Computational Statistics - STAT 575 - Exam #1

Alex Towell (atowell@siue.edu)

Problem 1

Part (1) (10 points)

Use accept-reject algorithm to generate a truncate standard Normal distribution, with density

$$f(x) \propto e^{-x^2/2} I(x > 2).$$

Consider the proposed distribution $g(x) = 2e^{-2(x-2)}I(x > 2)$.

Part (a)

Sample from g using inverse-transform method.

First, we must find the cdf G of g. One way to derive G is to notice that g is the density of the shifted exponential, i.e., if $S \sim \exp(\lambda = -2)$, then X = 2 + S has a cdf

$$G(x) = P(X \le x) \tag{1}$$

$$= P(2 + S \le x) \tag{2}$$

$$=P(S \le x - 2) \tag{3}$$

$$=F_S(x-2) \tag{4}$$

$$= I(x > 2)(1 - \exp(-2(x - 2))). \tag{5}$$

As a quick proof that G is the cdf of g, note that dG/dx = g.

Alternatively, the cdf G is defined as

$$G(x) = \int_{-\infty}^{x} g(s)ds \tag{6}$$

$$=I(x>2)\int_{2}^{x}2e^{-2(s-2)}ds \tag{7}$$

$$=I(x>2)e^4 \int_2^x 2e^{-2s} ds \tag{8}$$

$$= -I(x > 2)e^4 \int_2^x (-2)e^{-2s} ds \tag{9}$$

$$=-I(x>2)e^{4}\left(\left.e^{-2s}\right|_{2}^{x}\right) \tag{10}$$

$$= -I(x > 2)e^{4} \left(e^{-2x} - e^{-4}\right) \tag{11}$$

$$=I(x>2)(1-e^4e^{-2x}) (12)$$

$$=I(x>2)(1-e^{-2(x-2)}), (13)$$

which obtains the same result. Either way, we solve for x in

$$u = G(x)$$

$$u = 1 - e^{-2(x-2)}$$

$$1 - u = e^{-2(x-2)}$$

$$\log(1 - u) = -2(x - 2)$$

$$-\frac{1}{2}\log(1 - u) = x - 2,$$

and thus

$$x=-\frac{1}{2}\log(1-u)+2$$

where u is drawn from UNIF(0,1). That is, if $U \sim \text{UNIF}(0,1)$ then

$$X = -\frac{1}{2}\log(1 - U) + 2$$

is a random variable whose density is g.

Part (b)

Use accept-reject algorithm to generate a sample of 10000 from f. Choose a c so that $f(y)/[cg(y)] \leq 1$. Verify the generated sample via a plot of the true normalized density, and a histogram of the generated values.

We wish to find a c such that $f(y)/[cg(y)] \leq 1$.

However, we do not need f, we only need the kernel of f, which has already been given.

So, ideally, we find the smallest c that satisfies the inequality

$$\frac{k(y)}{q(y)} \le 1$$

where k is the kernel of f, which is given by $c = \max\{k(y)/g(y)\}$. We may solve this analytically by finding

$$y^* = \mathop{\arg\max}_y k(y)/g(y)$$

and then let $c = k(y^*)/g(y^*)$.

First, we let

$$h(y) = k(y)/g(y) = \frac{e^{-y^2/2}}{2e^{-2(y-2)}}.$$

We can find the value that maximizes h by finding the value that maximizes $\log h$, which is given by

$$\log h(y) = \log \frac{e^{-y^2/2}}{2e^{-2(y-2)}} = -\frac{1}{2}y^2 + 2(y-2).$$

The value y^* that maximizes $\log h$ satisfies

$$\left.\frac{d\log h}{dy}\right|_{y=y^*}=-y^*+2=0,$$

which means $y^* = 2$ maximizes $\log h$ and thus

$$c = h(2) = \frac{k(2)}{g(2)} \tag{14}$$

$$=\frac{1}{2e^2}. (15)$$

Thus, we sample y from g and u from UNIF(0,1) and accept the sample as being drawn from f if

