

2. Data Visualization

Generate statistical summaries of the dataset. Create visualizations using Matplotlib and Seaborn (e.g., histograms, scatter plots, heatmaps).

generate statistical summaries of a dataset and create visualizations using Matplotlib and Seaborn in Google Colab.

1. Generate Statistical Summaries of the Dataset

You can generate statistical summaries such as measures of central tendency, dispersion, and distribution of the dataset using Pandas.

```
import pandas as pd

# Load dataset (replace with your file path or URL)
url = 'https://raw.githubusercontent.com/openai/data/master/titanic.csv'
data = pd.read_csv(url)

# Generate statistical summary of the dataset
summary = data.describe()

# Display the summary
print(summary)
```

The describe() function in Pandas will give you:

- Count: The number of non-null values.
- Mean: The average value of numerical columns.
- Standard deviation: Measures the spread of the data.
- Min, 25%, 50%, 75%, Max: The min, quartiles, and max values.

If you want to get a summary of **categorical** variables as well, you can use:

```
# Summary of categorical columns (mode, unique values, etc.)
print(data.describe(include=['object']))
```

2. Create Visualizations Using Matplotlib and Seaborn

Visualizations using Matplotlib

Matplotlib is a powerful plotting library. Here's how you can create basic visualizations like histograms, bar charts, and box plots.

Histogram

A histogram helps visualize the distribution of a numeric feature.


```
import matplotlib.pyplot as plt

# Plot histogram for 'Age' column
plt.hist(data['Age'].dropna(), bins=20, edgecolor='black', color='skyblue')
plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.show()
Bar Chart
```

Bar charts are useful for categorical data, like the count of passengers by class or embarked location.

```
# Bar chart for 'Pclass' (Passenger class)
plt.figure(figsize=(6, 4))
data['Pclass'].value_counts().plot(kind='bar', color='lightcoral')
plt.title('Passenger Class Distribution')
plt.xlabel('Class')
plt.ylabel('Count')
plt.xticks(rotation=0)
plt.show()
Box Plot
```

A box plot is useful for visualizing the distribution and detecting outliers in a dataset.

```
# Box plot for 'Age' to visualize outliers and distribution
plt.figure(figsize=(6, 4))
plt.boxplot(data['Age'].dropna(), patch_artist=True,
boxprops=dict(facecolor='lightgreen'))
plt.title('Box Plot of Age')
plt.ylabel('Age')
plt.show()
```

Visualizations using Seaborn

Seaborn is built on top of Matplotlib and provides easier syntax and more aesthetically pleasing plots. It also offers additional functionalities for categorical data visualizations.

Pair Plot

A pair plot shows the relationships between multiple features in the dataset.

```
import seaborn as sns
# Pairplot to visualize relationships between numerical features
sns.pairplot(data[['Age', 'Fare', 'SibSp', 'Parch']].dropna())
plt.show()
```


Correlation Heatmap

A heatmap of correlations shows how features are correlated with each other.

```
# Correlation heatmap
correlation_matrix = data[['Age', 'Fare', 'SibSp', 'Parch']].corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', cbar=True)
plt.title('Correlation Heatmap')
plt.show()
Count Plot
```

A count plot is useful for visualizing the distribution of a categorical variable.

```
# Count plot for 'Survived' (how many survived vs how many did not)
sns.countplot(x='Survived', data=data, palette='Set2')
plt.title('Survival Count')
plt.xlabel('Survived')
plt.ylabel('Count')
plt.show()
Violin Plot
```

A violin plot combines aspects of box plot and density plot, and is useful for visualizing the distribution of a continuous variable across categories.

```
# Violin plot for 'Age' across 'Pclass'
sns.violinplot(x='Pclass', y='Age', data=data, palette='muted')
plt.title('Age Distribution by Passenger Class')
plt.show()
```

Full Example of Statistical Summary and Visualization Code for Google Colab

```
# Importing necessary libraries
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Load dataset
url = 'https://raw.githubusercontent.com/openai/data/master/titanic.csv'
data = pd.read_csv(url)

# 1. Generate Statistical Summary
print("Statistical Summary:")
print(data.describe())

# Summary of categorical columns
print("\nCategorical Summary:")
print(data.describe(include=['object']))
```



```
# 2. Data Visualizations using Matplotlib
# Histogram for 'Age'
plt.hist(data['Age'].dropna(), bins=20, edgecolor='black', color='skyblue')
plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.show()
# Bar chart for 'Pclass'
plt.figure(figsize=(6, 4))
data['Pclass'].value counts().plot(kind='bar', color='lightcoral')
plt.title('Passenger Class Distribution')
plt.xlabel('Class')
plt.ylabel('Count')
plt.xticks(rotation=0)
plt.show()
# Box plot for 'Age'
plt.figure(figsize=(6, 4))
plt.boxplot(data['Age'].dropna(), patch_artist=True,
boxprops=dict(facecolor='lightgreen'))
plt.title('Box Plot of Age')
plt.ylabel('Age')
plt.show()
# 3. Data Visualizations using Seaborn
# Pair plot to visualize relationships between numerical features
sns.pairplot(data[['Age', 'Fare', 'SibSp', 'Parch']].dropna())
plt.show()
# Correlation heatmap
correlation matrix = data[['Age', 'Fare', 'SibSp', 'Parch']].corr()
sns.heatmap(correlation matrix, annot=True, cmap='coolwarm', cbar=True)
plt.title('Correlation Heatmap')
plt.show()
# Count plot for 'Survived'
sns.countplot(x='Survived', data=data, palette='Set2')
plt.title('Survival Count')
plt.xlabel('Survived')
plt.ylabel('Count')
plt.show()
# Violin plot for 'Age' by 'Pclass'
sns.violinplot(x='Pclass', y='Age', data=data, palette='muted')
plt.title('Age Distribution by Passenger Class')
plt.show()
```

Conclusion:

This code demonstrates how to:

- 1. Generate **statistical summaries** of a dataset using Pandas.
- Create a variety of visualizations using Matplotlib and Seaborn to explore the dataset, including histograms, bar charts, box plots, pair plots, heatmaps, count plots, and violin plots.