

Machine learning-assisted structural characterization of nanoparticles using X Ray scattering

By:

Pierre Boissier

Maïmouna Gadji

1

OUTLINE

- I. Context
- II. Aim of the project
- III. Size and Shape Prediction
- IV. Testing the Robustness of Models
 - V. Using only SAXS Or WAXS
- VI. Impact of Modifying Signal Bounds
- VII. Conclusion

I.CONTEXT

BiMAn Project:

 Objective: Develop efficient magnetic materials without rare-earth elements.

Various applications in **energy transition** like renewable energy system or data storage.

II. AIM OF THE PROJECT

Prediction of nanoparticle shape and size from X-ray scattering data

III.Size and Shape prediction

How?

III.1 Linear regression methods

Ridge Regression

$$J(\beta) = \|y - X\beta\|_2^2 + \alpha \|\beta\|_2^2$$

Logistic Regression

$$p_k = \frac{\exp(\beta_k^T x)}{\sum_{j=1}^9 \exp(\beta_j^T x)}$$

$$\mathcal{L}(\beta) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{9} y_{i,k} \log(p_{i,k})$$

Idea of linear regression:

Find a linear relation between inputs and outputs

RESULTS: Linear reg

Size prediction = 3 quantitatives features to predict

Ridge Regression

Features	MSE	Variance of test data	Q2
log_n_Atoms	0.00015	3.196	0.999
Size_parameter_1	0.846	7.106	0.881
sqrt_log_eq_radius	0.310	0.695	0.554

RESULTS: Linear reg

Shape prediction = 1 qualitative features to predict

Logistic Regression

Accuracy = 99.4 %

III.2 Convolutional neural network 1D (CNN 1D)

Layer (type)	Output Shape	Param #
conv1d_8 (Conv1D)	(None, 1997, 32)	128
max_pooling1d_8 (MaxPooling1D)	(None, 998, 32)	0
conv1d_9 (Conv1D)	(None, 996, 64)	6,208
max_pooling1d_9 (MaxPooling1D)	(None, 498, 64)	0
flatten_4 (Flatten)	(None, 31872)	0
dense_4 (Dense)	(None, 9)	286,857

Idea:

Searching for meaningful patterns in intensity curve and make the shape or size prédiction from them

RESULTS: CNN1D

Accuracy=96%

Labels
cubefcc 0
cuboctahedron 1
dihedral_rhombic_dodecahedron 2
icosahedron 3
octahedron 4
dodecahedron 5
pentagonal_bipyramid 6
rhombic_dodecahedron 7
tetrahedron 8

RESULTS: CNN1D

Accuracy=91%

IV. Testing the Robustness of Models

USING MORE REALISTIC DATA

Current data

Realistic data.

I.V.1 Adding Noise

CNN1D model: Simple predictions on noisy data

CNN1D model: Training and prediction on noisy data

15.0

Ridge Regression model: Simple predictions on noisy data

Ridge Regression model: Training and predictions on noisy data

Logistic Regression model: Simple predictions on noisy data

Logistic Regression model: Training and predictions on noisy data

I.V.2 Adding Missing values

CNN model: Simple predictions on interpolated data

CNN model: Training and prediction on interpolated data

Ridge Regression model: Simple predictions on interpolated data

Ridge Regression model: Training and predictions on interpolated data

Logistic regression model : Simple predictions on interpolated data

Logistic regression model: Training and predictions on interpolated data

I.V.3 Step increase

- original values
- Selected values

I.V.3 Step increase: Results

CNN1D model: Training and prediction on edited data

Impact of step increase on Size prediction

Impact of step increase on Shape prediction

I.V.3 Step increase: Results

Ridge model: Training and prediction on edited data

Impact of step increase on size prediction

I.V.3 Step increase: Results

Logistic model: Training and prediction on edited data

Impact of step increase on shape prediction

V. USING Only SAXS or WAXS

V. USING Only SAXS or WAXS

V. USING Only SAXS or WAXS

V.1 Prediction with WAXS

CNN₁D : Size prediction

Accuracy=82%

CNN₁D : Shape prediction

Accuracy=84%

V.1 Prediction with WAXS

Ridge model : Size prediction

Features	MSE	Q2
log_n_Atoms	0.1152	0.9629
Size_parameter_1	2.0095	0.7158
sqrt_log_eq_radius	0.3200	0.5496

V.1 Prediction with WAXS

Logistic model: Shape prediction

Accuracy = 90%

V.2 Prediction with SAXS

CNN₁D : Size prediction

Accuracy=86%

CNN₁D: Shape prediction

Accuracy=88%

V.2 Prediction with SAXS

Ridge model: Size prediction

Features	MSE	Q2
log_n_Atoms	0.0300	0.9904
Size_parameter_1	2.1451	0.6966
sqrt_log_eq_radius	0.6271	0.1170

V.2 Prediction with SAXS

Logistic model: Shape prediction

Accuracy = 59%

VI.Impact of Modifying Signal Bounds

CNN model

Training and prediction

43

CNN model

Simple predictions

Shape Accuracy = 17%

Ridge model

Logistic model

CONCLUSION

★ Work completed: Developing high-performance models using our simulated data

★ Outlook:

- working with more realistic data
- Explainable Artificial Intelligence (XAI)
 methods to identify the specific q-range
 regions contributing to size and shape
 predictions