The erence book not to be

IONOSPHERIC DATA

ISSUED
JUNE 1950

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.

IONOSPHERIC DATA

CONTENTS

	Page
Symbols, Terminology, Conventions	2
World-Wide Sources of Ionospheric Data	5
Hourly Ionospheric Data at Washington, D. C	6, 11, 17
Ionospheric Storminess at Washington, D. C	7. 29
Sudden Ionosphere Disturbances	7. 30
Radio Propagation Quality Figures	7. 36
Relative Sunspot Numbers	8, 37
Observations of the Solar Corona	9. 38
Indices of Geomagnetic Activity	9. 44
Tables of Ionospheric Data	11
Graphs of Ionospheric Data	+5
Index of Tables and Graphs of Ionospheric Data in CRPL-F70	61

SYMBOLS AND TERMINOLOGY; CONVENTIONS FOR DETERMINING MEDIAN VALUES

Beginning with data reported for January 1949, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Fifth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Stockholm, 1948, and given in detail on pages 2 to 10 of the report CRPL-F53, "Ionospheric Data," issued January 1949.

For symbols and terminology used with data prior to January 1949, see report IRPL-C61, "Report of International Radio Propagation Conference, Washington, 17 April to 5 May, 1944," previous issues of the F series, in particular, IRPL-F5, CRPL-F24, F33, F50, and report CRPL-7-1, "Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records."

Following the recommendations of the Washington (1944) and Stockholm (1948) conferences, beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

In addition to the conventions for the determination of medians given in Appendix 5 of Document No. 293 E of the Stockholm conference, which are listed on pages 9 and 10 of CRPL-F53, the following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given on pages 2-9 of CRPL-F53 (Appendixes 1-4 of Document No. 293 E referred to above).

a. For all ionospheric characteristics:

Values missing because of A, B, C, F, L, M, N, Q, R, S, or T (see terminology referred to above) are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count. See CRFL-F38, page 9.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

1. For foF2, as equal to or less than foF1.

2. For h'F2, as equal to or greater than the median.

Values missing because of W are counted:

- For foF2, as equal to or less than the median when it is apparent that h'F2 is unusually high; otherwise, values missing because of W are omitted from the median count.
- 2. For h'F2, as equal to or greater than the median.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of G (no Es reflections observed, the equipment functioning normally otherwise) are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and Fl layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

16.

- a. Differences in scaling records when spread echoes are present.
 - b. Omission of values when for is less than or equal to for, leading to erroneously high values of monthly averages or median values.
 - c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fils column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of fol. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and fol are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric inta are obtained from the predicted zero-muf contour charts of the GRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month		Predi	cted Suns	pot Numbe	r	
	1950	1949	1948	1947	1946	1945
December		108	114	126	85	38
November		112	115	124	83	36
October		114	116	119	81	23
September		115	117	121	79	22
August		111	123	122	77	20
July		108	125	116	73	
June		108	129	112	67	
May	102	108	130	109	67	
April	101	109	133	107	62	
March	103	111	133	105	51	
February	103	113	133	90	46	
January	105	112	130	88	42	

WORLD + WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 32 and figures 1 to 62 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics:

Watheroo. West Australia

Radio Wave Research Laboratories, Mational Taiman University, Taipeh, Formosa, China:

Formosa, China

National Laboratory of Radio-Electricity (French Ionospheric Bureau):
Bagneux, France
Poitiers, France

Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany:

Lindau/Harz, Germany

The Royal Netherlands Meteorological Institute:
De Bilt, Holland

All India Radio (Government of India), New Delhi, India:
Bombay, India
Delhi, India
Madras, India
Tiruchy (Tiruchirapalli), India

Morwegian Defense Research Establishment, Kjeller per Lillestrom, Norway:

Oslo, Howay

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa

Mational Bureau of Standards (Central Radio Propagation Laboratory):
Baton Rouge, Louisiana (Louisiana State University)
Boston, Massachusetts (Harvard University)
Huancayo, Peru (Instituto Geofisico de Huancayo)
Maui, Hawaii
San Francisco, California (Stanford University)
San Juan, Puerto Rico (University of Puerto Rico)
Trinidad, British West Indies
Washington, D. C.
White Sands, New Mexico

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 33 to 44 follow the scaling practices given in the report IRPL-C61. "Report of International Radio Propagation Conference." pages 36 to 39, and the median values are determined by the conventions given above under "Symbols. Terminology. Conventions." Beginning with September 1949, the data are taken at a new location, Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Table 45 presents ionosphere character figures for Washington, D. C., during May 1950, as determined by the criteria presented in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

SUDDEN IONOSPHERE DISTURBANCES

Tables 46 through 53 list the sudden ionosphere disturbances observed at Ft. Belvoir, Virginia, May 1950; Brentwood and Somerton, England, April and May 1950; Platanos, Argentina, April 1950; Riverhead, New York, May 1950; Point Reyes, California, May 1950; Barbados, British West Indies, April 1950; New York, N. Y., April and May 1950; and Lindau/Hars, Germany, April 1950, respectively.

RADIO PROPAGATION QUALITY FIGURES

Table 54 gives provisional radio propagation quality figures for the North Atlantic and North Pacific areas, for 01 to 12 and 13 to 24 GCT, April 1950, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths, the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic K-figures.

The radio propagation quality figures are prepared from radio traffic and ionospheric data reported to the CRPL, in a manner basically the same as that described in IRPL-R31, "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945," issued February 1, 1946. The scale conversions for each report are revised for use with the data beginning January 1948, and statistical weighting replaces what was, in effect, subjective weighting. Separate master distribution curves of the type described in IRPL-R31 were derived for the part of 1946 covered by each report; data received only since 1946 are compared with the master curve for the period of the available data. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. Each report is given a statistical weight which is the reciprocal of the departure from linearity. The half-daily radio propagation quality figure, beginning January 1948, is the weighted mean of the reports received for that period.

These radio propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though

the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause, conditions may be reported as disturbed because of seasonal characteristics such as are particularly evident in the pronounced day and night contrast over North Pacific paths during the winter months, or because of improper frequency usage for the path and time of day in question. Insofar as possible, frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all disturbance shown by the quality figures is not due to ionospheric storminess alone, care should be taken in using the quality figures in research correlations with solar, auroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

RELATIVE SUNSPOT NUMBERS

Table 55 presents the daily American relative sunspot number, RA, computed from observations communicated to CRPL by observers in America and abroad. Beginning with the observations for January 1948, a new method of reduction of observations is employed such that each observer is assigned a scale-determining "observatory coefficient," ultimately referred to Zürich observations in a standard period, December 1944 to September 1945, and a statistical weight, the reciprocal of the variance of the observatory coefficient. The daily numbers listed in the table are the weighted means of all observations received for each day. Details of the procedure are given in the Publication of the Astronomical Society of the Pacific, issued February 1949, in an article entitled "Reduction of Sunspot-Number Observations." The American relative sunspot number computed in this way is designated RA. It is noted that a number of observatories abroad, including the Zurich observatory, are included in RA. The scale of RA was referred specifically to that of the Zürich relative sunspot numbers in the standard comparison period; since that time, RA is influenced by the Zürich observations only in that Zürich proves to be a consistent observer and receives a high statistical weight. In addition, this table lists the daily provisional Zurich sunspot numbers, Rz.

OBSERVATIONS OF THE SOLAR CORONA

Tables 56 through 58 give the observations of the solar corona during May 1950 obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 59 through 61 list the coronal observations obtained at Sacramento Peak, New Mexico, during April 1950, derived by the High Altitude Observatory from spectrograms taken by Harvard University as a part of its performance of an Air Materiel Command research and development contract administered by the Air Force Cambridge Research Laboratories. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 56 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 57 gives similarly the intensities of the first red (6374A) coronal line; and table 58, the intensities of the second red (6702A) coronal line; all observed at Climax in May 1950. In addition data for April 29 and 30 are included in table 58b.

Table 59 gives the intensities of the green (5303A) coronal line; table 60, the intensities of the first red (6374A) coronal line; and table 61, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in April 1950.

The following symbols are used in tables 56 through 61: a, observation of low weight; -, corona not visible; and X, position angle not included in plate estimates.

Coronal tables in this series through F69, May 1950, designated the nominal wave length of the far red coronal line as 6704A; however, 6702A appears to be a more reliable value and is used in later issues. The two are found almost interchangeably in the literature.

INDICES OF GEOMAGNETIC ACTIVITY

Table 62 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary mean 3-hourly K-indices, Kw; (2) preliminary international character-figures, C; (3) geomagnetic planetary three-hour-range indices, Kp; (4) magnetically selected quiet and disturbed days.

Kw is the arithmetic mean of the K-indices from all reporting observatories for each three hours of the Greenwich day, on a scale 0 (very quiet) to 9 (extremely disturbed). The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of 0 (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity.

Ep is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 to 9, expressed in thirds of a unit, e.g., 5- is 4 2/3, 50 is 5 0/3, and 5+ is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Tables of Kp for 1945-48 are in Bulletin 12b; for 1940-44 and 1949, in these CRPI-F reports, V65-F67; for 1950, monthly in V68 and following issues. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles Kw, C and selected days. The Chairman of the Committee computes the planetary index.

Washing	ston, D.	c. (38.7°	°E, 77.1	ow) Tabl	01			May 1950
Time	h†F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
71me 00 01 02 03 04 05 06 07 08 09 11 12 13 14 15 16 17 18	81F2 280 300 290 290 290 280 280 310 320 390 400 360 360 350 310 290 270 260	5.8 5.4.6 5.4.6 5.4.6 5.9 6.6 6.0 7.0 7.4 6.9 (7.9 6.9) (7.9 6.9)	240 230 200 200 200 200 200 220 220 220 22	foFl 4.3 4.6 4.8 5.2 5.2 5.1 5.0 4.8	120 110 110 100 100 (100) (100) (100) 110 110 110 (120)	1.7 2.2 2.8 3.1 3.5 3.6 3.7 3.6 3.7 3.6 3.7 3.6	3.4 3.6 3.4	(M5000)F2 2.7 2.7 2.7 (2.8) 2.9 3.0 3.0 3.0 2.8 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.8 (2.8) (2.8) (2.8) (2.8) (2.8)
21 22 23	260 280 290	(6.9) (6.6) (6.1)						(2.7) (2.6)

Time: 75.0°W.
6weep: 1.0 Mc to 25.0 Mo in 30 seconds.

