





Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

# Álgebra II

Los Del DGIIM, losdeldgiim.github.io José Juan Urrutia Milán

# Índice general

| 1. | Grupos: definición, generalidades y ejemplos | 5 |
|----|----------------------------------------------|---|
| 2. | Relaciones de Ejercicios                     | 9 |
|    | 2.1. Combinatoria y Teoría de Grafos         | 9 |

Álgebra II Índice general

## 1. Grupos: definición, generalidades y ejemplos

**Definición 1.1** (Operación binaria). Sea G un conjunto, una operación binaria en G es una aplicación

$$\begin{array}{cccc} *: & G \times G & \longrightarrow & G \\ & (a,b) & \longmapsto & a*b \end{array}$$

Ejemplo. Ejemplos de operaciones binarias sobre conjuntos son:

- 1. La suma y el producto de números en  $\mathbb{N}$ ,  $\mathbb{Z}$ ,  $\mathbb{Q}$ ,  $\mathbb{R}$ , ...
- 2. Dado un conjunto X, consideramos las operaciones  $\bigcup$ ,  $\bigcap$  sobre  $\mathcal{P}(X)$ .

**Definición 1.2** (Monoide). Un monoide es un conjunto G no vacío junto con una operación binaria \* que verifica:

- i) Asociatividad:  $(x * y) * z = x * (y * z) \forall x, y, z \in G$ .
- ii) Existencia de elemento neutro:  $\exists e \in G \mid e * x = x \ \forall x \in G$

Observación. En un monoide, el elemento neutro es único.

$$Demostración$$
.

**Notación.** Si X es un monoide con una operación binaria \* y un elemento neutro  $e \in X$ , será común hacer referencia al monoide por la tripleta:

$$(X, *, e)$$

**Ejemplo.** Ejemplos de monoides son (notando):

- 1.  $(\mathbb{N}, +, 0), (\mathbb{N}, \cdot, 1)$
- 2.  $(\mathcal{P}(X), \cap, X), (\mathcal{P}(X), \cup, \emptyset)$

**Definición 1.3** (grupo). Un grupo es un conjunto G no vacío junto con una operación binaria \* que verifica:

- i) Asociatividad:  $(x * y) * z = x * (y * z) \forall x, y, z \in G$ .
- ii) Existencia de elemento neutro:  $\exists e \in G \mid e * x = x \ \forall x \in G$ .
- iii) Existencia de elemento simétrico<sup>1</sup>:  $\forall x \in G \ \exists x' \in G \ | \ x' * x = e$ .

<sup>&</sup>lt;sup>1</sup>Al que luego llamaremos inverso en algunos casos.

Si además se cumple que:

iv) La propiedad conmutativa de \*:  $x * y = y * x \ \forall x, y \in G$ .

Entonces, diremos que (G, \*, e) es un grupo conmutativo o abeliano.

Notación. Nos permitimos los siguientes abusos del lenguaje:

- 1. Por abuso de lenguaje, admitimos escribir G en lugar de (G, \*, e), en los casos en los que \* y e estén claros por el contexto.
- 2. Usaremos una notación multiplicativa usualmente, es decir, sustituiremos \* por · o por la yuxtaposición:

$$x * y = x \cdot y = xy$$

Con esta notación, notaremos e = 1 y al elemento simétrico de x lo notaremos por  $x^{-1}$ .

3. En los casos con notación aditiva, escribiremos como operación \* el símbolo  $+, \forall x \in G$ .

En estos casos, notaremos e = 0 y al elemento simétrico de x lo notaremos por -x,  $\forall x \in G$ .

Ejemplo. Consideramos los siguientes ejemplos:

- 1.  $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$  con su respectiva suma son grupos abelianos.
- 2.  $\mathbb{Q}^*$ ,  $\mathbb{R}^*$ ,  $\mathbb{C}^*$  con su respectivo producto son grupos abelianos.
- 3.  $\{1,-1,i,-i\}\subseteq\mathbb{C}$  con el producto heredado de  $\mathbb{C}$  también es un grupo abeliano.
- 4.  $(\mathcal{M}_2(\mathbb{R}), +)$  es un grupo abeliano.
- 5.  $GL_2(\mathbb{R})$ , el grupo lineal<sup>2</sup> de orden 2 (con coeficientes en  $\mathbb{R}$ ) con el producto de matrices es un grupo que no es abeliano.
- 6.  $\mathbb{Z}_n$  con la suma es un grupo abeliano,  $\forall n \in \mathbb{N}$ .
- 7.  $U(\mathbb{Z}_n) = \{[a] \in \mathbb{Z}_n \mid mcd(a, n) = 1\}$  con el producto es un grupo abeliano,  $\forall n \in \mathbb{N}$ .
- 8. Dado  $n \ge 1$ ,  $\mu_n = \{\text{raíces complejas de } x^n 1\} = \{\xi_n = \cos \frac{2k\pi}{2} + i \operatorname{sen} \frac{2k\pi}{2} \mid k \in \mathbb{N}\}\$  es un grupo abeliano con el proudcto.

$$\mu_n = \left\{ 1, \xi, \xi^2, \dots, \xi^{n-1} \mid \xi = \cos \frac{2\pi}{n} + i \operatorname{sen} \frac{2\pi}{n} \right\} i$$

9. El grupo lineal especial de orden 2 sobre el cuerpo  $\mathbb{K}$ :

$$SL_2(\mathbb{K}) = \{\text{matrices con determinante 1}\}\$$

siendo K un cuerpo con el producto de matrices es un grupo no abeliano.

<sup>&</sup>lt;sup>2</sup>Es decir, el conjunto formado por todas las matrices regulares.

10. Sean G y H dos grupos,  $G \times H$  es un grupo, considerando la operación binaria  $*: (G \times H) \times (G \times H) \to G \times H$ .

$$(x,y)*(x',y') = (xx',yy')$$

A  $G \times H$  lo llamaremos grupo directo de  $G \times H$ .

11. Si X es un conjunto no vacío y consideramos

$$S(X) = \{f : X \to X \mid f \text{ biyectiva}\} = Perm(X)$$

será un grupo (no abeliano<sup>3</sup>) con la operación de composición o.

En el caso en el que X sea finito y tenga n elementos:  $X = \{x_1, x_2, \dots, x_n\}$ , notamos:

$$S_n = S(X)$$

12. Sea G un grupo y X un conjunto, consideramos el conjunto:

$$Apl(X,G) = G^X = \{f : X \to G \mid f \text{ aplicación}\}\$$

junto con la operación binaria de multiplicación de aplicaciones:

$$(f * g)(x) = f(x)g(x) \quad \forall x \in X$$

De forma que la aplicación simétrica la calculamos de la forma<sup>4</sup>:

$$f'(x) = (f(x))'$$

Es un grupo. Casos a destacar son:

- a) Si  $X = \emptyset$ , entonces  $G^X = {\emptyset}$ .
- b) SI  $X = \{1, 2\}$ , entonces  $G^X$  se identifica con  $G \times G$ .
- 13. El conjunto {1} con cualquier operación binaria es un grupo conmutativo, al que llamaremos grupo trivial.

