Exact differential Equations

1. Partial derivatives

Let z=f(x,y) be a function of two independent random variables. Vindex variables

The we. y as constant, (x+0x,f(x+0x))

Take y=b, represents

a plane I' to xy plane. (x,f(x,b))

Let P(x, f(x,b)) and $Q(x+\Delta x, f(x+\Delta x,b))$ be two neighbouring points on the curve z = f(x,b).

Then the slope of the chord PQ is, $\frac{f(x+\Delta x,b)-f(x,b)}{(x+\Delta x)-x}=\frac{f(x+\Delta x,b)-f(x,b)}{\Delta x}$

as $\Delta x \rightarrow 0$, the chord PQ becomes a tangent at P.

 $\overrightarrow{(x+\Delta x,b)}$

(x,b)

Slope of the tangent at P(x,f(x,b))= $\lim_{\Delta x \to 0} f(x + \Delta x,b) - f(x,b)$ if exists $\frac{\partial z}{\partial x}$ * Let z = f(x,y) be a function of two indpt variables x andy. If we keep y as constant then z is a function of a alone. Then the partial derivative of Z W.Yt. x is denoted by $\frac{\partial z}{\partial x}$ or z_x or f_x or $\frac{\partial f}{\partial x}$, is defined as total dentire of z w.rt.x by keeping y as constant. \dot{Q} = $lim f(\chi + \Delta \chi, y) - f(\chi, y)$ $\frac{\partial Z}{\partial \chi} = lim f(\chi + \Delta \chi, y) - f(\chi, y)$

* If we keep a as constant then z is a function of y alone. Then the partial derivative of z wirt y is denoted by 32 or zy or of or fy, is defined as the total derivative of zwirt y by keeping x as constant

$$\frac{\partial z}{\partial y} = \lim_{\Delta y \to 0} f(x,y+\Delta y) - f(x,y)$$

$$\frac{\partial z}{\partial y} = \frac{\lambda^2 y}{\lambda^2}$$

$$\frac{\partial z}{\partial x} = \frac{$$

* If
$$u = f(x_{1}y)$$
 f $v = f(x_{1}y)$. Then

$$\frac{\partial}{\partial x}(uv) = u \frac{\partial v}{\partial x} + v \frac{\partial u}{\partial x} \left| \frac{\partial}{\partial y}(uv) = u \frac{\partial v}{\partial y} + v \frac{\partial u}{\partial y} \right|$$

$$\frac{\partial}{\partial x}(uv) = v \frac{\partial u}{\partial x} - u \frac{\partial v}{\partial x}$$

$$\frac{\partial}{\partial x}(uv) = v \frac{\partial u}{\partial x} - u \frac{\partial v}{\partial x}$$

$$\frac{\partial (u_{v})}{\partial y} = \frac{\sqrt{2}u}{\sqrt{2}y} - u\frac{\partial v}{\partial y}$$

2. Total differential

Let z = f(x, y) be a function of two independent random variables.

8. Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ if

 $z = x^3 + 3x^2y^2 + 5y^4$.

Ans:- $\frac{\partial z}{\partial x} = \frac{\partial}{\partial x} (x^3 + 3x^2y^2 + 5y^4)$
 $= \frac{\partial}{\partial x} (x^3) + \frac{\partial}{\partial x} (3x^2y^2) + \frac{\partial}{\partial x} (5y^4)$
 $= 3x^2 + 3y^2 \frac{\partial}{\partial x} (x^2) + 0$
 $= 3x^2 + 3y^2 \times (2x) = 3x^2 + 6xy^2$
 $\frac{\partial z}{\partial y} = \frac{\partial}{\partial y} (x^3) + \frac{\partial}{\partial y} (3x^2y^2) + \frac{\partial}{\partial y} (5y^4)$
 $= 0 + 3x^2 (2y) + 5 \times 4y^3$
 $= 6x^2y + 20y^3$

Total differential:- Let z=f(x,y) be a function of two independent variables x andy.

