PHLP: Sole Persistent Homology for Link Prediction - Interpretable Feature Extraction

Junwon You, Eunwoo Heo, Jae-Hun Jung 1

Abstract— Link prediction (LP), inferring the connectivity 2 between nodes, is a significant research area in graph data, 2 where a link represents essential information on relationships between nodes. Although graph neural network (GNN)-based 2 models have achieved high performance in LP, understanding 2 why they perform well is challenging because most comprise complex neural networks. We employ persistent homology (PH), a topological data analysis method that helps analyze the topological information of graphs, to explain the reasons for the high 2 performance. We propose a novel method that employs PH for LP (PHLP) focusing on how the presence or absence of target links influences the overall topology. The PHLP utilizes the angle 2 hop subgraph and new node labeling called degree double radius node labeling (Degree DRNL), distinguishing the information of graphs better than DRNL. Using only a classifier, PHLP performs similarly to state-of-the-art (SOTA) models on most benchmark datasets. Incorporating the outputs calculated using PHLP into the existing GNN-based SOTA models improves performance across all benchmark datasets. To the best of our knowledge, PHLP is the first method of applying PH to LP without GNNs. improving performance. 2

Index Terms—Graph analysis, link prediction, persistent homology, topological data analysis.

I. Introduction 4

RAPH data pervade numerous domains such as social networks, biological systems, recommendation engines, and e-commerce networks [1], [2]. The graph is well-suited for modeling complex real-world relationships. 5

Predicting missing or potential connections within a graph is 6 essential for many applications, unlocking valuable insight and 6 facilitating intelligent decision-making. The ability to predict 6 future network interactions can be applied to diverse domains, 6 including friend recommendations on social networks [3]–[5], 6 knowledge graph completion [6], [7], identification of potential 6 drug-protein interactions in bioinformatics [8], [9], prediction 6 protein interactions [9]–[11], and optimization of supply chain 6 logistics [12], [13], 6

The link prediction (LP) problem has been categorized into three major paradigms: heuristic methods, embedding methods, and graph neural network (GNN)-based methods, which are explored in detail in Section II. Recently, compared in the section of the section of

Junwon You and Eunwoo Heo are co-first authors.

Junwon You, Eunwoo Heo, and J.-H. Jung are with the Department of Mathematics, Pohang University of Science and Technology (POSTECH), Pohang, South Korea. J.-H. Jung is also with the Graduate School of Artificial Intelligence, POSTECH, Pohang, South Korea.

Extracted feature vector

Classifier

Classifier

Classifier

Fig. 1. Difference between the GNN-based and proposed methods. (Left) 9
The GNN-based method extracts feature vectors through optimization (dashed garea), making it difficult to interpret what these vectors represent. (Right) 9
The proposed method extracts feature vectors through the designed analysis 9
process, resulting in interpretable vectors. 9

PHLP is the first method of applying PH to LP without GNNs.

The proposed approach, employing PH while not relying on neural networks, enables the identification of crucial factors for improving performance.

2 to heuristic [3], [14]–[18] and embedding methods [19]–[22], 7

GNN-based models have achieved significant score improve-7

ments in capturing intricate relationships within graphs [23]–7

[28], 7

However, GNN-based methods are comprised of neural 8 networks, making it challenging to understand the reasons 8 for their performance. To explore these reasons, we employ 8 persistent homology (PH), a mathematical tool in topological 8 data analysis (TDA) that enables the inference of topological information regarding the manifold approximating the 8 data [29], [30] by quantifying the persistence of topological 8 features across multiple scales. Various research has had 8 successful outcomes in applying PH to graph classification and 8 node classification tasks [31]–[40]. In contrast, relatively few 8 studies have explored using PH for LP. The topological loop-8 counting (TLC) GNN [27] is a notable example that uses PH. 8 The TLC-GNN injects topological information into a GNN, 8 and experiments were conducted on benchmark data where 8 node attributes are available. 8

In this context, as illustrated in Fig. 1, we present a novel approach to LP, called PHLP, which calculates the topological information of a graph. To use the topological information of subgraphs for LP, we measure how the topological information 11 changes depending on the existence of the target link, as 11 illustrated in Fig. 2. To extract topological information from 11 various perspectives, we utilize angle hop subgraphs for each 11 target node. Additionally, we propose new node labeling 11 called degree double radius node labeling (Degree DRNL), 11 which incorporates degree information for each node, using 11 DRNL [24].

The contributions are summarized as follows: 12

• We develop an explainable LP method, PHLP, that em-

Topological features in subgraphs with and without a target link (u, v). The diagram illustrates the topological information extraction process for the subgraph \mathcal{N} , as described in Section III-D. The presence (top) or absence (bottom) of the target link changes the topological structure of the graph. Top row: When the target link is connected, three features $(C_1, C_2, \text{ and } C_3)$ are detected shown in the persistence image (PI) in the right column. The PI represents the topological features of the subgraph \mathcal{N} (Section III-E). Bottom row: When the target link is absent, only two features $(C_2 \text{ and } C_3)$ are detected as depicted 10 in the corresponding PI. 10

- performance for the Power dataset. 13
- can improve their performance. 13
- close to that of SOTA models. 13

II. RELATED WORK 14

A. Link Prediction 15

Heuristic Methods. Heuristic-based approaches to LP compute the predefined structural features within the observed nodes and edges of the graph. Classic methods, such as common neighbors [3], Adamic-Adar [3], Jaccard coefficient [14], and preferential attachment [15], rely on simple heuristics that capture certain aspects of node relationships. Zhou et al. [16] proposed a local random walk method, whereas Jeh and Widom [18] developed SimRank to quantify similarity based on the structural context. Although heuristic methods provide a preliminary understanding of LP, they are limited by their inability to capture complex relationships within graphs. Furthermore, heuristic methods are effective only when the defined heuristics align with the graph structure; therefore, challenging, 16

which preserves local and global structures. Grover and 1 research on datasets without node attributes. 21 Leskovec [21] further advanced this approach with Node2Vec 17 Although PH has demonstrated success in graph and node 22 capture diverse node relationships. 17

ploys the topological information for LP through PH 13 Embedding methods are advantageous due to their applica- 18 without relying on neural networks, as illustrated in 13 illustrated in 13 without relying on neural networks, as illustrated in 13 illustrated in 14 illustrated in 15 illust Node representations capture global properties and long-range 18 • We demonstrate that the proposed method, even with a 13 effects through the learning process. However, these methods 18 simple classifier such as a multilayer perceptron (MLP), 1 often require significantly large dimensions to express basic 18 can achieve LP performance close to that of state-of-the- 13 heuristics, resulting in lower performance than heuristic meth- 18 art (SOTA) models. This method surpassed the SOTA 1 ods [41]. Moreover, in embedding methods, Ribeiro et al. [42] 18 explained that two nodes with similar neighborhood structures 18 • We reveal that merely incorporating vectors computed by 13 may have vastly different embedded vectors, especially when 18 PHLP into existing LP models, including SOTA models, 1 they are far apart in the graph, leading to incorrect predictions, 18 **GNN-Based Methods.** The GNN has become a pivotal ap-To the best of our knowledge, the proposed method using 1 proach to LP due to its ability to grasp graph-structured 19 PH without a GNN is the first to achieve performance 13data. By effectively incorporating local and global information 19 through message passing and graph aggregation layers, GNNs 19 enhance LP performance. The model by Zhang et el. [24] 19 uses subgraphs as the primary structural units to learn and 19 predict connections, resulting in significant improvement. This 19 paradigm shift led to research focusing on refining and advanc- 19 ng subgraph methods in the context of GNNs [25], [26], [28]. 19 Following this trend, Pan et al. [28] proposed WalkPool (WP), 19 a new pooling mechanism that uses attention to jointly encode 19 node representations and graph topology into learned topoogical features. However, despite their superior performance, 19 GNN-based methods pose a challenge in comprehending the 19 underlying mechanisms driving their predictions. Within this 19 context, we develop the PHLP, based on PH, with performance 19 comparable to GNN-based models. 19