#### Propiedades

**Proposición 1.1.** En un grupo G, el neutro y el simétrico de cada elemento son únicos.

$$Demostraci\'on.$$

Proposición 1.2. Sea G un grupo, entonces:

- $i) xx^{-1} = e \ \forall x \in G$
- $ii) xe = x \forall x \in G$

Demostración. Veamos cada una de las propiedades:

 $<sup>^3</sup>$ Compruébese

<sup>&</sup>lt;sup>4</sup>En cada punto, la aplicación simétrica es el simétrico del elemento f(x).

i) Usando la unicidad del neutro  $e \in G$ :

$$x^{-1}(xx^{-1}) = (x^{-1}x)x^{-1} = ex^{-1} = x^{-1} \Longrightarrow xx^{-1} = e$$

ii)

$$xe = x(x^{-1}x) = (xx^{-1})x = ex = x$$

**Proposición 1.3.** En un grupo G se verifica la propiedad cancelativa (tanto a la izquierda como a la derecha):

$$\forall x, y, z \in G: \begin{cases} xy = xz \Longrightarrow y = z \\ xy = zy \Longrightarrow x = z \end{cases}$$

Demostración. Para la primera, supongamos que xy = xz:

$$y = ey = (x^{-1}x)y = x^{-1}(xy) = x^{-1}(xz) = (x^{-1}x)z = ez = z$$

Proposición 1.4. Sea G un grupo, entones:

- 1.  $e^{-1} = e$ .
- 2.  $(x^{-1})^{-1} = x, \forall x \in G$ .
- 3.  $(xy)^{-1} = y^{-1}x^{-1}, \forall x, y \in G.$

Demostración. Cada caso se demuestra observando sencillamente:

- 1. ee = e.
- 2.  $xx^{-1} = e$ .
- 3.  $(y^{-1}x^{-1})(xy) = y^{-1}x^{-1}xy = y^{-1}ey = e$ .

Proposición 1.5. Sea G un conjunto no vacío con una operación binaria \* asociativa, son equivalentes:

- i) G es un grupo.
- ii) Para cada par de elementos  $a, b \in G$ , las ecuaciones:

$$aX = b$$
  $Xa = b$ 

Tienen solución en G ( $\exists c, d \in G \mid ac = b \land da = b$ ).

Demostración.  $i) \Rightarrow ii$ ) Tomando  $c = a^{-1}b$  y  $d = ba^{-1}$  se tiene.

$$i) \Rightarrow ii$$

### 2. Relaciones de Ejercicios

#### 2.1. Combinatoria y Teoría de Grafos

Ejercicio 2.1.1. Diez personas están sentadas alrededor de una mesa circular. Cada persona estrecha la mano a todos los demás excepto a la persona sentada directamente enfrente de la mesa. Dibuja un grafo que modele la situación.

La situación se puede modelar con el grafo de la Figura 2.1. Su matriz de adyacencia es:

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

**Ejercicio 2.1.2.** Seis hermanos (Alonso, Bernardo, Carlos, Daniel, Enrique y Fernando) tienen que emparejarse para compartir habitación en el próximo curso escolar. Cada uno de ellos ha elaborado una lista con los nombres de aquellos con los que quiere emparejarse:

- Lista de Alonso: Daniel.
- <u>Lista de Bernardo:</u> Alonso, Enrique.
- Lista de Carlos: Daniel, Enrique.
- Lista de Daniel: Carlos.
- Lista de Enrique: Daniel, Bernardo, Fernando.
- Lista de Fernando: Alonso, Bernardo.

Dibuja el grafo dirigido que modela esta situación.

La situación se puede modelar con el grafo de la Figura 2.2, donde cada persona viene representada con un vértice con su inicial.



Figura 2.1: Situación del Ejercicio 2.1.1.



Figura 2.2: Situación del Ejercicio 2.1.2.



Figura 2.3: Grafos para el ejercicio 2.1.3.



Figura 2.4: Grafo  $K_4$ .

Ejercicio 2.1.3. Expresa en forma matricial los grafos de la Figura 2.3.

La matriz de adyacencia del grafo 2.3a es:

$$\begin{pmatrix}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{pmatrix}$$

La matriz de adyacencia del grafo 2.3b es:

$$\begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

**Ejercicio 2.1.4.** Sea G un grafo completo con cuatro vértices. Construye todos sus subgrafos salvo isomorfismo.

El grafo completo con cuatro vértices es  $K_4$ , representado en la Figura 2.4. Para evitar pérdida de subgrafos, sabiendo que  $K_4$  tiene 4 vértices, se pueden construir los siguientes subgrafos:

- No consideramos los subgrafos con 0 vértices.
- Tan solo hay un subgrafo con un vértice.

$$\bullet \qquad \bullet$$
(a)  $|E| = 0$ . (b)  $|E| = 1$ .

Figura 2.5: Subgrafos de  $K_4$  con 2 vértices, |V| = 2.



Figura 2.6: Subgrafos de  $K_4$  con 3 vértices, |V| = 3.

- Los subgrafos con dos vértices se encuentran en la Figura 2.5.
- Los subgrafos con tres vértices se encuentran en la Figura 2.6.
- Los subgrafos con cuatro vértices se encuentran en la Figura 2.7.

**Ejercicio 2.1.5.** ¿Son isomorfos los grafos de la Figura 2.8? ¿Y los de la Figura 2.9? ¿Y los de la Figura 2.10?

Veamos que los grafos de la Figura 2.8 son isomorfos. Sea G(V, E) el grafo 2.8a y G'(V', E') el grafo 2.8b. Las biyecciones  $h_E : E \to E'$  y  $h_V : V \to V'$  vienen dadas por:

$$A \mapsto A$$

$$B \mapsto B$$

$$C \mapsto D$$

$$D \mapsto C$$

$$E \mapsto E$$

$$h_E: E \longrightarrow E'$$

$$e = \{u, v\} \longmapsto e' = \{h_V(u), h_V(v)\}$$

$$(a) |E| = 0. \qquad (b) |E| = 1. \qquad (c) |E| = 2. \qquad (d) |E| = 2.$$

$$(e) |E| = 3. \qquad (f) |E| = 3. \qquad (g) |E| = 4. \qquad (h) |E| = 4.$$

$$(i) |E| = 4. \qquad (j) |E| = 5. \qquad (k) |E| = 6.$$

Figura 2.7: Subgrafos de  $K_4$  con 4 vértices, |V|=4.



Figura 2.8: Primer par de grafos para el ejercicio 2.1.5.



Figura 2.9: Segundo par de grafos para el ejercicio 2.1.5.

Respecto al par de grafos de la Figura 2.9, sabemos que no son isomorfos puesto que no tienen la misma sucesión de grafos; pues notando por G(E, V) al grafo 2.9a y G'(E', V') al grafo 2.9b, se tiene que:

$$D_4(G) = 0 \neq 1 = D_4(G')$$

Por último, veamos que los grafos de la Figura 2.10 son isomorfos. Sea G(V,E) el grafo 2.10a y G'(V',E') el grafo 2.10b. Las biyecciones  $h_E:E\to E'$  y  $h_V:V\to V'$ 



Figura 2.10: Tercer par de grafos para el ejercicio 2.1.5.

vienen dadas por:

$$h_{V} : V \rightarrow V'$$

$$A \mapsto A$$

$$B \mapsto D$$

$$C \mapsto C$$

$$D \mapsto B$$

$$E \mapsto E$$

$$F \mapsto F$$

$$h_{E} : E \longrightarrow E'$$

$$e = \{u, v\} \longmapsto e' = \{h_{V}(u), h_{V}(v)\}$$

Ejercicio 2.1.6. Demostrar que, en cualquier grafo, el número de vértices de grado impar es par. (Así, en un grupo de personas, el número total de personas que estrechan la mano de un número impar de otras personas es siempre par).

