

Universitatea din București

FACULTATEA DE MATEMATICĂ ȘI INFORMATICĂ SPECIALIZAREA INTELIGENȚĂ ARTIFICIALĂ

Îmbunătățirea unui sistem de recomandare

LUCRARE DE DISERTAȚIE

COORDONATOR ŞTIINŢIFIC Conf. Dr. Bogdan Alexe ABSOLVENT

Adrian Ispas

București, România Iunie 2019

Abstract

Abstractul în limba română.

Abstract

Abstractul în limba engleză.

Cuprins

Li	stă c	le figu	ri	7
Li	stă d	le tabe	ele	8
1	Inti	oduce	${ m ere}$	10
	1.1	Motiv	rație	 10
	1.2	Obiec	tive propuse	 11
	1.3	Struct	tura lucrării	 11
2	Fun	ıdameı	nte teoretice	14
	2.1	Sisten	ne de recomandare	 14
		2.1.1	Noțiuni generale	 14
		2.1.2	Strategii de recomandare	 14
		2.1.3	Funcții de eroare	 16
	2.2	Optin	nizarea cu metoda gradientului descendent	 22
	2.3	Model	lul LightFM	 22
	2.4	Reţele	e neurale convoluționale	 24
		2.4.1	Noțiuni generale	 24
		2.4.2	VGG	 26
		2.4.3	InceptionV3	 27
		2.4.4	ResNet	 28
		2.4.5	NASNet	 31
	2.5	Cluste	ere	 34
		2.5.1	Noțiuni generale	 34
		2.5.2	K-nearest neighbors	 35
		2.5.3	Metrici de evaluare a clusterelor	 36

3	Des	crierea soluției	40
	3.1	Definirea modelului de recomandare	40
	3.2	Clasterizarea posterelor	40
	3.3	Iniţializarea bazei de date	40
	3.4	Optimizarea parametrilor modelului	40
4	Eva	luarea experimentală	43
	4.1	Bază de date filme	43
	4.2	Bază de date postere	43
	4.3	Rezultate clusterizare postere	43
		4.3.1 Sanity check	43
		4.3.2 Rezultate generale	43
	4.4	Rezultate sistem de recomandare	43
Bi	ibliog	grafie	44

Listă de figuri

2.1	Filtrarea coloborativă	15
2.2	Filtrarea bazată pe conținut	16
2.3	Matricea de interacțiuni	17
2.4	Setul de antrenare	18
2.5	Procedura de învățarea BPR	18
2.6	Online WARP Loss Optimization	20
2.7	Algoritmul k-os pentru alegerea unui element pozitiv	21
2.8	Algoritmii k-os AUC şi WARP	22
2.9	Exemplu rețea convoluțională	24
2.10	Exemplu de filtru aplicat peste input	25
2.11	Exemplu de pooling	26
2.12	Configurații VGG	27
2.13	Factorizarea în filtre convoluționale mici	28
2.14	Factorizarea spaţială în convoluţii asimetrice	28
2.15	Clasificator auxiliar	29
2.16	Reducerea eficientă a dimensiunii	29
2.17	Arhitectura InceptionV3	30
2.18	Învățarea reziduală	30
2.19	Rețeaua ResNet	32
2.20	NAS	33
2.21	Celule normale și de reducere	33
2.22	Exemplu clustere	34
2.23	Exemplu 1 de clasificare cu kNN	37
2.24	Exemplu 2 de clasificare cu kNN	37

Listă de tabele

3.1	Parametrii optimizați pentru modelul de recomandare pe tipuri de featureuri	41
3.2	Parametrii optimizați pentru modelul de recomandare pe tipuri de featu-	
	reuri și modele de rețele preantrenate	41

Capitolul 1

Introducere

1.1 Motivație

Volumul de date crește semnificativ de la an la an astfel până în 2020 se estimează că pentru fiecare persoană de pe planetă vor fi creați în fiecare secundă 1.7 MB de date, ceea ce înseamnă peste 13 milioane de GB creați în fiecare secundă în lume.În 2018 în fiecare minut se vizionau peste 97 de mii de ore de conținut pe Netlfix. Peste 4.3 milioane de videoclipuri erau vizionate pe Youtube. Pe Spotify se ascultau 750 de mii de melodii, iar Amazon pregătea peste o mie de pachete [1].

În România, Netflix pune la dispoziție 575 de filme și 208 seriale. În Regatul Unit sunt disponibile 2425 de filme și 542 de seriale, iar în Statele Unite Ale Americii sunt disponibile 2942 de filme și 629 de seriale [2]. Amazon oferă cumpărătorilor o gamă cu un total de peste 119 milioane de produse, dintre care 44.2 milioane de cărți, 10.1 milioane de electronice sau 4.5 milioane de produse realizate manual [3].

Cu cât volumul de date pus la dispoziție de o platforma este mai mare cu atât este mai mare şi necesitatea unui sistem de recomandare care să vină în ajutorul utilizatorului final pentru a explora mai uşor gama de produse oferită de respectiva platformă. De asemnea, acel sistem de recomandare se vrea a fi îmbunătățit astfel încât să ofere fiecărui utilizator o experiență cât mai personalizată prin care să recomande, în cazul platformelor de streaming video, conținut relevant pentru a fi consumat de utilizatorul final, sau în cazul platformelor de ecommerce, produse pe care utilizatorul ar fi dispus să le cumpere.

În majoritatea cazurilor sistemele de recomandare se bazeaza pe metadatele utilizatorilor, precum: regiunea, vârsta, genul, ce alte produse a accesat sau cumpărat și metadatele produselor: categoria din care face parte, ratingul acestuia. La acestea se pot adauga și alte informații precum: ce alte produse a apreciat un alt user cu un profil asemanător.

1.2 Objective propuse

În majoritatea cazurilor primul contact pe care îl avem cu un clip de pe Youtube, cu un film sau serial de pe Netflix sau un produs de pe Amazon este contactul vizual cu imaginea de prezentare a acelui produs.

Astfel, prezenta lucrare de disertație are drept obiectiv principal introducerea în sistemul de recomandare de informații vizuale extrase din imaginile de prezentare ale produselor. Informațiile vizuale sunt reprezentate de clusterele create peste imaginile asociate produselor. Fiecare produs are o imagine de prezentare, iar fiecare imagine are un cluster căruia îi aparține din intervalul [1, N] unde N este corelat cu numărul de categori de produse din baza de date pe care se execută optimizarea. N poate fi ales și pe baza altor raționamente.

Scopul final al acestei abordări fiind acela de a observa evoluția metricilor de evaluare, în cazul nostru acurateațea și precizia@k, atunci când informația vizuală este introdusă într-un sistem de recomandare, fiind singura informație prezentă exceptând matricea de interacțiuni, dar și cum se comportă un sistem de recomandare când primește această informație împreună cu alte informații, spre exemplu categoria unui articol.

