Définition:

Soit X une variable aléatoire discréte (v.a.d) de support $D_X = \{x_1, x_2,\}$. On dira que X

admet une espérance mathématique si la série

$$\sum_{i} x_i P\left(X = x_i\right)$$

est absolument convergente. Le nombre

$$\mathbb{E}\left(X\right) := \sum_{i} x_{i} P\left(X = x_{i}\right)$$

 $est\ dans\ ce\ cas\ appelé\ espérance\ mathématique\ de\ X.$

On notera que $X = \sum_{i} x_i \mathbf{1}_{\{X=x_i\}}$.

Définition:

Soit X variable aléatoire à valeurs dans $[0,\infty]$. On appelle espérance mathémétique de X

 $le\ nombre$

$$\mathbb{E}(X) = \sup \{ \mathbb{E}(U) : U \ v.a.d, \ U \le X \}$$

X est dite intégrable si $\mathbb{E}(X) < \infty$.

Remarque:

Si X et Y sont deux variables aléatoires à valeurs dans $[0, \infty]$ et $\alpha \geq 0$, alors

$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$$
 et $\mathbb{E}(\alpha X) = \alpha \mathbb{E}(X)$.

De plus, si $X \leq Y$, alors $\mathbb{E}(X) \leq \mathbb{E}(Y)$

Définition:

Soit X variable aléatoire à valeurs dans $\overline{\mathbb{R}}$. On dira que X est intégrable si les variables

aléaoires positives $X^+ := \max(X,0)$ et $X^- := \max(-X,0)$ sont intégrables. Dans ce cas le

nombre

$$\mathbb{E}\left(X\right):=\mathbb{E}\left(X^{+}\right)-\mathbb{E}\left(X^{-}\right)$$

s'appelle espérance mathématique de X.

On notera que $X=X^+-X^-, |X|=X^++X^-$ et que X est intégrable $\Leftrightarrow |X|$ est intégrable. On pose

$$l^{1}\left(\Omega,\digamma,P\right)=\left\{ X:\Omega\rightarrow\overline{\mathbb{R}}\ v.a\ \mathrm{int\acute{e}grable}\right\}$$

Définition:

Soit X variable aléatoire à valeurs dans $\overline{\mathbb{R}}$ et soit $A \in \mathcal{F}$ un événement. L'espérance définie

par

$$\int\limits_A XdP := \mathbb{E}\left(X\mathbf{1}_A\right)$$

s'appelle intégrale au sens de Lebesgue de X par apport à la mesure de probabilité $P,\,\mathrm{sur}$

A.

Ainsi
$$\int_{\Omega} X dP = \mathbb{E}(X)$$
.

Proposition:

Si X et Y sont deux variables aléatoires intégrables à valeurs dans $\overline{\mathbb{R}}$ et $\alpha \in \mathbb{R}$, alors X+Y

et αX sont intégrables (i.e. $l^1(\Omega, \mathcal{F}, P)$ est un espace vectoriel) et on a

$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y) \text{ et } \mathbb{E}(\alpha X) = \alpha \mathbb{E}(X).$$

Preuve:

-On a

$$|X + Y| \le |X| + |Y|$$
 et $|\alpha X| = |\alpha| |X|$,

d'où

$$\mathbb{E}\left(|X+Y|\right) \leq \mathbb{E}\left(|X|\right) + \mathbb{E}\left(|Y|\right) < \infty \text{ et } \mathbb{E}\left(|\alpha X|\right) = |\alpha| \, \mathbb{E}\left(|X|\right) < \infty,$$

X + Y et αX sont donc intégrables.