Then the total differential of z is defined an,

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

 \Rightarrow of z = f(u,v,w) then $dz = \frac{\partial z}{\partial u} \cdot du + \frac{\partial z}{\partial v} \cdot dv + \frac{\partial z}{\partial w} \cdot dw$

Eg:-(1) Suppose
$$Z = xy$$
 then
$$dz = \frac{\partial}{\partial x}(xy) \cdot dx + \frac{\partial}{\partial y}(xy) dy$$

 $\Rightarrow d(xy) = ydx + xdy$

(ii) Suppose $Z = (\frac{y}{x})^{2}$ then. $\frac{2dy-ydx}{x^{2}}$

 $dz = \frac{\partial}{\partial x} (y_{x}) dx + \frac{\partial}{\partial y} (y_{x}) dy = y \cdot (\frac{1}{x^{2}}) dx + \frac{1}{x} (1) dy$

3. Exact differential equation A de of the form Definition 3.1. $M(x_1y) dx + N(x_1y) dy = 0$ is said function of function of x44 to be (exact) if LHS of (8) total differential or exact differential It some function of x and y. Suppose LHS of (*) is the total differential of u(x,y) then d(u) = 0becomes, Integrating both sides we get, $u(x,y) = u = C \quad \text{is the sol}^n$ Consider x dy + y dx = 0

g: (1) Consider x dy + y dx = 0This can be written as d(xy) = 0 $\Rightarrow xy = C \text{ is the sol}^h$

The following theorem gives a necessary and sufficient condition for a first order first degree differential equation to be an exact differential equation.

Theorem 3.2. Consider the d.e. $M(x_1y) dx + N(x_1y) dy = 0$ Assume that $M(x_1y)$, $N(x_1y)$, $\frac{\partial N}{\partial x}$, $\frac{\partial M}{\partial y}$ are continuous functions then $eq^n \otimes is exact$ if and only if $\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}$.

Working rule to get the solution of an exact differential equation

Soln is,

(M(x,y)dx + (Terms in 'N'not) dy=C

treating 'y' as constant

treating 'y' as constant

Problem 3.3. Verify the given differential equation is exact or not.

Problem 3.3. Very the given differential equation is exact or not.

If so, then solve it.

$$y \sin 2x \, dx - (1 + y^2 + \cos^2 x) dy = 0.$$

Solution:

$$M(x,y)$$

Here $M = y \sin 2x$

$$N = -(1 + y^2 + \cos^2 x)$$

$$\frac{\partial M}{\partial y} = \sin 2x$$

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \Rightarrow \text{ is exact}$$

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \Rightarrow \text{ is exact}$$

$$\frac{\partial M}{\partial y} = C$$

treating 'y' terms are constant

$$\frac{\partial M}{\partial y} = C$$

$$\frac{\partial M}{\partial x} = C$$

$$\frac{\partial M}{\partial y} = C$$

$$\frac{\partial M}{\partial x} = C$$

$$\frac{\partial M}{\partial y} = C$$

$$\frac{\partial M}{\partial y} = C$$

$$\frac{\partial M}{\partial x} = C$$

$$\frac{\partial M}{\partial y} = C$$

$$\frac{\partial M}{\partial x} = C$$

$$\frac{\partial M}{\partial y} = C$$

$$\frac{\partial M}{\partial x} = C$$

$$\frac{\partial M}{\partial y} = C$$

 $\Rightarrow -9\frac{1052x}{2} - 9-9\frac{3}{3} = 0$

Problem 3.4. Verify the given differential equation is exact or not. If so, then solve it.

Solution:

$$3x(xy-2)dx + (x^3+2y)dy = 0.$$

Here $M = 3x^2y - bx$ $N = x^3+2y$

$$\Rightarrow \frac{\partial M}{\partial y} = 3x^2 - 0 \qquad \frac{\partial N}{\partial x} = 3x^2 + 0$$

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \Rightarrow \text{ is exact.}$$

$$Sol^n is,$$

$$(3x^2y - 6x) dx + (2y dy = 0)$$
Freahing y as constant
$$\Rightarrow 3y(x^3/3) - 6(x^2/2) + 2(y^2/2) = 0$$

$$\Rightarrow x^3y - 3x^2 + y^2 = 0$$

Problem 3.5. Verify the given differential equation is exact or not. If so, then solve it.

