CÁLCULO DIFERENCIAL E INTEGRAL-LSI TEMA 4

Tema 4: Integrales indefinidas.

La función primitiva. El teorema fundamental del cálculo integral. Integrales inmediatas. Propiedades de las integrales indefinidas. Métodos de integración: integración por descomposición, sustitución y por partes. Métodos especiales de integración.

La función primitiva

Definición

Una función F(x) se denomina Primitiva para la función f(x) en el intervalo (a,b) si F(x) es diferenciable en (a,b) y F'(x) = f(x)

F(x) se llama también antiderivada de f(x) o integral de f(x).

Ejemplo 1°) primitiva de $f(x) = \cos x$

es
$$F(x) = sen x$$
 pues $F'(x) = D sen x = cos x$

Ejemplo 2°) primitiva de $f(x) = 3x^2$ es $F(x) = x^3$ pues $Dx^3 = 3x^2$

Teorema

Si F(x) es una primitiva para la función f(x) en (a,b), entonces F(x)+c es también una primitiva donde c es un número constante cualquiera.

Podemos decir que cualquier función de la forma $F_c(x) = x^3 + C$

(donde C puede ser cualquier número real) es una **primitiva** de la función $f(x) = 3x^2$ en todo \mathbb{R} .

Integral indefinida

Al conjunto de todas las integrales o funciones primitivas de f(x), se le llama integral indefinida de f(x) y se la representa anteponiendo el signo $\int a f(x)$

Escribimos
$$\int f(x) dx = F(x) + c , \text{ si } F'(x) = f(x)$$

La expresión $\int f(x) dx$ se lee "integral de f(x)", f(x) se denomina integrando

Consecuencias inmediatas de la definición de integral

De la definición se deduce:

- 1) La derivada de una integral indefinida es igual al integrando, es decir si $D \int f(x) dx = f(x)$, F'(x) = f(x)
- 2) La diferencial de una integral indefinida es igual al elemento de la integración, es decir $d(\int f(x)dx) = f(x)dx$.
- 3) La integral indefinida de la diferencial de una cierta función es igual a la suma de esta función y de una constante arbitraria. Es decir: $\int df(x) = f(x) + c$

Propiedades de las integrales indefinidas

Sea f(x) una función definida en un intervalo (a, b) y derivable en dicho intervalo

1) La integral del producto de una constante k por una función es igual al producto de la constante por la integral de la función. Es decir:

$$\int k.f(x)dx = k. \int f(x)dx$$

2) La integral indefinida de la suma algebraica de dos, o más, funciones es igual a la suma algebraica de sus integrales.

$$\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx$$

Integrales inmediatas (más utilizadas)

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

$$\int dx = x + c$$

$$3) \qquad \int \frac{1}{x} dx = \ln x + c$$

$$\int e^x dx = e^x + c$$

TABLAS DE INTEGRALES (de uso más Frecuentes)

FUNCIONES	PROPIEDADES
dx = x + c	$\int k. f(x) dx = k \int f(x) dx$
$x^n dx = \frac{x^{n+1}}{n+1} (n \neq -1)$	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$
$x^{-1} dx = \int_{-x}^{x+1} dx = \int_{-x}^{x} dx = \ln x +$	(integrales que contienen) $x^2 + a^2$; $x^2 - a^2$; $a^2 - x^2$
$\frac{1}{x^n} dx = \int \frac{dx}{x^n} = \frac{-1}{(n-1)x^{n-1}} + c \ (n \neq 1)$	1) $\int \sqrt{a^2 - x^2} \cdot dx = \frac{x}{2} \cdot \sqrt{a^2 - x^2} + \frac{a^2}{2} \cdot arctg \frac{x}{\sqrt{a^2 - x^2}} + c$
$e^x \cdot dx = e^x + c$	$\int \sqrt{a^2 - x^2} \cdot dx = \frac{x}{2} \cdot \sqrt{a^2 - x^2} + \frac{a^2}{2} \cdot \ln (x + \sqrt{a^2 - x^2}) + c$
$e^{ax} \cdot dx = \frac{e^{ax}}{a} + c$	$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \cdot \arctan \frac{x}{a} + c$
$a^x \cdot dx = \frac{a^x}{\ln a} + c$	$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \cdot \ln \left \left(\frac{x - a}{x + a} \right) \right + c$
$b^{ax} \cdot dx = \frac{b^{ax}}{a \ln b} + c$	$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \cdot \ln \left \left(\frac{a + x}{a - x} \right) \right + c$
$\ln x. dx = (x. \ln x - x) + c)$	$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln (x + \sqrt{x^2 \pm a^2}) + c$
$\log x. dx = \log e(x. \ln x - x) +$	$c \int \frac{dx}{\sqrt{a^2-x^2}} = arcsen \frac{x}{a} + c$
\sqrt{x} $dx = \frac{x^{3/2}}{3/2} + c = \frac{2}{3}\sqrt{x^3} + c$	Integral por Sustitución
$\frac{dx}{c} = 2.\sqrt{x} + c$	$\underline{Si} \stackrel{\text{de}}{=} g'(t) \Rightarrow du = g'(t). dt \underline{Y} \stackrel{\text{si}}{=} u = g'(t) \Rightarrow h(u)$
sen. dx = -cosx + c	Entonces se tiene que:
$\cos dx = \sin x + c$	$\int f(u). du = \int f[g(t)]. g'(t). dt$
$tanx. dx = -\ln (cosx) + c$	J / (a). aa - J / (g(e)). g (e). ae
$\csc x \cdot dx = \ln(\csc x - \cot x) +$	c Integral por Partes
$secx.dx = \ln (secx + tanx) +$	
$\cot g x. dx = \ln (senx) + c$	$\int u.dv = uv - \int v.du$
$sen^2 x. dx = \frac{1}{2}x - \frac{1}{4}. sen2x + c$	
$sen^{-}x.ax = \frac{1}{2}x - \frac{1}{4}.sen2x + c$	
$\int \cos^2 x dx = \frac{1}{2}x + \frac{1}{4} \cdot \sin 2x + c$	Identidades Trigonométricas
$tan^2 x. dx = tanx - x + c$	$sen^{-1}x = arcsenx$ $cos^{-1}x = arccosx$ $tan^{-1}x = arctanx$
$\cos e^2 x \cdot dx = -\cot g x + c$	
$\int sec^2 x. dx = \tan x + c$	
$\int \cot^2 x. dx = -\cot gx - x + c$	$\frac{1}{\operatorname{cosec} \frac{1}{\operatorname{sen} x}} \qquad \operatorname{sec} x \frac{1}{\operatorname{cos} x} \qquad \operatorname{cotg} x \frac{1}{\operatorname{tar}}$
$\int secx. tanx. dx = secx + c$	
Conserv cotox dx = -cosx + c	
0 200x 1 c	endiente; c es una constante; u y v son funcion de comin de la com

