

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A

Aula 14

Subespaços Vetoriais: Intersecção, União, Soma

Bases e Dimensão

Professora: Isamara C. Alves

Data: 20/04/2021

Bases Canônicas

1. $\mathcal{V} = \mathbb{R}^n$

1.
$$\mathcal{V} = \mathbb{R}^n$$

$$\forall u \in \mathbb{R}^n$$

1.
$$\mathcal{V} = \mathbb{R}^n$$

$$\forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) =$$

1.
$$\mathcal{V} = \mathbb{R}^n$$

$$\forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0)$$

1.
$$\mathcal{V} = \mathbb{R}^n$$

$$\forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0)$$

1.
$$\mathcal{V} = \mathbb{R}^n$$

$$\forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

1.
$$\mathcal{V} = \mathbb{R}^n$$

$$\forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

 $\Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0);$

1.
$$\mathcal{V} = \mathbb{R}^n$$

$$\forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

$$\Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0);$$

1.
$$\mathcal{V} = \mathbb{R}^n$$

$$\forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

$$\Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)]$$

1.
$$\mathcal{V} = \mathbb{R}^n$$

$$\forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

$$\Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$$

$$\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow$$

1.
$$\mathcal{V} = \mathbb{R}^n$$

$$\forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

$$\Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$$

$$\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0$$

1.
$$\mathcal{V} = \mathbb{R}^n$$

$$\forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

$$\Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$$

$$\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \textbf{LI}$$

1.
$$\mathcal{V} = \mathbb{R}^n$$

 $\forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$
 $\Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$
 $\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI}$
 $\Rightarrow \beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); \dots, (0, 0, \dots, 0)\}$

1.
$$\mathcal{V} = \mathbb{R}^n$$

 $\forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$
 $\Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$
 $\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI}$
 $\Rightarrow \beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0);$

```
1. \mathcal{V} = \mathbb{R}^n

\forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)

\Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}

\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são LI}

\Rightarrow \beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}
```

1.
$$\mathcal{V} = \mathbb{R}^{n}$$

 $\forall u \in \mathbb{R}^{n} \Rightarrow u = (x_{1}, x_{2}, \dots, x_{n}) = x_{1}(1, 0, \dots, 0) + x_{2}(0, 1, \dots, 0) + \dots + x_{n}(0, 0, \dots, 1)$
 $\Rightarrow \mathbb{R}^{n} = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$
 $\sum_{i=1}^{n} \lambda_{i} v_{i} = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_{1} = \dots = \lambda_{n} = 0 \Rightarrow \text{ os vetores são } \mathbf{LI}$
 $\Rightarrow \beta_{\mathbb{R}^{n}} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}; \forall \lambda_{i} \in \mathbb{R}; i = 1, \dots, n.$

```
1. \mathcal{V} = \mathbb{R}^n \forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1) \Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \in \sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{L}\mathbf{I} \Rightarrow \beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} \; \forall \lambda_i \in \mathbb{R}; i = 1, \dots, n. Nesta base, os vetores são CANÔNICOS: v_1 = (1, 0, \dots, 0)
```

```
1. \mathcal{V} = \mathbb{R}^n \forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1) \Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \in \sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{L}\mathbf{I} \Rightarrow \beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} \; \forall \lambda_i \in \mathbb{R}; i = 1, \dots, n. Nesta base, os vetores são CANÔNICOS: v_1 = (1, 0, \dots, 0) = e_1;
```

```
1. \mathcal{V} = \mathbb{R}^n \forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1) \Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \in \sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI} \Rightarrow \beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} \; \forall \lambda_i \in \mathbb{R}; i = 1, \dots, n. Nesta base, os vetores são CANÔNICOS: v_1 = (1, 0, \dots, 0) = e_1; v_2 = (0, 1, \dots, 0)
```

```
1. \mathcal{V} = \mathbb{R}^n \forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1) \Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \in \sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{L}\mathbf{I} \Rightarrow \beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} \; \forall \lambda_i \in \mathbb{R}; i = 1, \dots, n. Nesta base, os vetores são CANÔNICOS: v_1 = (1, 0, \dots, 0) = e_1; v_2 = (0, 1, \dots, 0) = e_2;
```

```
1. \mathcal{V} = \mathbb{R}^n \forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1) \Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \in \sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{L}\mathbf{I} \Rightarrow \beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} \; \forall \lambda_i \in \mathbb{R}; i = 1, \dots, n. Nesta base, os vetores são CANÔNICOS: v_1 = (1, 0, \dots, 0) = e_1; v_2 = (0, 1, \dots, 0) = e_2; \dots; v_n = (0, 0, \dots, 1)
```

```
1. \mathcal{V} = \mathbb{R}^n \forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1) \Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \in \sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{L}\mathbf{I} \Rightarrow \beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} \; ; \; \forall \lambda_i \in \mathbb{R}; i = 1, \dots, n. Nesta base, os vetores são CANÔNICOS: v_1 = (1, 0, \dots, 0) = e_1; v_2 = (0, 1, \dots, 0) = e_2; \dots; v_n = (0, 0, \dots, 1) = e_n
```

1.
$$\mathcal{V} = \mathbb{R}^n$$

$$\forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

$$\Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$$

$$\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI}$$

$$\Rightarrow \beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} ; \forall \lambda_i \in \mathbb{R}; i = 1, \dots, n.$$
Nesta base, os vetores são CANÔNICOS:
$$v_1 = (1, 0, \dots, 0) = e_1; v_2 = (0, 1, \dots, 0) = e_2; \dots; v_n = (0, 0, \dots, 1) = e_n$$
Portanto,
$$\beta_{\mathbb{R}^n} = \{e_1, e_2, \dots, e_n\}$$

1.
$$\mathcal{V} = \mathbb{R}^n$$

$$\forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1) \\ \Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e} \\ \sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI} \\ \Rightarrow \beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} ; \forall \lambda_i \in \mathbb{R}; i = 1, \dots, n. \\ \text{Nesta base, os vetores são CANÔNICOS:} \\ v_1 = (1, 0, \dots, 0) = e_1; v_2 = (0, 1, \dots, 0) = e_2; \dots; v_n = (0, 0, \dots, 1) = e_n \\ \text{Portanto,} \\ \beta_{\mathbb{R}^n} = \{e_1, e_2, \dots, e_n\}$$

é denominada BASE CANÔNICA do espaço vetorial real \mathbb{R}^n .

1.
$$\mathcal{V} = \mathbb{R}^n$$

$$\forall u \in \mathbb{R}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1) \\ \Rightarrow \mathbb{R}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e} \\ \sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI} \\ \Rightarrow \beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} ; \forall \lambda_i \in \mathbb{R}; i = 1, \dots, n. \\ \text{Nesta base, os vetores são CANÔNICOS:} \\ v_1 = (1, 0, \dots, 0) = e_1; v_2 = (0, 1, \dots, 0) = e_2; \dots; v_n = (0, 0, \dots, 1) = e_n \\ \text{Portanto,} \\ \beta_{\mathbb{R}^n} = \{e_1, e_2, \dots, e_n\}$$

é denominada BASE CANÔNICA do espaço vetorial real \mathbb{R}^n .

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$

Bases Canônicas

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$

 $\forall u \in \mathbb{C}^n$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$

$$\forall u \in \mathbb{C}^n \Rightarrow$$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$
 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) =$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$
 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0)$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$
 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0)$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

2.
$$V = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$
 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$
 $\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0);$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

$$\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0);$$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

$$\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)]$$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

$$\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$$

$$\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow$$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

$$\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$$

$$\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0$$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$
 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$
 $\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$
 $\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI}$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$
 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$
 $\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$
 $\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI}$
 $\Rightarrow \beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); \dots, (0, 0, \dots, 0)\}$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$
 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$
 $\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$
 $\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI}$
 $\Rightarrow \beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0);$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$
 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$
 $\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$
 $\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI}$
 $\Rightarrow \beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$
 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$
 $\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$
 $\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI}$
 $\Rightarrow \beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}; \forall \lambda_i \in \mathbb{C}; i = 1, \dots, n.$

```
2. \mathcal{V} = \mathbb{C}^n sobre \mathbb{K} = \mathbb{C} \forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1) \Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e} \sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{L}\mathbf{I} \Rightarrow \beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} \; \forall \lambda_i \in \mathbb{C}; i = 1, \dots, n. Nesta base, os vetores são CANÔNICOS: v_1 = (1, 0, \dots, 0)
```

```
2. \mathcal{V} = \mathbb{C}^n sobre \mathbb{K} = \mathbb{C} \forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1) \Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e} \sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI} \Rightarrow \beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} \; \forall \lambda_i \in \mathbb{C}; i = 1, \dots, n. Nesta base, os vetores são CANÔNICOS: v_1 = (1, 0, \dots, 0) = e_1;
```

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$ $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ $\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$ $\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores } \tilde{\text{sao}} \text{ LI}$ $\Rightarrow \beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} \; ; \; \forall \lambda_i \in \mathbb{C}; \; i = 1, \dots, n.$ Nesta base, os vetores $\tilde{\text{sao}} \text{ CANÔNICOS:}$ $v_1 = (1, 0, \dots, 0) = e_1; \; v_2 = (0, 1, \dots, 0)$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$
$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

$$\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$$

$$\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI}$$

$$\Rightarrow \beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} ; \forall \lambda_i \in \mathbb{C}; i = 1, \dots, n.$$
 Nesta base, os vetores são CANÔNICOS:
$$v_1 = (1, 0, \dots, 0) = e_1; v_2 = (0, 1, \dots, 0) = e_2;$$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$
$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

$$\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$$

$$\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI}$$

$$\Rightarrow \beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} ; \forall \lambda_i \in \mathbb{C}; i = 1, \dots, n.$$
 Nesta base, os vetores são CANÔNICOS:
$$v_1 = (1, 0, \dots, 0) = e_1; v_2 = (0, 1, \dots, 0) = e_2; \dots;$$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$
$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

$$\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$$

$$\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI}$$

$$\Rightarrow \beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} ; \forall \lambda_i \in \mathbb{C}; i = 1, \dots, n.$$
 Nesta base, os vetores são CANÔNICOS:
$$v_1 = (1, 0, \dots, 0) = e_1; v_2 = (0, 1, \dots, 0) = e_2; \dots; v_n = (0, 0, \dots, 1)$$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$
$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

$$\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$$

$$\sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI}$$

$$\Rightarrow \beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} ; \forall \lambda_i \in \mathbb{C}; i = 1, \dots, n.$$
 Nesta base, os vetores são CANÔNICOS:
$$v_1 = (1, 0, \dots, 0) = e_1; v_2 = (0, 1, \dots, 0) = e_2; \dots; v_n = (0, 0, \dots, 1) = e_n$$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$ $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ $\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \in \sum_{i=1}^n \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI}$ $\Rightarrow \beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\} \; ; \; \forall \lambda_i \in \mathbb{C}; \; i = 1, \dots, n.$ Nesta base, os vetores são CANÔNICOS: $v_1 = (1, 0, \dots, 0) = e_1; \; v_2 = (0, 1, \dots, 0) = e_2; \dots; v_n = (0, 0, \dots, 1) = e_n$ Portanto, $\beta_{\mathbb{C}^n} = \{e_1, e_2, \dots, e_n\}$

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$
 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$
 $\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$

$$\sum_{i=1}^{n} \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI}$$
$$\Rightarrow \beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}; \forall \lambda_i \in \mathbb{C}; i = 1, \dots, n.$$

Nesta base, os vetores são CANÔNICOS:

$$v_1 = (1, 0, \dots, 0) = e_1; v_2 = (0, 1, \dots, 0) = e_2; \dots; v_n = (0, 0, \dots, 1) = e_n$$

Portanto.

$$\beta_{\mathbb{C}^n} = \{e_1, e_2, \dots, e_n\}$$

é denominada BASE CANÔNICA do espaço vetorial complexo \mathbb{C}^n .

2.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{C}$
 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$
 $\Rightarrow \mathbb{C}^n = [(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)] \text{ e}$

$$\sum_{i=1}^{n} \lambda_i v_i = 0 = (0, 0, \dots, 0) \Leftrightarrow \lambda_1 = \dots = \lambda_n = 0 \Rightarrow \text{ os vetores são } \mathbf{LI}$$
$$\Rightarrow \beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}; \forall \lambda_i \in \mathbb{C}; i = 1, \dots, n.$$

Nesta base, os vetores são CANÔNICOS:

$$v_1 = (1, 0, \dots, 0) = e_1; v_2 = (0, 1, \dots, 0) = e_2; \dots; v_n = (0, 0, \dots, 1) = e_n$$

Portanto.

$$\beta_{\mathbb{C}^n} = \{e_1, e_2, \dots, e_n\}$$

é denominada BASE CANÔNICA do espaço vetorial complexo \mathbb{C}^n .

Bases Canônicas

3. $\mathcal{V} = \mathbb{C}^n$ sobre $\mathbb{K} = \mathbb{R}$

Bases Canônicas

3.
$$V = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u\in\mathbb{C}^n\Rightarrow$$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) =$$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0)$$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0)$$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$.

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} .

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares:

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, ..., n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: u =

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, ..., n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0)$

$$u = (a_1 + b_1 i)(1, 0, \ldots, 0)$$

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, ..., n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares:

 $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0)$

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1)$

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = (a_1 + b_1 i)(a_1 + b_2 i)(a_2 + b_2 i)(a_2 + b_2 i)(a_1 + b_2 i)(a_2 + b_2 i)(a_2 + b_2 i)(a_1 + b_2 i)(a_2 + b_2 i)($

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0)$

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0)$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0)$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0)$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1)$

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1)$

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i; a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + a_2(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + a_n(0, 0, \dots, 1) + a_n(0, 0, \dots, 1)$

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0)$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i; a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0)$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0) + a_2(0, 1, \dots, 0)$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i; a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2(0, i, \dots, 0)$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2(0, i, \dots, 0) + \dots + a_n(0, 0, \dots, 1)$

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i; a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2(0, i, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n(0, 0, \dots, i)$

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

 $\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$ Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2(0, i, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n(0, 0, \dots, i); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i; a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2(0, i, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n(0, 0, \dots, i); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $\mathbb{C}^n = \underbrace{(1, 0, \dots, 0)}_{:}$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i; a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2(0, i, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n(0, 0, \dots, i); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $\mathbb{C}^n = \underbrace{(1, 0, \dots, 0)}_{0, 0, \dots, i}; \underbrace{(i, 0, \dots, 0)}_{0, 0, \dots, i}; \underbrace{(i, 0, \dots, 0)}_{0, 0, \dots, i}; \underbrace{(i, 0, \dots, 0)}_{0, \dots, i}; \underbrace{(i, 0, \dots,$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i; a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2(0, i, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n(0, 0, \dots, i); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $\mathbb{C}^n = \underbrace{(1, 0, \dots, 0); (0, 1, \dots, 0); (0, 1, \dots, 0)}_{e_1}; \underbrace{(i, 0, \dots, 0); (0, 1, \dots, 0); (0, 1, \dots, 0);}_{e_2}; \underbrace{(i, 0, \dots, 0); (0, 1, \dots, 0);}_{e_3}; \underbrace{(i, 0, \dots, 0);}_{e_3}$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i; a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2(0, i, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n(0, 0, \dots, i); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $\mathbb{C}^n = \underbrace{(1, 0, \dots, 0);}_{e_1} \underbrace{(i, 0, \dots, 0);}_{e_2} \underbrace{(0, 1, \dots, 0);}_{e_3} \underbrace{(0, i, \dots, 0);}_{e_4}$

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i; a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2(0, i, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n(0, 0, \dots, i); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $\mathbb{C}^n = \underbrace{[(1, 0, \dots, 0); (i, 0, \dots, 0); (0, 1, \dots, 0); (0, i, \dots, 0); (0, 0, \dots, i)]}_{e_2} \underbrace{(i, 0, \dots, 0); (0, 1, \dots, 0); (0, i, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, i); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, i); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, i); (0, 0, \dots, i); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, i$

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i; a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2(0, i, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n(0, 0, \dots, i); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $\mathbb{C}^n = \underbrace{[(1, 0, \dots, 0); (i, 0, \dots, 0); (0, 1, \dots, 0); (0, i, \dots, 0); (0, 0, \dots, i)]}_{e_1} \underbrace{(i, 0, \dots, 0); (i, 0, \dots, 0); (0, 1, \dots, 0); (0, 1, \dots, 0); (0, 0, \dots, i)}_{e_2} \underbrace{(0, 1, \dots, 0); (0, 1, \dots, 0); (0, 0, \dots, i)}_{e_2} \underbrace{(0, 1, \dots, 0); (0, 1, \dots, 0); (0, 0, \dots, i)}_{e_2} \underbrace{(0, 0, \dots, 0);$

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i; a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2(0, i, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n(0, 0, \dots, i); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $\mathbb{C}^n = \underbrace{[(1, 0, \dots, 0); (i, 0, \dots, 0); (0, 1, \dots, 0); (0, i, \dots, 0); (0, 0, \dots, 1); (0, 0, \dots, i)]}_{e_1} \underbrace{(0, 0, \dots, i)}_{e_2} \underbrace{(0, 1, \dots, 0); (0, i, \dots, 0); (0, i, \dots, 0); (0, 0, \dots, i)}_{e_2} \underbrace{(0, 1, \dots, 0); (0, 0, \dots, 1); (0, 0, \dots, i)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_$

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2(0, i, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n(0, 0, \dots, i); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $\mathbb{C}^n = \underbrace{[(1, 0, \dots, 0); (i, 0, \dots, 0); (0, 1, \dots, 0); (0, i, \dots, 0); (0, 0, \dots, 1); (0, 0, \dots, i)]}_{e_2} \underbrace{(0, 1, \dots, 0); (0, 1, \dots, 0); (0, 1, \dots, 0); (0, 0, \dots, 1); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 1); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0); (0, 0, \dots, 0)}_{e_2n} \underbrace{(0, 0, \dots$

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i$; $a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2(0, i, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n(0, 0, \dots, i)$; $\forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $\mathbb{C}^n = \underbrace{[(1, 0, \dots, 0); (i, 0, \dots, 0); (0, 1, \dots, 0); (0, i, \dots, 0); \dots; (0, 0, \dots, 1); (0, 0, \dots, i)]}_{e_1} \underbrace{(0, 0, \dots, 0); (0, 1, \dots, 0); (0, i, \dots, 0); \dots; (0, 0, \dots, i)}_{e_2} \underbrace{(0, 1, \dots, 0); (0, i, \dots, 0); \dots; (0, 0, \dots, i)}_{e_2} \underbrace{(0, 0, \dots, 0); \dots; (0, 0, \dots, i)}_{e_2} \underbrace{(0, 1, \dots, 0); \dots; (0, 0, \dots, i)}_{e_2} \underbrace{($

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i; a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2(0, i, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n(0, 0, \dots, i); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $\mathbb{C}^n = \underbrace{[(1, 0, \dots, 0); (i, 0, \dots, 0); (0, 1, \dots, 0); (0, i, \dots, 0); \dots; (0, 0, \dots, 1); (0, 0, \dots, i)]}_{e_1} \underbrace{(0, 0, \dots, i)}_{e_2} \underbrace{(0, 1, \dots, 0); (0, i, \dots, 0); \dots; (0, 0, \dots, 1); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, i)}_{e_2n} \underbrace{($

Bases Canônicas

3.
$$\mathcal{V} = \mathbb{C}^n$$
 sobre $\mathbb{K} = \mathbb{R}$

$$\forall u \in \mathbb{C}^n \Rightarrow u = (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$
 Observe que neste caso, $x_i \in \mathbb{C}$; $\forall i = 1, \dots, n \Rightarrow x_i = a_i + b_i i; a_i, b_i \in \mathbb{R}$. Então, x_i não pode ser um escalar no corpo \mathbb{R} . Porém, como $a_i, b_i \in \mathbb{K} = \mathbb{R}$ podem ser os escalares: $u = (a_1 + b_1 i)(1, 0, \dots, 0) + (a_2 + b_2 i)(0, 1, \dots, 0) + \dots + (a_n + b_n i)(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1 i(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2 i(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n i(0, 0, \dots, 1); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $u = a_1(1, 0, \dots, 0) + b_1(i, 0, \dots, 0) + a_2(0, 1, \dots, 0) + b_2(0, i, \dots, 0) + \dots + a_n(0, 0, \dots, 1) + b_n(0, 0, \dots, i); \forall a_i, b_i \in \mathbb{K} = \mathbb{R}$ $\mathbb{C}^n = \underbrace{[(1, 0, \dots, 0); (i, 0, \dots, 0); (0, 1, \dots, 0); (0, i, \dots, 0); \dots; (0, 0, \dots, 1); (0, 0, \dots, i)]}_{e_1} \underbrace{(0, 0, \dots, i)}_{e_2} \underbrace{(0, 1, \dots, 0); (0, i, \dots, 0); \dots; (0, 0, \dots, 1); (0, 0, \dots, i)}_{e_2n} \underbrace{(0, 0, \dots, i)}_{e_2n} \underbrace{($

4.
$$\mathcal{V} = \mathcal{M}_n(\mathbb{R})$$
; então, $\forall A \in \mathcal{M}_n(\mathbb{R})$; $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$

4.
$$\mathcal{V} = \mathcal{M}_n(\mathbb{R})$$
; então, $\forall A \in \mathcal{M}_n(\mathbb{R})$; $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$

$$A = a_{11} \underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{C}$$

4.
$$V = \mathcal{M}_{n}(\mathbb{R}); \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{R}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$A = a_{11} \underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{1}} + a_{12} \underbrace{\begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}}$$

4.
$$V = \mathcal{M}_{n}(\mathbb{R}); \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{R}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$A = a_{11} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + \dots + a_{nn} \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

4.
$$V = \mathcal{M}_{n}(\mathbb{R}); \text{ então, } \forall A \in \mathcal{M}_{n}(\mathbb{R}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$A = a_{11} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + \dots + a_{nn} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

4.
$$V = \mathcal{M}_{n}(\mathbb{R}); \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{R}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$A = a_{11} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + \dots + a_{nn} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathcal{M}_{n}(\mathbb{R}) = [e_{1}; e_{2}; \dots; e_{n2}].$$

4.
$$V = \mathcal{M}_{n}(\mathbb{R}); \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{R}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$A = a_{11} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + \dots + a_{nn} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathcal{M}_{n}(\mathbb{R}) = [e_{1}; e_{2}; \dots; e_{n^{2}}], e \{e_{1}; e_{2}; \dots; e_{n^{2}}\} \text{ é LI.}$$

4.
$$V = \mathcal{M}_{n}(\mathbb{R}); \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{R}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$A = a_{11} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + \dots + a_{nn} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathcal{M}_{n}(\mathbb{R}) = [e_{1}; e_{2}; \dots; e_{n^{2}}], e \{e_{1}; e_{2}; \dots; e_{n^{2}}\} \text{ \'e LI}.$$

$$\beta_{\mathcal{M}_n(\mathbb{R})} = \{e_1, e_2, \ldots, e_{n^2}\}$$

Bases Canônicas

4.
$$V = \mathcal{M}_{n}(\mathbb{R})$$
; então, $\forall A \in \mathcal{M}_{n}(\mathbb{R})$; $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$

$$A = a_{11} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + \dots + a_{nn} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathcal{M}_{n}(\mathbb{R}) = [e_{1}; e_{2}; \dots; e_{n2}], e_{1} \in \{e_{1}; e_{2}; \dots; e_{n2}\} \in \mathsf{LI}.$$

$$\beta_{\mathcal{M}_n(\mathbb{R})} = \{e_1, e_2, \ldots, e_{n^2}\}$$

é denominada BASE CANÔNICA do espaço vetorial real $\mathcal{M}_n(\mathbb{R})$.

Bases Canônicas

4.
$$V = \mathcal{M}_{n}(\mathbb{R})$$
; então, $\forall A \in \mathcal{M}_{n}(\mathbb{R})$; $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$

$$A = a_{11} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + \dots + a_{nn} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathcal{M}_{n}(\mathbb{R}) = [e_{1}; e_{2}; \dots; e_{n2}], e_{1} \in \{e_{1}; e_{2}; \dots; e_{n2}\} \in \mathsf{LI}.$$

$$\beta_{\mathcal{M}_n(\mathbb{R})} = \{e_1, e_2, \ldots, e_{n^2}\}$$

é denominada BASE CANÔNICA do espaço vetorial real $\mathcal{M}_n(\mathbb{R})$.

