Ø1003

Attorney Docket No. 341148005US

Amendment to the Claims

Please withdraw claims 23 and 27, and cancel claims 28-38

- 1. (previously presented) A miniature resonating marker assembly, comprising:
 - a signal element comprising a core, a wire coil disposed around the core, and a capacitor connected to the wire coil, the signal element generating a magnetic field with a selected resonant frequency in response to a specific stimulus, and the magnetic field having a magnetic center along a first axis of the core; and
 - an inert encapsulation member encapsulating the signal element, the encapsulation member and the signal element therein defining a unit having a selected geometric shape having a geometric center, the geometric center being coincident with the magnetic center along at least the first axis of the core.
- 2 (original) The miniature resonating marker assembly of claim 1 wherein the core is a material with a relative permeability greater than 1.0.
- 3. (original) The miniature resonating marker assembly of claim 1 wherein the core is a ferromagnetic core.
- (original) The miniature resonating marker assembly of claim 1 wherein 4. the core has a rod portion positioned within the coil and a pair of enlarged ferromagnetic endcaps connected to the rod portion, the endcaps having a relative permeability greater than 1, the coil being disposed between the endcaps.
- (original) The miniature resonating marker assembly of claim 4 wherein 5. the endcaps are made of a ferromagnetic material.

-2-

Ø 004

Attorney Docket No. 341148005US

- (original) The miniature resonating marker assembly of claim 4 wherein 6. the endcaps each have an arcuate outer surface facing away from the rod portion.
- (original) The miniature resonating marker assembly of claim 1 wherein 7. the core has a rod portion positioned within the coil and a pair of enlarged endcaps connected to the rod, the coil being disposed between the endcaps, one of the endcaps having a volume of material greater than the volume of material of the other endcap.
- 8. (original) The miniature resonating marker assembly of claim 1 wherein the ferromagnetic core extends through the coil and has a first end portion exterior of one end of the coil and a second end portion exterior of another end of the coil, the first end portion exterior of the coil having a volume greater than the volume of the second end portion so the magnetic center is spaced apart from a center point of the coil.
- (original) The miniature resonating marker assembly of claim 1 wherein 9. the core has a rod portion positioned in the coil, a first endcap connected to one end portion of the rod portion, and a second endcap connected to another end portion of the rod, the first endcap being larger than the second endcap.
- 10. (previously presented) The miniature resonating marker assembly of claim 1 wherein the core has a rod portion positioned in the coil, a first endcap connected to an end portion of the rod portion, and a second endcap connected to another end portion of the rod portion, the first endcap being axially adjustable over the rod portion and relative to the coil.
- (original) The miniature resonating marker assembly of claim 10 wherein 11. second endcap is fixed relative to the rod portion.
- (previously presented) The miniature resonating marker assembly of 12. claim 1 wherein the geometric center is coincident with the magnetic center along three axes of the unit.

- 13. (previously presented) The miniature resonating marker assembly of claim 1, further comprising a sleeve positioned between the wire coil and the core, the wire coil being wound onto the sleeve, and the sleeve and coil being positioned over the core.
- 14. (original) The miniature resonating marker assembly of claim 13 wherein the core is disposed within the sleeve and axially movable relative to the coil to achieve a selected resonant frequency of the assembly.
- 15. (previously presented) The miniature resonating marker assembly of claim 1, further comprising a ferromagnetic adhesive securely retaining the coil on the core.
- 16. (original) The miniature resonating marker assembly of claim 1 wherein the wire coil includes a plurality of windings of a wire, the wire having a bonding coating thereon to adhere the wire of one wind to the wire of an adjacent wind.
- 17. (previously presented) The miniature resonating marker assembly of claim 1 wherein the unit is attached to an anchoring member extending from one end of the unit, and the anchoring member is shaped to anchor the unit to tissue in or on a patient.
- 18. (original) The miniature resonating marker assembly of claim 1 wherein the assembly has an axial length of approximately 14 mm or less.
- 19. (previously presented) A miniature resonating marker assembly having a geometric center, comprising:
 - a core having an elongated central portion, a first cap having a first thickness, and a second cap having a second thickness, wherein the first thickness is different than the second thickness;

