Provable Learning of Feature Representations

Anima Anandkumar

U.C. Irvine

Feature learning as cornerstone of ML ML Practice

Feature learning as cornerstone of ML

ML Practice

ML Papers

Label		Features					
	0	2.1	5.2	0	0		
	1	0	0	2	1		
	1	1.1	0	0	0		
	0	0	0	7	0		

Feature learning as cornerstone of ML

 Find efficient representation of data, e.g. based on sparsity, low dimensional structures etc.

ML Practice

- Feature engineering typically critical for good performance
- Deep learning has shown considerable promise for feature learning

Feature learning as cornerstone of ML

• Find efficient representation of data, e.g. based on sparsity, low dimensional structures etc.

ML Practice

- Feature engineering typically critical for good performance
- Deep learning has shown considerable promise for feature learning
- Can we provide principled approaches which are guaranteed to learn good features?

Belief Networks/Boltzmann Machines

- Observation: $x = \sigma(Ah + b)$, where $\sigma(\cdot)$ is any (non-linear) function.
- $x \in \mathbb{R}^d$ and $h \in \mathbb{R}^k$.
- Unsupervised setting: *h* is unobserved.
- Deep networks: $\sigma(\cdot)$ applied recursively.
- Probabilistic model: $\mathbb{E}[x|h] = \sigma(Ah + b)$.

Belief Networks/Boltzmann Machines

- Observation: $x = \sigma(Ah + b)$, where $\sigma(\cdot)$ is any (non-linear) function.
- $x \in \mathbb{R}^d$ and $h \in \mathbb{R}^k$.
- Unsupervised setting: *h* is unobserved.
- Deep networks: $\sigma(\cdot)$ applied recursively.
- Probabilistic model: $\mathbb{E}[x|h] = \sigma(Ah + b)$.

Belief Networks/Boltzmann Machines

- Observation: $x = \sigma(Ah + b)$, where $\sigma(\cdot)$ is any (non-linear) function.
- $x \in \mathbb{R}^d$ and $h \in \mathbb{R}^k$.
- Unsupervised setting: *h* is unobserved.
- Deep networks: $\sigma(\cdot)$ applied recursively.
- Probabilistic model: $\mathbb{E}[x|h] = \sigma(Ah + b)$.

In this talk: for simplicity, noiseless case. Most analysis carries over.

Belief Networks/Boltzmann Machines

- Observation: $x = \sigma(Ah + b)$, where $\sigma(\cdot)$ is any (non-linear) function.
- $x \in \mathbb{R}^d$ and $h \in \mathbb{R}^k$.
- Unsupervised setting: *h* is unobserved.
- Deep networks: $\sigma(\cdot)$ applied recursively.
- Probabilistic model: $\mathbb{E}[x|h] = \sigma(Ah + b)$.

In this talk: for simplicity, noiseless case. Most analysis carries over.

Learning

- Through gradient descent.
- Non-convex: no guarantees in general.

In this talk: methods and guarantees for learning neural networks

Linear Neural Networks

- Observed sample x = Ah.
- h is hidden variable and A is dictionary.
- $x \in \mathbb{R}^d$, $h \in \mathbb{R}^k$ and $A \in \mathbb{R}^{d \times k}$.

Observations

- Deep networks can be collapsed: 1-layer networks suffice.
- Poor performance in practice.
- Natural to first analyze linear models.

Linear Neural Networks

- Observed sample x = Ah.
- h is hidden variable and A is dictionary.
- $x \in \mathbb{R}^d$, $h \in \mathbb{R}^k$ and $A \in \mathbb{R}^{d \times k}$.

Observations

- Deep networks can be collapsed: 1-layer networks suffice.
- Poor performance in practice.
- Natural to first analyze linear models.

Linear Neural Networks

- Observed sample x = Ah.
- h is hidden variable and A is dictionary.
- $x \in \mathbb{R}^d$, $h \in \mathbb{R}^k$ and $A \in \mathbb{R}^{d \times k}$.

Observations

- Deep networks can be collapsed: 1-layer networks suffice.
- Poor performance in practice.
- Natural to first analyze linear models.