5.
$$\mathcal{V} = \mathcal{M}_n(\mathbb{C})$$
;

5.
$$\mathcal{V} = \mathcal{M}_n(\mathbb{C}); \mathbb{K} = \mathbb{C}; \text{ então}, \ \forall A \in \mathcal{M}_n(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

5.
$$\mathcal{V} = \mathcal{M}_n(\mathbb{C}); \mathbb{K} = \mathbb{C}; \text{ então}, \forall A \in \mathcal{M}_n(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$A = a_{11} \underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{a_{1}}$$

5.
$$V = \mathcal{M}_{n}(\mathbb{C}); \mathbb{K} = \mathbb{C}; \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$A = a_{11} \underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{1}} + a_{12} \underbrace{\begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{1}}$$

5.
$$V = \mathcal{M}_{n}(\mathbb{C}); \mathbb{K} = \mathbb{C}; \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$A = a_{11} \underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{1}} + a_{12} \underbrace{\begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \ldots + \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}}_{e_{2}}$$

5.
$$V = \mathcal{M}_{n}(\mathbb{C}); \mathbb{K} = \mathbb{C}; \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{C}); A =$$

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$A = a_{11} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + \dots + a_{nn} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

5.
$$V = \mathcal{M}_{n}(\mathbb{C}); \mathbb{K} = \mathbb{C}; \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$A = a_{11} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + \dots + a_{nn} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathcal{M}_{n}(\mathbb{C}) = [e_{1}; e_{2}; \dots; e_{n2}],$$

Bases Canônicas

5.
$$V = \mathcal{M}_{n}(\mathbb{C}); \mathbb{K} = \mathbb{C}; \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{C}); A =$$

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$A = a_{11} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + \dots + a_{nn} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathcal{M}_{n}(\mathbb{C}) = [e_{1}; e_{2}; \dots; e_{n2}], e_{1} \{e_{1}; e_{2}; \dots; e_{n2}\} \notin LI.$$

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Bases Canônicas

5.
$$V = \mathcal{M}_{n}(\mathbb{C}); \mathbb{K} = \mathbb{C}; \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{C}); A =$$

$$\begin{cases}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{cases}$$

$$A = a_{11} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + \dots + a_{nn} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathcal{M}_{n}(\mathbb{C}) = [e_{1}; e_{2}; \dots; e_{n^{2}}], e \{e_{1}; e_{2}; \dots; e_{n^{2}}\} \text{ é LI}.$$

$$\beta_{\mathcal{M}_{n}}(\mathbb{C}) = \{e_{1}, e_{2}, \dots, e_{n^{2}}\}$$

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Bases Canônicas

5.
$$V = \mathcal{M}_{n}(\mathbb{C}); \mathbb{K} = \mathbb{C}; \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$A = a_{11} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + \dots + a_{nn} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathcal{M}_{n}(\mathbb{C}) = [e_{1}; e_{2}; \dots; e_{n^{2}}], e \{e_{1}; e_{2}; \dots; e_{n^{2}}\} \text{ \'e LI}.$$

$$\beta_{\mathcal{M}_n(\mathbb{C})} = \{e_1, e_2, \ldots, e_{n^2}\}$$

é denominada BASE CANÔNICA do espaço vetorial complexo $\mathcal{M}_n(\mathbb{C})$ sobre $\mathbb{K}=\mathbb{C}$.

Bases Canônicas

5.
$$V = \mathcal{M}_{n}(\mathbb{C}); \mathbb{K} = \mathbb{C}; \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$A = a_{11} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + \dots + a_{nn} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathcal{M}_{n}(\mathbb{C}) = [e_{1}; e_{2}; \dots; e_{n^{2}}], e \{e_{1}; e_{2}; \dots; e_{n^{2}}\} \text{ \'e LI}.$$

$$\beta_{\mathcal{M}_n(\mathbb{C})} = \{e_1, e_2, \ldots, e_{n^2}\}$$

é denominada BASE CANÔNICA do espaço vetorial complexo $\mathcal{M}_n(\mathbb{C})$ sobre $\mathbb{K}=\mathbb{C}$.

6.
$$\mathcal{V} = \mathcal{M}_n(\mathbb{C})$$
;

6.
$$\mathcal{V} = \mathcal{M}_n(\mathbb{C}); \mathbb{K} = \mathbb{R};$$
 então, $\forall A \in \mathcal{M}_n(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} =$

6.
$$\mathcal{V} = \mathcal{M}_n(\mathbb{C}); \mathbb{K} = \mathbb{R}; \text{ então, } \forall A \in \mathcal{M}_n(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$=a_1\underbrace{\begin{pmatrix}1&0&\cdots&0\\0&0&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&0&0\end{pmatrix}}_{e_1}$$

6.
$$V = \mathcal{M}_{n}(\mathbb{C}); \mathbb{K} = \mathbb{R}; \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} =$$

$$= a_{1} \underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{1}} + b_{1} \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}}$$

6.
$$V = \mathcal{M}_{n}(\mathbb{C}); \mathbb{K} = \mathbb{R}; \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} =$$

$$= a_{1} \underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{1}} + b_{1} \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + \underbrace{\begin{pmatrix} i & 0 &$$

6.
$$V = \mathcal{M}_{n}(\mathbb{C}); \mathbb{K} = \mathbb{R}; \text{ então, } \forall A \in \mathcal{M}_{n}(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} =$$

$$= a_{1} \underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{1}} + b_{1} \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + a_{n^{2}} \underbrace{\begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{e_{2n^{2}-1}} + b_{n^{2}} \underbrace{\begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & i \end{pmatrix}}_{e_{2n^{2}}}$$

6.
$$V = \mathcal{M}_{n}(\mathbb{C}); \mathbb{K} = \mathbb{R}; \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} =$$

$$= a_{1} \underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{1}} + b_{1} \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + a_{n^{2}} \underbrace{\begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{e_{2n^{2}-1}} + b_{n^{2}} \underbrace{\begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & i \end{pmatrix}}_{e_{2n^{2}}}$$

$$\mathcal{M}_{n}(\mathbb{C}) == [e_{1}; e_{2}; \dots; e_{2n^{2}}]$$

6.
$$V = \mathcal{M}_{n}(\mathbb{C}); \mathbb{K} = \mathbb{R}; \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} =$$

$$= a_{1} \underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{1}} + b_{1} \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + a_{n^{2}} \underbrace{\begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{e_{2n^{2}-1}} + b_{n^{2}} \underbrace{\begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & i \end{pmatrix}}_{e_{2n^{2}}}$$

$$\mathcal{M}_{n}(\mathbb{C}) == [e_{1}; e_{2}; \dots; e_{2n^{2}}] e_{1} e_{1}; e_{2}; \dots; e_{2n^{2}} e_{2n^{2}} \in \mathsf{LI}.$$

6.
$$V = \mathcal{M}_{n}(\mathbb{C}); \mathbb{K} = \mathbb{R}; \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} =$$

$$= a_{1} \underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{1}} + b_{1} \underbrace{\begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{e_{2}} + \dots + a_{n^{2}} \underbrace{\begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{e_{2n^{2}-1}} + b_{n^{2}} \underbrace{\begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & i \end{pmatrix}}_{e_{2n^{2}}}$$

$$\mathcal{M}_{n}(\mathbb{C}) == [e_{1}; e_{2}; \dots; e_{2n^{2}}] e_{1} e_{1}; e_{2}; \dots; e_{2n^{2}} e_{2n^{2}} \in \mathsf{LI}.$$

$$\beta_{\mathcal{M}_n(\mathbb{C})} = \{e_1, e_2, \dots, e_{2n^2}\}$$

Bases Canônicas

6.
$$V = \mathcal{M}_{n}(\mathbb{C}); \mathbb{K} = \mathbb{R}; \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} =$$

$$= a_{1} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + b_{1} \begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + \dots + a_{n^{2}} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix} + b_{n^{2}} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathcal{M}_{n}(\mathbb{C}) == [e_{1}; e_{2}; \dots; e_{2n^{2}}] e_{1} \{e_{1}; e_{2}; \dots; e_{2n^{2}}\} \notin LI.$$

$$\beta_{\mathcal{M}_n(\mathbb{C})} = \{e_1, e_2, \dots, e_{2n^2}\}$$

é denominada BASE CANÔNICA do espaço vetorial real $\mathcal{M}_n(\mathbb{C})$ sobre $\mathbb{K}=\mathbb{R}$.

Bases Canônicas

6.
$$V = \mathcal{M}_{n}(\mathbb{C}); \mathbb{K} = \mathbb{R}; \text{ então}, \forall A \in \mathcal{M}_{n}(\mathbb{C}); A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} =$$

$$= a_{1} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + b_{1} \begin{pmatrix} i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} + \dots + a_{n^{2}} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix} + b_{n^{2}} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & i \end{pmatrix}$$

$$\mathcal{M}_{n}(\mathbb{C}) == [e_{1}; e_{2}; \dots; e_{2n^{2}}] \in \{e_{1}; e_{2}; \dots; e_{2n^{2}}\} \text{ \'e LI.}$$

 $\beta_{M_n(\mathbb{C})} = \{e_1, e_2, \dots, e_{2n^2}\}$

é denominada BASE CANÔNICA do espaço vetorial real $\mathcal{M}_n(\mathbb{C})$ sobre $\mathbb{K}=\mathbb{R}$.

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{R}) \Rightarrow$

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{R}) \Rightarrow p(t) =$

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_n(\mathbb{R}) \Rightarrow p(t) = a_0 + a_0$

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_n(\mathbb{R}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t + \ldots + a$

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_n(\mathbb{R}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n$

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_n(\mathbb{R}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + \ldots$

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_n(\mathbb{R}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + a_1(t)$

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_n(\mathbb{R}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t)$

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_n(\mathbb{R}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_n(\mathbb{R}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{R}) = [1];$

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_n(\mathbb{R}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{R}) = [1; t];$

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_n(\mathbb{R}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{R}) = \underbrace{1}_{e_1}; \underbrace{t}_{e_2}; \ldots;$

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_n(\mathbb{R}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{R}) = \underbrace{1}_{e_1}; \underbrace{t}_{e_2}; \ldots; \underbrace{t^n}_{e_{n+1}}$

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_n(\mathbb{R}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{R}) = \underbrace{1}_{e_1}; \underbrace{t}_{e_2}; \ldots; \underbrace{t}_{e_{n+1}} = \underbrace{1}_{e_{n+1}} \in \mathsf{LI}.$

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \ldots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \ldots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \ldots; \underbrace{t^{n}}_{e_{n+1}} \in \{e_{1}, e_{2}, \ldots, e_{n+1}\} \in \mathsf{LI}.$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \ldots, e_{n+1}\}$

Bases Canônicas

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \dots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \dots; \underbrace{t^{n}}_{e_{n+1}}] \in \{e_{1}, e_{2}, \dots, e_{n+1}\} \in \mathsf{LI}.$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \dots, e_{n+1}\}$

Bases Canônicas

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \dots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \dots; \underbrace{t^{n}}_{e_{n+1}} \text{ e } \{e_{1}, e_{2}, \dots, e_{n+1}\} \text{ é LI.}$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \dots, e_{n+1}\}$

8.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$

Bases Canônicas

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \dots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \dots; \underbrace{t}_{e_{n+1}}^{n} e \{e_{1}, e_{2}, \dots, e_{n+1}\} \text{ \'e LI.}$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \dots, e_{n+1}\}$

8.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$ $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow$

Bases Canônicas

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \dots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \dots; \underbrace{t^{n}}_{e_{n+1}}] \in \{e_{1}, e_{2}, \dots, e_{n+1}\} \text{ \'e LI.}$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \dots, e_{n+1}\}$

8.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$ $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) =$

Bases Canônicas

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \dots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \dots; \underbrace{t}_{e_{n+1}}^{n} e \{e_{1}, e_{2}, \dots, e_{n+1}\} \text{ \'e LI.}$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \dots, e_{n+1}\}$

8.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$ $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 +$

Bases Canônicas

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \dots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \dots; \underbrace{t^{n}}_{e_{n+1}} = \{e_{1}, e_{2}, \dots, e_{n+1}\} \text{ \'e LI.}$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \dots, e_{n+1}\}$

8.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots +$

Bases Canônicas

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \dots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \dots; \underbrace{t}_{e_{n+1}}^{n} e \{e_{1}, e_{2}, \dots, e_{n+1}\} \text{ \'e LI.}$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \dots, e_{n+1}\}$

8.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n$

Bases Canônicas

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \dots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \dots; \underbrace{t^{n}}_{e_{n+1}} = \{e_{1}, e_{2}, \dots, e_{n+1}\} \text{ \'e LI.}$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \dots, e_{n+1}\}$

8.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_0(1)$

Bases Canônicas

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \dots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \dots; \underbrace{t^{n}}_{e_{n+1}}] \in \{e_{1}, e_{2}, \dots, e_{n+1}\} \text{ \'e LI.}$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \dots, e_{n+1}\}$

8.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + a_1($

Bases Canônicas

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \dots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \dots; \underbrace{t^{n}}_{e_{n+1}}] \in \{e_{1}, e_{2}, \dots, e_{n+1}\} \text{ \'e LI.}$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \dots, e_{n+1}\}$

8.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$ $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t) + a$

Bases Canônicas

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \ldots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \ldots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \ldots; \underbrace{t^{n}}_{e_{n+1}} = \{e_{1}, e_{2}, \ldots, e_{n+1}\} \in \mathsf{LI}.$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \ldots, e_{n+1}\}$

8.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1t + \ldots + a_nt^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$

Bases Canônicas

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \dots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \dots; \underbrace{t}_{e_{n+1}}^{n}] \in \{e_{1}, e_{2}, \dots, e_{n+1}\} \in \mathsf{LI}.$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \dots, e_{n+1}\}$

8.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{C}) = \underbrace{1}_{\mathbb{C}}$;

Bases Canônicas

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \dots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \dots; \underbrace{t^{n}}_{e_{n+1}}] \in \{e_{1}, e_{2}, \dots, e_{n+1}\} \text{ \'e LI.}$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \dots, e_{n+1}\}$

8.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{C}) = \underbrace{1}_{a_1}; \underbrace{t}_{a_2};$

Bases Canônicas

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \dots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \dots; \underbrace{t^{n}}_{e_{n+1}}] \in \{e_{1}, e_{2}, \dots, e_{n+1}\} \text{ \'e LI.}$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \dots, e_{n+1}\}$

8.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{C}) = \underbrace{1}_{\mathbb{C}}; \underbrace{t}_{\mathbb{C}}; \ldots;$

Bases Canônicas

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \dots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \dots; \underbrace{t^{n}}_{e_{n+1}}] \in \{e_{1}, e_{2}, \dots, e_{n+1}\} \text{ \'e LI.}$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \dots, e_{n+1}\}$

8.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{C}) = \underbrace{1}_{e_1}; \underbrace{t}_{e_2}; \ldots; \underbrace{t}_{e_{n+1}}^n$

Bases Canônicas

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \dots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = \underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \dots; \underbrace{t^{n}}_{e_{n+1}}] \in \{e_{1}, e_{2}, \dots, e_{n+1}\} \in \mathsf{LI}.$
 $\beta_{\mathcal{P}_{n}(\mathbb{R})} = \{e_{1}, e_{2}, \dots, e_{n+1}\}$

8.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{C}) = \underbrace{1}_{e_1}; \underbrace{t}_{e_2}; \ldots; \underbrace{t}_{e_{n+1}}^n \in \{e_1, e_2, \ldots, e_{n+1}\} \in \mathsf{LI}.$

7.
$$\mathcal{V} = \mathcal{P}_{n}(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{R}) \Rightarrow p(t) = a_{0} + a_{1}t + \ldots + a_{n}t^{n} = a_{0}(1) + a_{1}(t) + \ldots + a_{n}(t^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{R}) = [\underbrace{1}_{e_{1}}; \underbrace{t}_{e_{2}}; \ldots; \underbrace{t^{n}}_{e_{n+1}}] \in \{e_{1}, e_{2}, \ldots, e_{n+1}\} \text{ \'e LI.}$
 $\beta_{\mathcal{P}}(\mathbb{R}) = \{e_{1}, e_{2}, \ldots, e_{n+1}\}$

8.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{C}) = \underbrace{1}_{e_1}; \underbrace{t}_{e_2}; \ldots; \underbrace{t}_{e_{n+1}}^n \in \{e_1, e_2, \ldots, e_{n+1}\} \in \mathsf{LI}.$

$$\beta_{\mathcal{P}_n(\mathbb{C})} = \{e_1, e_2, \dots, e_{n+1}\}$$

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_n(\mathbb{R}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{R}) = [\underbrace{1}_{e_1}; \underbrace{t}_{e_2}; \ldots; \underbrace{t^n}_{e_{n+1}}] \in \{e_1, e_2, \ldots, e_{n+1}\} \in \mathsf{LI}.$
 $\beta_{\mathcal{P}_n(\mathbb{R})} = \{e_1, e_2, \ldots, e_{n+1}\}$

é denominada BASE CANÔNICA do espaço vetorial real $\mathcal{P}_n(\mathbb{R})$.

8.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{C}) = \underbrace{1}_{e_1}; \underbrace{t}_{e_2}; \ldots; \underbrace{t}_{e_{n+1}}^n \in \{e_1, e_2, \ldots, e_{n+1}\} \in \mathsf{LI}.$

$$\beta_{\mathcal{P}_n(\mathbb{C})} = \{e_1, e_2, \dots, e_{n+1}\}$$

é denominada BASE CANÔNICA do espaço vetorial complexo $\mathcal{P}_n(\mathbb{C})$ sobre o corpo $\mathbb{K} = \mathbb{C}$.

7.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$

 $\forall p(t) \in \mathcal{P}_n(\mathbb{R}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{R}) = [\underbrace{1}_{e_1}; \underbrace{t}_{e_2}; \ldots; \underbrace{t^n}_{e_{n+1}}] \in \{e_1, e_2, \ldots, e_{n+1}\} \in \mathsf{LI}.$
 $\beta_{\mathcal{P}_n(\mathbb{R})} = \{e_1, e_2, \ldots, e_{n+1}\}$

é denominada BASE CANÔNICA do espaço vetorial real $\mathcal{P}_n(\mathbb{R})$.

8.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$
; sobre o corpo $\mathbb{K} = \mathbb{C}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n = a_0(1) + a_1(t) + \ldots + a_n(t^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{C}) = \underbrace{1}_{e_1}; \underbrace{t}_{e_2}; \ldots; \underbrace{t}_{e_{n+1}}) \in \{e_1, e_2, \ldots, e_{n+1}\} \in \mathsf{LI}.$

$$\beta_{\mathcal{P}_n(\mathbb{C})} = \{e_1, e_2, \dots, e_{n+1}\}$$

é denominada BASE CANÔNICA do espaço vetorial complexo $\mathcal{P}_n(\mathbb{C})$ sobre o corpo $\mathbb{K} = \mathbb{C}$.

9.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$

9.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$ $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow$

9.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$ $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) =$

9.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$ $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_$

9.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots +$

9.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n$; $a_0, a_1, \ldots, a_n \in \mathbb{C}$

9.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n$; $a_0, a_1, \ldots, a_n \in \mathbb{C}$
 $\Rightarrow p(t) = (c_1 + d_1 i).1 +$

9.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n$; $a_0, a_1, \ldots, a_n \in \mathbb{C}$
 $\Rightarrow p(t) = (c_1 + d_1 i).1 + (c_2 + d_2 i).t +$

9.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n$; $a_0, a_1, \ldots, a_n \in \mathbb{C}$
 $\Rightarrow p(t) = (c_1 + d_1 i).1 + (c_2 + d_2 i).t + \ldots +$

9.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n; a_0, a_1, \ldots, a_n \in \mathbb{C}$
 $\Rightarrow p(t) = (c_1 + d_1 i).1 + (c_2 + d_2 i).t + \ldots + (c_{n+1} + d_{n+1} i).t^n; \forall c_i, d_i \in \mathbb{R}$

9.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n; a_0, a_1, \ldots, a_n \in \mathbb{C}$
 $\Rightarrow p(t) = (c_1 + d_1 i).1 + (c_2 + d_2 i).t + \ldots + (c_{n+1} + d_{n+1} i).t^n; \forall c_i, d_i \in \mathbb{R}$
 $\Rightarrow p(t) = c_1(1) + d_1(i) +$

9.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n; a_0, a_1, \ldots, a_n \in \mathbb{C}$
 $\Rightarrow p(t) = (c_1 + d_1 i).1 + (c_2 + d_2 i).t + \ldots + (c_{n+1} + d_{n+1} i).t^n; \forall c_i, d_i \in \mathbb{R}$
 $\Rightarrow p(t) = c_1(1) + d_1(i) + c_2(t) + d_2(it) +$

9.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n; a_0, a_1, \ldots, a_n \in \mathbb{C}$
 $\Rightarrow p(t) = (c_1 + d_1 i).1 + (c_2 + d_2 i).t + \ldots + (c_{n+1} + d_{n+1} i).t^n; \forall c_i, d_i \in \mathbb{R}$
 $\Rightarrow p(t) = c_1(1) + d_1(i) + c_2(t) + d_2(it) + \ldots +$

9.
$$V = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n; a_0, a_1, \ldots, a_n \in \mathbb{C}$
 $\Rightarrow p(t) = (c_1 + d_1 i).1 + (c_2 + d_2 i).t + \ldots + (c_{n+1} + d_{n+1} i).t^n; \forall c_i, d_i \in \mathbb{R}$
 $\Rightarrow p(t) = c_1(1) + d_1(i) + c_2(t) + d_2(it) + \ldots + c_{n+1}(t^n) + d_{n+1}(it^n)$

9.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n; a_0, a_1, \ldots, a_n \in \mathbb{C}$
 $\Rightarrow p(t) = (c_1 + d_1 i).1 + (c_2 + d_2 i).t + \ldots + (c_{n+1} + d_{n+1} i).t^n; \forall c_i, d_i \in \mathbb{R}$
 $\Rightarrow p(t) = c_1(1) + d_1(i) + c_2(t) + d_2(it) + \ldots + c_{n+1}(t^n) + d_{n+1}(it^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{C}) = \underbrace{1}_{c_i};$

9.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1 t + \ldots + a_n t^n; a_0, a_1, \ldots, a_n \in \mathbb{C}$
 $\Rightarrow p(t) = (c_1 + d_1 i).1 + (c_2 + d_2 i).t + \ldots + (c_{n+1} + d_{n+1} i).t^n; \forall c_i, d_i \in \mathbb{R}$
 $\Rightarrow p(t) = c_1(1) + d_1(i) + c_2(t) + d_2(it) + \ldots + c_{n+1}(t^n) + d_{n+1}(it^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{C}) = \underbrace{1}_{c_1}; \underbrace{i}_{c_2};$

9.
$$V = \mathcal{P}_{n}(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{C}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n}; a_{0}, a_{1}, \dots, a_{n} \in \mathbb{C}$
 $\Rightarrow p(t) = (c_{1} + d_{1}i).1 + (c_{2} + d_{2}i).t + \dots + (c_{n+1} + d_{n+1}i).t^{n}; \forall c_{i}, d_{i} \in \mathbb{R}$
 $\Rightarrow p(t) = c_{1}(1) + d_{1}(i) + c_{2}(t) + d_{2}(it) + \dots + c_{n+1}(t^{n}) + d_{n+1}(it^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{C}) = \underbrace{1}_{e_{1}}; \underbrace{i}_{e_{2}}; \underbrace{t}_{e_{3}};$

9.
$$V = \mathcal{P}_{n}(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{C}) \Rightarrow p(t) = a_{0} + a_{1}t + \ldots + a_{n}t^{n}; a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$
 $\Rightarrow p(t) = (c_{1} + d_{1}i).1 + (c_{2} + d_{2}i).t + \ldots + (c_{n+1} + d_{n+1}i).t^{n}; \forall c_{i}, d_{i} \in \mathbb{R}$
 $\Rightarrow p(t) = c_{1}(1) + d_{1}(i) + c_{2}(t) + d_{2}(it) + \ldots + c_{n+1}(t^{n}) + d_{n+1}(it^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{C}) = \underbrace{1}_{c_{1}}; \underbrace{i}_{c_{2}}; \underbrace{t}_{c_{3}}; \underbrace{it}_{c_{4}};$

9.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_n(\mathbb{C}) \Rightarrow p(t) = a_0 + a_1t + \ldots + a_nt^n; a_0, a_1, \ldots, a_n \in \mathbb{C}$
 $\Rightarrow p(t) = (c_1 + d_1i).1 + (c_2 + d_2i).t + \ldots + (c_{n+1} + d_{n+1}i).t^n; \forall c_i, d_i \in \mathbb{R}$
 $\Rightarrow p(t) = c_1(1) + d_1(i) + c_2(t) + d_2(it) + \ldots + c_{n+1}(t^n) + d_{n+1}(it^n)$
 $\Rightarrow \mathcal{P}_n(\mathbb{C}) = \underbrace{1}_{c_1}; \underbrace{i}_{c_2}; \underbrace{t}_{c_3}; \underbrace{it}_{c_4}; \ldots;$

9.
$$V = \mathcal{P}_{n}(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{C}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n}; a_{0}, a_{1}, \dots, a_{n} \in \mathbb{C}$
 $\Rightarrow p(t) = (c_{1} + d_{1}i).1 + (c_{2} + d_{2}i).t + \dots + (c_{n+1} + d_{n+1}i).t^{n}; \forall c_{i}, d_{i} \in \mathbb{R}$
 $\Rightarrow p(t) = c_{1}(1) + d_{1}(i) + c_{2}(t) + d_{2}(it) + \dots + c_{n+1}(t^{n}) + d_{n+1}(it^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{C}) = \underbrace{1}_{e_{1}}; \underbrace{i}_{e_{2}}; \underbrace{t}_{e_{3}}; \underbrace{it}_{e_{4}}; \dots; \underbrace{t^{n}}_{e_{2(n+1)-1}};$

9.
$$V = \mathcal{P}_{n}(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{C}) \Rightarrow p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n}; a_{0}, a_{1}, \dots, a_{n} \in \mathbb{C}$
 $\Rightarrow p(t) = (c_{1} + d_{1}i).1 + (c_{2} + d_{2}i).t + \dots + (c_{n+1} + d_{n+1}i).t^{n}; \forall c_{i}, d_{i} \in \mathbb{R}$
 $\Rightarrow p(t) = c_{1}(1) + d_{1}(i) + c_{2}(t) + d_{2}(it) + \dots + c_{n+1}(t^{n}) + d_{n+1}(it^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{C}) = \underbrace{1}_{e_{1}}; \underbrace{i}_{e_{2}}; \underbrace{t}_{e_{3}}; \underbrace{it}_{e_{4}}; \dots; \underbrace{t^{n}}_{e_{2(n+1)-1}}; \underbrace{it^{n}}_{e_{2(n+1)}}]$

9.
$$V = \mathcal{P}_{n}(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{C}) \Rightarrow p(t) = a_{0} + a_{1}t + \ldots + a_{n}t^{n}; a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$
 $\Rightarrow p(t) = (c_{1} + d_{1}i).1 + (c_{2} + d_{2}i).t + \ldots + (c_{n+1} + d_{n+1}i).t^{n}; \forall c_{i}, d_{i} \in \mathbb{R}$
 $\Rightarrow p(t) = c_{1}(1) + d_{1}(i) + c_{2}(t) + d_{2}(it) + \ldots + c_{n+1}(t^{n}) + d_{n+1}(it^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{C}) = \underbrace{1}_{e_{1}}; \underbrace{i}_{e_{2}}; \underbrace{t}_{e_{3}}; \underbrace{it}_{e_{4}}; \ldots; \underbrace{t^{n}}_{e_{2(n+1)-1}}; \underbrace{it^{n}}_{e_{2(n+1)}} \in \{e_{1}, e_{2}, \ldots, e_{2(n+1)}\} \in \mathsf{LI}.$

9.
$$V = \mathcal{P}_{n}(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{C}) \Rightarrow p(t) = a_{0} + a_{1}t + \ldots + a_{n}t^{n}; a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$
 $\Rightarrow p(t) = (c_{1} + d_{1}i).1 + (c_{2} + d_{2}i).t + \ldots + (c_{n+1} + d_{n+1}i).t^{n}; \forall c_{i}, d_{i} \in \mathbb{R}$
 $\Rightarrow p(t) = c_{1}(1) + d_{1}(i) + c_{2}(t) + d_{2}(it) + \ldots + c_{n+1}(t^{n}) + d_{n+1}(it^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{C}) = [\underbrace{1}_{e_{1}}; \underbrace{i}_{e_{2}}; \underbrace{t}_{e_{3}}; \underbrace{it}_{e_{4}}; \ldots; \underbrace{t^{n}}_{e_{2(n+1)-1}}; \underbrace{it^{n}}_{e_{2(n+1)}}] \in \{e_{1}, e_{2}, \ldots, e_{2(n+1)}\}$ é LI.

$$\beta_{\mathcal{P}_{n}(\mathbb{C})} = \{e_{1}, e_{2}, \ldots, e_{2(n+1)}\}$$

9.
$$V = \mathcal{P}_{n}(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{C}) \Rightarrow p(t) = a_{0} + a_{1}t + \ldots + a_{n}t^{n}; a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$
 $\Rightarrow p(t) = (c_{1} + d_{1}i).1 + (c_{2} + d_{2}i).t + \ldots + (c_{n+1} + d_{n+1}i).t^{n}; \forall c_{i}, d_{i} \in \mathbb{R}$
 $\Rightarrow p(t) = c_{1}(1) + d_{1}(i) + c_{2}(t) + d_{2}(it) + \ldots + c_{n+1}(t^{n}) + d_{n+1}(it^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{C}) = \underbrace{1}_{e_{1}}; \underbrace{i}_{e_{2}}; \underbrace{t}_{e_{3}}; \underbrace{it}_{e_{4}}; \ldots; \underbrace{t^{n}}_{e_{2(n+1)-1}}; \underbrace{it^{n}}_{e_{2(n+1)}} \in \{e_{1}, e_{2}, \ldots, e_{2(n+1)}\}$ é LI.
 $\beta_{\mathcal{P}_{n}(\mathbb{C})} = \{e_{1}, e_{2}, \ldots, e_{2(n+1)}\}$

é denominada BASE CANÔNICA do espaço vetorial real $\mathcal{P}_n(\mathbb{C})$ sobre o corpo $\mathbb{K} = \mathbb{R}$.

