

BASARA SARASWATHI BHAVAN MDP N-120

Sec: Sr. **COMPLEX NUMBERS** Date:02/05/2020

I). **Modulus:** If $z_1, z_2, z_2 \in C$ then

1). If
$$if z = x + iy$$
, $|z| = \sqrt{x^2 + y^2}$

2).
$$|z| = 0 \Rightarrow z = 0 \& \text{Re}(z) = \text{Im}(z) = 0.$$

3).
$$|z| = |z| = |-z|$$
.

4).
$$-|z| \le \text{Re}(z) \le |z|$$
. and $-|z| \le \text{Im}(z) \le |z|$.

5).
$$|z^2| = z\overline{z}$$
 and $|z_1 z_2 z_n| = |z_1||z_2|....|z_n|$.

6).
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
; $|z_2| \neq 0$.

7).
$$|z_1 + z_2|^2 = (z_1 + z_2)(\overline{z_1 + z_2}) = |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1\overline{z_2})$$
. **or**

$$|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2|z_1||z_2|\cos(\theta_1 - \theta_2)$$

$$|z_{1} + z_{2}|^{2} = |z_{1}|^{2} + |z_{2}|^{2} + 2|z_{1}||z_{2}|\cos(\theta_{1} - \theta_{2})$$
(where $|z_{1}| = r_{1}$, $|z_{2}| = r_{2}$ and $\arg(z_{1}) = \theta_{1}$ and $\arg(z_{2}) = \theta_{2}$)

7a) If
$$\theta_1 - \theta_2 = 0 \Rightarrow |z_1 + z_2|^2 = (|z_1| + |z_2|)^2 \Rightarrow |z_1 + z_2| = |z_1| + |z_2|$$

i.e.
$$\arg(z_1) = \arg(z_2) \Rightarrow \arg\left(\frac{z_1}{z_2}\right) = 0 \Rightarrow \frac{z_1}{z_2} = \text{purely real and hence } \frac{z_1}{z_2} = \frac{\overline{z_1}}{\overline{z_2}}$$

7b) If
$$\theta_1 - \theta_2 = \frac{\pi}{2} \Rightarrow |z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$$

i.e.
$$\arg(z_1) - \arg(z_2) = \frac{\pi}{2} \Rightarrow \arg\left(\frac{z_1}{z_2}\right) = \frac{\pi}{2} \Rightarrow \frac{z_1}{z_2} = \text{purely imaginary} \text{ and hence } \frac{z_1}{z_2} = -\frac{\overline{z_1}}{\overline{z_2}}$$

If $\theta_1 - \theta_2 = \frac{\pi}{2}$, then the complex numbers z_1, z_2 , and origin form a right angle triangle, right angled at origin

7c) If
$$\theta_1 - \theta_2 = \pi \Rightarrow |z_1 + z_2|^2 = (|z_1| - |z_2|)^2 \Rightarrow |z_1 + z_2| = ||z_1| - |z_2||$$

i.e.
$$\arg(z_1) - \arg(z_2) = \pi \Rightarrow \arg\left(\frac{z_1}{z_2}\right) = \pi \Rightarrow \frac{z_1}{z_2} = \text{purely real} \text{ and hence } \frac{z_1}{z_2} = \frac{\overline{z_1}}{\overline{z_2}}$$

8).
$$|z_1 - z_2|^2 = (z_1 - z_2)(\overline{z_1 - z_2}) = |z_1|^2 + |z_2|^2 - 2\operatorname{Re}(z_1\overline{z_2})$$
. **or**

$$|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - 2|z_1||z_2|\cos(\theta_1 - \theta_2)$$

(where $|z_1| = r_1$, $|z_2| = r_2$ and $\arg(z_1) = \theta_1$ and $\arg(z_2) = \theta_2$)

8a) If
$$\theta_1 - \theta_2 = 0 \Rightarrow |z_1 - z_2|^2 = (|z_1| - |z_2|)^2 \Rightarrow |z_1 - z_2| = ||z_1| - |z_2||$$

i.e. $\arg(z_1) = \arg(z_2) \Rightarrow \arg\left(\frac{z_1}{z_2}\right) = 0 \Rightarrow \frac{z_1}{z_2} = \text{purely real and hence } \frac{z_1}{z_2} = \frac{\overline{z_1}}{\overline{z_2}}$

8b) If
$$\theta_1 - \theta_2 = \frac{\pi}{2} \Rightarrow |z_1 - z_2|^2 = |z_1|^2 + |z_2|^2$$

i.e. $\arg(z_1) - \arg(z_2) = \frac{\pi}{2} \Rightarrow \arg\left(\frac{z_1}{z_2}\right) = \frac{\pi}{2} \Rightarrow \frac{z_1}{z_2} = \text{purely imaginary and hence } \frac{z_1}{z_2} = -\frac{z_1}{z_2}$

8c) If
$$\theta_1 - \theta_2 = \pi \Rightarrow |z_1 - z_2|^2 = (|z_1| + |z_2|)^2 \Rightarrow |z_1 - z_2| = |z_1| + |z_2|$$

i.e. $\arg(z_1) - \arg(z_2) = \pi \Rightarrow \arg\left(\frac{z_1}{z_1}\right) = \pi \Rightarrow \frac{z_1}{z_1} = \text{purely real}$ and hence $\frac{z_1}{z_1} = \frac{\overline{z_1}}{z_1}$

9) If
$$\theta_1 - \theta_2 = \frac{\pi}{2} \Rightarrow |z_1 + z_2| = |z_1 - z_2|$$
 and $|z_1| = |z_2|$ & $z_1 + z_2 = 0$ then $\arg(z_1) + \pi = \arg(z_2)$

10a).
$$|z_1 + z_2|^2 + |z_1 - z|^2 = 2(|z_1|^2 + |z_2|^2)$$
.