Persistent Homology on Graph Data 20

In recent years, PH, a method of analyzing the topological 21 applying heuristic methods across all graph datasets can be refeatures of data, has been widely used to analyze graph data. 21 It has demonstrated its effectiveness in graph classification 21 **Embedding Methods.** Embedding methods map nodes from tasks by analyzing the topology of graphs [31]–[38] and has 21 the graph into a low-dimensional vector space where geometric 1 been applied to node classification tasks [31], [39], [40], 21 relationships mirror the graph structure. Koren et al. [19] 1 However, its suitability for LP tasks has been limited, and 21 demonstrated the power of matrix factorization for collabora- 1 research on applying PH for LP has progressed slowly. Yan 21 tive filtering. Perozzi et al. [20] introduced DeepWalk, using 1 et al. [27] proposed an intriguing approach by integrating PH 21 random walks to generate node sequences and employing the 1 with GNNs. While their model demonstrates the potential of 21 skip-gram model to produce embeddings. Tang et al. [22] 17PH for capturing topological features of graph data, it relies on 21 developed large-scale information network embedding (LINE), 1 GNN structures. Additionally, the TLC-GNN requires further 21

(N2V), proposing a flexible notion of the neighborhood to 1 classification tasks, its filtration technique, tailored to analyzing the entire graph structure, might not be optimal for LP 22

(a) (k, l)-PHLP with Classifier Angle hop subgraph $\mathcal{N}_{u,v}^{(k,l)}$ Target nodes $f_{ m degdrnl}$: Node labeling & W: Edge-weight function Input \mathcal{X} Φ: MLP Classifier

Fig. 3. Overall structure of persistent homology for link prediction (PHLP) and multiangle PHLP (MA-PHLP). (a) PHLP calculates the topological information 25 based on the existence of target links in angle hop subgraphs for each target node. (b) With a classifier, MA-PHLP integrates topological information across 25 various angles to perform LP. 25

as the role of each node in LP differs from that in graph 2.C. Filtration of the Subgraph 33 or node classification tasks. To address this challenge and 22 explicitly to LP tasks. 22

III. METHOD 23

A. Outline of the Proposed Methods 24

We propose (a) PHLP and (b) multiangle PHLP (MA-26) PHLP) as described in Fig. 3. The PHLP method analyzes the 26 topological structure of the graph, focusing on target links. 26 First, PHLP samples a (k, l)-angle hop subgraph for the given 26 target nodes (Section III-B). Then, PHLP computes persistence 26 images (PIs; Section III-E) for cases with and without the 26 target link. To calculate PIs, we introduce the node labeling 26 and define the edge-weight function (Section III-C). Through 26 PHLP, each target node is transformed into a vector comprising 26 PIs. In addition, LP is performed using the calculated vectors 26 with a classifier (Section III-F). To reflect diverse topological 26 information, we also propose MA-PHLP, which analyzes data 26 from various angles (Section III-G). 26

B. Extracting Angle Hop Subgraph 27

enclosing subgraph for (u,v) is defined as $\mathcal{N}_{u,v}^k = (V',E')$ such that 28

$$V' = \{ z \in V \mid d(u, z) \le k \text{ or } d(z, v) \le k \},\$$

$$E' = \{ (z, w) \in E \mid z \in V' \text{ and } w \in V' \},\$$

where d(z, w) is the minimum number of edges in any 30 path from z to w in G. We define a (k,l)-angle hop enclosing subgraph, where the term "angle" signifies viewing 30 the subgraph from multiple perspectives. The (k,l)-angle hop 30 subgraph is a generalization of the k-hop subgraph. Given a 30 graph G = (V, E) and two nodes $u, v \in V$, a (k, l)-angle hop 30 enclosing subgraph for (u, v) is defined as $\mathcal{N}_{u,v}^{(k,l)} = (V', E')$ 3(Fig. 5. Persistence images (PIs) for two node labeling methods for the graphs 36 such that 30

$$V' = \{z \in V \mid d(u, z) \le k \text{ or } d(z, v) \le l\},\ E' = \{(z, w) \in E \mid z \in V' \text{ and } w \in V'\}.$$

providing flexibility to adapt to various graph characteristics. 32 any subgraph $\mathcal{N}=(V',E')$ of G and two nodes $a,b\in V'$, 37

For a given subgraph, the Rips filtration [43]-[45] is emadvance research in LP, we develop a filtration method tailored 22 ployed to calculate the topology using PH. To apply the 34 Rips filtration, we define an edge-weight function using node 34 labeling that reflects the topology of the given graph. 34

Fig. 4. Node labeling on graphs. (a) Node label values without considering 35 Given a graph G = (V, E) and two nodes $u, v \in V$, a k-hop defining a point g and g a 28node label values. 35

in Fig. 4. (a) DRNL exhibits identical zero-dimensional PIs for G_1 and G_2 , (b) Degree DRNL produces distinct outcomes, effectively distinguishing between 36 the two. 36

Degree DRNL. Zhang et al. [24] introduced DRNL, which 37 Thus, the angle hop can generate subgraphs in various forms, 3 computes the distance from any node to two fixed nodes. For 37 the DRNL $f_{\text{dral}}^{(a,b)} : \mathbb{N} \to \mathbb{N}$ based on (a,b) of G for any vertex 2. E. Persistence Image 48 w in V', is defined as $f_{\text{drnl}}^{(a,b)}(w) = 1 + \min(d(w,a), d(w,b)) + q_w(q_w + r_w - 1),$ 38

where $q_w \in \mathbb{Z}$ and $r_w \in \{0,1\}$ are integers representing the quotient and remainder, respectively, such that d(w, a) + $d(w,b) = 2q_w + r_w$. We call these two nodes, a and b, center nodes. These center nodes do not need to be the target nodes used when extracting the subgraph. 39

However, DRNL encounters limitations when the graph is transformed into node-label information. As depicted in Fig. 4a, DRNL assigns the same node labels to different graphs, resulting in identical zero-dimensional PIs (Fig. 5a, Section III-E). To incorporate the local topology of each node with the effects of DRNL, we introduced *Degree DRNL*. For a 40 given subgraph $\mathcal{N} = (V', E')$ of G and center nodes $a, b \in V'$, the Degree DRNL $f_{\text{degdrnl}}^{(a,b)}:V' o\mathbb{R}$ based on (a,b), for all vertex w in V', is defined as 40

$$f_{\text{degdrnl}}^{(a,b)}(w) = f_{\text{drnl}}^{(a,b)}(w) + \frac{M - \deg(w)}{M},$$

 $(M - \deg(w))/M$ term above assigns larger values for lower degrees of w. When $M = \deg(w)$, the value of Degree 42 DRNL matches the original DRNL, ensuring that the edges 42 connected to nodes with higher degrees are assigned smaller 42F. values, promoting their earlier emergence in the filtration. Fig. 4b demonstrates various node labels obtained using Degree DRNL, resulting in PIs that can be distinguished from each other (Fig. 5b). 42

Edge-weight function. For a given subgraph $\mathcal{N} = (V', E')$, $f:V'\to\mathbb{N}$ denotes any node labeling function. The edgeweight function $W: E' \to \mathbb{R}$, for any edge (w, z) in E', is Δ defined as

$$W(w,z) = \max(f(w), f(z)) + \frac{\min(f(w), f(z))}{\max(f(w), f(z))}.$$

further, enhancing the discriminative power by reducing the 45 occurrence of identical edge weights. 45

