Chapitre 3: Espaces vectoriels

1 Espace vectoriel réel de dimension finie

1.1 Lois de composition

Exemple 1

Soient *n* et *p* deux entiers naturels non nuls.

- $\mathbb{R}^n =$
- $\mathcal{M}_{n,p}(\mathbb{R})$ est
- $\mathbb{R}[x]$ est
- $\mathbb{R}_n[x]$ est

Test 1 (Voir la solution.)

Dans chaque cas, calculer u + 3v.

- 1. Dans \mathbb{R}^3 , avec u = (1, -1, 0) et v = (3, -2, 5).
- 2. Dans $\mathcal{M}_{2,2}(\mathbb{R})$ avec $u=\begin{pmatrix}1&2\\3&4\end{pmatrix}$ et $v=\begin{pmatrix}1&1\\0&1\end{pmatrix}$.
- 3. Dans $\mathbb{R}[x]$ avec $u = 3x^3 x + 1$ et $v = x^5 2x^3 + x^2 + 2$.

Les ensembles de l'exemple 1, aussi différents les uns des autres soient-ils, possèdent une structure commune : ils peuvent tous être munis d'une « addition » et d'une « multiplication par un nombre réel ». L'objet de ce chapitre est de donner un cadre formel et unifié à l'étude des ensembles ayant une telle structure. Ainsi, les résultats généraux que l'on obtiendra s'appliqueront aussi bien aux vecteurs qu'aux matrices, aux polynômes

Définition 1 (Loi de composition interne, loi de composition externe)

Soit *E* un ensemble non vide.

- Une **loi de composition interne sur** E est une application de $E \times E$ dans E.
- Une **loi de composition externe sur** E est une application de $\mathbb{R} \times E$ dans E.

Exemple 2

Soient n et p deux entiers naturels non nuls.

- 1. Dans \mathbb{R}^n .
 - L'addition de deux *n*-uplets de réels est une loi de composition interne :

•	La multiplication d'un <i>n</i> -uplet de réels par un nombre réel est une loi de composition externe :

2. Dans $\mathcal{M}_{n,p}(\mathbb{R})$.

• L'addition de deux matrices est une loi de composition interne :

$$+: \mathcal{M}_{n,p}(\mathbb{R}) \times \mathcal{M}_{n,p}(\mathbb{R}) \longrightarrow \mathcal{M}_{n,p}(\mathbb{R})$$

 $(A,B) \longmapsto A+B$

• La multiplication d'une matrice par un nombre réel est une loi de composition externe :

$$: \mathbb{R} \times \mathcal{M}_{n,p}(\mathbb{R}) \longrightarrow \mathcal{M}_{n,p}(\mathbb{R})$$

 $(\lambda, A) \longmapsto \lambda \cdot A$

3. Dans $\mathbb{R}[x]$ (ou $\mathbb{R}_n[x]$ avec $n \in \mathbb{N}$, voir le test 2).

• L'addition de deux polynômes est une loi de composition interne :

$$+: \mathbb{R}[x] \times \mathbb{R}[x] \longrightarrow \mathbb{R}[x]$$

 $(P,Q) \longmapsto P+Q$

• La multiplication d'un polynôme par un nombre réel est une loi de composition externe :

$$\cdot: \mathbb{R} \times \mathbb{R}[x] \longrightarrow \mathbb{R}[x]$$
$$(\lambda, P) \longmapsto \lambda \cdot P$$

Test 2 (Voir la solution.)

1. (a) Soit $n \in \mathbb{N}^*$ et soit $(P, Q) \in \mathbb{R}_n[x]^2$. Montrer que $P + Q \in \mathbb{R}_n[x]$.

(b) En déduire que l'addition de polynômes est une loi de composition interne sur $\mathbb{R}_n[x]$.

2

2. Soit E l'ensemble des polynômes de degré **exactement** égal à n. L'addition des polynômes est-elle une loi de composition interne sur E ?

1.2 Combinaisons linéaires

Définition 2 (Combinaison linéaire)

Soit E un ensemble non vide muni d'une loi de composition externe \cdot et d'une loi de composition interne +.

