crypt_rsa

Теоретическая лекция: Основы теории чисел и их применение в алгоритме RSA

Введение

Данная лекция посвящена формальному изложению теоретических основ теории чисел и их роли в построении криптографического алгоритма RSA. Мы сосредоточимся на ключевых математических концепциях, таких как делимость, простые числа, модулярная арифметика, односторонние функции и диофантовы уравнения, чтобы показать их связь с безопасностью и корректностью RSA. Лекция ориентирована на строгую теоретическую базу с использованием формального языка и математических доказательств.

Часть 1: Основы теории чисел

1.1 Делимость

Определение: Пусть $a,b\in\mathbb{Z}$. Говорят, что a делит b (обозначается $a\mid b$), если существует $k\in\mathbb{Z}$, такое что $b=a\cdot k$.

Свойства:

- Транзитивность: если $a \mid b$ и $b \mid c$, то $a \mid c$.
- Линейность: если $a \mid b$ и $a \mid c$, то $a \mid (b+c)$ и $a \mid (m \cdot b)$ для любого $m \in \mathbb{Z}$.

Теорема (Основная теорема арифметики): Каждое натуральное число n>1 единственным образом представимо в виде произведения простых чисел: $n=p_1^{e_1}\cdot p_2^{e_2}\cdot\ldots\cdot p_k^{e_k}$, где p_i — простые числа, $e_i\in\mathbb{N}$.

1.2 Наибольший общий делитель

Определение: Для $a,b\in\mathbb{Z}$ наибольший общий делитель $\gcd(a,b)$ — это наибольшее $d\in\mathbb{N}$, такое что $d\mid a$ и $d\mid b$.

Теорема (Алгоритм Евклида): Для любых $a,b\in\mathbb{Z},\,b\neq 0$, выполняется $\gcd(a,b)=\gcd(b,a\mod b)$, где $a\mod b$ — остаток от деления a на b.

Теорема Безу: Существуют $x,y\in\mathbb{Z}$, такие что $ax+by=\gcd(a,b)$.

Следствие: Числа a и b взаимно просты, если $\gcd(a,b)=1$, и в этом случае существуют $x,y\in\mathbb{Z}$, такие что ax+by=1.

1.3 Малая теорема Ферма

Теорема: Пусть p — простое число, $a \in \mathbb{Z}$, и $p \nmid a$. Тогда $a^{p-1} \equiv 1 \pmod p$.

Доказательство: Рассмотрим множество $S=1,2,\ldots,p-1$. Поскольку p просто и $p\nmid a$, умножение элементов S на a по модулю p даёт перестановку S. Следовательно, произведение элементов S остаётся неизменным:

 $(p-1)! \equiv a^{p-1} \cdot (p-1)! \pmod{p}$. Так как (p-1)! взаимно просто с p, сокращаем: $a^{p-1} \equiv 1 \pmod{p}$.

Часть 2: Модулярная арифметика

2.1 Сравнения

Определение: Для $a,b,m\in\mathbb{Z},\,m>0,\,a\equiv b\pmod m$, если $m\mid (a-b).$ Свойства:

ullet Если $a\equiv b\pmod m$ и $c\equiv d\pmod m$, то $a+c\equiv b+d\pmod m$ и $a\cdot c\equiv b\cdot d\pmod m$.

2.2 Обратные элементы

Определение: Число $x \in \mathbb{Z}$ называется обратным к a по модулю m, если $a \cdot x \equiv 1 \pmod{m}$.

Теорема: Обратный элемент x существует тогда и только тогда, когда $\gcd(a,m)=1$. В этом случае x находится из уравнения Безу ax+my=1.

Часть 3: Односторонние функции

3.1 Определение и свойства

Определение: Функция $f: X \to Y$ называется односторонней, если:

- 1. f(x) вычислимо за полиномиальное время для любого $x \in X$;
- 2. Обратная функция $f^{-1}(y)$ (т.е. нахождение x по заданному y = f(x)) вычислительно сложна, предполагая отсутствие дополнительной информации.

Пример: Пусть p — большое простое число, g — примитивный корень по модулю p. Функция $f(x) = g^x \mod p$ является односторонней, так как вычисление x по $g^x \mod p$ (дискретный логарифм) требует экспоненциального времени.

