Data Types

Ordinal: Ranked categories (e.g., movie ratings).

Discrete: Countable (e.g., books).

Continuous: Measurable (e.g., tempera-

Descriptive Stats

Mean:
$$\bar{X} = \frac{\sum X}{N}$$
,
Variance: $\sigma^2 = \frac{\sum (X_i - \mu)^2}{N}$,

Std Dev: $\sigma = \sqrt{\sigma^2}$, Z-score: $Z = \frac{X-\mu}{\sigma}$.

Confidence Intervals

A range of values likely to contain the true population parameter.

Large $n: CI = X \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$.

Small n: $CI = \bar{X} \pm t_{\alpha/2}SE$, where SE =

Hypothesis Testing

 H_0 : No effect H_a : Effect exists.

p-value: $p < 0.05 \rightarrow \text{Reject } H_0$, else Fail to

Correlation & Regression

 $\begin{aligned} & \text{Pearson Correlation:} \\ & r = \frac{\sum (X - \bar{X})(Y - \bar{Y})}{\sqrt{\sum (X - \bar{X})^2 \sum (Y - \bar{Y})^2}}. \end{aligned}$

Linear Regression: $Y = b_0 + b_1 X$, where b_1 Sampling Distributions is the slope.

Z-Scores Table

\overline{z}	Prob
1.64	0.9495
1.96	0.9750
2.00	0.9772
2.33	0.9901
2.58	0.9949

t-Distribution (95% CI)

\overline{n}	t-Value
5	2.776
10	2.262
15	2.145
20	2.093
30	2.042

Percentiles (Interpolation)

 $i = 1 + (n - 1) \times p.$ If i is not an integer, interpolate: $P = X_i + (X_{i+1} - X_i) \times (i - \lfloor i \rfloor).$ dictions. Example (75th percentile): $i = 1 + 7 \times$ Bias-Variance Tradeoff: $0.75 = 6.2\dot{5} \rightarrow \text{Interpolate between 6th and}$ - High Bias: Too simple, underfitting. 7th value.

Diminishing Returns

Nominal: Categories, no order (e.g., col- More study time \rightarrow Higher scores, but improvements decrease at high study hours.

Spark & Data Engineering Z-score: $Z = \frac{X-\mu}{\sigma}$,

Why Spark? - Scales better than Pandas for large datasets. - Distributed, inmemory processing. - Handles structured CI: $\bar{X} \pm Z_{\alpha/2} \times \frac{\sigma}{\sqrt{n}}$. & unstructured data.

BDD ve DataFrames vs Datasets

ILDD vs. Datarrames vs. Datasets			
Feature	RDD	DataFrame/Dataset	
Optimization Storage Schema Use Case	None Distributed objects Unstructured Low-level ops	Query Optimized (Catalyst) Columnar format (Parquet, ORC) Schema-aware SQL-like queries, ML Pipelines	

Key Concepts:

- Lazy Evaluation: Computation occurs only when an action is triggered (e.g., '.col-

(triggers execution).

- Shuffling Impact: Moving data between $\bar{X} = 25$, $\bar{Y} = 48.75$ partitions slows performance.

- Partitioning: Avoids unnecessary shuffling; optimize using '.repartition()' or '.coalesce()'.

Performance Optimization:

- Broadcast Variables: Share small data efficiently across nodes.

Cache/Persist: Avoid recomputation, speeds up repeated queries.

- Avoid Collect(): Prevents bringing too much data to the driver.

Optimize Joins: Prefer **broadcast joins** for small tables.

Lazy Evaluation: Actions only compute when triggered. Shuffling Impact: Slows down performance.

Definition: The distribution of a sample statistic (e.g., mean).

Central Limit Theorem: For large n, sample means follow a normal distribution.

Common Statistical Tests

Test	Use Case
Z-Test t-Test	n > 30, known variance $n < 30$, unknown variance
Chi-Square ANOVA	Categorical data Compare multiple groups

Probability Distributions

Normal: Symmetric bell curve.

Exponential: Skewed right, models time until event.

Poisson: Models rare events over time.

Machine Learning

Overfitting: Model too complex, captures $P(A \mid B) = \frac{P(B|A)P(A)}{P(B)}$

Underfitting: Model too simple, poor pre-

- High Variance: Too complex, overfitting. $P(H \mid D) = \frac{P(D|H)P(H)}{P(D)}$

Mean: $\bar{X} = \frac{\sum X}{N}$, Variance: $\sigma^2 = \frac{\sum (X_i - \mu)^2}{N}$,

Key Formulas Recap

Regression:
$$Y = b_0 + b_1 X$$
,
CI: $\bar{X} \pm Z_{\alpha/2} \times \frac{\sigma}{\sqrt{n}}$.

only when an action is triggered (e.g., '.collect()', '.count()').
Cov(
$$X,Y$$
) = $\frac{1}{n-1}\sum(X_i-\bar{X})(Y_i-\bar{Y})$
Transformations (lazy) vs. **Actions**
Example: X = $\{10,20,30,40\}, Y$ = $\{15,30,60,90\}$
Shuffling Impact: Moving data between $\bar{X}=25, \ \bar{Y}=48.75$
partitions slows performance.
Partitioning: Avoids unnecessary shuffling; optimize using '.repartition()' or '.co- $\{15,30,60,90\}$
Cov(X,Y) = $\frac{1}{3}[(-15)(-33.75)+(-5)(-18.75)+$

Law of Large Numbers (LLN)

As n increases, the sample mean \bar{X} converges to the population mean μ : $\lim_{n\to\infty} P(|X-\mu|<\epsilon)=1$ Larger samples provide more reliable estimates.

