columns = train.columns
              3 # Removing '()' from column names
              4 columns = columns.str.replace('[()]','')
              5 columns = columns.str.replace('[-]', '')
              6 columns = columns.str.replace('[,]','')
              8 train.columns = columns
              9 test.columns = columns
             10
             11 test.columns
   Out[12]: Index(['tBodyAccmeanX', 'tBodyAccmeanY', 'tBodyAccmeanZ', 'tBodyAccstdX',
                    'tBodyAccstdY', 'tBodyAccstdZ', 'tBodyAccmadX', 'tBodyAccmadY',
                    'tBodyAccmadZ', 'tBodyAccmaxX',
                    'angletBodyAccMeangravity', 'angletBodyAccJerkMeangravityMean',
                    'angletBodyGyroMeangravityMean', 'angletBodyGyroJerkMeangravityMean',
                    'angleXgravityMean', 'angleYgravityMean', 'angleZgravityMean',
                    'subject', 'Activity', 'ActivityName'],
                   dtype='object', length=564)
```

5. Save this dataframe in a csv files

Exploratory Data Analysis

"Without domain knowledge EDA has no meaning, without EDA a problem has no soul."

1. Featuring Engineering from Domain Knowledge

- Static and Dynamic Activities
 - In static activities (sit, stand, lie down) motion information will not be very useful.
 - In the dynamic activities (Walking, WalkingUpstairs, WalkingDownstairs) motion info will be significant.

2. Stationary and Moving activities are completely different

```
In [14]: N
```

```
sns.set_palette("Set1", desat=0.80)
facetgrid = sns.FacetGrid(train, hue='ActivityName', size=6,aspect=2)
facetgrid.map(sns.distplot,'tBodyAccMagmean', hist=False)\
.add_legend()
plt.annotate("Stationary Activities (Sitting,Standing,Lying)", xy=(-0.956,23), xytext=(-0.7, 26), size=20,\
va='center', ha='left',\
arrowprops=dict(arrowstyle="simple",connectionstyle="arc3,rad=0.1"))

plt.annotate("Moving Activities ((Walking, Walking_Upstairs, Walking_Downstairs)", xy=(0,3), xytext=(0.2, 9), size=20,\
va='center', ha='left',\
arrowprops=dict(arrowstyle="simple",connectionstyle="arc3,rad=0.1"))

plt.show()
```



```
In [15]: ▶ 1 # for plotting purposes taking datapoints of each activity to a different dataframe
              2 df1 = train[train['Activity']==1]
              3 df2 = train[train['Activity']==2]
              4 df3 = train[train['Activity']==3]
              5 df4 = train[train['Activity']==4]
              6 df5 = train[train['Activity']==5]
              7 df6 = train[train['Activity']==6]
              9 plt.figure(figsize=(14,7))
             10 plt.subplot(2,2,1)
             plt.title('Stationary Activities(Zoomed in)')
             12 sns.distplot(df4['tBodyAccMagmean'],color = 'r',hist = False, label = 'Sitting')
             13 sns.distplot(df5['tBodyAccMagmean'],color = 'm',hist = False,label = 'Standing')
             14 sns.distplot(df6['tBodyAccMagmean'],color = 'c',hist = False, label = 'Laying')
             15 plt.axis([-1.01, -0.5, 0, 35])
             16 plt.legend(loc='center')
             17
             18 plt.subplot(2,2,2)
             19 | plt.title('Moving Activities')
             20 sns.distplot(df1['tBodyAccMagmean'],color = 'red',hist = False, label = 'Walking')
             21 sns.distplot(df2['tBodyAccMagmean'],color = 'blue',hist = False,label = 'Walking Up')
             22 | sns.distplot(df3['tBodyAccMagmean'],color = 'green',hist = False, label = 'Walking down')
             23 plt.legend(loc='center right')
             24
             25
             26 plt.tight_layout()
             27 plt.show()
```


Observations:

• As we can see that the moving activities are well separated than the static activities.tbodyAccMagmean is the mean of the magnitude of body acceleration which is well separated for the dynamic nd static activities.

3. Magnitude of an acceleration can saperate it well

__ Observations__:

- If tAccMean is < -0.8 then the Activities are either Standing or Sitting or Laying.
- If tAccMean is > -0.6 then the Activities are either Walking or WalkingDownstairs or WalkingUpstairs.
- If tAccMean > 0.0 then the Activity is WalkingDownstairs.
- We can classify 75% the Acitivity labels with some errors.

4. Position of GravityAccelerationComponants is important

__ Observations__:

- If angleX,gravityMean > 0 then Activity is Laying.
- We can classify all datapoints belonging to Laying activity with just a single if else statement.

Apply t-sne on the data

```
In [20]: № 1 # performs t-sne with different perplexity values and their repective plots...
              def show_tsne(perplexities, X_data, y_data, n_iter=1000, img_name_prefix='t-sne'):
              4
              5
                         # perform t-sne
              6
                         print('\nperforming tsne with perplexity {} and with {} iterations at max'.format(perplexity, n_iter))
              7
                         lower_dim_x = TSNE(n_components=2, perplexity=perplexity,verbose=2).fit_transform(X_data)
              8
                         print('Done..')
              9
             10
                         # prepare the data for seaborn
                         print('Creating plot for this t-sne visualization..')
             11
             12
                         df = pd.DataFrame({'x':lower_dim_x[:,0], 'y':lower_dim_x[:,1], 'label':y_data})
             13
             14
                         # draw the plot in appropriate place in the grid
             15
                         sns.lmplot(data=df, x='x', y='y', hue='label', fit_reg=False, size=8,\
                                    palette="Set1", markers=['^','v','s','o', '1','2'])
             16
             17
                         plt.title("perplexity : {} and max_iter : {}".format(perplexity, n_iter))
             18
                         img_name = img_name_prefix + '_perp_{}_iter_{}.png'.format(perplexity, n_iter)
                         print('saving this plot as image in present working directory...')
             19
             20
                         plt.savefig(img_name)
             21
                         plt.show()
             22
                         print('Done')
             23
```

```
performing tsne with perplexity 2 and with 1000 iterations at max
[t-SNE] Computing 7 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.011s...
[t-SNE] Computed neighbors for 7352 samples in 3.485s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 0.635854
[t-SNE] Computed conditional probabilities in 0.061s
[t-SNE] Iteration 50: error = 124.7481995, gradient norm = 0.0241895 (50 iterations in 15.548s)
[t-SNE] Iteration 100: error = 107.1610794, gradient norm = 0.0287191 (50 iterations in 8.234s)
[t-SNE] Iteration 150: error = 100.7689590, gradient norm = 0.0195086 (50 iterations in 9.815s)
[t-SNE] Iteration 200: error = 97.4031982, gradient norm = 0.0188301 (50 iterations in 8.449s)
[t-SNE] Iteration 250: error = 95.1223755, gradient norm = 0.0143584 (50 iterations in 8.244s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 95.122375
[t-SNE] Iteration 300: error = 4.1157804, gradient norm = 0.0015629 (50 iterations in 5.464s)
[t-SNE] Iteration 350: error = 3.2080805, gradient norm = 0.0010077 (50 iterations in 4.559s)
[t-SNE] Iteration 400: error = 2.7786548, gradient norm = 0.0007186 (50 iterations in 5.337s)
[t-SNE] Iteration 450: error = 2.5147719, gradient norm = 0.0005656 (50 iterations in 5.052s)
[t-SNE] Iteration 500: error = 2.3308914, gradient norm = 0.0004854 (50 iterations in 4.040s)
[t-SNE] Iteration 550: error = 2.1930585, gradient norm = 0.0004143 (50 iterations in 6.483s)
[t-SNE] Iteration 600: error = 2.0837677, gradient norm = 0.0003667 (50 iterations in 3.388s)
[t-SNE] Iteration 650: error = 1.9938438, gradient norm = 0.0003352 (50 iterations in 3.929s)
[t-SNE] Iteration 700: error = 1.9183609, gradient norm = 0.0002997 (50 iterations in 5.978s)
[t-SNE] Iteration 750: error = 1.8535386, gradient norm = 0.0002770 (50 iterations in 8.058s)
[t-SNE] Iteration 800: error = 1.7969873, gradient norm = 0.0002558 (50 iterations in 3.695s)
[t-SNE] Iteration 850: error = 1.7469370, gradient norm = 0.0002387 (50 iterations in 2.996s)
[t-SNE] Iteration 900: error = 1.7023004, gradient norm = 0.0002266 (50 iterations in 4.374s)
[t-SNE] Iteration 950: error = 1.6621580, gradient norm = 0.0002098 (50 iterations in 3.225s)
[t-SNE] Iteration 1000: error = 1.6260192, gradient norm = 0.0001997 (50 iterations in 6.591s)
[t-SNE] KL divergence after 1000 iterations: 1.626019
Done..
Creating plot for this t-sne visualization..
saving this plot as image in present working directory...
```

localhost:8888/notebooks/Documents/appleidai/humanactivity/HAR/HumanActivity Recognition.ipynb

Done

```
performing tsne with perplexity 5 and with 1000 iterations at max
[t-SNE] Computing 16 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.027s...
[t-SNE] Computed neighbors for 7352 samples in 3.124s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 0.961265
[t-SNE] Computed conditional probabilities in 0.110s
[t-SNE] Iteration 50: error = 113.8799591, gradient norm = 0.0222652 (50 iterations in 6.202s)
[t-SNE] Iteration 100: error = 98.0514526, gradient norm = 0.0167063 (50 iterations in 4.281s)
[t-SNE] Iteration 150: error = 93.2212448, gradient norm = 0.0092625 (50 iterations in 8.665s)
[t-SNE] Iteration 200: error = 91.1227722, gradient norm = 0.0069251 (50 iterations in 6.720s)
[t-SNE] Iteration 250: error = 89.9272690, gradient norm = 0.0058169 (50 iterations in 4.582s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 89.927269
[t-SNE] Iteration 300: error = 3.5702732, gradient norm = 0.0014615 (50 iterations in 7.480s)
[t-SNE] Iteration 350: error = 2.8129020, gradient norm = 0.0007539 (50 iterations in 6.124s)
[t-SNE] Iteration 400: error = 2.4331491, gradient norm = 0.0005248 (50 iterations in 5.643s)
[t-SNE] Iteration 450: error = 2.2162507, gradient norm = 0.0004032 (50 iterations in 3.685s)
[t-SNE] Iteration 500: error = 2.0715027, gradient norm = 0.0003394 (50 iterations in 7.865s)
[t-SNE] Iteration 550: error = 1.9659839, gradient norm = 0.0002864 (50 iterations in 4.150s)
[t-SNE] Iteration 600: error = 1.8851894, gradient norm = 0.0002455 (50 iterations in 3.601s)
[t-SNE] Iteration 650: error = 1.8203343, gradient norm = 0.0002179 (50 iterations in 5.335s)
[t-SNE] Iteration 700: error = 1.7667348, gradient norm = 0.0001973 (50 iterations in 5.542s)
[t-SNE] Iteration 750: error = 1.7211698, gradient norm = 0.0001807 (50 iterations in 7.751s)
[t-SNE] Iteration 800: error = 1.6821179, gradient norm = 0.0001650 (50 iterations in 6.928s)
[t-SNE] Iteration 850: error = 1.6483618, gradient norm = 0.0001520 (50 iterations in 7.055s)
[t-SNE] Iteration 900: error = 1.6186459, gradient norm = 0.0001435 (50 iterations in 7.633s)
[t-SNE] Iteration 950: error = 1.5924865, gradient norm = 0.0001330 (50 iterations in 6.766s)
[t-SNE] Iteration 1000: error = 1.5688016, gradient norm = 0.0001266 (50 iterations in 5.753s)
[t-SNE] KL divergence after 1000 iterations: 1.568802
Done..
Creating plot for this t-sne visualization..
saving this plot as image in present working directory...
```


Done

performing tsne with perplexity 10 and with 1000 iterations at max [t-SNE] Computing 31 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.012s...
[t-SNE] Computed neighbors for 7352 samples in 3.801s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352

