Landau-Niveaus und Quanten-Hall-Effekt in Graphen

Hermann Böttcher

Universität Konstanz

22/11/2018

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

Hermann Böttcher Universität Konstanz
Landau-Niveaus und Quanten-Hall-Effekt in Graphen

Übersicht

Graphen - Einführung

◆ロ > ←回 > ← 直 > ← 直 → り へ ⊙

Hermann Böttcher Universität Konstanz
Landau-Niveaus und Quanten-Hall-Effekt in Graphen

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

— Übersicht

Übersicht

Graphen - Einführung

Graphen - Einführung

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

- 2D Monoschicht aus Kohlenstoffatomen in Bienenwabenstruktur
- Grundbaustein aller andersdimensionalen Graphitstrukturen
- Zunächst für "akademisches Material gehalten" (thermodynamisch instabil)
- 2004 als stabile Strukturen entdeckt
- Exeptionell hohe kristalline und elektronische Qualität

Hermann Böttcher Universität Konstanz

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

-Graphen - Einführung

raphen - Einführung

- 2D Monoschicht aus Kohlenstoffatomen in Bienenwabenstruktur
- Grundbaustein aller andersdimensionalen Graphitstrukture
- Zunächst für "akademisches Material gehalten" (thermodynamisch instabil)
- Eventional hope kristalline and elektronische Qualität
- Exeptionell hohe kristalline und elektronische Qu

- Zwei überlappende Dreiecksgitter
- Bilder folgen gleich
- Schmelztemperatur von Dünnfilmen sinkt rapide mit kleiner werdenden Dicke
- Erklärung: Wegen hoher interatomarer Bindungsenergie nicht anfällig für thermische Dislokationen und andere Kristalldefekte; Lecht gekrumpelt → Elastische Energie aber Unterdrückung thermischer Vibrationen
- Ladungsträger: Masselose Dirac-Fermionen

Graphitstrukturen

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

Hermann Böttcher Universität Konstanz

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

018-11-17

-Graphitstrukturen

- nanotubes (1D), Fullerene (0D), Graphit (3D)
- Monolagen bisher kaum herstellbar → wie viele Lagen k\u00f6nnen als 2D Struktur betrachtet werden?
- Elektronische Struktur ändert sich rapide bei Erreichen von 10 Schichten
 Bis zu 2 Schichten → 1 Ladungsträgertyp, 1 Lochtyp (simples elektronisches Spektrum);
 - 3+ Schichten \rightarrow mehrere Ladungsträger- und Lochtypen (kompliziertes elektronisches Spektrum);
- ullet \Rightarrow 1, 2, 3+j10 Lagenstrukturen in 3 2D Kristalle unterscheidbar

Produktion

- Chemische Dampfablagerung auf Metallsubstraten
- Chemische Dekomposition von SiC

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

■ Mikromechanisches Abspalten von Graphit

Hermann Böttcher Universität Konstanz Landau-Niveaus und Quanten-Hall-Effekt in Graphen

└─ Produktion

Produktion

- Chemische Dampfablagerung auf Metallsubstraten ■ Chemische Dekomposition von SiC
- Mikromechanisches Abspalten von Graphit

Produktion

- Chemische Dampfablagerung auf Metallsubstraten
- Chemische Dekomposition von SiC
- Mikromechanisches Abspalten von Graphit

Abspalten mithilfe von Klebeband

20-100 Lagen, nicht weniger!

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

 \sqsubseteq Produktion

Chemische Dampfablagerung auf Metallsubstraten
Chemische Dekomposition von SiC

Produktion

Chemische Dampfablagerung auf Metallsubstraten
Chemische Dekomposition von SiC
Mikromechanisches Abspalten von Graphit
Abspalten mithife von Kitsband
20-100 Lagen, nicht weniger!

Hermann Böttcher Universität Konstanz

Besonderheiten in Graphen

Hermann Böttcher Universität Konstanz
Landau-Niveaus und Quanten-Hall-Effekt in Graphen

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

└─Quanten Hall Effekt in Graphen I

2018-11-17

- 10 mal höhere Temperatur als bisher in anderen Materialien observiert
- Dirac-Gleichung, nicht Schrödinger-Gleichung beschreibt die elektrischen Eigenschaften am einfachsten
- Quasiteilchencharakter vergleichbar mit geladenen Neutrinos

Besonderheiten in Graphen

Observierbar bei Raumtemperatur

Hermann Böttcher Universität Konstanz
Landau-Niveaus und Quanten-Hall-Effekt in Graphen

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

└─Quanten Hall Effekt in Graphen I

2018-11-17

- 10 mal höhere Temperatur als bisher in anderen Materialien observiert
- Dirac-Gleichung, nicht Schrödinger-Gleichung beschreibt die elektrischen Eigenschaften am einfachsten
- Quasiteilchencharakter vergleichbar mit geladenen Neutrinos
- Anstelle der Lichtgeschwindigkeit c tritt die Fermi-Geschwindigkeit $v_{\rm F}$ der e^-

Besonderheiten in Graphen

- Observierbar bei Raumtemperatur
- Masselose relativistische Teilchen als Ladungsträger

Hermann Böttcher Universität Konstanz
Landau-Niveaus und Quanten-Hall-Effekt in Graphen