10b).
$$|az_1 - bz_2|^2 + |bz_1 - az_2|^2 = (a^2 + b^2)(|z_1|^2 + |z_2|^2)(a, b, \in R)$$

11a). $|z_1 + z_2| \le |z_1| + |z_2|$
11b). $|z_1 + z_2| \ge ||z_1| - |z_2||$

11a).
$$|z_1 + z_2| \le |z_1| + |z_2|$$

11b).
$$|z_1 + z_2| \ge ||z_1| - |z_2||$$

11c).
$$|z_1 - z_2| \le |z_1| + |z_2|$$

11d).
$$|z_1 - z_2| \ge ||z_1| - |z_2||$$

II). Conjugate of a complex number:

a) = a

- a) z = z; b) $z + \overline{z} = 2\operatorname{Re}(z)$ c) $z \overline{z} = 2i.\operatorname{Im}(z)$ d) $z = \overline{z} \Rightarrow z$ is a purely real e) $z + \overline{z} = 0 \Rightarrow z$ is purely imaginary
- $f) z.\overline{z} = (re(z))^2 + (im(z))^2 = |z|^2$ $g)(\overline{z_1 \pm z_2}) = \overline{z_1} \pm \overline{z_2}$

 $h)\left(\overline{z_1.z_2}\right) = \overline{z_1.z_2}$

- i) $\left(\overline{z_1/z_2}\right) = \overline{z_1}/\overline{z_2}$
- j) \bar{z} is the image of z with respect to the real axis.
- k). Sum and product of two complex numbers are real if and only if they are conjugate to each other.

III). Argument of a complex number:

- 1) $\arg(z_1.z_2) = \arg(z_1) + \arg(z_2)$ and $\arg(z_1.z_2.z_3....z_n) = \arg(z_1) + \arg(z_2) + \arg(z_3) + + \arg(z_n)$
- and $arg(z^n) = n arg(z), n \in I$
- 2) $\arg(z_1/z_2) = \arg(z_1) \arg(z_2)$

3)
$$\arg(z) = -\arg(z) = \arg\left(\frac{1}{z}\right)$$

4)
$$\arg(z - \bar{z}) = \pm \frac{\pi}{2}$$
 and $\arg(z + \bar{z}) = 0$ or π

5)
$$\arg(-z) = \arg(z) \pm \pi$$
 and $\arg(z) + \arg(-z) = \pi$

6) If
$$\arg(z) < 0 \Rightarrow \arg(-z) - \arg(z) = \pi$$
 and If $\arg(z) > 0 \Rightarrow \arg(-z) - \arg(z) = -\pi$

7) $\arg(z_1.z_2) = \arg(z_1) + \arg(z_2)$ is true for general value of arguments of z_1, z_2 , but is not true for principal argument of z_1, z_2 , **example**: $\left[z_1 = -\sqrt{3} + i, z_2 = -1 + i\sqrt{3}\right]$

8). Angle BAC =
$$\arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right) = \arg\left(\frac{\overline{OC} - \overline{OA}}{\overline{OB} - \overline{OA}}\right)$$

9). Locus of z, such that
$$\arg\left(\frac{z-1}{z+1}\right) = \theta$$
. and A (1,0) and B (-1,0)

If $\theta = 0$, P lies either above or below A figure.......

If $\theta = \pi$, P lies on the line segment AB figure..........

If $\theta = \alpha$, then the locus of z is part of a circle.figure.....

IV). Equilateral triangle/Area of a triangle:

1). Area of a triangle whose vertices are
$$z_1, z_2, z_3$$
 is $\frac{i}{4} \begin{vmatrix} z_1 & \overline{z_1} \\ z_2 & \overline{z_2} \\ z_3 & \overline{z_3} \end{vmatrix}$.

2). If
$$|z_1| = |z_2| = |z_3| = 1$$
 then its area is $\left| \frac{(z_1 - z_2)(z_2 - z_3)(z_3 - z_1)}{4z_1 z_2 z_3} \right|$

$$\begin{bmatrix} z_1 & z_1 = 1 \Rightarrow z_1 = \frac{1}{z_1} & z_2 & z_2 = 1 \Rightarrow z_2 = \frac{1}{z_2} & z_3 & z_3 = 1 \Rightarrow z_3 = \frac{1}{z_3} \end{bmatrix}$$

3). Vertices of a triangle are $\frac{z-z_2}{z_1-z_2}-\frac{a}{a}=0$ then its area is $\frac{1}{2}|z|^2$ also, the triangle is right angled triangle.

$$\left(let \ z_1 = z \ \& \ z_2 = iz \ \& \ z_2 = z_1 e^{\frac{i\pi}{2}} \Rightarrow |z_1| = |z_2| \ \& \ |z_3| = \sqrt{2} |z_1|\right).$$

- 4). Area of the triangle, formed z, iz, z iz is $\frac{3}{2}|z|^2$.
- 5). Area of the triangle, formed by the points z, wz, wz + z is....
- 6) z_1, z_2, z_3 are the vertices of an equilateral triangle, then

a).
$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$$
.

b). if z_0 is the centroid of triangle then $z_1 + z_2 + z_3 = 3z_0$, & $z_1^2 + z_2^2 + z_3^2 = 3z_0^2$

c).
$$(z_1 - z_2)^2 + (z_2 - z_3)^2 + (z_3 - z_1)^2 = 0$$

d)
$$\frac{1}{z_1 - z_2} + \frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} = 0.$$

- e). z_1, z_2 , and origin, form an equilateral triangle then $z_1^2 + z_2^2 z_1 z_2 = 0$
- 7). z_1, z_2, z_3, z_4 are the complex numbers representing the vertices of a square, having centre at z_o then.

a)
$$\sum_{i=1}^{4} z_i = 4z_0$$

b)
$$\sum_{i=1}^{4} (z_i)^2 = 4(z_0)^2$$

c)
$$(z_1 - z_o)^2 + (z_2 - z_0)^2 + (z_3 - z_o)^2 + (z_4 - z_o)^2 = 0$$
.