```
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.133828
[t-SNE] Computed conditional probabilities in 0.228s
[t-SNE] Iteration 50: error = 105.4448395, gradient norm = 0.0251430 (50 iterations in 7.548s)
[t-SNE] Iteration 100: error = 90.6870880, gradient norm = 0.0092564 (50 iterations in 9.102s)
[t-SNE] Iteration 150: error = 87.5686798, gradient norm = 0.0063727 (50 iterations in 7.636s)
[t-SNE] Iteration 200: error = 86.2863998, gradient norm = 0.0037143 (50 iterations in 7.474s)
[t-SNE] Iteration 250: error = 85.5652313, gradient norm = 0.0027280 (50 iterations in 6.162s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 85.565231
[t-SNE] Iteration 300: error = 3.1453919, gradient norm = 0.0013904 (50 iterations in 5.088s)
[t-SNE] Iteration 350: error = 2.5047314, gradient norm = 0.0006525 (50 iterations in 3.773s)
[t-SNE] Iteration 400: error = 2.1848981, gradient norm = 0.0004264 (50 iterations in 4.144s)
[t-SNE] Iteration 450: error = 2.0003052, gradient norm = 0.0003191 (50 iterations in 4.619s)
[t-SNE] Iteration 500: error = 1.8815640, gradient norm = 0.0002553 (50 iterations in 3.207s)
[t-SNE] Iteration 550: error = 1.7978530, gradient norm = 0.0002137 (50 iterations in 4.458s)
[t-SNE] Iteration 600: error = 1.7349135, gradient norm = 0.0001830 (50 iterations in 5.898s)
[t-SNE] Iteration 650: error = 1.6852351, gradient norm = 0.0001608 (50 iterations in 3.832s)
[t-SNE] Iteration 700: error = 1.6455531, gradient norm = 0.0001450 (50 iterations in 5.450s)
[t-SNE] Iteration 750: error = 1.6125048, gradient norm = 0.0001309 (50 iterations in 6.087s)
[t-SNE] Iteration 800: error = 1.5848947, gradient norm = 0.0001207 (50 iterations in 5.435s)
[t-SNE] Iteration 850: error = 1.5612959, gradient norm = 0.0001112 (50 iterations in 5.172s)
[t-SNE] Iteration 900: error = 1.5406760, gradient norm = 0.0001038 (50 iterations in 5.930s)
[t-SNE] Iteration 950: error = 1.5226164, gradient norm = 0.0000960 (50 iterations in 3.116s)
[t-SNE] Iteration 1000: error = 1.5068566, gradient norm = 0.0000927 (50 iterations in 4.112s)
[t-SNE] KL divergence after 1000 iterations: 1.506857
Done..
Creating plot for this t-sne visualization..
```

saving this plot as image in present working directory...

localhost:8888/notebooks/Documents/appleidai/humanactivity/HAR/HumanActivity Recognition.ipynb

Done

```
performing tsne with perplexity 20 and with 1000 iterations at max [t-SNE] Computing 61 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.009s...
[t-SNE] Computed neighbors for 7352 samples in 3.672s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.274335
```

```
[t-SNE] Computed conditional probabilities in 0.419s
[t-SNE] Iteration 50: error = 97.5241547, gradient norm = 0.0189147 (50 iterations in 5.782s)
[t-SNE] Iteration 100: error = 84.0375824, gradient norm = 0.0068614 (50 iterations in 3.715s)
[t-SNE] Iteration 150: error = 81.9335175, gradient norm = 0.0049976 (50 iterations in 4.355s)
[t-SNE] Iteration 200: error = 81.1859741, gradient norm = 0.0026055 (50 iterations in 4.134s)
[t-SNE] Iteration 250: error = 80.8040237, gradient norm = 0.0021426 (50 iterations in 3.676s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 80.804024
[t-SNE] Iteration 300: error = 2.6995583, gradient norm = 0.0013018 (50 iterations in 4.197s)
[t-SNE] Iteration 350: error = 2.1656680, gradient norm = 0.0005773 (50 iterations in 4.495s)
[t-SNE] Iteration 400: error = 1.9159158, gradient norm = 0.0003462 (50 iterations in 3.933s)
[t-SNE] Iteration 450: error = 1.7694576, gradient norm = 0.0002484 (50 iterations in 4.117s)
[t-SNE] Iteration 500: error = 1.6754386, gradient norm = 0.0001923 (50 iterations in 4.450s)
[t-SNE] Iteration 550: error = 1.6107479, gradient norm = 0.0001589 (50 iterations in 4.851s)
[t-SNE] Iteration 600: error = 1.5641252, gradient norm = 0.0001353 (50 iterations in 4.009s)
[t-SNE] Iteration 650: error = 1.5289489, gradient norm = 0.0001221 (50 iterations in 3.679s)
[t-SNE] Iteration 700: error = 1.5018971, gradient norm = 0.0001081 (50 iterations in 5.355s)
[t-SNE] Iteration 750: error = 1.4807789, gradient norm = 0.0000976 (50 iterations in 5.341s)
[t-SNE] Iteration 800: error = 1.4634119, gradient norm = 0.0000900 (50 iterations in 4.690s)
[t-SNE] Iteration 850: error = 1.4488745, gradient norm = 0.0000845 (50 iterations in 3.863s)
[t-SNE] Iteration 900: error = 1.4368867, gradient norm = 0.0000816 (50 iterations in 4.684s)
[t-SNE] Iteration 950: error = 1.4270021, gradient norm = 0.0000770 (50 iterations in 4.339s)
[t-SNE] Iteration 1000: error = 1.4184731, gradient norm = 0.0000730 (50 iterations in 3.715s)
[t-SNE] KL divergence after 1000 iterations: 1.418473
Done..
Creating plot for this t-sne visualization..
```

saving this plot as image in present working directory...

localhost:8888/notebooks/Documents/appleidai/humanactivity/HAR/HumanActivity Recognition.ipynb

Done

```
performing tsne with perplexity 50 and with 1000 iterations at max
[t-SNE] Computing 151 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.008s...
[t-SNE] Computed neighbors for 7352 samples in 3.365s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.437672
[t-SNE] Computed conditional probabilities in 1.011s
[t-SNE] Iteration 50: error = 86.4537201, gradient norm = 0.0218618 (50 iterations in 7.428s)
[t-SNE] Iteration 100: error = 75.5895767, gradient norm = 0.0042839 (50 iterations in 6.650s)
[t-SNE] Iteration 150: error = 74.6346283, gradient norm = 0.0024554 (50 iterations in 6.863s)
[t-SNE] Iteration 200: error = 74.2932053, gradient norm = 0.0017026 (50 iterations in 4.487s)
[t-SNE] Iteration 250: error = 74.1198044, gradient norm = 0.0011326 (50 iterations in 6.315s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 74.119804
```

```
[t-SNE] Iteration 300: error = 2.1550534, gradient norm = 0.0011979 (50 iterations in 4.857s)
[t-SNE] Iteration 350: error = 1.7579156, gradient norm = 0.0004841 (50 iterations in 4.639s)
[t-SNE] Iteration 400: error = 1.5889353, gradient norm = 0.0002822 (50 iterations in 6.949s)
[t-SNE] Iteration 450: error = 1.4947137, gradient norm = 0.0001911 (50 iterations in 7.407s)
[t-SNE] Iteration 500: error = 1.4355956, gradient norm = 0.0001418 (50 iterations in 5.642s)
[t-SNE] Iteration 550: error = 1.3943672, gradient norm = 0.0001147 (50 iterations in 6.741s)
[t-SNE] Iteration 600: error = 1.3650140, gradient norm = 0.0000953 (50 iterations in 6.386s)
[t-SNE] Iteration 650: error = 1.3437411, gradient norm = 0.0000842 (50 iterations in 3.995s)
[t-SNE] Iteration 700: error = 1.3287430, gradient norm = 0.0000771 (50 iterations in 4.570s)
[t-SNE] Iteration 750: error = 1.3181075, gradient norm = 0.0000705 (50 iterations in 4.657s)
[t-SNE] Iteration 800: error = 1.3099051, gradient norm = 0.0000670 (50 iterations in 4.524s)
[t-SNE] Iteration 850: error = 1.3029939, gradient norm = 0.0000626 (50 iterations in 4.796s)
[t-SNE] Iteration 900: error = 1.2973118, gradient norm = 0.0000604 (50 iterations in 4.114s)
[t-SNE] Iteration 950: error = 1.2927370, gradient norm = 0.0000600 (50 iterations in 3.880s)
[t-SNE] Iteration 1000: error = 1.2890576, gradient norm = 0.0000534 (50 iterations in 4.365s)
[t-SNE] KL divergence after 1000 iterations: 1.289058
Done..
```

Creating plot for this t-sne visualization.. saving this plot as image in present working directory...

Done

Observations:

- We can see that as we increase our perplexities all the lables except standing and sitting positions are separted well.
- Standing and sitting position being a dynamic label overlaps with one another despite perplexity alters.

2. Building Statistical models and training with the domain engineered features

