Оглавление

1. Введение	3
2. Методы измерения массы нейтрального каона	4
3. Детектор КМД-3	5
4. Экспериментальная статистика и отбор событий	6
5. Систематические эффекты и учёт поправок	7
6. Список литературы	9

1. Введение

Целью данной работы является измерение массы нейтрального каона K_s^0 на основе статистики, полученной на детекторе КМД-3 на коллайдере ВЭПП-2000 в области энергий, соответствующей φ -мезонному резонансу ($\sqrt{s} = 1010 - 1028 \,\text{МэВ}$).

В качестве источника каонов использовался процесс

$$e^+e^- \to \varphi(1020) \to K_S^0 K_L^0; K_S^0 \to \pi^+\pi^-.$$
 (1)

В связи с недостаточным импульсным разрешением детектора КМД-3 масса определялась не прямым вычислением инвариантной массы, а при помощи двух малочувствительных к ошибке измерения импульса соотношений, которые позволяют по измеренным углам и отношению импульсов пионов определить массу каона [1]. При измерении массы с помощью, использованных в данной работе методов, были учтены следующие эффекты: излучение фотонов в начальном состоянии e^+e^- (радиационная поправка), эффекты, связанные с импульсным и пространственным разрешением детектора (поправки на нелинейность), разброс энергии в пучках и взаимные корреляции этих эффектов.

Полный интеграл светимости, набранный в использованных в этой работе заходах, составляет $\approx 8~\text{пб}^{-1}$, что соответствует 850~тысячам отобранных пар пионов. Эффективность регистрации каонов составила $\epsilon_{MC}\cong 24\%$.

Таблица 1. Предыдущие измерения массы нейтрального каона [2]

Value (MeV)	Events	Document ID	Experiment
497.607±0.007±0.015	261k	Tomoradze	KLOE
497.583±0.005±0.020	35k	Ambrosino	KLOE
497.625±0.001±0.031	655k	Lai	NA48
497.661±0.033	3713	Barkov	CMD
497.742±0.085	780	Barkov	CMD
497.611±0.013	PDG Fit (Error includes scale factor of 1.2)		

Рис. 1. График измерения массы m_{K^\pm} . Измерения GALL 88 и CHENG 75 показаны отдельно для каждого измеренного перехода. [2]

Таблица 1 и рисунок 1 содержат информацию о предыдущих измерениях массы как нейтрального, так и заряженного каона. На рисунке 1 видно, что предыдущие измерения дают достаточно точные, но не согласованные результаты. Поэтому представляет высокий интерес очередное измерение массы заряженного каона. Для этого планируется использовать применённые в этой работе методы для измерения массы заряженного каона.

Также уточнение массы нейтрального каона позволит точнее моделировать различные процессы, в которые в качестве параметра входит m_{K^0} . Помимо этого, уточнение массы нейтрального каона увеличит точность измерения разности масс нейтрального и заряженного каонов $m_{K^0}-m_{K^\pm}$.

2. Методы измерения массы нейтрального каона

• Метод инвариантной массы:

Рассмотрим распад частицы массы M с энергией E на частицы с энергией E_i и \vec{p}_i . Тогда квадрат массы изначальной частицы равен

$$M^{2} = (\sum E_{i})^{2} - (\sum \vec{p}_{i})^{2}. \tag{1}$$

Если частицы, образовавшиеся в результате распада, надёжно идентифицируются детектором, то (1) можно переписать в следующем виде:

$$M^{2} = (\sum \sqrt{m_{i}^{2} + \vec{p}_{i}^{2}})^{2} - (\sum \vec{p}_{i})^{2}.$$
 (2)

То есть массу изначальной частицы можно измерить, зная лишь какие частицы родились и каков их импульс. Существенным недостатком данного метода является большая чувствительность к абсолютным сдвигам величин импульсов \vec{p}_i и углам разлёта частиц.

К сожалению, из-за недостаточной точности измерения импульсов и углов у детектора КМД-3 систематическая ошибка массы, определённой таким образом, достигает нескольких $M\ni B/c^2$. Однако в экспериментах NA48 и KLOE систематическая погрешность измерения импульсов мала, что позволяет измерять массу при помощи (1) с ошибкой порядка нескольких сотых $M\ni B/c^2$ [3, 4].

• Метод предельного угла:

Если энергия каона E_K может быть измерена независимо, то масса каона M_K можно определить соотношением

$$M_{K_S^0} = E_{K_S^0} \sqrt{1 - \beta_m^2 \cos(\frac{\psi_c}{2})},\tag{3}$$

где $\beta_m^2 = 1 - M_\pi^2 / E_K^2$, ψ_c — предельный пространственный угол разлёта пионов в распаде $K_S^0 \to \pi^+\pi^-$ [1].