D. Persistent Homology 46

Given an edge-weighted subgraph $\mathcal{N} = (V', E', W)$, we construct a Rips filtration and compute its PH. First, we create 4 a link between two target nodes with the following probability: 55 a sequence of subgraphs $\{\mathcal{N}_{\epsilon}\}_{{\epsilon}\in\mathbb{R}}$, where each $\mathcal{N}_{\epsilon}=(V',E'_{\epsilon})$ and $E'_{\epsilon} = \{e \in E \mid W(e) \leq \epsilon\}$. Second, we convert each subgraph \mathcal{N}_{ϵ} into the Rips complex $K_{\epsilon} = \{ \tau \in \mathbb{X} \mid (w,z) \in \mathbb{Z} \}$ E'_{ϵ} for any two vertices $w, z \in \tau$, where X is the power set of V'. In K_{ϵ} , a simplex τ is formed when the vertices in filtration is obtained as $K_{\epsilon_1} \hookrightarrow K_{\epsilon_2} \hookrightarrow \cdots \hookrightarrow K_{\epsilon_m} = \mathbb{X}$ for $\sqrt[4]{loss}$ function as follows: 57 $\epsilon_1 \leq \epsilon_2 \leq \cdots \leq \epsilon_m$. Third, we compute the p-dimensional 47 homology group $H_p(K_\epsilon)$ for each complex K_ϵ and track how these groups change as ϵ increases. The persistence diagram D [45] comprises persistence pairs (b,d) representing the ϵ 4 where $BCE(\cdot,\cdot)$ represents the binary cross-entropy loss and 59 d, respectively, in the filtration. 47

We convert the persistence diagram into a PI [46]. For a 49 given persistence diagram D, consider a linear transform L:49 $\mathbb{R}^2 \to \mathbb{R}^2$ defined by L(x,y) = (x,y-x). The image set of D under this transformation is denoted as L(D). For each 49 ground (b,d') in L(D), a weight function $\phi_{(b,d')}: \mathbb{R}^2 \to \mathbb{R}$ is 49 defined that assigns a weight to each point in the persistence 49 diagram. A common choice for $\phi_{(b,d')}$ is the Gaussian function 49 centered at (b, d'). The nonnegative function is defined as h: 49 $\mathbb{R}^2 \to \mathbb{R}$, as $h(x,y) = 1/\log(1+|y|)$. The function h is zero 49 along the horizontal x-axis, and is continuous and piecewise 49 differentiable, satisfying the conditions presented in [46]. The 49 persistence surface $\rho_D: \mathbb{R}^2 \to \mathbb{R}$ is defined as 49

$$\rho_D(z) = \sum_{(b,d') \in L(D)} h(b,d') \phi_{(b,d')}(z).$$

The continuous surface ρ_D is discretized into a finitedimensional representation over a predefined grid. This grid 51 consists of n cells, each corresponding to a specific region 51 in the plane. The PI is defined as an array of values $I(\rho_D)_p$ 51 for each cell p. Each $I(\rho_D)_p$ in this array is computed by 51 where M denotes the maximum degree of nodes in N. The 4 integrating the persistence surface ρ_D over the area of cell p: 51

$$I(\rho_D)_p = \iint_p \rho_D \, dy \, dx.$$

Predicting the Existence of the Target Link 53

For the given target nodes (u, v), we sample the (k, l)-angle 54 hop subgraph $\mathcal{N}_{u,v}^{(k,l)}$, denoted as \mathcal{N}^- (Section III-B), assuming 54 that the target link does not exist during this process. On this 54 subgraph, we extract topological features by calculating PH 54 and its vectorization (i.e., the PI, as described in Sections III-D 54 and III-E). The vectorization is calculated for each dimension 54 and concatenated. If $k \neq l$, for symmetry, we repeat the same 54 process with the (l, k)-angle hop subgraph once and consider 54 the average of the two vectors, denoting this vector as x^- To observe the difference in topological features, we consider 54 The min/max term in the definition of W refines values 4π subgraph N+ obtained by connecting the target link to 54 \mathcal{N}^- . For this graph, x^+ denotes the vector obtained using 54 this method. 54

> To predict the existence of the target link with the vectors 55 x^- and x^+ , we employ an MLP classifier $\Phi: \mathbb{R}^{2(d+1)n^2} \to \mathbb{R}$ 55 where n represents the resolution of the PI, and d denotes the 55 47 maximal dimension of PH. The model predicts the existence of 55

$$z_{uv} = \sigma(\Phi(x)), 56$$

where x is the concatenation of x^- and x^+ , and σ is the 57 activation function. For the training dataset $\mathcal{X} \subseteq V \times V$, 57 4 comprising positive and negative links corresponding to the 57 τ are pairwise connected by edges in \mathcal{N}_{ϵ} . Then, the Rips 4 lements of E and $(V \times V) \setminus E$, respectively, we define the 57

$$\sum_{(u,v)\in\mathcal{X}} BCE(z_{uv}, y_{uv}),$$
58

values at which a homological feature appears b and disappears d_{uv} denotes the label of the target link (u, v), which is 0 for 50 negative links or 1 for positive links. 59

G. Multiangle PHLP 60

The MA-PHLP maximizes the advantages of PHLP by 6 examining data from various angles through the extraction of subgraphs based on a hyperparameter, the maximum hop (max hop, denoted as H). The types of angles are elements of all $k \leq H, k > 0$. If we define the prediction probability of a 6 PHLP for each type of angle hop as z_i for i = 1, 2, ..., N, 6 Datasets. In line with previous studies [24] and [28], we evalthen MA-PHLP predicts the likelihood of the link existence 61 with the following probability: 61

where $\alpha = (\alpha_1, ..., \alpha_N) \in \mathbb{R}^N$ is a trainable parameter. We 63 apply the softmax function to the parameter α to ensure that 63 the sum of all elements equals 1. Moreover, MA-PHLP is 63 trained using the binary cross-entropy loss. 63

H. Hybrid Method 64

The proposed approach easily integrates with existing subgraph methods. Subgraph methods treat the LP task as a binary classification problem comprising two components: a feature extractor F and classifier P. Vectors with PH information calculated using the proposed methods are incorporated through concatenation before the classifier. The detailed process of the hybrid method is outlined as follows: 65

- 1) **Subgraph Extraction:** For the given graph G and target nodes (u, v), k-hop subgraph $\mathcal{N}_{u,v}^k$ is extracted. 66
- 2) Feature Extraction: Existing methods extract features $Z = F(\mathcal{N}_{u,v}^k)$ from the subgraph. 66
- 3) **Persistent Image Calculation:** The methods described in Sections III-C, III-D, and III-E are applied to \mathcal{N}_{i}^{k} where I denotes the PI vector. An MLP Φ : \mathbb{R}^m \mathbb{R}^n transforms the PI into a format similar to Z. For the hybrid method of MA-PHLP, $\mathcal{N}_{u,v}^k$ is replaced with multiangle subgraphs, concatenating their PI vectors. 6
- 4) Classification: Next, $\alpha_1 Z$ and $\alpha_2 \Phi(I)$ are concatenated, where α_1 and α_2 are trainable parameters. The softmax function is applied to the parameter $\alpha = (\alpha_1, \alpha_2)$, ensuring that the sum of elements equals 1, denoted by J. This concatenated vector is classified using the existing method's classifier, P(J). 66

IV. EXPERIMENTS 67

experiments were also conducted using only zero-dimensional homology (MA-PHLP (dim0)). We used the area under the curve (AUC) [47] as an evaluation metric. We repeated all experiments 10 times and reported the mean and standard deviation of the AUC values. 68

A. Experimental Settings 69

pared the proposed model with five heuristic methods, four 7 ts effectiveness in capturing link patterns. 80 embedding-based methods, and two GNN-based models. The 7 (Results of Hybrid Methods. Simply concatenating the PI 81

heuristic methods include the Adamic-Adar (AA) [3], Katz 70 index (Katz) [48], PageRank (PR) [49], Weisfeiler-Lehman 84 graph kernel (WLK) [50], and Weisfeiler-Lehman neural 70 machine (WLNM) [51]. For the embedding-based methods, 70 we applied N2V [21], spectral clustering (SPC) [52], matrix 70 factorization (MF) [19], and LINE [22]. Moreover, SEAL [24] 70

and WP [28] represent the GNN-based methods. 70

TABLE I 74 STATISTICS OF THE DATASETS 72

Dataset	#Nodes	#Edges	Avg. node deg.	Density 73
USAir	332	2126	12.81	3.86e-2 73
NS	1589	2742	3.45	2.17e-3 73
PB	1222	16714	27.36	2.24e-2 73
Yeast	2375	11693	9.85	4.15e-3 73
C.ele	297	2148	14.46	4.87e-2 73
Power	4941	6594	2.67	5.40e-4 73
Router	5022	6258	2.49	4.96e-4 73
E.coli	1805	15660	16.24	9.61e-3 73

uate the performance of our MA-PHLP on the eight datasets in 74 Table I without node attributes: USAir [53], NS [54], PB [55], 75 65 Yeast [56], C. elegans (C. ele) [57], Power [57], Router [58], 75 and E. coli [59]. The detailed statistics for each dataset are 74 summarized in Table I. 74

