Tópicos de Matemática Discreta

- 1. Considere as fórmulas proposicionais $\varphi:(p_0\vee p_1)\to (p_1\to p_0)$ e $\psi:p_0\vee \neg p_1$.
 - (a) Mostre que as fórmulas φ e ψ são logicamente equivalentes.
 - (b) Diga, justificando, sem recorrer a tabelas de verdade, se é verdadeira ou falsa, a afirmação seguinte: Para qualquer fórmula proposicional σ , a fórmula ψ é falsa sempre que as fórmulas $\neg \sigma$ e $\varphi \to (\sigma \land \psi)$ são verdadeiras.
- 2. Considere que p e q representam as proposições a seguir indicadas

$$p: \forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}} (x+2y=1 \land 2x+4y=2), \quad q: \forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}} (x+y=2 \land 2x-y=1).$$

Diga, justificando, se cada uma destas proposições é verdadeira ou falsa.

- 3. Considere os conjuntos $A = \{1, 3, 6, 7, \{1, 6, 7\}, \{3, 4\}\}, B = \{x + 3 \in \mathbb{Z} \mid 2x + 1 \in A\}$ e $C = \{1, 6, 7\}$. Justificando, determine $((A \setminus \mathcal{P}(B)) \setminus C) \times C$.
- 4. Diga, justificando, se para quaisquer conjuntos A, B, C e D, cada uma das afirmações que se seguem é ou não verdadeira.
 - (a) $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$.
 - (b) Se $C \subseteq A$, então $A \setminus (B \setminus C) = (A \setminus B) \cup C$.
- 5. Prove, por indução nos naturais, que $\sum_{i=1}^n \frac{i}{2^i} = 2 \frac{(n+2)}{2^n}$, para todo o natural n.
- 6. Seja $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ a função definida por $f((m,n)) = \left\{ \begin{array}{lll} 2m+1 & \text{se} & n>0 \\ 0 & \text{se} & n=0 \\ 2m & \text{se} & n<0 \end{array} \right.$
 - (a) Determine $f(\{(0,-1),(1,0),(0,1)\})$ e $f^{\leftarrow}(\{1,2\})$.
 - (b) Diga, justificando, se f é invertível.
 - (c) Diga se é verdadeira ou falsa a seguinte afirmação: Para qualquer função $g: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, a função $f \circ g$ é sobrejetiva.
- 7. Seja R a relação binária definida em \mathbb{N} por xRy se e só se x=1 ou y=1.
 - (a) Justifique que $R \neq \omega_A$ e $R \circ R = \omega_A$.
 - (b) Diga se a relação R é transitiva. Justifique.
- 8. (a) Sendo $A = \{1, 2, 3, 4, 5, 6\}$, diga, justificando, se são verdadeiras ou falsas as afirmações seguintes:
 - i. Existe uma relação de equivalência ρ em A tal que $A/\rho = \{A \setminus \{1,2,3\}, \{2\}, \{1,3\}\}.$
 - ii. Existe uma relação de equivalência ρ em A tal que $[1]_{\rho} = A \setminus \{2,3\}$ e $[2]_{\rho} = \{1,2,6\}$.
 - (b) Seja ρ a relação de equivalência definida em \mathbb{Z} por $x \rho y$ se e só se $x^2 + y^2$ é par. Determine $[-1]_{\rho}$ e \mathbb{Z}/ρ .
- 9. Considere o c.p.o. (A, \leq) , onde $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ e \leq é a relação de ordem parcial definida pelo diagrama de Hasse ao lado.
 - (a) Indique, se existirem, os elementos minimais, o conjunto dos minorantes, o máximo e o mínimo do conjunto $B = \{5, 6, 7, 8, 9, 10\}.$
 - (b) Justifique que (A, \leq) não é um reticulado.

	••••
6€ 7€	8 9
4	5
	\times
2	3
	. /
-	ì•

a 10

Cotações	1.	2.	3.	4.	5.	6.	7.	8.	9.
	1,5+1	1,5	1,5	$1,\!25+1,\!25$	1,75	1,5+1+1	1+1	1+1,25	1,5+1