Effects of Patient Heterogeneity on Patients' Choice in a Kidney Transplant System

Chia-Hao Chang, John Hasenbein

Department of ECE and ORIE, The University of Texas at Austin

October 23, 2019

Model

We consider a M/M/1 queue with reneging¹.

- Patient Arrival $\sim PP(\lambda)$.
- **2** Kidney Arrival $\sim PP(\mu)$. $\mu \equiv 1$.
 - Kidney quality is **random** and drawn from \mathcal{X} .
 - Upon a kidney arrival, its quality $x \in \mathcal{X}$ is revealed to everyone.
- **3** Each patient has $exp(\gamma)$ lifespan, before transplant.

Literature Review

- Stochastic Models for Transplant Systems:
 - Queueing Models: Su and Zenios '04.
 - 2 Stochastic Assignment: Su and Zenios '05.
 - Mechanism Design: Su and Zenios '04.
- Parameter Sensitivity:
 - General Framework: Çil et al. '09, Vercraene et al. '18.
 - Probelm Specific: Gans and Savin '07, Aktaran-Kalayc and Ayhan '09.

Literature Review

- Stochastic Models for Transplant Systems:
 - Queueing Models: Su and Zenios '04.
 - Stochastic Assignment: Su and Zenios '05.
 - Mechanism Design: Su and Zenios '04.
- Parameter Sensitivity:
 - General Framework: Çil et al. '09, Vercraene et al. '18.
 - 2 Probelm Specific: Gans and Savin '07, Aktaran-Kalayc and Ayhan '09.

Our Contribution

- Stepping stones toward understanding a more complex heterogeneous transplant system.
- Ovel Way for MDP Sensitivity: approximate the value functions from distributions; bridging Optimization Theory and MDP analysis.

Our Contribution

- Stepping stones toward understanding a more complex heterogeneous transplant system.
- Novel Way for MDP Sensitivity: approximate the value functions from distributions; bridging Optimization Theory and MDP analysis.

Each patient is faced with a Stochastic Shortest Path problem $(SSP)^2$, where

- **1** Two absorbing states: { death, transplant}.
- 2 h reward per unit time.
- Transplant with kidney quality x: Moves to state "transplant" and receive reward x.
- Die: Moves to state "death" and receives reward nothing

Patient's Goa

²D. P. Bertsekas: Dynamic Programming and Optimal Control, 2000.

Each patient is faced with a Stochastic Shortest Path problem $(SSP)^2$, where

- **1** Two absorbing states: { death, transplant }.
- *h* reward per unit time.
- Transplant with kidney quality x: Moves to state "transplant" and receive reward x.
- Oie: Moves to state "death" and receives reward nothing.

Patient's Goa

²D. P. Bertsekas: Dynamic Programming and Optimal Control, 2000.

Each patient is faced with a Stochastic Shortest Path problem $(SSP)^2$, where

- **1** Two absorbing states: { death, transplant}.
- h reward per unit time.
- Transplant with kidney quality x: Moves to state "transplant" and receive reward x.
- Open Die: Moves to state "death" and receives reward nothing.

Patient's Goa

²D. P. Bertsekas: Dynamic Programming and Optimal Control, 2000.

Each patient is faced with a Stochastic Shortest Path problem $(SSP)^2$, where

- **1** Two absorbing states: { death, transplant}.
- h reward per unit time.
- Transplant with kidney quality x: Moves to state "transplant" and receive reward x.
- Die: Moves to state "death" and receives reward nothing.

Patient's Goa

²D. P. Bertsekas: Dynamic Programming and Optimal Control, 2000.

Each patient is faced with a Stochastic Shortest Path problem $(SSP)^2$, where

- **1** Two absorbing states: { death, transplant}.
- *h* reward per unit time.
- Transplant with kidney quality x: Moves to state "transplant" and receive reward x.
- Die: Moves to state "death" and receives reward nothing.

Patient's Goal

²D. P. Bertsekas: Dynamic Programming and Optimal Control, 2000.

Patient's Problem(cont'd)

The patient is faced with an MDP, where

$$V(1) = \sup_{a_1 \in [\underline{x}, \bar{x}]} \frac{1}{1 + \gamma} \left\{ h + \bar{F}'(a_1) \mathbb{E}[X|X \ge a_1] + (1 - \bar{F}'(a_1))V(1) \right\},$$

$$V(k) = \sup_{a_k \in [\underline{x}, a_{k-1}]} \frac{1}{1 + \gamma k} \left\{ h + \bar{F}'(a_{k-1})V(k-1) + (\bar{F}'(a_k) - \bar{F}'(a_{k-1})) \mathbb{E}[X|a_{k-1} > X \ge a_k] + (1 - \bar{F}'(a_k))V(k) + (k-1)\gamma V(k-1) \right\}.$$

V(k) is the value functions at position k.

