

```
proc freq data=ex1 1;
        weight num;
        tables nests/ out= Freqout;
        proc print data= Freqout;
        run;
        proc sgplot data=Freqout;
        vbar nests/response= count;
        yaxis grid display=(nolabel);
        xaxis display=(nolabel);
        run;
        60
OUTPUT
        20
        10
        R에서의 첫 번째 그래프를 보면 장소에 상관없이 발견되는 둥지의 수가 큰 차이가 없어
        보인다. 그러나 y축을 45부터 시작해서 그린 두 번째 그래프를 보면 C(Low tree
결과해석
        branches)에서 발견되는 둥지 수가 현저히 적어보인다. 이를 보고 그래프 축의 단위를
        어떻게 하느냐에 따라 결과 해석의 차이가 클 수 있다는 것을 알 수 있다.
```

Example.1.2 **EXAMPLE 1.2** Numbers of Sunfish, Tabulated According to Amount of Black Pigmentation: A Frequency Table of Ordinal Data The variable is amount of pigmentation, which is expressed by numerically ordered classes. The numbers recorded for the five pigmentation classes compose the frequency distribution. Pigmentation Class Amount of Pigmentation Number of Fish No black pigmentation 13 1 Faintly speckled 68 2 Moderately speckled 44 3 Heavily speckled 21 4 Solid black pigmentation 8 R #Ex1.2 CODE counts=c(13.68,44,21.8) barplot(counts, ylab="Number of Fish", xlab="Pigmentation Class",


```
SAS
        data ex1_3;
        input size$ num;
        cards;
        3 10
        4 27
        5 22
        6 4
        7 1
        run;
CODE
        proc freq data=ex1 3;
        weight num;
        tables size/ out= Freqout;
        run;
        proc sgplot data=Freqout;
        vbar size/response= count ;
        yaxis grid values=(0 to 30 by 5) label="Number of Litters"
        offsetmax=0.1;
        xaxis label="Litter Size";
        run;
         Jumper 15
OUTPUT
        위의 그래프를 보면 데이터가 왼쪽으로 치우쳐 있다는 것을 확인할 수 있다. 즉 여우의
결과해석
        litter size(한배 산란수)는 보통 4~5마리이고 더 많이 새끼를 낳는 여우는 드물다는 것
        을 확인할 수 있다.
```

Exam	nl	ρ	1	4a
LAUIII	$_{\rm PI}$	c.	т.	ти

EXAMPLE 1.4a Number of Aphids Observed per Clover Plant: A Frequency Table of Discrete, Ratio-Scale Data

Number of Aphids on a Plant	Number of Plants Observed	Number of Aphids on a Plant	Number of Plants Observed
0	3	20	• 17
1	1	21	18
2	1	22	23
3	1	23	17
4 5	2	24	19
5	2 3 5 7	25	18
6	5	26	19
7	7	27	21
8	8	28	18
9	11	29	13
10	10	30	10
11	11	31	14
12	13	32	9
13	12	33	10
14	16	34	8
15	13	35	8 5
16	14	36	4
17	16	37	1
18	15	38	2
19	14	39	1
		40	0
		41	1

Total number of observations = 424

#Ex1.4a
aphids = seq(0, 41)
plants =
c(3,1,1,1,2,3,5,7,8,11,10,11,13,12,16,13,14,16,15,14,17,18,23,17,19,18,19,21,
18,13,10,14,9,10,8,5,4,1,2,1,0,1)
barplot(plants, names.arg = aphids, cex.names = 0.8, ylim = c(0,25),
ylab = "Frequency of Observations", xlab = "Observerd Number of Aphids per plants")

		Example.1.4b		
example quency T	1.4b Number of Aphid able Grouping the Discrete,		over Plant: A Fre- Example 1.4a	
	Number of Aphids on a Plant	Number of Plants Observed		
	0-3 4-7 8-11 12-15 16-19 20-23 24-27 28-31 32-35 36-39 40-43	6 17 40 54 59 75 77 55 32 8 1		
	Total number of o	bservations = 424		
	#Ex1.4b	R		
CODE	"20-23","24-27","28-31", ylab="Frequency of O per Plants", ylim=c(0,8	bservations", xla	ab="Observed Nu	mber of Aphids
OUTPUT	10 100 100 100 000 0000 0000 0000 0000	-19 20-23 24-27 28-31 32-35 Number of Aphids per Plants	5 36-39 40-43	
	data ev1 Ah.	SAS		
CODE	<pre>data ex1_4b; input aphids\$ num @ cards;</pre>	@ ;		
	00-03 6 04-07 17 08	-11 40 12-15 5	4 16-19 59 20-2	3 75 24-27 77

```
28-31 55 32-35 32 36-39 8 40-43 1
         run;
         proc freq data=ex1 4b;
         weight num;
         tables aphids/ out= Frequut;
         run;
         proc sgplot data=Freqout;
         vbar aphids/response= count ;
         yaxis grid values=(0 to 80 by 10) label="Frequency of
         Observations";
         xaxis label="Obseved Number of Aphids per Plant";
         run;
            70
            60
          Frequency of Observations
            50
            40
OUTPUT
            30
               00-03 04-07 08-11 12-15 16-19 20-23 24-27 28-31 32-35 36-39 40-43
                           Obseved Number of Aphids per Plant
         1.4a와 동일한 데이터의 그래프지만 x축을 4단위씩 묶어서 합쳐 그린 그래프이다. 위
         그래프를 보면 1.4a의 그래프보다 조금 더 대칭적으로 그래프가 그려졌다는 것을 확인
결과해석
         할 수 있다. 이렇게 x축의 구간설정에 따라 그래프의 형태가 완전히 바뀌어 정보를 다르
         게 해석할 수 있으므로 구간설정을 잘 하는 것이 중요하다.
```

