기계학습

이현석 교수

2023-2

- 간단한 기계 학습 예제
 - 가로축은 시간, 세로축은 이동체의 위치
 - 관측한 4개의 점이 데이터
- 예측^{prediction} 문제
 - 임의의 시간이 주어지면 이때 이동체의 위치는?
 - 회귀regression 문제와 분류classification 문제로 나뉨
 - 회귀는 목표치가 실수, 분류는 부류값 ([그림 1-4]는 회귀 문제)

- 훈련집합
 - 가로축은 특징, 세로축은 목표치
 - 관측한 4개의 점이 훈련집합을 구성함

훈련집합:
$$\mathbb{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}, \quad \mathbb{Y} = \{y_1, y_2, \dots, y_n\}$$
 (1.1)

그림 1-4 간단한 기계 학습 예제

[그림 1-4] 예제의 훈련집합

$$X = \{x_1 = (2.0), x_2 = (4.0), x_3 = (6.0), x_4 = (8.0)\}$$

 $Y = \{y_1 = 3.0, y_2 = 4.0, y_3 = 5.0, y_4 = 6.0\}$

- 데이터를 어떻게 모델링할 것인가
 - 눈대중으로 보면 직선을 이루므로 직선을 선택하자 → 모델로 직선을 선택한 셈
 - 직선 모델의 수식
 - 2개의 매개변수 w와 *b*

$$y = wx + b$$

(1.2)

■ 기계 학습은

- 가장 정확하게 예측할 수 있는, 즉 최적의 매개변수를 찾는 작업
- 처음에는 최적값을 모르므로 임의의 값에서 시작하고, 점점 성능을 개선하여 최적에 도달
- [그림 1-4]의 예에서는 f_1 에서 시작하여 $f_1 \rightarrow f_2 \rightarrow f_3$
 - 최적인 f_3 은 w=0.5와 b=2.0

- 학습을 마치면,
 - 예측에 사용
 - 예) 10.0 순간의 이동체 위치를 알고자 하면, $f_3(10.0)=0.5*10.0+2.0=7.0$ 이라 예측함

- 기계 학습의 궁극적인 목표
 - 훈련집합에 없는 새로운 샘플에 대한 오류를 최소화 (새로운 샘플 집합: 테스트 집합)
 - 테스트 집합에 대한 높은 성능을 일반화generalization 능력이라 부름

1차원과 2차원 특징 공간

■ 1차원 특징 공간

(a) 1차원 특징 공간(왼쪽: 특징과 목푯값을 축으로 표시, 오른쪽: 특징만 축으로 표시)

- 2시전 국 6 **급**인
- 특징 벡터 표기
 - x=(x1,x2)T
- **-** 예시
 - x=(몸무게,키)T, y=장타율
 - x=(체온,두통)T, y=감기 여부

(b) 2차원 특징 공간(왼쪽: 특징 벡터와 목푯값을 축으로 표시, 오른쪽: 특징 벡터만 축으로 표시)

그림 1-5 특징 공간과 데이터의 표현

다차원 특징 공간

■ 다차원 특징 공간 예제

Haberman survival: $\mathbf{x} = (\text{나이}, \ \text{수술년도}, \ \text{양성 림프샘 개수})^T$

 $Iris: \mathbf{x} = ($ 꽃받침 길이, 꽃받침 너비, 꽃잎 길이, 꽃잎 너비 $)^T$

Wine: $\mathbf{x} = (\text{Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium, Total phenols, Flavanoids, Nonflavanoid phenols Proanthocyanins, Color intensity, Hue, OD280 / OD315 of diluted wines, Proline)^T$

MNIST: $\mathbf{x} = ($ 화소1, 화소2,…, 화소784 $)^{\mathrm{T}}$

Farm ads: $\mathbf{x} = (단어1, 단어2, \dots, 단어54877)^{\mathrm{T}}$

그림 1-6 다차원 특징 공간

다차원 특징 공간

- *d*-차원 데이터
 - 특징 벡터 표기: $\mathbf{x} = (x_1, x_2, \dots, x_d)^{\mathrm{T}}$
- *d*-차원 데이터를 위한학습 모델
 - 직선 모델을 사용하는 경우 매개변수 수=d+1

$$y = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + \underline{b}$$
 (1.3)

