Homework 3

Madilyn Simons

- 1. TODO
- 2. TODO
- 3. TODO
- 4. TODO
- 5. Assume M is a unit. Therefore there exists some $M^{-1} \in M_2(\mathbb{Z})$ such that $MM^{-1} = I_2$. We find M^{-1} using Gaussian Elimination:

$$\begin{bmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} a & b & 1 & 0 \\ 0 & \frac{ad-bc}{a} & \frac{-c}{a} & 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} a & b & 1 & 0 \\ 0 & 1 & \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix} \Leftrightarrow \begin{bmatrix} a & 0 & \frac{ad}{ad-bc} & \frac{-ab}{ad-bc} \\ 0 & 1 & \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 1 & 0 & \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ 0 & 1 & \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix}$$

Therefore $M^{-1} = \begin{bmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix}$. Since $M^{-1} \in M_2(\mathbb{Z})$, each of its elements must be integers. Its elements can only be integers if ad-bc evenly divides a, b, c, and d.

Let m be the greatest common denominator of a, b, c, and d. Let a = mx, b = my, c = mz, and d = mw for some integers x, y, z, and w that are not divisible by m. As such $ad - bc = mxmw - mymz = m^2(xw - yz)$. Since m is the greatest common denominator and m^2 is also a common denominator, $m^2 \le m$ and this is only possible if m = 1. Therefore, the greatest common denominator of a, b, c, and d is 1. If this is the case, ad - bc must be ± 1 since only ± 1 can evenly a, b, c, and d.

Next, assume $ad-bc=\pm 1$. By the last proof, M can only be a unit if $MM^{-1}=I_2$ and $M^{-1}\in M_2(\mathbb{Z})$. If ad-bc=1, then $M^{-1}=\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ and $MM^{-1}=I_2$. If ad-bc=-1, then $M^{-1}=\begin{bmatrix} -d & b \\ c & -a \end{bmatrix}$ and $MM^{-1}=I_2$.

Thus, $M \in M_2(\mathbb{Z})$ is a unit if and only if $ad - bc = \pm 1$.