Local population projections with Bayesian hierarchical models

https://github.com/violetacIn/SIPP

Violeta Calian <u>violeta.calian@hagstofa.is</u>

Why (local/total) population projections?

- One of the key products of Official Statistics ← huge demand, from:
 - National and local administration
 - Policy makers
 - Planning infrastructure: constructions, heating, water and electricity supply
 - Planning future developments in social sectors: health, pensions, education
 - Researchers in multiple domains
 - Individual users

For all demographic components (*migration, fertility, mortality*) as functions of: age, time and/or gender, citizenship, education, locality, ..., in order to be combined *stochastically, via ccpm, into:* **population projections** (*total and local*)

Formulation of the statistical problem:

- estimating and predicting in the presence of:
 - small area/population issues and/or rare events/ shocks
 - expert assumptions
 - uncertainty of model parameters
 - errors in input data (e.g. *deregistration*)
- while reporting uncertainty of estimates/predictions

Solution must be based on:

Modeling and combining (prior) information

New Models and Implementation in

$$P(response|parameters_0 \ v \ fcts) = F1(attributes_0) \ where$$

 $P(parameters_0 \ v \ fcts|parameters_1) = F2(attributes_1) \ where...$

- Type of models: Hierarchical / Multilevel, Bayesian / frequentist
 - data used: *individual or aggregated* response (Y) versions
 - what to model: **processes**, since *time series* data $P(\gamma i, ... \gamma n | a)$ plus other grouping effects --> need to account for complex **(auto-)** correlations
- Why:
- {components/prior information/characteristics/local&total} & uncertainty report
- **R**-Tools:

several *Stan*-running R packages like *brms*, arm, bayestestR, ...

and the faster: Ime4, mgcv, ... for frequentist / as initializations / not only (see Laplace approx of mgcv)

Structure and novelty

x=(year, age, gender, citizenship, municipality, education, ...) Response = rates/events of local/total demographic components

I. Counts/rates

- $N(x,...) \sim Poisson(e^{f(x,...)}, N_0(x,...))$ (or: neg. binom, see over-disperssion issues, etc)
- $f = \sum f_m(x, ...), f_m \sim GP(m(x, ...), C(\{x, ...\}, \{x', ...\})) + ...$

II. Microdata (events)

- $N(x,...) \sim B(L(f(x,...), N_0(x,...))$
- $f = \sum f_m(x, ...)$, $f_m \sim GP(m(x, ...), C(\{x, ...\}, \{x', ...\})) + ...$
- f_m smooths/re/t2 and/or by {grouping factors} OR unknown functions with Gaussian Processes as priors (with m -> long term behaviour, C -> correl between any two response values)

Count data input

https://cran.r-project.org/web/packages/mgcv/index.html

Births

256 200 200 200 2015 2020 30 mm

Death rates (log)

Count data input: migration

https://cran.rproject.org/web/packages/mgcv/index.html

Counts/rates: fertility models

https://cran.r-project.org/web/packages/brms/index.html

Counts/rates: mortality models (addit, s)

https://cran.r-project.org/web/packages/brms/index.html

Examples: demographic rates' projections and

significance of attributes' effects (using microdata)

Total fertility rates: median and credible intervals

Effects of (individual, family, municipality) attributes on fertility (events)

Future work and work in progress

- compare local population projections based on non- and informative priors (with users/experts' feedback)
- finalise the evaluation of the *model performance*
- forecasting with *multiple-model averaging*

References

- Jakub Bijak & John Bryant (2016) Bayesian demography 250 years after Bayes, Population Studies, 70:1, 1-19, DOI:
 10.1080/00324728.2015.1122826
- https://cran.r-project.org/web/packages/bsts/index.html
- Wood S (2017). Generalized Additive Models: An Introduction with R, 2 edition. Chapman and Hall/CRC.
- https://cran.r-project.org/web/packages/mgcv/index.html
- Bürkner P (2017). "brms: An R Package for Bayesian Multilevel Models Using Stan." Journal of Statistical Software, 80(1), 1–28. doi: 10.18637/jss.v080.i01
- Bürkner P (2018). "Advanced Bayesian Multilevel Modeling with the R Package brms." The R Journal, 10(1), 395–411.
 doi: 10.32614/RJ-2018-017
- Bryant, J., & Zhang, J. L. (2016). Bayesian forecasting of demographic rates for small areas: emigration rates by age, sex and region in New Zealand, 2014-2038. *Statistica Sinica*, 26(4), 1337–1363. http://www.jstor.org/stable/44114337
- Lam, K.K.; Wang, B. (2021). Robust Non-Parametric Mortality and Fertility Modelling and Forecasting: Gaussian Process Regression Approaches. *Forecasting* 2021, *3*, 207-227. https://doi.org/10.3390/forecast3010013
- Ludkovski, M., Risk, J., Zail, H. Gaussian process models for mortality rates and improvement factors. <u>ASTIN Bulletin: The Journal of the IAA</u>, <u>Volume 48</u>, <u>Issue 3</u>, September 2018, pp. 1307 <u>–</u> 1347, https://doi.org/10.1017/asb.2018.24
- Stan Development Team (2022). "RStan: the R interface to Stan." R package version 2.21.7, https://mc-stan.org/.