Example.1.5

EXAMPLE 1.5 Determinations of the Amount of Phosphorus in Leaves: A Frequency Table of Continuous Data

	Frequency (i.e., number of determinations)	Cumulative frequency		
Phosphorus (mg/g of leaf)		Starting with Low Values	Starting with High Values	
8.15-8.25	2	2	130	
8.25-8.35	6	8	128	
8.35-8.45	8	16	122	
8.45-8.55	11	27	114	
8.55-8.65	17	44	103	
8.65-8.75	17	61	86	
8.75-8.85	24	85	69	
8.85-8.95	18	103	45	
8.95-9.05	13	116	27	
9.05-9.15	10	126	14	
9.15-9.25	4	130	4	

Total frequency = 130 = n

R

```
#Ex1.5a
```

df= as.data.frame(cbind(x= seq(8.15,9.25,length=11),

Freq= c(2,6,8,11,17,17,24,18,13,10,4)))

df.freq= as.vector(rep(df\$x, df\$Freq))

hist(df.freq, breaks=seq(8.15,9.25,length=12),

main="Determinations of the Amount of Phosphorus in Leaves", ylab="Frequency", xlab="Phosphorus", ylim=c(0,30),yaxp=c(0,30,6))

lines(df\$x,df\$Freq)

#Ex1.5b

CODE

x=seg(8.2, 9.2, 0.1)

frq=c(2,6,8,11,17,17,24,18,13,10,4)

y=data.frame(x,frq)

plot(y, type='o', ylab= "Frequency", xlab= "Phosphorus(mg/g of leaf)",

ylim=c(0,30), xaxp=c(8.2,9.2,10)

rfrq=frq/sum(frq)

par(new=T)

plot(rfrq, type="n",ylim=c(0,0.23), ylab="", xlab="", axes=F)

axis(side=4, at=NULL, labels = T, las=1)

#EX1.5c

cumfrq=cumsum(frq)

z=data.frame(x,cumfrq)

rcumfrq= cumfrq/sum(frq)

```
plot(z, type="o", ylab="Cumluative Frequency",
         xlab="Phosphorus(mg/g of leaf",ylim=c(0,140),xaxp=c(8.2,9.2,10))
         par(new=T)
         zr=data.frame(x,rcumfrq)
         F)
         axis(side=4, at=NULL, labels = T)
         #Ex1.5d
         w=rep(130,11)
         v=w-cumfrq
         rv=v/sum(frq)
         inv=data.frame(x,v)
         plot(inv,type="o", ylab="Cumluative Frequency",
         xlab="Phosphorus(mg/g of leaf",ylim=c(0,140),xaxp=c(8.2,9.2,10))
         par(new=T)
         rinv=data.frame(x,rv)
         plot(rinv, type="n",ylim=c(0,1.08), ylab="", xlab="",xaxp=c(8.2,9.2,10), axes
         axis(side=4, at=NULL, labels = T)
                 Determinations of the Amount of Phosphorus in Leaves
OUTPUT
               8.2
```

8.6

8.8


```
8.7 17
8.8 24
8.9 18
9.0 13
9.1 10
9.2 4
run;
proc freq data=ex1 5;
weight frq;
tables pho/ out= Freqout;
run;
proc print data=Freqout;
run;
proc sgplot data= Freqout;
histogram pho/ scale=count freq= count binstart=8.2 nbins=11
xaxis values=(8.1 to 9.3 by 0.1) label="Phosphorus(mg/g of
yaxis values=(0 to 30 by 5) label="Frequency";
run;
data ex1 5r;
set ex1 5;
rel=frq/130;
run;
                                          series
                                                       markers
proc sgplot data=ex1 5r;
                                                 2
series x= pho y= frq /markers;
series x= pho y=rel/ y2axis transparency=1,
xaxis values=(8.1 to 9.3 by 0.1) label="Phosphorus(mg/g of
leaf)";
yaxis values=(0 to 30 by 5) label="Frequency";
y2axis values=(0 to 0.2 by 0.05) label="Relative Frequency";
run;
data ex1 5c;
set ex1 5;
retain cum 0;
cum+frq ;
rcum=cum/130;
run;
proc print data=ex1 5c;run;
```

```
proc sgplot data=ex1 5c;
        series x=pho y=cum / markers;
        series x=pho y=rcum/y2axis transparency=1;
        xaxis values=(8.1 to 9.3 by 0.1) label="Phosphorus(mg/g of
        leaf)";
        yaxis values=(0 to 140 by 20) label="Frequency";
        y2axis values=(0 to 1 by 0.10) label="Relative Frequency";
        run;
        data ex1 5ic;
        set ex1 5;
        retain cum 130;
        cum + (-frq);
        rcum=cum/130;
        run;
        proc sgplot data=ex1 5ic;
        series x=pho y=cum / markers;
        series x=pho y=rcum/y2axis transparency=1;
        xaxis values=(8.1 to 9.3 by 0.1) label="Phosphorus(mg/g of
        leaf)";
        yaxis values=(0 to 140 by 20) label="Frequency";
        y2axis values=(0 to 1 by 0.10) label="Relative Frequency";
        run;
OUTPUT
```


Example.3.1

EXAMPLE 3.1 A Sample of 24 from a Population of Butterfly Wing Lengths

 X_l (in centimeters): 3.3, 3.5, 3.6, 3.6, 3.7, 3.8, 3.8, 3.9, 3.9, 3.9, 4.0, 4.0, 4.0, 4.0, 4.1, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.5.

$$\sum X_i = 95.0 \text{ cm}$$

$$n = 24$$

$$\overline{X} = \frac{\sum X_i}{n} = \frac{95.0 \text{ cm}}{24} = 3.96 \text{ cm}$$

