MiCoRe Vignette

Kevin McGregor 6/4/2020

Microbiome Covariance Regression (MiCoRe) allows the estimation of how OTU co-occurrence networks vary with respect to a covariate profile using principles of covariance regression. This work was developed in the Greenwood Lab at McGill University.

Installation

MiCoRe can be installed easily from Github. Note that the name of the R package is all lowercase: micore.

```
if (!require(devtools)) {
  install.packages("devtools")
  library(devtools)
}
install_github("kevinmcgregor/micore", dependencies=TRUE)
```

The model

The goal of **MiCoRe** is to estimate how covariance matrices vary with repsect to a covariate profile in the context of microbiome data.

Assume that the matrix $\mathbf{Y}_{n\times(p+1)}$ contains the counts of p+1 taxa over n samples. Taxon p+1 will be used as a reference taxon, and will not be included in the estimated covariance matrices. The matrix $\mathbf{X}_{n\times q}$ contains the q-1 covariates over which the covariance (or precision) matrix is assumed to vary, along with an intercept column. The vector $\mathbf{x}_i = (1, x_{i1}, \dots, x_{i(q-1)})^{\top}$ contains the covariates for individual i.

We assume a multinomial logistic regression framework for the taxon counts. We denote the total count for individual i as $M_i = \sum_{j=1}^{p+1} \mathbf{Y}_{ij}$. We also assume that the true proportions of all the taxa in individual i's microbiome is $\boldsymbol{\pi}_i = (\pi_{i1}, \dots, \pi_{i(p+1)})$, with $0 < \pi_{ij} < 1$ for all $j \in \{1, \dots, p+1\}$ and $\sum_{j=1}^{p+1} \pi_{ij} = 1$. Then we assume the observed counts for individual i, denoted by \mathbf{Y}_i , follow a multinomial distribution. The full model is written as.

$$\mathbf{Y}_{i\cdot}|\boldsymbol{\eta}_{i\cdot}, \mathbf{A}, \mathbf{B}, \gamma_{i}, \boldsymbol{\Psi}, \boldsymbol{\Gamma} \sim \operatorname{Multinomial}(M_{i}, \boldsymbol{\pi}_{i})$$

$$\boldsymbol{\eta}_{i\cdot}|\mathbf{A}, \mathbf{B}, \gamma_{i}, \boldsymbol{\Psi}, \boldsymbol{\Gamma} \sim \operatorname{Normal}([\mathbf{A} + \gamma_{i}\mathbf{B}]\mathbf{x}_{i}, \boldsymbol{\Psi})$$

$$\mathbf{C} = (\mathbf{A}, \mathbf{B})|\boldsymbol{\Psi}, \boldsymbol{\Gamma} \sim \operatorname{Matrix-Normal}(\mathbf{C}_{0}, \boldsymbol{\Psi}, \boldsymbol{\Gamma})$$

$$\boldsymbol{\Psi} \sim \operatorname{inv-Wishart}(\nu_{\boldsymbol{\Psi}}, \boldsymbol{\Psi}_{0})$$

$$\boldsymbol{\Gamma} \sim \operatorname{inv-Wishart}(\nu_{\boldsymbol{\Gamma}}, \boldsymbol{\Gamma}_{0})$$

$$\gamma_{i} \sim \operatorname{Normal}(0, 1).$$
(1)

where the proportions π_i are parameterized using a matrix of latent parameters, $\eta_{n\times p}$, whose elements are denoted by η_{ij} :

$$\boldsymbol{\pi}_i = \left(\frac{\exp(\eta_{i1})}{1 + \sum_{j=1}^p \exp(\eta_{ij})}, \dots, \frac{\exp(\eta_{ip})}{1 + \sum_{j=1}^p \exp(\eta_{ij})}, \frac{1}{1 + \sum_{j=1}^p \exp(\eta_{ij})}\right).$$

The elements of η can be thought of as the additive log-ratio transformed proportions with respect to the reference taxon p+1:

$$oldsymbol{\eta}_{i\cdot} = \left[\log\left(rac{\pi_{i1}}{\pi_{i(p+1)}}
ight), \ldots, \log\left(rac{\pi_{ip}}{\pi_{i(p+1)}}
ight)
ight],$$

where η_i represents row i of η .

