```
In [1]:
       import pandas as pd
       import numpy as np
In [2]:
       from sklearn.preprocessing import OneHotEncoder
       from sklearn.preprocessing import LabelEncoder
         Reading the data.
In [4]:
       import os
       os.chdir(r'C:\Users\acer\Desktop\PythonProgramming')
       data_pre = pd.read_csv('Data.csv', na_values = np.nan)
         Imputing with mean in columns = ['Age', 'Salary']
In [5]:
       data_pre['Age'].fillna(data_pre['Age'].mean(), inplace = True)
       data_pre['Salary'].fillna(data_pre['Salary'].mean(), inplace = True)
```

```
In [6]: data_pre
```

	Country	Age	Salary	Purchased
0	France	44.000000	72000.000000	No
1	Spain	27.000000	48000.000000	Yes
2	Germany	30.000000	54000.000000	No
3	Spain	38.000000	61000.000000	No
4	Germany	40.000000	63777.777778	Yes
5	France	35.000000	58000.000000	Yes
6	Spain	38.777778	52000.000000	No
7	France	48.000000	79000.000000	Yes
8	Germany	50.000000	83000.000000	No
9	France	37.000000	67000.000000	Yes

Copying the dataframe.

In [8]: from copy import deepcopy

In [9]: data_mod = deepcopy(data_pre)

One Hot Encoder Object of the class OneHotEncoder.

In [10]: ohe = OneHotEncoder()

Target column is Country.

Fitting into the object.

Reminder!!

```
In [17]: uu = {'France': 0, 'Germany': 1, 'Spain': 2}
```

Combining the newly formed - encoded array and the original dataframe.

• First we need to convert the series in to DataFrame(or series) using pd.DataFrame(ohe_array).

	0	1	Country	Age	Salary	Purchased
0	0.0	0.0	France	44.000000	72000.000000	No
1	0.0	1.0	Spain	27.000000	48000.000000	Yes
2	1.0	0.0	Germany	30.000000	54000.000000	No
3	0.0	1.0	Spain	38.000000	61000.000000	No
4	1.0	0.0	Germany	40.000000	63777.777778	Yes
5	0.0	0.0	France	35.000000	58000.000000	Yes
6	0.0	1.0	Spain	38.777778	52000.000000	No
7	0.0	0.0	France	48.000000	79000.000000	Yes
8	1.0	0.0	Germany	50.000000	83000.000000	No
9	0.0	0.0	France	37.000000	67000.000000	Yes

Dropping the Country column as it is not of much significance.

```
In [31]: new_df = new_df.drop(['Country'],axis = 1)
```

Encoded DataFrame.

End.