V(k) is the (expected) accumulated reward before he leaves the queue.

$$\bar{F}'(x) = P(X \ge x).$$

Our Work and Results

Study the effects of **death rates** γ on the value functions.

Non-trivial trade-off because:

- lacktriangledown Higher Death Rates ightarrow Prone to higher probability of death.
- ullet Higher Death Rates o Move faster to the front of the queue, receive better kidney offers.

Our Main Results

When the support of the kidney qualities \mathcal{X} is bounded, if $\gamma_1 > \gamma_2$, $V_1(k) \leq V_2(k)$ for all k, i.e., the higher the death rate, the lower the value function.

Our Work and Results

Study the effects of **death rates** γ on the value functions.

Non-trivial trade-off because:

- **1** Higher Death Rates \rightarrow Prone to higher probability of death.
- $\ensuremath{\mathbf{2}}$ Higher Death Rates \to Move faster to the front of the queue, receive better kidney offers.

Our Main Results

When the support of the kidney qualities \mathcal{X} is bounded, if $\gamma_1 > \gamma_2$, $V_1(k) \leq V_2(k)$ for all k, i.e., the higher the death rate, the lower the value function.

Our Work and Results

Study the effects of **death rates** γ on the value functions.

Non-trivial trade-off because:

- lacktriangledown Higher Death Rates o Prone to higher probability of death.
- $\ensuremath{ 2 \over 2 }$ Higher Death Rates \to Move faster to the front of the queue, receive better kidney offers.

Our Main Results

When the support of the kidney qualities \mathcal{X} is bounded, if $\gamma_1 > \gamma_2$, $V_1(k) \leq V_2(k)$ for all k, i.e., the higher the death rate, the lower the value function.

Road Map of Our Proof

lacktriangle When $\mathcal X$ is finite, we show

$$V_1(k) < V_2(k)$$
, for all $k \in \mathbb{N}$,

if $\gamma_1 > \gamma_2$.

② For a continuous distribution, approximate V(k) by a sequence of r.v.'s with finite support; specifically,

$$V_1^{D_n}(k) \xrightarrow{n \to \infty} V_1^{C}(k)$$
, for all $k \in \mathbb{N}$, if $d(D_n, C) \xrightarrow{n \to \infty} 0$,

where $d(\cdot, \cdot)$ is the Kolmogorov metric.

In the limiting argument

$$V_1^{\mathcal{C}}(k) = \lim_{n \to \infty} V_1^{D_n}(k) \leq \lim_{n \to \infty} V_2^{D_n}(k) = V_2^{\mathcal{C}}(k), \text{ for all } k \in \mathbb{N},$$

Road Map of Our Proof

lacktriangle When $\mathcal X$ is finite, we show

$$V_1(k) < V_2(k)$$
, for all $k \in \mathbb{N}$,

if $\gamma_1 > \gamma_2$.

② For a continuous distribution, approximate V(k) by a sequence of r.v.'s with finite support; specifically,

$$V_1^{D_n}(k) \xrightarrow{n \to \infty} V_1^{C}(k)$$
, for all $k \in \mathbb{N}$, if $d(D_n, C) \xrightarrow{n \to \infty} 0$,

where $d(\cdot, \cdot)$ is the Kolmogorov metric.

In the limiting argument

$$V_1^{\mathcal{C}}(k) = \lim_{n \to \infty} V_1^{D_n}(k) \leq \lim_{n \to \infty} V_2^{D_n}(k) = V_2^{\mathcal{C}}(k), \text{ for all } k \in \mathbb{N},$$

Road Map of Our Proof

1 When \mathcal{X} is finite, we show

$$V_1(k) < V_2(k)$$
, for all $k \in \mathbb{N}$,

if $\gamma_1 > \gamma_2$.

② For a continuous distribution, approximate V(k) by a sequence of r.v.'s with finite support; specifically,

$$V_1^{D_n}(k) \xrightarrow{n \to \infty} V_1^{C}(k)$$
, for all $k \in \mathbb{N}$, if $d(D_n, C) \xrightarrow{n \to \infty} 0$,

where $d(\cdot, \cdot)$ is the Kolmogorov metric.

