第一次离散数学作业

闫嘉明

2020年3月1日

第一部分 1.1

1 20

1.1 (a)

inclusive or

1.2 (b)

exclusive or

1.3 (c)

inclusive or

1.4 (d)

exclusive or

2 33

2.1 (a)

 $(p \lor q) \to (p \oplus q)$

The truth table:

p	q	$p \lor q$	$p\oplus q$	$(p\vee q)\to (p\oplus q)$	
Т	Т	Т	F	F	
Т	F	Т	Т	Т	
F	Т	Т	Т	Т	
F	F	F	F	T	

3 35

3.1 (c)

$$(p \to q) \lor (\neg p \to q)$$

The truth table:

p	q	$p \rightarrow q$	$\neg p \rightarrow q$	$(p \to q) \lor (\neg p \to q)$	
Т	Т	Т	Т	Т	
Т	F	F	Т	Т	
F	Т	Т	Т	T	
F	F	Т	F	F	

第二部分 1.2

4 9

let p denotes "the system is in multiuser state".

let q denotes "the system is operating normally"

let a denotes "the kernel is functioning"

let b denotes "the system is in interrupt mode"

according to the description, we know:

$$p \Leftrightarrow q, q \to a, \neg a \oplus b, \neg p \to b$$

5 20

and b is false.

assume all propositons are true.

then $\neg a$ is true, a is false.

because $q \to a$ is true, so q is false.

because $p \Leftrightarrow q$, so p is false.

so $\neg p$ is true. so $\neg p \to b$ is false, which is contradict with the assumption. so these system specifications are not consistent.

5 20

let p denotes "The two of us are both knights" let q denotes "A is a knave"

the truth table:								
A	В	p	q	conclusion				
knigh	t knight	true	false	wrong				
knigh	t knave	false	false	wrong				
knave	knight	false	true	right				
knave	knave	false	true	wrong				

so A is a knave and B is a knight.

6 34

let a,b,c,d,e denote Kevin,Heather,Randy,Vijay,Abby is chatting. according to the description:

$$a \lor b, c \oplus d, e \to c, a \land d, \neg a \land \neg d, b \to a \land e$$

if a is true, d is true, and c is false, so e is false, then $a \wedge e$ is false so b is false.

in another case, if a is false, d is false, and c is true, no matter e is true or false, $a \wedge e$ is false, so b is false. So $a \vee b$ is false, which contradict with the description.

In conclusion, Kevin and Vijay are chatting, it's possible to determine who is chatting.

7 43

第三部分 1.3

8 15

 $(\neg p \land (p \rightarrow q)) \rightarrow \neg p$ is a tautology.

Assume $(\neg p \land (p \to q)) \to \neg p$ is false, then $(\neg p \land (p \to q))$ is true while p is false. however, if $(\neg p \land (p \to q))$ is true, then $\neg qandp \to q$ is true. Then, q is false. And because $p \to q$ is true and q is false, p is false. So $\neg p$ is true, which contradicts with the assumption.

In conclusion: $(\neg p \land (p \rightarrow q)) \rightarrow \neg p$ is a tautology.

9 23

If $(p \to r) \land (q \to r)$ is true, then $(p \to r)$ and $(q \to r)$ are true. So $(p \lor q) \to r$ is true.

If $(p \lor q) \to r$ is false, then $p \lor q$ is true and r is false. Then p and q are not false at the same time. So $(p \to r) \land (q \to r)$ is false.

 $(p \to r) \land (q \to r)$ and $(p \lor q) \to r$ are of the same value. In conclusion, they are logically equivalent.

10 45

Given a compound proposition p, form its truth table and write a proposition q in disjunctive normal form that is logically equivalent to p. q invloves only \neg , $\land and \lor$, so these three operators form a functionally com-

10 45 5

plete set. Then according to De Morgen's law, we can replace the operator \land with $\lor and \neg$. So $\lor and \neg$ form a functionally complete set.