Advanced Networking for Media Engineers

Note

This lab is to understand the basics of a multicast topology. This lab will be a continuation of the concepts from the previous Broadcast Engineer Labs.

Note

This lab has been limited to the following devices s1-Leaf 1, s1-Leaf 4, s1-Spine 1, s1-Spine 2, s1-Host 1 and s1-Host 2. Additional devices on this topology are out of scope for this lab.

1. Log into the **LabAccess** jumpserver:

- 1. Type labs at the Main Menu prompt. This will bring up additional lab menu selections.
- 2. Type media-labs at this prompt to open the media lab section (If you were previously in the Media Labs Menu, you can type back to go back).
- 3. Type media-mcast at the prompt. The script will pre-configure the topology with the exception of s1-Leaf 4 and s1-Host 1 & s1-Host 2.

2. Create Vlan 46 & SVI for host access vlan on s1-Leaf 4.

1. On **s1-Leaf 4** we will create an vlan and a SVI

```
vlan 46
!
interface Vlan46
no autostate
ip address 172.16.46.4/24
```

Example:

```
s1-leaf4(config)#vlan 46
s1-leaf4(config)#interface vlan 46
s1-leaf4(config-if-Vl46)#no autostate
s1-leaf4(config-if-Vl46)#ip address 172.16.46.4/24
```

Verification:

.AN	Name		Status	Ports	
	default		active	Et6, Et7, Et8, Et	t9, Et10, Et11
				Et12, Et13, Et14	, Et15, Et16
				Et17, Et18, Et19	, Et20, Et21
				Et22, Et23, Et24	, Et25, Et26
				Et27, Et28, Et29	, Et30, Et31
				Et32	
	VLAN0012		active		
	VLAN0034		active		
	VLAN0046		active	Cpu	
-le	af4(config)#sh	ow ip int brief			
ter	face	IP Address	Status	Protocol	MTU
ag	ement0	192.168.0.17/24	down	notpresent	1500
ın4	6	172.16.46.4/24	up	up	1500

3. Create connectivity for s1-Host 2 on s1-Leaf 4

1. On **s1-Leaf 4**, interface *Ethernet 4* is attached to **s1-Host 2**, associate the port as access vlan 46.

```
interface Ethernet4
switchport access vlan 46
no shutdown
```

Example:

```
s1-leaf4(config-if-Et4)#switchport access vlan 46
s1-leaf4(config-if-Et4)#no shutdown
```

Verification:

/LAN	Name	Status	Ports
	default	active	Et6, Et7, Et8, Et9, Et10, Et11
			Et12, Et13, Et14, Et15, Et16
			Et17, Et18, Et19, Et20, Et21
			Et22, Et23, Et24, Et25, Et26
			Et27, Et28, Et29, Et30, Et31
			Et32
2	VLAN0012	active	
ļ	VLAN0034	active	
	VLAN0046	active	Cpu, Et4

4. Create uplink connectivity to s1-Spine 2

1. On **s1-Leaf 4**, Ethernet 3 is connected to **s1-Spine 2**. Create a routed port for uplink access

```
interface Ethernet3
no switchport
mtu 9214
ip address 172.16.200.26/30
no shutdown
```

Example:

```
s1-leaf4(config-if-Et3)#interface ethernet 3
s1-leaf4(config-if-Et3)#no switchport
s1-leaf4(config-if-Et3)#ip address 172.16.200.26/30
s1-leaf4(config-if-Et3)#mtu 9214
s1-leaf4(config-if-Et3)#no shutdown
```

Verification:

s1-leaf4#sh ip in	t br			
Interface	IP Address	Status	Protocol	MTU
Ethernet3	172.16.200.26/30	up	up	1500
Management0	192.168.0.17/24	down	notpresent	1500
Vlan46	172.16.46.4/24	up	up	1500

5. **Enable OSPF & verify connectivity**

1. On **s1-Leaf 4**, create a loopback interface & assign an IP to be used as the Router-ID. On **s1-Leaf 4**, enable the OSPF routing process and assign the networks to be advertised

```
interface Loopback0
  ip address 172.16.0.4/32
!
router ospf 6500
  router-id 172.16.0.4
  passive-interface Loopback0
  passive-interface Vlan46
  network 172.16.0.0/24 area 0.0.0.0
  network 172.16.46.0/24 area 0.0.0.0
  network 172.16.200.24/30 area 0.0.0.0
```

