Neuronové sítě

Doc. RNDr. Iveta Mrázová, CSc.

Katedra teoretické informatiky

Matematicko-fyzikální fakulta

Univerzity Karlovy v Praze

Neuronové sítě

Asociativní paměti –

Doc. RNDr. Iveta Mrázová, CSc.

Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Asociativní sítě a asociativní paměti (1)

<u>Cíl učení:</u> asociace známého vstupního vzoru s daným výstupním vzorem

- Okolí známého vstupního vzoru \vec{x} by se mělo také zobrazit na výstup \vec{y} odpovídající \vec{x}
 - → správný výstup pak lze přiřadit i "zašuměným" vzorům

Asociativní sítě a asociativní paměti (2)

- Asociativní paměti lze implementovat pomocí sítí se zpětnou vazbou (ale i bez ní)
 - → nejjednodušší **zpětná vazba**:
 - výstup sítě se používá opakovaně jako její nový vstup, dokud síť nezkonverguje do stabilního stavu
 - × ne všechny sítě zkonvergují po předložení nového vzoru do stabilního stavu
 - → nutná dodatečná omezení na architekturu sítě

Funkce asociativní paměti

- Rozpoznat předem naučené vstupní vzory i v případě, že jsou "mírně zašuměné"
- Odezva každého neuronu je dána výhradně informacemi procházejícími jeho vahami (Hebbovské učení)
- Tři typy asociativních sítí:
 - heteroasociativní, autoasociativní a sítě pro rozpoznávání vzorů

Heteroasociativní sítě

Zobrazují m vstupních vzorů $\vec{x}^1, \dots, \vec{x}^m$ z n-rozměrného prostoru na m výstupních vektorů $\vec{y}^1, \dots, \vec{y}^m$ v k – rozměrném prostoru tak, že $\vec{x}^i \mapsto \vec{y}^i$

Jestliže
$$\|\widetilde{\vec{x}} - \vec{x}^i\|^2 < \varepsilon$$
, potom $\widetilde{\vec{x}} \mapsto \vec{y}^i$ $(\varepsilon > 0)$.

Autoasociativní sítě

Podmnožina heteroasociativních sítí (každý vektor je zobrazen sám na sebe: $\vec{y}^i = \vec{x}^i$ pro i = 1, ..., m)

funkcí autoasociativních sítí je "oprava zašuměných vzorů"

Sítě pro rozpoznávání vzorů

Speciální typ heteroasociativních sítí (každému vektoru \vec{x}^i je přiřazena skalární hodnota i)

Cílem je identifikace třídy vstupního vzoru

Struktura asociativní paměti

Asociativní paměť lze implementovat pomocí jedné vrstvy neuronů

Necht': w_{ij} ... váha mezi vstupem i a neuronem j W ... $n \times k$ matice vah

- \rightarrow vektor $\vec{x} = (x_1, x_2, ..., x_n)$ dává excitační vektor $\vec{e} = \vec{x} \cdot W$
- → Potom se pro každý neuron spočítá hodnota přenosové funkce
 - Pro identitu dostáváme lineární asociátor a výstupem \vec{y} bude právě $\vec{x} \cdot W$

Struktura asociativní paměti (2)

Obecně: je třeba přiřadit m různým n – rozměrným vektorům $\vec{x}^1, \vec{x}^2, \dots, \vec{x}^m$ m k – rozměrných vektorů $\vec{y}^1, \dots, \vec{y}^m$

- $\rightarrow X....$ matice $m \times n$ (řádky odpovídají jednotlivým vstupním vektorům)
 - Y... matice $m \times k$ (řádky odpovídají příslušným výstupním vektorům)

Struktura asociativní paměti (3)

 \rightarrow hledáme takovou matici vah W, aby $X \cdot W = Y$ (a v případě autoasociativní paměti $X \cdot W = X$)

Poznámka: pro m = n je X čtvercová matice pokud existuje k ní inverzní matice, bude řešením $W = X^{-1} \cdot Y$