```
conf mat = confusion matrix (y test, y pred)
              3
                    # C = 9,9 matrix, each cell (i,j) represents number of points of class i are predicted class j
              4
                    A =(((conf mat.T)/(conf mat.sum(axis=1))).T)
              5
                    #divid each element of the confusion matrix with the sum of elements in that column
              6
              7
                    \# C = [[1, 2],
              8
                    # [3, 4]]
              9
                    # C.T = [[1, 3],
             10
                             [2, 411]
                    # C.sum(axis = 1) axis=0 corresonds to columns and axis=1 corresponds to rows in two diamensional array
             11
             12
                    \# C.sum(axix = 1) = [[3, 7]]
             13
                    \# ((C.T)/(C.sum(axis=1))) = [[1/3, 3/7]
             14
                                                [2/3, 4/7]]
             15
             16
                     \# ((C.T)/(C.sum(axis=1))).T = [[1/3, 2/3]]
             17
                                                [3/7, 4/7]]
             18
                    # sum of row elements = 1
             19
             20
                     B =(conf mat/conf mat.sum(axis=0))
             21
                    #divid each element of the confusion matrix with the sum of elements in that row
             22
                    \# C = [[1, 2],
             23
                    # [3, 4]]
             24
                    # C.sum(axis = 0) axis=0 corresonds to columns and axis=1 corresponds to rows in two diamensional array
             25
                    # C.sum(axix = 0) = [[4, 6]]
             26
                    \# (C/C.sum(axis=0)) = [[1/4, 2/6],
             27
                                          [3/4, 4/6]]
             28
             29
                    labels = ["WALKING", "WALKING UPSTAIRS", "WALKING DOWNSTAIRS", "SITTING", "STANDING", "LYING"]
             30
                    # representing A in heatmap format
                     print("-"*20, "Confusion matrix", "-"*20)
             31
             32
                     plt.figure(figsize=(20,7))
                    sns.heatmap(conf_mat, annot=True, cmap="YlOrBr", fmt=".3f", xticklabels=labels, yticklabels=labels)
             33
                     plt.xlabel('Predicted Class')
             34
             35
                     plt.ylabel('Original Class')
             36
                     plt.xticks(rotation = 90)
             37
                     plt.show()
             38
                     print("-"*20, "Precision matrix (Column Sum=1)", "-"*20)
             39
             40
                     plt.figure(figsize=(20,7))
                    sns.heatmap(B, annot=True, cmap="YlOrBr", fmt=".3f", xticklabels=labels, yticklabels=labels)
             41
             42
                     plt.xlabel('Predicted Class')
             43
                     plt.ylabel('Original Class')
             44
                     plt.xticks(rotation = 90)
             45
                     plt.show()
             46
             47
                    # representing B in heatmap format
             48
                     print("-"*20, "Recall matrix (Row sum=1)", "-"*20)
             49
                     plt.figure(figsize=(20,7))
                    sns.heatmap(A, annot=True, cmap="YlOrBr", fmt=".3f", xticklabels=labels, yticklabels=labels)
             50
                     plt.xlabel('Predicted Class')
             51
             52
                     plt.ylabel('Original Class')
             53
                    plt.xticks(rotation = 90)
             54
                    plt.show()
             55
```

```
In [24]: ▶ 1 ### craete a dataframe to store model scores
              2 df = pd.DataFrame(columns=['Model name', 'Accuracy%'])
             4 def save_performances(model_name,accuracy):
                    global df
                    df = df.append(pd.DataFrame([[model_name,accuracy]],columns=['Model_name','Accuracy%']))
              6
                    #df = df.reset_index(drop=True,inplace=True)
3
                    ##train data
                    train_start = datetime.now()
              5
                    model.fit(train,ytrain)
                    print('Time taken to train the model: ',datetime.now()- train start)
             7
                    print('Done \n \n')
             8
             9
                    ## print best params from grid search
             10
                    print('*'*20)
             11
                    print('Best-Params(Grid_search): ')
                    print('*'*20)
             12
             13
                    print('params of best estimator: ',model.best_params_)
             14
             15
                    print('*'*50)
             16
                    print('Best-Score(Grid search): ')
             17
                    print('*'*50)
             18
                    print('Score of best estimator: ',model.best_score_)
             19
                    print('/n/n')
                    print('Training model: ',model)
             20
             21
                    ## fit model with best params
             22
                    model = model.best_estimator_.fit(train,ytrain)
             23
                    ##predict data
             24
                    y pred tr = model.predict(train)
             25
                    y pred te = model.predict(test)
                    train_acc = metrics.accuracy_score(y_true=ytrain, y_pred=y_pred_tr)
             26
             27
                    test_acc = metrics.accuracy_score(y_true=ytest, y_pred=y_pred_te)
             28
             29
                    ## calculate train accuracy
             30
                    print('*'*50)
             31
                    print('Accuracy: ')
             32
                    print('*'*50)
             33
                    print('Train Accuracy:',train_acc,'Test Accuracy',test_acc)
             34
                    print('\n\n')
             35
                    ##print confusion matrix
             36
                    print('*'*50)
             37
                    print('Confusion Matrix :test')
             38
                    print('*'*50)
             39
                    plot_confusion_matrix(ytest,y_pred_te)
             40
                    ##store in df
             41
                    save_performances(model_name,test_acc)
```

2.1. Logistic Regression with Grid Search

```
In [27]:  ▶ 1 # start Grid search
           2 parameters = {'C':[0.01, 0.1, 1, 10, 20, 30], 'penalty':['12','11']}
           3 log_reg = linear_model.LogisticRegression(multi_class = "ovr")
           4 log_reg_grid = GridSearchCV(log_reg, param_grid=parameters, cv=3, verbose=1, n_jobs=-1)
           5 log_reg_grid_results = run_model(log_reg_grid, X_train, y_train, X_test, y_test, 'LogisticRegression')
          Fitting 3 folds for each of 12 candidates, totalling 36 fits
          Time taken to train the model: 0:00:56.821896
          Done
          ******
          Best-Params(Grid_search):
          params of best estimator: {'C': 30, 'penalty': '12'}
          *************
          Best-Score(Grid_search):
          *************
          Score of best estimator: 0.9449151116995146
          /n/n
          Training model: GridSearchCV(cv=3, estimator=LogisticRegression(multi_class='ovr'), n_jobs=-1,
                     param_grid={'C': [0.01, 0.1, 1, 10, 20, 30],
                               'penalty': ['l2', 'l1']},
                     verbose=1)
          *************
          Accuracy:
          *************
          Train Accuracy: 0.9944232861806311 Test Accuracy 0.9619952494061758
          ************
          Confusion Matrix :test
          *************
```

----- Confusion matrix -----

----- Precision matrix (Columm Sum=1) -----

- 500

- 400

2.2 Linear SVC with GridSearch

In [28]: ▶ 1 from sklearn.svm import LinearSVC

```
In [29]: ► 1 parameters = {'C':[0.125, 0.5, 1, 2, 8, 16]}
           2 lr svc = LinearSVC(tol=0.00005)
           3 lr_svc_grid = GridSearchCV(lr_svc, param_grid=parameters, n_jobs=-1, verbose=1)
           4 lr_svc_grid_results = run_model(lr_svc_grid, X_train, y_train, X_test, y_test, 'Linear SVC')
          Fitting 5 folds for each of 6 candidates, totalling 30 fits
          Time taken to train the model: 0:01:05.836804
          Done
          *******
          Best-Params(Grid search):
          *******
          params of best estimator: {'C': 0.5}
          *************
          Best-Score(Grid search):
          **************
          Score of best estimator: 0.9423363254207189
          /n/n
          Training model: GridSearchCV(estimator=LinearSVC(tol=5e-05), n_jobs=-1,
                    param_grid={'C': [0.125, 0.5, 1, 2, 8, 16]}, verbose=1)
          *************
          Accuracy:
          **************
          Train Accuracy: 0.9944232861806311 Test Accuracy 0.9667458432304038
          *************
          Confusion Matrix :test
          *************
```

----- Confusion matrix -----

----- Precision matrix (Columm Sum=1) -----

2.3. Kernel SVM with GridSearch

```
In [30]: ► 1 | from sklearn.svm import SVC
           2 parameters = {'C':[2,8,16],\
           3
                        'gamma': [ 0.0078125, 0.125, 2]}
           4 rbf_svm = SVC(kernel='rbf')
           5 rbf_svm_grid = GridSearchCV(rbf_svm,param_grid=parameters, n_jobs=-1)
           6 rbf_svm_grid_results = run_model(rbf_svm_grid, X_train, y_train, X_test, y_test, 'Kernel SVM')
          Time taken to train the model: 0:08:16.665605
          Done
          ******
          Best-Params(Grid search):
          *******
          params of best estimator: {'C': 16, 'gamma': 0.0078125}
          *************
          Best-Score(Grid_search):
          *************
          Score of best estimator: 0.9447834551903698
          /n/n
          Training model: GridSearchCV(estimator=SVC(), n_jobs=-1,
                    param_grid={'C': [2, 8, 16], 'gamma': [0.0078125, 0.125, 2]})
          **************
          *************
          Train Accuracy: 0.9964635473340587 Test Accuracy 0.9626739056667798
          *************
          Confusion Matrix :test
          **************
```

----- Confusion matrix ------

----- Precision matrix (Columm Sum=1) -----

2.4. Decision Trees with GridSearchCV

```
In [31]: ► 1 | from sklearn.tree import DecisionTreeClassifier
           parameters = {'max_depth':np.arange(3,10,2)}
           3 dt = DecisionTreeClassifier()
           4 dt_grid = GridSearchCV(dt,param_grid=parameters, n_jobs=-1)
           5 dt_grid_results = run_model(dt_grid, X_train, y_train, X_test, y_test, 'DecisionTrees')
          Time taken to train the model: 0:00:19.908109
          Done
          *******
          Best-Params(Grid_search):
          params of best estimator: {'max_depth': 5}
          **************
          Best-Score(Grid_search):
          *************
          Score of best estimator: 0.8514733371254689
          /n/n
          Training model: GridSearchCV(estimator=DecisionTreeClassifier(), n_jobs=-1,
                    param_grid={'max_depth': array([3, 5, 7, 9])})
          *************
          Accuracy:
          *************
          Train Accuracy: 0.920429815016322 Test Accuracy 0.839497794367153
          *************
          Confusion Matrix :test
          *************
```

----- Confusion matrix -----

----- Precision matrix (Columm Sum=1) -----

- 500

- 400

- 300

- 200

- 100

- 0

----- Recall matrix (Row sum=1)

2.5. Random Forest Classifier with GridSearch

```
In [32]: ▶ 1 | from sklearn.ensemble import RandomForestClassifier
           params = {'n_estimators': np.arange(10,201,20), 'max_depth':np.arange(3,15,2)}
           3 rfc = RandomForestClassifier()
           4 rfc_grid = GridSearchCV(rfc, param_grid=params, n_jobs=-1)
           5 rfc_grid_results = run_model(rfc_grid, X_train, y_train, X_test, y_test, 'RandomForest')
          Time taken to train the model: 0:10:44.490748
          Done
          *******
          Best-Params(Grid_search):
          params of best estimator: {'max_depth': 13, 'n_estimators': 70}
          *************
          Best-Score(Grid search):
          *************
          Score of best estimator: 0.9212499248509737
          /n/n
          Training model: GridSearchCV(estimator=RandomForestClassifier(), n_jobs=-1,
                    param_grid={'max_depth': array([ 3, 5, 7, 9, 11, 13]),
                              'n_estimators': array([ 10, 30, 50, 70, 90, 110, 130, 150, 170, 190])})
          ******************
          *************
          Train Accuracy: 0.999183895538629 Test Accuracy 0.9233118425517476
          *************
          Confusion Matrix :test
          **************
```

----- Confusion matrix -----

----- Precision matrix (Columm Sum=1) -----

- 500

- 400

- 300

- 200

- 100

- 0

2.6. Gradient Boosted Decision Trees With GridSearch