	R
CODE	#Ex3.1 X=c(3.3,3.5,3.6,3.6,3.7,3.8,3.8,3.8,3.9,3.9,3.9,4.0,4.0,4.0,4.0,4.1,4.1,4.1,4.2,4.2,4.3,4. 3,4.4,4.5) Xbar=mean(X) round(Xbar,2)
OUTPUT	> #Ex3.1 > X=c(3.3,3.5,3.6,3.6,3.7,3.8,3.8,3.8,3.9,3.9,3.9,4.0,4.0,4.0,4.0,4.1,4.1,4.1,4.2,4.2,4.3,4.3,4.4,4.5) > Xbar=mean(X) > round(Xbar,2) [1] 3.96
	SAS
CODE	<pre>data ex3_1; input x @@; cards; 3.3 3.5 3.6 3.6 3.7 3.8 3.8 3.8 3.9 3.9 3.9 4.0 4.0 4.0 4.0 4.1 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.5 ; run; proc means data=ex3_1 mean; var x; run;</pre>
OUTPUT	Analysis Variable : x Mean 3.9583333
결과해석	나비의 날개 길이를 측정하기 위해 24마리의 나비 표본을 추출해 날개 길이를 측정해본 결과 평균 3.96cm라는 값을 얻었다.

```
Example.3.2
  EXAMPLE 3.2
                    The Data from Example 3.1 Recorded as a Frequency Table
  X_i (cm)
                          f_iX_i (cm)
               f_i
    3.3
               1
                             3.3
                                           \sum_{i=1}^{k} f_i = n = 24
\overline{X} = \frac{\sum_{i=1}^{k} f_i X_i}{n} = \frac{95.0 \text{ cm}}{24} = 3.96 \text{ cm}
    3.4
               0
                             0
                             3.5
    3.5
    3.6
                             7.2
    3.7
               1
                             3.7
               3
                            11.4
    3.8
    3.9
               3
                            11.7
    4.0
               4
                            16.0
                                         median = 3.95 cm + \left(\frac{1}{4}\right) (0.1 cm)
               3
    4.1
                            12.3
               2
    4.2
                            8.4
                                                = 3.95 \text{ cm} + 0.025 \text{ cm}
    4.3
                            8.6
    4.4
                            4.4
                                                = 3.975 \text{ cm}
    4.5
                             4.5
           \sum f_i = 24 \quad \sum f_i X_i = 95.0 \text{ cm}
                                                  R
            #Ex3.2
            install.packages("Hmisc")
            library(Hmisc)
            xi = seg(3.3, 4.5, 0.1)
CODE
            fi=c(1,0,1,2,1,3,3,4,3,2,2,1,1)
            wtd.mean(xi, weights=fi)
            x.median=wtd.quantile(xi, weights=fi, probs = c(.5), type=c("(i-1)/(n-1)"))
            x.median
             > xi = seq(3.3, 4.5, 0.1)
             > fi=c(1,0,1,2,1,3,3,4,3,2,2,1,1)
             > wtd.mean(xi, weights=fi)
             [11 3.958333
OUTPUT
            > x.median=wtd.quantile(xi, weights=fi, probs = c(.5), type=c("(i-1)/(n-1)
                 50%
             3.9375
                                                SAS
            data ex3 2;
            input x w @@;
            cards;
            3.3 1 3.4 0 3.5 1 3.6 2 3.7 1 3.8 3 3.9 3 4.0 4 4.1 3 4.2 2 4.3
CODE
            2 4.4 1 4.5 1
            run;
            proc means data=ex3 2 mean median;
            var x;
```

	weight w;	run;	
	Analysis V	ariable : x	
OUTPUT	Mean	Median	
	3.9583333	4.0000000	
결과해석	1		우에는 변수값에 빈도수만큼의 가중치를 곱해서 전체 수로 은 Ex3.1과 동일한 결과를 얻는다.

Example.3.3 Life Span for Two Species of Birds in Captivity **EXAMPLE 3.3** The data for each species are arranged in order of magnitude Species A Species B X_i (mo) X_i (mo) 16 34 32 36 37 38 39 45 40 50 41 54 56 42 50 59 82 69 91 n = 9n = 10median = $X_{(n+1)/2} = X_{(9+1)/2}$ = $X_5 = 40$ mo median = $X_{(n+1)/2} = X_{(10+1)/2}$ = $X_{5.5} = 52$ mo $\bar{X} = 42.11 \, \text{mo}$ $\bar{X} = 53.20 \text{ mo}$ R #Ex3.3 A=c(16,32,37,39,40,41,42,50,82) B=c(34,36,38,45,50,54,56,59,69,91)xa=c(mean(A),median(A)) CODE xb=c(mean(B),median(B)) хa xb > #Ex3.3 > A=c(16,32,37,39,40,41,42,50,82) > B=c(34,36,38,45,50,54,56,59,69,91) > xa=c(mean(A), median(A)) > xb=c(mean(B), median(B)) OUTPUT > xa [1] 42.11111 40.00000 > xb [1] 53.2 52.0 SAS data ex3 3; input a b @@; cards; CODE 16 34 32 36 37 38 39 45

```
40 50
       41 54
       42 56
       50 59
       82 69
       . 91
       run;
       proc means data=ex3 3 mean median maxdec=2;
       var a;
       var b;
       run;
        Variable Mean Median
OUTPUT
                42.11
                       40.00
         b
                53.20
                       52.00
       철장에 갇힌 A종 새의 수명의 중위수는 40개월이고 평균은 42.11개월이고 B종 새의 수
결과해석
       명의 중위수는 52개월이고 평균은 53개월이므로 두 종 모두 평균이 중위수보다 크므로
       데이터가 살짝 왼쪽으로 치우칠 가능성이 있다고 판단할 수 있다.
```

