Statistical Inference Course Project Part 1

TK

8 septembre 2016

Synopsis

In this project I investigate the exponential distribution in R and compare it with the Central Limit Theorem. The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda. For this project:

- Set lambda = 0.2 for all of the simulations.
- Investigate the distribution of averages of 40 exponentials.
- We need to do a thousand simulations.
- Illustrate via simulation and associated explanatory text the properties of the distribution of the mean of 40 exponentials.

I should:

- Show the sample mean and compare it to the theoretical mean of the distribution.
- Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution.
- Show that the distribution is approximately normal.

Simulation of an Exponential Distribution

I calculated the average of 40 samples drawn from the exponential distribution a thousand times

```
set.seed(1000)

# set lambda
lambda <- 0.2

# samples
n <- 40

# simulations
NSim <- 1000

# simulate
simExp <- replicate(NSim, rexp(n, lambda))</pre>
```

Calculate mean of exponentials

```
meanExp <- apply(simExp, 2, mean)</pre>
```

1. Show the sample mean and compare it to the theoretical mean of the distribution

```
# Simulated mean
smean <- mean(meanExp)</pre>
print(smean)
## [1] 4.986963
# Theoretical mean
tmean <- 1/lambda
print(tmean)
## [1] 5
means <- cumsum(meanExp)/1:NSim</pre>
# Construction plot
library(ggplot2)
g <- ggplot(data.frame(y=means, x=1:NSim), aes(x=x, y=y))+
     geom_hline(yintercept = tmean, color = "red", size = 2)+
     geom_line(size=1, color = "blue")+
     labs(title="Distribution sample means of 1000 Samples",x = "Means", y="N° simulations")
print(g)
```


We can see that simulated mean is very close to theoretical mean.

2. Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution.

```
# standard deviation and variance of distribution of averages of 40 exponentials

sdSim <-sd(meanExp)
print(sdSim)

## [1] 0.8089147

varSim <- sdSim^2
print(varSim)

## [1] 0.654343

# theoretical standard deviation and variance

Thsd <-(1/lambda)/sqrt(n)
print(Thsd)</pre>
```

```
## [1] 0.7905694
```

```
varTh <- Thsd^2
print(varTh)</pre>
```

[1] 0.625

The simulated standard deviation and variance are closed to theoretical standard deviation and variance.

3. Show that the distribution is approximately normal.

1. Plot of distrubution simulated means.

Distribution of averages of 1000 samples

2. Compare our distribution with normal distribution.

```
qqnorm(meanExp, col="5"); qqline(meanExp, col="2")
```

Normal Q-Q Plot

This plots show us that distribution of simulated mean is approximately normal.