Standard Error (SE)

Measures accuracy of the sample mean: $SE = \frac{\sigma}{\sqrt{n}}$

For a sample: $SE = \frac{s}{\sqrt{n}}$

Smaller SE means more precise estimates.

Bayes' Theorem

Example: Disease Testing - P(H): Probability of having the disease - $P(D \mid H)$: Probability of a positive test if diseased -P(D): Probability of any positive test

Interpolation Ex- Short Answer: Show Your Work Linear ample

Given the sample set: $S = \{-1, 3, -4, 2, 6\}$ (a) Range: Range = $\max(S) - \min(S) =$ (b) **Median:** Sorted data: $S = \{-4, -1, 2, 3, 6\}$ Median = 2

(c) Mean: Mean = $\frac{-1+3+(-4)+2+6}{5} = \frac{6}{5} =$

(d) 20th Percentile using Linear Interpolation:

Find position: $P = (n-1) \times p + 1 =$ $(5-1) \times 0.2 + 1 = 1.8$

Since P = 1.8, interpolate between the 1st 30. **Z-Score Calculation** and 2nd values in the sorted set:

20th Percentile = $S_1 + (P-1) \times (S_2 - S_1)$ $= -4 + 0.8 \times (-1 - (-4))$

 $= -4 + 0.8 \times 3$

= -4 + 2.4 = -1.6

Thus, the 20th percentile is -1.6.

29. Percentiles

Suppose you have a data set of exam scores: 65, 70, 72, 78, 80, 85, 90, 95. Find the 75th percentile using linearing Find the 75th percentile using linear interpolation if needed.

$$i = |f(n-1) \cdot p|$$
 $i = 0.75 \cdot (8+1)$
 $i = 6.25$

A population of exam scores is approximately normal with mean \(\\mu = $80\$) and standard deviation \(\sigma = $5\$).

What is the Z-score for a student who scores 90 on the exam?

$$z = \frac{x - h}{\sigma}$$
= $\frac{10 - 80}{5}$

Effects of Outliers

Given: S = [3, 8, 6, 9, -1, 10, 1000, 7, 7, 0](a) Mean of S: Mean $\frac{3+8+6+9+(-1)+10+1000+7+7+0}{104 9} = \frac{1049}{10}$

(b) Median of S: Sorted: S_{sorted} : [-1, 0, 3, 6, 7, 7, 8, 9, 10, 1000] Median $\frac{7+7}{2} = 7$ Difference = 104.9 - 7 = 97.9

(c) Skewness: Right-skewed since Méan > Median.

(d) 10% Trimmed Mean: Trimmed set: $S_{\text{trimmed}} = [0, 3, 6, 7, 7, 8, 9, 10]$ Trimmed Mean = $\frac{0+3+6+7+7+8+9+10}{8} =$ 6.25

(e) 80th Percentile (Interpolation): $P = (10 - 1) \times 0.8 + 1 = 8.2$ 80th Percentile = $9 + (0.2 \times (10 - 9)) = 9.2$

(g) 90th Percentile (Interpolation): $P = (10 - 1) \times 00$ $= (10 - 1) \times 0.9 + \overline{1} = 9.1$ 90th Percentile = $10 + (0.1 \times (1000 - 10)) =$

Confidence Interval (Large n)

You collect a sample of n=100 exam scores, with a sample mean \(\) $line\{x\} = 78$) and known population standard deviation \((\sigma = \)

Construct a 95% confidence interval for the population mean. (Use the Z-interval since n is large and $\(sigma \)$ is known. See the table

$$X + Z' \cdot SE$$
 $X + Z' \cdot SE$
 $X = \frac{8}{10} = \frac{9}{\sqrt{5}} = \frac{9}{8} = \frac{9}{8}$
 $X + Z' \cdot SE$
 $X + Z' \cdot SE$

Confidence Interval (Small n)

Now consider a smaller sample, n=15, with a sample mean of 78 and a sample standard deviation of 8.

Construct a 95% confidence interval for the population mean. (Use the t-distribution here because n is small and \(\sigma\) is not known. See the table on the next page)

X + 4.431 = 78 + 4.431

Handling Outliers

Replace $1000 \rightarrow 100$, recompute: Sorted: $S'_{\text{sorted}} = [-1, 0, 3, 6, 7, 7, 8, 9, 10, 100]$ Mean = $\frac{-1+0+3+6+7+7+8+9+10+100}{10} = 14.9$

 $Median = \frac{7+7}{2} = 7$

80th Percentile = $9 + (0.2 \times (10 - 9)) = 9.2$ 90th Percentile = $10 + (0.1 \times (100 - 10)) =$

19