9.
$$V = \mathcal{P}_{n}(\mathbb{C})$$
; sobre $\mathbb{K} = \mathbb{R}$
 $\forall p(t) \in \mathcal{P}_{n}(\mathbb{C}) \Rightarrow p(t) = a_{0} + a_{1}t + \ldots + a_{n}t^{n}; a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$
 $\Rightarrow p(t) = (c_{1} + d_{1}i).1 + (c_{2} + d_{2}i).t + \ldots + (c_{n+1} + d_{n+1}i).t^{n}; \forall c_{i}, d_{i} \in \mathbb{R}$
 $\Rightarrow p(t) = c_{1}(1) + d_{1}(i) + c_{2}(t) + d_{2}(it) + \ldots + c_{n+1}(t^{n}) + d_{n+1}(it^{n})$
 $\Rightarrow \mathcal{P}_{n}(\mathbb{C}) = \underbrace{1}_{e_{1}}; \underbrace{i}_{e_{2}}; \underbrace{t}_{e_{3}}; \underbrace{it}_{e_{4}}; \ldots; \underbrace{t^{n}}_{e_{2(n+1)-1}}; \underbrace{it^{n}}_{e_{2(n+1)}} \in \{e_{1}, e_{2}, \ldots, e_{2(n+1)}\}$ é LI.
 $\beta_{\mathcal{P}_{n}(\mathbb{C})} = \{e_{1}, e_{2}, \ldots, e_{2(n+1)}\}$

é denominada BASE CANÔNICA do espaço vetorial real $\mathcal{P}_n(\mathbb{C})$ sobre o corpo $\mathbb{K} = \mathbb{R}$.

Teorema da Invariância:

TEOREMA DA INVARIÂNCIA:

Seja \mathcal{V} um espaço vetorial, **finitamente gerado**, sobre o corpo \mathbb{K} .

TEOREMA DA INVARIÂNCIA:

Seja $\mathcal V$ um espaço vetorial, **finitamente gerado**, sobre o corpo $\mathbb K$. Então **duas bases** quaisquer de V têm o mesmo número de vetores.

TEOREMA DA INVARIÂNCIA:

Seja $\mathcal V$ um espaço vetorial, **finitamente gerado**, sobre o corpo $\mathbb K$. Então **duas bases** quaisquer de \mathcal{V} têm o mesmo número de vetores.

Isto é, sejam $S_1 = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$,

Seja V um espaco vetorial, finitamente gerado, sobre o corpo K. Então duas bases quaisquer de V têm o mesmo número de vetores.

Isto é, sejam $S_1 = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, e S_2 = \{u_1, u_2, \dots, u_m\}; m \in \mathbb{N}^*$ subconjuntos finitos de \mathcal{V} .

Seja V um espaço vetorial, finitamente gerado, sobre o corpo K. Então duas bases quaisquer de V têm o mesmo número de vetores.

Isto é, sejam $S_1 = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, e S_2 = \{u_1, u_2, \dots, u_m\}; m \in \mathbb{N}^*$ subconjuntos finitos de \mathcal{V} .

Se S_1 e S_2 formam uma BASE

Seja V um espaço vetorial, finitamente gerado, sobre o corpo K. Então duas bases quaisquer de \mathcal{V} têm o mesmo número de vetores.

Isto é, sejam $S_1 = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, e S_2 = \{u_1, u_2, \dots, u_m\}; m \in \mathbb{N}^*$ subconjuntos finitos de \mathcal{V} .

Se S_1 e S_2 formam uma BASE para o espaco vetorial \mathcal{V} , então m=n.

Seja V um espaço vetorial, finitamente gerado, sobre o corpo K. Então duas bases quaisquer de \mathcal{V} têm o mesmo número de vetores.

Isto é, sejam $S_1 = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, e S_2 = \{u_1, u_2, \dots, u_m\}; m \in \mathbb{N}^*$ subconjuntos finitos de \mathcal{V} .

Se S_1 e S_2 formam uma BASE para o espaco vetorial \mathcal{V} , então m=n.

Base

Corolário.1:

COROLÁRIO.1:

Se um subconjunto finito de V GERA V,

COROLÁRIO.1:

Se um subconjunto finito de $\mathcal V$ GERA $\mathcal V$, então podemos extrair deste subconjunto uma BASE para \mathcal{V} .

COROLÁRIO.1:

Se um subconjunto finito de $\mathcal V$ GERA $\mathcal V$, então podemos extrair deste subconjunto uma BASE para \mathcal{V} .

Isto é, sejam $S_1 = \{v_1, v_2, ..., v_n\}; n \in \mathbb{N}^*,$

COROLÁRIO.1:

Se um subconjunto finito de $\mathcal V$ GERA $\mathcal V$, então podemos extrair deste subconjunto uma BASE para \mathcal{V} .

Isto é, sejam $S_1 = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, uma base para \mathcal{V} ;

Se um subconjunto finito de \mathcal{V} GERA \mathcal{V} , então podemos extrair deste subconjunto uma BASE para \mathcal{V} .

Isto é, sejam $S_1 = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, uma base para \mathcal{V} ; e $S_2 = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^* \text{ um sistema de geradores de } \mathcal{V}.$

Se um subconjunto finito de $\mathcal V$ GERA $\mathcal V$, então podemos extrair deste subconjunto uma BASE para \mathcal{V} .

```
Isto é, sejam S_1 = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, uma base para \mathcal{V}; e
S_2 = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^* \text{ um sistema de geradores de } \mathcal{V}.
Se m = n, então S_2 forma uma base para \mathcal{V}.
```

Se um subconjunto finito de \mathcal{V} GERA \mathcal{V} , então podemos extrair deste subconjunto uma BASE para \mathcal{V} .

```
Isto é, sejam S_1 = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, uma base para \mathcal{V}; e
S_2 = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^* \text{ um sistema de geradores de } \mathcal{V}.
Se m = n, então S_2 forma uma base para \mathcal{V}.
```

Porém. se m > n.

Se um subconjunto finito de \mathcal{V} GERA \mathcal{V} , então podemos extrair deste subconjunto uma BASE para \mathcal{V} .

```
Isto é, sejam S_1 = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, uma base para \mathcal{V}; e
S_2 = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^* \text{ um sistema de geradores de } \mathcal{V}.
Se m=n, então S_2 forma uma base para \mathcal{V}.
```

Porém, se m > n, então podemos retirar de S_2 um subconjunto $\{u_{n+1}, u_{n+2}, \dots, u_m\}$,

Se um subconjunto finito de \mathcal{V} GERA \mathcal{V} , então podemos extrair deste subconjunto uma BASE para \mathcal{V} .

```
Isto é, sejam S_1 = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, uma base para \mathcal{V}; e
S_2 = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^* \text{ um sistema de geradores de } \mathcal{V}.
Se m=n, então S_2 forma uma base para \mathcal{V}.
```

Porém, se m > n, então podemos retirar de S_2 um subconjunto $\{u_{n+1}, u_{n+2}, \dots, u_m\}$, contendo m-n vetores que são combinações lineares dos demais vetores

Se um subconjunto finito de \mathcal{V} GERA \mathcal{V} , então podemos extrair deste subconjunto uma BASE para \mathcal{V} .

```
Isto é, sejam S_1 = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, uma base para \mathcal{V}; e
S_2 = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^* \text{ um sistema de geradores de } \mathcal{V}.
Se m=n, então S_2 forma uma base para \mathcal{V}.
```

Porém, se m > n, então podemos retirar de S_2 um subconjunto $\{u_{n+1}, u_{n+2}, \dots, u_m\}$, contendo m-n vetores que são combinações lineares dos demais vetores U_1, U_2, \ldots, U_n

Se um subconjunto finito de \mathcal{V} GERA \mathcal{V} , então podemos extrair deste subconjunto uma BASE para \mathcal{V} .

```
Isto é, sejam S_1 = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, uma base para \mathcal{V}; e
S_2 = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^* \text{ um sistema de geradores de } \mathcal{V}.
Se m=n, então S_2 forma uma base para \mathcal{V}.
```

Porém, se m > n, então podemos retirar de S_2 um subconjunto $\{u_{n+1}, u_{n+2}, \dots, u_m\}$, contendo m-n vetores que são combinações lineares dos demais vetores u_1, u_2, \ldots, u_n , que são LI, e geram \mathcal{V} .

COROLÁRIO.1:

Se um subconjunto finito de $\mathcal V$ GERA $\mathcal V$, então podemos extrair deste subconjunto uma BASE para $\mathcal V$.

```
Isto é, sejam S_1 = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, uma base para \mathcal{V}; e S_2 = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^* um sistema de geradores de \mathcal{V}. Se m = n, então S_2 forma uma base para \mathcal{V}.
```

Porém, se m > n, então podemos retirar de S_2 um subconjunto $\{u_{n+1}, u_{n+2}, \ldots, u_m\}$, contendo m-n vetores que são combinações lineares dos demais vetores u_1, u_2, \ldots, u_n , que são LI, e geram \mathcal{V} .

Assim, o subconjunto $S_2 \setminus \{u_{n+1}, u_{n+2}, \dots, u_m\} = \{u_1, u_2, \dots, u_n\}$ forma uma base para V.

Corolário.1:

Se um subconjunto finito de $\mathcal V$ GERA $\mathcal V$, então podemos extrair deste subconjunto uma BASE para $\mathcal V$.

```
Isto é, sejam S_1 = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, uma base para \mathcal{V}; e S_2 = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^* um sistema de geradores de \mathcal{V}. Se m = n, então S_2 forma uma base para \mathcal{V}.
```

Porém, se m > n, então podemos retirar de S_2 um subconjunto $\{u_{n+1}, u_{n+2}, \ldots, u_m\}$, contendo m-n vetores que são combinações lineares dos demais vetores u_1, u_2, \ldots, u_n , que são LI, e geram \mathcal{V} .

Assim, o subconjunto $S_2\setminus\{u_{n+1},u_{n+2},\ldots,u_m\}=\{u_1,u_2,\ldots,u_n\}$ forma uma base para \mathcal{V} .

Base

Corolário.2:

COROLÁRIO.2: Se \mathcal{V} é gerado por um subconjunto finito de vetores

Base

COROLÁRIO.2: Se \mathcal{V} é gerado por um subconjunto finito de vetores $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*,$

Base

COROLÁRIO.2: Se V é gerado por um subconjunto finito de vetores $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, então qualquer subconjunto finito de \mathcal{V}

Espaços Vetoriais

Base

COROLÁRIO.2: Se \mathcal{V} é gerado por um subconjunto finito de vetores $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, então qualquer subconjunto finito de \mathcal{V} com mais de n vetores

Espacos Vetoriais

Base

COROLÁRIO.2: Se \mathcal{V} é gerado por um subconjunto finito de vetores $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, então qualquer subconjunto finito de \mathcal{V} com mais de n vetores é necessariamente LD.

Espaços Vetoriais

Base

```
COROLÁRIO.2: Se \mathcal{V} é gerado por um subconjunto finito de vetores
S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, então qualquer subconjunto finito de \mathcal{V} com mais de n vetores é
necessariamente LD.
(Assim, qualquer subconjunto LI de \mathcal{V}
```

Espacos Vetoriais

Base

```
COROLÁRIO.2: Se \mathcal{V} é gerado por um subconjunto finito de vetores
S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, então qualquer subconjunto finito de \mathcal{V} com mais de n vetores é
necessariamente LD.
(Assim, qualquer subconjunto LI de \mathcal{V} tem no máximo n \in \mathbb{N}^* vetores.)
```

```
COROLÁRIO.2: Se \mathcal{V} é gerado por um subconjunto finito de vetores
S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, então qualquer subconjunto finito de \mathcal{V} com mais de n vetores é
necessariamente LD.
```

Isto é. Se $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$,

```
COROLÁRIO.2: Se \mathcal{V} é gerado por um subconjunto finito de vetores
S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, então qualquer subconjunto finito de \mathcal{V} com mais de n vetores é
necessariamente LD.
```

```
Isto é, Se S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, gera \mathcal{V};
```

```
COROLÁRIO.2: Se \mathcal{V} é gerado por um subconjunto finito de vetores
S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, então qualquer subconjunto finito de \mathcal{V} com mais de n vetores é
necessariamente LD.
```

Isto é. Se $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, gera \mathcal{V} ; e é **LI**, então

```
COROLÁRIO.2: Se \mathcal{V} é gerado por um subconjunto finito de vetores
S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, então qualquer subconjunto finito de \mathcal{V} com mais de n vetores é
necessariamente LD.
```

Isto é, Se $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, gera \mathcal{V} ; e é **LI**, então $\forall u \in \mathcal{V}$

(Assim, qualquer subconjunto LI de \mathcal{V} tem no máximo $n \in \mathbb{N}^*$ vetores.)

Isto é, Se $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, gera \mathcal{V} ; e é **LI**, então $\forall u \in \mathcal{V} \Rightarrow u \in [S]$.

(Assim, qualquer subconjunto LI de \mathcal{V} tem no máximo $n \in \mathbb{N}^*$ vetores.)

Isto é, Se $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, gera \mathcal{V} ; e é **LI**, então $\forall u \in \mathcal{V} \Rightarrow u \in [S]$. Portanto, por exemplo, se tomarmos o subconjunto

(Assim, qualquer subconjunto **LI** de V tem no **máximo** $n \in \mathbb{N}^*$ **vetores**.)

Isto é, Se $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, gera \mathcal{V} ; e é **LI**, então $\forall u \in \mathcal{V} \Rightarrow u \in [S]$. Portanto, por exemplo, se tomarmos o subconjunto $S_1 = S \cup \{u\} \Rightarrow S_1 \notin LD$,

Isto é, Se $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, gera \mathcal{V} ; e é **LI**, então $\forall u \in \mathcal{V} \Rightarrow u \in [S]$. Portanto, por exemplo, se tomarmos o subconjunto $S_1 = S \cup \{u\} \Rightarrow S_1$ é LD, pois u é combinação linear dos vetores de $S \subset S_1$.

(Assim, qualquer subconjunto LI de \mathcal{V} tem no máximo $n \in \mathbb{N}^*$ vetores.)

```
COROLÁRIO.2: Se \mathcal{V} é gerado por um subconjunto finito de vetores
S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, então qualquer subconjunto finito de \mathcal{V} com mais de n vetores é
necessariamente I D
```

```
Isto é, Se S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, gera \mathcal{V}; e é LI, então \forall u \in \mathcal{V} \Rightarrow u \in [S].
Portanto, por exemplo, se tomarmos o subconjunto S_1 = S \cup \{u\} \Rightarrow S_1 é LD, pois u é
combinação linear dos vetores de S \subset S_1.
Caso contrário, se S é LD e gera V, então
```

```
COROLÁRIO.2: Se \mathcal{V} é gerado por um subconjunto finito de vetores
S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, então qualquer subconjunto finito de \mathcal{V} com mais de n vetores é
necessariamente I D
```

```
Isto é, Se S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, gera \mathcal{V}; e é LI, então \forall u \in \mathcal{V} \Rightarrow u \in [S].
Portanto, por exemplo, se tomarmos o subconjunto S_1 = S \cup \{u\} \Rightarrow S_1 é LD, pois u é
combinação linear dos vetores de S \subset S_1.
```

Caso contrário, se S é LD e gera V, então $\forall v \in V$

(Assim, qualquer subconjunto **LI** de \mathcal{V} tem no **máximo** $n \in \mathbb{N}^*$ **vetores**.)

Isto é, Se $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, gera \mathcal{V} ; e é **LI**, então $\forall u \in \mathcal{V} \Rightarrow u \in [S]$. Portanto, por exemplo, se tomarmos o subconjunto $S_1 = S \cup \{u\} \Rightarrow S_1$ é LD, pois u é combinação linear dos vetores de $S \subset S_1$.

Caso contrário, se S é LD e gera V, então $\forall v \in V \Rightarrow v \in [S]$.

```
COROLÁRIO.2: Se \mathcal{V} é gerado por um subconjunto finito de vetores
S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, então qualquer subconjunto finito de \mathcal{V} com mais de n vetores é
necessariamente I D
```

```
Isto é, Se S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*, gera \mathcal{V}; e é LI, então \forall u \in \mathcal{V} \Rightarrow u \in [S].
```

Portanto, por exemplo, se tomarmos o subconjunto $S_1 = S \cup \{u\} \Rightarrow S_1$ é LD, pois u é combinação linear dos vetores de $S \subset S_1$.

Caso contrário, se S é LD e gera V, então $\forall v \in V \Rightarrow v \in [S]$.

Então, tomando, por exemplo, o subconjunto

(Assim, qualquer subconjunto **LI** de \mathcal{V} tem no **máximo** $n \in \mathbb{N}^*$ **vetores**.)

Isto é, Se $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, gera \mathcal{V} ; e é **LI**, então $\forall u \in \mathcal{V} \Rightarrow u \in [S]$.

Portanto, por exemplo, se tomarmos o subconjunto $S_1 = S \cup \{u\} \Rightarrow S_1$ é LD, pois u é combinação linear dos vetores de $S \subset S_1$.

Caso contrário, se S é LD e gera V, então $\forall v \in V \Rightarrow v \in [S]$.

Então, tomando, por exemplo, o subconjunto $S_1 = S \cup \{v\} \Rightarrow S_1$ também é LD,

(Assim, qualquer subconjunto **LI** de \mathcal{V} tem no **máximo** $n \in \mathbb{N}^*$ **vetores**.)

Isto é, Se $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, gera \mathcal{V} ; e é **LI**, então $\forall u \in \mathcal{V} \Rightarrow u \in [S]$.

Portanto, por exemplo, se tomarmos o subconjunto $S_1 = S \cup \{u\} \Rightarrow S_1$ é LD, pois u é combinação linear dos vetores de $S \subset S_1$.

Caso contrário, se S é LD e gera V, então $\forall v \in V \Rightarrow v \in [S]$.

Então, tomando, por exemplo, o subconjunto $S_1 = S \cup \{v\} \Rightarrow S_1$ também é LD, pois S_1 contém S

(Assim, qualquer subconjunto **LI** de \mathcal{V} tem no **máximo** $n \in \mathbb{N}^*$ **vetores**.)

Isto é, Se $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, gera \mathcal{V} ; e é **LI**, então $\forall u \in \mathcal{V} \Rightarrow u \in [S]$.

Portanto, por exemplo, se tomarmos o subconjunto $S_1 = S \cup \{u\} \Rightarrow S_1$ é LD, pois u é combinação linear dos vetores de $S \subset S_1$.

Caso contrário, se S é LD e gera V, então $\forall v \in V \Rightarrow v \in [S]$.

Então, tomando, por exemplo, o subconjunto $S_1 = S \cup \{v\} \Rightarrow S_1$ também é LD, pois S_1 contém S

Espaços Vetoriais

Dimensão

Definição:

Definição:

Seja \mathcal{V} um espaço vetorial, **finitamente gerado**, sobre o corpo \mathbb{K} ,

Definição:

Seja \mathcal{V} um espaço vetorial, **finitamente gerado**, sobre o corpo \mathbb{K} , e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base qualquer de \mathcal{V} .

Definição:

Seja \mathcal{V} um espaço vetorial, **finitamente gerado**, sobre o corpo \mathbb{K} , e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base qualquer de \mathcal{V} .

Dizemos que o o número de vetores (elementos) de $\beta_{\mathcal{V}}$ é a DIMENSÃO do espaco vetorial \mathcal{V} .

Espacos Vetoriais

Dimensão

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial, **finitamente gerado**, sobre o corpo \mathbb{K} , e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base qualquer de \mathcal{V} .

Dizemos que o o número de vetores (elementos) de β_V é a DIMENSÃO do espaco vetorial \mathcal{V} .

E ainda, dizemos que V é um espaço vetorial de DIMENSÃO FINITA.

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial, **finitamente gerado**, sobre o corpo \mathbb{K} , e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base qualquer de \mathcal{V} .

Dizemos que o o número de vetores (elementos) de β_V é a DIMENSÃO do espaco vetorial \mathcal{V} .

E ainda, dizemos que V é um espaço vetorial de DIMENSÃO FINITA.

Notação:

Definição:

Seja \mathcal{V} um espaço vetorial, **finitamente gerado**, sobre o corpo \mathbb{K} , e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base qualquer de \mathcal{V} .

Dizemos que o o número de vetores (elementos) de β_V é a DIMENSÃO do espaco vetorial \mathcal{V} .

E ainda, dizemos que V é um espaço vetorial de DIMENSÃO FINITA.

Notação:

$$dim(\mathcal{V}) = n$$

Definição:

Seja \mathcal{V} um espaço vetorial, **finitamente gerado**, sobre o corpo \mathbb{K} , e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base qualquer de \mathcal{V} .

Dizemos que o o número de vetores (elementos) de β_V é a DIMENSÃO do espaco vetorial \mathcal{V} .

E ainda, dizemos que \mathcal{V} é um espaco vetorial de DIMENSÃO FINITA.

Notação:

$$dim(\mathcal{V}) = n$$

Observação: Note que a dimensão de um espaço vetorial

Definição:

Seja \mathcal{V} um espaço vetorial, **finitamente gerado**, sobre o corpo \mathbb{K} , e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base qualquer de \mathcal{V} .

Dizemos que o o número de vetores (elementos) de $\beta_{\mathcal{V}}$ é a DIMENSÃO do espaco vetorial \mathcal{V} .

E ainda, dizemos que \mathcal{V} é um espaco vetorial de DIMENSÃO FINITA.

Notação:

$$dim(\mathcal{V}) = n$$

Observação: Note que a dimensão de um espaço vetorial é a cardinalidade de um subconiunto finito do espaco vetorial definido como **base** de \mathcal{V} .

Definição:

Seja \mathcal{V} um espaço vetorial, **finitamente gerado**, sobre o corpo \mathbb{K} , e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base qualquer de \mathcal{V} .

Dizemos que o o número de vetores (elementos) de $\beta_{\mathcal{V}}$ é a DIMENSÃO do espaco vetorial \mathcal{V} .

E ainda, dizemos que \mathcal{V} é um espaco vetorial de DIMENSÃO FINITA.

Notação:

$$dim(\mathcal{V}) = n$$

Observação: Note que a dimensão de um espaço vetorial é a cardinalidade de um subconiunto finito do espaco vetorial definido como **base** de \mathcal{V} .

1. Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e seja $eta_{\mathbb{R}^2}=\{\underbrace{(2,0)}_{\mathbf{y_1}},$

1. Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e seja $\beta_{\mathbb{R}^2}=\{\underbrace{(2,0)}_{\mathbb{R}^2},\underbrace{(0,-1)}_{\mathbb{R}^2}\}\subset\mathcal{V}$, então

1. Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e seja $\beta_{\mathbb{R}^2}=\{\underbrace{(2,0)},\underbrace{(0,-1)}\}\subset\mathcal{V}$, então $\dim(\mathbb{R}^2)=2$.

EXEMPLOS:

1. Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e seja $\beta_{\mathbb{R}^2}=\{\underbrace{(2,0)}_{\mathcal{V}},\underbrace{(0,-1)}_{\mathcal{V}}\}\subset\mathcal{V}$, então $\dim(\mathbb{R}^2)=2$.

2. Seja $\mathcal{V} = \mathbb{R}^3$

EXEMPLOS:

1. Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e seja $\beta_{\mathbb{R}^2}=\{\underbrace{(2,0)}_{\mathcal{V}_1},\underbrace{(0,-1)}_{\mathcal{V}_2}\}\subset\mathcal{V}$, então $\dim(\mathbb{R}^2)=2$.

2. Seia $\mathcal{V} = \mathbb{R}^3$ e $\beta_{\mathbb{R}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então

EXEMPLOS:

1. Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e seja $\beta_{\mathbb{R}^2}=\{\underbrace{(2,0)}_{\mathcal{V}_1},\underbrace{(0,-1)}_{\mathcal{V}_2}\}\subset\mathcal{V}$, então $\dim(\mathbb{R}^2)=2.$

2. Seja $\mathcal{V} = \mathbb{R}^3$ e $\beta_{\mathbb{R}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $dim(\mathbb{R}^3) = 3$.

EXEMPLOS:

1. Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e seja $\beta_{\mathbb{R}^2}=\{\underbrace{(2,0)}_{\mathcal{V}_1},\underbrace{(0,-1)}_{\mathcal{V}_2}\}\subset\mathcal{V}$, então $\dim(\mathbb{R}^2)=2$.

2. Seja $\mathcal{V} = \mathbb{R}^3$ e $\beta_{\mathbb{R}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $dim(\mathbb{R}^3) = 3$.

1. Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e seja $\beta_{\mathbb{R}^2}=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, então $\dim(\mathbb{R}^2)=2$.

- 2. Seja $\mathcal{V} = \mathbb{R}^3$ e $\beta_{\mathbb{R}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $dim(\mathbb{R}^3) = 3$.
- 3. Seia $\mathcal{V} = \mathbb{C}^3$:

1. Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e seja $\beta_{\mathbb{R}^2}=\{\underbrace{(2,0)}_{\mathcal{V}_1},\underbrace{(0,-1)}_{\mathcal{V}_2}\}\subset\mathcal{V}$, então $dim(\mathbb{R}^2)=2$.

- 2. Seja $\mathcal{V} = \mathbb{R}^3$ e $\beta_{\mathbb{R}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $dim(\mathbb{R}^3) = 3$.
- 3. Seia $\mathcal{V} = \mathbb{C}^3$: $\mathbb{K} = \mathbb{C}$.

1. Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e seja $\beta_{\mathbb{R}^2}=\{\underbrace{(2,0)}_{\mathcal{V}_1},\underbrace{(0,-1)}_{\mathcal{V}_2}\}\subset\mathcal{V}$, então $\dim(\mathbb{R}^2)=2$.

- 2. Seja $\mathcal{V} = \mathbb{R}^3$ e $\beta_{\mathbb{R}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $dim(\mathbb{R}^3) = 3$.
- 3. Seia $\mathcal{V} = \mathbb{C}^3$: $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathbb{C}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então

1. Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e seja $\beta_{\mathbb{R}^2}=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, então $\dim(\mathbb{R}^2)=2$.

- 2. Seja $\mathcal{V} = \mathbb{R}^3$ e $\beta_{\mathbb{R}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $dim(\mathbb{R}^3) = 3$.
- 3. Seja $\mathcal{V} = \mathbb{C}^3$: $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathbb{C}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $\dim(\mathbb{C}^3) = 3$.

1. Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e seja $\beta_{\mathbb{R}^2}=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, então $\dim(\mathbb{R}^2)=2$.

- 2. Seja $\mathcal{V} = \mathbb{R}^3$ e $\beta_{\mathbb{R}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $dim(\mathbb{R}^3) = 3$.
- 3. Seja $\mathcal{V} = \mathbb{C}^3$: $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathbb{C}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $\dim(\mathbb{C}^3) = 3$.
- 4. Seia $\mathcal{V} = \mathbb{C}^3$:

$$1. \ \mathsf{Seja} \ \mathcal{V} = \mathbb{R}^2 \ \mathsf{e} \ \mathsf{seja} \ \beta_{\mathbb{R}^2} = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \, \underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V}, \ \mathsf{ent\~ao} \ \mathit{dim}(\mathbb{R}^2) = 2.$$

- 2. Seja $\mathcal{V} = \mathbb{R}^3$ e $\beta_{\mathbb{R}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $dim(\mathbb{R}^3) = 3$.
- 3. Seja $\mathcal{V} = \mathbb{C}^3$; $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathbb{C}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $\dim(\mathbb{C}^3) = 3$.
- 4. Seia $\mathcal{V} = \mathbb{C}^3$: $\mathbb{K} = \mathbb{R}$.

$$1. \ \mathsf{Seja} \ \mathcal{V} = \mathbb{R}^2 \ \mathsf{e} \ \mathsf{seja} \ \beta_{\mathbb{R}^2} = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \, \underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V}, \ \mathsf{ent\~ao} \ \mathit{dim}(\mathbb{R}^2) = 2.$$

- 2. Seja $\mathcal{V} = \mathbb{R}^3$ e $\beta_{\mathbb{R}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $dim(\mathbb{R}^3) = 3$.
- 3. Seja $\mathcal{V} = \mathbb{C}^3$; $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathbb{C}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $\dim(\mathbb{C}^3) = 3$.
- 4. Seia $\mathcal{V} = \mathbb{C}^3$; $\mathbb{K} = \mathbb{R}$, e $\beta_{\mathbb{C}^3} = \{(1,0,0); (i,0,0); (0,1,0); (0,i,0); (0,0,1); (0,0,i)\}$, então

Dimensão

$$1. \ \mathsf{Seja} \ \mathcal{V} = \mathbb{R}^2 \ \mathsf{e} \ \mathsf{seja} \ \beta_{\mathbb{R}^2} = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \, \underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V}, \ \mathsf{ent\~ao} \ \mathit{dim}(\mathbb{R}^2) = 2.$$

- 2. Seja $\mathcal{V} = \mathbb{R}^3$ e $\beta_{\mathbb{R}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $dim(\mathbb{R}^3) = 3$.
- 3. Seja $\mathcal{V} = \mathbb{C}^3$; $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathbb{C}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $\dim(\mathbb{C}^3) = 3$.
- 4. Seia $\mathcal{V} = \mathbb{C}^3$: $\mathbb{K} = \mathbb{R}$. e $\beta_{\mathbb{C}^3} = \{(1,0,0); (i,0,0); (0,1,0); (0,i,0); (0,0,1); (0,0,i)\}$, então $dim(\mathbb{C}^3)=6.$

Dimensão

1. Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e seja $\beta_{\mathbb{R}^2}=\{\underbrace{(2,0)}_{\mathsf{v_1}},\underbrace{(0,-1)}_{\mathsf{v_2}}\}\subset\mathcal{V}$, então $\dim(\mathbb{R}^2)=2$.

- 2. Seja $\mathcal{V} = \mathbb{R}^3$ e $\beta_{\mathbb{R}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $dim(\mathbb{R}^3) = 3$.
- 3. Seja $\mathcal{V} = \mathbb{C}^3$; $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathbb{C}^3} = \{(1,0,0); (0,1,0); (0,0,1)\}$, então $\dim(\mathbb{C}^3) = 3$.
- 4. Seia $\mathcal{V} = \mathbb{C}^3$: $\mathbb{K} = \mathbb{R}$. e $\beta_{\mathbb{C}^3} = \{(1,0,0); (i,0,0); (0,1,0); (0,i,0); (0,0,1); (0,0,i)\}$, então $dim(\mathbb{C}^3)=6.$

EXEMPLOS:

5. Seja $\mathcal{V} = \mathcal{M}_3(\mathbb{R})$

Dimensão

5. Seja
$$\mathcal{V}=\mathcal{M}_3(\mathbb{R})$$
 e $\beta_{\mathcal{M}_3(\mathbb{R})}=\left\{egin{pmatrix}1&0&0\\0&0&0\\0&0&0\end{pmatrix};
ight.$

Dimensão

5. Seja
$$\mathcal{V} = \mathcal{M}_3(\mathbb{R})$$
 e $\beta_{\mathcal{M}_3(\mathbb{R})} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \right.$

Dimensão

5. Seja
$$\mathcal{V} = \mathcal{M}_3(\mathbb{R})$$
 e $\beta_{\mathcal{M}_3(\mathbb{R})} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix}$

Dimensão

$$\begin{aligned} \mathbf{5}. & \ \, \mathbf{Seja} \,\, \mathcal{V} = \mathcal{M}_3(\mathbb{R}) \\ & \ \, \mathbf{e} \,\, \beta_{\mathcal{M}_3(\mathbb{R})} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0$$

Dimensão

$$\begin{aligned} \mathbf{5}. \ \ \mathbf{Seja} \ \ \mathcal{V} &= \mathcal{M}_3(\mathbb{R}) \\ \mathbf{e} \ \beta_{\mathcal{M}_3(\mathbb{R})} &= \left\{ \begin{array}{ccc} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}; \, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0$$

Dimensão

Dimensão

5. Seja
$$\mathcal{V} = \mathcal{M}_3(\mathbb{R})$$

$$\mathbf{e} \; \beta_{\mathcal{M}_3(\mathbb{R})} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 &$$

Dimensão

5. Seja
$$\mathcal{V} = \mathcal{M}_{3}(\mathbb{R})$$

$$e \, \beta_{\mathcal{M}_{3}(\mathbb{R})} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$$

Dimensão

5. Seja
$$\mathcal{V} = \mathcal{M}_{3}(\mathbb{R})$$

$$e \, \beta_{\mathcal{M}_{3}(\mathbb{R})} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\};$$

Dimensão

5. Seja
$$\mathcal{V} = \mathcal{M}_{3}(\mathbb{R})$$

$$e \ \beta_{\mathcal{M}_{3}(\mathbb{R})} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \text{então,}$$

$$dim(\mathcal{M}_{3}(\mathbb{R})) = 9$$

Dimensão

EXEMPLOS:

$$\begin{aligned} \textbf{5. Seja } & \mathcal{V} = \mathcal{M}_3(\mathbb{R}) \\ & \textbf{e} \; \beta_{\mathcal{M}_3(\mathbb{R})} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}; \textbf{então,} \\ & & \textit{dim}(\mathcal{M}_3(\mathbb{R})) = 9 \end{aligned}$$

6. Seja $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$;

Dimensão

EXEMPLOS:

5. Seja
$$\mathcal{V} = \mathcal{M}_3(\mathbb{R})$$

$$e \, \beta_{\mathcal{M}_3(\mathbb{R})} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}; então,$$

$$dim(\mathcal{M}_3(\mathbb{R})) = 9$$

6. Seja $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$,

Dimensão

EXEMPLOS:

5. Seja
$$\mathcal{V} = \mathcal{M}_3(\mathbb{R})$$

$$e \ \beta_{\mathcal{M}_3(\mathbb{R})} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}; então,$$

$$dim(\mathcal{M}_3(\mathbb{R})) = 9$$

6. Seia $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$: $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathcal{M}_2(\mathbb{C})} = \beta_{\mathcal{M}_2(\mathbb{R})}$

Dimensão

EXEMPLOS:

$$\begin{aligned} \textbf{5. Seja } & \mathcal{V} = \mathcal{M}_3(\mathbb{R}) \\ & \textbf{e} \; \beta_{\mathcal{M}_3(\mathbb{R})} = \left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}; \; \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}; \; \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \; \text{então,} \\ & & & & \\ &$$

6. Seja $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathcal{M}_3(\mathbb{C})} = \beta_{\mathcal{M}_3(\mathbb{R})}$ então $\dim(\mathcal{M}_3(\mathbb{C})) = 9$.

Dimensão

EXEMPLOS:

$$\begin{aligned} \textbf{5. Seja } & \mathcal{V} = \mathcal{M}_3(\mathbb{R}) \\ & \textbf{e} \; \beta_{\mathcal{M}_3(\mathbb{R})} = \left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}; \; \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}; \; \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \; \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \; \text{então,} \\ & & & & \\ &$$

6. Seja $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathcal{M}_3(\mathbb{C})} = \beta_{\mathcal{M}_3(\mathbb{R})}$ então $\dim(\mathcal{M}_3(\mathbb{C})) = 9$.

7. Seja
$$\mathcal{V} = \mathcal{M}_3(\mathbb{C})$$
;

7. Seja
$$\mathcal{V}=\mathcal{M}_3(\mathbb{C});~\mathbb{K}=\mathbb{R}$$
,

7. Seja
$$\mathcal{V}=\mathcal{M}_3(\mathbb{C});\,\mathbb{K}=\mathbb{R},\,$$
e $\beta_{\mathcal{M}_3(\mathbb{C})}=\{\emph{v}_1;\emph{v}_2;\ldots;\emph{v}_{18}\}$

7. Seja
$$\mathcal{V}=\mathcal{M}_3(\mathbb{C}); \ \mathbb{K}=\mathbb{R}, \ \mathbf{e} \ \beta_{\mathcal{M}_3(\mathbb{C})}=\{v_1; v_2; \dots; v_{18}\}$$
 então $\Rightarrow dim(\mathcal{M}_3(\mathbb{C}))=2(9)=18.$

7. Seja
$$\mathcal{V}=\mathcal{M}_3(\mathbb{C}); \ \mathbb{K}=\mathbb{R}, \ e \ \beta_{\mathcal{M}_3(\mathbb{C})}=\{v_1; v_2; \dots; v_{18}\}$$
 então $\Rightarrow dim(\mathcal{M}_3(\mathbb{C}))=2(9)=18.$

8. Seja
$$\mathcal{V} = \mathcal{P}_3(\mathbb{R})$$

Dimensão

- 7. Seja $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$, e $\beta_{\mathcal{M}_3(\mathbb{C})} = \{v_1; v_2; \dots; v_{18}\}$ então $\Rightarrow dim(\mathcal{M}_3(\mathbb{C})) = 2(9) = 18.$
- 8. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$ e $\beta_{\mathcal{P}_2(\mathbb{R})} = \{1; t; t^2; t^3\};$

- 7. Seja $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$, e $\beta_{\mathcal{M}_3(\mathbb{C})} = \{v_1; v_2; \dots; v_{18}\}$ então $\Rightarrow dim(\mathcal{M}_3(\mathbb{C})) = 2(9) = 18.$
- 8. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$ e $\beta_{\mathcal{P}_2(\mathbb{R})} = \{1; t; t^2; t^3\}$; então $\dim(\mathcal{P}_3(\mathbb{R})) = 4$.

- 7. Seja $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$, e $\beta_{\mathcal{M}_3(\mathbb{C})} = \{v_1; v_2; \dots; v_{18}\}$ então $\Rightarrow dim(\mathcal{M}_3(\mathbb{C})) = 2(9) = 18.$
- 8. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$ e $\beta_{\mathcal{P}_2(\mathbb{R})} = \{1; t; t^2; t^3\}$; então $\dim(\mathcal{P}_3(\mathbb{R})) = 4$.
- 9. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$

- 7. Seja $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$, e $\beta_{\mathcal{M}_2(\mathbb{C})} = \{v_1; v_2; \dots; v_{18}\}$ então $\Rightarrow dim(\mathcal{M}_3(\mathbb{C})) = 2(9) = 18.$
- 8. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$ e $\beta_{\mathcal{P}_3(\mathbb{R})} = \{1; t; t^2; t^3\}$; então $\dim(\mathcal{P}_3(\mathbb{R})) = 4$.
- 9. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{C}); \mathbb{K} = \mathbb{C} \text{ e } \beta_{\mathcal{P}_3(\mathbb{C})} = \{1; t; t^2; t^3\} \text{ então}$

Dimensão

- 7. Seja $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$, e $\beta_{\mathcal{M}_2(\mathbb{C})} = \{v_1; v_2; \dots; v_{18}\}$ então $\Rightarrow dim(\mathcal{M}_3(\mathbb{C})) = 2(9) = 18.$
- 8. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$ e $\beta_{\mathcal{P}_3(\mathbb{R})} = \{1; t; t^2; t^3\}$; então $\dim(\mathcal{P}_3(\mathbb{R})) = 4$.
- 9. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$ e $\beta_{\mathcal{P}_3(\mathbb{C})} = \{1; t; t^2; t^3\}$ então $\dim(\mathcal{P}_3(\mathbb{C})) = 4$.

- 7. Seja $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$, e $\beta_{\mathcal{M}_2(\mathbb{C})} = \{v_1; v_2; \dots; v_{18}\}$ então $\Rightarrow dim(\mathcal{M}_3(\mathbb{C})) = 2(9) = 18.$
- 8. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$ e $\beta_{\mathcal{P}_2(\mathbb{R})} = \{1; t; t^2; t^3\}$; então $\dim(\mathcal{P}_3(\mathbb{R})) = 4$.
- 9. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$ e $\beta_{\mathcal{P}_3(\mathbb{C})} = \{1; t; t^2; t^3\}$ então $\dim(\mathcal{P}_3(\mathbb{C})) = 4$.
- 10. Seia $\mathcal{V} = \mathcal{P}_3(\mathbb{C})$: $\mathbb{K} = \mathbb{R}$

- 7. Seja $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$, e $\beta_{\mathcal{M}_2(\mathbb{C})} = \{v_1; v_2; \dots; v_{18}\}$ então $\Rightarrow dim(\mathcal{M}_3(\mathbb{C})) = 2(9) = 18.$
- 8. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$ e $\beta_{\mathcal{P}_3(\mathbb{R})} = \{1; t; t^2; t^3\}$; então $\dim(\mathcal{P}_3(\mathbb{R})) = 4$.
- 9. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$ e $\beta_{\mathcal{P}_3(\mathbb{C})} = \{1; t; t^2; t^3\}$ então $\dim(\mathcal{P}_3(\mathbb{C})) = 4$.
- 10. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$ e $\beta_{\mathcal{P}_3(\mathbb{C})} = \{1; i; t; it; t^2; it^2; t^3; it^3\}$ então

- 7. Seja $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$, e $\beta_{\mathcal{M}_2(\mathbb{C})} = \{v_1; v_2; \dots; v_{18}\}$ então $\Rightarrow dim(\mathcal{M}_3(\mathbb{C})) = 2(9) = 18.$
- 8. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$ e $\beta_{\mathcal{P}_3(\mathbb{R})} = \{1; t; t^2; t^3\}$; então $\dim(\mathcal{P}_3(\mathbb{R})) = 4$.
- 9. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$ e $\beta_{\mathcal{P}_3(\mathbb{C})} = \{1; t; t^2; t^3\}$ então $\dim(\mathcal{P}_3(\mathbb{C})) = 4$.
- 10. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$ e $\beta_{\mathcal{P}_3(\mathbb{C})} = \{1; i; t; it; t^2; it^2; t^3; it^3\}$ então $\dim(\mathcal{P}_3(\mathbb{C})) = 8$.

- 7. Seja $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$, e $\beta_{\mathcal{M}_2(\mathbb{C})} = \{v_1; v_2; \dots; v_{18}\}$ então $\Rightarrow dim(\mathcal{M}_3(\mathbb{C})) = 2(9) = 18.$
- 8. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$ e $\beta_{\mathcal{P}_3(\mathbb{R})} = \{1; t; t^2; t^3\}$; então $\dim(\mathcal{P}_3(\mathbb{R})) = 4$.
- 9. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$ e $\beta_{\mathcal{P}_3(\mathbb{C})} = \{1; t; t^2; t^3\}$ então $\dim(\mathcal{P}_3(\mathbb{C})) = 4$.
- 10. Seja $\mathcal{V} = \mathcal{P}_3(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$ e $\beta_{\mathcal{P}_3(\mathbb{C})} = \{1; i; t; it; t^2; it^2; t^3; it^3\}$ então $\dim(\mathcal{P}_3(\mathbb{C})) = 8$.

EXEMPLOS:

11. Seja $\mathcal{V} = \mathbb{R}^n$

11. Seja
$$\mathcal{V}=\mathbb{R}^n$$
 e $\beta_{\mathbb{R}^n}=\{(1,0,\dots,0);(0,1,\dots,0);\dots;(0,0,\dots,1)\}$, então

11. Seja
$$\mathcal{V} = \mathbb{R}^n$$
 e $\beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}$, então $dim(\mathbb{R}^n) = n$.

11. Seja
$$\mathcal{V} = \mathbb{R}^n$$
 e $\beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}$, então $dim(\mathbb{R}^n) = n$.

```
11. Seja \mathcal{V} = \mathbb{R}^n e \beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}, então dim(\mathbb{R}^n) = n.
```

12. Seja
$$\mathcal{V} = \mathbb{C}^n$$
;

- 11. Seja $\mathcal{V} = \mathbb{R}^n$ e $\beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}$, então $dim(\mathbb{R}^n) = n$.
- 12. Seja $\mathcal{V} = \mathbb{C}^n$; $\mathbb{K} = \mathbb{C}$.

- 11. Seja $\mathcal{V} = \mathbb{R}^n$ e $\beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}$, então $dim(\mathbb{R}^n) = n$.
- 12. Seia $\mathcal{V} = \mathbb{C}^n$: $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}$, então

- 11. Seja $\mathcal{V} = \mathbb{R}^n$ e $\beta_{\mathbb{R}^n} = \{(1,0,\ldots,0); (0,1,\ldots,0); \ldots; (0,0,\ldots,1)\}$, então $\dim(\mathbb{R}^n) = n$.
- 12. Seja $\mathcal{V} = \mathbb{C}^n$; $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}$, então $dim(\mathbb{C}^n) = n$.

- 11. Seja $\mathcal{V} = \mathbb{R}^n$ e $\beta_{\mathbb{R}^n} = \{(1,0,\ldots,0); (0,1,\ldots,0); \ldots; (0,0,\ldots,1)\}$, então $\dim(\mathbb{R}^n) = n$.
- 12. Seja $\mathcal{V} = \mathbb{C}^n$; $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}$, então $dim(\mathbb{C}^n) = n$.
- 13. Seja $\mathcal{V} = \mathbb{C}^n$:

- 11. Seja $\mathcal{V} = \mathbb{R}^n$ e $\beta_{\mathbb{R}^n} = \{(1,0,\ldots,0); (0,1,\ldots,0); \ldots; (0,0,\ldots,1)\}$, então $\dim(\mathbb{R}^n) = n$.
- 12. Seja $\mathcal{V} = \mathbb{C}^n$; $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}$, então $dim(\mathbb{C}^n) = n$.
- 13. Seia $\mathcal{V} = \mathbb{C}^n$: $\mathbb{K} = \mathbb{R}$.

- 11. Seja $\mathcal{V} = \mathbb{R}^n$ e $\beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}$, então $\dim(\mathbb{R}^n) = n$.
- 12. Seja $\mathcal{V} = \mathbb{C}^n$: $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}$, então $dim(\mathbb{C}^n) = n$.
- 13. Seja $\mathcal{V} = \mathbb{C}^n$; $\mathbb{K} = \mathbb{R}$, e $\beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (i, 0, \dots, 0); \dots; (0, 0, \dots, 1); (0, 0, \dots, i)\}$, então

- 11. Seja $\mathcal{V} = \mathbb{R}^n$ e $\beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}$, então $\dim(\mathbb{R}^n) = n$.
- 12. Seja $\mathcal{V} = \mathbb{C}^n$: $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}$, então $dim(\mathbb{C}^n) = n$.
- 13. Seja $\mathcal{V} = \mathbb{C}^n$; $\mathbb{K} = \mathbb{R}$, e $\beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (i, 0, \dots, 0); \dots; (0, 0, \dots, 1); (0, 0, \dots, i)\}$, então $dim(\mathbb{C}^n)=2n$.

- 11. Seja $\mathcal{V} = \mathbb{R}^n$ e $\beta_{\mathbb{R}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}$, então $\dim(\mathbb{R}^n) = n$.
- 12. Seja $\mathcal{V} = \mathbb{C}^n$: $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, 0, \dots, 1)\}$, então $dim(\mathbb{C}^n) = n$.
- 13. Seja $\mathcal{V} = \mathbb{C}^n$; $\mathbb{K} = \mathbb{R}$, e $\beta_{\mathbb{C}^n} = \{(1, 0, \dots, 0); (i, 0, \dots, 0); \dots; (0, 0, \dots, 1); (0, 0, \dots, i)\}$, então $dim(\mathbb{C}^n)=2n$.

EXEMPLOS:

14. Seja $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R})$

Dimensão

```
14. Seja \mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) e \beta_{\mathcal{M}_{m \times n}(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{m.n}\};
```

Dimensão

```
14. Seja \mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) e \beta_{\mathcal{M}_{m \times n}(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{m,n}\}; então, \dim(\mathcal{M}_{m \times n}(\mathbb{R})) = m.n.
```

Dimensão

EXEMPLOS:

```
14. Seja \mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) e \beta_{\mathcal{M}_{m \times n}(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{m.n}\}; então, dim(\mathcal{M}_{m \times n}(\mathbb{R})) = m.n.
```

15. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$

Dimensão

EXEMPLOS:

```
14. Seja \mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) e \beta_{\mathcal{M}_{m \times n}(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{m.n}\}; então, \dim(\mathcal{M}_{m \times n}(\mathbb{R})) = m.n.
```

15. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ e $\beta_{\mathcal{M}_n(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{n^2}\};$

Dimensão

EXEMPLOS:

```
14. Seja \mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) e \beta_{\mathcal{M}_{m \times n}(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{m.n}\}; então, dim(\mathcal{M}_{m \times n}(\mathbb{R})) = m.n.
```

15. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ e $\beta_{\mathcal{M}_n(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{n^2}\}$; então, $\dim(\mathcal{M}_n(\mathbb{R})) = n^2$.

