

#### **BACKGROUND**



#### Catan

Build settlements and trade resources to win



#### The Dataset

Statistics from 50 online games



#### Our Goal

Determine what factors influence player outcome



#### **METHODOLOGY**







#### Frequency of Starting Resources



#### Frequency of Starting Number Placements











#### **PROCESS**



#### Initial Model

KNN Classification with only starting resource counts



#### **Next Iteration**

Logistic regression with starting resource and number counts using SMOTE oversampling



#### **Next Iteration**

KNN Classification with only starting resource counts using SMOTE oversampling



#### **Next Iteration**

Logistic regression with starting resource and number combinations using PCA



#### **Next Iteration**

KNN Classification with starting resource and number counts using SMOTE oversampling



#### Analysis

Analysis of varying model performances and outcomes

Initial Model: KNN Classification with Only Starting Resource Counts

- K Value of 4 chosen
- Decent accuracy, however, upon further analysis it became clear the model is unable to predict any wins at all
  - The model is simply recommending the most common outcome, which is losses always



| Model                           | Accuracy        | Precision | Recall  | f1-Score |
|---------------------------------|-----------------|-----------|---------|----------|
| KNN Classification with Startin | 9 Overall: 0.70 | 0: 0.73   | 0: 0.95 | 0: 0.82  |
| Resource Counts                 |                 | 1: 0.00   | 1: 0.00 | 1: 0.00  |

# Next Iteration: KNN Classification with Only Starting Resource Counts with SMOTE Synthetic Oversampling

- K Value of 5 chosen
- SMOTE oversampling results in an equal number of total wins (synthetic and organic) and total losses in the training data, with 113 of each in the now 226-row data set
- Improved precision and recall in model for wins, coupled with a decrease in accuracy



| Mode     | ıl                                                                | Accuracy     | Precision          | Recall             | f1-Score           |
|----------|-------------------------------------------------------------------|--------------|--------------------|--------------------|--------------------|
| Resource | lassification with Starting ce Counts with SMOTE tic Oversampling | Overall: 0.6 | 0: 0.77<br>1: 0.32 | 0: 0.65<br>1: 0.46 | 0: 0.71<br>1: 0.37 |

## Next Iteration: KNN Classification and Logistic Regression with Starting Resource and Number Counts using SMOTE Oversampling

- K Value of 20 chosen
- KNN model is perhaps the most effective of all iterations
- Both utilize SMOTE synthetic oversampling to compensate for underrepresentation of the wins in the organic data



| Model                                                                                          | Accuracy      | Precision          | Recall             | f1-Score           |
|------------------------------------------------------------------------------------------------|---------------|--------------------|--------------------|--------------------|
| KNN Classification with Starting Resource and Number Counts with SMOTE Synthetic Oversampling  | Overall: 0.54 | 0: 0.79<br>1: 0.31 | 0: 0.51<br>1: 0.62 | 0: 0.62<br>1: 0.41 |
| Logistic Regression with Starting Resource and Number Counts with SMOTE Synthetic Oversampling | Overall: 0.40 | 0: 0.71<br>1: 0.24 | 0: 0.32<br>1: 0.62 | 0: 0.44<br>1: 0.35 |

# Logistic Regression using Starting Placement Resource and Number Combinations, via PCA

- No significant improvement in model performance
- Utilizes Principal Component Analysis (PCA) to
- Improved precision and recall in model for wins, coupled with a decrease in accuracy



| Model                                                                       | Accuracy      | Precision          | Recall             | f1-Score           |  |
|-----------------------------------------------------------------------------|---------------|--------------------|--------------------|--------------------|--|
| Logistic Regression with Starting Resource and Number Combinations with PCA | Overall: 0.44 | 0: 0.76<br>1: 0.27 | 0: 0.35<br>1: 0.69 | 0: 0.48<br>1: 0.39 |  |

### Comparing Model Outcomes

| Model                                                                                                | Accuracy      | Precision          | Recall             | f1-Score           |
|------------------------------------------------------------------------------------------------------|---------------|--------------------|--------------------|--------------------|
| KNN Classification with Starting Resource Counts                                                     | Overall: 0.70 | 0: 0.73<br>1: 0.00 | 0: 0.95<br>1: 0.00 | 0: 0.82<br>1: 0.00 |
| KNN Classification with Starting<br>Resource Counts with SMOTE<br>Synthetic Oversampling             | Overall: 0.6  | 0: 0.77<br>1: 0.32 | 0: 0.65<br>1: 0.46 | 0: 0.71<br>1: 0.37 |
| KNN Classification with Starting<br>Resource and Number Counts with<br>SMOTE Synthetic Oversampling  | Overall: 0.54 | 0: 0.79<br>1: 0.31 | 0: 0.51<br>1: 0.62 | 0: 0.62<br>1: 0.41 |
| Logistic Regression with Starting<br>Resource and Number Counts with<br>SMOTE Synthetic Oversampling | Overall: 0.40 | 0: 0.71<br>1: 0.24 | 0: 0.32<br>1: 0.62 | 0: 0.44<br>1: 0.35 |
| Logistic Regression with Starting<br>Resource and Number Combinations<br>with PCA                    | Overall: 0.44 | 0: 0.76<br>1: 0.27 | 0: 0.35<br>1: 0.69 | 0: 0.48<br>1: 0.39 |

#### **FUTURE WORK**



**Neural Networks** 



Game Outcome Prediction





**Decision Tree** 



**ANOVA Analysis**