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

└─Quanten Hall Effekt in Graphen I

2018-11-

- 10 mal höhere Temperatur als bisher in anderen Materialien observiert
- Dirac-Gleichung, nicht Schrödinger-Gleichung beschreibt die elektrischen Eigenschaften am einfachsten
- Quasiteilchencharakter vergleichbar mit geladenen Neutrinos
- Anstelle der Lichtgeschwindigkeit c tritt die Fermi-Geschwindigkeit $v_{\rm F}$ der e^-

Besonderheiten in Graphen

- Observierbar bei Raumtemperatur
- Masselose relativistische Teilchen als Ladungsträger

Ursprung

Hermann Böttcher Universität Konstanz
Landau-Niveaus und Quanten-Hall-Effekt in Graphen

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

└─Quanten Hall Effekt in Graphen I

2018-11

inten Hall Effekt in Graphen I	
Besonderheiten in Graphen	
Observierbar bei Raumtemperatur	
Masselose relativistische Teilchen als Ladungsträger	
Ursprung	

- 10 mal höhere Temperatur als bisher in anderen Materialien observiert
- Dirac-Gleichung, nicht Schrödinger-Gleichung beschreibt die elektrischen Eigenschaften am einfachsten
- Quasiteilchencharakter vergleichbar mit geladenen Neutrinos
- Anstelle der Lichtgeschwindigkeit c tritt die Fermi-Geschwindigkeit $v_{\rm F}$ der e^-

Besonderheiten in Graphen

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

- Observierbar bei Raumtemperatur
- Masselose relativistische Teilchen als Ladungsträger

Ursprung

■ Gebundene e^- im C-Atom \rightarrow nicht relativistisch

Hermann Böttcher Universität Konstanz

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

Quanten Hall Effekt in Graphen I

2018-11

- 10 mal höhere Temperatur als bisher in anderen Materialien observiert
- Dirac-Gleichung, nicht Schrödinger-Gleichung beschreibt die elektrischen Eigenschaften am einfachsten
- Quasiteilchencharakter vergleichbar mit geladenen Neutrinos
- Anstelle der Lichtgeschwindigkeit c tritt die Fermi-Geschwindigkeit $v_{\rm F}$ der e^-

Besonderheiten in Graphen

- Observierbar bei Raumtemperatur
- Masselose relativistische Teilchen als Ladungsträger

Ursprung

- Gebundene e^- im C-Atom \rightarrow nicht relativistisch
- e im periodischen Potential der Kristallstruktur von Graphen
 - → relativistisch

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

Hermann Böttcher Universität Konstanz Landau-Niveaus und Quanten-Hall-Effekt in Graphen

Quanten Hall Effekt in Graphen I

2018-1

- 10 mal höhere Temperatur als bisher in anderen Materialien observiert
- Dirac-Gleichung, nicht Schrödinger-Gleichung beschreibt die elektrischen Eigenschaften am einfachsten
- Quasiteilchencharakter vergleichbar mit geladenen Neutrinos
- Anstelle der Lichtgeschwindigkeit c tritt die Fermi-Geschwindigkeit $v_{\rm F} \, {\rm der} \, e^-$

Besonderheiten in Graphen

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

- Observierbar bei Raumtemperatur
- Masselose relativistische Teilchen als Ladungsträger

Ursprung

- Gebundene e^- im C-Atom \rightarrow nicht relativistisch
- e[−] im periodischen Potential der Kristallstruktur von Graphen
 → relativistisch
- Quasiteilchen; durch Dirac-Gleichung beschrieben

Hermann Böttcher Universität Konstanz

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

└─Quanten Hall Effekt in Graphen I

- 10 mal höhere Temperatur als bisher in anderen Materialien observiert
- Dirac-Gleichung, nicht Schrödinger-Gleichung beschreibt die elektrischen Eigenschaften am einfachsten
- Quasiteilchencharakter vergleichbar mit geladenen Neutrinos
- Anstelle der Lichtgeschwindigkeit c tritt die Fermi-Geschwindigkeit $v_{\rm F}$ der e^-

Besonderheiten in Graphen

- Observierbar bei Raumtemperatur
- Masselose relativistische Teilchen als Ladungsträger

Ursprung

- Gebundene e^- im C-Atom \rightarrow nicht relativistisch
- e[−] im periodischen Potential der Kristallstruktur von Graphen
 → relativistisch
- Quasiteilchen; durch Dirac-Gleichung beschrieben
- *v*_F statt *c*

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

Hermann Böttcher Universität Konstanz

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

└─Quanten Hall Effekt in Graphen I

- 10 mal höhere Temperatur als bisher in anderen Materialien observiert
- Dirac-Gleichung, nicht Schrödinger-Gleichung beschreibt die elektrischen Eigenschaften am einfachsten
- Quasiteilchencharakter vergleichbar mit geladenen Neutrinos
- Anstelle der Lichtgeschwindigkeit c tritt die Fermi-Geschwindigkeit $v_{\rm F}$ der e^-

Das Besondere Quantenelektrodynamische Phenomäne meist proportional zu c und damit

$$\frac{c}{v_{\rm F}} \approx 300$$

mal stärker in Graphen!

Landau-Niveaus und Quanten-Hall-Effekt in Graphen

Quanten Hall Effekt in Graphen I

Das Besondere Quantenelkitzrodynamische Phenomäne meist proportional zu c und damit $\frac{c}{v_F}\approx 300$ mal stärker in Graphen!

Quanten Hall Effekt in Graphen I

Hermann Böttcher Universität Konstanz

Graphitstrukturen

Hermann Böttcher