ELLIPTIC K3 SURFACES ADMITTING A SHIODA-INOSE STRUCTURE

KENJI KOIKE, YAMANASHI UNIVERSITY

1. Introduction

An automorphism of a K3 surface X is called symplectic if it acts on $H^{2,0}(X)$ trivially. Such automorphisms were studied by Nikulin in [N1]. He proved that a symplectic involution ι has eight fixed points and the minimal resolution $Y \to X/\langle \iota \rangle$ of eight nodes is again a K3 surface. In [SI], Shioda and Inose proved that every K3 surface X with maximal Picard number 20 has a symplectic involution ι such that Y is a Kummer surface, and that the rational quotient map $\pi: X \dashrightarrow Y$ induces a Hodge isometry $T_X(2) \cong T_Y$, where T_X is the transcendental lattice of X. In general, we say that a K3 surface X admits a Shioda-Inose structure if X has such an involution. This definition is due to Morrison ([Mo]), and he proved that a K3 surface X admits a Shioda-Inose structure if and only if there exists an Abelian surface A and a Hodge isometry $T_X \cong T_A$. Since the transcendental lattice of a general (1,d)-polarized Abelian surface is $M_d = U \oplus U \oplus \langle -2d \rangle$, a K3 surface X with Picard number 17 admits a Shioda-Inose structure if and only if $T_X \cong M_d$, namely $NS(X) \cong E_8 \oplus E_8 \oplus \langle 2d \rangle$. However, to the best of author's knowledge, an explicit example of a 3-dimensional family of such K3 surfaces with the involution ι is known only for d=1 (Appendix in [GL], [K]) and for d=2 ([vGS]). In [K] and [vGS], K3 surfaces X are given as elliptic surfaces with a 2-torsion section σ , and ι is given by the fiberwise translation by σ . In this situation, the rational quotient map $X \longrightarrow Y$ is just an isogeny of degree 2 between elliptic curves over $\mathbb{C}(t)$, and we have a rational map $Y \dashrightarrow X$ of degree 2 as the dual isogeny. This gives a geometric realization of Kummer sandwich theorem $Y \dashrightarrow X \dashrightarrow Y$ which was proved by

In this short note, we show that such pairs of elliptic K3 surfaces exist only for d = 1, 2, 3, 5, 7 under the hypothesis that the Mordell-Weil rank is 0 (Theorem 2.6), and we construct X and Y explicitly for these values of d.

2. Elliptic K3 surfaces with a 2-torsion

2.1. Let $f: X \to \mathbb{P}^1$ be an elliptic K3 surface with the zero section o. If X has a 2-torsion section σ , it is given by the Weierstrass equation

$$y^2 = x(x^2 + a(t)x + b(t)),$$
 deg $a(t) \le 4$, deg $b(t) \le 8$

with the projection $f(x,y,t)=t\in\mathbb{P}^1$, and $\sigma=\{x=y=0\}$. Let ι be the translation by σ . It is a Nikulin involution, and we have a K3 surface Y by resolving eight nodes on $X/\langle\iota\rangle$. The rational quotient map $\phi:X\dashrightarrow Y$ is regarded as an isogeny between elliptic curves over $K=\mathbb{C}(t)$ with the kernel $\{o,\sigma\}$. The Weierstrass model of Y is

$$Y: y^2 = x(x^2 - 2a(t)x + a(t)^2 - 4b(t)),$$

and the isogeny ϕ and the dual isogeny $\hat{\phi}$ is given by

$$\begin{split} \phi: X &\longrightarrow Y, \quad (x,y) \mapsto (\frac{y^2}{x^2}, \frac{y(x^2 - b(t))}{x^2}), \\ \hat{\phi}: Y &\longrightarrow X, \quad (x,y) \mapsto (\frac{y^2}{4x^2}, \frac{y(x^2 - a(t)^2 + 4b(t))}{8x^2}) \end{split}$$

([ST], Chapter III. 4). We denote the projection $(x, y, t) \mapsto t$ by $g: Y \to \mathbb{P}^1$. Up to constants, the discriminants of X and Y are

$$\Delta_X(t) = b^2(a^2 - 4b), \qquad \Delta_Y(t) = b(a^2 - 4b)^2.$$

For general a(t) and b(t), singular fibers of X and Y are $8I_1 + 8I_2$ and Mordell-Weil groups are $X(K) \cong X(K) \cong X(K)$

$$T_X \cong T_Y \cong U \oplus U \oplus N, \quad NS(X) \cong NS(Y) \cong U \oplus N$$

where N is the Nikulin lattice ([vGS]).