Dimensão

```
14. Seja \mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) e \beta_{\mathcal{M}_{m \times n}(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{m.n}\}; então, \dim(\mathcal{M}_{m \times n}(\mathbb{R})) = m.n.
```

15. Seja
$$\mathcal{V} = \mathcal{M}_n(\mathbb{R})$$
 e $\beta_{\mathcal{M}_n(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{n^2}\}$; então, $\dim(\mathcal{M}_n(\mathbb{R})) = n^2$.

16. Seja
$$\mathcal{V} = \mathcal{M}_n(\mathbb{C})$$
;

Dimensão

```
14. Seja \mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) e \beta_{\mathcal{M}_{m \times n}(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{m.n}\}; então, dim(\mathcal{M}_{m \times n}(\mathbb{R})) = m.n.
```

15. Seja
$$\mathcal{V} = \mathcal{M}_n(\mathbb{R})$$
 e $\beta_{\mathcal{M}_n(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{n^2}\}$; então, $\dim(\mathcal{M}_n(\mathbb{R})) = n^2$.

16. Seja
$$\mathcal{V} = \mathcal{M}_n(\mathbb{C})$$
; $\mathbb{K} = \mathbb{C}$,

Dimensão

- 14. Seja $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R})$ e $\beta_{\mathcal{M}_{m \times n}(\mathbb{R})} = \{e_1, e_2, e_3, \dots, e_{m,n}\}; \text{ então}, \dim(\mathcal{M}_{m \times n}(\mathbb{R})) = m.n.$
- 15. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ e $\beta_{\mathcal{M}_n(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{n^2}\}$; então, $\dim(\mathcal{M}_n(\mathbb{R})) = n^2$.
- 16. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{C})$: $\mathbb{K} = \mathbb{C}$. e $\beta_{\mathcal{M}_n(\mathbb{C})} = \beta_{\mathcal{M}_n(\mathbb{R})}$

Dimensão

- 14. Seja $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R})$ e $\beta_{\mathcal{M}_{m \times n}(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{m.n}\};$ então, $dim(\mathcal{M}_{m \times n}(\mathbb{R})) = m.n.$
- 15. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ e $\beta_{\mathcal{M}_n(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{n^2}\}$; então, $\dim(\mathcal{M}_n(\mathbb{R})) = n^2$.
- 16. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathcal{M}_n(\mathbb{C})} = \beta_{\mathcal{M}_n(\mathbb{R})}$ então $\dim(\mathcal{M}_n(\mathbb{C})) = n.n = n^2$.

Dimensão

- 14. Seja $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R})$ e $\beta_{\mathcal{M}_{m \times n}(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{m.n}\};$ então, $dim(\mathcal{M}_{m \times n}(\mathbb{R})) = m.n.$
- 15. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ e $\beta_{\mathcal{M}_n(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{n^2}\}$; então, $\dim(\mathcal{M}_n(\mathbb{R})) = n^2$.
- 16. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathcal{M}_n(\mathbb{C})} = \beta_{\mathcal{M}_n(\mathbb{R})}$ então $\dim(\mathcal{M}_n(\mathbb{C})) = n.n = n^2$.
- 17. Seia $\mathcal{V} = \mathcal{M}_n(\mathbb{C})$:

Dimensão

- 14. Seja $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R})$ e $\beta_{\mathcal{M}_{m \times n}(\mathbb{R})} = \{e_1, e_2, e_3, \dots, e_{m,n}\}; \text{ então}, \dim(\mathcal{M}_{m \times n}(\mathbb{R})) = m.n.$
- 15. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ e $\beta_{\mathcal{M}_n(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{n^2}\}$; então, $\dim(\mathcal{M}_n(\mathbb{R})) = n^2$.
- 16. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathcal{M}_n(\mathbb{C})} = \beta_{\mathcal{M}_n(\mathbb{R})}$ então $\dim(\mathcal{M}_n(\mathbb{C})) = n.n = n^2$.
- 17. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{C})$: $\mathbb{K} = \mathbb{R}$.

Dimensão

- 14. Seja $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R})$ e $\beta_{\mathcal{M}_{m \times n}(\mathbb{R})} = \{e_1, e_2, e_3, \dots, e_{m,n}\}; \text{ então}, \dim(\mathcal{M}_{m \times n}(\mathbb{R})) = m.n.$
- 15. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ e $\beta_{\mathcal{M}_n(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{n^2}\}$; então, $\dim(\mathcal{M}_n(\mathbb{R})) = n^2$.
- 16. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathcal{M}_n(\mathbb{C})} = \beta_{\mathcal{M}_n(\mathbb{R})}$ então $\dim(\mathcal{M}_n(\mathbb{C})) = n.n = n^2$.
- 17. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{C})$: $\mathbb{K} = \mathbb{R}$, e $\beta_{\mathcal{M}_n(\mathbb{C})} = \{e_1 : e_2 : \ldots : e_{2n^2}\}$

Dimensão

- 14. Seja $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R})$ e $\beta_{\mathcal{M}_{m \times n}(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{m,n}\}$; então, $\dim(\mathcal{M}_{m \times n}(\mathbb{R})) = m.n.$
- 15. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ e $\beta_{\mathcal{M}_n(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{n^2}\}$; então, $\dim(\mathcal{M}_n(\mathbb{R})) = n^2$.
- 16. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathcal{M}_n(\mathbb{C})} = \beta_{\mathcal{M}_n(\mathbb{R})}$ então $\dim(\mathcal{M}_n(\mathbb{C})) = n.n = n^2$.
- 17. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$, e $\beta_{\mathcal{M}_n(\mathbb{C})} = \{e_1; e_2; \dots; e_{2n^2}\}$ então $\dim(\mathcal{M}_n(\mathbb{C})) = 2(n.n) = 2n^2$.

Dimensão

- 14. Seja $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R})$ e $\beta_{\mathcal{M}_{m \times n}(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{m,n}\}$; então, $\dim(\mathcal{M}_{m \times n}(\mathbb{R})) = m.n.$
- 15. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ e $\beta_{\mathcal{M}_n(\mathbb{R})} = \{e_1; e_2; e_3; \dots; e_{n^2}\}$; então, $\dim(\mathcal{M}_n(\mathbb{R})) = n^2$.
- 16. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$, e $\beta_{\mathcal{M}_n(\mathbb{C})} = \beta_{\mathcal{M}_n(\mathbb{R})}$ então $\dim(\mathcal{M}_n(\mathbb{C})) = n.n = n^2$.
- 17. Seja $\mathcal{V} = \mathcal{M}_n(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$, e $\beta_{\mathcal{M}_n(\mathbb{C})} = \{e_1; e_2; \dots; e_{2n^2}\}$ então $\dim(\mathcal{M}_n(\mathbb{C})) = 2(n.n) = 2n^2$.

18. Seja
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$

18. Seja
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$
 e $\beta_{\mathcal{P}_n(\mathbb{R})} = \{1; t; t^2; \dots; t^n\};$

18. Seja
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$
 e $\beta_{\mathcal{P}_n(\mathbb{R})} = \{1; t; t^2; \dots; t^n\}$; então $\dim(\mathcal{P}_n(\mathbb{R})) = n + 1$.

18. Seja
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$
 e $\beta_{\mathcal{P}_n(\mathbb{R})} = \{1; t; t^2; \dots; t^n\}$; então $\dim(\mathcal{P}_n(\mathbb{R})) = n + 1$.

19. Seja
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C}); \mathbb{K} = \mathbb{C}$$

Dimensão

18. Seja
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$
 e $\beta_{\mathcal{P}_n(\mathbb{R})} = \{1; t; t^2; \dots; t^n\}$; então $\dim(\mathcal{P}_n(\mathbb{R})) = n + 1$.

19. Seja
$$\mathcal{V}=\mathcal{P}_n(\mathbb{C}); \mathbb{K}=\mathbb{C}$$
 e $\beta_{\mathcal{P}_n(\mathbb{C})}=\{1;t;t^2;\ldots;t^n\}$ então

18. Seja
$$\mathcal{V} = \mathcal{P}_n(\mathbb{R})$$
 e $\beta_{\mathcal{P}_n(\mathbb{R})} = \{1; t; t^2; \dots; t^n\}$; então $\dim(\mathcal{P}_n(\mathbb{R})) = n + 1$.

19. Seja
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$
; $\mathbb{K} = \mathbb{C}$ e $\beta_{\mathcal{P}_n(\mathbb{C})} = \{1; t; t^2; \dots; t^n\}$ então $\dim(\mathcal{P}_n(\mathbb{C})) = n + 1$.

- 18. Seja $\mathcal{V} = \mathcal{P}_n(\mathbb{R})$ e $\beta_{\mathcal{P}_n(\mathbb{R})} = \{1; t; t^2; \dots; t^n\}$; então $\dim(\mathcal{P}_n(\mathbb{R})) = n+1$.
- 19. Seja $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$ e $\beta_{\mathcal{P}_n(\mathbb{C})} = \{1; t; t^2; \dots; t^n\}$ então $\dim(\mathcal{P}_n(\mathbb{C})) = n + 1$.
- 20. Seia $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$: $\mathbb{K} = \mathbb{R}$

- 18. Seja $\mathcal{V} = \mathcal{P}_n(\mathbb{R})$ e $\beta_{\mathcal{P}_n(\mathbb{R})} = \{1; t; t^2; \dots; t^n\}$; então $\dim(\mathcal{P}_n(\mathbb{R})) = n+1$.
- 19. Seja $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$ e $\beta_{\mathcal{P}_n(\mathbb{C})} = \{1; t; t^2; \dots; t^n\}$ então $\dim(\mathcal{P}_n(\mathbb{C})) = n + 1$.
- 20. Seja $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$ e $\beta_{\mathcal{P}_n(\mathbb{C})} = \{1; i; t; it; t^2; it^2; \dots; t^n; it^n\}$ então

Exemplos:

- 18. Seja $\mathcal{V} = \mathcal{P}_n(\mathbb{R})$ e $\beta_{\mathcal{P}_n(\mathbb{R})} = \{1; t; t^2; \dots; t^n\}$; então $\dim(\mathcal{P}_n(\mathbb{R})) = n+1$.
- 19. Seja $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$ e $\beta_{\mathcal{P}_n(\mathbb{C})} = \{1; t; t^2; \dots; t^n\}$ então $\dim(\mathcal{P}_n(\mathbb{C})) = n + 1$.
- 20. Seja $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$ e $\beta_{\mathcal{P}_n(\mathbb{C})} = \{1; i; t; it; t^2; it^2; \dots; t^n; it^n\}$ então $dim(\mathcal{P}_n(\mathbb{C})) = 2(n+1).$

Exemplos:

- 18. Seja $\mathcal{V} = \mathcal{P}_n(\mathbb{R})$ e $\beta_{\mathcal{P}_n(\mathbb{R})} = \{1; t; t^2; \dots; t^n\}$; então $\dim(\mathcal{P}_n(\mathbb{R})) = n+1$.
- 19. Seja $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$; $\mathbb{K} = \mathbb{C}$ e $\beta_{\mathcal{P}_n(\mathbb{C})} = \{1; t; t^2; \dots; t^n\}$ então $\dim(\mathcal{P}_n(\mathbb{C})) = n + 1$.
- 20. Seja $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$; $\mathbb{K} = \mathbb{R}$ e $\beta_{\mathcal{P}_n(\mathbb{C})} = \{1; i; t; it; t^2; it^2; \dots; t^n; it^n\}$ então $dim(\mathcal{P}_n(\mathbb{C})) = 2(n+1).$

TEOREMA DO COMPLETAMENTO:

TEOREMA DO COMPLETAMENTO:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; $\dim(\mathcal V)=n$.

TEOREMA DO COMPLETAMENTO:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; $\dim(\mathcal V)=n$. Então, qualquer subconjunto finito de vetores LI de $\mathcal V$

TEOREMA DO COMPLETAMENTO:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; $dim(\mathcal V)=n$. Então, qualquer subconjunto finito de vetores LI de $\mathcal V$ **pode ser completado a fim de formar uma base para** $\mathcal V$.

TEOREMA DO COMPLETAMENTO:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; $\dim(\mathcal V)=n$. Então, qualquer subconjunto finito de vetores LI de $\mathcal V$ **pode ser completado a fim de formar uma base para** $\mathcal V$.

Ou seja, Se $S = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^*$

TEOREMA DO COMPLETAMENTO:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; $\dim(\mathcal V)=n$. Então, qualquer subconjunto finito de vetores LI de $\mathcal V$ **pode ser completado a fim de formar uma base para** $\mathcal V$.

Ou seja, Se $S = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^* \text{\'e LI e } m < n$,

TEOREMA DO COMPLETAMENTO:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; $\dim(\mathcal V)=n$. Então, qualquer subconjunto finito de vetores LI de $\mathcal V$ **pode ser completado a fim de formar uma base para** $\mathcal V$.

Ou seja, Se $S = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^* \text{\'e LI e } m < n$, então **existem** n - m **vetores LI** :

TEOREMA DO COMPLETAMENTO:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; $\dim(\mathcal V)=n$. Então, qualquer subconjunto finito de vetores LI de $\mathcal V$ **pode ser completado a fim de formar uma base para** $\mathcal V$.

Ou seja, Se $S = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^* \text{\'e LI e } m < n$, então **existem** n-m **vetores LI** : $\{u_{m+1}, u_{m+2}, \dots, u_n\} \subset \mathcal{V}$

TEOREMA DO COMPLETAMENTO:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; $\dim(\mathcal V)=n$. Então, qualquer subconjunto finito de vetores LI de $\mathcal V$ **pode ser completado a fim de formar uma base para** $\mathcal V$.

Ou seja, Se $S = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^* \text{\'e LI e } m < n$, então **existem** n - m **vetores LI** : $\{u_{m+1}, u_{m+2}, \dots, u_n\} \subset \mathcal{V}$ tais que $u_{m+1}, u_{m+2}, \dots, u_n \notin [S]$;

TEOREMA DO COMPLETAMENTO:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; $\dim(\mathcal V)=n$. Então, qualquer subconjunto finito de vetores LI de $\mathcal V$ **pode ser completado a fim de formar uma base para** $\mathcal V$.

Ou seja, Se $S = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^* \text{\'e Ll e } m < n$, então **existem** n - m **vetores Ll** : $\{u_{m+1}, u_{m+2}, \dots, u_n\} \subset \mathcal{V}$ tais que $u_{m+1}, u_{m+2}, \dots, u_n \notin [S]$; e, assim, forma uma base para \mathcal{V} ;

TEOREMA DO COMPLETAMENTO:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; $\dim(\mathcal V)=n$. Então, qualquer subconjunto finito de vetores LI de $\mathcal V$ **pode ser completado a fim de formar uma base para** $\mathcal V$.

Ou seja, Se $S = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^* \text{\'e Ll e } m < n$, então **existem** n - m **vetores Ll** : $\{u_{m+1}, u_{m+2}, \dots, u_n\} \subset \mathcal{V}$ tais que $u_{m+1}, u_{m+2}, \dots, u_n \notin [S]$; e, assim, forma uma base para \mathcal{V} ;

$$\beta_{\mathcal{V}} = S \cup \{u_{m+1}, u_{m+2}, \dots, u_n\}.$$

TEOREMA DO COMPLETAMENTO:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; $\dim(\mathcal V)=n$. Então, qualquer subconjunto finito de vetores LI de $\mathcal V$ **pode ser completado a fim de formar uma base para** $\mathcal V$.

Ou seja, Se $S = \{u_1, u_2, \dots, u_m\} \subset \mathcal{V}; m \in \mathbb{N}^* \text{\'e Ll e } m < n$, então **existem** n - m **vetores Ll** : $\{u_{m+1}, u_{m+2}, \dots, u_n\} \subset \mathcal{V}$ tais que $u_{m+1}, u_{m+2}, \dots, u_n \notin [S]$; e, assim, forma uma base para \mathcal{V} ;

$$\beta_{\mathcal{V}} = S \cup \{u_{m+1}, u_{m+2}, \dots, u_n\}.$$

COROLÁRIO:

COROLÁRIO:

Se $dim(\mathcal{V}) = n$,

COROLÁRIO:

Se $dim(\mathcal{V}) = n$, então qualquer subconjunto finito de \mathcal{V}

COROLÁRIO:

Se $dim(\mathcal{V}) = n$, então qualquer subconjunto finito de \mathcal{V} com n vetores LI

COROLÁRIO:

Se $dim(\mathcal{V}) = n$, então qualquer subconjunto finito de \mathcal{V} com n vetores LI forma uma base para \mathcal{V} .

COROLÁRIO:

Se $dim(\mathcal{V}) = n$, então qualquer subconjunto finito de \mathcal{V} com n vetores LI forma uma base para \mathcal{V} .

Proposição:

Proposição:

Seja V um espaço vetorial, **de dimensão finita**, sobre o corpo \mathbb{K} ;

Proposição:

Seja \mathcal{V} um espaço vetorial, **de dimensão finita**, sobre o corpo \mathbb{K} ; e seja \mathcal{W} um subespaço de \mathcal{V} .

Proposicão:

Seja \mathcal{V} um espaço vetorial, **de dimensão finita**, sobre o corpo \mathbb{K} ; e seja \mathcal{W} um subespaço de \mathcal{V} .

Se

$$\mathit{dim}(\mathcal{W}) = \mathit{dim}(\mathcal{V}),$$

Proposicão:

Seja \mathcal{V} um espaço vetorial, **de dimensão finita**, sobre o corpo \mathbb{K} ; e seja \mathcal{W} um subespaço de \mathcal{V} .

Se

$$\mathit{dim}(\mathcal{W}) = \mathit{dim}(\mathcal{V}),$$

então

$$\mathcal{W} = \mathcal{V}$$
.

Dimensão

TEOREMA:

TEOREMA:

Seja \mathcal{V} um espaço vetorial, **de dimensão finita**, sobre o corpo \mathbb{K} ; e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços de \mathcal{V} .

TEOREMA:

Seja \mathcal{V} um espaço vetorial, **de dimensão finita**, sobre o corpo \mathbb{K} ; e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços de \mathcal{V} .

Então.

$$\mathit{dim}(\mathcal{W}_1) \leq \mathit{dim}(\mathcal{V})$$

Dimensão

TEOREMA:

Seja \mathcal{V} um espaço vetorial, **de dimensão finita**, sobre o corpo \mathbb{K} ; e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços de \mathcal{V} .

Então.

$$\mathit{dim}(\mathcal{W}_1) \leq \mathit{dim}(\mathcal{V})$$

е

$$dim(\mathcal{W}_2) \leq dim(\mathcal{V}).$$

TEOREMA:

Seja \mathcal{V} um espaço vetorial, **de dimensão finita**, sobre o corpo \mathbb{K} ; e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços de \mathcal{V} .

Então.

$$\mathit{dim}(\mathcal{W}_1) \leq \mathit{dim}(\mathcal{V})$$

е

$$dim(\mathcal{W}_2) \leq dim(\mathcal{V}).$$

$$dim(\mathcal{W}_1 + \mathcal{W}_2)$$

TEOREMA:

Seja \mathcal{V} um espaço vetorial, **de dimensão finita**, sobre o corpo \mathbb{K} ; e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços de \mathcal{V} .

Então.

$$\mathit{dim}(\mathcal{W}_1) \leq \mathit{dim}(\mathcal{V})$$

е

$$dim(\mathcal{W}_2) \leq dim(\mathcal{V}).$$

$$dim(\mathcal{W}_1 + \mathcal{W}_2) =$$

TEOREMA:

Seja \mathcal{V} um espaço vetorial, **de dimensão finita**, sobre o corpo \mathbb{K} ; e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços de \mathcal{V} .

Então.

$$\mathit{dim}(\mathcal{W}_1) \leq \mathit{dim}(\mathcal{V})$$

е

$$dim(\mathcal{W}_2) \leq dim(\mathcal{V}).$$

$$dim(\mathcal{W}_1 + \mathcal{W}_2) = dim(\mathcal{W}_1) +$$

TEOREMA:

Seja \mathcal{V} um espaço vetorial, **de dimensão finita**, sobre o corpo \mathbb{K} ; e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços de \mathcal{V} .

Então.

$$\mathit{dim}(\mathcal{W}_1) \leq \mathit{dim}(\mathcal{V})$$

е

$$dim(\mathcal{W}_2) \leq dim(\mathcal{V}).$$

$$dim(W_1 + W_2) = dim(W_1) + dim(W_2)$$

TEOREMA:

Seja \mathcal{V} um espaço vetorial, **de dimensão finita**, sobre o corpo \mathbb{K} ; e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços de \mathcal{V} .

Então.

$$\mathit{dim}(\mathcal{W}_1) \leq \mathit{dim}(\mathcal{V})$$

е

$$dim(\mathcal{W}_2) \leq dim(\mathcal{V}).$$

$$dim(\mathcal{W}_1 + \mathcal{W}_2) = dim(\mathcal{W}_1) + dim(\mathcal{W}_2) - dim(\mathcal{W}_1 \cap \mathcal{W}_2).$$

TEOREMA:

Seja \mathcal{V} um espaço vetorial, **de dimensão finita**, sobre o corpo \mathbb{K} ; e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços de \mathcal{V} .

Então.

$$\mathit{dim}(\mathcal{W}_1) \leq \mathit{dim}(\mathcal{V})$$

е

$$dim(\mathcal{W}_2) \leq dim(\mathcal{V}).$$

$$dim(\mathcal{W}_1 + \mathcal{W}_2) = dim(\mathcal{W}_1) + dim(\mathcal{W}_2) - dim(\mathcal{W}_1 \cap \mathcal{W}_2).$$

COROLÁRIO:

COROLÁRIO: Se $V = W_1 \oplus W_2$,

COROLÁRIO: Se $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$, então, $dim(\mathcal{V}) =$

COROLÁRIO: Se
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$
, então,

$$\mathit{dim}(\mathcal{V}) = \mathit{dim}(\mathcal{W}_1 + \mathcal{W}_2) =$$

COROLÁRIO: Se
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$
, então,

$$\mathit{dim}(\mathcal{V}) = \mathit{dim}(\mathcal{W}_1 + \mathcal{W}_2) = \mathit{dim}(\mathcal{W}_1) +$$

COROLÁRIO: Se
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$
, então,

$$dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_2) = dim(\mathcal{W}_1) + dim(\mathcal{W}_2).$$

COROLÁRIO: Se
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$
, então,

$$\textit{dim}(\mathcal{V}) = \textit{dim}(\mathcal{W}_1 + \mathcal{W}_2) = \textit{dim}(\mathcal{W}_1) + \textit{dim}(\mathcal{W}_2).$$

OBSERVAÇÃO:

COROLÁRIO: Se
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$
, então,

$$\textit{dim}(\mathcal{V}) = \textit{dim}(\mathcal{W}_1 + \mathcal{W}_2) = \textit{dim}(\mathcal{W}_1) + \textit{dim}(\mathcal{W}_2).$$

OBSERVAÇÃO:

$$\mathcal{W}_1 \oplus \mathcal{W}_2 \Rightarrow$$

COROLÁRIO: Se
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$
, então,

$$dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_2) = dim(\mathcal{W}_1) + dim(\mathcal{W}_2).$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 \Rightarrow \mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}$$

COROLÁRIO: Se
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$
, então,

$$dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_2) = dim(\mathcal{W}_1) + dim(\mathcal{W}_2).$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 \Rightarrow \mathcal{W}_1 \cap \mathcal{W}_2 = \{0\} \Rightarrow \beta_{\mathcal{W}_1 \cap \mathcal{W}_2} = \emptyset$$

COROLÁRIO: Se $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$, então,

$$\textit{dim}(\mathcal{V}) = \textit{dim}(\mathcal{W}_1 + \mathcal{W}_2) = \textit{dim}(\mathcal{W}_1) + \textit{dim}(\mathcal{W}_2).$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 \Rightarrow \mathcal{W}_1 \cap \mathcal{W}_2 = \{0\} \Rightarrow \beta_{\mathcal{W}_1 \cap \mathcal{W}_2} = \emptyset \Rightarrow \textit{dim}(\mathcal{W}_1 \cap \mathcal{W}_2) = 0.$$

COROLÁRIO: Se $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$, então,

$$\textit{dim}(\mathcal{V}) = \textit{dim}(\mathcal{W}_1 + \mathcal{W}_2) = \textit{dim}(\mathcal{W}_1) + \textit{dim}(\mathcal{W}_2).$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 \Rightarrow \mathcal{W}_1 \cap \mathcal{W}_2 = \{0\} \Rightarrow \beta_{\mathcal{W}_1 \cap \mathcal{W}_2} = \emptyset \Rightarrow \textit{dim}(\mathcal{W}_1 \cap \mathcal{W}_2) = 0.$$

Base e Dimensão

Exercício.1:

Base e Dimensão

Exercício.1:

Sejam $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$

Base e Dimensão

Exercício.1:

Sejam $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

Base e Dimensão

Exercício.1:

Sejam
$$\mathcal{V}=\mathcal{M}_2(\mathbb{R})$$
 um espaço vetorial sobre o corpo $\mathbb{K}=\mathbb{R}$, $\mathcal{W}_1=\{A\in\mathcal{M}_2(\mathbb{R})|A=A^t\}$ e $\mathcal{W}_2=\{A\in\mathcal{M}_2(\mathbb{R})|A=-A^t\}$ subespaços vetoriais de \mathcal{V} .

