Intro and regressions

Probability and Statistics

COMS10011
Dr. Anne Roudaut
csxar@bristol.ac.uk
https://github.com/coms10011

who am i?

Montréal, Canada

April 21-26 chi2018.acm.org

Human Computer Interaction (HCI)::

a multidisciplinary field of study focusing on the design of computer technology and, in particular, the interaction between humans (the users) and computers

experimental design psychology

experimental psychology::

the branch of psychology concerned with the scientific investigation of the responses of individuals to stimuli in controlled situations

e.g. bandwagon effect (one of our many cognitive biases)

promised a 2nd marshmallow if resist to eat the 1st one until lady comes back (20mn)

what is the link with statistics?

like in many fields, statistics is the main tool to analyse, demonstrate, evaluate or predict

let's start with an example

imagine you are designing a graphical interface for a new application on a laptop

how big should the buttons/icons be?

Fitts' law ::

the time required to acquire a target of size w at distance d can be described as $T = a + b \log (1 + d/w)$

smaller bin = harder and further = harder

Fitts' law ::

the time required to acquire a target of size w at distance d can be described as $T = a + b \log (1 + d/w)$

$$T = \underbrace{a + b}_{\text{Index}} D_{\text{ifficulty}}$$
(depends on input device)

e.g. reason why we have ribbons in Word now

Fitts' law :: T = a + b ID

time required to acquire a target

but where does this equation come from?

Trial [16] of 210

+

let's run an experiment and ask one participant to click on targets of different IDs

ID index of difficulty

regression ::

a technique for determining the statistical relationship between two or more variables where a change in a dependent variable is associated with, and depends on, a change in one or more independent variables

arguably the most basic technique for machine learning

terminology of regressions

ID index of difficulty

goodness of fit

how can you be sure this line is a good fit to our data?

how can you be sure this line is a good fit to our data? what about now?

<brainstorming with your neighbor>

we can compute the goodness of fit with several methods

e.g. standard error of the estimate or R squared

standard error of the estimate

standard error of the estimate

also called degree of freedom

S gives a standard error in the metric of the data (the less the better)

R squared T time (ms) mean Fitts! T = 2.3 + 1.1 ID $\sum ()^2$ ID index of difficulty $\sum (:)^2$

Fitts! T = 2.3 + 1.1 ID

 $\frac{\sum (\text{estimated } \hat{y} - \text{mean } y)^2}{\sum (\text{actual } y - \text{mean } y)^2}$

this formula works if your line is computed by the least square regression method (the one used by R)

R squared

Fitts! T = 2.3 + 1.1 ID

1 -
$$\frac{\sum (actual \ y - estimated \ \hat{y})^2}{\sum (actual \ y - mean \ y)^2}$$

you could also find it in a this format which is more genetic R² gives a percentage and 100% means perfect fit (>70% is better)

ID index of difficulty

to gain additional confidence we repeat

we gain trust in a model if it fits the data with little error when

- 1.it is verified with a lot of data
- 2.it holds across very different people
- 3.it is verified in independent studies.

The information capacity of the human motor system in controlling the amplitude of movement.

PM Fitts - Journal of experimental psychology, 1954 - psycnet.apa.org

Reports of 3 experiments testing the hypothesis that the average duration of responses is directly proportional to the minimum average amount of information per response. The results show that the rate of performance is approximately constant over a wide range of movement amplitude and tolerance limits. This supports the thesis that" the performance capacity of the human motor system plus its associated visual and proprioceptive feedback mechanisms, when measured in information units, is relatively constant over a considerable ...

Fitts's paper probably most cited in HCI, studies done and redone many times

practically


```
[> print ("hello world!")
[1] "hello world!"
> ■
```

we will be using R and I will try to give you as much as possible of examples

R

in your terminal

```
head(cars) # cars is a table that already comes with R and contain 50 observations of speed and distance in two rows scatter.smooth(x=cars$speed, y=cars$dist, main="Dist ~ Speed")

linearMod <- lm(dist ~ speed, data=cars) # build linear regression model

abline(linearMod, col="blue") # draw the regression line summary(linearMod) # goodness of fit
```

Dist ~ Speed


```
Call:
lm(formula = dist ~ speed, data = cars)
Residuals:
       10 Median 30
   Min
                                 Max
-29.069 -9.525 -2.272 9.215 43.201
               dist = -17.5791 + 3.9324 * speed
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
                       6.7584 - 2.601 0.0123 *
(Intercept) -17.5791
             3.9324
                       0.4155 9.464 1.49e-12 ***
speed
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 15.38 on 48 degrees of freedom Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438 F-statis 1.00.57 and 1.00.88 DF, p-value: 1.49e-12


```
Call:
lm(formula = dist ~ speed, data = cars)
Residuals:
   Min
            10 Median
                        30
                                  Max
-29.069 - 9.525 - 2.272 9.215 43.201
                                                   also note this
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                                                   pvalue<0.01
(Intercept) -17.5791 6.7584 -2.601 0.0123 *
                                9.464 1.49e-12 ***
                                                   pvalue <0
             3.9324
                       0.4155
speed
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Residual standard error: 15.38 on 48 degrees of freedom Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438 F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

(will explain next week)

usages of regressions

Back to search results | Listed in category: Art > Art from Dealers & Resellers > Prints

predicting ebay's online auction prices using functional data analysis

you can also fit a curve = polynomial fitting

Figure 11. Bradley-Terry-Luce model output as well as a polynomial regression.

