

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Differential Equations & Vector Calculus Course & Branch: B.Tech - Common to all

(23HS0831)

Year & Sem: I-B.Tech & II-Sem

Regulation: R23

<u>UNIT –I</u> DIFFERENTIAL EQUATIONS OF FIRST ORDER AND FIRST DEGREE

1	a) Find the Integrating Factor of $\frac{dy}{dx} + y = x$	[L3][CO1]	[2M]
	b) Find the Integrating Factor of $\frac{dy}{dx}(x^2y^3 + xy) = 1$	[L3][CO1]	[2M]
	c) Verify the exactness of the differential equation $2xydy - (x^2 - y^2 + 1)dx = 0$	[L4][CO1]	[2M]
	d) State Newton's law of cooling.	[L1][CO1]	[2M]
	e) State Newton's Law of Natural growth and decay.	[L1][CO1]	[2 M]
2	a) Solve $x \frac{dy}{dx} + y = log x$.	[L3][CO1]	[5M]
	b) Solve $\frac{dy}{dx} + 2xy = e^{-x^2}$	[L3][CO1]	[5M]
	a) Solve $(1 + y^2)dx = (tan^{-1}y - x)dy$	[L3][CO1]	[5M]
3	b) Solve $(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$	[L3][CO1]	[5M]
4	a) Solve $x \frac{dy}{dx} + y = x^3 y^6$	[L3][CO1]	[5M]
	b) Solve $\frac{dy}{dx} + y \cdot tanx = y^2 secx$	[L3][CO1]	[5M]
	a) Solve $(2x - y + 1)dx + (2y - x - 1)dy = 0$	[L3][CO1]	[5M]
5	b) Solve $(y^2 - 2xy)dx + (2xy - x^2)dy = 0$	[L3][CO1]	[5M]
6	a) Solve $\frac{dy}{dx} + \frac{y\cos x + \sin y + y}{\sin x + x\cos y + x} = 0$	[L3][CO1]	[5M]
	b) Solve $(x^2-ay)dx = (ax-y^2)dy$	[L3][CO1]	[5M]
7	a) Solve $x^2ydx - (x^3 + y^3)dy = 0$	[L3][CO1]	[5M]
	b) Solve $y(x^2y^2 + 2)dx + x(2 - 2x^2y^2)dy = 0$	[L3][CO1]	[5M]
8	A body is originally at 80°C and cools down to 60°C in 20 min. If the temperature of the air is 40°C, find the temperature of the body after 40 min.?	[L3][CO1]	[10M]
9	The temperature of a body drops from 100^{0} C to 75^{0} C in 10 minutes when the surrounding air is 20^{0} C. What will be its temperature after half-an-hour? When will the temperature be 25^{0} C?	[L3][CO1]	[10M]
10	The number N of bacteria in a culture grew at a rate proportional to N. The value of N was initially 100 and increased to 332 in one hour. What was the value of N after $1\frac{1}{2}$ hour ?	[L1][CO1]	[10M]
11	An inductance of 3H and a resistance of 12Ω are connected in series with an e.m.f of 90 V. If the current is zero when t=0, what is the current at the end of 1 sec?	[L1][CO1]	[10M]

<u>UNIT –II</u>
LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ORDER (CONSTANT COEFFICIENTS)

1	a) Solve $\frac{d^2y}{dx^2} - a^2y = 0$	[L3][CO2]	[2M]
	b) Find the Particular Integral of $\frac{1}{D^2+3D+2}e^{4x}$	[L3][CO2]	[2M]
	c) Define Wronskian of functions of y_1 and y_2 .	[L1][CO2]	[2M]
	d) What is the formula of L-C-R Circuit with e.m.f?	[L1][CO2]	[2M]
	e) Define Simple Harmonic motion.	[L1][CO2]	[2 M]
2	a) Solve $(D^2 + 5D + 6)y = e^x$	[L3][CO2]	[5M]
	b) Solve $(D^2 - 4D + 3)y = 4e^{3x}$ given; $y(0) = -1, y^1(0) = 3$.	[L3][CO2]	[5M]
3	a) Solve $(D^2 - 3D + 2)y = \cos 3x$	[L3][CO2]	[5M]
	b) Solve $(D^2 - 4D)y = e^x + \sin 3x \cdot \cos 2x$	[L3][CO2]	[5M]
4	a) Solve $(D^2 + D + 1)y = x^3$	[L3][CO2]	[5M]
	b) Solve $(D^2 - 3D + 2)y = xe^{3x} + \sin 2x$	[L3][CO2]	[5M]
5	Solve $\frac{d^2y}{dx^2} + y = e^{-x} + x^3 + e^x \sin x$.	[L3][CO2]	[10M]
	a) Solve $(D^2 + 1)y = x\sin x$ by the method of variation of parameters.	[L1][CO2]	[5M]
6	b) Solve $(D^2 + 4)y = \tan 2x$ by the method of variation of parameters.	[L3][CO2]	[5M]
7	a) Solve $(D^2 - 2D)y = e^x \sin x$ by the method of variation of parameters.	[L3][CO2]	[5M]
'	b) Solve $(D^2 + 4)y = Sec2x$ by the method of variation of parameters.	[L3][CO2]	[5M]
8	a) Solve $(D^2 + 1)y = Co \sec x$ by the method of variation of parameters.	[L3][CO2]	[5M]
	b) Solve $\frac{dx}{dt} = 3x + 2y : \frac{dy}{dt} + 5x + 3y = 0.$	[L3][CO2]	[5M]
9	a) Solve $\frac{dy}{dx} + y = z + e^x$; $\frac{dz}{dx} + z = y + e^x$.	[L3][CO2]	[5M]
	b) Find the current 'i' in the L-C-R circuit assuming zero initial current and charge i, if R=80 ohms, L=20 henrys, C=0.01 farads and E=100 V.	[L3][CO2]	[5M]
10	A condenser of capacity 'C' discharged through an inductance 'L' and resistance 'R' in series and the charge 'q' at time 't' satisfies the equation $L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{q}{c} = 0$. Given that L=0.25 henries, R=250 ohms, C=2x10 ⁻⁶ farads, and that when t=0, charge 'q' is 0.002 coulombs and the current $\frac{dq}{dt} = 0$, Obtain the value of 'q' in terms of 't'.	[L3][CO2]	[10M]
11	An uncharged condenser of capacity is charged applying an e.m.f $E \sin \frac{t}{\sqrt{LC}}$ through leads of self-inductance L and negligible resistance. Prove that at time 't', the charge on one of the plates is $\frac{EC}{2} \left[\sin \frac{t}{\sqrt{LC}} - \frac{t}{\sqrt{LC}} \cos \frac{t}{\sqrt{LC}} \right]$.	[L5][CO2]	[10M]

<u>UNIT –III</u>

PARTIAL DIFFERENTIAL EQUATIONS

CO3] [2M CO3] [2M CO4] [2M CO4] [2M CO3] [5M CO3] [5M	[2M] [2M] [2M] [2M] [2M] [5M] [5M]
CO3] [2M CO4] [2M CO4] [2M CO3] [5M CO3] [5M	[2M] [2M] [2M] [5M] [5M]
CO4] [2M CO4] [2M CO3] [5M CO3] [5M CO3] [5M	[2M] [2M] [5M] [5M]
CO3] [5M CO3] [5M CO3] [5M	[2M] [5M] [5M]
CO3] [5M CO3] [5M CO3] [5M	[5M] [5M]
CO3] [5M	[5M]
CO3] [5M	[5M]
CO3] [5M	
	[5M]
1001	
[5N	[5M]
[5M	[5M]
[5M	[5M]
CO3] [5N	[5M]
CO4] [5M	[5M]
[5M	5M]
[10]	[10M]
CO4] [10]	[10M]
CO4] [5N	[5M]
CO4] [5M	[5M]
CO4] [10]	[10M]
CO4] [10]	[10M]
	CO3] [CO3] [CO4] [CO

