PhysIQ

A Physical Reasoning Bechnmark for VLMs

By Massimo Stefan

Index

- Introduction
- Methodology
- Experiments & Results
- Conclusions & Future Work

Introduction

Physical Reasoning

"The ability to predict and understand the interactions, dynamics, and outcomes within physical environments, based on causal relationships and the laws of physics"

Prediction and Understanding:

 Anticipating interactions, dynamics, and outcomes based on causal relationships and physical laws.

Foundational Aspects:

- Causal Reasoning: Differentiating between cause-andeffect relationships and superficial correlations.
- Mental Simulations: Humans intuitively simulate scenarios internally to anticipate outcomes.

? Why It Matters in Al:

- Essential for robotics, virtual assistants, and real-world interactive systems.
- Ensures reliable predictions in real-world interactions beyond learned patterns.

Several benchmarks

SHOPPECHARKS

Descriptive:

A: 2

Q: What shape is the second object to collide with the grav object? A: Cube

Q: Are there any collisions after the cube enters the scene? A: Yes

Explanatory:

Q: How many spheres are moving? Q: Which of the following is responsible Q: What will happen next? for the collision between the gray object and the cube?

- a) The presence of the purple object b) The collision between the blue sphere and the gray sphere
- c) The presence of the purple object
- d) The presence of the blue object

A: b), d)

Predictive:

- a) The cube and the gray object collide b) The gray sphere collides with the purple sphere
- c) The metal sphere and the cube collide d) The gray sphere collides with the blue

A: b)

Counterfactual:

Q: What will happen if the gray sphere is removed?

- a) The blue sphere collides with the cube b) The blue sphere and the metal sphere
- c) The purple object collides with the
- d) The cube and the metal sphere collide

How many spheres are moving?

What shape is the second object to collide with the gray object?

Same template

The PhyRE Dataset

of samples:

- 25 "1 ball" templates
- 25 "2 balls" templates
- 100 Iterations per template
- Total: 5000 different puzzles

PhysIQ: a PhyRE extension

- Measure the following abilities in the physical domain:
- Understanding
- Confidence
- Prediction
- Comparison
- Interactivity

- Pros:
- Extensible
- Customizable
- Offline & Interactive
- 2D
- Simple for an LLM to act on

Methodology

Puzzles Bodies

- **1. Position**: The (x, y) coordinates of the body's center within the scene.
- 2. Body Type: Determines the physics behavior of the object:
 - **1. Static** (0): Fixed objects that do not move during simulation.
 - **2. Dynamic** (1): Objects that respond to forces and collisions.
- 3. Angle: The rotation of the body in radians.
- 4. Relationship: Define the goal condition

- 5. Color: An integer index that maps to a specific color:
 - **1.** Red (0)
 - 2. Black (1)
 - 3. Green (2)
 - 4. Azure/Blue (3)
 - 5. Purple (4)
 - **6.** Grey (5)
- **6. Shape Type**: Defines the geometric form of the body:
 - **1. Polygon** (0, 2): Defined by a set of vertices.
 - 2. Circle (1): Defined by a center point and radius.
 - **3. Compound** (3, 4): Complex shapes composed of multiple polygons.

Simulation Constants

Category	Parameter	Description		
Physical	Scene dimensions	Size of the simulation scene (256 \times 256 pixels)		
	Gravity	Acceleration due to gravity (9.81 m/s^2)		
	Density	Mass per unit area (0.25 kg/m^2)		
	Friction coefficient	Coefficient determining resistance to sliding (0.5)		
	Elasticity (restitution)	Bounciness of collisions (0.20)		
	Angular damping	Reduction factor for rotational motion (0.01)		
	Linear damping	Reduction factor for linear motion (0.0)		
	Min Proposal Radius	Minimal length of the proposals (2)		
	Max Proposal Radius	Maximum length of the proposals (32)		
Simulation	Frame rate	Number of frames per second (60 FPS)		
	Time scale	Factor to adjust simulation speed (1.0)		
	Scene dimensions	Rendered scene dimensions (256×256 pixels)		
	Velocity iterations	Iterations for the velocity solver (10)		
	Position iterations	Iterations for the position solver (10)		
Stopping	Stop velocity threshold	Threshold below which an object is considered static (0.1)		
	Required frames for early	Consecutive frames with static objects to trigger early		
	stop	stopping (400)		
	Required frames for goal	Consecutive frames where the two target objects had to		
	verification	remain in contact (360)		
	Max frames	Maximum frames allowed for simulation before forced		
		termination (3000)		

Simulation

Proposals Identification

 $\label{thm:correct} \mbox{Figure 4.3: Mean Correct Proposal Generation Attempts by Template.}$

- **Goal**: create positive and negative samples to test the VLMs **Properties**:
- 10k attempts per puzzle
- 20 correct proposals per template
- 3 incorrect proposal per correct proposal:
 - 1 hard: displacement from 0 to 1 original radius
 - 1 medium: displacement from 1 to 2 original radius
 - 1 easy: displacement from 2 to 4 original radius
 - + new radius between $\frac{1}{2}$ and $\frac{3}{2}$ of the original radius

Figure 4.4: The 4 proposals found for template 00003 iteration 000.