1. Determine uma base e a dimensão para \mathcal{W}_1 e \mathcal{W}_2 .

Base e Dimensão

Exercício.1:

Sejam $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$ um espaco vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

- 1. Determine uma base e a dimensão para W_1 e W_2 .
- 2. Determine uma base e a dimensão para $(\mathcal{W}_1 \cap \mathcal{W}_2) \subseteq \mathcal{V}$.

Sejam $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$ um espaco vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

- 1. Determine uma base e a dimensão para \mathcal{W}_1 e \mathcal{W}_2 .
- 2. Determine uma base e a dimensão para $(\mathcal{W}_1 \cap \mathcal{W}_2) \subseteq \mathcal{V}$.
- 3. Determine uma base e a dimensão para $(W_1 + W_2) \subseteq V$.

Sejam $\mathcal{V}=\mathcal{M}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K}=\mathbb{R}$, $\mathcal{W}_1=\{A\in\mathcal{M}_2(\mathbb{R})|A=A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

- 1. Determine uma base e a dimensão para \mathcal{W}_1 e \mathcal{W}_2 .
- 2. Determine uma base e a dimensão para $(\mathcal{V}_1 \cap \mathcal{V}_2) \subseteq \mathcal{V}$.
- 3. Determine uma base e a dimensão para $(W_1 + W_2) \subseteq V$.
- 4. Determine a dimensão de $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$.

Sejam $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$ um espaco vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

- 1. Determine uma base e a dimensão para \mathcal{W}_1 e \mathcal{W}_2 .
- 2. Determine uma base e a dimensão para $(\mathcal{V}_1 \cap \mathcal{V}_2) \subseteq \mathcal{V}$.
- 3. Determine uma base e a dimensão para $(W_1 + W_2) \subseteq V$.
- 4. Determine a dimensão de $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$.
- Determine um subespaco W_3 de V tal que $V = W_2 \oplus W_3$ onde, $W_3 \neq W_1$.

Sejam $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$ um espaco vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

- 1. Determine uma base e a dimensão para \mathcal{W}_1 e \mathcal{W}_2 .
- 2. Determine uma base e a dimensão para $(\mathcal{V}_1 \cap \mathcal{V}_2) \subseteq \mathcal{V}$.
- 3. Determine uma base e a dimensão para $(W_1 + W_2) \subseteq V$.
- 4. Determine a dimensão de $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$.
- Determine um subespaco W_3 de V tal que $V = W_2 \oplus W_3$ onde, $W_3 \neq W_1$.

Base e Dimensão

Exercício.2:

Base e Dimensão

Exercício.2:

Sejam $\mathcal{V} = \mathcal{P}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\}$

Base e Dimensão

Exercício.2:

Sejam $\mathcal{V}=\mathcal{P}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K}=\mathbb{R}$, $\mathcal{W}_1=\{p(t)\in\mathcal{P}_2(\mathbb{R})|a_0=a_1+a_2\}$ e $\mathcal{W}_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}$ subespaços vetoriais de \mathcal{V} .

Base e Dimensão

Exercício.2:

Sejam $\mathcal{V}=\mathcal{P}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K}=\mathbb{R}$, $\mathcal{W}_1=\{p(t)\in\mathcal{P}_2(\mathbb{R})|a_0=a_1+a_2\}$ e $W_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}$ subespaços vetoriais de \mathcal{V} .

1. Determine uma base e a dimensão para \mathcal{W}_1 e \mathcal{W}_2 .

Sejam $\mathcal{V} = \mathcal{P}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\}$ e $W_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}$ subespaços vetoriais de \mathcal{V} .

- 1. Determine uma base e a dimensão para \mathcal{W}_1 e \mathcal{W}_2 .
- 2. Determine uma base e a dimensão para $(\mathcal{W}_1 \cap \mathcal{W}_2) \subseteq \mathcal{V}$.

Sejam $\mathcal{V} = \mathcal{P}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\}$ e $W_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}$ subespaços vetoriais de \mathcal{V} .

- 1. Determine uma base e a dimensão para \mathcal{W}_1 e \mathcal{W}_2 .
- 2. Determine uma base e a dimensão para $(\mathcal{W}_1 \cap \mathcal{W}_2) \subseteq \mathcal{V}$.
- 3. Determine uma base e a dimensão para $(W_1 + W_2) \subseteq V$.

Sejam $\mathcal{V} = \mathcal{P}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\}$ e $W_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}$ subespaços vetoriais de \mathcal{V} .

- 1. Determine uma base e a dimensão para \mathcal{W}_1 e \mathcal{W}_2 .
- 2. Determine uma base e a dimensão para $(\mathcal{V}_1 \cap \mathcal{V}_2) \subseteq \mathcal{V}$.
- 3. Determine uma base e a dimensão para $(W_1 + W_2) \subseteq V$.
- 4. Determine a dimensão de $\mathcal{V} = \mathcal{P}_2(\mathbb{R})$.

Exercício.2:

Sejam $\mathcal{V} = \mathcal{P}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\}$ e $W_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}$ subespaços vetoriais de \mathcal{V} .

- 1. Determine uma base e a dimensão para \mathcal{W}_1 e \mathcal{W}_2 .
- 2. Determine uma base e a dimensão para $(\mathcal{V}_1 \cap \mathcal{V}_2) \subseteq \mathcal{V}$.
- 3. Determine uma base e a dimensão para $(W_1 + W_2) \subseteq V$.
- 4. Determine a dimensão de $\mathcal{V} = \mathcal{P}_2(\mathbb{R})$.
- Determine um subespaco W_3 de V tal que $V = W_1 \oplus W_3$ onde, $W_3 \neq W_2$.

Exercício.2:

Sejam $\mathcal{V} = \mathcal{P}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\}$ e $W_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}$ subespaços vetoriais de \mathcal{V} .

- 1. Determine uma base e a dimensão para \mathcal{W}_1 e \mathcal{W}_2 .
- 2. Determine uma base e a dimensão para $(\mathcal{V}_1 \cap \mathcal{V}_2) \subseteq \mathcal{V}$.
- 3. Determine uma base e a dimensão para $(W_1 + W_2) \subseteq V$.
- 4. Determine a dimensão de $\mathcal{V} = \mathcal{P}_2(\mathbb{R})$.
- Determine um subespaco W_3 de V tal que $V = W_1 \oplus W_3$ onde, $W_3 \neq W_2$.

Base e Dimensão

EXERCÍCIO.1:(RESPOSTAS)

EXERCÍCIO.1:(RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } W_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

EXERCÍCIO.1:(RESPOSTAS)

$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 =$$

EXERCÍCIO.1: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } W_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$W_1 = \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{v_1 = e_1};$$

EXERCÍCIO.1: (RESPOSTAS)
$$\mathcal{W}_{1} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = A^{t}\} \text{ e } \mathcal{W}_{2} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = -A^{t}\}$$

$$\mathcal{W}_{1} = \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{v_{1}=e_{1}}; \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{v_{2}=e_{2}+e_{3}};$$

EXERCÍCIO.1: (RESPOSTAS)
$$\mathcal{W}_{1} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = A^{t}\} \text{ e } \mathcal{W}_{2} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = -A^{t}\}$$

$$\mathcal{W}_{1} = \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{v_{1}=e_{1}} \underbrace{\begin{pmatrix} 0 & 1 \\ v_{2}=e_{2}+e_{3} \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{v_{3}=e_{4}}$$

EXERCÍCIO.1: (RESPOSTAS)
$$\mathcal{W}_{1} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = A^{t}\} \text{ e } \mathcal{W}_{2} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = -A^{t}\}$$

$$\mathcal{W}_{1} = \left[\underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{V_{1} = e_{1}}; \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{V_{2} = e_{1} + e_{3}}; \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{V_{3} = e_{4}}\right]; \text{ e}$$

EXERCÍCIO.1:(RESPOSTAS)
$$\mathcal{W}_{1} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = A^{t}\} \text{ e } \mathcal{W}_{2} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = -A^{t}\}$$

$$\mathcal{W}_{1} = \left[\underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{v_{2}=e_{2}+e_{3}}; \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{v_{3}=e_{4}}\right]; \text{ e } \{e_{1}; e_{2}+e_{3}; e_{4}\} \text{ é LI}$$

EXERCÍCIO.1: (RESPOSTAS)
$$\mathcal{W}_{1} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = A^{t}\} \text{ e } \mathcal{W}_{2} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = -A^{t}\}$$

$$\mathcal{W}_{1} = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; \text{ e } \{e_{1}; e_{2} + e_{3}; e_{4}\} \text{ é LI} \Rightarrow \beta_{\mathcal{W}_{1}} = \{e_{1}; e_{2} + e_{3}; e_{4}\}$$

EXERCÍCIO. 1: (RESPOSTAS)
$$W_{1} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = A^{t}\} \text{ e } W_{2} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = -A^{t}\}$$

$$W_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}; \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{v_{1} = e_{1}}; \underbrace{e_{1}; e_{2} + e_{3}; e_{4}}_{v_{3} = e_{4}} \end{bmatrix}; \text{ e } \{e_{1}; e_{2} + e_{3}; e_{4}\} \text{ é LI} \Rightarrow \beta_{W_{1}} = \{e_{1}; e_{2} + e_{3}; e_{4}\}$$

$$\Rightarrow dim(W_{1}) = 3$$

EXERCÍCIO.1: (RESPOSTAS)
$$\mathcal{W}_{1} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = A^{t}\} \text{ e } \mathcal{W}_{2} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = -A^{t}\}$$

$$\mathcal{W}_{1} = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; \text{ e } \{e_{1}; e_{2} + e_{3}; e_{4}\} \text{ é LI} \Rightarrow \beta_{\mathcal{W}_{1}} = \{e_{1}; e_{2} + e_{3}; e_{4}\}$$

$$\Rightarrow \dim(\mathcal{W}_{1}) = 3.$$

$$\mathcal{W}_{2} = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}$$

EXERCÍCIO.1: (RESPOSTAS)
$$\mathcal{W}_{1} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = A^{t}\} \text{ e } \mathcal{W}_{2} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = -A^{t}\}$$

$$\mathcal{W}_{1} = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; \text{ e } \{e_{1}; e_{2} + e_{3}; e_{4}\} \text{ é LI} \Rightarrow \beta_{\mathcal{W}_{1}} = \{e_{1}; e_{2} + e_{3}; e_{4}\}$$

$$\Rightarrow \dim(\mathcal{W}_{1}) = 3.$$

$$\mathcal{W}_{2} = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \text{ e} \end{bmatrix}; \text{ e}$$

EXERCÍCIO. 1: (RESPOSTAS)
$$W_{1} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = A^{t} \} \text{ e } W_{2} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = -A^{t} \}$$

$$W_{1} = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; \text{ e } \{e_{1}; e_{2} + e_{3}; e_{4} \} \text{ é LI} \Rightarrow \beta_{W_{1}} = \{e_{1}; e_{2} + e_{3}; e_{4} \}$$

$$\Rightarrow dim(W_{1}) = 3.$$

$$W_{2} = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \text{ e } \{e_{2} - e_{3} \} \text{ é LI}$$

EXERCÍCIO. 1: (RESPOSTAS)
$$W_{1} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = A^{t}\} \text{ e } W_{2} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = -A^{t}\}$$

$$W_{1} = \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{v_{2}=e_{1}}; \text{ e } \{e_{1}; e_{2} + e_{3}; e_{4}\} \text{ é LI} \Rightarrow \beta_{\mathcal{W}_{1}} = \{e_{1}; e_{2} + e_{3}; e_{4}\}$$

$$\Rightarrow dim(\mathcal{W}_{1}) = 3.$$

$$W_{2} = \underbrace{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{v_{2}=e_{2}}; \text{ e } \{e_{2} - e_{3}\} \text{ é LI} \Rightarrow \beta_{\mathcal{W}_{2}} = \{e_{2} - e_{3}\}$$

EXERCÍCIO. 1: (RESPOSTAS)
$$W_{1} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = A^{t}\} \text{ e } W_{2} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = -A^{t}\}$$

$$W_{1} = \left[\underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{v_{2} = e_{2} + e_{3}}; \underbrace{e_{4}} \right]; \text{ e } \{e_{1}; e_{2} + e_{3}; e_{4}\} \text{ é LI} \Rightarrow \beta_{W_{1}} = \{e_{1}; e_{2} + e_{3}; e_{4}\}$$

$$\Rightarrow \dim(\mathcal{W}_{1}) = 3.$$

$$W_{2} = \left[\underbrace{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{u_{1} = e_{2} - e_{3}} \right]; \text{ e } \{e_{2} - e_{3}\} \text{ é LI} \Rightarrow \beta_{W_{2}} = \{e_{2} - e_{3}\} \Rightarrow \dim(\mathcal{W}_{2}) = 1.$$

EXERCÍCIO. 1: (RESPOSTAS)
$$W_{1} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = A^{t}\} \text{ e } W_{2} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = -A^{t}\}$$

$$W_{1} = \left[\underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{v_{2} = e_{2} + e_{3}}; \underbrace{e_{4}} \right]; \text{ e } \{e_{1}; e_{2} + e_{3}; e_{4}\} \text{ é LI} \Rightarrow \beta_{W_{1}} = \{e_{1}; e_{2} + e_{3}; e_{4}\}$$

$$\Rightarrow \dim(\mathcal{W}_{1}) = 3.$$

$$W_{2} = \left[\underbrace{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{u_{1} = e_{2} - e_{3}} \right]; \text{ e } \{e_{2} - e_{3}\} \text{ é LI} \Rightarrow \beta_{W_{2}} = \{e_{2} - e_{3}\} \Rightarrow \dim(\mathcal{W}_{2}) = 1.$$

Base e Dimensão

Exercício.1:(respostas)

EXERCÍCIO.1: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } W_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

EXERCÍCIO.1:(RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}$$

```
EXERCÍCIO.1: (RESPOSTAS)
\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}
\mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}
\Rightarrow
```

```
EXERCÍCIO.1:(RESPOSTAS)
\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}
\mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}
\Rightarrow \mathcal{W}_1 \cap \mathcal{W}_2 = [\emptyset] \Rightarrow
```

```
EXERCÍCIO.1:(RESPOSTAS)
\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}
\mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}
\Rightarrow \mathcal{W}_1 \cap \mathcal{W}_2 = [\emptyset] \Rightarrow \beta_{\mathcal{W}_1 \cap \mathcal{W}_2} = \emptyset \Rightarrow
```

```
EXERCÍCIO.1:(RESPOSTAS)
\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}
\mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}
\Rightarrow \mathcal{W}_1 \cap \mathcal{W}_2 = [\emptyset] \Rightarrow \beta_{\mathcal{W}_1 \cap \mathcal{W}_2} = \emptyset \Rightarrow \dim(\mathcal{W}_1 \cap \mathcal{W}_2) = 0.
```

Base e Dimensão

EXERCÍCIO.1:(RESPOSTAS)

EXERCÍCIO.1:(RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } W_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

```
EXERCÍCIO.1: (RESPOSTAS)
W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } W_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}
dim(W_1 + W_2) =
```

EXERCÍCIO.1:(RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\dim(\mathcal{W}_1 + \mathcal{W}_2) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_2) - \dim(\mathcal{W}_1 \cap \mathcal{W}_2) =$$

```
EXERCÍCIO.1:(RESPOSTAS)  \mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}   \dim(\mathcal{W}_1 + \mathcal{W}_2) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_2) - \dim(\mathcal{W}_1 \cap \mathcal{W}_2) = 3 + 1 - 0
```

```
EXERCÍCIO.1:(RESPOSTAS)
\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}
\dim(\mathcal{W}_1 + \mathcal{W}_2) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_2) - \dim(\mathcal{W}_1 \cap \mathcal{W}_2) = 3 + 1 - 0 = 4
```

```
EXERCÍCIO.1:(RESPOSTAS)  \mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}   \dim(\mathcal{W}_1 + \mathcal{W}_2) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_2) - \dim(\mathcal{W}_1 \cap \mathcal{W}_2) = 3 + 1 - 0 = 4   \Rightarrow \beta_{\mathcal{W}_1 + \mathcal{W}_2} = \{e_1, e_2, e_3, e_4\}.
```

```
EXERCÍCIO.1:(RESPOSTAS)  \mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}   \dim(\mathcal{W}_1 + \mathcal{W}_2) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_2) - \dim(\mathcal{W}_1 \cap \mathcal{W}_2) = 3 + 1 - 0 = 4   \Rightarrow \beta_{\mathcal{W}_1 + \mathcal{W}_2} = \{e_1, e_2, e_3, e_4\}.  E, como \mathcal{V} = \mathcal{M}_2(\mathbb{R}) = \mathcal{W}_1 + \mathcal{W}_2, temos que :
```

```
EXERCÍCIO.1:(RESPOSTAS)  \mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}   \dim(\mathcal{W}_1 + \mathcal{W}_2) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_2) - \dim(\mathcal{W}_1 \cap \mathcal{W}_2) = \ 3 + 1 - 0 = 4   \Rightarrow \beta_{\mathcal{W}_1 + \mathcal{W}_2} = \{e_1, e_2, e_3, e_4\}.  E, como \mathcal{V} = \mathcal{M}_2(\mathbb{R}) = \mathcal{W}_1 + \mathcal{W}_2, temos que :
```

$$\mathit{dim}(\mathcal{V}) = \mathit{dim}(\mathcal{W}_1 + \mathcal{W}_2) = 4$$

```
EXERCÍCIO.1:(RESPOSTAS)  \mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}   \dim(\mathcal{W}_1 + \mathcal{W}_2) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_2) - \dim(\mathcal{W}_1 \cap \mathcal{W}_2) = \ 3 + 1 - 0 = 4   \Rightarrow \beta_{\mathcal{W}_1 + \mathcal{W}_2} = \{e_1, e_2, e_3, e_4\}.  E, como \mathcal{V} = \mathcal{M}_2(\mathbb{R}) = \mathcal{W}_1 + \mathcal{W}_2, temos que :
```

$$\mathit{dim}(\mathcal{V}) = \mathit{dim}(\mathcal{W}_1 + \mathcal{W}_2) = 4$$

Base e Dimensão

Exercício.1:(respostas)

Exercício.1:(Respostas)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$$
 e $\mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$

EXERCÍCIO.1:(RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$$
 e $W_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$ $\beta_{W_1} =$

```
EXERCÍCIO.1:(RESPOSTAS)
\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}
\beta_{\mathcal{W}_1} = \{e_1;
```

EXERCÍCIO.1:(RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\beta_{\mathcal{W}_1} = \{e_1; e_2 + e_3;$$

EXERCÍCIO.1:(RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$$
 e $W_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$ $\beta_{\mathcal{W}_1} = \{e_1; e_2 + e_3; e_4\}$

EXERCÍCIO.1:(RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$
 $\beta_{\mathcal{W}_1} = \{e_1; e_2 + e_3; e_4\}$

EXERCÍCIO.1:(RESPOSTAS)
$$\mathcal{W}_1 = \{ A \in \mathcal{M}_2(\mathbb{R}) | A = A^t \} \text{ e } \mathcal{W}_2 = \{ A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t \}$$

$$\beta_{\mathcal{W}_1} = \{ e_1; e_2 + e_3; e_4 \} \Rightarrow \dim(\mathcal{W}_1) = 3.$$

```
EXERCÍCIO.1:(RESPOSTAS)  \mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}   \beta_{\mathcal{W}_1} = \{e_1; e_2 + e_3; e_4\} \Rightarrow \dim(\mathcal{W}_1) = 3.   \beta_{\mathcal{W}_2} = \{e_2 - e_3\}
```

```
EXERCÍCIO.1:(RESPOSTAS)  \mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}   \beta_{\mathcal{W}_1} = \{e_1; e_2 + e_3; e_4\} \Rightarrow \dim(\mathcal{W}_1) = 3.   \beta_{\mathcal{W}_2} = \{e_2 - e_3\}
```

```
EXERCÍCIO.1:(RESPOSTAS)  \mathcal{W}_1 = \{ A \in \mathcal{M}_2(\mathbb{R}) | A = A^t \} \text{ e } \mathcal{W}_2 = \{ A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t \}   \beta_{\mathcal{W}_1} = \{ e_1; e_2 + e_3; e_4 \} \Rightarrow \dim(\mathcal{W}_1) = 3.   \beta_{\mathcal{W}_2} = \{ e_2 - e_3 \} \Rightarrow \dim(\mathcal{W}_2) = 1.
```

```
EXERCÍCIO.1:(RESPOSTAS)  \mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}   \beta_{\mathcal{W}_1} = \{e_1; e_2 + e_3; e_4\} \Rightarrow \dim(\mathcal{W}_1) = 3.   \beta_{\mathcal{W}_2} = \{e_2 - e_3\} \Rightarrow \dim(\mathcal{W}_2) = 1.   \mathcal{W}_3 = ? \text{ um subespço de } \mathcal{V} \text{ tal que } \mathcal{V} = \mathcal{W}_2 \oplus \mathcal{W}_3 \text{ onde, } \mathcal{W}_3 \neq \mathcal{W}_1.  Então, \mathcal{V} = \mathcal{W}_2 \oplus \mathcal{W}_3 se, e somente se,
```

```
EXERCÍCIO.1:(RESPOSTAS)  \mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}   \beta_{\mathcal{W}_1} = \{e_1; e_2 + e_3; e_4\} \Rightarrow \dim(\mathcal{W}_1) = 3.   \beta_{\mathcal{W}_2} = \{e_2 - e_3\} \Rightarrow \dim(\mathcal{W}_2) = 1.   \mathcal{W}_3 = ? \text{ um subespço de } \mathcal{V} \text{ tal que } \mathcal{V} = \mathcal{W}_2 \oplus \mathcal{W}_3 \text{ onde, } \mathcal{W}_3 \neq \mathcal{W}_1.  Então, \mathcal{V} = \mathcal{W}_2 \oplus \mathcal{W}_3 se, e somente se, (i) \mathcal{V} = \mathcal{W}_2 + \mathcal{W}_3;
```

```
EXERCÍCIO.1:(RESPOSTAS)  \mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}   \beta_{\mathcal{W}_1} = \{e_1; e_2 + e_3; e_4\} \Rightarrow \dim(\mathcal{W}_1) = 3.   \beta_{\mathcal{W}_2} = \{e_2 - e_3\} \Rightarrow \dim(\mathcal{W}_2) = 1.   \mathcal{W}_3 = ? \text{ um subespço de } \mathcal{V} \text{ tal que } \mathcal{V} = \mathcal{W}_2 \oplus \mathcal{W}_3 \text{ onde, } \mathcal{W}_3 \neq \mathcal{W}_1.  Então,  \mathcal{V} = \mathcal{W}_2 \oplus \mathcal{W}_3 \text{ se, e somente se,}  (i)  \mathcal{V} = \mathcal{W}_2 + \mathcal{W}_3;   \Rightarrow \dim(\mathcal{V}) = \dim(\mathcal{W}_2 + \mathcal{W}_3).
```

```
EXERCÍCIO.1: (RESPOSTAS)  \mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}   \beta_{\mathcal{W}_1} = \{e_1; e_2 + e_3; e_4\} \Rightarrow \dim(\mathcal{W}_1) = 3.   \beta_{\mathcal{W}_2} = \{e_2 - e_3\} \Rightarrow \dim(\mathcal{W}_2) = 1.   \mathcal{W}_3 = ? \text{ um subespço de } \mathcal{V} \text{ tal que } \mathcal{V} = \mathcal{W}_2 \oplus \mathcal{W}_3 \text{ onde, } \mathcal{W}_3 \neq \mathcal{W}_1.  Então, \mathcal{V} = \mathcal{W}_2 \oplus \mathcal{W}_3;  \Rightarrow \dim(\mathcal{V}) = \dim(\mathcal{W}_2 + \mathcal{W}_3).  (ii)  \mathcal{W}_2 \cap \mathcal{W}_3 = \{0\};
```

```
EXERCÍCIO.1:(RESPOSTAS)  \mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}   \beta_{\mathcal{W}_1} = \{e_1; e_2 + e_3; e_4\} \Rightarrow \dim(\mathcal{W}_1) = 3.   \beta_{\mathcal{W}_2} = \{e_2 - e_3\} \Rightarrow \dim(\mathcal{W}_2) = 1.   \mathcal{W}_3 = \text{? um subespço de } \mathcal{V} \text{ tal que } \mathcal{V} = \mathcal{W}_2 \oplus \mathcal{W}_3 \text{ onde, } \mathcal{W}_3 \neq \mathcal{W}_1.  Então, \mathcal{V} = \mathcal{W}_2 \oplus \mathcal{W}_3 se, e somente se,
```

- (i) $V = W_2 + W_3$; $\Rightarrow dim(V) = dim(W_2 + W_3)$.
- (ii) $\mathcal{W}_2 \cap \mathcal{W}_3 = \{0\};$ $\Rightarrow \dim(\mathcal{W}_2 \cap \mathcal{W}_3) = 0.$

```
EXERCÍCIO.1:(RESPOSTAS)  \mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}   \beta_{\mathcal{W}_1} = \{e_1; e_2 + e_3; e_4\} \Rightarrow \dim(\mathcal{W}_1) = 3.   \beta_{\mathcal{W}_2} = \{e_2 - e_3\} \Rightarrow \dim(\mathcal{W}_2) = 1.   \mathcal{W}_3 = ? \text{ um subespço de } \mathcal{V} \text{ tal que } \mathcal{V} = \mathcal{W}_2 \oplus \mathcal{W}_3 \text{ onde, } \mathcal{W}_3 \neq \mathcal{W}_1.  Então, \mathcal{V} = \mathcal{W}_2 \oplus \mathcal{W}_3 se, e somente se,
```

- (i) $V = W_2 + W_3$; $\Rightarrow dim(V) = dim(W_2 + W_3)$.
- (ii) $\mathcal{W}_2 \cap \mathcal{W}_3 = \{0\};$ $\Rightarrow \dim(\mathcal{W}_2 \cap \mathcal{W}_3) = 0.$

Base e Dimensão

EXERCÍCIO.1:(RESPOSTAS)

Base e Dimensão

EXERCÍCIO.1:(RESPOSTAS) Por (i) e (ii), temos

```
Exercício.1:(respostas)
Por (i) e (ii), temos
dim(\mathcal{V}) = dim(\mathcal{W}_2 + \mathcal{W}_3)
```

```
EXERCÍCIO.1:(RESPOSTAS)
Por (i) e (ii), temos
dim(\mathcal{V}) = dim(\mathcal{W}_2 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_2) + dim(\mathcal{W}_3)
```

```
EXERCÍCIO.1:(RESPOSTAS)
Por (i) e (ii), temos
dim(\mathcal{V}) = dim(\mathcal{W}_2 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_2) + dim(\mathcal{W}_3)
\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_2)
```

```
EXERCÍCIO.1:(RESPOSTAS)
Por (i) e (ii), temos
dim(\mathcal{V}) = dim(\mathcal{W}_2 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_2) + dim(\mathcal{W}_3)
\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_2) \Rightarrow dim(\mathcal{W}_3) = 4 - 1 = 3
```

```
EXERCÍCIO.1:(RESPOSTAS)
Por (i) e (ii), temos
dim(\mathcal{V}) = dim(\mathcal{W}_2 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_2) + dim(\mathcal{W}_3)
\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_2) \Rightarrow dim(\mathcal{W}_3) = 4 - 1 = 3.
```

Base e Dimensão

EXERCÍCIO.1:(RESPOSTAS) Por (i) e (ii), temos $dim(\mathcal{V}) = dim(\mathcal{W}_2 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_2) + dim(\mathcal{W}_3)$ $\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_2) \Rightarrow dim(\mathcal{W}_3) = 4 - 1 = 3$.