<u>UNIT –IV</u> VECTOR DIFFERENTIATION

1	a) Define Divergence of a vector.	[L1][CO5]	[2M]
	b) Define Solenoidal Vector.	[L1][CO5]	[2M]
	c) Find $div \vec{r}$ where $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$	[L3][CO5]	[2M]
	d) Define Irrotational Vector.	[L1][CO5]	[2M]
	e) Find $(curl F)$ given that $F = 3xy\bar{\imath} + 2y^2z\bar{\jmath} + z^2yk^-$ At the point (1-2,-1).	[L3][CO5]	[2M]
2	a) Find $grad f$ if $f = xz^4 - x^2y$ at a point $(1, -2, 1)$. Also find $ \nabla f $	[L3][CO5]	[5M]
	b) If $\bar{r} = x\vec{i} + y\vec{j} + z\vec{k}$ then prove that $\nabla r = \frac{\bar{r}}{r}$	[L5][CO5]	[5M]
3	a) Find the directional derivative of $2xy + z^2$ at $(1, -1, 3)$ in the direction of $\vec{i} + 2\vec{j} + 3\vec{k}$.	[L3][CO5]	[5M]
	b) Find the directional derivative of $xyz^2 + xz$ at (1,1,1) in the direction of normal to the surface $3xy^2 + y = z$ at (0,1,1).	[L3][CO5]	[5M]
5	a) Evaluate the angle between the normal to the surface $xy = z^2$ at the points $(4,1,2)$ and $(3,3,-3)$.	[L5][CO5]	[10M]
	b) Find the maximum or greatest value of the directional derivative of $f = x^2yz^3$ at the point $(2,1,-1)$.	[L3][CO5]	[5M]
6	a) Find the divergence of $\vec{f} = (xyz)\vec{i} + (3x^2y)\vec{j} + (xz^2 - y^2z)\vec{k}$.	[L3][CO5]	[5M]
	b) Show that $\overline{f} = (x + 3y)\vec{i} + (y - 2z)\vec{j} + (x - 2z)\vec{k}$ is solenoidal.	[L1][CO5]	[5M]
7	a) Find $div\overline{f}$ if $\overline{f} = grad(x^3 + y^3 + z^3 - 3xyz)$.	[L3][CO5]	[5M]
	b) Find the <i>curl</i> of the vector $\vec{f} = (x + y + 1)\vec{i} + \vec{j} - (x + y)\vec{k}$.	[L3][CO5]	[5M]
8	a) Prove that $\bar{f} = (y+z)\vec{i} + (z+x)\vec{j} + (x+y)\vec{k}$ is irrotational.	[L5][CO5]	[10M]
	b) Find $\operatorname{curl} \bar{f}$ if $\overline{f} = \operatorname{grad}(x^3 + y^3 + z^3 - 3xyz)$.	[L3][CO5]	[5M]
9	a) Find 'a' if $\overline{f} = y(ax^2 + z)\overrightarrow{i} + x(y^2 - z^2)\overrightarrow{j} + 2xy(z - xy)\overrightarrow{k}$ is solenoidal.	[L3][CO5]	[5M]
	b) If $\vec{f} = (x + 2y + az)\vec{i} + (bx - 3y - z)\vec{j} + (4x + cy + 2z)\vec{k}$ is irrotational then find the constants a, b and c .	[L3][CO5]	[5M]
10	a) Prove that $div(curl \bar{f}) = 0$.	[L5][CO5]	[5M]
	b) Prove that $\nabla(\mathbf{r}^n) = \mathbf{n} \ \mathbf{r}^{n-2} \bar{\mathbf{r}}$	[L5][CO5]	[5M]
11	a) Prove that $curl(\emptyset \bar{f}) = (grad\emptyset) \times \bar{f} + \emptyset(curl\bar{f})$	[L5][CO5]	[5M]
	b) Prove that $\nabla \cdot (\bar{f} \times \bar{g}) = \bar{g} \cdot (\nabla \times \bar{f}) - \bar{f} \cdot (\nabla \times \bar{g})$	[L5][CO5]	[5M]

UNIT –V VECTOR INTEGRATION

1	a) Define Line integral.	[L1][CO6]	[2M]
	b) Define work done by a force.	[L1][CO6]	[2M]
	c) State Green's theorem in the plane.	[L1][CO6]	[2M]
	d) State Stoke's theorem.	[L1][CO6]	[2M]
	e) State Gauss's divergence theorem.	[L1][CO6]	[2M]
2	a) If $\bar{F} = (5xy - 6x^2)\vec{i} + (2y - 4x)\vec{j}$. Evaluate $\int_c \bar{F} \cdot d\bar{r}$ along the curve $f(z) = x^3$ in xy-plane from $f(z) = (1,1) = (1$	[L5][CO6]	[5M]
	b) Find the work done by a force $\vec{F} = (2y+3)\vec{i} + (xz)\vec{j} + (yz-x)\vec{k}$ when it moves a particle from $(0,0,0)to(2,1,1)$ along the curve $x=2t^2; y=t; z=t^3$.	[L3][CO6]	[5M]
3	If $\bar{F} = (x^2 + y^2)\vec{i} - (2xy)\vec{j}$. Evaluate $\int_c \bar{F} \cdot d\bar{r}$ where 'C' is the rectangle in xy-plane bounded by $y = 0$; $y = b$ and $x = 0$; $x = a$.	[L5][CO6]	[10M]
4	a) Evaluate $\int_{s} \vec{F} \cdot \vec{n} ds$, where $\vec{F} = 18z\vec{i} - 12\vec{j} + 3y\vec{k}$ and 'S' is the part of the surface of the plane $2x + 3y + 6z = 12$ located in the first octant.	[L5][CO6]	[5M]
	b) Evaluate $\int_{s} \bar{F} \cdot \bar{n} ds$, where $\bar{F} = 12x^2y\vec{i} - 3yz\vec{j} + 2z\vec{k}$ and 'S' is the portion of the plane $x + y + z = 1$ located in the first octant.	[L5][CO6]	[5M]
5	a) If $\overline{F} = 2xz\overrightarrow{i} - x\overrightarrow{j} + y^2\overrightarrow{k}$. Evaluate $\int_v \overline{F} \cdot dv$ where 'V' is the region bounded by the surfaces $x = 0$; $x = 2$: $y = 0$; $y = 6$ and $z = x^2$; $z = 4$.	[L5][CO6]	[5M]
	b) If $\overline{F} = (2x^2 - 3z)\vec{i} - 2xy\vec{j} - 4x\vec{k}$ then Evaluate $\int_v \nabla \cdot \overline{F} dv$ where 'V' is the closed region bounded by $x = 0$; $y = 0$; $z = 0$ and $2x + 2y + z = 4$.	[L5][CO6]	[5M]
6	Verify Green's theorem in a plane for $\oint_c (x^2-xy^3)dx + (y^2-2xy)dy$ where 'C' is a square with vertices $(0,0)(2,0)(2,2)$ and $(0,2)$.	[L4][CO6]	[10M]
7	a) Apply Green's theorem to evaluate $\oint_c (2x^2 - y^2)dx + (x^2 + y^2)dy$ where 'C' is the curve enclosed by the x-axis and upper half of the circle $x^2 + y^2 = a^2$.	[L3][CO6]	[5M]
	b) Evaluate by Green's theorem $\oint_C (y - \sin x) dx + \cos x dy$ where 'C' is the triangle enclosed by the lines $y = 0, x = \frac{\pi}{2}$ and $\pi y = 2x$.	[L5][CO6]	[5M]
8	Verify Stoke's theorem for the function $\bar{F} = x^2\bar{\imath} + xy\bar{\jmath}$ integrated round the square in the plane $z = 0$ whose sides are along the lines $x = 0, y = 0, x = a, y = a$.	[L3][CO6]	[10M]
9	Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\vec{\imath} - 2xy\vec{\jmath}$ taken around the rectangle bounded by the lines $x = \pm a$, $y = 0$, $y = b$.	[L4][CO6]	[10M]
10	Using Gauss's divergence theorem, Evaluate $\iint_S x^3 dy dz + x^2 y dz dx + x^2 z dx dy$ where 's' is the closed surface consisting of the cylinder $x^2 + y^2 = a^2$ and the circular discs $z = 0$; $z = b$.	[L3][CO6]	[10M]
11	Verify Gauss's divergence theorem for $\vec{F} = (x^3 - yz)\vec{\imath} - 2x^2y\vec{\jmath} + z\vec{k}$ taken over the surface of the cube bounded by the planes $x = y = z = a$ and coordinate planes.	[L4][CO6]	[10M]

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY :: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code: DE&VC (23HS0831) Course & Branch: B.Tech – Common to All

