IST 718

Final Project Report

Professor Lando

Amanda Norwood

```
In [219...
         import pandas as pd
          import matplotlib.pyplot as plt
          import numpy as np
          from sklearn.model_selection import train_test_split
          from sklearn.linear model import LinearRegression
          from sklearn.metrics import mean_squared_error
          from scipy import stats
          import seaborn as sns
          from sklearn.preprocessing import StandardScaler, OneHotEncoder
          from sklearn.compose import ColumnTransformer
          from sklearn.pipeline import Pipeline
          from sklearn.naive_bayes import GaussianNB
          from sklearn.metrics import accuracy score
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.metrics import confusion matrix
In [120... # Read in files
         education = pd.read csv('EducationalData.csv')
         medianearnings = pd.read csv('MedianEarningsbyIndustry.csv')
         occupations = pd.read csv('Occupations.csv')
         homeprice = pd.read excel('AvgHomePricebyZip.xlsx')
         crime = pd.read csv('crimes with zipcodes.csv')
In [121... crime.head()
```

Out[121]: Rpt **Unnamed: Date** DATE TIME **AREA** Part Crm DR_NO **AREA** Dist **Rptd** OCC OCC NAME 1-2 Cd No 1/8/2020 1/8/2020 10304468 3 Southwest 0 0 2230 377 2 624 0:00 0:00 1/2/2020 1/1/2020 1 190101086 330 Central 163 2 624 0:00 0:00 4/14/2020 2/13/2020 2 200110444 1200 Central 1 155 845 0:00 0:00 1/1/2020 1/1/2020 3 191501505 1730 1543 745 15 0:00 0:00 Hollywood 1/1/2020 1/1/2020 4 191921269 415 19 740 ... Mission 1998 0:00 0:00

5 rows × 31 columns

```
In [122... # clean education
  education['Group'].unique()
  #education[education['Group'] == 'Preschool']
  education = education.drop(['ID Group', 'ID Year', 'ID State', 'State', 'Age Range'
  education = education[-education['Group'].isin(['Preschool', 'Primary Education')
```

In [123... education.head(5)

Out[123]:

:		ID Gender	Gender	Group	Year	Total Population	Total Population MOE Appx	Average Wage	Average Wage Appx MOE	G
	0	2	Female	Associates Degree	2020	1161339	4012.757389	22279.847898	2835.671997	
	1	2	Female	Bachelors Degree	2020	2994902	7539.885565	40526.050930	2986.719653	
	2	2	Female	Graduate Degree	2020	1747439	3818.350081	46913.297071	6708.984104	
	3	2	Female	High School or Equivalent	2020	2695919	6122.901609	17423.896492	2326.322214	
	4	2	Female	No Schooling	2020	393477	1192.915610	8094.061415	7463.503355	

```
In [124... ## Education/salary graph

df = education
  years = sorted(df['Year'].unique())

# least to greatest
  sorted_groups = df.groupby('Group')['Average Wage'].mean().sort_values().index

# subplot for each year
  fig, axs = plt.subplots(len(years), figsize=(8, 16), sharex=True, sharey=True)
  colors = ['mediumorchid', 'steelblue']
```

```
for i, year in enumerate(years):
    year_data = df[df['Year'] == year]
    groups = year_data['Group'].unique()
    x = range(len(groups))
    y_female = []
    y_male = []
    for group in sorted_groups:
        group_data = year_data[year_data['Group'] == group]
        female_wage = group_data[group_data['Gender'] == 'Female']['Average Wag
        male_wage = group_data[group_data['Gender'] == 'Male']['Average Wage']
        y_female.append(female_wage.iloc[0] if len(female_wage) > 0 else 0)
        y_male.append(male_wage.iloc[0] if len(male_wage) > 0 else 0)
    axs[i].plot(x, y_female, marker='o', label='Female', color=colors[0])
    axs[i].plot(x, y_male, marker='o', label='Male', color=colors[1])
    axs[i].set_title(str(year))
    axs[i].set xlabel('Group')
    axs[i].set_ylabel('Average Wage')
    axs[i].legend(['Female', 'Male'], loc='upper right')
    axs[i].set xticks(range(len(groups)))
    axs[i].set_xticklabels(sorted_groups, rotation=45)
plt.tight_layout()
plt.show()
```



```
In [125... education.head()
         education = education.drop(['ID Gender', 'Group ID'], axis=1)
In [126...
        ## Linear Regression Model
         ## with t-test
         data = education.copy()
         features = ['Gender', 'Group', 'Average Wage']
         # drop missing values
         data = data.dropna(subset=features)
         degree_types = data['Group'].unique() # Define the degree types
         grouped_data = data.groupby(['Gender', 'Group'])['Average Wage']
         mean_salary = grouped_data.mean()
         # repeat over each degree type
         for degree_type in degree_types:
             print('Degree Type:', degree_type)
             print('----')
             degree_data = data[data['Group'] == degree_type]
             grouped_data = degree_data.groupby('Gender')['Average Wage']
             mean salary = grouped data.mean()
             gender_comparison = stats.ttest_ind(
                 grouped_data.get_group('Female'), grouped_data.get_group('Male')
             print('Mean Salary by Gender:')
             print(mean_salary)
             print('\nGender Comparison (T-test):')
             print(gender_comparison)
             print('----\n')
         X = pd.get_dummies(data[['Gender', 'Group']])
         y = data['Average Wage']
         # split data (train/test)
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random
         # create linear regression model
```

model = LinearRegression()
model.fit(X_train, y_train)

y_pred = model.predict(X_test)

```
mse = mean_squared_error(y_test, y_pred)
r_squared = model.score(X_test, y_test)

print('\nModel Evaluation:')
print('Mean Squared Error:', mse)
print('R-squared:', r_squared)

# coefficients
coefficients = pd.DataFrame({'Feature': X.columns, 'Coefficient': model.coef_})

# drop Gender_ and Group_
coefficients['Feature'] = coefficients['Feature'].str.replace('Gender_', '').st

print('\nModel Coefficients:')
print(coefficients)
```

```
Degree Type: Associates Degree
_____
Mean Salary by Gender:
Gender
Female
        21384.414883
Male
        23822.578809
Name: Average Wage, dtype: float64
Gender Comparison (T-test):
Ttest_indResult(statistic=-3.377996679033909, pvalue=0.005488449053525724)
_____
Degree Type: Bachelors Degree
_____
Mean Salary by Gender:
Gender
Female
        35094.598669
       39037.161290
Male
Name: Average Wage, dtype: float64
Gender Comparison (T-test):
Ttest indResult(statistic=-1.746972648298837, pvalue=0.10616067403281738)
-----
Degree Type: Graduate Degree
_____
Mean Salary by Gender:
Gender
Female 39954.886160
Male
       49111.416991
Name: Average Wage, dtype: float64
Gender Comparison (T-test):
Ttest indResult(statistic=-2.545162364074069, pvalue=0.025693269159943754)
_____
Degree Type: High School or Equivalent
_____
Mean Salary by Gender:
Gender
Female 15147.611610
Male 22639.501755
Name: Average Wage, dtype: float64
Gender Comparison (T-test):
Ttest indResult(statistic=-8.010718098658623, pvalue=3.7087029194387112e-06)
_____
Degree Type: No Schooling
_____
Mean Salary by Gender:
Gender
        7562.072757
Female
Male 14792.420880
Name: Average Wage, dtype: float64
Gender Comparison (T-test):
Ttest indResult(statistic=-7.326049463030802, pvalue=9.14663233716475e-06)
```

```
Degree Type: Some college
         _____
         Mean Salary by Gender:
         Gender
         Female
                   18080.886248
         Male
                   22949.213131
         Name: Average Wage, dtype: float64
         Gender Comparison (T-test):
         Ttest_indResult(statistic=-4.506548927122742, pvalue=0.0007184166430933483)
         Model Evaluation:
         Mean Squared Error: 6576135.54597255
         R-squared: 0.9237853627121437
         Model Coefficients:
                              Feature Coefficient
         0
                               Female -3013.872550
         1
                                 Male 3013.872550
         2
                    Associates Degree -3876.491451
         3
                     Bachelors Degree 11639.872295
         4
                      Graduate Degree 18714.332994
         5 High School or Equivalent -6537.676511
         6
                         No Schooling -14524.976605
         7
                         Some college -5415.060722
In [127... | ## breakdown coeffcinets
         coefficients sorted = coefficients.set index('Feature').loc[coefficients['Feature'])
          features sorted = coefficients sorted.index
         coefficients sorted = coefficients sorted['Coefficient']
         coefficients sorted
Out[127]: Feature
                                      -14524.976605
          No Schooling
          High School or Equivalent -6537.676511
          Some college
                                       -5415.060722
          Associates Degree
                                       -3876.491451
          Female
                                       -3013.872550
          Male
                                        3013.872550
          Bachelors Degree
                                       11639.872295
          Graduate Degree
                                       18714.332994
          Name: Coefficient, dtype: float64
In [128... | # plot the coefficients
         colors sorted = ['lightcoral' if coef < 0 else 'lightgreen' for coef in coeffice</pre>
         plt.figure(figsize=(12, 10))
         bars = plt.bar(range(len(features_sorted)), coefficients_sorted, color=colors_s
         plt.xticks(range(len(features sorted)), features sorted, rotation=60, fontsize=
         plt.xlabel('Feature', fontsize=16)
         plt.ylabel('Coefficient', fontsize=16)
         plt.title('Model Coefficients', fontsize=20)
         positive_bar = plt.bar(0, 0, color='lightgreen', label='Positive Coefficient')
         negative bar = plt.bar(0, 0, color='lightcoral', label='Negative Coefficient')
         plt.legend(handles=[positive_bar, negative_bar])
         plt.grid(axis='y', linestyle='--')
```

```
for i, bar in enumerate(bars):
    height = bar.get_height()
    coef = coefficients_sorted[i]
    feature = features_sorted[i]
    plt.text(bar.get_x() + bar.get_width() / 2, height, round(coef, 2), ha='cer

#include r squared too
r_squared = model.score(X_test, y_test)
plt.text(0.95, 0.1, f'R-squared: {r_squared:.2f}', ha='right', va='center', traplt.tight_layout()
plt.show()
```


