Exotic Transition

Horan Tsui

SCU

Oct. 13

Outline

Introduction

Short Review

3-Particle

Boson-Fermion Transition

Transition Amplitude

Introduction

► What's the meaning of 'exotic' ?

▶ Why could non-commutativity induce exotic transitions?

Short Review

Model: $\mathcal{B}_{\chi\hat{n}}$:

$$f(x) \star g(x) = e^{-\frac{i}{2}\chi P_0 \wedge J_{\hat{n}}} f(x+\eta) g(x+\eta)|_{\eta \to 0}$$

= $e^{-\frac{i}{2}\chi (P_0 \otimes J_{\hat{n}} - J_{\hat{n}} \otimes P_0)} f(x+\eta) g(x+\eta)|_{\eta \to 0}$

One needs to replace the normal product \cdot with the \star product.

For energy and angular-momentum eigenstates:

$$\Delta_{\chi\hat{n}}(\sigma)|1,2\rangle
=F(\sigma\otimes\sigma)F^{-1}|1\rangle\otimes|2\rangle
=|\sigma(1)\rangle\otimes e^{-\frac{i}{2}\chi(E_{\sigma(1)}J_{\hat{n}}-J_{\sigma(1)}P_{0})}\sigma e^{\frac{i}{2}\chi(E_{1}J_{\hat{n}}-J_{1}P_{0})}|2\rangle
=e^{-\frac{i}{2}\chi(E_{\sigma(1)}J_{\sigma(2)}-J_{\sigma(1)}E_{\sigma(2)})}e^{\frac{i}{2}\chi(E_{1}J_{2}-J_{1}E_{2})}|\sigma(1),\sigma(2)\rangle
=e^{-i\chi(E_{2}J_{1}-E_{1}J_{2})}|2,1\rangle$$

Adopt a notion:

$$F \rightarrow F(x,y) := e^{-\frac{i}{2}\chi(E_xJ_y - J_xE_y)}$$

$$F(x,y) = F^*(y,x) = F^{-1}(y,x)$$

Then
$$\Delta_{\gamma,\hat{\theta}}(\sigma)|1,2\rangle = F^2(2,1)|2,1\rangle$$

$$\Delta_{\chi\hat{n}}(\sigma)|1,2\rangle = F^2(2,1)|2,1\rangle$$

Or

$$\Delta_{\chi\hat{n}}(\sigma) extstyle F(extstyle 1, extstyle 2) |1, 2
angle = extstyle F(extstyle 2, extstyle 1) |2, 1
angle$$

Intrinsic phase factors in front of states.

Fock space

We have proved:

$$\begin{split} |\psi\rangle = & \frac{1}{\sqrt{N!}} \sum_{\{n\}} sgn_{\{n\}} (I \otimes I \otimes I...\Delta_{\chi\hat{n}})...\Delta_{\chi\hat{n}} (\sigma_{\{n\}}) | 1, 2, 3...N \rangle \\ = & \frac{1}{\sqrt{N!}} \sum_{\{n\}} sgn_{\{n\}} \coprod_{i < j, 1}^{N} F[\sigma_{\{n\}}(i), \sigma_{\{n\}}(j)] \times \\ |\sigma_{\{n\}}(1), \sigma_{\{n\}}(2), ...\sigma_{\{n\}}(N) \rangle \end{split}$$

Proof

Mathematical Induction: (n, appearing times of $\Delta_{\chi\hat{n}}$) A trick:

$$F(\sigma_a \otimes \sigma_b)F^{-1}$$

$$=\sigma_a \otimes F[\sigma_a,?]\sigma_bF^{-1}(_a,?)$$

$$=\sigma_a \otimes \sigma_b'$$

Red is an operator.

The first slot of F(?,?) is determined by the front σ , and leave the second slot to the latter, making it a new σ' carrying a phase-producing operator.

$$\Delta_{\gamma\hat{a}}(\sigma)|1,2\rangle = \sigma_{a}\otimes\sigma_{b}^{'}|1,2\rangle$$

