(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organizati n Internati nal Bureau

(43) International Publication Date 18 October 2001 (18.10.2001)

PCT

(10) Internati nal Publication Number WO 01/77327 A1

- (51) International Patent Classification⁷: C12N 15/12, 15/11, 5/10, 1/21, C07K 14/705, 14/775, 14/47, 16/28, C12Q 1/68, A61K 49/00, G01N 33/50, 33/53, 33/68, A01K 67/027, A61K 48/00
- (21) International Application Number: PCT/US00/16951
- (22) International Filing Date: 21 June 2000 (21.06.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

5 April 2000 (05.04.2000) US

09/543,771 09/544,398

5 April 2000 (05.04.2000) U

- (71) Applicant (for all designated States except US): GENOME THERAPEUTICS CORPORATION [US/US]; 100 Beaver Street, Waltham, MA 02453-8443 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): CARULLI, John, P. [US/US]; 9 Harris Drive, Southboro, MA 01772 (US).

LITTLE, Randall, D. [US/US]; 62A Marshall Street, Needham, MA 02192 (US). RECKER, Robert, R. [US/US]; 3309 South 116th Street, Omaha, NE 68144 (US). JOHNSON, Mark, L. [US/US]; 16216 N. Circle, Omaha, NE 68135 (US).

- (74) Agents: REA, Teresa, Stanek; Burns, Doane, Swecker & Mathis, L.L.P., P.O. Box 1404, Alexandria, VA 22313-1404 et al. (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: THE HIGH BONE MASS GENE OF 11q13.3

Model for a LDL Receptor-Related protein, Zmax1

YWTD Spacer

RGD (Extracellular attachment site) (1063-1065)

Binding Site for LDL and Calcium: (A: 1257-1294) (B:

Transmembrane Region (1387-1408)

- Ideal PEST region (With CK-II phosphorylation site)
- Internalization Domain (1419-1422)
- Site of Glycine to Valine change in HBM allele

(57) Abstract: The present invention relates to methods and materials used to isolate and detect a high bone mass gene and a corresponding wild-type gene, and mutants thereof. The present invention also relates to the high bone mass gene, the corresponding wild-type gene, and mutants thereof. The genes identified in the present invention are implicated in bone development and in focal adhesion signaling. The invention also provides nucleic acids, including coding sequences, oligonucleotide primers and probes, proteins, cloning vectors, expression vectors, transformed hosts, methods of developing pharmaceutical compositions, methods of identifying molecules involved in bone development, and methods of diagnosing and treating diseases involved in bone development. In preferred embodiments, the present invention is directed to methods for treating, diagnosing and preventing osteoporosis.

WO 01/77327 A

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

-1-

THE HIGH BONE MASS GENE OF 11q13.3

FIELD OF THE INVENTION

5

10

15

20

25

The present invention relates generally to the field of genetics, genomics and molecular biology. More particularly, the invention relates to methods and materials used to isolate, detect and sequence a high bone mass gene and corresponding wild-type gene, and mutants thereof. The present invention also relates to the high bone mass gene, the corresponding wild-type gene, and mutants thereof. The genes identified in the present invention are implicated in the ontology and physiology of bone development. The invention also provides nucleic acids, proteins, cloning vectors, expression vectors, transformed hosts, methods of developing pharmaceutical compositions, methods of identifying molecules involved in bone development, and methods of diagnosing and treating diseases involved in bone development. In preferred embodiments, the present invention is directed to methods for treating, diagnosing, preventing and screening for normal and abnormal conditions of bone, including metabolic bone diseases such as osteoporosis.

BACKGROUND OF THE INVENTION

Two of the most common types of osteoporosis are postmenopausal and senile osteoporosis. Osteoporosis affects men as well as women, and, taken with other abnormalities of bone, presents an ever-increasing health risk for an aging population. The most common type of osteoporosis is that associated with menopause. Most women lose between 20-60% of the bone mass in the trabecular compartment of the bone within 3-6 years after the cessation of menses. This rapid loss is generally associated with an increase of bone resorption and formation. However, the resorptive cycle is more dominant and the result is a net loss of bone mass. Osteoporosis is a common and serious disease among postmenopausal women. There are an estimated 25 million women in the United States alone who are afflicted with this disease. The results of osteoporosis are both personally

-2-

harmful, and also account for a large economic loss due to its chronicity and the need for extensive and long-term support (hospitalization and nursing home care) from the disease sequelae. This is especially true in more elderly patients.

Additionally, while osteoporosis is generally not thought of as a life-threatening condition, a 20-30% mortality rate is related to hip fractures in elderly women. A large percentage of this mortality rate can be directly associated with postmenopausal osteoporosis.

5

10

15

20

25

The most vulnerable tissue in the bone to the effects of postmenopausal osteoporosis is the trabecular bone. This tissue is often referred to as spongy bone and is particularly concentrated near the ends of the bone near the joints and in the vertebrae of the spine. The trabecular tissue is characterized by small structures which inter-connect with each other as well as the more solid and dense cortical tissue which makes up the outer surface and central shaft of the bone. This criss-cross network of trabeculae gives lateral support to the outer cortical structure and is critical to the biomechanical strength of the overall structure. In postmenopausal osteoporosis, it is primarily the net resorption and loss of the trabeculae which lead to the failure and fracture of the bone. In light of the loss of the trabeculae in postmenopausal women, it is not surprising that the most common fractures are those associated with bones which are highly dependent on trabecular support, e.g., the vertebrae, the neck of the femur, and the forearm. Indeed, hip fracture, Colle's fractures, and vertebral crush fractures are indicative of postmenopausal osteoporosis.

One of the earliest generally accepted methods for treatment of postmenopausal osteoporosis was estrogen replacement therapy. Although this therapy frequently is successful, patient compliance is low, primarily due to the undesirable side-effects of chronic estrogen treatment. Frequently cited side-effects of estrogen replacement therapy include reinitiation of menses, bloating, depression, and fear of breast or uterine cancer. In order to limit the known threat of uterine cancer in those women who have not undergone a hysterectomy, a protocol of

PCT/US00/16951

5

10

20

25

estrogen and progestin cyclic therapy is often employed. This protocol is similar to that which is used in birth control regimens, and often is not tolerated by women because of the side-effects characteristic of progestin. More recently, certain antiestrogens, originally developed for the treatment of breast cancer, have been shown in experimental models of postmenopausal osteoporosis to be efficacious. Among these agents is raloxifene (See, U.S. Patent No. 5,393,763, and Black et al, J. Clin. Invest., 93:63-69 (1994)). In addition, tamoxifene, a widely used clinical agent for the treatment of breast cancer, has been shown to increase bone mineral density in post menopausal women suffering from breast cancer (Love et al, N. Engl. J. Med., 326:852-856 (1992)).

Another therapy for the treatment of postmenopausal osteoporosis is the use of calcitonin. Calcitonin is a naturally occurring peptide which inhibits bone resorption and has been approved for this use in many countries (Overgaard et al, Br. Med. J., 305:556-561 (1992)). The use of calcitonin has been somewhat limited, however. Its effects are very modest in increasing bone mineral density and the treatment is very expensive. Another therapy for the treatment of postmenopausal osteoporosis is the use of bis-phosphonates. These compounds were originally developed for use in Paget's disease and malignant hypercalcemia. They have been shown to inhibit bone resorption. Alendronate, one compound of this class, has been approved for the treatment of postmenopausal osteoporosis. These agents may be helpful in the treatment of osteoporosis, but these agents also have potential liabilities which include osteomalacia, extremely long half-life in bone (greater than 2 years), and possible "frozen bone syndrome," e.g., the cessation of normal bone remodeling.

Senile osteoporosis is similar to postmenopausal osteoporosis in that it is marked by the loss of bone mineral density and resulting increase in fracture rate, morbidity, and associated mortality. Generally, it occurs in later life, i.e., after 70 years of age. Historically, senile osteoporosis has been more common in females, but with the advent of a more elderly male population, this disease is becoming a

-4.

major factor in the health of both sexes. It is not clear what, if any, role hormones such as testosterone or estrogen have in this disease, and its etiology remains obscure. Treatment of this disease has not been very satisfactory. Hormone therapy, estrogen in women and testosterone in men, has shown equivocal results; calcitonin and bis-phosphonates may be of some utility.

5

10

15

20

25

The peak mass of the skeleton at maturity is largely under genetic control. Twin studies have shown that the variance in bone mass between adult monozygotic twins is smaller than between dizygotic twins (Slemenda et al, J. Bone Miner. Res., 6:561-567 (1991); Young et al, J. Bone Miner. Res., 6:561-567 (1995); Pocock et al, J. Clin. Invest., 80:706-710 (1987); Kelly et al, J. Bone Miner. Res., 8:11-17 (1993)), and it has been estimated that up to 60% or more of the variance in skeletal mass is inherited (Krall et al, J. Bone Miner. Res., 10:S367 (1993)). Peak skeletal mass is the most powerful determinant of bone mass in elderly years (Hui et al, Ann. Int. Med., 111:355-361 (1989)), even though the rate of age-related bone loss in adult and later life is also a strong determinant (Hui et al, Osteoporosis Int., 1:30-34 (1995)). Since bone mass is the principal measurable determinant of fracture risk, the inherited peak skeletal mass achieved at maturity is an important determinant of an individual's risk of fracture later in life. Thus, study of the genetic basis of bone mass is of considerable interest in the etiology of fractures due to osteoporosis.

Recently, a strong interest in the genetic control of peak bone mass has developed in the field of osteoporosis. The interest has focused mainly on candidate genes with suitable polymorphisms to test for association with variation in bone mass within the normal range, or has focused on examination of genes and gene loci associated with low bone mass in the range found in patients with osteoporosis. The vitamin D receptor locus (VDR) (Morrison et al, *Nature*, 367:284-287 (1994)), PTH gene (Howard et al, *J. Clin. Endocrinol. Metab.*, 80:2800-2805 (1995); Johnson et al, *J. Bone Miner. Res.*, 10:S462 (1995)) and the estrogen receptor gene (Hosoi et al, *J. Bone Miner. Res.*, 10:S170 (1995); Morrison et al, *Nature*, 367:284-287 (1994)) have figured most prominently

-5-

in this work. These studies are difficult because bone mass (the phenotype) is a continuous, quantitative, polygenic trait, and is confounded by environmental factors such as nutrition, co-morbid disease, age, physical activity, and other factors. Also, this type of study design requires large numbers of subjects. In particular, the results of VDR studies to date have been confusing and contradictory (Garnero et al, J. Bone Miner. Res., 10:1283-1288 (1995); Eisman et al, J. Bone. Miner. Res., 10:1289-1293 (1995); Peacock, J. Bone Miner. Res., 10:1294-1297 (1995)). Furthermore, the work thus far has not shed much light on the mechanism(s) whereby the genetic influences might exert their effect on bone mass.

10

15

20

5

While it is well known that peak bone mass is largely determined by genetic rather than environmental factors, studies to determine the gene loci (and ultimately the genes) linked to variation in bone mass are difficult and expensive. Study designs which utilize the power of linkage analysis, e.g., sib-pair or extended family, are generally more informative than simple association studies, although the latter do have value. However, genetic linkage studies involving bone mass are hampered by two major problems. The first problem is the phenotype, as discussed briefly above. Bone mass is a continuous, quantitative trait, and establishing a discrete phenotype is difficult. Each anatomical site for measurement may be influenced by several genes, many of which may be different from site to site. The second problem is the age component of the phenotype. By the time an individual can be identified as having low bone mass, there is a high probability that their parents or other members of prior generations will be deceased and therefore unavailable for study, and younger generations may not have even reached peak bone mass, making their phenotyping uncertain for genetic analysis.

25

Regardless, linkage analysis can be used to find the location of a gene causing a hereditary "disorder" and does not require any knowledge of the biochemical nature of the disorder, i.e., a mutated protein that is believed to cause the disorder does not need to be known. Traditional approaches depend on assumptions concerning the disease process that might implicate a known protein as

-6-

a candidate to be evaluated. The genetic localization approach using linkage analysis can be used to first find the general chromosomal region in which the defective gene is located and then to gradually reduce the size of the region in order to determine the location of the specific mutated gene as precisely as possible. After the gene itself is discovered within the candidate region, the messenger RNA and the protein are identified and, along with the DNA, are checked for mutations.

5

10

15

20

25

The genetic localization approach has practical implications since the location of the disease can be used for prenatal diagnosis even before the altered gene that causes the disease is found. Linkage analysis can enable families, even many of those that do not have a sick child, to know whether they are carriers of a disease gene and to evaluate the condition of an unborn child through molecular diagnosis. The transmission of a disease within families, then, can be used to find the defective gene. As used herein, reference to "high bone mass" (HBM) is analogous to reference to a disease state, although from a practical standpoint high bone mass can actually help a subject avoid the disease known as osteoporosis.

Linkage analysis is possible because of the nature of inheritance of chromosomes from parents to offspring. During meiosis, the two parental homologues pair to guide their proper separation to daughter cells. While they are lined up and paired, the two homologues exchange pieces of the chromosomes, in an event called "crossing over" or "recombination." The resulting chromosomes are chimeric, that is, they contain parts that originate from both parental homologues. The closer together two sequences are on the chromosome, the less likely that a recombination event will occur between them, and the more closely linked they are. In a linkage analysis experiment, two positions on the chromosomes are followed from one generation to the next to determine the frequency of recombination between them. In a study of an inherited disease, one of the chromosomal positions is marked by the disease gene or its normal counterpart, i.e., the inheritance of the chromosomal region can be determined by examining whether the individual displays symptoms of the disorder or not. The other position is marked by a DNA

-7-

sequence that shows natural variation in the population such that the two homologues can be distinguished based on the copy of the "marker" sequence that they possess. In every family, the inheritance of the genetic marker sequence is compared to the inheritance of the disease state. If, within a family carrying an autosomal dominant disorder such as high bone mass, every affected individual carries the same form of the marker and all the unaffected individuals carry at least one different form of the marker, there is a great probability that the disease gene and the marker are located close to each other. In this way, chromosomes may be systematically checked with known markers and compared to the disease state. The data obtained from the different families is combined, and analyzed together by a computer using statistical methods. The result is information indicating the probability of linkage between the genetic marker and the disease allowing different distances between them. A positive result can mean that the disease is very close to the marker, while a negative result indicates that it is far away on that chromosome, or on an entirely different chromosome.

5

10

15

20

25

Linkage analysis is performed by typing all members of the affected family at a given marker locus and evaluating the co-inheritance of a particular disease state with the marker probe, thereby determining how often the two of them are co-inherited. The recombination frequency can be used as a measure of the genetic distance between two gene loci. A recombination frequency of 1% is equivalent to 1 map unit, or 1 centiMorgan (cM), which is roughly equivalent to 1,000 kb of DNA. This relationship holds up to frequencies of about 20% or 20 cM.

The entire human genome is 3,300 cM long. In order to find an unknown disease gene within 5-10 cM of a marker locus, the whole human genome can be searched with roughly 330 informative marker loci spaced at approximately 10 cM intervals (Botstein et al, Am. J. Hum. Genet., 32:314-331 (1980)). The reliability of linkage results is established by using a number of statistical methods. The method most commonly used for the analysis of linkage in humans is the LOD score method (Morton, Prog. Clin. Biol. Res., 147:245-265 (1984), Morton et al, Am. J. Hum.

Genet., 38:868-883 (1986)) which was incorporated into the computer program LIPED by Ott, Am. J. Hum. Genet., 28:528-529 (1976). LOD scores are the logarithm of the ratio of the likelihood that two loci are linked at a given distance to that they are not linked (>50 cM apart). The advantage of using logarithmic values is that they can be summed among families with the same disease. This becomes necessary given the relatively small size of human families.

5

10

15

20

25

By convention, a total LOD score greater than + 3.0 (that is, odds of linkage at the specified recombination frequency being 1000 times greater than odds of no linkage) is considered to be significant evidence for linkage at that particular recombination frequency. A total LOD score of less than - 2.0 (that is, odds of no linkage being 100 times greater than odds of linkage at the specified frequency) is considered to be strong evidence that the two loci under consideration are not linked at that particular recombination frequency. Until recently, most linkage analyses have been performed on the basis of two-point data, which is the relationship between the disorder under consideration and a particular genetic marker. However, as a result of the rapid advances in mapping the human genome over the last few years, and concomitant improvements in computer methodology, it has become feasible to carry out linkage analyses using multi-point data. Multi-point analysis provide a simultaneous analysis of linkage between the disease and several linked genetic markers, when the recombination distance among the markers is known.

Multi-point analysis is advantageous for two reasons. First, the informativeness of the pedigree is usually increased. Each pedigree has a certain amount of potential information, dependent on the number of parents heterozygous for the marker loci and the number of affected individuals in the family. However, few markers are sufficiently polymorphic as to be informative in all those individuals. If multiple markers are considered simultaneously, then the probability of an individual being heterozygous for at least one of the markers is greatly increased. Second, an indication of the position of the disease gene among the markers may be determined. This allows identification of flanking markers, and thus

-9-

eventually allows isolation of a small region in which the disease gene resides. Lathrop et al, *Proc. Natl. Acad. Sci. USA*, 81:3443-3446 (1984) have written the most widely used computer package, LINKAGE, for multi-point analysis.

There is a need in the art for identifying the gene associated with a high bone mass phenotype. The present invention is directed to this, as well as other, important ends.

5

10

15

20

25

SUMMARY OF THE INVENTION

The present invention describes the Zmax1 gene and the HBM gene on chromosome 11q13.3 by genetic linkage and mutation analysis. The use of additional genetic markers linked to the genes has aided this discovery. By using linkage analysis and mutation analysis, persons predisposed to HBM may be readily identified. Cloning methods using Bacterial Artificial Chromosomes have enabled the inventors to focus on the chromosome region of 11q13.3 and to accelerate the sequencing of the autosomal dominant gene. In addition, the invention identifies the Zmax1 gene and the HBM gene, and identifies the guanine-to-thymine polymorphism mutation at position 582 in the Zmax1 gene that produces the HBM gene and the HBM phenotype.

The present invention identifies the Zmax1 gene and the HBM gene, which can be used to determine if people are predisposed to HBM and, therefore, not susceptible to diseases characterized by reduced bone density, including, for example, osteoporosis, or are predisposed and susceptible to diseases characterized by abnormally high bone density, such as, for example, osteoporosis. Older individuals carrying the HBM gene express the HBM protein, and, therefore, do not develop osteoporosis. In other words, the HBM gene is a suppressor of osteoporosis. This *in vivo* observation is a strong evidence that treatment of normal individuals with the HBM gene or protein, or fragments thereof, will ameliorate osteoporosis.

-10-

Moreover, such treatment will be indicated in the treatment of bone lesions, particularly bone fractures, for bone remodeling in the healing of such lesions. For example, persons predisposed to or suffering from stress fractures (i.e., the accumulation of stress-induced microfractures, eventually resulting in a true fracture through the bone cortex) may be identified and/or treated by means of the invention. Moreover, the methods and compositions of the invention will be of use in the treatment of secondary osteoporosis, where the course of therapy involves bone remodeling, such as endocrine conditions accompanying corticosteroid administration, hyperthyroidism, hypogonadism, hematologic malignancies, malabsorption and alcoholism, as well as disorders associated with vitamin D and/or phosphate metabolism, such as osteomalacia and rickets, and diseases characterized by abnormal or disordered bone remodeling, such as Paget's disease, and in neoplasms of bone, which may be benign or malignant.

5

10

15

20

25

In various embodiments, the present invention is directed to nucleic acids, proteins, vectors, and transformed hosts of HBM and Zmax1.

Additionally, the present invention is directed to applications of the above embodiments of the invention including, for example, gene therapy, pharmaceutical development, and diagnostic assays for bone development disorders. In preferred embodiments, the present invention is directed to methods for treating, diagnosing, preventing and screening for osteoporosis.

These and other aspects of the present invention are described in more detail below.

BRIEF DESCRIPTION OF THE FIGURES

Fig. 1 shows the pedigree of the individuals used in the genetic linkage studies. Under each individual is an ID number, the z-score for spinal BMD, and the allele calls for the critical markers on chromosome 11. Solid symbols represent "affected" individuals. Symbols containing "N" are "unaffected" individuals. DNA

5

10

15

20

25

from 37 individuals was genotyped. Question marks denote unknown genotypes or individuals who were not genotyped.

Fig. 2 depicts the BAC/STS content physical map of the HBM region in 11q13.3. STS markers derived from genes, ESTs, microsatellites, random sequences, and BAC endsequences are denoted above the long horizontal line. For markers that are present in GDB the same nomenclature has been used. Locus names (D11S####) are listed in parentheses after the primary name if available. STSs derived from BAC endsequences are listed with the BAC name first followed by L or R for the left and right end of the clone, respectively. The two large arrows indicate the genetic markers that define the HBM critical region. The horizontal lines below the STSs indicate BAC clones identified by PCR-based screening of a nine-fold coverage BAC library. Open circles indicate that the marker did not amplify the corresponding BAC library address during library screening. Clone names use the following convention: B for BAC, the plate, row and column address, followed by -H indicating the HBM project (i.e., B36F16-H).

Figs. 3A-3F show the genomic structure of Zmax1 with flanking intron sequences. Translation is initiated by the underlined "ATG" in exon 1. The site of the polymorphism in the HBM gene is in exon 3 and is represented by the underlined "G," whereby this nucleotide is a "T" in the HBM gene. The 3' untranslated region of the mRNA is underlined within exon 23 (exon 1, SEQ ID NO:40; exon 2, SEQ ID NO:41; exon 3, SEQ ID NO:42; exon 4, SEQ ID NO:43; exon 5, SEQ ID NO:44; exon 6, SEQ ID NO:45; exon 7, SEQ ID NO:46; exon 8, SEQ ID NO:47; exon 9, SEQ ID NO:48; exon 10, SEQ ID NO:49; exon 11, SEQ ID NO:50; exon 12, SEQ ID NO:51; exon 13, SEQ ID NO:52; exon 14, SEQ ID NO:53; exon 15, SEQ ID NO:54; exon 16, SEQ ID NO:55; exon 17, SEQ ID NO:56; exon 18, SEQ ID NO:57; exon 19, SEQ ID NO:58; exon 20, SEQ ID NO:59; exon 21, SEQ ID NO:60; exon 22, SEQ ID NO:61; and exon 23; SEQ ID NO:62).

5

10

15

25

- Fig. 4 shows the domain organization of Zmax1, including the YWTD spacers, the extracellular attachment site, the binding site for LDL and calcium, the cysteine-rich growth factor repeats, the transmembrane region, the ideal PEST region with the CK-II phosphorylation site and the internalization domain. Fig. 4 also shows the site of the glycine to valine change that occurs in the HBM protein. The signal peptide is located at amino acids 1-22, the extracellular domain is located at amino acids 23-1385, the transmembrane segment is located at amino acids 1386-1413, and the cytoplasmic domain is located at amino acids 1414-1615.
- Fig. 5 is a schematic illustration of the BAC contigs B527D12 and B200E21 in relation to the HBM gene.
 - Figs. 6A-6E are the nucleotide and amino acid sequences of the wild-type gene, Zmax1. The location for the base pair substitution at nucleotide 582, a guanine to thymine, is underlined. This allelic variant is the HBM gene. The HBM gene encodes for a protein with an amino acid substitution of glycine to valine at position 171. The 5' untranslated region (UTR) boundaries bases 1 to 70, and the 3' UTR boundaries bases 4916-5120.
 - Figs. 7A and 7B are northern blot analyses showing the expression of Zmax1 in various tissues.
 - Fig. 8 is a PCR product analysis.
- Fig. 9 is allele specific oligonucleotide detection of the Zmax1 exon 3 mutation.
 - Fig. 10 is the cellular localization of mouse Zmax1 by in situ hybridization at 100X magnification using sense and antisense probes.
 - Fig. 11 is the cellular localization of mouse Zmax1 by in situ hybridization at 400X magnification using sense and antisense probes.
 - Fig. 12 is the cellular localization of mouse Zmax1 by in situ hybridization of osteoblasts in the endosteum at 400X magnification using sense and antisense probes.
 - Fig. 13 shows antisense inhibition of Zmax1 expression in MC-3T3 cells.

-13-

Fig. 14 shows a Zmax1 Exon3 Allele Specific Oligonucleotide (ASO) assay which illustrates the rarity of the HBM1 allele (right panels; T-specific oligo; 58°C Wash) as compared to the wild-type Zmax1 allele (left panels, G-specific oligo; 55°C Wash). The positive spots appearing in the right panels were positive controls.

Fig. 15 depicts a model representing the potential role of Zmax1 in focal adhesion signaling.

5

10

15

20

25

DETAILED DESCRIPTION OF THE INVENTION

To aid in the understanding of the specification and claims, the following definitions are provided.

"Gene" refers to a DNA sequence that encodes through its template or messenger RNA a sequence of amino acids characteristic of a specific peptide. The term "gene" includes intervening, non-coding regions, as well as regulatory regions, and can include 5' and 3' ends.

"Gene sequence" refers to a DNA molecule, including both a DNA molecule which contains a non-transcribed or non-translated sequence. The term is also intended to include any combination of gene(s), gene fragment(s), non-transcribed sequence(s) or non-translated sequence(s) which are present on the same DNA molecule.

The sequences of the present invention may be derived from a variety of sources including DNA, cDNA, synthetic DNA, synthetic RNA or combinations thereof. Such sequences may comprise genomic DNA which may or may not include naturally occurring introns. Moreover, such genomic DNA may be obtained in association with promoter regions or poly (A) sequences. The sequences, genomic DNA or cDNA may be obtained in any of several ways. Genomic DNA can be extracted and purified from suitable cells by means well known in the art. Alternatively, mRNA can be isolated from a cell and used to produce cDNA by reverse transcription or other means.

-14-

"cDNA" refers to complementary or copy DNA produced from an RNA template by the action of RNA-dependent DNA polymerase (reverse transcriptase). Thus, a "cDNA clone" means a duplex DNA sequence complementary to an RNA molecule of interest, carried in a cloning vector or PCR amplified. This term includes genes from which the intervening sequences have been removed.

5

10

15

20

25

"Recombinant DNA" means a molecule that has been recombined by *in vitro* splicing cDNA or a genomic DNA sequence.

"Cloning" refers to the use of *in vitro* recombination techniques to insert a particular gene or other DNA sequence into a vector molecule. In order to successfully clone a desired gene, it is necessary to use methods for generating DNA fragments, for joining the fragments to vector molecules, for introducing the composite DNA molecule into a host cell in which it can replicate, and for selecting the clone having the target gene from amongst the recipient host cells.

"cDNA library" refers to a collection of recombinant DNA molecules containing cDNA inserts which together comprise the entire genome of an organism. Such a cDNA library can be prepared by methods known to one skilled in the art and described by, for example, Cowell and Austin, "cDNA Library Protocols," Methods in Molecular Biology (1997). Generally, RNA is first isolated from the cells of an organism from whose genome it is desired to clone a particular gene.

"Cloning vehicle" refers to a plasmid or phage DNA or other DNA sequence which is able to replicate in a host cell. The cloning vehicle is characterized by one or more endonuclease recognition sites at which such DNA sequences may be cut in a determinable fashion without loss of an essential biological function of the DNA, which may contain a marker suitable for use in the identification of transformed cells.

"Expression control sequence" refers to a sequence of nucleotides that control or regulate expression of structural genes when operably linked to those genes. These include, for example, the lac systems, the trp system, major operator and promoter regions of the phage lambda, the control region of fd coat protein and

-15-

other sequences known to control the expression of genes in prokaryotic or eukaryotic cells. Expression control sequences will vary depending on whether the vector is designed to express the operably linked gene in a prokaryotic or eukaryotic host, and may contain transcriptional elements such as enhancer elements, termination sequences, tissue-specificity elements and/or translational initiation and termination sites.

5

10

15

20

25

"Expression vehicle" refers to a vehicle or vector similar to a cloning vehicle but which is capable of expressing a gene which has been cloned into it, after transformation into a host. The cloned gene is usually placed under the control of (i.e., operably linked to) an expression control sequence.

"Operator" refers to a DNA sequence capable of interacting with the specific repressor, thereby controlling the transcription of adjacent gene(s).

"Promoter" refers to a DNA sequence that can be recognized by an RNA polymerase. The presence of such a sequence permits the RNA polymerase to bind and initiate transcription of operably linked gene sequences.

"Promoter region" is intended to include the promoter as well as other gene sequences which may be necessary for the initiation of transcription. The presence of a promoter region is sufficient to cause the expression of an operably linked gene sequence.

"Operably linked" means that the promoter controls the initiation of expression of the gene. A promoter is operably linked to a sequence of proximal DNA if upon introduction into a host cell the promoter determines the transcription of the proximal DNA sequence(s) into one or more species of RNA. A promoter is operably linked to a DNA sequence if the promoter is capable of initiating transcription of that DNA sequence.

"Prokaryote" refers to all organisms without a true nucleus, including bacteria.

"Eukaryote" refers to organisms and cells that have a true nucleus, including mammalian cells.

"Host" includes prokaryotes and eukaryotes, such as yeast and filamentous fungi, as well as plant and animal cells. The term includes an organism or cell that is the recipient of a replicable expression vehicle.

"Fragment" of a gene refers to any variant of the gene that possesses the biological activity of that gene.

5

10

15

20

25

"Variant" refers to a gene that is substantially similar in structure and biological activity or immunological characteristics to either the entire gene or to a fragment of the gene. Provided that the two genes possess a similar activity, they are considered variant as that term is used herein even if the sequence of amino acid residues is not identical.

"Amplification of nucleic acids" refers to methods such as polymerase chain reaction (PCR), ligation amplification (or ligase chain reaction, LCR) and amplification methods based on the use of Q-beta replicase. These methods are well known in the art and described, for example, in U.S. Patent Nos. 4,683,195 and 4,683,202. Reagents and hardware for conducting PCR are commercially available. Primers useful for amplifying sequences from the HBM region are preferably complementary to, and hybridize specifically to sequences in the HBM region or in regions that flank a target region therein. HBM sequences generated by amplification may be sequenced directly. Alternatively, the amplified sequence(s) may be cloned prior to sequence analysis.

"Antibodies" may refer to polyclonal and/or monoclonal antibodies and fragments thereof, and immunologic binding equivalents thereof, that can bind to the HBM proteins and fragments thereof or to nucleic acid sequences from the HBM region, particularly from the HBM locus or a portion thereof. The term antibody is used both to refer to a homogeneous molecular entity, or a mixture such as a serum product made up of a plurality of different molecular entities. Proteins may be prepared synthetically in a protein synthesizer and coupled to a carrier molecule and injected over several months into rabbits. Rabbit sera is tested for immunoreactivity to the HBM protein or fragment. Monoclonal antibodies may be made by injecting

mice with the proteins, or fragments thereof. Monoclonal antibodies will be screened by ELISA and tested for specific immunoreactivity with HBM protein or fragments thereof. Harlow et al, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1988). These antibodies will be useful in assays as well as pharmaceuticals.

"HBM" refers to high bone mass.

5

10

15

20

25

"HBM protein" refers to a protein that is identical to a Zmax1 protein except that it contains an alteration of glycine 171 to valine. An HBM protein is defined for any organism that encodes a Zmax1 true homologue. For example, a mouse HBM protein refers to the mouse Zmax1 protein having the glycine 170 to valine substitution.

"HBM gene" refers to the genomic DNA sequence found in individuals showing the HBM characteristic or phenotype, where the sequence encodes the protein indicated by SEQ ID NO: 4. The HBM gene and the Zmax1 gene are allelic. The protein encoded by the HBM gene has the property of causing elevated bone mass, while the protein encoded by the Zmax1 gene does not. The HBM gene and the Zmax1 gene differ in that the HBM gene has a thymine at position 582, while the Zmax1 gene has a guanine at position 582. The HBM gene comprises the nucleic acid sequence shown as SEQ ID NO: 2. The HBM gene may also be referred to as an "HBM polymorphism."

"Normal," "wild-type," "unaffected" and "Zmax1" all refer to the genomic DNA sequence that encodes the protein indicated by SEQ ID NO: 3. The Zmax1 gene has a guanine at position 582. The Zmax1 gene comprises the nucleic acid sequence shown as SEQ ID NO: 1. "Normal," "wild-type," "unaffected" and "Zmax1" also refer to allelic variants of the genomic sequence that encodes proteins that do not contribute to elevated bone mass. The Zmax1 gene is common in the human population, while the HBM gene is rare.

"5YWT+EGF" refers to a repeat unit found in the Zmax1 protein, consisting of five YWT repeats followed by an EGF repeat.

"Bone development" generally refers to any process involved in the change of bone over time, including, for example, normal development, changes that occur during disease states, and changes that occur during aging. "Bone development disorder" particularly refers to any disorders in bone development including, for example, changes that occur during disease states and changes that occur during aging. Bone development may be progressive or cyclical in nature. Aspects of bone that may change during development include, for example, mineralization, formation of specific anatomical features, and relative or absolute numbers of various cell types.

10

5

"Bone modulation" or "modulation of bone formation" refers to the ability to affect any of the physiological processes involved in bone remodeling, as will be appreciated by one skilled in the art, including, for example, bone resorption and appositional bone growth, by, inter alia, osteoclastic and osteoblastic activity, and may comprise some or all of bone formation and development as used herein.

15

"Normal bone density" refers to a bone density within two standard deviations of a Z score of 0.

A "Zmax1 system" refers to a purified protein, cell extract, cell, animal, human or any other composition of matter in which Zmax1 is present in a normal or mutant form.

20

A "surrogate marker" refers to a diagnostic indication, symptom, sign or other feature that can be observed in a cell, tissue, human or animal that is correlated with the HBM gene or elevated bone mass or both, but that is easier to measure than bone density. The general concept of a surrogate marker is well accepted in diagnostic medicine.

25

The present invention encompasses the Zmax1 gene and Zmax1 protein in the forms indicated by SEQ ID NOS: 1 and 3, respectively, and other closely related variants, as well as the adjacent chromosomal regions of Zmax1 necessary for its accurate expression. In a preferred embodiment, the present invention is directed to at least 15 contiguous nucleotides of the nucleic acid sequence of SEO ID NO: 1.

The present invention also encompasses the HBM gene and HBM protein in the forms indicated by SEQ ID NO: 2 and 4, respectively, and other closely related variants, as well as the adjacent chromosomal regions of the HBM gene necessary for its accurate expression. In a preferred embodiment, the present invention is directed to at least 15 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO: 2. More preferably, the present invention is directed to at least 15 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO: 2, wherein one of the 15 contiguous nucleotides is the thymine at nucleotide 582.

5

10

15

20

25

The invention also relates to the nucleotide sequence of the Zmax1 gene region, as well as the nucleotide sequence of the HBM gene region. More particularly, a preferred embodiment are the BAC clones containing segments of the Zmax1 gene region B200E21-H and B527D12-H. A preferred embodiment is the nucleotide sequence of the BAC clones consisting of SEQ ID NOS: 5-12.

The invention also concerns the use of the nucleotide sequence to identify DNA probes for the Zmax1 gene and the HBM gene, PCR primers to amplify the Zmax1 gene and the HBM gene, nucleotide polymorphisms in the Zmax1 gene and the HBM gene, and regulatory elements of the Zmax1 gene and the HBM gene.

This invention describes the further localization of the chromosomal location of the Zmax1 gene and HBM gene on chromosome 11q13.3 between genetic markers D11S987 and SNP_CONTIG033-6, as well as the DNA sequences of the Zmax1 gene and the HBM gene. The chromosomal location was refined by the addition of more genetic markers to the mapping panel used to map the gene, and by the extension of the pedigree to include more individuals. The pedigree extension was critical because the new individuals that have been genotyped harbor critical recombination events that narrow the region. To identify genes in the region on 11q13.3, a set of BAC clones containing this chromosomal region was identified. The BAC clones served as a template for genomic DNA sequencing, and also as a reagent for identifying coding sequences by direct cDNA selection. Genomic sequencing and direct cDNA selection were used to characterize more than 1.5

-20-

million base pairs of DNA from 11q13.3. The Zmax1 gene was identified within this region and the HBM gene was then discovered after mutational analysis of affected and unaffected individuals.

5

10

15

20

25

When a gene has been genetically localized to a specific chromosomal region, the genes in this region can be characterized at the molecular level by a series of steps that include: cloning of the entire region of DNA in a set of overlapping clones (physical mapping), characterization of genes encoded by these clones by a combination of direct cDNA selection, exon trapping and DNA sequencing (gene identification), and identification of mutations in these genes by comparative DNA sequencing of affected and unaffected members of the HBM kindred (mutation analysis).

Physical mapping is accomplished by screening libraries of human DNA cloned in vectors that are propagated in *E. coli* or *S. cereviseae* using PCR assays designed to amplify unique molecular landmarks in the chromosomal region of interest. To generate a physical map of the HBM candidate region, a library of human DNA cloned in Bacterial Artificial Chromosomes (BACs) was screened with a set of Sequence Tagged Site (STS) markers that had been previously mapped to chromosome 11q12-q13 by the efforts of the Human Genome Project.

STSs are unique molecular landmarks in the human genome that can be assayed by PCR. Through the combined efforts of the Human Genome Project, the location of thousands of STSs on the twenty-two autosomes and two sex chromosomes has been determined. For a positional cloning effort, the physical map is tied to the genetic map because the markers used for genetic mapping can also be used as STSs for physical mapping. By screening a BAC library with a combination of STSs derived from genetic markers, genes, and random DNA fragments, a physical map comprised of overlapping clones representing all of the DNA in a chromosomal region of interest can be assembled.

BACs are cloning vectors for large (80 kilobase to 200 kilobase) segments of human or other DNA that are propagated in E. coli. To construct a physical map

-21-

using BACs, a library of BAC clones is screened so that individual clones harboring the DNA sequence corresponding to a given STS or set of STSs are identified. Throughout most of the human genome, the STS markers are spaced approximately 20 to 50 kilobases apart, so that an individual BAC clone typically contains at least two STS markers. In addition, the BAC libraries that were screened contain enough cloned DNA to cover the human genome six times over. Therefore, an individual STS typically identifies more than one BAC clone. By screening a six-fold coverage BAC library with a series of STS markers spaced approximately 50 kilobases apart, a physical map consisting of a series of overlapping BAC clones, i.e. BAC contigs, can be assembled for any region of the human genome. This map is closely tied to the genetic map because many of the STS markers used to prepare the physical map are also genetic markers.

5

10

15

20

25

When constructing a physical map, it often happens that there are gaps in the STS map of the genome that result in the inability to identify BAC clones that are overlapping in a given location. Typically, the physical map is first constructed from a set of STSs that have been identified through the publicly available literature and World Wide Web resources. The initial map consists of several separate BAC contigs that are separated by gaps of unknown molecular distance. To identify BAC clones that fill these gaps, it is necessary to develop new STS markers from the ends of the clones on either side of the gap. This is done by sequencing the terminal 200 to 300 base pairs of the BACs flanking the gap, and developing a PCR assay to amplify a sequence of 100 or more base pairs. If the terminal sequences are demonstrated to be unique within the human genome, then the new STS can be used to screen the BAC library to identify additional BACs that contain the DNA from the gap in the physical map. To assemble a BAC contig that covers a region the size of the HBM candidate region (2,000,000 or more base pairs), it is often necessary to develop new STS markers from the ends of several clones.

After building a BAC contig, this set of overlapping clones serves as a template for identifying the genes encoded in the chromosomal region. Gene

WO 01/77327

5

10

15

20

25

identification can be accomplished by many methods. Three methods are commonly used: (1) a set of BACs selected from the BAC contig to represent the entire chromosomal region can be sequenced, and computational methods can be used to identify all of the genes, (2) the BACs from the BAC contig can be used as a reagent to clone cDNAs corresponding to the genes encoded in the region by a method termed direct cDNA selection, or (3) the BACs from the BAC contig can be used to identify coding sequences by selecting for specific DNA sequence motifs in a procedure called exon trapping. The present invention includes genes identified by the first two methods.

To sequence the entire BAC contig representing the HBM candidate region. a set of BACs was chosen for subcloning into plasmid vectors and subsequent DNA sequencing of these subclones. Since the DNA cloned in the BACs represents genomic DNA, this sequencing is referred to as genomic sequencing to distinguish it from cDNA sequencing. To initiate the genomic sequencing for a chromosomal region of interest, several non-overlapping BAC clones are chosen. DNA for each BAC clone is prepared, and the clones are sheared into random small fragments which are subsequently cloned into standard plasmid vectors such as pUC18. The plasmid clones are then grown to propagate the smaller fragments, and these are the templates for sequencing. To ensure adequate coverage and sequence quality for the BAC DNA sequence, sufficient plasmid clones are sequenced to yield six-fold coverage of the BAC clone. For example, if the BAC is 100 kilobases long, then phagemids are sequenced to yield 600 kilobases of sequence. Since the BAC DNA was randomly sheared prior to cloning in the phagemid vector, the 600 kilobases of raw DNA sequence can be assembled by computational methods into overlapping DNA sequences termed sequence contigs. For the purposes of initial gene identification by computational methods, six-fold coverage of each BAC is sufficient to yield ten to twenty sequence contigs of 1000 base pairs to 20,000 base pairs.

5

10

15

20

25

-23-

The sequencing strategy employed in this invention was to initially sequence "seed" BACs from the BAC contig in the HBM candidate region. The sequence of the "seed" BACs was then used to identify minimally overlapping BACs from the contig, and these were subsequently sequenced. In this manner, the entire candidate region was sequenced, with several small sequence gaps left in each BAC. This sequence served as the template for computational gene identification. One method for computational gene identification is to compare the sequence of BAC contig to publicly available databases of cDNA and genomic sequences, e.g. unigene, dbEST, genbank. These comparisons are typically done using the BLAST family of computer algorithms and programs (Altschul et al, J. Mol. Biol., 215:403-410 (1990)). The BAC sequence can also be translated into protein sequence, and the protein sequence can be used to search publicly available protein databases, using a version of BLAST designed to analyze protein sequences (Altschul et al, Nucl. Acids Res., 25:3389-3402 (1997)). Another method is to use computer algorithms such as MZEF (Zhang, Proc. Natl. Acad. Sci., 94:565-568 (1997)) and GRAIL (Uberbacher et al, Methods Enzymol., 266:259-281 (1996)), which predict the location of exons in the sequence based on the presence of specific DNA sequence motifs that are common to all exons, as well as the presence of codon usage typical of human protein encoding sequences.

In addition to identifying genes by computational methods, genes were also identified by direct cDNA selection (Del Mastro et al, Genome Res. 5(2):185-194 (1995)). In direct cDNA selection, cDNA pools from tissues of interest are prepared, and the BACs from the candidate region are used in a liquid hybridization assay to capture the cDNAs which base pair to coding regions in the BAC. In the methods described herein, the cDNA pools were created from several different tissues by random priming the first strand cDNA from polyA RNA, synthesizing the second strand cDNA by standard methods, and adding linkers to the ends of the cDNA fragments. The linkers are used to amplify the cDNA pools. The BAC clones are used as a template for *in vitro* DNA synthesis to create a biotin labelled

copy of the BAC DNA. The biotin labelled copy of the BAC DNA is then denatured and incubated with an excess of the PCR amplified, linkered cDNA pools which have also been denatured. The BAC DNA and cDNA are allowed to anneal in solution, and heteroduplexes between the BAC and the cDNA are isolated using streptavidin coated magnetic beads. The cDNAs that are captured by the BAC are then amplified using primers complimentary to the linker sequences, and the hybridization/selection process is repeated for a second round. After two rounds of direct cDNA selection, the cDNA fragments are cloned, and a library of these direct selected fragments is created.

5

10

15

20

25

The cDNA clones isolated by direct selection are analyzed by two methods. Since a pool of BACs from the HBM candidate region is used to provide the genomic DNA sequence, the cDNAs must be mapped to individual BACs. This is accomplished by arraying the BACs in microtiter dishes, and replicating their DNA in high density grids. Individual cDNA clones are then hybridized to the grid to confirm that they have sequence identity to an individual BAC from the set used for direct selection, and to determine the specific identity of that BAC. cDNA clones that are confirmed to correspond to individual BACs are sequenced. To determine whether the cDNA clones isolated by direct selection share sequence identity or similarity to previously identified genes, the DNA and protein coding sequences are compared to publicly available databases using the BLAST family of programs.

The combination of genomic DNA sequence and cDNA sequence provided by BAC sequencing and by direct cDNA selection yields an initial list of putative genes in the region. The genes in the region were all candidates for the HBM locus. To further characterize each gene, Northern blots were performed to determine the size of the transcript corresponding to each gene, and to determine which putative exons were transcribed together to make an individual gene. For Northern blot analysis of each gene, probes were prepared from direct selected cDNA clones or by PCR amplifying specific fragments from genomic DNA or from the BAC encoding the putative gene of interest. The Northern blots gave information on the size of the

transcript and the tissues in which it was expressed. For transcripts which were not highly expressed, it was sometimes necessary to perform a reverse transcription PCR assay using RNA from the tissues of interest as a template for the reaction.

Gene identification by computational methods and by direct cDNA selection provides unique information about the genes in a region of a chromosome. When genes are identified, then it is possible to examine different individuals for mutations in each gene.

I. Phenotyping using DXA Measurements

5

10

15

20

25

Spinal bone mineral content (BMC) and bone mineral density (BMD) measurements performed at Creighton University (Omaha, Nebraska) were made by DXA using a Norland Instruments densitometer (Norland XR2600 Densitometer, Dual Energy X-ray Absorptiometry, DXA). Spinal BMC and BMD at other locations used the machinery available. There are estimated to be 800 DXA machines currently operating in the U.S. Most larger cities have offices or imaging centers which have DXA capabilities, usually a Lunar or Hologic machine. Each location that provided spine BMC and BMD data included copies of the printouts from their machines to provide verification that the regions of interest for measurement of BMD have been chosen appropriately. Complete clinical histories and skeletal radiographs were obtained.

The HBM phenotype is defined by the following criteria: very high spinal BMD; a clinical history devoid of any known high bone mass syndrome; and skeletal radiographs showing a normal shape of the appendicular skeleton.

II. Genotyping of Microsatellite Markers

To narrow the genetic interval to a region smaller than that originally reported by Johnson et al, Am. J. Hum. Genet., 60:1326-1332 (1997), additional microsatellite markers on chromosome 11q12-13 were typed. The new markers included: D11S4191, D11S1883, D11S1785, D11S4113, D11S4136, D11S4139, (Dib, et al, Nature, 380:152-154 (1996), FGF3 (Polymeropolous, et al, Nucl. Acid Res., 18:7468 (1990)), as well as GTC HBM Marker 1, GTC HBM Marker 2,

-26-

GTC_HBM_Marker_3, GTC_HBM_Marker_4, GTC_HBM_Marker_5, GTC_HBM_Marker_6, and GTC_HBM_Marker_7 (See Fig. 2).

5

10

15

20

25

Blood (20 ml) was drawn into lavender cap (EDTA containing) tubes by a certified phlebotomist. The blood was stored refrigerated until DNA extraction. DNA has been extracted from blood stored for up to 7 days in the refrigerator without reduction in the quality or quantity of yield. For those subjects that have blood drawn at distant sites, a shipping protocol was successfully used on more than a dozen occasions. Blood samples were shipped by overnight express in a styrofoam container with freezer packs to provide cooling. Lavender cap tubes were placed on individual plastic shipping tubes and then into "zip-lock" biohazard bags. When the samples arrived the next day, they were immediately processed to extract DNA.

The DNA extraction procedure used a kit purchased from Gentra Systems, Inc. (Minneapolis, Minnesota). Briefly, the procedure involved adding 3 volumes of a red blood cell lysis buffer to the whole blood. After incubations for 10 minutes at room temperature, the solution was centrifuged in a Beckman tabletop centrifuge at 2,000 X g for 10 minutes. The white blood cell pellet was resuspended in Cell Lysis Buffer. Once the pellet was completely resuspended and free of cell clumps, the solution was digested with RNase A for 15 minutes at 37°C. Proteins were precipitated by addition of the provided Protein Precipitation Solution and removed by centrifugation. The DNA was precipitated out of the supernatant by addition of isopropanol. This method was simple and fast, requiring only 1-2 hours, and allowed for the processing of dozens of samples simultaneously. The yield of DNA was routinely >8 mg for a 20 ml sample of whole blood and had a MW of >50 kb. DNA was archived by storing coded 50 µg aliquots at -80°C as an ethanol precipitate.

DNA was genotyped using one fluorescently labeled oligonucleotide primer and one unlabeled oligonucleotide primer. Labeled and unlabeled oligonucleotides were obtained from Integrated DNA Technologies, Inc. (Coralville, Iowa). All other

-27-

reagents for microsatellite genotyping were purchased from Perkin Elmer-Applied Biosystems, Inc. ("PE-ABI") (Norwalk, Connecticut). Individual PCR reactions were performed for each marker, as described by PE-ABI using AmpliTag DNA Polymerase. The reactions were added to 3.5 µl of loading buffer containing deionized formamide, blue dextran and TAMRA 350 size standards (PE-ABI). After heating at 95°C for 5 minutes to denature the DNA, the samples were loaded and electrophoresed as described in the operator's manual for the Model 377 DNA Sequencer (PE-ABI, Foster City, California). After gel electrophoresis, the data was analyzed using PE-ABI GENESCAN™ and GENOTYPER™ software. First, within the GENESCAN™ software, the lane tracking was manually optimized prior to the first step of analysis. After the gel lane data was extracted, the standard curve profiles of each lane were examined and verified for linearity and size calling. Lanes, which had problems with either of these parameters, were re-tracked and verified. Once all lanes were tracked and the size standards were correctly identified, the data were imported into GENOTYPERTM for allele identification To expedite allele calling (binning), the program Linkage Designer from the Internet web-site of Dr. Guy Van Camp (http://alt.www.uia.ac.be/u/dnalab/ld.html) was used. This program greatly facilitates the importing of data generated by GENOTYPER™ into the pedigree drawing program Cyrillic (Version 2.0, Cherwell Scientific Publishing Limited, Oxford, Great Britain) and subsequent linkage analysis using the program LINKAGE (Lathrop et al, Am. J. Hum. Genet., 37:482-498 (1985)).

III. Linkage Analysis

5

10

15

20

25

Fig. 1 demonstrates the pedigree of the individuals used in the genetic linkage studies for this invention. Specifically, two-point linkage analysis was performed using the MLINK and LINKMAP components of the program LINKAGE (Lathrop et al, Am. J. Hum. Genet., 37:482-498 (1985)). Pedigree/marker data was exported from Cyrillic as a pre-file into the Makeped program and converted into a suitable ped-file for linkage analysis.

-28-

The original linkage analysis was performed using three models: (i) an autosomal dominant, fully penetrant model, (ii) an autosomal dominant model with reduced penetrance, and (iii) a quantitative trait model. The HBM locus was mapped to chromosome 11q12-13 by analyzing DNA for linked markers from 22 members of a large, extended kindred. A highly automated technology was used with a panel of 345 fluorescent markers which spanned the 22 autosomes at a spacing interval ranging from 6-22 cM. Only markers from this region of chromosome 11 showed evidence of linkage (LOD score ~3.0). The highest LOD score (5.74) obtained by two-point and multipoint analysis was D11S987 (map position 55 in Fig. 2). The 95% confidence interval placed the HBM locus between markers D11S905 and D11S937 (map position 41-71 in Fig. 2). Haplotype analysis also places the Zmax1 gene in this same region. Further descriptions of the markers D11S987, D11S905, and D11S937 can be found in Gyapay et al, *Nature Genetics*, Vol. 7, (1994).

5

10

15

20

25

In this invention, the inventors report the narrowing of the HBM interval to the region between markers D11S987 and GTC_HBM_Marker_5. These two markers lie between the delimiting markers from the original analysis (D11S11S905 and D11S937) and are approximately 3 cM from one another. The narrowing of the interval was accomplished using genotypic data from the markers D11S4191, D11S1883, D11S1785, D11S4113, D11S4136, D11S4139, (Dib et al, *Nature*, 380:152-154 (1996)), FGF3 (Polymeropolous et al, *Nucl. Acid Res.*, 18:7468 (1990)) (information about the genetic markers can be found at the internet site of the Genome Database, http://gdbwww.gdb.org/), as well as the markers GTC_HBM_Marker_1, GTC_HBM_Marker_2, GTC_HBM_Marker_3, GTC_HBM_Marker_4, GTC_HBM_Marker_5, GTC_HBM_Marker_6, and GTC_HBM_Marker_7.

As shown in Fig. 1, haplotype analysis with the above genetic markers identifies recombination events (crossovers) in individuals 9019 and 9020 that significantly refine the interval of chromosome 11 to which the Zmax1 gene is

-29-

localized. Individual 9019 is an HBM-affected individual that inherits a portion of chromosome 11 from the maternal chromosome with the HBM gene, and a portion from the chromosome 11 homologue. The portion inherited from the HBM genecarrying chromosome includes markers D11S935, D11S1313,

5

10

15

20

25

GTC_HBM_Marker_4, D11S987, D11S1296, GTC_HBM_Marker_6, GTC_HBM_Marker_2, D11S970, GTC_HBM_Marker_3, D11S4113, GTC_HBM_Marker_1, GTC_HBM_Marker_7 and GTC_HBM_Marker_5. The portion from D11S4136 and continuing in the telomeric direction is derived from the non-HBM chromosome. This data places the Zmax1 gene in a location centromeric to the marker GTC_HBM_Marker_5. Individual 9020 is an unaffected individual who also exhibits a critical recombination event. This individual inherits a recombinant paternal chromosome 11 that includes markers D11S935, D11S1313, GTC_HBM_Marker_4, D11S987, D11S1296 and GTC_HBM_Marker_6 from her father's (individual 0115) chromosome 11 homologue that carries the HBM gene, and markers GTC_HBM_Marker_2, D11S970, GTC_HBM_Marker_3, GTC_HBM_Marker_1, GTC_HBM_Marker_7, GTC_HBM_Marker_5, D11S4136, D11S4139, D11S1314, and D11S937 from her father's chromosome 11 that does not carry the HBM gene. Marker D11S4113 is uninformative due to its homozygous nature in individual 0115. This recombination event places the centromeric

Two-point linkage analysis was also used to confirm the location of the Zmax1 gene on chromosome 11. The linkage results for two point linkage analysis under a model of full penetrance are presented in Table 1 below. This table lists the genetic markers in the first column and the recombination fractions across the top of the table. Each cell of the column shows the LOD score for an individual marker tested for linkage to the Zmax1 gene at the recombination fraction shown in the first row. For example, the peak LOD score of 7.66 occurs at marker D11S970, which is within the interval defined by haplotype analysis.

boundary of the HBM region between markers D11S1296 and D11S987.

-30-

TABLE 1

Marker	0.0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4
D11S935	- infinity	0.39	0.49	0.47	0.41	0.33	0.25	0.17	0.10
D11S1313	- infinity	2.64	2.86	2.80	2.59	2.30	1.93	1.49	1.00
D11S987	- infinity	5.49	5.18	4.70	4.13	3.49	2.79	2.03	1.26
D11S4113	4.35	3.99	3.62	3.24	2.83	2.40	1.94	1.46	0.97
D11S1337	2.29	2.06	1.81	1.55	1.27	0.99	0.70	0.42	0.18
D11S970	7.66	6.99	6.29	5.56	4.79	3.99	3.15	2.30	1.44
D11S4136	6.34	5.79	5.22	4.61	3.98	3.30	2.59	1.85	1.11
D11S4139	6.80	6.28	5.73	5.13	4.50	3.84	3.13	2.38	1.59
FGF3	0.59	3.23	3.15	2.91	2.61	2.25	1.84	1.40	0.92
D11S1314	6.96	6.49	5.94	5.34	4.69	4.01	3.27	2.49	1.67
D11S937	-infinity	4.98	4.86	4.52	4.06	3.51	2.88	2.20	1.47

A single nucleotide polymorphism (SNP) further defines the HBM region.

This SNP is termed SNP_Contig033-6 and is located 25 kb centromeric to the genetic marker GTC_HBM_Marker_5. This SNP is telomeric to the genetic marker GTC_HBM_Marker_7. SNP_Contig033-6 is present in HBM-affected individual 0113. However, the HBM-affected individual 9019, who is the son of 0113, does not carry this SNP. Therefore, this indicates that the crossover is centromeric to this SNP. The primer sequence for the genetic markers GTC_HBM_Marker_5 and GTC_HBM_Marker_7 is shown in Table 2 below.

TABLE 2

Marker	Primer (Forward)	Primer (Reverse)
GTC_HBM_ Marker_5	TTTTGGGTACACAATTCAGTCG	AAAACTGTGGGTGCTTCTGG
GTC_HBM_ Marker_7	GTGATTGAGCCAATCCTGAGA	TGAGCCAAATAAACCCCTTCT

5

10

15

25

20

-31-

The kindred described have several features of great interest, the most important being that their bones, while very dense, have an absolutely normal shape. The outer dimensions of the skeletons of the HBM-affected individuals are normal, and, while medullary cavities are present, there is no interference with hematopoiesis. The HBM-affected members seem to be resistant to fracture, and there are no neurologic symptoms, and no symptoms of impairment of any organ or system function in the members examined. HBM-affected members of the kindred live to advanced age without undue illness or disability. Furthermore, the HBM phenotype matches no other bone disorders such as osteoporosis, osteoporosis pseudoglioma, Engelmann's disease, Ribbing's disease, hyperphosphatasemia, Van Buchem's disease, melorheostosis, osteopetrosis, pycnodysostosis, sclerostenosis, osteopoikilosis, acromegaly, Paget's disease, fibrous dysplasia, tubular stenosis, osteogenesis imperfecta, hypoparathyroidism, pseudohypoparathyroidism, pseudopseudohypoparathyroidism, primary and secondary hyperparathyroidism and associated syndromes, hypercalciuria, medullary carcinoma of the thyroid gland, osteomalacia and other diseases. Clearly, the HBM locus in this family has a very powerful and substantial role in regulating bone density, and its identification is an important step in understanding the pathway(s) that regulate bone density and the pathogenesis of diseases such as osteoporosis.

20

25

5

10

15

In addition, older individuals carrying the HBM gene, and therefore expression of the HBM protein, do not show loss of bone mass characteristic of normal individuals. In other words, the HBM gene is a suppressor of osteoporosis. In essence, individuals carrying the HBM gene are dosed with the HBM protein, and, as a result, do not develop osteoporosis. This *in vivo* observation is strong evidence that treatment of normal individuals with the HBM gene or protein, or a fragment thereof, will ameliorate osteoporosis.

IV. Physical Mapping

To provide reagents for the cloning and characterization of the HBM locus, the genetic mapping data described above were used to construct a physical map of

the region containing Zmax1 on chromosome 11q13.3. The physical map consists of an ordered set of molecular landmarks, and a set of BAC clones that contain the Zmax1 gene region from chromosome 11q13.3.

5

10

15

Various publicly available mapping resources were utilized to identify existing STS markers (Olson et al, Science, 245:1434-1435 (1989)) in the HBM region. Resources included the GDB, the Whitehead Institute Genome Center, dbSTS and dbEST (NCBI), 11db, the University of Texas Southwestern GESTEC, the Stanford Human Genome Center, and several literature references (Courseaux et al, Genomics, 40:13-23 (1997), Courseaux et al, Genomics, 37:354-365 (1996), Guru et al, Genomics, 42:436-445 (1997), Hosoda et al, Genes Cells, 2:345-357 (1997), James et al, Nat. Genet., 8:70-76 (1994), Kitamura et al, DNA Research, 4:281-289 (1997), Lemmens et al, Genomics, 44:94-100 (1997), Smith et al, Genome Res., 7:835-842 (1997)). Maps were integrated manually to identify markers mapping to the region containing Zmax1.

Primers for existing STSs were obtained from the GDB or literature references are listed in Table 3 below. Thus, Table 3 shows the STS markers used to prepare the physical map of the Zmax1 gene region.

_
3
Tab
STS
HBM S
出
n
Щ
TAB
1

		9	GDR-107KAN	70.4	TAVA AL XVI LANDA AND AND AND AND AND AND AND AND AND	online a new contract	
ACTIVIS				Ś	こここうかいりんしゅう	TICAGAAGCATTCAATAG	
: B/PC:Y	Gene GDB:	Gene	GDB:197884	Q.125	CTCAGTGCCATGAAGATGGA	CAAGATCACTCOATOTCCAGG	Postale Februaries
	D1182161	Gene		0.877	CHITCAGGACTER PAGE	TATAL STATE	Pynyate Carboytise
ADRBKI		900	ODB-4690170		TATTOTO TO T	CIGCAGGIIC	Adenosins Receptor (AZ) Gene
PSANKS		HINE NE		,	Section of the sectio	lectric leice level 104ee	Bate edreneralo receptor Idnase
THOMPHON			000-107500		CALLER ANGER	IGCIIIGIAAAGCACTGAGA	sun, to Human endogenous retrovinus mRNA fono terminal repeat
ros bros			Ų		האים שרים	-	
TO THE PERSON NAMED IN COLUMN			B0072:805	8	AGCCTGGG		_
I Annua		3		a 621		ICAAGATTCTGTAGCTTCTGG	T
ANKZ		GENE		a 157	CAGAGAAGTCAAGGGACTTG	ATCCTCTCACATOCACACT	
ANKI		EBY		03		TO 10 10 10 10 10 10 10 10 10 10 10 10 10	County of the particular of (ALL) His
6620	A1441917	1207	Ē			Š	Human (Bosamai protein L37 (PBANK1) peeudogene.
112800	200		2000.014361	7	AND LUABOL INCANDINA	GCCTGTGTTCCTTTCAGTA	
Transpage 1	1133	Š	GUB:166605	0.287	MGGT	AGCTCATGGGGGCTATT	
N .		ê		0.322	OCTTCTCCGAGTGTATCAAC	TALL SOLATER	
	1011887	VACED	ADR-177A5A		OATCA OCO AACTO CALCALO	איזאיקאין ואחקאיאין איזאילייט	(Mepropalanin (GALT)
		k	200.10		משורשת השתרו ורפונוני	I CCACAT TOAGGACTO TOGGAACO	
				97	GCI ANI CACAGICI		Barel All Amsterna A North Park Addition of
		e G	GDB:4580141	0.248	GCACAGCTGTAGTGGGGTTCTAGGC	PARRICHALARAINAININANANANANANANANANANANANANANANAN	
	_	9	QDB:4590113	0.849			
		g G	GDR-188877		Transfer Contraction		
	2446646	47011		1	3 10 10 10 10 10 10 10 10 10 10 10 10 10	ALACAGI I GCTCTAAAGGGT	Fibrobiast growth factor 3
			90.00	7	CALL INCOMALIC	TAGGTGTCTTATTTTTGTTGCTTC	
		MBAI	GDB:1223229	0.275	GACATACCATGAACACTATAAGAGG	CAACCCATACCAGGGATAAA	
	D1184689	E	GDB:740600	0.147	GAACAAGAGAGTAAGTTGAC	TOAGGACACAGAVACAAAAAAA	
	101184646	ü	Chartena .	24	OAL STORY CARRIED IN COMME	DOMESTIC OF THE PROPERTY OF TH	
	10000	ļ	27.47.		SWOIGHT IN THE STATE OF THE STA	JOANCIATATIOTAGITAGIOAGGAG	
			200:/400	3	CCIGIAACCCCCC	TCTTGCTTCCTAGE TTCTCGG	
	72.0		GDB:874522	a311	ACTCCATCCACCTCACTO	Tectoritectications	
:	018703	878	GDB:186280	0 188	GTGGACAGGCATAGGTGAGG	a.	
	0118188	TABL	Cha-407eok		TOWN TAROUT AND TOWN TO THE PARTY OF THE PAR	INITIACIO I CIRCOTOCAG	
			200100000		STANDAR I CHEMENTIA	CAAGAGGCTGGTAGAAGGTG	
	000110	5	7 mar 1075	200	CACTCCAGTCTGGGCAATAAAAGC	GGTGGCAGCATGACCTCTAAAA	
	D1154178	MBAT	GDB:611022	0237	CAGGCCCAGTCTCTTG	COTOTOTOTOTOTOTO	
	01184113	MEAT	G08:806116	0.218	ACCTCACACATATAATAA	Di Course Course Course	
		L	ONB-KARIALL	1	TALL STATE OF THE PARTY OF THE	3	
	ļ	Ţ			STITION OF THE STITIO		
	100.00		200		₹	ACTCCCTCGATGGCTTCC	
	10420	3	GDB:677652	0.224	GAGCAGGGAGAGAAAGGC	1CCCAACTGGCTTGTTTATG	Manufacture date and the second secon
		183	GDB:4682598	23	AGCCACTITATIGHTATITIOATAC	A LOAD TO A LA A A A A A A A A A A A A A A A A A	THE WASHINGTON TO BE WASHINGTON TO SEE THE SEC
	EST GDB:4	S	GDB:4578377	0.16	GIGGAGIGIGGGATTAGA	TANKS TO THE PARTY OF THE PARTY	GALIBY - IDIGATE HAGE
	D1164418	E87 1	GDB-678864	020	AVACTORINGENTAL	STATE OF THE PROPERTY OF THE P	
		188	AKB. JEG AFF		ALGOLI I GANIGALI I CI MALIALI	11ccccAAAAAAATGTAAAGG	
			000000		2211219912	ATCACCCAGGCCAGGGAT	Millionen Link objection Allich St.
	ļ	Š		-0.128	TCAGAGCAGAACTGTTTTAACA	CCTGCTTGAAAGTTPTABABA	
		EBT	CDB:4583348	0.128	CAAGCCGGGT	70	
		e Gan	5DR-122223	000	CONTACTOR IN THE STATE OF THE S	UNICE ANGUACE A I GRAC	
31647					15000	CICIGAAGCAGGGACCAGAG	Human tel Interective protein (TIPAD)
10000				i i	CIACCACACCAGGC	CAAGCGAAAGCTGCCTTC	Carling and color designs are found in the case of the
0000		3	GUB:4584037	0.15	GITGTCTTGACTTCAGGTCTGTC	TITICOTTOAACAATCACTACTACT	CHARLES ARABIT MUNICIPAL AREA AREA CHARLES THE CONTRACT OF THE
34590		EST		0.13	OCCITOCOCATA	Ιò	
33927		EST	208-4882382	2	74.7	PACE SOCK AND	
3871		100	30000000000000000000000000000000000000			AUCH IGCADA TODAGCCC	
2007			GD0.144423	1773	1991 I I MACCITTANTGAGAAA	TOTTOATCTATACCCTGTTTCCG	
1000		2	GDB:122257	0.127	ANTATTAAAAAAAAAGAAAAGCA	Togcharakacthecterial	
8402		EST	3DB:4681674	0.113	GGTTACAGAAAAACATTTGAGAAAT	TO A CONTRACT OF THE CONTRACT	
6871		EST	3DB:4584947	É	TOTALANCE	וועשהווועפון רבר ובוכומ	
12856		ly in	The ASTREDA	2000		201101200	X2X
41367			3	B577	3	TOTTCTCTCCCAGCAGG	High A
101000		2	CDB:4581108	5	CITTATTOMAKCATTOAGTGCA	TTGTCAAATTCCCCCCAAAA	
1040 ED		MSAIL	108:1222332	0.181	AAACCACGACCNCCAA	OCA A A COT	
37/44		EBT	3DB:4575626	0.46	CITITIGATAGAGACAACGATOTA	TANKO TO CONTRACTOR OF THE PARTY OF THE PART	
33272		EST	2DR-4FR1602	35.0	CANON CO.	TAIL TO THE PROPERTY OF THE PARTY OF	
34148		Ŀ	SOB-ARROWAL		Carried Indiana	ACTOMAGAACTETTGTCCT	
14424					CASA MANAGA CACIA BUCTCA		
		100	ă	0.133	г	1700CAAGITAGGCACAGITCA	14 Janes 4 7 14 - 19/1
		9	Ì	0,1	Г	TCCACTAAGGGGTATGTFGF	THE TATE OF THE PROPERTY OF TH
30028		8	3DB:4680505	0.128	į	STATE OF THE PARTY	
2875	D1184407	STS.	SNB 878524	100	Ī	TO STORY	Human pyruvate carbonylese pracureor
38096		Š	2DB-4677183		1	WOULD AGE TACABATTTOA	
16807	DATE POTA	E			3	Z	(AR-hiaracting prolain 15
2604	1000)	designation of the second of t	TOAGGGTTOGGAAGATEATA	
27.07.04		-	100:0014Z	0.174	CCTTCATAGCCACACCCG	CAGCTAACTOTTGACATGCCA	

0
ab
8
⊢
5
က
5
丽
王
••
က
ш
Œ
⋖
⊢

	Nuclear milotic appearatus protein 1, NUMA		Albaha - Pala	(rensistence	ceptor kinsse 1, AOR81			sse cen (SUBP2)							dehydrocensus (A) DHRI	nse gen (8MBP2)	Michael milotio apparatus protein 1, NUMA	h KRN	14 2A PP2A		Androgen Receptor	Porphosphaie phosphaiese-like 1									813 aylan enghroblestosle oncogene homolog								FBP2)	Machine Micretion Inhibitory (Actor						97.9)
NDUFV	Nuclear milotic sp		Alb Lancaston and Lancas as the second	Camillo palmiloy transferase	Beta-adrangic necessor kinase 1	2007	2	Human DNA holicase can (SNBP2							Aldehyde dehydro	Humen DNA hollo	Muclear milotio ap	righ eulphur keral	protein chosphatasa 24 PP2A	Ampladin	Androgen Recept	OTC PROTON INDUSTRIC			NDUFVI						813 evlan enduc		Wanh cane WENT						CANOL I Imperior 2 (FBP2)	Ascrathens Micro	P2U Purincesplor			Foliate receptor (FBP2)		radio (radio) (rais
CATTCCACATGGATAGAC	AggrangraccAggriaa	CCASTCACCTTTACTASTCCTTT8	ACCAGGCATTGCACTAAAAG	ATGTGCTGGCTGGAAAG	TOTOTOGE	GACCICCIGIDACACCACO	CCTCATGTGAAGTCAC	CAGCATCTTCAGCACTTACC	Tactactagaagtcacate	2	ទ	GIGCIGGATTACAACTGT	CASTOCIACACACACAC	AGCCCCCTGGGGATAATC	AGGATTCCTATCTGGGCTATG	ассваллестста	TGAGCTGCTGAAGG	CAAAGGGAGAGAGAGATATATAGGGGGG	Ξ	AGGGATGGGTAGA	CCGTGGCATAAGATAAGTAAACG	ATCCTTGGGG	ccAcragrade	Tecekkeestkekaae	GCTCGCTGAAGGATGAAGAC	TAATAGTCACTATCCC	TOTOTOTOMOGENOG	ccaacacagn i gci cacal gcc	CAAAGITOTTCTOTTOTTC	TOTOTATOCATAGTOCAAACAG	∆a1a	GOTACAGTOTOTOTOTO	I CCTAGTITICCT COLL	CTATTGGATGTGATATGTTATGG	ACCCCAGGG	<u>auteatatacatauartetta</u>	CCCAGIAGTCAC	GAGGGGTATGTCTACAAAAC	Tagenerichen	TACGACATGAACGCGG	ATTEC	ACATION IN INCACCATION	TCAACTCA	regardecovers	CITANGCCACTGTGTTTGG	GTGTGGGGCCACATATTG
0.199 AGATCAGCAAGCAGAYAG	0.16 TTACAGCCACCAAGGTTTCC	CCCCACTC	Q 194 GATGGGTCACACACACATGTCA	108 AGCATCTTFATOT	Q 108 TCACATTCAAAATCOGCAA	0.111 CCACCAATTATTATAGCCA	0,176 CCTATANT GGGCT GGACCAA	CAGTGTGCACGTTTTCATTT		0.13 CAGGGCACTOAGATACACTTACC	ACACAT	O 07 10C A 04 O 4 O 4 O 4 O 4 O 4 O 4 O 4 O 4 O 4	98 AGTGTGGGCADGACCTCTG	a 143 TCCCTCATCCCCTTGTCTGT	0.188 GATGCTTACCTACCACGGC	0.699 TIGGCAGACCATACTCCGCCT	6 25 10 CCATCACAACCAAATTTAAAGCT	091 CATTANGTAG	GGAGTAGACCATGATTACTG	COCCTOGATECTCACACTACA	0.3821CTTGGAGCGCTTTTAAGGGGG	TTGGAGTCACAGGGGC	AACAAAGCTGCTTAQCACCTG	0247 TTTCCAATATGTGACTTC		3AACOTTNITCATGIAGGGT	AGGAAAATGGTATGTAAGGAG	99V2Y	Q 121 AGCTCTTGCTTCTCAGTCCA	accreteAMat/	CICAAGGCCAGGCATCACT	0 ZSG GACATCTGT AGTCTCA TATTC	П	a 141 at Alarta da Alara da Calanda	Q 182 ACTTCCTATAAATGGAGGTGAG		0.107 GTGTTGAGGAGAAAAGCACT	THATTAGAAGTGACTCTTTGGCCG	TICTCATGTACAAGCGGTC .	0.147 CACCAGAAGGTTGGGGTG	0.14 CTCAYGCTGGATGACCCC	CCTGAGC	post revolución de la constante de la constant	0.SICGGCATT/CATCCAGGAC	D 1/3 I CCATTIATIBACACCTG	Q 132 AMGCACAAAAGTAACAGCAACA
E8T GDB:1222183	GDB:4575848	GDB: 4577893	GDB-4577180	GDB: 1222266	GDB-457-4740	GDB:678144	GDB-1222250	GDB:4566788	GDB:4678828	GDB.4595666	GD8:191084	G08-435248	2000000	GDB:179349	GDB:4572853	GDB:4590097	GDB:4690244	EST GDR:445867	GDB-4583588	GDB:468016	GDB: 4580095	GDB:4572859	GDB:445869	GDB: 335210	GDB:408644	GDB:814028	GDB-446642	GDB-4562786	GDB: 467 1585	GDB:4572301	GDB: 4580166	GDR-4687692	GDB:4588388	GDB-4588882	GDB:4689867	GDB:4589278	GDB:4688364	ODB 740338	GDB:3888276	GDB:737658	GDB.674664	GDB:445682	GDB:445874	GDB:197840	GDB-676143	GDB:4578507
D1182382 EST	188	D118091 11814		EST	Gene	H64381				0,000	0/188/10	314816KB	D118468 ST8	O118668 STS	Gane	e de	9000	D1182302 EST	Gene	9080			193	D1181857 EST	38	D1184198 M8AT	8		EBT	EST	EBT	189	Gene	EST	EST	183	183		EBT	ຍບອງ	D1184331 Gene	9	199	ပ်စဉ်	D1184439 Gene	E8T
TIGR-4002J17 W-5998	W-16967 SGC31812	П		W-11974	W-15244	W-0150	W-4232	3HGC-4167	We-14303	W-16597	HEZESTEAL FORMEZESTEALT	1281/1282	D116468			IGHMBP2	KRN1		RH10753										RH17414	RH17770	SEA	TIGR-ADD6P20	TICR-A007D16	TIGR-ADBRIT	TIGR-ADD8P16	TIGR-ADDATI1	TICRACORYA				SHGC-11867				ŀ	

TITOSO CECUTORIO CANTO TATALO CONTROLO CECUTORIO CECUTORIO CECUTORIO CECUTORIO CANTO CONTROLO CECUTORIO CECUTORI CECUTORIO CECUTORI CANTO CECUTORI CALIDADI CECUTORI CA	International of the control of th
EST CORRESPONDED A 150 CANTACTORY OF COLUMBRANCH CONTROL	CCATCATCATATION OR OLOCAL TO CENTRACE MANAGEMENT OF CANCACT ATTENDARY OF CENTRACE MANAGEMENT OR OLOCAL CANCACT OR OLOCAL
	CANAGORIA ANACIONION CCMAGORIA CANAGORIA
	CELLICIOLI IL IL IL IL CELLAGO AGAINGE CELLO IL IL IL IL IL CELLAGO AGAINGE CELLAGO ATTANTIC CALCAGO ATTANTIC CALCAG
	CONTRACTOR CON
E81 DIBLETION DIRECTOR DI	Internal Transcance
E. DESIGNATION DESIGNATI	United the Control of the Control
EST Obsesses District Dis	MAGGETTATTI MERGANGING MAGGETTATTI MERGANGING MAGGETTATTI MERGANGING MAGGETTATTI METATTICICIE MAGGETTATTI METATTICICIE MAGGETTATTI METATTICICIE MAGGETTATTI METATTICICIE MAGGETTATTI MAGGANGING MAGGETTATTI MAGGANGING MAGGA
EST DESISTANCE CARROLLE C	CHICK ANGUET IN TAKE STANDED ANGUE CANAGE CONTROL ANGUET IN TAKE STANDED ANGUET IN TAKE STA
EST ODDS 1982-1983 1 1 1 1 1 1 1 1 1	Tricit Autricit Autricit in the interior of th
Est Obes 1678319 Extra March Annol Control C	TICLOGORGALING TOTAL CONTROLLED TOTAL CONTROLL
EST DESIGNATION DESIGNAT	ACCHOCATOR ACCES
EST DESIGNATION CONTROLLED CONTROLLE	Control Cont
EST DESIGNATION DESIGNAT	COGNICATION CONTROLLES ON THE CONTROLL OF
EST CIDE-165-089 L. Trick, coarriewed by Coarriewe	TICKAGE CHECKELLY CONTROL CAST TO THE CHECKELLY CONTROL CAST TO THE CAST CHECKAGE CH
EST QUESTON CONTROLLEGATION CONTROLLEGAT	CHECKER CONTROLLER CON
EST OBE-678783 OTA ACTIVACE CONCENT OCT CONTROL CONTRO	TICTOLGENIA CONTROL OF THE ACT TO ACT
EST OBE ALESSAN LIN ANALYSIS COLOR	ACTION OF CONTROL OF THE ACTION OF THE ACTIO
EST	Control Color Control Color
E81 GIBS-159291	ACTION OF CONTROL OF C
01164883 6281 028	Individual Puber Individual reaction
Color	CHCAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
Gene GDB-1891219 Q431 ATTICGGGGGGGA TACKTOTOTOM GASCAMAGE GASCAM	ATTICEAGAGEAGTICANA GITTEAAGAGEAGTICANA ANTICEAGAGEAGTICANA ANTICEAGAGEAGTICANA ANTICEAGAGEAGTICANA ANTICEAGAGEAGTICANA GIGGETGEAGGETAN GITTEACAGETGAN GITTEACAGETCHAN GITTEACAGETCHAN GITTEACAGETCHAN GITTEACAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA
Commence	Control of Action Control of
Colorador Colo	ACTIONACTOTALCOLAGIDADA TODARCATION STATEMENTS TO THE ACTIONACTOR ACTION TO THE ACTIONACTOR ACTION TO THE ACTIONACTOR ACTIONAC
EST CIDE-1685089 0.100	TATCCCTTTATATION CICCITION TOTAL AND CONTROLLING TOTAL CONTROLLING
Display Disp	TETTEAMACCECTGGGGGTAACC GTCATCCAACCTTGTTTTTTTTTTTTT
0118579 818 0.00	GTGGCTGCAGCTANTGTAGGCAGCCTANTGCCTANTGCCTANTGCCTANTGCCTANTGCCTANTGCCTANTGCCTANTGCCTANTGCCTANTGCCTANTGCCTANTGCCTANTGCCTANTGCCTANTGCCTANTGCCTANTGCCTANTGCCTANTG
Dissues STB Closs-Grass District Culture Cul	CIGATI GAGANCCAGALCAG TANIMAGANCCAGALCAG TANIMAGANCCAGALCAG AGAGGITIGACANCACTOR AGAGGITIGACANCACTOR AGAGGITIGACANCACTOR AGAGGITIGACANCACTOR CACCAGANCACTOR TOCAMACACTOR TOCAMAC
DISSUED STR. OTC.67608 DISSUED STR. DISSUED	Individeduce Tracead Adala Individeduce Individeduc
DISTAND STREET DISTANCE DIS	SATISATION OF THE STATE OF THE
Ditainst STB GOBSISTIVE CAST	akagi sigadake tanan kaadagaanake keeri akkadaana areneecka kaadagaanake keeri akkadaana areneeka areneeka kaada
Dilistasi Gene GDB-878158 G. (4) GACCAGAOTCTCCCAAAAA	
Control Cont	
DI184087 Man Dipage 1978 Divardoccapario Di184087 Man Dipage 1978 Divardoccapario Di184087 Disage 1978 Dis	TOWNSORY OF THE STANDARD OF TH
D1184697 W6AT DDE-663797 C199 GENTLAGE-CONTROL CAGAGA-CACATA TOCCTGGTCGGGAAAC CAGAGA-CACATA TOCCTGGTCGGGAAAC CAGAGA-CACATA TOCCTGGTCGGGAAAC CAGAGA-CACATA CAGAGA-CACAT	GETCAGALOSCENT CANA TOCCTOCTOCTOCAGALANTO GETCTCAGALOSCENT COGALA GETCTCAGALAGALAGALA GETCTCAGALAGALAGALAGALAGALAGALAGALAGALAGALAGA
DI18114 MSAT GDB: 811241 2.285 MTCTCCLAGAGACAGCAC GAGAGCACACATATTGCC GAGAGCACACATATTGCC GAGAGCACACATATTGCC GAGAGCACACATATTGCC GAGAGCACACATATTGCC GAGAGCACACATATTGCC GAGAGCACATATTGCC GAGAGCACATATTGCC GAGAGCACATATTGCC GAGAGCACCC GAGAGCACATATTGCC GAGAGCACCC GAGAGCACCCC GAGAGCACCCCC GAGAGCACCCC GAGAGCA	ANTITICA ANALOGUE GAGAGAEAN ANTITICA CONTROL ANALOGUE GAGAGAEAN ANTITICA CONTROL ANALOGUE GEOGRAPH ANTITICA CONTROL ANALOGUE GEOGRAPH ANTITICA CONTROL ANTICA CONT
DITE STATE DITE	THE AGE CONTRICTORY OF THE AGE OF
	Alectrocate and a control and
EST	ALTITION TI OCCAMBRANCE CONCECCTION TO A CONTROL OF THE CONTROL OF THE CANADA CONTROL OF
E81 0.292 ACCHORGO	ANTITION I GOOD ANTITO I GOOD
EST 0281-02411-04-04-04-04-04-04-04-04-04-04-04-04-04-	
E8T ODB-1853920 D.141 OTTO-LOGATINATION COCTANA CANDED CONTANT CANDED C	GETTALATED AND THE AND
EST GDE: 233732	ACTION OF CONTROL OF C
EST 2001-10-10-10-10-10-10-10-10-10-10-10-10-	GETTION TO THE CONTROL OF THE CONTRO
EBT 0.289 0.2011 0.2014 0.201	
D1184487 513 D18:740182 D.728 A1 E-MARAGOE	
STE	ANN INSTRUCTOR SANDAY AND ASSECTION ASSECTION AND ASSECTION ASSECTION AND ASSECTION ASSECTIO
110 0.742 110 17	ATTRACTORIONALIOCTT TANTESTTTTOTCAACTTCCTGATT TANTESTTTOTCAACTTCCTGATT TANTESTTTOTCAACTTCCTGATT TANTESTTTOTCCTCAACTTCTAATTCAACTTCCTGATT TANTESTTTOTCCTCAACTTCTAATTCTCAATTCTAATTCAATTCTAATTC
Construction Cons	Indicate
Gene Cheeseses TCAGGGCCTGTTGCCGCACTCTG ACCCUTTGTAAAGGGTACCAGTGCCAGTTGTAAAGGGTACCAGTGCAGTGTAAAGGGTACCAGTGCAGAGAGAG	C. MOT 10 CCC-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
STB AGCANGACTICITA CCGGAGAGAGACTATT STB TGGAGACTACTATT TGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	CAACTICITA COCOGNOGAGACATCIA CACAGAMATIC ANTROTICOCATICACAN TATAT GAACTICOCATICACAN TATAT
1101A1GCACAGAMATGC AATGCACAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	CACAGAMATTOC AATEGATY OF OR OTHER TOTAL OF OTHER TOTAL
STS CTGACOTTAITGEC AAAGGCCATG STS ATACCTC CACCT CCCTTC TGGACGTTATO STS CACCTT CACCTTAAAAAAAAAAAAAAAAAAAAAA	TATOTOTOGCC ABAGGCCAGTC GAACIGCACT CCCTTCTGTTTTT GAAGGAGAAA ACCTTCCAACTTAAGAACTTAAGAAAAAAAAAA
SIS AYCACTCTGAACTGCCACT CCCTTGTTTTTTTTTTTTTTTT	GAACIGCEACT CCCTICIONTITY GAAGGAAAAG TAGGACGTAAAA AACIGGGAAAAACT GAAGGAAAAAAAAAAAAAAAAAAAAAAAA
STS CAGGITTGAAGGAAGAG TAGAAGTITAAG STS GCTCTGCAGTGAGTAAAA ACTTGCAAGAT	AGTGGGTAAA ACTGTCCAAGACTGAGGAGGTAAGTGAGGAGAACTGAGAAGACTGAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG
518	AGTGGGTAAAA GAAGCAAGAT
	GAGGCAAGAT
BT8	AGTCCCATCTG
TTGAGTACACGGGGTGAC	Acadatasc
ST8 ACCIGICATOR	The state of the s

TABLE 3: HBM STS Table

(ADDR177)	l'ara	POACACOCKACATACATACA	ICATATA CATATA AND
		CONTRACTOR OF THE PROPERTY OF	
ARRB1(1)		AGTTCCAGAGAACGAGACGC	CTTGTCATCCTCCATGCCTT
P102F38	GDB:60	GAGCGTGAGAGGTTGAGGAG	AAACAAACTCCAGACGCACC
N172A	GDB:60	0.208 CTGAACCACTACCTGTATGACCTG	CTAACTACTTACTCCTACAGGGCCC
AGBA	STS GDB:8054147	0.23 GAAGCATT CAATACTT AACTG	CCACTCCAGTGCACCCAATC
cC111-44A	COB BO	0.239/CTTCTCCTGGCCACTCTGAC	GOTTACCTT GAAT CCCAGC
CN1677-2A . 1	CDB:60	0.271 TOAGGATGAATGAGCACATAGG	TTGTGGTCCATGAGTAGGC
cC111-6248	GDB:60	0.221 AGGGGAAGGAATGTGCTTGG	TreaderdAgeagacharar
P117F3T	STB GDB:8054161	0.188 ATTGAAGGTCCTCCAAAAGAATGCTG	O.188 ATTGAAGGTCCTCCAAAAAATGCTG JAGAACGTCAACATATCTTTTGAGGGAACAC
ARRB1(3)	. Geue	TTGTATTTGAGGACTTTGCTCG	CGGTACCATCCTCCTTCC
(B216J11-HL	STB	0.122 TTTTTGCCTCATCTATGCCC	GGGTGACAGAGTCC
B31701-HR	STS	TIGCTCAAGTTCTCCTGG	ACCTIOTITIOAGGGGAG
B317G1-HL	ST8	CTTGGCTATTTGGACAGC	GGGCATTACTCACTTGC
B292J18-HR	STG	CTTGTGTCAGTTGTCAGGG	TaaAMTanarana
B10A18-HL	818	Iccaerrecarrent	Arasacytistictem
B10A18-HR	STS	CTGCCTATCCCTGGACTT	AGTTGTCCCTAGTGCCC
B527D12-HL	[818]	CAACACGTCTGACATCCAT	GGATAGTGGAĞACCCA
8372111-HR	878	TGGGTGGTACTATTGTTCCCAT	AGTFCCAGCCCCTTACCAG
B372111-HL	STS	GGCCACTATCATCCTGTGT	TTTCACATGGGAAGACACG
B37E17-HR(GB)	втв	AÇAGTOACACTAGGGACGGG	TÖCCABGATGGAGATACM
(B37E17-HL(G9)	STS	CCTGTGGCACACATATCACC	Ασλασκαλτισμάστος
B34F22-HR(G8)	STS	TGCTGTGTACAAGTCCCCA	Ταλκοαδιαστάσονα
834F22-HL(G8)	STS	GCAGGGTCCGACTCACTAAG	lacy Gradine con Tracac
B848F2Z-HK1		ACAGTGGGGACAAAGACAGG	TACAGGGCACCTCCCAGTAG
BOZAN-TIKZ	910	ICI ICIAI I WEGILI I CCCC	laicic CANCCICC CTC I CONTROL
BOACK-FIL.	212	MCATATHICCTCCCAGCC	CAGTCCCAGCCATGAGAAC
BBZL11-HL (GB)	818	CTCCTCTGCATGGGAGAATC	AAACCTGGAACCAGTCTGTG
B85713-M. (G8)	919	GGGAGACGACGTCACAGAT	Τανταττασαλασταστάλ
144A24-HL	STS	CAGGCATCTTCTATGTGCCA	GGGAGGCACAAGTTCTTCA
(862L11-HR (GS)	STS	ACTTCGTGGCACTGAGTGTG	ICCTITICITACGGATGAGGCA
885J13-HR (GB)	878	GOCTOCTGAGCTCTTCTGAT	Hecoreteracetakeir
B82[11-HL2(GS)	818	TCACCTACTTCCAGCTTCCG	AGACCTGGGACCAGTCTGTG
B82L11-HL3(GS)	878	ictecteracatagaaaare	NATICAGGAACCTGGGACC

-38-

Novel STSs were developed either from publicly available genomic sequence or from sequence-derived BAC insert ends. Primers were chosen using a script which automatically performs vector and repetitive sequence masking using Cross_match (P. Green, U. of Washington) and subsequent primer picking using Primer3 (Rozen, Skaletsky (1996, 1997). Primer3 is available at www.genome.wi.mit.edu/genome_software/other/primer3.html.

5

10

15

20

25

30

Polymerase chain reaction (PCR) conditions for each primer pair were initially optimized with respect to MgCl₂ concentration. The standard buffer was 10 mM Tris-HCl (pH 8.3), 50 mM KCl, MgCl₂, 0.2 mM each dNTP, 0.2 μM each primer, 2.7 ng/μl human DNA, 0.25 units of AmpliTaq (Perkin Elmer) and MgCl₂ concentrations of 1.0 mM, 1.5 mM, 2.0 mM or 2.4 mM. Cycling conditions included an initial denaturation at 94°C for 2 minutes followed by 40 cycles at 94°C for 15 seconds, 55°C for 25 seconds, and 72°C for 25 seconds followed by a final extension at 72°C for 3 minutes. Depending on the results from the initial round of optimization the conditions were further optimized if necessary. Variables included increasing the annealing temperature to 58°C or 60°C, increasing the cycle number to 42 and the annealing and extension times to 30 seconds, and using AmpliTaqGold (Perkin Elmer).

BAC clones (Kim et al, *Genomics*, 32:213-218 (1996), Shizuya et al, *Proc. Natl. Acad. Sci. USA*, 89:8794-8797 (1992)) containing STS markers of interest were obtained by PCR-based screening of DNA pools from a total human BAC library purchased from Research Genetics. DNA pools derived from library plates 1-596 were used corresponding to nine genomic equivalents of human DNA. The initial screening process involved PCR reactions of individual markers against superpools, i.e., a mixture of DNA derived from all BAC clones from eight 384-well library plates. For each positive superpool, plate (8), row (16) and column (24) pools were screened to identify a unique library address. PCR products were electrophoresed in 2% agarose gels (Sigma) containing 0.5 μg/ml ethidium bromide in 1X TBE at 150 volts for 45 min. The electrophoresis units used were the Model A3-1 systems from Owl Scientific Products. Typically, gels contained 10 tiers of lanes with 50 wells/tier. Molecular weight markers (100 bp ladder, Life Technologies, Bethesda, MD) were loaded at both ends of the gel. Images of the

-39-

gels were captured with a Kodak DC40 CCD camera and processed with Kodak 1D software. The gel data were exported as tab delimited text files; names of the files included information about the library screened, the gel image files and the marker screened. These data were automatically imported using a customized Perl script into FilemakerTM PRO (Claris Corp.) databases for data storage and analysis. In cases where incomplete or ambiguous clone address information was obtained, additional experiments were performed to recover a unique, complete library address.

5

10

15

20

25

30

Recovery of clonal BAC cultures from the library involved streaking out a sample from the library well onto LB agar (Maniatis et al, *Molecular Cloning: A Laboratory Manual.*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982)) containing 12.5 µg/ml chloramphenicol (Sigma). Two individual colonies and a portion of the initial streak quadrant were tested with appropriate STS markers by colony PCR for verification. Positive clones were stored in LB broth containing 12.5 µg/ml chloramphenicol and 15% glycerol at -70°C.

Several different types of DNA preparation methods were used for isolation of BAC DNA. The manual alkaline lysis miniprep protocol listed below (Maniatis et al, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982)) was successfully used for most applications, i.e., restriction mapping, CHEF gel analysis, FISH mapping, but was not successfully reproducible in endsequencing. The Autogen and Qiagen protocols were used specifically for BAC DNA preparation for endsequencing purposes.

Bacteria were grown in 15 ml Terrific Broth containing 12.5 μg/ml chloramphenicol in a 50 ml conical tube at 37°C for 20 hrs with shaking at 300 rpm. The cultures were centrifuged in a Sorvall RT 6000 D at 3000 rpm (~1800 g) at 4°C for 15 min. The supernatant was then aspirated as completely as possible. In some cases cell pellets were frozen at -20°C at this step for up to 2 weeks. The pellet was then vortexed to homogenize the cells and minimize clumping. 250 μl of P1 solution (50 mM glucose, 15 mM Tris-HCl, pH 8, 10 mM EDTA, and 100 μg/ml RNase A) was added and the mixture pipetted up and down to mix. The mixture was then transferred to a 2 ml Eppendorf tube. 350 μl of P2 solution (0.2 N NaOH, 1% SDS) was then added, the mixture mixed gently and incubated for 5 min. at

5

10

15

20

25

30

-40-

room temperature. 350 μ l of P3 solution (3 M KOAc, pH 5.5) was added and the mixture mixed gently until a white precipitate formed. The solution was incubated on ice for 5 min. and then centrifuged at 4°C in a microfuge for 10 min. The supernatant was transferred carefully (avoiding the white precipitate) to a fresh 2 ml Eppendorf tube, and 0.9 ml of isopropanol was added, the solution mixed and left on ice for 5 min. The samples were centrifuged for 10 min., and the supernatant removed carefully. Pellets were washed in 70% ethanol and air dried for 5 min. Pellets were resuspended in 200 μ l of TE8 (10 mM Tris-HCl, pH 8.0, 1.0 mM EDTA), and RNase A (Boehringer Mannheim) added to 100 μ g/ml. Samples were incubated at 37°C for 30 min., then precipitated by addition of C₂H₃O₂Na·3H₂O to 0.5 M and 2 volumes of ethanol. Samples were centrifuged for 10 min., and the pellets washed with 70% ethanol followed by air drying and dissolving in 50 μ l TE8. Typical yields for this DNA prep were 3-5 μ g/15 ml bacterial culture. Ten to 15 μ l were used for HindIII restriction analysis; 5 μ l was used for NotI digestion and clone insert sizing by CHEF gel electrophoresis.

BACs were inoculated into 15 ml of 2X LB Broth containing 12.5 µg/ml chloramphenicol in a 50 ml conical tube. 4 tubes were inoculated for each clone. Cultures were grown overnight (~16 hr) at 37°C with vigorous shaking (>300 rpm). Standard conditions for BAC DNA isolation were followed as recommended by the Autogen 740 manufacturer. 3 ml samples of culture were placed into Autogen tubes for a total of 60 ml or 20 tubes per clone. Samples were dissolved finally in 100 µl TE8 with 15 seconds of shaking as part of the Autogen protocol. After the Autogen protocol was finished DNA solutions were transferred from each individual tube and pooled into a 2 ml Eppendorf tube. Tubes with large amounts of debris (carry over from the pelleting debris step) were avoided. The tubes were then rinsed with 0.5 ml of TE8 successively and this solution added to the pooled material. DNA solutions were stored at 4°C; clumping tended to occur upon freezing at -20°C. This DNA was either used directly for restriction mapping, CHEF gel analysis or FISH mapping or was further purified as described below for use in endsequencing reactions.

The volume of DNA solutions was adjusted to 2 ml with TE8, samples were then mixed gently and heated at 65°C for 10 min. The DNA solutions were then

5

10

15

20

25

30

-41-

centrifuged at 4°C for 5 min. and the supernatants transferred to a 15 ml conical tube. The NaCl concentration was then adjusted to 0.75 M (~0.3 ml of 5 M NaCl to the 2 ml sample). The total volume was then adjusted to 6 ml with Qiagen column equilibration buffer (Buffer OBT). The supernatant containing the DNA was then applied to the column and allowed to enter by gravity flow. Columns were washed twice with 10 ml of Qiagen Buffer QC. Bound DNA was then eluted with four separate 1 ml aliquots of Buffer QF kept at 65°C. DNA was precipitated with 0.7 volumes of isopropanol (~2.8 ml). Each sample was then transferred to 4 individual 2.2 ml Eppendorf tubes and incubated at room temperature for 2 hr or overnight. Samples were centrifuged in a microfuge for 10 min. at 4°C. The supernatant was removed carefully and 1 ml of 70% ethanol was added. Samples were centrifuged again and because the DNA pellets were often loose at this stage, the supernatant removed carefully. Samples were centrifuged again to concentrate remaining liquid which was removed with a micropipet tip. DNA pellets were then dried in a desiccator for 10 min. 20 µl of sterile distilled and deionized H₂O was added to each tube which was then placed at 4°C overnight. The four 20 µl samples for each clone were pooled and the tubes rinsed with another 20 µl of sterile distilled and deionized H₂O for a final volume of 100 μl. Samples were then heated at 65 °C for 5 min. and then mixed gently. Typical yields were 2-5 µg/60 ml culture as assessed by NotI digestion and comparison with uncut lambda DNA.

3 ml of LB Broth containing 12.5 µg/ml of chloramphenicol was dispensed into autoclaved Autogen tubes. A single tube was used for each clone. For inoculation, glycerol stocks were removed from -70°C storage and placed on dry ice. A small portion of the glycerol stock was removed from the original tube with a sterile toothpick and transferred into the Autogen tube; the toothpick was left in the Autogen tube for at least two minutes before discarding. After inoculation the tubes were covered with tape making sure the seal was tight. When all samples were inoculated, the tube units were transferred into an Autogen rack holder and placed into a rotary shaker at 37°C for 16-17 hours at 250 rpm. Following growth, standard conditions for BAC DNA preparation, as defined by the manufacturer, were used to program the Autogen. Samples were not dissolved in TE8 as part of the program and DNA pellets were left dry. When the program was complete, the

-42-

tubes were removed from the output tray and 30 µl of sterile distilled and deionized H_2O was added directly to the bottom of the tube. The tubes were then gently shaken for 2-5 seconds and then covered with parafilm and incubated at room temperature for 1-3 hours. DNA samples were then transferred to an Eppendorf tube and used either directly for sequencing or stored at 4°C for later use.

V. BAC Clone Characterization for Physical Mapping

5

10

15

20

25

30

DNA samples prepared either by manual alkaline lysis or the Autogen protocol were digested with HindIII for analysis of restriction fragment sizes. This data were used to compare the extent of overlap among clones. Typically 1-2 μg were used for each reaction. Reaction mixtures included: 1X Buffer 2 (New England Biolabs), 0.1 mg/ml bovine serum albumin (New England Biolabs), 50 μg/ml RNase A (Boehringer Mannheim), and 20 units of HindIII (New England Biolabs) in a final volume of 25 μl. Digestions were incubated at 37°C for 4-6 hours. BAC DNA was also digested with NotI for estimation of insert size by CHEF gel analysis (see below). Reaction conditions were identical to those for HindIII except that 20 units of NotI were used. Six μl of 6X Ficoll loading buffer containing bromphenol blue and xylene cyanol was added prior to electrophoresis.

HindIII digests were analyzed on 0.6% agarose (Seakem, FMC Bioproducts) in 1X TBE containing 0.5 µg/ml ethidium bromide. Gels (20 cm X 25 cm) were electrophoresed in a Model A4 electrophoresis unit (Owl Scientific) at 50 volts for 20-24 hrs. Molecular weight size markers included undigested lambda DNA, HindIII digested lambda DNA, and HaeIII digested _X174 DNA. Molecular weight markers were heated at 65°C for 2 min. prior to loading the gel. Images were captured with a Kodak DC40 CCD camera and analyzed with Kodak 1D software.

NotI digests were analyzed on a CHEF DRII (BioRad) electrophoresis unit according to the manufacturer's recommendations. Briefly, 1% agarose gels (BioRad pulsed field grade) were prepared in 0.5X TBE, equilibrated for 30 minutes in the electrophoresis unit at 14°C, and electrophoresed at 6 volts/cm for 14 hrs with circulation. Switching times were ramped from 10 sec to 20 sec. Gels were stained after electrophoresis in 0.5 µg/ml ethidium bromide. Molecular weight markers included undigested lambda DNA, HindIII digested lambda DNA, lambda ladder PFG ladder, and low range PFG marker (all from New England Biolabs).

-43-

BAC DNA prepared either by the manual alkaline lysis or Autogen protocols were labeled for FISH analysis using a Bioprime labeling kit (BioRad) according to the manufacturer's recommendation with minor modifications. Approximately 200 ng of DNA was used for each 50 µl reaction. 3 µl were analyzed on a 2% agarose gel to determine the extent of labeling. Reactions were purified using a Sephadex G50 spin column prior to *in situ* hybridization. Metaphase FISH was performed as described (Ma et al, *Cytogenet. Cell Genet.*, 74:266-271 (1996)).

VI. BAC Endsequencing

5

10

15

20

25

30

The sequencing of BAC insert ends utilized DNA prepared by either of the two methods described above. The DYEnamic energy transfer primers and Dynamic Direct cycle sequencing kits from Amersham were used for sequencing reactions. Ready made sequencing mix including the M13-40 forward sequencing primer was used (Catalog # US79730) for the T7 BAC vector terminus; ready made sequencing mix (Catalog # US79530) was mixed with the M13 -28 reverse sequencing primer (Catalog # US79339) for the SP6 BAC vector terminus. The sequencing reaction mixes included one of the four fluorescently labeled dyeprimers, one of the four dideoxy termination mixes, dNTPs, reaction buffer, and Thermosequenase. For each BAC DNA sample, 3 µl of the BAC DNA sample was aliquoted to 4 PCR strip tubes. 2 µl of one of the four dye primer/termination mix combinations was then added to each of the four tubes. The tubes were then sealed and centrifuged briefly prior to PCR. Thermocycling conditions involved a 1 minute denaturation at 95°C, 15 second annealing at 45°C, and extension for 1 minute at 70°C for 35 total cycles. After cycling the plates were centrifuged briefly to collect all the liquid to the bottom of the tubes. 5 µl of sterile distilled and deionized H₂O was then added into each tube, the plates sealed and centrifuged briefly again. The four samples for each BAC were then pooled together. DNA was then precipitated by adding 1.5 μl of 7.5 M NH₄OAc and 100 μl of -20°C 100% ethanol to each tube. Samples were mixed by pipetting up and down once. The plates were then sealed and incubated on ice for 10 minutes. Plates were centrifuged in a table top Haraeus centrifuge at 4000 rpm (3,290 g) for 30 minutes at 4°C to recover the DNA. The supernatant was removed and excess liquid blotted onto paper towels. Pellets were washed by adding 100 µl of -20°C 70% ethanol into each

-44-

tube and recentrifuging at 4000 rpm (3,290 g) for 10 minutes at 4°C. The supernatant was removed and excess liquid again removed by blotting on a paper towel. Remaining traces of liquid were removed by placing the plates upside down over a paper towel and centrifuging only until the centrifuge reached 800 rpm. Samples were then air dried at room temperature for 30 min. Tubes were capped and stored dry at -20°C until electrophoresis. Immediately prior to electrophoresis the DNA was dissolved in 1.5 µl of Amersham loading dye. Plates were then sealed and centrifuged at 2000 rpm (825 g). The plates were then vortexed on a plate shaker for 1-2 minutes. Samples were then recentrifuged at 2000 rpm (825 g) briefly. Samples were then heated at 65°C for 2 min. and immediately placed on ice. Standard gel electrophoresis was performed on ABI 377 fluorescent sequencers according to the manufacturer's recommendation.

VII. Sub-cloning and Sequencing of HBM BAC DNA

5

10

15

20

25

30

The physical map of the Zmax1 gene region provides a set of BAC clones that contain within them the Zmax1 gene and the HBM gene. DNA sequencing of several of the BACs from the region has been completed. The DNA sequence data is a unique reagent that includes data that one skilled in the art can use to identify the Zmax1 gene and the HBM gene, or to prepare probes to identify the gene(s), or to identify DNA sequence polymorphisms that identify the gene(s).

BAC DNA was isolated according to one of two protocols, either a Qiagen purification of BAC DNA (Qiagen, Inc. as described in the product literature) or a manual purification which is a modification of the standard alkaline lysis/Cesium Chloride preparation of plasmid DNA (see e.g., Ausubel et al, *Current Protocols in Molecular Biology*, John Wiley & Sons (1997)). Briefly for the manual protocol, cells were pelleted, resuspended in GTE (50 mM glucose, 25 mM Tris-Cl (pH 8), 10 mM EDTA) and lysozyme (50 mg/ml solution), followed by NaOH/SDS (1% SDS/0.2 N NaOH) and then an ice-cold solution of 3 M KOAc (pH 4.5-4.8). RnaseA was added to the filtered supernatant, followed by Proteinase K and 20% SDS. The DNA was then precipitated with isopropanol, dried and resuspended in TE (10 mM Tris, 1 mM EDTA (pH 8.0)). The BAC DNA was further purified by Cesium Chloride density gradient centrifugation (Ausubel et al, *Current Protocols in Molecular Biology*, John Wiley & Sons (1997)).

WO 01/77327

5

10

15

20

25

30

Following isolation, the BAC DNA was sheared hydrodynamically using an HPLC (Hengen, *Trends in Biochem. Sci.*, 22:273-274 (1997)) to an insert size of 2000-3000 bp. After shearing, the DNA was concentrated and separated on a standard 1% agarose gel. A single fraction, corresponding to the approximate size, was excised from the gel and purified by electroelution (Sambrook et al, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring, NY (1989)).

The purified DNA fragments were then blunt-ended using T4 DNA polymerase. The blunt-ended DNA was then ligated to unique BstXI-linker adapters (5' GTCTTCACCACGGGG and 5' GTGGTGAAGAC in 100-1000 fold molar excess). These linkers were complimentary to the BstXI-cut pMPX vectors (constructed by the inventors), while the overhang was not self-complimentary. Therefore, the linkers would not concatemerize nor would the cut-vector religate itself easily. The linker-adapted inserts were separated from the unincorporated linkers on a 1% agarose gel and purified using GeneClean (BIO 101, Inc.). The linker-adapted insert was then ligated to a modified pBlueScript vector to construct a "shotgun" subclone library. The vector contained an out-of-frame lacZ gene at the cloning site which became in-frame in the event that an adapter-dimer is cloned, allowing these to be avoided by their blue-color.

All subsequent steps were based on sequencing by ABI377 automated DNA sequencing methods. Only major modifications to the protocols are highlighted. Briefly, the library was then transformed into DH5α competent cells (Life Technologies, Bethesda, MD, DH5α transformation protocol). It was assessed by plating onto antibiotic plates containing ampicillin and IPTG/Xgal. The plates were incubated overnight at 37°C. Successful transformants were then used for plating of clones and picking for sequencing. The cultures were grown overnight at 37°. DNA was purified using a silica bead DNA preparation (Ng et al, *Nucl. Acids Res.*, 24:5045-5047 (1996)) method. In this manner, 25 μg of DNA was obtained per clone.

These purified DNA samples were then sequenced using ABI dye-terminator chemistry. The ABI dye terminator sequence reads were run on ABI377 machines and the data was directly transferred to UNIX machines following lane tracking of

the gels. All reads were assembled using PHRAP (P. Green, Abstracts of DOE Human Genome Program Contractor-Grantee Workshop V, Jan. 1996, p.157) with default parameters and quality scores. The initial assembly was done at 6-fold coverage and yielded an average of 8-15 contigs. Following the initial assembly, missing mates (sequences from clones that only gave one strand reads) were identified and sequenced with ABI technology to allow the identification of additional overlapping contigs. Primers for walking were selected using a Genome Therapeutics program Pick_primer near the ends of the clones to facilitate gap closure. These walks were sequenced using the selected clones and primers. Data were reassembled with PHRAP into sequence contigs.

VIII. Gene Identification by Computational Methods

5

10

15

20

25

Following assembly of the BAC sequences into contigs, the contigs were subjected to computational analyses to identify coding regions and regions bearing DNA sequence similarity to known genes. This protocol included the following steps.

- Degap the contigs: the sequence contigs often contain symbols (denoted by a period symbol) that represent locations where the individual ABI sequence reads have insertions or deletions. Prior to automated computational analysis of the contigs, the periods were removed. The original data was maintained for future reference.
- 2. BAC vector sequences were "masked" within the sequence by using the program cross match (Phil Green, http:\\chimera.biotech.washington.edu\UWGC). Since the shotgun libraries construction detailed above leaves some BAC vector in the shotgun libraries, this program was used to compare the sequence of the BAC contigs to the BAC vector and to mask any vector sequence prior to subsequent steps. Masked sequences were marked by an "X" in the sequence files, and remained inert during subsequent analyses.
- 3. E. coli sequences contaminating the BAC sequences were masked by comparing the BAC contigs to the entire E. coli DNA sequence.
 - 4. Repetitive elements known to be common in the human genome were masked using cross match. In this implementation of crossmatch, the BAC

sequence was compared to a database of human repetitive elements (Jerzy Jerka, Genetic Information Research Institute, Palo Alto, CA). The masked repeats were marked by X and remained inert during subsequent analyses.

5. The location of exons within the sequence was predicted using the MZEF computer program (Zhang, Proc. Natl. Acad. Sci., 94:565-568 (1997)).

5

10

25

- 6. The sequence was compared to the publicly available unigene database (National Center for Biotechnology Information, National Library of Medicine, 38A, 8N905, 8600 Rockville Pike, Bethesda, MD 20894; www.ncbi.nlm.nih.gov) using the blastn2 algorithm (Altschul et al, *Nucl. Acids Res.*, 25:3389-3402 (1997)). The parameters for this search were: E=0.05, v=50, B=50 (where E is the expected probability score cutoff, V is the number of database entries returned in the reporting of the results, and B is the number of sequence alignments returned in the reporting of the results (Altschul et al, *J. Mol. Biol.*, 215:403-410 (1990)).
- 7. The sequence was translated into protein for all six reading frames, and the protein sequences were compared to a non-redundant protein database compiled from Genpept Swissprot PIR (National Center for Biotechnology Information, National Library of Medicine, 38A, 8N905, 8600 Rockville Pike, Bethesda, MD 20894; www.ncbi.nlm.nih.gov). The parameters for this search were E=0.05, V=50, B= 50, where E, V, and B are defined as above.
 - 8. The BAC DNA sequence was compared to the database of the cDNA clones derived from direct selection experiments (described below) using blastn2 (Altschul et al, *Nucl. Acids. Res.*, 25:3389-3402 (1997)). The parameters for this search were E=0.05, V=250, B=250, where E, V, and B are defined as above.
 - 9. The BAC sequence was compared to the sequences of all other BACs from the HBM region on chromosome 11q12-13 using blastn2 (Altschul et al, *Nucl. Acids. Res.*, 25:3389-3402 (1997)). The parameters for this search were E=0.05, V=50, B=50, where E, V, and B are defined as above.
- 10. The BAC sequence was compared to the sequences derived from the ends of BACs from the HBM region on chromosome 11q12-13 using blastn2 (Altschul et al, *Nucl. Acids. Res.*, 25:3389-3402 (1997)). The parameters for this search were E=0.05, V=50, B=50, where E, V, and B are defined as above.

-48-

- The BAC sequence was compared to the Genbank database (National 11. Center for Biotechnology Information, National Library of Medicine, 38A, 8N905, 8600 Rockville Pike, Bethesda, MD 20894; www.ncbi.nlm.nih.gov) using blastn2 (Altschul et al, Nucl. Acids. Res., 25:3389-3402 (1997)). The parameters for this search were E=0.05, V=50, B=50, where E, V, and B are defined as above.
- 12. The BAC sequence was compared to the STS division of Genbank database (National Center for Biotechnology Information, National Library of Medicine, 38A, 8N905, 8600 Rockville Pike, Bethesda, MD 20894; www.ncbi.nlm.nih.gov) using blastn2 (Altschul et al, 1997). The parameters for this search were E=0.05, V=50, B= 50, where E, V, and B are defined as above.
- The BAC sequence was compared to the Expressed Sequence (EST) 13. Tag Genbank database (National Center for Biotechnology Information, National Library of Medicine, 38A, 8N905, 8600 Rockville Pike, Bethesda, MD 20894; www.ncbi.nlm.nih.gov) using blastn2 (Altschul et al, Nucl. Acids. Res., 25:3389-3402 (1997)). The parameters for this search were E=0.05, V=250, B=250, where E, V, and B are defined as above.

IX. Gene Identification by Direct cDNA Selection

Primary linkered cDNA pools were prepared from bone marrow, calvarial bone, femoral bone, kidney, skeletal muscle, testis and total brain. Poly (A) + RNA was prepared from calvarial and femoral bone tissue (Chomczynski et al, Anal. Biochem., 162:156-159 (1987); D'Alessio et al, Focus, 9:1-4 (1987)) and the remainder of the mRNA was purchased from Clontech (Palo Alto, California). In order to generate oligo(dT) and random primed cDNA pools from the same tissue, 2.5 µg mRNA was mixed with oligo(dT) primer in one reaction and 2.5 µg mRNA was mixed with random hexamers in another reaction, and both were converted to first and second strand cDNA according to manufacturers recommendations (Life Technologies, Bethesda, MD). Paired phosphorylated cDNA linkers (see sequence below) were annealed together by mixing in a 1:1 ratio (10 µg each) incubated at 65°C for five minutes and allowed to cool to room temperature.

30 Paired linkers oligo 1/2

5

10

15

20

25

OLIGO 1: 5'CTG AGC GGA ATT CGT GAG ACC3' (SEQ ID NO:12)

-49-

OLIGO 2: 5'TTG GTC TCA CGT ATT CCG CTC GA3' (SEQ ID NO:13)

Paired linkers oligo3/4

OLIGO 3: 5'CTC GAG AAT TCT GGA TCC TC3' (SEQ ID NO:14)

OLIGO 4: 5'TTG AGG ATC CAG AAT TCT CGA G3' (SEQ ID NO:15)

5 Paired linkers oligo 5/6

OLIGO 5: 5'TGT ATG CGA ATT CGC TGC GCG3' (SEQ ID NO:16)

OLIGO 6: 5'TTC GCG CAG CGA ATT CGC ATA CA3' (SEQ ID NO:17)

Paired linkers oligo7/8

10

15

20

25

OLIGO 7: 5'GTC CAC TGA ATT CTC AGT GAG3' (SEQ ID NO:18)

OLIGO 8: 5'TTG TCA CTG AGA ATT CAG TGG AC3' (SEQ ID NO:19)

Paired linkers oligo 11/12

OLIGO 11: 5'GAA TCC GAA TTC CTG GTC AGC3' (SEQ ID NO:20)

OLIGO 12: 5'TTG CTG ACC AGG AAT TCG GAT TC3' (SEQ ID NO:21)

Linkers were ligated to all oligo(dT) and random primed cDNA pools (see below) according to manufacturers instructions (Life Technologies, Bethesda, MD).

Oligo 1/2 was ligated to oligo(dT) and random primed cDNA pools prepared from bone marrow. Oligo 3/4 was ligated to oligo(dT) and random primed cDNA pools prepared from calvarial bone. Oligo 5/6 was ligated to oligo(dT) and random primed cDNA pools prepared from brain and skeletal muscle. Oligo 7/8 was ligated to oligo(dT) and random primed cDNA pools prepared from kidney. Oligo 11/12 was ligated to oligo(dT) and random primed cDNA pools prepared from femoral bone.

The cDNA pools were evaluated for length distribution by PCR amplification using 1 µl of a 1:1, 1:10, and 1:100 dilution of the ligation reaction, respectively. PCR reactions were performed in a Perkin Elmer 9600, each 25 µl volume reaction contained 1 µl of DNA, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 0.001% gelatin, 200 mM each dNTPs, 10 µM primer and 1 unit Taq DNA polymerase (Perkin Elmer) and was amplified under the following conditions:

30 seconds at 94°C, 30 seconds at 60°C and 2 minutes at 72°C for 30 cycles. The length distribution of the amplified cDNA pools were evaluated by electrophoresis on a 1% agarose gel. The PCR reaction that gave the best representation of the random primed and oligo(dT) primed cDNA pools was scaled up so that ~2-3 μg of each cDNA pool was produced. The starting cDNA for the direct selection reaction comprised of 0.5 μg of random primed cDNAs mixed with 0.5 μg of oligo(dT) primed cDNAs.

5

10

15

20

25

30

The DNA from the 54 BACs that were used in the direct cDNA selection procedure was isolated using Nucleobond AX columns as described by the manufacturer (The Nest Group, Inc.).

The BACs were pooled in equimolar amounts and 1 µg of the isolated genomic DNA was labeled with biotin 16-UTP by nick translation in accordance with the manufacturers instructions (Boehringer Mannheim). The incorporation of the biotin was monitored by methods that could be practiced by one skilled in the art (Del Mastro and Lovett, *Methods in Molecular Biology*, Humana Press Inc., NJ (1996)).

Direct cDNA selection was performed using methods that could be practiced by one skilled in the art (Del Mastro and Lovett, *Methods in Molecular Biology*, Humana Press Inc., NJ (1996)). Briefly, the cDNA pools were multiplexed in two separate reactions: In one reaction cDNA pools from bone marrow, calvarial bone, brain and testis were mixed, and in the other cDNA pools from skeletal muscle, kidney and femoral bone were mixed. Suppression of the repeats, yeast sequences and plasmid in the cDNA pools was performed to a Cot of 20. 100 ng of biotinylated BAC DNA was mixed with the suppressed cDNAs and hybridized in solution to a Cot of 200. The biotinylated DNA and the cognate cDNAs was captured on streptavidin-coated paramagnetic beads. The beads were washed and the primary selected cDNAs were eluted. These cDNAs were PCR amplified and a second round of direct selection was performed. The product of the second round of direct selection is referred to as the secondary selected material. A Galanin cDNA clone, previously shown to map to 11q12-13 (Evans, *Genomics*, 18:473-477 (1993)), was used to monitor enrichment during the two rounds of selection.

5

20

25

The secondary selected material from bone marrow, calvarial bone, femoral bone, kidney, skeletal muscle, testis and total brain was PCR amplified using modified primers of oligos 1, 3, 5, 7 and 11, shown below, and cloned into the UDG vector pAMP10 (Life Technologies, Bethesda, MD), in accordance with the manufacturer's recommendations.

Modified primer sequences:

Oligo1-CUA: 5'CUA CUA CUA CUA CTG AGC GGA ATT CGT GAG ACC3' (SEQ ID NO:22)

Oligo3-CUA: 5'CUA CUA CUA CUA CTC GAG AAT TCT GGA TCC TC3'

10 (SEQ ID NO:23)

Oligo5-CUA: 5'CUA CUA CUA CUA TGT ATG CGA ATT CGC TGC GCG3'
(SEQ ID NO:24)

Oligo7-CUA: 5'CUA CUA CUA CUA GTC CAC TGA ATT CTC AGT GAG3' (SEQ ID NO:25)

Oligo11-CUA: 5'CUA CUA CUA GAA TCC GAA TTC CTG GTC AGC3'
(SEQ ID NO:26)

The cloned secondary selected material, from each tissue source, was transformed into MAX Efficiency DH5a Competent Cells (Life Technologies, Bethesda, MD) as recommended by the manufacturer. 384 colonies were picked from each transformed source and arrayed into four 96 well microtiter plates. All secondarily selected cDNA clones were sequenced using M13 dye primer terminator cycle sequencing kit (Applied Biosystems), and the data collected by the ABI 377 automated fluorescence sequencer (Applied Biosystems). All sequences were analyzed using the BLASTN, BLASTX and FASTA programs (Altschul et al, *J. Mol. Biol.*, 215:403-410 (1990), Altschul et al, *Nucl. Acids. Res.*, 25:3389-3402 (1997)). The cDNA sequences were compared to a database containing sequences derived from human repeats, mitochondrial DNA, ribosomal

-52-

RNA, E. coli DNA to remove background clones from the dataset using the program cross_match. A further round of comparison was also performed using the program BLASTN2 against known genes (Genbank) and the BAC sequences from the HBM region. Those cDNAs that were >90% homologous to these sequences were filed according to the result and the data stored in a database for further analysis. cDNA sequences that were identified but did not have significant similarity to the BAC sequences from the HBM region or were eliminated by cross_match were hybridized to nylon membranes which contained the BACs from the HBM region, to ascertain whether they hybridized to the target.

10

15

5

Hybridization analysis was used to map the cDNA clones to the BAC target that selected them. The BACs that were identified from the HBM region were arrayed and grown into a 96 well microtiter plate. LB agar containing 25 μg/ml kanamycin was poured into 96 well microtiter plate lids. Once the agar had solidified, pre-cut Hybond N+ nylon membranes (Amersham) were laid on top of the agar and the BACs were stamped onto the membranes in duplicate using a hand held 96 well replica plater (V&P Scientific, Inc.). The plates were incubated overnight at 37°C. The membranes were processed according to the manufacturers recommendations.

20

25

30

The cDNAs that needed to be mapped by hybridization were PCR amplified using the relevant primer (oligos 1, 3, 5, 7 and 11) that would amplify that clone. For this PCR amplification, the primers were modified to contain a linkered digoxigenin molecule at the 5' of the oligonucleotide. The PCR amplification was performed under the same conditions as described in Preparation of cDNA Pools (above). The PCR products were evaluated for quality and quantity by electrophoresis on a 1% agarose gel by loading 5 µl of the PCR reaction. The nylon membranes containing the stamped BACs were individually pre-hybridized in 50 ml conical tubes containing 10 ml of hybridization solution (5x SSPE, 0.5x Blotto, 2.5% SDS and 1 mM EDTA (pH 8.0)). The 50 ml conical tubes were placed in a rotisserie oven (Robbins Scientific) for 2 hours at 65°C. Twenty-five ng of each cDNA probe was denatured and added into individual 50 ml conical tubes containing the nylon membrane and hybridization solution. The hybridization was performed overnight at 65°C. The filters were washed for 20 minutes at 65°C in

-53-

each of the following solutions: 3x SSPE, 0.1% SDS; 1x SSPE, 0.1% SDS and 0.1x SSPE, 0.1% SDS.

The membranes were removed from the 50 ml conical tubes and placed in a dish. Acetate sheets were placed between each membrane to prevent them from sticking to each other. The incubation of the membranes with the Anti-DIG-AP and CDP-Star was performed according to manufacturers recommendations (Boehringer Mannheim). The membranes were wrapped in Saran wrap and exposed to Kodak Bio-Max X-ray film for 1 hour.

X. cDNA Cloning and Expression Analysis

5

10

15

20

25

30

To characterize the expression of the genes identified by direct cDNA selection and genomic DNA sequencing in comparison to the publicly available databases, a series of experiments were performed to further characterize the genes in the HBM region. First, oligonucleotide primers were designed for use in the polymerase chain reaction (PCR) so that portions of a cDNA, EST, or genomic DNA could be amplified from a pool of DNA molecules (a cDNA library) or RNA population (RT-PCR and RACE). The PCR primers were used in a reaction containing genomic DNA to verify that they generated a product of the size predicted based on the genomic (BAC) sequence. A number of cDNA libraries were then examined for the presence of the specific cDNA or EST. The presence of a fragment of a transcription unit in a particular cDNA library indicates a high probability that additional portions of the same transcription unit will be present as well.

A critical piece of data that is required when characterizing novel genes is the length, in nucleotides, of the processed transcript or messenger RNA (mRNA). One skilled in the art primarily determines the length of an mRNA by Northern blot hybridization (Sambrook et al, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor NY (1989)). Groups of ESTs and direct-selected cDNA clones that displayed significant sequence similarity to sequenced BACs in the critical region were grouped for convenience into approximately 30 kilobase units. Within each 30 kilobase unit there were from one up to fifty ESTs and direct-selected cDNA clones which comprised one or more independent transcription units. One or more ESTs or direct-selected cDNAs were

used as hybridization probes to determine the length of the mRNA in a variety of tissues, using commercially available reagents (Multiple Tissue Northern blot; Clontech, Palo Alto, California) under conditions recommended by the manufacturer.

5

10

15

20

25

30

Directionally cloned cDNA libraries from femoral bone, and calvarial bone tissue were constructed by methods familiar to one skilled in the art (for example, Soares in Automated DNA Sequencing and Analysis, Adams, Fields and Venter, Eds., Academic Press, NY, pages 110-114 (1994)). Bones were initially broken into fragments with a hammer, and the small pieces were frozen in liquid nitrogen and reduced to a powder in a tissue pulverizer (Spectrum Laboratory Products). RNA was extracted from the powdered bone by homogenizing the powdered bone with a standard Acid Guanidinium Thiocyanate-Phenol-Chloroform extraction buffer (e.g. Chomczynski and Sacchi, Anal. Biochem., 162:156-159 (1987)) using a polytron homogenizer (Brinkman Instruments). Additionally, human brain and lung total RNA was purchased from Clontech. PolyA RNA was isolated from total RNA using dynabeads-dT according to the manufacturer's recommendations (Dynal, Inc.).

OH-AATTCGGCACGAG-OH 3' (SEQ ID NO:28), and 5' p-CTCGTGCCG-OH 3' (SEQ ID NO:29)) were then ligated to the double stranded cDNAs by methods familiar to one skilled in the art (Soares, 1994). The EcoRI adapters were then

5

10

15

20

25

30

-55-

removed from the 3' end of the cDNA by digestion with NotI (Soares, 1994). The cDNA was then ligated into the plasmid vector pBluescript II KS+ (Stratagene, La Jolla, California), and the ligated material was transformed into E. coli host DH10B or DH12S by electroporation methods familiar to one skilled in the art (Soares, 1994). After growth overnight at 37°C, DNA was recovered from the E. coli colonies after scraping the plates by processing as directed for the Mega-prep kit (Qiagen, Chatsworth, California). The quality of the cDNA libraries was estimated by counting a portion of the total numbers of primary transformants and determining the average insert size and the percentage of plasmids with no cDNA insert. Additional cDNA libraries (human total brain, heart, kidney, leukocyte, and fetal

Additional cDNA libraries (human total brain, heart, kidney, leukocyte, and fetal brain) were purchased from Life Technologies, Bethesda, MD.

cDNA libraries, both oligo (dT) and random hexamer (N₆) primed, were used for isolating cDNA clones transcribed within the HBM region: human bone, human brain, human kidney and human skeletal muscle (all cDNA libraries were made by the inventors, except for skeletal muscle (dT) and kidney (dT) cDNA libraries). Four 10 x 10 arrays of each of the cDNA libraries were prepared as follows: the cDNA libraries were titered to 2.5 x 106 using primary transformants. The appropriate volume of frozen stock was used to inoculate 2 L of LB/ampicillin (100 mg/ml). This inoculated liquid culture was aliquotted into 400 tubes of 4 ml each. Each tube contained approximately 5000 cfu. The tubes were incubated at 30°C overnight with gentle agitation. The cultures were grown to an OD of 0.7-0.9. Frozen stocks were prepared for each of the cultures by aliquotting 100 µl of culture and 300 µl of 80% glycerol. Stocks were frozen in a dry ice/ethanol bath and stored at -70°C. The remaining culture was DNA prepared using the Qiagen (Chatsworth, CA) spin miniprep kit according to the manufacturer's instructions. The DNAs from the 400 cultures were pooled to make 80 column and row pools. The cDNA libraries were determined to contain HBM cDNA clones of interest by PCR. Markers were designed to amplify putative exons. Once a standard PCR optimization was performed and specific cDNA libraries were determined to contain cDNA clones of interest, the markers were used to screen the arrayed library. Positive addresses indicating the presence of cDNA clones were confirmed by a second PCR using the same markers.

5

10

15

20

25

30

Once a cDNA library was identified as likely to contain cDNA clones corresponding to a specific transcript of interest from the HBM region, it was manipulated to isolate the clone or clones containing cDNA inserts identical to the EST or direct-selected cDNA of interest. This was accomplished by a modification of the standard "colony screening" method (Sambrook et al, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor NY (1989)). Specifically, twenty 150 mm LB+ampicillin agar plates were spread with 20,000 colony forming units (cfu) of cDNA library and the colonies allowed to grow overnight at 37°C. Colonies were transferred to nylon filters (Hybond from Amersham, or equivalent) and duplicates prepared by pressing two filters together essentially as described (Sambrook et al, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor NY (1989)). The "master" plate was then incubated an additional 6-8 hours to allow the colonies to grow back. The DNA from the bacterial colonies was then affixed to the nylon filters by treating the filters sequentially with denaturing solution (0.5 N NaOH, 1.5 M NaCl) for two minutes, neutralization solution (0.5 M Tris-Cl pH 8.0, 1.5 M NaCl) for two minutes (twice). The bacterial colonies were removed from the filters by washing in a solution of 2X SSC/0.1% SDS for one minute while rubbing with tissue paper. The filters were air dried and baked under vacuum at 80°C for 1-2 hours.

A cDNA hybridization probe was prepared by random hexamer labeling (Fineberg and Vogelstein, *Anal. Biochem.*, 132:6-13 (1983)) or by including genespecific primers and no random hexamers in the reaction (for small fragments). Specific activity was calculated and was >5X10⁸ cpm/10⁸ μg of cDNA. The colony membranes were then prewashed in 10 mM Tris-Cl pH 8.0, 1 M NaCl, 1 mM EDTA, 0.1% SDS for 30 minutes at 55°C. Following the prewash, the filters were prehybridized in > 2 ml/filter of 6X SSC, 50 % deionized formamide, 2% SDS, 5X Denhardt's solution, and 100 mg/ml denatured salmon sperm DNA, at 42°C for 30 minutes. The filters were then transferred to hybridization solution (6X SSC, 2% SDS, 5X Denhardt's, 100 mg/ml denatured salmon sperm DNA) containing denatured α³²P-dCTP-labeled cDNA probe and incubated at 42°C for 16-18 hours.

After the 16-18 hour incubation, the filters were washed under constant agitation in 2X SSC, 2% SDS at room temperature for 20 minutes, followed by two

-57-

washes at 65°C for 15 minutes each. A second wash was performed in 0.5 X SSC, 0.5% SDS for 15 minutes at 65°C. Filters were then wrapped in plastic wrap and exposed to radiographic film for several hours to overnight. After film development, individual colonies on plates were aligned with the autoradiograph so that they could be picked into a 1 ml solution of LB Broth containing ampicillin. After shaking at 37°C for 1-2 hours, aliquots of the solution were plated on 150 mm plates for secondary screening. Secondary screening was identical to primary screening (above) except that it was performed on plates containing ~250 colonies so that individual colonies could be clearly identified for picking.

5

10

15

20

25

30

After colony screening with radiolabeled probes yielded cDNA clones, the clones were characterized by restriction endonuclease cleavage, PCR, and direct sequencing to confirm the sequence identity between the original probe and the isolated clone. To obtain the full-length cDNA, the novel sequence from the end of the clone identified was used to probe the library again. This process was repeated until the length of the cDNA cloned matches that estimated to be full-length by the northern blot analysis.

RT-PCR was used as another method to isolate full length clones. The cDNA was synthesized and amplified using a "Superscript One Step RT-PCR" kit (Life Technologies, Gaithersburg, MD). The procedure involved adding 1.5 µg of RNA to the following: 25 µl of reaction mix provided which is a proprietary buffer mix with MgSO₄ and dNTP's, 1 µl sense primer (10 µM) and 1 µl anti-sense primer (10 µM), 1 µl reverse transcriptase and Taq DNA polymerase mix provided and autoclaved water to a total reaction mix of 50 µl. The reaction was then placed in a thermocycler for 1 cycle at 50°C for 15 to 30 minutes, then 94°C for 15 seconds, 55-60°C for 30 seconds and 68-72°C for 1 minute per kilobase of anticipated product and finally 1 cycle of 72°C for 5-10 minutes. The sample was analyzed on an agarose gel. The product was excised from the gel and purified from the gel (GeneClean, Bio 101). The purified product was cloned in pCTNR (General Contractor DNA Cloning System, 5 Prime - 3 Prime, Inc.) and sequenced to verify that the clone was specific to the gene of interest.

Rapid Amplification of cDNA ends (RACE) was performed following the manufacturer's instructions using a Marathon cDNA Amplification Kit (Clontech,

5

10

15

20

25

30

-58-

Palo Alto, CA) as a method for cloning the 5' and 3' ends of candidate genes. cDNA pools were prepared from total RNA by performing first strand synthesis, where a sample of total RNA sample was mixed with a modified oligo (dT) primer, heated to 70°C, cooled on ice and followed by the addition of: 5x first strand buffer, 10 mM dNTP mix, and AMV Reverse Transcriptase (20 U/μl). The tube was incubated at 42°C for one hour and then the reaction tube was placed on ice. For second strand synthesis, the following components were added directly to the reaction tube: 5x second strand buffer, 10 mM dNTP mix, sterile water, 20x second strand enzyme cocktail and the reaction tube was incubated at 16°C for 1.5 hours. T4 DNA Polymerase was added to the reaction tube and incubated at 16°C for 45 minutes. The second-strand synthesis was terminated with the addition of an EDTA/Glycogen mix. The sample was subjected to a phenol/chloroform extraction and an ammonium acetate precipitation. The cDNA pools were checked for quality by analyzing on an agarose gel for size distribution. Marathon cDNA adapters (Clontech) were then ligated onto the cDNA ends. The specific adapters contained priming sites that allowed for amplification of either 5' or 3' ends, depending on the orientation of the gene specific primer (GSP) that was chosen. An aliquot of the double stranded cDNA was added to the following reagents: 10 µM Marathon cDNA adapter, 5x DNA ligation buffer, T4 DNA ligase. The reaction was incubated at 16°C overnight. The reaction was heat inactivated to terminate the reaction. PCR was performed by the addition of the following to the diluted double stranded cDNA pool: 10x cDNA PCR reaction buffer, 10 μM dNTP mix, 10 μM GSP, 10 μM AP1 primer (kit), 50x Advantage cDNA Polymerase Mix. Thermal Cycling conditions were 94°C for 30 seconds, 5 cycles of 94°C for 5 seconds, 72°C for 4 minutes, 5 cycles of 94°C for 5 seconds, 70°C for 4 minutes, 23 cycles of 94°C for 5 seconds. 68°C for 4 minutes. After the first round of PCR was performed using the GSP to extend to the end of the adapter to create the adapter primer binding site, exponential amplification of the specific cDNA of interest was observed. Usually a second nested PCR is performed to confirm the specific cDNA. The RACE product was analyzed on an agarose gel and then excised and purified from the gel (GeneClean, BIO 101). The RACE product was then cloned into pCTNR (General Contractor

-59-

DNA Cloning System, 5' - 3', Inc.) and the DNA sequence determined to verify that the clone is specific to the gene of interest.

XI. Mutation Analysis

5

10

15

20

25

30

Comparative genes were identified using the above procedures and the exons from each gene were subjected to mutation detection analysis. Comparative DNA sequencing was used to identify polymorphisms in HBM candidate genes from chromosome 11q12-13. DNA sequences for candidate genes were amplified from patient lymphoblastoid cell lines.

The inventors developed a method based on analysis of direct DNA sequencing of PCR products amplified from candidate regions to search for the causative polymorphism. The procedure consisted of three stages that used different subsets of HBM family to find segregating polymorphisms and a population panel to assess the frequency of the polymorphisms. The family resources result from a single founder leading to the assumption that all affected individuals will share the same causative polymorphism.

Candidate regions were first screened in a subset of the HBM family consisting of the proband, daughter, and her mother, father and brother.

Monochromosomal reference sequences were produced concurrently and used for comparison. The mother and daughter carried the HBM polymorphism in this nuclear family, providing the ability to monitor polymorphism transmission. The net result is that two HBM chromosomes and six non-HBM chromosomes were screened. This allowed exclusion of numerous frequent alleles. Only alleles exclusively present in the affected individuals passed to the next level of analysis.

Polymorphisms that segregated exclusively with the HBM phenotype in this original family were then re-examined in an extended portion of the HBM pedigree consisting of two additional nuclear families. These families consisted of five HBM and three unaffected individuals. The HBM individuals in this group included the two critical crossover individuals, providing the centromeric and telomeric boundaries of the critical region. Tracking the heredity of polymorphisms between these individuals and their affected parents allowed for further refining of the critical region. This group brought the total of HBM chromosomes screened to seven and the total of non-HBM chromosomes to seventeen.

When a given polymorphism continued to segregate exclusively with the HBM phenotype in the extended group, a population panel was then examined. This panel of 84 persons consisted of 42 individuals known to have normal bone mineral density and 42 individuals known to be unrelated but with untyped bone mineral density. Normal bone mineral density is within two standard deviations of BMD Z score 0. The second group was from the widely used CEPH panel of individuals. Any segregating polymorphisms found to be rare in this population were subsequently examined on the entire HBM pedigree and a larger population.

5

10

15

20

25

30

Polymerase chain reaction (PCR) was used to generate sequencing templates from the HBM family's DNA and monochromosomal controls. Enzymatic amplification of genes within the HBM region on 11q12-13 was accomplished using the PCR with oligonucleotides flanking each exon as well as the putative 5' regulatory elements of each gene. The primers were chosen to amplify each exon as well as 15 or more base pairs within each intron on either side of the splice. All PCR primers were made as chimeras to facilitate dye primer sequencing. The M13-21F (5'- GTA A CGA CGG CCA GT -3') (SEQ ID NO:30) and -28REV (5'- AAC AGC TAT GAC CAT G -3') (SEQ ID NO:31) primer binding sites were built on to the 5' end of each forward and reverse PCR primer, respectively, during synthesis. 150 ng of genomic DNA was used in a 50 μl PCR with 2 U AmpliTaq, 500 nM primer and 125 μM dNTP. Buffer and cycling conditions were specific to each primer set. TaqStart antibody (Clontech) was used for hot start PCR to minimize primer dimer formation. 10% of the product was examined on an agarose gel. The appropriate samples were diluted 1:25 with deionized water before sequencing.

Each PCR product was sequenced according to the standard Energy Transfer primer (Amersham) protocol. All reactions took place in 96 well trays. 4 separate reactions, one each for A, C, G and T were performed for each template. Each reaction included 2 µl of the sequencing reaction mix and 3 µl of diluted template. The plates were then heat sealed with foil tape and placed in a thermal cycler and cycled according to the manufacturer's recommendation. After cycling, the 4 reactions were pooled. 3 µl of the pooled product was transferred to a new 96 well plate and 1 µl of the manufacturer's loading dye was added to each well. All 96 well pipetting procedures occurred on a Hydra 96 pipetting station (Robbins Scientific.

USA). 1 µl of pooled material was directly loaded onto a 48 lane gel running on an ABI 377 DNA sequencer for a 10 hour, 2.4 kV run.

Polyphred (University of Washington) was used to assemble sequence sets for viewing with Consed (University of Washington). Sequences were assembled in groups representing all relevant family members and controls for a specified target region. This was done separately for each of the three stages. Forward and reverse reads were included for each individual along with reads from the monochromosomal templates and a color annotated reference sequence. Polyphred indicated potential polymorphic sites with a purple flag. Two readers independently viewed each assembly and assessed the validity of the purple-flagged sites.

5

10

15

20

25

30

A total of 23 exons present in the mature mRNA and several other portions of the primary transcript were evaluated for heterozygosity in the nuclear family of two HBM-affected and two unaffected individuals. 25 SNPs were identified, as shown in the table below.

TABLE 4: Single Nucleotide Polymorphisms in the Zmax1 Gene and Environs

Exon Name	Location	Base Change
b200e21-h_Contig1_1.nt	69169 (309G)	C/A
b200e21-h_Contig4_12.nt	27402 (309G)	A/G
b200e21-h_Contig4_13.nt	27841 (309G)	T/C
b200e21-h_Contig4_16.nt	35600 (309G)	A/G
b200e21-h_Contig4_21.nt	45619 (309G)	G/A
b200e21-h_Contig4_22.nt-a	46018 (309G)	T/G
b200e21-h_Contig4_22.nt-b	46093 (309G)	T/G
b200e21-h_Contig4_22.nt-c	46190 (309G)	A/G
b200e21-h_Contig4_24.nt-a	50993 (309G)	T/C
b200e21-h_Contig4_24.nt-b	51124 (309G)	C/T
b200e21-h_Contig4_25.nt	55461 (309G)	C/T
b200e21-h_Contig4_33.nt-a	63645 (309G)	C/A
b200e21-h_Contig4_33.nt-b	63646 (309G)	A/C
b200e21-h_Contig4_61.nt	24809 (309G)	T/G
b200e21-h_Contig4_62.nt	27837 (309G)	T/C

Exon Name	Location	Base Change
b200e21-h_Contig4_63.nt-a	31485 (309G)	C/T
b200e21-h_Contig4_63.nt-b	31683 (309G)	A/G
b200e21-h_Contig4_9.nt	24808 (309G)	T/G
b527d12-h_Contig030g_1.nt-a	31340 (308G)	T/C
b527d12-h_Contig030g_1.nt-b	32538 (308G)	A/G
b527d12-h_Contig080C_2.nt	13224 (308G)	A/G
b527d12-h_Contig087C_1.nt	21119 (308G)	C/A
b527d12-h_Contig087C_4.nt	30497 (308G)	G/A
b527d12-h_Contig088C_4.nt	24811 (309G)	A/C
b527d12-h_Contig089_1HP.nt	68280 (309G)	G/A

10

5

In addition to the polymorphisms presented in Table 4, two additional polymorphisms can also be present in SEQ ID NO:2. These is a change at position 2002 of SEQ ID NO:2. Either a guanine or an adenine can appear at this position. This polymorphism is silent and is not associated with any change in the amino acid sequence. The second change is at position 4059 of SEQ ID NO:2 corresponding in a cytosine (C) to thymine (T) change. This polymorphism results in a corresponding amino acid change from a valine (V) to an alanine (A). Other polymorphisms were found in the candidate gene exons and adjacent intron sequences. Any one or combination of the polymorphisms listed in Table 4 or the two discussed above could also have a minor effect on bone mass when present in SEQ ID NO:2.

20

15

The present invention encompasses the nucleic acid sequences having the nucleic acid sequence of SEQ ID NO: 1 with the above-identified point mutations.

25

Preferably, the present invention encompasses the nucleic acid of SEQ ID NO: 2. Specifically, a base-pair substitution changing G to T at position 582 in the coding sequence of Zmax1 (the HBM gene) was identified as heterozygous in all HBM individuals, and not found in the unaffected individuals (i.e., b527d12-h_Contig087C_1.nt). Fig. 5 shows the order of the contigs in B527D12. The direction of transcription for the HBM gene is from left to right. The sequence of contig308G of B527D12 is the reverse complement of the coding region to the

5

10

15

20

25

30

PCT/US00/16951

HBM gene. Therefore, the relative polymorphism in contig 308G shown in Table 4 as a base change substitution of C to A is the complement to the G to T substitution in the HBM gene. This mutation causes a substitution of glycine 171 with valine (G171V).

The HBM polymorphism was confirmed by examining the DNA sequence of different groups of individuals. In all members of the HBM pedigree (38 individuals), the HBM polymorphism was observed in the heterozygous form in affected (i.e., elevated bone mass) individuals only (N=18). In unaffected relatives (N=20) (BMDZ<2.0) the HBM polymorphism was never observed. To determine whether this polymorphism was ever observed in individuals outside of the HBM pedigree, 297 phenotyped individuals were characterized at the site of the HBM gene. None were heterozygous at the site of the HBM polymorphism. In an unphenotyped control group, none of 64 individuals were observed to be heterozygous at position 582. Taken together, these data prove that the polymorphism observed in the kindred displaying the high bone mass phenotype is strongly correlated with the G¬T polymorphism at position 582 of Zmax1.

Furthermore, these results coupled with the ASO results described below, establish that the HBM polymorphism genetically segregates with the HBM phenotype, and that both the HBM polymorphism and phenotype are rare in the general population.

XII. Allele Specific Oligonucleotide (ASO) Analysis

The amplicon containing the HBM1 polymorphism was PCR amplified using primers specific for the exon of interest. The appropriate population of individuals was PCR amplified in 96 well microtiter plates as follows. PCR reactions (20 μl) containing 1X Promega PCR buffer (Cat. # M1883 containing 1.5 mM MgCl₂), 100mM dNTP, 200 nM PCR primers (1863F: CCAAGTTCTGAGAAGTCC and 1864R: AATACCTGAAACCATACCTG), 1 U Amplitaq, and 20 ng of genomic DNA were prepared and amplified under the following PCR conditions: 94°C, 1 minute, (94°C, 30 sec.; 58°C, 30 sec.; 72°C, 1 min.) X35 cycles), 72°C, 5', 4°C, hold. Loading dye was then added and 10 μl of the products was electrophoresed on 1.5% agarose gels containing 1 μg/ml ethidium bromide at 100-150 V for 5-10 minutes. Gels were treated 20 minutes in denaturing

solution (1.5 M NaCl, 0.5 N NaOH), and rinsed briefly with water. Gels were then neutralized in 1 M Tris-HCl, pH 7.5, 1.5 M NaCl, for 20 minutes and rinsed with water. Gels were soaked in 10 X SSC for 20 minutes and blotted onto nylon transfer membrane (Hybond N+- Amersham) in 10X SSC overnight. Filters were the rinsed in 6X SSC for 10 minutes and UV crosslinked.