				Table 3				
Do B11	t, Hollan	4 (52.19	H. 5.201	1)				April 1950
Time	h¹F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	330	5.7						2,4
01	320	5.5					1.8	2,4
02	315	6.0					1.9	2.4
03	310	4.6					2.4	2.5
04	300	4.3					2.3	2.6
0.5	\$90	5.1			160	1.9	2.8	2.7
06	270	6.3			115	2.3	8.9	2.9
07	270	6.4	235	3.8	110	2.7	3.0	2.8
. 08	300	7.8	220	4.8	110	3.1		8,8
09	300	8.1	SS 0	5.0	106	3.3	3.9	2.7
10	300	9.2	210	5.0	110	3.6	3.8	2.7
11	300	9.8	\$50	5.3	105	3.4	4.0	2.7
12	310	9.0	320	5.2	110	3.6	3.8	3.7
13	300	9.5	320	5.0	106	2.4	3.8	8.7
14	300	9.3	235	5.1	105	3.4		2,7
15	300	9.1	230	4.9	110	3.2	3.0	2.7
18	290	9.5	360	4.6	110	2.9		3.7
17	280	9.6	260	3.9	115	2.5		2,8
18	270	9.3		~	140	3.0	2.8	8.8
19	270	8.8					2.4	2.8
20	270	7.2						2.7
21	300	8.8						8.8
58	300	6.3						3.4
2 3	320	6.1						2.3

Time: 0.0°. Sweep: 1.4 Mo to 18.0 Mo in 7 minutes, mutomatic operation.

				Table	5			
San Fra	anoisco,	Oaliforn	ia (37.4	N, 122.	s _o M)		A	pril 1950
Time	h¹F2	foF2	h!Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	300	6.4						2.6
01	300	5.4					2.4	2.7
02	300	5.2					8.8	2,6
0.8	280	5.3					2.9	2.8
04	590	4.8					2.9	2.6
05	300	4.7					2.9	2.6
06	260	5.8			120	2.0	3.0	3.0
07	250	6.8	250		120	8.8	3.8	3.0
08	280	7.6	240	4.8	120	3.1	4.4	3.0
09	320	8.8	550	4.8	120	3.4	4,2	2,9
10	340	9.1	550	5.1	120	(3.7)	4.6	2,9
11	350	10.2	230	6.2	120	(3.8)		8.8
13	330	10.4	230	5.4	120			2.8
13	320	10.5	220	5,2	120	3.6	4.0	8.8
14	350	10.6	830	5.2	120	3.8		2.9
16	300	10.4	240	5.1	120	3.7		3.0
16	280	10.0	240		120	3.4		3.0
17	260	9.2	-		120	2.8		3.0
18	250	8.8			150	2.2	2.4	3,2
19	240	8.4						3,2
30	240	7.0						3.0
21	260	6.2						8.8
55	280	5.8						8.8
23	33.0	5.7						2.6

Time: 120.0°W. Sweep: 1.3 Mo to 18.0 Mo in 4 minutes.

			_	Table 2				
Oslo,	Horway (60	0.0°N, 1	1.0°E)				A	pr11 1950
Time	h'F2	foF2	h'Fl	foFl	h†E	foE	fEs	(M3000)F2
00	315	5.2						(2.6)
01	315	4.5						(2.6)
02	310	4.4						(2.6)
03	305	4.0						(2.6)
04	290	3.9						(2.7)
0.5	275	4.2			130	1.7	1.4	(8.8)
06	255	5.1	255		110	2,2		3.0
07	260	5.7	240		310	2.5		2,9
80	295	6.5	230	4.2	105	2.8		2.9
09	305	7.1	226	4.3	105	3.1		8.8
10	300	7.5	550	4.4	105	3,2		2.8
11	325	7.8	550	4.8	105	3.3		2.8
12	336	8.0	215	4.8	105	3.4		S.8
13	310	8.3	225	(4.8)	105	3.3		2,8
14	315	8.5	230	(4.7)	105	3.3		2,8
15	290	8.4	230	4.5	110	3.2		8,8
16	280	8.5	235		105	3.0		2,9
17	270	8.4	240		110	2.7		2,9
18	250	8.5	250		315	2.3		3.0
19	260	8.4			120	1.9		3.0
20	246	7.8						2.9
21	250	6.8						(8.8)
22	270	6.4						2.6
23	. 300	6.7						(8.6)

Time: 15.0°E.
Sweep: 1.3 Mo to 14.0 Mo in 8 minutes, automatic operation.

				Table	4			
Boston,	Massach	usetts	(42.401,	71.2°W)			Ą	pril 1950
Time	h¹F2	foF2	h'Fl	foFl	h¹ E	foE	fEs	(M3000)F2
00	280	5.7						2.5
01	290	5.2						2,5
08	290	4.9						2.6
03	295	4.0						2.5
04	290	4.2						2.5
0.5	280	4.3			120	1.8		2.7
06	250	5.4		~~~	120	2.4		3.0
07	260	5.7	225		110	2.9		3.0
08	295	6.4	330	4.8	110	3.1		2.9
09	330	7.6	210	8.0	110	3,8		8.8
10	340	7.8	310	5,3	110	3.7		2.9
11	350	8.0	310	5.0	110	3.7		3.9
13	340	8.3	350	5.1	110	8.8		8.8
13	330	8.3	330	5.1	110	2.6		3.6
14	325	8.3	350	5.1	110	2.4		8.8
15	300	8.8	220	5.0	110	3.3		3.8
18	380	8.4	SS0	4.3	115	3.1		3.8
17	260	8.8	250		130	2.8		2.9
18	250	8.2			130	2.2		2.9
19	250	7.5						(8.8)
30	250	7.1						(3.7)
21	260	6.5						2.6
33	370	6.0						3.6
23	280	6.0						3.8

Time? 75.0°W. Sweep: 0.5 Mo to 18.0 Mo in 1 minute.

			_	Table b				
White	Sands, New	Hex100	(32.3°W.	106.5°W)				April 1950
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	300	8.0					2.3	2.6
01	300	6.0					2,3	2.6
03	280	6.7						2.7
03	580	5.6						2.6
04	280	5.4					2.4	2.7
06	280	5.0					2.6	2,7
06	260	6.2			150	(2.1)	2.9	3.0
07	240	7.6			120	3.6	3.6	3.0
80	230	8.7			110	3,1	3.9	8.8
08	300	9.4	220	4.9	110	3,4	4.6	2.8
10	300	10.0	550	5.2	110	3.6	3.8	2.8
11	320	10.5	SSO	5.4	110	3.8		2.7
12	320	11.2	S50	5.4	110	3.9		2,7
13	320	11.3	550	5.2	110	3.9		2,7
14	350	11.4	220	5.1	110	3,8		2.7
15	300	11.2	230		130	3.6	3.6	8.8
16	240	10.8			110	3,2		2,8
17	240	10.4			110	2.7	3.7	2.8
18	240	9.6			120	2.0	3.2	3.0
19	230	8.6					2.6	3.0
50	240	7.0					2.3	2.7
21	260	6.5					s.s	2.6
22	300	6.2						2.5
23	300	6.0						2.5

Time: 105.0°W.
Sweep: 0.8 Mo to 14.0 Mo in 2 minutes.

				<u>Table</u>	2			
Eston I	dugo,	Louisiana	(30.5°H,					April 1950
Time	h'F	2 foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	33	0 6.0						2.7
01	33	0 5.7						2.7
02	32	0 5.6						2.7
03	30	0 5.5						2.8
04	30	0 5.4						2.7
05	29	5.0						2.8
06	28	0 6.3						3.0
07	28	7.8	250		130	2.6		3.0
08	29	0 8.8	250		120	2.9		2.9
09	30	0 9.5	240		120	(3.4)		2.8
10	33	0 9.9	230	5.3	120	(3.5)		2.7
11	33	0 10.8	240	5.3	120	.3.6		2.7
12	33	0 11.0	250	5.5	120			2.7
13	33	0 11.3	240	5.3	120	(3.6)		2.7
14	33		250	5.3	120	3.6		2.7
15	32	0 11.1	260		120	3.5		2.7
16	30	0 10.9	260		120	3.3		2.8
17	59		270		130	2.8		2.8
18	27	0 10.1						2.9
19	26							2.9
20	26							2.8
21	29							2.7
22	32							2.6
23	34	0 6.0						2.6

23 340 6.0

Time: 90.0°W.
Sweep: 2.12 Mc to 14.1 Mc in 5 minutes, automatic operation.

					Table 9				
San	Juan,	Puerto	Rico	(18.4°N,	66.1°W)				Apr 11 1950
Time		h'F2	foF2	h¹F1	foFl	h E	foE	fEs	(M3000)F2
00		290	9.0						2.7
01		280	8.8						2,9
02		260	8.0						2.9
03	- 1	260	7.1						2.9
04	- 1	270	6.3						8.8
05			6.0						2.8
06	ı	270	6.8						2.8
07	i	250	8.4				,		3.0
08	- 1	250	9.8				3.0		3.0
09		270	10.8				(3.5)		2.9
10	- 1	290	11.4		5.0				2.8
11	i	300	12.4		5.3				8.8
12	- 1	300	13.0		5.4				2.8
13			>13.0)	1	(5.4)				(2.8)
14		300	12.7		5.4				2.8
15	- 1	300	12.8		5.0		(3.8)		2.8
16	- 1	300	12.2				3.5		2.8
17	-	270	11.9					3.8	2.8
18	-	270	11.2						8.8
19	- 1	260	10.5						2.8
20		290	9.6						2.7
21		S90	(9.3)	1					(2.7)
22		280	9.2						2.7
23		300	9.5						2.7

Time: 60.0°W.

Sweep: 2.8 Mc to 13.0 Mc in 9 minutes, automatic operation; supplemented by manual operation.

				Table	11			
Huencay	m, Feru	(12.0°S,	75.3°₩)					April 1950
Time	h¹F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	230	8.7					3.2	3.0
01	230	7.8					3.4	3.0
02	240	6.7					3.2	3.1
03	240	6.0					3.2	3.1
04	240	5.5					3.2	3.1
05	240	4.9					3.1	3.0
06	270	6.0			100	1.6	3.2	3.0
07	250	9.5			100	2.6	3.7	3.1
08	240	11.6	220	5.0	100	3,2	9.1	2.8
09	270	12.2	210	5.3	100		10.6	2.6
10	280	12.2	210	5,3	100		11.0	2.4
11	280	11.3	200	5.3	100		12.6	2,3
12	300	11.2	200	5.3	100		13.0	2,3
13	290	11.3	200	5.2	100		12.6	2.3
14	280	11.6	200	6.2	100		12.5	2.3
15	520	11.6	210		100	3.3	10.7	2,3
16	240	11.8			100	3.0	10.5	2.3
17	360	12.0			100	2.3	7.8	2.2
18	310	11.5			100		3,2	2.2
19	370	10.2						2.1
50	340	10.0						2,2
21	260	9.9					3.2	2.6
22	240	9.8					3.2	2.8
23	230	9.6					3.2	2.9

Time: 75.0° M. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, entomatic operation.