```
In [33]: ▶ 1 | from sklearn.ensemble import GradientBoostingClassifier
            2 param grid ={"n estimators": [50, 100], "max depth":[1, 3]}
           3 gbdt = GradientBoostingClassifier()
           4 gbdt grid = GridSearchCV(gbdt, param grid=param grid,verbose=10)
           5 | gbdt_grid_results = run_model(gbdt_grid, X_train, y_train, X_test, y_test, 'GradientBoosted DecisionTrees')
          Fitting 5 folds for each of 4 candidates, totalling 20 fits
          [CV 1/5; 1/4] START max depth=1, n estimators=50......
          [CV 1/5; 1/4] END ......max depth=1, n estimators=50; total time= 1.5min
          [CV 2/5; 1/4] START max depth=1, n estimators=50......
          [CV 2/5; 1/4] END ......max depth=1, n estimators=50; total time= 1.5min
          [CV 3/5; 1/4] START max depth=1, n estimators=50......
          [CV 3/5; 1/4] END ......max depth=1, n estimators=50; total time= 1.6min
          [CV 4/5; 1/4] START max depth=1, n estimators=50......
          [CV 4/5; 1/4] END ......max depth=1, n estimators=50; total time= 1.6min
          [CV 5/5; 1/4] START max_depth=1, n_estimators=50......
          [CV 5/5; 1/4] END .....max_depth=1, n_estimators=50; total time= 1.8min
          [CV 1/5; 2/4] START max depth=1, n estimators=100.....
          [CV 1/5; 2/4] END .....max depth=1, n estimators=100; total time= 3.1min
          [CV 2/5; 2/4] START max depth=1, n estimators=100......
          [CV 2/5; 2/4] END .....max depth=1, n estimators=100; total time= 3.1min
          [CV 3/5; 2/4] START max depth=1, n estimators=100......
          [CV 3/5; 2/4] END .....max depth=1, n estimators=100; total time= 3.1min
          [CV 4/5; 2/4] START max depth=1, n estimators=100......
          [CV 4/5; 2/4] END .....max depth=1, n estimators=100; total time= 3.0min
          [CV 5/5; 2/4] START max depth=1, n estimators=100......
          [CV 5/5; 2/4] END .....max depth=1, n estimators=100; total time= 3.1min
          [CV 1/5; 3/4] START max depth=3, n estimators=50......
          [CV 1/5; 3/4] END ......max_depth=3, n_estimators=50; total time= 4.4min
          [CV 2/5; 3/4] START max depth=3, n estimators=50......
          [CV 2/5; 3/4] END ......max depth=3, n estimators=50; total time= 4.4min
          [CV 3/5; 3/4] START max_depth=3, n_estimators=50......
          [CV 3/5; 3/4] END ......max depth=3, n estimators=50; total time= 4.5min
          [CV 4/5; 3/4] START max depth=3, n estimators=50......
          [CV 4/5; 3/4] END ......max_depth=3, n_estimators=50; total time= 4.4min
          [CV 5/5; 3/4] START max_depth=3, n_estimators=50......
          [CV 5/5; 3/4] END ......max depth=3, n estimators=50; total time= 4.3min
          [CV 1/5; 4/4] START max depth=3, n estimators=100.....
          [CV 1/5; 4/4] END .....max depth=3, n estimators=100; total time= 8.5min
          [CV 2/5; 4/4] START max depth=3, n estimators=100.....
          [CV 2/5; 4/4] END .....max depth=3, n estimators=100; total time= 8.5min
          [CV 3/5; 4/4] START max_depth=3, n_estimators=100......
          [CV 3/5; 4/4] END .....max depth=3, n estimators=100; total time= 8.3min
          [CV 4/5; 4/4] START max depth=3, n estimators=100.....
          [CV 4/5; 4/4] END .....max depth=3, n estimators=100; total time= 8.2min
          [CV 5/5; 4/4] START max depth=3, n estimators=100......
          [CV 5/5; 4/4] END .....max_depth=3, n_estimators=100; total time= 8.2min
          Time taken to train the model: 1:37:41.198286
          Done
          *******
          Best-Params(Grid search):
          **********
          params of best estimator: {'max_depth': 3, 'n_estimators': 100}
           ******************
          Best-Score(Grid search):
          ******************
```

Score of best estimator: 0.9227464309993202

/n/n

Training model: GridSearchCV(estimator=GradientBoostingClassifier(),

param_grid={'max_depth': [1, 3], 'n_estimators': [50, 100]},

verbose=10)

Accuracy:

Train Accuracy: 1.0 Test Accuracy 0.9379029521547336

Confusion Matrix :test

----- Confusion matrix -----

----- Recall matrix (Row sum=1) -----

localhost:8888/notebooks/Documents/appleidai/humanactivity/HAR/HumanActivity Recognition.ipynb

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

2.7 Accuracy

Out[103]: Text(0, 0.5, 'Accuracy%')

Observations:

We can observe that tree based models do not perform well in comparison to linear models

Linear SVC gives the highest performance

3. Applying Deep Learning Models -LSTM(RNN)

```
In [1]: | 1 # Activities are the class labels
             2 # It is a 6 class classification
             3 ACTIVITIES = {
                    0: 'WALKING',
                   1: 'WALKING_UPSTAIRS',
             6
                    2: 'WALKING_DOWNSTAIRS',
             7
                   3: 'SITTING',
             8
                   4: 'STANDING',
             9
                    5: 'LAYING',
            10 }
            11
            12 # Utility function to print the confusion matrix
            13 def confusion_matrix_(Y_true, Y_pred):
                   Y_true = pd.Series([ACTIVITIES[y] for y in np.argmax(Y_true, axis=1)])
            15
                    Y pred = pd.Series([ACTIVITIES[y] for y in np.argmax(Y pred, axis=1)])
            16
                    return pd.crosstab(Y_true, Y_pred, rownames=['True'], colnames=['Pred'])
            17
```

Data

```
In [2]: ► 1 # Data directory
             2 DATADIR = 'UCI_HAR_Dataset'
In [3]: ► 1 # Raw data signals
             2 # Signals are from Accelerometer and Gyroscope
             3 # The signals are in x,y,z directions
             4 # Sensor signals are filtered to have only body acceleration
             5 # excluding the acceleration due to gravity
             6 # Triaxial acceleration from the accelerometer is total acceleration
             7 SIGNALS = [
             8
                    "body_acc_x",
             9
                    "body_acc_y",
                    "body_acc_z",
            10
            11
                    "body_gyro_x",
            12
                    "body_gyro_y",
            13
                    "body_gyro_z",
            14
                    "total_acc_x",
                    "total_acc_y",
            15
                    "total acc z"
            16
            17 ]
```

```
In [4]: ▶ 1 # Utility function to read the data from csv file
              2 def _read_csv(filename):
              3
                    return pd.read_csv(filename, delim_whitespace=True, header=None)
              4
              5 # Utility function to load the load
              6 def load_signals(subset):
                    signals_data = []
              8
             9
                    for signal in SIGNALS:
             10
                        filename = f'UCI_HAR_Dataset/{subset}/Inertial Signals/{signal}_{subset}.txt'
             11
                        signals_data.append(
             12
                            _read_csv(filename).values
             13
             14
             15
                    # Transpose is used to change the dimensionality of the output,
                    # aggregating the signals by combination of sample/timestep.
             16
                    # Resultant shape is (7352 train/2947 test samples, 128 timesteps, 9 signals)
             17
                    return np.transpose(signals_data, (1, 2, 0))
             18
In [5]: ▶
             1
              2 def load_y(subset):
              3
              4
                    The objective that we are trying to predict is a integer, from 1 to 6,
              5
                    that represents a human activity. We return a binary representation of
              6
                    every sample objective as a 6 bits vector using One Hot Encoding
              7
                    (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html)
              8
             9
                    filename = f'UCI_HAR_Dataset/{subset}/y_{subset}.txt'
             10
                    y = _read_csv(filename)[0]
             11
             12
                    return pd.get_dummies(y).values
 In [6]:
             1 def load_data():
              2
              3
                    Obtain the dataset from multiple files.
              4
                    Returns: X_train, X_test, y_train, y_test
              5
              6
                    X train, X test = load signals('train'), load signals('test')
              7
                    y_train, y_test = load_y('train'), load_y('test')
              8
              9
                    return X_train, X_test, y_train, y_test
2 np.random.seed(42)
              3 import tensorflow as tf
              4 tf.random.set_seed(42)
In [11]: ▶ 1 # Configuring a session
              2 session conf = tf.compat.v1.ConfigProto(
                    intra_op_parallelism_threads=1,
              4
                    inter_op_parallelism_threads=1
              5 )
```

```
2 from keras import backend as K
            3 sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=session_conf)
            4 K.set_session(sess)
In [13]: ▶ 1 # Importing libraries
            2 from keras.models import Sequential
            3 from keras.layers import LSTM
            4 from keras.layers.core import Dense, Dropout
In [14]: ► 1 # Initializing parameters
            2 epochs = 30
            3 batch_size = 16
            4 n_hidden = 32
In [15]: ▶ 1 # Utility function to count the number of classes
            2 def _count_classes(y):
                  return len(set([tuple(category) for category in y]))
In [16]: ► I # Loading the train and test data
            2 X_train, X_test, Y_train, Y_test = load_data()
2 input_dim = len(X_train[0][0])
            3 n_classes = _count_classes(Y_train)
            5 print(timesteps)
            6 print(input dim)
            7 print(len(X_train))
           128
           9
```

• Defining the Architecture of LSTM

7352

(None, 32)

5376

lstm (LSTM)

```
Epoch 1/30
Epoch 2/30
Epoch 3/30
Epoch 4/30
Epoch 5/30
Epoch 6/30
Epoch 7/30
Epoch 8/30
Epoch 9/30
Epoch 10/30
Epoch 11/30
Epoch 12/30
Epoch 13/30
Epoch 14/30
Epoch 15/30
Epoch 16/30
Epoch 17/30
Epoch 18/30
Epoch 19/30
Epoch 20/30
Epoch 21/30
Epoch 22/30
Epoch 23/30
Epoch 24/30
Epoch 25/30
Epoch 26/30
```

```
Epoch 27/30
     Epoch 28/30
     Epoch 29/30
     Epoch 30/30
     Out[20]: <keras.callbacks.History at 0x1c32c550358>
    ▶ 1 # Confusion Matrix
In [21]:
      2 print(confusion_matrix_(Y_test, model.predict(X_test)))
     Pred
              LAYING SITTING STANDING WALKING WALKING_DOWNSTAIRS \
     True
     LAYING
                510
                         27
                             0
                                      0
                             2
                                      0
     SITTING
                    388
                        101
                 0
     STANDING
                 0
                    102
                        427
                             1
                                      0
     WALKING
                    5
                         1
                            449
                                      18
                    0
                                     415
     WALKING_DOWNSTAIRS
                         0
                             0
     WALKING_UPSTAIRS
                    1
                             1
                                      20
     Pred
              WALKING_UPSTAIRS
     True
     LAYING
                     0
     SITTING
                     0
     STANDING
                     2
     WALKING
                     23
     WALKING_DOWNSTAIRS
                     5
                    447
     WALKING UPSTAIRS
    1 | score = model.evaluate(X test, Y test)
In [22]:
     In [23]:
      1 score
 Out[23]: [0.4121060073375702, 0.8944689631462097]
```

- With a simple 2 layer architecture we got 90.09% accuracy and a loss of 0.30
- We can further imporve the performace with Hyperparameter tuning

Assigment:

- · try out with different lstm units
- try out with different drop out units
- · add additional lstm layer and try increasing drop out units

Walkthrough:

- Experiment 1: We will hyperparameter tune for multiple unit counts for lstm layer 1.
- Experiment 2 :Choose the best parameters for layer1 lstm and layer 1 droput, by keeping this fixed tune for layer2 lstm and and layer2 dropout

- Experiment 3: Train with more number of epochs for the best selected architecture from exp2
- Experiment 4: Train with more number of epochs for the best selected architecture from exp1

