What is a Dirac Operator?

Juan Orduz

Berlin Mathematical School

Relativistic Quantum Mechanics?

The origin of the Dirac operator can be found in the attempt to find a relativistic wave equation for a free electron.

Relativistic Quantum Free Electron?

► The equation that determines the evolution of a non-relativistic free particle of mass *m* is given by the Schrödinger equation:

$$\frac{-\hbar^2}{2m}\Delta\psi=i\partial_t\psi$$

Relativistic Quantum Free Electron?

► The equation that determines the evolution of a non-relativistic free particle of mass *m* is given by the Schrödinger equation:

$$\frac{-\hbar^2}{2m}\Delta\psi=i\partial_t\psi$$

A first ansatz for a relativistic wave equation is

$$(\partial_0^2 - m^2c^2 - \partial_1^2 - \partial_2^2 - \partial_3^2)\psi = 0,$$

Dirac Equation

▶ We seek for a wave equation which is linear in ∂_0 , so we look for coefficients α_j and β such that the wave equation has the form

$$(\partial_0 - \alpha_1 \partial_1 - \alpha_2 \partial_2 - \alpha_3 \partial_3 - \beta)\psi = 0$$

Dirac Equation

▶ We seek for a wave equation which is linear in ∂_0 , so we look for coefficients α_j and β such that the wave equation has the form

$$(\partial_0 - \alpha_1 \partial_1 - \alpha_2 \partial_2 - \alpha_3 \partial_3 - \beta)\psi = 0$$

Moreover, we want a "compatibility" condition:

$$(\partial_0 + \alpha_1 \partial_1 - \alpha_2 \partial_2 - \alpha_3 \partial_3 - \beta)(\partial_0 - \alpha_1 \partial_1 - \alpha_2 \partial_2 - \alpha_3 \partial_3 - \beta)$$

= $(\partial_0^2 - m^2 c^2 - \partial_1^2 - \partial_2^2 - \partial_3^2)$

Dirac Equation

▶ We seek for a wave equation which is linear in ∂_0 , so we look for coefficients α_j and β such that the wave equation has the form

$$(\partial_0 - \alpha_1 \partial_1 - \alpha_2 \partial_2 - \alpha_3 \partial_3 - \beta)\psi = 0$$

Moreover, we want a "compatibility" condition:

$$\begin{aligned} &(\partial_0 + \alpha_1 \partial_1 - \alpha_2 \partial_2 - \alpha_3 \partial_3 - \beta)(\partial_0 - \alpha_1 \partial_1 - \alpha_2 \partial_2 - \alpha_3 \partial_3 - \beta) \\ &= (\partial_0^2 - m^2 c^2 - \partial_1^2 - \partial_2^2 - \partial_3^2) \end{aligned}$$

If we set $\beta = \alpha_0 mc^2$ the we must have the following relations:

$$\alpha_{\mu}\alpha_{\nu} + \alpha_{\nu}\alpha_{\mu} = -2\delta_{\mu\nu}$$
, for $\mu, \nu = 0, 1, 2, 3$.

Clifford Algebra

Let (V, g) be a finite dimensional inner product vector space. We define its **Clifford algebra** by

$$\mathit{CI}(V,g) := \left(igoplus_{n \geq 0} V^{\otimes n} \right) \Big/ \mathcal{I}(V,g)$$

where $\mathcal{I}(V,g)$ is the ideal generated by the elements $v \otimes v + g(v,v)$.

Clifford Algebra

Let (V, g) be a finite dimensional inner product vector space. We define its **Clifford algebra** by

$$\mathit{CI}(V,g) := \left(igoplus_{n \geq 0} V^{\otimes n} \right) \Big/ \mathcal{I}(V,g)$$

where $\mathcal{I}(V,g)$ is the ideal generated by the elements $v \otimes v + g(v,v)$.

Examples

- $ightharpoonup CI(\mathbb{R},\langle,\rangle)=\mathbb{C}$
- $ightharpoonup CI(\mathbb{R}^2,\langle,\rangle)=\mathbb{H}$ (Quaternions)

Vector Bundles & Connections

Vector Bundles & Connections

A **connection** ∇ over a vector bundle $\mathcal{S} \longrightarrow M$ is a linear map

$$\nabla: \Gamma(\mathcal{S}) \longrightarrow \Gamma(T^*M) \otimes \Gamma(\mathcal{S})$$

which satisfies a Leibniz rule: $\nabla_X(fs) = X(f)s + f\nabla_X s$.

