# Refroidissement LASER

Feynman Morrocan Adventure

Pôle Physique



Pôle Physique Contents

## Contents

| 1 | Introduction à mécanique quantique              | 3  |
|---|-------------------------------------------------|----|
|   | 1.1 L'histoire de la mécanique quantique:       | 3  |
|   | 1.2 Phénomènes quantiques                       | 4  |
|   | 1.2.1 Expérience des fentes de Young            | 4  |
| 2 | Modèle de Bohr                                  | 9  |
| 3 | Energie cinétique et Température                | 12 |
|   | 3.1 Rappel: Définition de l'Énergie Cinétique   | 12 |
|   | 3.2 Définition de l'Énergie Thermique           | 12 |
|   | 3.3 Lien entre Énergie Cinétique et Température | 12 |
| 4 | Interaction lumière-matière                     | 14 |
| 5 | Refroidissement LASER                           | 18 |

Pôle Physique Contents

### Mots clés:

Onde - Microscope électronique - Loi de Coloumb - Modèle de Bohr - Température - Energie cinétique - Laser - Absorption - Emission

### Présentation du thème

- Pourquoi nous conseille-t-on souvent de porter le blanc en été et le noir en hiver ?
- Comment les théories physiques modernes ont révolutionné la puissance des microscopes ?
- Crois-tu que la lumière peut refroidir un gaz d'atomes plus que tout autre réfrégirateur ?

Ce sujet aborde le thème de la **mécanique quantique**, un thème qui déborde du programme du lycée, néanmoins le sujet est autosuffisant pour répondre aux problématiques ci-dessus. Les questions sont de difficulté variable, allant des plus simples, passant par des questions qui demandent plus d'implication, arrivant à des questions difficiles (marquées par des \*). L'idée n'est pas de nous faire parvenir d'un travail excellent fait par ChatGPT, DeepSeek, votre pofesseur, ou votre grand frère..., et non plus un travail bâclé de dernière minute. **On cherche tout simplement un travail qui est le VÔTRE.** 

On croit que vous êtes des Oppenheimer pacifiques et pacifistes, sauf en champ de bataille avec une épreuve physique, vous faites preuve de qualités d'un vaillant combattant.

### Instructions

- Vous devez répondre aux questions proposées, de manière ordonnée et structurée, de telle façon qu'on peut comprendre la thématique physique rien qu'à partir de vos réponses. Les commentaires qualitatifs sont fortement encouragés. Vous pouvez ajouter tout complément que vous jugez instructif pour le sujet.
- Le thème abordé est hors programme du lycée, donc la qualité de vos réponses dépendra beaucoup sur votre compréhension de la documentation fournie. Vous pouvez effectuer des recherches supplémentaires, cependant, le travail doit rester individuel et les connaissances des élèves seront évaluées lors de l'interview.
- On vous encourage à envoyer votre candidature, même si vous n'avez pas tout résolu.
- On insiste sur la clarté et la lisiblité de vos copies que ce soit des manuscrits scannés ou en format word, ou toute autre format de votre choix.
- Si un rapport montre une similarité forte avec un autre ou semble ne pas être le travail du candidat, il sera pénalisé. Les entretiens oraux sont programmés pour nous montrer que votre travail était personnel.

### 1 Introduction à mécanique quantique

### 1.1 L'histoire de la mécanique quantique:

La Mécanique Quantique est une branche de la physique qui étudie le comportement des particules à l'échelle microscopique ou subatomique, au niveau des atomes et des électrons. Contrairement aux objets du monde quotidien (monde macroscopique), ces particules obéissent à des lois très différentes de celles de la physique classique.

Elle a été développée au début du 20<sup>e</sup> siècle pour expliquer des phénomènes que la physique classique ne parvenait pas à expliquer: tels que la nature du rayonnement lumineux et la structure de l'atome. Elle repose sur des concepts fascinants, tels que :

- La dualité onde-corpuscule: une particule peut se comporter à la fois comme une onde (tel une vague à la surface de l'eau) et comme un corpuscule (particule).
- La superposition quantique: une particule peut être dans plusieurs états en même temps jusqu'à ce qu'on l'observe. C'est pour cela qu'en physique moderne, on parle de nuage électronique (l'électron peut être partout dans ce nuage), plutôt que de parler d'un électron sur une orbite déterminée comme dans le modèle de Rutherford.
- L'intrication quantique: deux particules peuvent être liées de telle manière qu'un changement sur l'une affecte immédiatement l'autre, même à grande distance.

