Struktura a architektura počítačů

Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické

© Hana Kubátová, 2021

V/V, hazardy v kombinačních obvodech, sběrnice

BI-SAP, duben 2021

Obsah

- V/V: vstupy a výstupy
- Hardwarová architektura počítače
- Propojování a struktura hradel
- Hazardy
- Sběrnice

V/V jednotky

- vstupní a výstupní zařízení
 - o zařízení mapovaná do paměti
 - o zařízení řízená instrukcemi
 - o DMA
 - o připojení periferních zařízení pomocí sběrnic

Jak dostat data do procesoru z konkrétního vstupu a obráceně?

V/V a přerušení

- původně obsluhu V/V zařízení řídil procesor
- z důvodů rychlosti snaha o nezávislost V/V operací na procesoru (historicky první paralelismus)
- nutnost synchronizace, upozornění V/V zařízení na své požadavky -> přerušení
- příčina se obvykle zjistí až při "obsluze přerušení" (= kus programu, podprogram pro zpracování přerušení)
- kde najdeme tento podprogram pro zpracování konkrétního vstupu?
- zajištění návratu k původně běžícímu programu

záleží na konkrétním typu procesoru, vždy viz dokumentace AVR: https://courses.fit.cvut.cz/BI-SAP/labs/common-avr/interrupt.html

... přerušení opakování z minula

- Vnější (periférie, uživatel)
 - Nemaskovatelné (NMI)
 - Maskovatelné (typicky z řadiče přerušení) ... v AVR vše řeší programátor
- Vnitřní
 - Instrukce INT n, chyby operandů, výsledků, krokování AVR nemá

Co se typicky děje při obsluze přerušení

- 1. Úklid: uloží se na zásobník informace o přerušeném programu: SREG, PC, ...
- 2. Zakáže se další přerušení (nastavení příznaku I=0 ve stavovém registru CLI)
- 3. Nastaví se **PC** na adresu začátku podprogramu, který provádí "obsluhu" daného typu přerušení … podle HW procesoru, pomocí vektorů přerušení
- 4. Provedení přerušení (= obsluha, realizace podprogramu pro toto přerušení)
- 5. Návrat z programu obsluhy přerušení a obnova informaci patřící původnímu programu, ve kterém bylo přerušení vyvoláno ..., PC, SREG

... přerušení ...

Maskování přerušení pomocí příznaku I – ve stavovém registru SREG

- Povolení např. pomocí instrukce **SEI**, která nastaví **I**, tj. $\mathbf{I} \leftarrow \mathbf{1}$
- Zákaz např. pomocí instrukce **CLI**, která nuluje **I**, tj. $\mathbf{I} \leftarrow \mathbf{0}$

Vektory přerušení (např. v x86)

- Obsahuje adresu podprogramu obsluhy přerušení
- V paměti někdy bývá na nejnižších hodnotách vyhrazen prostor, kde je umístěno n (INT n) vektorů přerušení, tj. adres podprogramů pro zpracování daného typu přerušení ... v AVR si přerušovací rutiny musí napsat programátor

Řadič přerušení

- Hardwarové zařízení přijímající signály z vstupně-výstupných zařízení
- Identifikuje požadavky na přerušení podle jejích priorit IRQ (Interrupt request)
- Generuje přerušovací signál INT

Přerušení x86

HW

- 1.- 3. Vznik žádostí o přerušení
- 4. Rozhodnutí o obsluze (**IF**=1 a **INTA**)
- 5. Identifikace příčiny přerušení (číslo typu)
- 6. Uložení stavové informace **SREG** a **PC** na zásobník
- 7. Nalezení začátku podprogramu pro obsluhu daného typu přerušení pomocí vektoru přerušení (nové **PC**)
- 8. Provedení podprogramu obsluhy přerušení
- 9. Návrat do přerušeného programu a obnovení **PC** a **SREG**

SW

Vstup a výstup: instrukce IN, OUT

Pro jednoduchou komunikaci s prostředím je možné připojit tzv. brány (porty).

