応用関数解析特論レポート

園田継一郎

2021年12月23日

1

ℂ2 の標準基底

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

について He_1 , He_2 を計算すると

$$He_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$He_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

となる. それぞれの内積は

$$\begin{split} \langle \mathrm{H}e_1, \mathrm{H}e_1 \rangle &= \frac{1}{2}(1+1) = 1 = \langle e_1, e_1 \rangle \\ \langle \mathrm{H}e_1, \mathrm{H}e_2 \rangle &= \frac{1}{2}(1-1) = 0 = \langle e_1, e_2 \rangle \\ \langle \mathrm{H}e_2, \mathrm{H}e_1 \rangle &= \frac{1}{2}(1-1) = 0 = \langle e_2, e_1 \rangle \\ \langle \mathrm{H}e_2, \mathrm{H}e_2 \rangle &= \frac{1}{2}(1+1) = 1 = \langle e_2, e_2 \rangle \end{split}$$

となり、標準基底について H はユニタリ作用素の条件を満たす. $\forall x,y \in \mathbb{C}^2$ は e_1,e_2 の線形結合で表せるので、

$$\langle Hx, Hy \rangle = \langle x, y \rangle$$

が得られる. よって H はユニタリ作用素である.

2

 \mathbb{C}^3 の正規直交基底の 1 つとして,

$$e_1 = \frac{1}{\sqrt{14}} \begin{bmatrix} 1\\2\\3 \end{bmatrix}, e_2 = \frac{1}{\sqrt{182}} \begin{bmatrix} 13\\-2\\-3 \end{bmatrix}, e_3 = \frac{1}{\sqrt{13}} \begin{bmatrix} 0\\3\\-2 \end{bmatrix}$$

が挙げられる.

3

状態と正規直行基底の内積を計算すると

$$|\langle \xi_1, \psi \rangle|^2 = \left(\frac{1}{6}(-2+2+1+0)\right)^2 = \left(\frac{1}{6}\right)^2 = \frac{1}{36}$$
$$|\langle \xi_2, \psi \rangle|^2 = \left(\frac{1}{6}(2-2+1+0)\right)^2 = \left(\frac{1}{6}\right)^2 = \frac{1}{36}$$
$$|\langle \xi_3, \psi \rangle|^2 = \left(\frac{1}{6}(2+2-1+0)\right)^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$
$$|\langle \xi_4, \psi \rangle|^2 = \left(\frac{1}{6}(2+2+1-0)\right)^2 = \left(\frac{5}{6}\right)^2 = \frac{25}{36}$$

となる. 公理 2 より, 数値 1, 2, 3, 4 が検出される確率はそれぞれ $\frac{1}{36}$, $\frac{1}{36}$, $\frac{1}{4}$, $\frac{25}{36}$ である.

4

 $m,n\in\mathbb{N}$ とし、集合の元どうしで内積を計算する. $x\in[0,2\pi]$ のとき $\cos nx,\sin nx\in[0,1]$ なので、

$$\frac{\overline{\cos nx} = \cos nx}{\overline{\sin nx} = \sin nx}$$

が成立する. まず, 元が同じ場合の内積を計算する.

$$\langle \frac{1}{\sqrt{\pi}} \cos nx, \frac{1}{\sqrt{\pi}} \cos nx \rangle$$

$$= \int_0^{2\pi} \frac{1}{\sqrt{\pi}} \cos nx \frac{1}{\sqrt{\pi}} \cos nx dx$$

$$= \frac{1}{\pi} \int_0^{2\pi} \cos^2 nx dx$$