Digital Signal Processing

Shivanshu AI21bBTECH11027

CONTENTS

1	Software Installation	1
2	Digital Filter	1
3	Difference Equation	2
4	Z-transform	2
5	Impulse Response	4
6	DFT and FFT	8

Abstract—This manual provides a simple introduction to digital signal processing.

1 Software Installation

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

2 DIGITAL FILTER

2.1 Download the sound file from

wget https://github.com/Shivanshu8211/ EE3900/blob/master/codes/Sound Noise. wav

2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? **Solution:** There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the

*The author is a student with the Department of Artificial Intelligence, Indian Institute of Technology, Hyderabad 502285 India email: ai21btech11027@iith.ac.in .

- synthesizer key tones. Also, the key strokes are audible along with background noise.
- 2.3 Write the python code for removal of out of band noise and execute the code.

Solution:

```
import soundfile as sf
from scipy import signal
#read .wav file
input signal,fs = sf.read('Sound Noise.wav'
#sampling frequency of Input signal
sampl freq=fs
#Hello
#order of the filter
order=4
#cutoff frquency 4kHz
cutoff freq=4000.0
#digital frequency
Wn=2*cutoff freq/sampl freq
# b and a are numerator and denominator
   polynomials respectively
b, a = signal.butter(order, Wn, 'low')
#filter the input signal with butterworth filter
output signal = signal.filtfilt(b, a,
   input signal)
\#output \ signal = signal.lfilter(b, a,
   input signal)
#write the output signal into .wav file
sf.write('Sound With ReducedNoise.wav',
   output signal, fs)
```

2.4 The output of the python script in **Problem** 2.3 the audio file Sound With ReducedNoise.wav. Plav the file in the spectrogram in Problem 2.2.

What do you observe?

Solution: The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.

3 Difference Equation

3.1 Let

$$x(n) = \left\{ 1, 2, 3, 4, 2, 1 \right\} \tag{3.1}$$

Sketch x(n).

Solution: Graph of x(n) has been plotted in part 1 of Fig. 3.2.

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

Solution: The following code yields Fig. 3.2.

wget https://github.com/Shivanshu8211/ EE3900/blob/master/codes/xnyn.py

Fig. 3.2

3.3 Repeat the above exercise using a C code. **Solution:** The following code is in c and doing the same function as the above one is doing.

wget https://github.com/Shivanshu8211/ EE3900/blob/master/codes/xnyn.c

4 Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Solution: Given that,

$$X(z) = Z\{x(n)\}\tag{4.4}$$

$$= \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$
 (4.5)

So.

$$Z\{x(n-1)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$
 (4.6)

let n-1=k.

$$= \sum_{k=-\infty}^{\infty} x(k) z^{-(k+1)}$$
 (4.7)

$$= z^{-1} \sum_{k=-\infty}^{\infty} x(k) z^{-k}$$
 (4.8)

$$= z^{-1} \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$
 (4.9)

$$= z^{-1}X(z) (4.10)$$

From (4.1),

$$Z\{x(n-k)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$
 (4.11)

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.12)

$$Z{x(n-k)} = z^{-k}X(z)$$
 (4.13)

Hence proved.

4.2 Obtain X(z) for x(n) defined in problem 3.1. **Solution:** Given

$$x(n) = \left\{ \frac{1}{1}, 2, 3, 4, 2, 1 \right\} \tag{4.14}$$

and the Z-transform of x(n) is defined as

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)z^{-n}$$
 (4.15)

$$\sum_{n=0}^{5} x(n)z^{-n} = z^{0} + 2z^{-1} + 3z^{-2} + 4z^{-3} + 2z^{-4} + z^{-5}$$
(4.16)

4.3 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.17}$$

from (3.2) assuming that the Z-transform is a linear operation.

Solution: since *Z*-transform is a linear operator therefore

$$y(z) = Y(z)$$
 and $x(z) = X(z)$
So,

on applying (4.13) in (3.2), we get

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.18)

$$\implies \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} \tag{4.19}$$

4.4 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.20)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.21)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1 \tag{4.22}$$

Solution: The Z-transform of δn is,

$$\mathcal{Z}\left\{\delta n\right\} = \sum_{n=-\infty}^{\infty} \delta\left(n\right) z^{-n} \tag{4.23}$$

$$=\delta(0)z^0\tag{4.24}$$

$$= 1 \tag{4.25}$$

and the Z-transform of unit-step function u(n)

is,

$$U(n) = \sum_{n = -\infty}^{\infty} u(n) z^{-n}$$
 (4.26)

$$=0+\sum_{n=0}^{\infty}1.z^{-n}$$
 (4.27)

$$= 1 + z^{-1} + z^{-2} + \dots {(4.28)}$$

and from (4.21),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.29)

$$= \frac{1}{1 - z^{-1}}, \quad |z| > 1 \tag{4.30}$$

using the fomula for the sum of an infinite geometric progression.