Interpretations of parameters

Parameter interpretations come from marginalizing out the individual-specific term γ_i . The expected value for η_i . (i.e. the additive log-ratio transformed proportions for individual i) is written as:

$$\mathbb{E}(\boldsymbol{\eta}_i.|\mathbf{A},\mathbf{B},\boldsymbol{\Psi},\boldsymbol{\Gamma}) = \mathbf{A}\mathbf{x}_i.$$

Hence, **A** characterizes how the covariates in \mathbf{x}_i affect the expected value of the additive log-ratio transformed proportions for individual i, and ultimately the relative abundances of the taxa for individual i. Likewise, the covariance matrix for η_i is calculated as:

$$var(\boldsymbol{\eta}_{i\cdot}|\mathbf{A},\mathbf{B},\boldsymbol{\Psi},\boldsymbol{\Gamma}) = \boldsymbol{\Psi} + \mathbf{B}\mathbf{x}_{i}\mathbf{x}_{i}^{\top}\mathbf{B}^{\top}$$

$$= \boldsymbol{\Sigma}_{\mathbf{x}_{i}}.$$
(2)

The matrix $\Sigma_{\mathbf{x}_i}$, or perhaps its corresponding correlation matrix, can then be used to define a taxon cooccurrence network for individual *i* based on the covariates. In this expression, Ψ can be thought of as a baseline covariance matrix and \mathbf{B} describes how the covariates in \mathbf{x}_i affect $\Sigma_{\mathbf{x}_i}$.

Running MiCoRe

After installing the micore package, running the method is simple. Let's simulate some data and run the function. Note that you need to supply the model matrix \mathbf{X} , and you specifically need to give it an intercept column:

```
n <- 100
p <- 5
q \leftarrow 2
# Simulating data
x \leftarrow rnorm(n)
# Model matrix with intercept column
X \leftarrow cbind(1, x)
counts <- matrix(0, n, p+1)</pre>
for (i in 1:n) {
  counts[i,] <- rmultinom(1, size=100, prob=rep(1,p+1))</pre>
# Number of burn-in samples and number of MCMC samples to save
n.burn <- 500
n.samp < -500
# Running micore
library(micore)
mc.fit <- micore(counts, X, n.burn = n.burn, n.samp = n.samp,</pre>
                   n.chain=4, n.cores=4, verbose=TRUE)
#mc.fit
```

Note that the micore object contains one list element for each MCMC chain run. In this example, we ran 4 chains, so each chain's data can be accessed like so:

```
# Chain 1
tmp <- mc.fit[[1]]</pre>
attributes(tmp)
## $names
                                                            "B"
##
    [1] "eta"
                          "Psi"
                                           "A"
    [5] "gamma"
                          "eta.accepted"
                                          "sigma.zero"
                                                            "Gamma"
    [9] "acc.probs"
                                           "X"
                          "counts"
# Chain 2
tmp <- mc.fit[[2]]</pre>
attributes(tmp)
## $names
    [1] "eta"
                          "Psi"
                                           "A"
                                                            "B"
##
    [5] "gamma"
                          "eta.accepted" "sigma.zero"
                                                            "Gamma"
    [9] "acc.probs"
                          "counts"
                                           "X"
##
# etc...
```

MCMC samples from any of the chains can be extracted from any of the parameters directly from this object. Each parameter is an array where the first dimension represents the . For example, we can extract the $\bf B$ parameter from chain 3:

```
# Extracting the B parameter from chain 3
B.3 <- mc.fit[[3]]$B
dim(B.3)
## [1] 500
             5
# Get 101th sample of B in chain 3
B.3[101,,]
##
                 [,1]
                               [,2]
## [1,]
         1.112191e-02 -0.027087729
## [2,] -1.145544e-02 0.039542280
         4.217723e-02 -0.047836580
## [3,]
## [4,]
         1.458819e-05 -0.023348311
## [5,] -3.094263e-02 0.003670245
```

The names of the parameters available to extract are:

- eta: η , the additive log-ratio transformed proportions
- Psi: Ψ , the baseline covariance matrix
- A: A, the "fixed effect" parameter
- B: B, the "random effect" parameter
- gamma: γ_i , $i \in 1, ..., n$, the individual-specific parameter (not to be confused with Gamma with a capital G)
- Gamma: Γ the column covariance matrix in the Matrix-Normal prior (not to be confused with Gamma with a lowercase g)

The MCMC samples from all chains can be merged together for a particular parameter in order to run summary statistics on all MCMC samples from the parameter:

```
# Merging all 4 chains into single array
B.merge <- mergeChains(mc.fit, par="B")
# Mean of B over all chains
apply(B.merge, 2:3, mean)

## [,1] [,2]
## [1,] 0.013708578 -0.001894601
## [2,] 0.009406549 0.011367658
## [3,] 0.021162942 0.001787611
## [4,] 0.002626620 0.016093377
## [5,] 0.006153043 0.018325443</pre>
```

Model diagnostics

TODO