Assignment 14

KUSUMA PRIYA EE20MTECH11007

Download codes from

https://github.com/KUSUMAPRIYAPULAVARTY/assignment14

1 QUESTION

Let p, m, n be positive integers and F a field.Let V be the space of $m \times n$ matrices over F and W the space of $p \times n$ matrices over F.Let \mathbf{B} be a fixed $p \times m$ matrix and let T be the linear transformation from V into W defined by $T(\mathbf{A}) = \mathbf{B}\mathbf{A}$.Prove that T is invertible if and only if p = m and \mathbf{B} is an invertible $m \times m$ matrix.

2 Solution

Parameter	Description
p, m, n	Positive integers
F	Field
V	Space of $m \times n$ matrices
	over F
W	Space of $p \times n$ matrices
	over F
В	Fixed $p \times m$ matrix
Linear transformation	$T(\mathbf{A}) = \mathbf{B}\mathbf{A}$
$T: \mathbf{V} \to \mathbf{W}$	

TABLE 0: Input Parameters

 $T(\mathbf{A}) = \mathbf{B}\mathbf{A} \tag{2.0.1}$

So, **B** is the transformation matrix.

B is invertible if

1) T is one to one mapping, that is

$$\mathbf{BA} = \mathbf{BA'} \tag{2.0.2}$$

$$\implies \mathbf{A} = \mathbf{A}' \tag{2.0.3}$$

2) T must be onto, that is range(\mathbf{B})= \mathbf{W}

2.1 Case 1

Let us assume that T is invertible with inverse transformation T_1 from W to V that satisfies

$$T_1(T(\mathbf{A})) = \mathbf{A} \in \mathbf{V} \tag{2.1.1}$$

$$T(T_1(\mathbf{C})) = \mathbf{C} \in \mathbf{W} \tag{2.1.2}$$

$$T(\mathbf{A}) = \mathbf{C} \implies T_1(\mathbf{C}) = \mathbf{A}$$
 (2.1.3)

Since T and hence is T_1 is one-one mapping, the zero vector in $\mathbf{V}, \mathbf{0}_{m \times n}$ is uniquely mapped to

$$\mathbf{B0}_{m \times n} = \mathbf{0}_{p \times n} \tag{2.1.4}$$

$$T(T_1(\mathbf{C})) = \mathbf{C} \tag{2.1.5}$$

$$\implies$$
 BA = **C** (2.1.6)

So,
$$\mathbf{B}\mathbf{A} = \mathbf{0} \iff \mathbf{A} = \mathbf{0}$$
 (2.1.7)

This proves that \mathbf{B} is non-singular.

Let us define T_1 that satisfies (2.1.1),(2.1.2) as

$$T_1(\mathbf{C}) = \mathbf{B}^{-1}\mathbf{C} \tag{2.1.8}$$

$$(2.1.1) \implies \mathbf{B}^{-1}(\mathbf{B}\mathbf{A}) = \mathbf{A} \tag{2.1.9}$$

$$\implies \mathbf{B}^{-1}\mathbf{B} = \mathbf{I}_{m \times m} \tag{2.1.10}$$

$$(2.1.2) \implies \mathbf{B}(\mathbf{B}^{-1}\mathbf{C}) = \mathbf{C}$$
 (2.1.11)

$$\implies \mathbf{B}\mathbf{B}^{-1} = \mathbf{I}_{p \times p} \tag{2.1.12}$$

where **I** is the identity matrix. But **B** is non singular

$$BB^{-1} = B^{-1}B = I (2.1.13)$$

So, from (2.1.10), (2.1.12), (2.1.13)

$$p = m \tag{2.1.14}$$

and **B** is an invertible $m \times m$ matrix

2.2 Case 2

Consider p = m and **B** is an invertible $m \times m$ matrix.

Verifying if T is onto,

Let the set of matrices $\{A_1, A_2, \dots, A_{mn}\}$ be the basis

for V

Any matrix $A \in V$ can be written as

$$\mathbf{A} = \sum_{i=1}^{mn} \alpha_i \mathbf{A}_i \tag{2.2.1}$$

where $\alpha_i \in F$

The set $\mathbf{M} = \{\mathbf{B}\mathbf{A}_1, \mathbf{B}\mathbf{A}_2, \dots, \mathbf{B}\mathbf{A}_{mn}\}$ lie in \mathbf{W}

$$c_1(\mathbf{B}\mathbf{A}_1) + c_2(\mathbf{B}\mathbf{A}_2) + \ldots + c_{mn}(\mathbf{B}\mathbf{A}_{mn}) = \mathbf{0}$$
 (2.2.2)

$$\implies$$
 B $(c_1$ **A**₁ + c_2 **A**₂ + ... + c_{mn} **A**_{mn} $) =$ **0** (2.2.3)