Soient $p \in \mathbb{N}^*$ et x_1, \ldots, x_p des éléments de E. Un élément x de E est dit **combinaison linéaire** de x_1, \ldots, x_p s'il existe des réels $\lambda_1, \ldots, \lambda_p$ tels que

$$x = \lambda_1 \cdot x_1 + \cdots + \lambda_p \cdot x_p.$$

Exemple 3

1. Dans \mathbb{R}^3 , u = (1, 4, 1) est combinaison linéaire de v = (1, 0, 1) et w = (0, 1, 0) car :

2. Dans $\mathbb{R}_3[x]$, $P = 3x^2 + 2x - 1$ est naturellement écrit comme une combinaison linéaire des monômes 1, x et x^2 .

3. Dans $\mathcal{M}_2(\mathbb{R})$, soient $A = \begin{pmatrix} 3 & 2 \\ 3 & 6 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. La matrice A est-elle une combinaison linéaire de B et de I_2 ?

4. Pour tout $n \in \mathbb{N}^*$, le vecteur $0_{\mathbb{R}^n} = (0, \dots, 0)$ est combinaison linéaire de n'importe quelle famille de vecteurs de \mathbb{R}^n :

Test 3 (Voir la solution.)

- 1. Dans $\mathcal{M}_{3,1}(\mathbb{R})$, on pose $e_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $e_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ et $e_3 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$. Écrire $u = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}$ et $v = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$ comme combinaison linéaire de e_1 , e_2 et e_3 .
- 2. Dans $\mathbb{R}[x]$ montrer que le polynôme $x^2 + 1$ est combinaison linéaire des polynômes $(x + 1)^2$, x + 1 et 1.
- 3. Dans $\mathcal{M}_2(\mathbb{R})$, la matrice $\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$ est-elle combinaison linéaire des matrices $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$?

3

Test 4 (Voir la solution.)

- 1. On considère les trois polynômes suivants : $P = x^2 + 2x$, $Q = -x^2 + 1$ et $R = 4x^2 + 6x 1$. Déterminer tous les triplets de réels (a, b, c) tels que aP + bQ + cR = 0.
- 2. Dans \mathbb{R}^4 , on considère les vecteurs x = (1, 2, -1, 4) et y = (2, 4, -2, 4). Déterminer tous les couples de réels (a, b) tels que ax + by = 0.

1.3 Espaces vectoriels de dimension finie

Définition 3 (Espace vectoriel réel de dimension finie)

Soit E un ensemble non vide muni d'une loi de composition externe, notée \cdot , et d'une loi de composition interne, notée +.

On dit que E est un **espace vectoriel réel de dimension** $n \in \mathbb{N}$ s'il existe une bijection f de E dans \mathbb{R}^n qui préserve les combinaisons linéaires c'est-à-dire telle que pour tout $p \in \mathbb{N}^*$ la bijection f vérifie :

$$\forall (x_1,\ldots,x_p) \in E^p, \ \forall (\lambda_1,\ldots,\lambda_p) \in \mathbb{R}^p \quad , \quad f(\lambda_1 \cdot x_1 + \cdots + \lambda_p \cdot x_p) = \lambda_1 f(x_1) + \cdots + \lambda_p f(x_p).$$

Dans ce cas

- l'élément $f^{-1}((0,...,0))$ de E est appelé **l'élément neutre** de E et noté 0_E .
- pour tout $x \in E$, l'élément $(-1) \cdot x$ est appelé **le symétrique de** x et noté -x.
- l'entier n est appelé la dimension de E et noté dim(E).

Remarque 1 (Vocabulaire et notation)

- 1. Attention, par abus, on note avec le même symbole + l'addition dans E et dans \mathbb{R}^n .
- 2. Les éléments de E sont appelés des **vecteurs** et sont parfois notés avec une flèche (par exemple, \overrightarrow{u}) et parfois sans. Au concours, il est recommandé de s'aligner sur la notation du sujet!
- 3. Les éléments de \mathbb{R} qui interviennent dans la loi externe sont souvent appelés des **scalaires**.
- 4. On écrira souvent λu au lieu de $\lambda \cdot u$.
- 5. On place toujours les scalaires devant le vecteur.

