Package 'cellmarkeraccordion'

October 2, 2023

Title Annotation of normal and aberrant hematopoietic cell types in single-cell datasets **Version** 0.9.0

Description cellmarkeraccordion is an R package designed to obtain a robust identification of normal and aberrant hematopoietic cell types in single-cell datasets and easy interpretation of the results. The cellmarkeraccordion package allows to automatically annotate normal and disease ritical cell populations based on the built-in Accordion gene marker database. It requires in input only the counts matrix (raw or normalized) or a Seurat object. In addition, by exploiting the built-in cell cycle labeling you can easily assign the cell cycle phase to each cell. The users can also customize the annotation by simply providing their own genes list as input, which can be associated with cell types or even to specific pathways or signatures of interest. Importantly, the Accordion implements novel options to explore annotation results by inspecting for each group of cells the top marker genes which mostly impacted the annotation, together with the top cell types and their relationship based on the cell ontology tree.

```
License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Depends R (>= 4.2.3)
Imports scales (\geq 1.2.1),
      plyr (>= 1.8.8),
      data.table (>= 1.14.8),
      Seurat (>= 4.0.0),
      ggplot2 (>= 3.0.0),
      stringr (>= 1.5.0),
      ontoProc (>= 1.20.0),
      ontologyIndex (\geq 2.10),
      igraph (>= 1.4.2),
      ontologyPlot (>= 1.6),
      ggraph (>= 2.1.0),
      cowplot(>= 1.1.1),
      ggnewscale (>= 0.4.8),
      purrr (>= 1.0.1),
```

R topics documented:

accordion																				2
accordion_	annotation																			5

2 accordion

Index		25
	accordion_custom	 13 10 20
	accordion_cell_cycle	

accordion

Automatically annotating and interpreting single-cell populations with the built-in Cell Marker Accordion database

Description

This function performs cell types annotation exploiting the built-in Accordion gene marker database. It takes in input either a Seurat object or a raw or normalized count matrix and return in output the cell types assignment and the detailed informations of the annotation results (added to the Seurat object or as a list).

Usage

```
accordion(
 data,
  cluster_info = "seurat_clusters",
  cell_types = NULL,
  species = "Human",
  evidence_consistency_score_threshold = NULL,
  specificity_score_threshold = NULL,
 min_n_marker = 5,
 max_n_marker = NULL,
  combined_score_quantile_threshold = NULL,
  annotation_resolution = "cluster",
  cluster_score_quantile_threshold = 0.75,
  allow_unknown = TRUE,
  annotation_column = "accordion",
  include_detailed_annotation_info = TRUE,
 group_markers_by = "celltype_cluster",
 n_top_celltypes = 5,
 n_{top_markers} = 5,
  top_marker_score_quantile_threshold = 0.75,
  plot = TRUE
```

Arguments

data

Either a Seurat object (version 4.9) or a raw or normalized count matrix with genes on rows and cells on columns. If raw counts are provided, data are lognormalized exploiting the NormalizeData() function from the Seurat package.

cluster_info

in case object is a Seurat object, cluster_info should be need to be a character string specifying the name of the column in the metadata that contains cluster ids; if object is a count matrix, cluster_info should be need to be a data

accordion 3

frame or data table containing cluster identity for each cell. The data frame or data table should contain at least two columns, one named "cell", which specifies cell id's, and one named "cluster", which specifies the clustering id's for each cell. This parameter is necessary only when the input is a count matrix and only if the annotation_resolution parameter is set to "cluster". Default is "seurat clusters".

cell_types

Character string or character string vector specifying the cell types to annotate. If this parameter is not specified, all cell types present in the Accordion database are used for the annotation. Default is NULL.

species

Character string or character string vector specifying the species. Currently, either "Human" and/or "Mouse" are supported. If multiple species are selected, marker genes are merged together. Default is "Human".

evidence_consistency_score_threshold

Integer value (currently in 1,7) specifying the minimum evidence consistency (EC) score for each marker. Only markers >= this threshold are kept. If NULL, no filter is applied. Default is NULL.

specificity_score_threshold

numeric value in (0,1] specifying the minimum specificity score for each marker. Only markers <= this threshold are kept. If NULL, no filter is applied. Default is NULL.

min_n_marker

Integer value specifying the minimum number of markers to keep for each cell type. Only cell types with a number of markers >= this threshold are kept. Default is 5.

max_n_marker

Integer value specifying the maximum number of markers to keep for each cell type. For the selection, markers are ranked according to their combined score, obtained by multiplying evidence consistency score and specificity score. If NULL, no filter is applied. Default is NULL.

combined_score_quantile_threshold

numeric value in (0,1] specifying the combined score quantile threshold. For the selection, markers are ranked according to their combined score, obtained by multiplying evidence consistency score and specificity score. Only markers > the quantile_threshold are kept. If NULL, no filter is applied. Default is NULL.

annotation_resolution

Character string or character string vector specifying the resolution of the annotation. Either "cluster" and/or "cell" are supported. Default is "cluster".

cluster_score_quantile_threshold

numeric value in 0,1 specifying the cluster score quantile threshold. For each cell a score specific for each cell type is computed. To annotate a cluster cl, for each cell type the cluster_score_quantile_threshold is computed across cells belonging to that cluster and the cell type with the maximum score is then assigned to the cluster cl. Default is 0.75.

allow_unknown

Logical value indicating whether to allow cells or clusters to be labeled as "unknown". If it is set to TRUE, cells or clusters with negative scores are assigned to the "unknown" category. Default is TRUE.

annotation_column

Character string specifying the name of the column in either the metadata of the input Seurat object or in the input cluster_info where the annotation will be stored. Per cluster and per cell annotation results will be stored in the annotation_column_per_cluster and annotation_column_per_cell columns respectively. Default is "accordion".

