Université de Grenoble École doctorale EEATS

THÈSE CIFRE PRÉSENTÉE PAR

JORY LAFAYE

LABORATOIRE : INRIA GRENOBLE RHÔNE-ALPES ENTREPRISE : ALDEBARAN

Commande des mouvements et de l'équilibre d'un robot humanoïde à roues omnidirectionnelles

Directeur : Dr. Bernard Brogliato, Inria

Encadrants :
Dr. Pierre-Brice Wieber, Inria
Dr. Cyrille Collette, Aldebaran
Dr. Sebastien Dalibard, Aldebaran

Table des matières

Ré	sumé			4												
I	Intro	troduction														
	I.1	Présen	tation de la plateforme expérimentale													
		I.1.1	Pepper, un robot humanoïde à roues omnidirectionnelles													
		I.1.2	Capteurs et actionneurs													
		I.1.3	Propriétés mécaniques													
	I.2	État de	el'art													
		I.2.1	Problématiques associées à Pepper													
		I.2.2	Commande et équilibre des robots à roues													
			I.2.2.1 Les robots à une et deux roues													
			I.2.2.2 Les robots à trois roues et plus													
		I.2.3	Commande et équilibre des robots bipèdes													
		I.2.4	Synthèse et conclusion													
	I.3	Organi	isation du document													
II	Mod	lélisatio	on et commande de Pepper													
	II.1	Modél	isation dynamique													
		II.1.1	Choix du modèle et conséquences													
		II.1.2	Équations de la dynamique													
		II.1.3	Linéarisation et approximations													
	II.2	Comm	ande prédictive													
		II.2.1	Modélisation de la dynamique future													
		II.2.2	Formulation du problème d'optimisation													
			II.2.2.1 Choix du type d'optimisation													
			II.2.2.2 Formulation des objectifs													
			II.2.2.3 Formulation des contraintes													

	II.3	Méthod	le de résolution du problème	8
		II.3.1	Principe de la programmation quadratique	9
		II.3.2	Application à la commande prédictive	9
			II.3.2.1 Linéarisation des contraintes	9
			II.3.2.2 Formulation mathématique finale	9
		II.3.3	Implémentation logicielle : "MPC-WalkGen"	9
	II.4		ts et expérimentations	9
		II.4.1	Protocole expérimental	9
		II.4.2	De l'importance du choix des pondérations	9
		II.4.3	Expérimentations	9
		II.4.4	Vers un choix automatique des pondérations	9
Ш			pte du basculement de Pepper	10
	III.1		sation dynamique	11
			Problématique supplémentaire	11
			Équations de la dynamique	11
			Linéarisation et approximations	11
	III.2		ande prédictive	11
			Choix du type d'optimisation	11
			Formulation des objectifs	11
			Formulation des contraintes	11
	III.3		des deux modèles dynamiques exclusifs	11
			Choix d'un superviseur et conséquences	11
			Fonctionnement du superviseur	11
			Fonctionnement de l'estimateur d'impact	11
	III.4		ts et expérimentations	11
			Protocole expérimental	12
			Expérimentations	12
			Limites physiques et algorithmiques	12
	III.5		e modélisation unifiée des deux dynamiques	12
			Problème de complémentarité linéaire	12
		III.5.2	Méthodes de résolution	12
			III.5.2.1 Programmation quadratique avec contraintes non-linéaire	12
			III.5.2.2 Linéarisation par <i>apriori</i>	12
			III 5 2 3 Conclusion	12

IV Synthèse													13											
	IV.1	Contributions																						14
	IV.2	Perspectives .																						14
	IV.3	conclusion																						14
Bibliographie															15									
An	nexes	.																						15

[1]

Chapitre I

Introduction

I.1 Présentation de la plateforme expérimentale

- I.1.1 Pepper, un robot humanoïde à roues omnidirectionnelles
- I.1.2 Capteurs et actionneurs
- I.1.3 Propriétés mécaniques
- I.2 État de l'art
- I.2.1 Problématiques associées à Pepper
- I.2.2 Commande et équilibre des robots à roues
- I.2.2.1 Les robots à une et deux roues
- I.2.2.2 Les robots à trois roues et plus
- I.2.3 Commande et équilibre des robots bipèdes
- I.2.4 Synthèse et conclusion
- I.3 Organisation du document

Chapitre II

Modélisation et commande de Pepper

II.1 Modélisation dynamique

- II.1.1 Choix du modèle et conséquences
- II.1.2 Équations de la dynamique
- II.1.3 Linéarisation et approximations
- II.2 Commande prédictive
- II.2.1 Modélisation de la dynamique future
- II.2.2 Formulation du problème d'optimisation
- II.2.2.1 Choix du type d'optimisation
- II.2.2.2 Formulation des objectifs
- **II.2.2.3** Formulation des contraintes

II.3 Méthode de résolution du problème

- II.3.1 Principe de la programmation quadratique
- II.3.2 Application à la commande prédictive
- II.3.2.1 Linéarisation des contraintes
- II.3.2.2 Formulation mathématique finale
- II.3.3 Implémentation logicielle : "MPC-WalkGen"
- II.4 Résultats et expérimentations
- II.4.1 Protocole expérimental
- II.4.2 De l'importance du choix des pondérations
- II.4.3 Expérimentations
- II.4.4 Vers un choix automatique des pondérations

Chapitre III

Prise en compte du basculement de Pepper

III.1 Modélisation dynamique

- III.1.1 Problématique supplémentaireIII.1.2 Équations de la dynamique
- III.1.3 Linéarisation et approximations
- III.2 Commande prédictive
- III.2.1 Choix du type d'optimisation
- III.2.2 Formulation des objectifs
- III.2.3 Formulation des contraintes
- III.3 Gestion des deux modèles dynamiques exclusifs
- III.3.1 Choix d'un superviseur et conséquences
- III.3.2 Fonctionnement du superviseur
- III.3.3 Fonctionnement de l'estimateur d'impact
- III.4 Résultats et expérimentations

III.4.2 Expérimentations
III.4.3 Limites physiques et algorithmiques
III.5 Vers une modélisation unifiée des deux dynamiques
III.5.1 Problème de complémentarité linéaire
III.5.2 Méthodes de résolution
III.5.2.1 Programmation quadratique avec contraintes non-linéaire

III.4.1

Protocole expérimental

III.5.2.2 Linéarisation par apriori

III.5.2.3 Conclusion

Chapitre IV Synthèse

- **IV.1** Contributions
- **IV.2** Perspectives
- IV.3 conclusion

Bibliographie

[1] S Miasa, M Al-Mjali, A Al-Haj Ibrahim, and T A Tutunji. Fuzzy control of a two-wheel balancing robot using dspic. In 2010 7th International Multi-Conference on Systems Signals and Devices (SSD), pages 1–6, 2010.