Learning Linear Networks through SVD

- Linear model: x = Ah.
- Pairwise moments: $M_2 = \mathbb{E}[xx^{\top}] = A\mathbb{E}[hh^{\top}]A^{\top}$.
- SVD: $M_2 = U\Lambda U^{\top}$: a valid linear representation.
- Learning through SVD: cannot learn overcomplete representations. (k > d) learnable?
- SVD cannot enforce sparsity, non-negativity etc.

Learning Overcomplete Representations

ullet Latent dimensionality k and observed dimensionality d.

Undercomplete Representation

Overcomplete Representation

Works Analyzing Learning Linear Networks

In deep learning community

- No local optima for SVD: Baldi and Hornik '89.
- Dynamics of learning linear networks: Saxe et al '13.
- Undercomplete case and learning SVD representations.

In learning theory community (undercomplete models)

- Sparse representations: Spielman et. al'12, Anandkumar et. al'13.
- Non-negativity (topic modeling): Arora et. al. '12.
- Dirichlet models (LDA topic models): Anandkumar et. al. '12.

In learning theory community (overcomplete models)

- Concurrent works of Arora et. al. and Anandkumar et. al. for sparse coding
- Non-linear sparse representations: Arora et. al. '14.
- Overcomplete latent variable models: Anandkumar et. al. '14.

Outline

- Introduction
- 2 Learning Linear Sparse Representations
- 3 Learning Overcomplete Sparse Representations
- 4 Experiments
- 5 Other Works and Conclusion

Learning Linear Sparse Representations

- Linear Model: x = Ah.
- Sparse representation: A is sparse.
- SVD need not give rise to sparse representations.

Guaranteed methods for learning sparse representations

Intuitions...

Learning using second-order moments

- ullet Linear model: x = Ah. and $\mathbb{E}[xx^{\top}] = A\mathbb{E}[hh^{\top}]A^{\top}$
- Learning: recover A from $A\mathbb{E}[hh^{\top}]A^{\top}$.

Ill-posed without further restrictions

Intuitions..

Learning using second-order moments

- Linear model: x = Ah. and $\mathbb{E}[xx^{\top}] = A\mathbb{E}[hh^{\top}]A^{\top}$
- Learning: recover A from $A\mathbb{E}[hh^{\top}]A^{\top}$.

III-posed without further restrictions

- When h is not degenerate: recover A from Col(A)
- \bullet Can we recover a sparse A?

Intuitions..

Learning using second-order moments

- ullet Linear model: x = Ah. and $\mathbb{E}[xx^{\top}] = A\mathbb{E}[hh^{\top}]A^{\top}$
- Learning: recover A from $A\mathbb{E}[hh^{\top}]A^{\top}$.

III-posed without further restrictions

- When h is not degenerate: recover A from Col(A)
- ullet Can we recover a sparse A?

Sparsity constraints on topic-word matrix A

• Main constraint: columns of A are sparsest vectors in Col(A)

Sufficient Conditions for Identifiability

columns of A are sparsest vectors in Col(A)

• Sufficient conditions?

Sufficient Conditions for Identifiability

columns of A are sparsest vectors in $\operatorname{Col}(A)$

Sufficient conditions?

Structural Condition: (Additive) Graph Expansion

$$|\mathcal{N}(S)| \geq |S| + d_{\max}$$
, for all $S \subset [k]$

Parametric Conditions: Generic Parameters

$$||Av||_0 > |\mathcal{N}_A(\operatorname{supp}(v))| - |\operatorname{supp}(v)|$$

Tractable Algorithm for Unmixing

Unmixing Task

Recover topic-word matrix A from $A \mathbb{E}[hh^{\top}]A^{\top}$

$$A\mathbb{E}[hh^\top]A^\top$$

Exhaustive search

$$\min_{z \neq 0} \|Az\|_0$$

Convex relaxation

$$\min_{z} ||Az||_{1}, \quad b^{\top}z = 1,$$
where b is a row in A

Change of Variables

$$\min_{w} \| (A\mathbb{E}[hh^{\top}]A^{\top})^{1/2}w \|_{1}, \quad e_{i}^{\top} (A\mathbb{E}[hh^{\top}]A^{\top})^{1/2}w = 1.$$

Under "reasonable" conditions, the above program exactly recovers A

"Learning Latent Bayesian Networks and Topic Models Under Expansion Constraints" by A. Anandkumar, D. Hsu. A. Javanmard and S.M. Kakade, ICML, June 2013.