Acuratețea, în acest context, este definită ca fiind probabilitatea ca un exemplu pozitiv ales în mod aleator să fie clasat mai sus în recomandări decât un exemplu negativ ales în mod aleator. Precizia@k este definită de numărul de exemple pozitive aflate în primele k recomandări.

1.3 Structura lucrării

Prezenta lucrare de disertație începe prin detalierea fundamentelor teoretice în capitolul II unde sunt prezentate teoriile ce stau la baza realizării acestei lucrări. În deputul capitolului definim noțiunile generale despre sistemele de recomandare, tipuri de sisteme de recomandare. Odată definite noțiunile de bază, prezentăm diversele strategii de recomandare, cu punctele lor forte și mai puțin forte, folosite în implementarea un astfel

de sistem. Discuţia despre sistemele de recomandare se închie prin definirea funcţiilor de eroare folosite pentru optimizare intr-un sistem.

De completat \dots

Capitolul 2

Fundamente teoretice

2.1 Sisteme de recomandare

2.1.1 Noțiuni generale

Sistemele de recomandare au scopul de oferi sugestii cât mai relevante de articole utilizatorilor unei platforme pe baza unor strategii. Un sistem de recomandare poate folosi una sau mai multe strategii de recomandare după cum vom vedea în continuare. În cazul în care se folosesc cel puţin două strategii, sistemul de recomandare devine un sistem de recomandare hibrid. Prin folosirea mai multor strategii se urmăreşte ca fiecare strategie să vină în completarea celorlalte strategi cu avantajele sale. De cele mai multe ori, în implementarea unui sistem de recomandare, se foloseşte tehnica de filtrare coloborativă împreună cu o altă strategie de recomandare [4].

2.1.2 Strategii de recomandare

Filtrarea coloborativă

Filtrarea coloborativă se bazează pe faptul că utilizatorii care au în prezent preferințe similare vor avea și în viitor preferințe destul de similare. Această abordare folosește ratingurile pe care le dau utilizatorii sau oricare altă formă de a da un feedback, îmi place/nu îmi place, pentru a identifica preferințele comune dintre grupurile de utilizatori. Odată identificate preferințele se generează recomandări pe baza similarităților dintre utilizatori.

Dezavantajul acestei strategii apare în momentul în care în sistem intră un nou utili-

zator. Datorită faptului că utilizatorul este nou, sistemul nu are un istoric al preferințelor lui, iar în consecință nu îl poate asigna unui grup de utilizatori pe baza preferințelor [4].

COLLABORATIVE FILTERING

Figura 2.1: Filtrarea coloborativă. Imagine preluată din [5].

Filtrarea bazată pe conținut

Filtrarea bazată pe conținut pleacă de la premisa că utiliztorii cărora le-au plăcut articole definite de anumite caracteristici în trecut, vor aprecia aceleași tip de articole și în viitor. Această abordare folosește caracteristicile articolelor pentru a le compara cu profilul utilizatorilor și a oferi recomandări. Calitatea recomandărilor rezultate folosind această strategie este influențată de setul de caracteristici ales pentru articole. Similar cu filtrarea coloborativă, filtrarea bazată pe conținut prezintă dezavantaje în momentul în care în sistem intră un nou utilizator fără istoric [4].

Filtrarea demografică

Filtrarea demografică folosește atribute precum vârsta, genul, educația, etc. pentru a identifica categoriile de utilizatori. Nu prezintă dezavantaje atunci când apar noi utilizatori în sistem și nu se folosește de ratinguri, sau alt sistem de feedback, pentru a face recomandări.

CONTENT-BASED FILTERING

Figura 2.2: Filtrarea bazată pe conținut. Imagine preluată din [5].

Dezavantajul este reprezentat de faptul că procesul de colectare al datelor demografice poate fi îngreunat de legislație, fapt ce reprezintă o limitare a acestei metode [4].

Filtrarea bazată pe cunoștințe

Filtrarea bazată pe cunoștințe folosește cunoștințele despre utilizatori și articole pentru a spune ce articole îndeplinesc cerințele utilizatorilor și genereaza recomandări în consecință. Filtrare bazată pe cunoștințe are la bază constrângeri și este capabilă să recomande chiar și articole complexe care nu sunt cumpărate atât de des, precum mașini sau case [4].

2.1.3 Funcții de eroare

BPR: Bayesian Personalised Ranking

Este o metodă ce se bazează pe feedback implicit (click-uri, ratinguri, achiziții, vizualizări). Exită multe metode ce se bazează pe acest feedback implicit, precum matrix factorization (MF), k-nearest neighbors (kNN), însă acestea nu sunt optimizate pentru ranguri. Metoda de învățare este bazată pe gradientul descendent și este recomandată

atunci când se dorește optimizarea acurateții.

Definim în continuare U ca fiind mulțimea de utilizatori și I ca fiind mulțimea de articole. Feedback-ul implicit este reprezentat de mulțimea $S\subseteq U\times I$. De asemenea, definim $I_u^+:=i\in I:(u,i)\in S$ și $U_i^+:=u\in U:(u,i)\in S$.

Figura 2.3: Matricea de interacțiuni, mulțimea S. Imagine preluată din [9].

O abordarea uzuală pentru recomandarea de articole este să fie estimat scorul \hat{x}_{ui} care să reflecte preferința utilizatorului u pentru articolul i. Apoi fiecare articol primește un rang după sortarea scorurilor.

Setul de antrenare (vezi figura 2.4) este definit de mulțimea $D_S := \{(u, i, j) | i \in I_u^+ \land j \in I \setminus I_u^+ \}$ unde (u, i, j) înseamnă că utilizatorul u preferă articolul i în detrimentul articolului j.

Criteriul de optimizare pentru pentru rangurile personalizate este definit după cum urmează:

$$BPR - OPT := \sum_{(u,i,j) \in D_S} \ln \sigma(\hat{x}_{uij}) - \lambda_{\Theta} ||\Theta||^2$$
(2.1)

unde σ este funcția sigmoid, $\sigma(x) := \frac{1}{1+e^{-x}}$, Θ reprezintă vectorul parametru al modelului care definește interacțiunea dintre utilizatorul u, articolul i și articolul j, iar λ_{Θ} reprezintă parametrii de regularizare.

