Week 02 - Part 3

Review: - Deriving Wes by finding the gradient an setting it - Deriving W_{ls} by (pseudo)-solving the system of linear equations y = X W.

Today: _ Deriving Wes with Geometric interpretedations
_ Regularized Least squares
_ Non-linear transformation

Recall:

Least square Solution: $W_{1s} = X^T y = (X^T X)^{-1} X^T y$

prediction by Wis: $\hat{y}_s = X \hat{y}_s = X \hat{y}_s = X \hat{y}_s$

It's like we take I and with a projection mutrix transforming it into yes.

** ** XX is a projection matrix.

This Observation leads us into geometric interpretation of least squares.

Geometric Interpretation of less Squares

Observe that $\hat{y} = X \underline{w} = \begin{bmatrix} \chi_{10} & \chi_{11} & \dots & \chi_{1d} \\ \chi_{20} & \chi_{21} & \dots & \chi_{2d} \\ \vdots & \vdots & \vdots & \vdots \\ \chi_{N0} & \chi_{N1} & \dots & \chi_{Nd} \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}$ Geometric Interpretation of $= W_{i} \begin{bmatrix} x_{i0} \\ x_{20} \\ \vdots \\ x_{Ni} \end{bmatrix} + W_{i} \begin{bmatrix} x_{i1} \\ x_{2i} \\ \vdots \\ x_{Ni} \end{bmatrix} + ... + W_{i} \begin{bmatrix} x_{i1} \\ \vdots \\ x_{Ni} \end{bmatrix}$ $= S_{0}, \text{ is linear Combination of Columns of X.}$ Thus, y is in the space of all possible linear Combinations of Columns of X The space of all possible linear Combination of Glumns of X is alled Col-span X4 Let's illustrate Gl-span(X) for N=3, d=1, and $X=\begin{bmatrix}1&0\\1&2\end{bmatrix}$. $Col-Span(X) = \begin{cases} w_{\bullet} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + w_{1} \begin{bmatrix} 1 \\ 2 \end{bmatrix} ; w_{\bullet}, w_{1} \in \mathbb{R}^{3} = \begin{cases} w_{\bullet} + w_{1} \\ w_{\bullet} + 2w_{1} \end{cases} ; w_{\bullet}, w_{1} \in \mathbb{R}^{3} \end{cases}$ $= \begin{cases} \begin{cases} \vartheta_1 \\ \vartheta_2 \end{cases} : \vartheta_1 = w, \quad y_2 = w, +w, \quad y_3 = w, +2w, \text{ and } w, y, \in \mathbb{R} \end{cases}$ $-\int \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \cdot 2y_2 - y_3 = y_1, \text{ and } y_1, y_2, y_3 \in \mathbb{R} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \cdot -y_1 + 2y_2 - y_3 = 0$ $\frac{y_{2}}{y_{1}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{1}}{y_{1}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{2}}{y_{1}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{2}}{y_{1}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{2}}{y_{1}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{2}}{y_{1}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{2}}{y_{1}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{2}}{y_{1}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{2}}{y_{1}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{1}}{y_{2}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{1}}{y_{2}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{1}}{y_{2}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{2}}{y_{1}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{1}}{y_{2}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{1}}{y_{2}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{1}}{y_{2}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{2}}{y_{1}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $\frac{y_{2}}{y_{1}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{y_{2}}{y_{1}} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ a subspace of 3- dim space. (it is intend or plane)

The best $\frac{9}{2}$ (i.e. $\frac{9}{2}$ s) is the Projection of $\frac{9}{2}$ onto Col-span $\{X^3\}$.

That means (Y-Jis) must be orthogonal to any vector in Col-span f Xy.

Thus, (y-y's) is orthogonal to every column of X.

Reminder: alb = atb = 0

Thus, $X^{T}(\underline{y}-\underline{\hat{y}}_{ls}) = \underline{0} \Longrightarrow X^{T}(\underline{y}-X\underline{w}_{ls}) = \underline{0}$ $\Longrightarrow X^{T}X\underline{w}_{ls} = X\underline{y} \Longrightarrow \underline{w}_{ls} = (X^{T}X)^{-1}X^{T}\underline{y}$.

Regularized Linear Regression/Lest squares	
Previously, we tried to minimize $\ \chi_{w}-y\ ^2$	
In regularized version, we minimize $\ \chi_w - y\ ^2 + \lambda \ y\ ^2$ penalty function. (against large weight) The mativation is to avoid overlitting	ОИ
The mativation is to avoid oversiting	H)
Byour data is noisy Byou do not have enough data (compared to the comple of the target function)	xit

E.g. terget: f(n) = Sin (7cx)

Note: 1) $\lambda = 0 \implies LS$ 2) How to choose 29 validation How do we Solve this Problem?

We want to min 1/X w - 2/2 + 2 /1 w/12

Observe that
$$\nabla_{\underline{w}} f(\underline{w}) = 2 \chi^{T} (\chi_{\underline{w}} - \underline{y}) + 2 \chi_{\underline{w}}$$

We want
$$\nabla_{\underline{w}} f(\underline{w}) = 0 \Rightarrow (XX + \lambda I)\underline{w} = XY$$

$$\Rightarrow \underline{w}_{RLS} = (X^TX + \lambda I)^{-1} X^TY$$

So far: We studied linear Models

But in many cases linear Models are not good enough.

E.g. true decision boundary 21, +22=1 E.g. Linear decision boundaries

Won't parlow well. Then define $3,=x_1^2$ and $3_2=x_2^2$ The points are

linearly separable in Z-space.

Suppose PLA gives you $h(x) = Sign(x_1 + x_2 - 1)$. Then, we know $g(x) = Sign(x_1 + x_2 - 1)$ In general: Let $g = \Phi(x)$ be non-linear transformation ("feature transformation") Let h(g) be a linear classifier/regression function in g space $(h(g) = Sign(w^Tg))$ or $h(g) = w^Tg$

Then $g(x) = h(\Phi(x))$ is non-linear classifier in 2 space

E.g. Quadratic Regression

Define $3 = (3 = 1, 3, = x, 3 = x^2)$ $U = U = W = W + W_1 + W_2 = W_1 + W_2 =$ $2e_{\text{no is always 1}} = W_0 + W_1 \mathcal{L} + W_2 \mathcal{L}$ Since augmented $W_{LS}: 2e_{1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, 2e_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, 2e_{3} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \rightarrow Z = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 4 \end{bmatrix}$ $U_{ls} = (Z^TZ)^{-1}Z^TY = \cdots = \begin{bmatrix} 67\\ 3 \end{bmatrix} \Rightarrow$ $y = \omega_{LS} y = 6 - 93, + 33 = 6 - 92 + 32$