

ABEL ROSADO

29 de diciembre de 2021

Come, let us hasten to a higher plane Where dyads tread the fairy fields of Venn, Their indices bedecked from one to n Commingled in an endless Markov chain!

In Riemann, Hilbert or in Banach space Let superscripts and subscripts go their ways Our asymptotes no longer out of phase, We shall encounter, counting, face to face.

For what did Cauchy know, or Christoffel, Or Fourier, or any Boole or Euler, Wielding their compasses, their pens and rulers, Of thy supernal sinusoidal spell?

Ellipse of bliss, converge, O lips divine! The product of our scalars is defined! Cyberiad draws nigh, and the skew mind Cuts capers like a happy haversine.

I see the eigenvalue in thine eye, I hear the tender tensor in thy sigh. Bernoulli would have been content to die, Had he but known such $a^2\cos2\varphi$!

- Stanislaw Lem, The Cyberiad

Índice general

In	Indice general				
M	[ECÁN	nica Analítica	1		
1	Cál	culo Variacional	2		
	1.1	Método de pequeñas variaciones	2		
		Variación de una función	3		
		Variación de un funcional	3		
	1.2	Extremizar un funcional	3		
		Identidad de Beltrami	4		
	1.3	Generalización a varias variables	5		
		Ligaduras	5		
2	Med	cánica Lagrangiana	8		
	2.1	Principio de Hamilton	8		
	2.2	Coordendas generalizadas	8		
	2.3	Ligaduras	9		
		Sistema holonómico	10		
		Multiplicadores de Lagrange	10		
	2.4	Teorema de la Energía Cinética	10		
		Función k-homogénea	10		
		Forma cuadrática	11		
		Teorema	11		
3	Sim	netrias y cantidades conservadas	13		
	3.1	Ejemplos de invariancias	13		
		Invariancia temporal y Hamiltoniano	13		
		Invariancia espacial	13		
	3.2	Teorema de Noether	14		
		Enunciado	14		
		Ejemplo	14		
4	Med	cánica Hamiltoniana	15		
	4.1	Transformada de Legendre	15		
		Varias variables	15		
	4.2	Ecuaciones de Hamilton	16		
	4.3	Espacio de fase	17		
		Diagrama de fases	17		
		Teorema de Liouville	18		
	4.4	Paréntesis de Poisson	19		

Fυ	JERZA	S CENTRALES Y SISTEMAS NO INERCIALES	20
5	Fuer	rzas centrales	21
	5.1	Problema de los dos cuerpos	21
	5.2	Conservación del momento angular	22
		Esféricas *	23
	5.3	Energía	23
	5.4	Ecuación del movimiento	24
	5.5	Potencial efectivo	24
			25
	5.6	Potenciales $-\gamma/r$	
	5.7	Órbitas de Kepler	26
		Caso $0 \le \epsilon < 1$	26
		Caso $\epsilon = 1$	28
		Caso $\epsilon > 1$	29
		Cambio de Órbitas	29
6	Ciat	emas de referencia no inerciales	30
O	6.1	Aceleración rectilínea	30
	0.1	Mareas	30
	()		
	6.2	Sistemas no inerciales en rotación	33
		Rotación respecto a un punto fijo	33
		Rotación Terrestre	35
Sć	ÓLIDO	RÍGIDO	39
7	Sáli	do Rígido	40
•	7.1	Orientación	40
	, .1	Ángulos de Euler (I)	41
	7.2	Tensor de Inercia	41
	1.2		
		Tensores	41
		Momento angular	41
		Tensor de Inercia	42
	7.3	Dinámica	43
		Energía cinética de rotación	43
		Ecuaciones de Euler	44
		Ángulos de Euler (II)	46
O	SCILA	CIONES	47
8	Osci	ilaciones	48
U	8.1	Oscilaciones sinusoidales	48
	0.1		
		Energía	48
		Oscilaciones en más dimensiones	49
	8.2	Oscilaciones amortigudas	50
		Subamortiguamiento	50
		Sobreamortiguamiento	50
		Amortiguamiento crítico	50
	8.3	Oscilaciones forzadas	51
		Resonancia	52
		Potencia	53

	8.4	Fourier	54			
		Teorema de Fourier				
		Ortogonalidad	54			
		Teorema de convergencia				
		Oscilador forzado				
D	ISPER	ssión	56			
9	Teo	ría de la dispersión	57			
	9.1	Sección eficaz	57			
		Probabilidad	57			
		Camino libre medio	58			
	9.2	Sección eficaz diferencial	59			
		$d\sigma/d\Omega$ en términos de b	59			
		Sección eficaz de Rutherford				
A	PÉND	ICES	62			
10	10 Levi-Civita					

Cálculo Variacional

1

1: Aunque se puede definir un funcional como una función de $\mathcal{F}\{x,\mathbb{R}\}^n$ para n funciones reales.

Tenemos una función $f:U\in\mathbb{R}\mapsto f(x)\in\mathbb{R}$, donde tanto el dominio U como la imagen pertencen a \mathbb{R} . En contraposición, un funcional es una función $F:f\in\mathscr{F}\{x,\mathbb{R}\}\mapsto F[f]\in\mathbb{R}$, donde $\mathscr{F}\{x,\mathbb{R}\}$ es el conjunto de todas las funciones reales de una variable 1 , tal que la imagen es un número real.

La forma genérica de los funcionales que nos interesan es la siguiente, donde ';' indica que x es la variable independiente, y f y f' dependen explícitamente de x, y por consiguiente depende entre sí, aunque no de forma explícita en la mayoría de circunstancias:

$$F[f] = \int_{x_A}^{x_b} g(f(x), f'(x); x) dx$$
 (1.0.1)

Nos interesan solo las funciones f tales que $f(x_A)=y_A;\ f(x_B)=y_B\ (1.0.2)$, de tal forma que la función este fija en los extremos de la integral, esta propiedad va a resultar muy importante más adelante.

El principal objetivo que tenemos en mente es encontrar una f que extremize F, es decir, que F(f) sea un máximo o mínimo del funcional.

1.1. Método de pequeñas variaciones

Definimos $\delta y(x)\equiv \bar{y}(x)-y(x)$ (1.1.1), donde \bar{y} es el camino variado e y es el camino de referencia. Supondremos que el camino de referencia es el camino que extremiza el funcional, entonces una pequeña variación δy no debería alterar el funcional.

Podemos parametrizar $\delta y(x) \equiv a\eta(x)$ (1.1.2), donde a es un parámetro independiente de x y $\eta(x) = \delta y(x)/a$ (1.1.3) es una función arbitraria que da forma el camino variado y que debe cumplir que $\eta(x_A) = \eta(x_B) = 0$ (1.1.4) para verificar las condiciones que hemos impuesto en (1.0.2), ya que todo camino, sea el de referencia o el variado, debe cumplirlas.

Definimos entonces una nueva función $Y(x,a)\equiv y(x)+a\eta(x)$ (1.1.5) tal que Y(x,0)=y(x) y $Y(x,a)=\bar{y}(x)$. Si derivamos esta función con repecto a a, y con respecto a x tenemos

$$\frac{\partial Y}{\partial a} = \eta(x); \quad \frac{\partial Y}{\partial x} = y'(x) + a\eta'(x) \equiv Y'(x, a); \quad \frac{\partial Y'}{\partial a} = \eta'(x)$$
 (1.1.6)

Podemos definir ahora $\delta y'(x)\equiv \bar y'(x)-y'=Y'(x,a)-Y'(x,0)$, que por la expresión anterior nos resulta $\delta y'(x)=a\eta'(x)$ (1.1.7). Combinando ahora (1.1.7) y (1.1.2) podemos llegar a la conclusión de que la derivada y δ conmutan

$$\delta y'(x) = a \frac{d}{dx} \eta x = \frac{d}{dx} (a\eta(x)) = \frac{d}{dx} \delta y \implies \delta \left(\frac{dy}{dx}\right) = \frac{d}{dx} \delta y$$
 (1.1.8)

Variación de una función

Si partimos de una función g(y,y';x), queremos que no dependa de un solo camino sino de una familia de ellos, definimos $\mathfrak{g}(x,a)=g(Y,Y';x)$. Definimos la variación total de la función como $\Delta\mathfrak{g}\equiv\mathfrak{g}(Y(x,a),Y'(x,a);x)-\mathfrak{g}(Y(x,0),Y'(x,0);x)$ (1.1.9). Como últimamente \mathfrak{g} depende solo de x y de a, podemos expandir \mathfrak{g} por serie de Taylor de a

$$g(x,a) = g(x,0) + \frac{\partial g}{\partial a} \bigg|_{a=0} a + O(a^2)$$
(1.1.10)

Reorganizando los términos y volviendo a añadir la dependiencia en Y e Y' llegamos a

$$\underbrace{\mathbb{g}(x,a) - \mathbb{g}(x,0)}^{\Delta g} = \underbrace{\frac{\partial \mathbb{g}(Y(x,a), Y'(x,a); x)}{\partial a}\Big|_{a=0}}_{a=0} a + O(a^2)$$
(1.1.11)

Donde δg es la variación primera de la función, que podemos reescribir desarrollando la derivada usando la regla de la cadena, y usamos (1.1.2) y (1.1.7)

$$\delta \mathbf{g} = \left[\left. \frac{\partial \mathbf{g}}{\partial Y} \right|_{Y} \frac{\partial Y}{\partial a} + \left. \frac{\partial \mathbf{g}}{\partial Y'} \right|_{Y} \frac{\partial Y'}{\partial a} \right] \right|_{a=0} a = \left. \frac{\partial \mathbf{g}}{\partial Y} \right|_{y} a \eta + \left. \frac{\partial \mathbf{g}}{\partial Y'} \right|_{y} a \eta' = \left. \frac{\partial \mathbf{g}}{\partial Y} \right|_{y} \delta y + \left. \frac{\partial \mathbf{g}}{\partial Y'} \right|_{y} \delta y'$$

$$(1.1.12)$$

Es **muy** importante no dejar de lado las composiciones y evaluaciones resultantes de hacer Taylor y la regla de la cadena, ya que la expresión anterior nos indica que aunque g dependa de cualquier camino, cuando hacemos δg , las parciales de g con respecto a sus entradas Y e Y' hay que **evaluarlas en el camino de referencia** g = Y(x,0). De esta forma podemos reesribir (1.1.12) en términos de g

$$\delta g = \delta g = \frac{\partial g}{\partial y} \delta y + \frac{\partial g}{\partial y'} \delta y' \tag{1.1.13}$$

Observamos que nos queda una expresión similar a la regla de la cadena del diferencial exacto de una función.

Variación de un funcional

De nuevo, si partimos de un funcional F[y] que depende de un único camino, definimos $\mathbb{F}([y],a)=F[Y(x,a)]$ y su variación total $\Delta\mathbb{F}=\mathbb{F}([y],a)-\mathbb{F}([y],0)$ (1.1.14), que desarrollando la integral llegamos inmediatamente a

$$\Delta \mathbb{F} = \int_{x_A}^{x_B} \Delta g dx = \int_{x_A}^{x_B} \delta g dx + O(a^2) = \underbrace{\int_{x_A}^{x_B} \delta g dx}_{\delta \mathbb{F} - \delta E} + O(a^2)$$
 (1.1.15)

1.2. Extremizar un funcional

Diremos que el extremo de F ocurrirá cuando $\delta F=0$, puesto que a primer orden el funcional no cambiará de valor al variar y.

De (1.1.13) sustuimos en (1.1.14), sacamos factor común el parámetro a e integramos por partes el segundo término, tal que $u = \partial_{y'} g$ y $dv = \eta' dx$

$$\int_{x_A}^{x_B} \left[\frac{\partial g}{\partial y} \eta + \frac{\partial g}{\partial y'} \eta' \right] a dx = a \left[\int_{x_A}^{x_B} \frac{\partial g}{\partial y} \eta dx + \left| \frac{\partial g}{\partial y'} \eta \right|_{x_A}^{x_B} - \int_{x_A}^{x_B} \frac{d}{dx} \left(\frac{\partial g}{\partial y'} \right) \eta dx \right]$$
(1.2.1)

Por (1.1.4) el segundo término es 0, juntando las integrales y usando (1.1.2)

$$\int_{x_A}^{x_B} \left[\frac{\partial g}{\partial y} - \frac{d}{dx} \left(\frac{\partial g}{\partial y'} \right) \right] \delta y dx = 0$$
 (1.2.2)

Ahora, δy es completamente arbitrario, pues depende de un parámetro independiente a y de una función η que es también arbitraria, esto es lema fundamental del Cálculo Variacional, y garantiza que si la integral debe valer 0, el primer factor debe valer siempre 0, y concluimos

$$\left| \frac{\partial g}{\partial y} - \frac{d}{dx} \left(\frac{\partial g}{\partial y'} \right) = 0 \right| \iff \delta F = 0 \tag{1.2.3}$$

Esta es la ecuación de Euler-Lagrange, una ecuación diferencial en derivadas parciales de segundo orden cuya solución y extremiza el funcional definido por g.

Geodésica del plano

Un ejemplo para aplicar (1.2.3) es minimizar la distancia $d=\int ds$ en el plano ecuclídeo. Si y=y(x), entonces $ds=\sqrt{dx^2+dy^2}=\sqrt{1+y'^2}dx=gdx$, tal que

$$\frac{\partial g}{\partial y} = 0 \implies \frac{d}{dx} \left(\frac{\partial g}{\partial y'} \right) = 0 \implies \frac{\partial g}{\partial y'} = \frac{y'}{\sqrt{1 + y'^2}} = K \rightarrow y' = \frac{K}{\sqrt{1 - K^2}} = \alpha$$

Lo cual implica que $y = \alpha x + y_0$, la ecuación de una recta.

Identidad de Beltrami

Podemos reescribir (1.2.3) de otra forma que nos va resultar últil para resolver algunos problemas y va a resultar muy importante en episodios posteriores.

$$\frac{dg}{dx} = \frac{\partial g}{\partial y}y' + \frac{\partial g}{\partial y'}y'' + \frac{\partial g}{\partial x} \to \frac{\partial g}{\partial y}y' = \frac{dg}{dx} - \frac{\partial g}{\partial y'}y'' - \frac{\partial g}{\partial x}$$

Podemos observar que el término en el primer miembro de la segunda expresión aparece en (1.2.3) sin multiplicar por y'.

$$\frac{dg}{dx} - \frac{\partial g}{\partial x} - \left[\frac{\partial g}{\partial y'} y'' + y' \frac{d}{dx} \left(\frac{\partial g}{\partial y'} \right) \right] = 0 \to \frac{dg}{dx} - \frac{\partial g}{\partial x} - \frac{d}{dx} \left(\frac{\partial g}{\partial y'} y' \right) = 0$$

Observando que lo de dentro del paréntesis de la primera expresión es la derivada de un producto, usamos la linearidad de la derivada para obtener

$$\frac{d}{dx}\left(g - \frac{\partial g}{\partial y'}y'\right) = \frac{\partial g}{\partial x} \tag{1.2.4}$$

1.3. Generalización a varias variables

Denotamos $\{f_{\alpha}(x)\}$ a un conjunto de N funciones distintas, que verifican una expresión similar a (1.0.2), $f_{\alpha}(x_A) = f_{\alpha A}$; $f_{\alpha}(x_B) = f_{\alpha B}$ (1.3.1). Definimos entonces el siguiente funcional que depende de $\{f_{\alpha}\}$

$$F[\{f_{\alpha}\}] = \int_{x_A}^{x_B} g(\{f_{\alpha}, f_{\alpha}'\}; x) dx$$

Ahora siguiendo un desarrollo idéntico a (1.1.12), desarrollando la regla de la cadena para cada una de las variables de g resulta en un sumatorio y los argumentos siguientes para llegar a δg son idénticos puesto que son lineales, de tal forma llegamos a la siguiente expresión

$$\delta g = \sum \frac{\partial g}{\partial f_{\alpha}} \delta f_{\alpha} + \frac{\partial g}{\partial f_{\alpha}'} \delta f_{\alpha}' \tag{1.3.2}$$

La expresión (1.1.15) no dependía de las variables de g, por lo que es directamente aplicable, sustituyendo (1.3.2) y haciendo la regla de la cadena igual que en (1.2.1) llegamos a una expresión similar a (1.2.2), usando que la integral conmuta con el sumatorio

$$\delta F = \sum \int_{x_A}^{x_B} \left[\frac{\partial g}{\partial f_{\alpha}} - \frac{d}{dx} \left(\frac{\partial g}{\partial f_{\alpha}'} \right) \right] \delta f_{\alpha} dx = 0$$
 (1.3.3)

Para poder concluir que cada sumando es 0, y que entonces por ser δf_{α} arbitraria cada término en corchetes es 0, es necesario que los δf_{α} sean independientes entre sí, que es equivalente a que no exista una dependencia explícita entre los $f_{\alpha}(x)$, que podria estar por ejemplo expresada por una ecuación relacionando varias de ellas. Si se cumple que son independientes, entonces

$$\boxed{\frac{\partial g}{\partial f_{\alpha}} - \frac{d}{dx} \left(\frac{\partial g}{\partial f_{\alpha}'} \right) = 0} \iff \delta F = 0 \tag{1.3.4}$$

Ahora tenemos un sistema de ecuaciones de *Euler-Lagrange* cuyas soluciones $f_{\alpha}(x)$ extremizan el funcional.

Ligaduras

En el caso de que existan m ecuaciones de ligadura de la forma $G_i(\{f_\alpha\};t)=0$, tenemos dos opciones, la primera es resolver el sistema de ecuaciones que forman expresando m funciones como dependientes de las otras N-m funciones restantes, y aplicar (1.3.4) a las N-m funciones independientes.

En el caso de que esto no sea posible resolver el sistema, debemos recurrir a multiplicadores de *Lagrange*.

Multiplicadores de Lagrange

Partimos de que tenemos m ecuaciones $G_i(\{f_\alpha\};t)=0$ que no sabemos resolver, $\Delta G_i=0$, es decir, G_i se aplica de la misma forma tanto a los caminos de referencia como a los variados, además $\Delta G_i=\delta G_i+O(a^2)=0$, como a es arbitrario, entonces $\delta G_i=0$. Aplicando la regla de la cadena de (1.1.13)

$$\delta G_i(\{f_\alpha\}; x) = \sum_{\alpha=0}^{m} \frac{\partial G_i}{\partial f_\alpha} \delta f_\alpha = \sum_{\alpha=0}^{m} a_{i\alpha} \delta f_\alpha = 0; \quad a_{i\alpha} = \frac{\partial G_i}{\partial f_\alpha}$$
(1.3.5)

Así tenemos la ecuación que nos relaciona las distintas δf_{α} , el término de la derivada lo podemos expresar como las componentes de un matriz. Podemos separar la expresión anterior tal que

$$\delta G_i = \sum_{\gamma=1}^{N-m} a_{i\gamma} \delta f_{\gamma} + \sum_{\beta=N-m+1}^{N} a_{i\beta} \delta f_{\beta} = 0$$
 (1.3.6)

La matriz del segundo término es cuadrada $(m \times m)$, y es una matriz jacobiana cuyo determinante va a ser no nulo si las ecuaciones de ligadura son independientes entre sí, de lo contrario algunas sobran. Esto implica que esa matriz tiene inversa, expresando (1.3.6) como operaciones matriciales $(N-m<\beta\leq N)$

$$0 = A\mathbf{x} + J\mathbf{y} \implies \mathbf{y} = -J^{-1}A\mathbf{x}; \quad \delta f_{\beta} = -\sum_{a=1}^{m} \sum_{\gamma=1}^{N-m} J_{\beta a}^{-1} a_{a\gamma} \delta f_{\gamma}$$
 (1.3.7)

De esta forma, hemos encontrado la dependencia explícita de δf_{β} en función de los δf_{γ} , estos últimos siendo independientes entre sí. Ahora tomamos (1.3.3) y renombramos el factor en corchetes por Γ_{α} y separamos como en (1.3.6)

$$0 = \delta F = \int_{x_A}^{x_B} \sum_{\alpha}^{N} (\Gamma_{\alpha} \delta f_{\alpha}) dx = \int_{x_A}^{x_B} \sum_{\gamma=1}^{N-m} (\Gamma_{\gamma} \delta f_{\gamma}) dx + \int_{x_A}^{x_B} \sum_{\beta=N-m+1}^{N} (\Gamma_{\beta} \delta f_{\beta}) dx$$

$$(1.3.8)$$

Sustituyendo δf_{β} de (1.3.7)

$$0 = \int_{x_A}^{x_B} \sum_{\gamma=1}^{N-m} (\Gamma_{\gamma} \delta f_{\gamma}) dx - \int_{x_A}^{x_B} \sum_{\beta=N-m+1}^{N} \left(\Gamma_{\beta} \sum_{a=1}^{m} \sum_{\gamma=1}^{N-m} J_{\beta a}^{-1} a_{a\gamma} \delta f_{\gamma} \right) dx \quad (1.3.9)$$

Como los sumatorios conmutan podemos llegar a

$$0 = \int_{x_A}^{x_B} \sum_{\gamma=1}^{N-m} (\Gamma_{\gamma} \delta f_{\gamma}) dx - \int_{x_A}^{x_B} \sum_{\gamma=1}^{N-m} \sum_{a=1}^{m} \sum_{\beta=N-m+1}^{N} \Gamma_{\beta} J_{\beta a}^{-1} a_{a\gamma} \delta f_{\gamma} dx \qquad (1.3.10)$$

Y ahora podemos unificar los sumatorios de γ y sacar factor común δf_{γ}

$$0 = \int_{x_A}^{x_B} \sum_{\gamma=1}^{N-m} \delta f_{\gamma} \left(\Gamma_{\gamma} - \sum_{a=1}^{m} \sum_{\beta=N-m+1}^{N} \Gamma_{\beta} J_{\beta a}^{-1} a_{a\gamma} \right) dx \tag{1.3.11}$$

Definimos entonces $\lambda_a=\sum_{\beta=N-m+1}^N\Gamma_\beta J_{\beta a}^{-1}$ como los multiplicadores de *Lagrange* y reemplazando $a_{a\gamma}$ por su definición de (1.3.5)

$$0 = \int_{x_A}^{x_B} \sum_{\gamma=1}^{N-m} \delta f_{\gamma} \left(\Gamma_{\gamma} - \sum_{a=1}^{m} \lambda_a \frac{\partial G_a}{\partial f_{\gamma}} \right) dx$$
 (1.3.12)

Ahora como δf_{γ} son independientes entre sí, podemos aplicar el mismo argumento que en los otros casos y concluir que lo del paréntesis debe ser igual a 0 para todos los γ , tal que $(1 \le \gamma \le N - m)$

$$\Gamma_{\gamma} - \sum_{a=1}^{m} \lambda_a \frac{\partial G_a}{\partial f_{\gamma}} = 0 \tag{1.3.13}$$

Podemos ahora comprobar que si $N-m<\gamma\leq N$

$$\Gamma_{\gamma} - \sum_{a=1}^{m} \lambda_{a} \frac{\partial G_{a}}{\partial f_{\gamma}} = \Gamma_{\gamma} - \sum_{a=1}^{m} \lambda_{a} J_{a\gamma} = \Gamma_{\gamma} - \sum_{a=1}^{m} \sum_{\beta=N-m+1}^{N} \Gamma_{\beta} J_{\beta a}^{-1} J_{a\gamma} =$$

$$= \Gamma_{\gamma} - \sum_{\beta=N-m+1}^{N} \Gamma_{\beta} \delta_{\beta \gamma} = \Gamma_{\gamma} - \Gamma_{\gamma} = 0$$
(1.3.14)

También se verifica (1.3.12), por lo que entonces

$$\left| \frac{\partial g}{\partial f_{\alpha}} - \frac{d}{dx} \left(\frac{\partial g}{\partial f_{\alpha}'} \right) = \sum_{i=1}^{m} \lambda_{i} \frac{\partial G_{i}}{\partial f_{\alpha}} \quad G_{i}(\{f_{\alpha}\}) = 0 \right| \quad (1.3.15)$$

Tenemos por lo tanto un sistema de N+m ecuaciones, que incluye las ecuaciones de *Euler-Lagrange* modificadas y las ecuaciones de ligadura, y las incognitas son las f_{α} y las λ_i .