Our results are illustrated in Figure 11. We observed a clear distinction between the perceived stiffness of the 4 patches, the size of the patch increasing the perceived stiffness. In particular A is the least restrictive, followed by B, then C and then D is the most restrictive. We found that each paired comparison was significant (p<0.0125). This thus allows us to compare the different patches and conclude that D is the most efficient patch. We also performed a polynomial regression on our data and found a very accurate fit: y=0.5017x2-0.2351x-0.2691 (R²=1). This suggests a quadratic correlation between the area of the patch and the perceived stiffness, which allows us to imagine bigger patches in order to restrict movements of the knee, which would require more stiffness. Of course further investigations need to be done to confirm this.

betwe the air jam th Prelin The g

Prelin The g lab. A the co potent First c

One p hands sugger sugger player the u: "defro where player

We all become that the in two improparticl

for ter

mover

our id-

Patch

implei

R

polynomial regression model

```
Mod2 <- Im(dist~poly(speed,2,raw=TRUE), data=cars)</pre>
```

Mod3 <- Im(dist~poly(speed,3,raw=TRUE), data=cars)</pre>

Mod4 <- Im(dist~poly(speed,4,raw=TRUE), data=cars)</pre>

summary

- 1. Linear regression
- 2. Hypothesis testing, comparing things
- 3. Experimental design part 1
- 4. Experimental design part 2
- 5. T-test and ANOVA
- 6. Pre-requisite to ANOVA
- 7. Non-parametric tests
- 8. Categorical data: Chi-square
- 9. Sample size, power and effect size
- 10. P-hacking and alternatives tests

unit menu

resources

chaces among them beset on the number of dependent variables pometimes referred to as outcome variables, the future of your independent variables pometimes referred to as predictors. You also want to come number of distributed (see What's the difference between satespaces, priling and interval years). For more information on this, the table then shows one or more statistical tests commonly used given these types of Number of Dependent Variables Nature of Independent Variables Nature of Dependent Variablets Revibil How to SASHow to State How to SPSSHow to R O NA 6 propulations interval & normal one-sample t-test ordinal or interval one sample median 5P55 categorical (2 categories) State omegorical Chi-equare goodness-of-fit State 1211 1 N'with 2 levers (Independent groups) interval & normal 2 independent sample 1 test Wilcowoo Mann Whitney test 5895 ordinal or interval tategorical Chi square test Plane's exact test State 3235 What type of data? discrete independent with 2 or more levels (Independent groups) interval & normal one-way ANOVA 12715 independent variable ordinal or interval Knuckel Walls 5895 Discrete/categor dependent dependent ical dependent cetegorical Chi-equare test 5P55 variable variable variable with 2 levels (dependent/matched groups) 2 grp >2 grp Interval & normal paired treet. State 5P55 logistic regressions normally distributed regressions ordinal or interval Wilcoxon signed ranks land State Non paired categorical MicNema >2 grp >2 grp 2 grp 2 grp arth 2 or more levels (dependent/met/hed groups) (resoval & normal one-way repeated measures ANOVA Counts >= 5 in >= 75% Non Non paired Counts >= 5 in < 75% andinal or interval Friedman test 5P55 categorical (2 categories) repeated measures lookely repres more NA (Independent groups) interval & normal factorial ANOVA 1235 ordinal or interval ordered logistic regression State 5895 categorical (2 categories) factorial logistic regressio Invest No interval & normal Interval & normal simple linear regression ordinal or interval non-parametric correlation 5P95 simple logistic regression for more interval NS analor for more categorical NS interval & normal 5P55 multiple regression analysis of covariance State 5P55 categorical multiple logistic regression 1513 discriminant analysis 5295 1 N'with 2 or more levers (Independent groups) interval & normal OTIO WISH MANIOVA Interval & normal multivariate multiple linear regressi interval & normal Sector analysis 2 sets of 2+

The following table shows general guidelines for choosing a statistical analysis. We emphasize that these are general guidelines and should not be construed as hard and fast rules. Usually your data could be analy

CHOOSING THE CORRECT STATISTICAL TEST IN SAS. STATA, SPSS AND R

https://stats.idre.ucla.edu/other/mult-pkg/whatstat/

Interval & normal

canonical correlation

1211

the text book I am using and a suggestion of YouTube video channel

videos on regressions

https://www.youtube.com/watch?v=WWqE7YHR4Jc

https://www.youtube.com/playlist?list=PLF596A4043DBEAE9C

- 1. Explain what is a linear regression
- 2. Give the terminology of a regression line
- 3. Give the two formulas of goodness of fit
- 4. Be able to compute the two formulas given a few observations

take away

#