Sea el grafo G(V, E) con V el conjunto de vértices y E el conjunto de aristas. Sea I el conjunto de vértices de grado impar:

$$I = \{v \in V \mid \deg(v) \text{ es impar}\}.$$

Usamos ahora el Lema de Apretón de Manos, descomponiendo V en dos conjuntos disjuntos, I y su complemento  $\overline{I}$ :

$$\sum_{v \in V} \deg(v) = \sum_{v \in I} \deg(v) + \sum_{v \notin I} \deg(v) = 2|E| \Longrightarrow \sum_{v \in I} \deg(v) = 2|E| - \sum_{v \notin I} \deg(v).$$

Por tanto, como 2|E| es par, y la suma y resta de números pares es par, tenemos que:

$$\sum_{v \in I} \deg(v) \text{ es par}$$

Por la definición de I, sabemos que dicha sumatoria es una suma de números impares cuya suma es par. Por tanto, como la suma de dos números impares es par, y la suma de un número par y un número impar es impar, tenemos que la cantidad de elementos en I ha de ser par.

$$|I|$$
 es par

**Ejercicio 2.1.7.** Demostrar que si cada vértice de un grafo G es de grado 2, cada componente conexa de G es un ciclo.

Fijada una componente conexa del grafo G, seleccionamos un vértice suyo fijo, sea este  $v_0$ . Como deg  $v_0 = 2$ , este tendrá dos vértices adyacentes, por lo que seleccionamos uno de ellos; sea este  $v_1$ . Como deg  $v_1 = 2$ , entonces también tendrá dos vecinos, pero uno de ellos ya lo hemos visitado  $(v_0)$ , por lo que seleccionamos el otro vecino; sea este  $v_3$ .

Repitiendo dicho algoritmo seleccionando vértices que no hayamos seleccionado, eventualmente llegaremos a  $v_0$  (ya que en caso contrario V no sería finito). Por tanto, habríamos construido un ciclo. Además, como la elección está fijada y se trata de una componente conexa, habremos recorrido todos los vértices de la componente conexa luego, efectivamente, la componente conexa es un ciclo.



Figura 2.11: Grafo para el ejercicio 2.1.8.

**Ejercicio 2.1.8.** Los siguientes hechos se conocen de las personas A, B, C, D, E, F, G:

- A habla inglés.
- B habla inglés y español.
- C habla inglés, italiano y ruso.
- D habla japonés y español.
- E habla alemán e italiano.
- F habla francés, japonés y ruso.
- G habla francés y alemán.

Demostrar que cada par de personas entre estas siete puede comunicarse (con la ayuda de intérpretes, si es necesario, tomados de los cinco restantes).

Construiremos un grafo, en el que dos personas están conectadas por una arista si hablan el mismo idioma. Dicho grafo es el de la Figura 2.11. Como se trata de un grafo conexo, dada una persona p, podemos llegar a cualquier otra persona q mediante un camino simple (que representan los intérpretes). Por tanto, cada par de personas puede comunicarse.

Ejercicio 2.1.9. Demuestra que en todo grafo con más de un vértice existen dos vértices con el mismo grado.

Supongamos un grafo G(V, E) con |V| > 1. Como hay |V| vértices, el grado máximo posible es |V| - 1 (que representaría que dicho vértice está conectado con todos los demás). Por tanto, los posibles grados son:

$$0, 1, 2, \ldots, |V| - 1.$$

No obstante, veamos que no todos son posibles; ya que si hay un vértice de grado 0, entonces no puede haber vértices de grado |V|-1 (pues dichos vértices no podrían estar conectados con el vértice de grado 0). Por tanto, hay |V| vértices y el número de grados posibles es menor que |V|; por lo que, por el principio del palomar, hay al menos dos vértices con el mismo grado.

**Ejercicio 2.1.10.** Prueba que si un grafo G contiene solo dos vértices de grado impar entonces ambos han de encontrarse en la misma componente conexa.

Por reducción al absurdo, supongamos que los dos vértices de grado impar se encuentran en componentes conexas distintas; y consideramos G'(V', E') la componente conexa que contiene a uno de ellos (sin pérdida de generalidad, sea  $v_1$ ) y G''(V'', E'') la componente conexa que contiene al otro (sea  $v_2$ ). Como componentes conexas que son, podemos considerarlos como subgrafos de G, por lo que G' (se podría trabajar análogamente con G'') cumple el Lema del Apretón de Manos:

$$\sum_{v \in V'} \deg(v) = 2|E'| \Longrightarrow \left(\sum_{\substack{v \in V' \\ v \neq v_1}} \deg(v)\right) + \deg(v_1) = 2|E'|$$

No obstante, la sumatoria sabemos que es una suma de grados pares (pues todos los vértices de G' son de grado par, salvo  $v_1$ ), por lo que es par; y la suma de un número par y un número impar es impar; por lo que no es posible que su suma valga 2|E'| (que es par). Por tanto, por reducción al absurdo, los dos vértices de grado impar han de encontrarse en la misma componente conexa.

Ejercicio 2.1.11. ¿Existe algún grafo regular de grado 5 con 25 vértices?

No, por el Ejericio 2.1.6 (25 es impar).

Ejercicio 2.1.12. ¿Existe un grafo completo con 595 lados?

En un grafo completo, sabemos que:

$$|E| = \frac{|V|(|V| - 1)}{2}.$$

Suponiendo que fuese posible, como |E| = 595, tendríamos que:

$$595 = \frac{|V|(|V|-1)}{2} \Longrightarrow |V|^2 - |V| - 1190 = 0 \Longrightarrow |V| = \frac{1 \pm \sqrt{1 + 4 \cdot 1190}}{2} = \frac{1 \pm 69}{2} \Longrightarrow |V| = 35$$

Por tanto, sí es posible, y este es el grafo  $K_{35}$ .

**Ejercicio 2.1.13.** ¿Existe un grafo con 6 vértices cuyos grados sean 1, 2, 2, 3, 4 y 4 respectivamente?

Buscamos saber si dicha sucesión es gráfica. Para ello, aplicamos el Algoritmo de Havel-Hakimi:

4 4 3 2 2 1 Eliminamos el 4 y restamos uno a los 4 términos siguientes
3 2 1 1 1 Eliminamos el 3 y restamos uno a los 3 términos siguientes
1 0 0 1 Reordenamos los términos
1 1 0 0 Eliminamos el 1 y restamos uno al término siguiente
0 0 0 0



Figura 2.12: Grafo con sucesión de grados 0, 0, 0.



Figura 2.13: Grafo con sucesión de grados 1, 1, 0, 0.

Llegados a este punto, como la sucesión 0,0,0 es gráfica, entonces la sucesión 1,2,2,3,4,4 también lo es. Reconstruimos para ello el grafo; partiendo de la sucesión 0,0,0, cuyo grafo es el de la Figura 2.12.

La siguiente sucesión es 1, 1, 0, 0, que resultó en la sucesión  $\mathbf{0}, 0, 0$ ; por lo que hemos de añadir un vértice de grado 1 que se conecte con uno de los vértices de grado 0; obteniendo el grafo de la Figura 2.13.

La siguiente sucesión es 3, 2, 1, 1, 1, que resultó en la sucesión **1,0,0**, 1; por lo que hemos de añadir un vértice de grado 3 que se conecte con un vértice de grado 1 y dos de grado 0; obteniendo el grafo de la Figura 2.14.

La siguiente sucesión es 4, 4, 3, 2, 2, 1, que resultó en la sucesión **3,2,1,1**, 1; por lo que hemos de añadir un vértice de grado 4 que se conecte con un vértice de grado 3, uno de grado 2 y dos de grado 1; obteniendo el grafo de la Figura 2.15.

**Ejercicio 2.1.14.** En cada uno de los siguientes casos, dibuja un grafo de Euler que verifique las condiciones, o prueba que tal grafo no existe:

- 1. Con un número par de vértices y un número par de lados. Además de  $K_{n,m}$  con m, n pares; el grafo de la Figura 2.16 cumple con las condiciones.
- Con un número par de vértices y un número impar de lados.
   El grafo de la Figura 2.17 cumple con las condiciones.
- 3. Con un número impar de vértices y un número par de lados. Además de  $K_5$ , el grafo de la Figura 2.18 cumple con las condiciones.
- 4. Con un número impar de vértices y un número impar de lados. Además de  $K_3$ , el grafo de la Figura 2.19 cumple con las condiciones.