Mecánica Lagrangiana

Ahora la variable independiente sobre la que vamos a trabajar va a ser el tiempo, t, y las variables dependientes son las coordenadas cartesianas $\{x_{\alpha i}\}$, donde α indica la partícula y i indica la componente de la posición. Definimos además las derivadas totales temporales como $\{\dot{x}_{\alpha i}\}$.

2.1. Principio de Hamilton

Definimos una función llamada Lagrangiano¹

$$\mathcal{L}(\{x_{\alpha i}, \dot{x}_{\alpha i}\}; t) = T - U \tag{2.1.1}$$

Dónde T es la energía cinética del sistema y U es la energía potencial (conservativa o no), de tal forma que definimos el siguiente funcional llamado **acción**

$$S \equiv \int_{t_A}^{t_B} \mathcal{L}(\{x_{\alpha i}, \dot{x}_{\alpha i}\}; t) dt$$
 (2.1.2)

Principio de Hamilton o de mínima acción. La evolución temporal de un sistema físico es aquella que extremiza la acción, es decir que $\delta S=0$ para la evolución real del sistema, lo cual es equivalente a

$$\frac{\partial \mathcal{L}}{\partial x_{\alpha i}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{x}_{\alpha i}} \right) = 0 \tag{2.1.3}$$

Para la mecánica clásica, este principio es equivalente a las leyes de Newton, cuando $\mathcal L$ toma la forma de (2.1.1) con ligeras modificaciones que discutiremos en las próximas secciones.

Muelle elástico

Un sencillo ejemplo para aplicar este principio es el de un muelle elástico en una dirección, donde $T=m\dot{x}^2/2$ y $U=kx^2/2$ (el término mgh es constante y puede ser ignorado), si $\mathcal{L}=T-U$, entonces

$$\frac{\partial \mathcal{L}}{\partial x} = -kx \quad \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x} = p \quad \frac{dp}{dt} = m\ddot{x} \to m\ddot{x} = -kx \iff F = -kx = ma$$

2.2. Coordendas generalizadas

Podemos realizar un cambio de variables para poder expresar $x_{\alpha i}$ en función de otras variables q_j , las cuales pueden resultarnos más sencillas para resolver un problema, tal que $x_{\alpha i} = x_{\alpha i}(\{q_j\};t)$. Esta transformación será invertible cuando

$$J_l^k = \frac{\partial x_k}{\partial q_l}$$

el determinante de esa matriz, el jacobiano, sea no nulo, tal que existe la transformación $q_j=q_j(\{x_{\alpha i}\};t)$.

1: La definición de Lagrangiano dependerá de la configuración del sistema físico, pero como norma géneral en mecánica clásica (2.1.1) es la expresión más común de la función que verifica (2.1.3).

Usando la regla de la cadena podemos ver la dependencia de las velociades entre sí, $\dot{x}_{\alpha i} = \dot{x}_{\alpha i}(\{q_j, \dot{q}_j\}; t)$ y que $\dot{q}_j = \dot{q}_j(\{x_{\alpha i}, \dot{x}_{\alpha i}\}; t)$.

De esta forma, podemos expresar $\mathcal L$ en función de las coordenadas y velocidades generalizadas, tal que $\mathcal L=\mathcal L(\{q_j,\dot q_j\};t)$ de tal forma que (2.1.3) queda como

$$\left| \frac{\partial \mathcal{L}}{\partial q_j} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) = 0 \right| \tag{2.2.1}$$

Definimos además el **momento generalizado**, que para cartesianas es el momento lineal y para polares es el momento angular. También definimos la **fuerza generalizada**, que es la proyección del vector cartesiano en el sistema de vectores asociado a las coordenadas generalizadas.

$$p_{j} = \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \quad Q_{j} = -\frac{\partial U}{\partial q_{j}} = \sum_{\alpha}^{N} \mathbf{F}_{\alpha} \cdot \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{j}}$$
 (2.2.2)

2.3. Ligaduras

Al igual que en la sección Ligaduras de la sección 1.3, tendremos M ecuaciones de ligadura, los tipos de las cuales se datallarán a continuación, pero antes definimos lo que vamos a denominar **grados de libertad**, que indica el número mínimo de parámetros que es necesario para especifcar la configuración del sistema en un tiempo dado, tal que $s=N\cdot d-M$ (2.3.1), donde s son los **grados de libertad**, N el número de partículas del sistema, y d la dimensión del espacio.

Tipos de ligaduras

Cuando las ecuaciones de ligadura no dependen de las veclocidades, $G_i(\{q_j\}) = 0$, se denominan ligaduras **holónomas** y son con las que vamos a trabajar. Si las ecuaciones de ligadura dependen de la velocidad, $G_i(\{q_j,\dot{q}_j\}) = 0$, se denominan **no holónomas** y salvo que sean integrables no trabjaremos con ellas. Son **integrables** cuando son de la forma siguiente donde $h = h(\{q_i\};t)$ tal que

$$\sum_{j}^{N \cdot d} A_j(\{q_i\}; t) \dot{q}_j + B(\{q_i\}; t) = 0; \quad A_j = \frac{\partial h}{\partial q_j}; \quad B_j = \frac{\partial h}{\partial t}$$
 (2.3.2)

Entonces podemos ver que nos queda la regla de la cadena e integramos

$$\sum_{j}^{N \cdot d} \frac{\partial h}{\partial q_{j}} \dot{q}_{j} + \frac{\partial h}{\partial t} = \frac{dh}{dt} = 0 \iff h(\{q_{i}\}; t) - C = 0 \text{ (Holónoma)}$$
 (2.3.3)

Luego a parte si la ligadura depende explícitamente del tiempo se llama **forzada** o **reónoma**, si no depende explícitamente del tiempo, se denominan **naturales** o **esclerónomas**.

Sistema holonómico

Decimos que un sistema es **holonómico** cuando podemos resolver (o bien en cartesianas o en generalizadas) las ecuaciones de ligadura (holónomas) y expresar m coordenadas como explícitamente dependientes de s coordenadas independientes, reduciendo el sistema a s variables que podemos resolver usando (2.2.1) (E-L).

Multiplicadores de Lagrange

En el caso en el que el sistema no sea holonómico, y no podamos resolver las ecuaciones de ligadura, al igual que en la sección 1.3 tenemos que recurrir a multiplicadores de multiplicadores de *Lagrange*, podemos obtener una expresión equivalente a (1.3.15) modificando el lagrangiano de la siguiente forma

$$\mathcal{L}^* = \mathcal{L} + \sum_{i=1}^{m} \lambda_i G_i \tag{2.3.4}$$

Que aplicando las ecuaciones de *Euler-Lagrange* tanto para q_i como para λ_i resulta

$$\frac{\partial \mathcal{L}}{\partial q_j} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) + \underbrace{\sum_{Q_j^L}}_{Q_j^L} = 0 \qquad (2.3.5)$$

Donde Q_j^L es la componente j de la fuerza de ligadura total, tal que $\mathbf{F}^L = \sum Q_j^L \partial_{q_j} \mathbf{r}$, que cumplen que $dW^L = \mathbf{F}^L \cdot d\mathbf{r} = 0$ son fuerzas que o siempre perpendiculares a la ligadura, o que provocan que $d\mathbf{r} = 0 \iff \mathbf{v} = 0$ en el punto de contacto.

2.4. Teorema de la Energía Cinética

Función k-homogénea

Una función k-homogéna cumple la siguiente expresión, donde λ es un parámetro arbitrario cualquiera

$$f(\{\lambda x_i\}) = \lambda^k f(\{x_i\}) \tag{2.4.1}$$

Teorema de Euler

Podemos derivar cada lado de (2.4.1) con respecto al parámetro

$$\frac{\partial}{\partial \lambda} f(\{\lambda x_i\}) = \frac{\partial}{\partial \lambda} \lambda^k f(\{x_i\})$$

En el primer miembro hacemos la regla de la cadena y en el segundo es la derivada de una potencia

$$\sum_{i=1}^{N} \frac{\partial f(\{\lambda x_i\})}{\partial (\lambda x_j)} \frac{d(\lambda x_j)}{d\lambda} = \sum_{i=1}^{N} \frac{\partial f(\{\lambda x_i\})}{\partial (\lambda x_j)} x_j = k\lambda^{k-1} f(\{x_i\})$$

Como λ es un parámetro arbitrario, podemos tomar $\lambda = 1$ y tenemos

$$\sum_{j}^{N} \frac{\partial f(\{x_i\})}{\partial x_j} x_j = k f(\{x_i\})$$
(2.4.2)

Forma cuadrática

Una forma cuadrática es una función 2-homogénea de la siguiente forma

$$f(\lbrace x_i \rbrace) = \sum_{i,j}^{N} a_{jk} x_j x_k = \mathbf{x} A \mathbf{x}^T$$
 (2.4.3)

Donde a_{jk} no tienen por que ser constantes, pueden ser funciones de otras variables, pero no de x_i .

Teorema

En coordenadas cartesianas la expresión de la energía cinética es una forma cuadrática que solo depende de las velocidades que tiene la siguiente forma

$$T = T(\{x_{\alpha i}\}) = \frac{1}{2} \sum_{\alpha, i}^{N, d} m_{\alpha} \dot{x}_{\alpha i}^{2}$$
 (2.4.4)

Si $x_{\alpha i}(\{q_i\};t)$, entonces

$$\dot{x}_{\alpha i} = \sum_{j}^{s} \frac{\partial x_{\alpha i}}{\partial q_{j}} \dot{q}_{j} + \frac{\partial x_{\alpha i}}{\partial t} = \dot{x}_{\alpha i} (\{q_{j}, \dot{q}_{j}\}; t)$$
 (2.4.5)

Elevando (2.4.5) al cuadrado tenemos

$$\dot{x}_{\alpha i}^{2} = \left(\sum_{j}^{s} \frac{\partial x_{\alpha i}}{\partial q_{j}} \dot{q}_{j}\right) \left(\sum_{k}^{s} \frac{\partial x_{\alpha i}}{\partial q_{k}} \dot{q}_{k}\right) + 2 \frac{\partial x_{\alpha i}}{\partial t} \sum_{j}^{s} \frac{\partial x_{\alpha i}}{\partial q_{j}} \dot{q}_{j} + \left(\frac{\partial x_{\alpha i}}{\partial t}\right)^{2} =$$

$$= \sum_{i,k}^{s} \frac{\partial x_{\alpha i}}{\partial q_{j}} \frac{\partial x_{\alpha i}}{\partial q_{k}} \dot{q}_{j} \dot{q}_{k} + 2 \frac{\partial x_{\alpha i}}{\partial t} \sum_{j}^{s} \frac{\partial x_{\alpha i}}{\partial q_{j}} \dot{q}_{j} + \left(\frac{\partial x_{\alpha i}}{\partial t}\right)^{2}$$

$$(2.4.6)$$

Sustituyendo (2.4.6) en (2.4.4)

$$T = \frac{1}{2} \sum_{\alpha,i}^{N,d} m_{\alpha} \left[\sum_{j,k}^{s} \frac{\partial x_{\alpha i}}{\partial q_{j}} \frac{\partial x_{\alpha i}}{\partial q_{k}} \dot{q}_{j} \dot{q}_{k} + 2 \frac{\partial x_{\alpha i}}{\partial t} \sum_{j}^{s} \frac{\partial x_{\alpha i}}{\partial q_{j}} \dot{q}_{j} + \left(\frac{\partial x_{\alpha i}}{\partial t} \right)^{2} \right]$$

Usando que los sumatorios conmutan y son lineales llegamos a

$$T = \sum_{j,k}^{s} \left(\sum_{\alpha,i}^{N,d} \frac{1}{2} m_{\alpha} \frac{\partial x_{\alpha i}}{\partial q_{j}} \frac{\partial x_{\alpha i}}{\partial q_{k}} \right) \dot{q}_{j} \dot{q}_{k} + \sum_{j}^{s} \left(\sum_{\alpha,i}^{N,d} m_{\alpha} \frac{\partial x_{\alpha i}}{\partial t} \frac{\partial x_{\alpha i}}{\partial q_{j}} \right) \dot{q}_{j} + \sum_{\alpha,i}^{N,d} \frac{1}{2} m_{\alpha} \left(\frac{\partial x_{\alpha i}}{\partial t} \right)^{2}$$
(2.4.7)

De una forma más reducida obtenemos

$$T = T(\{q_j, \dot{q}_j\}; t) = \sum_{j,k}^{s} A_{ij} \dot{q}_j \dot{q}_k + \sum_{j}^{s} B_j \dot{q}_j + C$$
 (2.4.8)

Así, fijándonos en (2.4.7), si el cambio de coordenadas no depende explícitamente del tiempo, B_j y C se anulan, y entonces T es una forma cuadrática en los \dot{q}_j .

Teorema de la Energía cinética. Si las coordenadas no dependen explícitamente del tiempo, entonces T es una forma cuadrática en los \dot{q} .

Si ahora partimos de este supuesto y hacemos la parcial de T con respecto a un \dot{q}_l dado, obtenemos

$$\frac{\partial T}{\partial \dot{q}_{l}} = \frac{\partial}{\partial \dot{q}_{l}} \sum_{j,k\neq l}^{s} A_{jk}^{s} \dot{q}_{j} \dot{q}_{k} + \frac{\partial}{\partial \dot{q}_{l}} \sum_{j=l,k\neq l}^{s} A_{lk} \dot{q}_{l} \dot{q}_{k} + \frac{\partial}{\partial \dot{q}_{l}} \sum_{j\neq l,k=l}^{s} A_{jl} \dot{q}_{j} \dot{q}_{l} + \frac{\partial}{\partial \dot{q}_{l}} \left(A_{ll} \dot{q}_{l}^{2} \right) =$$

$$= \sum_{j=l,k\neq l}^{s} A_{lk} \dot{q}_{k} + \sum_{j\neq l,k=l}^{s} A_{jl} \dot{q}_{j} + 2A_{ll} \dot{q}_{l} = 2 \sum_{i}^{s} A_{li} \dot{q}_{i} = 2 \sum_{i}^{s} A_{il} \dot{q}_{i} \qquad (2.4.9)$$

Si ahora hacemos lo siguiente usando (2.4.9), vemos que se verifica (2.4.2)

$$\sum_{j}^{s} \frac{\partial T}{\partial \dot{q}_{j}} \dot{q}_{j} = 2 \sum_{i,k}^{s} A_{kj} \dot{q}_{j} \dot{q}_{k} = 2T$$
(2.4.10)

Simetrias y cantidades conservadas

3.1. Ejemplos de invariancias

Invariancia temporal y Hamiltoniano

Si tenemos un desplazamiento arbitratio en el tiempo, $t\mapsto t+\delta t$, y se verifica que $\mathcal{L}(\{q_j,\dot{q}_j\};t)=\mathcal{L}(\{q_j,\dot{q}_j\};t+\delta t)$, esto implica que la parcial de \mathcal{L} con respecto a t es 0. Si ahora desarrollamos la derivadada total de de \mathcal{L} con respecto a t, tenemos 0

$$\frac{d\mathcal{L}}{dt} = \sum_{s} \left(\frac{\partial \mathcal{L}}{\partial q_j} \dot{q}_j + \frac{\partial \mathcal{L}}{\partial \dot{q}_j} \ddot{q}_j \right) + \frac{\partial \mathcal{L}}{\partial t}$$

El primer término del primer sumando dentro del sumario lo podemos expresar en función de (2.2.1) (*E-L*), tal que

$$\sum^{s} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) \dot{q}_{j} + \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \ddot{q}_{j} \right] - \frac{d\mathcal{L}}{dt} = -\frac{\partial \mathcal{L}}{\partial t} = 0$$

Ahora lo de dentro del paréntesis es la derivada de un producto, y usando la linearidad de la derivada

$$\frac{d}{dt}\left(\sum_{j=0}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \dot{q}_{j} - \mathcal{L}\right) = -\frac{\partial \mathcal{L}}{\partial t} = 0$$
(3.1.1)

Definimos entonces el *Hamiltoniano* \mathcal{H} , que se conservará cuando \mathcal{L} no dependa explícitamente del tiempo.

$$\mathcal{H} \equiv \sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \dot{q}_{j} - \mathcal{L} \quad \frac{d\mathcal{H}}{dt} = -\frac{\partial \mathcal{L}}{\partial t}$$
 (3.1.2)

Podemos además observar que si se verifican los supuestos del teorema de la energía cinética (el cambio de coordenadas no depende del tiempo) podemos aplicar (2.4.10), y la energía potencial es conservativa, llegamos a $\mathcal{H}=E$

$$\mathcal{H} = \sum_{j=0}^{s} \frac{\partial \mathcal{T}}{\partial \dot{q}_{j}} \dot{q}_{j} - \sum_{j=0}^{s} \frac{\partial \mathcal{U}}{\partial \dot{q}_{j}} \dot{q}_{j} - (T - U) = 2T - T + U = T + U = E$$
 (3.1.3)

Invariancia espacial

Si tenemos un desplazamiento arbitrario en una de las coordenadas generalizadas, $q_k \mapsto q_k + \delta q_k$, y se verifica que $\mathcal{L}(q_k, \{q_j, \dot{q}_j\}; t) = \mathcal{L}(q_k + \delta q_k, \{q_j, \dot{q}_j\}; t)$, esto implica que la parcial de \mathcal{L} con respecto a q_k es 0. Cuando esto ocurre se dice que q_k es una **variable ignorable**, y de (2.2.1) (*E-L*) deducimos que su momento generalizado asociado se conserva.

$$\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_k}\right) = \dot{p}_k = 0 \implies p_k = C \tag{3.1.5}$$

3.2. Teorema de Noether

Consideremos unas transformaciones genéricas h_j de las coordendas q_j , parametrizadas por un parámetro ϵ independiente del tiempo tal que

$$q_j \mapsto q_j' = h_j(\{q_i\}, \epsilon) \quad h_j(\{q_i\}, 0) = q_j$$
 (3.2.1)

Enunciado

Si el conjunto de las transformaciones h_j deja invariante a \mathcal{L} a orden ϵ (orden uno)

$$\mathcal{L}(\lbrace q_i, \dot{q}_i \rbrace; t) + O(\epsilon^2) = \mathcal{L}(h_i(\lbrace q_i \rbrace, \epsilon), \dot{h}_i(\lbrace q_i, \dot{q}_i \rbrace, \epsilon); t)$$
(3.2.2)

Entonces se conseva la siguiente cantidad

$$I(\lbrace q_j, \dot{q}_j \rbrace; t) = \sum_{j=0}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_j} \frac{dh_j}{d\epsilon} \quad \frac{dI}{dt} = 0$$
 (3.2.3)

Nuestra misión va a ser encontrar las transformaciones (simetrías) que no alteren $\mathcal L$ para hallar cantidades conservadas asociadas.

Ejemplo

Si tenemos una masa en en plano bajo la acción de una fuerza central, tal que $\mathcal{L}=1/2m(\dot{x}^2+\dot{y}^2)-U(\sqrt{x^2+y^2})$, si tomamos las transformaciones $x\mapsto x+\epsilon y$ y $y\mapsto y-\epsilon x$, vemos que el lagrangiano se mantiene invariante a orden ϵ .

$$\mathcal{L}' = 1/2m((\dot{x} + \epsilon \dot{y})^2 + (\dot{y} - \epsilon \dot{x})^2) - U\left(\sqrt{(x + \epsilon y)^2 + (y - \epsilon x)^2}\right)$$

$$\mathcal{L}' = 1/2m(\dot{x}^2 + \dot{y}^2 + \underline{\epsilon^2(\dot{x}^2 + \dot{y}^2)}) - U\left(\sqrt{x^2 + y^2 + \underline{\epsilon^2(x^2 + \dot{y}^2)}}\right)$$

Entonces la cantidad conservada es el momento angular

$$I = \frac{\partial \mathcal{L}}{\partial \dot{x}} \frac{d}{d\epsilon} (x + \epsilon y) + \frac{\partial \mathcal{L}}{\partial \dot{y}} \frac{d}{d\epsilon} (y - \epsilon x) = m(\dot{x}y - \dot{y}x) = -m\mathbf{r} \times \mathbf{v} = -\mathbf{J}_z$$

4

4.1. Transformada de Legendre

Si consideramos una función de una variable y=f(x) tal que $f''(x)\neq 0$, entonces a cada punto le corresponde una sola recta tangente asociada, asociada con su pendiente f'(x) y su ordenada en el origen g, tal que y=f'(x)x+g, a esta familia de rectas definida por el par (f'(x),g) se le llama **envolvente** y contiene toda la información original de la función.

Así tenemos dos nuevas coordenadas
$$[p,g(p)]$$
, relacionadas con $[x,f(x)]$ mediante $p(x)=f'(x)$ $g(p)=f(x(p))-x(p)p$ $[x,f(x)]\mapsto [p,g(p)]$ $(4.1.1)$ $x(p)=(f')^{-1}(p)$ $f(x)=p(x)x+g(p(x))$ $[p,g(p)]\mapsto [x,f(x)]$

Donde la primera expresión es la *Transformada de Legendre*, y será invertible (la segunda expresión) siempre que f'(x) sea invertible (cierto si $f''(x) \neq 0$).

Varias variables

Si ahora tenemos $f(\{x_i, y_i\})$ donde $\{y_i\}$ son las variables sobre las que queremos hacer la transformada, la transformada es entonces

$$p_{i}(\{x_{i}, y_{i}\}) = \frac{\partial f}{\partial y_{i}} \qquad g(\{x_{i}, p_{i}\}) = f(\{x_{i}, p_{i}\}) - \sum_{j} p_{j} y_{j}(\{x_{i}, p_{i}\}) \qquad [y_{i}, f(\{x_{i}, y_{i}\})] \mapsto [p_{i}, g(\{x_{i}, p_{y}\})]$$

$$y_{i}(\{x_{i}, p_{i}\}) = \left[\frac{\partial f}{\partial y_{i}}\right]^{-1} \qquad f(\{x_{i}, y_{i}\}) = \sum_{j} y_{j} p_{j}(\{x_{i}, y_{i}\}) + g(\{x_{i}, y_{i}\}) \qquad [p_{i}, g(\{x_{i}, y_{i}\})] \mapsto [y_{i}, f(\{x_{i}, y_{i}\})] \qquad (4.1.2)$$

La transformación será inversible si el jacobiano de $y_i \mapsto p_i$ es no nulo.