The allele specific oligonucleotides (ASO) were designed with the polymorphism approximately in the middle. Oligonucleotides were phosphate free at the 5'end and were purchased from Gibco BRL. Sequences of the oligonucleotides are:

2326 Zmax1.ASO.g: AGACTGGGGTGAGACGC

5

10

15

20

25

30

2327 Zmax1.ASO.t: CAGACTGGGTTGAGACGCC

The polymorphic nucleotides are underlined. To label the oligos, 1.5 µl of 1 µg/µl ASO oligo (2326.Zmax1.ASO.g or 2327.Zmax1.ASO.t), 11 μl ddH₂O, 2 μl 10X kinase forward buffer, 5 µl y³²P-ATP (6000 Ci/mMole), and 1 µl T4 polynucleotide kinase (10 U/ul) were mixed, and the reaction incubated at 37°C for 30-60 minutes. Reactions were then placed at 95°C for 2 minutes and 30 ml H₂O was added. The probes were purified using a G25 microspin column (Pharmacia).

Blots were prehybridized in 10 ml 5X SSPE, 5X Denhardt's, 2% SDS, and 100 μg/ml, denatured, sonicated salmon sperm DNA at 40°C for 2 hr. The entire reaction mix of kinased oligo was then added to 10 ml fresh hybridization buffer (5X SSPE, 5X Denhardt's, 2% SDS) and hybridized at 40°C for at least 4 hours to overnight.

All washes done in 5X SSPE, 0.1 % SDS. The first wash was at 45°C for 15 minutes; the solution was then changed and the filters washed 50°C for 15 minutes. Filters were then exposed to Kodak biomax film with 2 intensifying screens at -70°C for 15 minutes to 1 hr. If necessary the filters were washed at 55°C for 15 minutes and exposed to film again. Filters were stripped by washing in boiling 0.1X SSC, 0.1% SDS for 10 minutes at least 3 times.

The two films that best captured the allele specific assay with the 2 ASOs were converted into digital images by scanning them into Adobe PhotoShop. These 5

10

15

20

25

images were overlaid against each other in Graphic Converter and then scored and stored in FileMaker Pro 4.0 (see Fig. 9).

In order to determine the HBM1 allele frequency in ethnically diverse populations, 672 random individuals from various ethnic groups were typed by the allele specific oligonucleotide (ASO) method. This population included 96 CEPH grandparents (primarily Caucasian), 192 Caucasian, 192 African-American, 96 Hispanic, and 96 Asian individuals. No evidence was obtained for the presence of the HBM1 polymorphism in any of these individuals. Overall, a total of 911 individuals were typed either by direct sequencing or ASO hybridization; all were homozygous GG at the site of the HBM polymorphism (Fig. 14). This information illustrates that the HBM1 allele is rare in various ethnic populations.

Thus this invention provides a rapid method of identifying individuals with the HBM1 allele. This method could be used in the area of diagnostics and screening of an individual for susceptibility to osteoporosis or other bone disorder. The assay could also be used to identify additional individuals with the HBM1 allele or the additional polymorphisms described herein.

XIII. Cellular Localization of Zmax1

A. Gene Expression in Rat tibia by non isotopic In Situ Hybridization

In situ hybridization was conducted by Pathology Associates International (PAI), Frederick, MD. This study was undertaken to determine the specific cell types that express the Zmax1 gene in rat bone with particular emphasis on areas of bone growth and remodeling. Zmax1 probes used in this study were generated from both human (HuZmax1) and mouse (MsZmax1) cDNAs, which share an 87% sequence identity. The homology of human and mouse Zmax1 with rat Zmax1 is unknown.

For example, gene expression by non-isotopic *in situ* hybridization was performed as follows, but other methods would be known to the skilled artisan. Tibias were collected from two 6 to 8 week old female Sprague Dawley rats

euthanized by carbon dioxide asphyxiation. Distal ends were removed and proximal tibias were snap frozen in OCT embedding medium with liquid nitrogen immediately following death. Tissues were stored in a -80°C freezer.

Probes for amplifying PCR products from cDNA were prepared as follows. 5 The primers to amplify PCR products from a cDNA clone were chosen using published sequences of both human LRP5 (Genbank Accession No. ABO17498) and mouse LRP5 (Genbank Accession No. AFO64984). In order to minimize cross reactivity with other genes in the LDL receptor family, the PCR products were derived from an intracellular portion of the protein coding region. PCR was 10 performed in a 50 µl reaction volume using cDNA clone as template. PCR reactions contained 1.5 mM MgCl₂, 1 unit Amplitaq, 200 µM dNTPs and 2 µM each primer. PCR cycling conditions were 94°C for 1 min., followed by 35 cycles of 94°C for 30 seconds, 55°C for 30 seconds, 72°C for 30 seconds; followed by a 5 minute extension at 72°C. The reactions were then run on a 1.5% agarose Tris-Acetate gel. 15 DNA was eluted from the agarose, ethanol precipitated and resuspended in 10 mM Tris, pH 8.0. Gel purified PCR products were prepared for both mouse and human cDNAs and supplied to Pathology Associates International for in situ hybridizations.

The sequence of the human and mouse PCR primers and products were as follows:

20 <u>Human Zmax 1 sense primer (HBM1253)</u>

CCCGTGTGCTCCGCCGCCCAGTTC

Human Zmax 1 antisense primer (HBM1465)

GGCTCACGGAGCTCATCATGGACTT

Human Zmax1 PCR product

25 CCCGTGTGCTCCGCCGCCCAGTTCCCCTGCGCGGGGGTCAGTGTGTGGA CCTGCGCCTGCGCCGACGGCGAGGCAGACTGTCAGGACCGCTCAGAC

-67-

GAGGTGGACTGTGACGCCATCTGCCTGCCCAACCAGTTCCGGTGTGCGA
GCGGCCAGTGTGTCCTCATCAAACAGCAGTGCGACTCCTTCCCCGACTGT
ATCGACGGCTCCGACGAGCTCATGTGTGAAATCACCAAGCCGCCCTCAG
ACGACAGCCCGGCCCACAGCAGTGCCATCGGGCCCGTCATTGGCATCAT

5 CCTCTCTCTCTCTCGTCATGGGTGGTGTCTATTTTGTGTGCCAGCGCGTGGT
GTGCCAGCGCTATGCGGGGGCCAACGGGCCCTTCCCGCACGAGTATGTC
AGCGGGACCCCGCACGTGCCCCTCAATTTCATAGCCCCGGGCGGTTCCC
AGCATGGCCCCTTCACAGGCATCGCATGCGGAAAGTCCATGATGAGCTC
CGTGAGCC

10 Mouse Zmax 1 Sense primer (HBM1655)

AGCGAGGCCACCATCCACAGG

Mouse Zmax 1 antisense primer (HBM1656)

TCGCTGGTCGGCATAATCAAT

Mouse Zmax1 PCR product

- TGGCTATCCCACTCACAGGATCTCCCTGGAGACTAACAACAACGATG
 TGGCTATCCCACTCACGGGTGTCAAAGAGGCCTCTGCACTGGACTTTGAT
 GTGTCCAACAATCACATCTACTGGACTGATGTTAGCCTCAAGACGATCA
 GCCGAGCCTTCATGAATGGGAGCTCAGTGGAGCACGTGATTGAGTTTGG
 CCTCGACTACCCTGAAGGAATGGCTGTGGACTGGATGGGCAAGAACCTC
 TATTGGGCGGACACAGGGACCAACAGGATTGAGGTGGCCCGGCTGGATG
 GGCAGTTCCGGCAGGTGCTTGTGTGGAGAGACCTTGACAACCCCAGGTC
 TCTGGCTCTGGATCCTACTAAAGGCTACATCTACTGGACTGAGTGGGGTG
 GCAAGCCAAGGATTGTGCGGGCCCTTCATGGATGGGACCAATTGTATGAC
 ACTGGTAGACAAGGTGGGCCGGCCCAACGACCTCACCATTGATTATGCC
- 25 GACCAGCGA

5

10

15

20

25

Riboprobes were synthesized as follows. The PCR products were reamplified with chimeric primers designed to incorporate either a T3 promoter upstream, or a T7 promoter downstream of the reamplification products. The resulting PCR products were used as template to synthesize digoxigenin-labeled riboprobes by *in vitro* transcription (IVT). Antisense and sense riboprobes were synthesized using T7 and T3 RNA polymerases, respectively, in the presence of digoxigenin-11-UTP (Boehringer-Mannheim) using a MAXIscript IVT kit (Ambion) according to the manufacturer. The DNA was then degraded with Dnase-1, and unincorporated digoxigenin was removed by ultrafiltration. Riboprobe integrity was assessed by electrophoresis through a denaturing polyacrylamide gel. Molecular size was compared with the electrophoretic mobility of a 100–1000 base pair (bp) RNA ladder (Ambion). Probe yield and labeling was evaluated by blot immunochemistry. Riboprobes were stored in 5 μl aliquots at –80°C.

The *in situ* hybridization was performed as follows. Frozen rat bone was cut into 5 μM sections on a Jung CM3000 cryostat (Leica) and mounted on adhesive slides (Instrumedics). Sections were kept in the cryostat at –20°C until all the slides were prepared in order to prevent mRNA degradation prior to post-fixation for 15 minutes in 4% paraformaldehyde. Following post-fixation, sections were incubated with 1 ng/μl of either antisense or sense riboprobe in Pathology Associates

International (PAI) customized hybridization buffer for approximately 40 hours at 58°C. Following hybridization, slides were subjected to a series of post-hybridization stringency washes to reduce nonspecific probe binding. Hybridization was visualized by immunohistochemistry with an anti-digoxigenin antibody (FAB fragment) conjugated to alkaline phosphatase. Nitroblue tetrazolium chloride/bromochloroindolyl phosphate (Boehringer-Mannheim), a precipitating alkaline phosphatase substrate, was used as the chromogen to stain hybridizing cells

purple to nearly black, depending on the degree of staining. Tissue sections were counter-stained with nuclear fast red. Assay controls included omission of the probe, omission of probe and anti-digoxigenin antibody.

Specific cell types were assessed for demonstration of hybridization with antisense probes by visualizing a purple to black cytoplasmic and/or peri-nuclear staining indicating a positive hybridization signal for mRNA. Each cell type was compared to the replicate sections, which were hybridized with the respective sense probe. Results were considered positive if staining was observed with the antisense probe and no staining or weak background with the sense probe.

The cellular localization of the hybridization signal for each of the study probes is summarized in Table 5. Hybridization for Zmax1 was primarily detected in areas of bone involved in remodeling, including the endosteum and trabecular bone within the metaphysis. Hybridization in selected bone lining cells of the periosteum and epiphysis were also observed. Positive signal was also noted in chondrocytes within the growth plate, particularly in the proliferating chondrocytes. See Figs. 10, 11 and 12 for representative photomicrographs of *in situ* hybridization results.

TABLE 5
Summary of Zmax1 in situ hybridization in rat tibia

20

5

10

15

PROBE	SITE	ISH SIGNAL
Hu Zmax1	<u>Epiphysis</u>	
	Osteoblasts	+
	Osteoclasts	_
	Growth Plate	
	resting chondrocytes	_
	proliferating chondrocytes	+
	hypertrophic chondrocytes	-
	<u>Metaphysis</u>	
	osteoblasts	+
	osteoclasts	+

PROBE	SITE	ISH SIGNAL
	Diaphysis	-
	Endosteum	
	osteoblasts	+
	osteoclasts	+
	Periosteum	-
MsZmax1	<u>Epiphysis</u>	
	Osteoblasts	+
	Osteoclasts	-
	Growth Plate	
	resting chondrocytes	-
	proliferating chondrocytes	+
	hypertrophic chondrocytes	+
	<u>Metaphysis</u>	
	osteoblasts	+
	osteoclasts	+
	<u>Diaphysis</u>	-
	Endosteum	
	osteoblasts	+
	osteoclasts	+
	<u>Periosteum</u>	+

Legend: "+" = hybridization signal detected "-" = no hybridization signal detected "ISH" - In situ hybridization

5

10

These studies confirm the positional expression of Zmax1 in cells involved in bone remodeling and bone formation. Zmax1 expression in the zone of proliferation and in the osteoblasts and osteoclasts of the proximal metaphysis, suggests that the Zmax1 gene is involved in the process of bone growth and mineralization. The activity and differentiation of osteoblasts and osteoclasts are closely coordinated during development as bone is formed and during growth as well as in adult life as bone undergoes continuous remodeling. The formation of internal bone structures and bone remodeling result from the coupling of bone resorption by activated osteoclasts with subsequent deposition of new material by osteoblasts. Zmax1 is related to the LDL receptor gene, and thus may be a receptor involved in mechanosensation and subsequent signaling in the process of bone

-71-

remodeling. Therefore, changes in the level of expression of this gene could impact on the rate of remodeling and degree of mineralization of bone.

XIV. Antisense

5

10

15

20

25

30

Antisense oligonucleotides are short synthetic nucleic acids that contain complementary base sequences to a targeted RNA. Hybridization of the RNA in living cells with the antisense oligonucleotide interferes with RNA function and ultimately blocks protein expression. Therefore, any gene for which the partial sequence is known can be targeted by an antisense oligonucleotide.

Antisense technology is becoming a widely used research tool and will play an increasingly important role in the validation and elucidation of therapeutic targets identified by genomic sequencing efforts.

Antisense technology was developed to inhibit gene expression by utilizing an oligonucleotide complementary to the mRNA that encodes the target gene. There are several possible mechanisms for the inhibitory effects of antisense oligonucleotides. Among them, degradation of mRNA by RNase H is considered to be the major mechanism of inhibition of protein function. This technique was originally used to elucidate the function of a target gene, but may also have therapeutic applications, provided it is designed carefully and properly.

An example of materials and methods for preparing antisense oligonucleotides can be performed as follows. Preliminary studies have been undertaken in collaboration with Sequiter (Natick, MA) using the antisense technology in the osteoblast-like murine cell line, MC3T3. These cells can be triggered to develop along the bone differentiation sequence. An initial proliferation period is characterized by minimal expression of differentiation markers and initial synthesis of collagenous extracellular matrix. Collagen matrix synthesis is required for subsequent induction of differentiation markers. Once the matrix synthesis begins, osteoblast marker genes are activated in a clear temporal sequence: alkaline phosphatase is induced at early times while bone sialoprotien and osteocalcin appear later in the differentiation process. This temporal sequence of gene expression is useful in monitoring the maturation and mineralization process. Matrix mineralization, which does not begin until several days after maturation has started,

involves deposition of mineral on and within collagen fibrils deep within the matrix near the cell layer-culture plate interface. The collagen fibril-associated mineral formed by cultured osteoblasts resembles that found in woven bone in vivo and therefore is used frequently as a study reagent.

MC3T3 cells were transfected with antisense oligonucleotides for the first week of the differentiation, according to the manufacturer's specifications (U.S. Patent No. 5,849,902).

The oligonucleotides designed for Zmax1 are given below:

10875: AGUACAGCUUCUUGCCAACCCAGUC

10 10876: UCCUCCAGGUCGAUGGUCAGCCCAU

10877: GUCUGAGUCCGAGUUCAAAUCCAGG

Fig. 13 shows the results of antisense inhibition of Zmax1 in MC3T3 cells. The three oligonucleotides shown above were transfected into MC3T3 and RNA was isolated according to standard procedures. Northern analysis clearly shows markedly lower steady state levels of the Zmax1 transcript while the control gene GAPDH remained unchanged. Thus, antisense technology using the primers described above allows for the study of the role of Zmax1 expression on bone biology.

XV. Yeast Two Hybrid

15

In order to identify the signaling pathway that Zmax1 participates in to modulate bone density, the yeast two hybrid protein interaction technology was utilized. This technique facilitates the identification of proteins that interact with one another by coupling tester proteins to components of a yeast transcription system (Fields and Song, 1989, Nature 340: 245-246; U.S. Pat. No. 5,283,173 by Fields and Song; Johnston, 1987, Microbiol. Rev. 51: 458-476; Keegan et al, 1986, Science 231: 699-704; Durfee et al, 1993, Genes Dev. 7: 555-569; Chien et al, 1991, Proc. Natl. Acad. Sci USA 88: 9578-9582; Fields et al., 1994, Trends in Genetics 10: 286-292; and Gyuris et al., 1993, Cell 75: 791-803). First a "bait" protein, the protein for which one seeks interacting proteins, is fused to the DNA binding domain of a yeast transcription factor. Second, a cDNA library is constructed that contains cDNAs fused to the transcriptional activation domain of the same yeast

transcription factor; this is termed the prey library. The bait construct and prey library are transformed into yeast cells and then mated to produce diploid cells. If the bait interacts with a specific prey from the cDNA library, the activation domain is brought into the vicinity of the promoter via this interaction. Transcription is then driven through selectable marker genes and growth on selective media indicates the presence of interacting proteins.

5

10

15

20

25

30

The amino acid sequence used in the yeast two hybrid experiments discussed herein consisted of the entire cytoplasmic domain and a portion of the transmembrane domain and is shown below (amino to carboxy orientation):

RVVCQRYAGA NGPFPHEYVS GTPHVPLNFI APGGSQHGPF TGIACGKSMM SSVSLMGGRG GVPLYDRNHV TGASSSSSSS TKATLYPPIL NPPPSPATDP SLYNMDMFYS SNIPATVRPY RPYIIRGMAP PTTPCSTDVC DSDYSASRWK ASKYYLDLNS DSDPYPPPPT PHSQYLSAED SCPPSPATER SYFHLFPPPP SPCTDSS

The last 6 amino acids of the putative transmembrane domain are indicated in bold. Putative SH3 domains are underlined. Additional amino acid sequences of 50 amino acids or greater in either the proteins encoded by the Zmax1 or HBM alleles can also be used as bait. The upper size of the polypeptide used as bait is limited only by the presence of a complete transmembrane domain (see Fig. 4), which will render the bait to be nonfunctional in a yeast two hybrid system. These additional bait proteins can be used to identify additional proteins which interact with the proteins encoded by HBM or Zmax1 in the focal adhesion signaling pathway or in other pathways in which these HBM or Zmax1 proteins may act. Once identified, methods of identifying agents which regulate the proteins in the focal adhesion signaling pathway or other pathways in which HBM acts can be performed as described herein for the HBM and Zmax1 proteins.

In order to identify cytoplasmic Zmax1 signaling pathways, the cytoplasmic domain of Zmax1 was subcloned into two bait vectors. The first vector was pDBleu, which was used to screen a brain, and Hela prey cDNA library cloned into the vector pPC86 (Clontech). The second bait vector used was pDBtrp, which was used to screen a cDNA prey library derived from the TE85 osteosarcoma cell line in

vector pOP46. Standard techniques known to those skilled in the art were used as described in Fields and Song, 1989, *Nature* 340: 245-246; U.S. Pat. No. 5,283,173 by Fields and Song; Johnston, 1987, *Microbiol. Rev.* 51: 458-476; Keegan et al., 1986, *Science* 231: 699-704; Durfee et al., 1993, *Genes Dev.* 7: 555-569; Chien et al., 1991, *Proc. Natl. Acad. Sci USA* 88: 9578-9582; Fields et al., 1994, *Trends in Genetics* 10: 286-292; and Gyuris et al., 1993, *Cell* 75: 791-803. The bait construct and prey cDNA libraries were transformed into yeast using standard procedures.

5

10

15

20

25

30

To perform the protein interaction screen, an overnight culture of the bait yeast strain was grown in 20 ml SD selective medium with 2% glucose (pDBLeu, SD-Leu medium, pDBtrp, SD-trp medium). The cultures were shaken vigorously at 30°C overnight. The cultures were diluted 1:10 with complete medium (YEPD with 2% glucose) and the cultures then incubated with shaking for 2 hrs at 30°C.

The frozen prey library was thawed, and the yeast cells reactivated by growing them in 150 ml YEPD medium with 2% glucose for 2 hrs at 30°C. A filter unit was sterilized with 70% ethanol and washed with sterile water to remove the ethanol. The cell densities of both bait and prey cultures were measured by determining the OD at 600 nm. An appropriate volume of yeast cells that corresponded to a cell number of 1 ml of OD 600 = 4 of each yeast strain, bait and prey (library) was placed in a 50 ml Falcon tube. The mixture was then filtered through the sterilized filter unit. The filter was then transferred onto a prewarmed YEPD agar plate with the cell side up, removing all air bubbles underneath the filter. Plates were then incubated at 30°C for 6 hrs. One filter was transferred into a 50 ml Falcon tube, and 10 ml of SD with 2% Glucose was added; cells were resuspended by vortexing for 10 sec.

The number of primary diploid cells (growth on SD -Leu, -Trp plates) versus the numbers of colony forming units growing on SD -Trp and SD -Leu plates only was then titered. Different dilutions were plated and incubated at 30°C for two days. The number of colony forming units was then counted. The number of diploid colonies (colonies on SD -Leu -Trp plates) permits the calculation of whether or not the whole library of prey constructs was mated to the yeast expressing the bait. This information is important to judge the quality of the screen.

-75-

A. Indirect selection

5

10

15

20

25

Resuspended cells from 5 filtermatings were then pooled and the cells sedimented by centrifugation in a 50 ml Falcon tube. Cells were then resuspended in 16 ml SD medium with 2% Glc. Two ml of this cell suspension was plated onto 8 square plates each (SD -Leu, -Trp) with sterile glass beads and selected for diploid cells by incubating at 30°C for 18 - 20 hrs.

Cells were then scraped off the square plates, the cells centrifuged and combined into one 50 ml Falcon tube. The cell pellet was then resuspended in 25 ml of SD medium with 2% glucose. The cell number was then determined by counting of an appropriate dilution (usually 1:100 to 1:1000) with a Neugebauer chamber. Approximately 5 x 10⁷ diploid cells were plated onto the selective medium. The observations about the growth of the bait strain together with irrelevant prey vectors helps to determine which selective plates will have to be chosen for the library screen. Generally, all screens were plated on one square plate each with SD -Leu, -Trp, -His; SD -Leu, -Trp, His, 5 mM 3AT, and SD -Leu, -Trp, -His, -Ade is recommended.

The yeast cells were then spread homogeneously with sterile glass beads and incubated at 30°C for 4 days. The number of colony forming yeast cells was titered by plating different dilutions of the scraped cell suspension onto SD -Leu, -Trp plates. Usually, plating of 100 μ l of a 10⁻³ and 10⁻⁴ dilution gave 100 - 1000 colonies per plate.

B. Direct selection

Five filters with the mated yeast cells were each transferred into separate 50 ml Falcon tubes and the cells resuspended with 10 ml SD medium with 2% Glc, each, followed by vortexing for 10 sec. The resuspended cells were combined and centrifuged in a Beckman centrifuge at 3000 rpm. The supernatant was discarded and the cells resuspended in 6 ml of SD medium with 2% Glc. Two ml of the suspension was spread onto each selective square plate and incubated at 30°C for 4 - 5 days.

-76-

C. Isolation of Single Colonies

5

10

15

20

25

30

Yeast cells from an isolated colony were picked with a sterile tooth pick and transferred into individual wells of a 96 well plate. The cells were resuspended in 50 µl of SD -Leu, -Trp, -His medium and incubated at 30°C for one day. The yeast cells were then stamped onto a SD -Leu, -Trp, -His plate in 96 well format and incubated at 30°C for 2 days. Yeast cells were also stamped onto a Nylon filter covering a YEPD plate and incubated at 30°C for one day. The cells on the Nylon filter were used for the analysis of the ß - Gal reporter activity.

Yeast colonies were scraped from the SD -Leu, -Trp, -His plate with a sterile tooth pick, and reconfigured, if necessary, according to the B - Gal activity and then resuspended in 20 % glycerol. This served as a master plate for storage at -80°C.

For DNA preparation, yeast cells from the glycerol stock were stamped onto a SD-Trp plate and incubated at 30°C for 2 days. After two days of incubation, the yeast colonies were ready for colony PCR and sequencing. Standard colony PCR conditions were used to amplify inserts from preys recovered from the interaction screen. Sequencing was done using standard sequencing reactions and ABI377 (Perkin Elmer) fluorescent sequencing machines.

D. Verification of bait/prey interaction

Glycerol stocks of the prey of interest were thawed and inoculated in a 10 ml overnight culture of SD with glucose -Trp. After overnight growth, plasmid DNA preparation was performed using the BIO 101 RPM Yeast Plasmid Isolation Kit with 10 ml of culture. The culture was centrifuged and transfered to a 1.5 ml microcentrifuge tube. Yeast Lysis Matrix was then added to the pellet followed by 250 µl of Alkaline Lysis Solution. Samples were then vortexed for 5 minutes. 250 µl Neutralizing Solution was added and the sample mixed briefly. Samples were centrifuged for 2 minutes at room temperature in a microcentrifuge. The supernatant was transferred to a Spin Filter avoiding debris and Lysis Matrix. 250 µl of Glassmilk Spin Buffer was added, and the tubes inverted to mix. Samples were centrifuged for 1 min and the liquid in the Catch Tube was discarded. 500 µl of Wash Solution was added, the samples were centrifuged for 1 min, and the wash solution was discarded. The wash step was repeated once followed by a 1 min dry

centrifugation to drive the remaining liquid out of the Spin Filter. The filter was transferred to a new Catch Tube and $100 \,\mu l$ of sterile H_2O was added; samples were then vortexed briefly to resuspend and centrifuged for 30 seconds to collect the DNA in the bottom of the Catch Tube.

5

10

15

20

25

30

Five μl of DNA was then transformed into DH10B Electromax cells using standard procedures and glycerol stocks prepared. Miniprep DNA was prepared using the Qiagen QIAprep Spin Miniprep Kit. DNA was finally eluted with 30 μl of Qiagen EB buffer. One μl of the plasmid DNA samples was then used to transform yeast cells using standard procedures. After 2 days of growth on SD –trp media, colonies were picked and patched onto fresh media. Similarly, bait colonies were patched onto SD –Leu media. Both were grown overnight at 30°C.

For mating, cells from bait and prey patches were spread together on YAPD media and incubated at 30°C for 12 hr. This plate was then replicaplated onto an SD Agar-Leu-Trp plate and grown for 2 days at 30°C. To test the strength of interaction these plates were replicaplated onto SD Agar-Leu-Trp-His, SD Agar-Leu-Trp-His with 5 mM 3AT and 10 mM 3AT, SD Agar-Leu-Trp-His-Ade, and SD Agar-Leu-Trp-Ura media and grown for 2 days at 30°C.

E. Galacton Star β-Galactosidase Activity Assay

After streaking and replica plating positive interactors on selection plates, colonies were placed in a 96 well dish with 200 µl of SD-medium, leaving wells 1 and 96 blank. Ten microliters from the first 96 well dish was plated into another flat bottom 96 well dish containing 100 µl of SD-medium. Controls consisted of a negative control and a very weak positive control. The cell density was measured at OD₆₀₀ (a value of 1 corresponds to 1x10⁷ cells utilizing a 96 well spectrophotometer). The OD was usually between 0.03 and 0.10. Using microplates specifically for the luminometer, 50 µl of reaction mixture were pipetted into each well. Fifty microliters of culture were then added and mixed by pipetting up and down twice. The reaction was incubated for 30 minutes at room temperature followed by measurement of Relative Light Units using a luminometer.

Table 6 lists the genes identified in the yeast two hybrid screens from the 3 prey libraries tested. Two genes, zyxin and axin, were found to interact with the

5

10

15

20

25

30

cytoplasmic domain of Zmax1 in all three screens. Three genes, alpha-actinin, TCB and S1-5 interacted in two of the three screens.

A variety of proteins found at sites of cell-cell and cell-matrix contact (focal contacts/adesion plaques) were shown to interact with the cytoplasmic domain of Zmax1. These include alpha-actinin, Trio, Pinch-like protein, and Zyxin. PINCH is a LIM domain-containing protein that is known to interact with integrin-linked kinase, an early signaler in integrin and growth factor signaling pathways. The finding of a closely related gene in the yeast two hybrid screen raises the possibility of a novel pathway linked to integrin signaling from extracellular matrix signals. Trio, also known to localize to focal adhesions, is thought to play a key role in coordinating cell-matrix interactions and cytoskeletal rearrangements involved in cell movement. Zyxin, another LIM domain-containing protein, is also localized to adhesion plaques and is thought to be involved in reorganization of the cytoskeleton when triggers are transmitted via integrin signaling pathways. Zyxin also interacts with alpha actinin, which we identified as interacting with Zmax1. Other LIM domain containing proteins identified include the human homologue of mouse ajuba, LIMD1, and a novel LIMD1-like protein.

Axin was also identified from the two hybrid experiments. This protein is involved in inhibition of the Wnt signaling pathway and interacts with the tumor suppressor APC. There is a link here with the focal adhesion signaling described above: one common step in the two pathways involves inhibition of glycogen synthase kinase 3, which in turn results in the activation of \(\beta\)-catenin/Lef-1 and AP-1 transcription factors. Axin/APC are involved in this as well as integrin linked kinase. The Wnt pathway has a role in determining cell fates during embryogenesis. If inappropriately activated, the Wnt pathway may also lead to cancer. The Wnt pathway also seems to have a role in cytoskeletal rearrangements. A model depicting Zmax1 involvement in focal adhesion signaling is depicted in Fig. 15.

This data coupled with other studies suggest that integrin signaling pathways have a role in cellular responses to mechanical stress and adhesion. This provides an attractive model for the mechanism of action of Zmax1 in bone biology. It is possible that Zmax1 is involved in sensing either mechanical stress directly or

binding a molecule in the extracellular matrix that is related to mechanical sensation. Signaling through subsequent pathways may be involved in bone remodeling due to effects on cell morphology, cell adhesion, migration, proliferation, differentiation, and apoptosis in bone cells.

5

Table 6: Yeast Two Hybrid Results

	Gene	Gene	Genbank	NT	AA
	Symbol		Accession #	SEQ ID	SEQ ID
				NO:	NO:
	ACTN1	alpha-actinin	NM 001102	63	
	AES	amino-terminal enhancer of	NM 001130.3	64	-
10	AIP4	atrophin-1 interacting protein	AF038564.1	65	
	Novel	Ajuba	14 030304:1	66	
	AXIN	Wnt signaling	AF009674.1	67	
	CDC23	cell division cycle 23, yeast,	NM 004661.1	68	
	CDC23	homolog	1417_004001.1	06	
	HSM800944	Similar to TRIO	AL117435.1	69	
15	HSM800936		AL117427.1	70	
	Novel	Similar to LIM domains containing protein 1		71	
	DEEPEST	mitotic spindle coiled-coil related protein	NM_006461.1	72	
	ECM1	extracellular matrix protein 1	U65932.1	73	
	EF1A	elongation factor 1-alpha	X16869.1	74	
20	FN	fibronectin	X02761.1	75	
	HOXB13	homeodomain protein	U81599.1	76	
	Novel	Glu-Lys Rich protein		77	
	LIMD1	LIM domains containing 1	NM 014240.1	78	
	Novel	PINCH-like		79	
30	RANBPM	centrosomal protein	NM_005493.1	80	
	S1-5	extracellular protein	U03877.1	81	
	TCB	gene encoding cytosolic thyroid hormone-binding	M26252.1	82	
	TID	tumorous imaginal discs	NM 005147.1	83	
	ZYX	Zyxin	NM 003461.1	84	
	TRIO	GTPase	U42390.1	85	
	HUMPITPB	phosphatidylinositol transfer protein	D30037.1	86	
	ACTN1	alpha-actinin	NP_001093.1		87

25

30

	Gene Symbol	Gene	Genbank Accession #	NT SEQ ID NO:	AA SEQ ID NO:
	AES	amino-terminal enhancer of	NP_001121.2		88
	AIP4	atrophin-1 interacting protein	AAC04845.1		89
	Novel	Ajuba		_	90
	AXIN	Wnt signalling	AAC51624.1		91
5	CDC23	cell division cycle 23, yeast homolog	NP_004652.1		92
	Novel	Similar to TRIO CAB55923.1			93
	Novel	Similar to LIM domains containing protein 1		,	94
	DEEPEST	mitotic spindle coiled-coil related protein	NP_006452.1		95
	ECM1	extracellular matrix protein 1	AAB05933.1		96
10	EF1A	elongation factor 1-alpha	CAA34756.1		97
	FN	fibronectin	CAA26536.1		98
	Novel	Glu-Lys rich protein			99
	HOXB13	homeodomain protein B13	AAB39863.1		100
	LIMD1	LIM domains containing 1	NP_055055.1		101
15	Novel	PINCH-like			102
	RANBPM	centrosomal protein	NP_005484.1		103
	S1-5	extracellular protein	AAA65590.1		104
	TCB	cytosolic thyroid hormone- binding protein	AAA36672.1		105
	TID	tumorous imaginal discs	NP_005138.1		106
20	ZYX	Zyxin	NP_003452.1		107
	TRIO	GTPase	AAC34245.1		108
	PTDINSTP	phosphatidylinositol transfer protein beta isoform	P48739		109

In light of the model depicted in Fig. 15 and the results shown in Table 6, another aspect contemplated by the invention would be to regulate bone density and bone mass disorders by the regulating focal adhesion signaling. The regulation can occur by regulating the DNA, mRNA transcript or protein encoded by any of the members involved in the focal adhesion signaling pathway as identified by the yeast two hybrid system.

Also contemplated are the novel nucleic acids and proteins identified by the HBM yeast two hybrid system. These include but are not limited to SEQ ID NO: 66

(Ajuba), SEQ ID NO: 71 (a gene similar to a gene encoding LIM domains containing protein 1), SEQ ID NO: 77 (Glu-Lys Rich protein), SEQ ID NO: 79 (PINCH-like gene), SEQ ID NO: 90 (Ajuba protein), SEQ ID NO: 93 (protein similar to TRIO), SEQ ID NO: 94 (), SEQ ID NO: 99 (Glu-Lys rich protein) and SEQ ID NO: 102 (PINCH-like protein).

XVI. Potential Function

5

10

15

20

25

30

The protein encoded by Zmax1 is related to the Low Density Lipoprotein receptor (LDL receptor). See, Goldstein et al, Ann. Rev. Cell Biology, 1:1-39 (1985); Brown et al, Science, 232:34-47 (1986). The LDL receptor is responsible for uptake of low density lipoprotein, a lipid-protein aggregate that includes cholesterol. Individuals with a defect in the LDL receptor are deficient in cholesterol removal and tend to develop artherosclerosis. In addition, cells with a defective LDL receptor show increased production of cholesterol, in part because of altered feedback regulation of cholesterol synthetic enzymes and in part because of increased transcription of the genes for these enzymes. In some cell types, cholesterol is a precursor for the formation of steroid hormones.

Thus, the LDL receptor may, directly or indirectly, function as a signal transduction protein and may regulate gene expression. Because Zmax1 is related to the LDL receptor, this protein may also be involved in signaling between cells in a way that affects bone remodeling.

The glycine 171 amino acid is likely to be important for the function of Zmax1 because this amino acid is also found in the mouse homologue of Zmax1. The closely related LRP6 protein also contains glycine at the corresponding position (Brown et al, *Biochemical and Biophysical Research Comm.*, 248:879-888 (1988)). Amino acids that are important in a protein's structure or function tend to be conserved between species, because natural selection prevents mutations with altered amino acids at important positions from arising.

In addition, the extracellular domain of Zmax1 contains four repeats consisting of five YWTD motifs followed by an EFG motif. This 5YWTD+EGF repeat is likely to form a distinct folded protein domain, as this repeat is also found in the LDL receptor and other LDL receptor-related proteins. The first three

5YWTD+EGF repeats are very similar in their structure, while the fourth is highly divergent. Glycine 171 occurs in the central YWTD motif of the first 5YWTD+EGF repeat in Zmax1. The other two similar 5YWTD+EGF repeats of Zmax1 also contain glycine at the corresponding position, as does the 5YWTD+EGF repeat in the LDL receptor protein. However, only 17.6% of the amino acids are identical among the first three 5YWTD+EGF repeats in Zmax1 and the single repeat in the LDL receptor. These observations indicate that glycine 171 is essential to the function of this repeat, and mutation of glycine 171 causes a functional alteration of Zmax1. The cDNA and peptide sequences are shown in Figs. 6A-6E. The critical base at nucleotide position 582 is indicated in bold and is underlined.

5

10

15

20

25

30

Northern blot analysis (Figs. 7A-B) reveals that Zmax1 is expressed in human bone tissue as well as numerous other tissues. A multiple-tissue Northern blot (Clontech, Palo Alto, CA) was probed with exons from Zmax1. As shown in Fig. 7A, the 5.5 kb Zmax1 transcript was highly expressed in heart, kidney, lung, liver and pancreas and is expressed at lower levels in skeletal muscle and brain. A second northern blot, shown in Fig. 7B, confirmed the transcript size at 5.5 kb, and indicated that Zmax1 is expressed in bone, bone marrow, calvaria and human osteoblastic cell lines.

Taken together, these results coupled with the yeast two hybrid results indicate that the HBM polymorphism in the Zmax1 gene is responsible for the HBM phenotype, and that the Zmax1 gene is important in bone development. In addition, because mutation of Zmax1 can alter bone mineralization and development, it is likely that molecules that bind to Zmax1 may usefully alter bone development. Such molecules may include, for example, small molecules, proteins, RNA aptamers, peptide aptamers, and the like.

XVII. Preparation of Nucleic Acids, Vectors, Transformations and Host Cells

Large amounts of the nucleic acids of the present invention may be produced by replication in a suitable host cell. Natural or synthetic nucleic acid fragments coding for a desired fragment will be incorporated into recombinant nucleic acid constructs, usually DNA constructs, capable of introduction into and replication in a

prokaryotic or eukaryotic cell. Usually the nucleic acid constructs will be suitable for replication in a unicellular host, such as yeast or bacteria, but may also be intended for introduction to (with and without integration within the genome) cultured mammalian or plant or other eukaryotic cell lines. The purification of nucleic acids produced by the methods of the present invention is described, for example, in Sambrook et al, *Molecular Cloning. A Laboratory Manual*, 2nd Ed. (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) or Ausubel et al, *Current Protocols in Molecular Biology*, J. Wiley and Sons, NY (1992).

5

10

15

20

25

30

The nucleic acids of the present invention may also be produced by chemical synthesis, e.g., by the phosphoramidite method described by Beaucage et al, *Tetra*. *Letts.*, 22:1859-1862 (1981) or the triester method according to Matteucci, et al, J. *Am. Chem. Soc.*, 103:3185 (1981), and may be performed on commercial, automated oligonucleotide synthesizers. A double-stranded fragment may be obtained from the single-stranded product of chemical synthesis either by synthesizing the complementary strand and annealing the strands together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

Nucleic acid constructs prepared for introduction into a prokaryotic or eukaryotic host may comprise a replication system recognized by the host, including the intended nucleic acid fragment encoding the desired protein, and will preferably also include transcription and translational initiation regulatory sequences operably linked to the protein encoding segment. Expression vectors may include, for example, an origin of replication or autonomously replicating sequence (ARS) and expression control sequences, a promoter, an enhancer and necessary processing information sites, such as ribosome-binding sites, RNA splice sites, polyadenylation sites, transcriptional terminator sequences, and mRNA stabilizing sequences. Secretion signals may also be included where appropriate, whether from a native HBM or Zmax1 protein or from other receptors or from secreted proteins of the same or related species, which allow the protein to cross and/or lodge in cell membranes, and thus attain its functional topology, or be secreted from the cell. Such vectors may be prepared by means of standard recombinant techniques well

known in the art and discussed, for example, in Sambrook et al, Molecular Cloning. A Laboratory Manual, 2nd Ed. (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) or Ausubel et al, Current Protocols in Molecular Biology, J. Wiley and Sons, NY (1992).

5

10

15

20

25

30

An appropriate promoter and other necessary vector sequences will be selected so as to be functional in the host, and may include, when appropriate, those naturally associated with Zmax1 or HBM genes. Examples of workable combinations of cell lines and expression vectors are described in Sambrook et al, Molecular Cloning. A Laboratory Manual, 2nd Ed. (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) or Ausubel et al, Current Protocols in Molecular Biology, J. Wiley and Sons, NY (1992). Many useful vectors are known in the art and may be obtained from such vendors as Stratagene, New England BioLabs, Promega Biotech, and others. Promoters such as the trp, lac and phage promoters, tRNA promoters and glycolytic enzyme promoters may be used in prokaryotic hosts. Useful yeast promoters include promoter regions for metallothionein, 3phosphoglycerate kinase or other glycolytic enzymes such as enolase or glyceraldehyde-3-phosphate dehydrogenase, enzymes responsible for maltose and galactose utilization, and others. Vectors and promoters suitable for use in yeast expression are further described in EP 73,675A. Appropriate non-native mammalian promoters might include the early and late promoters from SV40 (Fiers et al, Nature, 273:113 (1978)) or promoters derived from murine Moloney leukemia virus, mouse tumor virus, avian sarcoma viruses, adenovirus II, bovine papilloma virus or polyoma. In addition, the construct may be joined to an amplifiable gene (e.g., DHFR) so that multiple copies of the gene may be made. For appropriate enhancer and other expression control sequences, see also Enhancers and Eukaryotic Gene Expression, Cold Spring Harbor Press, Cold Spring Harbor, NY (1983).

While such expression vectors may replicate autonomously, they may also replicate by being inserted into the genome of the host cell, by methods well known in the art.

5

10

15

20

25

30

Expression and cloning vectors will likely contain a selectable marker, a gene encoding a protein necessary for survival or growth of a host cell transformed with the vector. The presence of this gene ensures growth of only those host cells which express the inserts. Typical selection genes encode proteins that a) confer resistance to antibiotics or other toxic substances, e.g. ampicillin, neomycin, methotrexate, etc.; b) complement auxotrophic deficiencies, or c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli. The choice of the proper selectable marker will depend on the host cell, and appropriate markers for different hosts are well known in the art.

The vectors containing the nucleic acids of interest can be transcribed in vitro, and the resulting RNA introduced into the host cell by well-known methods, e.g., by injection (see, Kubo et al, FEBS Letts. 241:119 (1988)), or the vectors can be introduced directly into host cells by methods well known in the art, which vary depending on the type of cellular host, including electroporation; transfection employing calcium chloride, rubidium chloride, calcium phosphate, DEAE-dextran, or other substances; microprojectile bombardment; lipofection; infection (where the vector is an infectious agent, such as a retroviral genome); and other methods. See generally, Sambrook et al., 1989 and Ausubel et al., 1992. The introduction of the nucleic acids into the host cell by any method known in the art, including those described above, will be referred to herein as "transformation." The cells into which have been introduced nucleic acids described above are meant to also include the progeny of such cells.

Large quantities of the nucleic acids and proteins of the present invention may be prepared by expressing the Zmax1 or HBM nucleic acids or portions thereof in vectors or other expression vehicles in compatible prokaryotic or eukaryotic host cells. The most commonly used prokaryotic hosts are strains of Escherichia coli, although other prokaryotes, such as Bacillus subtilis or Pseudomonas may also be used.

Mammalian or other eukaryotic host cells, such as those of yeast, filamentous fungi, plant, insect, or amphibian or avian species, may also be useful for production of the proteins of the present invention. Propagation of mammalian

cells in culture is per se well known. See, Jakoby and Pastan (eds.), Cell Culture. Methods in Enzymology, volume 58, Academic Press, Inc., Harcourt Brace Jovanovich, NY, (1979)). Examples of commonly used mammalian host cell lines are VERO and HeLa cells, Chinese hamster ovary (CHO) cells, and WI38, BHK, and COS cell lines, although it will be appreciated by the skilled practitioner that other cell lines may be appropriate, e.g., to provide higher expression desirable glycosylation patterns, or other features.

5

10

15

20

25

Clones are selected by using markers depending on the mode of the vector construction. The marker may be on the same or a different DNA molecule, preferably the same DNA molecule. In prokaryotic hosts, the transformant may be selected, e.g., by resistance to ampicillin, tetracycline or other antibiotics. Production of a particular product based on temperature sensitivity may also serve as an appropriate marker.

Prokaryotic or eukaryotic cells transformed with the nucleic acids of the present invention will be useful not only for the production of the nucleic acids and proteins of the present invention, but also, for example, in studying the characteristics of Zmax1 or HBM proteins.

Antisense nucleic acid sequences arc useful in preventing or diminishing the expression of Zmax1 or HBM, as will be appreciated by one skilled in the art. For example, nucleic acid vectors containing all or a portion of the Zmax1 or HBM gene or other sequences from the Zmax1 or HBM region may be placed under the control of a promoter in an antisense orientation and introduced into a cell. Expression of such an antisense construct within a cell will interfere with Zmax1 or HBM transcription and/or translation and/or replication.

The probes and primers based on the Zmax1 and HBM gene sequences disclosed herein are used to identify homologous Zmax1 and HBM gene sequences and proteins in other species. These Zmax1 and HBM gene sequences and proteins are used in the diagnostic/prognostic, therapeutic and drug screening methods described herein for the species from which they have been isolated.

5

10

15

20

25

30

XVIII. Protein Expression and Purification

Expression and purification of the HBM protein of the invention can be performed essentially as outlined below. To facilitate the cloning, expression and purification of membrane and secreted protein from the HBM gene, a gene expression system, such as the pET System (Novagen), for cloning and expression of recombinant proteins in *E. coli* was selected. Also, a DNA sequence encoding a peptide tag, the His-Tap, was fused to the 3' end of DNA sequences of interest to facilitate purification of the recombinant protein products. The 3' end was selected for fusion to avoid alteration of any 5' terminal signal sequence.

Nucleic acids chosen, for example, from the nucleic acids set forth in SEQ ID NOS: 1, 3 and 5-12 for cloning HBM were prepared by polymerase chain reaction (PCR). Synthetic oligonucleotide primers specific for the 5' and 3' ends of the HBM nucleotide sequence were designed and purchased from Life Technologies (Gaithersburg, MD). All forward primers (specific for the 5' end of the sequence) were designed to include an NcoI cloning site at the 5' terminus. These primers were designed to permit initiation of protein translation at the methionine residue encoded within the NcoI site followed by a valine residue and the protein encoded by the HBM DNA sequence. All reverse primers (specific for the 3' end of the sequence) included an EcoRI site at the 5' terminus to permit cloning of the HBM sequence into the reading frame of the pET-28b. The pET-28b vector provided a sequence encoding an additional 20 carboxyl-terminal amino acids including six histidine residues (at the C-terminus), which comprised the histidine affinity tag.

Genomic DNA prepared from the HBM gene was used as the source of template DNA for PCR amplification (Ausubel et al, Current Protocols in Molecular Biology, John Wiley & Sons (1994)). To amplify a DNA sequence containing the HBM nucleotide sequence, genomic DNA (50 ng) was introduced into a reaction vial containing 2 mM MgCl₂, 1 µM synthetic oligonucleotide primers (forward and reverse primers) complementary to and flanking a defined HBM, 0.2 mM of each of deoxynucleotide triphosphate, dATP, dGTP, dCTP, dTTP and 2.5 units of heat stable DNA polymerase (Amplitaq, Roche Molecular Systems, Inc., Branchburg, NJ) in a final volume of 100 microliters.

Upon completion of thermal cycling reactions, each sample of amplified DNA was purified using the Qiaquick Spin PCR purification kit (Qiagen, Gaithersburg, MD). All amplified DNA samples were subjected to digestion with the restriction endonucleases, e.g., NcoI and EcoRI (New England BioLabs, Beverly, MA) (Ausubel et al, Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (1994)). DNA samples were then subjected to electrophoresis on 1.0% NuSeive (FMC BioProducts, Rockland, ME) agarose gels. DNA was visualized by exposure to ethidium bromide and long wave UV irradiation. DNA contained in slices isolated from the agarose gel was purified using the Bio 101 GeneClean Kit 10 protocol (Bio 101, Vista, CA).

5

15

20

25

30

The pET-28b vector was prepared for cloning by digestion with restriction endonucleases, e.g., NcoI and EcoRI (New England BioLabs, Beverly, MA) (Ausubel et al, Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (1994)). The pET-28a vector, which encodes the histidine affinity tag that can be fused to the 5' end of an inserted gene, was prepared by digestion with appropriate restriction endonucleases.

Following digestion, DNA inserts were cloned (Ausubel et al, Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (1994)) into the previously digested pET-28b expression vector. Products of the ligation reaction were then used to transform the BL21 strain of E. coli (Ausubel et al, Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (1994)) as described below.

Competent bacteria, E. coli strain BL21 or E. coli strain BL21 (DE3), were transformed with recombinant pET expression plasmids carrying the cloned HBM sequence according to standard methods (Ausubel et al, Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (1994)). Briefly, 1 µl of ligation reaction was mixed with 50 µl of electrocompetent cells and subjected to a high voltage pulse, after which samples were incubated in 0.45 ml SOC medium (0.5% yeast extract, 2.0% tryptone, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl₂, 10 mM MgSO₄ and 20 mM glucose) at 37°C with shaking for 1 hour. Samples were then spread on LB agar plates containing 25 µg/ml kanamycin sulfate for growth

overnight. Transformed colonies of BL21 were then picked and analyzed to evaluate cloned inserts, as described below.

5

10

15

20

25

30

Individual BL21 clones transformed with recombinant pET-28b HBM nucleotide sequences were analyzed by PCR amplification of the cloned inserts using the same forward and reverse primers specific for the HBM sequences that were used in the original PCR amplification cloning reactions. Successful amplification verifies the integration of the HBM sequence in the expression vector (Ausubel et al, *Current Protocols in Molecular Biology*, John Wiley & Sons, Inc. (1994)).

Individual clones of recombinant pET-28b vectors carrying properly cloned HBM nucleotide sequences were picked and incubated in 5 ml of LB broth plus 25 µg/ml kanamycin sulfate overnight. The following day plasmid DNA was isolated and purified using the Qiagen plasmid purification protocol (Qiagen Inc., Chatsworth, CA).

The pET vector can be propagated in any *E. coli* K-12 strain, e.g., HMS174, HB101, JM109, DH5 and the like, for purposes of cloning or plasmid preparation. Hosts for expression include *E. coli* strains containing a chromosomal copy of the gene for T7 RNA polymerase. These hosts were lysogens of bacteriophage DE3, a lambda derivative that carries the lacI gene, the lacUV5 promoter and the gene for T7 RNA polymerase. T7 RNA polymerase was induced by addition of isopropyl-β-D-thiogalactoside (IPTG), and the T7 RNA polymerase transcribes any target plasmid containing a functional T7 promoter, such as pET-28b, carrying its gene of interest. Strains include, for example, BL21(DE3) (Studier et al, *Meth. Enzymol.*, 185:60-89 (1990)).

To express the recombinant HBM sequence, 50 ng of plasmid DNA are isolated as described above to transform competent BL21(DE3) bacteria as described above (provided by Novagen as part of the pET expression kit). The lacZ gene (β-galactosidase) is expressed in the pET-System as described for the HBM recombinant constructions. Transformed cells were cultured in SOC medium for 1 hour, and the culture was then plated on LB plates containing 25 μg/ml kanamycin sulfate. The following day, the bacterial colonies were pooled and grown in LB

5

10

15

20

25

30

medium containing kanamycin sulfate (25 μ g/ml) to an optical density at 600 nM of 0.5 to 1.0 O.D. units, at which point 1 mM IPTG was added to the culture for 3 hours to induce gene expression of the HBM recombinant DNA constructions.

After induction of gene expression with IPTG, bacteria were collected by centrifugation in a Sorvall RC-3B centrifuge at 3500 x g for 15 minutes at 4°C. Pellets were resuspended in 50 ml of cold mM Tris-HCl, pH 8.0, 0.1 M NaCl and 0.1 mM EDTA (STE buffer). Cells were then centrifuged at 2000 x g for 20 minutes at 4°C. Wet pellets were weighed and frozen at -80°C until ready for protein purification.

A variety of methodologies known in the art can be used to purify the isolated proteins (Coligan et al, Current Protocols in Protein Science, John Wiley & Sons (1995)). For example, the frozen cells can be thawed, resuspended in buffer and ruptured by several passages through a small volume microfluidizer (Model M-110S, Microfluidics International Corp., Newton, MA). The resultant homogenate is centrifuged to yield a clear supernatant (crude extract) and, following filtration, the crude extract is fractioned over columns. Fractions are monitored by absorbance at OD₂₈₀ nm and peak fractions may be analyzed by SDS-PAGE.

The concentrations of purified protein preparations are quantified spectrophotometrically using absorbance coefficients calculated from amino acid content (Perkins, Eur. J. Biochem., 157:169-180 (1986)). Protein concentrations are also measured by the method of Bradford, Anal. Biochem., 72:248-254 (1976) and Lowry et al, J. Biol. Chem., 193:265-275 (1951) using bovine serum albumin as a standard.

SDS-polyacrylamide gels of various concentrations were purchased from BioRad (Hercules, CA), and stained with Coomassie blue. Molecular weight markers may include rabbit skeletal muscle myosin (200 kDa), *E. coli* β-galactosidase (116 kDa), rabbit muscle phosphorylase B (97.4 kDa), bovine serum albumin (66.2 kDa), ovalbumin (45 kDa), bovine carbonic anyhdrase (31 kDa), soybean trypsin inhibitor (21.5 kDa), egg white lysozyme (14.4 kDa) and bovine aprotinin (6.5 kDa).

Once a sufficient quantity of the desired protein has been obtained, it may be used for various purposes. A typical use is the production of antibodies specific for binding. These antibodies may be either polyclonal or monoclonal, and may be produced by in vitro or in vivo techniques well known in the art. Monoclonal antibodies to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas (Kohler, Nature, 256:495 (1975)). In summary, a mouse is inoculated with a few micrograms of HBM protein over a period of two weeks. The mouse is then sacrificed. The cells that produce antibodies are then removed from the mouse's spleen. The spleen cells are then fused with polyethylene glycol with mouse myeloma cells. The successfully fused cells are diluted in a microtiter plate and growth of the culture is continued. The amount of antibody per well is measured by immunoassay methods such as ELISA (Engvall, Meth. Enzymol., 70:419 (1980)). Clones producing antibody can be expanded and further propagated to produce HBM antibodies. Other suitable techniques involve in vitro exposure of lymphocytes to the antigenic polypeptides, or alternatively, to selection of libraries of antibodies in phage or similar vectors. See Huse et al, Science, 246:1275-1281 (1989). For additional information on antibody production see Davis et al, Basic Methods in Molecular Biology, Elsevier, NY, Section 21-2 (1989).

20 XIX. Methods of Use: Gene Therapy

5

10

15

25

30

In recent years, significant technological advances have been made in the area of gene therapy for both genetic and acquired diseases. (Kay et al, *Proc. Natl. Acad. Sci. USA*, 94:12744-12746 (1997)) Gene therapy can be defined as the deliberate transfer of DNA for therapeutic purposes. Improvement in gene transfer methods has allowed for development of gene therapy protocols for the treatment of diverse types of diseases. Gene therapy has also taken advantage of recent advances in the identification of new therapeutic genes, improvement in both viral and nonviral gene delivery systems, better understanding of gene regulation, and improvement in cell isolation and transplantation.

The preceding experiments identify the HBM gene as a dominant mutation conferring elevated bone mass. The fact that this mutation is dominant indicates that

expression of the HBM protein causes elevated bone mass. Older individuals carrying the HBM gene, and, therefore expressing the HBM protein, do not suffer from osteoporosis. These individuals are equivalent to individuals being treated with the HBM protein. These observations are a strong experimental indication that therapeutic treatment with the HBM protein prevents osteoporosis. The bone mass elevating activity of the HBM gene is termed "HBM function."

5

10

15

20

25

30

Therefore, according to the present invention, a method is also provided of supplying HBM function to mesenchymal stem cells (Onyia et al, *J. Bone Miner. Res.*, 13:20-30 (1998); Ko et al, *Cancer Res.*, 56:4614-4619 (1996)). Supplying such a function provides protection against osteoporosis. The HBM gene or a part of the gene may be introduced into the cell in a vector such that the gene remains extrachromosomal. In such a situation, the gene will be expressed by the cell from the extrachromosomal location.

Vectors for introduction of genes both for recombination and for extrachromosomal maintenance are known in the art, and any suitable vector may be used. Methods for introducing DNA into cells such as electroporation, calcium phosphate co-precipitation, and viral transduction are known in the art, and the choice of method is within the competence of one skilled in the art (Robbins, Ed., Gene Therapy Protocols, Human Press, NJ (1997)). Cells transformed with the HBM gene can be used as model systems to study osteoporosis and drug treatments that promote bone growth.

As generally discussed above, the HBM gene or fragment, where applicable, may be used in gene therapy methods in order to increase the amount of the expression products of such genes in mesenchymal stem cells. It may be useful also to increase the level of expression of a given HBM protein, or a fragment thereof, even in those cells in which the wild type gene is expressed normally. Gene therapy would be carried out according to generally accepted methods as described by, for example, Friedman, *Therapy for Genetic Diseases*, Friedman, Ed., Oxford University Press, pages 105-121 (1991).

A virus or plasmid vector containing a copy of the HBM gene linked to expression control elements and capable of replicating inside mesenchymal stem

5

30

cells, is prepared. Suitable vectors are known and described, for example, in U.S. Patent No. 5,252,479 and WO 93/07282, the disclosures of which are incorporated by reference herein in their entirety. The vector is then injected into the patient, either locally into the bone marrow or systemically (in order to reach any mesenchymal stem cells located at other sites, i.e., in the blood). If the transfected gene is not permanently incorporated into the genome of each of the targeted cells, the treatment may have to be repeated periodically.

Gene transfer systems known in the art may be useful in the practice of the gene therapy methods of the present invention. These include viral and non-viral 10 transfer methods. A number of viruses have been used as gene transfer vectors. including polyoma, i.e., SV40 (Madzak et al, J. Gen. Virol., 73:1533-1536 (1992)), adenovirus (Berkner, Curr. Top. Microbiol. Immunol., 158:39-61 (1992); Berkner et al, Bio Techniques, 6:616-629 (1988); Gorziglia et al, J. Virol., 66:4407-4412 (1992); Quantin et al, Proc. Natl. Acad. Sci. USA, 89:2581-2584 (1992); Rosenfeld et al, Cell, 68:143-155 (1992); Wilkinson et al, Nucl. Acids Res., 20:2233-2239 15 (1992); Stratford-Perricaudet et al, Hum. Gene Ther., 1:241-256 (1990)), vaccinia virus (Mackett et al, Biotechnology, 24:495-499 (1992)), adeno-associated virus (Muzyczka, Curr. Top. Microbiol. Immunol., 158:91-123 (1992); Ohi et al. Gene. 89:279-282 (1990)), herpes viruses including HSV and EBV (Margolskee, Curr. 20 Top. Microbiol. Immunol., 158:67-90 (1992); Johnson et al. J. Virol., 66:2952-2965 (1992); Fink et al, Hum. Gene Ther., 3:11-19 (1992); Breakfield et al, Mol. Neurobiol., 1:337-371 (1987;) Fresse et al, Biochem. Pharmacol., 40:2189-2199 (1990)), and retroviruses of avian (Brandyopadhyay et al, Mol. Cell Biol., 4:749-754 (1984); Petropouplos et al, J. Virol., 66:3391-3397 (1992)), murine (Miller, Curr. 25 Top. Microbiol. Immunol., 158:1-24 (1992); Miller et al, Mol. Cell Biol., 5:431-437 (1985); Sorge et al, Mol. Cell Biol., 4:1730-1737 (1984); Mann et al, J. Virol., 54:401-407 (1985)), and human origin (Page et al, J. Virol., 64:5370-5276 (1990); Buchschalcher et al, J. Virol., 66:2731-2739 (1992)). Most human gene therapy protocols have been based on disabled murine retroviruses.

Non-viral gene transfer methods known in the art include chemical techniques such as calcium phosphate coprecipitation (Graham et al, Virology,

5

10

15

20

25

30

52:456-467 (1973); Pellicer et al, Science, 209:1414-1422 (1980)), mechanical techniques, for example microinjection (Anderson et al. Proc. Natl. Acad. Sci. USA, 77:5399-5403 (1980); Gordon et al, Proc. Natl. Acad. Sci. USA, 77:7380-7384 (1980); Brinster et al, Cell, 27:223-231 (1981); Constantini et al, Nature, 294:92-94 (1981)), membrane fusion-mediated transfer via liposomes (Felgner et al, Proc. Natl. Acad. Sci. USA, 84:7413-7417 (1987); Wang et al, Biochemistry, 28:9508-9514 (1989); Kaneda et al, J. Biol. Chem., 264:12126-12129 (1989); Stewart et al, Hum. Gene Ther., 3:267-275 (1992); Nabel et al, Science, 249:1285-1288 (1990); Lim et al, Circulation, 83:2007-2011 (1992)), and direct DNA uptake and receptormediated DNA transfer (Wolff et al, Science, 247:1465-1468 (1990); Wu et al, BioTechniques, 11:474-485 (1991); Zenke et al, Proc. Natl. Acad. Sci. USA, 87:3655-3659 (1990); Wu et al, J. Biol. Chem., 264:16985-16987 (1989); Wolff et al, BioTechniques, 11:474-485 (1991); Wagner et al, 1990; Wagner et al, Proc. Natl. Acad. Sci. USA, 88:4255-4259 (1991); Cotten et al, Proc. Natl. Acad. Sci. USA, 87:4033-4037 (1990); Curiel et al, Proc. Natl. Acad. Sci. USA, 88:8850-8854 (1991); Curiel et al, Hum. Gene Ther., 3:147-154 (1991)). Viral-mediated gene transfer can be combined with direct in vivo vectors to the mesenchymal stem cells and not into the surrounding cells (Romano et al, In Vivo, 12(1):59-67 (1998); Gonez et al, Hum. Mol. Genetics, 7(12):1913-9 (1998)). Alternatively, the retroviral vector producer cell line can be injected into the bone marrow (Culver et al, Science, 256:1550-1552 (1992)). Injection of producer cells would then provide a continuous source of vector particles. This technique has been approved for use in humans with inoperable brain tumors.

In an approach which combines biological and physical gene transfer methods, plasmid DNA of any size is combined with a polylysine-conjugated antibody specific to the adenovirus hexon protein, and the resulting complex is bound to an adenovirus vector. The trimolecular complex is then used to infect cells. The adenovirus vector permits efficient binding, internalization, and degradation of the endosome before the coupled DNA is damaged.

Liposome/DNA complexes have been shown to be capable of mediating direct in vivo gene transfer. While in standard liposome preparations the gene

-95-

transfer process is non-specific, localized *in vivo* uptake and expression have been reported in tumor deposits, for example, following direct *in situ* administration (Nabel, *Hum. Gene Ther.*, 3:399-410 (1992)).

XX. Methods of Use: Transformed Hosts, Development of Pharmaceuticals and Research Tools

5

10

15

20

25

30

Cells and animals that carry the HBM gene can be used as model systems to study and test for substances that have potential as therapeutic agents (Onyia et al, *J. Bone Miner. Res.*, 13:20-30 (1998); Broder et al, *Bone*, 21:225-235 (1997)). The cells are typically cultured mesenchymal stem cells. These may be isolated from individuals with somatic or germline HBM genes. Alternatively, the cell line can be engineered to carry the HBM gene, as described above. After a test substance is applied to the cells, the transformed phenotype of the cell is determined. Any trait of transformed cells can be assessed, including formation of bone matrix in culture (Broder et al, *Bone*, 21:225-235 (1997)), mechanical properties (Kizer et al, *Proc. Natl. Acad. Sci. USA*, 94:1013-1018 (1997)), and response to application of putative therapeutic agents.

Animals for testing therapeutic agents can be selected after treatment of germline cells or zygotes. Such treatments include insertion of the Zmax1 gene, as well as insertion of the HBM gene and disrupted homologous genes. Alternatively, the inserted Zmax1 gene(s) and/or HBM gene(s) of the animals may be disrupted by insertion or deletion mutation of other genetic alterations using conventional techniques, such as those described by, for example, Capechi, *Science*, 244:1288 (1989); Valancuis et al, *Mol. Cell Biol.*, 11:1402 (1991); Hasty et al, *Nature*, 350:243 (1991); Shinkai et al, *Cell*, 68:855 (1992); Mombaerts et al, *Cell*, 68:869 (1992); Philpott et al, *Science*, 256:1448 (1992); Snouwaert et al, *Science*, 257:1083 (1992); Donehower et al, *Nature*, 356:215 (1992). After test substances have been administered to the animals, the growth of bone must be assessed. If the test substance enhances the growth of bone, then the test substance is a candidate therapeutic agent. These animal models provide an extremely important vehicle for potential therapeutic products.

5

10

15

20

25

30

Individuals carrying the HBM gene have elevated bone mass. The HBM gene causes this phenotype by altering the activities, levels, expression patterns, and modification states of other molecules involved in bone development. Using a variety of established techniques, it is possible to identify molecules, preferably proteins or mRNAs, whose activities, levels, expression patterns, and modification states are different between systems containing the Zmax 1 gene and systems containing the HBM gene. Such systems can be, for example, cell-free extracts, cells, tissues or living organisms, such as mice or humans. For a mutant form of Zmax1, a complete deletion of Zmax1, mutations lacking the extracellular or intracellular portion of the protein, or any other mutation in the Zmax1 gene may be used. It is also possible to use expression of antisense Zmax1 RNA or oligonucleotides to inhibit production of the Zmax1 protein. For a mutant form of HBM, a complete deletion of HBM, mutations lacking the extracellular or intracellular portion of the HBM protein, or any other mutation in the HBM gene may be used. It is also possible to use expression of antisense HBM RNA or oligonucleotides to inhibit production of the HBM protein.

Molecules identified by comparison of Zmax1 systems and HBM systems can be used as surrogate markers in pharmaceutical development or in diagnosis of human or animal bone disease. Alternatively, such molecules may be used in treatment of bone disease. See, Schena et al, Science, 270:467-470 (1995).

For example, a transgenic mouse carrying the HBM gene in the mouse homologue is constructed. A mouse of the genotype HBM/+ is viable, healthy and has elevated bone mass. To identify surrogate markers for elevated bone mass, HBM/+ (i.e., heterozygous) and isogenic +/+ (i.e., wild-type) mice are sacrificed. Bone tissue mRNA is extracted from each animal, and a "gene chip" corresponding to mRNAs expressed in the +/+ individual is constructed. mRNA from different tissues is isolated from animals of each genotype, reverse-transcribed, fluorescently labeled, and then hybridized to gene fragments affixed to a solid support. The ratio of fluorescent intensity between the two populations is indicative of the relative abundance of the specific mRNAs in the +/+ and HBM/+ animals. Genes encoding

mRNAs over- and under-expressed relative to the wild-type control are candidates for genes coordinately regulated by the HBM gene.

5

10

15

20

25

30

One standard procedure for identification of new proteins that are part of the same signaling cascade as an already-discovered protein is as follows. Cells are treated with radioactive phosphorous, and the already-discovered protein is manipulated to be more ore less active. The phosphorylation state of other proteins in the cell is then monitored by polyacrylamide gel electrophoresis and autoradiography, or similar techniques. Levels of activity of the known protein may be manipulated by many methods, including, for example, comparing wild-type mutant proteins using specific inhibitors such as drugs or antibodies, simply adding or not adding a known extracellular protein, or using antisense inhibition of the expression of the known protein (Tamura et al, Science, 280(5369):1614-7 (1998); Meng, EMBO J., 17(15):4391-403 (1998); Cooper et al, Cell, 1:263-73 (1982)).

In another example, proteins with different levels of phosphorylation are identified in TE85 osteosarcoma cells expressing either a sense or antisense cDNA for Zmax1. TE85 cells normally express high levels of Zmax1 (Dong et al. Biochem. & Biophys. Res. Comm., 251:784-790 (1998)). Cells containing the sense construct express even higher levels of Zmax1, while cells expressing the antisense construct express lower levels. Cells are grown in the presence of ³²P, harvested, lysed, and the lysates run on SDS polyacrylamide gels to separate proteins, and the gels subjected to autoradiography (Ausubel et al, Current Protocols in Molecular Biology, John Wiley & Sons (1997)). Bands that differ in intensity between the sense and antisense cell lines represent phosphoproteins whose phosphorylation state or absolute level varies in response to levels of Zmax1. As an alternative to the 32Plabeling, unlabeled proteins may be separated by SDS-PAGE and subjected to immunoblotting, using the commercially available anti-phosphotyrosine antibody as a probe (Thomas et al, Nature, 376(6537):267-71 (1995)). As an alternative to the expression of antisense RNA, transfection with chemically modified antisense oligonucleotides can be used (Woolf et al, Nucleic Acids Res., 18(7):1763-9 (1990)).

Many bone disorders, such as osteoporosis, have a slow onset and a slow response to treatment. It is therefore useful to develop surrogate markers for bone

-98-

development and mineralization. Such markers can be useful in developing treatments for bone disorders, and for diagnosing patients who may be at risk for later development of bone disorders. Examples of preferred markers are N- and C-terminal telopeptide markers described, for example, in U.S. Patent Nos. 5,455,179, 5,641,837 and 5,652,112, the disclosures of which are incorporated by reference herein in their entirety. In the area of HIV disease, CD4 counts and viral load are useful surrogate markers for disease progression (Vlahov et al, *JAMA*, 279(1):35-40 (1998)). There is a need for analogous surrogate markers in the area of bone disease.

5

10

15

20

25

30

A surrogate marker can be any characteristic that is easily tested and relatively insensitive to non-specific influences. For example, a surrogate marker can be a molecule such as a protein or mRNA in a tissue or in blood serum.

Alternatively, a surrogate marker may be a diagnostic sign such as sensitivity to pain, a reflex response or the like.

In yet another example, surrogate markers for elevated bone mass are identified using a pedigree of humans carrying the HBM gene. Blood samples are withdrawn from three individuals that carry the HBM gene, and from three closely related individuals that do not. Proteins in the serum from these individuals are electrophoresed on a two dimensional gel system, in which one dimension separates proteins by size, and another dimension separates proteins by isoelectric point (Epstein et al, *Electrophoresis*, 17(11):1655-70 (1996)). Spots corresponding to proteins are identified. A few spots are expected to be present in different amounts or in slightly different positions for the HBM individuals compared to their normal relatives. These spots correspond to proteins that are candidate surrogate markers. The identities of the proteins are determined by microsequencing, and antibodies to the proteins can be produced by standard methods for use in diagnostic testing procedures. Diagnostic assays for HBM proteins or other candidate surrogate markers include using antibodies described in this invention and a reporter molecule to detect HBM in human body fluids, membranes, bones, cells, tissues or extracts thereof. The antibodies can be labeled by joining them covalently or noncovalently with a substance that provides a detectable signal. In many scientific and patent literature, a variety of reporter molecules or labels are described including

-99-

radionuclides, enzymes, fluorescent, chemi-luminescent or chromogenic agents (U.S. Patent Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241).

5

10

15

20

25

30

Using these antibodies, the levels of candidate surrogate markers are measured in normal individuals and in patients suffering from a bone disorder, such as osteoporosis, osteoporosis pseudoglioma, Engelmann's disease, Ribbing's disease, hyperphosphatasemia, Van Buchem's disease, melorheostosis, osteopetrosis, pychodysostosis, sclerosteosis, osteopoikilosis, acromegaly, Paget's disease, fibrous dysplasia, tubular stenosis, osteogenesis imperfecta, hypoparathyroidism, pseudohypoparathyroidism, pseudopseudohypoparathyroidism, primary and secondary hyperparathyroidism and associated syndromes, hypercalciuria, medullary carcinoma of the thyroid gland, osteomalacia and other diseases. Techniques for measuring levels of protein in serum in a clinical setting using antibodies are well established. A protein that is consistently present in higher or lower levels in individuals carrying a particular disease or type of disease is a useful surrogate marker.

A surrogate marker can be used in diagnosis of a bone disorder. For example, consider a child that present to a physician with a high frequency of bone fracture. The underlying cause may be child abuse, inappropriate behavior by the child, or a bone disorder. To rapidly test for a bone disorder, the levels of the surrogate marker protein are measured using the antibody described above.

Levels of modification states of surrogate markers can be measured as indicators of the likely effectiveness of a drug that is being developed. It is especially convenient to use surrogate markers in creating treatments for bone disorders, because alterations in bone development or mineralization may require a long time to be observed. For example, a set of bone mRNAs, termed the "HBM-inducible mRNA set" is found to be overexpressed in HBM/+ mice as compared to +/+ mice, as described above. Expression of this set can be used as a surrogate marker. Specifically, if treatment of +/+ mice with a compound results in overexpression of the HBM-inducible mRNA set, then that compound is considered a promising candidate for further development.

-100-

This invention is particularly useful for screening compounds by using the Zmax1 or HBM protein or binding fragment thereof in any of a variety of drug screening techniques.

5

10

15

20

25

30

The Zmax1 or HBM protein or fragment employed in such a test may either be free in solution, affixed to a solid support, or borne on a cell surface. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the protein or fragment, preferably in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, for the formation of complexes between a Zmax1 or HBM protein or fragment and the agent being tested, or examine the degree to which the formation of a complex between a Zmax1 or HBM protein or fragment and a known ligand is interfered with by the agent being tested.

Thus, the present invention provides methods of screening for drugs comprising contacting such an agent with a Zmax1 or HBM protein or fragment thereof and assaying (i) for the presence of a complex between the agent and the Zmax1 or HBM protein or fragment, or (ii) for the presence of a complex between the Zmax1 or HBM protein or fragment and a ligand, by methods well known in the art. In such competitive binding assays the Zmax1 or HBM protein or fragment is typically labeled. Free Zmax1 or HBM protein or fragment is separated from that present in a protein:protein complex, and the amount of free (i.e., uncomplexed) label is a measure of the binding of the agent being tested to Zmax1 or HBM or its interference with Zmax1 or HBM: ligand binding, respectively.

Another technique for drug screening provides high throughput screening for compounds having suitable binding affinity to the Zmax1 or HBM proteins and is described in detail in WO 84/03564. Briefly stated, large numbers of different small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The peptide test compounds are reacted with Zmax1 or HBM proteins and washed. Bound Zmax1 or HBM protein is then detected by methods well known in the art. Purified Zmax1 or HBM can be coated directly onto plates for use in the aforementioned drug screening techniques. However, non-neutralizing

-101-

antibodies to the protein can be used to capture antibodies to immobilize the Zmax1 or HBM protein on the solid phase.

This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of specifically binding the Zmax1 or HBM protein compete with a test compound for binding to the Zmax1 or HBM protein or fragments thereof. In this manner, the antibodies can be used to detect the presence of any peptide that shares one or more antigenic determinants of the Zmax1 or HBM protein.

5

10

15

20

25

30

A further technique for drug screening involves the use of host eukaryotic cell lines or cells (such as described above) that have a nonfunctional Zmax1 or HBM gene. These host cell lines or cells are defective at the Zmax1 or HBM protein level. The host cell lines or cells are grown in the presence of drug compound. The rate of growth of the host cells is measured to determine if the compound is capable of regulating the growth of Zmax1 or HBM defective cells.

The goal of rational drug design is to produce structural analogs of biologically active proteins of interest or of small molecules with which they interact (e.g., agonists, antagonists, inhibitors) in order to fashion drugs which are, for example, more active or stable forms of the protein, or which, e.g., enhance or interfere with the function of a protein in vivo. See, e.g., Hodgson, Bio/Technology, 9:19-21 (1991). In one approach, one first determines the three-dimensional structure of a protein of interest (e.g., Zmax1 or HBM protein) or, for example, of the Zmax1- or HBM-receptor or ligand complex, by x-ray crystallography, by computer modeling or most typically, by a combination of approaches. Less often, useful information regarding the structure of a protein may be gained by modeling based on the structure of homologous proteins. An example of rational drug design is the development of HIV protease inhibitors (Erickson et al, Science, 249:527-533 (1990)). In addition, peptides (e.g., Zmax1 or HBM protein) are analyzed by an alanine scan (Wells, Methods in Enzymol., 202: 390-411 (1991)). In this technique, an amino acid residue is replaced by Ala, and its effect on the peptide's activity is determined. Each of the amino acid residues of the peptide is analyzed in this manner to determine the important regions of the peptide.

It is also possible to isolate a target-specific antibody, selected by a functional assay, and then to solve its crystal structure. In principle, this approach yields a pharmacore upon which subsequent drug design can be based. It is possible to bypass protein crystallography altogether by generating anti-idiotypic antibodies (anti-ids) to a functional, pharmacologically active antibody. As a mirror image of a mirror image, the binding site of the anti-ids would be expected to be an analog of the original receptor. The anti-id could then be used to identify and isolate peptides from banks of chemically or biologically produced banks of peptides. Selected peptides would then act as the pharmacore.

5

10

- 15

20

25

Thus, one may design drugs which have, e.g., improved Zmax1 or HBM protein activity or stability or which act as inhibitors, agonists, antagonists, etc. of Zmax1 or HBM protein activity. By virtue of the availability of cloned Zmax1 or HBM sequences, sufficient amounts of the Zmax1 or HBM protein may be made available to perform such analytical studies as x-ray crystallography. In addition, the knowledge of the Zmax1 or HBM protein sequence provided herein will guide those employing computer modeling techniques in place of, or in addition to x-ray crystallography.

XXI. Methods of Use: Avian and Mammalian Animal Husbandry

The Zmax1 DNA and Zmax1 protein and/or the HBM DNA and HBM protein can be used for vertebrate and preferably human therapeutic agents and for avian and mammalian veterinary agents, including for livestock breeding. Birds, including, for example, chickens, roosters, hens, turkeys, ostriches, ducks, pheasants and quails, can benefit from the identification of the gene and pathway for high bone mass. In many examples cited in literature (for example, McCoy et al, Res. Vet. Sci., 60(2): 185-186 (1996)), weakened bones due to husbandry conditions cause cage layer fatigue, osteoporosis and high mortality rates. Additional therapeutic agents to treat osteoporosis or other bone disorders in birds can have considerable beneficial effects on avian welfare and the economic conditions of the livestock industry, including, for example, meat and egg production.

5

10

15

20

25

30

XXII. Methods of use: Diagnostic assays using Zmax1-specific oligonucleotides for detection of genetic alterations affecting bone development.

In cases where an alteration or disease of bone development is suspected to involve an alteration of the Zmax1 gene or the HBM gene, specific oligonucleotides may be constructed and used to assess the level of Zmax1 mRNA or HBM mRNA, respectively, in bone tissue or in another tissue that affects bone development.

For example, to test whether a person has the HBM gene, which affects bone density, polymerase chain reaction can be used. Two oligonucleotides are synthesized by standard methods or are obtained from a commercial supplier of custom-made oligonucleotides. The length and base composition are determined by standard criteria using the Oligo 4.0 primer Picking program (Wojchich Rychlik, 1992). One of the oligonucleotides is designed so that it will hybridize only to HBM DNA under the PCR conditions used. The other oligonucleotide is designed to hybridize a segment of Zmax1 genomic DNA such that amplification of DNA using these oligonucleotide primers produces a conveniently identified DNA fragment. For example, the pair of primers CCAAGTTCTGAGAAGTCC (SEQ ID NO:32) and AATACCTGAAACCATACCTG (SEQ ID NO:33) will amplify a 530 base pair DNA fragment from a DNA sample when the following conditions are used: step 1 at 95°C for 120 seconds; step 2 at 95°C for 30 seconds; step 3 at 58°C for 30 seconds; step 4 at 72°C for 120 seconds; where steps 2-4 are repeated 35 times. Tissue samples may be obtained from hair follicles, whole blood, or the buccal cavity.

The fragment generated by the above procedure is sequenced by standard techniques. Individuals heterozygous for the HBM gene will show an equal amount of G and T at the second position in the codon for glycine 171. Normal or homozygous wild-type individuals will show only G at this position.

Other amplification techniques besides PCR may be used as alternatives, such as ligation-mediated PCR or techniques involving Q-beta replicase (Cahill et al, *Clin. Chem.*, 37(9):1482-5 (1991)). For example, the oligonucleotides AGCTGCTCGT AGCTG TCTCTCCCTGGATCACGGGTACATGTACTGGACAGACTGGGT (SEQ ID NO:34) and TGAGACGCCCCCGGATTGAGCGGGCAGGGATAGCTTA

TTCCCTGTGCCGCATTACGGC (SEQ ID NO:35) can be hybridized to a denatured human DNA sample, treated with a DNA ligase, and then subjected to PCR amplification using the primer oligonucleotides AGCTGCTCGTAGCTGTCT CTCCCTGGA (SEQ ID NO:36) and GCCGTAATGCGGCACAGGGAATAAGCT (SEQ ID NO:37). In the first two oligonucleotides, the outer 27 bases are random sequence corresponding to primer binding sites, and the inner 30 bases correspond to sequences in the Zmax1 gene. The T at the end of the first oligonucleotide corresponds to the HBM gene. The first two oligonucleotides are ligated only when hybridized to human DNA carrying the HBM gene, which results in the formation of an amplifiable 114 bp DNA fragment.

Products of amplification can be detected by agarose gel electrophoresis, quantitative hybridization, or equivalent techniques for nucleic acid detection known to one skilled in the art of molecular biology (Sambrook et al, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring, NY (1989)).

15

10

5

Other alterations in the Zmax1 gene or the HBM gene may be diagnosed by the same type of amplification-detection procedures, by using oligonucleotides designed to identify those alterations. These procedures can be used in animals as well as humans to identify alterations in Zmax1 or HBM that affect bone development.

20

25

30

Expression of Zmax1 or HBM in bone tissue may be accomplished by fusing the cDNA of Zmax1or HBM, respectively, to a bone-specific promoter in the context of a vector for genetically engineering vertebrate cells. DNA constructs are introduced into cells by packaging the DNA into virus capsids, by the use of cationic liposomes, electroporation, or by calcium phosphate transfection. Transfected cells, preferably osteoblasts, may be studied in culture or may be introduced into bone tissue in animals by direct injection into bone or by intravenous injection of osteoblasts, followed by incorporation into bone tissue (Ko et al, Cancer Research, 56(20):4614-9 (1996)). For example, the osteocalcin promoter, which is specifically active in osteoblasts, may be used to direct transcription of the Zmax1 gene or the HBM gene. Any of several vectors and transfection methods may be used, such as retroviral vectors, adenovirus vectors, or vectors that are maintained after

transfection using cationic liposomes, or other methods and vectors described herein.

5

10

15

20

25

30

Alteration of the level of functional Zmax1 protein or HBM protein affects the level of bone mineralization. By manipulating levels of functional Zmax1 protein or HBM protein, it is possible to affect bone development and to increase or decrease levels of bone mineralization. For example, it may be useful to increase bone mineralization in patients with osteoporosis. Alternatively, it may be useful to decrease bone mineralization in patients with osteopetrosis or Paget's disease. Alteration of Zmax1 levels or HBM levels can also be used as a research tool. Specifically, it is possible to identify proteins, mRNA and other molecules whose level or modification status is altered in response to changes in functional levels of Zmax1 or HBM. The pathology and pathogenesis of bone disorders is known and described, for example, in Rubin and Farber (Eds.), *Pathology*, 2nd Ed., S.B. Lippincott Co., Philadelphia, PA (1994).

A variety of techniques can be used to alter the levels of functional Zmax1 or HBM. For example, intravenous or intraosseous injection of the extracellular portion of Zmax1 or mutations thereof, or HBM or mutations thereof, will alter the level of Zmax1 activity or HBM activity, respectively, in the body of the treated human, animal or bird. Truncated versions of the Zmax1 protein or HBM protein can also be injected to alter the levels of functional Zmax1 protein or HBM protein, respectively. Certain forms of Zmax1 or HBM enhance the activity of endogenous protein, while other forms are inhibitory.

In a preferred embodiment, the HBM protein is used to treat osteoporosis. In a further preferred embodiment, the extracellular portion of the HBM protein is used. This HBM protein may be optionally modified by the addition of a moiety that causes the protein to adhere to the surface of cells. The protein is prepared in a pharmaceutically acceptable solution and is administered by injection or another method that achieves acceptable pharmacokinetics and distribution.

In a second embodiment of this method, Zmax1 or HBM levels are increased or decreased by gene therapy techniques. To increase Zmax1 or HBM levels, osteoblasts or another useful cell type are genetically engineered to express high

-106-

levels of Zmax1 or HBM as described above. Alternatively, to decrease Zmax1 or HBM levels, antisense constructs that specifically reduce the level of translatable Zmax1 or HBM mRNA can be used. In general, a tissue-nonspecific promoter may be used, such as the CMV promoter or another commercially available promoter found in expression vectors (Wu et al, *Toxicol. Appl. Pharmacol.*, 141(1):330-9 (1996)). In a preferred embodiment, a Zmax1 cDNA or its antisense is transcribed by a bone-specific promoter, such as the osteocalcin or another promoter, to achieve specific expression in bone tissue. In this way, if a Zmax1-expressing DNA construct or HBM-expressing construct is introduced into non-bone tissue, it will not be expressed.

5

10

15

20

25

30

In a third embodiment of this method, antibodies against Zmax1 or HBM are used to inhibit its function. Such antibodies are identified herein.

In a fourth embodiment of this method, drugs that inhibit Zmax1 function or HBM function are used. Such drugs are described herein and optimized according to techniques of medicinal chemistry well known to one skilled in the art of pharmaceutical development.

Zmax1 and HBM interact with several proteins, such as ApoE. Molecules that inhibit the interaction between Zmax1 or HBM and ApoE or another binding partner are expected to alter bone development and mineralization. Such inhibitors may be useful as drugs in the treatment of osteoporosis, osteopetrosis, or other diseases of bone mineralization. Such inhibitors may be low molecular weight compounds, proteins or other types of molecules. See, Kim et al, J. Biochem. (Tokyo), 124(6):1072-1076 (1998).

Inhibitors of the interaction between Zmax1 or HBM and interacting proteins may be isolated by standard drug-screening techniques. For example, Zmax1 protein, (or a fragment thereof) or HBM protein (or a fragment thereof) can be immobilized on a solid support such as the base of microtiter well. A second protein or protein fragment, such as ApoE is derivatized to aid in detection, for example with fluorescein. Iodine, or biotin, then added to the Zmax1 or HBM in the presence of candidate compounds that may specifically inhibit this protein-protein domain of Zmax1 or HBM, respectively, and thus avoid problems associated with its

5

10

15

20

25

30

-107-

transmembrane segment. Drug screens of this type are well known to one skilled in the art of pharmaceutical development.

Because Zmax1 and HBM are involved in bone development, proteins that bind to Zmax1 and HBM are also expected to be involved in bone development. Such binding proteins can be identified by standard methods, such as co-immunoprecipitation, co-fractionation, or the two-hybrid screen (Ausubel et al, Current Protocols in Molecular Biology, John Wiley & Sons (1997)). For example, to identify Zmax1-interacting proteins or HBM-interacting proteins using the two-hybrid system, the extracellular domain of Zmax1 or HBM is fused to LexA and expressed for the yeast vector pEG202 (the "bait") and expressed in the yeast strain EGY48. The yeast strain is transformed with a "prey" library in the appropriate vector, which encodes a galactose-inducible transcription-activation sequence fused to candidate interacting proteins. The techniques for initially selecting and subsequently verifying interacting proteins by this method are well known to one skilled in the art of molecular biology (Ausubel et al, Current Protocols in Molecular Biology, John Wiley & Sons (1997)).

In a preferred embodiment, proteins that interact with HBM, but not Zmax1, are identified using a variation of the above procedure (Xu et al, *Proc. Natl. Acad. Sci. USA*, 94(23):12473-8 (Nov. 1997)). This variation of the two-hybrid system uses two baits, and Zmax1 and HBM are each fused to LexA and TetR, respectively. Alternatively, proteins that interact with the HBM but not Zmax1 are also isolated. These procedures are well known to one skilled in the art of molecular biology, and are a simple variation of standard two-hybrid procedures.

As an alternative method of isolating Zmax1 or HBM interacting proteins, a biochemical approach is used. The Zmax1 protein or a fragment thereof, such as the extracellular domain, or the HBM protein or a fragment thereof, such as the extracellular domain, is chemically coupled to Sepharose beads. The Zmax1- or HBM-coupled beads are poured into a column. An extract of proteins, such as serum proteins, proteins in the supernatant of a bone biopsy, or intracellular proteins from gently lysed TE85 osteoblastic cells, is added to the column. Non-specifically bound proteins are eluted, the column is washed several times with a low-salt buffer,

and then tightly binding proteins are eluted with a high-salt buffer. These are candidate proteins that bind to Zmax1 or HBM, and can be tested for specific binding by standard tests and control experiments. Sepharose beads used for coupling proteins and the methods for performing the coupling are commercially available (Sigma), and the procedures described here are well known to one skilled in the art of protein biochemistry.

5

10

15

20

25

30

As a variation of the above procedure, proteins that are eluted by high salt from the Zmax1- or HBM-Sepharose column are then added to an HBM-Zmax1-sepharose column. Proteins that flow through without sticking are proteins that bind to Zmax1 but not to HBM. Alternatively, proteins that bind to the HBM protein and not to the Zmax1 protein can be isolated by reversing the order in which the columns are used.

XXIII. Method of Use: Transformation-Associated Recombination (TAR) Cloning

Essential for the identification of novel allelic variants of Zmax1 is the ability to examine the sequence of both copies of the gene in an individual. To accomplish this, two "hooks," or regions of significant similarity, are identified within the genomic sequence such that they flank the portion of DNA that is to be cloned. Most preferably, the first of these hooks is derived from sequences 5' to the first exon of interest and the second is derived from sequences 3' to the last exon of interest. These two "hooks" are cloned into a bacterial/yeast shuttle vector such as that described by Larionov et al, Proc. Natl. Acad. Sci. USA, 94:7384-7387 (1997). Other similar vector systems may also be used. To recover the entire genomic copy of the Zmax1 gene, the plasmid containing the two "hooks" is linearized with a restriction endonuclease or is produced by another method such as PCR. This linear DNA fragment is introduced into yeast cells along with human genomic DNA. Typically, the yeast Saccharomyces cerevisiae is used as a host cell, although Larionov et al (in press) have reported using chicken host cells as well. During and after the process of transformation, the endogenous host cell converts the linear plasmid to a circle by a recombination event whereby the region of the human genomic DNA homologous to the "hooks" is inserted into the plasmid. This

5

10

15

20

25

30

plasmid can be recovered and analyzed by methods well known to one skilled in the art. Obviously, the specificity for this reaction requires the host cell machinery to recognize sequences similar to the "hooks" present in the linear fragment. However, 100% sequence identity is not required, as shown by Kouprina et al, *Genomics*, 53(1):21-28 (October 1998), where the author describes using degenerate repeated sequences common in the human genome to recover fragments of human DNA from a rodent/human hybrid cell line.

In another example, only one "hook" is required, as described by Larionov et al, *Proc. Natl. Acad. Sci. USA*, 95(8):4469-74 (April 1998). For this type of experiment, termed "radial TAR cloning," the other region of sequence similarity to drive the recombination is derived from a repeated sequence from the genome. In this way, regions of DNA adjacent to the Zmax1 gene coding region can be recovered and examined for alterations that may affect function.

XXIV. Methods of Use: Genomic Screening

The use of polymorphic genetic markers linked to the HBM gene or to Zmax1 is very useful in predicting susceptibility to osteoporosis or other bone diseases. Koller et al, Amer. J. Bone Min. Res., 13:1903-1908 (1998) have demonstrated that the use of polymorphic genetic markers is useful for linkage analysis. Similarly, the identification of polymorphic genetic markers within the high bone mass gene will allow the identification of specific allelic variants that are in linkage disequilibrium with other genetic lesions that affect bone development. Using the DNA sequence from the BACs, a dinucleotide CAn repeat was identified and two unique PCR primers that will amplify the genomic DNA containing this repeat were designed, as shown below:

B200E21C16_L: GAGAGGCTATATCCCTGGGC (SEQ ID NO:38)
B200E21C16_R: ACAGCACGTGTTTAAAGGGG (SEQ ID NO:39)
and used in the genetic mapping study.

This method has been used successfully by others skilled in the art (e.g., Sheffield et al, Genet., 4:1837-1844 (1995); LeBlanc-Straceski et al, Genomics, 19:341-9 (1994); Chen et al, Genomics, 25:1-8 (1995)). Use of these reagents with populations or individuals will predict their risk for osteoporosis. Similarly, single

-110-

nucleotide polymorphisms (SNPs), such as those shown in Table 4 above, can be used as well to predict risk for developing bone diseases or resistance to osteoporosis in the case of the HBM gene.

XXV. Methods of Use: Modulators of Tissue Calcification

5

10

15

20

25

30

The calcification of tissues in the human body is well documented. Towler et al, J. Biol. Chem., 273:30427-34 (1998) demonstrated that several proteins known to regulate calcification of the developing skull in a model system are expressed in calcified aorta. The expression of Msx2, a gene transcribed in osteoprogenitor cells, in calcified vascular tissue indicates that genes which are important in bone development are involved in calcification of other tissues. Treatment with HBM protein, agonists or antagonists is likely to ameliorate calcification (such as the vasculature, dentin and bone of the skull visera) due to its demonstrated effect on bone mineral density. In experimental systems where tissue calcification is demonstrated, the over-expression or repression of Zmax1 activity permits the identification of molecules that are directly regulated by the Zmax1 gene. These genes are potential targets for therapeutics aimed at modulating tissue calcification. For example, an animal, such as the LDLR -/-, mouse is fed a high fat diet and is observed to demonstrate expression of markers of tissue calcification, including Zmax1. These animals are then treated with antibodies to Zmax1 or HBM protein, antisense oligonucleotides directed against Zmax1 or HBM cDNA, or with compounds known to bind the Zmax1 or HBM protein or its binding partner or ligand. RNA or proteins are extracted from the vascular tissue and the relative expression levels of the genes expressed in the tissue are determined by methods well known in the art. Genes that are regulated in the tissue are potential therapeutic targets for pharmaceutical development as modulators of tissue calcification.

The nucleic acids, proteins, peptides, amino acids, small molecules or other pharmaceutically useful compounds of the present invention that are to be given to an individual may be administered in the form of a composition with a pharmaceutically acceptable carrier, excipient or diluent, which are well known in the art. The individual may be a mammal or a bird, preferably a human, a rat, a mouse or bird. Such compositions may be administered to an individual in a

-111-

pharmaceutically effective amount. The amount administered will vary depending on the condition being treated and the patient being treated. The compositions may be administered alone or in combination with other treatments.

EXAMPLES

5

The present invention is described by reference to the following Examples, which are offered by way of illustration and are not intended to limit the invention in any manner. Standard techniques well known in the art or the techniques specifically described below were utilized.

Example 1

10

15

20

25

30

The propositus was referred by her physicians to the Creighton Osteoporosis Center for evaluation of what appeared to be unusually dense bones. She was 18 years old and came to medical attention two years previous because of back pain, which was precipitated by an auto accident in which the car in which she was riding as a passenger was struck from behind. Her only injury was soft tissue injury to her lower back that was manifested by pain and muscle tenderness. There was no evidence of fracture or subluxation on radiographs. The pain lasted for two years, although she was able to attend school full time. By the time she was seen in the Center, the pain was nearly resolved and she was back to her usual activities as a high school student. Physical exam revealed a normal healthy young woman standing 66 inches and weighing 128 pounds. Radiographs of the entire skeleton revealed dense looking bones with thick cortices. All bones of the skeleton were involved. Most importantly, the shapes of all the bones were entirely normal. The spinal BMC was 94.48 grams in L1-4, and the spinal BMD was 1.667 gm/cm² in L1-4. BMD was 5.62 standard deviations (SD) above peak skeletal mass for women. These were measured by DXA using a Hologic 2000~. Her mother was then scanned and a lumbar spinal BMC of 58.05 grams and BMD of 1.500 gm/cm² were found. Her mother's values place her 4.12 SD above peak mass and 4.98 SD above her peers. Her mother was 51 years old, stood 65 inches and weighed 140 pounds. Her mother was in excellent health with no history of musculoskeletal or other symptoms. Her father's lumbar BMC was 75.33 grams and his BMD was

1.118 gm/cm². These values place him 0.25 SD above peak bone mass for males. He was in good health, stood 72 inches tall, and weighed 187 pounds.

These clinical data suggested that the propositus inherited a trait from her mother, which resulted in very high bone mass, but an otherwise normal skeleton, and attention was focused on the maternal kindred. In U.S. Patent No. 5,691,153, twenty- two of these members had measurement of bone mass by DXA. In one case, the maternal grandfather of the propositus, was deceased, however, medical records, antemortem skeletal radiographs and a gall bladder specimen embedded in paraffin for DNA genotyping were obtained. His radiographs showed obvious extreme density of all of the bones available for examination including the femur and the spine, and he was included among the affected members. In this invention, the pedigree has been expanded to include 37 informative individuals. These additions are a significant improvement over the original kinship (Johnson et al, Am. J. Hum. Genet., 60:1326-1332 (1997)) because, among the fourteen individuals added since the original study, two individuals harbor key crossovers. X-linkage is ruled out by the presence of male-to-male transmission from individual 12 to 14 and 15.

Example 2

5

10

15

20

25

The present invention describes DNA sequences derived from two BAC clones from the HBM gene region, as evident in Table 7 below, which is an assembly of these clones. Clone b200e21-h (ATCC No. 980812; SEQ ID NOS: 10-11) was deposited at the American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, VA 20110-2209 U.S.A., on December 30, 1997. Clone b527d12-h (ATCC No. 980720; SEQ ID NOS: 5-9) was deposited at the American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, VA 20110-2209 U.S.A., on October 2, 1998. These sequences are unique reagents that can be used by one skilled in the art to identify DNA probes for the Zmax1 gene, PCR primers to amplify the gene, nucleotide polymorphisms in the Zmax1 gene, or regulatory elements of the Zmax1 gene.

-113-

TABLE 7

Contig	ATCC No.	SEQ ID NO.	Length (base pairs)
b527d12-h_contig302G	980720	5	3096
b527d12-h_contig306G	980720	6	26928
b527d12-h_contig307G	980720	7	29430
b527d12-h_contig308G	980720	8	33769
b527d12-h_contig309G	980720	9	72049
b200e21-h_contig1	980812	10	8705
b200e21-h_contig4	980812	11	66933

10

15

20

5

The disclosure of each of the patents, patent applications and publications cited in the specification is hereby incorporated by reference herein in its entirety.

Although the invention has been set forth in detail, one skilled in the art will recognize that numerous changes and modifications can be made, and that such changes and modifications may be made without departing from the spirit and scope of the invention.

This application claims priority to U.S. Application Nos. 09/543,771 and 09/544,398 filed on April 5, 2000, which are a continuation-in-part of Application No. 09/229,319, filed January 13, 1999, which claims benefit of U.S. Provisional Application No. 60/071,449, filed January 13, 1998, and U.S. Provisional Application No. 60/105,511, filed October 23, 1998, all of which are herein incorporated by reference in their entirety.

-114-

CLAIMS

What is claimed is:

- 1. An isolated nucleic acid sequence of SEQ ID NO: 2.
- The isolated nucleic acid sequence of claim 1, wherein the nucleicacid sequence is DNA.
 - 3. An isolated amino acid sequence of SEQ ID NO: 4.
 - 4. A nucleic acid sequence encoding the amino acid sequence of SEQ ID NO:4.
- 5. A replicative cloning vector comprising the nucleic acid sequence of claim 1 and a replicon operative in an isolated host cell.
 - 6. An isolated host cell transformed with the replicative cloning vector of claim 5.
 - 7. An expression vector comprising the nucleic acid sequence of claim 1 operably linked to a transcription regulatory region.
- 8. An isolated host cell transformed with the expression vector of claim
 7.
 - 9. A method for testing a substance as a therapeutic agent for bone modulation in a host comprising administering the nucleic acid of claim 1 to the host, and assessing whether bone modulation occurs.
- 20 10. The method of claim 9, wherein the host is a cell or an animal.

-115-

- 11. The method of claim 10, wherein the animal is a human, a rodent or a bird.
- 12. A method of identifying a molecule involved in bone modulation comprising identifying a molecule that binds to, or that inhibits binding of a molecule to, HBM.

5

15

20

- 13. The method of claim 12, wherein said molecule is a protein.
- 14. A method for identifying a protein involved in bone modulation comprising identifying a protein that has an expression level that is different in a first host comprising the Zmax1 gene when compared to a second host comprising the HBM gene.
 - 15. The method of claim 14, wherein the host is a cell or an animal.
 - 16. A method of identifying a candidate protein involved in bone modulation comprising

identifying a protein in a first individual having the high bone mass phenotype;

identifying a protein in a second individual not having the high bone mass phenotype;

comparing the protein of the first individual to the protein of the second individual, wherein (i) the protein that is present in the first individual but not the second individual is the candidate protein or (ii) the protein that is present in a higher amount in the first individual than in the second individual is the candidate protein or (iii) the protein that is present in a lower amount in the first individual than in the second individual is the candidate protein.

17. The method of claim 16, further comprising producing an antibody to the candidate protein.

5

10

25

18. A method of identifying a candidate protein involved in bone modulation comprising

identifying a protein in a first individual having the high bone mass phenotype;

identifying a protein in a second individual not having the high bone mass phenotype; and

comparing the protein of the first individual to the protein of the second individual, wherein (i) the protein that is present in the second individual but not the first individual is the candidate protein or (ii) the protein that is present in a higher amount in the second individual than in the first individual is the candidate protein or (iii) the protein that is present in a lower amount in the second individual than in the first individual is the candidate protein.

- 19. The method of claim 18, further comprising producing an antibody to the candidate protein.
- 15 20. A method of testing for HBM activity comprising immobilizing an HBM protein, binding a protein to the HBM protein, and measuring the extent of binding.
 - 21. The method of claim 20, wherein the protein is ApoE.
- A method for identification of a candidate molecule involved in bone
 modulation comprising

identifying a molecule that binds to, or that inhibits binding of a molecule to, the nucleic acid sequence of SEQ ID NO: 1;

identifying a molecule that binds to, or that inhibits binding of a molecule to, the nucleic acid sequence of SEQ ID NO: 2; and

comparing the extent of binding, or the extent of inhibition of binding, of the molecule to each nucleic acid sequence, wherein the molecule that binds, or inhibits

WO 01/77327

PCT/US00/16951

binding, more or less to the nucleic acid sequence of SEQ ID NO: 2 or the nucleic acid sequence of SEQ ID NO: 1 is the candidate molecule.

- 23. The method of claim 22, wherein the candidate molecule is a protein or an mRNA.
- 5 24. A method of pharmaceutical development for treatment of bone development disorders comprising identifying a molecule that binds to the amino acid sequence of SEQ ID NO: 4.
 - 25. The method of claim 24, wherein the molecule inhibits or enhances the function of the amino acid.
- 10 26. A method of pharmaceutical development for treatment of bone development disorders comprising

15

constructing a first host that contains the Zmax1 gene or protein;
constructing a second host that contains the HBM gene or protein;
analyzing a difference between the first host and the second host;
identifying a molecule that, when added to the first host, causes the first host
to exhibit a characteristic feature of the second host.

- 27. The method of claim 26, wherein the host is a cell-free extract, a cell or an animal.
 - 28. The method of claim 26, wherein the difference is a surrogate marker.
- 29. A method for treating a bone development disorder in an animal comprising transferring the nucleic acid sequence of claim 1 into a somatic cell of an animal suffering from a bone development disorder.
 - 30. The method of claim 29, wherein the animal is a human or a bird.

WO 01/77327

-118-

PCT/US00/16951

- 31. A method for treating a bone development disorder in an animal comprising transferring the nucleic acid sequence of claim 1 into a germ-line cell of an animal suffering from a bone development disorder.
 - 32. The method of claim 31, wherein the animal is a human or a bird.
- 5 33. A method of altering bone development in a host comprising administering the amino acid sequence of claim 3 to a somatic cell of a host suffering from a bone development disorder.
 - 34. The method of claim 33, wherein the host is a human or a bird.
- 35. A method of altering bone development in a host comprising administering the amino acid sequence of claim 3 to a germ-line cell in a host suffering from a bone development disorder.
 - 36. The method of claim 35, wherein the animal is a human or a bird.
 - 37. A method of treating osteoporosis comprising administering the amino acid sequence of claim 3 to a patient in need thereof.
- 15 38. The method of claim 37, wherein the patient is a human or a bird.
 - 39. A method of treating osteoporosis comprising administering the extracellular domain of the amino acid sequence of claim 3 to a patient in need thereof.
 - 40. The method of claim 39, wherein the patient is a human or a bird.

-119-

- 41. A method of treating osteoporosis comprising administering the intracellular domain of the amino acid sequence of claim 3 to a patient in need thereof.
 - 42. The method of claim 41, wherein the patient is a human or a bird.
- 5 43. A method for treating bone development disorders comprising administering a molecule that binds to the nucleic acid sequence of claim 1 to a patient in need thereof.
 - 44. The method of claim 43, wherein the patient is a human or a bird.
- 45. A method for treating bone development disorders comprising
 administering an antibody to a patient in need thereof, wherein the antibody is to the
 amino acid sequence of claim 3.
 - 46. A method for diagnostic screening for a genetic predisposition to a bone development disorder comprising screening a sample from a patient with a nucleotide sequence derived from the genomic or cDNA nucleic acid sequence of HBM.

15

20

- 47. A diagnostic assay for bone development disorders comprising an antibody to the HBM protein.
- 48. A method for identifying a genetic predisposition to bone development disorders comprising performing a haplotype analysis using the nucleic acid sequence of claim 1.
 - 49. A method of expressing the HBM protein in bone tissue comprising constructing an expression vector comprising a promoter that directs expression in bone tissue operably linked to the nucleic acid sequence of claim 1.

-120-

- 50. The method of claim 49, wherein the promoter that directs expression in bone is an osteocalcin promoter, a bone sialoprotein promoter or an AML-3 promoter.
- 51. A bacterial artificial chromosome having the nucleic acid sequence of SEQ ID NO: 5, 6, 7, 8, 9, 10 or 11.
 - 52. A method for amplifying a nucleotide polymorphism in the Zmax1 gene comprising using the bacterial artificial chromosome of claim 51.
 - 53. A method for amplifying a nucleotide polymorphism in the HBM gene comprising using the bacterial artificial chromosome of claim 51.
- 10 54. A method for identifying a regulatory element of a HBM gene comprising using the bacterial artificial chromosome of claim 1 or claim 51.
- 55. An isolated nucleic acid sequence comprising at least 15 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO: 2, wherein one of the at least 15 contiguous nucleotides is thymine at position 582.
- 15 56. The isolated nucleic acid sequence of claim 55 that is DNA.
 - 57. The isolated nucleic acid sequence of claim 55 that is RNA.
 - 58. A replicative cloning vector comprising the nucleic acid sequence of claim 55 and a replicon operative in a host cell.
- 59. An isolated host cell transformed with the replicative cloning vector of claim 58.

WO 01/77327

- 60. An expression vector comprising the nucleic acid sequence of claim 55 operably linked to a transcription regulatory region.
- 61. An isolated host cell transformed with the expression vector of claim 60.
- 5 62. An isolated nucleic acid sequence comprising at least 15 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO: 2, wherein one of the at least 15 contiguous nucleotides is thymine at position 582, and which encodes for an amino acid sequence including a valine corresponding to valine at position 171 of SEQ ID NO: 4.
- 10 63. The nucleic acid sequence of claim 62 which is DNA.
 - 64. An isolated nucleic acid segment of at least 15 contiguous nucleotides including a polymorphic site from the nucleic acid sequence of SEQ ID NO: 2 in which G at position 582 is replaced by T, and sequences complementary thereto.
- 15 65. The isolated nucleic acid segment of claim 64, wherein said complementary sequence is the reverse complement.
 - 66. The isolated nucleic acid segment of claim 65, wherein said reverse complementary sequence is mRNA.
 - 67. The isolated nucleic acid segment of claim 64 that is DNA.
- 20 68. The isolated nucleic acid segment of claim 64 that is cDNA.
 - 69. The isolated nucleic acid segment of claim 65 that is RNA.

70. An isolated nucleic acid segment of at least 15 contiguous nucleotides including a single nucleotide polymorphic site from an exon sequence selected from the group consisting of:

SEQ ID NO: 9 wherein nucleotide 69169 is replaced by A, SEQ ID NO: 9 wherein nucleotide 27402 is replaced by G, 5 SEQ ID NO: 9 wherein nucleotide 27841 is replaced by C, SEQ ID NO: 9 wherein nucleotide 35600 is replaced by G, SEQ ID NO: 9 wherein nucleotide 45619 is replaced by A, SEQ ID NO: 9 wherein nucleotide 46018 is replaced by G, SEQ ID NO: 9 wherein nucleotide 46093 is replaced by G, 10 SEQ ID NO: 9 wherein nucleotide 46190 is replaced by G, SEQ ID NO: 9 wherein nucleotide 50993 is replaced by C, SEQ ID NO: 9 wherein nucleotide 51124 is replaced by T, SEQ ID NO: 9 wherein nucleotide 55461 is replaced by T, 15 SEQ ID NO: 9 wherein nucleotide 63645 is replaced by A, SEQ ID NO: 9 wherein nucleotide 63646 is replaced by C, SEQ ID NO: 9 wherein nucleotide 24809 is replaced by G, SEQ ID NO: 9 wherein nucleotide 27837 is replaced by C, SEQ ID NO: 9 wherein nucleotide 31485 is replaced by T, 20 SEQ ID NO: 9 wherein nucleotide 31683 is replaced by G, SEO ID NO: 9 wherein nucleotide 24808 is replaced by G. SEQ ID NO: 8 wherein nucleotide 31340 is replaced by C, SEQ ID NO: 8 wherein nucleotide 32538 is replaced by G, SEQ ID NO: 8 wherein nucleotide 13224 is replaced by G, 25 SEQ ID NO: 8 wherein nucleotide 21119 is replaced by A, SEQ ID NO: 8 wherein nucleotide 30497 is replaced by A, SEQ ID NO: 9 wherein nucleotide 24811 is replaced by C. SEQ ID NO: 9 wherein nucleotide 68280 is replaced by A, and sequences complementary thereto.

WO 01/77327

10

-123-

PCT/US00/16951

- 71. The isolated nucleic acid segment of claim 70, wherein nucleotide 21119 of said exon sequence of SEQ ID NO: 8 is replaced by A.
 - 72. The isolated nucleic acid segment of claim 70 that is DNA.
 - 73. The isolated nucleic acid segment of claim 70 that is RNA.
- 5 74. The isolated nucleic acid segment of claim 64 or claim 70 which is a probe or a primer.
 - 75. A method of identifying a molecule involved in bone modulation comprising identifying a molecule that binds to or that inhibits binding of a molecule to a protein involved in focal adhesion signaling.
 - 76. The method of claim 75, wherein the molecule involved in focal adhesion signaling binds to a protein selected from the group consisting of: SEQ ID NO: 87-109.
- 77. The method of claim 75, wherein the molecule involved in focal adhesion signaling binds to a protein selected from the group consisting of: SEQ ID NO:90, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:99 and SEQ ID NO:102.
 - 78. A method of modulating bone density in a subject by administering an agent that regulates a nucleic acid or polypeptide encoded thereby involved in focal adhesion signaling.
- 79. The method of claim 78, wherein the nucleic acid comprises a nucleic acid selected from the group consisting of: SEQ ID NOS: 63-86.
 - 80. The method of claim 78, wherein the nucleic acid comprises SEQ ID NO: 66, SEQ ID NO: 71, SEQ ID NO: 77 or SEQ ID NO: 79.

- 81. The method of claim 78, wherein the polypeptide is selected from the group consisting of: SEQ ID NOS: 87-109.
- 82. The method of claim 78, wherein the polypeptide is SEQ ID NO:90, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:99 or SEQ ID NO:102.
- 5 83. A nucleic acid comprising SEQ ID NO: 66, SEQ ID NO: 71, SEQ ID NO: 77 or SEQ ID NO: 79.
 - 84. A nucleic acid of claim 83, wherein the nucleic acid is RNA or DNA.
 - 85. A replicative cloning vector comprising a nucleic acid of claim 83 and a replicon operative in a host cell.
- 10 86. An isolated host cell transformed with the replicative cloning vector of claim 85.
 - 87. An expression vector comprising the nucleic acid sequence of claim 83.
- 88. An isolated host cell transformed with the expression vector of claim 87.
 - 89. A polypeptide comprising SEQ ID NO:90, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:99 or SEQ ID NO:102.
 - 90. A nucleic acid encoding a polypeptide selected from the group consisting of SEQ ID NO:90, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:99 or SEQ ID NO:102.

20

-125-

- 91. A method of treating bone development disorders comprising the step of administering an agent which modulates a nucleic acid or a polypeptide involved in focal adhesion signaling.
- 92. The method of claim 91, wherein the nucleic acid modulated by the agent is selected from any one of SEQ ID NOS: 63-86.
 - 93. The method of claim 91, wherein the polypeptide modulated by the agent is selected from any one of SEQ ID NOS: 87-109.

SUBSTITUTE SHEET (RULE 26)

Exon 1

... 9408 nt ...

Exon 3 Coordinates: 527d12_Contig308G 21141-20945

... 6094 nt ...

Exon 4 Coordinates: 527d12_Contig308G 15047-14850
tccctgactgcagGCAGAAGGTGGTGGAGGCAGCCTGACGCACCCCTTCGCCC
TGACGCTCTCCGGGGACACTCTGTACTGGACAGACTGGCAGACCCGCTC
CATCCATGCCTGCAACAAGCGCACTGGGGGGAAGAGGAGAGCCTG
AGTGCCCTATACTCACCCATGGACATCCAGGTGCTGAGCCAGGAGCGGC
AGCCTTTCTgtgagtgccgg

... 1827 nt ...

Exon 5 Coordinates: 527d12_Contig308G 13220-13088
tttctcagTCCACACTCGCTGTGAGGAGGACAATGGCGGCTGCTCCCACCTGT
GCCTGCTGTCCCCAAGCGAGCCTTTCTACACATGCGCCTGCCCCACGGG
TGTGCAGCTGCAGGACAACGGCAGGACGTGTAAGGCAGgtgaggcggtgggacg

FIG. 3A

6/31

... 20923 nt ...

..... 3211 nt

..... 13445 nt

Exon 8 Coordinates: 527d12_Contig309G 24927-25143
ccgtcctgcagGTGATCAATGTTGATGGGACGAAGAGGCGGACCCTCCTGGAG
GACAAGCTCCCGCACATTTTCGGGTTCACGCTGCTGGGGGACTTCATCT
ACTGGACTGACTGCCAGCGCCGCAGCATCGAGCGGTGCACAAGGTCAA
GGCCAGCCGGGACGTCATCATTGACCAGCTGCCCGACCTGATGGGGCTC
AAAGCTGTGAATGTGGCCAAGGTCGTCGgtgagtccggggggtc

....2826 nt

Exon 9 Coordinates: 527d12_Contig309G 27969-28256
gttcgcttccagGAACCAACCCGTGTGCGGACAGGAACGGGGGGTGCAGCCACC
TGTGCTTCTTCACACCCCACGCAACCCGGTGTGGCTGCCCCATCGGCCT
GGAGCTGCTGAGTGACATGAAGACCTGCATCGTGCCTGAGGCCTTCTTG
GTCTTCACCAGCAGAGCCGCCATCCACAGGATCTCCCTCGAGACCAATA
ACAACGACGTGGCCATCCCGCTCACGGGCGTCAAGGAGGCCTCAGCCCT
GGACTTTGATGTGTCCAACAACCACATCTACTGGACAGACGTCAGCCTG
AAGgtagcgtgggc

.....3102.....

FIG. 3B

Exon 10 Coordinates: 527d12_Contig309G 31358-31582
cctgctgccagACCATCAGCCGCGCCTTCATGAACGGGAGCTCGGTGGAGCAC
GTGGTGGAGTTTGGCCTTGACTACCCCGAGGGCATGGCCGTTGACTGGA
TGGGCAAGAACCTCTACTGGGCCGACACTGGGACCAACAGAATCGAAGT
GGCGCGGCTGGACGGCCAGTTCCGGCAAGTCCTCGTGTGGAGGACTT
GGACAACCCGAGGTCGCCCTGGATCCCACCAAGGGgtaagtgtttgcctgtc
......1297 nt......

Exon 11 Coordinates: 527d12_Contig309G 32879-33064
gtgccttccagCTACATCTACTGGACCGAGTGGGGCGGCAAGCCGAGGATCGT
GCGGGCCTTCATGGACGGGACCAACTGCATGACGCTGGTGGACAAGGTG
GGCCGGGCCAACGACCTCACCATTGACTACGCTGACCAGCGCCTCTACT
GGACCGACCTGGACACCAACATGATCGAGTCGTCCAACATGCTGGgtgaggg
ccgggct

.....2069 nt.....

Exon 12 Coordinates: 527d12_Contig309G 35133-35454
gtgttcatgcagGTCAGGAGCGGGTCGTGATTGCCGACGATCTCCCGCACCCGT
TCGGTCTGACGCAGTACAGCGATTATATCTACTGGACAGACTGGAATCT
GCACAGCATTGAGCGGGCCGACAAGACTAGCGGCCGGAACCGCACCCTC
ATCCAGGGCCACCTGGACTTCGTGATGGACATCCTGGTGTTCCACTCCT
CCCGCCAGGATGGCCTCAATGACTGTATGCACAACAACGGGCAGTGTGG
GCAGCTGTGCCTTGCCATCCCCGGCGCCACCGCTGCGGCTGCGCCTCA
CACTACACCCTGGACCCCAGCAGCCGCAACTGCAGCCgtaagtgcctcatggt

......2006 nt.....

Exon 13 Coordinates: 527d12_Contig309G 37460-37659
gcctcctctaCGCCCACCACCTTCTTGCTGTTCAGCCAGAAATCTGCCATCAGT
CGGATGATCCCGGACGACCAGCACAGCCCGGATCTCATCCTGCCCCTGC
ATGGACTGAGGAACGTCAAAGCCATCGACTATGACCCACTGGACAAGTT
CATCTACTGGGTGGATGGGCCCAGAACATCAAGCGAGCCAAGGACGAC
GGGACCCAGgcaggtgccctgtgg

.....6965 nt.....

FIG. 3C

Exon 14 Coordinates: 527d12_Contig309G 44624-44832
ctttgtcttacagCCCTTTGTTTTGACCTCTCTGAGCCAAGGCCAAAACCCAGACA
GGCAGCCCCACGACCTCAGCATCGACATCTACAGCCGGACACTGTTCTG
GACGTGCGAGGCCACCAATACCATCAACGTCCACAGGCTGAGCGGGGAA
GCCATGGGGGTGCTGCGTGGGGGACCGCGACAAGCCCAGGGCCATC
GTCGTCAACGCGGAGCGAGCGAGGgtaggaggccaac
.....1404 nt.....

Exon 15 Coordinates: 527d12_Contig309G 46236-46427
ccaccctcccgcagGTACCTGTACTTCACCAACATGCAGGACCGGGCAGCCAAGA

ccaccetccegcagGTACCTGTACTTCACCAACATGCAGGACCGGGCAGCCAAGA TCGAACGCGCAGCCCTGGACGCACCGAGCGCGAGGTCCTCTTCACCAC CGGCCTCATCCGCCCTGTGGCCCTGGTGGTGGACAACACACTGGGCAAG CTGTTCTGGGTGGACGCGGACCTGAAGCGCATTGAGAGCTGTGACCTGT CAGgtacgcgccccgg

.....686 nt.....

Exon 16 Coordinates: 527d12_Contig309G 47113-47322
ggctgcttgcagGGCCAACCGCCTGACCCTGGAGGACGCCAACATCGTGCAGC
CTCTGGGCCTGACCATCCTTGGCAAGCATCTCTACTGGATCGACCGCCA
GCAGCAGATGATCGAGCGTGTGGAGAAGACCACCGGGGACAAGCGGAC
TCGCATCCAGGGCCGTGTCGCCCACCTCACTGGCATCCATGCAGTGGAG
GAAGTCAGCCTGGAGGAGTTCTgtacgtgggggc

.....3884 nt......

Exon 17 Coordinates: 527d12_Contig309G 51206-51331 ttgtctttgcagCAGCCCACCCATGTGCCCGTGACAATGGTGGCTGCTCCACAT CTGTATTGCCAAGGGTGATGGGACACCACGGTGCTCATGCCCAGTCCAC CTCGTGCTCCTGCAGAACCTGCTGACCTGTGGAGgtaggtgtgacctaggtgc

....3905 nt.....

Exon 18 Coordinates: 527d12_Contig309G 55236-55472
gttctcctctgtccctccccagAGCCGCCCACCTGCTCCCCGGACCAGTTTGCATGTG
CCACAGGGGAGATCGACTGTATCCCCGGGGCCTGGCGCTGTGACGGCTT
TCCCGAGTGCGATGACCAGAGCGACGAGGAGGGCTGCCCCGTGTGCTCC
GCCGCCCAGTTCCCCTGCGCGCGGGGTCAGTGTGTGGACCTGCGCTGC
GCTGCGACGGCGAGGCAGACTGTCAGGACCGCTCAGACGAGGTGGACT
GTGACGgtgaggccctcc

.....3052 nt.....

FIG. 3D

9/31

Exon 19 Coordinates: 527d12_Contig309G 58524-58634 tctccttgcagCCATCTGCCTGCCCAACCAGTTCCGGTGTGCGAGCGGCCAGTGTGTCCTCATCAAACAGCAGTGCGACTCCTTCCCCGACTGTATCGACGGCTCCGACGAGCTCATGTGTGTG
1448 nt
Exon 20 Coordinates: 527d12_Contig309G 60082-60319 gtttgtctctggcagAAATCACCAAGCCGCCCTCAGACGACAGCCCGGCCCACAGC AGTGCCATCGGGCCCGTCATTGGCATCATCCTCTCTCTTCGTCATGGC TGGTGTCTATTTTGTGTGCCAGCGCGTGGTGTGCCAGCGCTATGCGGGG GCCAACGGGCCCTTCCCGCACGAGTATGTCAGCGGGACCCCGCACGTGC CCCTCAATTTCATAGCCCCGGGCGGTTCCCAGCATGGCCCCTTCACAGgtz aggagcctgagatatggaa
1095 nt
Exon 21 Coordinates: 527d12_Contig309G 61414-61552 cttccctgccagGCATCGCATGCGGAAAGTCCATGATGAGCTCCGTGAGCCTGA TGGGGGGCCGGGGCGGGG
6513 nt
Exon 22 Coordinates: 527d12_Contig309G 68065-68162 ttggctctcctcagATCCTGAACCCGCCGCCCTCCCGGCCACGGACCCCTCCCT
2273 nt

FIG. 3E

Exon 23 Coordinates: 527d12_Contig309G 70435-70901

FIG. 3F

Model for a LDL Receptor-Related protein, Zmax1 Binding Site for LDL and Calcium : (A: 1257-1294) (B: 1296-1333) (C: 1334-1372) ABC Ideal PEST region (With CK-II phosphorylation site) RGD (Extracellular attachment site) (1063-1065) 990-1200 Transmembrane Region (1387-1408) czzzzzza Cysteine-rich growth factor repeats 685-890 YWTD Spacer 370-590 51-270 \iint

T.G. 4

Site of Glycine to Valine change in HBM allele

Internalization Domain (1419-1422)

ı

1 9	ACTAAAGCGCCGCCGCCGCCATGGAGCCCGAGTGAGCGCGGGCGCGGGCCCGTCCGGCC GCCGGACAACATGGAGGCAGCGCCGCCCGGGCCGCGCGGCGCCGCTGCTGCTGCTGCT	60
-	MEAAPPGPWPLLLLL	17
121 18	GCTGCTGCCGCTGCCCGGCCCCCGCCGCGCCTCGCCGCTCCTGCTATT	180 37
181	TGCCAACCGCCGGGACGTTGGTGGACGCCGGCGGAGTCAAGCTGGAGTCCACCAT	240
38	A N R R D V R L V D A G G V K L E S T I	57
241	CGTGGTCAGCGGCCTGGAGGGAGCGGACTTCCAGTTTTCCAAGGGAGCCGT	300
58	V V S G L E D A A A V D F Q F S K G A V	77
301	GTACTGGACAGACGAGGCCATCAAGCAGACCTACCTGAACCAGACGGGGGC	360
78	Y W T D V S E E A I K Q T Y L N Q T G A	97
361 98	CGCCGTGCAGAACGTCATCTCCGGCCTGGTCTCTCCCGACGGCCTCGCCTGCGACTG	420 117
421	GGTGGGCAAGAAGCTGTACTGGACGGACTCAGAGACCGCATCGAGGTGGCCAACCT	480
118	V G K K L Y W T D S E T N R I E V A N L	137
481	CAATGGCACATCCCGGAAGGTGCTCTTCTGGCAGGACCTTGACCAGCCGAGGGCCATCGC	540
138	N G T S R K V L F W Q D L D Q P R A I A	157
541 158	CTTGGACCCCGCTCACGGGTACTGGACAGACTGGGGTGAGACGCCCCGGATTGA	600 177

601 178	සි ස	GGC	AGG G	GAT	GGA D	TGG	CAG S	CAC	20 R	3AAK K	3AT(I	TAT. T	rgt(3GA D	CTCG	igac D	'ATT' I	TAC Y	GCGGGCAGGATGGCAGCACCCGGAAGATCATTGTGGACTTCGGACATTTACTGGCC R A G M D G S T R K I I V D S D I Y W P	197
661	CAA	TGG	CAATGGACT	GAC	CAT	CGA	CCT	3GA(3GA(3CAC	3AA(3CT(TA(CH G	3601	GAC	igcc	AAG	CTCAG	720
198	Z	Ŋ	Ы	H	Н	Д	H	闰	闰	Q	×	Ы	×	×	Ø	Д	A	×	TIDLEEQKLYWADAKLS	217
721	CTT	CAT	CTTCATCCA	SCCG	TGC	CAA	CCT	3GA(2992	ZICC	FTT(CG	3CA(3AA(GGTC	GTG	GAG	999	AGCCT	780
218	Ŀų	н	Ħ	ద	ø	z	ы	Д	ტ	ഗ	ſτι	ద	Q	봈	>	>	臼	ტ	RANLDGSFRQKVVEGSL	237
781	GAC	GCA	GACGCACCC	CTT	CGC	CCT	GAC	3CT(STC	399	3GA(CAC	l CT	3TA	CTGG	ACP	GAC	TGG	CAGAC	840
238	H	Ħ	ъį	ഥ	4	IJ	۲	Н	ഗ	ტ	Ω	E	ы	×	×	₽	Д	M	FALTLSGDTLYWTDWQT	257
841	CCG	CTC	CAT	CCA	TGC	CTG	CAA	CAAC	3000	ZAC:	rgg(3990	3AA(3AG	BAAG	GAG	ATC	CTG	CCGCTCCATCCATGCCTGCAACAAGCGCACTGGGGGGAAGAAGGAAG	900
258	ĸ	വ	н	H	ø	Ü	z	×	R	E	Ö	ט	×	ĸ	×	臼	н	ы	S	277
901	CCI	CTA	CTC	ACC	CAT	GGA	CAT(CCAC	3GT(3CTC	3AG	CCAC	3GA(S S S S S S S S S S S S S S S S S S S	GCAG	CCI	TTC	TTC	CACAC	096
278	IJ	×	വ	Д	Σ	Ω	н	Ø	> .	ᄓ	ß	œ	田	8	O	Д	ſъ	ſĽι	LYSPMDIQVLSQERQPFFHT	297
961	TCG	CTG	TGA	GGA	GGA	CAA	TGG(3 G G(TTG(TCC	CA(CTC	FTG(CCT	BCTG	TCC	CC CC	AGC	TCGCTGTGAGGAGGACAATGGCGGCTGCTCCCACCTGTGCCTGCTGTCCCCAAGCGAGCC	1020
298	ద	Ö	闰	团	Ω	z	<u>ڻ</u> .	ט	Ö	ഗ	H	ц	บ	ы	EDNGGCSHLCLLSPSE	വ	വ	ഗ	더	317
1021	TTT	CTA	CAC	ATG	CGC	CTG	מממ	CACC	3663	rGTC	SCAC SCAC	3CTC	ZZ ZZ	3GA(CAAC	999	'AGG	ACG	TTTCTACACATGCGCCTGCCCACGGGTGTGCAGCTGCAGGACAACGGCAGGACGTGTAA	1080
318	Ŀ	×	H	ບ	ď	ت ت	д	H	ט	>	Ø	ы	α	Д	CACPTGVQLQDNGRTC	Ŋ	ĸ	E	S N	337
1081	960	AGG	AGC	CGA	GGA	GGT(GCT(3CTC	3CTC	jgaa	ZGG	i G	ACC	3GA(CCTA	CGG	AGG	ATC	TCGCT	1140
338	Æ	Ö	ø	闰	田	>	Ч	П	ы	Æ	24	24	H	А	ı	, R	2	; ¦ ⊢₁	A G A E E V L L L A R R T D L R R I S L	357

1200 377	1260 397	1320 417	1380 437	1440	1500 477	1560	1620 517	1680 537
L GGACACGCCGGACTTCACCGACATCGTGCAGGTGGACGACATCCGGCACGCCATTGC	CATCGACTACGACCCGCTAGGGCTATGTCTACTGGACAGATGACGAGGTGCGGGCCAT	l CCGCAGGGCGTACCTGGGGGGGGGCGCAGACGCTGGTCAACACCGAGATCAACGA	. CCCCGATGGCATCGACTGGGTGGCCCGAAACCTCTACTGGACCGACACGGGCAC $ m r$	GGACCGCATCGAGGTGACGCCTCAACGCCACCTCCCGCAAGATCCTGGTGTCGGAGGA	. CCTGGACGAGCCATCGCACTGCACCCCGTGATGGGCCTCATGTACTGGACAGA	. CTGGGGAGAACCCTAAAATCGAGTGTGCCAACTTGGATGGGCAGGGGGGGG	GGTCAATGCCTCCCTCGGGTGGCCCAACGGCCTGGCCTG	CTACTGGGGAGACGCCAAGACAGATCGAGGTGATCAATGTTGATGGGACGAAGAG YWGDAKTDKIEVINVDGTKR
1141 358	1201 378	1261 398	1321	1381	1441 458	1501	1561 498	1621 518

. 6D

1740	1800	1860	1920	1980	2040	2100	2160	2220
557	577	597	617	637	657		697	717
GCGGACCCTCCTGGAGACAAGCTCCCGCACATTTTCGGGGTTCACGCTGCTGGGGGACTT	CATCTACTGGACTGGCAGCGCCGCAGCATCGAGCGGGTGCACAAGGTCAAGGCCAG	CCGGGACGTCATTGACCAGCTGCCGACCTGATGGGGCTCAAAGCTGTGAATGTGGC	CAAGGTCGTCGGAACCGGACAGGAACGGGGGGGTGCAGCCACCTGTGCTT	CTTCACACCCCACGCAACCCGGTGTGGCTGCCCCATCGGCCTGGAGCTGAGTGACAT	GAAGACCTGCATCGTGCCTGAGCTCTTCACCAGCAGAGCCGCCATCCACAG	GATCTCCCTCGAGACCAACAACGACGTGGCCATCCCGCTCACGGGCGTCAAGGAGGC	CTCAGCCCTGGACTTTGATGTGTCCAACAACCACATCTACTGGACAGACGTCAGCCTGAA	GACCATCAGCCGCCTTCATGAACGGGAGCTCGGTGGAGCACGTGGTGGAGTTTGGCCT
R T L L E D K L P H I F G F T L L G D F		R D V I I D Q L P D L M G L K A V N V A	K V V G T N P C A D R N G G C S H L C F	F T P H A T R C G C P I G L E L L S D M	K T C I V P E A F L V F T S R A A I H R	I S L E T N N D V A I P L T G V K E A	S A L D F D V S N N H I Y W T D V S L K	T I S R A F M N G S S V E H V V E F G L
1681	1741	1801	1861	1921	1981	2041	2101	2161
538	558	578	598	618	638	658	678	698

M

2221	TGACTACCCCGAGGGCATGGCCGTTGACTGGATGGGCCAAGAACCTCTACTGGGCCGACAC	CTA Y	D D	CGA E	999 9	CAT	GAGGGCATGGCCGTTGACTGGATGGGCAAGAACCTCTACTGGGCCGACA(CGT	IGA G	CTG S	GAT(M	, 10,000	CAA(GAA	CG TG	CTA(CTG W	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	CGA(CAC	2280
2281	1000	י ע	י מ מ	ו מ	י דממ:	רקא. מקא	AGT.	ָ ֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֓	֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֓֞ ֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖	: ئ	ָל ט	֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֓	ָבְּיֵלְ נְיָּ	ָּ קינות בּיי	יַ ז נ ז	ړ ا	: []	; ; ;	֝֝֟֝֟֝֝֟֝֟֝֝֟֝֝֟֝֝֟֝֝֟֝֝֟֝֝֟֝֝֟֝֝֟֝֝֟֝֝	ָּלָל בָּלָל	0.00
1)	,	;			;	i))))				1	5		ב ב)	֚֡֝֝֝֝֝֟֝֝֝֝֝ ֓֓֞֞֞֞֓֞֞֞֞֞֞֞֞֩֞֞֞֩֞֞֞֩֞֞֞֞֞֩֞	֓֞֝֝֓֓֓֞֝֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֡֓֓֡֓֓֡֓֓֓֓֡֓֡֓֡֓֡	٥ ٢ ٢
738	G T N R I E V A R L D G Q F R Q V L V W	E+	Z	æ	Н	田	>	ø	ద	П	Ω	ტ	O1	ſτι	ద	O1	>	Н	>	×	757
2341	GAGC	3GA	CTI	GGA	CAA		GAG	GIG	CCT(D D D	CCL	3GA	IGG	CAC	CAA(3999	CTA(CAT	CTA(CIG	2400
758	RDLDNPRSLALDPTKGYIYW	Ω	H	Ω	Z	Ωı	œ	ß	H	Ø	ᅱ	Д	Д	H	×	ט	×	н	×	×	777
,	j	7	j j	j J)))	,	į	. (İ	1	i	i	!	1	;				i		
240I	GACC	GA GA	GILC.	5) ()	ÇAA	S S S	GAG	GAT		(C)	Ď D D	CHH	CAT	GGA	ט ט ט	EAC.	CAAA	Ğ	CAT	2460
778	TEWGGKPRIVRAFMDGTNCM	臼	×	U	Ŋ	×	Οı	ĸ	н	>	ద	ø	দ	Σ	Д	ರ	۲	Z	บ	Σ	797
2461	GACC	3CT	GGI	GGA	CAA	GGT	GGG	CCG	390	CAA	CGA	CCI	CAC	CAT	rgA(CTA(CGC	IGA	CCA(3CG	2520
798	TIVDKVGRANDLTIDYADQR	ы	>	Ω	×	>	ט	₽	ø	z	Д	ы	۲	н	Д	×	Ø	Д	Ø	ద	817
							•														
2521	CCIC	TA	CIG	GAC	CGA	CCI	GGA	CAC	CAA	CAT	GAT	CGA(3IC	GIC	CAA(CAT	3CT	3 3 3 3 3	ICA(3GA	2580
818	LYWTDLD:TNMIESSNMLGQE	≻ı	Z	H	Ω	П	Д	E	z	Σ	Н	Щ	ഗ	ഗ	z	Σ	니	ტ	Ø	田	837
2581	GCGC	3GT	CGI	GAT	TGC	CGA	CGA	ICT.	מממ	3CA	CCC	3TT(CGG	ICT(3AC	3CA(3TA	CAG	CGA	LTA	2640
838.	R V V. I A D D L P H P F G L T Q Y S D Y	>	>	Н	Ø	Д	Д	П	വ	Ħ	വ	ſτι	ტ	H	H	ø	×	വ	Д	×	857
7	Ę	Ę	ָ ב	Ţ Š	ر د د	Ę	ر د د	È	į	į	ŧ	į	j	j	Š	į	į	1	(į	1
704T	TAIL	T.	כד	GAC	AGA	5 T	GAA		SCA S	CAG	CAL	EA GA))		GA	AA	SAC	IAG	999	CCC	2700
858	IYWTDWNLHSIERADKTSGR	≻	Z	H	Д	⊠.	Z	Ы	Ħ	ഗ	Н	田	ద	Ø	Ω	×	₽	ß	ט	R	877
2701	GAACCGCACCTCATCCAGGGCCACCTGGACTTCGTGATGGACATCCTGGTGTTCCACTC	Š	CAC	CCT	CAT	CCA	GGG.	: CCA(CCT	3GA(CTT(:GT(3AT(3GA(TAT(T.C.T.C	3 GT(Z A D	ناير	2760
0 7 0	Þ	ρ	E	F	۲	c	כ	Þ	-	C	E C	>	>	6	F	, ,	; ;	E	; ;) C	
0/0		4	-1	7	-	צכ	H A A T T D W A T T T T D D T T	C,	7		4	>	Ξ	a	4	-	>	ĭ.	Ľ	J)	7.68

FIG. 6F

2820 917	2880 937	2940 957	3000	3060 997	3120	3180	3240 1057	3300
1 CTCCCGCCAGGATGGCCTCAATGACTGTATGCACAACGGGCAGTGTGGGCAGCTGTG 3 S R Q D G L N D C M H N N G Q C G Q L C	L CCTTGCCATCCCCGGCGACCCGCCTGGGCCTCACACTACACCCTGGACCCCAG	L CAGCCGCAACTGCCGCCCACCACCTTCTTGCTGTTCAGCCAGAAATCTGCCATCAG	L TCGGATGATCCCGGACCAGCCCGGATCTCTTCATCCTGCCCCTGCATGACTGAG	L GAACGTCAAAGCCATCGACTACTGGACAAGTTCATCTACTGGGTGGATGGGCG	. CCAGAACATCAAGCGACGACGGGACCCCAGCCCTTTGTTTTGACCTCTCTGAG	CCAAGGCCAAAACCCAGACAGCCCCACGACCTCAGCATCGACATCTACAGCCGGAC	. ACTGTTCTGGACGTGCGAGGCCAATACCATCAACGTCCACAGGCTGAGCGGGGAAGC $f L$ $f L$ $f R$ $f L$ $f S$ $f G$ $f E$ $f A$. CATGGGGGTGCTGCGTGGGGACCGCGACAAGCCCAGGGGCCATCGTCGTCAACGCGGA
2761 898	2821 918	2881 938	2941 958	3001 978	3061 998	3121	3181	3241 1058

3301 1078	GCGAGGGTACCTGCACCAACATGCAGGACCGGGCAGCCAAGATCGAACGCGCAGC R G Y L Y F T N M Q D R A A K I E R A A	3360
	CCTGGACGCCACGCGGGTCCTTCACCACCGGCCTCATCCGCCCTGTGGCCCT	3420 1117
	GGTGGTGGACACACTGGGCAGCTGGGTGGACGCGGACCTGAAGCGCATTGA V V D N T L G K L F W V D A D L K R I E	3480 1137
	GAGCTGTGACCTGGCCAACCGCCTGACCTGGAGGACGCCAACATCGTGCAGCC	3540 1157
	TCTGGGCCTGACCATCTTTACTGGATCGACCGCCAGCAGCAGATGATL	3600
	CGAGCGTGTGGAGAGCGGGACAAGCGGACTCGCATCCAGGGCCGTGTCGCCCA E R V E K T T G D K R T R I Q G R V A H	3660 1197
	CCTCACTGGCATCCAGGAGGAGGTCAGCCTGGAGGAGTTCTCAGCCCACCCA	3720 1217
	TGCCCGTGACAATGGTGGCTGCTCCAATGTTGCCAAGGGTGATGGGACACCACG A R D N G G C S H I C I A K G D G T P R	3780 1237
	GTGCTCATGCCCAGTCCTCCTGCAGAACCTGCTGACCTGTGGAGGCCGCC	3840 1257

3900 3900 G A 1277	CCCGT 3960 P V 1297	3CGCTG 4020 R C 1317	CTGCCT 4080 C L 1337	CGACTC 4140 D S 1357	3CCCTC 4200 P S 1377	CTCTCT 4260 S L 1397	FGCGGG 4320 A G 1417	CAATTT 4380 N F 1437
CACCTGCTCCCCGGACCAGTTTGCATGTGCCACAGGGGAGATCGACTGTATCCCCGGGGC T C S P D Q F A C A T G E I D C I P G A	CTGGCGCTGTGACGTGCGATGACCAGAGCGACGAGGAGGGCTGCCCCGT W R C D G F P E C D D Q S D E E G C P V	GTGCTCCGCCCCCAGTTCCCCTGCCCCGGGGTCAGTGTGTGGACCTGCGCCTGCGCTG	GGCAGACTGTCAGACGAGGTGGACTGTGACGCCATCTGCCT A D C Q D R S D E V D C D A I C L	GCCCAACCAGTTCCGGTGTGCGGCCAGTGTGTCCTCATCAAACAGCAGTGCGACTC PNQFRCASGQCVLTCTCATCAAACAGCAGTGCGACTC	CTGTATCGACGCTCCGAGGCTCATGTGTGAAATCACCAAGCCGCCCTC C I D G S D E L M C E I T K P P S	AGACGACAGCCCACAGCAGTGCCATCGGGCCCGTCATTGGCATCATCCTCTCTCT	CTTCGTCATGGGTGTCTATTTTGTGTGCCAGCGCGTGTGTGCCAGCGCTATGCGGG F V M G G V Y F V C Q R V C Q R Y A G	GCCCTTCCCGCACGAGTATĠTCAGCGGGACCCCGCACGTGCCCCTCAATTT P F P H E Y V S G T P H V P L N F
AGATCGA I D	AGCGACGA	rgrgrgga	FIGGACTG	CTCATCAA : I K	rgtgaaat 3 E I	STCATTGG / I G	STGGTGTG	ACCCCGCA
CACAGGGG T G I	TGACCAGI D Q 9	G Q (AGACGAG(D E 1	AGTGTGTCC C V 1	AGCTCATG	10GGGCCC(SCCAGCGC	rcagcgggg s g ;
rgcargrgc A C A	CGAGTGCG1	TGCGCGCC C A R	3GACCGCTC DRS	sagcggccz s g Q	CTCCGACG S D E	CAGTGCCA1 S A I	TTTGTGTC F V C	CGAGTATĠ1 E Y V
BACCAGTT	GCTTTCCC	SAGTTCCCC	BACTGTCAC	CGGTGTGC	ATCGACGG	SCCCACAG(GGTGTCTA:	FTCCCGCA(
S P I	SCTGTGACC C D C	CCGCCGCC(GCGAGGCAC E A I	ACCAGIIC(Q F I	CCGACTGIX D C]	ACAGCCCG(S P 1	TCATGGGT(M G (ACGGGCCCT G P I
		•	CGACGGCGA(CTTCCCCGA(GGCCAACGG(
3841 1258	3901 1278	3961 1298	4021	4081	4141 1358	4201 1378	4261 1398	4321 1418

FIG. 61

2AT 4440 M 1457	CCA 4500 H 1477	AT 4560 I 1497	TA 4620 Y 1517	3GC 4680 A 1537	TG 4740 W 1557	ACC 4800 P 1577	3GA 4860 E 1597	1CC 4920
CATAGCCCCGGGCGGTTCCCAGCCTTCACAGGCATCGCATGCGGAAAGTCCATI	GATGAGCTCCGTGAGCCTGATGGGGGGGGGGGGGGGGGG	CGTCACAGGGGCCTCGTCCAGCACGAAGGCCACGCTGTACCCGCCGAT V T G A S S S S S T K A T L Y P P I	CCTGAACCCGCCCTCCCCGGCCACGGACCCCTCCTGTACAACATGGACATGTTCTA	CTCTTCAAACATTCCGGCCACTGCGAGGCCCTTCATTCGAGGAATGGC S S N I P A T A R P Y R P Y I I R G M A	GCCCCCGACGACCTGCACCGACGTGTGTGACAGCGACTACAGCGCCAGCCGCTG PPTTPCSTDVCDSDYSASSRW	GAAGGCCAGCAAGTACTAGCTGGATTTGAACTCGGACTCAGACCCCTATCCACCCCACC	CACGCCCCACAGTACCTGTCGGCGGAGGACAGCTGCCCGCCC	GAGGAGCTACTTCCATCTTCCCGCCCCCTCCGTCCCCTGCACGGACTCATCCTGACC
4381 1438	4441 1458	4501 1478	4561 1498	4621 1518	4681 1538	4741 (4801 1578	4861 (

- (2))
)
Ĺ	_	_

4981	AAAAAATATTTTTTTTTAAAAAAAAATAAATATATATTGGGATTTTAAAAACATGAGAAA	20
5041	TGTGAACTGTGGGGTGGGCAGGGCTGGGAGAACTTTGTACAGTGGAGAAATATTTAT	7
רטרק	היים איים איים של איים איים איים איים איים איים איים איי	

Mouse Zmax1 In situ hybridization 100X Magnification

Antisense probe

Mouse Zmax1 In situ hybridization 100X Magnification

Sense probe

FIG. 10B

Mouse Zmax1 In situ hybridization 400X Magnification Antisense probe

Mouse Zmax1 In situ hybridization 400X Magnification Sense probe

FIG. 11B

Mouse Zmax1 In situ hybridization 400X Magnification Antisense probe

Endosteum

FIG. 12A

Mouse Zmax1 In situ hybridization 400X Magnification Sense probe

FIG. 12B

CLIDCTITLITE CHEET (DI II E 26)

Antisense Inhibition of Zmax1 Expression

MC-3T3 cells

FIG. 13

FIG. 14E

WO 01/77327 PCT/US00/16951

SEQUENCE LISTING

<110>	John P. Carulli et al.
<120>	THE HIGH BONE MASS GENE OF 11q13.3
<130>	032796-021
<150>	US 09/544,398
<151>	2000-04-05
<150>	US 09/543,771
<151>	2000-04-05
<150>	US 09/229,319
<151>	1999-01-13
<150>	US 60/071,449
<151>	1998-01-13
<150>	US 60/105,511
<151>	1998-10-23
<160>	109
<210>	1
<211>	5120
<212>	DNA
<213>	Homo sapiens

