

RECEIVED
CENTRAL FAX CENTER
OCT 12 2006

IN THE CLAIMS:

Listing of Claims:

1. (original) A direction-finding method comprising the steps of:
 - 2 establishing a cross-over position point;
 - 3 relocating a receiver to a new receiver spacial location;
 - 4 said receiver at said new receiver position receiving a transmission from a transmitter at a transmitter position;
 - 5 determining a real-time line of bearing from said receiver to said transmitter;
 - 7 generating a connecting vector from said real-time line of bearing to said cross-over position point; and
 - 9 identifying a real-time position of said transmitter along said connecting vector.
- 1 2. (original) The method of Claim 1, wherein said identifying comprises identifying a best guess transmitter position responsive to said real-time position of said transmitter.
- 1 3. (original) The method of Claim 2, further comprising the steps of:
 - 2 again relocating said receiver to a new receiver spacial location;
 - 3 said receiver at said new receiver position receiving a transmission from said transmitter at a transmitter position;
 - 5 determining another said real-time line of bearing from said receiver to said transmitter;
 - 7 generating a said connecting vector from said last real-time line of bearing to said best guess transmitter position; and
 - 9 identifying said best guess position of said transmitter along said connecting vector.

1 4. (original) The method of Claim 3, wherein:

2 said determining step further comprises determining a quality factor for said real-
3 time line of bearing; and

4 said identifying step further comprises assigning a probability factor to said real-
5 time position of said transmitter responsive to said quality factor.

1 5. (original) The method of Claim 3, further comprising a repeating step to repeat said
2 relocating, receiving, determining, generating and identifying steps until said probability
3 factor exceeds a predetermined threshold value.

1 6. (original) The method of Claim 3, further comprising a repeating step to repeat said
2 relocating, receiving, determining, generating and identifying steps until a user terminates
3 said direction finding method.

1 7. (original) The method of Claim 3, further comprising a repeating step to repeat said
2 relocating, receiving, determining, generating and identifying steps until said probability
3 factor meets a user-defined threshold value.

1 8. (previously presented) A direction-finding method executed by a portable DF set
2 comprising a receiver and a programmable computing system comprising a processor, an
3 input device, an output device and a storage medium, the method comprising the steps of:

4 establishing a cross-over position point representing a position of a transmitter
5 and outputting said point at said output device;

6 moving said DF set to a new DF set position;

7 receiving at said DF set in said new DF set position, a transmission from said
8 transmitter;

9 determining, via said programmable computer, a real-time line of bearing from
10 said DF set to said transmitter responsive to said transmission;

11 generating, via said programmable computer, a connecting vector from said real-
12 time line of bearing to said cross-over position point; and

13 determining a real-time transmitter position along said connecting vector and
14 outputting said position at said output device.

1 9. (original) The method of Claim 8, wherein said identifying comprises identifying a
2 best guess transmitter position responsive to said real-time position of said transmitter.

1 10. (original) The method of Claim 9, further comprising the steps of:

2 again relocating said receiver to a new receiver spacial location;

3 said receiver at said new receiver position receiving a transmission from said
4 transmitter at a transmitter position;

5 determining another said real-time line of bearing from said receiver to said
6 transmitter;

7 generating a said connecting vector from said last real-time line of bearing to said
8 best guess transmitter position; and

9 identifying said best guess position of said transmitter along said connecting
10 vector.

1 11. (original) The method of Claim 10, wherein:

2 said determining step further comprises determining a quality factor for said real-
3 time line of bearing; and

4 said identifying step further comprises assigning a probability factor to said real-
5 time position of said transmitter responsive to said quality factor.

1 12. (original) The method of Claim 10, further comprising a repeating step to repeat said
2 relocating, receiving, determining, generating and identifying steps until said probability
3 factor exceeds a predetermined threshold value.

1 13. (original) The method of Claim 10, further comprising a repeating step to repeat said
2 relocating, receiving, determining, generating and identifying steps until a user terminates
3 said direction finding method.

1 14. (original) The method of Claim 10, further comprising a repeating step to repeat said
2 relocating, receiving, determining, generating and identifying steps until said probability
3 factor meets a user-defined threshold value.

1 15. (previously presented) A real-time direction-finding system, comprising:

2 a transmitter transmitting wireless transmissions, said transmitter defining a
3 spacial location;

4 a DF set comprising a movable receiver for receiving said transmissions; and

5 a computing device for determining said location of said transmitter responsive to
6 transmissions received by said movable receiver and not responsive to other said
7 receivers, wherein said computing device operatively:

8 generates a cross-over point, said cross-over point defined as the
9 intersection of a pair of sequential real-time lines of bearing from said DF set each line of
10 bearing corresponding to a wireless transmission from said transmitter received by said
11 DF set;

12 receives a transmission signal responsive to a transmission received by
13 said DF set after said DF set has been moved to a new spacial location;

14 determines a real-time line of bearing from said DF set to said transmitter
15 responsive to said transmission signal;

16 generates a connecting vector from said real-time line of bearing; and

17 determincs a real-time transmitter position along said connecting vector
18 and outputting said position at an output device associated with said computing device.

1 16. (canceled)