2.2. We are interested in a(t) and b(t) such that the transcendental lattice T_X of the corresponding K3 surface X is $M_d = U \oplus U \oplus \langle -2d \rangle$. To find such a(t) and b(t), let us study configurations of possible singular fibers. For our purpose, Shimada's list ([Shim] and [BK]) is useful, but here we make arguments self-contained as possible. We denote the simple points of a singular fiber $f^{-1}(\nu)$ by $f^{-1}(\nu)^{\sharp}$, which has a natural group structure. Since the specialization map $X(K)_{tor} \to f^{-1}(\nu)^{\sharp}_{tor}$ on the torsion subgroup is injective ([Mi], Corollary VII.3.3) and $\sigma \in X(K)$ is of order two, X admits singular fibers of Kodaira's type I_n , I_n^* , III and III^* . Fundamental invariants for these fibers are summarized in the following table, where L_{ν} is the (negative definite) Dynkin lattice generated by components which do not intersect with o, m_{ν} is the number of components, $m_{\nu}^{(1)}$ is the number of simple components, n_{ν} is the number of fixed points by ι and $c(t) = a(t)^2 - 4b(t)$.

. 1.								
$f^{-1}(\nu)$	I_n		I_{2k}^*		I_{2k+1}^{*}	III	III^*	
$f^{-1}(u)^{\sharp}$	$\mathbb{C}^* \times (\mathbb{Z}/n\mathbb{Z})$		$\mathbb{C} \times (\mathbb{Z}/2\mathbb{Z})^2$		\mathbb{Z}) ² $\mathbb{C} \times (\mathbb{Z}/4\mathbb{Z})$		$\mathbb{C} \times (\mathbb{Z}/2\mathbb{Z})$	
$L_{ u}$	A_{n-1}		D_{2k+4}		D_{2k+5}	A_1	E_7	
$\operatorname{ord}_{\nu}\Delta_X(t)$	n		2k + 6		2k + 7	3	9	
$m_{\nu}(X)$	n		2k + 5		2k + 6	2	8	
$m_{\nu}^{(1)}(X)$	n		4		4	2	2	
ι	(i)	(ii)	(i)	(ii)	(i)	-	-	
$n_{\nu}(X)$	n	0	2k+2	2	2k + 3	1	3	
$g^{-1}(\nu)$	I_{2n}	$I_{n/2}$	I_{4k}^*	I_k^*	I_{4k+2}^{*}	III	III^*	
$\operatorname{ord}_{\nu}\Delta_{Y}(t)$	2n	n/2	4k + 6	k+6	4k + 8	3	9	
$\operatorname{ord}_{\nu}b(t)$	0	n/2	2	k+2	2	1	3	
$\operatorname{ord}_{\nu}c(t)$	n	0	2k + 2	2	2k+3	1	3	

These are very well known(see e.g. [Mi], [SS], [T]), except perhaps n_{ν} and the type of the fiber $g^{-1}(\nu)$ (Last three columns are determined from $\operatorname{ord}_{\nu}\Delta_{X}(t)$ and the fiber type of $g^{-1}(\nu)$). Here we explain the action of ι on I_{n} and I_{n}^{*} . First of all, note that an involution on \mathbb{P}^{1} has two fixed points, and that intersection numbers are preserved by ι , that is, $D_{1} \cdot D_{2} = \iota^{*}D_{1} \cdot \iota^{*}D_{2}$ for divisors D_{i} .

- 2.3. I_n -fiber. Let $\Theta_k \cong \mathbb{P}^1$ $(k \in \mathbb{Z}/n\mathbb{Z})$ be components of a fiber of type I_n (n > 1), such that Θ_0 intersects with the zero section o and that $\Theta_k \cdot \Theta_{k+1} = 1$ (or 2 if n = 2.). Then we can identify simple points of Θ_k with $\mathbb{C}^* \times \{k\} \subset \mathbb{C}^* \times \mathbb{Z}/n\mathbb{Z}$, replacing Θ_k by Θ_{-k} if necessary. There are two possibilities.
 - (i) If σ intersects with Θ_0 at the point corresponding to $(-1,0) \in \mathbb{C}^* \times \mathbb{Z}/n\mathbb{Z}$, then ι acts on each Θ_k as an involution and fixed points are n intersection points $\Theta_k \cap \Theta_{k+1}$.
 - (ii) If n = 2m and σ intersects with Θ_m at the point corresponding to $(\pm 1, m) \in \mathbb{C}^* \times \mathbb{Z}/2m\mathbb{Z}$, then ι switches Θ_k and Θ_{k+m} and there is no fixed point. In this case, we define a \mathbb{Q} -divisor

$$\vartheta_{2m} = \frac{1}{2m} \sum_{k=1}^{2m-1} k\Theta_k \in NS(X) \otimes \mathbb{Q}.$$