Example.3.4

EXAMPLE 3.4 The Geometric Mean of Ratios of Change

Decade	Population Size	Ratio of Change X _i
0	10,000	7.0
1	10,500	$\frac{10,500}{10,000} = 1.05$
2	11,550	$\frac{11,550}{10,500} = 1.10$
3	13,860	$\frac{13,860}{11,550} = 1.20$
4	18,156	$\frac{18,156}{13,860} = 1.31$

$$\overline{X} = \frac{1.05 + 1.10 + 1.20 + 1.31}{4} = \frac{4.66}{4} = 1.1650$$

and (10,000)(0.1650)(1.650)(1.650)(1.650) = 18,421

But,

$$\overline{X}_G = \sqrt[4]{(1.05)(1.10)(1.20)(1.31)} = \sqrt[4]{1.8157} = 1.1608$$

or

$$\overline{X}_G = \operatorname{antilog} \left[\frac{\log(1.05) \ + \ \log(1.10) \ + \ \log(1.20) \ + \ \log(1.31)}{4} \right]$$

$$= \frac{\operatorname{antilog}(0.0212 \ + \ 0.0414 \ + \ 0.0792 \ + \ 0.1173)}{4} = \frac{\operatorname{antilog}(0.2591)}{4}$$

$$= \operatorname{antilog} 0.0648 = 1.1608$$

and (10,000)(1.1608)(1.1608)(1.1608)(1.1608) = 18,156

	R
CODE	#Ex3.4 install.packages("psych") library(psych) RX=c(1.05,1.10,1.20,1.31) XRX=c(mean(RX),geometric.mean(RX)) XRX
OUTPUT	<pre>> library(psych) > RX=c(1.05,1.10,1.20,1.31) > XRX=c(mean(RX),geometric.mean(RX)) > XRX [1] 1.165000 1.160803</pre>
	SAS
CODE	<pre>data ex3_4; input x @@; cards;</pre>

```
1.05 1.10 1.20 1.31
       ; run;
       proc means data=ex3 4 mean;
       var x;
       run;
       proc ttest data=ex3 4 dist=lognormal;
       var x;
        Analysis Variable
             : x
OUTPUT
                        N Geometric Mean
                 Mean
                                 1.1608
              1.1650000
       한 세기마다 인구 규모의 변화의 평균비율을 산술평균으로 구한 값을 4번 곱하였더니 4
       세기의 최종 인구 수와 다른 값이 나왔다. 이렇게 변화의 비율에 대한 평균값을 계산할
       때에는 기하평균을 이용하는 것이 좀 더 정확한 결과를 얻을 수 있다. 위 결과를 보면
결과해석
       기하평균을 0세기부터 4세기동안 곱해보면 최종 인구 수와 같은 값이 나오는 것을 확인
       할 수 있다.
```

```
Example.3.5
  EXAMPLE 3.5 The Harmonic Mean of Rates
                X_1 = 40 \text{ km/hr}, X_2 = 20 \text{ km/hr}
                 \overline{X} = \frac{40 \text{ km/hr} + 20 \text{ km/hr}}{2} = \frac{60 \text{ km/hr}}{2} = 30 \text{ km/hr}
  But
          \overline{X}_H = \frac{2}{1 + 1} = \frac{2}{0.0250 \text{ hr/km} + 0.0500 \text{ hr/km}}
                 40 km/hr + 20 km/hr
                 \frac{2}{0.075 \text{ hr/km}} = 26.67 \text{ km/hr}
                                                      R
             #Ex3.5
             v=c(40.20)
CODE
             xv=c(mean(v),harmonic.mean(v))
             XV
              > #Ex3.5
              > v=c(40,20)
              > xv=c(mean(v), harmonic.mean(v))
OUTPUT
             [1] 30.00000 26.66667
```

	SAS
CODE	<pre>proc iml; x={40, 20}; mean = mean(x); harm_mean= 2 / (sum(1/x)); print mean harm_mean; run; quit;</pre>
OUTPUT	mean harm_mean 30 26.666667
결과해석	속도의 변화같이 변화율의 평균을 구하고 싶을 때에는 조화평균을 사용하는 것이 바람 직하다.

		Example.3.	<u></u>
EXAMPLE 3.6 Codi	ng Data to Facili	tate Calculatio	ns
Sample 1 (Coding by $S = -840 \text{ g}$			oding by Division: 001 liters/ml)
X_i (g) coded $X_i = \lambda$	$Y_i - 840 \mathrm{g}$ X_i	(ml) coded X _i	= $(X_i)(0.001 \text{ liters/ml})$ = $X_i \text{ liters}$
842 2 844 4 846 6	5	3,000 2,000 2,500	8.000 9.000 9.500
846 6 847 7 848 8	11 12	1,000 2,500 3,000	11.000 12.500 13.000
849 9	1.	5,000	13.000
$\sum X_i = 5922 \text{ g} \text{coded}$ $\overline{X} = \frac{5922 \text{ g}}{7} \text{cod}$ $= 846 \text{ g}$			
$\overline{X} = \operatorname{coded} \overline{X} - A$		$\overline{X} = \text{coded } \frac{\overline{X}}{M}$ $= \frac{10.500 \text{ li}}{M}$	ters
= 6 g - (-840 g) = 846 g		$=\frac{0.001 \text{ lite}}{0.001 \text{ lite}}$ = 10,500 ml	rs/ml
		R	
#Ex3.6			
x1=c(842,	844,846,846,84	7,848,849)	
CODE $cx1=x1-8$	10		
mean(x1)			
mean(cx1)		

```
mean(cx1)-(-840)
        x2=c(8000,9000,9500,11000,12500,13000)
         cx2=x2/1000
        mean(x2)
        mean(cx2)
        mean(cx2)/0.001
         > #Ex3.6
         > x1=c(842,844,846,846,847,848,849)
         > cx1=x1-840
         > mean(x1)
         [1] 846
         > mean(cx1)
         [1] 6
         > mean(cx1) - (-840)
         [1] 846
OUTPUT
         > x2=c(8000,9000,9500,11000,12500,13000)
         > cx2=x2/1000
         > mean(x2)
         [1] 10500
         > mean(cx2)
         [1] 10.5
         > mean(cx2)/0.001
         [1] 10500
                                  SAS
        proc iml;
        x1={842,844,846,846,847,848,849};
        x2=x1-840;
        mean1=mean(x1);
        mean2=mean(x2);
         cv=mean2 + 840;
        print mean1 mean2 cv;
        run; quit;
CODE
        proc iml;
        x1={8000,9000,9500,11000,12500,13000};
        x2=x1/1000;
        mean1=mean(x1);
        mean2=mean(x2);
         cv=mean2 * 1000;
        print mean1 mean2 cv;
        run; quit;
          mean1 mean2
                         CV
                              mean1 mean2
                                               CV
OUTPUT
             846
                      6 846
                               10500
                                       10.5 10500
```

