P<0.05?

### Mitos e verdade sobre o valor-p

Leo Bastos

PROCC/Fiocruz

Contato: leonardo.bastos@fiocruz.br

# THIS IS WHAT P<.05 memegenerator.net





Source: xkcd.org

### Para que serve o valor-p?

- Extremamente usado para mostrar significância estatística nas mais diversas situações:
  - Comparação de dois grupos (controle x tratamento)
    - Teste-Z, teste-t, Wilcoxon,...
  - Testes de associação
    - Teste chi-quadrado, Exato de Fisher
  - Testes de aderência
    - Anderson-Darling, Kolmogorv-Smirnov, chi-quadrado
  - ANOVA
  - Testes baseados no TCL, normalidade assintótica EMV



### Um pouquinho de história

 A teoria de testes de hipóteses foi desenvolvida por três\* pesquisadores, nas décadas de 1920 e 1930



Karl Pearson (1857 - 1936)



Ronald Fisher (1890 - 1961)



Jerzy Neyman (1894 - 1981)



Egon Pearson (1895-1980)

### Um pouquinho de história

- Fisher desenvolveu a modelagem estatística (Fisher, 1922).
  - O valor-p deveria ser visto como uma medida contínua.
     Valores muito pequenos dessa estatística de teste mostram o quão improváveis seus dados vieram do modelo proposto.
- Neyman e Pearson formalizaram o processo de tomada de decisão via teste de hipóteses. (Neyman & Pearson, 1933)
  - O valor-p então deveria ser comparado com um ponto de corte que você deveria julgar como erro aceitável a ser cometido em sua pesquisa (erro tipo I).

### Teste de hipóteses e tipos de erro

H0: Condição default

H1: usualmente a novidade a ser testada

| Decisão     | H0 é verdadeira | H1 é verdadeira |
|-------------|-----------------|-----------------|
| Aceitar H0  | Decisão correta | Erro tipo II    |
| Rejeitar H0 | Erro tipo I     | Decisão correta |

Os testes de hipóteses estatisticos geralmente são construídos de forma que ao fixarmos um erro (usualmente erro tipo I), o outro erro será o menor possível. (testes UMP).

O uso do valor-p nos ajuda a tomar uma melhor decisão.

### Tipos de erro

**Type I error** (false positive)



**Type II error** (false negative)



### O que o valor-p NÃO é?

- Antes de dizer o que é, vamos ver o que ele NÃO é:
  - NÃO é a probabilidade da hipótese nula ser verdadeira;
  - NÃO é a probabilidade de que os dados foram gerados totalmente ao acaso;
  - NÃO representa as chances do modelo nulo ser verdadeiro;
  - NÃO é o erro tipo I, ou tamanho do teste;
  - NÃO é o poder do teste;

### O que é o valor-p?

- O valor-p é a probabilidade, sob o modelo estatístico especificado em H0, de um resumo estatístico dos dados fornecer resultados iguais ou mais extremos que o observado.
- Outras definições:
  - P-valor é o menor nível de significância para o qual a hipótese nula seria rejeitada.
  - P-valor é uma estatística de teste específica onde pequenos valores fornecem evidências contra a hipótese nula.

### Exemplo teste-t

```
x <- rnorm(50, mean = 1, sd = 3)
t.test(x, mu = 0)
                                     \begin{cases} H_0: & \mu = 0 \\ H_A: & \mu \neq 0 \end{cases}
##
## One Sample t-test
##
## data: x
## t = 0.9565, df = 49, p-value = 0.3435
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.3954207 1.1137388
## sample estimates:
## mean of x
## 0.359159
```

### Exemplo teste-t (Sob H0: mu = 0)



### Exemplo teste-t (Sob H0: mu = 0)



### Exemplo teste-t: Outra amostra

```
x <- rnorm(50, 1, sd = 3)
                                  \begin{cases} H_0: & \mu = 0 \\ H_A: & \mu \neq 0 \end{cases}
t.test(x, mu = 0)
##
## One Sample t-test
##
## data: x
## t = 3.06, df = 49, p-value = 0.003585
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.4641282 2.2400470
## sample estimates:
## mean of x
## 1.352088
```

