Vorlesung Analysis II

May 23, 2025

Teil 1: Differnetialrechnung im \mathbb{R}^n

an2: Geometrie von Funktionen $\mathbb{R}^n \to \mathbb{R}^m$ mit m=1 und n=1

Stichworte: Affine Räume, Parameter- und Normdarstellung, Funktionen $\mathbb{R}^n \to \mathbb{R}^m$ textbf<u>Literatur:</u>} setulcolorblue [Hoff], Kapitel 9.2

- **2.1Einleitung**: Nach Kurzer Überlegung zur Darstellung affin-Linearer Objekte im \mathbb{R}^n , also Geraden, Ebenen, Hyperebenen,... arbeiten wir an der geometrischen Anschauung von Funktionen $f: \mathbb{R}^n \to \mathbb{R}^m$, die affinlinear oder nicht affinlinear sind. Wir betrachten insbesondere \mathbb{R} -wertiger (auch: reellwertiger) Funktionen, d.h. solche Funktionen $f: \mathbb{R}^n \to \mathbb{R}$ mit n = 1, sowie auch "Kurvenartige Funktionen $f: \mathbb{R} \to \mathbb{R}^m$ mit m = 1.
- **2.2**<u>Affine Räume</u> im \mathbb{R}^n : Ist $U \subseteq \mathbb{R}^n$ ein Untervektorraum des \mathbb{R}^n , so heißt a+U für ein $a \in \mathbb{R}^n$ ein (d-dimensionaler) affiner Raum, wenn dim U=d ist. (Man kann a einen Aufpunkt von a+U nennen.)

Es gibt folgende Atren zur Beschreibung der El. von a+U:

2.3 •Parameterfarstellung: Ist u die Lineare Hülle von Vektoren $v_1, ..., v_r$, d.h. $U = L(v_1, ..., v_r) := \alpha_1 v_1 + ... + \alpha_r v_r; \alpha_1, ..., \alpha_r \in \mathbb{R} = \mathbb{R} v_1 + ... + \mathbb{R} v_r$, d.h. die Menge aller Linearkombinationen $\sum_{i=1}^r \alpha_i v_i$ der $v_1, ..., v_r$, auch: der Span der $v_1, ..., v_r$ geschrieben $span(v_1, ..., v_r)$,

bzw. auch: das Lineare Erzeugnis der $v_1,...,v_r$ geschrieben $< v_1,...,v_r>$ (\leftarrow keine skalarproduktklammern, sondern "Erzeugnissklammern"!)

Dann ist a+U = a+L($v_1,...,v_r$) = $a + \alpha_1 v_1 + ... + \alpha_r v_r; \alpha_1,...,\alpha_r \in \mathbb{R}$

Sind $v_1, ..., v_r$ Linear unabhängig, gilt dim(a+U)=dim U = r, die $v_1, ..., v_r$ heißen dann Richtungsvektoren.

Für r= dim U = 1 ist die eine Gerade $a + \mathbb{R}v_1 = a + tv_1; t \in \mathbb{R}^n$, "in Richtung" $v_1 \in \mathbb{R}^n$, $v_1 \neq 0$, und mit Aufpunkt $a \in \mathbb{R}^n$. Für r=dim U = 2 ist dies eine Ebene $a + \mathbb{R}v_1 + \mathbb{R}v_2 = a + tv_1 + sv_2; t, s \in \mathbb{R} \subseteq \mathbb{R}^n$ mit zwei (linear unabh.) Richtungsvektoren $v_1, v_2 \in \mathbb{R}^n$ und Aufpunkt $a \in \mathbb{R}$. Usw.

Eine besonders einfache Darstellung ist im Fall dim U = n-1 möglich, den zugehörigen affinen Raum nennen wir eine Hyperebene in \mathbb{R}^n :

2.4• Normalendarstellung(einer Hyperebene im \mathbb{R}^n):

Sei $H_{c,a} := x \in \mathbb{R}^n | \langle x, c \rangle = \alpha$ für $c \in \mathbb{R}^n, c \neq 0$, und $\alpha \in \mathbb{R}$.

Sei $p \in H_{c,\alpha}$ irgenein Punkt dieser Menge, d.h. es gelte $< p, c > = \alpha$.

