Lecture 5

Clustering and Classification

Objectives

At the end of the session, you should be able to

- 1. differentiate between supervised and unsupervised learning; and
- 2. perform a clustering algorithm in Python.

Discovering Patterns from Data Image Source: Data-driven science and engineering: machine learning, dynamical systems, and control/ Steven L. Brunton If you were tasked to group these data points how would you do the grouping?

Supervised vs Unsupervised Learning In supervised machine learning, the algorithm is presented with labelled datasets. Thus examples of the input and output of a desired model are explicitly given. Input data $\{x_j \in \mathbb{R}^n, \ j \in \mathbb{Z} := \{1, 2, \cdots, m\}\}$ labels $\{y_j \in \{\pm 1\}, \ j \in \mathbb{Z}' \subset \mathbb{Z}\}$. Output labels $\{y_j \in \{\pm 1\}, \ j \in \mathbb{Z}'\}$.

k-Means Clustering

k-means clustering is one of the most prominent unsupervised algorithms that is in use today.

Goal: Partition a set of vector valued data of m observations into k clusters.

Idea: Each observation is labeled as belonging to a cluster with the nearest mean, which serves as a proxy for that cluster.

k-Means Clustering

Algorithm

- Given initial values for k distinct means, compute the distance of each observation x₁ to each of the k means.
- (ii) Label each observation as belonging to the nearest mean.
- (iii) Once labeling is completed, find the center-of-mass (mean) for each group of labeled points.
- (iv) If stopping criterion is not met, return to step (i) with the updated k means.

k-Means Clustering

Possible Stopping Criteria

- 1. Centroids of newly formed clusters do not change
- 2. Points remain in the same cluster
- 3. Maximum number of iterations is reached

Application: Color quantization

END