

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑯ Numéro de publication:

0020205
A1

⑯ DEMANDE DE BREVET EUROPEEN

⑰ Numéro de dépôt: 80400611.2

⑮ Int. Cl.³: H 04 L 7/02

⑯ Date de dépôt: 06.05.80

⑳ Priorité: 01.06.79 FR 7914178

㉑ Demandeur: "THOMSON-CSF"-SCPI, 173, Boulevard Haussmann, F-75360 Paris Cedex 08 (FR)

㉒ Date de publication de la demande: 10.12.80
Bulletin 80/25

㉒ Inventeur: Dautremay, Alain,
"THOMSON-CSF"-SCPI 173, Blvd Haussmann,
F-753 Paris Cedex 08 (FR)
Inventeur: Boljevic, Jean-Marc,
"THOMSON-CSF"-SCPI 173, Blvd Haussmann,
F-75360 Paris Cedex 08 (FR)

㉔ Etats contractants désignés: DE GB IT NL SE

㉔ Mandataire: Turlèque, Clotilde et al., "THOMSON-CSF" -
SCPI 173, blvd Haussmann, F-75360 Paris Cedex 08 (FR)

㉕ Dispositif de synchronisation d'un signal d'horloge et système de transmission de données synchrones comportant un tel dispositif.

㉖ Un dispositif de synchronisation d'un signal d'horloge locale restituant le rythme «baud» auquel des données binaires d'un message sont reçues, comporte un dispositif d'asservissement (50) en fréquence et en phase du signal d'horloge locale sur les transitions du signal de données reçu, et un circuit de synchronisation rapide (60) pour accélérer le processus de synchronisation. Ce circuit (60) compte le nombre de coïncidences de n transitions successives détectées (n entier positif), avec chacun de k intervalles de temps distincts (k entier positif) de même durée, fractionnant l'intégralité de chaque période du signal d'horloge locale, et délivre une impulsion à partir de l'instant auquel p coïncidences avec un des k intervalles de temps ont été dénombrées. Cette impulsion permet d'initialiser, en un temps très court, le signal d'horloge locale asservi.

Application aux systèmes de transmission de données synchrones.

DISPOSITIF DE SYNCHRONISATION D'UN SIGNAL
D'HORLOGE ET SYSTEME DE TRANSMISSION DE
DONNEES SYNCHRONES COMPORTANT UN TEL DISPOSITIF

La présente invention concerne les dispositifs de synchronisation de signaux d'horloge, en particulier ceux qui équipent les systèmes de transmission de données synchrones.

5 Généralement la succession de données binaires est divisée en paquets de m bits (m entier > 1). A chaque paquet correspond un élément de signal de durée égale à m fois la période bit, cet élément de signal étant choisi dans un ensemble de 2^m formes possibles.

10 Les éléments de signaux sont transmis de façon consécutive à un rythme appelé "rythme baud". Le passage d'un élément de signal au suivant sera appelé dans ce qui suit "transition du signal de données".

Ces systèmes nécessitent de reconstituer à la réception un signal d'horloge locale restituant le rythme "baud" auquel des données binaires d'un message ont été émises. Ce signal d'horloge locale doit être asservi en fréquence et en phase sur le signal d'horloge d'émission, de manière à attribuer la valeur convenable 20 aux bits de données à partir du signal de données reçu.

Une solution bien connue consiste à détecter les transitions du signal de données, et à diviser la fréquence d'un signal d'horloge issu d'un oscillateur fournissant une fréquence q fois plus élevée que la fréquence 25 du signal d'horloge locale désirée, à l'aide d'un diviseur à nombre diviseur variable. La valeur de ce nombre diviseur variable est commandée par un signal de commande, fourni par un détecteur de la position des transitions du signal de données par rapport au front montant

du signal d'horloge locale obtenu à la sortie du diviseur, afin de faire varier la fréquence et par suite la phase de ce signal d'horloge locale.