Experiments & Results

VLMs Evaluated

Name	$\mathbf{Provider}$	\mathbf{Size}	${\bf Weights}$
RIAM MARGAMON			
and sold sold sold sold sold sold sold sol			
MARASI-BOBA GIODAS			
MANASIMBARIANS ANAXISANAN			
Ania sourant			
Claude 3.5 Sonnet	Anthropic	$_{ m Big}$	Closed
GPT-40	OpenAI	$_{ m Big}$	Closed

- To reduce the evaluation costs, we selected only the best performing VLMs for the harder challenges:
- Sanity Check (8 VLMs)
- Static Evaluations (4 VLMs)
- Interactive Evaluation (2 VLMs)

Prompts design

The prompts are always composed by:

- A System message
 - Role (e.g. "...physics expert analyzing...)
 - Simulation parameters (optional)
 - Task description
 - Response format
- Few-shot examples (optional) each composed by:
 - A User message with the example (randomly sampled)
 - An Assistant message with the correct response
- A User message:
 - With the actual question

...

Simulation conditions for all tasks:

- Gravity: 9.81m/s²(downward)
- Objects density: 0.25
- Friction coefficient: 0.5
- Elasticity coefficient: 0.2
- Simulationduration:25 seconds or until objects stop moving
- Black and purple objects: static (fixed)
- Green, red, grey objects: dynamic (can move)
- Goal criterion: Objects must remain in contact ≥ 3 seconds
- Objects cannot leave the visible simulation boundaries

•••

...

Clearly define your solution by specifying:

- "x": horizontal position of the ball center (0 is left, maximum is 256 on the right)
- "y": vertical position of the ball center (0 is bottom, maximum is 256 at the top)
- "radius": size of the ball (minimum 2,maximum 32)

Important rules for placing the ball:

- The ball must remain fully within the visible simulation boundaries.
- The ball cannot overlap with existing objects.

. . . .

Sanity Check Evaluation

Properties:

- # samples per model: 5 correct & 5 incorrect proposals per template (500 total)
- · No few-shot examples
- Only the 4 best performing VLMs proceed in the evaluation

Goal: determine weather the model can understand if the target objects are in contact or not

Confidence Estimation

- # samples per model: 3 sample per proposal type per template (600 total)
- · No few-shot examples

Goal: attest the likelihood that a given proposal will succeed in the goal accomplishment

claude-3.5-sonnet

Confidence Violin Plots by Template Difficulty

Binary Classification

 # samples per model: 3 sample per proposal type per configuration per template (3000 total)

claude-3.5-sonnet

gemini-2.0-flash-001

Properties:

 0-, 2- and 4-shot examples, with 1 or 2 frames each

Goal: measure the predictions abilities with different types of contexts

Binary Accuracy by Proposal Type and Few-Shot Configuration

Ranking Task

Properties:

- # samples: 3 samples per template per configuration (450 total)
- 0-, 1- and 2-shot examples

Goal: determine weather the model can rank the proposals by their likelihood of successfully meeting the puzzle's goal

Position in Ground Truth Ranking

Position in Ground Truth Ranking

Interactive Insertion

Interactive Insertion

Properties:

- # samples: 3 samples per template (150 total)
- · No few-shot examples

Goal: determine weather the model can ascertain if the target objects are in contact

Conclusions & Future Work

Main results

- Baseline Physical Perception
 - The more advanced models demonstrated basic competence in identifying whether objects are in contact
- Confidence & Calibration
 - Confidence estimation weakened with increasing puzzle complexity
- Binary Classification & Biases
 - Strong biases and significant improvement for Claude and GPT-40 with few-shot examples
- Ranking & Comparative Reasoning
 - All models struggled, and adding examples didn't improve the performance
- Interactive Evaluation
 - Very low success rate, with frequent spatial errors (overlapping)

Pakeaway: Current VLMs rely largely on learned correlations and struggle significantly with deep, iterative physical reasoning tasks

Future work

- 1. More Diverse Goals
- 2. Extend to 3D Environments
- 3. Real-Time Interaction & Extended Trials
- 4. Hybrid Approaches
- 5. Enhanced Prompting & Evaluation
- 6. Benchmark Expansion
- 7. Comparisons with Human Performance
- 8. ...

Goal: To create a robust, comprehensive benchmark that effectively measures true causal understanding and intuitive physics capabilities in Al systems.

Thank you

Made under the supervision of:

- Raquel Fernández (UvA)
- Alberto Testoni (UvA)
- David Shlangen (University of Postdam)
- Jacopo Staiano (UniTN)
- Roberto Dessì (FBK)