Implementation Details. All edges in the datasets were split 75 into training, validation, and testing datasets with proportions 75 of 0.85, 0.05, and 0.1, respectively, ensuring a fair comparison 75 with previous studies. The max hop M was set to 3 for most 75datasets (Table II). However, for the E. coli dataset, it was 75 reduced to 2 when employing one-dimensional homology due 75 to memory constraints. Conversely, for the Power dataset, the 75 max hop was set to 7 because it does not demand heavy 75 memory and computation time. The sigmoid function was 75 employed for the activation function of the PHLP classifier. 75 Tables III and IV present the results of the hybrid methods 75 using SEAL [24] and WP [28], respectively. For these exper-75 iments, a two-layer MLP was used for the MLP Φ in Step 75 \upbeta of Section III-H. We set the k-hops following the original 75 methods, SEAL and WP, and the max hops M of MA-PHLP 75 were set as the k, except for the Power dataset. For the Power 75 dataset, we set the k-hop to 1-hop and max hop M to 7,75 respectively, which is discussed in detail in Section IV-D. 75

B. Results 79

This section evaluates the performance of MA-PHLP. The 68 Results of MA-PHLP. Table II presents the AUC scores 80 for each model on the benchmark datasets. Bold marks the 80 best results, and underline indicates the second-best results. 80 The results of AA, Katz, WLK, WLNM, N2V, SPC, MF, 80 LINE, and SEAL are copied from SEAL [24] for comparison. 80 The MA-PHLP demonstrates high performance across most 80 datasets, achieving competitive scores. The proposed model 80 outperforms several baselines, falling between the SEAL and 80 WP models in terms of the AUC score. Notably, for the Power 80 Baselines. To evaluate the effectiveness of PHLP, we com- 7 dataset, MA-PHLP achieves the highest AUC score, indicating 80

TABLE II 76 LINK PREDICTION PERFORMANCE MEASURED BY THE AUC ON BENCHMARK DATASETS (90% OBSERVED LINKS) 76

Dataset	USAir	NS	PB	Yeast	C. ele	Power	Router	E. coli 77
AA	95.06 ± 1.03	94.45 ± 0.93	92.36 ± 0.34	89.43 ± 0.62	86.95 ± 1.40	58.79 ± 0.88	56.43 ± 0.51	95.36 ± 0.34 7
Katz	92.88 ± 1.42	94.85 ± 1.10	92.92 ± 0.35	92.24 ± 0.61	86.34 ± 1.89	65.39 ± 1.59	38.62 ± 1.35	93.50 ± 0.44 7
PR	94.67 ± 1.08	94.89 ± 1.08	93.54 ± 0.41	92.76 ± 0.55	90.32 ± 1.49	66.00 ± 1.59	38.76 ± 1.39	95.57 ± 0.44 7
WLK	96.63 ± 0.73	98.57 ± 0.51	93.83 ± 0.59	95.86 ± 0.54	89.72 ± 1.67	82.41 ± 3.43	87.42 ± 2.08	96.94 ± 0.29 7
WLNM	95.95 ± 1.10	98.61 ± 0.49	93.49 ± 0.47	95.62 ± 0.52	86.18 ± 1.72	84.76 ± 0.98	94.41 ± 0.88	97.21 ± 0.27 7
N2V	91.44 ± 1.78	91.52 ± 1.28	85.79 ± 0.78	93.67 ± 0.46	84.11 ± 1.27	76.22 ± 0.92	65.46 ± 0.86	90.82 ± 1.49 7
SPC	74.22 ± 3.11	89.94 ± 2.39	83.96 ± 0.86	93.25 ± 0.40	51.90 ± 2.57	91.78 ± 0.61	68.79 ± 2.42	94.92 ± 0.32 7
MF	94.08 ± 0.80	74.55 ± 4.34	94.30 ± 0.53	90.28 ± 0.69	85.90 ± 1.74	50.63 ± 1.10	78.03 ± 1.63	93.76 ± 0.56 7
LINE	81.47 ± 10.71	80.63 ± 1.90	76.95 ± 2.76	87.45 ± 3.33	69.21 ± 3.14	55.63 ± 1.47	67.15 ± 2.10	82.38 ± 2.19 7
SEAL	97.10 ± 0.87	98.25 ± 0.61	95.07 ± 0.39	97.60 ± 0.33	89.54 ± 1.23	86.21 ± 2.89	95.07 ± 1.63	97.57 ± 0.30 7
WP	98.20 ± 0.57	99.12 ± 0.45	95.42 ± 0.25	98.21 ± 0.17	93.30 ± 0.91	92.11 ± 0.76	97.15 ± 0.29	98.54 ± 0.19
MA-PHLP	97.10 ± 0.69	98.88 ± 0.45	95.10 ± 0.26	97.98 ± 0.22	90.33 ± 1.16	93.05 ± 0.45	96.30 ± 0.43	97.64 ± 0.20 7
MA-PHLP (dim0)	97.10 ± 0.73	98.78 ± 0.65	95.06 ± 0.28	97.98 ± 0.23	89.88 ± 1.22	93.37 ± 0.41	96.37 ± 0.43	97.72 ± 0.17 7

TABLE III 82 AUC SCORES FOR SEAL WITH AND WITHOUT TDA FEATURES 82

Dataset	SEAL	MA-PHLP + SEAL 83
USAir	97.10 ± 0.87	97.41 ± 0.62 83
NS	98.25 ± 0.61	98.97 ± 0.30 83
PB	95.07 ± 0.39	95.14 ± 0.39 83
Yeast	97.60 ± 0.33	97.93 ± 0.18 83
C.ele	89.54 ± 1.23	89.61 ± 1.12 83
Power	86.21 ± 2.89	95.53 ± 0.33 83
Router	95.07 ± 1.63	96.15 ± 1.26 83
E.coli	97.57 ± 0.30	97.93 ± 0.34 83

TABLE V 90 AUC SCORES FOR MA-PHLP (DIMO) BY NODE LABELING 90

Dataset	DRNL	Degree DRNL 91
USAir	96.73 ± 0.64	97.10 ± 0.73 9
NS	98.35 ± 0.58	98.78 ± 0.65
PB	94.49 ± 0.27	95.06 ± 0.28 9
Yeast	97.42 ± 0.27	97.98 ± 0.23 9
C.ele	88.97 ± 1.37	89.88 ± 1.22 9
Power	88.51 ± 0.81	92.77 ± 0.47
Router	96.21 ± 0.53	96.37 ± 0.43 91
E.coli	97.15 ± 0.18	97.72 ± 0.17

vector calculated using PHLP with the final output of the 84AUC scores when used with Degree DRNL than with DRNL. 92 calculated using PHLP can serve as additional inputs. 84

TABLE IV 85 AUC SCORES FOR WALKPOOL (WP) 85 WITH AND WITHOUT TDA FEATURES 85

Dataset	WP	MA-PHLP + WP 86
USAir	98.20 ± 0.57	98.27 ± 0.53 86
NS	99.12 ± 0.45	99.24 ± 0.32 86
PB	95.42 ± 0.25	95.58 ± 0.32 86
Yeast	98.21 ± 0.17	98.25 ± 0.18
C.ele	93.30 ± 0.91	93.32 ± 0.71 86
Power	92.11 ± 0.76	96.09 ± 0.38 86
Router	97.15 ± 0.29	97.18 ± 0.24 86
E.coli	98.54 ± 0.19	98.57 ± 0.20 86

