Dict Analysis Explain

Create the dictionary

```
# import dictionaries file
dict <- read_excel("data/populism_dictionaries.xlsx")</pre>
variable.names(dict)
## [1] "Rooduijn_Pauwels_Italian"
## [2] "Grundl_Italian_adapted"
## [3] "Decadri_Boussalis"
## [4] "Decadri_Boussalis_Grundl_People"
## [5] "Decadri_Boussalis_Grundl_Common Will"
## [6] "Decadri_Boussalis_Grundl_Elite"
# create the dictionary
Rooduijn_Pauwels_Italian <-
  dictionary(list(populism =
                     (dict$Rooduijn_Pauwels_Italian
                      [!is.na(dict$Rooduijn_Pauwels_Italian)])))
Grundl_Italian_adapted <-</pre>
  dictionary(list(populism =
                    dict$Grundl_Italian_adapted
                   [!is.na(dict$Grundl_Italian_adapted)]))
Decadri_Boussalis <-
  dictionary(list(populism =
                    dict$Decadri_Boussalis
                   [!is.na(dict$Decadri_Boussalis)]))
Decadri_Boussalis_Grundl <-</pre>
  dictionary(list(people =
                    dict$Decadri_Boussalis_Grundl_People
                   [!is.na(dict$Decadri_Boussalis_Grundl_People)],
                  common will =
                    dict$`Decadri_Boussalis_Grundl_Common Will`
                   [!is.na(dict$`Decadri_Boussalis_Grundl_Common Will`)],
                  elite =
                    dict$Decadri Boussalis Grundl Elite
                   [!is.na(dict$Decadri_Boussalis_Grundl_Elite)]))
# Create an extra dictionary combining 3 components into one
d_b_g_Populism <-</pre>
  dictionary(list(populism =
                    c(Decadri_Boussalis_Grundl$people,
                      Decadri_Boussalis_Grundl$common_will,
                      Decadri_Boussalis_Grundl$elite)))
```

dictionaries	n.words
Rooduijn_Pauwels_Italian	18
Grundl_Italian_adapted	135
Decadri_Boussalis	25
Decadri_Boussalis_Grundl	77
d_b_g_Populism	77

Load DFM

Group and weight the dfm

```
# By party & quarter
dfm_weigh_p_quart <- dfm_group(DFM, groups = interaction(party_id, quarter))%>%
dfm_weight(scheme = "prop")
```

Decadri_Boussalis_Grundl

```
# Dictionary analysis with Decadri_Boussalis_Grundl
# By quarter
dfm_dict1 <- dfm_lookup(dfm_weigh_p_quart, dictionary = Decadri_Boussalis_Grundl)</pre>
```

##Qui trasformo la DFM in un dataset normale, che è alla fine quello che ci serve ora. Nota che devi fare cbind per riagganciare le docvars ai valori della DFM (non c'è bisogno di fare merge perché documenti e docvars della medesima DFM sono nello stesso ordine...)

```
data_dict1 <- dfm_dict1 %>%
   quanteda::convert(to = "data.frame") %>%
   cbind(docvars(dfm_dict1))

# Add variable with general level of populism
data_dict1 <- data_dict1 %>% mutate(populism = (people + common_will + elite) * 100)
```

Ora che hai un dataframe "normale" puoi ragionare in questo modo: la tua unit of analysis ora è partitoxquarter. Quindi ogni volta che vuoi fare un'analisi su una unit più grande puoi fare la media. Qui sotto un esempio con la componente people, ovviamente il ragionamento vale ugualmente per le altre e per populism.

1. Qual è l'andamento nel tempo del livello di populismo, generale e delle sue singole componenti?

Per rispondere, non ci serve il dettaglio dei gruppi, ma solo il tempo.

Populism level over quarters of the 'people' component


```
# plot the level of the "common will" component in time
plot_common <- ggplot(data = data_quarter_common, aes(x = Group.1, y = perc))+
   geom_line(color = "#00AFBB", size = 2)+
   scale_x_continuous("Quarters", labels = as.character(data_quarter_common$Group.1), breaks = data_quar
   labs(title = "Populism level over quarters of the 'common_will' component")
plot_common</pre>
```

Populism level over quarters of the 'common_will' component

Populism level over quarters of the 'elite' component

Compare the 3 components of the populism level

2a. Quali sono i gruppi parlamentari più populisti e quale componente di populismo prevale per ciascuno di essi?

Per capire quali sono i più populisti, possiamo fare dei ranking, guardare come si colloca ogni gruppo rispetto alla media/mediana/quintili, stimare dei t-test per la significatività delle differenze nei valori medi tra i diversi partiti.