**Ejercicio 2.1.15.** Encuentra un circuito de Euler para los grafos de la Figura 2.20. Para el grafo de la Figura 2.20a, un circuito de Euler es:

$$A \rightarrow B \rightarrow D \rightarrow G \rightarrow H \rightarrow D \rightarrow E \rightarrow B \rightarrow C \rightarrow E \rightarrow H \rightarrow I \rightarrow E \rightarrow F \rightarrow I \rightarrow J \rightarrow F \rightarrow C \rightarrow A$$

Para el grafo de la Figura 2.20b, un circuito de Euler es:

$$B \to A \to C \to B \to E \to C \to D \to F \to E \to D \to B$$



Figura 2.14: Grafo con sucesión de grados 3, 2, 1, 1, 1.



Figura 2.15: Grafo con sucesión de grados 4,4,3,2,2,1.



Figura 2.16: Grafo para el Ejercicio 2.1.14.1.



Figura 2.17: Grafo para el Ejercicio 2.1.14.2.



Figura 2.18: Grafo para el Ejercicio 2.1.14.3.



Figura 2.19: Grafo para el Ejercicio 2.1.14.4.



Figura 2.20: Grafos para el ejercicio 2.1.15.



Figura 2.21: Grafos para el ejercicio 2.1.16.

**Ejercicio 2.1.16.** Encuentra un camino de Euler para los grafos de la Figura 2.21. Para el grafo de la Figura 2.21a, un circuito de Euler es:

Para el grafo de la Figura 2.21b, un circuito de Euler es:

$$A \to B \to C \to A \to F \to D \to B \to F \to C \to E \to F \to G \to H \to F$$

**Ejercicio 2.1.17.** Encontrar un circuito de Euler en el grafo de la Figura 2.22 y un camino de Euler en el grafo de la Figura 2.23.

Para el grafo de la Figura 2.22, un circuito de Euler es:

Para el grafo de la Figura 2.23, un camino de Euler es:

$$E \rightarrow B \rightarrow F \rightarrow E \rightarrow A \rightarrow B \rightarrow C \rightarrow D \rightarrow G \rightarrow C \rightarrow H \rightarrow G \rightarrow F \rightarrow A$$



Figura 2.22: Primer grafo para el ejercicio 2.1.17.



Figura 2.23: Segundo grafo para el ejercicio 2.1.17.

**Ejercicio 2.1.18.** ¿Para qué valores de n el grafo  $K_n$  es un circuito de Euler?

El grafo  $K_n$  sabemos que es conexo y, al ser completo, todos los vértices tienen grado n-1. Además, para que un grafo conexo sea de Euler, todos sus vértices han de tener grado par. Por tanto, n-1 ha de ser par, es decir, n ha de ser impar. Por tanto, el grafo  $K_n$  es un circuito de Euler si y solo si n es impar.

**Ejercicio 2.1.19.** Un viajante vive en la ciudad A y se supone que visita las ciudades B, C y D antes de volver a A. Encontrar la ruta más corta que consuma este viaje si las distancias entre las cuatro ciudades son, en Km:

- 120 entre A y B.
- 70 entre B v C.
- 140 entre A y C.
- 180 entre A y D.
- 100 entre B y D.
- 110 entre C y D.

Representamos el problema mediante el grafo de la Figura 2.24, que es  $K_4$  con las distancias entre las ciudades.

**Ejercicio 2.1.20.** El grafo línea L(G) de un un grafo G se define como sigue: Los vértices de L(G) son los lados de G, V(L(G)) = E(G); y dos vértices en L(G) son adyacentes si y solo si los lados correspondientes en G comparten un vértice. Demostrar:



Figura 2.24: Grafo para el ejercicio 2.1.19.

1. Si G es un grafo conexo regular de grado r, entonces L(G) es un grafo de Euler.

Por ser G un grafo conexo, tenemos que todos los vértices están conectados; y por tanto lo están también los lados de G. Es decir, dados dos lados cualesquiera de G, siempre podemos encontrar una sucesión de vértices adyacentes que los conecten; por lo que L(G) es conexo.

Veamos ahora que el grado de cada vértice de L(G) es par. Dado un vértice e de L(G), este representa un lado de G que conecta dos vértices de G, sea  $\gamma_G(e) = \{v_1, v_2\}$ . Por cada lado de G incidente a  $v_1$  o  $v_2$  (excepto e), hay un vértice adyacente a e en L(G); por lo que:

$$\deg_{L(G)}(e) = \deg_{G}(v_1) + \deg_{G}(v_2) - 2$$

donde se resta 2 por el lado e que comparten  $v_1$  y  $v_2$ . Por ser G regular de grado r, tenemos que:

$$\deg_{L(G)}(e) = r + r - 2 = 2r - 2 = 2(r - 1)$$

Por tanto, como e es un vértice arbitrario de L(G), tenemos de hecho que L(G) es regular de grado 2(r-1), es decir, todos los vértices de L(G) tienen grado par. Por tanto, L(G) es un grafo de Euler.

2. Si G es un grafo de Euler entonces L(G) es Hamiltoniano.

Supongamos que G es un grafo de Euler, por lo que podemos encontrar una sucesión de lados  $e_1, e_2, \ldots, e_n$  que recorren todos los lados de G una vez sin repetir ninguno. Por la definición de L(G), cada vértice de L(G) representa un lado de G; por lo que la sucesión de lados de G se convierte en una sucesión de vértices de L(G) que recorre todos los vértices de L(G) una vez sin repetir ninguno. Además, esto es posible porque dos lados adyacentes en G comparten un vértice, por lo que serán vértices adyacentes en L(G). Por tanto, L(G) es Hamiltoniano.

**Ejercicio 2.1.21.** De entre los grafos de la Figura 2.25 y la Figura 2.26, ¿cuáles contienen un circuito de Hamilton?

Respecto del grafo de la Figura 2.25, se comprueba que no cumple ninguna de las condiciones suficientes para ser Hamiltoniano; aunque sí cumple todas las condiciones necesarias. Por tanto, hemos de buscar el circuito de Hamilton a ciegas. Este es:



Figura 2.25: Primer grafo para el ejercicio 2.1.21.



Figura 2.26: Segundo grafo para el ejercicio 2.1.21.



Figura 2.27: Grafo para el ejercicio 2.1.22.1.

$$A \to K \to V \to P \to H \to E \to J \to O \to T \to U \to Q \to L \to F \to G \to M \to R \to S \to N \to I \to H \to D \to C \to A$$

#### Ejercicio 2.1.22.

1. Prueba, utilizando el algoritmo explicado en clase, que la sucesión  $4 \ge 4 \ge 4 \ge 3 \ge 3 \ge 3 \ge 2 \ge 1$  es gráfica y, utilizando dicho algoritmo, encuentra un grafo que tenga como sucesión de grados la correspondiente.