Então, temos que obter vetores $u_1, u_2, u_3 \in \mathcal{V}$ para gerar \mathcal{W}_3

Base e Dimensão

EXERCÍCIO.1:(RESPOSTAS)

Por (i) e (ii), temos $dim(\mathcal{V}) = dim(\mathcal{W}_2 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_2) + dim(\mathcal{W}_3)$ $\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_2) \Rightarrow dim(\mathcal{W}_3) = 4 - 1 = 3$.

Então, temos que obter vetores $u_1, u_2, u_3 \in \mathcal{V}$ para gerar \mathcal{W}_3 porém, estes vetores $u_1, u_2, u_3 \in \mathcal{V}$ complementam $\beta_{\mathcal{W}_2}$

Base e Dimensão

EXERCÍCIO.1:(RESPOSTAS) Por (i) e (ii), temos

$$dim(\mathcal{V}) = dim(\mathcal{W}_2 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_2) + dim(\mathcal{W}_3)$$

 $\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_2) \Rightarrow dim(\mathcal{W}_3) = 4 - 1 = 3$.

Então, temos que obter vetores $u_1, u_2, u_3 \in \mathcal{V}$ para gerar \mathcal{W}_3 porém, estes vetores $u_1, u_2, u_3 \in \mathcal{V}$ complementam $\beta_{\mathcal{W}_2}$ formando uma base para \mathcal{V} :

Base e Dimensão

EXERCÍCIO.1:(RESPOSTAS)

Por (i) e (ii), temos $dim(\mathcal{V}) = dim(\mathcal{W}_2 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_2) + dim(\mathcal{W}_3)$ $\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_2) \Rightarrow dim(\mathcal{W}_3) = 4 - 1 = 3$.

Base e Dimensão

```
EXERCÍCIO.1:(RESPOSTAS)
```

Por (i) e (ii), temos

$$dim(\mathcal{V}) = dim(\mathcal{W}_2 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_2) + dim(\mathcal{W}_3)$$

\Rightarrow dim(\mathcal{V}_3) = dim(\mathcal{V}) - dim(\mathcal{V}_2) \Rightarrow dim(\mathcal{W}_3) = 4 - 1 = 3.

$$\Rightarrow$$
 $aim(vv_3) = aim(v) - aim(vv_2) \Rightarrow aim(vv_3) = 4 - 1 = 3$

podemos por exemplo, tomar
$$u_1 = e_1, u_2 = e_3, u_3 = e_4$$

Base e Dimensão

```
EXERCÍCIO.1:(RESPOSTAS)
```

$$dim(\mathcal{V}) = dim(\mathcal{W}_2 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_2) + dim(\mathcal{W}_3)$$

 $\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_2) \Rightarrow dim(\mathcal{W}_3) = 4 - 1 = 3$.

$$\Rightarrow aim(vv_3) = aim(v) - aim(vv_2) \Rightarrow aim(vv_3) = 4 - 1 = 3$$

podemos por exemplo, tomar
$$u_1=e_1,u_2=e_3,u_3=e_4\Rightarrow eta_{\mathcal{W}_3}=\{e_1,e_2,e_4\}$$

Base e Dimensão

```
EXERCÍCIO.1:(RESPOSTAS)
Por (i) e (ii), temos
dim(\mathcal{V}) = dim(\mathcal{W}_2 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_2) + dim(\mathcal{W}_3)
\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_2) \Rightarrow dim(\mathcal{W}_3) = 4 - 1 = 3.
```

```
podemos por exemplo, tomar u_1 = e_1, u_2 = e_3, u_3 = e_4 \Rightarrow \beta_{W_2} = \{e_1, e_2, e_4\}
\Rightarrow \beta_{12} = \{e_2 - e_3, e_1, e_2, e_4\}.
```

Base e Dimensão

```
EXERCÍCIO.1:(RESPOSTAS)
Por (i) e (ii), temos
dim(\mathcal{V}) = dim(\mathcal{W}_2 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_2) + dim(\mathcal{W}_3)
\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_2) \Rightarrow dim(\mathcal{W}_3) = 4 - 1 = 3.
```

Então, temos que obter vetores $u_1, u_2, u_3 \in \mathcal{V}$ para gerar \mathcal{W}_3 porém, estes vetores $u_1, u_2, u_3 \in \mathcal{V}$ complementam $\beta_{\mathcal{W}_2}$ formando uma base para $\mathcal{V}: \beta_{\mathcal{V}} = \beta_{\mathcal{W}_2} \cup \{u_1, u_2, u_3\}$;

podemos por exemplo, tomar
$$u_1 = e_1, u_2 = e_3, u_3 = e_4 \Rightarrow \beta_{W_3} = \{e_1, e_2, e_4\}$$

 $\Rightarrow \beta_{V} = \{e_2 - e_3, e_1, e_2, e_4\}.$

Agora, como $\beta_{W_2} = \{e_1, e_2, e_4\}$

Base e Dimensão

EXERCÍCIO.1:(RESPOSTAS)

Por (i) e (ii), temos

$$dim(\mathcal{V}) = dim(\mathcal{W}_2 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_2) + dim(\mathcal{W}_3)$$

$$\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_2) \Rightarrow dim(\mathcal{W}_3) = 4 - 1 = 3.$$

podemos por exemplo, tomar
$$u_1 = e_1, u_2 = e_3, u_3 = e_4 \Rightarrow \beta_{W_3} = \{e_1, e_2, e_4\}$$

 $\Rightarrow \beta_{V} = \{e_2 - e_3, e_1, e_2, e_4\}.$

Agora, como
$$\beta_{\mathcal{W}_3} = \{e_1, e_2, e_4\} \Rightarrow \forall A \in \mathcal{W}_3, A = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_4; \forall \lambda_i \in \mathbb{R}$$

Base e Dimensão

Exercício.1:(respostas)

Por (i) e (ii), temos

$$dim(\mathcal{V}) = dim(\mathcal{W}_2 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_2) + dim(\mathcal{W}_3)$$

 $\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_2) \Rightarrow dim(\mathcal{W}_3) = 4 - 1 = 3$.

podemos por exemplo, tomar
$$u_1 = e_1, u_2 = e_3, u_3 = e_4 \Rightarrow \beta_{W_3} = \{e_1, e_2, e_4\}$$

 $\Rightarrow \beta_{V} = \{e_2 - e_3, e_1, e_2, e_4\}.$

Agora, como
$$\beta_{\mathcal{W}_3} = \{e_1, e_2, e_4\} \Rightarrow \forall A \in \mathcal{W}_3, A = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_4; \forall \lambda_i \in \mathbb{R} \Rightarrow \mathcal{W}_3 = \{A \in \mathcal{V} \mid a_{21} = 0\}.$$

Base e Dimensão

Exercício.1:(respostas)

Por (i) e (ii), temos

$$dim(\mathcal{V}) = dim(\mathcal{W}_2 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_2) + dim(\mathcal{W}_3)$$

 $\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_2) \Rightarrow dim(\mathcal{W}_3) = 4 - 1 = 3$.

podemos por exemplo, tomar
$$u_1 = e_1, u_2 = e_3, u_3 = e_4 \Rightarrow \beta_{W_3} = \{e_1, e_2, e_4\}$$

 $\Rightarrow \beta_{V} = \{e_2 - e_3, e_1, e_2, e_4\}.$

Agora, como
$$\beta_{W_3} = \{e_1, e_2, e_4\} \Rightarrow \forall A \in W_3, A = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_4; \forall \lambda_i \in \mathbb{R} \Rightarrow W_3 = \{A \in V \mid a_{21} = 0\}.$$

Base e Dimensão

EXERCÍCIO.2:(RESPOSTAS)

EXERCÍCIO.2:(RESPOSTAS)

$$W_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\}$$

EXERCÍCIO.2:(RESPOSTAS)
$$\mathcal{W}_1 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2 \} \text{ e } \mathcal{W}_2 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0 \}.$$

EXERCÍCIO.2:(RESPOSTAS)
$$\mathcal{W}_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\} \text{ e } \mathcal{W}_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}.$$

$$\forall p(t) \in \mathcal{W}_1 \Rightarrow$$

EXERCÍCIO.2:(RESPOSTAS)
$$W_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\} \text{ e } W_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}.$$
 $\forall p(t) \in \mathcal{W}_1 \Rightarrow \mathcal{W}_1 = [(1+t); (1+t^2)]; \text{ e}$

EXERCÍCIO.2:(RESPOSTAS)
$$W_1 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2 \} \text{ e } W_2 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0 \}.$$

$$\forall p(t) \in \mathcal{W}_1 \Rightarrow \mathcal{W}_1 = [(1+t); (1+t^2)]; \text{ e } \{ (1+t); (1+t^2) \} \text{ é LI};$$

EXERCÍCIO.2: (RESPOSTAS)
$$W_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\} \text{ e } W_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}.$$

$$\forall p(t) \in \mathcal{W}_1 \Rightarrow \mathcal{W}_1 = [(1+t); (1+t^2)]; \text{ e } \{(1+t); (1+t^2)\} \text{ é LI}; \Rightarrow \beta_{\mathcal{W}_1} = \{(1+t); (1+t^2)\}$$

EXERCÍCIO.2:(RESPOSTAS)
$$W_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\} \text{ e } W_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}.$$

$$\forall p(t) \in \mathcal{W}_1 \Rightarrow \mathcal{W}_1 = [(1+t); (1+t^2)]; \text{ e } \{(1+t); (1+t^2)\} \text{ \'e LI}; \Rightarrow \beta_{\mathcal{W}_1} = \{(1+t); (1+t^2)\}$$

$$\Rightarrow \dim(\mathcal{W}_1) = 2.$$

```
Exercício.2:(Respostas)
\mathcal{W}_1 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2 \} \text{ e } \mathcal{W}_2 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0 \}.
\forall p(t) \in \mathcal{W}_1 \Rightarrow \mathcal{W}_1 = [(1+t); (1+t^2)]; e\{(1+t); (1+t^2)\} \in \mathsf{LI}; \Rightarrow \beta_{\mathcal{W}_1} = \{(1+t); (1+t^2)\}
\Rightarrow dim(\mathcal{W}_1) = 2.
\forall p(t) \in \mathcal{W}_2 \Rightarrow
```

```
Exercício.2:(Respostas)
\mathcal{W}_1 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2 \} \text{ e } \mathcal{W}_2 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0 \}.
\forall p(t) \in \mathcal{W}_1 \Rightarrow \mathcal{W}_1 = [(1+t); (1+t^2)]; e\{(1+t); (1+t^2)\} \notin \mathsf{LI}; \Rightarrow \beta_{\mathcal{W}_1} = \{(1+t); (1+t^2)\}
\Rightarrow dim(\mathcal{W}_1) = 2.
\forall p(t) \in \mathcal{W}_2 \Rightarrow \mathcal{W}_2 = [(-1+t)]
```

```
Exercício.2:(Respostas)
\mathcal{W}_1 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2 \} \text{ e } \mathcal{W}_2 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0 \}.
\forall p(t) \in \mathcal{W}_1 \Rightarrow \mathcal{W}_1 = [(1+t); (1+t^2)]; e\{(1+t); (1+t^2)\} \notin \mathsf{LI}; \Rightarrow \beta_{\mathcal{W}_1} = \{(1+t); (1+t^2)\}
\Rightarrow dim(\mathcal{W}_1) = 2.
\forall p(t) \in \mathcal{W}_2 \Rightarrow \mathcal{W}_2 = [(-1+t)] \in \{(-1+t)\} \notin \mathsf{LI};
```

```
EXERCÍCIO.2:(RESPOSTAS)
\mathcal{W}_1 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2 \} \text{ e } \mathcal{W}_2 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0 \}.
\forall p(t) \in \mathcal{W}_1 \Rightarrow \mathcal{W}_1 = [(1+t); (1+t^2)]; e\{(1+t); (1+t^2)\} \notin \mathsf{LI}; \Rightarrow \beta_{\mathcal{W}_1} = \{(1+t); (1+t^2)\}
\Rightarrow dim(\mathcal{W}_1) = 2.
\forall p(t) \in \mathcal{W}_2 \Rightarrow \mathcal{W}_2 = [(-1+t)] \in \{(-1+t)\} \notin \mathsf{LI}; \Rightarrow \beta_{\mathcal{W}_2} = \{(-1+t)\}
```

```
EXERCÍCIO.2:(RESPOSTAS)
\mathcal{W}_1 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2 \} \text{ e } \mathcal{W}_2 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0 \}.
\forall p(t) \in \mathcal{W}_1 \Rightarrow \mathcal{W}_1 = [(1+t); (1+t^2)]; e\{(1+t); (1+t^2)\} \notin LI; \Rightarrow \beta_{\mathcal{W}_1} = \{(1+t); (1+t^2)\}
\Rightarrow dim(\mathcal{W}_1) = 2.
\forall p(t) \in \mathcal{W}_2 \Rightarrow \mathcal{W}_2 = [(-1+t)] \in \{(-1+t)\} \notin \mathsf{LI}; \Rightarrow \beta_{\mathcal{W}_2} = \{(-1+t)\} \Rightarrow \dim(\mathcal{W}_2) = 1.
```

```
EXERCÍCIO.2:(RESPOSTAS)
\mathcal{W}_1 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2 \} \text{ e } \mathcal{W}_2 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0 \}.
\forall p(t) \in \mathcal{W}_1 \Rightarrow \mathcal{W}_1 = [(1+t); (1+t^2)]; e\{(1+t); (1+t^2)\} \notin LI; \Rightarrow \beta_{\mathcal{W}_1} = \{(1+t); (1+t^2)\}
\Rightarrow dim(\mathcal{W}_1) = 2.
\forall p(t) \in \mathcal{W}_2 \Rightarrow \mathcal{W}_2 = [(-1+t)] \in \{(-1+t)\} \notin \mathsf{LI}; \Rightarrow \beta_{\mathcal{W}_2} = \{(-1+t)\} \Rightarrow \dim(\mathcal{W}_2) = 1.
```

Base e Dimensão

Exercício.2:(Respostas)

EXERCÍCIO.2:(RESPOSTAS)
$$W_1 = [(1+t); (1+t^2)]; e,$$

EXERCÍCIO.2:(RESPOSTAS)
$$W_1 = [(1+t); (1+t^2)]; e, W_2 = [(-1+t)];$$

Base e Dimensão

EXERCÍCIO.2:(RESPOSTAS)
$$W_1 = [(1+t); (1+t^2)]; e, W_2 = [(-1+t)];$$

Então, $\forall p(t) \in (\mathcal{W}_1 \cap \mathcal{W}_2)$

EXERCÍCIO.2:(RESPOSTAS)
$$\mathcal{W}_1 = [(1+t); (1+t^2)]; \text{ e, } \mathcal{W}_2 = [(-1+t)];$$
Então, $\forall p(t) \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow (\mathcal{W}_1 \cap \mathcal{W}_2) = \{0\}$

EXERCÍCIO.2:(RESPOSTAS)
$$W_1 = [(1+t); (1+t^2)]; e, W_2 = [(-1+t)];$$

$$\mathsf{Ent\~ao}, \, \forall p(t) \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow (\mathcal{W}_1 \cap \mathcal{W}_2) = \{0\} \Rightarrow (\mathcal{W}_1 \cap \mathcal{W}_2) = [\emptyset] \Rightarrow \beta_{\mathcal{W}_1 \cap \mathcal{W}_2} = \emptyset$$

EXERCÍCIO.2:(RESPOSTAS)
$$\mathcal{W}_1 = [(1+t); (1+t^2)]; \text{ e, } \mathcal{W}_2 = [(-1+t)];$$
 Então, $\forall p(t) \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow (\mathcal{W}_1 \cap \mathcal{W}_2) = \{0\} \Rightarrow (\mathcal{W}_1 \cap \mathcal{W}_2) = [\emptyset] \Rightarrow \beta_{\mathcal{W}_1 \cap \mathcal{W}_2} = \emptyset \Rightarrow \dim(\mathcal{W}_1 \cap \mathcal{W}_2) = 0.$

EXERCÍCIO.2:(RESPOSTAS)
$$\mathcal{W}_1 = [(1+t); (1+t^2)]; \text{ e, } \mathcal{W}_2 = [(-1+t)];$$
 Então, $\forall p(t) \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow (\mathcal{W}_1 \cap \mathcal{W}_2) = \{0\} \Rightarrow (\mathcal{W}_1 \cap \mathcal{W}_2) = [\emptyset] \Rightarrow \beta_{\mathcal{W}_1 \cap \mathcal{W}_2} = \emptyset \Rightarrow \dim(\mathcal{W}_1 \cap \mathcal{W}_2) = 0.$

Base e Dimensão

Exercício.2:(Respostas)

EXERCÍCIO.2:(RESPOSTAS)
$$dim(W_1 + W_2) =$$

EXERCÍCIO.2: (RESPOSTAS)
$$dim(W_1 + W_2) = dim(W_1) + dim(W_2) - dim(W_1 \cap W_2) =$$

EXERCÍCIO.2:(RESPOSTAS)
$$dim(\mathcal{W}_1 + \mathcal{W}_2) = dim(\mathcal{W}_1) + dim(\mathcal{W}_2) - dim(\mathcal{W}_1 \cap \mathcal{W}_2) = 2 + 1 - 0$$

EXERCÍCIO.2:(RESPOSTAS)
$$\dim(\mathcal{W}_1 + \mathcal{W}_2) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_2) - \dim(\mathcal{W}_1 \cap \mathcal{W}_2) = \ 2 + 1 - 0 = 3$$

EXERCÍCIO.2: (RESPOSTAS)
$$dim(\mathcal{W}_1 + \mathcal{W}_2) = dim(\mathcal{W}_1) + dim(\mathcal{W}_2) - dim(\mathcal{W}_1 \cap \mathcal{W}_2) = 2 + 1 - 0 = 3$$

$$\Rightarrow \beta_{\mathcal{W}_1 + \mathcal{W}_2} = \{e_1, e_2, e_3\}.$$

```
EXERCÍCIO.2:(RESPOSTAS)
dim(\mathcal{W}_1 + \mathcal{W}_2) = dim(\mathcal{W}_1) + dim(\mathcal{W}_2) - dim(\mathcal{W}_1 \cap \mathcal{W}_2) = 2 + 1 - 0 = 3
\Rightarrow \beta_{W_1+W_2} = \{e_1, e_2, e_3\}.
E, como \mathcal{V} = \mathcal{P}_2(\mathbb{R}) = \mathcal{W}_1 + \mathcal{W}_2, temos que :
```

EXERCÍCIO.2:(RESPOSTAS)
$$\begin{aligned} & \dim(\mathcal{W}_1+\mathcal{W}_2) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_2) - \dim(\mathcal{W}_1\cap\mathcal{W}_2) = \ 2+1-0 = 3 \\ & \Rightarrow \beta_{\mathcal{W}_1+\mathcal{W}_2} = \{e_1,e_2,e_3\}. \\ & \mathsf{E}, \ \mathsf{como}\ \mathcal{V} = \mathcal{P}_2(\mathbb{R}) = \mathcal{W}_1 + \mathcal{W}_2, \ \mathsf{temos}\ \mathsf{que} : \end{aligned}$$

$$dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_2) = 3$$

EXERCÍCIO.2:(RESPOSTAS)
$$\begin{aligned} & \dim(\mathcal{W}_1+\mathcal{W}_2) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_2) - \dim(\mathcal{W}_1\cap\mathcal{W}_2) = \ 2+1-0 = 3 \\ & \Rightarrow \beta_{\mathcal{W}_1+\mathcal{W}_2} = \{e_1,e_2,e_3\}. \\ & \mathsf{E}, \ \mathsf{como}\ \mathcal{V} = \mathcal{P}_2(\mathbb{R}) = \mathcal{W}_1 + \mathcal{W}_2, \ \mathsf{temos}\ \mathsf{que} : \end{aligned}$$

$$dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_2) = 3$$

Base e Dimensão

Exercício.2:(Respostas)

EXERCÍCIO.2:(RESPOSTAS)
$$\beta_{W_1} = \{(1+t); (1+t^2)\}; e,$$

EXERCÍCIO.2:(RESPOSTAS)

$$\beta_{W_1} = \{(1+t); (1+t^2)\}; \text{ e, } \beta_{W_2} = \{(-1+t)\};$$

```
EXERCÍCIO.2:(RESPOSTAS)
\beta_{W_1} = \{(1+t); (1+t^2)\}; \text{ e, } \beta_{W_2} = \{(-1+t)\};
\mathcal{W}_3 = ? um subespço de \mathcal{V} tal que \mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_3 onde, \mathcal{W}_3 \neq \mathcal{W}_2.
```

```
EXERCÍCIO.2:(RESPOSTAS)
\beta_{W_1} = \{(1+t); (1+t^2)\}; \text{ e, } \beta_{W_2} = \{(-1+t)\};
\mathcal{W}_3 = ? um subespoo de \mathcal{V} tal que \mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_3 onde, \mathcal{W}_3 \neq \mathcal{W}_2.
Então. \mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_3 se, e somente se.
```

```
EXERCÍCIO.2:(RESPOSTAS)
\beta_{W_1} = \{(1+t); (1+t^2)\}; \text{ e, } \beta_{W_2} = \{(-1+t)\};
\mathcal{W}_3 = ? um subespoo de \mathcal{V} tal que \mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_3 onde, \mathcal{W}_3 \neq \mathcal{W}_2.
Então. \mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_3 se, e somente se.
  (i) V = W_1 + W_3:
```

```
EXERCÍCIO.2:(RESPOSTAS)
\beta_{W_2} = \{(1+t); (1+t^2)\}; \text{ e. } \beta_{W_2} = \{(-1+t)\};
\mathcal{W}_3 = ? um subespoo de \mathcal{V} tal que \mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_3 onde, \mathcal{W}_3 \neq \mathcal{W}_2.
Então. \mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_3 se, e somente se.
  (i) V = W_1 + W_3:
        \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_3).
```

```
EXERCÍCIO.2:(RESPOSTAS)
\beta_{W_2} = \{(1+t); (1+t^2)\}; \text{ e. } \beta_{W_2} = \{(-1+t)\};
\mathcal{W}_3 = ? um subespoo de \mathcal{V} tal que \mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_3 onde, \mathcal{W}_3 \neq \mathcal{W}_2.
Então. \mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_3 se, e somente se.
  (i) V = W_1 + W_3:
        \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_3).
 (ii) W_1 \cap W_3 = \{0\};
```

```
EXERCÍCIO.2: (RESPOSTAS) \beta_{\mathcal{W}_1} = \{(1+t); (1+t^2)\}; \text{ e, } \beta_{\mathcal{W}_2} = \{(-1+t)\}; \mathcal{W}_3 = ? \text{ um subespço de } \mathcal{V} \text{ tal que } \mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_3 \text{ onde, } \mathcal{W}_3 \neq \mathcal{W}_2. Então, \mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_3 \text{ se, e somente se,} (i) \mathcal{V} = \mathcal{W}_1 + \mathcal{W}_3; \Rightarrow \dim(\mathcal{V}) = \dim(\mathcal{W}_1 + \mathcal{W}_3). (ii) \mathcal{W}_1 \cap \mathcal{W}_3 = \{0\}; \Rightarrow \dim(\mathcal{W}_1 \cap \mathcal{W}_3) = 0.
```

```
EXERCÍCIO.2: (RESPOSTAS) \beta_{\mathcal{W}_1} = \{(1+t); (1+t^2)\}; \text{ e, } \beta_{\mathcal{W}_2} = \{(-1+t)\}; \mathcal{W}_3 = ? \text{ um subespço de } \mathcal{V} \text{ tal que } \mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_3 \text{ onde, } \mathcal{W}_3 \neq \mathcal{W}_2. Então, \mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_3 \text{ se, e somente se,} (i) \mathcal{V} = \mathcal{W}_1 + \mathcal{W}_3; \Rightarrow \dim(\mathcal{V}) = \dim(\mathcal{W}_1 + \mathcal{W}_3). (ii) \mathcal{W}_1 \cap \mathcal{W}_3 = \{0\}; \Rightarrow \dim(\mathcal{W}_1 \cap \mathcal{W}_3) = 0.
```