In the limiting argument

$$V_1^{\mathcal{C}}(k) = \lim_{n \to \infty} V_1^{D_n}(k) \leq \lim_{n \to \infty} V_2^{D_n}(k) = V_2^{\mathcal{C}}(k), \text{ for all } k \in \mathbb{N},$$

Finite Kidney Type

Consider
$$\mathcal{X} = \{x_1, \dots, x_n\}$$
, $x_1 > x_2 > \dots > x_n$, and $P(X = x_i) = p_i$. $(px)_{\leq i} = \sum_{j \leq i} p_j x_j$. $(px)_{< i} = (px)_{< i-1}$.

$$V(1) = \max_{a_1 \in \{x_i : i=1,2...,n\}} \left\{ \frac{1}{1+\gamma} [h + \bar{F}'(a_1) \mathbb{E}[X | X \ge a_1] + (1 - \bar{F}'(a_1)) V(1)] \right\}$$

$$= \max_{0 \le i \le n} \left\{ \frac{1}{1+\gamma} [h + (px)_{\le i} + (p_{i+1} + p_{i+2} + \dots p_n) V(1)] \right\}$$

and

$$V(k) = \sup_{a_{k-1} \le a_k \le n} \left\{ \frac{1}{1+k\gamma} [h + (p_1 + p_2 + \dots + p_{a_{k-1}})V(k-1) + (p_{a_{k-1}+1} \times_{a_{k-1}+1} + p_{a_{k-1}+2} \times_{a_{k-1}+2} + \dots + p_{a_k} \times_{a_k}) + (p_{a_k+1} + p_{a_k+2} + \dots + p_n)V(k) + (k-1)\gamma V(k-1)] \right\}.$$

Finite Kidney Type: The Analytical Solution

Lemma

V(k) in the previous page are given by

$$V(k) = \begin{cases} \frac{kh + (px)_{<\ell_{i+1}}}{k\gamma + p_{<\ell_{i+1}}}, & \text{for } k_{\ell_i}^* \le k < k_{\ell_{i+1}}^*, \\ \frac{kh + (px)_{\le n}}{k\gamma + 1}, & \text{for } k \ge k_n^*, \end{cases}$$

where $k_{\ell_i}^*$ satisfies $V(k_{\ell_i}^*-1) > x_{\ell_i} > x_{\ell_i+1} > \cdots > x_{\ell_{i+1}-1} > V(k_{\ell_i}^*)$ and $1 = \ell_1 < \ell_2 < \ell_3 < \cdots < \ell_m \le n$.

Intuitively, k_{α}^* is the position where kidney with quality x_{α} is accepted.

Finite Kidney Type: The Analytical Solution

Lemma

V(k) in the previous page are given by

$$V(k) = \begin{cases} \frac{kh + (px) < \ell_{i+1}}{k\gamma + p < \ell_{i+1}}, & \text{for } k_{\ell_i}^* \le k < k_{\ell_{i+1}}^*, \\ \frac{kh + (px) \le n}{k\gamma + 1}, & \text{for } k \ge k_n^*, \end{cases}$$

where $k_{\ell_i}^*$ satisfies $V(k_{\ell_i}^*-1)>x_{\ell_i}>x_{\ell_i+1}>\cdots>x_{\ell_{i+1}-1}>V(k_{\ell_i}^*)$ and $1=\ell_1<\ell_2<\ell_3<\cdots<\ell_m\leq n$.

Intuitively, k_{α}^* is the position where kidney with quality x_{α} is accepted.

$$\ell_1 = 1, \, \ell_2 = 3, \, \ell_3 = 6$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 $\begin{pmatrix} \mathsf{No} \end{pmatrix}$ $\begin{pmatrix} \mathsf{No} \end{pmatrix}$ $\begin{pmatrix} \mathsf{No} \end{pmatrix}$ $\begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix}$ $\begin{pmatrix} x_6 \\ \end{pmatrix}$ $\begin{pmatrix} \mathsf{No} \end{pmatrix}$

 $k_{\ell_1}^* = k_1^* = k_2^* = 1, k_{\ell_2}^* = k_3^* = k_4^* = k_5^* = 5, k_{\ell_2}^* = k_6^* = 6$

Property of k_{α}^*

Lemma

Also let k_j^{*1} and k_j^{*2} , $j=1,2,\ldots,n$ be the previously defined positions of in system $1(\gamma=\gamma_1)$ and system $2(\gamma=\gamma_2)$, respectively. If $\gamma_1>\gamma_2$, then

$$k_j^{*1} \le k_j^{*2}$$
 for all $j = 1, 2, \dots, n$.

The lemma states that a system where patients are susceptible to higher death rates tend to accept the kidney offers sooner.