Aplicamos el Algoritmo de Havel-Hakimi, y posteriormente construimos el grafo correspondiente, que se muestra en la Figura 2.27.

| 4 | 4 | 4 | 3 | 3 | 3 | 2 | 1 | Eliminamos el 4 y restamos uno a los 4 términos siguientes |
|---|---|---|---|---|---|---|---|------------------------------------------------------------|
|   | 3 | 3 | 2 | 2 | 3 | 2 | 1 | Reordenamos los términos                                   |
|   | 3 | 3 | 3 | 2 | 2 | 2 | 1 | Eliminamos el 3 y restamos uno a los 3 términos siguientes |
|   |   | 2 | 2 | 1 | 2 | 2 | 1 | Reordenamos los términos                                   |
|   |   | 2 | 2 | 2 | 2 | 1 | 1 | Eliminamos el 2 y restamos uno a los 2 términos siguientes |
|   |   |   | 1 | 1 | 2 | 1 | 1 | Reordenamos los términos                                   |
|   |   |   | 2 | 1 | 1 | 1 | 1 | Eliminamos el 2 y restamos uno a los 2 términos siguientes |
|   |   |   |   | 0 | 0 | 1 | 1 |                                                            |

2. El grafo con matriz de adyacencia M dada por:

$$M = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{pmatrix}$$

es de Euler o en él hay un camino de Euler entre dos vértices. Razona cuál es la situación y encuentra, en su caso, el circuito o el camino de Euler que existe.

Sabemos que el grado del vértice  $v_i$  es la suma de los elementos de la fila i de la matriz de adyacencia. Calculando los grados de los vértices, obtenemos tenemos que todos son pares a excepción de los vértices  $v_1$  y  $v_8$ , por lo que hay un camino de Euler entre ellos. Este lo construimos con el algoritmo de Fleury, obteniendo el camino:

$$v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_6 \rightarrow v_7 \rightarrow v_8 \rightarrow v_5 \rightarrow v_2 \rightarrow v_7 \rightarrow v_1 \rightarrow v_6 \rightarrow v_3 \rightarrow v_1 \rightarrow v_4 \rightarrow v_7 \rightarrow v_5 \rightarrow v_6 \rightarrow v_2 \rightarrow v_4 \rightarrow v_8$$

#### Ejercicio 2.1.23.

1. En el grafo G cuya matriz de advacencia es

$$M = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \end{pmatrix}$$

determina el número de aristas y la sucesión de grados de los vértices y, caso de que G sea de Euler, describe un circuito de Euler en él usando el algoritmo apropiado.

Tenemos que:

$$\deg v_1 = 4$$
  $\deg v_2 = 2$   $\deg v_3 = 4$   $\deg v_4 = 4$   $\deg v_5 = 2$   $\deg v_6 = 4$   $\deg v_7 = 2$   $\deg v_8 = 4$ 

Por tanto, usando el Lema del Apretón de Manos, tenemos que:

$$\sum_{v \in V} \deg v = 4 + 2 + 4 + 4 + 2 + 4 + 2 + 4 + 2 + 4 = 26 = 2|E| \Longrightarrow |E| = 13$$

La sucesión de grados por tanto es:

Realizando un recorrido del grafo, vemos que el grafo es conexo; y como todos sus vértices tienen grado par, es de Euler. Por tanto, aplicamos el algoritmo de Fleury para encontrar un circuito de Euler, obteniendo el circuito:

$$v_1 \rightarrow v_2 \rightarrow v_8 \rightarrow v_6 \rightarrow v_1 \rightarrow v_4 \rightarrow v_3 \rightarrow v_6 \rightarrow v_4 \rightarrow v_8 \rightarrow v_7 \rightarrow v_3 \rightarrow v_5 \rightarrow v_1$$



Figura 2.28: Grafo para el ejercicio 2.1.24.1.

2. Calcula el número de vértices de un grafo plano, conexo y regular de grado 5 con 20 caras.

Por ser plano y conexo, tenemos que:

$$|V| + 20 = |E| + 2$$

Por el Lema del Apretón de Manos, tenemos que:

$$\sum_{v \in V} \deg v = 2|E| \Longrightarrow 5|V| = 2|E|$$

Resolvemos por tanto el siguiente sistema:

$$|V| + 20 = |E| + 2$$
  
 $5|V| = 2|E| \Longrightarrow |E| = \frac{5}{2} \cdot |V|$ 

Por tanto, tenemos que:

$$|V| + 20 = \frac{5}{2} \cdot |V| + 2 \Longrightarrow |V| = \frac{18 \cdot 2}{3} = 12$$

#### Ejercicio 2.1.24.

1. La siguiente matriz es la matriz de incidencia o adyacencia de un grafo. Razona qué caso es y dibuja el correspondiente grafo.

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

¿Es el grafo anterior de Euler o Hamilton? Razona la respuesta y da un circuito de Euler o Hamilton en caso de que los haya.

Como no se trata de una matriz cuadrada, no puede ser de adyacencia, por lo que se trata de una matriz de incidencia. El grafo correspondiente es el de la Figura 2.28.

Los grados de los vértices son la suma de las filas de la matriz de incidencia, obteniendo:

$$\deg v_1 = 2$$
  $\deg v_2 = 2$   $\deg v_3 = 3$   $\deg v_4 = 2$   $\deg v_5 = 3$   $\deg v_6 = 2$   $\deg v_7 = 2$ 

Por tanto, no se trata de un grafo de Euler (pues hay vértices de grado impar), pero sí tiene un camino de Euler entre los vértices  $v_3$  y  $v_5$ , que es:

$$v_3 \stackrel{e_4}{\Longrightarrow} v_4 \stackrel{e_3}{\Longrightarrow} v_1 \stackrel{e_1}{\Longrightarrow} v_2 \stackrel{e_2}{\Longrightarrow} v_3 \stackrel{e_5}{\Longrightarrow} v_5 \stackrel{e_6}{\Longrightarrow} v_6 \stackrel{e_8}{\Longrightarrow} v_7 \stackrel{e_7}{\Longrightarrow} v_5$$

2. Aplica el algoritmo para comprobar si la siguiente sucesión

$$6 \geqslant 4 \geqslant 4 \geqslant 3 \geqslant 3 \geqslant 3 \geqslant 3 \geqslant 3$$

es, o no es, una sucesión gráfica y, en caso de serlo, también aplica el algoritmo para encontrar un grafo que la tenga como sucesión de grados.

No se trata de una sucesión gráfica, pues la suma de los grados es impar, lo que contradice el Lema del Apretón de Manos:

$$\sum_{v \in V} \deg v = 6 + 4 + 4 + 3 + 3 + 3 + 3 + 3 = 29$$

Ejercicio 2.1.25. Razona cuál es la respuesta correcta en cada una de las siguientes cuestiones (todos los grafos a los que se hace referencia son simples, no tienen lazos ni lados paralelos):

- 1. El grafo completo  $K_n$ :
  - a) Es siempre de Euler.
  - b) Es siempre de Hamilton.
  - c) Dependiendo de n puede ser, o no, de Hamilton o de Euler.

Sabemos que  $K_n$  es conexo y que todos sus vértices tienen grado n-1. Por tanto, en primer lugar vemos que:

$$K_n$$
 es de Euler  $\iff n$  es impar

Por otro lado, sabemos que, para cada par de vértices no adyacentes, se verifica que:

$$\deg v_i + \deg v_j = n - 1 + n - 1 = 2n - 2 \geqslant n \iff n \geqslant 2$$

Por tanto, sabemos que  $K_n$  con  $n \ge 2$  es de Hamilton. Además, como  $K_1$  y  $K_2$  son trivialmente de Hamilton, tenemos que:

$$K_n$$
 es de Hamilton  $\forall n \in \mathbb{N}$ 

Por tanto, la respuesta correcta es la **b**).

- 2. He encontrado un grafo plano y conexo con 200 vértices y:
  - a) Un número par de caras y un número impar de lados.
  - b) Un número par de lados y un número impar de caras.
  - c) Un número par de lados y caras.
- 3. Tengo un grafo con un solo vértice de grado impar v:
  - a) Puedo encontrar un camino que empiece en ese vértice v, recorra todos los lados del grafo solo una vez y vuelva a él.
  - b) Si añado un lado que conecte ese vértice con otro cualquiera del grafo, pongamos w, puedo encontrar un camino que empiece en v, recorra todos los lados del grafo (incluido el que he añadido) solo una vez y termine en w.
  - c) Es imposible tener un grafo como ese.