Note that $\vartheta_{2m} \cdot \Theta_k \in \mathbb{Z}$, $\vartheta_{2m} \cdot o = 0$, $\vartheta_{2m} \cdot \sigma = \frac{1}{2}$ and

$$\vartheta_{2m} \cdot \vartheta_{2m} = \frac{1}{4m^2} \left\{ \sum_{k=1}^{2m-1} k^2 \Theta_k \cdot \Theta_k + 2 \sum_{k=1}^{2m-2} k(k+1) \Theta_k \cdot \Theta_{k+1} \right\}$$
$$= \frac{1}{4m^2} \left\{ -2 \sum_{k=1}^{2m-1} k^2 + 2 \sum_{k=1}^{2m-2} (k^2 + k) \right\} = -1 + \frac{1}{2m}.$$

We shall use ϑ_{2m} later, to determine the discriminant group $NS(X)^*/NS(X)$.

- 2.4. I_n^* -fiber. Next, let $\Theta_0, \dots, \Theta_3$ be simple components, and $\Gamma_1, \dots, \Gamma_n$ be double components of a fiber of type I_n^* as in the following figure, and let Θ_0 be the component which intersects with o.
 - (i) If σ intersects with Θ_1 , then ι switches Θ_0 and Θ_1 , acts on each Γ_k and switches Θ_2 and Θ_3 . In this case, we have n fixed points $\Gamma_k \cap \Gamma_{k+1}$ and another fixed point on Γ_1 and on Γ_n .
 - (ii) If n = 2m and σ intersects with Θ_2 or Θ_3 , then ι switches $\Theta_0 + \Theta_1$ and $\Theta_2 + \Theta_3$, acts on Γ_m and switches Γ_k and Γ_{2m-k} . In this case, we have 2 fixed points on Γ_m .

- 2.5. Lemma. Let X be an elliptic K3 surface with a 2-torsion and the Mordell-Weil rank 0.
- (1) If the discriminant group T_X^*/T_X has a subgroup $\mathbb{Z}/p^e\mathbb{Z}$ for an odd prime number p, then X has a I_n -fiber with $n = kp^e$ for some $k \in \mathbb{N}$.
- (2) If the discriminant group T_X^*/T_X has a subgroup $\mathbb{Z}/2^e\mathbb{Z}$ with $e \geq 3$, then X has a I_n -fiber with $n = 2^e k$ for some $k \in \mathbb{N}$.
- (3) If the Picard number $\rho(X)$ is 17, then a singular fiber of X is one of the following:

$$I_1, \dots, I_8, I_{10}, I_{12}, I_{14}, I_{16}, I_0^*, \dots, I_6^*, I_8^*, I_{10}^*, III, III^*,$$

where $I_{10}, I_{12}, I_{14}, I_{16}, I_8^*$ and I_{10}^* are of type (ii). In particular, possible cyclic subgroups of T_X^*/T_X of order p^e are

$$\mathbb{Z}/2^e\mathbb{Z} \ (1 \le e \le 4), \quad \mathbb{Z}/3\mathbb{Z}, \quad \mathbb{Z}/5\mathbb{Z}, \quad \mathbb{Z}/7\mathbb{Z}.$$

Proof. Let $L_X \subset NS(X)$ be the sublattic generated by the zero section o, a general fiber and components of singular fibers which do not intersect with o. Then L_X is of finite index in NS(X), and we have

$$L_X \subset NS(X) \subset NS(X)^* \subset L_X^*$$
.

Hence $T_X^*/T_X \cong NS(X)^*/NS(X)$ is isomorphic to a quotient of a subgroup of L_X^*/L_X . Note that

$$L_X \cong U \bigoplus (\bigoplus_{\Delta(\nu)=0} L_{\nu}), \qquad L_X^*/L_X \cong \bigoplus_{\Delta(\nu)=0} L_{\nu}^*/L_{\nu}$$

and L_{ν}^*/L_{ν} is one of

$$\mathbf{A}_n^*/\mathbf{A}_n \cong \mathbb{Z}/n\mathbb{Z}, \quad \mathbf{D}_{2k}^*/\mathbf{D}_{2k} \cong (\mathbb{Z}/2\mathbb{Z})^2, \quad \mathbf{D}_{2k+1}^*/\mathbf{D}_{2k+1} \cong \mathbb{Z}/4\mathbb{Z}, \quad \mathbf{E}_7^*/\mathbf{E}_7 \cong \mathbb{Z}/2\mathbb{Z}$$

according to $I_n(III)$, I_{2k}^* , I_{2k+1}^* and III^* . Therefore subgroups $\mathbb{Z}/p^e\mathbb{Z}$ stated in (1) and (2) come from I_n -fibers.

