Universidad Nacional de Río Negro Física III B - 2021

Unidad 01

Clase U01 C03 - 03/30

Fecha 16 Mar 2021

Cont Teoría Cinética - 2

Cátedra Asorey – Calderón

Web https://gitlab.com/asoreyh/unrn-f3b

Unidad 1: Calor

Módulo 1 - Unidad 1: Calor Del 09/Mar al 25/Mar (6 encuentros) • El calor. Gases ideales y reales. Energía interna. Calorimetría. Calor específico. Teoría cinética de los gases. Temperatura: concepto macroscópico y microscópico. Cambios de fase y calor latente

Principio Cero de la Termodinámica

- Dos objetos que están en equilibrio térmico están a la misma temperatura.
- Principio cero:

Si dos objetos están en equilibrio térmico con un tercer objeto, entonces los tres están en equilibrio térmico entre sí.

• Esta definición → escala de temperaturas

F3B 2O21 4/34

Gas ideal

- Gas: estado de agregación de la materia en el cuál sus constituyentes interactúan muy débilmente y no forman enlaces entre sí
- Un gas ideal es una construccion teórica (mencionen otras). Según este modelo:
 - Las partículas que lo forman son puntuales (volumen despreciable)
 - Las partículas no interactúan entre sí, salvo a través de choques elásticos
- Hay sistemas físicos reales que se asemejan al comportamiento idealizado de un gas ideal

F3B 2O21 5/34

Algunos números

- Radio H₂: 0,74A
- ¿Volumen de la molécula?
- ¿Mol de moléculas?
- Volumen molar de un gas CNPT
- ¿Fracción ocupada por las moléculas del gas?

10-5

~ 1 mL en un balde de 20L

Polymen modecular: Supmgo estra.

$$V = \frac{4}{3}\pi r^{3}$$
 $V = \frac{4}{3}\pi (7.4 \times 10^{-11} \text{m})^{3} = 1.7 \text{ A}^{3}$
 $V_{Hz} = 1.7 \times 10^{-30} \text{m}^{3}$
 $V_{Hz} = 1.7 \times 10^{-30} \text{m}^{3}$
 $V = \frac{4}{3}\pi r^{3}$
 $V_{Hz} = 1.7 \times 10^{-30} \text{m}^{3}$
 $V_{Hz} = 1.7 \times 10^{-30} \text{m}^{3}$

Gases reales

- Átomos y moléculas con interacción entre si (pero de corta distancia) → Fuerzas de Van der Waals
 - Monoatómicos: nobles, He, Ar,...
 - Diatómicos: H₂, O₂, N₂,...
 - Triatómicos: CO₂, H₂O(*)
 - Complejos: NH₃
- Mejor aproximación: gases monoatómicos en condiciones de baja presión y temperatura (baja densidad)

F3B 2O21 7/34

Postulados de la teoría cinética: Gas ideal

- Formado por un gran número de moléculas idénticas
- Separación media es grande respecto a las dimensiones
 - Volumen despreciable respecto al volumen contenedor
- Se mueven aleatoriamente con velocidades diferentes
 - La velocidad media de las moléculas es constante
- Obedecen las leyes de Newton
 - Sólo interactúan (entre sí y con el recipiente) a través de choques elásticos
- El gas está en equilibrio térmico con el recipiente

F3B 2O21 8/34

El modelo de trabajo

 Sean N partículas idénticas de masa m en un recipiente de volúmen V

F3B 2O21 9/34

Sobre las velocidades

Sea el vector velocidad de la molécula i-ésima:

$$\vec{\mathbf{v}}_{i} = (\mathbf{v}_{i,x}, \mathbf{v}_{i,y}, \mathbf{v}_{i,z})$$

 El promedio del vector velocidad es cero (si no, el centro de masas del sistema se desplaza en la dirección no nula!):

$$\langle v_{x} \rangle \equiv \frac{1}{N} \sum_{i}^{N} v_{i,x} \rightarrow \langle v_{x} \rangle = 0, \langle v_{y} \rangle = 0, \langle v_{z} \rangle = 0$$

