Immune Tolerance I

How the immune system distinguishes self from non-self

Lernziele

- Sie verstehen die grundsätzlichen Mechanismen der zentralen und periphären Toleranz.
- Sie können die Entwicklung von T Zellen im Thymus erklären
- Sie können die prinzipien der positiven und negativen Selektion erklären
- Die können die wichtigsten Mechanismen der selbst-Antigen Expression im Thymus beschreiben.
- Sie verstehen die Rolle von Adjuvanz und infektionen bei der Entstehung einer adaptiven Immunantwort.

What happens when B and T cells generate an Antigen-receptor which recognizes self Ag?

Tolerance Mechanisms

	Layers of self-tolerance		
	Type of tolerance	Mechanism	Site of action
Wichtig	Central tolerance	Deletion Editing	Thymus Bone marrow
Unwi chti g	Antigen segregation	Physical barrier to self-antigen access to lymphoid system	Peripheral organs (e.g. thyroid, pancreas)
	Peripheral anergy	Cellular inactivation by weak signaling without co-stimulus	Secondary lymphoid tissue
Wichtig	Regulatory cells	Suppression by cytokines, intercellular signals	Secondary lymphoid tissue and sites of inflammation
	Cytokine deviation	Differentiation to T _H 2 cells, limiting inflammatory cytokine secretion	Secondary lymphoid tissue and sites of inflammation
	Clonal deletion	Apoptosis post-activation	Secondary lymphoid tissue and sites of inflammation

Figure 14-2 Immunobiology, 7ed. (© Garland Science 2008)

Antigen receptors are randomly generated

in B and T cells.

To avoid auto-reactivity, self-reactive clones

must be eliminated (central tolerance) or suppressed (peripheral tolerance).

Das Leben einer B Zelle

Today we will not discuss antibody-mediated

autoimmunity, because T cell-mediated

tolerance is much more fun.

How do T cells recognize their antigen?

The smartest way to avoid autoimmunity

is to educate T cells to only recognize

foreign antigens and not self-antigens.

Central Tolerance

Thymus: T Cell Education

Positive and Negative Selection in the Thymus

Positive selection mediated by peptide-MHC recognition by cTECs

Negative selection deletion of T cells specific for self antigens expressed by mTECs Where do self-peptides in the thymus come from?

Peripheral Antigen Expression in the Thymus "Autoimmune Regulator" AIRE

Figure 14-4 Immunobiology, 7ed. (© Garland Science 2008)

Negative Selection

How can thymocytes 'see' autoantigens in the thymus?

Autoimmune regulator (**Aire**) expressed by mTECs mediates gene expression of tissue restricted antigens (TRAs)

mTECs present TRAs to immature T cells leading to the deletion of self-reactive T cells

Mutations in the gene encoding Aire cause severe autoimmunity

 → autoimmune polyendocrinopathycandidiases-ectodermal dystrophy (APECED) → human monogenic disorder

Mit der Pubertät schrumpft der Thymus "altersbedingt"

Peripheral Tolerance

To understand peripheral tolerance we need to look at the function of dendritic cells

Cooperation between innate and adaptive immunity: Antigen Presentation and 'Stranger/Danger' Signals

In the absence of danger, antigen presentation (for example self-antigen) causes **tolerance** DAMPs/PAMPs:
(e.g.: microbes, bacterial DNA, vaccine adjuvant)
Activation of dendritic cells
Costimulatory molecules
Immunity

Peripheral Tolerance via Antigen Presenting cells

Deletion

,Activation-induced cell death': death of mature self-reactive T cells

From Abbas and Lichtman. Basic Immunology 2nd ed, 2006

Both pathways cooperate to prevent reactions against self

Zentrale Toleranz ist die Eliminierung von auto-reactiven B Zellen im Knochenmark Und die Eliminierung von autoreaktiven T Zellen im Thymus

https://www.youtube.com/watch?v=cMhE5BfmFkM

Aber was hat der Thymus mit peripherer Toleranz zu tun?

Prüfung

Wichtig

Wichtig

Negative selection is not 100% effective, some autoreactive T cells escape thymic censorship and are released into the circulation

Recognition of self antigens can also lead to the development of regulatory T cells (next lesson)

- Regulatory T cells
- (Tregs)
- Next week
- Für die die's noch nicht ganz verstanden haben: https://youtu.be/cMhE5BfmFkM