				Table 8				
Maui, h	iawaii	(20.8°N.	156.5°W)					April 1950
Time	h*F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	9.0						2.8
01	260	8.4						3.0
02	260	7.4						3.0
03	270	5.8						2.8
04	300	5.1						2.6
05	310	5.0						2.7
06	280	5.5			140			2.7
07	250	7.9			3 50	2.4		3.2
08	260	9.0	230		3 50	3.1	4.1	2.9
09	280	10.4	230	4.5	110	3.4	4.8	2.7
10	300	11.4	220	(4.9)	110	3.6	4.2	2.6
11	320		220	(5.3)	110	(3.8)	4.5	2.7
12	330	13.9	230	(5.4)	110	(3.9)		2.7
13	330	14.6	220	(5.4)	110	3.8		2.7
3.4	330	15.0	230	(5.3)	110	3.8		2.8
15	320	15.1	230	(5.1)	110	3.6	4.3	2.8
16	300	15.0	240		110	3.3		2.8
17	580	15.3	250		120	2.9	4.0	2.9
18	260	14.9			130	2.2	3.5	2.9
19	250	13.9					3.3	2.9
50	240	12.5					2.3	2.8
21	260	(11.6)					2.7
22	270							2.7
23	290	9.3						2.7

23 290 9.3 Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table				
Trinid.	ad, Brit.	West In	dies (10	.6° N, 6	1.2°W)			April 1950
Time	h¹F2	foF2	h'Fl	foFl	h¹E	fcE	fEs.	(M3000)F2
00	240	11.0						3.2
01	230	9.5						3.2
02	220	8.6						3,2
03	220	7.2						3.1
04	240	6.4						3.1
05	250	5.8						3.0
06	260	6.6						3.C
07	220	9.0			120	2.6	3.2	3.4
08	230	10.4	220	(4.8)	110	3,2	3.8	3.2
09	250	11.9	200	5.0	100	3,6	4,2	3.1
10	260	12.4	200	5.2	100	3.8	4.3	3.1
11	260	13.2	200	5.4	100	4.0	4.3	3.0
12	280	13.9	500	5.4	100	4.1	4.4	3.0
13	580	14.1	200	6.4	110	4.1	4.4	3.0
14	280	13.9	200	5.3	100	4.0	4.6	3.0
15	260	13.2	200	5.1	300	3.8	4.6	3.0
16	250	13.0	220	4.8	100	3,4	4.4	3.0
17	250	12.7	220	4.6	110	2.9	4.0	3.0
18	240	12.2					3.2	3.0
19	260	11.6					2.8	2.9
20	260	11.6						2.9
21	260	12.0						3.0
22	250	11.6						3.0
23	240	77 7						7.3

23 240 11.3

Time: 60.0 W.
Sweep: 1.2 Mc to 18.0 Mc, manual operation.

				Tab]	e 12			
Lindau	/Harz, Ge	rmany (5	1.6°N, 1	0.1°E)				March 1950
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	290	4.8					2.0	
01	290	4.8					2.0	
02	290	4.7						
03	290	4.4					2.0	
04	290	4.3						
05	270	3.9						
06	260	3.9				E		
07	240	5.8			110	1.7	2.2	
08	230	7.2	230		100	2.4	3.4	
09	220	8.4	210	4.1	100	2.8	3.4	
10	230	9.2	205	4.4	100	3.0		
11	260	5.8	\$00	4.5	100	3.2	3.8	
12	265	10.4	200	4.3	100	3.3		
13	250	10.3	210	4.5	100	3.3		
14	250	10.3	210	4.4	100	3.2		
15	225	9.9	216	4.2	100	3.0		
16	230	9.5			100	2,8		
17	230	9.2			100	2.3	3.1	
18	230	9.2			125	1.6	2.9	
19	220	8.4					2.4	
50	220	7.2					1.8	
21	230	6.4					2.0	
22	255	5.7						
23	280	5.1					1 9	

23 280 5.1

Time: 15.0°E.
Sweep: 1.0 Mc to 16.0 Mc in 8 minutes.

		(nc 00)	101 O(E)	Table			March 1950	
Formosa,						0. 17		
Time	h'F2	foF2	h†Fl	foFl	h'E_	foE	fEs	(M3000)F2
11me 00 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	270 280 270 290 290 280 280	12.6 14.0 14.3 14.5 14.5 14.5	240 220 200 200 200 220 220 230 230 230	5.6 5.8 5.9 6.0 6.2 6.2 6.0 5.0	90 90 90 90 90 90 90 90	3.7 3.8 3.8 4.0 3.9 3.9 3.5	4.0 4.4 4.7 4.5 4.6 4.5	3.3 3.2 3.2 3.2

Tims: 120.0°E. Sweep: 2.5 Mc to 14.5 Mc in 20 minutes, manual operation.

Table 15								
Capeto	wn. Union	of S.	Africa (3	4.2°S,	18.3°E)		b	(arch 1950
Time	h'F2	foF2	h'Fl	foFl	h†E	foE	fEs	(M3000)F2
00	(250)	4.7						2.9
01	(250)	4.4						8.5
02	(260)	4.2						2.7
03	(270)	4.4						8.8
04	(260)	4.4						(2.8)
05	(260)	4.1						(2,9)
06	(250)	(4.1)						(8.8)
07	250	5.9				(1.9)		3.1
08	240	8.1	240		120	(2.7)		3.2
09	350	9.2	230		110	(3.1)		3.1
10	270	10.2	230		110	(3.4)	3.7	3.0
11	280	11.1	(SSO)		110	(3.6)	3.9	2.9
12	300	11.0	(220)		110		4.0	2.8
13	300	(12.0)		-	110		3.8	(8.8)
14	300	(12.0)	230		310			(8.8)
15	300	12.0	230		110	(3,7)		2.8
16	270	(11.9)	240		110	(3.5)		(5°8)
17	260	11.6	240		110	(3.1)	3.5	2.9
18	250	(11.2)	250		120	(2.5)	2.9	(3.0)
19	230	10.4			110	(1.6)	2.1	3.1
20	550	(9.1)					1.8	(3.0)
51	(830)	7.6						3.0
SS	(240)	6.6					1.6	3.0
23	(240)	5.3						3.0

Time: 30.0°E.
Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

				Table	17				
Wather	00. W.	Amstralia	(30.3°s,	115.9°	115.9°E) . February 1950				
Time	h¹F2	foF2	h'Fl	foFl	h1E	foE	fEs	(M3000)F2	
00	300	6.4					2.9	2.7	
01	290	6.3					2.8	2.8	
02	580	5.9					3.1	8.8	
03	280	5.6					2.4	2.7	
04	270	5.0					3.4	2.8	
0.5	280	4.7					8.5	2.8	
05	270	5.2				1.8		3.1	
07	260	6.6	240	3.8		2.4	2.7	3.2	
08	580		250	6.5		3.0	3.5	3.1	
09	300		230	6.9		3.3	3.7	2.9	
10	310		230	5.1		3.5	3.7	2.9	
11	330		240	5.2		3.5	4.1	2.8	
12	345		240	5.4		3.4	4.3	2.7	
13	340		240	5.2		3.6	4.0	2.7	
14	340		240	5.4		3.7	4.0	2.7	
15	330		250	5.2		3.6	3.8	2.7	
16	320		250	4.9		3.4	3.5	5.8	
17	300		260	4.2		3.0	3.4	2.8	
18	270					2,3	3.1	2.9	
19	250						3.0	2.9	
20	240						2.4	2.8	
21	270						2.4	2.7	
SS	280						2.3	2.7	
23	290	6,3					2.7	2.7	

Time: 120,0°E, Swsep: 15.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

Table 14									
Johann e	eburg,	Union of	S. Africa	(26,20	S, 28,C	0E)		March 1950	
Time	h1F2	foF2	h'Fl	foFl	h ¹ E	foE	fEs	(M3000)F2	
00	250	5.2					1.7	2.9	
01	260	5.0						2.9	
02	250	4.7						3.0	
03	250	4.4						2.9	
04	250	3.9						2.9	
05	260	3.9						2.8	
06	260	5.0				~ ~ ~		2.9	
07	230	7.7	the design	*** all a-	120	2.4		3.3	
08	250	9.4	230		110	3.0	3.2	3.1	
09	260	10.3	550		110	3.4	3.6	3.0	
10	270	11.0	210	4.7	110	3.6	4.0	2.9	
11	280	17.6	200	4.9	110	(3.7)	4.0	2.9	
15	290	11.9	210		110	(3.8)	4.0	8.8	
13	290	12.0	210	5.1°	110	(3.9)	4.1	2.8	
14	290	12.0	210		110	(3.8)	4.0	8.8	
15	290	12.1	220		110	3.6	3.9	2.8	
16	270	12.0	230		110	3,3	3.7	2.9	
17	250	11.7	240		110	2.8	3.4	2.9	
18	230	11.2			100		2.7	3.0	
19	230	10.2					5.0	3.0	
20	230	8.9					2.1	3.0	
21	240	7.7					2.1	3.0	
22	240	6.9					2.0	3.0	
23	250	5.8					2.0	3.0	

23 250 5.8

Time: 30.0°E.
Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

T 4 m d max	/Harz. Ge	(E	16		Fab	ruary 1950		
Time	h'F2	foF2	h'Fl	foFl	h†E	foE	fEs	(M3000)F2
00	290	3.8					2.1	
01	290	3.8					2.0	
02	290	3.8					5.0	
03	300	3.6					2.0	
04	590	3.6					5.0	
05	280	3.2					2.0	
06	260	2.9						
07	250	3.7				E	2.0	
08	550	6.4			110	1.0	3.1	
09	210	7.8			100	2,4	3.4	
10	210	9.2			100	8.8	4.2	
11	210	9.7			100	3.0	3.9	
12	550	10.3			100	3.1	4.2	
13	210	9.9			100	3,1	3.4	
14	215	9.6			100	3.0	3.6	
15	215	9.6			100	2.8	4.2	
16	220	9.6			100	2.4	3.8	
17	210	8.7			120	1.8	3.3	
18	205	7.3					3.1	
19	215	6.4					2.6	
50	220	5.4					5.2	
21	240	4.4					5.0	
SS	270	4.4					5.0	
23	270	4.1					5.0	

Time: 15.0°E.
Sweep: 1.0 Mc to 16.0 Mc in 8 minutee.

