LABORATORY RISK ASSESSMENT TOOL (Lab R.A.T.)

The Laboratory Risk Assessment Tool (Lab RAT) provides a framework for risk assessment complimenting the process researchers already use to answer scientific questions.

This tool provides a format for researchers to systematically identify and control hazards to reduce risk of injuries and incidents. Conduct a risk assessment prior to conducting an experiment for the first time and review the **Lab R.A.T. Guidelines** document for further details.

The risk assessment process involves rating the risk of the experiment from "low" to "unacceptable" risk. Consult with your PI/supervisor and EH&S if your risk rating is "high" or "unacceptable" to redesign the experiment and/or implement additional controls to reduce risk.

Procedure: RNA Isolation Using RNAzo	I
PI / Lab Group: Roberts Lab	
Department: Fishery Sciences	Building / Location: FTR 209
Form Completed By: Sam White	Start Date: 20070324

PHASE 1: EXPLORE

Identify your research question and approach. What question are you trying to answer? What are you trying to measure or learn? What is your hypothesis? What approach or method will you use to answer your question? Are there alternative approaches?

Research Question(s)		
Measure gene expression.		
Approach(s) or Method		
Approach(s) or Method		
qPCR or high-throughput sequencing.		

Identify the general hazards (check all that apply). Perform background research to identify known risks of the reagents, reactions, or processes. Review protocols, Safety Data Sheets (SDSs), and safety information for hazardous chemicals, agents, or processes. Review accident histories within your laboratory/department.

Hazardous Agents Health Hazards of Physical Hazards of Ionizing Radiation Biohazards Chemicals Chemicals ☐ BSL-2 Biological ☐ Irradiator ☐ Compressed gases ☐ Acute toxicity agents ☐ Radionuclide ☐ BSL-3 Biological ☐ Cryogens ☐ Carcinogens ☐ Radionuclide sealed agents ☐ Explosives x Eye damage/irritation source ☐ Human cells/blood/ ☐ X-ray machine ☐ Flammables ☐ Germ cell mutagens **BBP** \square Organic peroxides ☐ Nanomaterials Non-Ionizing □ NHPs/cells/blood ☐ Oxidizers ☐ Reproductive toxins Radiation □ Non-exempt rDNA ☐ Lasers, Class 3 or 4 ☐ Peroxide formers x Respiratory or skin ☐ Animal work sensitization ☐ Lasers, Class 2 ☐ Pyrophorics ☐ High risk animals (RC1) ☐ Simple asphyxiant ☐ Self-heating substances ☐ Magnetic fields (e.g., \square Other (list): NMR, MRI) x Skin corrosion/irritation ☐ Self-reactive substances ☐ Specific target organ ☐ RF/microwaves ☐ Substances which, in toxicity ☐ UV lamps contact with water, emit ☐ Hazards not otherwise flammable or toxic gases classified **Hazardous Conditions or Processes**

Reaction Hazards	Hazardous Processes	Other Hazards
☐ Explosive	\square Generation of air contaminants	☐ Hand/power tools
\square Exothermic, with potential for fire,	(gases, aerosols, or particulates)	☐ Moving equipment/parts
excessive heat, or runaway reaction	\square Heating chemicals	☐ Electrical
☐ Endothermic, with potential for	\square Large mass or volume	□ Noise > 80 dBA
freezing solvents decreased solubility or heterogeneous mixtures	\square Pressure > atmospheric	☐ Heat/hot surfaces
☐ Gases produced	\square Pressure < atmospheric	☐ Ergonomic hazards
☐ Hazardous reaction	\square Scale-up of reaction	□ Needles/sharps
intermediates/products		☐ Other (list):
☐ Hazardous side reactions		(-9)

PHASE 2: PLAN

Outline the Procedure. List the steps or tasks for your procedure and the hazard/potential consequences of each. Include set-up and clean-up steps or tasks. Define the hazard controls to minimize the risk of each step using the hierarchy of controls starting with the most effective (i.e., elimination, substitution, engineering controls, administrative controls, and personal protective equipment). List the hazard control measure you would use for each step or task (e.g., run at a micro scale, work in a fume hood, wear face shield and goggles).

Steps or Tasks	Hazard	Hazard Control Measure(s)
Homogenize tissue in RNAzol	Phenol, strong salts	Gloves, fume hood

HIERARCHY OF CONTROLS

- 1 For guidance on selection of Personal Protective Equipment (PPE), use EH&S PPE Hazard Assessment Tool.
- 2 For guidance on selection of chemical-resistant gloves, see EH&S Website.

A hierarchy of controls should be applied starting with the most effective controls (i.e., elimination and substitution) at the top of the graphic and moving down. While personal protective equipment (PPE) should always be used, it should be considered the last line of defense from potential hazards.

Select the appropriate PPE and safety supplies for the procedure (check all that apply).

