Giotto – An open-source → python ecosystem for Topological Machine Learning

My <u>awesome</u> collaborators

Guillaume Tauzin

Anibal Medina-Mardones

Alberto Dassatti

Julian Burella Pérez

Wojciech Reise

Lewis Tunstall

Matteo Caorsi

Sponsored by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency

... and many **community** contributors!

Plan

- 1. Intro: Topology in data analysis
- 2. Range of applicability
- 3. Integration with machine learning and the 🔘 Giotto projects
- 4. Hands-on session & audience questions

What is Topological Data Analysis?

- Topological Data Analysis/Machine Learning (TDA/TML) apply modern computational algebraic topology to data problems
- Main points of focus:
 - 1. Extract succinct topological features ("the shape of data") from discrete datasets by leveraging their geometry
 - 2. Multi-scale approach describe the emergence and disappearance of topological features at **all scales at once**.
 - 3. Needs very little often only **distance-like matrices** or **graphs** with edge and/or node weights, or greyscale (2-D or *N*-D) **images**. Leading to **wide applicability**.
- Also worth mentioning:
 - Suitable for very high-dimensional datasets.
 - Robustness to perturbations ensured by stability theorems.
 - Impressive scalability improvements in recent years.

- Topology studies the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling and bending, but not tearing or gluing.
 - Here, the surfaces of a coffee mug and of a donut are equivalent...
 - ... but neither are equivalent to a sphere!
- Algebraic topology (AT) handles these properties via linear algebra.

Example properties:

- Connectedness
- Number of holes, voids, ...
- Beyond continuous shapes: AT can also deal with purely combinatorial objects such as graphs and their higher-dimensional counterparts, or grid-like data.

- Computational AT is AT's algorithmic division
- Example "old school" recipe starting from a **smooth object** (manifold):
 - 1. Discretize via a mesh/triangulation.
 - 2. Compute shape signatures of the discrete approximation (number of connected components, number of holes and voids, etc.).
 - 3. If the mesh is "sufficiently fine", its shape signatures are guaranteed to be the same as for the original continuous object.
 - 4. Use these shape signatures to distinguish between, classify objects, etc.

Topological features "Betti numbers" β_k

Sphere

tori

 $\beta_0 = 1$ connected component

 $\beta_1 = 2$ holes

 $\beta_2 = 1$ void

 $\beta_1 = 0$ holes

 $\beta_2 = 1$ void

 $oldsymbol{eta_0} = \mathbf{1}$ connected component

 $\beta_1 = 4$ holes

 $\beta_2 = 1$ void

TDA in the mainstream? [1/2]

- Looking at 0-dimensional Betti numbers is looking at connected components
- So (single-linkage) hierarchical clustering is "0-dimensional multi-scale TDA"
- Vanilla single-linkage clustering is brittle. But persistence ideas + <u>DBSCAN</u> lead to <u>HDBSCAN*</u>, which is robust and fast!

Source: https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

TDA in the mainstream? [2/2]

UMAP: a state-of-the-art algorithm for non-linear dimensionality reduction

L. McInnes, J. Healy and J. Melville. <u>UMAP: Uniform Manifold</u> Approximation and Projection for Dimension Reduction

Published: 03 December 2018

Dimensionality reduction for visualizing single-cell data using UMAP

Etienne Becht, Leland McInnes, John Healy, Charles-Antoine Dutertre, Immanuel W H Kwok, Lai Guan Ng, Florent Ginhoux & Evan W Newell

Nature Biotechnology 37, 38–44(2019) | Cite this article
49k Accesses | 500 Citations | 282 Altmetric | Metrics

Article | Open Access | Published: 24 March 2020

Dimensionality reduction by UMAP to visualize physical and genetic interactions

Nature Communications 11, Article number: 1537 (2020) | Cite this article

7459 Accesses 7 Citations 65 Altmetric Metrics

Persistent Homology

- Simplicial complex: generalization of a graph containing triangles, tetrahedra, ... (called simplices)
- TDA recipe:
 - make one simplicial complex per parameter
 value r according to a rule
 - Keep track of birth and death of topological features (connected comps, holes, voids, ...)
- Main Example of rule: r is radius of ball grown around each point, edges appear when balls intersect, simplices are cliques ("Vietoris-Rips")
- Easy to go beyond Euclidean distance! **Dissimilarity** between vertices in a network, genetic distance for sequence data, ...

"Barcode": bars start when topological features appear and end when they disappear.

From barcode to persistence diagram: plot birth-death values as 2D coordinates

- Persistence diagrams are incredibly **succinct** data summaries
- **Distances** between diagrams exist with good statistical properties (**stability**). **Bottleneck, Wasserstein** (optimal transport)
- Diagrams are (multi-)sets, and interesting set functions are difficult to describe via conventional array-based computation. (An exception: Shannon entropy.)
- One solution: vectorize diagrams & feed resulting vectors to arbitrary functions
- Inner product structure can be used to define several kernels and distances

Example: Persistence Images

Source: https://persim.scikit-tda.org/en/latest/notebooks/Persistence%20images.html

Neat application: time series

- "Takens embedding" technique: time series → point cloud → topological feature extraction
- Periodicity corresponds to loops in the embedding!