Transformada de Legendre del Lagrangiano

Ahora si tenemos $\mathcal{L}(\{q_j, \dot{q}_j\}; t)$, $\{\dot{q}_j\}$ serán nuestras antiguas variables y las nuevas variables serán $\partial_{\dot{q}_j}\mathcal{L}=p_j$, los momentos generalizados o conjugados. Entonces aplicando (4.1.2) llegamos a (3.1.2)

$$p_{i}(\{q_{i}, \dot{q}_{i}\}; t) = \frac{\partial \mathcal{L}}{\partial q_{i}} \qquad g(\{q_{i}, p_{i}\}; t) = \mathcal{L}(\{q_{i}, p_{i}\}; t) - \sum_{j}^{s} \dot{q}_{j} p_{j}(\{q_{i}, p_{i}\}) = -\mathcal{H}$$
(4.1.3)

De esta forma, \mathcal{H} es equivalente a la *Transformada de Legendre* de \mathcal{L} con respecto a los \dot{q}_j , y esta es inversible, la demostración de que el jacobiano $[\partial_{\dot{q}_j} p_i]$ es no nulo bajo ciertas circumstancias se deja como un ejercicio al lector.

De esta forma, no hemos perdido ninguna información del sistema al pasar de $\mathcal L$ a $\mathcal H$, y a continuación reformularemos las ecuaciones del movimiento en función de esta cantidad de una forma equivalente a la fomulación lagrangiana.

4.2. Ecuaciones de Hamilton

Si hacemos la diferencial exacta de ${\cal H}$ usando la regla de la cadena tenemos

$$d\mathcal{H} = \sum_{j=1}^{s} \left(\frac{\partial \mathcal{H}}{\partial q_{j}} dq_{j} + \frac{\partial \mathcal{H}}{\partial p_{j}} dp_{j} \right) + \frac{\partial \mathcal{H}}{\partial t} dt$$
 (4.2.1)

Si por otro lado hacemos el diferencial de ${\cal H}$ desde (3.1.2) o (4.1.3)

$$d\mathcal{H} = \sum_{j=1}^{s} (p_j dq_j + \dot{q}_j dp_j) - d\mathcal{L}$$
(4.2.2)

si $d\mathcal{L}$ es por regla de la cadena, y usando (2.2.1) y (2.2.2)

$$d\mathcal{L} = \sum_{j=0}^{s} \left(\frac{\partial \mathcal{L}}{\partial q_{j}} dq_{j} + \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} d\dot{q}_{j} \right) + \frac{\partial \mathcal{L}}{\partial t} dt = \sum_{j=0}^{s} \left(\dot{p}_{j} dq_{j} + p_{j} d\dot{q}_{j} \right) + \frac{\partial \mathcal{L}}{\partial t} dt \qquad (4.2.3)$$

Sustituyendo (4.2.3) en (4.2.2)

$$d\mathcal{H} = \sum_{j=0}^{s} p_{j} dq_{j} + \dot{q}_{j} dp_{j} - \sum_{j=0}^{s} \dot{p}_{j} dq_{j} + p_{j} d\dot{q}_{j} - \frac{\partial \mathcal{L}}{\partial t} dt = \sum_{j=0}^{s} \dot{q}_{j} dq_{j} - \dot{p}_{j} dq_{j} - \frac{\partial \mathcal{L}}{\partial t} dt$$
(4.2.4)

Como dq_j , dp_j y dt son funciones independientes y arbitrarias, podemos igualar término a término (4.2.4) y (4.2.1), de tal forma que obtenemos tres ecuaciones

$$\dot{q}_j = \frac{\partial \mathcal{H}}{\partial p_j} \quad \dot{p}_j = -\frac{\partial \mathcal{H}}{\partial q_j}$$
 (4.2.5)

Estas dos primeras ecuaciones son las *Ecuaciones de Hamilton* del movimiento o *Ecuaciones canónicas*. Por otro lado tenemos la tercera ecuación, que junto a (3.1.2)

$$\frac{\partial \mathcal{H}}{\partial t} = -\frac{\partial \mathcal{L}}{\partial t} = \frac{d\mathcal{H}}{dt} \tag{4.2.6}$$

De esta forma, si \mathcal{H} no depende explícitamente del tiempo, este se conserva.

Para aplicar estas ecuaciones en un sistema holonómico tenemos que hayar primero \mathcal{L} , tras esto hallar los momentos generalizados y despues invertir la relación, tal que

$$p_j = \frac{\partial \mathcal{L}}{\partial \dot{q}_j} = p_j(\{q_k, \dot{q}_k\}; t) \to \dot{q}_j = \dot{q}_j(\{q_k, p_k\}; t)$$
 (4.2.7)

Entonces usamos la ecuación (4.1.3) con mucho cuidado de reemplazar todas las \dot{q}_j por (4.2.7), y ya tendremos \mathcal{H} en una forma que nos permita resolverlo usando (4.2.5).

Ejemplo

Un ejemplo sencillo es el péndulo simple donde

$$\mathcal{L} = \frac{1}{2}ml^2\dot{\theta}^2 + mgl\cos\theta \qquad p_{\theta} = \frac{\partial \mathcal{L}}{\partial \dot{\theta}} = ml^2\dot{\theta} \qquad \dot{\theta} = \frac{p_{\theta}}{ml^2} = \dot{\theta}(p_{\theta})$$

Sustituyendo tenemos

$$\mathcal{H} = p_{\theta}\dot{\theta} - \mathcal{L} = \frac{p_{\theta}^2}{ml^2} - \frac{p_{\theta}^2}{2ml^2} - mgl\cos\theta = \frac{p_{\theta}^2}{2ml^2} - mgl\cos\theta = T + U$$

Ahora aplicamos (4.2.5.A), tal que $\dot{\theta}=p_{\theta}/ml^2$, de donde sacamos que $\dot{p}_{\theta}=ml^2\ddot{\theta}$ y de (4.2.5.B) sacamos $\dot{p}_{\theta}=-mgl\sin\theta$, igualando y depejando tenemos $\ddot{\theta}+g/l\sin\theta=0$, la ecuación del movimiento.

Comparación Lagrange-Hamilton

La formulación Lagrangiana es mejor para tratar con ligaduras, pero la hamiltoniana nos permite reducir el orden de la ecuación diferencial resultante cuando no hay dependencia explícita en una o varias de las q_j , puesto que en (3.1.5) $\mathcal L$ sigue dependiendo de $\dot q_j$, solo conseguimos reducir en 1 el orden de un ecuación de E-L, mientras que en la formulación hamiltoniana, si una variable es cíclica, es decir $\partial_{q_j}\mathcal H=0$, entonces ya hemos resuelto $p_j=\alpha$ por (4.2.5.B) y también por definición $\mathcal H$ no depende de q_j , de esta forma nos hemos eliminado dos dependencias y reducir el orden en 2 unidades, podemos integrar q_j usando (4.2.5.A) que como no depende de q_j es una EDO separable.

4.3. Espacio de fase

El hecho de que solo haya una sola solución para las ecuaciones del movimiento, es decir, que solo hay una posible trayectoria dadas unas condiciones dadas, significa que el sistema con el que estamos tratando es *determinista*.

Si es el espacio de configuración es $\{q_j\}$ para un t dado, entonces definimos el Espacio de fase como $\{q_j, p_j\}$, donde $\{p_j\}$ es el espacio de momentos o impulsos.

Este espacio es de dimensión 2s y nos da toda la información dinámica del sistema pues nos permite predecir su evolución, puesto que con unas condiciones iniciales de posición y momento (o velocidad) definidas por unas coordendas del espacio de fase, podemos usar (4.2.5) (Ecs. H.) para hallar la evolución del sistema.

Diagrama de fases

Es la trayectoria que sigue un sistema en el espacio de fase, normalmente representada en un conjunto de s planos bidimensionales como una curva en cada uno de ellos, cuyos ejes representan q_j y p_j , donde por cada punto en un t dado solo puede pasar una sola trayectoria, de lo contrario el sistema no sería determinista, ya que de unas mismas condiciones iniciales podría evolucionar de varias formas.

Además si \mathcal{H} se conserva, entonces por cada punto del espacio de fase solo puede pasar una trayectoria independientemente del tiempo.

Ejemplo

Como ejemplo vamos a ver un péndulo, tomando las expresiones del ejemplo de (4.2), donde las coordenadas del espacio de fases son (θ,p_{θ}) , si θ «1, tenemos $\ddot{\theta}+\frac{g}{l}\theta=0$, cuya solución, donde $\omega^2=g/l$, es

$$\theta = A\sin\left(\omega t + \theta_0\right) + B\cos\left(\omega t + \theta_0\right) \ \dot{\theta} = A\omega\cos\left(\omega t + \theta_0\right) - B\omega\sin\left(\omega t + \theta_0\right) \ p_\theta = ml^2\dot{\theta}$$

$$\theta^{2} + \frac{p_{\theta}^{2}}{\omega^{2} m^{2} l^{4}} = A^{2} + B^{2} \text{ (elipse)}$$

Teorema de Liouville

Volumen en el espacio de fase

Definimos el volumen en el espacio de fases como

$$V = \prod_{j}^{s} \Delta q_j \Delta p_j \tag{4.3.2}$$

Donde $\Delta q_i \Delta p_i$ es el área en uno de los s planos.

Si ahora tenemos una serie de condiciones iniciales distribuidas dentro de una región volumétrica del espacio de fases, siendo $\mathcal N$ el número de condiciones iniales dentro de V, entonces si consideramos como la frontera de V se transforma con el tiempo para dar V', entonces $\mathcal N$ se conserva, puesto que para que una trayectoria entre o salga del volumen sería necesario que cortase una trayectoria de la frontera, lo cual no puede ocurrir en un sistema determinista.

Teorema de Liouville

El volumen V(S) dentro de una superficie S(t) del espacio de fase se conserva.

$$\frac{dV}{dt} = 0 \implies \frac{d\rho}{dt} = 0 \quad \rho = \frac{\mathcal{N}}{V} \tag{4.3.4}$$

Demostración intuitiva

Sean $\mathbf{z}=(\mathbf{q},\mathbf{p})$, $\mathbf{v}=\dot{\mathbf{z}}=(\dot{\mathbf{q}},\dot{\mathbf{p}})$, y $\nabla=(\nabla_{\mathbf{q}},\nabla_{\mathbf{p}})$, entonces la divergencia de \mathbf{v} , tal que

$$\nabla \cdot \mathbf{v} = \sum_{j=1}^{s} \frac{\partial \dot{q}_{j}}{\partial q_{j}} + \frac{\partial \dot{p}_{j}}{\partial p_{j}}$$
(4.3.4)

entonces por el Teorema de la Divergencia

$$\int_{V} \nabla \cdot \mathbf{v} dV = \int_{S} \mathbf{v} \cdot d\mathbf{S} \tag{4.3.5}$$

La variación de V en términos del tiempo es la siguiente, ya que $\mathbf{v}dt$ indica como se mueven las partículas de dentro de V, y multiplicando por $d\mathbf{S}$ nos indica como varía el volumen infinitesimalmente en un punto de la superficie, integrando en la superficie para ver la variación total de V tenemos

$$dV = \int_{S} \mathbf{v} \cdot d\mathbf{S} dt \implies \frac{dV}{dt} = \int_{S} \mathbf{v} \cdot d\mathbf{S}$$
 (4.3.6)

Combinando (4.4.4), (4.4.5) y sustituyendo (4.4.3) llegamos a

$$\frac{dV}{dt} = \int_{V} \nabla \cdot \mathbf{v} dV = \int_{V} \left(\sum_{j=1}^{s} \frac{\partial \dot{q}_{j}}{\partial q_{j}} + \frac{\partial \dot{p}_{j}}{\partial p_{j}} \right) dV$$
(4.3.7)

Ahora usando (4.2.5) (Ecs. H.) y que las parciales conmutan.

$$\frac{dV}{dt} = \int_{V} \left(\sum_{s} \frac{\partial \mathcal{H}}{\partial q_{j} p_{j}} - \frac{\partial \mathcal{H}}{\partial p_{j} q_{j}} \right) dV = 0$$
 (4.3.8)

4.4. Paréntesis de Poisson

Sea $f = f(\{q_j, p_j\}; t)$ una función de las coordenadas canónicas, podemos hacer su derivada total con respecto al tiempo, tal que

$$\frac{df}{dt} = \sum_{j=1}^{s} \left(\frac{\partial f}{\partial q_j} \dot{q}_j + \frac{\partial f}{\partial p_j} \dot{p}_j \right) + \frac{\partial f}{\partial t}$$
(4.4.1)

Usando (3.2.5) (Ecs. H.) llegamos a

$$\frac{df}{dt} = \sum_{s}^{s} \left(\frac{\partial f}{\partial q_{i}} \frac{\partial \mathcal{H}}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial \mathcal{H}}{\partial q_{i}} \right) + \frac{f}{\partial t} = [f, \mathcal{H}] + \frac{\partial f}{\partial t}$$
(4.4.2)

Dónde $[f,\mathcal{H}]$ es el *paréntesis de Poisson* de f y \mathcal{H} , en general lo definimos para dos funciones como

$$[f,g] = \sum_{s} \left(\frac{\partial f}{\partial q_j} \frac{\partial g}{\partial p_j} - \frac{\partial f}{\partial p_j} \frac{\partial g}{\partial q_j} \right)$$
(4.4.3)

Sus propiedades algebraicas son muy similares a aquellas del producto vectorial puesto que su expresión es muy similar, son sencillas de verificar reemplando a fuerza bruta en (4.4.3).

- Es alternada [f, g] = -[g, f] y [f, f] = -1.
- Si $[f,g] = -1 \iff [f,g] = [g,f] = 0$ las funciones conmutan.
- Es bilineal, $[f, \alpha g + \beta h] = \alpha [f, g] + \beta [f, h]$.
- Existe una regla del producto [f,gh]=g[f,h]+h[f,g].
- Se verifica la *Identidad de Jacobi*, [f, [g, h]] + [h, [f, g]] + [g, [h, f]] = 0.

Otra regla del producto que se verifica, usando la conmutividad de las derivadas parciales, es $\frac{\partial}{\partial t}[f,g] = [\frac{\partial f}{\partial t},g] + [f,\frac{\partial g}{\partial t}].$

Si la función f no depende explícitamente del tiempo, entonces si f conmuta con \mathcal{H} , eso implica por (4.4.2) y las propiedades anteriores, que f se conserva.

Además, si tenemos dos cantidades conservadas f y g, entonces tenemos que, usando la *Identidad de Jacobi*, se conserva su paréntesis

$$\frac{d}{dt}[f,g] = 0 (4.4.4)$$

Si hacemos $[q_k, \mathcal{H}]$ y $[p_k, \mathcal{H}]$ aplicando (4.4.3) y (3.2.5) (Ecs. H.), obtenemos las ecuaciones del movimiento expresadas en términos de *paréntesis de Poisson*.

$$[q_k, \mathcal{H}] = \dot{q}_k \quad [p_k, \mathcal{H}] = \dot{p}_k$$
(4.4.4)

Tenemos también los paréntesis de paréntesis de Poisson fundamentales

$$[q_k, q_l] = [p_k, p_l] = 0 \quad [q_k, p_l] = \delta_{kl}$$
 (4.4.4)

En mecánica cuántica se define un operador similar, y expresar expresar sistemas en términos de *paréntesis de Poisson* nos permite cuantizarlos. Un ejemplo es que (4.4.2) se convierte en la ecuación de *Heissenberg*.

No hay mucho detalle en esta sección por que no es muy relevante para este curso, se incluye para familiarizarse con este formalismo.

FVERZAS·CENTRALES SISTEMAS·NO·INERCIALES

Llamamos fuerza central a toda fuerza $\mathbf{F}(\mathbf{r}) = F(\mathbf{r})\hat{\mathbf{e}}_r$ (5.0.1), es decir, que ocurre en dirección radial a un punto determinado, si además esta fuerza central es conservativa, es equivalente a $\mathbf{F}(r) = F(r)\hat{\mathbf{e}}_r$ (5.0.2), es decir que es esférica simétricamente y solo depende de la distancia al origen, ya que

$$\mathbf{F} = F(r)\hat{\mathbf{e}}_r = -\nabla U(r,\theta,\varphi) = \frac{\partial U}{\partial r}\hat{\mathbf{e}}_r + \frac{1}{r}\frac{\partial U}{\partial \theta}\hat{\mathbf{e}}_\theta + \frac{1}{r\sin\theta}\frac{\partial U}{\partial \varphi}\hat{\mathbf{e}}_\varphi \implies \frac{\partial U}{\partial \theta} = \frac{\partial U}{\partial \varphi} = 0$$

puesto que 1/r y $1/r\sin\theta$ no pueden ser 0, esto implica que U=U(r) y F=F(r), además llegamos a la siguiente expresión de F

$$F(r) = -\frac{\partial U}{\partial r} \tag{5.0.3}$$

La recíproca, que $\mathbf{F}(r) = F(r)\hat{\mathbf{e}}_r$ es conservativa se puede obtener calculando su rotacional y verificando que es igual a 0.

5.1. Problema de los dos cuerpos

Si tenemos dos masas m_1 y m_2 con posiciones \mathbf{r}_1 y \mathbf{r}_2 , de tal forma que sufren cada una una fuerza central conservativa creada por la otra masa, siguiendo la tercera ley de newton, entonces U=U(r), donde $r=|\mathbf{r}_1-\mathbf{r}_2|=|\mathbf{r}|$ (5.1.1), tal que $\mathbf{r}=\mathbf{r}_1-\mathbf{r}_2$ (5.1.2).

Podemos definir también el centro de masas del sistema de ambas masas, que se encuentra necesariamente en un punto intermedio entre ambas masas, y más cercano a la masa mayor

$$\mathbf{R} = \frac{1}{M} \sum_{i=1}^{n} m_i \mathbf{r_i} = \frac{m_1 \mathbf{r_1} + m_2 \mathbf{r_2}}{m_1 + m_2} \quad M = \sum_{i=1}^{n} m_i$$
 (5.1.3)

De esta forma podemos hacer el cambio de las coordenadas $(\mathbf{r}_1, \mathbf{r}_2) \mapsto (\mathbf{r}, \mathbf{R})$, que podemos invertir despejando \mathbf{r}_1 y de (5.1.2) y (5.1.3) e igualando para despejar \mathbf{r}_2 , después sacamos \mathbf{r}_1 de una de las anteriores, tal que

$$\mathbf{r}_1 = \mathbf{R} + \frac{m_2}{M}\mathbf{r} \qquad \mathbf{r}_2 = \mathbf{R} - \frac{m_1}{M}\mathbf{r} \tag{5.1.4}$$

Ahora podemos escribir $\mathcal L$ del sistema, para la energía cinética, veremos que los términos cruzados se cancelan

$$T = \frac{1}{2}m_1(\dot{\mathbf{r}}_1)^2 + \frac{1}{2}m_2(\dot{\mathbf{r}}_2)^2 = \frac{1}{2}M(\dot{\mathbf{R}})^2 + \frac{1}{2}\mu(\dot{\mathbf{r}})^2 \qquad \boxed{\mu = \frac{m_1m_2}{m_1 + m_2}} \qquad U = U(r)$$
(5.1.5)

$$\mathcal{L} = \mathcal{L}_{CM} + \mathcal{L}_{rel} = \left(\frac{1}{2}M(\dot{\mathbf{R}})^2\right) + \left(\frac{1}{2}\mu(\dot{\mathbf{r}})^2 - U(r)\right)$$
(5.1.6)

Es de notar que cuando la diferencia en las masas es muy grande, la masa reducida, μ tiende a la masa más pequeña.

De la ecuación (5.1.6) podemos concluir usando (E-L) que el momento asociado a ${\bf R}$ se conserva, puesto que que ${\cal L}$ no depende explícitamente de ${\bf R}$, entonces podemos llegar a tres ecuaciones resumidas en $M\ddot{\bf R}=0~(5.1.7)$, que indican que la velocidad del CM es constante.

Para el movimiento relativo en $\bf r$, aplicando (E-L), podemos llegar a tres ecuaciones que resuminos en $\mu\ddot{\bf r}=-\nabla U$ (5.1.8).

Entonces por (5.1.7), el sistema de referencia relativo al CM es un sistema inercial, de tal forma que estableciendo $\mathbf{R}=0$, podemos obtener las expresiones de \mathbf{r}_1 y \mathbf{r}_2 en el sistema del CM.

 $\mathbf{r}_1 = \frac{m_2}{M} \mathbf{r} \quad \mathbf{r}_2 = -\frac{m_1}{M} \mathbf{r} \tag{5.1.9}$

Observando el dibujo de la página anterior, esta claro que en el sistema del CM, las posiciones de ambas masas deben estar en el mismo eje, es decir, sus vectores de posición son paralelos, puesto que $\bf R$ se encuentra siempre entre la recta que une a ambas masas.

Hay que tener cuidado por que r no es un vector posición, sino como definimos en (5.1.2), es la diferencia entre los dos vectores de posición.

5.2. Conservación del momento angular

Definimos el momento angular total con respecto a O como $\mathbf{J}=\mathbf{J}_1+\mathbf{J}_2$ (5.2.1), donde $\mathbf{J}_i=\mathbf{r}_i\times\mathbf{p}_i=m_i\mathbf{r}_i\times\dot{\mathbf{r}}_i$ (5.2.2). La derivada del momento angular será entonces

$$\dot{\mathbf{J}}_i = m \left(\dot{\mathbf{r}}_i \times \dot{\mathbf{r}}_i + \mathbf{r}_i \times \ddot{\mathbf{r}}_i \right) = m \mathbf{r}_i \times \mathbf{r}_i = \mathbf{r}_i \times \mathbf{F}_i \tag{5.2.3}$$

Entonces, usando la 3^a LN, (5.1.2) y (5.0.1), el momento angular total se conserva.

$$\dot{\mathbf{J}} = \mathbf{r}_1 \times \mathbf{F}_{12} + \mathbf{r}_2 \times \mathbf{F}_{21} = (\mathbf{r}_1 - \mathbf{r}_2) \times \mathbf{F} = F\mathbf{r} \times \hat{\mathbf{u}}_r = 0 \tag{5.2.4}$$

El momento angular total en el sistema del CM es entonces, usando (5.1.9)

$$\mathbf{J} = \frac{m_1 m_2^2}{M^2} (\mathbf{r} \times \dot{\mathbf{r}}) + \frac{m_2 m_1^2}{M^2} (\mathbf{r} \times \dot{\mathbf{r}}) = \mu (\mathbf{r} \times \dot{\mathbf{r}})$$
(5.2.5)

Como este se conserva puesto que sigue siendo inercial, esto implica que el movimiento de ambas masas debe ocurrir en un plano*, el perpendicular a J.