> Year & Sem: I-B.Tech & II-Sem **Regulation:** R23

UNIT – I

DIFFERENTIAL EQUATIONS OF FIRST ORDER AND FIRST DEGREE

1. In dx/dt which is independent v	variable		[]
A) x	B) t	C) both	D) d
2. In $dr/d\theta$ which is dependent va	,	-, -	[]
A) r	Β) θ	C) both	D)
3. The ordinary differential equat		-	[]
A) 1	B) 2	C) both	D) 1 or more
4. The ordinary differential equation		_	
A)1	B) 2	C)both	D) 0
5. The Simultaneous differential 1	-	constant coefficients na	iving r 1
how many dependent A)1	B) 2	C) 3	D) 4
6. The Simultaneous differential 1	,	,	,
independent variables	order equations	onsum comments.	[]
A) 1	B) 2	C) 3	D) 4
7. Which of the following is a solu	ation to the differential	equation $\frac{dy}{dx} + 3y = 0$	[]
A) $y = -3e^x$	B) $y = Ce^x$	C) $y = ce^{-3x}$	D) $y = ce^{3x}$
8. The degree of the D.E $\left(\frac{dy}{dx}\right)^2$ +	$\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + 3y = 0 \text{ is}$		[]
A) 0	B) 1	C) 2	D) 3
- · - dv			
9. The equation of the form $\frac{dy}{dx} + P$	(x)y = Q(x) is called		[]
		C) Homogeneous DE	[] D) Bernoulli's DE
10. An integrating factor of $\frac{dy}{dx}$ –	$\frac{y}{x} = x$ is $$		[] D) Bernoulli's DE []
10. An integrating factor of $\frac{dy}{dx}$ – A) $\frac{-1}{x}$	$\frac{y}{x} = x \text{ is }$ $B) \frac{-1}{2x}$	C) Homogeneous DE $C) \frac{1}{2x}$	[] D) Bernoulli's DE [] D) $\frac{1}{x}$
10. An integrating factor of $\frac{dy}{dx}$ –	$\frac{y}{x} = x \text{ is }$ $B) \frac{-1}{2x}$		[]
10. An integrating factor of $\frac{dy}{dx}$ - A) $\frac{-1}{x}$ 11. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2}$ A)2	$\frac{y}{x} = x \text{ is }$ B) $\frac{-1}{2x}$ $-3y = x \text{ is } \underline{\qquad}$ B)3		$[]$ D) $\frac{1}{x}$
10. An integrating factor of $\frac{dy}{dx}$ - A) $\frac{-1}{x}$ 11. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2}$ A)2 12. The equation Mdx + Ndy = 0 i	$\frac{y}{x} = x \text{ is }$ B) $\frac{-1}{2x}$ $-3y = x \text{ is } \underline{\qquad}$ B)3 s exact if	C) $\frac{1}{2x}$	[] D) $\frac{1}{x}$ [] D)0
10. An integrating factor of $\frac{dy}{dx}$ - A) $\frac{-1}{x}$ 11. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2}$ A)2 12. The equation Mdx + Ndy = 0 i	$\frac{y}{x} = x \text{ is }$ B) $\frac{-1}{2x}$ $-3y = x \text{ is } \underline{\qquad}$ B)3 s exact if	C) $\frac{1}{2x}$	[] D) $\frac{1}{x}$ [] D)0
 10. An integrating factor of \$\frac{dy}{dx}\$ - A) \$\frac{-1}{x}\$ 11. The order of \$x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2}\$ 12. The equation Mdx + Ndy = 0 i A) \$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}\$ 13. The Linear differential equation 	$\frac{y}{x} = x \text{ is }$ B) $\frac{-1}{2x}$ $-3y = x \text{ is } $ B) $\frac{3}{3}$ s exact if B) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$ on of first order in x is	C) $\frac{1}{2x}$ C) 1 C) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial y}$	$\begin{bmatrix} & & \\ & & \\ D)\frac{1}{x} & & \\ & & \\ D)0 & & \\ D)\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x} & & \\ & & \\ & & \\ \end{bmatrix}$
10. An integrating factor of $\frac{dy}{dx}$ - A) $\frac{-1}{x}$ 11. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2}$ A)2 12. The equation Mdx + Ndy = 0 i A) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ 13. The Linear differential equation A) $\frac{dx}{dy} + P(y)x = Q(y)$	$\frac{y}{x} = x \text{ is }$ B) $\frac{-1}{2x}$ $-3y = x \text{ is } $ B) $\frac{3}{8}$ s exact if B) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$ on of first order in x is B) $\frac{dy}{dx} + P(x)y = Q(x)$	C) $\frac{1}{2x}$ C) 1 C) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial y}$ C) $\frac{dy}{dx} + P(x)y = Q(x)y^{3}$	$\begin{bmatrix} & & \\ & & \\ D)\frac{1}{x} & & \\ & & \\ D)0 & & \\ D)\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x} & & \\ & & \\ \end{bmatrix}$
 10. An integrating factor of \$\frac{dy}{dx}\$ - A) \$\frac{-1}{x}\$ 11. The order of \$x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2}\$ 12. The equation Mdx + Ndy = 0 i A) \$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}\$ 13. The Linear differential equation 	$\frac{y}{x} = x \text{ is }$ B) $\frac{-1}{2x}$ $-3y = x \text{ is } $ B) $\frac{3}{8}$ s exact if B) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$ on of first order in x is B) $\frac{dy}{dx} + P(x)y = Q(x)$	C) $\frac{1}{2x}$ C) 1 C) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial y}$ C) $\frac{dy}{dx} + P(x)y = Q(x)y^{3}$	$\begin{bmatrix} & & \\ & & \\ D)\frac{1}{x} & & \\ & & \\ D)0 & & \\ D)\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x} & & \\ & & \\ & & \\ \end{bmatrix}$
10. An integrating factor of $\frac{dy}{dx}$ - A) $\frac{-1}{x}$ 11. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2}$ A)2 12. The equation Mdx + Ndy = 0 i A) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ 13. The Linear differential equation A) $\frac{dx}{dy} + P(y)x = Q(y)$ 14. The differential equation $x \frac{dy}{dx}$ A) Homogeneous D.E	$\frac{y}{x} = x \text{ is }$ B) $\frac{-1}{2x}$ $-3y = x \text{ is } $ B) 3 s exact if B) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$ on of first order in x is B) $\frac{dy}{dx} + P(x)y = Q(x)$ $+ y = x^3y^6 \text{ is } a$ B) Lei	C) $\frac{1}{2x}$ C) 1 C) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial y}$ C) $\frac{dy}{dx} + P(x)y = Q(x)y^{3}$ bnitz's linear equation	$\begin{bmatrix} & & \\ & \\ D)\frac{1}{x} & & \\ & & \\ D)0 & & \\ D)\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x} & & \\ & & \\ & & \\ \end{bmatrix}$
10. An integrating factor of $\frac{dy}{dx} - A$) $\frac{-1}{x}$ 11. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2}$ A)2 12. The equation Mdx + Ndy = 0 i A) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ 13. The Linear differential equation A) $\frac{dx}{dy} + P(y)x = Q(y)$ 14. The differential equation $x \frac{dy}{dx} + A$) Homogeneous D.E C) Bernoulli's D.E	$\frac{y}{x} = x \text{ is }$ B) $\frac{-1}{2x}$ $-3y = x \text{ is } $ B) $\frac{3}{2x}$ s exact if B) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$ on of first order in x is B) $\frac{dy}{dx} + P(x)y = Q(x)$ $+ y = x^{3}y^{6} \text{ is } a$ B) Lei D) Nor	C) $\frac{1}{2x}$ C) 1 C) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial y}$ C) $\frac{dy}{dx} + P(x)y = Q(x)y^{3}$ bnitz's linear equation alinear D.E	$\begin{bmatrix} & & \\ & \\ D)\frac{1}{x} & & \\ & & \\ D)0 & & \\ D)\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x} & & \\ & & \\ & & \\ \end{bmatrix}$
10. An integrating factor of $\frac{dy}{dx}$ - A) $\frac{-1}{x}$ 11. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2}$ A)2 12. The equation Mdx + Ndy = 0 i A) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ 13. The Linear differential equation A) $\frac{dx}{dy} + P(y)x = Q(y)$ 14. The differential equation $x \frac{dy}{dx}$ A) Homogeneous D.E	$\frac{y}{x} = x \text{ is }$ B) $\frac{-1}{2x}$ $-3y = x \text{ is } $ B) $\frac{3}{2x}$ s exact if B) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$ on of first order in x is B) $\frac{dy}{dx} + P(x)y = Q(x)$ $+ y = x^{3}y^{6} \text{ is } a$ B) Lei D) Nor	C) $\frac{1}{2x}$ C) 1 C) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial y}$ C) $\frac{dy}{dx} + P(x)y = Q(x)y^{3}$ bnitz's linear equation alinear D.E	$\begin{bmatrix} & & \\ & \\ D)\frac{1}{x} & & \\ & & \\ D)0 & & \\ D)\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x} & & \\ & & \\ & & \\ \end{bmatrix}$

16. The solution of the D.E $\frac{dy}{dx} = e^{x-y}$ is			
A) $e^{x-y} = c$ B) $e^x - e^y = e^c$		$D) e^x + e^y = e^c$	
17. The solution of the D.E $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$ is			
A) $y = x(1 + xy)$ B) $y + x = c(1 + xy)$	C) y - x = c(1 + xy)	D) y - x = c(1 - xy)	
18. The general solution of $\frac{x dy + y dx}{x^2 y^2} = 0$			[]
A) $-\frac{1}{xy} = c$ B) $logxy = c$	× 1 y	D) $\frac{x}{y} = c$	
19. The general solution of $\frac{dy}{dx} + y = e^{-x}$			[]
A) $xe^x = x + k$ B) $ye^{-x} = x + k$	C) $ye^x = x + k$	$D) ye^x = y + k$	
20. The solution of $\frac{ye^x dx - e^x dy}{y^2} = 0$ is			
y	C) $\frac{e^y}{x} = c$	D) $e^{xy} = c$	
21. $\frac{1}{D^3}\cos x =$			
	C) sin x	D) - cos x	
22. If $f(x,y)dx + (xe^y + 2y)dy = 0$ is exact, the			[]
A) xe^y B) $y + xe^y$		D) $x + e^y$	
23. If $(x^2 - Ay)dx + (y^2 - 3x)dy = 0$ is exact,			[]
, , , , , , , , , , , , , , , , , , , ,	C) 4	D) 3	
24. The I.F for the D.E $\frac{dy}{dx}$ + $ysecx = tanx$ is			[]
A) secx B) tanx		D) sec^2x	
25. The nature of the D.E $y\sin 2x dx - (y^2 + \cos x)$			[]
1	C) Bernoulli's	D) Exact	
26. The solution of the D.E $y^1 = \frac{1}{x}$ is			[]
A) $y = log x + k$ B) $y = \frac{-1}{x^2} + k$	C) $x = log y + c$	D) xy = c	
27. I.F of the D.E $\frac{dx}{dy} + \frac{3x}{y} = \frac{1}{y^2}$ is			[]
A) e^{y^3} B) y^3	C) x^3	D) $-y^{3}$	
28. The solution of exact differential equation Mdz	,	D) y	[]
	$Idx + \int (terms\ free\ f$	from x inN) dy = c	. ,
C) $\int M dx - \int N dy = 0$ D) $y =$, ,	
29. The solution of the D.E $\frac{dy}{dx} = m$ is			[]
A) $y = -mx + c$ B) $y = mx + c$	C) $y = x + c$	D) y = -x + c	. ,
30. The general solution of a non-homogeneous lin		D/y = x + c	Γ 1
	C) $y = y_c + y_p$	D) None	
31. The differential equation $\frac{dy}{dx} + Py = Qy^n$ is 1	known as	,	[]
A) Linear in y B) Linear in x	C) Bernoulli's D.E	D) Exact	
32. Newton's Law of cooling is used to determine	c) Beineum & B.E	D) Linet	[]
e e e e e e e e e e e e e e e e e e e	emperature by an object	t after a given time	
C) Volume of a cooled object D) Pr	ressure exerted by a coo	oled object	
33. The unit of resistivity is		2	[]
A)Ohm B) Ohm-meter	C) Ohm/meter	D) Ohm/meter ²	
34. Magnetic flux has the unit of	C) Wahan	D) Tolog	L J
A)Newton B) Ampere turn 35. Which of the following quantities consists of S	C) Weber	D) Telsa	_[1
A)Force B) Charge	C) Current	D) Power	ı J
D) Charge	o, current	2)101101	