Since **B** is non-singular,

$$(c_1\mathbf{A}_1 + c_2\mathbf{A}_2 + \ldots + c_{mn}\mathbf{A}_{mn}) = \mathbf{0}$$
 (2.2.4)

$$\implies c_1, c_2, \dots, c_{mn} = 0 \qquad (2.2.5)$$

because $\{A_1, A_2, \dots, A_{mn}\}$ are linearly independent So,M forms basis for W

Any vector $C \in W$ can be written as

$$\mathbf{C} = \sum_{i=1}^{mn} \beta_i \mathbf{B} \mathbf{A}_i \text{ where } \beta_i \in F$$
 (2.2.6)

$$=\mathbf{B}(\sum_{i=1}^{mn}\beta_i\mathbf{A}_i) \tag{2.2.7}$$

$$=$$
 BA (from (2.2.1)) (2.2.8)

So,range(B)=W

Consider the matrix $A, A' \in V$ such that

$$\mathbf{BA} = \mathbf{BA'} \tag{2.2.9}$$

$$\mathbf{B}^{-1}(\mathbf{B}\mathbf{A}) = \mathbf{B}^{-1}(\mathbf{B}\mathbf{A}') \tag{2.2.10}$$

$$(\mathbf{B}^{-1}\mathbf{B})\mathbf{A} = (\mathbf{B}^{-1}\mathbf{B})\mathbf{A}' \tag{2.2.11}$$

$$\implies \mathbf{A} = \mathbf{A}' \tag{2.2.12}$$

So, T is invertible.

2.3 Conclusion

From case 1,case 2 T is invertible if and only if p = m and **B** is an invertible $m \times m$ matrix.

2.4 Example

Let p = m = 3, n = 4 Let $T : \mathbf{V} \to \mathbf{W}$ adds row 2 to row 3 for a matrix $\mathbf{A} \in \mathbf{V}$

The elementary matrix that performs this is

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \tag{2.4.1}$$

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 & 5 \\ 1 & 3 & 6 & 7 \\ 4 & 9 & 2 & 6 \end{pmatrix}$$
 (2.4.2)

$$T(\mathbf{A}) = \mathbf{B}\mathbf{A} \tag{2.4.3}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 & 5 \\ 1 & 3 & 6 & 7 \\ 4 & 9 & 2 & 6 \end{pmatrix}$$
 (2.4.4)

$$= \begin{pmatrix} 1 & 2 & 2 & 5 \\ 1 & 3 & 6 & 7 \\ 5 & 12 & 8 & 13 \end{pmatrix} \tag{2.4.5}$$

$$= \mathbf{C} \in \mathbf{W} \tag{2.4.6}$$

Let transformation $T_1 : \mathbf{W} \to \mathbf{V}$ subtracts row2 from row 3 for a matrix $\mathbf{C} \in \mathbf{W}$ and is performed by elementary matrix

$$\mathbf{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \tag{2.4.7}$$

Let
$$\mathbf{C} = \begin{pmatrix} 1 & 2 & 2 & 5 \\ 1 & 3 & 6 & 7 \\ 5 & 12 & 8 & 13 \end{pmatrix}$$
 (2.4.8)

$$T_1(\mathbf{C}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 & 5 \\ 1 & 3 & 6 & 7 \\ 5 & 12 & 8 & 13 \end{pmatrix}$$
 (2.4.9)

$$= \begin{pmatrix} 1 & 2 & 2 & 5 \\ 1 & 3 & 6 & 7 \\ 4 & 9 & 2 & 6 \end{pmatrix}$$
 (2.4.10)

$$= \mathbf{A}$$
 (2.4.11)

$$\implies T_1(\mathbf{C}) = \mathbf{A}$$
 (2.4.12)

$$T_1(T(\mathbf{A})) = \mathbf{A} \qquad (2.4.13)$$

and
$$T(A) = C$$
 (2.4.14)

$$\implies T(T_1(\mathbf{C})) = \mathbf{C} \qquad (2.4.15)$$

 $So_{1}T_{1}$ is the inverse transformation of T and

$$T_1 = T^{-1} (2.4.16)$$

$$\mathbf{UB} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 (2.4.17)

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{2.4.18}$$

$$\mathbf{B}\mathbf{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$
 (2.4.19)
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (2.4.20)
$$\implies \mathbf{B}^{-1} = \mathbf{U}$$
 (2.4.21)

So, T is invertible and \mathbf{B} is an invertible 3×3 matrix.