In the Claims:

1. (currently amended) A compound represented by structure 1:

1

wherein

X represents O;

Y represents independently for each occurrence O;

Z represents independently for each occurrence O;

R is selected, independently for each occurrence, from the group consisting of alkyl, heteroalkyl, aralkyl, heteroaryl, and heteroaralkyl;

R' is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, acyl, and sulfonyl;

R" is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aralkyl, heteroaryl, and heteroaralkyl;

 R_2 , R_3 , and R_4 are independently selected from the group consisting of R_6 , -OR', -SR', -NR'₂, -OSO₃H, and -OPO₃H₂;

 R_5 is selected from the group consisting of R_6 , -(CR"₂)_nOR', -(CR"₂)_nSR', and -(CR"₂)_nNR'₂;

, - 2 -

 R_6 is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, and heteroaralkyl; and

n is an integer selected from the range 0 to 10 inclusive.

Claims 2-22 (canceled)

23. (currently amended) The compound of claim 1, wherein said \underline{A} compound is represented by one of the following structures:

Glucose

Galactose

Lactose

wherein

R is selected independently for each occurrence from the group consisting of methyl, propyl, butyl, pentyl, hexyl, heteroalkyl, aralkyl, heteroaryl, and heteroaralkyl;

R' is selected independently for each occurrence from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, acyl, and sulfonyl;

B3242776.2 - 5 -

TIPS represents triisopropylsilyl;

PMP represents paramethoxyphenyl; and

Bn represents benzyl.

Claims 24-41 (canceled)

42. (previously presented) A method of synthesizing a compound represented by 1, wherein said method is represented by the following scheme:

wherein

X represents O;

Y represents independently for each occurrence O;

Z represents independently for each occurrence O;

the oxidizing agent is selected from the group consisting or dioxiranes, percarboxylates, and persulfates;

R is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, and heteroaralkyl;

R' is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, acyl, and sulfonyl;

R₂ is OR';

 R_3 , and R_4 are independently selected from the group consisting of R, -OR', -SR', -NR'₂, -OSO₃H, and -OPO₃H₂;

 R_5 is selected from the group consisting of R, -(CR₂)_nOR', -(CR₂)_nSR', and -(CR₂)_nNR'₂; and

n is an integer selected from the range 0 to 10 inclusive.

- 43. (original) The method of claim 42, wherein the oxidizing agent is a dioxirane.
- 44. (original) The method of claim 43, wherein the oxidizing agent is dimethyl dioxirane (DMDO).
- 45. (previously presented) A compound represented by structure 2:

2

wherein

X represents O;

Y represents independently for each occurrence O;

Z represents independently for each occurrence O;

R represents independently for each occurrence aryl;

R' is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, acyl, and sulfonyl;

R" is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, and heteroaralkyl;

 R_2 is selected from the group consisting of R_6 , -OR', -SR', -NR'₂, -OSO₃H, and -OPO₃H₂;

 R_3 , and R_4 are independently selected from the group consisting of R_6 , -OR₇, -SR', -NR'₂, -OSO₃H, and -OPO₃H₂;

 R_5 is selected from the group consisting of R_6 , -(CR"₂)_nOR', -(CR"₂)_nSR', and -(CR"₂)_nNR'₂;

R₆ is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, and heteroaralkyl;

R₇ is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, heteroaryl, heteroaralkyl, and sulfonyl; and

n is an integer selected from the range 0 to 10 inclusive.

- 46. (previously presented) The compound of claim 45, wherein R₂ is selected from the group consisting of R₆, -SR', -NR'₂, -OSO₃H, and -OPO₃H₂.
- (previously presented) The compound of claim 45, wherein R₅ is selected from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, -(CR"₂)_nOR^C, -(CR"₂)_nSR^S, and -(CR"₂)_nN(R^N)₂; R^C is selected from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, and sulfonyl; R^S is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, acyl, and sulfonyl; and R^N is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, acyl, and sulfonyl.
- 48. (previously presented) The compound of claim 1, where in R is selected, independently for each occurrence, from the group consisting of alkyl, heteroaryl, and heteroaralkyl.
- 49. (previously presented) The compound of claim 1, wherein R₅ is selected from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, -(CR"₂)_nOR^C, -(CR"₂)_nSR^S, and -(CR"₂)_nN(R^N)₂; R^C is selected from the group consisting of alkyl,

heteroalkyl, aryl, heteroaryl, heteroaralkyl, acyl, and sulfonyl; R^S is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, acyl, and sulfonyl; and R^N is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, acyl, and sulfonyl.

B3242776.2 - 9 -