4 accordion

include_detailed_annotation_info

Logical value indicating whether to store information on the top cell types and markers in the output. If TRUE, a nested list named "accordion" is created. If resolution_annotation is set to "cluster" and/or "cell, sublists named "cluster_resolution" and/or "cell_resolution" are then added. Inside the sublist "detailed_annotation_info" the n_top_markers markers, group by group_markers_by and the n_top_celltypes cell types are then included. If a Seurat object is provided as input the list is stored in the misc slot of the object (object@misc@accordion). If the input is a count matrix, the list is returned in the final output. Default is TRUE.

group_markers_by

Character string or character string vector specifying the classification of marker genes. It possible to retrieve n_top_markers marker genes for each cell type identified with cluster ("celltype_cluster") or cell ("celltype_cell") resolution; n_top_markers marker genes per cluster ("cluster") or per cell ("cell") can be also obtained. Either "celltype_cluster", "celltype_cell", "cluster" and/or "cell". Default is "celltype_cluster".

n_top_celltypes

Integer value specifying the number of the top cell types to be included in the output for each cluster and cell depending on the selected annotation_resolution parameter Default is 5.

n_top_markers

Integer value specifying the number of the top markers to be included in the output for each cell type, cluster or cell depending on the selected annotation_resolution and group_markers_by parameters. Default is 5.

top_marker_score_quantile_threshold

numeric value in (0,1] specifying the marker score quantile threshold. For each marker a score specific for each cell is computed. To identify the n_top_markers for a cluster cl or a cell type ct, the top_marker_score_quantile_threshold is computed across cells belonging to that cluster or labeled as ct, and the n_top_markers with the maximum score are reported. Default is 0.75.

plot

Logical value indicating whether to store plots displaying detailed annotation information. This parameter can be set to TRUE only when include_detailed_annotation_info is set to TRUE. If TRUE, lollipop plots displaying the top n_top_markers group by group_markers_by and top n_top_celltypes for each annotation_resolution together with the cell types hierarchies based on the cell ontology structure are stored in the "accordion" list. Default is TRUE.

assay

Character string specifying the Assay of the Seurat object. This parameter is necessary only in case data is a Seurat object. Default is "RNA".

Details

If a Seurat object was provided in input, the function returns the Seurat object with markers-based scaled data in the scale.data slot and cell types annotation results in the metadata. If include_detailed_annotation_in and plot were set to TRUE, a list containing cell types and markers information, together with ggplot objects, is stored in the "misc@accordion" slot. If a count matrix was provided in input, the function returns a list containing the following elements:

• "scaled_matrix":normalized and scaled expression matrix;

If annotation_resolution is set to "cell":

• "cell_annotation:"data table containing cell types annotation results for each cell;

accordion_annotation 5

If annotation_resolution is set to "cluster":

• "cluster_annotation" data table containing cell types annotation results for each cell;

If include_detailed_annotation_info is set to TRUE:

• "accordion:"list containing detailed information of cell types annotation.

Value

A Seurat object or a list

 ${\it accordion_annotation}$

Automatically annotating single-cell populations with the built-in Cell Marker Accordion database

Description

This function performs cell types annotation exploiting the built-in Accordion gene marker database. It takes in input either a Seurat object or a raw or normalized count matrix and return in output the cell types assignment (added to the Seurat object or as a list).

Usage

```
accordion_annotation(
  data,
  cluster_info = "seurat_clusters",
  cell_types = NULL,
  species = "Human",
  evidence_consistency_score_threshold = NULL,
  specificity_score_threshold = NULL,
 min_n_marker = 5,
 max_n_marker = NULL,
 combined_score_quantile_threshold = NULL,
  annotation_resolution = "cluster",
  cluster_score_quantile_threshold = 0.75,
  allow_unknown = TRUE,
  annotation_column = "accordion",
  include_detailed_annotation_info = TRUE,
  group_markers_by = "celltype_cluster",
 n_top_celltypes = 5,
 n_{top_markers} = 5,
  top_marker_score_quantile_threshold = 0.75
)
```

Arguments

data

Either a Seurat object (version 4.9) or a raw or normalized count matrix with genes on rows and cells on columns. If raw counts are provided, data are lognormalized exploiting the NormalizeData() function from the Seurat package.

6 accordion_annotation

cluster_info

in case object is a Seurat object, cluster_info should be need to be a character string specifying the name of the column in the metadata that contains cluster ids; if object is a count matrix, cluster_info should be need to be a data frame or data table containing cluster identity for each cell. The data frame or data table should contain at least two columns, one named "cell", which specifies cell id's, and one named "cluster", which specifies the clustering id's for each cell. This parameter is necessary only when the input is a count matrix and only if the annotation_resolution parameter is set to "cluster". Default is "seurat_clusters".

cell_types

Character string or character string vector specifying the cell types to annotate. If this parameter is not specified, all cell types present in the Accordion database are used for the annotation. Default is NULL.

species

Character string or character string vector specifying the species. Currently, either "Human" and/or "Mouse" are supported. If multiple species are selected, marker genes are merged together. Default is "Human".

evidence_consistency_score_threshold

Integer value (currently in 1,7) specifying the minimum evidence consistency (EC) score for each marker. Only markers >= this threshold are kept. If NULL, no filter is applied. Default is NULL.

specificity_score_threshold

numeric value in (0,1] specifying the minimum specificity score for each marker. Only markers <= this threshold are kept. If NULL, no filter is applied. Default is NULL.

min_n_marker

Integer value specifying the minimum number of markers to keep for each cell type. Only cell types with a number of markers >= this threshold are kept. Default is 5.

max_n_marker

Integer value specifying the maximum number of markers to keep for each cell type. For the selection, markers are ranked according to their combined score, obtained by multiplying evidence consistency score and specificity score. If NULL, no filter is applied. Default is NULL.

combined_score_quantile_threshold

numeric value in (0,1] specifying the combined score quantile threshold. For the selection, markers are ranked according to their combined score, obtained by multiplying evidence consistency score and specificity score. Only markers > the quantile_threshold are kept. If NULL, no filter is applied. Default is NULL.

annotation_resolution

Character string or character string vector specifying the resolution of the annotation. Either "cluster" and/or "cell" are supported. Default is "cluster".

cluster_score_quantile_threshold

numeric value in 0,1 specifying the cluster score quantile threshold. For each cell a score specific for each cell type is computed. To annotate a cluster cl, for each cell type the cluster_score_quantile_threshold is computed across cells belonging to that cluster and the cell type with the maximum score is then assigned to the cluster cl. Default is 0.75.

allow_unknown

Logical value indicating whether to allow cells or clusters to be labeled as "unknown". If it is set to TRUE, cells or clusters with negative scores are assigned to the "unknown" category. Default is TRUE.

annotation_column

Character string specifying the name of the column in either the metadata of the input Seurat object or in the input cluster_info where the annotation accordion_annotation 7

will be stored. Per cluster and per cell annotation results will be stored in the annotation_column_per_cluster and annotation_column_per_cell columns respectively. Default is "accordion".