 Las velocidades en cada dirección no están relacionadas entre sí

$$\langle v_x v_y \rangle = 0, \langle v_x v_z \rangle = 0, \langle v_y v_z \rangle = 0$$

F3B 2O21 10/34

• Entonces:

$$\langle \vec{\mathbf{v}}^{2} \rangle = \langle \vec{\mathbf{v}} \cdot \vec{\mathbf{v}} \rangle = \langle (\mathbf{v}_{x}, \mathbf{v}_{y}, \mathbf{v}_{z}) \cdot (\mathbf{v}_{x}, \mathbf{v}_{y}, \mathbf{v}_{z}) \rangle$$

$$\langle \vec{\mathbf{v}}^{2} \rangle = \langle \mathbf{v}_{x}^{2} + \mathbf{v}_{y}^{2} + \mathbf{v}_{z}^{2} \rangle$$

$$\langle \vec{\mathbf{v}}^{2} \rangle = \langle \mathbf{v}_{x}^{2} \rangle + \langle \mathbf{v}_{y}^{2} \rangle + \langle \mathbf{v}_{z}^{2} \rangle$$

Y como todas son equivalentes (volveremos)

$$\langle \mathbf{v}_{\mathsf{x}}^{\mathsf{2}} \rangle = \langle \mathbf{v}_{\mathsf{y}}^{\mathsf{2}} \rangle = \langle \mathbf{v}_{\mathsf{z}}^{\mathsf{2}} \rangle$$

• Entonces:

$$\langle v^2 \rangle = 3 \langle v_x^2 \rangle$$

F3B 2O21 11/34

Choques en las paredes del recipiente

F3B 2O21 12/34

Choques en las paredes del recipiente

Antes del choque

Después del choque

- El choque es elástico. Luego, en el choque con las paredes:
 - en la dirección y, $v_y = u_y$
 - en la dirección x, $v_x = -u_x$

(¿qué pasa con la conservación de p en este caso?)

El cambio de p en la dirección x:

$$\Delta \vec{p} = \Delta p_x = m(v_x - u_x)$$

$$\Delta p = -2mv_x$$

$$\Rightarrow |(\Delta p)| = 2mv_x$$

F3B 2O21 13/34

¿Cuántos choques se producen en la pared en un tiempo At?

- En el intervalo ∆t, sólo impactarán en la pared A aquellas que estén a cierta distancia y en una cierta dirección
 - tres casos posibles

F3B 2O21 14/34

¿Cuántas moléculas golpearán A en At?

- Verdes son las de interés: golpearán A en el tiempo Δt
- El volúmen de interés es $V_i = A x = A \langle v_x \rangle \Delta t$
- En ese volumen hay $N' = \left(\frac{N}{V}\right)V_i$ Supongamos la mitad van en dirección a A: $N_i = \left(\frac{N}{V}\right)\left(\frac{V_i}{2}\right)$

F3B 2021 15/34

¿Cuántas moléculas golpearán A en At?

- Verdes son las de interés: golpearán A en el tiempo Δt
- El volúmen de interés es $V_i = A x = A \langle v_x \rangle \Delta t$
- En ese volumen hay $N' = \left(\frac{N}{V}\right)V_i$ Supongamos la mitad van en dirección a A: $N_i = \left(\frac{N}{V}\right)\left(\frac{V_i}{2}\right)$

F3B 2021 16/34

Cambio total de cant. de movimiento

- En el volumen de interés tengo entonces
- En cada choque "promedio": $\langle \Delta p \rangle = 2 \text{ m} \langle v_x \rangle$
- Luego, en N_i choques el cambio total en la dirección x:

$$\Delta p_{x} = \sum_{j=0}^{N_{i}} \Delta p_{j} = \left(\frac{N_{i}}{N_{i}}\right) \left(\sum_{j=0}^{N_{i}} \Delta p_{j}\right)$$
$$\Delta p_{x} = N_{i} \langle \Delta p \rangle$$

