Section E.1

Remark E.1.1 The only important information in a linear system are its coefficients and constants.

Original linear system:

Verbose standard form:

Coefficients/constants:

$$x_1 + 3x_3 = 3$$
$$3x_1 - 2x_2 + 4x_3 = 0$$
$$-x_2 + x_3 = -2$$

$$1x_1 + 0x_2 + 3x_3 = 3$$
$$3x_1 - 2x_2 + 4x_3 = 0$$
$$0x_1 - 1x_2 + 1x_3 = -2$$

$$\begin{vmatrix} 3 & -2 & 4 & | & 0 \\ 0 & -1 & 1 & | & -2 \end{vmatrix}$$

1 03 | 3

Definition E.1.2 A system of m linear equations with n variables is often represented by writing its coefficients and constants in an **augmented matrix**.

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

Definition E.1.3 Two systems of linear equations (and their corresponding augmented matrices) are said to be **equivalent** if they have the same solution set.

For example, both of these systems have a single solution: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

of these systems have a single solution:
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

 $3x_1 - 2x_2 = 1$

$$5x_1 - 2x_2 = 1$$

 $x_1 + 4x_2 = 5$

$$3x_1 - 2x_2 = 1$$
$$4x_1 + 2x_2 = 6$$

Therefore these augmented matrices are equivalent:

$$\begin{bmatrix} 3 & -2 & 1 \\ 1 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -2 & 1 \\ 4 & 2 & 6 \end{bmatrix}$$

Activity E.1.4 ($\sim 10 \ min$) Following are seven procedures used to manipulate an augmented matrix. Label the procedures that would result in an equivalent augmented matrix as valid, and label the procedures that would change the solution set of the corresponding linear system as invalid.

a) Swap two rows.

e) Add a constant multiple of one row to another row.

b) Swap two columns.

c) Add a constant to every term in a row.

d) Multiply a row by a nonzero constant.

f) Replace a column with zeros.

g) Replace a row with zeros.

Definition E.1.5 The following **row operations** produce equivalent augmented matrices:

1. Swap two rows.

2. Multiply a row by a nonzero constant.

3. Add a constant multiple of one row to another row.

Whenever two matrices A, B are equivalent (so whenever we do any of these operations), we write $A \sim B$.

Activity E.1.6 ($\sim 10 \text{ min}$) Consider the following (equivalent) linear systems.

(A) (C) (E)
$$-2x_1 + 4x_2 - 2x_3 = -8$$
 $x_1 - 2x_2 + 2x_3 = 7$ $x_1 - 2x_2 + 2x_3 = 6$ $x_3 = 3$ $x_3 = 3$ $x_1 - 6x_2 + 4x_3 = 15$ $-2x_3 = -6$

(B)
$$x_1 - 2x_2 + 2x_3 = 7$$

$$x_1 - 2x_2 + 2x_3 = 7$$

$$-2x_1 + 4x_2 - 2x_3 = -8$$

$$x_3 = 3$$

$$x_1 - 6x_2 + 4x_3 = 15$$

$$x_1 - 2x_2 + 2x_3 = 7$$

$$x_1 - 2x_2 + 2x_3 = 7$$

$$2x_3 = 6$$

$$3x_1 - 6x_2 + 4x_3 = 15$$

Part 1: Rank the six linear systems from easiest to solve to hardest to solve.

Part 2: Determine the row operation used in each step transforming the hardest system into the easiest.

Observation E.1.7 We can rewrite the previous in terms of augmented matrices

$$\begin{bmatrix} -2 & 4 & -2 & | & -8 \\ 1 & -2 & 2 & | & 7 \\ 3 & -6 & 4 & | & 15 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 2 & | & 7 \\ -2 & 4 & -2 & | & -8 \\ 3 & -6 & 4 & | & 15 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 2 & | & 7 \\ 0 & 0 & 2 & | & 6 \\ 3 & -6 & 4 & | & 15 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 2 & | & 7 \\ 0 & 0 & 2 & | & 6 \\ 0 & 0 & -2 & | & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 2 & | & 7 \\ 0 & 0 & 1 & | & 3 \\ 0 & 0 & -2 & | & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & | & 1 \\ 0 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

We simplify our system by

- 1. Simplifying one column at a time, moving left to right;
- 2. Once we have a 1 in a **pivot position**, we zero out above and below.
- 3. We can always follow this procedure to put a matrix in reduced row echelon form, or RREF.

Remark E.1.8 It is important to understand the Gauss-Jordan elimination algorithm that converts a matrix into reduced row echelon form, but in practice we don't do this by hand; we use technology to do this for us.

Activity E.1.9 (~10 min) A matrix is in reduced row echelon form (RREF) if

- 1. The leading term of each nonzero row is a 1 (these will be called **pivots**)
- 2. Each column containing a pivot is zero except for the pivot
- 3. All rows of zeroes are at the bottom of the matrix.

Determine which of the following matrices are in RREF:

Remark E.1.10 Before the next class, work at least five practice problems putting matrices into reduced row echelon form. You can view a video example at TODO