

SF1624 Algebra och geometri Lösningsförslag till tentamen 2015-01-19

DEL A

1. För varje tal a har vi ekvationssystemet

$$\begin{cases} x + y + z &= 1 \\ 2x + ay + 3z &= 1 \\ 3x + (a+1)y + az &= 2. \end{cases}$$

(a) Bestäm för vilka värden på parametern a systemet har en lösning; inga lösningar; oändligt många lösningar. (3 p)

(b) Lös ekvationssytemet när a = 1.

(1 p)

Lösningsförslag. (a) Systemet har 3 ekvationer och 3 obekanta. Gausselimination ger

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & a & 3 & 1 \\ 3 & a+1 & a & 2 \end{bmatrix} \sim \begin{bmatrix} r_1 \\ r_2-2r_1 \\ r_3-3r_1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & a-2 & 1 & -1 \\ 0 & a-2 & a-3 & -1 \end{bmatrix} \sim \begin{bmatrix} r_1 \\ r_2 \\ r_3-r_2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & a-2 & 1 & -1 \\ 0 & 0 & a-4 & 0 \end{bmatrix}.$$

Koefficientmatrisen har här determinant (a-2)(a-4), så om $a \neq 2$ och $a \neq 4$ har systemet exakt en lösning. Om a=4 får vi ett konsistent system med en nollrad, så att det finns oändligt många lösningar. Om a=2 får vi systemet

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -2 & 0 \end{bmatrix}$$

vilket uppenbarligen inte är konsistent; inga lösningar.

(b) När a = 1:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & -3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix};$$

lösningen är x = 0, y = 1, z = 0.

2. Betrakta följande vektorer i \mathbb{R}^3 :

$$\vec{v} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} \quad \vec{w} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad \vec{u} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad \text{ och } \quad \vec{z} = \begin{bmatrix} 0 \\ -2 \\ 4 \end{bmatrix}.$$

- (a) Bestäm en ekvation för planet $\mathrm{Span}(\vec{v}, \vec{w})$. (1 p)
- (b) Ligger vektorn \vec{z} i Span (\vec{v}, \vec{w}) ? (1 p)
- (c) Bildar \vec{v} , \vec{w} , \vec{u} en bas för \mathbb{R}^3 ? (1 p)
- (d) Beräkna rangen av matrisen (1 p)

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ -1 & 0 & 2 & -2 \\ 3 & 1 & 1 & 4 \end{bmatrix}.$$

Lösningsförslag. (a) Vektorerna \vec{v} och \vec{w} är linjärt oberoende, så $\mathrm{Span}(\vec{v}, \vec{w})$ är mycket riktigt ett plan (genom origo). En normalvektor till planet är

$$\vec{v} \times \vec{w} = \begin{bmatrix} \begin{vmatrix} -1 & 0 \\ 3 & 1 \end{vmatrix}, & -\begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix}, & \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} \end{bmatrix}^T = \begin{bmatrix} -1, & 2, & 1 \end{bmatrix}^T = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}.$$

En ekvation (i koordinater (x_1, x_2, x_3)) är därmed $-x_1 + 2x_2 + x_3 = 0$.

- (b) Vi har att $-1 \cdot 0 + 2(-2) + 4 = 0$, så \vec{z} ligger i Span (\vec{v}, \vec{w}) .
- (c) Vi kollar om \vec{u} ligger i planet: $-1 + 2 \cdot 2 + 1 = 4 \neq 0$, så \vec{u} ligger ej i planet $\mathrm{Span}(\vec{v}, \vec{w})$. Detta medf'Äor att \vec{v} , \vec{w} , och \vec{u} är 3 linjärt oberoende vektorer i \mathbb{R}^3 , så de bildar en bas för \mathbb{R}^3 .
- (d) Matrisen A har kolonnerna \vec{v} , \vec{w} , \vec{u} , och \vec{z} . Rangen av matrisen är därmed 3, eftersom kolonnrummet har dimension 3.

3. Anpassa kurvan $y = ax^2 + bx + c$ med minstakvadratmetoden till följande tabell av mätdata

(4 p)

Lösningsförslag. Dessa mätdata ger ett ekvationssystem i a, b, och c, med utökad matris

$$\begin{bmatrix} 1 & -1 & 1 & 2 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 2 \\ 4 & 2 & 1 & 4 \end{bmatrix}.$$

Låt \vec{d} vara den 4:e kolonnen och skriv $\vec{x} = \begin{bmatrix} a, & b, & c \end{bmatrix}^T$, då är systemet $A\vec{x} = \vec{d}$, där A är koefficientmatrisen. Vi tittar nu på systemet $A^TA\vec{x} = A^T\vec{d}$:

$$A^T A = \begin{bmatrix} 18 & 8 & 6 \\ 8 & 6 & 2 \\ 6 & 2 & 4 \end{bmatrix}, \qquad A^T \vec{d} = \begin{bmatrix} 20 \\ 8 \\ 8 \end{bmatrix}.$$

