Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

### Elektronika 1

## 6. Sklopovi s unipolarnim tranzistorima

### Osnovni sklop MOSFET-a



ulazni krug

$$u_{UL} = u_{GS}$$

izlazni krug

$$u_{IZ} = u_{DS} = U_{DD} - R_T i_D$$

### Polje izlaznih karakteristika



*Q* – statička radna točka primjer:

$$U_{DD}$$
 = 15 V,  $R_T$  = 4 k $\Omega$   
 $U_{GSQ}$  = 2,5 V,  
 $I_{DQ}$  = 1,8 mA,  $U_{DSQ}$  = 7,7 V

između A i B – područje zasićenja

između B i C – triodno područje

primjer:  $U_{DD} = 15 \text{ V}, R_T = 4 \text{ k}\Omega$ 

### Prijenosna karakteristika



prijenosna karakteristika -  $u_{IZ} = f(u_{UL})$ 

za  $u_{U\!L}$  =  $u_{G\!S}$  <  $U_{G\!S\!0}$   $\to$  MOSFET ne vodi;  $i_D$  = 0,  $u_{I\!Z}$  =  $u_{D\!S}$  =  $U_{D\!D}$ 

između A i B – područje zasićenja između B i C – triodno područje primjena:

- $\square$  oko točaka A i  $C \rightarrow$  sklopka
- između točaka A i  $B \rightarrow$  pojačalo primjer:  $U_{ULQ} = 2.5 \text{ V}, \ U_{IZQ} = 7.7 \text{ V}$  pojačanje:

$$A_{V} = \frac{u_{iz}}{u_{ul}} = \frac{-U_{izm} \sin \omega t}{U_{ulm} \sin \omega t} = -\frac{U_{izm}}{U_{ul}} = -\frac{2,27}{0,25} = -9,1$$

## Podešavanje fiksnog napona U<sub>GSQ</sub>



jednadžba ulaznog strujnog kruga

$$U_{GSQ} = \frac{R_2}{R_1 + R_2} U_{DD}$$

jednadžba MOSFET-a u zasićenju

$$I_{DQ} = \frac{K}{2} (U_{GSQ} - U_{GS0})^2$$

jednadžba izlaznog strujnog kruga

$$U_{DSQ} = U_{DD} - R_D I_{DQ}$$

uvjet za zasićenje

$$U_{DQ} \ge U_{GSQ} - U_{GS0}$$

### Primjer 6.1

U sklopu prema slici napon napajanja je  $U_{DD}=15~{\rm V}$ , a otpori su  $R_D=4.5~{\rm k}\Omega$  i  $R_2=1~{\rm M}\Omega$ . Parametri n-kanalnog MOSFET-a su  $K=1.5~{\rm mA/V^2}$  i  $U_{GS0}=1~{\rm V}$ . Odrediti otpor otpornika  $R_1$  kojim će se podesiti statička struja MOSFET-a  $I_{DQ}=2~{\rm mA}$ . Provjeriti je li statička radna točka MOSFET-a u području zasićenja.



### Rješenje:

$$U_{GSQ} = U_{GS0} \pm \sqrt{\frac{2I_{DQ}}{K}}$$

Da bi MOSFET vodio 
$$\rightarrow U_{GS} > U_{GS0}$$
  $U_{GSQ} = 1 + \sqrt{\frac{2 \cdot 2}{1.5}} = 2.63 \text{ V}$ 

$$R_1 = \frac{U_{DD} - U_{GSQ}}{U_{GSQ}} R_2 = \frac{15 - 2,63}{2,63} \cdot 1 = 4,7 \text{ M}\Omega$$

$$U_{DSQ} = U_{DD} - R_D I_{DQ} = 15 - 4.5 \cdot 2 = 6 \text{ V} > U_{GSQ} - U_{GS0} = 2.63 - 1 = 1.63 \text{ V}$$

## Nedostaci sklopa za podešavanje fiksnog napona *U<sub>GSQ</sub>*

- lacksquare Podešava samo napone  $U_{GSO}$  i  $U_{DSO}$  koji istog predznaka
- Osjetljivost na promjene parametra tranzistora

### Primjer:

$$U_{GSQ} = 3 \text{ V},$$
  
 $I_{DQ1} = 3 \text{ mA},$   
 $I_{DO2} = 1,35 \text{ mA}$ 



## Podešavanje radne točke primjenom uvodske degeneracije



jednadžba ulaznog strujnog kruga

$$U_{GG} = \frac{R_2}{R_1 + R_2} U_{DD}$$

$$U_{GG} = U_{GS} + R_S I_D$$

jednadžba MOSFET-a u zasićenju

$$I_D = \frac{K}{2} (U_{GS} - U_{GS0})^2$$

jednadžba izlaznog strujnog kruga

$$U_{DS} = U_{DD} - (R_D + R_S)I_D$$

## **Primjer 6.2 (1)**

U sklopu prema slici napon napajanja je  $U_{DD}=15~{\rm V}$ , a otpori su  $R_D=4~{\rm k}\Omega,~R_S=400~\Omega,~R_1=5,8~{\rm M}\Omega$  i  $R_2=1,7~{\rm M}\Omega.$  Parametri n-kanalnog MOSFET-a su  $K=2~{\rm mA/V^2}$  i  $U_{GS0}=1~{\rm V}.$  Odrediti struju  $I_{DQ}$  i napon  $U_{GSQ}$  MOSFET-a u statičkoj radnoj točki. Provjeriti da li je statička radna točka u području zasićenja.



$$U_{GG} = \frac{R_2}{R_1 + R_2} U_{DD} = \frac{1.7}{5.8 + 1.7} \cdot 15 = 3.4 \text{ V}$$

$$U_{GG} = U_{GSQ} + R_S I_{DQ} = U_{GSQ} + R_S \frac{K}{2} (U_{GSQ} - U_{GS0})^2$$

kvadratna jednadžba:

$$U_{GSQ}^{2} + \left(\frac{2}{R_{S}K} - 2U_{GS0}\right)U_{GSQ} + U_{GS0}^{2} - \frac{2U_{GG}}{R_{S}K} = 0$$