Similarly, we attempted to hybridize PHLP with the current 87 SOTA model, WP. As presented in Table IV, a slight increase 87 in AUC scores is observed for all datasets. The Power dataset 87 demonstrates significant improvement. 87

C. Ablation Study 88

Effects of Degree DRNL. To assess the proposed Degree 89 DRNL regarding the influence of incorporating degree information on model performance, we conducted experiments 89 using DRNL and Degree DRNL and compared the results. We 84 Angles of PHLP. Table VI presents the performance of 96

SEAL model increases AUC scores for all datasets, as listed 84The substantial improvement observed in the Power dataset is 92 in Table III. This outcome suggests that when the SEAL 84noteworthy, where Degree DRNL yields an increase of over 92 model lacks topological information for inference, the vectors 844 points in the AUC score. These experiments demonstrate 92 the importance of incorporating degree information into node 92 labeling, revealing its efficacy in enhancing the performance 92 of MA-PHLP. 92

TABLE VI 92 AUC SCORES FOR MA-PHLP (DIM0) WITH VARIOUS (k, l)-ANGLE HOPS 93

Dataset	(1,0)		(1,1) 94
USAir	$96.15\pm0.$	83	95.87 ± 0.83 94
NS	$98.28 \pm 0.$	55 9	8.66 ± 0.66 94
PB	93.95 ± 0.3	34 9	4.46 ± 0.36 94
Yeast	95.52 ± 0.3	32 9	7.31 ± 0.20 94
C.ele	$86.18 \pm 2.$	12 8	7.57 ± 1.20 94
Power	73.39 ± 0.9	99 7	7.83 ± 1.44 94
Router	$92.09 \pm 0.$	57 9	3.25 ± 0.47 94
E.coli	96.94 ± 0.3	24 9	6.95 ± 0.28 94
Dataset	(2,0)	(2,1)	(2,2) 95
Dataset USAir	$(2,0) \\ 96.69 \pm 0.92$	$(2,1)$ 96.74 ± 0.84	
			(2,2) 95
USAir	96.69 ± 0.92	96.74 ± 0.84	$\begin{array}{c} (2,2) \ 95 \\ \hline 96.85 \pm 0.83 \ 95 \end{array}$
USAir NS	96.69 ± 0.92 98.72 ± 0.51	96.74 ± 0.84 98.59 ± 0.65	(2,2) 95 96.85 ± 0.83 95 98.56 ± 0.47 95
USAir NS PB	96.69 ± 0.92 98.72 ± 0.51 94.78 ± 0.30	96.74 ± 0.84 98.59 ± 0.65 94.73 ± 0.30	(2,2) 95 96.85 ± 0.83 95 98.56 ± 0.47 95 94.82 ± 0.24 95
USAir NS PB Yeast	96.69 ± 0.92 98.72 ± 0.51 94.78 ± 0.30 97.71 ± 0.18	96.74 ± 0.84 98.59 ± 0.65 94.73 ± 0.30 97.66 ± 0.27	$\begin{array}{c} (2,2) \ 95 \\ \hline 96.85 \pm 0.83 \ 95 \\ 98.56 \pm 0.47 \ 95 \\ 94.82 \pm 0.24 \ 95 \\ 97.58 \pm 0.28 \ 95 \end{array}$
USAir NS PB Yeast C.ele	$\begin{array}{c} 96.69 \pm 0.92 \\ \textbf{98.72} \pm \textbf{0.51} \\ 94.78 \pm 0.30 \\ \textbf{97.71} \pm \textbf{0.18} \\ 88.86 \pm 1.48 \end{array}$	$\begin{array}{c} 96.74 \pm 0.84 \\ 98.59 \pm 0.65 \\ 94.73 \pm 0.30 \\ 97.66 \pm 0.27 \\ \textbf{89.16} \pm 1.31 \end{array}$	(2,2) 95 96.85 ± 0.83 95 98.56 ± 0.47 95 94.82 ± 0.24 95 97.58 ± 0.28 95 89.08 ± 1.07 95

used MA-PHLP (dim0) for the experiments. Table V presents 8 PHLP (dim 0) concerning various (k, l)-angle hop subgraphs, 96 the AUC scores of MA-PHLP (dim0) with DRNL and Degree 8 Section III-B proposed angle hop subgraphs as an alternative 96 DRNL. Across all datasets, MA-PHLP (dim0) yields higher 840 traditional k-hop subgraphs to capture information from 96 datasets. 96

posed method extracts superior topological information com- 9 for optimal hyperparameters. 106 pared to the conventional TLC-GNN approach, we conducted 97 the same experiments. The TLC-GNN was constructed by 97 augmenting the graph convolutional network (GCN) model with PI information. We replaced the PI component of the 97 TLC-GNN model with the PI vector produced by MA-PHLP, resulting in the MA-PHLP-GNN. The zero-dimensional PH 9 was employed in this study for fair comparison because TLC-GNN used only zero-dimensional PH. Additionally, we conducted experiments where the PH vectors were replaced with zero vectors, denoted as GCN. Table VII presents the experimental results. 97

TABLE VII 98 COMPARISON OF AUC SCORES WITH TLC-GNN 98

Dataset	GCN	TLC-GNN	MA-PHLP-GNN 99
Cora	92.20 ± 0.83	93.16 ± 0.56	93.14 ± 0.93 99
CiteSeer	86.52 ± 1.29	87.38 ± 0.97	92.08 ± 0.53 99
PubMed	96.63 ± 0.15	96.30 ± 0.25	98.07 ± 0.07

The TLC-GNN is employed when the given data includes node attributes. Hence, we conducted experiments using the following widely used benchmark datasets with node attributes: Cora [60], CiteSeer [61], and PubMed [62]. The 1 n Table V. 112 MA-PHLP-GNN outperformed the TLC-GNN significantly on 101 the CiteSeer and PubMed datasets while achieving similar performance on the Cora dataset. The TLC-GNN does not exhibit performance improvement for the PubMed dataset despite adding topological information. However, the proposed MA-PHLP-GNN demonstrates substantial performance enhancement. Although the proposed model is developed for datasets without node attributes, it exhibits effective performance on datasets with node attributes through hybridization with the existing methods: SEAL+PHLP, WP+PHLP, and MA-PHLP-GNN. These experiments verify the versatility and effectiveness of this approach across diverse datasets. 101

D. The hops and max hops of the hybrid methods 102

conducted experiments to explore the effects of different combinations of these parameters. Given that the hybrid methods 1 in distinguishing between them. 115 the highest performance improvement on the Power dataset, 1 performance information. The points in Fig. 7 are 116

various perspectives. Moreover, MA-PHLP is proposed to or conducted experiments on the Power dataset. Table VIII 106 aggregate information from multiple angles. To investigate of presents the AUC scores for varying hop (SEAL or WP) and 106 performance when extracting information from specific angles, of max hop (MA-PHLP). For each target node, while the SEAL 106 we conducted experiments using PHLP at different angles. We gain that WP extract a k-hop subgraph, the MA-PHLP calculates 106 used only zero-dimensional PIs for the experiments. Overall, of the PIs based on a subgraph with max hop M. When the 106the results demonstrate that the performance is favorable for $\frac{96}{100}$ parameter M is 1 or 2, the AUC scores are not robust to $\frac{100}{100}$ cases corresponding to the k-hop subgraph (where k and $\frac{1}{100}$, showing large variations; however, when M is 3, although $\frac{1}{100}$ are the same). However, some datasets perform better when of MA-PHLP + SEAL still exhibits variations up to 2, MA-PHLP 106 k and l differ, highlighting the importance of varying angles 96+ WP shows only minor variations. As M exceeds 3, the AUC 106 to achieve the best performance. Therefore, using MA-PHLP 96 cores of MA-PHLP + SEAL and MA-PHLP + WP are robust 106 is recommended to maximize performance consistently across g(k) by exhibiting little sensitivity (maximum 0.84) to variations. 106 This suggests that setting both the hop and the max hop to 106 Comparison with TLC-GNN. To demonstrate that the pro-

V. Analysis 109

97A. Analysis of the PHLP 110

Figs. 6 and 7 visualize concatenated PIs to illustrate how 111 MA-PHLP (dim0) extracts topological features for LP. We be a set of vectors calculated by MA-PHLP, where k is the number of angles, and r denotes the PI resolution. For $(z_1, z_2) \in \mathcal{Z}, z_1 \in \mathbb{R}^{k \times r^2}$ is the concatenation of PIs for all angles with a target link, and $z_2 \in \mathbb{R}^{k \times r^2}$ the concatenation for cases without a target link. We consider a function $h: \mathbb{R}^{k \times r^2} \to \mathbb{R}$ defined as $h(\vec{v}_1, ..., \vec{v}_k) =$ $\|\vec{v}_i\|_1$, where $\vec{v}_i \in \mathbb{R}^{r^2}$ are PIs, and $\|\cdot\|_1$ denotes the L_1 -norm. For visualization, we transform \mathcal{Z} into points in \mathbb{R}^2 using the function G, defined as $G(z_1, z_2) = (h(z_1), h(z_2))$ for each $(z_1, z_2) \in \mathcal{Z}$.