4.5 Show that

$$a^{n}u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.31}$$

Solution: The Z- transform will be

$$Z \{a^n u(n)\} = \sum_{n=0}^{\infty} a^n z^{-n}$$
 (4.32)

$$= 1 + \frac{a}{z} + \left(\frac{a}{z}\right)^2 + \dots$$
 (4.33)

Above is a infinite geometric series with first term 1 and common ratio as $\frac{a}{z}$ and it can be written as,

$$Z\{a^n u(n)\} = \frac{1}{1 - \frac{a}{z}} : |a| < |z|$$
 (4.34)

Therefore,

$$a^n u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a|$$
 (4.35)

4.6 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}). \tag{4.36}$$

Plot $|H(e^{j\omega})|$. Comment. $H(e^{j\omega})$ is known as the *Discret Time Fourier Transform* (DTFT) of h(n).

Solution: Download the code for the plot ?? from the link below

wget https://github.com/ Shivanshu8211/EE3900/ blob/master/codes/dtft.py

Fig. 4.6: $|H(e^{j\omega})|$

Now using (4.19), we will find $|H(e^{j\omega})|$,

$$H\left(e^{j\omega}\right) = \frac{1 + e^{-2j\omega}}{1 + \frac{e^{-j\omega}}{2}}\tag{4.37}$$

$$\Rightarrow \left| H\left(e^{j\omega}\right) \right| = \frac{\left| 1 + e^{-2j\omega} \right|}{\left| 1 + \frac{e^{-j\omega}}{2} \right|}$$

$$= \frac{\left| 1 + e^{2j\omega} \right|}{\left| e^{2j\omega} + \frac{e^{j\omega}}{2} \right|}$$

$$= \frac{\left| 1 + \cos 2\omega + j \sin 2\omega \right|}{\left| e^{j\omega} + \frac{1}{2} \right|}$$

$$(4.39)$$

$$= \frac{\left| 4\cos^2(\omega) + 4j\sin(\omega)\cos(\omega) \right|}{|2e^{j\omega} + 1|}$$

$$= \frac{|4\cos(\omega)||\cos(\omega) + j\sin(\omega)|}{|2\cos(\omega) + 1 + 2j\sin(\omega)|}$$

(4.42)

$$\therefore \left| H\left(e^{j\omega}\right) \right| = \frac{|4\cos\left(\omega\right)|}{\sqrt{5 + 4\cos\left(\omega\right)}} \tag{4.43}$$

Since $|H(e^{j\omega})|$ is function of cosine we can say it is periodic. And from the plot ?? we can say that it is symmetric about $\omega = 0$ (even function) and it is periodic with period 2π . You can find the same from the theoritical expression $|H(e^{j\omega})|$,

$$H(e^{j\omega}) = H(e^{j(-\omega)})$$
 (cos is an even function) (4.44)

And to find period, the period of $|\cos(\omega)|$ is π

and the period of $\sqrt{5 + 4\cos(\omega)}$ is 2π . So the period of division of both will be,

$$lcm(\pi, 2\pi) = 2\pi \tag{4.45}$$

This gives us the period of $|H(e^{j\omega})|$ as 2π

4.7 Express h(n) in terms of $H(e^{j\omega})$.

Solution: We know that

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}$$
 (4.46)

and

$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \qquad (4.47)$$

Now,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \tag{4.48}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}e^{j\omega n}d\omega \quad (4.49)$$

$$= \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} h(k) \int_{-\pi}^{\pi} e^{j\omega(n-k)} d\omega \quad (4.50)$$

$$= \frac{1}{2\pi} \left\{ \sum_{k \neq n} h(k) \frac{e^{j\omega(n-k)}}{j(n-k)} \right]_{-\pi}^{\pi} + h(n) \int_{-\pi}^{\pi} d\omega \right\}$$
(4.51)

$$=\frac{0+2\pi h(n)}{2\pi}$$
 (4.52)

$$=h(n) \tag{4.53}$$

5 IMPULSE RESPONSE

5.1 Using long division, find

$$h(n), \quad n < 5 \tag{5.1}$$

for H(z) in (4.19).