include_detailed_annotation_info

Logical value indicating whether to store information on the top cell types and markers in the output. If TRUE, a nested list named "accordion" is created. If resolution_annotation is set to "cluster" and/or "cell, sublists named "cluster_resolution" and/or "cell_resolution" are then added. Inside the sublist "detailed_annotation_info" the n_top_markers markers, group by group_markers_by and the n_top_celltypes cell types are then included. If a Seurat object is provided as input the list is stored in the misc slot of the object (object@misc@accordion). If the input is a count matrix, the list is returned in the final output. Default is TRUE.

group_markers_by

Character string or character string vector specifying the classification of marker genes. It possible to retrieve n_top_markers marker genes for each cell type identified with cluster ("celltype_cluster") or cell ("celltype_cell") resolution; n_top_markers marker genes per cluster ("cluster") or per cell ("cell") can be also obtained. Either "celltype_cluster", "celltype_cell", "cluster" and/or "cell". Default is "celltype_cluster".

n_top_celltypes

Integer value specifying the number of the top cell types to be included in the output for each cluster and cell depending on the selected annotation_resolution parameter Default is 5.

n_top_markers

Integer value specifying the number of the top markers to be included in the output for each cell type, cluster or cell depending on the selected annotation_resolution and group_markers_by parameters. Default is 5.

 $top_marker_score_quantile_threshold$

numeric value in (0,1] specifying the marker score quantile threshold. For each marker a score specific for each cell is computed. To identify the n_top_markers for a cluster cl or a cell type ct, the top_marker_score_quantile_threshold is computed across cells belonging to that cluster or labeled as ct, and the n_top_markers with the maximum score are reported. Default is 0.75.

assay

Character string specifying the Assay of the Seurat object. This parameter is necessary only in case data is a Seurat object. Default is "RNA".

Details

If a Seurat object was provided in input, the function returns the Seurat object with markers-based scaled data in the scale.data slot and cell types annotation results in the metadata. If include_detailed_annotation_in was set to TRUE, a list containing cell types and markers information is stored in the "misc@accordion" slot. If a count matrix was provided in input, the function returns a list containing the following elements:

"scaled_matrix":normalized and scaled expression matrix;

If annotation_resolution is set to "cell":

• "cell_annotation:"data table containing cell types annotation results for each cell;

If annotation_resolution is set to "cluster":

• "cluster_annotation"data table containing cell types annotation results for each cell;

8 accordion_cell_cycle

If include_detailed_annotation_info is set to TRUE:

• "accordion:"list containing detailed information of cell types annotation.

Value

A Seurat object or a list

accordion_cell_cycle Automatically identify and interpreting cell cycle state of single-cell populations

Description

This function identifies cell cycle states exploiting the collection of marker genes associated to each phase, including G0. It takes in input either a Seurat object or a raw or normalized count matrix and return in output the cell cycle assignment and the detailed informations of the annotation results (added to the Seurat object or as a list).

Usage

```
accordion_cell_cycle(
  data,
  cluster_info = "seurat_clusters",
  assay = "RNA",
  species = "Human",
  annotation_resolution = "cell",
  annotation_column = "accordion_cell_cycle",
  cluster_score_quantile_threshold = 0.75,
  allow_unknown = FALSE,
  include_detailed_annotation_info = FALSE,
  group_markers_by = "celltype_cell",
  n_top_celltypes = 5,
  n_top_markers = 5,
  top_marker_score_quantile_threshold = 0.75,
  plot = FALSE
)
```

Arguments

data

Either a Seurat object (version 4.9) or a raw or normalized count matrix with genes on rows and cells on columns. If raw counts are provided, data are lognormalized exploiting the NormalizeData() function from the Seurat package.

cluster_info

in case object is a Seurat object, cluster_info should be need to be a character string specifying the name of the column in the metadata that contains cluster ids; if object is a count matrix, cluster_info should be need to be a data frame or data table containing cluster identity for each cell. The data frame or data table should contain at least two columns, one named "cell", which specifies cell id's, and one named "cluster", which specifies the clustering id's for each cell. This parameter is necessary only when the input is a count matrix and only if the annotation_resolution parameter is set to "cluster". Default is "seurat_clusters".

accordion_cell_cycle 9

assay Character string specifying the Assay of the Seurat object. This parameter is

necessary only in case data is a Seurat object. Default is "RNA".

species Character string or character string vector specifying the species. Currently, either "Human" and/or "Mouse" are supported. If multiple species are selected,

marker genes are merged together. Default is "Human".

annotation_resolution

Character string or character string vector specifying the resolution of the annotation. Either "cluster" and/or "cell" are supported. Default is "cell".

annotation_column

Character string specifying the name of the column in either the metadata of the input Seurat object or in the input cluster_info where the annotation will be stored. Per cluster and per cell annotation results will be stored in the annotation_column_per_cluster and annotation_column_per_cell columns respectively. Default is "accordion_cell_cycle".

cluster_score_quantile_threshold

numeric value in 0,1 specifying the cluster score quantile threshold. For each cell a score specific for each cell type is computed. To annotate a cluster cl, for each cell type the cluster_score_quantile_threshold is computed across cells belonging to that cluster and the cell type with the maximum score is then assigned to the cluster cl. Default is 0.75.

allow_unknown Logical value indicating whether to allow cells or clusters to be labeled as "un-

known". If it is set to TRUE, cells or clusters with negative scores are assigned to the "unknown" category. Default is TRUE.

include_detailed_annotation_info

Logical value indicating whether to store information on the top cell types and markers in the output. If TRUE, a nested list named "accordion_cell_cycle" is created. If resolution_annotation is set to "cluster" and/or "cell, sublists named "cluster_resolution" and/or "cell_resolution" are then added. Inside the sublist "detailed_annotation_info" the n_top_markers markers, group by group_markers_by and the n_top_celltypes cell types are then included. If a Seurat object is provided as input the list is stored in the misc slot of the object (object@misc@accordion_cell_cycle). If the input is a count matrix, the list is returned in the final output. Default is FALSE.

group_markers_by

Character string or character string vector specifying the classification of marker genes. It possible to retrieve n_top_markers marker genes for each cell type identified with cluster ("celltype_cluster") or cell ("celltype_cell") resolution; n_top_markers marker genes per cluster ("cluster") or per cell ("cell") can be also obtained. Either "celltype_cluster", "celltype_cell", "cluster" and/or "cell". Default is "celltype_cell".