- Ovládá je procesor pomocí instrukcí vstupu a výstupu IN a OUT
- Jsou připojené na sběrnici
- Jejích výstupy ovládají nebo monitorují vnější prostředí

Příklad možných instrukcí pro ovládaní bran:

Instrukce	Význam
IN reg, P	reg ← brána P
OUT P, reg	brána P ← reg

Adresy těchto bran (registrů) tvoří nezávislý datový prostor oddělený od pamětí pro programy a data

IN, OUT v AVR

IN: ulož obsah registru do I/O

 $Rd \leftarrow I/O(A)$

Syntax: Operands:

Program Counter:

IN Rd,A

 $0 \le d \le 31, 0 \le A \le 63$

 $PC \leftarrow PC + 1$

OUT: ulož I/O lokaci do registru

 $I/O(A) \leftarrow Rr$

Syntax:

Operands:

Program Counter:

OUT A,Rd

 $0 \le d \le 31, 0 \le A \le 63$

 $PC \leftarrow PC + 1$

V AVR: na adr. 20h-5Fh V/V registry dosažitelné instrukcemi IN a OUT

V/V zařízení mapovaná do paměti

- Část adresového prostoru není využívaná jako paměť.
- Tyto adresy se používají jako čísla zařízení V/ V.
- Tomu musí odpovídat dekodéry adres.
- Pro výstup se používají instrukce "zápis do paměti".
- Pro vstup se používají instrukce "čtení z paměti".

```
AVR:
```

00h-1Fh registry R0-R31, 20h-5Fh V/V registry dosažitelné instr. IN a OUT, 60h-FFh další V/V reg., 100h-4FF paměť RAM pro volné použití a pro zásobník

V/V zařízení řízená instrukcemi

- Zařízení V/V mají vlastní adresový prostor.
- Existují speciální instrukce pro vstup a výstup.

Možnosti:

- 1. Instrukce trvá, dokud není provedena příslušná operace (popř. její nezbytná část).
- 2. Existuje instrukce, kterou lze zjistit stav zařízení.

 Programově (s využitím dotazů na stav zařízení) se zajišťuje potřebné čekání.
- 3. Po provedení instrukce pro vstup nebo výstup pracuje zařízení autonomně.
 - > Procesor může v té době provádět jiné instrukce.
 - Ukončení činnosti periferního zařízení je signalizováno přerušením.

Hardwarová architektura počítače

Připomenutí z BI-CAO

- výstupy standardních hradel nelze spojovat
- třístavová logika: další vstup, který na výstup(y) obvodu "pustí" data nebo nastaví výstupy do stavu Z (vysoká impedance)
- otevřený kolektor: montážní funkce

CMOS logika

complementary metal-oxid-semiconductor logic

Pravdivostní tabulka:

Х	T ₁	T ₂	F
L	on	off	Н
Н	off	on	L

NAND

Х	у	T ₁	T ₂	T ₃	T ₄	F
L	L	on	on	off	off	Н
L	Н	on	off	off	on	Н
Н	L	off	on	on	off	Н
Н	Н	off	off	on	on	L

NOR

Х	у	T ₁	T ₂	T ₃	T ₄	F
L	L	on	on	off	off	Н
L	Н	on	off	off	on	L
Н	L	off	on	on	off	L
Н	Н	off	off	on	on	L

Třístavový výstup

\overline{OE}	výstup	
0	$\left egin{array}{c} 0 \\ 1 \end{array} \right\} = x$	
1	Z	

zajištění, aby jen jedna jednotka měla povolený výstup (output enable)

Otevřený kolektor

$a \cdot b$	$c \cdot d \cdot e$	\boldsymbol{u}
0	0	1
0	1	0
1	0	0
1	1	0

 $0 \implies$ "někdo vysílá" $1 \implies$ "nikdo nevysílá"

zde agresivní nula, montážní součin (negovaný)

Hazardy

- Co je hazard
- Důvody vzniku hazardů
- Nalezení
- Kdy vadí a kdy ne

Poznámka: zde se budeme zabývat jen statickým hazardem. Existuje ještě dynamický hazard a hazardy v sekvenčních obvodech asynchronních.

