(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 10 September 2004 (10.09.2004)

PCT

(10) International Publication Number WO 2004/076638 A2

Street, Apt. 231, Berkley, CA 94709-1820, Emeryville, CA 94608 (US). CENTURY, Karen, S. [US/US]; 741 Jackson Street, Albany, CA 94706 (US). GUTTERSON,

Neal, I. [US/US]; 5169 Golden Gate Ave., Oakland, CA

94618 (US). YU, Guo-Liang [US/US]; 242 Gravatt Drive, Berkeley, CA 94705-1531 (US). BROUN, Pierre, E.

[FR/GB]; Department of Biology (Area 7), University of York, P.O. Box 373, York, Yorkshire Y01 05YW (GB).

KUMIMOTO, Roderick, W. [US/US]; 517 Oak Ave., San Bruno, CA 94066 (US). PILGRIM, Marsha, L. [US/US]; 1368 Patrick Henry Drive, Phoenixville, PA

(51) International Patent Classification7:

C12N

(21) International Application Number:

PCT/US2004/005654

(22) International Filing Date: 25 February 2004 (25.02.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

Filed on

10/374,780 10/675,852

25 February 2003 (25.02.2003) US

30 September 2003 (30.09.2003)

(74) Agents: WARD, Michael et al.; Morrison & Foerster, LLP,

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US

10/374,780 (CIP) 25 February 2003 (25.02.2003)

(71) Applicant (for all designated States except US): MENDEL BIOTECHNOLOGY, INC. [US/US]; 21375 Cabot Boulevard, Hayward, CA 94545 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SHERMAN. Bradley, K. [US/US]; 1039 Overlook Road, Berkeley, CA 94708 (US). RIECHMANN, Jose, Luis [ES/US]; 518 S. El Molino Avenue, #308, Pasadena, CA 91101 (US). RAT-CLIFFE, Oliver [GB/US]; 814 East 21st Street, Oakland. CA 94606 (US). JIANG, Cai-Zhong [US/US]; 34495 Heathrow Terrace, Fremont, CA 94555 (US). HEARD, Jacqueline, E. [US/US]; 21 Whittaker Drive, Stonington, CT 06378 (US). HAAKE, Volker [DE/DE]; Lichterfelder Ring 206, 12209 Berlin (DE). CREELMAN, Robert, A. [US/US]; 2801 Jennifer Drive, Castro Valley, CA 94546 (US). ADAM, Luc, J. [CA/US]; 25800 Industrial Boulevard, Apt. L403, Hayward, CA 94545 (US). REUBER, Lynne, T. [US/US]; 1115 S. Grant Street, San Mateo, CA 94402 (US). KEDDIE, James, S. [GB/US]; 20-14th Avenue, San Mateo, CA 94402 (US). DUBELL, Arnold, N. [US/US]; 14857 Wake Ave., San Leandro, CA 94578 (US). PINEDA, Omaira [CO/US]; 4060 9th Place, Vero Beach, FL 32960 (US). REPETTI, Peter, P. [US/US]; 1200 65th

425 Market Street, San Francisco, CA 94105-2482 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

19460 (US).

of inventorship (Rule 4.17(iv)) for US only

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: POLYNUCLEOTIDES AND POLYPEPTIDES IN PLANTS

(57) Abstract: The invention relates to plant transcription factor polypeptides, polynucleotides that encode them, homologs from a variety of plant species, and methods of using the polynucleotides and polypeptides to produce transgenic plants having advantageous properties compared to a reference plant. Sequence information related to these polynucleotides and polypeptides can also be used in bioinformatic search methods is also disclosed.

5

10

15

20

25

30

35

sequence shown in the Sequence Listing due to degeneracy in the genetic code, are also within the scope of the invention.

Altered polynucleotide sequences encoding polypeptides include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide encoding a polypeptide with at least one functional characteristic of the instant polypeptides. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding the instant polypeptides, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding the instant polypeptides.

Allelic variant refers to any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in phenotypic polymorphism within populations. Gene mutations can be silent (i.e., no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequence. The term allelic variant is also used herein to denote a protein encoded by an allelic variant of a gene. Splice variant refers to alternative forms of RNA transcribed from a gene. Splice variation arises naturally through use of alternative splicing sites within a transcribed RNA molecule, or less commonly between separately transcribed RNA molecules, and may result in several mRNAs transcribed from the same gene. Splice variants may encode polypeptides having altered amino acid sequence. The term splice variant is also used herein to denote a protein encoded by a splice variant of an mRNA transcribed from a gene.