n_top_celltypes

Integer value specifying the number of the top cell types to be included in the output for each cluster and cell depending on the selected annotation_resolution parameter Default is 5.

n_top_markers Integer value specifying the number of the top markers to be included in the output for each cell type, cluster or cell depending on the selected annotation_resolution and group_markers_by parameters. Default is 5.

top_marker_score_quantile_threshold

numeric value in (0,1] specifying the marker score quantile threshold. For each marker a score specific for each cell is computed. To identify the n_top_markers

10 accordion_custom

for a cluster cl or a cell type ct, the top_marker_score_quantile_threshold is computed across cells belonging to that cluster or labeled as ct, and the n_top_markers with the maximum score are reported. Default is 0.75.

plot

Logical value indicating whether to store plots displaying detailed annotation information. This parameter can be set to TRUE only when include_detailed_annotation_info is set to TRUE. If TRUE, lollipop plots displaying the top n_top_markers group by group_markers_by and n_top_celltypes for each annotation_resolution together with the cell types hierarchies based on the cell ontology structure are stored in the "accordion_cell_cycle" list. Default is FALSE.

Details

If a Seurat object was provided in input, the function returns the Seurat object with markers-based scaled data in the scale.data slot and cell types annotation results in the metadata. If include_detailed_annotation_in and plot were set to TRUE, a list named "accordion_cell_cycle" containing cell types and markers information, together with ggplot objects, is stored in the "misc" slot. If a count matrix was provided in input, the function returns a list containing the following elements:

• "scaled_matrix"normalized and scaled expression matrix;

If annotation_resolution is set to "cell":

• "cell_annotation"data table containing cell types annotation results for each cell;

If annotation_resolution is set to "cluster":

• "cluster_annotation"data table containing cell types annotation results for each cell;

If include_detailed_annotation_info is set to TRUE:

• accordion_cell_cyclelist containing detailed information of cell types annotation.

Value

A Seurat object or a list

accordion_custom

Automatically annotating and interpreting single-cell populations with custom marker genes sets

Description

This function performs cell types or signatures/pathways annotation based on cusom marker genes set. It takes in input either a Seurat object or a raw or normalized count matrix and a table of marker genes associated to cell types or even to pathways and return in output the cell types/pathways assignment and the detailed informations of the annotation results (added to the Seurat object or as a list).

accordion_custom 11

Usage

```
accordion_custom(
  data,
 marker_table,
  category_column = "cell_type",
 marker_column = "marker",
 marker_type_column = "marker_type",
 weight_column = "weight",
  cluster_info = "seurat_clusters",
  assay = "RNA",
 min_n_marker = 5,
 max_n_marker = NULL,
 annotation_resolution = "cluster",
  cluster_score_quantile_threshold = 0.75,
  allow_unknown = TRUE,
  annotation_column = "accordion_custom",
  include_detailed_annotation_info = TRUE,
  group_markers_by = "celltype_cluster",
  n_{top_celltypes} = 5,
 n_{top_markers} = 5,
  top_marker_score_quantile_threshold = 0.75,
  plot = TRUE
```

Arguments

data

Either a Seurat object (version 4.9) or a raw or normalized count matrix with genes on rows and cells on columns. If raw counts are provided, data are log-normalized exploiting the NormalizeData() function from the Seurat package.

marker_table

Data table or data frame containing cell type markers. The table needs to have at least two columns, the category_column, which specifies cell types or categories, and the marker_column, which specifies the corresponding markers on each row. Columns indicating the marker type (either positive or negative), and the marker weight can be optionally included.

category_column

String characters specifying the name of the marker_table column containing cell types or categories. Default is "cell_type".

marker_column

String characters specifying the name of the marker_table column containing markers. Default is "marker".

marker_type_column

Optional string characters specifying the name of the marker_table column containing string characters indicating the type of markers, either "positive" or "negative". If no marker_type_column is found in the marker_table all markers are considered "positive". Default is "marker_type".

weight_column

Optional string characters specifying the name of the marker_table column containing numeric value indicating the weight for each marker. If no weight_column is found in the marker_table all markers are equally weighted as 1. Default is "weight".

cluster_info

in case object is a Seurat object, cluster_info should be need to be a character string specifying the name of the column in the metadata that contains cluster ids; if object is a count matrix,

12 accordion_custom

assay Character string specifying the Assay of the Seurat object. This parameter is

necessary only in case data is a Seurat object. Default is "RNA".

min_n_marker Integer value specifying the minimum number of markers to keep for each cell

type. Only cell types with a number of markers >= this threshold are kept.

Default is 5.

max_n_marker Integer value specifying the maximum number of markers to keep for each cell

type. For the selection, markers are ranked according to their combined score, obtained by multiplying evidence consistency score and specificity score. If

NULL, no filter is applied. Default is NULL.

annotation_resolution

Character string or character string vector specifying the resolution of the annotation. Either "cluster" and/or "cell" are supported. Default is "cluster".

cluster_score_quantile_threshold

numeric value in 0,1 specifying the cluster score quantile threshold. For each cell a score specific for each cell type is computed. To annotate a cluster cl, for each cell type the cluster_score_quantile_threshold is computed across cells belonging to that cluster and the cell type with the maximum score is then

assigned to the cluster cl. Default is 0.75.

allow_unknown Logical value indicating whether to allow cells or clusters to be labeled as "unknown". If it is set to TRUE, cells or clusters with negative scores are assigned

to the "unknown" category. Default is TRUE.

annotation_column

Character string specifying the name of the column in either the metadata of the input Seurat object or in the input cluster_info where the annotation will be stored. Per cluster and per cell annotation results will be stored in the annotation_column_per_cluster and annotation_column_per_cell columns respectively. Default is "accordion".

include_detailed_annotation_info

Logical value indicating whether to store information on the top cell types and markers in the output. If TRUE, a list named "accordion_custom" is created. If resolution_annotation is set to "cluster" and/or "cell, sublists named "cluster_resolution" and/or "cell_resolution" are then added. Inside the sublist "detailed_annotation_info" the n_top_markers markers, group by group_markers_by and the n_top_celltypes cell types are then included. If a Seurat object is provided as input the list is stored in the misc slot of the object (object@misc@accordion_custom). If the input is a count matrix, the list is returned in the final output. Default is