By the Shioda-Tate formula ([Mi], Corollary VII.2.4)

$$\rho(X) = 2 + \operatorname{rank} X(K) + \sum_{\Delta(\nu)=0} (m_{\nu}(X) - 1),$$

and $\sum n_{\nu} = 8$, we see that a possible singular fiber is in the above list.

2.6. **Theorem.** Let X be an elliptic K3 surface with a 2-torsion section σ which gives a Shioda-Inose structure. If $T_X \cong M_d$ and rank X(K) = 0, then d is one of 1, 2, 3, 5, 7 or 15. If d = 15, the singular fibers of X must be $6I_1 + I_2 + I_6 + I_{10}$ and the singular fibers of Y must be $6I_2 + I_4 + I_3 + I_5$. (As we shall see later, however, this configuration does not realize K3 surfaces with $T_X \cong M_{15}$.)

Proof. Since $T_X^*/T_X \cong \mathbb{Z}/2d\mathbb{Z}$, we see that a prime factor p of d is 2,3,5 or 7, and that $p^2 \nmid d$ for p=3,5,7. We have also $2^3 \nmid d$ since

$$T_Y^*/T_Y \cong M_d(2)^*/M_d(2) \cong (\mathbb{Z}/2\mathbb{Z})^4 \oplus (\mathbb{Z}/4d\mathbb{Z}).$$

Now let q be the maximal prime factor of d.

(1) the case of q=7. Let us show that d=7. If 2|d, then Y has $I_{7m}+I_{8n}$ and only (m,n)=(1,1) agrees with $\sum (m_{\nu}(Y)-1)=15$. However, I_7+I_8 on Y corresponds to $I_{14}+I_4$ or $I_{14}+I_{16}$ on X, and both cases contradict $\sum (m_{\nu}(X)-1)=15$. Therefore 2 is not a prime factor of d. If 3|d, then X has $I_{3m}+I_{7n}$ and only (m,n)=(1,1),(1,2),(2,1) agree with $\sum (m_{\nu}(X)-1)=15$. However, I_3+I_7 has 10 fixed points by ι , and this contradicts $\sum n_{\nu}(X)=8$. If X has I_3+I_{14} , then singular fibers of X must be $I_3+I_{14}+7I_1$ by the conditions $\deg \Delta_X(t)=24$ and $\sum (m_{\nu}(X)-1)=15$. This contradicts $\sum n_{\nu}(X)=8$. We see that also I_6+I_7 is impossible since it corresponds $I_{12}+I_{14}$ or I_3+I_{14} on Y. Therefore 3 is not a prime factor of d. By a similar argument, we can show that $5 \nmid d$.

(2) the case of q=5. If 2|d, then Y has $I_{5m}+I_{8n}$ and only I_5+I_8 agrees with $\sum (m_{\nu}(Y)-1)=15$. This configuration is given as a degeneration (confluences of singular fibers)

$$8I_1 (b(t) = 0) + 8I_2 (c(t) = 0) \longrightarrow (I_5 + 3I_1) + (I_8 + 4I_2).$$

of the most general configuration $8I_1 + 8I_2$. Under the hypothesis $\sum m_{\nu}(Y) = 15$, we may admit only $I_1 + I_2 \longrightarrow III$ as extra confluences. By Corollary 1.7 in [Shio], we have

$$|\det NS(Y)| = \frac{\prod m_{\nu}^{(1)}(Y)}{|Y(K)_{tor}|^2} \le \frac{5 \cdot 8 \cdot 2^4}{4} < |\det M_{10}(2)|.$$

Therefore we see that 2 is not a prime factor of d, and we have d = 5 or d = 15. If d = 15, then X has one of

$$I_3 + I_5$$
, $I_6 + I_{10}$, $I_3 + I_{10}$, $I_6 + I_5$.

As degenerations of $8I_1 + 8I_2$, these are

$$(I_3 + I_5) + 8I_2$$
, $8I_1 + (I_6 + I_{10})$, $(I_3 + I_5) + (I_6 + I_{10})$

where $I_3 + I_{10}$ and $I_6 + I_5$ correspond to the same degeneration. From this, $\sum (m_{\nu}(X) - 1) = 15$ and the equality

$$\det NS(Y) = -\det M_{15}(2) = -2^5 \det M_{15} = 2^5 \det NS(X),$$

we see that the singular fibers of X and Y must be the stated form

(3) the case of q = 3. If 2|q, then Y has $I_3 + I_8$ or $I_6 + I_8$, that is, the singular fibers of Y are obtained as a degeneration of one of the following two configurations.