Those skilled in the art would recognize that, for example, G481, SEQ ID NO: 88, represents a single transcription factor; allelic variation and alternative splicing may be expected to occur. Allelic variants of SEQ ID NO: 87 can be cloned by probing cDNA or genomic libraries from different individual organisms according to standard procedures. Allelic variants of the DNA sequence shown in SEQ ID NO: 87, including those containing silent mutations and those in which mutations result in amino acid sequence changes, are within the scope of the present invention, as are proteins which are allelic variants of SEQ ID NO: 88. cDNAs generated from alternatively spliced mRNAs, which retain the properties of the transcription factor are included within the scope of the present invention, as are polypeptides encoded by such cDNAs and mRNAs. Allelic variants and splice variants of these sequences can be cloned by probing cDNA or genomic libraries from different individual organisms or tissues according to standard procedures known in the art (see USPN 6,388,064).

Thus, in addition to the sequences set forth in the Sequence Listing, the invention also encompasses related nucleic acid molecules that include allelic or splice variants of SEQ ID NO: 2N - 1, wherein N = 1- 229, SEQ ID NO: 459-466; 468-487; 491-500; 504; 506-511; 516-520; 523-524; 527; 529; 531-533; 538-539; 541-557; 560-568; 570-586; 595-596; 598-606; 610-620; 627-634; 640-664; 670-707; 714-719; 722-735; 740-741; 743-779; 808-823; 825-834; 838-850; 855-864; 868-889; 892-902; 908-909; 914-921; 924-925; 927-932; 935-942; 944-952; 961-965; 968-986; 989-993; 995-1010; 1012-1034; 1043-1063; 1074-1080; 1091-1104; 1111-1121; 1123-1128; 1134-1138; 1142-1156; 1159-1175;

30

1187-1190; 1192-1199; 1202-1220; 1249-1253; 1258-1262; 1264-1269; 1271-1287; 1292-1301; 1303-1309; 1315-1323; 1328-1337; 1340-1341; 1344-1361; 1365-1377; 1379-1390; 1393-1394; 1396-1398; 1419-1432; 1434-1452; 1455-1456; 1460-1465; 1468-1491; 1499; 1502; 1505-1521; 1523-1527; 1529-1532; 1536-1539; 1542-1562; 1567-1571; 1573-1582; 1587-1592; 1595-1620; 1625-1644; 1647-1654; 5 1659-1669; 1671-1673; 1675-1680; 1682-1686; 1688-1700; 1706-1709; 1714-1726; 1728-1734; 1738-1742; 1744-1753; 1757-1760; 1763-1764; 1766-1768; 1770-1780; 1782-1784; 1786-1789; 1791-1804; 1806-1812; 1814-1837; 1847-1856; 1858-1862; 1864-1873; 1876-1882; 1885-1896; 1902-1910; 1913-1916; 1921-1928; 1931-1936; 1940-1941; 1944-1946, 2907-2941, 2944, 2945, 2947, 2949, or SEO ID NO: 2N - 1, wherein N = 974-1101, and include sequences which are complementary to any of the 10 above nucleotide sequences. Related nucleic acid molecules also include nucleotide sequences encoding a polypeptide comprising or consisting essentially of a substitution, modification, addition and/or deletion of one or more amino acid residues compared to the polypeptide as set forth in any of SEQ ID NO: 2N, wherein N = 1-229, SEQ ID NO: 467; 488-490; 501-503; 505; 512-515; 521-522; 525-526; 528; 530; 534-537; 540; 558-559; 569; 587-594; 597; 607-609; 621-626; 635-639; 665-669; 708-713; 15 720-721; 736-739; 742; 780-807; 824; 835-837; 851-854; 865-867; 890-891; 903-907; 910-913; 922-923; 926; 933-934; 943; 953-960; 966-967; 987-988; 994; 1011; 1035-1042; 1064-1073; 1081-1090; 1105-1110; 1122; 1129-1133; 1139-1141; 1157-1158; 1176-1186; 1191; 1200-1201; 1221-1248; 1254-1257; 1263; 1270; 1288-1291; 1302; 1310-1314; 1324-1327; 1338-1339; 1342-1343; 1362-1364; 1378; 1391-1392; 1395; 1399-1418; 1433; 1453-1454; 1457-1459; 1466-1467; 1492-1498; 1500-1501; 1503-20 1504; 1522; 1528; 1533-1535; 1540-1541; 1563-1566; 1572; 1583-1586; 1593-1594; 1621-1624; 1645-1646; 1655-1658; 1670; 1674; 1681; 1687; 1701-1705; 1710-1713; 1727; 1735-1737; 1743; 1754-1756; 1761-1762; 1765; 1769; 1781; 1785; 1790; 1805; 1813; 1838-1846; 1857; 1863; 1874-1875; 1883-1884; 1897-1901; 1911-1912; 1917-1920; 1929-1930; 1937-1939; 1942-1943; 2942 or 2943, 2945, 2947, 2949, or SEQ ID NO: 2N, wherein N = 974-1101. Such related polypeptides may comprise, for example, additions and/or deletions of one or more N-linked or O-linked glycosylation sites, or an addition and/or 25 a deletion of one or more cysteine residues.