Cu aceste definiți putem defini și procedura de învățare a BPR după cum urmează în figura 2.5:

WARP: Weighted Approximate-Rank

Această metodă își are originile în procesarea imaginilor și anume pentru un set de reprezentări ale unor imagini $x \in \mathbb{R}^d$ și pentru un set de reprezentări ale unor adnotări

Figura 2.4: Setul de antrenare. + reprezintă articolele i pe care utilizatorul le preferă în locul articolelor j, - utilizatorul preferă articolele j în loc de i, iar ? reprezintă lipsa informației despre acea interacțiune. Imagine preluată din [9].

```
1: procedure LEARNBPR(D_S, \Theta)
2: initialize \Theta
3: repeat
4: draw (u, i, j) from D_S
5: \Theta \leftarrow \Theta + \alpha \left( \frac{e^{-\hat{x}_{uij}}}{1 + e^{-\hat{x}_{uij}}} \cdot \frac{\partial}{\partial \Theta} \hat{x}_{uij} + \lambda_{\Theta} \cdot \Theta \right)
6: until convergence
7: return \hat{\Theta}
8: end procedure
```

Figura 2.5: Optimizarea modelului bazată metoda gradientului descendent cu parametrul de învățare α și regularizarea λ_{Θ} . Imagine preluată din [9].

 $i\in\Upsilon=\{1,...,Y\}$ - inidici intr-un dicționar cu posibile adnotări, metoda învață să mapeze imagini din spațiul reprezentărilor într-un spațiu comun R^D

$$\Phi_I(x): R^d \to R^D \tag{2.2}$$

în acelaşi timp învățând și mapări pentru adnotări în același spațiu

$$\Phi_W(i): 1, ..., Y \to R^D$$
 (2.3)

Scopul principal fiind acela de a oferi ranguri posibilelor adnotări pentru o imagine dată astfel încât cel mai mare rang să descrie cel mai bine conținutul semnatic al imaginii.

Modelul folosit este definit în continuare:

$$f_i(x) = \Phi_W(i)^T \Phi_I(x) \tag{2.4}$$

Metoda învață să producă ranguri optimizate pentru primele adnotări din listă, ceea ce înseamnă că optimizează precizia@k.

În ceea ce privește funcția de eroare definim: $f(x) \in R^Y$ ce produce un scor pentru fiecare etichetă și unde $f_i(x)$ este valoarea etichetei i. Definim funcția de eroare pentru ranguri ca fiind:

$$err(f(x), y) = L(rank_y(f(x)))$$
(2.5)

unde $rank_y(f(x))$ este rangul etichetei corecte data de f(x):

$$rank_y(f(x)) = \sum_{i \neq y} I(f_i(x) \ge f_y(x))$$
(2.6)

unde I este funcția indicator, iar $L(\cdot)$ transformă rangul în penalizare

$$L(k) = \sum_{j=1}^{k} \alpha_j, \quad cu \quad \alpha_1 \ge \alpha_2 \ge \dots \ge 0.$$
 (2.7)

 $L(\cdot)$ poate lua diferite forme în funcție de ce se dorește a optimiza: $\alpha_j = \frac{1}{Y-1}$ optimizează rangul mediu, $\alpha_j = 1$ și $\alpha_{j>1} = 0$ optimizează proporția de ranguri corecte aflate în top, iar valorile mari ale lui α optimizează primele k în lista de ranguri[8].

Cu definițiile prezentate mai sus putem descrie algoritmul acestei metode după cum urmează.

k-OS WARP

Abordarea k-OS WARP a fost studiata în viața reală pe două sisteme, Google Music și YouTube unde au fost obținute îmbunătățiri ale metricilor de evaluare, iar în cazul YouTube a dus la creșterea numărului de clickuri și la creșterea duratei de vizionare.

Fie D o mulțime de articole pentru un utilizator pentru care trebuie să se facă ranguri astfel încât cele mai relevante articole să fie în top. Fie U o mulțime de antrenare de utilizatori cu o mulțime de ranguri cunoscute. Considerăm interacțiunile pozitive ca fiind

Algorithm 1 Online WARP Loss Optimization Input: labeled data $(x_i, y_i), y_i \in \{1, \dots, Y\}$. repeat Pick a random labeled example (x_i, y_i) Let $f_{y_i}(x_i) = \Phi_W(y_i)^\top \Phi_I(x_i)$ Set N = 0. repeat Pick a random annotation $\bar{y} \in \{1, \dots, Y\} \setminus y_i$. Let $f_{\bar{y}}(x_i) = \Phi_W(\bar{y})^\top \Phi_I(x_i)$ N = N + 1. until $f_{\bar{y}}(x_i) > f_{y_i}(x_i) - 1$ or $N \ge Y - 1$ if $f_{\bar{y}}(x_i) > f_{y_i}(x_i) - 1$ then Make a gradient step to minimize: $L(\lfloor \frac{Y-1}{N} \rfloor)|1 - f_y(x_i) + f_{\bar{y}}(x_i)|_+$ Project weights to enforce constraints (2)-(3). end if until validation error does not improve.

Figura 2.6: Online WARP Loss Optimization. Imagine preluată din [8].

date de articole pe care un utilizator le-a cumpărat, vizualizat, plăcut. Toate celelalte interacțiuni sunt considerate ca având ratinguri necunoscute. Definim D_u ca reprezentând articolele pozitive pentru utilizatorul u. Modelul factorizat este următorul:

$$f_d(u) = \frac{1}{|D_u|} \sum_{i \in D_u} V_i^T V_d$$
 (2.8)

unde V este o matrice de dimensiune $m \times |D|$, câte un vector pentru fiecare articol conținând parametrii ce trebuie învățați. Definim în continuare f(u) ca fiind vectorul tuturor scorurilor articolelor 1, ..., |D| pentru un utilizator u. Pentru a învăța f, putem considera funcția de minimizare a obiectivului ca fiind:

$$\sum_{u=1}^{|U|} L(f(u), D_u) \tag{2.9}$$

unde L este funcția de eroare care măsoară discrepanța dintre ratingurile cunoscute D_u și predicțiile făcute pentru utilizatorul u. În acest sens putem defini două funcții de eroare: eroare AUC și eroare WARP.

$$L_{AUC}(f(u), D_u) = \sum_{d \in D_u} \sum_{\bar{d} \in D \setminus D_u} \max(0, 1 - f_d(u) + f_{\bar{d}}(u))$$
 (2.10)

Această funcție este optimizată prin metoda gradientului descendent, se selectează un utilizator, un articol pozitiv și un articol negativ aleator și se face un pas al gradientului. Însă această funcție nu optimizează foarte bine rangurile elementelor din top. O funcție

care face acest lucru mai bine este:

$$L_{WARP}(f(u), D_u) = \sum_{d \in D_u} \Phi(rank_d(f(u)))$$
(2.11)

unde $\Phi(n)$ convertește rangul elementului pozitiv d într-o pondere unde rangul este definit după cum urmează:

$$rank_d u = \sum_{\bar{d} \notin D_u} I(f_d(u) \ge 1 + f_{\bar{d}}(u))$$
(2.12)

unde I este funcția indicator.