Learning Hierarchical Sparse Representations

- So far: recover topic-word matrix A from $A\mathbb{E}[hh^{\top}]A^{\top}$
- Repeat the process to obtain hierarchical models.

Learning Hierarchical Sparse Representations

- So far: recover topic-word matrix A from $A\mathbb{E}[hh^{\top}]A^{\top}$
- Repeat the process to obtain hierarchical models.

Outline

- Introduction
- 2 Learning Linear Sparse Representations
- 3 Learning Overcomplete Sparse Representations
- 4 Experiments
- 5 Other Works and Conclusion

Learning Overcomplete Representations

ullet Latent dimensionality k and observed dimensionality d.

Undercomplete Representation

Overcomplete Representation

When are overcomplete models (k > d) learnable?

Dictionary Learning or Sparse Coding

• Each sample is a sparse combination of dictionary atoms.

Dictionary Learning or Sparse Coding

• Each sample is a sparse combination of dictionary atoms.

Setup

- No. of dictionary elements k > observed dimensionality d.
- Linear model: X = AH.
- $A = [a_1, \dots, a_k]$: dictionary elements
- $x \in \mathbb{R}^d$: Observation. $X = [x_1, \dots, x_n] \in \mathbb{R}^{d \times n}$: Observation matrix.

Main Assumptions

H is sparse: each column is randomly s-sparse
 Each sample is a combination of s dictionary atoms.

Dictionary Learning or Sparse Coding

• Each sample is a sparse combination of dictionary atoms.

Setup

- No. of dictionary elements k > observed dimensionality d.
- Linear model: X = AH.
- $A = [a_1, \ldots, a_k]$: dictionary elements
- $x \in \mathbb{R}^d$: Observation. $X = [x_1, \dots, x_n] \in \mathbb{R}^{d \times n}$: Observation matrix.

Main Assumptions

- H is sparse: each column is randomly s-sparse
 Each sample is a combination of s dictionary atoms.
- A is incoherent: $\max_{i \neq j} |\langle a_i, a_j \rangle| \approx 0$.

Intuitions: how incoherence helps

- Each sample is a combination of dictionary atoms: $x_i = \sum_j h_{i,j} a_j$.
- Consider x_i and x_j s.t. they have no common dictionary atoms.
- What about $|\langle x_i, x_j \rangle|$?

Intuitions: how incoherence helps

- Each sample is a combination of dictionary atoms: $x_i = \sum_j h_{i,j} a_j$.
- Consider x_i and x_j s.t. they have no common dictionary atoms.
- What about $|\langle x_i, x_j \rangle|$?
- Under incoherence: $|\langle x_i, x_i \rangle| \approx 0$.

Intuitions: how incoherence helps

- Each sample is a combination of dictionary atoms: $x_i = \sum_j h_{i,j} a_j$.
- Consider x_i and x_j s.t. they have no common dictionary atoms.
- What about $|\langle x_i, x_j \rangle|$?
- Under incoherence: $|\langle x_i, x_j \rangle| \approx 0$.

Construction of Correlation Graph

- Nodes: Samples x_1, \ldots, x_n .
- Edges: $|\langle x_i, x_j \rangle| > \tau$ for some threshold τ .

How does the correlation graph help in dictionary learning?

Correlation Graph and Clique Finding

Main Insight

• (x_i, x_j) : edge in correlation graph $\Rightarrow x_i$ and x_j have at least one dictionary element in common.

Correlation Graph and Clique Finding

Main Insight

• (x_i, x_j) : edge in correlation graph $\Rightarrow x_i$ and x_j have at least one dictionary element in common.

Correlation Graph and Clique Finding

Main Insight

- (x_i, x_j) : edge in correlation graph $\Rightarrow x_i$ and x_j have at least one dictionary element in common.
- Consider a large clique: a large fraction of pairs have exactly one element in common.

Correlation Graph and Clique Finding

Main Insight

- (x_i, x_j) : edge in correlation graph $\Rightarrow x_i$ and x_j have at least one dictionary element in common.
- Consider a large clique: a large fraction of pairs have exactly one element in common.
- How to find such a large clique efficiently?

