CS5344 Clustering High Dimensional Data

High Dimensional Data

Given a cloud of data points we want to understand its structure

Problem of Clustering

- Given a <u>set of points</u>, with a notion of <u>distance</u>
 between points, <u>group the points</u> into some number of *clusters* such that
 - Members of a cluster are similar to each other
 - Members of different clusters are dissimilar
- Points are in a high-dimensional space
 - Each dimension corresponds to a feature/attribute
- Similarity is defined using a distance measure
 - Euclidean, Cosine, Jaccard, Edit distance, ...

Example: Clusters & Outliers

Clustering is a Hard Problem!

Why is Clustering Hard?

- Clustering in two dimensions looks easy
- Clustering small amounts of data looks easy
- BUT
 - Number of clusters is typically not known
 - Clusters may be of arbitrary shapes and sizes
 - Quality of clustering result
 - Depends on similarity measure and method
 - Measured by its ability to find some or all hidden patterns
- Many applications operate in high dimensional space (not 2, but 10 or 10000 dimensions)
 - Almost all pairs of points are at about the same distance!

Application: Galaxies

- Catalog of 2 billion "sky objects" represents objects by their radiation in 7 dimensions (frequency bands)
- Task: Cluster into similar objects, e.g., galaxies, nearby stars, quasars, etc.
- Sloan Digital Sky Survey

Application: Music CDs

- Music divided into categories, and customers prefer a few categories. What are categories actually?
- Represent a CD by a set of customers who bought it
 - Similar CDs have similar sets of customers
- Task: Find clusters of similar CDs
 - Space of all CDs, one dimension for each customer
 - Values in a dimension may be 0 or 1
 - A CD is a point in this space $(x_1, x_2, ..., x_k)$ where $x_i = 1$ iff the ith customer bought the CD
- For Amazon, the dimension is tens of millions

Application: Cluster Documents

- Task: Find topics
- Represent each document as a vector $(x_1, x_2, ..., x_k)$ where $x_i = 1$ iff the word v_i appears in the document
- Documents with similar sets of words may be about the same topic

Overview

- Distance Measures
- Clustering Algorithms
 - Hierarchical or agglomerative
 - Point assignment or k-means
- Scaling Up Clustering Algorithms
 - BFR
 - CURE

Distance Measure

- Each clustering problem is based on some notion of distance between objects or points
- Euclidean Distance
 - Based on <u>locations</u> of points in a *d*-dimensional space
 - Points are vectors of real numbers
 - Length of vector is d
- Non-Euclidean Distance
 - Based on the <u>properties</u> of points

Distance Measure

- Distance measure is a function d(x,y) between two points x and y which satisfies the following axioms
 - 1. Non-negativity: $d(x, y) \ge 0$
 - 2. Identity: d(x, y) = 0 if and only if x = y
 - 3. Symmetry: d(x, y) = d(y, x)
 - 4. Triangle Inequality: $d(x, y) \le d(x, z) + d(z, y)$

Examples of Distance Measure

L_p-norm

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{i} (x_i - y_i)^p\right)^{\frac{1}{p}}$$

- L₂-norm = Euclidean Distance
 - Square the distance in each dim, sum the squares and take sqrt
 - E.g. two points in n-dimensional space
 - $d(x,y) = sqrt ((x_1 y_1)^2 + (x_2 y_2)^2 + ... + (x_n y_n)^2)$
- L₁-norm = Manhattan Distance
 - Sum of the magnitude of differences in each dimension
 - $d(x,y) = |x_1 y_1| + |x_2 y_2| + ... + |x_n y_n|$
 - Distance to travel if constrained along grid lines

Examples of Distance Measure

- Cosine Distance
 - Points are vectors with integer or boolean values

$$cosine(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}}$$

Examples of Distance Measure

Jaccard Distance

If A and B are two sets, then

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Edit Distance

- Points are strings
- Miniumum number of inserts and deletes of characters needed to convert one string into another
- E.g. if x = abcde and y = acfdeg, d(x,y) = 3

Clustering Strategies

Hierarchical or Agglomerative

- Each point is a cluster
- Repeatedly combine the two "nearest" clusters into one

Point Assignment

- Maintain a set of clusters
- Points belong to "nearest" cluster

Hierarchical Clustering

- Key operation: Repeatedly combine two nearest clusters
- Produce a set of nested clusters as a hierarchical tree
- Visualized as a dendrogram (tree-like diagram records the sequence of merges)

Hierarchical Clustering

- Does not assume any number of clusters
- Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level
- May correspond to meaningful taxonomies
 - e.g., animal kingdom, phylogeny reconstruction in biological sciences

Hierarchical Clustering

- Key operation: Repeatedly combine two nearest clusters
- Three important questions:
 - 1. How to represent a cluster of more than one point?
 - 2. How to determine the "nearness" of clusters?
 - 3. When to stop combining clusters?