## **Primjer 6.2 (2)**

#### uvrštenjem podataka:

$$U_{GSQ}^2 + 0.5 \cdot U_{GSQ} - 7.5 = 0$$

$$U_{GSO} = -0.25 \pm \sqrt{0.25^2 + 7.5} = -0.25 \pm 2.75 \text{ V}$$

2 rezultata:  $U_{GSQ}$  = 2,5 V i  $U_{GSQ}$  = - 3 V; fizikalno rješenje  $\rightarrow U_{GSQ}$  = 2,5 V

$$I_{DQ} = \frac{K}{2} (U_{GSQ} - U_{GS0})^2 = \frac{2}{2} (2.5 - 1)^2 = 2.25 \text{ mA}$$

$$U_{DSQ} = U_{DD} - (R_D + R_S)I_{DQ} = 15 - (4 + 0.4) \cdot 2.25 = 5.1 \text{ V}$$

$$U_{DSQ} > U_{GSQ} - U_{GS0} = 2,5 - 1 = 1,5 \text{ V}$$

# Stabilizacija radne točke primjenom uvodske degeneracije

### Primjer:

$$U_{GG} = 6 \text{ V}, R_S = 1.5 \text{ k}\Omega$$

$$I_{DQ1} = 2,20 \text{ mA},$$
  
 $I_{DQ2} = 1,84 \text{ mA}$ 



Omogućuje podešavanje radne točke obogaćenog i osiromašenog MOSFET-a uz oba polariteta napona  $U_{GSO}$ 

## **Primjer 6.3 (1)**

U sklopu prema slici napon napajanja je  $U_{DD}=15~{\rm V}$ , a otpori su  $R_D=3~{\rm k}\Omega$ ,  $R_1=9~{\rm M}\Omega$  i  $R_2=1~{\rm M}\Omega$ . Parametri n-kanalnog MOSFET-a su  $K=1,25~{\rm mA/V^2}$  i  $U_{GS0}=-3~{\rm V}$ . Odrediti otpor otpornika  $R_S$  tako da se u statičkoj radnoj točki postigne napon  $U_{GSQ}=-1~{\rm V}$ . Rezultat prikazati grafički u polju prijenosne karakteristike.

#### Rješenje:

$$U_{GG} = \frac{R_2}{R_1 + R_2} U_{DD} = \frac{1}{9+1} \cdot 15 = 1,5 \text{ V}$$

$$I_{DQ} = \frac{K}{2} (U_{GSQ} - U_{GS0})^2 = \frac{1,25}{2} (-1+3)^2 = 2,5 \text{ mA}$$

iz: 
$$U_{GG} = U_{GSQ} + R_S I_{DQ} \rightarrow$$

$$R_S = \frac{U_{GG} - U_{GSQ}}{I_{DQ}} = \frac{1,5+1}{2,5} = 1 \text{ k}\Omega$$



## **Primjer 6.3 (2)**

$$U_{DSQ} = U_{DD} - (R_D + R_S)I_{DQ} = 15 - (3+1) \cdot 2,5 = 5 \text{ V}$$

$$U_{DSQ} > U_{GSQ} - U_{GS0} = -1 + 3 = 2 \text{ V}$$



### Podešavanje radne točke pojačala s p-kanalnim MOSFET-om



jednadžba ulaznog strujnog kruga

$$U_{GG} = \frac{R_2}{R_1 + R_2} U_{DD}$$

$$U_{DD} - U_{GG} = -R_S I_D - U_{GS}$$

jednadžba MOSFET-a u zasićenju

$$I_D = \frac{K}{2} (U_{GS} - U_{GS0})^2$$

jednadžba izlaznog strujnog kruga

$$U_{DS} = -U_{DD} - (R_D + R_S)I_D$$

uvjet za zasićenje

$$U_{DSQ} \le U_{GSQ} - U_{GS0}$$

## **Primjer 6.4 (1)**

U sklopu prema slici napon napajanja je  $U_{DD}=15~{\rm V}$ , a otpori su  $R_S=500~\Omega,~R_D=4~{\rm k}\Omega$  i  $R_2=4~{\rm M}\Omega.$  Parametri p-kanalnog MOSFET-a su  $K=-1~{\rm mA/V^2}$  i  $U_{GS0}=-2~{\rm V}.$  Odrediti otpor otpornika  $R_1$  tako da se u statičkoj radnoj točki postigne struja  $I_{DQ}=-2~{\rm mA}.$  Rezultat prikazati grafički u polju prijenosne karakteristike.



#### Rješenje:

$$U_{GSQ} = U_{GS0} \pm \sqrt{\frac{2I_{DQ}}{K}} = -2 \pm \sqrt{\frac{2(-2)}{-1}} = -2 \pm 2 \text{ V}$$

Da bi MOSFET vodio  $\rightarrow U_{GS} < U_{GS0} \rightarrow$  prihvatljivo rješenje  $U_{GSQ} = -4~\mathrm{V}$ 

$$U_{GG} = U_{DD} + R_S I_{DQ} + U_{GSQ} = 15 + 0.5(-2) - 4 = 10 \text{ V}$$

$$R_1 = \frac{U_{DD} - U_{GG}}{U_{GG}} R_2 = \frac{15 - 10}{10} \cdot 4 = 2 \text{ M}\Omega$$

## **Primjer 6.4 (2)**

$$U_{DSQ} = -U_{DD} - (R_S + R_D)I_{DQ} = -15 - (0.5 + 4) \cdot (-2) = -6 \text{ V}$$

$$U_{DSQ} < U_{GSQ} - U_{GSQ} = -4 + 2 = -2 \text{ V}$$



## Podešavanje radne točke s dva napona napajanja



jednadžba ulaznog strujnog kruga

$$U_{SS} = U_{GS} + R_S I_D$$

jednadžba MOSFET-a u zasićenju

$$I_D = \frac{K}{2} (U_{GS} - U_{GS0})^2$$

jednadžba izlaznog strujnog kruga

$$U_{DS} = U_{DD} + U_{SS} - (R_D + R_S)I_D$$

uvjet za zasićenje

$$U_{DSQ} \ge U_{GSQ} - U_{GS0}$$

## Podešavanje radne točke pojačala JFET-om (1)



jednadžba ulaznog strujnog kruga

$$0 = U_{GS} + R_S I_D$$

jednadžba JFET-a u zasićenju

$$I_D = I_{DSS} \left( 1 - \frac{U_{GS}}{U_P} \right)^2$$

jednadžba izlaznog strujnog kruga

$$U_{DS} = U_{DD} - (R_D + R_S)I_D$$

uvjet za zasićenje

$$U_{DSQ} > U_{GSQ} - U_P$$

# Podešavanje radne točke pojačala JFET-om (2)



### primjer:

$$I_{DSS} = 10 \text{ mA}, \ U_P = -5 \text{ V},$$
  $R_S = 750 \ \Omega,$   $I_{DQ} = 3 \text{ mA}, \ U_{GSQ} = -2,55 \text{ V}$ 

