|                                          | $\sigma_{1^{+}lphaeta}^{\sharp1}$        | $\sigma^{\#2}_{1^+lphaeta}$                               | $	au_{1}^{\#1}{}_{lphaeta}$                              | $\sigma_{1}^{\#1}{}_{lpha}$               | $\sigma_{1}^{\#2}{}_{lpha}$                                        | $\tau_{1}^{\#1}{}_{\alpha}$ | τ <sub>1</sub> - α                                                |
|------------------------------------------|------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------|
| $\sigma_{1}^{\#1} \dagger^{\alpha\beta}$ | $\frac{1}{k^2(2r_3+r_5)}$                | $-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$                  | $-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$                  | 0                                         | 0                                                                  | 0                           | 0                                                                 |
| $\sigma_{1}^{\#2} \dagger^{\alpha\beta}$ | $-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$ | $\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$      | $\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$ | 0                                         | 0                                                                  | 0                           | 0                                                                 |
| $\tau_{1}^{\#1} \dagger^{\alpha\beta}$   | $\frac{i \sqrt{2}}{k(1+k^2)(2r_3+r_5)}$  | $-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$ | $\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$     | 0                                         | 0                                                                  | 0                           | 0                                                                 |
| $\sigma_1^{\!\#\!1}\dagger^lpha$         | 0                                        | 0                                                         | 0                                                        | $\frac{2}{k^2(r_3+2r_5)}$                 | $\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$                          | 0                           | $\frac{4i}{k(1+2k^2)(r_3+2r_5)}$                                  |
| $\sigma_1^{\#2} \dagger^{\alpha}$        | 0                                        | 0                                                         | 0                                                        | $\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$ | $\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$              | 0                           | $\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$ |
| $\tau_1^{\#1} \uparrow^{\alpha}$         | 0                                        | 0                                                         | 0                                                        | 0                                         | 0                                                                  | 0                           | 0                                                                 |
| $\tau_1^{\#2} \uparrow^{\alpha}$         | 0                                        | 0                                                         | 0                                                        | $-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$         | $-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$ | 0                           | $\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$             |

| $\omega_{0^{	ext{-}1}}^{\#1}\dagger$ | $f_{0+}^{#2}$ † | $f_{0+}^{#1}$ † | $\omega_{0^{+}}^{*1}$ † |                    |
|--------------------------------------|-----------------|-----------------|-------------------------|--------------------|
| 0                                    | 0               | $i\sqrt{2}kt_3$ | $t_3$                   | $\omega_0^{\#1}$   |
| 0                                    | 0               | $2 k^2 t_3$     | $-\bar{i}\sqrt{2}kt_3$  | $f_{0}^{#1}$       |
| 0                                    | 0               | 0               | 0                       | $f_{0+}^{#2}$      |
| $t_2$                                | 0               | 0               | 0                       | $\omega_{0}^{\#1}$ |

