

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AD2 2° semestre de 2009

1 - Primeira questão (2,0 pontos)

Uma distribuição de probabilidade é dada por

$$f(x) = \frac{1}{10} (-3x^2 + 8x + 5); x \in [1,2]$$

sendo não negativa dentro do intervalo e nula fora do intervalo acima.

a) Demonstre que f(x) é uma densidade; (0.5 ponto)

Já foi afirmado que a função é não nula no intervalo portanto, deve ser demonstrado que a integral da função é igual a 1:

$$I = \int_{1}^{2} f(x) dx = \frac{1}{10} \int_{1}^{2} (-3x^{2} + 8x + 5) dx = \frac{1}{10} \left(-3\frac{x^{3}}{3} + 8\frac{x^{2}}{2} + 5x \right) |_{1}^{2}$$

ou

$$I = \frac{1}{10} \left[-x^3 \Big|_1^2 + 4x^2 \Big|_1^2 + 5x \Big|_2^1 \right] = \frac{1}{10} \left[-(8-1) + 4(4-1) + 5(2-1) \right] = \frac{-7 + 12 + 5}{10} = 1$$

b) Calcule o valor médio;

(0.5 pontos)

Usando a definição do valor médio no intervalo de definição da densidade:

$$\mu = \int_{1}^{2} x f(x) dx = \frac{1}{10} \int_{1}^{2} \left(-3x^{3} + 8x^{2} + 5x \right) dx = \frac{1}{10} \left(-3\frac{x^{4}}{4} + 8\frac{x^{3}}{3} + 5\frac{x^{2}}{2} \right) \Big|_{1}^{2}$$

ou

$$\mu = \frac{1}{10} \left(-3 \frac{x^4}{4} \Big|_1^2 + 8 \frac{x^3}{3} \Big|_1^2 + 5 \frac{x^2}{2} \Big|_1^2 \right) = \frac{1}{10} \left[-\frac{3}{4} (16 - 1) + \frac{8}{3} (8 - 1) + \frac{5}{2} (4 - 1) \right]$$

$$\mu = \frac{1}{10} \left(\frac{-45}{4} + \frac{56}{3} + \frac{15}{2} \right) = \frac{-135 + 224 + 90}{120} = \frac{179}{120} = 1,4916$$

d) Calcule a variância;

(0,5 pontos)

$$\sigma^{2} = \int_{1}^{2} x^{2} f(x) dx - \mu^{2} = \frac{1}{10} \int_{1}^{2} \left(-3x^{4} + 8x^{3} + 5x^{2} \right) dx - \mu^{2} = \frac{1}{10} \left(-3\frac{x^{5}}{5} + 8\frac{x^{4}}{4} + 5\frac{x^{3}}{3} \right) \Big|_{1}^{2} - \mu^{2}$$

e daí

$$\sigma^{2} = \frac{1}{10} \left[-3 \frac{x^{5}}{5} \Big|_{1}^{2} + 8 \frac{x^{4}}{4} \Big|_{1}^{2} + 5 \frac{x^{3}}{3} \Big|_{1}^{2} \right] - \mu^{2} = \frac{1}{10} \left[-\frac{3}{5} (32 - 1) + 2(16 - 1) + \frac{5}{3} (8 - 1) \right] - \mu^{2}$$

ou

$$\sigma^2 = \frac{1}{10} \left[-\frac{93}{5} + 30 + \frac{35}{3} \right] - 1,4916^2 = 0,0817$$

e) Calcule a moda.

(0,5 pontos)

A moda é o valor para o qual temos a maior probabilidade. Numa parábola da forma

$$ax^2+bx+c$$

o ponto de máximo é dado por $x=-\frac{b}{2a}$. Para os valores dados pela distribuição teremos

$$-\frac{b}{2a} = \frac{-4/5}{(-2 \times 3/10)} = \frac{4}{3}$$

que é a moda.

2 - Segunda questão (2,0 pontos)

Uma função densidade de uma variável aleatória é dada por um triângulo que tem seus vértices nos pontos (0;0), (1,5; a), (2; 0). Fora do intervalo [0, 2] a função é nula.

a) Determine o valor de *a* de forma que tenhamos de fato uma densidade de probabilidade (0,5 pontos)

Abaixo apresento um esboço da candidata à densidade de probabilidade

Para a que a distribuição proposta seja densidade de probabilidade é necessário que a função seja não negativa e com área unitária. Por observação percebemos que a primeira exigência é cumprida. Para a segunda exigência observe que a área do triângulo é dada pela metade do produto da base pela a altura. Assim,

$$\frac{(2-0)a}{2} = 1$$

para a condição se cumprir. Logo a = 1.