Dann ist $H_{c,\alpha} = p + U$ mit einem Untervektorraum $U \subseteq \mathbb{R}^n$, für den dim U = n-1 ist, denn: U = kerf für die Lineare Abb. $f: \mathbb{R}^n \to \mathbb{R}, x \to \langle x, c \rangle$

$$_x \in H_{c,\alpha} \Leftrightarrow \langle x, c \rangle = \alpha \Leftrightarrow \langle x - p, c \rangle = \alpha - \langle \underbrace{\langle p, c \rangle}_{\alpha} \Leftrightarrow x = p + n \text{ mit } n \in kerf^{\hat{}}$$

dabei ist $imf = \mathbb{R}$, also dimU = dimkerf = n - dimimf = n - 1

Mit U = ker f = $u \in \mathbb{R}$; $\langle u, c \rangle = 0 =: c^{\perp}$ folgt, dass die $u \in U$ genau die Vektoren im \mathbb{R}^n sind, die senktrecht auf c stehen, bzw. wir haben $U^{\perp} = \mathbb{R}c$. \ddot{U}

Da c senkrecht zu jedem Punkt von U ist, heißt c Normalenvektor von $H_{c,\alpha}$. Denn eine Gerade $p + \mathbb{R}c \subseteq \mathbb{R}^n$ heißt Normale von $H_{c,\alpha}$ und steht senkrecht auf $H_{c,a}$.

2.5 • Ein Spezialfall der Normalendarstellung ist die Hessesche Normalform: $H_{c,\alpha}$ mit ||c|| = 1 (wo der Normalenvektor auf 1 normiert ist).

Die Formel in 2.8 und 2.9 werden dann noch einfacher.

2.6 Bsp. zur Normalendarstellung:

Eine Ebene E im Raum \mathbb{R}^3 kann in der Form $E = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix}$; $\underbrace{\gamma_1 \xi_1 + \gamma_2 \xi_2 + \gamma_3 \xi_3}_{=\langle x,c\rangle} = \alpha$ dargestellt werden;

 $c = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix}$ ist darin der Normalenvektor, d.h. $c \perp E$.

Die Eben $E = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3; 3x - 2y - z = 2$ z.b. steht senkrecht auf c= $\begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$.

In dieser Form nennt man die Normalendarstellung auch oft Koordinatendarstellung von E. Anderes

Bsp. $E = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3; x = 0$ ist die y-z-Ebene, und $E = (w, x, y, z) \in \mathbb{R}^4; w - 3x - y + 4z = 10$ ist die

(3-dim) Hyperevene im \mathbb{R}^4 , die senkrechte zu $\begin{pmatrix} 1\\ -3\\ -1\\ 4 \end{pmatrix}$ ist.

2.7Schul bsp. zur Normalendarstellung: Eine Gerade g in der Ebene \mathbb{R}^2 ist auch eine "Hyperebene" im \mathbb{R}^2 , da dim g =1=2-1 gilt.

Eine Normalendarstellung lautet dann $g=\begin{pmatrix} x \\ y \end{pmatrix}; <\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix}> = \alpha$ für $\gamma_1, \gamma_2, \alpha \in \mathbb{R}$, d.h. wird beschrieben durch die Gleichung $\gamma_1 x + \gamma_2 y = \alpha \Leftrightarrow (\gamma_2 \neq 0) y = -\frac{\gamma_1}{\gamma_2} x + \frac{\alpha}{\gamma_2} \leftarrow$ Geradengleichung der Schule mit Steigung m $=\frac{\gamma_1}{\gamma_2}$, und c $=\frac{\alpha}{\gamma}$ als y-Achsenabschnitt.

Sogar an eine "Schulglg." $1 \cdot y = mx + c$ für eine Gerade kann man also den Normalenvektor $\binom{-m}{1}$ ablesen, der senkrecht auf der Geraden g (mit Richtungsvektor $\binom{m}{1}$) steht: $<\binom{-m}{1}\binom{1}{m}>=-m+m=0$.

- **2.8** Rechen mit der Hesseschen Normalform: Sei $E = H_{c,\alpha} \subseteq \mathbb{R}^n$ geg., so ist der Abstand von 0 zu $H_{c,\alpha}$ gegeben als $dist(0, H_{c,\alpha}) = \frac{|\alpha|}{||c||}$.
- Ist außerdem ||c|| = 1, ist dieser Abstand also $= |\alpha|$.

