11464: INFORMATION SYSTEMS SECURITY

Data Encryption Standard

By

Mustafa Al-Fayoumi

3

Simplified – Data Encryption Standard

S-DES

Simplified DES (S-DES)

- Cipher using principles of DES
- Developed for education (not real world use)
- Input (plaintext) block: 8-bits
- Output (ciphertext) block: 8-bits
- □ Key: 10 bits
- □ Round: 2
- Round keys generated using permutations and left shifts
- Encryption: Initial permutation, Round function, Switch halves.
- Decryption: Same as encryption, except round key used in opposite order

From DES to S-DES key

- From DES to S-DES key
 - S-DES
 - 10-bit key is used
 - From which two 8-bit keys are calculated
 - DES
 - 56-bit key is used
 - From which 16 -48-bit keys are calculated

S-DES Algorithm

S-DES Operations

P10 (permutate)

Input:

1 2 3 4 5 6 7 8 9 10

Output:

3 5 2 7 4 10 1 9 8 6

P8 (select and permutate)

Input:

1 2 3 4 5 6 7 8 9 10

Output:

6 3 7 4 8 5 10 9

P4 (permutate)

Input:

1 2 3 4

Output:

2 4 3 1

S-DES Operations

EP (Expand and permutate)

Input: 1 2 3 4

Output: 4 1 2 3 2 3 4 1

□ IP (Initial permutate)

Input: 1 2 3 4 5 6 7 8

 Output:
 2
 6
 3
 1
 4
 8
 5
 7

□ IP⁻¹ (Inverse pf IP)

Input: 1 2 3 4 5 6 7 8

 Output:
 4
 1
 3
 5
 7
 2
 8
 6

S-DES Operations

□ LS-1 (Left Shift 1 Position)

 Input:
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 Output:
 2
 3
 4
 5
 1
 7
 8
 9
 10
 6

LS-2 (Left Shift 2 Position)

 Input:
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 Output:
 3
 4
 5
 1
 2
 8
 9
 10
 6
 7

- □ DES = Data Encryption Standard.
 - Two Phases:
 - □ Key Generation. 10-bit key
 - Encryption / Decryption. 8-bit block.

Sub- Key Generation

Sub-Key Generation

- □ Apply the P10 operation on the 10 bit input
- □ Apply LS-1 (left shift 1) to each 5-bit group
- \square Apply permutation P8 \rightarrow K1
- □ Apply LS-2 (left shift 2) to each 5-bit group.
- \square Apply permutation P8 \rightarrow K2.

S-DES KG Example

Assume given a key to be:

K = 1010000010

Step (1):P10 \rightarrow 10000 $\stackrel{!}{,}$ 01100

Step (2): LS-1 \rightarrow 00001 11000

Step (3): Apply permutation P8

then K1 = 10100100

Step (4): Apply LS-2 (left shift 2)

LS-2 8 9 10 6 7

00001 | 11000 \rightarrow LS2 \rightarrow 00100 | 00011 \rightarrow **P8**

K2 = 01000011

S-DES KG Example

Self Assessment

 Using S-DES key generation, generate the k1 and K2 using the key (0110110101), Show intermediate results after each function

S-DES KG Example

Assume given a key to be:

K = 0110110101

Step (1):P10 \rightarrow 11100 10011

Step (2): LS-1 \rightarrow 11001, 00111

Step (3): Apply permutation P8

P10
3 5 2 7 4 10 1 9 8 6

LS-1
2 3 4 5 1 7 8 9 10 6

P8
6 3 7 4 8 5 10 9

then K1 = 000011111

Step (4): Apply LS-2 (left shift 2)

LS-2 8 9 10 6 7

00001 | 11000 ightarrow LS2 ightarrow 00111 | 11100 ightarrow P8

K2 = 111111100

S-DES Encryption Details

S-DES Encryption Details

S-DES S-Boxes

- S-DES (and DES) perform substitutions using S-Boxes
- S-Box considered as a matrix: input used to select row/column;
 selected elements is output.
- 4 bit input: bit₁, bit₂, bit₃, bit₄
- Bit₁ bit₄ specifies row (0, 1, 2, 3 in decimal)
- Bit₂ bit₃ specifies column
- 2 bit output