$$u \le \frac{k(y)}{g(y)} = e^{-(y-2)^2/2}.$$

Here is the code that implements our sampling method for f using acceptance-rejection sampling:

```
# the proposed density we can easily sample from
g <- function(y)
  2*exp(-2*(y-2))
# inverse transform method for sampling from q
rg <- function(n)
  -0.5*log(1-runif(n))+2
rf <- function(n)
  data <- vector(length=n)</pre>
  for (i in 1:n)
    repeat
      y \leftarrow rg(1)
      u <- runif(1)
      if (runif(1) \le exp(-(y-2)^2/2))
         data[i] <- y</pre>
         break
      }
    }
  }
  data
k <- function(y)</pre>
{
  \exp(-y^2/2)
f <- function(y)</pre>
{
  # normalizing constant
  Z <- 17.5358
  Z*k(y)
```

To verify the sampling method, we drawn n = 10000 samples from f and plot its histogram along with a plot of its density function f.

```
data <- rf(10000)
ys <- seq(2,10,by=.1)
```

```
hist(data,freq=F,breaks=50,main="f")
lines(x=ys,f(ys),col="red")
```

f

The histogram seems compatible with the pdf f.

NOTE TO Dr. Q: On the in-class portion, I forgot to plug the value that I found that maximizes h back into h to find c. Maybe my brain is just getting too old!

Problem 2 (5 points)

Implement your accept-reject algorithm to get a sample of 10000 from Gamma(2.5, 1). Verify that your method works via a plot of the true normalized density, and a histogram of the generated values.

This is not the approach you were looking for, but on the test I did poorly on this section.

Be that as it may, here is essentially my answer on the test, except that the solution is so slow that I decreased c so that, at the extreme tail of the distribution, f(y)/cg(y) > 1.

```
y <- rgamma(n=1,shape=a,scale=b)
u <- runif(1)
P <- dgamma(y,shape=alpha,scale=1) / (c*dgamma(y,shape=a,scale=b))
if (u < P)
{
    ys[i] <- y
    break
}
}
hist(ys,freq=F,breaks=50)
lines(x=seq(.01,10,by=.05),y=dgamma(seq(.01,10,by=.05),shape=alpha,scale=1),col="red")</pre>
```

Histogram of ys

Problem 3 (30 points)

Considers 197 animals randomly divided into four categories (four phenotypes) as follows: $X = (x1, x2, x3, x4)^T$ with cell probabilities $(1/2 + \theta/4, (1-\theta)/4, (1-\theta)/4, \theta/4)^T$. We observe $X = (125, 18, 20, 34)^T$.

Part (a)

Hand code your algorithm using Newton-Ralphson to find the maximum likelihood estimator of θ directly from the observed likelihood. Compare your result with what you get using the built-in optim() function in R.

In part 1 of the exam, the log-likelihood given the data was determined to be

$$\ell(\theta|\vec{x}) = x_1 \log\left(\frac{1}{2} + \frac{\theta}{4}\right) + x_2 \log\left(\frac{1-\theta}{4}\right) + x_3 \log\left(\frac{1-\theta}{4}\right) + x_4 \log\left(\frac{\theta}{4}\right).$$

We derived the updating equation for the MLE of θ to be

$$\theta^{(t+1)} = \theta^{(t)} - \frac{d\ell/d\theta}{d^2\ell/d\theta^2}$$

where

$$\frac{d\ell}{d\theta} = \frac{x_1}{\theta + 2} + \frac{x_2}{\theta - 1} + \frac{x_3}{\theta - 1} + \frac{x_4}{\theta}$$

and

$$\frac{d^2\ell}{d\theta^2} = -\frac{x_1}{(\theta+2)^2} - \frac{x_2}{(\theta-1)^2} - \frac{x_3}{(\theta-1)^2} - \frac{x_4}{\theta^2}.$$