Solution: M

$$\frac{\partial M}{\partial y} = \frac{2\sin 2y - 3x^{2}(2y)}{3x} \left| \frac{\partial N}{\partial x} = 0 - \frac{2\sin 2y}{3x^{2}} \right| - \frac{2y}{3x^{2}} = -\frac{2\sin 2y}{3x^{2}} = 0$$

Freshold: Solving:

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = 0 - \frac{2\sin 2y}{3x^{2}} = 0$$

$$= -\frac{2\sin 2y}{3x^{2}} - 6x^{2}y$$

$$= -\frac{2\sin 2$$

4. Equations reducible to exact differential equation

Equations that are not exact, can be made exact, by suitable multiplication of a function of x and y. Such multiplier is called an **integrating factor (I.F.)** of the differential equation.

Type 4.1. Inspection Method:

Some of the frequently occurring exact differentials are

•
$$dx \pm dy = A(x \pm y)$$

•
$$xdx \pm ydy = d\left(\frac{x^2 + y^2}{2}\right)$$

•
$$xdy + ydx = d(xy)$$

•
$$\frac{xdx + ydy}{x^2 + y^2} = d\left(\frac{\log(x^2 + y^2)}{2}\right)$$

•
$$\frac{xdx + ydy}{\sqrt{x^2 + y^2}} = d\left(\sqrt{\chi^2 + y^2}\right)$$

•
$$\frac{xdy + ydx}{xy} = d \left(\omega g(xy) \right)$$

•
$$\frac{xdy - ydx}{x^2} = A \left(\frac{y}{x} \right)$$

•
$$\frac{xdy - ydx}{xy} = d \left(\log \left(\frac{y}{\chi} \right) \right)$$

•
$$\frac{xdy - ydx}{x^2 + y^2} = d(\tan(4x))$$

venfyit

Problem 4.2. Solve $ydx - xdy + 3x^2y^2e^{x^3}dx = 0$.

Ans: Divide both sides by
$$y^2$$
 we get, $y dx - x dy + 3x^2 e^{x^3} dx = 0$

$$\Rightarrow d\left(\frac{x}{y}\right) + d\left(e^{x^3}\right) = 0$$

$$\Rightarrow d\left(\frac{x}{y}\right) + e^{x^3} = 0, \text{ exact de}$$

$$2x + e^{x^3} = C$$

$$4(x_y) = \frac{\partial}{\partial n}(x_y) dx + \frac{\partial}{\partial y}(x_y) dy$$

$$\rightarrow d(f(x)) + d(g(x)) = d(f(x)) + g(x))$$

Problem 4.3. Solve $xdy - ydx = x\sqrt{x^2 - y^2}dx$.

Ans: Given
$$x dy - y dx = x \sqrt{x^2 (1 - y^2/x^2)} dx$$

$$\Rightarrow x dy - y dx = x^2 \sqrt{1 - y^2/x^2} dx$$

$$\Rightarrow \left(\frac{x dy - y dx}{x^2}\right) = \sqrt{1 - y^2/x^2} dx$$

$$\Rightarrow \left(\frac{x dy - y dx}{x^2}\right) = dx$$

$$\Rightarrow \frac{1 - y^2/x^2}{x^2} = dx$$

Integrating both sides Sin'(9/x) = dx, exact Sin'(9/x) = x + C

Problem 4.4. Solve $y(2xy + e^x) dx = e^x dy$.

Ans:-
$$2xy^2dx + ye^xdx = e^xdy$$

 $\Rightarrow 2xdx + ye^ydx - e^ydy = 0$
 $\Rightarrow d(x^2) + d(\frac{e^x}{y}) = 0$
 $\Rightarrow d(x^2 + \frac{e^x}{y}) = 0$, exact d.e.
Antegrating $x^2 + \frac{e^x}{y} = 0$

Type 4.5. Consider the non exact equation Mdx + Ndy = 0. If the given differential equation is homogenous and $Mx + Ny \neq 0$, then the I.F. is $\frac{1}{Mx + Ny}$.

