天体rp过程中关键核反应 截面及共振态性质的研究

何建军

核天体物理组 中科院近代物理研究所

> 2010. 8. 13 北京昌平温都水城

主要内容

- 兰州实验情况
- 日本实验情况
- 未来研究展望

兰州实验情况

实验题目: ¹⁷F+p共振弹性散射

实验时间: 2009年11月份已完成

合作单位:

近物所,原子能院,上海应物所,北京大学

兰州实验一物理目标

天体场所:

X射线暴

研究目标:

突破热CNO循环进入到rp过程的关键反应: $^{14}O(\alpha,p)^{17}F$

兰州实验一实验装置

兰州重离子国家实验室设施图

兰州实验一实验概况

- ●实验终端: 兰州放射性束装置RIBLL1
- ●供東时间: 共约13.5天(打靶10天)
- ●東流情况:
 - ✓初级束: ²⁰Ne (70 MeV/u,200 ~ 400 enA)
 - ✓次级束: ¹⁷F(靶上: 4.2 MeV/u, 1~2kcps)

兰州实验一测量装置

实验终端布局图

兰州实验一初步结果

次级束鉴别:

TOF技术完全可以清楚地 鉴别出¹⁷F!

反冲粒子鉴别 (ΔE-E):

数据分析中,年底有望发表...

日本实验

实验题目: $p(^{21}Na, p\gamma)$, $p(^{21}Na, \alpha\gamma)$

实验预定: 2011年2月28日 - 3月9日(9天)

合作单位:

中国: 近物所,原子能院,上海应物所

日本: 东京、九州、东北、筑波、山形

英国: 爱丁堡大学

日本实验一物理目标

●Wiescher等人预言:

X射线暴环境下,¹⁸Ne(α, p)²¹Na反应 很可能是从热CNO循环中突破出来进 入到rp过程的一个关键核反应。

- ●该核天体反应率尚未精确 测定
- ●研究方法:
 - >测量其反应截面
 - >研究²²Mg共振态特性

日本实验一研究现状

X射线暴

典型温度: T = 0.4 - 2.0 GK

感兴趣的能区: E_x (22Mg) = 8.8 -10.2 MeV (i.e., $E_{cm}{}^{\alpha}$ = 0.7 - 2.1 MeV)

● 比利时LLN (Edinburgh Group, PRC)

 $E_{\rm cm}{}^{\alpha}$ = 1.7 - 3.01 MeV, ¹⁸Ne束流 + He 气体靶 **结论**: 所测²²Mg的激发能太高,对天体核合成意义不是很大

• ANL, USA (S. Sinha et al., ANL年报)

 $E_{cm}{}^{\alpha}$ = 1.2 – 2.5 MeV, ²¹Na束流 + CH₂ 靶 **结论:** 结果很好,但没有正式的文章发表,只有年报。原因?

- 对复合核²²Mg激发能级的其它实验研究(α-阈能以上)
 - ► W.P. Alford *et al.* (1986), $E_x \sim 8.55$ MeV [via 20 Ne(3 He, n) 22 Mg @Colorado]
 - A. Chen *et al.* (2001), $E_x \sim 11.14 \text{ MeV}$ [via $^{12}\text{C}(^{16}\text{O}, ^{6}\text{He})^{22}\text{Mg @ Yale}]$
 - \triangleright J.A. Caggiano *et al.*(2002), $E_x \sim 8.79$ MeV [via 25 Mg(3 He, 6 He) 22 Mg @Yale]
 - ►G.P.A. Berg *et al.*(2003), $E_x \sim 11.81$ MeV [via ²⁴Mg(⁴He, ⁶He)²²Mg @RCNP]

结论:测得了精确的激发能级的能量 E_x ,部分能级的自旋宇称及谱学S因子

东大CNS的实验结果

J.J. He et al., Phys. Rev. C80 (2009) 015801 & Eur. Phys. J. A36 (2008)1(L).

加拿大TRIUMF上的实验1

TUDA Experimental setup at ISAC-II July 2009

 21 Na⁵⁺ E= 3.8-5.5 MeV/u

LEDA: RBS on Au spot

 Δ E-E S2: for alpha particles

CD PAD: heavy ions ²¹Na ¹⁸Ne

Data analysis in progress: M. Aliotta et al

加拿大TRIUMF上的实验2

Inelastic proton scattering of ²¹Na in Inverse Kinematics

(D. Jenkins, Univ. York, UK, R. Austin, St. Mary's and P. Woods Univ. Edinburgh, UK)

日本实验一目标1(p, p'γ)

²¹Na(p, p), ²¹Na(p, p'γ) 共振弹性、非弹性散射

- 研究复合核 22 Mg的共振态特性(E_{r} , J^{π} , Γ_{p})
- 测定非弹性散射的分支比 $(\Gamma_p/\Gamma_{p'})$

日本实验一目标 $2(p,\alpha\gamma)$

²¹Na(p,α)¹⁸Ne核反应截面测量

日本实验一实验装置(CRIB)

CRIB (CNS low-energy Radioactive-Ion Beam) separator

日本实验一测量装置

²¹Na¹¹⁺ @ Target

Energy: 4.42 MeV/μ

Intensity: 8.6×10^4 pps

Target Station

1. ϕ 30, 200 μ m CH₂

2. φ30, 200 μm C

Area: $5 \times 5 \text{ cm}^2$

 ΔE : 75 μ m (PSD)

E: 1.5 mm (SSD)

兰州实验装置上的研究展望

● 2011年准备在兰州(或北京?)的实验装置上进行一个实验

科学目标:

研究天体核反应 $^{14}O(\alpha, p)^{17}$ F的反应率

研究手段:

测量¹⁸Ne激发能级的能量、自旋宇称及谱学S因子实验: ²⁰Ne(p, t)¹⁸Ne的角分布测量

● 如果在国内无法实现,可考虑到东大CNS的PA装置上或者到大阪大学RCNP、筑波大学进行实验。

东大CNS装置上的研究展望

● 2011年6月将在日本RIKEN提一个束流申请

科学目标:

研究天体核反应 $^{14}O(\alpha, p)^{17}$ F的反应率

研究手段:

 $p(^{17}F,p)$ 共振弹性散射→研究 ^{18}Ne 共振态特性(特别是6.15 MeV, 1-能级) $p(^{17}F,\alpha)$ 截面测量→推导 $^{14}O(\alpha,p)^{17}F$ 的反应截面

● 2011年6月与爱丁堡大学联合在RIKEN提一个束流申请

科学目标:

研究天体核反应 $^{30}P(p,\gamma)^{31}S$ 的反应率

研究手段:

测量31S的镜像核31P的谱学S因子【通过30P(d,p)31P反应】

谢 谢!