National University of Computer and Emerging Sciences, Lahore Campus

Course Name: **Degree Program: Exam Duration:** Paper Date:

Section:

Exam Type:

Database Systems BS (CS/SE/DS) 3 Hours

Thu 15-Dec-2022

ALL

Final Exam

Course Code: CS2005 Semester: **Total Marks:** 90 Weight

Fall 2022 50% 12

Page(s): **Total Questions:**

Instruction/Notes:

Scratch sheet can be used for rough work however, all the questions and steps are to be shown on question paper. No extra/rough sheets should be submitted with question paper.

You will not get any credit if you do not show proper working, reasoning and steps as asked in question statements.

CLO No.	2	3	3			(6			
Q. No.	1	2	3	4	5	6	7	8	9	Total
Marks										

Roll No:	Section:	Name:	

- **Q1.** (2+3+3+2=10 points)
- **a.** Discuss the atomic and durable properties of transactions.
- Why concurrency control is needed, and give examples of lost update problem and dirty read problem.
- How does a category subclass differ from a regular shared subclass? Illustrate your answer with example.
- Identify the difference between user-defined and attribute-defined specializations.

See lecture on Transection

Roll No

Roll	No.		
งบแ	INO.		

Q2. (10 points) Map the following ER/EER Diagram into a relational model and specify all the constraints including primary key, foreign key, not null, and unique.

Roll No.	
----------	--

Q3. (10 points) Consider the following database. The Works table records the hours an employee spends working for a department each week; the mgreno column identifies the manager of a department.

Employee

	Linployee				
<u>eno</u>	ename	age			
111	Isbah	35			
222	Khadija	42			
333	Izaan	34			
444	Tahreem	32			
555	Alia	50			

Department

<u>did</u>	dname	mgreno	budget
1	Hardware	111	48000
2	Firmware	111	45000
3	Software	333	55000
4	Network	555	35000

Works

empno	deptid	hours	salary
111	1	20	1000
111	2	20	1000
222	1	10	500
222	2	20	1000
222	3	5	250
222	4	5	250
333	2	10	500
333	3	30	1500
444	2	20	1000
444	3	20	1000
444	4	20	1000
555	4	40	2000

For each of the following Query against the above database, show the resulting table.

- a. R1 \leftarrow Π_{eno} (Employee) ((Π_{eno} (Employee) Π_{mgreno} (Department)) Result \leftarrow Works \bowtie $_{empno=eno}$ R1
- SELECT did, dname, SUM(salary) AS TotalSalary
 FROM department D JOIN works W ON did=deptid JOIN employee E ON empno=eno
 WHERE hours >=20 GROUP BY did, dname;

Ans:

a.

R1

Eno	
111	
333	
555	

Result

empno	deptid	hours	salary	eno
111	1	20	1000	111
111	2	20	1000	111
333	2	10	500	333
333	3	30	1500	333
555	4	40	2000	555

b.

did	dname	TotalSalary
1	Hardware	1000
2	Firmware	3000
3	Software	2500
4	Network	3000

Roll No.	

- **Q4.** (20 points) Write the following Queries in SQL and Relation Algebra against the above database schema given in Question#3:
- **a.** Retrieve the numbers, names and ages of all employees who work in both the Firmware department and the Software department.
- **b.** Retrieve the name and age of the manager of the department with the largest budget.

Ans:

a. SELECT did, dname, age

FROM department D JOIN works W ON did=deptid JOIN employee E ON eno=empno WHERE dname='Firmware' INTERSECT

SELECT did, dname, age

FROM department D JOIN works W ON did=deptid JOIN employee E ON eno=empno WHERE dname='Software';

b. SELECT ename, age FROM employee

```
WHERE eno = (SELECT mgreno FROM department
WHERE budget = (SELECT MAX(budget) FROM department)
);
```

Convert SQL to RA

Roll No

Roll No.	

Q5. (5 points) Consider two sets of FDs, F and G, $F = \{CD \rightarrow A, AD \rightarrow E, BD \rightarrow E, A \rightarrow D, B \rightarrow C\}$ and $G = \{CD \rightarrow A, A \rightarrow DE, B \rightarrow C\}$. Are F and G equivalent? Prove it.

Both are equivalent

Roll No.	
----------	--

Q6. (6+4=10 points) Consider the relation schema R (A, B, C, D, E), with FDs $F = \{AB \rightarrow C, BC \rightarrow E, BD \rightarrow E, C \rightarrow B, D \rightarrow A\}$.

- **a.** Find a minimal cover of F (i.e. F_c). Show each step.
- **b.** Determine all possible keys (i.e. minimal of super key). Prove it.

Ans:

a. $F_c = \{AB \rightarrow C, BC \rightarrow E, BD \rightarrow E, C \rightarrow B, D \rightarrow A\}$ OR $F_c = \{AB \rightarrow C, C \rightarrow E, C \rightarrow B, D \rightarrow A\}$ b. Keys are $\{BD\}$ and $\{CD\}$.

Roll No.	
MOII NO.	

Q7. (5 points) Consider a relation schema R (A, B, C, D, E), with FDs F = {A→BC, CD→E, B→D, E→A}. Suppose {A}, {BC}, {CD}, and {E} are the four possible keys of this relation. Identify the best normal form that R satisfies (1NF, 2NF, 3NF, or BCNF). Justify your answer. If R is not in BCNF, decompose it into a set of BCNF relations and show your steps. List clearly complete set of BCNF schema relations with all keys and FDs and indicate which dependencies are not preserved.

Ans: HNF= 3NF; FD3: B→D violate BCNF.

BCNF relation schemas are: R1(A B C E); R2(\underline{B} D) and FD2: CD \rightarrow E is lost.

Roll No.	
----------	--

Q8. (5 points) Consider a relation schema R (A, B, C, D), with FDs $F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow A\}$. Suppose $\{AB\}$, $\{BC\}$, and $\{CD\}$ are the three possible keys of this relation. State which of the following decompositions of R relation are lossless decomposition. Prove it.

- a. R1(A, B), R2(C, D), and R3(D, A)
- **b.** R1(B, C), R2(C, D), and R3(D, A)

Ans: a. Not Lossless b. Lossless

Roll No.	
----------	--

Q9. (15 points) As a large service organization, Mountain View community hospital depends on many persons for its continued success. These are physicians, patients, technicians, and nurses. Each person is given a unique number to identify them and has a name, an address, date of birth and contact. A patient has one physician responsible for him/her. The date and comments made during each session with a physician made are recorded. A Nurse is assigned to one care-centre in the hospital. Attributes of care-centre are name (identifier) and location. A nurse has the attribute certificate, which indicates his/her qualifications (RN, LPN etc). A care-centre may have one or more nurses assigned to it. Also, for each care-centre, one of the nurses assigned to that care-centre is appointed nurse in charge. A technician is assigned to one or more laboratories that are identified by a labCode, and have a name, and location. A laboratory must have at least one technician assigned to it and may have any number of technicians assigned. A technician may run one or more tests run on a patient. There may be no beds assigned to a care-centre, or a care-centre may have one or more beds assigned to it. The only attribute of bed is bed id (identifier). Bed id is a composite attribute, with components bed number and room number. A patient may be assigned to a bed if admitted in a care-centre. A bed may or may not have a patient assigned to it at a given time.

Draw an ER/EER diagram (using notation discussed in lectures) for the above scenario. Specify all constraints that should hold on to the database and state any assumptions you make.

Roll No.