$$X \mid 8I_2 + 8I_1 \longrightarrow (I_6 + 5I_2) + (I_4 + 4I_1) \text{ or } 8I_2 + (I_3 + I_4 + I_1)$$

 $Y \mid 8I_1 + 8I_2 \longrightarrow (I_3 + 5I_1) + (I_8 + 4I_2) \text{ or } 8I_1 + (I_6 + I_8 + I_2)$

By the condition $\sum (m_{\nu}(Y) - 1) = 15$, we may admit just one of the following confluences

$$4I_k \longrightarrow 2I_{2k}, \quad 3I_k \longrightarrow I_{3k} \quad (k=1,2), \quad 2(I_1+I_2) \longrightarrow I_0^*,$$

and $I_1 + I_2 \dashrightarrow III$ if possible. In any cases, we have

$$\frac{\prod m_{\nu}^{(1)}(Y)}{|Y(K)_{tor}|^2} = |\det NS(Y)| = |\det T_Y|$$

$$= 2^5 |\det T_X| = 2^5 |\det NS(X)| = 2^5 \frac{\prod m_{\nu}^{(1)}(X)}{|X(K)_{tor}|^2}$$

and $|X(K)_{tor}| = 2^{\varepsilon}|Y(K)_{tor}|$ with $\varepsilon = 1, 0, -1$. Therefore we have an inequality

$$\prod m_{\nu}^{(1)}(Y) \le 2^3 \prod m_{\nu}^{(1)}(X)$$

and we see easily that this contradicts any case of the considering degenerations.

(4) the case of q=2. If 4|d, then Y must have I_{16} . In this case, the singular fibers of Y are $I_{16}+8I_{1}$ and the singular fibers of X are $I_{8}+8I_{2}$. These K3 surfaces are studied in [vGS], and we have $T_{X}\cong M_{2}$ and $T_{Y}\cong M_{2}(2)$.

3. Examples

3.1. For a cubic polynomial P(t) and $0 \le n \le 8$, we define an elliptic K3 surface $X_d = X(d, P)$ by

$$y^{2} = x(x^{2} + P(t)x + t^{d}).$$

Then the quotient surface $Y_d = X_d / \langle \iota \rangle$ is

$$y^{2} = x(x^{2} - 2P(t)x + P(t)^{2} - 4t^{d}).$$

The singular fibers of X_d and Y_d for a general P(t) are given in the following table

	X_0	$X_d (1 \le d \le 6)$	X_7	X_8	Y_0	$Y_d (1 \le d \le 6)$	Y_7	Y_8
t = 0	reg.	I_{2d}	I_{14}	I_{16}	reg.	I_d	I_7	I_8
c(t) = 0	$6I_1$	$6I_1$	$7I_1$	$8I_1$	$6I_2$	$6I_2$	$7I_2$	$8I_2$
$t = \infty$	I_{12}^{*}	I_{12-2d}^*	III	reg.	I_6^*	I_{6-d}^{*}	III	reg.

where $c(t) = P(t)^2 - 4t^d$. Elliptic K3 surfaces X_1 were studied by Kumar in [K]. The transcendental lattice of a general X_1 is M_1 and the quotient surfaces Y_1 are Jacobian Kummer surfaces. Elliptic K3 surfaces X_8 were studied by van Geemen and Sarti in [vGS]. The transcendental lattice of a general X_8 is M_2 and the quotient surfaces Y_8 have the transcendental lattice $M_2(2)$.

- 3.2. **Proposition.** For a general cubic polynomial P(t), we have
- (1) the Picard number $\rho(X_d)$ is 17 for $d=1,\dots,6$, and $\rho(X_0)=18$,
- (2) $X_d(K) = \{o, \sigma\} \cong \mathbb{Z}/2\mathbb{Z} \text{ for } d = 1, \dots, 6,$
- (3) $\det NS(X_d) = 2d$ for $d = 1, \dots, 6$, and $\det NS(X_0) = -1$. Hence $NS(X_0) \cong E_8 \oplus E_8 \oplus U$ and $T_{X_0} \cong U \oplus U$.
- (4) $T_{X_d} \cong M_d$ for $d = 1, \dots, 6$.