Rekurentní asociativní síť

Výstup sítě představuje její nový vstup

- Předpoklad: všechny neurony počítají svůj výstup současně
 - \rightarrow síť dostává v každém kroku na vstup vektor $\vec{x}(i)$ a dává nový výstup $\vec{x}(i+1)$

Rekurentní asociativní síť (2)

Otázka: existuje pevný bod $\vec{\xi}$ takový, že

$$\vec{\xi} \cdot W = \vec{\xi}$$

- \rightarrow vektor $\vec{\xi}$ je vlastním vektorem matice W s vlastním číslem 1
- \rightarrow síť se chová jako dynamický systém prvního řádu, protože každý nový stav $\vec{x}(i+1)$ je plně určen nejbližším předchůdcem

Vlastní automaty

(eigenvector automata)

Nechť: *W*... váhová matice autoasociativní sítě jednotlivé neurony jsou lineární asociátory

→ hledáme pevné body dynamického systému

Poznámka: ne všechny matice vah vedou ke stabilnímu stavu **Příklad:** rotace o 90° v rovině:

$$W = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

→ cykly délky 4

Vlastní automaty (2)

→ Pro paměti jsou vhodnější čtvercové matice s úplnou množinou vlastních vektorů

 $n \times n$ matice W může mít až n lineárně nezávislých vlastních vektorů a n vlastních čísel

 \rightarrow vlastní vektory $\vec{x}^1, \dots, \vec{x}^n$ pak splňují $\vec{x}^i \cdot W = \lambda_i \vec{x}^i$

pro i = 1, ..., n a $\lambda_1, ..., \lambda_n$ vlastní čísla W

Vlastní automaty (3)

- Každá váhová matice s plnou množinou vlastních vektorů definuje jistý typ "vlastního automatu"
 - → Po předložení vstupního vektoru bude nalezen vlastní vektor s největším vlastním číslem (pokud takový existuje)
- Předpokládejme búno, že λ_1 je vlastní číslo W takové, že $|\lambda_1| > |\lambda_i|$ $\forall i = 2, ..., n$

Vlastní automaty (4)

- Nechť $\lambda_1 > 0$ a \vec{a}_0 je náhodně zvolený nenulový *n*-rozměrný vektor
 - \rightarrow \vec{a}_0 lze vyjádřit jako lineární kombinaci n vlastních vektorů matice W:

$$\vec{a}_0 = \alpha_1 \vec{x}^1 + \alpha_2 \vec{x}^2 + \dots + \alpha_n \vec{x}^n$$

- **<u>Předpoklad:</u>** všechny konstanty α jsou nenulové
 - \rightarrow Po první iteraci s W dostáváme:

$$\vec{a}_1 = \vec{a}_0 \cdot W = (\alpha_1 \vec{x}^1 + \dots + \alpha_n \vec{x}^n) \cdot W =$$

$$= \alpha_1 \lambda_1 \vec{x}^1 + \alpha_2 \lambda_2 \vec{x}^2 + \dots + \alpha_n \lambda_n \vec{x}^n$$

Vlastní automaty (5)

 \rightarrow Po *t* iteracích dostaneme:

$$\vec{a}_t = \alpha_1 \lambda_1^t \vec{x}^1 + \alpha_2 \lambda_2^t \vec{x}^2 + \dots + \alpha_n \lambda_n^t \vec{x}^n$$

- \rightarrow Po dostatečně velkém počtu iterací bude dominovat největší vlastní číslo λ_I
 - \rightarrow vektor \vec{a}_t se pak může přiblížit libovolně blízko vlastnímu vektoru \vec{x}^1 (týká se směru, ne nutně délky)
 - \rightarrow v každé iteraci tak vektor \vec{x}^1 přitahuje libovolný jiný vektor \vec{a}_0 s nenulovým členem pro α_1
 - $\rightarrow \vec{x}^1$ je atraktor

Vlastní automaty (6)