# Uvjeti rada pojačala s FET-om u režimu malog signala (1)



$$u_{UL} = U_{ULQ} + u_{ul} = u_{GS} = U_{GSQ} + u_{gs}$$

$$i_D = \frac{K}{2} (u_{GS} - U_{GS0})^2$$

Struja odvoda oko radne točke:

$$i_D = i_D |_{Q} + \frac{\mathrm{d}i_D}{\mathrm{d}u_{GS}} |_{Q} (u_{GS} - U_{GSQ}) + \frac{\mathrm{d}^2 i_D}{\mathrm{d}u_{GS}^2} |_{Q} \frac{(u_{GS} - U_{GSQ})^2}{2!} + \cdots$$

$$\left. \frac{\mathrm{d}i_D}{\mathrm{d}u_{GS}} \right|_Q = K \left( u_{GS} - U_{GS0} \right) \Big|_Q \qquad \left. \frac{\mathrm{d}^2 i_D}{\mathrm{d}u_{GS}^2} \right|_Q = K$$

$$\text{uz } u_{GS} - U_{GSQ} = u_{gs} \qquad i_D = I_{DQ} + K \left( U_{GSQ} - U_{GS0} \right) u_{gs} + \frac{K}{2} u_{gs}^2 = I_{DQ} + g_m u_{gs} + \frac{K}{2} u_{gs}^2$$

# Uvjeti rada pojačala s FET-om u režimu malog signala (2)

Uvjet za režim malog signala:  $u_{gs} << 2 (U_{GSQ} - U_{GS0})$ 

Za režim malog signala:

$$u_{DS} = U_{DSQ} + u_{ds} = U_{DD} - R_T i_D = U_{DD} - R_T (I_{DQ} + i_d)$$

Statika:

$$U_{DSQ} = U_{DD} - R_T I_{DQ}$$

Dinamika:

$$u_{ds} = -R_T i_d$$

$$A_V = \frac{u_{iz}}{u_{vl}} = \frac{u_{ds}}{u_{gs}} = -g_m R_T$$

## Pojačalo u spoju zajedničkog uvoda



### Pojačalo u spoju zajedničkog uvoda – model za dinamičku analizu



$$R_G = R_1 || R_2$$

$$u_{iz} = -g_m u_{gs} \left( r_d \| R_D \| R_T \right) \qquad u_{ul} = u_{gs}$$

$$A_{V} = \frac{u_{iz}}{u_{ul}} = -g_{m} \left( r_{d} \| R_{D} \| R_{T} \right) \qquad A_{V} \approx -g_{m} \left( R_{D} \| R_{T} \right)$$

$$A_{Vg} = \frac{u_{iz}}{u_g} = \frac{u_{iz}}{u_{ul}} \frac{u_{ul}}{u_g} = -g_m (r_d \| R_D \| R_T) \frac{R_G}{R_g + R_G}$$

## Pojačalo u spoju zajedničkog uvoda – ulazni i izlazni otpor

$$R_{ul} = R_G = R_1 \| R_2$$

Shema za određivanje izlaznog otpora:



$$R_{iz} = r_d \| R_D$$

## **Primjer 6.5 (1)**

U pojačalu sa slike zadano je:  $U_{DD}=15~\mathrm{V}$ ,  $R_g=500~\Omega$ ,  $R_1=5.8~\mathrm{M}\Omega$ ,  $R_2=1.7~\mathrm{M}\Omega$ ,  $R_D=4~\mathrm{k}\Omega$ ,  $R_T=6~\mathrm{k}\Omega$  i  $R_S=400~\Omega$ . Parametri n-kanalnog MOSFET-a su  $K=2~\mathrm{mA/V^2}$ ,  $U_{GS0}=1~\mathrm{V}$  i  $\lambda=0.005~\mathrm{V^{-1}}$ . Odrediti naponska pojačanja  $A_V=u_{iz}/u_{ul}$  i  $A_{Vg}=u_{iz}/u_g$ , te ulazni i izlazni otpor pojačala.



### Rješenje:

Statička radna točka – iz primjera 6.2  $\rightarrow U_{GSQ}$  = 2,5 V,  $I_{DQ}$  = 2,25 mA,  $U_{DSQ}$  = 5,1 V Struja odvoda:

$$i_D = \frac{K}{2} (u_{GS} - U_{GS0})^2 (1 + \lambda u_{DS})$$

## **Primjer 6.5 (2)**

#### Dinamički parametri:

$$g_{m} = \frac{\partial i_{D}}{\partial u_{GS}} \bigg|_{Q} = K \left( U_{GSQ} - U_{GS0} \right) \left( 1 + \lambda U_{DSQ} \right) = 2 \cdot (2,5-1) \cdot \left( 1 + 0,005 \cdot 5,1 \right) = 3,08 \text{ mA/V},$$

$$\frac{1}{r_{d}} = \frac{\partial i_{D}}{\partial u_{DS}} \bigg|_{Q} = \lambda \frac{K}{2} \left( U_{GSQ} - U_{GS0} \right)^{2} = \lambda I_{DQ} = 0,005 \cdot 2,25 = 11,3 \text{ } \mu\text{S} \qquad r_{d} = \frac{1}{11,3 \cdot 10^{-6}} = 88,5 \text{ } k\Omega$$

#### Dinamička analiza:

$$A_{V} = \frac{u_{iz}}{u_{ul}} = -g_{m} (r_{d} \| R_{D} \| R_{T}) = -3.08 \cdot (88.5 \| 4 \| 6) = -7.20$$

$$R_{ul} = R_{G} = R_{1} \| R_{2} = 5.8 \| 1.7 = 1.32 \text{ M}\Omega$$

$$A_{Vg} = \frac{u_{iz}}{u_{g}} = \frac{u_{iz}}{u_{ul}} \frac{u_{ul}}{u_{g}} = A_{V} \frac{R_{G}}{R_{g} + R_{G}} = -7.20 \cdot \frac{1320}{0.4 + 1320} = -7.20$$

$$R_{iz} = r_{d} \| R_{D} = 88.5 \| 4 = 3.83 \text{ k}\Omega$$

## **Primjer 6.6 (1)**

Za pojačalo iz primjera 6.5 ucrtati u polje izlaznih karakteristika MOSFET-a statički i dinamički radni pravac.