8). $z_1, z_2, ..., z_n$ be the complex numbers representing the vertices of n – sided regular polygon, and " z_o " is its centre. Then.

a)
$$\sum_{i=1}^{n} z_i = nz_o$$

b)
$$\sum_{i=1}^{n} z_1^2 = nz_0^2$$

9). If z_1, z_2, z_3 are the vertices of a triangle and satisfies $\frac{z_1 - z_3}{z_2 - z_3} = \frac{1 - i\sqrt{3}}{2}$ then the

triangle is equilateral triangle. (taking modulus and argument on both sides)

V). Line

1) Equation of a line, passing through two points z_1 and z_2 is,

$$z\left(\overline{z_2} - \overline{z_1}\right) - \overline{z}(z_2 - z_1) + z_1\overline{z_2} - \overline{z_1}z_2 = 0 \quad (or) \quad \arg\left(\frac{z - z_1}{z_1 - z_2}\right) = 0 \quad or \quad \pi. \quad (or) \begin{vmatrix} z & \overline{z} & 1 \\ z_1 & \overline{z_1} & 1 \\ z_2 & \overline{z_2} & 1 \end{vmatrix} = 0$$

2).
$$az + az + b = 0$$
 where $b \in R$ and $a = -i(z_1 - z_2)$.

3). If z_1 and z_2 are two points on a line, its complex stope is defined as $\frac{z_1 - z_2}{\overline{z_1 - z_2}}$.

4). Complex slope of the line
$$a\overline{z} + a\overline{z} + b = 0$$
 is $\frac{-a}{a}$

- 5). If M, is the complex slope of a line joining the points z_1 and z_2
- **m**, is real slope of the line $m = \tan \theta$. ($\theta = \text{inclination of the line}$, with +ve direction of x axis (real axis).

Then
$$M = \frac{z_1 - z_2}{\overline{z_1} - \overline{z_2}} = \frac{1 + im}{1 - im} \& |M| = 1$$
 and M = m is never possible

$$M = \cos 2\theta + i \sin 2\theta$$
 (i.e. $M = e^{2i\theta}$)

- 6). If w_1 and w_2 are the complex slopes of the two parallel lines in the argand plane, then $w_1 = w_2$, and if the lines are perpendicular, then $w_1 + w_2 = 0$.
- 7). a) Equation of a line parallel to the line az + az + b = 0 is $az + az + \lambda = 0$ $(\lambda \in R)$
 - b). If the line az + az + b = 0 is parallel to the real axis then Re(a) = 0
- c). If the lines $a_1\overline{z} + \overline{a_1}z + b_1 = 0$ and $a_2\overline{z} + \overline{a_2}z + b_2 = 0$ are parallel, then $\frac{a_1}{a_2}$ is real.

$$because \frac{-a_1}{\overline{a}_1} = \frac{-a_2}{\overline{a}_2} \Rightarrow \frac{a_1}{a_2} = \frac{\overline{a}_1}{\overline{a}_2}$$

- 8). Equation of a line, perpendicular to the line $a\overline{z} + a\overline{z} + b = o$ is $a\overline{z} a\overline{z} + i\lambda = 0$.
- 9) The length of the perpendicular from a point $P(z_n)$ to the line

$$a\overline{z} + \overline{az} + b = 0$$
 is $\left| \frac{a\overline{z_o} + \overline{az_o} + b}{2|a|} \right|$

- 10). The algebraic sum of the perpendicular distances calculated from the points, represented by the complex numbers, $1, \alpha, \alpha^2, \alpha^3, \dots, \alpha^{n-1}$ (nth roots of unity) to the line $a\bar{z} + \bar{a}z + b = o$ is $\frac{nb}{2|a|}$
- 11). Equation a line joining the points represented by the complex numbers a and ib $(a,b \in R, \& a,b \neq 0)$. is, $z\left(\frac{1}{2a} \frac{i}{2b}\right) + \overline{z}\left(\frac{1}{2a} + \frac{i}{2b}\right) = 1$. (i.e. intercepts made by the line on the axes)

Consider the line $a\overline{z} + az + b = 0$

- a). Intercept of the line on imaginary axis is, $\frac{-ib}{a-a}$
- b). Intercept of the line on imaginary axis is, $\frac{-b}{a+a}$

$$\begin{bmatrix} a = \alpha + i\beta, b = \alpha - i\beta \text{ and put } z = x + iy \text{ in } az + az + b = 0 \\ and \text{ it becomes } x\alpha + y\beta = b, \ x = \frac{-b}{\alpha}, \ y = \frac{-b}{\beta} \end{bmatrix}$$

12). Intersection of two lines $\overline{a_1}z + a_1\overline{z} + b_1 = 0$ & $\overline{a_2}z + a_2\overline{z} + b_2 = 0$. is obtained, solving for z. (i.e. eliminate z or \overline{z})

13). a)
$$z_2$$
 is the reflection of z_1 with respect to the line $a\overline{z} + a\overline{z} + b = 0$, then $\overline{z_2}a + \overline{az_1} + b = 0$.

$$\left[\frac{z_1 - z_2}{z_1 - z_2} + \frac{-a}{a} = 0 \& \frac{z_1 + z_2}{2} \text{ lies on the line} \right]$$

- b). $arg(z_1 z_0) + arg(z_2 z_0) = 0$, where z_0 is foot of the perpendicular, drawn from z_1 to the line.
- c). z_2 is the reflection of z_1 with respect to the line $a\overline{z} + a\overline{z} + b = 0$, then $Re(a(z_1 + z_2)) = -b$

$$\begin{bmatrix} \overline{z_2}a + a\overline{z_1} + b = 0. \to 1 & \overline{z_2}a + a\overline{z_1} + b = 0. \to 2 & \text{and adding both we get} \\ a(\overline{z_1} + \overline{z_2}) + a(\overline{z_1} + \overline{z_2}) = -2b & \Rightarrow 2\operatorname{Re}(a(\overline{z_1} + \overline{z_2})) = -2b \end{bmatrix}$$

d)
$$\frac{z-z_2}{z_1-z_2} - \frac{a}{a} = 0$$

Some examples:

- 1). reflection of $\frac{4+zi}{1+zi}$ in the line $iz=\overline{z}$ is =(1-2i)
- 2). reflection of $\left(\frac{2-i}{3+i}\right)$ in the line of $z(1+i)=\overline{z}(i-1)$ is $=\left(\frac{i-1}{2}\right)$.
- 3). reflection of point z_1 , in the line $\theta = \alpha$ through origin, is z_2 and reflection of z_2 in the line
- $\theta = \beta$, through origin is z_3 . Then

a)
$$z_2 = \overline{z_1}$$
. $e^{2i\alpha}$

b)
$$z_3 = z_1 \cdot e^{2i(\beta - \alpha)}$$

c) if
$$\alpha = \beta$$
 then $z_3 = z_1$. { $\frac{z-0}{z-0} = M \Rightarrow z = M\overline{z}$ and $\frac{z_1 + z_2}{2}$ lies in the line &

$$\frac{\overline{z_1 - z_2}}{\overline{z_1 - z_2}} + M = 0 \} \Longrightarrow z_2 = \overline{z_1} e^{2i\alpha}$$

VI. CIRCLE:

- 1). Equation of a circle whose centre is at origin and radius is r, is |z| = r
- 2). Equation of a circle whose centre at a point (z_o) and radius "r" is $|z-z_o|=r$ $z\overline{z}+a\overline{z}+b=o(b\in R)$.

$$[a=-z_0 \text{ and } b=\left|z_0\right|^2-r^2 \Rightarrow r^2=\left|z_0\right|^2-b \text{ and if } \left|z_0\right|^2-b\geq 0$$
, represents a real circle]

3) equation of circle described on a line segment joining

$$A(z_1) \& B(z_2)$$
 as diameter is $(z-z_1)(\overline{z}-\overline{z_2})+(z-z_2)(\overline{z}-\overline{z_1})=0$.

because
$$\frac{z-z_1}{z-z_1} + \frac{z-z_2}{z-z_2} = 0.$$

4). z_1 and z_2 , the two given points and the locus of z, if

$$|z-z_1|=k|z-z_2|$$
 $(k \in R \text{ and } \neq 1).$

is a circle (i.e. PA = k.PB)

5) If
$$|z-z_1|^2 + |z-z_2|^2 = |z_1-z_2|^2$$
 (i.e. $PA^2 + PB^2 = AB^2$).

locus of z is a circle.with centre $\frac{z_1 + z_2}{2}$, radius $\frac{|z_1 - z_2|}{2}$

6). $|z-z_1|=|z-z_2|=|z-z_3|$. (ie PA=PB=PC). Then locus of z is a circle with centre at "z" and radius= $|z-z_1|$.

7). If $|z_1| = |z_2| = |z_3| = r$, then the complex numbers z_1, z_2, z_3 , lie on a circle with centre at origin and radius 'r'

8). If
$$\arg\left(\frac{z-z_1}{z-z_2}\right) = \theta$$
 (where θ fixed), then locus of z is a part of the circle $(|\underline{APB}| = \theta)$

If θ is acute, then locus of z, is a major part of the circle, and

if θ is obtuse then locus of z is a minor part of a circle, and if $\theta = \pm \frac{\pi}{2}$ is a full circle.

- 9) If t, c \in C such that $|t| \neq |c|, |t| = 1$ and $z = \frac{at+b}{t-c}$, Z = x+iy Then locus of z, is a circle (a,b are given real numbers)
- 10) Equation of the tangent, drawn to the circle |z| = r at , z_1 is $z\overline{z_1} + \overline{z_2} = 2r^2$
- 11) Locus of z, through which perpendicular tangents are drawn to the circle |z|=r is. $|z|=\sqrt{2}\,r$

Some examples:

- 1) Centre and radius of $z\overline{z} + (1-i)\overline{z} + (1+i)z 7 = 0$ is (-1+i) and 3
- 2) Two different non- parallel lines AB and CD meet the circle |z|=r at A(a) & B(b), C(c) & D(d).

respectively. Then these lines meet at the point P(z), then P(z) = $\frac{a^{-1} + b^{-1} - c^{-1} - d^{-1}}{a^{-1}b^{-1} - c^{-1}d^{-1}}$

2a) A tangent PC and a secant PAB are drawn to a circle |z| = r where A(a) & B(b), C(c) then

$$P(z) = \frac{a^{-1} + b^{-1} - 2c^{-1}}{a^{-1}b^{-1} - (c^{-1})^2}$$

2b) Two tangents PA and PB are drawn to a circle |z| = r where A(a) and B(b) ten P(z) =

$$\frac{2a^{-1} - 2b^{-1}}{\left(a^{-1}\right)^2 - \left(b^{-1}\right)} = \frac{2ab}{a+b}$$

- 3) If the vertices of a triangle ABC, are o, z_1 and z_2 , then orthocentre of triangle ABC, satisfies $z\overline{z_2} + z\overline{z_2} z_1\overline{z_2} z_2\overline{z_1} = 0$
- 4) If points $A(z_1), B(z_2)$ are two non zero complex numbers such that $|z_1+z_2|=|z_1-z_2|$ and O origin then.
- a) $z_1 \overline{z_2} + z_2 \overline{z_1} = 0$
- b) triangle OAB is right angled at origin and hence its orthocentre is at origin
- c) circumcentre of triangle *OAB* is $\frac{z_1 + z_2}{2}$

VII). Standard Locus:

1).If $|z-z_1|=|z-z_2|$ Then locus of "z" is the perpendicular bisector of the line joining z_1 and z_2 . (i.e. PA=PB). the equation of the perpendicular bisector is

$$z(\bar{z}_1 - \bar{z}_2) + \bar{z}(z_1 - z_2) - z_1\bar{z}_1 + z_2\bar{z}_2 = 0$$