 $=|\sigma_a(1)\rangle F[\sigma_a(1),\sigma_b(2)]F^{-1}(1,2)|\sigma_b(2)\rangle$

 $=F[\sigma(1), \sigma(2)]F^{-1}(1,2)|2,1\rangle$

let a act on
$$|1\rangle$$
 and b act on $|2\rangle$

$$(I \otimes \Delta_{\chi \hat{n}}) \Delta_{\chi \hat{n}}(\sigma) = (I \otimes \Delta_{\chi \hat{n}})(\sigma_{\mathsf{a}} \otimes \sigma_{\mathsf{b}}') = \sigma_{\mathsf{a}} \otimes (F \sigma_{\mathsf{b}1}' \otimes \sigma_{\mathsf{b}2}' F^{-1})$$

$$F\sigma_{b1}^{'}\otimes\sigma_{b2}^{'}F^{-1}=\sigma_{b1}^{'}\otimes F[\sigma_{b1},?]\sigma_{b2}^{'}F^{-1}(_{b1},?)=\sigma_{b1}^{'}\otimes\sigma_{b2}^{''}$$

Let a act on $|1\rangle$, b1 act on $|2\rangle$, and b2 act on $|3\rangle$, we have

$$F[\sigma_a(1), \sigma_{b1}(2)]F^{-1}(1,2)$$
 from σ'_{b1}

$$F[\sigma_a(1), \sigma_{b2}(3)]F[\sigma_{b1}(2), \sigma_{b2}(3)]F^{-1}(1,3)F^{-1}(2,3)$$
 from σ''_{b2}

and

$$(I\otimes \Delta_{\chi\hat{n}})\Delta_{\chi\hat{n}}(\sigma)=\sigma\otimes\sigma'\otimes\sigma^{''}$$

1 from σ_a

$$F[\sigma_a(1), \sigma_{b1}(2)]...$$
 from σ'_{b1}
 $F[\sigma_a(1), \sigma_{b2,1}(3)]F[\sigma_{b1}(2), \sigma_{b2,1}(3)]...$ from $\sigma''_{b2,1}$
 $F[\sigma_a(1), \sigma_{b2,2}(4)]F[\sigma_{b1}(2), \sigma_{b2,2}(4)]F[\sigma_{b2,2}(3), \sigma_{b2,2}(4)]$

$$F[\sigma_a(1), \sigma_{b2,2}(4)]F[\sigma_{b1}(2), \sigma_{b2,2}(4)]F[\sigma_{b2,1}(3), \sigma_{b2,2}(4)]...$$
 from $\sigma_{b2,2}''$

⁰ *b*2,2

Subscripts of σ should not be confusing since they are only used to denote the inheritance relationship and can be omitted once acting on certain states.

For $\sigma \otimes \sigma' \otimes \sigma'' \otimes \sigma''' \otimes \dots$

$$\otimes \sigma \otimes \sigma \otimes \sigma \otimes ..$$

 $F[\sigma(1), \sigma(2)]...\times$

$$F[\sigma(1), \sigma(3)]F[\sigma(2), \sigma(3)]... \times$$

$$F[\sigma(1), \sigma(4)]F[\sigma(2), \sigma(4)]F[\sigma(3), \sigma(4)]...\times$$

. . .

n=1:
$$\Delta_{\chi\hat{n}}(\sigma) = \sigma \otimes \sigma'$$
, \checkmark n=N-1: suppose \checkmark

$$n=N-1$$
: suppose $\sqrt{n}=N$:

$$\underbrace{(I \otimes I \otimes I...\Delta_{\chi\hat{n}})(I \otimes I...\Delta_{\chi\hat{n}})...\Delta_{\chi\hat{n}}}_{N}(\sigma)$$

$$=(I \otimes I \otimes I...\Delta_{\chi\hat{n}})(\sigma \otimes \sigma' \otimes \sigma''...\sigma'''...)$$

$$=\sigma \otimes \sigma' \otimes \sigma''...F(\sigma'''...\otimes \sigma'''...)F^{-1}$$

$$=\sigma \otimes \sigma' \otimes \sigma'' \quad \sigma'''...\otimes \sigma''''...$$

Q.E.D.