Entonces podemos expresar la configuración del sistema con coordenadas polares, puesto que tenemos dos grados de libertad. Expresando el lagrangiano del sistema en coordenadas polares usando (5.1.6) y $\dot{\bf r}=d(r\hat{\bf u}_r)/dt=\dot{r}\hat{\bf u}_r+r\dot{\varphi}\hat{\bf u}_{\varphi}$ tenemos

$$\mathcal{L} = \frac{1}{2}\mu(\dot{\mathbf{r}})^2 - U(r) = \frac{1}{2}\mu(\dot{r}^2 + r^2\dot{\varphi}^2) - U(r)$$
 (5.2.6)

Vemos que entonces φ es ignorable pues no aparece explícitamente y entonces su momento se conserva

$$p_{\varphi} = J = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = \mu r^2 \dot{\varphi} \quad \dot{p_{\varphi}} = 0$$
 (5.2.7)

Lo cual es exáctamente el módulo de $\mathbf{J}=\mu(r\hat{\mathbf{u}_r}\times(\dot{r}\hat{\mathbf{u}_r}+r\dot{\varphi}\hat{\mathbf{u}_\varphi}))=\mu r^2\dot{\varphi}\hat{\mathbf{u}_z}$

Esféricas *

Podemos también demostrar que el movimiento ocurre en un plano escribiento el lagrangiano usando coordenadas esféricas, similar a (5.2.6), donde $\dot{\bf r}=d(r\hat{\bf u}_r)/dt=\dot{r}\hat{\bf u}_r+r\dot{\theta}\hat{\bf u}_\theta+r\sin\theta\dot{\varphi}\hat{\bf u}_\varphi$, tal que

$$\mathcal{L} = \frac{1}{2}\mu(\dot{\mathbf{r}})^2 - U(r) = \frac{1}{2}\mu\left(\dot{r}^2 + r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\varphi}^2\right) - U(r)$$
 (5.2.8)

De esta forma vemos que φ es la ignorable, de tal forma que su momento asociado se conservará

$$p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = \mu r^2 \sin^2 \theta \dot{\varphi} \quad \dot{p_{\varphi}} = 0 \tag{5.2.9}$$

Si ahora consideramos J en estas coordenadas usando (5.2.5)

$$\mathbf{J} = \mu(\mathbf{r} \times (\dot{r}\hat{\mathbf{u}}_r + r\dot{\theta}\hat{\mathbf{u}}_\theta + r\sin\theta\dot{\varphi}\hat{\mathbf{u}}_\varphi)) = -\mu r^2\sin\theta\dot{\varphi}\hat{\mathbf{u}}_\theta + \mu r^2\dot{\theta}\hat{\mathbf{u}}_\varphi$$
(5.2.10)

Como J se conserva, sus componentes se conservan, y entonces usando (5.2.10) en (5.2.9), verificamos que el movimiento ocurre en un plano, donde θ es constante.

$$p_{\varphi} = \mu r^2 \sin^2 \theta \dot{\varphi} = J_{\theta} \sin \theta \implies \frac{d}{dt} \sin \theta = \dot{\theta} \cos \theta = 0 \implies \dot{\theta} = 0 \quad (5.2.11)$$

Velocidad areolar

Si consideramos el área que barre r en un pequeño incremento del tiempo como si fuera un triángulo, tenemos que, donde el primer término es la base del triángulo y el segundo la altura del triángulo, vemos que esta cantidad se conserva.

$$dA = \frac{1}{2}r \cdot r\dot{\varphi}dt \quad \dot{A} = \frac{J}{2\mu} \quad \ddot{A} = 0 \tag{5.2.12}$$

Esta ecuación se conoce como la segunda ley de Kepler.

5.3. Energía

La energía (conservada e igual a \mathcal{H}), es, por (5.2.6) y (5.2.7)

$$E = T + U = \frac{1}{2}\mu \left(\dot{r}^2 + r^2\dot{\varphi}^2\right) + U(r) = \frac{1}{2}\mu\dot{r}^2 + \frac{J^2}{2ur^2} + U(r)$$
 (5.3.1)

La ecuación (5.3.1) es una EDO de primer orden separable que nos permite hallar r(t), invirtiendo la siguiente expresión

$$\int_{r_0}^{r} \left[\frac{2}{\mu} \left(E - U(r) \right) - \frac{J^2}{\mu^2 r^2} \right]^{-\frac{1}{2}} dr = t - t_0$$
 (5.3.2)

Usando (5.2.7) podemos encontrar $\varphi(t)$ una vez tenemos r(t), de forma similar al formalismo Hamiltoniano.

5.4. Ecuación del movimiento

Haciendo (2.2.1)(E-L) con respecto a r obtenemos la ecuación del movimiento del sistema

$$\mu \ddot{r} = \mu r \dot{\varphi}^2 - \frac{\partial U}{\partial r} = \frac{J^2}{\mu r^3} + F(r)$$
 (5.4.1)

Nos va a interesar encontrar $r(\varphi)$ para no tener una expresión paramétrica de ambos sino la ecuación de una curva, para ello haremos el cambio de variable u=1/r.

Usando la regla de la cadena, el teorema de la función inversa y (5.1.16)

$$\frac{du}{d\varphi} = -\frac{1}{r^2} \frac{dr}{d\varphi} = -\frac{1}{r^2} \frac{dr}{dt} \frac{dt}{d\varphi} = -\frac{1}{r^2} \dot{r} \frac{1}{\frac{d\varphi}{dt}} = -\frac{1}{r^2} \dot{r} \frac{1}{\dot{\varphi}} = -\frac{1}{r^2} \dot{r} \frac{r^2 \mu}{J} = -\frac{\mu \dot{r}}{J} \quad (5.4.2)$$

$$\frac{d^2u}{d\varphi^2} = \frac{d}{d\varphi} \left(-\frac{\mu \dot{r}}{J} \right) = -\frac{\mu}{J} \frac{d\dot{r}}{dt} \frac{dt}{d\varphi} = -\frac{\mu}{J} \frac{d\dot{r}}{dt} \frac{1}{\frac{d\varphi}{dt}} = -\frac{\mu}{J} \ddot{r} \frac{1}{\dot{\varphi}} = -\frac{\mu^2}{J^2} r^2 \ddot{r}$$
(5.4.3)

Despejando \ddot{r} de (5.4.3) y sustituyendo en (5.4.1) llegamos a la ecuación de la travectoria, cuya solución es $r(\varphi)$

$$\frac{\partial^2 u}{\partial \varphi^2} + u = -\frac{\mu}{J^2 u^2} F(u) \iff \frac{\partial^2}{\partial \varphi^2} \left(\frac{1}{r}\right) + \frac{1}{r} = -\frac{\mu}{J^2} r^2 F(r) \tag{5.4.4}$$

5.5. Potencial efectivo

El primer término de la ecuación (5.4.1) se denomina fuerza centrífuga, a la que podemos asociar un potencial, tal que

$$F_{\rm cf} = \frac{J}{\mu r^3} = -\frac{\partial U_{\rm cf}}{\partial r} \implies U_{\rm cf} = \frac{J^2}{2\mu r^2}$$
 (5.5.1)

De esta forma las expresiónes (5.4.1) y (5.3.1) nos quedan

$$\mu \ddot{r} = -\frac{\partial}{\partial r}(U_{\rm cf} + U) = -\frac{\partial U_{\rm ef}}{\partial r} \qquad U_{\rm ef} = U(r) + \frac{J^2}{2\mu r^2}$$
 (5.5.2)

$$E = \frac{1}{2}\mu\dot{r}^2 + \left(\frac{J^2}{2\mu r^2} + U(r)\right) = \frac{1}{2}\mu\dot{r}^2 + U_{\text{ef}}(r)$$
 (5.5.3)

El primer término de (5.5.3) lo llamamos el término cinético y siempre es positivo, esto implica necesariamente la siguiente relación que determinará que valores de r podrá tomar el sistema.

$$E \ge U_{\rm uf}(r) \ \forall t \quad E = U_{\rm uf}(r) \implies \dot{r} = 0$$
 (5.5.4)

5.6. Potenciales $-\gamma/r$

Si tenemos un potencial de la forma siguiente, entonces el potencial efectivo asociado toma la siguiente expresión representada en la figura.

$$U(r) = -\frac{\gamma}{r} \quad \gamma > 0 \qquad U_{\text{ef}} = \frac{J^2}{2\mu r^2} - \frac{\gamma}{r}$$
 (5.6.1)

Aplicando (5.5.4) podemos deducir ciertas propiedades del movimiento.

Si E>0, tenemos que la recta corta en un solo punto a $U_{\rm ef}$, en ese punto serán iguales y la velocidad radial se anula. Esto nos indica que si r va disminuyendo, su velocidad radial es negativa pero su modulo va aumentando hasta que llega a r_c , donde la diferencia entre E y $U_{\rm ef}$ es mayor y alcaza su pico, entonces el modulo de la velocidad radial disminuye hasta que se anula en el punto r donde se cortan, entonces r volverá a aumentar, siendo su velocidad positiva y creciente, hasta alcanzar su pico en r_c , tras lo cual la velocidad decrece hasta un valor límite cuanto r tiende a infinito.

En cambio, si E>0, esta corta en dos puntos a $U_{\rm ef}$, donde la velocidad radial se anulará, lo que significa que r esta acotado entre esos dos puntos $r_{\rm min}$ y $r_{\rm max}$, llamados periápside y apoápside respectivamente, entorno a los cuales oscilará, puesto que fuera de esa región no se cumple (5.5.4).

Estos valores pueden encontrarse igualando (5.6.1) a E y resolviendo para 1/r como una ecuación cuadrática, obteniendo

$$\frac{1}{r} = \frac{\gamma \mu}{J^2} \left(1 \pm \sqrt{1 + \frac{2J^2 E}{\gamma^2 \mu}} \right) \tag{5.6.2}$$

Diremos que una de trayectoria es cerrada cuando exista un periodo τ tal que $r(t+\tau)=r(t)$ y $\varphi(t+\tau)=\varphi(t)+2\pi k$ para algún $k\in\mathbb{Z}$.

Si $E=U_{
m ef}$, la velocidad radial se anula y r es constante, describiendo una órbita circular de radio r_c .

5.7. Órbitas de Kepler

Tenemos de nuevo $U(r)=-\gamma/r$ y $F(r)=-\gamma/r^2$ tal que $\gamma>0$. Usando la ecuación de la trayectoria (5.4.4), tenemos que $F(u)=-\gamma u^2$, si $u=u(\varphi)$, entonces

$$u'' + \left(u - \frac{\mu\gamma}{J^2}\right) = 0 = u'' + \omega(\varphi) \to \omega'' = u'' \implies \omega'' + \omega = 0 \tag{5.7.1}$$

Haciendo ese cambio de variable hemos encontrado una EDO facil de resolver, tal que , pudiendo escoger $\delta=0$ al escoger los ejes adecuados (el origen de φ)

$$\omega = A\cos\varphi + \delta \implies u(\varphi) = \omega + \frac{\mu\gamma}{J^2} = A\cos\varphi + \frac{\mu\gamma}{J^2} = \frac{\mu\gamma}{J^2} \left(1 + \frac{AJ^2}{\mu\gamma}\cos(\varphi)\right)$$
(5.7.2)

Renombrando ciertas constantes, usando que $A \ge 0$ y sustituyendo u llegamos a

$$\frac{1}{c} = \frac{\mu\gamma}{J^2} > 0 \quad \epsilon = \frac{AJ^2}{\mu\gamma} \ge 0 \quad r(\varphi) = \frac{c}{1 + \epsilon\cos\varphi}$$
 (5.7.3)

Veremos que (5.7.3) es la ecuación de las secciones cónicas en coordenadas polares.

Caso $0 \le \epsilon < 1$

Si $0 \le \epsilon < 1$, entonces el denominador de (5.7.3) nunca se anula, lo que significa que r va a estar acotado con extremos r_{\min} y r_{\max} que ocurrirán en $\cos \varphi = \{1, -1\}$

$$r_{\min} = \frac{c}{1+\epsilon} \qquad r_{\max} = \frac{c}{1-\epsilon} \tag{5.7.4}$$

Como el denominador no se anula, $r(\varphi+2\pi k)=r(\varphi)$ para cualquier $k\in\mathbb{Z}$, es decir es periódica en φ .

Si ahora expresamos (5.7.3) en cartesianas, primero definiendo las transformaciones

$$x = r\cos\theta \quad y = r\sin\theta \quad r^2 = x^2 + y^2$$
 (5.7.5)

$$c = r + \epsilon r \cos \varphi = r + \epsilon x \to r = c - \epsilon x$$
 (5.7.6)

$$(c - \epsilon x)^2 = c^2 + \epsilon^2 x^2 - 2\epsilon cx = x^2 + y^2 \to x^2 + 2\frac{c\epsilon}{1 - \epsilon^2} x + \frac{y^2}{1 - \epsilon^2} = \frac{c^2}{1 - \epsilon^2}$$
(5.7.7)

Despejando c de (5.7.3) en (5.7.6), sustituyendo en (5.7.5) y operando llegamos a (5.7.7). Si ahora definimos las siguientes constantes

$$d = \frac{c\epsilon}{1 - \epsilon^2} \quad b^2 = \frac{c^2}{1 - \epsilon^2} \quad b^2 + d^2 = \frac{c^2}{(1 - \epsilon^2)^2} = a^2$$
 (5.7.8)

$$b^2 = a^2(1 - \epsilon^2) \ (b < a) \ d = a\epsilon$$
 (5.7.9)

Podemos reescribir (5.7.7) y completar el cuadrado de x

$$x^{2} + 2dx + \frac{y^{2}}{1 - \epsilon^{2}} = b^{2} \to (x + d)^{2} + \frac{y^{2}}{1 - \epsilon^{2}} = b^{2} + d^{2} = a^{2}$$
 (5.7.10)

De esta forma pasando a^2 dividiendo y usando (5.7.9) obtenemos la ecuación de una elipse

$$\left(\frac{x+d}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1\tag{5.7.11}$$

Como se puede apreciar en (5.7.11), el centro de la elipse esta desplazado d unidades hacía la derecha de O, la posición de m_2 . Las constantes a y b son los semiejes mayor y menor respectivamente.

Primera Ley de Kepler

Es importante notar que no estamos en el sistema del CM, sino en el sistema de m_2 , aunque si la relación de masas es muy grade ambas posiciones son muy cercanas, de lo contrario siempre podemos usar (5.1.9) para obtener el moviemiento entorno al CM.

 m_2 se encuentra en uno de los focos de la elipse por estar precisamente una distancia d del centro, esta es la primera ley de Kepler.

Excentricidad

 ϵ es la excentricidad de la elipse, podemos hallar una expresión de esta en función de a y b usando (5.7.9)

$$\epsilon = \sqrt{1 - \frac{b^2}{a^2}} \tag{5.7.12}$$

Cuando a y b son iguales tenemos un círculo y su excentricidad es 0, lo que implica que $r_{\min} = r_{\max}$.

Tenemos dos nuevas expresiones de los extremos $r_{\min} = a(1-\epsilon)$ y $r_{\max} = a(1+\epsilon)$ usando (5.7.4) y (5.7.8).

Periodo

Como vimos en (5.2.12), la velocidad areolar es constante, lo que implica que el área total debe ser igual a la velocidad areolar por el periodo, tal que

$$ab\pi = A = \frac{J}{2\mu}\tau\tag{5.7.13}$$

Usando (5.7.3), (5.7.8) y (5.7.9) llegamos a

$$\tau^2 = 4\pi^2 \frac{\mu^2 a^2 b^2}{J^2} = 4\pi^2 \frac{\mu^2 a^2 b^2}{c\gamma\mu} = \frac{4\pi^2 \mu}{\gamma} a^3$$
 (5.7.14)

Que dado m_2 » m_1 , entonces $\mu=m_1$ y si $\gamma=Gm_1m_2$, (5.7.14) se transforma en la tercera ley de Kepler.

$$\tau^2 = \frac{4\pi^2}{Gm_2}a^3\tag{5.7.15}$$

Energía

Como la energía se conserva, podemos relacionar la energía con las constantes que hemos estado definiendo en un punto concreto de la trayectoria y se cumplirá para todos. Para ello tomamos el caso del apoápside, donde la velocidad radial se anula.

$$E = \frac{J^2}{2\mu r_{\min}^2} - \frac{\gamma}{r_{\min}}$$
 (5.7.16)

Despejando r_{\min} de (5.7.4) y sustituyendo c de (5.7.3) llegamos a

$$r_{\min} = \frac{J^2}{\gamma \mu (1 + \epsilon)} \tag{5.7.17}$$

Sustituyendo en (5.17.16) y operando llegamos a

$$E = \frac{\gamma^2 \mu}{2J^2} (\epsilon^2 - 1) \quad \epsilon = \sqrt{1 + \frac{2EJ^2}{\gamma^2 \mu}}$$
 (5.7.18)

Esta expresión se cumple para cualquier valor de ϵ , lo que nos permite realcionar los valores de ϵ a las energías y relacionar con lo visto en (5.6), donde por ejemplo (5.6.2) es equivalente a las expresiones encontradas ahora.

Caso $\epsilon = 1$

En este caso, el denominador se anula en $\cos \varphi = -1$, que ocurre cuando φ tiende a π . Si de nuevo expresamos la ecuación (5.3.7) en cartesianas tenemos.

$$r = \frac{c}{1 + \cos \varphi} \to r + x = c \to x^2 + y^2 = (c - x)^2$$
 (5.7.19)

$$y^{2} = c^{2} - 2cx \to x = \frac{c^{2} - y^{2}}{2c}$$
 (5.7.20)

Esta es la ecuación de una parábola en y que se abre hacía la izquierda, cuando φ tiende a π .

Caso $\epsilon > 1$

En este caso, el denominador se anulará cuando $\cos\varphi=-1/\epsilon~(5.7.21)$. Podemos aprovechar las mismas expresiones que en (5.7.11), pero teneiendo en cuenta que en (5.7.8) y (5.7.9), $1-\epsilon<0$ y $1-\epsilon^2<0$, redefiniendo las constantes para que nos queden positivas tenemos

$$\delta = -d > 0$$
 $\beta^2 = -b^2 > 0$ $\alpha = -a > 0$ (5.7.22)

Tal que (5.7.11) nos queda la ecuación de una hipérbola cuyas asíntotas verifican (5.7.21)

$$\left(\frac{x+d}{\alpha}\right)^2 - \left(\frac{y}{\beta}\right)^2 = 1\tag{5.7.23}$$

Cambio de Órbitas

Vamos a suponer que partimos del periápside de una órbita, le damos un cierto impulso tangencial con μ y γ constante, cambiando la órbita de $r_1(\varphi)$ a $r_2(\varphi)$, teniendo que

$$r_1(\varphi_0) = r_2(\varphi_0) \to \frac{c_1}{1 + \epsilon_1 \cos(\varphi_0 - \delta_1)} = \frac{c_2}{1 + \epsilon_2 \cos(\varphi_0 - \delta_2)}$$
 (5.7.24)

Como partimos del periápside, podemos escoger $\delta_1 = 0 \ (5.7.25)$ y entonces $\varphi_0 = 0 \ (5.7.26)$. Como el impulso es tangencial, es perpendicular a \mathbf{r}_1 .

Esto solo ocurre para los extremos debido a la geometría de la elipse, esto implica entonces entonces que cuando cambiemos a la nueva órbita, también nos hallaremos en un extremo, pues la velocidad será perpendicular a \mathbf{r}_2 , así $\delta_2=0$ (5.7.27).

El impulso va a cambiar la velocidad de v_1 a v_2 , y llamamos factor de impulso a $\lambda = v_2/v_1$, si $\lambda > 1$, entonces la velocidad aumenta, si $\lambda < 1$, la velocidad disminuye.

Como la velocidad es perpendicular a **r**, eso implica que $J_1 = \mu r_1 v_1$ y $J_2 = \mu r_2 v_2$, y haciendo despejando μ e igualando llegamos a $J_2 = \lambda J_1$ (5.7.28).

Por otro lado, usando (5.7.3), la expresión de c, y (5.7.27), despejamos $\mu\gamma$ e igualamos y obtenemos $c_2 = \lambda^2 c_1$ (5.7.29).

Ahora de (5.7.24) podemos despejar ϵ_2 y susituimos (5.7.25-26-27) y (5.7.29)

$$\epsilon_2 = \lambda^2 \epsilon_1 + \lambda^2 - 1 \tag{5.7.30}$$

Entonces si $\lambda>1$, tenemos que $\epsilon_2>\epsilon_1$, y entonces la órbita es mayor, si $\lambda<1$, tenemos que $\epsilon_2<\epsilon_1$, y entonces la órbita es menor.

Sistemas de referencia no inerciales

Llamemos S_0 , al sistema de referencia inercial, que lleva asociado un origen espacial $\mathcal{O}_0 = \mathbf{O}_{S_0}$, un origen temporal $\mathcal{O}_{t_0} = 0_{S_0}$, cuyos ejes cartesianos se encuentran fijos, con coordenadas (x_0, y_0, z_0) . Lo representamos por $S_0 = \{\mathcal{O}_0, \mathcal{O}_{t_0}, (\mathbf{e}_{x_0}, \mathbf{e}_{y_0}, \mathbf{e}_{z_0})\}$.

Tenemos otro sistema de referencia \mathcal{S} no inercial, con sus orígenes, \mathcal{O} y \mathcal{O}_t que pueden ser iguales o distintos a los de \mathcal{S}_0 , con sus ejes cartesianos fijos en él mismo, con coordenadas (x, y, z), tal que $\mathcal{S} = \{\mathcal{O}, \mathcal{O}_t, (\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z)\}$.

Definimos formalmente que los ejes estan fijos con respecto a un sistema de referencia cuando

$$\left(\frac{d}{dt}\mathbf{e}_{j_0}\right)_{\mathcal{S}_0} = 0 \qquad \left(\frac{d}{dt}\mathbf{e}_j\right)_{\mathcal{S}} = 0 \qquad \forall j \tag{6.0.1}$$

Entonces un sistema de referencia es no inercial cuando, para algún j,

$$\left(\frac{d}{dt}\mathbf{e}_{j}\right)_{\mathcal{S}_{0}} \neq 0 \iff \left(\frac{d}{dt}\mathbf{e}_{j_{0}}\right)_{\mathcal{S}} \neq 0 \tag{6.0.2}$$

es decir, alguno de los vectores de S no es constante respecto a S_0 . También es un sistema no inercial en general cuando O este acelerado con respecto a un S_0 .

6.1. Aceleración rectilínea

Si tenemos que S esta se mueve de forma rectilínea respecto a S_0 con aceleración $A = \dot{V}$, donde V es la velocidad de S respecto a S_0 .

Si \mathbf{r}_0 y \mathbf{r} son vectores de posición equivalentes en cada sistema de referencia, estos se relacionan por

$$\dot{\mathbf{r}}_0 = \dot{\mathbf{r}} + \mathbf{V} \to \ddot{\mathbf{r}}_0 = \ddot{\mathbf{r}} + \mathbf{A} \tag{6.1.1}$$

Si ahora tenemos la 2LN, llegamos a que aparece lo que llamamos 'fuerza inercial' en el sistema no inercial

$$\mathbf{F} = m\ddot{\mathbf{r}}_0 = m\ddot{\mathbf{r}} + m\mathbf{A} \implies m\ddot{\mathbf{r}} = \mathbf{F} - m\mathbf{A} = \mathbf{F} + \mathbf{F}_{iner}$$
 (6.1.2)

Mareas

Vamos a asumir que ha habido un diluvio universal y la Tierra esta cubierta de océano. Las mareas son un fenómeno en el que la altura del mar varía con periodo de unas 12 horas.

Si tenemos un objeto m en la superficie del océano. Considerando que la rotación de la Luna sobre la Tierra tiene un periodo mucho mayor que las mareas, podremos considerar el sistema de referencia de la Tierra como un sistema no inercial con aceleración rectilínea y que la Tierra y la Luna no rotan en ese intervalo temporal.

