Cálculo

Critérios sobre séries de números reais

[Condição necessária de convergência] Se $\sum_{n>1} u_n$ é convergente então $\lim u_n=0$.

[1.º critério de comparação] Sejam $\sum_{n\geq 1}u_n$ e $\sum_{n\geq 1}v_n$ séries de termos não negativos tais que, a partir de certa ordem, $u_n\leq v_n$.

- (a) $\sum_{n>1} v_n$ converge $\implies \sum_{n>1} u_n$ converge.
- (b) $\sum_{n\geq 1} u_n$ diverge $\implies \sum_{n\geq 1} v_n$ diverge.

[2.º critério de comparação] Sejam $\sum_{n\geq 1} u_n$ e $\sum_{n\geq 1} v_n$ séries de termos positivos tais que $\ell=\lim_n \frac{u_n}{v_n}$, onde $\ell\in[0,+\infty]$.

- (a) $\ell \neq 0$ ou $\ell \neq +\infty \implies \sum_{n \geq 1} u_n$ e $\sum_{n \geq 1} v_n$ têm a mesma natureza.
- (b) Se $\ell=0$
 - (i) $\sum_{n>1} v_n$ converge $\Longrightarrow \sum_{n>1} u_n$ converge.
 - (ii) $\sum_{n>1} u_n$ diverge $\Longrightarrow \sum_{n>1} v_n$ diverge.
- (c) Se $\ell = +\infty$
 - (i) $\sum_{n>1} v_n$ diverge $\Longrightarrow \sum_{n>1} u_n$ diverge.
 - (ii) $\sum_{n>1} u_n$ converge $\Longrightarrow \sum_{n>1} v_n$ converge.

[Critério da razão (ou D'Alembert)] Sejam $\sum_{n\geq 1}u_n$ uma série de termos positivos e $\ell=\lim\frac{u_{n+1}}{u_n}$.

- (a) $\ell < 1 \implies \sum_{n > 1} u_n$ é convergente.
- (b) $\ell > 1 \implies \sum_{n>1} u_n$ é divergente.
- (c) $\ell=1 \implies$ nada se pode concluir sobre a natureza de $\sum_{n\geq 1} u_n$.

[Critério da raiz (ou de Cauchy)] Sejam $\sum_{n>1}u_n$ uma série de termos não negativos e $\ell=\lim \sqrt[n]{u_n}$.

- (a) $\ell < 1 \implies \sum_{n>1} u_n$ é convergente.
- (b) $\ell > 1 \implies \sum_{n > 1} u_n$ é divergente.
- (c) $\ell=1 \implies$ nada se pode concluir sobre a natureza de $\sum_{n\geq 1} u_n$.

[Critério do integral] Se $f:[1,+\infty[\longrightarrow \mathbb{R}$ é uma função contínua, positiva, decrescente e, para cada $n\in\mathbb{N}$ seja, $f(n)=u_n$ então $\sum_{n\geq 1}u_n$ e $\int_1^{+\infty}f(x)\,dx$ têm a mesma natureza.

[Convergência absoluta] Se $\sum_{n\geq 1} |u_n|$ é convergente então $\sum_{n\geq 1} u_n$ também é convergente.

[Critério de Leibnitz] Seja $(a_n)_n$ uma sucessão decrescente tal que lim $a_n=0$. Então $\sum_{n\geq 1} (-1)^n a_n$ é convergente.

Regras de derivação

(Omitem-se os domínios das funções e considera-se a uma constante apropriada.)