<400> 1

		1	L			5	5				1	LO				
ctg	ctg	ctg	ctg	ctg	ctg	ctg	gcg	ctg	tgc	ggc	tgc	ccg	gcc	ccc	gcc	157
Leu	Leu	Leu	Leu	Leu	Leu	Leu	Ala	Leu	Cys	Gly	Cys	Pro	Ala	Pro	Ala	
	15					20					25					
gcg	gcc	tcg	ccg	ctc	ctg	cta	ttt	gcc	aac	cgc	cgg	gac	gta	cgg	ctg	205
Ala	Ala	Ser	Pro	Leu	Leu	Leu	Phe	Ala	Asn	Arg	Arg	Asp	Val	Arg	Leu ·	
30					35					40					45	
gtg	gac	gcc	ggc	gga	gtc	aag	ctg	gag	tcc	acc	atc	gtg	gtc	agc	ggc	253
Val	Asp	Ala	Gly	Gly	Val	Lys	Leu	Glu	Ser	Thr	Ile	Val	Val	Ser	Gly	
				50					55					60		
ctg	gag	gat	gcg	gcc	gca	gtg	gac	ttc	cag	ttt	tcc	aag	gga	gcc	gtg	301
Leu	Glu	Asp	Ala	Ala	Ala	Val	Asp	Phe	Gln	Phe	Ser	Lys	Gly	Ala	Val	
			65					70					75			
tac	tgg	aca	gac	gtg	agc	gag	gag	gcc	atc	aag	cag	acc	tac	ctg	aac	349
Tyr	Trp	Thr	Asp	Val	Ser	Glu	Glu	Ala	Ile	Lys	Gln	Thr	Tyr	Leu	Asn	
		80					85					90				
cag	acg	999	gcc	gcc	gtg	cag	aac	gtg	gtc	atc	tcc	ggc	ctg	gtc	tct	397
Gln	Thr	Gly	Ala	Ala	Val	Gln	Asn	Val	Val	Ile	Ser	Gly	Leu	Val	Ser	
	95					100					105					
ccc	gac	ggc	ctc	gcc	tgc	gac	tgg	gtg	ggc	aag	aag	ctg	tac	tgg	acg	445
Pro	Asp	Gly	Leu	Ala	Cys	Asp	Trp	Val	Gly	Lys	Lys	Leu	Tyr	Trp	Thr	
110					115					120					125	
gac	tca	gag	acc	aac	cgc	atc	gag	gtg	gcc	aac	ctc	aat	ggc	aca	tcc	493
Asp	Ser	Glu	Thr	Asn	Arg	Ile	Glu	Val	Ala	Asn	Leu	Asn	Gly	Thr	Ser	
				130					135					140		
cgg	aag	gtg	ctc	ttc	tgg	cag	gac	ctt	gac	cag	ccg	agg	gcc	atc	gcc	541
Arg	Гуз	Val	Leu	Phe	Trp	Gln	Asp	Leu	Asp	Gln	Pro	Arg	Ala	Ile	Ala	

14	45	150	155	
ttg gac ccc go	ct cac ggg tac	atg tac tgg a	ca gac tgg ggt g	ag acg 589
Leu Asp Pro Al	la His Gly Tyr	Met Tyr Trp T	hr Asp Trp Gly G	lu Thr
160		165	170	
ccc cgg att ga	ag cgg gca ggg	atg gat ggc ag	gc acc cgg aag a	tc att 637
Pro Arg Ile Gl	lu Arg Ala Gly	Met Asp Gly Se	er Thr Arg Lys I	le Ile
175	180		185	
gtg gac tcg ga	ac att tac tgg	ccc aat gga c	tg acc atc gac c	tg gag 685
Val Asp Ser As	sp Ile Tyr Trp	Pro Asn Gly Le	eu Thr Ile Asp L	eu Glu
190	195	20	00	205
gag cag aag ct	to tac tgg gct q	gac gcc aag ct	tc agc ttc atc c	ac cgt 733
Glu Gln Lys Le	eu Tyr Trp Ala	Asp Ala Lys Le	eu Ser Phe Ile H	is Arg
	210	215	2	20
gcc aac ctg ga	ac ggc tcg ttc (cgg cag aag gt	tg gtg gag ggc a	gc ctg 781
Ala Asn Leu As	sp Gly Ser Phe A	Arg Gln Lys Va	al Val Glu Gly S	er Leu
22	25	230	235	
			ac act ctg tac t	
	•	_	sp Thr Leu Tyr T	rp Thr
240		245	250	
	_		ac aag cgc act g	
		His Ala Cys As	sn Lys Arg Thr G	ly Gly
255	260		265	
			ca ccc atg gac a	_
			er Pro Met Asp I	
270	275	28		285
			ac act ege tgt g	
vai beu Ser Gl	in Giu Arg Gin l	rro rhe Phe Hi	is Thr Arg Cys G	Iu Glu

	290	295	5	300
gac aat ggc ggc	tgc tcc cac	ctg tgc ctg	g ctg tcc cca ag	c gag cct 1021
Asp Asn Gly Gly	Cys Ser His	Leu Cys Leu	ı Leu Ser Pro Se	r Glu Pro .
305		310	31	5
ttc tac aca tgc	gcc tgc ccc	acg ggt gtg	g cag ctg cag ga	c aac ggc 1069
Phe Tyr Thr Cys	Ala Cys Pro	Thr Gly Val	Gln Leu Gln As	o Asn Gly
320		325	330	
agg acg tgt aag	gca gga gcc	gag gag gtg	ctg ctg ctg gc	c cgg cgg 1117
Arg Thr Cys Lys	Ala Gly Ala	Glu Glu Val	Leu Leu Leu Ala	a Arg Arg
335	340		345	
acg gac cta cgg	agg atc tcg	ctg gac acg	ccg gac ttc acc	gac atc 1165
Thr Asp Leu Arg	Arg Ile Ser	Leu Asp Thr	Pro Asp Phe Thi	Asp Ile
350	355		360	365
gtg ctg cag gtg	gac gac atc	cgg cac gcc	att gcc atc gad	tac gac 1213
Val Leu Gln Val	Asp Asp Ile	Arg His Ala	Ile Ala Ile Asp	Tyr Asp
	370	375		380
ccg cta gag ggc	tat gtc tac	tgg aca gat	gac gag gtg cgg	gcc atc 1261
Pro Leu Glu Gly	Tyr Val Tyr	Trp Thr Asp	Asp Glu Val Arg	Ala Ile
385		390	395	
cgc agg gcg tac	ctg gac ggg	tct ggg gcg	cag acg ctg gtc	aac acc 1309
Arg Arg Ala Tyr	Leu Asp Gly	Ser Gly Ala	Gln Thr Leu Val	Asn Thr
400		405	410	
			gac tgg gtg gcc	
Glu Ile Asn Asp	Pro Asp Gly	Ile Ala Val	Asp Trp Val Ala	Arg Asn
415	420		425	
			atc gag gtg acg	
Leu Tyr Trp Thr	Asp Thr Gly	Thr Asp Arg	Ile Glu Val Thr	Arg Leu

aac ggc acc tcc cgc aag atc ctg gtg tcg gag gac ctg gac gag ccc Asn Gly Thr Ser Arg Lys Ile Leu Val Ser Glu Asp Leu Asp Glu Pro cga gcc atc gca ctg cac ccc gtg atg ggc ctc atg tac tgg aca gac Arg Ala Ile Ala Leu His Pro Val Met Gly Leu Met Tyr Trp Thr Asp tgg gga gag aac cct aaa atc gag tgt gcc aac ttg gat ggg cag gag Trp Gly Glu Asn Pro Lys Ile Glu Cys Ala Asn Leu Asp Gly Gln Glu egg egt gtg etg gte aat gee tee ete ggg tgg eee aae gge etg gee Arg Arg Val Leu Val Asn Ala Ser Leu Gly Trp Pro Asn Gly Leu Ala ctg gac ctg cag gag ggg aag ctc tac tgg gga gac gcc aag aca gac Leu Asp Leu Gln Glu Gly Lys Leu Tyr Trp Gly Asp Ala Lys Thr Asp aag atc gag gtg atc aat gtt gat ggg acg aag agg cgg acc ctc ctg Lys Ile Glu Val Ile Asn Val Asp Gly Thr Lys Arg Arg Thr Leu Leu gag gac aag etc eeg cac att tte ggg tte aeg etg etg ggg gae tte Glu Asp Lys Leu Pro His Ile Phe Gly Phe Thr Leu Leu Gly Asp Phe ate tac tgg act gac tgg cag cgc cgc agc atc gag cgg gtg cac aag Ile Tyr Trp Thr Asp Trp Gln Arg Arg Ser Ile Glu Arg Val His Lys gtc aag gcc agc cgg gac gtc atc att gac cag ctg ccc gac ctg atg

Val Lys Ala Ser Arg Asp Val Ile Ile Asp Gln Leu Pro Asp Leu Met

WO 01/77327 PCT/US00/16951

	575					580					585					
999	ctc	aaa	gct	gtg	aat	gtg	gcc	aag	gtc	gtc	gga	acc	aac	ccg	tgt	1885
Gly	Leu	Lys	Ala	Val [.]	Asn	Val	Ala	Lys	Val	Val	Gly	Thr	Asn	Pro	Cys	
590					595					600					605	
gcg	gac	agg	aac	999	999	tgc	agc	cac	ctg	tgc	ttc	ttc	aca	ccc	cac	1933
Ala	Asp	Arg	naA	Gly	Gly	Cys	Ser	His	Leu	Суѕ	Phe	Phe	Thr	Pro	His	
				610					615					620		
gca	acc	cgg	tgt	ggc	tgc	ccc	atc	ggc	ctg	gag	ctg	ctg	agt	gac	atg	1981
Ala	Thr	Arg	Сув	Gly	Cys	Pro	Ile	Gly	Leu	Glu	Leu	Leu	Ser	Asp	Met	
			625					630					635			
aag	acc	tgc	atc	gtg	cct	gag	gcc	ttc	ttg	gtc	ttc	acc	agc	aga	gcc	2029
Lys	Thr	Cys	Ile	Val	Pro	Glu	Ala	Phe	Leu	Val	Phe	Thr	Ser	Arg	Ala	
		640					645					650				
gcc	atc	cac	agg	atc	tcc	ctc	gag	acc	aat	aac	aac	gac	gtg	gcc	atc	2077
Ala	Ile	His	Arg	Ile	Ser	Leu	Glu	Thr	Asn	Asn	Asn	Asp	Val	Ala	Ile	
	655					660					665					
ccg	ctc	acg	ggc	gtc	aag	gag	gcc	tca	gcc	ctg	gac	ttt	gat	gtg	tcc	2125
Pro	Leu	Thr	Gly	Val	Lys	Glu	Ala	Ser	Ala	Leu	Asp	Phe	Asp	Val	Ser	
670					675					680					685	
aac	aac	cac	atc	tac	tgg	aca	gac	gtc	agc	ctg	aag	acc	atc	agc	cgc	2173
Asn	Asn	His	Ile	Tyr	Trp	Thr	Asp	Val	Ser	Leu	Lys	Thr	Ile	Ser	Arg	
				690					695					700		
gcc	ttc	atg	aac	999	agc	tcg	gtg	gag	cac	gtg	gtg	gag	ttt	ggc	ctt	2221
Ala	Phe	Met	Asn	Gly	Ser	Ser	Val	Glu	His	Val	Val	Glu	Phe	Gly	Leu	
			705					710					715			
gac	tac	ccc	gag	ggc	atg	gcc	gtt	gac	tgg	atg	ggc	aag	aac	ctc	tac	2269
Asp	Tyr	Pro	Glu	Gly	Met	Ala	Val	Asp	Trp	Met	Gly	Lys	Asn	Leu	Tyr	

	720		725	;			730				
tgg gcc	gac act	ggg acc	aac aga	atc	gaa g	tg gcg	cgg	ctg	gac	999	2317
Trp Ala	Asp Thr	Gly Thr	Asn Arg	, Ile	Glu V	al Ala	Arg	Leu	Asp	Gly	
735			740			745					
cag ttc	cgg caa	gtc ctc	gtg tgg	agg	gac t	tg gac	aac	ccg	agg	teg	2365
Gln Phe	Arg Gln	Val Leu	Val Trp	Arg	Asp Le	eu Asp	Asn	Pro	Arg	Ser	
750		755			76	60				765	
ctg gcc	ctg gat	ccc acc	aag ggo	tac	atc ta	ac tgg	acc	gag	tgg	ggc	2413
Leu Ala I	Leu Asp	Pro Thr	Lys Gly	Tyr	Ile Ty	yr Trp	Thr	Glu	Trp	Gly	
		770			775				780		
ggc aag o	ccg agg	atc gtg	cgg gcc	ttc	atg ga	ac ggg	acc	aac	tgc	atg	2461
Gly Lys I	Pro Arg	Ile Val	Arg Ala	Phe	Met As	sp Gly	Thr	Asn	Cys	Met	
	785			790				795			
acg ctg g	gtg gac	aag gtg	ggc cgg	gcc	aac ga	ac ctc	acc	att	gac	tac	2509
Thr Leu V	Val Asp	Lys Val	Gly Arg	Ala	Asn As	sp Leu	Thr	Ile	Asp	Tyr	
8	300		805				810				
gct gac o	cag cgc	ctc tac	tgg acc	gac	ctg ga	acc	aac	atg	atc	gag	2557
Ala Asp (Gln Arg	Leu Tyr	Trp Thr	Asp :	Leu As	p Thr	Asn	Met	Ile	Glu	
. 815			820			825					
tcg tcc a	ac atg	ctg ggt	cag gag	cgg (gtc gt	g att	gcc	gac	gat	ctc	2605
Ser Ser A	Asn Met	Leu Gly	Gln Glu	Arg '	Val Va	l Ile	Ala .	Asp	Asp	Leu	
830		835			84	0				845	
ccg cac c	cg ttc	ggt ctg	acg cag	tac a	agc ga	it tat	atc	tac	tgg	aca	2653
Pro His F	Pro Phe	Gly Leu	Thr Gln	Tyr	Ser As	p Tyr	Ile '	Tyr	Trp	Thr	
•		850			855				860		
gac tgg a								_			2701
Asp Trp A	Asn Leu	His Ser	Ile Glu	Arg i	Ala As	p Lys	Thr	Ser	Gly	Arg	

			865					870					875			
aac	cgc	acc	ctc	atc	cag	ggc	cac	ctg	gac	ttc	gtg	atg	gac	atc	ctg	2749
Asn	Arg	Thr	Leu	Ile	Gln	Gly	His	Leu	Asp	Phe	Val	Met	Asp	Ile	Leu	
		880					885					890				
gtg	ttc	cac	tcc	tcc	cgc	cag	gat	ggc	ctc	aat	gac	tgt	atg	cac	aac	2797
Val	Phe	His	Ser	Ser	Arg	Gln	qaA	Gly	Leu	Asn	Asp	Суз	Met	His	Asn	
	895					900					905					
aac	999	cag	tgt	999	cag	ctg	tgc	ctt	gcc	atc	ccc	ggc	ggc	cac	cgc	2845
Asn	Gly	Gln	Cys	Gly	Gln	Leu	Cys	Leu	Ala	Ile	Pro	Gly	Gly	His	Arg	
910					915					920					925	
tgc	ggc	tgc	gcc	tca	cac	tac	acc	ctg	gac	ccc	agc	agc	cgc	aac	tgc	2893
Cys	Gly	Суз	Ala	Ser	His	Tyr	Thr	Leu	Asp	Pro	Şer	Ser	Arg	Asn	Суѕ	
				930					935					940		
agc	ccg	ccc	acc	acc	ttc	ttg	ctg	ttc	agc	cag	aaa	tct	gcc	atc	agt	2941
Ser	Pro	Pro	Thr	Thr	Phe	Leu	Leu	Phe	Ser	Gln	Lys	Ser	Ala	Ile	Ser	
			945					950					955			
cgg	atg	atc	ccg	gac	gac	cag	cac	agc	ccg	gat	ctc	atc	ctg	ccc	ctg	2989
Arg	Met	Ile	Pro	Asp	Asp	Gln	His	Ser	Pro	Asp	Leu	Ile	Leu	Pro	Leu	
		960					965					970				
cat	gga	ctg	agg	aac	gtc	aaa	gcc	atc	gac	tat	gac	cca	ctg	gac	aag	3037
His	Gly	Leu	Arg	Asn	Val	Lys	Ala	Ile	Asp	Tyr	qaA	Pro	Leu	Asp	Lys	
	975					980					985					
ttc	atc	tac	tgg	gtg	gat	9 99	cgc	cag	aac	atc	aag	cga	gcc	aag	gac	3085
Phe	Ile	Tyr	Trp	Val	Asp	Gly	Arg	Gln	Asn	Ile	ГÀЗ	Arg	Ala	Lys	Asp	
990					995					1000)		•		1005	
gac	999	acc	cag	ccc	ttt	gtt	ttg	acc	tct	ctg	agc	caa	ggc	caa	aac	3133
qzA	Gly	Thr	Gln	Pro	Phe	Val	Leu	Thr	Ser	Leu	Ser	Gln	Gly	Gln	Asn	

	1010		1015	102	1020			
cca gac agg c	ag ccc cac	gac ctc ago	atc gac at	c tac agc cgg	aca 3181			
Pro Asp Arg G	In Pro His	Asp Leu Ser	Ile Asp Il	e Tyr Ser Arg	Thr			
1	.025	103	0	1035				
ctg ttc tgg a	cg tgc gag	gcc acc aat	acc atc aa	c gtc cac agg	ctg 3229			
Leu Phe Trp T	thr Cys Glu	Ala Thr Asn	Thr Ile As	n Val His Arg	Leu			
1040		1045		1050				
agc ggg gaa g	cc atg ggg	gtg gtg ctg	cgt ggg ga	c cgc gac aag	ccc 3277			
Ser Gly Glu A	la Met Gly	Val Val Leu	Arg Gly As	p Arg Asp Lys	Pro			
1055		1060	100	65				
agg gcc atc g	tc gtc aac	gcg gag cga	ggg tac ct	g tac ttc acc	aac 3325			
Arg Ala Ile V	al Val Asn	Ala Glu Arg	Gly Tyr Let	u Tyr Phe Thr	Asn			
1070	1075	5	1080		1085			
atg cag gac c	gg gca gcc	aag atc gaa	cgc gca gco	c ctg gac ggc	acc 3373			
Met Gln Asp A	rg Ala Ala	Lys Ile Glu	Arg Ala Ala	a Leu Asp Gly	Thr			
	1090		1095	1100)			
			_	c cct gtg gcc	•			
Glu Arg Glu V	al Leu Phe	Thr Thr Gly	Leu Ile Arg	g Pro Val Ala	Leu			
	105	111		1115				
				g gac gcg gac				
	sn Thr Leu		Phe Trp Val	l Asp Ala Asp	Leu			
1120		1125		1130				
				c cgc ctg acc				
	lu Ser Cys			n Arg Leu Thr	Leu			
1135		1140	. 114					
				c atc ctt ggc				
GIU ASP AIA A	sn Ile Val	GIn Pro Leu	Gly Leu Thr	r Ile Leu Gly	Lys			

1150					115	5				1160						
cat	ctc	tac	tgg	atc	gac	cgc	cag	cag	cag	atg	atc	gag	cgt	gtg	gag	3613
His :	Leu	Tyr	Trp	Ile	Asp	Arg	Gln	Gln	Gln	Met	Ile	Glu	Arg	Val	Glu	
				1170)				1175	5				1186	o	
aag a	acc	acc	999	gac	aag	cgg	act	cgc	atc	cag	ggc	cgt	gtc	gcc	cac	3661
Lys '	Thr	Thr	Gly	Asp	Lys	Arg	Thr	Arg	Ile	Gln	Gly	Arg	Val	Ala	His	
			1189	5				1190)				1199	5		
ctc	act	ggc	atc	cat	gca	gtg	gag	gaa	gtc	agc	ctg	gag	gag	ttc	tca	3709
Leu '	Thr	Gly	Ile	His	Ala	Val	Glu	Glu	Val	Ser	Leu	Glu	Glu	Phe	Ser	
		1200)				1205	5				1210)			
gcc	cac	cca	tgt	gcc	cgt	gac	aat	ggt	ggc	tgc	tcc	cac	atc	tgt	att	3757
Ala	His	Pro	Cys	Ala	Arg	Asp	Asn	Gly	Gly	Cys	Ser	His	Ile	Cys	Ile	
	1215	5				1220)				1225	5				
gcc	aag	ggt	gat	9 99	aca	cca	cgg	tgc	tca	tgc	cca	gtc	cac	ctc	gtg	3805
Ala	Lys	Gly	Asp	Gly	Thr	Pro	Arg	Суѕ	Ser	Сув	Pro	Val	His	Leu	Val	
Ala :		Gly	Asp	Gly	Thr 1235		Arg	Суѕ	Ser	Cys 1240		Val	His	Leu	Val	
					1235	5				1240)				1245	3853
1230	ctg	cag	aac	ctg	1235 ctg	acc	tgt	gga	gag	1240 ccg	ccc	acc	tgc	tcc	1245 ccg	3853
1230	ctg	cag	aac	ctg	1235 ctg Leu	acc	tgt	gga	gag	1240 ccg Pro	ccc	acc	tgc	tcc	1245 ccg Pro	3853
1230	ctg Leu	cag Gln	aac Asn	ctg Leu 1250	1235 ctg Leu	acc Thr	tgt Cys	gga Gly	gag Glu 1255	1240 ccg Pro	ccc Pro	acc Thr	tgc Cys	tcc Ser 1260	1245 ccg Pro	3853 3901
1230 ctc	ctg Leu cag	cag Gln ttt	aac Asn gca	ctg Leu 1250 tgt	teu ctg	acc Thr	tgt Cys 999	gga Gly gag	gag Glu 1255 atc	1240 ccg Pro	ccc Pro	acc Thr	tgc Cys ccc	tcc Ser 1260 ggg	1245 ccg Pro	
1230 ctc Leu	ctg Leu cag	cag Gln ttt	aac Asn gca	ctg Leu 1250 tgt Cys	teu ctg	acc Thr	tgt Cys 999	gga Gly gag	gag Glu 1255 atc Ile	1240 ccg Pro	ccc Pro	acc Thr	tgc Cys ccc	tcc Ser 1260 ggg Gly	1245 ccg Pro	
1230 ctc Leu	ctg Leu cag Gln	cag Gln ttt Phe	aac Asn gca Ala 1269	ctg Leu 1250 tgt Cys	ctg Leu gcc	acc Thr aca	tgt Cys ggg Gly	gga Gly gag Glu 1270	gag Glu 1255 atc Ile	1240 ccg Pro gac	ccc Pro tgt Cys	acc Thr atc	tgc Cys ccc Pro	tcc Ser 1260 ggg Gly	1245 ccg Pro gcc Ala	
1230 ctc Leu : gac	ctg Leu cag Gln	cag Gln ttt Phe	aac Asn gca Ala 1269 gac	ctg Leu 1250 tgt Cys 5	ctg Leu gcc Ala	acc Thr aca Thr	tgt Cys ggg Gly	gga Gly gag Glu 1270 tgc	gag Glu 1255 atc Ile	1240 ccg Pro gac Asp	ccc Pro tgt Cys	acc Thr atc Ile	tgc Cys ccc Pro 1279 gac	tcc Ser 1260 ggg Gly gag	ccg Pro gcc Ala	3901
1230 ctc Leu : gac Asp	ctg Leu cag Gln	cag Gln ttt Phe	aac Asn gca Ala 1269 gac Asp	ctg Leu 1250 tgt Cys 5	ctg Leu gcc Ala	acc Thr aca Thr	tgt Cys ggg Gly	gga Gly gag Glu 1270 tgc Cys	gag Glu 1255 atc Ile	1240 ccg Pro gac Asp	ccc Pro tgt Cys	acc Thr atc Ile	tgc Cys ccc Pro 1279 gac Asp	tcc Ser 1260 ggg Gly gag	ccg Pro gcc Ala	3901
1230 ctc Leu : gac Asp	ctg Leu cag Gln cgc	cag Gln ttt Phe tgt Cys	aac Asn gca Ala 1269 gac Asp	ctg Leu 1250 tgt Cys ggc Gly	ttt Phe	acc Thr aca Thr	tgt Cys ggg Gly gag Glu 1289	gga Gly gag Glu 1270 tgc Cys	gag Glu 1259 atc Ile gat Asp	1240 ccg Pro gac Asp	ccc Pro tgt Cys	acc Thr atc Ile agc Ser	tgc Cys ccc Pro 1279 gac Asp	tcc Ser 1260 ggg Gly gag Glu	1245 ccg Pro gcc Ala gag Glu	3901

tgt gtg gac ctg cgc ctg cgc tgc gac ggc gag gca gac tgt cag gac Cys Val Asp Leu Arg Leu Arg Cys Asp Gly Glu Ala Asp Cys Gln Asp cgc tca gac gag gtg gac tgt gac gcc atc tgc ctg ccc aac cag ttc Arg Ser Asp Glu Val Asp Cys Asp Ala Ile Cys Leu Pro Asn Gln Phe egg tgt geg age gge cag tgt gte etc ate aaa cag cag tge gae tee Arg Cys Ala Ser Gly Gln Cys Val Leu Ile Lys Gln Gln Cys Asp Ser ttc ccc gac tgt atc gac ggc tcc gac gag ctc atg tgt gaa atc acc Phe Pro Asp Cys Ile Asp Gly Ser Asp Glu Leu Met Cys Glu Ile Thr aag ccg ccc tca gac gac agc ccg gcc cac agc agt gcc atc ggg ccc Lys Pro Pro Ser Asp Asp Ser Pro Ala His Ser Ser Ala Ile Gly Pro gte att gge ate ate ete tet ete tte gte atg ggt ggt gte tat ttt Val Ile Gly Ile Ile Leu Ser Leu Phe Val Met Gly Gly Val Tyr Phe gtg tgc cag cgc gtg gtg tgc cag cgc tat gcg ggg gcc aac ggg ccc Val Cys Gln Arg Val Val Cys Gln Arg Tyr Ala Gly Ala Asn Gly Pro ttc ccg cac gag tat gtc agc ggg acc ccg cac gtg ccc ctc aat ttc Phe Pro His Glu Tyr Val Ser Gly Thr Pro His Val Pro Leu Asn Phe ata gcc ccg ggc ggt tcc cag cat ggc ccc ttc aca ggc atc gca tgc Ile Ala Pro Gly Gly Ser Gln His Gly Pro Phe Thr Gly Ile Ala Cys

		144	0				144	5				1450				
gga	aag	tcc	atg	atg	agc	tcc	gtg	agc	ctg	atg	999	ggc	cgg	ggc	999	4477
Gly	Lys	Ser	Met	Met	Ser	Ser	Val	Ser	Leu	Met	Gly	Gly	Arg	Gly	Gly	
	145	5				1460)				146	5				
gtg	ccc	ctc	tac	gac	cgg	aac	cac	gtc	aca	999	gcc	tcg	tcc	agc	agc	4525
Val	Pro	Leu	Tyr	Asp	Arg	Asn	His	Val	Thr	Gly	Ala	Ser	Ser	Ser	Ser	
1470)				1475	5				1486	0				1485	
tcg	tcc	agc	acg	aag	gcc	acg	ctg	tac	ccg	ccg	atc	ctg	aac	ccg	ccg	4573
Ser	Ser	Ser	Thr	Lys	Ala	Thr	Leu	Tyr	Pro	Pro	Ile	Leu	Asn	Pro	Pro	
				1490)				149	5				150	0	
ccc	tcc	ccg	gcc	acg	gac	ccc	tcc	ctg	tac	aac	atg	gac	atg	ttc	tac	4621
Pro	Ser	Pro	Ala	Thr	Asp	Pro	Ser	Leu	Tyr	Asn	Met	Asp	Met	Phe	Tyr	
			150	5				1510)				1515	5		
tct	tca	aac	att	ccg	gcc	act	gcg	aga	ccg	tac	agg	ccc	tac	atc	att	4669
Ser	Ser	Asn	Ile	Pro	Ala	Thr	Ala	Arg	Pro	Tyr	Arg	Pro	Tyr	Ile	Ile	
		1520)				1525	i				1530)			
cga	gga	atg	gcg	ccc	ccg	acg	acg	ccc	tgc	agc	acc	gac	gtg	tgt	gac	4717
Arg	Gly	Met	Ala	Pro	Pro	Thr	Thr	Pro	Cys	Ser	Thr	Asp	Val	Cys	Asp	
	1535	5				1540)				1545	;				
agc	gac	tac	agc	gcc	agc	cgc	tgg	aag	gcc	agc	aag	tac	tac	ctg	gat	4765
Ser	qaA	Tyr	Ser	Ala	Ser	Arg	Trp	Lys	Ala	Ser	Lys	Tyr	Tyr	Leu	Asp	
1550)				1555	i				1560)				1565	
ttg	aac	tcg	gac	tca	gac	ccc	tat	cca	ccc	cca	ccc	acg	ccc	cac	agc	4813
Leu	Asn	Ser	Asp	Ser	Asp	Pro	Tyr	Pro	Pro	Pro	Pro	Thr	Pro	His	Ser	
				1570)				1575	5				1580)	
cag	tac	ctg	tcg	gcg	gag	gac	agc	tgc	ccg	ccc	tcg	ccc	gcc	acc	gag	4861
Gln	Tyr	Leu	Ser	Ala	Glu	Asp	Ser	Cys	Pro	Pro	Ser	Pro	Ala	Thr	Glu	

1585 1590 1595 agg age tae tte cat ete tte eeg eee eet eeg tee eee tge aeg gae 4909 Arg Ser Tyr Phe His Leu Phe Pro Pro Pro Pro Ser Pro Cys Thr Asp 1605 1600 1610 tca tcc tgacctcggc cgggccactc tggcttctct gtgcccctgt aaatagtttt 4965 Ser Ser 1615 5025 taaaaacatg agaaatgtga actgtgatgg ggtgggcagg gctgggagaa ctttgtacag 5085 5120 tggagaaata tttataaact taattttgta aaaca <210> 2 <211> 5120 <212> DNA <213> Homo sapiens <400> 2 actaaagcgc cgccgccgcg ccatggagcc cgagtgagcg cggcgcgggc ccgtccggcc 60 109 Met Glu Ala Ala Pro Pro Gly Pro Pro Trp Pro Leu Leu 1 5 10 ctg ctg ctg ctg ctg ctg geg ctg tgc ggc tgc ccg gcc ccc gcc 157 Leu Leu Leu Leu Leu Leu Ala Leu Cys Gly Cys Pro Ala Pro Ala

20 25

gcg gcc tcg ccg ctc ctg cta ttt gcc aac cgc cgg gac gta cgg ctg 205

Ala Ala Ser Pro Leu Leu Phe Ala Asn Arg Arg Asp Val Arg Leu

30 35 40 45

gtg gac gcc ggc gga gtc aag ctg gag tcc acc atc gtg gtc agc ggc Val Asp Ala Gly Gly Val Lys Leu Glu Ser Thr Ile Val Val Ser Gly ctg gag gat gcg gcc gca gtg gac ttc cag ttt tcc aag gga gcc gtg Leu Glu Asp Ala Ala Ala Val Asp Phe Gln Phe Ser Lys Gly Ala Val tac tgg aca gac gtg agc gag gcc atc aag cag acc tac ctg aac Tyr Trp Thr Asp Val Ser Glu Glu Ala Ile Lys Gln Thr Tyr Leu Asn cag acg ggg gcc gcc gtg cag aac gtg gtc atc tcc ggc ctg gtc tct Gln Thr Gly Ala Ala Val Gln Asn Val Val Ile Ser Gly Leu Val Ser ccc gac ggc ctc gcc tgc gac tgg gtg ggc aag aag ctg tac tgg acg Pro Asp Gly Leu Ala Cys Asp Trp Val Gly Lys Lys Leu Tyr Trp Thr gac tea gag ace aac ege ate gag gtg gee aac ete aat gge aca tee Asp Ser Glu Thr Asn Arg Ile Glu Val Ala Asn Leu Asn Gly Thr Ser cgg aag gtg ctc ttc tgg cag gac ctt gac cag ccg agg gcc atc gcc Arg Lys Val Leu Phe Trp Gln Asp Leu Asp Gln Pro Arg Ala Ile Ala ttg gac ccc gct cac ggg tac atg tac tgg aca gac tgg gtt gag acg Leu Asp Pro Ala His Gly Tyr Met Tyr Trp Thr Asp Trp Val Glu Thr ecc egg att gag egg gea ggg atg gat gge age acc egg aag ate att Pro Arg Ile Glu Arg Ala Gly Met Asp Gly Ser Thr Arg Lys Ile Ile

gtg gac teg gac att tac tgg eec aat gga etg ace ate gac etg gag Val Asp Ser Asp Ile Tyr Trp Pro Asn Gly Leu Thr Ile Asp Leu Glu gag cag aag ctc tac tgg gct gac gcc aag ctc agc ttc atc cac cgt Glu Gln Lys Leu Tyr Trp Ala Asp Ala Lys Leu Ser Phe Ile His Arg gcc aac ctg gac ggc tcg ttc cgg cag aag gtg gtg gag ggc agc ctg Ala Asn Leu Asp Gly Ser Phe Arg Gln Lys Val Val Glu Gly Ser Leu acg cac ece tte gee etg acg etc tee ggg gae act etg tae tgg aca Thr His Pro Phe Ala Leu Thr Leu Ser Gly Asp Thr Leu Tyr Trp Thr gac tgg cag acc cgc tcc atc cat gcc tgc aac aag cgc act ggg ggg Asp Trp Gln Thr Arg Ser Ile His Ala Cys Asn Lys Arg Thr Gly Gly aag agg aag gag atc ctg agt gcc ctc tac tca ccc atg gac atc cag Lys Arg Lys Glu Ile Leu Ser Ala Leu Tyr Ser Pro Met Asp Ile Gln gtg ctg agc cag gag cgg cag cct ttc ttc cac act cgc tgt gag gag Val Leu Ser Gln Glu Arg Gln Pro Phe Phe His Thr Arg Cys Glu Glu gac aat ggc ggc tgc tcc cac ctg tgc ctg tcc cca agc gag cct Asp Asn Gly Gly Cys Ser His Leu Cys Leu Leu Ser Pro Ser Glu Pro ttc tac aca tgc gcc tgc ccc acg ggt gtg cag ctg cag gac aac ggc Phe Tyr Thr Cys Ala Cys Pro Thr Gly Val Gln Leu Gln Asp Asn Gly

agg	acg	tgt	aag	gca	gga	gcc	gag	gag	gtg	ctg	ctg	ctg	gcc	cgg	cgg	1117
Arg	Thr	Cys	Lys	Ala	Gly	Ala	Glu	Glu	Val	Leu	Leu	Leu	Ala	Arg	Arg	
	335					340					345					
acg	gac	cta	cgg	agg	atc	tcg	ctg	gac	acg	ccg	gac	ttc	acc	gac	atc	1165
Thr	Asp	Leu	Arg	Arg	Ile	Ser	Leu	Asp	Thr	Pro	Asp	Phe	Thr	Asp	Ile	
350					355					360					365	
gtg	ctg	cag	gtg	gac	gac	atc	cgg	cac	gcc	att	gcc	atc	gac	tac	gac	1213
Val	Leu	Gln	Val	Asp	Asp	Ile	Arg	His	Ala	Ile	Ala	Ile	Asp	Tyr	Asp	
				370					375					380		
ccg	cta	gag	ggc	tat	gtc	tac	tgg	aca	gat	gac	gag	gtg	cgg	gcc	atc	1261
Pro	Leu	Glu	Gly	Tyr	Val	Tyr	Trp	Thr	Asp	Asp	Glu	Val	Arg	Ala	Ile	
			385					390					395			
cgc	agg	gcg	tac	ctg	gac	999	tct	999	gcg	cag	acg	ctg	gtc	aac	acc	1309
Arg	Arg	Ala	Tyr	Leu	Asp	Gly	Ser	Gly	Ala	Gln	Thr	Leu	Val	Asn	Thr	
		400					405					410				
gag	atc	aac	gac	ccc	gat	ggc	atc	gcg	gtc	gac	tgg	gtg	gcc	cga	aac	1357
Glu	Ile	Asn	Asp	Pro	Asp	Gly	Ile	Ala	Val	Asp	Trp	Val	Ala	Arg	Asn	
	415					420					425					
ctc	tac	tgg	acc	gac	acg	ggc	acg	gac	cgc	atc	gag	gtg	acg	cgc	ctc	1405
Leu	Tyr	Trp	Thr	Asp	Thr	Gly	Thr	Asp	Arg	Ile	Glu	Val	Thr	Arq	Leu	
430	•	-			435	-		-	J	440				_	445	
aac	aac	acc	tcc	cgc	aaq	atc	cta	ata	tca	gag	gac	cta	gac	gag		1453
				Arg			_		-		_	_	_			
	1			450	-,-		204	•	455	0	ПОР	Dea	пор	460	110	
cga	acc	atc	aca	ctg	cac	ccc	ata	ata		ata	ata	tag	taa		G2.	1501
				Leu												1501
wrd	wra	116		neu	urp	PIO	AqT		gīÀ	TAR	met	īÀL	•	101	Asp	
			465					470					475			

tgg gga gag aac cct aaa atc gag tgt gcc aac ttg gat ggg cag gag Trp Gly Glu Asn Pro Lys Ile Glu Cys Ala Asn Leu Asp Gly Gln Glu egg egt gtg etg gte aat gee tee ete ggg tgg eee aac gge etg gee Arg Arg Val Leu Val Asn Ala Ser Leu Gly Trp Pro Asn Gly Leu Ala ctq qac ctq caq gag ggg aag ctc tac tgg gga gac gcc aag aca gac Leu Asp Leu Gln Glu Gly Lys Leu Tyr Trp Gly Asp Ala Lys Thr Asp aag atc gag gtg atc aat gtt gat ggg acg aag agg cgg acc ctc ctg Lys Ile Glu Val Ile Asn Val Asp Gly Thr Lys Arg Arg Thr Leu Leu gag gac aag ctc ccg cac att ttc ggg ttc acg ctg ctg ggg gac ttc Glu Asp Lys Leu Pro His Ile Phe Gly Phe Thr Leu Leu Gly Asp Phe atc tac tgg act gac tgg cag cgc cgc agc atc gag cgg gtg cac aag Ile Tyr Trp Thr Asp Trp Gln Arg Arg Ser Ile Glu Arg Val His Lys gtc aag gcc agc cgg gac gtc atc att gac cag ctg ccc gac ctg atg Val Lys Ala Ser Arg Asp Val Ile Ile Asp Gln Leu Pro Asp Leu Met ggg ctc aaa gct gtg aat gtg gcc aag gtc gtc gga acc aac ccg tqt Gly Leu Lys Ala Val Asn Val Ala Lys Val Val Gly Thr Asn Pro Cys gcg gac agg aac ggg ggg tgc agc cac ctg tgc ttc ttc aca ccc cac

Ala Asp Arg Asn Gly Gly Cys Ser His Leu Cys Phe Phe Thr Pro His

gca	acc	cgg	tgt	ggc	tgc	ccc	atc	ggc	ctg	gag	ctg	ctg	agt	gac	atg	1981
Ala	Thr	Arg	Cys	Gly	Cys	Pro	Ile	Gly	Leu	Glu	Leu	Leu	Ser	Asp	Met	
			625					630					635			
aag	acc	tgc	atc	gtg	cct	gag	gcc	ttc	ttg	gtc	ttc	acc	agc	aga	gcc	 2029
Lys	Thr	Cys	Ile	Val	Pro	Glu	Ala	Phe	Leu	Val	Phe	Thr	Ser	Arg	Ala	
		640					645					650				
gcc	atc	cac	agg	atc	tcc	ctc	gag	acc	aat	aac	aac	gac	gtg	gcc	atc	2077
Ala	Ile	His	Arg	Ile	Ser	Leu	Glu	Thr	Asn	Asn	Asn	Asp	Val	Ala	Ile	
	655					660					665					
ccg	ctc	acg	ggc	gtc	aag	gag	gcc	tca	gcc	ctg	gac	ttt	gat	gtg	tcc	2125
Pro	Leu	Thr	Gly	Val	Lys	Glu	Ala	Ser	Ala	Leu	Asp	Phe	qaA	Val	Ser	
670					675					680					685	
aac	aac	cac	atc	tac	tgg	aca	gac	gtc	agc	ctg	aag	acc	atc	agc	cgc	2173
Asn	Asn	His	Ile	Tyr	Trp	Thr	Asp	Val	Ser	Leu	Lys	Thr	Ile	Ser	Arg	
				690					695					700		
gcc	ttc	atg	aac	999	agc	tcg	gtg	gag	cac	gtg	gtg	gag	ttt	ggc	ctt	2221
Ala	Phe	Met	Asn	Gly	Ser	Ser	Val	Glu	His	Val	Val	Glu	Phe	Gly	Leu	
			705					710					715			
gac	tac	ccc	gag	ggc	atg	gcc	gtt	gac	tgg	atg	ggc	aag	aac	ctc	tac	2269
Asp	Tyr	Pro	Glu	Gly	Met	Ala	Val	Asp	Trp	Met	Gly	Lys	Asn	Leu	Tyr	
		720					725					730				
tgg	gcc	gac	act	999	acc	aac	aga	atc	gaa	gtg	gcg	cgg	ctg	gac	999	2317
Trp	Ala	Asp	Thr	Gly	Thr	Asn	Arg	Ile	Glu	Val	Ala	Arg	Leu	Asp	Gly	
	735					740					745					
cag	ttc	cgg	caa	gtc	ctc	gtg	tgg	agg	gac	ttg	gac	aac	ccg	agg	tcg	2365
Gln	Phe	Arg	Gln	Val	Leu	Val	Trp	Arg	Asp	Leu	Asp	Asn	Pro	Arg	Ser	
750					755					760					765	

ctg gcc ctg gat ccc acc aag ggc tac atc tac tgg acc gag tgg ggc 2413

Leu Ala Leu Asp Pro Thr Lys Gly Tyr Ile Tyr Trp Thr Glu Trp Gly

770 775 780

ggc aag ccg agg atc gtg cgg gcc ttc atg gac ggg acc aac tgc atg 2461
Gly Lys Pro Arg Ile Val Arg Ala Phe Met Asp Gly Thr Asn Cys Met

785 790 795

acg ctg gtg gac aag gtg ggc cgg gcc aac gac ctc acc att gac tac 2509

Thr Leu Val Asp Lys Val Gly Arg Ala Asn Asp Leu Thr Ile Asp Tyr

805

got gao cag ogo oto tao tgg aco gao otg gao aco aao atg ato gag 2557

810

Ala Asp Gln Arg Leu Tyr Trp Thr Asp Leu Asp Thr Asn Met Ile Glu

815 820 825

800

tcg tcc aac atg ctg ggt cag gag cgg gtc gtg att gcc gac gat ctc 2605

Ser Ser Asn Met Leu Gly Gln Glu Arg Val Val Ile Ala Asp Asp Leu

830 835 840 845

ccg cac ccg ttc ggt ctg acg cag tac agc gat tat atc tac tgg aca 2653

Pro His Pro Phe Gly Leu Thr Gln Tyr Ser Asp Tyr Ile Tyr Trp Thr

850 855 860

gac tgg aat ctg cac agc att gag cgg gcc gac aag act agc ggc cgg 2701

Asp Trp Asn Leu His Ser Ile Glu Arg Ala Asp Lys Thr Ser Gly Arg

865 870 875

aac cgc acc ctc atc cag ggc cac ctg gac ttc gtg atg gac atc ctg 2749

Asn Arg Thr Leu Ile Gln Gly His Leu Asp Phe Val Met Asp Ile Leu

880 885 890

gtg ttc cac tcc tcc cgc cag gat ggc ctc aat gac tgt atg cac aac 2797

Val Phe His Ser Ser Arg Gln Asp Gly Leu Asn Asp Cys Met His Asn

895 900 905

20

aac	9 99	cag	tgt	999	cag	ctg	tgc	ctt	gcc	atc	ccc	ggc	ggo	cac	cgc		2845
Asn	Gly	Gln	Cys	Gly	Gln	Leu	Cys	Leu	Ala	Ile	Pro	Gly	Gly	His	Arg		
910					915					920					925		
tgc	ggc	tgc	gcc	tca	cac	tac	acc	ctg	gac	ccc	agc	agc	cgc	aac	tgc		2893
Cys	Gly	Cys	Ala	Ser	His	Tyr	Thr	Leu	Asp	Pro	Ser	Ser	Arg	Asn	Cys		
				930					935					940			
agc	ccg	ccc	acc	acc	ttc	ttg	ctg	ttc	agc	cag	aaa	tct	gcc	atc	agt		2941
Ser	Pro	Pro	Thr	Thr	Phe	Leu	Leu	Phe	Ser	Gln	Lys	Ser	Ala	Ile	Ser		
			945					950					955				
cgg	atg	atc	ccg	gac	gac	cag	cac	agc	ccg	gat	ctc	atc	ctg	CCC	ctg		2989
Arg	Met	Ile	Pro	Asp	Asp	Gln	His	Ser	Pro	Asp	Leu	Ile	Leu	Pro	Leu	-	
		960					965					970					
												cca					3037
His		Leu	Arg	Asn	Val	Lys	Ala	Ile	Asp	Tyr	Asp	Pro	Leu	Asp	Lys		
	975					980					985						
												cga			_		3085
	Ile	Tyr	Trp	Val		Gly	Arg	Gln	Asn			Arg	Ala	ГÀЗ	Asp		
990					995					1000					1005		
												caa					3133
Asp	GIÀ	Thr	Gln			Val	Leu	Thr			Ser	Gln	Gly				
				1010			,		1015					1020			
												tac	_				3181
PIU	Asp	AIG	1025		nıs	Asp	ьеи			Asp	тте	Tyr			Thr		
~h~		.						1030					1035				
												gtc			_		3229
nen	FIIC	1040		cys	oru	ATG			inr	116	ASD	Val		Arg	Leu		
		1040	,				1045	,				1050	1				

age ggg gaa gee atg ggg gtg gtg etg egt ggg gae ege gae aag eee Ser Gly Glu Ala Met Gly Val Val Leu Arg Gly Asp Arg Asp Lys Pro agg gcc atc gtc gtc aac gcg gag cga ggg tac ctg tac ttc acc aac Arg Ala Ile Val Val Asn Ala Glu Arg Gly Tyr Leu Tyr Phe Thr Asn atg cag gac cgg gca gcc aag atc gaa cgc gca gcc ctg gac ggc acc Met Gln Asp Arg Ala Ala Lys Ile Glu Arg Ala Ala Leu Asp Gly Thr gag ege gag gte etc tte ace ace gge etc ate ege ect qtq qce etq Glu Arg Glu Val Leu Phe Thr Thr Gly Leu Ile Arg Pro Val Ala Leu gtg gtg gac aac aca ctg ggc aag ctg ttc tgg gtg gac gcg gac ctg Val Val Asp Asn Thr Leu Gly Lys Leu Phe Trp Val Asp Ala Asp Leu aag cgc att gag agc tgt gac ctg tca ggg gcc aac cgc ctg acc ctg Lys Arg Ile Glu Ser Cys Asp Leu Ser Gly Ala Asn Arg Leu Thr Leu gag gac gcc aac atc gtg cag cct ctg ggc ctg acc atc ctt ggc aaq Glu Asp Ala Asn Ile Val Gln Pro Leu Gly Leu Thr Ile Leu Gly Lys cat ctc tac tgg atc gac cgc cag cag cag atg atc gag cgt gtg gag His Leu Tyr Trp Ile Asp Arg Gln Gln Gln Met Ile Glu Arg Val Glu

aag acc acc ggg gac aag cgg act cgc atc cag ggc cgt qtc qcc cac

Lys Thr Thr Gly Asp Lys Arg Thr Arg Ile Gln Gly Arg Val Ala His

ctc	act	ggc	atc	cat	gca	gtg	gag	gaa	gtc	agc	ctg	gag	gag	ttc	tca	3709
Leu	Thr	Gly	Ile	His	Ala	Val	Glu	Glu	Val	Ser	Leu	Glu	Glu	Phe	Ser	
		120	D				120	5				121	0			
gcc	cac	cca	tgt	gcc	cgt	gac	aat	ggt	ggc	tgc	tcc	cac	atc	tgt	att	3757
Ala	His	Pro	Cys	Ala	Arg	Asp	Asn	Gly	Gly	Cys	Ser	His	Ile	Cys	Ile	
	121	5				122	ס				122	5				
gcc	aag	ggt	gat	999	aca	cca	cgg	tgc	tca	tgc	cca	gtc	cac	ctc	gtg	3805
Ala	Lys	Gly	Asp	Gly	Thr	Pro	Arg	Cys	Ser	Суѕ	Pro	Val	His	Leu	Val	
1230	0				1235	5				1240)				1245	
ctc	ctg	cag	aac	ctg	ctg	acc	tgt	gga	gag	ccg	ccc	acc	tgc	tcc	ccg	3853
Leu	Leu	Gln	Asn	Leu	Leu	Thr	Cys	Gly	Glu	Pro	Pro	Thr	Cys	Ser	Pro	
				1250)				125	5				126	o	
gac	cag	ttt	gca	tgt	gcc	aca	999	gag	atc	gac	tgt	atc	ccc	9 99	gcc	3901
Asp	Gln	Phe	Ala	Cys	Ala	Thr	Gly	Glu	Ile	Asp	Cys	Ile	Pro	Gly	Ala	
			1265	5				1270)				1275	5		
tgg	cgc	tgt	gac	ggc	ttt	ccc	gag	tgc	gat	gac	cag	agc	gac	gag	gag	3949
Trp	Arg	Cys	Asp	Gly	Phe	Pro	Glu	Cys	Asp	Asp	Gln	Ser	Asp	Glu	Glu	
		1280)				1285	5				1290)			
ggc	tgc	ccc	gtg	tgc	tcc	gcc	gcc	cag	ttc	ccc	tgc	gcg	cgg	ggt	cag	3997
Gly	Cys	Pro	Val	Cys	Ser	Ala	Ala	Gln	Phe	Pro	Cys	Ala	Arg	Gly	Gln	
	1295	5				1300)				1305	5				
tgt	gtg	gac	ctg	cgc	ctg	cgc	tgc	gac	ggc	gag	gca	gac	tgt	cag	gac	4045
Cys	Val	Asp	Leu	Arg	Leu	Arg	Сув	Asp	Gly	Glu	Ala	Asp	Cys	Gln	Asp	
1310)				1315	i				1320)				1325	
cgc	tca	gac	gag	gtg	gac	tgt	gac	gcc	atc	tgc	ctg	ccc	aac	cag	ttc	4093
Arg	Ser	Asp	Glu	Val	Asp	Cys	Asp	Ala	Ile	Cys	Leu	Pro	Asn	Gln	Phe	
				1330)				1335	5				1340)	

cgg	tgt	gcg	agc	ggc	cag	tgt	gtc	ctc	atc	aaa	cag	cag	tgc	gac	tee	4141
Arg	Cys	Ala	Ser	Gly	Gln	Cys	Val	Leu	Ile	Lys	Gln	Gln	Cys	Asp	Ser	
			134	5				135	0				135	5		
ttc	ccc	gac	tgt	atc	gac	ggc	tcc	gac	gag	ctc	atg	tgt	gaa	atc	acc	4189
Phe	Pro	Asp	Сув	Ile	Asp	Gly	Ser	Asp	Glu	Leu	Met	Cys	Glu	Ile	Thr	
		136	0				136	5				137	0			
aag	ccg	ccc	tca	gac	gac	agc	ccg	gcc	cac	agc	agt	gcc	atc	999	ccc	4237
Lys	Pro	Pro	Ser	Asp	Asp	Ser	Pro	Ala	His	Ser	Ser	Ala	Ile	Gly	Pro	
	1379	5				138	0				138	5				
gtc	att	ggc	atc	atc	ctc	tct	ctc	ttc	gtc	atg	ggt	ggt	gtc	tat	ttt	4285
Val	Ile	Gly	Ile	Ile	Leu	Ser	Leu	Phe	Val	Met	Gly	Gly	Val	Tyr	Phe	
1390)				1395	5				140	0				1405	
gtg	tgc	cag	cgc	gtg	gtg	tgc	cag	cgc	tat	gcg	99 9	gcc	aac	999	ccc	4333 '
Val	Cys	Gln	Arg	Val	Val	Cys	Gln	Arg	Tyr	Ala	Gly	Ala	Asn	Gly	Pro	
				1410)				1415	5				1420)	
ttc	ccg	cac	gag	tat	gtc	agc	999	acc	ccg	cac	gtg	ccc	ctc	aat	ttc	4381
Phe	Pro	His	Glu	Tyr	Val	Ser	Gly	Thr	Pro	His	Val	Pro	Leu	Asn	Phe	
			1425	5				1430)				1435	i		
ata	gcc	ccg	ggc	ggt	tcc	cag	cat	ggc	ccc	ttc	aca	ggc	atc	gca	tge	4429
Ile	Ala	Pro	Gly	Gly	Ser	Gln	His	Gly	Pro	Phe	Thr	Gly	Ile	Ala	Cys	
		1440					1445					1450				
															999	4477
Gly			Met	Met	Ser	Ser	Val	Ser	Leu	Met	Gly	Gly	Arg	Gly	Gly	ŧ
	1455					1460					1465					
					cgg											4525
		Leu	Tyr	Asp	Arg		His	Val	Thr	Gly	Ala	Ser	Ser	Ser	Ser	
1470)				1475	;				1480)				1485	

tcg	tcc	agc	acg	aag	gcc	acg	ctg	tac	ccg	ccg	atc	ctg	aac	ccg	ccg	4573
Ser	Ser	Ser	Thr	Lys	Ala	Thr	Leu	Tyr	Pro	Pro	Ile	Leu	Asn	Pro	Pro	
				1490)				149	5				150	0	
ccc	tcc	ccg	gcc	acg	gac	ccc	tcc	ctg	tac	aac	atg	gac	atg	ttc	tac	4621
Pro	Ser	Pro	Ala	Thr	Asp	Pro	Ser	Leu	Tyr	Asn	Met	Asp	Met	Phe	Tyr	
			1509	5				1510	0				151	5		
tct	tca	aac	att	ccg	gcc	act	gcg	aga	ccg	tac	agg	ccc	tac	atc	att	4669
Ser	Ser	Asn	Ile	Pro	Ala	Thr	Ala	Arg	Pro	Tyr	Arg	Pro	Tyr	Ile	Ile	
		1520)				1525	5				153	D			
cga	gga	atg	gcg	ccc	ccg	acg	acg	ccc	tgc	agc	acc	gac	gtg	tgt	gac	4717
Arg	Gly	Met	Ala	Pro	Pro	Thr	Thr	Pro	Cys	Ser	Thr	Asp	Val	Cys	Asp	
	1535	5				1540)				1545	5				
agc	gac	tac	agc	gcc	agc	cgc	tgg	aag	gcc	agc	aag	tac	tac	ctg	gat	4765
Ser	Asp	Tyr	Ser	Ala	Ser	Arg	Trp	Lys	Ala	Ser	Lys	Tyr	Tyr	Leu	Asp	
Ser 1550		Tyr	Ser	Ala	Ser 1555		Trp	Lys	Ala	Ser 1560	_	Tyr	Tyr	Leu	Asp 1565	
1550)			Ala	1555	5				1560)	_	_		1565	4813
1550 ttg	aac	tcg	gac		1555 gac	ccc	tat	cca	ccc	1560 cca	ccc	acg	ccc	cac	1565 agc	4813
1550 ttg	aac	tcg	gac	tca	1555 gac Asp	ccc	tat	cca	ccc	1560 cca Pro	ccc	acg	ccc	cac	1565 agc Ser	4813
1550 ttg Leu	aac Asn	tcg Ser	gac Asp	tca Ser	1555 gac Asp	ccc	tat Tyr	cca Pro	ccc Pro 1575	1560 cca Pro	ccc	acg Thr	ccc	cac His	1565 agc Ser	4813 4861
1550 ttg Leu cag	aac Asn	tcg Ser	gac Asp tcg	tca Ser 1570	gac Asp	ccc Pro	tat Tyr agc	cca Pro	ccc Pro 1575 ccg	1560 cca Pro	ccc Pro	acg Thr	ccc Pro	cac His 1580	1565 agc Ser gag	
1550 ttg Leu cag	aac Asn	tcg Ser	gac Asp tcg	tca Ser 1570 gcg Ala	gac Asp	ccc Pro	tat Tyr agc	cca Pro	ccc Pro 1575 ccg Pro	1560 cca Pro	ccc Pro	acg Thr	ccc Pro	cac His 1580 acc	1565 agc Ser gag	
ttg Leu cag	aac Asn tac	tcg Ser ctg Leu	gac Asp tcg Ser 1585	tca Ser 1570 gcg Ala	gac Asp gag gag	ccc Pro gac	tat Tyr agc Ser	cca Pro tgc Cys	ccc Pro 1575 ccg Pro	1560 cca Pro ccc	ccc Pro tcg Ser	acg Thr ccc Pro	ccc Pro gcc Ala	cac His 1580 acc Thr	agc Ser gag	
ttg Leu cag Gln	aac Asn tac Tyr	tcg Ser ctg Leu	gac Asp tcg Ser 1585	tca Ser 1570 gcg Ala	gac Asp gag Glu	ccc Pro gac Asp	tat Tyr agc Ser	cca Pro tgc Cys 1590 ccc	ccc Pro 1575 ccg Pro	1560 cca Pro ccc Pro	ccc Pro tcg Ser	acg Thr ccc Pro	ccc Pro gcc Ala 1595	cac His 1580 acc Thr	1565 agc Ser gag Glu	4861
ttg Leu cag Gln	aac Asn tac Tyr	tcg Ser ctg Leu	gac Asp tcg Ser 1585 ttc	tca Ser 1570 gcg Ala	gac Asp gag Glu	ccc Pro gac Asp	tat Tyr agc Ser	cca Pro tgc Cys 1590 ccc Pro	ccc Pro 1575 ccg Pro	1560 cca Pro ccc Pro	ccc Pro tcg Ser	acg Thr ccc Pro	ccc Pro gcc Ala 1595 tgc Cys	cac His 1580 acc Thr	1565 agc Ser gag Glu	4861
ttg Leu cag Gln agg	aac Asn tac Tyr agc	tcg Ser ctg Leu tac Tyr	gac Asp tcg Ser 1585 ttc	tca Ser 1570 gcg Ala	gac Asp gag Glu ctc Leu	ccc Pro gac Asp	tat Tyr agc Ser ccg Pro 1605	cca Pro tgc Cys 1590 ccc Pro	ccc Pro 1575 ccg Pro cct	1560 cca Pro ccc Pro	ccc Pro tcg Ser tcc	acg Thr ccc Pro ccc Pro 1610	ccc Pro gcc Ala 1595 tgc Cys	cac His 1580 acc Thr acg	1565 agc Ser gag Glu gac Asp	4861

<210> 3

<211> 1615

<212> PRT

<213> Homo sapiens

<400> 3

Met Glu Ala Ala Pro Pro Gly Pro Pro Trp Pro Leu Leu Leu Leu

1 5 10 15

Leu Leu Leu Leu Cys Gly Cys Pro Ala Pro Ala Ala Ala Ser

20 25 30

Pro Leu Leu Phe Ala Asn Arg Arg Asp Val Arg Leu Val Asp Ala

35 40 45

Gly Gly Val Lys Leu Glu Ser Thr Ile Val Val Ser Gly Leu Glu Asp

50 55 60

Ala Ala Ala Val Asp Phe Gln Phe Ser Lys Gly Ala Val Tyr Trp Thr

65 70 75 80

Asp Val Ser Glu Glu Ala Ile Lys Gln Thr Tyr Leu Asn Gln Thr Gly

85 90 95

Ala Ala Val Gln Asn Val Val Ile Ser Gly Leu Val Ser Pro Asp Gly

100 105 110

Leu Ala Cys Asp Trp Val Gly Lys Lys Leu Tyr Trp Thr Asp Ser Glu

115 120 125

Thr Asn Arg Ile Glu Val Ala Asn Leu Asn Gly Thr Ser Arg Lys Val

	130					135					140				
Leu	Phe	Trp	Gln	Asp	Leu	qaA	Gln	Pro	Lys	Ala	Ile	Ala	Leu	Asp	Pro
145					150					155					160
Ala	His	Gly	Tyr	Met	Tyr	Trp	Thr	Asp	Trp	Gly	Glu	Thr	Pro	Arg	Ile
				165					170					175	
Glu	Arg	Ala	Gly	Met	Asp	Gly	Ser	Thr	Arg	Lys	Ile	Ile	Val	Asp	Ser
			180					185					190		
Asp	Ile	Tyr	Trp	Pro	Asn	Gly	Leu	Thr	Ile	Asp	Leu	Glu	Glu	Gln	ьуs
		195					200					205			
Leu	Tyr	Trp	Ala	Asp	Ala	Lys	Leu	Ser	Phe	Ile	His	Arg	Ala	Asn	Leu
	210					215					220				
Asp	Gly	Ser	Phe	Arg	Gln	Lys	Val	Val	Glu	Gly	Ser	Leu	Thr	His	Pro
225					230					235					240
Phe	Ala	Leu	Thr	Leu	Ser	Gly	Asp	Thr	Leu	Tyr	Trp	Thr	Asp	Trp	Gln
				245					250					255	
Thr	Arg	Ser	Ile	His	Ala	Cys	Asn	Lys	Arg	Thr	Gly	Gly	Lys	Arg	Lys
			260					265					270		
Glu	Ile	Leu	Ser	Ala	Leu	Tyr	Ser	Pro	Met	Asp	Ile	Gln	Val	Leu	Ser
		275					280					285			
Gln	Glu	Arg	Gln	Pro	Phe	Phe	His	Thr	Arg	Cys	Glu	Glu	Asp	Asn	Gly
	290					295					300				
Gly	Trp	Ser	His	Leu	Cys	Leu	Leu	Ser	Pro	Ser	Glu	Pro	Phe	Tyr	Thr
305					310					315					320
Суз	Ala	Cys	Pro	Thr	Gly	Val	Gln	Met	Gln	Asp	Asn	Gly	Arg	Thr	Cys
				325					330		•			335	
Lys	Ala	Gly	Ala	Glu	Glu	Val	Leu	Leu	Leu	Ala	Arg	Arg	Thr	Asp	Leu

Arg	Arg	Ile	Ser	Leu	Asp	Thr	Pro	Asp	Phe	Thr	Asp	Ile	Val	Leu	Gln
		355					360					365			
Val	Asp	Asp	Ile	Arg	His	Ala	Ile	Ala	Ile	Asp	Tyr	qaA	Pro	Leu	Glu
	370					375					380				
Gly	Tyr	Val	Tyr	Trp	Thr	Asp	Asp	Glu	Val	Arg	Ala	Ile	Arg	Arg	Ala
385					390					395					400
Tyr	Leu	Asp	Gly	Ser	Gly	Ala	Gln	Thr	Leu	Val	Asn	Thr	Glu	Ile	Asn
				405					410					415	
Asp	Pro	Asp	Gly	Ile	Ala	Val	Asp	Trp	Val	Ala	Arg	Asn	Leu	Tyr	Trp
			420					425	•	•			430		
Thr	Asp	Thr	Gly	Thr	Asp	Arg	Ile	Glu	Val	Thr	Arg	Leu	Asn	Gly	Thr
		435					440					445			
Ser	Arg	Lys	Ile	Leu	Val	Ser	Glu	Asp	Leu	Asp	Glu	Pro	Arg	Ala	Ile
	450					455					460				
Ala	Leu	His	Pro	Val	Met	Gly	Leu	Met	Tyr	Trp	Thr	qaA	Trp	Gly	Glu
465					470					475					480
Asn															
	Pro	Lys	Ile	Glu	Cys	Ala	Asn	Leu	Asp	Gly	Gln	Glu	Arg	Arg	Val
	Pro	Lys	Ile	Glu 485	Cys	Ala	Asn	Leu	Asp 490	Gly	Gln	Glu	Arg	Arg 495	Val
Leu		Lys Asn		485					490					495	
Leu				485					490					495	
	Val		Ala 500	485 Ser	Leu	Gly	Trp	Pro 505	490 Asn	Gly	Leu	Ala	Leu 510	495 Asp	Leu
	Val	Asn	Ala 500	485 Ser	Leu	Gly	Trp	Pro 505	490 Asn	Gly	Leu	Ala	Leu 510	495 Asp	Leu
Gln	Val Glu	Asn Gly	Ala 500 Lys	485 Ser Leu	Leu Tyr	Gly Trp	Trp Gly 520	Pro 505 Asp	490 Asn Ala	Gly Lys	Leu Thr	Ala Asp 525	Leu 510 Lys	495 Asp	Leu Glu
Gln	Val Glu	Asn Gly 515	Ala 500 Lys	485 Ser Leu	Leu Tyr	Gly Trp	Trp Gly 520	Pro 505 Asp	490 Asn Ala	Gly Lys	Leu Thr	Ala Asp 525	Leu 510 Lys	495 Asp	Leu Glu
Gln Val	Val Glu Ile 530	Asn Gly 515	Ala 500 Lys Val	485 Ser Leu Asp	Leu Tyr Gly	Gly Trp Thr 535	Trp Gly 520 Lys	Pro 505 Asp Arg	490 Asn Ala Arg	Gly Lys Thr	Leu Thr Leu 540	Ala Asp 525 Leu	Leu 510 Lys Glu	495 Asp Ile Asp	Leu Glu Lys

Thr Asp Trp Gln Arg Arg Ser Ile Glu Arg Val His Lys Val Lys Ala

Ser Arg Asp Val Ile Ile Asp Gln Leu Pro Asp Leu Met Gly Leu Lys Ala Val Asn Val Ala Lys Val Val Gly Thr Asn Pro Cys Ala Asp Arg Asn Gly Gly Cys Ser His Leu Cys Phe Phe Thr Pro His Ala Thr Arg Cys Gly Cys Pro Ile Gly Leu Glu Leu Leu Ser Asp Met Lys Thr Cys Ile Val Pro Glu Ala Phe Leu Val Phe Thr Ser Arg Ala Ala Ile His Arg Ile Ser Leu Glu Thr Asn Asn Asn Asp Val Ala Ile Pro Leu Thr Gly Val Lys Glu Ala Ser Ala Leu Asp Phe Asp Val Ser Asn Asn His Ile Tyr Trp Thr Asp Val Ser Leu Lys Asn Ile Ser Arg Ala Phe Met Asn Gly Ser Ser Val Glu His Val Val Glu Phe Gly Leu Asp Tyr Pro Glu Gly Met Ala Val Asp Trp Met Gly Lys Asn Leu Tyr Trp Ala Asp Thr Gly Thr Asn Arg Ile Glu Val Ala Arg Leu Asp Gly Gln Phe Arg Gln Val Leu Val Trp Arg Asp Leu Asp Asn Pro Arg Ser Leu Ala Leu Asp Pro Thr Lys Gly Tyr Ile Tyr Trp Thr Glu Trp Gly Gly Lys Pro

WO 01/77327 PCT/US00/16951 29

Arg I	1e	Val	Arg	Ala	Phe	Met	Asp	Gly	Thr	Asn	Cys	Met	Thr	Leu	Val
785					790					795					800
Asp L	ys	Val	Gly	Arg	Ala	Asn	Asp	Leu	Thr	Ile	Asp	Tyr	Ala	Asp	Gln
				805					810					815	
Arg L	eu	Tyr	Trp	Thr	Asp	Leu	Asp	Thr	Asn	Met	Ile	Glu	Ser	Ser	Asn
			820					825					830		
Met L	eu	Gly	Gln	Glu	Arg	Val	Val	Ile	Ala	Asp	Asp	Leu	Pro	His	Pro
		835					840					845			
Phe G	ly	Leu	Thr	Gln	Tyr	Ser	Asp	Tyr	Ile	Tyr	Trp	Thr	Asp	Trp	Asn
8	50					855					860				
Leu H	is	Ser	Ile	Glu	Arg	Ala	Asp	Lys	Thr	Ser	Gly	Arg	Asn	Arg	Thr
865					870					875					880
Leu I	le	Gln	Gly	His	Leu	Asp	Phe	Val	Met	Asp	Ile	Leu	Val	Phe	His
				885					890					895	
Ser S	er	Arg	Gln	Asp	Gly	Leu	Asn	Asp	Cys	Met	His	Asn	Asn	Gly	Gln
			900					905					910		
Cys G	ly	Gln	Leu	Суз	Leu	Ala	Ile	Pro	Gly	Gly	His	Arg	Сув	Gly	Сув
		915					920					925			
Ala S	er	His	Tyr	Thr	Leu	Asp	Pro	Ser	Ser	Arg	Asn	Cys	Ser	Pro	Pro
9	30					935					940				
Thr T	hr	Phe	Leu	Leu	Phe	Ser	Gln	Lys	Ser	Ala	Ile	Ser	Arg	Met	Ile
945					950					955					960
Pro A	sp	Asp	Gln	His	Ser	Pro	Asp	Leu	Ile	Leu	Pro	Leu	His	Gly	Leu
				965					970					975	
Arg A	sn	Val	Lys	Ala	Ile	Asp	Tyr	qaA	Pro	Leu	Asp	Lys	Phe	Ile	Tyr
			980					985					990		
Trp V	al	Asp	Gly	Arg	Gln	Asn	Ile	Lys	Arg	Ala	Lys	Asp	Asp	Gly	Thr

Gln Pro Phe Val Leu Thr Ser Leu Ser Gln Gly Gln Asn Pro Asp Arg Gln Pro His Asp Leu Ser Ile Asp Ile Tyr Ser Arg Thr Leu Phe Trp Thr Cys Glu Ala Thr Asn Thr Ile Asn Val His Arg Leu Ser Gly Glu Ala Met Gly Val Val Leu Arg Gly Asp Arg Asp Lys Pro Arg Ala Ile Val Val Asn Ala Glu Arg Gly Tyr Leu Tyr Phe Thr Asn Met Gln Asp Arg Ala Ala Lys Ile Glu Arg Ala Ala Leu Asp Gly Thr Glu Arg Glu Val Leu Phe Thr Thr Gly Leu Ile Arg Pro Val Ala Leu Val Val Asp Asn Thr Leu Gly Lys Leu Phe Trp Val Asp Ala Asp Leu Lys Arg Ile Glu Ser Cys Asp Leu Ser Gly Ala Asn Arg Leu Thr Leu Glu Asp Ala Asn Ile Val Gln Pro Leu Gly Leu Thr Ile Leu Gly Lys His Leu Tyr Trp Ile Asp Arg Gln Gln Met Ile Glu Arg Val Glu Lys Thr Thr Gly Asp Lys Arg Thr Arg Ile Gln Gly Arg Val Ala His Leu Thr Gly Ile His Ala Val Glu Glu Val Ser Leu Glu Glu Phe Ser Ala His Pro

Cys Ala Arg Asp Asn Gly Gly Cys Ser His Ile Cys Ile Ala Lys Gly Asp Gly Thr Pro Arg Cys Ser Cys Pro Val His Leu Val Leu Leu Gln Asn Leu Leu Thr Cys Gly Glu Pro Pro Thr Cys Ser Pro Asp Gln Phe Ala Cys Ala Thr Gly Glu Ile Asp Cys Ile Pro Gly Ala Trp Arg Cys Asp Gly Phe Pro Glu Cys Asp Asp Gln Ser Asp Glu Glu Gly Cys Pro Val Cys Ser Ala Ala Gln Phe Pro Cys Ala Arg Gly Gln Cys Val Asp Leu Arg Leu Arg Cys Asp Gly Glu Ala Asp Cys Gln Asp Arg Ser Asp Glu Val Asp Cys Asp Ala Ile Cys Leu Pro Asn Gln Phe Arg Cys Ala Ser Gly Gln Cys Val Leu Ile Lys Gln Gln Cys Asp Ser Phe Pro Asp Cys Ile Asp Gly Ser Asp Glu Leu Met Cys Glu Ile Thr Lys Pro Pro Ser Asp Asp Ser Pro Ala His Ser Ser Ala Ile Gly Pro Val Ile Gly Ile Ile Leu Ser Leu Phe Val Met Gly Gly Val Tyr Phe Val Cys Gln Arg Val Val Cys Gln Arg Tyr Ala Gly Ala Asn Gly Pro Phe Pro His

Glu Tyr Val Ser Gly Thr Pro His Val Pro Leu Asn Phe Ile Ala Pro

1425	1430	1435	1440
Gly Gly Ser Gln His	Gly Pro Phe	Thr Gly Ile Ala Cy	s Gly Lys Ser
144	15	1450	1455
Met Met Ser Ser Val	Ser Leu Met (Gly Gly Arg Gly Gl	y Val Pro Leu
1460	:	1465	1470
Tyr Asp Arg Asn His	Val Thr Gly	Ala Ser Ser Ser Se	r Ser Ser Ser
1475	1480	14	85
Thr Lys Ala Thr Let	Tyr Pro Pro	Ile Leu Asn Pro Pr	o Pro Ser Pro
1490	1495	1500	
Ala Thr Asp Pro Ser	Leu Tyr Asn M	Met Asp Met Phe Ty	r Ser Ser Asn
1505	1510	1515	1520
Ile Pro Ala Thr Ala	Arg Pro Tyr I	Arg Pro Tyr Ile Il	e Arg Gly Met
152	25	1530	1535
Ala Pro Pro Thr Thr	Pro Cys Ser 1	Thr Asp Val Cys As	Ser Asp Tyr
1540	1	1545	1550
Ser Ala Ser Arg Trp	Lys Ala Ser I	Lys Tyr Leu Asp	Leu Asn Ser
1555	1560	150	55
Asp Ser Asp Pro Tyr	Pro Pro Pro F	Pro Thr Pro His Se	Gln Tyr Leu
1570	1575	1580	
Ser Ala Glu Asp Ser	Cys Pro Pro S	Ser Pro Ala Thr Glu	Arg Ser Tyr
1585	1590	1595	1600
Phe His Leu Phe Pro	Pro Pro Pro S	Ser Pro Cys Thr Asp	Ser Ser
160	5	1610	1615

<210> 4

<211> 1615

<212> PRT

<213> Homo sapiens

<4	^	Α.	
C4	u	u>	- 4

Met	Glu	Ala	Ala	Pro	Pro	Gly	Pro	Pro	Trp	Pro	Leu	Leu	Leu	Leu	Leu	
1				5					10					15		
Leu	Leu	Leu	Leu	Ala	Leu	Cys	Gly	Cys	Pro	Ala	Pro	Ala	Ala	Ala	Ser	
			20					25					30			
Pro	Leu	Leu	Leu	Phe	Ala	Asn	Arg	Arg	Asp	Val	Arg	Leu	Val	Asp	Ala	
		35					40			,		45				
Gly	Gly	Val	Lys	Leu	Glu	Ser	Thr	Ile	Val	Val	Ser	Gly	Leu	Glu	Asp	
	50					55					60					
Ala	Ala	Ala	Val	qaA	Phe	Gln	Phe	Ser	Lys	Gly	Ala	Val	Tyr	Trp	Thr	
65				٠	70					75					80	
Asp	Val	Ser	Glu	Glu	Ala	Ile	Lys	Gln	Thr	Tyr	Leu	Asn	Gln	Thr	Gly	
				85					90					95		
Ala	Ala	Val	Gln		Val	Val	Ile	Ser		Leu	Val	Ser	Pro		Gly	
Ala	Ala	Val	Gln 100		Val	Val	Ile	Ser		Leu	Val	Ser	Pro 110		Gly	
			100	Asn			Ile Lys	105	Gly				110	Asp	-	
			100	Asn				105	Gly				110	Asp	-	
Leu	Ala	Cys 115	100 Asp	Asn	Val	Gly	Lys	105 Lys	Gly Leu	Tyr	Trp	Thr 125	110 Asp	Asp	Glu	
Leu	Ala	Cys 115	100 Asp	Asn	Val	Gly	Lys 120	105 Lys	Gly Leu	Tyr	Trp	Thr 125	110 Asp	Asp	Glu	
Leu Thr	Ala Asn 130	Cys 115 Arg	100 Asp	Asn Trp Glu	Val Val	Gly Ala 135	Lys 120	105 Lys Leu	Gly Leu Asn	Tyr Gly	Trp Thr 140	Thr 125 Ser	110 Asp Arg	Asp Ser Lys	Glu Val	
Leu Thr	Ala Asn 130	Cys 115 Arg	100 Asp	Asn Trp Glu	Val Val	Gly Ala 135	Lys 120 Asn	105 Lys Leu	Gly Leu Asn	Tyr Gly	Trp Thr 140	Thr 125 Ser	110 Asp Arg	Asp Ser Lys	Glu Val	
Leu Thr Leu 145	Ala Asn 130 Phe	Cys 115 Arg Trp	100 Asp Ile Gln	Asn Trp Glu Asp	Val Val Leu 150	Gly Ala 135 Asp	Lys 120 Asn	105 Lys Leu Pro	Gly Leu Asn Lys	Tyr Gly Ala 155	Trp Thr 140 Ile	Thr 125 Ser Ala	110 Asp Arg Leu	Asp Lys Asp	Glu Val Pro	
Leu Thr Leu 145	Ala Asn 130 Phe	Cys 115 Arg Trp	100 Asp Ile Gln	Asn Trp Glu Asp	Val Val Leu 150	Gly Ala 135 Asp	Lys 120 Asn Gln	105 Lys Leu Pro	Gly Leu Asn Lys	Tyr Gly Ala 155	Trp Thr 140 Ile	Thr 125 Ser Ala	110 Asp Arg Leu	Asp Lys Asp	Glu Val Pro	

Glu Arg Ala Gly Met Asp Gly Ser Thr Arg Lys Ile Ile Val Asp Ser

Asp Ile Tyr Trp Pro Asn Gly Leu Thr Ile Asp Leu Glu Glu Gln Lys Leu Tyr Trp Ala Asp Ala Lys Leu Ser Phe Ile His Arg Ala Asn Leu Asp Gly Ser Phe Arg Gln Lys Val Val Glu Gly Ser Leu Thr His Pro Phe Ala Leu Thr Leu Ser Gly Asp Thr Leu Tyr Trp Thr Asp Trp Gln Thr Arg Ser Ile His Ala Cys Asn Lys Arg Thr Gly Gly Lys Arg Lys Glu Ile Leu Ser Ala Leu Tyr Ser Pro Met Asp Ile Gln Val Leu Ser Gln Glu Arg Gln Pro Phe Phe His Thr Arg Cys Glu Glu Asp Asn Gly Gly Trp Ser His Leu Cys Leu Leu Ser Pro Ser Glu Pro Phe Tyr Thr Cys Ala Cys Pro Thr Gly Val Gln Met Gln Asp Asn Gly Arg Thr Cys Lys Ala Gly Ala Glu Glu Val Leu Leu Leu Ala Arg Arg Thr Asp Leu Arg Arg Ile Ser Leu Asp Thr Pro Asp Phe Thr Asp Ile Val Leu Gln

Val Asp Asp Ile Arg His Ala Ile Ala Ile Asp Tyr Asp Pro Leu Glu Gly Tyr Val Tyr Trp Thr Asp Asp Glu Val Arg Ala Ile Arg Arg Ala Tyr Leu Asp Gly Ser Gly Ala Gln Thr Leu Val Asn Thr Glu Ile Asn

405 410 415

Asp Pro Asp Gly Ile Ala Val Asp Trp Val Ala Arg Asn Leu Tyr Trp

420 425 430

Thr Asp Thr Gly Thr Asp Arg Ile Glu Val Thr Arg Leu Asn Gly Thr

435 440 445

Ser Arg Lys Ile Leu Val Ser Glu Asp Leu Asp Glu Pro Arg Ala Ile

450 455 460

Ala Leu His Pro Val Met Gly Leu Met Tyr Trp Thr Asp Trp Gly Glu

465 470 475 480

Asn Pro Lys Ile Glu Cys Ala Asn Leu Asp Gly Gln Glu Arg Arg Val

485 490 495

Leu Val Asn Ala Ser Leu Gly Trp Pro Asn Gly Leu Ala Leu Asp Leu

500 505 510

Gln Glu Gly Lys Leu Tyr Trp Gly Asp Ala Lys Thr Asp Lys Ile Glu

515 520 525

Val Ile Asn Val Asp Gly Thr Lys Arg Arg Thr Leu Leu Glu Asp Lys

530 535 540

Leu Pro His Ile Phe Gly Phe Thr Leu Leu Gly Asp Phe Ile Tyr Trp

545 550 555 560

Thr Asp Trp Gln Arg Arg Ser Ile Glu Arg Val His Lys Val Lys Ala

565 570 575

Ser Arg Asp Val Ile Ile Asp Gln Leu Pro Asp Leu Met Gly Leu Lys

580 585 590

Ala Val Asn Val Ala Lys Val Val Gly Thr Asn Pro Cys Ala Asp Arg

595 600 605

Asn Gly Gly Cys Ser His Leu Cys Phe Phe Thr Pro His Ala Thr Arg

Cys Gly Cys Pro Ile Gly Leu Glu Leu Ser Asp Met Lys Thr Cys Ile Val Pro Glu Ala Phe Leu Val Phe Thr Ser Arg Ala Ala Ile His Arg Ile Ser Leu Glu Thr Asn Asn Asn Asp Val Ala Ile Pro Leu Thr Gly Val Lys Glu Ala Ser Ala Leu Asp Phe Asp Val Ser Asn Asn His Ile Tyr Trp Thr Asp Val Ser Leu Lys Asn Ile Ser Arg Ala Phe Met Asn Gly Ser Ser Val Glu His Val Val Glu Phe Gly Leu Asp Tyr Pro Glu Gly Met Ala Val Asp Trp Met Gly Lys Asn Leu Tyr Trp Ala Asp Thr Gly Thr Asn Arg Ile Glu Val Ala Arg Leu Asp Gly Gln Phe Arg Gln Val Leu Val Trp Arg Asp Leu Asp Asn Pro Arg Ser Leu Ala Leu Asp Pro Thr Lys Gly Tyr Ile Tyr Trp Thr Glu Trp Gly Gly Lys Pro Arg Ile Val Arg Ala Phe Met Asp Gly Thr Asn Cys Met Thr Leu Val Asp Lys Val Gly Arg Ala Asn Asp Leu Thr Ile Asp Tyr Ala Asp Gln Arg Leu Tyr Trp Thr Asp Leu Asp Thr Asn Met Ile Glu Ser Ser Asn

Met Leu Gly Gln Glu Arg Val Val Ile Ala Asp Asp Leu Pro His Pro

835 840 845

Phe Gly Leu Thr Gln Tyr Ser Asp Tyr Ile Tyr Trp Thr Asp Trp Asn

850 855 860

Leu His Ser Ile Glu Arg Ala Asp Lys Thr Ser Gly Arg Asn Arg Thr

865 870 875 880

Leu Ile Gln Gly His Leu Asp Phe Val Met Asp Ile Leu Val Phe His

885 890 895

Ser Ser Arg Gln Asp Gly Leu Asn Asp Cys Met His Asn Asn Gly Gln

900 905 910

Cys Gly Gln Leu Cys Leu Ala Ile Pro Gly Gly His Arg Cys Gly Cys

915 920 925

Ala Ser His Tyr Thr Leu Asp Pro Ser Ser Arg Asn Cys Ser Pro Pro

930 935 940

Thr Thr Phe Leu Leu Phe Ser Gln Lys Ser Ala Ile Ser Arg Met Ile

945 950 955 960

Pro Asp Asp Gln His Ser Pro Asp Leu Ile Leu Pro Leu His Gly Leu

965 970 975

Arg Asn Val Lys Ala Ile Asp Tyr Asp Pro Leu Asp Lys Phe Ile Tyr

980 985 990

Trp Val Asp Gly Arg Gln Asn Ile Lys Arg Ala Lys Asp Asp Gly Thr

995 1000 1005

Gln Pro Phe Val Leu Thr Ser Leu Ser Gln Gly Gln Asn Pro Asp Arg

1010 1015 1020

Gln Pro His Asp Leu Ser Ile Asp Ile Tyr Ser Arg Thr Leu Phe Trp

1025 1030 1035 1040

Thr Cys Glu Ala Thr Asn Thr Ile Asn Val His Arg Leu Ser Gly Glu

Ala Met Gly Val Val Leu Arg Gly Asp Arg Asp Lys Pro Arg Ala Ile Val Val Asn Ala Glu Arg Gly Tyr Leu Tyr Phe Thr Asn Met Gln Asp Arg Ala Ala Lys Ile Glu Arg Ala Ala Leu Asp Gly Thr Glu Arg Glu Val Leu Phe Thr Thr Gly Leu Ile Arg Pro Val Ala Leu Val Val Asp Asn Thr Leu Gly Lys Leu Phe Trp Val Asp Ala Asp Leu Lys Arg Ile Glu Ser Cys Asp Leu Ser Gly Ala Asn Arg Leu Thr Leu Glu Asp Ala Asn Ile Val Gln Pro Leu Gly Leu Thr Ile Leu Gly Lys His Leu Tyr Trp Ile Asp Arg Gln Gln Gln Met Ile Glu Arg Val Glu Lys Thr Thr Gly Asp Lys Arg Thr Arg Ile Gln Gly Arg Val Ala His Leu Thr Gly Ile His Ala Val Glu Glu Val Ser Leu Glu Glu Phe Ser Ala His Pro Cys Ala Arg Asp Asn Gly Gly Cys Ser His Ile Cys Ile Ala Lys Gly Asp Gly Thr Pro Arg Cys Ser Cys Pro Val His Leu Val Leu Leu Gln Asn Leu Leu Thr Cys Gly Glu Pro Pro Thr Cys Ser Pro Asp Gln Phe

WO 01/77327

Ala	Cys	Ala	Thr	Gly	Glu	Ile	Asp	Cys	Ile	Pro	Gly	Ala	Trp	Arg	Cys
126	5				127	0				127	5				1280
qaA	Gly	Phe	Pro	Glu	Cys	Asp	Asp	Gln	Ser	Asp	Glu	Glu	Gly	Cys	Pro
				128	5				129	0				129	5
Val	Cys	Ser	Ala	Ala	Gln	Phe	Pro	Cys	Ala	Arg	Gly	Gln	Сув	Val	Asp
			130	0				130	5				131	0	
Leu	Arg	Leu	Arg	Cys	Asp	Gly	Glu	Ala	Asp	Cys	Gln	Asp	Arg	Ser	Asp
		131	5				132	0				132	5		
Glu	Val	Asp	Cys	Asp	Ala	Ile	Cys	Leu	Pro	Asn	Gln	Phe	Arg	Cys	Ala
	133)				1339	5				134	D			
Ser	Ġly	Gln	Суз	Val	Leu	Ile	Lys	Gln	Gln	Cys	Asp	Ser	Phe	Pro	Asp
134	5				1350)				135	5				1360
Cys	Ile	Asp	Gly	Ser	Asp	Glu	Leu	Met	Cys	Glu	Ile	Thr	Гув	Pro	Pro
				136	5				1370	o				1375	5
Ser	Asp	Asp	Ser	Pro	Ala	His	Ser	Ser	Ala	Ile	Gly	Pro	Val	Ile	Gly
			1380)				1385	5				1390)	
Ile	Tla	T.e.u		_		_		61		_	_		_		
	116	шсц	Ser	Leu	Phe	Val	Met	GIY	Gly	Val	Tyr	Phe	Val	Cys	Gln
	116	1395		Leu	Phe	Val	Met 1400		GIA	Val	Tyr	Phe 1405		Cys	Gln
Arg		1395	5		Phe Arg		1400)				1405	;		
Arg		1395 Val	5				1400 Ala)				1405 Pro	;		
	Val	1395 Val	Cys	Gln		Tyr 1415	1400 Ala	Gly	Ala	Asn	Gly 1420	1405 Pro	Phe	Pro	His
	Val 1410 Tyr	1395 Val	Cys	Gln	Arg	Tyr 1415 Pro	1400 Ala	Gly	Ala	Asn	Gly 1420 Asn	1405 Pro	Phe	Pro	His
Glu 1425	Val 1410 Tyr	1395 Val Val	Cys Ser	Gln	Arg Thr	Tyr 1415 Pro	1400 Ala His	Gly Val	Ala Pro	Asn Leu 1435	Gly 1420 Asn	1405 Pro	Phe Ile	Pro Ala	His Pro 1440
Glu 1425	Val 1410 Tyr	1395 Val Val	Cys Ser	Gln	Arg Thr 1430 Gly	Tyr 1415 Pro	1400 Ala His	Gly Val	Ala Pro	Asn Leu 1435 Ile	Gly 1420 Asn	1405 Pro	Phe Ile	Pro Ala	Pro 1440 Ser
Glu 1425 Gly	Val 1410 Tyr Gly	Val Val Ser	Cys Ser Gln	Gln Gly His	Arg Thr 1430 Gly	Tyr 1415 Pro	Ala His	Gly Val	Ala Pro Gly 1450	Asn Leu 1435 Ile	Gly 1420 Asn i	Pro Phe Cys	Phe Ile Gly	Pro Ala Lys	Pro 1440 Ser
Glu 1425 Gly	Val 1410 Tyr Gly	Val Val Ser	Cys Ser Gln	Gln Gly His 1445 Val	Arg Thr 1430 Gly	Tyr 1415 Pro	Ala His	Gly Val	Ala Pro Gly 1450	Asn Leu 1435 Ile	Gly 1420 Asn i	Pro Phe Cys	Phe Ile Gly	Pro Ala Lys 1455	Pro 1440 Ser

Thr Lys Ala Thr Leu Tyr Pro Pro Ile Leu Asn Pro Pro Pro Ser Pro

Ala Thr Asp Pro Ser Leu Tyr Asn Met Asp Met Phe Tyr Ser Ser Asn

Ile Pro Ala Thr Ala Arg Pro Tyr Arg Pro Tyr Ile Ile Arg Gly Met

Ala Pro Pro Thr Thr Pro Cys Ser Thr Asp Val Cys Asp Ser Asp Tyr

Ser Ala Ser Arg Trp Lys Ala Ser Lys Tyr Tyr Leu Asp Leu Asn Ser

Asp Ser Asp Pro Tyr Pro Pro Pro Pro Thr Pro His Ser Gln Tyr Leu

Ser Ala Glu Asp Ser Cys Pro Pro Ser Pro Ala Thr Glu Arg Ser Tyr

Phe His Leu Phe Pro Pro Pro Pro Ser Pro Cys Thr Asp Ser Ser

<210> 5

<211> 3096

<212> DNA

<213> Homo sapiens

<400> 5

catcttctca cacgatctct cgcttcgcac tccttccttt gattggtttt caccatttac

tcagacgacg gtccttcttc gatctttgca cattcttcta tcatctacta ccttcatacc

cageteegte	ccctaatatt	catgcgcgga	tggcccattc	cgtggtgaaa	attcccttct	180
actctgctaa	tctgctgttc	tctctccctc	ccgtcgggtt	ctgctcctgc	cacgttctcc	240
cctctcccca	ccaaaggctg	ggttttcttt	gtcagggctc	ctttcccctt	tggaagaagg	300
ggggctgtat	ggccttggtg	cgaggccctc	cagtgacagg	atccccatc	acccagagtt	360
ccacaggccc	tggtagggag	gagggggagc	agaagaggag	gtgccatctt	tgcctgctgg	420
ggaagggcag	gggccaccca	cacagagete	tcccatttgc	tgtggaccct	ggggccactg	480
cccagttcct	tccaaaggaa	agccagctcc	ccaggtggtg	ggagagtgat	atggcttcct	540
cttaaactta	gggaattgag	tgtgtggttg	cttctaagtg	ccttagaagc	cgggagcggc	600
tcctggaaag	agcctgcctg	ccacagcggg	ccttaccctg	gctgtgccca	cagatgtccc	660
tggggcctgc	cgctcctgcc	cggctctcct	ggcctccccc	ggtgtgggtt	gggaaaagca	720
cagcaaatta	aaaaacacct	ccatctctgg	cctttgaaga	atgcatctga	acagccgaga	780
gtgtaaaccg	tggtgaaatg	tggtctttcc	agtttgggga	gaagcagggc	agagctgggg	840
cttttgtacc	cagggtttcc	aagagctcct	gcctccctcg	gctgggctgg	ccagggcccc	900
ccgctgggac	ctccagctgt	aatagggaag	gttttactgg	gttgctggcc	actgtggact	960
gcccctaagg	gcaggtatgc	ctgcctttac	ccgggttccc	ctcctgcctg	gaagatacag	1020
cccatgggag	gcctgttgtc	tgtgggatcc	tccagcatca	gagacactgg	ggccagcgtc	1080
tgcctggtga	ggtgcaggcc	tggcaggccc	ggtcccccac	ctgcttgagc	acccacggtg	1140
gtgggggctc	gctgcctccc	gagacaatct	atgtcattgt	tgtccaagga	agctaattta	1200
gagtagaaag	ttccgtgtcc	agtcccactc	tgtgcgtgtg	ttagcagggg	actctcgggc	1260
cggagctggg	tccaccctgg	tagggggact	tcatggggcc	tgggcgacag	cactgtgtat	1320
ttgtgtgtgt	gtgtgtttgt	gtgtgtgtgt	gtctgaggag	gtggaccagt	ttctcaaaag	1380
gcctgtgacc	ccaagaacca	aggaatttca	gcctgggtgg	atcacacctt	cactggtgag	1440
tgggacaagc	tgggggccct	cgccacagga	gcagccaggg	catggggcac	agttggcctc	1500
attcacaaaa	tgggagtata	agtgatccct	gctctggcgg	ccaggacgat	gagtgggaac	1560
acaccgtgtg	ggggctgcct	ggcctgggtg	tgccgcgggt	gtccttgttg	gtgatggttc	1620
cacctgcttg	tgccaccagt	gccctctggg	tctcacacac	aactctcttc	ccagcgaagg	1680
cccctcctgc	cctcaggcct	cagtgctgct	tccgtctcgg	aaggccccag	gageteetge	1740

atcctgggcg	tgattcctgt	gtgcctgcag	accccctcgc	ggctgccatc	tcatcctttg	1800
gtgcacctgt	tggccagacc	tcctggtagc	gggtgctgca	ctcccctgaa	tgtgccgggg	1860
cctgggggca	gggacctggg	ctcctccctc	actgagtgga	gggaactcag	tgtcttggag	1920
ttggggtgcc	tgcaggctgg	gtggtgcagg	tgaaatgcag	acctctcagc	tggtgttcca	1980
gagcagctgc	cttcccccgc	ccgagggact	tcacccgcag	cccagtcagg	ggtggcgcct	2040
gggtgcatcg	cccgcaggct	gggtaggggt	ggagcctggg	tggccctgcc	tgtgagctgc	2100
atagttgtcg	cctttgaccc	tgagttttct	tcgttatctg	tttggacctg	tttggggcag	2160
gcaggggatg	agatctgaag	ataaatgcct	tagctgtgac	catctccttt	tgtgagaggt	2220
caatgtccag	ttccgctgca	gttataacat	cccattttt	gatttctttt	tatttttcc	2280
ttttcttt	tgagatggag	tctcgctctg	tcacccaggc	tggagtgcaa	tggggtgacc	2340
tcagctcact	gcaacctcca	cttctcgggt	tcaagtgatt	ctcctgcctc	agcctcctga	2400
ctagcagggg	ttacaggcgt	gagccaccac	gcccagctaa	tttttgtatt	tttagtagag	2460
gcaaggtttc	gtcatgttgg	ccaggctggt	ctcaaactcc	tggccttaag	tgatctgccc	2520
gcctcggcct	cccaaagtgc	tgagatgaca	ggtgtgagcc	accgtgcccg	gcccagaact	2580
ctttaattcc	cacctgaaac	ttgccgcctt	aagcaggtcc	ccagtctccc	tcccctagtc	2640
cctggtccca	ccattctgct	ttctgtctca	atgaatttgc	ctaccgtaag	tacctcatat	2700
aaattgaatc	ataaagtatt	tgtcttttta	tatctggctt	atttcactta	gcataacatt	2760
cttaagtttc	atccatgttg	tagcatgtgt	cagaatctct	ctctttttt	ttttttttt	2820
tttttttt	ttttgcagac	agagtctcgc	tctgtcatct	agactggagt	tcagtggcac	2880
gatctcggtt	cactgcaaca	tctgcctcct	gggtccaagc	aattctcctg	cctcagcctc	2940
cttagcagct	ggaactacag	gcgcgtgcca	ccatgccttg	ctaatttttg	tatttttatg	3000
tggaggcagg	gtttcaccat	cttggccagg	ctggtctcga	attcctggtc	ttcaccacgg	3060
gggcccgaag	gacccgggca	aagcgtggag	gggagg			3096

<210> 6

<211> 26928

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (12044), (12489), (26433), (26434), (26435), (26436), (26439), (26441)

<223> Identity of nucleotide sequences at the above locations are unknown.

<400> 6

gaagaccaag ggcacacage gaggcagttt cagggcgggc agcctggggc cccacggggc 60 ggccccggac acttgttctc acctgtggag ggcagagaag ggaacaggga gagaagtggc 120 cggctgggag tggaggtggg tttgaggttt tactgtaaac taaatgtgta ccctctacct 180 tagttatgaa ttatgagaca cgaagactgc gaaacagaca cactcctcta aaagtgcctc 240 taggetgaca gggagaaagt eeegeeagge teeeagaege cacetttgag teetteaaca 300 agcccgccag ggcctcttgc ccaccggtgt cagctcagcc actgaaccct ccaggaagaa 360 gacgtgctgg taggagaaga atctcaccca ggcacagcct ggaaggggca cagaaggggc 420 teeggaacca geaageecaa gttggaacte ceagtetget actttetaga acqaetqtqe 480 ccttggcggg tctaagtaga acctctccgc gcactctttc ctcctttgta aagtggggac 540 agcaatggcc accttgcagg ttcagagagg gcttgcagta cctcacagaa ctgagtgccc 600 gtgaacgtgt gtgttcctcc agatttgtga cagctttgcc aggctggagt caggctgaac 660 gcctctgccc tcatggggtt tatattctag gaagaccaac aaaaacaaga agacggaaaa 720 ttaaaacaac aaaagcccca ttgacaggcc gtgaagaatg ccatgaaaaa tgaatggcgt 780 tgtgctgcag tctttgggga aacgggctta cggaaagaag gacacttgag ctgctaccaa 840 tgagcagccg tccggtggga gggcagttca ggaagagcag acatccactg aggaggcgct 900 ggggcagagg gcagcctggt cgctggattc gggggaggaa ccacatcagg ccatgagctg 960 gagctggtgg tagaatgtac aggagaggcc agccagggcc agctcatgtc agacctcaag 1020 cggggaagat gaatcgagaa tgcacccac gagcaatggg aagccagtct acgatttaag 1080 cagcaaaaat attttccctt cttccaccct gcatccagct ctaccagcac agcctggggt 1140

tctattttca agatagaata	gacccagact	cccagctctt	cttacacttc	tactactgcc	1200
acctgtcacc cactcatgcg	tccccacttg	cagcctcgac	ccccttccac	ctgatctcat	1260
ggcagccagg gaagctccag	ggctcgtgag	ggctgccatc	tcaggaaaga	agcaaaagcc	1320
tteggcacet geagggeetg	ctccaaccac	acttcttcct	tgacctctca	gcttccttag	1380
ccactccctt cccacatctc	accctgctcc	agccacagtg	gtgtctctgt	gggttctcaa	1440
acacaccagg tgcactcctg	cctcagggcc	tttgtgcttg	ctgttctctg	ctgggactct	1500
ttttttttt ttttttg	agacagggtc	tcactctgtg	gcccaggctg	gagtgtagtg	1560
gtgtgatcgt agctcattgc	aacctcaaac	tcctgggctc	aagcaatcct	cccacctcag	1620
cctctcaagt agttagcttt	tgttgttttg	ttttgagatg	ggatctcact	ctgttgccca	1680
ggctggagtg cagtggggca	atcttggctc	accacaacct	ctgcctccca	ggctcaagca	1740
atteteetge eteageetee	caagtagctg	ggattacagg	catgtgccac	cacgcccagc	1800
ttatttttgt atttttagta	gagacagggt	ttcaccatgt	tggtctggct	ggtcttgaac	1860
tcctggcctc agatgatcca	cctgcctcgg	cctcccaaag	tgctgggatg	acaggcatga	1920
gcctgtctct agtagttagg	actacagaga	ggggccatca	tgcctggtga	tcctcccacc	1980
ttttctgctc caactctttc	accccactta	gcctcgtggc	tcactctctt	acctcttcag	2040
ctcctcagtc aggcctgagg	acccctgttg	aaaattgcaa	accacacccc	ccaccaccac	2100
cacccactat tgccagcact	ttctactcca	tttctctgct	ttacttttct	cctttgtact	2160
catcaccacc tgactcatta	catgtttacg	tatctttctt	ctctccacta	gcatggaagc	2220
tccaggagag cagagagtgt	agttttattc	cctgatgtgt	ttcctgtgcc	cgtaccaggg	2280
cctagcacac agtaggtgct	cagtaaatgt	gtgttggatg	aacaaataca	gtgaaaggat	2340
ctgatctaca tttataaaga	aggcactctg	gctgctgagt	ggggatgaga	ctgtcaggag	2400
gaaagaggcc cctgtggggg	cctggccagc	aggtgggtac	aatggtagca	gccaggagag	2460
agggcctctt ggactcaagt	ggatggggcc	tgctcagggc	tccggccaca	ggaacaaagg	2520
gaagggggcc caggatggcc	tgtcatagag	gacacattac	aactggccca	aagttcaagt	2580
caggtttcta aatttgggaa	gggatacaga	aaaactaaag	actctactgg	acagtcagtt	2640
attgaaatga ttacatagaa	aatgtaccaa	gaattaaaaa	aaaaaaaaa	aagcattatg	2700
aaggggccac cagagactcc	cagagaggaa	agggactatg	ggctggatgc	ggtgactcac	2760

WO 01/77327 PCT/US00/16951

2820 acctataatc ccagcacttt gggaggccga ggagggtgga tcacgaggtc aggagttcaa aaccagccta ggcaacatgg taaaaccccc gtttctacta aaaatacaaa aaattagctg 2880 2940 ggcatggcag catgtgcctg taatcccagc tactcgggag gctgaggcag gagagttgct agaacccagg aggcagaggt tgcagtgagc cgagattgag ccactatgct ccagcttggg 3000 cgacagagca agactccgtc tctaaaaaaa agaaaaaaaa ggccagatga ggtggctcat 3060 3120 gcctgtaatc ccagcacttt gggaggccga ggtgggtgga tcacgaggtc aggagatcga gaccatcctg gctaacatgg tgaaactcca tctctactta aaatacaaaa aattagccgg 3180 gcgtggtggc gggcacctgt agtcccagct acttgggagg ctgaggcagg agaatggcgt 3240 3300 gaacctggga ggcggagctt gcagtgagcc gagattgcgc cactgcactc catccagcct 3360 3420 tgggettggt ggegggegee tgtaateeea actaeteggg aggetgagge gggagaatea cttgaacccg ggaggcagag gttgcaatga gccgatatca cgccactaca ctccagcctg 3480 3540 3600 gcctgggacc caaagcacac tactgcaagg teccagggtg cetgacteca aceggageet tgagaacatt catttgcaaa gaatgaatta aaattcagca ctattttatt ctgcaggatt 3660 ccagcacccc aaggacagtc atttttagac ccttcagtaa cgtaataagt aaccggagga 3720 tgtgctgagc ttccacttcc ccagacggtt gcctgtcaca gctcatcagg ccaacaaact 3780 tttcttaggc ctcaaatttg gaaatgttca ctctcagttc gttccttaga tgcaagtcca 3840 teccaatgaa gtaacagggg etcageacet gtecaatete attgetteeg gggacagggg 3900 cccatgagga tgtcgtttca gcccggtgac acttgggcaa agtgcctttt ggtttccctc 3960 ccaggctgga acgtgctggc tctgtgaagt tacgctgggc acaagagccc ccccaaccc 4020 ggcaggactg actgctgtgg tcagaggcgc ccctggggct ttgggagcca cagaatcttc 4080 ctgagggcag cgccggagga ggccccagtg agagtgccca ctgccaggct cattcctcag 4140 gctgccgcag gcctctcccc aaaacaggca atgcttctca gcaacctgcc ccaggagcag 4200 gccagggaag gccgccatcg gcctacagtg ctgggctctg gagggcttgg ttggtaacag 4260 gccatggttt ctatgagcca gctggggtgt gaaggacaca ggctggattc acctctctgg 4320 gcctcagttt ctgcattcaa aaagtgggaa tcatgatatc tgctctattt cttatctctc 4380

agtgctgatg	tgaacctcca	ataagacttt	taaaaatact	ctttctacct	tacttttatt	4440
tttcatttat	tttaagataa	tgtctagctg	tctcacccag	gctggagtgc	agtggtgtga	4500
ttacggctca	ctacagcctt	aacctcccag	gctcaagtga	tcctcctacc	acagcctccc	4560
aagtagctgg	aactacaggc	atgcaccacc	gcacctggat	aatttttct	tttgagacaa	4620
ggtttcactc	tgttgcccag	gctggagtgc	agtggtgcac	tcttggctca	ctgcagcctc	4680
aacctccctg	ggcttaggtg	atcctcacac	ttcagtctcc	caagtagctg	ggactacagg	4740
tatgtgccag	tacacccagc	taatatttt	gaaggatggg	gtttcactat	attgcccagg	4800
ctggtcttga	actccagggt	ttaagcaatc	taccttcctc	agcctgccaa	agtgctagga	4860
ttataggtat	gagccacccc	ccggcctata	atcctaccac	tttaaaaaag	cctgtaattt	4920
tagcacttta	aaaaattttt	ctaaattttt	tatagagatg	ggggacagct	gtggtctcac	4980
tgtgttgccc	aggctggtct	tgaactccta	ggatcaagcc	atcctcctgg	cctggcctcc	5040
caaagtgttg	ggattataag	cataagcctt	accttacctt	tttttttga	gttgcagttt	5100
tgttcttgtt	gctcaggctg	gagtgcaatg	gcaagatctt	ggctcactgc	aacctccacc	5160
tcccgggttc	aagcaattct	cctgcctcag	cctcccgagt	agctgggatt	acaggcatgc	5220
gccaccacac	ccagctaatt	ttgtattttt	agtagagatg	gggtttctct	atatacctta	5280
attttaaagc	actgcattca	tgtaaattgt	gattaacatg	gattcaagag	agggagtgag	5340
gatgaatgag	ccaggcagtc	acctcggctg	tcaccctcca	cttctctcct	ccttctgaca	5400
gtcatcgtcc	atccgtttct	gcagctgttt	gtttgactct	cctgatcatt	ttgcttgcca	5460
cataacttgc	ctcctgggaa	agaatgccct	gggcaggccc	acatgagtag	t gaaaaataa	5520
tctgcagtga	aaaataaaac	taagtagtct	ggtccacaga	gcagtcttat	tttttcactg	5580
cagatgaagg	agttgacatt	caggcttcat	tctcatttat	aagtgtttta	aagacacata	5640
cagtggattg	aacagtggcc	ttcaaaaaga	tgtatctaca	tcctaatccc	tgggacctgt	5700
gaatgttaac	caagttagga	aaagggtctt	cccgggtgtc	attaagttag	agatettgag	5760
atgaggagct	catcgtggat	tatccaggtg	gaccctgcat	ccaaggacaa	atggtcctta	5820
gaaaagaaaa	gcagaggctg	ggcacagtgg	ctcaagcctg	taatcccagc	actttgagag	5880
gccgaggtgg	gtggatcacc	taaggtcatg	agttcgagag	cagcctggcc	aacatgatga	5940
aatcccatct	ctactaaaaa	tacaaaaatt	agcaaggcat	ggtggcgggt	gcctataatc	6000

WO 01/77327 PCT/US00/16951

ccagctactc	aggaagctga	ggcaggagaa	tggcttgcac	ctgggaggcg	gaggttgcag	6060
tgagccaaga	tcgcgccact	gcactccagc	ctgagggaga	aaagtgaaac	tctgtctcat	6120
aaaagaaaag	aaaagcagac	agagatctga	gacagaagag	gagagtgaag	gaaaaaaggc	6180
catgtgaaga	tgaggcagag	gttggagcca	tgcagccaca	agccaaggaa	tacctggagc	6240
cccagaagtt	gcaagaggta	ggaagaagcc	tcccctagag	cctccagacg	gagcacagcc	6300
ctgccaacac	ctccacctca	gacttctggc	ctccagcact	gtgagataat	caactgctgt	6360
tgttttaagc	caccagattt	gtggtaattt	gttatggcag	ccacaggaaa	ctaatacagt	6420
acctaatctt	cacaaaccca	tcttacagaa	aaggaaactg	aagtcagaga	ggtagtggct	6480
tgtgcagtgt	gttaggccat	tcttgtatta	ctataaagaa	atacctgagg	ccgggcatgg	6540
tggctcacgc	ctgtaatccc	agcactttgg	gaggccaagg	tgagtggatc	acttgaggtc	6600
aggagttcaa	gaccagcctg	gacaacatgg	tgaaacccca	tttctactga	aaatatgaaa	6660
attagccagg	catggtggcg	tgcatctgta	gtcccagcta	ctcaggaggc	tgaggcagga	6720
gaatcacttg	cgcccgggag	gaggaggttg	tagtgagcca	agattgtgcc	actgcactcc	6780
agcctgggag	acaagagaga	aaccctgtct	caaaataaat	aaaaaacaaa	taaacacctg	6840
agactgggta	gtttataaag	aaaggggtta	actggctccc	ggttctgcag	gctgtacaag	6900
catggtgccg	gcatctgctt	ggttgctggg	aaggetteag	ggagttttac	tcatcgtgga	6960
aggcagagcc	agagcaggtg	catcacacag	caaaagcagg	agcgagagag	agagagagca	7020
gggaggtgtg	cacactttta	aatgagcaga	tctcacgaga	actcaccatt	gcaaggacag	7080
caccaagcca	cgaggggtct	gcccccatga	cccaaacctc	ccactaggcc	ccacccccaa	7140
cattgggaat	tacagttcaa	catgaggttt	gggggacaa	atatccaaac	tatatcattc	7200
cacccctggc	ccccagatc	tcatgttctt	ctcacattgc	aaaatatagt	catgccttcc	7260
cagtagcccc	ccaaagtctt	aactcatcce	agcattaact	caaaaatccc	attcccaagt	7320
ccaacgtctc	atctgaagat	gagttccttt	cacctacaag	actgtaaaaa	tgaaaacagt	7380
tatttactgc	tgagatacaa	tgggggcata	ggcattaggt	aaacattcct	gttccaaaag	7440
ggagaaatcg	gtcaaaagaa	aggggctata	ggccccaagc	aagtccaaaa	cccagcagag	7500
caatcattca	atcttaaagc	tccaaaataa	cctccttaaa	ctccatgtcc	catagccagg	7560
gcacactggt	gcaaggggca	ggctcccaag	gccttgggca	gctctattcc	tgcggctttg	7620

cagaattcag tccccatggc	tgctcttaca	gattggagat	gagggcctgc	ggcttttcca	7680
ggtgcagggt gcaagctgct	ggtgatctac	cattctgggg	tgtggatggt	ggcggccccg	7740
tcccgcagct ccactaggca	ttgtcccagt	ggggactcta	tgtggggcct	ccaaccccac	7800
atttcccctc caatgggaag	gctctgcccc	tgcagcagcc	ttcttcctgg	gctcccaggc	7860
tttctcatac atcctctgac	atctaggtgg	atggtgtcaa	gcttccttca	ctcttgcact	7920
ctgcacacct acaggcttaa	caccacatgg	aagctgccaa	ggtgtatggc	tggaaccctc	7980
tgaagcagca gcctgagctg	tgactatggc	cctttgagcc	aaggctggag	ctggaacagt	8040
ctagatgcag gcagggagca	gtgtcctgag	gctgtgcaga	gcagcagggc	cctgtgcctg	8100
gacaatgaaa ccattctttc	ctcctcatcc	tctgggcctg	tgatgggagg	gttgtggaag	8160
atctctgaaa tgcctttgag	gcctttttgc	ctctgaggcc	tatttcctat	tgtctcagtt	8220
attggcagtc ggctcctttt	tagttatgca	aatcctctag	caagaggtta	ctccactgcc	8280
ggcttgaact cctctcctga	aaaagctttt	tctttctttg	tcacatggcc	aggctgcaaa	8340
ttttccaaac ttttatgctc	tgttttacct	ttaaatataa	cttctaactt	taattcattt	8400
atttgctcct gcatttgagc	atagggaatt	caaagaagct	gggccacatc	ttgaatgctt	8460
tgctgcttca aaatttatgg	ccacgcttgg	tggctcacac	ctgtaatccc	agcactttgg	8520
gaggcctagg tgggcagatc	acgagatcag	gagatcgaga	ccatcctggt	caacatggtg	8580
aaacccatct ctactaaaaa	tacaaaaaaa	ttagcttggt	gtggtggcgc	agacctgtag	8640
tcccagctac tggagaggct	gaggcaggag	aattacttga	acctgggagg	cagaggttgc	8700
agtgagccca gatcatgcca	ctgcactcca	gcctggtgac	agaataagat	ttgatctcga	8760
aaggaaggaa ggaaggagga	agggaagaaa	tgtcttcccc	ccagatgtcc	tgggtcatcc	8820
ctcttatgtt caaacttcaa	cagatcccta	gggcatgaaa	ataatacagc	caaattattt	8880
gctaaggcat aacgaaagtg	acctttgctc	cagttcccaa	taagttcctc	atttccatct	8940
gagactcatc accetggeet	tggcttgtcc	atatcactgt	cagcattttg	gtcacaatca	9000
tttaaccagc taatcgggag	gctgaggcaa	gaggatcact	tgaacccagg	aggttgaggc	9060
tgcagtgagc tgtgatcaca	tcactgcagt	ccagcttggg	caacagagca	agatectgte	9120
tcaataaata aataaataaa	tacataaata	acttaagttt	atttaaagct	gcatctttgc	9180
caccatggag aaaggccagg	ccagctcctt	ctctcttct	gcacgtgtte	ctcccacctc	9240

agctgcctct	gctcctcaag	gaggaacaga	gggagtagga	aaggccatcc	caggaggccc	9300
agcaccccat	gacctggctc	tggggccttg	tgggtttatg	gattcccagt	gctgagtcat	9360
ccctcacagg	ctcttgtggg	caccttggac	attggtcaga	agcatgtggt	ccccgggaac	9420
acaccttttc	ctgatcatct	gggaagggca	gcttgtgcca	gcgaggccac	ctgttcagcg	9480
ccacggcccg	ccagacagct	gcagccacag	ccttgccttt	gatcagagca	aacaccagac	9540
atgtgtgtca	tgccccaac	ccatctccag	gggacacatg	tcctttcttg	ccaggcctga	9600
gatgaacaag	agagggacaa	gtccccaagc	ctctctcc	ttcctgcctc	acccactccg	9660
ctgttagatt	ctcaaggtgg	atggtgggct	aactagggca	accgaccatc	ctggtttacc	9720
tagaactgag	ggggcatttt	caggaataaa	actgcaaaag	tctggagcaa	acaggagcaa	9780
gttggtcact	ctggggctgg	tggagtcagg	tttccttctg	caggccccct	ccccgcaagc	9840
atgggtggaa	cccaggacag	gaacacagag	caggccccag	gaccgggctt	gtcacttaca	9900
agtcttttt	tttttttt	ttttgagatg	gagtettget	ctgtcatcag	ggctggagta	9960
cagtggtgcc	atcttagctc	actgcaacct	ctgccttctg	ggttcaagtg	atccccctgc	10020
ctcagcctcc	tgagtagctg	ggactacagg	tggcaccacc	acgcccagct	aattttttgt	10080
atttctagta	gagatgagat	ggccaggctg	gtcttgaact	cctgacctca	agtgatctgc	10140
ccgccttggc	ctcccaaagt	gctgggatta	caggtgtgag	ccactgtgcc	tggccccact	10200
cacaagtctt	aaaccatgcc	tcagcacatc	aatgccattt	acaaaaaggt	agagggattt	10260
tccaggcaaa	aatagatgaa	agacatagga	tgattgatca	tgtcctgctt	aaacataggt	10320
ctgatgctat	taagaattga	gggctgggag	cggtggctca	cgcctgtaat	cccagcactt	10380
tgggaggccg	aggcgggcgg	atcacgaggt	caggagatcg	agaccatcct	ggctaacacg	10440
gtgaaacccc	atctctacta	aaaatacaaa	aaatggccgc	gcgcggtgac	tcacgcctgt	10500
aatcccagca	ctttgggagg	ccaaggcggg	cggatcacga	ggtcaggaga	tcgagaccat	10560
cctggctaac	acagtgaagc	cccgtctcta	ctaaaaaata	caaaaaaaat	tagccaggca	10620
tggtggcggg	cgcctgtagt	cccagcaact	tgggaggctg	aggcaggaga	agaatggtgt	10680
gaacctggga	ggtggagctt	ccagtgagcc	gagatcacac	cactgcactc	cagcctgggc	10740
gacagagtga	aactccatct	caaaaaaaaa	ataaataaat	aaataagaat	tgttagtatt	10800
ttgcaggtgt	gacaaatgat	tctgtttctg	tggcagaatg	ttctcaggag	atctcttttg	10860

WO 01/77327 PCT/US00/16951 50

aactctcatg	gaaagcatca	tgctgttggc	aacatcacat	ttattttat	ttatttatta	10920
ttttttagag	acagggtctt	gctctgttgc	ccaggctgga	gtgcagtggc	acaatcacag	10980
ctcactgcag	cctcaacctc	ctgggctcaa	gcaatcctcc	tgcctcagcc	tcccaaagta	11040
gctgggacca	caggcgtgag	ccactgcact	cagcccaatg	taccttcaat	atttacattt	11100
ctggcaaagg	tagcaaaacc	ttaacaaatt	ttgaatctag	ataataaaat	tatgaggctg	11160
ggtgcagtgg	ccctgacagg	gatggctcac	atctgtaatc	tcaacatttt	gggaggccaa	11220
ggtaggcgga	tcacctgagg	ccaggagttt	gagaccagcc	tggccaacat	ggtgtaaccc	11280
tgtctctaac	aaaaatacaa	aaaaattagc	cagacgtggt	ggtgcacgtc	tgtcatccca	11340
gctactaggg	aggctgaggc	aggagaattg	cttgaacccg	agaggcagag	gttgtgatga	11400
gccgagatcg	cgtcattgca	ctccagcctg	ggcaaaagca	agagcgaaac	tctctctcca	11460
aaaaataaaa	aaaaaataaa	ttaatgaatt	aattaaaata	aaataaaata	atggatagtc	11520
actgtaaaga	aaaaataaat	gtatatatca	gccaacaagt	gatggaatag	agcaccccat	11580
ctccctggct	ggacagatac	atcccacaac	acctggaagg	cggctccatg	tagaactttc	11640
tggactgctt	gaggtgctgt	gctggagcac	ggtgacagag	gagctggacc	atggacctcc	11700
cccggccccc	accaagggcg	aggtccccct	gtggtgggtc	tgagggaggc	atccgtatgg	11760
cctctgcggc	ttgggcaggg	aatttggggt	ccaagtactt	ggtgcaaagc	ctggaaagag	11820
ggtttgggtg	ctgagggcat	atcccctggg	ccacatgggg	gcagaagtgg	ggccccctga	11880
agcttggagt	cctgggcagg	ggcatctatt	ttgctgtctg	aggccttcag	tacttgaagc	11940
aaaatggagg	cagaatgtcc	caccttaatg	cccctgattc	ctccaaacca	attccagaga	12000
cagcaagggc	cagaacaggg	atggccctgc	ccagggtcat	gcancgagga	agtggccagg	12060
ctgggatctg	aacccaggct	aatcccctcc	cttgtcctcc	tccaggccct	cacccctgca	12120
tagagccctc	cagctcactc	atcctcggcc	agctccatct	cctcagcttg	taaacccccc	12180
cgggattttc	ctttcttaaa	aaacaaaggc	ttggccaggc	acggtggctc	acgcctgtac	12240
tttgggggtg	gctcccagca	ctttgggagg	ccaaggtggg	cggatcatga	ggtcaagaga	12300
ttgagaccat	tctggccagc	atggtgaaac	cctgtattta	ctaaaaaaaa	aaaaattaac	12360
tgggcatggt	ggctagctac	ttaggaggct	gaggcaggag	aatcgcttga	acctgggaga	12420
aagaggttgc	agtgagccaa	gatcgcgcċa	ctccacttta	acctggcaac	agaacaagat	12480

tccgtttcna	aaaacaaaca	aacaaacaaa	taaacaaaaa	aaggcggagc	gcgatggctc	12540
gcgcctgcaa	tcccagcact	ttgggaggct	gaggcgggcg	gatcacttga	ggttaggagt	12600
ttgagaccag	cttggccaac	atggtgaaac	cccatttcca	ctaaaagtac	aaaaatcagc	12660
caggtgtggt	ggtgggtgcc	tgtaatccca	gctactcagg	aggctgaggc	aggagaatcg	12720
cttgaaccca	tgacctggag	gctacagtga	gctgagattg	cgccactgta	ctccagcttg	12780
ggcaacaaga	tttgtttctc	taaaaaaaaa	aaaaaaaga	ctggcccttc	cccttcagct	12840
cttcctcagg	gtccctgagc	actctacacc	cccgtctaca	ctgagcactc	caccctgctg	12900
tctacactga	gcactccacc	ctgccatcta	cactgaggac	tccaccccac	tgtctacact	12960
ggctgcctcc	cgccctcacc	tcctgctaag	gccattcccc	gctgcatctg	tcttctagat	13020
tctgcagcct	tcagcacgct	gggcccctcc	tttgtcccct	tgagccacct	ccagcctccc	13080
cctgagctgc	tactcctctc	ccagcagcct	ccacccaagc	ccctccagtc	cccaagetgt	13140
cccttgcatc	cagcactgcc	cttccacgtg	cccttccct	ccagettcae	agcagggtgg	13200
ggcctccagg	ccctgcccac	tgtgcccatc	cacaagttgt	ggtgggagct	ccgaggggag	13260
gcaggggtgt	gcatggactt	gggacgtcca	agtctgggac	caggggcagc	tggttggtgg	13320
agtgtggagg	gggataggga	ctttcaggta	gagaggctgt	aggggcaaga	tcgggacggc	13380
ggatgtccct	aaggagggct	ctgacctggg	aaatattgtg	cagcttcctc	tttgccattc	13440
ctggagctca	gacactggcc	ggctctcacc	ccgcccttcc	tgcaggacac	agctccatcc	13500
cagtgagttc	ctagtgtaga	catctccagc	agcacggatg	ggaaaggaag	tcatcaaagg	13560
tgcccaggac	cggaggcttt	ttctggaggt	ggcagaggag	ggtgtgggtc	tcagggctct	13620
ggctgagggc	aagcgtggga	ggtcttaggt	ctgcaccagc	cccgtgaagg	cccctcctgc	13680
tccctggtgg	agtcctagag	ggaacagcag	cccctaggct	ctagcaggag	tgggtagggg	13740
cttttctggc	ttcctactgt	gccagcagga	tagctgggcc	tggcactgag	cccaaagatc	13800
acatgccggg	gcattggcgc	agtgaggaac	agacccttgc	caaagctggc	aaagaagacc	13860
ccatggggtg	cagctggtga	agctgagagc	tcaatgtttg	ggggagcctg	gcaaaagggg	13920
tcctcccctc	cctctgcagg	ccaggatcgc	aggttttccc	tacatgttgg	taattctcaa	13980
acaatcccat	ggccactgga	gcaaagatca	cagtgggcgg	cggcctcggg	agcagtggac	14040
agggcacgca	gtgcctttga	tgccagagcc	ctcgccccaa	agtcaacaaa	ctctgcagcg	14100

WO 01/77327 PCT/US00/16951 52

gactttgcac	ccggactttg	ttttcaccat	acaaggaaag	ggacagatca	caggccctct	14160
cgctgccctc	gctgagccgg	aagctgcagc	gtgagctctc	tcaagcccca	tttctaggtt	14220
ccccaggcgc	acccctgagc	ccctactcgc	ctattaagtt	ctcctaatag	cccttcaagg	14280
tcttaatgta	tgtccattag	acagagggga	aaactgaggc	gagggcaagt	gacttgaccg	14340
aggttcctcg	gcgagcaggg	cgtggagctg	agaacctcgt	tattactgct	ccccacacaa	14400
ccctctggcc	gttcttggaa	gaaggctgag	ccccgggggg	gccagagtga	cccaaacacc	14460
atgggccgcc	tgcggtaaca	cgtgcggcca	cgaaggggca	gcagtttccc	gcccggccgg	14520
gctctctccg	gcgctcagta	tccgtcccag	gccaagaaga	agaaactcgg	ggaggagggc	14580
ggaggggct	gcgtgggagg	gcgtggaaga	tggacgtggc	caggggagtg	gcagctgcac	14640
acagtggatg	ctgttaagat	gaagggaaag	aacgtgggct	ccgagatcac	tggacacggt	14700
tccacctttc	ttcccgctca	ctgcatggcc	ctgggcgggt	tgttgaaccc	ttggaaacct	14760
gtttttcctt	ttttcctttt	tttttgagac	agggtcttgc	tctgtggccc	agactggagt	14820
gccgtggcac	gatcttggct	cactgctgcc	tcccaggttc	aagtgatcct	cccagctcag	14880
cctcctgcgt	agctgggacc	ccaggtatgt	gtcaccacag	ccggctaatt	tttgtatttt	14940
tttgtagaga	cgggatttcg	ccgtattgcc	caggctggtc	tcaaactcct	gagttcaccg	15000
gatetteetg	cctcagcctc	ccaaagtgct	gggattactg	gcatgagcca	ccgcacccag	15060
cagagacctc	agttttctaa	cctgtgccag	caggaataat	gatagctgcc	tagcttggct	15120
gtgctgggaa	ttaagtaaga	tgaccgggta	gcaaatatga	agtattactg	gacacagagg	15180
gccccaggct	gggttagcag	cggtggtcag	ggctgctgct	tcctggcctg	agctcgaagg	15240
agggccctca	ttaccacctg	ggtgagtcct	cgtccaagcc	tggcactgct	gcgtgggaat	15300
aacttctgcc	acccaagttg	gcagattgtg	tgcaaagtta	agtcctgact	ctgtggggtg	15360
gacttcgagg	cctcttcatc	ggacctgctt	ccggtgactg	cattcgcacc	tcctcctgtt	15420
cctggtttaa	cacageceag	ctttcctcct	gctgagccct	ccctgggcct	gctgtcaccc	15480
tegtgeeget	gtgcctcgca	gtgccactcc	ctgtaccctg	aatactttgc	cctgcctctc	15540
cacccagctg	agagtcaggg	cccctgtgag	gctctgccca	gcccgtcctc	cg ggtttctg	15600
cctctgctga	gcacttccct	gcatgattgc	ttctgagagt	cccccagcc	tgtgagcttc	15660
tcaggactgg	gacagcttct	caggaccgag	gcttcctggt	ctgcttgcaa	ttttacaggc	15720

gggcacattt	tcccttggcc	aacatcagag	actggacatc	tgcagatctg	tgctagccac	15780
tgagcaccca	ggcaccccag	caggtagctc	tgtaaccaac	ccattctgta	aagctgaggc	15840
tcagagaggt	gaagcgcctg	gcctggggcc	acagcctgcg	tcagctgcag	agccaggagc	15900
tgagatatgc	acctgcggct	ctgctcacag	ggtcctgcac	agactgctgc	tggagccacc	15960
tatgtagagt	caagagagtt	catgttaact	ccctctcaca	tccctcagcc	agggtgggg	16020
ctgacgatag	acactcaggg	atggcctacc	ctccccaaca	accccgtca	ggtttgccgg	16080
atctccttgg	aagaaaagtt	ctgggcagaa	ttccaccgtt	ggcctggcct	acactctcct	16140
tagtggctta	ggaccctcag	cggtggataa	gttgtgggca	gaagagatgc	aatcaggatt	16200
ctcacccact	caccccttgc	cagccccaat	aagctcaata	agctgggctc	ggtctgagga	16260
agtgtccagg	aaatgtgcaa	atggcctggg	acagccctgt	gttcctttca	gtaaggttgc	16320
tgaaggtgag	gctgaaagtt	ggagaaacag	aagccagtgc	ttatggtttt	aattaagata	16380
atggaatgta	tgtatgtatg	tatgtatgta	tgtatgtatt	tatgtattta	tctttagaga	16440
tagagtctca	ctctgttgcc	caggctggaa	tgcggtgaca	caatcatage	tccttgcagc	16500
ctcgacttcc	tatgcccaaa	tgatcctcct	acctcagcct	cctgagtagc	tgggactaca	16560
gacacacgcc	aactatgcct	agctaatttt	tatttctatt	ttttgtggag	actgggttct	16620
cactttgttg	cccaggetgg	tcttgaaccc	ctagcttcaa	gcaatcctcc	tgcctcagcc	16680
tcccaaagtg	gagggattac	aggtgtgagc	caccacacct	ggcctggaat	ttatttgtat	16740
tctgcttata	aaattaatac	attcttattg	cagaaaagtt	tgaaaataaa	agaaaggaca	16800
aagaacaaaa	agcgtatata	atttcacagc	tcagatctca	ctgctattaa	catttttatt	16860
tactttcagg	cttttttctt	tctaggtaca	tatgcagaga	ttattttatt	ttatttattt	16920
tattttatat	tttattttat	atttttatt	tcattatttt	attttatttt	attttattat	16980
ttttagagac	agggcctcac	tctgtcaccc	aggctggagt	acaatggagt	gatcatagct	17040
cactgcagcc	tcaaacacct	gggctcaagc	aatcccccca	ctcagccttc	tgagtagttg	17100
ggactaaagt	gtgagtctgg	ctaattttt	ttactttttg	tattgacaga	ggtctcacta	17160
tgttgcccag	gctgatctca	aactcctggg	ttcaagcgat	cctcccacct	tggactccca	17220
aagtgctggg	attacaggca	tgagccacca	tgcctggcct	aaaatgccac	tttttgtcat	17280
ttactaaaat	cccatggaca	ctttgacatg	tctgtattct	atgctattga	tctgactgtt	17340

ggcatctaca tcattatggc catctatcat ctatcataat ccattttaac attaaaattg 17400 tgctgctgct tagatttttc tggcctgtct cctatttgta ttcttccaga taaattttag 17460 aatcatttta tcaaattccc cttgcagaaa aagccctatt ggattttggt tgaaaaatac 17520 tgaattttta cattaactta ggaaagggct gggcacggtg gctcacgcct gtaatcccta 17580 cacttttcga ggccaaggca ggtggatcac ttgaggttgg gagtttgaga ccagcctggc 17640 caacatggtg aaactcggtc tttactaaaa atacaaaaat tgccaggcgc attggctcac 17700 ctgtaatccc agcactttgg gaggccgagg tgggtggatc acgaggtcag gagatagaga 17760 ccatcctggc taacacggtg caaccccgtc tctcctaaaa atacaaaaaa ttagccaggc 17820 gtggtggtgg gcgcctgtgg tctcagctac ttaggaggct gaggcaggag aatggtgtga 17880 acccaggagg cggagcttgc agtgagccaa gatcgcgcca ctgcactcca gcctgggcga 17940 cagagtgaga ctccatctca aaaaaaaata ataataataa tacaaaaatt agccggggt 18000 cgtggcgtgc acctataatc ccagttactt gggaggctga ggcaggagaa tcgcttgaat 18060 ccaggaggtg gaggttgcaa tgagcagaga tcgtgccact gtactccagc ctgggtgaca 18120 gagtgacact ctgtgaaaaa aaaaaaaaaa ttctgaagga ttgagactct tagactctta 18180 ggtcttccta tccaagagca caatatagct tttcatgtat tcaagccttt ttcaatgcat 18240 caacagaatt ttacagtttt tttcatgata tcctgctatt tcttataaaa tgtattccta 18300 gatattctgc atgttttccg gttgtttgtt aataaatatt tttcatttgt cattatttcc 18360 taattggctg ttatttgtat atatgacatc tgttgaattt tttgattact ttqaaaatqq 18420 ccattctttt gtgttttttt ttaactttct attttgagat aattttgact tacagaagat 18480 ttgcaaaaat agtacagaga gttcctgttt cccccttatg ttaacccagt ttctccttat 18540 gttaacatet tacataacta cagaacaatt gtcaaateta agaatcaace tgggcacaat 18600 gctattaact aaactgcaga agctgttcag atctcaccag ttcttctact gctccccttt 18660 tetettecag tgtteaatee ggaateetae attatattta gttgteattt etetttggtg 18720 tcttccaatc tgtgacagtt cctcagtctt tctttgtctt tcatgacttt catttttta 18780 tacttttgaa aaatactggc cggttgtttt gtagaacgcc ctcagtttgg gtttgcctga 18840 agttttttgt gattagatcg aggtcatgca ttattggaga gggtgccacc gcctcgatgt 18900 gcaagctcaa tgcatcatat cagagggttt gtaatgtcag tttataccgc cggagaccct 18960

aacctggagc	atttcgtgaa	ggtgctgtct	gccaggattc	tccactagaa	agttactatt	19020
tttccctttt	taattactga	atgtctgagg	ggaaatactt	tgagactatg	caaatatcct	19080
gtttctgctt	taacttcggc	tcactaagtt	tagcattcat	ctatggatct	cgcttatagc	19140
aagtattact	gtggagttct	aatggtaatt	ttctgtttct	ctcattcctt	caacctttat	19200
taatatgctt	cttcctcact	tattcatttt	gtttċagttg	tttataccaa	catggatttg	19260
tggatattgg	ttttattctt	tgggttgcaa	ttgaatccta	tcattattt	gttagtcagt	19320
tgttccatcc	gaccttggtc	attaggagcc	cttgaaattt	ggctcccatg	ccttttttt	19380
ttttttgag	accgagtctc	actctgtcac	ccaggtttga	gtgcagtggc	atgatcttgg	19440
cttcctgcaa	cctccgcctc	ccaggttcaa	gcaattctcc	tgcctcagcc	tcctgagtag	19500
ctggtattat	aggcgctcca	ccaccttgcc	cggctaattt	tttgtatttt	tagtagagat	19560
ggggttttat	tatgttggcc	aggctggtct	caaactcctg	acctcaggtg	atctgcccgc	19620
ctcggcctcc	caaagtgctg	ggactacagg	cgtgagccac	cacacctggc	ctcctatgcc	19680
attttaacat	gcccgtcttt	tettttett	tcctactttc	tgtgactgta	agaagctcca	19740
ggatacattt	ttgctgccct	agacttagcc	tcaatcagtt	ctcagaaaag	ctctggttct	19800
ttttatggga	tacttagaaa	actagetetg	tatggcctgg	cgcggtggct	cacgcctgta	19860
atcccagtac	tttgggaggc	cgaggtgggc	agatcacaga	tcacgaagtc	aggagatcaa	19920
gaccatcctg	gctaacatgg	tgaaactctg	tctctactaa	acatacaaaa	aattagtcca	19980
ggcgcggtgg	egggegeetg	tagteccage	tactcaggag	gctgaggcag	gagaacggca	20040
tgaacccggg	aggcggagct	tgcagtgagc	cgagatcggc	agccactgca	ctccagcctg	20100
ggccacagag	cgagactccg	tctcaaaaaa	aaaaaaagga	aaaagaaaaa	agaaaactag	20160
ctctgtatgc	tagtttttt	tttaagacag	ggtctctctt	gccccagctg	gagtgtagca	20220
gcacgatcac	agctcactgt	agcctcaacc	ttctgggctc	aagcaatcct	cctgcctcag	20280
tetectaagt	agctgggtct	acaggcatgc	accaccgtac	gtggcaattt	ttaaaaactg	20340
tttgtagaga	tggagtctcc	ctatgttgcc	tggtctggaa	ctcctggcct	caagtgatcc	20400
tectgeeteg	gcctcccaaa	gtgctgagat	tacaggcatg	agccactgta	cctggcctgg	20460
ccaaggtctg	tctttttta	aaagaagttg	ttgtatagtt	gtttttttt	ttatttttt	20520
ttctgagacg	gagtctcgct	ctgtcgccca	ggctggagtg	cagtggtgcg	atctcggctc	20580

WO 01/77327 PCT/US00/16951 56

actgcaagct	ccgcctccca	ggttcacgcc	attctcctgc	ctcagcctcc	cgagtagctg	20640
ggcctacagg	cgcccgctac	cacgcccggc	taattttttg	catttitagt	agagacgggg	20700
tttcaccgtg	ttagccagga	tggtctcgat	ctcctgacct	cgtgatccgc	ccgcctcggc	20760
ctcccaaagt	gctgggatta	caggcgtgag	ccacegegee	cggcctgttg	tatagttttt	20820
atctcgagtt	ttctagcgat	ttaatcatat	tggttacaaa	aaaggatgat	tttactacct	20880
cctttccaat	gtttctacat	atttttcat	tttatctaac	tgcattttaa	aataaacttt	20940
taattttaga	atggtttcat	atttacagaa	aatgtgcaaa	gatagtacag	agagttcctg	21000
tgtactccac	acceggtttc	cttattatta	tcttaacgtg	atacacaatt	aataaaccag	21060
taacattatt	attcactgaa	gtccacactt	tctttttt	tttttctgag	acggagtcta	21120
cttctgtcac	ccaggctgga	gtgcagtggc	gcaatctcgg	ctcactgcaa	cctccacctc	21180
ctgggttcag	gcaattctgt	ggctcagcat	cccaagtagc	tgggaataca	ggtgcccgcc	21240
accacgcccg	gctaattttt	tgtattttta	gtagagatgg	ggtttcacca	tgttagccag	21300
gatggtcttg	aactcctgac	ctcgtgatct	gcctgcctca	gcctcccaaa	gtgctgggat	21360
tacaggcgtg	agccaccgcg	cccggcgtcc	atactttctt	tagatatcct	tcctttttac	21420
ctaacgtcct	tcttctggtt	caggatccca	tccagaaagc	aacattaccc	ctcgccatca	21480
cgtcttcaca	ggctcccctt	gacgggaaga	gttcctcaga	ctttccttgt	ttttgttgac	21540
cttgacagtt	ttgaggagga	ctggtatctt	agtctgtttt	gtgctgctat	cacagactag	21600
ctgagaccga	tacatgatac	atgaaaaaaa	atgtattctt	acagttgtgg	aggctgggaa	21660
gttcaagacg	aagttgctgg	ttggtttggt	ctctggtttc	aagatggcgc	cttgctgctg	21720
catcctctgg	agaagaagaa	tgcggtgtcc	tctcactgca	gaagatggaa	gcgctaaaag	21780
gaatgaactc	cctttgccaa	gccattttat	aatgggcatt	aatccacaaa	ggatgaaacc	21840
ctgagaaaca	tcaagcttta	aagcactggt	tctcaacctt	tttggtctca	ggagcccttt	21900
atactcttaa	aacgttttga	ggatcccaaa	aaaaggcttc	tacaggttcc	atcttttaat	21960
atttaccata	tcaaaaatta	aactgaaaaa	attttaaatt	atttattcat	ttaaaataac	22020
aaggataaac	ccattacatg	ctaacataaa	tcatgtattt	tatgaaaaat	agctatattt	22080
atcaaaacaa	aaattagtga	gaagagtggc	atgtataatt	ttttttgttt	attttttgtt	22140
tttagatgga	atcttattct	gtcgcccagg	ctggagtgca	gtggtgtgat	ctcggctcac	22200

tgcaagctct	gcctcccagg	ttcacaccat	tctcctgcct	cagcctcctg	agtagctggg	22260
actgcaggtg	cctgccacca	cgcccggcta	attttttgta	tttttagtag	agatggagtt	22320
tcaccgtgtt	agccaggatg	gtcttgatct	cctgaccttg	tgatccaccc	gcctcagcct	22380
cccaaagtgc	tgggattaca	ggcttgagcc	actgcgtctg	gcctaaattt	ttgtgaatgt	22440
ctttaatgcc	tgccttctca	tatttgtttc	tgcattcaag	ttattgcaaa	atgttgtgtt	22500
ggttgaagtt	tgtaaagaaa	atgtggcctc	atacagttgt	gtagttggaa	aggcaagagt	22560
attttgattc	tctcttcaaa	caactatgga	caacctgctg	ttacaaaacc	agaatgcaaa	22620
aagttgtagt	aaatacaggt	taggtgtagt	gtggaatctg	aaagcatgtg	aatgaacttt	22680
ctgagttttg	taacattaaa	gtccagttgc	gttaagctac	tgtgatagca	tatagcattg	22740
tcctaatact	ggaattagta	tcagaagtgg	ggtgctactg	ttaataaata	aaaagaaata	22800
aataaatcat	gtgatactgg	ctcagaagtc	aggcagtagg	ctgtgtggaa	cctgacatca	22860
cgccatgtaa	tacattggca	accatttgat	ccagctgtct	gtcatgatga	cttggaaagt	22920
caaccacata	cttacagagc	ctgtagacat	aggggaaaat	agtataaaac	agaatactaa	22980
cagtggacct	tggttcttgc	cagttgcatt	tagccaaata	ttaaacaaaa	gagatattct	23040
tgggcagcaa	ctggaccatc	ttcaagtaaa	agtgaaaggt	aataaacaga	gtccagacat	23100
ttgtgcccat	gcgggttaag	aaaaatccag	ttgcttctag	acaccgtata	tgaaaacaac	23160
gctgaaaaca	agcctttgag	tggtaaaggc	cgattaacac	tcagcgcggt	aacaaagacc	23220
aggtgggcta	acccgaaatg	aaatgagaag	cctgtggtga	tgaggaggca	gagaagtaaa	23280
atcaagtttg	agcatttcgt	ttaggagagt	ttgggctctg	attacttgca	catgcaaacg	23340
aactggaaac	aaacagatca	gatgtctacc	acttcttcga	gggaattgca	ttgccaaaga	23400
agtcatgaaa	gcagactcta	tactgattag	gcattaaaac	aaaaacaatc	tttaggcccc	23460
taaacttgca	tgggcaggaa	gtgggctgtc	aaagctgttc	atcctctaag	gtggacctag	23520
ttcctagtcc	ccagtataca	cttcagatgt	ggccctggag	gacactggac	atggaggacc	23580
tcccagagga	tgaggctagg	gcttcatttc	tccaatgacc	tcagctgcct	ctatttcccc	23640
ttcttcctct	ggaagtccta	tcatcgttat	tattattatt	atcatcattt	ttattttgag	23700
ataaggtctc	gctctgttgc	ccaggctgga	gtgcagtgac	atgatcatgg	ctcactgcag	23760
ccctcccagg	ctcaagtgat	cctcctgcct	cagcctcctg	agtagctggg	agtacaggca	23820

WO 01/77327 PCT/US00/16951 58

catgccacca	tgcttggcta	tttttttt	cagtagagat	agggctctca	ctatgttgcc	23880
agggctgatc	tcaacctcct	gggttcaaga	gatcctccta	cctcagctcc	tgagtagctg	23940
ggattcgggt	gcacaccacc	atgccaacta	atttttaatt	tttttttgta	tggacaggat	24000
gtacagtgtt	agaaatggat	tgcttgcaga	ggcaggagga	tcacttgagc	ccaggagttt	24060
gatcacactg	tgaaccatga	tcgcacccct	gcactccaat	ctgggcaaca	gagtgagacc	24120
ttgtctcaaa	aaaaaaaaa	aagagagaga	gagagagact	caaagatagg	caaaaaagtg	24180
ggaaagcttt	atagtggaca	aaaaggaacg	ctctaagtct	gccctattgg	catggtgctg	24240
aaggtgggct	aactagagat	agggggtact	atgtggttga	ctatgggtgc	atctttggct	24300
ttccctgggt	gatcctaagt	tggaagcagg	gacaaaaatt	agggaagctg	ttagttattc	24360
atcacgttct	ggcagtagtg	gactggttgt	gatagaagtt	attgttttgg	ccaggtgcgg	24420
tggctcatgc	ctgtaatcct	agccctttca	gagttcaacg	tgggtggatc	aggaaggagg	24480
gaggatttgg	gaggtcagga	gttagcctgg	ctaacctggc	gaaatcccat	ctctactaaa	24540
aatacaaaaa	ttagctggge	gtggtggtgc	atgcctataa	tcccagctac	tcgggacgct	24600
gaggcaggag	aatcagttga	acctggggag	gcggaggttg	cagtgagcca	agatcgtgcc	24660
caatttcatc	tcaaaaaaaa	aaaaaagtt	atcgtttagc	ttcctcgatt	gttactggac	24720
gtagtaatct	ggcttcctgc	aagtctaact	ttcagcagac	tggctacatg	ggctgtgtac	24780
tgtagataag	gcagtaagta	aagcaaaaat	tgatagagca	tcaaggataa	atagaaaatc	24840
cgtaatcaag	cagaagattt	gaacacttca	ctttcagtaa	ctgataaaac	aagtagacaa	24900
aaaaaatcag	taaggatgta	gaagatttga	acaacgtaat	taacaaactt	gacttgattt	24960
acacgtctag	aaccctgcag	aacacacact	ttttcaagca	tactcagaac	atttatataa	25020
agtgaccata	tggtggacca	taaagcagtt	tcaacaaatc	tcacaggagt	aaaataacag	25080
accgtgtttt	ctgaccgtaa	gtacagttaa	cctagaaatt	gaaaacaaaa	agctagaaaa	25140
accccatgta	tctggaaatt	ttaatataca	ctttgaaata	acaaatggat	cagagattaa	25200
ttcaaatagg	aatttagaaa	taccttgaac	tgaaaaataa	tgagaatact	ataccccaaa	25260
actgtggggt	gcagctgaac	agtatataga	cgaaaagtat	actcatatgt	gcatacctta	25320
aggagcgggg	aggattgaaa	gttaatggga	ggcaaaagca	ggtggatcac	ttgaggttag	25380
gagttcaaga	tcagcctggc	taacagggtg	aaaccccatc	tctactaaaa	atacaaaaaa	25440

ttatccaggc	gtagtgaggc	tgaggcaaga	gaatcgttgg	aacccaggag	gcagaggttg	25500
cagtgagccg	cgattgcgcc	actgcacccc	agcctgggag	acagagcgag	actccatctc	25560
aagaaagaaa	aaaaaaaag	aaaaggccag	gcgcggtggc	tcatgcctgt	aatcccagca	25620
ttttgggagg	ccgaggtggg	cggatcacga	ggtcaggaga	tcgagactat	cctggctagc	25680
acggtgaaac	cccgcctcta	ctaaaaatac	aaaaaatta	gccaggcgtg	gtggcgggtg	25740
cctgtagtcc	cagctactca	ggaggctgag	gcaggagaat	gtcatgaacc	caggaggcag	25800
agcttgcagt	gagccgagat	cgcgccactg	tactccagcc	tgggcaacag	agagagactc	25860
tgtctcaaaa	aaaaaaaaa	gttaatggga	taaacatcca	tctcaagaag	ttagaaagga	25920
atgacaaata	aaccaaaaaa	aaaaaaatca	aaagaagaaa	atcataaggt	caagactata	25980
aagagagtgg	ctgggtgcag	tggctcaggc	ctgtaatctc	agcattttgg	gaagcagagg	. 26040
tgggcagatc	acttgagece	aggagttcaa	gaccagcctg	agtaacatag	agagacctca	26100
tctttgctga	aaataaaaat	aaaaaattag	ccaggcatgg	tggtactgag	gtgggaggat	26160
cacttgagcc	taggaggttg	aggctgcagt	aagccatgat	tgtgccactg	cacttcagcc	26220
tgggtgacag	agtgggaccc	tgtctctaaa	aaactaaaat	aaggetggge	gcggtggctc	26280
aaatctgtaa	tcccaccact	ttgggaggcc	aaggctgagg	tcagcagttt	gagaacagct	26340
tggccaacaa	gatgaaacct	catctctact	aaaaatacaa	aaaattagtt	gggtgtggtg	26400
gcatgtgcct	gtaatcccag	ctacttagga	ggnnnnctnt	ngattatatt	ttctccttcc	26460
tacgtcgtta	ttggactgaa	ttcagaatga	tgactctcat	tggagctctt	cctgtctcct	26520
aactacagtg	gcttccgacc	ccactctggt	tttcacttca	cccctctgct	gctcatacga	26580
gtagatactt	ccttccttct	ttctcacttg	ttgctcttcc	tcaacccccc	ccgttggtgt	26640
ccctcctct	ttatcttttt	ctcgcgacac	ctgcgttctc	ttgccctctt	atcatccctt	26700
tctcgaggcg	gtcctttcct	ttatccagct	taaatacctt	ctcctctgtt	tatttggggg	26760
ttgggttttt	atctctcacc	ctccctctaa	tttctttcct	ctttccgcac	ccatcaagcc	26820
tctcgtggtt	tctcttcctc	tactctcggg	tecececet	ctccccttct	ttttttcttc	26880
accccccaa	gcgctttgcc	tittttttct	ttgcccttta	ttccccc		26928

<211> 29430

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (4336), (4345), (4349), (4392), (4447), (4490)

<223> Identity of nucleotide sequences at the above locations are unknown.

