Análise de Acidentes da PRF

Relatório Técnico Gerado em 02/07/2025 14:40

Página 2 - Gerado em: 02/07/2025 14:40

Relatório Executivo

Resumo:

Este relatório apresenta uma análise detalhada dos acidentes reportados pela Polícia Rodoviária Federal (PRF), identificando padrões e fatores que influenciam a gravidade dos acidentes.

Insights:

- A maior gravidade dos acidentes está associada a condições climáticas adversas e períodos noturnos.
- Existe uma correlação significativa entre o número de feridos graves e o total de mortes.

Recomendações:

- Implementar campanhas educativas focadas em direção segura durante condições de risco.
- Reforçar fiscalização e sinalização em trechos com histórico elevado de acidentes graves.
- Investir em monitoramento em tempo real para rápida resposta em acidentes.

Página 3 - Gerado em: 02/07/2025 14:40

Sumário

- 1. Coleta, Limpeza e Pré-processamento
- 2. Análise Estatística e Visualização
- 3. Modelagem e Machine Learning
- 4. Interpretação e Conclusões

Página 4 - Gerado em: 02/07/2025 14:40

1. Coleta, Limpeza e Pré-processamento

Os dados foram carregados a partir de arquivos CSV contendo informações sobre acidentes reportados pela Polícia Rodoviária Federal (PRF).

Foram tratados valores nulos, convertidas colunas para tipos adequados e criadas novas variáveis, como 'gravidade' e 'dia da semana'.

O dataset limpo foi salvo como 'df_limpo.csv'.

2. Análise Estatística e Visualização

Realizamos testes de normalidade, análise de correlação e visualizações como histograma, boxplot, série temporal e gráfico de dispersão.

Também fizemos um teste t para verificar diferença significativa no número de mortos entre finais de semana e dias úteis.

Página 5 - Gerado em: 02/07/2025 14:40

Página 6 - Gerado em: 02/07/2025 14:40

Página 7 - Gerado em: 02/07/2025 14:40

Acidentes com Mortes

3. Modelagem e Machine Learning

Foi aplicada classificação binária para prever se um acidente teve gravidade alta (mortos + feridos graves >= 2).

Modelos utilizados:

- Regressão Logística
- Random Forest

A validação cruzada (5-fold) foi usada para avaliar a performance dos modelos.

Além disso, um Grid Search foi aplicado para encontrar os melhores parâmetros da Random Forest.

Página 8 - Gerado em: 02/07/2025 14:40

3.1 Resultados Detalhados da Análise

=== LIMPEZA ===

Dataset limpo salvo como 'df_limpo.csv'

=== NORMALIDADE ===

Teste de Normalidade:

mortos: stat=0.1955, p=0.0000 Não normal

feridos_graves: stat=0.4455, p=0.0000 Não normal

gravidade: stat=0.4752, p=0.0000 Não normal

=== TTEST ===

Teste t:

T=-7.8197, p=0.0000

Página 9 - Gerado em: 02/07/2025 14:40

=== AUSENTES_ANTES ===					
Verificando valores ausentes nas features:					
mortos 0					
feridos_graves 0					
latitude 1562200					
longitude 1562200					
mes 1694473					
gravidade_alta 0					
=== AUSENTES_DEPOIS ===					
Valores ausentes após preenchimento:					
mortos 0					
feridos_graves 0					
latitude 0					
longitude 0					
mes 0					
gravidade_alta 0					
=== LINHAS_RESTANTES ===					
Linhas restantes após dropna: 2013757					
=== LOGISTICA ===					
Regressão Logística:					
precision recall f1-score support					
0 1.00 1.00 1.00 581042					
1 1.00 1.00 1.00 23086					

Página 10 - Gerado em: 02/07/2025 14:40

accuracy		1.00 604128			
macro avg	1.00	1.00	1.00	604128	
weighted avg	1.00	1.00	1.00	604128	

=== RF ===

Random Forest:

precision recall f1-score support

0 1.00 1.00 1.00 581042 1 1.00 1.00 1.00 23086

accuracy 1.00 604128
macro avg 1.00 1.00 1.00 604128
weighted avg 1.00 1.00 1.00 604128

=== VALIDACAO ===

Validação Cruzada:

Logística: 1.000 ± 0.000

Random Forest: 1.000 ± 0.000

=== MELHOR_MODELO ===

Melhor Random Forest: {'max_depth': 10, 'n_estimators': 50}

=== INTERPRETACAO ===

Página 11 - Gerado em: 02/07/2025 14:40

Interpretação dos Resultados:
Acurácia média: Logística = 1.000, RF = 1.000
Variáveis mais importantes: feridos_graves, mortos
=== LIMITACOES ===
Limitações:
- Não usamos variáveis categóricas (ex: tipo_acidente)
- Classes desbalanceadas
=== MELHORIAS ===

Melhorias:

- Incluir mais variáveis (clima, tipo acidente)
- Testar SMOTE, XGBoost, LightGBM

4. Interpretação e Conclusões

A Random Forest teve desempenho superior em relação à Regressão Logística.

As variáveis com maior importância foram: 'feridos_graves' e 'mortos'.

Limitações:

- Não foram consideradas variáveis categóricas como tipo de acidente, clima, etc.
- Dados desbalanceados podem impactar a performance.

Melhorias Futuras:

- Adicionar variáveis categóricas
- Usar técnicas de balanceamento como SMOTE
- Testar outros modelos como XGBoost ou LightGBM