Por el Ejercicio 2.1.6, sabemos que el número de vértices de grado impar en un grafo es par. Por tanto, la respuesta correcta es la  $\mathbf{c}$ ).

- 4. En un grafo plano con cinco componentes conexas y 24 lados:
  - a) El número de vértices y el número de caras son opuestos módulo 30.
  - b) El número de vértices y el número de caras son congruentes módulo 30.
  - c) Ninguna de las anteriores es cierta.
- 5. Dado un grafo regular de grado 1, entonces:
  - a) El grafo no puede ser conexo.
  - b) El grafo tiene tantas componentes conexas como vértices.
  - c) El grafo tiene tantas componentes conexas como lados.

La respuesta correcta es la  $\mathbf{c}$ ).

- 6. Un grafo regular conexo de grado 11 con veinte vértices:
  - a) Es siempre de Euler.
  - b) Es siempre de Hamilton.
  - c) Ninguna de las dos respuestas anteriores es cierta.

Como es regular de grafo 11 (impar), sabemos que no es de Euler. Por otro lado, sabemos que, para cada par de vértices no adyacentes, se verifica que:

$$\deg v_i + \deg v_i = 11 + 11 = 22 \geqslant 20$$

Por tanto, sabemos que es de Hamilton. Por tanto, la respuesta correcta es la **b**).

7. Elija la respuesta correcta:

- a) Sólo hay dos grafos con cuatro vértices y cuatro lados no isomorfos.
- b) Todos los grafos con cuatro vértices y cuatro lados son isomorfos.
- c) Sólo hay tres grafos con cuatro vértices y cuatro lados no isomorfos.

En el Ejercicio 2.1.4 vimos que la respuesta correcta es la a).

8. Un grafo cuya matriz de adyacencia es

$$\begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

- a) Es de Euler.
- b) No es de Euler pero hay un camino de Euler entre dos vértices.
- c) No es de Euler pero sus componentes conexas sí lo son.

No es de Euler, pues no es conexo. Sus componentes conexas, formadas por los vértices  $\{v_1, v_2, v_3\}$  y  $\{v_4, v_5, v_6, v_7\}$  respectivamente, sí son de Euler por ser conexas y tener todos los grados pares. Por tanto, la respuesta correcta es la  $\mathbf{c}$ ).

9. Un grafo cuya matriz de incidencia es

$$\begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

- a) Es de Hamilton.
- b) No es de Hamilton pero sus componente conexas sí lo son.
- c) No es de Hamilton y tampoco lo son sus componentes conexas.

Este grafo es conexo (el vértice  $v_3$  está conectado con todos los demás). Además, como deg  $v_5 = 1$ , sabemos que no es de Hamilton. Por tanto, la respuesta correcta es la  $\mathbf{c}$ ).

10. La siguiente matriz

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

a) Puede ser la matriz de adyacencia de un grafo pero no la de incidencia.



Figura 2.29: Grafo para el ejercicio 2.1.26.1.

- b) Puede ser la matriz de incidencia de un grafo pero no la de adyacencia.
- c) No puede ser la matriz de adyacencia ni la de incidencia de un grafo.

Como  $a_{13} = 0 \neq 1 = a_{31}$ , la matriz no es simétrica y por tanto no puede ser la matriz de adyacencia de un grafo. Por otro lado, como la suma de la tercera columna es 3, si se tratase de la matriz de incidencia, tendríamos una arista que conecta tres vértices, lo que no es posible en un grafo simple. Por tanto, la respuesta correcta es la  $\mathbf{c}$ ).

#### Ejercicio 2.1.26.

1. Prueba, utilizando el algoritmo explicado en clase, que la sucesión dada por  $3 \geqslant 3 \geqslant 2 \geqslant 2 \geqslant 2 \geqslant 2 \geqslant 2$  es gráfica y, utilizando dicho algoritmo, encuentra un grafo en que los grados de sus vértices sean los términos de esa sucesión. Prueba que el grafo es plano y que satisface el teorema de la característica de Euler.

Aplicamos el Algoritmo de Havel-Hakimi, y posteriormente construimos el grafo correspondiente, que se muestra en la Figura 2.29.

| 3 | 3 | 2 | 2 | 2 | 2 | 2 | Eliminamos el 3 y restamos uno a los 3 términos siguientes |
|---|---|---|---|---|---|---|------------------------------------------------------------|
|   | 2 | 1 | 1 | 2 | 2 | 2 | Reordenamos los términos                                   |
|   | 2 | 2 | 2 | 2 | 1 | 1 | Eliminamos el 2 y restamos uno a los 2 términos siguientes |
|   |   | 1 | 1 | 2 | 1 | 1 | Reordenamos los términos                                   |
|   |   | 2 | 1 | 1 | 1 | 1 | Eliminamos el 2 y restamos uno a los 2 términos siguientes |
|   |   |   | 0 | 0 | 1 | 1 |                                                            |

2. Considera los grafos  $G_1$  dado por el diagrama de la Figura 2.30 y  $G_2$  con matriz de incidencia

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

Estudia si son o no isomorfos, si son o no planos, si son o no de Euler o si hay un camino de Euler (en caso afirmativo aplica el algoritmo para calcular un circuito o un camino de Euler) y si son o no de Hamilton (encontrando el camino en caso afirmativo).

Estudiamos cada aspecto:



Figura 2.30: Grafo  $G_1$  para el ejercicio 2.1.26.2.

• No son isomorfos, puesto que  $G_1$  no tiene vértices de grado 2 y  $G_2$  sí  $(v_5)$ .

- Ninguno de ellos es de Euler, puesto que tienen vértices de grado impar.
- $G_1$  no tiene ningún camino de Euler, puesto que hay más de dos vértices de grado impar.  $G_1$ , no obstante, sí tiene un camino de Euler de  $v_1$  a  $v_4$ :

$$v_1 \stackrel{e_1}{\Longrightarrow} v_2 \stackrel{e_3}{\Longrightarrow} v_4 \stackrel{e_2}{\Longrightarrow} v_1 \stackrel{e_8}{\Longrightarrow} v_3 \stackrel{e_4}{\Longrightarrow} v_2 \stackrel{e_5}{\Longrightarrow} v_5 \stackrel{e_7}{\Longrightarrow} v_3 \stackrel{e_6}{\Longrightarrow} v_4$$

■ Respecto al circuito de Hamilton, estudiamos en primer lugar  $G_1$ . Sus grados son:

$$\deg v_1 = 3$$
  $\deg v_2 = 3$   $\deg v_3 = 3$   $\deg v_4 = 4$   $\deg v_5 = 3$ 

Por tanto, dados dos vértices cualesquiera no adyacentes, se verifica que:

$$\deg v_i + \deg v_i \geqslant 6 \geqslant 5 \Longrightarrow G_1$$
 es de Hamilton

Un posible recorrido de Hamilton para  $G_1$  es:

$$1 \rightarrow 3 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 1$$

Por otro lado, estudiamos  $G_2$ . Sus grados son:

$$\deg v_1 = 3$$
  $\deg v_2 = 4$   $\deg v_3 = 4$   $\deg v_4 = 3$   $\deg v_5 = 2$ 

Por tanto, dados dos vértices cualesquiera no adyacentes, se verifica que:

$$\deg v_i + \deg v_j \geqslant 5 \geqslant 5 \Longrightarrow G_2$$
 es de Hamilton

Un posible recorrido de Hamilton para  $G_2$  es:

$$v_1 \xrightarrow{e_1} v_2 \xrightarrow{e_5} v_5 \xrightarrow{e_7} v_3 \xrightarrow{e_6} v_4 \xrightarrow{e_2} v_1$$

#### Ejercicio 2.1.27.

- 1. Si G es un grafo completo con 6 vértices entonces:
  - a) G es regular de grado 5.