The initial 3-Particle state

X: ↑, 1S: ↑, ↓

$$\begin{split} |\psi\rangle &= \frac{1}{\sqrt{3!}} \{ e^{-\frac{i}{2}\chi E_{1s}(2J_X-1)} | 1+, 1-, X+\rangle \\ &- e^{-\frac{i}{2}\chi E_{1s}(-2J_X+1)} | X+, 1-, 1+\rangle \\ &+ e^{-\frac{i}{2}\chi E_{1s}(-1-2J_X)} | X+, 1+, 1-\rangle \\ &- e^{-\frac{i}{2}\chi(-E_{1s}-E_X)} | 1+, X+, 1-\rangle \\ &+ e^{-\frac{i}{2}\chi(E_{1s}+E_X)} | 1-, X+, 1+\rangle \\ &- e^{-\frac{i}{2}\chi E_{1s}(1+2J_X)} | 1-, 1+, X+\rangle \} \end{split}$$

The final 3-particle state

$$|\phi\rangle_{fermion} \equiv 0$$

A general statement:

In non-commutative spacetime with the Drinfel'd twist type models, like θ -Poincare and $\mathcal{B}_{\chi\hat{n}}$, identical fermions (energy, angular momentum, etc) are still forbidden.

A corrected PEP: The identical is not only for states, but also for the front phase factors.

The identical fermions are forbidden.

Boson-Fermion Transition

In the regular spacetime and SM, fermions can indeed become bosons, but they should be different particles, like $e^+e^- \rightarrow \gamma$.

The fermionic/bosonic-ness of particles is definite. No intersection. No potential can turn a fermion into a boson with the same angular momentum (including spin), energy, and charge.

SUSY partners have a different spin.

In non-commutative spacetime, however, we can.

Suppose a_p^{\dagger} is the creation operator for a kind of fermion, and b_p^{\dagger} for the same-type boson.

In regular spacetime:

If there is a transition turning a fermion into a same-type boson,

$$\langle 0|b_mb_nVa_p^{\dagger}a_q^{\dagger}|0\rangle \neq 0$$

Same-type: particles are correspondent one-to-one. For fermions, $\langle p,q|p,q\rangle=\langle q,p|q,p\rangle=-\langle q,p|p,q\rangle=1$ Then it should be:

$$\langle 0|b_mb_nVa_p^\dagger a_q^\dagger|0
angle = \langle 0|b_nb_mVa_q^\dagger a_p^\dagger|0
angle$$

However,

$$egin{aligned} b_n b_m &= b_m b_n \ a_p^\dagger a_q^\dagger &= -a_q^\dagger a_p^\dagger \end{aligned}$$

then
$$\langle 0|b_mb_nVa_p^\dagger a_a^\dagger|0\rangle = -\langle 0|b_nb_mVa_a^\dagger a_p^\dagger|0\rangle$$

Such transition is prohibited by the spin-statistics.

In non-commutative spacetime, $\cdot \rightarrow \star$,

$$\langle 0|b_m \star b_n \star V \star a_p^{\dagger} \star a_q^{\dagger}|0\rangle$$

V could be a complex combination of creation/annihilation operators, but to illustrate, we sloppily treat it as one. By the twisted permutation algebra, it equals

$$-F^2(n,m)F^2(q,p)\langle 0|b_n \star b_m \star V \star a_n^{\dagger} \star a_n^{\dagger}|0\rangle$$

Once red = 1, Hallelujah!

$$red = -e^{-i\chi[(E_nJ_m - E_mJ_n) + (E_qJ_p - E_pJ_q)]}$$

V-independent

$$\chi \to 0$$
, either E_n, E_q, \dots or $J_n, J_q \dots$ should be extremely large.

How to account for it? Resort to the period of phase factor.

$$J
ightarrow rac{J}{\hbar} \sim$$
 regular number, say, n $E
ightarrow E' + rac{2\pi}{n\chi}$

then

$$\mathrm{e}^{-rac{i}{2}\chi JE}
ightarrow \mathrm{e}^{-rac{i}{2}\chi n(E'+rac{2\pi}{n\chi})}
ightarrow -\mathrm{e}^{-rac{i}{2}\chi JE'}$$

Keep p,q, n regular, set E_m large enough, and E'_m is the observed energy.

A fermion(boson) with large enough energy or/and angular momentum can effectively turn the system into the bosonic(fermionic) with regular energy or/and angular momentum.

Tunnelling?

Somehow, $\frac{2\pi}{\chi}$ is like an energy barrier, and the non-zero overlap could be viewed as the tunneling effect.

Figure 1: barrier

The 3-particle final state

The final bosonic state is:

$$\begin{split} |\phi\rangle = & \frac{1}{\sqrt{3!}} \{ 2|1+,1-,1+\rangle + 2e^{i\chi E_{1s}}|1+,1+,1-\rangle \\ & + 2e^{-i\chi E_{1s}}|1-,1+,1+\rangle \} \end{split}$$

Transition Amplitde

$$A_{\chi} = \langle \phi | V | \psi \rangle$$

Final state: $1S \Rightarrow$ The dominant channel: $2P \rightarrow 1S$.

