Eletromagnetismo EE

Formulário

MIEGI - 2013/2014

Constantes: $\varepsilon_0 = 8,85 \times 10^{-12} \ F/m$; $\mu_0 = 4\pi \times 10^{-7} \ T.m/A$; $e = 1,6 \times 10^{-19} \ C$ $m_e = 9,11 \times 10^{-31} \ kg$; $m_p = 1,67 \times 10^{-27} \ kg$; $1 \ eV = 1,6 \times 10^{-19} \ J$

<u>Capítulo 1</u>: Cargas Elétricas $|\vec{F}| = \frac{1}{4\pi\epsilon_0} \frac{|q_1||q_2|}{r^2}$ (Lei de Coulomb)

Capítulo 2: Campos Elétricos

$$\vec{E} = \frac{\vec{F}}{q}$$

Campo de uma carga pontual: $\vec{E}=\frac{\vec{F}}{q_0}=\frac{\frac{1}{4\pi\varepsilon_0}\frac{q\,q_0}{r^2}\hat{r}}{q_0}=\frac{1}{4\pi\varepsilon_0}\frac{q}{r^2}\,\hat{r}$

Campo no eixo de um dipolo elétrico:

DIPOLO ELÉTRICO: Torque (momento do binário) $\vec{ au}=\vec{p} imes \vec{E}$; Energia potencial $U=-\vec{p}\cdot \vec{E}$

Capítulo 3: Potencial Elétrico

$$V = \frac{U}{q}$$
 ; $V = -\frac{W_{\infty}}{q}$

Diferença de potencial entre 2 pontos: $\Delta V = V_f - V_i = -\frac{w}{q}$; $\Delta V = V_f - V_i = \frac{U_f}{q} - \frac{U_i}{q} = \frac{\Delta U}{q}$

Cálculo de V a partir de E: $V_f - V_i = -\int_i^f \vec{E} \cdot \overrightarrow{ds}$; $V = -\int_i^f \vec{E} \cdot \overrightarrow{ds}$ Potencial produzido por cargas pontuais: $V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$; $V = \sum_{i=1}^n V_i = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^n \frac{q_i}{r_i}$

Potencial produzido por um dipolo elétrico: $V=\frac{1}{4\pi\varepsilon_0}\frac{p\cos\theta}{r^2}$ Cálculo de **E** a partir de V: $E_S=-\frac{\partial v}{\partial s}$; $E_\chi=-\frac{\partial v}{\partial x}$; $E_y=-\frac{\partial v}{\partial y}$; $E_z=-\frac{\partial v}{\partial z}$;

Se **E** é uniforme: $E = -\frac{\Delta V}{\Delta s}$

Energia potencial elétrica de um par de cargas pontuais: $U=W=q_2V_1=rac{1}{4\pi c_1}rac{q_1q_2}{r}$

Capítulo 4: Capacidade

$$q = CV$$

Condensador: i) de placas paralelas: $C = \frac{\varepsilon_0 A}{d}$; ii) cilíndrico: $C = 2\pi\varepsilon_0 \frac{L}{\ln{(b/a)}}$; iii) esférico: $C = 4\pi\varepsilon_0 \frac{ab}{b-a}$ iv) esfera isolada: $C=4\pi\varepsilon_0R$

n condensadores em paralelo: $C_{eq} = \sum_{j=1}^{n} C_j$; n condensadores em série: $\frac{1}{C_{eq}} = \sum_{j=1}^{n} \frac{1}{C_i}$

Energia potencial: $U=\frac{q^2}{2C}=\frac{1}{2}CV^2$; Densidade de energia: $u=\frac{1}{2}\varepsilon_0E^2$

; Lei de Gauss com dielétrico: $arepsilon_0 \oint \kappa ec{E} \cdot \overrightarrow{dA} = q$ Com dielétrico: $C = \kappa C_{ar}$

Capítulo 5: Corrente e Resistência

$$i = \frac{dq}{dt} = \int \vec{J} \cdot \overrightarrow{dA}$$

Densidade de corrente: $\vec{f}=(ne)\overrightarrow{v_d}$; $\vec{f}=\sigma \vec{E}$

Resistência: $R=\frac{V}{i}$; Resistividade (p) e condutividade (o): $\rho=\frac{1}{\sigma}=\frac{E}{I}$; $\vec{E}=\rho\vec{J}$

 $R = \rho \frac{L}{4}$; $\rho - \rho_0 = \rho_0 \alpha (T - T_0)$

POTÊNCIA: Taxa de transferência de energia elétrica P=iV; Dissipação resistiva: $P=i^2R=\frac{V^2}{P}$

Capítulo 6: Circuitos

Força eletromotriz: $\mathcal{E} = \frac{dW}{da}$; $\mathcal{E} = iR$

Eletromagnetismo EE Formulário

MIEGI - 2013/2014

n resistências em série: $R_{eq} = \sum_{j=1}^n R_j$; n resistências em paralelo: $\frac{1}{R_{eq}} = \sum_{j=1}^n \frac{1}{R_j}$

POTÊNCIA: P=iV ; $P_r=i^2R$; Potência fornecida pela fonte: $P_{fem}=i\mathcal{E}$

