Регулярки

Задача 1.

Задайте регулярными выражениями следующие множества слов:

- 1. слова в алфавите $\{a,b\}$, такие что на третьем месте от начала слова стоит буква a, а на четвёртом месте от конца буква b;
- 2. слова в алфавите $\{a, b\}$, в которых число букв a чётно;
- 3. слова в алфавите $\{a, b\}$, не содержащие подстроки ab;
- 4. слова в алфавите $\{a, b, c\}$, в которых за буквой a обязательно следует буква c;
- 5. слова в алфавите $\{a, b, c\}$, не содержащие подстроки ab;
- 6. слова в алфавите $\{a, b, c\}$, не содержащие подстроки abb;
- 7. слова в алфавите $\{a, b\}$, в которых число букв a чётно, как и число букв b;
- 8. слова в алфавите $\{a,b,c\}$, в которых нет одинаковых подряд идущих букв

Задача 2.

Напишите регулярные выражения, задающие следующие языки над алфавитом $\{a,b\}$:

- 1. $\{w||w| \le 3\}$;
- 2. $\{w||w| \ge 4\}$;
- 3. $\{w||w_b| \geq 2;$
- 4. $\{w||w|=2 \lor |w_a|=3\};$
- 5. $\{w||w|=3 \lor |w_a| \ge 5\}.$

Задача 3.

Опишите множества слов, задаваемые следующими регулярными выражениями:

- 1. $(a+c)^*$;
- 2. $(a+b)^*a$;
- 3. $b(b+c)^*$;
- 4. $a(a+b)^*a$;
- 5. $a^*ba^*ba^*ba^*$;
- 6. $(a+b)^*b(a+b)(a+b)$;
- 7. $b^*(a + (ab^+)^*)$.

Задача 4.

Докажите следующие равенства:

- 1. $(1+e+ee+...+e^{n-1})(e^n)^*=e^*$ для любого $n\geq 1$;
- 2. $(e^*f)^*e^* = (e+f)^*$;
- 3. $1 + e(fe)^* f = (ef)^*$.

Задача 5.

Упростите регулярные выражения:

- 1. $(a+b+ab)^*$;
- 2. $(a^*b)^* + (b^*a)^*$;
- 3. $(a+b)^*ab(a+b)^* + (a+b)^*a + b^*$;
- 4. $1 + aa^* + bb^*$;

Залача 6.

Докажите, что если язык L задается регулярным выражением, то и язык L^R тоже задается регулярным выражением.

НКА и ДКА

Задача 1.

Найдите НКА, распознающие следующие множества слов:

- 1. слова в алфавите $\{a, b\}$, такие что на третьем месте от начала слова стоит буква a, а на четвёртом месте от конца буква b;
- 2. слова в алфавите $\{a, b\}$, в которых число букв a чётно;
- 3. слова в алфавите $\{a, b\}$, не содержащие подстроки ab;
- 4. слова в алфавите $\{a, b, c\}$, не содержащие подстроки ab;
- 5. слова в алфавите $\{a, b, c\}$, не содержащие подстроки aba;
- 6. слова в алфавите $\{a, b\}$, в которых число букв a чётно, а число букв b нечётно;
- 7. слова в алфавите $\{a, b, c\}$, в которых за буквой a обязательно следует буква c;
- 8. слова в алфавите $\{a, b, c\}$, в которых рядом с буквой a не может идти буква b;
- 9. слова из букв a и b, такие что разность числа букв a и числа букв b делится на a.

Задача 2.

Найдите НКА, распознающие следующие языки над алфавитом $\{a,b\}$:

- 1. $\{w||w| \leq 3\}$;
- 2. $\{w||w| \ge 4\}$;
- 3. $\{w||w_b| \ge 2\};$
- 4. $\{w||w|=2 \lor |w_a|=3\};$
- 5. $\{w||w|=3 \lor |w_a| \ge 5\};$
- 6. $\{w||w_a| \geq 2 \lor |w_b| \geq 4\};$
- 7. $\{w||w_a| \le 2 \land |w| \le 5\};$
- 8. $\{w||w_a| \le 4 \land |w_b| \ge 2\}.$

Запача 3.

Найдите НКА, распознающие следующие множества слов:

- 1. $\{a,bb\}^*$ $(\Sigma = \{a,b\});$
- 2. $\{a,b\}^+ a^* b^* \ (\Sigma = \{a,b\});$
- 3. $\{bc^{2n}ac^{2m} \mid m, n \ge 0\} \cup \{bc^{2n+2} \mid n \ge 0\} \ (\Sigma = \{a, b, c\}).$

Задача 4.

Постройте ДКА для языков, указанных в задаче 1.