-On a

$$(X+Y)^{+} + X^{-} + Y^{-} = (X+Y)^{+} + X^{+} - X + Y^{+} - Y$$
$$= (X+Y)^{+} - (X+Y) + X^{+} + Y^{+}$$
$$= (X+Y)^{-} + X^{+} + Y^{+}$$

d'où, puisque les membres du premier et du dernier terme de ces inégalités sont positifs,

$$\mathbb{E}\left(X+Y\right)^{+}+\mathbb{E}\left(X^{-}\right)+\mathbb{E}\left(Y^{-}\right)=\mathbb{E}\left(X+Y\right)^{-}+\mathbb{E}\left(X^{+}\right)+\mathbb{E}\left(Y^{+}\right).$$

Il s'en suit que

$$\mathbb{E}\left(X+Y\right)^{+} - \mathbb{E}\left(X+Y\right)^{-} = \mathbb{E}\left(X^{+}\right) - \mathbb{E}\left(X^{-}\right) + \mathbb{E}\left(Y^{+}\right) - \mathbb{E}\left(Y^{-}\right),$$

soit

$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y).$$

-Si $\alpha > 0$, alors on a

$$(\alpha X)^{+} = \max(\alpha X, 0) = \alpha \max(X, 0) = \alpha X^{+}$$

 et

$$(\alpha X)^{-} = \max(-\alpha X, 0) = \alpha \max(-X, 0) = \alpha X^{-}$$

d'où

$$\mathbb{E}\left(\alpha X\right) = \mathbb{E}\left(\left(\alpha X\right)^{+}\right) - \mathbb{E}\left(\left(\alpha X\right)^{-}\right) = \alpha \mathbb{E}\left(X\right)$$

-Si $\alpha < 0$, alors on a

$$(\alpha X)^{+} = \max(-\alpha(-X), 0) = -\alpha \max(-X, 0) = -\alpha X^{-}$$

et

$$(\alpha X)^{-} = \max(-\alpha X, 0) = -\alpha \max(X, 0) = -\alpha X^{+},$$

d'où

$$\mathbb{E}(\alpha X) = \mathbb{E}\left(\left(\alpha X\right)^{+}\right) - \mathbb{E}\left(\left(\alpha X\right)^{-}\right) = \mathbb{E}\left(-\alpha X^{-}\right) - \mathbb{E}\left(-\alpha X^{+}\right)$$
$$= -\alpha\left(\mathbb{E}\left(X^{-}\right) - \mathbb{E}\left(X^{+}\right)\right) = \alpha\mathbb{E}\left(X\right).$$

Il est clair que si $\alpha=0$, alors on a $\mathbb{E}(\alpha X)=\alpha \mathbb{E}(X)=0$, ce qu'il fallait démontrer.

Lemme:

Toute variable aléatoire X à valeurs dans $[0,\infty]$ est limite d'une suite de v.a.d. croissante

$$(X_n)_{n>0}$$
.

La démonstration de ce lemme est très simple. Soit X variable aléatoire à valeurs dans $[0, \infty]$, il suffit de poser

$$X_{n}\left(\omega\right) = \begin{cases} \frac{k}{2^{n}} \operatorname{si} \frac{k}{2^{n}} \leq X\left(\omega\right) < \frac{k+1}{2^{n}} \operatorname{et} k = 0, 1, 2, ..., n2^{n} - 1\\ n & \operatorname{si} X\left(\omega\right) \geq n \end{cases}$$
$$= \sum_{k=0}^{n2^{n}-1} \frac{k}{2^{n}} \mathbf{1}_{\left\{\frac{k}{2^{n}} \leq X < \frac{k+1}{2^{n}}\right\}}\left(\omega\right) + n\mathbf{1}_{\left\{X \geq n\right\}}\left(\omega\right).$$

Théorème de la convergence monotone (TCM):

Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. positives, intégrables, croissante et convergente vers une

v.a.r. intégrable X. Alors on a

$$\lim_{n\to\infty}\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(X\right)$$

Démonstration:

Pour tout $n, X_n \leq X_{n+1} \leq X$ d'où $\mathbb{E}(X_n) \leq \mathbb{E}(X_{n+1}) \leq \mathbb{E}(X)$. Ainsi, la suite $(\mathbb{E}(X_n))_{n\geq 1}$ est croissante et donc converge et on a $\lim_{n\to\infty} \mathbb{E}(X_n) \leq \mathbb{E}(X)$.

Il reste à voir l'inégalité inverse.

