Laboratorium 6 Kwadratury

Mateusz Król

25/04/2024 r.

Zadanie 1.

 $\mathbf{Wiadomo},\,\mathbf{\dot{z}e}$

$$\int_0^1 \frac{4}{1+x^2} \, dx = \pi.$$

Powyższą równość można wykorzystać do obliczenia przybliżonej wartości π poprzez całkowanie numeryczne.

Oblicz wartość powyższej całki, korzystając ze złożonych kwadratur otwartej prostokątów (ang. mid-point rule), trapezów i Simpsona.

Wykres błędów względnych w zależności od liczby ewaluacji funkcji podcałkowej dla kwadratury prostokątów, kwadratury trapezów, kwadratury Simpson'a:

Wykres błędów względnych dla kwadratury trapezów i kwadratury $\mathit{Simpson'}$ a pokrywa się.

Z wykresu można odczytać, że zniżanie kroku poniżej $h\approx 10^{-7},$ nie zmniejsza już błędu kwadratury prostokątów.

Ten wynik zgadza się z wynikiem z Laboratorium 1, w którym wyznaczone h_{min} wyniosło 10^{-6} , 10^{-8} .

Zadanie 2.

Oblicz wartość całki

$$\int_0^1 \frac{4}{1+x^2} \, dx$$

metodą Gaussa-Legendre'a. Narysuj wykres wartości bezwzględnej błędu względnego w zależności od liczby ewaluacji funkcji podcałkowej, n+1.

Wykres przedstawiający porównanie prawdziwych wartości funkcji

Wnioski

W zadaniu 1, błąd względny był najmniejszy (≈ 0.022) dla m=4, co nie zgadza się z odpowiednio najmniejszą wartością AIC_c dla m=2. Druga najmniejsza wartość błędu jest przyjmowana dla m=2.

 ${\bf W}$ zadaniu 2, metoda aproksymacji średniokwadratowej ciągłej jest tańsza obliczeniowo od aproksymacji jednostajnej.