Clifford Modules

Let (M, g) be a closed (compact+without boundary) Riemannian smooth manifold.

Clifford Modules

Let (M, g) be a closed (compact+without boundary) Riemannian smooth manifold.

▶ The tangent bundle of a Riemannian manifold (M, g) has a unique metric and torsion free connection ∇^{LC} .

Clifford Modules

Let (M, g) be a closed (compact+without boundary) Riemannian smooth manifold.

- ▶ The tangent bundle of a Riemannian manifold (M, g) has a unique metric and torsion free connection ∇^{LC} .
- ▶ We define CI(TM) to be the vector bundle whose fibers are $CI(T_pM, g_p)$ for $p \in M$.

A vector bundle S over M is said to be a **Dirac Bundle** if

A vector bundle S over M is said to be a **Dirac Bundle** if

▶ Each fiber S_p is a left module over $Cl(T_pM, g_p) \otimes \mathbb{C}$.

A vector bundle S over M is said to be a **Dirac Bundle** if

- ▶ Each fiber S_p is a left module over $Cl(T_pM, g_p) \otimes \mathbb{C}$.
- ▶ There is a connection (**Clifford connection**) ∇ on \mathcal{S} which satisfies $\forall X, Y \in \Gamma(TM)$ and $s \in \Gamma(\mathcal{S})$,

$$\nabla_X(Y\cdot s) = (\nabla^{LC}_XY)\cdot s + Y\cdot (\nabla_X s)$$

A vector bundle S over M is said to be a **Dirac Bundle** if

- ▶ Each fiber S_p is a left module over $CI(T_pM, g_p) \otimes \mathbb{C}$.
- ▶ There is a connection (**Clifford connection**) ∇ on \mathcal{S} which satisfies $\forall X, Y \in \Gamma(TM)$ and $s \in \Gamma(\mathcal{S})$,

$$\nabla_X(Y\cdot s)=(\nabla_X^{LC}Y)\cdot s+Y\cdot (\nabla_X s)$$

▶ There is a Hermitian metric h on S compatible with the connection and with the Clifford multiplication

A vector bundle S over M is said to be a **Dirac Bundle** if

- ▶ Each fiber S_p is a left module over $CI(T_pM, g_p) \otimes \mathbb{C}$.
- ▶ There is a connection (**Clifford connection**) ∇ on \mathcal{S} which satisfies $\forall X, Y \in \Gamma(TM)$ and $s \in \Gamma(\mathcal{S})$,

$$abla_X(Y \cdot s) = (
abla_X^{LC} Y) \cdot s + Y \cdot (
abla_X s)$$

- ▶ There is a Hermitian metric h on S compatible with the connection and with the Clifford multiplication
 - 1. $X[h(s_1, s_2)] = h(\nabla_X s_1, s_2) + h(s_1, \nabla_X s_2).$

A vector bundle S over M is said to be a **Dirac Bundle** if

- ▶ Each fiber S_p is a left module over $Cl(T_pM, g_p) \otimes \mathbb{C}$.
- ▶ There is a connection (**Clifford connection**) ∇ on \mathcal{S} which satisfies $\forall X, Y \in \Gamma(TM)$ and $s \in \Gamma(\mathcal{S})$,

$$abla_X(Y \cdot s) = (
abla_X^{LC} Y) \cdot s + Y \cdot (
abla_X s)$$

- ▶ There is a Hermitian metric h on S compatible with the connection and with the Clifford multiplication
 - 1. $X[h(s_1, s_2)] = h(\nabla_X s_1, s_2) + h(s_1, \nabla_X s_2).$
 - 2. $h(X \cdot s_1, s_2) + h(s_1, X \cdot s_2) = 0$.