Pentru a generaliza funcțiile de mai sus se propune funcția de eroare numită k-Order Statistic (k-OS după cum urmează: pentru un utilizator dat, u, fie o vectorul care indică ordinea elementelor pozitive în lista de ranguri $f_{D_{U_{o_1}}}(u) > f_{D_{U_{o_2}}}(u) > ... > f_{D_{U_{o|s|}}}(u)$.

$$L_{K-OS}(f(u), D_u) = \frac{1}{Z} \sum_{i=1}^{|D_u|} P(\frac{i}{|D_u|} \Phi(rank_{D_{u_{o_i}}}(f(u)))$$
 (2.13)

unde $Z = \sum_{i} P(\frac{i}{|D_u|}$ normalizează ponderile introduse de P. $P(\frac{j}{100})$ este ponderea asignată fracțiunii j a elementelor pozitiv ordonate.

Cu aceste noțiuni definite putem defini alogoritmii pentru funcțiile de eroare AUC și WARP în contextul K-os după cum urmează în figura 2.8.

Algorithm 1 K-os algorithm for picking a positive item.

We are given a probability distribution P of drawing the i^{th} position in a list of size K. This defines the choice of loss function.

Pick a user u at random from the training set.

Pick i = 1, ..., K positive items $d_i \in \mathcal{D}_u$.

Compute $f_{d_i}(u)$ for each i.

Sort the scores by descending order, let o(j) be the index into d that is in position j in the list.

Pick a position $k \in 1, ..., K$ using the distribution P.

Perform a learning step using the positive item $d_{o(k)}$.

Figura 2.7: Algoritmul k-os pentru alegerea unui element pozitiv. Imagine preluată din [19].

```
Algorithm 2 K-os WARP loss
                                                                                               Algorithm 3 K-os AUC loss
   Initialize model parameters (mean 0, std. deviation \frac{1}{\sqrt{m}}).
                                                                                                   Initialize model parameters (mean 0, std. deviation \frac{1}{\sqrt{m}}).
      Pick a positive item d using Algorithm 1.
                                                                                                      Pick a positive item d using Algorithm 1.
     repeat
                                                                                                      Pick a random item \bar{d} \in \mathcal{D} \setminus \mathcal{D}_u.
        Pick a random item \bar{d} \in \mathcal{D} \setminus \mathcal{D}_u.
                                                                                                      if f_{\bar{d}}(u) > f_d(u) - 1 then
     until f_{\bar{d}}(u) > f_d(u) - 1 or N \ge |\mathcal{D} \setminus \mathcal{D}_u| if f_{\bar{d}}(y) > f_d(u) - 1 then

Make a gradient step to minimize:
                                                                                                          Make a gradient step to minimize:
                                                                                                                      \max(0, 1 + f_{\bar{d}}(u) - f_d(u)).
        \Phi(\frac{|\mathcal{D}\setminus\mathcal{D}_u|}{N})\max(0,1+f_{\bar{d}}(u)-f_d(u)). Project weights to enforce constraints, e.g. if ||V_i||>
                                                                                                          Project weights to enforce constraints, e.g. if ||V_i|| >
                                                                                                          C \text{ then set } V_i \leftarrow (CV_i)/||V_i||.
        C then set V_i \leftarrow (CV_i)/||V_i||.
                                                                                                      end if
     end if
                                                                                                   until validation error does not improve.
   until validation error does not improve.
                      (a) K-os WARP
                                                                                                                                 (b) K-os AUC
```

Figura 2.8: Algoritmii k-os AUC și WARP. Imagine preluată din [19].

2.2 Optimizarea cu metoda gradientului descendent

2.3 Modelul LightFM

Modelul LightFM este un model hibrid de matrix factorisation în care utilizatorii şi articolele sunt reprezentate sub formă de combinații liniare de factorilor latenți a caracteristicilor. Modelul fiind hibrid, utilizează două strategii de învățare şi anume învățarea coloborativă şi filtrarea bazată pe conținut.

Cerințele de la care a fost dezvoltată structura modelului LightFM sunt [18]:

- 1. Modelul trebui să înveţe reprezentările utilizatorilor şi articolele din datele de interacţiune: această cerinţă este realizată prin utilizarea reprezentărilor latente. De exemplu, dacă două articole, fie X şi Y sunt apreciate de aceaşi utilizatori, atunci reprezentările celor două articole, X şi Y, vor fi apropiate. Pe de altă parte, dacă articolele X şi Y nu sunt apreciate de aceaşi utilizatori, atunci reprezentările celor două articole vor fi îndepărtate. Astfel, dacă reprezentările celor două articole X şi Y sunt similare putem recomanda cu un grad ridicat de încredere articolul Y unui utilizator dacă acel utilizator a interacţionat cu articolul X;
- 2. Modelul trebuie să poată face recomandări pentru articole şi utilizatori noi: această cerință este indeplinită cu ajutorul prin reprezentarea articolelor şi utilizatorilor sub formă de combinații liniare a caracteristicilor. Se aplică această abordare deoarece caracteristicile unui articol sau utilizator sunt cunoscute în momentul în care intră în sistem (de cele mai multe ori). De exemplu, Un film ştiințifico-fantastic cu Leonardo

DiCaprio poate fi reprezentat ca sumă a reprezentării genului ştiinţifico-fantastic şi a reprezentării actorului Leonardo DiCaprio. Unu utilizator masculin din România poate fi reprezentat ca sumă a reprezentării utilizatorilor masculini şi reprezentării ţării România.

Din punct de vedere formal modelul LightFM este definit după cum urmează în continuare [18]. Fie U mulţimea de utilizatori, I mulţimea de articole, F^U mulţimea caracteristicilor utilizatorilor, F^I mulţimea caracteristicilor articolelor. Fiecare utilizator interacţionează cu un număr de elemente prin interacţiuni pozitive sau prin interacţiuni negative. Mulţimea tuturor interacţiunilor user - articol este definită ca $(u,i) \in U \times I$, unde în această reuniune sunt incluse atât interacţiunile pozitive cât şi interacţiunile negative.

Utilizatorii şi articolele sunt complet descrise de caracteristicile lor. Fiecare user u este descris de un set de caracteristici $f_u \subset F^U$. Similar şi pentru fiecare articol i, este descris de un set de caracteristici $f_i \subset F^I$. Caracteristicile sunt cunoscute dinainte şi sunt reprezentate de metadatelor utilizatorilor sau articolelor.

Modelul este parametrizat d-dimensional pentru caracteristicile encodate ale utilizatorilor și articolelor și anume e_f^U și e_f^I pentru fiecare caracteristică f. Fiecărui feature i se mai adaugă un bias, b_f^U pentru caracteristicile utilizatorilor și b_f^I pentru caracteristicile articolelor.

