IMPERIAL COLLEGE LONDON DEPARTMENT OF MATHEMATICS

Question Sheet 5

MATH40003 Linear Algebra and Groups

Term 2, 2019/20

Problem sheet released on Wednesday of week 7. All questions can be attempted before the problem class on Monday Week 8. Question 3 is suitable for tutorials. Solutions will be released on Wednesday of week 8.

Question 1 Let S be the two-element set $\{a, b\}$. Show that there are precisely 16 distinct binary operations on S. How many of them make S a group?

Find a formula for the total number of binary operations on a set of n elements.

Question 2 Prove that multiplication of complex numbers is associative.

Question 3 Which of the following are groups?

- (a) The set of all complex numbers z such that |z| = 1, with the usual complex multiplication.
- (b) The set $\{x \in \mathbb{R} \mid x \ge 0\}$, with the operation $x * y = \max(x, y)$.
- (c) The set $\mathbb{C} \setminus \{0\}$, with the operation $a * b = |a| \cdot b$.
- (d) The set of all rational numbers with odd denominators, with the usual addition.
- (e) The set $\{a,b\}$, where $a \neq b$, with the binary operation * given by

$$a * a = a, b * b = b, a * b = b, b * a = b.$$

(f) The set $\{a,b\}$, with $a \neq b$, with the binary operation * given by

$$a*a = a, b*b = a, a*b = b, b*a = b.$$

- (g) The set \mathbb{R}^3 , with the binary operation $v * w = v \times w$ (the vector product).
- (h) The set \mathbb{R}^3 , with the usual vector addition.

Question 4 Let S be the set of all real numbers except -1. For $a, b \in S$ define

$$a * b = ab + a + b$$
.

Show that (S,*) is a group. (Note: you need to check the closure axiom.)

Question 5 Let G be a group, and let $a, b, c \in G$. Prove the following facts.

- (a) If ab = ac then b = c.
- (b) The equation axb = c has a unique solution for $x \in G$.
- (c) $(a^{-1})^{-1} = a$.

(d)
$$(ab)^{-1} = b^{-1}a^{-1}$$
.

Question 6 Let G be a group, and let e be the identity of G. Suppose that x * x = e for all $x \in G$. Show that y * z = z * y for all $y, z \in G$. Can you find infinitely many examples of groups G with the property that x * x = e for all $x \in G$?

Question 7 (i) (Harder) Suppose X is a non-empty set and α, β are permutations of X with the property that any element of X moved by α is fixed by β and any element of X moved by β is fixed by α , i.e. for all $x \in X$:

$$(\alpha(x) \neq x \Rightarrow \beta(x) = x)$$
 and $(\beta(x) \neq x \Rightarrow \alpha(x) = x)$.

Prove that $\alpha \circ \beta = \beta \circ \alpha$. [Hint: consider $\alpha(\beta(x))$ in the cases where x is moved by β and where it is moved by α ; note that if x is moved by β , then so is $\beta(x)$.]

(ii) Suppose (G, \cdot) is a group and $g, h \in G$ are such that gh = hg. Show that for all $r \in \mathbb{N}$ we have $(gh)^r = g^rh^r$. Give an example of $g, h \in S_3$ (the symmetric group on $\{1, 2, 3\}$) where $(gh)^2 \neq g^2h^2$.