Proof. (1) Cubic polynomials P(t) form a 4-dimensional vector space, and we have isomorphisms

$$X(d, \lambda^{-4d}P(\lambda^8 t)) \longrightarrow X(d, P(t)), \quad (x, y, t) \mapsto (\lambda^{4d}x, \lambda^{6d}y, \lambda^8 t)$$

by $\lambda \in \mathbb{C}^*$. Up to this \mathbb{C}^* -action, the configuration of singular fibers is determined by P(t) and it gives the moduli of X(d,P) for $d=1,\cdots,7$. Therefore K3 surfaces X(d,P) form a 3-dimensional family in this case. For d=0, we can transform P(t) into t^3+at+b by a transformation $t\mapsto \alpha t+\beta$, and (a,b) gives the moduli. From this, we see that $\rho(X_d)\leq 17$ for $d=1,\cdots,7$ and $\rho(X_0)\leq 18$. On the other hand, by the formula

$$\rho(X_d) = 2 + \text{rank } X_d(K) + \sum_{\Delta(\nu)=0} (m_{\nu}(X_d) - 1),$$

we have

$$\rho(X_d) = \begin{cases} 18 + \operatorname{rank} X_0(K) & (d=0) \\ 17 + \operatorname{rank} X_d(K) & (d=1, \dots, 6) \\ 16 + \operatorname{rank} X_7(K) & (d=7). \end{cases}$$

Therefore we see that rank $X_d(K) = 0$ for $d = 0, \dots, 6$.

(2) We have an injective homomorphism $X_d(K)_{tor} \to (\mathbb{Z}/2\mathbb{Z})^2$ since $f^{-1}(\infty)^{\sharp} \cong \mathbb{C} \times (\mathbb{Z}/2\mathbb{Z})^2$. The 2-torsion subgroup of X_d is given by o, σ and two solutions of $F(x) = x^2 + P(t)x + t^d = 0$. Since F(x) is irreducible over K, we have

$$X_d(K) = X_d(K)_{tor} \cong \mathbb{Z}/2\mathbb{Z}$$

for $d = 0, \dots, 6$.

(3) By Corollary 1.7 in [Shio], we have

$$|\det NS(X_d)| = \frac{\prod m_{\nu}^{(1)}(X_d)}{|X_d(K)_{tor}|^2} = \frac{1}{4} \prod m_{\nu}^{(1)}(X_d),$$

and det $NS(X_d) = 2d$ for $d = 1, \dots, 6$, and det $NS(X_0) = -1$.

(4) The Néron-Severi group $N = NS(X_d)$ is generated by o, σ and all components of singular fibers. Since the singular fiber at t = 0 is an I_{2d} -fiber of type (ii), we can define $\vartheta_{2d} \in N \otimes \mathbb{Q}$ as in 2.3. Let $\Theta_0, \dots, \Theta_3$ be simple components of I_{12-6d}^* -fiber at $t = \infty$ as in 2.4. This fiber is of type (ii), and σ intersects with either Θ_2 or Θ_3 . Let us consider

$$\Gamma = \frac{1}{2}(\Theta_2 + \Theta_3) + \vartheta_{2d} \in N \otimes \mathbb{Q}.$$

Since the intersection numbers of Γ with o, σ and components of singular fibers are integers, we see that $\Gamma \in N^*$. Moreover we have $2d\Gamma \in N$ and the value of the discriminant form $q_N : N^*/N \to \mathbb{Q}/2\mathbb{Z}$ for Γ is

$$\Gamma \cdot \Gamma = \frac{1}{4} \{ (\Theta_2)^2 + (\Theta_3)^2 \} + (\vartheta_{2d})^2 = -2 + \frac{1}{2d} \equiv \frac{1}{2d} \mod 2.$$

If $m\Gamma \in N$, then we have $(\Gamma, m\Gamma) \in N^* \times N$ and

$$\frac{m}{2d} \equiv \Gamma \cdot (m\Gamma) \equiv 0 \mod \mathbb{Z}.$$

Therefore Γ gives an element of order 2d in N^*/N , and we have $N^*/N \cong \mathbb{Z}/2d\mathbb{Z}$. By Corollary 1.13.3 in [N2], we see that $N \cong \mathcal{E}_8 \oplus \mathcal{E}_8 \oplus \langle 2d \rangle$ and $T_{X_d} \cong M_d$.

3.3. **Lemma.** For a general cubic polynomial P(t), we have

$$\det NS(Y_d) = \begin{cases} 2^4 & (d=0) \\ 2^6 \cdot d & (d=1,3,5) \\ 2^4 \cdot d & (d=2,4,6) \end{cases}.$$

Proof. Since $Y_d(K)$ is isogeneous to $X_d(K)$, we see that $Y_d(K) = Y_d(K)_{tor}$. For d = 0, 2, 4, 6, the group structure at $t = \infty$ is $\mathbb{C} \times (\mathbb{Z}/2\mathbb{Z})^2$, and we have full two-torsions:

$$y^{2} = x(x^{2} - 2P(t)x + P(t)^{2} - 4t^{d}) = x(x - P(t) + 2t^{d/2})(x - P(t) - 2t^{d/2}).$$