Cette méthode d'asservissement qui utilise les
5 transitions du signal de données, n'est possible que lorsque des données sont présentes. Il en résulte que chaque nouvelle apparition de données nécessite une période d'acquisition préalable, permettant un calage en phase du signal d'horloge locale, suivie d'une période
10 d'entretien de la synchronisation sur les transitions du signal de données tant que ce signal est présent. La période d'acquisition comporte un grand nombre de transitions de manière à réduire au minimum le temps nécessaire au calage en phase du signal d'horloge locale.

15 Mais un inconvénient de cette solution provient de la difficulté d'avoir une période d'acquisition à la fois courte et sûre. En effet une période d'acquisition courte ne pouvant se faire qu'avec un nombre limité de transitions, est moins sûre qu'une séquence d'acquisition qui utilise un grand nombre de transitions et permet un meilleur filtrage.

Un autre inconvénient est dû au ralentissement du temps de prise de synchronisation lorsque les transitions sont affectées d'un bruit de phase, et lorsque
25 le point de départ du signal d'horloge locale, au moment où apparaissent les premières transitions, est en opposition de phase avec celle qu'il aurait après synchronisation.

Une autre méthode consiste à réaliser un prépositionnement du diviseur en utilisant l'une des premières transitions de données d'un message. Le prépositionnement étant effectué, l'asservissement de phase est entretenue sur les transitions du signal de données suivantes.

Cette solution présente l'intérêt d'être très rapide, mais n'est applicable que lorsque la qualité de la voie de transmission est suffisante pour ne pas transmettre d'impulsions parasites, ce qui n'existe pas dans 5 la pratique.

La présente invention a pour objet de remédier à ces inconvénients à l'aide de moyens simples.

Selon l'invention, un dispositif de synchronisation d'un signal d'horloge locale par rapport à un signal de données comprenant un dispositif d'asservissement comportant un détecteur des transitions du signal de données couplé à un comparateur de phase situant la position des transitions par rapport au front montant du signal d'horloge locale, ce signal étant obtenu à 10 partir d'un générateur comportant, en série, un oscillateur, un diviseur dont la valeur du nombre diviseur variable est commandée par les signaux obtenus à la sortie du comparateur de phase, et un diviseur fixe ayant une entrée d'initialisation est caractérisé en ce qu'il 15 comporte en outre un circuit de synchronisation rapide comprenant des moyens de comptage ayant une entrée de signal couplée à la sortie du détecteur de transitions, une sortie couplée à l'entrée d'initialisation du diviseur fixe, et une entrée de commande de comptage 20 couplée à la sortie du diviseur fixe, ces moyens de comptage comptant le nombre de coïncidences de n transitions successives reçues (n entier positif), avec chacun de k intervalles de temps distincts (k entier 25 positif), de même durée fractionnant l'intégralité de chaque période du signal d'horloge locale, et délivrant une impulsion à partir de l'instant auquel p coïncidences (p entier positif) avec un des k intervalles de temps ont été dénombrées.

L'invention sera mieux comprise et d'autres caractéristiques apparaîtront à l'aide de la description et des schémas s'y rapportant sur lesquels :

- la figure 1 est un schéma d'un mode de réalisation 5 du dispositif de synchronisation selon l'invention ;

- la figure 2 représente les diagrammes tension-temps de signaux permettant d'expliquer le fonctionnement du dispositif de la figure 1.

10 Sur la figure 1, un dispositif d'asservissement 50 possède une borne d'entrée 1 destinée à recevoir un signal modulé par les données d'un message, et une sortie reliée à une première entrée d'une porte ET, 9. Ce dispositif d'asservissement 50 comporte un détecteur 15 de porteuse 3 couplant la borne 1 à une première entrée d'une porte ET, 5, dont la deuxième entrée est couplée à la borne 1, à travers un détecteur de transitions 4. La sortie de la porte ET, 5, est reliée à une première entrée 31 d'un comparateur de phase 6. Les sorties 32 et 20 33 de ce comparateur 6 sont respectivement connectées aux première et deuxième entrées de commande d'un diviseur variable 7, qui comporte une troisième entrée reliée à un oscillateur 8, et une sortie reliée à la première entrée de la porte ET, 9, à travers un diviseur fixe 90. La sortie de ce diviseur 90 est en outre reliée à une deuxième entrée 35 du comparateur de phase 25 6. La sortie de la porte ET, 9, est reliée à la borne de sortie 11.