For example, Table 4 illustrates, e.g., that the codons AGC, AGT, TCA, TCC, TCG, and TCT all encode the same amino acid: serine. Accordingly, at each position in the sequence where there is a codon encoding serine, any of the above trinucleotide sequences can be used without altering the encoded polypeptide.

.WO 2004/076638 PCT/US2004/005654

251	G1266	OE	Increased tolerance to disease	Increased tolerance to Erysiphe
251 1200 0		OL	Growth regulation; nutrient	Altered C/N sensing
			uptake	Altered O'IV sensing
253 ·	G1275	OE	Altered architecture	Reduced apical dominance
255	G1305	OE	Increased tolerance to abiotic stress	Reduced chlorosis in heat
257	G1322	OE	Increased tolerance to abiotic	Increased seedling vigor in cold
			stress	Reduced size
			Altered size	Increase in M39480
			Leaf glucosinolates	Constitutive photomorphogenesis
	i .		Altered light response and/or	Altered C/N sensing: increased
			shade tolerance	tolerance to low nitrogen
			Growth regulation; nutrient	
			uptake	
259	G1323	OE	Altered seed oil	Decreased seed oil
			Altered seed protein	Increased seed protein
261	G1330	OE	Altered hormone sensitivity	Ethylene insensitive when germinated
				in the dark on ACC
263	G1331	OE	Altered light response and/or	Constitutive photomorphogenesis
			shade tolerance	Altered C/N sensing
			Growth regulation; nutrient	
		<u>.</u>	uptake	
265	G1332	OE	Altered trichomes	Reduced trichome density
			Growth regulation; nutrient	Altered C/N sensing
			uptake	
267			Increased tolerance to disease	Increased tolerance to Fusarium
269	G1411	OE	Altered architecture	Loss of apical dominance
2607	G1412	KO	Altered light response and/or	Increased shade tolerance; lack of shade
			shade tolerance	avoidance phenotype
271	G1417	KO	Altered seed oil	Increase in 18:2, decrease in 18:3 fatty
		-		acids
273			Altered seed protein	Increased seed protein
275			Altered flower	Altered flower structure
277	G1451		Altered size	Increased plant size
	ŀ		Altered leaf	Large leaf size
	<u> </u>		Altered seed oil	Altered seed oil content
279	G1452	OE	Altered trichomes	Reduced trichome density
			Altered leaf	Altered leaf shape, dark green color
	1		Altered hormone sensitivity	Reduced sensitivity to ABA
			Altered flowering time	Better germination on sucrose, salt
			Increased tolerance to abiotic	Late flowering
001	01460	-	and osmotic stress	Increased tolerance to drought
281	G1463		Altered senescence	Premature senescence
283			Altered seed oil	Increased seed oil content
285	G1478	OE	Altered seed protein	Decreased seed protein content
			Altered flowering time	Late flowering
	1	-	Altered seed oil	Increased seed oil content
287	G1482		Altered pigment	Increased anthocyanins
			Altered root	Increased root growth
289	G1488	OE	Altered seed protein	Altered seed protein content
			Altered light response and/or	Constitutive photomorphogenesis
]	shade tolerance	Reduced apical dominance, shorter
	ļ	<u> </u>	Altered architecture	stems
291	161404	LOE	Altered flowering time	Early flowering

WO 2004/076638 PCT/US2004/005654

			indeterminate growth
	Altered shoot meristem development Stem bifurcations:	G390; G391	Ornamental modification of plant architecture, manipulation of growth and development, increase in leaf numbers, modulation of branching patterns to provide improved yield or biomass
	Altered branching pattern	G427; G568; G988; G1543; G1794	Ornamental modification of plant architecture, improved lodging resistance
Ĭ.	Apical dominance Reduced apical dominance:	G47; G211; G1255; G1275; G1411; G1488; G1794; G2509	Omamental modification of plant architecture
		•	Ornamental modification of plant architecture, increased plant product (e.g., diterpenes, cotton) productivity, insect and herbivore resistance
	Increase in trichome number, size or density:	G362; G634; G838; G2838	~
	Stem morphology and altered vascular tissue structure	G47; G438; G748; G988; G1488	Modulation of lignin content; improvement of wood, palatability of fruits and vegetables
	Root development Increased root growth and proliferation: Increased root hairs:		Improved yield, stress tolerance; anchorage
	Altered seed development, ripening and germination	G979	·
	Cell differentiation and cell proliferation	G1540	Increase in carpel or fruit development; improve regeneration

WO 2004/076638 PCT/US2004/005654

G779, G988, G1075, G1140, G1499, G1947, G2143, G2557 and their functional equivalogs, possess reduced fertility; flowers are infertile and fail to yield seed. These could be desirable traits, as low fertility could be exploited to prevent or minimize the escape of the pollen of genetically modified organisms (GMOs) into the environment.