Carregamento de um condensador: $q = C\mathcal{E}(1 - e^{-t/RC})$; $i = \frac{dq}{dt} = (\frac{\mathcal{E}}{R})e^{-t/RC}$

Descarga de um condensador: $q=q_0 \left(e^{-t/RC}\right)$; $i=rac{d\dot{q}}{dt}=-\left(rac{q_0}{RC}\right)e^{-t/RC}$; Constante de tempo: au=RC

Capítulo 7: Lei de Gauss

 $\Phi = \oint \vec{E} \cdot \vec{dA} = \frac{q_{env}}{c}$

Aplicações da Lei de Gauss: Superfície condutora: $E=\frac{\sigma}{\epsilon_0}$; Placa de cargas (não condutora): $E=\frac{\sigma}{2\epsilon_0}$

Linha de cargas: $E = \frac{\lambda}{2\pi\epsilon_0 r}$ Casca esférica: $E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$ $(r \ge R)$; E = 0 (r < R)

Distribuição uniforme: $E = \left(\frac{1}{4\pi\epsilon_0} \frac{q}{R^3}\right) r$ $(r \le R)$

<u>Capítulo 8</u>: Campos Magnéticos $\overrightarrow{F}_B = q \overrightarrow{v} \times \overrightarrow{B}$; $|F_B| = |q|vB \sin \theta$

Campos cruzados $(\vec{E} \perp \vec{B})$: $\vec{F} = \overrightarrow{F_E} + \overrightarrow{F_B} = q\vec{E} + q \vec{v} \times \vec{B} = q(\vec{E} + \vec{v} \times \vec{B})$

Partícula carregada em movimento circular: $|q|vB = \frac{mv^2}{r}$; $r = \frac{mv}{|a|B}$; $f = \frac{\omega}{2\pi} = \frac{1}{T} = \frac{|q|B}{2\pi m}$

Força magnética sobre uma corrente: $\overrightarrow{dF_B} = i \overrightarrow{dL} \times \overrightarrow{B}$; $\overrightarrow{F_B} = i \overrightarrow{L} \times \overrightarrow{B}$

Torque (momento do binário) sobre uma bobina: $\vec{ au}=\vec{\mu} imes \vec{B}$; $\mu=|\vec{\mu}|=NiA$ (momento magnético dipolar)

Energia potencial magnética: $U(\theta)=-\vec{\mu}\cdot\vec{B}$; Trabalho: $W_a=\Delta U=U_f-U_i$

Capítulo 9: Campos Magnéticos Produzidos por Correntes

Lei de Biot-Savart: $\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{i \overrightarrow{ds} \times \hat{r}}{r^2}$; $dB = \frac{\mu_0}{4\pi} \frac{i ds \sin \theta}{r^2}$

Campo produzido por corrente: i) Fio retilíneo longo: $B=\frac{\mu_0 i \phi}{2\pi r}$; ii) no centro de arco de circunferência: $B=\frac{\mu_0 i \phi}{4\pi R}$

Força entre correntes paralelas: $\overrightarrow{F_{ba}} = i_b \overrightarrow{L} \times \overrightarrow{B_a}$; $F_{ba} = i_b L B_a \sin 90^o = \frac{\mu_0 L i_a i_b}{2\pi d}$

Lei de Ampère: $\oint \vec{B} \cdot \vec{ds} = \mu_0 i_{env}$; Campo no interior de um fio retilíneo de raio R: $B = \left(\frac{\mu_0 i}{2\pi R^2}\right) r$

Solenóide ideal: $B = \mu_0 i n$; Toróide: $B = \frac{\mu_0 i N}{2\pi} \frac{1}{r}$

Campo no eixo de uma bobina (dipolo magnético): $\vec{B}(z) = \frac{\mu_0}{2\pi} \frac{\vec{\mu}}{z^3}$ $(z \gg R)$

<u>Capítulo 10</u>: Indução e Indutância $L = \frac{N\Phi_B}{i}$; $\mathcal{E}_L = -L\frac{di}{dt}$

Lei de Faraday: $\mathcal{E} = \oint \vec{E} \cdot \overrightarrow{ds} = -\frac{d\Phi_{\rm B}}{dt}$; $\Phi_{\rm B} = \int \vec{B} \cdot \overrightarrow{dA}$ (fluxo magnético); $\mathcal{E} = -N\frac{d\Phi_{\rm B}}{dt}$ (bobina)

Indutância no centro de um solenóide: $\frac{L}{l}=\mu_0~n^2~A~$; Indução mútua: $\mathcal{E}_2=-M~\frac{di_1}{dt}~$; $\mathcal{E}_1=-M~\frac{di_2}{dt}$

Circuitos RL: Aumento de i: $i=\frac{\varepsilon}{R}\left(1-e^{-t/\tau_L}\right)$; Diminuição de i: $i=i_0e^{-t/\tau_L}$; Constante de tempo: $\tau_L=L/R$

Energia magnética: $U_B = \frac{1}{2}Li^2$; Densidade de energia magnética: $u_B = \frac{B^2}{2\mu_0}$