	$(x^a)' = a x^{a-1}$
$(a^x)' = a^x \ln a$	$\log_a' x = \frac{1}{x \ln a}$
$\operatorname{sen}' x = \cos x$	$\cos' x = - \sin x$
$\operatorname{tg}' x = \operatorname{sec}^2 x$	$\cot g' x = -\csc^2 x$
$\sec' x = \sec x \operatorname{tg} x$	$\operatorname{cosec}' x = -\operatorname{cosec} x \operatorname{cotg} x$
sh'x = chx	ch' x = sh x
$th' x = sech^2 x$	$\coth' x = -\operatorname{cosech}^2 x$
$\operatorname{sech}' x = -\operatorname{sech} x \operatorname{th} x$	$\operatorname{cosech}' x = -\operatorname{cosech} x \operatorname{coth} x$
$\operatorname{arcsen}' x = \frac{1}{\sqrt{1 - x^2}}$	$\arccos' x = \frac{-1}{\sqrt{1 - x^2}}$
$\operatorname{arctg}' x = \frac{1}{1+x^2}$	$\operatorname{arccotg}' x = \frac{-1}{1+x^2}$
$\operatorname{arcsec}' x = \frac{1}{x\sqrt{x^2 - 1}}$	$\operatorname{arccosec}' x = \frac{-1}{x\sqrt{x^2 - 1}}$
$\operatorname{argsh}' x = \frac{1}{\sqrt{1+x^2}}$	$\operatorname{argch}' x = \frac{1}{\sqrt{x^2 - 1}}$
$\operatorname{argth}' x = \frac{1}{1 - x^2}$	$\operatorname{argcth}' x = \frac{1}{1-x^2}$
$\operatorname{argsech}' x = \frac{-1}{x\sqrt{1-x^2}}$	$\operatorname{argcosech}' x = \frac{-1}{x\sqrt{1+x^2}}$

Recorda-se ainda que $a^\prime=0$ e

$$(g \circ u)'(x) = g'(u(x))u'(x)$$
 $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$

Primitivas imediatas

 $(u:I\longrightarrow \mathbb{R}$ é uma função derivável num intervalo I e $\mathcal C$ denota uma constante real arbitrária)

$$\int a \, dx = ax + \mathcal{C} \qquad \qquad \int u' \, u^{\alpha} \, dx = \frac{u^{\alpha+1}}{\alpha+1} + \mathcal{C} \, \left(\alpha \neq -1\right)$$

$$\int \frac{u'}{u} \, dx = \ln |u| + \mathcal{C} \qquad \qquad \int a^{u} \, u' \, dx = \frac{a^{u}}{\ln a} + \mathcal{C} \, \left(a \in \mathbb{R}^{+} \setminus \{1\}\right)$$

$$\int u' \cos u \, dx = \sin u + \mathcal{C} \qquad \qquad \int u' \sin u \, dx = -\cos u + \mathcal{C}$$

$$\int u' \sec^{2} u \, dx = -\ln |\cos u| + \mathcal{C} \qquad \qquad \int u' \cot u \, dx = \ln |\sec u| + \mathcal{C}$$

$$\int u' \cos u \, dx = \ln |\sec u + \operatorname{tg} u| + \mathcal{C} \qquad \qquad \int u' \csc^{2} u \, dx = \ln |\csc u - \cot u| + \mathcal{C}$$

$$\int \frac{u'}{\sqrt{1-u^{2}}} \, dx = \operatorname{arcsen} u + \mathcal{C} \qquad \qquad \int \frac{-u'}{\sqrt{1-u^{2}}} \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int \frac{u'}{1+u^{2}} \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \operatorname{cosech}^{2} u \, dx = \operatorname{th} u + \mathcal{C}$$

$$\int u' \operatorname{sech}^{2} u \, dx = \operatorname{th} u + \mathcal{C}$$

$$\int u' \operatorname{cosech}^{2} u \, dx = \operatorname{argch} u + \mathcal{C}$$

$$\int \frac{u'}{\sqrt{u^{2}-1}} \, dx = \operatorname{argch} u + \mathcal{C}$$

$$\int \frac{u'}{\sqrt{u^{2}-1}} \, dx = \operatorname{argch} u + \mathcal{C}$$

$$\int \frac{u'}{\sqrt{u^{2}-1}} \, dx = \operatorname{argch} u + \mathcal{C}$$

$$\int \frac{u'}{1-u^{2}} \, dx = \operatorname{argch} u + \mathcal{C}$$

$$\int \frac{u'}{\sqrt{u^{2}-1}} \, dx = \operatorname{argch} u + \mathcal{C}$$

$$\int \frac{u'}{\sqrt{u^{2}-1}} \, dx = \operatorname{argch} u + \mathcal{C}$$

$$\int \frac{u'}{1-u^{2}} \, dx = \operatorname{argch} u + \mathcal{C}$$

$$\int \frac{u'}{1-u^{2}} \, dx = \operatorname{argch} u + \mathcal{C}$$

$$\int \frac{u'}{1-u^{2}} \, dx = \operatorname{argch} u + \mathcal{C}$$