|                                     | $\omega_{1^{+}lphaeta}^{\sharp1}$   | $\omega_{1}^{\#2}{}_{\alpha\beta}$ | $f_{1^{+}\alpha\beta}^{\#1}$ | $\omega_{1^{-}\ lpha}^{$ #1}                            | $\omega_{1-\alpha}^{\#2}$         | $f_{1-\alpha}^{\#1}$ | $f_{1-\alpha}^{\#2}$            |
|-------------------------------------|-------------------------------------|------------------------------------|------------------------------|---------------------------------------------------------|-----------------------------------|----------------------|---------------------------------|
| $\omega_{1}^{\#1}\dagger^{lphaeta}$ | $k^2 (2r_3 + r_5) + \frac{2t_2}{3}$ | $\frac{\sqrt{2} t_2}{3}$           | $\frac{1}{3}i\sqrt{2}kt_2$   | 0                                                       | 0                                 | 0                    | 0                               |
| $\omega_{1}^{\#2}\dagger^{lphaeta}$ | $\frac{\sqrt{2} t_2}{3}$            | <u>t2</u><br>3                     | <u>i kt2</u><br>3            | 0                                                       | 0                                 | 0                    | 0                               |
| $f_{1}^{\#1}\dagger^{\alpha\beta}$  | $-\frac{1}{3}\bar{l}\sqrt{2}kt_2$   | $-\frac{1}{3}ikt_2$                | $\frac{k^2t_2}{3}$           | 0                                                       | 0                                 | 0                    | 0                               |
| $\omega_1^{\sharp_1}\dagger^{lpha}$ | 0                                   | 0                                  | 0                            | $k^2 \left(\frac{r_3}{2} + r_5\right) + \frac{2t_3}{3}$ | $-\frac{\sqrt{2} t_3}{3}$         | 0                    | $-\frac{2}{3}  \bar{l}  k  t_3$ |
| $\omega_1^{#2} \dagger^{\alpha}$    | 0                                   | 0                                  | 0                            | $-\frac{\sqrt{2}\ t_3}{3}$                              | <u>t3</u><br>3                    | 0                    | $\frac{1}{3} i \sqrt{2} k t_3$  |
| $f_{1}^{#1} \dagger^{\alpha}$       | 0                                   | 0                                  | 0                            | 0                                                       | 0                                 | 0                    | 0                               |
| $f_{1}^{#2} \dagger^{\alpha}$       | 0                                   | 0                                  | 0                            | <u>2 i kt</u> 3<br>3                                    | $-\frac{1}{3}\bar{l}\sqrt{2}kt_3$ | 0                    | $\frac{2k^{2}t_{3}}{3}$         |

| Source constraints                                                             |    |  |  |  |
|--------------------------------------------------------------------------------|----|--|--|--|
| SO(3) irreps                                                                   | #  |  |  |  |
| $\tau_{0^{+}}^{\#2} == 0$                                                      | 1  |  |  |  |
| $\sigma_{0+}^{\#1} - 2  i  k  \sigma_{0+}^{\#1} == 0$                          | 1  |  |  |  |
| $\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$                           | 3  |  |  |  |
| $\tau_{1}^{\#1\alpha} == 0$                                                    | 3  |  |  |  |
| $\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$ | 3  |  |  |  |
| $\sigma_2^{\#1\alpha\beta\chi} == 0$                                           | 5  |  |  |  |
| $\tau_{2^{+}}^{\#1\alpha\beta} == 0$                                           | 5  |  |  |  |
| Total #:                                                                       | 21 |  |  |  |
|                                                                                |    |  |  |  |

| $\sigma_{0^{	ext{-}}}^{\sharp 1}$ † | $\tau_{0^{+}}^{#2}$ † | $\tau_{0}^{\#1}$ †                 | $\sigma_{0^{+}}^{*1}$ †             |                       |
|-------------------------------------|-----------------------|------------------------------------|-------------------------------------|-----------------------|
| 0                                   | 0                     | $\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$ | $\frac{1}{(1+2k^2)^2t_3}$           | $\sigma_{0^{+}}^{*1}$ |
| 0                                   | 0                     | $\frac{2k^2}{(1+2k^2)^2t_3}$       | $-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$ | $	au_0^{\#1}$         |
| 0                                   | 0                     | 0                                  | 0                                   | $t_0^{\#2}$           |
| $\frac{1}{t_2}$                     | 0                     | 0                                  | 0                                   | $\sigma_{0}^{\#1}$    |





$$\sigma_{2^{+} \alpha \beta}^{\#1} \tau_{2^{+} \alpha \beta}^{\#1} \sigma_{2^{-} \alpha \beta \chi}^{\#1}$$

$$\sigma_{2^{+}}^{\#1} \uparrow^{\alpha \beta} - \frac{2}{3 k^{2} r_{3}} \quad 0 \quad 0$$

$$\tau_{2^{+}}^{\#1} \uparrow^{\alpha \beta} \quad 0 \quad 0 \quad 0$$

$$\sigma_{2^{-}}^{\#1} \uparrow^{\alpha \beta \chi} \quad 0 \quad 0 \quad 0$$



## Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$

(No massive particles)