La aceleración de la Tierra con respecto al CM de ambos cuerpos es la fuerza gravitatoria que sufre la tierra debida a la masa de la luna partido por la masa de la tierra, dirección a la Luna.

$$\mathbf{A} = -\frac{GM_L}{d_0^2} \mathbf{e}_{d_0} \tag{6.1.3}$$

Entonces por (6.1.2) la fuerza inercial que sufre m en su sistema de referencia es

$$\mathbf{F}_{\text{iner.}} = \frac{GmM_L}{d_0^2} \mathbf{e}_{d_0} \tag{6.1.4}$$

Además, m sufre las fuerzas gravitatorias de la Tierra, la Luna, y la fuerza de Arquímedes del agua, tal que

$$\mathbf{F}_T = m\mathbf{g} \quad \mathbf{F}_L = -\frac{GmM_L}{d^2}\mathbf{e}_d \tag{6.1.5}$$

También deberíamos tener en cuenta la fuerza centrífuga de la rotación de la Tierra sobre su propio eje, pero la vamos a despreciar por que no es muy grande en comparación al resto. Entonces, usando (6.1.2), la 2LN para m nos queda

$$m\ddot{\mathbf{r}} = m\mathbf{g} + \mathbf{F}_A - GmM_L \left(\frac{\mathbf{e}_d}{d^2} - \frac{\mathbf{e}_{d_0}}{d_0^2}\right) = m\mathbf{g} + \mathbf{F}_A + \mathbf{F}_{\text{marea}}$$
 (6.1.6)

Los casos en los que m se encuentra en los puntos A y B, donde $\mathbf{e}_d = \mathbf{e}_{d_0}$, en el primer caso $d < d_0$ y en el segundo $d > d_0$, así podemos obtener el sentido de la fuerza de marea en esos puntos usando (6.1.6), como se observa en el diagrama

$$\mathbf{F}_{\text{marea}} = -GmM_L \left(\frac{1}{d^2} - \frac{1}{d_0^2} \right) \mathbf{e}_d \quad \begin{array}{l} \mathbf{F}_{\text{marea}}^A \propto -\mathbf{e}_d \\ \mathbf{F}_{\text{marea}}^B \propto \mathbf{e}_d \end{array}$$
(6.1.7)

Cuando m se encuentra en C o D, $d^2 = r^2 + d_0^2$, y podemos hacer la siguiente aproximación por series de Taylor cuando $r \cdot d_0$, lo cual es cierto en este caso.

$$d = d_0 \left[1 + \left(\frac{r}{d_0} \right)^2 \right]^{1/2} = d_0 + O\left(\left(\frac{r}{d_0} \right)^2 \right)$$
 (6.1.8)

Por otro lado $d\mathbf{e}_d = d_0\mathbf{e}_{d_0} + \mathbf{r}$, usando (6.1.7) llegamos a que

$$\mathbf{e}_d \approx \mathbf{e}_{d_0} + \frac{\mathbf{r}}{d_0} \tag{6.1.9}$$

Entonces usando (6.1.6), (6.1.8) y (6.1.9) llegamos a que, como se observa en el diagrama

 $\mathbf{F}_{\text{marea}} \approx -GmM_L \frac{\mathbf{r}}{d_0^3} \propto -\mathbf{r}$ (6.1.10)

Entonces de (6.1.7) y (6.1.10) concluimos que horizontalmente las fuerzas son hacía fuera, y verticalmente son hacía dentro, por lo que de forma cualitativa nos podemos imaginar de forma cualitativa que el océano hace la curva achatada dibujada en el diagrama.

El hecho de que la Tierra este en rotación sobre su propio eje explica el periodo de 12 horas de las mareas, puesto que al transcurrir medio día, te encuentras en el punto antipodal al que te encontrabas, pero la altura de la marea es muy similar.

Diferencia de altura

Ahora queremos determinar la diferencia de altura del océano entre A y C.

Como \mathbf{F}_A es perpendicular a la superficie, eso implica que $m\mathbf{g} + \mathbf{F}_{marea}$ también lo es en el equilibrio por (6.1.6). Entonces los puntos de equilibrio deben de formar una superficie equipotencial de un potencial asociado a $m\mathbf{g} + \mathbf{F}_{marea}$, pues su gradiente, $m\mathbf{g} + \mathbf{F}_{marea}$, es siempre perpendicular a esa superficie.

El potencial de $m\mathbf{g}$ es de la forma mgr con r por ejemplo la distancia al centro de la Tierra, tal que $m\mathbf{g} = -\nabla(mgr) = -mg\mathbf{e}_r = m\mathbf{g}$.

La fuerza de marea la podemos descomponer en dos sumandos, tal que

$$\mathbf{F}_{\text{marea}} = -GmM_L \frac{\mathbf{e}_d}{d^2} + GmM_L \frac{\mathbf{e}_{d_0}}{d_0^2} = -\nabla \left(\frac{GmM_L}{d}\right) - \nabla \left(\frac{GmM_L x}{d_0^2}\right) \quad (6.1.11)$$

 d_0 es aproximadamente constante en las escalas temporales en las que trabajamos. x es la coordenada cartesiana horizontal y $\mathbf{e}_x = \mathbf{e}_d$. d es una coordenada esférica no centrada en el origen, podemos expresar el gradiente así porque $\mathbf{d} = \mathbf{d}_0 + \mathbf{r}$ y los gradientes de d y r son iguales ya que \mathbf{d}_0 es constante.

Entonces como tratamos con una superfice equipotencial, tenemos que U(A) = U(C) y entonces tenemos que pasando los términos similares a cada lado

$$mq\Delta r = \Delta U_{\text{marea}}$$
 (6.1.12)

 $\Delta r = h$ es la diferencia de altura que queremos hallar, así que tenemos que trabajar con el lado derecho para encontrar una expresión para esta.

A partir de (6.1.11) llegamos a que U_{marea} es

$$U_{\text{marea}} = -GmM_L \left(\frac{1}{d} - \frac{x}{d_0^2}\right) \tag{6.1.13}$$

Entonces para C tenemos que d_c podemos aproximarla al igual que (6.1.8)

$$\frac{1}{d_c} = \frac{1}{d_0} \left[1 + \left(\frac{r}{d_0} \right)^2 \right]^{-1/2} = \frac{1}{d_0} \left[1 - \frac{1}{2} \left(\frac{r}{d_0} \right)^2 \right] + O\left(\left(\frac{r}{d_0} \right)^4 \right)$$
(6.1.14)

Entonces $U_{\rm marea}(c)$ es, usando (6.1.13), (6.1.14), que $x_C=0$ y que $r=R_T+h\approx R_T$

$$U_{\text{marea}}(C) \approx -\frac{GmM_L}{d_0} \left(1 - \frac{R_T^2}{2d_0^2}\right)$$
 (6.1.15)

Para A tenemos que si $x_A = -r$, entonces $d_A = d_0 + x_A = d_0 - r$, esta última la aproximaremos para que también nos salga un orden cuadrático como en (1.1.14)

$$\frac{1}{d_A} = \frac{1}{d_0} \left[1 + \frac{r}{d_0} \right]^{-1} = \frac{1}{d_0} \left[1 - \frac{r}{d_0} + \left(\frac{r}{d_0} \right)^2 \right] + O\left(\left(\frac{r}{d_0} \right)^3 \right)$$
(6.1.16)

Entonces usando $r \approx R_T$, $U_{\text{marea}}(A)$ será

$$U_{\text{marea}}(A) \approx -\frac{GmM_L}{d_0} \left(1 - \frac{R_T^2}{d_0^2} \right) \tag{6.1.17}$$

Entonces finalmente desarrollamos (6.1.12) usando (6.1.15) y (6.1.17)

$$mgh = U_{\text{marea}}(C) - U_{\text{marea}}(A) \approx \frac{GmM_L}{d_0} \frac{3}{2} \frac{R_T^2}{d_0^2}$$
 (6.1.18)

Entonces despejando h de (6.1.18) y usando $g = GM_T/R_T^2$ llegamos a

$$h \approx \frac{GM_L}{gd_0} \frac{3}{2} \frac{R_T^2}{d_0^2} = \frac{3}{2} \frac{M_L}{M_T} \frac{R_T^4}{d_0^3}$$
 (6.1.19)

Para la Luna esto nos da del orden de medio metro, y para un sistema equivalente con el Sol nos da un cuarto de metro.

En función de la posición del Sol y la Luna, las mareas de ambos se sumarán o se restarán.

6.2. Sistemas no inerciales en rotación

Cualquier trayectoria no rectilínea puede intepresarse como una sucesión de arcos de círculo con radio y centro variables. Definimos la velocidad angular ω como $\dot{\theta}$, siendo θ el ángulo que recorre en ese arco circular.

Rotación respecto a un punto fijo

Si tenemos un cuerpo describiendo un movimiento circular entorno a un eje y el origen de coordenadas del sistema inercial se encuentra en cualquier punto del eje.

La velocidad es, siendo ρ el radio de rotación

$$v = \frac{ds}{dt} = \rho \frac{d\theta}{dt} = \rho \omega \tag{6.2.1}$$

Tenemos que $\rho=r\sin\alpha$, donde r es la distancia al origen y α el ángulo que forma el vector posición ${\bf r}$ y el eje. Entonces tenemos

$$v = r \sin \alpha \omega \tag{6.2.2}$$

 ${\bf v}$ es perpendicular al plano que forman ${\bf r}$ y el eje, pues es tangencial. Si definimos $\vec{\omega} = \omega {\bf e}_z$ donde ${\bf e}_z$ es paralelo al eje y va hacía arriba podemos deducir junto a (6.2.1)

$$\mathbf{v} = \vec{\omega} \times \mathbf{r} \tag{6.2.3}$$

El orden hace que (6.2.3) verifique la regla de la mano derecha.

Entonces si tenemos $\mathbf{r} = \mathbf{e}_r$, podemos obtener la derivada de ese vector, que esta fijo en el sistema de referencia no inercial

$$\left(\frac{d\mathbf{e}_r}{dt}\right)_{\mathcal{S}_0} = \vec{\omega} \times \mathbf{e}_r \implies \left(\frac{d\mathbf{e}}{dt}\right)_{\mathcal{S}_0} = \vec{\omega} \times \mathbf{e} \tag{6.2.4}$$

Esto es por que en esféricas, \mathbf{e}_r puede representar cualquier dirección.

Entonces si tenemos un vector cualquiera **Q** expresado en la base del sistema no inercial tenemos, usando la notación de Einstein para sumaciones

$$\mathbf{Q} = Q_i \mathbf{e}_i \qquad \dot{\mathbf{Q}} = \left(\frac{d\mathbf{Q}}{dt}\right)_{\mathcal{S}} = \frac{dQ_i}{dt} \mathbf{e}_i \tag{6.2.5}$$

La derivada de las componentes no depende del sistema de referencia por que son escalares. Como estamos en \mathcal{S} , su base es constante. Entonces si ahora hallamos la derivada con respecto a \mathcal{S}_0 , usando (6.2.4)

$$\left(\frac{d\mathbf{Q}}{dt}\right)_{\mathcal{S}_0} = \frac{dQ_i}{dt}\mathbf{e}_i + Q_i\left(\frac{d\mathbf{e}_i}{dt}\right)_{\mathcal{S}_0} = \left(\frac{d\mathbf{Q}}{dt}\right)_{\mathcal{S}} + Q_i\vec{\omega} \times \mathbf{e}_i = \left(\frac{d\mathbf{Q}}{dt}\right)_{\mathcal{S}} + \vec{\omega} \times \mathbf{Q} \quad (6.2.6)$$

Esta expresión es muy importante y nos permite relacionar derivadas vectoriales de un vector en cada sistema de referencia.

Ahora vamos a reescribir la 2LN en el sistema de referencia \mathcal{S} , primero lo escribimos en \mathcal{S}_0

$$m\left(\frac{d^2\mathbf{r}}{dt^2}\right)_{\mathcal{S}_0} = \mathbf{F} \tag{6.2.7}$$

Y entonces expresamos la derivada en términos de ${\cal S}$

$$\left(\frac{d^{2}\mathbf{r}}{dt^{2}}\right)_{\mathcal{S}_{0}} = \left(\frac{d}{dt}\left(\frac{d\mathbf{r}}{dt}\right)_{\mathcal{S}_{0}}\right)_{\mathcal{S}_{0}} = \left(\frac{d}{dt}\left[\left(\frac{d\mathbf{r}}{dt}\right)_{\mathcal{S}} + \vec{\omega} \times \mathbf{r}\right]\right)_{\mathcal{S}_{0}} =$$

$$\left(\frac{d}{dt}\left(\frac{d\mathbf{r}}{dt}\right)_{\mathcal{S}_{0}} + \vec{\omega} \times \mathbf{r}\right)_{\mathcal{S}_{0}} + \vec{\omega} \times \mathbf{r}\right)_{\mathcal{S}_{0}} =$$

$$= \left(\frac{d}{dt} \left(\frac{d\mathbf{r}}{dt}\right)_{\mathcal{S}}\right)_{\mathcal{S}_0} + \vec{\omega} \times \left(\frac{d\mathbf{r}}{dt}\right)_{\mathcal{S}_0} = \left(\frac{d^2\mathbf{r}}{dt^2}\right)_{\mathcal{S}} + 2\vec{\omega} \times \left(\frac{d\mathbf{r}}{dt}\right)_{\mathcal{S}} + \vec{\omega} \times (\vec{\omega} \times \mathbf{r}) \quad (6.2.8)$$

Usando (6.2.8) llegamos a que (6.2.7) nos queda en S como

$$m\left(\frac{d^{2}\mathbf{r}}{dt^{2}}\right)_{\mathcal{S}} = m\ddot{\mathbf{r}} = \mathbf{F} + 2m\dot{\mathbf{r}} \times \vec{\omega} + m\left(\vec{\omega} \times \mathbf{r}\right) \times \vec{\omega} = \mathbf{F} + \mathbf{F}_{cor} + \mathbf{F}_{cf}$$
(6.2.9)

Esta es la ecuación que describe el movimiento de un cuerpo visto desde un sistema no inercial giratorio, por ejemplo, las auténticas ecuaciones que rigen la caída libre vista desde un observador en movimiento junto a la Tierra.

Rotación Terrestre

La ω de la Tierra con respecto a su eje es de alrededor $7.3 \cdot 10^{-5} \text{ s}^{-1}$, de (6.2.9) podemos saber que a una altura pequeña tal que $r \approx R_T$, $|\mathbf{F}_{cf}| \sim m\omega^2 R_T$ y $|\mathbf{F}_{cor}| \sim mv\omega$.

Entonces haciendo el siguiente cociente, obtenemos las velocidades para las que la fuerza de coriolis es despreciable en la superficie terrestre.

$$\frac{|\mathbf{F}_{\rm cor}|}{|\mathbf{F}_{\rm cf}|} \sim \frac{v}{\omega R_T} \approx \frac{v}{500~{\rm m~s^{-1}}} \rightarrow v \ll 500~{\rm m~s^{-1}} \implies \mathbf{F}_{\rm cor}~{\rm es~despreciable}$$
 (6.2.10)

Fuerza centrífuga

Vamos a estudiar la fuerza centrígufa, que es $m(\vec{\omega} \times \mathbf{r}) \times \vec{\omega}$, sin tener en cuenta la fuerza de Coriolis, que estudiaremos posteriormente.

Analizando con la regla de la mano derecha, podemos concluir que la dirección de la fuerza centrífuga es \mathbf{e}_{ρ} , en el plano de giro, normal a trayectoria y hacía fuera.

El producto vectorial primero es (6.2.2) y (6.2.3), y ese vector es tiene dirección \mathbf{e}_{φ} , que es perpendicular a $\vec{\omega}$ por que es resultado de un producto vectorial de $\vec{\omega}$, entonces tenemos que la fuerza centrífuga puede expresarse como, donde θ es la colatitud

$$\mathbf{F}_{\mathrm{cf}} = mr\omega^2 \sin\theta \; \mathbf{e}_{\rho} = m\rho\omega^2 \; \mathbf{e}_{\rho} \tag{6.2.11}$$

Vamos a estudiar entonces la caída libre en un cuerpo en rotación como puede ser la tierra, suponiendo primero que estamos a una altura relativamente baja de la tierra, es decir $r \approx R_T$, tenemos entonces que la fuerza gravitatoria es

$$\mathbf{F}_g = -m\frac{M_T}{R_T^2}\mathbf{e}_r = -mg_0\mathbf{e}_r = m\mathbf{g}_0 \tag{6.2.12}$$

Haciendo el siguiente cociente, obtenemos el orden de magnitud de (6.2.11)

$$\frac{|\mathbf{F}_{cf}|}{|\mathbf{F}_{g}|} \sim \frac{\omega^2 R_T}{g_0} \approx 3 \cdot 10^{-3}$$
 (6.2.13)

Podemos descomponer \mathbf{e}_{ρ} en términos de \mathbf{e}_{r} y \mathbf{e}_{θ} , tal que

$$\mathbf{e}_{\rho} = \sin \theta \mathbf{e}_r + \cos \theta \mathbf{e}_{\theta} \tag{6.2.14}$$

De esta forma, la suma de (6.2.11) y (6.2.12) resulta en, donde \mathbf{g} es la aceleración de caída libre en el SRNI

$$\mathbf{F}_g + \mathbf{F}_{cf} = m \left[\left(r\omega^2 \sin^2 \theta - g_0 \right) \mathbf{e}_r + r\omega^2 \sin \theta \cos \theta \mathbf{e}_\theta \right] = m \left[-g_r \mathbf{e}_r + g_\theta \mathbf{e}_\theta \right] = m \mathbf{g}$$
(6.2.15)

De esta forma \mathbf{g} forma un ángulo con \mathbf{g}_0 , que es lo que normalmente consideramos únicamente, pero teniendo en cuenta la fuerza centrífuga, observamos que una masa no cae hacía el centro de la tierra, sino que cae ligeramente inclinado hacía el ecuador, esta va a ser la dirección vertical o de plomada.

Esta inclinación es del orden de unos pocos minutos de arco como máximo (para $\theta=45^\circ,135^\circ$) y viene dada por

$$\alpha = \tan^{-1} \left(\left| \frac{g_{\theta}}{g_r} \right| \right) = \tan^{-1} \left(\left| \frac{r\omega^2 \sin \theta \cos \theta}{r\omega^2 \sin^2 \theta - g_0} \right| \right)$$
 (6.2.16)

Fuerza de Coriolis

Ahora vamos a estudiar la fuerza de Coriolis, que es $2m\dot{\mathbf{r}} \times \vec{\omega}$, que vemos que es el producto de la velocidad por otro vector, lo que nos recuerda a la fuerza magnética $q\mathbf{v} \times \mathbf{B}$, como en este caso $\vec{\omega}$ es constante, el comportamiento será análogo al de una carga en presencia de un campo magnético uniforme, es decir, va a tender a girar.

Tenemos entonces la siguiente ecuación del movimiento para la caída libre

$$m\ddot{\mathbf{r}} = m\mathbf{g} + 2m\dot{\mathbf{r}} \times \vec{\omega} \tag{6.2.17}$$

Cuando $\mathbf{r} \approx \mathbf{R}_T$ tenemos \mathbf{g} constante, entonces la ecuación no depende de \mathbf{r} , y podemos hacer una traslación del origen desde el centro de la tierra a un punto de la superficie, tal que ahora $\tilde{\mathbf{r}} = \mathbf{r} - \mathbf{R}_T$, y como \mathbf{R}_T es constante $\dot{\tilde{\mathbf{r}}} = \dot{\mathbf{r}}$. Como $\mathbf{r} \approx \mathbf{R}_T$, $\tilde{\mathbf{r}}$ es muy pequeño en comparación de \mathbf{R}_T .

Un punto viene representado por las coordenadas (x,y,z) relativas a un punto concreto de la superficie, que se asocian a los vectores $(\mathbf{e}_{\varphi},-\mathbf{e}_{\theta},-\mathbf{e}_{\mathbf{g}}\approx\mathbf{e}_r)$, tal que x representa el este, y representa el norte, y z representa la altura en términos de la dirección de plomada que aproximaremos a la dirección radial tal que α «1.

Entonces tenemos que

$$m\ddot{\tilde{\mathbf{r}}} = m\mathbf{g} + 2m\dot{\tilde{\mathbf{r}}} \times \vec{\omega} \quad \mathbf{g} = (R_T\omega^2 \sin^2\theta - g_0) \,\mathbf{e}_r + R_T\omega^2 \sin\theta \cos\theta \,\mathbf{e}_\theta \quad (6.2.18)$$

Vamos a calcular la fuerza de Coriolis en la base ortonormal y dextrógira que hemos escogido, expresando $\vec{\omega}$ en esa base

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} \times \omega \begin{pmatrix} 0 \\ \sin \theta \\ \cos \theta \end{pmatrix} = \omega \begin{pmatrix} \dot{y} \cos \theta - \dot{z} \sin \theta \\ -\dot{x} \cos \theta \\ \dot{x} \sin \theta \end{pmatrix}$$
 (6.2.19)

Llegamos entonces al siguiente sistema de ecuaciones diferenciales de segundo orden acopladas

$$\begin{cases} \ddot{x} = 2\dot{y}\omega\cos\theta - 2\dot{z}\omega\sin\theta \\ \ddot{y} = -2\dot{x}\omega\cos\theta \\ \ddot{z} = -q + 2\dot{x}\omega\sin\theta \end{cases}$$
 (6.2.20)

Las vamos a estudiar perturbativamente para ω «1, primero para orden $\omega=0$ obtenemos

$$\begin{cases}
\ddot{x} = 0 \\
\ddot{y} = 0 \implies \begin{cases}
x = x_0 + v_{x_0}t \\
y = y_0 + v_{y_0}t \\
z = z_0 + v_{z_0}t - \frac{g}{2}t^2
\end{cases}, \begin{cases}
\dot{x} = v_{x_0} \\
\dot{y} = v_{y_0} \\
\dot{z} = v_{z_0} - gt
\end{cases}, g = g_0$$
(6.2.21)

Este es el caso en el que la Tierra no gira, pero podemos tomar estas soluciones e introducirlas de nuevo en (6.2.2)

$$\begin{cases} \ddot{x} = 2v_{y_0}\omega\cos\theta - 2v_{z_0}\omega\sin\theta + 2gt\omega\sin\theta \\ \ddot{y} = -2v_{x_0}\omega\cos\theta \\ \ddot{z} = -g + 2v_{x_0}\omega\sin\theta \end{cases}$$
 (6.2.22)

$$\begin{cases} \dot{x} = \omega \left(2v_{y_0} \cos \theta - 2v_{z_0} \sin \theta \right) t + gt^2 \omega \sin \theta + v_{x_0} \\ \dot{y} = -2v_{x_0} \omega \cos \theta t + v_{y_0} \\ \dot{z} = \left(-g + 2v_{x_0} \omega \sin \theta \right) t + v_{z_0} \end{cases}$$
(6.2.23)

$$\begin{cases} x = \omega \left(v_{y_0} \cos \theta - v_{z_0} \sin \theta \right) t^2 + \frac{g}{3} t^3 \omega \sin \theta + v_{x_0} t + x_0 \\ y = -v_{x_0} \omega \cos \theta t^2 + v_{y_0} t + y_0 \\ z = -\frac{g}{2} t^2 + v_{x_0} \omega \sin \theta t^2 + v_{z_0} t + z_0 \end{cases}$$
(6.2.24)

Esta es la solución a primer orden del sistema de ecuaciones, si volvemos a introducir (6.2.24) en (6.2.20) obtenemos términos ω^2 y podríamos obtener una solución de segundo orden.

$$x = x_0 + \frac{g}{3}t^3\omega\sin\theta; \ y = y_0; \ z = z_0 - \frac{g}{2}t^2$$
 (6.2.25)

En el caso particular de que ${\bf v}_0=0$ tenemos un desplazamiento proporcional a $z_0^{3/2}$ en z=0 hacía el este en ambos hemisferios por que $\sin\theta>0$ siempre en la Tierra

$$t = z_0^{1/2} \sqrt{\frac{2}{g}} \implies \Delta x = \frac{\omega \sin \theta}{3} \sqrt{\frac{8}{g}} z_0^{3/2}$$
 (6.2.26)

Péndulo de Foucault

Tendremos una masa m muy pequeña unida a una cuerda muy larga de longitud L, que puede oscilar durante un largo tiempo.