We plot distributions of points separately for positive and 112 negative links, considering both DRNL and Degree DRNL, 112 The distributions of the NS and Yeast datasets between positive 112 and negative links display significant differences, supporting 112 1(the highest performance in Table V. In contrast, the distribu-1(tions for the C. ele and Power datasets are the most similar 112 1 when using Degree DRNL, correlating with the lowest scores 112

B. Analysis of the Power Dataset 113

In most LP models, including the SOTA models SEAL and 114 WP, the Power dataset tends to have the lowest AUC scores 114 among the datasets. In Table II, the Power dataset is at the 114 bottom in terms of scores across models (e.g., WLK, WLNM, 114 MF, LINE, SEAL, and WP). However, the proposed model 114 achieves the highest AUC scores on the Power dataset among 114 baseline models, prompting an analysis of the reasons for this 114 performance. 114

In Fig. 7, for DRNL, the Power dataset exhibits horizontal 115 lines, indicating that the values $h(z_2)$ have a limited range of outcomes for vectors z_2 in cases without the target link; thus, the set of values $h(z_2)$ with the same value should be spread Determining the hyperparameters such as "hop" and "max 1 (1921). This observation implies that, for numerous subgraphs 115 hop" is crucial for the performance of the hybrid method. We 1(the calculation of PIs yields similar outcomes despite the 115 1 differences in their topological structures, posing a challenge 115 (e.g., MA-PHLP + SEAL and MA-PHLP + WP) exhibited 106 To address this problem, we applied Degree DRNL, which 116

Fig. 6. Visualization of vectors calculated using MA-PHLP (dim0). For each dataset, the first and second columns depict the projections of persistence images (PIs) when double radius node labeling (DRNL) is applied for node labeling, and the third and fourth columns represent the values obtained when Degree DRNL is applied. The first and third columns plot the values produced from positive edges (i.e., target nodes labeled 1), and the second and fourth columns plot the values produced from negative edges (i.e., target nodes labeled 0).

TABLE VIII 103 AUC scores on the power dataset varying k-hop and max hop M of the hybrid methods 103

			MA-P	HLP (with max h	op M) 104		
M	1	2	3	4	5	6	7
$\frac{1}{2}$		not robust to k			robus	t to k 104	
M-hop)	86.66 ± 0.56	90.22 ± 0.79	92.63 ± 0.54	94.50 ± 0.41	95.12 ± 0.40	95.46 ± 0.38	95.53 = 0.33 10
₹ 121	91.40 ± 0.88	90.20 ± 0.80	92.50 ± 0.59	94.39 ± 0.39	95.00 ± 0.46	95.31 ± 0.40	95.39 = 0.36 10
₽ 183 2 9 4	93.21 ± 0.64	92.79 ± 0.60	92.57 ± 0.58	94.22 ± 0.43	94.86 ± 0.42	95.21 ± 0.45	95.19 = 0.44 10
394	94.51 ± 0.58	94.23 ± 0.34	94.21 ± 0.41	94.31 ± 0.40	94.80 ± 0.37	95.10 ± 0.33	95.27 = 0.36 10
SEAL SEAL	94.73 ± 0.56	94.45 ± 0.44	94.61 ± 0.51	94.80 ± 0.53	94.91 ± 0.54	95.13 ± 0.51	95.19 = 0.46 10
S S	94.58 ± 0.94	94.81 ± 0.32	94.87 ± 0.42	95.06 ± 0.50	95.11 ± 0.46	95.25 ± 0.45	$\frac{95.25 \pm 0.46}{10}$
7	93.97 ± 0.73	94.22 ± 0.35	94.43 ± 0.44	94.78 ± 0.45	94.92 ± 0.39	94.99 ± 0.52	94.98 ± 0.39 10
k	not rob	ust to k			robust to k	04	_
34	87.53 ± 0.73	91.48 ± 0.64	93.55 ± 0.48	94.84 ± 0.43	95.53 ± 0.46	95.88 ± 0.31	96.09 ± 0.38 10
(doully 382)	92.51 ± 0.58	91.59 ± 0.77	93.49 ± 0.58	94.83 ± 0.53	95.56 ± 0.59	95.88 ± 0.38	96.06 ± 0.45 10
يا 10 م	94.04 ± 0.46	93.07 ± 0.67	93.61 ± 0.52	94.86 ± 0.54	95.61 ± 0.60	95.86 ± 0.40	96.00 ± 0.52 10
国先	93.55 ± 0.71	92.61 ± 0.76	93.68 ± 0.55	94.85 ± 0.55	95.59 ± 0.58	95.87 ± 0.38	96.03 ± 0.45 10
WP (with	93.40 ± 0.70	92.64 ± 0.69	93.66 ± 0.53	94.84 ± 0.54	95.55 ± 0.59	95.85 ± 0.39	96.04 ± 0.52 10
	93.34 ± 0.75	92.66 ± 0.72	93.64 ± 0.55	94.91 ± 0.57	95.55 ± 0.58	95.85 ± 0.44	95.98 ± 0.55 10
7	93.30 ± 0.73	92.61 ± 0.69	93.65 ± 0.56	94.87 ± 0.56	95.56 ± 0.58	95.90 ± 0.39	96.01 ± 0.52 10

Fig. 7. Visualization of vectors calculated using MA-PHLP (dim0). 108

score increase, as listed in Table V. 116

The performance of heuristic methods, such as AA, Katz, and PR, tend to be similar to random guessing on datasets with cantly lower than that for the Router dataset. 117 low density, particularly in the cases of the Power and Router 117

distributed without horizontal lines, leading to the highest 1 datasets. Embedding methods also display low performance. 117 In contrast, the GNN-based methods demonstrate improved 117 performance using subgraphs and the network learning ability. 117

However, the performance for the Power dataset is signifi-

TABLE IX 118 AVERAGE NUMBER OF NODES IN SUBGRAPHS 118 FOR THE POWER AND ROUTER DATASETS 118

	Po	wer	Router 77	
	positive	negative	positive	negative 119
1-hop	8.03	9.12	5.11	6.72 119
2-hop	22.26	24.85	29.21	13.94 119
3-hop	43.11	49.50	120.35	55.22 119
4-hop	71.72	82.16	411.87	176.34 119
5-hop	99.28	116.75	740.80	411.35 119
6-hop	136.23	158.27	1272.42	852.13 119
7-hop	182.22	210.35	1835.46	1498.58 119

demonstrate that the proposed PHLP method achieves competitive performance across benchmark datasets, even SOTA performance, especially on the Power dataset. Additionally, 126 when integrated with existing GNN-based methods, PHLP improves performance across all datasets. By analyzing the topological information of the given graphs, PHLP addresses the limitations of GNN-based methods and enhances overall performance. As demonstrated, PHLP provides explainable algorithms without relying on complex deep learning techniques, providing insight into the factors that significantly influence performance for the LP problem of graph data. 126