결과해석

데이터에 일정 숫자를 빼거나 나눠주고 평균을 구한 다음에 빼거나 나눴던 수만큼 다시더하거나 곱해주면 원래 데이터의 평균과 같은 값이 된다는 것을 확인할 수 있다.

Example.4.1

Calculation of Measures of Dispersion for Two Hypothetical Samples of 7 Insect Body Weights

Sample 1

$X_i(g)$	$X_i - \overline{X}(g)$	$ X_i - \overline{X} $ (g)	$(X_i - \overline{X})^2 (g^2)$
1.2	-0.6	0.6	0.36
1.4	-0.4	0.4	0.16
1.6	-0.2	0.2	0.04
1.8	0.0	0.0	0.00
2.0	0.2	0.2	0.04
2.2	0.4	0.4	0.16
2.4	0.6	0.6	0.36

$$\sum_{i=1}^{X_i} X_i = 12.6 \text{ g} \quad \sum_{i=1}^{X_i} (X_i - \overline{X}) \quad \sum_{i=1}^{X_i} (X_i - \overline{X})^2 = 1.12 \text{ g}^2$$

= sum of squared deviations from the mean = "sum of squares"

$$n = 7; \overline{X} = \frac{\sum X_i}{n} = \frac{12.6 \text{ g}}{7} = 1.8 \text{ g}$$

$$\text{range} = X_7 - X_1 = 2.4 \text{ g} - 1.2 \text{ g} = 1.2 \text{ g}$$

$$\text{interquartile range} = Q_3 - Q_1 = 2.2 \text{ g} - 1.4 \text{ g} = 0.8 \text{ g}$$

$$\text{mean deviation} = \frac{\sum |X_i - \overline{X}|}{n} = \frac{2.4 \text{ g}}{7} = 0.34 \text{ g}$$

$$\text{variance} = s^2 = \frac{\sum (X_i - \overline{X})^2}{n - 1} = \frac{1.12 \text{ g}^2}{6} = 0.1867 \text{ g}^2$$

standard deviation = $s = \sqrt{0.1867 \text{ g}^2} = 0.43 \text{ g}$

Sample 2

$X_i(g)$	$X_i - \overline{X}(g)$	$ X_i - \overline{X} $ (g)	$(X_i - \overline{X})^2 (g^2)$
1.2	-0.6	0.6	0.36
1.6	-0.2	0.2	0.04
1.7	-0.1	0.1	0.01
1.8	0.0	0.0	0.00
1.9	0.1	0.1	0.01
2.0	0.2	0.2	0.04
2.4	0.6	0.6	0.36
	1.2 1.6 1.7 1.8 1.9 2.0	1.2 -0.6 1.6 -0.2 1.7 -0.1 1.8 0.0 1.9 0.1 2.0 0.2	1.2 -0.6 0.6 1.6 -0.2 0.2 1.7 -0.1 0.1 1.8 0.0 0.0 1.9 0.1 0.1 2.0 0.2 0.2

$$\sum_{i=12.6 \text{ g}} X_i \sum_{j=12.6 \text{ g}} \sum_{j=12.6 \text{ g}} (X_i - \overline{X}) \sum_{j=12.8 \text{ g}} (X_i - \overline{X})^2 = 0.82 \text{ g}^2$$

= sum of squared deviations from the mean = "sum of squares"

$$n = 7; \overline{X} = \frac{\sum X_i}{n} = \frac{12.6 \text{ g}}{7} = 1.8 \text{ g}$$
range = $X_7 - X_1 = 2.4 \text{ g} - 1.2 \text{ g} = 1.2 \text{ g}$

```
interquartile range = Q_3 - Q_1 = 2.0 \text{ g} - 1.6 \text{ g} = 0.4 \text{ g}

mean deviation = \frac{\sum |X_i - \overline{X}|}{n} = \frac{1.8 \text{ g}}{7} = 0.26 \text{ g}

variance = s^2 = \frac{\sum (X_i - \overline{X})^2}{n-1} = \frac{0.82 \text{ g}^2}{6} = 0.1367 \text{ g}^2

standard deviation = s = \sqrt{0.1367 \text{ g}^2} = 0.37 \text{ g}
```

xi=c(1.2,1.4,1.6,1.8,2.0,2.2,2.4)
round(sum(xi-mean(xi)),2)
md=sum(abs(xi-mean(xi)))
sum((xi-mean(xi))^2)
mean(xi)
rangex=max(xi)-min(xi)
library(stats)
IQR(xi, type=1)
md/length(xi)
var(xi)
sd(xi)
xi2=c(1.2,1.6,1.7,1.8,1.9,2.0,2.4)
round(sum(xi2-mean(xi2)),2)

mean(xi2)
rangex2=max(xi2)-min(xi2)

sum((xi2-mean(xi2))^2)

md2=sum(abs(xi2-mean(xi2)))