Sur cette même figure, un circuit de synchronisation rapide 60, comporte des moyens de comptage 70 composés d'une porte ET, 13, de quatre portes ET, P_i (i variant de 1 à 4), de quatre compteurs C_i et d'une porte OU, 15. Le circuit 60 comporte en outre un pre-

mier différentiateur 12 couplant la sortie du détecteur 3 à chacune des entrées de remise à zéro des compteurs C_i , un deuxième différentiateur 10 couplant une entrée d'initialisation du diviseur fixe 90 à la sortie de la porte OU, 15, laquelle est reliée à une deuxième entrée de la porte ET, 9, et à une première entrée complémentée de la porte ET, 13. Enfin le circuit 60 comporte un générateur de signaux 14 ayant une entrée reliée à la sortie du diviseur fixe 90, et ayant quatre sorties S_i . Chaque sortie S_i est reliée à une première entrée de la porte P_i correspondante. Chacune des deuxièmes entrées des portes P_i est reliée à la sortie de la porte ET, 13, dont la deuxième entrée est reliée à la sortie de la porte ET, 5. La sortie de chaque porte P_i est reliée à la i^e entrée correspondante de la porte OU, 15, à travers le compteur C_i correspondant.

Le fonctionnement de ce dispositif de synchronisation sera mieux compris à l'aide des diagrammes tension-temps décrits sur la figure 2.

Sur cette figure sont représentés des signaux a, b, c, d₁, d₂, d₃, d₄, e, f, respectivement présents à la sortie du détecteur de porteuse 3, à la sortie du différentiateur 12, à la sortie du diviseur fixe 90, à la sortie S_1 , à la sortie S_2 , à la sortie S_3 et à la sortie S_4 du décodeur 14, à la sortie du détecteur de transitions 4, et à la sortie du différentiateur 10.

Le dispositif d'asservissement 50 étant bien connu, la description de son fonctionnement sera limité à ce qui est nécessaire à la compréhension de l'invention.

Le signal a est un signal logique 1, caractéristique de la présence de signaux reçus, il ouvre, pendant sa durée, la porte ET, 5, aux transitions de données

fournies par le détecteur de transitions 4 et représentées par le signal e.

Dans l'exemple choisi, le diviseur constitué du diviseur variable 7 en série avec le diviseur fixe 90 5 a un rang de division, au repos, égal à 512, qui peut être porté à 511 ou 513 sous l'action de signaux respectivement appliqués sur les entrées 32 ou 33 du diviseur 7 (à raison d'une fois par période du rythme baud). La fréquence nominale de l'oscillateur 8 est, 10 dans cet exemple, de 614,4 kHz et celle de sortie du diviseur 90, au repos (signal c) de 1200 Hz, valeur de l'horloge rythmant les données reçues.

Le retard de phase $\frac{3\pi}{4}$, représenté sur la figure 2, de la première transition détectée e_1 par rapport au 15 front montant de la première période C_1 du signal c est mesurée par le comparateur de phase 6 qui affecte alors au diviseur 7 le rang de division 5, une seule fois au cours de la période du rythme baud.

Si la fréquence de l'oscillateur est exacte, le 20 calage en phase interviendra au bout de $\frac{135 \times 512}{2 \times 180} = 192$ périodes environ soit un délai de 0,16 seconde.

Mais le dispositif de synchronisation rapide 60 selon l'invention va accélérer ce processus : le générateur 14 délivre quatre signaux périodiques d_1 , d_2 , 25 d_3 et d_4 de même fréquence que le signal c mais dont la durée est égale à un quart de la période de ce signal c, et décalés chacun par rapport au suivant de $\frac{\pi}{2}$, le front montant du signal d_1 étant calé en phase avec le 30 front montant du signal c.

Les portes P_1 à P_4 ne laissent respectivement passer les transitions du signal e que pendant la durée des signaux d_1 à d_4 et fournissent, en cas de coïnci-

dence; un 1 logique permettant de caractériser la position des transitions par rapport au front montant du signal \underline{c} . Etant donné le caractère incertain d'une seule mesure, à cause des effets du bruit de transmission, il
5 est attendu que quatre coïncidences soient dénombrées par l'un des compteurs C_0 à C_4 pour prendre en compte la dernière coïncidence.