TRUE.

group_markers_by

Character string or character string vector specifying the classification of marker genes. It possible to retrieve n_top_markers marker genes for each cell type identified with cluster ("celltype_cluster") or cell ("celltype_cell") resolution; n_top_markers marker genes per cluster ("cluster") or per cell ("cell") can be also obtained. Either "celltype_cluster", "celltype_cell", "cluster" and/or "cell". Default is "celltype_cluster".

n_top_celltypes

Integer value specifying the number of the top cell types to be included in the output for each cluster and cell depending on the selected annotation_resolution parameter Default is 5.

n_top_markers

Integer value specifying the number of the top markers to be included in the output for each cell type, cluster or cell depending on the selected annotation_resolution and group_markers_by parameters. Default is 5.

top_marker_score_quantile_threshold

numeric value in (0,1] specifying the marker score quantile threshold. For each marker a score specific for each cell is computed. To identify the n_top_markers for a cluster cl or a cell type ct, the top_marker_score_quantile_threshold is computed across cells belonging to that cluster or labeled as ct, and the n_top_markers with the maximum score are reported. Default is 0.75.

plot

Logical value indicating whether to store plots displaying detailed annotation information. This parameter can be set to TRUE only when include_detailed_annotation_info is set to TRUE. If TRUE, lollipop plots displaying the top n_top_markers group by group_markers_by and op n_top_celltypes for each annotation_resolution together with the cell types hierarchies based on the cell ontology structure are stored in the "accordion" list. Default is TRUE.

Details

If a Seurat object was provided in input, the function returns the Seurat object with markers-based scaled data in the scale.data slot and cell types annotation results in the metadata. If include_detailed_annotation_in and plot were set to TRUE, a list containing cell types and markers information, together with ggplot objects, is stored in the "misc@accordion_custom" slot. If a count matrix was provided in input, the function returns a list containing the following elements:

"scaled_matrix"normalized and scaled expression matrix;

If annotation_resolution is set to "cell":

• "cell_annotation"data table containing cell types annotation results for each cell;

If annotation_resolution is set to "cluster":

• "cluster_annotation" data table containing cell types annotation results for each cell;

If include_detailed_annotation_info is set to TRUE:

• accordion_customlist containing detailed information of cell types annotation.

Value

A Seurat object or a list

 ${\tt accordion_custom_annotation}$

Automatically annotating single-cell populations with custom marker genes sets

Description

This function performs cell types or signatures/pathways annotation based on cusom marker genes set. It takes in input either a Seurat object or a raw or normalized count matrix and a table of marker genes associated to cell types or even to pathways and return in output the cell types/pathways assignment (added to the Seurat object or as a list).

Usage

```
accordion_custom_annotation(
  data,
 marker_table,
 category_column = "cell_type",
 marker_column = "marker",
 marker_type_column = "marker_type",
 weight_column = "weight",
  cluster_info = "seurat_clusters",
  assay = "RNA",
 min_n_marker = 5,
 max_n_marker = NULL,
  annotation_resolution = "cluster",
  cluster_score_quantile_threshold = 0.75,
  allow_unknown = TRUE,
  annotation_column = "accordion_custom",
  include_detailed_annotation_info = TRUE,
  group_markers_by = "celltype_cluster",
 n_{top_celltypes} = 5,
 n_{top_markers} = 5,
  top_marker_score_quantile_threshold = 0.75
```

Arguments

data

Either a Seurat object (version 4.9) or a raw or normalized count matrix with genes on rows and cells on columns. If raw counts are provided, data are lognormalized exploiting the NormalizeData() function from the Seurat package.

marker_table

Data table or data frame containing cell type markers. The table needs to have at least two columns, the category_column, which specifies cell types or categories, and the marker_column, which specifies the corresponding markers on each row. Columns indicating the marker type (either positive or negative), and the marker weight can be optionally included.

category_column

String characters specifying the name of the marker_table column containing cell types or categories. Default is "cell_type".

marker_column

String characters specifying the name of the marker_table column containing markers. Default is "marker".

marker_type_column

Optional string characters specifying the name of the marker_table column containing string characters indicating the type of markers, either "positive" or "negative". If no marker_type_column is found in the marker_table all markers are considered "positive". Default is "marker_type".

 $weight_column$

Optional string characters specifying the name of the marker_table column containing numeric value indicating the weight for each marker. If no weight_column is found in the marker_table all markers are equally weighted as 1. Default is "weight".

cluster_info

in case object is a Seurat object, cluster_info should be need to be a character string specifying the name of the column in the metadata that contains cluster ids; if object is a count matrix,

Character string specifying the Assay of the Seurat object. This parameter is assay

necessary only in case data is a Seurat object. Default is "RNA".

Integer value specifying the minimum number of markers to keep for each cell min_n_marker

type. Only cell types with a number of markers >= this threshold are kept.

Default is 5.

Integer value specifying the maximum number of markers to keep for each cell max_n_marker

type. For the selection, markers are ranked according to their combined score, obtained by multiplying evidence consistency score and specificity score. If

NULL, no filter is applied. Default is NULL.

annotation_resolution

Character string or character string vector specifying the resolution of the annotation. Either "cluster" and/or "cell" are supported. Default is "cluster".

cluster_score_quantile_threshold

numeric value in 0,1 specifying the cluster score quantile threshold. For each cell a score specific for each cell type is computed. To annotate a cluster cl, for each cell type the cluster_score_quantile_threshold is computed across cells belonging to that cluster and the cell type with the maximum score is then

assigned to the cluster cl. Default is 0.75.

allow_unknown Logical value indicating whether to allow cells or clusters to be labeled as "unknown". If it is set to TRUE, cells or clusters with negative scores are assigned

to the "unknown" category. Default is TRUE.

annotation_column

Character string specifying the name of the column in either the metadata of the input Seurat object or in the input cluster_info where the annotation will be stored. Per cluster and per cell annotation results will be stored in the annotation_column_per_cluster and annotation_column_per_cell columns

respectively. Default is "accordion".

include_detailed_annotation_info

Logical value indicating whether to store information on the top cell types and markers in the output. If TRUE, a nested list named "accordion_custom" is created. If resolution_annotation is set to "cluster" and/or "cell, sublists named "cluster_resolution" and/or "cell_resolution" are then added. Inside the sublist "detailed_annotation_info" the n_top_markers markers, group by group_markers_by and the n_top_celltypes cell types are then included. If a Seurat object is provided as input the list is stored in the misc slot of the object (object@misc@accordion). If the input is a count matrix, the list is returned in the final output. Default is

TRUE.

group_markers_by

Character string or character string vector specifying the classification of marker genes. It possible to retrieve n_top_markers marker genes for each cell type identified with cluster ("celltype_cluster") or cell ("celltype_cell") resolution; n_top_markers marker genes per cluster ("cluster") or per cell ("cell") can be also obtained. Either "celltype_cluster", "celltype_cell", "cluster" and/or "cell".