Vi löser systemet:

$$\begin{bmatrix} 18 & 8 & 6 & 20 \\ 8 & 6 & 2 & 8 \\ 6 & 2 & 4 & 8 \end{bmatrix} \sim \begin{bmatrix} 9 & 4 & 3 & 10 \\ 4 & 3 & 1 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix} \sim \begin{bmatrix} r_1 - 2r_2 \\ r_2 \\ r_3 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 & 2 \\ 4 & 3 & 1 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 & 2 \\ 0 & 11 & -3 & -4 \\ 0 & 7 & -1 & -2 \end{bmatrix} \sim \begin{bmatrix} r_1 \\ r_2 - 3r_3 \\ r_3 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 & 2 \\ 0 & -10 & 0 & 2 \\ 0 & 7 & -1 & -2 \end{bmatrix}.$$

Så $b = -\frac{1}{5}$; då $-\frac{7}{5} - c = -2$, så att $c = \frac{3}{5}$; sedan $a + \frac{2}{5} + \frac{3}{5} = 2$, så a = 1.

Kurvan som enligt minstakvadratmetoden är bäst anpassad är $y=x^2-\frac{1}{5}x+\frac{3}{5}$.

DEL B

- 4. Planet H ges av ekvationen 3x 5y + 3z = 0.
 - (a) Bestäm en orthonormal (ON) bas β för H. (1 p)
 - (b) Utvidga β till en ON-bas för \mathbb{R}^3 . (1 **p**)
 - (c) Låt $T: \mathbb{R}^3 \to \mathbb{R}^3$ vara ortogonala projektionen på H. Bestäm en matrisrepresentation för T.
- **Lösningsförslag.** (a) Vi har att dim H=2, så vi ska hitta 2 oberoende vektorer i H för att få en bas. Genom att sätta y=0 hittar vi vektorn $\vec{a}=\begin{bmatrix}1,&0,&-1\end{bmatrix}^T$; genom att sätta z=0 hittar vi vektorn $\vec{b}=\begin{bmatrix}5,&3,&0\end{bmatrix}^T$. De är oberoende, så de bildar en bas för H.

Med Gram-Schmidt-metoden får vi en ortogonal bas: $\operatorname{proj}_{\vec{a}}\vec{b} = t\vec{a}$, $\operatorname{med} t = \frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}} = \frac{5}{2}$; då bildar \vec{a} och $\vec{c} = \vec{b} - t\vec{a} = \vec{b} - \frac{5}{2}\vec{a} = \begin{bmatrix} \frac{5}{2}, & 3, & \frac{5}{2} \end{bmatrix}^T$ en ortogonal bas för H. Även \vec{a} och $2\vec{c} = \begin{bmatrix} 5, & 6, & 5 \end{bmatrix}^T$ gör detta. Till slut får vi en ON-bas genom att dela varje vektor genom sin längd: $\frac{1}{\sqrt{2}}\vec{a} = \begin{bmatrix} \frac{1}{\sqrt{2}}, & 0, & -\frac{1}{\sqrt{2}} \end{bmatrix}$ och $\frac{1}{\sqrt{86}}\vec{c} = \frac{1}{\sqrt{86}}\begin{bmatrix} 5, & 6, & 5 \end{bmatrix}^T$ bildar en ON-bas för H.

- (b) Det är bara att lägga till en enhetsnormalvektor till H, tex: $\vec{d} = \frac{1}{\sqrt{43}} \begin{bmatrix} 3, & -5, & 3 \end{bmatrix}^T$.
- (c) Vi vet att $T(\vec{a}) = \vec{a}$, $T(\vec{c}) = \vec{c}$, och $T(\vec{d}) = \vec{0}$. Så i basen $\{\vec{a}, \vec{c}, \vec{d}\}$ har T matrisrepre-

sentationen $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$

5. Enligt *Cayley-Hamiltons sats* gäller att varje kvadratisk matris uppfyller sin egen karaktäristiska ekvation. Betrakta matrisen

$$A = \begin{bmatrix} 0 & -2 & 1 \\ -2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

(a) Bestäm alla egenvektorer till A med egenvärde 2.

(1 p)

(b) Beräkna det karaktäristiska polynomet $P_A(x)$ för matrisen A.

(2 p)

(c) Verifiera att Cayley-Hamiltons sats gäller för matrisen genom att beräkna $P_A(A)$.

