Задача А. Пирамида ли? (1 балл)

Имя входного файла: isheap.in
Имя выходного файла: isheap.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Структуру данных неубывающая пирамида можно реализовать на основе массива.

Для этого должно выполнятся *основное свойство неубывающей пирамиды*, которое заключается в том, что для каждого $1 \le i \le n$ выполняются условия:

- если $2i \leqslant n$, то $a[i] \leqslant a[2i]$;
- если $2i + 1 \leqslant n$, то $a[i] \leqslant a[2i + 1]$.

Дан массив целых чисел. Определите, является ли он неубывающей пирамидой.

Формат входного файла

Первая строка входного файла содержит целое число n ($1 \le n \le 10^5$). Вторая строка содержит n целых чисел по модулю не превосходящих $2 \cdot 10^9$.

Формат выходного файла

Выведите «YES», если массив является неубывающей пирамидой, и «NO» в противном случае.

Пример

isheap.in	isheap.out
5	NO
1 0 1 2 0	
5	YES
1 3 2 5 4	

Задача В. Пирамидальная сортировка (2 балла)

Имя входного файла: sort.in
Имя выходного файла: sort.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Дан массив целых чисел. Ваша задача — отсортировать его в порядке неубывания с помощью пирамидальной сортировки (heap sort). За решения, основанные на любых других сортировках, баллы ставиться не будут.

Формат входного файла

В первой строке входного файла содержится число n ($1 \le n \le 100000$) — количество элементов в массиве. Во второй строке находятся n целых чисел, по модулю не превосходящих 10^9 .

Формат выходного файла

В выходной файл надо вывести этот же массив в порядке неубывания, между любыми двумя числами должен стоять ровно один пробел.

Пример

sort.in	sort.out
10	1 1 2 2 3 3 4 6 7 8
1 8 2 1 4 7 3 2 3 6	

Примечание

Необходимо написать свою сортировку кучей.

Задача С. Цифровая сортировка (2 балла)

Имя входного файла: radixsort.in Имя выходного файла: radixsort.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дано n строк, выведите их порядок после k фаз цифровой сортировки.

Формат входного файла

В первой строке входного файла содержится число n — количество строк, m — их длина и k — число фаз цифровой сортировки ($1 \le n \le 1000, \ 1 \le k \le m \le 1000$). В следующих n строках находятся сами строки.

Формат выходного файла

Выведите строки в порядке в котором они будут после k фаз цифровой сортировки.

Пример

radixsort.in	radixsort.out
3 3 1	aba
bbb	baa
aba	bbb
baa	
3 3 2	baa
bbb	aba
aba	bbb
baa	
3 3 3	aba
bbb	baa
aba	bbb
baa	

Примечание

Необходимо написать свою цифровую сортировку.

Задача D. Приоритетная очередь (3 балла)

Имя входного файла: priorityqueue.in Имя выходного файла: priorityqueue.out

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Реализуйте приоритетную очередь. Ваша очередь должна поддерживать следующие операции: добавить элемент, извлечь минимальный элемент, уменьшить элемент, добавленный во время одной из операций.

Все операции нумеруются по порядку, начиная с единицы. Гарантируется, что размер очереди в процессе выполнения команд не превысит 10^6 элементов.

Формат входного файла

Входной файл содержит описание операций с очередью. Операции могут быть следующими:

- push x требуется добавить элемент x в очередь.
- extract-min требуется удалить из очереди минимальный элемент и вывести его в выходной файл. Если очередь пуста, в выходной файл требуется вывести звездочку *.
- decrease-key x y требуется заменить значение элемента, добавленного в очередь операцией push в строке входного файла номер x, на y. Гарантируется, что на строке x действительно находится операция push, что этот элемент не был ранее удален операцией extract-min, и что y меньше, чем предыдущее значение этого элемента.

В очередь помещаются и извлекаются только целые числа, не превышающие по модулю 10^9 .

Формат выходного файла

Выведите последовательно результат выполнения всех операций extract-min, по одному в каждой строке выходного файла. Если перед очередной операцией extract-min очередь пуста, выведите вместо числа звездочку *.

Пример

priorityqueue.in	priorityqueue.out
push 3	2
push 4	1
push 2	3
extract-min	*
decrease-key 2 1	
extract-min	
extract-min	
extract-min	

Примечание

Необходимо написать свою структуру данных.