- 2차 곡선 모델을 사용하면 매개변수 수가 크게 증가
 - 매개변수 수=*d*²+*d*+1
 - 예) Iris 데이터: *d*=4이므로 21개의 매개변수

$$y = \underline{w_1}x_1^2 + \underline{w_2}x_2^2 + \dots + \underline{w_d}x_d^2 + \underline{w_{d+1}}x_1x_2 + \dots + \underline{w_d}x_{d-1}x_d + \underline{w_d}x_{d-1}x_1 + \dots + \underline{w_d}x_{d-1}x_d + \underline{w_d}x_d + \underline{w_d$$

특징 공간 변환과 표현 학습

- 선형 분리 불가능linearly non-separable한 원래 특징 공간 ([그림 1-7(a)])
 - 직선 모델을 적용하면 75% 정확률이 한계

(a) 원래 특징 공간

그림 1-7 특징 공간 변환

(b) 분류에 더 유리하도록 변환된 새로운 특징 공간

특징 공간 변환과 표현 학습

- 식 (1.6)으로 변환된 새로운 특징 공간 ([그림 1-7(b)])
 - 직선 모델로 100% 정확률

원래 특징 벡터
$$\mathbf{x} = (x_1, x_2)^{\mathrm{T}} \rightarrow \text{ 변환된 특징 벡터 } \mathbf{x}' = \left(\frac{x_1}{2x_1x_2 + 0.5}, \frac{x_2}{2x_1x_2 + 0.5}\right)^{\mathrm{T}}$$
 (1.6) $\mathbf{a} = (0,0)^{\mathrm{T}} \rightarrow \mathbf{a}' = (0,0)^{\mathrm{T}}$ $\mathbf{b} = (1,0)^{\mathrm{T}} \rightarrow \mathbf{b}' = (2,0)^{\mathrm{T}}$ $\mathbf{c} = (0,1)^{\mathrm{T}} \rightarrow \mathbf{c}' = (0,2)^{\mathrm{T}}$ $\mathbf{d} = (1,1)^{\mathrm{T}} \rightarrow \mathbf{d}' = (0.4,0.4)^{\mathrm{T}}$

- 표현 학습representation learning
 - 좋은 특징 공간을 자동으로 찾는 작업
 - 딥러닝은 다수의 은닉층을 가진 신경망을 이용하여 계층적인 특징 공간을 찾아냄
 - 왼쪽 은닉층은 저급 특징(에지, 구석점 등), 오른쪽은 고급 특징(얼굴, 바퀴 등) 추출
 - [그림 1-7]은 표현 학습을 사람이 직관으로 수행한 셈

특징 공간 변환과 표현 학습

- 차원에 대한 몇 가지 설명
 - 차원에 무관하게 수식 적용 가능함
 - 예) 두 점 $\mathbf{a} = (a_1, a_2, \dots, a_d)^{\mathrm{T}}$ 와 $\mathbf{b} = (b_1, b_2, \dots, b_d)^{\mathrm{T}}$ 사이의 거리는 모든 d에 대해 성립

$$dist(\mathbf{a}, \mathbf{b}) = \sqrt{\sum_{i=1}^{d} (a_i - b_i)^2}$$
 (1.7)

- 보통 2~3차원의 저차원에서 식을 고안한 다음 고차원으로 확장 적용
- 차원의 저주 (curse of dimensionality)
 - 차원이 높아짐에 따라 발생하는 현실적인 문제들
 - 예) d=4인 Iris 데이터에서 축마다 100개 구간으로 나누면 총 100⁴=1억 개의 칸
 - 예) d=784인 MNIST 샘플의 화소가 0과 1값을 가진다면 2^{784} 개의 칸. 이 거대한 공간에 고작 6만 개의 샘플을 흩뿌린 매우 희소한 분포

데이터에 대한 이해

■ 과학 기술의 발전 과정

 예) 튀코 브라헤는 천동설이라는 틀린 모델을 선택함으로써 자신이 수집한 데이터를 설명하지 못함. 케플 러는 지동설 모델을 도입하여 제1, 제2, 제 3법칙을 완성함