- 2). If $|z-z_1|+|z-z_2|=|z_1-z_2|$ The locus of z is a line segment, joining the two given points z_1 and z_2 (i.e. PA+PB=AB)
- 3). If $|z-z_1|-|z-z_2|=|z_1-z_2|$. Then locus of z is a ray, where z_1 and z_2 the two given points (i.e. PA-PB=AB).
- 4). If |PA PB| = PB, i.e. $||z z_1| |z z_2|| = |z_1 z_2|$ then locus of z is a pair of ray.
- 5). If $|z-z_1|+|z-z_2|=k$. where $k>|z_1-z_2|$ Then the locus of z is an ellipse, with foci
- at z_1 and z_2 . $\begin{bmatrix} PA + PB = k, & k > AB. & and & SP + S'P = K, & k > SS' \\ because in an ellipse & SS' = 2ae & SP + S'P = 2a & 2a > 2ae \end{bmatrix}$
- 6). If $||z-z_1|-|z-z_2||=k$ $k<|z_1-z_2|$ Then the locus of z is a hyperbola, with foci at z_1

and
$$z_2$$
.
$$\begin{bmatrix} |PA - PB| = k, & k < AB. & and & |SP - S'P| = k, & k < SS' \\ because in a hyperbola & SS' = 2ae & |SP - S'P| = 2a & 2a < 2ae \end{bmatrix}$$

- 7). If $|z-z_1|-|z-z_2|=k$ where $k<|z_1-z_2|$ Then the locus of z is a branch of a hyperbola,
- 8). If arg $arg(z) = \frac{\pi}{4}$, then locus of z is, a ray

9. Some examples: (Locus)

- 1). Locus of z, if |z-|z+1| = |z+|z-1| is a line segment passing through the points (-1,0) and (1,0)
- 2). Locus of z if |iz-1|+|z-i|=2 is a line segment AB where

$$A(0,1), B(0-1).(:: PA + PB = AB).$$

- 3). Locus of z if $Re(z^2) = 0$ is $(y = \pm x)$ a pair of lines.
- 4). Locus of z if $w = \frac{1-iz}{3-i} \& |w| = 1$ is perpendicular bisector of a line joining the points (0,1)&(0,-1).
- 5). Locus of z if $|z^2 1| = |z|^2 + 1$ is imaginary axis (x = 0).
- 6). Locus of $w = \frac{z}{1-z^2}$ & if |z| = 1 & $z \neq \pm 1$ is, imaginary axis (x = 0(or)Re(z) = 0).
- 7). Locus of z if $\left| \frac{z-5i}{z+5i} \right| = 1$ is a real axis.
- 8). i)Locus of z if |z-2+2i|=1 is a circle with centre (2,-2) radius 1.
- 9). Locus of z if $3 = 2 + t + i\sqrt{3 t^2}$ $(t \in R)$ is a circle with radius $\sqrt{3}$.
- 10). Locus of w = -1 + 4z if |z| = 3 is a circle of radius 12.
- 11). Locus of $w = \frac{1}{4+i-z}$ if |z+1|=3 is a circle with centre $\left(\frac{5}{17}, \frac{-1}{17}\right)$ and radius $\frac{3}{17}$
- 12). Arg $\left(\frac{z-z_1}{z-z_2}\right) = \frac{\pi}{4}$ & $z_1 = 10+6i$, $z_2 = 4+2i$ Then locus of z is a part of circle with centre 9+i and radius $\sqrt{26}$.
- 13). If z satisfies $|z|^2 + 2(z+\overline{z}) + 3i(z-\overline{z}) + 4 = 0$ then the complex numberz+3+2i lies on a circle with centre 1+5i and radius 3.
- 14). Locus of z if $|i-1-2z| > 9 \Rightarrow \left|z-\frac{1}{2}(-1+i)\right| > \frac{9}{2}$ exterior of a circle with centre

$$\left(\frac{1}{2}, \frac{-1}{2}\right)$$
 & radius $\frac{9}{2}$.

- 15). Locus of z if $|z-1|^2 + |z+1|^2 = 4$ is a circle. (PA² + PB² = AB²)
- 16). Locus of z if $\sin(|z|) > 0$ is circular region (or) annular regions, i.e. circular region between the circles with center at origin and radii $2n\pi \& (2n+1)\pi$

17). If $|z-2-i| = |z| \left| \sin\left(\frac{\pi}{4} - \arg(z)\right) \right|$, then locus of z is, a parabola with focus (2, 1) are strictly z = 0.

directrix
$$x - y = 0$$

$$\left(because \sqrt{(x-2)^2 + (y-1)^2} = \frac{1}{2} |x-y|\right)$$

18). If $|z - (3+2i)| = \left| z \cdot (\cos\left(\frac{\pi}{4} - \arg(z)\right) \right|$, then locus of z is, a parabola with focus (3,2) and directrix x + y = 0

xviii). Locus of z if $z + \overline{z} = 2|z-1|$ is a parabola $(y^2 = 2x - 1)$

 $3 = t + it^2$ $(t \in R)$ is a parabola.

- 19). Locus of z if $|z-1|+|z+1| \le 3$ ellipse.(i.e. the points z lie on and inside the ellipse)
- 20). Locus of z if |z-1|+|z+1|=4 is ellipse with foci $(\pm 1,0)$ with area $2\sqrt{2}\pi$

VIII). Cube roots of unity:

1. Cube roots of one are 1,w,w2

$$\left[z^3 - 1 = (z - 1)(z - w)(z - w^2) = 0 \Rightarrow z = 1, w, w^2 \text{ and } w = \frac{-1 + i\sqrt{3}}{2}, w^2 = \frac{-1 - i\sqrt{3}}{2} \right]$$

2) Cube roots of one, z_1, z_2, z_3 lie on the unit circle |z| = 1, and divide the circumference of the circle in to 3 equal parts and $|z_1| = |z_2| = |z_3| = 1$

$$z_1 = e^{i0}, z_2 = e^{\frac{2\pi i}{3}}, z_2 = e^{\frac{2\pi i}{3}}$$
 and $\arg(z_1) = 0$, $\arg(z_2) = \frac{2\pi}{3}$, $\arg(z_3) = \frac{-2\pi}{3}$

$$\left[\arg(1) = 0, \ \arg(w) = \frac{2\pi}{3}, \ \arg(w^2) = \frac{-2\pi}{3}\right]$$

- 3) Product of the cube roots of one is 1 and sum of the roots of one is zero. $(1+w+w^2)$ = 0
- 4) If z_1, z_2, z_3 complex numbers represents the vertices of an equilateral triangle with side length $\sqrt{3}$, then its area is $\frac{3\sqrt{3}}{4}$