Figura 2.31: Grafos para el ejercicio 2.1.27.2.

- b) G tiene 20 aristas.
- c) G es de Euler y de Hamilton.

Sabemos que  $K_6$  es regular de grado 5 y:

$$|E| = \frac{6 \cdot 5}{2} = 15$$

Además, aunque sí es de Hamilton, no es de Euler, por lo que la respuesta correcta es la a).

- 2. Sea G' un subgrafo completo (pleno) de un grafo G. Entonces:
  - a) Si G es de Euler también G' es de Euler.
  - b) Si G es de Hamilton también G' es de Hamilton.
  - c) Ninguna de las anteriores.

Consideramos el contraejemplo de la Figura 2.31. El grafo G de la Figura 2.31a es de Euler y de Hamilton, pero su subgrafo completo G' de la Figura 2.31b no es ni de Euler ni de Hamilton. Por tanto, la respuesta correcta es la  $\mathbf{c}$ ).

- 3. Seleccione la respuesta correcta:
  - a) Sólo hay dos grafos con cuatro vértices y 5 lados no isomorfos.
  - b) Todos los grafos con cuatro vértices y 5 lados son isomorfos.
  - c) Todos los grafos con cuatro vértices y cinco lados son de Euler.

En el Ejercicio 2.1.4 vimos que la respuesta correcta es la **b**).

- 4. Sea G un grafo plano conexo regular de grado 6 con 15 caras. Entonces:
  - a) G tiene 13 vértices.
  - b) El número de vértices es el triple del de aristas.
  - c) No existe un tal grafo.
- 5. Salvo isomorfismos, grafos con 50 vértices y 1225 aristas:
  - a) Solo hay 1.
  - b) Hay 2.
  - c) No existen grafos en esas condiciones.

Tan solo hay uno, y se trata de  $K_{50}$ , por lo que la respuesta correcta es la a).

#### Ejercicio 2.1.28.

- 1. Considera la sucesión 4, 4, 4, 4, 4.
  - a) Utiliza el algoritmo dado en clase para probar que la sucesión es una sucesión gráfica y para dibujar un grafo G que la tenga como sucesión gráfica.
  - b) Calcula las matrices incidencia y adyacencia del grafo G obtenido en el apartado anterior.
  - c) ¿Es G de Euler o tiene un camino de Euler? En caso afirmativo, utiliza el algoritmo dado en clase para calcular el circuito o el camino de Euler.
  - d) ¿Es G de Hamilton? En caso afirmativo calcula el circuito de Hamilton.
  - e) ¿Es G plano? En caso afirmativo comprueba la fórmula de la característica de Euler.
- 2. Demuestra que si G es un grafo de Euler con n vértices que solo tiene 2 vértices de grado 2 entonces el número de aristas es  $\geq 2n-2$ .

#### Ejercicio 2.1.29.

- 1. Considera el subconjunto  $X = \{(12), (13), (23)\} \subset S_3$  y el siguiente grafo G: Los vértices de G son los elementos de  $S_3$  y hay un lado entre dos vértices x e y si  $xy^{-1} \in X$ .
  - a) Dibuja el grafo.
  - b) Calcula sus matrices de incidencia y adyacencia.
  - c) ¿Es de Euler o tiene un camino de Euler? En caso afirmativo aplica el algoritmo dado en clase para calcular un ciclo o un camino de Euler.
  - d) ¿Es de Hamilton? En caso afirmativo calcula el ciclo de Hamilton.
  - e) ¿Es plano? En caso afirmativo comprueba la fórmula de Euler.
- 2. Si G es un grafo con n vértices y m lados. Prueba que  $m \leqslant \frac{n(n-1)}{2}$  y que se da la igualdad si y solo si  $G = K_n$  es el grafo completo.

**Ejercicio 2.1.30.** Demuestra, utilizando el algoritmo explicado en clase, que la sucesión de grados de los vértices de un octaedro (poliedro regular con 6 vértices, 8 caras y 12 aristas) es gráfica y, utilizando dicho algoritmo, encuentra un grafo G en que los grados de sus vértices sean los términos de esa sucesión. Encuentra las matrices de adyacencia e incidencia de G.

Comprueba que el grafo G es plano y estudia si es de Euler y, en caso afirmativo, determina por algún algoritmo explicado en clase un circuito de Euler para G. ¿Es G un grafo de Hamilton? Razona la respuesta.

Ejercicio 2.1.31. Razona cuál es la respuesta correcta en cada una de las siguientes cuestiones (todos los grafos a los que se hace referencia son simples, no tienen lazos ni lados paralelos):

- 1. La sucesión  $70, 69, 68, \ldots, 3, 2, 1$ .
  - a) Es una sucesión gráfica y su grafo asociado es el completo  $K_{70}$ .
  - b) Es una sucesión gráfica pero su grafo asociado no es  $K_{70}$ .
  - c) No es una sucesión gráfica.
- 2. Tengo un grafo conexo con 6 vértices y 9 lados:
  - a) Puedo asegurar que es plano.
  - b) Puedo asegurar que no es plano.
  - c) Puede ser plano o no serlo.
- 3. La sucesión 4, 4, 4, 4:
  - a) No es una sucesión gráfica pero si le añadimos al final un 2 si lo es.
  - b) No es una sucesión gráfica pero si le añadimos al final un 3 si lo es.
  - c) No es una sucesión gráfica pero si le añadimos al final un 4 si lo es.
- 4. Puedo encontrar un grafo plano conexo con:
  - a) Un número impar de vértices, un número impar de lados y un número impar de caras.
  - b) Un número par de vértices, un número par de lados y un número impar de caras.
  - c) Un número impar de vértices, un número par de lados y un número impar de caras.
- 5. La sucesión 4, 2, 2, 2, 2:
  - a) Es la sucesión de grados de un grafo de Euler y de Hamilton.
  - b) Es la sucesión de grados de un grafo de Hamilton y no de Euler.
  - c) Es la sucesión de grados de un grafo de Euler y no de Hamilton.
- 6. Un grafo regular de grado 7:
  - a) Tiene que tener al menos 8 vértices y un número impar de lados.
  - b) Tiene que tener al menos 8 vértices pero puede tener un número impar o par de lados.
  - c) Lo único que puedo afirmar sobre él es que tiene un número par de vértices.

#### **Ejercicio 2.1.32.** Considera el grupo simétrico $S_4$ y el subgrupo suyo $H = \langle (123) \rangle$ .

- 1. Construye el conjunto cociente  $S_4/H$  de clases laterales por la izquierda xH.
- 2. Para cada clase xH denotamos m(xH) al máximo común divisor de los órdenes de los elementos en xH. Considera el grafo G con vértices las clases xH y en el que hay un lado entre xH e yH si m(xH) divide a m(yH) o m(yH) divide a m(xH). Identifica el grafo G dando la sucesión de grados de sus vértices y su matriz de adyacencia. ¿Es G de Euler, de Hamilton o plano?

3. Considera el subgrafo G' obtenido a partir de G eliminando la clase 1H, ¿es G' de Euler? En caso afirmativo aplica el algoritmo dado en clase para calcular un circuito de Euler.

**Ejercicio 2.1.33.** Se considera el grupo  $Q_2 = \langle x, y \mid x^4 = 1, x^2 = y^2, yx = x^{-1}y \rangle$  y el grafo G cuyos vértices son los elementos de  $Q_2$  y en el que, para cualquier  $a \in Q_2$ , hay un lado entre a y ax y también un lado entre a y ay.