Reprezentarea latentă a unui utilizator u este dată de suma vectorilor latenți de caracteristici:

$$q_u = \sum_{j \in f_u} e_j^U \tag{2.14}$$

Similar şi pentru articolul i:

$$p_i = \sum_{j \in I_i} e_j^I \tag{2.15}$$

Biasul pentru utilizatorul u este dat de suma biasurilor caracteristicilor: caracteristici:

$$b_u = \sum_{j \in I_u} b_j^U \tag{2.16}$$

Similar și pentru articolul i:

$$b_i = \sum_{j \in f_i} b_j^I \tag{2.17}$$

Predicția modelului pentru utilizatorul u și articolul i este dată de produsul dintre reprezentarea utilizatorului și reprezentarea articolului, ajustată cu biasurile pentru utilizator și articol:

$$\hat{r}_{ui} = f(q_u \cdot p_i + b_u + b_i) \tag{2.18}$$

unde f poate fi reprezentat de multe tipuri de funcții, însă în acest model f este setat ca fiind funcția sigmoid:

$$f(x) = \frac{1}{1 + exp(-x)} \tag{2.19}$$

Obiectivul de optimizare al modelului constă în maximizarea probabilității următoare:

$$L(e^{U}, e^{I}, b^{U}, b^{I}) = \prod_{(u,i)\in S^{+}} \hat{r}_{ui} \times \prod_{(u,i)\in S^{-}} (1 - \hat{r}_{ui})$$
(2.20)

2.4 Rețele neurale convoluționale

2.4.1 Noțiuni generale

Rețelele neurale convoluționale sunt rețelele formate din neuroni ce învață ponderi (w) și baiasuri (b). Scopul rețelei convoluționale este de a primi o imagine la input și de a scoate la output un scor pentru fiecare clasă ce corespunde imaginii.

Spre exemplu, la input se dă o imagine cu un autovehicul, iar rețeaua convoluțională poate spune că în imagine este o mașină în proporție de 80%, un camion în proporție de 10%, un avion în proporție de 6%, o barcă în proporție de 3% sau un cal în proporție de 1%.

Figura 2.9: Exemplu de rețea convoluțională care primește la input o imagine și produce la output o listă de clase ce pot descrie imaginea de input. Imagine preluată din [7].

Rețelele convoluționale sunt compuse dintr-o secvență de straturi ce poate fi împărțită în trei tipuri principale [7]:

1. Stratul convoluţional este stratul de bază într-o reţea. Parametrii acestui strat sunt reprezentaţi de filtre învăţabile, unde fiecare filtru reprezintă o mică bucată din imaginea de input. De exemplu, un filtru pentru acest strat poate avea dimensiunea de 5 × 5 × 3, dimensiune ce reprezintă faptul că se iau 5 pixeli pe laţime, 5 pixeli pe înălţime şi o adâncime de 3 pixeli, unde adâncimea reprezintă canalele RGB. În continuare se glisează fiecare filtru peste input şi se compune produsul dintre filtre şi input la fiecare poziţie. În urma acestei operaţii se produce un vector de activare 2-dimensional care reprezintă răspunsul filtrului la fiecare poziţie. Altfel spun, reţeaua va învăţa filtre care se activează atunci când sunt prezente anumite tipuri de caracteristici, precum culoarea sau orientarea (vezi figura 2.8).

Figura 2.10: Exemplu de filtru aplicat peste input într-un strat convoluțional. Imagine preluată din [7].

2. Stratul de pooling reprezintă o practică des folosită între mai multe straturi convoluționale succesive. Această operație reduce numărul de parametrii (dimensiunea modelului), computațiile din rețea și controlează overfittingul. Se execută indepedent pe fiecare nivel al adâncimii unui input și pastrează valoarea maximă a acelei zone (de cele mai multe ori). Rezultatul este o zonă de caracteristicii mai mică dar care păstrează cea mai relevantă statistică (vezi figura 2.9).

(a) Reducerea dimensiunii.

(b) Filtrul de 2×2 aplicat ce păstrează valoarea maximă.

Figura 2.11: Exemplu de pooling. Imagine preluată din [7].

3. Fully-Connected Layer este stratul în care caracteristicile sunt vectorizate pentru a putea fi folosite.

2.4.2 VGG

VGG este o arhitectură clasică de rețea cu filtre convoluționale foarte mici, de dimensiune 3×3 și care poate avea un număr a straturilor de ponderi de 16 - 19.

În ceea ce privește arhitectura (vezi figura 2.10), inputul în rețeaua convoluțională este de dimensiune fixă și anume 224×224 imagine RGB. Mai departe, imaginea este trecută printr-un set de straturi convoluționale unde sunt utilizate filtre de dimensiune mică, 3×3 - fiind cea mai mică dimensiune ce poate captura noțiunile de stânga/dreapta, sus/jos sau centru. Într-una dintre configurații se utilizează un filtru convoluțional de dimensiune 1×1 . Pasul în straturile convoluționale este fixat la 1 pixel.

Poolingul este compus din cinci straturi de max-pooling care urmează după unele straturi convoluționale. Max-poolingul este calculat cu ferestre de 2×2 pixel și cu pas de 2 pixeli.

Odată trecută imaginea prin straturile convoluționale și cele de pooling ajunge în trei straturi fully-connected. Primele două straturi au câte 4096 de canale fiecare, iar al treilea are 1000 de canale. Canalele celui de-al treilea strat sunt asociate claselor, fiecare canal reprezintă o clasă.

Ultimul strat din rețea este un strat soft-max [10].

ConvNet Configuration										
Α	A-LRN	В	С	D	E					
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight					
layers	layers	layers	layers	layers	layers					
	input (224×224 RGB image)									
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64					
	LRN	conv3-64	conv3-64	conv3-64	conv3-64					
			pool							
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128					
		conv3-128	conv3-128	conv3-128	conv3-128					
			pool							
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256					
			conv1-256	conv3-256	conv3-256					
					conv3-256					
			pool							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
			pool							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
			pool							
			4096							
			4096							
		FC-	1000							
		soft-	-max							

Figura 2.12: Configurații ale rețelei VGG. Imagine preluată din [10].

2.4.3 InceptionV3

Prima arhitectura de Inception a apărut sub numele de GoogLeNet. O a doua versiune de Inception a fost definită prin introducerea de batch-uri normalizate. Iar mai apoi, versiunea a treia în care a fost adăugate idea de factorizare.

Factorizarea în filtre convoluționale mici (vezi figura 2.11) presupune înlocuirea stratului cu filtru de dimensiune 5×5 cu două straturi de dimensiune 3×3 astfel reducânduse dimensiunea de la $5 \times 5 = 25$ la $3 \times 3 + 3 \times 3 = 18$.

Factorizarea spaţială în convoluții asimetrice (vezi figura 2.12) presupune înlocuirea stratului cu filtru de dimensiune 3×3 cu două straturi de dimensiune 3×1 și 1×3 astfel reducânduse dimensiunea de la $3 \times 3 = 9$ la $3 \times 1 + 1 \times 3 = 6$.