Так как в эксперименте величина ψ_c определяется с некоторым конечным разрешением σ_{ψ} , при определении средней массы $\langle M_{K_S^0} \rangle$ по выборке следует учитывать сдвиг $\Delta M_{K_S^0}$, связанный с нелинейностью зависимости (3) от параметра ψ_c . С точностью до второго порядка этот сдвиг равен [1]

$$\Delta M_{K_S^0} = \langle M_{K_S^0} \rangle - M_{K_S^0} \approx \frac{\sigma_{\psi_c}^2}{2} \frac{\partial^2}{\partial \psi_c^2} M_{K_S^0}. \tag{4}$$

Угловое разрешение детектора КМД-3 $\sigma_{\psi}=0.01$ рад. При энергии пучка $E_{beam}=510$ МэВ это соответствует $\Delta M_{K_0^0}\approx -11.25\pm 0.002$ кэВ/с².

• Метод полной реконструкции распада $K^0_S o \pi^+\pi^-$

Рассмотри распад нейтрального каона K^0_S массы $M_{K^0_S}$ с энергии $E_{K^0_S}$ на два заряженных пиона $\pi^+\pi^-$ с массами M_π и импульсами $\overline{p_+}$ и $\overline{p_-}$. Тогда согласно [1] верно соотношение

$$\beta_{K_S^0}^2 = \frac{1}{\eta^2} \left(1 + \cos \psi \sqrt{1 - \eta^2} \right) [1 - \sqrt{1 - \beta_m^2 \eta^2}],\tag{5}$$

где $\beta_{K_S^0}^2 \equiv 1 - M_{K_S^0}^2 / E_{K_S^0}^2$, $\eta \equiv \frac{1 - Y^2}{1 + Y^2}$, $Y = |\overrightarrow{p_+}| / |\overrightarrow{p_-}|$, $\cos \psi \equiv \frac{\overrightarrow{p_+} \cdot \overrightarrow{p_-}}{|\overrightarrow{p_+}||\overrightarrow{p_-}|}$. Выразив массу $M_{K_S^0}$ из (5) получим явное выражение:

$$M_{K_S^0} = E_{K_S^0} \sqrt{\left[1 - \frac{1}{\eta^2} (1 + \sqrt{1 - \eta^2} \cos \psi)(1 - \sqrt{1 - \eta^2 \beta_m^2})\right]}.$$
 (6)

В пределе $\eta \to 0$ (5) переходит в

$$\beta_{K_S^0}^2 = \beta_m^2 \cos^2 \frac{\psi_c}{2},\tag{7}$$

где ψ_c — предельный пространственный угол разлёта пионов. В силу того, что (7) эквивалентно (3), вышеприведённые рассуждения о сдвиге средней массы $\Delta M_{K_S^0}$, связанный с нелинейностью зависимости $M_{K_S^0}$ от параметра ψ_c , справедливы и для (5) при $|\eta| \ll 1$ [1].

В отличии от прямого измерения инвариантной массы данный метод обладает малой чувствительностью к систематическим погрешностям измерения абсолютных значений импульсов пионов $|\overrightarrow{p_+}|$, $|\overrightarrow{p_-}|$, так как импульсы пионов входят в виде отношения $Y = |\overrightarrow{p_+}|/|\overrightarrow{p_-}|$. Аналогично методу предельного угла метод полной реконструкции распада обладает высокой чувствительностью к величине ψ_c .

3. Детектор КМД-3

Криогенный магнитный детектор (КМД-3, рис. 2) [5] установлен в одной из двух точек столкновения электрон-позитронного коллайдера ВЭПП-2000 [6]. Треккинговая система детектора состоит из цилиндрической дрейфовой камеры (DC) и двухслойной цилиндрической многопроволочной пропорциональной Z-камеры. Обе камеры установлены внутри тонкого $(0.085\,X_0)$ сверхпроводящего соленоида с магнитным полем 1.3 T. DC измеряет импульс и полярный (θ) и азимутальный (ϕ) углы заряженной частицы. Z-камера измеряет координату частиц вдоль оси пучка. Энергии и направления фотонов определяется при помощи размещённого вне соленоида баррельного электромагнитного калориметра, состоящего из двух систем: внутреннего калориметра на жидком ксеноне (LXe) толщиной $5.4\,X_0$ и внешнего калориметра на кристаллах йодида цезия (CsI) толщиной $8.1\,X_0$ [7]. В торцах детектора стоят калориметры, основанные на кристаллах ВGO, толщиной $13.4\,X_0$.