Задача 5.

Найдите ДКА, распознающие множества слов, задаваемые следующими регулярными выражениями:

- 1. $(a+b)^*b(a+1)b(a+b)^*$;
- 2. $a^*ba^+ba^*(ba^*+1)$.

МПДКА, Лемма о разрастании

Задача 1.

Проверить, являются ли автоматными следующие языки:

```
1. \{a^ncb^n\mid n\in\mathbb{N}\};

2. \{w\in\{a,b\}^*||w_a|=|w_b|\};

3. \{w\in\{a,b\}^*||w_a|\geq|w_b|\};

4. \{w\in\{a,b\}^*||w_a|\neq|w_b|\};

5. \{a^mb^n\mid m< n, m\in P\}; (P- множество простых чисел);

6. \{a^mb^n\mid m< n \vee m\in P\}.
```

Задача 2.

Построить минимальный полный детерминированный конечный автомат для языков, задаваемых следующими регулярными выражениями:

```
1. (a(ab+ba)^*b(a+ba)^*)^+;
2. (1+(a+b)^*b)b(a+b)^*.
```

Задача 3.

Как связаны число состояний в минимальном ПДКА для некоторого регулярного языка и соответствующем автомате для его дополнения. Что изменится, если убрать требование полноты?

КС-грамматики

Задача 1. Написать контекстно-свободные грамматики, задающие следующие множества слов:

(a)
$$\{w \in \{a, b\}^* | w = w^R\},$$

(f)
$$\{a^k b^{k+m} a^m | k, m \in \mathbb{N}\},\$$

(b)
$$\{a^n b^m | n > m\},$$

(g)
$$\{w \in \{a, b\}^* \mid |w|_a \neq |w|_b\},\$$

(c)
$$\{w \in \{a, b\}^* | |w|_a = |w|_b\},$$

(h)
$$\{w \in \{a, b\}^* \mid |w|_a = 2|w|_b\},\$$

(d)
$$\{a^n b^m | n - m \neq 2\},$$

(i)
$$\{w \in \{a, b\}^* \mid |w|_a - |w|_b = 1\},\$$

(e)
$$\{a^nb^{2n+1}|n\in\mathbb{N}\}$$

(j)
$$\{w \in \{a, b, c\}^* \mid |w|_a - |w|_b = 1\}.$$

Задача 2. Описать языки, распознаваемые следующими грамматиками:

(a)
$$S \to FF, F \to FF, F \to ab$$
,

(b)
$$S \to FS, S \to FF, F \to aFb, F \to \varepsilon$$
,

(c)
$$F \to ab, F \to aFb, F \to FF$$
,

(d)
$$S \rightarrow SaS \mid aSb \mid b$$
,

(e)
$$F \to a, F \to bF, F \to cFF$$
.

КПтели

Задача 1.

Написать конечный преобразователь, который (x — двоичное число):

- 1. стирает первый символ слова, если это символ \boldsymbol{a}
- 2. -//- + определен только на словах, оканчивающихся на b
- 3. стирает второе вхождение символа a
- 4. удваивает все символы, кроме последнего
- 5. $x \rightarrow x + 2$
- 6. $x \to \max(x 1, 0)$
- 7. $x \rightarrow x * 3$
- 8. $x \to 2x + 1$
- 9. $(x, y) \to x + y$

Определение Контекстная замена $X \to Y \parallel U_- V$, где X,Y,U,V — произвольные регулярные выражения, смысл: " $UXV \to UYV$ "

Задача 2.

Написать конечный преобразователь, который задает контекстную замену:

- 1. $a \rightarrow b \| c_d$
- 2. $b^*a \rightarrow ab\|c_a$
- 3. $b^*a \rightarrow b\|c_ca$

Зачёт

Задача 1.

- 1. Докажите, что для любых двух языков L_1 и L_2 выполнено равенство $(L_1 \cdot L_2)^R = L_2^R \cdot L_1^R$ 2. Существует ли такой язык L, что $(L^R)^* \neq (L^*)^R$?

Задача 2

Докажите, что если L — автоматный язык, то

- 1. Язык префиксов слов этого языка автоматен;
- 2. Язык суффиксов слов этого языка автоматен.

Задача 3

Докажите, что нельзя построить автомат для языка $\{a^nb^n\}$

Задача 4

Описать язык, задаваемый грамматикой S o cST|T, T o aTb|d

Задача 5

Построить КС-грамматику над $\{a,b,c\}$, такую что количество букв a,b совпадает и каждой aпредшествует c

Задча 6

Построить МП-автомат для задачи 5

Задача 7

Задать КП
телем преобразование $a^+b \to ac \parallel ac \ c$