Příklad:

Matice $W = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ má 2 vlastní vektory (1,0)

a (0,1) s vlastními čísly 2 a 1

Po t iteracích počátečního vzoru (x_1, x_2) ; $x_1 \neq 0$ dostaneme $(2^t x_1, x_2)$

 \rightarrow Pro dostatečně velké t se přiblíží libovolně blízko (1,0) => vektor (1,0) je atraktor

Asociativní učení

<u>Cíl:</u> použití asociativních sítí jako dynamických systémů, jejichž atraktory by odpovídaly těm vektorům, které chceme do paměti uložit

- Při návrhu sítě chceme rozmístit ve vstupním prostoru co možná nejvíce atraktorů
 - Každý z nich by měl mít přesně danou a omezenou oblast vlivu
 - × v případě vlastních automatů zahrnovala oblast vlivu jediného vektoru téměř celý vstupní prostor

Asociativní učení (2)

- → nelineární dynamické systémy
 - Nelineární aktivace neuronů
 Skoková přenosová funkce:

$$\operatorname{sgn}(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$

 Bipolární kódování je vhodnější než binární (u bipolárních vektorů je větší pravděpodobnost vzájemné ortogonality)

Hebbovské učení

Předpoklad:

• 1-vrstvá síť s *k* neurony a skokovou přenosovou funkcí *sgn*

Cíl:

• nalézt odpovídající váhy pro zobrazení n – rozměrného vstupního vektoru \vec{x} na k – rozměrný výstupní vektor \vec{y}

Idea: (Donald Hebb – 1949)

 Dva neurony, které jsou současně aktivní, by měly mít "vyšší stupeň vzájemné interakce" než neurony, jejichž aktivita je nekorelovaná – v takovém případě by měla být vzájemná interakce hodně malá nebo nulová

Hebbovské učení (2)

- Adaptační pravidlo se použije pro všechny váhy
- na vstupu je n rozměrný vektor \vec{x}^1 , na výstupu k rozměrný vektor \vec{y}^1
 - → adaptovaná váhová matice W je korelační maticí pro tyto dva vektory

$$W = [w_{ij}]_{n \times k} = [x_i^1 y_j^1]_{n \times k}$$

Hebbovské učení (3)

• Matice W zobrazí nenulový vektor \vec{x}^1 právě na vektor \vec{y}^1

$$\vec{x}^{1} \cdot W = \left(y_{1}^{1} \sum_{i=1}^{n} x_{i}^{1} x_{i}^{1}, y_{2}^{1} \sum_{i=1}^{n} x_{i}^{1} x_{i}^{1}, \dots, y_{k}^{1} \sum_{i=1}^{n} x_{i}^{1} x_{i}^{1} \right) =$$

$$= \vec{y}^{1} \left(\vec{x}^{1} \cdot \vec{x}^{1} \right)$$

- Pro $\vec{x}^1 \neq 0$ platí, že $\vec{x}^1 \cdot \vec{x}^1 > 0$ a výstup sítě je: sgn $(\vec{x}^1 \cdot W) = (y_1^1, \dots, y_k^1) = \vec{y}^1$
- pro $-\vec{x}^1$ je výstup sítě: $\operatorname{sgn} \left(-\vec{x}^1 \cdot W \right) = -\operatorname{sgn} \left(\vec{x}^1 \cdot W \right) = -\vec{y}^1$

Hebbovské učení (4)

Obecně:

- Chceme-li přiřadit m n rozměrným nenulovým vektorům $\vec{x}^1, \vec{x}^2, ..., \vec{x}^m$ m k rozměrných vektorů $\vec{y}^1, ..., \vec{y}^m$, použijeme Hebbovské učení pro každou dvojici VSTUP/VÝSTUP
- Výsledná matice vah W bude mít tvar:

$$W = W^1 + W^2 + \ldots + W^m$$

kde každá matice W^l je $n \times k$ korelační matice vektorů \vec{x}^l a \vec{y}^l : $W^l = [x_i^l y_i^l]_{n \times k}$