5)
$$1 + (w)^n + (w^2)^{2n} = 0$$
, if $n \neq 3k$, $k \in I$
= 3 if $n = 3k$, $k \in I$

- 6) cube roots of 8 are 2, 2w, 2w² and cube roots of k³ are k, kw, kw²
- 7) cube roots of **-1** are **-1**, **-w**, **-w**²

$$[z^{3} + 1 = (z+1)(z+w)(z+w^{2}) = 0 \Rightarrow z = -1, -w, -w^{2}]$$

$$[arg(-1) = \pi, arg(-w) = \frac{-\pi}{3}, arg(-w^{2}) = \frac{\pi}{3}]$$

8)
$$\overline{w} = w^2$$
; $\overline{w}^2 = w$; $\frac{1}{w} = w^2$; $\frac{1}{w^2} = w$

9) a)
$$a^3 + b^3 = (a+b)(a+bw)(a+bw^2)$$

b)
$$a^3 - b^3 = (a - b)(a - bw)(a - bw^2)$$

c)
$$a^3 + b^3 + c^3 - 3abc = (a+b+c)(a+bw+cw^2)(a+bw^2+cw)$$

d)
$$a^2 + b^2 + c^2 - ab - bc - ca = (a + bw + cw^2)(a + bw^2 + cw)$$

10. Some examples:

- a) roots of $(x 1)^3 = 8$ are 1+2, 1+2w, $1+2w^2$
- b) Length of the sides of a triagle whose vertices are given by the roots of $(z+\alpha\beta)^3 = \alpha^3$ are $\sqrt{3}\alpha$ and the triangle is an equilateral triangle
- c) Fourth roots of unity are **1**, **-1**, **i**, **-i**, and sum of these roots is 0 and their product is **-1**

IX). nth roots of unity:

1). nth roots of unity are

$$1, \alpha, \alpha^2, \alpha^3, \dots, \alpha^{n-1}$$
 or α^r where $r = 0, 1, 2, 3, \dots, n-1$ and $\alpha = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right) = e^{\frac{2\pi i}{n}}$

- 2). n^{th} roots of unity are in G.P. with common ratio α
- 3). Sum of n^{th} roots of 1 is zero. $1 + \alpha + \alpha^2 + \alpha^3 + \dots + \alpha^{n-1} = \frac{1 \alpha^n}{1 \alpha} = 0$ ($\alpha^n = 1$)
- 4). Sum of the pth powers of nth roots of unity is 0, or n

$$\begin{bmatrix} 1 + (\alpha)^p + (\alpha^2)^p + (\alpha^3)^p + \dots + (\alpha^{n-1})^p = 0, & if \ p \neq kn, k \in I \\ = n & if \ p = kn, k \in I \end{bmatrix}$$

5). Product of nth roots of unity is --1 or 1 depends on n is even or odd.

$$\left[1.\alpha.\alpha^{2}.\alpha^{3}....\alpha^{n-1} = \left(\alpha^{\frac{(n-1)n}{2}}\right) = \left(\alpha^{\frac{n}{2}}\right)^{n-1} = \left(e^{\frac{2\pi i \cdot n}{n \cdot 2}}\right)^{n-1} = \left(\sin \pi + i \sin \pi\right)^{n-1} = \left(-1\right)^{n-1} \right]$$

6). nth roots of unity, lie on the unit circle |z|=1, and divide the circumference of the

circle in to n equal parts
$$\left[\arg(1)=0, \arg(\alpha)=\frac{2\pi}{n}, \arg(\alpha^2)=\frac{4\pi}{n}, \ldots, \arg(\alpha^{n-1})=\frac{2\pi(n-1)}{n}\right]$$
.

and difference between the argumnets of any two consecutive nth roots of 1 is $\frac{2\pi}{n}$ and nth roots of 1 are the vertices of a n-sided regular polygon inscribed in a circle of radius 1 with centre at origin.

7). A)
$$z^n - 1 = (z-1)(z-\alpha)(z-\alpha^2)...(z-\alpha^{n-1})$$

b)
$$1+z+z^2+z^3+....+z^{n-1}=(z-\alpha)(z-\alpha^2)...(z-\alpha^{n-1})$$

c)
$$(1-\alpha)(1-\alpha^2)...(1-\alpha^{n-1})=n$$
 $(z=1)$

$$(1+\alpha)(1+\alpha^2)$$
...... $(1+\alpha^{n-1})=1$, if n is odd natural $=0$, if n is even natural.

7d)
$$(z-\alpha)(z-\alpha^2)$$
...... $(z-\alpha^{n-1})=0$, if n is a multiple of 3
=1, if n is $3m+1$, $m \in N$
= $1+w$, if n is $3m+2$, $m \in N$

$$z = w \Rightarrow \frac{w^{3m} - 1}{w - 1} = 0, \frac{w^{3m+1} - 1}{w - 1} = 1, \frac{w^{3m+2} - 1}{w - 1} = 1 + w,$$

8). nth roots of unity are

$$1, \alpha, \alpha^2, \alpha^3, \dots, \alpha^{n-1}$$
 and $\sum_{r=0}^{n-1} \alpha^r = 0 \Rightarrow \sum_{r=0}^{n-1} \cos\left(\frac{2\pi}{r}\right) = 0$ & $\sum_{r=0}^{n-1} \sin\left(\frac{2\pi}{r}\right) = 0$

9). $z_1, z_2, z_3, \dots, z_n$ are the vertices of a "n" sided regular polygon and its centre is at origin and

one of its vertices is known to be z_1 , then $z_k = z_1 \alpha^{K-1}$; $\alpha = e^{\frac{2\pi i}{n}}$, k = 1, 2,n.

