### Sequential minimal optimization for SV models

#### Nazarov Ivan

ivan.nazarov@skolkovotech.ru

Skolkovo Institute of Science and Technology

January 30, 2017

Support Vector Classification

Consider an i.i.d. training sample  $S = (x_i, y_i)_{i=1}^m \sim D$  over  $X \times \{-1, +1\}$ .

The Support Vector Classification problem is

$$\begin{array}{ll} \underset{\beta_0 \in \mathbb{R}, \beta \in \mathcal{H}, \xi}{\text{minimize}} & \frac{1}{2} \|\beta\|^2 + \sum_{i=1}^m C_i \xi_i \,, \\ \text{subject to} & y_i \big( \langle \phi(x_i), \beta \rangle + \beta_0 \big) \geq 1 - \xi_i \,, \\ & \xi_i \geq 0 \,, \, i = 1, \dots, m \,. \end{array} \tag{SVC}$$

Here  $(\mathcal{H}, \langle \cdot, \cdot \rangle)$  is the feature space of the kernel K with feature maps  $\phi : X \mapsto \mathcal{H}$ ,  $C_i \geq 0$  are the slack penalties, and  $\xi_i$  are slack variables.

**Note**: Typically in (SVC)  $C_i$  are set to a constant C > 0, however point-dependent penalties can be chosen to **fine-tune the balance** of S.

Support Vector Classification

The dual problem, corresponding to the primal (SVC) is

$$\begin{array}{ll} \underset{\alpha \in \mathbb{R}^{m \times 1}}{\text{minimize}} & \frac{1}{2}\alpha'Q\alpha - \mathbf{1}'\alpha\,, \\ \text{subject to} & y'\alpha = 0\,, \\ & \alpha_i \in [0,C_i]\,, i = 1,\dots,m\,, \end{array} \tag{SVC-dual}$$

where 1 is the  $m \times 1$  vector of ones, and  $Q \in \mathbb{R}^{m \times m}$  has entries  $Q_{ij} = y_i K(x_i, x_j) y_j$ .

The solution to (SVC) is reconstructed from (SVC-dual)

$$eta^* = \sum_{i=1}^m lpha_i y_i \phi(x_i)\,, ext{ and } eta^*_0 = rac{1}{|\mathtt{SV}|} \sum_{i \in \mathtt{SV}} y_i - \left<\phi(x_i), eta^*
ight>,$$

where SV =  $\{i : \alpha_i \in (0, C_i)\}$  – the set of support vectors.

Support Vector Classification



Figure: A sample decision boundary of SVC. Source: Scikit User Guide.

Support Vector Regression

An i.i.d. training sample  $S = (x_i, y_i)_{i=1}^m \sim D$  over  $X \times \mathbb{R}$  and a fixed tolerance  $\varepsilon > 0$ .

The  $\varepsilon$ -Support Vector Regression problem is

$$\begin{array}{ll} \underset{\beta_0 \in \mathbb{R}, \beta \in \mathcal{H}, \xi^+, \xi^-}{\text{minimize}} & \frac{1}{2} \|\beta\|^2 + \sum_{i=1}^m C_i^+ \xi_i^+ + \sum_{i=1}^m C_i^- \xi_i^-, \\ \text{subject to} & \left( \langle \phi(x_i), \beta \rangle + \beta_0 \right) - y_i \leq \varepsilon + \xi_i^+, \\ & y_i - \left( \langle \phi(x_i), \beta \rangle + \beta_0 \right) \leq \varepsilon + \xi_i^-, \\ & \xi_i^+, \xi_i^- \geq 0, \ i = 1, \dots, m. \end{array}$$

Here  $(C_i^+)_{i=1}^m \ge 0$  are  $(C_i^-)_{i=1}^m \ge 0$  are the slack penalties.

**Note**:  $C_i^+ = C^+$  and  $C_i^- = C^-$  permits the model to be fine-tuned for asymmetric costs of under- and over- prediction of the target.

