Examenul de bacalaureat national 2020 Proba E. d)

Proba scrisă la FIZICĂ

- Filiera tehnologică profilul tehnic și profilul resurse naturale și protecția mediului

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

 B. ELEMENTE DE TENDENIAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.

Timpul de lucru efectiv este de 3 ore. A. MECANICA

Model

Se consideră accelerația gravitațională $g = 10 \,\text{m/s}^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Un corp este lansat vertical în sus, de la nivelul solului. Interacțiunea cu aerul fiind neglijabilă, în timpul urcării corpului:
- a. energia cinetică scade
- b. lucrul mecanic efectuat de greutate este nul
- c. energia potentială gravitatională scade
- d. viteza corpului rămâne nemodificată.

(3p)

- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, relația de definiție a vectorului acceleratie medie este:
- **a.** $\vec{a}_{med} = \frac{\Delta \vec{r}}{\Delta t}$

- **b.** $\vec{a}_{med} = \frac{\Delta \vec{v}}{\Delta t}$ **c.** $\vec{a}_{med} = \frac{\vec{F}}{\Delta t}$ **d.** $\vec{a}_{med} = \frac{\vec{d}}{\Delta t}$ (3p)
- 3. Unitatea de măsură în S.I. a raportului dintre puterea dezvoltată de motorul unei mașini și viteza sa este:

- **d.** $m \cdot s^{-2}$

(3p)

(3p)

- **4.** La capătul unui resort având constanta elastică $k = 25 \,\mathrm{N/m}$ este suspendat un corp de masă $m = 50 \,\mathrm{g}$. La echilibru, alungirea resortului are valoarea:
- **a.** 5 cm
- **b.** 2 cm
- **c.** 0.5 cm
- d. 0,2cm

- **a.** $0.4 \frac{m}{s}$
- **b.** $0.8 \frac{m}{s}$
- **c.** 1,2 $\frac{m}{s}$

5. Un corp se deplasează rectiliniu conform legii de mișcare reprezentate în graficul din

figura alăturată. Viteza corpului pe durata celor 5 secunde ale mișcării are valoarea:

II. Rezolvaţi următoarea problemă: (15 puncte) În sistemul din figura alăturată, masa corpului A are valoarea $m_{_{A}} = 2 \, \mathrm{kg}$, iar masa corpului B este $m_{\rm B} = 2.5 \, {\rm kg}$. Unghiul format de suprafața planului înclinat cu orizontala este $\alpha = 30^{\circ}$, firul este inextensibil, de masă neglijabilă, iar scripetele este ideal. Coeficientul de frecare la alunecare dintre corpul A și suprafața planului orizontal este μ_{A} , iar cel dintre corpul B și suprafața planului

înclinat este $\mu_B=0.29igg(\congrac{1}{2\sqrt{3}}igg)$. Sistemul este lăsat liber. În aceste

α

condiții valoarea tensiunii în fir este T = 5N.

- a. Reprezentati toate fortele care actionează asupra corpului B.
- b. Calculati valoarea fortei de apăsare normală a corpului B asupra suprafetei planului.
- c. Determinati valoarea acceleratie sistemului de corpuri
- **d.** Calculați valoarea μ_A a coeficientului de frecare dintre corpul A și suprafața planului orizontal.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un corp de masă $m = 200 \,\mathrm{g}$, considerat punctiform, este lăsat liber să alunece, fără frecări, de-a lungul unei suprafețe curbate, după care corpul își continuă mișcarea, cu frecare, pe o suprafață orizontală, până la oprire. Coeficientul de frecare la alunecare dintre corp și suprafața orizontală este $\mu = 0.2$. Corpul a fost lăsat liber de la înălțimea $h = 0.8 \,\mathrm{m}$ față de nivelul suprafeței orizontale.

c. valoarea vitezei corpului într-un punct B aflat la distanța d = 3 m de punctul A pe suprafața orizontală;

- a. lucrul mecanic efectuat de greutate din momentul în care corpul a fost lăsat liber până în momentul în care acesta se opreste:
- b. valoarea vitezei corpului în momentul în care acesta, trecând prin punctul

- A, intră pe suprafața orizontală;
- d. distanța parcursă de corp, pe suprafața orizontală, până la oprire.

Examenul de bacalaureat naţional 2020 Proba E. d)

Proba scrisă la FIZICA

- Filiera tehnologică profilul tehnic și profilul resurse naturale și protecția mediului

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

 B. ELEMENTE DE TERMINICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

B. ELEMENTE DE TERMODINAMICĂ

Model

(3p)

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \,\text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \,\text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte) 1. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. a mărimii descrise prin raportul $\frac{Q}{\Lambda T}$ este:

