

	WYPEŁNIA ZDAJĄCY	
KOD	PESEL	miejsce na naklejkę
		wegnę

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

DATA: 7 maja 2020 г.

GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

WYPEŁNIA ZESPÓŁ NADZORUJĄCY		
Uprawnien	ia zdającego do:	
	dostosowania kryteriów oceniania nieprzenoszenia zaznaczeń na kartę	

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania 1–15). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–4) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. W zadaniu 5. wpisz odpowiednie cyfry w kratki pod treścią zadania.
- 5. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (6–15) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 6. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 7. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 8. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 9. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 10. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 11. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-R1 1P-202

W każdym z zadań od 1. do 4. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0–1)

Wielomian W określony wzorem $W(x) = x^{2019} - 3x^{2000} + 2x + 6$

A. jest podzielny przez (x-1) i z dzielenia przez (x+1) daje resztę równą 6.

B. jest podzielny przez (x+1) i z dzielenia przez (x-1) daje resztę równą 6.

C. jest podzielny przez (x-1) i jest podzielny przez (x+1).

D. nie jest podzielny ani przez (x-1), ani przez (x+1).

Zadanie 2. (0-1)

Ciąg (a_n) jest określony wzorem $a_n = \frac{3n^2 + 7n - 5}{11 - 5n + 5n^2}$ dla każdej liczby naturalnej $n \ge 1$.

Granica tego ciągu jest równa

A. 3

B. $\frac{1}{5}$ C. $\frac{3}{5}$

D. $-\frac{5}{11}$

Zadanie 3. (0-1)

Mamy dwie urny. W pierwszej są 3 kule białe i 7 kul czarnych, w drugiej jest jedna kula biała i 9 kul czarnych. Rzucamy symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek, od jednego oczka do sześciu oczek. Jeśli w wyniku rzutu otrzymamy ściankę z jednym oczkiem, to losujemy jedną kulę z pierwszej urny, w przeciwnym przypadku – losujemy jedną kulę z drugiej urny. Wtedy prawdopodobieństwo wylosowania kuli białej jest równe

A. $\frac{2}{15}$

B. $\frac{1}{5}$

C. $\frac{4}{5}$

D. $\frac{13}{15}$

Zadanie 4. (0-1)

 $\left(x\sqrt{2}+y\sqrt{3}\right)^4$ algebraicznego przekształceniu wyrażenia do Po postaci $ax^4 + bx^3y + cx^2y^2 + dxy^3 + ey^4$ współczynnik c jest równy

A. 6

B. 36

C. $8\sqrt{6}$

D. $12\sqrt{6}$

BRUDNOPIS

Zadanie 5. (0–2)

W trójkącie ABC bok AB jest 3 razy dłuższy od boku AC, a długość boku BC stanowi $\frac{4}{5}$ długości boku AB. Oblicz cosinus najmniejszego kąta trójkąta ABC.

W kratki poniżej wpisz kolejno – od lewej do prawej – pierwszą, drugą oraz trzecią cyfrę po przecinku nieskończonego rozwinięcia dziesiętnego otrzymanego wyniku.

Zadanie 6. (0–3)

Wyznacz wszystkie wartości parametru a, dla których równanie $|x-5|=(a-1)^2-4$ ma dwa różne rozwiązania dodatnie.

	Nr zadania	5.	6.
Wypełnia	Maks. liczba pkt	2	3
egzaminator	Uzyskana liczba pkt		

Zadanie 7. (0-3)

Dany jest trójkąt równoramienny ABC, w którym |AC| = |BC| = 6, a punkt D jest środkiem podstawy AB. Okrąg o środku D jest styczny do prostej AC w punkcie M. Punkt K leży na boku AC, punkt L leży na boku BC, odcinek KL jest styczny do rozważanego okręgu oraz |KC| = |LC| = 2 (zobacz rysunek).

Wykaż, że
$$\frac{|AM|}{|MC|} = \frac{4}{5}$$
.

	Nr zadania	7.
Wypełnia	Maks. liczba pkt	3
egzaminator	Uzyskana liczba pkt	

Zadanie 8. (0-3)

Liczby dodatnie a i b spełniają równość $a^2 + 2a = 4b^2 + 4b$. Wykaż, że a = 2b.

Zadanie 9. (0–4)

Rozwiąż równanie $3\cos 2x + 10\cos^2 x = 24\sin x - 3$ dla $x \in \langle 0, 2\pi \rangle$.

	Nr zadania	8.	9.
Wypełnia	Maks. liczba pkt	3	4
egzaminator	Uzyskana liczba pkt		

Zadanie 10. (0-5)

W trzywyrazowym ciągu geometrycznym (a_1, a_2, a_3) spełniona jest równość $a_1 + a_2 + a_3 = \frac{21}{4}$.

Wyrazy a_1 , a_2 , a_3 są – odpowiednio – czwartym, drugim i pierwszym wyrazem rosnącego ciągu arytmetycznego. Oblicz a_1 .

	Nr zadania	10.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 11. (0–4)

Dane jest równanie kwadratowe $x^2 - (3m+2)x + 2m^2 + 7m - 15 = 0$ z niewiadomą x. Wyznacz wszystkie wartości parametru m, dla których różne rozwiązania x_1 i x_2 tego równania istnieją i spełniają warunek

$$2x_1^2 + 5x_1x_2 + 2x_2^2 = 2.$$

	Nr zadania	11.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 12. (0-5)

Prosta o równaniu x+y-10=0 przecina okrąg o równaniu $x^2+y^2-8x-6y+8=0$ w punktach K i L. Punkt S jest środkiem cięciwy KL. Wyznacz równanie obrazu tego okręgu w jednokładności o środku S i skali k=-3.

	Nr zadania	12.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 13. (0–4)Oblicz, ile jest wszystkich siedmiocyfrowych liczb naturalnych, w których zapisie dziesiętnym występują dokładnie trzy cyfry 1 i dokładnie dwie cyfry 2.

	Nr zadania	13.
Wypełnia egzaminator	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 14. (0–6)

Podstawą ostrosłupa czworokątnego ABCDS jest trapez ABCD ($AB \parallel CD$). Ramiona tego trapezu mają długości |AD|=10 i |BC|=16, a miara kąta ABC jest równa 30° . Każda ściana boczna tego ostrosłupa tworzy z płaszczyzną podstawy kąt α , taki, że $\operatorname{tg}\alpha=\frac{9}{2}$. Oblicz objętość tego ostrosłupa.

	Nr zadania	14.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 15. (0-7)

Należy zaprojektować wymiary prostokątnego ekranu smartfona, tak aby odległości tego ekranu od krótszych brzegów smartfona były równe 0,5 cm każda, a odległości tego ekranu od dłuższych brzegów smartfona były równe 0,3 cm każda (zobacz rysunek – ekran zaznaczono kolorem szarym). Sam ekran ma mieć powierzchnię 60 cm². Wyznacz takie wymiary ekranu smartfona, przy których powierzchnia ekranu wraz z obramowaniem jest najmniejsza.

	Nr zadania	15.
Wypełnia	Maks. liczba pkt	7
egzaminator	Uzyskana liczba pkt	

BRUDNOPIS (nie podlega ocenie)

