

CSE 4082 - PROJECT 1

Furkan Kuse 150117041

Zeynep Alıcı 150119517

# **CONTENTS**

| Section 1: The Output of the Example Maze     | 2 |
|-----------------------------------------------|---|
| Section 2: The Output of the Maze We Designed | 3 |
| Section 3: Description of the Project         |   |

# **Section 1: The Output of the Example Maze**



#### a. Depth First Search

Cost of the founded solution: 29 The number of expanded nodes: 24 The maximum size of the frontier: 8 The maximum size of the explored set: 24

 $Solution\ path:\ (2,3)-(1,3)-(1,2)-(1,1)-(2,1)-(2,2)-(3,2)-(3,1)-(4,1)-(5,1)-(5,2)-(5,3)-(6,3)-(6,2)-(7,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)$ 

(8,3)-(8,4)-(8,5)-(8,6)-(7,6)

## b. Breadth First Search

Cost of the founded solution: 29 The number of expanded nodes: 37 The maximum size of the frontier: 7 The maximum size of the explored set: 37

Solution path: (2,3)-(1,3)-(1,2)-(1,1)-(2,1)-(2,2)-(3,2)-(4,2)-(4,3)-(5,3)-(6,3)-(7,3)

## c. Iterative Deepening

Cost of the founded solution: 29 The number of expanded nodes: 300 The maximum size of the frontier: 8 The maximum size of the explored set: 24

 $Solution\ path:\ (2,3)-(1,3)-(1,2)-(1,1)-(2,1)-(2,2)-(3,2)-(3,1)-(4,1)-(5,1)-(5,2)-(5,3)-(6,3)-(6,2)-(7,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)$ 

(8,3)-(8,4)-(8,5)-(8,6)-(7,6)

#### d. Uniform Cost Search

Cost of the founded solution: 18 The number of expanded nodes: 46 The maximum size of the frontier: 7 The maximum size of the explored set: 46

 $Solution\ path:\ (2,3)-(1,3)-(1,2)-(1,1)-(2,1)-(2,2)-(3,2)-(3,1)-(4,1)-(5,1)-(6,1)-(7,1)-(8,1)-(8,2)-(8,3)-(8,4)-(8,2)-(8,3)-(8,4)-(8,2)-(8,3)-(8,4)-(8,2)-(8,3)-(8,4)-(8,2)-(8,3)-(8,2)-(8,3)-(8,2)-(8,3)-(8,2)-(8,3)-(8,2)-(8,3)-(8,2)-(8,3)-(8,2)-(8,3)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)-(8,2)$ 

(8,5)-(8,6)-(7,6)

## e. Greedy Best First Search

Cost of the founded solution: 29
The number of expanded nodes: 32
The maximum size of the frontier: 6
The maximum size of the explored set: 32

Solution path: (2,3)-(1,3)-(1,2)-(1,1)-(2,1)-(2,2)-(3,2)-(4,2)-(4,3)-(5,3)-(6,3)-(7,3)

#### f. A\* Heuristic Search

Cost of the founded solution: 18 The number of expanded nodes: 45 The maximum size of the frontier: 6 The maximum size of the explored set: 45

Solution path: (2,3)-(1,3)-(1,2)-(1,1)-(2,1)-(2,2)-(3,2)-(3,1)-(4,1)-(5,1)-(6,1)-(7,1)-(8,1)-(8,2)-(8,3)-(8,4)-

(8,5)-(8,6)-(7,6)

# Section 2: The Output of the Maze We Designed



# a. Depth First Search

Cost of the founded solution: 13 The number of expanded nodes: 4 The maximum size of the frontier: 6 The maximum size of the explored set: 4 Solution path: (3,3)-(3,2)-(2,2)-(2,1)-(1,1)

#### b. Breadth First Search

Cost of the founded solution: 4 The number of expanded nodes: 18 The maximum size of the frontier: 9 The maximum size of the explored set: 18 Solution path: (3,3)-(4,3)-(4,4)-(5,4)-(5,5)

#### c. Iterative Deepening

Cost of the founded solution: 13
The number of expanded nodes: 10
The maximum size of the frontier: 6
The maximum size of the explored set: 4
Solution path: (3,3)-(3,2)-(2,2)-(2,1)-(1,1)

#### d. Uniform Cost Search

Cost of the founded solution: 4 The number of expanded nodes: 16 The maximum size of the frontier: 11 The maximum size of the explored set: 16 Solution path: (3,3)-(2,3)-(2,2)-(2,1)-(1,1)

# e. Greedy Best First Search

Cost of the founded solution: 4
The number of expanded nodes: 4
The maximum size of the frontier: 7
The maximum size of the explored set: 4
Solution path: (3,3)-(4,3)-(4,4)-(5,4)-(5,5)

## f. A\* Heuristic Search

Cost of the founded solution: 4 The number of expanded nodes: 9 The maximum size of the frontier: 9 The maximum size of the explored set: 9 Solution path: (3,3)-(4,3)-(4,4)-(5,4)-(5,5)

## **Section 3: Description of the Project**

1. **GraphSearch**: The graph search algorithm is implemented in this class.

