Arnav Kucheriya CS 241 - Homework 1

Part 1

Question 1: Determine True, False, or Syntax Error

Expression	Result	Explanation
$A\subseteq B$	False	$B=\{2,3\}$, but $A=\{1,2,3\}$, and $1\in A$ but not in B
$B\subseteq A$	True	All elements of B (2, 3) are in A
$A\subseteq A$	True	A set is always a subset of itself
$2\subset B$	Syntax error	"2" is an element, not a set
$A\subset A$	False	A set cannot be a proper subset of itself
$B\subset A$	True	B is a proper subset of A as $B\subseteq A$ and $A\neq B$
$B\in A$	False	$B=\{2,3\}$ is not an element of A
$B \in C$	True	$C = \{A, B\}$, and B is an element of C
$2\in 2$	Syntax error	An element cannot contain itself
$(A,B)\in C$	False	(A,B) is not an element of C
$(1,3)\in A\times B$	True	
$(1,3)\subseteq A\times B$	False	(1,3) is a pair, not a set of pairs
$(1,3)\in C$	False	(1,3) is not an element of C
$0 \in E$	False	$E=\{\{0,4\}\}$, and 0 is not directly an element of E

Question 2: Set Elements

a)
$$B \times A$$

$$\{(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$$

b)
$$A \times D$$

$$\{(1,'a'), (2,'a'), (3,'a')\}$$

c)
$$\emptyset \times B$$

$$\emptyset \; (\text{empty set})$$

d)
$$C \times C$$

$$\{(A, A), (A, B), (B, A), (B, B)\}$$

e)
$$E \times B$$

$$\{\{0,4\},2\},\{\{0,4\},3\}$$

f) P(E)

$$\{\emptyset, \{\{0,4\}\}\}$$

g) P(A)

$$\{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$

h) $P(\emptyset)$

 $\{\emptyset\}$

Question 3: Set Conditions

Expression	Solution
$\{x\mid x-5=0\}$	{5}
$\{x \mid x^2 - 5 = 0\}$	$\{\sqrt{5},-\sqrt{5}\}$
$\{(x,y)\mid x\in\mathbb{N}, x<5, y=0\}$	$\{(1,0),(2,0),(3,0),(4,0)\}$
$\{4x\mid x\in\mathbb{Z}, -1\leq x\leq 1\}$	$\{-4,0,4\}$
$\{a+b\mid a\in\mathbb{N}, a<3, b\in\{5,6\}\}$	$\{6,7,8\}$

Question 4: Interval Notation

$$t|t\in R, \mathsf{AND}\ -\pi \leq t \leq 1/2$$

The subset is represented as an interval starting at $-\pi$ (inclusive) and going up to $\frac{1}{2}$ (exclusive).

Question 5: Set Relations

Expression	Result	Explanation
$2 \in P(B)$	True	2 is an element of the powerset of ${\cal B}$
$2 \in P(B)$	False	2 is not a subset of B
$2\subseteq P(B)$	True	2 is a subset of the powerset of ${\cal B}$
$2\subseteq P(B)$	Syntax error	2 is an element, not a set

Question 6: Set Cardinality

a)
$$E = \{\{0,4\}\}$$

|E| = 1

b)
$$C = \{\{1, 2, 3\}, \{2, 3\}\}$$

|C|=2

c)
$$|B| = |C|$$

True, since $\left|B\right|=2$ and $\left|C\right|=2$

d)
$$|B| = |E|$$

False, since $\left|B\right|=2$ and $\left|E\right|=1$

e)
$$|B=D|$$

False

Question 7: Number Sets

Theorem: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

Definition of Proper Subset

For sets X and Y, $X \subset Y$ means:

- 1. Every element of X is in Y ($X \subseteq Y$)
- 2. $X \neq Y$ (Y has at least one element not in X)

Natural Numbers ⊂ **Integers**

 $\bullet \ \mathbb{N}=\{1,2,3,4,\ldots\}$

- $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- Every natural number is an integer
- \mathbb{Z} contains negatives and zero, not in \mathbb{N}

Integers ⊂ Rational Numbers

- $\mathbb{Q} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \}$
- Every integer z can be written as $\frac{z}{1}$
- Q contains non-integer fractions

Rational Numbers ⊂ **Real Numbers**

- \mathbb{R} = all numbers on the number line
- Includes rational and irrational numbers (e.g., π , $\sqrt{2}$, e)

Question 8: Set Operations

8. Definition (Set Difference): Let *U* be the universal set, and let *X*, *Y* be sets. We define the difference set between X and Y:

$$X - Y = X \setminus Y = \{t \mid t \in U \text{ AND } t \in X \text{ AND } t \notin Y\}$$

The red region in this Venn Diagrams is the difference between X and Y:

X Y

Apply the above definition to the following sets and write the members of each set, where:

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{7, 8\}$$

Operation	Result
A - B	$\{1,2\}$
B-A	$\{4,5\}$
C-A	{7,8}
U-A	$\{4,5,6,7,8,9,10\}$
$U-(A\cup B)$	$\{6,7,8,9,10\}$

Operation	Result
$U-\overline{A}$	$A=\{1,2,3\}$
$B-\emptyset$	$B=\{3,4,5\}$

Question 9: Set Intersection

Given:

•
$$|U| = 20$$

•
$$|K| = 7$$

•
$$|K - L| = 10$$

•
$$|L - K| = 5$$

Using inclusion-exclusion:

$$|K| = |K - L| + |K \cap L|$$

$$7=10+|K\cap L|$$

Therefore, $|K \cap L| = -3$

Venn Diagrams

1. Two-Set Diagram Elements:

For two sets:

$$U = \{a, b, c, d, e, f, g, h, i, j\}$$
 $A = \{a, b, g, d\}$
 $B = \{b, d, f, h, j\}$
• $A \cap B = \{b, d\}$

$$A - B = \{a, g\}$$

$$B - A = \{f \ h \ i\}$$

$$\bullet \ B-A=\{f,h,j\}$$

• Outside both = $\{c, e, i\}$

2. Three-Set Diagram Regions:

or for three sets:

- 1. Outside all sets: $\{c, e, i\}$
- 2. A only: $\{a\}$
- 3. *B* only: $\{f, j\}$
- 4. *C* only: ∅
- 5. $A \cap C$ (not B): $\{g\}$
- 6. $B \cap C$ (not A): $\{h\}$
- 7. $A \cap B$ (not C): $\{b\}$
- 8. $A \cap B \cap C$: {*d*}

3. Shading regions of the Venn Diagram:

- (a) *U*: Entire diagram is shaded.
- (b) $A \cap B$: Only $A \cap B$ region is shaded.
- (c) $A \cap \overline{B}$: A only region is shaded.
- (d) $A \cup B$: A and B are shaded.
- (e) $B \cap \emptyset$: No region is shaded.
- (f) $(A \cup B) (A \cap B)$: A only and B only regions are shaded.
- (g) $\overline{A} \cup \overline{B}$: Outside A and B is shaded.
- (h) $A \cup U$: Entire diagram is shaded.
- (i) $A \cap \overline{B}$: A only is shaded.
- (j) A B: A only is shaded.
- (k) B A: B only is shaded.
- (I) $B \cap A$: $A \cap B$ is shaded.
- (m) $(A B) \cup (B A)$: A only and B only are shaded.
- (n) \overline{U} : No region is shaded.

Part 2: Section 1.1 Exercises

1.

 $A \cup B$ where:

- A = 1, 4, 7, 10
- B=1,2,3,4,5 Solution: $A\cup B=1,2,3,4,5,7,10$

2.

 $B \cap C$ where:

- B = 1, 2, 3, 4, 5
- C = 2, 4, 6, 8 Solution: $B \cap C = 2, 4$

3.

A-B where:

•
$$A = 1, 4, 7, 10$$

•
$$B = 1, 2, 3, 4, 5$$
 Solution: $A - B = 7, 10$

5.

 \overline{A} where:

- Universe $U = 1, 2, 3, \dots, 10$
- A=1,4,7,10 Solution: $\overline{A}=2,3,5,6,8,9$

8.

 $A \cup \emptyset$ Solution: $A \cup \emptyset = A = 1, 4, 7, 10$

10.

 $A \cup U$ Solution: $A \cup U = U = 1, 2, 3, \dots, 10$

11.

 $B \cap U$ where B = 1, 2, 3, 4, 5 **Solution:** $B \cap U = B = 1, 2, 3, 4, 5$

12.

 $A \cap (B \cup C)$ where:

- A = 1, 4, 7, 10
- $B \cup C = 1, 2, 3, 4, 5, 6, 8$ Solution: $A \cap (B \cup C) = 1, 4$

24.

 $X \cap Y$ where:

- X = 1, 2, 3, 4, 5
- $Y=2n \mid n \in \mathbb{Z}^+=2,4,6,\ldots$ Solution: $X\cap Y=2,4$

28.

What is the cardinality of \emptyset ? **Solution:** $|\emptyset| = 0$

29.

What is the cardinality of 0? **Solution:** |0| = 1

34.

$$A=1,2,3,\,B=n\mid n\in\mathbb{Z}^+ ext{ and } n^2<10$$
 Solution: $A=B=1,2,3$

43.

Determine if sets are equal: $x \mid x \in \mathbb{R} \text{ and } 0 < x \leq 2, 1, 2$ **Solution:** The sets are not equal because $x \mid x \in \mathbb{R} \text{ and } 0 < x \leq 2$ contains all real numbers in (0,2], not just 1,2

56.

 $B \cap (C \cup A)$ where:

- B = 1, 2, 3, 4, 5
- C = 2, 4, 6, 8
- A = 1, 4, 7, 10
- $C \cup A = 1, 2, 4, 6, 7, 8, 10$ Solution: $B \cap (C \cup A) = 1, 2, 4$

97.

 $A \cap B = A$

- A = 1, 2, 3
- B=1,2,3,4,5 Condition: $A\subseteq B$

98.

 $A \cup B = A$ Condition: $B \subseteq A$

99.

 $A \cap B = \emptyset$ Condition: A and B are disjoint sets

100.

$$A \cap \overline{B} = B$$
 Condition: $B = A$

101.

 $A\Delta B$ where:

- A = 1, 2, 3
- B=2,3,4,5 Solution: $A\Delta B=(A\cup B)-(A\cap B)=1,4,5$