2. Volumul unei cantități date de gaz ideal este micșorat de trei ori printr-un proces descris de legea p = aV(a este o constantă pozitivă). Raportul dintre presiunea atinsă de gaz în starea finală si presiunea în starea inițială este:

a. $\frac{1}{9}$

d. 9

- (3p)
- 3. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, expresia principiului I al termodinamicii este:

a. $\Delta Q = \Delta U + L$

b. $Q = U + \Delta L$

c. U = Q - L

d. $\Delta U = Q - L$

- (3p)
- 4. Motorul unui autoturism funcționează după un ciclu Otto. Substanța de lucru efectuează lucru mecanic asupra pistonului în timpul:

a. evacuării

b. detentei

c. compresiei

d. admisiei

(3p)

5. Trei cantități egale din același gaz ideal efectuează transformări izoterme la temperaturi diferite. În graficul din figura alăturată sunt reprezentate, în coordonate p-V, aceste transformări. Relația corectă dintre temperaturi este:

a. $T_1 > T_2 > T_3$

b. $T_1 < T_2 < T_3$

c. $T_1 > T_2 < T_3$

d. $T_1 > T_3 > T_2$

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Un cilindru cu piston, așezat orizontal, conține o cantitate $v_1 = 2$ mol de azot ($\mu_1 = 28$ g/mol), la temperatura $t_1 = 7^{\circ}\text{C}$ și la presiunea $p_1 = 10^5\,\text{Pa}$, egală cu cea atmosferică. Inițial pistonul este blocat. Considerând azotul ca fiind gaz ideal, determinați:

a. masa azotului aflat în cilindru;

b. volumul ocupat de azot în starea inițială;

- ${f c.}$ valoarea temperaturii T_2 până la care trebuie încălzit azotul astfel încât presiunea lui să se dubleze.
- d. volumul ocupat de azot în starea de echilibru atinsă după deblocarea pistonului, temperatura azotului fiind menținută valoarea T_2 . Se consideră că pistonul se poate deplasa liber, fără frecări.

III. Rezolvaţi următoarea problemă:

(15 puncte)

O cantitate constantă de gaz ideal $(C_V = 1,5R)$ se află inițial în starea 1 în care presiunea este $p_1 = 10^5 \, \text{Pa}$, iar volumul ocupat de gaz este $V_1 = 20 \text{ L}$. Gazul este încălzit, la volum constant, până în starea 2 în care $p_2 = 3p_1$. În continuare gazul este destins la temperatură constantă până la presiunea $p_3 = p_1$. Se cunoaște ln3 = 1.1

- **a.** Reprezentați grafic, în coordonate p-V, procesul $1 \rightarrow 2 \rightarrow 3$.
- b. Calculați energia internă a gazului în starea 2.
- **c.** Determinați căldura primită de gaz în timpul transformării $1 \rightarrow 2$
- **d.** Determinați lucrul mecanic cedat de gaz mediului exterior în timpul transformării $2 \rightarrow 3$.

Examenul de bacalaureat naţional 2020 Proba E. d)

Proba scrisă la FIZICA

- Filiera tehnologică profilul tehnic și profilul resurse naturale și protecția mediului

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

 B. ELEMENTE DE TERMINICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Model

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, rezistența electrică echivalentă a grupării în paralel a n rezistoare identice R se poate exprima prin relația:
- **a.** R^n
- **b.** nR

(3p)

- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, unitatea de măsură a mărimii fizice exprimată prin raportul $\frac{E^2}{4r}$ este:

d. V

(3p)

- 3. Un fier de călcat cu rezistența electrică $R = 22 \Omega$ este conectat la rețeaua electrică, la o tensiune constantă U = 220 V. Energia electrică consumată în timp de o jumătate de oră este:
- a. 3,96 kJ
- **b.** 19.8 kJ
- **c.** 360 J
- **d.** 3960 kJ

(3p)

- 4. În figura alăturată este reprezentată tensiunea la bornele unei baterii în funcție de intensitatea curentului electric care trece prin aceasta. Tensiunea electromotoare a bateriei are valoarea:
- a. 24 V
- **b.** 16 V
- c. 1,5 V
- **d.** 0,6 V

- (3p)
- 5. În figura alăturată este reprezentată schema unui circuit electric care contine o baterie cu tensiunea electromotoare E și rezistența interioară r, trei becuri identice și două comutatoare K_1 și K_2 .Considerând că niciunul dintre becuri nu se arde, becul B_1 va lumina în condițiile în care:

- **a.** k_1 şi k_2 sunt deschise
- **b.** k_1 şi k_2 sunt închise
- **c.** k_1 închis şi k_2 deschis
- **d.** k_1 deschis şi k_2 închis

(3p)

II. Rezolvaţi următoarea problemă:

- O baterie este formată din 5 surse identice caracterizate de valorile $E_0 = 4.5 \text{ V}$ și $r_0 = 0.5 \Omega$. Sursele, grupate în paralel, alimentează o grupare serie formată din doi rezistori, fiecare având rezistența electrică R. Intensitatea curentului electric prin fiecare rezistor este I = 0.5 A. Determinați:
- a. tensiunea electromotoare a bateriei si rezistenta interioară a bateriei;
- **b.** tensiunea de la bornele bateriei;
- **c.** rezistența *R* a unuia dintre rezistori;
- d. intensitatea curentului electric ce străbate gruparea serie a celor doi rezistori dacă sursele sunt conectate în serie.