Bien que surprenante et parfois contre-intuitive, la mécanique quantique a permis des avancées majeures dans la science et la technologie. notamment dans des domaines comme l'électronique (transistors), les lasers, utilisés par exemple en médecine et en industrie, et l'informatique quantique (ordinateurs quantiques).

Aujourd'hui, elle représente un pilier fondamental de la physique moderne et continue d'ouvrir de nouvelles perspectives sur la compréhension de l'Univers.



Figure 1: Solvay conference 1927

Mais d'où vient le mot quantique et pourquoi parle-t-on de physique quantique?

Tout a commencé avec l'étude d'un phénomène intriguant : le rayonnement du corps noir. **Un corps noir** est un objet idéal qui absorbe la totalité du rayonnement qu'il reçoit,

sans en réfléchir ni en transmettre. En retour, il peut également émettre de l'énergie sous forme de rayonnement thermique. Un exemple simple dans la vie courante : les vêtements noirs chauffent plus au soleil que les vêtements clairs, car ils absorbent davantage l'énergie lumineuse. Cette capacité d'absorption totale est ce qui caractérise un corps noir dans les modèles théoriques utilisés en physique.

### Le Problème du Corps Noir et la Révolution de Planck

Les scientifiques ont longtemps étudié le rayonnement émis par un corps noir lorsqu'il est chauffé. En utilisant les lois de la physique classique, ils tentaient de prédire l'intensité du rayonnement en fonction de la température. Mais un problème majeur est vite apparu : selon leurs calculs, l'énergie émise devient infinie à de hautes fréquences dans l'ultraviolet. Cette prédiction absurde, appelée **catastrophe ultraviolette**, contredisait complètement les observations expérimentales.

C'est **Max Planck** qui, en 1900, proposa une solution révolutionnaire : il suggéra que l'énergie n'est pas échangée de manière continue, mais par **quanta**, c'est-à-dire par petites quantités discrètes. Cette idée simple mais radicale marqua la naissance de la mécanique quantique.

Mais alors, qu'est-ce que l'énergie?

En physique, l'énergie est la capacité d'un système à produire un changement: par exemple, à chauffer, à se déplacer, à émettre de la lumière. On la considérait autrefois comme une grandeur continue, mais Planck a montré qu'à l'échelle microscopique, elle pouvait être **quantifiée**, c'est-à-dire ne se transmettre que par petits "paquets" bien définis.

### 1.2 Phénomènes quantiques

Plongeons-nous dans le monde étrange de la physique quantique, bien différent de notre quotidien. Ici, une particule peut être à plusieurs endroits à la fois, des objets semblent se téléporter, et les règles habituelles ne s'appliquent plus. Ces phénomènes surprenants et paradoxaux sont au cœur de la physique quantique.

Dans cette partie, nous allons explorer la dualité onde-corpuscule, un phénomène étrange mais fondamental, qui est à l'origine de nombreuses avancées de la technologie moderne.

### 1.2.1 Expérience des fentes de Young

L'expérience des fentes de Young, réalisée pour la première fois par Thomas Young en 1801, est l'une des expériences fondamentales en physique qui illustre la nature ondulatoire de la lumière et, plus tard, la dualité onde-corpuscule des particules quantiques. Mais qu'est ce qu'une onde?

Une onde, c'est une façon pour l'énergie de se déplacer sans transporter de matière. Imagine que tu jettes un caillou dans l'eau: cela forme des cercles (déformation de la surface de l'eau) qui s'éloignent du point de chute. Ce sont des ondes, elles bougent, perturbent la surface de l'eau, mais l'eau elle-même ne se déplace pas. La surface de l'eau

dans ce cas oscille sur place.

