ALGEBRA Chapter 13

LEYES DE EXPONENTES
PARA LA POTENCIACIÓN

HELICO MOTIVATING

HELICO RETO

¿ESTAS LISTO PARA UN RETO?

¿Puedes hallar el cociente notable de la siguiente

Galileo Galilei

HELICO THEORY CHAPTHER 13

COCIENTE NOTABLE

FORMA GENERAL:

Sea la división

$$\frac{x^a \pm y^b}{x^p \pm y^q}$$

genera un cociente notable (CN) cuando se cumple:

$$\frac{a}{p} = \frac{b}{q} = n \quad ; n \in \mathbb{N}, n \geq 2$$

donde n es el número de términos del CN.

I. Si la división es exacta $[R(x, y) \equiv 0]$ se cumple:

$$\frac{x^a \pm y^b}{x^p \pm y^q} = Q(x, y)$$

II. Si la división es inexacta $[R(x, y) \not\equiv 0]$ se cumple:

$$\frac{x^a \pm y^b}{x^p \pm y^q} = Q(x, y) + \frac{R(x, y)}{x^p \pm y^q}$$

Consideramos CN a los originados por divisiones exactas.

$$\frac{\textit{CASO I:}}{x^p - y^q} \; ; \quad (n \in \mathbb{N}, n \ge 2)$$

<u>Ejemplos:</u>

$$\frac{x^5 - y^5}{x - y} = x^4 + x^3y + x^2y^2 + xy^3 + y^4$$

$$n = \frac{5}{1} \implies n = 5 t \acute{e}rminos$$

$$\frac{x^{16} - y^{24}}{x^2 - y^3} = x^{14} + x^{12}y^3 + x^{10}y^6 + x^8y^9 + x^6y^{12} + x^4y^{15} + x^2y^{18} + y^{21}$$

$$n = \frac{16}{2} = \frac{24}{3} \implies n = 8 \text{ términos}$$

HELICO | THEORY

CASO II:
$$\frac{x^a - y^b}{x^p + y^q} ; \quad (\forall n \ par, n \ge 2)$$

Ejemplos:

$$\frac{x^{32} - y^{40}}{x^4 + y^5} = x^{28} - x^{24}y^5 + x^{20}y^{10} - x^{16}y^{15} + x^{12}y^{20} - x^8y^{25} + x^4y^{30} - y^{35}$$

$$n = \frac{32}{4} = \frac{40}{5} \implies n = 8 \text{ términos}$$

$$\frac{x^{36} - y^{12}}{x^6 + y^2} = x^{30} - x^{24}y^2 + x^{18}y^4 - x^{12}y^6 + x^6y^8 - y^{10}$$

$$n = \frac{36}{6} = \frac{12}{2} \implies n = 6 \text{ t\'erminos}$$

$$\frac{\textit{CASO III:}}{x^p + y^q} \; ; \quad (\forall n \, impar)$$

Ejemplos:

$$\frac{x^{21} + y^{42}}{x^3 + y^6} = x^{18} - x^{15}y^6 + x^{12}y^{12} - x^9y^{18} + x^6y^{24} - x^3y^{30} + y^{36}$$

$$n = \frac{21}{3} = \frac{42}{6} \implies n = 7 \text{ términos}$$

$$\frac{x^{45}+1}{x^5+1} = x^{40} - x^{35} + x^{30} - x^{25} + x^{20} - x^{15} + x^{10} - x^5 + 1$$

$$n = \frac{45}{5} \implies n = 9 \text{ términos}$$

TÉRMINO DE LUGAR k:

$$\frac{x^a \pm y^b}{x^p \pm y^q} \quad ; \quad \frac{a}{p} = \frac{b}{q} = n \quad ; \quad (\forall n \ge 2 \quad ; \quad n \in \mathbb{N})$$

$$T_k = \pm (x^p)^{n-k} (y^q)^{k-1}$$

TÉRMINO CENTRAL:

I. Cuando el valor de n es impar:

$$T_{\mathcal{C}} = T_{\left(\frac{n+1}{2}\right)} \implies k = \left(\frac{n+1}{2}\right) \implies T_{\mathcal{C}} = \pm (x^p, y^q)^{\frac{n-1}{2}}$$

II. Cuando el valor de n es par:

$$Lugar(T_{c_1}) = \left(\frac{n}{2}\right) \qquad \Longrightarrow \qquad k = \left(\frac{n}{2}\right) \in \mathbb{N}$$

$$Lugar(T_{C_2}) = \left(\frac{n+2}{2}\right) \qquad \Longrightarrow \qquad k = \left(\frac{n+2}{2}\right) \in \mathbb{N}$$

HELICO PRACTICE CHAPTHER 13

Calcule el valor de **b** en

$$\frac{x^{b}+y^{15}}{x^{2}+y^{3}}$$

Si genera un cociente notable.