#### Rješenje:



## **Primjer 6.6 (2)**

Jednadžba statičkog radnog pravca:

$$U_{DS} = U_{DD} - (R_D + R_S)I_D$$

Sjecišta s osima:  $U_{DS} = U_{DD} = 15 \text{ V}$   $I_D = U_{DD} / (R_D + R_S) = 15 / (4 + 0.4) = 3.41 \text{ mA}$ 

U statičkoj radnoj točki:  $U_{GS} = U_{GSQ} = 2.5 \text{ V}$   $I_{DQ} = 2.3 \text{ mA}$   $U_{DSQ} = 4.9 \text{ V}$ 

Pojačalo u dinamičkim prilikama:



Jednadžba dinamičkog radnog pravca:

$$u_{ds} = -(R_D \| R_T)i_d$$

Sjecišta s osima:

$$U_{DSQ} + (R_D || R_T)I_{DQ} = 4.9 + 2.4 \cdot 2.3 = 10.4 \text{ V}$$

$$I_{DQ} + U_{DSQ} / (R_D || R_T) = 2.3 + 4.9 / 2.4 = 4.3 \text{ mA}$$

## Pojačalo u spoju zajedničkog uvoda s uvodskom degeneracijom



### Pojačalo s uvodskom degeneracijommodel za dinamičku analizu



$$\mu u_{gs} = (R_S + r_d + R_D \| R_T) i_d \qquad u_{gs} = u_{ul} - R_S i_d$$

$$\mu u_{ul} = [(1 + \mu)R_S + r_d + R_D \| R_T] i_d \qquad u_{iz} = -(R_D \| R_T) i_d$$

$$A_V = \frac{u_{iz}}{u_{ul}} = \frac{-\mu (R_D \| R_T)}{(1 + \mu)R_S + r_d + R_D \| R_T}$$

Uz: 
$$r_d >> R_D ||R_T i \mu = g_m r_d \rightarrow A_V \approx \frac{-g_m (R_D ||R_T)}{1 + g_m R_S}$$

## Pojačalo s uvodskom degeneracijom - izlazni otpor

Shema za određivanje izlaznog otpora:



$$i = \frac{u}{R_D} + i_d$$

$$i = \frac{u}{R_D} + i_d \qquad u = (R_S + r_d)i_d - \mu u_{gs}$$

$$u_{gs} = -R_S i_d$$

$$u_{gs} = -R_S i_d \qquad \qquad u = [(1 + \mu)R_S + r_d]i_d$$

$$i = \frac{u}{R_D} + \frac{u}{(1+\mu)R_S + r_d}$$

$$i = \frac{u}{R_D} + \frac{u}{(1+\mu)R_S + r_d}$$
  $R_{iz} = \frac{u}{i} = R_D \| [(1+\mu)R_S + r_d] \|$ 

## **Primjer 6.7 (1)**

U pojačalu na slike zadano je:  $U_{DD}=20~{\rm V},$   $R_g=1~{\rm k}\Omega,\,R_G=2~{\rm M}\Omega,\,R_D=5~{\rm k}\Omega,$   $R_S=400~{\rm \Omega}$  i  $R_T=7.5~{\rm k}\Omega.$  Parametri n-kanalnog spojnog FET-a su  $I_{DSS}=10~{\rm mA},\,U_P=-2~{\rm V}$  i  $\lambda=0.005~{\rm V}^{-1}.$  Odrediti statičku radnu točku sklopa, naponska pojačanja  $A_V=u_{iz}/u_{ul}$  i  $A_{Vg}=u_{iz}/u_g$ , te ulazni i izlazni otpor pojačala.



### Rješenje:

Statika:

$$0 = U_{GSQ} + R_S I_{DQ}$$

$$I_{DQ} = I_{DSS} \left( 1 - \frac{U_{GSQ}}{U_P} \right)^2$$

## **Primjer 6.7 (2)**

$$\begin{split} I_{DQ} &= I_{DSS} \left( 1 - \frac{U_{GSQ}}{U_P} \right)^2 = -\frac{U_{GSQ}}{R_S} \\ U_{GSQ}^2 &+ \left( \frac{U_P^2}{R_S I_{DSS}} - 2U_P \right) U_{GSQ} + U_P^2 = 0 \\ U_{GSQ} &= -2.5 \pm \sqrt{2.5^2 - 4} = -2.5 \pm 1.5 \text{ V} \end{split}$$

2 rezultata:  $U_{GSQ}$  = - 1 V i  $U_{GSQ}$  = - 4 V; fizikalno rješenje  $\rightarrow U_{GSQ}$  = - 1 V

$$I_{DQ} = -\frac{U_{GSQ}}{R_S} = -\frac{-1}{0.4} = 2.5 \text{ mA}$$

$$U_{DSQ} = U_{DD} - (R_D + R_S)I_{DQ} = 20 - (5 + 0.4) \cdot 2.5 = 6.5 \text{ V}$$

$$U_{DSQ} > U_{GSQ} - U_P = -1 + 2 = 1 \text{ V}$$

## **Primjer 6.7 (3)**

#### Dinamički parametri:

$$i_{D} = I_{DSS} \left( 1 - \frac{u_{GS}}{U_{P}} \right)^{2} (1 + \lambda u_{DS})$$

$$g_{m} = \frac{\partial i_{D}}{\partial u_{GS}} \Big|_{Q} = -\frac{2I_{DSS}}{U_{P}} \left( 1 - \frac{U_{GSQ}}{U_{P}} \right) (1 + \lambda U_{DSQ}) = -\frac{2 \cdot 10}{-2} \cdot \left( 1 - \frac{-1}{-2} \right) \cdot (1 + 0,005 \cdot 6,5) = 5,16 \text{ mA/V},$$

$$r_{d} = \frac{1}{\lambda I_{DO}} = \frac{1}{0,005 \cdot 2,5} = 80 \text{ k}\Omega \qquad \mu = g_{m} r_{d} = 5,16 \cdot 80 = 413$$

#### Dinamička analiza:

$$A_{V} = \frac{u_{iz}}{u_{ul}} = \frac{-\mu(R_{D} \| R_{T})}{(1+\mu)R_{S} + r_{d} + R_{D} \| R_{T}} = \frac{-413 \cdot (5 \| 7,5)}{(1+413) \cdot 0,4 + 80 + 5 \| 7,5} = -4,98$$

$$R_{ul} = R_{G} = 2 \text{ M}\Omega$$

## **Primjer 6.7 (4)**

$$A_{Vg} = \frac{u_{iz}}{u_g} = \frac{u_{iz}}{u_{ul}} \frac{u_{ul}}{u_g} = A_V \frac{R_G}{R_g + R_G} = -4.98 \cdot \frac{2000}{1 + 2000} = -4.98$$

$$R_{iz} = R_D \| [(1 + \mu)R_S + r_d] = 5 \| [(1 + 413)0, 4 + 80] = 5 \| 245 = 4,90 \text{ k}\Omega$$

Pojednostavljen izraz:

$$A_V \approx \frac{-g_m(R_D \| R_T)}{1 + g_m R_S} = \frac{-5,16 \cdot (5 \| 7,5)}{1 + 5,16 \cdot 0,4} = -5,05$$