Default is "celltype_cluster".

n_top_celltypes

Integer value specifying the number of the top cell types to be included in the output for each cluster and cell depending on the selected annotation_resolution

parameter Default is 5.

Integer value specifying the number of the top markers to be included in the outn_top_markers put for each cell type, cluster or cell depending on the selected annotation_resolution

and group_markers_by parameters. Default is 5.

top_marker_score_quantile_threshold

numeric value in (0,1] specifying the marker score quantile threshold. For each marker a score specific for each cell is computed. To identify the n_top_markers for a cluster cl or a cell type ct, the top_marker_score_quantile_threshold is computed across cells belonging to that cluster or labeled as ct, and the n_top_markers with the maximum score are reported. Default is 0.75.

Details

If a Seurat object was provided in input, the function returns the Seurat object with markers-based scaled data in the scale.data slot and cell types annotation results in the metadata. If include_detailed_annotation_in and plot were set to TRUE, a list containing cell types and markers information, together with ggplot objects, is stored in the "misc@accordion_custom" slot. If a count matrix was provided in input, the function returns a list containing the following elements:

• "scaled_matrix"normalized and scaled expression matrix;

If annotation_resolution is set to "cell":

• "cell_annotation"data table containing cell types annotation results for each cell;

If annotation_resolution is set to "cluster":

• "cluster_annotation"data table containing cell types annotation results for each cell;

If include_detailed_annotation_info is set to TRUE:

• accordion_customlist containing detailed information of cell types annotation.

Value

A Seurat object or a list

accordion_disease

Automatically annotating and interpreting aberrant single-cell populations with the built-in Cell Marker Accordion disease database

Description

This function identified aberrant populations exploiting the built-in Accordion gene marker disease database. It takes in input either a Seurat object or a raw or normalized count matrix and return in output the cell types assignment and the detailed informations of the annotation results (added to the Seurat object or as a list).

Usage

```
accordion_disease(
  data,
  disease = NULL,
  cluster_info = "seurat_clusters",
  assay = "RNA",
  cell_types = NULL,
  species = "Human",
  evidence_consistency_score_threshold = NULL,
```

```
specificity_score_threshold = NULL,
min_n_marker = 5,
max_n_marker = NULL,
combined_score_quantile_threshold = NULL,
disease_vs_healthy = TRUE,
annotation_resolution = "cluster",
cluster_score_quantile_threshold = 0.75,
allow_unknown = TRUE,
annotation_column = "accordion_disease",
include_detailed_annotation_info = TRUE,
group_markers_by = "celltype_cluster",
n_top_celltypes = 5,
n_top_markers = 5,
top_marker_score_quantile_threshold = 0.75,
plot = TRUE
```

Arguments

data

Either a Seurat object (version 4.9) or a raw or normalized count matrix with genes on rows and cells on columns. If raw counts are provided, data are lognormalized exploiting the NormalizeData() function from the Seurat package.

disease

Character string or character string vector specifying diseases to consider. If NULL, the full disease Accordion database is considered. Default is NULL.

cluster_info

in case object is a Seurat object, cluster_info should be need to be a character string specifying the name of the column in the metadata that contains cluster ids; if object is a count matrix, cluster_info should be need to be a data frame or data table containing cluster identity for each cell. The data frame or data table should contain at least two columns, one named "cell", which specifies cell id's, and one named "cluster", which specifies the clustering id's for each cell. This parameter is necessary only when the input is a count matrix and only if the annotation_resolution parameter is set to "cluster". Default is "seurat_clusters".

assay

Character string specifying the Assay of the Seurat object. This parameter is necessary only in case data is a Seurat object. Default is "RNA".

cell_types

Character string or character string vector specifying the cell types to annotate. If this parameter is not specified, all cell types present in the Accordion database are used for the annotation. Default is NULL.

species

Character string or character string vector specifying the species. Currently, either "Human" and/or "Mouse" are supported. If multiple species are selected, marker genes are merged together. Default is "Human".

evidence_consistency_score_threshold

Integer value (currently in 1,7) specifying the minimum evidence consistency (EC) score for each marker. Only markers >= this threshold are kept. If NULL, no filter is applied. Default is NULL.

specificity_score_threshold

numeric value in (0,1] specifying the minimum specificity score for each marker. Only markers <= this threshold are kept. If NULL, no filter is applied. Default is NULL.

min_n_marker

Integer value specifying the minimum number of markers to keep for each cell type. Only cell types with a number of markers >= this threshold are kept. Default is 5.

max_n_marker

Integer value specifying the maximum number of markers to keep for each cell type. For the selection, markers are ranked according to their combined score, obtained by multiplying evidence consistency score and specificity score. If NULL, no filter is applied. Default is NULL.

combined_score_quantile_threshold

numeric value in (0,1] specifying the combined score quantile threshold. For the selection, markers are ranked according to their combined score, obtained by multiplying evidence consistency score and specificity score. Only markers > the quantile_threshold are kept. If NULL, no filter is applied. Default is NULL.

disease_vs_healthy

Logical value indicating whether to compare the markers associated with disease cell types with respect to the markers associated with the corresponding healthy cell types. If TRUE the specificity score is calculated considering if a gene is also a marker for the corresponding healthy cell type. For each cell, a specific score for disease cell types and another score for the healthy types (named as the cell types label) are returned. Default is TRUE.

annotation_resolution

Character string or character string vector specifying the resolution of the annotation. Either "cluster" and/or "cell" are supported. Default is "cluster".

cluster_score_quantile_threshold

numeric value in 0,1 specifying the cluster score quantile threshold. For each cell a score specific for each cell type is computed. To annotate a cluster cl, for each cell type the cluster_score_quantile_threshold is computed across cells belonging to that cluster and the cell type with the maximum score is then assigned to the cluster cl. Default is 0.75.