Laboratory PPE/Safety Supplies

UNIVERSITY of WASHINGTON				
☑ Appropriate street clothing	☐ First aid ki	it		
(long pants, closed shoes)	☐ Spill kit			
x Gloves; indicate type: nitrile/latex	☐ Specialize	d medical supplies (e.g. calcium gluconate		
☐ Safety glasses	for hydrofluo	for hydrofluoric acid and amyl nitrite for cyanides ☐ Other (list):		
☐ Safety goggles	☐ Other (list)			
☐ Face shield and googles				
☐ Lab coat				
☐ Flame-resistant lab coat				
☐ Fire extinguisher				
☐ Eyewash/safety shower				
Identify the appropriate train based/specific training appropriate for	<u> </u>	the general safety and procedure		
General/Chemical Safety	General Safety Training Biosafety	Field Safety		
☐ Lab Safety Compliance &	☐ Biosafety Training	☐ First Aid & CPR		
Practices	☐ Bloodborne Pathogens	☐ SCUBA certification/diving		
☑ Managing Lab Chemicals	G	safety		
\square Compressed Gas Safety	Radiation Safety	☐ Driving safety		
x Fume Hood Training	☐ Radiation Safety	\Box Other (list):		
\square Hydrofluoric Acid Safety	☐ Laser Safety			
☐ Formaldehyde Safety				
	Job Specific Training			
☑ Lab/job-specific training	\square Emergency plans or field	☐ Other (list):		
x Lab SOP(s) to review (list):	evacuation plans			

 \square Equipment SOP(s) to review

(list):

T ENVIRONMENTAL HEALTH & SAFETY

- RNAzol RT

PHASE 3: CHALLENGE

Question your methods. What have you missed and who can advise you? Challenge your hazard control measures by asking "What if...?" questions. "What if" questions should challenge you to find the gaps in your knowledge or logic. Include possible accident scenarios. Factors to consider are human error, equipment failures, and deviations from the planned/expected parameters (e.g., temperature, pressure, time, flow rate, and scale/concentration). Update your plan to include any new controls required to address these possibilities.

What If Analysis
What if? A spill occurs.
Then there may be a runaway reactionthere may be an unexpected splash potentialthe reaction vessel may
failthere may be a dermal exposurethere may be an eye injuryroutes may be inaccessible.
What if? A spill occurs outside of fume hood.
Then Phenol vapors could be unpleasant.
What if?
Then
What if?
Then
What if?
Then
What if?
Then
What if?
What man
Then
What if?
W light 11:
Then

Assign a risk rating to the experiment. Based on your procedure outline and the what if analysis, determine the risk rating for the experiment or procedure.

Risk Rating:

_LOW

1The Risk Rating is subjective. The primary goal is for researchers to think about risk, and differentiate unacceptable and high-level risk steps from those with a lower level risk. This will help drive additional consultation and control measures where needed.

	Severity of Consequences – Personnel Safety				
Ę		No injuries	Minor Injury	Significant Injury	Life threatening
Likelihood Occu	Very Likely	Low	High *	Unacceptable **	Unacceptable **
hood of Incident Occurrence	Likely	Low	Medium	High *	Unacceptable **
Incide	Possible	Low	Medium	High *	High *
ent	Rare	Low	Low	Medium	High *

Revise plan if the risk rating is too high. A take based on the risk rating. What are the highest risk steps? What more can you do to control the risks? Return to planning and use the hierarchy of controls to design a safer experiment.

PI/Supervisor Approval:

4	Hazard Risk Level	Action	
	Unacceptable **	STOP! Additional controls needed to reduce risk. Consult with PI.	
	High *	Additional controls recommended to reduce risk. Consult with Pl.	
Medium		Ensure you are following best practices. Consult with peers, PI, and EH&S as needed.	
	Low	Perform work within controls	

^{*}Signature for High risk ratings. If needed, contact EH&S (206.221.2339) for recommendations.

NOTE: **Unacceptable risk-rated experiments **should not proceed**. Introduce further controls to reduce risk. Contact EH&S (206.221.2339) for recommendations and best practices.

PHASE 4: ASSESS

Perform a trial run. How you can test your experimental design? Can you do a dry run of the procedure without hazardous chemicals/reagents/gases to familiarize yourself with equipment and demonstrate your ability to manipulate the experimental apparatus? Can you run the procedure with a less hazardous material? Can you test your experimental design at a smaller scale? If your procedure requires multiple people, would a table top exercise be useful?

Trial Run		
Trial Run Procedure / Date:		
20230817		
Did the trial go as expected? Yes x No □		
Experimental design changes needed (if any):		

Perform and evaluate. Run your procedure using the appropriate controls you've identified. Evaluate controls and hazards as you work. Critique the controls and process you used by answering the following questions. If changes to controls are needed, update your risk assessment tool and re-evaluate any time you revise your process (e.g. changes in scale, reagent, equipment, or conditions that might increase the hazard/risk). Share your assessment with your PI/colleagues for the next iteration of the experiment.

Evaluate Your Procedure			
What went well?			
Small volumes mean little to no chance of spills/splashes.			
Did the controls perform as expected?			
Yes.			
Did anything unexpected occur? No.			
Did a hazard manifest itself that was not previously identified? No.			
Were there any close-calls or near misses that indicate areas of needed No.	d improvement?		
Did something go exceptionally well that others could learn from?			
No.			
I plan to evolve my procedure by			
Evaluating RNA isolation methods to eliminate RNAzol usage.			
Procedure Risk Assessment is Complete			
Form Completed By: Sam White			
Signature: Wide	Date: 20230828		
PI / Supervisor Signature:			