Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО» (Университет ИТМО)

Факультет Программной инженерии и компьютерной техники

Лабораторная работа № 1 По дисциплине «Операционные системы»

Вариант:

A=190;B=0x7B10F87C;C=malloc;D=29;E=91;F=block;G=33;H=seq;I=17;J=min;K=sem

Выполнили:

Самойлова Анна,

Пилацис Дамир

P33211

Задание

Разработать программу на языке С, которая осуществляет следующие действия:

- Создает область памяти размером А мегабайт, начинающихся с адреса В (если возможно) при помощи С=(malloc, mmap) заполненную случайными числами /dev/urandom в D потоков. Используя системные средства мониторинга определите адрес начала в адресном пространстве процесса и характеристики выделенных участков памяти. Замеры виртуальной/физической памяти необходимо снять:
 - 1) До аллокации
 - 2) После аллокации
 - 3) После заполнения участка данными
 - 4) После деаллокации
- Записывает область памяти в файлы одинакового размера Е мегабайт с использованием F=(блочного, некешируемого) обращения к диску. Размер блока ввода-вывода G байт. Преподаватель выдает в качестве задания последовательность записи/чтения блоков H=(последовательный, заданный или случайный)
- Генерацию данных и запись осуществлять в бесконечном цикле.
- В отдельных I потоках осуществлять чтение данных из файлов и подсчитывать агрегированные характеристики данных J=(сумму, среднее значение, максимальное, минимальное значение).
- Чтение и запись данных в/из файла должна быть защищена примитивами синхронизации K=(futex, cv, sem, flock).
- По заданию преподавателя изменить приоритеты потоков и описать изменения в характеристиках программы.

Для запуска программы возможно использовать операционную систему Windows 10 или Debian/Ubuntu в виртуальном окружении.

Измерить значения затраченного процессорного времени на выполнение программы и на операции ввода-вывода используя системные утилиты.

Отследить трассу системных вызовов.

Используя stap построить графики системных характеристик.

Выполнение и анализ

Замеры виртуальной и физической памяти (top):

	VIRT	RES
До аллокации	2288	872
После аллокации	187968	872
После заполнения	220752	187232
участка данными		
После	297348	24393
деаллокации		

Потребление процессорного времени (top):

max %CPU = 94

min %CPU = 33

на чтение и запись (iostat):

Device sda		tps 11.92	kB_read/s 240.83	kB_wrtn/s 407.39	kB_read 14315635	kB_wrtn 24216036	
avg-cpu:	%user 65.33	%nice	%system %iowai 34.67 0.0	t %steal	%idle 0.00		
Device sda		tps 151.00	kB_read/s 1254.00	kB_wrtn/s 17248.00	kB_read 5016	kB_wrtn 68992	
avg-cpu:	%user 58.75	%nice	%system %iowai 41.25 0.0	t %steal 0 0.00	%idle 0.00		
Device sda	ŧa	tps 2073.50	kB_read/s 8237.00	kB_wrtn/s 8528.00	kB_read 32948	kB_wrtn 34112	
avg-cpu:	%user 61.15	%nice	%system %iowai 38.60 0.2	t %steal 5 0.00	%idle		
Device sda		tps 953.00	kB_read/s 3747.00	kB_wrtn/s 8550.00	kB_read 14988	kB_wrtn 34200	
avg-cpu:	%user 44.44	%nice 6.00	%system %iowai 55.56 0.0	t %steal	%idle 0.00		
Device Sda		tps 427.11	kB_read/s 15.92	kB wrtn/s 44073.63	kB_read 64	kB_wrtn 177176	
avg-cpu:	%user 45.15	%nice	%system %iowai 54.85	t %steal	%idle 0.86		
Device Sda		tps 393.25	kB_read/s 16129.00	kB_wrtn/s 42736.00	kB_read 64516	kB_wrtn 170944	
avg-cpu;	%user 73.18	%nice	%system %iowai 26.82	t %steal	%idle		
Device 5da		tps 123.50	kB_read/s 7.00	kB wrtn/s 4851.00	kB_read	kB wrtn 19404	
avg-cpu;	%user 93.75	%nice	%system %iowai 6.25 8.8	t %steal	%idle		
Device sda		tps 17.50	kB_read/s 255.00	kB_wrtn/s	kB_read 1020	kB_wrtn 8	