5

10

15

25

30

35

The alterations in shoot architecture seen in the lines transformed with G47, G1063, G1645, G2143, and their functional equivalogs indicates that these genes and their equivalogs can be used to manipulate inflorescence branching patterns. This could influence yield and offer the potential for more effective harvesting techniques. For example, a "self pruning" mutation of tomato results in a determinate growth pattern and facilitates mechanical harvesting (Pnueli et al. (2001) Plant Cell 13(12): 2687-702).

One interesting application for manipulation of flower structure, for example, by introduced transcription factors could be in the increased production of edible flowers or flower parts, including saffron, which is derived from the stigmas of Crocus sativus.

Genes that later silique conformation in brassicates may be used to modify fruit ripening processes in brassicates and other plants, which may positively affect seed or fruit quality.

A number of the presently disclosed transcription factors may affect the timing of phase changes in plants. Since the timing or phase changes generally affects a plant's eventual size, these genes may prove beneficial by providing means for improving yield and biomass.

General development and morphology: shoot meristem and branching patterns. Several of the 20 presently disclosed transcription factor genes, including G390 and G391, and G1794, when introduced into plants, have been shown to cause stem bifurcations in developing shoots in which the shoot meristems split to form two or three separate shoots. These transcription factors and their functional equivalogs may thus be used to manipulate branching. This would provide a unique appearance, which may be desirable in ornamental applications, and may be used to modify lateral branching for use in the forestry industry. A reduction in the formation of lateral branches could reduce knot formation. Conversely, increasing the number of lateral branches could provide utility when a plant is used as a view- or windscreen.

General development and morphology: apical dominance: The modified expression of presently disclosed transcription factors (e.g., G47, G211, G1255, G1275, G1411, G1488, G1794, G2509 and their equivalogs) that reduce apical dominance could be used in ornamental horticulture, for example, to modify plant architecture, for example, to produce a shorter, more bushy stature than wild type. The latter form would have ornamental utility as well as provide increased resistance to lodging.

General development and morphology: trichome density, development or structure. Several of the presently disclosed transcription factor genes have been used to modify trichome number, density, trichome cell fate, amount of trichome products produced by plants, or produce ectopic trichome

SEQUENCE LISTING

<110>	Sherman, Bradley K Riechmann, Jose Luis Jiang, Cai-Zhong Heard, Jacqueline E Haake, Volker Creelman, Robert A Ratcliffe, Oliver Adam, Luc J Reuber, T. Lynne Keddie, James Dubell III, Arnold N Pineda, Omaira Repetti, Peter Century, Karen Gutterson, Neal Yu, Guo-Liang Broun, Pierre E Kumimoto, Roderick W Pilgrim, Marsha L						
<120>	POLYNUCLEOTIDES AND POLYPEPTIDES IN PLANTS						
<130>	MBI-0047 PCT						
<150> <151>							
<150> <151>	10/675,852 2003-09-30						
<160>	2950						
<170>	PatentIn version 3.2						
<210> <211>	253 748						
<212>	DNA Arabidopsis thaliana						
<220>	Alabruopsis thattana						
<223>	G1275						
<400> ccaagaa	253 aaag ggaagatcac gcattcttat aggcgtaatt cgtaaatagt ggtgagtatg	60					
aatgat	gcag acacaaactt ggggagtagt ttcagcgatg atactcactc tgtgttcgag	120					
tttccg	gagc tagacttgtc agatgaatgg atggatgatg atcttgtgtc tgcggtttcc	180					
gggatga	aatc agtcttatgg ttatcagact agtgatgttg ctggtgcttt attctcaggt	240					
tcttcta	agct gtttcagtca tcctgaatct ccaagtacca aaacttatgt tgctgctaca	300					
gccact	gctt ctgccgacaa ccaaaacaag aaagaaaaga aaaaaattaa agggagagtt	360					
gcgttca	aaga cacggtccga ggtggaagtg cttgacgacg ggttcaagtg gagaaagtat	420					
gggaaga	aaga tggtgaagaa cagcccacat ccaagaaact actacaaatg ttcagttgat	480					

ggctgtcccg	tgaagaaaag	ggttgaacga	gacagagatg	atccgagctt	tgtgataaca	540
acttacgagg	gttcccacaa	tcactcaagc	atgaactaag	actcgaacta	aggctcaagg	600
cgaccatgct	atattcagca	catcttattt	tctatggtta	cgaacgatac	ttaaaactgc	660
ttctagttct	ttatatccat	tgtaaactgg	ttgcaggttc	acaaattttg	agaggtttat	720
gacattctaa	atctgtagta	cttatata				748

