Particle spectrograph

Wave operator and propagator

$f_{1^-}^{\#2}\alpha$	0	0	0	0	0	0	0
$f_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	0	0	0	0
$\omega_{1^{}}^{\#1}{}_{\alpha}$	0	0	0	$-k^2 r_1$	0	0	0
$f_{1}^{\#1}{}_{\alphaeta}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#_+^2}\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	$\frac{t_2}{3}$	$\left -\frac{1}{3} ikt_2 \right $	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{I}\sqrt{2}kt_2$	0	0	0	0
	$\omega_{1}^{\#1} + \alpha^{eta}$	$\omega_{1}^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$ au_1^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	0	0	0	0
$\sigma_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	$-\frac{1}{k^2 r_1}$	0	0	0
${\tau_1^{\#1}}^+_{\alpha\beta}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_1^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + ^{\alpha \beta}$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} + ^{\alpha}$

				$\omega_0^{\#1}$
$\omega_{0}^{#1}$ †	0	0	0	0
$f_{0+}^{#1}$ †	0	0	0	0
$f_{0+}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{#1}$ †	0	0	0	$k^2 r_2 + t_2$

$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$						
$\omega_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	0	0	0			
$f_{2+}^{#1} \dagger^{\alpha\beta}$	0	0	0			
$\omega_2^{\#1}\dagger^{lphaeta\chi}$	0	0	$k^2 r_1$			

Source constraints/ga	auge generators
SO(3) irreps	Multiplicities
$\tau_{0+}^{\#2} == 0$	1
$\tau_{0}^{\#1} == 0$	1
$\sigma_{0+}^{\#1} == 0$	1
$\tau_1^{\#2\alpha} == 0$	3
$\tau_1^{\#1\alpha} == 0$	3
$\sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + \bar{\imath}k\sigma_{1+}^{\#1\alpha\beta} == 0$	3
$\sigma_{1+}^{\#1\alpha\beta} = \sigma_{1+}^{\#2\alpha\beta}$	3
$\tau_{2}^{\#1\alpha\beta} == 0$	5
$\sigma_{2^{+}}^{\#1\alpha\beta} == 0$	5

Total constraints:

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c} \tau_{2}^{\#1} \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	
$\sigma_{2}^{#1} + \alpha \beta$ $\tau_{2}^{#1} + \alpha \beta$ $\sigma_{2}^{#1} + \alpha \beta \chi$	

$\sigma_0^{"}$ -	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
t ⁰ +	0	0	0	0
₀ +	0	0	0	0
o_0^+	0	0	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_0^{\#2}$ †	$\sigma_{0}^{\#1}$ \dagger

Massive and massless spectra

	Massive partic	le
?	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0^-$	Polarisations:	1
k^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

Unitarity conditions