IQR(xi2, type=1)
md2/length(xi2)

var(xi2) sd(xi2)

OUTPUT

```
> #Ex4.1
         > xi=c(1.2,1.4,1.6,1.8,2.0,2.2,2.4)
        > round(sum(xi-mean(xi)),2)
        [1] 0
        > md=sum(abs(xi-mean(xi)))
        > sum((xi-mean(xi))^2)
        [1] 1.12
        > mean(xi)
        [1] 1.8
        > rangex=max(xi)-min(xi)
        > library(stats)
        > IQR(xi, type=1)
        [1] 0.8
        > md/length(xi)
        [1] 0.3428571
         > var(xi)
        [1] 0.1866667
        > sd(xi)
        [1] 0.4320494
        > xi2=c(1.2,1.6,1.7,1.8,1.9,2.0,2.4)
        > round(sum(xi2-mean(xi2)),2)
        [1] 0
        > md2=sum(abs(xi2-mean(xi2)))
        > sum((xi2-mean(xi2))^2)
        [1] 0.82
        > mean(xi2)
        [1] 1.8
        > rangex2=max(xi2)-min(xi2)
        > IQR(xi2, type=1)
         [1] 0.4
         > md2/length(xi2)
        [1] 0.2571429
        > var(xi2)
        [1] 0.1366667
        > sd(xi2)
        [1] 0.3696846
                                 SAS
        data ex4 1;
        input s1 s2 @@;
        cards;
        1.2 1.2
        1.4 1.6
        1.6 1.7
CODE
        1.8 1.8
        2.0 1.9
        2.2 2.0
        2.4 2.4
        run;
```

	1	<pre>proc univariate data=ex4_1;</pre>								
	١,	var s1;								
	١,	var s2;								
	:	run;								
		기본 통계 측도			기본 통계 측도					
		위치측도		변이측도		위치측도		변이측도		
OUTPUT		평균	1.800000	표준 편차	0.43205	평균	1.800000	표준 편차	0.36968	
OUTPUT		중위수	1.800000	분산	0.18667	중위수	1.800000	분산	0.13667	
		최빈값		범위	1.20000	최빈값		범위	1.20000	
				사분위수 범위	0.80000			사분위수 범위	0.40000	
	,	7마리의 곤충의 무게에 관한 산포들을 구한 것으로 순수한 값들로 봤을 때는 편차가 적							을 때는 편차가 적	
거리 그리 그리	ı	다고 싱	성각할 수	도 있으나 곤	충 자처	기가 작의	으므로 상	}대적으로 산	포가 크	다고 판단할 수도
결과해석	١,	있다. 여	이렇게 신	보고는 단위에	따라 성	상대적으	로 결정	되기 때문에	절대적역	인 판단 기준이 모
		호하다.								

		Exa	Example.4.2				
EXAMPLE 4.2 Deviation, and Example 4.1)				riance, Standard e the data of			
Sampl	e 1		San	nple 2			
$X_i(g)$	X_i^2 (g ²)		$X_i(g)$	X_i^2 (g ²)			
1.2	1.44		1.2	1.44			
1.4	1.96		1.6	2.56			
1.6	2.56		1.7	2.89			
1.8	3.24		1.8	3.24			
2.0	4.00		1.9	3.61			
2.2	4.84		2.0	4.00			
2.4	5.76		2.4	5.76			
$\overline{X} = \frac{12.6 \text{ g}}{7} = 1$ $SS = \sum X_i^2 - \frac{1}{2}$ $= 23.80 \text{ g}^2 - \frac{1}{2}$ $= 23.80 \text{ g}^2 - \frac{1}{2}$ $= 1.12 \text{ g}^2$ $s^2 = \frac{SS}{n-1}$ $= \frac{1.12 \text{ g}^2}{6} = \frac{1.12 \text{ g}^2}{6}$ $s = \sqrt{0.1867 \text{ g}^2}$	$\frac{\left(\sum X_i\right)^2}{n}$ $\frac{(12.6 \text{ g})^2}{7}$ $\cdot 22.68 \text{ g}^2$ 0.1867 g^2		$= 0.82 \text{ g}^2$ $s^2 = \frac{0.82 \text{ g}^3}{6}$ $s = \sqrt{0.136}$	$3^2 - \frac{(12.6 \text{ g})^2}{7}$			
$s = \sqrt{0.1867} \text{ g}^2$ $V = \frac{s}{X} = \frac{0.43}{1.8}$		4%					

```
R
         #Ex4.2
         x1=c(1.2.1.4.1.6.1.8.2.0.2.2.2.4)
         mean(x1)
         ss1=sum(x1^2)-sum(x1)^2/length(x1)
         sv1=ss1/(length(x1)-1)
         sart(sv1)
         cv1=sqrt(sv1)/mean(x1)
         cv1
CODE
         x2=c(1.2,1.6,1.7,1.8,1.9,2.0,2.4)
         mean(x2)
         ss2=sum(x2^2)-sum(x2)^2/length(x2)
         sv2=ss2/(length(x2)-1)
         sqrt(sv2)
         cv2=sqrt(sv2)/mean(x2)
         cv2
         > #Ex4.2
         > x1=c(1.2,1.4,1.6,1.8,2.0,2.2,2.4)
         > mean(xl)
         [1] 1.8
         > ssl=sum(x1^2)-sum(x1)^2/length(x1)
         > svl=ssl/(length(xl)-1)
         > sqrt(svl)
         [1] 0.4320494
         > cvl=sqrt(svl)/mean(xl)
         > cvl
         [1] 0.2400274
OUTPUT
         > x2=c(1.2,1.6,1.7,1.8,1.9,2.0,2.4)
         > mean(x2)
         [1] 1.8
         > ss2=sum(x2^2)-sum(x2)^2/length(x2)
         > sv2=ss2/(length(x2)-1)
         > sqrt(sv2)
         [1] 0.3696846
         > cv2=sqrt(sv2)/mean(x2)
         > cv2
         [1] 0.2053803
                                   SAS
         data ex4 2;
         input s1 s2 @@;
         cards;
CODE
         1.2 1.2
         1.4 1.6
         1.6 1.7
```