III. Rezolvaţi următoarea problemă:

(15 puncte)

O baterie cu tensiunea electromotoare E = 9 V alimentează un rezistor cu rezistența electrică R. Tensiunea electrică la bornele bateriei este U=8 V, iar energia electrică consumată de rezistor în $\Delta t=1$ min este W = 0.48 kJ. Determinati:

- a. puterea dezvoltată de rezistor;
- **b.** rezistența interioară a bateriei;
- c. lungimea firului din care este confecționat rezistorul, dacă secțiunea firului este $S = 0.16 \,\mathrm{mm}^2$ și rezistivitatea materialului din care este confectionat este $\rho = 1.6 \cdot 10^{-7} \,\Omega \cdot m$;
- d. randamentul circuitului electric.

Examenul de bacalaureat național 2020 Proba E. d)

Proba scrisă la FIZICĂ

- Filiera tehnologică profilul tehnic și profilul resurse naturale și protecția mediului

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

 B. ELEMENTE DE TENDEDINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

D. OPTICA Model

Se consideră: viteza luminii în vid $c = 3 \cdot 10^8 \, \text{m/s}$, constanta Planck $h = 6.6 \cdot 10^{-34} \, \text{J} \cdot \text{s}$.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Un obiect luminos este așezat în fața unei lentile subțiri. Imaginea formată de lentilă este reală, mai mare decât obiectul. Convergenta lentilei este:
- a. nulă
- b. pozitivă
- c. negativă
- d. nu se poate preciza
- (3p)
- 2. Simbolurile mărimilor fizice fiind cele utilizate în manuale de fizică, relația corectă pentru mărirea liniară transversală dată de o lentilă subtire este:

- **a.** $\beta = \frac{f x_2}{f}$ **b.** $\beta = \frac{fx_2}{f + x_2}$ **c.** $\beta = \frac{f x_2}{fx_2}$ (3p)
- 3. Unitatea de măsură în S.I. a mărimii exprimate prin raportul c/ν dintre viteza luminii în vid și frecvența radiatiei este:
- **a.** s

- (3p)
- **4.** O rază de lumină, care provine dintr-un mediu de indice de refracție n, cade, sub unghiul de incidență $i = 45^{\circ}$, pe suprafața plană de separație dintre acest mediu și aer ($n_{aer} \cong 1$). După refracție, raza de lumină se propagă de-a lungul suprafeței de separație. Valoarea indicelui de refracție n este aproximativ:
- **a.** 2

- 5. Energia cinetică maximă a electronilor extrasi prin efect fotoelectric extern depinde de frecventa radiatiei incidente conform graficului din figura alăturată. În aceste condiții, frecvența v_1 a radiației incidente are valoarea:
- **a.** 0.5 · 10¹⁵ Hz
- **b.** $0.6 \cdot 10^{15} \, \text{Hz}$
- **c.** 0.8 · 10¹⁵ Hz
- **d.** 1,1 · 10¹⁵ Hz

II. Rezolvaţi următoarea problemă:

(15 puncte)

(3p)

Două lentile subțiri A și B, cu distanțele focale $f_A = 20 \,\mathrm{cm}$ și $f_B = -10 \,\mathrm{cm}$, alipite, sunt centrate pe aceeași axă optică principală. Un obiect luminos liniar cu înălțimea $y_1 = 2$ cm se află la 20 cm în fața lentilei A, perpendicular pe axa principală a sistemului.

- a. Calculați distanța focală a sistemului de lentile alipite.
- b. Calculați distanța la care se formează imaginea obiectului luminos față de sistemul optic format de lentilele alipite.
- c. Calculați înălțimea imaginii date de sistemul celor două lentile alipite.
- d. Realizati un desen prin care să evidentiati construcția imaginii, pentru obiectul luminos considerat, în situatia descrisă în problemă.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un fascicul luminos paralel intră din sticlă $(n_{sticla} = 1,5)$ în aer $(n_{aer} = 1)$ sub un unghi de incidență i pe suprafața de separare, plană, dintre cele două medii optice. Lărgimea fasciculului în sticlă, măsurată în planul de incidență, perpendicular pe direcția de propagare, este $L_{sticl\ddot{a}}$ =0,80 cm.

- a. Reprezentați fasciculul incident și fasciculul reflectat pentru un unghi de incidență $i = 45^{\circ}$.
- b. Calculați lărgimea fasciculului de lumină în aer în cazul incidenței normale.
- c. Determinați sinusul unghiului sub care intră fasciculul de lumină în aer pentru un unghi de incidență $i \cong 37^{\circ} (\sin i = 0.6).$
- d. Determinați lărgimea fasciculului de lumină în aer în condițiile punctului (c). Se va considera că lărgimea fasciculului se măsoară în planul de incidență, perpendicular pe direcția de propagare, iar $\sqrt{0,19} \cong 0,44$.