Prelab 7 and 8

7/3/22

Jaiden Gann

Part 1: Lab 7

Table

V ₁ = 4	V ₂	I _B	Ic	I _E	V_{CE}	β
	0	11.5 uA	7.94 uA	3.56 uA	4	0.715315
	4		730	741	8	65.76577
	8		768	779	12	69.18919
	12		806	817	16	72.61261
	24		919	930	28	82.79279
	30	11.1	987 mA	975 uA	34	88.91892
	50		1.17	1.18	54	105.4054
	75		1.40	1.41	79	126.1261
	100		1.64	1.65	104	147.7477
	150		2.11	2.12	154	190.0901
	202	11.1	2.60	2.61	206	234.2342
V ₁ = 6	0	18.1 uA	10.5 uA	7.61 uA	6	0.589888
	4		1.24 mA	1.25 mA	10	69.66292
	8	17.8	1.30	1.32	14	73.03371
	12		1.36	1.38	18	76.40449
	24		1.55	1.57	30	87.07865
	30		1.65	1.67	36	92.69663
	50		1.97	1.99	56	110.6742
	75		2.37	2.39	81	133.1461
	100		2.77	2.79	106	155.618
	150		3.57	3.58	156	200.5618
	200		4.37	4.38	206	245.5056
V ₁ = 8	0	24.7 uA	12.3 uA	12.5 uA	8	0.497976
	8		1.85 mA	1.87 mA	16	74.89879
	16		2.03	2.05	24	82.18623
	24		2.21	2.23	32	89.47368
	30		2.35	2.37	38	95.1417
	50		2.80	2.83	58	113.3603
	75		3.37	3.39	83	136.4372
	100		3.94	3.96	108	159.5142
	150		5.07	5.10	158	205.2632
	198		6.19	6.16	206	250.6073
V ₁ = 10	0	31.4 uA	13.6 uA	17.8 uA	10	0.43871
	5	31	2.31 mA	2.34 mA	15	74.51613
	10		2.46	2.49	20	79.35484
	30		3.05	3.08	40	98.3871

50	3.64	3.67	60	117.4194
75	4.38	4.41	85	141.2903
100	5.12	5.15	110	165.1613
150	6.59	6.63	160	212.5806
196	7.95	7.98	206	256.4516

$$V_{CE} = V_{CB} + V_{BE} -> V_2 + V_1$$

$$V_{CE} = V_{CC} - I_C R_C$$

Multisim

Figure 1. Lab 7 circuit

Plot

I have no idea as of right now how to calculate and find the q point. I also don't think my plot is correct.

Figure 2. Characteristic curves

Part 2: Lab 8

Figure 3. BJT Amplification Common Collector in Multisim

Table

F(HZ)	V _{OUT}	Gain(db)		
10	0	-4.967		
30	clipped			
60	clipped			
100	2.827 mV	0.005654		
200	5.563 mV	0.011126		
1k	28.378 mV	0.056		
2k	56.438 mV	0.112876		
5k	141.525 mV	0.28305		
10k	282.783 mV	0.565566		
15k	425.865 mV	0.85173		
20k	565.777 mV	1.131554		
50k	1.425	2.85		
75k	2.125	4.25		
100k	2.809	5.618		
150k	3.952	7.904		
200k	4.418	8.836		
500k	4.458	8.916		
750k	Clipped (same as above)	8.916		
1M	clipped	8.916		
1.5M	Clipped	8.916		
2M	clipped	8.916		

Gain: V_{out}/500mV

At 200k Hz the waveform starts to become clipped and further gets clipped from then on

Plot

Figure 4. Plot of Gain

Output Waveforms

Oscilloscope-XSC1

Figure 5. 10 Hz waveform Output

Figure . 2M Hz Output Waveform