<400> 7

aggggaaggg ccggctccgt agctcacacc tataatccca gcactttccg aggagagagg 60 atcatctcag gccaggagtt caagaccagc ctgggcaaca cagcaagacc gcatctctac 120 aaaaacttct tttaaagctt aaaaaaaaaa aaaaaagcaa agaggacagt tcaggagaaa 180 agcetgtaga ggeageacae taaggaggag aegeageeca ggeaceagga ggggetggee 240 atgggcacte actectecag caggegagtg cecageacea getggeceae ceaqaeacee 300 aggacacggc ctgaatggct ccgtattcac gtgggtggta ataaacaagc aatacacata 360 gccaataagg acaccttagt aatgttacat cataaacgct gcagatcagg gaaatggtgc 420 agggtgaagt gggttggggg gctgcatgct acatgagaag tgggtcgggg ggctgcatgc 480 tacctgagac agagcaggcc ttgctgggaa agaaggagcc ggcaggcctg ggcaaaggtc 540 ctggggtggg agcacactgg agcagagtgt gggggtagca tggcgggtgc tggtcctctg 600 ggcgccttcc caccacgtca tgtgcccatg tgcccaaggt ctctcgtttc acagccccct 660 gaageteagg ggteacaget acacageece cagatacett ggeetgeece aggteattee 720 atccagtgat ggacctgctg acctctagcc tgacctctgg gcagcgtaat ttgagaagga 780 ggagaaggga gggcaacaga cctggggcga tgagggatgc acagggtggc agacacctga 840 ggctgcacct tggagcctca gttctgggtg tgggtggggg atggacaggc tgagggctga 900 agcagctggg cccggccacc atcacacccc aggacccacc agatcaccat gaaaaaccga 960 atgtcaactg gcageccaga gtgcagaaca aacetttcag aaacacggtg gtgactgccg 1020

catcatgaac	ataaaataat	tacgccctct	ccccagggat	cacccctgca	ggagtttgtc	1080
ccaagaaaca	ccagaaagaa	ggaaaacgtc	tgagtcacaa	tatttgctga	ggccttattt	1140
gtaatagcaa	aaaaaaaaa	aaaaaaagaa	caatctccag	cggcaggggt	aactagacta	1200
ttgtctccgt	ggaaaggtag	caccaattaa	ctagtaacaa	aatgactgcg	gtaacaacaa	1260
aacgttcgac	atgtcaacac	caaaaaccac	acacccagca	taaccgtgaa	ccatgatttc	1320
tactagaatg	aatggcagtt	atgagaaagc	accagcggag	acaaagattg	aaaaagtaaa	1380
ggtggcctca	ttagggagac	aagtctctgg	gtaatatatt	gtaatactgg	taaatatata	1440
gtttttaata	tattttttaa	ttccaaattc	catatatgtt	cctatgaagc	tatttctgca	1500
aatattttt	tcaggaccgt	acatcacaaa	ggcaaaaggg	ccaggtcagc	tctccagctg	1560
agagtgacca	cttcagagca	gacggcagac	tccagggtta	gcaagcctgg	ctgagacctg	1620
gcccatgaca	atcactcaac	ccctctgacc	tcaacatcct	gtctgtgaaa	tggggataat	1680
tactgcacct	ccacatcaca	gagtgcgagg	cttaaacagg	atgcttcata	gaaaagcgct	1740
caagaggtaa	cagccgggag	ggggtagtgg	ttttcattaa	ttaaatgttg	ccttcatcca	1800
gccctgggcc	agctccaaca	caaagcacac	accatccact	cagactcagt	tgcctggatt	1860
caaagcccgg	cctggcctcc	agctgtgaga	ttccgggcag	gatttcccat	ctcccagagc	1920
ctcagtttcc	tcattcatga	aacaggaagt	gatcattcct	tttattttta	tttttatttt	1980
tattttgaga	cggagtttca	ctctagttgc	ccaggctgga	gtatgatggc	gcaatctcag	2040
ctcactgcaa	cctcggcctc	ccagtttcaa	gcgattctcc	cacctcagtc	tcctgagtag	2100
ctgggattac	aggcacacgc	caccacgccc	agctaatttt	gtatttttag	tagagacggg	2160
gttttgccat	gttggtcagg	ctggtctcga	actcctgacc	tcaggtgatc	cgcccgcctt	2220
ggcatcccaa	agtgctggga	ttacaggtgt	gagccaccaa	gcccagttga	caactgcttt	2280
taaagacacc	tctggctgct	gtggaaaaca	gcctggtagt	gcctcaaaaa	gttacacata	2340
gaatgatcct	atgaccagta	attccactcc	tacatatata	cccaaaagaa	ctgaacccct	2400
ctactcatgt	atgtacacat	acaggtacac	gcatgttaac	agcagtgttc	acaaagccaa	2460
aacatggaaa	cagctcaaat	gtccataacc	gatgaacgga	taaatgaaac	gtagtctatt	2520
caccacctga	cggaggtgag	aggggccata	aaaaggaatg	atgcataaaa	acgaatatta	2580
tggccaggta	tggtggctca	cgcctgtaat	cccaggactt	tgggaggctg	aggcgggcgg	2640

atcaçgaggt	aaggagttcg	agaccagcct	ggccaacacg	gtgaaacccc	atctctacta	2700
aaaatacaca	aattagctgg	gcatggtgga	gggcgcctgt	aataccagct	actccggagg	2760
ctgaggcaag	agaatccctt	gaacctggga	aacagaggtt	gcagtgagct	gagattgcac	2820
cactgcactc	cagcctgggc	gacagaccaa	aactccgttt	cggaaaaaaa	agaaaaaatt	2880
agccaggtgt	ggtggcgggt	gggtccctgt	aatcccagct	ctacttggga	tactgaggca	2940
ggagaaccac	ttgaacccgg	gaggtggagg	tagcggtgag	ctgagattgt	gccactgcgc	3000
tccagcctgt	gtgacagaag	gagactctgt	ctctaaaaaa	caaaaacaaa	aaaggcccga	3060
cgcggtgtct	tacacctgta	atgccaacac	tttgggaagc	caaggcaggc	agatcatctg	3120
aggtcaggag	tttgagagca	gcctgggcaa	cacggtgaaa	ccccatctct	actaaaaata	3180
cagaaattag	ccaggtgtgg	tggcacatgc	ctgtaatccc	agctactcgg	gaggctgagg	3240
caggagaatc	gcttgaaccc	aggaagcgga	ggttgcagtg	agccgacatt	gcaccattat	3300
actccagcct	gggtgacaga	gtgagattct	gtctcaaaaa	aaaaaaaaa	aaaaaaaaa	3360
ctaaacaaaa	gcaaaaaaac	caatgagtaa	tgttgtcaag	tgaacttcat	cccaatggga	3420
atgcagataa	tttgtttaaa	aggcaccatg	cacactgggc	aggctggctt	cccctgggaa	3480
cgtcttcttt	tgcctggatt	cccagttggt	ttaatcgggc	gtagaacact	ttcttcaatc	3540
cgggattcag	gcacccctgc	tcagcacaaa	ctcagtacac	cccgcactct	gctgtgggtt	3600
cttggcacta	ttaggagaat	gtgagggggt	gattcagatc	tatctctagt	gggtgcatgt	3660
ctgccactcc	caggaacgcc	cacttctggc	aagtcagtgt	cagagaaagg	ccagctcgtg	3720
gccctcctg	ccttgagtcc	caggacccgt	gatcagtcct	acccggagca	gaatcaggag	3780
tttgaaaacc	caagtgccaa	caatctcatt	ttaacccatg	taagcatatc	caatatttat	3840
atatagaatt	cataacagat	gtctgggctt	ccattccaat	agcctatatt	ttacactgtt	3900
tatttacatg	gttacaccaa	acaagactca	attcaaggta	acccaatcct	ttgctactat	3960
accaaaataa	gcaacatttt	cagtccatgc	cttatatata	ttcaccaagc	attacactag	4020
gcctccaact	gctcatcgga	gcaagctgca	gcctggacac	aagctagaga	ttaatcagtc	4080
aggaatgatc	ctgcgtccag	tgccagcatg	atggaagaga	cagagaaaca	gaagacatca	4140
gggctccaga	gtcaaggagc	ctgcaggtta	gttgggcagg	atatacacac	atacacacac	4200
acacgcacac	acaaaaccac	ccaagaagaa	aaggtgggat	gaatgcatgg	acaggtaatg	4260

cctggagcct ggggatggat	aagctgactg	caggtggccc	aggcaggctt	cctggaggaa	4320
gaagacctgg ctgtangtgg	ggtangcang	ctttctaaat	ggggaaaatc	tggctgtggg	4380
tggagttggc angtttccga	aaagaagaaa	agctgactat	gggtacacct	ggctgttggt	4440
ggaacangca ggcttcttgg	aagaagaaaa	tctggctgtg	ggtggatcan	gcaagcttct	4500
tggaagaagt aaacctgact	atgggtggac	caggcaggct	tcctagagga	agaagaccgg	4560
ctgtgggtga accaggcagg	cttcctagac	agaggaagat	ctggctgcgg	ttagagtggg	4620
caggetteta agaagaggaa	gggctgactg	tgggtagacc	tggctgtggg	tagactgggc	4680
aggetteetg gaggaggaag	agctggagca	ttgaaaaaca	aacatgactt	ggtgaatgtt	4740
gagcatgccc aggcctgatc	cccagaggca	attacgcact	caagttactt	aattctactc	4800
acaatgcctc acaaacaact	tctctgacac	ctaacacagc	tctgggcacc	ttctagcttc	4860
agctcctcaa agcagttatt	cacgctacta	ccctgcacac	ctcctcacac	cccaacccca	4920
gggacaggag ttctgccaga	tgccaaagct	cctgatgcca	aagcctgggt	ctgcttccgg	4980
gctcctcttg gtctaactgt	ccaccccgca	tcggcatgat	gtgcaaaaac	aaggctttgc	5040
aatctgccct gatgcctggc	ggagcgagtc	cctcccgatt	cgtctccttc	agaaacacct	5100
gggctgccct ggtcctgtta	tacccccaac	acattctaca	gtcagctccg	caagttccac	5160
aaagatcaac gctggcgttt	ttatggcatt	ttatttacag	tttttacaat	ataaaaaagg	5220
aaggatgcca cagctcagcc	agcaggacag	acagagatct	atgatgcttc	tgctgcacca	5280
ttgtttgtgg tcaagaaagt	ctgttttcaa	tgatttatta	aattgtggtg	ggagatggat	5340
ggtggcagtg gttaccagca	acatgaatgt	tcttaatgcc	actgaacttc	acacttacaa	5400
atggttacga cgataagtgt	tatatgtatt	ttaccacaat	taaaaacagg	taaatgcagg	5460
ccgggcacgg tggctcacga	ctgtaatctc	agcactttgg	gaggccaagg	caggcagatc	5520
acctgaggtc aggggttcga	gaccagtctc	gccaacacgg	tgaaactctg	tctctattaa	5580
aaatacaaaa attagccaga	tgtggtggtg	catgcctgta	atcccagctt	ctcaggaggc	5640
tgaggcagga aaatagcttg	aaaccgggag	gcagaggttg	ccatgagctg	agattgtacc	5700
attgcactcc agcctgggtg	acaaaagcaa	aactctgtct	caaaaaaata	aaataaaata	5760
aaaataggta aatgcaaaca	tatggtatag	taatattatg	ggctattatg	agctacaaaa	5820
aagaatgact tgggactaca	gttacagccc	tcattcagga	atttgtttta	aatgtgggtt	5880

ggtcgctaag gcatgtacac aacattttga cgttcaaata ttcctagatt tggacagtga 5940 6000 geaccectet aagetggete ttetgteeca gaggteecca ecagteetee agaacttett tgctttctta cacaataaga tgccccatgc tcggcttgta cctttccttg ccccagccct 6060 agaaccagct tcttcgtgga caagctctga ctcctttggg tggagaatgg tattcagaaa 6120 eccagacetg ggetetggtg tgeteactge tacttggggt cattgettet aggeetetet 6180 gctgatggag gtaggatata cacgtacagt cttccctctt cccagattcc gtacttgagc 6240 tegectaett getaacattt atttatatee eecaaattaa aceteacage aettetgeaa 6300 tcactcactg acttgcagag tgtgaaaaaa ctgagtcacc atcacacgtt ccaaactgag 6360 gtcaactgag gccacaacgc cccatcttct tgctccggct gtcgagatgt aagcaagtgt 6420 6480 cetteteteg gtetagetag tgccatgett tecacateae tgtgettttt gtgggcaatt ttgctgtata aaatgtcccc tgcacatatg ctgctgtgta gtgctcctag gtgcatgagg 6540 ctgccccacg ccttacagag agaatatgca tgagaggctt tattcaggta tgagttatag 6600 cgtagttggc catgaattca atgttaatga atcaacaata tacagtaaat aaggtgcttt 6660 ttagagacag ggtctcactc tgtcacccag gctttagagt ccagtggtgt gaccttggct 6720 cactgoogcc tcaacctoct gggctcaagt gatcctccca cctcagcctc ccaaactgtt 6780 gggattacag gcgtgagcta ctgcactcag cctaaataag gtgtcttaga aacacacata 6840 agacaaggtt atgggctgag tgcggtggct catgcctgta atcccaacac tttgggaggc 6900 caaggtggga ggttcacttg aggccagaag tttgagacta gcctgggcaa catggcaaga 6960 cctcatctgt atatttttt aaatcagaca ggtgtggtgg tgcatgccta tagtcccagc 7020 tactggagag gctgaggcag gaaaatggcc tgagcccagg aggtcaaggc tgcagtgacc 7080 catgattgta ccactgcatt ccagcctggg gtgacacagc aagacgctgt cttaaaaaaa 7140 aaaaaaaaa aagccaggtc aggtatcgaa cagttggcaa aaacgttgtg acctgaggct 7200 cacaggaacc tagcccgatg tttcccctag gagcaatggt tcagtattca ataattcagg 7260 gttcccagtg actttatgga gcataacttt caagaataac aagaaccaac tgtacgtgtg 7320 tatgtatact cacactttta ttttatttta ttttattttt tgagacagag tctcactctg 7380 teacceagge tggagtaaaa tggegtgate tegacteact geaaceteeg eeteceaggt 7440 tcaagtgatt ctcagectee caagtagetg ggattacagg tgtgeeecca caaceggeta 7500

atttctgtat	ttttagtaga	gacggagttt	cgccacattg	gccacgctgg	tctcaaactc	7560
ctaacctcaa	gtgatccacc	cacctcagcc	tcccaaagtg	ctggaattac	aggcatgagc	7620
tgccgtgcct	agcctacata	cacttttata	cacacatgca	tctatgacta	tttctctatt	7680
tctgtgcatg	tgtgcgtggc	agtacctaca	gtttcagcta	tgtgtctggg	tactgtctcg	7740
tccaagtttg	taagcacctt	ctccaaagtg	caaagcctgg	cttgtgttac	tatccatatg	7800
tttacttatt	tgctcaatca	atttacttat	tagctccata	accagcttcc	catctgctcc	7860
agtagcctct	gctgtcagtc	acctctgcac	cctaccccac	cttgcttccg	gatgctggat	7920
gccaatcacc	cccgacacct	ctacatagca	ccaccctcga	catgctgctt	ctttatttct	7980
tatttatttg	tttgagatgg	agtcttactc	tgttgcccag	gctggagtgc	agtggcacga	8040
tccaggctca	ctgcaacgtc	cgcctcctgg	gttcaagtga	ttctcctgcc	tcagcttctc	8100
aaatagctgg	gattacaggt	gcccaccacc	acgcccagct	aatttttgta	tttttagtag	8160
agatggggtt	tcaccatgtt	ggccaggctg	gtctcgaact	cctgacctca	agtgatccac	8220
cttggcctct	caaagtgctg	ggattacagg	tgtgagccac	cgcgcctggt	ctgcttcttt	8280
aaatgccagg	caccaacatt	tgtgcaatgg	ggtgggagga	aagaacaggg	aggagagcac	8340
actgccggcc	cctgcactga	atccactgat	caatctgggg	gcaactgcca	tctccatctc	8400
ctgtcttcct	atccgtgaac	atctactgca	gtcctctcca	atgtccttct	gtaaagttgt	8460
attatgtttt	gcatacaggc	cttgcatatt	agttctcaga	tataatccat	atactttata	8520
taaaattcaa	accacattta	aaaaaataaa	actagcatga	ctataacgga	gtctgcaaca	8580
ttctcacaga	ctttatgata	aaacatgaaa	cttcaaagat	acttagggtg	gggcagggac	8640
aatgtttaag	gctgcctgga	agcctcccca	tccctgagcc	agaaagtcct	atctcccctt	8700
caaggggaaa	tgcttgaaaa	agcactgatc	aggctaaaat	gacagggatc	agggagtaat	8760
caaagtacaa	gtgagctggt	ctcctccatt	ctgagcacag	caaagttcag	tctctccaag	8820
tccaagaatc	atacacctgt	ttgccaagaa	tgaagttcag	gtgtctacaa	gtggctgaaa	8880
atattcattg	ctgggccatt	aacaacattc	ttggcaaaac	cataccttag	cttctcgtgg	8940
aaatttctta	aggtagaaga	aacaggaaac	acccaggete	gcttttatgt	agacagttcc	9000
atgaagccag	ggaccttccc	cacatccacg	tttcaattac	ctgcacgcag	ctcacagtgt	9060
attcaacatc	tacgcgtctc	tcctactggg	gtggcggtgg	ccactcaaac	cctcatgcag	9120

ctacgatgac cgcaattttg gcaacataat ttcatgtttt tccttgggct tttacccaaq 9180 tcagtgacac aattctgcag ttgtctaaag attcaaaatg agggacttga catttacaac 9240 aataataaaa tottgggttt ootttaacca agcacatgtt otgootttta gagaaagoto 9300 tgcaaactca agctggagtg ggatacttgc tgacatcttc aagcacccca ggaatagctc 9360 tactoccca tttccacctt ggctgaacca tctatatccc accaattccc ccaacatccc 9420 tecateegte catecateca eccaaggace tgetaageca ggaggtetet eccatetace 9480 ccacagcetg geeteageee acaagggete tetetacatg aateccaeeg caccagagta 9540 gaccaagtet cocgtagact ccaccetgac cacetecatg cetecageca tteccacece 9600 taaaaaccct ccctggtctc tacacccagc tgatgaatac ttggctgaat gtgacctggc 9660 ctcctggacc caggtgaagc ccacgtcctc cgtaagcccg ccagctcacc ctgcctctqc 9720 accttcactg gagagagccc gcacttcacc tectcaggge aggeatgget gatgccaccc 9780 agtggaatct ggtgcaaagc agggcccggt gcagagcagg gctgcctgca gagcaaggcc 9840 ctggtgctgg ggccgagcac ctccaatgct ggccgtggaa ccatccctcc cattccaggt 9900 gctgtctcca tcaagaatga gcgagctgct gacatttgca tgacaataat gaataaatac 9960 catattttgc ttcaaatcca gaatagatgt ggccagggtt ggcatatgac tgttgggaaa 10020 ggacagtttg cctcttccca aaccaacttg gattataaaa agcttttctt aacqaccaca 10080 agageggagg ageteagggg eagacaaaag gaaggetgge tgeagaagge gggagagtgg 10140 ggccttcagg ggcgggtggg gagagagaaa gcctggagct gcacccccaa ggtctgtgta 10200 catcaggtgc tacagaataa caccacctct tccagcttgg cccccacctg ccctctccca 10260 gcccagtcac ccagacagca ccccactccc cacacacacc tcacatctgc ccgcctcaca 10320 ctcaccaget teggetetea atgeaacetg gaacetgeee ttggeetete ageteageea 10380 cccccattcc tgttggcccc tggcccccca tcgaattctc tctaatccta atgcacacac 10440 ttgcacactc aaacacacac acacacaca acacacacag cccagaggaa aaccataatt 10500 gactgaggtc caggcaagtt tcccgagcag ggaccacatt tcaaaggtca gggaagcagg 10560 cgaacaggaa acatacaggg ggcacgtttg ggggtggagc aggaaataag aaatcacttg 10620 caaaagataa aaagaaaatg aggtagctgg tttcagacac ctcggagcac acagaacagg 10680 acaggegect cegggtette ceteaacagg gagatgggee aggeaggtee etgetgetee 10740

accgcagagc	tgggggctat	ggccctgaca	ccaaggccct	ggggcaggcg	gggaggcagc	10800
tgttctcctg	cctgtgctcc	cgggcagggc	ctggccccac	aagggaactg	gccgaaggct	10860
ctgcttggct	actccggaaa	gtcctgggag	acaagcaaag	gacttgctag	gtcactccaa	10920
acggcccaga	tgtgacaact	gtgaagaagc	cacaccaaag	caaggtgaca	gaacaatgtt	10980
ggtgacgtca	ggttatcagc	ttacgctcaa	ctccacttac	ccggactcac	ccgtaacctg	11040
ccgtctcttc	ccaaccagta	aaggatgcct	aggtagaggg	gcacaaggcc	tggagcataa	11100
ttaccatttt	aaaggctctg	agaagtcctg	cggtgaggaa	gcctagttca	ctttctctcc	11160
cctaggattt	cccaactgcg	cctgatcaca	gaacattttt	tcatttccac	tcaggaaaca	11220
tattttgaaa	aacactggcc	tagaggcaga	agtgaaatgg	aaaacacaaa	agtaaaactg	11280
aacaggaggc	actgggcaga	gaacggtcag	aggcgccctg	aatcctggac	cggtggagat	11340
ccccagettg	gcatgctccc	ctccctgggc	ccagaccgcc	tcccccatt	tcctggataa	11400
gaaggctaat	gcgcatcagg	gtgaagggct	tgcctgggct	acacccccag	gctcgcccca	11460
caccaatcgc	gctcctgcga	gagccagtga	ctttcttgat	ttggctactg	tggaattgtt	11520
tgcaactaac	caccccagat	acagatacaa	atgacaggat	gatcagatgt	aaaggaccca	11580
caggtctctg	tgatacggct	tcatgcagcc	agcatggcta	gtgccgtgca	gaatgagaat	11640
gaccccaggc	aagtccttgc	ctcccagacc	cagaacccca	tggagcccac	cagggctggt	11700
tcacaagcac	tgtctgggtc	gggcagagat	tccagcaaga	ggagggaaca	tccatgcacc	11760
ggagccagtt	accagaagca	aatcgcctct	tccaaaaccc	aggctattaa	tggagtccac	11820
tgttgagtgg	agctggggtc	tagctatgga	atactgcaca	gcagagatct	tcctgagaga	11880
aagcagtttt	ccctgaaagc	catgtgtcct	ccactaactg	tgttttaatt	gggcgaacgt	11940
ctgtatctca	ttgcagtggc	cgcgcatgtg	ctgacaaggg	gctgggggcg	gggtggggag	12000
cagaagctca	ggggcctggg	agggaaggaa	acaggccacc	agggctcccc	agaaggcatg	12060
tatctctctc	acaaacacac	gcatgcacac	acacgtgcac	acatactctg	caagccctga	12120
gttagcaact	gtggaatgtg	accagctcag	tgatcccagg	acaagctgct	agggaatatg	12180
acatttgatt	gatgtctgca	aatgtgcgtt	ttcactaatt	agaaggttta	gggcagagca	12240
gagaaaaata	tgtatttcag	agtcccagtt	tgacctgcca	gaaaccagcc	cattactaac	12300
attcttattt	tcaacaaaat	atagcattct	gattacatac	catcttggtt	ccacgcctcc	12360

tgccttgcca agcccccgga agcggcccaa ggccatggca aatagtgaga	gaaacagttc	12420
cagggtggag actgactcag gggtgtcagt cagtggggcg ctgatggccg	gtgggaggcc	12480
agcagtcatc accetetect tgggacagtt gagtagetet eccecagggt	catgtggcca	12540
ctcaggttca tatgggaggc gagaggagtg gcagagtcca ggagagtggc	tccgaagtca	12600
ctgttccctc caggcctcag tgtcttcatc cattaaatgg gtaggctgag	gtctgggatg	12660
acaaggaggg cttgcactta ctgaaaccca tgggaggctg ttcgccgatt	tcttttattg	12720
atggaagaaa acactcgtat aattcaagta ccaattaaaa ggcaggcact	ggaaccaccg	12780
tctgccaatt cctagttttg cctataccaa atttgagcaa gttaattgac	ctctcccage	12840
ctcagtttct tcgtctgtaa aatgagggta gggatggccc ccagcccaca	gggcagctgg	12900
aaggattaaa gaaatcaaac atctcttaga gcccacctgg cacactgtga	tacacaacaa	12960
atgttagcta tttttgtcta tgaagtctag attttatatc ttgggtgttc	taaagcagga	13020
tacatttatt taaaaacaag gattttcatt aaacacgtac cccacagaca	gcaaccccat	13080
ggagactgct cttaattcag gccagtatcg aaacgactct aactacaagc	tttatacagg	13140
tctcttggct gtccttcaaa tccaactaag gtggtacttc tgaagcactg	tgcacatgtg	13200
tgtgtgcatg cacacgtgtg ggaagggcgg gctcacggat ccctcaggta	ccccacccac	13260
gcagtctcaa gtcacaaagc gacagagcag ccgaggaagg tctgtgcccc	actggaccct	13320
cgtgaagcca ccaactctac ctctgcgccg tgtcctgcag actgggctac	cctttgggtg	13380
gggaccagca tttgatgcaa gaaaggcaga cagaaaagga aaagggcaag	ttcgactcca	13440
gataacacag acagtaccaa gccccagggt ccataaatgc cacgcagatg	gaagcattta	13500
ctgcgaggcc acacagcaaa cgcacggatc cagggacgga ggtgcagact	geggtgeece	13560
tgagccatga ccctgcaaat taccaccatg ggaaaggagg ctgccaaacc	ccccgacagt	13620
cggctgggct ggcacagact cgtggtttcc atcgaggtgg gaggaggtgg	gacgtcccag	13680
cccctcccc atgcccactg cagagggaag cggccgtttc ccctgtgtgg	ttacaaaggt	13740
ctcattgttc ttcctcacag ggaggaaact ggaggaccga gctcagaacg	cattttagaa	13800
ctggcagaaa agaacatctg gggaaggaaa cacatttcag aaacaaacat	acctttgtac	13860
cagettttat tttetttaag tgttgaaaaa ataataataa taaagacatg	ccaaatttat	13920
categeteta caaaateeet ttattgagea aaaegtggea getetaettt	caaatgatta	13980

ctgttcctgg	aaaattgcag	caacgtggat	gccaaggccc	gaaggccgcc	atcagcagcc	14040
aaacaaaaga	tgccacctcg	ggctccgcga	cactgtacca	tgccagggaa	ctggacagat	14100
ttggggaatg	ccacggtttg	cctttaaccc	cttgcctcct	ggtctcctga	tgcatctcag	14160
aggctaacat	tctttgagga	actggcattt	cttagttgta	aatatgcatg	tgggtttggg	14220
agctgcctgc	aaagtccagt	gttgacgatc	agctttgatt	tccttggaat	caagtttacg	14280
tgtcgagtct	ggaagttaag	aagaatttgg	agaagctgag	cactatggtg	ttgcaggccc	14340
tgggtgaact	cttccaccaa	gcattcattg	tggactgaca	gcgtgcgagg	ggctctgcag	14400
gcaggtgcac	aggacgaaac	acattccgtc	cgggggaaac	ctgcaggaaa	gctccctctt	14460
cttcctaagg	tgccgggcct	agcttcatgg	gtccctaccc	tccacgcctg	tcacactttc	14520
tgagtctcat	gtgggagctg	cttctggttc	ctgacttcac	tcagtcctca	taggaggtgg	14580
aactactgtc	accccatttt	acagatgggg	agactgggca	caaggggacc	aagaaaccaa	14640
tgcaaagtca	cacttgtggg	atcagtgaca	ggggagatca	attcccaggt	tctttctgca	14700
agagttaaat	tgttttcatg	ctgcctaagg	gggggcaact	gaaagaccac	tgcatatctt	14760
tgccaaaagg	gtcaagcaca	ggagccgcag	ccagtgggtc	agatccgcag	aggcgctggg	14820
gtgaccctcc	ccatacctgg	agggatgctt	gtccctcct	ggccttcact	gggtcccctc	14880
atgaccgtgg	cctcccagga	cctcagcaca	atcccggtcc	tgtgctccag	gacaagccct	14940
ccgtccccaa	gactgtgagg	aaatggaacg	aagaggggct	cgctgcagcc	cagcacccac	15000
actgcccctt	ctcaggggca	agaaccgtcc	tggaggactt	ggctttggag	ggggagcctg	15060
ggaggccagt	aagtcaacaa	gcctctactg	ctcatgggtg	ggatcccacc	gcaggccccc	15120
acctgctggg	gcgggcaggg	acgggcggca	cagcttggcc	agggcagata	acccccacct	15180
tggccagggc	gaaggcagga	cacgtgggct	ccagcctggc	cccaccatcc	ctgcacaaca	15240
ctgggcaaag	tccacgtttt	cctcaactgg	gtgttgacat	ctgcaggaca	ggggcatgga	15300
ggtacagagc	gctgaagcca	cacagcaacc	taggagcgag	actccatgcc	tccccgggga	15360
cccctcccca	ccatgaggac	catgaaggct	tcccatgtgc	cgcaaggact	ctggtgtgga	15420
gacacacgtc	tcctacacag	ccaggcctaa	cgctcttgta	actgggtggt	cccacctggg	15480
ctcacagctg	gagggccagg	agctcaaggc	ttcgcagggt	ctgctctcat	cccagaggcg	15540
atggggagcc	acagcaggct	gcaggagaga	gggtgggccc	cctccacttc	agaggcccca	15600

tctggcccac	agactggaga	gcacatctct	cagcaaccac	ggagcgccaa	ctgcgcacag	15660
ggcctggtcg	tcagagcggg	gcaaaggcac	tgaccgtcac	ggccagggcg	agggaagacg	15720
ggtgggcagg	gaccttgggc	agaggggaa	gaacctggtg	cccaggctgg	ccctgccttc	15780
agcagtgaag	ctgagtgggg	aggcgctgat	gcagggggcc	agaaagggct	gctggtcagc	15840
cgggaggagc	ccccacaga	ggaagcagcc	agcccagacg	cagatggcag	ggtcccctca	15900
acaatgtcct	ctgaaaagga	gaggcgggga	ctgctctggt	gacacctaca	aatagatagt	15960
cagccctcag	ccccctgcca	tacttctgac	aaagcagagg	ccccagggg	aggcgcaccc	16020
gaaggtacct	gcacctgtcc	cccagactcc	tagagcccac	ctgaccccat	cccaccaggg	16080
ctccagctac	aaaataaatg	ccgaggccag	ctaggcaagg	acgcacactc	ggtaccgact	16140
gaataggctc	cacgttgtca	tgagcgcaac	ccacaggcca	ccaggccaca	ctatgcagag	16200
ctgagatggt	ttcggccaag	cagcctctca	gctgagctga	acaagtccag	agtccccggg	16260
gggtcgtcac	tatggagtaa	caattgcgat	gcgatggtaa	ccctaacagc	taaccgtcac	16320
tgagccaggc	cctgagctag	gtacttttca	acgctgcctc	tctgcagcct	caggacgagc	16380
ctgtgggagc	ataaagatca	ttccctatca	cggatgggga	aactgagctc	tgaagcagtt	16440
aacgtgcttg	tcccagaccg	cagagctagg	agcaggacac	aacagcaggt	caggcaggaa	16500
cgggtgaggg	gggcctgcat	gggcttctct	ggaggctgcg	catacacgca	acccccagga	16560
ccccgaccct	gcacctgcag	ctcgctactg	cccctcagt	gactccagca	aacctcgggg	16620
taggggaagg	aggctgggaa	tacctcgggt	gtccgaaaca	gcagcttctg	cttggaggcc	16680
actgctgcat	aatggttgct	gcccagcaca	ccccaagcca	cctgtgccac	ctgtggtgac	16740
cttccagcat	gccttggtga	ccaagctggc	cttaggtgct	gtgggcagcc	aagaatagaa	16800
cagggcccac	ccctcctctt	cacactaaca	caaagcaaga	ggcgggcact	tcgactgagt	16860
gcatccctct	agctcaaggg	cctcacggat	cacaggggtc	agggcaagat	cccaattctg	16920
cattecegte	tgcctttcat	cctgctctgc	caacaacagc	cagtgaggct	ggggacatcc	16980
ctgaacctgt	ttctcacctg	aaacacatca	taccattgga	ccccagccct	ccgggagagg	17040
ccctaatccc	tgactgtggt	gagatcagat	cactggttaa	gtacccagaa	gggccttggt	17100
caggggctcc	aggggtgggg	ggtgatgggc	gtggtggtat	cccgctctgg	gctatagtcc	17160
accctgatgg	aggaggtctg	tggtcagaac	cgggctgtgc	agggcacagg	agcccagagg	17220

gacccccaga	gctcacctgg	tggtctctga	gcagggctcc	ctcaaccctc	agagaaaagc	17280
acagcaagga	ggccgcccag	agcccagcgc	ctagcaccca	gtggcgtgcc	agacctgcct	17340
ggatcctgga	gatctctcat	caccctccaa	gtcagtcatg	cccaacccag	ggacccacag	17400
cccacggggc	cgtgaaggtg	tgctgagtcc	aagaaggcct	tcgacactgg	gaagccaagt	17460
ggcacctcct	ggtgtggagc	aggcggaatc	ccaccagcct	ctgctctgcc	agtgggcaca	17520
gctggacgat	gagcagaagg	ggctgttgct	taataaacgt	catttcctta	agaggataaa	17580
acctttcaaa	acagatggaa	atttttttt	aattaaaact	ggtggccaaa	gagatggaaa	17640
gcaccccttg	tgcctccctc	ccatcgtgac	ccatcctctg	cacacctcaa	gctgttcgct	17700
gcccaggtgt	ctcctgaggc	actgggggcg	ggtgagaatc	cgtgagccct	cggccagccg	17760
tggctctctg	gagetetgee	ccaggccatc	agggcacaċg	ccgggcaccc	tgggggccac	17820
acagggcaga	gcccagctgg	gtcagcacac	agggccacac	tgggcacaca	agtctctgag	17880
cctcccctgt	ggacgcagct	ctcactatcc	caccccacta	ggtcccgggg	atctgtccca	17940
cagggtgata	tgctgtcaca	gaccactacc	agagccatgg	cctgctgttc	cgcccgcagc	18000
caggtagtca	cttgctccac	agggacaggc	aacgccgcac	ttgggggctg	ctctgcggca	18060
ggactagagc	tccagcagct	cagccctcct	gagaaggaga	actccatgct	ctaagaggca	18120
gacgcagcgg	acggcaccaa	agccaccaca	agcccacggg	gccctgcatg	gcaggtcagg	18180
agtccctgac	cactcgctct	ttgtaaccag	agctgcagtg	gagtctacga	ggcaaggact	18240
gtgggcggca	gtggccacag	caaatgaatg	agtgtcccaa	gggagcaggc	ggctgcgggg	18300
aggcacagcc	gggacccagg	agtcctccgg	cactgcagca	aactccctgg	gccccctgag	18360
cagcgaccag	gtggcaagtg	catgaactcc	cgggggcata	acctgggagg	gtgacactct	18420
cttcgtgttc	aaattcttga	gaacgcatta	aaaatatcac	tcagtcacct	actctatagt	18480
tttaactcaa	aagtaccaaa	gtagccaggc	gcggtggctc	acgcctataa	teccagtact	18540
ttgggaagct	gaggcaagag	gatcacttaa	gcccaggagt	tccaaatgaa	cctgggcaac	18600
atggagggac	cccatttcta	caaaaaaagt	gttttaaaaa	attacctggg	cctggtggtg	18660
tgtgcctgta	gtcccagcta	ctcaggaggc	tgaggcggga	gaaccacatg	aacccagggg	18720
aggtagaggc	tgcagtaggc	tgtgatggca	ccactgcact	ccagcctggg	taacagagtc	18780
agactctatc	tcaaaataaa	tttaaaaagc	accaagccag	gcttggtggc	tcacacctgt	18840

aatcccagca ctcagggagg	g ctgaggcaag	tggatcacct	gagtcagaag	ttcgagacca	18900
gcccagccaa catggtgaaa	ctccatctcc	actaaaaata	caaaaattac	ccaggcgtgg	18960
tggcgggtgc ctgtaatcc	agctactcag	gaagctgagg	caggagaact	gcttgaaccc	19020
aggaggcaga ggttgcagtg	agccaagact	gtgctactgc	actcaagcct	gggagacaga	19080
acgagactec ateteaaaa	ataaataaat	caatcaaaac	caccaagact	ttttaatata	19140
aacatttatt attccataat	tcctttttg	catgattaaa	aatgtttata	taaagtttcc	19200
tgaaaatggt aagaatgcca	agtgaaggct	gcaaatgccc	aagcccccac	cgtggcatct	19260
cacggagtct gggccctagg	aggetggtgg	gtaccacgtg	gacccgagac	ttcacagtca	19320
agtccctttg gggtacactg	ggtttcccac	accccagaaa	tatgggctct	tactgcagga	19380
ccatgggggt cctcacactt	ggcccagaag	ctgtcacata	gccagacagg	tgttctacaa	19440
cctaggctag agggagctca	tgctccagca	gaattcgagc	cagaggaggt	aaaagatggg	19500
taagatetge teeetggaca	gatgaggcct	tggcctcaga	acagttactg	atcatctacc	19560
agacatcaca ctagaggcag	aggggcgcag	acgaagacag	ccctgtcct	caaggccctc	19620
ccaggttggg tggaccatgg	aaggttccag	acagatctgg	caagagaagt	gcccacacca	19680
ggggcagaag atgggcaggt	ctgctcaggg	cggcacggcc	tgccaggcca	aaaagttcca	19740
acttcagatg ctggagaatg	ggcacgactg	tctgagaaag	ggaaggatgt	gatgaaaact	19800
acttggagaa aaattaatct	ggccagagca	taagataaat	gggcaaaggg	gaggttccag	19860
aaagcaagga gaccaagtaa	aagctgatgt	cattggctct	gaatctaggc	tttcactgaa	19920
tatgcaccgc agggcctgta	ggtaaagcct	cagagcccag	ggagtctgag	tggaggagag	19980
ggcaggggac agagctgggg	cctgtgtcta	cagtgctcag	gaggaatagg	catggacgtc	20040
agctcggagg ctccagctga	agtgaggagg	cggccagggc	agcacggcca	cgcccggatc	20100
cagacteett ttgggaagea	agttcgctct	gggggaaagt	ttggagaaat	ggcctttacc	20160
cgcagaagca agccccagaa	catatcttgc	tccaaaacta	tctcgtacag	tga ggacgtt	20220
aagcttcagg tcccctagag	gagacagtct	gctccttcct	ggggcagaac	ccaaggtggc	20280
cagageetgg aaggeaeeca	gcacccaggc	tggtgtgttc	cagcccaggc	cacacgetea	20340
gatagctatt aatgccccgt	tgagcaattt	cctgagagct	ttgccaggca	ggtaccgcct	20400
ccccatctga actaatacag	gggtacatcc	caaggaagaa	atgaaaggtg	cccacatttt	20460

gctctgggat	taactaggga	ggggagtgat	aattaactca	gtaattatat	ttgccatcgg	20520
gctaatgcta	aaattagtgt	gcattagaat	ttctttcctg	agcagacacc	ggagtgagtt	20580
gggcagcagg	agtggctcgg	gcaagtcggc	acaaagggca	cctccagagc	cttccacaaa	20640
tgtcagcaaa	acccacaaat	gtcaaggccg	gctccactgc	acccagcaga	tgaattcact	20700
tccacagcct	gagaccgcca	gctcatcgga	ggccatttaa	aatccagccc	tctgacacct	20760
gctggatatc	accatttacc	gtccccagat	caagagatca	aagggtggaa	cctgatagga	20820
cggctctgaa	gttcaccaca	aaagcataaa	cgtgcaagca	gagccaatac	gtcttttgaa	20880
aaggacaatg	aggtgggaat	ttacataact	gatcttaaaa	tatgttctga	tgcttcagag	20940
atggagacag	cagcattccg	gtacacaaag	acactcacag	gcagtggagc	acagtgaagg	21000
gtctggaatc	aggacccagg	tgtctgtgga	cactacacat	aaaagagcag	catttacaat	21060
gaatggatag	gatggaccat	cccaccaagg	tgttggacaa	ctccctattc	actggccaga	21120
cccctacctc	ataccatata	caaaaaaaa	aaaaaaaaa	aaacccagac	agaataatgt	21180
ctgaatgtaa	aacataaaac	agtaacagtc	ctggaagaaa	ataatggagg	atatatttat	21240
aatctggaga	tggagtaaca	agggatagga	aaaaagccat	agggaaaaag	tagagttatg	21300
attatatgaa	gcttcttaat	atctttatga	taatgtacca	ccagaaacaa	ggatgaagga	21360
ctagctacag	accagcagtg	aaacctgaaa	caaacagaac	aaagaattaa	agtccatacc	21420
aaataaagac	ctcccacaaa	tctataagaa	aaagataaac	aggctggcac	cgtggcttat	21480
gtctgtaatc	ccagcacttt	gggaggcgga	gatgggtagg	tcacttgagg	tcaggagttc	21540
gagaccagcc	tggccaacat	ggtgaaaccc	tgtctctacc	aaaaatacaa	aaattagcca	21600
ggcgtggtgg	cgcatgcctg	tagtcccagc	tacttgggag	gctgagccag	gagaacagct	21660
ggaacccggg	aggcagaggt	tgcagtgaac	caagatggca	atcgcgccac	tgcactccag	21720
cctggaggac	acagcgagac	tctgtctcaa	aaaaaaaaa	aaaagaagaa	gaagaaaaaa	21780
gaaaagaaaa	agacaacaga	aaaatgggcc	aaggataagt	gtaggcaatt	tgcagaaaag	21840
taaataccaa	taaaccagaa	atgagggttg	tgcaaatcaa	aaggtgttat	aatttttaac	21900
caaactggac	caaagaaaac	accaaaaacc	aaaatcttgt	aattgccagc	atcagagagg	21960
atataggaaa	gtgtgtgttc	tcgtagatgc	ttgcaggtat	gaactgctac	agccttttag	22020
gagttatgta	tgtatgtatg	cttgtatgta	tgtatttgag	acagggtctc	gctctgttgc	22080

ccaggctaga	tctgttgcag	tgctgtgatc	atggcttact	gcagccttga	cctcctgagc	22140
tcaatagatt	ttcccacctc	agcctttcaa	gtagctgaga	ctacaggagt	gtgcaatcat	22200
actcagctaa	ttttttaaat	tttttgtaga	catggggggt	ctcccaattt	tgcccaggct	22260
ggtctcgaac	tcctggactc	aagtgatect	cctgcctcaa	cctcccaaag	tgctgggatt	22320
acctggatga	gccactgtgc	ccggcctcaa	tatctttaaa	aacagaaatg	gacacactct	22380
ttgactagga	atgtatccta	taaaaacact	tatacacatg	cagagacaca	cgagcaagca	22440
tgctttgtaa	tagcaatgaa	ggctggaaaa	actcctcaat	caggtaaatg	ctgtcaagtg	22500
cacctgtgta	ctatgaaatg	gcacttggct	tttaacaaga	gcaaagacag	aaaagcaaaa	22560
gtacaaagta	gggtgtgatg	gcacatgcct	gcagtcccag	ctactcagga	ggctgaggca	22620
ggaagatcct	ttgagcccag	gagttggagg	ccaggagctg	ggcaatagtg	agaaaaaata	22680
aaattaaata	ataataataa	taaaataggc	tgggcacagc	ggctcatgcc	tgtaatccca	22740
acactttggg	aggctgaggt	gggaggatcg	cttgatccca	ggagttcaag	gccagcctgg	22800
gcagcaaagc	aagacaccca	tctcaacgac	aaattttaaa	aaatcagcca	ggcaggctgg	22860
gcatggtggc	tcacgcctgt	aatcccagca	ctttgggagg	ccgaggcagg	cagatcactt	22920
gaggtcagga	gttcgagacc	agcctggcca	acgtggcaaa	accetgtete	tactaaaaat	22980
acaaaaatta	gctgggcatg	gtggcagatg	cctgtagtcc	cagctactga	ggcacaagaa	23040
tcgcttgaac	cagggtggca	gaagttacag	tgagccgaga	tcgtgccacc	gcactccatc	23100
ctgggcgtga	gtgagactcc	tgtctcaaaa	aaaaaaaaa	aaaaaaaaca	aggagccagg	23160
cacggtgggg	tgagggaggg	cacagaagca	gcgcctcttc	tgggggcacc	cccaatctct	23220
agcgatccag	aggcctcagg	atcctgaagg	gagaaaaaac	gtgaagctcc	gtgctagaag	23280
agaccataga	gattggaatc	agctggttct	attttacaaa	aaaaggaaac	tgaggccctc	23340
agaaggtgag	tgcctctcaa	tgccccacag	ggaggcaggg	agagggctct	gageeetgea	23400
gggccctgga	ttcttgcaat	ggggtggagt	ggagcctgtg ,	ccgccccac	caggcacctt	23460
ctcaggagag	gagccgttgt	catatccttg	aaggggtcct	tgagcccctc	aaaaggctaa	23520
aaaccacttt	cctccttgag	tgaaccttca	cctcagttta	accacaagaa	aaactacatt	23580
aaggcccagc	gcagtggctc	atgtctgtaa	tcccagcact	ttgggaggct	gaggtgggtg	23640
gatcgcttga	gcccaggagt	tcaagaccag	cctgggcaac	atagtgaaac	cctgtctcta	23700

caaaaaacaa	caaaatcagc	tgggcgtggt	ggtgcacacc	tgaggtccca	actacttgcg	23760
ggctgaggtg	agaggattgc	ttcagcccag	gaggtagagg	ctgcagtaag	cggtgactga	23820
atcactgcac	tccagcctca	gcaacagagc	aagactcaaa	aaaaaaaaa	aaagcaggcc	23880
gggtgtggtg	gctcacgcct	gtaatcccag	caccttggga	ggccgagcgg	gaggatcagg	23940
agatggagac	catcctggct	aacacggtga	aaccccgtct	ctactaaaaa	tgcaaaaaat	24000
tagccgggcg	tggtggcggg	tgcctgtagt	tccagctact	caggaggctg	aggcaggaga	24060
aaggcgtgac	cctgggaggt	ggagcttgca	gtgagctgag	atcacaccgc	tgcactccag	24120
cctgggcgac	agagcaagac	tccatctcaa	aaaaaaaaa	attaaatctc	aaaaaaatt	24180
acattaaggc	aaactaaaag	atgtttaaaa	tatatatatt	aaattaaata	cactccaata	24240
gagcaaatac	gaaaataccc	agaaaacaca	atccccgcac	ccccaggaca	acctcccagg	24300
gggtccacag	caagagaccc	caagcacgag	agacagagaa	cagtgtccct	gtggcggaac	24360
ctctggccca	tcaggctcta	ttagaaaata	aggctcttgc	cactgagaga	aagaggcaca	24420
gtcgcccagc	agccacgggc	tctggcacac	cacgagtcag	gccagcaaag	tgtcaactgc	24480
cccctacaag	gtgacaaact	aggacaaact	ggaaaccaga	ggctggacct	ggagcacagg	24540
gaccaccaca	tggggctggg	gaatgggcag	ggacctcaga	gcgccaccca	catgcctaag	24600
agcagcgcgt	atgcgcatgc	ctctgcatgg	cttagggaca	cagggagctc	ccccacccc	24660
caacccagga	aggcagcccc	cactacccag	gtagggaacg	gataggacca	gcaccccgtt	24720
ctgctcgtaa	ctcagggctc	caggccccct	cgggggcaac	cagcacagag	ctcagacccc	24780
aaatatcttc	acccacctcc	tggtccccat	ctggacaagg	gtgctgggga	ctggctctca	24840
gtcacaccct	cggggtactc	ttcaaaggac	agctggatgc	cccagggcag	gagcttttgg	24900
ccccagctc	cctcacccca	gacaccagct	cttgggaccc	caccagcatg	ggcaaggtgg	24960
acaccatcgt	cccgattttg	cagatgagga	aactgaggct	gagggctggc	acacggctct	25020
ccagagctga	agagaatgca	gagagcagcc	ggagccagcc	ggtgggtccc	tgaggccggc	25080
tcgtagcaag	ccacagetge	ctccgcccat	cacacttgga	cctcactggc	cccaggacag	25140
ccctccaggg	cggcctggca	cagagcccac	accctgctgc	ttcctgaaca	aataagtgaa	25200
caaggccacc	aagccgagga	cctggatgta	geceeggete	ccgccagggc	ctccccaaca	25260
gactccccat	ttggagagcg	cattaagtgt	ttccaaagcc	tcacaaacca	cagatgtccg	25320

gctgtctcac	ggcttctgta	acctgaactt	ggccctcact	ctgccctccc	agcactcctc	25380
tcagggccca	ggcccctcct	ctgagatgcc	agcactgact	ccccaacttg	tccccatcac	25440
ctggctcgtt	cctgaacctc	ggcaggagag	tctcaggcca	gatcctccca	ccagccacct	25500
ccaccaggat	gcaggaggca	tgagacctgc	tegtgeegge	tgggagatgc	aaccaaccaa	25560
gatcaatcca	atcagcggat	gaactgacaa	atataatgtg	gtccctccac	acaatggaat	25620
attattcagc	cacaaaaagg	gctgaaatag	gccgggcgtg	atggctcaca	cctgtaatcc	25680
cagcactttg	ggaggccgag	gccggcagct	cacttgaggt	caggagttca	agaccagcct	25740
ggccaacatg	gtgaaatccc	gtctctacta	aaaatacaaa	aattagctgg	gcgtggtggc	25800
gggcacctgt	aatgcaagct	acttgggagc	ctgaggcagg	agaatcactt	aaacccagga	25860
ggcagaagtt	gcagtgagcc	aagatcgcac	caccgcactc	caacctgggc	aacagagcaa	25920
gactccattt	caaaaaaaaa	ataaaaggct	gaaacaccca	tacgtggtac	tacttggatg	25980
actcctgaaa	acgttacagt	aaccaaggaa	gtcagccacg	aagacgcatt	gtaagattcc	26040
cttcatgcaa	aatgcccaga	acaggcagaa	ccacagaggc	agaaagtcga	ctggtgttca	26100
ccaggggatc	cggggagagg	gaacgggaag	tcaccgtgta	atgggtatgg	gttttatttt	26160
ggggtgatgg	aaatctctta	taacttgata	gaagagaggg	ttgtaaacac	tgtgaatgta	26220
ccaaatgcct	gccttctata	ctttaatatt	ttatattata	taagtttcac	ctcaatttaa	26280
aaaaaaaaca	actcgacacc	tttcacctag	gaaagatctg	gctttagctt	gcatttcctg	26340
taactcctgc	ctaaagcctt	ccagaagctt	ccgctgcctt	gtggatcaca	accagactcc	26400
acaccatgat	ctggcctcta	agggcctctc	gcaggacacc	ccgagggtga	aggagcaccc	26460
gtgggcccac	ctctgcatag	ctgcaaagct	tctttccctg	tcctcccctc	tacatgggaa	26520
gctctgcccg	caggggcggg	gccttatctg	ccattctatc	gcactcaacc	ctagcacttc	26580
acteggtage	agacaccaaa	gcaaaacagc	aacagcatta	taccgggcca	ggtg cacgtt	26640
aactcactga	attcatggta	ggaaggattc	tattcccatt	ttacaggtga	gaaaactgag	26700
gcacacaaag	gtagcatcag	cttcctaagc	ctcccagcac	aggaagcggc	caggctggaa	26760
tcagaccctg	ggcgcagggg	ctctgtccac	agtgctaact	aactactcct	gcccccgagg	26820
gctgcagcgg	tgagtgagtg	agtttgtcag	tggactggat	gtccaaggtc	atacaggaaa	26880
aatccagact	attgtaataa	cagcctctag	accggctggg	gccagaaaga	tcgaggacgc	26940

tgacacacaa	ctgcgctcac	tgcagctctg	ccagggatgg	ggctaaaggt	ctcacacagg	27000
gcagttaggg	ctccccatag	cctgggagag	gaacggggtg	agataacaga	aactaggtat	27060
ggtgcccgaa	gtcaaacagc	cactgagcat	gtaaacccag	gtgggtctga	ccccaaaccc	27120
ctccaccccc	atcagccctg	caacccgtcg	ctgcaaggga	gaaagcaact	cagaggcctc	27180
acctgcctac	atcccccacc	cgtgtgtgtg	agttctacta	aatgcctgag	cagtgacaca	27240
gcacggctga	aattaaacgg	gttccaaaaa	cgacaggaag	cacgaagtga	atctccccag	27300
gaaagtgctg	aacaaatgct	ggatcgggtt	caccggcgaa	tttcttggaa	ctgaagaggg	27360
gagctaaaca	cacggggccc	tgctttggag	gggactctct	cagggtgctc	cacacagcac	27420
ttggttaacc	ccactcagcc	cttctgggct	ctcccagagg	gcccggcctt	ggccttgggc	27480
atctacagga	ggaacctcca	gggggagagg	gggtgcctgg	acaggccggc	cctggaacaa	27540
gcacttgggc	cccgaggaga	gaggactagg	gcttgggagc	tggggaagtt	ctcagcactg	27600
ggaccactag	aacaaagcca	tttccgtgcg	ttcacagctt	ccaattgcaa	caggaagcaa	27660
tcaggaaaaa	taattagcgg	cccacttact	ggcttcgctg	aggtccgagg	catgtatttc	27720
acacagtaaa	accagggata	taacatcaaa	accgttctgc	agaaagattc	ctccctttcc	27780
ttccatttta	ggcctggatc	accacattca	ctggggctcc	caggccttgc	tgcctaatgt	27840
taaaataatc	aactctattt	ttgcctcaca	cacaactgaa	ctctacagct	ataattcttt	27900
ctcctcaggg	gctcgaacca	catggacgac	aggcatttga	ctccagcaac	atcaccccaa	27960
aacgtgcaca	aaacccaaaa	ctgcaatgag	gtgaaaggca	acgcggtcgg	cctagaaacc	28020
cccctttaa	aacaaacagt	ttccccaaaa	cccttttgc	ctccttgacc	caggcatttc	28080
cggaaaaagg	agcggcgctg	gcctgtactc	cccagatact	gtcgctgttt	tgtcttcacc	28140
ttgttttgct	agctccagac	aaggccccac	aatgtaaaca	cgctcctgaa	agaggcagat	28200
ttggggtgaa	actgtccata	gaatctctag	gcttgggtca	gaggcaggag	gacgtgaaac	28260
aaactccaag	ctcctcctgt	tccccgctgt	ccccacacc	tccaagcaga	ggctgcagcc	28320
tgggggatct	gactacaggg	ccaccccgct	gcaccattca	cactggaaat	attcagggag	28380
acagctgttt	gccttaagga	ggcccagaca	aaggggcccg	aggtcctccc	cgctaaactg	28440
ccacaaacag	aacaggagcc	gcggcgtgca	caggcacttg	cggccgtgcc	acttggccag	28500
ccatactcca	gaaaaacaaa	acacgcacat	ccgaagagaa	tgatttaggt	agcaagaggc	28560

ttqcttgaaa aaccacatgg caatctccaa attaaaagaa catgtgtagc gtttcacgac 28620 tgcttaagtt tcctgagtcc tcctgacctc aactccaccc cctgggaaac accaaaagtt 28680 qqatqaqaaa qttcccccgc cctacctctc cccacgggag tgtacaactg aggcacaagc 28740 ctgcctccc cactgccccg cgatctggga ccacgtctcc tccgcgtagc cgacccgggg 28800 atggacacta totggggaco oggoggocac acggggcatt ogggtogcoc gggcacotgg 28860 caggtqtcag tccgcttgga aacccacagc cacgcggctc acaggagcag cgccaccggc 28920 taggeegeee egegeeeggg eteagaaett tetegetgee aetteageee gteeteggag 28980 cacgegggc ggccgcggg ccgctggaaa caggcttgcg aaccggctcc ccgggccagg 29040 cccgcctccg cgccccaagt ccccgctcgg tgcccggccc gggccacacg ggcccagcgc 29100 gggetegget eggeteeegg etteeegegg getegggeag gtgaggacce geeegegeeg 29160 cacctggcgg agcgggcgcc ctcctcgcca gcccgggacg cagcgtcccc ggggagggcc 29220 cgggtgggga gacaaagggc ccgcgcgtgg cggggacgcc ggggacggca gggggatccc 29280 gggegegege eccaactege teccaacteg ccaagteget tecgagaegg eggegegee 29340 egegeacttg geegeggge egeeegggee attgteegag caaccegegg eeegtettae 29400 acgccgggcg cgggaaggta tcgaatcagg 29430

<210> 8

<211> 33769

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (33739), (33749), (33758)

<223> Identity of nucleotide sequences at the above locations are unknown.

<400> 8

cttcccctta cactggtcct	tcgacccgcc	tcggatgaaa	actgaatggg	tttagcctta	60
gaggeteteg gtetetaagg	gaggtgggtc	aggatgccgg	ggacagggtc	ctcttcctgg	120
ggcaacgtgg gggaacgagc	cacctacccc	tccactgaat	tgccctgggg	tgtgggtacc	180
gacggctcat tcggtgtcca	gggtctgaga	tgtgttgaca	ggaagaatga	aaggggatgg	240
gagggatggg gcgaaagaag	ccacctgcag	ccccaggaac	tatctggcca	gcacaccgtc	300
acccagcggc ctgagccacc	cctgccagag	ccaggaggag	accctgccaa	tgggtcacca	360
gtgtgcagga actcagaagg	tcatcacagt	taataccctc	catgccccaa	tgtgggaaaa	420
caggtttttt cacaacaaac	aagataattt	ttgttatttt	ggcaaaagga	ggcagggcag	480
ccccggacac ctccatccca	cctcatcacc	cagccgcagg	gccccggcca	tccctgcaga	540
cagagtggat gtcacaacct	ccctgcaccg	aaccaagtgc	agctcccagg	ccacaggcca	600
cccaggaaag gtccagtggc	ccccggaggc	tcccaccgca	ggcctcccac	cacageegge	660
accaacccag gatagctgtg	ttctcctggc	ttcttttcac	acgggtagca	gaaagctgag	720
atccggggaa agctgagatc	cagggaaagc	tgagaatcgg	cctctgctgc	ccggacgccc	780
accccaget etgeteccag	ctccagggcc	tccttctcag	gtgcccttac	aggaggcaga	840
gggcttgagc cacctcctgg	gcctggggca	cgcaggatga	acggggtcac	ggtgcaggcc	900
actgtccact gcgcagatcc	caaggccata	aacagcctgg	ccacagtggc	ttcccagctg	960
gcaggcggcc agattatttt	tgttgtttag	caattgatta	agtttctccg	ctgccccag	1020
gggtaagtgg tggggcaaat	gccgcaaccg	cagcatttga	cccgggatcc	tgtgccaagt	1080
gaccataggg tcacaaagca	caagggaagt	ggctgggccc	gatgctggct	ctgctggaac	1140
ctgaggccgg ccactgtcac	ctgcacggtg	cctgggacct	tccagcaagc	acagagaagc	1200
tatggccctc caggagcagc	tggcaggcac	cttggcctgc	agtcaggggc	tctgtctgct	1260
cagctctaaa acaggaaagt	cgctgctctg	cctggggtca	gggcagccag	agagtgacca	1320
agtcagtgcc ggcctcagga	agggacctgc	aggcgggtcc	cttcctctcc	catccctcgg	1380
tgccagccag cccctcctgt	ggccccccac	tgcctgcctc	tgcccccatg	ccccaccaca	1440
acctcaggcc catggctgca	tggccactcc	ccaggcaggc	agtggggatg	ggatttcacc	1500
atgttggcca ggctggtctc	gaactcctga	cctcaggtga	ggagttccta	aagtgctggg	1560
attacaggcg tgagccaccg	cgccagccct	ccctgtggta	ctaaacactc	acaccccctt	1620

gctggggacc	ctggtgaggg	aacacagcct	cacaagtgaa	gtgtggtttt	gttgagcaaa	1680
tgacgcctgg	gcagccctct	catctttgcc	taaaactgaa	gaatttaggg	gcgtggatgt	1740
ataaaacagt	tggtgactta	aatgaaaaag	aaggccacac	tcccccttt	aggcaggcgg	1800
cctaattctt	taaaagccag	cacagggtgc	ctttctgaac	ccaggcacac	agtaggtgtt	1860
caatggacag	cagcggttac	ttgtactgct	catgacaccc	tgtctgtggc	ctctgcagct	1920
ggctccagcc	tgacgcatgg	ctgcgcccct	ccgcaaggcc	accccggtat	acatggaaac	1980
tctgtggaga	aggccttggg	ggccggccag	gacgccaggc	ccagatccca	tctgcgccct	2040
tectecatag	acctcagcga	gctctcggca	ccatgtgcct	caggcccatt	taagaagtag	2100
ggccggccag	gcatggtggc	tcatgcctgt	aatcccagca	ctttgggagg	cccaaggtgg	2160
gtggatcacg	agatggtcag	gagatcgaga	ccatcctggc	taacacggtg	aaaccccatc	2220
tctactaaaa	atacaaaaaa	taagccgagt	gtggtggcgg	gtgcctatag	tccaagctac	2280
tcgggaggct	gaggcaggat	aatcgcttga	gctcagcagg	cagaggttgc	agttagcgga	2340
gatcgcgcca	ttgcactcca	gcctaggtga	cagagagaga	ctctgtctca	attaaaaaaa	2400
aaaaaaataa	aaaaaagaag	cagggccagc	cacggacgac	ccctcacaca	gctcccagga	2460
cgcgtgcctg	ggtatagggc	tcaggaccat	gaccgctgca	gtggccccca	agaaacgtta	2520
cttttgtcac	ccaccccgcc	tcagtggcag	tagccaaaat	aacggattag	aatggaacca	2580
tgtgacaatg	ccactgcccc	aactgacaga	agatggctat	cagcagttca	cgcggcccca	2640
cctatcacaa	gtgcagggca	ctctacaact	tatgcatcct	tccccagaca	ccgtcctttc	2700
gaccctccca	ggtcagcaag	gcacacaggg	cctacatttc	acagecacae	agcagagggc	2760
tgaggctgga	actcggatgc	tctgatttcc	gttcaatcac	atccccagag	gtggcacaga	2820
gacggggggc	ttctcttgac	aaagtcaaga	aagtcactgc	cagctccact	gaagaccaaa	2880
gaacctcagc	tctcaaaccc	tcttgaaggt	gttaccgaac	tctcccagcc	tgtttcctgg	2940
gtcccgatgt	tggtcccgtg	ggacacagga	agaggaagaa	gctccctaga	gcagagcctg	3000
gtgcacctgc	cacactctca	gagggctgcg	cacgggcgga	ggagccgtgt	gcaggagtgg	3060
ggtctggatg	gaggggcgct	gtggccgggg	gcagggggca	ggggaagggt	gctccaggtg	3120
gtgggcacag	cacgagcagg	ggcagggagg	tccacactca	gatgtgcaca	gggagaaaca	3180
aatcgtgcat	ttccattgga	ataggcggta	aaaggtagaa	aaacagagtg	ggggccagga	3240

agggagtcgg	agccttctag	tgtctctctg	caggtgagcg	gcagcccgag	gtgtcagctc	3300
agcagacttg	gggtccaggg	gccgtgtctt	ctatcactga	ccccagggca	cacggaactg	3360
gggagggaga	gcagaggcac	agggcacggt	cagtgaaacg	aaacaaggag	tcatcaccaa	3420
atgcggaaag	ggcaaggagt	gcccgcagcc	gcacaagggt	tctgtctggg	caacgtgggc	3480
gtcccaccag	gccccgcacc	ctgcaagcgc	aaagctcgcc	actgaagata	aagggaagct	3540
gttggagctg	cggagctggt	ctggggtccg	catggagctg	ggcttatgct	gcagtcacaa	3600
gggggacatg	gaagaggctg	caggggacaa	aaccagtgac	cacagtctaa	ctctgagcct	3660
gtggaaaggc	gcccacagca	ttcacccatc	ccagagatgc	cattccccct	gtgcccccgc	3720
tccacggtga	cagcgttctc	caggaatatg	atgcgcccct	ctcctcttgc	atcagccctg	3780
acagtgagta	ttcaggccaa	aaagcagaag	agcacagctg	cgtggttcca	tttccatgta	3840
gttctggaac	aggcaacgct	aatccaaggt	gatagaagtc	aggagagtgg	tggagggggc	3900
gggggttgag	gatggcaaag	gggcaccggg	aactttccca	gtggtagaaa	tgttctctgt	3960
ctggaccgtg	tggtagttat	gcagacatat	gcagctgtca	aagttaatcc	aaatgtacac	4020
gttaaaatgt	gtgcgtttta	ttgcctgcaa	gttatacctc	aattaaaaaa	ataaagttag	4080
cactcaggct	tcttccacaa	cttcctgaac	cgtgtgagct	gattttcttg	ctattaaaaa	4140
ttcacggtcc	atggctgaga	acagcagctg	ccttctgttt	gcaaagtcaa	cgccaatcac	4200
tgcccggccg	cggcagactc	ggccccacag	gacctccttt	ctttttccc	tttgacctac	4260
ttccctgata	agtgacaaga	cagccagact	ctgggaacaa	acgcccgtta	ttcggccccg	4320
agctgagcgg	gccctgcttc	ctgagctaat	ccgcccggac	agacggaggg	acgtgagggg	4380
ctttgccgtc	ggctccagct	gtcagtctgc	ccgtcagact	cgacagtggc	cccctctgtt	4440
cctcccgctg	ccccactcc	atccccgact	tctttttgtt	tcctgtccct	gacagacgaa	4500
catctgttaa	aactctgtct	gggtgagctg	tggccagcgg	cccacaaatc	cccaagccgc	4560
accccagcct	catctgggcg	ctgccgggag	cactgcctgg	ccaccctctg	gacatagete	4620
tgagagccac	cggccagggc	acgtgtggcc	cgagtggcat	ggtgcacgcc	gctaagccca	4680
ctgcccaaag	gcccccaagc	aggagggatg	tgcaggagac	aaaagtcaaa	agaacagggg	4740
cacgttccac	agaggatggg	gctggagggg	tggcagtgag	gaacagcagc	ttccgaggat	4800
ggcggtggca	actcccaaat	aaggcctcac	tcctgctgtt	tttagctcat	tccacataat	4860

tggaaaaaca	tggcagaaac	cgaagccagc	tgctgccttg	gtcctggggc	tgtgtggagg	4920
gggtggggag	gccggaggcc	caggetetge	actcgactgc	tggggatgag	agtgactctg	4980
agctgcagag	agcagcatcg	cagccgccat	ggtcccattg	agccccggcc	acgctgggcg	5040
gcagaggctc	gtgggatata	cctgccctgt	ctcatggggg	tcacttcagg	aggggcgggg	5100
gagccaggac	acageccagg	gctagcggtc	accetgeage	tcaggggcca	cgtaaatagt	5160
gccaccttga	aggcacacag	cagtgcgggg	cccccccgc	caccaacgca	tecetacete	5220
taggaggccg	cctgtgtgcc	cctgggaacg	ctgctccctg	tcccttgggg	tcctggtgtg	5280
accaccctct	cageceette	cttggggaag	gcacctgact	ccctacaccc	agctggcttt	5340
catttgctca	aaatcaggaa	aaagcagaat	tcaagacatc	acagaaatgt	cttcgcctgt	5400
aactccatga	aagataaacg	gtcagacacc	caggagggag	tcccagggac	ccttgagtct	5460
cacctgaggc	tctggcttca	aacctcgaga	tgtttccagc	catgctagcg	ccgccccca	5520
caacctgccc	cacacagtcc	tcccttggga	actcacagat	ttggccccca	cctgccccgt	5580
ttcttctggt	ggagtgggtg	cgttgggttg	gggtggggct	ggggactctg	gatgtgtctt	5640
aagagtctga	gtgattctga	cacagccagg	ccctgccccc	ctcctgacct	tegececaea	5700
ggaaagggag	ccacacgcct	gaagcgccca	gcacaccccc	ctccgtcctc	cccaggtcac	5760
ccgctggccg	tgtgagccgt	gctccccact	gccccttcac	ccaccccagc	tectectgge	5820
agcacccagc	cttggaagct	acttctgatt	acaaccgccg	aaggaagact	cgctccctcg	5880
gcactgaccc	agacagcctg	caccatcacg	ctgctcagca	caacccacac	agccttcctc	5940
caaaccccat	ggagcgggga	gtataatcac	cccctttcta	ccaacggaca	aactgaagca	6000
cagagaggtt	aagtcacttt	cctaagctcc	caacacgatg	acaaaaaata	gaaggtcagc	6060
ccgcaagtgg	aactaggtgc	tccaagtccc	cggtctgcct	gacactgcac	ctcctcgccg	6120
ccacggtccc	gggtccgcct	gacactgcac	ctcctcgccg	ccacggtccc	gggtccgcct	6180
gacactgcac	ctcctcgccg	ccacggtccc	gggtccgcct	gacactgcac	ctcctcgccg	6240
ccacggtccc	gggtccgcct	gacactgcac	ctcctcgccg	ccacggtccc	gggtccgcct	6300
gacactgcac	ctcctcgccg	ccacggtccc	gggtccgcct	gacactgcac	ctcctcgccg	6360
ccacggtccc	gggtctgcct	gacactgcac	ctcctcaaca	ccaccacggt	cccgggtctg	6420
cctgacactg	cacctcctca	ccaccaccac	agtcccgggt	ctgcctgaca	ctgcatttcc	6480

tcatcaccac	agtcccgggt	ctgcctgaca	ctgcatttcc	tcatcaccac	ggtcccgggt	6540
ctgcctgaca	ctgcacctcc	tcaccgccac	ggtcccgggt	ctgcctgaca	ctgcactttc	6600
tcaacaccac	tccttggccg	gctcccaact	acaaaccaag	ccatgtcttc	catcctgaat	6660
cctcttggcc	taaacatcac	tcacaatgcc	tccctcggga	acaggcacaa	gtcccaccag	6720
cacagcctcc	ttcgttacct	gcgtttccgc	tagcccaggg	ccagctccag	agccctcacc	6780
acagagcete	tatccttcac	ccccggacac	tggacctcac	caacccatag	cctggaggag	6840
atccctgtgt	gaccccaggg	cctcctctgc	ccgactctga	atttcactgc	ccaacgtgac	6900
acctcggaag	gctctctggg	cactggcagc	cctccatggg	caccgctcct	tetggccage	6960
tctgacatcc	cggctggtga	ggtgccctgc	acgaggcctc	tgcccactgg	gacctcacag	7020
ccgtgctgtc	agctgcaaca	agcgacagaa	tttcacgttt	tcttcacgtt	gcccctgggt	7080
gagcagctcc	aggtagtttt	cagtcgaggc	gaggcgtccc	gtcagcagcc	aggeggeaca	7140
gctaattcat	gcccgccggg	cgcacggccg	caataccaat	gggcacctgc	agcctggaaa	7200
gccacagagg	aaccgagaac	agcgactgtg	ctcaggtgac	aggactgtgg	tcttttaaca	7260
aaacattttc	ctttaacgtg	atattttacg	gcaaggaatg	aaacctggag	ggcaggacat	7320
ttggatacta	aagccccagg	ctgccgcgtg	gtctgctttg	tgaagtctga	agecegegee	7380
ccattctggc	cccgctcaca	ggtccggctc	tgactcacca	gcttcaatgc	taggccgtgc	7440
ctgtcctcca	accagaacat	gacttcctta	aggacaaagc	cgtttctcgc	ccatccccat	7500
ctccctctgg	attaagaaat	atgggaagat	cttctagaac	cacctcaaat	ttgcagagag	7560
ccatcctggt	gacaaaccct	tgaaatgctt	ctaagaagag	tttaggtttc	ttctcaactc	7620
taaaacctct	agaaaactct	atttccacac	cagctgcccc	tggaacactt	cagcttcaaa	7680
agggcccagg	gcagggagac	ggaggagcca	gcatccacac	cgagcaccag	cctgttaatt	7740
aacgggaagc	gggtggggcc	catctccagg	cagctctgag	gtcagactgg	ggaaccatgc	7800
ttacaaaaaa	aagtgaactg	aaacgctcac	gtcctcatgc	aaaaccagac	tcccagttgc	7860
atctttctgt	ctcattgagg	agctttttcc	tccctttgac	agaacaccct	acacacggca	7920
tctggaacca	aagcagaaag	attcaggctc	agagtaaaac	agtccccaca	ctggctgcat	7980
gtggacgttc	ccggcccaga	gtctcgccca	agcagggcct	ataaatgaca	caaaatgttt	8040
ttctcctgcg	tgccagtcat	gctccaactg	agttatgtgt	aaaagtgcct	ctcacggctg	8100

agggcaaaaa	cagttcccac	aagactagag	aaaggtgacc	cctgacggct	gagtctctag	8160
ggagcgtgga	gctgcgtgct	cagecetgeg	gccctgacgg	ctctggaatg	gaaaagctat	8220
ccaactggaa	gggcagggct	cgctgctagt	ccagcggtcc	aaccccacag	gtgtctgtgg	8280
tgtcagctcc	atgccacaga	gcccagggct	ggggccagag	ccaccaggcc	ccctgccagc	8340
ctgcaggggc	ctcctcctct	gggtagccta	accaccccct	gtgagcgcag	gcagcctcct	8400
ctaatcacca	cagggcctgt	cccccctct	cccccgcttg	caggaaaatg	agccctgagg	8460
actccccagg	gctgctctgg	gcctggacat	ggagactggg	aattacattt	gcagaaggag	8520
cgcaatgccc	ttgaagggct	cagccacgag	cagccagtcc	ccagggctca	gaaggcccag	8580
ctgttagaac	cctgggagcc	agcaaagagc	caggggctcc	acctaagtct	atagcccctg	8640
cctcttctgg	ttgggaaaga	aatcaacgcc	cctttactgg	ctcccactga	cageceaete	8700
ccccaggtat	gggaggattc	tgggacgatg	caggcaaacc	tggaccctga	gtgaacctgc	8760
cccagctctc	acgggcctgg	caccagccac	agcacctaag	gcgccggtca	tggtgacaac	8820
atgaaggtga	taagggcatg	gacagtggac	atggcagctg	gacactgggc	acccactgga	8880
tgccaggcaç	ccagcacggc	teegteacee	ctggatgagc	agtggccctt	tgcaagccag	8940
ggtagcctgg	gcaagttatt	tgggggtctc	caagcttgtc	cagctgtgcg	acttcactga	9000
gccatgagtc	tgggatttta	tcagggccca	cacccgttcc	tggaactctg	atacgtgagg	9060
gagccacaca	gggaccctta	acaaaagctc	ccagggcaac	atgttctctt	gcctcagtct	9120
cccaaatagc	tgggattaca	ggcgcacgac	taccgcccgg	ctaatttttg	tatttttagt	9180
agagacaggg	tttcaccatg	ttggccaggc	tggtcttgaa	cccctgacct	caaatgatcc	9240
ttccactgtt	agggcaaggc	acctgacagg	cacgactgca	cgatctgctt	gttgggggct	9300
gtgtccattc	cccactcctt	cgacaaatgt	ccacacccag	ccttgctttg	acaccccaag	9360
aacagagatg	gtgacacctg	cttcctacat	gcccattgct	ctcccaaggc	agacatecee	9420
agcagatgca	acacagtgtt	taggcagaca	tcaccaatcg	atggtggcaa	cagacaccag	9480
gccctgctcc	ctctaactcc	agtggccagg	ccccaagcca	gctctcacct	gcccactccc	9540
aacccacagc	agcaagactc	agaaatggca	aaaacacaaa	gagaacagaa	acgccccata	9600
gcgggaggat	gactaaaaga	catgtcttga	taagatattg	ttcaggcata	ggccaggcac	9660
agtggctcat	gcctgtgatc	ctagaacttt	aggaggctga	ggtaggtgga	tcacctgagg	9720

ttaggagttc	aagaccagcc	tagccaacat	ggtgaaaccc	catctctact	aaacatacaa	9780
aaattagcca	gacatagtag	cgggcgcctg	taatcccagc	tgcttgggag	gctgaggcag	9840
gagaattgct	tgaacctggg	aggtggaagc	tgctgtgagc	cactgtactc	caacctggac	9900
aacagagcaa	gactctgtct	caaaaaaaa	aaaaaaaaa	gatatccttc	actaaaactc	9960
atgtctttga	tacatattta	cctcctgcaa	tcgcaaatgc	ttctgcagtg	cataaagtga	10020
aataaatagc	aggaagcctt	acggttcgat	cacccacaca	gacacacagt	cacatacagg	10080
aaaaacgcag	ggagggctgg	ggaacaaaaa	aacagaagat	aaaatgtgga	gacagacaca	10140
ccaagagagt	aagagaccac	ctccagacct	cccttcagct	tctcaaacac	acgagccggg	10200
cccgttacag	aatttgcggg	gaccgctgca	aaatggaagt	gcagacagcc	ccttactcaa	10260
aaggtaggaa	tttcaggtca	acaacagagc	tcacctcata	tgactacaca	ggtcacacag	10320
cccgtgaagt	cggtcccaac	accagcatgc	tcctgcctca	aagccgctgc	acgtgctgtt	10380
ccttctcgcc	tttccctctt	ttagtccttc	agatctcagg	cctcctgaga	gagacctctg	10440
acctgccggc	tcaggcggcc	acacccccag	tacaggagtc	tccggctcag	cccctgctgt	10500
gttccgtacc	cgatccaggt	ctgtcctatg	tccatctgtg	tgccggcttg	cttcctgaca	10560
tggccccac	cacacgtgtg	cctcggggca	ggggaacagg	cccgtctcat	taactgcttt	10620
cttctcagat	attttctgga	atatttgtgg	atattgggca	acatatatgc	tccacctttt	10680
tcagactagc	caggacgagc	tgcattttt	tttttttt	tttgagacag	ggtctcactc	10740
tgttgcccag	gctggagtat	agcggcatga	tcttggctca	gtgcaacctc	cgcctcctag	10800
gctcaagcaa	ttctcctgcc	tcagtctccc	aagtagctgg	gattacaggc	ccgtgccact	10860
actgcccagc	taatttttat	atttttagta	gagatggagt	ttcaccatgt	tggccaggct	10920
ggtcttgaac	tcctgacctc	aaatgatcca	cctgccttgg	actcccaaat	tgttgggatt	10980
acaggcgtga	gccactgcgc	ccggcccgag	ctgcctgttt	tacacctttg	ccatattccg	11040
gtgattctct	ctccctccg	teceeggee	ctgactgtgg	tggccactcc	ctgccgtcat	11100
gagcccgtat	gtcctcactc	tttccctttc	cgccaggact	tcaaccaaca	ctgcagagcg	11160
cagggtccag	ctccagcact	gagttcagcc	tcttctcacc	aacagacagg	caggaaagaa	11220
aacaaactct	gagaaggcca	aggttcccgg	gcagccagca	agccaagcat	ccttctccgc	11280
tgaggcttgt	gcagccgagg	cacccctcc	tccagggagc	aggcagcgtc	ctggggcagt	11340

ctgcgaggga gaccagggcc	cttgctccac	cagggcccca	ggtatggggg	cagcagcaaa	11400
ctcatggctc tgggagccag	accccacctg	ctagaaccta	ctatgccacc	tgctgtgggc	11460
aaccccaggc tggtgacttg	ccctggcctc	ctctgtaaac	aaagggctca	tccaacctgg	11520
tcaaaccact ceteceette	aagggtctat	aatcctccct	taacctgctt	ggtccaaacc	11580
cctggtgtcg ccaggtcact	caggaggcag	ctcatctgga	ctccttccct	gggtccagtt	11640
tctctctcaa cattgccttt	gaggecgagg	tgaacggtca	acagcgaagg	gccccagagg	11700
tgatggagga gcgggtgtcc	aagacactca	ccctttctaa	tgcactgact	ccctcgtgga	11760
ctcacttgtg ccgtctcccc	cacccaccca	gccccagagc	ccagagtgcg	agcgccagag	11820
gcccgggatt ctgtctgcac	cgcggggtcc	ccagtgcctc	ggagcaatgc	cagcacccgg	11880
caagtgttcg acaaatgcct	gctgaatgag	caaatggatg	gatgaacgaa	tgaatgagca	11940
agcagatgaa tgaatggggt	gctgtccaga	gccgtgagga	ctaggccgcc	caagtcccca	12000
tttctcaaat tctccttctc	ccgacttggg	aaacaagatg	cttggtcggg	gaggctctcc	12060
aaccatcccc tgcagcagcc	ggcacagcgg	acagaccctt	tgatgtaaca	gccatgtctt	12120
cattaaagat gccctgctct	cagaaagaga	aagacaaata	caaacctgga	aaatcctcac	12180
caaacgcagg acccctgcca	gggagcagag	aaaagaccca	cacgccacgg	gcgccacgac	12240
cacacacaca ccccagccgc	tgcacacaaa	cacagaccct	agccagcaag	aacaggggga	12300
ccaggaaact gttcctaaag	tcaggacccc	catgtgctca	gacagcagtg	agagcaagga	12360
cactteteca tecaceggat	gccaggagag	tccttttagg	gggccccaca	ccgagactct	12420
gcccttagga ctgttcctga	gtgtggaagc	cageceaett	ggaagccccc	tgccctcccg	12480
agtgggacac cggcacagga	agcaggccct	gtccccacc	actttctgca	agctgggccc	12540
catcacgcta cagaaacggg	gaggactggt	cccagggatg	gcgctttcct	gacacctctc	12600
gttaccccct cgcttgccag	gccccagggt	cagccccaga	ggccagactg	gctatcccag	12660
gcccgggagc atccccgaag	gcgagctgca	tcctgaacgt	gtgtgatttc	ccgaagggcc	12720
cgccccgaac cgacacctgg					12780
atgcctcact gcaacacagt					12840
aaaaaagtgg aaaatatctg					12900
ggctcaagca atcctcccaa	ctcagcttcc	cgagtagctg	ggaccacaga	cttgaatcac	12960

cacacccgcc	aagįtggatca	tttcgaacgg	gtttgccgag	gttccttctg	gggcaccccc	13020
ggcggccgca	acccattccc	gccaggcccc	gccccgcccg	cccgccccgt	cccgtcccac	13080
cgcctcacct	gccttacacg	tcctgccgtt	gtcctgcagc	tgcacacccg	tggggcaggc	13140
gcatgtgtag	aaaggctcgc	ttggggacag	caggcacagg	tgggagcagc	cgccattgtc	13200
ctcctcacag	cgagtgtgga	ctgagaaaac	caggacagac	tgagagaagg	ttccagaaga	13260
ggaccgtcac	ttgtttctga	atgagtcaca	tcctgcctcg	tcccccgtga	cagcctccag	13320
tgtgtccctc	tgcccaaaca	tcggcctcaa	gtggcatcag	ggacctcccc	gcgggcacca	13380
ttccacctgc	ctcatcgctg	gccccgtcca	catggggccc	tcagcctggc	cagacggcct	13440
gcaatttccc	caaaaccagc	cgtgaccttc	ctggccaccc	tcacacccag	atgtgacctg	13500
cccatggagt	gacateetee	ccatctgctt	cctcccacca	agctcctatg	actagaacac	13560
cctccccagc	tcctcggagc	ccccaaagga	cacccctctg	caaaggctgc	ccccacgct	13620
ccaatggccg	gggtcaggac	ctgcctgtgt	ggtagtgacg	ggaaccccag	agacaatggg	13680
ctcctgggca	aaaggcttgt	cttgtctttg	tgctatgtgt	ggacccagca	gcttccatag	13740
gaacactgtc	cttcttgctg	ggatggccaa	gcttgtcact	ctcccaagcc	ctcctatgac	13800
caacagcaat	tgaacggaac	tcgataaatg	cttccagcac	ctcattcaaa	ccaggggaaa	13860
gctgggtgta	gcagccccaa	aatacggata	taactggaac	aacaaactca	tcaaaatgaa	13920
cctctccctc	cctcatgctg	ccccaagtgt	agatgggttt	tgtgaccacg	actttctcac	13980
caggaaacag	ctccagagag	cccaccctc	ctgtgtcctg	ctctgggaac	agctggcacc	14040
cctaggcccc	acatttcaat	tcaaagtcca	aaccttccat	aatggcctgg	ccagaaatct	14100
ccatccctgg	tecetgtggg	agtgggccac	tgtccccaga	gccgcagccc	cactgtcaca	14160
gaagctggtg	catttcccca	tcagggacct	ctgtcacaac	ccagcgtggc	ccccaggctg	14220
agaactgctg	attctgggca	gattattcat	tgataaatac	gcgacttgca	gggccaagca	14280
tggtggctca	tacctgtgac	cccagcactt	tgggaagtca	aggtgtgagg	atcactggag	14340
cccacgagtt	tgagacaagc	ctgggcaacg	tggcaaaatc	tctcatctct	attaaaaata	14400
catacacaca	cacacacaca	cacacacaca	cacatatata	tgtatatata	aataaccata	14460
tatatatata	cacacatacg	tgtatgtgta	tataaataca	tatacacaca	cacacagaca	14520
acttcttctg	ggccttgaaa	acgaggcaac	cttccttgga	aatccccttg	ccactgctga	14580

gcctgaaata	gcccccatga	gctctgcaga	ggggtcctct	gcaggcccgt	gtcccccagc	14640
cagccacaca	cctccctcca	ttgcagcagg	taccccttta	gagagggggc	ccccagagc	14700
atgggcttct	gcagggaggg	gtcacctgcc	ccccacccc	acccacgccc	gcgcaccccc	14760
acgcccccgc	atcctcccac	tcccctgccc	cgcgccccg	ctcccccag	cccctcacc	14820
ctctccccg	tgccccaacc	ggcactcaca	aaaaggctgc	cgctcctggc	tcagcacctg	14880
gatgtccatg	ggtgagtata	gggcactcag	gatctccttc	ctcttcccc	cagtgcgctt	14940
gttgcaggca	tggatggagc	gggtctgcca	gtctgtccag	tacagagtgt	ccccggagag	15000
cgtcagggcg	aaggggtgcg	tcaggctgcc	ctccaccacc	ttctgcctgc	agtcagggaa	15060
gcggggtgga	ggagccatca	ggagggtccc	ccgacagtca	ttgctgctga	cccaattaat	15120
ttctttttt	ttttttgaga	tggagtctcg	gtctgtcgcc	caggctggag	tgcagtgatg	15180
taatctcagc	tcactgcaac	ctccgcctcc	cgggttcaag	caattatect	gcctcagcct	15240
cccgagtagc	tgggatcact	gatgcccacc	actacgccca	gatgatttt	gtatttttag	15300
tagagacagg	gtttcatcat	gttggcaagg	ctggtctcga	actcctgacc	tcaggtgatc	15360
cacccacctc	agcctctcaa	agcgctggga	ttacaggcgt	gcgccaccat	gccaggcttc	15420
ccatttgctt	tcaaccagac	aagtgaggcc	aggtcaagag	ccccaggagc	tggcgccctc	15480
gtacatttct	cccggcgtgc	acagggcacc	tcccaaacac	agcctgtgat	ggtgacacac	15540
gggctccccc	aggtcaagtg	gcaaagtctc	ccccagggaa	gaaaggagga	agccatgcct	15600
ggcaaaaagc	acacctctcc	tgcccaacgc	tttaacctct	gtatacaaat	caggccatgt	15660
gcactcgctc	cttcttacaa	tgctcataat	ttatactttc	agagtaaatg	aaacttggca	15720
tcaacccgag	aaacagctat	tcttttctag	atgcttacag	tgcccagcaa	atgaggactc	15780
gggtgtaatg	agattatgga	cactggaaac	aggatcataa	tgtgacgtgg	tcggtaatgt	15840
gcagttttat	ttgcttaatg	accctcgccc	cgtgacaggc	tccctgaggg	tgggcctggg	15900
ggcagaggtc	cccgccacgt	ccccagccct	cagcacagtt	gccaggagag	ggtgacactc	15960
atgaagtggc	acagggaaga	tgggagctgt	gggctctgca	gatccaccac	ctcttctgtt	16020
catttttgtt	gatgctgttt	tttaagaaaa	ttattgaagt	aaaattcaca	ggacatacgt	16080
ttactttttt	tttttttt	ggagatgggg	tctcactctg	tcacccaggt	tggagtgcag	16140
tggtgtgatc	tcagctcact	gcaacctctg	cctcccaggt	tcaagcgatt	ctcccacctc	16200

cgcctccaga	gtagctggga	ccacaggcgt	gcaccaccac	acccagetaa	tttttggggg	16260
gtatcttttt	ggtagagaca	gggtttcgcc	atgttgccca	aggctggtct	tgaagccctg	16320
agctcaggcg	atccacccgc	cttggcctct	caaagtgctg	ggattacagg	cataagccac	16380
tgcacccagc	ctaaatttac	cactttaaag	tgaatagtgt	tacctagtgc	attcgcaagg	16440
cggtgcagcc	tccacttctg	tctagttcca	aagcacttcc	attgccccac	aggcaaaccc	16500
cacacccggc	agcagtcatg	ccccagtccc	cgcccccagc	cccggcaaac	acttttgatg	16560
gacttaacta	cacacattct	caacatctca	tataaacgga	atcacaatat	acagcctctg	16620
atgtctgtct	tctttgactt	ggcaccatgt	tttcgaggtt	catccaggct	gtagcatgtc	16680
agtgcttcat	cccgttttag	gggtgaacca	tattccagtg	tgcagacaga	aaccaatctg	16740
tgcatccatt	cacccactgg	gggacctttg	tgtcatttcc	accctcggct	gttgtgcaca	16800
gtgctgctac	ggacattact	gtccattcac	attttgtgtg	aagacctgtt	ttcgattctt	16860
aagagtatac	agctaggagc	ggaattgctg	ggtcatacgt	aaatcaatgt	ttacgtctca	16920
aggaatcaac	aaactgtttt	ccacaatgtt	gtctttttg	tttgttttct	gagacagggt	16980
cttgctctgt	cacccaggct	ggagtgcggt	ggtgtgatca	tggctcactg	cagcctcaat	17040
ctcctaagct	caatccatcc	tcctgcctca	gcctcctgag	tagctgggaa	cacaggtatg	17100
taccaccatg	gccagctaat	tttctaattt	tattttttt	tgtttttgtt	tttttgagac	17160
agagtetege	tctgtcgccc	aggctggagt	gcagtggtgc	catctcagct	cactgcaagc	17220
tetgeeteee	gggttcacac	cattctcctg	cctcagcctc	ccgagtggct	gggactatag	17280
tcaccggcca	ccacgcctgg	ctaattttt	tgtattttta	gtagagatgg	ggtttcaccg	17340
tgttacccag	gatggtctcg	atctcctaac	ttcatgatcc	acctgccttg	gcctcccaaa	17400
gttctgggat	tacaggegtg	agccaccacg	cccgacctta	cttttaattt	tttaatttta	17460
ttattttatt	ttatttttt	tttttttgag	acagagtete	gctctgtagc	ccaggctgga	17520
gtgcagtggc	gggatctcag	ctcactgcaa	gctccacctc	ccaggttcac	gccattctcc	17580
tgcctcagcc	tcccgagtag	ctgggactac	aggtgcccac	cacgatgccc	ggctaatttt	17640
ttgtatttt	agtagagaca	gggtttcact	gtgttagcca	ggatgatctc	aatctcctga	17700
cctcgtgatc	cgcccgtctc	agcctcccaa	agtgctggga	ttacaggcgt	gagccaccgc	17760
gcccagcctt	tttttttt	tttttttt	ttttgagata	gagtcttgct	ctgtcgccca	17820

ggctggagtg	cagtggcggg	atctcagctc	actgcaagct	ccgcctccca	ggttcacgcc	17880
attctcctgc	ctcagcctcc	cgagtagctg	ggactacagg	cacccaccac	cacacctggc	17940
taatgttttg	tatttttagt	agagacgagg	tttcaccgtg	ttagccagga	tggtctcgat	18000
ctcctgacct	cgtaatccgc	ccgcctcggc	ctcccaaagt	gctgggatta	cacgcgtaag	18060
ccatggcgcc	cagcccatgt	ggccattttt	cagtgagaga	agccagaggc	ccatcactct	18120
cggttgctcc	ctgggccatg	ctctgcctca	gccagaagca	ctgagggaag	gtcagcctcg	18180
gcccttgccc	cagccacagt	cacagataaa	ggggcctgca	caggtctgtg	tggctccaga	18240
gctcgtcacc	caacacacga	cgcttccatg	tgaatagccc	caggtgcatc	atgaagagcg	18300
atggccgctg	cagaggcaga	agaatcccgc	ggggaagcag	gtgggagaga	ggctgagaac	18360
agaccagacc	ctggagctac	agaccctatg	ttccaaccct	ggctgggact	agctgtgtgg	18420
ctctgggcaa	attcacatgc	ttctctgtgc	acaggggatc	aaaatagcaa	acacaggcta	18480
ggcacagtgg	ttcacaccta	taatcccagt	gctttgagag	gccgaggtgg	acacatggct	18540
taagctcagg	agtttgagac	cagcctgggc	aacatggtga	aacctcgtct	ctacaaaaaa	18600
aataccaaat	aaattagcca	ggcgtggtgg	tacgtgcctg	tggtctcagc	tacttggaag	18660
gctgaggcgg	gaggaacact	tgagcccaag	aagtcaaggc	tgtggccgcg	tgtggtggct	18720
cacgcctgta	atcccagcac	tttgagaggc	tcaggtgggt	ggatcacttg	tgatcaggag	18780
ttcaagacca	gcctggccaa	catggtgaaa	cccgtccct	actaaaaaaa	tacaacaatt	18840
tgccaggcgt	ggtggcgggc	acctgtaatc	ccagctactt	gggaggctga	ggcaggagaa	18900
tagttagaac	ttgggaggtg	gaggttgtag	ttagccaaga	tggtgccgct	gcactccagc	18960
cagggggaca	gagcaagact	ccatcccaaa	aaaaaaaaa	acaaacaaac	aaacaaaaaa	19020
agaggtcaag	gctgcagtga	accatgattg	tgccaatgca	ctccagcctg	ggtgacaaag	19080
tgagaccctg	cctcaaaaca	ataaaaatat	aaataaaaat	aaaacataat	agcaaacgtt	19140
tcatagaggt	ggtatgagca	ttaaatgaac	tgataaacgt	ccctggaaaa	cagtaagtgc	19200
tatggaagga	ttcgctgccg	ccaccgccac	caccattagc	atgtttcaac	ctccatcacc	19260
ctcactgtcc	cctgtcacca	tcctttgacc	agggcactcc	cagctgcagc	ctttctatcc	19320
tcttgtccac	ccttcataac	tgtaagatca	ctcagctccc	aagaaccaca	gtctacaggg	19380
taaccacatt	tccaaatctc	aaaccagacc	cgctggtctg	cacttccagg	gacaacagga	19440

tattttcaaa	ccagcccaaa	agagatgtgt	ggctcagcat	aagaggaaca	ggagaaactg	19500
	ccctgagaat					19560
	gcccagccag					19620
cacccagcta	atccactcct	catcactgac	tccctcccca	taaaaaacct	gtttgctgtt	19680
tcaggctgtt	aagttgtggg	ctgttttgtt	acacagcaat	ggataactaa	cacacgaggc	19740
ctggcaagtg	tggagcaaag	ctgcccaagc	cctcaagtct	gttcatgtgg	gtgttggcct	19800
gtgtttgcag	aaatccagcc	actgagtcct	cccatgcagt	cactactgcc	ctctgcacag	19860
acacctgcca	catccctgcc	tgggccagga	gctccactag	tgcaggaatg	gggtctgccg	19920
tcccaggagg	atccctgaca	cctagcacag	ggctagcagc	aggcagcact	tggttagtga	19980
ataaactgcc	cttcacctgt	acacagaagg	gatgtttcta	taaggggtaa	ttaagtacag	20040
agctgggaag	ctatgctgac	cagaaggctc	taaaagcaat	taaccaacga	ggggaaaacc	20100
cttcctactc	attctcggcc	cattttattg	agcactgacc	atgtggaagg	cccctggtg	20160
agactgggga	atgcaccaat	aactgagaca	gcttccggct	gttgccctca	ggatgcctga	20220
gctgggatag	ggccagggtg	ggggtggtgc	gtgtgacagg	gttactgttc	acaaccctgc	20280
cgggccataa	gccctcccca	acaattccaa	aatccaaaac	gctctgaaga	tggaaagctt	20340
ttgttgctca	tctggtgaca	aaacctcatt	tggtgcatgg	geegggtgeg	gtggctcacg	20400
cctgtaatcc	cagcactctg	ggagccgagg	ggaaggatcc	cttgagctta	ggagtttgag	20460
accagcctga	gcaacatgtg	agaccccgtc	tctaccaaaa	atacaaaaat	tagccaggtg	20520
tggtggcgca	ctcctgtagt	cccagctact	cgggaggctg	aggcgggagg	atcgcttgag	20580
cctgggaggt	gggggctgca	gtgagctgag	attatgacat	tgcactccag	cctgggtgaa	20640
agagtgagac	tctgtctcaa	aaaaacaaag	ttaaaaaaaa	aaaaactgtg	catgggtgtg	20700
ggctacagat	agtcttttct	gccctactta	gaatgaacgt	gccacatttg	ctatagaaat	20760
attcaagggc	tggtggcaaa	tgccacacag	accctgacgc	tgttccaagt	tctgagaagt	20820
cctgcattcc	tcagggcccc	agagtttcag	agaagagtct	gtaggcctga	gttaagaagg	20880
aacgccttca	aaagccctgg	ggacaaaggg	gaaaggggtg	ccccaggact	gcgtgggtac	20940
ctaccggaac	gagccgtcca	ggttggcacg	gtggatgaag	ctgagcttgg	cgtcagccca	21000
gtagagcttc	tgctcctcca	ggtcgatggt	cagtccattg	ggccagtaaa	tgtccgagtc	21060

cacaatgatc	ttccgggtgc	tgccatccat	ccctgcccgc	tcaatccggg	gcgtctcacc	21120
ccagtctgtc	cagtacatgt	acctgtgacg	ggggcagggc	aagagaagca	gctaacacag	21180
atctgtttt	tgtttttgtc	tgcatagatg	cagacatgaa	acaacagaca	gtgaacttgc	21240
cctaaaatct	cacccatcgg	aaataaccaa	caggtatggt	ttcaggtatt	cctgccttaa	21300
gctgggcaat	caaaatatac	tatttccaac	ttgttctcag	ttaacagtaa	attctgggca	21360
ccttcccttc	ttgtggatag	aaagattcct	tgttcttttg	atgattgcct	agtgtactct	21420
gctgtaagtt	ttttaaagaa	cttcaggtta	tttctgattt	ttttgctacc	atgaaaatgc	21480
tgtaaatgaa	cctctaaaag	gcaattcaaa	acactcagga	tggaatatta	tttagtggta	21540
taaagaaatg	agctatcggc	tgggcccagt	ggctcacacc	tctaatccca	gcactttggg	21600
aggccaaggc	gggtggatca	cgaggtcggg	agatcaagac	catcctggct	aacacagtga	21660
aaccccgtcc	ctactaaaaa	tacaaaacat	tagccaggcg	tggtagtgag	cacctgtagt	21720
cccagctact	taggaggctg	aggcaggaga	atcatttgaa	cccgggaggg	ggaggttgca	21780
gtgagcagaa	atcgcaccat	tgcactccat	cctgggcgac	agagcgagac	tccatctcaa	21840
aaaaaaaaa	aagaaaagaa	aagaaatgat	ctatcaagcc	atgaaaagac	atggaggaaa	21900
cttaaatgca	tgttagtagg	tgaaagagcc	aatctgtatg	agtccagttc	taaacactct	21960
ggaaaaagca	aatacacaga	gacagtaaag	catcagtggt	tgccaggagt	tggagaggag	22020
agggatgaat	gagtggagca	cagaaaatca	gggcagtgga	actatcctgt	atgacatgga	22080
atggtgggtg	catgtcctta	ctcatctgtc	taaaccaaga	atgtacaaat	caagggcgaa	22140
ccctcgtgta	aacgtggatt	ttgggtgatg	gtgcgtcagc	cagctttcat	cagttgtaac	22200
aaatgtacca	ccctgcacag	gatgctgaca	gttgggaagg	ctgtgtgggt	gtgaggacag	22260
ggatgtatag	gaactcagta	cctgctgctc	atcaattttg	ctgtgaacct	acaactgttt	22320
gaaaaaatta	agtctattta	aaaacaacaa	aacatggcca	ggcacgatgg	cttgcacctg	22380
taattccagt	acttcgggag	gctgaggtgg	gtgggtcact	tgagccaccc	tgggcaacat	22440
ggcaaaatcc	cacctctaca	aaaaataaaa	attaaaaaaa	agttagctgg	gcatggtggc	22500
acactcttgt	agtcccagct	acttgggagg	ctgacgtggg	aggatccctt	cagccctggg	22560
aggtcgaggc	tgcagtgagc	tgtgactgta	ccactgcact	ccagcctgga	tgacagagtg	22620
agaccctgcc	taaaaaaaaa	aaaaaaagg	ctgggtgcgg	tggctcatgc	ctgtaattcc	22680

agcgctttgg	gaggccgaga	tgggcggatc	acgaggtcag	gagategaga	ccatcctggc	22740
taacacggtg	aaaccccgtc	tctactaaaa	gtacaaaaaa	aaaaattagc	cgggcatggt	22800
ggcggacacc	tgtagtcaca	gctactcggg	aggctgaggc	aggagaatgg	cgtgaacccg	22860
ggaggcggag	cttgcagtga	gccaagatca	caccactgca	ctctcagcct	gggagacagc	22920
aacactccgt	ctcaaaaaaa	aaagaataaa	acccatggct	gggatggacc	ctgaacctgc	22980
agctgcagct	gttcctgggt	aggtctgtgg	gcgacgtggc	tttgcttctc	catgttccca	23040
agagacaagc	atcacccatc	catgagaaac	aagcacatcc	tcagggcgcc	cttacgtgat	23100
ctctggccaa	tgaaccaaga	caaagtgagc	agacaccagg	tctgggatgg	caggtcccac	23160
ccccaccagt	gcccagtgtg	ccctgtttgg	aggtgaccac	agggtgtgtg	cccagaggct	23220
gggcgtgact	ctcagcggag	accagagggg	aaccacacca	gcttggagga	ctcagttccc	23280
atcccagcca	gctgggatga	gccacaggac	acaagggctg	gcagacctat	tgtgttttgt	23340
ccacccttca	cagcagagaa	aggggacagt	gcccagaatg	tcctctgagg	agcctcctcc	23400
cactcttggt	ccttgtaaaa	tggtgctgac	tcccttgctc	ccttcttcct	ggggtgggcg	23460
gcaaacccca	ttcccctcag	ccttagcaag	tgatttagaa	acaggcagct	cgcccaagcc	23520
aggcatgaga	gtgatcccgg	gacacaggga	gaacaagccc	cgctttgccc	tctgggggtc	23580
tccattcagc	agaagaggca	aatgacagac	acacagccgc	ctcctcccc	accatggtgc	23640
tctgcagcct	caggagcctc	aggtgcacca	agggccaccc	catccagggg	gccatgcttc	23700
cttgagtggt	atcgttcctg	agcgagtacc	atctccacct	tccagaggġg	ctgtgacaag	23760
atcaacaaga	atgagggcat	aggagcctcg	aaccaaacat	gccctcttcc	ctgcagaggc	23820
tgactgcgcc	cagctgctat	caccaagccc	ctgctcctcc	ggccccgtgg	ggacagggta	23880
agaggggtgt	cacatggaac	agctctccaa	acagtccctc	tcaagctgct	gtctcctgtg	23940
catctagtga	gaacccaacc	aacaaaggga	aggtgggaat	tgctattccc	attaggcaga	24000
tgagaaaact	gaggccccga	aaggctggcc	tgttccaggt	tacaggcgct	gageggetge	24060
tctgggaaca	cacttggtgt	ctgctgaggg	cccgagcccg	gccatcatat	gactcaccct	24120
tcgccagcaa	agcccgggtg	tgggtgaact	tttcctggca	gcctgggact	ccaaggtgct	24180
ggcagccagc	ccagggaagg	ctcccgcgtg	cctgcggcag	acgccttgct	ttacctgcac	24240
gtccccaccc	ctaggagcct	ggacagagcc	cagaccctcc	gccacctcct	gagaaggtat	24300

	caggggcatc	agtctggact	tggggggaa	tccacacagg	ccttccccaa	atgctccacc	24360
•	gtggcccatg	gaaaaggctg	gaaaacgtgc	aggagcagga	gcctccgcat	ggagcataat	24420
	tcacattcct	tccccgagtt	tcataacaga	ggcctgctgg	tttccttaaa	tggggaattt	24480
•	gcgagccagt	cggtgaccag	agactggttg	gcgtggacgt	gctcttgcag	agtctcaaac	24540
•	gctaccacaa	gcccagccaa	attccacgga	ggaaaatcga	cttccgaaga	aaagagctgc	24600
i	agcatggcct	tcgtgcagag	ccagctgcgg	ttgtggttgt	gtgttatttt	agggaagggc	24660
,	cattttgcat	tttaaagagg	gggttgggtt	tcaccctggc	tttaatttga	gacccggggg	24720
,	ccactgcagc	cccttgtcag	gctggtacag	gccggggact	cctcccatgc	taagccagtg	24780
	tetttetgge	cccagatcct	caggggccag	agggtcatcc	ccagagcccg	ctctgccacc	24840
,	cacatgggta	ccctgggcct	gggagggatg	tgccttccct	caaccctgcc	tggatgtccg	24900
	cacggggcca	cctgcattgc	tgaaactgca	acgaagtcga	gtctcaggag	gggccccct	24960
•	ggctgcaggg	ctcttgatcc	ttttggccac	gtgcacactg	aggtggacgc	tcggacccag	25020
i	agaccccctt	catgatgatg	gccggggcag	gaaccccctc	ctctgaggaa	ggaccctggt	25080
•	ggggacagc	actgcaggag	ggcacaggag	atgacggggg	ctctagcagg	gccgggagga	25140
i	aggccaagat	gctcctcgca	accgtgtgcc	tgtggccagg	acagaggaca	aacccaccct	25200
•	ccactgtccc	cactctcagg	acagcagtcc	tgccccagga	ctcagcgccc	acacttatgc	25260
	ctgaggacca	ctattcaagt	cagtatttgg	cgagcagggg	ttgctgccgc	gggcgctgtg	25320
•	acaggctgga	atectetece	tetecetete	cctctccgga	gacatggagc	ctacagggac	25380
•	agagtcagca	cctcagggta	ggaccatggc	tggcgtcatc	agcatcactg	gatctgatga	25440
•	gtgggagccg	gcatctcact	gttttcactc	tctcattcaa	atgactggag	caaagggaag	25500
•	gtgtggggag	aggcccagga	atcaacacta	aggtcaactt	tgcccccagg	ggcaggggtg	25560
,	ggagtgaaca	gccacaggtg	tgatcctggg	gagggcttct	gggagagaat	tcagaggcaa	25620
•	gcatgtagag	gaaccatttc	aaatagttaa	gaaaagccag	agccaaacag	ggacagttgg	25680
	ctcgcagaga	tgatgcaggc	aaagccagct	cagatctgag	catgggaaag	actactccca	25740
	accaagggcc	cagcatetee	caaccaagca	ccaagtacct	cccaaccaaa	tgccaagcac	25800
	ctcccaatca	aatacctccc	aaccaagcac	ctagcacctc	tcaactggac	accaactact	25860
,	cccaaccagg	caccaagtac	ctcccaacca	agtgccaagc	acctcccaac	caagtaccaa	25920

ttacctccca	accaagcgcc	tagcacctcc	caactgagca	tcatgcacct	cccaacagag	25980
catctagcac	ctcccaactg	atcacctccc	aacctagcac	cgagcacctc	ccaaccaagt	26040
gcagagcacc	tcccaaccaa	gtgccaagca	cctcccaatc	aaatacctcc	caaccaagca	26100
cctagcacct	ctcaactgga	caccaacaac	tcccaaccaa	gcgccaagca	cctcctaaca	26160
aagtaccaat	caccttccaa	ccgagcacct	agcacctccc	aactgagcat	catgcacctc	26220
ccaacaaatc	acctagcacc	tcccgactga	tcacctccca	acctagcact	gagcacttcc	26280
caaccaacat	agcaaaagcc	ataaagaagt	aaaaagacaa	aaccacgtag	gcatggagac	26340
tggacttctg	gtggcgagga	aagggcattt	ttattataac	gacagctaac	atttgttgaa	26400
ctcacaaact	gttcttggtg	ttttcctcat	gacatgcagc	atggtcacgc	ctctgtacag	26460
acaaggatac	tgaggcacag	agtggcaccg	tgccaacctt	gtctcatctt	tttatcgaac.	26520
ctacatgcag	agtgccagca	aatccagctg	tcttttctct	tcagaacaga	tcccaaatct	26580
cgccactcct	tacccccaca	agtgaggtgt	ccccgctgct	gctttctgtc	gccaggatcc	26640
cggtaataac	cgtggagagg	geteetgeee	ccacgccacc	caccccacag	ctcactctcg	26700
ctccagccac	caggggatgc	cttccagcac	gagtcagagc	tggcacctcc	tctgctcgag	26760
acctcatgtg	tectetecte	acaccttggg	ccctgtttcc	ctacattctg	ctacagcccc	26820
tcaaacaggc	cccgccccaa	accagcccag	ggcctttgca	ctggctgatc	cctctgcctg	26880
gaccgcgctg	ccccagaca	gccacacggt	tctcagcctc	atctgcttcc	agtctcgact	26940
caaaagtcac	caagaggcct	tcccagcacc	tgagctccga	cggaagcccc	tcgccacagc	27000
acccaagcac	tgctttatcc	ccctacgcac	acgtcccttt	caaatactat	tcatttacca	27060
tctcctccca	ctcactgaaa	gggccagaga	ctgggctata	cccgctgcgt	ggggagcagg	27120
accaggcgca	agggctcaca	aatgcagtgg	atgcctggtt	gggaggtgag	ggagctgcag	27180
cgacccacgc	tgggagggaa	cgcaatgaca	ggaggagcgc	aggtcctggc	gacacgatgg	27240
ccatggcagc	cgctggtgag	caaccgcagg	ccggccctgg	gagagggctt	c tagcaagct	27300
gctatcttca	gcctctccga	ctactgcaga	tgcccctcc	tagccagaga	cactgctaca	27360
ccagccgacc	cttccaaaaa	gaaggtcagt	aaccccgcga	ctcctggagc	cacagtgcag	27420
ggggagaggg	ctgagagggc	aacagttcac	caagcggaac	agaggctgcc	ccggaggtca	27480
gctggctccc	cggcagctgc	aggggtggct	agcccactcg	gagggcagcg	agggcatacg	27540

aggggctcca	gggatgagtg	gttgcccagc	acagcacccc	tgggaggccg	ggggcacttc	27600
tcaggtagtg	ggggcacgag	gctgctctgg	cctgacctca	gggactcaaa	atactttggc	27660
gataaattcc	accgtgtccc	acccctgctg	gtaccccata	cttacacaca	gactggttca	27720
gatgcagaca	ctctcgcgca	catactcgct	cacacgggca	catacacgtg	cacacacagt	27780
cacatgcgca	cactcataca	cacacaaata	tccactcaca	cgcatgcatg	cacacacacg	27840
gacacacaca	ggctcacacg	tatgcacgca	tatgcgtgca	cacgcacaca	cacacacaca	27900
cgctcacatc	ctcccactcc	cacactcagt	tgctcagaca	cacacacgcc	tggctctcac	27960
acaaacctgt	tgggctctga	aaggctccag	cccttcccat	gctcgtcaga	agccagtcaa	28020
tggcttccta	agtcaccaca	cagatcaaag	aggtgaactt	ggccacatgg	cactctgctt	28080
cctgagctcc	caaacaccag	ccttggtgag	gacagaccct	caccccacac	cctcattccc	28140
actaccctgg	gcaggcccag	aggaggggca	tctgcaggat	ctggcaacca	gececteceg	28200
cccggctcct	gcagccggca	ccatgggagt	cagggggagg	tcactgcaaa	gggcaacagc	28260
aagttggtgg	ccccaggact	agagcccagg	ggtcttcagt	cctactccag	agcttggaca	28320
ctgtcccaca	gggcatggcc	aagggaaggg	cttccagagc	cctgacttca	gggaggaggg	28380
caggcgggct	cctgtggcag	gcctggatgc	atggccgccc	actcctggga	ctttctaacc	28440
tagaatatct	aggtcaggct	gggtgcagtg	gctcacgcct	gcaatcccaa	cactttggga	28500
ggccgaggag	ggtggatcac	ttgaggttag	gagtttgaga	ccagcctggc	caacatggcg	28560
aaaccctgtg	tctactaaaa	atacaaaacc	tagccaggtg	tggtagtgca	cgcctgtaat	28620
cacagctact	caggaggctg	aggcaggaga	atcacttgaa	ctcgggaggt	ggaggttgca	28680
gtgagctgag	atcgtgccat	tgcgcaaaga	agatctaggc	cggcccctca	accggtgagg	28740
tccaggctgg	gagtgctgag	agactgtggt	gacactgaat	gaactaacag	gcaaagggct	28800
tccaactgag	cctgggggtg	gtgggaaatg	gctcttgtgt	tctagtcaag	acctctgcca	28860
accagttctg	acactgaccc	agcacagaac	ctgacaggtc	agcaagggcc	agggcttagc	28920
acagcccagg	taagggtgtg	tgtacggccc	ccagagtcac	tcccaggctg	caagaaaagg	28980
gacaaaggag	ggacaagggg	tggccaagca	aactgttccc	tctgctcggg	agtctggggt	29040
gacctggcct	agctggccag	tggagctggg	ccacctcccc	ttaaactctc	caccccggac	29100
ttcgactcca	aagctttcct	gccacccacg	ctctccccac	ctgggatcac	ggccaggccc	29160

tgagccttca	agggcccagg	tgaactcagc	cagactagga	gctgaggagg	acacagggca	29220
gcttccagaa	cggacccgag	aaccactccc	agcaggttct	gcttccagac	aaggagctgc	29280
actttttcag	ccaatgcaat	tagaaagcca	ggagaaggtg	caaattccac	ctgcctgagc	29340
gtccgcactt	cccaggccgc	ccaccataca	cacagcaaag	atgtgtttaa	ccattcaaac	29400
ccatggccaa	ccacatcggt	tgcctcagac	atgcaagttt	taaaaaggaa	cataactatg	29460
ggccaggcac	ggtggttcac	gtctgtaatc	ccagcacttt	gggaggccga	ggtgggtgga	29520
tcacctgagg	tcaggagttc	gagaccagcc	tagacaccat	ggtgaaaccc	catctgtacc	29580
aaaactacaa	aaattagctg	ggcgtggtgg	tgggcgcctg	taatcccagc	tacttgggaa	29640
gctgaggcag	gagaatcact	tgaacccggg	aggcgaaggt	tgcagtgagc	cgagattgtg	29700
ccactgcact	ccagcctggg	caacaaggga	gactccatct	caattaaaaa	aaaaaaaaa	29760
aaaaaggaac	ataactatgg	agtctcaagg	ggaagtaatt	ccttcaacaa	taacaaatct	29820
tgaaagctga	gctcttttt	ttttttgaga	caggatetec	tcactttgtc	gcccaggctg	29880
gagtgcagtg	gtgggatcac	agctcactgc	agcctcgatc	tcccaggctc	aaatgatcct	29940
cctacctcag	cctcccaaga	agctgggatt	acaggtgcat	accatcacac	ccgattcatt	30000
tttgtatact	ttgaagagat	ggggtctcac	catgttgccc	agtgtggtct	tgaattcctg	30060
gactcaggtg	atctgcccgc	cttggcctcc	cagagtgctg	ggattacagg	cctgagccaa	30120
cacccccacg	ggttcatttt	cagagtcgca	ccgagtgctg	gggttacagg	cctgagccaa	30180
ccccccacg	ggttcatttt	aagagtgaca	ccgagtgctg	gggttacagg	cctgaaccaa	30240
ccccccacg	agttcatttt	cagagtcgca	ccgagtgctg	gggttacagg	cctgagccaa	30300
ccccccacg	ggttcatttt	aagagtgaca	ccgagtgctg	gggttacagg	cctgagccaa	30360
cacccccacg	ggttcatttt	cagagtcaca	ccgagtgctg	gggttacagg	cctgagccaa	30420
ccccccacg	ggttcatttt	cagagtcaca	ccctttttct	gaaaaacaac	ttgggctcat	30480
gcaaattcga	gagagagatg	gtgacactcc	ccgccccctg	gacccaggtg	gagtcgcagc	30540
agggtttacc	cgtgagcggg	gtccaaggcg	atggccctcg	gctggtcaag	gtcctgccag	30600
aagagcacct	tccgggatgt	gccattgagg	ttggccacct	cgatgcggtt	ggtctctgag	30660
tccgtccagt	acagettett	gcccacccag	tcgcaggcga	ggccgtcggg	agagaccagg	30720
ccggagatga	ccacgttctg	cacggcggcc	cccgtctggt	tcaggtaggt	ctgcttgatg	30780

gcctcctcgc	tcacgtctgt	ccagtacacg	gctcccttgg	aaaactggaa	gtccactgcg	30840
gccgcatcct	ccaggccgct	gaccacgatg	gtggactcca	gcttgactcc	gceggegtec	30900
accagccgta	cgtcccggcg	gttggcaaat	agcaggagcg	gcgaggctgt	ggggcagaag	30960
caaaccgtga	gggccactgg	ctaagccagc	aagatacaca	gccctgggat	ggagcactat	31020
gcccagagca	ctcctggtac	tgccctgccc	atgcccaaga	cctccagttc	cttcctccca	31080
cccctaaggc	gttgtcagga	agttgcctgg	gcagccccgg	cccgcatcat	tcagaggctc	31140
ctgcagcgca	gcaaacagcc	ttcttcccac	attcggtgac	agcacctgtt	tgtttaccaa	31200
ctgttacgtc	tgttccccca	gatatgggtg	acccttcctg	ccatgcccaa	aacctcccac	31260
atcgtcctcc	agaggctaca	ggggccctgt	cctgttctgc	agagaagcca	catccccttt	31320
gttggcctga	cacaggggat	ggggacatgc	aggcacagca	ctggccatgc	tgctcgctac	31380
agacccagcc	acagggccac	attttttgag	gggttcagag	cccaggccag	acagagcctc	31440
aagattccct	tacaagtctt	tgaccactgt	ccaagctcag	gcccgtttcc	ttggccgtgg	31500
catcagcttc	ccatccaccc	ctgtattcca	tgtttctccc	accetgette	tggacattcc	31560
tacatttaaa	gggtcactct	ggaatgccac	cccttggctc	agacaccttc	cacageteee	31620
tgtgccagtg	ccatgcagaa	caaggtcaga 	cccctagcc	tggcctccaa	ggccttggcc	31680
tctggcctca	cctacacttc	tctccaccac	cccaccccaa	gcattcctga	tctgcctgcg	31740
gccaggctgg	ctccctcacc	tccctgtgca	ccgcagccct	cageceette	tgcctgtgca	31800
agaagcctca	tctcacagac	aacggtctca	ttcccacaac	gggctcaátg	agaaatcagg	31860
agaggccttc	agaccatcac	cccaccagac	acctcagacg	teggaccagg	agggtccagc	31920
aacccccaac	acagactcag	agggactaag	aagccacatg	aggagtgaac	acaagatgtg	31980
gacaggagga	ggttaagggc	ctccagggag	ctccatcagt	ccgtgttctg	ctgtcagcag	32040
ggttaggctg	ggctggccac	aaacaccccc	aaaaaacatc	tgaagccttg	gcttgaaaca	32100
gctgacattc	ctcatgaaaa	ctgcagaccc	ctgggtcctc	ctgcgcagat	gggggagccc	32160
agccaacccc	acactcccac	cttcaccaag	aaagagaaag	ccaaaacaaa	ctcaactcag	32220
ccaatgacaa	tcacagaact	gaatcctgta	gttagttcag	ttggtttcat	ttcagcaggg	32280
gaaagatttg	cagcctctat	gagggtagct	gggaacacaa	agggccagag	catggcccag	32340
gagaccccag	cgcagtgggg	tagatggttc	cgagcacagg	cctccctgcc	aagacaagca	32400

ctggctcaaa	tcctggcccc	tcccattccc	aggagacatg	ctccacagga	tgggaggaca	32460
cacagaggac	ctgaggccag	gaaaatgaca	gcggcgcctc	cgccgcccca	cccgtgctgt	32520
catcatctta	ggtctacagt	tetttgtgge	aacgagggac	actgtgaaag	tcaaacaaca	32580
ggaaggcata	ggccacaaat	aaagacaaac	gggacttcat	gggaagctaa	agattttgtg	32640
catcaaaaga	cactatcgag	agagtaaaaa	ggcaacccac	agaatgagag	aaaatatttc	32700
caaatcatag	atctactaag	agattaatat	ccatgaaata	cagagaactc	ctaaaactca	32760
acaatgagaa	aacaactaag	ccaactcaaa	aatgggcaaa	caacttgaac	agacatttct	32820
ccaaagatga	catataaatg	gccaataaac	acatcaaaac	aggcttaata	tatccctaat	32880
catcagggaa	atgcaaatca	aaactacaat	aagataccat	cttgcaccaa	ttaggacggc	32940
tactatcaaa	aaaacaaaat	agcaagtgtt	ggtgaggatc	tggagcaact	ggaacccttg	33000
tgcaccactg	gcaaaaatgt	gaaatggtgc	agctactatg	gaaaacagca	tggcagttcc	33060
ccaaaaactt	aaacacagaa	ttaccatatg	acccagcaat	ttcgctttgg	gttatatacc	33120
caaaagaact	gaaaacaggg	acacaatcag	atatgcatac	accttggatc	acagcagcat	33180
ccttcccaac	agctaaaaca	tggaggcagc	caggcatggt	ggctcacgcc	tgtaatccca	33240
gcactttggg	aggetgagge	gggtggatca	cctgaggtca	ggagttcgag	accagcctgg	33300
ccaacatggt	gaaaccccgt	ctctactaaa	atacaaaaat	tagctgggcg	tagtgacggg	33360
cacctgtaat	cccagctact	cacaagtctg	aggcaggaga	atcacttgaa	ccctggaagt	33420
ggacgttgca	gtgagccaag	attgcgccac	tgcattccag	cctgggtgac	acagcgagac	33480
tctgtctcaa	aaaacagcaa	aacaaaaaca	aaaaaacaaa	caaacatgga	agcaacccaa	33540
gcgtccctct	actgagggat	gaatagcggg	gcaaaatctg	ctccatccac	acaatggagt	33600
actattcagt	ctcaaaaagg	aaaaagattc	tggtcaggca	cggtggctca	tgcctgtaat	33660
cccagcactt	ggggaggctg	aggcgggtgg	atcacctgaa	gtcaggaatt	caaggcccgc	33720
ctggccaaga	ctggcaccna	gctacacana	aagtatangg	ccccggaaa		33769

<210> 9

<211> 72049

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (8356), (8385), (38585)

<223> Identity of nucleotide sequences at the above locations are unknown.