Контроль энергии пучка осуществлялся посредством лазерной системы, основанной на обратном комптоновском рассеянии. Систематическая погрешность измерения энергии в системе центра масс $E_{c,m}$ равняется 0.06 МэВ [8, 9].

События записываются согласно сигналам с двух независимых триггерных систем: нейтральной и заряженной. Заряженный триггер требует наличие хотя бы одного заряженного трека (использует информацию из DC). Нейтральный триггер требует либо энерговыделение в калориметре больше $E_{beam}/2$, либо наличие более двух кластеров с энерговыделением больше порога 25 МэВ.

Рис. 2 Схема детектора КМД-3

4. Экспериментальная статистика и отбор событий

В данной работе каона использовались данные 2018 года (сезон PHI/OMEGA 2018), набранные в семи точках по энергии вблизи пика ϕ -мезонного резонанса ($\sqrt{s} = 1010 - 1028$ МэВ). Интеграл светимости по всему набору данных составил $\int Ldt \approx 8$ пб⁻¹.

Процесс $e^+e^- \to K_s^0 K_L^0$ регистрировался по распаду $K_s^0 \to \pi^+\pi^-$. Сначала отбирались «хорошие» треки, то есть треки для которых выполнялись следующие условия:

- 1. Импульс трека $130 \frac{\text{МэВ}}{c} ,$
- 2. Координата вдоль пучка |z| < 12 см,
- 3. Качество реконструкции трека в r- ϕ и z-плоскостях $\chi^2_{r-\phi} < 15$, $\chi^2_z < 12$,
- 4. Количество сработавших проволочек в дрейфовой камере $10 < n_{hit} < 30$,
- 5. Полярный угол трека $\left| \theta \frac{\pi}{2} \right| \le 0.9$.

Если в событии находилось два «хороших» трека, то к этим трекам применялись отборы, которые определяли сигнальные события:

- 1. Неколлинеарность треков,
- 2. Противоположные заряды треков,
- 3. Косинус угла между радиус-вектором, соединяющим место встречи пучков с вершиной распада K_S^0 , и направлением импульса K_S^0 в r- φ -плоскости (рис. 3) $\cos \alpha > 0.85$,
- 4. Средние потери двух треков на ионизацию в дрейфовой камере (рис. 4) $(\frac{dE_1}{dx} + \frac{dE_2}{dx})/2 < 5000$,
- 5. Инвариантная масса двух треков $480 \frac{\text{МэВ}}{c^2} < M_{inv} < 510 \frac{\text{МэВ}}{c^2}$.

Для изучения отклика детектора и для определения эффективности детектирования было проведено Монте Карло моделирование при помощи программного пакета GEANT4. Эффективность регистрации при данных условиях отбора составила $\epsilon_{MC} \cong 24\%$.

Рис. 3. Определение угла α – угла между радиус-вектором, соединяющим место встречи пучков с вершиной распада K_S^0 , и направлением импульса K_S^0 в \mathbf{r} - φ -плоскости (сделать свою картинку)

Рис. 4. Средние ионизационные потери двух «хороших» треков (сделать для E=509.5MeV, 2018 год)

5. Систематические эффекты и учёт поправок

Применяемые в этой работе методы требуют знание энергии нейтральных каонов, рождённых в процессе $e^+e^- o \varphi(1020) o K_s^0 K_L^0$, но точное измерение их энергии в эксперименте затруднительно. Предполагается, что энергия каона равна половине энергии в с.ц.м. $E_{K_S^0} = E_{c.m}/2$. Дальше массу, посчитанную для каждого события с соответствующей энергией, усредняют по всей выборке.

Так как в начальном состоянии при аннигиляции e^+e^- может быть излучён дополнительный фотон, энергия пары каонов $K_s^0K_L^0$ определяется неоднозначно (то есть энергетический спектр не является δ -функцией) и не равняется энергии системы в начальном состоянии. Следовательно, при измерении массы необходимо учитывать связанную с этим поправку, так называемую радиационную поправку к начальному состоянию. Радиационную поправку к некой функции F(s), где $s=4E_{beam}^2$ от энергии (например, $M_{K_s^0}$ определяемая соотношением (3) или (6)) можно определить, зная энергетический спектр излучённого фотона, который приведён в работе [10]. Значение функции F(s) с поправкой вычисляется следующим образом

$$F = N(s) \iint_{0 \le x_{1,2} \le 1} F(s') K_{RC}(s, x_1, x_2) \Theta_{cut}(s, x_1, x_2) dx_1 dx_2, \tag{8}$$