36. E.M.F can be induced in a circuit by A)changing magnetic flux density B) Ch	nanging area of circuit	C)changing the angle	[D)All] of
the above 37. Which of the following is active element			[]
A)voltage source B) current source 38. The branch current method uses	e C)both	D) none of the above	[1
A) Kirchoff's voltage currentB) TheveniC) The Superposition theorem and Thevinir			m's lav	v
39. The Newton's law of cooling is A) $\theta = \theta_0 + (\theta_1 - \theta_0)e^{-kt}$ B) $\theta = \theta_0 - (\theta_1 - \theta_0)e^{-kt}$ 40. Electric field originates at	· ·]
10. Electric field offsmates at		$^{\circ}_{0}$)c $^{\circ}_{0}$) $^{\circ}_{0}$ - $^{\circ}_{0}$ +($^{\circ}_{1}$ + $^{\circ}_{0}$)	[]
A) Positive chargeC)Neither positive nor negative charge	B) Negative chargeD) Bothe positive and	negative charge		
UNI	IT-II			
LINEAR DIFFERENTIAL EQUATIONS		R (CONSTANT COEFFIC	IENTS)	
1. The particular integral of the differential equation	on \rightleftharpoons $(D^2 - 1)y = x$	is	[]
A) -x B) x		D) $e^{\frac{x^2}{2}}$		
2. The particular integral of the differential equation A) e^{2x} B) $\frac{1}{2}e^{2x}$	on $(D^2 + 5D + 6) = 0$ C) $\frac{1}{2}e^{2x}$	e ^{2x} 1s D) 0	L]
3. The particular integral of $\frac{1}{(D-2)^2}^2 3 = \cdots$	20		[]
A)0 B) 3 4. The complementary function of $(D^2 - 9)y = 0$	$C)\frac{1}{4}$	D) $\frac{3}{4}$	г	1
A) $c_1 e^{-x} + c_2 e^x$ B) $c_1 e^{-3x} + c_2 e^{3x}$	C) $c_1 e^{-9x} + c_2 e^{9x}$	D) Ce^{3x}	L	J
5. The C. F of the equation $(D^3 - D)y = x$ is			[]
A) $y = c_1 e^x + c_2 e^{-x}$ B) $c_1 + c_2 e^x + c_3 e^{-x}$ 6. The P.I of the equation $(D^2 + 4)y = \cos 2x$ is		D) $y = c_1 + c_2 x e^x +$	c_3xe^{-x}]
A) $\frac{x}{4}cos2x$ B) $\frac{x}{4}sin2x$	C) $\frac{-x}{4}$ sin2x	D) ±2i		_
7. To find P.I for the D.E. of the form $f(D)y = si$ A) $-a^2$ B) a^2	n(ax + b), we replace C) $-a$	e D ² by D) a	[]
8. Number of arbitrary constants in the particular	,	are `	[]
A) 4 B) 2 9. The value of $\frac{1}{D^2+1}e^x$ is	C) 0	D) 1	[]
A) $\frac{1}{2}$ B) $\frac{1}{2}e^{x}$	$C)\frac{1}{2}e^{-x}$	D) 0		
10. What are the roots of auxiliary equation of (DA) -2,3 B) 2,3	$(D^2 - D - 6)y = 0$ are C) 0,2	D) 1,3]
11. The general solution of $(D^2 - D - 2)y = 0$ is- A) $y = c_1 e^{-x} + c_2 e^{-2x}$ B) y		, ,	[]
C) $y = c_1 e^{-x} + c_2 e^{2x}$ D) $y = c_1 e^{-x} + c_2 e^{2x}$	$= c_1 e^{-x} + c_2 e^x$		r	,
12. The particular integral of the differential equation $A = 0$ $B = \frac{1}{2}(\cos x)$	tion $(D+1)y = \sin x$ C) $\frac{1}{2}(\sin x - \cos x)$		L	j
2 \	ζ .			

13. The number of arbitrary c	constants in a solution	of a D.E of order 'n' i	S	[]
A) $n + 1$	B) <i>n</i>	C) $n - 1$	D) n^2		
14. The general solution of (D				[]
$A) y = c_1 e^{-ax} + c_2 e^{ax}$		B) $y = C_1 \cos a x + C_2$	sin a x		
C) $C_1 + C_2 \sin a x$		D) $y = C_1 \cosh a x + C_1$	₂ sinh a x		
15. The value of $D^2 x^2$	=			[]
A) 1	B) 2	C) 0	D) 2x		
16. The roots of $y=c_1 + (c_2 +$	xc ₃)e -x			[]
	B) 0,-1,-1	C) 0,-1,1	D) 0,2,3		
17. The roots of $y=c_1 e^{-x} + (c_1 e^{-x})$	$c_2 + xc_3)e^{-2x}$			[]
A) 1,1,1		C) 0,-1,1	D) 0,2,2		
18. The root s of $y=c_1 e^{-x} + c_2$				[]
		C)-1,-2	D) -1,2		
19. The roots of $y=e^{-x}$ (c 2 co				[]
· · · · · · · · · · · · · · · · · · ·	/ —	C) -2±i	D) 2±i		
20. In the method of variation]
A) 1	B)2	,	D) 0		
21. The P.I in the method of v	rariation of parameters	s is of the form $y_p = A$.	u(x) + B.v(x), then $A =$	-	_
12R	- 11R	G) 11R	¬ 2 11R	L	J
$A) - \int \frac{vR}{uv' - vu'} dx$	av va.	uv ivu	D) $\int \frac{vR}{uv'-vu'}dx$		
22. The complementary functi				[]
$A) y = c_1 e^{4x}$		· •	D) $y = c_1 e^{4x} + c_2 e^{-4x}$	łх	
23. The roots of the differentia	al equation ($D^2 + 16$)	y = 0		[]
*	B) ±2i	C) ±4 <i>i</i>	D) 4		
24. The roots of the differentia]
,	B) 2	C) 3	D) $\pm 2i$		
25. The roots of the differentia				[]
· · · · · · · · · · · · · · · · · · ·	B) ±a	,	D) <i>x</i>		
26. The general form of Cauc				[]
A) $(a_1x^2D^2 + a_2xD + a_3xD + a_3x$	$a_3)y = f(X)$	$B) (XD^2 + a_2xD + a_3)$)y=f(X)		
C) $(D^2 + a_2D + a_3)y =$		D) None		_	
27. The differential equation of I				[]
A) $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{c} =$	0 B) $L \frac{di}{dt} + \frac{q}{a} = 0$	C) $L \frac{di}{dt} + \frac{q}{t} + i = 0$	D) None		
28. In L-C-R circuit R represe		aı ı		[]
A) Roaster	B) Rays	C) Resistance	D) Restrict		,
29. If reduce variable into con		,	,	+x	
then RHS replace			77 1 0 (]
-	B) 3cosz	C) cos2z	D) 3cos2z	_	_
30. If reduce variable into con	,	,	•		
then RHS replace				[]
A) $e^z \cos 2z$	B) $e^z \cos z$	C) $e^{2z} \cos 2z$	D) 3 cosz		
31. The particular integral of			,	г	1
	B) 1		D) sinx	L]
32. The particular integral of t	,	,	<i>'</i>	[1
	_			L]
A) $\frac{-x}{6}e^{-3x}$	$B) \frac{-x}{6} e^{3x}$	C) $\frac{x}{6}e^{-3x}$	D) 0		