<u>Bew.:</u> Sei $x \in H_{c,\alpha}$ beliebig. Der gesuchte Abstand ist die Länge von p(x,c), also $dist(0, H_{c,\alpha}) = ||p(x,c)|| = ||\frac{|< x,c>|}{||c||} = \frac{|\alpha|}{||c||}$.

Bsp.: $H\begin{pmatrix} 1\sqrt{2} \\ 1\sqrt{2} \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$; $\frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y = -7$ (hier: $||c|| = \sqrt{\frac{1}{2} + \frac{1}{2}} = 1$) hat den Abstand $|\alpha| = |-7| = 7$ vom Ursprung ist nicht der y-Achsenabschnitt.

2.9 2.<u>Beh.:</u> Ist $H_{c\alpha} \in \mathbb{R}^n$ geg., so ist der Abstand von (irgendeinem) $q \in \mathbb{R}^n$ zu $H_{c,\alpha}$ gegeben als

$$dist(q, H_{c,\alpha}) = \frac{|\langle q, c \rangle - a \langle}{||c||}.$$
 (1)

Bew.: Betr. die um q verschobene Ebene $E' = x'; x' + q \in E$, dann ist der gesuchte Abstand der von 0 zu E', für ein $x' \in E'$ also = $||p(x',c)|| = [\rightarrow x' + q = x \in E]||p(x-q,c)||$

$$= ||\frac{\langle x - q, c \rangle}{\langle c, c \rangle} \cdot c|| = ||\frac{\langle x, c \rangle}{||c||^2} \cdot c - \frac{\langle q, c \rangle}{||c||^2} \cdot c|| = \frac{1}{||c||} \cdot |\alpha - \langle q, c \rangle|. \tag{2}$$

Σ'ς E

2.10Bsp.: Abstand von $q = \begin{pmatrix} 1 \\ -2 \end{pmatrix} zuH_{\begin{pmatrix} 2 \\ 3 \end{pmatrix}, 5} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2; 2x + 3y = 5ist$ $\frac{|\langle q, c \rangle - \alpha|}{||c||} = \frac{|1 \cdot 2 + (-2) \cdot 3 - 5|}{\sqrt{2^2 + 3^2}} = \frac{|2 - 6 - 5|}{\sqrt{13}} = \frac{9}{\sqrt{13}}.$ (3)

2.11geometrische Anschauung von Funktionen $f: D \to \mathbb{R}^m \text{ mit } \emptyset \neq D \subseteq \mathbb{R}^n, m, n \in \mathbb{N}.$ Der Graph von f ist G(f):=

$$(x, f(x)) \in \mathbb{R}^{n+m}; x \in D = (\xi_1, ..., \xi_n, f(\xi_1, ..., \xi_m)); (\xi_1, ..., \xi_n)^T \in D \subseteq \mathbb{R}^{n+m},$$
 (4)

wir "verkleben" die Koordinaten von x mit denen von f(x) zu Vektoren im \mathbb{R}^{n+m} .

(1) Fall m=1, d.h. eine R-wertige/reellwertige Funktion, auch Skalarfeld genannt.

Für n=2 läßt sich G(f) oftmals als "Fläche" im \mathbb{R}^3 deuten, für die man bei festen $c \in \mathbb{R}$ die "Niveaulinie" $x \in D$; f(x) = c vom Niveau c betrachten kann (wie Höhenlinien bei Wanderkarten).

Dabei macht man "Horizontalschnitte", d.h man schneidet den Graphen G(f) mit der Ebene der Glg. $\xi_3 = c(d.h"z = c")$ und projiziert den Schnitt auf die $\xi_1 - \xi_2$ -Ebene (bzw. xy-Ebene).

(a)Bsp.: Für die Halbkugelfläche $f:(x,y); x^2+y^2 \leq 1 \to \mathbb{R}, (x,y) \to \sqrt{1-x^2-y^2}$ Sind die Niveaulinien

von Niveau c:
$$\begin{cases} \emptyset, & c > 0, c < 0 \\ 0, & c = 1 \\ x, y \in \mathbb{R}^2; x^2 + y^2 = 1 - c^2, & 0 \le c < 1 \leftarrow Kreisevomradius\sqrt{1 - c} \end{cases}$$
(5)
$$=?(\ddot{\mathbf{U}})$$

$$(b) \ \underline{\operatorname{Bsp.:}} \ f : \mathbb{R}^n \to \mathbb{R} \ \text{affin-Linear, d.h.} \ f(\xi_1, ..., \xi_n) [\text{Eigendlich: } f\begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix}] = \alpha_1 \xi_1 + ... + \alpha_n \xi_n + \beta \ \text{mit}$$