Mean Salary by Gender and Education: group breakdown

Gender Comparision (T-Test): there is statistical significance between the average salaries between male and female. --> t-statistic value of -3.38: indicates difference in salary. t-test is used to measure the difference between sample means of two groups. --> p-value of 0.05: difference between genders is statistically significant

Model Evaluation: --> MSE: avg squared difference between the actual and predicted salaries. Maybe this is a little high? --> R Sq: 0.92. model explains 92% of the variance in the average salary

Model Coefficients: --> Male/Female: the coefficients signify that males have higher salaries compared to women. --> Education groups: coefficients show the different education levels with 'No Schooling' as the most negative and 'Graduate Degree' as positive.

```
In [129... # using same data to graph the t-test results
         # and the salary comparison between genders by education
         data = education.copy()
          features = ['Gender', 'Group', 'Average Wage']
          # drop missing values
         data = data.dropna(subset=features)
         degree_types = data['Group'].unique()
          # gotta put results somewhere...
         degree_type_labels = []
         t stats = []
         p_values = []
         average_salary_female = []
         average_salary_male = []
          # repeat over each degree type
          for degree_type in degree_types:
              degree data = data[data['Group'] == degree type]
              grouped_data = degree_data.groupby('Gender')['Average Wage']
              groups = degree_data['Gender'].unique()
              for i in range(len(groups)):
                  for j in range(i + 1, len(groups)):
                      gender1 = groups[i]
                      gender2 = groups[j]
                      t stat, p value = stats.ttest ind(grouped data.get group(gender1),
                      degree type labels.append(degree type)
                      t stats.append(t stat)
                      p values.append(p value)
                      # Append average salary by gender to lists
                      average salary female.append(grouped_data.get_group(gender1).mean()
                      average salary male.append(grouped data.get group(gender2).mean())
         results df = pd.DataFrame({
              'Degree Type': degree type labels,
              'T-statistic': t stats,
              'p-value': p values,
              'Average Salary (Female)': average salary female,
              'Average Salary (Male)': average salary male
         })
         results df = results df.sort values('T-statistic')
         # Plotting the results
         plt.figure(figsize=(12, 8))
          sns.barplot(x='Degree Type', y='T-statistic', data=results_df, palette='Blues')
         plt.ylabel('T-statistic')
         plt.xticks(rotation=25, fontsize=14)
         plt.xlabel('Degree Type')
         plt.title('T-test Results by Degree Type', fontsize=16)
```

```
# Add p-value to the plot
for i, row in enumerate(results_df.iterrows()):
    plt.text(i, row[1]['T-statistic'], f'T-stat: {row[1]["T-statistic"]:.2f}',
    plt.text(i, row[1]['T-statistic'] - 0.1, f'p-value: {row[1]["p-value"]:.4f]

plt.tight_layout()
plt.show()
```



```
In [130... # avg salary by gender
    plt.figure(figsize=(10, 6))
    sns.lineplot(x=degree_type_labels, y=average_salary_female, marker='o', color='
    sns.lineplot(x=degree_type_labels, y=average_salary_male, marker='o', color='st
    plt.ylabel('Average Salary')
    plt.xticks(rotation=45,fontsize=12)
    plt.xlabel('Degree Type')
    plt.title('Average Salary by Gender and Degree Type',fontsize=16)
    plt.legend(loc='upper left')
    plt.tight_layout()
    plt.show()
```


In [131... educationYOY = education[['Gender','Group','Year','Average Wage']]
 educationpred = educationYOY.copy()

In [132... educationpred.head()

Out[132]:		Gender	Group	Year	Average Wage
	0	Female	Associates Degree	2020	22279.847898
	1	Female	Bachelors Degree	2020	40526.050930
	2	Female	Graduate Degree	2020	46913.297071
	3	Female	High School or Equivalent	2020	17423.896492
	4	Female	No Schooling	2020	8094.061415

In [133... educationpred

Gender Out[133]: Group Year Average Wage Female Associates Degree 2020 22279.847898 Female Bachelors Degree 2020 40526.050930 Graduate Degree Female 2020 46913.297071 High School or Equivalent 17423.896492 Female 2020 Female No Schooling 2020 8094.061415 118 Bachelors Degree 2014 33065.569399 Male 119 Male Graduate Degree 2014 41476.414373 120 High School or Equivalent 2014 Male 19938.661416 121 No Schooling 2014 13090.641410 Male 125 Male Some college 2014 20510.301437

84 rows × 4 columns

In [134... educationpred

	-			
	Gender	Group	Year	Average Wage
O Female 1 Female 2 Female 3 Female 4 Female 118 Male 119 Male		Associates Degree	2020	22279.847898
 Female Female Female Female Female Male Male Male Male Male 		Bachelors Degree	2020	40526.050930
2	Female	Graduate Degree	2020	46913.297071
3	Female	High School or Equivalent	2020	17423.896492
4 Female		No Schooling	2020	8094.061415
•••	•••		•••	
118	Male	Bachelors Degree	2014	33065.569399
119	Male	Graduate Degree	2014	41476.414373
120	Male	High School or Equivalent	2014	19938.661416
121	Male	No Schooling	2014	13090.641410
125	Male	Some college	2014	20510.301437
	0 1 2 3 4 118 119 120	 Female Female Female Female Female Male Male Male Male Male Male 	 Female Associates Degree Female Bachelors Degree Female Graduate Degree Female High School or Equivalent Female No Schooling 118 Male Bachelors Degree Male Graduate Degree Male High School or Equivalent Male No Schooling 	0FemaleAssociates Degree20201FemaleBachelors Degree20202FemaleGraduate Degree20203FemaleHigh School or Equivalent20204FemaleNo Schooling2020118MaleBachelors Degree2014119MaleGraduate Degree2014120MaleHigh School or Equivalent2014121MaleNo Schooling2014

84 rows × 4 columns

```
In [135... # Linear Regression to predict incomes for 2021-2023

data = educationpred.copy()
  features = ['Gender', 'Group', 'Year']
  target = 'Average Wage'
  numerical_features = []
  categorical_features = []
  for feature in features:
    if data[feature].dtype == 'object':
        categorical_features.append(feature)
```

```
else:
        numerical features.append(feature)
preprocessing = ColumnTransformer(
    transformers=[
        ('num', StandardScaler(), numerical_features),
        ('cat', OneHotEncoder(handle unknown='ignore'), categorical features)
    1)
# split the data into training and test
X = data[features]
y = data[target]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random
model = LinearRegression()
pipeline = Pipeline(steps=[
    ('preprocessing', preprocessing),
    ('model', model)
1)
# train the model
pipeline.fit(X_train, y_train)
# predict average wage
years = range(2021, 2024)
categories = data['Group'].unique()
genders = data['Gender'].unique()
predicted_data = []
for year in years:
    for category in categories:
        for gender in genders:
            new data = pd.DataFrame({
                'Gender': [gender],
                'Group': [category],
                'Year': [year]
            })
            new data processed = pipeline.named steps['preprocessing'].transfor
            predicted_wage = pipeline.named_steps['model'].predict(new_data_protect)
            predicted data.append({
                'Gender': gender,
                'Group': category,
                'Year': year,
                'Average Wage': predicted wage
            })
predicted df = pd.DataFrame(predicted data)
# combine the predicted data to the original dataset
salaryprediction = pd.concat([data, predicted df], ignore index=True)
salaryprediction = salaryprediction.sort values('Year')
salaryprediction
```