(1 p)

Lösningsförslag. (a) Vi beräknar nollrummet Ker(A-2I):

$$\begin{bmatrix} -2 & -2 & 1 \\ -2 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 \\ -2 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 \\ 0 & 0 & -3 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Så nollrummet Ker(A-2I) spänns upp av $\begin{bmatrix} 1 & -1 & 0 \end{bmatrix}^T$. Egenvektorerna med egenvärdet 2 är exakt alla **nollskilda** multipler av denna vektor.

(b) Vi har att

$$\det(A - \lambda I) = \begin{vmatrix} -\lambda & -2 & 1 \\ -2 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = -\lambda^3 - 2 - 2 + \lambda + \lambda + 4\lambda = -\lambda^3 + 6\lambda - 4.$$

Det karaktäristiska polynomet $P_A(x)$ är $x^3 - 6x + 4$.

(c) Vi beräknar att

$$A^{2} = \begin{bmatrix} 0 & -2 & 1 \\ -2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & -2 & 1 \\ -2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 1 & -2 \\ 1 & 5 & -2 \\ -2 & -2 & 2 \end{bmatrix}$$

och att

$$A^{3} = \begin{bmatrix} 0 & -2 & 1 \\ -2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 5 & 1 & -2 \\ 1 & 5 & -2 \\ -2 & -2 & 2 \end{bmatrix} = \begin{bmatrix} -4 & -12 & 6 \\ -12 & -4 & 6 \\ 6 & 6 & -4 \end{bmatrix}.$$

Observera att den konstanta termen 4 i polynomet blir $4A^0=4I$. Vi ser nu att

$$A^3 - 6A + 4I = \begin{bmatrix} -4 & -12 & 6 \\ -12 & -4 & 6 \\ 6 & 6 & -4 \end{bmatrix} - 6 \begin{bmatrix} 0 & -2 & 1 \\ -2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

vilket stämmer.

6. Linjen L i \mathbb{R}^3 går genom origo. En riktningsvektor för linjen bildar vinkeln 60° mot den positiva x-axeln och vinkeln 45° mot den positiva y-axeln. Linjen L skär planet

$$x + \sqrt{2}y - 3z = 6$$

i punkten P. Bestäm P.

(4 p)

Lösningsförslag. Låt $\vec{u} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ vara en normerad riktningsvektor till L och låt \vec{e}_x , \vec{e}_y och \vec{e}_z vara standardbasvektorerna. Då är $a = \vec{u} \cdot \vec{e}_x = \|\vec{u}\| \cdot \|\vec{e}_x\| \cdot \cos 60^\circ = 1/2$ och $b = \vec{u} \cdot \vec{e}_y = \|\vec{u}\| \cdot \|\vec{e}_y\| \cdot \cos 45^\circ = 1/\sqrt{2}$. Eftersom \vec{u} är normerad har vi att $c = \pm \sqrt{1 - a^2 - b^2} = \pm 1/2$.

Låt $\vec{n} = \begin{bmatrix} 1 \\ \sqrt{2} \\ -3 \end{bmatrix}$ som ju är en normalvektor till planet. Om c = 1/2 är $\vec{u} \cdot \vec{n} = 0$ vilket betyder att linjen L är parallell med planet. Men detta är omöjligt eftersom vi vet att L skär planet utan att ligga i planet (för planet innehåller inte origo). Alltså är c = -1/2.

Skärningspunkten P ligger på linjen L så den kan skrivas $P=t\vec{u}$ för något reellt tal t. Eftersom P ligger i planet gäller att $\vec{n} \cdot (t\vec{u}) = 6$ så

$$t = \frac{6}{\vec{n} \cdot \vec{u}} = \frac{6}{3} = 2.$$

Punkten P har alltså koordinaterna $(1, \sqrt{2}, -1)$.

8

DEL C

- 7. I datortomografi behöver man kunna hålla reda på alla linjer i planet genom att ge dem *koordinater*. Ett sätt att göra det är genom att till en linje i planet tillordna paret (r,φ) där r>0 och $0\leq \varphi<2\pi$ fås genom att $(r\cos\varphi,r\sin\varphi)$ är den punkt på linjen som ligger närmast origo. Vi är bara interesserade av linjer som inte går genom origo.
 - (a) Bestäm en ekvation på formen ax + by + c = 0 för linjen med koordinater (r, φ) .