3.2 Связь с криптографией

Односторонние функции лежат в основе безопасности многих криптосистем, включая RSA, где используется функция $f(m) = m^e \mod n$, а её обращение требует знания секретного ключа d, вычисление которого связано с факторизацией n.

Часть 4: Диофантовы уравнения

4.1 Линейные диофантовы уравнения

Определение: Уравнение ax + by = c, где $a, b, c \in \mathbb{Z}$, а x, y — искомые целые числа, называется линейным диофантовым уравнением.

Теорема: Уравнение ax + by = c имеет целые решения тогда и только тогда, когда $\gcd(a,b) \mid c$.

Доказательство: Пусть $d=\gcd(a,b)$. Если существует решение (x_0,y_0) , то $d\mid ax_0+by_0=c$. Обратно, если $d\mid c$, то из ax+by=d (по теореме Безу) умножением на c/d получаем решение. Общее решение: $x=x_0+\frac{b}{d}t$, $y=y_0-\frac{a}{d}t$, где $t\in\mathbb{Z}$.

4.2 Применение в RSA

Диофантовы уравнения используются для нахождения d такого, что $e \cdot d \equiv 1 \pmod{\phi(n)}$. Это сводится к решению $ed + \phi(n)k = 1$, где d и k — целые числа.

Часть 5: Алгоритм RSA

5.1 Построение

Определение ключей:

- 1. Выбрать простые числа p и q.
- 2. Вычислить $n = p \cdot q$ и $\phi(n) = (p-1)(q-1)$.
- 3. Выбрать e, где $1 < e < \phi(n)$, $\gcd(e, \phi(n)) = 1$.
- 4. Найти d, где $e \cdot d \equiv 1 \pmod{\phi(n)}$.

Шифрование: $c=m^e \mod n$. Расшифрование: $m=c^d \mod n$.

5.2 Корректность

Теорема: Для m, такого что $\gcd(m,n)=1,$ $m^{e\cdot d}\equiv m\pmod n$. **Доказательство:** Так как $e\cdot d=1+k\cdot \phi(n)$, то: $m^{e\cdot d}=m^{1+k\cdot \phi(n)}=m\cdot (m^{\phi(n)})^k.$

По теореме Эйлера, $m^{\phi(n)}\equiv 1\pmod n$, если $\gcd(m,n)=1$. Следовательно, $m^{e\cdot d}\equiv m\cdot 1^k\equiv m\pmod n$.

5.3 Безопасность

Безопасность RSA опирается на сложность факторизации n. Односторонняя функция $f(m) = m^e \mod n$ обратима только при знании d, вычисление которого эквивалентно факторизации n.

Часть 2: практика

1.1 Делимость и делители

Число a делит число b (обозначается $a\mid b$), если существует целое число k, такое что $b=a\cdot k$. Пример:

 $3 \mid 6$, так как $6 = 3 \cdot 2$. Но $3 \nmid 7$, потому что 7 не представимо как произведение 3 на целое число.

1.2 Простые и составные числа

- **Простое число** натуральное число больше 1, имеющее ровно два делителя: 1 и само себя. Примеры: 2, 3, 5, 7, 11.
- **Составное число** натуральное число больше 1, имеющее более двух делителей. Пример: 4 (делители: 1, 2, 4).

Число 1 не является ни простым, ни составным.

1.3 Наибольший общий делитель (НОД)

НОД двух чисел a и b (gcd(a,b)) — наибольшее число, делящее оба числа без остатка. Используем **алгоритм Евклида**:

 $\gcd(a,b)=\gcd(b,a\mod b),$ где $a\mod b$ — остаток от деления a на b. Повторяем, пока остаток не станет 0.

Пример:

Найдём gcd(48, 18):

- $1.\ 48 \div 18 = 2$ (остаток 12), так как $48-18 \cdot 2 = 12.$ $\gcd(48,18) = \gcd(18,12)$
- 2. $18 \div 12 = 1$ (остаток 6), так как $18 12 \cdot 1 = 6$. $\gcd(18,12) = \gcd(12,6)$
- 3. $12 \div 6 = 2$ (остаток 0). gcd(12, 6) = gcd(6, 0) = 6

1.4 Взаимно простые числа

Числа a и b взаимно просты, если $\gcd(a,b)=1$.