■ 기계 학습

- 기계 학습이 푸는 문제는 훨씬 복잡함
- 단순한 수학 공식으로 표현 불가능함
- 자동으로 모델을 찾아내는 과정이 필수

데이터 생성 과정

- 데이터 생성 과정을 완전히 아는 인위적 상황의 예제
 - 예) 두 개 주사위를 던져 나온 눈의 합을 x라 할 때, $y=(x-7)^2+1$ 점을 받는 게임
 - 이런 상황을 '데이터 생성 과정을 완전히 알고 있다'고 말함
 - x를 알면 정확히 y를 예측할 수 있음
 - 실제 주사위를 던져 $X = \{3,10,8,5\}$ 를 얻었다면, $Y = \{17,10,2,5\}$
 - x의 발생 확률 P(x)를 정확히 알 수 있음
 - P(x)를 알고 있으므로, 새로운 데이터 생성 가능
- [그림 1-6]과 같은 실제 기계 학습 문제
 - 데이터 생성 과정을 알 수 없음
 - 단지 주어진 훈련집합 X, Y로 예측 모델 또는 생성 모델을 근사 추정할 수 있을 뿐

- 데이터베이스의 품질
 - 주어진 응용에 맞는 충분히 다양한 데이터를 충분한 양만큼 수집 → 추정 정확도 높아짐
 - 예) 정면 얼굴만 가진 데이터베이스로 학습하고 나면, 기운 얼굴은 매우 낮은 성능
 - →주어진 응용 환경을 자세히 살핀 다음 그에 맞는 데이터베이스 확보는 아주 중요함

- 아주 많은 공개 데이터베이스
 - 기계 학습의 초파리로 여겨지는 3가지 데이터베이스: Iris, MNIST, ImageNet
 - 위키피디아에서 'list of datasets for machine learning research'로 검색
 - UCI 리퍼지토리 (2017년11월 기준으로 394개 데이터베이스 제공)

• Iris 데이터베이스는 통계학자인 피셔 교수가 1936년에 캐나다 동부 해안의 가스페 반도에 서식하는 3종의 붓꽃(setosa, versicolor, virginica)을 50송이씩 채취하여 만들었다[Fisher1936]. 150개 샘플 각각에 대해 꽃받침 길이, 꽃받침 너비, 꽃잎 길이, 꽃잎 너비를 측정하여 기록하였다. 따라서 4차원 특징 공간이 형성되며 목푯값은 3종을 숫자로 표시함으로써 1, 2, 3 값 중의 하나이다. http://archive.ics.uci.edu/ml/datasets/lris에 접속하여 내려받을 수 있다.

Sepal length 🕈	Sepal width ◆	Petal length +	Petal width +	Species ♦
5.2	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
7.0	2.2	4.7		
7.0	3.2	4.7	1.4	I. versicolor
6.4	3.2	4.5	1.5	I. versicolor
6.9	3.1	4.9	1.5	I. versicolor
5.5	2.3	4.0	1.3	I. versicolor
6.3	3.3	6.0	2.5	I. virginica
5.8	2.7	5.1	1.9	I. virginica
7.1	3.0	5.9	2.1	I. virginica
6.3	2.9	5.6	1.8	I. virginica

Setosa

Versicolor Virginica

• MNIST 데이터베이스는 미국표준국(NIST)에서 수집한 필기 숫자 데이터베이스로, 훈련집합 60,000자, 테스트집합 10,000자를 제공한다. http://yann.lecun.com/exdb/mnist에 접속하면 무료로 내려받을 수 있으며, 1988년부터 시작한 인식률 경쟁 기록도 볼 수 있다. 2017년 8월 기준으로는 [Ciresan2012] 논문이 0,23%의 오류율로 최고 자리를 차지하고 있다. 테스트집합에 있는 10,000개 샘플에서 단지 23개만 틀린 것이다.

• ImageNet 데이터베이스는 정보검색 분야에서 만든 WordNet의 단어 계층 분류를 그대로 따랐고, 부류 마다 수백에서 수천 개의 영상을 수집하였다[Deng2009]. 총 21,841개 부류에 대해 총 14,197,122개의 영상을 보유하고 있다. 그중에서 1,000개 부류를 뽑아 ILSVRO (mageNet Large Scale Visual Recognition Challenge라는 영상인식 경진대회를 2010년부터 매년 개최하고 있다. 대회 결과에 대한 자세한 내용은 4.4절을 참조하라. http://image-net.org에서 내려받을 수 있다.