Y entonces

$$\Delta p_{x} = \left(\frac{N}{V}\right) \left(\frac{A \langle v_{x} \rangle \Delta t}{2}\right) \left(2m \langle v_{x} \rangle\right) \rightarrow \Delta p_{x} = \left(\frac{N}{V}\right) m \langle v_{x} \rangle^{2} A \Delta t$$

F3B 2O21 17/34

Presión en el recipiente

Y la fuerza sobre la pared A en la dirección x:

$$F_{x} = \frac{dp_{x}}{dt} \simeq \frac{\Delta p_{x}}{\Delta t} \rightarrow F = \frac{N}{V} m \langle v_{x}^{2} \rangle A$$

Notar el cambio: esto es válido porque no hay correlación entre las velocidades en cualquier dirección y entre diferentes partículas

Y por lo tanto la presión en la pared A, P_x=F/A →

$$P_x = \frac{N}{V} m \langle v_x^2 \rangle$$

• Todas las paredes son iguales, y dado que: $\langle v^2 \rangle = 3 \langle v_x^2 \rangle$

$$P = \left(\frac{N}{V}\right) \frac{1}{3} m \langle v^2 \rangle \rightarrow P = \frac{2}{3} \left(\frac{N}{V}\right) \left(\frac{1}{2} m \langle v^2 \rangle\right)$$
F3B 2021

18/34

La presión, hasta aquí:

$$P = \frac{2}{3} \left(\frac{N}{V} \right) \underbrace{\left(\frac{1}{2} m \langle v^2 \rangle \right)}_{\langle E_K \rangle}$$

Reordenando

$$\frac{PV}{N} = \left(\frac{2}{3} \langle E_K \rangle\right)$$

Ecuación de estado microscópica

O también:

$$\frac{PV}{N}$$
 = constante

F3B 2O21 19/34

¿Cómo? ¿¿¿no era PV = n R T????

- La <E_k> es "macroscópicamente inaccesible"
- Definimos la temperatura media

$$T \equiv \frac{1}{k_{B}} (\frac{2}{3} \langle E_{K} \rangle)$$

donde $k_B = 1.3806 \times 10^{-23} \text{ J/K}$ es la constante de Boltzmann.

- La temperatura media es una medida de la energía cinética media de las partículas del sistema.
- Luego: $\frac{PV}{N} = k_b T$
- Y entonces

$$PV = Nk_bT$$

F3B 2021

Al fin, PV = nRT

Multiplicando y dividiendo por el Número de Avogadro:

$$PV = \frac{N}{N_A}(N_A k_b)T$$

• N/N_{Δ} es el número de moles de gas en el recipiente V, n:

$$PV = n(N_A k_b)T$$

• Y al producto $(N_A k_B)$:

$$R = N_A k_b = (6.022 \times 10^{23} \text{ mol}^{-1})(1.3806 \times 10^{-23} \text{ J K}^{-1})$$

$$R \equiv N_A k_b = 8,314 \, J \, mol^{-1} \, K^{-1}$$

Resultando:

PV=nRT
F3B 2021

Ecuación de estado de un gas ideal 21/34

De la teoría cinética, obtuvimos

Ecuación de estado de un gas ideal

$$PV=nRT$$

$$R \equiv N_A k_b = 8.314 \, \text{Jmol}^{-1} \, \text{K}^{-1}$$

F3B 2O21 22/34

La constante universal de los gases ideales, R

- Relaciona, a través de la ecuación de estado, las distintas magnitudes físicas asociadas a un gas ideal:
 - Cantidad de gas, n (moles)
 - Presión del gas, P (Pa)
 - Volúmen del gas, V (m³)
 - Temperatura del gas, T (K)
- En unidades del SI:

$$R = N_A k_b = (6,022 \times 10^{23} \text{ mol}^{-1})(1,3806 \times 10^{-23} \text{ J K}^{-1})$$

$$R = N_A k_b = 8,314 \text{ J mol}^{-1} \text{ K}^{-1}$$

• Otro valor usual (no SI): $R = 0.082 L atm K^{-1} mol^{-1}$

$$R = \frac{PV}{nT} \equiv N_A k_B$$

F3B 2O21 23/34

Condiciones "Normales" de Presión y Temperatura (CNPT)