33. The particular integral	of $(D^2 - 4)y = \sin 2$	x		[]
A) $\frac{-1}{2}$ cos 2 x	B) $\frac{1}{8}$ cos 2 x	C) $\frac{-1}{2}$ sin 2 x	D) $\frac{1}{2}$ sin 2 x		
34. Reduce the equation (O	O	Ü		
Coefficients	(Where $\theta = d/dz$)	=		[]
	$y = Z B $ $(\theta^2 + 1)y =$				
35. Let i be the current an the resistance $R =$		condenser plate at time	e t. Then Voltage drop a	across []
A) qi	B) Ri	$C)\frac{q}{c}$	D) $R \frac{dq}{dt}$	L	J
36. The particular integral	<i>'</i>	c	dt	Γ	1
	B) Not exist	C) 0	D) x	L	,
37. The value of $\frac{1}{D^2+1}e^x$ i	s=	-, -	,	[]
A) $\frac{1}{2}e^{x}$	B) e^x	C) $\frac{1}{2}e^x$	D) e^x	_	
38. The P.I of the equation	$(D^2 + 1)y = cosx$ is	3	,	Γ]
A) $\frac{1}{2}e^{x}$ 38. The P.I of the equation A) $\frac{x}{2}cos2x$	B) $\frac{x}{1} \sin 2x$	C) $\frac{x}{2}$ sin x	D) $-\frac{x}{2}sin2x$	L	J
39. The general solution of	2		2	[1
	$dx^2 + y = 0$ is $c_1 cos x - 1$		$C_0 e^{-x}$ D) $C_1 e^x$	L	J
40. Let i be the current an				across	
	ictance L =	-	_	[]
A) $R \frac{dq}{dt}$	B) Ri	C) $\frac{q}{c}$	D) $L_{dt^2}^{d^2q}$		
		C	ut		
	<u>.</u>	UNIT –III			
	<u>I</u> PARTIAL DIFFE	<u>JNIT –III</u> RENTIAL EQUAT	ΓΙΟΝS		
1. The equation $\frac{\partial^2 z}{\partial x^2} + 2x^2$				ſ	1
1. The equation $\frac{\partial^2 z}{\partial x^2} + 2x^2$ A) 2, 1		rder and degree		[]
A) 2, 1	$y\left(\frac{\partial z}{\partial x}\right)^2 + \frac{\partial z}{\partial y} = 5 \text{ is of o}$ B) 2, 2	rder and degree C) 1, 1	D) 1, 2	[]
1. The equation $\frac{\partial^2 z}{\partial x^2} + 2xy$ A) 2, 1 2. The partial differential A A) $xp + yq = 0$	$y\left(\frac{\partial z}{\partial x}\right)^2 + \frac{\partial z}{\partial y} = 5 \text{ is of o}$ B) 2, 2 equation obtained by el	rder and degree C) 1, 1	D) 1, 2	$\left[\frac{y}{x}\right)$]
A) 2, 1 2. The partial differential A $xp + yq = 0$ 3. The partial differential A	$y\left(\frac{\partial z}{\partial x}\right)^2 + \frac{\partial z}{\partial y} = 5 \text{ is of o}$ B) 2, 2 equation obtained by el B) $xp - yq = 0$ equation obtained by el	rder and degree C) 1, 1 iminating the arbitrary C) $xp = yq$	D) 1, 2 function f from $z = f$ D) $p + q = 0$]
A) 2, 1 2. The partial differential A) $xp + yq = 0$	$y\left(\frac{\partial z}{\partial x}\right)^2 + \frac{\partial z}{\partial y} = 5 \text{ is of o}$ B) 2, 2 equation obtained by el B) $xp - yq = 0$ equation obtained by el	rder and degree C) 1, 1 iminating the arbitrary C) $xp = yq$	D) 1, 2 function f from $z = f$ D) $p + q = 0$	$\left[\frac{y}{x}\right)$]
A) 2, 1 2. The partial differential x A) $xp + yq = 0$ 3. The partial differential $x = ax + (1 - a)y + b$ A) $xp + yq = 0$	$y\left(\frac{\partial z}{\partial x}\right)^2 + \frac{\partial z}{\partial y} = 5 \text{ is of o}$ B) 2, 2 equation obtained by el B) $xp - yq = 0$ equation obtained by el B) $xp - yq = 0$	rder and degree C) 1, 1 iminating the arbitrary C) $xp = yq$ iminating the arbitrary C) $xp = yq$	D) 1, 2 function f from $z = f$ D) $p + q = 0$	[]
A) 2, 1 2. The partial differential a A) $xp + yq = 0$ 3. The partial differential a	$y\left(\frac{\partial z}{\partial x}\right)^2 + \frac{\partial z}{\partial y} = 5 \text{ is of o}$ B) 2, 2 equation obtained by el B) $xp - yq = 0$ equation obtained by el B) $xp - yq = 0$ B) $xp - yq = 0$ and on the content of the c	rder and degree C) 1, 1 iminating the arbitrary C) $xp = yq$ iminating the arbitrary C) $xp = yq$ d in PDE are	D) 1, 2 function f from $z = f$ (D) $p + q = 0$ constants a and b in D) $p + q = 1$]
A) 2, 1 2. The partial differential a A) $xp + yq = 0$ 3. The partial differential a	$y\left(\frac{\partial z}{\partial x}\right)^2 + \frac{\partial z}{\partial y} = 5 \text{ is of o}$ B) 2, 2 equation obtained by el B) $xp - yq = 0$ equation obtained by el B) $xp - yq = 0$ and the variables involved B) 2 or more	rder and degree C) 1, 1 iminating the arbitrary C) $xp = yq$ iminating the arbitrary C) $xp = yq$	D) 1, 2 function f from $z = f$ (D) $p + q = 0$ constants a and b in	[]
A) 2, 1 2. The partial differential a A) $xp + yq = 0$ 3. The partial differential a	$y\left(\frac{\partial z}{\partial x}\right)^{2} + \frac{\partial z}{\partial y} = 5 \text{ is of o}$ B) 2, 2 equation obtained by el B) $xp - yq = 0$ equation obtained by el B) $xp - yq = 0$ Holdent variables involved B) 2 or more	rder and degree C) 1, 1 iminating the arbitrary C) $xp = yq$ iminating the arbitrary C) $xp = yq$ d in PDE are C) 2	D) 1, 2 function f from $z = f$ (D) $p + q = 0$ constants a and b in D) $p + q = 1$ D) 0	[]
A) 2, 1 2. The partial differential a A) $xp + yq = 0$ 3. The partial differential a	$y\left(\frac{\partial z}{\partial x}\right)^{2} + \frac{\partial z}{\partial y} = 5 \text{ is of o}$ B) 2, 2 equation obtained by el B) $xp - yq = 0$ equation obtained by el B) $xp - yq = 0$ and the variables involved B) 2 or more B) $\frac{e^{xy}}{y}$	rder and degree C) 1, 1 iminating the arbitrary C) $xp = yq$ iminating the arbitrary C) $xp = yq$ d in PDE are C) 2 C) ye^{xy}	D) 1, 2 function f from $z = f$ D) $p + q = 0$ constants a and b in D) $p + q = 1$ D) 0	[]
A) 2, 1 2. The partial differential e^{A} A) $xp + yq = 0$ 3. The partial differential e^{A} e^{A} A) e^{A} A) e^{A} A) e^{A} 4. The number of independent e^{A} A) 1 5. If e^{A} B = e^{A} A) e^{A} C = e^{A} A) e^{A} C = e^{A} C	$y\left(\frac{\partial z}{\partial x}\right)^{2} + \frac{\partial z}{\partial y} = 5 \text{ is of o}$ B) 2, 2 equation obtained by el B) $xp - yq = 0$ equation obtained by el B) $xp - yq = 0$ And the variables involved B) 2 or more B) $\frac{e^{xy}}{y}$ equation obtained from	rder and degree C) 1, 1 iminating the arbitrary C) $xp = yq$ iminating the arbitrary C) $xp = yq$ d in PDE are C) 2 C) ye^{xy} $z = ax + by + ab$ by	D) 1, 2 function f from $z = f$ D) $p + q = 0$ constants a and b in D) $p + q = 1$ D) 0 D) $\frac{e^{xy}}{x}$ eliminating a and b is	[]
A) 2, 1 2. The partial differential e^{A} A) $xp + yq = 0$ 3. The partial differential e^{A} e^{A} A) e^{A} A) e^{A} A) e^{A} The number of independent e^{A} A) 1 5. If e^{A} e^{A} A) e^{A} C. The partial differential e^{A} A) e^{A} A) e^{A} C. The partial differential e^{A} A) e^{A}	$y\left(\frac{\partial z}{\partial x}\right)^{2} + \frac{\partial z}{\partial y} = 5 \text{ is of o}$ B) 2, 2 equation obtained by el B) $xp - yq = 0$ equation obtained by el B) $xp - yq = 0$ ndent variables involved B) 2 or more B) $\frac{e^{xy}}{y}$ equation obtained from B) $xp - yq = z$	rder and degree C) 1, 1 iminating the arbitrary C) $xp = yq$ iminating the arbitrary C) $xp = yq$ d in PDE are C) 2 C) ye^{xy}	D) 1, 2 function f from $z = f$ D) $p + q = 0$ constants a and b in D) $p + q = 1$ D) 0 D) $\frac{e^{xy}}{x}$ eliminating a and b is	[[[]
A) 2, 1 2. The partial differential a A) $xp + yq = 0$ 3. The partial differential a a b c c c c c c d	$y\left(\frac{\partial z}{\partial x}\right)^{2} + \frac{\partial z}{\partial y} = 5 \text{ is of o}$ B) 2, 2 equation obtained by el B) $xp - yq = 0$ equation obtained by el B) $xp - yq = 0$ ndent variables involved B) 2 or more B) $\frac{e^{xy}}{y}$ equation obtained from B) $xp - yq = z$	rder and degree C) 1, 1 iminating the arbitrary C) $xp = yq$ iminating the arbitrary C) $xp = yq$ d in PDE are C) 2 C) ye^{xy} $z = ax + by + ab$ by C) $2xp+2yq=z$	D) 1, 2 function f from $z = f$ (D) $p + q = 0$ constants a and b in D) $p + q = 1$ D) 0 D) $\frac{e^{xy}}{x}$ eliminating a and b is D) $2xp-2yq=z^2$	[[[]

]

]

]

]

ſ

28. If
$$u = log x y$$
 then $\frac{\partial^{2} u}{\partial x^{2}} =$ []

A) $\frac{1}{x}$ B) $-\frac{1}{x}$ C) $-\frac{1}{x^{2}}$ D) $\frac{1}{xy}$

29. The solution of $\frac{1}{x} dx = \frac{1}{y} dy$ is []

A) $x = y$ B) $x = cy$ C) $x + y = c$ D) $x - y = c$

30. $log x = y + c$ is the solution of $\frac{1}{x} dx = \frac{1}{y} dy$ C) $\frac{1}{x} dx = \frac{1}{y} dy$ D) $dy = dx$

31. The degree of
$$\left(\frac{\partial^2 u}{\partial t^2}\right)^2 - c^2 \left(\frac{\partial^2 u}{\partial x^2}\right)^2 = 0$$

A) 2

B) 3

C) 1

D) 0

32. Which of the following is not a homogeneous equation? B) $\frac{\partial^2 u}{\partial t^2} + \frac{\partial^2 u}{\partial x^2}$

A) $\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2}$ C) $\frac{\partial^2 u}{\partial x^2} + \left(\frac{\partial^2 u}{\partial x \partial y}\right)^2 + \frac{\partial^2 u}{\partial x^2} = x^2 + y^2$ D) $\frac{\partial u}{\partial t} - T \frac{\partial^2 u}{\partial x^2} = 0$

33. The complementary function of $(D^2 - DD' - 6D'^2)z = 0$

A) $\varphi_1(y - 2x) + \varphi_2(y + 3x)$ B) $\varphi_1(y + 2x) + \varphi_2(y + 3x)$ C) $\varphi_1(y - 2x) + \varphi_2(2y - 3x)$ D) $\varphi_1(y - 2x) + \varphi_2(2y + 3x)$

