```
In [ ]:
```

```
import pandas as pd
import numpy as np
from statsmodels.stats.weightstats import _tconfint_generic
from google.colab import drive
```

In []:

```
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount ("/content/drive", force remount=True).

In []:

```
df=pd.read_csv('/content/drive/MyDrive/data_python/AGU_rules/water.txt', sep = '\t')
```

In []:

df.head()

Out[]:

location		town	mortality	hardness
0	South	Bath	1247	105
1	North	Birkenhead	1668	17
2	South	Birmingham	1466	5
3	North	Blackburn	1800	14
4	North	Blackpool	1609	18

Используя метод .describe() вычислите описательные статистики для северных и южных городов. Сравните средние значения смертности в северных и южных городах и значения концентрации кальция в питьевой воде.

In []:

```
df.loc[df.location == 'South'].describe()
```

Out[]:

	mortality	hardness
count	26.000000	26.000000
mean	1376.807692	69.769231
std	140.269175	40.360682
min	1096.000000	5.000000
25%	1259.250000	40.250000
50%	1364.000000	75.500000
75%	1485.750000	99.750000
max	1627.000000	138.000000

In []:

```
df.loc[df.location == 'North'].describe()
```

Out[]:

```
mortality
                  hardness
count
        35.000000 35.000000
 mean 1633.600000 30.400000
       136.936911 26.134494
  std
  min 1378.000000
                  6.000000
 25%
      1557.500000 12.500000
      1637.000000 17.000000
 50%
 75% 1718.000000 44.000000
 max 1987.000000 94.000000
Средние значения смертности в северных городах выше, чем в южных.
Средние значения жесткости воды в северных городах ниже, чем в южных.
   # Постройте 95% доверительные интервалы для средней годовой смертности по
   всем южным и северным городам. Отличаются ли границы интервалов?
In [ ]:
```

mort_s_mean_std = df_s.mortality.std() / np.sqrt(df_s.mortality.shape[0])
mort_n_mean_std = df_n.mortality.std() / np.sqrt(df_n.mortality.shape[0])

mean_std, df_s.mortality.shape[0] - 1, 0.05, 'two-sided'))

mean std, df n.mortality.shape[0] - 1, 0.05, 'two-sided'))

95% interval: (1586.5605251961385, 1680.6394748038613)

95% interval: (1320.1517462936238, 1433.463638321761)

print('95% interval of mortality in South towns:', tconfint generic(mort s mean, mort s

print('95% interval of mortality in North towns:', tconfint generic(mort n mean, mort n

Да, отличаются. Разброс смертности у Северных городов меньше, хотя абсолютные значения больше

Постройте 95% доверительные интервалы для средней концентрации кальция в

питьевой воде для южных и северных городов. Отличаются ли границы

df_s=df.loc[df.location == 'South']
df n=df.loc[df.location == 'North']

mort_s_mean = df_s.mortality.mean()
mort n mean = df n.mortality.mean()

In []:

интервалов?

hard_s_mean = df_s.hardness.mean()
hard n mean = df n.hardness.mean()

```
hard_s_mean_std = df_s.hardness.std() / np.sqrt(df_s.hardness.shape[0])
hard_n_mean_std = df_n.hardness.std() / np.sqrt(df_n.hardness.shape[0])

In []:

print('95% interval of hardness in South towns:', _tconfint_generic(hard_s_mean, hard_s_mean_std, df_s.hardness.shape[0] - 1, 0.05, 'two-sided'))

95% interval of hardness in South towns: (53.467198692036106, 86.07126284642544)

In []:

print('95% interval of hardness in North towns:', _tconfint_generic(hard_n_mean, hard_n_mean_std, df_n.hardness.shape[0] - 1, 0.05, 'two-sided'))

95% interval of hardness in North towns: (21.42248728572426, 39.37751271427574)

Да, отличаются. И не пересекаются.

Даже не знаю, какой тут можно сделать вывод... Пейте жесткую воду, живите дольше.

Храни вас Тор!

In []:
```