```
In [18]:
          ▶ 1 def experiment1_architecture(layer1_units,dropout):
                     # Initiliazing the sequential model
              3
                     model = Sequential()
              4
                     # Configuring the parameters
              5
                     model.add(LSTM(layer1_units, input_shape=(timesteps, input_dim)))
              6
                     # Adding a dropout layer
              7
                     model.add(Dropout(dropout))
              8
                     # Adding a dense output layer with sigmoid activation
                     model.add(Dense(n_classes, activation='sigmoid'))
              9
             10
                     model.summary()
             11
                     return model
             12
             def experiment2_architecture(layer1_units,dropout1,layer2_units,dropout2):
             14
                     # Initiliazing the sequential model
                     model = Sequential()
             15
                     # Configuring the parameters
             16
             17
                     model.add(LSTM(layer1 units, return sequences = True,input shape=(timesteps, input dim)))
             18
                     # Adding a dropout layer
             19
                     model.add(Dropout(dropout1))
                     model.add(LSTM(layer2 units))
             20
                     model.add(Dropout(dropout2))
             21
                     # Adding a dense output layer with sigmoid activation
             22
             23
                     model.add(Dense(n_classes, activation='sigmoid'))
             24
                     model.summary()
             25
                     return model
             26
```

```
In [19]: ▶
             1 def EXP1(layer1_units,dropouts,return_y=False):
                     exp1 scores = []
              3
                     for u1 in layer1_units:
              4
                         for dropout in dropouts:
              5
                             print('-'*100)
              6
                             print('Training Model with layer1 units:',u1,' Dropout:',dropout)
              7
                             print('-'*100)
              8
                             print('\n')
              9
                             model = experiment1_architecture(u1,dropout)
             10
                             ### compiling the model
             11
                             model.compile(loss='categorical_crossentropy',
             12
                               optimizer='rmsprop',
             13
                               metrics=['accuracy'])
             14
                             # Training the model
             15
                             history = model.fit(X_train,
             16
                                       Y train,
             17
                                       batch size=batch size,
             18
                                       validation_data=(X_test, Y_test),
             19
                                       epochs=epochs)
             20
                             val_accuracy = np.amax(history.history['val_accuracy'])
             21
                             accuracy = np.amax(history.history['accuracy'])
             22
                             print('-'*100)
                             print('Val Accuracy:',val_accuracy,' Train Accuracy:',accuracy)
             23
             24
                             print('-'*100)
             25
                             print('\n')
             26
                             print('-'*100)
             27 #
                               print('Confusion Matrix')
             28 #
                               print('-'*100)
             29 #
                               print('\n')
             30
                             # Confusion Matrix
             31
                             print(confusion_matrix_(Y_test, model.predict(X_test)))
             32
                             testscore = model.evaluate(X_test, Y_test)
             33
             34
                             exp1 scores.append((u1,dropout,accuracy,val accuracy,testscore))
             35
                     if return y:
             36
                         return exp1_scores,Y_test,model.predict(X_test)
             37
                     else:
             38
                         return exp1_scores
             39
             40 epochs=8
             41 exp1_scores = EXP1([32,64],[0.25,0.5,0.75])
```

```
In [32]:
           Out[32]:
                 Layer1Units Dropout TrainAccuracy ValAccuracy
                                                                                             Score
               0
                         32
                                0.25
                                          0.937568
                                                      0.900577
                                                               [0.3132242262363434, 0.9005768299102783]
                         32
                                0.50
                                          0.923830
                                                      0.883950
                                                              [0.46504589915275574, 0.8724126219749451]
               2
                         32
                                0.75
                                          0.844124
                                                      0.834069
                                                               [0.6033707857131958, 0.8340685367584229]
                                0.25
                                          0.946953
               3
                         64
                                                      0.901934
                                                               [0.3227238655090332, 0.8998982310295105]
                         64
                                0.50
                                          0.940288
                                                      0.894808
                                                               [0.40707921981811523, 0.894808292388916]
                                                               [0.3765288293361664, 0.8961656093597412]
                                0.75
                                          0.923422
                                                      0.896166
In [36]: № 1 print('As we can see the best hyper parameter from the 6 combinations is :\n ',exp1_df.sort_values(by='Score').iloc[0])
                2 print('\n')
               3 print('score')
              As we can see the best hyper parameter from the 6 combinations is :
                Layer1Units
                                                                           32
              Dropout
                                                                       0.25
              TrainAccuracy
                                                                   0.937568
```

0.900577

[0.3132242262363434, 0.9005768299102783]

Experiment 2 : LSTM layer2

Name: 0, dtype: object

ValAccuracy

Score

• lets take our best layer1unit and best drop out rate from exp1