34. The particular integral of $(2D^2 + 7DD' - D'^2)z = 0$ D) 2

35. The complementary function of $(D^2 - 2DD')z = \sin x \cos 2y$]

A) $\varphi_1(y) + \varphi_2(y - 2x)$ B) $\varphi_1(2y) + \varphi_2(y + 2x)$ D) $\varphi_1(y) + \varphi_2(y + 2x)$ C) $\varphi_1(y) + \varphi_2(2y - x)$

36. The particular integral of $(D^2 - 2DD' + D'^2)z = e^{x^2 + 2y}$

B) e^{x-2y}

37. The particular integral of $(2D^2 + 7DD' - D'^2)z = e^x$ 1

C) $-\frac{1}{2}e^{x}$ A) $-e^x$

38. What is the degree of the homogeneous partial differential equation, $\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$ A) Second-degree B) First-degree C) Third-degree D) Zero-degree

39. The particular integral of $(D^2 - 2DD' + D'^2)z = x^3$

C) $-\frac{x^5}{20}$

40. The solution of $z = px + qy + 2\sqrt{pq}$ is -----

 $B)z = ax + by + 4a^2b^2$ A) $z = ax + by + 2\sqrt{a^2 + b^2}$ $C)z = ax + by + \sqrt{2ab}$ $D)z = ax + by + 2\sqrt{ab}$

UNIT-IV

VECTOR DIFFERENTIATION

If $\Phi = x^2 + y^2 + z^2$ 3xyz then curl(grad Φ) = A)0B)6x+6y+6zD) -10xC) x+y+z

The greatest value of directional derivative of function $f = y^2 + 2$ at (0,2,-1)D) 4 B) 2

3. The grad f of the function f=xyz at (1,1,1)]

4	If $\overline{a} = \overline{i} + 2\overline{j} - 3\overline{k}$ then $ \overline{a} $	=]]
	$_{ m A)}\sqrt{15}$	B) $\sqrt{14}$	C) $\sqrt{17}$	D) $\sqrt{19}$		
5	If $\overline{f} = x\overline{i} + y\overline{j} - z\overline{k}$ then ∇		C) 2	D) 2	[]
	6. If $\overline{f} = \overline{i} + \overline{j} + \overline{k}$ then $\nabla x \overline{f} = \overline{k}$	B) 1 =	C)2	D) 3	[]
	A) 3	B)2	C)1	D) 0	L	ı
	7. If $\Phi = x^2 + y^2 + z^2 - 3xyz$ the		C)	DV	[]
	A)0 8. If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ then	B) $6x+6y+6z$	C)x+y+z	D)6	Г]
	A)3	B) 0	C) -2	D) None	Ĺ	J
	•	tional derivative of function f	$x = x^2$ at (2,-8,-1)	,	[]
	A) 1	B) 2	C) 3	D) 4		
	10. The grad f of the function				[]
	A) $\overline{i} + \overline{j} + \overline{k}$	- ·	C) $9\overline{i} + 9\overline{j} + 9\overline{k}$	D) 0		
	11. If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ then	_	_	_]
	A) 0	B) 3xi	C) 3y <i>j</i>	D)3z <i>j</i>	_	_
	12. If \overline{a} is a constant vector the		(n) =	D) =	[]
	$A) 2\overline{a}$	$(B) -2\overline{a}$	C) \overline{a}	D)- \overline{a}	-	,
	13. If $\overline{f} = \overline{i} + \overline{j} - \overline{k}$ then $\nabla x \overline{f}$		C)1	D)0]
	A) 3	B)2 $\overline{a} = \overline{b} = \overline{b}$	C)1	D)0	r	1
	14. If \overline{a} and b are Irrotational		C)Frag vactor	D) scalar]
	15. If $\overline{r} = x\overline{i}$ then $\nabla .\overline{r}$ is	B) Irrotational vector	C)Free vector	D) Scalai	Г	1
	A) 0	B) 1	C) 3	D) 4	L]
	*	ectional derivative of function	,	· ·	[]
	A) 1	B) 2	C) 3	D) 4	L	J
	17. div \overline{f} is denoted by	,	-,-	,	[]
		B) $\nabla x \overline{f}$	$C)\overline{V} + \overline{f}$	D) ∇ - f	L	,
	18. If $f = x + y + z$ then grad	•	<i>C).</i> . j		Г	1
	A)0	B) $2x\overline{i} + 2y\overline{j} + 2z\overline{k}$	$C)\overline{i} + \overline{j} + \overline{k}$	D) 3	L	J
	19. The grad f of the function			D) 3	[]
	$A)\overline{i} + \overline{j} + \overline{k}$		C) $9\overline{i} + 9\overline{j} + 9\overline{k}$	D) 0	L	J
		$(x)\bar{j} + z(x + y)\bar{k}$ then div $\bar{f} = 0$	c)	2)0	Γ]
	A) $x + y + z$	B) $2(x + y + z)$	C) $3(x + y + z)$	D) 0	_	•
	21. Physical interpretation of				[]
	A) Max.rate of change	e B) Min.rate of change	C) Max. or Min.	D) None		
	22. If $\overline{r} = y\overline{j}$ then $\nabla .\overline{r}$ is				[]
	A) 0	B) 1	C) 3	D)4	_	
	_	ectional derivative of function		D) 4]
	A) 1	B)2 $A = A = A = A = A = A = A = A = A = A =$	C) 3	D)4	г	1
	24. If $n_1 = 2l - j - \kappa$, $n_2 = 13$	= $4\bar{\iota} - \bar{\jmath} - 4\bar{k}$ and θ is the ang	13 13		L]
		B) $\frac{-2}{\sqrt{198}}$	C) $\frac{13}{198}$	D) 0		
	25. If curl $\overline{f} = \overline{0}$ then \overline{f} is			_]
		B) Irrotational vector C) Free		lar	г	7
		fies Laplacian equation, thena		D) 0	L]
	A) 1	B) 2	C) 3	D) 0		

27. If $\Phi = x^2 + y^2 + z^2$ the	n grad $\Phi =$			[]
A) 0	B) $2x\overline{i} + 2y\overline{j} + 2z\overline{k}$ C)	$(y+z)\overline{i} + (z+x)\overline{j} +$	$-(x+y)\overline{k}D)Nc$	one	
28. If $u = x^2 + y^2 + z^2$ and	$\overline{V} = x\overline{I} + y\overline{J} + z\overline{k}$, then ∇ . $(u\overline{V})$) =		[]
A) u	B) 2u	C) 3u D) 5u			
29. If $\overline{r} = z\overline{k}$ then $\nabla \cdot \overline{r}$ is				[]
A) 0	B) 1	C)3	D) 4		
30. The grad f of the function				[]
$A)\overline{i} + \overline{j} + \overline{k}$	B) $4\overline{i} + 4\overline{j} + 4k$	C) $9\overline{i} + 9\overline{j} + 9\overline{k}$	D) 0		
31. Curl \overline{f} is denoted by				[]
$_{ ext{A)}} abla.\overline{f}$	B) $\nabla x \overline{f}$	C) $\nabla + \overline{f}$	D) ∇ - \overline{f}		
32. The greatest value of dir	rectional derivative of function	$f = y^2$ at (8,2,-1)		[]
A) 1	B) 2	C) 3	D) 4	-	-
33. If $\overline{a} = -\overline{i} + 2\overline{j} + 3\overline{k}$ then	$ \overline{a} =$			[]
$A)\sqrt{15}$		C) $\sqrt{17}$	D) $\sqrt{19}$		
34. If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$, $r =$	$ \bar{\mathbf{r}} $, then $\frac{\partial \mathbf{r}}{\partial \mathbf{v}} =$			[]
A) x	B) r	C) $\frac{x}{r}$	D) $\frac{r}{x}$		
35. If $\Phi(x,y,z) = c$ is a surfa	ce then grad (Φ) is		Α	[]
A) Normal to $\Phi = c$	B) tangent to $\Phi = c$	C) binormal to $\Phi = c$	D)None		
36. If $a=xy + yz + zx$ then	<u> </u>		_	[]
A) 0	B) $2x\overline{i} + 2y\overline{j} + 2z\overline{k}$ C) $(y -$	$+z)\overline{i}+(z+x)\overline{j}+(x)$	$+y)\overline{k}$ D)Nor	ıe	
37. If $\operatorname{div} \overline{A} = 0$ then \overline{A} is \overline{A}	called			[]
· · · · · · · · · · · · · · · · · · ·	B)Irrotational vector	C)free vector D)con	stant vetor		
38. If $\overline{r} = xi + yj + zk$ then $\nabla f(r)$	-1 · ·			[]
A) $\frac{f^1(r)\overline{r}}{r}$	$B)\frac{f^{1}(r)}{r}$	C) $f^1(r)\overline{r}$	D) $\frac{1}{r}$		
39. If $\overline{r} = xi + yj + zk$ and if (r^n)	\overline{r}) is solenoidal then n =		1	[]
A) 3	B) -3	C) 1	D) -2		
40. The greatest value of dia	rectional derivative of function	$f = y^2 + 5at (0,2,0)$		[]
A) 1	B) 2	C) 3	D) 4		

<u>UNIT-V</u> **VECTOR INTEGRATION**

1.	For any closed surfa	ace $S, \iint_S curl \overline{F} \cdot \overline{n} d$	s =		[
	A) 0	$^{\mathrm{B}})2ar{F}$	C) \bar{n}	D) $\oint \overline{F} \cdot \overline{dr}$		
2.	$\int \overline{r} x \overline{n} dS =$				[
	A) 0	B) 2	C) 3	D)None		
3.	Given a vector field	F, Gauss divergence	e theorem states that		[
	A) $\int_{v} \nabla \cdot \overline{F} dv = \int_{S} \overline{F} \cdot \overline{n} dS$ B) $\int_{S} M dx + N dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$					
	$C)\int_{v} \overline{F}.d\overline{r} =$	$= \int_{s} curl \overline{F. ds} D) \iint_{s}$	$\overline{F}.\overline{n}dS = \iiint_{v} (\nabla.\overline{F})d$	ľv		