(a) 'swing' 부류

(b) 'Great white shark' 부류

그림 4-20 ImageNet의 예제 영상

데이터베이스 크기와 기계 학습 성능

- 데이터베이스의 왜소한 크기
 - 예) MNIST: 28*28 흑백 비트맵이라면 서로 다른 총 샘플 수는 2⁷⁸⁴가지이지만, MNIST는 고작 6만 개 샘플

그림 1-9 방대한 특징 공간과 희소한 데이터베이스

데이터베이스 크기와 기계 학습 성능

- 왜소한 데이터베이스로 어떻게 높은 성능을 달성하는가?
 - 방대한 공간에서 실제 데이터가 발생하는 곳은 매우 작은 부분 공간임
 - 외 같은 샘플의 발생 확률은 거의 0
 - 매니폴드 가정
 - 와 같이 일정한 규칙에 따라 매끄럽게 변화

데이터 가시화

- 4차원 이상의 초공간은 한꺼번에 가시화 불가능
- 여러 가지 가시화 기법
 - 2개씩 조합하여 여러 개의 그래프 그림

■ 고차원 공간을 저차원으로 변환하는 기법들(주성분분석 6.6.1절)

- 선형 회귀 문제
 - [그림 1-4]: 식 (1.2)의 직선 모델을 사용하므로 두 개의 매개변수 $\Theta = (w, b)^{T}$

$$y = wx + b \tag{1.2}$$

그림 1-4 간단한 기계 학습 예제

- 목적 함수objective function (또는 비용 함수cost function)
 - 식 (1.8)은 선형 회귀를 위한 목적 함수
 - $f_{\Theta}(\mathbf{x}_i)$ 는 예측함수의 출력, y_i 는 예측함수가 맞추어야 하는 목푯값이므로 $f_{\Theta}(\mathbf{x}_i)$ - y_i 는 오차
 - 식 (1.8)을 평균제곱오차MSE(mean squared error)라 부름

$$J(\Theta) = \frac{1}{n} \sum_{i=1}^{n} (f_{\Theta}(\mathbf{x}_i) - y_i)^2$$

$$(1.8)$$

- 처음에는 최적 매개변수 값을 알 수 없으므로 난수로 $\Theta_1 = (w_1, b_1)^{\mathrm{T}}$ 설정 $\rightarrow \Theta_2 = (w_2, b_2)^{\mathrm{T}}$ 로 개선 $\rightarrow \Theta_3 = (w_3, b_3)^{\mathrm{T}}$ 로 개선 $\rightarrow \Theta_3$ 는 최적해 $\hat{\Theta}$
 - $O(IIII) J(\Theta_1) > J(\Theta_2) > J(\Theta_3)$

- 「예제 1-1]
 - 훈련집합

$$X = \{x_1 = (2.0), x_2 = (4.0), x_3 = (6.0), x_4 = (8.0)\},\$$
 $Y = \{y_1 = 3.0, y_2 = 4.0, y_3 = 5.0, y_4 = 6.0\}$

• 초기 직선의 매개변수 $\Theta_1 = (0.1,4.0)^{\mathrm{T}}$ 라 가정

$$\mathbf{x}_{1}, \mathbf{y}_{1} \rightarrow \left(f_{\Theta_{1}}(2.0) - 3.0\right)^{2} = \left((0.1 * 2.0 + 4.0) - 3.0\right)^{2} = 1.44$$

$$\mathbf{x}_{2}, \mathbf{y}_{2} \rightarrow \left(f_{\Theta_{1}}(4.0) - 4.0\right)^{2} = \left((0.1 * 4.0 + 4.0) - 4.0\right)^{2} = 0.16$$

$$\mathbf{x}_{3}, \mathbf{y}_{3} \rightarrow \left(f_{\Theta_{1}}(6.0) - 5.0\right)^{2} = \left((0.1 * 6.0 + 4.0) - 5.0\right)^{2} = 0.16$$

$$\mathbf{x}_{4}, \mathbf{y}_{4} \rightarrow \left(f_{\Theta_{1}}(8.0) - 6.0\right)^{2} = \left((0.1 * 8.0 + 4.0) - 6.0\right)^{2} = 1.44$$

