

# CHAPTER 13 LECTURE OUTLINE

**Computer Science Illuminated, Seventh Edition** 

Nell Dale, PhD; John Lewis, PhD

#### **Artificial Intelligence**

#### 13.1 Thinking Machines

The Turing Test

Aspects of Al

#### **13.2 Knowledge Representation**

**Semantic Networks** 

**Search Trees** 

#### **13.3 Expert Systems**

#### **13.4 Neural Networks**

**Biological Neural Networks** 

**Artificial Neural Networks** 

#### 13.5 Natural-Language Processing

**Voice Synthesis** 

**Voice Recognition** 

**Natural-Language Comprehension** 

#### 13.6 Robotics

The Sense-Plan-Act Paradigm



### Credits

Nell Dell, PhD & John Lewis, PhD

**Authors** 

**Jones & Bartlett Learning** 

Publisher

**Eric Pogue** 

Audio commentary plus slides with the grey backgrounds



### Chapter Goals (1 of 2)

- Distinguish between the types of problems that humans do best and those that computers do best
- Explain the Turing test
- Define what is meant by knowledge representation and demonstrate how knowledge is represented in a semantic network

### Chapter Goals (2 of 2)

- Develop a search tree for simple scenarios
- Explain the processing of an expert system
- Explain the processing of biological and artificial neural networks
- List the various aspects of natural language processing
- Explain the types of ambiguities in natural language comprehension

# Thinking Machines (1 of 4)



Courtesy of Amy Ros

A computer might have trouble identifying the cat in this picture

Can you find the cat in this picture?

## Thinking Machines (3 of 4)

#### **Humans do best**

Can you find the cat in this picture?

#### **Computers do best**

Can you count the distribution of letters in a book?
Add a thousand 4-digit numbers?
Match fingerprints?
Search a list of a million values for duplicates?

### Thinking Machines (4 of 4)

#### **Artificial Intelligence** (AI)

The study of computer systems that attempt to model and apply the intelligence of the human mind

For example, writing a program to pick out objects in a picture

## The Turing Test (1 of 4)

#### **Turing Test**

A test to empirically determine whether a computer has achieved intelligence

#### **Alan Turing**

An English mathematician who wrote a landmark paper in 1950 that asked the question: Can machines think?

He proposed a test to answer the question "How will we know when we've succeeded?"

## The Turing Test (2 of 4)



In a Turing test, the interrogator must determine which respondent is the computer and which is the human

## The Turing Test (3 of 4)

### **Weak Equivalence**

Two systems (human and computer) are equivalent in results (output), but they do not arrive at those results in the same way

#### **Strong Equivalence**

Two systems (human and computer) use the same internal processes to produce results

## The Turing Test (4 of 4)

#### **Loebner Prize**

The first formal instantiation of the Turing test, held annually

#### **Chatbots**

A program designed to carry on a conversation with a human user

## Knowledge Representation

### How can we represent knowledge?

- We need to create a logical view of the data, based on how we want to process it
- Natural language is very descriptive, but does not lend itself to efficient processing
- Semantic networks and search trees are promising techniques for representing knowledge



### Semantic Networks (1 of 4)

#### **Semantic Network**

A knowledge representation technique that focuses on the relationships between objects

A directed graph is used to represent a semantic network or net

Remember directed graphs?



### Semantic Networks (2 of 4)







### Semantic Networks (3 of 4)

What questions can you ask about the data in Figure 13.3 (previous slide)?

What questions can you not ask?



### Semantic Networks (4 of 4)

#### **Network Design**

- The objects in the network represent the objects in the real world that we are representing
- The relationships that we represent are based on the realworld questions that we would like to ask
  - That is, the types of relationships represented determine which questions are easily answered, which are more difficult to answer, and which cannot be answered



### Search Trees (1 of 5)

#### **Search Tree**

A structure that represents alternatives in adversarial situations such as game playing

The paths down a search tree represent a series of decisions made by the players

Remember trees?