Support Vector Regression

The dual problem, corresponding to the primal ( $\varepsilon$ -SVR) is

$$\begin{array}{ll} \underset{\alpha^{+},\alpha^{-} \in \mathbb{R}^{m \times 1}}{\operatorname{minimize}} & \frac{1}{2} \begin{pmatrix} \alpha^{+} \\ \alpha^{-} \end{pmatrix}' \begin{pmatrix} K & -K \\ -K & K \end{pmatrix} \begin{pmatrix} \alpha^{+} \\ \alpha^{-} \end{pmatrix} + \begin{pmatrix} \mathbf{1}\varepsilon + y \\ \mathbf{1}\varepsilon - y \end{pmatrix}' \begin{pmatrix} \alpha^{+} \\ \alpha^{-} \end{pmatrix}, \\ \text{subject to} & \begin{pmatrix} \mathbf{1} \\ -\mathbf{1} \end{pmatrix}' \begin{pmatrix} \alpha^{+} \\ \alpha^{-} \end{pmatrix} = 0, \text{ and } \alpha_{i}^{+} \in [0, C_{i}^{+}], \alpha_{i}^{-} \in [0, C_{i}^{-}]. \end{array}$$

where  $K \in \mathbb{R}^{m \times m}$  has entries  $K_{ii} = K(x_i, x_i)$ .

- ▶ the  $2m \times 2m$  matrix in ( $\varepsilon$ -SVR-dual) is **positive semi-definite** iff  $K \succ 0$
- ▶ the dual solution has  $\alpha_i^+\alpha_i^-=0$

**Solution to** ( $\varepsilon$ -SVR): If SV $^{\square} = \{i : \alpha_{:}^{\square} \in (0, C_{:}^{\square})\}$  and  $r_{i} = v_{i} - \langle \phi(x_{i}), \beta^{*} \rangle$  then

$$\beta^* = \sum_{i=1}^m (\alpha_i^- - \alpha_i^+) \phi(x_i), \text{ and } \beta_0^* = \frac{\sum_{i \in SV^+ \uplus SV^-} r_i}{|SV^+| + |SV^-|} + \varepsilon \frac{|SV^+| - |SV^-|}{|SV^+| + |SV^-|}.$$

SMO

### Support Vector Regression



Figure: The regression using  $\varepsilon ext{-SVR}$ . Source: Scikit User Guide.

# Support Vector Models One-Class SVM

An i.i.d. training sample  $S = (x_i)_{i=1}^m \sim D$  over X and a fixed confidence  $v \in (0,1)$ .

The One-Class SVM estimates the support of a high-dimensional distibution by a soft-margin supporting hyperplane:

$$\begin{array}{ll} \underset{\rho \in \mathbb{R}, \beta \in \mathcal{H}, \xi}{\text{minimize}} & \frac{1}{2} \|\beta\|^2 - \rho + \frac{1}{vC} \sum_{i=1}^m C_i \xi_i, \\ \text{subject to} & \langle \phi(x_i), \beta \rangle \geq \rho - \xi_i, \\ & \xi_i \geq 0, \, i = 1, \dots, m. \end{array} \tag{OC-SVM}$$

Here  $(C_i)_{i=1}^m \ge 0$  are the sample weights,  $C = \sum_{i=1}^m C_i > 0$ .

**Note**: For  $C_i = 1$  the parameter v determines the fraction of support vectors, i.e. points with  $\langle \phi(x_i), \beta^* \rangle \leq \rho^*$ .

SMO

# Support Vector Models One-Class SVM

The dual problem, corresponding to (OC-SVM) is

$$\begin{array}{ll} \underset{\alpha \in \mathbb{R}^{m \times 1}}{\text{minimize}} & \frac{1}{2} \alpha' K \alpha \,, \\ \text{subject to} & \mathbf{1}' \alpha = v \, C \,, \\ & \alpha_i \in [0, C_i] \,, i = 1, \ldots, m \,. \end{array} \tag{OC-SVM-dual}$$

The solution to the original problem us

$$eta^* = rac{1}{vC} \sum_{i=1}^m lpha_i \phi(x_i) \,, ext{ and } 
ho^* = rac{1}{|\mathtt{SV}|} \sum_{i \in \mathtt{SV}} \langle \phi(x_i), eta^* 
angle \,.$$

The soft support, supp(S), is  $\{x \in X : d(x) \ge 0\}$ , where  $d(x) = \langle \phi(x_i), \beta^* \rangle - \rho^*$ .