Corresponding point cloud in 2 dimensions

The Mapper algorithm [1/2]

- A popular TDA algorithm for data exploration and discovery
- Uses a particular "filter" on the data and partial clustering to obtain a skeletonized topological summary of the data
- Output is a graph:
 - each node is a cluster.
 - there is an edge between two overlapping clusters

Extracting insights from the shape of complex data using topology

P. Y. Lum¹, G. Singh¹, A. Lehman¹, T. Ishkanov¹, M. Vejdemo-Johansson², M. Alagappan¹, J. Carlsson³ & G. Carlsson¹.⁴

¹ Ayasdi Inc., Palo Alto, CA, ²School of Computer Science, Jack Cole Building, North Hough, St. Andrews K71.6 9SX, Scotland, University of Minnesota, 111 Church St. SE, Minneapolis, MN 55455, USA, ⁴Department of Mathematics, Stanford University, Stanford, CA, 94305, USA.

A Original Point Cloud

B Coloring by filter value

C Binning by filter value

D Clustering and network construction

Here, filter function f is projection on one coordinate axis

The Mapper algorithm [2/2]

- Filter functions are arbitrary and can be multi-dimensional! Clustering algo also arbitrary.
- Can inject domain knowledge into these choices.
- Example: score of an outlier detection algorithm as a filter!
- Other filters worth trying: dimensionality reduction algos (PCA, t-SNE, UMAP, ...)

Here, filter function f is projection on one coordinate axis

Abbas H Rizvi^{1,2,6}, Pablo G Camara^{3,4,6}, Elena K Kandror^{1,2}, Thomas J Roberts^{1,2,4}, Ira Schieren^{2,5}, Tom Maniatis^{1,2} & Raul Rabadan^{3,4}

Topology and the ML workflow

Our objective: Place topological learning algorithms firmly *alongside* established machine learning techniques

ML ethos: Select the best combinations of techniques in a **data-driven** way. The best ones may *include* a number of topological steps as part of a larger **ML pipeline**

Featurization: Produce "**features**" (scalars or vectors) which are amenable to processing by ML algorithms: **permutation-invariant functions**, **explicit vectorisations**, **learned representations**, ...

Hyperparameters: Typically, several are involved within each choice of featurization technique (example: pixel size for persistence images)

Large-scale cross-validation routines: Must involve all hyperparameters and model choices at once, topological or not.

giotto-tda: Pillars

Seamless integration with widely used ML frameworks: inherit their strengths and allow for creation of heterogeneous ML pipelines. Python + <u>scikit-learn</u>

Code modularity: "Lego blocks" approach. Topological algorithms as *scikit-learn transformers*

User-friendliness and **familiarity** to the broad data science community

Standardisation: Allow for integration of most available TDA techniques into a generic framework

Performance: Parallelism and state-of-the-art C++ backends

Data structures: Support for point clouds, time series, graphs and images

Persistent Homology

Pipeline

Persistent homology

Topological features

Classification

```
clouds, labels = make point clouds(n samples per shape=100,
                                   n points=200,
                                   noise=0.2)
# Split between training set and test set
clouds train, clouds test, labels train, labels test = \
   train test split(clouds, labels)
# Define an end-to-end classification pipeline
persistence pipeline = make pipeline(
   VietorisRipsPersistence(),
   PersistenceEntropy(),
   RandomForestClassifier()
# Fit the whole pipeline on the training set
persistence pipeline.fit(clouds train, labels train)
# Evaluate the model on the test set
persistence pipeline.score(clouds test, labels test)
```

Sampled sphere

Sampled torus

Persistence diagrams

Mapper


```
# Filter function can be any sklearn Transformer
filter_func = Projection(columns=[0, 1])
# Define cover
cover = CubicalCover()
# Choose clustering algorithm
clusterer = DBSCAN()

# Initialise pipeline
pipe = make_mapper_pipeline(
    filter_func=filter_func,
    cover=cover,
    clusterer=clusterer
)

# Generate interactive plot (Jupyter required)
plot_interactive_mapper_graph(pipe, alien)
```

Point cloud/metric space

Topological summary

"Endless" possibilities

giotto-ph

- State-of-the-art, multicore computation of persistent homology of Vietoris—Rips filtrations
- Supported: point clouds, graphs with node and edge weights
- Makes fast backpropagation through persistent homology possible

pyflagser

- Fast persistent homology of directed flag complexes
- Like *giotto-ph*, but for **directed graphs**
- Example application: neuroscience

References

- G. Tauzin et al: *giotto-tda*: A Topological Data Analysis Toolkit for Machine Learning and Data Exploration (extended NeurIPS version, JMLR version)
- J. Burella Pérez et al: *giotto-ph*: A Python Library for High-Performance Computation of Persistent Homology of Vietoris–Rips Filtrations (arXiv:2107.05412)

Sources on (GitHub: github.com/giotto-ai/{giotto-tda, giotto-ph, pyflagser})

Docs: giotto-ai.github.io/gtda-docs

Tutorials & examples: giotto-ai.github.io/gtda-docs/0.5.1/notebooks

API reference: giotto-ai.github.io/gtda-docs/0.5.1/modules

What would you like to do with giotto-tda?

Your help is welcome on GitHub: https://github.com/giotto-ai/giotto-tda

We are always **looking to integrate:**

- New algorithmic developments
- More preprocessing techniques
- More kernel and vectorization methods
- ... And other important features!

Chat with us!

- Slack: https://slack.giotto.ai/
- GitHub discussions: https://github.com/giotto-ai/giotto-tda/discussions

Today's tutorials

Navigate to https://github.com/ulupo/giotto-tda demo and follow the installation instructions there

Interrupt & ask questions!