1. 当 $x \rightarrow 0$ 时,下列函数中与 $\ln(1)$	+2sin x) 是等价无穷小的	的函数是 (D)
(A) $1+2\sin x$; (B) x ;	(C) $2x^2$;	(D) $2x$.
2. 曲线 $y = 2x^3 - x^2 + 1$ 在点 $(1,2)$ 处	的切线方程是	(D).
(A) $y = 2x + 4$;	(B) $y = 2x - 4$;	
(C) $y = 4x + 2$;	(D) $y = 4x - 2$.	
3. 在[-1,1]上满足罗尔定理的函数	是	(В).
(A) $f(x) = \ln x $; (B) $f(x) =$	$1-\cos x; (C) \ f(x) = s $	$\operatorname{in} x _{;}$ (D) $f(x) = e^x$.
4. 不定积分 $\int \frac{1}{1+\sqrt{x}} dx = \dots$		(A).
(A) $2\sqrt{x}-2\ln(1+\sqrt{x})+C$;	(B) $2\sqrt{x} + 2\ln(1+$	$+\sqrt{x}+C$;
(C) $-2\sqrt{x} + 2\ln\left(1 + \sqrt{x}\right) + C;$	$(D) -2\sqrt{x} - 2\ln(1)$	$1+\sqrt{x}+C$.
5.	$s^4 x dx$, $I_3 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin x - \cos x) dx$	$\cos^2 x dx$, \mathbb{Q} (C)
(A) $I_1 < I_2 < I_3$;	(B) $I_1 < I_3 < I_2$;
(C) $I_3 < I_1 < I_2$;	(D) $I_3 < I_2 < I_1$	
6.	$\left \frac{\mathrm{d}y}{\mathrm{d}x}\right _{x=3} =$	(A)
(A) 2 ; (B) -2	2 ; (C) -5;	(D) 5.
7. 函数 $y = \frac{x^2 - 1}{x^2 - 3x + 2}$ 的可去间断	点为 <i>x</i> =	
8. 设 $y = e^x \cos x$,则 $y''(0) = $	·	
9. 设 $y = \ln(1 + e^x)$,则 d $y = $		
$10. \int \frac{\sin x}{1 - \cos x} \mathrm{d} x = \underline{\hspace{1cm}}$		
<u></u>		

11. 反常积分
$$\int_{1}^{+\infty} \frac{1}{x^2} dx = ____.$$

12. 曲线
$$y = (x-1)^3 - 1$$
 的拐点为____.

13. 求极限:
$$\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$$
.

14. 求极限:
$$\lim_{x\to\infty} (\frac{3+x}{6+x})^{\frac{x-1}{2}}$$
.

- 15. 求 $y = x^4 8x^2 + 2$ 在[-1,3]上的最大值和最小值.
- 16. 求由方程 $y^5 + 2y x 3x^7 = 0$ 所确定的函数 y = y(x) 在 x = 0 处的导数 $\frac{dy}{dx}|_{x=0}$.
- 17. 求不定积分: $\int \frac{x+1}{x^2-5x+6} dx$.
- 18. 求定积分: $\int_0^1 x \arctan x dx$.
- 19. 求曲线 $\begin{cases} x = \frac{t^3}{3} t \\ y = t^2 + 2 \end{cases}$ 上相应于 $0 \le t \le 3$ 的一段弧的长度.

20. 设
$$f(x) = \begin{cases} x+1, & x < 0 \\ k^2, & x = 0,$$
 试分析: $kxe^x + 1, & x > 0 \end{cases}$

- (1) k 为何值时, f(x) 在 x = 0 处极限存在,并求 $\lim_{x\to 0} f(x)$;
- (2) k 为何值时, f(x) 在 x=0 处连续;
- (3) k 为何值时, f(x) 在 x = 0 处可导,并求 f'(0).
- 21. 设曲线方程为 $y = e^{-x}$ $(x \ge 0)$.
- (1) 将曲线 $y = e^{-x}$ 与 x 轴、y 轴及直线 x = c (c > 0) 所围成的平面图形绕 x 轴旋转一周得一旋转体,求旋转体的体积 V(c) 及 $\lim_{n \to \infty} V(c)$.
- (2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,求最大面积.
- 22 设 f(x) 在 [a,b] 上 有 连 续 的 导 数 , 在 (a,b) 内 二 阶 可 导 , 且 f(a)=f(b)=f'(a)=0,证明在(a,b)内至少存在一点 ξ ,使得 $f''(\xi)=0$.