т. 1	he value of $\int_{c} (2xy^2 dx +$	- 2x ² ydy + dz) along	a path c joining (0, 0, 0) and (1, 1, 1) is	[]
	A) 0	B) 2	C) 4	D) 6		
5. If	$\overline{A} = \nabla \phi$ then the value of			D) 4	[]
6. Jf	A)0 $\nabla f. d\bar{r} =$	B) 1	C)9	D) 4	[]
7 T	A) F	B) 2f	C) 0	D) None	г	1
/. 1	he value of the line integ A)-1	B) 0	C) 2	D) 3	L	J
8. If	$\int_{\mathcal{V}} [f \nabla^2 g + \nabla f \cdot \nabla g] dV$	5		,	[]
	A) Green's First Id C)Green's Third Id	•	en's Second Identity en's Fourth Identity			
9. If	$\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$, then	•	ch s routh identity		ſ	1
	A) I	B) <u>r</u>	C) 0	D) None	L	,
10. T	he grad f of the function				[]
11 Т		B) $4\overline{i} + 4\overline{j} + 4\overline{k}$		D) 0	г	1
11. 1	he work done by the force A) $\int_{P}^{Q} div(\bar{F}) dv$			D) $\int_{P}^{Q} curl(\overline{F})$	L	J
12 fr	$A) \int_{P} aiv(F) av$ $.ndS =$	B) $\int_{P} F \times ar$	$C) \int_{P} F.ar$	D) $\int_{P} curl(\mathbf{F})$	г	1
12. JI	A) V	B) 3V	C) 4V	D) 5V		J
13. T	he value of $\oint f \nabla g . d\overline{r}$ is	,	-,	,	[]
	A) $\int_{C} \varphi \overline{f} \cdot d\overline{r} - \int_{S} c \imath$	$url(grade\varphi) \times \overline{f}ds$	B) $\int (\nabla f \times \nabla g) . \overline{n} ds$			
	$C)\int (\nabla f + \nabla g).\overline{n}d$		D)None			
14.∫	$\phi \times dV =$				г	1
	Υ				[J
	A) 	B) 0	C) V	D) $\oint \bar{n} \emptyset ds$	L	J
	A) φ necessary and sufficient	,	,	, 3		J
	A) φ necessary and sufficient is that	t condition that the line	e integral $\int_{c} A dr = 0$	for every closed curve	[]
c	A) φ necessary and sufficient is that A) divA= 0	t condition that the line B) divA≠0	,	, 3]
c	A) φ necessary and sufficient is that	t condition that the line B) divA≠0 heorem is	e integral $\int_{c} A \cdot dr = 0$ to C) curl A=0	for every closed curve]
c	A) ϕ In necessary and sufficient is that A) divA= 0 the condition for Stokes that A) $\int_{v} \nabla \cdot \overline{F} dv = \int_{s} \overline{F} \cdot \overline{n} dv$	t condition that the line B) $divA\neq 0$ heorem is	e integral $\int_{c} A \cdot dr = 0$ to C curl $A=0$ $B) \int_{s} M dx + N dy = 0$	for every closed curve D) curlA $\neq 0$ $= \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy$]
c 16. T	A) ϕ In necessary and sufficient is that A) divA= 0 the condition for Stokes that A) $\int_{v} \nabla . \overline{F} dv = \int_{s} \overline{F} . \overline{n} dv$ C) $\oint_{c} \overline{F} . \overline{dr} = \int_{s} cv$	t condition that the line B) divA \neq 0 heorem is dS $url \ \bar{F} \cdot \bar{n} ds$	e integral $\int_{c} A \cdot dr = 0$ for $\int_{c} A \cdot$	for every closed curve D) curlA $\neq 0$ $= \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy$ $\int_{R} (\nabla \cdot \overline{F}) dv$	[[]
c 16. T	A) ϕ In necessary and sufficient is that A) divA= 0 the condition for Stokes that A) $\int_{v} \overline{v} \cdot \overline{F} dv = \int_{s} \overline{F} \cdot \overline{n} dv$ C) $\oint_{c} \overline{F} \cdot \overline{dr} = \int_{s} cv$ The value of $\int_{s} \overline{F} \cdot \overline{n} dS$	t condition that the line B) divA \neq 0 heorem is dS $url \ \bar{F} \cdot \bar{n} ds$	e integral $\int_{c} A \cdot dr = 0$ for $\int_{c} A \cdot$	for every closed curve D) curlA $\neq 0$ $= \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy$ $\int_{R} (\nabla \cdot \overline{F}) dv$	[+ z ² =	
c 16. T	A) ϕ In necessary and sufficient is that A) divA= 0 the condition for Stokes that A) $\int_{v} \overline{v} \cdot \overline{F} dv = \int_{s} \overline{F} \cdot \overline{n} dv$ C) $\oint_{c} \overline{F} \cdot \overline{dr} = \int_{s} cv$ The value of $\int_{s} \overline{F} \cdot \overline{n} dS$	t condition that the line B) $divA\neq 0$ heorem is dS $url \ \overline{F} \cdot \overline{n} ds$	e integral $\int_{c} A \cdot dr = 0$ for $\int_{c} A \cdot$	for every closed curve D) curlA $\neq 0$ $= \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy$ $\int_{R} (\nabla \cdot \overline{F}) dv$	[$ [$ $ + z^2 = $]
16. T	A) ϕ In necessary and sufficient is that A) divA= 0 the condition for Stokes to th	t condition that the line B) divA $\neq 0$ heorem is dS $xrl \ \overline{F} \cdot \overline{n} ds$ where $\overline{F} = x\overline{i} + y\overline{j} + z$ B) 256π	e integral $\int_{c} A \cdot dr = 0$ to integral $\int_{c} A \cdot dr = 0$ to $\int_{c} C \cdot dr = 0$ to $\int_{c} C \cdot dr = 0$ to $\int_{c} \frac{1}{N} dx + N dy = 0$ Differentially $\int_{c} \frac{1}{N} dx + N dy = 0$ Differentially $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N d$	for every closed curve D) curlA $\neq 0$ $= \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy$ $\int_{0}^{\pi} (\nabla \cdot \overline{F}) dv$ of the sphere $x^{2} + y^{2} $	[+ z ² = 	
16. T 17. T 16is 18. U	A) ϕ In necessary and sufficient is that A) divA= 0 the condition for Stokes to t	t condition that the line B) divA $\neq 0$ heorem is dS $xrl \ \overline{F} \cdot \overline{n} ds$ where $\overline{F} = x\overline{i} + y\overline{j} + z$ B) 256π	e integral $\int_{c} A \cdot dr = 0$ to integral $\int_{c} A \cdot dr = 0$ to $\int_{c} C \cdot dr = 0$ to $\int_{c} C \cdot dr = 0$ to $\int_{c} \frac{1}{N} dx + N dy = 0$ Differentially $\int_{c} \frac{1}{N} dx + N dy = 0$ Differentially $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N d$	for every closed curve D) curlA $\neq 0$ $= \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy$ $\int_{0}^{\pi} (\nabla \cdot \overline{F}) dv$ of the sphere $x^{2} + y^{2} $	[+ z ² = 	
16. T 17. T 16is 18. U	A) ϕ In necessary and sufficient is that A) divA= 0 the condition for Stokes to th	t condition that the line B) divA $\neq 0$ heorem is dS $xrl \ \overline{F} \cdot \overline{n} ds$ where $\overline{F} = x\overline{i} + y\overline{j} + z$ B) 256π	e integral $\int_{c} A \cdot dr = 0$ to integral $\int_{c} A \cdot dr = 0$ to $\int_{c} C \cdot dr = 0$ to $\int_{c} C \cdot dr = 0$ to $\int_{c} \frac{1}{N} dx + N dy = 0$ Differentially $\int_{c} \frac{1}{N} dx + N dy = 0$ Differentially $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N dy = 0$ To $\int_{c} \frac{1}{N} dx + N d$	for every closed curve D) curlA $\neq 0$ $= \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy$ $\int_{0}^{\pi} (\nabla \cdot \overline{F}) dv$ of the sphere $x^{2} + y^{2} $	[+ z ² = 	
16. T 17. T 16is 18. U encle	A) ϕ In necessary and sufficient is that A) $\operatorname{div} A = 0$ The condition for Stokes to the condition for Stoke	t condition that the line B) divA \neq 0 heorem is dS $xrl \overline{F} . \overline{n} ds$ where $\overline{F} = x\overline{i} + y\overline{j} + z$ B) 256 π orem, the value of \iint_S	the integral $\int_{C} A \cdot dr = 0$ is the integral $\int_{C} A \cdot dr = 0$ B) $\int_{S} M dx + N dy = 0$ D) $\iint_{S} \overline{F} \cdot \overline{n} dS = \iiint_{S} \overline{k}$ Zhand S is the surface of $\nabla (x^{2} + y^{2} + z^{2})$ dS,	for every closed curve D) curlA $\neq 0$ $= \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy$ $\int_{R} (\nabla \cdot \overline{F}) dv$ of the sphere $x^{2} + y^{2} - \frac{\partial M}{\partial y} = 0$ D) 62π where S is a closed sur	[+ z ² = 	
16. T 17. T 16is 18. U encle	A) ϕ In necessary and sufficients is that A) $\operatorname{div} A = 0$ The value of $\int_{S} \overline{F} \cdot \overline{n} dS$ C) $\oint_{C} \overline{F} \cdot \overline{dr} = \int_{S} ct$ The value of $\int_{S} \overline{F} \cdot \overline{n} dS$ A) 64 Using the divergence theorem of $\int_{S} \overline{V} \cdot \overline{V} \times \overline{F} dv = \int_{S} ct$	t condition that the line B) divA \neq 0 heorem is dS $xrl \overline{F} . \overline{n} ds$ where $\overline{F} = x\overline{i} + y\overline{j} + z$ B) 256 π orem, the value of \iint_S	e integral $\int_{C} A \cdot dr = 0$ to integral $\int_{C} A \cdot dr = 0$ B) $\int_{S} M dx + N dy = 0$ D) $\iint_{S} \overline{F} \cdot \overline{n} dS = \iiint_{S} \overline{k}$ and S is the surface C) 60π $\nabla (x^{2} + y^{2} + z^{2})$ dS,	for every closed curve D) curlA $\neq 0$ $= \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy$ $\int_{R} (\nabla \cdot \overline{F}) dv$ of the sphere $x^{2} + y^{2} - \frac{\partial M}{\partial y} = 0$ D) 62π where S is a closed sur	[]
16. T 17. 7 16is 18. U enclo	A) ϕ In necessary and sufficient is that A) $\operatorname{div} A = 0$ The condition for Stokes to the condition for Stoke	t condition that the line B) $\text{divA} \neq 0$ heorem is dS $url \ \overline{F} \cdot \overline{n} ds$ where $\overline{F} = x\overline{i} + y\overline{j} + z$ B) 256π orem, the value of \iint_S B) $3V$ B) $\int_v \overline{F} dv$	the integral $\int_{C} A \cdot dr = 0$ is the integral $\int_{C} A \cdot dr = 0$ B) $\int_{S} M dx + N dy = 0$ D) $\iint_{S} \overline{F} \cdot \overline{n} dS = \iiint_{S} \overline{k}$ Example 2 in \overline{k} C) $\delta 0\pi$ $\nabla (x^{2} + y^{2} + z^{2}) dS$, C) δV C) δV	for every closed curve D) curlA $\neq 0$ $= \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dxdy$ $(\nabla \cdot \overline{F}) dv$ of the sphere $x^2 + y^2 - \frac{\partial M}{\partial y}$ where S is a closed sur D) 6V D) None	[]
16. T 17. T 16is 18. U encle 19.	A) ϕ In necessary and sufficient is that A) $\operatorname{div} A = 0$ The condition for Stokes to the value of $\int_{S} \overline{F} \cdot \overline{n} dS$ C) $\oint_{C} \overline{F} \cdot \overline{dr} = \int_{S} c n dS$ The value of $\int_{S} \overline{F} \cdot \overline{n} dS$ A) 64 Using the divergence theorem on the value of $\int_{S} \overline{r} \cdot \overline{n} dS$ A) V A) V A) V $\int_{V} \overline{V} \times \overline{F} dv = A$ A) $\int_{S} \overline{n} \times \overline{F} dS$ If $\overline{F} = (x^{2} - y^{2})\overline{1} + xy\overline{1} = 0$	t condition that the line B) $\text{divA} \neq 0$ heorem is dS $url \ \overline{F} \cdot \overline{n} ds$ where $\overline{F} = x\overline{i} + y\overline{j} + z$ B) 256π orem, the value of \iint_S B) $3V$ B) $\int_v \overline{F} dv$	the integral $\int_{C} A \cdot dr = 0$ is the integral $\int_{C} A \cdot dr = 0$ B) $\int_{S} M dx + N dy = 0$ D) $\iint_{S} \overline{F} \cdot \overline{n} dS = \iiint_{S} \overline{k}$ Example 2 in \overline{k} C) $\delta 0\pi$ $\nabla (x^{2} + y^{2} + z^{2}) dS$, C) δV C) δV	for every closed curve D) curlA $\neq 0$ $= \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dxdy$ $(\nabla \cdot \overline{F}) dv$ of the sphere $x^2 + y^2 - \frac{\partial M}{\partial y}$ where S is a closed sur D) 6V D) None	[]] ue
16. T 17. T 16is 18. U encle 19.	A) ϕ In necessary and sufficient is that A) $\operatorname{div} A = 0$ The condition for Stokes to the condition for Stoke	t condition that the line B) $\text{divA} \neq 0$ heorem is dS $url \ \overline{F} \cdot \overline{n} ds$ where $\overline{F} = x\overline{i} + y\overline{j} + z$ B) 256π orem, the value of \iint_S B) $3V$ B) $\int_v \overline{F} dv$	the integral $\int_{C} A \cdot dr = 0$ is the integral $\int_{C} A \cdot dr = 0$ B) $\int_{S} M dx + N dy = 0$ D) $\iint_{S} \overline{F} \cdot \overline{n} dS = \iiint_{S} \overline{k}$ Example 2 in \overline{k} C) $\delta 0\pi$ $\nabla (x^{2} + y^{2} + z^{2}) dS$, C) δV C) δV	for every closed curve D) curlA $\neq 0$ $= \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dxdy$ $(\nabla \cdot \overline{F}) dv$ of the sphere $x^2 + y^2 - \frac{\partial M}{\partial y}$ where S is a closed sur D) 6V D) None	[]