```
In [43]: ▶
              1 def EXP2(layer2_units,dropouts):
                     exp2 scores = []
              3
                     for u1 in layer2_units:
              4
                         for dropout in dropouts:
              5
                             print('-'*100)
              6
                             print('Training Model with layer1 units:',u1,' Dropout:',dropout)
              7
                             print('-'*100)
              8
                             print('\n')
                             model = experiment2_architecture(32,0.25,u1,dropout)
              9
             10
                             ### compiling the model
             11
                             model.compile(loss='categorical_crossentropy',
             12
                               optimizer='rmsprop',
             13
                               metrics=['accuracy'])
             14
                             # Training the model
             15
                             history = model.fit(X_train,
             16
                                       Y train,
             17
                                       batch size=batch size,
             18
                                       validation_data=(X_test, Y_test),
             19
                                       epochs=epochs)
             20
                             val_accuracy = np.amax(history.history['val_accuracy'])
             21
                             accuracy = np.amax(history.history['accuracy'])
             22
                             print('-'*100)
             23
                             print('Val Accuracy:',val_accuracy,' Train Accuracy:',accuracy)
             24
                             print('-'*100)
             25
                             print('\n')
             26
                             print('-'*100)
             27 #
                               print('Confusion Matrix')
                               print('-'*100)
             28 #
             29 #
                               print('\n')
             30
                             # Confusion Matrix
             31
                             print(confusion_matrix_(Y_test, model.predict(X_test)))
             32
                             testscore = model.evaluate(X_test, Y_test)
             33
             34
                             exp2_scores.append((32,0.25,u1,dropout,accuracy,val_accuracy,testscore))
             35
                     return exp2 scores
             36
             37 epochs=8
             38 \exp 2_{\text{scores}} = EXP2([16,32,64],[0.25,0.35,0.5])
```

Training Model with layer1 units: 16 Dropout: 0.25

Model: "sequential_13"

Layer (type)	Output Shape	Param #
lstm_16 (LSTM)	(None, 128, 32)	5376
dropout_15 (Dropout)	(None, 128, 32)	0
lstm_17 (LSTM)	(None, 16)	3136
dropout_16 (Dropout)	(None, 16)	0
dense_12 (Dense)	(None, 6)	102

Total params: 8,614 Trainable params: 8,614 Non-trainable params: 0

Epoch 1/8 460/460 [===============] - 36s 72ms/step - loss: 1.2269 - accuracy: 0.5000 - val loss: 0.7957 - val accuracy: 0.6831 Epoch 4/8 Epoch 5/8 Epoch 8/8 ______ Val Accuracy: 0.8829317688941956 Train Accuracy: 0.9409684538841248

Pred	LAYING	SITTING	STANDING	WALKING	WALKING_DOWNSTAIRS	\
True						
LAYING	510	0	0	0	0	
SITTING	0	394	67	3	0	
STANDING	0	85	329	8	0	
WALKING	0	0	0	349	32	
WALKING_DOWNSTAIRS	0	0	0	0	374	
WALKING_UPSTAIRS	1	0	0	2	12	

Pred	WALKING_UPSTAIRS	
True		
LAYING	27	
SITTING	27	
STANDING	110	
WALKING	115	
WALKING_DOWNSTAIRS	46	
WALKING_UPSTAIRS	456	
93/93 [=======] - 2s 17ms/step - loss: 1.0715 - accuracy: 0.8185

Model: "sequential 14"

D.

Layer (type)	Output Shape	Param #
lstm_18 (LSTM)	(None, 128, 32)	5376
dropout_17 (Dropout)	(None, 128, 32)	0
lstm_19 (LSTM)	(None, 16)	3136

LIALIZANO LIDOTATOO

Training Model with layer1 units: 16 Dropout: 0.35

Total params: 8,614 Trainable params: 8,	dropout_18 (Dropout)	(None,	16)		0	_						
Trainable params: 8,614 Non-trainable params: 9 Fipoch 1/8	dense_13 (Dense)		(None,	6)		102	_						
469/466 [===================================	Trainable params: 8	,614					=						
Epoch 2/8 469/460 [====================================	•			1 206	75mc/c+c	n loss.	1 2062	26611126144	0.4622	val loss	. a 990 <i>c</i>	val accuma	.cv. 0 661
460/460 [====================================	=	======		===] - 368	5 /3IIIS/SLE	ep - 1055:	1.3002 -	accuracy:	0.4623	- Val_1055	. 0.8890	- var_accura	icy: 0.001/
Epoch 3/8 460/460 [====================================	•	======	=======	===1 - 349	73ms/ste	en - loss:	0.6701 -	accuracy:	0.7393	- val loss	: 0.5426	- val accura	cv: 0.8178
469/460 [====================================	-			, , ,	, , , , , , , , , , , ,	-p000.	0.07.02		017020				,
469/460 [====================================	•	======		===] - 34s	73ms/ste	ep - loss:	0.4446 -	accuracy:	0.8506	- val_loss	: 0.4390	- val_accura	icy: 0.8673
Epoch 5/8 460/460 [====================================	-			-						_		_	
A69/466	460/460 [======	======		===] - 349	73ms/ste	ep - loss:	0.3293 -	accuracy:	0.8856	val_loss	: 0.3721	- val_accura	cy: 0.8758
Epoch 6/8 460/460 [=========] - 335 77ms/step - loss: 0.2025 - accuracy: 0.9309 - val_loss: 0.3580 - val_accuracy: 0.8958 Epoch 7/8 460/460 [==========] - 355 77ms/step - loss: 0.1752 - accuracy: 0.9354 - val_loss: 0.4520 - val_accuracy: 0.8823 Epoch 8/8 460/460 [===========] - 365 79ms/step - loss: 0.1619 - accuracy: 0.9476 - val_loss: 0.3582 - val_accuracy: 0.8968 Val Accuracy: 0.8968442678451538	•												
## A69/460 [====================================	-	======	=======	===] - 339	72ms/ste	ep - loss:	0.2443 -	accuracy:	0.9210	val_loss	: 0.4277	- val_accura	icy: 0.8812
Epoch 7/8 460/460 [=========] - 35s 77ms/step - loss: 0.1752 - accuracy: 0.9354 - val_loss: 0.4520 - val_accuracy: 0.8823 Epoch 8/8 460/460 [=========] - 36s 79ms/step - loss: 0.1619 - accuracy: 0.9476 - val_loss: 0.3582 - val_accuracy: 0.8968 Val Accuracy: 0.8968442678451538 Train Accuracy: 0.9413765072822571 Pred LAYING SITTING STANDING WALKING WALKING_DOWNSTAIRS \ True LAYING 510 0 0 0 0 STANDING 0 376 106 0 0 STANDING 0 88 444 0 0 WALKING DOWNSTAIRS 0 0 0 2 473 0 WALKING_DOWNSTAIRS 0 0 0 0 2 1 473 0 WALKING_UPSTAIRS 0 0 0 0 21 15 Pred WALKING_UPSTAIRS True LAYING 27 SITTING 27 SITTING 27 SITTING 9 3 36 106 406 WALKING_UPSTAIRS TRUE LAYING 27 SITTING 9 3 36 106 106 406 WALKING_UPSTAIRS 1 0 21 15 PRED WALKING_UPSTAIRS WALKING_UPSTAIRS 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•				- 0 / .	-						-	
460/460 [=========] - 35s 77ms/step - loss: 0.1752 - accuracy: 0.9354 - val_loss: 0.4520 - val_accuracy: 0.8823 Epoch 8/8 460/460 [========] - 36s 79ms/step - loss: 0.1619 - accuracy: 0.9476 - val_loss: 0.3582 - val_accuracy: 0.8968 Val Accuracy: 0.8968442678451538	-	======		===] - 339	5 /2ms/ste	ep - loss:	0.2025 -	accuracy:	0.9309	- val_loss	: 0.3580	- val_accura	icy: 0.8958
Epoch 8/8 460/460 [===============] - 36s 79ms/step - loss: 0.1619 - accuracy: 0.9476 - val_loss: 0.3582 - val_accuracy: 0.8968	•			1 256	- 77mc/c+c	n locci	0 1752	26611026111	0 0254	val loce	. 0 4520	val accura	.cv. a 992
460/460 [====================================	_			-===] - 338	5 //IIIS/SCE	ep - 1055.	0.1/52 -	accuracy.	0.9354	- va1_1055	. 0.4520	- vai_accura	icy. 0.0023
Val Accuracy: 0.8968442678451538	•	======		===1 - 369	79ms/ste	en - loss:	0.1619 -	accuracy.	0.9476	- val loss	· 0.3582 ·	- val accura	cv 0.8968
Pred LAYING SITTING STANDING WALKING WALKING_DOWNSTAIRS \ True LAYING 510 0 0 0 0 0 SITTING 0 376 106 0 0 STANDING 0 88 444 0 0 WALKING 0 0 2 473 0 WALKING 0 0 6 406 WALKING_DOWNSTAIRS 0 0 0 6 406 WALKING_UPSTAIRS 0 1 0 21 15 Pred WALKING_UPSTAIRS True LAYING 27 SITTING 9 WALKING 0 0 2 STANDING 0 0 21 WALKING 0 0 1 0 21 WALKING 0 0 0 21 WALKING_DOWNSTAIRS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
LAYING 510 0 0 0 0 0 0 5 SITTING 0 376 106 0 0 0 STANDING 0 88 444 0 0 WALKING 0 0 0 2 473 0 0 WALKING_DOWNSTAIRS 0 0 0 6 406 WALKING_UPSTAIRS True LAYING 27 SITTING 9 STANDING 0 9 STANDING 0 9 STANDING 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 Pred	LAYING	SITTING	STANDING	WALKING	WALKING_	DOWNSTAIRS	 5 \					
SITTING 0 376 106 0 0 STANDING 0 88 444 0 0 WALKING 0 0 0 2 473 0 WALKING_DOWNSTAIRS 0 0 0 6 406 WALKING_UPSTAIRS 0 1 0 21 15 Pred WALKING_UPSTAIRS True LAYING 27 SITTING 9 STANDING 9 STANDING 0 WALKING_UPSTAIRS 0 0 WALKING_UPSTAIRS 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	True												
STANDING 0 88 444 0 0 WALKING 0 0 0 2 473 0 WALKING_DOWNSTAIRS 0 0 0 6 406 WALKING_UPSTAIRS 0 1 0 21 15 Pred WALKING_UPSTAIRS True LAYING 27 SITTING 9 STANDING 0 WALKING 0 1 WALKING 0 1 WALKING 0 1 WALKING 0 21 W							6)					
WALKING 0 0 0 2 473 0 0 406 4406 WALKING_DOWNSTAIRS 0 1 0 21 15 Pred WALKING_UPSTAIRS 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6		0											
WALKING_DOWNSTAIRS 0 0 0 0 6 406 WALKING_UPSTAIRS 0 1 0 21 15 Pred WALKING_UPSTAIRS True LAYING 27 SITTING 9 STANDING 0 WALKING 21 WALKING 21 WALKING 21 WALKING 21 WALKING 21 WALKING_UPSTAIRS 8 WALKING_UPSTAIRS 434 93/93 [====================================		-		444	_								
WALKING_UPSTAIRS 0 1 0 21 15 Pred WALKING_UPSTAIRS True LAYING 27 SITTING 9 STANDING 0 WALKING 21 WALKING 21 WALKING_DOWNSTAIRS 8 WALKING_UPSTAIRS 434 93/93 [====================================		_			_								
Pred WALKING_UPSTAIRS True LAYING 27 SITTING 9 STANDING 0 WALKING 21 WALKING_DOWNSTAIRS 8 WALKING_UPSTAIRS 434 93/93 [=======] - 2s 17ms/step - loss: 0.3582 - accuracy: 0.8968	-	-	_										
True LAYING 27 SITTING 9 STANDING 0 WALKING 21 WALKING_DOWNSTAIRS 8 WALKING_UPSTAIRS 434 93/93 [====================================	WALKING_UPSTAIRS	0	1	0	21		15)					
True LAYING 27 SITTING 9 STANDING 0 WALKING 21 WALKING_DOWNSTAIRS 8 WALKING_UPSTAIRS 434 93/93 [====================================	Dnod	MALKING	LIDCTATE	=									
LAYING 27 SITTING 9 STANDING 0 WALKING 21 WALKING_DOWNSTAIRS 8 WALKING_UPSTAIRS 434 93/93 [====================================		WALKING	J_OF STAINS	,									
SITTING 9 STANDING 0 WALKING 21 WALKING_DOWNSTAIRS 8 WALKING_UPSTAIRS 434 93/93 [====================================			27	7									
STANDING 0 WALKING 21 WALKING_DOWNSTAIRS 8 WALKING_UPSTAIRS 434 93/93 [====================================													
WALKING 21 WALKING_DOWNSTAIRS 8 WALKING_UPSTAIRS 434 93/93 [====================================													
WALKING_DOWNSTAIRS 8 WALKING_UPSTAIRS 434 93/93 [====================================													
WALKING_UPSTAIRS 434 93/93 [====================================													
93/93 [===============] - 2s 17ms/step - loss: 0.3582 - accuracy: 0.8968	-												
	-	======			ms/step -	loss: 0.	3582 - aco	uracy: 0.	8968				
Training Model with layer1 units: 16 Dropout: 0.5													
	Training Model with	layer1	units: 16	Dropout:	0.5								
	-	-		•									

Model: "sequential_15"

Layer (type)	Output Shape	Param #
=======================================	:=============	========
lstm_20 (LSTM)	(None, 128, 32)	5376

```
dropout_19 (Dropout)
          (None, 128, 32)
                    0
lstm_21 (LSTM)
          (None, 16)
                    3136
dropout_20 (Dropout)
          (None, 16)
                    0
dense 14 (Dense)
                    102
          (None, 6)
_____
Total params: 8,614
Trainable params: 8,614
Non-trainable params: 0
Epoch 1/8
Epoch 3/8
Epoch 4/8
Epoch 5/8
Epoch 6/8
Epoch 7/8
460/460 [=============== ] - 34s 74ms/step - loss: 0.2681 - accuracy: 0.9180 - val loss: 0.3890 - val accuracy: 0.8941
Epoch 8/8
Val Accuracy: 0.8941296339035034 Train Accuracy: 0.9270946383476257
_____
______
Pred
       LAYING SITTING STANDING WALKING WALKING DOWNSTAIRS \
True
LAYING
        510
                0
                   0
                          0
                          2
               97
                   3
SITTING
         2
           378
STANDING
         0
            92
               431
                   7
                          1
WALKING
            0
                0
                  443
                          53
WALKING_DOWNSTAIRS
            0
                   1
                          417
WALKING_UPSTAIRS
                   33
                          32
Pred
       WALKING UPSTAIRS
True
LAYING
            27
SITTING
            9
STANDING
            1
WALKING
            0
WALKING DOWNSTAIRS
            2
WALKING UPSTAIRS
            406
------
Training Model with layer1 units: 32 Dropout: 0.25
______
```

Model: "sequential_16"

Layer (type)	Output Shape	Param #
lstm_22 (LSTM)	(None, 128, 32)	5376
dropout_21 (Dropout)	(None, 128, 32)	0
lstm_23 (LSTM)	(None, 32)	8320
dropout_22 (Dropout)	(None, 32)	0
dense_15 (Dense)	(None, 6)	198
Total params: 13,894		

Total params: 13,894 Trainable params: 13,894 Non-trainable params: 0

Epoch 1/8

Val Accuracy: 0.9022734761238098 Train Accuracy: 0.9408324360847473

Pred	LAYING	SITTING	STANDING	WALKING	WALKING_DOWNSTAIRS	\
True						
LAYING	509	1	0	0	0	
SITTING	2	410	76	0	1	
STANDING	0	102	429	1	0	
WALKING	0	8	46	358	5	
WALKING_DOWNSTAIRS	0	0	0	1	335	
WALKING_UPSTAIRS	0	0	1	1	8	

```
Pred
       WALKING_UPSTAIRS
True
LAYING
             27
SITTING
             2
             0
STANDING
             79
WALKING
WALKING_DOWNSTAIRS
             84
WALKING UPSTAIRS
            461
-----
```

Model: "sequential_17"

Layer (type)	Output Shape	Param #
lstm_24 (LSTM)	(None, 128, 32)	5376
dropout_23 (Dropout)	(None, 128, 32)	0
lstm_25 (LSTM)	(None, 32)	8320
dropout_24 (Dropout)	(None, 32)	0
dense_16 (Dense)	(None, 6)	198

Total params: 13,894 Trainable params: 13,894 Non-trainable params: 0

Epoch 1/8

Val Accuracy: 0.903630793094635 Train Accuracy: 0.9451850056648254

Pred	LAYING	SITTING	STANDING	WALKING	WALKING_DOWNSTAIRS	\
True		_	_	_	_	
LAYING	510	0	0	0	0	
SITTING	0	376	89	15	3	
STANDING	0	84	447	1	0	
WALKING	0	0	1	455	25	
WALKING_DOWNSTAIRS	0	0	0	0	417	
WALKING_UPSTAIRS	0	0	0	20	23	

Pred WALKING_UPSTAIRS
True
LAYING 27
SITTING 8