<400> 9

tataccttgc	gcggaccttc	ggctcctgtg	gtgaagacaa	tatgaagaaa	atagaaatta	60
cccataattt	tgccacacag	acttagttgt	gtccatgtat	cttgtgcacc	ttttttctgt	120
ttacggatca	aaatcgactt	ttagggtcag	gcgcggtggc	tcacacctgt	aatcccaaca	180
ctttgggagg	ctggagttgg	ggttgggggg	tggatcactg	aagatcagga	gtttgagacc	240
agcctggcca	acatggcgaa	actccatctc	tactaaaaat	aaaagattag	ccaggcgtgg	300
tggtgggtgc	ctctaatccc	agctactccg	gaggctgagg	caggagaatc	gcttgaaccc	360
aggagacaga	ggttgcagtg	agccaggatc	acgccactgc	actccagcct	ggcaacagag	420
cgagactctg	tctcaaaaaa	aaaaataaaa	ataaaataaa	taaatacata	aattgacttt	480
taggagattg	gttcaaacaa	tgtgtgtaat	gttgtgtctg	agtgttttc	atttatcgtt	540
catgcaaatt	ccgacatcat	tcactcttct	ccagagtgtg	ctgttttcct	gcctgtgtca	600
tcacccgtca	ccttgaatgc	cctcgtttag	gtaaaataag	tacattttat	tcaaaaatat	660
ttgaggacat	ttgggttgtc	tccaggttct	tggtcttgag	ttttgctgtt	cttgtggagc	720
catggtggtg	tctggttgca	ggaacctcca	tgcgttccag	ctgctgcttc	tgcctgtgtt	780
cttagagagg	aaatgctggg	gtccgcggtt	cccgggctgc	tgaccaggaa	gcctgcggtg	840
ctttacggcc	cttccagaag	cgggagatgc	ccccacttaa	gtgtcagaca	ggcctttcca	900
cctcactggc	agctctgagc	ggctcccttc	tatttgcaga	tgactgagaa	gttaccaatt	960
tccacgttta	ctgactgctg	tttctcctgt	taatttgtat	ttatagtctt	cgctaattta	1020
ttgctagggt	tttggtgttg	tccctattga	cttgtatgcc	ttttaatttt	ttaaacaaca	1080
ttaatatact	tcatttttt	agagcagttt	taagtttaca	ggaaaattaa	gggacaagta	1140

cagagagttc	cttccacctg	ctgtcctcct	ctcctcctcc	ccaccttccc	teetteeeet	1200
attgtaactt	tctttctgat	attataaaag	tcactcatgg	ctgggcgtgg	tggctcacgc	1260
ctgtaatccc	agcacgttgg	gaggcagagg	caggcagatc	acctgaggtc	aggagttcca	1320
gaccagcctg	gccaacatgg	tgaaaccccg	tctctactaa	aaacacaaaa	agttagccag	1380
gcgtggtggc	gggcacctgt	aatcccagct	actcaggagg	ctgaggcagg	agaatggcgt	1440
gaacctggga	ggcagaggtt	acagtgagtc	gagatcgcgc	cactgcactc	cagcctgggc	1500
aataagagtg	aagcttcgtc	tcaaaaacaa	agtcacacac	gcttcttgta	cgagggtcat	1560
ttggccgagg	ggccagatgg	ctcaccatct	agttgggaca	ggccatgagc	tcggaatgct	1620
ttttacatat	ttacatggtt	gagaagaaaa	tcaggagaat	aatgttttgg	gacatgggaa	1680
aatgacatgg	aatttgcatt	ttagtgtcca	taaatgaagt	tttgtttgct	cccagctgtg	1740
ttgactgagg	caggctggct	tcctacagct	gcggcagagc	tgaggaggcg	ggaaggagac	1800
cgtgcaggcc	gcagcaccga	aaatatttgc	tctctggccc	ttcccagagt	gcttgccgac	1860
ctctgtccga	cagctagaag	gaaggatagg	accegteega	cgataaccac	tgttgacatt	1920
tgagcgcgtt	tccttcccgg	cttttgtgtg	agagtggcag	tctgtttgct	tttgtggtcg	1980
ggatctgctg	cacgcacggc	gggctgtttg	catgaggctt	cctggaggat	agggctgggc	2040
teggagetge	acgcagtggg	gcgtgtcctg	catgcagtgg	ggcctcagaa	gagagctgtg	2100
gtgggcgggg	cagtgccaac	gctggtgggt	gccaggcctc	cacgctcaga	tcagccccgg	2160
cgacaggttt	gggccaccct	ctctctggcc	tctgtgcagt	ggcccaggcc	gtctgctctg	2220
cctggcacac	ttgcctctgt	ccttccactg	aagcgctcct	cttaccctct	gctcccggct	2280
gggtacgttg	aattgtgtcc	ctcaaggaga	tatgctaaag	gtctaacccc	aggaacctgt	2340
gtatgtgatc	taatttggaa	acagggtctt	ggctgatgta	atcaagcgag	gatgaggtca	2400
ccctagagta	gggggcctat	atccacggtg	ctggtgtcct	catgagagca	ggtgagcaga	2460
cactgacact	caggggtgaa	ggctgcatgg	agtcagaaca	gggcttagtg	cgatggcggc	2520
cacaagccaa	ggaactccaa	gtatttcctg	caacaccaga	agctggaaga	tgccaggaag	2580
gatcctgccc	tggagccttc	ggagggagtc	tgtccctgca	gacgtcttga	cttttgattg	2640
cagggatgca	tgtcttaggg	tgtgtggggg	ggtgcatttc	tgatgttaga	agccacctgg	2700
ttggtggcga	tgtgtcacgg	gagccctctg	caggttctgc	gtgtccatgt	ggtcggggac	2760

agaggtgggc	agggacggac	aatatcaaac	tagacatate	catgacgtcg	gccatccctt	2820
gggatggctt	ttttgttttg	aggataaggc	tgcctgccag	gaagctgtgc	cctgcctggc	2880
ccttgcccca	agcccctggc	ctgtgcttgg	cctcgcggaa	gggatgtcgc	ccttctctcc	2940
tgcatgcgtg	cagggaggaa	ggggagaggt	cagcagcccg	cctggaggag	gctcgggcga	3000
ggggaaggtt	tcactttcag	gcaatgttgt	ggggctgttt	aaacaacccc	aaagaaaacc	3060
atttggccaa	actgttagtt	tccaaacatt	ttacttcctt	ggtgtttaaa	taaattccta	3120
ccaagactct	gtagctggtc	ccagggaagg	agttggcctc	tcttcttat	agcccggcac	3180
agtcagtccc	ctgcacctgc	ccctcccaac	cccaggcctg	cttccccgtg	gccatggctg	3240
ctgcccggac	ctctctacac	acagaacctc	ctggaggcca	gctgtgggca	ccagccttgg	3300
cagggctgtg	gcggagccca	ggctgctggṫ	actetetetg	cagetgetee	ctgctggcct	3360
ggctggacag	cgtccccacc	accactgggg	tcacctctgt	gctggtcaca	gctcactcag	3420
accttcaggc	aaatgggttg	gatectgeet	ctctcccagg	tgtctcagtc	tctgcaaaac	3480
tcaaaaacct	cagaggcctt	gcagcctgag	gggtgtcaga	gacacctcct	tcgaatcagt	3540
aaacacctac	agattcaccc	cagcagtgaa	aggactgctt	cgccacagag	gtttgattta	3600
ctcctaagta	attggaaggg	atgccgagaa	taggttcctc	atggtgggac	tagaggccct	3660
ctgctgacct	agttaacaga	gggetaggge	tgggtgtgct	cagcccctga	aggttctagg	3720
cccatttggg	acaccccgcc	agaacctgcc	acaacctgcc	atgtggtgac	agctacctaa	3780
atcccagagg	ctcttgagct	ggagagcaga	cctctcaatc	tcagcaggcc	ccccacacag	3840
accccataac	cctagtctgc	cttcacagta	cagttcgtgg	ctatgtgttc	acggatggtg	3900
ttgttcacct	aaggtctctg	ccctgtgacc	ccaagggcgt	cctgagggca	gattccaagt	3960
ctgtttcgtc	cacccctcct	tccctagcag	cgggtccagg	gcctggcctg	aactagcttc	4020
ccacagagat	actggtggga	tgatgaaggc	agccaggcgg	caagtgaaaa	acgcacttcc	4080
tgcatgtgct	ggctcctggg	attgaagtgt	ttgaggaagc	aaagtgaagt	gagctttcct	4140
cttgcggctg	tgtgtccttg	ggccgggagc	ctaccctctc	tgagcgttgg	ggtccttgtc	4200
agtagaatgg	ggcatcctca	tagctcaagg	ggtggtgtgt	gaaaattgtg	ctattgtgtt	4260
actttaatga	tttttttt	ttcgagacaa	agtctcaccc	caacgcgcag	gctggagtgc	4320
agtggcgcga	tctcagctca	ttgcaacctc	tgcctcctgg	gttcaagtga	ttctcctgcc	4380

tcagcctccc	aagtagctgg	aattacagga	gtgcgccacc	aggcccggca	tatttttcta	4440
tttttagtag	agagggggtt	ttaccatgtt	ggctaggctg	gtcttgaact	cctgacctca	4500
ggtgatccac	ctgcctcggc	ctcccaaagt	gctgggatta	caagcatgag	ccaccgcgcc	4560
cggcctactt	tagtgatttc	ttaggaggac	agagggaacg	ggctggcaag	acaggcttgg	4620
aatgtgtttt	gggatcaagt	gccggtttct	gtctggcact	ggcgttctct	gtggggccat	4680
gatggacaca	ctgctgaggt	caagegtgat	tegtettgeg	ctgtgcctgg	cagtctcatt	4740
ggaaagttct	gtagacatcg	tgtggatggg	gctcttcccg	gccaagccct	tggggacctt	4800
ccaggactgt	gatctcccca	cagtggctgt	taagcaggga	cctttcgtga	agtggagtct	4860
ctggtcccct	ccaagtcata	gctagacagg	gactcgggca	tcgccaagcc	tggctgatta	4920
ttcactggat	gaggagacag	gcccagagag	gggcaggaac	ctgcccgagg	tcacccagca	4980
ggccccagag	gtttcggtct	cggattctcc	ctgctcatcc	ctggatgtag	tgctgctgtg	5040
gatgtggttc	tgtgctgggg	gctgtggaga	gcagggggct	tgtgccagga	ccccagtgag	5100
ggtggcgccc	tcgccatgag	gccgactgtt	ggtatggggc	ggccatccac	tggggtgtgg	5160
ggaggaacag	ctttcctgag	gaggaggtgg	cgggaggaac	agcttccctg	aggaggaggt	5220
ggcggtgctg	tgtgacctgg	gccttgaagg	acaggtccat	tgtcaacaga	acattttggg	5280
agtggagcct	agagggagaa	aatttgttga	aattcagatt	ccctcccc	taccaataca	5340
caccaaatca	gatgcccctg	accagatcta	aatttggctc	tcagagattt	ccattgtagc	5400
tgggcacttg	gggaaccttc	taagtgctgc	ctctgcctct	ccccagcctg	cctgcctcag	5460
tttccccagc	cctgggcccg	tgtcgctgtt	gccatcacgt	gggcgccctc	tagtggagga	5520
atcagattat	gcactccggg	gcttggagca	ggagtcagga	ggggctcctg	tettteettg	5580
aaacgttgga	tgccgggatc	ctggaacagt	ctctgcattc	ctcctggcga	gaaccagagc	5640
ctgggcacag	gggaccatct	gttgtttgaa	ggctgcagcc	tggcagggca	ctcaggagat	5700
ctggcagttg	gctgcagggc	caggtctagg	ggccagggca	tcagggaggc	tctgggctgg	5760
ttcagccccg	ggcccctttg	cagattgtga	cctgggcccc	tgtgcagggg	catggccaca	5820
ggatgctggg	aggggtctct	gaccctgacc	ttcttggctc	tgtgcatcct	tgagaccaga	5880
aaggtctgga	acaaatgagt	agacgatgcc	ctaacctggg	gagggagcca	catcotgato	5940
ccagcaacct	cgggaaggat	ctgtcaggat	tatggggcac	cctgggggcc	ccaagtctgc	6000

atgggtctcc actt	gcaatt tctgtagga	a gctctgataa	atccaaactg	ggggtcctag	6060
gacacagtca gaaa	tgctga taccgttgt	g tgtggagcct	cgggccctgg	gggtcaggag	6120
catgtggagg gtgg	gccacg ggggttcag	a agagaatcct	gtaacccccc	acccccaaa	6180
ctgaagccca cttg	agggcc atggctgaa	a ggttgggggg	teteegtgeg	tcctgtggag	6240
tgggtggtga ggag	teettg ggtttgeac	g cetetgggee	tgagcggcgg	gaccccgtcc	6300
acageggate cetg	ggccct gttgctcag	a tgctctcaga	gtgttgctgt	ggccacggag	6360
ggagcctgag ttaa	gettet ettgtgeeg	g ttgtacgctg	tcaggtcaca	ctggtgagtt	6420
aggcagggca caga	tgccca gagcagagg	g aactttcctt	ggggattcaa	cacgtgcaag	6480
tcttaggggc tggc	aaatcc tgccctcag	c tagagagggg	gcttttattt	gagaccagaa	6540
tcacctgage atco	tcctgt ccccagctg	t gtccagcctg	tctgcaggga	catcctgaga	6600
ggaccaggct ctcc	cctcat ccacctgcc	t aagtgccact	ctgaaccctg	tccacctgtg	6660
ccgtggaggg gcgt	gacctc aagctgctc	a gccagcagca	ggcttggccc	tggggggcag	6720
cagagaccca ggtg	gctgtg gggtgggtg	c ttcgtggcgt	ggttctgaaa	cttcgttgga	6780
agtgtgtgga cagt	geettg cetgttete	t gtgggaccct	atttagaaac	gaggtctgag	6840
ttactggggg tcate	cactgt gttctgatg	g cccagctgtg	tggaggccgc	ggtgcagccc	6900
catccaagga gcca	gggccc tgggtctag	c cgtgaccaga	atgcatgccc	cggaggtgtt	6960
teteateteg cace	tgtgtt gcctggtgt	g tcaagtggtc	gtgaaactct	gtgttagctc	7020
ttggtgttcc tgaa	agtgcc cccgggtct	c aggcctcaga	accagggttt	cccttcatct	7080
cggtggcctg ggag	catctg ggcagttga	g caaagagggc	gattcacttg	aaggatgtgt	7140
ctggccctgc ctag	gagece eeeggeaeg	g tgctggggcc	tgaagctgcc	ctcgggtggt	7200
ggagaggagg gagc	gatgaa gtggcgtcg	a getgggeagg	aagggtgagc	ccctgcaagg	7260
tgggcatgct gggg	acgctg agcagcatg	g ccagcagctg	ggtctgcagc	ctggtacccg	7320
gegggacttg tggt	tggggc tggtttgtg	g ccaggagagg	ggctggcagg	agacaagggg	7380
gactgtgagg cagc	tcccac ccagcagct	g aagcccaatg	gcctggctgt	gtggctctca	7440
gctgcgtgca taac	ctctca gtgcttcag	t tctctcattt	gtaaaatgag	gaaacaaaca	7500
gtgccagect ccca	gaggtg tcatgagga	t gaacgagtga	ccatgtagca	tgggctgggt	7560
gcgtgtcacc taac	atcacc agcetttge	a aggagagccc	tgggggcctg	gctgagtatt	7620

tcccttgccc	ggcccacccc	aggcctagac	ttgtgcctgc	tgcaggccct	tgacccctga	7680
ccccattgca	cctgtctcca	caggagccga	ggaggtgctg	ctgctggccc	ggcggacgga	7740
cctacggagg	atctcgctgg	acacgccgga	cttcaccgac	atcgtgctgc	aggtggacga	7800
catccggcac	gccattgcca	tcgactacga	cccgctagag	ggctatgtct	actggacaga	7860
tgacgaggtg	cgggccatcc	gcagggcgta	cctggacggg	tctggggcgc	agacgctggt	7920
caacaccgag	atcaacgacc	ccgatggcat	cgcggtcgac	tgggtggccc	gaaacctcta	7980
ctggaccgac	acgggcacgg	accgcatcga	ggtgacgcgc	ctcaacggca	cctcccgcaa	8040
gatectggtg	tcggaggacc	tggacgagcc	ccgagccatc	gcactgcacc	ccgtgatggg	8100
gtaagacggg	cgggggctgg	ggcctggagc	cagggccagg	ccaagcacag	gcgagaggga	8160
gattgacctg	gacctgtcat	tctgggacac	tgtcttgcat	cagaacccgg	aggagggctt	8220
gttaaaacac	cggcagctgg	gccccacccc	cagagcggtg	attcaggagc	tccagggcgg	8280
ggctgaagac	ttgggtttct	aacaagcacc	ccagtggtcc	ggtgctgctg	ctgggtccat	8340
gcgtagaaag	ccctgnaaac	tggagggagc	cctttgtccc	cctgncttca	gtttcctcat	8400
ctgtagaatg	gaacggtcca	tctgggtgat	ttccaggatg	acagtagtga	cagtaagggc	8460
agcctctgtg	acactgacca	cagtacaggc	caggcctctt	tttttcttt	tttttttgag	8520
atggagtctc	actctgtcgc	ccaggctgga	gtgcagtggt	gtgatctcag	ctcactacaa	8580
cctctgcctc	ctgggctcaa	gtgattctcc	tgcctcagcc	tcctgagtag	ctgggattac	8640
aggtgcctgc	cactgtgctt	ggctaatgtt	tgtatttttg	gtagagatgg	ggtttcaccg	8700
tcttggccag	gctggtcgca	aactcctgac	ctcaggtgat	ccacctgcct	cagcctccca	8760
aagtgctggg	attacaggca	tgagccacca	cgcccggtca	ggccaggcct	cttttgaaca	8820
ctttgcacac	catgggtctt	ttcatccagg	ggggtaggta	cagttgtaca	gttgaggaca	8880
ctgaagccca	gagaggctca	gggacttgcc	cagggtcaca	cagcaggatg	tggcaggtgt	8940
ggggctgggc	ctggcagcgt	ggctccagct	ttccagcata	gaaatctgtg	aaagcagata	9000
gtttgtcggt	cggtagggga	gactttctga	gacccgcccc	agcggctcag	agggtagtag	9060
ccaggggcct	tcctgggggc	tcataaccca	gaacactgaa	tgggaaaacc	ctgatggagg	9120
aggcgcagtg	gagctgtggg	tgccgatggg	aagtcccaga	ggagctggga	ggtcagtagc	9180
ggtgctgccc	tctgtggagc	acttagtggg	caccaggtgt	gtttccaggt	tcatggccct	9240

WO 01/77327 PCT/US00/16951 106

gggacctgaa	gctcagaagg	tgaagtaact	tgcccagggc	acccgtcggg	cagcggcggg	9300
cagaggattt	gtgggctgtg	gagcctgtgc	tcgtggccca	gccctggggg	ttgtgagtgt	9360
gctggccggg	gagcttttcc	tgcaagtgga	ctggtgtcta	ggagccagca	tgtcaggcag	9420
caggcagcgg	gagtgcagca	ggcagcggga	gcacagcagg	cagagggcgg	ggctcgagca	9480
gccatccgtg	gaccctgggg	cacggaggca	tgtgggagag	ggctgctcca	tggcagtggc	9540
tgaagggctg	ggttgtgccc	cgaggagggt	ggatgagggt	aagaagtggg	gtccccaggg	9600
gctttagcaa	gaggaggccc	aggaactggt	tgccagctac	agtgaaggga	acacggccct	9660
gaggtcagga	gcttggtcaa	gtcactgtct	acatgggcct	cggtgtcctc	atctgtgaaa	9720
aaggaaggga	tggggaagct	gactccaagg	cccctcctag	ccctggtttc	atgagtctga	9780
ggatcccagg	gacatgggct	tggcagtctg	acctgtgagg	tcgtggggtc	cagggagggg	9840
caccgagctg	gaagegggag	gcagaggggc	tggccggctg	ggtcagacac	agctgaagca	9900
gaggctgtga	cttggggcct	cagaaccttc	acccctgage	tgccacccca	ggatctgggt	9960
teceteettg	gggggcccca	gggaacaagt	cacctgtcct	ttgcataggg	gagcccttca	10020
gctatgtgca	gaaggttctg	ctctgcccct	tcctccctct	aggtgctcag	ctcctccagc	10080
ccactagtca	gatgtgaggc	tgccccagac	cctgggcagg	gtcatttctg	tccactgacc	10140
tttgggatgg	gagatgagct	cttggcccct	gagagtccaa	gggctggtgt	ggtgaaaccc	10200
gcacagggtg	gaagtgggca	tccctgtccc	aggggagccc	ccagggactc	tggtcactgg	10260
gcttgccgct	ggcatgctca	gtcctccagc	acttactgac	accagcatct	actgacacca	10320
acatttacaa	acaccgacat	tgaccgacac	cgacatttac	cgacactgac	atttaccaac	10380
actgtttacc	aacactgaca	tctactgaca	ctggcatcta	ccaacactga	catttaccga	10440
cactgacatt	taccaacact	atttaccaac	actgacatct	actgacattg	gcatctacca	10500
acaccaacat	ttaccgacac	caacatttac	caacactgaa	atttaccgac	accgacattt	10560
accgacaccg	tttaccaaca	ccgacgttta	ccgacaccga	catttaccga	cactgatatt	10620
taccaacact	gacatctact	gacgctggca	tctactgaca	ccgatgccag	catctaccaa	10680
caccgacatt	taccaacact	gacatttacc	aacactgaca	tttaccgaca	ttgacattta	10740
ctgacactga	catctactga	cactggcatc	tactgacact	gacgtttacc	gacactagca	10800
tctactgaca	ctgacattta	ccaacaccag	catctaccaa	caccgacatt	taccaacact	10860

gacatttact	gacactgata	tctactgaca	ctggcatcta	ctgacaccaa	catttaccaa	10920
caccagcatc	taccaacacc	gacatttacc	aacaccagca	tttaccaaca	ccgatgttta	10980
ccaacgccga	cgtttaccga	cgccagcatc	taccaacact	gacatttacc	gacaccgaca	11040
tttaccgaca	ctgacattta	ctgacactga	catctactga	tactggcatc	taccgacact	11100
gatatttacc	aacgccagca	tctactgaca	ctgatgttta	ccaacaccga	catttacgag	11160
caccgacatt	tactgacacc	aatatttact	gacatcaaca	tttagccatg	tgatgggggc	11220
cggcttgggg	gcaggccttg	ctcttggcac	tggggatgct	gcagagacca	gacagactca	11280
tggggtcatg	gacttctgct	tcttctccag	cctcatgtac	tggacagact	ggggagagaa	11340
ccctaaaatc	gagtgtgcca	acttggatgg	gcaggagcgg	cgtgtgctgg	tcaatgcctc	11400
cctcgggtgg	cccaacggcc	tggccctgga	cctgcaggag	gggaagetet	actggggaga	11460
cgccaagaca	gacaagatcg	aggtgagget	cctgtggaca	tgtttgatcc	aggaggccag	11520
gcccagccac	cccctgcagc	cagatgtacg	tattggcgag	gcaccgatgg	gtgcctgtgc	11580
tctgctattt	ggccacatgg	aatgcttgag	aaaatagtta	caatactttc	tgacaaaaac	11640
gccttgagag	ggtagcgcta	tacaacgtcc	tgtggttacg	taagatgtta	tcattcggcc	11700
aggtgcctgt	agacacagct	acttggagac	tgaggtggga	ggatcgctgg	agtccaagag	11760
tttgaggcca	gcccgggcaa	aggggacaca	ggaatcctct	gcactgcttt	tgccacttac	11820
tgtgagattt	aaattatttc	acaatacaaa	attaagacaa	aaagttaatc	acatatccac	11880
tgccctgctt	aagacagaaa	acatgggtgt	tgttgaagcc	agaggcagct	gctggcctga	11940
gtttggtgat	tggttcctaa	gcagttgaag	gcagttttgt	ttttccatag	atgtctgttc	12000
tecetttget	gggtgcagcc	tegecetget	gctgtggtcg	ggtttcagtg	gcctcgtccc	12060
gtggacgcag	cctcgccctg	ccgctgtggt	cgggtttcag	tggcctcgtc	ccgtggacgc	12120
agcctcgccc	tgccgctgtg	gtcgggtttc	agtggcctcg	tcccgtggac	gcagcctcgc	12180
cctgccgctg	tggtcgggtt	tcagtggcct	cgtcccgtgg	acgcagcctc	gccctgccgc	12240
tgtggtcggg	tttcagtggc	ctcgtcctgt	ggacgcagcc	tcgccctgcc	gctgtggtcg	12300
ggtttcagtg	gcctcgtccc	atgggcgtgc	tttggcagct	ttttgctcac	ctgtggagcc	12360
tctcttgagc	ttttttgttt	gttgtttgtt	tttgtttgat	tttgtttgat	tgtttgtttt	12420
tgttgtcgtt	gttgttgccc	aggctggagt	gcagtggcgc	gatctcagct	cactgaaacc	12480

tetgeeteet	tgggttcatg	ccattctcct	gcctcagcct	cccacatago	tgggattaca	12540
agtgcccgcc	accacgcctg	gctaaatttt	gtatttttag	tagacagggg	gtttcaccat	12600
gttggtcagg	ctggtctgga	actcctggtc	tcacatgatc	cacctgcctc	ggcctcccaa	12660
agtgttggga	ttacaggcgt	gagccaccgc	gcccagccct	ctgttgagca	tattttgagg	12720
ttctcttggt	gccagtgata	tgtacatgtg	tececatege	accatcgtca	cccattgagg	12780
tgacattggt	gcctctcctc	ggggtggatg	cctccctctg	tttccagcaa	cttctgaagg	12840
attttcctga	gctgcatcag	tccttgttga	cgtcaccatc	ggggtcacct	ttgctctcct	12900
cagggctccc	aggggaggcc	cgaatcaggc	agcttgcagg	gcagggcagg	atggagaaca	12960
cgagtgtgtg	tctgtgttgc	aggatttcag	accctgcttc	tgagcgggag	gagtttcagc	13020
accttcaggg	tggggaaccc	agggatgggg	gaggctgagt	ggacgccctt	cccacgaaaa	13080
ccctaggagc	tgcaggtgtg	gccatttcct	gctggagctc	cttgtaaatg	ttttgtttt	13140
ggcaaggccc	atgtttgcgg	gccgctgagg	atgatttgcc	ttcacgcatc	cccgctaccc	13200
gtgggagcag	gtcagggact	cgcgtgtctg	tggcacacca	ggcctgtgac	aggcgttgtt	13260
ccatgtactg	tctcagcagt	ggttttcttg	agacagggtc	tcgctcgctc	acccaggcga	13320
gagtgcagtg	gcgcaatcac	ggctcgctgt	agcctcaatc	tccctgggct	caggtgatcc	13380
tcctgcctca	ccctctgagt	agctgggact	acagacacat	accaccacac	ccagctagtt	13440
tttgtgtatt	ttttgtgggg	ggagatgggg	tttcgctgtg	gtgcccaagc	tgatctcaaa	13500
ctcctgaggc	acaagcgatc	cacctgcctc	ggcctcccaa	agtgctggga	tgacaggcat	13560
cagccgtcac	acgcagctca	atgattttat	tgtggtaaaa	taaacatagc	acaaaattga	13620
tgattttaac	cattttaaag	tgaacagttc	aggctgggcg	tggtggctta	tgcttgtaat	13680
cccagtactt	tgagaggctg	aggtgggcag	atcacctgag	gtcaggagtt	tgagaccagc	13740
ctggccaaca	tgatgaaatc	cagtctctac	taaaaataca	aaaattagcc	gggcatggtg	13800
gcaggtgcct	gtaatcccag	ctactcggga	ggctgaggca	ggagaatege	ttgagcccgg	13860
gaggtggagg	ttgcagtgat	ctgagatcat	gccactgcac	tccaatctgt	gtgacagagc	13920
aagactctgt	cttgaaaaat	aaataaataa	aaaaaatttt	aaaaagtgaa	caattcaggg	13980
catttagtat	gaggacaatg	tggtgcaggt	atctctgcta	ctatctactt	ctagaacact	14040
ttcttctgcc	ctgaaggaaa	ccccatgccc	accggcactc	acgcccattc	tecectetet	14100

cccagcctct	gtcaaccact	aatctacttt	ctgtctctgg	gggttcactt	cttctggacg	14160
ttttgtgtga	ctggaatcct	gcaatatgtg	gtccctgcgt	gtggcttctt	tccatagcat	14220
tgtgttttcc	agattcaccc	acacattgtc	gcacgttatc	agaatctcat	tcctgactgg	14280
gtgcagtggg	ttaggcctgt	aatcctaaca	ttctgggagg	ccaaggcggg	acgatcactt	14340
gaggcaggag	tttgagacca	gcctggccag	cctagcaaga	ccccagctac	caaaaaattt	14400
taaaagttaa	ctgaacgtgg	tggtggtggg	cacttgtggt	tcccagctac	ctgggaggct	14460
gaggttggag	gatcgcttaa	gcccaggagg	teaaggetge	agtgagctat	gatcgcacca	14520
ctgcactcca	gcctggacaa	cagagcaaga	ccctgtctga	aaaaaaaac	aaaaaaaaa	14580
gttcctttct	ttttgtggct	ggatgacatc	ccattgtatg	gccacagcac	attttgtttg	14640
tctgtttatc	gggtggtggg	cagtggtttc	caccttttgt	ctcctgtgaa	taatgctgct	14700
gtgaacattt	gaattcaagt	ttttgtttga	acacctgttg	tgaattattt	ggatatatgt	14760
gtaggggtag	gattgctgag	tcctatggta	atgttaggtt	tgacttactg	aggaaccatt	14820
aaactgtttt	caacagtggc	tgcgccgttc	tgcatcccca	ccggcagtgt	gtgagggttc	· 14880
tgactttacc	tcctcacaaa	cgcttctttt	ccatttaaaa	aaatattcag	ccaggtgctc	14940
tggctcacgc	ctgtaatccc	agcactttgg	gaggccgtgg	cgggcggatc	acctgaggtc	15000
aggagttcga	gacgagcctg	gccaacatgg	tgtaacccca	tctctaccaa	aaatataaaa	15060
attagccggg	tgtggcagcg	ggcgcctgta	atcccagcta	cttgggaggc	tgaggcagga	15120
gaatcacttg	aacccgggag	gcagaggttg	cagtgagcca	agatcgcgcc	actacactcc	15180
agcctgggtg	acaagagtga	aactccatct	aaaataaaac	aaaaataaaa	ataaataaaa	15240
atttattaaa	acattcatca	cagccagcct	agtgggtgtc	ccatgtggct	ttgcctcgca	15300
tttccctgat	aactaggatg	ctgagcgtct	tgtcccaggc	ttgccacacc	tcagcacttt	15360
gagatacgtc	gcacagtccc	catttgcgaa	cgagaaatga	ggtttaggga	acagcagctg	15420
tgtcatgtca	cacagcgagc	agggggtctc	tgagccgtct	gaccccacag	cegaccaage	15480
tccaatcctt	accgcctcct	agtgttgtgg	atgtagccca	gggtgctccc	acatttttca	15540
gatgagaaca	ccgaagctca	aaacaggagc	gttttgtcca	cattggatac	acgatgtctg	15600
tggtttggtc	ctgaagtcac	tttatatctc	agtggtccag	actggagtag	gacagggggt	15660
tctggggaat	ggggaaggtg	tctcaggtga	aaggaaggaa	ttccagattc	tccatactgt	15720

ccttgggaag	ttagaagact	cagagggtct	ggcaaagtca	gacaaagcaa	gagaaatgca	15780
gtcaggagga	agcggagctg	tccaggaaca	ggggggtcgc	aggagctcac	ccccaggaac	15840
tacacttgct	ggggccttcg	tgtcacaatg	acgtgagcac	tgcgtgttga	ttacccactt	15900
tttttttt	tttgaggtgg	agtctcgctc	tcttgcccag	tctggagtgc	agtggcacga	15960
tctcggctca	ctgcaagctc	tgcctcccgg	gttcatgcca	ttctcctgcc	tcagcctccc	16020
gcgtagctgg	gactacaggc	gcctgccacc	gcgcccggct	aatttttgta	tttttagtag	16080
agatgggatt	tcactacatt	agccaggatg	gtctcgatct	cctgacctca	tgatccgccc	16140
gtctcggcct	cccaaagtgc	tgggattaca	ggcgtgagcc	accgcgcccg	gcccgatttc	16200
ccactttaag	aatctgtctg	tacatcctca	aagccctata	cacagtgctg	ggttgctata	16260
gggaatatga	ggcttacagg	ccatggtgct	ggacacacag	aagggacgga	ggtcaggagg	16320
tagaagggcg	gagagagga	acaggcggag	gtcacatcct	tggctttcaa	aatgggccag	16380
ggagagacac	cctctgagca	tggtaggaca	ggaaagcaag	attggaacac	attgagagca	16440
accgaggtgg	ctgggcgtgg	tggcttacgc	ctgtaatccc	aacactttgg	aaagctgagg	16500
tgggtggatt	gcttgaggcc	aggagttcaa	gaccagcctg	gccaacatgg	tgagaccccg	16560
tctctactaa	atatacaaaa	attagccagg	cgtgatggtg	catacctgta	atcccagctg	16620
cttgggaggc	tgaggcagga	gaattgctta	aacctgggag	gcggaggttg	cagtgagccg	16680
agatcccgcc	actgcactcc	agcctgggcc	acagagtgag	actccatctc	aaaaaaaaa	16740
aaaaaaaga	taaaaagacc	aaccgaggaa	ttgaagtggg	ggggcgtcac	agtagcagaa	16800
gggggatcgt	ggagcaggcc	accctgtggt	catgcactgg	aagctcatta	cctgacgatt	16860
tggagctcat	cactgggggc	ctaaggagaa	tagatactga	aggatgagga	gtgatggcgc	16920
ggggcacggg	tgtctttggt	ggccagaact	tggggactgc	tggggtgcct	cactgcaggc	16980
cttctcagcg	ccctttatat	gcttacacag	gctgtttcta	agaggggat	acattgcata	17040
agcgttttca	gactacctca	tcatgggtcc	ctttctttac	cctctgtggc	cctggtggcg	17100
cactctctgg	gaaggtgcag	gtggatgccc	agacccgccc	tgccatccac	ctgcacgtcc	17160
agagctgact	tagcctcgag	attgctgctg	gcacctcctg	ccccgggaca	cctcggatgt	17220
gcccgtggag	atgctggctc	tgtgttttct	gctggagttt	ggtgcgtctt	ttcctcctgc	17280
aagtggccac	cgctcttggg	tatgtcctca	ggcttctgcg	agtcatggct	gcttctcagg	17340

tccttgccca	gcgccaggag	caaaccctcc	tggcactttg	ttcaggggtg	gatgcgccag	17400
tgttcctgct	gtggaccgcc	atctcacatg	agggtcttgg	gcctgcaggc	tcgttcagga	17460
aacacccgct	gagtatgcag	tgtgtgccag	ctgtgtccca	ggcaatggcg	gggacagtgg	17520
ctgctgctgg	ggttgtggtg	gcttctgggg	actctgggga	cagctgaggt	gcaaggagcc	17580
acggctcctt	gaggatgcag	ttggactcca	ggtggaaggg	atggttgggg	gaggtataaa	17640
tggggtcagg	gaggagacac	atttggaaca	atgggaacat	ttttaagatg	ctatgtcggg	17700
aggcaacaag	gtggccaacc	caggtgctga	ggagcccaca	ccagccctgg	acgtgttttg	17760
ccgctcacct	ttgctgggga	gtggtgggag	agaggattcc	gttccacgtg	gtggtgtgcg	17820
cagctgggct	gtgtggagct	gggcgctagg	aggaaggtgc	tttctgcggg	gctagccggg	17880
ctctgccttt	gaacacaatc	aggctccagg	ttttcagcat	ccagtgcatg	agaggacttc	17940
acgggcagct	gtggctgatc	ccttgatgaa	ttgggagaag	aacaaaggtc	tatgaaatga	18000
ggtttcatgt	agatggcatt	agagacgccc	acaacagatt	tacagagtgg	agcggagacg	18060
gcggatgggt	ctgggaggcc	cctcctgctg	gccttgactg	tgacagctgt	cctgggaatc	18120
agcttccagg	ccgccccagc	agcctgactg	acacacacag	gggttttagc	cccatcctgc	18180
gaccagctgt	tgccatcatc	agtgacagct	gggagtggcg	gtggttccag	ccctgggcac	18240
cctcccacc	tgctggggcc	cacccagggc	agtcctgaca	cctacaggtt	gcttggagcc	18300
gcatccgagt	cctgcccac	cacgtgtgaa	gcccgagtgg	tcgtgggctg	aggtcccctg	18360
attgcatccc	cacttccctt	ctgcttcaca	tagctgcctc	ttctcaccgt	ttttccagcc	18420
tcctgggcta	ggaattccag	tgttgtgctg	gctttgcccc	aggacacctc	cttagccctc	18480
ttcctgagtc	tagagccccg	ggggttggaa	gtcctggccc	ctgggacacc	tgcagccaca	18540
ctcagcttct	cctgtgagcc	tccagcatgt	cccctcagga	ccaagccctc	acgttcttgc	18600
ctccccgccc	acctgggctc	agccagggga	aggcctggct	gggagcgtct	ccctctgcc	18660
ctgcccttct	cccctcctac	cctgcccttc	tctcctctgc	cccgccatgg	cttttatatc	18720
ctgtgccaca	agacatggct	gtgtgtgaaa	gtggcagggt	ctggcatctc	tgtgggtctc	18780
tgaggcccac	gctccagtgc	cactcttccc	acccgctggc	cgtgccctca	tgctggaggg	18840
acageceage	cctctcccga	accccagccc	catgtgccca	gctgcccccg	geceteteee	18900
ctggaagccg	gggtcactcc	agccgtatgc	catggtgggg	acatcctgct	tccttggcct	18960

tccagggaag	gtcctctttc	caaatggcga	cacctggtcc	ctgcctggag	gctggaagct	19020
gtggcccttg	tatgcccctc	cagggtctgt	gcgctcggtt	ggcccgagtt	cccatcaccg	19080
tcatcatcac	catcatcatt	gtcatttcgc	ttgtctgtga	gccggcctgg	tctcccagag	19140
cagagaccct	ctgaggtcca	gcctgagttg	gggtctccgt	gctgacccct	gacggggact	19200
caggacgtac	caggtctggg	tcaggagtga	ccccaaacc	tcgtgccctt	tgacaggcac	19260
ccctgacttt	tgctaagtgg	gtggaggtga	catcacttac	agcgggagtg	atgggacagg	19320
gtctgttggc	tgcactgtgc	tcccagggat	ctggggagag	gctatatccc	tgggctttgg	19380
cactgcagag	ctgtgtgtgt	ttgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	19440
gtgtgtgttt	gcgtgcgcgc	acatgtgtat	aagatctttt	tttattacat	gaagcaagat	19500
aactgttgct	gtttcctttt	gggttttgtg	ttcaacagag	tggggtactt	cttccctcag	19560
acaacagaac	tctccccttt	aaacacgtgc	tgtcagaggg	tgggtcttgg	gctcatgtct	19620
gtttgcacag	ccgagtcaga	ggaaacacag	ggttcttcat	aaaaacactg	cacagcaggc	19680
gactgtccag	agtcagcctg	caggacggca	gcagccctgc	ccctcagagc	acagctaggg	19740
tgggctgctt	tgggatctcc	cgtcattccc	tcccagctgg	cagccggcgg	ccggcccatt	19800
ccttggtgtg	ctggtcaggg	gggcgtgcgc	ctgctctgct	caccctggga	atgggacaga	19860
agctggcagc	tcggagagga	cagggctgga	cccttgggtg	gcctctggct	ggaccatctc	19920
attgtcctca	gacacagcct	ctcgggtcta	gtttcatttc	ctgaaaaaca	agtgcacaga	19980
actagagcag	gagtcgagag	ctacggcccc	cgggccagat	ccagccctgc	cacctgtttt	20040
cacaccatgc	tcaagctgag	tgggttttac	attttttaat	tacttgaaaa	aaaaaagcc	20100
aaaggaggtt	tcatgaccca	tgaaaattat	atggaattca	aaaaaaaaa	attatatgga	20160
attcaaattt	cagtgtccat	aaataatttc	ttgagacagg	gtctcgctct	gtcacccagg	20220
ctggagtgca	gtgctatggc	atggctcgct	gtacccttga	cctcccaggc	tcaagcgatc	20280
ctcctgtctc	agcctcctga	gtagctggga	ctacgggtgt	gtgccaccaa	gcccggctaa	20340
tttttttta	attttagtaa	agacagggtc	tttctatgtt	gcccaggctt	ttctggaact	20400
ccatcttggc	ctcccaaagt	gctgggatta	caggctcgag	ccacggagcc	cagcctgttt	20460
ttgtttttc	actgataaag	ttttgccggg	tgtggtagtg	tgtgcctcta	gcgatttggg	20520
aggctgaggt	gggaggatcg	cttaagccca	ggagtttgag	gctgggctca	agtgatcagg	20580

aggtgaacta	tgatcatgtc	attgcattcc	agcctgggtg	acagagcaag	aacctatctc	20640
ttaaaaatat	atatttaaaa	agtattgggt	gtggtggctc	acgcctgtgg	teccagetac	20700
ttaggcatct	gaggtgggag	gatggcttga	gcccaggagt	ttgaggttgc	agcgagccaa	20760
gatcgtgtca	ctacactcta	gcctgggtga	cagagcccag	accctgcctc	tttaaaaaaa	20820
aaaaccaaaa	aacatgtatt	ggaacacagc	catgcctgtt	cagtcacgtg	ctctccatgc	20880
tgctttctgc	tccagagacc	cttatggcct	gaaagctgaa	aatattttct	atcctttaca	20940
aaaaagtttg	ctgacctctg	tcctggaaaa	ttcatctccc	aagttctctt	ccggcactgg	21000
cgttcctggg	tgtcctaaat	ttggcccctg	ttatttctga	actctgtttt	ggctctgttc	21060
cctcccagga	gccaggacag	gcacgttctc	tgcatcttgt	cccctgacgc	ccagaggctt	21120
ggctcggctc	aggcattctt	ggaaatatct	ggctccagga	aaggcagagg	cctcctgagt	21180
cggcccagag	ggaacctgcc	ccaggtctgg	gggaggcctg	acccagcaga	gtggcttttg	21240
ccgatgggtt	gggccggtca	agatgtgctg	aaagttgtcc	tcagaaggcc	actttgggat	21300
teetteetee	agtattagag	caactgagag	ctgctcattg	caagcctgat	gttttcccag	21360
ttggccgggt	ccaccgggtg	ccctgggatt	ctgggatctg	ggtggaaagt	agggggcttg	21420
ggggagtgtc	ctgggttctg	gaatccaggt	ggcaagtggt	gaggttcagg	gagtggcttc	21480
tgagccacca	taggggtctc	tgtgggaggc	tctgcccatc	caggagattc	cgcaggccct	21540
gccggcccag	agccagcgtc	ttgcgcttgc	cgaggctaca	gccagcccca	gccgggtgga	21600
acagecegte	gcctcctctc	actttgtttt	ggggccacct	gggagtgtgg	agcaagggta	21660
gagagggagg	aagtggctgc	cggccgctgc	ccagcaccct	tgtttgcctt	gggccctctg	21720
tgggctcctt	tttattgctc	ttcaatgaag	ccagggaaat	ggacttcctt	gcctcacttc	21780
agttcaacat	gtctggaagt	ttggtattaa	aattaagaaa	gtgtggaaat	agagcaagaa	21840
gagaaaaatc	tctccaagag	ataatagtga	cctctgagct	gggcgcggtg	gctcacgcct	21900
gtaaatccca	gtactttggg	aggctgaggc	gggcagatca	cctgaggtcg	ggagtttgtg	21960
accggcctga	ccaagatgga	gaaaccccgt	ctctactaaa	aataaataaa	taaataaata	22020
aataaataca	aaattagcca	ggcatggtgg	cgcctgccta	taatcccagc	taaggcagga	22080
gaatcgcttg	aacctgggag	gcaaaggttg	cagtgagcca	agatcacgcc	attgcactct	22140
agtctgggca	acaagagtga	aactccgtct	caaaaaaaat	aaataaataa	aaaataaaaa	22200

tagtgacctc	tggccaggtg	tggcagctca	tacccgtaat	cccagcactt	tggaaggaag	22260
gccgagatgg	gcagattgct	ttagcacagg	agtttgagac	cagcetggcc	aacatggtgg	22320
aaccccatct	ctacaaaaat	agaataaaat	ttaagaggta	atagtgacct	tttggtagat	22380
cgaaacctgg	attgctttct	ttttctaaat	gctgattctt	ttctttgtgg	tgtttgtgtt	22440
ctgtgccgat	gtccctcccc	cagccctgtt	attgtgagtg	gaagaagggg	aaagggttcg	22500
cccgctactg	tgagcccctc	ctctcacgct	gggtgtcctt	ggagaagcct	gcacttcttc	22560
attgtacgcc	agggctgggt	ccctccctgg	agtggttctg	tgctgctggg	atggggccaa	22620
cccctcagat	gttttctgag	tgtcacacac	aggtgtgtgc	attcatggcc	tttgcgtgtc	22680
ttcctgttgt	ggaggcaaaa	atgtgaagaa	ccctagatga	ttttgggacc	agggctccat	22740
cacctgctgt	tcattgcaca	ccggagcatc	caggcatggg	tggagagete	agacttccag	22800
gcacggtcgc	aggggctggt	ctaaccatgt	tcccgcccgc	ctgctcgtca	gaaccgcctg	22860
ttgggagctg	ttatcatgat	accatacctg	ggccctgggc	tatccgattc	tgacttaatt	22920
gctccaggtt	ggggccaggc	cgttgtttgc	tgttttgttg	tttcttctgt	gacgttagcc	22980
actgggctaa	tctgagcccc	tcagttacag	gtggagaaac	tgagacccat	gggggtgcaa	23040
ggacttgccg	aggacccaga	gccccttggg	ggcagagctg	aggeggggee	tggctttggg	23100
tcccagagct	tccagtcccc	ttcccgctct	cctaacagct	ttttttttg	agacaagatc	23160
tcaccctgtc	acccaggctg	gagtgcaatg	gcatgatctc	ggctcactgc	aatcttcgct	23220
agctgcgttc	cagcgattct	cctgcctcag	cctcccgage	agctgggatt	acaggtgtgt	23280
gccgccatgc	ccagctcgtt	tttttttgta	cttttagtag	agatagggtt	tcaccatgtt	23340
ggccaggctg	atctcgaact	cctgacctca	aatgatccgc	ctgcctcggc	ctcccaaagt	23400
gctaggatta	caggctggga	tcacactgtg	cctggcccta	gcagctttgt	cctgtgccat	23460
ccaacaacag	atgaccgaag	tctttgtttc	ttaacatgca	ttccatctgc	cttacagttt	23520
tgccacctgc	aaaacagagg	acttgtcgct	tttctggtaa	gctggaaatg	taatctggta	23580
gcaggaggcc	tgtggaagct	tgcctttaat	ggccttgtgt	ctctttcatc	ctgtcctgag	23640
agccggagaa	cttggatgtt	gcacctaact	caaccttcct	gttaacatac	agttctgcag	23700
gctcatggat	catcagaacc	acgtcctatc	tcacgcggct	gtatgcttcc	gttggttcag	23760
gtgtttttac	cttgacagta	ttttctcctc	ggtggctttt	gcggtggttg	cttttaatca	23820

gcattgactc	ttcaagaaaa	atatttagct	gctacatctc	agaggagaca	gggtggaaag	23880
catctgagac	ctgcaggctc	agacttagaa	ccagaagtgc	cctcagagtt	cateeggeee	23940
tgacccagcg	ggaaatgagt	tcacagagaa	gcgggagaac	tttgccccag	gccctgccgt	24000
tgctcataac	tgccccaggt	ccttacattt	gctccaggtc	ctgccccagg	ccctgcagtt	24060
gctcataact	gccccaggtc	cttatatttg	ctccaggtcc	tgccccaggt	cctgcagttg	24120
ctctgtgtgg	tgggtgtgat	ctggagccct	ccgcccattg	ctgcacctgg	ggcaggcatt	24180
gctaattgat	cccaggactc	cttcctgcgg	agcacgccct	ggttctccag	gcagccgctg	24240
cctgtcagcc	tgcagtggtt	cgggagagga	cacctgcttg	cctggtctgt	tccaaatctt	24300
gcttctcatc	ccagcacagg	tagggggtgc	tatgggaaag	ggatcctcag	ttggccctgt	24360
cactgctcta	tcagctgggg	acgtggcatc	ctagtgaaaa	catcatggcc	gggcgcggtg	24420
gctcacgcct	ggaatcccag	cactttggga	ggctgaggag	ggtggatcac	ttgaggtcag	24480
aagttcgaga	ccagcctggt	caacatggtg	aaacccatct	ctactaaaaa	tacaaaaatt	24540
cgccaggtgt	ggtggcgggt	acctgtaatc	cgagctactc	gggaggctga	ggcaggagaa	24600
tcgcttgaac	ctgggaggtg	gagcttgcag	tgagccgaga	tcttgccact	gcactccagc	24660
ctgggcaaca	gagtgagacg	ctgtctcaaa	atctcaaaca	aacaaacaaa	caaaaaacaa	24720
acaaacaaag	cgtcatttat	ccagcacccc	tggggaacca	tgctacctgg	tgttttatgg	24780
tacctggcaa	ggtgcaggtg	aagttgctgc	tcttgggcat	tgaacccgtc	ttgtttgggg	24840
cagctcaggc	cccaggcagg	gtccgggttg	gctctcgttg	gtgtggccct	ggcccatcca	24900
gacctatatt	tctgccgtcc	tgcaggtgat	caatgttgat	gggacgaaga	ggcggaccct	24960
cctggaggac	aagctcccgc	acattttcgg	gttcacgctg	ctgggggact	tcatctactg	25020
gactgactgg	cagcgccgca	gcatcgagcg	ggtgcacaag	gtcaaggcca	gccgggacgt	25080
catcattgac	cagetgeeeg	acctgatggg	gctcaaagct	gtgaatgtgg	ccaaggtcgt	25140
cggtgagtcc	gggggtccc	aagccatggc	tcagccatgc	agacttgcat	gaggaggaag	25200
tgacgggtcc	atgcctgggc	ataagtgttg	agctcaggtg	ccccgacctg	gggaagggca	25260
ggacaggaaa	ggtgacagta	tctggccaag	gacagatggg	aagggaccaa	gggagctgat	25320
tagggagtgg	ttatggacta	ggaatgtcgg	taacaatggt	tagaaagtga	ctaacatttg	25380
ttgagcacct	gctgtgtgcc	cggccctggc	cgggagcctt	cgtgcccaca	gtgaccccgt	25440

ctgcaaatgt	agttccttgc	cctactcgca	ctggggagca	ggacgcagag	ccgtgcaact	25500
cacaggtgcc	aagctcagga	ctccctcctg	ggtctgcctg	ggctgggctg	tgcttgttgc	25560
ccctgtggcc	cacgcatgtg	caccttccac	ctgaaagcca	ggatcttcag	gacgctcccc	25620
gaggaggtcg	ttgtctggca	caatgatttg	tctcttcctg	aaaaggtgac	agagttacac	25680
tggagagagc	agcatccagg	tgcggcaggg	acaggcctgg	ggctcgcggg	cagggactct	25740
gtgtcctgcc	ggggtcccac	actgcacctg	cttgtcagag	gcactcagtc	aatctttgct	25800
gatgaaggat	gagaggacag	aggacgtgat	gcttgctgct	gcattgcctg	cagtcctggg	25860
tgagatgccc	gggttgactc	tgctgcccgt	cgggtggatg	tgatgtcaga	tecceggett	25920
taaaatacga	gggagctggg	aattgaggga	gcaggttggg	gcagaaagca	cageceegtg	25980
gaagcctgga	gctgaggcag	tgtgggcgac	ccctggagca	gtgagtgctt	ccttcatggc	26040
cttcatcgca	ccctgcagtc	ctcatgtagg	ggatgccatc	catgaattta	gttttcccag	26100
cctcctttaa	aaacgcgttc	atgctggggc	cggggcagtg	cagtggctca	catctgaaat	26160
cccaccactt	tgggaggccg	aggcgggtgg	atcatgaggt	caggagateg	agaccatcct	26220
ggctaacaag	gtgaaacccc	gtctctacta	aaaatacaaa	aaattagccg	ggtgcggtgg	26280
cgggcgcctg	tagtcccagc	tactcgggag	gctgaggcag	gagaatggcg	tgaacccggg	26340
aagcggagct	tgcagtgagc	cgagattgcg	ccactgcagt	ccgcagtccg	gcctgggcga	26400
cagagcgaga	ctccgtctca	aaaaaaaaa	aaaaagtaca	aaaaaaaaa	aattagtctg	26460
ggtgtggtat	cacgcgccta	taatctcact	actcgagagg	ctgaggcgga	gaattgcttg	26520
aacccaggag	gtagaggttg	tagtgagccc	gtatcgtacc	actgccctcc	acctgggcaa	26580
tagagcgaga	ctctgtctca	aaaagaaaaa	aaaaaaaga	acatttatgc	caggtgtggt	26640
ggctcatgcc	tgaaatccca	gaactttgga	agactgaggc	aggaggatca	cttgagccca	26700
gaaatttgag	agtgtcttcc	ctgggcaaca	tagagagacc	tcatctctac	cagaaaaaaa	26760
aaaattagcc	cggcatggtg	gcatatccct	gtggtcccag	ctacttaggg	ggctgacgtg	26820
gcaggatcac	ctgagtctgg	aggcagaggt	tgaagtgagc	tgagatcatg	ccactgcact	26880
ccagcctggg	tgacagacag	agaccctgtc	tcaaaaaaaa	aaaaaaaaa	aagcatttac	26940
tatccaccat	ggaaggtgag	actgacctgt	gagtgattgt	tcaaagaaca	aaaaataaac	27000
cccagagata	agacaaaagg	gtgcctccat	gggggtgtga	tttaaagctg	agaaattggg	27060

cttcttcccc	ctcccctctc	accccgtggt	ttgctaaagg	agatgggaaa	aaggattctt	27120
tttttggctg	aaatatttaa	cactaaatta	aagccaattt	taacagcact	ttggttgatg	27180
agtgaaatta	acagactggc	caaaaataaa	cgaacggtct	gtactatgtg	aaaaagaggc	27240
agctttggcc	atgctgggcc	aatgtgagtt	ttcagggttg	ctgggaatgt	ctgtgaatcg	27300
gaggaagggc	ctagctggga	ctctcaggag	ccaaggccct	gaggggcaac	ttgcctggtc	27360
cctgccctga	ggcgttcact	gctttcttcc	tgggccagat	cacaggcccg	gaggctggac	27420
cactgggctg	gcactcttgc	cgagctgctc	cctgacttcc	tgaccatgct	cctttcagca	27480
gccttgctgc	actttagttt	ccttgaatga	aaaatgggga	tgagaatagc	tcctacctcc	27540
aaggtgaatg	gagtgagttc	ggacaggtga	ctccctggga	ccagtgcctg	gcgcctgaca	27600
aggtecagte	agagcccgca	ctgctgttac	tgataccctt	ggctgtacca	ggggagaact	27660
tggttgccat	tgccaggtgt	tctcccacca	ccccactac	tgtccctgtt	tgatgtgtgg	27720
cgggaataaa	gctgtgcaca	ttggagcttt	tggcacatcc	tggctttcag	gtgaaaggtg	27780
cgtgtgtgtt	tgagggttta	gcctggccaa	cccagccatg	aggtcggacc	tgacctgggg	27840
gtgagtcctg	agctcggcac	ccctgagctg	tgtggctcac	ggcagcattc	attgtgtggc	27900
ttgggccgca	cccctttccc	tgctgggctg	ttgatgttta	gactggagcc	tctgtgttcg	27960
cttccaggaa	ccaacccgtg	tgcggacagg	aacggggggt	gcagccacct	gtgcttctgc	28020
acaccccacg	caacccggtg	tggctgcccc	atcggcctgg	agctgctgag	tgacatgaag	28080
acctgcatcg	tgcctgaggc	cttcttggtc	ttcaccagca	gagccgccat	ccacaggatc	28140
tccctcgaga	ccaataacaa	cgacgtggcc	atcccgctca	cgggcgtcaa	ggaggcctca	28200
gccctggact	ttgatgtgtc	caacaaccac	atctactgga	cagacgtcag	cctgaaggta	28260
gcgtgggcca	gaacgtgcac	acaggcagcc	tttatgggaa	aaccttgcct	ctgttcctgc	28320
ctcaaaggct	tcagacactt	ttcttaaagc	actatcgtat	ttattgtaac	gcagttcaag	28380
ctaatcaaat	atgagcaagc	ctatttaaaa	aaaaaaaga	tgattataat	gagcaagtcc	28440
ggtagacaca	cataagggct	tttgtgaaat	gcttgtgtga	atgtgaaata	tttgttgtcc	28500
gttgagcttg	acttcagaca	ccccacccac	tecettgteg	gtgcccgttt	gctcagcaga	28560
ctctttcttc	atttatagtg	caaatgtaaa	catccaggac	aaatacagga	agacttttt	28620
tttttttt	tgagacagag	tcttactctg	ttgcccaggc	tggagtaccg	tagcgtgagc	28680

tcagctcact	gcaacctccg	cctcccaggt	tcaagcgatt	cttctgcctc	agcctcctga	28740
gtagctggga	ctacagacat	gcaccaccac	acccagctaa	tttttttat	atttttagta	28800
gagacagggt	ttcatcatgt	tggccaggct	ggtcttgaac	tcctgacctc	aggggaacag	28860
acggggttgg	cctcccaaag	ggcggaaata	acaggggtga	gccaccgttc	ccggcctagg	28920
aaaacttttt	gccttctaaa	gaagagttta.	gcaaactagt	ctgtgggctg	gccttctgat	28980
tctgtaaaga	aagtttgatt	ggtggctggg	tgcggtggct	cacacctgta	atcccagcac	29040
tttgggaggc	cgaggtgggc	agatcacctg	aggtcgggag	ttcgagacca	gcctcaccaa	29100
cgtggagaaa	ccccgtctct	actaaaaata	caaaaaaaa	attaaccggg	catggcggcg	29160
cctgcctgta	atcgcagcta	ctcaggaggc	tgaagcagga	gaattgcttg	aacctgggag	29220
gcggaggttg	tggtgagctg	agatggcacc	attgcactcc	agcctgggca	acaaaagtga	29280
aactccgtct	cagaaaaaaa	aaagtttgat	tggtgtaacc	aaagcgcatt	tgtttatgga	29340
ttgtctgtgg	cagcttttgt	tctgccgaga	tgagttgtga	cagatctgta	tgggctctaa	29400
agcctaaaac	atgtgccatc	cgccccttta	cagaaaaagt	gtgctgacct	ctgttctaaa	29460
gtattggaca	actacaatgt	ttgctcattt	attattctat	gatttgtttt	ctgctttttg	29520
ttgttgttgt	tgttgttgag	atagggtttc	cctctgtcac	tcaggctgga	gtgcagtggt	29580
gtaatttcag	ctcactgcag	cctcgacctc	ctgggctcta	gtgatcctct	catctcagcc	29640
tccctagtag	ctgggactac	aggcacacac	caccactcct	ggctgatttt	ttttttttt	29700
tttttttt	gtggagacag	ggtttccgca	tgttgcccag	gctggtttca	aactcctagg	29760
ctcaaacacc	cacctcagcc	tcccaaagtg	ctgggattac	aggcgtgagc	caccatgccc	29820
agcctattct	actgtttgta	ttacatagct	ttaaaagatt	ttttatgact	ttaagtcaca	29880
agggttcttt	gtagaaaaaa	atatatatat	aggaaagtat	aaaaagaaag	taaaaattgt	29940
ccataacctc	tccagccaga	gacgaccgtt	gctgacacct	cagcatattg	cctttaagtc	30000
ttttttctct	aagatagcat	ttctcttcat	cacagtcata	tgctacgcag	aattctgtat	30060
cctgattttt	tcacttgaca	ttacaacagg	tatttgatgg	cgctgtgaca	aactctttgg	30120
cacaatcttt	taaatgtatg	aaatactcca	ctgcacagat	gtttgctttt	aggcttaact	30180
gttcttttat	tttgcgtgtg	ctggttacag	ccgggcacag	tggctcatgc	ctgtaatcac	30240
aacactttga	gagggtgagg	caggaggatc	acttgagccc	agaagtttga	gaccggcctg	30300

ggcaacatag tgagacccca tctctacaaa aaacttttt aataagtcgg gcgtagt	.ggt 30360
gcatagctgt agtcccagcc accaaggagg ctgagttggg aggattgctt gagcccc	agg 30420
aggttgatgc tgcagtgacc tgagattact ccactgtact ccaacctgag cgacaga	gca 30480
agacttgtct ggggaaaaaa aaaaaaaaaa tatatatata tatatata	ata 30540
tatacataca cgcacacaca cataatataa aaatatatat ttataaatat ataatat	ata 30600
atataaaaat atatatttat aaataaaatt tataaattat atttataagt aaatata	taa 30660
tatataatat aaaaatatat attatataat atataata	ata 30720
tatttataaa taatatataa tacatactta taagtatata tttaaaatat atgtaat	gta 30780
tattttttaa tgtatgatat ataatataca tttataaata cacatttata ttattt	ata 30840
taaaatatat ataaaatctc caagttgctt tttccaaaaa ggtgtcttgc tgcattt	caa 30900
acattcattt aaaaacttga atgctggtga tctggtccag aatgtgttca gtagctg	ctg 30960
ccagtggcca agcatctcgg gagatgtcta caaaacacgc tggttctggc ctggcgt	ggt 31020
ggctcacgcc tgtaatctca gcactttggg aggctgaggc aggtggatca actgagg	tct 31080
ggatttcgag accagccttg ccagcttggt gaaaccccat ctctactaat aatacaa	aaa 31140
aattagccag gcgtggtggc atgtgcctgt aatcccacct acttgggagg ctaaggc	tgg 31200
agaatcgctt gaacccaggg ggcagaggtt gcagtgagcc gagatcgcac cattgcac	ctc 31260
caggetggge aagaagageg aaacteegte teaaaaaaaa aaaaaaagat getggtte	cct 31320
aaaatgtggc ccttttcctc ctcacctgct gccagaccat cagccgcgcc ttcatgaa	acg 31380
ggageteggt ggageaegtg gtggagtttg geettgaeta eecegaggge atggeegt	ttg 31440
actggatggg caagaacctc tactgggccg acactgggac caacagaatc gaagtggo	egc 31500
ggctggacgg gcagttecgg caagteeteg tgtggaggga ettggacaae eegaggte	cgc 31560
tggccctgga tcccaccaag gggtaagtgt ttgcctgtcc cgtgcgtcct tgtgttca	acc 31620
tcgtatgaga cagtgcgggg gtgccaactg ggcaaggtgg caggctgtcc gtgtggcc	cct 31680
cagtgattag agctgtactg atgtcattag ccttgatggt ggccaggact ggtaggg	ccc 31740
tcagaggtca tggagttcct tcgtggagcg ggtgctgagg ctgtatcagg cacagtgo	etg 31800
getgetttea eetgggeegt eteaeegaag tgteeatgga geetgegtag ggtgggta	atc 31860
tgtgtcgatt ttacagatgc agaaacaggc tcagagaaac cgagtgactt ccctaagg	gtc 31920

acatacccag	ttagagcaga	gctgggccag	gaagtgctgt	ctcaggctcc	tgaccaggtc	31980
tccttgcttt	gcactcttgc	caaaaccatg	atccagaact	gactttgagg	tccccggacc	32040
tcaggctcct	ccgaaatggc	ctcttggagg	ctgctgagcc	acagcttagg	acccacctcg	32100
agaggcaaat	gtgctttgag	ctgccaggcg	tcctgggggc	cctgccttgg	gcacggggtt	32160
cagacaggcc	ccagatgtgt	ggggcgtctt	tctggacttg	agttttcttt	tctgtgtggt	32220
ggacacagtg	ctcacccctt	aaagcacctg	tgatgtgtgc	agcagcccaa	tccctgcctg	32280
tegeetgtte	tgctagggaa	ggaaggaata	cttcaggatg	gcaggacaac	agaaagaggt	32340
ccaggtttta	gagcaagggc	aggtcaaact	tagaaaattc	tggaatgagg	atgtgcattt	32400
cctcttctgg	atctgctaaa	agaagagga	aggaggggct	gctgggggag	gagcccagag	32460
ccgagtttac	atccggatcc	cgcaaggcct	cccctgccct	gaggtcttgt	tttgtgatgt	32520
gcttgtgtcc	atcctggttt	ctgccgtgtc	cccaacatcc	ggccaagctt	aggtggatgt	32580
tccagcacac	actcaccctg	tctgtgcacc	tgtttttgtg	tccgtaagtg	ggtatttact	32640
caccttacga	gtgagccact	gtgggaattc	agggaggtgg	cgcagtgacc	acccctggag	32700
ggatatgtgt	gtggcagggg	tcgagggtct	cgcccttccc	tgcttcctgc	gcgtggcttt	32760
ctccaggacg	gggagggctg	agctgaagag	gtggggacag	ttgcgtcccc	ccgccaccca	32820
ctgtcctgcg	gtgagagcag	actcactgag	cctgcccttc	tcccttgtgc	cttccagcta	32880
catctactgg	accgagtggg	gcggcaagcc	gaggatcgtg	cgggccttca	tggacgggac	32940
caactgcatg	acgctggtgg	acaaggtggg	ccgggccaac	gacctcacca	ttgactacgc	33000
tgaccagcgc	ctctactgga	ccgacctgga	caccaacatg	atcgagtcgt	ccaacatgct	33060
gggtgagggc	cgggctgggg	ccttctggtc	atggagggcg	gggcagccgg	gcgttggcca	33120
cctcccagcc	tcgccgcacg	taccctgtgg	cctgcaagtt	ccccaacctg	gcaggagctg	33180
tggccacacc	cacgactgcc	cagcagcctc	accetetget	gtgggagttg	tccccgtcca	33240
cccctgggtg	cctttgctgc	agttatgtcg	ggagaggctc	tggtgacagc	tgtttcctgt	33300
gcacctgctg	ggcactaggt	cccagctaat	ccctgtgcca	ggactctaat	ttcaccctaa	33360
cacacatggt	ggttttcatt	gctggggaag	ctgaggcctg	agcacatgac	ttgccttagg	33420
tcacataget	ggtgagttca	ggatccccca	gagataccag	ggccagcact	cgatccccac	33480
ccagccctga	accccaccat	gtgctgggat	tgtgctggga	gtgtccacac	gcctgggacc	33540

ccagggctgg	tgctctcatc	teettttee	agatcatgag	aatgaggctc	agggaagttt	33600
gaaaaaaacc	tatcccaagt	cacacagcaa	caggagcagg	atttgaaccc	agaaaagggg	33660
accgcacact	ctgttctgct	agagtagtta	gctgtcctgg	gtgatatggc	aggtgacagg	33720
ggcaactgtg	cttaacaaag	gaacccccat	ccccctgcc	aagttgggag	actagaaggt	33780
caggggcaga	agctctgaag	ggccaggtgc	agtggctgac	acctctaatc	ccagcacttt	33840
gtgaggccaa	ggcgggcaga	tgatttgagc	ccaggagttc	aagatcagcc	tgggtaatgt	33900
agtgagacgc	catctctaca	aaaaaatttt	ttaaaaatta	gctgggcatg	gtggttcatg	33960
cctgtagtcc	aagctacttg	ggaggctcag	gtgggaggat	tgcttgagcc	caggaggttg	34020
aggttgtggt	gagctgtgat	catgccactg	cactccagcc	tgggcaatag	agtgagaccg	34080
tctccaaaaa	aaaaaaaga	agaagaaaaa	gaagctctga	ggctccaagt	ccccaggcac	34140
cccttggctt	gagggcagac	aagggaggag	agggtcacct	gggcagccct	gacttttgtc	34200
ccctggcaaa	gggaccttca	gtgaccttgg	ccctaggaga	gcctctgagc	acgtcagcca	34260
tgtcgaaccg	ctcaggaagg	gcagcaagaa	tttggcttct	gacctctgcc	tctcctactc	34320
gccatctgca	ctgggtgtgg	ttgtgcccat	tttacagatg	aggaggctgg	ggcatcgacc	34380
agctgaatgc	cttgtcccag	gtactgcgta	ggcagagctg	gcagttgaac	cccgtgtcct	34440
ggttgtcgct	gggggtgggc	tgcaccctga	cttgtgaggc	cagtagcaag	gtttgcacgt	34500
gacttcgtga	ccgtcaccca	gctctgcagc	acatcccgtg	acccagctca	tccaggccgc	34560
atgcaaacct	gttgccaggc	gagaaaccag	tcaccgcaca	gctgtggttg	cctgaaatga	34620
ttaagctcat	taatcacccc	ggagtgagga	cagactcaga	tgaaaaccag	caaaagccct	34680
ggaaactcat	gtgaccctgc	caatgagggc	ggccatgtgc	attgcagcct	ggccgtcact	34740
cctcggtacg	tgttttggac	ttaaacgctc	cggatgttta	ctgagtgctt	gattaataac	34800
atggaaggcc	tggtctcatt	gctgtgggag	tgaaggatgc	acagccaggc	ctgacatgat	34860
gagaacaaga	acctggagtc	tegetgeetg	ggtggtaatc	ctggccctgc	cacttagcaa	34920
ctgtgtgact	gtagccaggt	cacttaattt	tgctagatcc	tgcctgcgct	tcagtggatc	34980
ttgctggttt	tccaaggtgg	ccaaacactt	taaggcattc	atgtggtcgc	taggctgcag	35040
ggttgaaccc	tggctcaccc	cgcagggcgc	cgtgtgctct	gtggcctggc	tgtgcctttg	35100
ctgacaccgt	gcccgtgtgt	gttcatgcag	gtcaggagcg	ggtcgtgatt	gccgacgatc	35160

tcccgcaccc	gttcggtctg	acgcagtaca	gcgattatat	ctactggaca	gactggaatc	35220
tgcacagcat	tgagcgggcc	gacaagacta	gcggccggaa	ccgcaccctc	atccagggcc	35280
acctggactt	cgtgatggac	atcctggtgt	tccactcctc	ccgccaggat	ggcctcaatg	35340
actgtatgca	caacaacggg	cagtgtgggc	agctgtgcct	tgccatcccc	ggcggccacc	35400
gctgcggctg	cgcctcacac	tacaccctgg	accccagcag	ccgcaactgc	agccgtaagt	35460
gcctcatggt	ccccgcacc	tcactccctc	gttagatcag	gctggttctg	ggagctgacg	35520
ctgaaaggag	cttctcatct	ggggttcctg	ggtgtacata	gatggttggg	taggttgtgc	35580
actgcacaag	ctgcatgatg	ctacctgggg	gtccaggtcc	aggctggatg	gacttgttgc	35640
ttcatcagga	catagataaa	tggccaaaac	tecteagetg	gaaggtcctg	ggcaggatct	35700
ttgggtgtga	aaaccagtca	caggggaagg	gtgcttgctc	atactgccag	cacagtgctg	35760
agtgctttcc	atagcgctcg	tttactcctc	aagcctggag	ggtggggagt	agcatggtcc	35820
catttcacgt	acaaggaacc	cgatgcacag	agaggtgtgg	caacccatcc	aaggccatac	35880
aactggggtg	ggttgagccg	gggttgactg	tggcaggctg	gctcaagagt	ccctgctcct	35940
gaacccttgc	caggcagcct	ggcatcagct	cggggaattt	ttgccctgac	ccttggaagc	36000
aagtgggcct	ctttgttctc	atgtcagtga	tgagaagagt	gactttccta	tggcccctct	36060
ggagtacagg	tgtttcctgt	tggcgggctc	ttcccccatg	acatcagcag	cgagctggtt	36120
atgattccct	acgcagaact	tgatagttta	taaagctctt	tgtcatccag	gccccgttgg	36180
agtctcacgc	agacctggtc	gcaggcgggg	ctggtcttgc	ctgtcccage	tgcatggatg	36240
gggaacttga	ggcttgcaaa	ggttaagggg	ctgttcgagg	cccacgctgg	caggagatgg	36300
gcctgggcca	gagtctggga	cttcccatgc	ctgggctgtc	tttggtcctg	ttgctcacca	36360
tecetecetg	gggccatgac	cttagagagc	caaatggagg	tgcaggtaac	ccacggcaag	36420
gaggggttgc	catgactcag	agtccccgtc	ctgtggccgg	cagtacctgg	tgcaacgact	36480
tggatttcag	accagccact	gtagcccgct	gacggtgcgc	tcgaagtgcc	acagettetg	36540
aagccaggca	ggactcaggc	caggagactc	tgttagctgt	tgagagggag	aggccaacgg	36600
atgttctggt	tctgctagag	agctggttct	tcggatcctg	gtaccagtgc	actgagagga	36660
ggcccagctt	gattctgggg	ctgccttgtg	gtggcatgtg	ctgctcactg	acaccctcga	36720
ggagtgtctt	ctctcgggct	tgttgactgt	gcccggtttt	ccgcagttca	ctggtgcaca	36780

cataggcaca	tagcaaaccg	cacacacagt	cgtgggtatg	agtttcacta	cattccacca	36840
ccagtgttca	ctaccattac	ctgccttccg	tcttaagtgt	tcatcattta	aaaataaatt	36900
tattgggctg	gacgcggtgg	ctcatgactg	ttatcccagc	actttgggag	gctgaggcgg	36960
gcagatcacc	tgaggtcagg	agttcaagac	cagcctggcc	aatatggtga	aactccatct	37020
ctactaaaaa	tacaaaatta	gctgggcatg	gtggggcatg	cctataatcc	cagctactca	37080
ggaggctgag	gcaggagaat	ggcgtgaacc	cgagaggcag	agcttacagt	gagcccagat	37140
agcaccactg	cagtccagcg	tgggcaacag	tgcgagactc	catctcaaaa	aaaaaataaa	37200
taaataaaag	aaaaataaat	ttatgatcta	tttcaaaaat	aacacatgta	ctttgaaaca	37260
gcagagacac	atatgacacg	gagaatgaaa	ttccccatag	cgcaccccca	agagacagcc	37320
ctggtcccc	cgtctttccc	gtggacctcc	agcggggcag	atgctgagcc	gcctgttgtc	37380
gagtggcatg	ctatcccgtc	ctccagctcc	tctgtggctt	acagacaccc	acctgcagcc	37440
ctgtctttgc	ctcctctagc	gcccaccacc	ttcttgctgt	tcagccagaa	atctgccatc	37500
agtcggatga	tcccggacga	ccagcacagc	ccggatctca	tcctgcccct	gcatggactg	37560
aggaacgtca	aagccatcga	ctatgaccca	ctggacaagt	tcatctactg	ggtggatggg	37620
cgccagaaca	tcaagcgagc	caaggacgac	gggacccagg	caggtgccct	gtgggaaggg	37680
tgcggggtgt	gcttcccaag	gcgctcctct	tgctggtttc	caggctgctg	cccctgtcct	37740
tagcagaggg	aggaaacaga	ggatggctct	gggtgaatga	tgacttgggc	ttcgattatg	37800
tagtcacagg	gtatgaccct	gagatgcgtg	gaaccccgag	actgtgatta	tatgtagaaa	37860
ctgggtttcc	ccgttgttta	agtagtcatg	gtggggtcag	accccacagg	acttttgtct	37920
tttcaagaaa	gaaaatggtc	gtgtgtcatg	caggggtagt	tggtactggt	taatccaggt	37980
ttatccttta	ttttgtggga	actgtacagt	catttctgct	acaatgctgt	atatgctctt	38040
ctgaaagaca	cctatgcaaa	atcgcacagt	aaaaatgaca	caactcatag	ggaaagcggg	38100
gccagggcac	agccctcaaa	atctccatca	atgacatgta	agaaaagaga	ggaacctggg	38160
aaatagcaaa	gtgccttttg	cacattaaat	ggttagctat	atcccacaat	actgtgcatt	38220
cgtaaacgtt	aatgctgcaa	taaatacggc	acttcacctt	gggaagatct	ggagttggct	38280
tatgagtgtg	gaagggtgta	gcgcatgagt	ttttgtgaaa	cactggaagg	aggattgtgg	38340
gaaatcaaat	ggaaagttct	caccccaggc	gtggagaaga	gtgggtcatg	gccccagcag	38400

				•		
tgagcccagg	gaggtcagag	acggaggtgt	gtgtgtgggt	gtgaccctgc	gcagttccct	38460
gccggctgta	gttttttgca	ttcgcttaat	gtttctcgtg	gaggaaattg	tgcatgagca	38520
aatgtgaaac	cgtgctgtgc	tcaaatţgtc	ctaatacatc	attgcattgg	aacagattgg	38580
ctttnttttt	tttttttt	tttttttt	tttgaaatgg	agtctcactc	tgtcaccagc	386.40
ctggagtgca	gtggcatgat	cttggctcac	tgcaaccttt	gcctcctatg	ttcaagtgat	38700
tttcctgcct	cagcctcctg	agtaactggg	attacagggc	atgagccacc	gcggccggcc	38760
agatttgcat	ttttgaaaca	actgctaggc	tgggcgcggt	ggctcacacc	tgtaatccca	38820
gcactgtggg	aggccgaggc	aggtggatca	cctgaggtca	ggggttcgag	accagcctgg	38880
ccaacatggt	gaaaccccgt	ctctactgaa	tatacaaaaa	tcagctgggt	gtggtggcgg	38940
gtgcctgtaa	tcccagctac	tcaggaggct	gaggcaggag	aattgcttga	acccaggagg.	39000
cagaggttġc	ggtgagccga	gatcacacca	ttgcactcca	gcctgggcaa	caagagcaaa	39060
actccatctc	aaaaaataaa	aaatagaaaa	acaagtgctg	tagcggaagt	gagcactttg	39120
cggagtcagg	cttgtgtggc	ctgttccaca	aatgatgtgc	tcacggtggc	ctcaggccca	39180
cctggagtct	gcagcatggg	gcacaacagg	ttcattagtg	tagaattcca	ggacaggcct	39240
ggctcctaag	cagccttctt	ttacaaaaac	tgcagagccc	gcctgtatcg	tagcactttg	39300
ggaggccgaa	gtgggtggat	cacgaggtca	ggagttcaag	accagcctgg	ccaacatggt	39360
gaaaccccat	ctctactaaa	tatacgaaaa	ttagctgggt	gtggtggcac	gcgcctgtag	39420
tcccagctac	tcgggaggct	gaggcagaat	tgcttgaacc	tgggaggtgg	aggttgcagg	39480
gatctgagac	catgtcattg	cactccagcc	tgggcaacag	agcgagacgc	catctcaaaa	39540
aaaaaaacc	tacagagcca	cacggcctct	ttctccaccg	agtgttggtg	tgggagcttg	39600
tgttattgtg	gtgaaatctt	ggtactttct	tgaggcagag	agaggctgag	cgcctggaga	39660
gactttcaca	tgggtcgcca	tgtccgccgt	cggtttcgct	gttgtgctcc	ccatctgaag	39720
gctggtgccg	tccagacagg	ctggacgccc	ctttccacca	gatccttcct	cccgcagcag	39780
tttctagtta	cgttgtactg	tgaggtctgt	gtccttggtt	gatggcaaaa	gtcagccgaa	39840
ttgaaattca	gagccatgcc	tggctccctg	gagcttctct	cctgggcagc	tgtgatcatt	39900
gcctctgctg	tggtgtgggt	ggtggaaatg	gattcctttc	atcttgcttg	ctacaggtga	39960
ctgtcacgtg	gagtcctttg	gagagaggga	cgtgttaatt	gatggatgtg	gctcccatgc	40020

tgagaaagct	cctgggcgta	cattgcctta	gagtttcatt	ggagctgcgt	tcttttatgg	40080
tgtctgctag	gcagaagtga	tgaagacttg	gaagaaaacc	cagaaggttt	tccacttaat	40140
ttggaaaatg	tgcttttccc	ctcctgtgtc	ttttgctaag	gtccagcctc	ctgcagcctc	40200
cccgctctgt	ggactctggc	tttgattctt	tattaggagt	cccctgctc	ccccaaaaga	40260
tggtgtctaa	attatcatcc	aattggccga	ggttttgttt	tctattaatt	gtttttattt	40320
tttattgtgg	taaatttata	taacataaaa	tttgccattt	taattgtttt	gttattgttg	40380
tttttgagac	agggtctcac	cccagtgccc	aggctggagt	gcagtggtgc	gatcatggct	40440
cactgcagcc	tcagcctcca	gggctccagt	gatcctctca	cctcagcctc	tctagtagcc	40500
gggactacag	gcatacacta	ccacatctgg	ctgattttt	gtatttttt	tttattgtag	40560
agacccgcta	tgttgcccag	gctggtctca	actcctggac	tcaagccatc	ctcccacctc	40620
accctcccaa	agtgctggga	ttacaggcat	gagccacaac	acccagccat	tttaattttt	40680
tttttttt	ttgagatgga	gtctcactct	atcgcccagg	ctggagtgca	gtggcgtggt	40740
atcaactcac	tgcaacctct	gcctcccagg	ttcaagcgac	tctcctgcct	cagcctcctc	40800
ccgagtagct	gggattacag	gtgcccatca	ctatgcctgg	ctaatttttg	tattttttag	40860
cagagacggg	gtttcaccat	gttggccagg	ctggtcttga	actcctaacc	tggtgateeg	40920
cccgcctcgg	cctcccaaaa	tgctgagatt	acaggtgtga	gccaccgtgc	ccggcctttt	40980
tttgtttttg	agacagggtc	ttgccctgtc	acccagactg	gagtgcaatg	gtgggctctt	41040
ggctcactgc	agecteegee	tcccaggete	aagttgtgca	cctccacacc	tggctaactg	41100
tattttatgt	agagacagat	ttcaccatgt	tgcccaggct	gggcttgaaa	tggactcaag	41160
cagtccaccc	acctcagcct	cccaaagtgc	tgagattaca	ggcgcgagcc	accgcaccca	41220
gcccatttta	cctattctgc	agttgacagt	tcagtggcat	tcagtcagtt	cacgaggtaa	41280
ccatcactgc	cattcatctc	cagactactt	caccttctcg	gcagatgtcc	gaaactgtcc	41340
gcattgaaca	cactcctcat	ctccctctga	cagccaccat	tctactttgt	atctctctct.	41400
gccttctcta	ggtacctcat	gtaagtggaa	ttataccaat	atttgccctt	gtgtgactgg	41460
cttctttcat	gtgacatggt	gtcctcaagg	ttcatctgtg	ttatagcctg	tgtcagaatt	41520
tccttcctta	aagcctgaat	aataacccgt	tgtaaaggct	gggcgcggtg	gctcacaccc	41580
tctaatccca	gcattttggg	agtccgaggt	gggcagatca	cttgaggtca	ggagtttgag	41640

WO 01/77327 PCT/US00/16951 126

accagcetgg	ccaacatagt	gaaaccctgg	ctctactaaa	agtacaaaat	tagctgggtg	41700
tggtggcgcg	cacctgtaat	cccagttact	caggaggctg	aggcaggaga	atcgcttgta	41760
cccgggaggc	agaggttgca	atgaaccaag	attgtgcctc	tgcagtccag	cctgggtaac	41820
agagtgagac	ttcctgtctc	aaaaaaaaa	aaaatcatcg	gatggatgga	cggaccactt	41880
cttgttattt	atccatccac	gggtgctagg	tttcttccac	ctttggttgt	cgtgaataag	41940
gccactatga	acatttcctt	ccgtggtgaa	ggttttgtac	tagtgaggaa	aaggcgtgtt	42000
tgtggtgttg	cataggattc	tggtaagaaa	gtttgcacta	accataagta	tttgtactac	42060
attaaaatga	aagctcaggg	.gccgggcgcg	gtggctcacg	cctgtaatcc	cagcactttg	42120
ggaggccagg	gcgggcggat	catgaggtca	ggagatcaag	accatcetgg	ccaacatggt	42180
gaaaccccgt	ctctactaaa	aataccaaaa	aactagccag	gtgtggtggc	gggcacctgt	42240
agtcccagct	acttgggagg	ctgaggcagg	agaatggcgt	gaacccggga	ggcggagctt	42300
gcggtgagcc	gagatcgctt	cactgcactc	gagcctgggc	aacagagcaa	gactccgtct	42360
cacgcaaaac	tctgtctcac	gcaagactcc	gtctcaaaaa	aaaaaagagt	tcagggttta	42420
tgaaactggc	cageegegta	aagtttgctg	tgttgtttt	gtgcccggga	ggagtgtggc	42480
cagggtgtca	cgtcacacag	tacacgtttc	tcagatggtg	gttctccaga	ctgctgtccc	42540
aaagtctgtt	tttgcatctg	gttcccacag	acccaccctc	cacggtgagc	ctgattttgg	42600
ccagggtagc	tggaatcttg	cttgtctttc	agcccggcag	ctgtaccagt	ccagggtcca	42660
cagctagtgg	cttttaggaa	ggaatttgtt	cagttggctt	tgacacatgg	ccccctaggg	42720
tccacagctc	tgtagtgatg	tggatgttgt	tatctacaaa	gacacatgat	ccttcgtgtc	42780
cagatgaaag	tgatgatgtc	tttgcagctg	cccagcaagg	ctgtgtgtgt	gtgtgtgtgt	42840
gtgtgtgtgt	gtgtgtgtgg	tgtgtgtgtg	gtgtgtgtgt	gtgtatgggg	gagggaggca	42900
ccctttccat	ctgggggtgt	gtgtgtgtgg	ggtgtgtgtg	tgtgtgtgcg	cgtgtgtgtg	42960
gtgtgtggtg	tgtgtgtgtg	tatgggggag	gcaccctttc	catctgggtc	caagagactg	43020
ggcctgggga	agacgcttct	ttttatctac	ttagagactt	tgttttattt	gtatttttt	43080
gagacagggt	ctcactctgt ,	cacceagget	ggggtatggt	gatatgagca	tagctcactg	43140
cagcctcggc	ctcccagget	gaagcgatcc	tcccacctca	gccttctgaa	tagctgggac	43200
tgtaggcgtg	cgtcaccata	ctgagctatt	gtttttttg	tttggttggt	ttaattttt	43260

ttgatacaga	tggagtcttg	ctatgttgcc	cagactagtc	tcaaactcct	gaactcaagt	43320
gattctccca	cctcagtttc	ccgacattct	gggatcacag	gtgtgagcca	ctgctgtctc	43380
cctgttttat	taactgctga	aagacctaga	taaagaaagt	ctgaaaagac	ttactatcag	43440
agcaccatcc	taagatgatt	ccctctgact	caatggagag	ggagggagc	ttttccttca	43500
ggcctgggtg	gcaggagccc	aggtgctcca	ggccccattt	gccccaggcc	aaatcactcg	43560
ggaacttgga	tgcagctgtc	tttcagggta	acccaaagga	accagatccc	cgcaggcagt	43620
aggcttctgg	gctgtcctct	cctcctacgt	cagctcagta	agagcccttc	gaagggatgc	43680
tgtgtcggag	gccccaaaag	cccaggctca	tccctgagat	gcacagggtg	ggctgggctt	43740
aggcagcgct	cgagcatctc	ctggacggtg	accccagaga	gtgtggagac	ggagagtcct	43800
tgagagtcac	tgagagacgt	ggctgccctg	ccttcccaag	aggggctctg	agtcattccc	43860
cacactcacc	tgcccctacc	caccctcacc	tggcccccag	cctcacctac	ccccacatct	43920
gtaccgatcc	ctttacccgc	accttcccta	cccaccctca	cctcccctgt	accttcacct	43980
ccccactca	cccgcccctg	caccctcacc	tgtcccccac	cttcacctaa	ccccaccct	44040
cacctgccct	cccctcacct	ggcctccttc	cgttggggaa	ggggttgtaa	ggggcggccc	44100
ccaaactgtc	tgtcctggtg	ccctgcagag	aaaacagtac	gtgagggccg	cagtccaaaa	44160
gcttgagtcc	tggaaggtgg	aggagacagg	gatgtgttgg	gaagggcccc	atggtcttgg	44220
atcccttctc	gactgtcaat	ggggccttca	tgggagcgcc	agtctagtga	tgcacagctg	44280
ggtgcccggc	gggtggctga	ggaggcctaa	agtccgaggc	ggçaagagct	cttccagagg	44340
ctgttgtcct	aatcgctctg	gcatactcag	gcgggcacgt	agttaggagc	tgattggaga	44400
ggagagaccc	ccacaccaat	actgggattt	gactttcagg	ctaaacttga	gaagtgtggc	44460
ctctgctgtc	ctgccagagc	tctccagcca	gtgcccaggg	ctctccagcc	agtgcccggg	44520
ggtctccacc	agtgcccggg	ggteteegee	agtgccaggg	gtctccgcca	gtgcccaggg	44580
gtctccgcca	gtgctcagga	gtcttggttt	ctttgtctta	cagccctttg	ttttgacctc	44640
tctgagccaa	ggccaaaacc	cagacaggca	gccccacgac	ctcagcatcg	acatctacag	44700
ccggacactg	ttctggacgt	gcgaggccac	caataccatc	aacgtccaca	ggctgagcgg	44760
ggaagccatg	ggggtggtgc	tgcgtgggga	ccgcgacaag	cccagggcca	tcgtcgtcaa	44820
cgcggagcga	gggtaggagg	ccaacgggtg	ggtgggggtg	ctgcccgtcc	aggcgtgccc	44880

gccgtgtctt	ctgccgaatg	ccagcctctc	acaggctggg	gagactttcc	accctgggga	44940
tccaatgggt	ggctttccag	ggtcccaaaa	gcaaacacag	gctctttcac	agcccctcca	45000
ggaaagcaga	aagccccaag	ggctggaagg	gaagggggag	ctctgctgag	aggttacaag	45060
gcagcgctgg	ccgacgggag	ttgcagttga	taggttttgt	atcatccttg	ttaaacttga	45120
accctgtgca	gaaatccctt	ccacggcatg	ggggctgcct	gttgactcgc	tcctgttcca	45180
ccacagggag	ctcctgggct	tetteeteec	agaggccccc	gacgctccca	cctgttggtc	45240
gtcagagett	ctggttggtg	ggaaggcacc	caggaccttg	aggtctccag	agagaaaagc	45300
cagggaaaga	gggagaccga	aacccatgtg	acatgaaact	caggctccaa	actgagcacg	45360
ggaacgtttg	gggacaggag	cgcgatggcc	ttcctcagat	agctgggggg	ctggcatgaa	45420
gacgggagct	acagccagca	caggtcctgg	gccgggagcc	cagagattga	gccctgactc	. 45480
tgtcacttac	tggccacgtg	accttgggcg	ggtggcatag	cctcttggag	actcagtttc	45540
ctcattggta	ggagtgacgg	ccacagtggt	gcggcctctg	cagcacacgg	ggggctcggt	45600
gggcggaagc	cccgggtcta	taaggcggct	gtgcaggagc	cagccgagct	ggtctcccaa	45660
cagccagggc	tccggggtcc	ttagcagctg	tggggggcct	gcacctgttt	cccatggctg	45720
ctgtcagaaa	ttaccagaag	ccaggtggct	gagagtaatg	gacacttgtt	ctctcacagt	45780
tcctgagggc	tgaagcccga	gatcgaggtg	tgggcagggc	cctgcgccct	ctgaaggctc	45840
tgagggaacc	tttgggcttc	tggtggctcc	aggcacccct	tgacttgtgg	tcctgtcact	45900
ccagtctctc	tgtctggctg	cacatggcgt	ggcctcttct	gtaccattga	aggacacttc	45960
agttggattt	agggcctacc	ctcacccatt	gtggtcgtat	cttgatcctt	catgacattt	46020
gtaaagaccc	tgcttccaaa	taagctcaca	ttctgaggtt	ctggggtgag	cgggaatttg	46080
gagagcattg	ttcaactagt	atagaatgtg	acctgtcagc	ctcgggcagc	cctgagaggc	46140
aggggctttc	cacagcccag	ctgggtgccc	tgggctccgt	gctgtccgag	gagacgccat	46200
cccacaccc	gtccttcacc	cgccaccctc	ccgcaggtac	ctgtacttca	ccaacatgca	46260
ggaccgggca	gccaagatcg	aacgcgcagc	cctggacggc	accgagcgcg	aggtcctctt	46320
caccaccggc	ctcatccgcc	ctgtggccct	ggtggtggac	aacacactgg	gcaagctgtt	46380
ctgggtggac	gcggacctga	agcgcattga	gagetgtgae	ctgtcaggta	cgcgccccgg	46440
ggcctgccct	aaccgcagac	acccggcctt	cattgtcagt	aatggcagca	gctgccacat	46500

tgtccgagac ctgccgtgag cccagtgccg cgccaggggc tttgtgtgta gcgtgttttq 46560 tcctcacact gacagctgta ggctggggtt ctgagtgagc cccacagggc agaggcagaa 46620 aatgagtete agagagggtg agegagetge ttggggeece acageaggag atggageagg 46680 46740 ttaggctgcg agggctggag agaaatgaga gttggtgctt agagaggggg cgcaggtccc 46800 catggctttt cctcttatga tgaggtagat gggtgaaggg aggggccatg cttgcagggg 46860 ccagtgaccg aggcccgccg ttggaactga tggccttcat cccgagccca gcccaggtgg 46920 gagcaggget ttccgaggge ttgtcttggg teggcctgct tccagggact ctgctgcagc 46980 tcccaccct gtccaaagca tggaatcccc caggetccct ggcagtcctg tcaacctctg 47040 tecteccaag etgagtgtgg ggeaagttet ggaggteage actgeteagg ggggeecaeg 47100 ggctgcttgc aggggccaac cgcctgaccc tggaggacgc caacatcgtg cagcctctgg 47160 gectgaceat cettggeaag catetetaet ggategaeeg ceageageag atgategage 47220 gtgtggagaa gaccaccggg gacaagcgga ctcgcatcca gggccgtgtc gcccacctca 47280 ctggcatcca tgcagtggag gaagtcagcc tggaggagtt ctgtacgtgg gggctggcag 47340 tggggtgggc agggtggcct ctaaacccga cccctggagg aggctggagg ccagtgcaag 47400 atcctgtgtg gcctcagcca ggcggtggtc tctgccagat gccaactgtt gcccgctggg 47460 gttcagcgac atgtccgaat gtcccgaggc ctctgaggtt gttttctttt gccgcagaac 47520 aaatcaccac gaacagcgtt ttaagacaac accaactctt ttttttttt tttttttga 47580 gtcaggatct tgctctgttg cccaggctgg ggtgccctgg tgcaaacaca gttcactgca 47640 gcctcgacct ctgggcttaa ttaagtgaac accttgcctc agcctcccag gtagctggga 47700 ctacaggtgg gcaccaccac acctggctaa ttttttttg tagagacggg gtttccccat 47760 gttgcccagg ctggtctgca actcctgggc acaagctatc tgcctgctgt ggcctcccaa 47820 agtgctagga ttataggtgt gagccactgg cctgacaaca cccacggatt gtctctcagt 47880 tetgtaagge aaagteeagg cacagegtgg etcacetggg ttetetgete agggteteae 47940 ggggccagaa tcaaggtgtc aggaacgctg ggccctcagc ggaggctctg tggagaaatt 48000 agetteettg eteacteage aggtageagt tgtgggateg aggttetgtt ttetetetgg 48060 ttattggteg gggaccacte teageteeta gaggecacce caggteettg eccegtggee 48120

ctetetgeet cageagtggg ggeteeetge gteagteeet eeegeacett gagtetetet 48180 gatttgcttc taaagggccc tgtgattcgg ctcagccacc tttagattag gttagcctcc 48240 cetttgatag actecaagte ggetgattaa taacettaet cacatetgea gaatecette 48300 tgccacataa ggtcatgacg ccgtgctggg gactggggtg ggaaattacg gggtcattta 48360 ggattctgcc tgccactgcc ttgctgtgtc ccagggcttg ggggaggggc ctccacagct 48420 gggaccacag teetteetee cetecatggt aaccatetga ggattaettg agaccageet 48480 gggcaacatg gtgagaaccc atccctacaa aaaatacaaa caaaaaggga ccaggctggg 48540 cttggtggct catgcctata atcccagcac tttgggagac caaggtgggc tgatcacttg 48600 aggttgggag ttcgagacca gcctgcccaa catagtgaaa tcccgtctct actaaaaata 48660 48720 caaaaattag ctgggtgtgg tggcaggcgc ctgtattccc agctactggg gaggctgagg 48780 tgggagaatt acttgaacct gggaggcgga agttgcagtg agccaaaatt acgccactgc actccagcct aggcaataga gtgagactcc gtctcaaaaa aaaaaaaggg ccaggggtgg 48840 tagtgacaaa gagaccetat cecaaaaaaa cegaacaetg aateettgag aetgagtaag 48900 gacactgtga aatttttctg ggtggggcag ggaacagagc gtcttctgtc atttcttcca 48960 ectgggtgtg gtcagetete cetecaaget geeteetett etteteattg teegggtgtt 49020 ggacacattt ggttaactgg atagaataac gcgagttccc agggacttgg tccatttgct 49080 49140 tgagatggag tttcgttttt gtcgcccagg ctggagtgca gtggcgcgat ctcggttcac 49200 tgcaacctct gcctcccagg ttcaagtgat tctcctacct cagccttcca agtaactggg 49260 attacaggca cccaccacca taccaggcta attttttgt atttttagta gagacgggtt 49320 ttegecattt tgeceagget ggtetteaac teetageete aggtgateea egeacetegg 49380 cctcccaaag tgctgggatt acaggcatga gccaccacgc ctggcaccat ttgctatttt 49440 aattoccatg tgtattagtg toccaoggot gotgtaacaa atgaccacaa actggatggo 49500 ttaaagcaac agaaatggat tcccccaatg tgctggagac cagaagcctg cgaccaaact 49560 49620 gttgggaggg ctgtgcttcc tctgggggct ccagggagga tctatttqtt ggcccttcca gtgctgtggg tgccagcgtt ccacacttgt ggatgcgccg cctcaacctc tgcccatctt 49680 catgtgtcca tetectttgt gtetgegtet ttacetette ttettgtetg tgttgeetet 49740

tataaggacg	tttgtcattg	ggtttagggc	ccacccaaat	catccgagat	gacctcgtct	49800
tgagatcctt	aacctgcaaa	gacccttttt	ccaaaaaaag	gttatgctca	cagattctag	49860
gccttaagac	atgggtgtat	ctttctgggg	ggcactatcc	aaccccttat	acaatgaaag	49920
acgggaagag	ggccaggtgt	ggtagttcac	gcctgtaatc	tcagcacttt	aggaagctga	49980
agcgggagga	tcacttgagc	ccaggagttt	acaagtagct	aggcaacatg	atgagacccc	50040
atttctacaa	aaagtaaaaa	aaaaaaaaa	aaaaaaaag	ccaggtgtgg	tggctcacac	50100
ctgtaatccc	agcactttgg	gaggctgagg	caggcagatc	acgaggtcag	gagattgaga	50160
ccatcctggc	taacacggtg	aaaccccgtc	tctactaaaa	atacaaaaaa	ttatggccgg	50220
gcgcagtggc	tecegeetgt	aatcccagca	ctttgggagg	ccgaggtggg	tgaattacaa	50280
ggtcaagaga	tçgagaccat	cttggctaac	acggtgaaac	cccatcaaga	tcacaaggtc	50340
aagagatgga	gaccatcctg	gctaacacgg	tgaaaccccg	tctctactaa	aaatacaaaa	50400
aattagccgg	gcatggtagc	gggcgcctgt	agtcccagct	gctcgggagg	ctgaggcagg	50460
agaatggcgt	gaacccggga	ggcggagctt	gcggtgagcc	gagatcgctc	catgccattg	50520
cactccagcc	tgggtgacag	agtgagactc	cgtctcaaaa	aaaaaaaaa	aaagaaaatt	50580
agccaggcac	agtggcaggt	gcctattgtc	ccagctactt	gggaggctaa	ggcaggagaa	50640
tggcatgaac	ccgggaggtg	gagtttgcag	tgagccgaga	tcatgccact	gegetecage	50700
ctgggcgata	gagcaagact	ctgtctcaaa	aaaaaaagcc	aggcatggtg	gtgcatgcct	50760
gtagtcccag	ctactcaaga	ggctgaggca	ggagggttgt	tcgacccacg	gagatcaagg	50820
ctacagtgag	ccatgatcgc	accactgccc	tccagcctgg	gtgacagagt	gtgaccctgt	50880
ctcaaagtaa	gtaaatagga	ggagagacaa	gtgggcagtt	cagactgatg	gtatgggcac	50940
agtagagact	ggtgcagaca	ggctggcctg	tgatgtcaag	caacttctgt	aactgtttcc	51000
ggcatccatt	tgtgtgtcaa	tttccgtgtc	agtaggaaga	ctctgtaggc	tgccaagagg	51060
aataagtggg	aggatcctcc	cagagaggcc	gggcctgcag	gagggccagt	tctcatgagt	51120
tcttatttgg	cccctaccct	ccaggctgtg	gttctgaggt	gggagacaga	gcctgacctc	51180
tgtttgtctt	gttttgtctt	tgcagcagcc	cacccatgtg	cccgtgacaa	tggtggctgc	51240
tcccacatct	gtattgccaa	gggtgatggg	acaccacggt	gctcatgccc	agtccacctc	51300
gtgctcctgc	agaacctgct	gacctgtgga	ggtaggtgtg	acctaggtgc	tcctttgggg	51360

tgatggacag	gtacctgatt	ctctgcctgc	taggctgctg	cctggcatcc	ttttaaaatc	51420
acagtccctg	tggcatccag	tttccaaagc	tgattgtgtc	ttcctttgcc	ctcctttctt	51480
ttctactatg	tgcattcggt	gctatgaatt	ttcctctaag	tactgcgttt	cctgcatctc	51540
acaaattttg	ttacattttc	attttcaggt	agtttgaata	tttttacact	tctcctgaga	51600
tgacatcttt	ggctcatgtg	ttatttagaa	gtgttgctta	gtttctaaag	agttggggct	51660
tttccagctg	tctctctgca	actgatttct	aatttaattc	tactgtagtc	tgagagctta	51720
ttttatatga	tttctgttat	tttaaatgtg	ttgggtgtgg	tgtttttgtt	gttattgttt	51780
ttgtgtcttt	ttgttttgtt	ttgcttcgtt	tgttttgttt	ttgagacagt	gtcttgctct	51840
gtcactcagg	ctggagtgca	atggcgcgat	ctcagctcac	cgcaacctct	gcctcccggg	51900
ttcaagtgat	cctcttgcct	cagcctcctg	agtagctggg	attacaggtg	cacgccacca	51960 ·
tacccagcta	atttttgtat	ttttagtaga	gacggggttt	caccatgttg	gtcaggctgg	52020
tctcgaactc	ctgacctcgt	gateegeeca	cctcggcctc	ccaaagtgct	gggattatag	52080
gcgtgagcca	ctgtgcctgg	ccattaggtg	tgttttatca	cccagcatca	tgcagtttat	52140
cttggtgaat	gttctgtgta	ctcttgaaaa	gaatgtggat	tctgctgttg	ttgggtggag	52200
tgttccagaa	acatcaatta	gatecagttg	gttaatagtg	ctcatcaggt	tgtctctatc	52260
cttccttcct	gactgcctgc	ttgagctgtc	agttattgac	aggggtgtgg	agtctccaac	52320
tctaatggtg	gatttgttta	tttctcctag	tagttctatc	tttttctctc	cttctaccct	52380
tgatcctctt	ctccccctag	ggcttcctgg	tgttggtggt	gggagagtgg	ggtagtgaag	52440
aacctggact	ttagggccaa	agaggccagg	gttcaaatcc	tggctctgtc	acttcccagt	52500
tgagtgaccc	tggctggtgc	ctgaatctct	gtgagcctcc	acttcctcct	ctgtgaaatt	52560
gagagcactt	acctggcagg	ctgtcatggg	catcaagtaa	cagggcactc	cacctggacc	52620
ctgacacgtg	atgcacagga	atgccagctg	ctatgccatg	ggtgtggcag	tagtaataaa	52680
gtgaccatct	gtatcctcac	cacagtgaag	cctgtccagg	gctttctctc	ctatgccccc	52740
atgcctccag	gtggccttgg	atcctgttgg	ttctgtgctc	tgctcagcga	cctttctccc	52800
gtgggagttc	ctgggggttc	agcttcatcc	tacagacagc	agcacacact	ggctgtgcac	52860
ccttttttt	tttttttt	tttttttga	gatggagtct	cgctttttc	gcgcaggctg	52920
aagtgcagtg	gtgtgatctt	ggctcactgc	aacctctacc	tcctgggttc	aagtgatttt	52980

cctgcctcac	cctcccaagt	agctgggatt	acaggeteee	accaccacgc	ccggctaatt	53040
tttgtatttt	cagtagagat	ggtgtttcac	catgttggcc	aggatggtct	tgaactcctg	53100
acctcaggtg	atccgcccac	ctcagcctcc	caaagtgcag	ggattacagg	cgtgagccac	53160
cacacccgga	gtgccggttg	tttttagcag	tttgtcttgt	tcctggagag	actggctcct	53220
gcccaggagc	tcggggagta	gggccgcggg	gtgctgcctc	acacctcgag	tttggccgta	53280
agcagagggg	acattttgtg	actgtccccc	tcctgagctt	cccagcagct	tttctccaag	53340
ttacagccca	aaagctcagg	tggatttgca	acccaacggt	gtctgtgcac	ctcccactga	53400
tgcccgaact	gccctggcca	agaaacgggg	ccgtcagaac	gctgcactaa	ctgcagcctt	53460
gggcctccat	gccagaggcc	atgcccttcc	atccaccacc	ccctggcctg	ggccctggcc	53520
ctcctggctc	gggaactcca	ggccccttcc	tcacggatcg	agagacgtgt	atttaccgca	53580
caggtgcttg	tcattctctt	gtggcctctt	ctccagggag	atcacagaag	gacagggcct	53640
cactgaggtc	tcggacatgg	accctttgat	agtggcagga	gccaggctgg	gcaagaggcg	53700
gccacagtca	cctcagcagt	gccatcacca	ccgccattca	gcccttccct	gagccgggcg	53760
cgcccctggc	tctggcccca	gtgtcccagt	tacagctcac	aggagcttgt	ggtgcccagc	53820
ggctgcttct	gattgagagt	cgaggtcgga	ggctttggga	ggctgagagg	ctgctcggtt	53880
tcacaactgc	tgagggagac	ttgggctcca	tctcaggtct	gccccatgtc	gccctcaacc	53940
tccagccacc	ggtcctccgt	gtcccccatg	gccaggcacg	gcttgcagac	atctgtcgtt	54000
ggctcctctc	agccgtcgtg	ggctgaccct	ggcacgtcct	cctgtggctg	agcccagtgg	54060
ggacagetge	ttccttttat	taccctagaa	ctctcgtctt	tgatcaggcc	ccctccccta	54120
tgccacacag	tccctgtcac	tcgggtgagc	ccagtagtca	tggggaaggc	ctgcgggttc	54180
caaacatcca	aaggettgeg	tgcagcatga	cagcttgaaa	ccgatgtttt	ttaccttgat	54240
cagatttcag	cttggcgggg	gctttgctca	gctttcagtg	aggcctgggc	cgatttccca	54300
gcatcccctc	ctgaggccag	cctctgtttc	ctgtgatttt	ctgcacaaag	tgggagggag	54360
gagtcttagg	aaatgggggg	ccacctcgaa	acctaggcct	cctctggctt	ctctgtgcca	54420
gtgcccccac	gctttgtgtc	tgtgtcccca	gcccatggga	ctgtgttatt	ccctgagtgc	54480
tgccgcatgc	ccagcccgca	ctgaggacgt	ggagccccga	ggggcaggat	ggcctccatg	54540
gtcacacgta	ggaagtggcc	tccaccctcc	gatgatecte	tcccccctc	cctttcagcg	54600

ccttccccgg	gggtgtcatc	agccctcctg	cctgtgcttt	gtcccgtctt	ctgcaggcgc	54660
atgggacgtg	ctgacaggtc	ctctgccggg	ttcctgcctt	gctatgcgca	cgctggtcac	54720
cacagaggcc	tggcccttct	tctgtagcag	tcccacaccc	gcaacaggtg	tggctgctga	54780
ccacctgctt	tctgcccctc	tggtcctgag	gagggcgcag	tgggcactca	. ggcgtggctg	54840
agcagatgtg	tgttgccggg	aggaggaagg	actgctccag	tcagggctga	atttcccacc	54900
cggagcattt	ctgctgtatt	tggtgtagcg	cctgctgctt	aaagctctga	ttcccagttg	54960
gcaccctttc	ccttctgcat	tgaaaaacat	acggatgcat	gtcttcttgc	agtgaatgtg	55020
tattctccca	gcctctcttc	tgggttgggg	ctggaggtgg	agcggcacac	aggagccgca	55080
gcgatggagg	atgtgcgggt	gcagcacccc	gtacagcagg	gatgccaaac	ccgcgctgag	55140
tccctctcaa	cttctgcttt	gaagcccagt	cacgccattg	cctgggtttt	getgggeggg	55200
gctgcatgtg	atgttctcct	ctgtccctcc	cccagagccg	cccacctgct	ccccggacca	55260
gtttgcatgt	gccacagggg	agatcgactg	tatccccggg	gcctggcgct	gtgacggctt	55320
tcccgagtgc	gatgaccaga	gcgacgagga	gggctgcccc	gtgtgctccg	ccgcccagtt	55380
cccctgcgcg	cggggtcagt	gtgtggacct	gcgcctgcgc	tgcgacggcg	aggcagactg	55440
tcaggaccgc	tcagacgagg	tggactgtga	cggtgaggcc	ctccccgtca	aggetetgee	55500
aagaccctgg	ccctgccctc	cgggatacga	gcttggggct	gcctccggcc	tcacaggagt	55560
aggggctctg	aaaacctttg	cttgcaggga	gattgccaag	tctgtctttt	aggcccaaca	55620
aggaaaactc	tgcagttcca	cccatcctgt	cccaccaggt	agtgtggctt	gaaggcagac	55680
tgtgagggtc	tatctcacct	tcctgcatta	ggtcaggagt	ttcacagaaa	cctgaggcac	55740
attcaggggt	gggctgcaga	ggtccatggc	tcacaccctg	gaaaatccgc	ccccaaaaga	55800
cagtgctgtc	tccactgacc	agtctgtggg	atagtgctta	agcctgagtg	gtttctatca	55860
acatgtagaa	tcaggaggta	taaagagatt	tgctcaggca	teetgggeee	tctctgacca	55920
gcaggatctt	cctttagatc	ttgacagtga	aacacatctc	ttctgtgccc	cctgtgagtt	55980
ttctttcatt	cattcattca	ttcattcatt	cattcattca	ttcgagacag	agtcttgctc	56040
tgtcacccag	gctggagtgc	cctggtgtaa	tctcggctca	ctgcaacctc	tgcctccagg	56100
gttcaatcga	ttctcctgcc	tcagcctccc	gagtagctgg	gatgacaggt	gcgcaccacc	56160
atgcctggct	aatttttgta	tttttagtag	agacagggtt	tcaccatgtt	ggccaggctg	56220

atataanaat	aatasaatas	aataataa				5.5000
gccccgaacc	cccgacccca	ggtgateege	cegeeteage	ctcccaaagt	getgggatta	56280
caggcatgag	ccaccgcgcc	cggcctgagt	tttcctttta	tgaaggacct	gcttggttgg	56340
ttgcctgcca	catgttgtca	gcaccatggg	cccaggactg	ctgaggagct	gttgatgccc	56400
tegetetece	agagccaccg	gctctgttag	ataattcaca	tgcagtctgg	ccactgtcct	56460
acgtcctcat	tcacaaagag	cagacatttc	gtagaagatg	agggcctggg	agtaacctcc	56520
ctgcatgttt	ttctataaag	gcatagtggt	taagtccttc	cagctcattg	accattggag	56580
aattttatgg	aggctgtaga	ctaggggctg	gtaaactaag	ggcccagggg	ccaaatccag	56640
cctgccacct	acttttgtaa	ataaagtttt	cttggtgcac	agccatgccc	attcattcat ·	56700
ttgcacaatg	tctgtggctg	ctttcatgcc	aaaagcagga	gaactgagtg	gttatgctgg	56760
agacctacgg	ccttcaaagc	cccagacete	acgtctggcc	cttgacagac	agagcttccc	56820
cagccctgct	gcgcatcctg	gcccagcatg	tgctgtgtgt	gtgatttcag	cttgcaggag	56880
ccgtggttag	gaattgtccc	tgtgttggtc	cattttgcat	tgctatgaag	gagcacctga	56940
ggccgggtag	attatgaagg	aaagaggtct	gtctggctca	tggttctgta	ggcagcacca	57000
gtatggcacc	cgcatctgct	cagcttctag	tgaggtctca	ggaagctttg	actcatggtg	57060
gaagtcgaag	cgggagcagg	tgcatcacat	ggtgagagag	ggagcaacgg	agagagag	57120
agagagag	agagcgcctc	tecetettge	cctcaccttg	agaggagatg	ccaggctcct	57180
ttaagtaacc	agctcccatg	tgaactcaca	gtgagageee	atttgctact	gcggagaggg	57240
caccaggcat	ctgctcccat	gacccaaaca	ctgcccacca	ggccctacct	ccaaccttgg	57300
ggtcatattt	tattctgttc	tatgctatgc	tatgctatgc	catgccatgc	catgccatgc	57360
tattcctatt	ctattatttg	agacagaatc	tegetetgtt	gcccaggctg	gagtgcagtg	57420
gcatgatctt	ggctcactgc	aacctccacc	tcccaggttc	aagcgattct	cctgcctcag	57480
cctcccgagt	agctgggatt	acaggcacac	accaccacac	ccgggtaatt	tttgtatttt	57540
caatagagat	ggggtttcac	catgttggcc	aggetggtet	caaactcctg	gcctcaagtg	57600
atccacttac	ctcggcctcc	caaagtgcca	tgattacaga	tgtgagtcac	tgcgcccagt	57660
gagggtcaca	tttccgttga	gatttggagg	ggcagacgtt	ggagccatct	gagccccctc	57720
gtcccgctct	agetteteet	cccgtgtgcc	ccgcggtgct	ggtggcaggc	ccttacgccg	57780
gttctggctg	cacgctctgt	tccagaagct	ttcttccctg	cttggttacc	agaaaatcat	57840

cccatccatt	acaaggacag	ggtcccctta	tctcccattc	ccagggcagg	acaccggggg	57900
cagggcaggt	ggggaactga	gcaagttctc	tgggggcagg	cgtggctatg	gctccctctg	57960
ggtgggcgtc	tggggagggg	tggaggcagc	cgtcagcgcc	ctggcttgct	cttcctccct	58020
ggccagagac	tgtggccttg	tgctgctccc	gtgtgggctg	cctgcacctc	cagtgggttg	58080
tgctccctcc	cctcccctcc	cctcaagctc	tgctgagcac	cactgccttc	cacagecece	58140
actctcggga	ggcgaggctc	ctcgtggcca	ttcctgtcct	tggcacccac	cccccacca	58200
acctggtaga	gccttgggcg	gggtctgtta	ctccttgcat	ggcgtagacc	tecccacagt	58260
aggcacctga	cacatacctc	ctggggggca	ggcaggaggt	gcgttgaggt	ctcagccctg	58320
gcagtccctc	ccctgcgtgg	cataggcctc	gccacagggt	catcgagggt	gggtggagac	58380
tgtactagac	cactccccgc	tggtcctaga	aagggtccca	tctgtctgct	ctctgtttgg	58440
agtccagacc	ttggttgctg	tgccctgcat	ggtgggctgg	ggggcaccct	ccagcctctc	58500
tgagtgcatg	gcctctcctt	gcagccatct	gcctgcccaa	ccagttccgg	tgtgcgagcg	58560
gccagtgtgt	cctcatcaaa	cagcagtgcg	actccttccc	cgactgtatc	gacggctccg	58620
acgagctcat	gtgtggtgag	ccagcttctg	gcacggggaa	ggggcgtccg	ggctgggttc	58680
ccccaggaac	gtggagttta	ggggaggaga	cgtgcctttc	cagcggggct	gggggctgtg	58740
tgggagactc	aggeggetgg	gaggeteett	gcgggaggca	gggaagcctt	tcccagggca	58800
gcggccagga	ggacagactg	tgagctgtgg	gctcggcggc	tacagagtct	gcctcagtgg	58860
gcggggctga.	tggtgtccag	gtgcctgcag	cacgcaccca	cccacgggac	cttgctgagc	58920
agcgtctgtc	aggcagcaag	attacccgag	ggctgcagtg	gtcctgttcc	ctggcagctt	58980
actgtctggc	tgaggaggag	tgatgttcac	atatgcacac	atgtcatgtg	cacacacatg	59040
tacatgacaa	catcccacat	gctcctcaaa	tagcatgacc	tgtacagtca	cggatatagg	59100
gcctagggga						59160
				taggaagtag	•	59220
				cctgggctga		59280
				agggggette		59340
				aggcctgaag		59400
gggccaccaa	gggtcgcctc	ctctgctggg	caagttccca	gtctgacggg	cctgtgccgt	59460

gggccccagc	tgtgggggcg	ctgttgatgc	gcagccaggc	ctcgccgcca	gagcccgcac	59520
gcttccattc	cgctgacttc	atcgacgccc	tcaggatcgc	tgggccggcc	ctgtgggaga	59580
gtgaatgtgg	cttttgccaa	agttgagtct	ggagcctgga	aacttcccta	tgggcagcct	59640
tgatagtgga	gtggcccaag	gagcccaccc	agccgaccct	gcccctcccg	tggctggtgg	59700
gcggcaccag	gggctgcctg	gctttgctcg	ttcaccaaca	tcacccgggc	tggccagggc	59760
gcgctcactt	ctgccaccac	cgagggccct	gggcgaagga	gtgaatacca	ggctgccttg	59820
gcagggatgt	gttgagggct	gtggggagtc	ggacagcggc	gggggtcaga	ggaggaggag	59880
ggtgcaccgt	gcaggctgaa	gggccacgtt	accctgaggt	tggccaggct	ccccaggcct	59940
agcctcccag	ctccccact	ttctccccac	cctccaccag	tggcaaagcc	agccccttca	. 60000
gggcgcacgg	tgtctgcccc	caaggagggc	ccattccgtt	ggggttàatg	ttggccacct	60060
ctttctgttt	gtctctggca	gaaatcacca	agccgccctc	agacgacagc	ccggcccaca	60120
gcagtgccat	cgggcccgtc	attggcatca	tcctctctct	cttcgtcatg	ggtggtgtct	60180
attttgtgtg	ccagcgcgtg	gtgtgccagc	gctatgcggg	ggccaacggg	cccttcccgc	60240
acgagtatgt	cagcgggacc	ccgcacgtgc	ccctcaattt	catageceeg	ggcggttccc	60300
agcatggccc	cttcacaggt	aaggagcctg	agatatggaa	tgatctggag	gaggcaggag	60360
agtagtctgg	gcagctttgg	ggagtggagc	agggatgtgc	taccccaggc	cctcttgcac	60420
atgtggcaga	cattgctaat	cgatcacagc	attcagcctt	tcccactgag	cctgtgcttg	60480
gcatcagaat	ccttcaacac	agaggcctgc	atggctgtag	caacccaccc	tttggcactg	60540
taggtgtgga	gaaagctcct	tggacttgac	cttcatattc	tagtaggaca	tgtgctgtgt	60600
tgtccacaaa	tcctcatgta	ccctagaaat	gaatgtgggg	gcggctgggc	tctctccaga	60660
gctgaaggaa	tcactctgta	ccatacagca	gctttgtctt	gagtgcagct	gggatttgtg	60720
gctgagcagt	tacaattcct	acgtggccca	ggcaccagga	acgcaggctg	tgtttgtaga	60780
tggctgggca	gccgcaccgc	agagctgcac	catgctggtt	tgtatcacat	gggtgaccat	60840
ggtatgtcta	agaaggtgga	gtccctgtga	ggtctgcagg	tgcccccaca	gctccaggcc	60900
	ttgcctctgc			•		60960
tgtcacccca	agccggcctc	attgggagcc	tgttggatgg	cagggtatag	atgtaacctg	61020
attctctctg	gggagcgggg	ttatctggct	tctcaagagc	tcctaggagc	ccacagtggt	61080

ggcaccatca	cagtcgcagc	agcccccaga	gaacgcggcc	ctgtctgttc	ctggcgtgct	61140
ctgtgctgcc	ccgcctgggt	tecetgeece	agtcgcaggc	cccttggagg	aggtaccatg	61200
tgtctcccgt	ttcacagatg	agccccgggg	agctcactct	agtagtggcc	agagaggcct	61260
gcggctcagg	gagcggggca	catttccaac	aggacacacc	gccctggtct	gagtctcgtg	61320
ggtagtggga	gcagaggaga	gcgccctatg	tctgtggggc	ggcttggctg	agcctggaag	61380
ccacctgacc	teccegtee	cttccctgcc	aggcatcgca	tgcggaaagt	ccatgatgag	61440
ctccgtgagc	ctgatggggg	gccggggcgg	ggtgcccctc	tacgaccgga	accacgtcac	61500
aggggcctcg	tccagcagct	cgtccagcac	gaaggccacg	ctgtacccgc	cggtgagggg	61560
cggggccggg	gaggggcggg	gcgggatggg	gctgtgggcc	cctcccaccg	tcagțgctgg	61620
ccaccggagg	cttcccgggt	tcctgggggc	tgtgccaccg	cctctgaggc	atġcttgctt	61680
tcttcccttt	tcaaaccctt	ctgcttcctt	ctttaatgac	attgttgatt	gtggataatc	61740
tgaaaactac	acaaaaatat	aaagagccaa	aatctcaccc	aaatccacct	cctagagtgg	61800
ctgttgggct	ccgtcagcat	ccaggcggcc	gtctgtgttc	cgcacggccc	agcccatcga	61860
tageegeetg	caccaggcct	gtctgccctc	tgtgagcctc	cccacagggt	tecetecaca	61920
aacaccctgt	teteccaece	agggctggct	gcttcctgga	aaacagctgg	atggttttgt	61980
gcatgacaga	caaacacagg	gtgattttcg	tggctaaaat	actccctgga	gcttttggca	62040
gggtgagggg	ctggctccag	ctgagccacg	ccttgagtga	aatgactgtg	aggagaataa	62100
actgccgctg	ccctccagga	tcactggggc	tggctgggga	gaacccccgt	ttctgggagc	62160
acagtcccag	gatgccaagg	cgagcttggt	gccgagatgt	gaactcctga	gtgtaaacag	62220
cgggggctga	cttgacatgc	tttgtatgct	tttcatttgt	tcctgcagct	gtatgcccct	62280
aaggtgagtc	cagccccctt	ctgcttcctc	tggggcctcg	ccagtgagcc	ccaccttgct	62340
ggggctggtt	cctcctgccc	ttctgggtat	ccctcacatc	tggggtcttg	tcttcttgtt	62400
ttatttttct	ttttttttg	agacggagtt	tcacttttgt	tgcccaggct	tcagtgcaat	62460
ggtgtgatct	ctaggctcac	cgcaacctct	gcctcccagg	ttcaagcagt	tctcctgcct	62520
cagcctccct	agtagctggg	attacaggca	tgtgccacca	cgcccagcta	attttgtatt	62580
tttagtagag	atggggtttc	tccatgttgg	tcaggctgat	cttgaactcc	ctacctcagg	62640
tgatccgccc	accttggcct	cccaaagtgc	tgggattaca	ggcgtgagcc	accgcacctg	62700

					•	
gcctttttct	tttcttttct	tttcttttt	ctgagacagg	gtctcgctct	gtcacccagg	62760
ctggagtgca	atggtgtcat	catggctaac	tgcagcctct	accttctagg	ctcaagcaat	62820
cctcccatct	cagcccctaa	gtagctagga	ctgcacgcat	gcatccccat	gcccagctaa	62880
tatttacatt	ttttgtagag	atgaagtttc	actatattgc	ccaggctggt	ctccaactcc	62940
tggactcgag	cgatcctcct	gcctcggcct	ccccaggtgc	tgggattaca	ggcgtgagcc	63000
accgtgcctg	gcctggggta	ttgtcttctt	atggcacctg	actgtggtgg	gccctgggaa	63060
ggaagtagca	gaagagggtt	cttcttggtt	tcctggacag	taactgagtg	ttctggaggc	63120
cccagggcct	ggctttgttt	agggacaaag	ggaactggta	accagaagcc	gagagtttaa	63180
acacccactg	cccttcttcc	ctgctcctgc	tgctgcaacc	cagcttaacc	agccaggagt	63240
gctaggaacc	caagcagggc	ccccgagcac	acagcaggca	gctcacgaat	tctcttttcc	63300
tgttctccct	tgggagctgg	gaggatctta	atcaggcaat	aagagatggc	actgagcagc	63360
cagctaattt	tttaaatcac	tttattgttt	aaccatatga	ctcacccact	taaaaaaggg	63420
tacagttcag	tgggttttag	tgtattcaca	gatgtgtgca	accctcacca	cagttaattt	63480
tagaacattt	tcctgcccct	aaaagaaact	ctgcatgaag	ccagctgttt	ttaaattagc	63540
aaagttattt	tgcatccttt	aaatatatgt	tcatggtaca	aaattcaaaa	gatacagaag	63600
agtctgcagt	ccaaagagac	tccgcccca	tgacgccaag	caggactccc	tgggaggcat	63660
ggcctcctgc	agtgtgtttc	ttctatgtcc	ccccaggggt	catctgtaca	tatgcaagca	63720
tacaagagcg ,	tggactttgt	tttccaagcc	agaagataat	tgtagattta	tgtgcagttg	63780
tgagaaagag	cacagaccca	tttatcctct	gcctggtttc	ccccagtgct	gcctgccatc	63840
ttgcatgact	tccattccta	tcataagcaa	gacactgata	acgattcttt	caccttattc	63900
agattgacat	aagtgttttt	tgtttgttct	tgagacaaac	ttcctctgtc	acccagtggg	63960
agtgcagtgg	cacaatcaca	gctcactgca	gcctcaaact	cctgggctca	agcgattctc	64020
ctgcctcagt	cccctcaagt	agctcagatg	gcaggtgtgc	accatcatgc	caggctaatt	64080
tttaaatttt	ttgtggaggt	gaggcctcac	taaatttcct	gggctagtct	tgaactcctg	64140
agctaaagtg	atcctcctgc	ctcagcctcc	caaagtggta	ggattacagg	catgagccac	64200
tgcgcctggg	ctgacatatg	tgttttcgta	agcccgaaag	atagcatctg	aagagtcaac	64260
attgagcctt	gccttttgct	gctaatgatg	tataaaagct	gctgttctga	gcatttcgga	64320

ggeteecage tgeegtgtge accetgeeta gagetetace gtaacceate teegggagga	64380
ggtgctattg ttttcctcat tttgcaacaa ggaggctgaa gaactgagca tgaaccactg	64440
gcctgggtcg ttcggttggt aggcagtggg gccaggccat ccaactcaca accaccttct	64500
actotgotto cocogoacco tgaagtttgt totgttttga ggacacagco gtcacattct	64560
tggtggctga acagcactec ttgtcaggtg tggctgggcc cccactggag ggcatcatgg	64620
tectetetee tgetgeggtt gaacettgge tgtttcaace actectgeca agtggeeete	64680
tgaaagggac agtccatctt ttctcagcag agggccacac tggcaaaacg gtccctggca	64740
ccctttctct ccacctgtct aatatagagt aaaaatggta tcatgttaag atcttcattt	64800
atatttattt tatcatgaat gatgtaagca tcattttgtg tgtttaagaa cctttgggcc	64860
cagcgtgatg gcttgcagct gtaatctcag cactttagga ggctgagatg agcggatcac	64920
ttgaggccgg gagtttgaga ccagcctggc caacatggag aaaccccgtc tctagtaaaa	64980
atttaaaaat tagccgggta tggtgatccc agctacttgg gagtctgaag catgagaatt	65040
gettgaacat gggaggegga ggttgeagtg ageegagate gegeeattge acteeageet	65100
gggcgacaga gcgagactct gtctcacaaa aaaaaaaaaa	65160
tcaatctcct cttttatggc atatatatat atatatat atatatat ttattccct	65220
ttcttggtta tgttcataaa ggcctcccct gctctgatca taaaaaacaa cttatttca	65280
cactetetet ettttttt tgagacagag ttttgeteet gttgeecagg etggagtgea	65340
gtggcgcaat ctcagctcac tgtaacctcc gcctcccggg ttggagtgat tctcctgcct	65400
taccttcccg agtagctggg attataggca tgcaccacca tgcctggcta attttgtact	65460
tttagtagag acgggggttt ctccatgttg gtcaggctgg tctcgaactc gcgacctcag	65520
gtgatccace caccteggee teccaaagtg etgggattac agacgtgage caccatgece	65580
agcccacact ctctttctta acgtcctcct cctttcgttt tacgttcaca tctttaattc	65640
ttctgggatg taattagatt tgatgagcaa ggtgggcatc cagcttgttt cttggctgat	65700
ggettatggg tggegtgaat tagteggggt etateaggag geagaaacte tatgagaatt	65760
tgaacagaga aagtteegte tacaggetta ttaccaggga etggaatage agaaattgaa	65820
cagtgagatg tacagagaac tetaagaatg caggaatagg ccaggcatgg tggctcacac	65880
ctgtcatccc agcactttgg gagaccaagg cgggtggatc acctgaggtc aggagttcga	65940

gaccagcctg	gccaacatag	tgaaacccca	tctctactaa	aaatacaaaa	aaattagctg	66000
ggtgtggtgg	cgcatgcctg	taatcccagc	ttctcgggag	tctgaggctg	gagaatcact	66060
tgaacctggg	aggcagaggt	tgtagtgagc	cgagatcatg	ccattgtact	ccagcctggg	66120
caacaagagc	gagactcagt	caaaacaaca	acaacgcagg	aatagcagat	gagccgaggt	66180
ggggcctccc	cagcccccac	ccccacccc	gcaccctggg	ccgagatcca	gtcctctttg	66240
aatagggcct	gggcgtggtt	cacgggacat	ctgagacatt	gccgaggcgc	tgcactggtg	66300
gatcttgcca	gaagtctgcc	cagtgcagat	ttgggcagaa	tctcaaactg	ccttgggatg	66360
taggagagaa	accaggcctg	gtcaagttca	tgggaagagg	tggaaacaga	ccccataggc	66420
tggggcttgg	gcagctgtag	gaagccctct	ctgctgcctc	cctgcctgct	ctctgctttg	66480
aagcatcttc	cccagtgccc	ccagtctcat	gccctctcaa	cgttggggtc	aaatcctgag	66540
gaatacccag	actggctctc	tgggccaaag	aggaccctct	ccagaaagag	cagggcccag	66600
tgcggcttcc	taaagggcag	gggaagggcc	tggccactcc	ccagaggcta	ctcaccagec	66660
atcaggatag	ccccaggaag	caggccttct	cgagcccatt	ttattacttt	attttattat	66720
tttatttaat	tttaaattta	ttttttgaga	cagagtctca	ctctgttgcc	caggctggag	66780
tgcagtggtg	cgatctcaac	ccactgcagc	ctctgcctcc	agggttcaag	ggattctccc	66840
acctcagcct	cccaagtagc	tgggattaca	ggtgcccgcc	accacacccg	gctaattttc	66900
atatttttag	tagagacgag	gttțcaccat	gttggccagg	ctggtctcga	actcctgacc	66960
tcaagtgatc	cgcccgcctc	ggcctcccaa	agtgctaggt	caagcccatt	ttaaagttga	67020
agaaactgag	gctgaggtaa	attccctccc	cagggatcct	gctgcagcca	gaaggtggta	67080
aaacaggact	tcacccgggt	ctgtctggcg	tgaaaggcag	tgttcttgta	ccaccctagg	67140
gggcctgaga	gaactgagtc	cctcgggcat	aactgacagt	tctgttccca	ttattccgca	67200
ggggctcgga	tctggctgta	tgctttccag	gatggccttg	gagacccaca	taagccctac	67260
accctttggg	aagctgcatg	ttgggttggg	gtgccgtcag	tggcacttgt	ggaaggtgca	67320
gacctgtgtg	ggtgtgtggg	cccagggccc	ctggtccctt	cctccctttg	tagggctggt	67380
tgtgtgctgc	ctggacctgg	ggggcacgtt	cacgtggtga	atttgtctat	ttactatccc	67440
cgctttgggg	ctggtgccag	cacaggccct	tgtgaagggg	gtgcctttgt	ctggagtggg	67500
actgtggccc	ctccctcagc	gtggtgactt	ctgtgtcagg	gcttcagcag	ggacgcagag	67560

cccctgagtg	ttcggaacaa	gggcgtcatt	gcaggagtta	gactgtgtgt	gatggaggga	67620
ggaggggcag	gaggaaaggt	cagaaggaga	gttcctggga	aggtccctga	ggagcctggt	67680
gaggtgctaa	ctggtgtgga	ggacactcag	ggcctgtggg	gacatctcct	actgctgggg	67740
gccagccaca	aagggaactg	gccgaagtcc	tgtccccgcc	ttcacagccc	agcatctggt	67800
cacaaggcag	gtacttggaa	gggcgcgggc	acctgggcca	aaagtgcctg	ggttcccttt	67860
gcctttcact	gagatgacct	tcggggcagg	tggctgctgc	ctccctcct	gtccccaggt	67920
tttgccaact	ggccagagga	aggggtcctg	ggaagcaggg	gggccagaag	ccctctctgc	67980
aaggaaagcc	cgaggggtgt	gggaggaagg	aaggaatgcc	caggctggcg	aggctctaag	68040
tcaccctggc	ttggctctcc	tcagatcctg	aacccgccgc	cctccccggc	cacggacccc	68100
tccctgtaca	acatggacat	gttctactct	tcaaacattc	cggccactgc	gagaccgtac	68160
aggtaggaca	teceetgeag	ccctccatgg	ccattgggtt	cccgccagcc	cgtggtggag	. 68220
gggcctaatc	cccatgccac	tgatgagggg	aggtattctg	ggtgctagtg	ggcaggtgcc	68280
gggcccagcc	ctgcctccct	ctgctctgcc	aaccacacta	ggctgcctcc	ccagacaagc	68340
tcagcgggca	ctgcatgttg	ggttcagaaa	tcagcagaac	tccacgttct	gagctgctct	68400
tcaagttgct	cctatggggg	ttacttttaa	gctgggaaat	ggctgtggcg	tcgaggggcc	68460
gggggcttgg	gctccaaact	ctgactgtgt	gtttgagtcc	ggctgtggaa	acctagccat	68520
tgagatgccc	cctcttggtg	gctctgtcct	cttaggatgg	gacaagtctg	tgaaggctgc	68580
tgcagcaccc	accgtagacc	cctaatcgtg	tgacgtcacc	aggatggtcc	gggctgctca	68640
cttgccacag	tggcctgttt	gagcccggga	agccaacggg	gctgctcagc	tggacaccag	68700
cccccgagc	tgcccatgtt	ggggtcacag	gccccacctc	cctggttggg	gaggggcaac	68760
tgagagtgtg	gagaggtggg	acccaggtgt	gctggtctcc	gcaggggctg	gatcagagcc	68820
tgggatgggc	agggtgagee	tcctgacctt	taacccagtg	gtgtcaggca	acgtggccca ·	68880
cccgccagec	gcaccaggcc	ccacccccgc	aggtgaaggg	gtgggatagg	ctgggcctgg	68940
gccaggacac	ctctggacca	cgcattcctc	attgcttggg	tccctggagc	agcagggcct	69000
cccgagtgtg	gtgccgcctg	ccacctagtg	gccatttcca	cgaactccca	ggcctggctg	69060
gggagccgga	actgcagcct	ccatttccac	cccactccgg	gtcgggccac	ctccctgatg	69120
cctcagtatt	atatcaaact	gtcacagtct	gtcccacagc	cttacagacc	actgtctcca	69180

gaatggtcac	atccacactg	ggcagcccag	tctcgctagt	tcctcgtccc	acctcctgcc	69240
tttgctcatg	cccgtcctgc	tctgggccca	ccgcggacac	atcttcccc	cgcccgccgt	69300
ctgacctcac	agcagctggg	ccccaagagg	agtatcctgt	cctgctgcac	ttttctcaac	69360
acccggtgtt	ggctgcacct	tcccacccat	tgcaggcccc	tctgtgacag	gacgggggct	69420
cctaaacaca	ccacagttcc	gagtctgaac	tcacacagtg	ggatgcggcg	tttctgggcc	69480
acagttgggt	gcaggtagcc	tctgggagga	tgggaggtca	ggagccatct	tgcgagtcag	69540
gttgcttgaa	ctcaggatgg	aagtgttccg	ggcccattgg	ttgctgtatt	agcctgttct	69600
cacgctgcta	ataaagacat	acccaagact	gggtaattgt	aaaggaaaga	ggtttaacgg	69660
actcacagtt	ccacctgcct	ggggtggcct	cacaatcatg	gtagaagaca	aggaggagca	69720
agtcacatct	tacatggctt	cagggaacag	acagcatgag	aaccaagcga	aaggggtttc	69780
cccttgtaaa	accatcaagt	ctagtgagat	ttattcacta	ccacgagaac	agtatggggg	69840
gaaccacccc	catgattcaa	tcatctccca	ctgggtccct	cccacagcac	gtgggaatta	69900
tgggagtaca	attcaagatg	agatttgggt	ggggacacag	ccaaacccta	tcggttgcca	69960
acatttacag	taacagtgtt	aggtgaacag	ttgtccagtc	tcctgttttg	tcggacactg	70020
tttctagcac	cttccaggca	gaatctcatg	tatccttcac	tttcgaaatg	ggtactattt	70080
catecccact	tttatcaatg	agaaactaaa	gctcgaagag	gtcaagtaag	ttcctggcca	70140
aggtcagcta	gcaggctcta	gaggcctcgt	tctccttaga	ggcagccttg	ccagggccca	70200
ggcttggcag	gctgcagggc	aggtgcgggc	atgcccatgg	tagaggtggg	accattgagg	70260
ctcagagagg	gtaagtgatg	agccctggcg	acacageggg	gtgggtccag	agtccggcct	70320
gcatcttctg	gagctggcca	gtggacaggc	ctttcccgtt	cacageeeeg	gggctgctgt	70380
gcccaccagg	gcggatgtgc	ctaccgaatc	ccactcctct	gtgtgtgtcc	ctttcaggcc	70440
ctacatcatt	cgaggaatgg	cgcccccgac	gacgccctgc	agcaccgacg ·	tgtgtgacag	70500
cgactacagc	gccagccgct _.	ggaaggccag	caagtactac	ctggatttga	actcggactc	70560
agacccctat	ccacccccac	ccacgcccca	cagccagtac	ctgtcggcgg	aggacagctg	70620
cccgccctcg	cccgccaccg	agaggagcta	cttccatctc	ttcccgcccc	ctccgtcccc	70680
ctgcacggac	tcatcctgac	ctcggccggg	ccactctggc	ttctctgtgc	ccctgtaaat	70740
agttttaaat	atgaacaaag	aaaaaaatat	attttatgat	ttaaaaaata	aatataattg	70800

ggattttaaa	aacatgagaa	atgtgaactg	tgatggggtg	ggcagggctg	ggagaacttt	70860
gtacagtgga	gaaatattta	taaacttaat	tttgtaaaac	agaactgcca	ttcttttgtg	70920
ccctgtgtgc	atttgagttg	tgtgtccccg	tggagggaat	gccgaccccc	ggaccaccat	70980
gagagtcctc	ctgcacccgg	gcgtecctct	gteeggetee	tgcagggaag	ggctggggcc	71040
ttgggcagag	gtggatatct	cccctgggat	gcatccctga	gctgcaggcc	gggccggctt	71100
tatgtgcgtg	tggcctgtgc	cgtcagaaag	ggccctgggc	ttcatcacgc	tgttgctgtt	71160
cgtcttcctc	agattcttag	tctttttt	tttttttt	ttttgagacg	gagtctttct	71220
ctgtcatcca	ggctggagtg	cagtggtaca	atctcagctc	actgcaagct	ccgactccca	71280
ggttcaagtg	agtctcctgc	ctcagcctcc	cgagtagctg	ggactacagg	tgcgcgccac.	71340
cacacccgcc	cagctaattt	ttgtattttt	agtagagatg	gggtttcacc	atgttggcca	71400
ggatgatctc	gatctcttga	cctcgtgatc	cgcccacctc	ggcctcccaa	agtgctggga	71460
ttataggcat	gagccactgt	acccagctga	ctcttagtca	cttttaagaa	ggggactgtg	71520
ccttcatttt	tcactgggcc	ctgcagaata	tatgcctggg	ctctgggctc	ttctgaacct	71580
gtgttggctt	ccatctgacc	tctctgtgcc	agcccaaggc	tgctgctctt	cctgagggca	71640
aggagcccca	tgactgcgtg	ttgactcgct	ggatggggct	gctgagccca	ctctgccaca	71700
ccacgtgccc	ctggcaggga	gggaatccct	gggtcctcac	aggaacagtc	agcaagccac	71760
acctgacgcc	tgctgtgggc	ccatccctgc	ggtgctggag	aagacagaca	aggcctggtc	71820
actgcctctg	cagggtcccc	agtccgtgga	aggagacagt	aatctaggca	ttttcggtgg	71880
ggaagctgag	ctgttctcgt	gtcctgaagg	ccaggcggga	acagccgtct	tcagagggaa	71940
gggagaaaat	gcacatcgca	tcagtggaga	agggcctgac	ttccctcagc	atggtggagg	72000
gaggtcagaa	aacagtcaag	cttgagtatt	ctatagtgtc	acctaaata		72049

<210> 10

<211> 8705

<212> DNA

<213> Homo sapiens

<400> 10

ggactcaggg	gcagcaggga	ggtacaccca	tggttagtgg	gcggaccata	gggggtaatg	60
agagggtgaa	tcgatggaac	ctgggggaca	caatcgaagt	ggttccagag	tcgggctgta	120
ctaattaaag	agacggggca	gtggacaggc	attttcagtt	gactgcccag	ggagtgttct	180
gcccaacagg	gaggatatgc	gtacagaatc	atactcgatc	agcatgagtc	caattcagac	240
cgtacatcag	tggagatatg	ggtcccccga	tgactccgtg	gaacactgat	gtttgtgaca	300
ggggagtaca	gcaccagcca	tcagcaggcc	agtaaatcat	accggcctgc	gaaattggac	360
tcagacccgg	atccaccctg	accgacgtcc	caagccccca	cccccaccc	cccaccatgg	420
gccgagatcc	agtcctcttt	gaatagggcc	tggccgtggt	tcacgggaca	tctgagacat	480
tgccgaggcg	ctgcattggt	ggatcttgcc	agaagtttgc	ccagtgcaga	tttgggcaga	540
atctcaaact	gccttgggat	gtaggagaga	aaccaggcct	ggtcaagttc	atgggaagag	600
gtggaaacag	accccatagg	ctggggcttg	ggcagctgta	ggaagccctc	tctgctgcct	660
ccctgcctgc	tctctgcttt	gaagcatctt	ccccagtgcc	cccagtctca	tgccctctca	720
acgttggggt	caaatcctga	ggaataccca	gactggctct	ctgggccaaa	gaggaccctc	780
tccagaaaga	gcagggccca	gtgcggcttc	ctaaagggca	ggggaagggc	ctggccactc	840
cccagaggct	actcaccagc	catcaggata	gccccaggaa	gcaggccttc	tcgagcccat	900
tttattactt	tattttatta	ttttatttaa	ttttaaattt	attttttgag	acagagtete	960
actctgttgc	ccaggctgga	gtgcagtggt	gegateteaa	cccactgcag	cctctgcctc	1020
				ctgggattac		1080
				ggtttcacca		1140
				cggcctccca		1200
				aattccctcc		1260
tgctgcagcc						1320
gtgttcttgt					•	1380
ttctgttccc						1440
ggagacccac						1500
gtggcacttg	tggaaggtgc	agacctgtgt	gggtgtgtgg	gcccagggcc	cctggtccct	1560

teeteeettt gtagggetgg ttgtgtgetg eetggaeetg gggggeaegt teaegtggtg 1620 aatttgtcta tttactatcc ccgctttggg gctggtgcca gcacaggccc ttgtgaaggg 1680 ggtgcctttg tctggagtgg gactgtggcc cctccctcag cgtggtgact tctgtgtcag 1740 ggcttcagca gggacgcaga gcccctgagt gttcggaaca agggcgtcat tgcaggagtt 1800 agactgtgtg tgatggaggg aggaggggca ggaggaaagg tcagaaggag agttcctggg 1860 aaggteeetg aggageetgg tgaggtgeta aetggtgtgg aggaeaetea gggeetgtgg 1920 ggacatetee tactgetggg ggccagecae aaagggaact ggccgaagte etgteeege 1980 cttcacagcc cagcatctgg tcacaaggca ggtacttgga agggcgcggg cacctgggc 2040 aaaagtgcct gggttccctt tgcctttcac tgagatgacc ttcggggcag gtggctgctg 2100 ceteceetee tgteeceagg ttttgecaac tggecagagg aaggggteet gggaagcagg 2160 ggggccagaa gccctctctg caaggaaagc ccgaggggtg tgggaggaag gaaggaatgc 2220 ccaggctggc gaggctctaa gtcaccctgg cttggctctc ctcagatcct gaacccgccg 2280 eceteceegg ccaeggacee etecetgtae aacatggaca tgttetaete tteaaacatt 2340 ccggccactg cgagaccgta caggtaggac atcccctgca gccctccatg gccattgggt 2400 tecegecage eegtggtgga ggggeetaat eeccatgeca etgatgaggg gaggtattet 2460 2520 aggetgeete eccagacaag etcageggge actgeatgtt gggtteagaa atcageagaa 2580 ctccacgttc tgagctgctc ttcaagttgc tcctatgggg gttactttta agctgggaaa 2640 tggctgtggc gtcgaggggc cggggggcttg ggctccagag tctgactgtg tgtttgagtc 2700 cggctgtgga aacctagcca ttgagatgcc ccctcttggt ggctctgtcc tcttaggatg 2760 ggacaagtet gtgaaggetg etgeageace cacegtagae eectaategt gtgaegteae 2820 caggatggtc cgggctgctc acttgccaca gtggcctgtt tgagcccggg aagccaacgg 2880 ggctgctcag ctggacacca gccccccgag ctgcccatgt tggggtcaca ggccccacct 2940 ccctggttgg ggaggggcaa ctgagagtgt ggagaggtgg gacccaggtg tgctggtctc 3000 cgcaggggct ggatcagagc ctgggatggg cagggtgagc ctcctgacct ttaacccagt 3060 ggtgtcaggc aacgtggccc acccgccagc cgcaccaggc cccacccccg caggtgaagg 3120 ggtgggatag gctgggcctg ggccaggaca cctctggacc acgcattcct cattgcttgg 3180

gtccctggag	cagcagggcc	tcccgagtgt	ggtgccgcct	gccacctagt	ggccatttcc	3240
acgaactccc	aggcctggct	ggggagccgg	aactgcagcc	tccatttcca	cccactccg	3300
ggtcgggcca	cctccctgat	gcctcagtat	tatatcaaac	tgtcacagtc	tgtcccacag	3360
ccttacagac	cactgtctcc	agaatggtca	catccacact	gggcagccca	gtctcgctag	3420
ttcctcgtcc	cacctcctgc	ctttgctcat	gcccgtcctg	ctctgggccc	accgcggaca	3480
catcttcccc	eegeeegeeg	tctgacctca	cagcagctgg	gccccaagag	gagtatcctg	3540
tcctgctgca	cttttctcaa	cacccggtgt	tggctgcacc	ttcccaccca	ttgcaggccc	3600
ctctgtgaca	ggacgggggc	tcctaaacac	accacagttc	cgagtctgaa	ctcacacagt	3660
gggatgcggc	gtttctgggc	cacagttggg	tgcaggtagc	ctctgggagg	atgggaggtc	3720
aggagccatc	ttgcgagtca	ggttgcttga	actcaggatg	gaagtgttcc	gggcccattg	3780
gttgctgtat	tagcctgttc	tcacgctgct	aataaagaca	tacccaagac	tgggtaattg	3840
taaaggaaag	aggtttaacg	gactcacagt	tccacctgcc	tggggtggcc	tcacaatcat	3900
ggtagaagac	aaggaggagc	aagtcacatc	ttacatggct	tcagggaaca	gacagcatga	3960
gaaccaagcg	aaaggggttt	ccccttgtaa	aaccatcaag	tctagtgaga	tttattcact	4020
accacgagaa	cagtatgggg	ggaaccaccc	ccatgattca	atcatctccc	actgggtccc	4080
tcccacagca	cgtgggaatt	atgggagtac	aattcaagat	gagatttggg	tggggacaca	4140
gccaaaccct	atcggttgcc	aacatttaca	gtaacagtgt	taggtgaaca	gttgtccagt	4200
ctcctgtttt	gtcggacact	gtttctagca	ccttccaggc	agaatctćat	gtatccttca	4260
ctttcgaaat	gggtactatt	tcatccccac	ttttatcaat	gagaaactaa	agctcgaaga	4320
ggtcaagtaa	gttcctggcc	aaggtcagct	agcaggctct	agaggcctcg	ttctccttag	4380
aggcagcctt	gccagggccc	aggcttggca	ggctgcaggg	caggtgcgģg	catgcccatg	4440
gtagaggtgg	gaccattgag	gctcagagag	ggtaagtgat	gagccctggc	gacacagcgg	4500
ggtgggtcca	gagtccggcc	tgcatcttct	ggagctggcc	agtggacagg	cctttcccgt	4560
tcacagecee	ggggctgctg	tgcccaccag	ggcggatgtg	cctaccgaat	cccactcctc	4620
tgtgtgtgtc	cctttcaggc	cctacatcat	tcgaggaatg	gcgcccccga	cgacgccctg	4680
cagcaccgac	gtgtgtgaca	gcgactacag	cgccagccgc	tggaaggcca	gcaagtacta	4740
cctggatttg	aactcggact	cagaccccta	tccaccccca	cccacgcccc	acagccagta	4800

cctgtcggcg	gaggacagct	gecegecete	gcccgccacc	gagaggagct	acttccatct	4860
cttcccgccc	cctccgtccc	cctgcacgga	ctcatcctga	cctcggccgg	gccactctgg	4920
cttctctgtg	cccctgtaaa	tagttttaaa	tatgaacaaa	gaaaaaaata	tattttatga	4980
tttaaaaaat	aaatataatt	gggattttaa	aaacatgaga	aatgtgaact	gtgatggggt	5040
gggcagggct	gggagaactt	tgtacagtgg	agaaatattt	ataaacttaa	ttttgtaaaa	5100
cagaactgcc	attetttegt	gccctgtgtg	catttgagtt	gtgtgtcccc	gtggagggaa	5160
tgccgacccc	cggaccacca	tgagagtcct	cctgcacccg	ggcgtccctc	tgtccggctc	5220
ctgcagggaa	gggctggggc	cttgggcaga	ggtggatatc	tcccctggga	tgcatccctg	5280
agctgcaggc	cgggccggct	ttatgtgcgt	gtggcctgtg	ccgtcagaaa	gggccctggg	5340
cttcatcacg	ctgttgctgt	tcgtcttcct	cagattctta	gtctttttt	tttttttt	5400
ttttttgaga	cggagtcttt	ctctgtcatc	caggctggag	tgcagtggta	caatctcagc	5460
tcactgcaag	ctccgactcc	caggttcaag	tgagtctcct	gcctcagcct	cccgagtagc	5520
tgggactaca	ggtgcgcgcc	accacacccg	cccagctaat	ttttgtattt	ttagtagaga	5580
tggggtttca	ccatgttggc	caggatgatc	tcgatctctt	gacctcgtga	tccgcccacc	5640
teggeeteee	aaagtgctgg	gattataggc	atgagccact	gtacccagct	gactcttagt	5700
cacttttaag	aaggggactg	tgccttcatt	tttcactggg	ccctgcagaa	tatatgcctg	5760
ggctctgggc	tcttctgaac	ctgtgttggc	ttccatctga	cctctctgtg	ccagcccaag	5820
gctgctgctc	ttcctgaggg	caaggagccc	catgactgcg	tgttgactcg	ctggatgggg	5880
ctgctgagcc	cactctgcca	caccacgtgc	ccctggcagg	gagggaatcc	ctgggtcctc	5940
acaggaacag	tcagcaagcc	acacctgacg	cctgctgtgg	gcccatccct	gcggtgctgg	6000
agaagacaga	caaggcctgg	tcactgcctc	tgcagggtcc	ccagtccgtg	gaaggagaca	6060
gtaatctagg	cattttcggt	ggggaagctg	agctgttctc	gtgtcctgaa	ggccaggcgg	6120
gaacagccgt	cttcagaggg	aagggagaaa	atgcacatcg	catcagtgga	gaagggcctg	6180
acttccctca	gcatggtgga	gggaggtcag	aaaacagtca	agcttgttgc	tgggtgacag	6240
tgcatttaat	aatcaaaata	taggctgggt	acggtggctc	atgcctgtaa	tcccagcact	6300
ttgggaggct	gaggcaggtg	gatcacttga	ggccaggagt	ttgagaccgg	cctggccaac	6360
atggcaaaac	ctcaactact	aaaatacaaa	aactagccgg	gcgtggtggt	gcacgcctgt	6420

aatcccagct acttgggagg ctgaggcagg agaattgctt gaacctggga^lggcggaggct 6480 gcagtgagcc gagattgtgc cactgcactc cagcctgggc aacagagcaa gactctgtct 6540 caaaaaaaaa aaaaaaaaaa gcaatacaaa atacaaatat cactttcact aaaagaaggg 6600 atggaagacc caaaacaaac agaaaacaac aaaatggcag gagtaagtcc ccacttatca 6660 ataataacat tgactgtaaa taggctaagc tctgcaatca aaagagtggg ccaggagcgg 6720 tggctcacgc ctgtaattcc aacgctttgg gaggctgagg cggatggatc atttgatgtc 6780 acgagtttta agaccageet ggecaacaag gtgaaaceee atetgtaeta aaaatacaaa 6840 aattagccag gcggtagtgg cacgcacctg taatcccagc tacttgtgag gctgaggcag 6900 gagaatcact ggaggctggg aagcggaggt tgctgtgagc caagatggag ccactgcact 6960 cccacctggg cgacagagtg agatcctgtc ttaagaaaaa aaagagtgga tgaatggatc 7020 aaaaaacaag acccaaccat ctcttgcata caagaaacac actttaccta taaaaacaca 7080 ctaggccagg tgtggtggct cacacctgta atcccagccc tttggggaggc ctgactggca 7140 gatcacctga ggccaggagt ttcagaccag cttgaccgac atggcaaaac cccatctctc 7200 ctaaaaatac aaaaaaacaa aaaaaagaaa aaggctggaa gtagtgatgt gtgcctgtag 7260 ccccagctac ttgggaggct gaggcaggag aattgcttga atccgggaag tggaggttgc 7320 agtgagccag gatggtgcca ctgcactcca gcctgggtga cagagcgaga ccctgtcata 7380 7440 gaaataataa agatcagaac aggccaggct catgggcaca gtggctcaac tcctacctgc 7500 tcaggagttt gagaccagtc tggccaacat ggcaaaaccc catctctcct aaaaatatga 7560 aaaaaaaaa ataggctgga tgtggtgatg tgtgtgtgcc tgtagcccca gctacttggg 7620 aggetgaggt gggagaatea ettgageeea ggaagtggag getgeagega gteatgaatg 7680 caccetgeae tetagetggg taactggagt gagattetgt etcaaaaaag caaagaccag 7740 agcagaaata aatgaaatgg aaatgaagga aacaatgcaa aatgatacaa aaagtttttt 7800 cgaaaagata aacaaaatca acaaaccttt agccagatta agaaaaaaag agagaagacc 7860 caaataaata aaatccgaga ttaaaaagga gacattacca ctgataccac agaaattcaa 7920 aggatcatta gaggcaacta tgtgcaacta tatgctaatg aactggaaaa cctagaagaa 7980 ctgggtaaat ttctagacac atacaaccta tcaagattga accatgaaga aatccaaaac 8040

ctgaacaggc	cgggcacggt	ggcttacgcc	tgtaatccca	gcactttgga	aggcctgaga	8100
tcaggagttc	gagaccagcc	tggccaacat	ggtgaaaccc	catctctact	gaaaaaatat	8160
aaaaattagc	cgggcgtggt	ggcgggtgcc	tctaatgtca	gccactcggg	aggctgaggc	8220
aggaaaatca	cttgaacctg	ggaggcatag	gttgcagcga	gccgaggttg	caccactgca	8280
ctccagcctt	ggcgacagag	ccagactcca	tctcaaaaaa	attaaaataa	caaaaacctg	8340
aacagaccaa	taacaagtaa	tgcgatgaaa	actgtaataa	aatgtttccc	aacaaagaaa	8400
gcccaggaac	aaatggcttc	actgctgaat	tttaccaaac	atttttttt	ttttgagacg	8460
gagtctcgct	ctgtcgccca	ggctggagtg	cagtggtgta	acctcggttc	gctggtaact	8520
tatgcctctc	aggctgcaag	tgattttcct	gcttcaggcc	ccccgagtgg	ctggaaatta	8580
gatggtactt	gtcaaacaag	gcctggctaa	atttctatat	ttccttcaag	tagaagatgt	8640
gcttccaaca	aaggttgggt	tacggctggc	ttctgaaaat	cttggatttc	aaggctcccc	8700
aaaag						8705

<210> 11

<211> 66933

<212> DNA

<213> Homo sapiens

<400> 11

tataatcaag cgcgttccgt ccagtccggt gggaagattt tcgatatgct tcgtgatctg 60 ctcaagaacg ttgatcttaa agggttcgag cctgatgtac gtattttgct taccaaatac 120 agcaatagta atggetetea gteecegtgg atggaggage aaatteggga tgeetgggga 180 agcatggttc taaaaaatgt tgtacgtgaa acggatgaag ttggtaaagg tcagatccgg 240 atgagaactg tttttgaaca ggccattgat caacgctctt caactggtgc ctggagaaat 300 gctctttcta tttgggaacc tgtctgcaat gaaattttcg atcgtctgat taaaccacgc 360 tgggagatta gataatgaag cgtgcgcctg ttattccaaa acatacgctc aatactcaac 420 cggttgaaga tacttcgtta tcgacaccag ctgccccgat ggtggattcg ttaattgcgc 480

gcgtaggagt	aatggctcgc	ggtaatgcca	ttactttgcc	tgtatgtggt	cgggatgtga	540
agtttactct	tgaagtgctc	cggggtgata	gtgttgagaa	gacctctcgg	gtatggtcag	600
gtaatgaacg	tgaccaggag	ctgcttactg	aggacgcact	ggatgatcto	atcccttctt	660
ttctactgac	tggtcaacag	acaccggcgt	tcggtcgaag	agtatctggt	gtcatagaaa	720
ttgccgatgg	gagtcgccgt	cgtaaagctg	ctgcacttac	cgaaagtgat	tatcgtgttc	780
tggttggcga	gctggatgat	gagcagatgg	ctgcattatc	cagattgggt	aacgattatc	840
gcccaacaag	tgcttatgaa	cgtggtcagc	gttatgcaag	ccgattgcag	aatgaatttg	900
ctggaaatat	ttctgcgctg	gctgatgcgg	aaaatatttc	acgtaagatt	attacccgct	960
gtatcaacac	cgccaaattg	cctaaatcag	ttgttgctct	tttttctcac	cccggtgaac	1020
tatctgcccg	gtcaggtgat	gcacttcaaa	aagcctttac	agataaagag	gaattactta	1080
agcagcaggc	atctaacctt	catgagcaga	aaaaagctgg	ggtgatattt	gaagctgaag	1140
aagttatcac	tcttttaact	tctgtgctta	aaacgtcatc	tgcatcaaga	actagtttaa	1200
gctcacgaca	tcagtttgct	cctggagcga	cagtattgta	taagggcgat	aaaatggtgc	1260
ttaacctgga	caggtctcgt	gttccaactg	agtgtataga	gaaaattgag	gccattctta	1320
aggaacttga	aaagccagca	ccctgatgcg	accacgtttt	agtctacgtt	tatctgtctt	1380
tacttaatgt	cctttgttac	aggccagaaa	gcataactgg	cctgaatatt	ctctctgggc	1440
ccactgttcc	acttgtatcg	tcggtctgat	aatcagactg	ggaccacggt	cccactcgta	1500
tcgtcggtct	gattattagt	ctgggaccac	ggtcccactc	gtatcgtcgg	tctgattatt	1560
agtctgggac	cacggtccca	ctcgtatcgt	cggtctgata	atcagactgg	gaccacggtc	1620
ccactcgtat	cgtcggtctg	attattagtc	tgggaccatg	gtcccactcg	tatcgtcggt	1680
ctgattatta	gtctgggacc	acggtcccac	tcgtatcgtc	ggtctgatta	ttagtctgga	1740
accacggtcc	cactcgtatc	gtcggtctga	ttattagtct	gggaccacgg	tcccactcgt	1800
atcgtcggtc	tgattattag	tctgggacca	cgatcccact	cgtgttgtcg	gtctgattat	1860
cggtctggga	ccacggtccc	acttgtattg	tcgatcagac	tatcagcgtg	agactacgat	1920
tccatcaatg	cctgtcaagg	gcaagtattg	acatgtcgtc	gtaacctgta	gaacggagta	1980
acctcggtgt	gcggttgtat	gcctgctgtg	gattgctgct	gtgtcctgct	tatccacaac	2040
attttgcgca	cggttatgtg	gacaaaatac	ctggttaccc	aggccgtgcc	ggcacgttaa	2100