где $s' = s(1-x_1)(1-x_2)$, $\Theta_{cut} - \theta$ -функция, учитывающая экспериментальные условия детектирования частиц в конечном состоянии,

$$N(s) = \iint_{0 \le x_{1,2} \le 1} K_{RC}(s, x_1, x_2) \Theta_{cut}(s, x_1, x_2) dx_1 dx_2, \tag{9}$$

$$K_{RC} = D(s, x_1)D(s, x_2) \left[1 + \frac{2\alpha}{\pi} \left(1 + a + b(s) \right) \right] \sigma_{e^+e^- \to K_S K_L}^{(0)}(s'), \tag{10}$$

 α — постоянная тонкой структуры, $a \equiv \frac{\pi^2}{6} - \frac{1}{4}$, D(s,x) и b(s) определены в [10], $\sigma_{e^+e^-\to K_SK_L}^{(0)}$ — сечение процесса $e^+e^-\to K_SK_L$ (параметризация приведена в работе [11]) [1, 10].

Как ранее говорилось, функция $M_{K_S^0}$ нелинейно зависит от угла ψ , то есть в общем случае $\langle M_{K_S^0} \rangle_{\psi} \neq M_{K_S^0} (\langle \psi \rangle)$. Учитывая конечную точность измерения ψ , сдвиг, обусловленный нелинейностью, $\delta M_{K_S^0} = \langle M_{K_S^0} \rangle_{\psi} - M_{K_S^0} (\langle \psi \rangle)$ в предположении гауссового отклика равен

$$\delta \mathbf{M}_{K_S^0} = -\mathbf{M}_{K_S^0}(\langle \psi \rangle) + \int 1/\sqrt{2\pi\sigma_{\psi}^2} \exp\left[-\frac{\psi - \langle \psi \rangle}{2\sigma_{\psi}^2}\right] \mathbf{M}_{K_S^0}(\psi) d\psi. \tag{11}$$

Так как функция $M_{K^0_S}$ определённая выражением (3) или (6) является достаточно гладкой функцией $\delta M_{K^0_S}$ можно разложить по центральным моментам $M^{(k)}$ нормального распределения

$$\delta \mathbf{M}_{K_{\mathcal{S}}^{0}} = \sum_{k=0}^{\infty} \frac{1}{k!} \left[\frac{\partial^{k}}{\partial \psi^{k}} \mathbf{M}_{K_{\mathcal{S}}^{0}}(\psi) \right]_{\psi = \langle \psi \rangle} M^{(k)}. \tag{12}$$

Поскольку и радиационная поправка к начальному состоянию, и поправка на нелинейность зависят от средней энергии пучка, для учёта взаимных корреляций между поправками необходим совместный расчёт. Тогда совместная поправка равна

$$\delta \mathbf{M}_{K_{S}^{0}} = -\mathbf{M}_{K_{S}^{0}}(s, \langle \psi \rangle) + N(s) \iiint K_{JC}(s, x_{1}, x_{2}, \psi) \mathbf{M}_{K_{S}^{0}}(s', \psi) \Theta_{cut}(s, x_{1}, x_{2}) d\psi dx_{1} dx_{2}, \quad (13)$$
 где $K_{JC} = 1 / \sqrt{2\pi\sigma_{\psi}^{2}} \exp\left[-\frac{\psi - \langle \psi \rangle}{2\sigma_{\psi}^{2}}\right] K_{RC}(s, x_{1}, x_{2}, \psi).$

6. Результаты

7. Список литературы

- 1. Мемо Зайцева
- 2. PDG KK
- 3. https://inspirehep.net/literature/766331
- 4. https://inspirehep.net/literature/585079
- 5. B. I. Khazin et al., Nucl. Phys. B (Proc. Suppl.) 376, 181 (2008).
- 6. Yu. M. Shatunov et al., in Proceedings of the 7th European Particle Accelerator Conference, Vienna, 2000, p. 439.
- 7. V. M. Aulchenko et al., JINST 10, P10006 (2015).
- 8. E.V. Abakumova, et al., Phys. Rev. Lett. 110 (2013) 140402
- 9. E.V. Abakumova, et al., J. Instrum. 10 (2015) T09001.
- 10. A.B. Arbuzov, V.A. Astakhov et al., Radiative corrections for pion and kaon production at e^+e^- colliders of energies below 2 GeV, JHEP 9710 (1997) 006
- 11. Achasov, N. N. and Dubrovin, M. S. and Ivanchenko, V. N. and Kozhevnikov, A. A. and Pakhtusova, E. V., A FRESH LOOK AT φ ω MIXING, Int.J.Mod.Phys.A 7 (1992) 3187-3202
- 12.