```
STANDING
                 0
WALKING
                15
WALKING DOWNSTAIRS
                3
WALKING UPSTAIRS
                428
93/93 [============= ] - 2s 21ms/step - loss: 0.5197 - accuracy: 0.8935
______
Training Model with layer1 units: 32 Dropout: 0.5
-----
```

Model: "sequential_18"

Layer (type)	Output Shape	Param #
lstm_26 (LSTM)	(None, 128, 32)	5376
dropout_25 (Dropout)	(None, 128, 32)	0
lstm_27 (LSTM)	(None, 32)	8320
dropout_26 (Dropout)	(None, 32)	0
dense_17 (Dense)	(None, 6)	198
Total narams: 13 894		

Total params: 13,894 Trainable params: 13,894 Non-trainable params: 0

```
Epoch 1/8
Epoch 2/8
Epoch 3/8
Epoch 4/8
Epoch 6/8
Epoch 7/8
______
```

Val Accuracy: 0.9144893288612366 Train Accuracy: 0.9394722580909729

Pred	LAYING	SITTING	STANDING	WALKING	WALKING DOWNSTAIRS	\
True					_	
LAYING	505	4	0	0	0	
SITTING	1	391	87	2	0	
STANDING	0	92	432	5	0	
WALKING	0	0	0	486	9	
WALKING_DOWNSTAIRS	0	0	0	27	355	
WALKING UPSTATES	9	9	9	27	2	

```
WALKING_UPSTAIRS
Pred
True
LAYING
                  28
                  10
SITTING
                   3
STANDING
                   1
WALKING
WALKING DOWNSTAIRS
                  38
WALKING UPSTAIRS
                  442
93/93 [============= ] - 2s 21ms/step - loss: 0.4030 - accuracy: 0.8860
______
Training Model with layer1 units: 64 Dropout: 0.25
______
```

Model: "sequential 19"

Layer (type)	Output Shape	Param #
lstm_28 (LSTM)	(None, 128, 32)	5376
dropout_27 (Dropout)	(None, 128, 32)	0
lstm_29 (LSTM)	(None, 64)	24832
dropout_28 (Dropout)	(None, 64)	0
dense_18 (Dense)	(None, 6)	390 ======

Total params: 30,598 Trainable params: 30,598 Non-trainable params: 0

```
Epoch 1/8
Epoch 2/8
Epoch 3/8
Epoch 4/8
Epoch 5/8
Epoch 7/8
______
```

Val Accuracy: 0.8870037198066711 Train Accuracy: 0.9466812014579773

```
Pred
                  LAYING SITTING STANDING WALKING WALKING DOWNSTAIRS \
True
LAYING
                     510
                               0
                                         0
                                                  0
                                                                    0
                              378
                                       104
                                                                    1
SITTING
```

0

0	0	36	384	15	
0	0	0	6	413	
0	1	0	1	5	
WALKING_UPS	STAIRS				
	27				
	4				
	3				
	61				
	1				
	464				
	=====]	- 3s 28ms	/step - lo	ss: 0.4472 - accuracy: 0.8799	
layer1 unit	s: 64 D	ropout: 0	.35		
	0 0 WALKING_UPS	0 0 0 1 WALKING_UPSTAIRS 27 4 3 61 1 464	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 6 0 1 WALKING_UPSTAIRS 27 4 3 61 1 464	0 0 0 6 413 0 1 0 1 5 WALKING_UPSTAIRS 27 4 3 61 1 464 ==============================

444

Model: "sequential_20"

STANDING

Layer (type)	Output Shape	Param #
lstm_30 (LSTM)	(None, 128, 32)	5376
dropout_29 (Dropout)	(None, 128, 32)	0
lstm_31 (LSTM)	(None, 64)	24832
dropout_30 (Dropout)	(None, 64)	0
dense_19 (Dense)	(None, 6)	390

Total params: 30,598 Trainable params: 30,598 Non-trainable params: 0

Epoch 1/8

Val Accuracy: 0.8975229263305664 Train Accuracy: 0.9435527920722961

```
LAYING SITTING STANDING WALKING WALKING_DOWNSTAIRS \
Pred
True
LAYING
             510
                   0
                        22
                                         0
                  375
                       112
                             1
                                         0
SITTING
                             3
STANDING
                  95
                       434
                                         0
              0
                  1
                        2
                                        11
WALKING
              0
                            481
WALKING DOWNSTAIRS
                        0
                             19
                                        397
WALKING UPSTAIRS
                             6
                                        17
Pred
           WALKING UPSTAIRS
True
                   5
LAYING
SITTING
                   3
STANDING
                   0
WALKING
                   1
WALKING DOWNSTAIRS
                   4
WALKING_UPSTAIRS
                  448
______
Training Model with layer1 units: 64 Dropout: 0.5
______
```

Model: "sequential_21"

Layer (type)	Output Shape	Param #		
lstm_32 (LSTM)	(None, 128, 32)	5376		
dropout_31 (Dropout)	(None, 128, 32)	0		
lstm_33 (LSTM)	(None, 64)	24832		
dropout_32 (Dropout)	(None, 64)	0		
dense_20 (Dense)	(None, 6)	390		

Total params: 30,598 Trainable params: 30,598 Non-trainable params: 0

Epoch 1/8 Epoch 2/8 460/460 [===============] - 42s 92ms/step - loss: 0.5980 - accuracy: 0.7491 - val loss: 0.6153 - val accuracy: 0.8015 Epoch 3/8 Epoch 4/8 Epoch 5/8 460/460 [===============] - 43s 93ms/step - loss: 0.2282 - accuracy: 0.9302 - val loss: 0.3757 - val accuracy: 0.8711 Epoch 6/8 Epoch 8/8 ------

Val Accuracy: 0.8887003660202026 Train Accuracy: 0.9420565962791443

```
Pred
                                  LAYING SITTING STANDING WALKING WALKING_DOWNSTAIRS \
             True
             LAYING
                                    512
                                                                                        0
                                              371
                                                                                       0
             SITTING
                                      5
                                                        111
                                                                   0
             STANDING
                                               68
                                                        463
                                                                   1
                                                                                       0
             WALKING
                                                         30
                                                                 426
                                                                                      15
             WALKING_DOWNSTAIRS
                                                0
                                                          0
                                                                   2
                                                                                      408
             WALKING_UPSTAIRS
                                                0
                                                                  10
                                                                                       20
             Pred
                                 WALKING_UPSTAIRS
             True
             LAYING
                                                25
             SITTING
                                                 4
             STANDING
             WALKING
                                                25
             WALKING_DOWNSTAIRS
                                                10
                                               439
             WALKING_UPSTAIRS
             1 exp2_df = pd.DataFrame(columns = ['Layer1Units', 'Dropout1', 'Layer2Units', 'Dropout2', 'TrainAccuracy', 'ValAccuracy', 'Score'],
In [44]:
               2
                                         data = exp2_scores)
             1 exp2 df.sort values(by='Score')
In [47]:
   Out[47]:
                Layer1Units Dropout1 Layer2Units Dropout2 TrainAccuracy ValAccuracy
                                                                                                             Score
              7
                        32
                               0.25
                                           64
                                                   0.35
                                                            0.943553
                                                                       0.897523
                                                                                 [0.3512811064720154, 0.8975229263305664]
                                                            0.941377
                        32
                               0.25
                                           16
                                                   0.35
                                                                       0.896844
                                                                               [0.35821279883384705, 0.8968442678451538]
                        32
                                           32
                                                   0.50
                                                            0.939472
                               0.25
                                                                       0.914489
                                                                                [0.4029683470726013, 0.8859857320785522]
                        32
                               0.25
                                           64
                                                   0.25
                                                            0.946681
                                                                       0.887004
                                                                                [0.4472033381462097, 0.8798778653144836]
              2
                        32
                               0.25
                                           16
                                                   0.50
                                                            0.927095
                                                                       0.894130
                                                                                [0.4542565941810608, 0.8771632313728333]
                        32
                                                   0.50
                                                            0.942057
                                                                       0.888700
                               0.25
                                           64
                                                                                 [0.474104106426239, 0.8887003660202026]
                        32
                               0.25
                                           32
                                                   0.35
                                                            0.945185
                                                                       0.903631
                                                                                [0.5197166204452515, 0.8934509754180908]
                        32
                                           32
                                                   0.25
                                                            0.940832
              3
                               0.25
                                                                       0.902273
                                                                                 [0.5865686535835266, 0.8489989638328552]
                        32
                               0.25
                                                   0.25
                                                            0.940968
                                                                       0.882932
                                                                                [1.0714815855026245, 0.8184594511985779]
In [48]: ▶ 1 print('We can see that best model with one layer of LSTM gives 90% accuracy and with two layers it gives 89.75% of accuracy')
               2 print()
             We can see that best model with one layer of LSTM gives 90% accuracy and with two layers it gives 89.75% of accuracy
```

Experiment 3: train the best found model for more epochs with 2 lstm layers

```
In [51]: | 1 | epochs=30
                2 \exp 3_{\text{scores}} = EXP2([64],[0.35])
```

______ Training Model with layer1 units: 64 Dropout: 0.35 ______

Model: "sequential 23"

Layer (type)	Output Shape	Param #
lstm_36 (LSTM)	(None, 128, 32)	5376
dropout_35 (Dropout)	(None, 128, 32)	0
lstm_37 (LSTM)	(None, 64)	24832
dropout_36 (Dropout)	(None, 64)	0
dense_22 (Dense)	(None, 6)	390
Total params: 30,598		

Trainable params: 30,598 Non-trainable params: 0

```
Epoch 1/30
Epoch 2/30
Epoch 4/30
Epoch 5/30
Epoch 6/30
460/460 [=============== ] - 42s 91ms/step - loss: 0.1554 - accuracy: 0.9424 - val loss: 0.4864 - val accuracy: 0.8599
Epoch 7/30
Epoch 8/30
Epoch 9/30
460/460 [=============== ] - 42s 92ms/step - loss: 0.1304 - accuracy: 0.9465 - val loss: 0.5749 - val accuracy: 0.8890
Epoch 10/30
Epoch 11/30
Epoch 12/30
Epoch 13/30
Epoch 14/30
460/460 [=============== ] - 44s 95ms/step - loss: 0.1227 - accuracy: 0.9545 - val loss: 0.6960 - val accuracy: 0.8979
Epoch 15/30
Epoch 16/30
```