- <210> 254 <211> 173
- <211> 173 <212> PRT
- <213> Arabidopsis thaliana
- <220>
- <223> G1275 (conserved domain in AA coordinates: 113-169)
- <400> 254
- Met Asn Asp Ala Asp Thr Asn Leu Gly Ser Ser Phe Ser Asp Asp Thr 10 15
- His Ser Val Phe Glu Phe Pro Glu Leu Asp Leu Ser Asp Glu Trp Met 20 25 30
- Asp Asp Asp Leu Val Ser Ala Val Ser Gly Met Asn Gln Ser Tyr Gly 35 40 45
- Tyr Gln Thr Ser Asp Val Ala Gly Ala Leu Phe Ser Gly Ser Ser Ser 50 60
- Cys Phe Ser His Pro Glu Ser Pro Ser Thr Lys Thr Tyr Val Ala Ala 65 70 75 80
- Thr Ala Thr Ala Ser Ala Asp Asn Gln Asn Lys Lys Glu Lys Lys 85 90 95
- Ile Lys Gly Arg Val Ala Phe Lys Thr Arg Ser Glu Val Glu Val Leu 100 105 110
- Asp Asp Gly Phe Lys Trp Arg Lys Tyr Gly Lys Lys Met Val Lys Asn 115 120 125
- Ser Pro His Pro Arg Asn Tyr Tyr Lys Cys Ser Val Asp Gly Cys Pro 130 135 140
- Val Lys Lys Arg Val Glu Arg Asp Arg Asp Pro Ser Phe Val Ile 145 150 155 160
- Thr Thr Tyr Glu Gly Ser His Asn His Ser Ser Met Asn 165 170

<211> 8: <212> D	529 25 NA ryza sativa					
<220> <223> P	redicted polyp	peptide sequ	uence is ort	thologous to	G1275	
	529 cc ccgggctgga	ggaaaattca	ccggtgaaaa	ggttcagcac	tgtgcaatgg	60
cggcttcc	gt aggactgaac	cctgaagctt	tcttcttcag	caactcctac	tcctactcct	120
catcccct	tt catggccagc	tacacgccgg	agttctcggc	cgccgctatc	gacgccaact	180
tattctcc	gg cgagctcgat	ttcgactgct	ctctcccagc	tccggcccag	gagtacccgg	240
aaaatgaa	aa cactatgatg	aggtacgaga	gcgaggagaa	gatgagggcg	agggtgaacg	300
ggaggatc	gg gttcaggacg	aggtcggagg	tggagattct	tgatgatggc	ttcaagtgga	360
ggaagtac	gg caagaaagct	gtcaagaaca	gcccaaatcc	aagaaactac	taccggtgct	420
cgacggag	gg gtgcaacgtg	aagaagcgag	tggagagaga	ccgggaggac	caccgctacg	480
tcatcacc	ac ctacgacggc	gtccacaacc	acgcgagccc	cgccgccgcc	gccgcggcgc	540
tgcagtac	gc cgccgccgcc	ggcgactact	acagcccgcc	gctcagcagc	gccggctcgc	600
cgccggcc	gc ctatttcggc	aggcggcttc	gctgctcttc	tgagggctga	tgaagtttgt	660
ctaggact	ag acacgcccgg	gagctctagc	taggatagaa	aactagagaa	agtttaatta	720
tacctgaa	tt ttaattaatc	acctcacaaa	actctgatgt	atcatattat	atcgtgatag	780
tgactggt [.]	tg ttaatttaat	tttggcgatc	gatgtgatct	tcggt		825
<211> 10 <212> DI <213> ZO	530 696 NA ea mays					
<220> <223> P	redicted polyp	eptide sequ	uence is ort	hologous to	G1275	
	530 ac atcaacggac	agacacacac	aagcaaggcg	gctagcggtg	caagtagtgc	60
gaagctag	ct aggtgctggt	gcatgcaatg	gcggcttcgc	tgggtctgaa	ccctgaagct	120
gtcttcac	tt cctacacctc	ctcgccgccg	ttcatgtcgg	actacgtggc	ggcgagcttc	180
ctgccgcc	gg ccgtcgtcga	ctccacggac	ttctctgcag	agctcgatga	tcttcaccac	240
cacttgga	tt actcatcgcc	ggcgccgacc	ttggccgggg	ctcggagcga	tcgcagcgag	300
aagcagat	ga tcaggtggtg	tgagggtggt	ggtggcgaga	agagactcgg	taggatcggg	360
ttcagaac	ga gatcagaggt	ggagatcttg	gacgatggat	tcaaatggag	gaagtatggc	420