Además de las fuerzas no incerciales y la gravedad, hay que tener en cuenta la tensión de la cuerda, que usando el teorema de Tales y trigonometría llegamos a

$$\frac{-T_x}{T} = \frac{x}{L} \quad \frac{-T_y}{T} = \frac{y}{L} \quad T_z = T\cos\beta \quad \sqrt{x^2 + y^2} = \rho = L\sin\beta \quad \cos\beta = \frac{L - h}{L}$$
(6.2.27)

Vamos a tomar oscilaciones tales que $\beta \ll 1$, tal que

$$\cos \beta = 1 - \frac{\beta^2}{2} + O(\beta^4)$$
 $\sin \beta = \beta + O(\beta^3)$ (6.2.28)

Que hace que las expresiones de (6.2.27) nos queden como

$$\frac{\rho}{L} \approx \beta \implies \frac{x}{L} \approx \frac{y}{L} \approx \beta \quad T_z \approx T \quad \frac{h}{L} \approx \frac{\beta^2}{2}$$
 (6.2.29)

De esta forma, h y sus derivadas son de orden cuadrado y podemos despreciarlos.

Escribimos entonces la 2 LN, y separamos las componentes, de la misma forma que en (6.2.20) añadiendo el término de la tensión

$$m\ddot{\tilde{\mathbf{r}}} = \mathbf{T} + m\mathbf{g} + 2m\dot{\tilde{\mathbf{r}}} \times \vec{\omega} \tag{6.2.30}$$

$$\begin{cases}
\ddot{x} = T_x/m + 2\dot{y}\omega\cos\theta - 2\dot{z}\omega\sin\theta \\
\ddot{y} = T_y/m - 2\dot{x}\omega\sin\theta \\
\ddot{h} = T_z/m - q + 2\dot{x}\omega\sin\theta
\end{cases}
\rightarrow
\begin{cases}
\ddot{x} = T_x/m + 2\dot{y}\omega\cos\theta \\
\ddot{y} = T_y/m - 2\dot{x}\omega\sin\theta \\
0 = T_z/m - g
\end{cases}$$
(6.2.31)

De tal forma que hemos despreciado \ddot{h} por que es de orden β^2 , el último término de la tercera ecuación porque ese término es de orden $\beta\omega$, siendo ω pequeño, y es mucho más pequeño en comparación con $T_z/m-g$, lo mismo ocurre con el último término de la primera ecuación, que es de orden $\beta^2\omega$, mientras que los otros términos son de orden β o $\beta\omega$.

Con la tercera ecuación y (6.2.29) llegamos a que T=mg, y entonces usando (6.2.27) llegamos a

$$\begin{cases}
\ddot{x} = -xg/L + 2\dot{y}\omega\cos\theta \\
\ddot{y} = -yg/L - 2\dot{x}\omega\sin\theta
\end{cases}
\rightarrow
\begin{cases}
\ddot{x} = -\omega_0^2 x + 2\dot{y}\omega_z \\
\ddot{y} = -\omega_0^2 y - 2\dot{x}\omega_z
\end{cases}
\qquad
\omega_0^2 = \frac{g}{L} \qquad \omega_z = \omega\cos\theta$$
(6.2.32)

Para resolver este sistema de ecuaciones planteamos el número complejo $\eta=x+iy$, tal que $\ddot{\eta}=\ddot{x}+i\ddot{y}$, entonces sustityendo desde (6.2.32) llegamos a

$$\ddot{\eta} + 2i\omega_z\dot{\eta} + \omega_0^2\eta = 0 \qquad \eta = e^{-i\alpha t} \implies \alpha^2 - 2\omega_z\alpha - \omega_0^2 = 0 \tag{6.2.33}$$

Las raices de ese polinomio son, aproximadamente, considerando que $\omega_z \ll \omega_0$

$$\alpha = \omega_z \pm \sqrt{\omega_z^2 + \omega_0^2} = \omega_z \pm \omega_0 \sqrt{1 + \frac{\omega_z^2}{\omega_0^2}} = \omega_z \pm \omega_0 \left(1 + O\left(\frac{\omega_z^2}{\omega_0^2}\right) \right) \approx \omega_z \pm \omega_0$$
(6.2.34)

Tal que llegamos a

$$\eta = e^{-i\omega_z t} \left(C_1 e^{i\omega_0 t} + C_2 e^{-i\omega_0 t} \right) \tag{6.2.35}$$

Imponiendo las condiciones iniciales $x_0=A$, $y_0=0 \implies \eta(0)=A$ y $\dot{\eta}(0)=0$, es decir parte desde un punto en reposo, usando $\omega_z\ll\omega_0$ llegamos a

$$\eta = A\cos(\omega_0 t) \left[\cos(\omega_z t) - i\sin(\omega_z t)\right] \tag{6.2.36}$$

Y tomando la parte real para x y la parte compleja para y llegamos a

$$\begin{cases} x = A\cos(\omega_0 t)\cos(\omega_z t) \\ y = -A\cos(\omega_0 t)\sin(\omega_z t) \end{cases}$$
(6.2.37)

La primera oscilación, rápida, ocurre en una dimensión y se corresponde al comportamiento oscilatorio habitual, mientras que la segunda oscilación corresponde a un moviento circular en sentido horario mucho más lento.

Un sólido rígido es un conjunto de N partículas tales que las distancias entre ellas $r_{\alpha\beta}$ son constantes.

En el espacio, bastan las posiciones de otras tres masas y sus distancias a otra para ubicarla por triangulación, de tal forma que si partimos de un sistema de tres masas no colineales con distancia fija, tenemos 3 ligaduras, lo que implica 6 grados de libertad.

Si ahora añadimos otra masa cuya distancia a las tres anteriores debe ser fija, hemos añadido 3 ligaduras y tres grados de libertad, por que lo que los grados de libertad del sistema no aumentan, y así podemos hacer contínuamente, puesto que solo necesitamos 3 ligaduras cada vez que añadimos una partícula para asegurar que la distancia al resto es fija.

Por lo tanto, un sólido rígido tiene a lo sumo 6 grados de libertad, 3 de ellos relacionados con la posición del centro de masas, y otros 3 de ellos relacionados con la posición rotacional del sólido.

7.1. Orientación

Vamos a analizar dos sistemas de referencia, ambos con origen en el centro de masas del sólido, uno de ellos, $\mathcal{S}_0 = \{\mathcal{O}, (\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z)\}$ no tiene por que ser un sistema inercial, y tenemos $\mathcal{S} = \{\mathcal{O}, (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)\}$ cuyo movimiento relativo con respecto a \mathcal{S}_0 es el de rotación con respecto al centro de masas.

Representamos el cambio de base como un producto matricial

$$\mathbf{e}_i' = A(t)_{ij}\mathbf{e}_j \quad A_{ij} = \mathbf{e}_i' \cdot \mathbf{e}_j \tag{7.1.1}$$

Si ahora hacemos el producto de dos vectores de la base S', teniendo en cuenta que $\mathbf{e}'_i \cdot \mathbf{e}'_j = \delta_{ij}$, es decir, la base es ortonormal, obtenemos

$$\mathbf{e}_{i}' \cdot \mathbf{e}_{j}' = (A_{ik}\mathbf{e}_{k}) \cdot (A_{jl}\mathbf{e}_{l}) = A_{ik}A_{jl}\mathbf{e}_{k}' \cdot \mathbf{e}_{l}' = A_{ik}A_{jl}\delta_{kl} = A_{ik}A_{jk} = A_{ik}A_{kj}^{T} = \delta_{ij}$$
(7.1.2)

Esta expresión nos da las siguientes relaciones entre las entradas de A

$$\sum_{k} (A_{ik})^2 = 1 \quad i = 1, 2, 3 \qquad A_{ik} A_{jk} = 0 \quad i \neq j \to (1, 2), (1, 3), (2, 3) \tag{7.1.3}$$

Por lo que tenemos en total 6 relaciones y 9 componentes, lo que resulta en que A solamente tiene 3 componentes independientes. Las relaciones de (8.1.3) lo que nos dicen es que las columnas de A deben ser vectores unitarios y que las columnas entre sí son ortogonales. Es decir, la matriz es ortogonal, de hecho la igualdad final de (8.1.2) es la definición de matriz ortogonal, $AA^T = I$.

Para expresar un vector \mathbf{b} de una base a otra tenemos en cuenta que

$$b_i = \mathbf{b} \cdot \mathbf{e}_i \qquad b_i' = \mathbf{b} \cdot \mathbf{e}_i' \tag{7.1.4}$$

$$b_i' = \mathbf{b} \cdot A_{ij} \mathbf{e}_j = A_{ij} \mathbf{b} \cdot \mathbf{e}_j = A_{ij} b_j \tag{7.1.5}$$

Las matrices ortogonales se corresponden a rotaciones o simetrías, y tienen la propiedad de que $det(A)=\pm 1$, pero nos vamos a centrar en las transformaciones de determinante positivo, que son rotaciones.

Ángulos de Euler (I)

Podemos describir cualquier orientación en el espacio mediante tres rotaciones con respecto a ciertos planos, tal que $\mathbf{T} = \mathbf{T}_{\psi}\mathbf{T}_{\theta}\mathbf{T}_{\phi}$

$$\mathbf{T}_{\phi} = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{T}_{\theta} = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$\mathbf{T}_{\psi} = egin{bmatrix} \cos \psi & \sin \psi & 0 \ \sin \psi & \cos \psi & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Tensores

Consideramos \mathbb{R}^d con base ortonormal, un tensor \mathbb{T} rango N tiene d^N componentes, con índices ordenados $\mathbb{T}_{ijk...}$ donde cada letra toma valores $(1,2,3,\ldots,d)$. Este se transforma bajo transformaciones ortonormales como

$$\mathbb{T}'_{ijk...} = \sum_{l,m,n,...^N} A_{il} A_{jm} A_{kn} \dots \mathbb{T}_{lmn...}$$
 (7.2.0)

Si N=0 no tiene índices y solo una componente, por lo que se trata de un escalar y es invariante ante transformaciones. Para N=1 tenemos un índice y d componentes, por lo que se trata de un vector y (8.1.6) es idéntica a (8.1.5) y es un cambio de base. Para N=2 tenemos dos índices y d^2 componentes, y entonces la podemos interpretar como una matriz que puede actuar como una transformación lineal o una forma bilineal, que se transforma como

$$\mathbb{T}'_{ij} = \sum_{l,m} A_{il} A_{jm} \mathbb{T}_{lm} = \sum_{l,m} A_{il} \mathbb{T}_{lm} A_{mj}^T \to \mathbb{T}' = A \mathbb{T} A^T = A \mathbb{T} A^{-1}$$
 (7.2.1)

Momento angular

El centro masas de un sólido es

$$\mathbf{R} = \frac{1}{M} \sum_{\alpha}^{N} m_{\alpha} \mathbf{r}_{\alpha} = \frac{1}{M} \int_{V} \rho \mathbf{r} dV \qquad M = \sum_{\alpha}^{N} m_{\alpha} = \int_{V} \rho dV$$
 (7.2.2)

Si además $\mathbf{r}_{\alpha}=\mathbf{R}+\mathbf{r}_{\alpha}^{\prime}$, entonces

$$\mathbf{R} = \frac{1}{M} \sum_{\alpha}^{N} m_{\alpha} \mathbf{r}_{\alpha} = \mathbf{R} \frac{1}{M} \sum_{\alpha}^{N} m_{\alpha} + \frac{1}{M} \sum_{\alpha}^{N} m_{\alpha} \mathbf{r}_{\alpha}' \implies \sum_{\alpha}^{N} m_{\alpha} \mathbf{r}_{\alpha}' = 0 \qquad (7.2.3)$$

Y entonces obtenemos las siguientes relaciones

$$\mathbf{p}_T = M\dot{\mathbf{R}} \quad \mathbf{L}|_O = \mathbf{L}_{CM}|_O + \mathbf{L}|_{CM} \quad T = T_{CM} + T_{rel}$$
 (7.2.4)

Tensor de Inercia

Tomamos el sistema de referencia fijo en el sólido, \mathcal{S}' , que estará en rotación con respecto a el sistema de referencia inercial, \mathcal{S} . El origen es fijo en \mathcal{S}' , pero es arbitrario y no es necesario tomar como el origen el CM.

Tenemos una rotación con respecto al origen y a un eje representado por $\vec{\omega}(t)$, entonces el momento ángular con respecto al origen O que hemos elegido es, recordando (6.2.3)

$$\mathbf{L} = \sum_{\alpha}^{N} \mathbf{r}_{\alpha} \times m_{\alpha} \mathbf{v}_{\alpha} = \sum_{\alpha}^{N} m_{\alpha} \mathbf{r}_{\alpha} \times (\vec{\omega} \times \mathbf{r}_{\alpha}) = \sum_{\alpha}^{N} m_{\alpha} \left[\vec{\omega} (\mathbf{r}_{\alpha} \cdot \mathbf{r}_{\alpha}) - \mathbf{r}_{\alpha} (\mathbf{r}_{\alpha} \cdot \vec{\omega}) \right]$$

$$\mathbf{L} = \sum_{\alpha}^{N} m_{\alpha} \left[\vec{\omega} \mathbf{r}_{\alpha}^{2} - \mathbf{r}_{\alpha} (\mathbf{r}_{\alpha} \cdot \vec{\omega}) \right] \qquad L_{i} = \sum_{\alpha} m_{\alpha} \left[\sum_{kj} x_{\alpha k}^{2} \omega_{i} - x_{\alpha j} \omega_{j} x_{\alpha i} \right] =$$

$$= \sum_{\alpha} m_{\alpha} \left[\sum_{kj} \delta_{ij} x_{\alpha k}^{2} \omega_{j} - x_{\alpha j} \omega_{j} x_{\alpha i} \right] = \sum_{j} \left(\sum_{\alpha} m_{\alpha} \left[\delta_{ij} \sum_{k} x_{\alpha k}^{2} - x_{\alpha j} x_{\alpha i} \right] \right) \omega_{j}$$

$$I_{ij} = \sum_{\alpha} m_{\alpha} \left[\delta_{ij} \sum_{k} x_{\alpha k}^{2} - x_{\alpha j} x_{\alpha i} \right] = \int \left[\delta_{ij} \sum_{k} x_{k}^{2} - x_{j} x_{i} \right] \rho dV = I_{ji} \quad (7.2.5)$$

De esta forma tenemos que

$$L_i = \sum_j I_{ij} \omega_j \iff \mathbf{L} = \mathbf{I}\vec{\omega} \tag{7.2.6}$$

I es un tensor de rango 2 real, y simético y definido positivo. Los elementos de la diagonal se llaman momentos de inercia, y el resto productos de inercia, y el momento de inercia con respecto a una dirección se define como $\hat{n}^T \mathbf{I} \hat{n}$.

Simetrías

Si por ejemplo tenemos que una distribución de masa es simétrica bajo una transformación $x_i\mapsto -x_i$, con respecto al plano perpendicular al eje que define x_i , de tal forma que $\rho(x_i)=\rho(-x_i)$, haremos una integral de un producto de función par, la densidad de masa, por una función impar, x_i , con respecto al intervalo de integración simétrico, entonces el resultado será 0 para todos los productos de inercia donde I_{ji} donde apareza ese índice serán 0.

Si tenemos una simetría axial, tal que $\rho=\rho(r,z)$, es decir, expresada en cilíndicas, no depende del ángulo con respecto al eje. Al igual que en el caso anterior, tendremos una simetría para cualquier plano que contenga al eje y entonces los productos de inercia son 0 y el tensor es diagonal.

Además, si el eje de simetría es z, entonces $I_{xx} = I_{yy}$ por que hay simetría axial, y se puede demostrar que las integrales son idénticas por que los intervalos de integración son iguales.

Teorema de Steiner

Sea un sólido rígido de masa M, y consideramos dos sistemas de referencia con ejes paralelos y distintos orígenes, \mathcal{O} y \mathcal{G} . Sea $\mathbf{a} = \overline{\mathcal{G}\mathcal{O}} = \mathcal{O} - \mathcal{G}$ el vector que relaciona ambos orígenes, tenemos entonces que, donde \mathbb{E}_3 es la identidad y \otimes es el producto tensorial

$$I_{ij}^{\mathcal{G}} = I_{ij}^{\mathcal{O}} + M\left(||\mathbf{a}||^2 \delta_{ij} - a_i a_j\right) \iff \mathbf{I}_{\mathcal{G}} = \mathbf{I}_{\mathcal{O}} + M\left(||\mathbf{a}||^2 \mathbb{E}_3 - \mathbf{a} \otimes \mathbf{a}\right)$$
(7.2.7)

Ejes principales

Llamamos ejes principales aquellos en los que $\mathbf{L} = \lambda \vec{\omega}$ cuando $\vec{\omega}$ es paralelo al eje. Siempre existen tres ejes principales, ya que \mathbf{I} es hermítico, entonces siempre existe una base ortonormal de autovectores que verifican la condición anterior.

7.3. Dinámica

Energía cinética de rotación

Tenemos la siguiente expresión de la energía cinética para un sistema de partículas, que ya hemos utilizado previamente

$$T = \frac{1}{2} \sum_{\alpha}^{N} m_{\alpha} v_{\alpha}^{2} = \frac{1}{2} \int \rho v^{2} dV$$
 (7.3.0)

Vamos a desarrolar el término de la velocidad al cuadrado, teniendo en cuenta que $\mathbf{v} = \vec{\omega} \times \mathbf{r}$, tal que

$$v^{2} = (\vec{\omega} \times \mathbf{r}) \cdot (\vec{\omega} \times \mathbf{r}) = \sum_{ijklm} \epsilon_{ijk} \epsilon_{ilm} \omega_{j} \omega_{l} r_{k} r_{m} = \sum_{jklm} (\delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl}) \omega_{j} \omega_{l} r_{k} r_{m} =$$

$$= \sum_{jk} \omega_{j}^{2} r_{k}^{2} - \sum_{jk} \omega_{j} \omega_{k} r_{k} r_{j} = \sum_{j} \omega_{j} \sum_{k} \omega_{j} |\mathbf{r}|^{2} - \omega_{k} r_{k} r_{j} = \sum_{j} \omega_{j} \sum_{k} \omega_{k} \left(\delta_{ik} |\mathbf{r}|^{2} - r_{k} r_{j}\right)$$

$$(7.3.1)$$

Entonces, sustituyendo en (8.2.0) tenemos

$$T = \frac{1}{2} \sum_{jk} \omega_j \omega_k \sum_{\alpha}^{N} m_{\alpha} \left(\delta_{ik} |\mathbf{r}_{\alpha}|^2 - r_{\alpha k} r_{\alpha j} \right) = \frac{1}{2} \sum_{jk} \omega_j \omega_k I_{jk} = \frac{1}{2} \sum_{j} \omega_j L_j \quad (7.3.2)$$

$$T = \frac{1}{2}\vec{\omega} \cdot \mathbf{L} = \frac{1}{2}\vec{\omega}^T \mathbf{I}\vec{\omega}$$
 (7.3.3)

Y en la base de autovectores, donde λ_i son los autovalores, tendremos

$$T = \frac{1}{2} \sum \omega_i^2 \lambda_i \tag{7.3.4}$$

Precesión de una peonza simétrica

Tenemos un sistema de referencia inercial, y un sistema de referencia no inercial solidario al trompo, que gira con él. Además los ejes de ese sistema son los ejes

principales de la peonza, tal que el momento de inercia es de la forma, pues es simétrica con respecto al un eje

$$\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \tag{7.3.5}$$

Consideramos el centro de masa de la peonza, con posición \mathbf{R} con respecto al origen de \mathcal{S}_0 . Tenemos que la peonza apoya su punta sobre el origen del sistema de referencia inercial, que esta fijo.

Considerando $\vec{\omega} = \omega \mathbf{e}_3$ y $\mathbf{L} = \lambda_3 \omega \mathbf{e}_3$, entonces aplicando la 2 LN, tenemos que, si no consideramos la gravedad

$$\left(\frac{d\mathbf{L}}{dt}\right)_{\mathcal{S}_0} = \mathbf{r} \times \mathbf{F} = 0 \implies \mathbf{L} = \text{cte.}$$
 (7.3.6)

En cambio, en presencia de gravedad, teniendo que $\mathbf{F}_g = -g\mathbf{e}_z$, entonces tenemos, donde theta es el ángulo que forman \mathbf{r} y \mathbf{e}_z

$$\left(\frac{d\mathbf{L}}{dt}\right)_{\mathcal{S}_0} = g = \mathbf{r} \times \mathbf{F}_g = gMR\left(\mathbf{e}_z \times \mathbf{e}_3\right); \quad |g| = gMR\sin\theta \qquad (7.3.7)$$

Si ahora suponemos que g es pequeño, es decir $|g| \ll \lambda_3 \omega^2$ ($\Omega \ll \omega$), $\vec{\omega}$ no cambiará mucho, y entonces

$$\left(\frac{d\mathbf{L}}{dt}\right)_{S_0} \approx \lambda_3 \omega \left(\frac{d\mathbf{e}_3}{dt}\right)_{S_0} \implies \left(\frac{d\mathbf{e}_3}{dt}\right)_{S_0} = \frac{gMR}{\lambda_3 \omega} \left(\mathbf{e}_z \times \mathbf{e}_3\right) = \vec{\Omega} \times \mathbf{e}_3 \quad (7.3.8)$$

Es decir, la peonza rotará en torno al eje vertical con velocidad angular Ω aproximadamente constante, además del giro con respecto a su propio eje.

Ecuaciones de Euler

Usando (6.2.5), podemos llegar a la siguiente expresión, la ecuación de Euler

$$\left(\frac{d\mathbf{L}}{dt}\right)_{\mathcal{S}_0} = = \left(\frac{d\mathbf{L}}{dt}\right)_{\mathcal{S}} + \omega \times \mathbf{L} = \dot{\mathbf{L}} + \omega \times \mathbf{L}$$
 (7.3.9)

que podemos escribir por coordenadas en la base de ejes principales explícitamente usando,

$$\left(\frac{d\vec{\omega}}{dt}\right)_{\mathcal{S}_0} = \left(\frac{d\vec{\omega}}{dt}\right)_{\mathcal{S}} + \vec{\omega} \times \vec{\omega}^{0} \tag{7.3.10}$$

resultando en las ecuaciones de Euler

$$\begin{cases} \lambda_1 \dot{\omega}_1 + (\lambda_3 - \lambda_2)\omega_3\omega_2 = \Gamma_1 \\ \lambda_2 \dot{\omega}_2 + (\lambda_1 - \lambda_3)\omega_3\omega_1 = \Gamma_2 \\ \lambda_1 \dot{\omega}_3 + (\lambda_2 - \lambda_1)\omega_1\omega_2 = \Gamma_3 \end{cases}$$
 (7.3.11)

Ejemplos

Vamos a trabajar en casos en los que = 0, de tal forma que tenemos

$$\begin{cases} \lambda_1 \dot{\omega}_1 = (\lambda_2 - \lambda_3) \omega_3 \omega_2 \\ \lambda_2 \dot{\omega}_2 = (\lambda_3 - \lambda_1) \omega_3 \omega_1 \\ \lambda_1 \dot{\omega}_3 = (\lambda_1 - \lambda_2) \omega_1 \omega_2 \end{cases}$$
(7.3.12)

Vamos a cosiderar un primer caso en el que todos los λ_i son distintos, y que tenemos una $\vec{\omega}^0 = \omega^0 \mathbf{e}_3$, tal que $\omega_2 = \omega_1 = 0$, entonces tenemos que $\vec{\omega}$ es constante por (7.3.12).