Example:

```
s1-leaf4(config-if-Et3)#interface loopback 0
s1-leaf4(config-if-Lo0)#ip address 172.16.0.4/32
s1-leaf4(config-if-Lo0)#
s1-leaf4(config-if-Lo0)#router ospf 6500
s1-leaf4(config-router-ospf)#router-id 172.16.0.4
s1-leaf4(config-router-ospf)#passive-interface loopback 0
s1-leaf4(config-router-ospf)#passive-interface vlan46
s1-leaf4(config-router-ospf)#network 172.16.0.0/24 area 0.0.0.0
s1-leaf4(config-router-ospf)#network 172.16.46.0/24 area 0.0.0.0
s1-leaf4(config-router-ospf)#network 172.16.200.24/30 area 0.0.0.0
```

Verification:

	router-ospf)#show ip int	01		
Interface	IP Address	Status	Protocol	MTU
Ethernet3	172.16.200.26/30	up	ир	1500
Loopback0	172.16.0.4/32	up	up	65535
Management0	192.168.0.17/24	down	notpresent	1500
Vlan46	172.16.46.4/24	up	up	1500

1. Issue a show ip route command on **s1-Leaf 4**. Output should show the following networks from Leaf 1 being advertised and shows a Full/BR state with **s1-Leaf 1**, its neighbor.

Routing Table Example:

```
s1-leaf4#show ip route
s1-leaf4(config-if-Et3)#show ip route | begin Gateway
Gateway of last resort:
   S
           0.0.0.0/0 [1/0] via 192.168.0.254, Management0
           172.16.0.1/32 [110/40] via 172.16.200.25, Ethernet3
   0
   0
           172.16.0.2/32 [110/30] via 172.16.200.25, Ethernet3
   0
           172.16.0.3/32 [110/20] via 172.16.200.25, Ethernet3
   C
           172.16.0.4/32 is directly connected, Loopback0
           172.16.15.0/24 [110/40] via 172.16.200.25, Ethernet3
   0
           172.16.46.0/24 is directly connected, Vlan46
   C
   0
           172.16.200.0/30 [110/30] via 172.16.200.25, Ethernet3
   C
           172.16.200.24/30 is directly connected, Ethernet3
           172.16.200.32/30 [110/20] via 172.16.200.25, Ethernet3
           192.168.0.0/24 is directly connected, Management0
   C
```

OSPF Neighbor Example:

```
s1-leaf4(config-if-Et3)#show ip ospf neighbor
Neighbor ID VRF Pri State Dead Time Address Interface
172.16.0.3 default 1 FULL/DR 00:00:37 172.16.200.25 Ethernet3
```

6. Test End to End Connectivity on From s1-Host 2

1. Issue a ping command from **s1-Host 2** in network 172.16.46.0/24 to **s1-Host 1** on 172.16.15.0/2

```
Select s1-Host 2 from main menu
Confirm Gateway of s1-Host 1 is accessible at 172.16.15.1 and the s1-Host 1 At 172.16.15.5

ping 172.16.15.1
ping 172.16.15.5

ex.
host2# ping 172.16.15.1
host2# ping 172.16.15.5
```

Ensure you have connectivity before commencing the next step

7. Enabling Multicast Routing

1. On **s1-Leaf 4**, enable multicast routing using the following commands; We will be enabling multicast routing on s1-Leaf 4 and assigning the interfaces to participate in multicast routing. As well we will define the RP address on the switch.

```
!
router multicast
  ipv4
    software-forwarding sfe
!
ip pim rp-address 172.16.0.1
!
interface Vlan46
  ip pim sparse-mode
!
!
interface Ethernet3
  ip pim sparse-mode
!
ip multicast-routing
```

Note

In this lab environment, we will be leveraging the software based forwarding agent for multicast.

Example:

```
s1-leaf4(config)#router multicast
s1-leaf4(config-router-multicast)#ipv4
s1-leaf4(config-router-multicast-ipv4)#software-forwarding sfe
s1-leaf4(config)#ip pim rp-address 172.16.0.1
s1-leaf4(config)#int vlan 46
s1-leaf4(config-if-Vl46)#ip pim sparse-mode
s1-leaf4(config-if-Vl46)#int et3
s1-leaf4(config-if-Et3)#ip pim sparse-mode
s1-leaf4(config)#ip multicast-routing
```

Verification:

```
s1-leaf4(config-if-Et3)#sh ip pim rp

Group: 224.0.0.0/4

RP: 172.16.0.1

Uptime: 0:02:56, Expires: never, Priority: 0, Override: False

s1-leaf4(config-if-Et3)#show ip pim neighbor

PIM Neighbor Table

Neighbor Address Interface Uptime Expires Mode

172.16.200.25 Ethernet3 00:02:41 00:01:32 sparse
```