Gender Out[135]: Group Year Average Wage 83 Male Some college 2014 20510.301437 No Schooling 82 Male 2014 13090.641410 High School or Equivalent 81 Male 2014 19938.661416 80 41476.414373 Male Graduate Degree 2014 79 Male Bachelors Degree 2014 33065.569399 109 Associates Degree 2023 33720.204412 Male 108 Female Associates Degree 2023 27840.268767 118 Female Some college 2023 25724.898144 49737.610074 112 Female Graduate Degree 2023 119 Male Some college 2023 31604.833789

120 rows × 4 columns

```
In [136...
         salaryprediction['Year'].unique()
          array([2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023])
Out[136]:
In [137...
         # graph the predicted salary
         grouped data = salaryprediction.groupby(['Year', 'Gender', 'Group']).mean().res
          # subplot for each degree
         groups = grouped data['Group'].unique()
          fig, axs = plt.subplots(len(groups), figsize=(6, 2 * len(groups)), sharex=True)
          for i, group in enumerate(groups):
              group data = grouped data[grouped data['Group'] == group]
              for gender in ['Female', 'Male']:
                  gender data = group data[group data['Gender'] == gender]
                  years = gender data['Year']
                  wages = gender data['Average Wage']
                  color = 'mediumorchid' if gender == 'Female' else 'steelblue' # Set color
                  axs[i].plot(years, wages, marker='o', label=gender, color=color)
              axs[i].set title(group)
              axs[i].set xlabel('Year')
              axs[i].set ylabel('Average Wage')
              axs[i].legend()
         plt.tight layout()
         plt.show()
```



```
In [138... # prep to graph YOY change
  educationYOY = salaryprediction[['Gender','Group','Year','Average Wage']]

  df = educationYOY
  df['Year'] = pd.to_datetime(df['Year'], format='%Y')
  df.sort_values(['Year', 'Group'], inplace=True)
```

```
# calculate YOY change
df['YOY Change'] = df.groupby(['Gender', 'Group'])['Average Wage'].pct_change()
# drop na values since the first year will be null
df.dropna(subset=['YOY Change'], inplace=True)
df.head(1)
```

Out [138]: Gender Group Year Average Wage YOY Change

72 Male Associates Degree 2015-01-01 21945.152606 -0.025178

```
In [227... # showing the YOY change
         groups = df['Group'].unique()
         group_data = {}
          for group in groups:
              group_data[group] = df[df['Group'] == group]
          # Define colors for female and male
         colors = {'Female': 'mediumorchid', 'Male': 'steelblue'}
          # Plotting
         fig, axs = plt.subplots(len(groups), figsize=(12, 16))
         for i, group in enumerate(groups):
              data = group_data[group]
              ax = axs[i]
              genders = data['Gender'].unique()
              for gender in genders:
                  gender_data = data[data['Gender'] == gender]
                  color = colors[gender] # Get the color based on gender
                  ax.plot(gender_data['Year'], gender_data['YOY Change'], label=gender, q
              ax.set xlabel('Year')
              ax.set ylabel('YOY Change')
              ax.set title(f'Year-over-Year Change by Gender: {group}')
              ax.legend()
              ax.grid(True)
         plt.tight layout()
         plt.show()
```


In [140... education['Year'].unique()

Out[140]: array([2020, 2019, 2018, 2017, 2016, 2015, 2014])

```
In [141... medianearnings.head()
    medianearnings = medianearnings.drop(['ID Year','ID Geography','Geography','Slu
In [142... medianearnings.head()
```

Out[142]:

:		ID Gender	Gender	ID Industry Group	Industry Group	Year	Median Earnings by Industry and Gender	Median Earnings by Industry and Gender Moe
	0	0	Male	1	Agriculture, Forestry, Fishing & Hunting, & Mi	2020	27462	5706
	1	0	Male	2	Construction	2020	31123	358
	2	0	Male	3	Manufacturing	2020	39168	1360
	3	0	Male	4	Wholesale Trade	2020	40638	1416
	4	0	Male	5	Retail Trade	2020	28440	991

```
In [143... # median earnings
         grouped_df = medianearnings.groupby(['Gender', 'Industry Group'])['Median Earni
          industry groups = grouped df['Industry Group'].unique()
          # width
         bar width = 0.35
          # positions for the bars
         male positions = np.arange(len(industry groups))
          female positions = male positions + bar width
         plt.figure(figsize=(12, 8))
          # Subset male/female
         male data = grouped df[grouped df['Gender'] == 'Male']
         female data = grouped df[grouped df['Gender'] == 'Female']
         # plot the median earnings for males & females
         plt.bar(male positions, male data['Median Earnings by Industry and Gender'], wi
         plt.bar(female positions, female data['Median Earnings by Industry and Gender']
         plt.xticks(male positions + bar width / 2, [label[:30] for label in industry gr
         plt.xlabel('Industry Group')
         plt.ylabel('Median Earnings')
         plt.title('Median Earnings by Gender and Industry Group')
         plt.legend()
         plt.show()
```


Industry Group

```
In [144... list(industry groups)
          ['Agriculture, Forestry, Fishing & Hunting, & Mining',
Out[144]:
            'Arts, Entertainment, & Recreation, & Accommodations & Food Services',
            'Construction',
            'Educational Services, & Health Care & Social Assistance',
            'Finance & Insurance, & Real Estate & Rental & Leasing',
            'Information',
            'Manufacturing',
            'Other Services Except Public Administration',
            'Professional, Scientific, & Management, & Administrative & Waste Management
          Services',
            'Public Administration',
            'Retail Trade',
            'Transportation & Warehousing, & Utilities',
            'Wholesale Trade']
In [145... occupations['Year'].unique()
          array([2020, 2019, 2018, 2017, 2016, 2015, 2014, 2013])
Out[145]:
In [146...
         occupations.head()
          occupations = occupations.drop(['ID Year','ID State','State','ID Geography','Ge
```

In [147... occupations.head()

Out[147]:

	ID Group	Group	ID Subgroup	Subgroup	ID Occupation	Occupation	Year	Workforce by Occupation and Gender
0	0	Management, Business, Science, & Arts Occupations	0	Management, Business, & Financial Occupations	0	Management Occupations	2020	201655
1	0	Management, Business, Science, & Arts Occupations	0	Management, Business, & Financial Occupations	1	Business & Financial Operations Occupations	2020	108938
2	0	Management, Business, Science, & Arts Occupations	1	Computer, Engineering, & Science Occupations	2	Computer & Mathematical Occupations	2020	50906
3	0	Management, Business, Science, & Arts Occupations	1	Computer, Engineering, & Science Occupations	3	Architecture & Engineering Occupations	2020	28250
4	0	Management, Business, Science, & Arts Occupations	1	Computer, Engineering, & Science Occupations	4	Life, Physical, & Social Science Occupations	2020	17003

In [149... homeprice = homeprice.rename(columns={'2023*': 2023})
homeprice.describe()

Out[149]:

:		Zip Code	2023	2022	2021	2020	201
	count	275.000000	2.680000e+02	2.740000e+02	2.750000e+02	2.750000e+02	2.750000e+0
	mean	90911.978182	1.116389e+06	1.150845e+06	1.085190e+06	9.744483e+05	8.990159e+0
	std	844.428887	6.975024e+05	7.203652e+05	6.773029e+05	5.983871e+05	5.636030e+0
	min	90001.000000	3.536390e+05	3.665310e+05	3.444270e+05	2.894420e+05	2.634590e+0
	25%	90226.000000	7.195190e+05	7.421698e+05	7.016110e+05	6.375905e+05	5.847410e+0
	50%	90746.000000	8.747265e+05	9.019995e+05	8.527020e+05	7.744530e+05	7.120740e+0
	75%	91374.000000	1.286105e+06	1.324968e+06	1.242047e+06	1.114240e+06	1.018949e+0
	max	93591.000000	5.867635e+06	5.947918e+06	5.565130e+06	4.814363e+06	4.501657e+0
	max	93591.000000	5.867635e+06	5.947918e+06	5.565130e+06	4.814363e+06	4.501657e+0

In [150... crime.head()
 crime = crime.drop(['DR_NO','AREA','Premis Cd','Weapon Used Cd','Rpt Dist No',

In [151... crime.head() **Unnamed:** Date DATE TIME **AREA** Vict Vict Vict Out[151]: **Crm Cd Desc** Pr 0 **Rptd** occ OCC **NAME** Sex Descent Age BATTERY -1/8/2020 1/8/2020 0 0 2230 Southwest F В SIMPLE 36 0:00 0:00 **ASSAULT** BATTERY -1/1/2020 1/2/2020 1 1 330 М Н Central SIMPLE 25 0:00 0:00 **ASSAULT** SEX OFFENDER 4/14/2020 2/13/2020 **REGISTRANT** 2 2 1200 Central 0 Χ Χ 0:00 0:00 **OUT OF** COMPLIANCE Ν VANDALISM -1/1/2020 1/1/2020 Ν MISDEAMEANOR 3 3 1730 76 F W (AF 0:00 0:00 Hollywood (\$399 OR UNDER) VANDALISM -

415

Mission

FELONY (\$400 &

OVER, ALL CHURCH VA...