Instead of taking the time to simplify this expression, we will just substitute these derivations into the updating equation in the following R code:

```
11 <- function(theta,x)</pre>
  x[1]/(theta+2) + (x[2]+x[3])/(theta-1) + x[4]/theta
}
12 <- function(theta,x)
  -x[1]/(theta+2)^2 - (x[2]+x[3])/(theta-1)^2 - x[4]/theta^2
theta_mle <- function(x, start = 0.5, eps = 1e-6)
  i <- 0
  theta0 <- start
  theta1 <- NULL
  repeat
    theta1 \leftarrow theta0 - l1(theta0,x) / l2(theta0,x)
    if (abs(theta1-theta0) < eps) { break }</pre>
    theta0 <- theta1
    i <- i + 1
  }
  list(mle=theta1,iterations=i)
}
```

We invoke the updating equations on the given data to estimate θ with the following R code:

```
# observed data
x <-c(125, 18, 20, 34)
sol <- theta_mle(x=x, start=0.5, eps=1e-6)
mle <- sol$mle
mle_iterations <- sol$iterations</pre>
```

We see that the MLE converges to a solution around 0.6268215 after 3. We compare this result with the built-in procedure, optim:

```
# the function to maximize, the log-likelihood function
loglike <- function(theta)
{
    x[1]*log(0.5+theta/4) + x[2]*log(0.25*(1-theta)) + x[3]*log(0.25*(1-theta)) + x[4]*log(0.25*theta)
}

# since optim finds the value that minimizes the function, we provide it with
# the negative of the log-likelihood.
optim(0.5,function(theta) { -loglike(theta) },lower=0.1,upper=0.9,method="L-BFGS-B")$par</pre>
```

[1] 0.626821

The value optim found is approximately the same. It was fussy with explicitly providing upper and lower bounds. This warrants further investigation, but for another time.

Part (b)

Implement the E-M algorithm to find the maximum likelihood estimator of θ with the "augmented" data with missing information $Z=y_2$. Compare your result with part (a).

We split the first category into two,

$$\vec{y} = (y_1, y_2, y_3, y_4, y_5)^T$$

with cell probabilities $(1/2, \theta/4, (1-\theta)/4, (1-\theta)/4, \theta/4)^T$.

So, y_1 and y_2 are unobserved. The pdf is given by

$$f(\vec{y}|\theta) \propto \prod_{i=1}^{5} \pi_i(\theta)^{y_i}$$

where

$$\vec{\pi}(\theta) = (1/2, \theta/4, (1-\theta)/4, (1-\theta)/4, \theta/4)^T.$$

Thus, the complete log-likelihood is given by

$$\log f(\vec{y}|\theta) = \sum_{i=1}^5 y_i \log \pi_i(\theta)$$

which may be written as

$$\log f(\vec{y}|\theta) = k(\vec{y}) + y_2 \log(\theta) + y_3 \log(1 - \theta) + y_4 \log(1 - \theta) + y_5 \log \theta.$$

E-step

The function we seek to maximize Q is thus given by

$$Q(\theta|\theta^{(t)}) = E_{Z|\vec{x}.\theta^{(t)}}(\log f(\vec{y}|\theta)),$$

which is given by

$$Q(\theta|\theta^{(t)}) = E_{Z|\vec{x}.|\theta^{(t)}}\left(y_2\log(\theta) + y_3\log(1-\theta) + y_4\log(1-\theta) + y_5\log\theta\right)$$

which by the property of linearity of expectations is equivalent to

$$Q(\theta|\theta^{(t)}) = E_{Z|\vec{x},|\theta^{(t)}}(y_2)\log(\theta) + E_{Z|\vec{x},|\theta^{(t)}}(y_3)\log(1-\theta) + E_{Z|\vec{x},|\theta^{(t)}}(y_4)\log(1-\theta) + E_{Z|\vec{x},|\theta^{(t)}}(y_5)\log\theta.$$
(16)