Proposition 1

Soit *E* un espace vectoriel de dimension finie. Alors :

- 1. la loi + vérifie les propriétés suivantes :
 - i) $\forall (x,y) \in E^2$, x + y = y + x (commutativité)
 - ii) $\forall (x, y, z) \in E^3$, (x + y) + z = x + (y + z) (associativité)
 - iii) $\forall x \in E, \ x + 0_E = x = 0_E + x$
 - iv) $\forall x \in E, \ x + (-x) = (-x) + x = 0_E$
- 2. la loi · vérifie les propriétés suivantes :
 - i) $\forall x \in E \ \forall (\lambda, \mu) \in \mathbb{R}^2$, $(\lambda \times \mu) \cdot x = \lambda \cdot (\mu \cdot x) = \mu \cdot (\lambda \cdot x)$
 - ii) $\forall x \in E, 1 \cdot x = x$
 - iii) $\forall (x,y) \in E^2 \ \forall \lambda \in \mathbb{R}, \lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y \ (distributivit\acute{e})$
 - iv) $\forall x \in E \ \forall (\lambda, \mu) \in \mathbb{R}^2, (\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x.$

Remarque 2

En réalité, la vraie définition d'un espace vectoriel est un ensemble muni d'une loi de composition interne et d'une loi de composition externe vérifiant les propriétés de la proposition ci-dessus. Cette définition, qui est hors-programme, autorise des espaces vectoriels de dimension infinie.

4

Proposition 2 (Exemples de référence)

Soient n et p deux entiers naturels non nuls. Alors muni des lois + et \cdot définies dans l'exemple 2:

- 1. \mathbb{R}^n est un espace vectoriel réel de dimension n.
- 2. $\mathcal{M}_{n,p}(\mathbb{R})$ est un espace vectoriel réel de dimension $n \times p$.
- 3. $\mathbb{R}_n[x]$ est un espace vectoriel réel de dimension n + 1.

Démonstration : Soient n et p deux entiers naturels non nuls.

Exemple 4

Soient *n* et *p* deux entiers naturels non nuls.

Espace vectoriel E	Neutre	Élément	Symétrique
\mathbb{R}^n		(x_1,\ldots,x_n)	
$\mathcal{M}_{n,p}(\mathbb{R})$		$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$	
$\mathbb{R}_n[x]$		$a_0 + a_1 x + \dots + a_n x^n$	

Proposition 3 (Règles de calcul)

Soit *E* un espace vectoriel réel de dimension finie. Alors

- 1. $\forall x \in E, 0 \cdot x = 0_E$.
- 2. $\forall \lambda \in \mathbb{R}, \lambda \cdot 0_E = 0_E$.
- 3. $\forall x \in E \ \forall \lambda \in \mathbb{R}, \lambda \cdot x = 0_E \iff (\lambda = 0 \text{ ou } x = 0_E).$
- 4. $\forall x \in E, (-1) \cdot x = -x$.

2 Sous-espaces vectoriels

2.1 Définition et caractérisation

Définition 4 (Sous-espace vectoriel)

Soit E un espace vectoriel et soit $F \subset E$. On dit que F est un **sous-espace vectoriel** de E lorsque

- 1. *F* est non vide,
- 2. $\forall x \in F \ \forall y \in F, x + y \in F \ (stabilit\'e \ par \ addition),$
- 3. $\forall x \in F \ \forall \lambda \in \mathbb{R}, \lambda \cdot x \in F \ (stabilité par multiplication par un scalaire).$

Remarque 3

1.	En combinant les points 2 et 3 avec un raisonnement par récurrence, on voit qu'un sous-espace vec-
	toriel est stable par combinaison linéaire.

2.	Tout sous-espace vectoriel d'un espace vectoriel E contient 0_E . En effet :

Exemple 5

- 1. Quel que soit l'espace vectoriel E, $\{0_E\}$ et E sont des sous-espaces vectoriels de E.
- 2. L'ensemble $\{(x,y) \in \mathbb{R}^2 \mid x=2y\}$ est un sous-espace vectoriel de \mathbb{R}^2 .

Proposition 4 (Caractérisation des sous-espaces vectoriels)

Soit E un espace vectoriel et soit $F \subset E$. Alors F est un sous-espace vectoriel de E si et seulement si

- 1. *F* est non vide,
- 2. $\forall (x,y) \in F^2 \ \forall \lambda \in \mathbb{R}, x + \lambda y \in F$.

Démonstration:

Méthode 1

- 1. Pour montrer qu'un ensemble est un espace vectoriel, on montre souvent que c'est un sous-espace vectoriel d'un espace vectoriel de référence à l'aide de la caractérisation ci-dessus car cela demande beaucoup moins de vérifications que la définition d'espace vectoriel.
- 2. Pour montrer que F est non vide, on montre souvent que $0_E \in F$.

