Techniki optymalizacji

Łukasz Wojnarowski (80164) Tomasz Kujawa (75909)

9 listopada 2010

SPIS TREŚCI 2

α	•	1	,	•
•	110	${ m tr}\epsilon$	101	•
N)	JIS.	σ	; D(

1	Opi	is problemu						
2		Generowanie rozwiązania początkowego (RP)						
	2.1	Opis metody						
		2.1.1 Słowny						
		2.1.2 Pseudokod						
	2.2	Wyniki						
3	Local search (LS)							
	3.1	Opis metody						
	3.2	Opis słowny metody						
	2.2	Psaudokod						

1 Opis problemu 3

1 Opis problemu

Rozwiązywany problem jest rozwinięciem *problemu komiwojażera* (TSP - ang. traveling salesman problem), który polega na znalezieniu 4 cykli hamiltona w pełnym grafie ważonym o minimalnej sumie wag.

Dane wejściowe składają się z grafu pełnego $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, gdzie \mathcal{V} to zbiór wierzchołków (można go interpretować jako zbiór punktów na płaszczyźnie), a \mathcal{E} to zbiór krawędzi. Dla każdej z krawędzi $\{v_i, v_j\}: v_i, v_j \in \mathcal{V}$ znana jest waga, będąca odległością pomiędzy wierzchołkami v_i, v_j . Rozwiązaniem problemu są cztery cykle proste

$$w_1, w_2, w_3, \dots, w_n, w_1 ; x_1, x_2, x_3, \dots, x_n, x_1 ; y_1, y_2, y_3, \dots, y_n, y_1 \text{ oraz } z_1, z_2, z_3, \dots, z_n, z_1,$$
 (1)

które spełniają następujące ograniczenia:

- $w_i \in \mathcal{V}'$,
- $x_i \in \mathcal{V}''$,
- $y_k \in \mathcal{V}'''$
- $z_l \in \mathcal{V}''''$,
- $\mathcal{V}' \cup \mathcal{V}'' \cup \mathcal{V}''' \cup \mathcal{V}'''' = \mathcal{V}$.
- $\mathcal{V}' \cap \mathcal{V}'' \cap \mathcal{V}''' \cap \mathcal{V}'''' = \varnothing$.
- $|\mathcal{V}'| = |\mathcal{V}'''| = |\mathcal{V}''''| = n$, przy założeniu, że $\mathcal{V} = 4n$.

Niech $|v_i, v_j|$ oznacza wagę (koszt) krawędzi pomiędzy wierzchoękami v_i, v_j . Dla tak zdefiniowanego modelu można określić funkcję celu w następujący sposób:

$$minC = \sum_{i < n}^{i=1} |w_i, w_{i+1}| + |w_n, w_1| + \sum_{i < n}^{i=1} |x_i, x_{i+1}| + |x_m, x_1| + \sum_{i < n}^{i=1} |y_i, y_{i+1}| + |y_m, y_1| + \sum_{i < n}^{i=1} |z_i, z_{i+1}| + |z_m, z_1|$$

$$gdzie|\mathcal{V}| = 4n.$$
(2)

2 Generowanie rozwiązania początkowego (RP)

2.1 Opis metody

Analizowana metoda generowania rozwiązania początkowego to grupowanie i następnie poszukiwanie najbliższego sąsiada.

2.1.1 Słowny

Metoda rozpoczyna się od losowego wybrania wierzchołka początkowego, na którego podstawie stworzone zostaną grupy. Grupy mają najpierw przydzielane z puli dostępnych wierzchołków elementy początkowe - takie, że środek ciężkości od punktów już wcześniej przydzielonych jest największy. Następnie na podstawie wybranych "liderów" budowane są grupy - tak, że każdy kolejny element dodawany do grupy będzie miał najmniejszą odległość od środka ciężkości grupy. Należy zaznaczyć, że przydział po grupach odbywa się iteracyjnie - tzn. najpierw przydzielamy jeden element do grupy pierwszej, potem jeden element do grupy drugiej i iteracyjnie aż do wyczerpania się elementów nieprzydzielonych do żadnej grupy. Przydział ten jest iteracyjnie powtarzany, aż stworzone zostaną 4 grupy o równych licznościach.

Następnie w każdej grupie następuje budowanie ścieżki tak, że przy każdym kroku wybierany jest taki wierzchołek, że jego odległość od środka ciężkości dotychczas wybranych wierzchołków jest najmniejsza. Algorytm zatrzymuje się, jeśli w grupie nie będzie już nieodwiedzonych wierzchołków. Należy pamiętać, by rozwiązanie uzupełnić o krawędź pomiędzy ostatnim a pierwszym wierzchołkiem.