Une onde peut être décrite avec quelques notions simples :

- La longueur d'onde  $(\lambda)$ : C'est la distance entre deux vagues successives. Si les vagues sont très éloignées, plus la longueur d'onde est grande.
- Le nombre d'onde (k): lié à la longueur d'onde  $\lambda$  par  $k = \frac{2\pi}{\lambda}$ .
- La fréquence (f): C'est le nombre de vagues qui passent en un certain temps. Plus il y a de vagues en une seconde, plus la fréquence est élevée.
- La période (T): C'est le temps nécessaire pour qu'une oscillation complète se produise. Elle est inversement proportionnelle à la fréquence et s'exprime par la relation  $T = \frac{1}{f}$ .
- La vitesse de propagation (v): C'est la vitesse à laquelle l'onde se déplace. Par exemple, une vague sur l'eau avance plus lentement que le son dans l'air.



Figure 2: Longueur d'onde  $\lambda$ 



Figure 3: La période T

La vitesse est définie par la relation fondamentale :

$$v = \frac{\text{distance}}{\text{temps}}$$

Dans le cas d'une onde, la distance parcourue en une période T est la longueur d'onde  $\lambda$ , donc on obtient :

$$v = \frac{\lambda}{T}$$

Comme la fréquence et la période sont reliées par  $f = \frac{1}{T}$ , on retrouve aussi la relation :

$$v = \lambda \cdot f$$

**Définition 1.1.** • La crête d'une onde est son point le plus haut. Exemple : Le sommet de l'onde dans l'eau.

• Le creux d'une onde est son point le plus bas. Exemple : Le point le plus bas

entre deux vaques.



Exercise 1.1. La lumière du soleil se déplace dans le vide à une vitesse de  $c = 3 \times 10^8$  m/s. La distance moyenne entre le Soleil et la Terre est de  $D = 1,49 \times 10^{11}$  m. Calcule le temps qu'il faut à un rayon de soleil pour qu'il atteigne la Terre.

# L'idée révolutionnaire de Planck - Photon : particule associée aux ondes lumineuses

Pour résoudre l'énigme du rayonnement du corps noir, il a fallu modifier la théorie existante. La clé de cette avancée a été de représenter l'énergie de manière discrète, sous la forme suivante :

$$E = hf (1)$$

où h est une constante fondamentale  $h=6,626\times 10^{-34}\,\mathrm{J.s}$  et f représente la fréquence du rayonnement considéré comme une onde. Pour simplifier certaines expressions, on utilise également une version dérivée appelée **constante de Planck réduite**, notée  $\hbar$ , définie par :

$$\hbar = \frac{h}{2\pi} \tag{2}$$

En adoptant cette nouvelle façon de concevoir l'énergie, et en l'intégrant aux équations physiques, les scientifiques sont enfin parvenus à réconcilier les prédictions théoriques avec les résultats expérimentaux. Ainsi, en appliquant la dualité onde-corpuscule à la lumière, on définit le **photon** comme particule associée aux ondes lumineuses, et l'énergie d'un photon associée à une onde de fréquence f est E = hf.

Exercise 1.2. Est-ce qu'un objet aussi familier qu'un ballon peut être décrit par la physique quantique ?

Pour y répondre, comparons ce ballon à une particule, typiquement étudiée dans le cadre quantique.

1. Considérons une particule qui possède une fréquence  $f = 5 \times 10^{14}$  Hz. [Cela veut

dire que selon la dualité onde-corpuscule, une particule est aussi une onde, et quand on parle de la fréquence d'une particule, c'est de la fréquence de l'onde qui lui est associée qu'il s'agit.

- Calcule l'énergie de cette particule avec la formule E=hf, en utilisant  $h=6.626\times 10^{-34}~J.s.$
- Compare cette énergie à la valeur  $\hbar \times 1 \, s^{-1} = 1,055 \times 10^{-34} \, J$  (ordre de grandeur).
- Quelle conclusion peux-tu en tirer?
- 2. Revenons maintenant à ton ballon. Il a une masse de 270 g (soit 0,27 kg) et se déplace à une vitesse de 5 m/s.
  - Calcule son énergie cinétique à l'aide de la formule  $E = \frac{1}{2}mv^2$ .
  - Compare cette énergie à  $\hbar \times 1 \, s^{-1}$ .
  - Selon toi, le comportement du ballon peut-il être décrit par la physique quantique ? Justifie ta réponse.

