哈尔滨工业大学(深圳) 2022 学年春季学期期末考试

大学物理II(B)试题(回忆版)

考试时间: 120 分钟 试卷满分: 100 分

注:本套试题为 2022 年深圳校区的大学物理II期末考试补考试卷的回忆版,一些题的

	题号可能顺序不对,题目也不全,供学弟学妹们参考。
_	、选择题(每小题 3 分,共 10 小题,满分 30 分)
1.	曲线运动中是否一定有切向加速度,是否一定有法向加速度
2.	直线运动的加速度满足 $a=-kv^2t$, $t=0$ 时刻的速度为 v_0 ,则 v 与 t 的关系为
3.	静电场中场强为0与电势为0的关系
4.	金属圆盘在磁感应强度逐渐增大的磁场中产生了感应电流,感应电流
('	"增强"或"阻碍")原来的磁场
5.	真空中波长 λ , 折射率 n , AB 两点相位差 3λ , AB 之间的光程为
6.	带电球面场强分布的函数图象(2021年期末中有类似的题,那道题是电势的
图	象)[有图]
7.	光在折射率不同的介质中路程,光程
8.	地球距离某星球 16 光年,飞船匀速飞行,飞船上测得用了 12 年,飞船速度
A.	$\frac{\sqrt{3}}{2}c$ B. $\frac{4}{\sqrt{17}}c$ C. $\frac{4}{5}c$ D. $\frac{3}{5}$
9.	光电效应中,想增大饱和光电流和增大最大初动能,分别应,(增
大	光强、增大频率)
10	. 电荷量为 $2e$ 的 α 粒子在磁感应强度 B 的磁场中做半径为 R 的匀速圆周运动,
α 	位子的德布罗意波波长为(2020年期末原题)
=	、填空题(每小题 3 分,共 10 小题,满分 30 分)
1.	弹簧一端挂着小球,小球刚好触地,弹簧处于原长。现把小球拉到刚好要离开
地	面,所做的功为[有图]
2.	星球运行到距离太阳最近的点时,速度为 v_1 = xxm/s ,与太阳的距离 r_1 = xxm ,这
行	到距离太阳最远的点时,速度为 $v_2=xxm/s$,则此时与太阳的距离 $r_2=$
3.	两个同心球壳半径分别为 $2R$ 和 R ,荷电分别为 Q 和 q ,则内球壳表面的电势

大小为 .

- 4. 电荷量 q=xxC,质量 m=xxkg 的粒子在磁感应强度 B=xxT 的磁场中做半径为 R=xxm 的匀速圆周运动,则粒子的动能 $E_k=$ ______.
- 5. 给出机械波的波形图, 求初相位[有图]
- 6. 频率为 v=xxHz 的紫外线照射金属产生光电效应,给了一个条件,求截止电压
- 7. 飞船固有长度 L,相对于地面的速度为 v_1 ,在飞船的一侧发射子弹,子弹相对于飞船的速度为 v_2 ,则在飞船上观测到子弹的飞行时间为 .
- 8. 波长 λ , 折射率n, 劈尖相邻两个亮条纹间的什么距离 .

三、计算题(每小题10分,共4小题,满分40分)

1.如图,两个长导线位于y轴上,与原点间距离均为a,x轴上有一点P与原点间距离为x.

- (1) 推导出 P 点的磁感应强度 $\overrightarrow{B(x)}$;
- (2) B(x)何时取得最大值.

2.如图,轻绳,两个半径为 r,质量为 m 的圆盘组成滑轮,圆盘上分别挂着质量为 2m 和 m 的物块,释放右侧物块,求物块的加速度和圆盘间绳的拉力.

- 3.如图,机械波沿 x 轴负向传播,A 点的振动方程为 $y=3\cos 4\pi t$.
 - (1) 若以 A 为原点, 写出波函数;
 - (2) 若以B为原点,写出波函数;

C 8m B 5m A 9m D

- (3) 写出 B, C, D 的振动方程.
- 4.波长 500nm, 光栅每毫米有 200 刻度, 透镜焦距 60
- (1) 求光栅常量;
- (2) 求中心亮纹和第一个亮纹之间的距离;
- (3) 若 k 等于 3, 6, 9 的主极大条纹都消失,分析 a 与 b 的关系.