10). A_{1}, A_{2} An. Be the vertices of an n – sided regular polygon, inseribed in a circle of radius one, then.

of radius one, then.

a)
$$|A_1A_2|^2 + |A_1A_3|^2 + |A_1A_4|^2 + \dots + |A_1A_n|^2 = 2n$$

b)
$$|A_1A_2|.|A_1A_3|.|A_1A_4|.....|A_1A_n| = n.$$

c) If
$$\frac{1}{A_1 A_2} = \frac{1}{A_1 A_3} + \frac{1}{A_1 A_4} then \ n = 7.$$

11).

a)
$$\sin\left(\frac{\pi}{n}\right) \cdot \sin\left(\frac{2\pi}{n}\right) \cdot \sin\left(\frac{3\pi}{n}\right) \cdot \dots \cdot \sin\left(\frac{(n-1)\pi}{n}\right) \cdot = \frac{n}{2^{n-1}}$$

b)
$$\left|\cos\left(\frac{\pi}{n}\right).\cos\left(\frac{2\pi}{n}\right).\cos\left(\frac{3\pi}{n}\right)...\cos\left(\frac{(n-1)\pi}{n}\right)\right|.=\frac{1-(-1)^n}{2^n}$$

$$\left[1+z+z^2+z^3+.....+z^{n-1}=(z-\alpha)(z-\alpha^2).....(z-\alpha^{n-1}) \& \alpha=e^{\frac{2\pi i}{n}} \text{ and put } z=1 \text{ and } -1\right]$$

12).

- a). If α be the angle, which each side of a regular polygon of n, subtends at its centre then $1+\cos\alpha+\cos2\alpha+\cos3\alpha+.....\cos(n-1)\alpha=0$
- b). If $a_1, a_2, a_3, \ldots, a_n$ are the real numbers and $\alpha = \cos \alpha + i \sin \alpha$ is a root of $z^n + a_1 z^{n-1} + a_2 + z^{n-2} a_3 + \ldots + a_n = 0 \text{ then } a_1 \cos \alpha + a_2 \cos 2\alpha + a_3 \cos 3\alpha + \ldots + a_n \cos n\alpha = 0$

13). If
$$(1+x)^n = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n$$
, $n \in \mathbb{N}$, then

a).
$$a_0 + a_4 + a_8 + a_{12} + \dots = 2^{n-2} + 2^{\frac{n-2}{2}} \cos\left(\frac{n\pi}{4}\right)$$

b)
$$a_0 + a_3 + a_6 + a_9 + \dots = \frac{1}{3} \left(2^n + 2 \cos \left(\frac{n\pi}{3} \right) \right)$$

c)
$$a_1 + a_4 + a_7 + a_{10} + \dots = \frac{1}{3} \left(2^n + 2 \cos \left(\frac{(n-2)\pi}{3} \right) \right)$$

d)
$$a_2 + a_5 + a_8 + a_{11} + \dots = \frac{1}{3} \left(2^n + 2 \cos \left(\frac{(n+2)\pi}{3} \right) \right)$$

e)
$$a_0 + a_4 + a_8 + a_{12} + \dots = 2^{n-2} + 2^{\frac{n-2}{2}} \cos\left(\frac{n\pi}{4}\right)$$

f)
$$a_0 + a_4 + a_8 + a_{12} + \dots = 2^{n-2} + 2^{\frac{n-2}{2}} \cos\left(\frac{n\pi}{4}\right)$$

g)
$$a_0 + a_4 + a_8 + a_{12} + \dots = 2^{n-2} + 2^{\frac{n-2}{2}} \cos\left(\frac{n\pi}{4}\right)$$

h)
$$a_0 + a_4 + a_8 + a_{12} + \dots = 2^{n-2} + 2^{\frac{n-2}{2}} \cos\left(\frac{n\pi}{4}\right)$$

14). If
$$(1+x+x^2)^n = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_{2n}x^{2n}$$
, $n \in \mathbb{N}$, then
a) $a_0 + a_1 + a_2 + a_3 + \dots = 3^n$
b) $a_0 + a_3 + a_6 + a_9 + \dots = 3^{n-1}$
c) $a_1 + a_4 + a_7 + a_{10} + \dots = 3^{n-1}$

a)
$$a_0 + a_1 + a_2 + a_3 + \dots = 3^n$$

b)
$$a_0 + a_3 + a_6 + a_9 + \dots = 3^{n-1}$$

c)
$$a_1 + a_4 + a_7 + a_{10} + \dots = 3^{n-1}$$

d)
$$a_2 + a_5 + a_8 + a_{11} + \dots = 3^{n-1}$$

X). De'Moivre's theorem:

1. If $n \in \mathbb{Z}$, $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$ and If $n \in \mathbb{Q}$, $\cos n\theta + i \sin n\theta$ is one of the value

of
$$(\cos\theta + i\sin\theta)^n$$

a). $(\cos \theta - i \sin \theta)^n = \cos n\theta - i \sin n\theta$

b).
$$\frac{1}{(\cos\theta + i\sin\theta)^n} = \cos n\theta - i\sin n\theta$$

- 2. If $z = \cos \theta + i \sin \theta$ then $z + \frac{1}{z} = 2\cos \theta$ and $z \frac{1}{z} = 2i \sin \theta$
- 3. If $x + \frac{1}{x} = 2\cos\theta$ and $y + \frac{1}{y} = 2\cos\phi$ then

a)
$$\frac{x}{y} + \frac{y}{x} = 2\cos(\theta - \phi)$$

b)
$$\frac{x^m}{y^n} + \frac{y^n}{x^m} = 2\cos(m\theta - n\phi)$$

c)
$$x^m y^n + \frac{1}{x^m y^n} = 2\cos(m\theta + n\phi)$$

- 4. If $\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$ then
- a) $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(3\alpha + 3\beta + 3\gamma)$
- b) $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(3\alpha + 3\beta + 3\gamma)$
- c) $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = \sin 2\alpha + \sin 2\beta + \sin 2\gamma$
- 5. If n is a positive integer, then $\left(\sqrt{3}+i\right)^n+\left(\sqrt{3}-i\right)^n=2^{n+1}\cos\left(\frac{n\pi}{6}\right)$