### Exemplo teste-t: Outra amostra



### False discovery rate



**Figure 2.** Tree diagram to illustrate the false discovery rate in significance tests. This example considers 1000 tests, in which the prevalence of real effects is 10%. The lower limb shows that with the conventional significance level, p = 0.05, there will be 45 false positives. The upper limb shows that there will be 80 true positive tests. The false discovery rate is therefore 45/(45 + 80) = 36%, far bigger than 5%.

### False discovery rate

| P(real) | False discovery rate |
|---------|----------------------|
| 0.05    | 0.54                 |
| 0.10    | 0.36                 |
| 0.25    | 0.16                 |
| 0.50    | 0.06                 |
| 0.75    | 0.02                 |
| 0.90    | 0.006                |
| 0.95    | 0.003                |

$$\alpha = 0.05 \qquad \beta = 0.80$$

- Suponha que estamos interessados em medir a associação entre duas variáveis contínuas, e para isso vamos selecionar três amostras com diferentes tamanhos.
- N = {1.000, 10.000, 100.000}
- Suponha também que conhecemos a lei de probabilidade que essas duas variáveis seguem.

Elas segue a seguinte normal multivariada:

$$\left(\begin{array}{c} X \\ Y \end{array}\right) \sim N\left(\left(\begin{array}{c} 0 \\ 0 \end{array}\right), \left(\begin{array}{cc} 1 & 0,01 \\ 0,01 & 1 \end{array}\right)\right)$$

Logo

$$\mathbb{C}orr(X,Y) = 0.01$$

```
# Gerando as amostras

require(mvtnorm)
set.seed(123456) # Fixando a semente

X1 <- rmvnorm(n=1000, sigma = matrix(c(1,0.01,0.01,1),2,2))
X2 <- rmvnorm(n=10000, sigma = matrix(c(1,0.01,0.01,1),2,2))
X3 <- rmvnorm(n=100000, sigma = matrix(c(1,0.01,0.01,1),2,2))
```

```
## N = 1,000
cor.test(x=X1[,1], y=X1[,2])$p.value
## 0.03627
## N = 10,000
cor.test(x=X2[,1], y=X2[,2])$p.value
## 0.278
## N = 100,000
cor.test(x=X3[,1], y=X3[,2])$p.value
## 0.0001761
```

$$\begin{cases} H_0: & \rho = 0 \\ H_A: & \rho \neq 0 \end{cases}$$

## O problema já vem sendo discutido:

- Ioannidis (2005, Plos Medicine):
   "Why Most Published Research Findings Are False"
- Siegfried, T. (2010, ScienceNews)
   "Odds Are, It's Wrong: Science fails to face the shortcomings of statistics,"
- Nuzzo (2014, Nature)
   "Scientific method: Statistical errors"
- Baker (2016, Nature)
   "Statisticians issue warning over misuse of P values"

### Posição da Associação Americana de Estatística (ASA) sobre o valor-p



#### The American Statistician

ISSN: 0003-1305 (Print) 1537-2731 (Online) Journal homepage: http://amstat.tandfonline.com/loi/utas20

### The ASA's statement on p-values: context, process, and purpose

Ronald L. Wasserstein & Nicole A. Lazar

**To cite this article:** Ronald L. Wasserstein & Nicole A. Lazar (2016): The ASA's statement on p-values: context, process, and purpose, The American Statistician, DOI: 10.1080/00031305.2016.1154108