Трасса системных вызовов (strace):

```
execve("./try1", ["./try1"], 0x7fff298eddc0 /* 44 vars */) = 0
brk(NULL)
                                            = 0x563bfff90000
access("/etc/ld.so.preload", R_OK)
                                             = -1 ENGENT (No such file or directory)
 openat(AT FDCMD, */etc/ld.so.cache*, 0 RDONLY[0 CLOEXEC) = 3
fstat(3, {st mode=5 IFREG|0644, st size=100288, ...}) = 0
mmap(NULL, 180288, PROT READ, MAP PRIVATE, 3, 0) = 8x7efdbb82a800
 openat(AT_FDCMD, "/lib/x86_64-linux-gnu/libpthread.so.0", O_RDONLY|O_CLOEXEC) = 3
 fstat(3, {st_mode=S_IFREG|0755, st_size=146968, ...}) = 0
 mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7efdbb828000
 mmap(NULL, 132288, PROT READ, MAP PRIVATE|MAP DENYWRITE, 3, 0) = 0x7efdbb807000
 mmap(8x7efdbb88d800, 61440, PROT READ|PROT EXEC, MAP PRIVATE|MAP FIXED|MAP DENYWRITE, 3, 0x6000) = 0x7efdbb80d000
 mmap(0x7efdbb81c000, 24576, PROT READ, MAP PRIVATE MAP FIXED MAP DENYWRITE, 3, 0x15000) = 0x7efdbb81c000
 mmap(8x7efdbb822000, 8192, PROT READ|PROT WRITE, MAP PRIVATE|MAP FIXED|MAP DENYWRITE, 3, 0x1a000) = 0x7efdbb822000
 mmap(0x7efdbb824000, 13504, PROT READ|PROT WRITE, MAP PRIVATE|MAP FIXED|MAP ANONYMOUS, -1, 0) = 0x7efdbb824000
 openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", 0 RDONLY[0_CLOEXEC] = 3
 fstat(3, {st_mode=5_IFREG|0755, st_size=1824496, ...}) = 0
mmap(NULL, 1837056, PROT READ, MAP PRIVATE|MAP DENYWRITE, 3, 0) = 0x7efdbb646000
 mprotect(0x7efdbb668000, 1658880, PROT NONE) = 0
mmap(0x7efdbb668000, 1343468, PRDT READ|PRDT EXEC, MAP PRIVATE|MAP FIXED|MAP DENYWRITE, 3, 0x22000) = 0x7efdbb668000
mmap(0x7efdbb7b0000, 311296, PRDT READ, MAP PRIVATE|MAP FIXED|MAP DENYWRITE, 3, 0x16a000) = 0x7efdbb7b0000
mmap(0x7efdbb7fd000, 24576, PRDT READ|PRDT WRITE, MAP PRIVATE|MAP FIXED|MAP DENYWRITE, 3, 0x16a000) = 0x7efdbb7fd000
 mmap(0x7efdbb803000, 14336, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7efdbb803000
close(3)
                                            = 8
mmap(NULL, 12288, PROT READ|PROT WRITE, MAP PRIVATE|MAP ANONYMOUS, -1, 0) = 0x7efdbb643080
arch prctl(ARCH SET FS, 0x7efdbb643740) = 0
 mprotect(0x7efdbb7fd000, 16384, PROT READ) = 0
mprotect(0x7efdbb822000, 4096, PROT READ) = 0
 mprotect(0x563bff69f080, 4096, PROT READ) = 0
mprotect(0x7efdbb86a000, 4096, PROT READ) = 0
 munmap(0x7efdbb82a000, 100288)
set_tid_address(0x7efdbb643a10)
                                            =46991
set robust list(0x7efdbb643a20, 24)
                                            = 0
 rt_sigaction(SIGRTMIN, {sa_handler=0x7efdbb80d6b0, sa_mask=[], sa_flags=SA_RESTORER|SA_SIGINFO, sa_restorer=0x7efdbb819730}, NULL, 8) = 0
 rt_sigartion(SIGRT_1, {sa_handler=0x7efdbb80d740, sa_mask=[], sa_flags=SA_RESTORER[SA_RESTART[SA_SIGINFO, sa_restorer=0x7efdbb819730], NULL, 8) = 0
 rt sigprocmask(SIG UNBLOCK, [RTMIN RT 1], NULL, 8) = 0
prlimit64(0, RLIMIT_STACK, NULL, {rlim_cur=8192*1024, rlim_max=RLIM64_INFINITY}) = 0
 fstat{1, {st mode=S IFCHR|\theta620, st rdev=makedev(\thetax88, \thetax1), ...}) = \theta
brk(NULL)
                                            = 0x563bfff90000
brk(0x563bfffb1000)
                                             e 0x563bfffb1000
write(1, "Start program\n", 14) = 14
mmap(NULL, 190001152, PROT_READ|PROT_MRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7efdb0110000
write(1, "Launch threads, which reads dev/"..., 39) = 39
write(1, "start reading random threads(): "..., 60) = 60
```

Графики системных характеристик:

Вывод

В процессе работы мы изучили основы программирования на языке C, в том числе многопоточное программирование. Узнали про примитив синхронизации semaphore. Поставили виртуальную машину на windows и узнали основные команды в Linux. Изучили системные утилиты, которые позволяют измерять характеристики программ/процессов. Написали скрипт для systemtap, с помощью которого построили графики системных характеристик.