Resolución:

Si genera un C.N entonces se cumple que:

$$\frac{b}{2} = \frac{15}{3} = n (\# t\'{e}rminos del C.N)$$

$$\frac{b}{2} = 5$$

$$\rightarrow b = 10$$

Rpta:

PROBLEMA (2)

Obtenga el valor de a en el siguiente cociente notable

$$\frac{x^{a-3}-y^{a+1}}{x^3-y^4}$$

Resolución:

Si genera un C.N entonces se cumple que:

$$\frac{a-3}{3} = \frac{a+1}{4} = n \text{ (# términos del C. N)}$$

$$4(a-3) = 3(a+1)$$

$$4a-12 = 3a+3$$

$$4a-3a = 3+12$$

$$\therefore a = 15$$

Determine el **término central** en el cociente notable de:

$$\frac{x^{13}-y^{13}}{x^1-y}$$

Resolución:

Si genera un C.N entonces se cumple que:

$$Lugar(Tc) = \frac{n+1}{2}$$

$$Lugar(Tc) = \frac{13+1}{2} = 7 \rightarrow k = 7$$

$$n(\text{# t\'erminos del C.N}) = \frac{13}{1} = 13$$

Entonces el Término General (T_k)

$$t_k = (signo)(x^1)^{n-k}(y^1)^{k-1}$$

$$t_7 \underbrace{Estamosien v}_{7} \underbrace{t_1^{r} caso}_{1} de C.N$$

$$t_7 \underbrace{Elsigno}_{1} signo siempre es +, asík$$

$$t_7 = (xse)^6 (yx)^6 \underbrace{IMPnta:}_{1} Tc = x^6 y^6$$

Indique el número de términos del cociente notable.

$$\frac{x^{n-4}-y^{n+3}}{x^5-y^6}$$

Resolución:

Si genera un C.N entonces se cumple que:

$$\frac{n-4}{5} = \frac{n+3}{6} = n(\# \text{ términos del C. N})$$

$$\frac{6(n-4)}{6n-4} = \frac{5(n+3)}{6n-24} = \frac{(\# \text{ términos})}{6n-5n} = \frac{15+24}{6n-5n} = \frac{n}{6}$$

Rpta:

(#t'erminos)n = 7

Calcule el **grado absoluto del término central** del siguiente cociente notable.

$$\frac{x^{n+7}-y^{n-4}}{x^3-y^2}$$

Resolución:

Si genera un C.N entonces se cumple que:

$$Lugar(Tc) = \frac{n+1}{2}$$

$$Lugar(Tc) = \frac{11+1}{2} = 6$$

$$\rightarrow k = 6$$

$$\frac{n+7}{3} = \frac{n-4}{2} = 11 = (\# t\'{e}rminos del C.N)$$

$$2(n + 14 + 3n(signo)(x^3)^{n-k}(y^2)^{k-1}$$
 $2n + 14 + 3n(signo)(x^3)^{n-k}(y^2)^{k-1}$
 $2n + 14 + 3n(signo)(x^3)^{n-k}(y^2)^{k-1}$
 $2n + 14 + 12 + 3n(signo)(x^3)^{n-k}(y^2)^{n-k}$
 $2n + 14 + 3n(signo)(x$

$$\rightarrow n = \frac{26}{t_0} = \frac{26}{x_1} = \frac{26}{y_1} = \frac{26}{y_1}$$

PROBLEMA (6)

Indique el grado del término central del cociente notable y él te indicará lo que gastó diariamente, en soles, María en el colegio Saco Oliveros.

$$\frac{x^{27} - y^{36}}{x^3 - y^4}$$

¿Cuánto gastó diariamente?

Resolución:

Si genera un C.N entonces se cumple que:

$$Lugar(Tc) = \frac{n+1}{2}$$

$$Lugar(Tc) = \frac{9+1}{2} = 5 \to k = 5$$

$$\frac{27}{3} = \frac{36}{4} = \frac{2}{4} (\# t\'{e}rminos del C.N)$$

Entonces el Término General (T_k)

$$t_k = (signo)(x^3)^{n-k}(y^4)^{k-1}$$

$$Ettam(x^3)^n = (y^4)^n = (x^4)^n = ($$

PROBLEMA

Reduzca $T = \frac{x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1}{x^3 + x^2 + x + 1}$ el grado de T indica el número de pastillas que Josefina debe de tomar al día como parte de su tratamiento médico. Si Josefina empezó a tomarlo desde hace una semana atrás, y el tratamiento dura por 30 días, ¿Cuántas pastillas le falta tomar para terminar su tratamiento?

Resolucióna

$$T = \frac{x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1}{x^3 + x^2 + x + 1} = \frac{x^{8-1} + x^{8-2} \cdot 1 + x^{8-3} \cdot 1^2 + x^{8-4} \cdot 1^3 + \dots + 1}{x^{4-1} + x^{4-2} \cdot 1 + x^{4-3} \cdot 1^2 + x^{4-4} \cdot 1^3}$$

$$T = \frac{\frac{x^{8}-1}{x-1}}{\frac{x^{4}-1}{x^{4}-1}} = \frac{(x^{8}-1)(x-1)}{(x^{4}-1)(x-1)} = \frac{(x^{4})^{2}-1}{x^{4}-1} = \frac{(x^{4}+1)(x^{4}-x^{4})^{2} + (x^{4}-x^{4})^{2} + (x^{4}-x^{4})^{2}}{(x^{4}-1)(x-1)^{2}} = \frac{(x^{4})^{2}-1}{x^{4}-1} = \frac{(x^{4}+1)(x^{4}-x^{4})^{2} + (x^{4}-x^{4})^{2} + (x^{4}-x^{4})^{2}}{(x^{4}-1)(x-1)^{2}} = \frac{(x^{4})^{2}-1}{x^{4}-1} = \frac{(x^{4}+1)(x^{4}-x^{4})^{2} + (x^{4}-x^{4})^{2}}{(x^{4}-x^{4})^{2}} = \frac{(x^{4}-x^{4})^{2}-1}{(x^{4}-x^{4})^{2}} = \frac{(x^{4}-x^{4})^{2}-1}{(x^{4}-x^{4})^{2$$

Total días de tratamiento = 30Días de tratamiento realizados = 7Faltan = 23 días

23x4 pastillas = 92 pastillas