Formulario Variables Aleatorias

Función de Probabilidad

- Función de densidad
- Ley masa de Probabilidad
- Ley de Probabilidad

f(x)	F(x)
Función de	Función de distribución
probabilidad	acumulada
Análisis en el conjunto	Análisis en el conjunto
de salida.	de llegada
Valores puntuales	Variable tipo aleatorio
Valores puntuales Discreta .	Variable tipo aleatorio Continua
	-

Función de Probabilidad

Discreta

$$p(x) = \begin{cases} 0 & caso \ contrario \\ p1 & x = x1 \\ p2 & x = x2 \\ & | \\ pn & x = xn \end{cases}$$

Lo que se debe cumplir.

$$\sum_{i=1}^{n} pi = 1$$
$$0 \le p(x) \le 1$$

Continua

$$f(x) = \begin{cases} 0 & caso \ contrario \\ f1 & x1 < x < x2 \\ f2 & x1 < x < x2 \\ & | \\ fn & x_{n-1} < x < x_n \end{cases}$$

Lo que debe cumplir

$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$
$$f(x) \ge 0$$

Función de distribución acumulada

Es la suma de del P_o al punto de interés Mi

$$F(x) = P(X \le x)$$

Discreta (Sumatoria)

$$\sum_{i=1}^{x} P(i) = P(X \le x) = F(x)$$

Propiedades

- F creciente
- $\lim_{x \to -\infty} f(x) = 0 \quad \lim_{x \to \infty} f(x) = 1$ $P(a < x \le b) = F(b) F(a)$
- $P(a \le x \le b) = F(b) F(a) + P(x = a)$
- P(a < x < b) = F(b) F(a) P(x = b)
- $P(a \le x < b) = F(b) F(a) + P(x = a) P(x = b)$

Continua (Integrales)

$$F(x) = \int_{-\infty}^{x} f(t). dt$$

Propiedades

- F creciente
- $\lim_{x \to -\infty} f(x) = 0 \qquad \lim_{x \to \infty} f(x) = 1$
- F continua
- $P(a \le x \le b) = P(a \le x < b) = \int_a^b F(x). dx = F(b) F(a)$

Esperanza E(x)

Discreta

$$\sum_{i=0}^{n} p(x_i).x_i$$

Continua

$$\int_{-\infty}^{+\infty} f(x) \cdot x \cdot dx$$

Varianza V(x)

$$V(x) = E(x^2) - [E(x)]^2$$

Discreta

$$E(x^n) = \sum_{i=1}^n p(x_i) \cdot x_i^n$$

Continua

$$E(x^n) = \int_{-\infty}^{+\infty} f(x).x^n . dx$$

Propiedades Esperanza y Varianza

Si c es una constante (cte), entonces:

$$E(c) = c$$
 $V(c) = 0$

Si c es una cte y X es una variable discreta, entonces:

$$E(c+X) = c + E(X) \qquad V(c+X) = V(X)$$

Si c es una cte y X es una variable discreta, entonces:

$$E(cX) = cE(x)$$
 $V(cX) = c^2V(X)$

Si X, Y son variable discreta entonces:

$$E(X + Y) = E(X) + E(Y)$$

Si X, Y son variable discreta independientes, entonces:

$$V(X + Y) = V(X) + V(Y)$$