Soit U une v.a.r. discréte telle que $0 \le U \le X$ et soit $1 > \varepsilon > 0$. Pour tout $\omega \in \Omega,$ si $U(\omega) > 0$ on a

$$\lim_{n\to\infty} X_n(\omega) = X(\omega) \ge U(\omega) > (1-\varepsilon)U(\omega)$$

donc il existe n (grand) tel que $X_n(\omega) \ge (1 - \varepsilon) U(\omega)$; et si $U(\omega) = 0$ alors on a pour tout entier $n, X_n(\omega) \ge (1 - \varepsilon) U(\omega)$. Cela signifie que

$$\Omega = \bigcup_{n} \Omega_{n}$$
 où $\Omega_{n} = \{\omega \in \Omega : X_{n}(\omega) \geq (1 - \varepsilon) U(\omega)\}$.

De plus (Ω_n) est une suite croissante.

Par définition de Ω_n , on a pour tout $\omega \in \Omega_n, X_n(\omega) \geq (1-\varepsilon)U(\omega)$. Par conséquent, comme $X_n(\omega) \geq 0$, on a

$$X_n(\omega) \ge (1 - \varepsilon) U(\omega) \mathbf{1}_{\Omega_n}.$$

D'autre part, comme U est discréte, alors s'écrit

$$U = \sum_{i} c_{i} \mathbf{1}_{A_{i}} \text{ où } A_{i} = \{ \omega \in \Omega : U(\omega) = c_{i} \}$$

d'où $U\mathbf{1}_{\Omega_n}=\sum\limits_i c_i\mathbf{1}_{A_i\cap\Omega_n}$ est discréte et on a

$$\mathbb{E}\left(X_{n}\right) \geq \left(1-\varepsilon\right)\mathbb{E}\left(U\mathbf{1}_{\Omega_{n}}\right) = \left(1-\varepsilon\right)\sum_{i}c_{i}\mathbb{E}\left(\mathbf{1}_{A_{i}\cap\Omega_{n}}\right) = \left(1-\varepsilon\right)\sum_{i}c_{i}P\left(A_{i}\cap\Omega_{n}\right).$$

Remarquons que pour tout i, la suite $(A_i \cap \Omega_n)_{n \geq 0}$ est également croissante, d'où en passant à la limite, $\lim_{n \to \infty} P\left(A_i \cap \Omega_n\right) = P\left(A_i\right)$ et on a

$$\lim_{n\to\infty} \mathbb{E}\left(X_{n}\right) \geq \left(1-\varepsilon\right) \sum_{i} c_{i} P\left(A_{i}\right) = \left(1-\varepsilon\right) \mathbb{E}\left(U\right)$$

et lorsque ε tend vers 0, on obtient

$$\lim_{n\to\infty}\mathbb{E}\left(X_{n}\right)\geq\mathbb{E}\left(U\right),$$

d'où

$$\lim_{n\to\infty}\mathbb{E}\left(X_{n}\right)\geq\mathbb{E}\left(X\right),$$

ce qu'il fallait démontrer.

■

Corollaire 1:

Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. positives et intégrables, décroissante et convergente vers une v.a.r. intégrable X. Alors on a

$$\lim_{n\to\infty}\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(X\right)$$

Preuve:

En effet la suite croissante de v.a. intégrables $(Y_n)_{n\geq 1}$ définie par $Y_n=X_1-X_n$ est convergente vers $Y:=X_1-X$, d'où d'aprés le **TCM**

$$\lim_{n\to\infty}\mathbb{E}\left(Y_{n}\right)=\mathbb{E}\left(Y\right)$$

soit

$$\mathbb{E}\left(X_{1}\right)-\lim_{n\to\infty}\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(X_{1}\right)-\mathbb{E}\left(X\right),$$

ce qui achève la démonstration.

Corollaire 2:

Soit $(X_n)_{n\geq 1}$ une suite de v.a.r.de signe quelconque, intégrables, croissante et

 $convergente\ vers\ une\ v.a.r.\ int\'egrable\ X.\ Alors\ on\ a$

$$\lim_{n\to\infty}\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(X\right)$$

Preuve:

Même preuve, en considérant la suite croissante de v.a. positives intégrables $(Z_n)_{n>1}$ définie par $Z_n=X_n-X_1$.