	Table 18								
Poitie:	rs, Franc	e (46.6°	N. 0.3°E)			Dece	mber 1949	
Time	h¹F2	foF2	h'Fl	foFl	h†E	foE	fEs	(M3000)F2	
00		(3:9)						2.6	
01		(4.0)							
0.5		(3.9)						2.7	
03		3.8						2.7	
04		(3.7)							
05		(3.5)							
06		(3.4)							
07		4.3						2,9	
80	220	8.2						3.3	
09	550	10.0							
10	225	D							
11	225	D							
12	225	D							
13	230	D							
14	230	D							
15	225	(10.4)							
16	220	9.3						3.3	
17	230	8.0						3.2	
18	230	6.6						3.1	
19	250	5.3						3.2	
50	(245)	4.6						3.0	
21		4.0						2.6	
22		4.0						2.7	
23		3.9						2.7	

Time: 0.0°. Sweep: 3.1 Mc to 11.8 Mc in 1 minute 15 seconds.

				Table 1	19			
Delhi,	India	(28.6°N,	77.1°E)				Dec	ember 1949
Time	0	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	5.2						3.2
01	300	5.0						
0.5								
03								
04								3.4
0.5	280	5.4						
06	280							
07	280	7.6						
08	280							3.4
09	260							
10	300	12.4						
11	300							
12	310							3.1
13	330							
14	320							
15	320							
16	350							3,2
17	300							
18	290							
19	580							
20	280							3.4
21	280							
55	580							
53	280	5.8						

23 280 5.8

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutee, manual operation.

*Height at 0.83 fof2.

**average valuee: other columns, median valuee.

Madras,	India	(13.0°N,	60.2°E)	Table 21			December 1949		
Time	9	foF2	h'Fl	foFl	h'E	foE	fEe	(M3000)F2	
00									
01									
02									
03									
04									
05									
06									
07	360	10.4							
06	420	11.6						2.6	
09	480	12,7							
10	430	12.3							
11	540	11.6							
13	540	11.7						2.3	
13	540	11.9							
14	540	12.4							
15	540	12,6							
16	540	12.5						2.3	
17	540	12.6							
18	540	12.1							
19	540	11.6							
50	540	11.4						2.4	
31	(480								
55		(10.0)							
23									

Time: Local.
Sweep: 1.8 Mc to 16.0 Mo in 5 minutes, manual operation.
*Height at 0.83 for.
*Average valuee; other columns, median valuee.

				Table	<u>23</u>			
Bagneuz	. France	(48.6°N,	2.3°E)				Nover	ber 1949
Time	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06	230	5.4			150	1.8		
07	220	(6.6)			145	1.6		
80	220	(8.6)			110	2.2		
09	210				110	5.6		
10	550				100	3.1		
11	220		~		110	3.2		
12	220				110	3.2		
13	220				110	3.1		
36	220				110	2.9		
15	220				110	2.6		
16 17	210 210	(0.0)			120	1.9		
18		(9.0)				R		
19	210 230	(8.0) 5.4						
50	240							
21	280	4.8						
55	300	(4.3)						
23	200	(2.0)						

Time: 0.00. Sweep: 1.5 Mc to 16.0 Mc in 1 minute 30 seconds.

D	7 41	(19.0°N,	57 c0m/	Table 20			Dee	
	india							ember 1949
Time	. 0	foF2	h'Fl-	foFl	h†E	fcE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06								
07	330	8.5						
06	390	10.9						2.7
09	420	11.9						
10	480	13.4						
11	(500)							
12		(14.5)						8.7
13		4 1						
14		(14.7)						
15		(15.1)						•
16		(15.5)						
17	(450)	(15, 4)						
18	(460)							
19 20	420	(14.2)						
21	440 450	13.6						2.6
55	450	11.0						
	460	9,5						2.6
23	460	9.3						

Zimet Local.

Timet Local.

Sweep: 1.6 Mc to 16,0 Mc in 5 minutes, manual operation.

"Height at 0.83 fo N2.

*Average values; other columns, median values.

Ti ruchy	, India	(10.8°N,	78.8°E)	Table	22		Dec	ember 1949
Time		foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17	360 420 480 480 520 600 580 (600) 560 570 570 600	8.7 10.6 10.6 11.4 11.1 11.0 11.4 (11.4) 11.5 10.8 10.4	h'Fl	foFl	h*E	foE	fEe	(M3000)F2
23 21 20 20	630 620 520	9.6 (9.5) 9.3						

Time: Local, Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation. "Height at 0.63 foF2.

				Table 2	4			
Poitiere,	Franco	(46.6°N,	0.3°E)				Rovent	er 1949
Time	h¹F2	foF2	h'Fl	foFl	h E	foE	fEs	(M3000)F2
00		4.6						2.6
01		4.6						2,6
02		(4.4)						(2.4)
03		4.1						(8.6)
04		(3.9)						(8.8)
05	Security and	(3.6)						(3.1)
06		(3.6)						
07	250	6.6						3.0
06	230	8.7	230			E		3,3
09	240	D	230					
10	240	D	230			-		
11	230	D.	225			3,2		
12	240	Ď	230			3.3		******
13	240	D	230			3.3		
14	240	D	230					POLCHESIS .
15	240	D	230					
16	240	D	230			E		
17	240	9.1	225			E		3,2
18	230	8.0						3.0
19	250	7.0						3.0
20	260	5.5						2,9
21		5.0						2.8
22		4.8						2.7
23		4.5						2.6

Time: 0.0° . Sweep: 3.1 Mg to 11.6 Mc in 1 minute 15 seconds.

				Table 2	5			
Dolhi.	India (88.6°N.	77.1°E)		•		Nove	ember 1949
Time	0	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	320	6.1						3.1
01	300	5.0						
02								
03								
04								3.3
05	300	6.0						
06	280	6.8						
07	280	8.7						
08	280	10.9						3.2
09	280	12.4						
10	300	13.4						
11	320	13.5						
12	330	14.1						3.0
13	. 330	14.5						
14	330	14.7						
15	320	(14.5)						
16	320	(14.1)						3.2
17	310	(13.6)						
18	300	12.9						
19	300	12.4						
20	.300	10.2						3.3
SI	300	9.6						
22	300	7.8						3.1
23	310	6.8						

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutee, manual operation.
"Beight at 0.83 foFZ.
"*Average values; other columns, median valuee.

Madres,	India	(13.0°N,	80.2°E)	Table 2	22		Nov	ember 1949
Time	0	foF2	h¹Fl	foFl	h¹E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 08	390 420	10.7						2,5
09 10 11 12 13 14	480 (510) (540) 540 (540) 540 540	(14.0) (14.0)						2.3
18 17 18	540 540 540	13.7 13.8 13.6						2.3
20	540	(12.9)						
21 22 23		(11.0) (11.0)						

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

*Average values; ether columns, median values.

Bagneur,	France	(48.8°H,	2.3°E)	Table .	29		00	tober 1949
Time	h'F2	foF2	h'F1	foFl	h¹E	foE	fEs	(M3000)F2
00 01 02 02 03 04 05 06 06 06 07 08 09 11 11 13 14 14 15 16 11 17 18 19 20 21 22 23	270 250 380 270 300 280 290 240 220	8.7 9.8 10.0 9.7	220 220 220 220 230 230 230 230 230 230		110 110 110 100 100 100 105 100	3.6 3.0 3.3 3.4 3.3 3.0 2.7 2.4	3.8	(2,8) (2,8) (2,8) (2,8) (3,8) (3,0)

Time: 0.0°. Eweep: 1.5 Me to 16.0 Me in 1 minute 30 seconds.

Bombay,	India ((19.0°b,	73,0°E)	Table 2	<u>6</u>		Nov	ember 1949
Time	2	roF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00								
01								
0.5								
03								
04 05								
06								
07	340	8.3						
08	440	10.2						2.6
09	460	11.0						
10	500	11.9						
11		(12.9)						
12		(13.2)						
13								
14		(13.6)						
15		(13.5)						
16		(13.9)						
17 18		(13.9) (13.5)						
19	510	12.8						
20	480	11.9						2,5
21	460	10.8						5.0
SS	420	10.0						2.7
23	420	9.8						

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutee, manual operation.

"Height at 0.83 foF2.

"Average values; other columne, median valuee.

India	(10.8°N,	78.8°E)	Table	28		Nove	mber 1949
٠	foF2	h¹Fl	foFl	h*E	foE	fEs	(M3000)F2
,-307	,						
		* foF2 390 10.2 420 11.5 480 12.3 500 12.5 540 12.4 540 12.7 540 12.6 (540) 12.6 (540) 12.6 (600 11.9 600 (11.0)	390 10.2 420 11.5 480 12.3 500 12.5 540 12.5 540 12.5 540 12.5 540 12.7 540 12.6 (540) (12.6) 540 12.0 600 11.9 600 (11.0) 600 (11.0)	390 10.2 420 11.5 480 12.3 500 12.5 540 12.5 540 12.5 540 12.5 540 12.7 540 12.6 (540) (12.6) 540 12.6 (540) (12.6) 540 12.6 (540) (12.6) 540 12.7 540 12.6 (540) (11.0)	* foF2 h'F1 foF1 h'E 390 10.2 420 11.5 480 12.3 500 12.5 540 12.5 540 12.4 540 12.7 540 12.6 (540) (12.6) 540 12.0 600 11.7 600 (11.0) 600 (11.0)	390 10.2 420 11.5 480 12.3 500 12.5 540 12.4 540 12.5 540 12.6 (540) (12.6) 540 12.6 (540) (12.6) 540 12.0 600 11.9 600 (11.0) 600 (11.0)	390 10.2 420 11.5 480 12.3 500 12.5 540 12.4 540 12.5 540 12.6 (540) (12.6) 540 12.6 (540) (12.6) 540 12.0 600 11.9 600 (11.0) 600 (11.0)

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutee, manual operation.
*Height at 0.83 foF2.