Hebbovské učení (5)

• Jestliže pak bude na vstupu sítě vektor \vec{x}^p , bude excitační vektor sítě roven:

$$\vec{x}^{p} \cdot W = \vec{x}^{p} \cdot (W^{1} + W^{2} + ... + W^{m}) = \vec{x}^{p} \cdot W^{p} + \sum_{l \neq p}^{m} \vec{x}^{p} \cdot W^{l} =$$

$$= \vec{y}^p \cdot (\vec{x}^p \cdot \vec{x}^p) + \sum_{l \neq p}^m \vec{y}^l \cdot (\vec{x}^l \cdot \vec{x}^p)$$

• Excitační vektor tedy odpovídá \vec{y}^p (vynásobenému kladnou konstantou) s perturbačním členem

$$\sum_{l\neq p}^{m} \vec{y}^{l} \cdot \left(\vec{x}^{l} \cdot \vec{x}^{p}\right) ,$$

který se označuje jako CROSSTALK

Hebbovské učení (6)

- Síť dává na výstupu požadovaný vektor \vec{y}^p v případě, že je crosstalk nulový
 - \rightarrow Pokud jsou vstupní vzory $\vec{x}^1, \vec{x}^2, \dots, \vec{x}^m$ navzájem ortogonální
- Síť může dávat poměrně dobré výsledky i pro nenulový crosstalk
 - × crosstalk by měl být menší než $\vec{y}^p \cdot (\vec{x}^p \cdot \vec{x}^p)$
 - → <u>Výstup sítě bude roven:</u>

$$\operatorname{sgn}(\vec{x}^p \cdot W) = \operatorname{sgn}\left(\vec{y}^p \cdot (\vec{x}^p \cdot \vec{x}^p) + \sum_{l \neq p}^m \vec{y}^l \cdot (\vec{x}^l \cdot \vec{x}^p)\right)$$

Hebbovské učení (7)

• Protože $\vec{x}^p \cdot \vec{x}^p$ je kladná konstanta:

$$\operatorname{sgn}\left(\vec{x}^{p} \cdot W\right) = \operatorname{sgn}\left(\vec{y}^{p} + \sum_{l \neq p}^{m} \vec{y}^{l} \cdot \frac{\left(\vec{x}^{l} \cdot \vec{x}^{p}\right)}{\left(\vec{x}^{p} \cdot \vec{x}^{p}\right)}\right)$$

• Aby byl výstup sítě roven \vec{y}^p , musí platit

$$\vec{y}^p = \operatorname{sgn}\left(\vec{y}^p + \sum_{l \neq p}^m \vec{y}^l \cdot \frac{(\vec{x}^l \cdot \vec{x}^p)}{(\vec{x}^p \cdot \vec{x}^p)}\right)$$

• Tato podmínka bude splněna, pokud bude absolutní hodnota všech složek perturbačního členu $\sum_{l\neq p}^{m} \vec{y}^{l} \cdot \frac{\left(\vec{x}^{l} \cdot \vec{x}^{p}\right)}{\left(\vec{x}^{p} \cdot \vec{x}^{p}\right)}$ menší než 1

Hebbovské učení (8)

- \rightarrow Pro bipolární vektory to znamená, že skalární součin $\vec{x}^l \cdot \vec{x}^p$ musí být menší než druhá mocnina délky \vec{x}^p
- → Pokud jsou náhodně zvoleným bipolárním vektorům přiřazeny (jiné) náhodně zvolené bipolární vektory, je pravděpodobnost, že budou navzájem ortogonální, poměrně vysoká (pokud jich ovšem nebylo zvoleno příliš mnoho)
 - → V takovém případě bude crosstalk malý a Hebbovské učení povede k volbě vhodných vah pro asociativní síť