Corollaire 3:

Soit X une v.a. intégrable à valeurs dans $\overline{\mathbb{R}}$, de densité f . Alors on a

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} x f(x) dx.$$

Preuve:

On considère , pour tout $n \ge 1$, la fonction

$$h_{n}(x) = \begin{cases} -n & \text{si } -n \geq x \\ \frac{k}{2^{n}} \text{ si } \frac{k}{2^{n}} \leq x < \frac{k+1}{2^{n}} \text{ pour } k = -n2^{n} + 1, ..., n2^{n} - 1 \\ n & \text{si } n \leq x \end{cases}$$
$$= -n\mathbf{1}_{]-\infty,-n]}(x) + \sum_{k=-n2^{n}+1}^{n2^{n}-1} \frac{k}{2^{n}} \mathbf{1}_{\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right[}(x) + n\mathbf{1}_{[n,\infty[}(x)$$

et on pose $X_n = h_n(X)$. Alors la suite réelle $(h_n(x))_{n\geq 1}$ est croissante, convergente vers x et la suite de v.a. $(X_n)_{n\geq 1}$ est également croissante et convergente vers X. Il résulte du **corollaire 2** que

$$\mathbb{E}(X) = \lim_{n \to \infty} \mathbb{E}(X_n) = \lim_{n \to \infty} \sum_{k=-n2^n+1}^{n2^n-1} \frac{k}{2^n} P\left(\frac{k}{2^n} \le X < \frac{k+1}{2^n}\right)$$

$$= \lim_{n \to \infty} \sum_{k=-n2^n+1}^{n2^n-1} \frac{k}{2^n} \int_{-\frac{k}{2^n}}^{\frac{k+1}{2^n}} f(x) dx$$

$$= \lim_{n \to \infty} \sum_{k=-n2^n+1}^{n2^n-1} \frac{k}{2^n} \int_{-\infty}^{+\infty} \mathbf{1}_{\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right[}(x) f(x) dx$$

$$= \lim_{n \to \infty} \int_{-\infty}^{+\infty} h_n(x) f(x) dx$$

$$= \int_{-\infty}^{+\infty} \lim_{n \to \infty} h_n(x) f(x) dx$$

$$= \int_{-\infty}^{+\infty} x f(x) dx.$$

Rappelons que pour une suite de v.a.r. $(X_n)_{n\geq 1}$, on défini les v.a.r. $\underline{\lim} X_n$ (ou $\underline{\lim} X_n$) et $\overline{\lim} X_n$ (ou $\underline{\lim} X_n$) par:

$$\underline{\lim} X_n\left(\omega\right) = \lim_{n \to \infty} \left(\inf_{k \ge n} X_k\left(\omega\right)\right) \text{ et } \overline{\lim} X_n\left(\omega\right) = \lim_{n \to \infty} \left(\sup_{k \ge n} X_k\left(\omega\right)\right).$$

On notera que $\lim_{n\to\infty} X_n$ existe si et seulement si $\underline{\lim} X_n = \overline{\lim} X_n$ et dans ce cas

$$\lim_{n \to \infty} X_n = \underline{\lim} X_n = \overline{\lim} X_n.$$

Corollaire 4:(Lemme de Fatou)

Soit $(X_n)_{n\geq 1}$ une suite de v.a. positives et intégrables. Alors on a

$$\mathbb{E}\left(\lim X_n\right) \le \lim \mathbb{E}\left(X_n\right)$$

et

$$\mathbb{E}\left(\overline{\lim}X_n\right) \ge \overline{\lim}\mathbb{E}\left(X_n\right)$$

Preuve:

La suite de v.a.r. positives et intégrables $(Y_n)_{n>1}$ définie par $Y_n:=\inf_{k\geq n}X_k\left(\omega\right)$ est croissante et $\varliminf X_n=\lim_{n\to\infty}Y_n$. De plus $Y_n\leq X_k$, d'où $\mathbb{E}\left(Y_n\right)\leq \mathbb{E}\left(X_k\right)$ pour tout $k\geq n$ et on a

$$\mathbb{E}\left(Y_{n}\right) \leq \inf_{k > n} \mathbb{E}\left(X_{k}\right).$$

Il résulte du \mathbf{TCM} que

$$\mathbb{E}\left(\underline{\lim}X_{n}\right) = \mathbb{E}\left(\lim_{n \to \infty}Y_{n}\right) = \lim_{n \to \infty}\mathbb{E}\left(Y_{n}\right) \leq \lim_{n \to \infty}\left(\inf_{k > n}\mathbb{E}\left(X_{k}\right)\right) = \underline{\lim}\mathbb{E}\left(X_{n}\right).$$

L'autre inégalité se démontre de la même manière. Il suffit de remarquer que la suite de v.a.r. positives et intégrables $(Y_n)_{n>1}$ définie par $Z_n := \sup_{k>n} X_k\left(\omega\right)$ est

décroissante et $\overline{\lim} X_n = \lim_{n \to \infty} Z_n$ et que $Z_n \geq X_k$, d'où $\mathbb{E}(Z_n) \geq \mathbb{E}(X_k)$ pour tout $k \geq n$. Par suite

$$\mathbb{E}\left(Z_{n}\right) \geq \sup_{k \geq n} \mathbb{E}\left(X_{k}\right),$$

et en utilisant le corollaire 1, on obtient

$$\mathbb{E}\left(\overline{\lim}X_n\right) = \mathbb{E}\left(\lim_{n\to\infty}Z_n\right) = \lim_{n\to\infty}\mathbb{E}\left(Z_n\right) \ge \lim_{n\to\infty}\left(\sup_{k\ge n}\mathbb{E}\left(X_k\right)\right) = \overline{\lim}\mathbb{E}\left(X_n\right).$$

Théorème de la convergence dominée (TCD):

Soit $(X_n)_{n\geq 1}$ une suite de v.a.r.de signe quelconque, intégrables et convergente vers une

v.a.r. intégrable X. On suppose en outre que $|X_n| \leq Y$, où Y est une v.a.r. positive et

intégrable. Alors on a

$$\lim_{n\to\infty}\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(X\right)$$

Preuve:

Soit $(V_n)_{n\geq 1}$ la suite de suite de v.a.r. positives et intégrables définie par $V_n:=Y-X_n$, convergente vers la v.a.r. V:=Y-X. Remarquant que

$$\underline{\lim} V_n = Y - \overline{\lim} X_n$$
 et que $\overline{\lim} V_n = Y - \underline{\lim} X_n$,

d'où d'aprés le lemme de Fatou appliqué à la suite $(V_n)_{n>1}$,

$$\mathbb{E}\left(\underline{\lim}V_n\right) \leq \underline{\lim}\mathbb{E}\left(V_n\right)$$

et

$$\mathbb{E}\left(\overline{\lim}V_n\right) \ge \overline{\lim}\mathbb{E}\left(V_n\right)$$

Il résulte du fait que $\overline{\lim}X_n = \underline{\lim}X_n = X$, que

$$\mathbb{E}(Y) - \mathbb{E}(X) \le \mathbb{E}(Y) - \overline{\lim} \mathbb{E}(X_n)$$

 et

$$\mathbb{E}(Y) - \mathbb{E}(X) \ge \mathbb{E}(Y) - \underline{\lim} \mathbb{E}(X_n)$$

d'où en éliminant $\mathbb{E}(Y)$ et en combinant les deux inégalités,

$$\overline{\lim} \mathbb{E}(X_n) \leq \mathbb{E}(X) \leq \underline{\lim} \mathbb{E}(X_n)$$
,

et comme $\underline{\lim}\mathbb{E}(X_n) \leq \overline{\lim}\mathbb{E}(X_n)$, alors

$$\overline{\lim}\mathbb{E}(X_n) = \mathbb{E}(X) = \underline{\lim}\mathbb{E}(X_n).$$

Il s'en suit que

$$\lim_{n\to\infty}\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(X\right).$$

7