OPENCLASSROOMS

SOUTENANCE: PROJET 5

STACKS OVERFLOW - TAGGING SUPERVISE & NON-SUPERVISE

Edward Levavasseur

Updated: 2021/05/12

Problématique Stacks Overflow

Amateur de Stack Overflow [...] vous développez un système de suggestion de tag pour le site. Celui-ci prendra la forme d'un algorithme de machine learning qui assigne automatiquement plusieurs tags pertinents à une question.

- Approche Supervisée
- Approche Non-Supervisée

Plan,

- 1. Création d'un Bag of Words
- 2. Approche Non-Supervisée
- 3. Approche Supervisée
- 4. Conclusion

Imporation des données

- Occurrence Commande SQL:
 - SELECT * FROM posts WHERE AnswerCount > o

- Au sein de chaque texte:
 - Concatenation des paragraphes (...)
 - Suppression des liens url (<a href=...)
 - Suppression du code (<code>...</code>)
 - Suppression des symboles de mise en forme (, , <s>)

- O Définition de fonctions:
 - Pour supprimmer les caractères inutiles (-,_,+,',",[, |,...)
 - Pour créer un Bag of Words (Tonkenize+Lemmatize)

- Création d'un Bag of Words:
 - Pour chaque Titre
 - Pour chaque Texte
 - o Pour l'ensemble des Titres concaténés
 - o Pour l'ensemble des Textes concaténés

Création des bags of words

- Suppression des Stop Words
- Identification des features des questions:
 - o 500 mots les plus fréquents dans les titres

 Je supprime dans les Bags of Words tous les mots qui ne sont pas les features

APPROCHE NON-SUPERVISÉE

Count Vectorizer

- Création d'une liste de listes:
 - Liste avec le Bag of Words de chaque question
- Application d'un Count Vectorizer à cette liste de bag of words
- Sauvegarde dans une base de données:

	access	accessing	action	activity	add	 write	writing	wrong	xcode	xml
10	0	ō	0	Ō	0	 1	ō	Ō	0	0
11	0	0	0	Θ	Θ	 0	0	Θ	0	Θ
12	3	2	0	Θ	Θ	 0	0	Θ	0	2
13	0	0	0	0	0	 0	0	0	0	0
14	0	0	0	Θ	1	 0	0	1	0	Θ
15	0	0	0	0	Θ	 0	0	1	0	Θ
16	0	0	0	Θ	0	 0	0	Θ	0	0
17	0	0	0	0	0	 0	0	0	0	0
18	0	0	0	Θ	0	 1	0	0	0	0
19	0	0	0	Θ	0	 0	0	Θ	0	0

Réduction des dimensions : PCA

Application d'une PCA:

- Il faut un grand nombre de dimensions pour ne pas perdre trop de Variance:
 - o PCA n'est pas optimal dans ce cas

Latent Dirichlet Allocation (LDA)

○ Application d'une LDA avec 20 "topics" sous-jacents

```
Θ
                                               17
                                                          18
                                                                     19
10
    0.002941
                                         0.002941
              0.002941
                         0.002941
                                                    0.002941
                                                              0.002941
11
    0.001429
              0.001429
                         0.001429
                                         0.001429
                                                    0.001429
                                                              0.001429
                                    . . .
12
    0.000926
              0.000926
                         0.000926
                                         0.000926
                                                    0.000926
                                                              0.000926
                                    . . .
13
    0.003125
              0.003125
                         0.003125
                                         0.352815
                                                    0.003125
                                                              0.003125
14
    0.099461
              0.002381
                         0.002381
                                         0.002381
                                                    0.213452
                                                              0.410126
                                    . . .
15
    0.001667
              0.601120
                         0.001667
                                         0.001667
                                                    0.001667
                                                              0.001667
    0.005000
              0.005000
                         0.005000
                                         0.005000
                                                    0.005000
16
                                                              0.005000
                                    . . .
17
    0.243455
              0.161859
                         0.002941
                                         0.293837
                                                    0.002941
                                                              0.002941
                                    . . .
    0.002778
              0.002778
                         0.002778
                                        0.002778
                                                    0.002778
                                                              0.002778
18
19
    0.002778
              0.002778
                         0.002778
                                         0.002778
                                                    0.002778
                                                              0.002778
```

- Chaque question est localisée plus ou moins proche de chacun des 20 topics
 - Ex: Le "topic" le plus proche de question 15 est le topic 1 (0.601120 / 1)

Figure: Mots les plus courrants dans différents topics

Générer des Tags de manière non-supervisée

- O Definition de 2 fonctions:
 - Pour mapper un texte et son titre dans l'espace du Count Vectorizer
 - 2. Pour mapper l'espace du Count Vectorizer dans l'espace du LDA
- La seconde fonction génère ensuite des tags:
 - o Identification des topics les plus proches de la question
 - Attribution des mots utilisés dans la question, et qui sont fréquents dans les topics proches.

API de Tags Non-Supervisée

Création d'une base de données

- O Identification des Tags utilisés au moins 100 fois
- Création d'une base de données:
 - 500 features
 - o 1 variable binaire pour chaque tag (187 variables)
- Séparation en données Trainning (70%) / Test (30%)

Prédiction des Tags

- Régressions Logistiques et Random Forest Classifier:
 - o 200 régressions pour chaque model (1 par Tag)
 - o "Fitting" sur les 500 features des données Training
 - o Sauvegarde des "Fit" dans un dictionaire

- Evaluation des performances des 2 modèles sur Test:
 - Logit: Accuracy supérieure à 0.9 pour tous les Tags
 - Random Forest: Accuracy supérieure à 0.9 pour tous les Tags
- Création d'une fonction prédictrice de Tags:
 - Prédiction avec Logit puis avec Random Forest

API de Tags Non-Supervisée

- Cleaning des Textes des questions
- \bigcirc Création de Bags of Words avec 500 mots les plus fréquents

- Cleaning des Textes des questions
- Création de Bags of Words avec 500 mots les plus fréquents
- Prédiction des Tags Non-supervisé:
 - Count Vectorizer
 - Latent Dirichlet Allocation (LDA)
 - o Attribution des tags associés aux "topics" les plus proches

- Cleaning des Textes des questions
- Création de Bags of Words avec 500 mots les plus fréquents
- Prédiction des Tags Non-supervisé:
 - Count Vectorizer
 - Latent Dirichlet Allocation (LDA)
 - Attribution des tags associés aux "topics" les plus proches
- Prédiction des Tags Supervisé:
 - Count Vectorizer
 - Ajout de 200 dummies (1 pour chaque tag)
 - Séparation Training / Test
 - o Fitting de Logit et Random Forest sur Training
 - Prediction des Tags sur Test:
 - o Accuracy Score > 0.9 sur tous les Tags

- Cleaning des Textes des questions
- Création de Bags of Words avec 500 mots les plus fréquents
- Prédiction des Tags Non-supervisé:
 - Count Vectorizer
 - Latent Dirichlet Allocation (LDA)
 - Attribution des tags associés aux "topics" les plus proches
- Prédiction des Tags Supervisé:
 - Count Vectorizer
 - Ajout de 200 dummies (1 pour chaque tag)
 - Séparation Training / Test
 - o Fitting de Logit et Random Forest sur Training
 - Prediction des Tags sur Test:
 - Accuracy Score > 0.9 sur tous les Tags
- Création d'API supervisée et non-supervisée