The transition in regular spacetime is prohibited not because of the disability of the potential, but rather of the vanishing final state due to spin-statistics.

We can still use the regular V.

V: the SM potential inducing the particle to jump from N orbit to N-i orbit, and only relative to particles in N-1, N-2, N-3...orbits.

The only non-trivial transition: $X(2P) \rightarrow 1S$ A typical term would be like:

$$\hat{m}\langle 1+, 1-, 1+|V|1+, 1-, X+\rangle_{\hat{n}}$$

$$\equiv \hat{m}\langle 1+|1+\rangle_{\hat{n}\hat{m}}\langle 1-|1-\rangle_{\hat{n}\hat{m}}\langle 1+|V|X+\rangle_{\hat{n}}$$

$$= \hat{m}\langle 1+|1+\rangle_{\hat{n}\hat{m}}\langle 1-|1-\rangle_{\hat{n}\hat{m}}\langle +|+\rangle_{\hat{n}}\langle 1|V|X\rangle$$

Note that

$$|X\rangle = \frac{1}{2}(|X+\rangle_{\hat{n}} + |X-\rangle_{\hat{n}})$$

Recover another quantum number 1:

$$|X+\rangle_{\hat{n}} \rightarrow |X+, I=-1, 0, 1\rangle_{\hat{n}}$$

average
$$J_X = -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}$$

average
$$J_X = -\frac{1}{2}, \frac{1}{2},$$

$$|X+\rangle_{\hat{n}} := \frac{1}{4}(|X,+,I_n=-1\rangle_{\hat{n}} + 2|X,+,I_n=0\rangle_{\hat{n}} + |X,+,I_n=1\rangle_{\hat{n}})$$

$$= |+\rangle_{\hat{n}} \frac{1}{4}(|X,I_n=-1\rangle + 2|X,I_n=0\rangle + |X,I_n=1\rangle)$$

$$+2|X,I_n=0\rangle+|X,I_n=1\rangle$$

Therefore,

$$|X\rangle \equiv \frac{1}{8} \sum_{n} |X, s = \pm \frac{1}{2}, l = -1, 0, 1\rangle_{\hat{n}}$$

One then could read $\langle 1|V|X\rangle$ as

$$\sum_{I,I'} \frac{1}{8} \langle 1, J | V | X, J' \rangle$$

the summation of the final angular momentum configurations and the average of the initial angular momentum configurations, which is the regular transition amplitude detected by experiments. Apply the spin-overlap:

 $\int \frac{d\Omega_m}{4\pi} m_i = 0, \int \frac{d\Omega_m}{4\pi} m_i m_j = \frac{1}{3} \delta_{ij}$

$$_{\it m}\langle lpha | eta
angle_{\it n} = rac{1}{2} [1 + (-1)^{lpha - eta} \hat{\it m} \cdot \hat{\it n}]$$

Integrate the direction:

$$= \frac{1}{6}[\sin(\chi E_{1s}) + \sin(2\chi E_{1s}) + \sin(3\chi E_{1s})]$$

 $3!\frac{-iA_{\chi}}{\langle 1|V|X\rangle}$

 $+\sin[\chi(E_{1s}-E_X)]$

 $\sim \frac{4}{2} \chi \Delta E$

 $-\frac{1}{3}[\sin(\chi \frac{E_{1s}+E_{X}}{2})+\sin(\chi \frac{3E_{1s}+E_{X}}{2})]$

Discussion

Surely, in regular spacetime one can also construct a bosonic state for electrons, which is little more than turning "-" into "+". However, such states are **neither accountable nor approachable**.

In the non-commutative spacetime, the non-zero overlap undoubtedly implies its existence since everything that could happen quantum mechanically happens.

Better, but not enough. Future works await.

Introduction Redux

What's the meaning of 'exotic'? It violates PEP partly that although identical fermions are still forbidden, fermions can share the same state via turning into the same-type bosons.

Why could non-commutativity induce exotic transitions?

The complex phase structure induced by non-commutativity causes the non-zero overlap. The potential is not necessarily beyond the SM, it's the state that opens the new vista.

Thanks!

END.