į

ccgggctgca tccgatgcaa gtgtgtcgct gtcgacgagc tcgcgagctc ggacatqaqq 2160 ttgccccgta ttcagtgtcg ctgatttgta ttgtctgaag ttgtttttac gttaagttga 2220 tgcagatcaa ttaatacgat acctgcgtca taattgatta tttgacgtgg tttgatggcc 2280 tccacgcacg ttgtgatatg tagatgataa tcattatcac tttacgggtc ctttccggtg 2340 atccgacagg ttacggggcg gcgacctcgc gggttttcgc tatttatgaa aattttccgg 2400 tttaaggcgt ttccgttctt cttcgtcata acttaatgtt tttatttaaa ataccctctq 2460 aaaagaaagg aaacgacagg tgctgaaagc gagctttttg gcctctgtcg tttcctttct 2520 ctgtttttgt ccgtggaatg aacaatggaa gtccgagctc atcgctaata acttcgtata 2580 gcatacatta tacgaagtta tattcgatgc ggccgcaagg ggttcgcgtc agcgggtgtt 2640 ggcgggtgtc ggggctggct taactatgcg gcatcagagc agattgtact gagagtgcac 2700 catatgcggt gtgaaatacc gcacagatgc gtaaggagaa aataccgcat caggcgccat 2760 tegecattea ggetgegeaa etgttgggaa gggegategg tgegggeete ttegetatta 2820 cgccagctgg cgaaaggggg atgtgctgca aggcgattaa gttgggtaac gccagggttt 2880 teecagteae gaegttgtaa aaegaeggee agtgaattgt aataegaete aetataggge 2940 gaattcgagc tcggtacccg gggatcctct agagtcgacc tgcaggcatg caagcttctc 3000 ttgtgccggt tgtacgctgt caggtcacac tggtgagtta ggcagggcac agatgcccag 3060 agcagaggga actttccttg gggattcaac acgtgcaagt cttaggggct ggcaaatcct 3120 gccctcagct agagagggg cttttatttg agaccagaat cacctgagca tcctcctgtc 3180 cccagctgtg tccagcctgt ctgcagggac atcctgagag gaccaggctc tcccctcatc 3240 cacctgccta agtgccactc tgaaccctgt ccacctgtgc cgtggagggg cgtgacctca 3300 agetgeteag ceageageag gettggeeet ggggggeage agagaeeeag gtggetgtgg 3360 ggtgggtgct tcgtggcgtg gttctgaaac ttcgttggaa gtgtgtggac agtgccttgc 3420 ctgttctctg tgggacccta tttagaaacg aggtctgagt tactgggggt catcactgtg 3480 ttctgatggc ccagctgtgt ggaggccgcg gtgcagcccc atccaaggag ccagggccct 3540 gggtctagcc gtgaccagaa tgcatgcccc ggaggtgttt ctcatctcgc acctgtgttg 3600 cctggtgtgt caagtggtcg tgaaactctg tgttagctct tggtgttcct gaaagtgccc 3660 ccgggtctca ggcctcagaa ccagggtttc ccttcatctc ggtggcctgg gagcatctgg 3720

gcagttgagc	aaagagggcg	attcacttga	aggatgtgtc	tggccctgcc	: taggagcccc	3780
ccggcacggt	gctggggcct	gaagetgeee	: tcgggtggtg	gagaggaggg	agcgatgaag	3840
tggcgtcgag	ctgggcagga	agggtgagco	cctgcaaggt	gggcatgctg	gggacgctga	3900
gcagcatggc	cagcagctgg	gtctgcagcc	tggtacccgg	cgggacttgt	ggttggggct	3960
ggtttgtggc	caggagaggg	gctggcagga	gacaaggggg	actgtgaggc	agctcccacc	4020
cagcagctga	agcccaatgg	cctggctgtg	tggctctcag	ctgcgtgcat	aacctctcag	4080
tgcttcagtt	ctctcatttg	taaaatgagg	aaacaaacag	tgccagcctc	ccagaggtgt	4140
catgaggatg	aacgagtgac	catgtagcat	gggctgggtg	cgtgtcacct	aacatcacca	4200
gcctttgcaa	ggagagccct	gggggcctgg	ctgagtattt	cccttgcccg	gcccacccca	4260
ggcctagact	tgtgcctgct	gcaggccctt	gacccctgac	cccattgcac	ctgtctccac	4320
aggagccgag	gaggtgctgc	tgctggcccg	gcggacggac	ctacggagga	tctcgctgga	4380
cacgccggac	ttcaccgaca	tcgtgctgca	ggtggacgac	atccggcacg	ccattgccat	4440
cgactacgac	ccgctagagg	gctatgtcta	ctggacagat	gacgaggtgc	gggccatccg	4500
cagggcgtac	ctggacgggt	ctggggcgca	gacgctggtc	aacaccgaga	tcaacgaccc	4560
cgatggcatc	gcggtcgact	gggtggcccg	aaacctctac	tggaccgaca	cgggcacgga	4620
ccgcatcgag	gtgacgcgcc	tcaacggcac	ctcccgcaag	atcctggtgt	cggaggacct	4680
ggacgagccc	cgagccatcg	cactgcaccc	cgtgatgggg	taagacgggc	gggggctggg	4740
gcctggagcc	agggccaggc	caagcacagg	cgagagggag	attgacctgg	acctgtcatt	4800
ctgggacact	gtcttgcatc	agaacccgga	ggagggcttg	ttaaaacacc	ggcagctggg	4860
ccccaccccc	agagcggtga	ttcaggagct	ccagggcggg	gctgaagact	tgggtttcta	4920
acaagcaccc	cagtggtccg	gtgctgctgc	tgggtccatg	cgtagaaagc	cctggagacc	4980
tggagggagc	cctttgttcc	cctggcttca	gtttcctcat	ctgtagaatg	gaacggtcca	5040
tctgggtgat	ttccaggatg	acagtagtga	cagtaagggc	agcctctgtg	acactgacca	5100
cagtacaggc	caggcctctt	ttttcttt	ttttttttg	agatggagtc	tcactctgtc	5160
gcccaggctg	gagtgcagtg	gtgtgatctc	agctcactac	aacctctgcc	tcctgggctc	5220
aagtgattct	cctgcctcag	cctcctgagt	agctgggatt	acaggtgcct	gccactgtgc	5280
ttggctaatg	tttgtatttt	tggtagagat	ggggtttcac	cgtcttggcc	aggctggtcg	5340

caaactcctg acctcaggtg atccacctgc ctcagcctcc caaagtgctg ggattacagg 5400 catgagccac cacgcccggt caggccaggc ctcttttgaa cactttgcac accatgggtc 5460 ttttcatcca ggggggtagg tacagttgta cagttgagga cactgaagcc cagagaggct 5520 cagggacttg cccagggtca cacagcagga tgtggcaggt gtggggctgg gcctggcagc 5580 gtggctccag ctttccagca tagaaatctg tgaaagcaga tagtttgtcg gtcggtaggg 5640 gagactttct gagacccgcc ccagcggctc agagggtagt agccaggggc cttcctgggg 5700 gctcataacc cagaacactg aatgggaaaa ccctgatgga ggaggcgcag tggagctgtg 5760 ggtgccgatg ggaagtccca gaggagctgg gaggtcagta gcggtgctgc cctctgtgga 5820 gcacttagtg ggcaccaggt gtgtttccag gttcatggcc ctgggacctg aagctcagaa 5880 ggtgaagtaa cttgcccagg gcacccgtcg ggcagcggcg ggcagaggat ttgtgggctg 5940 tggagcctgt gctcgtggcc cagccctggg ggttgtgagt gtgctggccg gggagctttt 6000 cctgcaagtg gactggtgtc taggagccag catgtcaggc agcaggcagc gggagtgcag 6060 caggcagcgg gagcacagca ggcagagggc ggggctcgag cagccatccg tggaccctgg 6120 ggcacggagg catgtgggag agggctgctc catggcagtg gctgaagggc tgggttgtgc 6180 cccgaggagg gtggatgagg gtaagaagtg gggtccccag gggctttagc aagaggaggc 6240 ccaggaactg gttgccagct acagtgaagg gaacacggcc ctgaggtcag gagcttggtc 6300 aagtcactgt ctacatgggc ctcggtgtcc tcatctgtga aaaaggaagg gatggggaag 6360 ctgactccaa ggcccctcct agccctggtt tcatgagtct gaggatccca gggacatggg 6420 cttggcagtc tgacctgtga ggtcgtgggg tccagggagg ggcaccgagc tggaagcggg 6480 aggcagaggg gctggccggc tgggtcagac acagctgaag cagaggctgt gacttggggc 6540 ctcagaacct tcacccctga gctgccaccc caggatctgg gttccctcct tggggggccc 6600 cagggaacaa gtcacctgtc ctttgcatag gggagccctt cagctatgtg cagaaggttc 6660 tgctctgccc cttcctccct ctaggtgctc agctcctcca.gcccactagt cagatgtgag 6720 gctgccccag accctgggca gggtcatttc tgtccactga cctttgggat gggagatgag 6780 etettggeee etgagagtee aagggetggt gtggtgaaac eegeacaggg tggaagtggg 6840 catecetyte ccaggggage ccccagggac tetygteact gggettyceg etygcatget 6900 cagtecteca geaettactg acaccageat etactgacae caacatttae aaacaccgae 6960

attgaccgac	accgacattt	accgacactg	acatttacca	acactgttta	ccaacactga	7020
catctactga	cactggcatc	taccaacact	gacatttacc	gacactgaca	tttaccaaca	7080
ctatttacca	acactgacat	ctactgacat	tggcatctac	caacaccaac	atttaccgac	7140
accaacattt	accaacactg	aaatttaccg	acaccgacat	ttaccgacac	cgtttaccaa	7200
caccgacgtt	taccgacacc	gacatttacc	gacactgata	tttaccaaca	ctgacatcta	7260
ctgacgctgg	catctactga	caccgatgcc	agcatctacc	aacaccgaca	tttaccaaca	7320
ctgacattta	ctgacactga	tatctactga	cactggcatc	tactgacacc	aacatttacc	7380
aacaccagca	tctaccaaca	ccgacattta	ccaacaccag	catttaccaa	caccgatgtt	7440
taccaacgcc	gacgtttacc	gacgccagca	tctaccaaca	ctgacattta	ccgacaccga	7500
catttaccga	cactgacatt	tactgacact	gacatctact	gatactggca	tctaccgaca	7560
ctgatattta	ccaacgccag	catctactga	cactgatgtt	taccaacacc	gacatttacg	7620
agcaccgaca	tttactgaca	ccaatattta	ctgacatcaa	catttagcca	tgtgatgggg	7680
gccggcttgg	gggcaggcct	tgctcttggc	actggggatg	ctgcagagac	cagacagact	7740
catggggtca	tggacttctg	cttcttctcc	agcctcatgt	actggacaga	ctggggagag	7800
aaccctaaaa	tcgagtgtgc	caacttggat	gggcaggagc	ggcgtgtgct	ggtcaatgcc	7860
tccctcgggt	ggcccaacgg	cctggccctg	gacctgcagg	aggggaagct	ctactgggga	7920
gacgccaaga	cagacaagat	cgaggtgagg	ctcctgtgga	catgtttgat	ccaggaggcc	7980
aggcccagcc	accccctgca	gccagatgta	cgtattggcg	aggcaccgat	gggtgcctgt	8040
gctctgctat	ttggccacat	ggaatgcttg	agaaaatagt	tacaatactt	tctgacaaaa	8100
acgccttgag	agggtagcgc	tatacaacgt	cctgtggtta	cgtaagatgt	tatcattcgg	8160
ccaggtgcct	gtagacacag	ctacttggag	actgaggtgg	gaggatcgct	ggagtccaag	8220
agtttgaggc	cageeeggge	aaaggggaca	caggaatcct	ctgcactgct	tttgccactt	8280
actgtgagat	ttaaattatt	tcacaataca	aaattaagac	aaaaagttaa	tcacatatcc	8340
actgccctgc	ttaagacaga	aaacatgggt	gttgttgaag	ccagaggcag	ctgctggcct	8400
gagtttggtg	attggttcct	aagcagttga	aggcagtttt	gtttttccat	agatgtctgt	8460
tctccctttg	ctgggtgcag	cctcgccctg	ctgctgtggt	cgggtttcag	tggcctcgtc	8520 ·
ccgtggacgc	agcctcgccc	tgccgctgtg	gtcgggtttc	agtggcctcg	tcccgtggac	8580

gcagcctcgc	cctgctgctg	tggtcgggtt	tcagtggcct	cgtcccgtg	g acgcagcctc	8640
gccctgccgc	tgtggtcggg	tttcagtggd	ctcgtcccgt	ggacgcagc	tegecetgee	8700
gctgtggtcg	ggtttcagtg	gcctcgtccc	atgggcgtgc	tttggcagct	ttttgctcac	8760
ctgtggagcc	tetettgage	ttttttgttt	gttgtttgtt	tttgtttgat	tttgtttgat	8820
tgtttgttt	tgttgtcgtt	gttgttgccc	aggctggagt	gcagtggcgc	gatctcagct	8880
cactgaaacc	tctgcctcct	tgggttcatg	ccattctcct	gcctcagcct	cccacatage	8940
tgggattaca	agtgcccgcc	accacgcctg	gctaaatttt	gtatttttag	ı tagacagggg	9000
gtttcaccat	gttggtcagg	ctggtctgga	actcctggtc	tcacatgato	: cacctgcctc	9060
ggcctcccaa	agtgttggga	ttacaggcgt	gagccaccgc	gcccagcctc	: tgttgagcat	9120
attttgaggt	tctcttggtg	ccagtgatat	gtacatgtgt	ccccatcgca	ccatcgtcac	9180
ccattgaggt	gacattggtg	cctctcctcg	gggtggatgc	ctccctctgt	ttccagcaac	9240
ttctgaagga	ttttcctgag	ctgcatcagt	ccttgttgac	gtcaccatcg	gggtcacctt	9300
tgctctcctc	agggctccca	ggggaggccc	gaatcaggca	gcttgcaggg	cagggcagga	9360
tggagaacac	gagtgtgtgt	ctgtgttgca	ggatttcaga	ccctgcttct	gagcgggagg	9420
agtctcagca	ccttcagggt	ggggaaccca	gggatiggggg	aggctgagtg	gacgcccttc	9480
ccacgaaaac	cctaggagct	gcaggtgtgg	ccatttcctg	ctggagctcc	ttgtaaatgt	9540
tttgtttttg	gcaaggccca	tgtttgcggg	ccgctgagga	tgatttgcct	tcacgcatcc	9600
cegetaceeg	tgggagcagg	tcagggactc	gcgtgtctgt	ggcacaccag	gcctgtgaca	9660
ggcgttgttc	catgtactgt	ctcagcagtg	gttttcttga	gacagggtct	cgctcgctca	9720
cccaggcgag	agtgcagtgg	cgcaatcacg	gctcgctgta	gcctcaatct	ccctgggetc	9780
aggtgatcct	cctgcctcac	cctctgagta	gctgggacta	cagacacata	ccaccacacc	9840
cagctagttt	ttgtgtattt	tttgtggggg	gagatggggt	ttcgctgtgg	tgcccaagct	9900
gatctcaaac	tcctgaggca	caagcgatcc	acctgcctcg	gcctcccaaa	gtgctgggat.	9960
gacaggcatc	agccgtcaca	cgcagctcaa	tgattttatt	gtggtaaaat	aaacatagca	10020
caaaattgat	gattttaacc	attttaaagt	gaacagttca	ggctgggcgt	ggtggcttat	10080
gcttgtaatc	ccagtacttt	gagaggctga	ggtgggcaga	tcacctgagg	tcaggagttt	10140
gagaccagcc	tggccaacat	gatgaaatcc	agtctctact	aaaaatacaa	aaattagccg	10200

ggcatggtgg	caggtgcctg	taatcccagc	tactcgggag	gctgaggcag	gagaatcgct	10260
tgagcccggg	aggtggaggt	tgcagtgatc	tgagatcatg	ccactgcact	ccaatctgtg	10320
tgacagagca	agactctgtc	ttgaaaaata	aataaataaa	aaaaatttta	aaaagtgaac	10380
aattcagggc	atttagtatg	aggacaatgt	ggtgcaggta	tctctgctac	tatctacttc	10440
tagaacactt	tcttctgccc	tgaaggaaac	cccatgccca	ccggcactca	cgcccattct	10500
ccctctctc	ccagcctctg	tcaaccacta	atctactttc	tgtctctggg	ggttcacttc	10560
ttctggacgt	tttgtgtgac	tggaatcctg	caatatgtgg	tccctgcgtg	tggcttcttt	10620
ccatagcatt	gtgttttcca	gattcaccca	cacattgtcg	cacgttatca	gaatctcatt	10680
cctgactggg	tgcagtgggt	taggcctgta	atcctaacat	tctgggaggc	caaggeggga	10740
cgatcacttg	aggcaggagt	ttgagaccag	cctggccagc	ctagcaagac	cccagctacc .	10800
aaaaaatttt	aaaagttaac	tgaacgtggt	ggtggtgggc	acttgtggtt	cccagetacc	10860
tgggaggctg	aggtgggagg	atcgcttaag	cccaggaggt	caaggctgca	gtgagctatg	10920
atcgcaccac	tgcactccag	cctggacaac	agagcaagac	cctgtctgaa	aaaaaaaca	10980
aaaaaaaag	ttcctttctt	tttgtggctg	gatgacatcc	cattgtatgg	ccacagcaca	11040
ttttgtttgt	ctgtttatcg	ggtggtgggc	agtggtttcc	accttttgtc	tcctgtgaat	11100
aatgctgctg	tgaacatttg	aattcaagtt	tttgtttgaa	cacctgttgt	gaattatttg	11160
gatatatgtg	taggggtagg	attgctgagt	cctatggtaa	tgttaggttt	gacttactga	11220
ggaaccatta	aactgttttc	aacagtggct	gcgccgttct	gcatccccac	cggcagtgtg	11280
tgagggttct	gactttacct	cctcacaaac	gcttcttttc	catttaaaaa	aatattcagc	11340
caggtgctct	ggctcacgcc	tgtaatccca	gcactttggg	aggccgtggc	gggcggatca	11400
cctgaggtca	ggagttcgag	acgageetgg	ccaacatggt	gtaaccccat	ctctaccaaa	11460
aatataaaaa	ttagccgggt	gtggcagcgg	gcgcctgtaa	tcccagctac	ttgggaggct	11520
gaggcaggag	aatcacttga	accegggagg	cagaggttgc	agtgagccaa	gategegeca	11580
ctacactcca	gcctgggtga	caagagtgaa	actccatcta	aaataaaaca	aaaataaaaa	11640
taaataaaaa	tttattaaaa	cattcatcac	agccagccta	gtgggtgtcc	catgtggctt	11700
tgcctcgcat	ttccctgata	actaggatgc	tgagcgtctt	gtcccaggct	tgccacacct	11760
cagcactttg	agatacgtcg	cacagtcccc	atttgcgaac	gagaaatgag	gtttagggaa	11820

cagcagctgt gtcatgtca	acagcgagca	gggggtetet	gagccgtctg	accccacage	11880
cgaccaagct ccaatcctt	a cogcetecta	a gtgttgtgga	tgtagcccag	ggtgctccca	11940
catttttcag atgagaacac	cgaagctcaa	a aacaggagcg	ttttgtccac	attggataca	12000
cgatgtctgt ggtttggtcd	tgaagtcact	ttatatctca	gtggtccaga	ctggagtagg	12060
acagggggtt ctggggaatg	g gggaaggtgt	ctcaggtgaa	aggaaggaat	tccagattct	12120
ccatactgtc cttgggaagt	tagaagacto	agagggtctg	gcaaagtcag	acaaagcaag	12180
agaaatgcag tcaggaggaa	gcggagctgt	ccaggaacag	gggggtcgca	ggagctcacc	12240
cccaggaact acacttgct	gggccttcgt	gtcacaatga	cgtgagcact	gcgtgttgat	12300
tacccacttt ttttttttt	ttgaggtgga	gtctcgctct	cttgcccagt	ctggagtgca	12360
gtggcacgat ctcggctcac	tgcaagctct	gcctcccggg	ttcatgccat	tctcctgcct.	12420
cageeteeeg egtagetggg	actacaggcg	cctgccaccg	cgcccggcta	atttttgtat	12480
ttttagtaga gatgggattt	cactacatta	gccaggatgg	tctcgatctc	ctgacctcat	12540
gatccgcccg tctcggcctc	ccaaagtgct	gggattacag	gcgtgagcca	ccgcgcccgg	12600
cccgatttcc cactttaaga	atctgtctgt	acatcctcaa	agccctatac	acagtgctgg	12660
gttgctatag ggaatatgag	gcttacaggc	catggtgctg	gacacacaga	agggacggag	12720
gtcaggaggt agaagggcgg	agagaggaa	caggcggagg	tcacatcctt	ggctttcaaa	12780
atgggccagg gagagacacc	ctctgagcat	ggtaggacag	gaaagcaaga	ttggaacaca	12840
ttgagagcaa ccgaggtggc	tgggcgtggt	ggcttacgcc	tgtaatccca	acactttgga	12900
aagctgaggt gggtggattg	cttgaggcca	ggagttcaag	accagcctgg	ccaacatggt	12960
gagaccccgt ctctactaaa	tatacaaaaa	ttagccaggc	gtgatggtgc	atacctgtaa	13020
tcccagctgc ttgggaggct	gaggcaggag	aattgcttaa	acctgggagg	cggaggttgc	13080
agtgageega gateeegeea	ctgcactcca	gcctgggcca	cagagtgaga	ctccatctca	13140
aaaaaaaaa aaaaaaaaga	taaaaagacc	aaccgaggaa	ttgaagtggg	ggggcgtcac	13200
agtagcagaa gggggatcgt	ggagcaggcc	accctgtggt	catgcactgg	aagctcatta	13260
cctgacgatt tggagctcat	cactgggggc	ctaaggagaa	tagatactga	aggatgagga	13320
gtgatggcgc ggggcacggg	tgtctttggt	ggccagaact	tggggactgc	tggggtgcct	13380
cactgcagge cttctcagcg	ccctttatat	gcttacacag	gctgtttcta	agagggggat	13440

acattgcata	agcgttttca	gactacctca	tcatgggtcc	ctttctttac	cctctgtggc	13500
cctggtggcg	cactctctgg	gaaggtgcag	gtggatgccc	agacccgccc	tgccatccac	13560
ctgcacgtcc	agagctgact	tagcctcgag	attgctgctg	gcacctcctg	ccccgggaca	13620
cctcggatgt	gcccgtggag	atgctggctc	tgtgttttct	gctggagttt	ggtgcgtctt	13680
ttectectge	aagtggccac	cgctcttggg	tatgtcctca	ggcttctgcg	agtcatggct	13740
gcttctcagg	tccttgccca	gcgccaggag	caaaccctcc	tggcactttg	ttcaggggtg	13800 .
gatgcgccag	tgttcctgct	gtggaccccc	atctcacatg	agggtettgg	gcctgcaggc	13860
tcgttcagga	aacacccgct	gagtacgcag	tgtgtgccag	ctgtgtccca	ggcaatggcg	13920
gggacagtgg	ctgctgctgg	ggttgtggtg	gcttctgggg	actctgggga	cagctgaggt	13980
gcaaggagcc	acggctcctt	gaggatgcag	ttggactcca	ggtggaaggg	atggttgggg	14040
gaggtataaa	tggggtcagg	gaggagacac	atttggaaca	atgggaacat	ttttaagatg	14100
ctatgtcggg	aggcaacaag	gtggccaacc	caggtgctga	ggagcccaca	ccagccctgg	14160
acgtgttttg	ccgctcacct	ttgctgggga	gtggtgggag	agaggattcc	gttccacgtg	14220
gtggtgtgcg	cagctgggct	gtgtggagct	gggcgctagg	aggaaggtgc	tttctgcggg	14280
gctagccggg	ctctgccttt	gaacacaatc	aggctccagg	ttttcagcat	ccagtgcatg	14340
agaggacttc	acgggcagct	gtggctgatc	ccttgatgaa	ttgggagaag	aacaaaggtc	14400
tatgaaatga	ggtttcatgt	agatggcatt	agagacgccc	acaacagatt	tacagagtgg	14460
agcggagacg	gcggatgggt	ctgggaggcc	cctcctgctg	gccttgactg	tgacagctgt	14520
cctgggaatc	agcttccagg	ccgccccagc	agcctgactg	acacacacag	gggttttagc	14580
cccatcctgc	gaccagctgt	tgccatcatc	agtgacagct	gggagtggcg	gtggttccag	14640
ccctgggcac	cctccccacc	tgctggggcc	cacccagggc	agtcctgaca	cctacaggtt	14700
gcttggagcc	gcatccgagt	cctgccccac	cacgtgtgaa	gcccgagtgg	tegtgggetg	14760
aggtcccctg	attgcatccc	cacttccctt	ctgcttcaca	tagctgcctc	ttctcaccgt	14820
ttttccagcc	tcctgggcta	ggaattccag	tgttgtgctg	gctttgcccc	aggacacctc	14880
cttagccctc	ttectgagtc	tagagccccg	ggggttggaa	gttctggccc	ctgggacacc	14940
tgcagccaca	ctcagcttct	cctgtgagcc	tccagcatgt	cccctcagga	ccaagccctc	15000
acgttcttgc	ctccccgccc	acctgggctc	agccagggga	aggcctggct	gggagcgtct	15060

cccctctgcc	ctgcccttct	cccctctacc	ctgcccttct	ctcctctgcc	ccgccdtggc	15120
ttttatatco	tgtgccacaa	gacatggctg	tgtgtgaaag	tggcagggtc	tggcatctct	15180
gtgggtctct	gaggcccacg	ctccagtgcc	actcttccca	cccgctggcc	gtgccctcat	15240
gctggaggga	cageceagee	ctctcccgaa	ccccagccc	atgtgcccag	ctgcccccgg	15300
ccctctcccc	tggaagccgg	ggtcactcca	gccgtatgcc	atggtgggga	catcctgctt	15360
ccttggcctt	ccagggaagg	tcctcttcc	aaatggcgac	acctggtccc	tgcctggagg	15420
ctggaagctg	tggcccttgt	atgcccctcc	agggtctgtg	cgctcggttg	gcccgagttc	15480
ccatcaccgt	catcatcacc	atcatcattg	tcatttcgct	tgtctgtgag	ccggcctggt	15540
ctcccagagc	agagaccctc	tgaggtccag	cctgagttgg	ggtctccgtg	ctgacccctg	15600
acggggactc	aggacgtacc	aggtctgggt	caggagtgac	ccccaaacct	cgtgcccttt	15660
gacaggcacc	cctgactttt	gctaagtggg	tggaggtgac	atcacttaca	gcgggagtga	15720
tgggacaggg	tctgttggct	gcactgtgct	cccagggatc	tggggagagg	ctatatccct	15780
gggctttggc	actgcagagc	tgtgtgtgtt	tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg _.	15840
tgtgtgtgtg	tgtgtgtgtg	tttgcgtgcg	cgcacatgtg	tataagatct	ttttttatta	15900
catgaagcaa	gataactgtt	gctgtttcct	tttgggtttt	gtgttcaaca	gagtggggta	15960
cttcttccct	cagacaacag	aactctcccc	tttaaacacg	tgctgtcaga	gggtgggtct	16020
tgggctcatg	tctgtttgca	cagccgagtc	agaggaaaca	cagggttctt	cataaaaaca	16080
ctgcacagca	ggcgactgtc	cagagtcagc	ctgcaggacg	gcagcagccc	tgcccctcag	16140
agcacagcta	gggtgggctg	ctttgggatc	tcccgtcatt	ccctcccagc	tggcagccgg	16200
cggccggccc	attccttggt	gtgctggtca	ggggggcgtg	cgcctgctct	gctcaccctg	16260
ggaatgggac	agaagctggc	agctcggaga	ggacagggct	ggacccttgg	gtggcctctg	16320
gctggaccat	ctcattgtcc	tcagacacag	cctctcgggt	ctagtttcat	ttcctgaaaa	16380
acaagtgcac	agaactagag	caggagtcga	gagctacggc	ccccgggcca	gatccagccc	16440
tgccacctgt	tttcacacca	tgctcaagct	gagtgggttt	tacattttt	aattacttga	16500
aaaaaaaaa	gccaaaggag	gtttcatgac	ccatgaaaat	tatatggaat	tcaaaaaaaa	16560
aaaattatat	ggaattcaaa	tttcagtgtc	cataaataat	ttcttgagac	agggtctcgc	16620
tctgtcaccc	aggctggagt	gcagtgctat	ggcatggctc	gctgtaccct	tgacctccca	16680

ggctcaagcg	atcctcctgt	ctcagcctcc	tgagtagctg	ggactacggg	tgtgtgccac	16740
caagcccggc	taatttttt	ttaattttag	taaagacagg	gtctttctat	gttgcccagg	16800
cttttctgga	actccatctt	ggcctcccaa	agtgctggga	ttacaggctc	gagccacgga	16860
gcccagcctg	tttttgtttt	ttcactgata	aagttttgcc	gggtgtggta	gtgtgtgcct	16920
ctagcgattt	gggaggctga	ggtgggagga	tcgcttaagc	ccaggagttt	gaggctgggc	16980
tcaagtgatc	aggaggtgaa	ctatgatcat	gtcattgcat	tccagcctgg	gtgacagagc	17040
aagaacctat	ctcttaaaaa	tatatattta	aaaagtattg	ggtgtggtgg	ctcacgcctg	17100
tggtcccagc	tacttaggca	tctgaggtgg	gaggatggct	tgagcccagg	agtttgaggt	17160
tgcagcgagc	caagatcgtg	tcactacact	ctagcctggg	tgacagagec	cagaccctgc	17220
ctctttaaaa	aaaaaaacca	aaaaacatgt	attggaacac	agccatgcct	gttcagtcac	17280
gtgctctcca	tgctgctttc	tgctccagag	acccttatgg	cctgaaagct	gaaaatattt	17340
tctatccttt	acaaaaagt	ttgctgacct	ctgtcctgga	aaattcatct	cccaagttct	17400
cttccggcac	tggcgttcct	gggtgtccta	aatttggccc	ctgttatttc	tgaactctgt	17460
ttiggctctg	ttccctccca	ggagccagga	caggcacgtt	ctctgcatct	tgtcccctga	17520
cgcccagagg	cttggctcgg	ctcaggcatt	cttggaaata	tctggctcca	ggaaaggcag	17580
aggcctcctg	agtcagccca	gagggaacct	gccccaggtc	tgggggaggc	ctgacccagc	17640
agagtggctt	ttgccgatgg	gttgggccgg	tcaagatgtg	ctgaaagttg	tcctcagaag	17700
gccactttgg	gattccttcc	tccagtatta	gagcaactga	gagetgetea	ttgcaagcct	17760
gatgttttcc	cagttggccg	ggtccaccgg	gtgccctggg	attctgggat	ctgggtggaa	17820
agtagggggc	ttgggggagt	gtcctgggtt	ctggaatcca	ggtggcaagt	ggtgaggttc	17880
agggagtggc	ttctgagcca	ccataggggt	ctctgtggga	ggetetgeee	atccaggaga	17940
tteegeagge	cctgccggcc	cagagccagc	gtcttgcgct	tgccgaggct	acagecagec	18000
ccagccgggt	ggaacagccc	gtcgcctcct	ctcactttgt	tttggggcca	cctgggagtg	18060
tggagcaagg	gtagagaggg	aggaagtggc	tgccggccgc	tgcccagcac	ccttgtttgc	18120
cttgggccct	ctgtgggctc	ctttttattg	ctcttcaatg	aagccaggga	aatggacttc	18180
cttgcctcac	ttcagttcaa	catgtctgga	agtttggtat	taaaattaag	aaagtgtgga	18240
aatagagcaa	gaagagaaaa	atctctccaa	gagataatag	tgacctctga	gctgggcgcg	18300

gtggctcacg cctgtaaatc ccagtacttt gggaggctga ggcgggcaga tcacctgagg 18360 tegggagttt gtgaceggee tgaceaagat ggagaaaeee egtetetaet aaaaataaat 18420 aaataaataa ataaataaat acaaaattag ccaggcatgg tggcgcctgc ctataatccc 18480 agctaaggca ggagaatcgc ttgaacctgg gaggcaaagg ttgcagtgag ccaagatcac 18540 gccattgcac tctagtctgg gcaacaagag tgaaactccg tctcaaaaaa aataaataaa 18600 taaaaaataa aaatagtgac ctctggccag gtgtggcagc tcatacccgt aatcccagca 18660 ctttggaagg aaggccgaga tgggcagatt gctttagcac aggagtttga gaccagcctg 18720 gccaacatgg tggaacccca tctctacaaa aatagaataa aatttaagag gtaatagtga 18780 ccttttggta gatcgaaacc tggattgctt tctttttcta aatgctgatt cttttctttg 18840 tggtgtttgt gttctgtgcc gatgtccctc ccccagccct gttattgtga gtggaagaag 18900 gggaaagggt tegecegeta etgtgagece etecteteae getgggtgte ettggagaag 18960 cctgcacttc ttcattgtac gccagggctg ggtccctccc tggagtggtt ctgtgctgct 19020 gggatggggc caacccctca gatgttttct gagtgtcaca cacaggtgtg tgcattcatg 19080 gcctttgcgt gtcttcctgt tgtggaggca aaaatgtgaa gaaccctaga tgattttggg 19140 accagggete cateacetge tgttcattge acaceggage atccaggeat gggtggagag 19200 ctcagacttc caggcacggt cgcaggggct ggtctaacca tgttcccgcc cgcctgctcg 19260 tcagaaccgc ctgttgggag ctgttatcat gataccatac ctgggccctg ggctatccga 19320 ttctgactta attgctccag gttggggcca ggccgttgtt tgctgttttg ttgtttcttc 19380 tgtgacgtta gccactgggc taatctgagc ccctcagtta caggtggaga aactgagacc 19440 catgggggtg caaggacttg ccgaggaccc agagcccctt gggggcagag ctgaggcggg 19500 geetggettt gggteecaga getteeagte ecetteeege teteetaaca gettttttt 19560 ttgagacaag atctcaccct gtcacccagg ctggagtgca atggcatgat ctcggctcac 19620 tgcaatcttc gctagctgcg ttccagcgat tctcctgcct cagcctcccg agcagctggg 19680 attacaggtg tgtgccgcca tgcccagctc gttttttttt gtacttttag tagagatagg 19740 gtttcaccat gttggccagg ctgatctcga actcctgacc tcaaatgatc cgcctgcctc 19800 ggcctcccaa agtgctagga ttacaggctg ggatcacact gtgcctggcc ctagcagctt 19860 tgtcctgtgc catccaacaa cagatgaccg aagtctttgt ttcttaacat gcattccatc 19920

tgccttacag	ttttgccacc	tgcaaaacag	aggacttgtc	gcttttctgg	taagctggaa	19980
atgtaatctg	gtagcaggag	gcctgtggaa	gcttgccttt	aatggccttg	tgtctctttc	20040
atcctgtcct	gagagccgga	gaacttggat	gttgcaccta	actcaacctt	cctgttaaca	20100
tacagttctg	caggctcatg	gatcatcaga	accacgtcct	atctcacgcg	gctgtatgct	20160
tccgttggtt	caggtgtttt	taccttgaca	gtattttctc	ctcggtggct	tttgcggtgg	20220
ttgcttttaa	tcagcattga	ctcttcaaga	aaaatattta	gctgctacat	ctcagaggag	20280
acagggtgga	aagcatctga	gacctgcagg	ctcagactta	gaaccagaag	tgccctcaga	20340
gttcatccgg	ccctgaccca	gcgggaaatg	agttcacaga	gaagcgggag	aactttgccc	20400
caggccctgc	cgttgctcat	aactgcccca	ggtccttaca	tttgctccag	gtcctgcccc	20460
aggccctgca	gttgctcata	actgccccag	gtccttatat	ttgctccagg	tcctgcccca	20520
ggtcctgcag	ttgctctgtg	tggtgggtgt	gatctggagc	cctccgccca	ttgctgcacc	20580
tggggcaggc	attgctaatt	gatcccagga	ctccttcctg	cggagcacgc	cctggttctc	20640
caggcagccg	ctgcctgtca	gcctgcagtg	gttcgggaga	ggacacctgc	ttgcctggtc	20700
tgttccaaat	cttgcttctc	atcccagcac	aggtagggg	tgctatggga	aagggatcct	20760
cagttggccc	tgtcactgct	ctatcagctg	gggacgtggc	atcctagtga	aaacatcatg	20820
gccgggcgcg	gtggctcacg	cctggaatcc	cagcactttg	ggaggctgag	gagggtggat	20880
cacttgaggt	cagaagttcg	agaccagcct	ggtcaacatg	gtgaaaccca	tctctactaa	20940
aaatacaaaa	attegecagg	tgtggtggcg	ggtacctgta	atccgagcta	ctcgggaggc	21000
tgaggcagga	gaategettg	aacctgggag	gtggagcttg	cagtgagccg	agatctt gcc	21060
actgcactcc	agcctgggca	acagagtgag	acgctgtctc	aaaatctcaa	acaaacaaac	21120
aaacaaaaaa	caaacaaaca	aagcgtcatt	tatccagcac	ccctggggaa	ccatgctacc	21180
tggtgtttta	tggtacctgg	caaggtgcag	gtgaagttgc	tgctcttggg	cattgaaccc	21240
gtcttgtttg	gggcagctca	ggccccaggc	agggtccggg	ttggctctcg	ttggtgtggc	21300
cctggcccat	ccagacctat	atttctgccg	tectgcaggt	gatcaatgtt	gatgggacga	21360
agaggcggac	cctcctggag	gacaagctcc	cgcacatttt	cgggttcacg	ctgctggggg	21420
acttcatcta	ctggactgac	tggcagcgcc	gcagcatcga	gcgggtgcac	aaggtcaagg	21480
ccagccggga	cgtcatcatt	gaccagctgc	ccgacctgat	ggggctcaaa	gctgtgaatg	21540

tggccaaggt	cgtcggtgag	tccggggggt	cccaagccat	ggctcagcca	tgcagacttg	21600
catgaggagg	aagtgacggg	tccatgcctg	ggcataagtg	ttgagctcag	gtgccccgac	21660
ctggggaagg	gcaggacagg	aaaggtgaca	gtatctggcc	aaggacagat	gggaagggac	21720
caagggagct	gattagggag	tggttatgga	ctaggaatgt	cggtaacaat	ggttagaaag	21780
tgactaacat	ttgttgagca	cctgctgtgt	gcccggccct	ggccgggagc	cttcgtgccc	21840
acagtgaccc	cgtctgcaaa	tgtagttcct	tgccctactc	gcactgggga	gcaggacgca	21900
gagccgtgca	tctcacaggt	gccaagctca	ggactccctc	ctgggtctgc	ctgggctggg	21960
ctgtgcttgt	tgcccctgtg	gcccacgcat	gtgcaccttc	cacctgaaag	ccaggatctt	22020
caggacgctc	cccgaggagg	tcgttgtctg	gcacaatgat	ttgtctcttc	ctgaaaaggt	22080
gacagagtta	cactggagag	agcagcatcc	aggtgcggca	gggacaggcc	tggggctcgc	22140
gggcagggac	tctgtgtcct	gccggggtcc	cacactgcac	ctgcttgtca	gaggcactca	22200
gtcaatcttt	gctgatgaag	gatgagagga	cagaggacgt	gatgcttgct	gctgcattgc	22260
ctgcagtcct	gggtgagatg	cccgggttga	ctctgctgcc	cgtcgggtgg	atgtgatgtc	22320
agatccccgg	ctttaaaata	cgagggagct	gggaattgag	ggagcaggtt	ggggcagaaa	22380
gcacageeee	gtggaagcct	ggagctgagg	cagtgtgggc	gacccctgga	gcagtgagtg	22440
cttccttcat	ggccttcatc	gcaccctgca	gtcctcatgt	aggggatgcc	atccatgaat	22500
ttagttttcc	cagcctcctt	taaaaacgcg	ttcatgctgg	ggccggggca	gtgcagtggc	22560
tcacatctga	aatcccacca	ctttgggagg	ccgaggcggg	tggatcatga	ggtcaggaga	22620
tcgagaccat	cctggctaac	aaggtgaaac	cccgtctcta	ctadaaatac	aaaaattag	22680
ccgggtgcgg	tggcgggcgc	ctgtagtccc	agctactcgg	gaggctgagg	caggagaatg	22740
gcgtgaaccc	gggaagcgga	gcttgcagtg	agccgagatt	gcgccactgc	agtccgcagt	22800
ceggcctggg	cgacagagcg	agactccgtc	tcaaaaaaaa	aaaaaaagt	acaaaaaaa	22860
aaaaattagt	ctgggtgtgg	tatcacgcgc	ctataatctc	actactcgag	aggctga ggc	22920
ggagaattgc	ttgaacccag	gaggtagagg	ttgtagtgag	cccgtatcgt	accactgccc	22980
tccacctggg	caatagagcg	agactctgtc	tcaaaaagaa	aaaaaaaaa	agaacattta	23040
tgccaggtgt	ggtggctcat	gcctgaaatc	ccagaacttt	ggaagactga	ggcaggagga	23100
tcacttgagc	ccagaaattt	gagagtgtct	tccctgggca	acatagagag	acctcatctc	23160

WO 01/77327 PCT/US00/16951 165

taccagaaaa	aaaaaaatta	gcccggcatg	gtggcatatc	cctgtggtcc	cagctactta	23220
gggggctgac	gtggcaggat	cacctgagtc	tggaggcaga	ggttgaagtg	agctgagatc	23280
atgccactgc	actccagcct	gggtgacaga	cagagaccct	gtctcaaaaa	aaaaaaaaaa	23340
aaaaagcatt	tactatccac	catggaaggt	gagactgacc	tgtgagtgat	tgttcaaaga	23400
acaaaaata	aaccccagag	ataagacaaa	agggtgcctc	catgggggtg	tgatttaaag	23460
ctgagaaatt	gggcttcttc	cccctcccct	ctcaccccgt	ggtttgctaa	aggagatggg	23520
aaaaaggatt	ctttttttgg	ctgaaatatt	taacactaaa	ttaaagccaa	ttttaacagc	23580
actttggttg	atgagtgaaa	ttaacagact	ggccaaaaat	aaacgaacgg	tctgtactat	23640
gtgaaaaaga	ggcagctttg	gccatgctgg	gccaatgtga	gttttcaggg	ttgctgggaa	23700
tgtctgtgaa	teggaggaag	ggcctagctg	ggactctcag	gagccaaggc	cctgaggggc	23760
aacttgcctg	gtccctgccc	tgaggcgttc	actgctttct	tcctgggcca	gatcacagge	. 23820
ccggaggctg	gaccactggg	ctggcactct	tgccgagctg	ctccctgact	tcctgaccat	23880
gctcctttca	gcagccttgc	tgcactttag	tttccttgaa	tgaaaaatgg	ggatgagaat	23940
agctcctacc	tccaaggtga	atggagtgag	ttcggacagg	tgactccctg	ggaccagtgc	24000
ctggcgcctg	acaaggtcca	gtcagagccc	gcactgctgt	tactgatacc	cttggctgta	24060
ccaggggaga	acttggttgc	cattgccagg	tgttctccca	ccacccccac	tactgtccct	24120
gtttgatgtg	tggcgggaat	aaagctgtgc	acattggagc	ttttggcaca	tcctggcttt	24180
caggtgaaag	gtgcgtgtgt	gtttgagggt	ttagcctggc	caacccagcc	atgaggtcgg	24240
acctgacctg	ggggtgagtc	ctgagctcgg	cacccctgag	ctgtgtggct	cacggcagca	24300
ttcattgtgt	ggcttggccg	cacccctttc	cctgctgggc	tgttgatgtt	tagactggag	24360
cctctgtgtt	cgcttccagg	aaccaacccg	tgtgcggaca	ggaacggggg	gtgcagccac	24420
ctgtgcttct	tcacacccca	cgcaacccgg	tgtggctgcc	ccatcggcct	ggagctg ctg	24480
agtgacatga	agacctgcat	cgtgcctgag	gccttcttgg	tcttcaccag	cagageegee	24540
atccacagga	tctccctcga	gaccaataac	aacgacgtgg	ccatcccgct	cacgggcgtc	24600
aaggaggcct	cagccctgga	ctttgatgtg	tccaacaacc	acatctactg	gacagacgtc	24660
agcctgaagg	tagcgtgggc	cagaacgtgc	acacaggcag	cctttatggg	aaaaccttgc	24720
ctctgttcct	gcctcaaagg	cttcagacac	ttttcttaaa	gcactatcgt	atttattgta	24780

acgcagttca	agctaatcaa	atatgagcaa	gcctatttaa	aaaaaaaaa	gatgattata	24840
atgagcaagt	ccggtagaca	cacataaggg	cttttgtgaa	atgcttgtgt	gaatgtgaaa	24900
tatttgttgt	ccgttgagct	tgacttcaga	caccccaccc	actcccttgt	cggtgcccgt	24960
ttgctcagca	gactctttct	tcatttatag	tgcaaatgta	aacatccagg	acaaatacag	25020
gaagactttt	tttttttt	tttgagacag	agtcttactc	tgttgcccag	gctggagtac	25080
cgtagcgtga	gctcagctca	ctgcaacctc	cgcctcccag	gttcaagcga	ttcttctgcc	25140
tcagcctcct	gagtagctgg	gactacagac	atgcaccacc	acacccagct	aattttttt	25200
atatttttag	tagagacagg	gtttcatcat	gttggccagg	ctggtcttga	actcctgacc	25260
tcaggtgatc	tgcccgcctc	ggcctcccaa	agtgctgaga	taacaggtgt	gagccaccgt	25320
teceggeata	ggaaaacttt	ttgccttcta	aagaagagtt	tagcaaacta	gtctgtgggc ·	25380
tggccttctg	attctgtaaa	gaaagtttga	ttggtggctg	ggtgcggtgg	ctcacacctg	25440
taatcccatc	actttgggag	gccgacgtgg	gcatatcacc	tgatgtcggg	acttcgagac	25500
cagcctcacc	aacgtggaga	aaccccgtct	ctactaaaaa	tacaaaaaaa	aaattaaccg	25560
ggcatggcgg	cgcctgcctg	taatcgcagc	tactcaggag	gctgaagcag	gagaattgct	25620
tgaacctggg	aggcggaggt	tgtggtgagc	tgagatggca	ccattgcact	ccagcctggg	25680
caacaaaagt	gaaactccgt	ctcagaaaaa	aaaaagtttg	attggtgtaa	ccaaagcgca	25740
tttgtttatg	gattgtctgt	ggcagctttt	gttctgccga	gatgagttgt	gacagatctg	25800
tatgggctct	aaagcctaaa	acatgtgcca	tccgcccctt	tacagaaaaa	gtgtgctgac	25860
ctctgttcta	aagtattgga	caactacaat	gtttgctcat	ttattattct	atgatttgtt	25920
ttctgctttt	tgttgttgtt	gttgttgttg	agatagggtt	tecetetgte	actcaggctg	25980
gagtgcagtg	gtgtaatctc	agctcactgc	agcctcgacc	tectgggete	tagtgatcct	26040
ctcatctcag	cctccctagt	agctgggact	acaggcacac	accaccactc	ctggctgatt	26100
tttttttt	tttttttt	ttgtggagac	agggtttccg	catgttgccc	aggctggttt	26160
caaactccta	ggctcaaaca	cccacctcag	cctcccaaag	tgctgggatt	acaggcgtga	26220
gccaccatgc	ccagcctatt	ctactgtttg	tattacatag	ctttaaaaga	ttttttatga	26280
ctttaagtca	caagggttct	ttgtagaaaa	aaatatatat	ataggaaagt	ataaaaagaa	26340
agtaaaaatt	gtccataacc	tctccagcca	gagacgaccg	ttgctgacac	ctcagcatat	26400

tgcctttaag	tctttttct	ctaagatagc	atttctcttc	atcacagtca	tatgctacgc	26460
agaattctgt	atcctgattt	tttcacttga	cattacaaca	ggtatttgat	ggcgctgtga	26520
caaactcttt	ggcacaatct	tttaaatgta	tgaaatactc	cactgcacag	atgtttgctt	26580
ttaggcttaa	ctgttcttt	attttgcgtg	tgctggttac	agccgggcac	agtggctcat	26640
gcctgtaatc	acaacacttt	gagagggtga	ggcaggagga	tcacttgagc	ccagaagttt	26700
gagaccggcc	tgggcaacat	agtgagaccc	catctctaca	aaaaactttt	ttaataagtc	26760
gggcgtagtg	gtgcatagct	gtagtcccag	ccaccaagga	ggctgagttg	ggaggattgc	26820
ttgagcccca	ggaggttgat	gctgcagtga	cctgagatta	ctccactgta	ctccaacctg	26880
agcgacagag	caagacttgt	ctggggaaaa	aaaaaaaaa	aatatatata	tatatatata	26940
tatatataca	tatatacata	cacgcacaca	cacataatat	aaaaatatät	atttataaat	27000
atataatata	taatataaaa	atatatattt	ataaataaaa	tttataaatt	atatttataa	27060
gtaaatatat	aatatataat	·ataaaaatat	atattatata	atatataata	aaatatataa	27120
tataaaaata	tatatttata	aataatatat	aatacatact	tataagtata	tatttaaaat	27180
atatgtaatg	tatattttt	aatgtatgat	atataatata	catttataaa	tacacattta	27240
tattattta	tataaaatat	atataaaatc	tccaagttgc	tttttccaaa	aaggtgtctt	27300
gctgcatttc	aaacattcat	ttaaaaactt	gaatgctggt	gatctggtcc	agaatgtgtt	27360
cagtagetge	tgccagtggc	caagcatctc	gggagatgtc	tacaaaacac	gctggttctg	27420
gcctggcgtg	gtggctcacg	cctgtaatct	cagcactttg	ggaggctgag	gcaggtggat	27480
caactgaggt	ctggatttcg	agaccagcct	tgccagcttg	gtgaaacccc	atctctacta	27540
agaatacaaa	aaaattagcc	aggcgtggtg	gcatgtgcct	gtaatcccac	ctacttggga	27600
ggctaaggct	ggagaatcgc	ttgaacccag	ggggcagagg	ttgcagtgag	ccgagatcgc	27660
accattgcac	tccaggctgg	gcaagaagag	cgaaactccg	tctcaaaaaa	aaaaaaaag	27720
atgctggttc	ctaaaatgtg	gcccttttcc	tcctcacctg	ctgccagacc	atcagccgcg	27780
		gtggagcacg		•		27840
		ggcaagaacc				27900
		gggcagttcc				27960
acccgaggtc	gctggccctg	gatcccacca	aggggtaagt	gtttgcctgt	cccgtgcgtc	28020

cttgtgttca	cctcgtatga	gacagtgcgg	gggtgccaac	tgggcaaggt	ggcaggctgt	28080
ccgtgtggcc	ctcagtgatt	agagctgtac	tgatgtcatt	agccttgatg	gtggccagga	28140
ctggtagggc	cctcagaggt	catggagttc	cttcgtggag	cgggtgctga	ggctgtatca	28200
ggcacagtgc	tggctgcttt	cacctgggcc	gtctcaccga	agtgtccatg	gagcctgcgt	28260
agggtgggta	tctgtgtcga	ttttacagat	gcagaaacag	gctcagagaa	accgagtgac	28320
ttccctaagg	tcacataccc	agttagagca	gagctgggcc	aggaagtgct	gtctcaggct	28380
cctgaccagg	tctccttgct	ttgcactctt	gccaaaacca	tgatccagaa	ctgactttga	28440
ggtccccgga	cctcaggctc	ctccgaaatg	gcctcttgga	ggctgctgag	ccacagctta	28500
ggacccacct	cgagaggcaa	atgtgctttg	agctgccagg	cgtcctgggg	gccctgcctt	28560
gggcacgggg	ttcagacagg	ccccagatgt	gtggggcgtc	tttctggact	tgagttttct	28620
tttctgtgtg	gtggacacag	tgctcacccc	ttaaagcacc	tgtgatgtgt	gcagcagccc	28680
aatccctgcc	tgtcgcctgt	tctgctaggg	aaggaaggaa	gacttcagga	tggcaggaca	28740
acagaaagag	gtccaggttt	tagagcaagg	gcaggtcaaa	cttagaaaat	tctggaatga	28800
ggatgtgcat	ttcctcttct	ggatctgcta	aaagaagagg	gaaggagggg	ctgctggggg	28860
aggagcccag	agccgagttt	acatccggat	cccgcaaggc	ctccctgcc	ctgaggtctt	28920
gttttgtgat	gtgcttgtgt	ccatcctggt	ttctgccgtg	tccccaacat	ccggccaagc	28980
ttaggtggat	gttccagcac	acactcaccc	tgtctgtgca	cctgtttttg	tgtccgtaag	29040
tgggtattta	ctcaccttac	gagtgagcca	ctgtgggaat	tcagggaggt	ggcgcagtga	29100
ccacccctgg	agggatatgt	gtgtggcagg	ggtcgagggt	ctcgcccttc	cctgcttcct	29160
gcgcgtggct	ttctccagga	cggggagggc	tgagctgaag	aggtggggac	agttgcgtcc	29220
ccccgccacc	cactgtcctg	cggtgagagc	agactcactg	agcctgccct	tctcccttgt	29280
gccttccagc	tacatctact	ggaccgagtg	gggcggcaag	ccgaggatcg	tgcgggcctt	29340
catggacggg	accaactgca	tgacgctggt	ggacaaggtg	ggccgggcca	acgacctcac	29400
cattgactac	gctgaccagc	gcctctactg	gaccgacctg	gacaccaaca	tgatcgagtc	29460
gtccaacatg	ctgggtgagg	gccgggctgg	ggccttctgg	tcatggaggg	cggggcagcc	29520
gggcgttggc	cacctcccag	cctcgccgca	cgtaccctgt	ggcctgcaag	ttccccaacc	29580
tggcaggagc	tgtggccaca	cccacgactg	cccagcagcc	tcaccctctg	ctgtgggagt	29640

tgtccccgtc	cacccctggg	tgcctttgct	gcagttatgt	cgggagaggc	tctggtgaca	29700
gctgtttcct	gtgcacctgc	tgggcactag	gtcccagcta	atccctgtgc	caggactcta	29760
atttcaccct	aacacacatg	gtggttttca	ttgctgggga	agctgaggcc	tgagcacatg	29820
acttgcctta	ggtcacatag	ctggtgagtt	caggatcccc	cagagatacc	agggccagca	29880
ctcgatcccc	acccagccct	gaaccccacc	atgt <u>g</u> ctggg	attgtgctgg	gagtgtccac	29940
acgcctggga	ccccagggct	ggtgctctca	tctccttttt	ccagatcatg	agaatgaggc	30000
tcagggaagt	ttgaaaaaaa	cctatcccaa	gtcacacage	aacaggagca	ggatttgaac	30060
ccagaaaagg	ggaccgcaca	ctctgttctg	ctagagtagt	tagctgtcct	gggtgatatg	30120
gcaggtgaca	ggggcaactg	tgcttaacaa	aggaaccccc	atccccctg	ccaagttggg	30180
agactagaag	gtcaggggca	gaagctctga	agggccaggt	gcagtggctg	acacctctaa	30240
teccagcact	ttgtgaggcc	aaggcgggca	gatgatttga	gcccaggagt	tcaagatcag	30300
cctgggtaat	gtagtgagac	gccatctcta	caaaaaaatt	ttttaaaaat	tagctgggca	30360
tggtggttca	tgcctgtagt	ccaagctact	tgggaggctc	aggtgggagg	attgcttgag	30420
cccaggaggt	tgaggttgtg	gtgagctgtg	atcatgccac	tgcactccag	cctgggcaat	30480
agagtgagac	cgtctccaaa	aaaaaaaaa	gaagaagaaa	aagaagctct	gaggctccaa	30540
gtccccaggc	accccttggc	ttgagggcag	acaagggagg	agagggtcac	ctgggcagcc	30600
ctgacttttg	tcccctggca	aagggacctt	cagtgacctt	ggccctagga	gagcctctga	30660
gcacgtcagc	catgtcgaac	cgctcaggaa	gggcagcaag	aatttggctt	ctgacctctg	30720
cctctcctac	tcgccatctg	cactgggtgt	ggttgtgccc	attttacaga	tgaggaggct	30780
ggggcatcga	ccagctgaat	gccttgtccc	aggtactgcg	taggcagagc	tggcagttga	30840
accccgtgtc	ctggttgtcg	ctgggggtgg	gctgcaccct	gacttgtgag	gccagtagca	30900
aggtttgcac	gtgacttcgt	gaccgtcacc	cagctctgca	gcacatcccg	tgacccagct	30960
catccaggcc	gcatgcaaac	ctgttgccag	gcgagaaacc	agtcaccgca	cagctgtggt	31020
tgcctgaaat	gattaagctc	attaatcacc	ccggagtgag	gacagactca	gatgaaaacc	31080
agcaaaagcc	ctggaaactc	atgtgaccct	gccaatgagg	gcggccatgt	gcattgcagc	31140
ctggccgtca	ctcctcggta	cgtgttttgg	acttaaacgc	tccggatgtt	tactgagtgc	31200
ttgattaata	acatggaagg	cctggtctca	ttgctgtggg	agtgaaggat	gcacagccag	31260

gcctgacatg	atgagaacaa	gaacctggag	tctcgctgcc	tgggtggtaa	teetggeeet	31320
gccacttagc	aactgtgtga	ctgtagccag	gtcacttaat	tttgctagat	cctgcctgcg	31380
cttcagtgga	tettgetggt	tttccaaggt	ggccaaacac	tttaaggcat	tcatgtggtc	31440
gctaggctgc	agggttgaac	cctggctcac	cccgcagggc	gccgtgtgct	ctgtggcctg	31500
gctgtgcctt	tgctgacacc	gtgcccgtgt	gtgttcatgc	aggtcaggag	cgggtcgtga	31560
ttgccgacga	tctcccgcac	ccgttcggtc	tgacgcagta	cagcgattat	atctactgga	31620
cagactggaa	tctgcacagc	attgagcggg	ccgacaagac	tagcggccgg	aaccgcaccc	31680
tcatccaggg	ccacctggac	ttcgtgatgg	acatcctggt	gttccactcc	tcccgccagg	31740
atggcctcaa	tgactgtatg	cacaacaacg	ggcagtgtgg	gcagctgtgc	cttgccatcc	31800
ccggcggcca	ccgctgcggc	tgcgcctcac	actacaccct	ggaccccagc	agccgcaact	31860
gcagccgtaa	gtgcctcatg	gtcccccgca	cctcactccc	tcgttagatc	aggctggttc	31920
tgggagctga	cgctgaaagg	agcttctcat	ctggggttcc	tgggtgtaca	tagatggttg	31980
ggtaggttgt	gcactgcaca	agctgcatga	tgctacctgg	gggtccaggt	ccaggctgga	32040
tggacttgtt	gcttcatcag	gacatagata	aatggccaaa	actcctcagc	tggaaggtcc	32100
tgggcaggat	ctttgggtgt	gaaaaccagt	cacaggggaa	gggtgcttgc	tcatactgcc	32160
agcacagtgc	tgagtgcttt	ccatagcgct	cgtttactcc	tcaagcctgg	agggtgggga	32220
gtagcatggt	cccatttcac	gtacaaggaa	cccgatgcac	agagaggtgt	ggcaacccat	32280
ccaaggccat	acaactgggg	tgggttgagc	cggggttgac	tgtggcaggc	tggctcaaga	32340
gtccctgctc	ctgaaccctt	gccaggcage	ctggcatcag	ctcggggaat	ttttgccctg	32400
acccttggaa	gcaagtgggc	ctctttgttc	tcatgtcagt	gatgagaaga	gtgactttcc	32460
tatggcccct	ctggagtaca	ggtgtttcct	gttggcgggc	tcttccccca	tgacatcagc	32520
agcgagctgg	ttatgattcc	ctacgcagaa	cttgatagtt	tataaagctc	tttgtcatcc	32580
aggccccgtt	ggagteteac	gcagacctgg	tcgcaggcgg	ggctggtctt	gcctgtccca	32640
gctgcatgga	tggggaactt	gaggettgea	aaggttaagg	ggctgttcga	ggcccaggct	32700
ggcaggagat	gggcctgggc	cagagtctgg	gacttcccat	geetgggetg	tctttggtcc	32760
tgttgctcac	catecetece	tggggccatg	accttagaga	gccaaatgga	ggtgcaggta	32820
acccacggca	aggaggggtt	gccatgactc	agagtccccg	tcctgtggcc	ggcagtacct	32880

ggtgcaacga	cttggatttc	agaccagcca	ctgtagcccg	ctgacggtgc	gctcgaagtg	32940
ccacagette	tgaagccagg	caggactcag	gccaggagac	tctgttagct	gttgagaggg	33000
agaggccaac	ggatgttctg	gttctgctag	agagctggtt	cttcggatcc	tggtac cagt	33060
gcactgagag	gaggcccagc	ttgattctgg	ggctgccttg	tggtggcatg	tgctgctcac	33120
tgacaccctc	gaggagtgtc	tteteteggg	cttgttgact	gtgcccggtt	ttccgcagtt	33180
cactggtgca	cacataggca	catagcaaac	cgcacacaça	gtcgtgggta	tgagtttcac	33240
tacattccac	caccagtgtt	cactaccatt	acctgccttc	egtettaagt	gttcatcatt.	33300 - 100 100 100
taaaaataaa	tttattgggc	tggacgcggt	ggctcatgac	tgttatccca	gcactttggg ····	·33360 <i>- ··· ··</i>
aggctgaggc	gggcagatca	cctgaggtca	ggagttcaag	accagcctgg	ccaatatggt.	33420
gaaactccat	ctctactaaa	aatacaaaat	tagctgggca	tggtgg g ça	tgcctataat 👵	,33480;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
cccagctact	caggaggctg	aġgcaggaga	atggcgtgaa	cccgagaggc	agagettaca:	33540 - July 197
gtgagcccag	atagcaccac	tgcagtccag	cgtggggaac	agtgcgagac;	tccatctcaa	33600
aaaaaaata	aataaataaa	agaaaaataa	atttatgatc	tatttcaaaa	ataacacatg	,336,60 _{0.37545} 5
tactttgaaa	cagcagagac	acatatgaca	cggagaatga	aattccccat	agegeaecee.	33720
caagagacag	ccctggtccc	cccgtctttc	ccgtggacct	ccagcggggc	agatg¢tgag. :	33780
ccgcctgttg	tcgagtggcg	tgctatcccg	tectegaget	cctctgtggc	ttacagacac	33840 mm s.ig. t
ccacctgcag	ccctgtcttt	gcctcctcta	gcgcccacca	ccttcttgct	gttcagccag .	33900
aaatctgcca	tcagtcggat	gatcccggac	gaccagcaca	gcccggatct	catcctgooc	33960
ctgcatggac	tgaggaacgt	caaagccatc	gactatgacc	cactggacaa	gttcatctac	34020
tgggtggatg	ggcgccagaa	catcaagcga	gccaaggacg	acgggaccca	ggcaggtgcc	34080
ctgtgggaag	ggtgcggggt	gtgcttccca	aggegeteet	cttgctggtt	tccaggctgc	34140
tgcccctgtc	cttagcagag	ggaggaaaca	gaggatggct	ctgggtgaat	gatgacttgg	34200
gcttcgatta	tgtagtcaca	gggtatgacc	ctgagatgcg	tggaaccccg	agactgtgat	34260
tatatgtaga	aactgggttt	ccccgttgtt	taagtagtca	tggtggggtc	agaccccaca	34320
ggacttttgt	cttttcaaga	aagaaaatgg	tcgtgtgtca	tgcaggggta	gttggtactg	34380
gttaatccag	gtttatcctt	tattttgtgg	gaactgtaca	gtcatttctg	ctacaatgct	34440
gtatatgcto	ttctgaaaga	cacctatgca	aaatcgcaca	gtaaaaatga	cacaactcat	34500

agggaaagcg	gggccagggc	acagccctca	aaatctccat	caatgacatg	taagaaaaga	34560
gaggaacctg	ggaaatagca	aagtgccttt	tgcacattaa	atggttagct	atatcccaca	34620
atactgtgca	ttcgtaaacg	ttaatgctgc	aataaatacg	gcacttcacc	ttgggaagat	34680
ctggagttgg	cttatgagtg	tggaagggtg	tagcgcatga	gtttttgtga	aacactggaa	34740
ggaggattgt	gggaaatcaa	atggaaagtt	ctcaccccag	gcgtggagaa	gagtgggtca	34800
tggccccagc	agtgagccca	gggaggtcag	agacggaggt	gtgtgtgtgg	gtgtgaccct.	34860
gcgcagttcc	ctgccggctg	tagttttttg	cattcgctta	atgtttctcg	tggaggaaat	34920
tgtgcatgag	caaatgtgaa	accgtgctgt	gctcaaattg	tcctaataca	tcattgcatt	34980
ggaacagatt	ggctttttt	tttttttt	ttittttt	tttttgagat	ggagtctcac	35040
tctgtcacca	gcctggagtg	cagtggcatg	atcttggctc	actgcaacct	ttgcctccta	35100
tgttcaagtg	attttcctgc	ctcagcctcc	tgagtaactg	ggattacagg	catgagccac	35160
cgcggccggc	cagatttgca	tttttgaaac	aactgctagg.	ctgggcgcgg	tggctcacac	35220
ctgtaatccc	agcactgtgg	gaggccgagg	caggtggatc	acctgaggtc	aggggttcga	35280
gaccagcctg	gccaacatgg	tgaaaccccg	tctctactga	atatacaaaa	atcagctggg	35340
tgtggtggcg	ggtgcctgta	atcccagcta	ctcaggaggc	tgaggcagga	gaattgcttg	35400
aacccaggag	gcagaggttg	cggtgagccg	agatcacacc	attgcactcc	agcctgggca	35460
acaagagcaa	aactccatct	caaaaaataa	aaaatagaaa	aacaagtgct	gtagcggaag	35520
tgagcacttt	gcggagtcag	gcttgtgtgg	cctgttccac	aaatgatgtg	ctcacggtgg	35580
cctcaggccc	acctggagtc	tgcagcatgg	ggcacaacag	gttcattagt	gtagaattcc	35640
aggacaggcc	tggctcctaa	gcagccttct	tttacaaaaa	ctgcagagcc	cgcctgtatc	35700
ctagcacttt	gggaggccga	agtgggtgga	tcacgaggtc	aggagttcaa	gaccagcctg	35760
gccaacatgg	tgaaacccca	tctctactaa	atatacgaaa	attagctggg	tgtggtgg ca	35820
cgcgcctgta	gtcccagcta	ctcgggaggc	tgaggcagaa	ttgcttgaac	ctgggaggtg	35880
gaggttgcag	ggatctgaga	ccatgtcatt	gcactccagc	ctgggcaaca	gagcgagacg	35940
ccatctcaaa	aaaaaaaac	ctacagagcc	acacggcctc	tttctccacc	gagtgt tgg t	36000
gtgggagctt	gtgttattgt	ggtgaaatct	tggtactttc	ttgaggcaga	gagaggctga	36060
gcgcctggag	agactttcac	atgggtcgcc	atgtccgccg	tcggtttcgc	tgttgtgctc	36120

cccatctgaa	ggctggtgcc	gtccagacag	gctggacgcc	cctttccacc	agatccttcc	36180
tcccgcagca	gtttctagtt	acgttgtact	gtgaggtctg	tgtccttggt	tgatggcaaa	36240
agtcagccga	attgaaattc	agagccatgc	ctggctccct	ggagcttctc	tcctgggcag	36300
ctgtgatcat	tgcctctgct	gtggtgtggg	tggtggaaat	ggattccttt	catcttgctt	36360
gctacaggtg	actgtcacgt	ggagtccttt	ggagagaggg	acgtgttaat	tgatggatgt	36420
ggctcccatg	ctgagaaagc	tcctgggcgt	acattgcctt	agagtttcat	tggagctgcg	36480
ttcttttatg	gtgtctgcta	ggcagaagtg	atgaagactt	ggaagaaaac	ccagaaggtt	36540
ttccacttaa	tttggaaaat	gtgcttttcc	cctcctgtgt	cttttgctaa	ggtccagcct	36600
cctgcagcct	ccccgctctg	tggactetgg	ctttgattct	ttattaggag	tccccctgct	36660
ccccaaaag	atggtgtcta	aattatcatc	caattggccg	aggttttgtt	ttctattaat	36720
tgtttttatt	ttttattgtg	gtaaatttat	ataacataaa	atttgccatt	ttaattgttt	36780
tgttattgtt	gtttttgaga	cagggtctca	ccccagtgcc	caggetggag	tgcagtggtg	36840
cgatcatggc	tcactgcagc	ctcagcctcc	agggetecag	tgatectete	acctcagcct	36900
ctctagtagc	cgggactaca	ggcatacact	accacatctg	gctgattttt	tgtattttt	36960
ttttattgta	gagacccgct	atgttgccca	ggctggtctc	aactcctgga	ctcaagccat	37020
cctcccacct	caccctccca	aagtgctggg	attacaggca	tgagccacaa	cacccagcca	37080
ttttaatttt	tttttttt	tttgagatgg	agtctcactc	tatcgcccag	gctggagtge	37140
agtggcgtgg	tatcaactca	ctgcaacctc	tgcctcccag	gttcaagcga	ctctcctgcc	37200
tcagcctcct	cccgagtagc	tgggattaca	ggtgcccatc	actatgcctg	gctaattttt	37260
gtattttta	gcagagacgg	ggtttcacca	tgttggccag	gctggtcttg	aactcctaac	37320
ctggtgatcc	gcccgcctcg	gcctcccaaa	atgctgagat	tacaggtgtg	agccaccgtg	37380
cccggccttt	ttttgtttt	gagacagggt	cttgccctgt	cacccagact	ggagtgcaat	37440
ggtgggctct	tggctcactg	cagcctccgc	ctcccaggct	caagttgtgc	acctccacac	37500
ctggctaact	gtattttatg	tagagacaga	tttcaccatg	ttgcccaggc	tgggcttgaa	37560
atggactcaa	gcagtccacc	cacctcagcc	tcccaaagtg	ctgagattac	aggcgcgagc	37620
caccgcaccc	agcccatttt	acctattctg	cagttgacag	ttcagtggca	ttcagtcagt	37680
tcacgaggta	accatcactg	ccattcatct	ccagactact	tcaccttctc	ggcagatgtc	37740

cgaaactgtc	cgcattgaac	acactcctca	tctccctctg	acagccacca	ttctactttg	37800
tatctctctc	tgccttctct	aggtacctca	tgtaagtgga	attataccaa	tatttgccct	37860
tgtgtgactg	gcttctttca	tgtgacatgg	tgtcctcaag	gttcatctgt	gttatagcct	37920
gtgtcagaat	ttecttectt	aaagcctgaa	taataacccg	ttgtaaaggc	tgggcgcggt	37980
ggctcacacc	ctctaatccc	agcattttgg	gagtccgagg	tgggcagatc	acttgaggtc	38040
aggagtttga	gaccagcctg	gccaacatag	tgaaaccctg	gctctactaa	aagtacaaaa	38100
ttagctgggt	gtggtggcgc	gcacctgtaa	tcccagttac	tcaggaggct	gaggcaggag	38160
aatcgcttgt	acccgggagg	cagaggitgc	agtgaaccaa	gattgtgcct	ctgcagtcca	38220
gcctgggtaa	cagagtgaga	cttcctgtct	caaaaaaaa	aaaaatcatc	ggatggatgg	38280
acggaccact	tcttgttatt	tatccatcca	cgggtgctag	gtttcttcca	cctttggttg	. 38340
tcgtgaataa	ggccactatg	aacatttcct	tccgtggtga	aggttttgta	ctagtgagga	38400
aaaggcgtgt	ttgtggtgtt	gcataggatt	ctggtaagaa	agtttgcact	aaccataagt	38460
atttgtacta	cattaaaatg	aaagctcagg	ggccgggcgc	ggtggctcac	gcctgtaatc	38520
ccagcacttt	gggaggccag	ggcgggcgga	tcatgaggtc	aggagatcaa	gaccatcctg	38580
gccaacatgg	tgaaaccccg	tctctactaa	aaataccaaa	aaactagcca	ggtgtggtgg	38640
cgggcacctg	tagtcccagc	tacttgggag	gctgaggcag	gagaatggcg	tgaacccggg	38700
aggeggaget	tgcggtgagc	cgagatcgct	tcactgcact	cgagcctggg	caacagagca	38760
agactccgtc	tcacgcaaaa	ctctgtctca	cgcaagactc	cgtctcaaaa	aaaaaagag	38820
ttcagggttt	atgaaactgg	ccagccgcgt	aaagtttgct	gtgttgttt	tgtgcccggg	38880
aggagtgtgg	ccagggtgtc	acgtcacaca	gtacacgttt	ctcagatggt	ggttctccag	38940
actgctgtcc	caaagtctgt	ttttgcatct	ggttcccaca	gacccaccct	ccacggtgag	39000
cctgattttg	gccagggtag	ctggaatett	gcttgtcttt	cagcccggca	gctgtaccag	39060
tccagggtcc	acagctagtg	gcttttagga	aggaatttgt	tcagttggct	ttgacacatg	39120
gccccctagg	gtccacaget	ctgtagtgat	gtggatgttg	ttatctacaa	agacacatga	39180
tccttcgtgt	ccagatgaaa	gtgatgatgt	ctttgcagct	gcccagcaag	gctgtgtgtg	39240
tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	tggtgtgtgt	gtggtgtgtg	tgtgtgtatg	39300
ggggagġgag	gcaccctttc	catctggggg	tgtgtgtgtg	tggggtgtgt	gtgtgtgtgt	39360

gcgcgtgtgt gtggtgtgtg gtgtgtgtgt gtgtatgggg gaggcaccct ttccatctgg	39420
gtccaagaga ctgggcctgg ggaagacgct tctttttatc tacttagaga ctttgtttta	39480 ,
tttgtatttt tttgagacag ggtctcactc tgtcacccag gctggggtat ggtgatatga	39540
gcatagetea etgeageete ggeeteeeag getgaagega teeteeeace teageettet	39600
gaatagetgg gaetgtagge gtgegteace atactgaget attgtttttt ttgtttggtt	39660
ggtttaattt tttttgatac agatggagtc ttgctatgtt gcccagacta gtctcaaact	39720
cctgaactca agtgattctc ccacctcagt ttcccgacat tctgggatca caggtgtgag	39780
ccactgctgt ctccctgttt tattaactgc tgaaagacct agataaagaa agtctgaaaa	39840
gacttactat cagagcacca tectaagatg attecetetg acteaatgga gagggagggg	39900
agetttteet teaggeetgg gtggeaggag eccaggtget ecaggeecea tttgeeceag	39960
gccaaatcac tcgggaactt ggatgcagct gtctttcagg gtaacccaaa ggaaccagat	40020
ccccgcaggc agtaggcttc tgggctgtcc tctcctccta cgtcagctca gtaagagccc	40080
ttcgaaggga tgctgtgtcg gaggccccaa aagcccaggc tcatccctga gatgcacagg	40140
gtgggctggg cttaggcagc gctcgagcat ctcctggacg gtgaccccag agagtgtgga	40200
gacggagagt cettgagagt cactgagaga cgtggetgec etgeetteec aagagggget	40260
ctgagtcatt ccccacactc acctgcccct acccaccctc acctggcccc cagcctcacc	40320
tacccccaca tetgtacega tecetttace egeacettee etacccacee teaceteece	40380
tgtaccttca cctccccac tcacccgccc ctgcaccctc acctgtcccc caccttcacc	40440
taacccccac ceteacetge ceteceetca cetggeetee tteegttggg gaaggggttg	40500
taaggggcgg cccccaaact gtctgtcctg gtgccctgca gagaaaacag tacgtgaggg	40560
ccgcagtcca aaagcttgag tcctggaagg tggaggagac agggatgtgt tgggaagggc	40620
cccatggtet tggatecett etegaetgte aatggggeet teatgggage gecagtetag	40680
tgatgcacag ctgggtgccc ggcgggtggc tgaggaggcc taaagtccga ggcggcaaga	40740
gctcttccag aggctgttgt cctaatcgct ctggcatact caggcgggca cgtagttagg	40800
agctgattgg agaggagaga cccccacacc aatactggga tttgactttc aggctaaact ,	40860
tgagaagtgt ggcctctgct gtcctgccag agctctccag ccagtgccca gggctctcca	40920
gecagtgeee gggggtetee accagtgeee gggggtetee gecagtgeea ggggteteeg	40980

ccagtgccca	ggggtctccg	ccagtgctca	ggagtcttgg	tttctttgtc	ttacagccct	41040
ttgttttgac	ctctctgagc	caaggccaaa	acccagacag	gcagccccac	gacctcagca	41100
tcgacatcta	cageeggaca	ctgttctgga	cgtgcgaggc	caccaatacc	atcaacgtcc	41160
acaggctgag	cggggaagee	atgggggtgg	tgctgcgtgg	ggaccgcgac	aagcccaggg	41220
ccatcgtcgt	caacgcggag	cgagggtagg	aggccaacgg	gtgggtgggg	gtgctgcccg	41280
tccaggcgtg	cccgccgtgt	cttatgccga	atgccagcct	ctcacaggct	ggggagactt	41340
tccacctggg	gatccaatgg	gtggctttcc	agggtcccaa	aagcaaacac	aggtttttca	41400
cagcccgtcc	gggaaagcag	aaagccccaa	ggggctggaa	ggggaaaggg	ggagctctgc	41460
tgagaggtta	caaggcagcg	ctggccgacg	ggagttgcag	ttgataggtt	ttgtatcatc	41520
cttgttaaac	ttgaaccctg	tgcagaaatc	ccttccacgg	catgggggct	gcctgttgac	41580
tegeteetgt	tccaccacag	ggagctcctg	ggcttcttcc	tcccagaggc	ccccgacgct	41640
cccacctgtt	ggtcgtcaga	gcttctggtt	ggtgggaagg	cacccaggac	cttgaggtct	41700
ccagagagaa	aagccaggga	aagagggaga	ccgaaaccca	tgtgacatga	aactcaggct	41760
ccaaactgag	cacgggaacg	tttggggaca	ggagcgcgat	ggccttcctc	agatagetgg	41820
ggggctggca	tgaagacggg	agctacagcc	agcacaggtc	ctgggccggg	agcccagaga	41880
ttgagccctg	actctgtcac	ttactggcca	cgtgaccttg	ggcgggtggc	atageetett	41940
ggagactcag	tttcctcatt	ggtaggagtg	acggccacag	tggtgcggcc	tctgcagcac	42000
acggggggct	cggtgggcgg	aagccccggg	tctataaggc	ggctgtgcag	gagccagccg	42060
agctggtctc	ccaacagcca	gggctccggg	gtccttagca	gctgtggggg	gcctgcacct	42120
gtttcccatg	gctgctgtca	gaaattacca	gaagccaggt	ggctgagagt	aatggacact	42180
tgttctctca	cagttcctga	gggctgaagc	ccgagatcga	ggtgtgggca	gggccctgcg	42240
ccctctgaag	gctctgaggg	aacctttggg	cttctggtgg	ctccaggcac	cccttgactt	42300
gtggtcctgt	cactccagtc	tctctgtctg	gctgcacatg	gcgtggcctc	ttctgtacca	42360
ttgaaggaca	cttcagttgg	atttagggcc	taccctcacc	cattgtggtc	gtatcttgat	42420
ccttcatgac	atttgtaaag	accetgette	caaataagct	cacattctga	ggttctgggg _.	42480
tgagcgggaa	tttggagagc	attgttcaac	tagtatagaa	tgtgacctgt	cagecteggg	42540
cagccctgag	aggcaggggc	tttccacagc	ccagctgggt	gccctgggct	ccgtgctgtc	42600

cgaggagacg	ccatccccac	acccgtcctt	cacccgccac	cctcccgcag	gtacctgtac	42660
ttcaccaaca	tgcaggaccg	ggcagccaag	atcgaacgcg	cagccctgga	cggcaccgag	42720
cgcgaggtcc	tcttcaccac	cggcctcatc	cgccctgtgg	ccctggtggt	agacaacaca	42780
ctgggcaagc	tgttctgggt	ggacgcggac	ctgaagcgca	ttgagagctg	tgacctgtca	42840
ggtacgcgcc	ccggggcctg	ccctaaccgc	agacacccgg	ccttcattgt	cagtaatggc	42900
agcagctgcc	acattgtccg	agacctgccg	tgagcccagt	gccgcgccag	gggctttgtg	42960
tgtagcgtgt	tttgtcctca	cactgacagc	tgtaggctgg	ggttctgagt	gagccccaca	43020
gggcagaggc	agaaaatgag	tctcagagag	ggtgagcgag	ctgcttgggg	cccacagca	43080
ggagatggag	caggactgca	gectageete	tgcccccagc	acctgcgcaa	gaagctgctc	43140
tgctctggac	tgtgttaggc	tgcgagggct	ggagagaaat	gagagttggt	gcttagagag	43200
ggggcgcagg	tccccatggc	ttttcctctt	atgatgaggt	agatgggtga	agggagggge	43260
catgcttgca	ggggccagtg	accgaggccc	gccgttggaa	ctgatggcct	tcatcccgag	43320
cccagcccag	gtgggagcag	ggctttccga	gggcttgtct	tgggtcggcc	tgcttccagg	43380
gactetgetg	cagctcccac	ccctgtccaa	agcatggaat	cccccaggct	ccctggcagt	43440
cctgtcaacc	tctgtcctcc	caagctgagt	gtggggcaag	ttctggaggt	cagcactgct	43500
caggggggcc	cacgggctgc	ttgcaggggc	caaccgcctg	accctggagg	acgccaacat	43560
cgtgcagcct	ctgggcctga	ccatccttgg	caagcatctc	tactggatcg	accgccagca	43620
gcagatgatc	gagcgtgtgg	agaagaccac	cggggacaag	cggactcgca	tccagggccg	43680
tgtcgcccac	ctcactggca	tccatgcagt	ggaggaagtc	agcctggagg	agttctgtac	43740
gtgggggctg	gcagtggggt	gggcagggtg	gcctctaaac	ccgacccctg	gaggaggctg	43800
gaggccagtg	caagatcctg	tgtggcctca	gccaggcggt	ggtctctgcc	agatgccaac	43860
tgttgcccgc	tggggttcag	cgacatgtcc	gaatgtcccg	aggcctctga	ggttgttttc	43920
ttttgccgca	gaacaaatca	ccacgaacag	cgttttaaga	caacaccaac	tctttttt	43980
tttttttt	tgagtcagga	tettgetetg	ttgcccaggc	tggggtgccc	tggtgcaaac	44040
acagttcact	gcagcctcga	cctctgggct	taattaagtg	aacaccttgc	ctcagcctcc	44100
caggtagctg	ggactacagg	tgggcaccac	cacacctggc	taatttttt	ttgtagagac	44160
ggggtttccc	catgttgccc	aggctggtct	gcaactcctg	ggcacaagct	atctgcctgc	44220

tgtggcctcc	caaagtgcta	ggattatagg	tgtgagccac	tggcctgaca	acacccacgg	44280
attgtctctc	agttctgtaa	ggcaaagtcc	aggcacagcg	tggctcacct	gggttctctg	44340
ctcagggtct	cacggggcca	gaatcaaggt	gtcaggaacg	ctgggccctc	ageggagget	44400
ctgtggagaa	attagettee	ttgctcactc	agcaggtagc	agttgtggga	tcgaggttct	44460
gttttctctc	tggttattgg	teggggacca	ctctcagctc	ctagaggcca	ccacaggtcc	44520
ttgccccgtg	gccctctctg	cctcagcagt	gggggctccc	tgcgtcagtc	cctcccacac	44580
cttgagtctc	tctgatttgc	ttctaaaggg	ccctgtgatt	cggctcagcc	acctttagat	44640
taggttagcc	tcccctttga	tagactccaa	gtcggctgat	taataacctt	aatcacatct	44700
gcagaatccc	ttctgccaca	taaggtcatg	acgccgtgct	ggggactggg	gtgggaaatt	44760
acggggtcat	ttaggattct	gcctgccact	gecttgetgt	gtcccagggc	ttgggggagg	44820
ggcctccaca	gctgggacca	cagtccttcc	tecectecat	ggtaaccatc	tgaggattac.	44880
ttgagaccag	cctgggcaac	atggtgagaa	cccatcccta	caaaaaatac	aaacaaaaag	44940
ggaccaggct	gggcttggtg	gctcatgcct	ataatcccag	cactttggga	gaccaaggtg	45000
ggctgatcac	ttgaggttgg	gagttcgaga	ccagcctgcc	caacatagtg	aaatcccgtc	45060
tctactaaaa	atacaaaaat	tagctgggtg	tggtggcagg	cgcctgtatt	cccagctact	45120
ggggaggctg	aggtgggaga	attacttgaa	cctgggaggc	ggaagttgca	gtgagccaaa	45180
attacgccac	tgcactccag	cctaggcaat	agagtgagac	tccgtctcaa	aaaaaaaaa	45240
gggccagggg	tggtagtgac	aaagagaccc	tatcccaaaa	aaaccgaaca	ctgaatcctt	45300
gagactgagt	aaggacactg	tgaaattttt	ctgggtgggg	cagggaacag	agcgtcttct	45360
gtcatttctt	ccacctgggt	gtggtcagct	ctccctccaa	gctgcctcct	cttcttctca	45420
ttgtccgggt	gttggacaca	tttggttaac	tggatagaat	aacgcgagtt	cccagggact	45480
tggtccattt	gctattttat	tttattttat	tttattttat	tttatttatt	tatttattta	45540
tttatttatt	tattgagatg	gagtttcgtt	tttgtcgccc	aggctggagt	gcagtggcgc	45600
gatctcggtt	cactgcaacc	tetgeeteee	aggttcaagt	gattctccta	cctcagcctt	45660
ccaagtaact	gggattacag	gcacccacca	ccataccagg	ctaattttt	tgtattttta	45720
gtagagacgg	gttttcgcca	ttttgcccag	gctggtcttc	aactcctagc	ctcaggtgat	45780
ccacgcacct	cggcctccca	aagtgctggg	attacaggca	tgagccacca	cgcctggcac	45840

catttgctat	tttaattccc	atgtgtatta	gtgtcccacg	gctgctgtaa	caaatgacca	45900
caaactggat	ggcttaaagc	aacagaaatg	gattccccca	atgtgctgga	gaccagaagc	45960
ctgcgaccaa	actgttggga	gggctgtgct	tcctctgggg	gctccaggga	ggatctattt	46020
gttggccctt	ccagtgctgt	gggtgccagc	gttccacact	tgtggatgcg	ccgcctcaac	46080
ctctgcccat	cttcatgtgt	ccatctcctt	tgtgtctgcg	tctttacctc	ttcttcttgt	46140
ctgtgttgcc	tcttataagg	acgtttgtca	ttgggtttag	ggcccaccca	aatcatccga	46200
gatgacctcg	tcttgagatc	cttaacctgc	aaagaccctt	tttccaaaaa	aaggttatgc	46260
tcacagattc	taggccttaa	gacatgggtg	tatctttctg	gggggcacta	tccaacccct	46320
tatacaatga	aagacgggaa	gagggccagg	tgtggtagtt	cacgcctgta	atctcagcac	46380
tttaggaagc	tgaagcggga	ggatcacttg	agcccaggag	tttacaagta	gctaggcaac	46440
atgatgagac	cccatttcta	caaaaagtga	aaaaaaaaa	aaaaaaaaa	aagccaggtg	46500
tggtggctca	cacctgtaat	cccagcactt	tgggaggctg	aggcaggcag	atcacgaggt	46560
caggagattg	agaccatcct	ggctaacacg	gtgaaacccc	gtctctacta	aaaatacaaa	46620
aaattatggc	cgggcgcagt	ggctcccgcc	tgtaatccca	gcactttggg	aggccgaggt	46680
gggtgaatta	caaggtcaag	agatcgagac	catcttggct	aacacggtga	aaccccatca	46740
agatcacaag	gtcaagagat	ggagaccatc	ctggctaaca	cggtgaaacc	ccgtctctac	46800
taaaaataca	aaaaattagc	cgggcatggt	agcgggcgcc	tgtagtccca	gctgctcggg	46860
aggctgaggc	aggagaatgg	cgtgaacccg	ggaggcggag	cttgcggtga	gccgagatcg	46920
ctccatgcca	ctgcactcca	gcctgggtga	cagagtgaga	ctccgtctca	aaaaaaaaa	46980
aaaaaaaaa	aaaaaaagaa	aattagccag	gcacagtggc	aggtgcctat	tgtcccagct	47040
acttgggagg	ctaaggcagg	agaatggcat	gaacccggga	ggtggagttt	gcagtgagcc	47100
gagatcatgc	cactgcgctc	cagcctgggc	gatagagcaa	gactctgtct	caaaaaaaa	47160
agccaggcat	ggtggtgcat	gcctgtagtc	ccagctactc	aagaggctga	ggcaggaggg	47220
ttgttcgacc	cacggagatc	aaggctacag	tgagccatga	tcgcaccact	gccctccagc	47280
ctgggtgaca	gagtgtgacc	ctgtctcaaa	gtaagtaaat	aggaggagag	acaagtgggc	47340
agttcagact	gatggtatgg	gcacagtaga	gactggtgca	gacaggctgg	cctgtgatgt	47400
caagcaactt	ctgtaattgt	ttccggcatc	catttgtgtg	tcaatttccg	tgtcagtagg	47460

aagactctgt	aggctgccaa	gaggaataag	tgggaggatc	ctcccagaga	ggccgggcct	47520
gcaggagggc	cagttctcat	gagttctcat	ttggccccta	ccctccaggc	tgtggttctg	47580
aggtgggaga	cagagcctga	cctctgtttg	tcttgttttg	tctttgcagc	agcccaccca	47640
tgtgcccgtg	acaatggtgg	ctgctcccac	atctgtattg	ccaagggtga	tgggacacca	47700
cggtgctcat	gcccagtcca	cctcgtgctc	ctgcagaacc	tgctgacctg	tggaggtagg	47760
tgtgacctag	gtgctccttt	ggggtgatgg	acaggtacct	gattctctgc	ctgctaggct	47820
gctgcctggc	atccttttaa	aatcacagtc	cctgtggcat	ccagtttcca	aagctgattg	47880
tgtcttcctt	tgccctcctt	tcttttctac	tatgtgcatt	cggtgctatg	aattttcctc	47940
taagtactgc	gtttcctgca	tctcacaaat	tttgttacat	tttcattttc	aggtagtttg	48000
aatattttta	cacttctcct	gagatgacat	ctttggctca	tgtgttattt	agaagtgttg	48060
cttagtttct	aaagagttgg	ggcttttcca	gctgtctctc	tgcaactgat	ttctaattta	48120
attctactgt	agtctgagag	cttattttat	atgatttctg	ttattttaaa	tgtgttgggt	48180
gtggtgttt	tgttgttatt	gtttttgtgt	ctttttgttt	tgttttgctt	cgtttgtttt	48240
gtttttgaga	cagtgtcttg	ctctgtcact	caggctggag	tgcaatggcg	cgatctcagc	48300
tcaccgcaac	ctctgcctcc	cgggttcaag	tgatcctctt	gcctcagcct	cctgagt agc	48360
tgggattaca	ggtgcacgcc	accataccca	gctaattttt	gtatttttag	tagagacggg	48420
gtttcaccat	gttggtcagg	ctggtctcga	actcctgacc	tcgtgatccg	cccacctcgg	48480
cctcccaaag	tgctgggatt	ataggcgtga	gccactgtgc	ctggccatta	ggtgtgtttt	48540
atcacccagc	atcatgcagt	ttatcttggt	gaatgttctg	tgtactcttg	aaaagaatgt	48600
ggattctgct	gttgttgggt	ggagtgttcc	agaaacatca	attagatcca	gttggttaat	48660
agtgctcatc	aggttgtctc	tatccttcct	tcctgactgc	ctgcttgagc	tgtcagttat	48720
tgacaggggt	gtggagtctc	caactctaat	ggtggatttg	tttatttctc	ctagtagttc	48780
tatcttttc	tctccttcta	cccttgatcc	tcttctcccc	ctagggcttc	ctggtgttag	48840
tggtgggaga	gtggggtagt	gaagaacctg	gactttaggg	ccaaagaggc	cagggttcaa	48900
atcctggctc	tgtcacttcc	cagttgagtg	accctggctg	gtgcctgaat	ctctgtgagc	48960
ctccacttcc	tcctctgtga	aattgagagc	acttacctgg	caggetgtca	tgggcatcaa	49020
gtaacagggc	actccacctg	gaccctgaca	cgtgatgcac	aggaatgcca	gctgctatgc	49080

	catgggtgtg	gcagtagtaa	taaagtgacc	atctgtatcc	tcaccacagt	gaagcctgtc	49140
	cagggctttc	tctcctatgc	ccccatgcct	ccaggtggcc	ttggatcctg	ttggttct gt	49200
	gctctgctca	gcgacctttc	tcccgtggga	gttcctgggg	gttcagcttc	atcctacaga	49260
	cagcagcaca	cactggctgt	gcaccctttt	tttttttt	ttttttt	tgagatggag	49320
	tctcgctttt	ttcgcgcagg	ctgaagtgca	gtggtgtgat	cttggctcac	tgcaacctct	49380
	acctcctggg	ttcaagtgat	tttcctgcct	caccctccca	agtagctggg	attacaggct	49440
	cccaccacca	cgcccggcta	atttttgtat	tttcagtaga	gatggtgttt	caccatgttg	49500
	gccaggatgg	tcttgaactc	ctgacctcag	gtgatccgcc	cacctcagcc	tcccaaagtg	49560
	cagggattac	aggcgtgagc	caccacaccc	ggagtgccgg	ttgtttttag	cagtttgtct	49620
	tgttcctgga	gagactggct	cctgcccagg	agctcgggga	gtagggccgc	ggggtgctgc	49680
	ctcacacctc	gagtttggcc	gtaagcagag	gggacatttt	gtgactgtcc	ccctcctgag	49740
	cttcccagca	gcttttctcc	aagttacagc	ccaaaagctc	aggtggattt	gcaacccaac	49800
	ggtgtctgtg	cacctcccac	tgatgcccga	actgccctgg	ccaagaaacg	gggccgtcag	49860
	aacgctgcac	taactgcagc	cttgggcctc	catgccagag	gccatgccct	tecatecace	49920
	accccctggc	ctgggccctg	ggccctcctg	gctcgggaac	tccaggcccc	ttcctcacgg	49980
	ctcgagagac	gtgtatttac	cgcacaggtg	cttgtcattc	tcttgtggcc	tettetecag	50040
	ggagatcaca	gaaggacagg	gcctcactga	ggtctcggac	atggaccctt	tgatagtggc	50100
	aggagccagg	ctgggcaaga	ggcggccaca	gtcacctcag	cagtgccatc	accaccgcca	50160
	ttcagccctt	ccctgagccg	ggcgcgcccc	tggctctggc	cccagtgtcc	cagttacagc	50220
	tcacaggagc	ttgtggtgcc	cagcggctgc	ttctgattga	gagtcgaggt	cggaggcttt	50280
	gggaggctga	gaggctgctc	ggtttcacaa	ctgctgaggg	agacttgggc	tccatctcag	50340
	gtatgcccca	tgtcgccctc	aacetecage	caccggtcct	ccgtgtcccc	catggccagg	50400
	cacggettge	agacatctgt	cgttggctcc	tctcagccgt	cgtgggctga	ccctggcacg	50460
	tcctcctgtg	gctgagccca	gtggggacag	ctgcttcctt	ttattaccct	agaactctcg	50520
	tctttgatca	ggccccctcc	cctatgccac	acagtccctg	tcactcgggt	gagcccagta	50580
•	gtcatgggga	aggcctgcgg	gttccaaaca	tccaaaggct	tgcgtgcagc	atgacagett [*]	50640
	gaaaccgatg	tttttacct	tgatcagatt	tcagcttggc	gggggctttg	ctcagctttc	50700

agtgaggcct	gggccgattt	cccagcatcc	cctcctgagg	ccagcctctg	tttcctgtga	50760
ttttctgcac	aaagtgggag	ggaggagtcc	taggaaatgg	ggggccacct	cgaagcctag	50820
gcctcctctg	gcttctctgt	gccagtgccc	ccacgctttg	tgtctgtgtc	cccagcccat	50880
gggactctgc	tattccctga	gtgctgccgc	atgcccagcc	cgcactgagg	acgtggagcc	50940
ccgaggggca	ggatggcctc	catggtcaca	cgtaggaagt	ggcctccacc	ctccgatgat	51000
cctctccctc	ctccctttca	gegeeeteee	cgggggtgtc	ctcagccctc	ctgcctgtgc	51060
tttgtcccgt	cttctgcagg	cgcctgggac	gtgctgacag	gtcctctgcc	ggctcctgcc	51120
ttgctatgcg	cacgctggtc	accacagagg	cctggccctt	cttctgtagc	agtcccacac	51180
ccgcaacagg	tgtggctgct	gaccacctgc	tttctgcccc	tctggtcctg	aggagggcgc	51240
agtgggcact	caggcgtggc	tgagcagatg	tgtgttgccg	ggaggaggaa	ggactgctcc	-51300
agtcagggct	gaatttccca	cccggagcat	ttctgctgta	tttggtgtag	cgcctgctgc	51360
ttaaagctct	gattcccagt	tggcaccctt	tecettetge	attgaaaaac	atacggatgc	51420
atgtcttctt	gcagtgaatg	tgtattctcc	cagectetet	tctgggttgg	ggctggaggt	51480
ggagcggcac	acaggagccg	cagcgatgga	ggatgtgcgg	gtgcagcacc	ccgtacagca	51540
gggatgccaa	acccgcgctg	agtccctctc	aacttctgct	ttgaagccca	gtcacgccat	51600
tgcctgggtt	ttgctgggcg	gggctgcgtg	tgatgttctc	ctctgtccct	ccccagagc	51660
cgcccacctg	ctccccggac	cagtttgcat	gtgccacagg	ggagatcgac	tgtatccccg	51720
gggcctggcg	ctgtgacggc	tttcccgagt	gcgatgacca	gagcgacgag	gagggctgcc	51780
ccgtgtgctc	cgccgcccag	ttcccctgcg	cgcggggtca	gtgtgtggac	ctgcgcctgc	51840
gctgcgacgg	cgaggcagac	tgtcaggacc	gctcagacga	ggcggactgt	gacggtgagg	51900
ccctccccgt	caaggctctg	ccaagaccct	ggccctgccc	tccgggatac	gagcttgggg	51960
ctgcctccgg	cctcacagga	gtaggggctc	tgaaaacctt	tgcttgcagg	gagattgcca	52020
agtctgtctt	ttaggcccaa	caaggaaaac	tctgcagttc	cacccatcct	gteccaccag	52080
gtagtgtggc	ttgaaggcag	actgtgaggg	tctatctcac	cttcctgcat	taggtcagga	52140
gtttcacaga	aacctgaggc	acattcaggg	gtgggctgca	gaggtccatg	gctcacaccc	52200
tggaaaatcc	gcccccaaaa	gacagtgctg	tctccactga	ccagtctgtg	ggatagtgct	52260
taagcctgag	tggtttctat	caacatgtag	aatcaggagg	tataaagaga	tttgctcagg	52320

catcctgggc	cctctctgac	cagcaggatc	ttcctttaga	tcttgacagt	gaaacacatc	52380
tcttctgtgc	cccctgtgag	ttttctttca	ttcattcatt	cattcattca	ttcattcatt	52440
cattcattcg	agacagagtc	ttgctctgtc	acccaggetg	gagtgccctg	gtgtaatctc	52500
ggctcactgc	aacctctgcc	tccagggttc	aatcgattct	cctgcctcag	cctcccgagt	52560
agctgggatg	acaggtgcgc	accaccatgc	ctggctaatt	tttgtatttt	tagtagagac	52620
agggtttcac	catgttggcc	aggctggtct	cgaactcctg	acctcaggtg	atccgcccgc	52680
ctcagcctcc	caaagtgctg	ggattacagg	catgagccac	cgcgcccggc	ctgagttttc	52740
cttttatgaa	ggacctgctt	ggttggttgc	ctgccacatg	ttgtcagcac	catgggccca	52800
ggactgctga	ggagctgttg	atgccctcgc	tctcccagag	ccaccggctc	tgttagataa	52860
ttcacatgca	gtctggccac	tgtcctacgt	cctcattcac	aaagagcaga	catttcgtag	52920
aagatgaggg	cctgggagta	acctccctgc	atgtttttct	ataaaggcat	agtggttaag	52980
tccttccagc	tcattgacca	ttggagaatt	ttatggaggc	tgtagactag	gggctggtaa	53040
actaagggcc	caggggccaa	atccagcctg	ccacctactt	ttgtaaataa	agttttcttg	53100
gtgcacagcc	atgcccattc	attcatttgc	acaatgtctg	tggctgcttt	catgccaaaa	53160
gcaagagaac	tgagtggtta	tgctggagac	ctacggcctt	caaagcccca	gacctcacgt	53220
ctggcccttg	acagacagag	cttccccagc	cctgctgcgc	atcctggccc	agcatgtgct	53280
gtgtgtgtga	tttcagcttg	caggagccgt	ggttaggaat	tgtccctgtg	ttggtccatt	53340
ttgcattgct	atgaaggagc	acctgaggcc	gggtagatta	tgaaggaaag	aggtctgtct	53400
ggctcatggt	tctgtaggca	gcaccagtat	ggcacccgca	tctgctcagc	ttctagtgag	53460
gtctcaggaa	gctttgactc	atggtgaaag	tcgaagcggg	agcaggtgca	tcacatggtg	53520
agagaggag	caacggagag	agagagagag	cgcctctccc	tcttgccctc	accttgagag	53580
gagatgccag	gctcctttaa ,	gtaaccagct	cccatgtgaa	ctcacagtga	gagcccattt	53640
	agagggcacc					53700
	ccttggggtc			•		53760
ccatgccatg	ccatgctatt	cctattctat	tatttgagac	agaatctcgc	tctgttgccc	53820
aggctggagt	gcagtggcat	gatcttggct	cactgcaacc	tccacctccc	aggttcaagc	53880
gatteteetg	tatcagcctc	ccgagtagct	gggattacag	gcacacacca	ccacaccegg	53940

ctaatttttg	tattttcaat	agagatgggg	tttcaccatg	ttggccaggc	tggtctcaaa	54000
ctcctggcct	caagtgatcc	acctacctcg	gcctcccaaa	gtgccatgat	tacagatgtg	54060
agtcactgcg	cccagtgagg	gtcacatttc	cgttgagatt	tggaggggca	gacgttggag	54120
ccatctgagc	cccctcgtcc	cgctctagct	tctcctcccg	tgtgccccgc	ggtgctggtg	54180
gcaggccctt	acgccggttc	tggctgcatg	ctctgttcca	gaagctttct	tccctgcttg	54240
gttaccagaa	aatcatccca	tccattacaa	ggacagggtc	cccttatctc	ccattcccag	54300
ggcaggacac	cgggggcagg	gcaggtgggg	aactgagcaa	gttctctggg	ggcaggcgtg	54360
gctatggctc	cctctgggtg	ggcgtctggg	gaggggtgga	ggcagccgtc	agcgccctgg	54420
cttgctcttc	ctccctggcc	agagactgtg	gccttgtgct	gctcccgtgt	gggctgcctg	54480
cacctccagt	gggttgtgct	ccctcccctc	ccctcccctc	aagctctgct	gagcaccact	54540
gccttccaca	gccccactc	tcgggaggcg	aggctcctcg	tggccattcc	tgtccttggc	54600
acccaccccc	ccaccaacct	ggtagagcct	tgggcggggt	ctgttactcc	ttgcatggcg	54660
tagacctccc	cacagtaggc	acctgacaca	tacctcctgg	ggggcaggca	ggaggtgcgt	54720
tgaggtctca	gccctggcag	tccctcccct	gcgtggcata	ggcctcgcca	cagggtcatc	54780
gagggtgggt	ggagactgta	ctagaccact	ccccgctggt	cctagaaagg	gtcccatctg	54840
tctgctctct	gtttggagtc	cagaccttgg	ttgctgtgcc	ctgcatggtg	ggctgggggg	54900
caccctccag	cctctctgag	tgcatggcct	ctccttgcag	ccatctgcct	gcccaaccag	54960
ttccggtgtg	cgagcggcca	gtgtgtcctc	atcaaacagc	agtgcgactc	cttccccgac	55020
tgtatcgacg	gctccgacga	gctcatgtgt	ggtgagccag	cttctggcac	ggggaagggg	55080
cgtccgggct	gggttccccc	aggaacgtgg	agtttagggg	aggagacgtg	cctttccage	55140
ggggctgggg	gctgtgtggg	agactcaggc	ggctgggagg	ctccttgcgg	gaggcaggga	55200
agcctttccc	agggcagcgg	ccaggaggac	agactgtgag	ctgtgggctc	ggcggctaca	55260
gagtctgcct	cagtgggcgg	ggctgatggt	gtccaggtgc	ctgcagcacg	cacccaccca	55320
cgggaccttg	ctgagcagcg	tctgtcaggc	agcaagatta	cccgagggct	gcagtggtcc	55380
tgttccctgg	cagcttactg	tctggctgag	gaggagtgat	gttcacatat	gcacacatgt	55440
catgtgcaca	cacatgtaca	tgacaacatc	ccacatgete	ctcaaatagc	atgacctgta	55500
cagtcacgga	tatagggcct	aggggatagg	aggccaagac	agtcagggaa	gactttccag	55560

aggcagtggc	tcctgaaagg	ctgtctgatt	caggcaggaa	gggagctgag	ttcagatagg	55620
aagtagcaat	gagtcattgt	gtctggggac	atggccactc	cttcgctgca	gagggacctg	55680
ggctgagagc	tcctctctta	tggctgcagt	cgggagagaa	gtctgttggg	gggagaaggg	55740
ggcttcctca	agggactccc	tgtgcccttt	ggcaccttcg	tgccaggtca	ggcttgaggc	55800
ctgaaggcag	tggtggggc	caccaagggt	cgcctcctct	gctgggcaag	ttcccagtct	55860
gacgggcctg	tgccgtgggc	cccagctgtg	ggggcgctgt	tgatgcgcag	ccaggcctcg	55920
ccgccagagc	ccgcacgctt	ccattccgct	gacttcatcg	acgccctcag	gatcgctggg	55980
ccggccctgt	gggagagtga	atgtggcttt	tgccaaagtt	gagtctggag	cctggaaact	56040
tccctatggg	cagccttgat	agtggagtgg	cccaaggagc	ccacccagcc	gaccctgccc	56100
ctcccgtggc	tggtgggcgg	caccaggggc	tgcctggctt	tgctcgttca	ccaacatcac	56160
ctgggctggc	cagggegege	tcacttctgc	caccaccgag	ggccctgggc	gaaggagtga	56220
ataccagget	gccttggcag	ggatgtgttg	agggctgtgg	ggagtcggac	agcggcgggg	56280
gtcagaggag	gaggagggtg	caccgtgcag	gctgaagggc	cacgttaccc	tgaggttggc	56340
caggctcccc	aggcctagcc	tcccagctcc	cccactttct	ccccaccctc	caccagtggc	56400
aaagccagcc	ccttcagggc	gcacggtgtc	tgcccccaag	gagggcccat	tccgttgggg	56460
ttaatgttgg	ccacctcttt	ctgtttgtct	ctggcagaaa	tcaccaagcc	gccctcagac	56520
gacagcccgg	cccacagcag	tgccatcggg	cccgtcattg	gcatcatcct	ctctctcttc	56580
gtcatgggtg	gtgtctattt	tgtgtgccag	cgcgtggtgt	gccagcgcta	tgcgggggcc	56640
aacgggccct	tecegeaega	gtatgtcagc	gggaccccgc	acgtgcccct	caatttcata	56700
gccccgggcg	gttcccagca	tggccccttc	acaggtaagg	agcctgagat	atggaatgat	56760
ctggaggagg	caggagagta	gtctgggcag	ctttggggag	tggagcaggg	atgtgctacc	56820
ccaggccctc	ttgcacatgt	ggcagacatt	gctaatcgat	cacagcattc	agcctttccc	56880
actgagcctg	tgcttggcat	cagaatcctt	caacacagag	gcctgcatgg	ctgtagcaac	56940
ccaccctttg	gcactgtagg	tgtggagaaa	gctccttgga	cttgaccttc	atattctagt	57000
aggacatgtg	ctgtgttgtc	cacaaatcct	catgtaccct	agaaatgaat	gtggggggg	57060
ctgggctctc	tccagagctg	aaggaatcac	tctgtaccat	acagcagctt	tgtcttgagt	57120
gcagctggga	tttgtggctg	agcagttaca	attcctacgt	ggcccaggca	ccaggaacgc	57180

aggctgtgtt	tgtagatggc	tgggcagccg	caccgcagag	ctgcaccatg	ctggtttgta	57240
tcacatgggt	gaccatggta	tgtctaagaa	ggtggagtcc	ctgtgaggtc	tgcaggtgcc	57300
cccacagctc	caggccacct	tgaggattgc	ctctgcctgc	ccagccctga	gttccctctc	57360
ccctgtcctg	tcccactgtc	accccaagcc	ggcctcattg	ggagcctgtt	ggatggcagg	57420
gtatagatgt	aacctgattc	tetetgggga	gcggggttat	ctggcttctc	aagagctcct	57480
aggagcccac	agtggtggca	ccatcacagt	cgcagcagcc	cccagagaac	gcggccctgt	57540
ctgttcctgg	cgtgctctgt	gctgccccgc	ctgggttccc	tgccccagtc	gcaggcccct	57600
tggaggaggt	accatgtgtc	tcccgtttca	cagatgagcc	ccggggagct	cactctagta	57660
gtggccagag	aggcctgcgg	ctcagggagc	ggggcacatt	tccaacagga	cacaccgccc	57720
tggtctgagt	ctcgtgggta	gtgggagcag	aggagagcgc	cctatgtctg	tggggcggct	57780
tggctgagcc	tggaagccac	ctgacctccc	ccgtcccttc	cctgccagge	atcgcatgcg	57840
gaaagtccat	gatgagetee	gtgagcctga	tggggggccg	gggcggggtg	cccctctacg	57900
accggaacca	cgtcacaggg	gcctcgtcca	gcagctcgtc	cagcacgaag	gccacgctgt	57960
acccgccggt	gaggggggg	gccggggagg	ggcggggcgg	gatggggctg	tgggcccctc	58020
ccaccgtcag	tgctggccac	cggaggcttc	ccgggttcct	gggggctgtg	ccaccgcctc	58080
tgaggcatgc	ttgctttctt	cccttttcaa	accettetge	ttccttcttt	aatgacattg	58140
ttgattgtgg	ataatctgaa	aactacacaa	aaatataaag	agccaaaatc	tcacccaaat	58200
ccacctccta	gagtggctgt	tgggctccgt	cagcatccag	gcggccgtct	gtgttccgca	58260
cggcccagcc	catcgatagc	egcetgcace	aggcctgtct	gccctctgtg	agcctcccca	58320
cagggttccc	tccacaaaca	ccctgttctc	ccacccaggg	ctggctgctt	cctggaaaac	58380
agctggatgg	ttttgtgcat	gacagacaaa	cacagggtga	ttttcgtggc	taaaatactc	58440
cctggagctt	ttggcagggt	gaggggctgg	ctccagctga	gccacgcctt	gagtgaaatg	58500
actgtgagga	gaataaactg	ccgctgccct	ccaggatcac	tggggctggc	tggggagaac	58560
ccccgtttct	gggagcacag	tcccaggatg	ccaaggcgag	cttggtgccg	agatgtgaac	58620
tcctgagtgt	aaacagcggg	ggctgacttg	acatgctttg	tatgcttttc	atttgttcct	58680
gcagctgtat	gcccctaagg	tgagtccagc	ccccttctgc	ttcctctggg	gcctcgccag	58740
tgagccccac	cttgctgggg	ctggttcctc	ctgcccttct	gggtatccct	cacatctggg	5880 0

gtcttgtctt	cttgttttct	ttttctttt	tttttgagac	ggagtttcac	ttttgttgcc	58860
caggetteag	tgcaatggtg	tgatctctag	gctcaccgca	acctctgcct	cccaggttca	58920
agcagttccc	ctgcctcagc	ctccctagta	gctgggatta	caggcatgtg	ccaccacgcc	58980
cagctaattt	tgtatttta	gtagagatgg	ggtttctcca	tgttggtcag	gctgatcttg	59040
aactccctac	ctcaggtgat	ccgcccacct	tggcctccca	aagtgctggg	attacaggcg	59100
tgagccaccg	cacctggcct	ttttctttc	ttttctttc	ttttttctga	gacagggtct	59160
cgctctgtca	cccaggctgg	agtgcaatgg	tgtcatcatg	gctaactgca	gcctctacct	59220
tctaggctca	agcaatcctc	ccatctcagc	ccctaagtag	ctaggactgc	acgcatgcat	59280
ccccatgccc	agctaatatt	tacattttt	gtagagatga	agtttcacta	tattgcccag	59340
gctggtctcc	aactcctgga	ctcgagcgat	cctcctgcct	cggcctcccc	aggtgctggg"	59400
attacaggcg	tgagccaceg	tgcctggcct	ggggtattgt	cttcttatgg	cacctgactg	59460
tggtgggccc	tgggaaggaa	gtagcagaag	agggttcttc	ttggtttcct	ggacagtaac	59520
tgagtgttct	ggaggcccca	gggcctggct	ttgtttaggg	acaaagggaa	ctggtaacca	59580
gaagccgaga	gtttaaacac	ccactgccct	tcttccctgc	tcctgctgct	gcaacccagc	59640
ttaaccagcc	aggagtgcta	ggaacccaag	cagggccccc	gagcacacag	caggcagctc	59700
acgaattctc	ttttcctgtt	ctcccttggg	agctgggagg	atcttaatca	ggcaataaga	59760
gatggcactg	agcagccagc	taatttttta	aatcacttta	ttgtttaacc	atatgactca	59820
cccacttaaa	aaagggtaca	gttcagtggg	ttttagtgta	ttcacagatg	tgtgcaaccc	59880
tcaccacagt	taattttaga	acattttcct	gcccctaaaa	gaaactctgc	atgaagccag	59940
ctgtttttaa	attagcaaag	ttattttgca	tcctttaaat	atatgttcat	ggtacaaaat	60000
tcaaaagata	cagaagagtc	tgcagtccaa	agagactccg	ccccatgac	gccaagcagg	60060
catccctggg	aggcatggcc	tcctgcagtg	tgtttcttct	atgtcccccc	aggggtcatc	60120
tgtacatatg	caagcataca	agagcgtgga	ctttgttttc	caagccagaa	gataattgta	60180
gatttatgtg	cagttgtgag	aaagagcaca	gacccattta	tcctctgcct	ggtttccccc	60240
agtgctgcct	gccatcttgc	atgacttcca	ttcctatcat	aagcaagaca	ctgataacga	60300
ttctttcacc	ttattcagat	tgacataagt	gttttttgtt	tgttcttgag	acaaacttcc	60360
tctgtcaccc	agtgggagtg	cagtggcaca	atcacagete	actgcagcct	caaactcctg	60420

ggetcaageg atteteetge etcagteeee teaagtaget cagatggeag gtgtgeaeca 60480 tcatgccagg ctaattttta aattttttgt ggaggtgagg cctcactaaa tttcctgggc 60540 tagtettgaa eteetgaget aaagtgatee teetgeetea geeteecaaa gtggtaggat 60600 tacaggcatg agccactgcg cctgggctga catatgtgtt ttcgtaagcc cgaaagatag 60660 catctgaaga gtcaacattg agccttgcct tttgctgcta acgatgtata aaagctgctg 60720 ttctqaqcat ttcgqaggct cccagctgcc gtgtgcaccc tgcctagagc tctaccgtaa 60780 eccateteeg ggaggaggtg ctattgtttt ceteattttg caacaaggag getgaagaac 60840 tgagcatgaa ccactggcct gggtcgttcg gttggtaggc agtggggcca ggccatccaa 60900 etcacaacca cettetaete tgetteecee geaccetgaa gtttgttetg ttttgaggae 60960 acageegtea cattettggt ggetgaacag cacteettgt caggegtgge tgggeeeeca 61020 ctggagggca tcatggtcct ctctcctgct gcggttgaac cttggctgtt tcaaccactc 61080 ctgccaagtg gccctctgaa agggacagtc catcttttct cagcagaggg ccacactggc 61140 aaaacggtcc ctggcaccct ttctctccac ctgtctaata tagagtaaaa atggtatcat 61200 gttaagatct tcatttatat ttattttatc atgaatgatg taagcatcat tttgtgtgtt 61260 taagaacett tgggcccage gtgatggett geagetgtaa teteageaet ttaggagget 61320 gagatgagcg gatcacttga ggccgggagt ttgagaccag cctggccaac atggagaaac 61380 cccgtctcta gtaaaaattt aaaaattagc cgggtatggt gatcccagct acttgggagt 61440 ctgaagcatg agaattgctt gaacatggga ggcggaggtt gcagtgagcc gagatcgcgc 61500 61560 aaaagaaaag aaattatcaa totootottt tatggcatat atatatatat atatatatat 61620 atatatat atatatattt tttttttttg gttatgttca gaaaggcctt ccctgctctg 61680 atcataaaaa acaacttatt ttcacactct ctctcttttt ttttttgagac agagttttgc 61740 teetgttgee caggetggag tgeagtggeg caateteage teactgtaac eteegeetee 61800 egggttggag tgatteteet geettacett eeegagtage tgggattata ggeatgeace 61860 accatgcctg gctaattttg tacttttagt agagacgggg gtttctccat gttggtcagg 61920 ctggtctcga actcgcgacc tcaggtgatc cacccacctc ggcctcccaa agtgctggga 61980 ttacagacgt gagccaccat gcccagccca cactetettt ettaacgtee teeteettte 62040

gttttacgtt	cacatcttta	attcttctgg	gatgtaatta	gatttgatga	gcaaggtggg	62100
catccagctt	gtttcttggc	tgatggctta	tgggtggcgt	gaattagtcg	gggtctatca	62160
ggaggcagaa	actctatgag	aatttgaaca	gagaaagttc	cgtctacagg	cttattacca	62220
gggactggaa	tagcagaaat	tgaacagtga	gatgtacaga	gaactctaag	aatgcaggaa	62280
taggccaggc	atggtggctc	acacctgtca	tcccagcact	ttgggagacc	aaggcgggtg	62340
gatcacctga	ggtcaggagt	tcgagaccag	cctggccaac	atagtgaaac	cccatctcta	62400
ctaaaaatac	aaaaaaatta	gctgggtgtg	gtggcgcatg	cctgtaatcc	cagctactcg	62460
ggaggctgag	gcaggagaat	cacttgaacc	tgggaggcag	aggttgcagt	gagccgagat	62520
catgccactg	tactccagcc	tgggtggaag	agcggaactc	tgtctgaaaa	aaaaaaaaa	62580
aacaagaagt	tcaacttgaa	gggaaaaatg	ccgtattgtc	tttccctttg	ttatgtcacc	62640
agggcacagt	ccatcccagg	ctggcgctga	tccacgggct	ggagaggggc	tgccccagaa	62700
gaggacatgc	caggaagggc	ttggctggtg	ttcaggagcc	caggccaggt	caggtcaaga	62760
ggtgttgagg	ctggacggga	gaggccagct	aggggctcat	gtaggatatg	aggggtcggc	62820
ccatttcaac	gtggaaactg	agctcttctg	cttctctttc	ttcttcactg	cattaagatt	62880
caataccgct	tgggaagcag	gtatttccct	tcctataaag	gatggttggg	agcctgagtg	62940
ttgggagaaa	gtgtagccgc	tgagttacta	acaactaggg	ctgccgtcaa	gcctatgggg	63000
aaagagagaa	gaggacattt	ggaaggagag	agatcaagct	gtggcaccct	gggagaggac	63060
cacagaaaag	aggccagtga	gggggttccc	cggtggcatc	tgaaggtgtg	gcccaaccag	63120
gaggtccaga	ggctgccagc	cgagtggccc	aggagaggga	acctcacagg	ggctgagtgg	63180
gacccaagcc	ctatccaccg	tcctaaccac	ccacatttct	cgggaacaag	acctcccaca	63240
gtggcctccc	cggcagtgga	aatagccaaa	ctggcaacat	ggactttett	caactgcccg	63300
ggcgatgctg	cctcagtgcc	ccagggcagg	caggaagctc	ccacacccat	tctggaatga	63360
ggggttggag	gaaggctgag	ctgagcaaag	gacccatctc	tgctctggtt	ggtggggagg	63420
gagcccatta	tacaagagac	ccctcagggc	tcagtgaggg	gtgacagaga	cttggggagt	63480
agtggctgtc	actgcagagg	tgagagggtt	tggagagaag	gtacatgcct	ttttggccac	63540
attgagtagc	acctggtagc	cagttagtaa	cgtgtattgg	ataaacaaaa	gattaaacgg	63600
atgcaaaaaa	aaatgttggc	tttgcttctt	tttacccaaa	cctcagttcc	ctcaagtaga	63660

ttctgggaac	acccctacc	tggctggact	gttgtgaagt	ttaaataagc	caggttaact	63720
tcacctcctc	ctttaagaca	cageteagae	actgcctcct	ccaagaagcc	ccctctggct	63780
tcctgtgtga	atatgacggc	cctctgggct	ctagggtatc	ttagaacaat	gcttccttat	63840
ggctttggaa	ccccgctgtc	tcctggattg	ggagcaaatg	caggggagga	gccacacctg	63900
actaatctct	gggtctccca	gcacataagt	ggcataaggg	cagggctgtg	cccgcttcag	63960
gcacttactg	aaggatgtac	ttggcagagg	gtaggcagcc	ggcggatgag	cccctcactc	64020
tccccagctg	actgcgtggg	cgggaaaggc	gggttcagga	gacccagcct	ccctgggctg	64080
tcaccacctc	tgcacatcca	gccccattga	tcaagggttc	aatttttggg	gtcctgttgg	64140
gaggccagga	gactctctcc	aggcacttct	tccaggtctt	tgtgttaggg	tgtgtgtgtg	64200
tgtgtgtgtg	tgtgtgtgtg	tgtgttgttt	gttttatttt	atttatttat	ttatttattt	64260
atttatttat	ttatttattt	tgagacgcag	tetegetetg	ttgcccaggt	tggagggtgg	64320
tggcatgatc	toggotoact	gcaagctccg	cctcccgggt	tcacgccatt	ctcctgcctc	64380
actcttcctg	agtagccgga	ttacaggcgc	acgcaccatg	cctggctaat	tattttgttt	64440
ttttagtaga	gacagggttt	cgccacgttg	cccaggctgg	tcttgaatcc	ctggcctcaa	64500
gcgatccgcc	cgcctcagcc	tcccaaagtg	ctgggattac	aggcgtgagc	caccgtgccc	64560
gcccagccta	ggggtacatg	aaacttttt	tttttttt	ttgagacaga	gtttcactct	64620
gtcctcaggc	tggagtgcag	tggcgtgatc	tcggcgtact	gcaatctccg	cctcccggtt	64680
caagcgattc	tcctgcctca	gcctcccgag	tagctgggat	tgcaggcacg	cgccaccaca	64740
cccagctaat	ttttgtattt	ttagtagaga	cgggctttca	ccatgtggga	caggatggtc	64800
tcgatctcct	gacctcgtga	teegeeegee	tcagcctccg	aaagtgctgg	gattacaggc	64860
ctgagecacc	gtgcccagcc	atgatgtttt	gatacaggca	tataacgtat	aataatcaca	64920
tcagggtaaa	tgatgtaacc	atcacatcaa	gcatttatcc	tttgtgttac	aaaaaaaat	64980
ctaattatac	tttcctactt	attcttttt	tttttttt	ttgagacgga	gtctccctca	65040
gtcgcccagg	ctggagtgca	gtggcatgat	ctcagttcac	tgcaagetet	geeteetage	65100
tetgeeteet	gggttcatgc	cattctcctg	tctcagcctc	gcgagtagct	gggactacag	65160
gcgcctgcca	ccgtgcccgg	ctaattttt	tttttgtatt	tttggtagag	acagggtttc	65220
accgtgttag	ccaggatggt	ctcgatctcc	tgacctcata	atccgcccgt	ctcggcctcc	65280

caaagtgctg	ggattacagg	catgagccac	cgccccagc	ctatttattc	ttaaatgtac	65340
aataaattat	tgttgactcc	agtcaccctg	ctgtgctacc	aaatacggat	cttcttcatt	65400
ctatctaact	gtatttctgt	acctgttaac	catctctcct	ccacctcacc	ccccaaaccc	65460
actacccttc	tcagcctctg	gtaaccatcc	ttctactctc	tatctctatg	agttcaattg	65520
tattaatttt	tagctccccg	gccgggcacg	gtggctcacg	cctgtaatcc	cagcacttca	65580
ggaggctgag	gcaggtggat	cacgaggtca	ggagtttgag	accagcctgg	ccaacatggt	65640
ggaaccccat	ctctactaaa	aacacaaaaa	ttagctgggc	gtggtggtgg	gcgcttgtag	65700
teccagetae	ttgggaggct	gaggcaggag	aatcgcttga	aactgggagg	cagaggttgc	65760
agtgagccaa	gattgcgcca	ctgcactcca	gtctgggtga	cagagtaaga	ttccatcccg	65820
aaaaaaaaa	agtttagctc	ccacaaataa	gtgagaacac	gtgaagtttc	tctttctgtg	65880
cctcgcttgt	ttcacttaac	ataatgacct	ccagttccat	ccacgttgtt	gctttgttat	65940
aaatgacagg	atcttggtca	ggcgcagtgg	ctcatgcctg	taatcccagc	actttgggag	66000
gctgaggtgg	actgatcatg	aggtcaagag	atcgagacca _.	tectggetaa	cacagtgaaa	66060
ccccgtctct	actaaaaata	caagaaatta	gccgggcgtg	gtggtgggca	cccatttccg	66120
ccccttctcg	ggacgctgat	gcacgacata	ttacccatcc	ccggaagact	aatcctcccc	66180
cactctatat	tgtacctctt	cctttctcct	ccacgcgatt	ccccgagtaa	cccgtcttcc	66240
ctccctcctc	ggattacgct	cacctttccg	cttcaatcac	gttgctccgt	ccccttcccc	66300
attcgtacca	ctcctcactt	tegtetteet	acccccacta	tecetttteg	tectetetat	66360
tccttactta	ctcctcccc	ttctcttcat	acttcattcc	ctccgctctt	cccactcgcg	66420
ctcccacttt	cacctagttg	ccctcaccta	cgttgccatc	tegeceette	ttcagctctc	66480
ggcctctcac	ccatctgtcc	tctctcttac	ctctctcctc	atctcgctca	gaçatetete	66540
tagactatcc	ctcactttac	cttctcagtc	gtcttcttcc	tatccttcgt	tctccatgat	66600
cttcacgtcg	ccatctcttt	tegeeeettt	catatgtctc	tcttcatgtt	ctcactatca	66660
ttctcatgat	cactatcgtt	ctcactactt	atcactcccc	tctttcttca	tcaattcctc	66720
tccgtcattc	tegtetetet	cttacaaccg	ccttccttgt	gctatctaac	tcaaccatgc	66780
ctctcctact.	ctctctctat	cgcccctcca	tcgcttatgc	atcctcttct	attgcacacc	66840
cgccctcca	tcgcttatgc	atcctcttct	attgcacacc	gcccctccat	cgcttatgca	66900

<400> 14

<210> 15

ctcgagaatt ctggatcctc

20

teetetteta ttgeacatee tettetattg cae	6693
<210> 12	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificial sequence is a primer.	
<400> 12 ctgagcggaa ttcgtgagac c	21
<210> 13	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificial sequence is a primer.	
<400> 13 ttggtctcac gtattccgct cga	23
<210> 14	
<211> 20	
<212> DNA	٠
<213> Artificial Sequence	
<220>	
<223> Artificial sequence is a primer.	

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence is a primer.

<400> 15

ttgaggatcc agaattctcg ag

22

<210> 16

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence is a primer.

<400> 16

tgtatgcgaa ttcgctgcgc g

21

<210> 17

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence is a primer.

<400> 17

ttcgcgcagc gaattcgcat aca

23

<210> 18

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence is a primer.

<400> 18

gtccactgaa ttctcagtga g 21

<210> 19

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence is a primer.

<400> 19

ttgtcactga gaattcagtg gac 23

<210> 20

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence is a primer.

<400> 20

gaatccgaat tcctggtcag c 21

<210> 21

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence is a primer.

<400> 21

<212> DNA

<220>

<400> 24

<210> 25

<213> Artificial Sequence

<223> Artificial sequence is a primer.

cuacuacuac uatgtatgcg aattcgctgc gcg

WO 01/77327
196

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence is a primer.

<400> 25
cuacuacuac uagtocactg aattotcagt gag

33

<210> 26

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence is a primer.
<400> 26

cuacuacuac uagaatcega attectggte age 33

45

<210> 27

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence is a primer.

<400> 27
aactggaaga attcgcggcc gcaggaattt tttttttt tttt

<210> 28

<211> 13

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence is a primer.

<400> 28

aatteggeac gag 13

<210> 29

<211> 9

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence is a primer.

<400> 29

ctcgtgccg

<210> 30

<211> 14

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence is a primer.

<400> 30

gtacgacggc cagt 14

<210> 31

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence is a primer.

<400> 31

aacagctatg accatg

<210> 32

<211> 18
<212> DNA

<220>

<213> Artificial Sequence

<223> Artificial sequence is a primer.

<400> 32
ccaagttctg agaagtcc 18

<210> 33 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence is a primer.
<400> 33

aatacctgaa accatacctg 20

.

<210> 34 <211> 57

<212> DNA

<213> Artificial Sequence
<220>

<223> Artificial sequence is a primer.

<400> 34
agctgctcgt agctgtctct ccctggatca cgggtacatg tactggacag actgggt 57

<210> 35

199 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> Artificial sequence is a primer. tgagacgccc ggattgagcg ggcagggata gcttattccc tgtgccgcat tacggc 56 · <210> 36 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Artificial sequence is a primer. <400> 36 agctgctcgt agctgtctct ccctgga 27 <210> 37 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Artificial sequence is a primer. <400> 37

gccgtaatgc ggcacaggga ataagct 27

<210> 38

<211> 20

<212> DNA

<213> Artificial Sequence

<220> <223> Artificial sequence is a primer. <400> 38 gagaggctat atccctgggc 20 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Artificial sequence is a primer. <400> 39 acagcacgtg tttaaagggg 20 <210> 40 <211> 163 <212> DNA <213> Homo sapiens <400> 40 actaaagege egeegeege ceatggagee egagtgaget eggegegge eegteeggee 60 gccggacaac atggaggcag ctccgcccgg gccgccgtgg ccgctgctgc tgctgctgct 120 getgetgetg gegetgtgeg getgeeegge ceeegeegeg gee 163 <210> 41 <211> 419 <212> DNA <213> Homo sapiens gccccacage ctcgccgctc ctgctatttg ccaaccgccg ggacgtacgg ctggtggacg 60 ccggcggagt caagctggag tccaccatcg tggtcagcgg cctggaggat gcggccgcag 120 tggacttcca gttttccaag ggagccgtgt actggacaga cgtgagcgag gaggccatca 180

agcagaccta cctgaaccag acgggggccg ccgtgcagaa cgtggtcatc tccggcctgg

tctctcccga cggcctcgcc tgcgactggg tgggcaagaa gctgtactgg acggactcag

agaccaaccg catcgaggtg gccaacctca atggcacatc ccggaaggtg ctcttctggc

240

300

360

aggaccttga	ccagccgagg	gccatcgcct	tggaccccgc	tcacgggtaa	accetgetg	419
<210> 42						
<211> 221						
<212> DNA						
<213> Homo	sapiens					
<400> 42						
	ggtacatgta					60
	gcagcacccg					120
ctgaccatcg	acctggagga	gcagaagctc	tactgggctg	acgccaagct	cagcttcatc	180
caccgtgcca	acctggacgg	ctcgttccgg	taggtaccca	c		221
<210> 43				•		
<211> 221						
<212> DNA						
<213> Homo	sapiens					
<400> 43						
tccctgactg	caggcagaag	gtggtggagg	gcagcctgac	gcaccccttc	gccctgacgc	60
tctccgggga	cactctgtac	tggacagact	ggcagacccg	ctccatccat	gcctgcaaca	120
agcgcactgg	ggggaagagg	aaggagatcc	tgagtgccct	atactcaccc	atggacatcc	180
aggtgctgag	ccaggagcgg	cagccttttt	gtgagtgccg	g·		221
<210> 44						
<211> 156						
<212> DNA						
<213> Homo	sapiens					
<400> 44						
	cacactcgct					60
	gagccttttt			ggtgtgcaga	tgcaggacaa	120
cggcaggacg	tgtaaggcag	gtgaggcggt	gggacg			156
<210> 45						
<211> 416						
<212> DNA						

<213> Homo sapie	ens				
gctggacacg ccgga tgccatcgac tacga catccgcagg gcgta cgaccccgat ggcat cacggaccgc atcga	aggagg tgctgctgct acttca ccgacatcgt acccgc tagagggcta acctgg acgggtctgg ccgcgg tcgactgggt aggtga cgcgcctcaa cccgag ccatcgcact	gctgcaggtg tgtctactgg ggcgcagacg ggcccgaaac cggcacctcc	gacgacatcc acagatgacg ctggtcaaca ctctactgga cgcaagatcc	ggcacgccat aggtgcgggc ccgagatcaa ccgacacggg tggtgtcgga	60 120 180 240 300 360 416
<210> 46					
<211> 198					
<212> DNA					
<213> Homo sapie	ens				
aacttggatg ggcag	catgta ctggacagac ggagcg gcgtgtgctg gcagga gggaagctc gtgg	gtcaatgcct	ccctcgggtg	gcccaacggc	60 120 180 198
<210> 47				•	
<211> 244					
<212> DNA					
<213> Homo sapie	ens				
tecegeacat ttteg	atcaat gttgatggga gggtte aegetgetgg gggtg cacaaggtca gggete aaagetgtga	gggacttcat aggccagccg	ctactggact ggacgtcatc	gactggcagc attgaccagc	60 120 180 240 244
<210> 48					•
<211> 313					
<212> DNA					
<213> Homo sapie	ens		-		
<400> 48 gttcgcttcc aggaa	accaac cegtgtgegg	acaggaacgg	ggggtgcagc	cacctgtgct	60

tetgcacace ccacgcaa tgaagacetg categtge ggatetecet cgagacea cetcagecet ggaetttg aggtagegtg gge	ct gaggcctttt at aacaacgacg	tggtcttcac tggccatccc	cagcagagcc gctcacgggc	gccatccaca gtcaaggagg	120 180 240 300 313
<210> 49	•		•	•	
<211> 255					
<212> DNA					
<213> Homo sapiens					
<400> 49 cctgctgcca gaccatca agtttggcct tgactacc gggccgacac tgggacca tcctcgtgtg gagggact aagtgtttgc ctgtc	cc gagggcatgg ac agaatcgaag	ccgttgactg tggcgcggct	gatgggcaag ggacgggcag	aacctctact ttccggcaag	60 120 180 240 255
<210> 50	•				
<211> 210					
<212> DNA					
<213> Homo sapiens	•				
<400> 50 gtgccttcca gctacatc ttcatggacg ggaccaac accattgact acgctgac tcgtccaaca tgctgggt	tg catgacgetg ca gegeetetae	gtggacaagg tggaccgacc	tgggccgggc	caacgacctc	60 120 180 210
<210> 51					
<211> 352				•	
<212> DNA	•				
<213> Homo sapiens					
<400> 51 gtgttcatgc aggtcaggctgacgcagta cagcgattcacggcagta cagcggccacacacctggt gttccactggcagtgtgg gcagctgtactacaccct ggaccccacacccc	at atctactgga gg aaccgcaccc cc tcccgccagg gc cttgccatcc	cagactggaa tcatccaggg atggcctcaa ccggcggcca	tctgcacagc ccacctggac tgactgtatg ccgctgcggc	attgagcggg ttcgtgatgg cacaacaacg tgcgcctcac	60 120 180 240 300 352

<210> 52						
<211> 225		•				
<212> DNA						
<213> Homo	sapiens					
<400> 52						
	cgcccaccac					60
	accagcacag					120
	actatgaccc				gcgccagaac	180
atcaagcgag	ccaaggacga	cgggacccag	gcaggtgccc	tgtgg		225
<210> 53	-					
<211> 235						
<212> DNA					•	
<213> Homo	sapiens					
<400> 53						
	cagccctttg	ttttgacctc	tctgagccaa	ggccaaaacc	cagacaggca	60
	ctcagcatcg					120
	aacgtccaca					180
	cccagggcca					235
<210> 54						
<211> 218						
<212> DNA						•
<213> Homo	sapiens					
<400> 54						
	gcaggtacct	gtacttcacc	aacatgcagg	acconocaoc	caagatcgaa	60
cgcgcagccc	tggacggcac	cqaqcqcqaq	qtcctcttca	ccaccaacct	catcccccct	120
	tggtggacaa					180
cgcattgaga	gctgtgacct	gtcaggtacg	cgccccgg	333 33 3	35 - 3 - 5	218
			· – –			
<210> 55						
<211> 234						
<212> DNA						
-ETC- DIM						
<213> Homo	sapiens	•				

gcctgaccat gtgtggagaa	aggggccaac ccttggcaag gaccaccggg tgcagtggag	catctctact gacaagcgga	ggatcgaccg ctcgcatcca	ccagcagcag gggccgtgtc	atgatcgagc gcccacctca	60 120 180 234
<210> 56				•		
<211> 157						
<212> DNA						
<213> Homo	sapiens					
ttgccaaggg	agcagcccac tgatgggaca ctgtggaggt	ccacggtgct	catgcccagt			60 120 .: 157
<210> 57				. ·		
<211> 272						
<212> DNA						
<213> Homo	sapiens					
cacaggggag tgaccagagc gggtcagtgt	gtccctcccc atcgactgta gacgaggagg gtggacctgc gactgtgacg	tccccggggc gctgcccgt gcctgcgctg	ctggcgctgt gtgctccgcc cgacggcgag	gacggctttc gcccagttcc	ccgagtgcga cctgcgcgcg	60 120 180 240 272
<210> 58						
<211> 134						
<212> DNA	·					
<213> Homo	sapiens		•			
<400> 58 tctccttgca catcaaacag tggtgagcca	gccatctgcc cagtgcgact gctt	tgcccaacca ccttccccga	gttccggtgt ctgtatcgac	gcgagcggcc	agtgtgteet ageteatgtg	60 120 134

<210> 59

<211> 274 <212> DNA <213> Homo sapiens <400> 59 gtttgtetet ggeagaaate accaageege ceteagaega cageeeggee cacageagtq 60 ccatcgggcc cgtcattggc atcatcctct ctctcttcgt catgggtggt gtctattttg 120 tgtgccagcg cgtggtgtgc cagcgctatg cgggggccaa cgggcccttc ccgcacgagt 180 atgtcagcgg gaccccgcac gtgcccctca atttcatagc cccgggcggt tcccagcatg 240 gccccttcac aggtaaggag cctgagatat ggaa 274 <210> 60 <211> 164 <212> DNA <213> Homo sapiens <400> 60 cttccctgcc aggcatcgca tgcggaaagt ccatgatgag ctccgtgagc ctgatgggg 60 gccggggcgg ggtgcccctc tacgaccgga accacgtcac aggggcctcg tccagcagct 120 cgtccagcac gaaggccacg ctgtacccgc cggtgagggg cggg <210> 61 <211> 130 <212> DNA <213> Homo sapiens <400> 61 ttggctctcc tcagatcctg aacccgccgc cctccccggc cacggacccc tccctgtaca 60 acatggacat gttctactct tcaaacattc cggccactgc gagaccgtac aggtaggaca 120 tcccctgcag 130 <210> 62 <211> 496 <212> DNA <213> Homo sapiens <400> 62 tcaaacattc cggccactgc gagaccgtac aggccctaca tcattcgagg aatggcgccc 60 ccgacgacgc cctgcagcac cgacgtgtgt gacagcgact acagcgccag ccgctggaag

gccagcaagt actacctgga tttgaactcg gactcagacc cctatccacc cccaccacg 180 ccccacagcc agtacctgtc ggcggaggac agctgccgc cctcgcccgc caccgagagg 240 agctacttcc atctctccc gcccctccg tccccctgca cggactcatc ctgacctcgg 300 ccgggccact ctggcttctc tgtgcccctg taaatagttt taaatatgaa caaagaaaaa 360 aatatatttt atgatttaaa aaataaatat aattgggatt ttaaaaacat gagaaatgtg 420 aactgtgatg gggtgggcag ggctgggaga actttgtaca gtggagaaat atttataaac 480 ttaattttgt aaaaca

<210> 63 <211> 3081 <212> DNA

<213> Homo sapiens

<400> 63

cocgocagee cageecagee caacectact eceteeccae gecagggeag cageegttge 60 tcagagagaa ggtggaggaa gaaatccaga ccctagcacg cgcgcaccat catggaccat 120 tatgattete ageaaaceaa egattacatg cagecagaag aggactggga cegggacetg 180 ctcctggacc cggcctggga gaagcagcag, agaaagacat tcacqgcatg gtgtaactcc 240 cacctccgga aggcggggac acagatcgag aacatcgaag aggacttccg ggatggcctg 300 aageteatge tgetgetgga ggteatetea ggtgaaeget tggeeaagee agagegagge 360 aagatgagag tgcacaagat ctccaacgtc aacaaggccc tggatttcat agccagcaaa 420 ggcgtcaaac tggtgtccat cggagccgaa gaaatcgtgg atgggaatgt gaagatgacc 480 ctgggcatga tctggaccat catcctgcgc tttgccatcc aggacatctc cgtggaagag 540 acttcagcca aggaagggct gctcctgtgg tgtcagagaa agacagcccc ttacaaaaaat 600 gtcaacatcc agaacttcca cataagctgg aaggatggcc tcggcttctg tgctttgatc 660 caccgacacc ggcccgagct gattgactac gggaagctgc ggaaggatga tccactcaca 720 aatctgaata cggcttttga cgtggcagag aagtacctgg acatccccaa gatgctggat 780 gccgaagaca tcgttggaac tgcccgaccg gatgagaaag ccatcatgac ttacgtgtct 840 agettetace aegeettete tggageeeag aaggeggaga cageageeaa tegeatetge 900 aaggtgttgg ccgtcaacca ggagaacgag cagcttatgg aagactacga gaagctggcc 960 agtgatetgt tggagtggat cegeegeaca atecegtgge tggagaaceg ggtgeeegag 1020 aacaccatgc atgccatgca acagaagctg gaggacttcc gggactaccg gcgcctgcac 1080 aagccgccca aggtgcagga gaagtgccag ctggagatca acttcaacac gctgcagacc 1140 aagetgegge teageaaceg geetgeette atgeeetetg agggeaggat ggteteggae 1200 atcaacaatg cctggggctg cctggagcag gtggagaagg gctatgagga gtggttgctg 1260 aatgagatee ggaggetgga gegaetggae cacetggeag agaagtteeg geagaaggee 1320 tccatccacg aggcctggac tgacggcaaa gaggccatgc tgcgacagaa ggactatgag 1380 acceccaccc teteggagat caaggeettg etcaagaage atgaggeett egagagtgac 1440 ctggctgccc accaggaccg tgtggagcag attgccgcca tcgcacagga gctcaatgag 1500 ctggactatt atgactcacc cagtgtcaac gcccgttgcc aaaagatctg tgaccagtgg 1560 gacaatctgg gggccctaac tcagaagcga agggaagctc tggagcggac cgagaaactg 1620 ctggagacca ttgaccagct gtacttggag tatgccaagc gggctgcacc cttcaacaac 1680 tggatggagg gggccatgga ggacctgcag gacaccttca ttgtgcacac cattgaggag 1740 atccagggac tgaccacagc ccatgagcag ttcaaggcca ccctccctga tgccgacaag 1800 gagcgcctgg ccatcctggg catccacaat gaggtgtcca agattgtcca gacctaccac 1860 gtcaatatgg cgggcaccaa cccctacaca accatcacgc ctcaggagat caatggcaaa 1920 tgggaccacg tgcggcagct ggtgcctcgg agggaccaag ctctgacgga ggagcatgcc 1980 cgacagcagc acaatgagag gctacgcaag cagtttggag cccaggccaa tgtcatcggg 2040 ccctggatcc agaccaagat ggaggagatc gggaggatct ccattgagat gcatgggacc 2100 ctggaggacc agctcagcca cctgcggcag tatgagaaga gcatcgtcaa ctacaagcca 2160 aagattgatc agctggaggg cgaccaccag ctcatccagg aggcgctcat cttcgacaac 2220 aagcacacca actacaccat ggagcacatc cgtgtgggct gggagcagct gctcaccacc 2280

ategecagga ccateaatga ggtagagaac cagateetga ceegggatge caaqqqcate 2340 agccaggagc agatgaatga gttccgggcc tccttcaacc actttgaccg ggatcactcc 2400 ggcacactgg gtcccgagga gttcaaagcc tgcctcatca gcttgggtta tgatattggc 2460 aacgaccccc agggagaagc agaatttgcc cgcatcatga gcattgtgga ccccaaccgc 2520 ctgggggtag tgacattcca ggccttcatt gacttcatgt cccgcgagac aqccgacaca 2580 gatacagcag accaagtcat ggcttccttc aagatcctgg ctggggacaa gaactacatt 2640 accatggacg agctgcccg cgagctgcca cccgaccagg ctgagtactg catcgcgcgg 2700 atggcccct acaccggccc cgactccgtg ccaggtgctc tggactacat gtccttctcc 2760 acggcgctgt acggcgagag tgacctctaa tccaccccgc ccggccgccc tcgtcttqtg 2820 cgccgtgccc acagatgtga aatgaatgta atctaataga agcctaatca gcccaccatg 2880 ttctccactg aaaaatcctc tttctttggg gtttttcttt ctttctttt tgattttgca 2940 ctggacggtg acgtcagcct gtacaggctc ccaggggtgg cgtcaaatgc tattgaaatt 3000 gcgctgaatc gtatgctttt tccttttgat aaataaacaa tgtaaaaatg tttcaaaaac 3060 ctaataaaat aaataaatac g 3081 <210> 64 <211> 1324 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> (1)...(1324) <223> n = A, T, C or G<400> 64 ggccgcccgg cgcccccagc agnccgagcc ggggcgcaca gncggggcgc agcccgcgcc 60 ccccgccgcg attgacatga tgtttccaca aagcaggcat tcgggctcct cgcacctacc 120 ccagcaactc aaattcacca cctcggactc ctgcgaccgc atcaaagacg aatttcaqct 180 actgcaaget cagtaccaca geetcaaget egaatgtgae aagttggeea gtgagaagte 240 agagatgcag cgtcactatg tgatgtacta cgagatgtcc tacggcttga acatcgagat 300 gcacaaacag gctgagatcg tcaaaaggct gaacgggatt tgtgcccagg tcctgcccta 360 cctctcccaa gagcaccagc agcaggtctt gggagccatt gagagggcca agcaggtcac 420 cgctcccgag ctgaactcta tcatccgaca gcagctccaa gcccaccagc tgtcccagct 480 gcaggccctg gccctgccct tgaccccact acccgtgggg ctgcagccgc cttcgctgcc 540 ggeggteage geaggeaceg geeteetete getgteegeg etgggtteee aggeeeacet 600 ctccaaggaa gacaagaacg ggcacgatgg tgacacccac caggaggatg atggcgagaa 660 gtcggattag cagggggccg ggacagggag gttgggaggg gggacagagg ggagacagag 720 gcacggagag aaaggaatgt ttagcacaag acacagcgga gctcgggatt ggctaatctc 780 840 ttcttcctac cccattccgg cttccctcct cctccctgc agcctggtta ggtggatacc 900 tgccctgaca tgtgaggcaa gctaaggcct ggagggtcag atgggagacc aggtcccaag 960 ggagcaagac ctgcgaagcg cagcagcccc ggcccttccc ccgttttgaa catgtgtaac 1020 cgacagtetg ccctgggcca cagecetete accetggtae tgeatgeacg caatgetage 1080 tgcccctttc ccgtcctggg caccccgagt ctcccccgac cccgggtccc aggtatgctc 1140 ccacctccac ctgccccact caccacctct gctagttcca gacacctcca cgcccacctg 1200 gtcctctccc atcgcccaca aaaggggggg cacgagggac gagcttagct gagctgggag 1260 gagcagggtg agggtgggcg acccaggatt ccccctcccc ttcccaaata aagatgaggg 1320 tact 1324 <210> 65

<210> 65 <211> 2377 <212> DNA

<213> Homo sapiens

<400> 65						
ggtgacaaag	agccaacaga	gacaatagga	gacttgtcaa	tttgtcttga	tgggctacag	60
ttagagtctg	aagttgttac	caatggtgaa	actacatgtt	cagaaagtgc	ttctcagaat	120
gatgatggct	ccagatccaa	ggatgaaaca	agagtgagca	caaatggatc	agatgaccct	180
					atcactctca	240
					acccacccca	300
		tggttcacca				360
					aacatctgga	420
		atctggaggc				480
		ttgggagcag				540
					tcctggctgg	600
		gggacgtatt				660
		ggaatccgtc				720
		gcagcagttt				780
		taaagaattt				840
		tggcagagta				900
		tcaaggtcaa				960
		tggaattcca				1020
		aggaaaatct				1080
		ggttcagtat				1140
		agtgacaaga				1200
		agatetgega				1260
		tgtagcaaga				1320
		gtttgaatat				1380
		tccagatcac				1440
		tgggaaattc				1500
		agttggactc				1560
		taaggaaaac				1620
		tctaggtgaa				1680
		agaaaataaa				1740
		agaacagaca				1800
		atactttgat				1860
		tgactggcaa				1920
		gttttggcag				. 1980
		tactggaacc				2040
ctcatgggga	gcaatggacc	acagaaattc	tgcattgaaa	aagttgggaa	agaaaattgg	2100
		ttttaatcgc				2160
caactgaagg	aaaagctgtt	gtttgccata	gaagaaacag	aaggatttgg	acaagagtaa	2220
cttctqaqaa	cttqcaccat	gaatgggcaa	gaacttattt	acaatatta	teetteteta	2280
cctattacac	atcttgtaaa	attggacaat	ggctctttag	agagttatct	gagtgtaagt	2340
aaattaatgt	tctcatttaa	aaaaaaaaa	aaaaaaa	~3~50~~00	3436364436	2377
•						2377
<210> 66						
<211> 1295						
<212> DNA						
<213> Homo	sapiens					
<400> 66						
	ccacccaaac	cttgcctcta	cctcaatcat	tacccccaa	ttttcaacta	60
gagcccacgg	ccccaccct	cagcccccgc	tctagcttcg	ccagtagete	aaccaacaac	120
gcgagcaagc	catccaaccc	ccggggcagc	ctactactac	acadacada	aactaacaas	180
J-3-J-20	-3		3399	~~3333~339	aaccaacaaa	

gctggaggta	gccggccctg	cagcaatcgc	accagcggca	tcagcatggg	ctacgaccag	240
cgccacggga	gccccttgcc	agcggggccg	tgcctgtttg	gcccacccct	ggccggagca	300
ccggcaggct	attctcccgg	aggggtcccg	tccgcctacc	cggagctcca	cgccgccctg	360
gaccgattgt	acgctcagcg	gcccgcgggg	ttcggctgcc	aggaaagccg	ccactcgtat	420
ccccggccc	tgggcagccc	tggagctcta	gccggggccc	gagtgggagc	ggcggggccc	480
ttggagagac	ggggggcgca	acccggacga	cactctgtga	ccggctacgg	ggactgcgcc	540
gtgggcgccc	ggtaccagga	cgagctaaca	gctttgcttc	gcctgacggt	gggcaccggt	600
gggcgagaag	ccggagcccg	cggagaaccc	tcggggattg	agccgtcggg	tctggaggag	660
ccaccaggtc	ctttcgttcc	ggaggccgcc	cgggcccgga	tgcgggagcc	agaggccagg	720
gaggactact	tcggcacctg	tatcaagtgc	aacaaaggca	tctatgggca	gagcaatgcc	780
tgccaggccc	tggacagcct	ctaccacacc	cagtgctttg	tttgctgctc	ttgtgggcga	840
actttgcgtt	gcaaggcttt	ctacagtgtc	aatggctctg	tgtactgtga	ggaagattat	900
ctgttttcag	ggtttcagga	ggcagctgag	aaatgctgtg	tctgtggtca	cttgattttg	960
gagaagatcc	tacaagcaat	ggggaagtcc	tatcatccag	gctgtttccg	atgcattgtt	1020
tgcaacaagt	gcctggatgg	catccccttc	acagtggact	tctccaacca	agtatactgt	1080
gtcaccgact	accacaaaaa	ttatgctcct	aagtgtgcag	cctgtggcca	acccatcctc	1140
ccctctgagg	gctgtgagga	catcgtgagg	gtgatatcca	tggaccggga	ttatcacttt	1200
gagtgctacc	actgtgagga	ctgccggatg	cagctgagtg	atgaggaagg	ctgctgctgt	1260
ttccctctgg	atgggcactt	gctctgccat	ggttg			1295
				••		

<210> 67

<211> 3411. . .

