Aufgabe 1: Mittelwerte

- a) Beschreiben Sie die harmonische Schwingung u(t) mathematisch.
- b) Berechnen Sie den Gleichrichtwert.
- c) Berechnen Sie den Effektivwert.
- d) Bestimmen Sie den Wert des Widerstands, an dem die Spannung eine Leistung P = 2 W umsetzt.

Aufgabe 2: Transformation in die symbolische Methode und zurück

- a) Transformieren Sie den im Zeitbereich beschriebenen Strom in die komplexe Darstellung. zwei Resultate angeben:
 - 1. nach der Methode der Projektion auf die vertikale Achse.
 - 2. nach der Methode der Projektion auf die horzontale Achse.

$$i = \sin(\omega t) + 2 \cdot \cos(\omega t + \pi/2) + 3 \cdot \cos(\omega t - 2\pi/3)$$
, A

b) Transformieren Sie den Strom <u>I</u>₅ in den Zeitbereich.

$$I_5 = I_1 + I_2 + I_3 + I_4$$

mit: $\underline{I}_1 = 1 \text{ A}$, $\underline{I}_2 = j \cdot 2 \text{ A}$, $\underline{I}_3 = 3 \angle -22^{\circ} \text{ A}$ und $\underline{I}_4 = e^{-j \cdot 1,067} \text{ A}$, alle Ströme haben die gleiche Kreisfrequenz ω .

zwei Resultate angeben:

- 1. nach der Methode der Projektion auf die vertikale Achse.
- 2. nach der Methode der Projektion auf die horzontale Achse.

Aufgabe 3: Wechselstromnetzwerk

Daten:

$$\underline{I}_{q} = 10 \angle 0^{\circ} A$$
 $f = 50 \text{ Hz}$
 $R = 10 \Omega$ $R_{p} = 120 \Omega$ $R_{L} = 10 \Omega$
 $C = 10 \mu\text{F}$ $L = 500 \text{ mH}$

- a) Berechnen Sie die Ströme \underline{I}_{Rp} , \underline{I}_{C} und \underline{I}_{RL} .
- b) Berechnen Sie die in der gesamten Schaltung umgesetzte Wirk-, Blind- und Scheinleistung.

Aufgabe 4: Phasenbedingung

Daten:

$$\underline{U}_{q} = 10 \angle 0^{\circ} V$$
 $f = 100 \text{ Hz}$
 $R_{1} = 15 \Omega$ $C_{1} = 70 \mu\text{F}$
 $R_{2} = 100 \Omega$
 $R_{3} = 5 \Omega$ $L = 100 \text{ mH}$

Bestimmen Sie die Kapazität C_2 , so dass $\underline{I_2}$ um 45° gegenüber $\underline{U_q}$ voreilt.