Solution: From (4.19), we can write

$$H(z) = \frac{1 + z^{-2}}{1 + \frac{z^{-1}}{2}}$$
 (5.2)

So we can replace (4.19) as,

$$\frac{1+z^{-2}}{1+\frac{z^{-1}}{2}} = 2z^{-1} - 4 + \frac{5}{1+z^{-1}/2}$$
 (5.3)

Now we can expand the second term of above expression as an infinite geometric series,

$$\frac{5}{1+z^{-1}/2} = 5\left(1 + \left(\frac{-1}{2z}\right) + \left(\frac{-1}{2z}\right)^2 + \ldots\right) (5.4)$$

where we assume $\left|\frac{1}{2z}\right|$ < 1. So (5.3) will become,

$$=2z^{-1}-4+5+\frac{-5}{2}z^{-1}+\frac{5}{4}z^{-2}+\frac{-5}{8}z^{-3}+\frac{5}{16}z^{-4}+\dots$$
(5.5)

$$=1z^{0} + \frac{-1}{2}z^{-1} + \frac{5}{4}z^{-2} + \frac{-5}{8}z^{-3} + \frac{5}{16}z^{-4} + \dots$$
(5.6)

Now to get h(n) for n < 5 we will compare (5.6) with the below equation,

$$H(z) = \sum_{n = -\infty}^{n = \infty} h(n)z^{-n}$$
 (5.7)

h(n) will be the coefficient of z^{-n} . Using this, from (5.6) we can write,

$$h(0) = 1 \tag{5.8}$$

$$h(1) = \frac{-1}{2} \tag{5.9}$$

$$h(2) = \frac{5}{4} \tag{5.10}$$

$$h(3) = \frac{-5}{8} \tag{5.11}$$

$$h(4) = \frac{5}{16} \tag{5.12}$$

And for n < 0 h(n) = 0.

5.2 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z) \tag{5.13}$$

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse* response of the system defined by (3.2).

Solution: The H(z) can be written as,

$$H(z) = \frac{1}{1 + \frac{z^{-1}}{2}} + \frac{z^{-2}}{1 + \frac{z^{-1}}{2}}$$
 (5.14)

From (4.31) we can write it as,

$$h(n) = \left(\frac{-1}{2}\right)^n u(n) + \left(\frac{-1}{2}\right)^{n-2} u(n-2) \quad (5.15)$$

5.3 Sketch h(n). Is it bounded? Justify Theoritically.

Solution: Download the code for the plot 5.3 from the below link,

wget https://github.com/Shivanshu8211/ EE3900/blob/master/codes/hn.py

Fig. 5.3: h(n) as inverse of H(n)

From the plot it seems like h(n) is bounded and becomes smaller in magnitude as n increases. Using (5.15), we can get theoritical expression as,

$$h(n) = \begin{cases} 0 & , n < 0 \\ \left(\frac{-1}{2}\right)^n & , 0 \le n < 2 \\ 5\left(\frac{-1}{2}\right)^n & , n \ge 2 \end{cases}$$
 (5.16)

A sequence $\{x_n\}$ is said to be bounded if and only if there exist a positive real number M such that,

$$|x_n| \le M, \forall n \in \mathcal{N} \tag{5.17}$$

So to say h(n) is bounded we should able to find the M which satisfies (5.17). For $n \neq 0$,

$$|h(n)| \le 0 \tag{5.18}$$

For $0 \le n < 2$,

$$|h(n)| = \left|\frac{-1}{2}\right|^n$$
 (5.19)
= $\left(\frac{1}{2}\right)^n \le 1$ (5.20)

And for $n \ge 2$,

$$|h(n)| = \left|5\left(\frac{-1}{2}\right)\right|^n \tag{5.21}$$

$$=\left(\frac{5}{2}\right)^n \le \frac{5}{4} \tag{5.22}$$

From above three cases, we can get M as,

$$M = \max\left\{0, 1, \frac{5}{4}\right\} \tag{5.23}$$

$$=\frac{5}{4}$$
 (5.24)

Therefore, h(n) is bounded using (5.17) with $M = \frac{5}{4}$ i.e.,

$$|h(n)| \le \frac{5}{4} \forall n \in \mathcal{N} \tag{5.25}$$

5.4 Convergent? Justify using the ratio test.

Solution: We can say a given real sequence $\{x_n\}$ is convergent if

$$\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| < 1 \tag{5.26}$$

This is known as Ratio test.

In this case the limit will become.

$$\lim_{n \to \infty} \left| \frac{h(n+1)}{h(n)} \right| = \lim_{n \to \infty} \left| \frac{5\left(\frac{-1}{2}\right)^{n+1}}{5\left(\frac{-1}{2}\right)^n} \right|$$
 (5.27)

$$=\lim_{n\to\infty}\left|\frac{-1}{2}\right|\tag{5.28}$$

$$=\frac{1}{2}$$
 (5.29)

As $\frac{1}{2} < 1$, from root test we can say that h(n) is convergent.

5.5 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{5.30}$$

Is the system defined by (3.2) stable for the impulse response in (5.13)?

Solution: From (5.15),

$$\sum_{n=-\infty}^{\infty} h(n) = \sum_{n=-\infty}^{\infty} \left(\left(\frac{-1}{2} \right)^n u(n) + \left(\frac{-1}{2} \right)^{n-2} u(n-2) \right)$$
(5.31)

$$=2\left(\frac{1}{1+\frac{1}{2}}\right) \tag{5.32}$$

$$=\frac{4}{3}$$
 (5.33)

∴ the system is stable.