Note that y_3 , y_4 , and y_5 are respectively observed to be x_2, x_3, x_4 and thus, for instance,

$$E_{Z|\vec{x}}(y_3) = x_2.$$

The missing data $Z=y_2$ is distributed

$$Z|(\vec{x},\theta^{(t)}) \sim \text{BIN}(\mathbf{x}_1,\frac{^{(\mathbf{t})}}{2+^{(\mathbf{t})}}).$$

and thus

$$E_{Z|\vec{x},|\theta^{(t)}}(y_2) = \frac{x_1\theta^{(t)}}{2 + \theta^{(t)}}.$$

Putting it all together, we may rewrite Q as

$$Q(\theta|\theta^{(t)}) = \frac{x_1\theta^{(t)}}{2+\theta^{(t)}}\log(\theta) + x_2\log(1-\theta) + x_3\log(1-\theta) + x_4\log\theta.$$

M-step

In the M-step, we seek

$$\theta^{(t+1)} = \mathop{\arg\max}_{\theta} Q(\theta|\theta^{(t)}),$$

which can be found by solving

$$\left.\frac{dQ(\theta|\theta^{(t)})}{d\theta}\right|_{\theta=\theta^{(t+1)}}=0.$$

Since the final solution is a little noisy when we leave \vec{x} symbolic, we are going to finish the solution with the observed values of \vec{x} . So,

$$\frac{dQ}{d\theta} = \frac{125\theta^{(t)}}{2 + \theta^{(t)}} - \frac{38}{1 - \theta} - \frac{34}{\theta} = 0$$

has the solution, when we replace θ with $\theta^{(t+1)},$

$$\theta^{(t+1)} = \frac{159\theta^{(t)} + 68}{197\theta^{(t)} + 144}.$$

Iterating update equation until some stopping condition that signifies convergence may then be done. We denote the converged solution of the EM algorithm by

$$\hat{\theta}_{\rm EM} = \lim_{n} \theta^{(t)}.$$

We implement the EM algorithm in the following R code:

```
theta0 <- .5
theta1 <- NULL
i <- 1
repeat
{
    theta1 <- (159*theta0 + 68)/(197*theta0 + 144)
    cat("theta[",i,"] = ", theta1,"\n")
    if (abs(theta1-theta0) < 1e-6) { break }
    theta0 <- theta1
    i <- i + 1
}</pre>
```

```
## theta[ 1 ] = 0.6082474
## theta[ 2 ] = 0.6243211
## theta[ 3 ] = 0.6264889
## theta[ 4 ] = 0.6267773
## theta[ 5 ] = 0.6268156
## theta[ 6 ] = 0.6268207
## theta[ 7 ] = 0.6268214
print(theta1)
```

[1] 0.6268214

We see the standard MLE $\hat{\theta}_{mle}$ and $\hat{\theta}_{EM}$ both obtain the same solution up to 6 decimal places when using the same starting value and stopping condition. However, $\hat{\theta}_{EM}$ required more iterations before convergence, which was expected given that the EM algorithm is of linear order while the MLE using Newton-raphson is of quadratic order. However, the EM algorithm does have the benefit of a less complex updating equation.

Part (c)

Find the standard error of the MLE using either a numerical calculation of the inverse of the observed fisher's information, i.e $[-l"(\theta)]^{-1}$, or using Louis' Method.

We already have the second derivative of the log-likelihood, so we choose to use the observed Fisher information evaluated at $\theta = \theta_{\text{mle}}$.

```
obs_fisher <- -12(mle,x)
var_mle <- 1 / obs_fisher
sqrt(var_mle)</pre>
```

[1] 0.05146735

We see that an estimate of standard error of the MLE is $sd(\hat{\theta}_{mle}) = 0.0514673$.

Problem 4 (10 points)

```
Consider the density f(x) \propto 3e^{-0.5(x+2)^2} + 7e^{-0.5(x-2)^2} (problems 6, Homework 1).
```

Part (a)

Compute the exact normalizing constant, both in closed form using π (pencil and paper), and also to 5 decimal places (by evaluating the exact version in R).