Clasificatorul auxiliar (vezi figura 2.13) este utilizat în InceptionV3 ca regulizator şi este poziționat în partea superioară a utimelor 17×17 straturi. Batch-urile normalizate sunt de asemeanea folosite în clasificatorul auxiliar.

Reducerea eficientă a dimensiunii (vezi figura 2.14) se face prin utilizarea a două

Figura 2.13: Factorizarea în filtre convoluționale mici. Filtrul de dimensiune 5×5 înlocuit cu două de dimensiune 3×3 . Imagine preluată din [14].

Figura 2.14: Factorizarea în filtre convoluționale mici. Filtrul de dimensiune 3×3 înlocuit cu două de dimensiune 3×1 și 1×3 . Imagine preluată din [14].

blocuri paralele, fie P şi C. Primul dintre acestea, P, fiind un strat de activare de pooling (media sau maxim pooling). Ambele straturi au filtre cu pas 2 care sunt concatenate.

Arhitectura completă este prezentată în figura 2.15.

2.4.4 ResNet

Fie H(x) maparea de bază unde x reprezintă inputul. Funcția reziduală poate fi aproximată cu F(x) := H(x) - x, maparea de bază fiind F(x) + x.

Învățarea reziduală se aplică la câtva grupuri de straturi. Putem defini un bloc de

Figura 2.15: Clasificatorul auxiliar. Imagine preluată din [14].

Figura 2.16: Modulul care reduce dimensiunea. Diagrama din dreapta reprezintă aceași soluție însă din perspectiva dimensiunii rețelei. Imagine preluată din [14].

straturi ca fiind

$$y = F(x, \{W_i\}) + x \tag{2.21}$$

unde x şi y reprezintă inputul şi outputul straturilor considerate. Funcția $F(x, \{W_i\})$ reprezintă maparea reziduală ce trebuie învățată.

Dimensiunea lui x și F din ecuația de mai sus trebuie să fie egale. Redefinim ecuația

Figura 2.17: Arhitectura rețelei InceptionV3. Imagine preluată din [14].

Figura 2.18: Învățarea reziduală. Imagine preluată din [11].

după cum urmează

$$y = F(x, \{W_i\}) + W_s x \tag{2.22}$$

unde W_s este o proiecție liniară a scurtăturilor conexiunilor pentru ca dimensiunile să se potrivească.

ResNet (vezi figura 2.17) pleacă de la o rețea simplă. Rețeaua simplă fiind inspirată de rețeaua VGG. Straturile convoluționale au în general filtre de dimensiune 3×3 și se bazează de două reguli de design: - pentru outputuri cu același număr de caracteristici, straturile vor avea același număr de filtre; - dacă numărul de caracteristicii este injumătățit, numărul de filtre este dublat astfel încât să fie păstrată complexitatea de timp pe strat.

Poolingul se realizează dupa straturile convoluționale cu un pas de 2 pixeli. Rețeaua se termină cu un strat de pooling mediu și un strat fully-connected softmax cu 1000 de canale.

Bazată pe rețeaua descrisă mai sus, rețeaua reziduală presupune inserția unor scurtături. Scurtăturile identice (vezi formula 2.8) pot fi direct utilizate când inputul și outputul au aceași dimensiune. Când dimensiunea crește considerăm două opțiuni: - scurtătura calculează în continuare maparea identității. Această opțiune nu introduce parametrii noi; - proiecția scurtăturii din formula 2.9 este utilizată pentru a potrivi dimensiunile. În ambele situații când se folosesc scurtăturile pentru pentru a sări peste două straturi sunt calculate cu un pas de 2 pixeli.

2.4.5 NASNet

NASNet este o arhitectură de rețea bazată pe tehnica de căutare Neural Architecture Search (NAS, figura 2.18). NAS presupune un controler cu o rețea neurală recurentă care conține mai multe rețele copii cu arhitecturi diferite. Rețelele copii sunt antrenate să conveargă pentru a obține o anumită precizie pe un set de antrenare. Rezultatele sunt utilizate pentru a actualiza controlerul ceea ce înseamnă că acest controler va genera arhitecturi mai bune în timp.

Plusul principal pe care îl aduce rețeaua NASnet este reprezentat de proiectarea unui nou spațiu de căutare astfel încât cea mai bună arhitectură pe setul de date CIFAR-10 poate scala către rezoluții ale imaginilor cât mai mari într-un interval definit. Astfel, acest spațiu poartă numele de NASNet search space. În abordarea NASNet, arhitecturile rețelelor convoluționale sunt manual predeterminate, fiind compuse din celule convoluționale repetate de multe ori unde, fiecare celulă convoluțională are aceași arhitectură dar ponderi diferite.

Pentru a construi mai ușor arhitecturi scalabile pentru imagini de orice dimensiune este nevoie de două tipuri de celule convoluționale pentru a îndeplini două funcții principale: - celule convoluționale care returnează o hartă de caracteristici cu aceași dimensiune. Acest tip de celule se numește *Celulă Normal*; - celule convoluționale care returnează o hartă de caracteristici cu înălțimea și lungimea harții divizată cu un factor doi. Acest tip de celule se numește *Celulă de reducere* (vezi figura 2.19).

Figura 2.19: Prima rețea (stânga) este o rețea VGG19. A doua rețea (centru) este o rețea simplă cu 34 de straturi. A treia rețea (dreapta) este o rețea reziduală cu 34 de straturi. Imagine preluată din [11].

Figura 2.20: Privire de ansamblu asupra unei Neural Architecture Search. Imagine preluată din [13].

Figura 2.21: Celule normale (dreapta). Celule de reducere (stânga). Imagine preluată din [13].

2.5 Clustere

2.5.1 Noțiuni generale

Clusterizarea este un proces de grupare a unor articole în sensul în care articolele din același cluster sunt foarte similare între ele din punct de vedere al caracteristicilor. Această metodă este des utilizată în data mining, analiza datelor, machine learning, recunoașterea tiparelor sau regăsirea informației. Există mai multe tipuri de algoritmi de clusterizare, însă, ideea de bază este aceași: clusterele sunt grupuri cu distanțe foarte mici între membrii grupului (fie distanța euclidiană, de exemplu).

Figura 2.22: Exemplu de două clustere (sus). Exemplu de trei clustere (jos). Imagine preluată din [15].