Maintenant revenons à l'expérience des fentes de Young, dans cette expérience, une lumière passe à travers deux petites fentes très proches l'une de l'autre (Figure 4). Après être passée à travers ces fentes, la lumière se propage et arrive sur un écran placé plus loin. Ce que l'on observe, c'est que l'écran n'est pas simplement éclairé de manière uniforme. Au lieu de cela, on voit une série de franges lumineuses, c'est-à-dire des bandes alternées claires et sombres.



Figure 4: Expérience des fentes de Young avec une source de lumière

Ce phénomène d'interférences, où des zones sombres et lumineuses apparaissent sur l'écran, est une propriété fondamentale de la lumière et, de manière plus générale, des ondes. En effet, que ce soit pour la lumière, les ondes sonores ou même les vagues à la surface de l'eau, les interférences sont un comportement typique des ondes.

Cependant, ce phénomène surprenant ne se limite pas à la lumière. Au  $20^{\grave{e}me}$  siècle, des scientifiques ont décidé de reproduire cette expérience avec des électrons. Ils ont obtenu un résultat étonnant, même en envoyant les électrons un par un à travers les fentes, une figure d'interférences finit par apparaître sur l'écran (figure 5).

Cela signifie que chaque électron, bien qu'étant une particule, semble se comporter comme une onde, interférant avec lui-même. En d'autres termes, chaque électron traverse simultanément les deux fentes, comme s'il était une onde, créant ainsi une figure d'interférences. Ce phénomène nous montre que la lumière et les particules peuvent avoir





Figure 5: Expérience des fentes de Young avec une source de particules

un comportement à la fois corpusculaire et ondulatoire, une idée qui est au cœur de la dualité onde-corpuscule de la matière.

Exercise 1.3 (\*\*). Pourquoi, à ton avis, avec une source de lumière voit-on des taches sombres sur l'écran au lieu de voir un écran entièrement éclairé? Indication : Faites l'expérience des ondes générées par la chute de deux objets proches dans l'eau, puis raisonnez sur la crête et le creux de l'onde.

Exercise 1.4. La relation de de Broglie est un concept fondamental de la mécanique quantique, qui relie le comportement ondulatoire et corpusculaire des particules. Selon cette relation, toute particule en mouvement, comme un électron, peut être associée à une onde.

La longueur d'onde associée à une particule est donnée par la formule suivante :

$$\lambda = \frac{h}{p}$$

 $O\dot{u}$ :

- λ est la longueur d'onde associée à la particule,
- h est la constante de Planck,
- $p = m \cdot v$  est la quantité de mouvement de la particule (l'impulsion en mécanique quantique), où m est la masse de la particule et v sa vitesse.

Dans un microscope électronique, des électrons sont utilisés au lieu de la lumière pour obtenir une résolution plus fine. Cela est possible grâce à la dualité onde-corpuscule des électrons. Selon la relation de de Broglie, chaque électron peut être associé à une longueur d'onde qui détermine sa capacité à être utilisé pour observer des structures extrêmement petites à l'échelle atomique.

Pôle Physique 2 Modèle de Bohr

### Données:

• Énergie cinétique de l'électron :  $E_{cinétique} = 1 \text{ eV} = 1,6 \times 10^{-19} J$ 

• Masse de l'électron :  $m_e = 9,11 \times 10^{-31} \, kg$ 

• Constante de Planck :  $h = 6,63 \times 10^{-34} \, J \cdot s$ 

**Questions:** 1. Montrez que  $p = \hbar k$  où k est le nombre d'onde.

2. Calculez la vitesse de l'électron en utilisant la formule de l'énergie cinétique :

$$E_{cin\acute{e}tique} = \frac{1}{2}m_e v^2$$

- 3. En utilisant la relation de de Broglie, calculez la longueur d'onde  $\lambda$  associée à l'électron.
- 4. Quelle est l'importance de la longueur d'onde associée à l'électron dans le cadre d'un microscope électronique sachant que la longueur d'onde de la lumière visible est généralement de l'ordre de 400 à 700 nm? Indication : La distance minimale entre deux points discernables d'un microscope est proportionnel à la longueur d'onde utilisée.

### 2 Modèle de Bohr

Le modèle de Bohr est un modèle atomique proposé par le physicien danois Niels Bohr en 1913 pour expliquer la structure des atomes, en particulier celui de l'hydrogène. Il s'appuie sur les découvertes précédentes de Rutherford et Planck et combine des idées de la mécanique classique et quantique.