8. Start Server on s1-Host 1

1. Going back to the menu screen, select **s1-Host 1**. Enter the bash prompt on from the CLI prompt and enable the source. This will run for 1800 seconds

Example:

```
On s1-Host 1 type the following:
s1-host1# bash
[arista@s1-host1 ~]$ /mnt/flash/mcast-source.sh
```

Verification:

```
[arista@s1-host1 flash]$ ./mcast-source.sh
-----
[arista@s1-host1 flash]$ Client connecting to 239.103.1.1, UDP port 5001
Sending 1470 byte datagrams
Setting multicast TTL to 10
UDP buffer size: 208 KByte (default)
-----
[ 3] local 10.33.157.26 port 38605 connected with 239.103.1.1 port 5001
-----
Client connecting to 239.103.1.3, UDP port 5001
Sending 1470 byte datagrams
Setting multicast TTL to 10
UDP buffer size: 208 KByte (default)
Client connecting to 239.103.1.2, UDP port 5001
Sending 1470 byte datagrams
Setting multicast TTL to 10
UDP buffer size: 208 KByte (default)
-----
[ 3] local 10.33.157.26 port 53682 connected with 239.103.1.2 port 5001
[ 3] local 10.33.157.26 port 40187 connected with 239.103.1.3 port 5001
                Transfer
                           Bandwidth
[ ID] Interval
[ 3] 0.0- 1.0 sec 31.6 KBytes 259 Kbits/sec
Open a new ssh session leaving the source script running
```

9. Start Receiver on s1-Host 2

1. Going back to the menu screen, select **s1-Host 2**. Enter the bash prompt on from the CLI prompt and enable the receiver.

Example:

```
On s1-Host 2 type the following:
s1-host2# bash
[arista@s1-host2 ~]$ /mnt/flash/mcast-receiver.sh
```

Verification:

Open a new ssh session leaving the receiver script running

10. Observe the multicast table on s1-Leaf 1

1. On **s1-Leaf 1**, observe the multicast table for the source.

Example:

```
s1-leaf1#show ip mroute
RPF route: U - From unicast routing table
           M - From multicast routing table
239.103.1.1
  0.0.0.0, 0:01:56, RP 172.16.0.1, flags: W
    Incoming interface: Register
    Outgoing interface list:
      Ethernet2
  172.16.15.5, 0:02:24, flags: SLN
    Incoming interface: Vlan15
    RPF route: [U] 172.16.15.0/24 [0/1]
    Outgoing interface list:
      Ethernet2
239.103.1.2
  0.0.0.0, 0:01:56, RP 172.16.0.1, flags: W
    Incoming interface: Register
    Outgoing interface list:
      Ethernet2
  172.16.15.5, 0:02:24, flags: SLN
    Incoming interface: Vlan15
    RPF route: [U] 172.16.15.0/24 [0/1]
    Outgoing interface list:
      Ethernet2
239.103.1.3
  172.16.15.5, 0:02:24, flags: SLN
    Incoming interface: Vlan15
    RPF route: [U] 172.16.15.0/24 [0/1]
    Outgoing interface list:
      Ethernet2
```

11. Observe the multicast table on s1-Leaf 4

1. On **s1-Leaf 4**, observe the multicast table for the receiver using the CLI

Example:

```
s1-leaf4#show ip mroute
RPF route: U - From unicast routing table
           M - From multicast routing table
239.103.1.1
  0.0.0.0, 0:00:17, RP 172.16.0.1, flags: W
    Incoming interface: Ethernet3
    RPF route: [U] 172.16.0.3/32 [110/40] via 172.16.200.25
    Outgoing interface list:
      Vlan46
  172.16.15.5, 0:00:13, flags: S
    Incoming interface: Ethernet3
    RPF route: [U] 172.16.15.0/24 [110/40] via 172.16.200.25
    Outgoing interface list:
      Vlan46
239.103.1.2
  0.0.0.0, 0:00:17, RP 172.16.0.1, flags: W
    Incoming interface: Ethernet3
    RPF route: [U] 172.16.0.3/32 [110/40] via 172.16.200.25
    Outgoing interface list:
      Vlan46
  172.16.15.5, 0:00:13, flags: S
    Incoming interface: Ethernet3
    RPF route: [U] 172.16.15.0/24 [110/40] via 172.16.200.25
    Outgoing interface list:
      Vlan46
```

LAB COMPLETE

© Copyright 2024, Arista Networks.

Created using Sphinx (http://sphinx-doc.org/) 6.1.3.

Back to top