SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: Hillman, Jennifer L.

Yue, Henry Lal, Preeti Shah, Purvi Corley, Neil C.

- (ii) TITLE OF THE INVENTION: PROTEINS ASSOCIATED WITH CELL PROLIFERATION
 - (iii) NUMBER OF SEQUENCES: 9
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Incyte Pharmaceuticals, Inc.
 - (B) STREET: 3174 Porter Dr.
 - (C) CITY: Palo Alto
 - (D) STATE: CA
 - (E) COUNTRY: USA
 - (F) ZIP: 94304
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: To Be Assigned
 - (B) FILING DATE: Filed Herewith
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Billings, Lucy J.
 - (B) REGISTRATION NUMBER: 36,749
 - (C) REFERENCE/DOCKET NUMBER: PF-0421 US
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 650-855-0555
 - (B) TELEFAX: 650-845-4166
 - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 168 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (vii) IMMEDIATE SOURCE:
 - (A) LIBRARY: SYNORAB01
 - (B) CLONE: 358673
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Met Phe Gln Ile Pro Glu Phe Glu Pro Ser Glu Gln Glu Asp Ser Ser 1 5 10 15

Ser Ala Glu Arg Gly Leu Gly Pro Ser Pro Ala Gly Asp Gly Pro Ser 20 25 30

Gly Ser Gly Lys His His Arg Gln Ala Pro Gly Leu Leu Trp Asp Ala 40 Ser His Gln Glu Gln Pro Thr Ser Ser His His Gly Gly Ala Gly Ala Val Glu Ile Arg Ser Arg His Ser Ser Tyr Pro Ala Gly Thr 70 75 Glu Asp Asp Glu Gly Met Gly Glu Glu Pro Ser Pro Phe Arg Gly Arg 95 90 85 Ser Arg Ser Ala Pro Pro Asn Leu Trp Ala Ala Gln Arg Tyr Gly Arg 100 105 110 Glu Leu Arg Arg Met Ser Asp Glu Phe Val Asp Ser Phe Lys Lys Gly 120 125 115 Leu Pro Arg Pro Lys Ser Ala Gly Thr Ala Thr Gln Met Arg Gln Ser 130 135 140 Ser Ser Trp Thr Arg Val Phe Gln Ser Trp Trp Asp Arg Asn Leu Gly 150 155 160 Arg Gly Ser Ser Ala Pro Ser Gln 165

(2) INFORMATION FOR SEO ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1105 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (vii) IMMEDIATE SOURCE:
 - (A) LIBRARY: 358673
 - (B) CLONE: SYNORAB01