Exemple 6

Montrons que $F=\{P(x)\in\mathbb{R}_3[x]\mid P(1)=0\}$ est un sous-espace vectoriel de $\mathbb{R}_3[x]$.

Exemple 7

Exemple 8

Plus généralement, l'ensemble des solutions d'un système linéaire **homogène** à n variables est un sous-espace vectoriel de \mathbb{R}^n . En effet, considérons un système

$$(E) = \begin{cases} a_{1,1}x_1 + \dots + a_{1,n}x_n = 0 \\ \vdots & \vdots & \vdots \\ a_{p,1}x_1 + \dots + a_{p,n}x_n = 0 \end{cases} \quad \text{où} \quad A = (a_{i,j})_{\substack{1 \le i \le p \\ 1 \le j \le n}} \in \mathcal{M}_{p,n}(\mathbb{R}).$$

Exemple 9

Soit $(n, m) \in \mathbb{N}^2$ avec $n \leq m$. Alors $\mathbb{R}_n[X]$ est un sous-espace vectoriel de $\mathbb{R}_m[X]$.

Test 5 (Voir la solution.)

Parmi les espaces suivants, lesquels sont des sous-espaces vectoriels de l'espace considéré?

1.
$$F = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\},\$$

2.
$$G = \{ P \in \mathbb{R}_5[x] \mid P'(0) = 0 \}.$$

Montrer que $E = \{M \in \mathcal{M}_3(\mathbb{R}) \mid {}^tM = 2M\}$ est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.

2.2 Dimension d'un sous-espace vectoriel

Proposition 5

Un sous-espace vectoriel F d'un espace vectoriel E de dimension finie est un espace vectoriel de dimension finie (pour les lois induites par celles de E). De plus :

$$\dim(F) \leq \dim(E)$$

avec égalité si et seulement si E = F.

Méthode 2

Pour montrer que deux espaces vectoriels sont égaux, on peut donc

1. montrer que
$$F \subset E$$
,

2.
$$puis que dim(E) = dim(F)$$
.

Test 7 (Voir solution.)

Montrer que $\mathbb{R}^2 = \text{Vect}((1,2),(2,1))$.

2.3 Sous-espace vectoriel engendré

Définition 5 (Sous-espace vectoriel engendré)

Soit $n \in \mathbb{N}^*$.

Soit E un espace vectoriel de dimension finie et u_1, \ldots, u_n des vecteurs de E.

L'ensemble des combinaisons linéaires de u_1, \ldots, u_n est un sous-espace vectoriel de E appelé **sous-espace vectoriel engendré** par les vecteurs u_1, \ldots, u_n . On le note

$$Vect(u_1,\ldots,u_n).$$

On dit que (u_1, \ldots, u_n) est une **famille génératrice** de Vect (u_1, \ldots, u_n) .

Remarque 4

Soit *E* un espace vectoriel de dimension finie et u_1, \ldots, u_n des vecteurs de *E*.

$$Vect(u_1,\ldots,u_n) = \{\lambda_1 u_1 + \cdots + \lambda_n u_n \mid (\lambda_1,\ldots,\lambda_n) \in \mathbb{R}^n\}.$$

Exemple 10

1. L'ensemble $Vect(1, x, x^2)$ est égal à :

Plus généralement, pour tout $n \in \mathbb{N}$, Vect $(1, x, ..., x^n)$ est égal à :

2. Soit E un espace vectoriel et $x \in E$. Alors :

$$Vect(x) =$$

Dans \mathbb{R}^2 ,	représenter Ve	ct((2,1)).			
Dans \mathbb{R}^3 ,	représenter Ve	ct((1,0,0),(1,2,0))	<i>,</i> 0)).		

Proposition 6

Soit $n \in \mathbb{N}^*$.

Soit E un espace vectoriel de dimension finie et u_1, \ldots, u_n des vecteurs de E.

- Le sous-espace vectoriel engendré par les vecteurs u_1, \dots, u_n est un sous-espace vectoriel de E.
- Tout sous-espace vectoriel de E contenant u_1, \ldots, u_n contient $\text{Vect}(u_1, \ldots, u_n)$.

Démonstration:

Proposition 7

Soit $n \in \mathbb{N}^*$.

Soit E un espace vectoriel de dimension finie et soit (u_1, \ldots, u_n) une famille de vecteurs de E.