XI). Quadratic equations with non real co efficients:

consider $az^2 + bz + c = 0$ where $a, b, c \in C$

- 1). If equation has one purely imaginary root, then $(b\bar{c} + c\bar{b})(a\bar{b} + \bar{a}b) + (\bar{a}c a\bar{c})^2 = 0$ $[because, \overline{az^2 + bz + c} = 0 \& \bar{a}z^2 \bar{b}z + \bar{c} = 0 \text{ have a common root } \& z_1 = -\bar{z}_1]$
- 2). a). If equation has one purely real root, then $(b\bar{c} c\bar{b})(a\bar{b} \bar{a}b) + (\bar{a}c a\bar{c})^2 = 0$ [because, $az^2 + bz + c = 0$ & $az^2 + bz + c = 0$ have a common root & $z_1 = \bar{z}_1$]
- 3). If equation has two purely imaginary roots, then $\frac{a}{\overline{a}} = \frac{b}{-\overline{b}} = \frac{c}{\overline{c}}$ $\left[because, \overline{az^2 + bz + c} = 0 & \overline{az^2 bz + c} = 0 \text{ have both common roots } \& z_1 = -\overline{z_1}, z_2 = -\overline{z_2} \right]$
- 4). If equation has two purely imaginary roots, then $\frac{a}{a} = \frac{b}{b} = \frac{c}{c}$

because,
$$\overline{az^2 + bz + c} = 0$$
 & $\overline{az^2 + bz + c} = 0$ have both common roots & $z_1 = \overline{z_1}, z_2 = \overline{z_2}$

Examples:

- a). If α is a non-real root of $x^2 + \alpha x + \overline{\alpha} = 0$, then the real root of the equation is, 1
- b). One of the roots of $z^2 + (a_1 + ia_2)z + (b_1 + ib_2) = 0$ is real then, $a_1a_2b_2 = b_1a_2^2 + b_2^2$
- c). roots of $z^2 + (a_1 + ia_2)z + (b_1 + ib_2) = 0$ are equal then, $2b_2 = a_1a_2$ or $4b_1 = a_1^2 b_2^2$

XII). Some standard locus/results:

- 1). $A(z_1), B(z_2)$. and C(z) is a point which divides the line segment AB in the ratio m:n internally then $C(z) = \frac{mz_2 + nz_1}{m+n}$. If C is a mid point of AB, then $C(z) = \frac{z_2 + z_1}{2}$.
- 2). If $z_1^2 + 2z_2^2 + z_3^2 = 2z_2(z_1 + z_3)$ where z_1, z_2, z_3 are the vertices of a triangle then the triangle is isosceles right triangle $\begin{bmatrix} because & (z_1^2 2z_1z_2 + z_2^2) + (z_2^2 2z_2z_3 + z_3^2) = 0 \\ \Rightarrow (z_1 z_2) = \pm i(z_3 z_2) \Rightarrow (z_1 z_2) = e^{\frac{\pm i}{2}}(z_3 z_2) \end{bmatrix}$

3). If z_1, z_2, z_3 are complex numbers then $z_1 \operatorname{Im}(\overline{z_2}z_3) + z_2 \operatorname{Im}(\overline{z_3}z_1) + z_3 \operatorname{Im}(\overline{z_1}z_2) = 0$

4). If
$$z_1 = e^{i\theta_1}$$
, $z_2 = e^{i\theta_2}$ then $\arg(z_1 + z_2) = \frac{\theta_1 + \theta_2}{2}$ & $|z_1 + z_2| = \left|\cos(\frac{\theta_1 - \theta_2}{2})\right|$

- 5). If $z_1^2 + z_2^2 z_1 z_2 = 0$, then z_1, z_2 and origin form an equilateral triangle.
- 6). If $z_1^2 + z_2^2 + z_1 z_2 = 0$, then z_1, z_2 and origin form an isosceles triangle.
- 7). If z_1, z_2, z_3 are the three complex numbers such that $z_1, +z_2+z_3=0$ & $\frac{1}{z_1}+\frac{1}{z_2}+\frac{1}{z_3}=0$, then z_1, z_2, z_3 represent vertices of an equilateral triangle.
- 8). If $z_1 = a + ib$, $z_2 = a' + ib'$, $z_1 z_2$ are collinear points, then ab' a'b = 0
- 9). $A(z_1), B(z_2), C(z_3)$ are connected by $az_1 + bz_2 + cz_3 = 0$ $(a, b, c \in R)$ such that a+b+c=0 then A,B,C are colliear points (where a,b,c are all not zero).
- 10). If $z_1, z_2, z_3 \in C$, such that $z_1 + z_2 + z_3 = 0$ and $|z_1| = |z_2| = |z_3| = 1$, then z_1, z_2, z_3 represent vertices of an equilateral triangle.
- 11). If $z_1, z_2, z_3, z_4 \in C$, are distinct complex numbers on |z| = r, then $\frac{(z_1 z_2)(z_4 z_3)}{(z_1 z_4)(z_2 z_3)}$ is real (i.e. concyclic points condition)
- 12). If $P(e^{i\theta_1}), Q(e^{i\theta_2}), R(e^{i\theta_3})$ are the vertices of a triangle PQR, then its orthocenter is $e^{i\theta_1} + e^{i\theta_2} + e^{i\theta_3}$ (because circumcentre is at origin and centroid is $\frac{e^{i\theta_1} + e^{i\theta_2} + e^{i\theta_3}}{3}$)
- 13). If $|z_1| = |z_2| = \dots = |z_n| = 1 & |z_1 + z_2 + z_3 + \dots + |z_n| = 1$ then $\left| \frac{1}{z_1} + \frac{1}{z_1} + \frac{1}{z_1} + \frac{1}{z_1} + \dots + \frac{1}{z_n} \right| = 1$
- 14). If $|z_1| + |z_2| + |z_3| = |z_1 + z_2 + z_3|$, then $\frac{z_1 z_2}{z_3^2} + \frac{z_2 z_3}{z_1^2} + \frac{z_3 z_1}{z_2^2}$ is purely real number.
- 15). Number of distinct elements in the set $S = \{i^n + i^{-n}, n \in Z\}$ is 3 (i.e. 0,2,-2)
- 16a) If α_i be the roots of the equation $(1+z)^6+z^6=0$, then real parts of all α_i is equal to
- 16b) All the roots of the equation $(1-z)^{10} = z^{10}$ lie on the line $x = \frac{1}{2}$