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

CGACCGTCCG	CGGGAGACTG	AGGTCCTGAG	CCGACAGCCT	CAGCTCCCTG	CCAGGCCAGA	60
CCCGGCAGAC	AGATGAGGGC	CCAGGAGGCC	TGGCGGGCCT	GGGGGCGCTA	CGGTGGGAGA	120
GGAAGCCAGG	GGTACCTGCC	TCTGCCTTCC	AGGGCCACCG	TTGGCCCCAG	CTGTGCCTTG	180
ACTACGTAAC	ATCTTGTCCT	CACAGCCCAG	AGCATGTTCC	AGATCCCAGA	GTTTGAGCCG	240
AGTGAGCAGG	AAGACTCCAG	CTCTGCAGAG	AGGGGCCTGG	GCCCCAGCCC	CGCAGGGGAC	300
GGGCCCTCAG	GCTCCGGCAA	GCATCATCGC	CAGGCCCCAG	GCCTCCTGTG	GGACGCCAGT	360
CACCAGCAGG	AGCAGCCAAC	CAGCAGCAGC	CATCATGGAG	GCGCTGGGGC	TGTGGAGATC	420
CGGAGTCGCC	ACAGCTCCTA	CCCCGCGGGG	ACGGAGGACG	ACGAAGGGAT	GGGGGAGGAG	480
CCCAGCCCCT	TTCGGGGCCG	CTCGCGCTCG	GCGCCCCCA	ACCTCTGGGC	AGCACAGCGC	540
TATGGCCGCG	AGCTCCGGAG	GATGAGTGAC	GAGTTTGTGG	ACTCCTTTAA	GAAGGGACTT	600
CCTCGCCCGA	AGAGCGCGGG	CACAGCAACG	CAGATGCGGC	AAAGCTCCAG	CTGGACGCGA	660
GTCTTCCAGT	CCTGGTGGGA	TCGGAACTTG	GGCAGGGGAA	GCTCCGCCCC	CTCCCAGTGA	720
CCTTCGCTCC	ACATCCCGAA	ACTCCACCCG	TTCCCACTGC	CCTGGGCAGC	CATCTTGAAT	780
ATGGGCGGAA	GTACTTCCCT	CAGGCCTATG	CAAAAAGAGG	ATCCGTGCTG	TCTCCTTTGG	840
AGGGAGGCT	GACCCAGATT	CCCTTCCGGT	GCGTGTGAAG	CCACGGAAGG	CTTGGTCCCA	900
TCGGAAGTTT	TGGGTTTTCC	GCCCACAGCC	GCCGGAAGTG	GCTCCGTGGC	CCCGCCCTCA	960
GGCTCCGGGC	TTTCCCCCAG	GCGCCTGCGC	TAAGTCGCGA	GCCAGGTTTA	ACCGTTGCGT	1020
CACCGGGACC	CGAGCCCCCG	CGATGCCCTG	GGGGCCGTGC	TCACTACCAA	ATGTTAATAA	1080
AGCCCGCGTC	TGTGCAAAAA	AAAAA				1105

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 440 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (vii) IMMEDIATE SOURCE:
 - (A) LIBRARY: LATRTUT02
 - (B) CLONE: 1352286