Figure 6: Forces et vitesse de l'électron autour du noyau.

On considère un noyau de charge +e et de masse  $m_p$ , ainsi qu'un électron de charge -e et de masse  $m_e$  qui orbite autour du centre de masse du système.

Pôle Physique 2 Modèle de Bohr

D'après la loi de Coulomb, la force électrostatique attractive entre le noyau et l'électron est donnée par :

$$\vec{F_r} = -\frac{ke^2}{r^2}\hat{u_r} \tag{3}$$

où:

- $k = \frac{1}{4\pi\varepsilon_0}$  est la constante de Coulomb,
- e est la charge élémentaire ( $e \approx 1.6 \times 10^{-19}C$ ),
- r est la distance entre le noyau et l'électron,
- $\hat{u_r}$  est le vecteur unitaire dirigé vers le noyau,

L'électron étant en mouvement circulaire, il subit une force centrifuge donnée par :

$$\vec{F_a} = \frac{m_e v^2}{r} \hat{u_r} \tag{4}$$

où:

- $m_e$  est la masse de l'électron,
- v est la vitesse de l'électron,
- r est le rayon de l'orbite,
- $\hat{u_r}$  est le vecteur unitaire radial.

Exercise 2.1. À quelle force la force  $\vec{F_r}$  vous fait-elle penser? En vous basant sur cette analogie, expliquez pourquoi le modèle de Bohr est également appelé **modèle** planétaire.

L'énergie totale E d'un électron en orbite est donnée par :

$$E = -\frac{ke^2}{r} + \frac{1}{2}m_e v^2 \tag{5}$$

Exercise 2.2. Exprimez la vitesse de l'électron à l'équilibre, puis retrouvez l'énergie totale E en fonction de la permittivité du vide  $\varepsilon_0$ , de la charge élémentaire e et du rayon de l'orbite r.

Dans le modèle de Bohr, on introduit une grandeur que l'on appelle dans la physique généralement moment cinétique de l'électron qui est associée à la vitesse et à la position de la manière suivante  $(m_e vr)$  (on ne va pas chercher d'ou provient cette formule dans ce sujet ). Cette grandeur est quantifée (c'est à dire il prend des valeurs discrètes). Cette quantification est donnée par la relation :

$$m_e v r = n\hbar \tag{6}$$

où:

Pôle Physique 2 Modèle de Bohr

- $m_e$  est la masse de l'électron,
- v est la vitesse de l'électron,
- r est le rayon de l'orbite,
- $\hbar = \frac{h}{2\pi} = 1.055 \times 10^{-34} \,\mathrm{J} \cdot \mathrm{s}$  est la constante de Planck réduite,
- n est un nombre quantique entier (n = 1, 2, 3, ...).

Cette condition impose que l'électron ne puisse occuper que certaines orbites spécifiques correspondant à des niveaux d'énergie bien définis.

Exercise 2.3. En utilisant la quantification du moment cinétique et le fait que l'on est à l'équilibre, exprimer les rayons et les énergies quantifiées de l'atome en fonction de n,  $\varepsilon_0$ , e,  $m_e$ , et h.

Exercise 2.4. Donner l'énergie entre deux niveaux consécutifs, et donner la longueur d'onde de lumière équivalente à cette énergie.

Nous avons vu que l'énergie d'un électron dans un atome est quantifiée, c'est-à-dire qu'il ne peut occuper que certaines valeurs d'énergie bien définies. Cette quantification découle du modèle de Bohr et des principes de la mécanique quantique.

Etant donné que l'électron ne peut exister que sur des niveaux d'énergie spécifiques, il est courant en physique atomique d'utiliser un diagramme des niveaux d'énergie pour représenter ces états quantiques. Le diagramme dans la figure 7 permet de visualiser les différentes énergies que peut prendre un électron dans un atome.



Figure 7: Diagramme des niveaux d'énergie d'un atome.

Une autre représentation intéressante est celle où l'électron tourne autour du noyau sur une orbite bien définie et ne peut se déplacer que sur des orbites quantifiées.

**Exercise 2.5.** Réalisez un schéma représentant orbites  $n \in \{1, 2, 3\}$  sur lesquelles l'électron peut se déplacer en respectant une bonne échelle. Expliquez clairement le schéma en détaillant la signification des différentes orbites et comment on peut se déplacer d'une orbite à une autre.