How to Represent Cluster?

- Each point is a cluster initially
- As we merge clusters, how to represent the "location" of each cluster?
 - Need this information to know which pair of clusters is closest
- Euclidean space
 - Each cluster has a centroid = average of its (data) points

Which 2 Clusters to Merge?

Euclidean space

Measure cluster distances by distances of centroids

Non-Euclidean Space

- There is no "average" of two points
- The only "locations" are the points themselves
- Clustroid = (data) point "closest" to other points
 - Treat clustroid as if it were centroid, when computing inter-cluster distances
- Possible meanings of "closest"
 - Smallest maximum distance to other points
 - Smallest average distance to other points
 - Smallest sum of squares of distances to other points

Non-Euclidean Space

For distance metric d, clustroid c of cluster C is

$$\min_{c} \sum_{x \in C} d(x, c)^2$$

Cluster on 3 datapoints

Centroid is the avg. of all (data)points in the cluster. This means centroid is an "artificial" point.

Clustroid is an existing (data)point that is "closest" to all other points in the cluster.

"Nearness" of Clusters

Different measures

- 1. Based on distance between clustroids/centroids
- 2. Intercluster distance = minimum of the distances between any two points, one from each cluster
- 3. Pick a notion of "cohesion" of clusters and merge cluster whose union is most cohesive
 - Diameter of merged cluster = maximum distance between points in the cluster
 - Average distance between points in the cluster
 - Density-based (take diameter or avg. distance, and divide by number of points in cluster)

When to Terminate?

- Pre-determined number of clusters
- When merging two clusters leads to a "bad" cluster
 - Diameter of merged cluster exceeds some threshold
 - Diameter exceeds average diameter by a wide margin
 - Density of cluster falls below some threshold

Implementation

- Naïve implementation of hierarchical clustering
 - At each step, compute pairwise distances between all pairs of clusters, then merge
 - $O(n^3)$
- Careful implementation using Priority Queue can reduce time to O(n² log n)
 - Still too expensive for really big datasets that do not fit in memory

K–Means Algorithm

- Assumes Euclidean space/distance
- Assumes number of clusters k is given
- Initialize clusters by picking one point per cluster
 - Pick one point at random, then k-1 other points, each as far away as possible from the previous points
 - Make these points the centroid of their clusters

K–Means Algorithm

- 1. For each point, place it in the cluster whose current centroid it is nearest
- 2. After all points are assigned, update the locations of centroids of the *k* clusters
- 3. Reassign all points to their closest centroid
 - Sometimes moves points between clusters

Repeat 2 and 3 until convergence

 Convergence: Points don't move between clusters and centroids stabilize

Clusters after Round 1

x ... data point ... centroid

Clusters after Round 2

x ... data point ... centroid

Clusters at the end

x ... data point ... centroid

How to Select k?

- Try different values of k
- Look at the change in the average distance to centroid as k increases
- Average falls rapidly until right k, then changes little

Too few; many long distances to centroid.

Too many; little improvement in average distance.

Just right; distances rather short.

Does k-means Converge?

- Most of the time, convergence happens in the first few iterations
- Stopping criterion is often changed to "until relatively few points change clusters"
- Complexity is O(n*k*m)
 - n = number of points
 - k = number of clusters
 - m = number of iterations

BFR Algorithm (Bradley-Fayyad-Reina)

Extension of k-means to large data

BFR Algorithm

- Variant of k-means designed to handle very large (disk-resident) data sets in high dimensions
- Assumes points in clusters are normally distributed around a centroid in a Euclidean space
 - Standard deviations in different dimensions may vary
 - Clusters are axis-aligned ellipses
- Efficient way to summarize clusters

Memory required O(clusters) and not O(data)

BFR Algorithm

- Points are read from disk to memory in chunks
- Points from previous memory loads are summarized by simple statistics
- Select initial k centroids from the first chunk
 - Take k random points; or
 - Take a small random sample and cluster optimally; or
 - Take a sample; pick a random point, and then
 k-1 more points, each as far from the previously selected points as possible