## a. Features:

strategy: It is an instance of one of the classes of search algoritms defined below.

grid: Two dimensional array for input maze

cost: Integer value for final cost of the solution

exploredSet: Array to stored nodes of the explored set

lastNode: An instance of Node class to store last visited node

goalNodes: : Array to store goal nodes

maxDepth: Integer value to define maximum depth for iterative deepening search

currentDepth: Integer value to check current depth for iterative deepening search

IDS\_exploredSet: Explored set of iterative deepening search
maxLenOfExploredSet: Maxmimum length of the explored set

#### b. Functions

expandNode(node): It returns accessible nodes from the input node.

**checkInNotFrontierOrExploredSet(self, nextNode):** It returns true if input node not in explored set or frontier; otherwise returns false.

**search():** Graph search algorithm is implemented on this function.

printPath(): It prints the solution path.

printExploredSet(): It prints explored set.

printIterativeDeepeningExploredSet(): It prints explored set for iterative

deepening.

# 2. Node:

## a. Features:

**status:** It can be N for normal, G for goal, T for trap nodes.

eastWall, westWall, northWall, southWall: Boolen values indicates

whether there is a wall east, west, north an south of the node or not

verticalIndex: Vertical index of node

horizontalIndex: Horizontal index of node

cost: Cost of the node from initial state

**successor:** Last node on the solution path before coming current node **heuristicCost:** Heuristic function value from the node to goal state

**3. DFS:** It is a strategy class for depth-first search.

#### a. Features

frontier: It is LIFO queue for graph search.

maxLenFrontier: It is an integer value to store maximum length of the frontier.

## b. Functions

**operate():** It pops a node from the frontier as regarding the type of the frontier

append(): It push a node to frontier

**getLengthOfTheFrontier():** It returns the length of the frontier.

getAllFrontier(): It returns the frontier as a list.

# **4. BFS**: It is a strategy class for best-first search.

#### a. Features

frontier: It is FIFO queue for graph search.

maxLenFrontier: It is an integer value to store maximum length of the frontier.

### b. Functions

operate(): It pops a node from the frontier as regarding the type of the frontier

append(): It push a node to frontier

getLengthOfTheFrontier(): It returns the length of the frontier.

getAllFrontier(): It returns the frontier as a list.

# **5. IterativeDeepeningSearch:** It is a strategy class for iterative deepening search.

## a. Features

frontier: It is LIFO queue for graph search.

maxLenFrontier: It is an integer value to store maximum length of the frontier.

#### b. Functions

operate(): It pops a node from the frontier as regarding the type of the frontier

append(): It push a node to frontier

getLengthOfTheFrontier(): It returns the length of the frontier.

getAllFrontier(): It returns the frontier as a list.

## **6. UniformCostSearch:** It is a strategy class for uniform cost search.

# a. Features

frontier: It is priority queue for graph search.

maxLenFrontier: It is an integer value to store maximum length of the frontier.

## b. Functions

operate(): It pops a node from the frontier as regarding the type of the frontier

append(): It push a node to frontier

getLengthOfTheFrontier(): It returns the length of the frontier.

getAllFrontier(): It returns the frontier as a list.

# **7. GreedyBestFirstSearch**: It is a strategy class for greedy best search.

#### a. Features

frontier: It is priority queue for graph search.

maxLenFrontier: It is an integer value to store maximum length of the frontier.

#### b. Functions

calculateHeuristicValues(grid, goalSquares): It uses Manhattan distance as

heuristic function and calculates and updates heuristic costs of the nodes.

**operate():** It pops a node from the frontier as regarding the type of the frontier

append(): It push a node to frontier

getLengthOfTheFrontier(): It returns the length of the frontier.

getAllFrontier(): It returns the frontier as a list.

## **8. A\_StarSearch:** It is a strategy class for A\* search.

## a. Features

frontier: It is priority queue for graph search.

maxLenFrontier: It is an integer value to store maximum length of the

frontier.

#### b. Functions

calculateHeuristicValues(grid, goalSquares): It uses Manhattan distance as heuristic function and calculates and updates heuristic costs of the nodes.

**operate():** It pops a node from the frontier as regarding the type of the frontier

append(): It push a node to frontier

getLengthOfTheFrontier(): It returns the length of the frontier.

getAllFrontier(): It returns the frontier as a list.