Report on Human Activity Recognition using Smartphones

P Ramakrishna Raju, M Nitin Sai, N Ravi Kiran, N V Siva Sai, N V Shanmukh

Amrita School of Engineering, Bengaluru Foundations of Data Science

Abstract- The dataset which we have taken for this project, it is taken from a random 30 members. The six categories that smartphone is divided is walking, walking upstairs, walking downstairs, standing, sitting, laying. By using accelerometer, gforce and gyroscope we are detecting the movements of a human body.

Index Terms- activity, sensors, accelerometer, gyroscope, gforce, classifiers, kNN, graphs, relationship

I. INTRODUCTION

This article guides through various steps of data processing and analysis such as:

- 1) Data Cleaning
- 2) Data Visualization
- 3) Data Sampling
- 4) Feature extraction
- 5) Classification and accuracies
- 6) Conclusion

II. DATA CLEANING

In data cleaning we have been able to remove noisy data, null values, outliers, duplicate values.

Checking for Null values:

Checking if any outliers exist using boxplot:

Removing outliers using inter-quartile range method:

Verifying if outliers still exist:

Checking for duplicate values:

III. DATA VISUALIZATION

Using count-plot we were able to see count of each activity:

We are able to identify the count of activities done by persons.

Using boxen-plot we were able to see:

We can observe the skewness and kurtosis in each activity with features such as angles between sensors. Mostly all activities follow normal distribution.

Comparatively STANDING activity is distributed widely from the below plot.

The following picture shows the number of features based on sensors:

Co-Variance matrix below shows most features are independent:

	tBodyAcc- mean()-X	tBodyAcc- mean()-Y	tBodyAcc- mean()-Z	tBodyAcc- std()-X	tBodyAcc- std()-Y	tBodyAcc- std()-Z	tBodyAcc- mad()-X	tBodyAcc- mad()-Y	tBodyAcc- mad()-Z	tBodyAcc- max()-X			tBody
tBodyAcc- mean()-X	1.000000	0.148061	-0.256952	0.000619	-0.021903	-0.044617	0.006290	-0.022754	-0.047558	0.044062		-0.031620	
tBodyAcc- mean()-Y	0.148061	1.000000	-0.078769	-0.045160	-0.044920	-0.049746	-0.044180	-0.045049	-0.050402	-0.038108		-0.026993	
tBodyAcc- mean()-Z	-0.256952	-0.078769	1.000000	-0.020217	-0.016641	-0.008410	-0.018747	-0.015203	-0.001988	-0.037197		-0.009533	
tBodyAcc-std()- X	0.000619	-0.045160	-0.020217	1.000000	0.927461	0.851668	0.998632	0.920888	0.846392	0.980844	10000	0.877860	
tBodyAcc-std()- Y	-0.021903	-0.044920	-0.016641	0.927461	1.000000	0.895510	0.922803	0.997347	0.894509	0.917366		0.922191	
	***	***		1,000	***	***		1000	***	***			
tBodyGyroMag- min()	-0.053541	-0.021808	-0.043603	0.766412	0.790591	0.782720	0.760096	0.787366	0.781603	0.760145		0.777227	
tBodyGyroMag- sma()	-0.025803	-0.052827	-0.046097	0.916908	0.952195	0.935711	0.909555	0.947731	0.932718	0.916208	1000	0.907855	
tBodyGyroMag- energy()	-0.019648	-0.053187	-0.061273	0.820725	0.853612	0.870072	0.813757	0.847208	0.861238	0.821490		0.754410	
tBodyGyroMag- iqr()	-0.012185	-0.050552	-0.041172	0.869272	0.914304	0.895621	0.861608	0.909592	0.893716	0.872753		0.868764	
tBodyGyroMag- entropy()	-0.017817	-0.001048	0.020986	0.500288	0.540858	0.485138	0.497411	0.543644	0.496098	0.495730		0.754158	

Tableau Visualization:

IV. DATA SAMPLING

SAMPLING ALLOWS RESEARCHERS TO MAKE GENERALIZATIONS ABOUT A SPECIFIC POPULATION AND LEAVE OUT ANY BIAS

Simple Random Sampling:

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population.

train_df.sample(n=5, random_state=0)											
	•	•	tBodyAcc- mean()-Z	•	•	•	_	•	•	tBodyAcc- max()-X	fBodyBodyGyroJerkMag- " kurtosis()
3240	0.286415	0.000825	-0.106307	-0.990786	-0.967699	-0.964301	-0.992166	-0.970861	-0.961352	-0.930933	0.923605
1199	0.275647	-0.013210	-0.109886	-0.984300	-0.932781	-0.945669	-0.985715	-0.937023	-0.946384	-0.929256	0.652127
1678	0.278743	-0.016891	-0.106562	-0.993825	-0.990572	-0.993767	-0.995618	-0.989251	-0.992603	-0.922467	0.935775
1166	0.279980	-0.009711	-0.130532	-0.994371	-0.956061	-0.973607	-0.995362	-0.953700	-0.972007	-0.935535	0.882728
4401	0.285361	-0.000836	-0.098353	-0.994398	-0.939663	-0.973610	-0.995106	-0.942431	-0.975162	-0.935877	0.190465

Systematic Sampling:

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval.