BFR Algorithm

- Keep track of 3 sets of points in memory
 - Discard set (DS):
 - Points close enough to a centroid to be summarized
 - Compression set (CS):
 - Groups of points that are close together but not close to any existing centroid
 - These points are summarized, but not assigned to a cluster
 - Retained set (RS):
 - Isolated points to be assigned to a compression set

BFR: "Galaxies" Picture

Discard set (DS): Close enough to a centroid to be summarized **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

Summarizing Points

- For each cluster, discard set (DS) is summarized by
 - Number of points, N
 - Vector SUM whose ith component is the sum of the coordinates of the points in the ith dimension
 - Vector SUMSQ where ith component = sum of squares of coordinates in ith dimension

Summarizing Points

- 2d + 1 values represent any size cluster
 - d = number of dimensions
- Centroid (Average in each dimension) is given by SUM_i/ N
 - $SUM_i = i^{th}$ component of SUM
- Variance of a cluster's DS in dimension i is given by (SUMSQ_i / N) – (SUM_i / N)²
 - Standard deviation is the square root of variance
- Next step: Actual clustering

Processing "Memory-Load" of Points

- Find those points that are "sufficiently close" to a cluster centroid and add those points to that cluster and the DS
 - These points are so close to the centroid that they can be summarized and then discarded
- Use any main-memory clustering algorithm to cluster the remaining points and the old RS
 - Clusters go to the CS; outlying points to the RS

Discard set (DS): Close enough to a centroid to be summarized. **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

Processing "Memory-Load" of Points

- DS set: Adjust statistics of the clusters to account for the new points
 - Add Ns, SUMs, SUMSQs
- Consider merging compressed sets in the CS
 - Add corresponding values of Ns, SUMs, SUMSQs
- Last round, merge all compressed sets in the CS and all RS points into their nearest cluster

Discard set (DS): Close enough to a centroid to be summarized. Compression set (CS): Summarized, but not assigned to a cluster Retained set (RS): Isolated points

BFR Algorithm

Two Questions:

- 1. How do we decide if a point is "close enough" to a cluster that we will add the point to that cluster?
- 2. How do we decide whether two compressed sets (CS) deserve to be combined into one?

Mahalanobis Distance

- Measure of the distance between a point P and a distribution D
 - How many standard deviations is P away from mean of D?
- For a point $(x_1, ..., x_n)$ and centroid $(c_1, ..., c_n)$

- Normalize in each dimension: $y_i = (x_i c_i) / \sigma_i$
- Take sum of the squares of the y_i
- Take the square root
- σ_i is the standard deviation of points in the cluster in the i^{th} dimension

Mahalanobis Distance

- Compute MD between point and each cluster centroid
- Choose cluster whose centroid has the least MD
- Add point to cluster if MD < threshold
 - e.g. threshold = 2 (standard deviation)

Combining Two CS clusters

- Compute the variance of combined cluster
- N, SUM, and SUMSQ allow us to make that calculation quickly
- Combine if the combined variance is below some threshold

Extension of *k*-means to clusters of arbitrary shapes

- BFR and k-means assume clusters are normally distributed in each dimension
 - Axes are fixed
 - Ellipses at an angle are not OK
- CURE (Clustering Using Representatives)
 - Assumes Euclidean distance
 - Allows clusters of any shape
 - Uses a collection of representative points to represent clusters

Example Stanford Salaries

Pass 1

- Pick a random sample of points that fit in main memory
- Cluster these points hierarchically group nearest points/clusters
- Pick representative points
 - For each cluster, pick a sample of points, as dispersed as possible
 - From the sample, pick representatives by moving them (say) 20% toward the centroid of the cluster

Example

Example

Example

Pass 2

- Rescan the whole dataset and visit each point p in the data set
- Place it in the "closest cluster"
 - Find the closest representative to p and assign it to representative's cluster

p

Summary

- Given a set of points, with a notion of distance between points, group the points into some number of clusters
- Centroid in Euclidean space and clustroid in non-Euclidean space
- Agglomerative hierarchical clustering
- k-means, BFR (k-means extended for large data sets),
 CURE (k-means extended for arbitrary clusters)
- Self-Study: Clustering in non-Euclidean space
 - GRGPF