一、(10分)一电话交换台每分钟收到呼唤的次数服从参数为4的泊松分布, x (1)每分钟恰有8次呼唤的概率;	Ř:	
(2) 每分钟的呼唤次数大于10的概率。		
二、(10分)将3个球随机的放入4个杯子中,求杯子中球的最大个数分别为1,	2,3的概	率
三、(15分)(1)由统计物理学知,分子运动速度的绝对值X服从Maxwell分布,	其概率密月	度
为		

/ =

$$f(x) \begin{cases} Ax^2 e^{-x^2/b}, & x > 0 \\ 0, & \text{其他} \end{cases}$$

其中 $b = \frac{m}{2kT}$, k为Boltzmann常数, T为绝对温度, m是分子的质量, 试确定常数A。

(1)研究了项格兰在1875~1951年期间,在矿山发生导致10人或10人以上死亡的事故的频繁程度,得知相继两次事故之间的时间T(以日计)服从指数分布,其概率密度为

$$f_{\tau}(t) = \begin{cases} \frac{1}{241}e^{-t/241}, & t > 0\\ 0, & 其他 \end{cases}$$

求分布函数 $F_r(t)$, 并求概率 $P\{50 < T < 100\}$.

四、(10分)某种型号的电子管的寿命X(以小时计),具有以下的概率密度,

$$f(x) = \begin{cases} \frac{1000}{x^2}, & x > 1000 \\ 0, & \sharp \text{ if } \end{cases}$$

现有一大批此种管子(设各电子管损坏与否相互独立),任取5只,问其中至少有2只寿命 大于1500小时的概率是多少?

五、(15分)设随机变量 X₁, X₂的概率密度分别为

$$f_1(x) = \begin{cases} 2e^{-2x}, & x > 0 \\ 0, & x \le 0 \end{cases}, f_2(x) = \begin{cases} 4e^{-4x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

- (1) $RE(X_1 + X_2)$, $E(2X_1 3X_2^2)$.
- (2)又设 X_1, X_2 相互独立,求 $E(X_1X_2)$.

六、(15分)某种电子器件的寿命(小时)具有数学期望 μ (未知),方差 σ^2 =400。为了估计

μ,随机的选取n只这样的器件,在时刻t=0投入测试(测试独立)直到失效,测得其寿命为

$$X_1$$
, X_2 , X_3 , X_n , 以 $\overline{X} = \frac{1}{n} \sum X_k$ 作为 μ 的估计值,为使 $P\{|\overline{X} - \mu| < 1\} \ge 0.95$,何n

至少为多少?

解:

七、(15分)利用抛掷一枚硬币的试验定义一随机过程

$$X(t) =$$

$$\begin{cases} \cos \pi t, & \text{出现} H \\ 2t, & \text{出现T} \end{cases} (-\infty < t < +\infty)$$

假设 P(H) = P(T) = 1/2, 试确定X(t)的一维分布函数 $F(x; \frac{1}{2})$; F(x; 1) 以及二维分布函数 $F(x_1, x_2; \frac{1}{2}, 1)$.

八、(10分)从数1, 2, ..., N中任取一数,记为 X_1 ; 在从1,2,..., X_1 中任取一数,记为 X_2 ; 如此继续,从1,2,..., X_{n-1} 中任取一数,记为 X_n . 说明 $\{X_n, n \geq 1\}$ 构成一齐次马氏链,并写出它的状态空间和一步转移概率.