## Search Trees (2 of 5)



A search tree for a simplified version of Nim



### Search Trees (3 of 5)

Search tree analysis can be applied to other, more complicated games such as chess

**However**, full analysis of the chess search tree would take more than your lifetime to determine the first move

Because these trees are so large, only a fraction of the tree can be analyzed in a reasonable time limit, even with modern computing power

Therefore, we must find a way to prune the tree



### Search Trees (4 of 5)

#### **Techniques for pruning search space**

### **Depth-First**

A technique that involves searching down the paths of a tree prior to searching across levels

#### **Breadth-First**

A technique that involves searching across levels of a tree prior to searching down specific paths

Breadth-first tends to yield the best results



# Search Trees (5 of 5)



Depth-first and breadth-first searches



### Expert Systems (1 of 6)

#### **Knowledge-Based System**

Software that uses a specific set of information, from which it extracts and processes particular pieces

#### **Expert System**

A software system based on the knowledge of human experts; it is:

- A rule-based system A software system based on a set of *if-then* rules
- An inference engine The software that processes rules to draw conclusions



### Expert Systems (2 of 6)

### Named abbreviations that represent conclusions

- NONE—apply no treatment at this time
- TURF—apply a turf-building treatment
- WEED—apply a weed-killing treatment
- Bug—apply a bug-killing treatment
- FEED—apply a basic fertilizer treatment
- WEEDFEED—apply a weed-killing and fertilizer combination treatment



### Expert Systems (3 of 6)

### Boolean variables needed to represent state of the lawn

- BARE—the lawn has large, bare areas
- SPARSE—the lawn is generally thin
- · WEEDS—the lawn contains many weeds
- Bugs—the lawn shows evidence of bugs



### Expert Systems (4 of 6)

#### Data that is available

- LAST—the date of the last lawn treatment
- CURRENT—current date
- SEASON—the current season

Now we can formulate some rules for our gardening expert system.

Rules take the form of *if-then* statements



## Expert Systems (5 of 6)

#### Some rules:

- if (CURRENT LAST < 30) then NONE
- if (SEASON = winter) then not BUGS
- if (BARE) then TURF
- if (SPARSE and not WEEDS) then FEED
- · if (BUGS and not SPARSE) then BUG
- · if (WEEDS and not SPARSE) then WEED
- if (WEEDS and SPARSE) then WEEDFEED



### Expert Systems (6 of 6)

### An execution of our inference engine:

• System: Does the lawn have large, bare areas?

• User: No

• System: Does the lawn show evidence of bugs?

• User: No

• System: Is the lawn generally thin?

• User: Yes

• System: Does the lawn contain significant weeds?

• User: Yes

· System: You should apply a weed-killing and

fertilizer combination treatment.



### Artificial Neural Network (1 of 4)

#### **Artificial Neural Networks**

A computer representation of knowledge that attempts to mimic the neural networks of the human body

Yes, but what is a human neural network?



### Neural Network (1 of 5)





### Neural Network (2 of 5)

#### Neuron

A single cell that conducts a chemically based electronic signal

At any point in time, a neuron is in either an **excited** state or an **inhibited** state

#### **Excited State**

Neuron conducts a strong signal

#### **Inhibited State**

Neuron conducts a weak signal



### Neural Network (3 of 5)

### **Pathway**

A series of connected neurons

#### **Dendrites**

Input tentacles

#### Axon

Primary output tentacle

#### **Synapse**

Space between axon and a dendrite



### Neural Network (4 of 5)



A biological neuron

Chemical composition of a synapse tempers the strength of its input signal A neuron accepts many input signals, each weighted by corresponding synapse



### Neural Network (5 of 5)

The pathways along the neural nets are in a constant state of flux

As we learn new things, new strong neural pathways in our brain are formed



### Artificial Neural Networks (2 of 4)

Each processing element in an artificial neural net is analogous to a biological neuron

- An element accepts a certain number of input values (dendrites) and produces a single output value (axon) of either 0 or 1
- Associated with each input value is a numeric weight (synapse)



### Artificial Neural Networks (3 of 4)

 The effective weight of the element is the sum of the weights multiplied by their respective input values

- Each element has a numeric threshold value
- If the effective weight exceeds the threshold, the unit produces an output value of 1
- If it does not exceed the threshold, it produces an output value of 0



### Artificial Neural Networks (4 of 4)

### **Training**

The process of adjusting the weights and threshold values in a neural net

How does this all work?

