

PER ORDER OF CILK HUB

FROM

Modern Algorithms Workshop Parallel Algorithms

Prof. Charles E. Leiserson

Dr. Tao B. Schardl

September 19, 2018

Outline

- Introduction
- Cilk Model
- Detecting Nondeterminism
- What Is Parallelism?
- Scheduling Theory Primer
- Lunch Break
- Analysis of Parallel Loops
- Case Study: Matrix Multiplication
- Case Study: Jaccard Similarity
- Post–Moore Software

SCHEDULING THEORY PRIMER

Scheduling

- Cilk allows the programmer to express potential parallelism in an application.
- The Cilk scheduler maps strands onto processors dynamically at runtime.
- Since the theory of distributed schedulers is complicated, we'll explore the ideas with a centralized scheduler.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its predecessors have executed.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its predecessors have executed.

Complete step

- ≥ P strands ready.
- Run any P.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its predecessors have executed.

Complete step

- ≥ P strands ready.
- Run any P.

Incomplete step

- < P strands ready.
- Run all of them.

Analysis of Greedy

Theorem [G68, B75, EZL89]. Any greedy scheduler achieves

 $T_P \le T_1/P + T_{\infty}$.

Proof.

- # complete steps ≤ T₁/P, since each complete step performs P work.
- # incomplete steps ≤ T_∞, since each incomplete step reduces the span of the unexecuted dag by 1.

Optimality of Greedy

Corollary. Any greedy scheduler achieves within a factor of 2 of optimal.

Proof. Let T_P^* be the execution time produced by the optimal scheduler. Since $T_P^* \ge \max\{T_1/P, T_\infty\}$ by the Work and Span Laws, we have

$$T_{P} \leq T_{1}/P + T_{\infty}$$

$$\leq 2 \cdot max\{T_{1}/P, T_{\infty}\}$$

$$\leq 2T_{P}^{*}. \quad \blacksquare$$

Linear Speedup

Corollary. Any greedy scheduler achieves near–perfect linear speedup whenever $T_1/T_\infty \gg P$.

Proof. Since $T_1/T_\infty \gg P$ is equivalent to $T_\infty \ll T_1/P$, the Greedy Scheduling Theorem gives us

$$T_P \leq T_1/P + T_\infty$$

 $\approx T_1/P$.

Thus, the speedup is $T_1/T_P \approx P$.

Definition. The quantity T_1/PT_{∞} is called the parallel slackness.

Cilk Performance

- Cilk's work-stealing scheduler achieves
 - \blacksquare T_P = T₁/P + O(T_{\infty}) expected time (provably);
 - $T_P \approx T_1/P + T_\infty$ time (empirically).
- Near-perfect linear speedup as long as $P \ll T_1/T_{\infty}$.
- Instrumentation in Cilkscale allows you to measure T_1 and T_{∞} .

Quiz on Scheduling Theory

Your team is performance-engineering a parallel program.* Although the program will be run on a 512-processor ideal machine, you are testing the program on a similar but smaller 32-processor machine. One of the engineers proposes a change that improves the 1-and 32-processor performance of the code as follows:

	T ₁	T ₃₂
Before	2048	65
After	1024	40

Assume that the running times obey the equation $T_P = T_1/P + T_\infty$. Is the optimization wise? Justify.

^{*}This scenario really happened during the development of the ★Socrates chess-playing program, although the timing numbers have been simplified.

Quiz Solution

	T ₁	T ₃₂
Before	2048	65
After	1024	40

Before:

$$65 = 2048/32 + T_{\infty}$$

$$\rightarrow$$
 $T_{\infty} = 1$

$$T_{512} = 2048/512 + 1$$

= 5

After:

$$40 = 1024/32 + T_{\infty}$$

$$\rightarrow$$
 $T_{\infty} = 8$

$$T_{512} = 1024/512 + 8$$

= 10

Reject the optimization!

Quiz 2 on Scheduling Theory

Ben Bitdiddle measures the running time of his deterministic parallel program scheduled using a greedy scheduler on an ideal parallel computer with 4, 10, and 64 processors. Ben obtains the following running times:

Processors	Time
T ₄	80
T ₁₀	42
T ₆₄	9

Argue that Ben messed up at least one of his measurements.

Quiz 2 Solution

Processors	Time
T ₄	80
T ₁₀	42
T ₆₄	9

Work Law:
$$T_1 \le 4 * T_4 = 320$$

Span Law:
$$T_{\infty} \leq T_{64}$$

$$= 9$$

Greedy scheduling on
$$T_{10} \le 320/10 + 9$$

10 processors: $= 41$

But Ben measured
$$T_{10} = 42!$$