aagaaggctg tcaagagtag cccaaatcca aggaactact accgctgctc gtcggagggc	480						
tgcggcgtga agaagcgggt ggagagggac cgcgacgacc cccgctacgt catcaccacc	540						
tacgacggcg tccacaacca cgcaagcccc gcagccgccg ccatcatcca gtacggcggc	600						
ggcggcggat tctatagccc gccgcacagc ggctcgccgt cggccgcctc ctactcgggc	660						
tccttcgtcc tctgacttct ccgggccttg acccagagtg atctgatcta cctgctttat	720						
cccagtcgta ggatgagaag agtgttcaga cttcagagac atcagttcag cggccggcta	780						
aattcggacc tgattgtaga tatttacacc tcaattattg gttacctctt gtgacgactg	840						
acgaggcatc ataatcgtca ctaggataat tgatcacgca tgtttttcgc ttaattagtt	900						
tctgtgtata catacgaagt ttgccgtata gctgataggc tgctgattta acttgacttc	960						
tctttgttcg gtattagacc ccaagatcaa catttacgct gaacagatgc tttgtaacag	1020						
tgaaggaata ttttatggtt tttccagata tatgccatta tgaaaataaa aaaaaaaaa	1080						
aaaaaagcgg ccgcttggtt tgtctctttg ttggcattcc ttgcaacaaa ttattaattc	1140						
tccacggtac agaacgggac atcatcacaa tgtcagtgcg caaccataac tgaactgcaa	1200						
caatgaagaa caggtagcaa accttatttc gagcaaacag tcagctcagc	1260						
actaaaaaga gcacggcact cattggcctc attagccatc tcttccatgc tcctatcttt	1320						
cctctcaatg tccaggtcaa gcttctcctt caatctttc tccttcacat caatcgcatc	1380						
atatatttca tcatttttct caaaatcccc tttcttcctt gggatgaggt ggatgtggac	1440						
atgcgcaact gtttggccag cttgaggacc atcctggata gcaaaggtaa gtgacgatgc	1500						
tttgtggtac tgctcaagac gtgcaccaac ttcctttgca gtaacccata agtcactaat	1560						
ctcatcagaa cttagatcgg cgaatctttt cacttcacgc ttggggcaca caagaacatg	1620						
taggtattgt caaggaaaaa ccagtgcata tagaagaaca cagtttccta aaacatgatg	1680						
tatcaaactt tgagtc	1696						
<210> 1531 <211> 1663 <212> DNA <213> Zea mays							
<220> <223> Predicted polypeptide sequence is orthologous to G1275							
<pre><400> 1531 cattgggacc ctcgaggccg gccgggtcta attatatgat aggtgtcaag tggaagtgca</pre>	60						
gtgatgtatg cagctgaggc atcctaacag accccggccg acgggaaaca agaaagaaaa	120						
aatcgagagg acgccagggc cgattctctg cgtgacttgg ggcgtcgtcg ccgagttttc	180						
tccggccgag ggcggcgcga ccggacaacc agcgtgagcg cgaccggcga catgactcgc	240						
ggcaaccagc gtgaccgcga ccgtgagcgc gcggcggcgc ggaagcccaa cgccaagaac	300						