Dans la suite du problème, nous nous intéresserons au fait que l'atome possède des niveaux d'énergie discrets, dans lesquels l'électron peut exister sans occuper d'états intermédiaires.

## 3 Energie cinétique et Température

### 3.1 Rappel: Définition de l'Énergie Cinétique

**Définition 3.1.** L'énergie cinétique est l'énergie qu'un corps possède en raison de son mouvement. Elle dépend de la masse de l'objet et de sa vitesse, selon la relation :

$$E_c = \frac{1}{2}mv^2 \tag{7}$$

où:

- $E_c$  est l'énergie cinétique en joules (J),
- m est la masse en kilogrammes (kg),
- v est la vitesse en mètres par seconde (m/s).

## 3.2 Définition de l'Énergie Thermique

Note 3.1. L'agitation thermique correspond au mouvement incessant des particules d'un gaz. Ce mouvement est directement lié à la température. Par exemple, dans un gaz parfait, les particules sont supposées se déplacer de manière indépendante et aléatoire, et la température correspond à la moyenne de l'énergie cinétique de ces particules.

**Définition 3.2.** L'énergie thermique est liée à l'agitation désordonnée des particules constituant un système. Plus la température est élevée, plus ces particules se déplacent rapidement.

### 3.3 Lien entre Énergie Cinétique et Température

Il a été démontré, grâce aux principes de la physique statistique, que dans un gaz parfait, l'énergie cinétique moyenne d'une particule est directement proportionnelle à la



Figure 8: Représentation de l'agitation thermique des atomes.

température du gaz. Plus précisément, chaque degré de liberté contribue en moyenne pour une quantité d'énergie égale à:

$$E_c = \frac{1}{2}k_B T \tag{8}$$

où:

- $k_B = 1.38 \times 10^{-23} \text{J K}^{-1}$  est la constante de Boltzmann,
- T est la température en kelvins (K). $[T(^{\circ}C) = T(K) 273.15]$

Le nombre total de degrés de liberté d'une particule dépend de sa nature physique et du contexte dans lequel elle évolue. On pense tout d'abord aux directions possibles de son mouvement. Une particule contrainte à se déplacer le long d'une ligne n'a qu'un seul degré de liberté. Si elle se déplace librement dans un plan, elle en possède deux, et dans l'espace tridimensionnel, trois. À ces degrés de liberté de translation peuvent s'ajouter des degrés de liberté rotationnels. Par exemple, si une particule ou un objet peut effectuer une rotation autour d'un axe, cela constitue un degré de liberté supplémentaire. Deux axes de rotation indépendants en ajoutent deux. Enfin, dans certains systèmes physiques, on peut également considérer des degrés de liberté internes, comme des mouvements d'oscillation qui enrichissent encore la dynamique possible du système étudié. Ces mouvements d'oscillations sont présents dans des systèmes telles que les gaz polyatomiques.

Exercise 3.1. Déterminez l'énergie cinétique moyenne totale d'un atome ou d'une molécule en fonction de T et  $k_B$  en précisant les degrés de liberté que vous considérez (degré de liberté= translation, rotation , vibration...)

Exercise 3.2. En observant la figure ci-dessous (Figure 9) et en se basant sur la formule 8, expliquez comment la vitesse des atomes varie avec la température. Quelle interprétation peut-on en donner en termes d'agitation thermique?





- (a) Agitation thermique à basse température
- (b) Agitation thermique à haute température

Figure 9: Comparaison de l'agitation thermique en fonction de la température.

Travaillons dans l'approximation des gaz parfaits, et gardons les mêmes degrés de liberté que vous avez définis dans la question 1.

Exercise 3.3. "Ordre de grandeur": En utilisant le lien entre l'énergie cinétique et l'énergie thermique, détermine  $< v^2 >$  d'un atome de rubidium ( $m = 1.42 \times 10^{-25}$  kg) à une température de 300 K.

Exercise 3.4. Comparez la vitesse moyenne d'une molécule de dioxygène  $(O_2)$  et d'un atome de rubidium (Rb) à température ambiante. Lequel va plus vite et pourquoi?