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Arg Val Val Thr Ile Val Ile Leu Leu Cys Phe Cys Lys Ala Ala 10 Glu Leu Arg Lys Ala Ser Pro Gly Ser Val Arg Ser Arg Val Asn His 20 Gly Arg Ala Gly Gly Gly Arg Arg Gly Ser Asn Pro Val Lys Arg Tyr 40 Ala Pro Gly Leu Pro Cys Asp Val Tyr Thr Tyr Leu His Glu Lys Tyr 55 Leu Asp Cys Gln Glu Arg Lys Leu Val Tyr Val Leu Pro Gly Trp Pro Gln Asp Leu Leu His Met Leu Leu Ala Arg Asn Lys Ile Arg Thr Leu 85 90 Lys Asn Asn Met Phe Ser Lys Phe Lys Lys Leu Lys Ser Leu Asp Leu 105 100 Gln Gln Asn Glu Ile Ser Lys Ile Glu Ser Glu Ala Phe Phe Gly Leu 120 Asn Lys Leu Thr Thr Leu Leu Gln His Asn Gln Ile Lys Val Leu 130 135 140 Thr Glu Glu Val Phe Ile Tyr Thr Pro Leu Leu Ser Tyr Leu Arg Leu 150 155 Tyr Asp Asn Pro Trp His Cys Thr Cys Glu Ile Glu Thr Leu Ile Ser 170 Met Leu Gln Ile Pro Arg Asn Arg Asn Leu Gly Asn Tyr Ala Lys Cys 185 180 Glu Ser Pro Gln Glu Gln Lys Asn Lys Lys Leu Arg Gln Ile Lys Ser 195 200 Glu Gln Leu Cys Asn Glu Glu Lys Glu Gln Leu Asp Pro Lys Pro Gln 215 220 Val Ser Gly Arg Pro Pro Val Ile Lys Pro Glu Val Asp Ser Thr Phe 235 230 Cys His Asn Tyr Val Phe Pro Ile Gln Thr Leu Asp Cys Lys Arg Lys 245 250 Glu Leu Lys Lys Val Pro Asn Asn Ile Pro Pro Asp Ile Val Lys Leu 265 260 Asp Leu Ser Tyr Asn Lys Ile Asn Gln Leu Arg Pro Lys Glu Phe Glu 280 Asp Val His Glu Leu Lys Lys Leu Asn Leu Ser Ser Asn Gly Ile Glu 295 300 Phe Ile Asp Pro Ala Ala Phe Leu Gly Leu Thr His Leu Glu Glu Leu 310 315 Asp Leu Ser Asn Asn Ser Leu Gln Asn Phe Asp Tyr Gly Val Leu Glu 330 Asp Leu Tyr Phe Leu Lys Leu Leu Trp Leu Arg Asp Asn Pro Trp Arg 345 Cys Asp Tyr Asn Ile His Tyr Leu Tyr Tyr Trp Leu Lys His His Tyr 360 355 Asn Val His Phe Asn Gly Leu Glu Cys Lys Thr Pro Glu Glu Tyr Lys 375 380 Gly Trp Ser Val Gly Lys Tyr Ile Arg Ser Tyr Tyr Glu Glu Cys Pro 390 395 Lys Asp Lys Leu Pro Ala Tyr Pro Glu Ser Phe Asp Gln Asp Thr Glu 410 Asp Asp Glu Trp Glu Lys Lys His Arg Asp His Thr Ala Lys Lys Gln 425 420 Ser Val Ile Ile Thr Ile Val Gly