Sur la figure 2, il est vu que la première transition e_1 (après la mise en route) coïncide avec le signal d_2 . La porte P_2 laisse passer cette transition et au bout de quatre transitions le compteur C_2 fournit un 1 logique qui, à travers la porte OU 15, provoque l'arrêt des compteurs C_1 à C_4 et, à travers le différentiateur 10, initialise le diviseur fixe 90 de telle sorte
15 que le prochain front montant du signal d'horloge \underline{c} se trouve situé au voisinage attendu de la prochaine transition de données.

Les compteurs C_1 et C_4 des moyens de comptage sont remis à zéro par une impulsion obtenue par différentiation du front montant du signal de sortie du détecteur 3, ce qui correspond à l'apparition de la porteuse du signal de données sur la borne 1. Cette différentiation est effectuée par le différentiateur 12.

L'efficacité du dispositif décrit a été mise en évidence. En effet une synchronisation du signal d'horloge locale a été obtenue en 4 à 7 périodes. Le signal de données contenait une transition du signal de données par période du signal d'horloge, la dispersion des transitions de données ne dépassait pas 1/4 de cette période.
25

30 Cette efficacité est conservée si la phase initiale du signal d'horloge locale est en opposition avec la phase obtenue après synchronisation.

L'invention n'est pas limitée au mode de réali-

sation décrit et représenté.

En particulier, les critères de choix des valeurs du nombre p de coïncidences pour déclencher les compteurs C_i , du nombre k de portes P_i et de compteurs C_i , du rang 5 de division q du diviseur 7 au repos sont les suivants :

Le choix de l'instant d'initialisation est d'autant plus juste que p est plus élevé. En contrepartie, comme il faut au minimum p coïncidences pour réaliser l'initialisation, p doit être choisi assez petit pour 10 synchroniser le signal d'horloge locale en un temps court.

La précision de la synchronisation en phase, est d'autant meilleure que k est grand, la durée d'un signal d_i étant inversement proportionnelle à k . Mais, pour 15 des raisons de coût, il est nécessaire de limiter k .

Pour obtenir un signal d'horloge locale bien filtré il est nécessaire de choisir q de valeur élevée, la seule limitation vers les valeurs supérieures provient de la nécessité de compenser le décalage relatif 20 des oscillateurs utilisés à l'émission et à la réception.

Dans l'exemple décrit, le générateur de signaux 14 est tel qu'il décompose une période du signal d'horloge locale en k intervalles de temps de durée égale, 25 au pas de correction près T/q qui affecte le k^e intervalle (T : période du signal d'horloge locale désirée). Cette influence, faible si q est grand devant k et p , peut être supprimée en maintenant le diviseur variable sur un rang de division fixe q avant l'initialisation.

30 Les signaux de commande d_i ont été obtenues à la sortie du générateur de signaux 14, mais il est à la portée de l'homme de l'art d'obtenir ces signaux à partir des rangs de division du diviseur 90.

REVENDICATIONS

1. Dispositif de synchronisation d'un signal d'horloge locale par rapport à un signal de données comprenant un dispositif d'asservissement (50) comportant un détecteur (4) des transitions du signal de données couplé à un comparateur de phase (6) situant la position des transitions par rapport au front montant du signal d'horloge locale, ce signal étant obtenu à partir d'un générateur comportant, en série, un oscillateur (8), un diviseur (7) dont la valeur du nombre diviseur variable est commandée par les signaux obtenus à la sortie du comparateur de phase, et un diviseur fixe (90) ayant une entrée d'initialisation, caractérisé en ce qu'il comporte en outre un circuit de synchronisation rapide (60) comprenant des moyens de comptage (70) ayant une entrée de signal couplée à la sortie du détecteur de transitions (4), une sortie couplée à l'entrée d'initialisation du diviseur fixe (90), et une entrée de commande de comptage couplée à la sortie du diviseur fixe (90), ces moyens de comptage (70) comptant le nombre de coïncidences de n transitions successives reçues (n entier positif), avec chacun de k intervalles de temps distincts (k entier positif), de même durée fractionnant l'intégralité de chaque période du signal d'horloge locale, et délivrant une impulsion à partir de l'instant auquel p coïncidences (p entier positif) avec un des k intervalles de temps ont été dénombrées.