Problem 4.6. Solve $(x^2y - 2xy^2) dx - (x^3 - 3x^2y) dy = 0$

Here $M = (\chi^2 y - 2\chi y^2)$ & $N = -\chi^3 + 3\chi^2 y$ T is a homo eqn of deg 3. $M\chi + Ny = \chi(\chi^2 y - 2\chi y^2) + y(-\chi^3 + 3\chi^2 y)$

 $Mx + Ny = x(x^{2}y - 2xy^{2}) + y(-x^{3} + 3x^{2}y^{2})$ $= x^{3}y - 2x^{2}y^{2} - x^{3}y + 3x^{2}y^{2}$ $= x^{2}y^{2} \neq 0$

 $\frac{1}{2} \cdot \hat{I} \cdot \hat{I} \cdot \hat{I} = \frac{1}{2} \frac{1}{\chi^2 y^2}$

Multiply eqn (1) by $\frac{1}{\chi^2 y^2}$ we get,

 $\left(\frac{1}{y} - \frac{2}{x}\right) dx + \left(\frac{-x}{y^2} + \frac{3}{y}\right) dy = 0$, will be an exact de

from eqⁿ(2), we've, $M = \frac{1}{y} - \frac{2}{x}$ $N = -\frac{x}{y^2} + \frac{3}{y}$

Problem 4.7. Solve $(x^2 - 3xy + 2y^2) dx + x (3x - 2y) dy = 0$.

Ans: logx +3y - y² = C

Hint

$$\frac{1}{\chi^{3}}$$

$$dz = \frac{\partial^{2}}{\partial \eta} d\eta + \frac{\partial^{2}}{\partial \eta^{2}} dy$$

$$d\left(Sin^{-1}(y_{/\chi})\right) = \frac{\partial}{\partial \eta}\left(Sin^{-1}(y_{/\chi})\right) d\eta$$

$$+ \frac{\partial}{\partial \eta}\left(Sin^{-1}(y_{/\chi})\right) dy - e$$

$$\frac{\partial}{\partial \eta}\left(Sin^{-1}(y_{/\chi})\right) = \frac{1}{1-(y_{/\chi})^{2}} \frac{\partial}{\partial \eta}\left(y_{/\chi}\right)$$

$$= \frac{1}{\sqrt{1-(y_{/\chi})^{2}}} \cdot y\left(\frac{-1}{\chi^{2}}\right)$$

$$\prod_{1=y_{/\chi}}^{y_{/\chi}} \frac{\partial}{\partial \eta}\left(Sin^{-1}(y_{/\chi})\right) = \frac{1}{\sqrt{1-(y_{/\chi})^{2}}} \cdot \frac{\partial}{\partial \eta}\left(y_{/\chi}\right)$$

$$= \frac{1}{\sqrt{1-(y_{/\chi})^{2}}} \cdot \frac{\partial}{\partial \eta}\left(y_{/\chi}\right)$$

$$= \frac{1}{\sqrt{1-(y_{/\chi})^{2}}} \cdot \frac{\partial}{\partial \eta}\left(y_{/\chi}\right)$$

$$= \frac{1}{\sqrt{1-(y_{/\chi})^{2}}} \cdot \frac{\partial}{\partial \eta}\left(y_{/\chi}\right)$$

Type 4.8. Consider the non exact equation
$$Mdx + Ndy = 0$$
. If
$$\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = f(x), \ a \ function \ of \ x \ alone.$$
 Then, the integrating factor is,
$$I.F. = e^{\int f(x)} dx.$$

$$I.F. = e^{\int f(x)} dx.$$

$$= \frac{1}{\sqrt{1-(\frac{y}{h})^{2}}} \cdot \frac{-y}{x^{2}} dx + \frac{1}{\sqrt{1-(\frac{y}{h})^{2}}} \frac{1}{x} dy$$

$$= \frac{1}{\sqrt{1-(\frac{y}{h})^{2}}} \left[\frac{xdy - ydx}{x^{2}} \right]$$