Therefore the Mordell-Weil group $Y_d(K)$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^2$ in this case. For d=1,3,5, the group structure at $t=\infty$ is $\mathbb{C}\times(\mathbb{Z}/4\mathbb{Z})$, and we have $Y_d(K)=\mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/4\mathbb{Z}$. If $\sigma'\in Y_d(K)$ has order four, then $\hat{\phi}(\sigma')\in X_d(K)\cong \mathbb{Z}/2\mathbb{Z}$ has order two. However, the non-zero element of $X_d(K)$ is pulled back to a double section

$$y = 0$$
, $x^2 - 2P(t)x + P(t)^2 - 4t^d = 0$

of Y_d by $\hat{\phi}$. Hence we see that $Y_d(K) \cong \mathbb{Z}/2\mathbb{Z}$. As in the case of X_d , the Lemma follows from Corollary 1.7 in [Shio].

- 3.4. **Proposition.** Let P(t) be a general cubic polynomial.
- (1) The rational map $\phi: X_d \dashrightarrow Y_d$ gives a Shioda-Inose structure for d = 0, 1, 3, 5. In particular, Y_d is a Kummer surface with the transcendental lattice $U(2) \oplus U(2)$ for d = 0, and $M_d(2)$ for n = 1, 3, 5.
- (2) The transcendental lattice of Y_d is $U(2) \oplus U(2) \oplus \langle -d \rangle$ for d = 2, 4, 6.

Proof. We have a natural map $\phi_*: T_{X_d} \to T_{Y_d}$ between transcendental lattices such that $\phi_* T_{X_d} \cong T_{X_d}(2)$ (see [SI] and [Mo]).

- (1) By Lemma 3.3, we see that $\det T_{X_d}(2) = \det T_{Y_d}$. Therefore we have $T_{X_d}(2) \cong T_{Y_d}$.
- (2) By Lemma 3.3 and the conditions

$$\phi_* T_{X_d} \subset T_{Y_d} \subset (T_{Y_d})^* \subset (\phi_* T_{X_d})^*, \qquad (\phi_* T_{X_d})^* / \phi_* T_{X_d} \cong (\mathbb{Z}/2\mathbb{Z})^4 \times (\mathbb{Z}/4d\mathbb{Z}),$$

we see that $(T_{Y_d})^*/T_{Y_d}$ is isomorphic to one of groups

$$(\mathbb{Z}/2\mathbb{Z})^2 \times (\mathbb{Z}/4n\mathbb{Z}), \quad (\mathbb{Z}/2\mathbb{Z})^3 \times (\mathbb{Z}/2d\mathbb{Z}), \quad (\mathbb{Z}/2\mathbb{Z})^4 \times (\mathbb{Z}/d\mathbb{Z}).$$

Let us consider a sublattice L of $N = NS(Y_d)$ generated by the zero section, a general fiber and components of singular fibers which does not intersect with the zero section. Then we have

$$L \subset N \subset N^* \subset L^*, \qquad L^*/L = (\mathbb{Z}/2\mathbb{Z})^8 \times (\mathbb{Z}/d\mathbb{Z})$$

since Y_d (d=2,4,6) has singular fibers I_d , $6I_2$ and I_{6-d}^* . Hence N^*/N does not contain an element of order 2d, nor does $(T_{Y_d})^*/T_{Y_d}$. From this, we see that

$$(T_{Y_d})^*/T_{Y_d} \cong (\mathbb{Z}/2\mathbb{Z})^4 \times (\mathbb{Z}/d\mathbb{Z})$$

and $T_{Y_d} \cong \mathrm{U}(2) \oplus \mathrm{U}(2) \oplus \langle -d \rangle$.

3.5. Let us consider a family of elliptic K3 surfaces

$$X'_n: y^2 = x(x^2 + P(t)x + t^n(t-1)^{8-n}), \quad P(t) = 2t^4 - (8-n)t^3 + a_1t^2 + a_2t + a_3t^2 + a_3$$

for n=5,7. A general X_n' has singular fibers I_{2n} , I_{16-2n} , I_2 and $6I_1$ at $t=0,1,\infty$ and $P(t)^2-4t^n(t-1)^{8-n}=0$, respectively. A general $Y_n'=X_7'/\langle \iota \rangle$ has singular fibers I_n , I_{8-n} , I_4 and $6I_2$ at $t=0,1,\infty$ and $P(t)^2-4t^n(t-1)^{8-n}=0$, respectively.

3.6. **Proposition.** For a general P(t), we have

- (1) $T_{X_7'} \cong M_7$ and $T_{X_5'} \cong U \oplus \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix} \oplus \langle -6 \rangle$,
- (2) $T_{Y'_n} \cong T_{X'_n}(2)$ for n = 5, 7.