2.2 Wyniki 4

2.1.2 Pseudokod

Poniżej zaprezentowano pseudokod algorytmu opisanego w części 2.1.1.

```
Generuj rozwiązanie początkowe(\mathcal{V})
 1 v1 \leftarrow \text{Pobierz Losowo}(\mathcal{V})
    v2 \leftarrow \text{Pobierz najdalszy}(\mathcal{V} \setminus \{v1\})
    v3 \leftarrow \text{Pobierz Najdalszy}(\mathcal{V} \setminus \{v1, v2\})
 4 v4 \leftarrow \text{Pobierz Najdalszy}(V \setminus \{v1, v2, v3\})
 5 Umieść w pierwszej grupie(v1)
 6 Umieść w drugiej grupie(v2)
 7 Umieść w trzeciej grupie(v3)
 8 Umieść w czwartej grupie(v_4)
 9
10
    while \exists \mathcal{U} = wierzchołki \ nieumieszczone \ w \ \dot{z}adnej \ grupie
11
12
                v \leftarrow \text{Pobierz najdalszy}(\mathcal{U})
                Umieść w i-tej grupie(v)
13
14
                i = (i+1)\%5
15
16
    i \leftarrow 1
17
     while \exists grupa z nieprzydzielonymi wierzchołkami
18
19
                next \leftarrow \text{Najbliższy} nieodwiedzony wierzchołek dla grupy(i)
20
                Dodaj wierzchołek go i-tego \text{cyklu}(i)
21
                i = (i+1)\%5
22
```

2.2 Wyniki

W tabeli 1 zostały przedstawione uśrednione wyniki dla opracowywanej metody.

instancja	metoda	śr. wart. rozwiąza- nia z 20 pomiarów	śr. czas [ms]	najlepsza wartość
kroA100.txt	Grupowianie oraz wybór najbliż- szego sąsiada.	29878	0,25	24249

Tabela 1: Uśrednione wyniki pomiarów.

3 Local search (LS)

3.1 Opis metody

Analizowana metoda generowania rozwiązania to rozrywanie (1 ruch) w wersji stromej.

3.2 Opis słowny metody

Proces poszukiwania lokalnego optimum rozpoczyna się od wykonania kroków z opisanego w rozdziale *Generowanie rozwiązania początkowego*. Następnie na takim rozwiązaniu dokonywane jest lokalne przeszukiwanie.

Kroki metody:

3.3 Pseudokod 5

Rysunek 1: Rozwiązanie początkowe dla kroA100.txt

- 1. Wybierz wierzchołek i k-1 mu najbliższych wierzchołków.
- 2. Rozerwij łuki wokół tych wierzchołków.
- 3. Rozważ wszystkie możliwe sposoby naprawy do rozwiazania tego problemu.
- 4. Wykonaj ruch, który przynosi najwięcej zysku.

Parametr $k \in 2, 3, 4$ jest definiowany na wejściu programu.

3.3 Pseudokod

Algorytm generowania rozwiązania można zapisać przy pomocy poniższego pseudokodu.

3.3 Pseudokod 6

```
Lokalne przeszukiwanie(\mathcal{V}, k)
     rozwiązanie \leftarrow Generuj rozwiązanie początkowe(V)
 2
     while (TRUE)
 3
           do
 4
                zysk \leftarrow 0
                wybrani \leftarrow Wybierz \ \text{Luki}(k, V)
 5
 6
                mo\dot{z}liwe\_przydziały \leftarrow Generuj możliwe przydziały(wybrani)
 7
                warto\acute{s}\acute{c} \leftarrow \text{Oblicz warto\'s\'c rozwiązania}(rozwiązanie)
 8
               for \forall ruch in możliwe_przydziały
 9
                     do
10
                          aktualne\_rozwiązanie \leftarrow Wykonaj ruch(rozwiązanie, ruch)
                          aktualna\_wartość \leftarrow Oblicz wartość rozwiązania(aktualne\_rozwiązanie)
11
12
                          aktualny\_zysk \leftarrow warto\acute{s}\acute{c} - aktualna\_warto\acute{s}\acute{c})
13
                         if aktualny\_zysk \ge zysk
14
                            then
15
                                   zysk \leftarrow aktualny\_zysk
16
                                   Zapamiętaj ruch(ruch)
17
                            else
18
                                   return
19
20
               if zysk > 0
21
                   then
22
                          Wykonaj zapamiętany ruch(rozwiązanie)
23
                  \mathbf{else}
24
                         return
25
```