Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2005-2006. Esame del 05-07-2006

Nome	
	/

1. Si consideri la seguente tabella dei costi per un problema del trasporto con 3 destinazioni e 2 origini.

		1	2	3	o_i
	1	2	1	1	3
	2	6	4	4	5
$d_i \rightarrow$		1	4	3	-

- a) (4 punti) si provi che la soluzione $(x_{11}, x_{12} x_{13} x_{21} x_{22} x_{23}) = (1, 2, 0, 0, 2, 3)$ è una soluzione ottima; b) (4 punti) si modifichi la tabella dei costi aggiungendo una costante k ad ogni valore c_{ij} relativo alle variabili fuori base e si determini l'insieme di valori di k per cui la soluzione data al punto a) rimanga una soluzione ottima.

2. Si consideri il seguente problema di programmazione lineare:

$$\max 3x_1 + 4x_2$$
$$2x_1 + x_2 \le 8$$
$$-x_1 + 2x_2 \le 6$$

$$x_1 + x_2 \le 6$$

 $x_1, x_2 \ge 0$.

- a) (3 punti) Disegnare la regione ammissibile e risolvere il problema graficamente;
- b) (3 punti) Verificare che al punto di ottimo corrisponde una soluzione basica degenere ed individuare tutte le possibili basi corrispondenti al punto di ottimo
- c) (3 punti) Modificare i vincoli del problema in modo da eliminare la base degenere e determinare il nuovo punto di ottimo.

3. (6 punti) Si consideri il seguente problema di programmazione lineare:

$$max \ 3x_1 + 4x_2$$

$$\begin{array}{l} 2x_1 + x_2 \leq 8 \\ -x_1 + 2x_2 \leq 6 \\ x_1, \, x_2 \geq 0. \end{array}$$

Applicare l'algoritmo del simplesso per determinare la soluzione ottima ed illustrare graficamente le soluzioni basiche esplorate dall'algoritmo.

- 4. Si consideri il problema del trasporto dato nell'esercizio 1:
 a) (4 punti) Formulare il relativo modello matematico
 b) (4 punti) Formulare il modello matematico duale corrispondente

5. (4 punti) Dati i due seguenti vettori in R³ determinare un nuovo vettore in modo tale da formare una base per lo spazio:

A=(1, 2, 3)

B=(0, 1, 2)

Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2005-2006. Esame del 05-07-2006

Nome	Cognome
Matricola /	

Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2005-2006. Esame del 05-07-2006

Nome	Cognome
Matricola /	