Calcule:

b)
$$P(X < 1/2)$$
 (0,5 pontos)

Existem várias maneiras de fazer esta questão. Aqui usarei o fato que a reta que passa pelos pontos (0; 0) e (1,5; 1) é dada por $y=\frac{2}{3}x$. No ponto x=1/2 y é igual a 1/3. Como a probabilidade pedida é dada pela área no intervalo $[0; \frac{1}{2}]$, um triângulo, teremos

$$P(X<1/2) = \frac{\frac{1}{2} \times \frac{1}{3}}{2} = \frac{1}{12} = 0.08333$$

c)
$$P(X < 1.8)$$
 (0.5 pontos)

Novamente existem várias formas de efetuar este cálculo. Aqui aproveitaremos que já temos a expressão da reta no intervalo [0; 1.5] para calcular esta parte do problema e somaremos à este valor a área no intervalo (1,5; 1,8]. Neste intervalo a função de probabilidade tem a expressão y=-2x+4. Para x=1,8, y vale 0,4 e a área dentro deste segmento será a de um trapézio de bases 1 e 0,4 e

altura 0,3 (1,8-1,5). Assim a área total no intervalo [0; 1,8], que nos dá a probabilidade pedida será dada por

$$P(X < 1.8) = \frac{1.5 \times 1}{2} + \frac{1 + 0.4}{2} \times 0.3 = 0.75 + 0.21 = 0.96$$

d)
$$P(1/2 < X < 1.8)$$
 (0.5 pontos)

A maneira mais simples de fazer este cálculo está em observar que a probabilidade pedida pode ser expressa como

$$P(1/7 < X < 1, \Lambda) = P(X < 1, \Lambda) - P(X < 1/7)$$

Assim teremos

$$P(1/1 < X < 1, \Lambda) = \cdot, 97 - \cdot, \Lambda \Upsilon \Upsilon \Upsilon = \cdot, \Lambda \Upsilon \Upsilon \Upsilon \Upsilon$$

3 - Terceira questão (1,5 pontos)

Chovia pesadamente numa região e uma equipe avaliava a possibilidade de evacuar uma área sujeita à alagamentos. Foram medidos o fluxo de água que descia pelo rio durante 12 horas. A região ribeirinha seria evacuada se o fluxo médio fosse maior que 12,0 unidades arbitrárias (UA) de fluxo. Abaixo se encontra a tabela de medidas.

Н	1	2	3	4	5	6	7	8	9	10	11	12	13	14
UA	12,3	13,2	11,3	10,2	10,5	11,3	11,9	11,7	12,3	12,8	12,7	12,9	12,3	12,6

Faça as hipóteses cabíveis à situação e calcule com fator de certeza de 5% se a equipe teve de determinar a evacuação.

A média amostral é
$$\bar{X} = \frac{\sum_{i=1}^{12} x_i}{n} = \frac{168.2}{14} = 12,014$$
 enquanto a estimativa para a

variância amostral é dada por
$$\sigma^{\tau} = \frac{1}{1! \cdot 1!} \left(\sum_{i=1}^{1!} X_{i}^{\tau} - 1! \cdot \bar{X}^{\tau} \right) = \cdot, \forall \tau \tau \tau$$

Assim,

$$\alpha = P(\bar{X} < x_c | \mu = 12,014) = P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < \frac{x_c - 12,014}{0,761/3,741}\right) = P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < \frac{x_c - 12,014}{0,203}\right) = P(Z < z_c)$$

logo

$$z_c = \frac{x_c - 12,014}{0.203} \Rightarrow x_c = 12,014 + z_c 0,203$$

Com o fator igual a 5%, temos pela tabela da distribuição Normal o valor -1,64 que nos dá para $x_c = 11,681$, ou seja, não haverá evacuação.

4 - Quarta questão (1,5 pontos)

Um fabricante de produtos de madeira teve uma encrenca com uma máquina que começou a produzir palitos com elevado grau de defeitos: 30%. Faça as devidas hipóteses sobre amostras retiradas para controle.

