Linguaggi Formali e Traduttori

3.5 Relazione tra automi a pila e grammatiche libere

- Sommario
- Relazione tra CFG e PDA
- Osservazione
- Automi a pila deterministici
- Esempio: riconoscitore di stringhe wcw^R
- DPDA e linguaggi regolari
- DPDA e grammatiche ambigue

È proibito condividere e divulgare in qualsiasi forma i materiali didattici caricati sulla piattaforma e le lezioni svolte in videoconferenza: ogni azione che viola questa norma sarà denunciata agli organi di Ateneo e perseguita a termini di legge.

Sommario

- Studiamo la relazione tra CFG e PDA.
- Definiamo una variante deterministica dei PDA.
- Mostriamo che i PDA deterministici sono in grado di riconoscere tutti i linguaggi regolari e un sottoinsieme dei linguaggi liberi non inerentemente ambigui.

Relazione tra CFG e PDA

Teorema

- 1. Per ogni CFG G, esiste un PDA P tale che N(P)=L(G).
- 2. Per ogni PDA P, esiste una CFG G tale che L(G)=N(P).

Intuizione per 1

Data G = (V, T, Q, S), definiamo un PDA che simuli le derivazioni a sinistra di G. Sia P il PDA $(\{q\}, T, V \cup T, \delta, q, S, \emptyset)$ dove δ è definita come segue:

$$egin{array}{lll} \delta(q,arepsilon,A) &=& \{(q,eta)\mid A oeta\in Q\} & ext{per ogni }A\in V \ \delta(q,a,a) &=& \{(q,arepsilon)\} & ext{per ogni }a\in T \end{array}$$

Per concludere la dimostrazione è sufficiente mostrare che

$$lpha \Rightarrow_{lm}^* w \Leftrightarrow (q,w,lpha) \vdash^* (q,arepsilon,arepsilon)$$

in quanto, come caso particolare, avremo

$$G$$
 genera $w \Leftrightarrow S \Rightarrow^* w \Leftrightarrow (q, w, S) \vdash^* (q, \varepsilon, \varepsilon) \Leftrightarrow P$ accetta w per pila vuota

I dettagli della dimostrazione si trovano nel libro di testo.

Osservazione

Richiamando la funzione di transizione definita nella slide precedente:

$$egin{array}{lll} \delta(q,arepsilon,A) &=& \{(q,eta)\mid A oeta\in Q\} & ext{per ogni }A\in V \ \delta(q,a,a) &=& \{(q,arepsilon)\} & ext{per ogni }a\in T \end{array}$$

- ullet Il PDA che riconosce il linguaggio generato da una CFG fa uso chiave del **non determinismo** per "indovinare" la produzione giusta da usare per riscrivere una variabile $m{A}$
- I risultati di equivalenza tra PDA e CFG hanno una valenza principalmente teorica, ma non aiutano molto a ottenere riconoscitori efficienti per linguaggi liberi
- Consideriamo PDA deterministici

Automi a pila deterministici

Intuizione

Non devono esserci "scelte" possibili a partire dalla stessa D.I.

Definizione

Un automa a pila deterministico (DPDA, da Deterministic PushDown Automaton) è un PDA $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ in cui, per ogni $q\in Q,a\in \Sigma$ e $X\in \Gamma$, l'insieme $\delta(q,a,X)\cup\delta(q,\varepsilon,X)$ contiene al massimo un elemento.

Note

- A parità di stato, simbolo letto e simbolo sulla pila, un DPDA può fare al massimo una mossa.
- L'insieme $\delta(q,a,X)\cup\delta(q,\varepsilon,X)$ può essere vuoto, nel qual caso il DPDA rifiuta definitivamente la stringa, senza che vi siano altre possibilità di riconoscerla.

Esempio: riconoscitore di stringhe wcw^R

- È possibile dimostrare che non esiste un DPDA in grado di riconoscere il linguaggio delle stringhe della forma ww^R . Intuizione: il PDA deve "scommettere" sul punto in cui finisce il prefisso w e inizia il suffisso w^R .
- Separando con una "sentinella" c il prefisso w dal suffisso w^R , il linguaggio delle stringhe della forma wcw^R diventa riconoscibile dal DPDA seguente

$$(\{q_0,q_1,q_2\},\{0,1,c\},\{0,1,Z_0\},\delta,q_0,Z_0,\{q_2\})$$

• Notare che il comportamento è deterministico anche nello stato q_1 , in quanto la transizione ε è possibile solo se in cima alla pila c'è Z_0 .

DPDA e linguaggi regolari

Teorema

Ogni linguaggio regolare è riconosciuto da un DPDA.

Dimostrazione

Sia $A=(Q,\Sigma,\delta_A,q_0,F)$ un DFA che riconosce un certo linguaggio regolare L. Definiamo un PDA strutturalmente identico ad A che <u>non usa la pila</u>. Sia

$$P \stackrel{\mathsf{def}}{=} (Q, \varSigma, \{Z_0\}, \delta_P, q_0, Z_0, F)$$

dove

$$egin{array}{lll} \delta_P(q,a,Z_0) &=& \{(\delta_A(q,a),Z_0)\} & ext{per ogni } q \in Q ext{ e } a \in \Sigma \ \delta_P(q,arepsilon,Z_0) &=& \emptyset & ext{per ogni } q \in Q \end{array}$$

È facile mostrare che $(q_0, w, Z_0) \vdash^* (\hat{\delta}_A(q_0, w), \varepsilon, Z_0)$ da cui segue il risultato.

DPDA e grammatiche ambigue

Teorema

Per ogni DPDA P, esiste una grammatica libera <u>non ambigua</u> G tale che L(G)=N(P).

Osservazione

Il viceversa del risultato qui sopra **non vale**. In particolare, esistono grammatiche non ambigue il cui linguaggio non è riconosciuto da alcun DPDA. Ad esempio

$$S
ightarrow arepsilon \mid 0S0 \mid 1S1$$

è non ambigua e genera il linguaggio $\{ww^R \mid w \in \{0,1\}^*\}$ che non è riconoscibile da un DPDA.

Conclusione

La famiglia dei linguaggi riconoscibili da DPDA <u>è inclusa in</u> – ma <u>non coincide con</u> – quella dei linguaggi generabili da grammatiche libere non ambigue.

Potere espressivo dei formalismi visti fino ad ora

- DFA = NFA = ε -NFA = RE
- DFA ⊆ DPDA ⊆ CFG non ambigue ⊆ CFG = PDA
- Non abbiamo ancora un algoritmo per ottenere il DPDA quando esiste