				Table	30			
Peitie	rs, France	(46.6 ⁶ 1	1, 0.3°E)				0e	teber 1949
Time	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00		5.3						2.6
01		5.0						(8.8)
03		5.0						2.6
03		(4.8)						2.8
04		(4.5)						2.7
05		(3.8)						2.8
06	(270)	4.8				B		3.0
07	250	7.5	230			15		3.2
08	240	8.7	230					3.1
09	240	9.8	230		also was the	3.4	3.2	(3.0)
10	240	D	350		110	3.4	3.6	(3.0)
11	(235)	D	225		110	3.4	3,4	(2.9)
13	340	D	230		110	3.3		(2.7)
13	340	D	330		110	3.3		
14	(250)	D	230			3.3		
15	250	D	230					
16	340	D	230					
17	240	9.5	330		-	38		(3.0)
18	240	8.8						3.0
19	240	7.7						8.0
20	260	6.7						2.8
21	280	5.9						2.8
83	(280)	5.5						2.6
23		6.2						2.6

Time: 0.0°. Sweep: 3.1 Mc to 11.8 Mc in 1 minute 15 escende.

0slo,	Norway (6	0.0°N, 1	1.0°E)	Table 3	-		Nove	mber 1948*
Time	h'F2	foF2	h Fl	foFl	h E	foE	fEs	(M3000)F2
00								
01	(450)	(2.1)						
03							2.8	
03		(2.3)					2.4	
04	(385)	(2.0)						
05	(320)	2.4						
06	(310)	2.2						
07	(305)	2.6						
08	260	4.8						
09	240	6.5				2.0	2.3	
10	230	8.8				2.0	2.2	
11	230	(>9.0)			110	2.3		
12	230	(>9.0)			130	2.4	2.7	
13	230	(>9.0)					2.7	
14	235	(>9.0)				2.1	2.7	
15	225	(>9.0)						
16	225	(8.2)					2.4	
17	230	(6.6)						
18	225	4.6						
19	270	3.4						
50	310	2.3						
21	(360)	(2.4)						
SS	(360)	(2.3)						
23	(400)	(2,3)						

Table 32

Changes in Lindau/Harz, Germany, Data Upon receipt of additional information from Lindau/Harz, Germany, the following changes in previously published data appear significant:

Month	Time	foF2	h171	h1E	foE	fEs	Previous issue
Feb. 1949	02	4.6					₽57
Aug. 1949	04	4.7				1	₽57 ₽63
	17					4.2	
	18		265				
	19				1.6		
Sept. 1949	01 02 08	5.2					F64
	02	5.2 5.0					
		7.4					
	18			120	1.8		

Time: 15,0°E.

Sweep: 1.8 Mc to 10.0 Mc in 5 minutes, automatic operation.

*Data scanty prior to November 15.

TABLE 33 Central Radio Prapagation Labaratary, National Bureau af Standards, Washington 25, D.C.

ogetion Leberatory, National Bureau of Standards, Was IONOSPHERIC DATA

(Month)

Standards

National Bureau of

* SWEEPTIME=.25 MIN.

Sweep 1.0 Mc ta.25.0 Mc in 0.5 min Manual □ Automatic 図 Form adopted June 1846

TABLE 34 Central Radia Propagation Labaratary, National Bureau of Standards, Washington 25, D.C. IONOSPHERIC DATA

Carrow C	5	Washington	aton,	May (Month) D. C.	<u></u>	026		Cent	Central Rad	a Propag	offon Lab	SPF	ONOSPHERIC	redu	of Standards,	Washingta	n 25, D.C.		Scale	National	(20)	Bureau (Instit	Institution)	Standards
Carlo Carl	Lat	38.		ong 77.	Mo							75		ean Time					Calç	ulated by:		B.E.E	2	玔
## (\$(1) # (2) # (4) # (2) #	ō				24		8 1			60		=	-		_		. 1		<u>6</u>	20	21	22	23	
\$\(\cal{1}\) \(\cal{1}\) \(\ca	50)				24						18					-			\sim	(95)3	(6.7)5	5(5.9)	(6.1) 3	
(4.4.) [4.6.2.] [4.7.]	5.8				J	U							\sim			-			\sim	K(9.6) 3	(9.0) \$	K(1.7) S	K(7.0) \$	
(4.6) (3.8) 3.4 3.7 5.2 5.7 5.7 5.8 (4.8) (4.8) (5.8) (4.9) (4.8)	10.		4) PK	5.7.3 4(4	1.5) 5	3.6 R		4.15		14.25	25	24			4) × K(5.						(64)3	(6.0) 5	(5.9)3	
(4.6.) (4.7.) (5.7.) (5.7.) (5.7.) (5.8.) (5	12		6 5		30.	3.78	ì			1	Ni Se			1 1				1	(6.8)	i	J	J	(5.6) 5	
A	4.9		5) \$ (5	1	3.3	20.00	10.35	2		WZ			1	\sim	(LL Y		6.5	5(9.9)				
(4. 1) (4. 1)	5.	YL.	и.		6.07	NOTE OF THE PERSON NAMED IN COLUMN 1		14	Ĭ.	3	0.			7.8 7	7 7			00	7.9	7.6	(7.4)3		J	
(5.5) 4.7 4.6 5.0 (5.9) (7.7) (7.7) 7.1 6.7 7.0 7.2 7.4 7.2 7.7 7.3 7.7 7.3 7.7 7.3 7.4 7.5 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.5 7.4 7.5 7.5 7.4 7.5 7.5 7.4 7.5 7.5 7.4 7.5 7.5 7.4 7.5 7.5 7.4 7.5 7.5 7.4 7.5 7.5 7.4 7.5 7.5 7.4 7.5 7.5 7.4 7.5 7.5 7.4 7.5 7.5 7.4 7.5 7.5 7.4 7.5 7.5 7.4 7.5 7.5 7.5 7.5 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	2			U	J	J			12	F	×	X.		×		×	ĺ	20		\$(8.7)			} .	
(4.6) (4.7) (4.6) (4.5) (4.5) (4.5) (4.7) (4.7) (4.6) (4.7	10	14	1		4.6	-	1		-		-	00	-		-	00		ļ	0.0	80	(7.5)3		-	
(5.3)	0	-	3-	20		5.8)5	-				>	-		_	-	-			_	$ \sim$	-	{	(6.5)	
(43)	-0	-	-	_	2.1	5.2 5		-	-	5	-		_							-		-	(8.9)	
(49) (44)3 (53)3 (42)3 (42)3 (42)3 (43)3 (43)3 (43)3 (43)3 (73)3	1/2	E .	6	<u> </u>	6.1)3	4.2					Ħ	i i	1			-					3(1.3)	à	y.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+		14		0.0	4.48		ł.	-						_		-				1		6.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	-			5.7	_	1		_	1			l	-	_	1		-		(7.3)		1	(6.6)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1				f .			-				_	-	-			\vdash			(5.8)3		(5.4)3	- Silverion
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	137	l l	1.918								6													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	á				8			-			8		_	1							1	(4.9)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4		24										_		_				-	-			(7.2) 5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	14.			-	5.0		patauros			>							_	(8.2)	\sim				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2	1	-	t	-	5,2	-		-	_	-		-	_					(8.6)				1 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3			44		8.5	-	Z			-					146		154 (9.0)	(3.6)	\$ (0.6)	4(8.9)	\$(9.8)*		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-	-	_	-		-	12/2/2/2/2				i	_			-	-		$\overline{}$		5(6.9)		(2:1)	
	6,2	-		umanos.	-			บ	_	_								S		~		7.0 K		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	l	1				1	K	-		ĺ							*	(6.6) M			x (49)3		
	3	4) 2 4 (4	(0) FK	3.8) FK (3					1					_							6.9	6.7	(1.9)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(")	(3) 5 (4)	(8)3	44) 8 (.		ŀ		-000											1 1		(7.1)3	5(6.9)	5.9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	5) 8 (1.			-	4.005			3.6			7.7	_		*	カ	*	坂	1	\$ (8.1)	1 (75) × 3	8(6.3) %	1.7 *	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~			brotteno	4.3			nace spens				1.0				*) K (9.6)		x (6.0) x	K (40) \$	K(3.9) \$	
38 k 33 k 33 k 3.7 k (4.2)k (4.2)k (4.4)k (4.1)k (5.1)k (5.1)k (5.1)k (5.2)k (5	1.1	1.8) 5 K.	S) 5 K	zenoues	2.5 F	3.3 E.	39 6	4.0 G X	×.	No.	5.1 * 24	t.		梨							K(5:8)}	x (4.9) \$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2		F 7.					ļ		N X	476 49	188	0 ×		350	overes					(58) \$	K(5.7) 5	K(5.1) &	
48 43 7 39 6 (4.3) 2 5.2 5.8 65 (6.6.1) 7.2 7.6 7.8 8.4 8.4 8.3 8.3 8.3 8.5 8.6 (8.8) (8.6) (7.6) 8.7 (7.6) 8.4 (7.6) 8.4 8.4 8.5 8.6 (8.8) (7.6) (7.6) 8.7 (7.6) 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	3		MX									-	2		-	s.meen	\sim					~	6.3	
5.2 (4.6.) 4.1 4.4 5.4 5.9 6.4 6.5 6.2 7.0 7.2 7.4 7.6 7.3 7.5 7.4 (8.0) (7.9) (7.6.) (6.9) (6.0	10		46.	1 1	, ,	(4.3) g) S	£ (7.6		7		3	8		1 3		_	٥	5(9.9)	
30 30 29 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31						7.			-		-	-	-		-					O/IIII O/III		1, , ,		
30 30 24 30 31 31 31 31 31 31 31 31 31 31 31 31 31		+	$^{+}$		7	+ +	+	Ecyle Code	+	+		-	-	-	\dashv	-	-	-		~	(6.4)	(9.9)	(6.1)	
	"	\dashv	30	_	\$ 3	29	-		31	-	31	3/	31	31			ace system and a second	3)	10	30	30	24	30	вредо

* SWEEP TIME = .25 MIN.

Manual 🗀 Autamatic 🖾

Form adopted June 1946

TABLE 35
Centrol Radia Prapagation Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

May (Month)

Observed of Washington, D.C. fo F2 Mc (Characteristic) (Unit)

National Bureau of Standards. Scoled by: B.E.B., By. H.