31

Χ

Χ

In [152... crime['Weapon Desc'].unique()

4

4

1/1/2020

0:00

1/1/2020

0:00

```
array(['STRONG-ARM (HANDS, FIST, FEET OR BODILY FORCE)',
Out[152]:
                  'UNKNOWN WEAPON/OTHER WEAPON', nan, 'ROCK/THROWN OBJECT',
                  'VERBAL THREAT', 'FOLDING KNIFE', 'BLUNT INSTRUMENT', 'BOTTLE',
                  'SEMI-AUTOMATIC PISTOL', 'CLUB/BAT', 'OTHER CUTTING INSTRUMENT',
                  'HAND GUN', 'PHYSICAL PRESENCE', 'VEHICLE', 'SCISSORS', 'STICK',
                  'MACHETE', 'OTHER KNIFE', 'SHOTGUN', 'ICE PICK',
                  'KNIFE WITH BLADE 6INCHES OR LESS', 'FIRE', 'GLASS',
                  'SIMULATED GUN', 'KNIFE WITH BLADE OVER 6 INCHES IN LENGTH',
                  'DEMAND NOTE', 'BOMB THREAT', 'PIPE/METAL PIPE', 'UNKNOWN FIREARM',
                  'MACE/PEPPER SPRAY', 'HAMMER', 'RAZOR', 'OTHER FIREARM',
                  'BELT FLAILING INSTRUMENT/CHAIN',
                  'UNKNOWN TYPE CUTTING INSTRUMENT', 'SCREWDRIVER', 'KITCHEN KNIFE',
                  'AIR PISTOL/REVOLVER/RIFLE/BB GUN', 'BRASS KNUCKLES', 'REVOLVER',
                  'SWITCH BLADE', 'STUN GUN', 'AXE', 'RIFLE',
                  'ASSAULT WEAPON/UZI/AK47/ETC', 'ANTIQUE FIREARM', 'FIXED OBJECT',
                  'SEMI-AUTOMATIC RIFLE', 'CAUSTIC CHEMICAL/POISON', 'TIRE IRON',
                  'MARTIAL ARTS WEAPONS', 'CONCRETE BLOCK/BRICK', 'BOARD',
                  'DIRK/DAGGER', 'TOY GUN', 'MAC-11 SEMIAUTOMATIC ASSAULT WEAPON',
                  'EXPLOXIVE DEVICE',
                  'HECKLER & KOCH 93 SEMIAUTOMATIC ASSAULT RIFLE',
                  'SAWED OFF RIFLE/SHOTGUN', 'DOG/ANIMAL (SIC ANIMAL ON)', 'SYRINGE',
                  'SCALDING LIQUID', 'RAZOR BLADE', 'CLEAVER', 'ROPE/LIGATURE',
                  'BOW AND ARROW', 'AUTOMATIC WEAPON/SUB-MACHINE GUN',
                  'LIQUOR/DRUGS', 'SWORD', 'M1-1 SEMIAUTOMATIC ASSAULT RIFLE',
                  'STARTER PISTOL/REVOLVER', 'MAC-10 SEMIAUTOMATIC ASSAULT WEAPON',
                  'BOWIE KNIFE', 'STRAIGHT RAZOR', 'BLACKJACK', 'RELIC FIREARM',
                  'HECKLER & KOCH 91 SEMIAUTOMATIC ASSAULT RIFLE',
                  'UZI SEMIAUTOMATIC ASSAULT RIFLE',
                  'UNK TYPE SEMIAUTOMATIC ASSAULT RIFLE',
                  'M-14 SEMIAUTOMATIC ASSAULT RIFLE'], dtype=object)
```

```
In [153... crime['zipcode'].unique()
          array(['90037', '90014', '90013', '91607', '91402', '90017', '90012',
Out[153]:
                  '91342', '90015', '91340', '90851', '90710', '91411', '91405',
                  '91316', '91356', '90027', '90086', '90049', '90071', '90035',
                  '90048', '91401', '90074', '90025', '90292', '90057', '90044',
                 '90031', '90033', '90227', '90034', '90021', '90016', '90003',
                  '90028', '90066', '90007', '90036', '90062', '90731', '90079',
                  '90002', '91352', '90212', '90210', '91406', '90042', '90043',
                  '90029', '90059', '90272', '90032', '90732', '90064', '90019',
                  '91335', '90004', '90026', '90006', '90038', '91306', '90024',
                  '90744', '90039', '91324', '91344', '90005', '90023', '90001'
                          '90046', '91605', '90008', '90011',
                                                              '91403', '90041',
                  '90230', '91436', '90501', '91343', '91423', '90018', '90068',
                  '90065', '90020', '90063', '91328', '90010', '91331', '90248',
                         . '90077', '90067', '91606', '91601', '91303', '90094',
                 '90045', '90247', '91040', '91345', '90061', '90095', '91326',
                  '91030', '90089', 'California', '91604', '91364', '91602', '90505',
                  '90073', '91325', '91307', '91108', '90250', '90232', '90058',
                  '90405', '91504', '90404', '91330', '90009', '91204', '90052',
                  '91608', '60031', '90053', '90293', '91311', '90096', '90502',
                  '90040', '90275', '13359', '90717', '91367', '90305', '90813',
                 '91506', '90810', '90733', '90745', '90211', '91304', '91042',
                 '91505', '90245', '91206', '90402', '91365', '90069', '90504',
                  '91371', '91522', '90201', '90301', '91312', '91515', '90734',
                  '90272-3002', '91201', '90296', '91105', '91205', '90403', '91210',
                  '91203', '90304', '90278', '90302', '90831', '90081', '91803',
                  '90056', '91214', '90260', '90290', '90303', '90280', '91355',
                  '90265', '91302', '90255'], dtype=object)
```

```
In [154...
         crime.dtypes
         # Drop California
         crime = crime.drop(crime['zipcode'] == 'California'].index)
          crime = crime.drop(crime[crime['zipcode'] == '90272-3002'].index)
         crime['zipcode'] = crime['zipcode'].astype(int)
In [155... crime['Weapon Desc'].unique()
          array(['STRONG-ARM (HANDS, FIST, FEET OR BODILY FORCE)',
Out[155]:
                  'UNKNOWN WEAPON/OTHER WEAPON', nan, 'ROCK/THROWN OBJECT',
                  'VERBAL THREAT', 'FOLDING KNIFE', 'BLUNT INSTRUMENT', 'BOTTLE',
                  'SEMI-AUTOMATIC PISTOL', 'CLUB/BAT', 'OTHER CUTTING INSTRUMENT',
                  'HAND GUN', 'PHYSICAL PRESENCE', 'VEHICLE', 'SCISSORS', 'STICK',
                  'MACHETE', 'OTHER KNIFE', 'SHOTGUN', 'ICE PICK',
                  'KNIFE WITH BLADE 6INCHES OR LESS', 'FIRE', 'GLASS',
                  'SIMULATED GUN', 'KNIFE WITH BLADE OVER 6 INCHES IN LENGTH',
                  'DEMAND NOTE', 'BOMB THREAT', 'PIPE/METAL PIPE', 'UNKNOWN FIREARM',
                  'MACE/PEPPER SPRAY', 'HAMMER', 'RAZOR', 'OTHER FIREARM',
                  'BELT FLAILING INSTRUMENT/CHAIN',
                  'UNKNOWN TYPE CUTTING INSTRUMENT', 'SCREWDRIVER', 'KITCHEN KNIFE',
                  'AIR PISTOL/REVOLVER/RIFLE/BB GUN', 'BRASS KNUCKLES', 'REVOLVER',
                  'SWITCH BLADE', 'STUN GUN', 'AXE', 'RIFLE',
                  'ASSAULT WEAPON/UZI/AK47/ETC', 'ANTIQUE FIREARM', 'FIXED OBJECT',
                  'SEMI-AUTOMATIC RIFLE', 'CAUSTIC CHEMICAL/POISON', 'TIRE IRON',
                  'MARTIAL ARTS WEAPONS', 'CONCRETE BLOCK/BRICK', 'BOARD',
                  'DIRK/DAGGER', 'TOY GUN', 'MAC-11 SEMIAUTOMATIC ASSAULT WEAPON',
                  'EXPLOXIVE DEVICE',
                  'HECKLER & KOCH 93 SEMIAUTOMATIC ASSAULT RIFLE',
                  'SAWED OFF RIFLE/SHOTGUN', 'DOG/ANIMAL (SIC ANIMAL ON)', 'SYRINGE',
                  'SCALDING LIQUID', 'RAZOR BLADE', 'CLEAVER', 'ROPE/LIGATURE',
                  'BOW AND ARROW', 'AUTOMATIC WEAPON/SUB-MACHINE GUN',
                  'LIQUOR/DRUGS', 'SWORD', 'M1-1 SEMIAUTOMATIC ASSAULT RIFLE',
                  'STARTER PISTOL/REVOLVER', 'MAC-10 SEMIAUTOMATIC ASSAULT WEAPON',
                  'BOWIE KNIFE', 'STRAIGHT RAZOR', 'BLACKJACK', 'RELIC FIREARM',
                  'HECKLER & KOCH 91 SEMIAUTOMATIC ASSAULT RIFLE',
                  'UZI SEMIAUTOMATIC ASSAULT RIFLE',
                  'UNK TYPE SEMIAUTOMATIC ASSAULT RIFLE',
                  'M-14 SEMIAUTOMATIC ASSAULT RIFLE'], dtype=object)
In [156... # Create binary 'weapon' column
         crime['weapon'] = crime['Weapon Desc'].notnull().astype(int)
         crime['weapon'].fillna(0, inplace=True)
In [157... crime[['weapon','zipcode']].head()
Out[157]:
             weapon zipcode
          0
                      90037
                  1
                      90014
          2
                  0
                      90013
                      91607
                  0
          4
                  0
                      91402
```

```
In [173... # count of total number of rows and number of 1's (yes, weapons)
    weaponcount = crime.groupby('zipcode')['weapon'].agg(['sum', 'size'])
    weaponcount.columns = ['Total_Weapons', 'Total_Crimes']
    weaponcount['WeaponRatio'] = round(weaponcount['Total_Weapons']/ weaponcount[']
    weaponcount
```

