

Análisis y propuesta de una ortesis inteligente tobillo-pie

GRUPO3

Luis Leonardo Matheus Isla Froylan
Diego Lopez Fernandez
Victor Ronaldo Huaccha Escobar
lara Yrene Salas Gutierrez
Stefany Nicole Palomino Torres

Amálisis del CASO

A nivel mundial se estima que hay entre 250000 y 500000 casos de lesion medular tanto traumatica como no traumatica al año [1]

- Paciente: Varón, 28 años, residente en Chorrillos
- Año del trauma: 2019 (impacto de bala)
- Lesión medular: A nivel de L3, clasificada como ASIA B
- Fractura asociada: L4 con compromiso neurológico
- Consecuencias funcionales:
 - Pérdida de motricidad y sensibilidad en miembros inferiores
 - Afectación del músculo tibial anterior → pie caído
 - Incapacidad para realizar dorsiflexión del pie

Impacto en la vida diaria:

- Movilidad: no tiene libertad de movimiento debido a que usa bastones canadienses y silla de ruedas para poder movilizarse
- Aspecto social: Se ve limitada por la falta de movilidad que presenta.

Necesidad funcional:

- Movilidad de manera más autonoma
- independencia en actividades cotidianas
- Rehabilitación profesional

ESTADO DEL ARTE

Patentes

ANKLE - FOOT ORTHOSIS - US9827131B2 [2]

Título: Órtesis de Tobillo-Pie con Articulación Flexible - TWM584667 [3]

Active ankle support US6767332B1 (2004) [4]

ESTADO DEL ARTE

Ortesis de pie y tobillo Footflexor [5]

Empresa: Core Products

ÓRTESIS DINÁMICA PARA PIE CAÍDO TURBOMED [6]

Empresa: Sanicor

Órtesis elevadora de pie Foot Up Rebound [7]

Empresa: Össur

ESTADO DELARTE

-> Productos comerciales

Turbomed FS3000 Xtern [8]

ESTADO DEL ARTE

Prototipos basados en papers.

"Fabricación aditiva de ortesis específicas de tobillo y pie para personas después de un accidente cerebrovascular: un estudio preliminar basado en datos de análisis de la marcha" [9]

Autores: Zhen Liu, Pande Zhang, Ming Yan, Yimin Xie, Guangzhi Huang

Publicado en: Mathematical Biosciences and Engineering, 2019, Vol. 16, № 6, pp. 8134–8143.

DOI: 10.3934/mbe.2019410

• Escaneo 3D:

 Se utilizó escáner EinScan-Pro para capturar la geometría del tobillo y pie de cada paciente

Diseño personalizado:

Modelos AFO modificados con Geomagic
 Studio según necesidades individuales

• Fabricación:

- Impresión 3D mediante tecnología Multi Jet Fusion (MJF)
- Material utilizado: PA12

Evaluación clínica:

- Análisis de marcha en 12 pacientes con ACV
- Comparación de parámetros con y sin el uso de la AFO

ESTADO DEL ARTE

Prototipos basados en papers.

"Implementation of an Active Ankle-Foot Orthosis Prototype with a Cam-Driven Actuator" [10]

Autores: Ali Raza, Shoaib Bin Altaf, Muhammad Saeed, Naveed Ur Rehman Revista: Machines (MDPI), Vol. 14, № 2, 2024

DOI: 10.3390/machines14020072

- Mecanismo: Leva accionada por servomotor
 - Diseñado para asistir la dorsiflexión en pacientes con pie caído
- Diseño:
 - Compacto y liviano
 - Peso total: < 1 kg
 - Costo total: < USD 3000
- Control:
 - Controlador PID discreto
 - Validación en banco de pruebas que simula el movimiento tibial durante el ciclo de marcha

ESTADO DEL ARTE

"Diseño de una ortesis tobillo-pie dinámica con retroalimentación de movimiento" [11]

Autores: Hsu et al

Presentado en: Journal of NeuroEngineering and Rehabilitation en 2020

DOI: <u>10.1186/s12984-020-00734-x</u>

Resumen: Se diseñó una ortesis dinámica (IT-AFO) con retroalimentación de movimiento para mejorar la dorsiflexión y la simetría de la marcha en pacientes con hemiplejia. Comparada con una AFO convencional, la IT-AFO mostró mejores resultados en ángulo de dorsiflexión y comodidad del usuario.

- Objetivo: Evaluar una ortesis tobillo-pie innovadora (IT-AFO) con control dinámico para mejorar la marcha en personas con hemiplejía post-ACV.
- Características: Ajusta resistencia en tiempo real para facilitar dorsiflexión durante la fase de oscilación.
- Participantes: 7 personas con hemiplejía; caminaron en 4 condiciones distintas.
 - Resultados clave:Mayor dorsiflexión del tobillo con IT-AFO dinámica.
 - Mejor distribución del peso corporal entre ambas piernas.
 - O Aumento en la fase de apoyo de la pierna afectada → mejora en simetría de la marcha.
- Percepción del usuario: Mayor comodidad con la ortesis innovadora.