O. U. O. P. D. M.C.

			ļ																																	13
	ن ت							_		2000	p.zocer.					20110	-								-							#Describ				,
		0	va.	a.x		5(I		SU			3	12	7 L	35	5		F	s(5(50	lo.		35	35		18	35	X	K	4X	74	S		_	
١	0.0	0 2330	(6.9)	(7.4) \$ S(6.7)	000	(6.4)	F 5.4	U	(5.7)	3.9 6.6		-	4	F (65)	1 (5.2)5	15(4.2)	0.0	1 1	8(4.9)	VS	Un .	8.8	15 5.6	JX (7.2	F (4.6)5	5.7	(6-5)	(h. 1) 2 * (h. T)	JE S 3/K	ИX			2	(6.0)	30	
	Ď	0 2230	S (4.0) S	47) 2		v	4 5.8	_	1 (6.2) S	JS (7.0) S		_	F (5.0) S	1)5 6.75		S(5.5) S(_	(7.0)			13 (7.2) S	N :		(6.6)5	,)5" (68) S	7) (4.2) E	K 4.9	155(5.4)E	7.9. 5	15 (6.7	1 (6.4)	29	
	Colculoted by: BY. H.	0 2130	5 (6.5) 5	2.5	W.Y.) R	5 6.4			9/2 (7.2) 8			1	5 (6.8) E	15 (5.8) I	5 (5.7)	S(6.7)S	3(0.5) 9(13 (7.1)5	(7.6)	1 4 1			1		(6.9)	(7.7) * (7.6) 5	125(4.9)	55.87 (5.5)	15 (5.7) 5	(6.7)	(7.1	(6.7	30	
Scoled by:	culoted	2030	P (7.1) S	15/9/9/		K 5(6.9) K			6.7	(7,	7.9	5(79)5	10	3(7.1) 5			15 (7.4)5		7.9	5(4.4)			_		77		\rightarrow	4	X S(7.0) Z S	125/5.8	1 (5.7) S		ŝ) (7.)	3/	
30.	Co	0261 0	S (8.2)P	5 (9.3)8	S (65) S	CK	5 (6.7) 5	(8.0)5		3.8 2.6	(92)3		В	\$ (8.6) 5		3(8.0)3	5(8.8) 51		(8.8)	5(4.8) 5(8	1	1.0		15 (8.0)3	K (5-9) S		175	*	N	7.9) >	15/5/5/K	5(6.9)8((8,5)	(8.0)	30	
		0881 0	(9.3) 5 (9.0) 5	3(8,8) 5	S (6.7) S		× (6.7)5	8.0	~	_		15 (7:6)5	í			5(8.2)5			(8.1))5 * (9.2)8 "	3 (7.2)5			0	Ĩ	* 8.6	X	¥	*	S		7 (8.0)	30	
		0 1730	\$ (9.3)	5 (6.9)5	15 (6.7) S	X 6.9K			rK 6.7'	5 (8.8)5		_		2.6	5 (7.3)5		V)	L)		_	5 (9.2)5	*(6.1)3	Н		-	7.2)5 7.4	9.8	34 10.6	F. 6.3	¥)5 (T. O)		7.	3	
		0 1630					X 6 4X		A 6.7K	00	9.0	7.4	J (7.0)8		3 (1.1) 5	3.6	(6.07)			s(8.8)	- Oil and a second	[7]c	7.3	_			(1:1)	*	*	15 6.4x			-		3/	
		0 1530	(9.5)5	5 (8.8)5		X (7.2) \$	- 1	7.8	8			2.6	$ \cdot $	9.0)3 (7. UF	5 (7.1)5		H	_		4.6	5 (9.2)5	5 7.7	8.2	£.74		7.5	<i>8</i> 0 ₩	-	X (5:5) X	_ ~	_	Н	7.6	3/	m:m
	Mean Time	0 1430	9.6	0.01 (~	7.8	X 6.5	00	60		F (6.8) 7	9.1	(7.0)3	(7.0)]	15 9.8	9.9	7.5	9.7	9.6	7 (9.0) 7	7 (7.1)		X		5	*	8.0	XS.S	4.8% < 47%	8.9	-1	7.5	16	0.5
:		0 1330		(10.1)	¥) S (7.1) S	15 (6.1) 5		3K 6.4K		70 8.8	7.4			6.9	8.9	(8.8)	4 6.8	7.5H	vi	4.6	4.6	7.7	00	Y		7.4	8.5		X * 5.2	2 3	8.9	8.3	1 72	3/	Mc to 25.0 Mc in
	M _o C)	0 1230	5 9.5	8.6	4 5.4	X (6.9) 5			X6.3		[87]	7.4	٦	1.8 8.1	15 66	4.9	2.9	75 6.4	2.8	(8.9)	4.6		(7.0)	9.8		10	7.4	5 8.0	2 7.4	16 * 5.0'	S	4.6.6	8	7.4		1
		0 1130	(8.8)	(9,4) S	¥) # (c.6)		8 6.9	x 6.2K		1)5 8.6	2.6	_	Ν				3 (6.3)5	15 7.6	- 9.0	00	5.8	8.9 81		- 4	·4) S (4.		1 7.5	7 7.2	6x 44.86	5	V	2	6.9	31	Sweep_1.0
		0 1030	(83)5)P 8.7	2. کې کې	13 (6.3) H	15 8 (54) K	7 6.8	16.07¢ 6.1	2 7.8) N) H 7.2	16.01 (6.3) 5	F 7.8	8-9 AL	J	2 7.6	5.7) \$ (5.9) }	5(6.6)	7.9H 8.5	00	6.8 4.8	5	A(2,0)A	λ.	0	6.8	, × 8.	5.9 6.7	5.0 K *4.6x	× <4.7,	1 x	8 7.	6.8	30	
		0930	V 7.9	P (8.3) P	K 5.2	-					(8.2)	(6.9)	r :		5) 16.6]	0	7.	ΙЧ	(6.8)3				(0.6) 8	6 7.5			7 6.6	3) 7.4	- 1	u 1			9		30	
		0830) J (7.2) V	-	A. S. 3	15 6.0		F 62 F				3/4 (6.8)5	8 (5:8)8	-	2 (6.5) 3	-	5 (6.4)	2.5)5 (6.8)5			7.4" (7.2)	1 1			6)5 (5.7)	(6.4) 6.4	4 (7.3)		* "	4.7× <++4		2 (6.3)	2 (6.4)	3	MIN.
1		30 0730	7.3 F (7.5) 5	8)5 7.3	4.7K 5.0	(6.1) S 6.2F				(6.4) \$ (7.0) 3	7c (7.5)"	1) 5 (6.3)#	5:00		3 6.2	5.0	5.4E (5.6)E	2 5.4	6 (6.0)5			1 2			V 1			_	6.3	× * × 4.8]	3	6.2	30	SWEEP TIME - 25 MIN.
		30 0630		(6.8)5	4.24 4.	4.6F (6.	5 J(5:0) E	8 5.5	0	5) 5 (6.	0 [6.8]c	6 (6.1) 3			(6.1) H 6.3	14.3) 4.6	4.6 5.		5v 5.6	(5.8) 7.1	6.4 (7.2) 5			8 6.5	50	_	4.9 5.6	-		3.75 4.0	- 1		- 1	\rightarrow	30	EP TIN
	≥	30 0530	4.3 F 5.8	0	OX ((3.2) 7 4.		3.9 F 4.8	. 0	0	(5.7) 5 6.0		8.4 8 (9.8)	(3.8) 5.3	7 (6.1	135 (4	4.	13.9)5 46	4.	8 (5:	4.8 4				1	3.8 4.9	- 1	.e. 6)5				- 1	- 1	 _	\neg	* SWE
1	Lot 38, Call , Long (/. I W	30 0430	496 4.	0	1 × (3.9	1 (3.0	7 (3.6) 5	-		(45) 5 (47) S	95 (5.7	(5:5) (5.6)	3 (3.	3.9F (3.	8 5.7	(4.2)5 (3.7) J	2)5 3.6	(4.1) (3.		0 48	0)3 4.	5.8F (5.	7 5:0	9 5.2	7.₹		-			(2.5) X (2.	(3,	3.7 K 3.5 K	98 53.	7	29	
2.0	N. Lo	0230 0330	45 6 45	(5 H 3 4.9	T(6.4) & (5.1) K (3	4 5 13.8	(4.3) 3.9	4.5-F 4.1	9	150 STH.	3)5 (5.9)3	(5.2) (5.	(4.9) 4.3	OF 3.	6.5.8	S	(4.7)8 (4.0)3		1)× 3.8	4 5.0			(6.0) 5.7	0 49	3 X (5.	0 K 3.	(4.5)8(4.1)8	5.4 (48)8	-	9.6 K (2)	3.5K 3.1	7)E 3.	4.5 FT (3.	4.4	30	
MUSCHING TO TO	ot 38.		4.7 F 4.	6	1 K T (6.5)	2) 5 (4	(4.7) S (4.	4.7F 4	O	3) 2 (5.	15 (6 3)5	2 (5.		42F 40	5.6	7) S (4.	(53)5 (4.	(5:1) \$ (5:0) S	4.4 (3.8) ×	875 5.4	5.3			5.0	# (6.0) S	(4.2) x (3.9) K	(5:0)8 (4.	6F 5.	6.2 5.5		9K 3.	2) × 3.9) ×	2)5 45	4	30	
2	٦	0030 0130	(5.3) \$ 4.1	(6.0) 5.8	S(T.1) P 7.1	3 (5.2) 8	(5.0) 5 (4.	(5.0) 7 4.	0	(5.6) 7 (5.3) 3	6.4 (6.4)3	6.4 6.2		4.3 F 4	6.3 5 (5.8) 7	18 (4.9) 5	(5:4)5 (5.	(5.7)3 (5.1	45 4.		6.3 5.8	6.8 (6.1)3	(8.2)5 (7.		\ .		(5.5) (5.	79.5 S(9.2)	5 6	CKXCZ.	S(4.3) X 3.9 K	7)KH4.	(5.8) 8 (5.2) 8	(5.3)	30	
Observed at		Day 00	1	2 (6.	3 5(7.	4 5.3	5 (5.	6 (5.	7 C	8 15.6	9	10 6.	ئ. ک	12 4.	13 6	4	15 (5:	16 (5:	17 4	18 6.,	19 6.	20 6.			_			-	- 1	- 1	- 1	- 1	- 1	ian (5.6)	Int 30	
0		٥										_	_	-	-	-	-	-	-	-	-	2	21	22	23	24	25	26	27	28	29	30	3	Median	· Count	

Manual

Autamatic

Manual

National Bureau of Standards

B V. H

TABLE 36
Central Radio Propagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

DATA IONOSPHERIC

May (Month)

h' FI

SWEEP TIME = 25 MIN

Manual [3] Automatic [8]

Manual [3] Autamatic [3]

SWEEPTIME = . 25 MIN.