# Pojačalo u spoju zajedničke upravljačke elektrode





s MOSFET-om

s JFET-om

## Pojačalo sa zajedničkom upravljačkom elektrodom – model za dinamičku analizu



$$u_{gs} = -u_{ul}$$
  $(1 + \mu)u_{ul} = -(r_d + R_D \| R_T)i_d$   $u_{iz} = -(R_D \| R_T)i_d$ 

$$A_{V} = \frac{u_{iz}}{u_{ul}} = \frac{(1+\mu)(R_{D} \| R_{T})}{r_{d} + R_{D} \| R_{T}}$$

Uz: 
$$\mu >> 1$$
 i  $\mu = g_m r_d \rightarrow A_V \approx \frac{g_m r_d (R_D \| R_T)}{r_d + R_D \| R_T} = g_m (r_d \| R_D \| R_T)$ 

## Pojačalo sa zajedničkom upravljačkom elektrodom – ulazni otpor



$$i_{ul} = \frac{u_{ul}}{R_S} - i_d = \frac{u_{ul}}{R_S} + \frac{u_{ul}}{(r_d + R_D \| R_T)/(1 + \mu)}$$

$$R_{ul} = \frac{u_{ul}}{i_{ul}} = R_S \| \frac{r_d + R_D \| R_T}{1 + \mu}$$

Uz: 
$$r_d >> R_D || R_T$$
,  $\mu >> 1$  i  $\mu = g_m r_d \rightarrow R_{ul} \approx R_S || \frac{1}{g_m}$ 

## Pojačalo sa zajedničkom upravljačkom elektrodom – izlazni otpor

Shema za određivanje izlaznog otpora:



$$i = \frac{u}{R_D} + i_d \qquad u = (r_d + R_S \| R_g) i_d - \mu u_{gs}$$

$$u_{gs} = -(R_S \| R_g)i_d$$
  $u = [r_d + (1 + \mu)(R_S \| R_g)]i_d$ 

$$R_{iz} = \frac{u}{i} = R_D \| [r_d + (1 + \mu)(R_S \| R_g)] \|$$

### **Primjer 6.8 (1)**

U pojačalu na slike zadano je:  $U_{DD}=20~{\rm V},~R_g=500~\Omega,~R_D=5~{\rm k}\Omega,~R_S=400~\Omega$  i  $R_T=7.5~{\rm k}\Omega.$  Parametri n-kanalnog spojnog FET-a su  $I_{DSS}=10~{\rm mA},~U_P=-2~{\rm V}$  i  $\lambda=0.005~{\rm V}^{-1}.$  Odrediti naponska pojačanja  $A_V=u_{iz}/u_{ul}$  i  $A_{Vg}=u_{iz}/u_g,$  te ulazni i izlazni otpor pojačala.



#### Rješenje:

Iz primjera 6.7: 
$$U_{GSQ} = -1$$
 V,  $I_{DQ} = 2.5$  mA,  $U_{DSQ} = 6.5$  V,  $g_m = 5.16$  mA/V,  $r_d = 80$  k $\Omega$ ,  $\mu = 413$ 

Dinamička analiza:

$$A_V = \frac{u_{iz}}{u_{ul}} = \frac{(1+\mu)(R_D \| R_T)}{r_d + R_D \| R_T} = \frac{(1+413)(5\| 7,5)}{80+5\| 7,5} = 15$$

### **Primjer 6.8 (2)**

$$R_{ul} = R_S \left\| \frac{r_d + R_D \| R_T}{1 + \mu} = 0.5 \right\| \frac{80 + 5 \| 7.5}{1 + 413} = 0.4 \| 0.200 = 133 \Omega$$

$$A_{Vg} = \frac{u_{iz}}{u_g} = \frac{u_{iz}}{u_{ul}} \frac{u_{ul}}{u_g} = A_V \frac{R_{ul}}{R_g + R_{ul}} = 15 \cdot \frac{133}{500 + 133} = 3,15$$

$$R_{iz} = R_D \| [r_d + (1 + \mu)(R_S \| R_g)] = 5 \| [80 + (1 + 413)(0.4 \| 0.5)] = 5 \| 172 = 4.86 \text{ k}\Omega$$

Pojednostavljenim izrazima dobiva se:

$$A_V \approx g_m (r_d \| R_D \| R_T) = 5,16 \cdot (80 \| 5 \| 7,5) = 14,9$$

$$R_{ul} \approx R_S \| \frac{1}{g_m} = 0.4 \| \frac{1}{5.16} = 131 \Omega$$

# Pojačalo u spoju zajedničkog odvoda – uvodsko sljedilo



U statici:  $U_{DS} = U_{DD} - R_S I_D$ 

#### Uvodsko sljedilo model za dinamičku analizu



$$u_{iz} = g_m u_{gs} (r_d || R_S || R_T)$$
  $u_{gs} = u_{ul} - u_{iz}$ 

$$u_{gs} = u_{ul} - u_{iz}$$

$$A_{V} = \frac{u_{iz}}{u_{ul}} = \frac{g_{m}(r_{d} \| R_{S} \| R_{T})}{1 + g_{m}(r_{d} \| R_{S} \| R_{T})}$$

$$R_{ul} = R_G = R_1 \| R_2$$

#### Uvodsko sljedilo – izlazni otopor

#### Shema za određivanje izlaznog otpora:



$$u_{gs} = -u$$
  $u = (r_d || R_S)(i + g_m u_{gs}) = (r_d || R_S)(i - g_m u)$ 

$$R_{iz} = \frac{u}{i} = \frac{r_d \| R_S}{1 + g_m (r_d \| R_S)}$$

Uz: 
$$\mu = g_m r_d \rightarrow R_{iz} = R_S \left\| \frac{r_d}{1 + \mu} \approx R_S \right\| \frac{1}{g_m}$$

### **Primjer 6.9 (1)**

U pojačalu sa slike zadano je:  $U_{DD}=15~\mathrm{V}$ ,  $R_g=500~\Omega$ ,  $R_1=2~\mathrm{M}\Omega$ ,  $R_2=5~\mathrm{M}\Omega$ ,  $R_S=4~\mathrm{k}\Omega$  i  $R_T=5~\mathrm{k}\Omega$ . Parametri n-kanalnog MOSFET-a su  $K=2~\mathrm{mA/V^2}$ ,  $U_{GS0}=1~\mathrm{V}$  i  $\lambda=0{,}005~\mathrm{V^{-1}}$ . Odrediti naponska pojačanja  $A_V=u_{iz}/u_{ul}$  i  $A_{Vg}=u_{iz}/u_g$ , te ulazni i izlazni otpor pojačala.