Ahora vamos a considerar una pequeña perturbación del caso anterior, tal que $\vec{\omega}^0 = \omega_3^0 \mathbf{e}_3 + \epsilon(\omega_1^0 \mathbf{e}_1 + \omega_2^0 \mathbf{e}_2)$, tal que en (7.3.12) obtenemos

$$\begin{cases}
\lambda_1 \dot{\omega}_1 = (\lambda_2 - \lambda_3) \omega_3^0 \omega_2 \epsilon \\
\lambda_2 \dot{\omega}_2 = (\lambda_3 - \lambda_1) \omega_3^0 \omega_1 \epsilon \\
\lambda_1 \dot{\omega}_3 = (\lambda_1 - \lambda_2) \epsilon^2 \omega_1^0 \omega_2^0
\end{cases}$$
(7.3.13)

A primer orden de ϵ tenemos que ω_3 es constante, tal que $\omega_3 = \omega_3^0$ y entonces en general $\vec{\omega} = \omega_3 \mathbf{e}_3 + \epsilon(\omega_1(t)\mathbf{e}_1 + \omega_2(t)\mathbf{e}_2)$ y su derivada $\dot{\vec{\omega}} = \epsilon(\dot{\omega}_1\mathbf{e}_1 + \dot{\omega}_2\mathbf{e}_2)$, tal que

$$\begin{cases}
\dot{\omega}_1 \epsilon = \left(\frac{\lambda_2 - \lambda_3}{\lambda_1} \omega_3\right) \omega_2 \epsilon \\
\dot{\omega}_2 \epsilon = \left(\frac{\lambda_3 - \lambda_1}{\lambda_2} \omega_3\right) \omega_1 \epsilon
\end{cases}$$
(7.3.14)

Cancelando los ϵ , derivando una de las ecuaciones y sustituyendo en la otra tenemos

$$\ddot{\omega}_1 = -\left[\frac{(\lambda_3 - \lambda_2)(\lambda_3 - \lambda_1)}{\lambda_1 \lambda_2} \omega_3^2\right] \omega_1 = -\Omega^2 \omega_1 \quad \ddot{\omega}_2 = -\Omega^2 \omega_2 \tag{7.3.15}$$

De tal forma que cuando $\Omega^2>0$, las oscilaciones serán estables, esto ocurre cuando $\lambda_3>\lambda_2$ y $\lambda_3>\lambda_1$ o $\lambda_3<\lambda_2$ y $\lambda_3<\lambda_1$, es decir, cuando λ_3 es el momento principal mayor o menor. Cuando es el intermedio, $\lambda_1<\lambda_3<\lambda_2$ o $\lambda_2<\lambda_3<\lambda_1$, tenemos que las oscilaciones no serán inestables.

Si ahora consideramos el mismo caso, pero para un sólido simétrico en el que $\lambda_1=\lambda_2$, tenemos ω_3 es constante a cualquier orden de ϵ , y las oscilaciones son siempre estables ya que tenemos

$$\Omega^2 = \frac{(\lambda_3 - \lambda_1)^2}{\lambda_1^2} \omega_3^2 \tag{7.3.16}$$

(7.3.18)

Resolviendo las ecuaciones como un sistema de ecuaciones lineales e imponiendo condiciones iniciales $\omega_1(0)=\omega_0$ y $\omega_2(0)=0$ tenemos que

$$\begin{cases} \dot{\omega}_{1} = \left(\frac{\lambda_{1} - \lambda_{3}}{\lambda_{1}} \omega_{3}\right) \omega_{2} = \Omega \omega_{2} \\ \dot{\omega}_{2} = -\left(\frac{\lambda_{1} - \lambda_{3}}{\lambda_{2}} \omega_{3}\right) \omega_{1} = -\Omega \omega_{1} \end{cases} \rightarrow \begin{pmatrix} \dot{\omega}_{1} \\ \dot{\omega}_{2} \end{pmatrix} = \begin{pmatrix} 0 & \Omega \\ -\Omega & 0 \end{pmatrix} \begin{pmatrix} \omega_{1} \\ \omega_{2} \end{pmatrix}$$

$$\begin{pmatrix} \omega_{1} \\ -\sin \Omega t \end{pmatrix} + B \begin{pmatrix} \sin \Omega t \\ \cos \Omega t \end{pmatrix} \quad \omega_{2}(0) = 0 \implies B = 0 \rightarrow \begin{pmatrix} \omega_{1} \\ \omega_{2} \end{pmatrix} = A \begin{pmatrix} \cos \Omega t \\ -\sin \Omega t \end{pmatrix}$$

$$(7.3.17)$$

 $\vec{\omega} = A(\cos\Omega t \mathbf{e}_1 - \sin\Omega t \mathbf{e}_2) + \omega_3 \mathbf{e}_3$

De tal forma que $\vec{\omega}$, desde el sistema de referencia del sólido, traza un movimiento de precesión circular con sentido horario con respecto a \mathbf{e}_3 , y lo mismo con \mathbf{L} , que además es coplanar a $\vec{\omega}$ tal que

$$\mathbf{L} = A\lambda_1(\cos\Omega t\mathbf{e}_1 - \sin\Omega t\mathbf{e}_2) + \lambda_3\omega_3\mathbf{e}_3 \tag{7.3.19}$$

Como = 0, entonces L es constante en el sistema de referencia inercial, y entonces son $\vec{\omega}$ y \mathbf{e}_3 los que precesan en torno a L.

Ángulos de Euler (II)

De los dibujos que pueden verse cuando fueron definidos los ángulos de euler, puede verse que

$$\vec{\omega} = \dot{\phi} \mathbf{e}_z + \dot{\theta} \mathbf{e}_2' + \dot{\psi} \mathbf{e}_3 \tag{7.3.20}$$

Vamos a considerar sólidos con simetría axial, entonces \mathbf{e}_2' es un eje principal perfectamente válido, como queremos tenerlo todo en la misma base, lo pondremos en la base del sólido, tal que, donde \mathbf{e}_1'' es otro eje principal perfectamente válido

$$\mathbf{e}_z = \cos\theta \mathbf{e}_3 - \sin\theta \mathbf{e}_1'' \quad \vec{\omega} = -\dot{\phi}\sin\theta \mathbf{e}_1 + \dot{\theta}\mathbf{e}_2 + (\dot{\psi} + \dot{\phi}\cos\theta)\mathbf{e}_3 \quad (7.3.21)$$

Y en consecuencia tenemos que el momento angular puede expresarse como

$$\mathbf{L} = -\lambda_1 \dot{\phi} \sin \theta \mathbf{e}_1 + \lambda_1 \dot{\theta} \mathbf{e}_2 + \lambda_3 (\dot{\psi} + \dot{\phi} \cos \theta) \mathbf{e}_3 \tag{7.3.22}$$

Así, la energía cinética toma la forma

$$T = \frac{1}{2}\lambda_1 \left(\dot{\phi}^2 \sin^2 \theta + \dot{\theta}^2\right) + \frac{1}{2}\lambda_3 \left(\dot{\psi} + \dot{\phi} \cos \theta\right)^2 \tag{7.3.23}$$

Por otro lado, podemos expresar $\vec{\omega}$ y **L** en términos de la base del sistema inercial, tal que

$$\vec{\omega} = \begin{pmatrix} \dot{\psi} \sin \theta \cos \phi - \dot{\theta} \sin \phi \\ \dot{\psi} \sin \theta \sin \phi - \dot{\theta} \cos \phi \\ \dot{\phi} + \dot{\psi} \cos \theta \end{pmatrix}_{(\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z)}$$
(7.3.24)

$$\mathbf{L} = \begin{pmatrix} \lambda_{3}(\dot{\psi} + \dot{\phi}\cos\theta)\sin\theta\cos\phi - \lambda_{1}\dot{\theta}\sin\theta - \lambda_{1}\dot{\phi}\sin\theta\cos\theta\cos\phi \\ \lambda_{3}(\dot{\psi} + \dot{\phi}\cos\theta)\sin\theta\sin\phi + \lambda_{1}\dot{\theta}\cos\theta - \lambda_{1}\dot{\phi}\sin\theta\cos\theta\sin\theta \\ \lambda_{3}(\dot{\psi} + \dot{\phi}\cos\theta)\cos\theta + \lambda_{1}\dot{\phi}\sin^{2}\theta \end{pmatrix}_{\substack{(\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}) \\ (7.3.25)}}$$

Podemos observar que $L_z=L_3\cos\theta+\lambda_1\dot{\phi}\sin^2\theta$, de tal forma que veremos que tanto L_3 como L_z se conservan en deteminadas circumstancias y podemos obtener la relación

$$\dot{\phi}(\theta) = \frac{L_z - L_3 \cos \theta}{\lambda_1 \sin^2 \theta} \tag{7.3.26}$$

En esos casos en los que L_3 y L_z se conservan, tenemos que en función de los valores de ambas, un sólido simético va a realizar, además de la precesión con respecto a \mathbf{e}_z que ya hemos visto antes, un movimiento de nutación, es decir una oscilación de θ entre dos valores, aplicando las ecuaciones de Euler-Lagrange.

Si (7.3.26) no se anula, se describe un movimiento sinusoidal, mientras que si se anula en lo límites de θ , describe un movimiento similar al anterior pero con picos o cúspides, y si no se anula en los límites de θ , sino en el intervalo, va a haber momentos de retroceso y va a formar una serie de bucles.

Usualmente estudiamos oscilaciones sinusoidales, pero cualquier oscilación periórida en torno a una posición de equilibrio también es sujeto de estudio. Sin embargo, las ondas sinusoidales juegan un papel especial.

Si tenemos un potencial $U(\mathbf{x})$ con un mínimo local en \mathbf{x}_0 , podemos expandirlo por taylor en torno a ese mínimo, tal que

$$U(\mathbf{x}) = U(\mathbf{x}_0) + \nabla U(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \mathbb{H}_U(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + O((\mathbf{x} - \mathbf{x}_0)^3)$$
(8.0.1)

Donde ∇U es el gradiente del potencial, evaluado en el mínimo, por lo tanto se anula, y \mathbb{H}_U es la hessiana evaluada en \mathbf{x}_0 .

Si ahora despreciamos los términos de orden cúbico y superiores, y hacemos el gradiente de (8.0.1), el primer término constante se anula, y entonces tenemos que

$$\frac{\partial U}{\partial x_i} = \frac{1}{2} \frac{\partial}{\partial x_i} \sum_{jk} H_{jk}(x_j - x_{0_j})(x_k - x_{0_k}) = \frac{1}{2} \sum_{jk} H_{jk} \delta_{ij}(x_k - x_{0_k}) + \frac{1}{2} \sum_{jk} H_{jk} \delta_{ik}(x_j - x_{0_j})$$

$$= \sum_{jk} H_{jk} \delta_{ij}(x_k - x_{0_k}) = \sum_{k} H_{ik}(x_k - x_{0_k}) \iff \nabla U = \mathbb{H}_U(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) \quad (8.0.2)$$

Se puede demostrar que $\mathbf{A} = \mathbb{H}_U(\mathbf{x}_0)$ es definida positiva al tratarse de un mínimo. En el caso unidimensional esto se reduce a

$$\frac{dU}{dx} = k(x - x_0) \qquad k = \frac{d^2U}{dx^2}(x_0) > 0 \tag{8.0.3}$$

Usando la 2LN llegamos al oscilador harmónico cuyas soluciones son oscilaciones sinusoidales

$$m\ddot{x} = -k(x - x_0) \implies x = x_0 + A\cos(\omega_0 t - \delta) \quad \omega_0^2 = \frac{k}{m}$$
 (8.0.4)

8.1. Oscilaciones sinusoidales

La ecuación (8.0.4) puede ser escrita de las siguientes formas equivalente

$$x = x_0 + C_1 e^{i\omega_0 t} + C_2 e^{-i\omega_0 t} = x_0 + C_1' \cos \omega_0 t + C_2' \sin \omega_0 t$$
 (8.1.1)

$$x = x_0 + C_1 e^{-t} + C_2 e^{-t} = x_0 + C_1 \cos \omega_0 t + C_2 \sin \omega_0 t$$

$$(6.1.1)$$

$$x = x_0 + A \left(\cos \delta \cos \omega_0 t + \sin \delta \sin \omega_0 t\right) \quad A^2 = C_1'^2 + C_2'^2 \quad \sin \delta = \frac{C_2'}{A} \quad \cos \delta = \frac{C_1'}{A}$$

$$(8.1.2)$$

$$x = x_0 + \mathfrak{Re}\{Ce^{i\omega_0 t}\} \qquad C = Ae^{-\delta} \tag{8.1.2}$$

Energía

La energía de un oscilador harmónico general es

$$U = \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \mathbb{H} (\mathbf{x} - \mathbf{x}_0)$$
 (8.1.4)

y para el caso unidimensional se reduce a

$$U = \frac{1}{2}k(x - x_0)^2 = \frac{1}{2}kA^2\cos^2(\omega_0 t - \delta)$$
 (8.1.5)

por otro lado, tenemos que la energía cinética para el caso unidimensional es

$$T = \frac{1}{2}m(x - x_0)^2 = \frac{1}{2}\underbrace{m\omega_0^2}_{k}A^2\sin^2(\omega_0 t - \delta)$$
 (8.1.6)

Y entonces, en ausencia de fuerzas externas, la energía es

$$E = T + U = \frac{1}{2}kA^2 \tag{8.1.7}$$

Oscilaciones en más dimensiones

Para cualquier número de dimensiones, tenemos que

$$m\ddot{\mathbf{x}} = -\nabla U = -\mathbb{H}(\mathbf{x} - \mathbf{x}_0) \tag{8.1.8}$$

La matriz \mathbb{H} es real y simétrica, y por tanto hermítica, y por lo tanto existe una base en la que diagonaliza, tal que si $\mathbf{x}' = \mathbf{x} - \mathbf{x}_0$, entonces

$$m\ddot{\mathbf{x}}' = -\mathbb{H}\mathbf{x}' = \begin{pmatrix} -k_1 x_1' \\ -k_2 x_2' \\ -k_3 x_3' \end{pmatrix}$$
(8.1.9)

Vamos a centrarnos en dos dimensiones, en el primer caso, si los autovalores k_1 y k_2 son iguales a k, lo que se denomina isótropo, tenemos que

$$\begin{cases} x(t) = A_x \cos(\omega_0 t - \delta_x) \\ y(t) = A_y \cos(\omega_0 t - \delta_y) \end{cases} \quad \omega_0^2 = \frac{k}{m}$$
 (8.1.10)

y definiendo $t'=t-t_0$ tal que $t_0=\delta_x/\omega_0$, definimos $\delta=\delta_y-\delta_x$, entonces tenemos

$$\begin{cases} x(t) = A_x \cos(\omega_0 t) \\ y(t) = A_y \cos(\omega_0 t - \delta) \end{cases}$$
(8.1.11)

Corresponde a la ecuación de una elipse, que en general puede estar rotada.

Si es anisótropo, es decir, los autovalores no coinciden, solo realizará trayectorias periódicas si

$$\frac{\omega_{0x}}{\omega_{0y}} = \frac{p}{q} \rightarrow \tau = \frac{2\pi p}{\omega_{0x}} = \frac{2\pi q}{\omega_{0y}} \implies \begin{cases} x(t+\tau) = A_x \cos(\omega_{0x}t + \omega_{0x}\tau - \delta_x) = x(t) \\ y(t+\tau) = A_y \cos(\omega_{0y}t + \omega_{0y}\tau - \delta_y) = y(t) \end{cases}$$
(8.1.12)

En función de ese cociente, las trayectorias trazadas se llaman curvas de Lissajous.

8.2. Oscilaciones amortigudas

Si añadimos una fuerza que se opone linealmente a la velocidad de la forma $-b\dot{x}$ (para una dimensión), obtenemos la siguiente ecuación diferencial.

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0 \quad 2\beta = \frac{b}{m} \quad \omega_0^2 = \frac{k}{m}$$
 (8.2.1)

La solución va a ser de la forma $e^{\alpha t}$, de tal forma que los valores de alpha vienen dados por la ecuación auxiliar

$$\alpha^2 + 2\beta\alpha + \omega_0^2 = 0 \implies \alpha = -\beta \pm \sqrt{\beta^2 - \omega_0^2}$$
 (8.2.2)

De esta forma, tendremos tres soluciones distintas en función del valor de β

Subamortiguamiento

Para el caso en el que $\beta < \omega_0$, tenemos que $\alpha = -\beta \pm i\sqrt{\omega_0^2 - \beta^2} = -\beta \pm i\omega'$, entonces las soluciones son de la forma (8.0.4) con un prefactor, tal que

$$x(t) = e^{-\beta t} A \cos(\omega' t - \delta)$$
(8.2.3)

Es decir, tenemos oscilaciones sinusoidales que se van extinguiendo conforme pasa el tiempo, es decir, su amplitud disminuye exponencialmente y el factor que determina esa desaparición, llamado parámetro de extinción, es β .

Sobreamortiguamiento

Para el caso en el que $\beta > \omega_0$, tenemos que $\alpha = -\beta \pm \sqrt{\beta^2 - \omega_0^2}$ reales ambos, tal que $0 < a_1 = \beta - \sqrt{\beta^2 - \omega_0^2} < a_2 = -\beta + \sqrt{\beta^2 - \omega_0^2}$, de tal forma que las soluciones son de la forma

$$x(t) = C_1 e^{-a_1 t} + C_2 e^{-a_2 t} (8.2.4)$$

De tal forma que como $a_2 > a_1$ el primer término es el que primará a tiempos largos y por lo tanto el parámetro de extinción será a_1 .

En este caso ya no tenemos oscilaciones sinusoidales, y en función de las condiciones iniciales, como por ejemplo una velocidad inicial en la posición de equilibrio, tendremos que solo realiza una oscilación, es decir llega a una distancia máxima y a partir de ahí vuelve a la posición de equilibrio sin oscilar más.

Amortiguamiento crítico

En el caso en el que $\beta=\omega_0$ tendremos que $\alpha=-\beta$, por lo que como segunda solución linealmente independiente propondremos $te^{\alpha t}$, entonces las ssoluciones nos quedan

$$x(t) = C_1 e^{-\beta t} (1 + C_2 t) \tag{8.2.5}$$

Y de nuevo β es el parámetro de extinción.

Si representamos el parámetro de extinción en función de β utilizando las expresiones que hemos ido hallando, observamos que la mayor amortiguación ocurre cuando $\beta = \omega_0$, por eso se llama amortiguamiento crítico.

A mayores β , hay menos posibilidad de amortiguamiento porque el sistema casi no oscila y por lo tanto la velocidad va a ser pequeña.

8.3. Oscilaciones forzadas

Supongamos que tenemos una fuerza externa además de la fuerza elástica y el rozamiento, de tal forma que obtenemos la siguiente ecuación diferencial

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = f(t)$$
 $2\beta = \frac{b}{m}$ $\omega_0^2 = \frac{k}{m}$ $f(t) = \frac{F}{m}$ (8.3.1)

La solución general será entonces la solución de la parte homogénea, es decir, el oscilador no amortiguado, más la suma de una solución particular de la inhomogénea, puesto que la ecuación es lineal.

Vamos a estudiar el caso concreto de una fuerza de la forma $f(t)=f_0\cos\omega t$, y para obtener la solución particular, vamos a resolver el caso en el que $f(t)=f_0e^{i\omega t}$ y tomaremos la parte real de la solución. Esto esta justificado porque la ecuación es lineal y la parte imaginaria de la solución corresponderá a la parte imaginaria del término inhomogéneo.

Entonces para resolver el caso complejo, hacemos la conjetura $\tilde{x}(t)=Ce^{i\omega t}$, donde $C\in\mathbb{C}$, de tal forma que nos queda

$$C(-\omega^2 + 2i\omega\beta + \omega_0^2)e^{i\omega t} = f_0e^{i\omega t} \implies C = \frac{f_0}{\omega_0^2 - \omega^2 + 2i\omega\beta}$$
(8.3.2)

Que nos gustaría expresar como $C=Ae^{-\delta i}$ en forma polar, para ello calculamos su módulo, tal que

$$A^{2} = CC^{*} \to A = \frac{f_{0}}{\sqrt{(\omega_{0}^{2} - \omega^{2})^{2} + 4\omega^{2}\beta^{2}}}$$
(8.3.3)

Donde el conjugado de una función holomórfica como es el cociente de dos números complejos es simplemente sustituir i por -i. Para obtener la fase, queremos expresar C=a+bi, de tal forma que tan $-\delta=b/a$.

$$C = \frac{f_0}{\omega_0^2 - \omega^2 + 2i\omega\beta} \frac{\omega_0^2 - \omega^2 - 2i\omega\beta}{\omega_0^2 - \omega^2 - 2i\omega\beta} = K\left[(\omega_0^2 - \omega^2) - i(2\omega\beta)\right] \quad K \in \mathbb{R}$$

$$\tan -\delta = -\frac{2\omega\beta}{\omega_0^2 - \omega^2} \implies \tan \delta = \frac{2\omega\beta}{\omega_0^2 - \omega^2}$$
 (8.3.4)

De tal forma que tenemos la solución partícular de la inhomogénea

$$\tilde{x}(t) = Ae^{(\omega t - \delta)i} \implies x(t) = \Re{\mathfrak{e}}\{\tilde{x}(t)\} = A\cos(\omega t - \delta)$$
 (8.3.5)

Así, la solución general (salvo $\beta=\omega_0$) es

$$x(t) = A\cos(\omega t - \delta) + e^{-\beta t} \left(c_1 e^{t\sqrt{\beta^2 - \omega_0^2}} + c_2 e^{-t\sqrt{\beta^2 - \omega_0^2}} \right)$$
(8.3.6)

Se observa que el primer término no depende de las condiciones iniciales, y solo de ω , f_0 , ω_0 y β , por eso denomina término estacionario.

El segundo sí que depende de las condiciones iniciales, pero el factor $e^{-\beta t}$ hace que este sea muy poco relevante a medida que avanza el tiempo, por eso se denomina término transitorio.

Resonancia

El máximo de A se llama resonancia, para encontrarlo buscaremos el máximo de A^2 , que es el mismo, y para ello, como el numerador es constante, buscaremos el mínimo del denominador.

