2. Modular Linear Equations

Find the smallest number 'a' which when divided by d_0 , d_1 , ... d_{n-1} leave the remainders r_0 , r_1 , ... r_{n-1} respectively, using the Chinese Remainder Theorem.

Eg: Find the smallest number which when divided by 5 and 13 leave the remainders 2 and 3 respectively. This can be modeled as the following modular linear equations,

 $a \equiv 2 \pmod{5}$

 $a \equiv 3 \pmod{13}$

The solution to these equations is a = 42.

Input:

The first line contains n, the number of equations

The next *n* lines contain the divisors and their corresponding remainders

1<n<100

1<d<1000

0<=r<=1000

Output:

Print the value of 'a' modulo 109 + 7

Example 1:

tput:
-

Example 2:

Input:	Output:
3	10
91	
8 2	
7 3	

Example 3:

Input:	Output:
3	23
32	
3 2 5 3 7 2	
7 2	