#### Rješenje:

Statika:

$$U_{GG} = \frac{R_2}{R_1 + R_2} U_{DD} = \frac{5}{2+5} \cdot 15 = 10,7 \text{ V}$$

$$U_{GG} = U_{GSQ} + R_S I_{DQ} = U_{GSQ} + R_S \frac{K}{2} (U_{GSQ} - U_{GS0})^2$$

### **Primjer 6.9 (2)**

Kvadratna jednadžba:

$$U_{GSQ}^{2} + \left(\frac{2}{R_{S}K} - 2U_{GS0}\right)U_{GSQ} + U_{GS0}^{2} - \frac{2U_{GG}}{R_{S}K} = 0 \rightarrow U_{GSQ}^{2} - 1,75 \cdot U_{GSQ} - 1,675 = 0$$

$$U_{GSQ} = 0,875 \pm \sqrt{0,875^{2} + 1,675} = 0,875 \pm 1,562 \text{ V}$$

2 rezultata:  $U_{GSQ}$  = 2,44 V i  $U_{GSQ}$  = - 0,69 V; fizikalno rješenje  $\rightarrow U_{GSQ}$  = 2,44 V

$$I_{DQ} = \frac{K}{2} (U_{GSQ} - U_{GS0})^2 = \frac{2}{2} (2,44 - 1)^2 = 2,07 \text{ mA}$$

$$U_{DSQ} = U_{DD} - R_S I_{DQ} = 15 - 4 \cdot 2,07 = 6,72 \text{ V}$$

$$U_{DSO} > U_{GSO} - U_{GSO} = 2,44 - 1 = 1,44 \text{ V}$$

### **Primjer 6.9 (3)**

#### Dinamički parametri:

$$i_{D} = \frac{K}{2} (u_{GS} - U_{GS0})^{2} (1 + \lambda u_{DS})$$

$$g_{m} = \frac{\partial i_{D}}{\partial u_{GS}} \bigg|_{Q} = K (U_{GSQ} - U_{GS0}) (1 + \lambda U_{DSQ}) = 2 \cdot (2,44 - 1) \cdot (1 + 0,005 \cdot 6,72) = 2,98 \text{ mA/V},$$

$$r_{d} = \frac{\partial u_{DS}}{\partial i_{D}} \bigg|_{Q} = \frac{1}{\lambda I_{DQ}} = \frac{1}{0,005 \cdot 2,07} = 96,6 \text{ k}\Omega$$

#### Dinamička analiza:

$$A_{V} = \frac{u_{iz}}{u_{ul}} = \frac{g_{m}(r_{d} \| R_{S} \| R_{T})}{1 + g_{m}(r_{d} \| R_{S} \| R_{T})} = \frac{2,98 \cdot (96,6 \| 4 \| 5)}{1 + 2,98 \cdot (96,6 \| 4 \| 5)} = 0,866$$

$$R_{ul} = R_G = R_1 || R_2 = 2 || 5 = 1,43 \text{ M}\Omega$$

### **Primjer 6.9 (4)**

$$A_{Vg} = \frac{u_{iz}}{u_g} = \frac{u_{iz}}{u_{ul}} \frac{u_{ul}}{u_g} = A_V \frac{R_G}{R_g + R_G} = 0,866 \cdot \frac{1430}{1 + 1430} = 0,865$$

$$R_{iz} = \frac{r_d \| R_S}{1 + g_m (r_d \| R_S)} = \frac{96.6 \| 4}{1 + 2.98 \cdot (96.6 \| 4)} = 309 \Omega$$

Pojednostavljen izraz za izlazni otpor:

$$R_{iz} \approx \frac{R_S}{1 + g_m R_S} = \frac{1}{g_m} \left\| R_S = \frac{1}{2,98} \right\| 4 = 310 \,\Omega$$

# Usporedba osnovnih spojeva pojačala s FET-ovima

| Spoj pojačala                       | $A_V$                                                       | $R_{ul}$                      | $R_{iz}$                                |
|-------------------------------------|-------------------------------------------------------------|-------------------------------|-----------------------------------------|
| zajednički<br>uvod                  | $-g_m(r_d    R_D    R_T)$                                   | $R_G$                         | $R_D \parallel r_d$                     |
| zajednička<br>upravljačka elektroda | $g_m(r_d \  R_D \  R_T)$                                    | $R_S \parallel \frac{1}{g_m}$ | $R_D \  [r_d + (1+\mu)(R_S \  R_g)] \ $ |
| zajednički<br>odvod                 | $\frac{g_m(r_d \  R_S \  R_T)}{1 + g_m(r_d \  R_S \  R_T)}$ | $R_G$                         | $R_S \parallel \frac{1}{g_m}$           |

#### **CMOS** invertor



$$u_{GSn} = u_{UL}$$

$$u_{GSp} = u_{UL} - U_{DD}$$

$$u_{DSn} = u_{IZ}$$

$$u_{DSp} = u_{IZ} - U_{DD}$$

$$i_{Dn} = -i_{Dp}$$

# Stacionarna stanja – ulazni napon niske razine





 $T_n$  ne vodi,  $T_p$  vodi – u početku triodnog područja:

$$i_{Dp} = K_p (u_{GSp} - U_{GS0p}) u_{DSp}$$
  $R_p = \frac{u_{DSp}}{i_{Dp}} = \frac{1}{K_p (u_{GSp} - U_{GS0p})}$ 

Izlazni napon visoke razine (napon logičke 1)  $\rightarrow U_1 = U_{DD}$ 

# Stacionarna stanja – ulazni napon visoke razine





 $T_p$  ne vodi,  $T_n$  vodi – u početku triodnog područja:

$$i_{Dn} = K_n (u_{GSn} - U_{GS0n}) u_{DSn}$$
  $R_n = \frac{u_{DSn}}{i_{Dn}} = \frac{1}{K_n (u_{GSn} - U_{GS0n})}$ 

Izlazni napon niske razine (napon logičke 0)  $\rightarrow U_0 = 0$ 

#### Svojstva CMOS invertora

- Sklop obavlja logičku funkciju invertora. Uz ulazni napon niske razine izlazni je napon na visokoj razini i obrnuto.
- Naponi logičkih razina 0 i 1 su  $U_0 = 0$  i  $U_1 = U_{DD}$ . Razlika naponskih razina odgovara cijelom naponu napajanja što je povoljno za ostvarenje većih granica smetnji.
- Naponi logičkih razina ne ovise o dimenzijama tranzistora.
- U statičkim stanjima izlaz je uvijek preko konačnog otpora spojen ili na masu ili na napon napajanja, pa je sklop manje osjetljiv na smetnje. Izlaz CMOS invertora je niskoomski. Otpori  $R_n$  i  $R_p$  su reda veličine kΩ.
- □ Ulaz CMOS invertora je visokoomski, pa se sklop upravlja bez struje. To teoretski omogućuje beskonačno veliki faktor grananja izlaza.
- Ni u jednom od statičkih stanja ne postoji put struje između napajanja i mase što znači da sklop radi bez potrošnje.