:<212> DNA

<213> Homo sapiens

<400> 67

gggcccgggg tcccgccacc accgcgcgcg ggacagattg attcactttg gagctgtaag 60 tactgatgta ttagggtgca gcgctcattg ttcattgacg cagagtccca aaatgaatat 120 ccaagagcag ggtttcccct tggacctcgg agcaagtttc accgaagatg ctccccgacc 180 cccagtgcct ggtgaggagg gagaactggt gtccacagac ccgaggcccg ccagctacag 240 tttetgetee gggaaaggtg ttggeattaa aggtgagaet tegaeggeea eteegaggeg 300 ctcggatctg gacctggggt atgagcctga gggcagtgcc tcccccaccc caccatactt 360 gaagtggget gagtcactge attecetget ggatgaceaa gatgggataa geetgtteag 420 gactttcctg aagcaggagg gctgtgccga cttgctggac ttctggtttg cctgcactgg 480 cttcaggaag ctggagccct gtgactcgaa cgaggagaag aggctgaagc tggcgagagc 540 catctaccga aagtacattc ttgataacaa tggcatcgtg tcccggcaga ccaagccagc 600 caccaagage ttcataaagg getgeateat gaageagetg ategateetg ceatgtttga 660 ccaggcccag accgaaatcc aggccactat ggaggaaaac acctatccct ccttccttaa 720 gtctgatatt tatttggaat atacgaggac aggctcggag agccccaaag tctgtagtga 780 ccagagetet gggtcaggga cagggaaggg catatetgga tacetgeega cettaaatga 840 agatgaggaa tggaagtgtg accaggacat ggacgaggac gatggcagag acgctgctcc 900 ccccggaaga ctccctcaga agctgctcct ggagacagct gccccgaggg tctcctccag 960 tagacggtac agcgaaggca gagagttcag gtatggatcc tggcgggagc cagtcaaccc 1020 ctattatgtc aatgccggct atgccctggc cccagccacc agtgccaacg acagcgagca 1080 gcagagcctg tccagcgatg cagacaccct gtccctcacg gacagcagcg tggatgggat 1140 cccccatac aggatccgta agcagcaccg cagggagatg caggagagcg cgcaggtcaa 1200 tgggcgggtg cccctacctc acattccccg cacgtaccgg gtgccgaagg aggtccgcgt 1260 ggagcetcag aagttegegg aggageteat ecaeegeetg gaggetgtge agegeaegeg 1320 ggaggccgag gagaagctgg aggagcggct gaagcgcgtg cgcatggagg aggaaggtga 1380 ggacggcgat ccatcgtcag ggcccccagg gccgtgtcac aagctgcctc ccgccccgc 1440 ttggcaccae ttcccgecce gettgtgttg gacatggget tgtgccggge tccgggatge 1500 acacgaggag aaccctgaga gcatcctgga cgagcacgta cagcgtgtgc tgaggacaac 1560 tggccgccag tcgcctgggc ctggccatcg ctccccggac agtgggcacg tggccaagat 1620

gccagtggca ctggggggtg ccgcctcggg gcacgggaag cacgtaccca agtcaggggc 1680 gaagetggae geggeeggee tgeaceacea eegacaegte caccaceaeg tecaccaeg 1740 cacagecegg eccaaggage aggtggagge egaggecace egeagggece agageagett 1800 cgcctggggc ctggaaccac acagccatgg ggcaaggtcc cgaggctact cagagagtgt 1860 tggcgctgcc cccaacgcca gtgatggcct cgcccacagt gggaaggtgg gcgttgcgtg 1920 caaaagaaat gccaagaagg ctgagtcggg gaagagcgcc agcaccgagg tgccaggtgc 1980 ctcggaggat gcggagaaga accagaaaat catgcagtgg atcattgagg gggaaaagga 2040 gatcagcagg caccgcagga ccggccacgg gtcttcgggg acgaggaagc cacagcccca 2100 tgagaactcc agaccyttgt cccttgagca cccctgggcc ggccctcagc tccggacctc 2160 2220 eccectaace cagetggagg aggegegeeg aegtetggag gaggaagaaa agagageeag 2280 ccgagcaccc tccaagcaga ggtatgtgca ggaggttatg cggcggggac gcgcctgcgt 2340 caggccagcg tgcgccgg tgctgcacgt ggtaccagcc gtgtcggaca tggagctctc 2400 cgagacagag acaagatcgc agaggaaggt gggcggcggg agtgcccagc cgtgtgacag 2460 catcgttgtg gcgtactact tctgcgggga acccatcccc taccgcaccc tggtgagggg 2520 cegegetgte accetgggee agtteaagga getgetgaee aaaaagggea getacagata 2580 ctacttcaag aaagtgagcg acgagtttga ctgtggggtg gtgtttgagg aggttcgaga 2640 ggacgaggcc gtcctgcccg tctttgagga gaagatcatc ggcaaagtgg agaaggtgga 2700 ctgataggct ggtgggctgg ccgctgtgcc aggcgaggcc cttggcgggc acgggtgtca 2760 cggccaggca gatgacctcg tactcaggag cccgatgggg aacagtgttg ggtgtaccac 2820 ccatccctgt ggtctacccg tgtctagagg caggtagggg gtccctccaa gtggtccaca: 2880 agettetgte etgececcaa ggaggeagee tggaceaete eteatageaa taettggagg 2940 gcccagccca agtgaggcag ccgaggtccc tgctgccagc ttcaggtgac cccccccat 3000 cccccggcac ctcccttggg cacgtgtgct gggatctact ttccctctgg gatttgccca 3060 cgtacccagg tctggctggg gcccaggccc ggatgcagag gcctgcaggg cctctgtcaa 3120 ttgtacgcgc caccaagtgc cttcaacaca gcttgtctct tgcctgccac tgtgtgaatc 3180 ggcgacggag cactgcacct gcctccagcc gccggctgtg cagtcctggg tcctcctttc 3240 tgagggcccg tgtaaatatg tacatttctc aggctagggc cagcaggggc tgcccgagtc 3300 tgtttttcat gcgatgacac ttgtacaatt atcttttcaa aggtacttgg ataataatga 3360 3411 <210> 68 <211> 3140 <212> DNA <213> Homo sapiens <400> 68 60 cataaacagc gatttctcag atttgcggga aattaaaaag caactgctgc ttattgcggg 120 cettaccegg gageggggee tactacaeag tageaaatgg teggeggagt tggetttete 180 tetecetgea ttgeetetgg cegagetgea accgeeteeg cetattacag aggaagatge 240 ccaggatatg gatgcctata ccctggccaa ggcctacttt gacgttaaag agtatgatcg 300 ggcagcacat ttcctgcatg gctgcaatag caagaaagcc tattttctgt atatgtattc 360 cagatatetg tetggagaaa aaaagaagga egatgaaaca gttgataget taggeeceet 420 ggaaaaagga caagtgaaaa atgaggcgct tagagaattg agagtggagc teagcaaaaa 480 acaccaaget egagaacttg atggatttgg aetttatetg tatggtgtgg tgettegaaa 540 actggacttg gttaaagagg ccattgatgt gtttgtggaa gctactcatg ttttgccctt 600 gcattgggga gcctggttag aactctgtaa cctgatcaca gacaaagaga tgctgaagtt 660 cctgtctttg ccagacacct ggatgaaaga gttttttctg gctcatatat acacagagtt 720 gcagttgata gaggaggccc tgcaaaagta tcagaatctc attgatgtgg gcttctctaa 780 gagetegtat attgttteec aaattgeagt tgeetateac aatateagag atattgacaa 840 agccctctcc atttttaatg agctaaggaa acaagaccct tacaggattg aaaatatgga 900

cacattetee aacettettt atgteaggag catgaaateg gagttgagtt atetggetea

960

taacctctgt gagattgata aataccgtgt agaaacgtgc tgtgtaattg gcaattatta 1020 1080 cagtttacgt tctcaqcatg agaaagcagc cttatatttc cagagagccc tgaaattaaa tcctcqqtat cttqqtqcct qqacactaat qqqacatqaq tacatqqaqa tqaaqaacac 1140 gtctgctgct atccaggctt atagacatgc cattgaggtc aacaaacggg actacagagc 1200 ttggtatggc ctcgggcaga cctatgaaat ccttaagatg ccattttact gcctttatta 1260 ttatagacgg gcccaccagc ttcgacccaa tgattctcgc atgctggttg ctttaggaga 1320 atgttacgag aaactcaatc aactagtgga agccaaaaag tgttattgga gagcttacgc 1380 cgtgggagat gtggagaaaa tggctctggt gaaactggca aagcttcatg aacagttgac 1440 tgagtcagaa caggctgccc agtgttacat caaatatatc caagatatct attcctgtgg 1500 ggaaatagta gaacacttgg aggaaagcac tgcctttcgc tatctggccc agtactattt 1560 taagtgcaaa ctgtgggatg aagcttcaac ttgtgcacaa aagtgttgtg catttaatqa 1620 taccegggaa gaaggtaagg cettacteeg geaaateeta cagettegga accaaggega 1680 qactectace acegaggtge etgetecett ttteetacet getteactet etgetaacaa 1740 tacccccaca cgcaqaqttt ctccactcaa cttgtcttct gtcacgccat agttggctac 1800 teteaageea geacattgtt agaeeeatet taattaagee ttaeeteeat gtaaagaaca 1860 gcacgtctgt tccaaggacc tcagctcttc ttgtttctac agatggcaac agctccatag 1920 ggacagettg tataattace tteagaggee aactgacaga atectggeag gaacagacat 1980 tatcttgcca gttagaagta cttctgtctc acttatgtcc aaagagtggc tatagatctt 2040 ggccttcttc cctgaatgct ttttttttt ggcccccaag aaagtccctt ttatagcact 2100 ttagcacagg caatgctaca ggaacaaagt ttcaatgctg ctgagagtga aagaaaggag 2160 gaaagtctgc cactctaccc tgagctggca gtagggcact gagtaccctt aggaagaagt 2220 cagagcaatg gatacaaatg accttgctct tqqatttqct qaqcatgatc cctattctqa 2280 tgtcagagat taggtttaaa tggaatagag ctatccattt gttcttactc tctagggaga 2340 caatcttcca aaacagtttt gggggggtct tctaaagctt tcaaattgga agtaacttta 2400 ttcaactaga gttgaataaa agaagggcaa aaataatctc acagagcttg gaactgctga 2460 tagcccttac tgagggcaaa agatggctat attgttagct atactcctac caaagcaaqc 2520 aaggagatag gattatagat aatttcacgg acatttggaa ataacattgg tgattataca 2580 gacaagaata aactcacttc aagctggtct gttttaataa attttcaacg taattgtcta 2640 tttttttccc tcccatctgc aacagaatac attttttca gcctttatct agatgaggta 2700 aagggaatca ttcttatggt gctcttggag agtttcaggc ctgtgcatgt gtgtacagca 2760 ggaggtaata tgctataatg tctgctgtaa tatatttgca cagtagatgc tatggatcat 2820 tetgagetea gggtecagae tttattetta tteccagaat tttgtgttac gtttttacet 2880 cctaacatat gacacttcat cttatattaa ggaaggttta gaatatctaa tacgacttga 2940 attcatttgt tactaagcct tctcaggcaa gctgtatact agttactggt ctccactgcc 3000 atgccttttc aaggttccca tggtccagaa tgatgtttga ttcttaattt ttctgtccct 3060 tttataattt gttttaatga ttttgctaca tttggaattc aataaaaaat gtgaacaata 3120 ataaaaaaa aaaaaaaaa 3140 <210> 69 <211> 3513 <212> DNA <213> Homo sapiens <400> 69 ccgtgtacca ggtgctgcta gtgggaagca cgctgctgaa ggaagtgcct tccgggctgc 60 agctggagca gttgccttct cagagcctgc tgacccacat cccaacggcg gggctgccca 120 cttcgctagg aggaggcctg ccttactgcc accaggcctg gctggatttc cgaaggcggc 180 tggaagetet actacagaac tgccaggcag ettgtgeeet getecagggg gccategaaa 240 gtgtgaaggc tgtgccccag cccatggagc ctggggaggt cggtcagctg ctacagcaga 300 cagaggteet gatgeageag gtgetagaet egecatgget ggeatggeta caatgeeagg 360 ggggccggga gctgacatgg ctgaagcaag aggtcccaga ggtgaccctq agcccagact 420

acaggacggc aatggacaag gctgacgagc tatatgaccg ggtggatgga ttgctgcacc

aactgaccct gcagagcaac cagcgaatac aggccctaga gttggtccaa acactggagg

480

540

cccgggaaag	cggactgcac	cagattgaag	tgtggctgca	gcaggtgggc	tggccagcac	600
tggaggaggc	tggggagccc	tcgctggaca	tgctgctcca	ggcccaaggc	tcttttcagg	660
agctgtacca	ggttgcccag	gagcaggtca	ggcaagggga	gaagtttctg	cagccgctga	720
ctggctggga	ggcggctgaa	ctggaccccc	ctggggcacg	ctttctggcc	ctgcgagccc	780
agctgactga	attctctagg	gctttggccc	agcggtgcca	gcggctggcg	gatgctgaga	840
ggctgtttca	gctcttcagg	gaggccttga	cgtgggctga	ggagggcag	cgagtgttgg	900
cagagctgga	gcaggaacgc	ccgggggttg	tgttgcagca	gctgcagctg	cactggacca	960
ggcaccctga	cttgcctcct	gcccacttcc	gaaagatgtg	ggctctggcc	acggggctgg	1020
gctcagaggc	catccgccag	gagtgccgct	gggcctgggc	gcggtgccag	gacacctggc	1080
tggccctgga	ccaaaagctt	gaggcttcac	tgaagctacc	accggtgggc	agcacagcta	1140
				tcccctgagg		1200
gcttcgatcg	gaatctgggg	cagagtctca	gtgaacctgc	ctgccactgc	caccatgcgg	1260
ccactattgc	tgcctgccgc	agaccagagg	ctggaggagg	tgccctgccc	caggcatccc	1320
ctactgtgcc	tccaccaggc	agctctgacc	ccaggagcct	caacaggcta	cagctggtgc	1380
tggcagagat	ggtggccacg	gagcgggagt	atgtccgggc	tctagagtac	actatggaga	1440
actatttccc	cgagctggat	cgccccgatg	tgccccaggg	cctccgcggt	cagcgtgccc	1500
acctctttgg	caacctggag	aagctgcggg	acttccactg	ccacttcttc	ctgcgtgagc	1560
tggaggcttg	cacccggcac	ccaccacgag	tggcctatgc	cttcctgcgc	catagggtgc	1620
agtttgggat	gtacgcgctc	tacagcaaga	ataagcctcg	ctccgatgcc	ctgatgtcaa	1680
gctatgggca	${\tt caccttcttc}$	aaggacaagc	agcaagcact	gggggaccac	ctggacctgg	1740
cctcctacct	gctaaagccc	atccagegea	tgggcaagta	cgcactgctg	ctgcaggagc	1800
tggcacgggc	ctgcgggggc	cccacgcagg	agctcagtgc	gctgcgggag	gcccagagcc	1860
ttgtgcactt	ccagctgcgg	cacggaaacg	acctgctggc	catggacgcc	atccagggct	1920
gtgatgttaa	cctcaaggaa	caggggcagc	tggtgcgaca	ggatgagttt	gtggtgcgca	1980
ctgggcgcca	caagtccgtg	cgccgcatct	tcctttttga	ggagctgctg	ctcttcagca	2040
agcctcgcca	tgggcccaca	ggggttgaca	catttgccta	caagcgctcc	ttcaagatgg	2100
cagaccttgg	tctcactgag	tgctgtggga	acagcaacct	gcgcttcgag	atctggttcc	2160
gccgccgcaa	ggccagggac	acctttgtgc	tgcaggcctc	cagectggct	atcaagcagg	2220
					aaggaggtgc -	2280
gcatggctga	gatggtgtcc	atgggtgtgg	ggaacaaggc	cttccgagac	attgctccca	2340
gcgaggaagc	catcaacgac	cgcaccgtca	actatgtcct	gaagtgccga	gaagttcgct	2400
ctcgggcgtc	cattgccgta	gccccgtttg	accatgacag	cctctacctg	ggggcctcga	2460
actcccttcc	tggagaccct	gcctcttgct	ctgttctggg	gtccctcaac	ctgcacctgt	2520
acagagaccc	agctcttctg	ggtctccgct	gtcccctgta	tcccagcttc	ctagaggaag	2580
				tttgactgct		2640
				ctctgacage		2700
				tgtctgagcc		2760
				gcctctctgg		2820
accagggtgt	ggctgacacc	tgggctacct	ccaacctaca	tgtgcaacgc	tgttgactac	2880
				gcctctctag		2940
				tcctgtcccc		3000
				gtttccatgc		3060
				$\mathop{\mathtt{cacccctcag}}_{\cdot}$		3120
				agccgagctc		3180
				cctggccccc		3240
				ttttgaataa		3300
				gtctcagaga		3360
				aaaaatagac		3420
				aaaaaaaaa	aaaaaaaaa	3480
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaa			3513

<210> 70 <211> 3597

<212> DNA <213> Homo sapiens

<400> 70 catgocagtt acttoctcag gaaaatattt tottgootto ttotttcagt atggttttaa 60 atttgggaac agtggataac ccaagtgtcc cacaggccaa ggtatattcc aatggcagca 120 tgatecetge acceaaagee ageceetaaa geetaceeet tgtgcaceeg cageetggta 180 agtgagettg getgettgtg aggagetaca agtgaaagag aagttatttt aaataaatee 240 caaagtttga ggcagactgt ccaggactgt tcccaggaag aagcaggagt tacccacagg 300 aaaaqtotot qacotggtoc cotcaggooc agotacotgo goocaccago agtgaaggtt 360 qatqtactqq cccaqcatct ccacctcccc catqcaacca ggtccctgqt accgtqtctc 420 cogttgcatg totggcttot gootgtgcto otcotgccac gagcatootc cotgtcccto 480 ctcattccac cgtgtctctc ctgcacacat agcctctgtc ccagggcgat ttatccactt 540 gagtacagga gctgctcaga cctctcagcc cagccctctg tgactgcccc agccccatcc 600 taccccaccc aaagetgeet teetggetgt aggageteee tegtetagee aaggeectat 660 gggtccccat ccgaggatcc acaagcaatg acttcccaaa tgacctccac tgcaagaaga 720 atcettacea etgtttecag ageegtgaac gatgetgtga tggeecaggt etcageacea 780 ccctctgtga cctaaaaaga aaagctcaat ttccatctgt cttctttccc aggaccaagg 840 ggacacagta atgtgaagtc aaatacttaa ccgagcaaag ggccagtgtt gttatcagtc . 900 aaggacaaac ctcccacctc acagacagcc aagcagtgag ggaaagacag acagacatag 960 1020 gtaggaaggt gctctgcagg cacaaggccc agagaagccc ctctccggga acttcccctg ctccttccag gaacagtgag cccagtgagc agtcccagcc agctcttcaa ggccttcaag 1080 gggtctttcc atgactgagt cacctccagg agctcacctg acccccagag aagacctacc 1140 ccaggcaget ccgtgccctg gettetecce atgccccaaa teccccccag ccatecetec 1200 tggtcctcgt ctacatcaag ggcctcttcc cctcttcctc ccagctctca ggacaggtga 1260 1320 gggccattta tttgggattt tggagttgtt tggtttttgt ttttatatct taatagttcg 1380 aaagtaagaa gggagccctg ctatggatgt taagtccaaa ttactcggtt agtgggagca 1440 aaacctatga cttccaaggg gatgaggaga ggttcagagg acaggaggag cctcccccat 1500 tgaaaaaaa aaaatgggtc aggacattcc ctggatgagg acaatgctag gggtggcatc 1560 teacatgget getgetatte etggtgette eccaeaettt tgacagatgg agteettete 1620 ctaccgcctc ctgccacctc accctacagg cattetetat gtaggaaaca agageettat 1680 cttatagagt ggggagctga gacacagcct caggtaacac tgacacagct cccgaatgag 1740 gctgggacac tctgcaaacc tctcctcatg gtgctaaggg tggcatgctc ttgacaggaa 1800 acctaaatga ccactcctct catttggaaa gtaatccact gcagtaaaag tttcagacat 1860 gcaagagaga gtttttttt ttttttacta caaatttttg ctcccccata aaattatttt 1920 tttattaqaq qqaqtatcca agttttaaaa gtatataqaa ttttttqqtt gtaaqaqaaa 1980 tacatactca ttaggatccc gattaaattc cttgagtaga ctggtgccta ccagaaagca 2040 aagcaaagtt aaacaaaacg aaacaaaatc cttcatatac aaaaagaact ttctgtttgt 2100 attggcagag gtagtgaggt gattcaggta ggctgaaaat cctgggttgc gggagcctca 2160 etttatteca tteccacceg etttgatgte tatgettgge tetetggget geceetggta 2220 ctgccgaatc ctacacatct cttatcagct ttcctcaaac tttaaggagg ctctgtgagg 2280 gatgggtcat gggaagaccc aagctttccc tccgccagga ttgcaaaagc aagtagactt 2340 ggtctatgca gctcttcttc caacaatttc tttatttgga attagaactt cctttgttag 2400 tatctttgat cttttgactc aagcacattt tggaagggct cccttacaaa agtagaattt 2460 aaaacagagg atacagttaa agagcaaccc aaaggacgct taagaaaccg agaccacttc 2520 accgaacagg actaaggaac actttcgtgc acagaagtca gccgcaatcc aggcacagga 2580 cgaagatggg atacacgtgc tcatctgtct gtcctccttt cctctccctc cccgacgttc 2640 tagttagctt gttgacttgt taaaccttct gttcttaaaa tgaaaagcta gcttacctca 2700 aagaatcttg tttccattcg gaaaccaacg attttgtgtt ttaqaatqqa cagcctccc 2760 ctcaccactc cctaccttgg cctggtgtcc ttgagacata cggtctttgc ttagtcgtgt 2820 gttggctgct ttgagcagga acgaggcctc caggccctga ggtgggaagg aaggattgga 2880 tgccactgcc ctcctccca ctttagcatg taggggccag cccatctctt ccagcagggt 2940

PCT/US00/16951 WO 01/77327

cctgctgagt	taccatagca	accagcaact	ccagggtacc	acaacagaca	atggctcagc	3000
					agagttgagc	3060
					ctggcagggg	3120
		gccgttgaag				3180
		cacttctgtt				3240
					gagcctcaaa	3300
		aagaagaggg				3360
		aaaattaaaa				3420
		ttggtaaagg				3480
					aaaaaaact	
tatttgtaat	atagaataaa	gtttattaaa	aaataagaaa	aaaaaaaaa	aaaaaaa	3597
<210> 71		÷				
<211> 855						
<212> DNA						•
<213> Homo	sapiens				•	
<400> 71					•	
		tctagactcg				. 60
ggatagcaac	ggcgtccctc	ctccccgctc	agctgcagcc	cgcagtcctc	acagtggtaa	120
catgccacgt	ggtagtctct	gtccatggac	accacacgga	tggttgtctc	gcagccctgt	180
gcagggagga	taggacgggc	acaggaggcg	cattttggtg	caaaaaccgt	gtgatagtct	240
cgcacgcagt	agatgttgtt	ctccacgtcc	acggtgaagg	gaaccccgtc	caggcactca	300
ttgcacacgg	agcaccggaa	gcagcctggg	tggtaggact	tgcccagggc	ctgcaggatc	360
atttccatga	tgagatgtcc	acacacgctg	catttgtcgg	ccgtctgctg	gaacccggag	420
		gtacactttc				480
		gcaggtgaag				540
		gtagatgcca				600
		gagcgcccgc				660
		gccctcccgg				720
		ctccggggag				780
		agtgcacaat				840
aggatetett		-5-5	3334466533	200535052	duodugeede	855
455466666						033
<210> 72						
<211> 3791		•				
'<212> DNA						
<213> Homo	canienc					
(213) HOMO	sapiens			•		
<400> 72		•				
		anatantan.	attaatata			
		gegteetega				60
		gaaaaaactg				120
		tectetecgt				180
		cgcttgctcc				240
		ctcgtctcca				300
		tcattcctca				. 360
		aattccccaa				420
		ttatatggtt				480
		atttgaggcc				540
		gagaacagac				600
atgggagaca	ggttttcaga	agttgctgct	gtatctgaga	aacctatctt	tcaggaatct	660
		gtctccacca				720
		aactgaggct				780
	_			_	_	-

PCT/US00/16951 WO 01/77327 216

aacgccttct	tgccttcctc	tgttctctgg	ctttcccctt	caactgcctt	ggcagcagat	840
	atcatgtgga					900
	ggtttcccac					960
	aagatattct					1020
	caggcccagc					1080
tcttggatgt	ccccactggc	ctggctggaa	aaaggtgtaa	atacctccgt	catgctggaa	1140
aatctccgcc	aaagcttatc	ccttccctcg	atgcttcggg	atgctgcaat	tggcactacc	1200
cctttctcta	cttgctcggt	ggggacttgg	tttactcctt	cagcaccaca	ggaaaagagt	1260
acaaacacat	cccagacagg	cctggttggc	accaagcaca	gtacttctga	gacagagcag	1320
ctcctgtgtg	gccggcctcc	agatctgact	gccttgtctc	gacatgactt	ggaagataac	1380
ctgctgagct	ctcttgtcat	tgtggagttt	ctctcccgcc	agcttcggga	ctggaagagc	1440
	tccctcaccc					1500
	ctaataaact					1560
	gaaatgtcat					1620
cttcacctat	ccctgttgca	tttagaagaa	gataagacta	ctgtgaatca	ggagtctcgg	1680
	cattggtctg					1740
	aagcagaaag					1800
	cagagatagt					1860
	aggacctagc					1920
	tagggcttca					1980
	tgcaacaaga					2040
	ggtcccgaca					2100
	atgtggcaat					2160.
tctgcccagt	tagaggagtg	caaaggccaa	acagaacaac	tggagttgga	aaacattcgt	2220
	atctccgggc					2280
	gtcagcatac					2340
	cccagagcaa					2400
	tgcaggcaga					2460
	agaccttgga					2520
	agtgtcaatt					2580
tgtgagaacc	tcaaggacac	tgtagagaac	ctaacggcta	aactggccag	caccatagca	2640
	agcaagatct					2700
actgagcaac	tacagagċct	gactctcttt	ctacagacaa	aactaaagga	gaagactgaa	2760
caagagaccc	ttctgctgag	tacagcctgt	cctcccaccc	aggaacaccc	tctgcctaat	2820
gacaggacct	tcctgggaag	catcttgaca	gcagtggcag	atgaagagcc	agaatcaact	2880
cctgtgccct	tgcttggaag	tgacaagagt	gctttcaccc	gagtagcatc	aatggtttcc	2940
cttcagcccg	cagagacccc	aggcatggag	gagagcctgg	cagaaatgag	tattatgact	3000
actgagcttc	agagtctttg	ttccctgcta	caagagtcta	aagaagaagc	catcaggact	3060
ctgcagcgaa	aaatttgtga	gctgcaagct	aggctgcagg	cccaggaaga	acagcatcag	3120
gaagtccaga	aggcaaaaga	agcagacata	gagaagctga	accaggcctt	gtgcttgcgc	3180
tacaagaatg	aaaaggagct	ccaggaagtg	atacagcaga	atgagaagat	cctagaacag	3240
	gtggcgagct					3300
	cggagacaga					3360
ccaactgcca	gcctatggcc	accaattgga	tccaggagaa	agtgtggctc	tctcaggagg	3420
tggacaaact	gagagtgatg	ttcctggaga	tgaaaaatga	gaaggaaaac	tectgateaa	3480
gttccagagc	ccatagaaat	atcctagagg	agaaccttcg	gcgctctgac	aaggagttag	3540
aaaaactaga	tgacattgtt	cagcatattt	ataagaccct	gctctctatt	ccagaggtgg	3600
tgaggggatg	caaagaacta	cagggattgc	tggaatttct	gagctaagaa	actgaaagcc	3660
agaatttgtt	tcacctcttt	ttacctgcaa	taccccctta	ccccaatacc	aagaccaact	3720
ggcatagagc	caactgagat	aaatgctatt	taaataaagt	gtatttaatq	aaaaaaaaa	3780
aaaaaaaaa			-	-	•	3791

<211> 1683 <212> DNA <213> Homo sapiens <400> 73 60 ctctgagtgt ccagtggtca gttgccccag gatggggacc acagccagag cagccttggt cttgacctat ttggctgttg cttctgctgc ctctgaggga ggcttcacgg ctacaggaca 120 gaggcagctg aggccagagc actttcaaga agttggctac gcagctcccc cctccccacc 180 cctatcccga agcctcccca tggatcaccc tgactcctct cagcatggcc ctccctttga 240 qqqacagaqt caagtgcagc cccctccctc tcaggaggcc acccctctcc aacaggaaaa 300 qctqctacct qcccaactcc ctgctgaaaa ggaagtgggt ccccctctcc ctcaggaagc 360 tgtcccctc caaaaagagc tgccctctct ccagcacccc aatgaacaga aggaaggaac 420 gccagctcca tttggggacc agagccatcc agaacctgag tcctggaatg cagcccagca 480 ctgccaacag gaccggtccc aagggggctg gggccaccgg ctggatggct tcccccctgg 540 qcggccttct ccagacaatc tgaaccaaat ctgccttcct aaccgtcagc atgtggtata 600 tggtccctgg aacctaccac agtccagcta ctcccacctc actcgccagg gtgagaccct 660 caattteetg gagattggat attecegetg etgecaetge egeageeaca caaacegeet 720 agagtgtgcc aaacttgtgt gggaggaagc aatgagccga ttctgtgagg ccgagttctc 780 ggtcaagacc cgaccccact ggtgctgcac gcggcagggg gaggctcggt tctcctgctt 840 ccaggaggaa getececage cacactacea getecgggee tgeeceagee ateageetga 900 tatttcctcg ggtcttgagc tgcctttccc tcctggggtg cccacattgg acaatatcaa 960 gaacatetge caectgagge getteegete tgtgccaege aacetgccag etactgaece 1020 1080 cctacaaagg gagctgctgg cactgatcca gctggagagg gagttccage gctgctgccg ccaggggaac aatcacact gtacatggaa ggcctgggag gatacccttg acaaatactg 1140 tgaccgggag tatgctgtga agacccacca ccacttgtgt tgccgccacc ctcccagccc 1200 tactegggat gagtgetttg eeegteggge teettaceee aactatgace gggacatett 1260 gaccattgac atcagtcgag tcacccccaa cctcatgggc cacctctgtg gaaaccaaag 1320 agtteteace aageataaac atatteetgg getgateeac aacatgactg eeegetgetg 1380 tgacctgcca tttccagaac aggcctgctg tgcagaggag gagaaattaa ccttcatcaa 1440 tgatctgtgt ggtccccgac gtaacatctg gcgagaccct gccctctgct gttacctgag 1500 tectggggat gaacaggtea actgetteaa cateaattat etgaggaacg tggetetagt 1560 gtctggagac actgagaacg ccaagggcca gggggagcag ggctcaactg gaggaacaaa 1620 tatcagetee acetetgage ecaaggaaga atgagteace ecagagecet agagggteag 1680 atg 1683 <210> 74 <211> 1696 <212> DNA <213> Homo sapiens <400> 74 cacctaaaag ccaaaatggg aaaggaaaag actcatatca acattgtcgt cattggacac 60 gtagattegg geaagteeac cactactgge catetgatet ataaatgegg tggcategae 120 aaaagaacca ttgaaaaatt tgagaaggag gctgctgaga tgggaaaggg ctccttcaag 180 tatgcctggg tcttggataa actgaaagct gagcgtgaac gtggtatcac cattgatatc 240 teettgtgga aatttgagae cagcaagtae tatgtgacta teattgatge ceeaggacae 300 agagacttta tcaaaaacat gattacaggg acatctcagg ctgactgtgc tgtcctgatt 360 gttgctgctg gtgttggtga atttgaagct ggtatctcca agaatgggca gacccgagag 420 catgecette tggettacae actgggtgtg aaacaactaa ttgteggtgt taacaaaatg 480 gattccactg agccacccta cagccagaag agatatgagg aaattgttaa ggaagtcagc 540 acttacatta agaaaattgg ctacaacccc gacacagtag catttgtgcc aatttctggt 600

tggaatggtg acaacatgct ggagccaagt gctaacatgc cttggttcaa gggatggaaa

gtcacccgta aggatggcaa tgccagtgga accacgctgc ttgaggctgt ggactgcatc

660

720

					tgtctacaaa	780
attggtggta	ttggtactgt	tcctgttggc	cgagtggaga	ctggtgttct	caaacccggt	840
atggtggtca	cctttgctcc	agtcaacgtt	acaacggaag	taaaatctgt	cgaaatgcac	900
					caagaatgtg	960
					cccaccaatg	1020
					aataagcgcc	1080
ggctatgccc	ctgtattgga	ttgccacacg	gctcacattg	catgcaagtt	tgctgagctg	1140
aaggaaaaga	ttgatcgccg	ttctggtaaa	aagctggaag	atggccctaa	attcttgaag	1200
					tgagagcttc	1260
					agttgcggtg	1320
	aagcagtgga					1380
	agaaggctaa					1440
	gaacggtctc					1500
	taatgataac					1560
gtggaccact	ttggttttct	tttttgcgtg	tggcagtttt	aagttattag	tttttaaaat	1620
cagtactttt	taatggaaac	aacttgacca	aaaatttgtc	acagaatttt	gagacccatt	1680
aaaaaagtta	aatgag					1696
•						
<210> 75						
<211> 7680						
<212> DNA	:					
<213> Homo	sapiens					
<400> 75 ···						
	aggcaggctc	aggaaatggt	tasaaaaaa	tasasastas	atat anata	
aaggaaggaag	ggttgttatg	acaatccaaa	acactatoac	ataaataaa	ergreageea	60
gacctaccta	ggtaatgtgt	taatttatac	ttattataa	ggaagggag	agragageg	120
cgaaagtaaa	cctgaagctg	aagagacttg	ctttgacaag	tacactagas	acacttacco	180 240
agtaggtaac	acttatgagc	atcctaaaga	ctccatgata	tacactggga	acacttaceg	300
qqctqqqcqa	gggagaataa	gctgtaccat	cacaaaccac	taccatasaa	agateacte	360
ctacaagatt	ggtgacacct	ggaggagacc	acatgagact	agtaattaca	tattagagta	420
tgtgtgtctt	ggtaatggaa	aaqqaqaatq	gacctgcaag	cccatagetg	agaagtgttt	480
tgatcatgct	gctgggactt	cctatqtqqt	cqqaqaaacq	taggagaaag	cctaccaagg	540
ctggatgatg	gtagattgta	cttqcctqqq	agaaggcagc	ggacgcatca	cttgcacttc	600
tagaaataga	tgcaacgatc	aggacacaag	gacatcctat	agaattggag	acacctggag	660
caagaaggat	aatcgaggaa	acctgctcca	gtgcatctgc	acaggcaacg	gccgaggaga	720
gtggaagtgt	gagaggcaca	cctctgtgca	gaccacatcg	agcggatctg	gccccttcac	780
cgatgttcgt	gcagctgttt	accaaccgca	gcctcacccc	caqcctcctc	cctatggcca	840
ctgtgtcaca	gacagtggtg	tggtctactc	tgtggggatg	cagtggttga	agacacaagg	900
aaataagcaa	atgctttgca	cgtgcctggg	caacggagtc	agctgccaag	agacagetgt	960
aacccagact	tacggtggca	acttaaatgg	agagccatgt	gtcttaccat	tcacctacaa	1020
tggcaggacg	ttctactcct	gcaccacgga	agggcgacag	gacggacatc	tttggtgcag	1080
cacaacttcg	aattatgagc	aggaccagaa	atactctttc	tgcacagacc	acactgtttt	1140
ggttcagact	caaggaggaa	attccaatgg	tgccttgtgc	cacttcccct	tcctatacaa	1200
caaccacaat	tacactgatt	gcacttctga	gggcagaaga	gacaacatga	agtggtgtgg	1260
gaccacacag	aactatgatg	ccgaccagaa	gtttgggttc	tgccccatgg	ctgcccacga	1320
ggaaatctgc	acaaccaatg	aaggggtcat	gtaccgcatt	ggagatcagt	gggataagca	1380
gcatgacatg	ggtcacatga	tgaggtgcac	gtgtgttggg	aatggtcgtg	gggaatggac	1440
atgcattgcc	tactcgcaac	ttcgagatca	gtgcattgtt	gatgacatca	cttacaatgt	1500
gaacgacaca	ttccacaagc	gtcatgaaga	ggggcacatg	ctgaactgta	catgcttcgg	1560
tcagggtcgg	ggcaggtgga	agtgtgatcc	cgtcgaccaa	tgccaggatt	cagagactgg	1620
gacgttttat	caaattggag	attcatggga	gaagtatgtg	catggtgtca	gataccagtg	1680
	qqccqtqqca					1740

ctactgctat ggccgtggca ttggggagtg gcattgccaa cctttacaga cctatccaag

1740

ctcaagtggt	cctgtcgaag	tatttatcac	tgagactccg	agtcagccca	actcccaccc	1800
catccagtgg	aatgcaccac	agccatctca	catttccaag	tacattctca	ggtggagacc	1860
taaaaattct	gtaggccgtt	ggaaggaagc	taccatacca	ggccacttaa	actcctacac	1920
catcaaaggc	ctgaagcctg	gtgtggtata	cgagggccag	ctcatcagca	tccagcagta	1980
	gaagtgactc					2040
cagcaacacc	gtgacaggag	agacgactcc	cttttctcct	cttgtggcca	cttctgaatc	2100
tgtgaccgaa	atcacagcca	gtagctttgt	ggtctcctgg	gtctcagctt	ccgacaccgt	2160
gtcgggattc	cgggtggaat	atgagctgag	tgaggaggga	gatgagccac	agtacctgga	2220
tcttccaagc	acagccactt	ctgtgaacat	ccctgacctg	cttcctggcc	gaaaatacat	2280
tgtaaatgtc	tatcagatat	ctgaggatgg	ggagcagagt	ttgatcctgt	ctacttcaca	2340
aacaacagcg	cctgatgccc	ctcctgaccc	gactgtggac	caagttgatg	acacctcaat	2400
tgttgttcgc	tggagcagac	cccaggctcc	catcacaggg	tacagaatag	tctattcgcc	2460
atcagtagaa	ggtagcagca	cagaactcaa	ccttcctgaa	actgcaaact	ccgtcaccct	2520
cagtgacttg	caacctggtg	ttcagtataa	catcactatc	tatgctgtgg	aagaaaatca	2580
agaaagtaca	cctgttgtca	ttcaacaaga	aaccactggc	accccacgct	cagat acagt	2640
gccctctccc	agggacctgc	agtttgtgga	agtgacagac	gtgaaggtca	ccatcatgtg	2700
gacaccgcct	gagagtgcag	tgaccggcta	ccgtgtggat	gtgatccccg	tcaacctgcc	2760
tggcgagcac	gggcagaggc	tgcccatcag	caggaacacc	tttgcagaag	tcaccgggct	2820
gtcccctggg	gtcacctatt	acttcaaagt	ctttgcagtg	agccatggga	gggagagcaa	2880
gcctctgact	gctcaacaga	caaccaaact	ggatgctccc	actaacctcc	agtttgtcaa	2940
tgaaactgat	tctactgtcc	tggtgagatg	gactccacct	cgggcccaga	taaca ggata	3000
ccgactgacc	gtgggcctta	cccgaagagg	ccagcccagg	cagtacaatg	tgggtccctc	3060
tgtctccaag	taccccctga	ggaatctgca	gcctgcatct	gagtacaccg	tatccctcgt	3120
ggccataaag	ggcaaccaag	agagccccaa	agccactgga	gtctttacca	cactgcagcc	3180
tgggagctct	attccacctt	acaacaccga	ggtgactgag	accaccatcg	tgatcacatg	3240
gacgcctgct	ccaagaattg	gttttaagct	gggtgtacga	ccaagccagg	gaggagaggc	3300
accacgagaa	gtgacttcag	actcaggaag	catcgttgtg	tccggcttga	ctccaggagt	3360
agaatacgtc	tacaccatcc	aagtcctgag	agatggacag	gaaagagatg	cgccaattgt	3420
aaacaaagtg	gtgacaccat	tgtctccacc	aacaaacttg	catctggagg	caaaccctga	3480
cactggagtg	ctcacagtct	cctgggagag	gagcaccacc	ccagacatta	ctggttatag	3540
	acccctacaa					3600
	tcctgcactt					3660
	aaggatgaca					3720
	actgacctgc	•				3780
	ccatccattg					3840
	gttgcagagt					3900
	ggtacagaat					3960
	agaggaagac					4020
	gccaactctt					4080
	cgccatcatc					4140
	aattccatca					4200
	cttaatggca					4260
	ccgagggacc					4320
	cctgctgtca					4380
	gtccaggagt					4440
	ggagttgatt					4500
	agcaagccaa					4560
	accgatgttc					4620
	ggttacagag					4680
	ggtccagatc					4740
	agtgtctatg					4800
	aacattgatc					4860
catcaaaatt	gcttgggaaa	gcccacaggg	gcaagtttcc	aggtacaggg	tgacctactc	4920

			ccctgcacct			4980
			gtacacagtc			5040
tgatatggag	agccagcccc	tgattggaac	ccagtccaca	gctattcctg	caccaactga	5100
cctgaagttc	actcaggtca	cacccacaag	cctgagcgcc	cagtggacac	cacccaatgt	5160
tcagctcact	ggatatcgag	tgcgggtgac	ccccaaggag	aagaccggac	caatgaaaga	5220
aatcaacctt	gctcctgaca	gctcatccgt	ggttgtatca	ggacttatgg	tggccaccaa	5280
atatgaagtg	agtgtctatg	ctcttaagga	cactttgaca	agcagaccag	ctcagggtgt	5340
			aagaagggct			5400
gaccaccatc	accattagct	ggagaaccaa	gactgagacg	atcactggct	tccaagttga	5460
tgccgttcca	gccaatggcc	agactccaat	ccagagaacc	atcaagccag	atgtcagaag	5520
ctacaccatc	acaggtttac	aaccaggcac	tgactacaag	atctacctgt	acaccttgaa	5580
			cgacgcctcc			5640
			ttccttgctg			5700
			tgagaagcct			5760
ggtccctcgg	ccccgccctg	gtgtcacaga	ggctactatt	actggcctgg	aaccgggaac	5820
			gaataatcag			5880
aaggaaaaag	acagacgagc	ttccccaact	ggtaaccctt	ccacacccca	atcttcatgg	5940
accagagatc	ttggatgttc	cttccacagt	tcaaaagacc	cctttcgtca	cccaccctgg	6000
gtatgacact	ggaaatggta	ttcagcttcc	tggcacttct	ggtcagcaac	ccagtgttgg	. 6060
gcaacaaatg	atctttgagg	aacatggttt	taggcggacc	acaccgccca	caacggccac	6120
			gccgaatgta			6180
gacaaccatc	tcatgggccc	cattccagga	cacttctgag	tacatcattt	catgtcatcc	6240
			cagggttcct			6300
			caacatcata			6360
			taccgtgggc			6420
			cccctacaca			6480
			ctttaaactg			6540
			tagatggtgc			6600
			agaaaatggc			6660
			tgaccctcat			6720
			gcagaaggaa			6780
			gcgctgtgac			6840
			gtcctacaac			6900
tcagagaaca	aacactaatg	ttaattgccc	aattgagtgc	ttcatgcctt	tagatgtaca	6960
			catctttcca			7020
			gatgttagca			7080
			agttctccag			7140
			gggttttctc			7200
			ctcagtattt			7260
			cagccaacca			7320
			acccaaacac			7380
			atcttgttac			7440
			aattgcctag			7500
atacactacca	acttttccca	gcacccccat	acggaaaaaa	ttgtattgaa	aacacttagt	7560
atgeagttga	caagaggaat	teggtataat	tatggtgggt	gattattttt	tatactgtat	7620
gcgccaaagc	tttactactg	cggaaagaca	actgttttaa	taaaagattt	acattccaca	7680

<210> 76

<211> 1316

<212> DNA

<213> Homo sapiens

<400> 76						
tcctaatacg	actcactata	gggctcgagc	ggccgcccgg	gcaggtcgaa	tgcaggcgac	60
	ggagcgattt					120
	ccctagattc					180
	ttatgccacc					240
	gaatctggtc					300
	tgtcaactat					360
	atgccctggg					420
	cgggtactac					480
	cctggccgcg					540
	tgagtttgcc					600
	cgtgtctgtg					660
	tgtggacagt					720
	gggagaacag					780
	gcaccctcct			•		840
	ggggcagttg					900
	gaggcgcaag					960
	gaaccgccgg.					1020
	agagatetee					1080
	cctgccaagc					1140
	tcccaggcca					1200
	gggagacgga					1260
	gtcataatca					1316
<210> 77						
<211> 566						
<212> DNA						
<213> Homo	sapiens					
.400. 77						
<400> 77					h	60
	ccataaagag					60
	aacagaaata					120
	agaaagtgcc					180
	agaattagct					240
	taaagttttt					300
	agaaatacag					360
	gaccaaatgg					420
	gaacacagac					480
	gagagcagaa		gcagcctcga	ggtggagaag	aaggacaagc	540
ttgcgaacac	atctgttcga	tttcaa				566
<210> 78						
<211> 5067						
<212> DNA	•					
<213> Homo	canienc	•				
(213) HOMO	sapiens			•		
<400> 78						
	ctgtctgcag	catggataag	tatgacgacc	tagacctage	ggccagtaaa	60
	acctgaacat					120
	acaaccccga					180
	tccagcagca					240
	ctgtcaatgg					300
-2-c2-dagger	tgactgtgga	taatactacc	aagggtctat	ttactaceta	gyaayuugug	360
Jacaacaage	ugacuguga	-gg cgccgcc	aageeeeee	Ligitigeete	gacayyyyca	200

					ggagcagaga	420
					cagggagagc	480
ctggcgactt	ctgagatgtc	tgctttccac	cagccaggcc	cctgtgagga	tecttectge	540
ctcactcatg	gagactatta	tgacaacctc	tccttggcaa	gcccaaagtg	gggtgacaaa	600
ccaggagtgt	ccccagcat	cggcctgagt	gtagggagtg	ggtggcctag	ctccccgggg	660
agtgacccac	cactgcccaa	accctgcggg	gaccatcccc	taaatcaccg	acagetetee	720
ctgagctcca	gcaggtcttc	tgagggtagc	ctcggtggtc	agaatagtgg	cattggtggc	780
cgcagcagcg	agaagccaac	aggcctttgg	tccactgcct	cctcccagcg	ggtgagccct	840
ggcctgcctt	ccccaaactt	ggagaacgga	gcaccagctg	tggggcctgt	tcagcccagg	900
actccttctg	tgtcagcacc	cttggccctg	agctgcccca	ggcaaggagg	tcttccaaga	960
tcaaactcgg	ggctgggggg	tgaggtttca	ggtgtgatgt	ccaaacccaa	tgtggacccc	1020
caaccctggt	tccaggatgg	gcccaaatct	tacctttcca	gttctgcccc	gtcatcctcg	1080
					gaagcctggc	1140
					tccagtgatg	1200
					tgatggtagc	1260
					ctgccagccc	1320
					agccctcacc	1380
					agcctgtgtg	1440
					gaacctctac	1500
	gcttcacctg					1560
					ccagcagtcg	1620
					agccctgggg	1680
					ggatggggtg	1740
cccttcaccg	tggactcaga	gaacaagatc	tactqtqtcc	gagattacca	caaggtgctg	1800
gcccccaagt	gtgcagcctg	tgggcttccc	atccttccac	ctgagggctc	agatgagacc	1860
	tgtccatgga					1920
	tcaatgatga					1980
	gccacgtgaa					2040
	agccagagcc					2100
	ttccggtggc					2160
	cctgtgagca					2220
acctgcctcc	tgcgtgtatt	ttccaaqtqc	ttttctctqt	tgccacattt	tcctcaqqtt	2280
actcaggaaa	atgctccagc	atgtgcgage	acatgacctg	aggttgcatc	atagcaccaa	2340
aggaatcctc	ctgtcccctc	tgggaacatt	tcatqcttca	gagggagagg	tttttattga	2400
gcttgtttca	caatatcccc	ttgaagggac	ageteagete	ccaatacatt	caaccctttc	2460
	ggaaaatacc					2520
	ttcttttcac					2580
	ggcaagaagg					2640
	gagtcaagat					2700
agcattctcc	gtaccccttc	aaatccttac	tctcctaaaq	gcagetgagt	ccqcqacaqa	2760
aatttgccct	atgggagtaa	aacatacttt	gggagaagaa	cttqqtqcaq	gcaccaggat	2820
tttttttt	gcccacgtgt	ttgcgctgtt	tttctctqqa	gttctcaaga	gttggtgact	2880
tggaaggccg	cttctgcaag	qcaaqtctca	ggaacccatg	caggtacatc	gcttgcacct	2940
gtttttagct	tatttaatga	cagactttta	ggaagagctg	cccgcatact	gagagacagc	3000
ttcttataaa	caaggagagt	ttttatatat	gcgagatete	taagccagcg	tagaaagaaa	3060
cgcctcagga	taagttatta	tattcatttc	attaatttet	ctcctgccca	attettggca	3120
	gtttgaagaa					3180
tagttgtttc	ccttcacttt	cagtetteca	cacacaaaaa	atacctcaca	gagetteace	3240
aaatcacaga	ttcaggagga	atttggcttt	cacactggac	tcagatacct	tcttcagtgt	3300
gttggaaatc	actggcttca	cacaggccca	actccaactc	qtcaqqqcaq	agtgatcgta	3360
actaaaggtc	agtggggaat	agatccqatt	cagtgctttt	gccttatgca	tttcagcatc	3420
ctggctcccc	agggtggcag	gagctgagga	agggccacac	actogcaaga	tttcaagacc	3480
actctctgca	ctgaagaggt	aaaatttqca	ctgcaagtca	catccctgag	qccaqaqqtc	3540
=		-			J - 1 J - 1 J - 2	

agtacccttt ggtatttcga ttagaagaag ctgcaaaaga aaggcagccc attttaccat 3600 tgccagccag gccggggaca caggagccgg tgtgtgcact ctgcctccta acattqcacc 3660 cagagcaaga ggactgggtg ctgggctgca gaggccggtc agtggagccc ctagcacgtg 3720 tgaactcagg cttttcattg ggcccggctc cacttctagg ccatgttttg actcatttgg 3780 taaccattgc ctgtaagcag cacagaattg gtgccatgga ttatcttttc catqttqatq 3840 gaattcattc tgttggaatc ctttggccag atgtcacttc agccagggtg tgcatcatca 3900 ttggttcttt ttcacaggct gagcctcctg aaaacccatg aacgctgggg ctgggggaagt 3960 gaaccetgag gtggggacce tetettecea teaaateate cageteagtg tggggegtgg 4020 caggggggta aatgaagcca gccaatgtgt taacctgtct ctgtcaacct aagaatgttg 4080 gccttactga cacacctttg ctccatgttc aagaccagaa gtagctggga tttgtttgca 4140 aattgggtaa ttagtttaaa aatctgtgat tacattttta aatgaaattt tcaaaqtqqc 4200 ctagattgag gtgattcaga taggtttgcg aatataccat tttatattgt tgagaaagaa 4260 caaaaaggga atttccagat gtcctagaaa tcctagcaac agatttctct ggttgtcagt 4320 ttccctggag aaggcgccag ataggaatct ccaatcagtt gtttttctct tcgcttcagg 4380 cccttacaca aaagccatga agagatgttc acctacccgg tattttaaat gttctgtaaa 4440 ttattagcca aatagaactg taatggggtt gtatttatgg gcgcctagaa agaaaacaca 4500 aggacttggt aggccaggaa gaaaagattt taaaatttag aatgaatagc ccttctgggt 4560 tttctttttg acaattcttg gacttgaggt aaaacaagga ggattgtggc cggatttcag 4620 attccaaagc cagcetecat ettaggeett tgeeteattg tgeettttag gttttettae 4680 ccaccgtctc ctgttttgtc tttttttct tttctcctac ccctatcttg ggacattcag 4740 aaactgcctg ggtggtttga gaagagacaa cccagtttga tctgcaatac aaqqatccat 4800 togtaatoto tototoactg atgttattoc cocatotgoc gtottggtto atotoaccac 4860 agaagggcat ttagtcctac ccagccatcg gctgcggtat gacagcagga tggcacttcc 4920 cattletetg tggttagtge tcgagtgaaa acctetttea getgagteet etgaggttet 4980 gctgttgagt cctgggtggc tgatggaatg attgaggagg tctggtcacc ctcaagcgcc 5040 gtcatcgcct tgtttccatg ggcttct 5067 <210> 79 <211> 950 <212> DNA <213> Homo sapiens <400> 79 tegaceggat cegaatteec attgtgcact aaagegtete cetgeteege ggeeeggget 60 ggcgggcggg cgctcggctg gcggctgcag cagcagaggg agacccgcgg caaccccggc 120 aacccaggge teggegtege tgccaccatg aegggaagea atatgtegga egeettggee 180 aacgccgtgt gccagcgctg ccaggcccgc ttctcccccg ccgagcgcat tgtcaacagc 240 aatggggagc tgtaccatga gcactgcttc gtgtgtgccc agtgcttccg gcccttcccc 300 gaggggctct tctatgagtt tgaaggccgg aagtactgcg aacacgactt ccaaatgctg 360 tttgctccgt gctgtggatc ctgcggtgag ttcatcattg gccgcgtcat caaggccatg 420 aacaacaact ggcacccggg ctgcttccgc tgcgagctgt gtgatgtgga gctggctgac 480 ctgggctttg tgaagaatgc cggcaggcat ctctgccggc cttgccacaa ccgtgagaag 540 gccaagggcc tgggcaagta catctgccag cggtgccacc tggtcatcga cgagcagccc 600 ctcatgttca ggagcgacgc ctaccaccct gaccacttca actgcaccca ctgtgggaag 660 gagetgacag eegaggeeeg egagetgaag ggtgagetet actgeetgee etgeeatgae 720 aagatgggcg ttcccatctg cggggcctgc cgccggccca tcgagggccg agtggtcaac 780 gcgctgggca agcagtggca cgtggagcac tttgtctgtg ccaagtgtga gaagccattc 840 ctggggcacc ggcactatga gaagaagggc ctggcctact gcgagcttta gtgcacaatg 900 ggcggccgcc tcgagtctag actcgagtag ataattgagc ggaatttctt 950

<210> 80

<211> 2346

<212> DNA

<213> Homo sapiens

-400- 00						
<400> 80					•	
cegeegtege	ccccgcctcc	ccctgcctca	geggetgeee	ccgccagcgg	gccgcccgct	60
cccccgggcc	ttgcagcggg	ccccggcccg	gctggagggg	ccccgacccc	agctctggtg	120
gcgggcagca	gcgccgcggc	ccccttccct	cacggggact	cggccctgaa	cgagcaggag	180
aaggagttgc	agcggcggct	gaagcgtctc	tacccggccg	tggacgaaca	agagacgccg	240
ctgcctcggt	cctggagccc	gaaggacaag	ttcagctaca	tcggcctctc	tcagaacaac	300
ctgcgggtgc	actacaaagg	tcatggcaaa	accccaaaag	atgccgcgtc	agttcgagcc	360
acgcatccaa	taccagcagc	ctgtgggatt	tattattttg	aagtaaaaat	tgtcagtaag	420
ggaagagatg	gttacatggg	aattggtctt	tctgctcaag	gtgtgaacat	gaatagacta	480
ccaggttggg	ataagcattc	atatggttac	catggggatg	atggacattc	gttttgttct	540
tctggaactg	gacaacctta	tggaccaact	ttcactactg	gtgatgtcat	tggctgttgt	600
gttaatctta	tcaacaatac	ctgcttttac	accaagaatg	gacatagttt	aggtattgct	660
ttcactgacc	taccgccaaa	tttgtatcct	actgtggggc	ttcaaacacc	aggagaagtg	720
gtcgatgcca	attttgggca	acatcctttc	gtgtttgata	tagaagacta	tatgcgggag	780
tggagaacca	aaatccaggc	acagatagat	cgatttccta	tcggagatcg	agaaggagaa	840
tggcagacca	tgatacaaaa	aatggtttca	tcttatttag	tccaccatgg	gtactqtqcc	900
acagcagagg	cctttgccag	atctacagac	cagaccgttc	tagaagaatt	agettecatt	960
aagaatagac	aaagaattca	gaaattggta	ttagcaggaa	gaatgggaga	agccattgaa	1020
acaacacaac	agttataccc	aagtttactt	gaaagaaatc	ctaatctcct	tttcacatta	1080
aaagtgcgtc	agtttataga	aatggtgaat	ggtacagata	gtgaagtacg	atgtttggga	1140
ggccgaagtc	caaagtctca	agacagttat	cctgttagtc	ctcgaccttt	tagtagtcca	1200
agtatgagcc	ccagccatgg	aatgaatatc	cacaatttag	catcaggcaa	aggaagcacc	1260
gcacattttt	caggttttga	aagttgtagt	aatggtgtaa	tatcaaataa	agcacatcaa	1320
		acaccagtca				1380
ataaatatgt	caagatcaca	gcaagttaat	aacttcacca	gtaatgatgt	agacatggaa	1440
acagatcact	actccaatgg	agttggagaa	acttcatcca	atggtttect	aaatggtagc	1500
tctaaacatg	accacgaaat	ggaagattgt	gacaccgaaa	tggaagttga	ttcaagtcag	1560
ttgagacgcc	agttgtgtgg	aggaagtcag	qccqccatag	aaagaatgat	ccactttoga	1620
cgagagctgc	aagcaatgag	tgaacagcta	aggagagact	gtgggaagaa	cactgcaaac	1680
aaaaaatgt	tgaaggatgc	attcagtcta	ctagcatatt	cagateceto	gaacagccca	1740
gttggaaatc	agettgacce	gattcagaga	gaacctgtgt	gctcagctct	taacagtgca	1800
atattagaaa	cccacaatct	gccaaagcaa	cctccacttq	ccctagcaat	gggacaggc	1860
acacaatgtc	taggactgat	ggctcgatca	qqaattqqat	cctgcgcatt	taccacagta	1920
gaagactacc	tacattagct	atgcatttca	agageteaca	cttatattgt	ggcatatagt	1980
caacatqqaa	gtagaccagc	tctgctgatt	tgaaatttag	attttttaaa	ttatgtactg	2040
gggacaggtt	tttgtcgctt	tacattgctt	cctagtttac	agcatgatgc	aaatgatttt	2100
ctaacttaqt	gttaggagaa	attattttcc	atctttaacc	tettagttgt	ctaagagtta	2160
aatattactq	aatttcagac	gttcaaattg	atcatcacaa	atcctttaaa	acaattacct	2220
aaaagaaacc	aaaaatcctq	ccttctttgt	dadaaaaaa	agagagaga	gaaggaaatg	2280
gaacaaqttq	tatttatatt	agcatgtggg	tgatgtaaac	ttcaaattoo	gaaggaaacg	2340
gacccc	. 3 5 - 5 - 5		-gaogeaaac	cccaaaccgg	gagacgcccc	2346
_						
<210> 81	•					
<211> 2512		•				
<212> DNA						
<213> Homo	sapiens					
	•					
<400> 81						
	acqqatatqa	gtgggatcct	ataaaacaac	aatooaaaa	tattgatga	60
tgtgacattg	teccagacge	ttgtaaaggt	ggaatgacayt	atatassass	atataaaaa	60
tacctctgcc	ttccgaaaac	agcccagatt	attotoasta	atornossa	tanggagga	120
			uccyccaata	aryadcagcc	ccagcaggaa	180

acacaaccag	cagaaggaac	ctcaggggca	accaccgggg	ttgtagctgc	cagcagcatg	240
gcaaccagtg	gagtgttgcc	cgggggtggt	tttgtggcca	gtgctgctgc	agtcgcaggc	300
cctgaaatgc	agactggccg	aaataacttt	gtcatccggc	ggaacccagc	tgaccctcag	360
cgcattccct	ccaacccttc	ccaccgtatc	cagtgtgcag	caggctacga	gcaaagtgaa	420
cacaacgtgt	gccaagacat	agacgagtgc	actgcaggga	cgcacaactg	tagagcagac	480
caagtgtgca	tcaatttacg	gggatccttt	gcatgtcagt	gccctcctgg	atatcagaag	540
cgaggggagc	agtgcgtaga	catagatgaa	tgtaccatcc	ctccatattg	ccaccaaaga	600
tgcgtgaata	caccaggete	attttattgc	cagtgcagtc	ctgggtttca	attggcagca	660
					tgctcagcag	720
					gctaagcagt	780
		cattgatgaa				840
					ccaagtggtg	900
		tataaatgag				960
		tggcggcttc				1020
		gaaccgatgt				1080
		ctacaaatac				1140
		ggccacaact				1200
		tggagagttc				1260
					cctggagatg	1320
		gaccttccgc				1380
		gtcttttcta				1440
aagaatattg	ttaccttaaa	gcactatttt	atttatagat	atatctagtg	catctacatc	1500
		ataacaaaca				1560
		gtctttatta				1620
		ctaagtatac				1680
		gatgatcttc				1740
		ggcagccatc				1800
		taagaaaatg				1860
		ttgtgttggt				1920
		atcattgctg				1980
		gattgtgaat				2040
		agataccccc				2100
ggaggatatg	agaaaataaa	ttccttctaa	accacattqq	aactgacctg	aagaagcaaa	2160
		ccctgaattc				2220
taaaaggtat	ttcactggag	aagttttaat	ttctaaqtaa	aatttaaatc	ctaacacttc	2280
actaatttat	aactaaaatt	tctcatcttc	gtacttgatg	ctcacagagg	aagaaaatga	2340
		atccagagtg				2400
		atacgtctcc				2460
gtatcatatt	tttaaataaa	aataaatatt	cctttagaag	atcactctaa	aa	2512·
	•					
<210> 82						
<211> 2306						
<212> DNA						
<213> Homo	sapiens		•-			
<400> 82	•		•			•
gggcgggagc	tgcacgcgcc	gtggctccgg	atctcttcgt	ctttgcagcg	tacgcccgaq	60
tcggtcagcg	ccggaggacc	tcagcagcca	tgtcgaagcc	ccatagtgaa	gccgggactq	120
		ctgcacgcag				180
		ccacccatca				240
ttggcccagc	ttcccgatca	gtggagacgt	tgaaggagat	gattaagtct	ggaatgaatg	300
		catggaactc				360
tgcgcacagc	cacggaaagc	tttgcttctg	acccctacct	ctaccggccc	gttgctgtgq	420
		_				

					•	
					•	
	taaaggacct					480
	gaagaaggga					540
	gaacatcctg					600
	ctacgtggat					660
	gacggaggtg					720
ttcctggggc	tgctgtggac	ttgcctgctg	tgtcggagaa	ggacatccag	gatctgaagt	780
ttggggtcga	gcaggatgtt	gatatggtgt	ttgcgtcatt	catccgcaag	gcatctgatg	840
tccatgaagt	taggaaggtc	ctgggagaga	agggaaagaa	catcaagatt	atcagcaaaa	900
tcgagaatca	tgagggggtt	cggaggtttg	atgaaatcct	ggaggccagt	gatgggatca	960
tggtggctcg	tggtgatcta	ggcattgaga	ttcctgcaga	gaaggtcttc	cttgctcaga	1020
agatgatgat	tggacggtgc	aaccgagctg	ggaagcctgt	catctgtgct	actcagatgc	1080
tggagagcat	gatcaagaag	ccccgcccca	ctcgggctga	aggcagtgat	gtggccaatg	1140
cagtcctgga	tggagccgac	tgcatcatgc	tgtctggaga	aacagccaaa	ggggactatc	1200
ctctggaggc	tgtgcgcatg	cagcacctga	ttgcccgtga	ggcagaggct	gccatctacc	1260
acttgcaatt	atttgaggaa	ctccgccgcc	tggcgcccat	taccagcgac	cccacagaag	1320
ccaccgccgt	gggtgccgtg	gaggcctcct	tcaagtgctg	cagtggggcc	ataatcgtcc	1380
tcaccaágtc	tggcaggtct	gctcaccagg	tggccagata	ccgcccacgt	gcccccatca	1440
	ccggaatccc					1500
	caaggaccca					1560
	gaatgttggc					1620
	atggcgccct					1680
	cccagagccc					1740
	gcaacgcttg					1800
	gaagaagatc					1860
	cccagagcct				_	1920
	ggactggagg					1980
	tctgtccagt					2040
	caagaaacag					2100
	cgactctggc					2160
	tgtccccacc					2220
cttccatttt	ccccactac	tgcagcacct	ccaggcctgt	tgctatagag	cctacctgta	2280
tgtcaataaa	caacagctga	agcacc				2306
<210> 83						
<211> 2656		•		•		
<212> DNA						•
<213> Homo	sapiens					
<400> 83						
	ccgcagagtc	CCCGGCCC23	gatggetges	agatactas.	aagactaatt	60
						120
	gtggggaccc gtggtggggg					180
	tettgeggee					240
addaacaaaa	cataaccctt	teatttetae	tactcatta	cacaccactc	ccctttccc	300
	tattatcaga					360
			Journald	quuaquua4a	uuyayattaa	200

caaagaagat tattatcaga tattaggagt gcctcgaaat gccagccaga aagagatcaa 360 gaaagcctat tatcagcttg ccaagaagta tcaccctgac acaaataagg atgatcccaa 420 agccaaggag aagttctccc agctggcaga agcctatgag gttttgagtg atgaggtgaa 480 gaggaagcag tacgatgcct acggctctgc aggcttcgat cctggggcca gcggctccca 540 gcatagctac tggaagggag gccccactgt ggaccccgag gagctgttca ggaagatctt 600 tggcgagttc tcatcctctt catttggaga tttccagacc gtgtttgatc agcctcagga 660 atacttcatg gagttgacat tcaatcaagc tgcaaagggg gtcaacaagg agttcaccgt 720 gaacatcatg gacacgtgtg agcgctgcaa cggcaagggg aacgagcccg gcaccaaggt 780 gcagcattgc cactactgtg gcggctccgg catggaaacc atcaacacag gcccttttgt 840

gatgcgttcc	acgtgtagga	gatgtggtgg	ccgcggctcc	atcatcatat	cgccctgtgt	900
					ctgtgcctgc	960
					ttttcattac	1020
					actccgacct	1080
					gcctgtacga	1140
					ggatgggtgg	1200
					acatcaagat	1260
acgagttcca	aagaggctaa	cgagccggca	gcagagcctg	atcctgagct	acgccgagga	1320
					gtggcagcac	1380
					aggagggatt	1440
					aaagatccac	1500
					gagacgggag	1560
gattccagaa	cagcagcact	gagctcccac	ccgcagagcc	tctggacggc	cttggcaaca	1620
gcaaaatcat	gggacaacac	ctctctccac	ggaaaggtca	cagtggacag	cccgggcagt	1680
aggatgcagc	cccagaggct	ggtggcagtt	tcctgtccat	tggtaggtga	cggccccctg	1740
gtcagcagag	gagaggttag	atcttgcagg	ctaaaactct	aatttggaat	tgaatattgt	1800
ggatatctta	gttaaaggcc	atgcttacag	cttagaaatg	aagccttaag	ctgcatcaag	1860
ttacgaagtg	attaatttcc	ttctcagcaa	acctccggga	ggttccagaa	tgagttcttc	1920
ctgacaggtt	gtcttcactg	ggagcgtggg	gcccccaggc	cccaccagca	ccgtcctccc	1980
ctaatgaggg	gccctgccga	ggcatcagct	gctctgctca	gttagttttt	attcccgggg	2040
taccaagcag	ctgcacagtc	ggtgcctggg	aagcacgtta	aaggcccaga	gagatcctgg	2100
gggttctgct	ctgaccgtgt	gggtggtgat	ccttgtcagg	atgtacagtc	cttgctccca	2160
ccccatccgg	gatggccgcc	tgtccctgac	tattgagtcc	tgttgttgta	agccaggcat	2220
ggagggctcc	tgcccttctg	ctgagccaca	gcccattgca	gcactgtgct	ggccagactt	2280
cagctgcctt	gggaactgaa	gccctgccac	tgttgctagt	caggggcttg	gttctcccac	2340
ttacactgtt	gacatctatt	ttctgaagtg	tgtttaaatt	attcagtgct	aatcattgtt	2400
ttttcctttg	taaatgttga	ttcagaaaag	gaaagcacag	gctaagcagt	tgaaggttcc	2460
ccaccattca	gtgagagcag	aacccccatt	ccccagcctc	tgctggtagc	atgtcgcagt	2520
ttccatgtgt	ttcaggatct	tegggetgte	gttagacagg	ttaatgaaga	acacttctca	2580
	ttttgttttc	ctttataatt	cactaaaata	aagcatctat	tagtgtctga	2640
aaaaaaaaa	aaaaaa					2656
-210: 04						
<210> 84						•
<211> 2217 <212> DNA						
				•		
<213> Homo	sapiens		•		•	
-400> 04				•		
<400> 84		~~~~~~				
geggaeeegg	cgccgaggcg	gccacccgag	acgeggegeg	cacgctccgg	cctgcgcagc	60
ccggceegge	catggcggcc	ceeegeeegt	ccccccccat	ctccgtttcg	gtctcggctc	120
ateasttess	cgccccgcag	aagaagtteg	gccctgtggt	ggccccaaag	cccaaagtga	180
tagaaagaat	gcccggggac	agegageete	ccccggcacc	cggggcccag	cgcgcacaga	240
cccttactac	gggcgagatt	ceeeegeege	ccccggaaga	ctttcccctg	cctccacctc	300
ctcccccat	ggatggcgac	thtassata	gracteragg	aggtgccttc	ccgccgcccc	360
caccacctac	cgaggaatca	anganaga	cycetetgga	ggaggagatc	ttcccttccc	420
Ccadddadaa	tccggaggag	yayyyayyyc	orgaggeeee	cataccgccc	ccaccacagc	480
acatgagggag	ggtgagcagt	ttossacce	agategacte	tetgteetea	ccgccggatg	540
tagccactes	gaatgatcct	andtonata	gggtgtcatc	rggatatgtg	ccccaccag	600
tacctactta	attcagttcc	tagagetage	ccaageetge	agccgggggc	acagcacccc	660
agagggagg	gaagtcccct	attanasas	agcctctgcc	ccaggttccg	gctccggctc	720
atotocage	acagttccat	gcccagcccc	agccccagcc	caagcctcag	gtccaactcc	780
cotostatas	ccagacccag	cougtgtott	rggctaacac	ccagccccga	gggcccccag	840
CCCALCLCC	ggctccagcc	octaagtttt	ccccagtgac	tcctaagttt	actcctgtgg	900

ettecaagtt eagteetgga geeccaggtg gatetgggte acaaccaaat caaaaattgg 960 ggcaccccga agetettet getggcacag geteccetea aceteccage tteacetatg 1020 cccagcagag ggagaagccc cgagtgcagg agaagcagca ccccgtgccc ccaccggctc 1080 agaaccaaaa ccaggtgcgc tcccctgggg ccccagggcc cctgactctg aaggaggtgg 1140 aggagctgga gcagctgacc cagcagctaa tgcaggacat ggagcatcct cagaggcaga 1200 atgtggctgt caacgaactc tgcggccgat gccatcaacc cctggcccgg gcgcagccag 1260 cegtcegege tetagggeag etgttecaca tegeetgett cacetgecac cagtgtgege 1320 agcageteca gggecageag ttetacagte tggaggggge geegtactge gagggetgtt 1380 acactgacae cetggagaag tgtaacaeet geggggagee cateactgae egeatgetga 1440 gggccacggg caaggcctat cacccgcact gcttcacctg tgtggtctgc gcccgcccc 1500 tggagggcac ctccttcatc gtggaccagg ccaaccggcc ccactgtgtc cccgactacc 1560 acaagcagta cgccccgagg tgctccgtct gctctgagcc catcatgcct gagcctgqcc 1620 gagatgagac tgtgcgagtg gtcgccctgg acaagaactt ccacatgaag tgttacaagt 1680 gtgaggactg cgggaagccc ctgtcgattg aggcagatga caatggctgc ttccccctqq 1740 acggtcacgt gctctgtcgg aagtgccaca ctgctagagc ccagacctga gtgaggacag 1800 gccctcttca gaccgcagtc catgccccat tgtggaccac ccacactgag accacctgcc 1860 eccaceteag thattgtttt gatgtetage cecteceatt tecaaeceet ecctageate 1920 ccaggtgccc tgacccagga cccaacatgg tctagggatg caggatcccc gccctggggt 1980 ctggtcctcg cccatcctgc agggattgcc caccgtcttc cagacacccc acctgagggg 2040 ggcaccaggt ttagtgctgc tgctttcact gctgcacccg cgccctcqqc cqqccccccq 2100 agcageettt gtaetetget tgeggaggge tgggagaeee teeaggaeat teecaeeete 2160 ccccatgctg ccaagttgta gctatagcta caaataaaaa aaaaccttgt tttccag 2217

<210> 85

<211> 8906

<212> DNA

<213> Homo sapiens

<400> 85

gaggcggcca aggacctggc cgacatcgcg gccttcttcc gatccgggtt tcgaaaaaac 60 gatgaaatga aagctatgga tgttttacca attttgaagg aaaaagttgc atacctttca 120 ggtgggagag ataaacgtgg aggtcccatt ttaacgtttc cggcccgcag caatcatgac 180 agaatacgac aggaggatct caggagactc atttcctatc tagcctgtat tcccagcgag 240 gaggtctgca agcgtggctt cacggtgatc gtggacatgc gtgggtccaa gtgggactcc 300 atcaagcccc ttctgaagat cctgcaggag tccttcccct gctgcatcca tgtggccctg 360 atcatcaagc cagacaactt ctggcagaaa cagaggacta attttggcag ttctaaattt 420 gaatttgaga caaatatggt ctctttagaa ggccttacca aagtagttga tccttctcag 480 ctaactcctg agtttgatgg ctgcctggaa tacaaccacg aagaatggat tgaaatcaga 540 gttgcttttg aagactacat tagcaatgcc acccacatgc tgtctcggct ggaggaactt 600 caggacatee tagetaagaa ggagetgeet caggatttag agggggeteg gaatatgate 660 gaggaacatt ctcagctgaa gaagaaggtg attaaggccc ccatcgagga cctggatttg 720 gagggacaga agctgcttca gaggatacag agcagtgaaa gctttcccaa aaagaactca 780 ggetcaggea atgeggaeet geagaacete ttgeccaagg tgtecaceat getggaeegg 840 ctgcactcga cacggcagca tctgcaccag atgtggcatg tgaggaagct gaagctggac 900 cagtgcttcc agctgaggct gtttgaacag gatgctgaga agatgtttga ctggatcaca 960 cacaacaaag gcctgtttct aaacagctac acagagattg ggaccagcca ccctcatgcc 1020 atggagette agaegeagea caateaettt geeatgaaet gtatgaaegt gtatgtaaat 1080 ataaaccgca tcatgtcggt ggccaatcgt ctggtggagt ctggccacta tgcctcgcag 1140 cagatcaggc agatcgcgag tcagctggag caggagtgga aggcgtttgc ggcagccctg 1200 gatgagegga geacettget ggaeatgtee tecattttee accagaagge egaaaagtat 1260 atgagcaacg tggattcatg gtgtaaagct tgcggtgagg tagaccttcc ctcagagctg 1320 caggacctag aagatgccat tcatcaccac cagggaatat atgaacatat cactcttgct 1380 tattctgagg tcagccaaga tgggaagtcg ctccttgaca agctccagcg gcccttgact 1440

cccggcagct	ccgattccct	gacagcctct	gccaactact	ccaaggccgt	gcaccatgtc	1500
ctggatgtca	tccacgaggt	gctgcaccac	cagcggcacg	tgagaacaat	ctggcaacac	1560
cgcaaggtcc	ggctgcatca	gaggctgcag	ctgtgtgttt	tccagcagga	agttcagcag	1620
	ggatcgagaa					1680
aaatctcttc	atcgggccag	agcattgcag	aaacgtcatg	aagattttga	agaagtggca	1740
cagaacacat	acaccaatgo	ggataaatta	ctggaagcag	cagaacagct	ggctcagact	1800
	accccgaaga					1860
gatttcgttc	ggcgtgttga	gcagcgaaag	atcctactog	acatotcagt	atcettteac	1920
acccatgtga	aagagctgtg	gacgtggctg	gaggagetge	agaaggage	actacaccac	1980
	agtcggtgga					2040
cagaccaccc	tgcaggtgac	tatcaacata	atcaacca	agagaaaat	Catogoageag	2100
ctcagggact	ctgccatctc	cactaacaca	accaaggaag	aggaggacct	cacccagcag	2160
cocaagatea	tgcagcagct	stteeteese	cagecycaga	tagaggagee	ccccaggag	2220
attateteae	agctggagct	tteensteat	gracet	ccgagaggga	cgccatcgac	2280
	acctcgagtc					2340
acagaagacc	tcacgattgc	agageagege	ctccagcacc	atgcagacaa	agcettgace	2400
acgaacaacc	tgacttttga	cgccatecae	caagggcaag	atcttctgca	gtatgtcaat	2460
gaggcccagg	cctctggtgt	ggagetgetg	tgtgatagag	atgtagacat	ggcaactcgg.	2520
gcccaggacc	tgctggagtt	tcttcatgaa	aaacagcagg	aattggattt	agccgcagag	2580
cagcategga	aacacctgga	gcagtgcgtg	cagctgcgcc	acctgcaggc	agaagtgaaa	2640
caggugetgg	gttggatccg	caacggagag	tccatgttaa	atgccggact	tatcacagcc	2700
agetegttae	aagaggcaga	gcagctccag	cgagagcacg	agcagttcca	gcatgccatt	2760
gagaaaacac	atcagagcgc	gctgcaggtg	cagcagaagg	cagaagccat	gctacaggcc	2820
aaccactacg	acatggacat	gatccgggac	tgcgccgaga	aggtggcgtc	tcactggcaa	2880
cagctcatgc	tcaagatgga	agatcgcctc	aagctcgtca	acgcctctgt	cgctttctac	2940
aaaacctcag	agcaggtctg	cagcgtcctc	gagagcctgg	aacaggagta	caagagagaa	3000
gaagactggt	gtggcggggc	ggataagctg	ggcccaaact	ctgagacgga	ccacgtgacg	3060
cccatgatca	gcaagcacct	ggagcagaag	gaggcattcc	tgaaggcttg	cacccttgct	3120
cggaggaatg	cagacgtctt	cctgaaatac	ctgcacagga	acagcgtgaa	catgccagga	3180
atggtgacgc	acatcaaagc	tcctgaacag.	caagtgaaaa	atatcttgaa	tgaactcttc	3240
caacgggaga	acagggtatt	gcattactgg	accatgagga	agagacggct	ggaccagtgt	3300
cagcagtacg	tggtctttga	gaggagtgcc	aagcaggctt	tggaatggat	ccatgacaat	3360
ggcgagttct	acctttccac	acacacctcc	acgggctcca	gtatacagca	cacccaggag	3420
ctcctgaaag	agcacgagga	gttccagata	actgcaaagc	aaaccaaaga	gagagtgaag	3480
ctattgatac	agctggctga	tggcttttgt	gaaaaagggc	atgcccatgc	ggcagagata	3540
aaaaaatgtg	ttactgctgt	ggataagagg	tacagagatt	tctctctgcg	gatggagaag	3600
tacaggacct	ctttggaaaa	agccctgggg	atttcttcag	attccaacaa	atcgagtaaa	3660
agtctccagc	tagatatcat	tccagccagt	atccctggct	cagaggtgaa	acttcgagat	3720
gctgctcatg	aacttaatga	agagaagcgg	aaatctgccc	gcaggaaaga	gttcataatg	3780
gctgagctca	ttcaaactga	aaaggcttat	gtaagagacc	tccgggaatg	tatggatacg	3840
tacctgtggg	aaatgaccag	tggcgtggaa	gagattccac	ctggcattgt	aaacaaagaa	3900
ctcatcatct	tcggaaacat	gcaagaaatc	tacgaatttc	ataataacat	attcctaaag	3960
gagctggaaa	aatatgaaca	gttgccagag	gatgttggac	attgttttgt	tacttgggca	4020
gacaagtttc	agatgtatgt	cacatattgc	aaaaataagc	ctgattctac	tcagctgata	4080
ttggaacatg	cagggtccta	ttttgacgag	atacagcagc	gacatggatt	agccaattcc	4140
atttcttcct	accttattaa	accagttcag	cqaataacqa	aatatcaget	ccttttaaaa	4200
gagetgetga	cgtgctgtga	ggaaggaaag	qqaqaqatta	aagatggcct	ggaggtgatg	4260
ctcagcgtgc	cgaagcgagc	caatgacgcc	atgcacctca	gcatgctgga	agggtttgat	4320
gaaaacattq	agtctcaggg	agaactcatc	ctacaggaat	ccttccaagt	ataggacce	4380
aaaaccttaa	ttcgaaaggg	tcgagaacgg	catctcttcc	tttttgaaat	ateettaata	4440
tttaqtaaaq	aagtgaaaga	ttccagtgg	agaaggaagt	acctttataa	aadcaaatto	4500
tttacctcac	agttgggtgt	cacagaacat	attasaaaa	accettaces	atttacecto	4560
tagatagaaa	gaacaccaac	ttcagataat	aaaattotoo	ttaaggatta	carratarar	4620
222-22234			-uaactgtcc	readydette	caycacayay	4020

aacaagcagg	actggataaa	gcatatccgc	gaagtcatcc	aggagcggac	gatccacctg	4680
aagggagccc	tgaaggagcc	cattcacatc	cctaagaccg	ctcccgccac	aagacagaag	4740
ggaaggaggg	atggagagga	tctggacagc	caaggagacg	gcagcagcca	gcctgatacg	4800
atttccatcg	cctcacggac	gtctcagaac	acgctggaca	gcgataagct	ctctggtggc	4860
tgtgagctga	cagtggtgat	ccatgacttc	accgcttgca	acagcaacga	gctgaccatc	4920
cgacggggcc	agaccgtgga	agttctggag	cggccgcatg	acaagcctga	ctggtgtctg	4980
	ctgaccgctc					5040
	ccagaagtag					5100
tccgtctcca	gcaatgacgc	cagticcaccc	gcatccgtgg	cttccctcca	gccccacatg	5160
atcggggccc	agagetegee	gggccccaag	cggccgggca	acaccctgcg	caagtggctc	5220
accageceeg	tgcggcggct	cagcagcggc	aaggccgacg	ggcacgtgaa	gaagctggcg	5280
cacaagcaca	agaagagccg	cgaggtccgc	aagagcgccg	acgccggctc	gcagaaggac	5340
	gtgcggccac					5400
	gcggtactct	•				5460
	aggagggggc					5520
	tccagccaga					5580
	ccgaaacacc					5640
	tggcactgga					5700
	ccttcaaccc					5760
	aaaggaaatc					5820
	agcgtgacta					5880
	aagatggtgt					5940
	agatttacga					6000
	cagaaaaact					6060
	attgtcaaaa					6120
	aggacttaaa					6180
	tgcagagaat					6240
	ccagcctgga					6300
	ggtgcaacga					6360
	agggtaaact					6420
	ctcgctgcag					6480
	ttgaṭaaaa					6540
	gttgcctttg					6600
	ggacgggtga					6660
	cttggatcca					6720
	catcgccaat					6780
	cagcggcggg					6840
	tggcggcccc					6900
	ccccagcct					6960
	agaggcagac					7020
	tgacacacga					7080
	ttcaaattct					7140
	agtgcccgc					7200
	tcgtggagaa					7260
	taaggaaaaa					7320
	gttatcggaa					7380
	actacattta					7440
	caggggagac					7500
	ggaagggccc					7560
	acctgggaga					7620
	cgtgcatcgc					7680
	gtccagggat					7740
	aagtggctga					7800
					-	

231

cagaaaggaa	ccaagcgagc	agtggccact	aagtttgtga	acaagaagtt	gatgaagcgc	7860
gaccaggtca	cccatgagct	tggcatcctg	cagageetee	agcaccccct	gcttgtcggc	7920
					ggctgaccag	7980
					gatcagggcg	8040
					agcacacctg	8100
					catcaaactg	8160
			acgacctact			8220
			ctcgggaacc			8280
acgtggagtg	ttggagtgct	cacatacgta	cttcttagtg	gcgtgtcccc	cttcctggat	8340
gacagtgtgg	aagagacctg	cctgaacatt	tgccgcttag	actttagctt	cccagatgac	8400
tactttaaag	gagtgagcca	gaaggccaag	gagttcgtgt	gcttcctcct	gcaggaggac	8460
			ctccaggagc			8520
			agactgactt			8580
			attaaaaact			8640
			ctcattctct			8700
			acataactga			8760
			ctcagcagtg			8820
			ctctgccaag	gacggaggtc	gcattgctgt	8880
atcacagtat	tttttacgga	tttctg				8906
				·		
<210> 86						
<211> 1204						
<212> DNA						
<213> Homo	sapiens		•			
<213> Homo	sapiens		•			
	sapiens					
<400> 86		ggggggtgtg	aggggttag.		ttt	60
<400> 86 tcggcggcgg	tggtatcggc		agggggttcc			60
<400> 86 tcggcggcgg ggaattccgt	tggtatcggc gtggttttgc	catgttctgt	tcaggagtat	caggttgggc	agctttactc	120
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa	tggtatcggc gtggttttgc gctagtaaga	catgttctgt atgagactgg	tcaggagtat tggtggagaa	caggttgggc ggaattgaag	agctttactc tcttaaagaa	120 . 180
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat	tggtatcggc gtggttttgc gctagtaaga gagaaggatg	catgttctgt atgagactgg gagaaaaggg	tcaggagtat tggtggagaa acagtatacg	caggttgggc ggaattgaag cacaaaattt	agctttactc tcttaaagaa atcacctaaa	120 180 240
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat	tggtatcggc gtggttttgc gctagtaaga gagaaggatg	catgttctgt atgagactgg gagaaaaggg	tcaggagtat tggtggagaa	caggttgggc ggaattgaag cacaaaattt	agctttactc tcttaaagaa atcacctaaa	120 . 180
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg	catgttctgt atgagactgg gagaaaaggg tgaggatgat	tcaggagtat tggtggagaa acagtatacg	caggttgggc ggaattgaag cacaaaattt ggctccttgg	agctttactc tcttaaagaa atcacctaaa tgtttcatga	120 180 240
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg gaaagcctgg	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg aatgcgtacc	catgttctgt atgagactgg gagaaaaggg tgaggatgat cctactgtag	tcaggagtat tggtggagaa acagtatacg tgctcccgag	caggttgggc ggaattgaag cacaaaattt ggctccttgg acgaatgaat	agctttactc tcttaaagaa atcacctaaa tgtttcatga atatgaaaga	120 180 240 300
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg gaaagcctgg tgatttcttc	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg aatgcgtacc attaaaatcg	catgttctgt atgagactgg gagaaaaggg tgaggatgat cctactgtag aaacatggca	tcaggagtat tggtggagaa acagtatacg tgctcccgag aacaattgta caaaccagac	caggttgggc ggaattgaag cacaaaattt ggctccttgg acgaatgaat ttgggaacat	agctttactc tcttaaagaa atcacctaaa tgtttcatga atatgaaaga tagaaaatgt	120 180 240 300 360
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg gaaagcctgg tgatttcttc acatggttta	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg aatgcgtacc attaaaatcg gatccaaaca	catgttctgt atgagactgg gagaaaaggg tgaggatgat cctactgtag aaacatggca catggaaaac	tcaggagtat tggtggagaa acagtatacg tgctcccgag aacaattgta caaaccagac tgttgaaatt	caggttgggc ggaattgaag cacaaaattt ggctccttgg acgaatgaat ttgggaacat gtccatatag	agctttactc tcttaaagaa atcacctaaa tgtttcatga atatgaaaga tagaaaatgt atattgcaga	120 180 240 300 360 420 480
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg gaaagcctgg tgatttcttc acatggttta tagaagtcaa	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg aatgcgtacc attaaaatcg gatccaaaca gttgaaccag	catgttctgt atgagactgg gagaaaaggg tgaggatgat cctactgtag aaacatggca catggaaaac cagactacaa	tcaggagtat tggtggagaa acagtatacg tgctcccgag aacaattgta caaaccagac tgttgaaatt agctgatgaa	caggttgggc ggaattgaag cacaaaattt ggctccttgg acgaatgaat ttgggaacat gtccatatag gacccagcat	agctttactc tcttaaagaa atcacctaaa tgtttcatga atatgaaaga tagaaaatgt atattgcaga tattccagtc	120 180 240 300 360 420 480 540
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg gaaagcctgg tgatttcttc acatggttta tagaagtcaa agtcaagacc	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg aatgcgtacc attaaaatcg gatccaaaca gttgaaccag aagagaggcc	catgttetgt atgagactgg gagaaaaggg tgaggatgat cctactgtag aaacatggca catggaaaac cagactacaa ctttgggacc	tcaggagtat tggtggagaa acagtatacg tgctcccgag aacaattgta caaaccagac tgttgaaatt agctgatgaa caactggaag	caggttgggc ggaattgaag cacaaaattt ggctccttgg acgaatgaat ttgggaacat gtccatatag gacccagcat aaggagctgg	agctttactc tcttaaagaa atcacctaaa tgtttcatga atatgaaaga tagaaaatgt atattgcaga tattccagtc caaacagccc	120 180 240 300 360 420 480 540
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg gaaagcctgg tgatttcttc acatggttta tagaagtcaa agtcaagacc tgactgtccc	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg aatgcgtacc attaaaatcg gatccaaaca gttgaaccag aagagaggcc	catgttetgt atgagactgg gagaaaaggg tgaggatgat cctactgtag aaacatggca catggaaaac cagactacaa ctttgggacc cctataagct	tcaggagtat tggtggagaa acagtatacg tgctcccgag aacaattgta caaaccagac tgttgaaatt agctgatgaa caactggaag ggtgaccatc	caggttgggc ggaattgaag cacaaaattt ggctccttgg acgaatgaat ttgggaacat gtccatatag gacccagcat aaggagctgg aaattcaagt	agetttacte tettaaagaa ateacetaaa tgttteatga atatgaaaga tagaaaatgt atattgeaga tatteeagte caaacageee ggtggggaet	120 180 240 300 360 420 480 540 600 660
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg gaaagcctgg tgatttcttc acatggttta tagaagtcaa agtcaagacc tgactgtccc gcaaagcaaa	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg aatgcgtacc attaaaatcg gatccaaaca gttgaaccag aagagaggcc cagatgtgtg	catgttetgt atgagactgg gagaaaaggg tgaggatgat cctactgtag aaacatggca catggaaaac cagactacaa ctttgggacc cctataagct tcattcaaaa	tcaggagtat tggtggagaa acagtatacg tgctcccgag aacaattgta caaaccagac tgttgaaatt agctgatgaa caactggaag ggtgaccatc gcaagaaaaa	caggttgggc ggaattgaag cacaaaattt ggctccttgg acgaatgaat ttgggaacat gtccatatag gacccagcat aaggagctgg aaattcaagt cggatattta	agetttacte tettaaagaa ateacetaaa tgttteatga atatgaaaga tagaaaatgt atattgeaga tatteeagte caaacageee ggtggggaet caaactteca	120 180 240 300 360 420 480 540 600 660 720
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg gaaagcctgg tgatttcttc acatggttta tagaagtcaa agtcaagacc tgactgtccc gcaaagcaaa	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg aatgcgtacc attaaaatcg gatccaaaca gttgaaccag aagagaggcc cagatgtgtg gtagaaaact ttttgttgga	catgttetgt atgagactgg gagaaaaggg tgaggatgat cctactgtag aaacatggca catggaaaac cagactacaa ctttgggacc cctataagct tcattcaaaa ttgacaagtg	tcaggagtat tggtggagaa acagtatacg tgctcccgag aacaattgta caaaccagac tgttgaaatt agctgatgaa caactggaag ggtgaccatc gcaagaaaaa gatcgatctc	caggttgggc ggaattgaag cacaaaattt ggctccttgg acgaatgaat ttgggaacat gtccatatag gacccagcat aaggagctgg aaattcaagt cggatattta acgatggaag	agetttacte tettaaagaa ateacetaaa tgttteatga atatgaaaga tagaaaatgt atattgeaga tatteeagte caaacageee ggtggggaet caaactteea acattaggag	120 180 240 300 360 420 480 540 600 660 720 780
<pre><400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg gaaagcctgg tgatttcttc acatggttta tagaagtcaa agtcaagacc tgactgtccc gcaaagcaaa</pre>	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg aatgcgtacc attaaaatcg gatccaaaca gttgaaccag aagagaggcc cagatgtgtg gtagaaaact ttttgttgga gagactcaga	catgttetgt atgagactgg gagaaaaggg tgaggatgat cctactgtag aaacatggca catggaaaac cagactacaa ctttgggacc cctataagct tcattcaaaa ttgacaagtg aagaactaga	tcaggagtat tggtggagaa acagtatacg tgctcccgag aacaattgta caaaccagac tgttgaaatt agctgatgaa caactggaag ggtgaccatc gcaagaaaaa gatcgatctc aacaatgcgt	caggttgggc ggaattgaag cacaaaattt ggctccttgg acgaatgaat ttgggaacat gtccatatag gacccagcat aaggagctgg aaattcaagt cggatattta acgatggaag aagaggggtt	agetttacte tettaaagaa ateacetaaa tgttteatga atatgaaaga tagaaaatgt atattgeaga tatteeagte caaacageee ggtggggaet caaactteea acattaggag eegttegagg	120 180 240 300 360 420 480 540 600 660 720 780 840
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg gaaagcctgg tgatttcttc acatggttta tagaagtcaa agtcaagacc tgactgtccc gcaaagcaaa	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg aatgcgtacc attaaaatcg gatccaaaca gttgaaccag aagagaggcc cagatgtgtg gtagaaaact ttttgttgga gagactcaga gctgatgtct	catgttetgt atgagactgg gagaaaaggg tgaggatgat cctactgtag aaacatggca catggaaaac cagactacaa ctttgggacc cctataagct tcattcaaaa ttgacaagtg aagaactaga agatgagtcc	tcaggagtat tggtggagaa acagtatacg tgctcccgag aacaattgta caaaccagac tgttgaaatt agctgatgaa caactggaag ggtgaccatc gcaagaaaaa gatcgatctc aacaatgcgt cctgtagggt	caggttgggc ggaattgaag cacaaaattt ggctccttgg acgaatgaat ttgggaacat gtccatatag gacccagcat aaggagctgg aaattcaagt cggatattta acgatggaag aagaggggtt cagagacaat	agetttacte tettaaagaa ateacetaaa tgttteatga atatgaaaga tagaaaatgt atattgeaga tatteeagte caaacageee ggtggggaet caaactteea acattaggag eegttegagg gteaaactgt	120 180 240 300 360 420 480 540 600 660 720 780 840 900
<pre><400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg gaaagcctgg tgatttcttc acatggttta tagaagtcaa agtcaagacc tgactgtccc gcaaagcaaa</pre>	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg aatgcgtacc attaaaatcg gatccaaaca gttgaaccag aagagaggcc cagatgtgtg gtagaaaact ttttgttgga gagactcaga gctgatgtct aaggtcaagt	catgttetgt atgagactgg gagaaaaggg tgaggatgat cctactgtag aaacatggca catggaaaac cagactacaa ctttgggacc cctataagct tcattcaaaa ttgacaagtg aagaactaga agatgagtcc gaggggaaca	tcaggagtat tggtggagaa acagtatacg tgctcccgag aacaattgta caaaccagac tgttgaaatt agctgatgaa caactggaag ggtgaccatc gcaagaaaaa gatcgatctc aacaatgcgt cctgtagggt agcgcagcca	caggttgggc ggaattgaag cacaaaattt ggctccttgg acgaatgaat ttgggaacat gtccatatag gacccagcat aaggagctgg aaattcaagt cggatattta acgatggaag aagaggggtt cagagacaat gtgatgagtg	agetttacte tettaaagaa ateacetaaa tgttteatga atatgaaaga tagaaaatgt atattgeaga tatteeagte caaacageee ggtggggaet caaactteea acattaggag gegtegagg gteaaactgt aacaacaate	120 180 240 300 360 420 480 540 600 660 720 780 840
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg gaaagcctgg tgatttcttc acatggttta tagaagtcaa agtcaagacc tgactgccc gcaaagcaaa	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg aatgcgtacc attaaaatcg gatccaaaca gttgaaccag aagagaggcc cagatgtgtg gtagaaaact ttttgttgga gagactcaga gctgatgtct aaggtcaagt cttgcagtgt	catgttetgt atgagactgg gagaaaaggg tgaggatgat cctactgtag aaacatggca catggaaaac cagactacaa ctttgggacc cctataagct tcattcaaaa ttgacaagtg aagaactaga agatgagtcc gaggggaaca tgacgtttcc	tcaggagtat tggtggagaa acagtatacg tgctcccgag aacaattgta caaaccagac tgttgaaatt agctgatgaa caactggaag ggtgaccatc gcaagaaaaa gatcgatctc aacaatgcgt cctgtagggt agcgcagcca cagatgtgt	caggttgggc ggaattgaag cacaaaattt ggctccttgg acgaatgaat ttgggaacat gtccatatag gacccagcat aaggagctgg aaattcaagt cggatattta acgatggaag aagaggggtt cagagacaat gtgatgagtg cttgtgatga	agetttacte tettaaagaa ateacetaaa tgttteatga atatgaaaga tagaaaatgt atattgeaga tatteeagte caaacageee ggtggggaet caaactteea acattaggag gegttegagg gteaaactgt aacaacaace tacacacaca	120 180 240 300 360 420 480 540 600 660 720 780 840 900
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg gaaagcctgg tgatttcttc acatggttta tagaagtcaa agtcaagacc tgactgccc gcaaagcaaa	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg aatgcgtacc attaaaatcg gatccaaaca gttgaaccag aagagaggcc cagatgtgtg gtagaaaact ttttgttgga gagactcaga gctgatgtct aaggtcaagt cttgcagtgt	catgttetgt atgagactgg gagaaaaggg tgaggatgat cctactgtag aaacatggca catggaaaac cagactacaa ctttgggacc cctataagct tcattcaaaa ttgacaagtg aagaactaga agatgagtcc gaggggaaca tgacgtttcc	tcaggagtat tggtggagaa acagtatacg tgctcccgag aacaattgta caaaccagac tgttgaaatt agctgatgaa caactggaag ggtgaccatc gcaagaaaaa gatcgatctc aacaatgcgt cctgtagggt agcgcagcca cagatgtgt	caggttgggc ggaattgaag cacaaaattt ggctccttgg acgaatgaat ttgggaacat gtccatatag gacccagcat aaggagctgg aaattcaagt cggatattta acgatggaag aagaggggtt cagagacaat gtgatgagtg cttgtgatga	agetttacte tettaaagaa ateacetaaa tgttteatga atatgaaaga tagaaaatgt atattgeaga tatteeagte caaacageee ggtggggaet caaactteea acattaggag gegttegagg gteaaactgt aacaacaace tacacacaca	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg gaaagcctgg tgatttcttc acatggttta tagaagtcaa agtcaagacc tgactgtccc gcaaagcaaa	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg aatgcgtacc attaaaatcg gatccaaaca gttgaaccag aagagaggcc cagatgtgtg gtagaaaact ttttgttgga gagactcaga gctgatgtct aaggtcaagt cttgcagtgt ctcaaccacg	catgttetgt atgagactgg gagaaaaggg tgaggatgat cctactgtag aaacatggca catggaaaac cagactacaa ctttgggacc cctataagct tcattcaaaa ttgacaagtg aagaactaga agatgagtcc gaggggaaca tgacgtttcc tgtgtatata	tcaggagtat tggtggagaa acagtatacg tgctcccgag aacaattgta caaaccagac tgttgaaatt agctgatgaa caactggaag ggtgaccatc gcaagaaaaa gatcgatctc aacaatgcgt cctgtagggt agcgcagcca cagatgtgtg tgtatgtgt	caggttgggc ggaattgaag cacaaaattt ggctccttgg acgaatgaat ttgggaacat gtccatatag gacccagcat aaggagctgg aaattcaagt cggatattta acgatggaag aagaggggtt cagagacaat gtgatgatga cttgtgatga catatgtctg	agetttacte tettaaagaa ateacetaaa tgttteatga atatgaaaga tagaaaatgt atattgeaga tatteeagte caaacageee ggtggggaet caaactteea acattaggag gegtegagg gteaaaetgt aacaacage tacaacaca tagetgtata	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg gaaagcctgg tgatttcttc acatggttta tagaagtcaa agtcaagacc tgactgtccc gcaaagcaaa	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg aatgcgtacc attaaaatcg gatccaaaca gttgaaccag aagagaggcc cagatgtgtg gtagaaaact ttttgttgga gagactcaga gctgatgtct aaggtcaagt cttgcagtgt ctcaaccacg gtagagctac	catgttetgt atgagactgg gagaaaaggg tgaggatgat cctactgtag aaacatggca catggaaaac cagactacaa ctttgggacc cctataagct tcattcaaaa ttgacaagtg aagaactaga agatgagtcc gaggggaaca tgacgtttcc tgtgtatata agatccagat	tcaggagtat tggtggagaa acagtatacg tgctcccgag aacaattgta caaaccagac tgttgaaatt agctgatgaa caactggaag ggtgaccatc gcaagaaaaa gatcgatctc aacaatgcgt cctgtagggt agcgcagcca cagatgtgtg tgtatgtgtg acacacctt	caggttgggc ggaattgaag cacaaaattt ggctccttgg acgaatgaat ttgggaacat gtccatatag gacccagcat aaggagctgg aaattcaagt cggatattta acgatggaag aagaggggtt cagagacaat gtgatgagtg cttgtgatga catatgtctg gtgtatatat	agetttacte tettaaagaa ateacetaaa tgttteatga atatgaaaga tagaaaatgt atattgeaga tatteeagte caaacageee ggtggggaet caaactteea acattaggag eegttegagg gteaaactgt aacaacaate tacaacaaca tagetgtata gtacatacag	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140
<400> 86 tcggcggcgg ggaattccgt tgttgcagaa tgaaccttat gagcaaagtg gaaagcctgg tgatttcttc acatggttta tagaagtcaa agtcaagacc tgactgtccc gcaaagcaaa	tggtatcggc gtggttttgc gctagtaaga gagaaggatg cctgcattcg aatgcgtacc attaaaatcg gatccaaaca gttgaaccag aagagaggcc cagatgtgtg gtagaaaact ttttgttgga gagactcaga gctgatgtct aaggtcaagt cttgcagtgt ctcaaccacg gtagagctac	catgttetgt atgagactgg gagaaaaggg tgaggatgat cctactgtag aaacatggca catggaaaac cagactacaa ctttgggacc cctataagct tcattcaaaa ttgacaagtg aagaactaga agatgagtcc gaggggaaca tgacgtttcc tgtgtatata agatccagat	tcaggagtat tggtggagaa acagtatacg tgctcccgag aacaattgta caaaccagac tgttgaaatt agctgatgaa caactggaag ggtgaccatc gcaagaaaaa gatcgatctc aacaatgcgt cctgtagggt agcgcagcca cagatgtgtg tgtatgtgt	caggttgggc ggaattgaag cacaaaattt ggctccttgg acgaatgaat ttgggaacat gtccatatag gacccagcat aaggagctgg aaattcaagt cggatattta acgatggaag aagaggggtt cagagacaat gtgatgagtg cttgtgatga catatgtctg gtgtatatat	agetttacte tettaaagaa ateacetaaa tgttteatga atatgaaaga tagaaaatgt atattgeaga tatteeagte caaacageee ggtggggaet caaactteea acattaggag eegttegagg gteaaactgt aacaacaate tacaacaaca tagetgtata gtacatacag	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080

<210> 87

<211> 892

<212> PRT

<213> Homo sapiens

PCT/US00/16951

<400> 87 Met Asp His Tyr Asp Ser Gln Gln Thr Asn Asp Tyr Met Gln Pro Glu 10 Glu Asp Trp Asp Arg Asp Leu Leu Leu Asp Pro Ala Trp Glu Lys Gln 25 Gln Arg Lys Thr Phe Thr Ala Trp Cys Asn Ser His Leu Arg Lys Ala Gly Thr Gln Ile Glu Asn Ile Glu Glu Asp Phe Arg Asp Gly Leu Lys 55 Leu Met Leu Leu Glu Val Ile Ser Gly Glu Arg Leu Ala Lys Pro Glu Arg Gly Lys Met Arg Val His Lys Ile Ser Asn Val Asn Lys Ala 85 90 Leu Asp Phe Ile Ala Ser Lys Gly Val Lys Leu Val Ser Ile Gly Ala 105 Glu Glu Ile Val Asp Gly Asn Val Lys Met Thr Leu Gly Met Ile Trp 120 Thr Ile Ile Leu Arg Phe Ala Ile Gln Asp Ile Ser Val Glu Glu Thr 135 Ser Ala Lys Glu Gly Leu Leu Trp Cys Gln Arg Lys Thr Ala Pro 150 155 Tyr Lys Asn Val Asn Ile Gln Asn Phe His Ile Ser Trp Lys Asp Gly Leu Gly Phe Cys Ala Leu Ile His Arg His Arg Pro Glu Leu Ile Asp 185 180 Tyr Gly Lys Leu Arg Lys Asp Asp Pro Leu Thr Asn Leu Asn Thr Ala 200 Phe Asp Val Ala Glu Lys Tyr Leu Asp Ile Pro Lys Met Leu Asp Ala 215 Glu Asp Ile Val Gly Thr Ala Arg Pro Asp Glu Lys Ala Ile Met Thr 230 235 Tyr Val Ser Ser Phe Tyr His Ala Phe Ser Gly Ala Gln Lys Ala Glu 245 250 Thr Ala Ala Asn Arg Ile Cys Lys Val Leu Ala Val Asn Gln Glu Asn 265 260 Glu Gln Leu Met Glu Asp Tyr Glu Lys Leu Ala Ser Asp Leu Leu Glu 280 Trp Ile Arg Arg Thr Ile Pro Trp Leu Glu Asn Arg Val Pro Glu Asn 295 300 Thr Met His Ala Met Gln Gln Lys Leu Glu Asp Phe Arg Asp Tyr Arg 315 Arg Leu His Lys Pro Pro Lys Val Gln Glu Lys Cys Gln Leu Glu Ile 325 330 Asn Phe Asn Thr Leu Gln Thr Lys Leu Arg Leu Ser Asn Arg Pro Ala 345 Phe Met Pro Ser Glu Gly Arg Met Val Ser Asp Ile Asn Asn Ala Trp 360 365 Gly Cys Leu Glu Gln Val Glu Lys Gly Tyr Glu Glu Trp Leu Leu Asn 375 380 Glu Ile Arg Arg Leu Glu Arg Leu Asp His Leu Ala Glu Lys Phe Arg 390 395 • Gln Lys Ala Ser Ile His Glu Ala Trp Thr Asp Gly Lys Glu Ala Met

Leu Arg Gln Lys Asp Tyr Glu Thr Ala Thr Leu Ser Glu Ile Lys Ala 420 425 Leu Leu Lys Lys His Glu Ala Phe Glu Ser Asp Leu Ala Ala His Gln 440 Asp Arg Val Glu Gln Ile Ala Ala Ile Ala Gln Glu Leu Asn Glu Leu 455 Asp Tyr Tyr Asp Ser Pro Ser Val Asn Ala Arg Cys Gln Lys Ile Cys 470 475 Asp Gln Trp Asp Asn Leu Gly Ala Leu Thr Gln Lys Arg Arg Glu Ala 490 Leu Glu Arg Thr Glu Lys Leu Leu Glu Thr Ile Asp Gln Leu Tyr Leu 505 Glu Tyr Ala Lys Arg Ala Ala Pro Phe Asn Asn Trp Met Glu Gly Ala 520 Met Glu Asp Leu Gln Asp Thr Phe Ile Val His Thr Ile Glu Glu Ile 535 540 Gln Gly Leu Thr Thr Ala His Glu Gln Phe Lys Ala Thr Leu Pro Asp 550 555 Ala Asp Lys Glu Arg Leu Ala Ile Leu Gly Ile His Asn Glu Val Ser 565 570 Lys Ile Val Gln Thr Tyr His Val Asn Met Ala Gly Thr Asn Pro Tyr 585 Thr Thr Ile Thr Pro Gln Glu Ile Asn Gly Lys Trp Asp His Val Arg 600 Gln Leu Val Pro Arg Arg Asp Gln Ala Leu Thr Glu Glu His Ala Arg 615 620 Gln Gln His Asn Glu Arg Leu Arg Lys Gln Phe Gly Ala Gln Ala Asn 630 635 Val Ile Gly Pro Trp Ile Gln Thr Lys Met Glu Glu Ile Gly Arg Ile 645 650 Ser Ile Glu Met His Gly Thr Leu Glu Asp Gln Leu Ser His Leu Arg 665 Gln Tyr Glu Lys Ser Ile Val Asn Tyr Lys Pro Lys Ile Asp Gln Leu 680 Glu Gly Asp His Gln Leu Ile Gln Glu Ala Leu Ile Phe Asp Asn Lys • 695 700 His Thr Asn Tyr Thr Met Glu His Ile Arg Val Gly Trp Glu Gln Leu 710 715 Leu Thr Thr Ile Ala Arg Thr Ile Asn Glu Val Glu Asn Gln Ile Leu 725 Thr Arg Asp Ala Lys Gly Ile Ser Gln Glu Gln Met Asn Glu Phe Arg 745 Ala Ser Phe Asn His Phe Asp Arg Asp His Ser Gly Thr Leu Gly Pro 760 Glu Glu Phe Lys Ala Cys Leu Ile Ser Leu Gly Tyr Asp Ile Gly Asn 775 780 Asp Pro Gln Gly Glu Ala Glu Phe Ala Arg Ile Met Ser Ile Val Asp 790 795 Pro Asn Arg Leu Gly Val Val Thr Phe Gln Ala Phe Ile Asp Phe Met 805 810 Ser Arg Glu Thr Ala Asp Thr Asp Thr Ala Asp Gln Val Met Ala Ser 825 Phe Lys Ile Leu Ala Gly Asp Lys Asn Tyr Ile Thr Met Asp Glu Leu

234

840 835 Arg Arg Glu Leu Pro Pro Asp Gln Ala Glu Tyr Cys Ile Ala Arg Met 855 860 Ala Pro Tyr Thr Gly Pro Asp Ser Val Pro Gly Ala Leu Asp Tyr Met 870 875 Ser Phe Ser Thr Ala Leu Tyr Gly Glu Ser Asp Leu 885 <210> 88 <211> 197 <212> PRT <213> Homo sapiens <400> 88 Met Met Phe Pro Gln Ser Arg His Ser Gly Ser Ser His Leu Pro Gln 5 10 Gln Leu Lys Phe Thr Thr Ser Asp Ser Cys Asp Arg Ile Lys Asp Glu 25 Phe Gln Leu Leu Gln Ala Gln Tyr His Ser Leu Lys Leu Glu Cys Asp 40 Lys Leu Ala Ser Glu Lys Ser Glu Met Gln Arg His Tyr Val Met Tyr Tyr Glu Met Ser Tyr Gly Leu Asn Ile Glu Met His Lys Gln Ala Glu 70 75 Ile Val Lys Arg Leu Asn Gly Ile Cys Ala Gln Val Leu Pro Tyr Leu 90 Ser Gln Glu His Gln Gln Gln Val Leu Gly Ala Ile Glu Arg Ala Lys 105 Gln Val Thr Ala Pro Glu Leu Asn Ser Ile Ile Arg Gln Gln Leu Gln 120 Ala His Gln Leu Ser Gln Leu Gln Ala Leu Ala Leu Pro Leu Thr Pro 135 140 Leu Pro Val Gly Leu Gln Pro Pro Ser Leu Pro Ala Val Ser Ala Gly 150 . 155 Thr Gly Leu Leu Ser Leu Ser Ala Leu Gly Ser Gln Ala His Leu Ser 170 Lys Glu Asp Lys Asn Gly His Asp Gly Asp Thr His Gln Glu Asp Asp 185 180 Gly Glu Lys Ser Asp . 195 <210> 89. <211> 739 <212> PRT <213> Homo sapiens Gly Asp Lys Glu Pro Thr Glu Thr Ile Gly Asp Leu Ser Ile Cys Leu 10 Asp Gly Leu Gln Leu Glu Ser Glu Val Val Thr Asn Gly Glu Thr Thr 25 Cys Ser Glu Ser Ala Ser Gln Asn Asp Asp Gly Ser Arg Ser Lys Asp

Glu Thr Arg Val Ser Thr Asn Gly Ser Asp Asp Pro Glu Asp Ala Gly 55 Ala Gly Glu Asn Arg Arg Val Ser Gly Asn Asn Ser Pro Ser Leu Ser Asn Gly Gly Phe Lys Pro Ser Arg Pro Pro Arg Pro Ser Arg Pro Pro Pro Pro Thr Pro Arg Arg Pro Ala Ser Val Asn Gly Ser Pro Ser Ala 100 . 105 Thr Ser Glu Ser Asp Gly Ser Ser Thr Gly Ser Leu Pro Pro Thr Asn 120 Thr Asn Thr Asn Thr Ser Glu Gly Ala Thr Ser Gly Leu Ile Ile Pro 135 140 Leu Thr Ile Ser Gly Gly Ser Gly Pro Arg Pro Leu Asn Pro Val Thr 150 155 Gln Ala Pro Leu Pro Pro Gly Trp Glu Gln Arg Val Asp Gln His Gly 165 170 Arg Val Tyr Tyr Val Asp His Val Glu Lys Arg Thr Thr Trp Asp Arg 185 Pro Glu Pro Leu Pro Pro Gly Trp Glu Arg Arg Val Asp Asn Met Gly . 200 . Arg Ile Tyr Tyr Val Asp His Phe Thr Arg Thr Thr Trp Gln Arg 215 Pro Thr Leu Glu Ser Val Arg Asn Tyr Glu Gln Trp Gln Leu Gln Arg 230 235 Ser Gln Leu Gln Gly Ala Met Gln Gln Phe Asn Gln Arg Phe Ile Tyr 245 250 Gly Asn Gln Asp Leu Phe Ala Thr Ser Gln Ser Lys Glu Phe Asp Pro 260 265 Leu Gly Pro Leu Pro Pro Gly Trp Glu Lys Arg Thr Asp Ser Asn Gly 280 Arg Val Tyr Phe Val Asn His Asn Thr Arg Ile Thr Gln Trp Glu Asp 295 300 Pro Arg Ser Gln Gly Gln Leu Asn Glu Lys Pro Leu Pro Glu Gly Trp 310 315 Glu Met Arg Phe Thr Val Asp Gly Ile Pro Tyr Phe Val Asp His Asn Arg Arg Thr Thr Thr Tyr Ile Asp Pro Arg Thr Gly Lys Ser Ala Leu 340 345 Asp Asn Gly Pro Gln Ile Ala Tyr Val Arg Asp Phe Lys Ala Lys Val Gln Tyr Phe Arg Phe Trp Cys Gln Gln Leu Ala Met Pro Gln His Ile 375 380 Lys Ile Thr Val Thr Arg Lys Thr Leu Phe Glu Asp Ser Phe Gln Gln 395 390 Ile Met Ser Phe Ser Pro Gln Asp Leu Arg Arg Leu Trp Val Ile 410 Phe Pro Gly Glu Glu Gly Leu Asp Tyr Gly Gly Val Ala Arg Glu Trp 420 425 Phe Phe Leu Leu Ser His Glu Val Leu Asn Pro Met Tyr Cys Leu Phe 440 Glu Tyr Ala Gly Lys Asp Asn Tyr Cys Leu Gln Ile Asn Pro Ala Ser 455 Tyr Ile Asn Pro Asp His Leu Lys Tyr Phe Arg Phe Ile Gly Arg Phe

465 470 475 Ile Ala Met Ala Leu Phe His Gly Lys Phe Ile Asp Thr Gly Phe Ser 485 490 Leu Pro Phe Tyr Lys Arg Ile Leu Asn Lys Pro Val Gly Leu Lys Asp 505 Leu Glu Ser Ile Asp Pro Glu Phe Tyr Asn Ser Leu Ile Trp Val Lys 520 525 Glu Asn Asn Ile Glu Glu Cys Asp Leu Glu Met Tyr Phe Ser Val Asp 535 Lys Glu Ile Leu Gly Glu Ile Lys Ser His Asp Leu Lys Pro Asn Gly 550 555 Gly Asn Ile Leu Val Thr Glu Glu Asn Lys Glu Glu Tyr Ile Arg Met 570 Val Ala Glu Trp Arg Leu Ser Arg Gly Val Glu Glu Gln Thr Gln Ala 580 585 Phe Phe Glu Gly Phe Asn Glu Ile Leu Pro Gln Gln Tyr Leu Gln Tyr 600 Phe Asp Ala Lys Glu Leu Glu Val Leu Leu Cys Gly Met Gln Glu Ile 615 620 Asp Leu Asn Asp Trp Gln Arg His Ala Ile Tyr Arg His Tyr Ala Arg 630 635 Thr Ser Lys Gln Ile Met Trp Phe Trp Gln Phe Val Lys Glu Ile Asp 645 650 Asn Glu Lys Arg Met Arg Leu Leu Gln Phe Val Thr Gly Thr Cys Arg 665 Leu Pro Val Gly Gly Phe Ala Asp Leu Met Gly Ser Asn Gly Pro Gln 680 Lys Phe Cys Ile Glu Lys Val Gly Lys Glu Asn Trp Leu Pro Arg Ser 695 His Thr Cys Phe Asn Arg Leu Asp Leu Pro Pro Tyr Lys Ser Tyr Glu 710 715 Gln Leu Lys Glu Lys Leu Leu Phe Ala Ile Glu Glu Thr Glu Gly Phe 725 730 Gly Gln Glu

<210> 90 <211> 431 <212> PRT

<213> Homo sapiens

<400> 90

Gly Pro Pro Pro Thr Arg Ala Leu Pro Leu Pro Gln Ser Leu Pro Pro 10 Asp Phe Arg Leu Glu Pro Thr Ala Pro Ala Leu Ser Pro Arg Ser Ser 25 Phe Ala Ser Ser Ser Ala Ser Asp Ala Ser Lys Pro Ser Ser Pro Arg . 40 45 Gly Ser Leu Leu Asp Gly Ala Gly Ala Gly Gly Ala Gly Gly Ser 55 . Arg Pro Cys Ser Asn Arg Thr Ser Gly Ile Ser Met Gly Tyr Asp Gln Arg His Gly Ser Pro Leu Pro Ala Gly Pro Cys Leu Phe Gly Pro Pro 237

85 90 Leu Ala Gly Ala Pro Ala Gly Tyr Ser Pro Gly Gly Val Pro Ser Ala 105 Tyr Pro Glu Leu His Ala Ala Leu Asp Arg Leu Tyr Ala Gln Arg Pro Ala Gly Phe Gly Cys Gln Glu Ser Arg His Ser Tyr Pro Pro Ala Leu 135 Gly Ser Pro Gly Ala Leu Ala Gly Ala Arg Val Gly Ala Ala Gly Pro 150 155 Leu Glu Arg Arg Gly Ala Gln Pro Gly Arg His Ser Val Thr Gly Tyr 170 Gly Asp Cys Ala Val Gly Ala Arg Tyr Gln Asp Glu Leu Thr Ala Leu 185 Leu Arg Leu Thr Val Gly Thr Gly Gly Arg Glu Ala Gly Ala Arg Gly 200 Glu Pro Ser Gly Ile Glu Pro Ser Gly Leu Glu Pro Pro Gly Pro 215 . 220 Phe Val Pro Glu Ala Ala Arg Ala Arg Met Arg Glu Pro Glu Ala Arg 225 230 235 Glu Asp Tyr Phe Gly Thr Cys Ile Lys Cys Asn Lys Gly Ile Tyr Gly 250 Gln Ser Asn Ala Cys Gln Ala Leu Asp Ser Leu Tyr His Thr Gln Cys 265 Phe Val Cys Cys Ser Cys Gly Arg Thr Leu Arg Cys Lys Ala Phe Tyr 280 Ser Val Asn Gly Ser Val Tyr Cys Glu Glu Asp Tyr Leu Phe Ser Gly 295 300 Phe Gln Glu Ala Ala Glu Lys Cys Cys Val Cys Gly His Leu Ile Leu 310 315 Glu Lys Ile Leu Gln Ala Met Gly Lys Ser Tyr His Pro Gly Cys Phe 325 330 Arg Cys Ile Val Cys Asn Lys Cys Leu Asp Gly Ile Pro Phe Thr Val 340 . 345 Asp Phe Ser Asn Gln Val Tyr Cys Val Thr Asp Tyr His Lys Asn Tyr 360 Ala Pro Lys Cys Ala Ala Cys Gly Gln Pro Ile Leu Pro Ser Glu Gly . 375 Cys Glu Asp Ile Val Arg Val Ile Ser Met Asp Arg Asp Tyr His Phe 390 395 Glu Cys Tyr His Cys Glu Asp Cys Arg Met Gln Leu Ser Asp Glu Glu 405 410 Gly Cys Cys Phe Pro Leu Asp Gly His Leu Leu Cys His Gly 420 425

<210> 91

<211> 900

<212> PRT

<213> Homo sapiens

<400> 91

Gly Pro Gly Ser Arg His His Arg Ala Arg Asp Arg Leu Ile His Phe Gly Ala Val Ser Thr Asp Val Leu Gly Cys Ser Ala His Cys Ser Leu 238

			20					25					30		
Thr	Gln	Ser 35	Pro	Lys	Met	Asn	Ile 40	Gln	Glu	Gln	Gly	Phe 45	Pro	Leu	Asp
Leu	Gly 50	Ala	Ser	Phe	Thr	Glu 55	Asp	Ala	Pro	Arg	Pro 60	Pro	Val	Pro	Gly
Glu 65	Glu	Gly	Glu	Leu	Val 70	Ser	Thr	Asp	Pro	Arg 75	Pro	Ala	Ser	Tyr	Ser 80
Phe	Cys	Ser	Gly	Lys 85	Gly	Val	Gly	Ile	Lys 90	Gly	Glu	Thr	Ser	Thr 95	Ala
Thr	Pro	Arg	Arg 100	Ser	Asp	Leu	Asp	Leu 105	Gly	Tyr	Glu	Pro	Glu 110	Gly	Ser
Ala	Ser	Pro 115	Thr	Pro	Pro	Tyr	Leu 120	Lys	Trp	Ala	Glu	Ser 125	Leu	His	Ser
	130	-	-		_	135					140			Leu	•
145		-	-	•	150					155			_	Thr	160
	_			165					170			_	_	Leu 175	_
			180					185			_		190	Gly	
		195					200		_			205	_	Gly	_
	210	_				215					220			Gln	
225					230					235				Leu	240
				245		-		_	250	_				Pro 255	_
			260				_	265	_		_	_	270	Ile	
		275					280					285		qeA	
	290			_	_	295					300		-	Arg	
305					310					315	_	•		Ser	320
				325					330				-	Arg 335	
			340	-				345	-	_			350	Pro	
		355					360					365	_	Ala -	_
	370					375					380			Tyr	
385					390					395				Val	400
		•		405	•				410					Pro 415	
		_	420				_	425					430	His	_
Leu	Glu	Ala 435	Val	Gln	Arg	Thr	Arg 440	Glu	Ala	Glu	Glu	Lys 445	Leu	Glu	Glu

Arg Leu Lys Arg Val Arg Met Glu Glu Glu Glu Glu Asp Gly Asp Pro 455 Ser Ser Gly Pro Pro Gly Pro Cys His Lys Leu Pro Pro Ala Pro Ala 470 475 Trp His His Phe Pro Pro Arg Leu Cys Trp Thr Trp Ala Cys Ala Gly 490 Leu Arg Asp Ala His Glu Glu Asn Pro Glu Ser Ile Leu Asp Glu His 505 Val Gln Arg Val Leu Arg Thr Thr Gly Arg Gln Ser Pro Gly Pro Gly 520 His Arg Ser Pro Asp Ser Gly His Val Ala Lys Met Pro Val Ala Leu 535 540 Gly Gly Ala Ala Ser Gly His Gly Lys His Val Pro Lys Ser Gly Ala 550 . 555 Lys Leu Asp Ala Ala Gly Leu His His His Arg His Val His His His 570 Val His His Ser Thr Ala Arg Pro Lys Glu Gln Val Glu Ala Glu Ala 585 Thr Arg Arg Ala Gln Ser Ser Phe Ala Trp Gly Leu Glu Pro His Ser 600 His Gly Ala Arg Ser Arg Gly Tyr Ser Glu Ser Val Gly Ala Ala Pro 615 Asn Ala Ser Asp Gly Leu Ala His Ser Gly Lys Val Gly Val Ala Cys 630 635 Lys Arg Asn Ala Lys Lys Ala Glu Ser Gly Lys Ser Ala Ser Thr Glu 645 650 Val Pro Gly Ala Ser Glu Asp Ala Glu Lys Asn Gln Lys Ile Met Gln 665 Trp Ile Ile Glu Gly Glu Lys Glu Ile Ser Arg His Arg Arg Thr Gly 680 His Gly Ser Ser Gly Thr Arg Lys Pro Gln Pro His Glu Asn Ser Arg 695 700 Pro Leu Ser Leu Glu His Pro Trp Ala Gly Pro Gln Leu Arg Thr Ser 710 715 Val Gln Pro Ser His Leu Phe Ile Gln Asp Pro Thr Met Pro Pro His 725 Pro Ala Pro Asn Pro Leu Thr Gln Leu Glu Glu Ala Arg Arg Leu 745 Glu Glu Glu Glu Lys Arg Ala Ser Arg Ala Pro Ser Lys Gln Arg Tyr 760 · Val Gln Glu Val Met Arg Arg Gly Arg Ala Cys Val Arg Pro Ala Cys 775 780 Ala Pro Val Leu His Val Val Pro Ala Val Ser Asp Met Glu Leu Ser 790 795 Glu Thr Glu Thr Arg Ser Gln Arg Lys Val Gly Gly Gly Ser Ala Gln 810 Pro Cys Asp Ser Ile Val Val Ala Tyr Tyr Phe Cys Gly Glu Pro Ile 820 . 825 Pro Tyr Arg Thr Leu Val Arg Gly Arg Ala Val Thr Leu Gly Gln Phe Lys Glu Leu Leu Thr Lys Lys Gly Ser Tyr Arg Tyr Tyr Phe Lys Lys 855 Val Ser Asp Glu Phe Asp Cys Gly Val Val Phe Glu Glu Val Arg Glu

865 870 . 875 880
Asp Glu Ala Val Leu Pro Val Phe Glu Glu Lys Ile Ile Gly Lys Val
885 890 895

Glu Lys Val Asp

<210> 92

<211> 591

<212> PRT

<213> Homo sapiens

<400> 92

Met Val Pro Val Ala Val Thr Ala Ala Val Ala Pro Val Leu Ser Ile

1 5 10 15

Asn Ser Asp Phe Ser Asp Leu Arg Glu Ile Lys Lys Gln Leu Leu 20 25 30

Ile Ala Gly Leu Thr Arg Glu Arg Gly Leu Leu His Ser Ser Lys Trp
35 40 45

Ser Ala Glu Leu Ala Phe Ser Leu Pro Ala Leu Pro Leu Ala Glu Leu 50 55 60

Gln Pro Pro Pro Pro Ile Thr Glu Glu Asp Ala Gln Asp Met Asp Ala 65 70 75 80

Tyr Thr Leu Ala Lys Ala Tyr Phe Asp Val Lys Glu Tyr Asp Arg Ala 85 90 95

Ala His Phe Leu His Gly Cys Asn Ser Lys Lys Ala Tyr Phe Leu Tyr
100 105 110

Met Tyr Ser Arg Tyr Leu Ser Gly Glu Lys Lys Lys Asp Asp Glu Thr 115 120 125

Val Asp Ser Leu Gly Pro Leu Glu Lys Gly Gln Val Lys Asn Glu Ala 130 135 140

Leu Arg Glu Leu Arg Val Glu Leu Ser Lys Lys His Gln Ala Arg Glu 145 150 155 160

Leu Asp Gly Phe Gly Leu Tyr Leu Tyr Gly Val Val Leu Arg Lys Leu
165 170 175

Asp Leu Val Lys Glu Ala Ile Asp Val Phe Val Glu Ala Thr His Val
180 185 190

Leu Pro Leu His Trp Gly Ala Trp Leu Glu Leu Cys Asn Leu Ile Thr 195 200 205

Asp Lys Glu Met Leu Lys Phe Leu Ser Leu Pro Asp Thr Trp Met Lys 210 215 220

Glu Phe Phe Leu Ala His Ile Tyr Thr Glu Leu Gln Leu Ile Glu Glu 225 230 235 240

Ala Leu Gln Lys Tyr Gln Asn Leu Ile Asp Val Gly Phe Ser Lys Ser 245 250 255

Ser Tyr Ile Val Ser Gln Ile Ala Val Ala Tyr His Asn Ile Arg Asp 260 265 270

Ile Asp Lys Ala Leu Ser Ile Phe Asn Glu Leu Arg Lys Gln Asp Pro 275 280 285

Tyr Arg Ile Glu Asn Met Asp Thr Phe Ser Asn Leu Leu Tyr Val Arg 290 295 300

Ser Met Lys Ser Glu Leu Ser Tyr Leu Ala His Asn Leu Cys Glu Ile 305 310 315 320

Asp Lys Tyr Arg Val Glu Thr Cys Cys Val Ile Gly Asn Tyr Tyr Ser

241

330 325 Leu Arg Ser Gln His Glu Lys Ala Ala Leu Tyr Phe Gln Arg Ala Leu 345 Lys Leu Asn Pro Arg Tyr Leu Gly Ala Trp Thr Leu Met Gly His Glu 360 Tyr Met Glu Met Lys Asn Thr Ser Ala Ala Ile Gln Ala Tyr Arg His 375 380 Ala Ile Glu Val Asn Lys Arg Asp Tyr Arg Ala Trp Tyr Gly Leu Gly 390 395 Gln Thr Tyr Glu Ile Leu Lys Met Pro Phe Tyr Cys Leu Tyr Tyr 405 410 Arg Arg Ala His Gln Leu Arg Pro Asn Asp Ser Arg Met Leu Val Ala 420 425 Leu Gly Glu Cys Tyr Glu Lys Leu Asn Gln Leu Val Glu Ala Lys Lys 440 Cys Tyr Trp Arg Ala Tyr Ala Val Gly Asp Val Glu Lys Met Ala Leu 455 460 Val Lys Leu Ala Lys Leu His Glu Gln Leu Thr Glu Ser Glu Gln Ala 470 . 475 480 Ala Gln Cys Tyr Ile Lys Tyr Ile Gln Asp Ile Tyr Ser Cys Gly Glu 490 Ile Val Glu His Leu Glu Glu Ser Thr Ala Phe Arg Tyr Leu Ala Gln 505 Tyr Tyr Phe Lys Cys Lys Leu Trp Asp Glu Ala Ser Thr Cys Ala Gln 520 Lys Cys Cys Ala Phe Asn Asp Thr Arg Glu Glu Gly Lys Ala Leu Leu 535 540 Arg Gln Ile Leu Gln Leu Arg Asn Gln Gly Glu Thr Pro Thr Thr Glu 550 . Val Pro Ala Pro Phe Phe Leu Pro Ala Ser Leu Ser Ala Asn Asn Thr 570 565 Pro Thr Arg Arg Val Ser Pro Leu Asn Leu Ser Ser Val Thr Pro 585

<210> 93

<211> 914

<212> PRT

<213> Homo sapiens

<400> 93

Val Tyr Gln Val Leu Leu Val Gly Ser Thr Leu Leu Lys Glu Val Pro 10 Ser Gly Leu Gln Leu Glu Gln Leu Pro Ser Gln Ser Leu Leu Thr His 25 Ile Pro Thr Ala Gly Leu Pro Thr Ser Leu Gly Gly Gly Leu Pro Tyr 40 Cys His Gln Ala Trp Leu Asp Phe Arg Arg Arg Leu Glu Ala Leu Leu Gln Asn Cys Gln Ala Ala Cys Ala Leu Leu Gln Gly Ala Ile Glu Ser 70 75 Val Lys Ala Val Pro Gln Pro Met Glu Pro Gly Glu Val Gly Gln Leu Leu Gln Gln Thr Glu Val Leu Met Gln Gln Val Leu Asp Ser Pro Trp

WO 01/77327 PCT/US00/16951

			100					105					110		
Leu	Ala	Trp 115	Leu	Gln	Сув	Gln	Gly 120	Gly	Arg	Glu	Leu	Thr 125	_	Leu	Lys
Gln	Glu 130	Val	Pro	Glu	Val	Thr 135	Leu	Ser	Pro	Asp	Tyr 140		Thr	Ala	Met
145					150					155					Gln 160
Leu	Thr	Leu	Gln	Ser 165	Asn	Gln	Arg	Ile	Gln 170		Leu	Glu	Leu	Val 175	Gln
			180				_	185					190	-	Leu
Gln	Gln	Val 195	Gly	Trp	Pro	Ala	Leu 200	Glu	Glu	Ala	Gly	Glu 205	Pro	Ser	Leu
	210		•			215				Gln	220		_		
225	,				230					Phe 235					240
Gly	Trp	Glu	Ala	Ala 245	Glu	Leu	Asp	Pro	Pro 250	Gly	Ala	Arg	Phe	Leu 255	Ala
Leu	Arg	Ala	Gln 260	Leu	Thr	Glu	Phe	Ser 265	Arg	Ala	Leu	Ala	Gln 270	Arg	Cys
Gln	Arģ	Leu 275	Ala	Asp	Ala	Glu	Arg 280	Leu	Phe	Gln	Leu	Phe 285	Arg	Glu	Ala
	290					295				Leu	300				
305					310					Gln 315					320
				325					330	Lув				335	
			340					345		Glu			350		_
		355					360			Asp		365			
	370					375				Ala	380				
385					390					Leu 395					400
				405					410	Glu				415	
			420					425		Arg			430		
Gly	Ala	Leu 435	Pro	Gln	Ala	Ser	Pro 440	Thr	Val	Pro	Pro	Pro 445	Gly	Ser	Ser
Asp	Pro 450	Arg	Ser	Leu	Asn	Arg 455	Leu	Gln	Leu	'Val	Leu 460	Ala	Glu	Met	Val
Ala 465	Thr	Glu	Arg	Glu	Tyr 470	Val	Arg	Ala	Leu	Glu 475	Tyr	Thr	Met	Glu	Asn 480
Tyr	Phe	Pro	Glu	Leu 485	Asp	Arg	Pro	Asp	Val 490	Pro	Gln	Gly	Leu	Arg 495	Gly
			500					505		Lys			510		•
Суз	His	Phe 515	Phe	Leu	Arg.	Glu	Leu 520	Glu	Ala	Сув	Thr	Arg 525	His	Pro	Pro

Arg Val Ala Tyr Ala Phe Leu Arg His Arg Val Gln Phe Gly Met Tyr 535 Ala Leu Tyr Ser Lys Asn Lys Pro Arg Ser Asp Ala Leu Met Ser Ser 550 555 Tyr Gly His Thr Phe Phe Lys Asp Lys Gln Gln Ala Leu Gly Asp His 565 570 Leu Asp Leu Ala Ser Tyr Leu Leu Lys Pro Ile Gln Arg Met Gly Lys 585 Tyr Ala Leu Leu Gln Glu Leu Ala Arg Ala Cys Gly Gly Pro Thr 600 Gln Glu Leu Ser Ala Leu Arg Glu Ala Gln Ser Leu Val His Phe Gln 615 620 Leu Arg His Gly Asn Asp Leu Leu Ala Met Asp Ala Ile Gln Gly Cys 630 635 Asp Val Asn Leu Lys Glu Gln Gly Gln Leu Val Arg Gln Asp Glu Phe 650 Val Val Arg Thr Gly Arg His Lys Ser Val Arg Arg Ile Phe Leu Phe 665 Glu Glu Leu Leu Phe Ser Lys Pro Arg His Gly Pro Thr Gly Val 680 Asp Thr Phe Ala Tyr Lys Arg Ser Phe Lys Met Ala Asp Leu Gly Leu 695 700 Thr Glu Cys Cys Gly Asn Ser Asn Leu Arg Phe Glu Ile Trp Phe Arg 710 Arg Arg Lys Ala Arg Asp Thr Phe Val Leu Gln Ala Ser Ser Leu Ala 725 730 Ile Lys Gln Ala Trp Thr Ala Asp Ile Ser His Leu Leu Trp Arg Gln 745 Ala Val His Asn Lys Glu Val Arg Met Ala Glu Met Val Ser Met Gly 760 Val Gly Asn Lys Ala Phe Arg Asp Ile Ala Pro Ser Glu Glu Ala Ile 775 780 Asn Asp Arg Thr Val Asn Tyr Val Leu Lys Cys Arg Glu Val Arg Ser 790 . 795 Arg Ala Ser Ile Ala Val Ala Pro Phe Asp His Asp Ser Leu Tyr Leu 805 810 Gly Ala Ser Asn Ser Leu Pro Gly Asp Pro Ala Ser Cys Ser Val Leu 825 Gly Ser Leu Asn Leu His Leu Tyr Arg Asp Pro Ala Leu Leu Gly Leu 840 Arg Cys Pro Leu Tyr Pro Ser Phe Leu Glu Glu Ala Ala Leu Glu Ala 855 Glu Ala Glu Leu Gly Gly Gln Pro Ser Leu Thr Ala Glu Asp Ser Glu 875 Ile Ser Ser Gln Cys Pro Ser Ala Ser Gly Ser Ser Gly Ser Asp Ser 885 890 Ser Cys Val Ser Gly Gln Ala Leu Gly Arg Gly Leu Glu Asp Leu Pro 905 Cys Val

<210> 94 <211> 277

```
<212> PRT
<213> Homo sapiens
```

Leu Asn Tyr Leu Leu Glu Ser Arg Leu Glu Ala Ala Ala His Cys Ala Leu Lys Gln Gly Ile Ala Thr Ala Ser Leu Leu Pro Ala Gln Leu Gln 25 Pro Ala Val Leu Thr Val Val Thr Cys His Val Val Val Ser Val His Gly His His Thr Asp Gly Cys Leu Ala Ala Leu Cys Arg Glu Asp Arg Thr Gly Thr Gly Gly Ala Phe Trp Cys Lys Asn Arg Val Ile Val Ser His Ala Val Asp Val Val Leu His Val His Gly Glu Gly Asn Pro Val 90 Gln Ala Leu Ile Ala His Gly Ala Pro Glu Ala Ala Trp Val Val Gly 105 Leu Ala Gln Gly Leu Gln Asp His Phe His Asp Glu Met Ser Thr His 120 Ala Ala Phe Val Gly Arg Leu Leu Glu Pro Gly Val Gln Glu Val Leu 135 Leu Ala Val His Phe Leu Thr His Val Val Glu Arg Leu Pro Thr Glu 150 155 Ser Ser Pro Thr Arg Val Ala Gly Glu Ala Val Ser Val Ile Lys Thr 165 170 Pro His Cys Leu Ala Arg Leu Leu Gly Ser Val Asp Ala Lys Pro Thr 185 Leu Asp Ala Asn Ala Glu Val Val Pro Arg Arg Ala Arg Leu Glu Arg 200 Pro Leu Gln Leu Pro Gly Glu Arg Leu Gln Pro Pro Leu Gly Arg Ala 215 220 Trp Ala Ala Leu Pro Ala Arg Gly Gln Arg Glu Cys Arg Gln Arg Glu 230 235 Gly Gly Arg Pro Arg Arg Leu Arg Gly Ala Ser Gly Arg Gly Ala Gly 250 Ala Gly Arg Glu Glu Val Ser Val Gly Phe Ser Ala Gln Trp Glu Phe 265

. Gly Ser Gly Arg His

275

<210> 95

<211> 1120

<212> PRT

<213> Homo sapiens

Met Trp Arg Val Lys Lys Leu Ser Leu Ser Leu Ser Pro Ser Pro Gln 10 Thr Gly Lys Pro Ser Met Arg Thr Pro Leu Arg Glu Leu Thr Leu Gln 25 Pro Gly Ala Leu Thr Thr Ser Gly Lys Arg Ser Pro Ala Cys Ser Ser