# Support Vector Models One-Class SVM

A sample image of two-clusters enveloped by a soft hyperplane



Figure: Distribution support estimation with OC-SVM. Source: Scikit User Guide.

Nazarov I.

### Sequential minimal optimization Quadratic Problem

The problems (SVC-dual), ( $\varepsilon$ -SVR-dual), and (OC-SVM-dual) are instantces of the same quadratic optimization problem with linear and box constraints:

minimize 
$$f(\alpha) = \frac{1}{2}\alpha'Q\alpha + p'\alpha$$
, subject to  $z'\alpha = \Delta$ , and  $\alpha_i \in [0, C_i], i = 1, ..., m$ . (QP)

Here  $Q \in \mathbb{R}^{m \times m}$  is a positive definite matrix,  $p \in \mathbb{R}^{m \times 1}$ ,  $z \in \{-1, +1\}^{m \times 1}$ ,  $\Delta \geq 0$ , and  $C_i > 0$  for all  $i = 1, \ldots, m$ .

#### Reductions:

- ▶ (SVC-dual): set Q = K, p = -1, z = y, and  $\Delta = 0$
- ► ( $\varepsilon$ -SVR-dual): set  $Q = \begin{pmatrix} K & -K \\ -K & K \end{pmatrix}$ ,  $p = \begin{pmatrix} \mathbf{1}\varepsilon + y \\ \mathbf{1}\varepsilon y \end{pmatrix}$ ,  $z = \begin{pmatrix} \mathbf{1} \\ -\mathbf{1} \end{pmatrix}$ , and  $\Delta = 0$
- ightharpoonup (OC-SVM-dual): set Q = K. p = 0. z = 1. and  $\Delta = vC$

Algorithm Properties

SMO is a powerful yet simple iterative procedure that efficiently sloves (QP)

Starting from a feasible  $\alpha^1$  perform a sequence of updates such that after k-th step

- $f(\alpha^{k+1}) < f(\alpha^k)$
- $ightharpoonup lpha^{k+1}$  is admissible
  - $ightharpoonup z'\alpha^{k+1} = \Delta$
  - $\alpha_i^k \in [0, C_i]$  for all  $i = 1, \dots, m$

SMO, as proposed in [1], constructs a sequence, which

- $\blacktriangleright$  progressively improves  $f(\alpha)$  until its minimum
- ▶ offers the linear convergence rate to the optimum of (QP)
- ▶ performs each step in O(m) time
- ▶ requires O(2m) storage (with clever memory usage)

Key Idea

**Situation**: We have a feasible  $\alpha^k$ :  $z'\alpha^k = \Delta$ , and  $\alpha_i^k \in [0, C_i]$ .

**Goal**: Find a simple and quick adjustment  $\delta \in \mathbb{R}^{m \times 1}$  such that  $\alpha^{k+1} = \alpha^k + \delta$  is feasible and  $f(\alpha^{k+1}) < f(\alpha^k)$ .

#### Observations:

- $f(\alpha^{k+1}) f(\alpha^k) = \delta' \nabla f(\alpha^k) + \frac{1}{2} \delta' Q \delta$ , where  $\nabla f(\alpha^k) = Q \alpha^k + p$
- $z'\alpha^{k+1} = \Delta$  if and only if  $z'\delta = 0$
- ▶ The simplest  $\delta$  is the one with the most **zeros**

Cannot use the coordinate-wise descent due to  $z'\delta = 0$  constraint.

▶ use "two coordinate" descent: fix  $\delta_l = 0$  for  $l \notin \{i, j\}$ , and minimize over  $\delta_i$  and  $\delta_j$ 

SMO

▶ use a "clever" strategy to pick  $i, j \in \{1, ..., m\}$  on each iteration

# Sequential minimal optimization the Subproblem

For a given pair  $\{i,j\}$  and this "sparse"  $\delta$  we have  $z'\delta=z_i\delta_i+z_j\delta_j=0$  and

$$f(\alpha^{k+1}) - f(\alpha^k) = \frac{1}{2} \left( \delta_i^2 Q_{ii} + \delta_j^2 Q_{jj} + 2 \delta_i \delta_j Q_{ij} \right) + \delta_i \nabla_i + \delta_j \nabla_j,$$

where  $\nabla_I$  is  $\nabla_I f(\alpha^k)$  for short.