- [예제 1-1] 훈련집합
 - Θ_1 을 개선하여 $\Theta_2 = (0.8,0.0)^{\mathrm{T}}$ 가 되었다고 가정

$$\mathbf{x}_{1}, \mathbf{y}_{1} \to (f_{\Theta_{2}}(2.0) - 3.0)^{2} = ((0.8 * 2.0 + 0.0) - 3.0)^{2} = 1.96$$

$$\mathbf{x}_{2}, \mathbf{y}_{2} \to (f_{\Theta_{2}}(4.0) - 4.0)^{2} = ((0.8 * 4.0 + 0.0) - 4.0)^{2} = 0.64$$

$$\mathbf{x}_{3}, \mathbf{y}_{3} \to (f_{\Theta_{2}}(6.0) - 5.0)^{2} = ((0.8 * 6.0 + 0.0) - 5.0)^{2} = 0.04$$

$$\mathbf{x}_{4}, \mathbf{y}_{4} \to (f_{\Theta_{2}}(8.0) - 6.0)^{2} = ((0.8 * 8.0 + 0.0) - 6.0)^{2} = 0.16$$

- Θ_2 를 개선하여 $\Theta_3 = (0.5, 2.0)^{\mathrm{T}}$ 가 되었다고 가정
- 이때 $J(\Theta_3) = 0.0$ 이 되어 Θ_3 은 최적값 $\widehat{\Theta}$ 이 됨

그림 1-11 기계 학습에서 목적함수의 역할

■ 기계 학습이 할 일을 공식화하면,

$$\widehat{\Theta} = \underset{\Theta}{\operatorname{argmin}} J(\Theta) \tag{1.9}$$

- 기계 학습은 작은 개선을 반복하여 최적해를 찾아가는 수치적 방법으로 식 (1.9)를 품
- 알고리즘 형식으로 쓰면,

```
알고리즘 1-1 기계 학습 알고리즘
입력: 훈련집합 ※와 ♥
출력: 최적의 매개변수 Θ
1 난수를 생성하여 초기 해 Θ₁을 설정한다.
2 t=1
3 while (J(Θ<sub>t</sub>)가 0.0에 충분히 가깝지 않음) // 수렴 여부 검사
4 J(Θ<sub>t</sub>)가 작아지는 방향 ΔΘ<sub>t</sub>를 구한다. // ΔΘ<sub>t</sub>는 주로 미분을 사용하여 구함
5 Θ<sub>t+1</sub> = Θ<sub>t</sub> + ΔΘ<sub>t</sub>
6 t=t+1
7 Θ̂ = Θ<sub>t</sub>
```

- 좀 더 현실적인 상황
 - 지금까지는 데이터가 선형을 이루는 아주 단순한 상황을 고려함
 - 실제 세계는 선형이 아니며 잡음이 섞임 → 비선형 모델이 필요

그림 1-12 선형 모델의 한계

모델 선택

- 과소적합과 과잉적합
- 바이어스와 분산
- 검증집합과 교차검증을 이용한 모델 선택 알고리즘
- 모델 선택의 한계와 현실적인 해결책

과소적합과 과잉적합

- [그림 1.13]의 1차 모델은 <u>과소적합underfitting</u>
 - 모델의 '용량이 작아' 오차가 클 수밖에 없는 현상
- 비선형 모델을 사용하는 대안
 - [그림 1-13]의 2차, 3차, 4차, 12차는 다항식 곡선을 선택한 예
 - 1차(선형)에 비해 오차가 크게 감소함

그림 1-13 과소적합과 과잉적합 현상

과소적합과 과잉적합

■ 과잉적합overfitting

- 12차 다항식 곡선을 채택한다면 훈련집합에 대해 거의 완벽하게 근사화함
- 하지만 '새로운' 데이터를 예측한다면 큰 문제 발생
 - x_0 에서 빨간 막대 근방을 예측해야 하지만 빨간 점을 예측
- 이유는 '용량이 크기' 때문. 학습 과정에서 잡음까지 수용 → 과잉적합 현상
- 적절한 용량의 모델을 선택하는 모델 선택 작업이 필요함