Systematic Sampling N = len(train_df) selected_index = np.arange(np.random.randint(0,n-1),len(train_df),N//n) systematic_sampling = train_df.iloc[selected_index] systematic_sampling tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc- tBodyAccmean()-X mean()-Y mean()-Z std()-X std()-Y std()-Z mad()-X mad()-Y mad()-Z max()-X kurtosis() 0.279653 -0.019467 -0.113462 -0.995380 -0.967187 -0.978944 -0.996520 -0.963668 -0.977469 -0.938692 -0.760104 1933 0.277937 -0.018022 -0.111468 -0.999004 -0.995342 -0.995509 -0.998879 -0.994713 -0.995258 -0.945219 -0.751307 0.274067 -0.189612 0.074264 -0.086013 -0.785095 3791 -0.005486 0.003411 -0.303971 0.095856 -0.358120 0.299966 5556 0.276528 -0.016754 -0.106263 -0.997451 -0.992599 -0.980884 -0.997546 -0.991357 -0.977349 -0.942241 -0.839537 0.273387 -0.017011 -0.045022 -0.218218 -0.103822 0.274533 -0.304515 -0.098913 0.332584 -0.304029 5 rows × 563 columns

Cluster Sampling:

Cluster sampling is a probability sampling method used by researchers in which you divide a population into clusters and then randomly select some of these clusters as your sample

V. FEATURE EXTRACTION

We have used an app called PhysiscsToolBoxSuite in an iPhone 11 to record the sensor values of accelerometer, gyroscope, gForce in all 3 axes with an interval of 0.011 seconds and then extracted them using properties like mean, median, min, max etc into 111 features by combining them into 2.56 second interval.

Input data from smartphone:

input	iata moin sinartphone.									
	time	gFx	gFy	gFz	ах	ау	az	wx	wy	wz
0	2022-12-29 8:20:44.8780	-0.126	-0.268	-0.985	0.15	-0.44	0.60	-0.25	-0.43	-0.07
1	2022-12-29 8:20:44.8870	-0.140	-0.256	-0.944	0.24	-0.49	0.13	-0.12	-0.39	-0.13
2	2022-12-29 8:20:44.8970	-0.154	-0.250	-0.921	0.31	-0.62	-0.18	0.04	-0.34	-0.19
3	2022-12-29 8:20:44.9070	-0.153	-0.256	-0.905	0.43	-0.57	-0.28	0.16	-0.28	-0.28
4	2022-12-29 8:20:44.9170	-0.152	-0.271	-0.895	0.29	-0.53	-0.48	0.22	-0.19	-0.34
1828	2022-12-29 8:21:03.0880	-0.047	-0.424	-0.970	0.52	-0.46	0.72	0.04	0.05	-0.04
1829	2022-12-29 8:21:03.0980	-0.013	-0.418	-0.966	0.30	-0.42	0.66	-0.05	-0.03	-0.05
1830	2022-12-29 8:21:03.1080	-0.009	-0.437	-1.024	0.13	-0.34	1.20	-0.17	-0.22	-0.05
1831	2022-12-29 8:21:03.1180	-0.016	-0.462	-0.996	0.14	-0.05	1.21	-0.24	-0.40	-0.02
1832	2022-12-29 8:21:03.1280	-0.032	-0.463	-0.939	0.26	0.10	0.74	-0.23	-0.46	0.01

Example of feature extraction using mean:

Finally we were able to produce a final-set:

VI. CLASSIFICATION AND ACCURACIES

By training and testing using various models we finally have concluded with 3 models.

k-NN(k=10) classifier and Decision Tree Classifier since they gave us good accuracies 89% and 86% respectively.

SVM for bi-classification gave us 100% accuracy, where {LAYING, SITTING, STANDING} are Stationary activities and {WALKING, WALKING_DOWNSTAIRS, WALKING_UPSTAIRS} are moving activities.

We were able to achieve good results from k-NN classifier.

VII. CONCLUSION

In conclusion we were able to understand the relationship between variables and sensors in a smartphone to understand how they work and precisely predict the activity done based on the sensor data using popular classifiers.

REFERENCES

- [1] <u>Human Activity Recognition with Smartphones | Kaggle</u>
- [2] https://friends-04.web.app/