To link to this article: http://dx.doi.org/10.1080/00031305.2016.1154108

### Princípios propostos pela ASA

- Valor-p pode indicar o quão incompatíveis são os dados de um modelo pré especificado;
- 2. Valor-p não mede a probabilidade da hipotese nula ser verdadeira, ou a probabilidade de que os dados foram gerados totalmente ao acaso;
- Conclusões científicas e decisões políticas ou de negócios NÃO devem ser baseadas somente em se o valor-p passa ou não um valor préespecificado;
- 4. Inferência requer uma descrição completa e transparente;
- 5. Um valor-p, ou significância estatística, NÃO medem o tamanho de um efeito ou importância de um resultado;
- Sozinho, o valor-p NÃO fornece uma boa medida de evidência sobre um modelo ou hipótese;

#### Alternativas?

- Reportar incertezas (estimativas e seus intervalos)
- False-discovery rate
- Model approach
  - Fator de Bayes
  - medidas de comparação de modelos {LRT, AIC, BIC, DIC, WAIC, (bla bla bla)-IC, etc}
  - Valor-e (e-value)
  - FBST {Carlinhos Pereira, USP}
- Etc.

### Por que elas não colaram?

- Benjamin e Berger argumentam que nenhuma alternativa ao valor-p conseguiu apoio geral por uma das duas razões:
  - 1) A alternativa é mais complicada que o valor-p
  - 2) A alternativa não é aceita por ambas escolas de pensamento estatístico: bayesianos e frequentistas

### Voltando ao exemplo da correlação

 Lembrando que as duas variáveis seguem a seguinte lei de probabilidades:

$$\left(\begin{array}{c} X \\ Y \end{array}\right) \sim N\left(\left(\begin{array}{c} 0 \\ 0 \end{array}\right), \left(\begin{array}{cc} 1 & 0,01 \\ 0,01 & 1 \end{array}\right)\right)$$

Logo

$$\mathbb{C}orr(X,Y) = 0.01$$

```
# Gerando as amostras

require(mvtnorm)
set.seed(123456) # Fixando a semente

X1 <- rmvnorm(n=1000, sigma = matrix(c(1,0.01,0.01,1),2,2))
X2 <- rmvnorm(n=10000, sigma = matrix(c(1,0.01,0.01,1),2,2))
X3 <- rmvnorm(n=100000, sigma = matrix(c(1,0.01,0.01,1),2,2))
```

```
## N = 1,000
cor.test(x=X1[,1], y=X1[,2])
                                                    H_0: \quad \rho = 0

H_A: \quad \rho \neq 0
##
    Pearson's product-moment correlation
##
## data: X1[, 1] and X1[, 2]
## t = 2.0967, df = 998, p-value = 0.03627
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.004248519 0.127693006
## sample estimates:
##
        cor
## 0.06622416
```

```
## N = 10,000
cor.test(x=X2[,1], y=X2[,2])
                                                  \begin{cases} H_0: & \rho = 0 \\ H_A: & \rho \neq 0 \end{cases}
##
    Pearson's product-moment correlation
##
## data: X2[, 1] and X2[, 2]
## t = -1.0848, df = 9998, p-value = 0.278
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.030442169 0.008753359
## sample estimates:
##
    cor
## -0.01084857
```

```
## N = 100,000
cor.test(x=X3[,1], y=X3[,2])
                                                \begin{cases} H_0: & \rho = 0 \\ H_A: & \rho \neq 0 \end{cases}
##
    Pearson's product-moment correlation
##
## data: X3[, 1] and X3[, 2]
## t = 3.7511, df = 99998, p-value = 0.0001761
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.005663867 0.018058051
## sample estimates:
##
        cor
## 0.01186141
```





### Por que ensinamos P < 0.05?

Q: Why do so many colleges and grad schools teach p = .05?

A: Because that's still what the scientific community and journal editors use.

Q: Why do so many people still use p = 0.05?

A: Because that's what they were taught in college or grad school.

## "The p-value was never intended to be a substitute for scientific reasoning"

Ron Wassertein, Executive director, ASA

### Obrigado pela atenção!

Leo Bastos PROCC/Fiocruz

Leonardo.bastos@fiocruz.br