MBIOO47PCT.ST25.abridged.txt tcccaggacg ggctcacccc ggagcagcgc cgcgagaggg acaagaaagc tctggaggag	360
aaggcggcca agaaggcgca gcaggcagcg gccggcggca ccgggacctc cacggacaac	420
aacaagaaca aggcaggtgg caagaagtag gaggcagtgg cgcgccgcca cctctgtacg	480
attaatcgat gccttgagct tgtaacttgt tcgcatcctt gtaggtgcga tgcttgttgg	540
gtcataaact ctgatgatat cgagatttgg tgatcagaaa taatgcgtgg ttttcgcgcc	600
caaaattggg aaccccgagg ccggccgggg ttattcaggc aggcgcattg actgatacac	660
atatatacaa caagcaaggc ggctagctac agcggctagt gcgcgcgtgg tgcaggcgca	· 720
tctagctact acctggtgct tgttgtgcat acaatggcga cttcgctggg actgaaccct	780
gaagatetet teaettegta etegtettee taetaeteet egeegeegtt eatgteegae	840
tacgcggcga gcttcacgcc ggcggccggg gactccacgg ccttctcctc ggagctcgac	900
gaccttcacc acttcgacta ctcaccggcg ccgatcgtca ctgctgccgg agccggggct	960
gggggcggcg atcgcaacga gaagatgatg tggtgtgagg gtggtggtga cgagagaaga	1020
ctcagaagca acggaaggat cgggttcaga acgaggtcag aggtggagat cttggacgac	1080
ggattcaagt ggaggaagta cgggaagaag gccgtcaaga acagcccaaa tccaaggaac	1140
.tactaccgct gctcgtcgga gggctgcggc gtgaagaagc gggtggagag ggaccgcgac	1200
gacccccgct acgtcatcac cacctacgac ggcgtccaca accacgccag ccccggagcc	1260
gctgctatca tcgtcccgta cggcagcggc ggcggcaata gcggcttcta cagcccgccg	1320
cacagcggct ccccgtcggc cacctcctac tcgggctccc tagccttctg acttttccgg	1380
gccttgaccc atagttacct ttacactcca gtcgtcggat aagaagaatg ttcagcggct	1440
ggctaaacag tctcaactgc tgcagctatt caaattagtg ttggagatgc aatttataga	1500
gataaaatac tctagaagct atcgctgtag ccggattaaa ttctgaccta cttgtatagt	1560
tttacactta cacagtgcaa gtaataatat ttaagggaag cagagagcac tctaggcggc	1620
CgCtCaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaa	1663
<pre><210> 1532 <211> 999 <212> DNA <213> Zea mays </pre> <pre><220> <223> Predicted polypeptide sequence is orthologous to G1275</pre>	
<400> 1532 agagaaaggc agggtcggag cgctgcaggt gtttgggcgc ccaactcttt gggtttagct	60
actgttcatt cgtcttcctc ctctcaccaa tctgtgtcct gtgcttgtga gcgttttaga	120
gttccaacac attctagcta cgtgacccgt acgtgcgtgt aataactgat ggatgacgga	180
	240
tcggatcagt acgacgactc cgaggaatga gcaaccgccg ccgcggcgtg cagctgcgcc	300
tcccaccacg cgtcacaggc ggcgctccag ctgggcgctg cagccagagg cgctggcgcc 5	300

gaggccgagc	gtggaggcga	gaagggcgtt	gcggtcgcgg	ttgcgccgcg	cggcggcggt	360
ggttggcaca	ggtaggaggc	ggcgcccggg	cccggcgcgg	cgtggttgtg	gacgccgtcg	420
taggtggtga	cgacgtagcg	cgggtcgtcg	ctgtcccgct	ccacgcgctt	cttcacgccg	480
gagccctccg	tcgagcaccg	gtagtagttc	ctcgggttgg	ggctgctctt	gaccgccttc	540
ttgccgtact	tgcgccactt	gaagccatcg	tccagcacgt	ccacctccga	ccgcgtccgg	600
aacccgatcc	gtgacgacga	cggcggccgg	ccgccgccgt	tcccaccggt	gccatatggt	660
ggtccgctca	tcggcctcct	cccgtcgccg	tcgccgtcca	cgccgtagct	cagcaggctc	720
atgccattgc	cgacggcggc	ggtgacggcg	tctgaagaac	tgttggcgaa	caccggcgcc	780
gagcagtcat	cggccaccat	ctcctggccg	gtgaacccga	actggaagta	gtcatcggcc	840
atggtggcgg	cggcgggcgg	cgggaggtcc	gccacgaggt	cgggtggtgg	tgggaagtac	900
gaggaggcgg	gcgcgggcgg	cgggtagtag	gcggcgtagc	tcgtctcgtg	ggcgagtcct	960
agcgaggccg	cctgagtaag	tagacgcacg	cgccggcag			999