Si tomamos ω fijo y variamos ω_0 , tenemos que

$$\frac{d}{d\omega_0} \left(\left(\omega_0^2 - \omega^2 \right)^2 + 4\omega^2 \beta^2 \right) = 4 \left(\omega_0^2 - \omega^2 \right) \omega_0 = 0 \quad \bar{\omega}_0 = 0 \quad \bar{\omega}_0 = \omega \quad (8.3.7)$$

$$\frac{d^2}{d\omega_0^2} \left(\left(\omega_0^2 - \omega^2 \right)^2 + 4\omega^2 \beta^2 \right) = 4 \left(\omega_0^2 - \omega^2 \right) + 8\omega_0^2$$

$$\left.\frac{d^2}{d\omega_0^2}\right|_{\omega}=8\omega_0^2>0\rightarrow\bar{\omega}_0=\omega:\text{max. de A}\quad \left.\frac{d^2}{d\omega_0^2}\right|_0=-4\omega^2<0\rightarrow\bar{\omega}_0=0:\text{min. de A}$$
 (8.3.8)

De esta forma, tenemos que la frecuencia de resonancia es $\bar{\omega}_0=\omega$ y la amplitud máxima es

$$A_{\text{max.}} = \frac{f_0}{2\omega\beta} \tag{8.3.9}$$

Si ahora tomamos ω_0 y variamos ω , tenemos que

$$\frac{d}{d\omega} \left(\left(\omega_0^2 - \omega^2 \right)^2 + 4\omega^2 \beta^2 \right) = \left[8\beta^2 - 4\left(\omega_0^2 - \omega^2 \right) \right] \omega = 0 \to \bar{\omega} = 0 \quad \bar{\omega} = \sqrt{\omega_0^2 - 2\beta^2}$$
(8.3.10)

$$\frac{d^2}{d\omega^2} \left(\left(\omega_0^2 - \omega^2 \right)^2 + 4\omega^2 \beta^2 \right) = \left[8\beta^2 - 4 \left(\omega_0^2 - \omega^2 \right) \right] + 8\omega^2$$

$$\frac{d^2}{d\omega^2} \bigg|_{0} = 8\beta^2 - 4\omega_0^2 \qquad \frac{d^2}{d\omega^2} \bigg|_{\sqrt{\omega_0^2 - 2\beta^2}} = 8\omega_0^2 - 16\beta^2 \tag{8.3.11}$$

Cuando $\beta > \omega_0/\sqrt{2}$, tenemos un solo máximo en $\bar{\omega} = 0$.

$$A_{\text{max.}} = \frac{f_0}{2\beta\sqrt{\omega_0^2 - \beta^2}}$$
 (8.3.12)

Si $\beta\ll\omega_0$ (subamortiguado), tenemos que $\bar\omega=0$ es un mínimo de A y $\bar\omega=\sqrt{\omega_0^2-2\beta^2}\approx\omega_0$ es un máximo de A. El valor de la amplitud máxima para este último es entonces

En la figura lateral se observa la amplitud normalizada en función de ω y de distintos valores de β , y comprobamos que cuando $\beta \ll \omega_0$, $\bar{\omega} \to \omega_0$, pero en general no es así, y el máximo esta desplazado con respecto a ω_0 . Además, no se observa en la figura, pero sí en la expresión (8.3.11), cuando $\beta \to 0$, $A_{\text{max.}} \to \infty$.

Factor de calidad

Definimos el factor de calidad como

$$Q \equiv \frac{\bar{\omega}}{\Delta \omega} \tag{8.3.13}$$

Dónde $\Delta\omega$ es la anchura a altura media (FWHM por sus siglas en inglés).

Se define originalmente para un oscilador no forzado como el periodo caracterísitico de amortiguamiento de la energía $\beta^{-1}/2$ ($E \propto x^2$) entre el tiempo necesario para oscilar un radian

$$Q = \frac{\tau/2}{T/2\pi} = \frac{\beta^{-1}/2}{1/\omega} = \frac{\omega}{2\beta} \to E(t=T) = E_0 e^{-2\beta(2\pi/\omega)} = E_0 e^{-2\pi/Q}$$

Q entonces representa el inverso del factor de extinción de la energía por radián. Para sistemas forzados tenemos que es la energía del sistema entre la energía disipada por radián, y nos queda la misma expresión.

Tenemos además como hemos visto en (8.3.13), se define de forma más general $\omega_0 - \beta^{\prime \dot{\omega}_0 \dot{\omega}_0} \omega_0 + \beta$ como la frecuencia de resonancia entre la anchura a altura media, que como se observa en la figura, es la anchura de la gráfica A^2 , en función de ω cuando

$$A(\tilde{\omega})^2 = \frac{A_{\text{max.}}^2}{2} \tag{8.3.15}$$

Resolviendo la ecuación de segundo grado en $\tilde{\omega}$ que nos queda y luego haciendo expansiones considerando el caso $\beta \ll \omega_0$ obtenemos el resultado

$$\tilde{\omega} \approx \omega_0 \pm \beta \implies \Delta \omega \approx 2\beta \implies Q \approx \frac{\omega_0}{2\beta}$$
 (8.3.16)

De esta forma Q es una especie de inverso de un error relativo, y cuanto mayor sea este, más estrecha será la banda de resonancia. A su vez, según las interpretaciones anteriores, a mayor Q, menor será el amortiguamiento y menor energía será disipada.

Desfase

Analizando (8.3.4), vemos que cuando $\omega \to \omega_0$, $\tan \delta \to \infty$ y por lo tanto $\delta \to \pi/2 + \pi k_1$. Si $\omega \to 0^+$, entonces $\tan \delta \to 0^+$ y $\delta \to 0 + \pi k_2$, y si $\omega \to \infty$, entonces $\tan \delta \to 0^-$ y $\delta \to 0 + \pi k_3$.

Para que la función sea contínua, tomamos k=0 cuando $\omega<\omega_0$ y k=1 cuando $\omega>\omega_0$, de tal forma que definimos naturalmente $\delta(\omega_0)=\pi/2$.

Se observa este comportamiento en la figura de la derecha y como cambia la función en términos de β , haciéndose casi un escalon, pues cuando $\beta \to 0$, $\tan \delta \to 0$ y $\delta \to 0 + \pi k$.

Potencia

Definimos la potencia en general como la derivada del trabajo producido por una fuerza con respecto al tiempo, que podemos reescribir tal que

$$P(t) = \frac{dW}{dt} = F\frac{dx}{dt} = F\dot{x} \implies P(t) = \mathbf{F} \cdot \dot{\mathbf{x}}$$

Definimos entonces la potencia media como la integral del valor medio de la función P(t) durante un periodo entero, tal que

$$\bar{P} = \frac{1}{T} \int_0^T P(t)dt = \frac{1}{T} \int_{-T/2}^{T/2} P(t)dt$$
 (8.3.18)

Y haciendo la integral para un oscilador forzado obtenemos el siguiente resutado

$$P(t) = -mf_0 A\omega \cos(\omega t) \sin(\omega t - \delta) \quad \bar{P} = \frac{1}{2} mf_0 \omega A \sin \delta$$
 (8.3.19)

8.4. Fourier

Teorema de Fourier

Sea f(t) una función periódica, es decir, $\exists T$ tal que $f(t+T)=f(t) \ \forall t$, entoces podemos expresar f(t) de la siguiente forma

$$f(t) = \sum_{n=0}^{\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t) \quad \omega = \frac{2\pi}{T}$$
 (8.4.1)

Donde los coeficientes a_n y b_n vienen determinados por

$$a_{0} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)dt \quad a_{n} = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n\omega t)dt \quad b_{n} = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(n\omega t)dt$$
(8.4.2)

Si f(t) es par, $b_n = 0 \ \forall \ n$, y si f(t) es impar $a_n = 0 \ \forall \ n$.

Ortogonalidad

No se va a demostrar el Teorema de Fourier, eso implicaria demostrar que el conjunto de funciones

$$\{\cos(n\omega t), \sin(n\omega t)\}\ \ \forall\ n\in\mathbb{N}_0$$
 (8.4.3)

es completo (base de un espacio de Hilbert) y puede generar cualquier función periódica, pero sí podemos demostrar que el conjunto (8.4.3) forman un conjunto ortogonal bajo una determinada forma bilineal simétrica, que definimos como

$$\langle f, g \rangle = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)g(t)dx \tag{8.4.4}$$

De tal forma que si φ_i y φ_j son elementos cualesquiera de (8.4.3), se verifica haciendo las integrales correspondientes que

$$\langle \varphi_i, \varphi_i \rangle = \delta_{ii} \tag{8.4.5}$$

Entonces si suponemos que $f(t) = \sum c_k \varphi_k$, como tenemos en (8.4.1), podemos hallar los coeficientes del la siguiente forma

$$\langle f(t), \varphi_j \rangle = \langle \sum c_k \varphi_k, \varphi_j \rangle = \sum c_k \langle \varphi_k, \varphi_j \rangle = \sum c_k \delta_{kj} = c_j$$
 (8.4.6)

Realmente el sistema no es ortonormal, sino ortogonal, por que $\langle 1, 1 \rangle = 2$, de ahí que a_0 en (8.4.2) sea distinto que a_n , pero para $n \geq 1$, si que son ortonormales las funciones de acuerdo con (8.4.4).

Teorema de convergencia

Sea f(t) una función periódica, discontínua en un número numerable de puntos, la expresion (8.4.1) converge a f(t) en los puntos en los que la función es contínua y converge a $[f(t_0^+) + f(t_0^-)]/2$ en los puntos t_0 dónde f(t) no es contínua.

Por ejemplo, la función de dientes de sierra, o unos pulsos binarios periódicos, pueden representarse mediante una Serie de Fourier a pesar de no ser contínuas.

Oscilador forzado

Supongamos ahora un oscilador sometido a una fuerza externa genérica F(t) periódica con fracuencia angular ω , de tal forma que la expresión (8.3.1) podemos expresarla usando (8.4.1) como

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = f(t) = \sum_{n=0}^{\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$
 (8.4.7)

Primero tenemos que $x=\sum\limits_{}x_n$, puesto que la ecuación es lineal, y luego que $x_n=\Re \{Ce^{in\omega t}\}+\Im \{De^{in\omega t}\}$, de tal forma que

$$C(-n^2\omega^2 + 2i\beta n\omega + \omega_0^2)e^{in\omega t} = a_n e^{in\omega t}$$
(8.4.8)

$$D(-n^2\omega^2 + 2i\beta n\omega + \omega_0^2)e^{in\omega t} = b_n e^{in\omega t}$$
(8.4.9)

Nos quedan entonces de forma simlar a (8.3.3), (8.3.4) y (8.3.5), que la solución estacionaria es

$$A_n = \frac{a_n}{\sqrt{(\omega_0^2 - n^2 \omega^2)^2 + 4n^2 \omega^2 \beta^2}} \quad B_n = \frac{b_n}{\sqrt{(\omega_0^2 - n^2 \omega^2)^2 + 4n^2 \omega^2 \beta^2}} \quad (8.4.10)$$

$$\tan \delta_n = \frac{2n\omega\beta}{\omega_0^2 - n^2\omega^2} \tag{8.4.11}$$

$$x = \sum_{n=0}^{\infty} A_n \cos(n\omega t - \delta_n) + B_n \sin(n\omega t - \delta_n)$$
 (8.4.12)

Figura 9.1: Diagrama del sistema

Vamos a considerar el siguiente sistema, una partícula que parte con un momento \mathbf{p}_0 en $t \to -\infty$ paralelo a un cierto eje que llamaremos z, a una distancia b de este, y que por interacción con un blanco, se desvía y acaba obteniendo un momento \mathbf{p}_f en $t \to \infty$, que forma un ángulo θ con respecto a \mathbf{p}_0 .

Llamaremos a b el parámetro de impacto, y θ el ángulo de dispersión, de tal forma que estan relacionados, tal que $\theta=\theta(b)$ y $b=b(\theta)$, experimentalmente nos interesa más la segunda relación porque medir el ángulo de dispersión es mucho más sencillo que medir el parámetro de impacto, que en experimentos de fisica nuclear y de partículas en una distancia muy pequeña.

9.1. Sección eficaz

Vamos considerar el ejemplo de que el blanco es una bola maziza de radio R, habrá colisión si $b \le R$, de lo contrario no habrá colisión.

Definimos entonces la sección eficaz en este caso como $\sigma=\pi R^2$, que es el area transversa de la bola maziza.

Si ahora suponemos que la partícula es otra bola, con radio R_1 y el radio del blanco es R_2 , entonces ahora hay colisión si $b \le R_1 + R_2$, y entonces en este caso definimos la sección eficaz como $\sigma = \pi (R_1 + R_2)^2$.

Por lo que σ depende tanto de la partícula incidente como del blanco, y puede pensarse como un area transversa efectiva, es decir, la que se proyectada sobre el plano perpendicular a z, teniendo en cuenta el área de la partícula incidente.

Probabilidad

Vamos ahora a pasar a sistemas con más blancos, generalmente trataremos con láminas delgadas de algún material, de tal forma, que si A es el área de la lámina y δ es su grosor, que por lo general va a ser muy pequeño.

Podemos definir la densidad de blancos $n_b = N_b/A \ (9.1.1)$ como el número de blancos entre el área de la lámina.

Por otro lado cada blanco tiene una sección eficaz σ , y suponiendo que todos los blancos son iguales, tenemos que el área de todos los blancos es $N_b\sigma=n_bA\sigma$ (9.1.2), de tal forma que σ es la sección eficaz de uno de los blancos.

Tenemos entonces que si tenemos una distribución uniforme de partículas incidentes, la probabilidad de colisionar es

$$p_{\text{col.}} = \frac{\text{Área de todos los blancos}}{\text{Área total}} = \frac{n_b A \sigma}{A} = n_b \sigma$$
 (9.1.3)

De esta forma, tenemos que si tenemos $N_{\rm inc.}$ partículas incidentes, el número de partículas dispersadas, es decir, que colisionan, es

$$N_{\text{disp.}} = p_{\text{col.}} N_{\text{inc.}} = N_{\text{inc.}} n_b \sigma \tag{9.1.4}$$

Este tema se llama teoría de la dispersión, pero esta misma expresión se aplica a fenóminos similares como captura, la ionización, la fisión, etc.

Camino libre medio

Vamos a considerar la lámina como una superposición de pequeñas láminas de grosor, podemos reescribir la densidad de blancos como $n_b = N_b dx/V = \rho_b dx$ (9.1.5), entonces la probabilidad de colisionar con un blanco en una de esas láminas es $p_{\text{col.}}(dx) = \sigma \rho_b dx$ (9.1.6).

Llamaremos $p_{\rm N}(x)$ a la probabilidad de que una partícula incidente recorra una distancia x sin colisionar con un blanco, entoces podemos definir $p_{\rm col.}(x;x+dx)=p_{\rm N}(x)\cdot p_{\rm col.}(dx)$ (9.1.7) como la probabilidad de que ocurra una primera colisión entre x y dx que ocurre cuando ocurren a la vez que no ha chocado hasta llegar a x y que choca entre x y x+dx.

Por otro lado tenemos que el recíproco de $p_{\rm N}(x)$ es $p_{\rm col.}(x)$, la probabilidad de chocar al menos una vez al recorrer una distancia x, tal que $p_{\rm N}(x)+p_{\rm col.}(x)=1 \ \forall x \ (9.1.8)$, por lo tanto, también tenemos $p_{\rm N}(x+dx)+p_{\rm col.}(x+dx)=1 \ \forall x \ (9.1.9)$.

De esta forma podemos reescribir (9.1.7) como $p_{\text{col.}}(x; x + dx) = p_{\text{col.}}(x + dx) - p_{\text{col.}}(x) = p_{\text{N}}(x) - p_{\text{N}}(x + dx)$ (9.1.10), podemos expandirlo en taylor como

$$p_{\text{col.}}(x; x + dx) = -\frac{dp_{N}(x)}{dx}dx + O(dx^{2})$$
 (9.1.11)

Entonces usando ahora (9.1.7) y (9.1.6)

$$p_{\rm N}(x)\sigma\rho_b = -\frac{dp_{\rm N}(x)}{dx} \implies p_{\rm N}(x) = e^{-\rho_b\sigma x}$$
 (9.1.12)

Entonces sustituyendo de nuevo en (9.1.7) tenemos que

$$p_{\text{col.}}(x; x + dx) = \rho_b \sigma e^{-\rho_b \sigma x} dx \tag{9.1.13}$$

Y entonces el valor medio de la distancia recorrida sin colisionar será la siguiente integral sobre todos los posibles valores de \boldsymbol{x}

$$\lambda = \bar{x} = \int_0^\infty x p_{\text{col.}}(x; x + dx) = \frac{1}{\rho_b \sigma}$$
 (9.1.14)

Para un gas ideal tenemos que $PV = Nk_bT = nRT$, entonces en este caso el camino libre medio es $\lambda = k_bT/\sigma P$.

9.2. Sección eficaz diferencial

Vamos a estudiar la sección eficaz en función no de todas las partículas dispersadas, sino solo en aquellas dispersadas hacía un pequeño ángulo sólido alrededor de una cierta dirección concreta, especificada por los ángulos esféricos (ψ, φ) , el polar y el azimutal, respectivamente, medidos desde el blanco.

Para ello vamos vamos a calcular la sección eficaz por ángulo solido, que es una función de los dos ángulos, tal que

$$\frac{d\sigma(\psi,\varphi)}{d\Omega} \quad d\sigma(d\Omega,\psi,\varphi) = \frac{d\sigma(\psi,\varphi)}{d\Omega}d\Omega \quad N_{\text{disp.}}(d\Omega,\psi,\varphi) = N_{\text{inc.}}n_b d\sigma(d\Omega,\psi,\varphi)$$
(9.2.1)

De tal forma que la sección eficazz total será

$$\sigma = \int d\sigma = \int \frac{d\sigma(\psi, \varphi)}{d\Omega} d\Omega = \int_0^{2\pi} \int_0^{\pi} \frac{d\sigma(\psi, \varphi)}{d\Omega} \sin\psi d\psi d\varphi \tag{9.2.2}$$

$d\sigma/d\Omega$ en términos de b

Vamos a asumir que tenemos simetría azimutal, es decir, que $d\sigma/d\Omega$ no depende de φ y que la dispersión ocurre para el mismo ángulo φ con el que llega la partícula incidente.

Como se observa en la figura superior , si variamos b por db, el área resultante, $d\sigma$, es la expresión ahí escrita, y este cambio resulta en un cambio del ángulo de dispersión que traza un ángulo sólido $d\Omega$ cuya expresión es la que se observa, y que se puede obtener integrando el ángulo φ en la definición del diferencial de angulo sólido. Entonces diviendo ambos y tomando el valor absoluto por que $db/d\theta < 0$, y tanto $d\sigma > 0$ como $d\Omega > 0$, entonces tenemos que

$$\frac{d\sigma(\theta)}{d\Omega} = \frac{b}{\sin\theta} \left| \frac{db}{d\theta} \right| \tag{9.2.3}$$

Es importante destacar que en general $\psi \neq \theta$, y que la expresión anterior solo es válida para distancias largas con respecto al blanco, tal que $\psi \to \theta$, puesto que el ángulo tenemos que medirlo desde un punto fijo, como es el blanco. En general tendremos

$$\frac{d\sigma(\psi)}{d\Omega} = \frac{b}{\sin\psi} \left| \frac{db}{d\psi} \right| \tag{9.2.4}$$

Sección eficaz de Rutherford

Vamos a describir la sección eficaz que desarrolló Ernest Rutherford basada en su módelo atómico, incidiendo partículas α , cuya posterior verificación experimental demostró que la composición de los átomos es aproximadamente una masa cargada positivamente en un núcleo.

Las partículas α son ${}^4_2\mathrm{He}^{2+}$, y el blanco será una lámina de oro, con núcleos de ${}^{197}_{79}\mathrm{Au}^{97+}$. Tenemos que $m_{\alpha} \ll m_{\mathrm{Au}}$, lo que implica que si la energía con la que inciden las partículas α es pequeña, podemos considerar que los núcleos de oro permanecen inmóviles. Consideraremos además que en esta escala de energías la dispersión es elástica.

Tenemos entonces que al acercarse la partícula α , con un parámetro de impacto mucho menor al radio atómico, por que de lo contrario los electrones apantallarían el núcleo, se ve sometido aproximadamente a la fuerza de Coulomb, tal que q es la carga de una partícula α y Q es la mása de un núcleo de oro.

$$\mathbf{F}(r) = \frac{kqQ}{r^2} \tag{9.2.5}$$

Si suponemos que es una colisión elástica, entoces $|\mathbf{p}_0| = |\mathbf{p}_f|$, y forman un triángulo isósceles tal que

$$|\Delta \mathbf{p}| = 2|\mathbf{p}|\sin\frac{\theta}{2} \tag{9.2.6}$$

La hipérbola que se traza por (9.2.6) es simétrica con respecto a un pericentro, que unimos con el blanco mediante un vector \mathbf{u} , que nos define un ángulo ϑ , cuando $t \to \infty$, entonces $\vartheta \to \vartheta_0$ y cuando $t \to -\infty$, entonces $\vartheta \to -\vartheta_0$, tal que $2\vartheta_0 + \theta = \pi$ (9.2.7), algo que también verifican los ángulos complementarios del triángulo isósceles, por lo tanto $\alpha = \vartheta$, por lo tanto $\Delta \mathbf{p} || \mathbf{u}$.

Por otro lado tenemos que

$$\Delta \mathbf{p} = \int_{-\infty}^{\infty} \mathbf{F} dt \tag{9.2.8}$$

Por la discusión anterior, sabemos entonces que la única componente de $\Delta \mathbf{p}$ que sobrevive es la proyección sobre \mathbf{u} , y como $\mathbf{F}||\mathbf{r}$, el ángulo que forma con \mathbf{u} es ϑ , así

$$|\Delta \mathbf{p}| = \int_{-\infty}^{\infty} |\mathbf{F}| \cos \vartheta dt \tag{9.2.9}$$

Ahora haremos un cambio de variable a ϑ , tal que si $\dot{\vartheta}=d\vartheta/dt$, $dt=d\vartheta/\dot{\vartheta}$ (9.2.10). Para entontrar $\dot{\vartheta}$, aplicaremos conservación del momento angular, que para un movimiento en un plano

$$J = m_{\alpha} r^2 \dot{\vartheta} \quad J_0 = r p_0 \sin \gamma \tag{9.2.11}$$

Dónde γ es cualquiera de los dos ángulos entre r y el eje z, puesto que su seno es el mismo, y este es por definición b/r, tal que

$$J_0 = p_0 b \implies \dot{\vartheta} = \frac{p_0 b}{m_\alpha r^2} \tag{9.2.12}$$

Entonces sustituyendo en (9.2.9) el resultado de (9.2.10), teniendo en cuenta los límites que hemos expresado en el párrafo de (9.2.7), y el resultado de (9.2.12) tenemos que

$$\Delta \mathbf{p} = \frac{m_{\alpha} kqQ}{p_0 b} \int_{-\vartheta_0}^{\vartheta_0} \cos \vartheta d\vartheta = \frac{m_{\alpha} kqQ}{p_0 b} [\sin \vartheta]_{-\vartheta_0}^{\vartheta_0} = \frac{2m_{\alpha} kqQ}{p_0 b} \sin \vartheta_0 \qquad (9.2.13)$$

Usando (9.2.7) llegamos a

$$\sin \theta_0 = \sin \left(\frac{\pi}{2} - \frac{\theta}{2}\right) = \cos \frac{\theta}{2} \tag{9.2.14}$$

Y ahora igualando (9.2.13), habiendo sustituido (9.2.14) y (9.2.6) y despejando b, llegamos a

$$b(\theta) = \frac{m_{\alpha}kqQ}{p_0^2}\cot\frac{\theta}{2} \tag{9.2.15}$$

Entonces para aplicar (9.2.3) hacemos la siguiente derivada

$$\frac{d}{d\theta}\cot\frac{\theta}{2} = -\frac{1}{2\sin^2(\theta/2)}\tag{9.2.16}$$

De esta forma sustituyendo en (9.2.3), y usando que $sin\theta = 2\sin(\theta/2)\cos(\theta/2)$

$$\frac{d\sigma(\theta)}{d\Omega} = \left(\frac{m_{\alpha}kqQ}{p_0^2}\right)^2 \frac{\cot\theta/2}{2\sin\theta\sin^2(\theta/2)} = \left(\frac{m_{\alpha}kqQ}{2p_0^2\sin^2(\theta/2)}\right)^2 \tag{9.2.17}$$

Que conociendo que $E_0=p_0^2/2m_{\alpha}$ llegamos a

$$\frac{d\sigma(\theta)}{d\Omega} = \left(\frac{kqQ}{4E\sin^2(\theta/2)}\right)^2 \tag{9.2.18}$$

Levi-Civita 10