Leu Thr Pro Ser Leu Cys Lys Leu Gly Leu Gln Glu Gly Ser Asn Asn 55 Ser Ser Pro Val Asp Phe Val Asn Asn Lys Arg Thr Asp Leu Ser Ser Glu His Phe Ser His Ser Ser Lys Trp Leu Glu Thr Cys Gln His Glu 90 Ser Asp Glu Gln Pro Leu Asp Pro Ile Pro Gln Ile Ser Ser Thr Pro 105 Lys Thr Ser Glu Glu Ala Val Asp Pro Leu Gly Asn Tyr Met Val Lys 120 Thr Ile Val Leu Val Pro Ser Pro Leu Gly Gln Gln Asp Met Ile 135 140 Phe Glu Ala Arg Leu Asp Thr Met Ala Glu Thr Asn Ser Ile Ser Leu 150 155 Asn Gly Pro Leu Arg Thr Asp Asp Leu Val Arg Glu Glu Val Ala Pro 170 Cys Met Gly Asp Arg Phe Ser Glu Val Ala Ala Val Ser Glu Lys Pro 185 Ile Phe Gln Glu Ser Pro Ser His Leu Leu Glu Glu Ser Pro Pro Asn 200 Pro Cys Ser Glu Gln Leu His Cys Ser Lys Glu Ser Leu Ser Ser Arg 215 Thr Glu Ala Val Arg Glu Asp Leu Val Pro Ser Glu Ser Asn Ala Phe 230 235 Leu Pro Ser Ser Val Leu Trp Leu Ser Pro Ser Thr Ala Leu Ala Ala 245 250 Asp Phe Arg Val Asn His Val Asp Pro Glu Glu Glu Ile Val Glu His 260 265 Gly Ala Met Glu Glu Arg Glu Met Arg Phe Pro Thr His Pro Lys Glu 280 285 Ser Glu Thr Glu Asp Gln Ala Leu Val Ser Ser Val Glu Asp Ile Leu 295 Ser Thr Cys Leu Thr Pro Asn Leu Val Glu Met Glu Ser Gln Glu Ala 310 315 Pro Gly Pro Ala Val Glu Asp Val Gly Arg Ile Leu Gly Ser Asp Thr 325 . 330 Glu Ser Trp Met Ser Pro Leu Ala Trp Leu Glu Lys Gly Val Asn Thr 340 345 Ser Val Met Leu Glu Asn Leu Arg Gln Ser Leu Ser Leu Pro Ser Met 360 Leu Arg Asp Ala Ala Ile Gly Thr Thr Pro Phe Ser Thr Cys Ser Val 375 380 Gly Thr Trp Phe Thr Pro Ser Ala Pro Gln Glu Lys Ser Thr Asn Thr 390 395 Ser Gln Thr Gly Leu Val Gly Thr Lys His Ser Thr Ser Glu Thr Glu 405 410 Gln Leu Leu Cys Gly Arg Pro Pro Asp Leu Thr Ala Leu Ser Arg His 425 Asp Leu Glu Asp Asn Leu Leu Ser Ser Leu Val Ile Val Glu Phe Leu 440 Ser Arg Gln Leu Arg Asp Trp Lys Ser Gln Leu Ala Val Pro His Pro 455 Glu Thr Gln Asp Ser Ser Thr Gln Thr Asp Thr Ser His Ser Gly Ile

465 470 475 Thr Asn Lys Leu Gln His Leu Lys Glu Ser His Glu Met Gly Gln Ala 485 490 Leu Gln Gln Ala Arg Asn Val Met Gln Ser Trp Val Leu Ile Ser Lys 505 Glu Leu Ile Ser Leu Leu His Leu Ser Leu Leu His Leu Glu Glu Asp 520 Lys Thr Thr Val Asn Gln Glu Ser Arg Arg Ala Glu Thr Leu Val Cys 535 -540 Cys Cys Phe Asp Leu Leu Lys Lys Leu Arg Ala Lys Leu Gln Ser Leu 550 555 Lys Ala Glu Arg Glu Glu Ala Arg His Arg Glu Glu Met Ala Leu Arg 565 570 Gly Lys Asp Ala Ala Glu Ile Val Leu Glu Ala Phe Cys Ala His Ala 580 585 Ser Gln Arg Ile Ser Gln Leu Glu Gln Asp Leu Ala Ser Met Arg Glu 600 Phe Arg Gly Leu Leu Lys Asp Ala Gln Thr Gln Leu Val Gly Leu His 615 Ala Lys Gln Glu Glu Leu Val Gln Gln Thr Val Ser Leu Thr Ser Thr 630 635 Leu Gln Gln Asp Trp Arg Ser Met Gln Leu Asp Tyr Thr Trp Thr 645 650 Ala Leu Leu Ser Arg Ser Arg Gln Leu Thr Glu Lys Leu Thr Val Lys 665 Ser Gln Gln Ala Leu Gln Glu Arg Asp Val Ala Ile Glu Glu Lys Gln 680 Glu Val Ser Arg Val Leu Glu Gln Val Ser Ala Gln Leu Glu Glu Cys 695 Lys Gly Gln Thr Glu Gln Leu Glu Leu Glu Asn Ile Arg Leu Ala Thr 710 . 715 Asp Leu Arg Ala Gln Leu Gln Ile Leu Ala Asn Met Asp Ser Gln Leu 725 -730 Lys Glu Leu Gln Ser Gln His Thr His Cys Ala Gln Asp Leu Ala Met 745 Lys Asp Glu Leu Leu Cys Gln Leu Thr Gln Ser Asn Glu Glu Gln Ala 760 . Ala Gln Cys Val Lys Glu Glu Met Ala Leu Lys His Met Gln Ala Glu Leu Gln Gln Gln Ala Val Leu Ala Lys Glu Val Arg Asp Leu Lys 790 795 Glu Thr Leu Glu Phe Ala Asp Gln Glu Asn Gln Val Ala His Leu Glu 805 810 Leu Gly Gln Val Glu Cys Gln Leu Lys Thr Thr Leu Glu Val Leu Arg 825 Glu Arg Ser Leu Gln Cys Glu Asn Leu Lys Asp Thr Val Glu Asn Leu 840 845 Thr Ala Lys Leu Ala Ser Thr Ile Ala Asp Asn Gln Glu Gln Asp Leu 855 Glu Lys Thr Arg Gln Tyr Ser Gln Lys Leu Gly Leu Leu Thr Glu Gln 870 875 Leu Gln Ser Leu Thr Leu Phe Leu Gln Thr Lys Leu Lys Glu Lys Thr 890

247

Glu Glu Glu Thr Leu Leu Ser Thr Ala Cys Pro Pro Thr Glu Glu 900 905 His Pro Leu Pro Asn Asp Arg Thr Phe Leu Gly Ser Ile Leu Thr Ala 920 Val Ala Asp Glu Glu Pro Glu Ser Thr Pro Val Pro Leu Leu Gly Ser 935 Asp Lys Ser Ala Phe Thr Arg Val Ala Ser Met Val Ser Leu Gln Pro 950 955 Ala Glu Thr Pro Gly Met Glu Glu Ser Leu Ala Glu Met Ser Ile Met 970 Thr Thr Glu Leu Gln Ser Leu Cys Ser Leu Leu Gln Glu Ser Lys Glu 980 985 Glu Ala Ile Arg Thr Leu Gln Arg Lys Ile Cys Glu Leu Gln Ala Arg 1000 1005 Leu Gln Ala Gln Glu Gln His Gln Glu Val Gln Lys Ala Lys Glu 1015 1020 Ala Asp Ile Glu Lys Leu Asn Gln Ala Leu Cys Leu Arq Tyr Lys Asn 1030 1035 Glu Lys Glu Leu Gln Glu Val Ile Gln Gln Asn Glu Lys Ile Leu Glu 1045 1050 Gln Ile Asp Lys Ser Gly Glu Leu Ile Ser Leu Arg Glu Glu Val Thr 1060 1065 1070 His Leu Thr Arg Ser Leu Arg Arg Ala Glu Thr Glu Thr Lys Val Leu 1080 1085 Gln Glu Ala Trp Gln Ala Ser Trp Thr Pro Thr Ala Ser Leu Trp Pro 1095 1100 Pro Ile Gly Ser Arg Arg Lys Cys Gly Ser Leu Arg Arg Trp Thr Asn 1110 1115 <210> 96 <211> 540 <212> PRT <213> Homo sapiens <400> 96 Met Gly Thr Thr Ala Arg Ala Ala Leu Val Leu Thr Tyr Leu Ala Val 10 Ala Ser Ala Ala Ser Glu Gly Gly Phe Thr Ala Thr Gly Gln Arg Gln Leu Arg Pro Glu His Phe Gln Glu Val Gly Tyr Ala Ala Pro Pro Ser 40 Pro Pro Leu Ser Arg Ser Leu Pro Met Asp His Pro Asp Ser Ser Gln 55 His Gly Pro Pro Phe Glu Gly Gln Ser Gln Val Gln Pro Pro Pro Ser 75 Gln Glu Ala Thr Pro Leu Gln Gln Glu Lys Leu Leu Pro Ala Gln Leu 90 Pro Ala Glu Lys Glu Val Gly Pro Pro Leu Pro Gln Glu Ala Val Pro 105 Leu Gln Lys Glu Leu Pro Ser Leu Gln His Pro Asn Glu Gln Lys Glu 120 Gly Thr Pro Ala Pro Phe Gly Asp Gln Ser His Pro Glu Pro Glu Ser

Trp Asn Ala Ala Gln His Cys Gln Gln Asp Arg Ser Gln Gly Gly Trp 150 155 Gly His Arg Leu Asp Gly Phe Pro Pro Gly Arg Pro Ser Pro Asp Asn 165 170 Leu Asn Gln Ile Cys Leu Pro Asn Arg Gln His Val Val Tyr Gly Pro 185 Trp Asn Leu Pro Gln Ser Ser Tyr Ser His Leu Thr Arg Gln Gly Glu 200 Thr Leu Asn Phe Leu Glu Ile Gly Tyr Ser Arg Cys Cys His Cys Arg 215 Ser His Thr Asn Arg Leu Glu Cys Ala Lys Leu Val Trp Glu Glu Ala 230 235 Met Ser Arg Phe Cys Glu Ala Glu Phe Ser Val Lys Thr Arg Pro His 250 Trp Cys Cys Thr Arg Gln Gly Glu Ala Arg Phe Ser Cys Phe Gln Glu 260 265 Glu Ala Pro Gln Pro His Tyr Gln Leu Arg Ala Cys Pro Ser His Gln 280 Pro Asp Ile Ser Ser Gly Leu Glu Leu Pro Phe Pro Pro Gly Val Pro 295 300 Thr Leu Asp Asn Ile Lys Asn Ile Cys His Leu Arg Arg Phe Arg Ser 315 Val Pro Arg Asn Leu Pro Ala Thr Asp Pro Leu Gln Arg Glu Leu Leu 325 330 Ala Leu Ile Gln Leu Glu Arg Glu Phe Gln Arg Cys Cys Arg Gln Gly 345 Asn Asn His Thr Cys Thr Trp Lys Ala Trp Glu Asp Thr Leu Asp Lys 360 Tyr Cys Asp Arg Glu Tyr Ala Val Lys Thr His His Leu Cys Cys 375 Arg His Pro Pro Ser Pro Thr Arg Asp Glu Cys Phe Ala Arg Arg Ala 390 395 Pro Tyr Pro Asn Tyr Asp Arg Asp Ile Leu Thr Ile Asp Ile Ser Arg 405 410 Val Thr Pro Asn Leu Met Gly His Leu Cys Gly Asn Gln Arg Val Leu 425 430 Thr Lys His Lys His Ile Pro Gly Leu Ile His Asn Met Thr Ala Arg 440 Cys Cys Asp Leu Pro Phe Pro Glu Gln Ala Cys Cys Ala Glu Glu Glu 455 Lys Leu Thr Phe Ile Asn Asp Leu Cys Gly Pro Arg Arg Asn Ile Trp 470 475 Arg Asp Pro Ala Leu Cys Cys Tyr Leu Ser Pro Gly Asp Glu Gln Val 485 Asn Cys Phe Asn Ile Asn Tyr Leu Arg Asn Val Ala Leu Val Ser Gly 505 Asp Thr Glu Asn Ala Lys Gly Gln Gly Glu Gln Gly Ser Thr Gly Gly 520 Thr Asn Ile Ser Ser Thr Ser Glu Pro Lys Glu Glu 535

<210> 97 <211> 462 <212> PRT <213> Homo sapiens

Met Gly Lys Glu Lys Thr His Ile Asn Ile Val Val Ile Gly His Val Asp Ser Gly Lys Ser Thr Thr Thr Gly His Leu Ile Tyr Lys Cys Gly 25 Gly Ile Asp Lys Arg Thr Ile Glu Lys Phe Glu Lys Glu Ala Ala Glu 40 Met Gly Lys Gly Ser Phe Lys Tyr Ala Trp Val Leu Asp Lys Leu Lys 55 Ala Glu Arg Glu Arg Gly Ile Thr Ile Asp Ile Ser Leu Trp Lys Phe 70 75 Glu Thr Ser Lys Tyr Tyr Val Thr Ile Ile Asp Ala Pro Gly His Arg 90 Asp Phe Ile Lys Asn Met Ile Thr Gly Thr Ser Gln Ala Asp Cys Ala 105 Val Leu Ile Val Ala Ala Gly Val Gly Glu Phe Glu Ala Gly Ile Ser 120 Lys Asn Gly Gln Thr Arg Glu His Ala Leu Leu Ala Tyr Thr Leu Gly 135 Val Lys Gln Leu Ile Val Gly Val Asn Lys Met Asp Ser Thr Glu Pro 150 155 Pro Tyr Ser Gln Lys Arg Tyr Glu Glu Ile Val Lys Glu Val Ser Thr 165 170 Tyr Ile Lys Lys Ile Gly Tyr Asn Pro Asp Thr Val Ala Phe Val Pro 185 Ile Ser Gly Trp Asn Gly Asp Asn Met Leu Glu Pro Ser Ala Asn Met 200 Pro Trp Phe Lys Gly Trp Lys Val Thr Arg Lys Asp Gly Asn Ala Ser 215 Gly Thr Thr Leu Leu Glu Ala Val Asp Cys Ile Leu Pro Pro Thr Arg 235 Pro Thr Asp Lys Pro Leu Arg Leu Pro Leu Gln Asp Val Tyr Lys Ile 245 250 Gly Gly Ile Gly Thr Val Pro Val Gly Arg Val Glu Thr Gly Val Leu 270 265 Lys Pro Gly Met Val Val Thr Phe Ala Pro Val Asn Val Thr Thr Glu 280 Val Lys Ser Val Glu Met His His Glu Ala Leu Ser Glu Ala Leu Pro 295 300 Gly Asp Asn Val Gly Phe Asn Val Lys Asn Val Ser Val Lys Asp Val 310 315 Arg Arg Gly Asn Val Ala Gly Asp Ser Lys Asn Asp Pro Pro Met Glu 325 330 Ala Ala Gly Phe Thr Ala Gln Val Ile Ile Leu Asn His Pro Gly Gln 340 345 Ile Ser Ala Gly Tyr Ala Pro Val Leu Asp Cys His Thr Ala His Ile 360 Ala Cys Lys Phe Ala Glu Leu Lys Glu Lys Ile Asp Arg Arg Ser Gly 375 Lys Lys Leu Glu Asp Gly Pro Lys Phe Leu Lys Ser Gly Asp Ala Ala

390 395 Ile Val Asp Met Val Pro Gly Lys Pro Met Cys Val Glu Ser Phe Ser 410 Asp Tyr Pro Pro Leu Gly Arg Phe Ala Val Arg Asp Met Arg Gln Thr 425 Val Ala Val Gly Val Ile Lys Ala Val Asp Lys Lys Ala Ala Gly Ala 440 Gly Lys Val Thr Lys Ser Ala Gln Lys Ala Gln Lys Ala Lys 450 455

<210> 98 <211> 2328 <212> PRT

<213> Homo sapiens

<400> 98 Lys Ser Lys Arg Gln Ala Gln Gln Met Val Gln Pro Gln Ser Pro Val Ala Val Ser Gln Ser Lys Pro Gly Cys Tyr Asp Asn Gly Lys His Tyr 25 Gln Ile Asn Gln Gln Trp Glu Arg Thr Tyr Leu Gly Asn Val Leu Val Cys Thr Cys Tyr Gly Gly Ser Arg Gly Phe Asn Cys Glu Ser Lys Pro 55 Glu Ala Glu Glu Thr Cys Phe Asp Lys Tyr Thr Gly Asn Thr Tyr Arg Val Gly Asp Thr Tyr Glu Arg Pro Lys Asp Ser Met Ile Trp Asp Cys 90 Thr Cys Ile Gly Ala Gly Arg Gly Arg Ile Ser Cys Thr Ile Ala Asn 105 Arg Cys His Glu Gly Gly Gln Ser Tyr Lys Ile Gly Asp Thr Trp Arg Arg Pro His Glu Thr Gly Gly Tyr Met Leu Glu Cys Val Cys Leu Gly 135 Asn Gly Lys Gly Glu Trp Thr Cys Lys Pro Ile Ala Glu Lys Cys Phe 155 Asp His Ala Ala Gly Thr Ser Tyr Val Val Gly Glu Thr Trp Glu Lys 170 Pro Tyr Gln Gly Trp Met Met Val Asp Cys Thr Cys Leu Gly Glu Gly 185 Ser Gly Arg Ile Thr Cys Thr Ser Arg Asn Arg Cys Asn Asp Gln Asp 200 Thr Arg Thr Ser Tyr Arg Ile Gly Asp Thr Trp Ser Lys Lys Asp Asn 215 Arg Gly Asn Leu Leu Gln Cys Ile Cys Thr Gly Asn Gly Arg Gly Glu 230 235 Trp Lys Cys Glu Arg His Thr Ser Val Gln Thr Thr Ser Ser Gly Ser 245 250 Gly Pro Phe Thr Asp Val Arg Ala Ala Val Tyr Gln Pro Gln Pro His 265 Pro Gln Pro Pro Pro Tyr Gly His Cys Val Thr Asp Ser Gly Val Val 280 Tyr Ser Val Gly Met Gln Trp Leu Lys Thr Gln Gly Asn Lys Gln Met WO 01/77327 PCT/US00/16951

	290					295					300				
Leu	Cys	Thr	Cys	Leu	Gly	Asn	Gly	Val	Ser	Cys	Gln	Glu	Thr	Ala	Val
305					310					315					320
Thr	Gln	Thr	Tyr		Gly	naA	Leu	Asn			Pro	Cys	Val		Pro
DL -	m\	m	•	325	•	m).	-1	_	330		,	_,		335	
Pne	Thr	ıyr	Asn 340	GIY	Arg	Inr	рпе	1yr 345	Ser	Cys	Thr	Thr		_	Arg
Gln	Δεη	Glv		T.e.11	Trn	Cve	Car		ጥኮ~	Car	λcn	Тъл-	350		Asp
	p	355				Cy S	360	1111	1411	Jer	ASU	365	GIU	GIII	Asp
Gln	Lys		Ser	Phe	Cys	Thr		His	Thr	Val	Leu		Gln	Thr	Gln
	370	-			-	375	•				380				
Gly	Gly	Asn	Ser	Asn	Gly	Ala	Leu	Cys	His	Phe	Pro	Phe	Leu	Tyr	Asn
385					390					395					400
Asn	His	Asn	Tyr	Thr	Asp	Cys	Thr	Ser		Gly	Arg	Arg	Asp	Asn	Met
T			01. .	405	mh	a1-	.		410			~3	_	415	
гуя	тър	Cys	420	THE	inr	GID	ASI	1yr 425	Asp	AIA	Asp	Gin	Lys 430	Phe	Gly
Phe	Cvs	Pro		Ala	Ala	His	Glu		Tle	Cvs	Thr	Thr		Glu	Gly
	-,-	435					440	01u		-72		445	тып	Olu	GIY
Val	Met	Tyr	Arg	Ile	Gly	qaA	Gln	Trp	Asp	Lys	Gln	His	Asp	Met	Gly
	450					455					460				_
	Met	Met	Arg	Cys		Cys	Val	Gly	Asn	Gly	Arg	Gly	Glu	Trp	Thr
465			_	_	470	_	_	_		475					480
Cys	He	Ala	Tyr	Ser	Gin	Leu	Arg	Asp		Cys	Ile	Val	Asp	_	Ile
Thr	ጥ ህን	Δen	Val	485 Asn	Δgn	Thr	Dhe	u; a	490	λνα	uic	G3 11	C1	495	uio
	-1-		500			****	LIIC	505	Lys	Arg	HITS	GIU	510	GIY	UIS
Met	Leu	Asn		Thr	Cys	Phe	Gly		Gly	Arg	Gly	Arg		Lys	Cys
		515					520					525	_		_
qaA		Val	Asp	Gln	Суз		Asp	Ser	Glu	Thr	Gly	Thr	Phe	Tyr	Gln
T1 -	530				~ 3	535					540				
545	GIY	Asp	ser	Trp	550	гуѕ	Tyr	Val	His		Val	Arg	Tyr	Gln	_
_	Cvs	የ	Glv	Arg		Tle	Glv	Glu	TY	555 Eig	Cyc	Gl n	Dro	Lou	560
-1-	-75	-] -	CLJ	565	017		O ₁	OIU	570	nrs	Cys	GIII	PLO	575	GIII
Thr	Tyr	Pro	Ser	Ser	Ser	Gly	Pro	Val		Val	Phe	Ile	Thr		Thr
•			580					585					590		
Pro	Ser		Pro	Asn	Ser	His	Pro	Ile	Gln	\mathtt{Trp}	Asn	Ala	Pro	Gln	Pro
G	77. .	595	_	_	-	~~	600	_	_	_		605			
ser	H1S 610	TTE	ser	Lys	Tyr		Leu	Arg	Trp	Arg		Lys	Asn	Ser	Val
Glv		TID	Lvs	Glu	Δla	615	Tle	Dro	Glv.	Wie	620 Lov	700	Co=	т	The
625	3	119	1 ,5	O_Lu	630	****	110	FLO	GIY	635	ьец	ASII	261	тÀТ	640
Ile	Lys	Gly	Leu	Lys		Gly	Val	Val	Tyr		Gly	Gln	Leu	Ile	
				645					650					655	
Ile	Gln	Gln	Tyr	Gly	His	Gln	Glu	Val	Thr	Arg	Phe	Asp	Phe	Thr	Thr
			66 ₀					665					670		
Thr	Ser		Ser	Thr	Pro	Val		Ser	Asn	Thr			Gly	Glu	Thr
ጥሎ∽	Dro	675	Co=	Dwa	Lon	37- J	680	mL		6 1		685			_,
THE	690	FIIE	SEL	Pro	neu	va1	мта	TUT	ser	GIU		val	Thr	Glu	TTE
Thr											700				
	Ala	Ser	Ser	Phe	Val	Val	Ser	Trn	٧a٦	Ser	Δla	Ser	Asn	Thr	Val
705	Ala	Ser	Ser	Phe	Val 710	Val	Ser	Trp	Val	Ser 715	Ala	Ser	qaA	Thr	Val 720

PCT/US00/16951

Ser Gly Phe Arg Val Glu Tyr Glu Leu Ser Glu Glu Gly Asp Glu Pro 725 730 Gln Tyr Leu Asp Leu Pro Ser Thr Ala Thr Ser Val Asn Ile Pro Asp 740 745 Leu Leu Pro Gly Arg Lys Tyr Ile Val Asn Val Tyr Gln Ile Ser Glu 760 Asp Gly Glu Gln Ser Leu Ile Leu Ser Thr Ser Gln Thr Thr Ala Pro 775 Asp Ala Pro Pro Asp Pro Thr Val Asp Gln Val Asp Asp Thr Ser Ile 790 795 Val Val Arg Trp Ser Arg Pro Gln Ala Pro Ile Thr Gly Tyr Arg Ile 805 810 Val Tyr Ser Pro Ser Val Glu Gly Ser Ser Thr Glu Leu Asn Leu Pro 820 825 Glu Thr Ala Asn Ser Val Thr Leu Ser Asp Leu Gln Pro Gly Val Gln 840 Tyr Asn Ile Thr Ile Tyr Ala Val Glu Glu Asn Gln Glu Ser Thr Pro 855 Val Val Ile Gln Gln Glu Thr Thr Gly Thr Pro Arg Ser Asp Thr Val 865 870 · 875 Pro Ser Pro Arg Asp Leu Gln Phe Val Glu Val Thr Asp Val Lys Val 885 890 Thr Ile Met Trp Thr Pro Pro Glu Ser Ala Val Thr Gly Tyr Arg Val 900 905 Asp Val Ile Pro Val Asn Leu Pro Gly Glu His Gly Gln Arg Leu Pro 920 925 Ile Ser Arg Asn Thr Phe Ala Glu Val Thr Gly Leu Ser Pro Gly Val 935 940 Thr Tyr Tyr Phe Lys Val Phe Ala Val Ser His Gly Arg Glu Ser Lys 950 955 Pro Leu Thr Ala Gln Gln Thr Thr Lys Leu Asp Ala Pro Thr Asn Leu 965 970 Gln Phe Val Asn Glu Thr Asp Ser Thr Val Leu Val Arg Trp Thr Pro 980 985 Pro Arg Ala Gln Ile Thr Gly Tyr Arg Leu Thr Val Gly Leu Thr Arg 1000 Arg Gly Gln Pro Arg Gln Tyr Asn Val Gly Pro Ser Val Ser Lys Tyr 1010 1015 1020 Pro Leu Arg Asn Leu Gln Pro Ala Ser Glu Tyr Thr Val Ser Leu Val 1030 1035 1040 Ala Ile Lys Gly Asn Gln Glu Ser Pro Lys Ala Thr Gly Val Phe Thr 1045 1050 Thr Leu Gln Pro Gly Ser Ser Ile Pro Pro Tyr Asn Thr Glu Val Thr 1065 1070 Glu Thr Thr Ile Val Ile Thr Trp Thr Pro Ala Pro Arg Ile Gly Phe 1075 1080 1085 Lys Leu Gly Val Arg Pro Ser Gln Gly Gly Glu Ala Pro Arg Glu Val 1090 1095 1100 Thr Ser Asp Ser Gly Ser Ile Val Val Ser Gly Leu Thr Pro Gly Val 1110 1115 Glu Tyr Val Tyr Thr Ile Gln Val Leu Arg Asp Gly Gln Glu Arg Asp 1130 Ala Pro Ile Val Asn Lys Val Val Thr Pro Leu Ser Pro Pro Thr Asn

1140 1145 Leu His Leu Glu Ala Asn Pro Asp Thr Gly Val Leu Thr Val Ser Trp 1165 1160 1155 Glu Arg Ser Thr Thr Pro Asp Ile Thr Gly Tyr Arg Ile Thr Thr 1175 1180 1170 Pro Thr Asn Gly Gln Gln Gly Asn Ser Leu Glu Glu Val Val His Ala 1195 1190 1200 Asp Gln Ser Ser Cys Thr Phe Asp Asn Leu Ser Pro Gly Leu Glu Tyr 1210 1205 Asn Val Ser Val Tyr Thr Val Lys Asp Asp Lys Glu Ser Val Pro Ile 1220 1225 1230 Ser Asp Thr Ile Ile Pro Ala Val Pro Pro Pro Thr Asp Leu Arg Phe 1235 1240 1245 Thr Asn Ile Gly Pro Asp Thr Met Arg Val Thr Trp Ala Pro Pro 1250 1255 1260 Ser Ile Asp Leu Thr Asn Phe Leu Val Arg Tyr Ser Pro Val Lys Asn 1265 1270 1275 Glu Glu Asp Val Ala Glu Leu Ser Ile Ser Pro Ser Asp Asn Ala Val 1285 1290 1295 Val Leu Thr Asn Leu Leu Pro Gly Thr Glu Tyr Val Val Ser Val Ser 1300 1305 1310 Ser Val Tyr Glu Gln His Glu Ser Thr Pro Leu Arg Gly Arg Gln Lys 1315 1320 1325 Thr Gly Leu Asp Ser Pro Thr Gly Ile Asp Phe Ser Asp Ile Thr Ala 1335 1340 Asn Ser Phe Thr Val His Trp Ile Ala Pro Arg Ala Thr Ile Thr Gly 1345 1350 1355 1360 Tyr Arg Ile Arg His His Pro Glu His Phe Ser Gly Arg Pro Arg Glu 1365 1370 1375 Asp Arg Val Pro His Ser Arg Asn Ser Ile Thr Leu Thr Asn Leu Thr 1380 1385 1390 Pro Gly Thr Glu Tyr Val Val Ser Ile Val Ala Leu Asn Gly Arg Glu 1400 1405 Glu Ser Pro Leu Leu Ile Gly Gln Gln Ser Thr Val Ser Asp Val Pro 1415 1420 Arg Asp Leu Glu Val Val Ala Ala Thr Pro Thr Ser Leu Leu Ile Ser 1430 1435 Trp Asp Ala Pro Ala Val Thr Val Arg Tyr Tyr Arg Ile Thr Tyr Gly 1445 1450 Glu Thr Gly Gly Asn Ser Pro Val Glu Phe Thr Val Pro Gly Ser 1460 1465 Lys Ser Thr Ala Thr Ile Ser Gly Leu Lys Pro Gly Val Asp Tyr Thr 1480 1485 Ile Thr Val Tyr Ala Val Thr Gly Arg Gly Asp Ser Pro Ala Ser Ser 1495 1500 Lys Pro Ile Ser Ile Asn Tyr Arg Thr Glu Ile Asp Lys Pro Ser Gln **1505 1510 1515 1520** Met Gln Val Thr Asp Val Gln Asp Asn Ser Ile Ser Val Lys Trp Leu 1525 1530 1535 Pro Ser Ser Pro Val Thr Gly Tyr Arg Val Thr Thr Thr Pro Lys 1540 1545 Asn Gly Pro Gly Pro Thr Lys Thr Lys Thr Ala Gly Pro Asp Gln Thr 1555 . 1560

WO 01/77327 PCT/US00/16951 254

Glu	Met 1570		Ile	Glu	Gly	Leu 157		Pro	Thr	Val	Glu 1586	_	Val	Val	Ser
Val	Tvr	Ala	Gln	Asn	Pro	Ser	Glv	Glu	Ser	Gln	Pro	Leu	Val	Gln	Thr
158	_				159		1			159					1600
		Thr	λen	Tle			Dro	Lve	Glv			Dhe	Thr	λen	Val
AIG	Vai	1111	A3H	160	_	AL 9		•	161		Ala	FIIC	1111	_	
•	**. 7	_	.	-		-1					_	~ 1	~3	161	
qaA	val	Авр			гÀг	iie	ALA			Ser	Pro	GIn	_		Val
			162					162					163		
Ser	Arg	Tyr	Arg	Val	Thr	Tyr	Ser	Ser	Pro	Glu	Asp	Gly	Ile	His	Glu
		1635					164					1649			
Leu	Phe	Pro	Ala	Pro	Asp	Gly	Glu	Glu	Asp	Thr	Ala	Glu	Leu	Gln	Gly
	1650)				165	5				1660)			
Leu	Arg	Pro	Gly	Ser	Glu	Tyr	Thr	Val	Ser	Val	Val	Ala	Leu	His	Asp.
1669	_		_		1670	_			•	1679					1680
Asp	Met	Glu	Ser	Gln	Pro	Leu	Ile	Glv	Thr	Gln	Ser	Thr	Ala	Ile	Pro
				1689					1690			-		169	
Ala	Pro	Thr	Agn			Phe	Thr	Gln			Pro	Thr	Ser	Leu	
			1700		-,-			170			110		171		DCI
71 -	Cln	77			D~0	X cn	17-1			Th-	C11.	T	_	Val	3
Ala	GIII	1719		PLO	PIO	ASII			пеп.	1111	GIA			AGI	Arg
**- 7	m\			a 3	.	m>	172			•	~3	1729	_		
vai			пĀг	GIU	тÃв		_	Pro	wéc	гÀЗ			Asn	Leu	Ala
_	1730		_	_		1735		_		_	1740				
		Ser	Ser	Ser			Val	Ser	GTĀ			Val	Ala	Thr	
1745					1750					1755			-		1760
Tyr	Glu	Val	Ser	Val	Tyr	Ala	Leu	ГЛЗ			Leu	Thr	Ser	Arg	Pro
				1769					1770	-				1775	
Ala	Gln	Gly	Val	Val	Thr	Thr	Leu	Glu	Asn	Val	Ser	Pro	Pro	Arg	Arg
			1780					1785					1790		
Ala	Arg	Val	Thr	Asp	Ala	Thr	Glu	Thr	Thr	Ile	Thr	Ile	Ser	Trp	Arg
		1795	5				1800)				1805	5		
Thr	Lys	Thr	Glu	Thr	Ile	Thr	Gly	Phe	Gln	Val	Asp	Ala	Val	Pro	Ala
	1810					1815					1820				
Asn	Gly	Gln	Thr	Pro	Ile	Gln	Arq	Thr	Ile	Lys	Pro	Asp	Val	Arg	Ser
1825					1830		_			1835					1840
Tvr	Thr	Ile	Thr	Glv			Pro	Glv	Thr			Lvs	Tle	Tyr	
-4-				1845				1	1850		-1-	_,_		1855	
Tvr	Thr	T ₁ e11	Asn			Δla	Ara	Ser			TeV	Va 1	Tle	Asp	
-1-			1860				9	1865		110	Val	Val	1870		AL a
Car	Th~	71-			31 5	Dro	e			7	Dha	T		Thr	mh
SEL	1111			жър	нта	PLO			ьеu	ALG	Pne			IIII	IIII
D	•	1875		•	· · · · · ·		1880		_	_	_	1885			
Pro			Leu	Leu	vaı			GIn	Pro	Pro			Arg	Ile	Thr
	1890			_		1895				•	1900				
		Ile	Ile	Lys			Lys	Pro	Gly	Ser	Pro	Pro	Arg	Glu	Val
1905					1910					1915					1920
Val	Pro	Arg	Pro	Arg	Pro	Gly	Val	Thr	Glu	Ala	Thr	Ile	Thr	Gly	Leu
				1925	i				1930)				1935	
Glu	Pro	Gly	Thr	Glu	Tyr	Thr	Ile	Tyr	Val	Ile	Ala	Leu	Lys	Asn	Asn
			1940)				1945	,				1950)	
Gln	Lys	Ser	Glu	Pro	Leu	Ile	Gly	Arg	Lys	Lys	Thr	Asp	Glu	Leu	Pro
		1955					1960		-	•	-	1965			_
Gln	Leu			Leu	Pro	His			Leu	His	Glv			Ile	Len
	1970					1975					1980				
asa			Ser	Thr	Val			Thr	Pro	Phe			Hie	Pro	Glv
_		-													1

1990 1995 Tyr Asp Thr Gly Asn Gly Ile Gln Leu Pro Gly Thr Ser Gly Gln Gln 2005 2010 Pro Ser Val Gly Gln Gln Met Ile Phe Glu Glu His Gly Phe Arg Arg 2020 2025 Thr Thr Pro Pro Thr Thr Ala Thr Pro Ile Arg His Arg Pro Arg Pro 2040 Tyr Pro Pro Asn Val Gly Gln Glu Ala Leu Ser Gln Thr Thr Ile Ser 2055 2060 Trp Ala Pro Phe Gln Asp Thr Ser Glu Tyr Ile Ile Ser Cys His Pro 2070 2075 Val Gly Thr Asp Glu Glu Pro Leu Gln Phe Arg Val Pro Gly Thr Ser 2085 2090 2095 Thr Ser Ala Thr Leu Thr Gly Leu Thr Arg Gly Ala Thr Tyr Asn Ile 2100 2105 - 2110 Ile Val Glu Ala Leu Lys Asp Gln Gln Arg His Lys Val Arg Glu Glu 2120 Val Val Thr Val Gly Asn Ser Val Asn Glu Gly Leu Asn Gln Pro Thr 2135 Asp Asp Ser Cys Phe Asp Pro Tyr Thr Val Ser His Tyr Ala Val Gly 2150 2155 Asp Glu Trp Glu Arg Met Ser Glu Ser Gly Phe Lys Leu Leu Cys Gln 2165 2170 Cys Leu Gly Phe Gly Ser Gly His Phe Arg Cys Asp Ser Ser Arg Trp 2180 2185 Cys His Asp Asn Gly Val Asn Tyr Lys Ile Gly Glu Lys Trp Asp Arg 2195 2200 Gln Gly Glu Asn Gly Gln Met Met Ser Cys Thr Cys Leu Gly Asn Gly 2215 2220 Lys Gly Glu Phe Lys Cys Asp Pro His Glu Ala Thr Cys Tyr Asp Asp 2225 2230 2235 Gly Lys Thr Tyr His Val Gly Glu Gln Trp Gln Lys Glu Tyr Leu Gly 2245 2250 Ala Ile Cys Ser Cys Thr Cys Phe Gly Gly Gln Arg Gly Trp Arg Cys 2260 2265 Asp Asn Cys Arg Arg Pro Gly Glu Pro Ser Pro Glu Gly Thr Thr 2280 Gly Gln Ser Tyr Asn Gln Tyr Ser Gln Arg Tyr His Gln Arg Thr Asn 2295 2300 Thr Asn Val Asn Cys Pro Ile Glu Cys Phe Met Pro Leu Asp Val Gln 2305 2310 2315 Ala Asp Arg Glu Asp Ser Arg Glu 2325

<210> 99

<211> 188

<212> PRT

<213> Homo sapiens

<400> 99

His Gln Thr His Lys Glu Gly Gly Ser Thr His Ala Ser Ala Asp Ala Trp Glu Ile Ile Glu Leu Glu Thr Glu Ile Glu Lys Phe Lys Ala Glu

25 20 Asn Ala Ser Leu Ala Lys Leu Arg Ile Glu Arg Glu Ser Ala Leu Glu Lys Leu Arg Lys Glu Ile Ala Asp Phe Glu Gln Lys Ala Lys Glu 55 Leu Ala Arg Ile Glu Glu Phe Lys Lys Glu Glu Met Arg Lys Leu Gln 75 Lys Glu Arg Lys Val Phe Glu Lys Tyr Thr Thr Ala Ala Arg Thr Phe 90 Pro Asp Lys Lys Glu Arg Glu Glu Ile Gln Thr Leu Lys Gln Gln Ile 105 Ala Asp Leu Arg Glu Asp Leu Lys Arg Lys Glu Thr Lys Trp Ser Ser 115 . 120 Thr His Ser Arg Leu Arg Ser Gln Ile Gln Met Leu Val Arg Glu Asn 135 140 Thr Asp Leu Arg Glu Glu Ile Lys Val Met Glu Arg Phe Arg Leu Asp Ala Trp Lys Arg Ala Glu Ala Ile Glu Ser Ser Leu Glu Val Glu Lys . 170 Lys Asp Lys Leu Ala Asn Thr Ser Val Arg Phe Gln 185

<210> 100

<211> 284

<212> PRT

<213> Homo sapiens

<400> 100

Met Glu Pro Gly Asn Tyr. Ala Thr Leu Asp Gly Ala Lys Asp Ile Glu 10 Gly Leu Leu Gly Ala Gly Gly Gly Arg Asn Leu Val Ala His Ser Pro Leu Thr Ser His Pro Ala Ala Pro Thr Leu Met Pro Ala Val Asn Tyr 40 Ala Pro Leu Asp Leu Pro Gly Ser Ala Glu Pro Pro Lys Gln Cys His Pro Cys Pro Gly Val Pro Gln Gly Thr Ser Pro Ala Pro Val Pro Tyr Gly Tyr Phe Gly Gly Gly Tyr Tyr Ser Cys Arg Val Ser Arg Ser Ser Leu Lys Pro Cys Ala Gln Ala Ala Thr Leu Ala Ala Tyr Pro Ala Glu 105 Thr Pro Thr Ala Gly Glu Glu Tyr Pro Ser Arg Pro Thr Glu Phe Ala 120 Phe Tyr Pro Gly Tyr Pro Gly Thr Tyr His Ala Met Ala Ser Tyr Leu 135 140 Asp Val Ser Val Val Gln Thr Leu Gly Ala Pro Gly Glu Pro Arg His 150 Asp Ser Leu Leu Pro Val Asp Ser Tyr Gln Ser Trp Ala Leu Ala Gly 165 170 Gly Trp Asn Ser Gln Met Cys Cys Gln Gly Glu Gln Asn Pro Pro Gly 185 Pro Phe Trp Lys Ala Ala Phe Ala Asp Ser Ser Gly Gln His Pro Pro

257

195 200 Asp Ala Cys Ala Phe Arg Arg Gly Arg Lys Lys Arg Ile Pro Tyr Ser 215 220 Lys Gly Gln Leu Arg Glu Leu Glu Arg Glu Tyr Ala Ala Asn Lys Phe 230 235 Ile Thr Lys Asp Lys Arg Arg Lys Ile Ser Ala Ala Thr Ser Leu Ser 245 250 Glu Arg Gln Ile Thr Ile Trp Phe Gln Asn Arg Arg Val Lys Glu Lys 265 Lys Val Leu Ala Lys Val Lys Asn Ser Ala Thr Pro

<210> 101 <211> 676

<212> PRT

<213> Homo sapiens

<400> 101 Met Asp Lys Tyr Asp Asp Leu Gly Leu Glu Ala Ser Lys Phe Ile Glu 10 Asp Leu Asn Met Tyr Glu Ala Ser Lys Asp Gly Leu Phe Arg Val Asp 25 Lys Gly Ala Gly Asn Asn Pro Glu Phe Glu Glu Thr Arg Arg Val Phe 40 Ala Thr Lys Met Ala Lys Ile His Leu Gln Gln Gln Gln Gln Leu 55 Leu Gln Glu Glu Thr Leu Pro Arg Gly Ser Arg Gly Pro Val Asn Gly 70 Gly Gly Arg Leu Gly Pro Gln Ala Arg Trp Glu Val Val Gly Ser Lys 90 Leu Thr Val Asp Gly Ala Ala Lys Pro Pro Leu Ala Ala Ser Thr Gly 105 Ala Pro Gly Ala Val Thr Thr Leu Ala Ala Gly Gln Pro Pro Tyr Pro 120 Pro Gln Glu Gln Arg Ser Arg Pro Tyr Leu His Gly Thr Arg His Gly 135 Ser Gln Asp Cys Gly Ser Arg Glu Ser Leu Ala Thr Ser Glu Met Ser 155 Ala Phe His Gln Pro Gly Pro Cys Glu Asp Pro Ser Cys Leu Thr His 170 Gly Asp Tyr Tyr Asp Asn Leu Ser Leu Ala Ser Pro Lys Trp Gly Asp 180 185 Lys Pro Gly Val Ser Pro Ser Ile Gly Leu Ser Val Gly Ser Gly Trp 200 Pro Ser Ser Pro Gly Ser Asp Pro Pro Leu Pro Lys Pro Cys Gly Asp 215 His Pro Leu Asn His Arg Gln Leu Ser Leu Ser Ser Ser Arg Ser Ser . 230 235 Glu Gly Ser Leu Gly Gly Gln Asn Ser Gly Ile Gly Gly Arg Ser Ser 245 250 Glu Lys Pro Thr Gly Leu Trp Ser Thr Ala Ser Ser Gln Arg Val Ser 260 . 265 Pro Gly Leu Pro Ser Pro Asn Leu Glu Asn Gly Ala Pro Ala Val Gly

280 Pro Val Gln Pro Arg Thr Pro Ser Val Ser Ala Pro Leu Ala Leu Ser 295 Cys Pro Arg Gln Gly Gly Leu Pro Arg Ser Asn Ser Gly Leu Gly Gly 315 310 Glu Val Ser Gly Val Met Ser Lys Pro Asn Val Asp Pro Gln Pro Trp 325 330 Phe Gln Asp Gly Pro Lys Ser Tyr Leu Ser Ser Ser Ala Pro Ser Ser 340 345 Ser Pro Ala Gly Leu Asp Gly Ser Gln Gln Gly Ala Val Pro Gly Leu 360 Gly Pro Lys Pro Gly Cys Thr Asp Leu Gly Thr Gly Pro Lys Leu Ser 375 380 Pro Thr Ser Leu Val His Pro Val Met Ser Thr Leu Pro Glu Leu Ser 395 . 400 Cys Lys Glu Gly Pro Leu Gly Trp Ser Ser Asp Gly Ser Leu Gly Ser 410 Val Leu Leu Asp Ser Pro Ser Ser Pro Arg Val Arg Leu Pro Cys Gln 425 Pro Leu Val Pro Gly Pro Glu Leu Arg Pro Ser Ala Ala Glu Leu Lys 440 Leu Glu Ala Leu Thr Gln Arg Leu Glu Arg Glu Met Asp Ala His Pro 455 Lys Ala Asp Tyr Phe Gly Ala Cys Val Lys Cys Ser Lys Gly Val Phe 470 475 Gly Ala Gly Gln Ala Cys Gln Ala Met Gly Asn Leu Tyr His Asp Thr 485 490 Cys Phe Thr Cys Ala Ala Cys Ser Arg Lys Leu Arg Gly Lys Ala Phe 505 Tyr Phe Val Asn Gly Lys Val Phe Cys Glu Glu Asp Phe Leu Tyr Ser 520 Gly Phe Gln Gln Ser Ala Asp Arg Cys Phe Leu Cys Gly His Leu Ile 535 540 Met Asp Met Ile Leu Gln Ala Leu Gly Lys Ser Tyr His Pro Gly Cys 550 555 Phe Arg Cys Val Ile Cys Asn Glu Cys Leu Asp Gly Val Pro Phe Thr 570 Val Asp Ser Glu Asn Lys Ile Tyr Cys Val Arg Asp Tyr His Lys Val 585 Leu Ala Pro Lys Cys Ala Ala Cys Gly Leu Pro Ile Leu Pro Pro Glu 600 Gly Ser Asp Glu Thr Ile Arg Val Val Ser Met Asp Arg Asp Tyr His 615 Val Glu Cys Tyr His Cys Glu Asp Cys Gly Leu Glu Leu Asn Asp Glu 630 635 Asp Gly His Arg Cys Tyr Pro Leu Glu Asp His Leu Phe Cys His Ser 650 Cys His Val Lys Arg Leu Glu Lys Arg Pro Ser Ser Thr Ala Leu His 660 665 Gln His His Phe

· <210> 102

WO 01/77327 PCT/US00/16951 259

<211> 296 <212> PRT

<213> Homo sapiens

<400> 102

Ser Thr Gly Ser Glu Phe Pro Leu Cys Thr Lys Ala Ser Pro Cys Ser

Ala Ala Arg Ala Gly Gly Arg Ala Leu Gly Trp Arg Leu Gln Gln 25

Arg Glu Thr Arg Gly Asn Pro Gly Asn Pro Gly Leu Gly Val Ala Ala 40

Thr Met Thr Gly Ser Asn Met Ser Asp Ala Leu Ala Asn Ala Val Cys 55

Gln Arg Cys Gln Ala Arg Phe Ser Pro Ala Glu Arg Ile Val Asn Ser

Asn Gly Glu Leu Tyr His Glu His Cys Phe Val Cys Ala Gln Cys Phe 90

Arg Pro Phe Pro Glu Gly Leu Phe Tyr Glu Phe Glu Gly Arg Lys Tyr 105 . 110

Cys Glu His Asp Phe Gln Met Leu Phe Ala Pro Cys Cys Gly Ser Cys 120

Gly Glu Phe Ile Ile Gly Arg Val Ile Lys Ala Met Asn Asn Asn Trp 135

His Pro Gly Cys Phe Arg Cys Glu Leu Cys Asp Val Glu Leu Ala Asp 150 155

Leu Gly Phe Val Lys Asn Ala Gly Arg His Leu Cys Arg Pro Cys His . 170

Asn Arg Glu Lys Ala Lys Gly Leu Gly Lys Tyr Ile Cys Gln Arg Cys 185

His Leu Val Ile Asp Glu Gln Pro Leu Met Phe Arg Ser Asp Ala Tyr 200

His Pro Asp His Phe Asn Cys Thr His Cys Gly Lys Glu Leu Thr Ala 215

Glu Ala Arg Glu Leu Lys Gly Glu Leu Tyr Cys Leu Pro Cys His Asp 230 235

Lys Met Gly Val Pro Ile Cys Gly Ala Cys Arg Arg Pro Ile Glu Gly 245

Arg Val Val Asn Ala Leu Gly Lys Gln Trp His Val Glu His Phe Val 265

Cys Ala Lys Cys Glu Lys Pro Phe Leu Gly His Arg His Tyr Glu Lys

Lys Gly Leu Ala Tyr Cys Glu Leu

<210> 103

<211> 500

<212> PRT

<213> Homo sapiens

<400> 103

Met Gly Ile Gly Leu Ser Ala Gln Gly Val Asn Met Asn Arg Leu Pro Gly Trp Asp Lys His Ser Tyr Gly Tyr His Gly Asp Asp Gly His Ser

_,		_	20					25					30		
Phe	Cys		Ser	Gly	Thr	Gly	Gln	Pro	Tyr	Gly	Pro		Phe	Thr	Thr
	_	35			_	_	40		_			45			_
GIY		Val	Ile	GIY	Cys		Val	Asn	Leu	Ile		Asn	Thr	Cys	Phe
_	50		_			55	_			_	60	_			
	Thr	Lys	Asn	Gly		Ser	Leu	Gly	Ile		Phe	Thr	Asp	Leu	
65					70					75					80
Pro	Asn	Leu	Tyr	Pro	Thr	Val	Gly	Leu	Gln	Thr	Pro	Gly	Glu	Val	Val
				85					90					95	
Asp	Ala	Asn	Phe	Gly	Gln	His	Pro	Phe	Val	Phe	Asp	Ile	Glu	Asp	Tyr
			100					105					110		
Met	Arg		Trp	Arg	Thr	Lys	Ile	Gln	Ala	Gln	Ile		Arg	Phe	Pro
		115					120	_				125			
Ile		Asp	Arg	Glu	Gly		Trp	Gln	Thr	Met		Gln	Lys	Met	Val
_	130		_			135			_		140	_			
	Ser	Tyr	Leu	Val		His	Gly	Tyr	Cys		Thr	Ala	Glu	Ala	
145	_	_ 0		_	150			_		155					160
Ala	Arg	Ser	Thr		Gin	Thr	Val	Leu		Glu	Leu	Ala	Ser		Lys
•	_		_	165		_	_		170			_		175	
Asn	arg	GIN		11e	Gin	гÀг	Leu		Leu	Ala	Gly	Arg		GIĀ	Glu
3 1_	*1 -	a 1	180	(T)	~ 1	a2-	T	185	D				190	_	_
Ала	тте		Thr	Thr	GIN	GIN	Leu	ıyr	Pro	ser	Leu		GIu	Arg	Asn
Dro) cn	195	Ton	Dho	Th-	T 033	200	17-3	7	a1 -	nh-	205	43	10 - L	**- 7
PIQ	210	пеа	neu	PHE	TIII	215	ГÀЗ	val	Arg	GIH		TIE	GIU	Mer.	vaı
λan		Th.	y c.v.	cor	G3n		Arg	Cara	T OU	C1	220	N	Cow	Dwa	T
225	GIY	1111	АБР	Ser	230	vai	MIG	Cys	ъец	235	GIĀ	Arg	ser	PIO	
	Gln) en	Car	There		Val	Ser	Dro	Ara		Dho	C0*	802	Dro	240
501	OIH	чэр	Der	245	FIO	Val	261	FIO	250	PIO	PHE	Ser	Ser	255	Ser
Met	Ser	Pro	Ser		Glv	Met	Asn	Tle		Aen	T.ou	λla	Car		Larg
			260	****	017			265	*****	ABII	DCu	AIG	270	Cly	פעם
Glv	Ser	Thr		His	Phe	Ser	Gly		Glu	Ser	Cva	Ser		Glv	Val
2		275					280					285		U	
Ile	Ser		Lys	Ala	His	Gln	Ser	Tyr	Cvs	His	Ser		Lvs	His	Gln
	290		-			295		•	- 4		300		-3 -		
Ser	Ser	Asn	Leu	Asn	Val	Pro	Glu	Leu	Asn-	Ser		Asn	Met	Ser	Arq
305					310					315					320
Ser	Gln	Gln	Val	Asn	Asn	Phe	Thr	Ser	Asn		Val	Asp	Met	Glu	Thr
				325					330					335	
Asp	His	Tyr	Ser	Asn	Gly	Val	Gly	Glu	Thr	Ser	Ser	Asn	Gly	Phe	Leu
			340					345					350		
Asn	Gly	Ser	Ser	Lys	His	Asp	His	Glu	Met	Glu	qaA	Cys	Asp	Thr	Glu
		355					360			•		365			
Met	Glu	Val	Asp	Ser	Ser	Gln	Leu	Arg	Arg	Gln	Leu	Cys	Gly	Gly	Ser
	370					375					380				
Gln	Ala	Ala	Ile	Glu	Arg	Met	Ile	His	Phe	Gly	Arg	Glu	Leu	Gln	Ala
385					390					395					400
Met	Ser	Glu	Gln		Arg	Arg	Asp	Сув	Gly	Lys	Asn	Thr	Ala	Asri	Lys
				405		•			410					415	
Lys	Met	Leu		Asp	Ala	Phe	Ser	Leu	Leu	Ala	Tyr	Ser	Asp	Pro	Trp
	_	_	420					425					430		
Asn	Ser		Val	Gly	Asn	Gln	Leu	Asp	Pro	Ile	Gln	Arg	Glu	Pro	Val
•		435					440					445			

<210> 104 <211> 387 <212> PRT

<213> Homo sapiens

<400> 104 Met Ala Thr Ser Gly Val Leu Pro Gly Gly Gly Phe Val Ala Ser Ala 10 Ala Ala Val Ala Gly Pro Glu Met Gln Thr Gly Arg Asn Asn Phe Val Ile Arg Arg Asn Pro Ala Asp Pro Gln Arg Ile Pro Ser Asn Pro Ser His Arg Ile Gln Cys Ala Ala Gly Tyr Glu Gln Ser Glu His Asn Val Cys Gln Asp Ile Asp Glu Cys Thr Ala Gly Thr His Asn Cys Arq Ala 70 Asp Gln Val Cys Ile Asn Leu Arg Gly Ser Phe Ala Cys Gln Cys Pro 90 Pro Gly Tyr Gln Lys Arg Gly Glu Gln Cys Val Asp Ile Asp Glu Cys 105 Thr Ile Pro Pro Tyr Cys His Gln Arg Cys Val Asn Thr Pro Gly Ser 120 Phe Tyr Cys Gln Cys Ser Pro Gly Phe Gln Leu Ala Ala Asn Asn Tyr 135 Thr Cys Val Asp Ile Asn Glu Cys Asp Ala Ser Asn Gln Cys Ala Gln 150 Gln Cys Tyr Asn Ile Leu Gly Ser Phe Ile Cys Gln Cys Asn Gln Gly 170 Tyr Glu Leu Ser Ser Asp Arg Leu Asn Cys Glu Asp Ile Asp Glu Cys 185 Arg Thr Ser Ser Tyr Leu Cys Gln Tyr Gln Cys Val Asn Glu Pro Gly 200 Lys Phe Ser Cys Met Cys Pro Gln Gly Tyr Gln Val Val Arg Ser Arg 215 220 Thr Cys Gln Asp Ile Asn Glu Cys Glu Thr Thr Asn Glu Cys Arg Glu 230 235 Asp Glu Met Cys Trp Asn Tyr His Gly Gly Phe Arg Cys Tyr Pro Arg 245 250 Asn Pro Cys Gln Asp Pro Tyr Ile Leu Thr Pro Glu Asn Arg Cys Val 265 Cys Pro Val Ser Asn Ala Met Cys Arg Glu Leu Pro Gln Ser Ile Val 280 Tyr Lys Tyr Met Ser Ile Arg Ser Asp Arg Ser Val Pro Ser Asp Ile 295

Phe Gln Ile Gln Ala Thr Thr Ile Tyr Ala Asn Thr Ile Asn Thr Phe 310 315 Arg Ile Lys Ser Gly Asn Glu Asn Gly Glu Phe Tyr Leu Arg Gln Thr 330 Ser Pro Val Ser Ala Met Leu Val Leu Val Lys Ser Leu Ser Gly Pro 345 Arg Glu His Ile Val Asp Leu Glu Met Leu Thr Val Ser Ser Ile Gly 360 Thr Phe Arg Thr Ser Ser Val Leu Arg Leu Thr Ile Ile Val Gly Pro 375 Phe Ser Phe 385 <210> 105 <211> 531 <212> PRT <213> Homo sapiens <400> 105 Met Ser Lys Pro His Ser Glu Ala Gly Thr Ala Phe Ile Gln Thr Gln 5 10 Gln Leu His Ala Ala Met Ala Asp Thr Phe Leu Glu His Met Cys Arg 25 Leu Asp Ile Asp Ser Pro Pro Ile Thr Ala Arg Asn Thr Gly Ile Ile 40 Cys Thr Ile Gly Pro Ala Ser Arg Ser Val Glu Thr Leu Lys Glu Met 55 Ile Lys Ser Gly Met Asn Val Ala Arg Leu Asn Phe Ser His Gly Thr His Glu Tyr His Ala Glu Thr Ile Lys Asn Val Arg Thr Ala Thr Glu 85 90 Ser Phe Ala Ser Asp Pro Tyr Leu Tyr Arg Pro Val Ala Val Ala Leu 105 Asp Thr Lys Gly Pro Glu Ile Arg Thr Gly Leu Ile Lys Gly Ser Gly 120 Thr Ala Glu Leu Glu Leu Lys Lys Gly Ala Thr Leu Lys Ile Thr Leu Asp Asn Ala Tyr Met Glu Lys Cys Asp Glu Asn Ile Leu Trp Leu Asp 150 155 Tyr Lys Asn Ile Cys Lys Val Val Glu Val Gly Ser Lys Ile Tyr Val 165 170 Asp Asp Gly Leu Ile Ser Leu Gln Val Lys Gln Lys Gly Ala Asp Phe 185 Leu Val Thr Glu Val Glu Asn Gly Gly Ser Leu Gly Ser Lys Lys Gly 200 Val Asn Leu Pro Gly Ala Ala Val Asp Leu Pro Ala Val Ser Glu Lys 215 Asp Ile Gln Asp Leu Lys Phe Gly Val Glu Gln Asp Val Asp Met Val 230 235 Phe Ala Ser Phe Ile Arg Lys Ala Ser Asp Val His Glu Val Arg Lys 250 Val Leu Gly Glu Lys Gly Lys Asn Ile Lys Ile Ile Ser Lys Ile Glu 265

Asn His Glu Gly Val Arg Arg Phe Asp Glu Ile Leu Glu Ala Ser Asp 280 Gly Ile Met Val Ala Arg Gly Asp Leu Gly Ile Glu Ile Pro Ala Glu 295 Lys Val Phe Leu Ala Gln Lys Met Met Ile Gly Arg Cys Asn Arg Ala 310 Gly Lys Pro Val Ile Cys Ala Thr Gln Met Leu Glu Ser Met Ile Lys 325 330 Lys Pro Arg Pro Thr Arg Ala Glu Gly Ser Asp Val Ala Asn Ala Val 345 Leu Asp Gly Ala Asp Cys Ile Met Leu Ser Gly Glu Thr Ala Lys Gly 360 Asp Tyr Pro Leu Glu Ala Val Arg Met Gln His Leu Ile Ala Arg Glu 375 Ala Glu Ala Ala Ile Tyr His Leu Gln Leu Phe Glu Glu Leu Arg Arg 390 395 Leu Ala Pro Ile Thr Ser Asp Pro Thr Glu Ala Thr Ala Val Gly Ala 410 Val Glu Ala Ser Phe Lys Cys Cys Ser Gly Ala Ile Ile Val Leu Thr 425 Lys Ser Gly Arg Ser Ala His Gln Val Ala Arg Tyr Arg Pro Arg Ala 440 Pro Ile Ile Ala Val Thr Arg Asn Pro Gln Thr Ala Arg Gln Ala His 455 460 Leu Tyr Arg Gly Ile Phe Pro Val Leu Cys Lys Asp Pro Val Gln Glu 470 475 Ala Trp Ala Glu Asp Val Asp Leu Arg Val Asn Phe Ala Met Asn Val 485 490 Gly Lys Ala Arg Gly Phe Phe Lys Lys Gly Asp Val Val Ile Val Leu 505 Thr Gly Trp Arg Pro Gly Ser Gly Phe Thr Asn Thr Met Arg Val Val Pro Val Pro 530 <210> 106 <211> 480 <212> PRT <213> Homo sapiens <400> 106 Met Ala Ala Arg Cys Ser Thr Arg Trp Leu Leu Val Val Val Gly Thr Pro Arg Leu Pro Ala Ile Ser Gly Arg Gly Ala Arg Pro Pro Arg Glu

1 5 10 15

Pro Arg Leu Pro Ala Ile Ser Gly Arg Gly Ala Arg Pro Pro Arg Glu
20 25 30

Gly Val Val Gly Ala Trp Leu Ser Arg Lys Leu Ser Val Pro Ala Phe
35 40 45

Ala Ser Ser Leu Thr Ser Cys Gly Pro Arg Ala Leu Leu Thr Leu Arg
50 55 60

Fro Gly Val Ser Leu Thr Gly Thr Lys His Asn Pro Phe Ile Cys Thr Fro Gly Thr Ser Ala Pro Leu Ala Lys Glu Asp Tyr Tyr Gln

```
Ile Leu Gly Val Pro Arg Asn Ala Ser Gln Lys Glu Ile Lys Lys Ala
            100
                               105
                                    .
Tyr Tyr Gln Leu Ala Lys Lys Tyr His Pro Asp Thr Asn Lys Asp Asp
                           120
Pro Lys Ala Lys Glu Lys Phe Ser Gln Leu Ala Glu Ala Tyr Glu Val
                       135
Leu Ser Asp Glu Val Lys Arg Lys Gln Tyr Asp Ala Tyr Gly Ser Ala
                   150
                                       155
Gly Phe Asp Pro Gly Ala Ser Gly Ser Gln His Ser Tyr Trp Lys Gly
                                   170
Gly Pro Thr Val Asp Pro Glu Glu Leu Phe Arg Lys Ile Phe Gly Glu
           180
                               185
Phe Ser Ser Ser Phe Gly Asp Phe Gln Thr Val Phe Asp Gln Pro
                           200
Gln Glu Tyr Phe Met Glu Leu Thr Phe Asn Gln Ala Ala Lys Gly Val
                       215
                                           220
Asn Lys Glu Phe Thr Val Asn Ile Met Asp Thr Cys Glu Arg Cys Asn
                   230
                                       235
Gly Lys Gly Asn Glu Pro Gly Thr Lys Val Gln His Cys His Tyr Cys
               245
                                   250
Gly Gly Ser Gly Met Glu Thr Ile Asn Thr Gly Pro Phe Val Met Arg
                               265
Ser Thr Cys Arg Arg Cys Gly Gly Arg Gly Ser Ile Ile Ile Ser Pro
                          280
Cys Val Val Cys Arg Gly Ala Gly Gln Ala Lys Gln Lys Lys Arg Val
                       295
Met Ile Pro Val Pro Ala Gly Val Glu Asp Gly Gln Thr Val Arg Met
                  310
                                      315
Pro Val Gly Lys Arg Glu Ile Phe Ile Thr Phe Arg Val Gln Lys Ser
               325
                                  330
Pro Val Phe Arg Arg Asp Gly Ala Asp Ile His Ser Asp Leu Phe Ile
                               345
Ser Ile Ala Gln Ala Leu Leu Gly Gly Thr Ala Arg Ala Gln Gly Leu
                           360
Tyr Glu Thr Ile Asn Val Thr Ile Pro Pro Gly Thr Gln Thr Asp Gln
                       375
Lys Ile Arg Met Gly Gly Lys Gly Ile Pro Arg Ile Asn Ser Tyr Gly
                   390
                                      395
Tyr Gly Asp His Tyr Ile His Ile Lys Ile Arg Val Pro Lys Arg Leu
               405
                                  410
Thr Ser Arg Gln Gln Ser Leu Ile Leu Ser Tyr Ala Glu Asp Glu Thr
                              425
Asp Val Glu Gly Thr Val Asn Gly Val Thr Leu Thr Ser Ser Gly Gly
                          440
Ser Thr Met Asp Ser Ser Ala Gly Ser Lys Ala Arg Arg Glu Ala Gly
                       455
                                          460
Glu Asp Glu Glu Gly Phe Leu Ser Lys Leu Lys Lys Met Phe Thr Ser
                   470
```

<210> 107

<211> 572

<212> PRT

<213> Homo sapiens

265

		_													
)> 10		_	_	_	_	_			_		_		_	
	Ата	Ala	Pro		Pro	Ser	Pro	Ala		Ser	val	ser	vai		Ala
1				5		_			10			_		15	
Pro	Ala	Phe	Tyr	Ala	Pro	Gln	Lys	Lys	Phe	Gly	Pro	Val	Val	Ala	Pro
			20					25					30		
Lys	Pro	Lys	Val	Asn	Pro	Phe	Arg	Pro	Gly	Asp	Ser	Glu	Pro	Pro	Pro
		35					40					45			
Ala	Pro	Gly	Ala	Gln	Arg	Ala	Gln	Met	Gly	Arg	Val	Gly	Glu	Ile	Pro
	50	-			_	55			_		60	_			
Pro	Pro	Pro	Pro	Glu	Asp	Phe	Pro	Leu	Pro	Pro	Pro	Pro	Leu	Ala	Gly
65				•	70					75					80
Asp	Glv	Asp	Asp	Ala	Glu	Glv	Ala	Leu	Glv	Glv	Ala	Phe	Pro	Pro	Pro
	1	- -		85					90	1				95	
Pro	Pro	Pro	Tle		Glu	Ser	Phe	Pro		Δla	Pro	Len	Glu		Glu
			100	010				105					110		
Tla	Dho	Dro		Dro	Pro	Dro	Dro		Glu	Glu	Glu	Glv	_	Dro	Glu
116	FIIC	115	Ser	FIO	FIO	110	120	110	GIU	Giu	GIU	125	GLY	FIG	GIU
21.	Dwo		Dwo	Dwo	D~-	Dwa		Dwo	7	01	T		C~~	Cor	T10
MId		TTE	PIO	PIO	Pro		GIH	PIO	Arg	GIU			261	261	TIE
3	130	a 1	T1.	3		135	C	C	7	T	140		Wak	m}	T
-	ьец	GIU	TIE	Asp	Ser	ьец	ser	ser	ьеи		Asp	Asp	mec	THE	_
145		D	Db -	*	150	3	**- 7	G		155		**- 1	D	D	160
Asn	Asp	Pro	Pne		Ala	Arg	vaı	ser		GIY	Tyr	vaı	Pro		Pro
			_	165	_	_	_	_	170		_	_		175	
Val	Ala	Thr		Phe	Ser	Ser	Lys		Ser	Thr	Lys	Pro		Aia	Gly
		_	180					185					190	_	
Gly	Thr	Ala	Pro	Leu	Pro	Pro	Trp	Lys	Ser	Pro	Ser	Ser	Ser	Gln	Pro
		195					200					205			
Leu	Pro	Gln	Val	Pro	Ala	Pro	Ala	Gln	Ser	Gln		Gln	Phe	His	Val
	210		-,			215					220				
Gln	Pro	Gln	Pro	Gln	Pro	Lys	Pro	Gln	Val	Gln	Leu	His	Val	Gln	Ser
225					230					235					240
Gln	Thr	Gln	Pro	Val	Ser	Leu	Ala	Asn	Thr	Gln	Pro	Arg	Gly	Pro	Pro
				245	•				250			•		255	
Ala	Ser	Ser	Pro	Ala	Pro	Ala	Pro	Lys	Phe	Ser	Pro	Val	Thr	Pro	Lys
			260					265					270		
Phe	Thr	Pro	Val	Ala	Ser	Lys	Phe	Ser	Pro	Gly	Ala	Pro	Gly	Gly	Ser
		275					280					285			
Gly	Ser	${\tt Gln}$	Pro	Asn	Gln	Lys	Leu	Gly	His	Pro	Glu	Ala	Leu	Ser	Ala
	290	,				295					300				
Gly	Thr	Gly	Ser	Pro	${\tt Gln}$	Pro	Pro	Ser	Phe	Thr	Tyr	Ala	Gln	Gln	Arg
305					310					315					320
Glu	Lys	Pro	Arg	Val	${\tt Gln}$	Glu	Lys	Gln	His	Pro	Val	Pro	рто	Pro	Ala
	_			325			-		330					335	
Gln	Asn	Gln	Asn	Gln	Val	Arq	Ser	Pro	Gly	Ala	Pro	Gly	Pro	Leu	Thr
			340			-		345	•			4	350		
Leu	Lvs	Glu		Glu	Glu	Leu	Glu		Leu	Thr	Gln	Gln		Met	Gln
	_2 -	355					360					365			
Asn	Met		His	Pro	Gln	Δτα		Δen	บอไ	בומ	บอา		Glu	T.011	Cva
<u>P</u>	370					375			* CI I	n.a	380	-mit	U.L.	يا تاب	-ys
glv.			Hie	Gl 20	Pro		λla	Ar~	~ וא	@1 ~		71-	17-7	7~~	א ז ה
385	y	CIP	413	- TII	390	LC U	n.a	ALY.	AL A		FIO	nia	val	ALG	
	G1	ر دائ	T.ess	Dha		T7 -	- ר ג	~	Dh-	395	<u></u>	TT -	01 -	~	400
пец	GTÅ	GIII	пси		His	тте	ATG	cys		ınr	cys	HIS	GID		WTG
				405					410					415	

Gln Gln Leu Gln Gly Gln Gln Phe Tyr Ser Leu Glu Gly Ala Pro Tyr 420 425 430

Cys Glu Gly Cys Tyr Thr Asp Thr Leu Glu Lys Cys Asn Thr Cys Gly
435 440 445

Glu Pro Ile Thr Asp Arg Met Leu Arg Ala Thr Gly Lys Ala Tyr His 450 455 460

Pro His Cys Phe Thr Cys Val Val Cys Ala Arg Pro Leu Glu Gly Thr 465 470 475 480

Ser Phe Ile Val Asp Gln Ala Asn Arg Pro His Cys Val Pro Asp Tyr 485 490 495

His Lys Gln Tyr Ala Pro Arg Cys Ser Val Cys Ser Glu Pro Ile Met
500 505 510

Pro Glu Pro Gly Arg Asp Glu Thr Val Arg Val Val Ala Leu Asp Lys
515 520 525

Asn Phe His Met Lys Cys Tyr Lys Cys Glu Asp Cys Gly Lys Pro Leu 530 535 540

Ser Ile Glu Ala Asp Asp Asn Gly Cys Phe Pro Leu Asp Gly His Val 545 550 555 560

Leu Cys Arg Lys Cys His Thr Ala Arg Ala Gln Thr
565 570

<210> 108

<211> 2861

<212> PRT

<213> Homo sapiens

<400> 108

Met Lys Ala Met Asp Val Leu Pro Ile Leu Lys Glu Lys Val Ala Tyr 1 5 10 .15

Leu Ser Gly Gly Arg Asp Lys Arg Gly Gly Pro Ile Leu Thr Phe Pro 20 25 30

Ala Arg Ser Asn His Asp Arg Ile Arg Gln Glu Asp Leu Arg Arg Leu
35 40 45

Ile Ser Tyr Leu Ala Cys Ile Pro Ser Glu Glu Val Cys Lys Arg Gly 50 55 60

Phe Thr Val Ile Val Asp Met Arg Gly Ser Lys Trp Asp Ser Ile Lys 65 70 75 80

Pro Leu Leu Lys Ile Leu Gln Glu Ser Phe Pro Cys Cys Ile His Val 85 90 95

Ala Leu Ile Ile Lys Pro Asp Asn Phe Trp Gln Lys Gln Arg Thr Asn 100 105 110

Phe Gly Ser Ser Lys Phe Glu Phe Glu Thr Asn Met Val Ser Leu Glu 115 120 125

Gly Leu Thr Lys Val Val Asp Pro Ser Gln Leu Thr Pro Glu Phe Asp 130 135 140

Gly Cys Leu Glu Tyr Asn His Glu Glu Trp Ile Glu Ile Arg Val Ala 145 150 155 160

Phe Glu Asp Tyr Ile Ser Asn Ala Thr His Met Leu Ser Arg Leu Glu 165 170 175

Glu Leu Gln Asp Ile Leu Ala Lys Lys Glu Leu Pro Gln Asp Leu Glu
180 185 190

Gly Ala Arg Asn Met Ile Glu Glu His Ser Gln Leu Lys Lys Val 195 200 205

Ile Lys Ala Pro Ile Glu Asp Leu Asp Leu Glu Gly Gln Lys Leu Leu 215 220 Gln Arg Ile Gln Ser Ser Glu Ser Phe Pro Lys Lys Asn Ser Gly Ser 230 235 Gly Asn Ala Asp Leu Gln Asn Leu Leu Pro Lys Val Ser Thr Met Leu 245 250 Asp Arg Leu His Ser Thr Arg Gln His Leu His Gln Met Trp His Val 265 Arg Lys Leu Lys Leu Asp Gln Cys Phe Gln Leu Arg Leu Phe Glu Gln 280 Asp Ala Glu Lys Met Phe Asp Trp Ile Thr His Asn Lys Gly Leu Phe 295 300. Leu Asn Ser Tyr Thr Glu Ile Gly Thr Ser His Pro His Ala Met Glu 310 315 Leu Gln Thr Gln His Asn His Phe Ala Met Asn Cys Met Asn Val Tyr 330 Val Asn Ile Asn Arg Ile Met Ser Val Ala Asn Arg Leu Val Glu Ser 340 345 Gly His Tyr Ala Ser Gln Gln Ile Arg Gln Ile Ala Ser Gln Leu Glu 360 . 365 Gln Glu Trp Lys Ala Phe Ala Ala Ala Leu Asp Glu Arg Ser Thr Leu 375 Leu Asp Met Ser Ser Ile Phe His Gln Lys Ala Glu Lys Tyr Met Ser 390 395 Asn Val Asp Ser Trp Cys Lys Ala Cys Gly Glu Val Asp Leu Pro Ser 405 410 Glu Leu Gln Asp Leu Glu Asp Ala Ile His His His Gln Gly Ile Tyr 425 Glu His Ile Thr Leu Ala Tyr Ser Glu Val Ser Gln Asp Gly Lys Ser 440 Leu Leu Asp Lys Leu Gln Arg Pro Leu Thr Pro Gly Ser Ser Asp Ser 455 460 Leu Thr Ala Ser Ala Asn Tyr Ser Lys Ala Val His His Val Leu Asp 470 475 Val Ile His Glu Val Leu His His Gln Arg His Val Arg Thr Ile Trp Gln His Arg Lys Val Arg Leu His Gln Arg Leu Gln Leu Cys Val Phe 505 Gln Gln Glu Val Gln Gln Val Leu Asp Trp Ile Glu Asn His Gly Glu 520 Ala Phe Leu Ser Lys His Thr Gly Val Gly Lys Ser Leu His Arg Ala 540 Arg Ala Leu Gln Lys Arg His Glu Asp Phe Glu Glu Val Ala Gln Asn 550 555 Thr Tyr Thr Asn Ala Asp Lys Leu Leu Glu Ala Ala Glu Gln Leu Ala 570 Gln Thr Gly Glu Cys Asp Pro Glu Glu Ile Tyr Gln Ala Ala His Gln 585 Leu Glu Asp Arg Ile Gln Asp Phe Val Arg Arg Val Glu Gln Arg Lys 600 Ile Leu Leu Asp Met Ser Val Ser Phe His Thr His Val Lys Glu Leu 615 Trp Thr Trp Leu Glu Glu Leu Gln Lys Glu Leu Leu Asp Asp Val Tyr

625		_	•		630					635					640
Ala	GIu	Ser	Val			Val	Gln	Asp			Lys	Arg	Phe	_	Gln
				645					650					655	
Gln	Gln	Gln	Thr	Thr	Leu	Gln	Val	Thr	Val	Asn	Val	Ile	Lys	Glu	Gly
			660					665					670		
Glu	Asp	Leu	Ile	Gln	Gln	Leu	Arg	Asp	Ser	Ala	Ile	Ser	Ser	Asn	Lys
		675					680					685			
Thr	Pro	His	Asn	Ser	Ser	Ile	Asn	His	Ile	Glu	Thr	Val	Leu	Gln	Gln
	690					695					700				
Leu	Asp	Glu	Ala	Gln	Ser	Gln	Met	Glu	Glu	Leu	Phe	Gln	Glu	Arg	Lys
705					710					715					720
Ile	Lys	Leu	Glu	Leu	Phe	Leu	His	Val	Arg	Ile	Phe	Glu	Arg	Asp	Ala
				725					730					735	
Ile	Asp	Ile	Ile	Ser	Asp	Leu	Glu	Ser	Trp	Asn	Asp	Glu	Leu	Ser	Gln
			740		_			745	-		-		750		
Gln	Met	Asn	qeA	Phe	Asp	Thr	Glu	Asp	Leu	Thr	Ile	Ala	Glu	Gln	Arg
		755	_		•		760	•				765			3
Leu	Gln	His	His	Ala	Asp	Lys	Ala	Leu	Thr	Met	Asn	Asn	Leu	Thr	Phe
	770				-	775				•	780				
Asp	Val	Ile	His	Gln	Gly	Gln	Asp	Leu	Leu	Gln	Tvr	Val	Asn	Glu	Val
785					790		•			795	-1-				800
Gln	Ala	Ser	Gly	Val	Glu	Leu	Leu	Cvs	Asp		asp	Val	asp	Met	
			•	805				-1-	810	3				815	
Thr	Arg	Val	Gln	Asp	Leu	Leu	Glu	Phe		His	Glu	Lys	Gln		Glu
			820					825				-1-	830		
Leu	Asp	Leu		Ala	Glu	Gln	His		Lvs	His	Len	Glu		Cvs	Val
		835					840	5	7-5			845		C10	•41
Gln	Leu		His	Leu	Gln	Ala		Val	Tiva	Gln	Val	Leu	Glv	Trans	Tle
	850					855			2,5		860	шец	017	111	
Arq		Glv	Glu	Ser	Met		Asn	Ala	Glv	Leu		Thr	Δla	Ser	Ser
865		2			870				1	875					880
	Gln	Glu	Ala	Glu		Leu	Gln	Ara	Glu		Glu	Gln	Phe	Gln	
				885				5	890			· · · ·		895	*****
Ala	Ile	Glu	Lvs		His	Gln	Ser	Ala		Gln	Val	Gln	Gln		Δla
			900					905			• • • •		910	- 475	7114
Glu	Ala	Met	Leu	Gln	Ala	Asn	His		Asn	Met	Δsn	Met		Δτα	Δen
		915					920	-1-			, mp	925		· 9	nop
Cvs	Ala		Lvs	Val	Δla	Ser		Tm	Gln	Gln	T.011	Met	T.e.ii	Lare	Mot
-1-	930		-7-			935		1-5	0111	O.I.I.	940	MCC	шец	шуз	MCC
Glu		Ara	Len	Lvs	Len		Δsn	Δla	Ser	Va 1		Phe	ጥረም	Luc	ጥኮሎ
945				_,,	950	*41		n.u	DCI	955	AL A	FIIC	1 Y L	цуз	960
	Gʻlu	Gln	Va1	Cvs		Va 1	Len	Glu	Ser		Gl 11	Gln	G] 11	Тъ-	
		0.111	, 41	965	JCI	vui	DCu	GIU	970	Deu	GIU	GIII	GIU	975	nys
Ara	Glu	Glu	Δsn		Cve	Glv	Glv	A 1 a		Lare	T 033	Gly	Dro		C
5	u	Ų.L.	980	P	Cys	OLY	OLY	985	wab	ыys	neu	GIY	990	ASII	ser
Glu	Thr	Δsn		Val	Thr	Pro	Met		Cor.	Laro	uic	Leu		C1 n	Tura
		995	****	141	1111	110	1000		361	цуз	птэ			GIII	пàр
G) n	λl =		Len	Laze	73 -	Cres			77.	3	3	1005		3	**- 7
4	1010		_cu	ny o	A.a	1015		חבת	wrg	Arg		Asn	ALG	Asp	val
Dhe			Tu	T.ess	ui -			C=	T7- 3	3	1020		a 1	N# - ·	**- 3
1025	al-cu	ny o	TAT	neu	1030		WOIT	SEI	val			Pro	σтλ	met	
		Tla	Laza	λ] -			@1 ~	6 1 –	*** 7	1035		- 1 -	T		1040
****	1112	116	nys.			GIU	GTH	GID			Asn	Ile	ьеи		
				1045	•				1050	,				1055	

Leu Phe Gln Arg Glu Asn Arg Val Leu His Tyr Trp Thr Met Arg Lys
1060 1065 1070

Arg Arg Leu Asp Gln Cys Gln Gln Tyr Val Val Phe Glu Arg Ser Ala 1075 1080 1085

Lys Gln Ala Leu Glu Trp Ile His Asp Asn Gly Glu Phe Tyr Leu Ser 1090 1095 1100

Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Leu Leu 1105 1110 1115 1120

Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 1130 1135

Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His
1140 1145 1150

Ala His Ala Ala Glu Ile Lys Lys Cys Val Thr Ala Val Asp Lys Arg 1155 1160 1165

Tyr Arg Asp Phe Ser Leu Arg Met Glu Lys Tyr Arg Thr Ser Leu Glu 1170 1175 1180

Lys Ala Leu Gly Ile Ser Ser Asp Ser Asn Lys Ser Ser Lys Ser Leu 1185 1190 1195 1200

Gln Leu Asp Ile Ile Pro Ala Ser Ile Pro Gly Ser Glu Val Lys Leu
1205 1210 1215

Arg Asp Ala Ala His Glu Leu Asn Glu Glu Lys Arg Lys Ser Ala Arg 1220 1225 1230

Arg Lys Glu Phe Ile Met Ala Glu Leu Ile Gln Thr Glu Lys Ala Tyr 1235 1240 1245

Val Arg Asp Leu Arg Glu Cys Met Asp Thr Tyr Leu Trp Glu Met Thr 1250 1255 1260

Ser Gly Val Glu Glu Ile Pro Pro Gly Ile Val Asn Lys Glu Leu Ile 1265 1270 1275 1280

Ile Phe Gly Asn Met Gln Glu Ile Tyr Glu Phe His Asn Asn Ile Phe 1285 1290 1295

Leu Lys Glu Leu Glu Lys Tyr Glu Gln Leu Pro Glu Asp Val Gly His 1300 1305 1310

Cys Phe Val Thr Trp Ala Asp Lys Phe Gln Met Tyr Val Thr Tyr Cys 1315 1320 1325

Lys Asn Lys Pro Asp Ser Thr Gln Leu Ile Leu Glu His Ala Gly Ser 1330 1335 1340

Tyr Phe Asp Glu Ile Gln Gln Arg His Gly Leu Ala Asn Ser Ile Ser 1345 1350 1355 1360

Ser Tyr Leu Ile Lys Pro Val Gln Arg Ile Thr Lys Tyr Gln Leu Leu 1365 1370 1375

Leu Lys Glu Leu Leu Thr Cys Cys Glu Glu Gly Lys Gly Glu Ile Lys 1380 1385 1390

Asp Gly Leu Glu Val Met Leu Ser Val Pro Lys Arg Ala Asn Asp Ala 1395 1400 1405

Met His Leu Ser Met Leu Glu Gly Phe Asp Glu Asn Ile Glu Ser Gln 1410 1415 1420

Gly Glu Leu Ilê Leu Gln Glu Ser Phe Gln Val Trp Asp Pro Lys Thr 1425 1430 1435 1440

Leu Ile Arg Lys Gly Arg Glu Arg His Leu Phe Leu Phe Glu Met Ser 1445 1450 1455

Leu Val Phe Ser Lys Glu Val Lys Asp Ser Ser Gly Arg Ser Lys Tyr 1460 1465 1470

Leu Tyr Lys Ser Lys Leu Phe Thr Ser Glu Leu Gly Val Thr Glu His

WO 01/77327 PCT/US00/16951

1475	1480		1485	
Val Glu Gly Asp Pro Cys	Lys Phe A	la Leu Trp	Val Gly A	arg Thr Pro
1490	1495		1500	
Thr Ser Asp Asn Lys Ile	Val Leu L	ys Ala Ser	Ser Ile G	Slu Asn Lys
1505 1510)	1515		1520
Gln Asp Trp Ile Lys His	Ile Arg G	Slu Val Ile	Gln Glu A	arg Thr Ile
1525		1530		1535
His Leu Lys Gly Ala Leu	Lys Glu P	Pro Ile His	Ile Pro L	ys Thr Ala
1540	1	.545	1	.550
Pro Ala Thr Arg Gln Lys 1555	Gly Arg A 1560	Arg Asp Gly	Glu Asp L 1565	eu Asp Ser
Gln Gly Asp Gly Ser Ser		=		la Ser Arg
1570	1575		1580	
Thr Ser Gln Asn Thr Leu			ser Gly G	
1585 1590 Leu Thr Val Val Ile His		1595		1600
1605		1610		1615
Thr Ile Arg Arg Gly Gln			Glu Arg P	ro His Asp
1620	. 1		1	
Lys Pro Asp Trp Cys Leu 1635	Val Arg T 1640	hr Thr Asp	Arg Ser P 1645	ro Ala Ala
Glu Gly Leu Val Pro Cys		eu Cvs Ile		er Arg Ser
1650	1655	=	1660	
Ser Met Glu Met Glu Gly	Ile Phe A	sn His Lvs	Asp Ser L	eu Ser Val
1665 1670		1675		1680
Ser Ser Asn Asp Ala Ser	Pro Pro A	la Ser Val	Ala Ser L	eu Gln Pro
1685		1690		1695
His Met Ile Gly Ala Gln				
1700	1	.705	1	710
	1	.705	1	710
Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val	Thr Ser P 1720 Lys Lys L	705 Pro Val Arg A eu Ala His 1	1 Arg Leu S 1725 Lys His L	710 er Ser Gly
Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730	1 Thr Ser P 1720 Lys Lys L 1735	.705 Pro Val Arg A eu Ala His I	1 Arg Leu S 1725 Lys His L 1740	710 er Ser Gly ys Lys Ser
Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser	Thr Ser P 1720 Lys Lys L 1735 Ala Asp A	.705 Pro Val Arg A eu Ala His I : la Gly Ser (1 Arg Leu S 1725 Lys His L 1740	710 er Ser Gly ys Lys Ser sp Ser Asp
1700 Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser 1745	Thr Ser P 1720 Lys Lys L 1735 Ala Asp A	705 Pro Val Arg A eu Ala His I la Gly Ser (1755	1 Arg Leu S 1725 Lys His L 1740 Gln Lys A	or Ser Gly ys Lys Ser sp Ser Asp 1760
1700 Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser 1745 Asp Ser Ala Ala Thr Pro 1765	Thr Ser P 1720 Lys Lys L 1735 Ala Asp A	Pro Val Arg A eu Ala His 1 la Gly Ser (1755 lu Thr Val (1 Arg Leu S 1725 Lys His L 1740 Gln Lys A	roto fer Ser Gly ys Lys Ser sp Ser Asp 1760 rg Gly Arg 1775
1700 Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser 1745 Asp Ser Ala Ala Thr Pro 1765 Asn Glu Gly Leu Ser Ser	Thr Ser P 1720 Lys Lys L 1735 Ala Asp A Gln Asp G	oro Val Arg A eu Ala His I la Gly Ser (1755 lu Thr Val (1770 eu Ser Lys S	1 Arg Leu S 1725 Lys His L 1740 Sln Lys A Glu Glu A	roto for Ser Gly sys Lys Ser sp Ser Asp 1760 rg Gly Arg 1775 er Ser Gly
1700 Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser 1745 1750 Asp Ser Ala Ala Thr Pro 1765 Asn Glu Gly Leu Ser Ser 1780	Thr Ser P 1720 Lys Lys L 1735 Ala Asp A Gln Asp G	ro Val Arg A eu Ala His I la Gly Ser (1755 lu Thr Val (1770 eu Ser Lys 8	Arg Leu S 1725 Lys His L 1740 Sln Lys A Slu Glu A	roto for Ser Gly sys Lys Ser sp Ser Asp 1760 rg Gly Arg 1775 er Ser Gly 790
1700 Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser 1745 1750 Asp Ser Ala Ala Thr Pro 1765 Asn Glu Gly Leu Ser Ser 1780 Met Gln Ser Cys Gly Glu	Thr Ser P 1720 Lys Lys L 1735 Ala Asp A Gln Asp G Gly Thr L 1 Glu Glu G	ro Val Arg A eu Ala His I la Gly Ser (1755 lu Thr Val (1770 eu Ser Lys 8	Arg Leu S 1725 Lys His L 1740 Gln Lys A Glu Glu A Ger Ser S 1 Gly Ala A	roto for Ser Gly sys Lys Ser sp Ser Asp 1760 rg Gly Arg 1775 er Ser Gly 790
1700 Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser 1745 1750 Asp Ser Ala Ala Thr Pro 1765 Asn Glu Gly Leu Ser Ser 1780 Met Gln Ser Cys Gly Glu 1795	Thr Ser P 1720 Lys Lys L 1735 Ala Asp A Gln Asp G Gly Thr L 1 Glu Glu G 1800	ro Val Arg A eu Ala His I la Gly Ser (1755 lu Thr Val (1770 leu Ser Lys 9 785	Arg Leu S 1725 Lys His L 1740 Sln Lys A Glu Glu A Ger Ser S 1 Gly Ala A 1805	roto for Ser Gly sys Lys Ser sp Ser Asp 1760 rg Gly Arg 1775 er Ser Gly 790 sp Ala Val
1700 Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser 1745 1750 Asp Ser Ala Ala Thr Pro 1765 Asn Glu Gly Leu Ser Ser 1780 Met Gln Ser Cys Gly Glu 1795 Pro Leu Pro Pro Met Met Cys Cy	Thr Ser P 1720 Lys Lys L 1735 Ala Asp A Gln Asp G Gly Thr L Glu Glu G 1800 Ala Ile G	Pro Val Arg A eu Ala His I la Gly Ser G 1755 lu Thr Val G 1770 eu Ser Lys S 785 ly Glu Glu G	Arg Leu S 1725 Lys His L 1740 Sln Lys A Slu Glu A Ger Ser S 1 Sly Ala A 1805 Ser Leu L	roto for Ser Gly sys Lys Ser sp Ser Asp 1760 rg Gly Arg 1775 er Ser Gly 790 sp Ala Val
1700 Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser 1745 Asp Ser Ala Ala Thr Pro 1765 Asn Glu Gly Leu Ser Ser 1780 Met Gln Ser Cys Gly Glu 1795 Pro Leu Pro Pro Pro Met 1810 Met Cys Cy	Thr Ser P 1720 Lys Lys L 1735 Ala Asp A Gln Asp G Gly Thr L 1 Glu Glu G 1800 Ala Ile G 1815	Pro Val Arg A eu Ala His I la Gly Ser (1755 lu Thr Val (1770 eu Ser Lys 9 785 ly Glu Glu (lin Gln His 9	Arg Leu S 1725 Lys His L 1740 Sln Lys A Slu Glu A Ser Ser S 1 Sly Ala A 1805 Ser Leu L 1820	roto fer Ser Gly ys Lys Ser sp Ser Asp 1760 rg Gly Arg 1775 er Ser Gly 790 sp Ala Val eu Gln Pro
1700 Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser 1745 Asp Ser Ala Ala Thr Pro 1765 Asn Glu Gly Leu Ser Ser 1780 Met Gln Ser Cys Gly Glu 1795 Pro Leu Pro Pro Pro Met 1810 Asp Ser Gln Asp Asp Lys	1 Thr Ser P 1720 Lys Lys L 1735 Ala Asp A Gln Asp G Gly Thr L 1 Glu Glu G 1800 Ala Ile G 1815 Ala Ser S	eu Ala His in the land of the	Arg Leu S 1725 Lys His L 1740 Sln Lys A Slu Glu A Ser Ser S 1 Sly Ala A 1805 Ser Leu L 1820	roto fer Ser Gly ys Lys Ser sp Ser Asp 1760 rg Gly Arg 1775 fer Ser Gly rgo sp Ala Val eu Gln Pro rg Pro Thr
1700 Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser 1745 1750 Asp Ser Ala Ala Thr Pro 1765 Asn Glu Gly Leu Ser Ser 1780 Met Gln Ser Cys Gly Glu 1795 Pro Leu Pro Pro Pro Met 1810 Asp Ser Gln Asp Asp Lys 1825 1830 Asp Asp Lys 1825 Asn Glu Arg Lys 1830 Asp Ser Gln Asp Asp Lys Asp Ser Gln Asp Asp Lys 1830 Asp Ser Gln Asp Asp Lys Asp Ser Gln Asp Ser Gln Asp Asp Lys Asp Ser Gln	Thr Ser P 1720 Lys Lys L 1735 Ala Asp A Gln Asp G Gly Thr L 1 Glu Glu G 1800 Ala Ile G 1815 Ala Ser S	eu Ala His in the land of the	Arg Leu S 1725 Lys His L 1740 Sin Lys A Siu Glu A Siu Glu A Ser Ser S 1 Siy Ala A 1805 Ser Leu L 1820 Leu Val A	roto fer Ser Gly ys Lys Ser sp Ser Asp 1760 rg Gly Arg 1775 fer Ser Gly 790 sp Ala Val eu Gln Pro rg Pro Thr 1840
1700 Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser 1745 Asp Ser Ala Ala Thr Pro 1765 Asn Glu Gly Leu Ser Ser 1780 Met Gln Ser Cys Gly Glu 1795 Pro Leu Pro Pro Pro Met 1810 Asp Ser Gln Asp Asp Lys	Thr Ser P 1720 Lys Lys L 1735 Ala Asp A Gln Asp G Gly Thr L 1 Glu Glu G 1800 Ala Ile G 1815 Ala Ser S	eu Ala His in the land of the	Arg Leu S 1725 Lys His L 1740 Sin Lys A Siu Glu A Siu Glu A Ser Ser S 1 Siy Ala A 1805 Ser Leu L 1820 Leu Val A	roto fer Ser Gly ys Lys Ser sp Ser Asp 1760 rg Gly Arg 1775 fer Ser Gly 790 sp Ala Val eu Gln Pro rg Pro Thr 1840
1700 Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser 1745 Trp Leu Trp Trp Asp Ser Ala Ala Thr Pro 1765 Asn Glu Gly Leu Ser Ser 1780 Trp Thr Ser P 1720 Lys Lys L 1735 Ala Asp A Gln Asp G Gly Thr L 16lu Glu G 1800 Ala Ile G 1815 Ala Ser S Ala Ala G	Pro Val Arg A Pro Val Arg Arg Arg Arg Leu Arg Leu Val A 1850	Arg Leu S 1725 Lys His L 1740 Gln Lys A Glu Glu A Ger Ser S 1 Gly Ala A 1805 Ger Leu L 1820 Leu Val A	roto fer Ser Gly ys Lys Ser sp Ser Asp 1760 rg Gly Arg 1775 fer Ser Gly rgo sp Ala Val eu Gln Pro rg Pro Thr 1840 le Glu Glu 1855	
Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser 1745 Asp Ser Ala Ala Thr Pro 1765 Asn Glu Gly Leu Ser Ser 1780 Met Gln Ser Cys Gly Glu 1795 Pro Leu Pro Pro Pro Met 1810 Asp Ser Gln Asp Asp Lys 1825 Ser Glu Thr Pro Ser	Thr Ser P 1720 Lys Lys L 1735 Ala Asp A Gln Asp G Gly Thr L 1Glu Glu G 1800 Ala Ile G 1815 Ala Ser S Ala Ala G Ala Leu G	Pro Val Arg A Pro Val Arg Arg Arg Arg Leu Arg Leu Val A 1850	Arg Leu S 1725 Lys His L 1740 Sln Lys A Slu Glu A Ser Ser S 1 Sly Ala A 1805 Ser Leu L 1820 Leu Val A Ser Ala I	roto fer Ser Gly ys Lys Ser sp Ser Asp 1760 rg Gly Arg 1775 fer Ser Gly rgo sp Ala Val eu Gln Pro rg Pro Thr 1840 le Glu Glu 1855
Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser 1745 Asp Ser Ala Ala Thr Pro 1765 Asn Glu Gly Leu Ser Ser 1780 Met Gln Ser Cys Gly Glu 1795 Pro Leu Pro Pro Pro Met 1810 Asp Ser Gln Asp Asp Lys 1825 Ser Ser Glu Thr Pro Ser 1845 Leu Val Lys Ser Lys Met	Thr Ser P 1720 Lys Lys L 1735 Ala Asp A Gln Asp G Gly Thr L 1800 Ala Ile G 1815 Ala Ser S Ala Ala G Ala Leu G	ro Val Arg A eu Ala His I la Gly Ser G 1755 lu Thr Val G 1770 eu Ser Lys S 785 ly Glu Glu G in Gln His S er Arg Leu I 1835 lu Leu Val S 1850 lu Asp Arg I	Arg Leu S 1725 Lys His L 1740 Sln Lys A Slu Glu A Ser Ser S 13 Sy Ala A 1805 Ser Leu L 1820 Leu Val A Ser Ala I	roto fer Ser Gly rys Lys Ser sp Ser Asp 1760 rg Gly Arg 1775 er Ser Gly rgo sp Ala Val eu Gln Pro rg Pro Thr 1840 le Glu Glu 1855 er Leu Leu 870
Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser 1745 1750 Asp Ser Ala Ala Thr Pro 1765 Asn Glu Gly Leu Ser Ser 1780 Met Gln Ser Cys Gly Glu 1795 Pro Leu Pro Pro Pro Met 1810 Asp Ser Gln Asp Asp Lys 1825 1830 Ser Ser Glu Thr Pro Ser 1845 Leu Val Lys Ser Lys Met 1860 Val Asp Gln Gly Asp Ser 1875	Thr Ser P 1720 Lys Lys L 1735 Ala Asp A Gln Asp G Gly Thr L 160 Glu Glu G 1800 Ala Ile G 1815 Ala Ser S Ala Ala G Ala Leu G 185 Ser Ser P	ro Val Arg A ro Val Arg A leu Ala His I la Gly Ser G 1755 lu Thr Val G 1770 leu Ser Lys S 785 lly Glu Glu G lln Gln His S ler Arg Leu I 1835 lu Leu Val S 1850 lu Asp Arg I 865 ro Ser Phe A	Arg Leu S 1725 Lys His L 1740 Sln Lys A Slu Glu A Ser Ser S 1 Sly Ala A 1805 Ser Leu L 1820 Leu Val A Ser Ala I Pro Ser S 1 Asn Pro S 1885	roto er Ser Gly ys Lys Ser sp Ser Asp 1760 rg Gly Arg 1775 er Ser Gly 790 sp Ala Val eu Gln Pro rg Pro Thr 1840 le Glu Glu 1855 er Leu Leu 870 er Asp Asn
Thr Leu Arg Lys Trp Leu 1715 Lys Ala Asp Gly His Val 1730 Arg Glu Val Arg Lys Ser 1745 Asp Ser Ala Ala Thr Pro 1765 Asn Glu Gly Leu Ser Ser 1780 Met Gln Ser Cys Gly Glu 1795 Pro Leu Pro Pro Pro Met 1810 Asp Ser Gln Asp Asp Lys 1825 Ser Ser Glu Thr Pro Ser 1845 Leu Val Lys Ser Lys Met 1860 Val Asp Gln Gly Asp Ser	Thr Ser P 1720 Lys Lys L 1735 Ala Asp A Gln Asp G Gly Thr L 160 Glu Glu G 1800 Ala Ile G 1815 Ala Ser S Ala Ala G Ala Leu G 185 Ser Ser P	ro Val Arg A ro Val Arg A leu Ala His I la Gly Ser G 1755 lu Thr Val G 1770 leu Ser Lys S 785 lly Glu Glu G lln Gln His S ler Arg Leu I 1835 lu Leu Val S 1850 lu Asp Arg I 865 ro Ser Phe A	Arg Leu S 1725 Lys His L 1740 Sln Lys A Slu Glu A Ser Ser S 1 Sly Ala A 1805 Ser Leu L 1820 Leu Val A Ser Ala I Pro Ser S 1 Asn Pro S 1885	roto er Ser Gly ys Lys Ser sp Ser Asp 1760 rg Gly Arg 1775 er Ser Gly 790 sp Ala Val eu Gln Pro rg Pro Thr 1840 le Glu Glu 1855 er Leu Leu 870 er Asp Asn

PCT/US00/16951 271

Ser															
		Ser	Leu	Lys			His	Tyr	Val			Glu	Leu	Val	Glu
1905	_				191					191					1920
Thr	Glu	Arg	Asp	Tyr 192		Arg	Asp	Leu	Gly 193		Val	Val	Glu	Gly 193	Tyr
Met	Ala	Leu		Lys	-	Asp	Gly		Pro		Asp	Met		Gly	_
			1940					194	_				1950		
Asp	Lys	Ile 195		Phe	Gly	Asn	Ile 196		Gln	Ile	Tyr	Asp 1969		His	Arg
3	Db-			~ 1	a 3	.			~	7	G1			a1	T
Asp			neu	GIA	GIU	Leu		гла	Cys	Leu			Pro	GIU	ьўs
	1970)				1975	5				198	0			
Leu	Gly	Ser	Leu	Phe	Val	Lys	His	Glu	Arg	Arg	Leu	His	Met	Tyr	Ile
1985	5				1990	o -			_	199	5			•	2000
		Cara	C1-				T 140	Co-	C1.,			17-7	cor	G1	Tyr
нта	IYL	Cys	GIII		_	PIO	rys	ser			116	AGT	ser		_
				200					2010					201	
Ile	Asp	Thr	Phe	Phe	Glu	Asp	Leu	Lys	Gln	Arg	Leu	Gly	His	Arg	Leu
			2020)				2025	5				2030)	
Gln	Len	Thr			T.em	Ile	Lve	Pro	Va 1	Gln	Δrα	Tle	Met	Lve	Tur
			_	Deu	HC U	110	-		V 4.1		9			2,3	-7-
		203			·		204					2045			
Gln	Leu	Leu	Leu	Lys	Asp	Phe	Leu	Lys	Tyr	Ser	Lys	Lys	Ala	Ser	Leu
	2050)				2059	5				206	כ			
Asp	Thr	Ser	Glu	Leu	Glu	Arg	Ala	Val	Glu	Val	Met	Cvs	Tle	Val	Pro
2065					2070	_				207		٠, ٥			2080
		_	_	_			_								
Arg	Arg	Cys	Asn	Asp	Met	Met	Asn	Val	GIY	Arg	Leu	GIn	GTA	Phe	Asp
				2089	5				2090)				2095	5
Gly	Lys	Ile	Val	Ala	Gln	Gly	Lys	Leu	Leu	Leu	Gln	Asp	Thr	Phe	Leu
•	•		2100			-	•	2109				-	2110		
7707	mb	. ·				G 1	T			>	~	>			3
vai		_		Asp	Ala	Gly			PLO	Arg	Cys	_		Arg	Arg
		2119	5				2120)				2125	•		
Ile				Glu	Gln	Ile			Phe	Ser	Glu	Pro		Asp.	Lys
Ile	Phe	Leu		Glu	Gln		Val		Phe	Ser				Asp ·	Lys
	Phe 2130	Leu)	Phe			2135	Val	Ile			2140)	Leu	_	_
Lys	Phe 2130 Lys	Leu)	Phe		Met	2135 Pro	Val	Ile		Phe	2140 Lys)	Leu	_	Lys
Lys 2145	Phe 2130 Lys	Leu) Gly	Phe Phe	Ser	Met 2150	2135 Pro	Val Gly	Ile Phe	Leu	Phe 2155	2140 Lys) Asn	Leu Ser	Ile	Lys 2160
Lys 2145	Phe 2130 Lys	Leu) Gly	Phe Phe	Ser	Met 2150	2135 Pro	Val Gly	Ile Phe	Leu	Phe 2155	2140 Lys) Asn	Leu Ser	Ile	Lys 2160
Lys 2145	Phe 2130 Lys	Leu) Gly	Phe Phe	Ser	Met 2150 Leu	2135 Pro	Val Gly	Ile Phe	Leu	Phe 2155 Glu	2140 Lys) Asn	Leu Ser	Ile	Lys 2160 Lys
Lys 2145 Val	Phe 213(Lys Ser	Leu) Gly Cys	Phe Phe Leu	Ser Cys 2165	Met 2150 Leu	2139 Pro) Glu	Val Gly Glu	Ile Phe Asn	Leu Val 2170	Phe 2155 Glu	2140 Lys S	Asn Asp	Leu Ser Pro	Ile Cys 2175	Lys 2160 Lys
Lys 2145 Val	Phe 213(Lys Ser	Leu) Gly Cys	Phe Phe Leu Thr	Ser Cys 2165 Ser	Met 2150 Leu	2135 Pro	Val Gly Glu	Ile Phe Asn Asp	Leu Val 2170 Val	Phe 2155 Glu	2140 Lys S	Asn Asp	Leu Ser Pro	Ile Cys 2175 Ile	Lys 2160 Lys
Lys 2145 Val Phe	Phe 2130 Lys Ser Ala	Leu Gly Cys Leu	Phe Phe Leu Thr 2180	Ser Cys 2169 Ser	Met 2150 Leu S	2135 Pro Glu Thr	Val Gly Glu Gly	Ile Phe Asn Asp 2185	Leu Val 2170 Val	Phe 2155 Glu) Val	2140 Lys Asn Glu	Asn Asp Thr	Leu Ser Pro Phe 2190	Ile Cys 2175 Ile	Lys 2160 Lys Leu
Lys 2145 Val Phe	Phe 2130 Lys Ser Ala	Leu Gly Cys Leu Ser	Phe Phe Leu Thr 2180 Ser	Ser Cys 2169 Ser	Met 2150 Leu S	2139 Pro) Glu	Val Gly Glu Gly Arg	The Phe Asn Asp 2185	Leu Val 2170 Val	Phe 2155 Glu) Val	2140 Lys Asn Glu	Asn Asp Thr	Leu Ser Pro Phe 2190 Glu	Ile Cys 2175 Ile	Lys 2160 Lys Leu
Lys 2145 Val Phe His	Phe 2130 Lys Ser Ala Ser	Leu Gly Cys Leu Ser 2195	Phe Leu Thr 2180	Ser Cys 2165 Ser) Pro	Met 2150 Leu ; Arg Ser	2135 Pro Glu Thr	Val Gly Glu Gly Arg 2200	Phe Asn Asp 2185	Leu Val 2170 Val i Thr	Phe 2155 Glu) Val Trp	2140 Lys S Asn Glu	Asn Asp Thr His	Leu Ser Pro Phe 2190 Glu	Ile Cys 2175 Ile Ile	Lys 2160 Lys Leu Asn
Lys 2145 Val Phe His	Phe 2130 Lys Ser Ala Ser	Leu Gly Cys Leu Ser 2195	Phe Leu Thr 2180	Ser Cys 2165 Ser) Pro	Met 2150 Leu ; Arg Ser	2135 Pro Glu Thr	Val Gly Glu Gly Arg 2200	Phe Asn Asp 2185	Leu Val 2170 Val i Thr	Phe 2155 Glu) Val Trp	2140 Lys S Asn Glu	Asn Asp Thr His	Leu Ser Pro Phe 2190 Glu	Ile Cys 2175 Ile Ile	Lys 2160 Lys Leu Asn
Lys 2145 Val Phe His	Phe 2130 Lys Ser Ala Ser	Leu Gly Cys Leu Ser 2195	Phe Leu Thr 2180 Ser Glu	Ser Cys 2169 Ser Pro Asn	Met 2150 Leu 3 Arg Ser	2135 Pro Glu Thr Val	Gly Gly Gly Arg 2200 Asn	Phe Asn Asp 2185 Gln Phe	Leu Val 2170 Val ; Thr	Phe 2155 Glu) Val Trp	2140 Lys Asn Glu Ile	Asn Asp Thr His 2205	Leu Ser Pro Phe 2190 Glu	Ile Cys 2175 Ile Ile	Lys 2160 Lys Leu Asn
Lys 2145 Val Phe His Gln	Phe 2130 Lys Ser Ala Ser Ile 2210	Leu Gly Cys Leu Ser 2195 Leu	Phe Leu Thr 2180 Ser Glu	Cys 2169 Ser Pro	Met 2150 Leu ; Arg Ser	Pro Glu Thr Val Arg 2215	Val Gly Glu Gly Arg 2200 Asn	Phe Asn Asp 2185 Gln Phe	Leu Val 2170 Val Thr	Phe 2155 Glu Val Trp Asn	2140 Lys Asn Glu Ile Ala 2220	Asn Asp Thr His 2205 Leu	Leu Ser Pro Phe 2190 Glu	Ile Cys 2175 Ile Ile Ser	Lys 2160 Lys Leu Asn
Lys 2145 Val Phe His Gln	Phe 2130 Lys Ser Ala Ser Ile 2210 Glu	Leu Gly Cys Leu Ser 2195 Leu	Phe Leu Thr 2180 Ser Glu	Cys 2169 Ser Pro	Met 2150 Leu Arg Ser Gln	Pro Glu Thr Val Arg 2215	Val Gly Glu Gly Arg 2200 Asn	Phe Asn Asp 2185 Gln Phe	Leu Val 2170 Val Thr	Phe 2159 Glu Val Trp Asn	2140 Lys S Asn Glu Ile Ala 2220 Gly	Asn Asp Thr His 2205 Leu	Leu Ser Pro Phe 2190 Glu	Ile Cys 2175 Ile Ile Ser	Lys 2160 Lys Leu Asn Pro
Lys 2145 Val Phe His Gln Ile 2225	Phe 2130 Lys Ser Ala Ser Ile 2210 Glu	Leu Gly Cys Leu Ser 2195 Leu Tyr	Phe Phe Leu Thr 2180 Ser Glu Gln	Cys 2169 Ser Pro Asn	Met 2150 Leu 3 Arg Ser Gln Asn 2230	Pro Glu Thr Val Arg 2215 His	Gly Gly Gly Arg 2200 Asin Ser	Phe Asn Asp 2185 Gln Phe Gly	Leu Val 2170 Val Thr Leu Gly	Phe 2159 Glu Val Trp Asn Gly 2235	Lys Asn Glu Ile Ala 2220 Gly	Asn Asp Thr His 2205 Leu Gly	Leu Ser Pro Phe 2190 Glu Thr	Ile Cys 2175 Ile Ile Ser	Lys 2160 Lys Leu Asn Pro Ser 2240
Lys 2145 Val Phe His Gln Ile 2225	Phe 2130 Lys Ser Ala Ser Ile 2210 Glu	Leu Gly Cys Leu Ser 2195 Leu Tyr	Phe Phe Leu Thr 2180 Ser Glu Gln	Cys 2169 Ser Pro Asn	Met 2150 Leu 3 Arg Ser Gln Asn 2230	Pro Glu Thr Val Arg 2215	Gly Gly Gly Arg 2200 Asin Ser	Phe Asn Asp 2185 Gln Phe Gly	Leu Val 2170 Val Thr Leu Gly	Phe 2159 Glu Val Trp Asn Gly 2235	Lys Asn Glu Ile Ala 2220 Gly	Asn Asp Thr His 2205 Leu Gly	Leu Ser Pro Phe 2190 Glu Thr	Ile Cys 2175 Ile Ile Ser	Lys 2160 Lys Leu Asn Pro Ser 2240
Lys 2145 Val Phe His Gln Ile 2225	Phe 2130 Lys Ser Ala Ser Ile 2210 Glu	Leu Gly Cys Leu Ser 2195 Leu Tyr	Phe Phe Leu Thr 2180 Ser Glu Gln	Cys 2169 Ser Pro Asn	Met 2150 Leu 5 Arg Ser Gln Asn 2230 Val	Pro Glu Thr Val Arg 2215 His	Gly Gly Gly Arg 2200 Asin Ser	Phe Asn Asp 2185 Gln Phe Gly	Leu Val 2170 Val Thr Leu Gly	Phe 2155 Glu Val Trp Asn Gly 2235 Ala	Lys Asn Glu Ile Ala 2220 Gly	Asn Asp Thr His 2205 Leu Gly	Leu Ser Pro Phe 2190 Glu Thr	Ile Cys 2175 Ile Ile Ser	Lys 2160 Lys Leu Asn Pro Ser 2240 Val
Lys 2145 Val Phe His Gln Ile 2225 Gly	Phe 2130 Lys Ser Ala Ser Ile 2210 Glu Ala	Leu Gly Cys Leu Ser 2195 Leu Tyr	Phe Phe Leu Thr 2180 Ser Glu Gln Ala	Cys 2169 Ser Pro Asn Arg Gly 2245	Met 2150 Leu 3 Ser Gln Asn 2230 Val	Pro Glu Thr Val Arg 2215 His	Gly Gly Gly Arg 2200 Asn Ser	Phe Asn Asp 2185 Gln Phe Gly Ala	Val 2170 Val Thr Leu Gly Ala 2250	Phe 2155 Glu Val Trp Asn Gly 2235 Ala	Lys Asn Glu Ile Ala 2220 Gly Ala	Asn Asp Thr His 2205 Leu Gly Gly	Leu Ser Pro Phe 2190 Glu Thr Gly	Cys 2175 Ile Ile Ser Gly Pro 2255	Lys 2160 Lys Leu Asn Pro Ser 2240 Val
Lys 2145 Val Phe His Gln Ile 2225 Gly	Phe 2130 Lys Ser Ala Ser Ile 2210 Glu Ala	Leu Gly Cys Leu Ser 2195 Leu Tyr	Phe Leu Thr 2180 Ser Glu Gln Ala Ala	Cys 2169 Ser Pro Asn Arg Gly 2249	Met 2150 Leu 3 Ser Gln Asn 2230 Val	Pro Glu Thr Val Arg 2215 His	Gly Gly Gly Arg 2200 Asn Ser	Phe Asn Asp 2185 Gln Phe Gly Ala Pro	Val 2170 Val Thr Leu Gly Ala 2250 Ala	Phe 2155 Glu Val Trp Asn Gly 2235 Ala	Lys Asn Glu Ile Ala 2220 Gly Ala	Asn Asp Thr His 2205 Leu Gly Gly	Leu Ser Pro Phe 2190 Glu Thr Gly Pro Ala	Ile Cys 2175 Ile Ile Ser Gly Pro 2255	Lys 2160 Lys Leu Asn Pro Ser 2240 Val
Lys 2145 Val Phe His Gln Ile 2225 Gly Ala	Phe 2130 Lys Ser Ala Ser Ile 2210 Glu Ala Ala	Leu Gly Cys Leu Ser 2195 Leu Tyr Ala Ala	Phe Leu Thr 2180 Ser Glu Gln Ala Ala 2260	Cys 2169 Ser Pro Asn Arg Gly 2249	Met 2150 Leu Ser Gln Asn 2230 Val	Pro Glu Thr Val Arg 2215 His Gly Ala	Gly Gly Gly Arg 2200 Asin Ser Ala	Phe Asn Asp 2185 Gln Phe Gly Ala Pro 2265	Val 2170 Val Thr Leu Gly Ala 2250 Ala	Phe 2155 Glu Val Trp Asn Gly 2235 Ala	Lys Asn Glu Ile Ala 2220 Gly Ala Ala	Asn Asp Thr His 2205 Leu Gly Gly Ala	Leu Ser Pro Phe 2190 Glu Thr Gly Pro Ala 2270	Ile Cys 2175 Ile Ile Ser Gly Pro 2255 Pro	Lys 2160 Lys Leu Asn Pro Ser 2240 Val
Lys 2145 Val Phe His Gln Ile 2225 Gly Ala	Phe 2130 Lys Ser Ala Ser Ile 2210 Glu Ala Ala	Leu Gly Cys Leu Ser 2195 Leu Tyr Ala Ala	Phe Leu Thr 2180 Ser Glu Gln Ala Ala 2260 Gly	Cys 2169 Ser Pro Asn Arg Gly 2249	Met 2150 Leu Ser Gln Asn 2230 Val	Pro Glu Thr Val Arg 2215 His	Gly Gly Gly Arg 2200 Asin Ser Ala Ala	Phe Asn Asp 2185 Gln Phe Gly Ala Pro 2265 Gly	Val 2170 Val Thr Leu Gly Ala 2250 Ala	Phe 2155 Glu Val Trp Asn Gly 2235 Ala	Lys Asn Glu Ile Ala 2220 Gly Ala Ala	Asn Asp Thr His 2205 Leu Gly Gly Ala Leu	Leu Ser Pro Phe 2190 Glu Thr Gly Pro Ala 2270 Ser	Ile Cys 2175 Ile Ile Ser Gly Pro 2255 Pro	Lys 2160 Lys Leu Asn Pro Ser 2240 Val
Lys 2145 Val Phe His Gln Ile 2225 Gly Ala	Phe 2130 Lys Ser Ala Ser Ile 2210 Glu Ala Ala	Leu Gly Cys Leu Ser 2195 Leu Tyr Ala Ala	Phe Leu Thr 2180 Ser Glu Gln Ala Ala 2260 Gly	Cys 2169 Ser Pro Asn Arg Gly 2249	Met 2150 Leu Ser Gln Asn 2230 Val	Pro Glu Thr Val Arg 2215 His Gly Ala	Gly Gly Gly Arg 2200 Asin Ser Ala	Phe Asn Asp 2185 Gln Phe Gly Ala Pro 2265 Gly	Val 2170 Val Thr Leu Gly Ala 2250 Ala	Phe 2155 Glu Val Trp Asn Gly 2235 Ala	Lys Asn Glu Ile Ala 2220 Gly Ala Ala	Asn Asp Thr His 2205 Leu Gly Gly Ala	Leu Ser Pro Phe 2190 Glu Thr Gly Pro Ala 2270 Ser	Ile Cys 2175 Ile Ile Ser Gly Pro 2255 Pro	Lys 2160 Lys Leu Asn Pro Ser 2240 Val
Lys 2145 Val Phe His Gln Ile 2225 Gly Ala Ala	Phe 2130 Lys Ser Ala Ser Ile 2210 Glu Ala Ala	Leu Gly Cys Leu Ser 2195 Leu Tyr Ala Ala 2275	Phe Phe Leu Thr 2180 Ser Glu Gln Ala Ala 2260 Gly	Cys 2165 Ser Pro Asn Arg Gly 2245 Thr	Met 2150 Leu Ser Gln Asn 2230 Val Val	Q139 Pro Glu Thr Val Arg 2215 His Gly Ala Pro	Gly Gly Gly Arg 2200 Asin Ser Ala Pro 2280	Phe Asn Asp 2185 Gln Phe Gly Ala Pro 2265 Gly	Val 2170 Val Thr Leu Gly Ala 2250 Ala	Phe 2155 Glu Val Trp Asn Gly 2235 Ala Ala Pro	Asn Glu Ile Ala 2220 Gly Ala Ala Ala Ser	Asn Asp Thr His 2205 Leu Gly Gly Ala Leu 2285	Leu Ser Pro Phe 2190 Glu Thr Gly Pro Ala 2270 Ser	Ile Cys 2175 Ile Ile Ser Gly Pro 2255 Pro	Lys 2160 Lys Leu Asn Pro Ser 2240 Val Pro
Lys 2145 Val Phe His Gln Ile 2225 Gly Ala Ala	Phe 2130 Lys Ser Ala Ser Ile 2210 Glu Ala Ala Arg	Leu Gly Cys Leu Ser 2199 Leu Tyr Ala Ala Ala 2279	Phe Phe Leu Thr 2180 Ser Glu Gln Ala Ala 2260 Gly	Cys 2165 Ser Pro Asn Arg Gly 2245 Thr	Met 2150 Leu Ser Gln Asn 2230 Val Val	Q139 Pro Glu Thr Val Arg 2215 His Gly Ala Pro	Gly Gly Gly Arg 2200 Asn Ser Ala Pro 2280 Leu	Phe Asn Asp 2185 Gln Phe Gly Ala Pro 2265 Gly	Val 2170 Val Thr Leu Gly Ala 2250 Ala	Phe 2155 Glu Val Trp Asn Gly 2235 Ala Ala Pro	Asn Glu Ile Ala 2220 Gly Ala Ala Ser	Asn Asp Thr His 2205 Leu Gly Gly Ala Leu 2285 Arg	Leu Ser Pro Phe 2190 Glu Thr Gly Pro Ala 2270 Ser	Ile Cys 2175 Ile Ile Ser Gly Pro 2255 Pro	Lys 2160 Lys Leu Asn Pro Ser 2240 Val Pro
Lys 2145 Val Phe His Gln Ile 2225 Gly Ala Ala Thr	Phe 2130 Lys Ser Ala Ser Ile 2210 Glu Ala Ala Arg Pro 2290	Leu Gly Cys Leu Ser 2195 Leu Tyr Ala Ala 2275 Pro	Phe Phe Leu Thr 2180 Ser Glu Gln Ala 2260 Gly Cys	Cys 2165 Ser Pro Asn Arg Cly 2245 Thr Ala	Met 2150 Leu 6 Arg Ser Gln 2230 Val Val Gly Ser	Q139 Pro Glu Thr Val Arg 2215 His Gly Ala Pro Pro 2295	Gly Gly Gly Arg 2200 Asn Ser Ala Pro 2280 Leu	Phe Asn Asp 2185 Gln Phe Gly Ala Pro 2265 Gly Gln	Val 2170 Val Thr Leu Gly Ala 2250 Ala Ser	Phe 2155 Glu Val Trp Asn Gly 2235 Ala Pro Arg	Asn Glu Ile Ala 2220 Gly Ala Ala Ser Ala 2300	Asn Asp Thr His 2205 Leu Gly Gly Ala Leu 2285 Arg	Leu Ser Pro Phe 2190 Glu Thr Gly Pro Ala 2270 Ser	Ile Cys 2175 Ile Ile Ser Gly Pro 2255 Pro Asp	Lys 2160 Lys Leu Asn Pro Ser 2240 Val Pro Thr
Lys 2145 Val Phe His Gln Ile 2225 Gly Ala Ala Thr	Phe 2130 Lys Ser Ala Ser Ile 2210 Glu Ala Ala Arg Pro 2290 Arg	Leu Gly Cys Leu Ser 2195 Leu Tyr Ala Ala 2275 Pro	Phe Phe Leu Thr 2180 Ser Glu Gln Ala 2260 Gly Cys	Cys 2165 Ser Pro Asn Arg Cly 2245 Thr Ala	Met 2150 Leu Ser Gln Asn 2230 Val Gly Ser Glu	Q139 Pro Glu Thr Val Arg 2215 His Gly Ala Pro Pro 2295 Ser	Gly Gly Gly Arg 2200 Asn Ser Ala Pro 2280 Leu	Phe Asn Asp 2185 Gln Phe Gly Ala Pro 2265 Gly Gln	Val 2170 Val Thr Leu Gly Ala 2250 Ala Ser	Phe 2155 Glu Val Trp Asn Gly 2235 Ala Pro Arg	Asn Glu Ile Ala 2220 Gly Ala Ala Ser Ala 2300 Asn	Asn Asp Thr His 2205 Leu Gly Gly Ala Leu 2285 Arg	Leu Ser Pro Phe 2190 Glu Thr Gly Pro Ala 2270 Ser	Ile Cys 2175 Ile Ile Ser Gly Pro 2255 Pro Asp	Lys 2160 Lys Leu Asn Pro Ser 2240 Val Pro Thr Gln Met
Lys 2145 Val Phe His Gln Ile 2225 Gly Ala Ala Thr	Phe 2130 Lys Ser Ala Ser Ile 2210 Glu Ala Ala Arg Pro 2290 Arg	Leu Gly Cys Leu Ser 2195 Leu Tyr Ala Ala 2275 Pro Cys	Phe Phe Leu Thr 2180 Ser Glu Gln Ala Ala 2260 Gly Cys Gln	Cys 2165 Ser Pro Asn Arg Gly 2245 Thr Ala Trp Ser	Met 2150 Leu Ser Gln Asn 2230 Val Gly Ser Glu 2310	Q139 Pro Glu Thr Val Arg 2215 His Gly Ala Pro 2295 Ser	Gly Glu Gly Arg 2200 Asn Ser Ala Pro 2280 Leu Ser	Phe Asn Asp 2185 Gln Phe Gly Ala Pro 2265 Gly Gln Ser	Leu Val 2170 Val Thr Leu Gly Ala 2250 Ala Ser Pro	Phe 2155 Glu Val Trp Asn Gly 2235 Ala Pro Arg Ser 2315	Asn Glu Ile Ala 2220 Gly Ala Ala Ser Ala 2300 Asn	Asn Asp Thr His 2205 Leu Gly Gly Ala Leu 2285 Arg	Leu Ser Pro Phe 2190 Glu Thr Gly Pro Ala 2270 Ser Gln Ser	Ile Cys 2175 Ile Ile Ser Gly Pro 2255 Pro Asp Arg	Lys 2160 Lys Leu Asn Pro Ser 2240 Val Pro Thr Gln Met 2320
Lys 2145 Val Phe His Gln Ile 2225 Gly Ala Ala Thr	Phe 2130 Lys Ser Ala Ser Ile 2210 Glu Ala Ala Arg Pro 2290 Arg	Leu Gly Cys Leu Ser 2195 Leu Tyr Ala Ala 2275 Pro Cys	Phe Phe Leu Thr 2180 Ser Glu Gln Ala 2260 Gly Cys Gln	Cys 2165 Ser Pro Asn Arg Gly 2245 Thr Ala Trp Ser	Met 2150 Leu Ser Gln Asn 2230 Val Gly Ser Glu 2310	Q139 Pro Glu Thr Val Arg 2215 His Gly Ala Pro Pro 2295 Ser	Gly Glu Gly Arg 2200 Asn Ser Ala Pro 2280 Leu Ser	Phe Asn Asp 2185 Gln Phe Gly Ala Pro 2265 Gly Gln Ser	Leu Val 2170 Val Thr Leu Gly Ala 2250 Ala Ser Pro	Phe 2155 Glu Val Trp Asn Gly 2235 Ala Pro Arg Ser 2315	Asn Glu Ile Ala 2220 Gly Ala Ala Ser Ala 2300 Asn	Asn Asp Thr His 2205 Leu Gly Gly Ala Leu 2285 Arg	Leu Ser Pro Phe 2190 Glu Thr Gly Pro Ala 2270 Ser Gln Ser	Ile Cys 2175 Ile Ile Ser Gly Pro 2255 Pro Asp Arg	Lys 2160 Lys Leu Asn Pro Ser 2240 Val Pro Thr Gln Met 2320

272

2325 2330 Tyr Gln Gly Glu Val Val Gln Ile Leu Ala Ser Asn Gln Gln Asn Met 2350 2340 2345 Phe Leu Val Phe Arg Ala Ala Thr Asp Gln Cys Pro Ala Ala Glu Gly 2360 Trp Ile Pro Gly Phe Val Leu Gly His Thr Ser Ala Val Ile Val Glu 2375 2380 Asn Pro Asp Gly Thr Leu Lys Lys Ser Thr Ser Trp His Thr Ala Leu 2385 2390 2395 Arg Leu Arg Lys Lys Ser Glu Lys Lys Asp Lys Asp Gly Lys Arg Glu 2405 2410 Gly Lys Leu Glu Asn Gly Tyr Arg Lys Ser Arg Glu Gly Leu Ser Asn 2420 2425 Lys Val Ser Val Lys Leu Leu Asn Pro Asn Tyr Ile Tyr Asp Val Pro 2435 2440 2445 Pro Glu Phe Val Ile Pro Leu Ser Glu Val Thr Cys Glu Thr Gly Glu 2455 2460 Thr Val Val Leu Arg Cys Arg Val Cys Gly Arg Pro Lys Ala Ser Ile 2470 2475 2480 Thr Trp Lys Gly Pro Glu His Asn Thr Leu Asn Asn Asp Gly His Tyr 2485 2490 Ser Ile Ser Tyr Ser Asp Leu Gly Glu Ala Thr Leu Lys Ile Val Gly 2500 2505 2510 Val Thr Thr Glu Asp Asp Gly Ile Tyr Thr Cys Ile Ala Val Asn Asp 2515 2520 2525 Met Gly Ser Ala Ser Ser Ala Ser Leu Arg Val Leu Gly Pro Gly 2530 2535 2540 Met Asp Gly Ile Met Val Thr Trp Lys Asp Asn Phe Asp Ser Phe Tyr 2550 2555 2560 Ser Glu Val Ala Glu Leu Gly Arg Gly Arg Phe Ser Val Val Lys Lys 2565 2570 2575 Cys Asp Gln Lys Gly Thr Lys Arg Ala Val Ala Thr Lys Phe Val Asn 2580 2585 Lys Lys Leu Met Lys Arg Asp Gln Val Thr His Glu Leu Gly Ile Leu 2600 Gln Ser Leu Gln His Pro Leu Leu Val Gly Leu Leu Asp Thr Phe Glu 2610 2615 Thr Pro Thr Ser Tyr Ile Leu Val Leu Glu Met Ala Asp Gln Gly Arg 2625 2630 2635 Leu Leu Asp Cys Val Val Arg Trp Gly Ser Leu Thr Glu Gly Lys Ile 2645 2650 2655 Arg Ala His Leu Gly Glu Val Leu Glu Ala Val Arg Tyr Leu His Asn 2660 2665 2670 Cys Arg Ile Ala His Leu Asp Leu Lys Pro Glu Asn Ile Leu Val Asp 2675 2680 2685 Glu Ser Leu Ala Lys Pro Thr Ile Lys Leu Ala Asp Phe Gly Asp Ala 2690 2695 2700 Val Gln Leu Asn Thr Thr Tyr Tyr Ile His Gln Leu Leu Gly Asn Pro 2710 2715 2720 Glu Phe Ala Ala Pro Glu Ile Ile Leu Gly Asn Pro Val Ser Leu Thr 2725 2730 2735 Ser Asp Thr Trp Ser Val Gly Val Leu Thr Tyr Val Leu Leu Ser Gly 2740 2745

Val Ser Pro Phe Leu Asp Asp Ser Val Glu Glu Thr Cys Leu Asn Ile 2755 2760 2765

Cys Arg Leu Asp Phe Ser Phe Pro Asp Asp Tyr Phe Lys Gly Val Ser 2770 2775 2780

Gln Lys Ala Lys Glu Phe Val Cys Phe Leu Leu Gln Glu Asp Pro Ala 2785 2790 2795 2800

Lys Arg Pro Ser Ala Ala Leu Ala Leu Gln Glu Gln Trp Leu Gln Ala 2805 2810 2815

Gly Asn Gly Arg Ser Thr Gly Val Leu Asp Thr Ser Arg Leu Thr Ser 2820 2825 2830

Phe Ile Glu Arg Arg Lys His Gln Asn Asp Val Arg Pro Ile Arg Ser 2835 2840 2845

Ile Lys Asn Phe Leu Gln Ser Arg Leu Leu Pro Arg Val 2850 2855 2860

<210> 109

<211> 271

<212> PRT

<213> Homo sapiens

<400> 109

Met Val Leu Ile Lys Glu Phe Arg Val Val Leu Pro Cys Ser Val Gln

1 5 10 15

Glu Tyr Gln Val Gly Gln Leu Tyr Ser Val Ala Glu Ala Ser Lys Asn 20 25 30

Glu Thr Gly Gly Glu Gly Ile Glu Val Leu Lys Asn Glu Pro Tyr 35 40 45

Glu Lys Asp Gly Glu Lys Gly Gln Tyr Thr His Lys Ile Tyr His Leu 50 55 60

Lys Ser Lys Val Pro Ala Phe Val Arg Met Ile Ala Pro Glu Gly Ser 65 70 75 80

Leu Val Phe His Glu Lys Ala Trp Asn Ala Tyr Pro Tyr Cys Arg Thr 85 90 95

Ile Val Thr Asn Glu Tyr Met Lys Asp Asp Phe Phe Ile Lys Ile Glu
100 105 110
Thr Typ Hig Lyg Dro Asp Low Cly Thr Ley Gly Asp Val Tip Gly Lyg

Thr Trp His Lys Pro Asp Leu Gly Thr Leu Glu Asn Val His Gly Leu 115 120 125

Asp Pro Asn Thr Trp Lys Thr Val Glu Ile Val His Ile Asp Ile Ala
130
135
140
Asp Arg Ser Glu Val Glu Pro Ala Asp Tyr Lys Ala Asp Glu Asp Pro

Asp Arg Ser Gln Val Glu Pro Ala Asp Tyr Lys Ala Asp Glu Asp Pro 145 150 155 160

Ala Leu Phe Gln Ser Val Lys Thr Lys Arg Gly Pro Leu Gly Pro Asn 165 170 175

Trp Lys Lys Glu Leu Ala Asn Ser Pro Asp Cys Pro Gln Met Cys Ala 180 185 190

Tyr Lys Leu Val Thr Ile Lys Phe Lys Trp Trp Gly Leu Gln Ser Lys
195 200 205

Val Glu Asn Phe Ile Gln Lys Gln Glu Lys Arg Ile Phe Thr Asn Phe 210 215 220

His Arg Gln Leu Phe Cys Trp Ile Asp Lys Trp Ile Asp Leu Thr Met 225 230 235 240

Glu Asp Ile Arg Arg Met Glu Asp Glu Thr Gln Lys Glu Leu Glu Thr 245 250 255 Met Arg Lys Arg Gly Ser Val Arg Gly Thr Ser Ala Ala Asp Val

tional Application No PCT/US 00/16951

A. CLASSIFICATIO	N OF SUBJECT M	ATTER			
IPC 7 C1	2N15/12	C12N15/11	C12N5/10	C12N1/21	C07K14/705
CO:	7K14/775	CO7K14/47	C07K16/28	C12Q1/68	A61K49/00
[G0:	LN33/50	G01N33/53	G01N33/68	A01K67/027	A61K48/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N C07K C12Q A61K G01N A01K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, STRAND, BIOSIS, MEDLINE

Category *	Citation of document, with indication, where appropriate, of the re	elevant passages	. Relevant to claim No.
X	WO 98 46743 A (MERRIMAN TONY RAY ;TWELLS REBECCA CHRISTINA JOAN (ROG) 22 October 1998 (1998-10-22	(GB); COX	41,42
A	SeqIdNo.1: 99.6% identity in 161 overlap with SeqIdNo.4 page 19, paragraph 3 -page 21, page 19, page 9,10,19,20; tables 3,	5 aa aragraph	1-8,22, 23, 26-40, 45-50, 55-69,74
Х	US 5 691 153 A (GONG GUODONG ET 25 November 1997 (1997-11-25) cited in the application	AL)	46,48
Y	claims 1-10; figures 1,2		1-8
X Further	er documents are listed in the continuation of box C.	X Patient family members are listed in	annex.
	egories of cited documents :		
conside	It defining the general state of the art which is not red to be of particular relevance cument but published on or after the International	T later document published after the Intern or priority date and not in conflict with ti cited to understand the principle or the invention	ne application but ony underlying the
filing da "L" documen which is citation "O" documer other me "P" documen	te t which may throw doubts on priority claim(s) or cited to establish the publication date of another or other special reason (as specified) at referring to an oral disclosure, use, exhibition or	"X" document of particular relevance; the cla cannot be considered novel or cannot be involve an inventive step when the doo "V" document of particular relevance; the cla cannot be considered to involve an inve document is combined with one or mon ments, such combination being obvious in the art.	e considered to unent is taken alone immed invention into the step when the eother such docu-it to a person skilled
	trual completion of the international search	*8" document member of the same patent fall. Date of mailing of the international search	
12	April 2001	. 11	07. 2001
Name and ma	alling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized afficer Lonnoy, 0	

PCT/US 00/16951

			PC1/03 00/10931
A. CLASS IPC 7	SIFICATION OF SUBJECT MATTER A61K38/17 A61K39/395		
According	to International Patent Classification (IPC) or to both national cl	assification and IPC	
B. FIELDS	SEARCHED		
Minimum d	locumentation searched (classification system followed by class	sification symbols)	
Documenta	ation searched other than minimum documentation to the extent	that such documents are included	in the fields searched
Electronic	data bese consulted during the international search (name of da	ata base and, where practical, sea	urch terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	ne relevant passages	Relovant to claim No.
X	JOHNSON M ET AL: "Linkage of causing high bone mass to huma 11 (11g12-13)"		46,48
	AM Ĵ HÚM GENÉT, vol. 60, no. 6, June 1997 (199 1326-1332, XP000992645	97-06), pages	
Y	cited in the application figure 1; table 2		1-8
Y	KOLLER D ET AL: "Linkage of a contributing to normal variati mineral density to chromosome J BONE MINER RES, vol. 13, no. 12, December 1998 pages 1903-1908, XP000992793 figure 1	on in bone 11q12-13"	1-8
		-/	·
X Furth	er documents are listed in the continuation of box C.	X Patent family memb	ers are listed in annex.
'A" documer conside 'E" earlier or filing da 'L" documer which is chation 'O' documer other m	nt which may throw doubts on priority claim(s) or s cited to establish the publication date of another or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or	or priority date and not is cited to understand the privention "X" document of particular re- carnot be considered no involve an inventive step "Y" document of particular rel cannot be considered to document is combined v	after the international filing date in conflict with the application but principle or theory underlying the levance; the claimed invention ovel or cannot be considered to be when the document is taken alone levance; the claimed invention involve an inventive step when the with one or more other such docun being obvious to a person skilled same patent family
Date of the a	ctual completion of the international search	Date of mailing of the inte	
12	2 April 2001		1 1 07. 2001
lame and ma	ailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Lonnoy, 0	

Gonal Application No PCT/US 00/16951

CA COHUNE	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WHYTE M P: "Searching for Gene Defects That Cause High Bone Mass" AM J HUM GENET, vol. 60, no. 6, June 1997 (1997-06), pages 1309-1311, XP000992644	
A	KIM D ET AL: "A new low density lipoprotein receptor related protein, LRP5, is expressed in hepatocytes and adrenal cortex, and recognizes apolipoprotein E" J BIOCHEM, vol. 124, no. 6, 1 December 1998 (1998-12-01), pages 1072-1076, XP002165274 figures 1,2	21
•	TROMMSDORFF M ET AL: "Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein" JOURNAL OF BIOLOGICAL CHEMISTRY., vol. 273, no. 50, 11 December 1998 (1998-12-11), pages 33556-33560, XP002165275 abstract	21
	DATABASE EM_HTG [Online] E.B.I., Hinxton, U.K.; Accession Number: AC024123, 2 March 2000 (2000-03-02) COURSEAUX A ET AL: "Homo sapiens chromosome 11 clone bac67-m-5 map 11q13, *** SEQUENCING IN PROGRESS ***, 3 ordered pieces" XP002165276 abstract	51
	SCHNEIDER G ET AL: "Formation of focal adhesions by osteoblasts adhering to different substrata" EXP CELL RES, vol. 214, no. 1, September 1994 (1994-09), pages 264-269, XP000992789	
	PAVALKO F ET AL: "Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions." AM J PHYSIOL, vol. 275, no. 6 (Pt1), December 1998 (1998-12), pages C1591-C1601, XP000992787	
	-/	

1 attional Application No PCT/US 00/16951

		PCT/US 00/16951			
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with Indication, where appropriate, of the relevant passages		Relevant to claim No.		
A	WO 99 47529 A (BUCHANAN JOHN ; LUKE GEORGE P (US); BOHACEK REGINE (US); VU CHI B () 23 September 1999 (1999-09-23)				
A	WO 97 12903 A (PARA KIMBERLY SUZANNE ;SALTIEL ALAN ROBERT (US); SHAHRIPOUR AURASH) 10 April 1997 (1997-04-10)				
A	WO 99 09054 A (UNIV MONS HAINAUT ;FALMAGNE PAUL (BE); WATTIEZ RUDDY (BE); BERNARD) 25 February 1999 (1999-02-25)				
	•				
		I I			

International application No. PCT/US 90/16951

BxI	Observati ns where certain claims w re found unsearchable (Continuation 1 item 1 first sheet)
This Int	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
	Although claims 29-45, 78 and 91 are directed to methods of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compounds/compositions.
2. X	Claims Nos.: 43,44 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
	see FURTHER INFORMATION sheet PCT/ISA/210
a 🗌	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	mational Searching Authority found multiple inventions in this international application, as follows:
	see additional sheet
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely pald by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: See further information sheet invention 1.
Remark (The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: Invention 1: Claims 1-50 and 53-69 (all completely) and claims 51, 74, 75, 78 and 91 (all partially)

The HBM polynucleotide and HBM polypeptide variant of the polymorphic Zmax1 gene, said polynucleotide and polypeptide of SeqIdNo.2 and SeqIdNo.4 respectively, said polynucleotide comprising at least 15 contiguous nucleotides of SeqIdNo.2 wherein one of the at least 15 contiguous nucleotides is thymine at position 582; applications thereof.

2. Claims: Inventions 2 to 25: Claims 51, 52, 70, 72-74 (all partially)

A polymorphic variant of the Zmax 1 gene, wherein invention 2 is limited to SeqIdNo.9 wherein nucleotide 69169 is replaced by A, invention 3 to SeqIdNo.9 wherein nucleotide 27402 is replaced by 6, invention 4 to SeqIdNo.9 wherein nucleotide 27841 is replaced by C, invention 5 to SeqIdNo.9 wherein nucleotide 35600 is replaced by 6. invention 6 to SeqIdNo.9 wherein nucleotide 45619 is replaced by A, invention 7 to SeqIdNo.9 wherein nucleotide 46018 is replaced by G, invention 8 to SeqIdNo.9 wherein nucleotide 46093 is replaced by 6, invention 9 to SeqIdNo.9 wherein nucleotide 46190 is replaced by 6, invention 10 to SeqIdNo.9 wherein nucleotide 50993 is replaced by C, invention 11 to SeqIdNo.9 wherein nucleotide 51124 is replaced by T, invention 12 to SeqIdNo.9 wherein nucleotide 55461 is replaced by T, invention 13 to SeqIdNo.9 wherein nucleotide 63645 is replaced by A, invention 14 to SeqIdNo.9 wherein nucleotide 63646 is replaced by C, invention 15 to SeqIdNo.9 wherein nucleotide 24809 is replaced by G, invention 16 to SeqIdNo.9 wherein nucleotide 27837 is replaced by C, invention 17 to SeqIdNo.9 wherein nucleotide 31485 is replaced by T, invention 18 to SeqIdNo.9 wherein nucleotide 31683 is

replaced by G, invention 19 to SeqIdNo.9 wherein nucleotide 24808 is replaced by G, invention 20 to SeqIdNo.8 wherein nucleotide 31340 is replaced by C, invention 21 to SeqIdNo.8 wherein nucleotide 32538 is replaced by G, invention 22 to SeqIdNo.8 wherein nucleotide 13224 is replaced by G, invention 23 to SeqIdNo.8 wherein nucleotide 30497 is replaced by A, invention 24 to SeqIdNo.9 wherein nucleotide 24811 is replaced by C, invention 25 to SeqIdNo.9 wherein nucleotide 68280 is replaced by A.

3. Claims: Invention 26: Claim 71 (completely) and claims 51, 52, 70, 72-74 (all partially)

As for invention 2 but limited to SeqIdNo.8 wherein nucleotide 21119 is replaced by A.

 Claims: Inventions 27-50: claims 75-93 (all partially, as applicable)

> A molecule involved in bone modulation that is, binds to or inhibits binding of a molecule to a protein involved in focal adhesion signaling, and applications thereof, wherein invention 27 is limited to a molecule that is, binds to or inhibits binding of a molecule to the protein of SeqIdNo.87 or the corresponding nucleic acid of SeqIdNo.63, invention 28 to the protein of SeqIdNo.88 or the corresponding nucleic acid of SeqIdNo.64. invention 29 to the protein of SeqIdNo.89 or the corresponding nucleic acid of SegIdNo.65. invention 30 to the protein of SegIdNo.90 or the corresponding nucleic acid of SeqidNo.66, invention 31 to the protein of SeqIdNo.91 or the corresponding nucleic acid of SeqIdNo.67, invention 32 to the protein of SeqIdNo.92 or the corresponding nucleic acid of SeqIdNo.68, invention 33 to the protein of SeqIdNo.93 or the corresponding nucleic acid of SeqIdNo.69, invention 34 to the nucleic acid of SeqIdNo.70, invention 35 to the protein of SeqIdNo.94 or the corresponding nucleic acid of SeqIdNo.71, invention 36 to the protein of SeqIdNo.95 or the corresponding nucleic acid of SegIdNo.72. invention 37 to the protein of SeqIdNo.96 or the corresponding nucleic acid of SeqIdNo.73,

invention 38 to the protein of SeqIdNo.97 or the corresponding nucleic acid of SeqIdNo.74, invention 39 to the protein of SeqIdNo.98 or the corresponding nucleic acid of SeqIdNo.75, invention 40 to the protein of SeqIdNo.99 or the corresponding nucleic acid of SeqIdNo.76, invention 41 to the protein of SeqIdNo.100 or the corresponding nucleic acid of SeqIdNo.77, invention 42 to the protein of SeqIdNo.101 or the corresponding nucleic acid of SeqIdNo.78, invention 43 to the protein of SeqIdNo.102 or the corresponding nucleic acid of SeqIdNo.79, invention 44 to the protein of SeqIdNo.103 or the corresponding nucleic acid of SeqIdNo.80. invention 45 to the protein of SegIdNo.104 or the corresponding nucleic acid of SeqldNo.81. invention 46 to the protein of SeqIdNo.105 or the corresponding nucleic acid of SeqIdNo.82, invention 47 to the protein of SeqIdNo.106 or the corresponding nucleic acid of SeqIdNo.83, invention 48 to the protein of SeqIdNo.107 or the corresponding nucleic acid of SeqIdNo.84, invention 49 to the protein of SeqIdNo.108 or the corresponding nucleic acid of SeqIdNo.85, invention 50 to the protein of SeqIdNo.109 or the corresponding nucleic acid of SeqIdNo.86.

Continuation of Box I.2

Claims Nos.: 43,44

Present claims 43 and 44 relate to a compound defined by reference to a desirable characteristic or property, namely that it binds to the nucleic acid sequence of claim 1. The claims cover all compounds having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for no such compound. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the compounds by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, no search can be carried out for such speculative claims, the wording of which is a mere recitation of the results to be achieved.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

Information on patent family members

PCT/US 00/16951

Patent document ted in search repor	t	Publication date		atent family nember(s)	Publication date
0 9846743	A	22-10-1998	AU AU EP	733722 B 7061498 A 0988379 A	24-05-2001 11-11-1998 29-03-2000
S 5691153	A	25-11-1997	NONE		
0 9947529	A	23-09-1999	EP	1064289 A	03-01-2001
0 9712903	A	10-04-1997	AU Za	7392696 A 9608334 A	28-04-1997 13-05-1997
0 9909054	Α	25-02-1999	BE EP	1011331 A 1009760 A	06-07-1999 21-06-2000

Information on patent family members

FCT/US 80/16951

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9846743	A	22-10-1998	AU AU EP	733722 B 7061498 A 0988379 A	24-05-2001 11-11-1998 29-03-2000
US 5691153	Α	25-11-1997	NONE		
WO 9947529	Α	23-09-1999	EP	1064289 A	03-01-2001
WO 9712903	A	10-04-1997	AU Za	7392696 A 9608334 A	28-04-1997 13-05-1997
WO 9909054	Α	25-θ2-1999	BE EP	1011331 A 1009760 A	06-07-1999 21-06-2000