Пример:

 $\gcd(8,15)=1$ (делители 8: 1, 2, 4, 8; делители 15: 1, 3, 5, 15; общий делитель — только 1).

1.5 Малая теорема Ферма

Если p — простое число, а a не делится на p, то: $a^{p-1} \equiv 1 \pmod p$.

Пример:

 $p=5,\,a=2.$ Тогда $2^{5-1}=2^4=16,\,$ и $16\mod 5=1$ ($16-5\cdot 3=1$). Проверка: $2^4\equiv 1\pmod 5$.

Часть 2: Модулярная арифметика

2.1 Остатки и сравнения

Числа a и b сравнимы по модулю m ($a \equiv b \pmod{m}$), если m делит a - b.

Пример:

 $7 \equiv 2 \pmod{5}$, так как 7 - 2 = 5, и $5 \mid 5$.

2.2 Обратные элементы по модулю

Число x — обратный элемент к a по модулю m, если $a\cdot x\equiv 1\pmod m$. Условие: $\gcd(a,m)=1$. Находим x с помощью расширенного алгоритма Евклида.

Пример:

Обратный элемент к 3 по модулю 7:

- 1. Алгоритм Евклида:
 - $7 = 2 \cdot 3 + 1$
 - $3 = 3 \cdot 1 + 0$ gcd(7,3) = 1.
- 2. Выразим 1:

$$1 = 7 - 2 \cdot 3$$
.

$$-2 \cdot 3 \equiv 1 \pmod{7}$$
, где $-2 \equiv 5 \pmod{7} (-2+7=5)$.

Проверка: $5 \cdot 3 = 15$, $15 \mod 7 = 1 (15 - 7 \cdot 2 = 1)$.

Итог: обратный элемент — 5.

Часть 3: Алгоритм RSA

RSA — алгоритм асимметричного шифрования, использующий простые числа и модулярную арифметику.

3.1 Генерация ключей

- 1. Выбор простых чисел: p = 3, q = 11.
- Вычисление n:

$$n = p \cdot q = 3 \cdot 11 = 33.$$

3. Функция Эйлера:

$$\phi(n) = (p-1)(q-1) = 2 \cdot 10 = 20.$$

4. Открытая экспонента e:

$$e = 7$$
 (1 < e < 20, $gcd(7, 20) = 1$).

5. Секретная экспонента d:

$$7 \cdot d \equiv 1 \pmod{20}$$
.

Расширенный алгоритм Евклида:

- $20 = 2 \cdot 7 + 6$
- $7 = 1 \cdot 6 + 1$
- $6 = 6 \cdot 1 + 0$

$$1 = 7 - 1 \cdot 6$$
, $6 = 20 - 2 \cdot 7$,

$$1 = 7 - (20 - 2 \cdot 7) = 3 \cdot 7 - 20.$$

$$d=3$$
.

Итог:

- Открытый ключ: (n, e) = (33, 7).
- Секретный ключ: d = 3.

3.2 Шифрование

Сообщение m ($0 \le m < n$) шифруется как $c = m^e \mod n$.

Пример:

$$m = 2$$
, $e = 7$, $n = 33$.

$$c = 2^7 = 128$$
, 128 mod 33 = 29 (33 · 3 = 99, 128 - 99 = 29).

Шифротекст: c = 29.

3.3 Расшифрование

Шифротекст c расшифровывается как $m = c^d \mod n$.

Пример:

$$c = 29, d = 3, n = 33.$$

$$29^2 = 841,841 \mod 33 = 16 (33 \cdot 25 = 825,841 - 825 = 16),$$

```
29^3=16\cdot 29=464, 464\mod 33=2 (33\cdot 14=462, 464-462=2). Итог: m=2.
```

3.4 Почему это работает?

RSA использует $e\cdot d\equiv 1\pmod{\phi(n)}$. По малой теореме Ферма, если $\gcd(m,n)=1$, то $m^{\phi(n)}\equiv 1\pmod{n}$. Тогда: $m^{e\cdot d}=m^{k\cdot\phi(n)+1}=(m^{\phi(n)})^k\cdot m\equiv 1^k\cdot m\equiv m\pmod{n}$.

Без факторизации n найти d сложно, что обеспечивает безопасность.