Consider the subproblem

$$\begin{array}{ll} \text{minimize} & \frac{1}{2} \left( \delta_i^2 Q_{ii} + \delta_j^2 Q_{jj} + 2 \delta_i \delta_j Q_{ij} \right) + \delta_i \nabla_i + \delta_j \nabla_j \,, \\ \text{subject to} & z_i \delta_i + z_i \delta_i = 0 \,. \end{array} \tag{Aux}_{ij}$$

What about the box constraints  $\alpha_i^{k+1} \in [0, C_i]$ ?

lacktriangleright first, solve for the best  $\delta$ , and worry about the box later

Nazarov I. SMO

Solving the subproblem

the problem  $(Aux_{ii})$  can be solved easily

- ▶ substitute  $d_l = \delta_l z_l, l \in \{i, j\}$
- ▶ notice that  $d_i = -d_i$
- use the fact that  $z_i \in \{-1, +1\}$  implies  $z_i^2 = 1$
- ▶ solve an an even more simpler equivalent problem:

 $(Aux'_{ii})$ 

The solution  $d_i^*$  of  $(Aux'_{ii})$  and its minimal value  $Opt_{ii}$  are

$$d_i^* = -rac{z_i 
abla_i - z_j 
abla_j}{a_{ij}}$$
, and  $\operatorname{Opt}_{ij} = -rac{1}{2} rac{\left(z_i 
abla_i - z_j 
abla_j
ight)^2}{a_{ij}}$ ,

where  $a_{ii} = Q_{ii} + Q_{ii} - 2z_iz_iQ_{ii}$ . Note: Since Q > 0,  $a_{ii}$  is always positive!

Adjusting for the box constraints

The optimal  $\delta^*$  in  $(\mathsf{Aux}_{ij})$  is  $\delta^*_i = z_i d^*_i$  and  $\delta^*_j = -z_j d^*_i$  with  $\delta^*_j = -z_j z_i \delta^*_i$ .

The candidate  $\hat{\alpha} \in \mathbb{R}^m$  with  $\hat{\alpha}_l = \alpha_l^k + \delta_l^*$  for  $l \in \{i, j\}$ , and  $\hat{\alpha}_l = \alpha_l^k$  for  $l \notin \{i, j\}$ :

- ▶ satisfies the linear constraint  $z'\hat{\alpha} = z'\alpha^k + (z_i\delta_i^* + z_j\delta_i^*) = \Delta + 0$
- lacktriangledown possibly violates the box constraints only at  $\hat{lpha}_A=(\hat{lpha}_i,\hat{lpha}_j)$ , since
  - $\alpha^k$  is feasible  $\Rightarrow \hat{\alpha}_l \in [0, C_l], l \notin \{i, j\}$

To project the candidate solution  $\hat{\alpha}$  back into the box we to consdier two cases.

- $ightharpoonup z_i 
  eq z_i \colon lpha_A^k o \hat{lpha}_A ext{ is along } 45^\circ ext{ rays in } \mathbb{R}^2$
- $ightharpoonup z_i = z_j \colon lpha_A^k o \hat{lpha}_A ext{ is along } 135^\circ ext{ rays}$

Adjusting for the box constraints

When  $z_i \neq z_i$  we have  $\delta_i^* = \delta_i^*$  and  $\hat{\alpha}_i - \hat{\alpha}_i = \alpha_i^k - \alpha_i^k$ .

If  $\hat{\alpha}$  is infeasible.