#### Prijenosna karakteristika





#### Napon praga okidanja

prag okidanja  $\rightarrow$  točka u kojoj pravac  $u_{IZ} = u_{UL}$  siječe prijenosnu karakteristiku

za napon praga okidanja  $U_{PO} = u_{IZ} = u_{UL} \rightarrow$  tranzistori rade u zasićenju

$$i_{Dn} = -i_{Dp} \rightarrow K_n (U_{PO} - U_{GS0n})^2 = -K_p (U_{PO} - U_{DD} - U_{GS0p})^2$$

$$r = \sqrt{\frac{-K_p}{K_n}} = \pm \frac{U_{PO} - U_{GS0n}}{U_{PO} - U_{DD} - U_{GS0p}}$$

fizikalno rješenje s predznakom "-"  $\rightarrow r = \frac{U_{PO} - U_{GS0n}}{U_{DD} - U_{PO} + U_{GS0n}}$ 

$$U_{PO} = \frac{r(U_{DD} + U_{GS0p}) + U_{GS0n}}{1 + r}$$

podešava se strujnim konstantama  $K_n$  i  $K_p$ 

za 
$$r=1$$
 i  $U_{GS0n}=-U_{GS0p} \rightarrow U_{PO}=U_{DD}/2$ 

#### **Primjer 6.10 (1)**

- Parametri tranzistora u CMOS invertoru su debljina oksida iznad kanala za oba tranzistora  $t_{ox}=6$  nm, pokretljivosti nosilaca u kanalu  $\mu_n=270~{\rm cm^2/Vs},~\mu_p=90~{\rm cm^2/Vs}$  i naponi pragova  $U_{GS0n}=-~U_{GS0p}=0,5~{\rm V}.$  Napon napajanja  $U_{DD}=2,5~{\rm V}.$
- a) Uz pretpostavku da su dužine kanala oba tranzistora jednake,  $L_n = L_p$  izračunati omjer širina kanala  $W_p/W_n$  tranzistora  $T_n$  i  $T_p$  uz koji će napon praga okidanja biti jednak polovici napona napajanja  $U_{PO} = U_{DD}/2 = 1,25 \text{ V}.$
- b) Izračunati novu vrijednost napona praga okidanja  $U_{PO}$  ako se širina kanala tranzistora  $T_p$  u odnosu na širinu iz dijela a) utrostruči.

#### Rješenje:

a) Za 
$$U_{PO} = U_{DD}/2$$
 i  $U_{GS0n} = -U_{GS0p}$ 

$$r = \frac{U_{DD}/2 - U_{GS0n}}{U_{DD} - U_{DD}/2 + U_{GS0p}} = \frac{U_{DD}/2 - U_{GS0n}}{U_{DD}/2 - U_{GS0n}} = 1$$

### **Primjer 6.10 (2)**

$$K = \mu C_{ox} \frac{W}{L} \qquad C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$$

$$r^{2} = \frac{-K_{p}}{K_{n}} = \frac{\mu_{p} C_{oxp} W_{p} L_{n}}{\mu_{n} C_{oxn} W_{n} L_{p}} = \frac{\mu_{p} W_{p}}{\mu_{n} W_{n}} = 1$$

$$\frac{W_{p}}{W_{n}} = \frac{\mu_{n}}{\mu_{p}} = \frac{270}{90} = 3$$

b) Za trostruko veću širinu kanala  $W_p$ 

$$\frac{-K_p}{K_n} = \frac{\mu_p W_p}{\mu_n W_n} = \frac{90}{270} \cdot 9 = 3$$

$$r = \sqrt{-K_p / K_n} = \sqrt{3} = 1,73$$

$$U_{PO} = \frac{r(U_{DD} + U_{GS0p}) + U_{GS0n}}{1 + r} = \frac{1,73 \cdot (2,5 - 0,5) + 0,5}{1 + 1,73} = 1,45 \text{ V}$$

#### **Granice smetnji**



$$GS_{N} = U_{ULN} - U_{IZN} = U_{ULN}$$
 $GS_{V} = U_{IZV} - U_{ULV} = U_{DD} - U_{ULV}$ 

primjer:  $U_{DD} = 2.5 \text{ V}$ 
 $U_{ULN} = 1.04 \text{ V}, U_{ULV} = 1.46 \text{ V}$ 
 $GS_{N} = U_{ULN} = 1.04 \text{ V}$ 
 $GS_{V} = U_{DD} - U_{ULV} = 1.04 \text{ V}$ 
 $GS_{V} = U_{DD} - U_{ULV} = 1.04 \text{ V}$ 

#### Vremenski odziv





### Vremena kašnjenja (1)





$$i_{Dn} dt = -C_T du_{IZ}$$

$$t_{dVN} = -C_T \int_{U_{DD}}^{U_{DD}/2} \frac{\mathrm{d}u_{IZ}}{i_{Dn}(u_{IZ})}$$

#### Vremena kašnjenja

između točaka 
$$B$$
 i  $C \rightarrow i_{Dn} = \frac{K_n}{2} (U_{DD} - U_{GS0n})^2$ 

između točaka 
$$C i D \rightarrow i_{Dn} = K_n (U_{DD} - U_{GS0n}) u_{IZ} - \frac{K_n}{2} u_{IZ}^2$$

pretpostavljajući da je između točaka  $B i D \rightarrow i_{Dn} = \frac{K_n}{2} (U_{DD} - U_{GS0n})^2$ 

$$t_{dVN} \approx \frac{C_T (U_{DD} - U_{DD} / 2)}{K_n / 2 (U_{DD} - U_{Gs0n})^2} = \frac{C_T U_{DD}}{K_n (U_{DD} - U_{Gs0n})^2}$$

$$t_{dNV} \approx \frac{C_T U_{DD}}{-K_p (U_{DD} + U_{Gs0p})^2}$$

#### Primjer 6.11

Za CMOS invertor s parametrima iz primjera 6.10 odrediti vrijeme kašnjenja  $t_{dVN}$ . Kapacitet  $C_T$  je  $10~{\rm fF}$ , a dimenzije kanala tranzistora  $T_n$  su  $W_n=2L_n=0,50~{\rm \mu m}$ . Kolika, uz  $L_n=L_p$ , mora biti širina kanala  $W_p$  tranzistora  $T_p$  da bi vrijeme kašnjenja  $t_{dNV}$  bilo jednako vremenu kašnjenja  $t_{dVN}$ ?