- Parámetros "estandarizados" para trabajar con un gas...
 - Hay muchas convenciones → no son estándares...
 - ¿qué presión? ¿qué temperatura? ¿en qué unidades?
- Nuestra convención:

$$V = \frac{nRT}{P}$$

- $T = 0^{\circ}C \rightarrow T = 273,15 K$
- P = 1atm \rightarrow P = 101325 Pa (\acute{o} P=1013,25 hPa \acute{o} P=101,325 kPa)
- \rightarrow V_{molar}=0,022309m³=22,398 L (volumen molar normal)
- Otras, por ej., T=273,15 K; P = 10^5 Pa \rightarrow V_{molar} = 22,7 L ó, T=293.15K; P = 1atm \rightarrow V_{molar} = 24,06 L, etc

F3B 2O21 24/34

Aplicación: buscando al Helio

- La concentración de Helio en la atmósfera es tan baja (~5.2 ppm) que este gas fue descubierto en el Sol (Lockyer, 1868)
- Sin embargo, es muy abundante en el Universo
- ¿Dónde está el Helio?

F3B 2O21 25/34

Escape atmosférico (1ra parte)

UOI-COZ - 2

Mejorando el cálculo

- Lo que hay que recordar es que hemos utilizado la velocidad promedio del Helio
- Un conjunto grande (~Número de Avogadro) de átomos de Helio a 300K, la <v> ~ 1370 m/s ~ 0,1 v_e.
- Es ~ 10% de la velocidad de escape
- Las velocidades de cada átomo individual podrá distar (y mucho) de la promedio

F3B 2O21 27/34

Paréntesis: Distribución de probabilidad

- Función que asigna a cada suceso la probabilidad de que dicho suceso ocurra:
- Se puede determinar empíricamente a partir de la fracción de sucesos observados sobre el total

Distribución normal o Gaussiana

Sea un gas ideal a una temperatura T

 ¿Cuál es la distribución de probabilidad del módulo de la velocidad |v| de las moléculas que componen un gas

$$|\vec{\mathbf{v}}| = \sqrt{\mathbf{v}_{x}^{2} + \mathbf{v}_{y}^{2} + \mathbf{v}_{z}^{2}}$$

 ¿Cuál es la distribución de probabilidad de cada componente v_i de las moléculas que componen un gas?

Ley de los grandes números → v, tiene distribución Normal

 La Distribución de Maxwel-Boltzmann representa la distribución |v| si sus componentes son normales

Si v_i tiene una distribución normal, |v| tiene una distribución de Maxwel-Boltzmann

F3B 2O21 30/34

Maxwell-Boltzmann

En un gos de N molécules, tranq à Custos proleculos en where N = f(n) dn N = f(n) dn

Se pende ver per 15m20 se do poro 3+=0=5

$$f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2kT}\right)^{3/2} v^2 e^{-\frac{mv^2}{2kT}}$$

$$F(E) = \frac{2}{\sqrt{\pi}} \left(\frac{1}{kT}\right)^{3/2} E^{\frac{1}{2}} e^{-\frac{E}{kT}}$$

DNF(r) LN= NF(E) dE cm E=1 mo2 $f(E) = \frac{2}{\pi} \left(\frac{1}{\kappa T} \right)^{3/2} E'/2 e^{-E/\kappa T}$ Prob. de Etgrescupado

Distribución de Maxwell-Boltzmann

F3B 2O21 32/34

Distribución de Boltzmann (google sheet)

Distribución de Maxwell-Boltzmann

Distribución de Maxell-Boltzmann para 1 mol He a T=300K

https://docs.google.com/spreadsheets/d/10XqxvzYkFXKWgC1mOw8eqaVhJz6qjnUEoIBcjsTv6bM/edit#gid=0

F3B 2O21 33/34

El problema de Richter

F3B 2O21 34/34