Group.1	perc
FDI	0.799
M5S	0.763
LEGA	0.696
MISTO	0.637
FI	0.618
PD	0.604
LEU	0.591
CI	0.499
IV	0.484
INDIPENDENTE	0.462
REG_LEAGUES	0.418

```
ggplot(data=data_party, aes(x=Group.1, y=perc)) +
  geom_bar(stat="identity", fill="steelblue")+
  geom_text(aes(label=perc), vjust=1.6, color="white", size=3.5)+
  theme_minimal()+
  labs(title = "LEVEL OF POPULISM")
```

LEVEL OF POPULISM

Group.1	perc
M5S	0.539
FDI	0.487
INDIPENDENTE	0.454
FI	0.449
CI	0.444
MISTO	0.423
LEGA	0.422
PD	0.421
IV	0.417
LEU	0.392
REG_LEAGUES	0.335

```
ggplot(data=data_party_people, aes(x=Group.1, y=perc)) +
geom_bar(stat="identity", fill="steelblue")+
geom_text(aes(label=perc), vjust=1.6, color="white", size=3.5)+
theme_minimal()+
labs(title = "LEVEL OF POPULISM: PEOPLE COMPONENT")
```

LEVEL OF POPULISM: PEOPLE COMPONENT

Group.1	perc
LEGA	0.048
M5S	0.044
FI	0.040
MISTO	0.039
LEU	0.030
PD	0.027
FDI	0.025
IV	0.010
CI	0.008
INDIPENDENTE	0.004
REG_LEAGUES	0.000

```
ggplot(data=data_party_common, aes(x=Group.1, y=perc)) +
geom_bar(stat="identity", fill="steelblue")+
geom_text(aes(label=perc), vjust=1.6, color="white", size=3.5)+
theme_minimal()+
labs(title = "LEVEL OF POPULISM: COMMON WILL COMPONENT")
```

LEVEL OF POPULISM: COMMON WILL COMPONENT

Group.1	perc
FDI	0.287
LEGA	0.225
M5S	0.179
MISTO	0.175
LEU	0.168
PD	0.157
FI	0.129
REG_LEAGUES	0.083
IV	0.057
CI	0.048
INDIPENDENTE	0.004

```
ggplot(data=data_party_elite, aes(x=Group.1, y=perc)) +
  geom_bar(stat="identity", fill="steelblue")+
  geom_text(aes(label=perc), vjust=1.6, color="white", size=3.5)+
  theme_minimal()+
  labs(title = "LEVEL OF POPULISM: ELITE COMPONENT")
```