It is given that

$$f(x) \propto \ker(x)$$

i.e., $f(x) = C \ker(x)$, where

$$\ker(x) = 3e^{-0.5(x+2)^2} + 7e^{-0.5(x-2)^2}$$

and C is the normalizing constant that satisfies the equation

$$\int_{-\infty}^{\infty} \frac{1}{C} \ker(x) dx = 1.$$

Solving for C yields the result

$$C = \int_{-\infty}^{\infty} 3e^{-0.5(x+2)^2} dx + \int_{-\infty}^{\infty} 7e^{-0.5(x-2)^2} dx.$$

Each mode of the bimodal distribution resembles a normal distribution with $\sigma = 1$. We may rewrite the above to

$$C = 3\sqrt{2\pi} \int_{-\infty}^{\infty} \frac{e^{-0.5(x+2)^2}}{\sqrt{2\pi}} dx + 7\sqrt{2\pi} \int_{-\infty}^{\infty} \frac{e^{-0.5(x-2)^2}}{\sqrt{2\pi}} dx$$

which is equivalent to

$$C = 3\sqrt{2\pi} \int_{-\infty}^{\infty} \phi(x+2) dx + 7\sqrt{2\pi} \int_{-\infty}^{\infty} \phi(x-2) dx.$$

Since ϕ is a pdf, each integral evaluates to 1, and thus

$$C = 3\sqrt{2\pi} + 7\sqrt{2\pi} = 10\sqrt{2\pi}$$

is the normalizing constant, which is 25.06628 to 5 decimal places.

Using R's numerical integrator, we get the result:

```
C <- 10*sqrt(2*pi)
ker <- function(x) { 3*exp(-0.5*(x+2)^2) + 7*exp(-0.5*(x-2)^2) }
res <- integrate(ker,lower = -Inf, upper = Inf)
print(res)</pre>
```

25.06628 with absolute error < 4e-05

Part (b)

Approximate this integral with a Simpson's rule to three decimal places. What is the effective range and number of subintervals required?

Simpson's rule is implemented by the following R code. Note that we did not bother to optimize it.

```
# simpson : numerical integrator applying simpson's rule to n subintervals
# over the range (a,b).
# arguments;
   f: the function to integrate
  a: the lower-bound
  b: the upper-bound. (a,b) together discrete the range.
  n: the number of subintervals to partition the range
# we evenly partition the range into n subintervals of size (b-a)/n
# and apply simson's rule to each subinterval. then, we accumulate these
# values and return the result.
simpson <- function(f, a, b, n)</pre>
    h \leftarrow (b-a)/n
    s <- 0
    x <- a
    for (i in 1:(n/2))
      s \leftarrow s + f(x) + 4 * f(x+h) + f(x+2*h)
      x < -x + 2*h
    }
    s*h/3
}
```

To test effective range and subintervals, we decided to make a program that exhaustively searches for the minimum range and number of subintervals over a discrete set of points. In particular, we search for a range

of the form (-r,r) that is symmetric and an even n. It is not perfect, but it seems like a reasonable way to estimate these requirements.

Here is the R code:

```
R <- NULL
N <- NULL
found <- F
for (r in 1:200)
  for (n in 1:100)
    res \leftarrow simpson(ker,-r/10,r/10,2*n)
    if (abs(res - C) < 0.001)
    {
      R < - r/10
      N <- 2*n
      cat("r = +-", R, ", n = ", N, ", C = ", res, "\n")
      found <- T
      break
    }
  }
  if (found) { break }
}
```

```
## r = +-5.9 , n = 16 , C = 25.06603
```

The minimum range (-r, r), r > 0, when divided into n subintervals, that is the same as the true value $10\sqrt{2\pi}$ to 3 decimal places is given by r = 5.9 and n = 16.