		\mathbf{C}_{0}	\mathbf{C}_1	$\mathbf{C_2}$	$\mathbf{C_3}$
	\mathbf{R}_{0}	1	0	3	2
S_{o}	\mathbf{R}_{1}	3	2	1	0
	\mathbf{R}_2	0	2	1	3
	R_3	3	1	3	2

		\mathbf{C}_{0}	\mathbf{C}_1	C ₂	C ₃
	\mathbf{R}_{0}	0	1	2	3
S_1	\mathbf{R}_{1}	2	0	1	3
	\mathbf{R}_2	3	0	1	0
	R_3	2	1	0	3

S-DES S-Boxes Operations

- 1. First and fourth bits give row number.
- Second and third bits give column number.
- 3. Look up number in specified row and column.
- Convert to binary.

S-Boxes Operations Example – 4 bits

$$1001$$

$$R_{14} \rightarrow 11 \rightarrow R_{3}$$

$$C_{23} \rightarrow 00 \rightarrow C_{0}$$

S-Boxes Operations Example – 8 bits

S-DES Example

Let plaintext:

S-DES Example

\oplus	0	1
0	0	1
1	1	0

From above:

For the row, combine bits 1 and 4 and convert to decimal. For the column, combine bits 2 and 3 and convert to decimal.

Left Side:

bits 1 & $4 \rightarrow 11 \rightarrow Row: 3$

bits 2 & $3 \rightarrow 00 \rightarrow Col: 0$

therefore, get from S₀ R3 & C0 \rightarrow 3 \rightarrow 11

Right Side:

bits 1 & $4 \rightarrow 10 \rightarrow Row$: 2

bits 2 & $3 \rightarrow 00 \rightarrow Col: 0$

therefore, get from S1 R2 & C0 \rightarrow 3 \rightarrow 11

Perform binary XOR operation, combining it with the left 4-bits of our first result (application of IP to original plaintext input, blue cell above).

Result:

0001

Rewrite that first result with its left half replaced.

0001 | 0110

Swap the two 4-bit halves of the above result.

0110 | 0001

To right 4 bits of above, apply E/P

10000010

Upon above result, perform binary XOR operation with sub-key K2: 01000011

11000001

1100 | 0001

From above:

For the row, combine bits 1 and 4 and convert to decimal. For the column, combine bits 2 and 3 and convert to decimal.

Left Side:

bits $1 \& 4 \rightarrow 10 \rightarrow \text{Row}$: 2 bits $2 \& 3 \rightarrow 10 \rightarrow \text{Col}$: 2 therefore, get from S_0 R2 & C2 \rightarrow 1 \rightarrow 01

Right Side:

bits 1 & 4 \rightarrow 01 \rightarrow Row: 1 bits 2 & 3 \rightarrow 00 \rightarrow Col: 0 therefore, get from S₁ R1 & C0 \rightarrow 2 \rightarrow 10

0110

1010

Perform binary XOR operation with the left 4-bits of the earlier swap result (0110).

1100

Rewrite that first result with its left half replaced.

11000001

11000001

To above result, apply reverse of initial permutation IP, which is $IP^{-1} = (4, 1, 3, 5, 7, 2, 8, 6)$.

S-DES Example 1

Encrypt the following plaintext with the given key using the Simplified DES algorithm:

Plaintext: 11110101

Key: 0010010111

Princess Sumaya University for Technology - Fall 2021 © Dr. Mustafa Al-Fayoumi

Self Assessment

Let the plaintext be the string 0010 1000, Let the 10 bit key be 1100011110. Using S-DES key generation, generate the k_1 and K_2 , and Find (L_1 , R_1 , L_2 and R_2) and then the ciphertext, Show intermediate results after each function

34 S-DES Decryption

Princess Sumaya University for Technology - Fall 2021 © Dr. Mustafa Al-Fayoumi

Princess Sumaya University for Technology - Fall 2021 © Dr. Mustafa Al-Fayoumi