Compression fractale

Pierre VIGIER - Frédéric WANTIEZ

CentraleSupélec

29 mai 2017

Théorèmes fondamentaux

Théorème du point fixe pour une application contractante

Soit (E,d) un espace métrique complet et $f:E\to E$ une application s-contractante. f a un unique point fixe x_0 et

$$\forall x \in E, \forall n \in \mathbb{N}, d(x_0, f^n(x)) \leq s^n d(x_0, x)$$

Théorème du collage

Soit (E, d) un espace métrique complet et $f: E \to E$ une application s-contractante. Notons, x_0 le point fixe de f, on a alors :

$$\forall x \in E, d(x, x_0) \leq \frac{d(x, f(x))}{1 - s}$$

PIFS

Soit $F=(L^2([0,1]^2,\mathbb{R}),d_2)$ avec

$$\forall f, g \in F, d_2(f, g) = \int_{(x, y) \in [0, 1]^2} |f(x, y) - g(x, y)|^2 dx dy$$

F est un espace métrique complet.

Partitioned iterated function systems

Pour $i \in \{1,...,n\}$, soit $\tilde{w}_i : D_i \to R_i$ une translation affine où $D_i, R_i \subset [0,1]^2$ sont des compacts. On pose pour $i \in \{1,...,n\}$:

$$w_i(f)(x,y) = s_i f(\tilde{w}_i^{-1}(x,y)) + o_i$$

Finalement, on pose $W: F \rightarrow F$ telle que :

$$\forall f \in F, W(f)(x, y) = w_i(x, y) \text{ si } (x, y) \in R_i$$

Pierre Vigier – Frédéric Wantiez

Compression

Algorithme de compression

- Segmenter $[0,1]^2$ en $R_1,...,R_n$ disjoints.
- Segmenter $[0,1]^2$ en $D_1,...,D_N$.
- Pour tout R_i , choisir un D_{i_0} parmi les $D_1, ..., D_N$, une translation, s_i et o_i afin de minimiser $d_2(R_i, w_i(f)(D_{i_0}))$.
- Retourner $w_1, ..., w_n$.

Décompression

Condition pour être une contraction

Soit $\tilde{w}: (x,y) \mapsto Ax + b$ et $w: f \mapsto ((x,y) \mapsto sf(\tilde{w}^{-1}(x,y)) + o)$. w est une contraction si $s\sqrt{|\det A|} < 1$. Si tous les $(w_i)_i$ sont des contractions alors W est une contraction.

D'après les théorèmes du point fixe et du collage, le point fixe de W va être une image proche de l'image d'origine.

Décompression

- Prendre une image quelconque f.
- Calculer puis retourner $W^n(f)$.

Exemple 1 : image en niveau de gris

Exemple 2 : image en couleur

Performances

Definition

Peak Signal to Noise Ratio (PSNR): Mesure de distorsion d'image, c'est une mesure locale i.e pixel par pixel:

$$\mathsf{PSNR} = 10\mathsf{log}_{10}(\frac{d^2}{\mathit{EQM}})$$

avec EQM l'erreur quadratique moyenne.

Definition

Structural Similarity (SSIM) : Mesure de la dégradation structurelle de l'image après compression. Pour deux images x et y:

SSIM
$$(x, y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

FIGURE – Distorsion en fonction de la taille des régions domaines D_i

SSIM

FIGURE – Erreur structurelle en fonction de la taille des régions domaines D_i

Exemple : Image en niveau de gris

Références bibliographique

- Compression Fractale d'Images Yuval Fischer, adaptation française de Matthieu Latapy
- Practal and Wavelet Image Compression Technique Stephen T. Welstead
- Solution of an inverse problem for fractals and other sets M.
 F. Barnsley, V. Ervin, D. Hardin, J. Lancaster