Out [173]: Total_Weapons Total_Crimes WeaponRatio

zipcode			
13359	126	666	0.19
60031	38	127	0.30
90001	1297	2740	0.47
90002	3918	8247	0.48
90003	8551	16562	0.52
•••		•••	
91605	2508	7905	0.32
91606	2187	7083	0.31
91607	850	4120	0.21
91608	272	870	0.31
91803	3	4	0.75

183 rows × 3 columns

```
In [174... weaponcount = weaponcount.reset_index()
In [175... weaponcount.sort_values(by='WeaponRatio',ascending=True)
```

Out [175]

:		zipcode	Total_Weapons	Total_Crimes	WeaponRatio
	135	91302	0	1	0.00
	104	90403	0	8	0.00
	87	90260	0	1	0.00
	69	90081	0	2	0.00
	91	90278	2	22	0.09
					•••
	127	91108	11	19	0.58
	88	90265	3	5	0.60
	182	91803	3	4	0.75
	92	90280	7	8	0.88
	86	90255	2	2	1.00

183 rows × 4 columns

```
In [176...
          test = weaponcount['Total_Crimes'].sum()
          test2 = weaponcount['Total_Weapons'].sum()
          weaponcount['CrimeRelFreq'] = round(weaponcount['Total_Crimes'] / test,3)
          weaponcount['WeaponRelFreq'] = round(weaponcount['Total_Weapons'] / test2,3)
In [177...
          weaponcount['WeaponRatio'] = round(weaponcount['WeaponRatio'] * 100, 2)
          weaponcount['CrimeRelFreq'] = round(weaponcount['CrimeRelFreq'] * 100, 2)
          weaponcount['WeaponRelFreq'] = round(weaponcount['WeaponRelFreq'] * 100, 2)
          weaponcount.sort values(by='WeaponRelFreq',ascending=False)
In [178...
                zipcode Total_Weapons Total_Crimes WeaponRatio CrimeRelFreq WeaponRelFreq
Out[178]:
            43
                 90044
                                 9276
                                              18779
                                                            49.0
                                                                          2.6
                                                                                         3.8
                  90003
                                  8551
                                                            52.0
                                                                          2.3
             4
                                             16562
                                                                                          3.5
            28
                 90028
                                 7630
                                              17553
                                                            43.0
                                                                          2.5
                                                                                          3.1
            36
                  90037
                                  6316
                                             13344
                                                            47.0
                                                                           1.9
                                                                                         2.6
                                 6304
                                              14519
                                                                          2.0
                                                                                         2.6
             12
                  90011
                                                            43.0
                                                                                          • • •
                  90717
            112
                                    91
                                               283
                                                            32.0
                                                                          0.0
                                                                                         0.0
           109
                  90504
                                    19
                                                59
                                                            32.0
                                                                          0.0
                                                                                         0.0
           106
                 90405
                                   30
                                                            23.0
                                                                          0.0
                                                                                         0.0
                                                133
           105
                 90404
                                   28
                                                102
                                                            27.0
                                                                          0.0
                                                                                         0.0
           182
                                                                          0.0
                  91803
                                    3
                                                            75.0
                                                                                         0.0
```

183 rows \times 6 columns

6/14/23, 10:19 PM

```
IST 718 Project
In [185...
           homeclean = homeprice.merge(weaponcount, left_on='Zip Code',right_on='zipcode')
           homeclean = homeclean.drop('zipcode', axis=1)
           homeclean.head()
Out[185]:
                  Zip
                       City / Community
                                             2023
                                                        2022
                                                                 2021
                                                                          2020
                                                                                   2019
                                                                                             2018 Tota
                Code
                       Los Angeles (South
                                    Los
                                                               508199
                                                                                 425927
               90001
                                         540635.0
                                                    555034.0
                                                                        465268
                                                                                          404863
                      Angeles), Florence-
                                Graham
                                    Los
                       Angeles (Southeast
            1 90002
                                          539102.0
                                                    552950.0
                                                               518364
                                                                        463726
                                                                                  421153
                                                                                           398477
                            Los Angeles,
                                 Watts)
                       Los Angeles (South
            2 90003
                            Los Angeles,
                                          558141.0
                                                     577163.0
                                                               542654
                                                                        480137
                                                                                 435456
                                                                                           413903
                         Southeast Los ...
                                    Los
                        Angeles (Hancock
            3 90004
                                         1767062.0
                                                    1824797.0 1722525 1578331 1453209 1477493
                           Park, Rampart
                             Village, Vi...
                                    Los
                        Angeles (Hancock
            4 90005
                                         1791046.0 1880689.0 1774383 1602551 1487273 1504952
                         Park, Koreatown,
                               Wilshire...
In [186...
           corr = homeclean.copy()
           corr.drop('Zip Code', axis=1, inplace=True)
```

```
corr = corr.corr()
plt.figure(figsize=(10,8))
mask = np.triu(np.ones like(corr, dtype=bool))
sns.heatmap(corr, mask = mask,annot=True,cmap='YlGnBu')
plt.title('Correlation Matrix', fontsize=14)
```

Text(0.5, 1.0, 'Correlation Matrix') Out[186]:

In [187... occupations.head()

Out[187]:

Out[187]:	_	ID	Group	ID	Subgroup	ID	Occupation	Year	Workforce by Occupation
	Gr	oup	·	Subgroup		Occupation	·		and Gender
	0	0	Management, Business, Science, & Arts Occupations	C	Management, Business, & Financial Occupations	0	Management Occupations	2020	201655
	1	0	Management, Business, Science, & Arts Occupations	C	Management, Business, & Financial Occupations	1	Business & Financial Operations Occupations	2020	108938
	2	0	Management, Business, Science, & Arts Occupations	1	Computer, Engineering, & Science Occupations	2	Computer & Mathematical Occupations	2020	50906
	3	0	Management, Business, Science, & Arts Occupations	1	Computer, Engineering, & Science Occupations	3	Architecture & Engineering Occupations	2020	28250
	4	0	Management, Business, Science, & Arts Occupations	1	Computer, Engineering, & Science Occupations	4	Life, Physical, & Social Science Occupations	2020	17003
In [188	occup	= 00	ccup.loc[oc	cup['Year	'Occupation', r'] == 2020] r','Occupatio			'].mea	n()
in [189	_	_	d.DataFrame	•	cup) 'Occupation']	.str.repla	ce(' Occupat	cions'	, ''')
in [190	mediar	nearı	nings.head(3)					
Out[190]:	Ge	ID ender	Gender I	ID ndustry Group	Industry Gro	up Year	Median Earnings by Industry and Gender	Ind	Median rnings by ustry and nder Moe
	0	0	Male		Agriculture, Forest Fishing & Hunting M		27462		5706
	1	0	Male	2	Constructi	on 2020	31123		358
	2	0	Male	3	Manufacturi	ng 2020	39168		1360
In [191	data_2	2020	= medianea	rnings[me	edianearnings	['Year'] =	= 2020]		
	averaç	ge_sa	alary_by_gr	oup = dat	ta_2020.group	by('Indust	ry Group')[Media	n Earnings