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2082 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(vii) IMMEDIATE SOURCE:

(A) LIBRARY: LATRTUT02

(B) CLONE: 1352286

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

	CATTCTCTGG					60
ACAAACCTGG	GTGCAGCCAG	AGAGGTCCAG	ATAGATGAGC	TTGTGGCATC	CATTCCCCAA	120
GTTCAGCCTA	GGGACTCCAC	GTACCCCAGC	TGGGTCTCAT	TGTTCCAGAA	CTGCATTAGT	180
TAAGATTACC	CAGACTTGGA	TTTCAAAGGA	ATACTTTCAT	TGTTCCGTCT	GTAACACGAA	240
GTAATTGGGG	CCAGCTGGAT	GTCAGGATGC	GTGTGGTTAC	CATTGTAATC	TTGCTCTGCT	300
TTTGCAAAGC	GGCTGAGCTG	CGCAAAGCAA	GCCCAGGCAG	TGTGAGAAGC	CGAGTGAATC	360
ATGGCCGGGC	GGGTGGAGGC	CGGAGAGGCT	CCAACCCGGT	CAAACGCTAC	GCACCAGGCC	420
TCCCGTGTGA	CGTGTACACA	TATCTCCATG	AGAAATACTT	AGATTGTCAA	GAAAGAAAAT	480
TAGTTTATGT	GCTGCCTGGT	TGGCCTCAGG	ATTTGCTGCA	CATGCTGCTA	GCAAGAAACA	540
AGATCCGCAC	ATTGAAGAAC	AACATGTTTT	CCAAGTTTAA	AAAGCTGAAA	AGCCTGGATC	600
TGCAGCAGAA	TGAGATCTCT	AAAATTGAGA	GTGAGGCGTT	CTTTGGTTTA	AACAAACTCA	660
CCACCCTCTT	ACTGCAGCAC	AACCAGATCA	AAGTCTTGAC	GGAGGAAGTG	TTCATTTACA	720
CACCTCTCTT	GAGCTACCTG	CGTCTTTATG	ACAACCCCTG	GCACTGTACT	TGTGAGATAG	780
AAACGCTTAT	TTCAATGTTG	CAGATTCCCA	GGAACCGGAA	TTTGGGGAAC	TACGCCAAGT	840
GTGAAAGTCC	ACAAGAACAA	AAAAATAAAA	AACTGCGGCA	GATAAAATCT	GAACAGTTGT	900
GTAATGAAGA	AAAGGAACAA	TTGGACCCGA	AACCCCAAGT	GTCAGGGAGA	CCCCCAGTCA	960
TCAAGCCTGA	GGTGGACTCA	ACTTTTTGCC	ACAATTATGT	GTTTCCCATA	CAAACACTGG	1020
ACTGCAAAAG	GAAAGAGTTG	AAAAAAGTGC	CAAACAACAT	CCCTCCAGAT	ATTGTTAAAC	1080
TTGACTTGTC	ATACAATAAA	ATCAACCAAC	TTCGACCCAA	GGAATTTGAA	GATGTTCATG	1140
AGCTGAAGAA	ATTAAACCTC	AGCAGCAATG	GCATTGAATT	CATCGATCCT	GCCGCTTTTT	1200
TAGGGCTCAC	ACATTTAGAA	GAATTAGATT	TATCAAACAA	CAGTCTGCAA	AACTTTGACT	1260
ATGGCGTATT	AGAAGACTTG	TATTTTTTGA	AACTCTTGTG	GCTCAGAGAT	AACCCTTGGA	1320
GATGTGACTA	CAACATTCAC	TACCTCTACT	ACTGGTTAAA	GCACCACTAC	AATGTCCATT	1380
TTAATGGCCT	GGAATGCAAA	ACGCCTGAAG	AATACAAAGG	ATGGTCTGTG	GGAAAATATA	1440
TTAGAAGTTA	CTATGAAGAA	TGCCCCAAAG	ACAAGTTACC	AGCATATCCT	GAGTCATTTG	1500
ACCAAGACAC	AGAAGATGAT	GAATGGGAAA	AAAAACATAG	AGATCACACC	GCAAAGAAGC	1560
AAAGCGTAAT	AATTACTATA	GTAGGATAAG	GTAGAAATTG	TTCTGATTGT	AATTAGTTTT	1620
GTATTTTCTA	TACTGGTGTT	AGAAAACATA	TGTTTACATT	TGATTAACTG	TGTTGCCTAT	1680
TTATGCAGGG	TAATCCAGCT	AAAGGAAGCT	TTCTTTAATT	ATAAGTATTA	TTGTGACTAT	1740
TATAGTAATC	AAGAGAATGC	TATCATCCTG	CTTGCCTGTC	CATTTGTGGA	ACAGCATCTG	1800
GTGATATGCA	ATTCCACACT	GGTAACCTGC	AGCAGTTGGG	TCCTAATGAT	GGCATTAGAC	1860
TTTCATAATG	TCCTGTATAA	ATGTTTTTAC	TGCTTTTAGA	AAATAAAGAA	AAAAAACTTG	1920
GTTCATGTTT	ACATGCCTTT	CGATAGCTGT	TTGTGCATAC	TTAAAGATGA	TCAAAATGAT	1980
TTTATACAAA	TGCTGTTATA	ATAAAATGTC	ATTCCCTACC	CCTCTACTTT	TTTTCAGTAA	2040
GTCATCTTAT	ACATTAAATA	AATTTCCATT	TCTGAAAAAA	AA		2082

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 469 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (vii) IMMEDIATE SOURCE:
 - (A) LIBRARY: OVARTUT01
 - (B) CLONE: 815087

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

 Met
 Asp
 Val
 Glu
 Asn
 Glu
 Gln
 Ile
 Leu
 Asn
 Val
 Asn
 Pro
 Ala
 Asp
 Pro

 1
 5
 10
 10
 15
 15

 Asp
 Asn
 Leu
 Pro
 10
 15
 15

 Asp
 Asn
 Leu
 Pro
 10
 15
 15
 15

 Asp
 Asn
 Leu
 Pro
 Pro
 10
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 16
 15
 16
 15
 16
 15
 16
 15
 16
 15
 16
 15
 16
 17
 16
 16
 17
 16
 18
 16
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18</