2. Dispositif de synchronisation selon la revendication 1, caractérisé en ce que les moyens de comptage (70) comportent k compteurs C_i (i variant de 1 à k), ayant chacun une sortie couplée à la sortie des moyens de comptage (70) à travers une porte OU (15) et ayant une entrée, et des moyens de commande cou-

plant respectivement chacune des k entrées des compteurs C_i à l'entrée de signal pendant l'un des k intervalles de temps, chacun des k compteurs s'incrémentant chaque fois qu'une transition du signal de données est 5 présente à son entrée.

3. Dispositif de synchronisation selon la revendication 2, caractérisé en ce que les moyens de commande comportent k portes ET, P_i , ayant chacune une première entrée couplée à l'entrée de signal, une deuxième entrée, et une sortie, les k deuxièmes entrées étant respectivement couplées à k sorties d'un générateur de signaux (14) ayant une entrée couplée à la sortie du diviseur fixe (90), les k sorties délivrant un signal d'état logique 1 dont la présence coïncide 10 respectivement avec celle des k intervalles, les k sorties des k portes ET, P_i , étant respectivement couplées aux k entrées des k compteurs C_i .

4. Dispositif de synchronisation selon l'une des revendications 2 et 3, caractérisé en ce que le dispositif d'asservissement (50) comporte un détecteur du signal de données (3), en ce que les k compteurs C_i ont une entrée de commande commune de mise à zéro, et en ce que la sortie du diviseur fixe (90) est couplée à la sortie du dispositif de synchronisation rapide (60) à travers une première porte ET supplémentaire (9) ayant une entrée de commande couplée à la sortie des moyens de comptage (70); l'entrée de commande commune de mise à zéro étant couplée à la sortie du détecteur du signal de données (3) à travers un circuit différentiateur (12), et l'entrée de signal des moyens de comptage étant couplée à la sortie du détecteur de transitions (4) à travers une deuxième porte ET supplémentaire (5) ayant une entrée de commande couplée à la sortie du détecteur 15 20 25 30

0020205

11

du signal de données 3.

5. Système de transmission, caractérisé en ce qu'il comporte au moins un dispositif de synchronisation selon l'une des revendications précédentes.

0020205

2/2

Office européen
des brevets

RAPPORT DE RECHERCHE EUROPEENNE

0020205
N° de la demande

EP 80 40 0611

DOCUMENTS CONSIDERES COMME PERTINENTS			CLASSEMENT DE LA DEMANDE (Int. Cl. ...)
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	Revendication concernée	DOMAINES TECHNIQUES RECHERCHES (Int. Cl. ...)
	<p><u>GB - A - 1 122 790 (C.F.T.H.)</u> * Figure 2; revendications 2,3 *</p> <p>--</p> <p><u>US - A - 3 562 661 (CRUMB)</u> * Colonne 5, lignes 1-21 *</p> <p>--</p> <p>A <u>US - A - 3 440 547 (HOUCKE)</u> * Colonne 2, lignes 11-20 *</p> <p>--</p> <p>A <u>FR - A - 2 301 964 (S.A.T.)</u> * Page 4, lignes 13-16; page 5, lignes 8-13 *</p> <p>-----</p>	1,3,5 1,5 1 1	H 04 L 7/02 H 04 L 7/02
CATEGORIE DES DOCUMENTS CITES			&. membre de la même famille, document correspondant
<input checked="" type="checkbox"/> Le présent rapport de recherche a été établi pour toutes les revendications			X: particulièrement pertinent A: arrière-plan technologique O: divulgation non-écrite P: document intercalaire T: théorie ou principe à la base de l'invention E: demande faisant interférence D: document cité dans la demande L: document cité pour d'autres raisons
Lieu de la recherche	Date d'achèvement de la recherche	Examinateur	
La Haye	21-07-1980	GEISLER	

This Page Blank (uspto)

This Page Blank (uspto)