Relatório 3º Projeto ASA 2024/2025

Grupo: tp034

Alunos: Tomás Ferreira(nº:109881), Diogo Matias(nº:109639)

Descrição do Problema e da Solução

Existe uma empresa de distribuição de brinquedos que dispõe de um conjunto de fábricas espalhadas por vários países. O Natal aproxima-se e a empresa pretende fazer uma distribuição dos brinquedos de forma a atender aos pedidos do máximo número de crianças possível. No entanto, há um conjunto de restrições a respeitar. Nomeadamente:

- Cada fábrica tem um stock máximo que pode distribuir;
- Cada país tem um limite para o número de produtos que pode exportar;
- Cada país tem ainda um número mínimo de presentes garantidos;
- Cada criança recebe no máximo um dos presentes que pediu.

Para resolver este problema de programação linear escolhemos variáveis binárias que representam os pedidos feitos pelas crianças. As variáveis são do tipo $\mathbf{x}_{\mathbf{k}}$, onde \mathbf{k} é o identificador da criança e \mathbf{f} é o identificador da fábrica associada ao presente pedido.

Pretende-se maximizar o número de crianças atendidas, logo a função objetivo é:

$$\sum\limits_{k=1}^t\sum\limits_{f=1}^{p_k}x_k_f$$
 , (p_k designa o nº de pedidos da criança **k**)

As restrições são:

 $\begin{array}{ll} \mathbf{n} \text{ inequações do tipo: } \sum\limits_{i=1}^{p_f} pedido_i \leq f_{max} & (p_f \ designa \ o \ n^{\underline{o}} \ do \ pedidos \ \grave{a} \ f\acute{a}brica \ \pmb{f}) \\ \mathbf{m} \text{ inequações do tipo: } \sum\limits_{i=1}^{c_p} pedido_i \leq p_{max} & (f_p \ designa \ o \ n^{\underline{o}} \ de \ f\acute{a}bricas \ do \ pa\'{is} \ \pmb{p}) \\ \mathbf{m} \text{ inequações do tipo: } \sum\limits_{i=1}^{c_p} pedido_i \geq p_{min} & (c_p \ designa \ o \ n^{\underline{o}} \ de \ crianças \ do \ pa\'{is} \ \pmb{p}) \\ \mathbf{t} \text{ inequações do tipo: } \sum\limits_{i=1}^{c_p} pedido_i \leq 1 & (p_k \ designa \ o \ n^{\underline{o}} \ de \ pedidos \ da \ criança \ \pmb{k}) \\ \end{array}$

Análise Teórica

Sejam:

- n: número de fábricas.
- **m**: número de países.
- t: número de crianças.

Relatório 3º Projeto ASA 2024/2025

Grupo: tp034

Alunos: Tomás Ferreira(nº:109881), Diogo Matias(nº:109639)

Número de variáveis: O(n * t)

Número de restrições: O(n + 2*m + t) = O(n + m + t)

Complexidade do programa linear: O(n + m + t + n) = O(n + m + t)

Avaliação Experimental dos Resultados

Foi feito um gráfico com o **n**, **m** e o **t** a começar em 1000, 750 e 1500 respetivamente e adicionando sempre 500 a cada iteração. Foram feitas 20 iterações e os resultados encontram-se na tabela e no gráfico abaixo.

A complexidade prevista confirma-se com os dados experimentais, dado que se pode observar uma relação linear entre o tempo de execução e a função (n + m + t).

n	m	t	O(n+m+t)	Tempo (ms)
1000	750	1500	3250	358.6063
1500	1250	2000	4750	533.2215
2000	1750	2500	6250	611.0461
2500	2250	3000	7750	726.1970
3000	2750	3500	9250	888.4845
3500	3250	4000	10750	993.2513
4000	3750	4500	12250	1133.0483
4500	4250	5000	13750	1282.9723
5000	4750	5500	15250	1446.6264
5500	5250	6000	16750	1610.5802
6000	5750	6500	18250	1763.7091
6500	6250	7000	19750	1934.6259
7000	6750	7500	21250	2064.9934
7500	7250	8000	22750	2270.4718
8000	7750	8500	24250	2334.2483
8500	8250	9000	25750	2471.0886
9000	8750	9500	27250	2639.7257
9500	9250	10000	28750	2760.6325
10000	9750	10500	30250	2860.1172
10500	10250	11000	31750	3086.1459

Tempo de Execução (ms) vs. Complexidade (n+m+t)