Rješenje:

$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = \frac{\varepsilon'_{ox} \varepsilon_0}{t_{ox}} = \frac{3.9 \cdot 8.854 \cdot 10^{-14}}{6 \cdot 10^{-7}} = 576 \text{ nF/cm}^2 = 5.76 \text{ fF/}\mu\text{m}^2$$

$$K_n = \mu_n C_{ox} \frac{W_n}{L_n} = 270 \cdot 576 \cdot 10^{-9} \cdot 2 = 311 \,\mu\text{A/V}^2$$

$$t_{dVN} \approx \frac{C_T U_{DD}}{K_n (U_{DD} - U_{Gs0n})^2} = \frac{10 \cdot 10^{-15} \cdot 2.5}{311 \cdot 10^{-6} (2.5 - 0.5)^2} = 20.1 \text{ ps}$$

Za 
$$U_{GS0n} = -U_{GS0p} \rightarrow t_{dVN} = t_{dNV} \text{ uz} - K_p = K_n$$
 
$$\frac{W_p}{W_n} = \frac{\mu_n}{\mu_p} = \frac{270}{90} = 3 \qquad W_p = 3W_n = 3 \cdot 0.50 = 1.50 \, \mu \text{m}$$

#### Disipacija snage



$$P = C_T U_{DD}^2 f$$

$$E_{DD} = \int_{0}^{\infty} i_{DD} U_{DD} dt = U_{DD} \int_{0}^{\infty} C_{T} \frac{du_{IZ}}{dt} dt = C_{T} U_{DD} \int_{0}^{U_{DD}} du_{IZ} = C_{T} U_{DD}^{2}$$

$$E_{C} = \int_{0}^{\infty} i_{DD} u_{IZ} dt = \int_{0}^{\infty} C_{T} \frac{du_{IZ}}{dt} u_{IZ} dt = C_{T} \int_{0}^{U_{DD}} u_{IZ} du_{IZ} = \frac{C_{T} U_{DD}^{2}}{2}$$

#### Primjer 6.12

Kolika se energija izvora napajanja od  $2,5~\rm V$  troši pri svakoj periodi promjene izlaznog napona na CMOS invertoru opterećenom kapacitetom  $C_T$  =  $10~\rm fF$ . Kolika je disipacija snage invertora uz frekvenciju rada od  $1~\rm GHz$ ?

#### Rješenje:

$$E_{DD} = C_T U_{DD}^2 = 10 \cdot 10^{-15} \cdot 2,5^2 = 62,5 \text{ fJ}$$

$$P = C_T U_{DD}^2 f = 10 \cdot 10^{-15} \cdot 2,5^2 \cdot 10^9 = 62,5 \,\mu\text{W}$$

## Kombinacijski CMOS logički sklopovi

Kombinacijski logički sklopovi - nemaju svojstvo pamćenja; trenutačni odzivi na izlazima posljedica su trenutačnih ulaznih signala

#### CMOS logički sklopovi

- proširenje CMOS invertora
- dvije mreže:
  - mreža ponora (engl. pull-down network)
  - mreža izvora (engl. pull-up network)
- ulazi se priključuju na obje mreže
- mreže rade komplementarno jedna vodi, druga ne vodi
- jedna od mreža spaja izlaz na masu ili napon napajanja
- u stacionarnom stanju nema potrošnje



## Spajanje nMOS tranzistora u mreži ponora

n-kanalni MOSFET – vodi kada je na ulazu logička 1 i spaja izlaz na logičku 0



$$\overline{Y} = A + B \rightarrow Y = \overline{A + B}$$

NILI funkcija



$$\overline{Y} = A \cdot B \quad \rightarrow \quad Y = \overline{A \cdot B}$$

NI funkcija

## Spajanje pMOS tranzistora u mreži izvora

p-kanalni MOSFET – vodi kada je na ulazu logička 0 i spaja izlaz na logičku 1



$$Y = \overline{A} + \overline{B} = \overline{A \cdot B}$$

NI funkcija



$$Y = \overline{A} \cdot \overline{B} = \overline{A + B}$$

NILI funkcija

#### Logički sklop NI





| A | В | Y |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

$$U_0 = 0$$
$$U_1 = U_{DD}$$

#### Logički sklop NILI





| A | В | Y |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

$$U_0 = 0$$
$$U_1 = U_{DD}$$

### Složene logičke funkcije

- AOI sklopovi (engl. and-or-invert)
- kombinacija serijskih i paralelnih spojeva tranzistora u obje mreže
- mreže moraju biti komplementarne

#### Primjer:

za mrežu ponora

$$\overline{Y} = A + B \cdot C \quad \rightarrow \quad Y = \overline{A + B \cdot C}$$

za mrežu izvora

$$Y = \overline{A} \cdot (\overline{B} + \overline{C}) = \overline{A} \cdot \overline{B \cdot C} = \overline{A + B \cdot C}$$



#### Primjer 6.13

Nacrtati komplementarni CMOS sklop kojim se ostvaruje logička funkcija

$$Y = \overline{AB + AC + BC} .$$

Rješenje:

Funkcija se može pisati u obliku

$$\overline{Y} = AB + AC + BC = AB + (A + B)C$$



## Sekvencijski CMOS logički sklopovi

Sekvencijski (sljedni) logički sklopovi - odlikuju se svojstvom pamćenja; izlaz ovisi ne samo o kombinaciji trenutnih stanja na ulazima već i o prethodnom stanjima

osnovni sekvencijski sklop – bistabil

- spoj dva unakrsno spojena invertora
- $\Box$  dva komplementarna izlaza  $Q i \overline{Q}$
- memorijski element
- za promjenu stanja ulazi za okidanje



#### **SR-bistabil**





| S | R | $Q_{n+1}$ | $\overline{\mathcal{Q}}_{n+1}$ |
|---|---|-----------|--------------------------------|
| 0 | 0 | $Q_n$     | $\overline{Q}_n$               |
| 1 | 0 | 1         | 0                              |
| 0 | 1 | 0         | 1                              |
| 1 | 1 | _         | _                              |

 $S i R \rightarrow ulazi za okidanje$ 

- $\supset$  S  $\rightarrow$  postavljanje izlaza Q u logičku 1 (engl. set)
- R → vraćanje izlaza Q u logičku 0 (engl. reset)
- kombinacija ulaza 11 nedozvoljeno stanje

#### **CMOS SR-bistabil**



$$T_{n1},~T_{n2},~T_{p1},~T_{p2} 
ightarrow {
m prvi~NILI~sklop}$$
  $T_{n3},~T_{n3},~T_{p3},~T_{p4} 
ightarrow {
m drugi~NILI~sklop}$ 

#### **Upravljani CMOS SR-bistabil**



upravljani (sinkroni) bistabil – upravljan je impulsima takta ♦

## **CMOS SR-bistabil za memorijske sklopove**



- osnovna ćelija statičkog RAM-a
- □ S i R moraju biti u različitim logičkim stanjima