<u>Project Design</u> <u>Phase-I</u>

Proposed Solution

Date	08.10.2022
Project Name	Emerging methods for early
	detection offorest fires
Team Leader	Nishanth D
Team Mates	Nithya D Vasanthakumar V
	Vasanthakumar V
	Naveen Kumar S

Proposed Solution Template:

Project team shall fill the following information in proposed solution template.

S No	Parameter	Description			
1.	Problem Statement	AI based Emerging methods for early			
	(Problem to be	detection of forest fires			
	solved)				
2.	Idea / Solution description	A solution is needed that detects			
		fires early by detecting smoke,			
		hydrogen and other gases released by			
		pyrolysis in the early stages of a			
		wildfire, buying firefighters valuable			
		time to extinguish the fire before it			
		spreads out of control. Sensing			
		solutions from Bosch Sensor tech can			
		help to reduce			
		wildfires.			
3.	Novelty / Uniqueness	Remote sensing Machine learning			
		Wildfireprediction Data mining			
		using Artificial Intelligence			

4.	Social Impact / Customer	The most important factors in the		
 .	Satisfaction	fight against the forest fires include		
	Satisfaction	the earliest possible detection of the		
		fire event, the proper categorization of		
		the fire and fast response from the fire		
		_		
		services. Several different types of		
		forest fires are known, including		
		ground fires, surface fires and crown /		
		tree fires. Each of these types of forest		
		fires is specific and the proper		
		counteractions against it must be		
		considered and implemented to		
		successfully fight it. Over the years		
		the detection of forest fires has been		
		conducted in different ways, ranging		
		from the use of forest outposts to fully automated solutions.		
5.	Business Model (Revenue Model)	The annual losses from forest fires in India		
		for the entire country have been		
		moderately estimated at Rs.440 crores		
		(US\$107 million).		
6.	Scalability of the Solution	Aerial-based systems gained recently		
		a lot of attention due to the rap		
		development of UAV technology.		
		Such systems provide a broader and		
		more accurate perception of the fire,		
		even in regions that are inaccessible or		
		considered too dangerous for fire-		
		fighting crews. In addition, UAVs can		
		cover wider areas and are flexible, in		
		the sense that they monitor different		
		areas, as needed		