- $ightharpoonup \alpha^k$  is feasible  $\Rightarrow \hat{\alpha}$  is **not** in NA
- ▶ project along 45° rays into the box

Projection for each valid region of  $\hat{\alpha}$ :

1: 
$$\alpha_i^{k+1} \leftarrow C_i$$
,  $\alpha_i^{k+1} \leftarrow \hat{\alpha}_j - (\hat{\alpha}_i - C_i)$ 

II: 
$$\alpha_j^{k+1} \leftarrow C_j$$
,  $\alpha_i^{k+1} \leftarrow \hat{\alpha}_i - (\hat{\alpha}_j - C_j)$ 

III: 
$$\alpha_j^{k+1} \leftarrow 0$$
,  $\alpha_i^{k+1} \leftarrow \hat{\alpha}_i - \hat{\alpha}_j$ 

IV: 
$$\alpha_i^{k+1} \leftarrow 0$$
,  $\alpha_j^{k+1} \leftarrow \hat{\alpha}_j - \hat{\alpha}_i$ 

$$ightharpoonup z'\alpha^{k+1} = z'\hat{\alpha} = \Delta$$



Figure: Projections for  $z_i \neq z_i$ .

Adjusting for the box constraints

When  $z_i = z_i$  we have  $\delta_i^* = -\delta_i^*$  and  $\hat{\alpha}_i + \hat{\alpha}_i = \alpha_i^k + \alpha_i^k$ .

If  $\hat{\alpha}$  is infeasible.

- $ightharpoonup \alpha^k$  is feasible  $\Rightarrow \hat{\alpha}$  is not in NA
- ▶ project along 135° rays into the box

Used projection in each valid region:

1: 
$$\alpha_i^{k+1} \leftarrow C_i$$
,  $\alpha_i^{k+1} \leftarrow \hat{\alpha}_j + (\hat{\alpha}_i - C_i)$ 

II: 
$$\alpha_j^{k+1} \leftarrow C_j$$
,  $\alpha_i^{k+1} \leftarrow \hat{\alpha}_i + (\hat{\alpha}_j - C_j)$ 

III: 
$$\alpha_j^{k+1} \leftarrow 0$$
,  $\alpha_i^{k+1} \leftarrow \hat{\alpha}_i + \hat{\alpha}_j$ 

IV: 
$$\alpha_i^{k+1} \leftarrow 0$$
,  $\alpha_j^{k+1} \leftarrow \hat{\alpha}_j + \hat{\alpha}_i$ 

$$ightharpoonup z'\alpha^{k+1} = z'\hat{\alpha} = \Delta$$



Figure: Projections for  $z_i = z_i$ .

Selecting the most promising pair i, i

Suppose (QP) is feasible and Q is positive semi-definite.

For a feasible  $\alpha$  in (QP) let  $L_{\alpha}, U_{\alpha} \subset \{1, \dots, m\}$  be

$$L_{\alpha} = \{i : \alpha_i > 0 \& z_i = +1 \text{ or } \alpha_i < C_i \& z_i = -1\},\ U_{\alpha} = \{i : \alpha_i > 0 \& z_i = -1 \text{ or } \alpha_i < C_i \& z_i = +1\}.$$

**Result in [1]**:  $\alpha$  is optimal in (QP) iff for some  $b \in \mathbb{R}$ 

$$m(\alpha) = \max_{i \in U_{\alpha}} -z_{i} \nabla_{i} f(\alpha) \leq b \leq \min_{j \in L_{\alpha}} -z_{j} \nabla_{i} f(\alpha) = M(\alpha). \tag{*}$$

$$\alpha$$
 is **not** optimal in (QP) iff  $m(\alpha) - M(\alpha) > 0$ 

• the inferiority of  $\alpha^k$  can be measured by  $err^k = m(\alpha^k) - M(\alpha^k)$ 

SMO

Selecting the most promising pair i,j

### Violating pair

▶ If  $\alpha^k$  violates (\*) then it does not solve (QP), and there must be  $(i,j) \in U_{\alpha^k} \times L_{\alpha^k}$ 

$$-z_i\nabla_i f(\alpha) > -z_j\nabla_j f(\alpha)$$
.