60

120

				85					90					95	
Gly	Arg	Leu	Leu 100	Asp	Arg	Arg	Ser	Arg 105	Ser	Gly	Lys	Gly	Arg 110	Gly	Leu
Pro	Lys	Lys 115	Gly	Gly	Ala	Gly	Gly 120	Lys	Gly	Val	Trp	Gly 125		Pro	Gly
Gln	Val 130	Tyr	Asp	Val	Glu	Glu 135	Val	Asp	Val	Lys	Asp 140	Pro	Asn	Tyr	Asp
Asp 145	Asp	Gln	Glu	Asn	Cys 150	Val	Tyr	Glu	Thr	Val 155	Val	Leu	Pro	Leu	Asp 160
Glu	Arg	Ala	Phe	Glu 165	Lys	Thr	Leu	Thr	Pro 170	Ile	Ile	Gln	Glu	Tyr 175	Phe
Glu	His	Gly	Asp 180	Thr	Asn	Glu	Val	Ala 185	Glu	Met	Leu	Arg	Asp 190	Leu	Asn
	_	195		_		_	200				Ala	205			
	210					215					Ser 220				
225					230					235	Val				240
				245					250		Leu			255	
			260		_			265		_	Ala		270	_	_
		275					280				Gly	285			
	290					295	_	_			Val 300				
305					310					315	Gly				320
				325					330		Asp			335	
			340					345			Glu		350		
		355					360		•		Val	365			
	370					375					Phe 380				
385			_		390	_	_			395	Ile			_	400
				405					410		Ile			415	
			420					425			Arg		430		
		435					440				Arg	445			
Ser	Arg 450	Gly	Arg	Lys	Arg	Phe 455	Val	Ser	Glu	Gly	Asp 460	Gly	Gly	Arg	Leu
Lys 465	Pro	Glu	Ser	Tyr											

- (2) INFORMATION FOR SEQ ID NO:6:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2395 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (vii) IMMEDIATE SOURCE:
 - (A) LIBRARY: OVARTUT01
 - (B) CLONE: 815087
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

ACAGCTCGAG CTCGAGCCGC AAAACTGTCT GCAGACGTCA ATTTCGCCCC CCTCCCCTT GTGAGAACTC GCTACGTAGC CAGCAACTGT GTAGTGTCTA CAAATGATGA AAACGATCAG