Co je a jak vzniká hazard

- Krátká neočekávaná změna výstupního signálu glitch
- Signál se ze vstupu na výstup šíří různými, ale konvergujícími cestami, z důvodů zpoždění na hradlech i vodičích cestami s různým zpožděním
- Statický hazard výstup má být trvale v 0 nebo 1 (má mít stejnou úroveň), místo toho se objeví krátká změna do opačné úrovně
- 0-1-0 statický hazard v 0
- 1-0-1statický hazard v 1

Statický hazard v jedničce - příklad

Ze vstupu y na výstup F vedou dvě cesty, které se nejdříve rozpojí a pak zase spojí

Hledání hazardu v časovém diagramu

Hledáme podmínky pro proměnnou *y* (dvě cesty), tzn. Pro x = z = 1 (hradla AND) $x\overline{y} + yz = 1$, ale uvidíme:

Kdy hazardy vadí?

- Co je hazard-free design?
- Hazardy v kombinačních obvodech nejsou kritické, protože se výstupy po "nějaké" (krátké) době vždycky ustálí ve správných hodnotách
- Naopak v sekvenčních obvodech mohou přivést klopný obvod do nesprávného stavu, a tím celý obvod i do nevratného "špatného" vnitřního stavu
- Řešení synchronní návrh a správný výpočet maximální hodinové frekvence

Hardwarová architektura počítače

Sběrnice ... BUS

Soubor vodičů a pravidel určený k propojení jednotek počítače a přenos signálů mezi nimi

styk = propojení = rozhraní [interface] ... často systémová sběrnice (CPU bus)

- podsběrnice obvykle též nazývané sběrnice:
 - adresová [Address Bus]
 - datová [Data Bus]
 - řídící . . . řídící a stavové signály [Control Bus]
- adresy a data mohou být multiplexovány (časově):
 - stačí jediná sběrnice pro adresy i data
 - je třeba řídící signál "adresa / data"

... připojení ke sběrnici

- Standardní výstup … "totem-pole, push-pull output"
 - Výstupy nelze spojovat !!!

- Otevřený kolektor … open collector (OC)
- Třístavový výstup … tri-state output
 - Připojení ke sběrnici, 3 stavy: H, L, Z vysoká impedance

K obvodům se standardními výstupy musíme přidat další logiku a další řízení, např. multiplexor, který na základě adresy vybírá, který člen připojit (a tedy např. přenášet po sběrnici data v něm uložená) a který ne.

Typické operace na sběrnicích

operace (typické):

≻čtení [read]

přenos bloku [block data transfer]

- broadcast (oběžník): příkaz všem jednotkám
- broadcall: vyžádaní informace od všech jednotek (popř. od určených jednotek)

Typy sběrnic

Sběrnice:

- paralelní
- sériové

používají se zpravidla:

- » pro systémové účely
- » jako záložní (např. při poruše paralelní sběrnice)

Typy sběrnic

jednosměrně řízené

řídící jednotka nečeká na potvrzení příkazu k provedení operace

obousměrně řízené

synchronní

řízená hodinami (vysílanými po příslušném vodiči) (jednosměrné řízení)

- pseudosynchronní (obousměrné řízení)
 hodiny + čekání ... speciální signál(y) např. WAIT
- asynchronní (obousměrné řízení)

Handshake

- asynchronní sběrnice = korespondenční režim
 "hand shake"
 - Operace
 - Příkaz (žádost ... request RQ)
 - Potvrzení (acknowledgement ACK)

Jednoduše vázaný

středně vázaný

plně vázaný

Základní parametry sběrnic

Parametr	Význam	Jednotka
Šířka přenosu	Počet bitů, které lze zároveň po sběrnici přenést	bit
Frekvence	Maximální frekvence, se kterou může sběrnice pracovat	Hz
Rychlost (propustnost)	Počet slabik přenesených za jednotku času	B/s

Přidělování sběrnic

- centralizované . . . přidělovač sběrnice (bus arbiter funkci přidělovače někdy zastává procesor)
 - cyklické výzvy = přidělovač "nabízí" postupně a adresně sběrnici jednotlivým jednotkám
 - paralelní = nezávislé žádosti a potvrzení
 - sériové (daisy chain)
 - kombinované paralelní a sériové
- distribuované . . . bez přidělovače
 - round-robin postupné cyklické přidělování
 - prioritní přidělování na základě priorit