34114-8005/SL040980.058

- a wire coil disposed around the central portion of the core between the first and second caps; and
- a capacitor connected to the wire coil operative to form a signal element that generates a magnetic field with a selected resonant frequency in response to a specific stimulus.
- 20. (previously presented) A resonating marker assembly having a geometric center, comprising:
 - a ferromagnetic core having an elongated central portion and first and second ferromagnetic endcaps at opposite ends of the central portion, the core being substantially symmetrical about a longitudinal axis of the core, and being asymmetrical about a lateral axis of the core;
 - a wire coil disposed around the central portion of the ferromagnetic core intermediate the first and second endcaps; and
 - a capacitor connected to the wire coil forming a signal element that generates a magnetic field with a selected resonant frequency in response to a specific stimulus, the magnetic field having a magnetic center along a first axis coincident with the geometric center of the resonating marker assembly.
- 21. (previously presented) A resonating marker assembly having a geometric center, comprising:
 - a core having an elongated central portion and first and second endcaps connected to the central portion;
 - a wire coil disposed around the central portion of core intermediate the first and second endcaps; and
 - a capacitor connected to the wire coil to form a tuned signal element that generates a magnetic field with a selected resonant frequency in response to a specific stimulus, the first endcap being movable relative to the coil and capacitor for tuning the marker assembly to a selected resonant frequency.

-5-

- 22. (previously presented) A resonating marker assembly, comprising: a sleeve;
- a core having a central portion extending through the sleeve and a pair of endcaps connected to the central portion, the sleeve being between the endcaps, and the core being axially movable relative to the sleeve;
- a wire coil disposed around the sleeve; and
- a capacitor connected to the wire coil proximate to the core to form a signal element that generates a magnetic field with a selected resonant frequency in response to a specific stimulus, the core being axially movable relative to the sleeve and the coil for tuning the marker assembly to a selected resonant frequency.
- 23. (withdrawn) A tunable, resonating marker assembly, comprising: a wire coil defining an interior area;
- a capacitor connected to the wire coil to form an electrical circuit; and
- a ferromagnetic core having first and second segments each extending at least partially into the interior area of the coil, the first and second segments being axially movable relative to each other and to the coil for tuning the marker assembly to a selected resonant frequency.
- 24. (previously presented) A resonating marker assembly, comprising: a ferromagnetic core having a first end and a second end; a wire coil disposed around the ferromagnetic core;
- a capacitor positioned at the first end of the core and operatively connected to the wire coil to form a signal element that generates a magnetic field with a selected resonant frequency in response to a specific stimulus; and
- a segment at the second end of the core that projects outwardly with respect to the longitudinal axis of the core.

Ú

- 25. (previously presented) A resonating marker assembly, comprising: a core;
- a wire coil disposed around the core;
- a capacitor operatively connected to the wire coil to form a signal element that generates a magnetic field with a selected resonant frequency in response to a specific stimulus; and
- an inert encapsulation member encapsulating the core, the wire coil, and the capacitor forming an activatable unit implantable in a patient through an introducer needle.
- 26. (original) A resonating marker assembly, comprising;
- a capacitor having an aperture therethrough;
- an elongated ferromagnetic core extending through the aperture in the capacitor;
- a wire coil connected to the capacitor, the wire coil having a first portion
 disposed around the core adjacent to one side of the capacitor, and a
 second portion disposed around the core adjacent to another side of the
 capacitor; and
- an inert encapsulation member encapsulating the capacitor, the core, and the coil.
- 27. (withdrawn) A resonating marker assembly, comprising:
- an elongated core having an I-shaped cross-sectional area defined by a central web portion intermediate a pair of flange portions connected to the central web portion;
- a wire coil disposed around the central web portion between the flange portions of the core;
- a capacitor connected to the wire coil adjacent to the core to form a signal element that generates a magnetic field with a selected resonant frequency in response to a specific stimulus; and
- an inert encapsulation member encapsulating the signal element forming an inert implantable, activatable marker assembly.

28-39. (canceled)

Respectfully submitted, Perkins Coie LLP

Date: Apr: 1 12, 2004

Paul T. Parker

Registration No. 38,264

Correspondence Address:

Customer No. 25096
Perkins Coie LLP
P.O. Box 1247
Seattle, Washington 98111-1247
(206) 359-8000