```
Epoch 17/30
Epoch 18/30
Epoch 19/30
460/460 [=============== ] - 40s 86ms/step - loss: 0.1211 - accuracy: 0.9530 - val loss: 0.6853 - val accuracy: 0.8948
Epoch 20/30
Epoch 21/30
460/460 [=============== ] - 39s 86ms/step - loss: 0.1221 - accuracy: 0.9508 - val loss: 0.6466 - val accuracy: 0.9091
Epoch 22/30
Epoch 23/30
Epoch 24/30
Epoch 25/30
Epoch 26/30
Epoch 27/30
Epoch 28/30
Epoch 29/30
Epoch 30/30
460/460 [================ ] - 46s 99ms/step - loss: 0.0918 - accuracy: 0.9612 - val loss: 0.7453 - val accuracy: 0.8843
______
Val Accuracy: 0.9121140241622925 Train Accuracy: 0.9574265480041504
_____
       LAYING SITTING STANDING WALKING WALKING DOWNSTAIRS \
Pred
True
LAYING
         510
                27
                    0
                            0
SITTING
         0
            422
                65
                    1
                            0
STANDING
         0
            140
                391
                    1
                            0
WALKING
             0
                    437
                            36
                 0
WALKING DOWNSTAIRS
             0
                 0
                    0
                            420
         0
                    15
                            21
WALKING UPSTAIRS
Pred
       WALKING UPSTAIRS
True
LAYING
             0
             3
SITTING
STANDING
             0
             23
WALKING
WALKING DOWNSTAIRS
             0
             426
WALKING UPSTAIRS
93/93 [============= ] - 3s 30ms/step - loss: 0.7453 - accuracy: 0.8843
1 | exp3_df = pd.DataFrame(columns = ['Layer1Units','Dropout1','Layer2Units','Dropout2','TrainAccuracy','ValAccuracy','Score'] ,
```

```
data = exp3_scores)
```

In [53]:

Experiment 4: train the best found model for more epochs with 2 lstm layers

```
In [20]: | 1 | epochs=50
              2 exp4_scores,ytest,ypred = EXP1([32],[0.25],True)
```

______ Training Model with layer1 units: 32 Dropout: 0.25 ______

Model: "sequential"

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 32)	5376
dropout (Dropout)	(None, 32)	0
dense (Dense)	(None, 6)	198
Total naname: F F74		

Total params: 5,574 Trainable params: 5,574 Non-trainable params: 0

Epoch 1/50 Epoch 2/50 Epoch 3/50 Epoch 4/50 Epoch 5/50 Epoch 6/50 Epoch 7/50 Epoch 8/50 Epoch 9/50 Epoch 10/50 Epoch 11/50 Epoch 12/50 Epoch 13/50 Epoch 14/50 Epoch 15/50 Epoch 16/50 Epoch 17/50 Epoch 18/50

Epoch 19/5	a										
•	.===================================	- 16c	35ms/sten	- 1055.	0 1186 -	accuracy:	0 9540	- val loss.	a 5a29 ₋	val accuracy:	0 8880
Epoch 20/5		103	33m3/3ccp	1033.	0.1100	accuracy.	0.5540	Va1_1033.	0.3023	vai_accaracy.	0.0000
•	·=====================================	- 17s	38ms/step	- loss:	0.1309 -	accuracv:	0.9483	- val loss:	0.4282 -	val accuracy:	0.8982
Epoch 21/5			, ,			,		_		_ ,	
460/460 [=	========]	- 18s	38ms/step	- loss:	0.1326 -	accuracy:	0.9496	<pre>- val_loss:</pre>	0.4332 -	<pre>val_accuracy:</pre>	0.9080
Epoch 22/5	0										
_]	- 17s	37ms/step	- loss:	0.1296 -	accuracy:	0.9500	<pre>- val_loss:</pre>	0.6998 -	val_accuracy:	0.8951
Epoch 23/5			_	_						_	
_]	- 17s	36ms/step	- loss:	0.1427 -	accuracy:	0.9535	- val_loss:	0.5418 -	val_accuracy:	0.8931
Epoch 24/5	о :====================================	166	24mc/c+on	locci	A 1210	26611026111	0 0555	val locci	0 6420	val accuracy.	0 0705
Epoch 25/5	-	- 105	34iiis/step	- 1055.	0.1219 -	accuracy.	0.9333	- vai_1055.	0.0436 -	vai_accuracy.	0.0703
	。 :==========]	- 16s	35ms/step	- loss:	0.1166 -	accuracv:	0.9558	- val loss:	0.5444 -	val accuracy:	0.8945
Epoch 26/5	_		, с сор			,					
460/460 [=	========]	- 18s	40ms/step	- loss:	0.1116 -	accuracy:	0.9540	<pre>- val_loss:</pre>	0.5413 -	<pre>val_accuracy:</pre>	0.9125
Epoch 27/5											
_]	- 17s	36ms/step	- loss:	0.1252 -	accuracy:	0.9517	<pre>- val_loss:</pre>	0.5265 -	val_accuracy:	0.9074
Epoch 28/5		17-	26	1	0 1106		0 0520		0 5364		0.0060
460/460 [= Epoch 29/5	a	- 1/5	36ms/step	- 1055:	0.1196 -	accuracy:	0.9520	- vai_ioss:	0.5264 -	vai_accuracy:	0.9060
	:=====================================	- 17s	37ms/sten	- loss:	0.1220 -	accuracy:	0.9546	- val loss:	0.6210 -	val accuracy:	0.8809
Epoch 30/5	-		37 m3/ 3 ccp	1000.	011110	accai acy.	0.00.0	.41_1000.	0.0220	val_acca. acy	0.0003
•	========]	- 16s	36ms/step	- loss:	0.1324 -	accuracy:	0.9513	<pre>- val_loss:</pre>	0.5287 -	val_accuracy:	0.8904
Epoch 31/5											
_]	- 16s	35ms/step	- loss:	0.1246 -	accuracy:	0.9513	<pre>- val_loss:</pre>	0.5904 -	val_accuracy:	0.9057
Epoch 32/5		164	26	1	0 1245		0 0535	val lagge	0 5267		0.0040
Epoch 33/5	a	- 165	36ms/step	- 1055:	0.1245 -	accuracy:	0.9525	- vai_1055:	0.5367 -	vai_accuracy:	0.8948
•	:=====================================	- 16s	35ms/step	- loss:	0.1221 -	accuracv:	0.9492	- val loss:	0.5060 -	val accuracy:	0.8955
Epoch 34/5	_		, _F							,	
460/460 [=	=======]	- 17s	36ms/step	- loss:	0.1214 -	accuracy:	0.9541	<pre>- val_loss:</pre>	0.5426 -	val_accuracy:	0.9016
Epoch 35/5			_	_						_	
]	- 16s	35ms/step	- loss:	0.1198 -	accuracy:	0.9563	- val_loss:	0.5815 -	val_accuracy:	0.8985
Epoch 36/5		- 16c	36ms/sten	- 1055.	0 1167 -	accuracy:	0 9537	- val loss.	0 5748 -	val accuracy:	0 8948
Epoch 37/5	-	103	30m3, 3ccp	1035.	0.1107	accar acy.	0.3337	va1_1033.	0.57 10	var_acca, acy.	0.0510
•]	- 16s	35ms/step	- loss:	0.1188 -	accuracy:	0.9547	<pre>- val_loss:</pre>	0.5325 -	val_accuracy:	0.9121
Epoch 38/5											
_]	- 16s	35ms/step	- loss:	0.1236 -	accuracy:	0.9559	<pre>- val_loss:</pre>	0.4596 -	val_accuracy:	0.9111
Epoch 39/5		16-	25/24.2	1	0 1272		0.0400		0 5505		0.0000
Epoch 40/5	a	- 165	35ms/step	- 1055:	0.12/3 -	accuracy:	0.9498	- vai_1055:	0.5595 -	val_accuracy:	0.9030
•	:=====================================	- 17s	36ms/sten	- loss:	0.1115 -	accuracv:	0.9574	- val loss:	0.5877 -	val accuracy:	0.9094
Epoch 41/5	-	_, _	. <i>2,</i> 200p		—- -	·	- · ·	<u>-</u>	· · - · ·	_======================================	
•]	- 16s	35ms/step	- loss:	0.1102 -	accuracy:	0.9574	<pre>- val_loss:</pre>	0.5567 -	val_accuracy:	0.9050
Epoch 42/5										_	
-		- 17s	36ms/step	- loss:	0.1117 -	accuracy:	0.9569	- val_loss:	0.4832 -	val_accuracy:	0.9084
Epoch 43/5	0]	_ 10c	10mc/c+00	- locc:	0 1552	accuracy	0 0/07	- val locc:	0 5066	val accuracy:	0 9040
460/460 [= Epoch 44/5	_	- 182	4viiis/step	- 1022:	a.1337 -	accuracy:	v.940/	- vai_1055:	- 000c.u	vai_accuracy:	v.6948
•	:=====================================	- 18s	39ms/step	- loss:	0.1192 -	accuracv:	0.9512	- val loss:	0.5146 -	val accuracv:	0.9067
Epoch 45/5	-		,r						-		-
460/460 [=]	- 18s	40ms/step	- loss:	0.1188 -	accuracy:	0.9554	<pre>- val_loss:</pre>	0.4962 -	val_accuracy:	0.9125
Epoch 46/5				-						_	
-	a=========]	- 19s	41ms/step	- loss:	0.1200 -	accuracy:	0.9569	- val_loss:	0.4663 -	val_accuracy:	0.9009
Epoch 47/5	ย :========]	_ 10c	39mc/c+an	- 1000	0 1034	accuracy	0 0617	- val locco	0 <u>1</u> 780 -	val accuracy:	0 2006
Epoch 48/5	_	- 192	ארוובר /steb	- 1022:	0.1034 -	accuracy:	0.301/	- vai_1022;	0.4/09 -	vai_accuracy:	סבבס.ט
-pocii 40/3	~										

```
Epoch 49/50
      Epoch 50/50
      -----
      Val Accuracy: 0.9216151833534241 Train Accuracy: 0.957290530204773
      ------
                LAYING SITTING STANDING WALKING WALKING DOWNSTAIRS \
      Pred
      True
      LAYING
                  510
                                           0
                            5
      SITTING
                      369
                           121
                                 0
                                           0
      STANDING
                       72
                           460
                                 0
                                           0
      WALKING
                            6
                                466
                                           4
                       0
      WALKING_DOWNSTAIRS
                            0
                                 4
                                          410
                   0
      WALKING_UPSTAIRS
                       1
                                13
                                           19
                WALKING_UPSTAIRS
      Pred
      True
      LAYING
                       22
      SITTING
                        1
      STANDING
                        0
                       20
      WALKING
      WALKING_DOWNSTAIRS
                        6
                       435
      WALKING UPSTAIRS
      1 exp4_df = pd.DataFrame(columns = ['Layer1Units', 'Dropout1', 'TrainAccuracy', 'ValAccuracy', 'Score'],
In [21]:
                    data = exp4 scores)
       2
In [22]:
     1 exp4 df
 Out[22]:
        Layer1Units Dropout1 TrainAccuracy ValAccuracy
                                           Score
           32
                         0.921615 [0.5329602956771851, 0.8992195725440979]
               0.25
                    0.957291
```

Observations:

- 1. Conducted Hyperparameter tuning in 4 parts.
- 2. found that the DL architecture with one layer of lstm (32units) and dropout 0.25 gives the highest accracy.
- 3. increased epochs for the best architecture, still maximum accuracy attained was 90%.

----- Precision matrix (Columm Sum=1) -----

----- Recall matrix (Row sum=1)

Model built without expert crafted fetures performs fairly well with 90% accuracy with layer 1. Model able to provide good precisiona nd recall for standing, sitting, lying, walking.