Гонка дронов

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

В Иннополисе проводятся гонки дронов.

В гонке могут принять участие n дронов, i-й дрон пролетает единицу расстояния за t_i секунд. Гонка проводится на прямой, на которой расположены m ворот, пронумерованных от 1 до m, i-е ворота находятся на расстоянии s_i от стартовой позиции гонки.

В гонке примут участие первые k дронов с номерами от 1 до k. Величину k судьи объявляют непосредственно перед гонкой, поэтому вам необходимо проанализировать гонку для всех k от 1 до n.

Гонка проводится следующим образом.

Дроны начинают движение из точки 0 в сторону ворот, каждый со своей скоростью. У каждого дрона есть точка восстановления — последние ворота, в которых он выполнял сохранение позиции. Изначально точка восстановления каждого дрона — точка 0. Дроны каждый раз начинают двигаться из своих точек восстановления и продолжают движение, пока один или несколько дронов не оказываются в точке, где расположены ворота (возможно, различные для разных дронов). В этот момент среди всех дронов, которые оказались в каких-либо воротах, выбирается дрон с наименьшим номером. Для этого дрона производится сохранение позиции, его точка восстановления переносится в его текущую позицию. Остальные дроны мгновенно телепортируются в свои точки восстановления. После этого гонка продолжается таким же образом.

Как только дрон сохраняет позицию в последних воротах с номером m, он финиширует. Не финишировавшие пока дроны, как обычно, телепортируются в свои точки восстановления и продолжают гонку. Когда все дроны финишируют, гонка завершается.

Телепортация — очень энергоемкий процесс. Для подготовки к гонке необходимо понять, сколько суммарно телепортаций совершат все дроны до её завершения. Обозначим как c_k суммарное число телепортаций, которое совершат все дроны, если в гонке будут участвовать первые k дронов. Найдите значения c_1, c_2, \ldots, c_n .

Формат входных данных

В первой строке даны два целых числа n и m — количество дронов и ворот, соответственно $(2 \le n \le 150\,000,\, 1 \le m \le 150\,000).$

Во второй строке даны n положительных целых чисел $t_1, t_2, ..., t_n$, где t_i — количество секунд, за которое i-й дрон пролетает единицу расстояния $(1 \le t_i \le 10^9)$.

В третьей строке даны m положительных целых чисел $s_1, s_2, ..., s_m$, где s_i — позиция i-х ворот на прямой ($1 \le s_1 < s_2 < ... < s_m \le 150\,000$).

Формат выходных данных

Выведите n целых чисел c_1, c_2, \ldots, c_n .

Система оценки

Подз.	Баллы	Ограничения				Необх.
		n	m	t_i, s_i	Доп. ограничения	подзадачи
1	5	n=2	$m \leqslant 50$	$t_i, s_i \leqslant 100000$		
2	7	$n \leqslant 50$	$m \leqslant 50$	$t_i, s_i \leqslant 100000$		У, 1
3	13	$n \leqslant 1000$	$m \leqslant 5$	$t_i, s_i \leqslant 100000$		У
4	9	$n \leqslant 100000$	$m \leqslant 100000$	$t_i, s_i \leqslant 100000$	$s_{i+1} - s_i = s_1$ для всех $1 \leqslant i < m$	
5	8	$n \leqslant 100000$	$m \leqslant 100000$	$t_i, s_i \leqslant 100000$	все t_i равны	
6	10	$n \leqslant 100$	$m \leqslant 100000$	$t_i, s_i \leqslant 100000$		$\mathbb{Y}, 1-2$
7	5	$n\leqslant 100000$	$m \leqslant 100000$	$t_i \leqslant 2, s_i \leqslant 100000$		
8	7	$n \leqslant 100000$	m=2	$t_i, s_i \leqslant 100000$		
9	6	$n\leqslant 10000$	$m \leqslant 100000$	$t_i, s_i \leqslant 100000$		y, 1 - 3, 6
10	6	$n \leqslant 50000$	$m \leqslant 100000$	$t_i, s_i \leqslant 100000$		Y, 1-3, 6, 9
11	8	$n\leqslant 100000$	$m\leqslant 100000$	$t_i, s_i \leqslant 100000$		У, 1 – 10
12	8	$n\leqslant 100000$				У, 1 – 11
13	8	без дополнительных ограничений				У, 1 – 12

Примеры

стандартный ввод	стандартный вывод		
3 3	0		
1 2 3	4		
1 3 6	11		
3 3	0		
3 2 1	5		
1 3 6	13		
2 5	0		
2 1	6		
1 3 4 6 7			

Пояснения к примерам

Рассмотрим первый пример.

Если k = 1, то телепортаций не происходит.

Если k=2, то гонка происходит следующим образом. На рисунках показаны моменты, когда дроны оказываются в воротах и происходит телепортация.

Если k=3, то гонка происходит следующим образом. На рисунках показаны моменты, когда дроны оказываются в воротах и происходит телепортация.