TABLE X 121

COMPARISON OF MODELS BY MAX HOP SETTINGS 121

ON THE POWER AND ROUTER DATASETS 121

	Model	MA-PHLP	MA-PHLP	WP	MA-PHLP + WP 122
	Center	target	random	-	random 122
	1-hop	78.05 ± 1.20	85.66 ± 0.86	80.24 ± 0.95	87.53 ± 0.73 122
	2-hop	86.34 ± 1.04	90.52 ± 0.73	89.40 ± 1.00	91.59 ± 0.77 122
ਨ	3-hop	89.65 ± 0.64	91.90 ± 0.58	92.11 ± 0.77	93.61 ± 0.52
Power	14hop	91.38 ± 0.53	92.67 ± 0.55	91.67 ± 0.80	94.85 ± 0.55
	52hop	92.27 ± 0.40	93.06 ± 0.44	91.39 ± 0.78	95.55 ± 0.59 122
	6-hop	92.77 ± 0.47	93.16 ± 0.49	91.55 ± 0.83	95.85 ± 0.44 122
	7-hop	93.06 ± 0.43	93.37 ± 0.41	91.50 ± 0.89	96.01 ± 0.52 122
_	1 1 1	1 00 10 1 0 45	09.40 0.40	04.40 0.96	04 00 1 0 41 4 00
	l-hop	93.12 ± 0.45	93.40 ± 0.46	94.48 ± 0.36	94.83 ± 0.41 122
	2-hop	95.96 ± 0.40	95.70 ± 0.45	97.15 ± 0.27	97.22 ± 0.23 122
5	3 hop	96.38 ± 0.41	96.11 ± 0.43	97.28 ± 0.24	97.42 ± 0.27
Router	14-hop	96.45 ± 0.40	96.22 ± 0.43	OOM ¹	00M 122
\simeq	5-hop	96.46 ± 0.42	96.24 ± 0.48	OOM	OOM 122
	6-hop	96.44 ± 0.45	96.23 ± 0.47	OOM	OOM 122
	7-hop	96.43 ± 0.45	96.19 ± 0.49	OOM	OOM 122
			·	·	

However, the Power dataset does not have hub nodes, and the number of nodes in the subgraph of positive links remains small. We randomly changed the center nodes (a, b) for node labeling $f_{\text{degdral}}^{(a,b)}$ increasing the performance, as listed in Table X. This outcome highlights that setting target nodes as the center nodes may not effectively analyze the topological structure in the case of small graphs. Furthermore, the performance for the Power dataset continues to increase with increasing hops (Table X), achieving an AUC score of 95.87, which is significantly better than that of 92.11 for WP, 124

VI. CONCLUSION 125

This paper proposes PHLP, an explainable method that applies PH to analyze the topological structure of graphs to overcome the limitations of GNN-based methods for LP. By employing the proposed methods, such as angle hop subgraphs and Degree DRNL, PHLP improves the analysis of the topological structure of graphs. The experimental results 126

REFERENCES 11

12 [1] Z. Zhang, P. Cui, and W. Zhu, "Deep learning on graphs: A survey," 127 IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 1, 127 pp. 249–270, 2020. 127

12 2 Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, "A 128 comprehensive survey on graph neural networks," *IEEE transactions on 128 neural networks and learning systems*, vol. 32, no. 1, pp. 4-24, 2020 128 L. A. Adamic and E. Adar, "Friends and neighbors on the web," *Social* 129

120 networks, vol. 25, no. 3, pp. 211–230, 2003, 129

[120] L. Yao, L. Wang, L. Pan, and K. Yao, "Link prediction based on 130

common-neighbors for dynamic social network," *Procedia Computer* 130 Science, vol. 83, pp. 82–89, 2016. 130

[5] M. Fire, L. Tenenboim, O. Lesser, R. Puzis, L. Rokach, and Y. Elovici, 131

"Link prediction in social networks using computationally efficient 131
topological features," in 2011 IEEE third international conference on 131
privacy, security, risk and trust and 2011 IEEE third international 131
conference on social computing. IEEE, 2011, pp. 73–80, 131

[6] S. M. Kazemi and D. Poole, "Simple embedding for link prediction in 132 knowledge graphs," *Advances in neural information processing systems*, 132 vol. 31, 2018. 132

[7] M. Nayyeri, G. M. Cil, S. Vahdati, F. Osborne, A. Kravchenko, S. Angioni, A. Salatino, D. R. Recupero, E. Motta, and J. Lehmann, "Link prediction of weighted triples for knowledge graph completion within the scholarly domain," *Ieee Access*, vol. 9, pp. 116002–116014, 2021.
[8] Z. Stanfield, M. Coşkun, and M. Koyutürk, "Drug response prediction

as a link prediction problem," *Scientific reports*, vol. 7, no. 1, p. 40321, 134

[9] E. Nasiri, K. Berahmand, M. Rostami, and M. Dabiri, "A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding," *Computers in Biology and Medicine*, vol. 137, p. 135
[10] C. Lei and J. Ruan, "A novel link prediction algorithm for reconstructing

[10] C. Lei and J. Ruan, "A novel link prediction algorithm for reconstructing protein–protein interaction networks by topological similarity," *Bioinfor-* 136

matics, vol. 29, no. 3, pp. 355–364, 2013. 136
1411 I. A. Kovács, K. Luck, K. Spirohn, Y. Wang, C. Pollis, S. Schlabach. 137
124 W. Bian, D.-K. Kim, N. Kishore, T. Hao *et al.*, "Network-based 137

prediction of protein interactions," *Nature communications*, vol. 10, 137 no. 1, p. 1240, 2019 137

142 N. Brockmann, E. Elson Kosasih, and A. Brintrup, "Supply chain link prediction on uncertain knowledge graph," *ACM SIGKDD Explorations Newsletter*, vol. 24, no. 2, pp. 124–130, 2022. 138

T3] A. Brintrup, P. Wichmann, P. Woodall, D. McFarlane, E. Nicks, and W. Krechel, "Predicting hidden links in supply networks," *Complexity*, 139

vol. 2018, pp. 1–12, 2018, 139
[14] L. Lü and T. Zhou, "Link prediction in complex networks: A survey," 14

Physica A: statistical mechanics and its applications, vol. 390, no. 6, 14

pp. 1150–1170, 2011. 141
[15] A.-L. Barabási and R. Albert, "Emergence of scaling in random networks," *science*, vol. 286, no. 5439, pp. 509–512, 1999. 141

T. Zhou, L. Lü, and Y.-C. Zhang, "Predicting missing links via local 142 information," *The European Physical Journal B*, vol. 71, pp. 623–630, 142 2009, 142

[43] S. Brin and L. Page, "Reprint of: The anatomy of a large-scale pypertextual web search engine," *Computer networks*, vol. 56, no. 18, 143

pp. 3825–3833, 2012 143
[18] G. Jeh and J. Widom, "Simrank: a measure of structural-context 144
[26] similarity," in *Proceedings of the eighth ACM SIGKDD international* 144