Geometrická interpretace Hebbovského učení

- Pro matice W^i ze vztahu $W = W^1 + W^2 + ... + W^m$ v případě autoasociativních sítí platí: $W^i = (\vec{x}^i)^T \vec{x}^i$
 - \rightarrow tedy pro $W^1 = (\vec{x}^1)^T \vec{x}^1$ bude vstupní vektor \vec{z} zobrazen do lineárního podprostoru L_1 určeného vektorem \vec{x}^1 , protože

$$\vec{z} \cdot W^1 = \vec{z} \left(\vec{x}^1 \right)^T \vec{x}^1 = \left(\vec{z} \left(\vec{x}^1 \right)^T \right) \vec{x}^1 = c_1 \vec{x}^1$$

Obecně neortogonální projekce vektoru \vec{z} do L_1 (c_1 je konstanta)

 \rightarrow podobně i pro další matice vah W^2 , ..., W^m

Geometrická interpretace Hebbovského učení (2)

• Matice $W = \sum_{i=0}^{m} W^i$ zobrazí vektor \vec{z} do lineárního podprostoru určeného vektory $\vec{x}^1, \vec{x}^2, \dots, \vec{x}^m$, protože $\vec{z} \cdot W = \vec{z} \cdot W^1 + \vec{z} \cdot W^2 + \dots + \vec{z} \cdot W^m =$

 $= c_1 \vec{x}^1 + c_2 \vec{x}^2 + \dots + c_m \vec{x}^m$

(obecně neortogonální projekce)

Analýza chování asociativních sítí

- Identifikace atraktorů (pevných bodů systému)
- Míra vlivu jednotlivých atraktorů
 - Hammingovská vzdálenost

~ počet různých složek dvou bipolárních vektorů

■ Příklad:
$$\frac{1}{1} \frac{-1}{1} \frac{1}{1} \frac{1}{1} \rightarrow 2$$

- S rostoucím počtem ukládaných vzorů se "sféry vlivu" jednotlivých atraktorů zmenšují → nepravé stabilní stavy
 - Velký crosstalk
 - Inverzní vzory k uloženým:

$$\operatorname{sgn}\left(-\vec{x}\cdot W\right) = -\operatorname{sgn}\left(\vec{x}\cdot W\right) = -\vec{x}$$

Analýza chování asociativních sítí (2)

- Rekurentní síť (se zpětnou vazbou)
 - Lepší konvergence oproti asociativní paměti bez zpětné vazby
 - Větší "sféry vlivu" jednotlivých atraktorů
 - × nesmí být uloženo příliš mnoho vzorů
 - → PROBLÉM: Kapacita matice vah
 - Porovnání velikosti sfér vlivu pomocí indexu

$$I = \sum_{h=0}^{n/2} h p_h$$

p_h ... procento vektorů s Hammingovskou vzdáleností h od uloženého vzoru, které k němu zkonvergovaly

Problém kapacity sítě

- "Sféry vlivu" uložených vzorů se zmenšují s každým novým ukládaným vzorem
- Pokud bude crosstalk příliš velký, může být dříve uložený vzor i "zapomenut"
- × pravděpodobnost výskytu takových problémů by měla být co možná nejmenší

Problém kapacity sítě (2)

Odhad počtu vzorů m, které lze bezpečně uložit do autoasociativní paměti s váhovou maticí W ($n \times n$)

Maximální kapacita sítě: $m \sim 0.18 n$

- Počet uložených vzorů by měl být menší než 0.18 n, kde n je dimenze vstupního vektoru
- Pokud jsou ale vzory korelované, může dojít k problémům i pro m < 0.18 n

Odvození kapacity sítě – idea (1)

• Pro
$$W^i = \frac{1}{n} (\vec{x}^i)^T \vec{x}^i$$

 Crosstalk pro n – rozměrné bipolární vektory a m vzorů autoasociativní sítě:

$$\frac{1}{n} \sum_{l \neq p}^{m} \vec{x}^{l} \left(\vec{x}^{l} \cdot \vec{x}^{p} \right)$$