allow_unknown

Logical value indicating whether to allow cells or clusters to be labeled as "unknown". If it is set to TRUE, cells or clusters with negative scores are assigned to the "unknown" category. Default is TRUE.

annotation_column

Character string specifying the name of the column in either the metadata of the input Seurat object or in the input cluster_info where the annotation will be stored. Per cluster and per cell annotation results will be stored in the annotation_column_per_cluster and annotation_column_per_cell columns respectively. Default is "accordion_disease".

include_detailed_annotation_info

Logical value indicating whether to store information on the top cell types and markers in the output. If TRUE, a nested list named "accordion_disease" is created. If resolution_annotation is set to "cluster" and/or "cell, sublists named "cluster_resolution" and/or "cell_resolution" are then added. Inside the sublist "detailed_annotation_info" the n_top_markers markers, group by group_markers_by and the n_top_celltypes cell types are then included. If a Seurat object is provided as input the list is stored in the misc slot of the object (object@misc@accordion_disease). If the input is a count matrix, the list is returned in the final output. Default is TRUE.

group_markers_by

Character string or character string vector specifying the classification of marker genes. It possible to retrieve n_top_markers marker genes for each cell type

identified with cluster ("celltype_cluster") or cell ("celltype_cell") resolution; n_top_markers marker genes per cluster ("cluster") or per cell ("cell") can be also obtained. Either "celltype_cluster", "celltype_cell", "cluster" and/or "cell". Default is "celltype_cluster".

n_top_celltypes

Integer value specifying the number of the top cell types to be included in the output for each cluster and cell depending on the selected annotation_resolution parameter Default is 5.

n_top_markers

Integer value specifying the number of the top markers to be included in the output for each cell type, cluster or cell depending on the selected annotation_resolution and group_markers_by parameters. Default is 5.

top_marker_score_quantile_threshold

numeric value in (0,1] specifying the marker score quantile threshold. For each marker a score specific for each cell is computed. To identify the n_top_markers for a cluster cl or a cell type ct, the top_marker_score_quantile_threshold is computed across cells belonging to that cluster or labeled as ct, and the n_top_markers with the maximum score are reported. Default is 0.75.

plot

Logical value indicating whether to store plots displaying detailed annotation information. This parameter can be set to TRUE only when include_detailed_annotation_info is set to TRUE. If TRUE, lollipop plots displaying the top n_top_markers group by group_markers_by and op n_top_celltypes for each annotation_resolution together with the cell types hierarchies based on the cell ontology structure are stored in the "accordion" list. Default is TRUE.

Details

If a Seurat object was provided in input, the function returns the Seurat object with markers-based scaled data in the scale.data slot and cell types annotation results in the metadata. If include_detailed_annotation_in and plot were set to TRUE, a list containing cell types and markers information, together with ggplot objects, is stored in the "misc@accordion_disease" slot. If a count matrix was provided in input, the function returns a list containing the following elements:

• "scaled_matrix"normalized and scaled expression matrix;

If annotation_resolution is set to "cell":

• "cell_annotation"data table containing cell types annotation results for each cell;

If annotation_resolution is set to "cluster":

"cluster_annotation"data table containing cell types annotation results for each cell;

If include_detailed_annotation_info is set to TRUE:

accordion_diseaselist containing detailed information of cell types annotation.

Value

A Seurat object or a list

accordion_disease_annotation

Automatically annotating aberrant single-cell populations with the built-in Cell Marker Accordion disease database

Description

#' This function identified aberrant populations exploiting the built-in Accordion gene marker disease database. It takes in input either a Seurat object or a raw or normalized count matrix and return in output the cell types assignment (added to the Seurat object or as a list).

Usage

```
accordion_disease_annotation(
 data,
  disease = NULL,
 cluster_info = "seurat_clusters",
  assay = "RNA",
  cell_types = NULL,
  species = "Human",
  evidence_consistency_score_threshold = NULL,
  specificity_score_threshold = NULL,
 min_n_marker = 5,
 max_n_marker = NULL,
  combined_score_quantile_threshold = NULL,
  disease_vs_healthy = TRUE,
  annotation_resolution = "cluster",
  cluster_score_quantile_threshold = 0.75,
  allow_unknown = TRUE,
  annotation_column = "accordion_disease",
  include_detailed_annotation_info = TRUE,
 group_markers_by = "celltype_cluster",
 n_top_celltypes = 5,
 n_{top_markers} = 5,
  top_marker_score_quantile_threshold = 0.75
)
```

Arguments

data

Either a Seurat object (version 4.9) or a raw or normalized count matrix with genes on rows and cells on columns. If raw counts are provided, data are log-normalized exploiting the NormalizeData() function from the Seurat package.

disease

Character string or character string vector specifying diseases to consider. If NULL, the full disease Accordion database is considered. Default is NULL.

cluster_info

in case object is a Seurat object, cluster_info should be need to be a character string specifying the name of the column in the metadata that contains cluster ids; if object is a count matrix, cluster_info should be need to be a data frame or data table containing cluster identity for each cell. The data frame or data table should contain at least two columns, one named "cell", which specifies cell id's, and one named "cluster", which specifies the clustering id's for

each cell. This parameter is necessary only when the input is a count matrix and only if the annotation_resolution parameter is set to "cluster". Default is "seurat_clusters".

assay Character string specifying the Assay of the Seurat object. This parameter is

necessary only in case data is a Seurat object. Default is "RNA".

cell_types Character string or character string vector specifying the cell types to annotate.

If this parameter is not specified, all cell types present in the Accordion database

are used for the annotation. Default is NULL.

species Character string or character string vector specifying the species. Currently, either "Human" and/or "Mouse" are supported. If multiple species are selected,

marker genes are merged together. Default is "Human".

evidence_consistency_score_threshold

Integer value (currently in 1,7) specifying the minimum evidence consistency (EC) score for each marker. Only markers >= this threshold are kept. If NULL, no filter is applied. Default is NULL.

specificity_score_threshold

numeric value in (0,1] specifying the minimum specificity score for each marker. Only markers \leftarrow this threshold are kept. If NULL, no filter is applied. Default

is NULL.

min_n_marker Integer value specifying the minimum number of markers to keep for each cell

type. Only cell types with a number of markers \geq this threshold are kept.