Property of k_{α}^*

Lemma

Also let k_j^{*1} and k_j^{*2} , $j=1,2,\ldots,n$ be the previously defined positions of in system $1(\gamma=\gamma_1)$ and system $2(\gamma=\gamma_2)$, respectively. If $\gamma_1>\gamma_2$, then

$$k_j^{*1} \le k_j^{*2}$$
 for all $j = 1, 2, \dots, n$.

The lemma states that a system where patients are susceptible to higher death rates tend to accept the kidney offers sooner.

Finite Kidney Type: The Sensitivity Analysis

Theorem

Let the support of the kidney distributions \mathcal{X} be finite. Let $V_1(k)$ and $V_2(k)$ be the value function when $\gamma = \gamma_1$ and $\gamma = \gamma_2$, respectively. If $\gamma_1 > \gamma_2$,

$$V_1(k) < V_2(k)$$
, for all k.

Approximation of Value Functions

Definition (Hypo-Convergence (Rockafeller and Wets '09))

We say $(f^n : n \in \mathbb{N})$ hypo-converges to $f : \mathcal{X} \to \mathbb{R}$ if for any $y \in \mathcal{X}$,

$$\limsup_{n\to\infty} f^n(y^n) \le f(y), \text{ for every } y^n \to y, \text{ and}$$
$$\liminf_{n\to\infty} f^n(y^n) \ge f(y), \text{ for some } y^n \to y.$$

Lemma (Convergence in Maximization (Rockafeller and Wets '09))

If y is a limit point of the maximizers of $(f^n : n \in \mathbb{N})$, then y is also a maximizer of f, to which the sequence (f^n) hypo-converges.

$$\lim_{n\to\infty} \arg\max f^n \subseteq \arg\max f.$$

In particular, if f has a unique maximizer, the sequence of maximizers converge to arg max f.

Approximation of Value functions(cont'd)

Theorem

Let F_c be a continuous distribution with compact support $\mathcal{X} = [\underline{x}, \overline{x}]$. Let $(D_n \colon n \in \mathbb{N})$ be a sequence of discrete distributions whose supports are finite subsets of \mathcal{X} such that $d(D_n, F_c) \to 0$. Denote $V^n(k)$ the value function at position k when the distribution is D_n ; denote V(k) the value function at position k when the distribution is F_c . Then,

$$\lim_{n\to\infty}V^n(k)=V(k).$$

Sensitivity on Value functions

Theorem

Let $V_1(k)$ and $V_2(k)$ be the value functions when $\gamma = \gamma_1$ and $\gamma = \gamma_2$, respectively. If $\gamma_1 > \gamma_2$, we have $V_1(k) \leq V_2(k)$, for all $k \geq 1$, whenever the support of kidney distributions are bounded subsets of \mathbb{R} .

W.L.O.G, let F be a continuous distribution whose support is $\mathcal{X}=[\underline{x},\overline{x}]$. $\{D_n\colon n\geq 1\}$: finite distributions whose supports are subsets of \mathcal{X} and $d(F,D_n)\to 0$. We have,

$$V_1^n(k) < V_2^n(k)$$
, for all k and all n .

$$V_1(k) = \lim_{n \to \infty} V_1^n(k) \le \lim_{n \to \infty} V_2^n(k) = V_2(k).$$

Sensitivity on Value functions

Theorem

Let $V_1(k)$ and $V_2(k)$ be the value functions when $\gamma = \gamma_1$ and $\gamma = \gamma_2$, respectively. If $\gamma_1 > \gamma_2$, we have $V_1(k) \leq V_2(k)$, for all $k \geq 1$, whenever the support of kidney distributions are bounded subsets of \mathbb{R} .

W.L.O.G, let F be a continuous distribution whose support is $\mathcal{X} = [\underline{x}, \overline{x}]$. $\{D_n \colon n \geq 1\}$: finite distributions whose supports are subsets of \mathcal{X} and $d(F, D_n) \to 0$. We have,

$$V_1^n(k) < V_2^n(k)$$
, for all k and all n .

$$V_1(k) = \lim_{n \to \infty} V_1^n(k) \le \lim_{n \to \infty} V_2^n(k) = V_2(k).$$

Future Work

- When the patients have different death rates γ , how will the patient's choice be affected?
- Queueing Discipline: Can we use different queueing disciplines to induce a socially optimal behaviors?

Future Work

- When the patients have different death rates γ , how will the patient's choice be affected?
- Queueing Discipline: Can we use different queueing disciplines to induce a socially optimal behaviors?