Impestigación:

Metodología VDI

→ Metodología VDI

Esquema de Funciones

→ Metodología VDI

MATRIZ MORFOLOGICA

Alimentador

Procesador

Sensor

Accionador

Bocetos desarrollados

Órtesis articulada con engranajes ajustables para la dorsiflexión y sensor FSR

COMPONENTES

Sensor de Fuerza

Engranajes

Cableado

Arduino

Bateria 12v

Órtesis con resorte ajustable mediante accionador HB12V

COMPONENTES

Resorte

Velcro adhesivo

Arduino

Batería de 12V

Actuador Hb 12V

Sensor Pizoelectrico

Bocetos desarrollados

Metodología VDI Cuadro de Valoración

Criterio	S1	S2	S 3
Facilidad de Ensamblado	3	3	4
Ligereza	3	3	3
Económico	2	3	4
Portabilidad	4	2	4
Nivel de Innovación	3	3	4
Facilidad de uso	3	4	5
Total	18	16	24

Conclusiones

- La propuesta 3 responde eficazmente a las necesidades funcionales del paciente, incorporando elementos innovadores que optimizan la rehabilitación.
- Se recomienda considerar cuidadosamente el peso total del dispositivo, debido a la elección de materiales y la inclusión de componentes electrónicos que podrían afectar la comodidad y usabilidad del paciente.

Referencias:

Análisis del caso:

[1] Organización Mundial de la Salud, Lesiones de la médula espinal: perspectiva internacionales, resumen, Ginebra: OMS, 2014. [En línea]. Disponible en: https://iris.who.int/handle/10665/131504

Estados del arte:

- [2] A. E. Ferguson, "Ankle-foot orthosis," U.S. Patent 9,827,131 B2, Nov. 28, 2017. [En línea]. Disponible en: https://patents-google-com.translate.goog/patent/US9827131B2/en?oq=US9827131B2&_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=tc&_x_tr_hist=true.
- [3] P. A. Yates, Ortesis de tobillo y pie, Patente ES2663899B2, Oficina Española de Patentes y Marcas, 2018. [En línea]. Disponible en:https://patents.google.com/patent/ES2663899B2/es
- [4] Lind, R. (2004). Active ankle support (U.S. Patent No. US6767332B1). United States Patent and Trademark Office. https://patents.google.com/patent/US6767332B1/en
- [5]"Ortesis de pie y tobillo Footflexor". Productos Básicos Internacionales, Inc. [En línea]. Disponible: https://pe.coreproducts.com/products/footflexor-800-foot-drop-brace?
- srsltid=AfmBOorekobtm14K4J_1AleYzFgVpKfzBWAoD0QwmQFnhCalxDdNmMd&utm_campaign=pr_r&utm_source=www.coreproducts.com&utm_um=wi_proxy&utm_content=es_PE&utm_term=c&glReturnTo=https://www.coreproducts.com/products/footflexor-800-foot-drop-brace?srsltid=AfmBOorekobtm14K4J_1AleYzF-gVpKfzBWAoD0QwmQFnhCalxDdNmMd&wi=proxy
- [6] "Sanicor | Turbomed es una revolucionaria órtesis para el pie caído". Sanicor Ortopedias. [En línea]. Disponible: "U.S. Patent Application for LOCOMOTION ASSISTING DEVICE AND METHOD Patent Application (Application #20130261513 issued October 3, 2013) Justia Patents Search," May 23, 2013. https://patents.justia.com/patent/20130261513
- [7] "Órtesis elevadora de pie Foot Up Rebound Doctor Choice". Doctor Choice. [En línea]. Disponible: L. Moreno, M. Castejón, J. Cuadrado, y M. A. Urquízar, Sistema para asistir a caminar, Patente ES2663899B2, Oficina Española de Patentes y Marcas, 2018. [En línea]. Disponible en: https://patents.google.com/patent/ES2663899B2/es
- [8] Turbomed FS3000 Xtern, Turbomed Orthotics, [En línea]. Disponible en: https://www.turbomed.es
- [9] Z. Liu, P. Zhang, M. Yan, Y. Xie y G. Huang, "Fabricación aditiva de ortesis específicas de tobillo y pie para personas después de un accidente cerebrovascular: un estudio preliminar basado en datos de análisis de la marcha," Mathematical Biosciences and Engineering, vol. 16, no. 6, pp. 8134–8143, 2019. doi: 10.3934/mbe.2019410.
- [10] A. Raza, S. B. Altaf, M. Saeed y N. U. Rehman, "Implementation of an Active Ankle-Foot Orthosis Prototype with a Cam-Driven Actuator," Machines, vol. 14, no. 2, 2024. doi: 10.3390/machines14020072.
- [11] C.-C. Hsu et al., "Novel design for a dynamic ankle foot orthosis with motion feedback used for training in patients with hemiplegic gait: a pilot study," Journal of NeuroEngineering and Rehabilitation, vol. 17, no. 1, Aug. 2020, doi: 10.1186/s12984-020-00734-x.

Muchas GRACIAS