- 1. Comprueba que G es un grafo regular dando la sucesión de grados de sus vértices y calcula su matriz de adyacencia.
- 2. Razona si G es un grafo de Hamilton o plano.
- 3. Razona si G es un grafo de Euler y, en caso afirmativo, aplica el algoritmo dado en clase para calcular un circuito de Euler.

**Ejercicio 2.1.34.** Se considera el grupo  $D_4 = \langle r, s \mid r^4 = 1, s^2 = 1, sr = r^{-1}s \rangle$  y el grafo G cuyos vértices son los elementos de  $D_4$  y en el que, para cualquier  $a \in D_4$ , hay un lado entre a y ar y también un lado entre a y as.

- 1. Comprueba que G es un grafo regular dando la sucesión de grados de sus vértices y calcula su matriz de adyacencia.
- 2. Razona si G es un grafo de Hamilton o plano.
- 3. Razona si G es un grafo de Euler y, en caso afirmativo, aplica el algoritmo dado en clase para calcular un circuito de Euler.

**Ejercicio 2.1.35.** Se considera el grupo diédrico  $D_5 = \langle r, s \mid r^5 = 1, s^2 = 1, sr = r^{-1}s \rangle$  y el grafo G cuyos vértices son los elementos de  $D_5$  y en el que, para cualquier  $a \in D_5$ , hay un lado entre a y ar y también un lado entre a y as.

- 1. Calcula la sucesión de grados de G y razona si G es un grafo de Euler, de Hamilton o plano.
- 2. Considera un nuevo grafo G' obtenido añadiendo a G un nuevo vértice adyacente a todos los de G. Razona si G' es un grafo de Euler y, en caso afirmativo, aplica algún algoritmo dado en clase para calcular un circuito de Euler.

Ejercicio 2.1.36. Razona cuál es la respuesta correcta en cada una de las siguientes cuestiones. Todos los grafos a los que se hace referencia son simples (es decir, no tienen lazos ni lados paralelos).

1. La matriz

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{pmatrix}$$

es la de adyacencia de un grafo que:

a) Es de Euler.

- b) No es de Hamilton.
- c) Es plano.
- 2. Un grafo plano conexo regular de grado 8 con 23 caras:
  - a) No existe.
  - b) Tiene 12 aristas.
  - c) Tiene 9 vértices.
- 3. Se tiene que:
  - a) Un grafo que es de Euler y de Hamilton siempre es plano.
  - b) Un grafo que es plano y de Euler siempre es de Hamilton.
  - c) Ninguna de las respuestas anteriores es cierta.
- 4. Se tiene que:
  - a) La sucesión 5, 5, 4, 2, 2, 2 es la sucesión gráfica de un grafo plano.
  - b) La sucesión 5, 5, 4, 4, 4 es la sucesión gráfica de un grafo de Hamilton.
  - c) La sucesión 5, 4, 4, 3, 3, 3 es la sucesión gráfica de un grafo de Euler.

**Ejercicio 2.1.37.** Considera el grupo simétrico  $S_4$  y el subgrupo suyo  $H = \langle (123) \rangle$ .

- 1. Construye el conjunto cociente  $S_4/_{\sim_H}$  de clases laterales por la derecha Hx,  $x \in S_4$ .
- 2. Para cada clase Hx denotamos n(Hx) al mínimo común múltiplo de los órdenes de los elementos en Hx. Considera el grafo G con vértices las clases Hx y en el que hay un lado entre Hx e Hy si n(Hx) divide a n(Hy) o n(Hy) divide a n(Hx). Identifica el grafo G dando la sucesión de grados de sus vértices y su matriz de adyacencia. ¿Es G de Euler, de Hamilton o plano?
- 3. Considera, si es posible, un subgrafo G' de G obtenido al suprimir una arista entre dos vértices de G de grado impar. ¿Es G' de Euler? ¿Hay un camino de Euler entre dos vértices de G'? En caso afirmativo aplica algún algoritmo dado en clase para calcular un circuito o camino de Euler en G'.

**Ejercicio 2.1.38.** Se considera el grupo  $A_4$  y su subgrupo  $H = \langle (12)(34) \rangle$ . Se considera el grafo G con vértices las clases laterales por la izquierda de H en  $A_4$ , xH, y en el que hay un lado entre xH e yH si m(xH) divide a m(yH) o m(yH) divide a m(xH), donde m(Hx) denota el máximo común divisor de los órdenes de los elementos en xH. Razone cuál de las siguientes es la respuesta correcta:

- 1. G es plano pero no es de Hamilton.
- 2. G no es plano y tiene dos vértices conectados por un camino de Euler.
- 3. G es de Hamilton pero no es de Euler.

**Ejercicio 2.1.39.** Considera el grupo simétrico  $S_4$  y el subgrupo suyo  $H = \langle (1234) \rangle$ .

- 1. Construye el conjunto cociente  $S_4/H$  de clases laterales por la izquierda xH. ¿Es  $H \triangleleft S_4$ ?
- 2. Para cada clase xH denotamos m(xH) al máximo común divisor de los órdenes de los elementos en xH. Considera el grafo G con vértices las clases xH y en el que hay un lado entre dos clases xH e yH si m(xH) = m(yH). Identifica el grafo G dando la sucesión de grados de sus vértices y su matriz de adyacencia. ¿Es G de Euler, de Hamilton o plano?
- 3. Considera el subgrafo G' obtenido a partir de G eliminando la clase (13)H. ¿Es G' de Euler? En caso afirmativo aplica algún algoritmo dado en clase para calcular un circuito o camino de Euler en G'.

Ejercicio 2.1.40. Razona cuál es la respuesta correcta en cada una de las siguientes cuestiones. Todos los grafos a los que se hace referencia son simples (es decir, no tienen lazos ni lados paralelos).

- 1. Se tiene que:
  - a) Hay un grafo conexo regular de grado 6 con 22 caras y 24 aristas.
  - b) La sucesión 4, 4, 4, 3, 3 es la sucesión gráfica de un grafo plano que tiene un camino de Euler entre dos vértices.
  - c) Un grafo conexo y plano es de Euler si y solo si es de Hamilton.
- 2. La matriz

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

es la de adyacencia de un grafo:

- a) Con 11 aristas y que es de Euler y de Hamilton.
- b) Que es conexo y plano pero no de Hamilton.
- c) Que no es de Hamilton ni plano ni de Euler.

**Ejercicio 2.1.41.** Considera el grupo simétrico  $S_4$  y el subgrupo suyo  $H = \langle (134) \rangle$ .

- 1. Construye el conjunto cociente  $S_4/\sim_H$  de clases laterales por la derecha Hx,  $x \in S_4$ .
- 2. Para cada clase Hx denotamos n(Hx) al mínimo común múltiplo de los órdenes de los elementos en Hx. Considera el grafo G con vértices las clases Hx y en el que hay un lado entre Hx y Hy si n(Hx) divide a n(Hy) o n(Hy) divide a n(Hx). Identifica el grafo G dando la sucesión de grados de sus vértices y su matriz de adyacencia.
- 3. ¿Hay alguna condición suficiente que asegure que G es de Hamilton? ¿Y necesaria para ser plano? ¿Es G de Euler, de Hamilton o plano?

4. Considera el subgrafo G' de G obtenido al suprimir la arista entre las clases H(23) y H(24). ¿Es G' de Hamilton, plano o de Euler? ¿Hay un camino de Euler entre dos vértices de G'? En caso afirmativo aplica algún algoritmo dado en clase para calcular un circuito o camino de Euler en G'.