

Broadview

Ad free Video Channel for Content Creators

Eli

Agenda

- I. Business challenges
- 2. Markov Model Description
- 3. Customer Segmentation
- 4. Customer Lifetime Value (CLV)
- 5. Broadview Reward Vector
- 6. Broadview Revenue: With Policy & No Policy

Business Challenges

- Leader in space, but spending aggressively and ultimately not profitable
- Facing increasing competition due to developing economy
- Want to spend money smarter based on customer study

Acquistion vs. Retention

- Retaining: Understanding good vs. bad customers
- Customer churn analysis
- Cannot be defined using supervised learning

Model Description- RFM model

RFM METRICS

RFM Metrics:

RECENCY

The *freshness* of customer activity.

e.g. time since last activity

FREQUENCY

The *frequency* of customer transactions.

e.g. the total number of recorded transactions

MONETARY

The willingness to spend.

e.g. the total transaction value

Broadview's RFM model

- All customers assigned a "tuple" score
- Recency Time since last activity
- Frequency- Total no. of recorded transactions
- Monetary value: Total transaction value each year/month

Customer Segmentation

RFM tuple infinite to finite state space

Segmentation – Executive, Business, Personalized

 Define cut-off pt. for Churn – Probability of customer return is low

Broadview's Markov Model

 Purchase behavior -> Customer transtion to diff states

Historical data -> Probability of state transition, (i,j)

P(i, j) = probability of transitioning from state i to state j over some time period

Broadview's Markov Model

- Build matrix P of transition probabilities
- Size of matrix $P = n \times n$, n=no. of states
- Assumption: Customer churn is permanent
- Absorbing state: Transition back to current stat

Sample Markov Model

Markov Model- Predictions

State vector - "V_p(t)" at time-step t

V_p is of size n; n is number of states

V_p[i] = proportion of customers in state i

• $V_p(t+i) = V_p(t)P$

Customer Lifetime Value (CLV)

Customer Value over infinite time frame

• CLV = -ve \rightarrow Customer may churn

Marketing budget decisions

CLV Calculation Step 1: Reward Vector

 $\mathbf{R} = \begin{bmatrix} NC - M \\ -M \\ -M \\ -M \end{bmatrix}$

- R[i] = Customer value at state I
- R = NC M
- NC = Net Contribution = Money spent that year
- M = Marketing Cost

CLV Calculation Step 1: Reward Vector

- Customer with recency 0 = Non-Zero NC
- Unchurned Customers recency >= I
- = -ve Reward
- Churned Customers = 0 Marketing Cost
- = 0 Reward

CLV Calculation Step 2: Value Vector over time T

$$\mathbf{V}^T = \sum_{t=0}^T \left[(1 + d)^{-1} \mathbf{P} \right]^t \mathbf{R}$$

CLV Calculation

Step 3: Extending timeframe to Infinity

$$\mathbf{V} \equiv \lim_{T \to \infty} \mathbf{V}^{T}$$

$$= \{\mathbf{I} - (1 + d)^{-1}\mathbf{P}\}^{-1}\mathbf{R}$$

- Churned Customer = Stop marketing costs
- Customers with –ve CLV = Net loss to Broadview
- =Adjust policy to stop marketing costs

Broadview Case Specifics

Broadview Transaction Data

No. of records = 44966

Column Format = cust_id, purchase_amt, date_purchase

• Data range = 2005 to 2015

EDA – Purchase Amounts

Purchase data right skewed

EDA – Total Purchases

Median = 5

EDA – Boolean Matrix

	year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
_	cust_id											
	10	1	0	0	0	0	0	0	0	0	0	0
	80	1	0	1	0	1	0	1	0	1	1	1
	90	1	1	1	1	1	1	1	1	1	0	0
	130	1	0	1	0	0	0	0	0	0	0	0
	190	1	1	1	1	1	0	0	0	0	0	0
	190	1	1	1	1	1	0	0	0	0	0	0

Customer purchses/yr = I = Markov transaction period

Recency Transition Matrix

			2	3	4	5	6	7	8	9	10
0 0.	.716090	0.28391	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
1 0.	.329261	0.00000	0.670739	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2 0.).137864	0.00000	0.000000	0.862136	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
3 0.	0.086849	0.00000	0.000000	0.000000	0.913151	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
4 0.	0.074963	0.00000	0.000000	0.000000	0.000000	0.925037	0.000000	0.000000	0.000000	0.000000	0.000000
5 0.	0.035842	0.00000	0.000000	0.000000	0.000000	0.000000	0.964158	0.000000	0.000000	0.000000	0.000000
6 0.	0.057732	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.942268	0.000000	0.000000	0.000000
7 0.	0.041162	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.958838	0.000000	0.000000
8 0.	0.009585	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.990415	0.000000
9 0.	0.020492	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.979508
10 0.	0.000000	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

For R >=7, Churn State Probability is <5%

Customer Segmentation

Recency: R = 0 // < R < 7 // R > = 7

Frequency: R <=5 // F>5

Monetary: M <= 30 // 30 < M <= 50 // M > 50

RFM States = 3*2*3 = 18

States with $R \ge 7 = Absorbing States$

State Matrix

year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
cust_id											
10	6	12	12	12	12	12	18	18	18	18	18
80	5	11	4	10	4	10	4	10	4	1	1
90	4	4	4	4	4	1	1	1	1	7	7
130	5	11	4	10	10	10	10	10	16	16	16
190	5	4	6	4	4	10	10	10	10	10	16

Calculate RFM tuples from Boolean Matrix

Convert to State values using segments

RFM Transition Matrix

year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
cust_id											
10	6	12	12	12	12	12	18	18	18	18	18
80	5	11	4	10	4	10	4	10	4	1	1
90	4	4	4	4	4	1	1	1	1	7	7
130	5	11	4	10	10	10	10	10	16	16	16
190	5	4	6	4	4	10	10	10	10	10	16

TOO LARGE to illustrate

Broadview Reward Vector

```
[[ 46.03911622],
  [ 46.03911622],
  [ 46.03911622],
  [ 46.03911622],
  [ 46.03911622],
  [-25. ],
  [-25. ],
  [-25. ],
  [-25. ],
  [-25. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ],
  [ 0. ]]
```

Mean Purchase Amount, M = 71 (approx)

Marketing Cost/Year, M = \$25

Broadview CLV

```
[ 164.97606887],
[ 163.53654628],
[ 132.88523581],
[ 141.27641545],
[ 133.1715939 ],
[ 94.75529752],
[ 13.41616067],
[ 11.0259514 ],
[ -7.17343942],
[ -5.88976893],
[ -4.71694682],
[ -18.15269545],
[ 0. ],
[ 0. ],
[ 0. ],
[ 0. ],
```

States 9 to 12= Unchurned but -ve CLV

Policy Conclusion = Stop Marketing Costs for them

Broadview Revenue: No Policy


```
2016
        117192.674744
2017
        213756.539922
2018
        274843.715024
2019
        292909.959191
2020
        295450.852444
2021
        292481.817299
2022
        287665.24994
2023
        282355.970819
2024
        277062.491102
        271977.620176
2025
```

Total Revenue = 2.7M (approx)

Broadview Revenue: With Policy


```
2016
        242931.3269
2017
        339495.192079
2018
        387466.427388
2019
        400117.133611
2020
        399549.233561
        394034.374733
2021
2022
        386729.05203
2023
        378889.023419
2024
        371044.570756
2025
        363435.328919
```

Total Revenue = 3.6M (approx)

Broadview Revenue Calculation

Use T = 10

Historical Data Observation= Avg. Customers/Yr = 2144

Thank you!