#### Données:

- $N_A = 6.022 \times 10^{23}$ : le nombre d'Avogadro.
- les masses molaires des éléments étudiés sont :

Oxygène:  $M_O = 16g/mol$ , Rubidium:  $M_{Rb} = 85.47 g/mol$ 

Exercise 3.5. Donc, à ton avis, comment peut-on réduire l'énergie cinétique moyenne d'un atome sans action mécanique?

### 4 Interaction lumière-matière

Comme vu précédemment, la lumière a une nature corpusculaire, représentée par le photon, ce qui légitime l'interaction lumière-matière comme une interaction entre un photon et un électron. Ces échanges d'énergie sont quantifiés comme le sont les états d'énergie de l'atome. Lorsqu'un atome est au repos, il est sur son niveau d'énergie le plus

bas, à son état fondamental. Pour l'analyse de cette interaction entre lumière et matière, nous considérons un seul état excité de l'atome d'énergie  $E_1$ , alors que l'énergie de l'état fondamental est  $E_0$ .



Figure 10: Electron à l'état fondamental  $E_0$ .

Pour que l'atome passe de l'état fondamental à énergie  $E_0$ , à l'état excité à énergie  $E_1 > E_0$ , il lui faut un apport énergétique extérieur. Une manière de transférer de l'énergie à l'électron consiste à lui faire absorber un photon, et c'est un premier processus d'interaction lumière-matière qu'est l'absorption.



Figure 11: Processus d'absoprtion

Exercise 4.1. En vous appuyant sur la première partie du problème 1.2.1, et sur le théorème de conservation de l'énergie appliqué sur le système {atome + photon}, indiquez la fréquence du photon incident f permettant ce transfert électronique.

Le seul état stable d'un atome est celui dans lequel tous ses électrons sont à l'état fondamental. Ainsi, un électron excité cherchera à se désexciter et à revenir à l'état de basse énergie, en émettant un photon, c'est le processus d'émission.



Figure 12: Processus d'émission spontanée

Exercise 4.2. Après l'absorption du photon de fréquence f, il s'écoule un intervalle de temps  $\Delta t \approx 1 \,\mu s$ , pendant lequel aucun autre photon externe n'interagit avec l'atome. Sachant que la durée de vie de l'électron dans l'état excité est de l'ordre de  $1 \times 10^{-8} \,\mathrm{s}$ , comment  $E_2$ , l'énergie de l'électron à l'instant  $\Delta t$ , se compare à  $E_1$ ?

Historiquement, jusqu'à 1917, le processus d'émission connu est quand cela se produit sans aucun stimulus externe, on parle de l'émission spontanée. Comme l'apport d'énergie est le même, l'énergie du photon émis spontanément est égale à l'énergie du photon initialement absorbé par l'électron pour l'amener à l'état excité. Mais en général, le sens et la direction du photon émis n'ont rien à voir avec le sens et la direction du photon incident.



Figure 13: Si un atome d'hydrogène est soumis à la lumière blanche qui contient un spectre de lumière (c'est à dire une suite continue de longueurs d'onde de lumière), on voit qu'il n'absorbe pas touts les couleurs (les bandes noires dans le spectre d'absorption représentent la lumière absorbée). Et quand ce gaz d'hydrogène, émet la lumière, on ne retrouve pas toutes les couleurs (les bandes colorées dans le spectre d'émission représentent la lumière émise).

Exercise 4.3. La Figure 13 représente le spectre de l'absorption et d'émission de l'atome d'Hydrogène, obtenu en faisant passer la lumière blanche à travers un échantillon d'hydrogène. D'après ce qui précède, expliquez pourquoi les deux spectres sont complémentaires.

En 1917, Einstein prédit un troisième processus d'interaction lumière-matière, le processus d'émission stimulée. Elle se produit quand un photon incident interagit avec un électron en état excité. Cette interaction incite l'électron à émettre un second photon tout en redescendant à son état fondamental, comme illustré dans la figure 14. L'électron

n'absorbe pas le photon incident, et ce dernier continue son chemin. En résumé, à l'issue de l'émission stimulée, il y aura deux photons : le photon incident initial et le photon émis. Ces deux photons auront la même énergie, la même fréquence, le même sens.