 $\begin{tabular}{ll} $TABLE & 37 \\ $Central Radia Propagation Lobaratory, National Bureau of Standords, Washington 25, D.C. \\ \end{tabular}$

Farm adopted June 1946

National Bureau of Standards

B 2

Scaled by: B.E.B.

IONOSPHERIC DATA

Mc May (Month) (Unit)

fo F I

Washington, D.C.

Observed at __

MCC., H.C. 10 By. H., B.E.B. 22 2 Calculated by: 20 <u>6</u> Q U 0 0 0 9 a a 7 A 9 2 1 4.3 x 1,6 E 4.3 (42) (45) 4.3 7,3 4.62 0 4.54 (4.6)4 (4.3)4 (4.8) (4.9) 4.5 (8.8) 4.8 (5.9) (49) 4.8 40 4.9 4.00 4.00 q 9 4.64 (5.1)# 15.07 1 00 X 5.0 K [4978 (4.8) 4 (5.4) (5.3) 50 [4.8] 1 (4.7) 2 [4.5] 2 5.0 4.80 50 4.8 0 5.0 16 (53) (5.0) 0.0 (2:1) (49) 00 d 6 48 0.0 4.8 2 ×8.4 502 (0:0) 400 4.84 (6.8) (5.4) (5.3) (50)3 (49)4 (67) 5 3 4 (5.6) 5 50 Sweep LO Mc ta 25.0 Mc in 0.5 min (5.03) 5.4 5.3 3,4 (6.3)" (5.0)" 5.4 52 (52) 60 4.8 4 * 4.8 K * 4.8 4 0 4 3 3 4.9 6,0 3 5 80 - Mean Time 4.8 x 4(62) 50 x 15.07 5.2 " [5.2] 4 (5.2) A [5.1] K 5 2 (5.37" 5.2 (5.2) 5.2 4.0 (5:5) 5.2 5.0 10 3.4 5.2 5.2 r d 3 (5:7) (6.6) 5.0 3.1 3 1487 (5.2) (5:0) (5.2)" 9(6.5) × 6.50 [44]4 (5.2) 5-2 H (5.3) 3,2 4.6 5.5 4.00 5.3 (5.6) 5,23 ريا 5,2 S.3 5.5 75° W 2 36 5.0 4 + 6.4 48 X 1 42 K# 5.4 5.3 (6.1) (5.8) (5.0) [4.2] (4.8) (5.4) 4.6" (4.7) A 4.8 K (0.5) [56]2 2:3 4.8 (5:0) (5.2) [5.2] 4.8 4 (3-1) 8 (5:3) 3 63 5.4 5.0 5.2 5.0 3 = J. Q 50 X ×× 5.0 K (4.7) R (878) 5.0 * 14.77 (4.6) 5 (5.0) 3 14.97 (0:5) 3% a 4.00 5,5 5.3 (5:1) 5.4 3.6 6 (5.3) (0.5) 5.0 49 60 0 d (5.3] × 67 x 67 K (5.2) * V * 7/87 49 (4.8) (4.4) (4.8) 4.6 2.2 r G (4.8) 4.5 (6.6) 50 3/2 27.7 50 6 7 60 \emptyset * 50 400 404 [4.6]4 (4.4)5 (44) (4.7) 1.5 4.8 47 (4.7) 4.6 4.8 4.6 7.4 46 (46) 46 40 7.7 90 V ×0% (44) (4.0)x (4.3) 4.3 (4.3) 4.2 4.3 12 07 a Q Q > 3.9 3.6 90 a aaa a Q U a adad a Q a 7 2 2 05 1 3 Lat 38.7°N Lang 77.1°W 04 03 02 ō 00 Median Caunt ō, N 4 9 00 o 0 4 2 9 20 56 27 59. 2 5 <u>-</u> 6 2 22 23 24 25 28 30 = 89 10

Form adapted June 1946

National Bureau of Standards

Scaled by: B.E.B. - By. H.

 $\begin{array}{c} \text{IABLE 38} \\ \text{Central Podio Propagation Laboratory, Notland Bureau of Standards, Washington 25, D.C. \\ \end{array}$

IONOSPHERIC DATA

195C

(Characterstic) (Unit) (Manth)
(Observed of Washington, D.C.

Observed at

٦. اد																																		+		
E.B. Mc C.	23																																			
ם ו	22																	_																1		
	21																																			
Colcutated by:	20									Di Liberto				-					S. 47950	10		io.		W-8-271			CO.			A V	10	7				
,Calcı	61													120		110	8		S	(120)5		(120)5					A(010) A	S		(0/1)	(130)5			(/20)	0	
	81	120	110	120 K	7	110	S	110 K	0//	011	0//	(100)A	0//	011	0//	011	1	2//	120	~	4 110	0//	120	1100	B		A(0/1)	1001	110K	1011)	011	(110)		0//	38	
	17	110	100	1	110K	0//	l '	110 K	100	120	110	100	001	011	0//	0//	A(0//)	0//	100	111079	100	110	110	110K	(100)A	(100)A	100	1	Į.	'	00/	100		710	3/	
	91	0//	100	(100)A	110 K		`	110 K	110	011	0//	100	100	0//	011	0//	100	8(0/1)	100	110	100	110	1,000 B		(110)	4(017	4(00/	X00/	X0//	1		100		110	3/	
A STATE OF THE PARTY OF THE PAR	12	011	A(001)	(100) A	110 K	F1167	110	1 1		T		1 1	,		0//	00/	100/	0//	0//	0//	011	-	(100)A	100 4	\sim	11107	(100/	100 K	100 K	X00/				710	30	
ne	4	0//	(100)	(100) A			S	(120)A	0//	4	(100)	P(001)	(00)	110	0//	100	001	0//	4	00/	[100]	(110)9	A(001)	7	(100m	(110) A	" (100)A	00/	X 00 /	(100)A	(100)	100)		(100)	28	.25 min
Mean Time	10	100		¥	¥	Q	ગ	(100)X	710	0//	(100)A	A(001)	A(00/)	110	0//	100	011	01/	4	00/	∢_	4	100	7001	(100)	A(00/)	(100)A*	4(00/)	100 K*	100 K	(100)	(100) A1		7	28	Automotic M
W - C /	12	00	0/	(100) A	*	6	4	(100)A		00/	4.	(110)	1001		(110)	100	0//	100)	4	A (001)		(100)	(001)	110A	(100)	(1001)	-		M	a y	4	1 4(001)		-	29	
	=	110 1	0//	×	¥		4	(100)X	110	A(00/)	(100)	(100)		0//	P		0//			(100) A	CHECKE	4		X 00 /		(100)		(100)	(100)x		(100) A	(100)4		7		Ιž
	0	1 011		110 K	110 K	S	13	(110)K	110	1) 011	(100) A	110 (1	(110)A /		(110)A	1001	-	-		4			AIL	100K	100) A (1	100)9/	(100) AC	100)	, 80 K	(00) A(00)	(100)# (1	(100) A		T	28	Sweep I.O
	60	110		1	Ø		8	×	. 1	1011	1001	2	1001				1	(100)A	1		et		6	[100]E	\square	ď.	7		4			100)4 (1	+	+	29 6	
AND PROPERTY AND PERSONS ASSESSED.	90	110 1	- 1	×			8	1 3011	110	//0//		110 11	// 0//	110	(110)	1 01		1) 001		1 001	P	T.	700	100/	1) 4(001)	. ~	i. I		*		ιI	\sim	- 1	100/	30	
				¥	11011	Q		010) A		110 11						-	Ø.			1	J	1 7			-	ď	110: 11			\Box	r I	11 6(001)		7 077	٦	= . 25 MIN.
-	5 07	0110	0110	, 4 /00		0			0110		, 100	0// 0	011 0				4		1	_	P	(110) A (10	DA 1600	2	100	(100)	110 * 11	10 16	¥ _	67		\neg	\neg	+	3/	ME =.
	90	120	120	110	01.	(120	Ø	0	0// 5(110	110	120		110	0 120	120	(11)	(11)	110	130	1/2	(11)	(100)	120	B	(100)	. 1	1		1		0/1	+	+	28	SWEEPTIME
AA	4 05				S				(120)						120												*(130)5*	N	10	120	(120) X	100		120	7	×
44	0.4										2 000.20			w##***********************************						cznowe														1		
Lang.	03																		`															-		
	02																														_		-	+		
Lot	ō																																	1		
	00														- 40																					
	Day	-	2	10	4	D.	9	7	80	6	01	=	12	50	4	15	91	17	8	61	20	2 !	22	23	24	25	26	27	28	29	30	-50	Modios	Media	Count	

Manual [3] Automatic [8]

Form adopted June 1946 National Bureau of Standards Calculated by: By. H., B. E.B. McC., H.C. Scaled by: B.E.B., By, H. $\begin{tabular}{lllll} TABLE & 39 \\ $\mathsf{Centroi}$ & \mathsf{Modiag}$ & \mathsf{Propagotian}$ & \mathsf{Lobarolory}, \mathsf{Notionol}$ & \mathsf{Bureau}$ & \mathsf{of}$ & \mathsf{Standards}, \mathsf{Washington}$ & 25, 0.0. \\ \end{tabular}$ IONOSPHERIC DATA 75°W Mean Time 026 Observed at Washington, D.C. (Characteristic) (Unit) (May