그림 1-14 과잉적합되었을 때 부정확한 예측 현상

바이어스와 분산

- 1차~12차 다항식 모델의 비교 관찰
 - 1~2차는 훈련집합과 테스트집합 모두 낮은 성능
 - 12차는 훈련집합에 높은 성능을 보이나 테스트집합에서는 낮은 성능 → 낮은 일반화 능력
 - 3~4차는 훈련집합에 대해 12차보다 낮겠지만 테스트집합에는 높은 성능 > 높은 일반화 능력

바이어스와 분산

- 훈련집합을 여러 번 수집하여 1차~12차에 적용하는 실험
 - 2차는 매번 큰 오차 → 바이어스가 큼. 하지만 비슷한 모델을 얻음 → 낮은 분산
 - 12차는 매번 작은 오차 → 바이어스가 작음. 하지만 크게 다른 모델을 얻음 → 높은 분산
 - 일반적으로 용량이 작은 모델은 바이어스는 크고 분산은 작음. 복잡한 모델은 바이어스는 작고 분산은 큼
 - 바이어스와 분산은 트레이드오프 관계

그림 1-15 모델의 바이어스와 분산 특성

바이어스와 분산

- 기계 학습의 목표
 - 낮은 바이어스와 낮은 분산을 가진 예측기 제작이 목표. 즉 왼쪽 아래 상황

그림 1-16 바이어스와 분산

- 하지만 바이어스와 분산은 트레이드오프 관계
- 따라서 바이어스 희생을 최소로 유지하며 분산을 최대로 낮추는 전략 필요

검증집합과 교차검증을 이용한 모델 선택 알고리즘

- 검증집합을 이용한 모델 선택
 - 훈련집합과 테스트집합과 다른 별도의 검증집합을 가진 상황

알고리즘 1-2 검증집합을 이용한 모델 선택

입력: 모델집합 Ω, 훈련집합, 검증집합, 테스트집합

출력: 최적 모델과 성능

- 1 for (Ω에 있는 각각의 모델)
- 2 모델을 훈련집합으로 학습시킨다.
- 3 검증집합으로 학습된 모델의 성능을 측정한다. // 검증 성능 측정
- 4 기장 높은 성능을 보인 모델을 선택한다.
- 5 | 테스트집합으로 선택된 모델의 성능을 측정한다.

검증집합과 교차검증을 이용한 모델 선택 알고리즘

- 교차검증cross validation
 - 비용 문제로 별도의 검증집합이 없는 상황에 유용한 모델 선택 기법
 - 훈련집합을 등분하여, 학습과 평가 과정을 여러 번 반복한 후 평균 사용

알고리즘 1-3 교차검증에 의한 모델 선택

입력: 모델집합 Ω , 훈련집합, 테스트집합, 그룹 개수 k

출력: 최적 모델과 성능

```
│ 훈련집합을 k개의 그룹으로 등분한다.
```

for (Ω에 있는 각각의 모델)

for (i=1 to k)

4

5

6

*i*번째 그룹을 제외한 *k*−1개 그룹으로 모델을 학습시킨다.

학습된 모델의 성능을 i번째 그룹으로 측정한다.

k개 성능을 평균하여 해당 모델의 성능으로 취한다.

가장 높은 성능을 보인 모델을 선택한다.

테스트집합으로 선택된 모델의 성능을 측정한다.

검증집합과 교차검증을 이용한 모델 선택 알고리즘

- 부트스트랩boot strap
 - 난수를 이용한 샘플링 반복

알고리즘 1-4 부트스트랩을 이용한 모델 선택

테스트집합으로 선택된 모델의 성능을 측정한다.