AAATGCGATT AGGTGTCGGG GAAAAAAGGG TTTCCCCTGT TTTTAACTTG TATTTTTACT 180 TTAATTGTTA CAATCTTGAT ATTCTTAACG TGACTTTTTT GGGAAACCAC CAAGTGCTTT 240 TTAAGCAAGG AGTTACTGAT TCTGAAGGAA GATTTCCATT AGGTAATTTG TTTAATCAGT 300 GCAAGCGAAA TTAAGGGAAA ATGGATGTAG AAAATGAGCA GATACTGAAT GTAAACCCTG 360 CAGATCCTGA TAACTTAAGT GACTCTCTT TTTCCGGTGA TGAAGAAAAT GCTGGGACTG 420 AGGAAGTAAA GAATGAAATA AATGGAAATT GGATTTCAGC ATCCTCCATT AACGAAGCTA 480 GAATTAATGC CAAGGCAAAA AGGCGACTAA GGAAAAACTC ATCCCGGGAC TCTGGCAGAG 540 GCGATTCGGT CAGCGACAGT GGGAGTGACG CCCTTAGAAG TGGATTAACT GTGCCAACCA 600 GTCCAAAGGG AAGGTTGCTG GATAGGCGAT CCAGATCTGG GAAAGGAAGG GGACTACCAA AGAAAGGTGG TGCAGGAGGC AAAGGTGTCT GGGGTACACC TGGACAGGTG TATGATGTGG AGGAGGTGGA TGTGAAAGAT CCTAACTATG ATGATGACCA GGAGAACTGT GTTTATGAAA 780 CTGTAGTTTT GCCTTTGGAT GAAAGGGCAT TTGAGAAGAC TTTAACACCA ATCATACAGG 840 AATATTTTGA GCATGGAGAT ACTAATGAAG TTGCGGAAAT GTTAAGAGAT TTAAATCTTG 900 GTGAAATGAA AAGTGGAGTA CCAGTGTTGG CAGTATCCTT AGCATTGGAG GGGAAGGCTA 960 GTCATAGAGA GATGACATCT AAGCTTCTTT CTGACCTTTG TGGGACAGTA ATGAGCACAA 1020 CTGATGTGGA AAAATCATTT GATAAATTGT TGAAAGATCT ACCTGAATTA GCACTGGATA 1080 CTCCTAGAGC ACCACAGTTG GTGGGCCAGT TTATTGCTAG AGCTGTTGGA GATGGAATTT 1140 TATGTAATAC CTATATTGAT AGTTACAAAG GAACTGTAGA TTGTGTGCAG GCTAGAGCTG 1200 CTCTGGATAA GGCTACCGTG CTTCTGAGTA TGTCTAAAGG TGGAAAGCGT AAAGATAGTG 1260 TGTGGGGCTC TGGAGGTGGG CAGCAATCTG TCAATCACCT TGTTAAAGAG ATTGATATGC 1320 TGCTGAAAGA ATATTTACTC TCTGGAGACA TATCTGAAGC TGAACATTGC CTTAAGGAAC TGGAAGTACC TCATTTTCAC CATGAGCTTG TATATGAAGC TATTATAATG GTTTTAGAGT CAACTGGAGA AAGTACATTT AAGATGATTT TGGATTTATT AAAGTCCCTT TGGAAGTCTT 1500 CTACCATTAC TGTAGACCAA ATGAAAAGAG GTTATGAGAG AATTTACAAT GAAATTCCGG 1560 ACATTAATCT GGATGTCCCA CATTCATACT CTGTGCTGGA GCGGTTTGTA GAAGAATGTT 1620 TTCAGGCTGG AATAATTTCC AAACAACTCA GAGATCTTTG TCCTTCAAGG GGCAGAAAGC GTTTTGTAAG CGAAGGAGAT GGAGGTCGTC TTAAACCAGA GAGCTACTGA ATATAAGAAC 1740 TCTTGCAGTC TTAGATGTTA TAAAAATATA TATCTGAATT GTAAGAGTTG TTAGCACAAG 1800 TTTTTTTTT TTTTTTTT TAAGCACTTG TTTTGGGTAC AAGGCATTTC TGACATTTTA 1860 TAAACCTACA TTTAAGGGGA ATTTTTAAAG GAAATGTTTT TTCTTTTTTT TTTGTTTTTC 1920 GAGGGGCAA GGAGGGACAG AAAAGTAACC TCTTCTTAAG TGGAATATTC TAATAAGCTA CCTTTTGTAA GTGCCATGTT TATTATCTAA TCATTCCAAG TTTTGCATTG ATGTCTGACT 2040 GCCACTCCTT TCTTTCAAGG ACAGTGTTTT TTGTAGTAAA ATCACTGGTT TATACAAAGC 2100 TTTATTTAGG GGGTAAAGTT AAGCTGCTAA AACCCCATGT TGGCTGCTGC TGTTGAGATA 2160 CTGTGCTTTG GGAGTAAAAA AAGAAAGTTA TTTCTTTGTC TTAAAGAATT TTTAAAAAAAT 2220 TAGTCATGAG ACTTATTCAT CTTTCCAGGG AACATACTGA TTGGTCTTAA AAGACTAGAC 2280 AGTTAAGTAA AAGGTGGCTG GAACATCTAT TTTTCTACAA AACTGGAAAA ATGAACCTGG 2340 TTCTAGAAGA ATGTACACCA AAATAAAACA TGTGAAGCAG TATTGAAAAA AAAAA 2395

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 168 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (vii) IMMEDIATE SOURCE:
 - (A) LIBRARY: GenBank
 - (B) CLONE: 1683637