Optimal  $\delta_i^*$  and  $\delta_j^*$  in  $(\mathsf{Aux}_{ij})$  are  $z_id^*$  and  $-z_jd^*$  with

$$d^* = -\frac{z_i \nabla_i - z_j \nabla_j}{Q_{ii} + Q_{jj} - 2z_i z_j Q_{ij}}.$$

**Note**: For any violating pair (i,j) we have  $d^* > 0$ .

Selecting the most promising pair i,j

- ▶ If (i,j) is a violating pair then the line segment  $[\alpha^k, \hat{\alpha}]$  passes **through** the box
- ▶ (Aux'<sub>ii</sub>) is minimal at  $\hat{\alpha}$  and  $f(\alpha) < f(\alpha^k)$  at every  $\alpha$  on  $(\alpha^k, \hat{\alpha}]$



Figure: Box crossings for  $z_i = z_j$ .



Figure: Box crossings for  $z_i \neq z_j$ .

**Note**: projection  $\hat{\alpha} \to \alpha^{k+1}$  into the box still yields  $f(\alpha^{k+1}) < f(\alpha^k)$ 

Selecting the most promising pair i,j

**Results so far**: for a violating pair (i,j)

- ▶ the move  $\alpha^k \to \hat{\alpha}$  decreases the objective:  $f(\alpha^k) > f(\hat{\alpha})$
- ▶ the clipping  $\hat{\alpha} \to \alpha^{k+1}$  does not increase f much:  $f(\alpha^k) > f(\alpha^{k+1}) \ge f(\hat{\alpha})$

Pair heuristic (WSS2 in [1]): for  $\nabla_I = \nabla_I f(\alpha^k)$ 

- lacktriangledown if (\*) is volated, then  $i\in {
  m argmax}_{i\in U_{\alpha^k}}-z_i 
  abla_i$  is in a violating pair
- ▶ pick an accomplice  $j \in L_{\alpha^k}$  with the lowest value of  $(Aux_{ij})$ :

$$j \in \operatorname{argmin} \left\{ -\frac{1}{2} \frac{\left( z_i \nabla_i - z_j \nabla_j \right)^2}{Q_{ii} + Q_{jj} - 2 z_i z_j Q_{ij}} : j \in L_{\alpha^k}, \text{ and } z_i \nabla_i < z_j \nabla_j \right\}. \tag{WSS2}$$

We are guaranteed to make an update  $\alpha^k \to \alpha^{k+1}$  with a large enough decrease.

# Sequential minimal optimization the whole Algorithm

We arrive at SMO iterative solver for (QP) ( $\eta > 0$  – tolerance)

```
Set \alpha^1 to some feasible point in (QP);
while \alpha^k is not stationary within err^k > \eta do
   Move \alpha^k \to \hat{\alpha} by solving (\operatorname{Aux}_{ij});

Move \hat{\alpha} \to \alpha^{k+1} by projecting back into [0,C_i] \times [0,C_j];

// Here z'\alpha^{k+1} = \Delta, and \alpha_l^{k+1} \in [0,C_l]

k \leftarrow k+1;
       Pick a good pair \{i,j\} \subset \{1,\ldots,m\} with (WSS2);
end
return \alpha^k:
```

Algorithm 1: SMO

# Sequential minimal optimization the whole Algorithm

### Theorem 4 in [1]:

▶ the sequence  $(\alpha^k)_{k\geq 1}$  converges to the unique global solution  $\bar{\alpha}$  of (QP).

Theorem 6 in [1]: there is  $c \in (0,1)$ 

- ▶ for any  $\eta > 0$  there is  $\bar{k}$  such that within  $\bar{k} + O\log\frac{1}{\eta}$  we have  $f(\alpha^k) f(\bar{\alpha}) < \eta$

### Asymptotics of the algorithm:

- ▶ (WSS2) is a good heuristic that takes O(2m) (instead of  $O(m^2)$  for the best pair)
- ► SMO algorithm has robust linear convergence rate!

The core of libsvm is SMO with computation reuse, clever caching and speed-ups.

### References

- Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. "Working Set Selection Using Second Order Information for Training Support Vector Machines". In: *J. Mach. Learn. Res.* 6 (Dec. 2005), pp. 1889–1918. ISSN: 1532-4435. URL: http://dl.acm.org/citation.cfm?id=1046920.1194907.
- F. Pedregosa et al. "Scikit-learn: Machine Learning in Python". In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.