Machine Learning

Model Evaluation

Tools

- There are a few main tools that are available to test a classification model's quality:
 - Confusion matrices (or truth tables)
 - Lift charts
 - ROC (receiver operator characteristic) curves
 - AUC (area under the curve)

Confusion Matrix / Contingency Table

gold standard labels

		gold positive	gold negative
system output labels	system positive	TP Correct result	FP Unexpected result
	system negative	FN Missing result	TN Correct absence of result

Evaluation Metrics

gold standard labels

		gold positive	gold negative	
system	system positive	TP Correct result	FP Unexpected result	$\mathbf{precision}(\mathbf{P}) = \frac{\overline{TP}}{\overline{TP} + \overline{FP}}$
output labels	system negative	FN Missing result	TN Correct absence of result	
		$sensitivity = \frac{TP}{TP + FN}$ $recall (R)$	$specificity = \frac{TN}{TN + FP}$	$accuracy = \frac{TP + TN}{TP + FP + TN + FN}$

F-measure

- There are many ways to define a single metric that incorporates aspects of both precision and recall.
- The simplest of these combinations is the F-measure defined as:

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

• The β parameter differentially weights the importance of recall and precision, based perhaps on the needs of an application.

F-measure

• F-measure defined as:

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

- Values of $\beta > 1$ favor recall, while values of $\beta < 1$ favor precision.
- When $\beta=1$, precision and recall are equally balanced; this is the most frequently used metric, and is called $F_{\beta}=1$ or just F_{1} :

$$F_1 = \frac{2PR}{P+R}$$

Model Evaluation

Output of a classifier for email spam filtering.

SI.	Target	Prediction
1	Spam	Not Spam
2	Spam	Spam
3	Not Spam	Not Spam
4	Spam	Spam
5	Not Spam	Spam
6	Not Spam	Not Spam
7	Not Spam	Not Spam
8	Spam	Spam
9	Spam	Not Spam
10	Not Spam	Not Spam

Model Evaluation

• Calculate Sensitivity, Specificity, Precision, Recall, Accuracy, F1 score of this email spam filtering classifier.

Sensitivity or Recall (R)

gold standard labels

		gold positive	gold negative	
system	system positive	TP Correct result 3	FP Unexpected result 1	$\mathbf{precision}(\mathbf{P}) = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$
output labels	system negative	FN Missing result 2	TN Correct absence of result 4	
		$sensitivity = \frac{TP}{TP + FN}$ $recall (R)$	$specificity = \frac{TN}{TN + FP}$	$accuracy = \frac{TP + TN}{TP + FP + TN + FN}$

• Sensitivity or Recall (R) =
$$\frac{TP}{TP+FN} = \frac{3}{3+2} = \frac{3}{5} = 0.6$$

Specificity

gold standard labels

		gold positive	gold negative	
system	system positive	TP Correct result 3	FP Unexpected result 1	$\mathbf{precision}(\mathbf{P}) = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$
output labels	system negative	FN Missing result 2	TN Correct absence of result 4	
		$sensitivity = \frac{TP}{TP + FN}$ $recall (R)$	$specificity = \frac{TN}{TN + FP}$	$accuracy = \frac{TP + TN}{TP + FP + TN + FN}$

• Specificity =
$$\frac{\text{TN}}{\text{TN+FP}} = \frac{4}{4+1} = \frac{4}{5} = 0.8$$

Precision

gold standard labels

		gold positive	gold negative	
system	system positive	TP Correct result 3	FP Unexpected result 1	$\mathbf{precision}(\mathbf{P}) = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$
output labels	system negative	FN Missing result 2	TN Correct absence of result 4	
		$sensitivity = \frac{TP}{TP + FN}$ $recall (R)$	$specificity = \frac{TN}{TN + FP}$	$accuracy = \frac{TP + TN}{TP + FP + TN + FN}$

• Precision (P) =
$$\frac{\text{TP}}{\text{TP+FP}} = \frac{3}{3+1} = \frac{3}{4} = 0.75$$

Accuracy

gold standard labels

		gold positive	gold negative	
system	system positive	TP Correct result 3	FP Unexpected result 1	$\mathbf{precision}(\mathbf{P}) = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$
output labels	system negative	FN Missing result 2	TN Correct absence of result 4	
		$sensitivity = \frac{TP}{TP + FN}$ $recall (R)$	$specificity = \frac{TN}{TN + FP}$	$accuracy = \frac{TP + TN}{TP + FP + TN + FN}$

• Accuracy =
$$\frac{\text{TP+TN}}{\text{TP+FP+TN+FN}} = \frac{3+4}{3+1+4+2} = \frac{7}{10} = 0.7$$

F-measure

gold standard labels

		gold positive	gold negative	
system	system positive	TP Correct result 3	FP Unexpected result 1	$\mathbf{precision}(\mathbf{P}) = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$
output labels	system negative	FN Missing result 2	TN Correct absence of result 4	
		$\begin{aligned} \textbf{sensitivity} &= \frac{\text{TP}}{\text{TP} + \text{FN}} \\ \textbf{recall (R)} \end{aligned}$	$specificity = \frac{TN}{TN + FP}$	$accuracy = \frac{TP + TN}{TP + FP + TN + FN}$

•

• F-measure for
$$\beta = 1$$
, $F_1 = \frac{2PR}{P+R} = \frac{2 \times 0.75 \times 0.6}{0.75 + 0.6} = \frac{0.9}{1.35} = 0.67$

- A Receiver Operating Characteristic (ROC) curve is a graphical representation of a model's ability to distinguish between two classes (positive and negative) at different classification thresholds.
- It plots the True Positive Rate (sensitivity) against the False Positive Rate (1 specificity).

F-measure

gold standard labels

		gold positive	gold negative	
system	system positive	TP Correct result 3	FP Unexpected result 1	$\mathbf{precision}(\mathbf{P}) = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$
output labels	system negative	FN Missing result 2	TN Correct absence of result 4	
		$sensitivity = \frac{TP}{TP + FN}$ $recall (R)$	$specificity = \frac{TN}{TN + FP}$	$accuracy = \frac{TP + TN}{TP + FP + TN + FN}$

- ◆ True Positive Rate (TPR) = Sensitivity or Recall
- False Positive Rate (FPR) = $1 \text{Specificity} = \frac{\text{FP}}{\text{FP+TN}}$

Example of a ROC Curve

- We would like to classify, based on a screening, whether a person has cancer or not.
- This classification is done with the help of a certain blood value, where high values indicate cancer.
- The question now is which value we choose as the classification threshold. So from which value do we predict a disease?
- For this, we obtain data from 10 people about how high the blood value is and whether or not the disease is present.

- We can now calculate for each threshold what the True Positive Rate and the False Positive Rate are.
- These two values are plotted on the ROC curve.
- The True Positive Rate is plotted on the *y-axis* and the False Positive Rate on the *x-axis*.

 The curve visually illustrates the trade-off between correctly identifying positive cases and incorrectly identifying negative cases.

• At the marked point below, for example, 80% of the diseased people were correctly classified as "diseased" and 20% of the healthy people

were incorrectly classified as "diseased".

• Using the ROC curve, we can compare different classification methods. A classification model is better the higher the curve is.