Ainsi, l'émission stimulée agit comme la duplication de la lumière. En répétant de nombreuses fois ce phénomène, il est possible de créer une source de lumière qui est composée de photons tous identiques, unidirectionnels, monochromatiques (c'est à dire ayant le même f), et intenses, on parle de LASER (Light Amplification by Stimulated Emission of Radiation).



Figure 14: Processus d'émission stimulée

Exercise 4.4. Quel schéma parmi les suivants représente le mieux l'émission stimulée d'un photon par l'atome en raison d'une variation du niveau d'énergie de l'électron?



Exercise 4.5 (\*\*). On a vu que la fabrication des lasers repose sur l'émission stimulée, et que celle ci nécessite des électrons excités, or le niveau le plus bas énergétiquement est celui qui est toujours le plus peuplé, donc il faut penser tout d'abord à augmenter le nombre des électrons excités. D'après tout ce qui précède, proposez deux suggestions avec lesquelles on peut privilégier l'émission stimulée par rapport à l'absorption ou à l'émission spontanée.

### 5 Refroidissement LASER

Le refroidissement laser est une technique utilisée pour abaisser la température des atomes en mouvement, atteignant de très basses températures. Cette technologie a des applications dans de nombreux domaines, allant de la recherche fondamentale en physique quantique à des applications pratiques en métrologie, navigation et médecine. Dans cette dernière partie, on verra comment la technique LASER peut refroidir un gaz d'atomes.

Exercise 5.1. En vous référant à la partie 3, expliquez pourquoi parle-t-on de refroidissement lorsqu'on réduit la vitesse des atomes?

Considérons un atome de rubidium  $^{87}{\rm Rb}$ , de masse M, en mouvement à une vitesse  $\vec{v}=v\vec{e_x}$ , éclairé par un laser de longueur d'onde  $\lambda=780\,{\rm nm}$ , correspondant à une transition électronique du Rubidium. Lors de l'absorption, le photon absorbé transfère à l'atome sa quantité de mouvement  $\vec{p}=\hbar\vec{k}=-\hbar k\vec{e_x}$ , provoquant alors une modification de la vitesse atomique.



Figure 15: Ralentissement de l'atome de Rubidium lors du processus d'absorption.

Exercise 5.2. Exprimez k en fonction de  $\lambda$ .

Exercise 5.3 (\*). Expliquez pourquoi ce processus d'absorption ralentit l'atome ? Indication : Comparez la norme de la vitesse avant et après l'absorption.

L'atome est continument soumis au rayonnement LASER, alors il peut se désexciter par émission stimulée ou émission spontanée.

$$\overset{\vec{v} + \frac{\hbar}{M} \vec{k}}{\longleftrightarrow} \overset{\text{Laser}}{\longleftrightarrow} \overset{\vec{v} + \frac{\hbar}{M} \vec{k} - \frac{\hbar}{M} \vec{k}}$$

Figure 16: Bilan de quantité de mouvement après l'émission stimulée.

$$\overrightarrow{v} + \frac{\hbar}{M} \overrightarrow{k} \qquad \Longrightarrow \qquad \overrightarrow{v} + \frac{\hbar}{M} \overrightarrow{k} + \frac{\hbar}{M} \overrightarrow{k}'$$

Figure 17: Bilan de quantité de mouvement après l'émission spontanée.

Un cycle Absorption-Emission stimulé, ramène l'atome à sa vitesse initiale  $\vec{v}$ , donc ne change rien. Par contre, un cycle Absorption-Emission spontanée, crée une différence de vitesse  $\Delta \vec{v} = \frac{\hbar}{M}(\vec{k} + \vec{k'})$ , où  $\vec{k'}$  est le vecteur d'onde du photon émis spontanément qui a une direction aléatoire.

Exercise 5.4. Sachant qu'après N cycles d'absorption émission, la somme vectorielle des  $\vec{k'}$  de chaque étape est nulle, calculez  $\Delta \vec{v}$  après N cycles d'absorption émission.

Exercise 5.5 (\*\*\*). A cette étape, est-on toujours sûr que l'atome est en train de se ralentir? Expliquez pourquoi il y a risque que l'atome commence à regagner en vitesse. Expliquez pourquoi le schéma de la Figure 18 permet de résoudre ce problème.



Figure 18: Ralentissement de l'atome avec deux Lasers