Método de integración

1) Integración por descomposición de elementos simples

- 2) Integración por sustitución o cambio de variables
- 3) Integración por partes

1) Integración por descomposición de elementos simples

Se basa en la propiedad de las integrales:

$$\int (k_1 \cdot f_1(x) dx + k_2 \cdot f_2(x) dx + \dots + k_n \cdot f_n(x) dx) =$$

$$= k_1 \cdot \int f_1(x) dx + k_2 \cdot \int f_2(x) dx + \dots + k_n \cdot \int f_n(x) dx$$

Ejemplo

$$\int (\sin x + \cos x) \, dx = \int \sin x \, dx + \int \cos x \, dx = -\cos x + \sin x + C$$

Integración por sustitución

Este método como el nombre lo indica, consiste en sustituir una combinación de la variable independiente x por otra variable u que facilita el cálculo de la integral. Si bien este método permite la resolución de gran número de integrales, tiene el inconveniente que para saber aplicar cuál es el cambio de variable que conviene, requiere una gran práctica del cálculo de integrales; por tal razón lo aplicamos solamente en aquellos casos en que el cálculo directo no es posible; y hacemos la indicación correspondiente.

Su esencia consiste en: dada la integral $\int f(x) dx$ que no podemos resolver en forma inmediata, pero sabemos que existen funciones primitivas; se hace el cambio de variable $x = \varphi(u)$ donde u es la nueva variable de la función $\varphi(u)$ que es continua y tiene inversa; como consecuencia $dx = \varphi'(u) du$ Luego la integral dada en x se transforma en la integral en la variable u

Es decir:

 $x = \varphi(u)$ tenemos $dx = \varphi'(u)du$

Luego: $f(x)dx = f[\varphi(u)]\varphi'(u)du$

$$\int f(x) dx = \int f[\varphi(u)] \cdot \varphi'(u) du$$

 $\int f[\varphi(u)] \varphi'(u) du$ cuya integración sí es inmediata. Se comprende que una vez que se obtiene este resultado en u, hay que reemplazar u por su expresión en x para obtener el resultado de la integral dada $\int f(x) dx$.

Ejemplo

$$\int \frac{3x^2}{x^3+1} dx$$

Integración por partes

Es uno de los métodos más fructíferos por sus múltiples aplicaciones.

$$\int u.\,dv = uv - \int v.\,du$$

Donde u y v son funciones de x , derivables.

Se comprende que: 1°) esta fórmula se aplica cuando la integral del primer miembro no es inmediata y sí lo es la integral del segundo miembro; 2°) para aplicar la integración por partes, uno de los factores del integrando debe ser derivada \dot{v} de una función v.

1°) $\int x.\cos x \, dx$ El resultado no es inmediato. Se aplica la integración por partes; en este caso cualquiera de los dos factores es derivada v' de otra función v; en efecto: x es derivada de $\frac{1}{2}x^2$; y $\cos x$ es derivada de $\sin x$.

Es conveniente determinar a cual expresión llamaremos: u

LIPET

Logaritmos, Inversas, Polinomios, Exponenciales, Trigonométricas.

Métodos especiales de integración.

- Reducción a fracciones simples.
- Funciones circulares.
- Funciones irracionales.

