Kinematik des Punktes

Die Lage eines Punkte P im Raum wird durch den Ortsvektor

r(t)

beschrieben

Aus der Verschiebung dr des Punktes P in eine Nachbarlage während der Zeit dt folgt seine Geschwindigkeit

Die Geschwindigkeit ist stets tangential zur Bahn gerichtet. Mit der Bogenlänge s und $|\mathrm{d} {m r}| = \mathrm{d} s$ gilt für den Betrag der Geschwindigkeit

$$v = \frac{\mathrm{d}s}{\mathrm{d}t} = \dot{s} .$$

Die zeitliche Änderung des Geschwindigkeitsvektors v(t) heißt Beschleunigung

$$a = \frac{\mathrm{d} v}{\mathrm{d} t} = \dot{v} = \ddot{r}$$
.

Die Beschleunigung ist im allgemeinen nicht tangential zur Bahn gerichtet! Die Vektoren r, v und a lassen sich in speziellen Koordinatensystemen wic

folgt darstellen: a) Kartesische Koordinaten mit den

Einheitsvektoren
$$e_x$$
, e_y und e_z :
$$r = x e_x + y e_y + z e_z ,$$

$$v = \dot{x} e_x + \dot{y} e_y + \dot{z} e_z ,$$

Bahn

Geradlinige Bewegung

Weg x(t).

 $\begin{aligned} &\text{Geschwindigkeit} & v = \frac{\mathrm{d}x}{\mathrm{d}t} = \dot{x} \ , \\ &\text{Beschleunigung} & a = \frac{\mathrm{d}v}{\mathrm{d}t} = \dot{v} = \ddot{x} \ . \end{aligned}$

Kreisbewegung

Für $\rho = r = \text{const}$ und $s = r\varphi(t)$ erhält man in natürlichen Koordinaten

Geschwindigkeit $v = r\dot{\varphi} = r\omega$,

Bahnbeschleuni-

gung

Zentripetalbe-

 $a_n = \frac{v^2}{r} = r\omega^2$ schleunigung

mit $\omega = \dot{\varphi} = \text{Winkelgeschwindigkeit}.$

Ebene Bewegung in Polarkoordinaten

Für z=0und $\dot{\varphi}=\omega$ folgen aus den Beziehungen für Zylinderkoordinaten

$$\mathbf{v} = v_r \mathbf{e}_r + v_{\varphi} \mathbf{e}_{\varphi}$$
, $\mathbf{a} = a_r \mathbf{e}_r + a_{\varphi} \mathbf{e}_{\varphi}$

mit

Radialgeschwindigkeit

Zirkulargeschwindigkeit

Radialbeschleunigung

 $a_r = \ddot{r} - r\omega^2$,

Zirkularbeschleunigung

 $a_{\varphi} = r\dot{\omega} + 2\dot{r}\omega$.

Anmerkung: Bei einer Zentralbewegung verschwindet die Zirkularbeschleunigung. Aus

 $a_{\varphi} = r\dot{\omega} + 2\dot{r}\omega = \frac{1}{r}(r^2\omega)^{\cdot} = 0$

ergibt sich dann der "Flächensatz" (2. Keplersches Gesetz)

$$r^2\omega={\rm const}$$
 .

2) Zylinderkoordinaten mit den Einheitsvektoren e_r , e_{φ} und e_z :

c) Natürliche Koordinaten mit den Einheitsvektoren e_t und e_n in Richtung der Tangente bzw. der Hauptnormalen.

Dabei sind:

Krümmungsradius (Abstand zwischen P und Krümmungsmittelpunkt M),

Bahngeschwindigkeit,

Bahnbeschleunigung,

Normal- oder Zentripetalbeschleunigung.

Anmerkung: Die beiden Komponenten der Beschleunigung liegen in der sogenannten Schmiegungsebene. Der Beschleunigungsvektor zeigt stets ins "Innere" der Bahn.

Kinematische Grundaufgaben für geradlinige Bewegung

Der Bewegungsanfang zur Zeit t_0 sei durch den Anfangsweg x_0 und die Anfangsgeschwindigkeit v_0 gegeben.

Gegeben	Gesuchte Größen
a = 0	$v = v_0 = \text{const}$,
	$x = x_0 + v_0 t$
	gleichförmige Bewegung
$a=a_0=const$	$v=v_0+a_0t\;,$
	$x = x_0 + v_0 t + \frac{1}{2} a_0 t^2$
	gleichmäßig beschleunigte Bewegung
a = a(t)	$v = v_0 + \int_0^t a(\bar{t}) d\bar{t}$.
	6,
	$v = v_0 + \int_{t_0}^t a(\bar{t}) d\bar{t}$, $x = x_0 + \int_{t_0}^t v(\bar{t}) d\bar{t}$
a = a(v)	$t = t_0 + \int_{v_0}^{v} \frac{\mathrm{d}\bar{v}}{a(\bar{v})} = f(v) ,$
	mit der Umkehrfunktion $v = F(t)$ folgt
	$x = x_0 + \int_{t_0}^t F(\bar{t}) \mathrm{d}\bar{t}$
a = a(x)	$v^2 = v_0^2 + 2 \int_{x_0}^x a(\bar{x}) d\bar{x}$,
	$t = t_0 + \int_{x_0}^x \frac{\mathrm{d}\bar{x}}{v(\bar{x})} = g(x)$
	Die Umkehrfunktion liefert $x = G(t)$.

Anmerkungen:

- Die Formeln lassen sich auch bei einer allgemeinen Bewegung anwenden, wenn man x durch s und a durch die Bahnbeschleunigung a_t ersetzt. Die Normalbeschleunigung folgt dann aus $a_n = v^2/\rho$.
- Falls die Geschwindigkeit als Funktion des Weges gegeben ist, folgt die Beschleunigung aus

$$a = v \frac{\mathrm{d}v}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} (\frac{v^2}{2})$$
.