Base e Dimensão

EXERCÍCIO.2:(RESPOSTAS)

Base e Dimensão

Exercício.2:(Respostas) Por (i) e (ii), temos

Base e Dimensão

EXERCÍCIO.2:(RESPOSTAS) Por (i) e (ii), temos $dim(V) = dim(W_1 + W_3)$

Base e Dimensão

EXERCÍCIO.2:(RESPOSTAS) Por (i) e (ii), temos $dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_1) + dim(\mathcal{W}_3)$

```
EXERCÍCIO.2:(RESPOSTAS)
Por (i) e (ii), temos
dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_1) + dim(\mathcal{W}_3)
\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_1)
```

```
\begin{split} &\operatorname{EXERC\'iCIO.2:}(\operatorname{RESPOSTAS})\\ &\operatorname{Por}\;(i)\;e\;(ii),\; \operatorname{temos}\\ &\mathit{dim}(\mathcal{V}) = \mathit{dim}(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow \mathit{dim}(\mathcal{V}) = \mathit{dim}(\mathcal{W}_1) + \mathit{dim}(\mathcal{W}_3)\\ &\Rightarrow \mathit{dim}(\mathcal{W}_3) = \mathit{dim}(\mathcal{V}) - \mathit{dim}(\mathcal{W}_1) \Rightarrow \mathit{dim}(\mathcal{W}_3) = 3 - 2 = 1 \end{split}
```

```
\begin{split} &\operatorname{EXERC\'iCIO.2:}(\operatorname{RESPOSTAS})\\ &\operatorname{Por}\;(i)\;e\;(ii),\; temos\\ &\mathit{dim}(\mathcal{V}) = \mathit{dim}(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow \mathit{dim}(\mathcal{V}) = \mathit{dim}(\mathcal{W}_1) + \mathit{dim}(\mathcal{W}_3)\\ &\Rightarrow \mathit{dim}(\mathcal{W}_3) = \mathit{dim}(\mathcal{V}) - \mathit{dim}(\mathcal{W}_1) \Rightarrow \mathit{dim}(\mathcal{W}_3) = 3 - 2 = 1\;. \end{split}
```

```
EXERCÍCIO.2:(RESPOSTAS) Por (i) e (ii), temos  \dim(\mathcal{V}) = \dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow \dim(\mathcal{V}) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_3) \\ \Rightarrow \dim(\mathcal{W}_3) = \dim(\mathcal{V}) - \dim(\mathcal{W}_1) \Rightarrow \dim(\mathcal{W}_3) = 3 - 2 = 1 \ .  Então, temos que obter um vetor u \in \mathcal{V} para gerar \mathcal{W}_3.
```

```
EXERCÍCIO.2:(RESPOSTAS) Por (i) e (ii), temos  \dim(\mathcal{V}) = \dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow \dim(\mathcal{V}) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_3) \\ \Rightarrow \dim(\mathcal{W}_3) = \dim(\mathcal{V}) - \dim(\mathcal{W}_1) \Rightarrow \dim(\mathcal{W}_3) = 3 - 2 = 1 \ .  Então, temos que obter um vetor u \in \mathcal{V} para gerar \mathcal{W}_3. Porém, tem que ser um vetor u \in \mathcal{V} que \underline{\text{complete}} \ \beta_{\mathcal{W}_1}
```

```
EXERCÍCIO.2:(RESPOSTAS) Por (i) e (ii), temos  \dim(\mathcal{V}) = \dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow \dim(\mathcal{V}) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_3) \\ \Rightarrow \dim(\mathcal{W}_3) = \dim(\mathcal{V}) - \dim(\mathcal{W}_1) \Rightarrow \dim(\mathcal{W}_3) = 3 - 2 = 1 \ .  Então, temos que obter um vetor u \in \mathcal{V} para gerar \mathcal{W}_3. Porém, tem que ser um vetor u \in \mathcal{V} que \underline{\text{complete}} \ \beta_{\mathcal{W}_1} formando uma base para \mathcal{V}:
```

```
EXERCÍCIO.2:(RESPOSTAS) Por (i) e (ii), temos  \dim(\mathcal{V}) = \dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow \dim(\mathcal{V}) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_3) \\ \Rightarrow \dim(\mathcal{W}_3) = \dim(\mathcal{V}) - \dim(\mathcal{W}_1) \Rightarrow \dim(\mathcal{W}_3) = 3 - 2 = 1 \ .  Então, temos que obter um vetor u \in \mathcal{V} para gerar \mathcal{W}_3. Porém, tem que ser um vetor u \in \mathcal{V} que \underline{\text{complete}} \ \beta_{\mathcal{W}_1} formando uma base para \mathcal{V}: \beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\};
```

```
EXERCÍCIO.2:(RESPOSTAS) Por (i) e (ii), temos  \dim(\mathcal{V}) = \dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow \dim(\mathcal{V}) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_3) \\ \Rightarrow \dim(\mathcal{W}_3) = \dim(\mathcal{V}) - \dim(\mathcal{W}_1) \Rightarrow \dim(\mathcal{W}_3) = 3 - 2 = 1 \ .  Então, temos que obter um vetor u \in \mathcal{V} para gerar \mathcal{W}_3. Porém, tem que ser um vetor u \in \mathcal{V} que complete \beta_{\mathcal{W}_1} formando uma base para \mathcal{V}: \beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}; podemos por exemplo, tomar u = t:
```

• $u = t \notin \mathcal{W}_1$:

```
EXERCÍCIO.2:(RESPOSTAS)
Por (i) e (ii), temos dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_1) + dim(\mathcal{W}_3) \Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_1) \Rightarrow dim(\mathcal{W}_3) = 3 - 2 = 1 . Então, temos que obter um vetor u \in \mathcal{V} para gerar \mathcal{W}_3.
Porém, tem que ser um vetor u \in \mathcal{V} que complete \beta_{\mathcal{W}_1} formando uma base para \mathcal{V}: \beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}; podemos por exemplo, tomar u = t:
```

Base e Dimensão

```
EXERCÍCIO. 2: (RESPOSTAS) Por (i) e (ii), temos \begin{aligned} &\dim(\mathcal{V}) = \dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow \dim(\mathcal{V}) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_3) \\ &\Rightarrow \dim(\mathcal{W}_3) = \dim(\mathcal{V}) - \dim(\mathcal{W}_1) \Rightarrow \dim(\mathcal{W}_3) = 3 - 2 = 1 \ . \end{aligned} Então, temos que obter um vetor u \in \mathcal{V} para gerar \mathcal{W}_3. Porém, tem que ser um vetor u \in \mathcal{V} que <u>complete</u> \beta_{\mathcal{W}_1} formando uma base para \mathcal{V}: \beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}; podemos por exemplo, tomar u = t:
```

• $u = t \notin \mathcal{W}_1$: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$

Base e Dimensão

EXERCÍCIO.2:(RESPOSTAS) Por (i) e (ii), temos $dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_1) + dim(\mathcal{W}_3)$ $\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_1) \Rightarrow dim(\mathcal{W}_3) = 3 - 2 = 1 .$ Então, temos que obter um vetor $u \in \mathcal{V}$ para gerar \mathcal{W}_3 . Porém, tem que ser um vetor $u \in \mathcal{V}$ que complete $\beta_{\mathcal{W}_1}$ formando uma base para \mathcal{V} : $\beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}$; podemos por exemplo, tomar u = t:

• $u = t \notin \mathcal{W}_1$: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$ $\Rightarrow \lambda_1 + \lambda_2 = 0$

Base e Dimensão

```
EXERCÍCIO. 2: (RESPOSTAS) Por (i) e (ii), temos  \dim(\mathcal{V}) = \dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow \dim(\mathcal{V}) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_3) \\ \Rightarrow \dim(\mathcal{W}_3) = \dim(\mathcal{V}) - \dim(\mathcal{W}_1) \Rightarrow \dim(\mathcal{W}_3) = 3 - 2 = 1 \ .  Então, temos que obter um vetor u \in \mathcal{V} para gerar \mathcal{W}_3. Porém, tem que ser um vetor u \in \mathcal{V} que complete \beta_{\mathcal{W}_1} formando uma base para \mathcal{V}: \beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}; podemos por exemplo, tomar u = t:
```

• $u = t \notin \mathcal{W}_1$: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$ $\Rightarrow \lambda_1 + \lambda_2 = 0$; $\lambda_1 + \lambda_3 = 0$;

Base e Dimensão

```
EXERCÍCIO. 2: (RESPOSTAS) Por (i) e (ii), temos  \dim(\mathcal{V}) = \dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow \dim(\mathcal{V}) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_3) \\ \Rightarrow \dim(\mathcal{W}_3) = \dim(\mathcal{V}) - \dim(\mathcal{W}_1) \Rightarrow \dim(\mathcal{W}_3) = 3 - 2 = 1 \ .  Então, temos que obter um vetor u \in \mathcal{V} para gerar \mathcal{W}_3. Porém, tem que ser um vetor u \in \mathcal{V} que complete \beta_{\mathcal{W}_1} formando uma base para \mathcal{V}: \beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}; podemos por exemplo, tomar u = t:
```

• $u = t \notin \mathcal{W}_1$: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$ $\Rightarrow \lambda_1 + \lambda_2 = 0$; $\lambda_1 + \lambda_3 = 0$; $\lambda_2 = 0$

Base e Dimensão

```
EXERCÍCIO.2:(RESPOSTAS) Por (i) e (ii), temos  \dim(\mathcal{V}) = \dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow \dim(\mathcal{V}) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_3) \\ \Rightarrow \dim(\mathcal{W}_3) = \dim(\mathcal{V}) - \dim(\mathcal{W}_1) \Rightarrow \dim(\mathcal{W}_3) = 3 - 2 = 1 \ .  Então, temos que obter um vetor u \in \mathcal{V} para gerar \mathcal{W}_3. Porém, tem que ser um vetor u \in \mathcal{V} que complete \beta_{\mathcal{W}_1} formando uma base para \mathcal{V}: \beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}; podemos por exemplo, tomar u = t:
```

• $u = t \notin \mathcal{W}_1$: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$ $\Rightarrow \lambda_1 + \lambda_2 = 0$; $\lambda_1 + \lambda_3 = 0$; $\lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0$

Base e Dimensão

Exercício.2:(respostas)

$$\textit{dim}(\mathcal{V}) = \textit{dim}(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow \textit{dim}(\mathcal{V}) = \textit{dim}(\mathcal{W}_1) + \textit{dim}(\mathcal{W}_3)$$

$$\Rightarrow \text{dim}(\mathcal{W}_3) = \text{dim}(\mathcal{V}) - \text{dim}(\mathcal{W}_1) \Rightarrow \text{dim}(\mathcal{W}_3) = 3 - 2 = 1 \ .$$

Então, temos que obter um vetor $u \in \mathcal{V}$ para gerar \mathcal{W}_3 .

$$\beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}$$
; podemos por exemplo, tomar $u = t$:

•
$$u = t \notin \mathcal{W}_1$$
: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$
 $\Rightarrow \lambda_1 + \lambda_2 = 0; \lambda_1 + \lambda_3 = 0; \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow \{1+t; 1+t^2; t\} \text{ \'e LI.}$

Base e Dimensão

Exercício.2:(respostas)

Por (i) e (ii), temos

$$\textit{dim}(\mathcal{V}) = \textit{dim}(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow \textit{dim}(\mathcal{V}) = \textit{dim}(\mathcal{W}_1) + \textit{dim}(\mathcal{W}_3)$$

$$\Rightarrow \dim(\mathcal{W}_3) = \dim(\mathcal{V}) - \dim(\mathcal{W}_1) \Rightarrow \dim(\mathcal{W}_3) = 3 - 2 = 1.$$

Então, temos que obter um vetor $u \in \mathcal{V}$ para gerar \mathcal{W}_3 .

$$\beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}$$
; podemos por exemplo, tomar $u = t$:

- $u = t \notin \mathcal{W}_1$: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$ $\Rightarrow \lambda_1 + \lambda_2 = 0; \lambda_1 + \lambda_3 = 0; \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow \{1+t; 1+t^2; t\} \notin \mathsf{LI}.$
- $u = t \notin \mathcal{W}_2$:

Base e Dimensão

Exercício.2:(respostas)

Por (i) e (ii), temos

$$\textit{dim}(\mathcal{V}) = \textit{dim}(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow \textit{dim}(\mathcal{V}) = \textit{dim}(\mathcal{W}_1) + \textit{dim}(\mathcal{W}_3)$$

$$\Rightarrow \dim(\mathcal{W}_3) = \dim(\mathcal{V}) - \dim(\mathcal{W}_1) \Rightarrow \dim(\mathcal{W}_3) = 3 - 2 = 1.$$
Então, temos que obter um vetor $u \in \mathcal{V}$ para gerar \mathcal{W}_2

Então, temos que obter um vetor $u \in \mathcal{V}$ para gerar \mathcal{W}_3 .

$$\beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}$$
; podemos por exemplo, tomar $u = t$:

- $u = t \notin \mathcal{W}_1$: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$ $\Rightarrow \lambda_1 + \lambda_2 = 0; \lambda_1 + \lambda_3 = 0; \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow \{1+t; 1+t^2; t\} \notin \mathsf{LI}.$
- $u = t \notin \mathcal{W}_2$: $\lambda_1(-1+t) + \lambda_2(t) = 0 + 0t + 0t^2$

Base e Dimensão

EXERCÍCIO.2:(RESPOSTAS)

Por (i) e (ii), temos

$$dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_1) + dim(\mathcal{W}_3)$$

 $\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_1) \Rightarrow dim(\mathcal{W}_3) = 3 - 2 = 1$.

Então, temos que obter um vetor $u \in \mathcal{V}$ para gerar \mathcal{W}_3 .

$$\beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}$$
; podemos por exemplo, tomar $u = t$:

- $u = t \notin \mathcal{W}_1$: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$ $\Rightarrow \lambda_1 + \lambda_2 = 0; \lambda_1 + \lambda_3 = 0; \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow \{1+t; 1+t^2; t\} \notin \mathsf{LI}.$
- $u = t \notin \mathcal{W}_2$: $\lambda_1(-1+t) + \lambda_2(t) = 0 + 0t + 0t^2$ $\Rightarrow -\lambda_1 = 0$

Base e Dimensão

Exercício.2:(respostas)

Por (i) e (ii), temos

$$dim(V) = dim(W_1 + W_3) \Rightarrow dim(V) = dim(W_1) + dim(W_3)$$

 $\Rightarrow dim(W_3) = dim(V) - dim(W_1) \Rightarrow dim(W_3) = 3 - 2 = 1$.

Então, temos que obter um vetor $u \in \mathcal{V}$ para gerar \mathcal{W}_3 .

$$\beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}$$
; podemos por exemplo, tomar $u = t$:

- $u = t \notin \mathcal{W}_1$: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$ $\Rightarrow \lambda_1 + \lambda_2 = 0; \lambda_1 + \lambda_3 = 0; \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow \{1+t; 1+t^2; t\} \notin \mathsf{LI}.$
- $u = t \notin \mathcal{W}_2$: $\lambda_1(-1+t) + \lambda_2(t) = 0 + 0t + 0t^2$ $\Rightarrow -\lambda_1 = 0$; $\lambda_1 + \lambda_2 = 0$;

Base e Dimensão

Exercício.2:(respostas)

Por (i) e (ii), temos

$$dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_1) + dim(\mathcal{W}_3)$$

 $\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_1) \Rightarrow dim(\mathcal{W}_3) = 3 - 2 = 1$.

Então, temos que obter um vetor $u \in \mathcal{V}$ para gerar \mathcal{W}_3 .

$$\beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}$$
; podemos por exemplo, tomar $u = t$:

- $u = t \notin \mathcal{W}_1$: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$ $\Rightarrow \lambda_1 + \lambda_2 = 0; \lambda_1 + \lambda_3 = 0; \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow \{1+t; 1+t^2; t\} \notin \mathsf{LI}.$
- $u = t \notin \mathcal{W}_2$: $\lambda_1(-1+t) + \lambda_2(t) = 0 + 0t + 0t^2$ $\Rightarrow -\lambda_1 = 0$: $\lambda_1 + \lambda_2 = 0$: 0 = 0

Base e Dimensão

Exercício.2:(Respostas)

Por (i) e (ii), temos

$$dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_1) + dim(\mathcal{W}_3)$$

 $\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_1) \Rightarrow dim(\mathcal{W}_3) = 3 - 2 = 1$.

Então, temos que obter um vetor $u \in \mathcal{V}$ para gerar \mathcal{W}_3 .

$$\beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}$$
; podemos por exemplo, tomar $u = t$:

- $u = t \notin \mathcal{W}_1$: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$ $\Rightarrow \lambda_1 + \lambda_2 = 0; \lambda_1 + \lambda_3 = 0; \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow \{1+t; 1+t^2; t\} \notin \mathsf{LI}.$
- $u = t \notin \mathcal{W}_2$: $\lambda_1(-1+t) + \lambda_2(t) = 0 + 0t + 0t^2$ $\Rightarrow -\lambda_1 = 0$; $\lambda_1 + \lambda_2 = 0$; $0 = 0 \Rightarrow \lambda_1 = \lambda_2 = 0$

Base e Dimensão

Exercício.2:(respostas)

Por (i) e (ii), temos

$$dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_1) + dim(\mathcal{W}_3)$$

$$\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_1) \Rightarrow dim(\mathcal{W}_3) = 3 - 2 = 1.$$

Então, temos que obter um vetor $u \in \mathcal{V}$ para gerar \mathcal{W}_3 .

$$\beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}$$
; podemos por exemplo, tomar $u = t$:

- $u = t \notin \mathcal{W}_1$: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$ $\Rightarrow \lambda_1 + \lambda_2 = 0; \lambda_1 + \lambda_3 = 0; \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow \{1+t; 1+t^2; t\} \notin \mathsf{LI}.$
- $u = t \notin \mathcal{W}_2$: $\lambda_1(-1+t) + \lambda_2(t) = 0 + 0t + 0t^2$ $\Rightarrow -\lambda_1 = 0$; $\lambda_1 + \lambda_2 = 0$; $0 = 0 \Rightarrow \lambda_1 = \lambda_2 = 0 \Rightarrow \{-1+t; t\}$ é LI.

Base e Dimensão

EXERCÍCIO.2:(RESPOSTAS)

Por (i) e (ii), temos

$$dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_1) + dim(\mathcal{W}_3)$$

 $\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_1) \Rightarrow dim(\mathcal{W}_3) = 3 - 2 = 1$.

Então, temos que obter um vetor $u \in \mathcal{V}$ para gerar \mathcal{W}_3 .

$$\beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}$$
; podemos por exemplo, tomar $u = t$:

- $u = t \notin \mathcal{W}_1$: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$ $\Rightarrow \lambda_1 + \lambda_2 = 0; \lambda_1 + \lambda_3 = 0; \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow \{1+t; 1+t^2; t\} \notin \mathsf{LI}.$
- $u = t \notin \mathcal{W}_2$: $\lambda_1(-1+t) + \lambda_2(t) = 0 + 0t + 0t^2$ $\Rightarrow -\lambda_1 = 0$; $\lambda_1 + \lambda_2 = 0$; $0 = 0 \Rightarrow \lambda_1 = \lambda_2 = 0 \Rightarrow \{-1+t; t\}$ é LI.

$$\Rightarrow \beta_{\mathcal{W}_3} = \{t\} = \{e_2\}$$

Base e Dimensão

Exercício.2:(respostas)

Por (i) e (ii), temos

$$dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_1) + dim(\mathcal{W}_3)$$

$$\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_1) \Rightarrow dim(\mathcal{W}_3) = 3 - 2 = 1.$$

Então, temos que obter um vetor
$$u \in \mathcal{V}$$
 para gerar \mathcal{W}_3 .

$$\beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}$$
; podemos por exemplo, tomar $u = t$:

- $u = t \notin \mathcal{W}_1$: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$ $\Rightarrow \lambda_1 + \lambda_2 = 0; \lambda_1 + \lambda_3 = 0; \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow \{1+t; 1+t^2; t\} \notin \mathsf{LI}.$
- $u = t \notin \mathcal{W}_2$: $\lambda_1(-1+t) + \lambda_2(t) = 0 + 0t + 0t^2$ $\Rightarrow -\lambda_1 = 0$; $\lambda_1 + \lambda_2 = 0$; $0 = 0 \Rightarrow \lambda_1 = \lambda_2 = 0 \Rightarrow \{-1+t; t\}$ é LI.

$$\Rightarrow \beta_{\mathcal{W}_3} = \{t\} = \{e_2\} \Rightarrow \beta_{\mathcal{V}} = \{(1+t); (1+t^2); t\}$$

Base e Dimensão

Exercício.2:(respostas)

Por (i) e (ii), temos

$$dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_1) + dim(\mathcal{W}_3)$$

 $\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_1) \Rightarrow dim(\mathcal{W}_3) = 3 - 2 = 1$.

Então, temos que obter um vetor $u \in \mathcal{V}$ para gerar \mathcal{W}_3 .

$$\beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}$$
; podemos por exemplo, tomar $u = t$:

- $u = t \notin \mathcal{W}_1$: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$ $\Rightarrow \lambda_1 + \lambda_2 = 0; \lambda_1 + \lambda_3 = 0; \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow \{1+t; 1+t^2; t\} \notin \mathsf{LI}.$
- $u = t \notin \mathcal{W}_2$: $\lambda_1(-1+t) + \lambda_2(t) = 0 + 0t + 0t^2$ $\Rightarrow -\lambda_1 = 0; \lambda_1 + \lambda_2 = 0; 0 = 0 \Rightarrow \lambda_1 = \lambda_2 = 0 \Rightarrow \{-1+t; t\} \notin \mathsf{LI}.$

$$\Rightarrow \beta_{\mathcal{W}_3} = \{t\} = \{e_2\} \Rightarrow \beta_{\mathcal{V}} = \{(1+t); (1+t^2); t\} = \{e_1 + e_2; e_1 + e_3; e_2\}.$$

Base e Dimensão

Exercício.2:(respostas)

Por (i) e (ii), temos

$$dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_1) + dim(\mathcal{W}_3)$$

 $\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_1) \Rightarrow dim(\mathcal{W}_3) = 3 - 2 = 1$.

Então, temos que obter um vetor
$$u \in \mathcal{V}$$
 para gerar \mathcal{W}_3 .

$$\beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}$$
; podemos por exemplo, tomar $u = t$:

- $u = t \notin \mathcal{W}_1$: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$ $\Rightarrow \lambda_1 + \lambda_2 = 0$: $\lambda_1 + \lambda_3 = 0$: $\lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow \{1 + t; 1 + t^2; t\}$ é LI.
- $u = t \notin \mathcal{W}_2$: $\lambda_1(-1+t) + \lambda_2(t) = 0 + 0t + 0t^2$ $\Rightarrow -\lambda_1 = 0$; $\lambda_1 + \lambda_2 = 0$; $0 = 0 \Rightarrow \lambda_1 = \lambda_2 = 0 \Rightarrow \{-1 + t; t\}$ é LI.

$$\Rightarrow \beta_{W_3} = \{t\} = \{e_2\} \Rightarrow \beta_{V} = \{(1+t); (1+t^2); t\} = \{e_1 + e_2; e_1 + e_3; e_2\}.$$

Agora, $\forall p(t) \in W_3 \Rightarrow p(t) = \lambda.t$

Base e Dimensão

Exercício.2:(respostas)

Por (i) e (ii), temos

$$dim(\mathcal{V}) = dim(\mathcal{W}_1 + \mathcal{W}_3) \Rightarrow dim(\mathcal{V}) = dim(\mathcal{W}_1) + dim(\mathcal{W}_3)$$

 $\Rightarrow dim(\mathcal{W}_3) = dim(\mathcal{V}) - dim(\mathcal{W}_1) \Rightarrow dim(\mathcal{W}_3) = 3 - 2 = 1$.

Então, temos que obter um vetor
$$u \in \mathcal{V}$$
 para gerar \mathcal{W}_3 .

$$\beta_{\mathcal{V}} = \beta_{\mathcal{W}_1} \cup \{u\}$$
; podemos por exemplo, tomar $u = t$:

•
$$u = t \notin \mathcal{W}_1$$
: $\lambda_1(1+t) + \lambda_2(1+t^2) + \lambda_3(t) = 0 + 0t + 0t^2$
 $\Rightarrow \lambda_1 + \lambda_2 = 0; \lambda_1 + \lambda_3 = 0; \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow \{1+t; 1+t^2; t\} \text{ \'e LI.}$

•
$$u = t \notin \mathcal{W}_2$$
: $\lambda_1(-1+t) + \lambda_2(t) = 0 + 0t + 0t^2$
 $\Rightarrow -\lambda_1 = 0$; $\lambda_1 + \lambda_2 = 0$; $0 = 0 \Rightarrow \lambda_1 = \lambda_2 = 0 \Rightarrow \{-1+t; t\}$ é LI.

$$\Rightarrow \beta_{W_3} = \{t\} = \{e_2\} \Rightarrow \beta_{V} = \{(1+t); (1+t^2); t\} = \{e_1 + e_2; e_1 + e_3; e_2\}.$$
Agora. $\forall p(t) \in W_3 \Rightarrow p(t) = \lambda.t \Rightarrow W_3 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) \mid a_0 = a_2 = 0\}.$