(2p)

(b) Visa att linjerna (r_1, φ_1) och (r_2, φ_2) är parallella om och endast om

(2p)

$$\cos(\varphi_1)\sin(\varphi_2) = \cos(\varphi_2)\sin(\varphi_1).$$

- **Lösningsförslag.** (a) Låt (r,φ) vara en given linje. Då är $\left[r\cos\varphi,\ r\sin\varphi\right]^T$ och speciellt $\left[\cos\varphi,\ \sin\varphi\right]^T$ normalvektorer till linjen. Dvs. vi kan sätta $a=\cos\varphi$ och $b=\sin\varphi$. Linjen går genom punkten $(r\cos\varphi,r\sin\varphi)$; detta ger att c=-r. Ekvationen blir $(\cos\varphi)x+(\sin\varphi)y-r=0$.
 - (b) Linjerna (r_1, φ_1) och (r_2, φ_2) är parallella om och endast om deras normalvektorer är parallella. Två vektorer är parallella om och endast om determinanten är noll, dvs. att $\begin{vmatrix} \cos \varphi_1 & \cos \varphi_2 \\ \sin \varphi_1 & \sin \varphi_2 \end{vmatrix} = 0$. Detta är i sin tur ekvivalent med att $\cos(\varphi_1)\sin(\varphi_2) = \cos(\varphi_2)\sin(\varphi_1)$.

8. Kurvan C i \mathbb{R}^2 ges av ekvationen $3x^2-10xy+3y^2+12=0$. Låt $\beta=\{\vec{u},\vec{v}\}$ vara basen med vektorerna

$$\vec{u} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{och} \quad \vec{v} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Visa att koordinatvektorerna $\begin{bmatrix} z \\ w \end{bmatrix}$ för vektorer på kurvan C, med avseende på basen β , satisfierar ekvationen $z^2-4w^2=6$. (4 **p**)

Lösningsförslag. Låt σ vara standardbasen. För en vektor \vec{p} i \mathbb{R}^2 vet vi då att

$$[\vec{p}]_{\sigma} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} [\vec{p}]_{\beta},$$

så koordinatvektorer $\begin{bmatrix} x & y \end{bmatrix}^T$ för punkter på kurvan i standardbasen är relaterade till koordinatvektorer $\begin{bmatrix} z & w \end{bmatrix}^T$ enligt följande

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} z \\ w \end{bmatrix}.$$

Vi vet även att

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -12.$$

Nu byter vi ut $\begin{bmatrix} x & y \end{bmatrix}^T$ med uttrycket för $\begin{bmatrix} z & w \end{bmatrix}^T$. Eftersom

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -2 & -2 \\ -8 & 8 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -4 & 0 \\ 0 & 16 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & 8 \end{bmatrix}$$

får vi ekvationen $-2z^2 + 8w^2 = -12$ för C, eller också ekvationen $z^2 - 4w^2 = 6$ (ekvivalent med den förra).

9. Låt P_n vara vektorrummet av polynom p(x) av grad högst n. Den linjära avbildningen $T\colon P_n\to P_n$ definieras som

$$T(p(x)) = \frac{1}{x}(p(x) - p(0)).$$

- (a) Låt n=3. Bestäm matrisrepresentationen till avbildningen T med avseende på basen $\{1, x, x^2, x^3\}$. (1 p)
- (b) Låt n = 10. Bestäm det minsta heltalet m sådan att $T^m = 0$. (1 p)
- (c) Låt n = 100. Bestäm alla egenvärden och egenvektorer av avbildningen T. (2 p)

Lösningsförslag. (a) Vi har att T(1) = 0; T(x) = 1; $T(x^2) = x$; $T(x^3) = x^2$. Matrisen blir

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- (b) Vi ser att $T(x^k)=x^{k-1}$ för $k\geq 1$, medan T(1)=0. Vi har även att $T^2(x^k)=x^{k-2}$ för $k\geq 2$, medan $T^2(x^l)=0$ för l<2. På liknande sätt får vi att $T^9(x^{10})=x$; $T^{10}(x^{10})=1$; och $T^{11}(x^{10})=0$. Självklart gäller även att $T^{11}(x^k)=0$ för alla $k\leq 10$. Så m=11 är det minsta heltalet så att $T^m=0$.
- (c) Vi inser nu att T^{101} är noll-avbildningen, dvs. $T^{101}=0$. Om \vec{v} är en egenvektor med egenvärde λ , då har vi att $T(\vec{v})=\lambda\vec{v}$. Det följer då att $T^{101}(\vec{v})=\lambda^{101}(\vec{v})$, så $\lambda^{101}=0$, så $\lambda=0$. Med andra ord har vi att 0 är det enda egenvärdet. Eftersom $T(p_{100}x^{100}+\cdots+p_1x+p_0)=p_{100}x^{99}+\cdots+p_2x+p_1$, gäller T(p(x))=0 om och endast om $p_{100}=\cdots=p_1=0$ om och endast om p(x) är ett konstant polynom. De enda egenvektorerna (nödvändigtvis med egenvärdet 0) är då de konstanta nollskilda polynomen. (Egenrummet har dimension 1.)