Em ambas as situações vamos supor que é válido nos utilizarmos do Teorema Central do Limite e, desta maneira, possamos usar a distribuição Normal. Além disto, como trabalharemos com proporção de defeitos, usaremos para calcular a variância a expressão $Var(\hat{p}) = \frac{p(1-p)}{n}$.

a) Foi tomada uma amostra de 10 palitos. Qual a probabilidade desta amostra contermenos de 40% de palitos defeituosos? (1,0 ponto)

Solução: A proporção de defeitos é de 30% e a estimativa para a a variância é $Var(\hat{p}) = \frac{p(1-p)}{n} = 0,3 \frac{(1-0,3)}{10} = 0,021$. Sendo assim, a probabilidade de termos na amostra menos de 40% de defeitos é

$$P(X<0,4) = P(\frac{(X-0,3)}{(\sqrt{(0,021)})} < \frac{(0,4-0,3)}{(\sqrt{(0,021)})}) = P(Z<0,690) \approx 0,2549 + 0,5 \approx 0,7549$$

b) Se a amostra for de 30 palitos, qual será a probabilidade da amostra conter menos de 40% de palitos defeituosos? (1,0 ponto)

Solução: A proporção de defeitos é de 30% e a estimativa para a a variância é $Var(\hat{p}) = \frac{p(1-p)}{n} = 0,3 \frac{(1-0,3)}{30} = 0,007$. Sendo assim, a probabilidade de termos na amostra menos de 40% de defeitos é

$$P(X<0,4) = P(\frac{(X-0,3)}{(\sqrt{(0,007)})} < \frac{(0,4-0,3)}{(\sqrt{(0,007)})}) = P(Z<1,1952) \approx 0,3849 + 0,5 \approx 0,8849$$

ou seja, a triplicação do tamanho da amostra praticamente dobrou a probabilidade de encontrarmos palitos defeituosos.

5 – Quinta questão (1,5 pontos)

Foi medido o nível de oxigenação durante um teste de esforço num grupo de pessoas em checkup. Numa amostra de 25 pessoas verificou-se o valor de 4,8 UAO (unidades arbitrárias de oxigenação) com variância amostral de 3,1. Deseja-se testar, ao nível de significância de 10%, se a média é igual ou é menor que 5,1.

Aqui temos que a amostra nos dá 4,8 para o valor médio e variância amostral 3,1. Vamos supor que a distribuição seja Normal. Como foram 25 pessoas teremos a distribuição $N(4,8;3,1/\sqrt{25})=N(4,8;0,62)$

 $N(\xi, \Lambda; \sqrt{(\Upsilon, \Upsilon)})/\sqrt{(\Upsilon \circ)}) = N(\xi, \Lambda; \cdot, \Upsilon \circ)$. Aqui teremos uma hipótese unilateral para a média ser menor ou igual a 5,1.

$$\alpha = P(X < x_c | (\mu = 5,1)) = P(\frac{X - \mu}{\sigma / \sqrt{n}} < \frac{x_c - 5,1}{0.35}) = P(Z < Z_c)$$

No caso

$$z_c = \frac{x_c - 5.1}{0.35} \Rightarrow x_c = 5.1 + z_c 0.35$$

Como aqui $\alpha=0.1$, determinamos z_c procurando na tabela normal o complemento de 0,1 o que nos dá -1,28. Assim temos $x_c=4,652$, logo a a média estimada se encontra abaixo de 5,1 com 10% de significância.

6 – Sexta questão (1,5 pontos)

Uma distribuição Normal tem média 2,35 e desvio padrão igual 0,8. Calcule as probabilidades abaixo:

a)
$$P(2,1 \le X \le 2,40)$$
 (0,5 pontos)

$$P(2,1 < X < 2,40) = P\left(\frac{2,1-2,35}{0,8} < \frac{\bar{X}-\mu}{\sigma} < \frac{2,40-2,35}{0,8}\right)$$

$$P(2,1 < X < 2,40) = P(-0,3125 < Z < 0,0625) = 0,1217 +0,0239 = 0,1456$$

b)
$$P(X > 2,30)$$
 (0,5 pontos)

$$P(X>2,30)=P(\frac{X-2,30}{0.8}>\frac{2,30-2,35}{0.8})=P(Z>-0,0625)$$

$$P(X>2,30)=P(Z>-0,0625)=0,5+0,0239=0,5239$$

c)
$$P(X < 2.25)$$
 (0.5 pontos)

$$P\left(X\!<\!2,\!25\right)\!=\!P\left(\frac{(X\!-\!2,\!30)}{(0,\!8)}\!<\!\frac{(2,\!25\!-\!2,\!35)}{(0,\!8)}\right)\!=\!P\left(Z\!<\!-0,\!125\right)$$

$$P(X<2,25)=P(Z<-0.125)=0.5-0.0517=0.4483$$

Tabela da distribuição Normal N(0,1)

\mathbf{Z}_{c}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,222
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,362
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,401
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,417
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,444
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,454
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,463
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,470
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,476
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,481
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,485
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,491
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,493
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,496
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,498
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,498
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,499
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,499

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.