Correlation Graph and Clique Finding

Main Insight

- (x_i, x_j) : edge in correlation graph $\Rightarrow x_i$ and x_j have at least one dictionary element in common.
- Consider a large clique: a large fraction of pairs have exactly one element in common.
- How to find such a large clique efficiently? Start with a random edge.

Correlation Graph and Clique Finding

Main Insight

- (x_i, x_j) : edge in correlation graph $\Rightarrow x_i$ and x_j have at least one dictionary element in common.
- Consider a large clique: a large fraction of pairs have exactly one element in common.
- How to find such a large clique efficiently? Start with a random edge.

Result on Approximate Dictionary Estimation

Procedure

- Start with a random edge (x_{i^*}, x_{j^*}) .
- ullet $\hat{S}=$ common nbd. of x_{i^*} and x_{j^*} . If \hat{S} is close to a clique, accept.
- Estimate a dictionary element via top singular vector of $\sum_{i \in \hat{S}} x_i x_i^{\top}$.

Theorem

The dictionary A can be estimated with bounded error w.h.p. when $s=o(k^{1/3})$ and number of samples $n=\omega(k)$.

 \bullet Exact estimation when H is discrete, e.g. Bernoulli.

A. Agarwal, A., P. Netrapalli. "Exact Recovery of Sparsely Used Overcomplete Dictionaries," Preprint, Sept. 2013.

• So far.. approximate dictionary estimation. What about exact estimation for arbitrary *H*?

• So far.. approximate dictionary estimation. What about exact estimation for arbitrary *H*?

Alternating Minimization

- Given X = AH, initialize an estimate for A.
- Update H via ℓ_1 optimization.
- Re-estimate *A* via Least Squares.

• So far.. approximate dictionary estimation. What about exact estimation for arbitrary *H*?

Alternating Minimization

- Given X = AH, initialize an estimate for A.
- Update H via ℓ_1 optimization.
- Re-estimate A via Least Squares.
- In general, alternating minimization converges to a local optimum.

• So far.. approximate dictionary estimation. What about exact estimation for arbitrary *H*?

Alternating Minimization

- Given X = AH, initialize an estimate for A.
- Update \underline{H} via ℓ_1 optimization.
- Re-estimate A via Least Squares.
- In general, alternating minimization converges to a local optimum.

Specific Initialization: Through our previous method.

• So far.. approximate dictionary estimation. What about exact estimation for arbitrary *H*?

Alternating Minimization

- Given X = AH, initialize an estimate for A.
- Update H via ℓ_1 optimization.
- Re-estimate A via Least Squares.
- In general, alternating minimization converges to a local optimum.

Specific Initialization: Through our previous method.

Theorem

The above method converges to the true solution (A, H) at a linear rate w.h.p. when $s < \min(k^{1/8}, d^{1/9})$ and number of samples $n = \Omega(k^2)$.

Outline

- Introduction
- 2 Learning Linear Sparse Representations
- 3 Learning Overcomplete Sparse Representations
- 4 Experiments
- 5 Other Works and Conclusion

Simulations

Local linear convergence

One-shot vs alternating

Sample complexity

Experiments on MNIST

Original

Reconstruction

Learnt Representation

Outline

- Introduction
- 2 Learning Linear Sparse Representations
- 3 Learning Overcomplete Sparse Representations
- 4 Experiments
- **5** Other Works and Conclusion

Tensor Methods for Unsupervised Learning

Multi-view mixtures

Spherical Gaussian mixtures

Indep. Component Analysis

HMM/Latent Trees

• Talk at spectral learning workshop at 15:40 today.

Conclusion

Learning Feature Representations

- Guaranteed unsupervised learning is possible in many cases
- Exploit availability of large number of unlabelled samples
- Overcomplete models provide flexibility in modeling, robust to noise

Learning Linear Networks (Undercomplete)

ullet Learning under expansion. Guaranteed learning through ℓ_1 .

Learning Linear Networks (Overcomplete)

- Each sample is a sparse combination of dictionary atoms.
- Guarantees through clique finding and alternating minimization.

Outlook

- Extend guarantees to non-linear setting.
- Representational power of such networks.