21. Gauss divergence theorem connectsA) line integral and a surface integralC) A line integral and a volume integral		B)A surface integral a D) Gradient of a func	[]		
22. The grad f of the function	•	,		[]	
$(A)\overline{i} + \overline{j} + \overline{k}$	B) $4\overline{i} + 4\overline{j} + 4\overline{k}$	C) $9\overline{i} + 9\overline{j} + 9\overline{k}$	D) 0		
23. $\int_{\mathcal{V}} \nabla \varphi dv =$, <u>-</u>	-	,	[]	
$A)\int_{v}\overline{n}\times\overline{F}ds$	- <i>V</i>	C) $\int_{S} \overline{n} \varphi dS$	D) None		
24. If $\overline{F} = (2x^2 - 3z)\overline{i} - 2x\overline{j}$ A) 0	$y\overline{j} - 4x\overline{k}$ then $\nabla \cdot \overline{F} = B$	C) 2x	D) 4x	[]	
25. The condition for Greens	,	C) 2x	D) 4x	[]	
	dS B) $\oint_C M dx$	$Mdx = \iint \frac{\partial N}{\partial x} = \frac{\partial N}{\partial x}$	M drdn	L a	
•	$\frac{dS}{\overline{G} \cdot dS}$ B) $\oint_{C} M dX$ $\frac{\overline{G} \cdot \overline{G}}{\overline{G} \cdot \overline{G}} = \frac{\overline{G}}{\overline{G}} = \frac{\overline{G}}{\overline$	(01 0	$\frac{\partial}{\partial x}$) $uxuy$		
v	5	•		r 1	
26. Gauss divergence theorem A) Open	B) closed		D) Zero	[]	
27. If \bar{a} , \bar{b} are two sides of a t	,	*	D) Zeio	[]	
			D) 2년 - 사회	L	
	B) $ \bar{a} \times \bar{b} $	$C) \frac{1}{2} a \times b $	D) $2 a \times b $		
28. If $\nabla \times \overline{F} = 0$ then \overline{F} is call				[]	
	B) Irrotaional vector (C) Free vector	D) scalar	· 1	
29. Gradient of a scalar variat		O\ A 1-4 do o4	D) 0	[]	
A) A vector \overline{B}	<u></u>	C) A dot product	D) 0	- 1	
30. If $\overline{F} = (2x^2 - 3z)\overline{i}$ then \overline{A}		C) 2	D) 4	[]	
31. Green's theorem is used to	B) x	C) 2x	D) 4x	[]	
A) Transform the line	e integral in a plane to a		ne same plane	L j	
	integral into triple inte		D) NI CALL		
	e integral into volume in $\int (f\nabla a - a\nabla f) \frac{\pi}{2} dSi$		D) None of these	r 1	
32. If $\int_{v} [f \nabla^{2} g - g \nabla^{2} f] dV =$ A) Green's First Iden		een's Second Identity		[]	
C)Green's Third Iden		een's Fourth Identity			
33. Curl grad $\varphi =$,	,		[]	
$A)\overline{1}$	$B)\overline{4}$	$C)\overline{2}$	D) $\overline{0}$		
34. If $\overline{F} = 2xy\overline{j}$ then $\nabla \cdot \overline{F} =$,	,	,	[]	
A) 0	B) x	C) 2x	D) 4x		
35. Unit normal vector is den	oted by			[]	
$A)\overline{n}$	$B)\overline{a}$	$C)\overline{b}$	D) 0		
36. Conservative force field is	s also known as			[]	
	B) Irrotaional vector	r C) Free vector	D) scalar		
37. The value of $\int_{S} \varphi curl \overline{f} \cdot dS$	is is			[]	
$A)\int_{c} \varphi \overline{f} . d\overline{r} - \int_{s} curl$	$(grade\varphi) \times \overline{f}ds$	$\mathrm{B})\int (\nabla f \times \nabla g).\overline{n}ds$			
$C)\int (\nabla f + \nabla g). \overline{n} ds$		D) None			
38. If S is any closed surface enclosing a volume V and $\overline{F} = x\overline{i} + 2y\overline{j} + 3z\overline{k}$ then $\iint_S \overline{F} \cdot \overline{n} dS =$					
A) V	B)3V	C) 6V	D)8V	L J	
11) V	U)3 V	C) U V	<i>D</i> / υ ν		

39. If $\nabla \times \overline{F} = 0$ then \overline{F} is called

- A) Magnetic force field
- C) Electromagnetic force field
- 40. Stokes theorem connects
 - A) A line integral and a surface integral
 - C) A line integral and a volume integral
- B) Conservative force field
- D) None
- B)A surface integral and a volume integral
- D) Gradient of a function and its surface integral