Default is 5.

max_n_marker Integer value specifying the maximum number of markers to keep for each cell

type. For the selection, markers are ranked according to their combined score, obtained by multiplying evidence consistency score and specificity score. If

NULL, no filter is applied. Default is NULL.

combined_score_quantile_threshold

numeric value in (0,1] specifying the combined score quantile threshold. For the selection, markers are ranked according to their combined score, obtained by multiplying evidence consistency score and specificity score. Only markers > the quantile_threshold are kept. If NULL, no filter is applied. Default is

NULL.

disease_vs_healthy

Logical value indicating whether to compare the markers associated with disease cell types with respect to the markers associated with the corresponding healthy cell types. If TRUE the specificity score is calculated considering if a gene is also a marker for the corresponding healthy cell type. For each cell, a specific score for disease cell types and another score for the healthy types (named as the cell types label) are returned. Default is TRUE.

annotation_resolution

Character string or character string vector specifying the resolution of the annotation. Either "cluster" and/or "cell" are supported. Default is "cluster".

cluster_score_quantile_threshold

numeric value in 0,1 specifying the cluster score quantile threshold. For each cell a score specific for each cell type is computed. To annotate a cluster cl, for each cell type the cluster_score_quantile_threshold is computed across cells belonging to that cluster and the cell type with the maximum score is then

assigned to the cluster cl. Default is 0.75.

allow_unknown Logical value indicating whether to allow cells or clusters to be labeled as "unknown". If it is set to TRUE, cells or clusters with negative scores are assigned to the "unknown" category. Default is TRUE.

annotation_column

Character string specifying the name of the column in either the metadata of the input Seurat object or in the input cluster_info where the annotation will be stored. Per cluster and per cell annotation results will be stored in the annotation_column_per_cluster and annotation_column_per_cell columns respectively. Default is "accordion_disease".

include_detailed_annotation_info

Logical value indicating whether to store information on the top cell types and markers in the output. If TRUE, a nested list named "accordion_disease" is created. If resolution_annotation is set to "cluster" and/or "cell, sublists named "cluster_resolution" and/or "cell_resolution" are then added. Inside the sublist "detailed_annotation_info" the n_top_markers markers, group by group_markers_by and the n_top_celltypes cell types are then included. If a Seurat object is provided as input the list is stored in the misc slot of the object (object@misc@accordion_disease). If the input is a count matrix, the list is returned in the final output. Default is TRUE.

group_markers_by

Character string or character string vector specifying the classification of marker genes. It possible to retrieve n_top_markers marker genes for each cell type identified with cluster ("celltype_cluster") or cell ("celltype_cell") resolution; n_top_markers marker genes per cluster ("cluster") or per cell ("cell") can be also obtained. Either "celltype_cluster", "celltype_cell", "cluster" and/or "cell". Default is "celltype cluster".

n_top_celltypes

Integer value specifying the number of the top cell types to be included in the output for each cluster and cell depending on the selected annotation_resolution parameter Default is 5.

n_top_markers

Integer value specifying the number of the top markers to be included in the output for each cell type, cluster or cell depending on the selected annotation_resolution and group_markers_by parameters. Default is 5.

 $top_marker_score_quantile_threshold$

numeric value in (0,1] specifying the marker score quantile threshold. For each marker a score specific for each cell is computed. To identify the n_top_markers for a cluster cl or a cell type ct, the top_marker_score_quantile_threshold is computed across cells belonging to that cluster or labeled as ct, and the n_top_markers with the maximum score are reported. Default is 0.75.

Details

If a Seurat object was provided in input, the function returns the Seurat object with markers-based scaled data in the scale.data slot and cell types annotation results in the metadata. If include_detailed_annotation_in and plot were set to TRUE, a list containing cell types and markers information, together with ggplot objects, is stored in the "misc@accordion_disease" slot. If a count matrix was provided in input, the function returns a list containing the following elements:

"scaled_matrix"normalized and scaled expression matrix;

If annotation_resolution is set to "cell":

• "cell_annotation" data table containing cell types annotation results for each cell;

If annotation_resolution is set to "cluster":

• "cluster_annotation"data table containing cell types annotation results for each cell;

accordion_plot 23

If include_detailed_annotation_info is set to TRUE:

• accordion_diseaselist containing detailed information of cell types annotation.

Value

A Seurat object or a list

accordion_plot

Interpreting annotation results

Description

This function generates lollipop plots displaying the detailed annotation results obtained with the accordion_annotation, accordion_disease_annotation and accordion_custom_annotation functions.

Usage

```
accordion_plot(
  data,
  info_to_plot = "accordion",
  resolution = "cluster",
  group_markers_by = "celltype_cluster")
```

Arguments

data

A Seurat object or a list containing "detailed_annotation_info", from either accordion(), accordion_disease() or accordion_custom() functions, run with include_detailed_annotation_info parameter set to TRUE.

info_to_plot

Character string or character string vector specifying the list from which extract the detailed annotation information, either "accordion", "accordion_disease" or "accordion_custom", for which returns the plot, either "accordion", "accordion_disease" or "accordion_custom". Default is "accordion".

resolution

Character string or character string vector specifying the annotation resolution for which provided the plots. Either "cluster" and/or "cell" are supported. Default is "cluster".

group_markers_by

Character string or character string vector specifying the classification of marker genes. It is possible to retrieve top marker genes for each cell type identified with cluster ("celltype_cluster") or cell ("celltype_cell") resolution; top marker genes per cluster ("cluster") or per cell ("cell") can be also obtained. Either "celltype_cluster", "celltype_cell", "cluster" and/or "cell". Default is "celltype_cluster".

24 accordion_plot

Details

top cell types (or pathways) and top markers It takes in input either a Seurat object or a raw or normalized count matrix and a table of marker genes associated to cell types or even to pathways and return in output the cell types/pathways assignment and the detailed informations of the annotation results (added to the Seurat object or as a list).

If a Seurat object was provided in input, the function returns the Seurat object with a list of ggplot objects added to the "misc" slot in the info_to_plot list. If a list was provided in input, the function returns the same list with the addition of the ggplot objects.

Value

A Seurat object or a list.

Index

```
0,1,3,6,9,12,15,18,21
1,7,3,6,17,21

accordion, 2
accordion_annotation, 5
accordion_cell_cycle, 8
accordion_custom, 10
accordion_custom_annotation, 13
accordion_disease, 16
accordion_disease_annotation, 20
accordion_plot, 23
```