	1.8 1.8								
		2.0 1.9							
		2.2 2.0							
	2.4 2.4	2.4 2.4							
	;	;							
	run;	run;							
	proc un	ivariate	data=ex4_2	;					
	var s1;								
	var s2;								
	run;								
	N	7	가중합	7					
	평균	1.8	관측값 합	12.6					
	표준 편차	0.43204938	분산	0.18666667					
OUTPUT	N	7	가중합	7					
	평균	1.8	관측값 합	12.6					
	표준 편차	0.36968455	분산	0.13666667					
	두 표본을 뽑아서 산포를 구한 것으로 값이 어느정도 비슷하게 나왔다고 볼 수 있다. 만								
결과해석	약 정밀한 결과를 요구한다면 산포가 크다고 판단할 수도 있다. 여기서는 같은								
	서 추출한 표본들이므로 단위가 같아 변동계수는 큰 의미가 없다.								

EXAMPLE 4.3 Indices of Diversity for Nominal Scale Data: The Nesting Sites of Sparrows

Category (1)	Observed Frequencies (f_i)		
	Sample I		
Vines	5		
Eaves	5		
Branches	5		
Cavities	5		

$$H' = \frac{n \log n - \sum f_i \log f_i}{n} = [20 \log 20 - (5 \log 5 + 5 \log 5 +$$

	Sample 2	
Vines	1	
Eaves	1	
Branches	1	
Cavities	17	

$$H' = \frac{n \log n - \sum f_i \log f_i}{n} = [20 \log 20 - (1 \log 1 + 1 \log 1)]/20$$

$$= [26.0206 - (0 + 0 + 0 + 20.9176)]/20$$

$$= 5.1030/20 = 0.255$$

$$H'_{\text{max}} = \log 4 = 0.602$$

$$J' = \frac{0.255}{0.602} = 0.42$$

	Sample 3	
Vines	2	
Eaves	2	
Branches	2	
Cavities	34	

$$H' = \frac{n \log n - \sum f_i \log f_i}{n} = [40 \log 40 - (2 \log 2 + 2 \log 2 + 2 \log 2 + 34 \log 34)]/40$$

$$= [64.0824 - (0.6021 + 0.6021 + 0.6021 + 52.0703)]/40$$

$$= 10.2058/40 = 0.255$$

$$H'_{\text{max}} = \log 4 = 0.602$$

$$J' = \frac{0.255}{0.602} = 0.42$$

R

```
install.packages("vegan")
        library(vegan)
        h1=diversity(c(5.5.5.5),base = 10)
        hmax=log10(length(c(5,5,5,5)))
        h1/hmax
        h2=diversity(c(1,1,1,17), base = 10)
        h2/hmax
        h3=diversity(c(2,2,2,34), base = 10)
        h3/hmax
         > hl=diversity(c(5,5,5,5),base = 10)
         > hmax=log10(length(c(5,5,5,5)))
         > h1/hmax
         [1] 1
         > h2=diversity(c(1,1,1,17), base = 10)
OUTPUT
        > h2/hmax
         [1] 0.4237923
         > h3=diversity(c(2,2,2,34), base = 10)
         > h3/hmax
         [1] 0.4237923
                                  SAS
        proc iml;
         s1={5,5,5,5};
        h1 = (sum(s1) * log10 (sum(s1)) - t(s1) * log10 (s1)) / sum(s1);
        hmax=log10(nrow(s1));
        j1=h1/hmax;
        s2={1,1,1,17};
CODE
        h2 = (sum(s2) * log10 (sum(s2)) - t(s2) * log10 (s2)) / sum(s2);
        j2=h2/hmax;
         s3={2,2,2,34};
        h3 = (sum(s3) *log10(sum(s3)) -t(s3) *log10(s3))/sum(s3);
         j3=h3/hmax;
        print hmax h1 j1 h2 j2 h3 j3;
        run; quit;
           hmax
                     h1 | j1 |
                                 h2
                                          i2
                                                    h3
                                                             i3
OUTPUT
          0.60206 | 0.60206 | 1 | 0.2551484 | 0.4237923 | 0.2551484 | 0.4237923
         첫 번째 표본은 종부유도, 종풍부도 모두 균등하고 종균등도 적도가 1로 다양한 종이
         고르고 분포되어 있다고 볼 수 있다. 두 번째 표본은 종부유도는 첫 번째 표본과 같지만
         한 종의 나무가 거의 대부분의 비율을 차지하고 종균등도 척도도 0.4238로 다양하지 못
결과해석
         하게 분포되어 있다고 볼 수 있다. 세 번째 표본은 두 번째 표본의 각 개체 수의 정확히
         두배로 분포화어 있는데 종균등도 척도가 두 번째 표본과 같은 값인 0.4238이 나오는
         것을 확인할 수 있다.
```

Example.4.4

EXAMPLE 4.4 Coding Data to Facilitate the Calculation of Measures of Dispersion

Sample 1 (Coding by Subtraction: A = -840 g)

