Московский Физико-Технический Институт

Кафедра Общей физики

Лабораторная работа №3.4.4

Петля гистерезиса (статистический метод).

Автор:

Глеб Уваркин 615 группа Преподаватель:

Андрей Александрович Заболотных

Цель работы:

Исследование кривых намагничивания ферромагнетиков с помощью баллистического гальванометра.

В работе используются:

Генератор тока с источником питания, тороид, соленоид, баллистический гальванометр с осветителем и шкалой, мультиметр-амперметр, лабораторный автотрансформатор(ЛАТР), разделительный трансформатор.

1 Теоретические сведения.

1.1 Предмет исследования.

К ферромагнетикам принадлежат железо, никель, кобальт, гадолиний, их многочисленные сплавы с другими металлами. К ним примыкают ферриты - диэлектрики со структурой антиферромагнетика.

Магнитная индукция ${\bf B}$ и напряженность магнитного поля ${\bf H}$ в ферромагнитном материале неоднозначно связаны между собой: индукция зависит не только от напряжённости, но и от предыстории образца. Связь между индукцией и напряжённостью поля типичного ферромагнетика иллюстрирует рис. 1. Здесь B_s - индукция насыщения, величина B_r , достигаемая в точке H=0 при возвращении из состояния насыщения, носит название остаточной индукции. Значение B=0 достигается лишь при некотором отрицательном значении $H=-H_c$. Величина H_c называется коэрцитивной силой.

Рис. 1: Петля гистерезиса ферромагнетика.

1.2 Основные формулы.

Индукция ${\bf B}$ в образце состоит из индукции, связанной с намагничивающим полем ${\bf H}$, и индукции, создаваемой самим намагниченным образцом. В системе СИ эта связь имеет вид

$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M}),\tag{1}$$

где ${\bf M}$ - намагниченность - магнитный момент единичного объёма образца, а μ_0 - магнитная постоянная.

Кривая OACD, изображающая зависимость B(H), практически совпадает с зависимостью M(H), поскольку второй член в выражении (1) - в малых полях - существенно превосходит первый.

Напряжённость магнитного поля H в тороиде зависит от тока, текущего в намагничивающей обмотке:

$$H = \frac{N_{T_0}}{\pi D}I,\tag{2}$$

где D - средний диаметр тора.

Связь между отклонением зайчика в делениях ($\Delta x \sim \varphi$) и изменением магнитной индукции $\Delta x \sim B$ в сердечнике тороида:

$$\Delta B = \mu_0 \left(\frac{d_C}{d_T}\right)^2 \frac{R}{R_1} \frac{N_{C_0}}{N_{T_1}} \frac{N_{C_1}}{l_C} \Delta I_1 \frac{\Delta x}{\Delta x_1}$$
 (3)

Формула (3) справедлива, если полные сопротивления измерительных цепей тороида и соленоида одинаковы: $R=R_1$.

Скорость подъёма кривой OA характеризуется дифференциальной магнитной проницаемостью

$$\mu_{\text{диф}} = \frac{1}{\mu_0} \frac{dB}{dH}.\tag{4}$$

2 Экспериментальная установка.

Рис. 2: Схема установки для исследования петли гистерезиса.

Схема для исследования петли гистерезиса представлена на рис. 2 . K источнику постоянного напряжения (GPR) подключён специальный генератор, позволяющий скачками менять токи в намагничивающей обмотке. Одинаковые скачки $\Delta I(\sim \Delta H)$ вызовут разные отклонения зайчика гальванометра $\Delta x(\sim \Delta B)$ на разных участках петли: на рис. 1 скачок ΔH_1 может дать и ΔB_1 на участке FD', и ΔB_2 на участке D'E'. Поэтому генератор меняет ток неравномерно: большими скачками вблизи насыщения и малыми вблизи нуля.

Ток в намагничивающей обмотке измеряется цифровым мультиметром A. Переключатель Π_1 позволяет менять направление тока в первичной обмотке.

Чувствительность гальванометра Γ во вторичной цепи можно менять с помощью магазина сопротивлений R_M . Ключ K предохраняет гальванометр от перегрузок и замыкается только на время измерения отклонений зайчика. Ключ K_0 служит для мгновенной остановки зайчика (короткое замыкание гальванометра). Переключателем Π_2 можно изменять направление тока через гальванометр.

Рис. 3: Схема установки для калибровки гальванометра.

Схема на рис. 4 отличается от схемы на рис. 2 только тем, что вместо тороида подключён калибровочный соленоид.

Сопротивление измерительных цепей тороида ($R=R_T+R_M+R_0$) и соленоида ($R_1=R_C+R_M^{'}+R_0$) должны быть одинаковыми.

Сопротивление тороида $R_T \ll R_0$ - сопротивления гальванометра, поэтому сопротивления магазина в схеме с тороидом и соленоидом отличаются на величину сопротивления соленоида $R_C: R_M^{'} = R_M - R_C$

Рис. 4: Схема установки для калибровки гальванометра.

Чтобы снять начальную кривую намагничивания, нужно размагнитить сердечник. Для этого тороид подключается к цепи переменного тока (рис. 5). При уменьшении амплитуды тока через намагничивающую обмотку от тока насыщения до нуля характеристики сердечника **В** и **Н** «пробегают» за секунду 50 петель всё меньшей площади и в итоге приходят в нулевую точку.