5.6 Verify the above result using a python code.

Solution: Download the python code from the below link

wget https://github.com/Shivanshu8211/ EE3900/blob/master/codes/hn stable.py

Then run the following command,

5.7 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2),$$
 (5.34)

This is the definition of h(n).

Solution: Download the code for the plot 5.7 from the below link,

wget https://github.com/Shivanshu8211/ EE3900/blob/master/codes/hndef.py

Note that this is same as 5.3. For n < 0, h(n) = 0 and,

Fig. 5.7: From the definition of h(n)

$$h(0) = \delta(0) \tag{5.35}$$

$$= 1$$
 (5.36)

For n = 1,

$$h(1) + \frac{1}{2}h(0) = \delta(1) + \delta(-1)$$
 (5.37)

$$\implies h(1) = -\frac{1}{2}h(0)$$
 (5.38)

$$= -\frac{1}{2} \tag{5.39}$$

n=2,

$$h(2) + \frac{1}{2}h(1) = 0 + \delta(0)$$
 (5.40)

$$h(2) = 1 + \frac{1}{4} \tag{5.41}$$

$$=\frac{5}{4}$$
 (5.42)

And for n > 2 RHS will be 0 so,

$$h(n) = -\frac{1}{2}h(n-1)$$
 (5.43)

Overall

$$h(n) = \begin{cases} 0 & , n < 0 \\ 1 & , n = 0 \\ -\frac{1}{2} & , n = 1 \\ \frac{5}{4} & , n = 2 \\ -\frac{1}{2}h(n-1) & , n > 2 \end{cases}$$
 (5.44)

5.8 Compute

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.45)

Comment. The operation in (5.45) is known as *convolution*.

Solution: Download the code for plot 5.8 from the below link

wget https://github.com/Shivanshu8211/ EE3900/blob/master/codes/ynconv.py

Note that the plot is same that as in 3.2.

5.9 Express the above convolution using a Teoplitz matrix.

Solution: For finding the above convolution using topleitz matrix we have to find topleitz matrix of h(n). h(n) is tending to 0 for large n.

Fig. 5.8: y(n) using the convolution definition

So, we take upto some n only. So,

$$h(n) = \begin{pmatrix} 1 \\ -.5 \\ . \\ . \end{pmatrix} \quad for \quad n = 0, 2...9 \tag{5.46}$$

So, topleitz matrix of h(n) will be

$$top\{h(n)\} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -.5 & 1 & 0 & 0 & 0 & 0 \\ 1.25 & -.5 & 1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$
 (5.47)

and

$$x(n) = \begin{pmatrix} 1\\2\\3\\4\\2\\1 \end{pmatrix}$$
 (5.48)

So.

$$x(n) * h(n) = top\{h(n)\}x(n)$$
 (5.49)

$$= \begin{pmatrix} 1\\1.5\\3.25\\ \cdot \end{pmatrix}$$
 (5.50)

5.10 Show that

$$y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$$
 (5.51)

Solution: Substitute k := n - k in (5.45), we will get

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.52)

$$=\sum_{n-k=-\infty}^{\infty}x(n-k)h(k)$$
 (5.53)

$$=\sum_{k=-\infty}^{\infty}x(n-k)h(k)$$
 (5.54)

6 DFT AND FFT

6.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(6.1)

and H(k) using h(n).

Solution: Download the below python code for the plot 6.1,

wget https://github.com/Charanyash/EE3900—Digital_Signal_Processing/blob/master/Sound%201/Codes/dft.py

And run the following command in the terminal,

python3 dft.py

Fig. 6.1: Plot of real part of Discrete Fourier Transforms of x(n) and h(n)

6.2 Compute

$$Y(k) = X(k)H(k) \tag{6.2}$$

Solution: Download the below python code for the plot 6.2,

wget https://github.com/Charanyash/EE3900— Digital_Signal_Processing/blob/master/ Sound%201/Codes/Y_K.py

Then run the following command in the terminal.

python3 Y_K.py

Fig. 6.2: Y(k) as the product of X(k) and H(k)

6.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) \cdot e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$
(6.3)

Solution: Download the below python code for the plot 6.3,

wget https://github.com/Charanyash/EE3900—Digital_Signal_Processing/blob/master/Sound%201/Codes/yndft_dif.py

Then run the following command,

python3 yndft dif.py

6.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT.Solution: Download the below python code for the plot 6.4,

wget https://github.com/Charanyash/EE3900— Digital_Signal_Processing/blob/master/ Sound%201/Codes/yn_ifft.py

Then run the following command

Fig. 6.3: y(n) using IDFT and difference equation

Fig. 6.4: The plot of y(n) using IFFT