Procesul de clustering poate fi împărțit în etape după cum urmează [15]:

- 1. Colectarea datelor: alegerea articolelor pentru care se va aplica clusterizarea;
- 2. Screening-ul iniţial: presupune extragerea caracteristicilor relevante pentru fiecare articol din dataset;
- 3. Reprezentarea: presupune pregătirea datelor pentru a putea fi folosite de către algoritmul de clusterizare, tot aici alegânduse și măsura de similaritate;

- 4. Tendinţa de grupare: se verifică dacă datele au o tendinţă naturală de grupare; poate fi sărită pentru baze de date mari;
- 5. Strategia de clusterizare: se alege algoritmul de clusterizare și parametrii inițiali;
- 6. Validarea: se evaluează manual/vizual sau prin alte metode definite rezultatele obținute în urma clusterizări;
- 7. Interpretarea: în această se compară rezultatele pe mai multe clustere, combinații de clustere și se trag concluziile.

2.5.2 K-nearest neighbors

KNN reprezintă un model de clasificare simplu şi eficient în multe cazuri. Pentru ca un articol t să fie clasificat sunt căutați cei mai propiați k vecini formând regiunea lui t. Cei mai apropiați veci sunt căutați cu o măsură de similaritate, de obicei distanța euclidiană sau similaritatea cosinus. Votul majoritar din acea regiune este folosit pentru a decide clasificarea lui t. k-ul este valoarea de care depinde destul de mult rata de succes a calsificării, cea mai simplă metodă de a alege un k optim fiind reprezentată de rularea algoritmului pentru mai multe valori ale lui şi observarea evoluției rezultelor.

Fie D o colecție de n clase cunoscute $\{d_1, d_2, ..., d_n\}$. $Sim(d_i)$ - similaritatea celui mai indepărtat punct din regiunea locală, $N(d_i)$ - numărul de puncte din interiorul unei regiuni locale. Algoritmul de construcție al modelului este definit după cum urmează [16]:

- selectăm o măsură de similaritate şi creem o matrice de similaritate peste baza de date de antrenare;
- 2. setăm toate datele cu eticheta neclasificate;
- 3. pentru fiecare intrare cu eticheta de neclasificat căutăm cea mai mare regiune locală care acoperă cel mai mare număr de vecini cu aceași categorie.
- 4. căutam intrarea d_i cu cea mai mare regiune N_i printre toate regiunile locale şi creem o reprezentare $\langle Cls(d_i), Sim(d_i), Num(d_i), Rep(d_i) \rangle$ în modelul M pentru a reprezenta toate intrările acoperite de regiunea N_i şi setăm etichete pentru toate aceste intrări;

- 5. repetăm paşi 3 şi 4 până când toate intrările din baza de date de antrenare au fost clasificate;
- 6. modelul *M* este format din toate reprezentările setate în procesul de învăţatare descris mai sus.

Algoritmul de clasificare este definit după cum urmează:

- 1. pentru ca o nouă intrare d_t să fie clasificată, calculăm similaritatea ei cu toate celelalte reprezentări din model;
- 2. dacă d_t este acoperit doar de o reprezentare $\langle Cls(d_j), Sim(d_j), Num(d_j), Rep(d_j) \rangle$ în sensul că distanța de la d_t la d_j este mai mică decât $Sim(d_j), d_t$ este astfel clasificat ca făcând parte din clasa lui d_j ;
- 3. dacă d_t este acoperit de două sau mai multe clase, clasificăm d_t ca făcând parte din reprezentarea cu cea mai mare valoare a $Num(d_j)$, adică regiunea care acoperă cel mai mare număr de intrări din baza de date de antrenare;
- 4. dacă nu există nicio reprezentare în modelul M care să acopere d_t , clasificăm d_t cu o clasă nouă.

Un exemplu vizual de execuție a algoritmului de kNN, parcurs pas cu pas, este prezentat în figura 2.21. Exemplu conține 36 de intrări din 2 clase marcate prin pătrat și cerc. Datele de test sunt reprezentate prin tringhiuri.

Un al doilea exemplu de clasificare este prezentat în figura 2.22:

2.5.3 Metrici de evaluare a clusterelor

Coeficientul silhouette

Coeficient (vezi formula 2.10) este folosit pentru a evalua clusterele în învăţarea nesupervizată. Este calculat utilizând distanţa euclidiană medie intra-clustere (a) şi distanţa medie către cel mai apropiat cluster (b) pentru fiecare intrare, adică distanţa dintre o intrare şi cel mai apropiat cluster din care nu face parte. Numărul de etichete trebuie să respecte constrangerea $2 \le nr_{etichete} \le nr_{etichete} - 1$. Valorile returnate de acest coeficient sunt cuprinse în intervalul [-1,1]. Valorile apropiate de 0 indică clustere care se suprapun, valorile negative în general indică că există intrări asignate în clusterul greşit, iar

(a) Distribuţia iniţială a datelor (stânga)şi prima reprezentare obţinută (dreapta)

(c) Modelul după triere (stânga) și distribuția datelor de test (dreapta)

(b) A doua reprezentare obţinută (stânga) şi modelul înainte de triere (dreapta)

Figura 2.23: Exemplu 1 de clasificare cu kNN. Imagine preluată din [16].

(a) Prima reprezentare obţinută (stânga)şi a doua reprezentare obţinută(dreapta)

(b) A treia reprezentare obţinută (stânga) și modelul final (dreapta)

Figura 2.24: Exemplu 2 de clasificare cu kNN. Imagine preluată din [16].

valorile apropiate de 1 indică o separație bună intre clustere [17].

$$\frac{b-a}{\max(a,b)}\tag{2.23}$$

Capitolul 3

Descrierea soluţiei

- 3.1 Definirea modelului de recomandare
- 3.2 Clasterizarea posterelor
- 3.3 Iniţializarea bazei de date
- 3.4 Optimizarea parametrilor modelului

Tabela 3.1: Parametrii optimizați pentru modelul de recomandare pe tipuri de featureuri