Proof. (1) Since $\sum (m_{\nu}(X'_n) - 1) = 15$ and a_1, a_2, a_3 give the moduli parameters, we have $\rho(X'_n) = 17$ and rank $X'_n(K) = 0$. Then we have

$$\det NS(X'_n) = \frac{\prod m_{\nu}^{(1)}(X'_n)}{|X'_n(K)_{tor}|^2} = \frac{2n(8-n) \cdot 2^2}{|X'_n(K)_{tor}|^2}.$$

Since 2n(8-n) is square-free for n=5,7, we see that $X_n'(K)=\{o,\sigma\}$ and

$$\det NS(X'_n) = 2n(8-n) = \begin{cases} 30 & (n=5) \\ 14 & (n=7) \end{cases}$$

Note that singular fibers at 0 and 1 are of type (ii) and we have ϑ_{2n} , $\vartheta_{16-2n} \in NS(X'_n) \otimes \mathbb{Q}$. Since the singular fiber at ∞ is of type (i), the component Θ_1 does not intersects with o and σ . Then $\Gamma = \vartheta_{2n} + \vartheta_{16-2n} + \frac{1}{2}\Theta_1$ belongs to $NS(X'_n)^*$ and

$$\Gamma \cdot \Gamma = (\vartheta_{2n})^2 + (\vartheta_{16-2n})^2 + (\frac{1}{2}\Theta_1)^2$$

$$= (-1 + \frac{1}{2n}) + (-1 + \frac{1}{16-2n}) + (-\frac{1}{2}) = \begin{cases} -2 - \frac{7}{30} & (n=5) \\ -2 + \frac{1}{14} & (n=7) \end{cases}.$$

From this, we see that $NS(X_7')\cong E_8\oplus E_8\oplus \langle 14\rangle$ and $T_{X_7'}\cong M_7$. Let e_1,\cdots,e_5 be the basis of $M=U\oplus\begin{bmatrix}2&1\\1&-2\end{bmatrix}\oplus\langle -6\rangle$. Then we have

$$\delta = \frac{1}{5}(2e_3 + e_4) + \frac{1}{6}e_5 \in M^*$$

and δ generates $M^*/M \cong \mathbb{Z}/30\mathbb{Z}$. since $\delta \cdot \delta = \frac{7}{30}$, we see that $T_{X_5'} \cong M$ by Corollary 1.13.3 in [N2]. (2) We see easily that $Y_n'(K) \cong \mathbb{Z}/2\mathbb{Z}$ and det $NS(Y_n') = 2^5 \det NS(X_n')$. Hence we have $T_{Y_n'} \cong \phi_* T_{X_n'} \cong T_{X_n'}(2)$.

References

- [BK] G. Brown and A. Kasprzyk, Graded Ring Database, http://grdb.lboro.ac.uk/Index.
- [GL] F. Galluzzi and G. Lombardo, Correspondences between K3 surfaces, with an appendix by Igor Dolgachev, Michigan Math. J. 52 (2004), 267-277.
- [vGS] B. van Geemen and A. Sarti, Nikulin Involutions on K3 Surfaces, Math. Zeitschrift 255 (2007), 731-753.
- [K] A. Kumar, K3 Surfaces Associated with Curves of Genus Two, Int. Math. Res. Not. 2008, Article ID rnm165.
- [Ma] S. Ma, On K3 surfaces which dominate Kummer, arXiv:0905.4107v2 [math.AG].
- [Mi] R. Miranda, The Basic Theory of Elliptic Surfaces, Lecture Notes.
- [Mo] D. Morrison, On K3 surfaces with large Picard number, Invent. Math. 35 (1984), 105-121.
- [N1] V. V. Nikulin, Finite automorphism groups of Kahler surfaces of type K3, Proc. Moscow Math. Soc. 38 (1979), 75-137.
- [N2] V. V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Izvestija 14 (1980), 103-167.
- [Shim] I. Shimada, On elliptic K3 surfaces, Michigan Math. J. 47 (2000), no. 3, 423-446.
- [Shio] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20-59.
- [SI] T. Shioda and H. Inose, On singular K3 surfaces, Complex analysis and algebraic geometry, 119-136, Iwanami Shoten, Tokyo (1977).
- [SS] M. Schütt and T. Shioda, Elliptic surfaces, Algebraic Geometry in East Asia Seoul 2008, Adv. Stud. Pure Math. 60 (2010), 51-160.
- [ST] J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Undergraduate Texts in Mathematics, Springer-Verlag, New York (1992).
- [T] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable IV, Lecture Notes in Math. Vol. 476, 33-52, Springer, Berlin, (1975).