Computer Assignment 3 Report

Logic minimization and SystemC simulation

Erfan Iravani 810197462 Professor Z.Navabi May 13, 2021

SystemC simulation

The circuit shown below is asked to be manually translated to SystemC code

After implementing the circuit and developing a test bench we get the results below where we can see the results are as accurate as compiling verilog codes

SOP minimization using QM method in C++

The SOP that we should minimize in shown below

```
ooTest1.txt >
module main (a, b, c, d,s,o);
input a;
input b;
input s;
input d;
input c;
output o;
wire w;
wire f;
wire g;
assign #10 w = ~b&~a&~c&~d | ~b&~a&~c&d | ~a&b&c&d | ~a&b&c&d | ~a&b&c&d | a&~b&~c&d
| a&~b&~c&d | ~b&a&c&~d | a&b&c&~d;
assign #12 f = ~w&~b&c&~d | ~w&b&c&~d | w&~b&~c&~d | w&~b&~c&d | w&~b&c&~d | w&~b&c&~d | w&~b&c&~d |
w&b&c&d;
a&b&~c&d;
assign #5 o = s ? g : f;
endmodule
```

And the result after minimization is prepared as a .txt file and we can see that it is working properly

```
module main(a,b,c,d,s,o);
input a;
input c;
input d;
input s;
output o;
wire w;
wire f;
wire g;
assign #10 w = ~b&~c | c&~d | b&~a&d;
assign #12 f = c&~d | w&~b | w&c;
assign #14 g = ~a&~b&~c&~d | ~a&b&c | b&~c&d | ~a&c&d;
assign #5 o = s ? g : f;
endmodule
```

Simulate assign statements with C++

We have classes for wires, not gates, And gates and Or gates and a brief part of them is shown below

```
class wire{
public:
  string value;
  string name;
  int time;
public:
  wire(string value_ , string n) : value(value_) , time(0) , name(n) {};
  wire(string n) : value("X") , time(0) , name(n) {};
  wire() : value("X") , time(0) {};
};
class Or{
private:
  wire *o1;
  vector<wire*> i;
public:
  int delay;
  0r(vector<wire*> ins , wire* w);
  void eval();
};
0r::0r(vector<wire*> ins , wire* w){
  o1 = w;
  i = ins;
  delay = 0;
```

Two input And and Or gates have 5ns delay. For having more realistic delays we consider the gates having more than 2 inputs as a set of 2 input gates; in other words for example a 3 input gate is considered as 2 gates with 2 inputs.

Test bench and simulation results for this part is shown below , on top of next page.

```
#10 01011
#40 10011
#40 11100
#40 01101
```

```
results.txt
<<<<< at time 10
input values: 0 input values: 1 input values: 0 input values: 1 input values: 1
input names: a input names: b input names: c input names: d input names: s
output w becomes 1 after 30
output f becomes 0 after 45
output g becomes 1 after 45
output o becomes 1 after 58
<<<<<< at time 50
input values: 1 input values: 0 input values: 0 input values: 1 input values: 1 input names: b input names: c input names: d input names: s
output w becomes 1 after 30 output f becomes 1 after 65
output g becomes 0 after 85
output o becomes 0 after 98
<<<<<< at time 90
input values: 1 input values: 1 input values: 1 input values: 0 input values: 0
input names: a input names: b input names: c input names: d input names: s
output w becomes 1 after 30 output f becomes 1 after 65
output g becomes 0 after 85
output o becomes 1 after 78
<u>ඉහර අවස්ථාව විස්ථාව ව</u>
<<<<< at time 130
input values: 0 input values: 1 input values: 1 input values: 0 input values: 1
input names: a input names: b input names: c input names: d input names: s
output w becomes 1 after 30
output f becomes 1 after 65
output g becomes 1 after 165
output o becomes 1 after 178
<u>ඉටුරෙන් අවස්ථාව අවස්ථ</u>
```

We can see that the circuit is working correctly

Comparing to what we had in SystemC we can see that there is not much difference and the fact that SystemC is a C++ library can be seen throw these computer assignment

The delays might be slightly different because in C++ part we implement a gate level logic which is more accurate but the wire values are the same.