Fortuna Lora Outinita			Optimal params						
Features	Loss	Optimize	epochs	learning rate	no components	item alpha	scaling	k os	Results
None	warp	precision_at_k	141	0.043040683676705736	21	0.00541554967720231	0.014726505321746962		0.0920
None	warp	auc_score	93	0.013125743984880447	169	2.6154143367150727e-06	0.04382333041868763		0.9309
None	warp-kos	precision_at_k	131	0.016193013939983108	131	0.014891088630376074	0.064172162850665	3	0.0915
None	warp-kos	auc_score	136	0.025315151875417254	136	0.025315151875417254	0.0014438337247755933	5	0.9123
None	bpr	precision_at_k	145	0.011882573141627583	145	0.011882573141627583	0.008731133377250924		0.0818
None	bpr	auc_score	100	0.38336028927731636	22	0.38336028927731636	0.6705805738529935		0.8738
genres	warp	precision_at_k	136	0.075490395178898	82	0.007065549151367718	0.00799962475267643		0.0990
genres	warp	auc_score	133	0.026238747910509397	193	0.0027085249085071626	0.07322973067589604		0.9384
genres	warp-kos	precision_at_k	106	0.04588316930944897	200	0.005855900490702136	0.09739540959401453	5	0.0968
genres	warp-kos	auc_score	128	0.031396765253117284	103	5.6689548595143295e-06	0.2992760477740958	5	0.9184
genres	bpr	precision_at_k	4	0.3988094699004826	174	0.00020130127273975477	0.9668511270812562		0.0793
genres	bpr	auc_score	113	0.3787098755163822	20	1.412418076659026e-06	0.8846058572960187		0.8697
clusters	warp	precision_at_k	63	0.05647434188275842	98	0.0031993742820159436	0.0933642796909375		0.0938
clusters	warp	auc_score	42	0.0570326091236193	68	0.0029503539747277366	0.02563602355611453		0.9338
clusters	warp-kos	precision_at_k	111	0.12149792200676351	30	0.005138574720440468	0.22386245632097518	3	0.0900
clusters	warp-kos	auc_score	106	0.02060268158807219	153	0.0002768009203471932	0.01729102049278139	5	0.9139
clusters	bpr	precision_at_k	112	0.02783417000783745	53	0.043059513850700865	0.04509016538546181		0.0794
clusters	bpr	auc_score	76	0.39695046755245167	20	3.559358324483847e-05	0.749186059016229		0.8656
genres, clusters	warp	precision_at_k	96	0.1703221223672566	22	0.004206346506337412	0.041303781930858034		0.0980
genres, clusters	warp	auc_score	120	0.027730397776550147	189	0.0011133373244076297	0.4922360335772573		0.9406
genres, clusters	warp-kos	precision_at_k	83	0.07486946768773611	190	0.007918526926383375	0.012439949030585647	5	0.0916
genres, clusters	warp-kos	auc_score	149	0.037438422223599	98	6.392983080540728e-05	0.6204979332067604	5	0.9205
genres, clusters	bpr	precision_at_k	19	0.0012968105572226996	140	9.939007330655304e-05	0.0011379548833006527		0.0597
genres, clusters	bpr	auc_score	98	0.3429430411358865	21	8.687526249607698e-06	0.7296865286380925		0.8681

Tabela 3.2: Parametrii optimizați pentru modelul de recomandare pe tipuri de featureuri și modele de rețele preantrenate

ъ.		Optimize	Optimal params						
Features	Loss		epochs	learning rate	no components	item alpha	scaling	Model	Results
clusters	warp	precision_at_k	232	0.07171978672352887	42	0.006517845577815826	0.016142300018137722	vgg19	0.0935
clusters	warp	auc_score	89	0.018841927704689492	139	0.0008662511914237855	0.2864763834214625	vgg19	0.9325
genres, clusters	warp	precision_at_k	218	0.12470857345083873	73	0.005478316990150038	0.04637764141484815	vgg19	0.0995
genres, clusters	warp	auc_score	236	0.031860755009764305	139	0.0010930770083784052	0.8362665749306415	vgg19	0.9413
clusters	warp	precision_at_k	119	0.00852211930222011	192	$7.276515301192984 \mathrm{e}\text{-}05$	0.027052254503857717	inception_v3	0.0836
clusters	warp	auc_score	232	0.02981041359364386	84	0.004287524090264805	0.040501994149651166	inception_v3	0.9327
genres, clusters	warp	precision_at_k	245	0.028963892665938032	43	0.0006238083410955659	0.36579038826022736	inception_v3	0.0905
genres, clusters	warp	auc_score	250	0.019411170816577752	136	0.0008323333176050233	0.4767783602102349	inception_v3	0.9425
clusters	warp	precision_at_k	88	0.07492160698420884	21	0.004634987385145838	0.028198967823831238	resnet50	0.0953
clusters	warp	auc_score	198	0.016780379637566917	169	0.0012939223653296507	0.6692069103186539	resnet50	0.9342
genres, clusters	warp	precision_at_k	224	0.04214027912721876	186	0.008676073688466915	0.0024915458462563605	resnet50	0.0970
genres, clusters	warp	auc_score	211	0.09767064566975311	48	0.003428832598553235	0.11239835090728653	resnet50	0.9397

Capitolul 4

Evaluarea experimentală

- 4.1 Bază de date filme
- 4.2 Bază de date postere
- 4.3 Rezultate clusterizare postere
- 4.3.1 Sanity check
- 4.3.2 Rezultate generale
- 4.4 Rezultate sistem de recomandare

Bibliografie

- [1] Data never sleeps 6.0 https://www.domo.com/learn/data-never-sleeps-6
- [2] Netflix International: What movies and TV shows can I watch, and where can I watch them?
 - https://www.finder.com/global-netflix-library-totals
- [3] How Many Products Does Amazon Sell? April 2019

 https://www.scrapehero.com/number-of-products-on-amazon-april-2019/
- [4] Erion Çano, Maurizio Morisio. *Hybrid Recommender Systems: A Systematic Literature Review*. Intelligent Data Analysis, vol. 21, no. 6, pp. 1487-1524, 2017
- [5] An Overview of Recommendation Systems

 http://datameetsmedia.com/an-overview-of-recommendation-systems/
- [6] LightFM 1.15 documentation http://lyst.github.io/lightfm/docs/lightfm.html
- [7] CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/2018/syllabus.html
- [8] Jason Weston, Samy Bengio, Nicolas Usunier. Wsabie: Scaling up to large vocabulary image annotation. IJCAI. Vol. 11. 2011.
- [9] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner and Lars Schmidt-Thieme. BPR: Bayesian personalized ranking from implicit feedback. Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2009.
- [10] Karen Simonyan, Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR, 2015.

- [11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p770-778, 2016.
- [12] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna. Rethinking the Inception Architecture for Computer Vision. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p2818-2826, 2016.
- [13] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le. Learning Transferable Architectures for Scalable Image Recognition. IEEE/CVF Conference on Computer Vision and Pattern Recognition, p8697-8710, 2018.
- [14] Advanced Guide to Inception v3 on Cloud TPU

 https://cloud.google.com/tpu/docs/inception-v3-advanced
- [15] Data Clustering Techniques

 http://www.cs.toronto.edu/~periklis/pubs/depth.pdf
- [16] Gongde Guo, Hui Wang, David Bell, Yaxin Bi, Kieran Greer. KNN Model-Based Approach in Classification. Lecture Notes in Computer Science, vol 2888. Springer, Berlin, Heidelberg, 2003.
- [17] Sklearn metrics silhouette score
 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
 silhouette_score.html
- [18] Maciej Kula Metadata Embeddings for User and Item Cold-start Recommendations. CoRR abs/1507.08439, 2015.
- [19] Jason Weston, Hector Yee, Ron J. Weiss. Learning to Rank Recommendations with the k-Order Statistic Loss. Proceedings of the 7th ACM conference on Recommender systems. ACM, 2013