conference on Knowledge discovery and data mining, 2002, pp. 538– 543, 144

[19] Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for	14[55]	Edelsbrunner, Letscher, and Zomorodian, "Topological persistence and 171
recommender systems," Computer, vol. 42, no. 8, pp. 30–37, 2009.	_	simplification," Discrete & computational geometry, vol. 28, pp. 511–171
[20] B. Perozzi, R. Al-Rfou, and S. Skiena, "Deepwalk: Online learning		533, 2002. 171 H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, 172
of social representations," in <i>Proceedings of the 20th ACM SIGKDD</i> international conference on Knowledge discovery and data mining,		H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, 172 S. Chepushtanova, E. Hanson, F. Motta, and L. Ziegelmeier, "Persistence 172
2014, pp. 701–710. 146	147	images: A stable vector representation of persistent homology," <i>Journal</i> 172
[21] A. Grover and J. Leskovec, "node2vec: Scalable feature learning for	147	of Machine Learning Research, vol. 18, 2017. 172
networks," in Proceedings of the 22nd ACM SIGKDD international		A. P. Bradley, "The use of the area under the roc curve in the evaluation 173
conference on Knowledge discovery and data mining, 2016, pp. 855-	146	of machine learning algorithms," <i>Pattern recognition</i> , vol. 30, no. 7, pp. 173
864. 147	1/[48]	L. Katz, "A new status index derived from sociometric analysis," 174
[22] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, "Line: Large-scale information network embedding," in <i>Proceedings of the 24th</i>	1 70	Psychometrika, vol. 18, no. 1, pp. 39–43, 1953. 174
international conference on world wide web, 2015, pp. 1067–1077.		
[23] T. N. Kipf and M. Welling, "Variational graph auto-encoders," arXiv		search engine," Computer networks and ISDN systems, vol. 30, no. 1-7, 175
preprint arXiv:1611.07308, 2016. 149	[50]	pp. 107–117, 1998. 175 N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, 176
[24] M. Zhang and Y. Chen, "Link prediction based on graph neural net-		and K. M. Borgwardt, "Weisfeiler-lehman graph kernels." <i>Journal of</i> 176
works," Advances in neural information processing systems, vol. 31, 2018. 150	150	Machine Learning Research, vol. 12, no. 9, 2011. 176
[25] S. Yun, S. Kim, J. Lee, J. Kang, and H. J. Kim, "Neo-gnns: Neighbor-	15[51]	M. Zhang and Y. Chen, "Weisfeiler-lehman neural machine for link 177
hood overlap-aware graph neural networks for link prediction," <i>Advances</i>		prediction," in <i>Proceedings of the 23rd ACM SIGKDD international</i> 177
in Neural Information Processing Systems, vol. 34, pp. 13683-13694,		conference on knowledge discovery and data mining, 2017, pp. 575- 177 583. 177
<u>2021.</u> 151	[52]	L. Tang and H. Liu, "Leveraging social media networks for classifica-178
[26] C. Mavromatis and G. Karypis, "Graph infoclust: Leveraging cluster-	15 <u>[52]</u>	tion," Data Mining and Knowledge Discovery, vol. 23, pp. 447–478, 178
level node information for unsupervised graph representation learning," arXiv preprint arXiv:2009.06946, 2020, 152	152	2011. 178
[27] Z. Yan, T. Ma, L. Gao, Z. Tang, and C. Chen, "Link prediction with	153 <u>[53]</u>	V. Batagelj and A. Mrvar, "Pajek datasets," http://vlado.fmf.uni-lj.si/pub/
persistent homology: An interactive view," in <i>International conference</i>		networks/data/, 2006. 179 M. E. Newman, "Finding community structure in networks using the 180
on machine learning. PMLR, 2021, pp. 11659–11669. 153	[94]	eigenvectors of matrices," <i>Physical review E</i> , vol. 74, no. 3, p. 036104, 180
[28] L. Pan, C. Shi, and I. Dokmanić, "Neural link prediction with walk	154	2006. 180
pooling," arXiv preprint arXiv:2110.04375, 2021. 154	[55]	R. Ackland et al., "Mapping the us political blogosphere: Are con-
[29] S. Huber, "Persistent homology in data science," in Data Science- Analytics and Applications: Proceedings of the 3rd International Data	155	servative bloggers more prominent?" in <i>BlogTalk Downunder</i> 2005 181
Science Conference—iDSC2020. Springer, 2021, pp. 81–88. 155	155	Conference, Sydney. BlogTalk Downunder 2005 Conference, Sydney, 181
[30] T. K. Dey and Y. Wang, Computational topology for data analysis.	1 5 61	
Cambridge University Press, 2022, 156	10001	and P. Bork, "Comparative assessment of large-scale data sets of protein—
[31] M. Horn, E. De Brouwer, M. Moor, Y. Moreau, B. Rieck, and		protein interactions," <i>Nature</i> , vol. 417, no. 6887, pp. 399–403, 2002. 182
K. Borgwardt, "Topological graph neural networks," arXiv preprint	1 5 [7 7]	
[32] X. Ye, F. Sun, and S. Xiang, "Treph: A plug-in topological layer for	1 d 681	world'networks," <i>nature</i> , vol. 393, no. 6684, pp. 440–442, 1998. 183 N. Spring, R. Mahajan, and D. Wetherall, "Measuring isp topologies 184
graph neural networks," Entropy, vol. 25, no. 2, p. 331, 2023. 158	13601	with rocketfuel," ACM SIGCOMM Computer Communication Review, 184
[33] M. Carrière, F. Chazal, Y. Ike, T. Lacombe, M. Royer, and Y. Umeda,	159	vol. 32, no. 4, pp. 133–145, 2002. 184
"Perslay: A neural network layer for persistence diagrams and new	F # 0.7	M. Zhang, Z. Cui, S. Jiang, and Y. Chen, "Beyond link prediction: 185
graph topological signatures," in International Conference on Artificial	159	Predicting hyperlinks in adjacency space," in <i>Proceedings of the AAAI</i> 185
Intelligence and Statistics. PMLR, 2020, pp. 2786–2796, 159	1a <mark>[60]</mark>	Conference on Artificial Intelligence, vol. 32, no. 1, 2018. 185 A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, "Automating 186
[34] F. M. Taiwo, U. Islambekov, and C. G. Akcora, "Explaining the power of topological data analysis in graph machine learning," <i>arXiv</i> preprint	100	the construction of internet portals with machine learning," <i>Information</i> 186
arXiv:2401.04250, 2024. 160		Retrieval, vol. 3, pp. 127–163, 2000. 186
[35] T. Wen, E. Chen, and Y. Chen, "Tensor-view topological graph neural	16611	C. L. Giles, K. D. Bollacker, and S. Lawrence, "Citeseer: An automatic 187
network," arXiv preprint arXiv:2401.12007, 2024. 161		citation indexing system," in <i>Proceedings of the third ACM conference</i> 187 on Digital libraries, 1998, pp. 89–98, 187
[36] J. Immonen, A. Souza, and V. Garg, "Going beyond persistent homology		G. Namata, B. London, L. Getoor, B. Huang, and U. Edu, "Query-driven 188
using persistent homology," Advances in Neural Information Processing Systems, vol. 36, 2024. 162	162-1	active surveying for collective classification," in 10th international 188
[37] C. Ying, X. Zhao, and T. Yu, "Boosting graph pooling with persistent	163	workshop on mining and learning with graphs, vol. 8, 2012, p. 1. 188
homology," arXiv preprint arXiv:2402.16346, 2024. 163	103	
[38] Q. Zhao and Y. Wang, "Learning metrics for persistence-based sum-	164	
maries and applications for graph classification," Advances in Neural	164	
Information Processing Systems, vol. 32, 2019. 165	1405	
[39] Y. Chen, B. Coskunuzer, and Y. Gel, "Topological relational learning on graphs," <i>Advances in neural information processing systems</i> , vol. 34,		
pp. 27 029–27 042, 2021. 165	103	
[40] Q. Zhao, Z. Ye, C. Chen, and Y. Wang, "Persistence enhanced graph	166	
neural network," in International Conference on Artificial Intelligence	166	
and Statistics. PMLR, 2020, pp. 2896–2906. 166		
[41] M. Nickel, X. Jiang, and V. Tresp, "Reducing the rank in relational factorization models by including observable patterns," <i>Advances in</i>		
Neural Information Processing Systems, vol. 27, 2014, 167	10/	
[42] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, "struc2vec: Learning	168	
node representations from structural identity," in <i>Proceedings of the 23rd</i>		
ACM SIGKDD international conference on knowledge discovery and	168	
data mining, 2017, pp. 385–394. 168	400	
[43] L. Vietoris, "Über den höheren zusammenhang kompakter räume und eine klasse von zusammenhangstreuen abbildungen," <i>Mathematische</i>		
Annalen, vol. 97, no. 1, pp. 454–472, 1927. 169	100	
[44] M. Gromov, "Hyperbolic groups," in Essays in group theory. Springer,	170	
1987, pp. 75–263. 17 0		