Workforce

```
avg_sal = pd.DataFrame(average_salary_by_group)
         average_salary_by_group
          Industry Group
Out[191]:
          Agriculture, Forestry, Fishing & Hunting, & Mining
          Arts, Entertainment, & Recreation, & Accommodations & Food Services
          24684.0
          Construction
          36365.5
          Educational Services, & Health Care & Social Assistance
          Finance & Insurance, & Real Estate & Rental & Leasing
          58793.5
          Information
          69996.0
          Manufacturing
          34134.5
          Other Services Except Public Administration
          25240.0
          Professional, Scientific, & Management, & Administrative & Waste Management Se
          rvices
                    47194.5
          Public Administration
          58136.0
          Retail Trade
          25604.0
          Transportation & Warehousing, & Utilities
          34134.0
          Wholesale Trade
          38159.5
          Name: Median Earnings by Industry and Gender, dtype: float64
In [192... average_salary_data = pd.DataFrame({
              'Year': ['2020'] * len(average_salary_by_group), # Repeat '2020' for the
              'Occupation': average salary by group.index,
              'Median Earnings': average salary by group.values
         })
         average salary data
```

Out[192]: Year

	Year	Occupation	Median Earnings
0	2020	Agriculture, Forestry, Fishing & Hunting, & Mi	24075.0
1	2020	Arts, Entertainment, & Recreation, & Accommoda	24684.0
2	2020	Construction	36365.5
3	2020	Educational Services, & Health Care & Social A	41376.0
4	2020	Finance & Insurance, & Real Estate & Rental &	58793.5
5	2020	Information	69996.0
6	2020	Manufacturing	34134.5
7	2020	Other Services Except Public Administration	25240.0
8	2020	Professional, Scientific, & Management, & Admi	47194.5
9	2020	Public Administration	58136.0
10	2020	Retail Trade	25604.0
11	2020	Transportation & Warehousing, & Utilities	34134.0
12	2020	Wholesale Trade	38159.5

In [193... combined_data = pd.concat([average_salary_data, occup], ignore_index=True) combined_data

Out[193]:

	Year	Occupation	Median Earnings
0	2020	Agriculture, Forestry, Fishing & Hunting, & Mi	24075.0
1	2020	Arts, Entertainment, & Recreation, & Accommoda	24684.0
2	2020	Construction	36365.5
3	2020	Educational Services, & Health Care & Social A	41376.0
4	2020	Finance & Insurance, & Real Estate & Rental &	58793.5
5	2020	Information	69996.0
6	2020	Manufacturing	34134.5
7	2020	Other Services Except Public Administration	25240.0
8	2020	Professional, Scientific, & Management, & Admi	47194.5
9	2020	Public Administration	58136.0
10	2020	Retail Trade	25604.0
11	2020	Transportation & Warehousing, & Utilities	34134.0
12	2020	Wholesale Trade	38159.5
13	2020	Management	147944.0
14	2020	Business & Financial Operations	136895.0
15	2020	Computer & Mathematical	151426.0
16	2020	Architecture & Engineering	161213.0
17	2020	Life, Physical, & Social Science	123577.0
18	2020	Community & Social Service	88535.0
19	2020	Legal	215184.0
20	2020	Education Instruction, & Library	78961.0
21	2020	Arts, Design, Entertainment, Sports, & Media	114414.0
22	2020	Health Diagnosing & Treating Practitioners & O	180900.0
23	2020	Health Technologists & Technicians	90323.0
24	2020	Healthcare Support	45194.0
25	2020	Food Preparation & Serving Related	42938.0
26	2020	Building & Grounds Cleaning & Maintenance	42718.0
27	2020	Personal Care & Service	45091.0
28	2020	Fire Fighting & Prevention, & Other Protective	52540.0
29	2020	Law Enforcement Workers Including Supervisors	151404.0
30	2020	Sales & Related	60297.0
31	2020	Office & Administrative Support	68740.0
32	2020	Farming, Fishing, & Forestry	41622.0
33	2020	Construction & Extraction	70138.0
34	2020	Installation, Maintenance, & Repair	82002.0

		Year	Occupation	Median Earnings
	35	2020	Production	52665.0
	36	2020	Transportation	57396.0
In [194		ceddata :	combined_data.sort_values(by='Media	an Earnings', a

Out[194]:

	Year	Occupation	Median Earnings	
19	2020	Legal	215184.0	
22	2020	Health Diagnosing & Treating Practitioners & O	180900.0	
16	2020	Architecture & Engineering	161213.0	
15	2020	Computer & Mathematical	151426.0	
29	2020	Law Enforcement Workers Including Supervisors	151404.0	
13	2020	Management	147944.0	
14	2020	Business & Financial Operations	136895.0	
17	2020	Life, Physical, & Social Science	123577.0	
21	2020	Arts, Design, Entertainment, Sports, & Media	114414.0	
23	2020	Health Technologists & Technicians	90323.0	
18	2020	Community & Social Service	88535.0	
34	2020	Installation, Maintenance, & Repair	82002.0	
20	2020	Education Instruction, & Library	78961.0	
33	2020	Construction & Extraction	70138.0	
5	2020	Information	69996.0	
31	2020	Office & Administrative Support	68740.0	
30	2020	Sales & Related	60297.0	
4	2020	Finance & Insurance, & Real Estate & Rental &	58793.5	
9	2020	Public Administration	58136.0	
36	2020	Transportation	57396.0	
35	2020	Production	52665.0	
28	2020	Fire Fighting & Prevention, & Other Protective	52540.0	
8	2020	Professional, Scientific, & Management, & Admi	47194.5	
24	2020 Healthcare Support		45194.0	
27	2020	Personal Care & Service	45091.0	
25	2020	Food Preparation & Serving Related	42938.0	
26	2020	Building & Grounds Cleaning & Maintenance	42718.0	
32	2020	Farming, Fishing, & Forestry	41622.0	
3	2020	Educational Services, & Health Care & Social A	41376.0	
12	2020	Wholesale Trade	38159.5	
2	2020	Construction	36365.5	
6	2020	Manufacturing	34134.5	
11	2020	Transportation & Warehousing, & Utilities	34134.0	
10	2020	Retail Trade	25604.0	
7	2020	Other Services Except Public Administration	25240.0	

		Year	Occupation	Median Earnings	
	1	2020	Arts, Entertainment, & Recreation, & Accommoda	24684.0	
	0	2020	Agriculture, Forestry, Fishing & Hunting, & Mi	24075.0	

```
In [211... sorteddata = combined_data.sort_values(by='Median Earnings', ascending=False)
   plt.figure(figsize=(12, 6))
   plt.bar(sorteddata['Occupation'], sorteddata['Median Earnings'])
   plt.xticks(rotation=80)
   plt.xticks(range(len(sorteddata['Occupation'])), [label[:25] for label in sorted plt.xlabel('Occupation')
   plt.ylabel('Median Earnings')
   plt.title('Median Earnings by Occupation (2020)')
   plt.show()
```



```
In [196... occup['3x'] = occup['Median Earnings'] * 3
    occup['4x'] = occup['Median Earnings'] * 4
    occup['5x'] = occup['Median Earnings'] * 5
In [197... occup.sort_values(by='Median Earnings')
```

Out[197]:

	Year	Occupation	Median Earnings	3x	4x	5x
19	2020	Farming, Fishing, & Forestry	41622	124866	166488	208110
13	2020	Building & Grounds Cleaning & Maintenance	42718	128154	170872	213590
12	2020	Food Preparation & Serving Related	42938	128814	171752	214690
14	2020	Personal Care & Service	45091	135273	180364	225455
11	2020	Healthcare Support	45194	135582	180776	225970
15	2020	Fire Fighting & Prevention, & Other Protective	52540	157620	210160	262700
22	2020	Production	52665	157995	210660	263325
23	2020	Transportation	57396	172188	229584	286980
17	2020	Sales & Related	60297	180891	241188	301485
18	2020	Office & Administrative Support	68740	206220	274960	343700
20	2020	Construction & Extraction	70138	210414	280552	350690
7	2020	Education Instruction, & Library	78961	236883	315844	394805
21	2020	Installation, Maintenance, & Repair	82002	246006	328008	410010
5	2020	Community & Social Service	88535	265605	354140	442675
10	2020	Health Technologists & Technicians	90323	270969	361292	451615
8	2020	Arts, Design, Entertainment, Sports, & Media	114414	343242	457656	572070
4	2020	Life, Physical, & Social Science	123577	370731	494308	617885
1	2020	Business & Financial Operations	136895	410685	547580	684475
0	2020	Management	147944	443832	591776	739720
16	2020	Law Enforcement Workers Including Supervisors	151404	454212	605616	757020
2	2020	Computer & Mathematical	151426	454278	605704	757130
3	2020	Architecture & Engineering	161213	483639	644852	806065
9	2020	Health Diagnosing & Treating Practitioners & O	180900	542700	723600	904500
6	2020	Legal	215184	645552	860736	1075920

In [198... homeclean.sort_values(by=2020)

Out[198]:

	Zip Code	City / Community	2023	2022	2021	2020	2019	201
1	90002	Los Angeles (Southeast Los Angeles, Watts)	539102.0	552950.0	518364	463726	421153	39847
0	90001	Los Angeles (South Los Angeles), Florence- Graham	540635.0	555034.0	508199	465268	425927	4048€
49	90059	Los Angeles (Southeast Los Angeles, Watts), Wi	548066.0	563478.0	528218	471088	427050	40292
2	90003	Los Angeles (South Los Angeles, Southeast Los	558141.0	577163.0	542654	480137	435456	4139(
48	90058	Los Angeles (Southeast Los Angeles), Vernon	543413.0	570248.0	520095	493648	449495	43785
•••						•••	•••	
64	90212	Beverly Hills	3340912.0	3498279.0	3392942	3082636	2891801	292483
45	90049	Los Angeles (Bel Air Estates, Brentwood)	3541400.0	3674210.0	3466405	3100872	2847689	292947
74	90272	Los Angeles (Castellemare, Pacific Highlands,	3739165.0	3877633.0	3520191	3146729	2970935	299474
87	90402	Santa Monica	4679317.0	4859649.0	4527167	4166743	3939767	402100
62	90210	Beverly Hills	5867635.0	5947918.0	5565130	4814363	4501657	407376

155 rows × 13 columns

```
In [203... zip_code_occupation_mapping = {}
         for index, occ row in occup.iterrows():
              occupation = occ_row['Occupation']
             median_earnings = occ_row['Median Earnings']
              affordability 3x = occ row['3x']
              affordability 4x = occ row['4x']
              affordability_5x = occ_row['5x']
              for index, row in homeclean.iterrows():
                  zip code = row['Zip Code']
                  housing cost = row[2020]
                  if housing_cost >= median_earnings and housing_cost <= affordability_3x</pre>
                      zip code occupation mapping[zip code] = occupation
         results = []
         for zip_code, occupation in zip_code_occupation_mapping.items():
              city community = homeclean[homeclean['Zip Code'] == zip code]['City / Commu
              result = {
```

```
'Zip Code': zip_code,
    'City / Community': city_community,
    'Occupation': occupation,
    'Affordability Based on 3x Salary': 'Yes' if occupation in zip_code_occ
}
results.append(result)

df3x = pd.DataFrame(results)
df3x.head(1)
```

Out[203]:

:	Zip Code	City / Community	Occupation	Affordability Based on 3x Salary
C	90001	Los Angeles (South Los Angeles), Florence-Graham	Health Diagnosing & Treating Practitioners & O	Yes

occupation_count = df5x['Occupation'].value_counts() print(occupation_count)

```
In [202... | zip_code_occupation_mapping = {}
          for index, occ_row in occup.iterrows():
              occupation = occ row['Occupation']
              median earnings = occ row['Median Earnings']
              affordability_3x = occ_row['3x']
              affordability_4x = occ_row['4x']
              affordability_5x = occ_row['5x']
              for index, row in homeclean.iterrows():
                  zip code = row['Zip Code']
                  housing cost = row[2020]
                  if housing cost >= median earnings and housing cost <= affordability 3;</pre>
                      zip code occupation mapping[zip code] = occupation
         results = []
         cannot afford professions = set(occup['Occupation']) # Set of all professions
          for zip code, occupation in zip code occupation mapping.items():
              city community = homeclean[homeclean['Zip Code'] == zip code]['City / Commu
              result = {
                  'Zip Code': zip code,
                  'City / Community': city community,
                  'Occupation': occupation,
                  'Affordability Based on 3x Salary': 'Yes' if occupation in zip_code_occ
              }
              results.append(result)
              cannot afford professions.discard(occupation) # Remove the profession from
         df3x = pd.DataFrame(results)
          df3x
```

Out[202]:

	Zip Code	City / Community	Occupation	Affordability Based on 3x Salary
0	90001	Los Angeles (South Los Angeles), Florence-Graham	Health Diagnosing & Treating Practitioners & O	Yes
1	90002	Los Angeles (Southeast Los Angeles, Watts)	Health Diagnosing & Treating Practitioners & O	Yes
2	90003	Los Angeles (South Los Angeles, Southeast Los	Health Diagnosing & Treating Practitioners & O	Yes
3	90059	Los Angeles (Southeast Los Angeles, Watts), Wi	Health Diagnosing & Treating Practitioners & O	Yes
4	90011	Los Angeles (Southeast Los Angeles)	Health Diagnosing & Treating Practitioners & O	Yes
5	90013	Los Angeles (Downtown Central, Downtown Fashio	Legal	Yes
6	90014	Los Angeles (Downtown Historic Core, Arts Dist	Health Diagnosing & Treating Practitioners & O	Yes
7	90023	Los Angeles (Boyle Heights), Commerce, East Lo	Health Diagnosing & Treating Practitioners & O	Yes
8	90033	Los Angeles (Boyle Heights)	Legal	Yes
9	90037	Los Angeles (South Los Angeles)	Legal	Yes
10	90040	Commerce	Health Diagnosing & Treating Practitioners & O	Yes
11	90044	Athens, Los Angeles (South Los Angeles)	Health Diagnosing & Treating Practitioners & O	Yes
12	90047	Los Angeles (South Los Angeles)	Legal	Yes
13	90058	Los Angeles (Southeast Los Angeles), Vernon	Health Diagnosing & Treating Practitioners & O	Yes
14	90061	Los Angeles (South Los Angeles)	Health Diagnosing & Treating Practitioners & O	Yes
15	90062	Los Angeles (South Los Angeles)	Legal	Yes
16	90063	City Terrace, Los Angeles (Boyle Heights)	Legal	Yes
17	90201	Bell, Bell Gardens, Cudahy	Health Diagnosing & Treating Practitioners & O	Yes
18	90255	Huntington Park, Walnut Park	Legal	Yes
19	90280	South Gate	Legal	Yes

	Zip Code	City / Community	Occupation	Affordability Based on 3x Salary
20	90301	Inglewood	Legal	Yes
21	90304	Inglewood, Lennox	Legal	Yes
22	90502	Torrance, West Carson	Legal	Yes
23	90744	Los Angeles (Wilmington)	Legal	Yes
24	90745	Carson	Legal	Yes
25	90810	Carson, Long Beach	Legal	Yes
26	90813	Long Beach	Health Diagnosing & Treating Practitioners & O	Yes
27	91331	Los Angeles (Arleta, Hansen Hills, Pacoima)	Legal	Yes
28	91340	San Fernando, Los Angeles (Mission Hills, Paco	Legal	Yes
29	91402	Los Angeles (Panorama City)	Legal	Yes

In [204... cannot_afford_professions = pd.DataFrame(cannot_afford_professions) cannot_afford_professions.columns = ['Professions that cannot afford a home on cannot_afford_professions

Out[204]:

Professions that cannot afford a home on a single salary:

	Professions that cannot afford a home on a single salary:
0	Business & Financial Operations
1	Fire Fighting & Prevention, & Other Protective
2	Computer & Mathematical
3	Law Enforcement Workers Including Supervisors
4	Food Preparation & Serving Related
5	Office & Administrative Support
6	Construction & Extraction
7	Personal Care & Service
8	Production
9	Installation, Maintenance, & Repair
10	Management
11	Farming, Fishing, & Forestry
12	Arts, Design, Entertainment, Sports, & Media
13	Health Technologists & Technicians
14	Sales & Related
15	Education Instruction, & Library
16	Architecture & Engineering
17	Building & Grounds Cleaning & Maintenance
18	Transportation
19	Community & Social Service
20	Healthcare Support
21	Life, Physical, & Social Science

```
In [205... matched professions = df3x[df3x['Affordability Based on 3x Salary'] == 'Yes']
         matched professions = matched professions[['Occupation']]
         matched professions = pd.DataFrame(matched professions['Occupation'].unique())
         matched professions.columns = ['Professions that can afford a home on a single
         matched professions
```

Out[205]:

Professions that can afford a home on a single salary:

```
0
           Health Diagnosing & Treating Practitioners & O...
                                                       Legal
```

```
In [206... # alls zips
         all_zip_codes = set(homeclean['Zip Code'])
         # unmatched zips
         unmatched zip codes = all zip codes.difference(zip code occupation mapping.keys
```

matched results = []

```
unmatched results = []
         for zip code, occupation in zip code occupation mapping.items():
             row = homeclean[homeclean['Zip Code'] == zip_code].iloc[0]
             result = {
                  'Zip Code': zip code,
                  'City / Community': row['City / Community'],
                  'Occupation': occupation,
                  'Affordability Based on 3x Salary': 'Yes',
                  '2020': row[2020],
                  'Total_Weapons': row['Total_Weapons'],
                  'Total_Crimes': row['Total_Crimes'],
                  'WeaponRatio': row['WeaponRatio'],
                  'CrimeRelFreq': row['CrimeRelFreq'],
                  'WeaponRelFreq': row['WeaponRelFreq']
             }
             matched_results.append(result)
         df matched = pd.DataFrame(matched results)
         for zip code in unmatched zip codes:
             row = homeclean['Zip Code'] == zip_code].iloc[0]
             result = {
                  'Zip Code': zip code,
                  'City / Community': row['City / Community'],
                  'Occupation': 'Not Matched',
                  'Affordability Based on 3x Salary': 'No',
                  '2020': row[2020],
                  'Total Weapons': row['Total Weapons'],
                  'Total Crimes': row['Total Crimes'],
                  'WeaponRatio': row['WeaponRatio'],
                  'CrimeRelFreq': row['CrimeRelFreq'],
                  'WeaponRelFreq': row['WeaponRelFreq']
             unmatched results.append(result)
         df unmatched = pd.DataFrame(unmatched results)
         #print("Professions that cannot afford a home in L.A. County on a single salary
         #print(list(cannot afford professions))
         #print("\nMatched zip codes and city/community with full details:")
         #print(df matched)
         #print("\nUnmatched zip codes and city/community with full details:")
         #print(df unmatched)
 In [ ]: print("\nMatched zip codes and city/community with full details:")
         df matched
         print("\nUnmatched zip codes and city/community with full details:")
         df unmatched
In [213... average_matched = df_matched[['2020', 'Total_Weapons', 'Total_Crimes', 'Weapons'
         average_unmatched = df_unmatched[['2020', 'Total_Weapons', 'Total_Crimes', 'Wea
         average matched = average matched.rename(index={'2020': 'Home Price'})
         average unmatched = average unmatched.rename(index={'2020': 'Home Price'})
         average_matched['Home Price'] = '${:,.2f}'.format(average_matched['Home Price'
         average unmatched['Home Price'] = '${:,.2f}'.format(average unmatched['Home Pri
```

```
average_combined = pd.DataFrame({'Avg Matched': average_matched, 'Avg Unmatched'
average_combined
```

Out[213]:

	Avg Matched	Avg Unmatched
Home Price	\$555,474.97	\$1,270,397.00
Total_Weapons	2496.43	1310.16
Total_Crimes	5651.23	4132.39
WeaponRatio	44.03	29.62


```
# combine the matched and unmatched datasets and create labels
        df_matched['Label'] = 1 # 1 to df_matched
        df unmatched['Label'] = 2 # 2 to df unmatched
        combined_data = pd.concat([df_matched, df_unmatched], ignore_index=True)
        # split the combined data into features (X) and labels (y)
        X = combined_data.drop('Label', axis=1)
        y = combined_data['Label']
        classifier = GaussianNB()
        classifier.fit(X, y)
        predictions = classifier.predict(X)
        accuracy = accuracy_score(y, predictions)
        df matched predictions = predictions[combined data['Label'] == 1]
        df unmatched predictions = predictions[combined data['Label'] == 2]
        print("Accuracy:", accuracy)
        print("df matched Predictions:", df matched predictions)
        print("df_unmatched Predictions:", df_unmatched_predictions)
        Accuracy: 0.9483870967741935
        df matched Predictions: [2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2
        1 2 2]
        2 2 2 2 2 2 2 2 2 2 2
         In [218... df matched predictions = pd.Series(df_matched_predictions)
        df unmatched predictions = pd.Series(df unmatched predictions)
        matched counts = df matched predictions.value counts()
        unmatched counts = df unmatched predictions.value counts()
        predictions counts = pd.DataFrame({'Matched': matched counts, 'Unmatched': unma
        predictions counts.plot(kind='bar', stacked=True)
        plt.xlabel('Predicted Class')
        plt.ylabel('Count')
        plt.title('Naive Bayes Predictions')
        plt.legend()
        plt.show()
```



```
In [221... #df_matched = df_matched.drop(["City / Community", "Occupation", "Affordability
  #df_unmatched = df_unmatched.drop(["City / Community", "Occupation", "Affordability

# combine the matched and unmatched datasets and create labels

df_matched['Label'] = 1 # 1 to df_matched

df_unmatched['Label'] = 2 # 2 to df_unmatched

combined_data = pd.concat([df_matched, df_unmatched], ignore_index=True)

# split the combined data into features (X) and labels (Y)

X = combined_data.drop('Label', axis=1)

y = combined_data['Label']

classifier = RandomForestClassifier()
```

```
classifier.fit(X, y)
predictions = classifier.predict(X)

conf_matrix = confusion_matrix(y, predictions)

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues')

plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.title('Random Forest Confusion Matrix')

plt.show()
accuracy = accuracy_score(y, predictions)
print("Accuracy:", accuracy)
```


Accuracy: 1.0

```
In [222...
         weapon unmatched = df unmatched['Total Weapons'].values
         crime unmatched = df unmatched['Total Crimes'].values
         weapon matched = df matched['Total Weapons'].values
         crime matched = df matched['Total Crimes'].values
         mean_weapon_unmatched = np.mean(weapon_unmatched)
         std weapon unmatched = np.std(weapon unmatched)
         mean crime unmatched = np.mean(crime unmatched)
         std crime unmatched = np.std(crime unmatched)
         mean weapon matched = np.mean(weapon matched)
         std weapon matched = np.std(weapon matched)
         mean_crime_matched = np.mean(crime_matched)
         std_crime_matched = np.std(crime_matched)
         print("Unmatched Dataset:")
         print("Mean Weapons:", mean weapon unmatched)
         print("Standard Deviation Weapons:", std weapon unmatched)
         print("Mean Crimes:", mean_crime_unmatched)
         print("Standard Deviation Crimes:", std_crime_unmatched)
         print("\nMatched Dataset:")
         print("Mean Weapons:", mean_weapon_matched)
         print("Standard Deviation Weapons:", std weapon matched)
```

```
print("Mean Crimes:", mean crime matched)
         print("Standard Deviation Crimes:", std crime matched)
         Unmatched Dataset:
         Mean Weapons: 1310.16
         Standard Deviation Weapons: 1373.1998042528262
         Mean Crimes: 4132.392
         Standard Deviation Crimes: 3723.4927214023123
         Matched Dataset:
         Mean Weapons: 2496.4333333333334
         Standard Deviation Weapons: 2578.919653438022
         Mean Crimes: 5651.233333333334
         Standard Deviation Crimes: 5425.104623773526
In [223... # plot descriptive statistics
         weapon_labels = ['Unmatched', 'Matched']
         mean weapons = [mean weapon unmatched, mean weapon matched]
         std_weapons = [std_weapon_unmatched, std_weapon_matched]
         crime_labels = ['Unmatched', 'Matched']
         mean_crimes = [mean_crime_unmatched, mean_crime_matched]
         std crimes = [std crime unmatched, std crime matched]
         colors = ['mediumorchid', 'steelblue']
         sns.set_palette(colors)
         fig, axs = plt.subplots(2, 2, figsize=(10, 8))
         sns.barplot(x=weapon labels, y=mean weapons, ax=axs[0, 0])
         axs[0, 0].set xlabel('Dataset')
         axs[0, 0].set ylabel('Mean Weapons')
         axs[0, 0].set title('Mean Weapons Comparison')
         axs[0, 0].set xticklabels(weapon labels) # Set x-axis tick labels
         for i, v in enumerate(mean weapons):
             axs[0, 0] annotate(str(round(v, 2)), (i, v), ha='center', va='bottom')
         sns.barplot(x=weapon labels, y=std weapons, ax=axs[0, 1])
         axs[0, 1].set xlabel('Dataset')
         axs[0, 1].set ylabel('Standard Deviation Weapons')
         axs[0, 1].set title('Standard Deviation Weapons Comparison')
         axs[0, 1].set xticklabels(weapon labels) # Set x-axis tick labels
         for i, v in enumerate(std weapons):
             axs[0, 1] annotate(str(round(v, 2)), (i, v), ha='center', va='bottom')
         sns.barplot(x=crime labels, y=mean crimes, ax=axs[1, 0])
         axs[1, 0].set xlabel('Dataset')
         axs[1, 0].set ylabel('Mean Crimes')
         axs[1, 0].set title('Mean Crimes Comparison')
         axs[1, 0].set xticklabels(crime labels) # Set x-axis tick labels
         for i, v in enumerate(mean crimes):
             axs[1, 0] annotate(str(round(v, 2)), (i, v), ha='center', va='bottom')
         sns.barplot(x=crime labels, y=std crimes, ax=axs[1, 1])
         axs[1, 1].set_xlabel('Dataset')
         axs[1, 1].set ylabel('Standard Deviation Crimes')
```

```
axs[1, 1].set_title('Standard Deviation Crimes Comparison')
axs[1, 1].set_xticklabels(crime_labels) # Set x-axis tick labels

for i, v in enumerate(std_crimes):
    axs[1, 1].annotate(str(round(v, 2)), (i, v), ha='center', va='bottom')

plt.tight_layout()

plt.show()
```