$$\alpha_1, ..., \alpha_n, \beta \in \mathbb{R}. \ \text{Der Graph } G(f) = (\xi_1, ..., \xi_n, \beta + \sum_{i=1}^n \alpha_i \xi_i)^T; \xi_1, ..., \xi_n \in \mathbb{R} \subseteq \mathbb{R}^{n+1} \ \text{ist (i.a) eine n-dim}$$

$$\text{Hyperebene im } \mathbb{R}^{n+1} \ \text{mit der Gleichung} - \sum_{i=1}^n \alpha_i \xi_i + \xi_{n+1} = \beta.$$

$$(c) \ \text{Die Schnitte des Graphen } G(f) \ \text{einer Ekt. } f : \mathbb{R}^n \to \mathbb{R} \ \text{mit den Koordinatenhyperebenen, die ieweils}$$

- (c) Die Schnitte des Graphen G(f) einer Fkt. $f:\mathbb{R}^n\to\mathbb{R}$ mit den Koordinatenhyperebenen, die jeweils durch eine Glg. $\xi_z = 0, 1 \le i \le n$, gegeben sind, sind "Vertikalschnitte". Bei n=2 hat man da die xy -Ebene der Glg. z=0, die xz-Ebe
ene der Glg. y=0, und x=0 ist die yz-Ebene, die zu geh. Vertikalschnitte sind $(x,y,0)^T; f(x,y) = 0, (x,0,f(x,0))^T; x \in \mathbb{R}, (0,y,f(0,y))^T; y \in \mathbb{R}.$
- (2) Fall $\underline{\mathbf{n}}=\underline{\mathbf{m}}: f: D \to \mathbb{R}^n$ mit $D \subseteq \mathbb{R}^n$ heißt <u>Vektorfeld.</u>
- (3)Fall n=1: etwa $f: I \to \mathbb{R}^m$, wo $I \subseteq \mathbb{R}^1$ ein Intervall ist. Der Graph ist ein "Kurvenähnliches" Gebilde in \mathbb{R}^{1+n} , die Funktionswerte in \mathbb{R}^m können mit der Projektionsalb, $pr_i: \mathbb{R}^m \to \mathbb{R}$ aus 1.11 Komponentnenweise betrachtet werden durch $f_i := pr_i \circ f, f_i : I \to \mathbb{R}$ für $1 \le i \le m$.

Diese Funktionen können mit den Methoden der Analysis I untersucht werden, z.b Untersuchung auf Differenzierbarkeit (f ist diffbar, wenn alle f_i diffbar, sodass wir in diesem Fall von einer Kurve sprechen wollen, vgl. 4.5).

2.12<u>Def.:</u> Sind $pr_1,...,pr_m$ die Projektionsabb. $\mathbb{R}^m \to \mathbb{R}$, und $f:D\to \mathbb{R}^m,D\subseteq \mathbb{R}^n$, dann heißt $f_i := pr_i \circ f : D \to \mathbb{R}$ die i-te Komponentenfunktion (auch Koordinatenfunktion) von f, wo $1 \leq i \leq m$

ist. Damit gilt
$$f(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{pmatrix} \in \mathbb{R}^m$$
.

Viele Eigenschaften von Funktionen f mit \mathbb{R}^m als Zielmenge können mit ihren Komponentenfunktionen (leichter) untersucht werden, da diese Skalarfelder sind.

2.13Bsp.: Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ eine Lineare Abb. (im Sinne der Linearen Algebra),

also $\overline{f(x)} = A \cdot x$ mit einer Matrix $A \in \mathbb{R}^{mxn}$, etwa $A = (\alpha_{ij})$.

Die m Komponentenfkt. sind $f_i: \mathbb{R}^n \to \mathbb{R}, f_i(x) = \sum_{j=1}^n \alpha_{ij} \xi_j$, wo $1 \le i \le m$.

Der Graph jeder einzelnen Komponentenfunktion ist (i.a.) eine Hyperebene im \mathbb{R}^{n+1} mit der Gleichung $\xi_{n+1} = \sum_{j=1}^{n} a_{ij}\xi_{j}$, und der Gesamtgraph G(f) Wird durch die m Gleichungen $\xi_{n+i} = \sum_{j=1}^{n} a_{ij}\xi_{j}$