LEVEL OF POPULISM: ELITE COMPONENT

##########

 $\#kable(data_dict1)$

IL valore medio di populismo per ogni partito è statisticamente diverso dal livello di populismo medio del PD ?

```
# regression bivariate for check t-test
data_dict1$factor_party <- as.factor(data_dict1$party_id)</pre>
data_dict1$factor_party <- relevel(data_dict1$factor_party, ref = "PD")</pre>
a <- lm(populism ~ factor_party, data_dict1)</pre>
b <- lm(people ~ factor_party, data_dict1)</pre>
c <- lm(common_will ~ factor_party, data_dict1)</pre>
d <- lm(elite ~ factor_party, data_dict1)</pre>
summary(a)
##
## Call:
## lm(formula = populism ~ factor_party, data = data_dict1)
## Residuals:
##
       Min
                1Q Median
                                3Q
                                        Max
## -0.34517 -0.08652 -0.01238 0.08042 0.37004
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                          ## factor_partyCI
                         -0.10503
                                    0.06228 -1.686 0.09487
                          0.19458 0.06228
## factor_partyFDI
                                            3.124 0.00234 **
## factor_partyFI
                          ## factor partyIV
                         -0.12078
                                    0.06228 -1.939 0.05532 .
## factor_partyLEGA
                         0.09147 0.06228 1.469 0.14511
                         -0.01339 0.06228 -0.215 0.83018
## factor_partyLEU
## factor_partyM5S
                          0.15814
                                    0.06228 2.539 0.01267 *
                          0.03265
                                    0.06228
                                            0.524 0.60126
## factor_partyMISTO
## factor_partyREG_LEAGUES -0.18644 0.06228 -2.994 0.00348 **
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.1393 on 99 degrees of freedom
## Multiple R-squared: 0.4431, Adjusted R-squared: 0.3868
## F-statistic: 7.876 on 10 and 99 DF, p-value: 3.393e-09
summary(b)
##
## Call:
## lm(formula = people ~ factor_party, data = data_dict1)
##
## Residuals:
##
        Min
                   1Q
                                        3Q
                          Median
                                                 Max
```

```
## -0.0033715 -0.0005879 -0.0000602 0.0006587 0.0037806
##
## Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                           4.211e-03 3.933e-04 10.707 <2e-16 ***
## factor partyCI
                           2.243e-04 5.562e-04
                                                0.403 0.6877
## factor_partyFDI
                           6.588e-04 5.562e-04 1.184 0.2391
                                                0.503 0.6158
## factor_partyFI
                           2.800e-04 5.562e-04
## factor_partyINDIPENDENTE 3.299e-04 5.562e-04
                                                0.593 0.5545
## factor_partyIV
                          -4.025e-05 5.562e-04 -0.072 0.9425
## factor_partyLEGA
                           1.008e-05 5.562e-04
                                                0.018 0.9856
                          -2.876e-04 5.562e-04 -0.517
## factor_partyLEU
                                                         0.6062
                                                2.125 0.0361 *
## factor_partyM5S
                           1.182e-03 5.562e-04
## factor_partyMISTO
                           1.438e-05 5.562e-04
                                                 0.026 0.9794
## factor_partyREG_LEAGUES -8.646e-04 5.562e-04 -1.555 0.1232
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.001244 on 99 degrees of freedom
## Multiple R-squared: 0.1496, Adjusted R-squared: 0.06374
## F-statistic: 1.742 on 10 and 99 DF, p-value: 0.08175
summary(c)
##
## Call:
## lm(formula = common_will ~ factor_party, data = data_dict1)
## Residuals:
##
                     1Q
                           Median
                                          3Q
                                                    Max
## -4.647e-04 -1.291e-04 -4.012e-05 8.635e-05 1.129e-03
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                           2.651e-04 8.777e-05
                                                3.020 0.00322 **
## factor_partyCI
                          -1.841e-04 1.241e-04 -1.483 0.14123
## factor_partyFDI
                          -1.906e-05 1.241e-04 -0.154 0.87828
## factor_partyFI
                           1.311e-04 1.241e-04
                                                1.056 0.29361
## factor_partyINDIPENDENTE -2.249e-04 1.241e-04 -1.812 0.07298 .
## factor_partyIV
                       -1.658e-04 1.241e-04 -1.336 0.18460
## factor_partyLEGA
                           2.199e-04 1.241e-04
                                                1.772 0.07955
## factor_partyLEU
                           3.855e-05 1.241e-04
                                                 0.311 0.75681
## factor_partyM5S
                           1.783e-04 1.241e-04
                                                1.436 0.15406
## factor_partyMISTO
                           1.292e-04 1.241e-04
                                                1.041 0.30052
## factor_partyREG_LEAGUES -2.651e-04 1.241e-04 -2.135 0.03519 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.0002776 on 99 degrees of freedom
## Multiple R-squared: 0.2794, Adjusted R-squared: 0.2066
## F-statistic: 3.839 on 10 and 99 DF, p-value: 0.0002074
```

```
summary(d)
```

```
##
## lm(formula = elite ~ factor_party, data = data_dict1)
##
## Residuals:
##
        Min
                    1Q
                          Median
                                        30
                                                 Max
## -1.152e-03 -3.462e-04 -4.012e-05 2.026e-04 1.840e-03
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          0.0015683 0.0001691 9.276 4.14e-15 ***
                         ## factor_partyCI
## factor_partyFDI
                          0.0013061 0.0002391 5.462 3.50e-07 ***
## factor partyFI
                         -0.0002755 0.0002391 -1.152 0.25205
## factor_partyINDIPENDENTE -0.0015282 0.0002391 -6.392 5.41e-09 ***
## factor partyIV
                         ## factor_partyLEGA
                          0.0006847 0.0002391
                                             2.864 0.00511 **
## factor_partyLEU
                          0.0001151 0.0002391
                                               0.482 0.63120
## factor_partyM5S
                          0.0002210 0.0002391
                                               0.924 0.35752
## factor_partyMISTO
                          0.0001830 0.0002391
                                              0.765 0.44598
## factor_partyREG_LEAGUES -0.0007347 0.0002391 -3.073 0.00274 **
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.0005346 on 99 degrees of freedom
## Multiple R-squared: 0.7123, Adjusted R-squared: 0.6832
## F-statistic: 24.51 on 10 and 99 DF, p-value: < 2.2e-16
```

2b. Qual è l'andamento nel tempo del livello di populismo generale dei diversi gruppi parlamentari?

Per rispondere, ci servono il tempo e i gruppi.

```
#By party & time (quarters)

parties_time <- data_dict1 %>% select(populism, party_id, quarter)

right_party <- data_dict1 %>% select(populism, party_id, quarter) %>%
    filter(party_id == "FDI"|party_id =="FI"|party_id =="LEGA")

left_party <- data_dict1 %>% select(populism, party_id, quarter) %>%
    filter(party_id == "LEU"|party_id =="M5S"|party_id =="PD"|party_id =="IV")

# Left parties in time

ggplot(left_party, aes(x=quarter, y=populism, color=party_id)) +
    geom_line(size=1.5)+
    scale_x_continuous("Quarters", labels = as.character(left_party$quarter), breaks = left_party$quarter
    ggtitle("Level of populism in the quarters for left-wing parties")
```

Level of populism in the quarters for left-wing parties


```
# Right parties in time
ggplot(right_party, aes(x=quarter, y=populism, color=party_id)) +
  geom_line(size=1.5)+
  scale_x_continuous("Quarters", labels = as.character(right_party$quarter), breaks = right_party$quart
  ggtitle("Level of populism in the quarters for right-wing parties")
```