Pokud je tento člen větší než *1* a má opačné znaménko u příslušné složky, může "překlopit" odpovídající bit již uloženého vzoru

Odvození kapacity sítě – idea (2)

- Předpokládejme, že uložené vzory byly zvoleny náhodně:
 - Crosstalk pro bit i vstupního vektoru je určen jako

$$\frac{1}{n} \sum_{l \neq p}^{m} x_i^l \left(\vec{x}^l \cdot \vec{x}^p \right) \tag{*}$$

Protože byly složky všech vzorů zvoleny náhodně, dostáváme řádově m·n náhodných hodnot očekávaná hodnota tohoto součtu je 0

Odvození kapacity sítě – idea (3)

- Součet (*) má binomické rozdělení a pro velké hodnoty $m \cdot n$ ho lze aproximovat normálním rozdělením se směrodatnou odchylkou $\sigma = \sqrt{\frac{m}{n}}$
- Pravděpodobnost chyby P, že součet (*) bude větší než 1 (anebo menší než -1), je dána dle

$$P = \frac{1}{\sqrt{2\pi}\sigma} \int_{1}^{\infty} e^{-x^2/(2\sigma^2)} dx$$

Odvození kapacity sítě – idea (4)

• Tedy:
$$P\{|(*)| > 1\} = 2 \left[1 - \Phi\left(\frac{1}{\sqrt{m/n}}\right)\right]$$

kde $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$

 \rightarrow pro horní mez chyby na 1 bitu 0.01 dostaneme:

$$0.01 = 2 \left[1 - \Phi \left(\frac{1}{\sqrt{m/n}} \right) \right]$$

 $\rightarrow m \sim 0.18 n$

Asociativní paměti – pseudoinverzní matice (1)

Hebbovské učení dává dobré výsledky, pokud jsou uložené vzory téměř ortogonální

- pokud bylo *m* bipolárních vektorů zvoleno náhodně z
 n rozměrného prostoru, *n* je "dostatečně velké" a *m* je "dostatečně menší" než *n*
- v reálných aplikacích jsou vzory téměř vždy korelované a perturbační člen ve výrazu

$$\vec{x}^p \cdot W = \vec{y}^p \cdot (\vec{x}^p \cdot \vec{x}^p) + \sum_{l \neq p}^m \vec{y}^l \cdot (\vec{x}^l \cdot \vec{x}^p)$$

může ovlivnit kvalitu rozpoznávání, protože skalární součiny $\vec{x}^l \cdot \vec{x}^p$ nejsou pro $l \neq p$ dostatečně malé

Asociativní paměti – pseudoinverzní matice (2)

- → vzájemná korelace ukládaných vzorů vede ke snížení kapacity asociativní paměti
 - ~ počet vzorů, které lze uložit a rozpoznat
 - ukládané vzory pak nepokrývají rovnoměrně celý příznakový prostor, ale soustředí se do menší oblasti
- → je třeba hledat alternativní metody učení schopné minimalizovat perturbaci mezi ukládanými vzory
- → použití pseudoinverzní matice namísto korelační

Asociativní paměti – pseudoinverzní matice (3)

Definice:

Pseudoinverzní maticí k matici $m \times n$ reálných čísel je matice reálných čísel \widetilde{X} s následujícími vlastnostmi:

- $1. X\widetilde{X}X = X ,$
- 2. $\widetilde{X} X \widetilde{X} = \widetilde{X}$,
- $\widetilde{X} X a X \widetilde{X}$ jsou symetrické

Pseudoinverzní matice vždy existuje a je jednoznačně určena.