Рис. 5: Схема установки для размагничивания образца.

Запишем параметры установки:

$N_{T_1} = 300$	$R_C = 60 \text{ Om}$	$R_0 = 50 {\rm Om}$
$N_{T_0} = 1750$	$N_{C_1} = 435$	$R_{M}=75~\mathrm{Om}$
$d_T=1$ cm	$N_{C_0} = 825$	$I_{max} = 1.472 \text{ A}$
$\Delta x_1 = 9.5$ cm	$l_C=80$ см	$R'_{M} = 15 \text{ Om}$
D=10 cm	$d_C=7~{ m cm}$	$n_M - 10 \text{ OM}$

3 Обработка результатов.

Таблица 1: Петля гистерезиса (полученные значения).

I , м A Δx , см	1467 12.6	537 12.9	244.6 9.2	147.5 6.9	96.9 5.4	65.6 3.1	50.1	40.6	34.7 0.7
I , м A Δx , см	31.7 0.9	27.9	24.2 7.5	1.1 0.3	0 0.4	1.1 13	24.3	27.9	31.7
I , MA Δx , CM	34.7 13	40.7 23.6	50.2 22.8	65.6 23.7	96.9 18.2	147.4 17	244.4 21.4	537.3 16.7	1468 12.3
I , мА Δx , см	538 12.5	244.6 9.1	147.3 6.7	96.9 5.4	65.5	50 2	40.6	34.6 0.7	31.6
I , м A Δx , см	27.8 0.9	24.2 7.3	1 0.3	0.2 0.4	1 12.4	24.1 2.9	27.8	31.6	34.6 14.4
I , MA Δx , CM	40.7 23.5	50.2	65.6	96.9 17.5	147.5 16.6	244.5 20.3	538 16.2		

Таблица 2: Начальная кривая намагничивания (полученные значения).

I , MA Δx , CM	0 0.1	0.77 4.6	23.8	27.5 1.8	31.3	34.3 4.1	40.3 6.9
I , мА Δx , см	49.8	65.2	96.5	147.2 16.2	244.3	537 14.6	

С помощью таблиц 1 и 2, а также формул (2) и (3) построим петлю гистерезиса B=f(H). Ось H(I) проведём через середину петли. На том же графике построим начальную кривую намагничивания (см. рис (6)).

Таблица 3: Зависимость В(Н) для петли гистерезиса.

H, A/м	8175	2992	1363	822	540	365	279	226	193
В, Тл	1.73	1.55	1.37	1.24	1.14	1.06		0.99	0.97
H, A/м	177	155	135	6	0 0.82	-6	-135	-155	-177
В, Тл	0.96	0.95	0.93	0.83		0.82	0.63	0.59	0.53
H, A/м	-193	-227	-280	-366	-540	-822	-1362	-2995	-8182
В, Тл	0.46	0.28	-0.06	-0.39	-0.72	-0.98	-1.23	-1.53	-1.77
H, A/м	-2998	-1363	-821	-540	-365	-279	-226	-193	-176
B, Тл	-1.59	-1.41	-1.29	-1.19	-1.11	-1.07	-1.04	-1.02	-1.01
H, A/м B, Тл	-154 -1.00	-135 0.99	-6 -0.88	0 -0.88	6 -0.87	134 -0.70	155 -0.65	176 -0.60	193 -0.53
H, A/м В, Тл	227 -0.33	280 0.01	366 0.33	540 0.65	822 0.90	1363 1.14	2998	8187 1.66	

H, A/M0 4.3 132.6 153.3 174.4 191 224.6 277.5 B, Тл 0 0.001 0.067 0.087 0.113 0.137 0.195 0.294 H, A/M363.4 537.8 820.4 1361.5 2992.8 8192.7 B, Тл 0.432 0.638 0.846 1.585 1.077 1.377

Таблица 4: Зависимость В(Н) для начальной кривой намагничивания.

Рис. 6: Петля гистерезиса и начальная кривая намагничивания ферромагнети-ка(эксперимент).

Определим по графику коэрцитивную силу H_c и индукцию насыщения B_s , а также максимальное значение дифференциальной магнитной проницаемости $\mu_{\text{диф}}$. Полученные значения занесём в таблицу 5.

Таблица 5: Итоговые значения.

	Эксперим.	Табличн.
H_c , А/м B_s , Тл	$270 \pm 130 \\ 1.733 \pm 0.400$	140 2.12
$\mu_{\mathtt{диф}}$	1479.5 ± 521	2000

4 Вывод.

Было исследовано явление гистерезиса на примере образца стали. Полученная петля очень близка к теоретической. Были оценены значения коэрцитивной силы H_c , индукции насыщения B_s и максимальное значение дифференциальной магнитной проницаемости $\mu_{\text{пиф}}$.

Погрешность получилась достаточно большой ($\varepsilon_{H_c} \approx 50\%$, $\varepsilon_{B_s} \approx 23\%$, $\varepsilon_{\mu_{\text{диф}}} \approx 35\%$). Это можно объяснить несовершенством метода измерений - достаточно сложно уловить отклонения "зайчика"с большой точностью, а в окрестности H=0 отклонения составляли всего лишь доли сантиметра. Также сюда можно приписать устаревшее оборудование и влияние внешних электронных устройств.