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Phe Gln Ile Pro Glu Phe Glu Pro Ser Glu Gln Glu Asp Ser Ser 10 5 Ser Ala Glu Arg Gly Leu Gly Pro Ser Pro Ala Gly Asp Gly Pro Ser 25 Gly Ser Gly Lys His His Arg Gln Ala Pro Gly Leu Leu Trp Asp Ala 40 Ser His Gln Gln Gln Pro Thr Ser Ser His His Gly Gly Arg 55 Trp Gly Cys Gly Asp Pro Glu Ser Pro Gln Leu Leu Pro Arg Gly Asp 70 75 Gly Gly Arg Arg Asp Gly Gly Gly Ala Gln Pro Phe Arg Gly Arg 90 85 Ser Arg Ser Ala Pro Pro Asn Leu Trp Ala Ala Gln Arg Tyr Gly Arg

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 313 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (vii) IMMEDIATE SOURCE:
 - (A) LIBRARY: GenBank
 - (B) CLONE: 1236329

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Arg Val Val Thr Ile Val Ile Leu Leu Cys Phe Cys Lys Ala Ala Glu Leu Arg Lys Ala Ser Pro Gly Ser Val Arg Ser Arg Val Asn His 20 25 Gly Arg Ala Gly Gly Gly Arg Arg Gly Ser Asn Pro Val Lys Arg Tyr Ala Pro Gly Leu Pro Cys Asp Val Tyr Thr Tyr Leu His Glu Lys Tyr 55 Leu Asp Cys Gln Glu Arg Lys Leu Val Tyr Val Leu Pro Gly Trp Pro 70 75 Gln Asp Leu Leu His Met Leu Leu Ala Arg Asn Lys Ile Arg Thr Leu 85 90 Lys Asn Asn Met Phe Ser Lys Phe Lys Lys Leu Lys Ser Leu Asp Leu 105 100 Gln Gln Asn Glu Ile Ser Lys Ile Glu Ser Glu Ala Phe Phe Gly Leu 120 Asn Lys Leu Thr Thr Leu Leu Gln His Asn Gln Ile Lys Val Leu 135 140 Thr Glu Glu Val Phe Ile Tyr Thr Pro Leu Leu Ser Tyr Leu Arg Leu 150 155 Tyr Asp Asn Pro Trp His Cys Thr Cys Glu Ile Glu Thr Leu Ile Ser 165 170 Met Leu Gln Ile Pro Arg Asn Arg Asn Leu Ala Asn Tyr Ala Lys Cys 180 185 Glu Ser Pro Gln Glu Gln Lys Asn Lys Lys Leu Arg Gln Ile Lys Ser 200 Glu Gln Leu Cys Asn Glu Glu Glu Lys Glu Gln Leu Asp Pro Lys Pro 215 220 Gln Val Ser Gly Arg Pro Pro Val Ile Lys Pro Glu Val Asp Ser Thr 230 235 Phe Cys His Asn Tyr Val Phe Pro Ile Gln Thr Leu Asp Cys Lys Arg 250 245 Lys Glu Leu Lys Lys Val Pro Asn Asn Ile Pro Pro Asp Ile Val Lys 265 270 260 Leu Asp Leu Ser Tyr Asn Lys Ile Asn Gln Leu Arg Pro Lys Glu Phe 280 285 Glu Asp Val His Glu Leu Lys Lys Leu Asn Leu Ser Ser Asn Gly Ile 295 300 Glu Phe Ile Asp Pro Gly Ser Leu Arg 310

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 469 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(vii) IMMEDIATE SOURCE:

- (A) LIBRARY: GenBank
- (B) CLONE: 1384078

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

	_		~1		~1	~1 .	m1	-		*** 7		B	m1	3	D
Met 1	Asp	He	GIu	Asn 5	Glu	GIn	Thr	Leu	Asn 10	Val	Asn	Pro	Thr	Asp 15	Pro
Asp	Asn	Leu	Ser 20	Asp	Ser	Leu	Phe	Ser 25	Gly	Asp	Glu	Glu	Asn 30	Ala	Gly
Thr	Glu	Glu 35	Ile	Lys	Asn	Glu	Ile 40	Asn	Gly	Asn	Trp	Ile 45	Ser	Ala	Ser
Thr	Ile 50	Asn	Glu	Ala	Arg	Ile 55	Asn	Ala	Lys	Ala	Lys 60	Arg	Arg	Leu	Arg
Lys 65	Asn	Ser	Ser	Arg	Asp 70	Ser	Gly	Arg	Gly	Asp 75	Ser	Val	Ser	Asp	Asn 80
Gly	Ser	Glu	Ala	Val 85	Arg	Ser	Gly	Val	Ala 90	Val	Pro	Thr	Ser	Pro 95	Lys
Gly	Arg	Leu	Leu 100	Asp	Arg	Arg	Ser	Arg 105	Ser	Gly	Lys	Gly	Arg 110	Gly	Leu
Pro	Lys	Lys 115	Gly	Gly	Ala	Gly	Gly 120	Lys	Gly	Val	Trp	Gly 125	Thr	Pro	Gly
Gln	Val 130	Tyr	Asp	Val	Glu	Glu 135	Val	Asp	Val	Lys	Asp 140	Pro	Asn	Tyr	Asp
Asp 145	Asp	Gln	Glu	Asn	Cys 150	Val	Tyr	Glu	Thr	Val 155	Val	Leu	Pro	Leu	Asp 160
Glu	Thr	Ala	Phe	Glu 165	Lys	Thr	Leu	Thr	Pro 170	Ile	Ile	Gln	Glu	Tyr 175	Phe
Glu	His	Gly	Asp 180	Thr	Asn	Glu	Val	Ala 185	Glu	Met	Leu	Arg	Asp 190	Leu	Asn
Leu	Gly	Glu 195	Met	Lys	Ser	Gly	Val 200	Pro	Val	Leu	Ala	Val 205	Ser	Leu	Ala
Leu	Glu 210	Gly	Lys	Ala	Ser	His 215	Arg	Glu	Met	Thr	Ser 220	Lys	Leu	Leu	Ser
Asp 225	Leu	Суѕ	Gly	Thr	Val 230	Met	Ser	Thr	Asn	Asp 235	Val	Glu	Lys	Ser	Phe 240
				245					250	Ala				255	
Ala	Pro	Gln	Leu 260	Val	Gly	Gln	Phe	Ile 265	Ala	Arg	Ala	Val	Gly 270	Asp	Gly
Ile	Leu	Cys 275	Asn	Thr	Tyr	Ile	Asp 280	Ser	Tyr	Lys	Gly	Thr 285	Val	Asp	Сув
Val	Gln 290	Ala	Arg	Ala	Ala	Leu 295	Asp	Lys	Ala	Thr	Val 300	Leu	Leu	Ser	Met
Ser 305	Lys	Gly	Gly	Lys	Arg 310	Lys	Asp	Ser	Val	Trp 315	Gly	Ser	Gly	Gly	Gly 320
Gln	Gln	Pro	Val	Asn 325	His	Leu	Val	Lys	Glu 330	Ile	Asp	Met	Leu	Leu 335	Lys
Glu	Tyr	Leu	Leu 340	Ser	Gly	Asp	Ile	Ser 345	Glu	Ala	Glu	His	Cys 350	Leu	Lys
Glu	Leu	Glu 355	Val	Pro	His	Phe	His 360	His	Glu	Leu	Val	Tyr 365	Glu	Ala	Ile
	370					375				Ala	380				
385					390					Thr 395					400
Met	Lys	Arg	Gly	Tyr 405	Glu	Arg	Ile	Tyr	Asn 410	Glu	Ile	Pro	Asp	Ile 415	Asn

PF-0421-2 DIV

