GoToGol

Carlos Araújo Daiane Mendes João Paulo Castilho Pedro Olímpio

MO651 - Robótica Móvel

27 de Novembro de 2019

Agenda

- ► Introdução
- Trabalhos Relacionados
- ► Metodologia
 - 1. Lógica Fuzzy
 - 2. Aprendizagem por Reforço
- Resultados
- Conclusões

Introdução

GoToGol

- ► Ir para o objetivo
- Evitar obstáculos

Introdução

GoToGol

- ► Ir para o objetivo
- Evitar obstáculos

Abordagens

- ► Lógica Fuzzy
- Aprendizagem por Reforço
 - Q-Learning
 - ► Deep *Q*-Network (DQN)

Introdução

GoToGol

- Ir para o objetivo
- Evitar obstáculos

Abordagens

- ► Lógica Fuzzy
- Aprendizagem por Reforço
 - Q-Learning
 - ► Deep *Q*-Network (DQN)

Objetivo

Avaliar a diferença de desempenho na realização do trajeto

Introdução - Cenário Easy

Figura: Cenário sem obstáculos:

Introdução - Cenário Hard

Figura: Cenário com obstáculos,

Trabalhos Relacionados

Trabalhos analisados

- Comum o uso de Lógica Fuzzy em robótica 1 2
- Aplicação em cenário real, evitar obstáculos e seguir parede ³

¹B. Wakileh and K. Gill, "Use of fuzzy logic in robotics, "Computers in Industry, vol. 10, pp. 35–46, 1988.

²H. Vashisth and Peng-Yung Woo, "Application of fuzzy logic to robotic control", 1996, pp. 1867–1872 vol.3.

³C.-H. Chen, C.-C. Wang, Y. Wang, and P. Wang, "Fuzzy logic controller design for intelligent robots, "Mathematical Problems in Engineering, pp. 1–12, 2017.

Trabalhos Relacionados

Trabalhos analisados

- Vasta é a literatura sobre a utilização de aprendizagem por reforço em robótica ⁴
- Apresenta um benchmark de algoritmos de aprendizagem por reforço em um cenário real ⁵

⁴J. Kober, J. Bagnell, and J. Peters, "Reinforcement learning in robotics: A survey" The International Journal of Robotics Research, vol. 32, pp.1238–1274, 2013.

⁵R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra, "Benchmarking reinforcement learning algorithms on real-world robots" inCoRL, 2018.

Metodologia

Implementação e Testes

Figura: Metodologia.

Lógica Fuzzy

Figura: Lógica Clássica x Lógica Fuzzy.

Lógica Fuzzy

Figura: Exemplo de um sistema fuzzy.

Lógica Fuzzy

Regra	Sensor Esquerdo	Sensor Frontal	Sensor Direito	Velocidade	Direção
1	perto	perto	perto	parado	esquerda
2	longe	perto	longe	lento	frente
3	perto	longe	perto	lento	frente
4	longe	longe	longe	rápido	frente
5	perto	perto	longe	lento	esquerda
6	longe	perto	perto	lento	direita
7	perto	longe	longe	rápido	frente
8	longe	longe	perto	rápido	frente

Figura: aa

Ir para o objetivo + Evitar obstáculos - Q-Learning

► Treinamos o robô para ir até um ponto objetivo sem obstáculos.

Ir para o objetivo + Evitar obstáculos - Q-Learning

- Treinamos o robô para ir até um ponto objetivo sem obstáculos.
- Treinamos o robô para desviar de objetos que estiverem no seu caminho.

Ir para o objetivo + Evitar obstáculos - Q-Learning

- Treinamos o robô para ir até um ponto objetivo sem obstáculos.
- Treinamos o robô para desviar de objetos que estiverem no seu caminho.
- Juntamos os dois treinamentos adequadamente de modo a fazer o robô chegar ao seu objetivo desviando obstáculos.

Conjunto de estados:

Conjunto de estados:

Conjunto de ações possíveis:

▶ ir para frente;

Conjunto de ações possíveis:

- ir para frente;
- virar à direita;

Conjunto de ações possíveis:

- ir para frente;
- virar à direita;
- virar à esquerda.

Conjunto de ações possíveis:

- ir para frente;
- virar à direita;
- virar à esquerda.

Função de recompensas:

Conjunto de ações possíveis:

- ir para frente;
- virar à direita;
- virar à esquerda.

Função de recompensas:

Conjunto de ações possíveis:

- ir para frente;
- virar à direita;
- virar à esquerda.

Função de recompensas:

- $ightharpoonup \Delta_d = old_distance new_distance.$

Conjunto de ações possíveis:

- ir para frente;
- virar à direita;
- virar à esquerda.

Função de recompensas:

- $ightharpoonup \Delta_d = old_distance new_distance.$

A função devolve $\Delta_a + 50 \times \Delta_d$.

Treinamento:

► Iniciamos com uma probabilidade de movimentação aleatória de 90%.

Treinamento:

- Iniciamos com uma probabilidade de movimentação aleatória de 90%.
- ► Iniciamos com uma taxa de aprendizado de 60%.

Treinamento:

- Iniciamos com uma probabilidade de movimentação aleatória de 90%.
- ▶ Iniciamos com uma taxa de aprendizado de 60%.
- ► Treinamos com um fator de desconto de 0.99.

Evitar obstáculos – *Q-Learning*

4 estados

3 ações

Recompensas:

+10 para ir em frente;

0 para virar;

-100 se bater.

 $\alpha = 0.5$

 $\gamma = 0.8$

Figura: Comparação Q-Learning e Deep Q-Network.

Model: "sequential_1"

Layer (type)	Output Shape	Param #	
flatten_1 (Flatten)	(None, 3)	0	
dense_1 (Dense)	(None, 32)	128	
activation_1 (Activation	(None, 32)	0	
dense_2 (Dense)	(None, 32)	1056	
activation_2 (Activation	(None, 32)	0	
dense_3 (Dense)	(None, 32)	1056	
activation_3 (Activation	(None, 32)	0	
dense_4 (Dense)	(None, 3)	99	
activation_4 (Activation	n) (None, 3)	0	

Total params: 2,339 Trainable params: 2,339 Non-trainable params: 0

Conjunto de ações possíveis:

- ▶ ir para frente;
- virar à direita;
- virar à esquerda.

Conjunto de ações possíveis:

- ir para frente;
- virar à direita;
- virar à esquerda.

Função de recompensas:

- $ightharpoonup \Delta_d = old_distance new_distance.$
- ▶ flag = obstáculo detectado

Conjunto de ações possíveis:

- ir para frente;
- virar à direita;
- virar à esquerda.

Função de recompensas:

- ▶ $\Delta_d = old_distance new_distance$.
- flag = obstáculo detectado

A função devolve $\Delta_a + \Delta_d - 2 \times flag$.

Resultados

Figura: Vídeo completo: https://youtu.be/Q6ETvQM3fdI.

Conclusões

- Controladores com Lógica Fuzzy e Q-Learning obtiveram os melhores resultados.
- Entre esses dois o controlador com Q-Learning foi melhor.
- Tempo limitado inviabiliza alguns algoritmos de aprendizado por reforço.