Withou	at Coding Xi	Using Coding $[X_i]$		
$X_i(g)$	$X_i^2(g^2)$	$[X_i](g)$	$[X_i]^2 (g^2)$	
842	708,964	2	4	
843	710,649	3	9	
844	712,336	4	16	
846	715,716	6	36	
846	715,716	6	36	
847	717,409	7	49	
848	719,104	8	64	
849	720,801	9	81	
	$\frac{720,801}{\sum X_i^2 = 5,720,695 \text{ g}^2}$	$\sum [X_i] = 45 \text{ g}$		

$$\sum [X_i] = 6765 \text{ g} \qquad \sum X_i^2 = 5,720,695 \text{ g}^2 \qquad \qquad \sum [X_i] = 45 \text{ g} \qquad \sum [X_i]^2 = 295 \text{ g}^2$$

$$s^2 = \frac{5720695 \text{ g}^2 - \frac{(6765 \text{ g})^2}{8}}{7}$$

$$= 5.98 \text{ g}^2$$

$$s = 2.45 \text{ g}$$

$$\overline{X} = 845.6 \text{ g}$$

$$V = \frac{s}{\overline{X}} = \frac{2.45 \text{ g}}{845.6 \text{ g}}$$

$$= 0.0029 = 0.29\%$$

$$\sum [X_i] = 45 \text{ g} \qquad \sum [X_i]^2 = 295 \text{ g}^2$$

$$[s^2] = \frac{295 \text{ g}^2 - \frac{(45 \text{ g})^2}{8}}{7}$$

$$= 5.98 \text{ g}^2$$

$$[s] = 2.44 \text{ g}$$

$$[\overline{X}] = 5.6 \text{ g}$$

	Sample 2 (Coding	by Division: $M = 0.01$)
Without	t Coding Xi	Using Co	oding $[X_i]$
X_i (sec)	$X_i^2 (\sec^2)$	$[X_i]$ (sec)	$[X_i]^2 (\sec^2)$
800	640,000	8.00	64.00
900	810,000	9.00	81.00
950	902,500	9.50	90.25
1100	1,210,000	11.00	121.00
1250	1,562,500	12.50	156.25
1300	1,690,000	13.00	169.00
$\sum X_i = 6300 \sec \sum$	$\sum X_i^2 = 6.815,000 \text{ se}$ $= \frac{(6300 \text{ sec})^2}{6}$	$c^2 \sum [X_i] = 63.00 \text{ sec}$	$\sum [X_i]^2 = 681.50$ $= \frac{(63.00 \text{ sec})^2}{6}$

R				
	#Ex4.4			
CODE	x41=c(842,843,844,846,846,847,848,849)			
	var(x41)			
	sd(x41)			
	mean(x41)			

```
sd(x41)/mean(x41)
          cx41=c(2,3,4,6,6,7,8,9)
          var(cx41)
          sd(x41)
          mean(cx41)
          sd(cx41)/mean(x41)
          x42=c(800,900,950,1100,1250,1300)
          var(x42)
         sd(x42)
          mean(x42)
          sd(x42)/mean(x42)
          cx42=c(8,9,9.5,11,12.5,13)
          var(cx42)
          sd(x42)
         mean(cx42)
          sd(cx42)/mean(x42)
OUTPUT
```

```
> #Ex4.4
         > x41=c(842,843,844,846,846,847,848,849)
         > var(x41)
         [1] 5.982143
         > sd(x41)
         [1] 2.445842
        > mean (x41)
         [1] 845.625
         > sd(x41)/mean(x41)
         [1] 0.002892348
         > cx41=c(2,3,4,6,6,7,8,9)
         > var(cx41)
        [1] 5.982143
        > sd(x41)
        [1] 2.445842
        > mean(cx41)
         [1] 5.625
         > sd(cx41)/mean(x41)
        [1] 0.002892348
        > x42=c(800,900,950,1100,1250,1300)
        > var(x42)
        [1] 40000
         > sd(x42)
         [1] 200
         > mean (x42)
        [1] 1050
        > sd(x42)/mean(x42)
        [1] 0.1904762
        > cx42=c(8,9,9.5,11,12.5,13)
         > var(cx42)
         [1] 4
         > sd(x42)
         [1] 200
        > mean(cx42)
        [1] 10.5
        > sd(cx42)/mean(x42)
        [1] 0.001904762
                                 SAS
        data ex4 4;
        input ucs1 cs1 ucs2 cs2 @@;
        cards;
         842 2 800 8
        843 3 900 9
CODE
        844 4 950 9.5
        846 6 1100 11
         846 6 1250 12.5
         847 7 1300 13
         848 8 . .
        849 9 . .
```

	;					
	run;					
	proc univ	ariate da	ta=ex4_4;			
	var ucs1;					
	var cs1;					
	var ucs2;					
	var cs2;					
	run;					
		적률				
	N	8	가중합	8		
	평균	845.625	관측값 합	6765		
	표준 편차	2.44584195	분산	5.98214286		
		ţ	변수: cs1			
			적률			
	N	8	가중합	8		
	평균	5.625	관측값 합	45		
	표준 편차	2.44584195	분산	5.98214286		
OUTPUT		Æ				
	N	6	가중합	6		
	평균	1050	관측값 합	6300		
	표준 편차	200	분산	40000		
		Ą	년수: cs2			
			적률			
	N	6	가중합	6		
	평균	10.5	관측값 합	63		
	표준 편차	2	분산	4		
결과해석	첫 번째 표본을 보면 기존 자료가 숫자가 커서 각각에 840을 빼고 구해봤더니 기존의 분산, 표준편차와 똑같은 값을 얻었다. 이를 통해 분산, 표준편차는 원자료에 일정한 값을 빼줘도 같은 값을 얻는다는 것을 알 수 있다. 두 번째 표본은 원자료에 100씩 나눠서 분산을 구한 것으로, 원자료의 분산보다 100의 제곱, 즉 1만 배만큼 적은 값을 얻을수 있다. 즉 원자료에 일정한 값을 나눈 자료의 분산은 기존 자료의 분산에 나눠준 일정한 값의 제곱만큼 나눈 값이다					