2022 Match Move

Mosolygó Balázs, Vándor Norbert, Armstadt Zita, és Félegyházi Máté SZTE

1 Feladatleírás

Ide kellene írni a feladat pontos megfogalmazását, megszorításokkal együtt

2 Megoldási lehetőségek

Ide gondoltam, felírni, hogy Zita miket talált, miért lettek volna jók, és miért nem ezeket választottuk végül.

3 ORB-SLAM

3.1 ORB-SLAM bevezető

Az ORB-SLAM [1] egy monokulár SLAM rendszer, ami valós időben képes működni közel bármilyen környezetben. A SLAM (Simultaneous localization and mapping) rendszerek arra használhatók, hogy létrehozzunk és frissítsünk egy 3D-s térképet egy ismeretlen környezetről, miközben folyamatosan követjük a kamera pozícióját. Ebből is látható, hogy az általunk kitűzött célra tökéletes választás az ORB-SLAM.

Magának a rendszernek több verziója is létezik, technikai nehézségekből adódóan mi az ORB-SLAM 2-vel dolgozunk. A 2. és 3. verzió között követéspontossági eltérések vannak csak, az alapvető működésük egyforma. Amennyiben a fejlesztés során problémák adódnának a pontosságból, akkor az utolsó, javítási szakaszban át tudunk térni a 3. verzióra.

3.2 ORB

ORB bevezető Ide gondoltam az ORB leírását, mit tud, miért erős stb. kb. addig, hogy miket használ.

FAST Ide jönne Máté része, ahol kicsit részletesebben beszélünk ezekről az algoritmusokról

BRIEF - UA mint FAST -

ORB részletek Itt visszatérnénk az ORB-ra leírom majd, hogy mi az oFast és az rBrief, ami véglegesíti, hogy miért annyira jó

3.3 ORB-SLAM részletek

Az ORB-SLAM központi algoritmusa az úgynevezett Bundle Adjustment (BA). Ennek a lényege, hogy egyidőben történik a tér 3D geometriájának, a relatív mozgás paramétereinek és a kamera optikai tulajdonságainak finomítása. Több módszer is használta a BA-t korábban, de az ORB-SLAM ezen felül több dolgot is csinál, többek között:

- Ugyanazokat a jellemzőket használja az összes feladathoz
- Covisibility gráf segítségével nagy környezetekben is képes valósidejű működésre
- Esszenciális gráf segítségével valós időben képes lezárni a köröket

Az ORB-SLAM definíciói: $T\'{e}rk\'{e}p$ pont. Minden p_i térk\'{e}p pont tartalmazza: az $X_{w,i}$ pozícióját a 3D-s térben, a megfigyelés n_i irányát, a reprezentáns D_i ORB leírót és a $d_m ax$ és $d_m in$ távolságokat, amikből a pont megfigyelhető.

Keyframe. Minden K_i keyframe tartalmazza: a T_iw kamera pózt, ami egy merev test transzformáció, ami a pontot a világ koordináta rendszerből a kamera koordináta rendszerébe transzformálja, a kamera paramétereit és minden ORB jellemzőt, amit a képkockából ki lehet nyerni.

Covisibility gráf. A Covisibility gráf egy súlyozott, irányítatlan gráf ami a keyframe-ek közötti láthatóságot reprezentálja. Minden csúcs egy keyframe, és két csúcs között akkor létezik él, ha mindkét keyframe tartalmaznak közös térkép pontokat (legalább 15-öt). Az él súlya pedig a közös képpontok száma (θ) .

Esszenciális gráf. Az esszenciális gráf a covisibility gráfból készül: a csúcsok megegyeznek, viszont sokkal kevesebb éle van. Az esszenciális gráf a covisibility gráf feszítőfájából, a kört záró élekből és a covisibility gráf azon éleiből áll, ahol $\theta_{min}=100$.

Működés összefoglalva Az ORB-SLAM egyszerre három szálon fut: az egyiken történik a követés, a másikon a lokális mapping, a harmadikon pedig a kör bezárása. A követés feladata, hogy a kamerát lokalizálja minden egyes képkockán, és eldöntse, hogy mikor szükséges új keyframe beszúrása. A lokális mapping feldolgozza az új keyframe-eket, és lokális BA segítségével optimális módon rekonstruálja a környezetet. A kör bezáró szál pedig minden új keyframe beszúrásakor kört keres az esszenciális gráfban, és amennyiben talál, akkor összeolvasztja a duplikált pontokat.

Követés

4 Mapping

Itt fogom majd összeírni, hogy az ORBSLAM outputból hogyan fogunk a match movehoz jutni.

References

1. Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: Orb-slam: A versatile and accurate monocular slam system. IEEE Transactions on Robotics $\bf 31(5)$, 1147-1163 (2015). https://doi.org/10.1109/TRO.2015.2463671