Pseudoinverzní matice - vlastnosti

Nechť $\vec{x}^1, \vec{x}^2, \dots, \vec{x}^m$ jsou n – rozměrné vektory, kterým má být přiřazeno m k – rozměrných vektorů $\vec{y}^1, \dots, \vec{y}^m$

→ maticový zápis:

X Matice $m \times n$ řádky matice tvoří vektory $\vec{x}^1, \vec{x}^2, ..., \vec{x}^m$,

Y Matice $m \times k$ řádky matice tvoří vektory $\vec{y}^1, \dots, \vec{y}^m$

 \rightarrow Hledáme matici vah W; XW = Y

Pseudoinverzní matice – vlastnosti (2)

Protože obecně $m \neq n$ a vektory $\vec{x}^1, \vec{x}^2, \dots, \vec{x}^m$ nemusí být navzájem lineárně nezávislé, nemusí existovat k matici X matice inverzní

 \rightarrow hledáme matici, která by minimalizovala $\|XW - Y\|^2$ (~ součet druhých mocnin jednotlivých prvků) minimalizace pomocí $W = \widetilde{X}Y$

X... Pseudoinverzní matice k X

(~ nejlepší aproximace inverzní matice k X pokud X^{-1} existuje, bude navíc $\|X\widetilde{X} - I\|^2$)

Pseudoinverzní matice – vlastnosti (3)

Věta:

Necht' X je matice reálných čísel $m \times n$ a Y je matice reálných čísel $m \times k$.

Matice $n \times k$ $W = \widetilde{X}Y$ minimalizuje $\|XW - Y\|^2$. (Zároveň \widetilde{X} minimalizuje $\|X\widetilde{X} - I\|^2$.)

<u>Důkaz:</u>

Nechť
$$E = ||XW - Y||^2$$
 stopa matice $\rightarrow E$ lze vyjádřit jako $E = tr(S)$, kde $S = (XW - Y)^T(XW - Y)$ ($E \sim \text{součet prvků na diagonále } S$)

Pseudoinverzní matice – vlastnosti (4)

Důkaz (pokračování):

 \rightarrow S lze vyjádřit jako

$$S = (\widetilde{X}Y - W)^{T} X^{T} X (\widetilde{X}Y - W) + Y^{T} (I - X\widetilde{X}) Y$$

(Protože:

$$S = (\widetilde{X}Y - W)^T (X^T X \widetilde{X}Y - X^T X W) + Y^T (I - X \widetilde{X}) Y$$

Matice $X\widetilde{X}$ je symetrická (def.), a tedy:

$$S = \left(\widetilde{X}Y - W\right)^{T} \left(\left(\underbrace{X\ \widetilde{X}\ X}_{=\ X\ (\text{def.})}\right)^{T} Y - X^{T} XW\right) + Y^{T} \left(I - X\widetilde{X}\right) Y$$

Pseudoinverzní matice – vlastnosti (5)

Důkaz (pokračování):

(Proto:
$$S = (\widetilde{X}Y - W)^T (X^T Y - X^T X W) + Y^T (I - X\widetilde{X})Y =$$

$$= (\widetilde{X}Y - W)^T X^T (Y - X W) + Y^T (I - X \widetilde{X})Y =$$

$$= (X \widetilde{X}Y - X W)^T (Y - X W) + Y^T (I - X \widetilde{X})Y =$$

$$= (-X W)^T (Y - X W) + Y^T X \widetilde{X} (Y - X W) + Y^T (I - X \widetilde{X})Y =$$

$$= (-X W)^T (Y - X W) + Y^T (-X W) + Y^T Y =$$

$$= (Y - X W)^T (Y - X W)$$

→ E lze tedy vyjádřit jako

$$E = tr\left(\left(\widetilde{X}Y - W\right)^T X^T X \left(\widetilde{X}Y - W\right)\right) + tr\left(Y^T \left(I - X\widetilde{X}\right)Y\right)$$
with F and $W = \widetilde{Y}V$

$$\rightarrow$$
 min E pro $W = \widetilde{X}Y$

Pseudoinverzní matice - použití

Motivace a použití:

- Ne ke všem maticím existuje matice inverzní
- Alternativou je použití pseudoinverzní matice
 - Minimalizace střední kvadratické odchylky (např. vrstevnaté neuronové sítě)
 - Trénovací množina: $\{(\vec{x}_p, \vec{d}_p); p = 1, ..., P\}$
 - \vec{x}_p Vstupní vzor (n rozměrný)
 - \vec{d}_p Požadovaný výstup (m rozměrný)
 - \vec{y}_p Skutečný výstup (m rozměrný)

Pseudoinverzní matice – použití (2)

• Odchylka:
$$E = \sum_{p=1}^{P} E_p = \sum_{p=1}^{P} \sum_{j=1}^{m} (d_{j,p} - y_{j,p})^2$$

 $\Rightarrow \vec{y}_p: \qquad y_{j,p} = \sum_{i=1}^{n} w_{ij} x_{i,p}$

• Minimalizace odchylky E vzhledem k vahám \rightarrow parciální derivace E podle vah by měly být nulové:

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} \left(\sum_{p=1}^{P} \sum_{j=1}^{m} \left(d_{j,p} - \sum_{i=1}^{n} w_{ij} x_{i,p} \right)^{2} \right) =$$

$$= -2 \sum_{p=1}^{P} \left(\sum_{i=1}^{n} d_{j,p} - w_{ij} x_{i,p} \right) x_{i,p} = 0$$

Pseudoinverzní matice – použití (3)

- Maticový zápis: $WXX^T = DX^T$
 - W Matice $m \times n$ se složkami w_{ij}
 - X Matice $n \times P$ se složkami $x_{i,p}$
 - D Matice $m \times P$ se složkami $d_{j,p}$
- × k matici *XX^T* obecně nemusí existovat inverzní matice
 - → nemusí být možné vyřešit rovnici přímo
 (a najít matici vah W v případě, že XX^T nemá m
 lineárně nezávislých řádků)

Pseudoinverzní matice – použití (4)

 Nešení může být víc → dodatečná podmínka na omezení velikosti vah:

$$E = \lambda \sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij}^{2} \qquad ; \qquad \lambda > 0, \lambda = konst .$$

Minimalizace pomocí parciálních derivací

$$W(XX^T + \lambda I) = DX^T$$

 $(\lambda > 0 \text{ k matici } XX^T + \lambda I \text{ existuje matice inverzn})$

$$W(XX^{T}+\lambda I)(XX^{T}+\lambda I)^{-1}=DX^{T}(XX^{T}+\lambda I)^{-1}$$

Pseudoinverzní matice – použití (5)

• Limitně pro $\lambda \rightarrow 0$:

$$W = \lim_{\lambda \to 0} \left[DX^{T} \left(XX^{T} + \lambda I \right)^{-1} \right] = D\widetilde{X}$$

- \widetilde{X} Pseudoinverzní matice k matici X
- Pokud existuje řešení více, bude mít \widetilde{X} nejmenší hodnoty $\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij}^{2}$
- Pokud existuje k X inverzní matice, bude $\widetilde{X} = X^{-1}$

Výpočet pseudoinverzní matice

- Aproximace pomocí vrstevnatých neuronových sítí typu zpětného šíření
- Vrstevnatá neuronová síť k nalezení vah asociativní sítě

o – výstup sítě

y – požadovaná asociace

Výpočet pseudoinverzní matice (2)

- Cíl učení: Nalézt takovou matici vah W se složkami \mathbf{w}_{ij} , která by nejlépe zobrazila vektory $\mathbf{x}^1, \dots, \mathbf{x}^m$ na vektory $\mathbf{y}^1, \dots, \mathbf{y}^m$
- Pro i-tý vstupní vektor se porovná výstup síte s vektorem \vec{y}^i a vypočítá se E_i
- Celková kvadratická odchylka $E = \sum_{i=1}^{m} E_i$ pak odpovídá $\|\mathbf{XW} \mathbf{Y}\|^2$
- Algoritmus zpětného šíření pak najde matici **W**, která by měla minimalizovat $\|\mathbf{X}\mathbf{W} \mathbf{Y}\|^2$