Unit 1 = Z : Numbers

Integers $Z = \{..., -2, -1, 0, 1, 2...\}$

* Positive: Zk

* Negative: zk+1

Rational numbers

Real numbers

Unit 3: Sets

Subset

LATIMPROPER: A SB Devery element of A, also element of B

every element of A is an element of B

LACB D but not all elements of B is an element of A

Union

4DAUB={x|xEA or xEB}

and the state of the state of

Intersection

HDAMB={x/x EA and xEB}

40 Disjointness: AnB = Ø

Set Difference

4DA-B= {x|x eA and x &B}

Symmetric set Difference

+DA+B={x/x & A or x & B, but not both}

Power Set

4) The set that has as its members all subsets of A LD P(A) = {0, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} *A = {1, 2, 3}

Cardinality

LD Number of elements in set

40 n (A) or |A|

40 |P(A) = 200-0 elemento in A

Unit 4: Proofs involving sets

Venn-diagram proof

If and only if

iff x EA or x EA

are who he is it

- o $x \in (A \cup B)'$ iff $x \notin (A \cup B)$ iff $x \notin A$ and $x \notin B$ iff $x \in A'$ and $x \in B'$ iff $x \in (A' \cap B')$
- o $x \in (A-B)$ iff $x \in A$ and $x \notin B$ iff $x \in A$ and $x \in B'$ iff $x \in (A \cap B')$
 - · | A UB| = | A| + | B| | A AB|
 - · (u,v) EX x (YUW) 1 iff u EX and VE (YUW)
- $x \in (A \cap B) \vee (c B)$ iff $(x \in A \text{ and } x \in B) \text{ or } (x \in C \text{ and } x \notin B)$ iff $(x \in A \text{ or } x \in C) \text{ and } (x \in A \text{ or } x \notin B) \text{ and } (x \in B \text{ or } x \in C) \text{ and } (x \in B \text{ or } x \notin B)$

8

Unit 5: Relations

Relation $A = \{2, 3, 5\}$ $R = \{(2,3), (2,5), (3,5)\}$ $(2,3) \in R \Rightarrow 2R_3$

Sartesian product: AXB = {(x,y) | >c ∈ A and y ∈ B}

Belation Ata B: R= {Cra, yb, ...} *B is codomain of R

is a second of the second of t

Domain: dom(A) = { = | V x ∈ Y, (x,y) ∈ A}

Booge: ran (A) = {y| \ x \ e X, (x,y) \ e A}

Properties of relations

Beflexive: $(x,z) \in R$

Iniflexive: (z, z) ≠ R

Symmetric: if $(x,y) \in R$, then $(y,x) \in R$ can be neither

Antisymmetric: if $(x,y) \in R$, then $(y,x) \notin R$

Transitive: if (x,y) ER & (y, Z) ER, then (x, Z) ER

Trichetery: (z,y) ER OR (y, x) ER

Loverse (f'): $(x,y) \in R$ if $(y,x) \in R'$ $*\{(y,x)(x,y) \in R\}$

Composition: Ros > 0 00 0

Unit 6: Special kinds of relation

Order		Weak	Strict
	- Q	-s Referive	-D Irreflexive
	Port	-D Antisymmetric	-D Antisymmetric
		-D Transitive	-D Transitive
	near	-D Reflexive	-D Irreflexive
4	=	D Antisymmetric	-D Antisymmetric
	9	-D Transitive	-D Transitive
	F	-D Trichotomy	-D Trichotomy

Equivalance	Relation	Class
r	LD Reflexive	LD[x] = {y ~~}
	Losymmetric	A
	Lo Transitive	

Theorem

- i) If R is equivalence relation on A, then IE [x] YXEA
- ii) If ERy, then [x]=[y] and visa versa
- iii) Either · [x] = [y] or · [x] ~ [y] = Ø

Partitions: A set comprising of subsets of A

- > No empty members
- > Different parts have no members in common (No element repeated)
- ? Every element in A used (contains all elements of A)

Functional: Binary relation R from A to B -D1st co-ordinate appears only once -D dom(R)=A

.. R: A > B

DA cont have many B

Unit 7: More about functions

Surjective function

LD the range of the function is equal to the codomain of the function *f[A]=B

Injective function

LD whenever f(a) = f(az) then a = az : Never f(a) = f(az)

Bijective function

LA Both sujective and injective

Composition function

LD SOR

Invertible function

Lo the inverse relation of f: A>B is f'=A>B Lo Theorem: f is invertible iff f is bijective

Identity function

For any set A, define the function $A:A \to A$ by requiring that $A:A \to A$ by $A:A \to A$ by requiring that $A:A \to A$

Ay=ze

Binary operations

Lof: P(u) x P(u) -> P(u)

Natation: Prexix >f(=,y)

Infix ≥ xfy

Identity element: e > x = x > e = x

B ♦: X×X>X

Vectors

al add if dink

9: {(10,0,0), (10, [4]), [4]),

Sum : 4+U = (U,+V, Uz+Vz,..., Un+ Vn)

Scalar: rxu = (ru, ruz, run)

Dot product: u.v = (u,v, u.v., u,un)

Matrices

Addition: A+B=[an+bn...an+bnm]

Multiplication: r A = [ran...ranm]

Thultiplication: r A = [ran...ranm]

AB = [a1, a1z, a1] [b2] = [a1,b1, +a12,b2, +a13,b3]

IA = AI = ALdeatity

MUST

Unit 9: Logic

logical connectives

- · A. Conjunction (and)
- · V: Disjunction (or)
- · ->: Conditional/Implication (if ... then ...)
- · (+): Biconditional (iff)
- ·7: Negation (not)

Truth Table

- Both T
- One T / Both T
- Both T/ Both F/ af & bT
- Both T/ Both F

Truth tables

Compound statements: Truth table columns

Tautology: Compound statements always true

Contradiction: Compound statements always false

Identities

Unit 10: Predicates, Quantifiers and Proof Strategies Predicate LOVXEZ, X>Z > VXEZ, P(x) Quantifiers 4 Universal : for all (Y) 4) Existential: There exists (3) tundamentalicule: \ \ \(\alpha \in \mathbb{R}, \(\alpha > z \) \(\alpha^2 > 4 \) \(\alpha \in \mathbb{R}, \((y > z \) \rightarrow (y > z \) \(\alpha \) Negation $\neg (\forall z \in A, P(x)) \Rightarrow \exists z \in A, \neg P(x)$ $-\neg (\exists x \in A, P(x)) \Rightarrow \forall x \in A, \neg P(x)$ Proof strategies - Assume "if" Reason until "then" Contradiction - Assume ";5" - Assume - "then" Reason until "if" contradicted Contrapositive - Assume 7"then" Reason until 7"if" If [qualifier], then L Quantifiers - Reason Vacyous Counter example Limplication

*If we cannot prove statement as true, provide 1 counterexample