<210> 1533

Met Ala Ala Ser Val Gly Leu Asn Pro Glu Ala Phe Phe Ser Asn 10 15

Ser Tyr Ser Tyr Ser Ser Ser Pro Phe Met Ala Ser Tyr Thr Pro Glu 20 25 30

Phe Ser Ala Ala Ile Asp Ala Asn Leu Phe Ser Gly Glu Leu Asp 35 40 45

Phe Asp Cys Ser Leu Pro Ala Pro Ala Gln Glu Tyr Pro Glu Asn Glu 50 60

Asn Thr Met Met Arg Tyr Glu Ser Glu Glu Lys Met Arg Ala Arg Val 75 80

Asn Gly Arg Ile Gly Phe Arg Thr Arg Ser Glu Val Glu Ile Leu Asp 85 90 95

Asp Gly Phe Lys Trp Arg Lys Tyr Gly Lys Lys Ala Val Lys Asn Ser 100 105 110

Pro Asn Pro Arg Asn Tyr Tyr Arg Cys Ser Thr Glu Gly Cys Asn Val

<211> 194

<212> PRT

<213> Oryza sativa

<220>

<223> Orthologous to G1275

<400> 1533

Lys Lys Arg Val Glu Arg Asp Arg Glu Asp His Arg Tyr Val Ile Thr 130 135 140

Thr Tyr Asp Gly Val His Asn His Ala Ser Pro Ala Ala Ala Ala 145 150 155 160

Ala Leu Gln Tyr Ala Ala Ala Ala Gly Asp Tyr Tyr Ser Pro Pro Leu 165 170 175

Ser Ser Ala Gly Ser Pro Pro Ala Ala Tyr Ser Ala Gly Gly Ser Leu 180 185 190

Leu Phe

<210> 1534

<211> 246

<212> PRT

<213> Oryza sativa

<220>

<223> Orthologous to G1275

<400> 1534

Met Ser Ser Leu Tyr Pro Ser Leu Leu Ser Leu Ser Glu Ser Pro Ala 10 15

Glu Tyr Arg Gln Val Gly Gly Gly Arg Tyr Ala Gly Glu Asp Val Val 20 25 30

Asp Asp Asp Asp Met Ala Ala Val Ala Asp Ala Val Ser Ser Tyr 35 40 45

Leu Ser Phe Asp Met Asp Asp Val Glu Tyr Tyr Thr Pro Glu Val Gly 50 60

Phe His Ser Lys Gln His Asn Pro Pro Pro Val Ala Ala Ala Pro Leu 65 70 .75 80

Glu Ala Gly Gly Arg Glu Gln Ser Arg Arg Glu Ala Ala Val Asn 85 90 95

Leu Gly Lys Met Asp Arg Gly Pro Ala Pro Val Ser Gly Gly Ala Ala 100 105 110

Thr Gly Gly Val Pro Arg Ser Lys Asn Gly Ser Lys Ile Ala Phe Lys 125

MBI0047PCT.ST25.abridged.txt
Thr Arg Ser Glu Val Asp Val Leu Asp Asp Gly Tyr Arg Trp Arg Lys
130 135 140

Tyr Gly Lys Lys Met Val Lys Asn Ser Pro Asn Pro Arg Asn Tyr Tyr 145 150 155 160

Arg Cys Ser Ser Glu Gly Cys Arg Val Lys Lys Arg Val Glu Arg Ala 165 170 175

Arg Asp Asp Ala Arg Phe Val Val Thr Thr Tyr Asp Gly Val His Asn 180 185 190

His Pro Ala Pro Leu His Leu Arg Pro Gln Leu Pro Pro Pro Gly Gly 195 200 205

Tyr Ser Ile Ala Gly Ala Pro Ala Val Ala Pro His Gly Arg Leu 210 215 220

Gly Leu Glu Glu Ala Glu Val Ile Ala Leu Phe Arg Gly Thr Thr Ala 225 230 235 240

Thr Ser Leu Leu Pro 245

<210> 1535

<211> 219

<212> PRT

<213> Oryza sativa

<220>

<223> Orthologous to G1275

<400> 1535

Met Ala Ala Ser Leu Gly Leu Cys His Glu Thr Ser Tyr Ala Tyr Ser 10 15

Tyr Pro Ala Ser Asn Thr Ser Ser Ser Leu Cys Phe Pro Pro Leu Met 20 25 30

Ala Asp His Ile Val Asp Gly Gly Gly Gly Gly Gly Cys Ser Phe Gly 35 40 45

Glu Phe Leu Glu Leu Gly His Ser Val Tyr Ser Leu Pro Leu Pro Pro 50 55 60

Pro Pro Ser Gln Pro Val Val Val Ala Gly Gly Asn Asn Asp Gln Tyr 65 70 75 80

Gly Val Ser Ser Ser Ser Ala Ala Ala Thr Thr Ser Arg Ile Gly 85 90 95

Phe Arg Thr Arg Ser Glu Val Glu Val Leu Asp Asp Gly Phe Lys Trp 100 105 110

Arg Lys Tyr Gly Lys Lys Ala Val Lys Ser Ser Pro Asn Pro Arg Asn 115 120 125

Tyr Tyr Arg Cys Ser Ala Ala Gly Cys Gly Val Lys Lys Arg Val Glu 130 135 140

Arg Asp Gly Asp Asp Pro Arg Tyr Val Val Thr Thr Tyr Asp Gly Val 145 150 155 160

His Asn His Ala Thr Pro Gly Cys Val Gly Gly Gly His Leu Pro 165 170 175

Tyr Pro Thr Ser Ala Ala Pro Pro Trp Ser Val Pro Ala Ala Ala 180 185 190

Ser Pro Pro Pro Ala His Ala Gln Ala Trp Gly Ala Pro Leu His Ala 195 200 205

Ala Ala Ala His Ser Ser Glu Ser Ser Phe 210