Solutions to Linear Representations of Finite Groups

Bryn Elesedy* Department of Computer Science University of Oxford

July 1, 2020

Contents

2	\mathbf{Ch}	ar	ac	tε	er	\mathbf{I}	h	ec	or	\mathbf{y}																					2
	2.1														 																2
	2.2														 																2
	2.3														 	 															2
	2.4														 	 															2
	2.5														 	 															2
	2.6														 	 															2
	2.7														 	 															:
	2.8														 																9

^{*}bryn@robots.ox.ac.uk

2 Character Theory

2.1

Let V and V' be the corresponding representations. Then $\chi + \chi'$ is the character of the direct sum $V \oplus V'$. The character of the alternating square is then, for any s in the group,

$$(\chi + \chi')_{\sigma}^{2} = \frac{1}{2}((\chi(s) + \chi'(s))^{2} + \chi(s^{2}) + \chi'(s^{2}))$$

$$= \frac{1}{2}(\chi(s)^{2} + \chi(s^{2})) + \frac{1}{2}(\chi'(s)^{2} + \chi'(s^{2})) + \chi(s)\chi'(s)$$

$$= \chi_{\sigma}^{2}(s) + \chi_{\sigma}^{\prime 2}(s) + \chi(s)\chi'(s).$$

We can do the same thing for the symmetric square

$$(\chi + \chi')_{\alpha}^{2} = \frac{1}{2}((\chi(s) + \chi'(s))^{2} - \chi(s^{2}) + \chi'(s^{2}))$$

$$= \frac{1}{2}(\chi(s)^{2} - \chi(s^{2})) + \frac{1}{2}(\chi'(s)^{2} - \chi'(s^{2})) + \chi(s)\chi'(s)$$

$$= \chi_{\alpha}^{2}(s) + \chi_{\alpha}'^{2}(s) + \chi(s)\chi'(s).$$

2.2

In the permutation representation, the matrix ρ_s will be a permutation matrix, with 1 at position (i, i) if i is fixed by s and 0 on the diagonal otherwise. The character $\chi(s)$ is the trace of this matrix, so is the number of elements fixed by s.

2.3

We may choose bases $\{e_i\}$ for V and $\{e'_j\}$ V' such that $\langle e_i, e'_j \rangle = \delta_{ij}$. Then for any matrix A we have, in the given bases,

$$\langle \rho_s x, Ax' \rangle = \sum_{ij} x_i x'_j (\rho_s)_{ki} A_{kj}.$$

So the map is invariant if and only if $A = (\rho_s^{-1})^{\top}$. We can then define a representation by $\rho_s' = (\rho_s^{-1})^{\top}$, which is clearly a representation. Existence and uniqueness have therefore been established.

2.4

The map ρ_s is clearly linear and invertible, since the $\rho_{i,s}$ are linear and invertible. Further, for any f in W

$$\rho_{st}f = \rho_{2,st}f\rho_{1,st}^{-1} = \rho_{2,s}\rho_{2,t}f\rho_{1,t}^{-1}\rho_{1,s}^{-1} = \rho_{s}\rho_{t}f.$$

We can then calculate the character by expanding in a basis. Let f have components f_{ab} in a basis for W. Then (using Einstein notation)

$$(\rho_s f)_{ij} = (\rho_{2,s})_{i\alpha} (\rho_{1s}^{-1})_{\beta j} f_{\alpha\beta}.$$

We calculate the trace of ρ_s by contraction of $\rho_s e_{ij}$ with elements e'_{kl} of the dual basis, which are such that $\langle e_{ij}, e'_{kl} \rangle = \delta_{ij} \delta_{kl}$. The conclusion then follows from $\chi(s^{-1}) = \chi(s)^*$ and that $\rho_{1,s}$ is a homomorphism.

2.5

The character of the unit representation is 1, so the number of times this representation occurs in ρ is therefore $(\chi|1) = \frac{1}{|G|} \sum_{g \in G} \chi(g)$.

2.6

a) Let e_x be the basis for the permutation representation V. From each of the c orbits, take a representative arbitrarily and denote them y_i $i=1,\ldots,c$. For each orbit, we can construct an invariant in V

$$\nu_i = \sum_{g \in G} \rho_g \boldsymbol{e}_{y_i}.$$

Denote by W_i the space spanned by ν_i , which is clearly invariant under G and irreducible, W_i is fixed by G and is hence the unit representation. We can therefore decompose V into the direct sum

$$U \oplus W_1 \oplus \cdots \oplus W_c$$
.

We can notice that U cannot contain the unit representation. If it did, then there would have to be an element of U that is fixed by G, but this element would form n orbit, which contradicts the hypothesis.

- b) In the permutation representation ρ_s is a permutation matrix, so the character of the representation $\chi(s)$ is the number of elements of X that are fixed by s. Clearly, there must be $\chi(s)^2$ elements fixed by ρ_s in $X \times X$.
- c) \bullet i) \iff ii) G is doubly transitive on $X \times X$, so is transitive on X, so the diagonal Δ is an orbit. Since G is doubly transitive, Δ^c is also an orbit. So these are the only two orbits. These statements also work the other way around.
 - ii) \iff iii) is just part a)
 - iii) \iff iv) is given in the hint. $\chi = 1 + \psi$ where ψ is the character of θ . Then since $(\chi^2|1) = 2$ (two orbits) expanding the square tells us that $(\psi^2|1) = 1$. However, because ψ is real valued (all of the matrices will be real in the permutation representation) we see that $(\psi^2|1) = \frac{1}{|G|} \sum_{g \in G} \psi(s) \psi(s)^* = (\psi|\psi)$. We know that if a character η has $(\eta|\eta) = 1$ then it is the character of an irreducible representation, so θ is irreducible.

2.7

Let χ be a character of G. We know that the regular representation has character $r_G(s) = |G| \mathbb{1} \{s = e\}$. If χ vanishes on all elements apart from the identity then we have that $\chi(s) = \chi(e) \mathbb{1} \{s = e\}$. The number of times that χ contains the unit representation is the number of distinct orbits in G, which is clearly an integer. Thus, with 1 denoting the character of the unit representation,

$$(\chi|1) = \frac{1}{|G|} \sum_{g \in G} \chi(g) = \frac{\chi(e)}{|G|} \in \mathcal{Z}$$

so $\chi(e)$ is an integral multiple of |G|.

2.8

References

[Serre, 1977] Serre, J.-P. (1977). Linear representations of finite groups. Graduate texts in mathematics; 42. Springer-Verlag, New York.