1. Si un vecteur u est combinaison linéaire de u_1, \ldots, u_n alors :

$$Vect(u_1, \ldots, u_n) = Vect(u_1, \ldots, u_n, u).$$

2. On a:

$$\forall i \in \{1,\ldots,n\}, \forall j \neq i, \operatorname{Vect}(u_1,\ldots,u_n) = \operatorname{Vect}(u_1,\ldots,u_i+u_j,\ldots,u_n).$$

3. Si $\lambda_1, \ldots, \lambda_n$ sont des scalaires **tous non nuls** alors :

$$Vect(u_1, ..., u_n) = Vect(\lambda_1 u_1, ..., \lambda_n u_n).$$

Remarque 5

- 1. En particulier : $Vect(u_1, ..., u_n) = Vect(u_1, ..., u_n, 0_E)$.
- 2. En combinant les points 2 et 3, on voit que si on ajoute un multiple d'un vecteur de la famille à un autre vecteur de la famille, la nouvelle famille obtenue engendre le même sous-espace vectoriel :

$$\forall i \in \{1,\ldots,n\}, \forall j \neq i, \ \forall \lambda \in \mathbb{R}, \ \operatorname{Vect}(u_1,\ldots,u_n) = \operatorname{Vect}(u_1,\ldots,u_i+\lambda u_j,\ldots,u_n).$$

Exemple 11

Test 9 (Voir la solution.)

Dans chaque cas, montrer que F est un espace vectoriel et donner une famille génératrice de F.

1.
$$F = \{(2a+c, a+3b, 2b+c) \in \mathbb{R}^3 \mid (a,b,c) \in \mathbb{R}^3\}.$$

2.
$$F = \{(c-a)x^3 + ax^2 + (2a-b)x + c \in \mathbb{R}_3[x] \mid (a,b,c) \in \mathbb{R}^3\}.$$

• Lorsque l'ensemble est décrit à l'aide d'équations.

Exemple 13

On considère $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0 \text{ et } x + 2y - 3z = 0\}.$

1. Écrire les conditions sous lesquelles un vecteur appartient à F sous forme d'un système.

2. Obtenir un système triangulaire équivalent.

Exprimer les inconnues principales en fonctions des autres.	

4. Faire apparaître la famille génératrice et conclure.

Test 10 (Voir la solution.)

Dans chaque cas, montrer que F est un espace vectoriel et donner une famille génératrice de F.

1.
$$F = \{(x, y, z) \in \mathbb{R}^3 \mid -x - y + z = 0 \text{ et } 2x + y - 5z = 0\}.$$

2.
$$G = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + 2z = 0\}.$$

3.
$$H = \{(x, y, z) \in \mathbb{R}^3 \mid 2x = y \text{ et } y = 3z\}.$$

Méthode 4

Inversement, étant donné un espace vectoriel sous forme de « Vect » vous devez savoir en déterminer des équations qui le décrivent.

Exemple	14
---------	----

Mettre le système sous forme triangulaire. Faire apparaître les équations et conclure.		système d'équations c ndition pour qu'un ve		((1,2,1),(-1,1,0)). In système (non-homog
		<u> </u>		
Faire apparaître les équations et conclure.	Mettre le sy	stème sous forme tria	ngulaire.	
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
Faire apparaître les équations et conclure.				
	Faire appar	aître les équations et c	conclure.	

Test 11 (Voir la solution.)

Décrire les espaces vectoriels suivants à l'aide d'équations.

- 1. $F_1 = \text{Vect}((1, 2, -1, 2), (1, 1, 1, 1)).$
- 2. $F_2 = \text{Vect}((1,1,1), (1,2,3), (1,4,9)).$
- 3. $F_3 = \text{Vect}((2,1,-3),(1,1,-2)).$

3 Objectifs

- 1. Avoir compris les notions d'espace vectoriel et de sous-espace vectoriel.
- 2. Connaître les exemples de référence, leur dimension.
- 3. Connaître par coeur les définitions de *combinaison linéaire*, sous-espace vectoriel, sous-espace engendré par une famille.
- 4. Savoir montrer qu'un ensemble est un espace vectoriel ou un sous-espace vectoriel avec la caractérisation des sous-espaces vectoriels.
- 5. Savoir montrer qu'un ensemble est un sous-espace vectoriel en en déterminant une famille génératrice.
- 6. Savoir décrire un sous-espace vectoriel engendré par une famille à l'aide d'équations.
- 7. Savoir manipuler la notation Vect.