Dirac Operator

We define the Dirac operator $D: \Gamma(S) \longrightarrow \Gamma(S)$ via the Clifford action and the Clifford connection

$$\Gamma(\mathcal{S}) \overset{\nabla}{\longrightarrow} \Gamma(T^*M) \otimes \Gamma(\mathcal{S}) \overset{g}{\longrightarrow} \Gamma(TM) \otimes \Gamma(\mathcal{S}) \overset{\cdot}{\longrightarrow} \Gamma(\mathcal{S})$$

Dirac Operator

We define the Dirac operator $D: \Gamma(S) \longrightarrow \Gamma(S)$ via the Clifford action and the Clifford connection

$$\Gamma(\mathcal{S}) \xrightarrow{\quad \nabla \quad} \Gamma(T^*M) \otimes \Gamma(\mathcal{S}) \xrightarrow{\quad g \quad} \Gamma(TM) \otimes \Gamma(\mathcal{S}) \xrightarrow{\quad \cdot \quad} \Gamma(\mathcal{S})$$

In a local orthonormal system (e_j) for TM we can write the Dirac operator locally as

$$D = \sum_{i} e_{j} \cdot \nabla_{e_{j}}$$

Dirac Operator

We define the Dirac operator $D: \Gamma(S) \longrightarrow \Gamma(S)$ via the Clifford action and the Clifford connection

$$\Gamma(\mathcal{S}) \xrightarrow{\quad \nabla \quad} \Gamma(T^*M) \otimes \Gamma(\mathcal{S}) \xrightarrow{\quad g \quad} \Gamma(TM) \otimes \Gamma(\mathcal{S}) \xrightarrow{\quad \cdot \quad} \Gamma(\mathcal{S})$$

In a local orthonormal system (e_j) for TM we can write the Dirac operator locally as

$$D = \sum_{j} e_{j} \cdot \nabla_{e_{j}}$$

Example

The Dirac operator in \mathbb{R}^n on its tangent bundle is given by

$$\textit{D} = \sum_{\textit{j}} \textit{e}_{\textit{j}} \cdot \partial_{\textit{e}_{\textit{j}}} \Rightarrow \textit{D}^{2} = -\Delta$$

$$\langle s_1, s_2 \rangle = \int_M h_p(s_1, s_2) vol_M(p)$$

We consider the Hilbert space $L^2(M, S)$ of square-integrable sections of S with inner product

$$\langle s_1, s_2 \rangle = \int_M h_p(s_1, s_2) vol_M(p)$$

▶ $D^2 = \nabla^*\nabla + K$, where K is certain curvature operator.

$$\langle s_1, s_2 \rangle = \int_M h_p(s_1, s_2) vol_M(p)$$

- ▶ $D^2 = \nabla^*\nabla + K$, where K is certain curvature operator.

$$\langle s_1, s_2 \rangle = \int_M h_p(s_1, s_2) vol_M(p)$$

- ▶ $D^2 = \nabla^*\nabla + K$, where K is certain curvature operator.
- ▶ D is a closable unbounded operator and \bar{D} is a self-adjoint operator with dom(\bar{D}) = $H^1(S)$.

$$\langle s_1, s_2 \rangle = \int_M h_p(s_1, s_2) vol_M(p)$$

- ▶ $D^2 = \nabla^*\nabla + K$, where K is certain curvature operator.
- ▶ D is a closable unbounded operator and \bar{D} is a self-adjoint operator with dom(\bar{D}) = $H^1(S)$.
- D is a first order elliptic differential operator.

Example: Index-type theorem

▶ Let $S = \bigwedge^{\bullet} T^*M$ with Clifford action

$$\mathbf{v} \cdot \omega = \mathbf{v}^{\flat} \wedge \omega + \imath_{\mathbf{v}} \omega$$
, where $\mathbf{v}^{\flat} = \mathbf{g}(\mathbf{v}, \cdot)$

Example: Index-type theorem

▶ Let $S = \bigwedge^{\bullet} T^*M$ with Clifford action

$$\mathbf{v} \cdot \omega = \mathbf{v}^{\flat} \wedge \omega + \imath_{\mathbf{v}} \omega$$
, where $\mathbf{v}^{\flat} = \mathbf{g}(\mathbf{v}, \cdot)$

► The associated Dirac operator is

$$D=d+d^*=\left(egin{array}{cc} 0 & D^- \ D^+ & 0 \end{array}
ight)$$

Example: Index-type theorem

▶ Let $S = \bigwedge^{\bullet} T^*M$ with Clifford action

$$\mathbf{v} \cdot \omega = \mathbf{v}^{\flat} \wedge \omega + \imath_{\mathbf{v}} \omega$$
, where $\mathbf{v}^{\flat} = \mathbf{g}(\mathbf{v}, \cdot)$

► The associated Dirac operator is

$$D=d+d^*=\left(egin{array}{cc} 0 & D^- \ D^+ & 0 \end{array}
ight)$$

Gauß-Bonnet Theorem

$$ind(D^+) = \int_M eu(M) = \chi(M)$$