입력: 모델집합 Ω , 훈련집합, 테스트집합, 샘플링 비율 $\rho(0 < \rho \le 1)$, 반복횟수 T

출력: 최적 모델과 성능

```
    for (Ω에 있는 각각의 모델)
    for (i=1 to T)
    훈련집합 ※에서 pn개 샘플을 뽑아 새로운 훈련집합 ※'를 구성한다. 이때 대치를 허용한다.
    ※'로 모델을 학습시킨다.
    ※-※'를 이용하여 학습된 모델의 성능을 측정한다.
    7개 성능을 평균하여 해당 모델의 성능으로 취한다.
    가장 높은 성능을 보인 모델을 선택한다.
```

모델 선택의 한계와 현실적인 해결책

- [알고리즘 1-2, 1-3, 1-4]에서 모델 집합 Ω
 - [그림 1-13]에서는 서로 다른 차수의 다항식이 Ω인 셈
 - 현실에서는 아주 다양
 - 신경망(3,4,8장), 강화 학습(9장), 확률 그래피컬 모델(10장), SVM(11장), 트리 분류기 (12장) 등이 선택 대상
 - 신경망을 채택하더라도 MLP(3장), 깊은 MLP(4장), CNN(4장) 등 아주 많음
- 현실에서는 경험으로 큰 틀 선택한 후
 - 모델 선택 알고리즘으로 세부 모델 선택하는 전략 사용
 - 예) CNN을 사용하기로 정한 후, 은닉층 개수, 활성함수, 모멘툼 계수 등을 정하는데 모델 선택 알고리즘을
 적용함

모델 선택의 한계와 현실적인 해결책

■ 이런 경험적인 접근방법에 대한 『Deep Learning』 책의 비유

"To some extent, we are always trying to fit a square peg(the data generating process) into a round hole(our model family). 어느 정도 우리가 하는 일은 항상 둥근 홈(우리가 선택한 모델)에 네모 막대기(데이터 생성 과정)를 끼워 넣는 것이라고 말할 수 있다[Goodfellow2016(222쪽)]."

- 현대 기계 학습의 전략
 - 용량이 충분히 큰 모델을 선택 한 후, 선택한 모델이 정상을 벗어나지 않도록 여러 가지 규제^{regularization} 기 법을 적용함
 - 예) [그림 1-13]의 경우 12차 다항식을 선택한 후 적절히 규제를 적용

기계 학습 유형

- 지도 방식에 따른 유형
- 다양한 기준에 따른 유형

지도 방식에 따른 유형

- 지도 학습
 - 특징 벡터 XX와 목푯값 Y가 모두 주어진 상황
 - 회귀와 분류 문제로 구분
- 비지도 학습
 - 특징 벡터 XX는 주어지는데 목푯값 Y 가 주어지지 않는 상황
 - 군집화 과업 (고객 성향에 따른 맞춤 홍보 응용 등)
 - 밀도 추정, 특징 공간 변환 과업

지도 방식에 따른 유형

- 강화 학습
 - 목푯값이 주어지는데, 지도 학습과 다른 형태임
 - 예) 바둑
 - 수를 두는 행위가 샘플인데, 게임이 끝나면 목푯값 하나가 부여됨
 - 이기면 1, 패하면 -1을 부여
 - 게임을 구성한 샘플들 각각에 목푯값을 나누어 주어야 함
 - 9장의 주제
- 준지도 학습
 - 일부는 XX와 Y를 모두 가지지만, 나머지는 XV만 가진 상황
 - 인터넷 덕분으로 XX의 수집은 쉽지만, Y는 수작업이 필요하여 최근 중요성 부각
 - 7장의 주제

다양한 기준에 따른 유형

- 오프라인 학습과 온라인 학습
 - 이 책은 오프라인 학습을 다룸
 - 온라인 학습은 인터넷 등에서 추가로 발생하는 샘플을 가지고 점증적 학습
- 결정론적 학습과 스토캐스틱 학습
 - 결정론적에서는 같은 데이터를 가지고 다시 학습하면 같은 예측기가 만들어짐
 - 스토캐스틱 학습은 학습 과정에서 난수를 사용하므로 같은 데이터로 다시 학습하면 다른 예측기가 만들어짐. 보통 예측 과정도 난수 사용
 - 10.4절의 RBM과 DBN이 스토캐스틱 학습
- 분별 모델과 생성 모델
 - 분별 모델은 부류 예측에만 관심. 즉 *P*(*y*|**x**)의 추정에 관심
 - 생성 모델은 *P*(**x**) 또는 *P*(**x**|*y*)를 추정함
 - 따라서 새로운 샘플을 '생성'할 수 있음
 - 4.5절의 GAN, 10.4절의 RBM은 생성 모델
 - 8.5절의 순환신경망(RNN)을 생성 모델로 활용하는 응용 예제