Train a neural net to recognize a cat in a picture

Given one output value per pixel, train network to produce an output value of 1 for every pixel that contributes to the cat and 0 for every one that doesn't



# Natural Language Processing

Three basic types of processing occur during human/computer voice interaction

#### **Voice Synthesis**

Using a computer to recreate the sound of human speech

#### **Voice Recognition**

Using a computer to recognize the words spoken by a human

#### **Natural-Language Comprehension**

Using a computer to apply a meaningful interpretation to human communication



# Voice Synthesis (1 of 3)

### One Approach to Voice Synthesis

### **Dynamic Voice Generation**

A computer examines the letters that make up a word and produces the sequence of sounds that correspond to those letters in an attempt to vocalize the word

#### **Phonemes**

The sound units into which human speech has been categorized



# Voice Synthesis (2 of 3)

| Consonants  |                   |         |                  | Vowels     |                     |
|-------------|-------------------|---------|------------------|------------|---------------------|
| Symbols     | Examples          | Symbols | Examples         | Symbols    | Examples            |
| p           | Pipe              | k       | Kick, cat        | i          | Eel, sea, see       |
| b           | Babe              | g       | Get              | I          | III, bill           |
| m           | Maim              | ŋ       | Sing             | e          | Ale, aim, day       |
| f           | Fee, phone, rough | š       | Shoe, ash, sugar | 3          | Elk, bet, bear      |
| v           | Vie, love         | ž       | Measure          | æ          | At, mat             |
| θ           | Thin, bath        | č       | Chat, batch      | u          | Due, new, zoo       |
| ð           | The, bathe        | j       | Jaw, judge, gin  | U          | Book, sugar         |
| t           | Tea, beat         | d       | Day, bad         | О          | Own, no, know       |
| n           | Nine              | ?       | Uh uh            | Э          | Aw, crawl, law, dog |
| 1           | Law, ball         | S       | See, less, city  | a          | Hot, bar, dart      |
| r           | Run, bar          | Z       | Zoo, booze       | ә          | Sir, nerd, bird     |
|             |                   |         |                  | Λ          | Cut, bun            |
| Semi-vowels |                   |         |                  | Diphthongs |                     |
| W           | We                |         |                  | aj         | Bite, fight         |
| h           | He                |         |                  | aw         | Out, cow            |
| j           | You, beyond       |         |                  | эј         | Boy, boil           |

Phonemes for American English



# Voice Synthesis (3 of 3)

## **Another Approach to Voice Synthesis**

## **Recorded Speech**

A large collection of words is recorded digitally and individual words are selected to make up a message

Many words must be recorded more than once to reflect different pronunciations and inflections



## Voice Recognition (1 of 3)

## Problems with understanding speech

- Each person's sounds are unique
- Each person's shape of mouth, tongue, throat, and nasal cavities that affect the pitch and resonance of our spoken voice are unique
- Speech impediments, mumbling, volume, regional accents, and the health of the speaker are further complications



# Voice Recognition (2 of 3)

## Other problems

- Humans speak in a *continuous, flowing* manner, stringing words together
- Sound-alike phrases like "ice cream" and "I scream"
- Homonyms such as "I" & "eye" or "see" & "sea"

Humans clarify these situations by context, but that requires another level of comprehension

Voice-recognition systems still have trouble with continuous speech



# Voice Recognition (3 of 3)

## **Voiceprint**

The plot of frequency changes over time representing the sound of human speech

A human *trains* a voice-recognition system by speaking a word several times so the computer gets an average voiceprint for a word

Used to authenticate the declared sender of a voice message



# Natural Language Comprehension

#### Natural language is ambiguous!

#### **Lexical Ambiguity**

The ambiguity created when words have multiple meanings

#### **Syntactic Ambiguity**

The ambiguity created when sentences can be constructed in various ways

#### **Referential Ambiguity**

The ambiguity created when pronouns could be applied to multiple objects



# Natural Language Comprehension (2 of 3)

#### What does this sentence mean?

#### Time flies like an arrow.

- Time goes by quickly
- Time flies (using a stop watch) as you would time an arrow
- Time flies (a kind of fly) are fond of an arrow

Silly?
Yes, but a computer wouldn't know that



# Natural Language Comprehension

## Lexical ambiguity

Stand up for your country.

Take the street on the left.

## Syntactic ambiguity

I saw the bird watching from the corner.

I ate the sandwich sitting on the table.

## Referential ambiguity

The bicycle hit the curb, but it was not damaged. John was mad at Bill, but he didn't care.

Can you think of some others?



## Robotics

#### **Mobile Robotics**

The study of robots that move relative to their environment, while exhibiting a degree of autonomy

#### Sense-Plan-Act (SPA) Paradigm

The world of the robot is represented in a complex semantic net in which the sensors on the robot are used to capture the data to build up the net



The sense-plan-act (SPA) paradigm



# Subsumption Architecture (1 of 2)

Rather than trying to model the entire world all the time, the robot is given a simple set of behaviors, each associated with the part of the world necessary for that behavior



The new control paradigm



## Subsumption Architecture (2 of 2)



Asimov's laws of robotics are ordered



# Chapter 13 Lecture