1		Lar	Tal Tal	, Louig			-	-	-	-				= 1	Ime					Calculated by		7.00			 1
Day	00	ō	05	03	04	0.5	90	07	08	60	0	=	12	13	4	12	91	17	81	6	20	21 2	22	23	
-							7	2.9	32	3.4	3 %	3.7	30	39		36	3.3	2.9	2.3		-		-		
2							7 7	8.2	3.0	6.6	2 5	3.6	3.7		(36)	2	m	0	2.2						
10							(2.2) P	1) x x.6	A. 3.1	X (3.5)	7 (3.5) P	7 (7.E)	[37] B	37 1	(3 7) A [[3.5] A (47	*	x 4.4	1.7 11					
4						(1.7)		2.9	3.0	[3.3]	$\overline{}$	7 3. E	S (0 +)	39 X	3.00 E	3.6 K	× 2	× 0	× 0			-	-		
ς,							(23) B	5) 7 [2.7]	14 (3.1)	S (3 4)	x 3.7 #	7 3.8 K	BK	× A	38 K	[3 6] x	3 ×	7 8 X	7 7						
9							~	3 (2.8) P	3.1		R	Á	A	J	J	J	(32)7	6-	4.8	·					
7							U	(2.8)	14 3.2	35 4	x [3 c] x	(3.P) A	A	*	×	364	Į.	30 ×	7 t. K						
8						S	~	5 29	3.3	3 8	3.8	39	4.0	(3 7) B	3.6	(3.5)5	[32]8	30	7: 6						
6							7	1 28	3.2	3.4	3.6	[3.7] A	30	00	₹	₹	33	0	4.4						
10							کہ	0.0	3.2	2 5	[3.6]	A (3.8) A	3.00	30	3.7	3.6	1 3	8 8	20						
_							2.0	(2.8)	30	[3.1]	2 8.5	3.4	(3.4)A	[34]A	3.5	3.4	3.3	00	(2.0)4				-		
12							8.3	2 %	3,2	6	[3.5] A	3.7	37	(36)	[36]4	3.5	3.7	0	E &						
23							2.2	28	3.7	W	(3.5)	3.6		(37)P	3.7	3		200	4.4	1.7					
4						1.5	2.1	1 2.7	30	3.2	13.5	i,	[3.6]A	3.7	3	3.5	3.3	28	2.8						
2					N THE REAL PROPERTY.		2.0	2.5	3.1	3.4	3	37	3 8 2	3.7	3.5	3.5	7	200	6.5	6.7					
91					2007.000		7.9	7 6	2.7	3.0	3.2	6.3	3.6	3.5	70	3.4	4	29	s, s						TO SECURE
17							7 7	8	2	3.2	3.4	3.00	[3.8]	3.7	3	~	3	3.1) S	2 2						
8					D14 - 50		2.3	2.8	3.2	w	A	A	7	F	(3.7) A	3.07	30	3.0	23	2					
6					Elicog		7	4) 4 30	3 4	3.4	7	Ø.	A	3 8	3.6	3.4	3.3	3.0	٤٠٪	8					
20							2.2	2 2.9	3 %	3.5	3.5	3.5	A	4	R	3.4	3.4 #	3.0 %	S						
21					-		2.1	Α	7	3.3	3 3	(36)	(3.7)P	8	00	1	5.3	3.0	4.4	6.1					
22					174		₹	J	3,	RO	4	(3.6) A		3.50	B	P	10	3.1	7						
23							77	x 2.9	X 3.2	x [33] B	3 4 4	_]	x 8.5	+	+	33 %	30 %	XSX						
24							4	2	3.1	3.3	4	4	A	A	(35) 4	3.3	ω. ω.	7	₹						
25							(21)A)A (25)	(3.1)	(3 6) 9	9.7	3.0	[38]	(3.7)	3.6	[3.4]4	3.3	00	S						
26					_	4 1.7	* (2 4	4) 4 4 2.8	* 3 2	* 3.5	*[3.5]A	9 % 3 6	* 3.6	*[3.7] A	(38)AK[3.6] 1	3.3) F	3.0	4.8.4	4					
27						S	20	2 8	3 2	3.4	[35]	3.6	36	136 A	(3.6)8	34 4 8	4 7 5	3.0 4	44.8	x 9.1					
28					25-31-34-5	1.8	4 N	[28]	13 *(3.1)	A*[3.2]A	* * * * * *	[3.6] *	*	* 36 X	3.3 *	κ,	3.1 4	3.0 K	254	X 8.					
59						1 8 1	x (24	4) A (2.8) A	JA 3.1	x (33)A	A 3.3 A	3 7 X	[3 6] A	367	34 %	344	3 2 4	X 8 X	2.3 K	A					
30					#-04L08F	(8.1)	+ 23	3 4 28	30	A 3.1 A	[3.4]	A (3.6) A	(38)	[3 6]4	5 5	3.4	3.7	2.9	2.3	1.7					
31						17	~	3 28	3 /	32	3.2	(32)	Ą	A	A	4	3 3	3.0	2.5	A					
Median						1.7	7	2 20	3 /	10 10	3	3 6	37	3 7	3 6	35	33	3.0	4.4	1.7					
Count						7	20	29	30	29	77	27	23	44	25	74.	30	30	27	7					
						* SWE	SWEEPTIME	11	25 MIN.		S	Sweep 1.0	- Mc to 25	Mc to 25 0 Mc in 0.5	0.5 min										

Form adapted June 1946

Standards

Bureau of

National

8

Ω

40 TABLE

Central Radia Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C

DATA ONOSPHERIC

950

Km,Mc

(Characteristic)

S LLI

Observed at

õ b P Ú

00

P (1) P

N

Ö T. Ö ğ 56 110 24/10 38/30 24/11 0119 581110 38100 23 * b B P 30 b b P P b b 6 b 6 6 6 P 6 a 7.0 /30 33 100 54 110 39120 48100 36110 110 42/20 32 110 52 110 321/00 -BEI b P P b P P * J b b 6 b Ü b 48 130 158 110 001/9 I 4.2 110 347110 32/20 30 110 011 P * **(**b) b b 2 6 b 6 b b B b By Scaled by: B.E. 34/30 38/20 51 110 2.9 110 16/20 10/110 9 130 01/ 52110 * 0 b P 5 6 b. B 6 6 P 100 110 44/20 34110 19 110 42110 122110 68 1/20 4.6/20 P 0 Ġ P P b b 6 b * b (b b 6 6 6 P P 354,201 35,20 OH/041 3.8,20 43 110 36 110 62/00/45/00 11011 0119 45/100 30 110 59,00 62 110 38110 b b b 6 b () b 6 P 30 6 6 b 6 * 6 \cup 44110 49110 30,00 66110 b 6 5 b b 6 6 b b P P 6 b * _ 6 b b 6 421110 4.3/110 39/20 b 6 b B 9 P 6 b J D 6 6 5 6 b 6 b b b b * 37110 33 100 011 64 481,20 30/100 48120 3.1 110 001 64 100 36,00 50,00 73100 56 100 44130 j 6 5 6 b P b * 6 6 b b Ó b 6 b 38 110 45/20 31,00 2.6 100 34,00 29,100 2,000 3.0 100 5.5 1,00 41,00 35,00 3.5 100 2.9 100 31,00 P b 4 6 b b 9 b Ġ P Ú b b b 951,00 47/100 5.0/00 4.81,00 31,00 29,00 52,00 34/00 36,100 100 33 100 Mean 6 b b 10 O **b** 0 6 9 J b P b 6 P * U 102/100 126,00 37,100 46110 36,00 43/00 48100 35,00 38100 48100 42/20 100 100 34/00 45110 100 501110 34 15°W U b b 6 b 0 b b b P C 14 43/20 13.6,00 15,00 4.0,00 14.000 5.0 100 70,130 32,00 3.6,100 50/00 35 1,00 136,00 3.8,100 100 3.8/00 50,100 40,60 33,00 37,00 3.8,100 36100 34,000 437,00 35,00 36 6 b b b 0 6 (1) 0 Ó 5 b 38,00 011 49 601/10 53 110 56,00 3.9 100 150/00 36,00 35/110 44/20 86,00 46110 38100 35 100 36 120 40,00 U b b b 6 b b 6 b b 0 Ф 6 P 501/00 47110 11/10 3.7,00 4.7110 b 6 () P B * P b P 5 6 b 6 6 Ü 0 6 b 4 2/100 34,00 48100 4.3 110 3.3,00 47100 4.3/20 4.3 1/10 64 100 110 b * 31 08 b b b b 6 9 6 r b b b P b **(**b) b 6 66 6 8.0100 42110 5.3,00 43/10 42/100 45 110 01104 54110 46100 5.0120 6.2 110 6 6 100 011 1 # * P 30 U b b 07 b 6 P b b b 6 6 6 b P b b 6 39 110 38/20 4.1/20 45110 26110 921,00 6120 39100 35/10 317,00 347,00 3.5 110 30 b U 6 b P 5 b 6 Ų 6 6 r b 6 6 6 b b * 9 01184 30 110 42/20 45/20 2.2/30 68 110 0.5 b 6 6 5 6 0 b P J U 5 5 6 0 b * b 5 b b b P b P 34110 011/84 48,00 38/20 241,00 23/20 58,00 77.1°W 120 0 4 * () b U 6 6 B 6 Ŷ 6 P b b 6 6 5 (b P b 33 011 61 34,00 14 100 122/20 24,70 40,20 4.3,20 0110901189 0.0 Lang * b b P b b 6 b b P b B P 5 b b P U b b 0 b P b Lat 38.7°N 36/10 25,30 32,20 25 100 25/110 28/110 100 Washington, Ġ * 30 02 U B 6 b Φ P P G b 6 O 9 b P b 6 b b P P 6 b P

22 130

100

30/100

b

_ 2 m 4 5 9 17 8 9 20 2 22

U b

3.7 100

b

b (p b

32 110

6

S

b

4

Q

1.7 120

9

V b ()

U b 5

~

ω O 0 2.3 100

6

P

b

b

b

b

(36)50

5.0/20

4.2/20

D P B

b b b Q b b

25 26 27 28 29 33 5

b

P

23 24

b

Ó

26/120

100

74

O

P

6

७.∗

MEDIAN FES LESS THAN MEDIAN FOE, OR LESS THAN LOWER FREQUENCY LIMIT OF RECORDER

Sweep 10 Mc to 25.0 Mc in 0 25 min Manual [] Automatic [3]

SWEEPTIME = 25 MIN

*

70

30

30

3

31

3

31

30

30

3

31

5

79

70

29

30

30

**

*

* 30

Medion

Count

Farm adopted June 1946

<u>0</u>26._

IONOSPHERIC DATA

Calculated him By, H. - B.E.B. Mc C. - H.C. National Bureau of Standards Scaled by: B.E.B. - By. H. 75° W W . 1 7 7 (Characteristic) (Uart) (Characteristic) (Uart) (Characteristic) (Uart) (Characteristic) (Uart) (Characteristic) (Uart) (Characteristic) (Uart) (Uart 78 7°N

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1.7 (1882) 1.8 (1.9)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.7 1.8 (1.8)\$ (4.8)\$ 1.9 (1.9)\$ 1.8 (1.9)\$ 1.8 (1.9)\$ 1.8 (1.9)\$ 1.8 (1.9)\$ 1.8 (1.9)\$ 1.9 (1.9)\$ 1.8 (1.9)\$ 1.9 (1.9)\$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9 (1.9)s 1.9 f (1.9) z (1.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9 1.9 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8 1.9 (1.9)5 (1.9)5 1.9 1.9 1.8 1.8 1.9 1.8 1.9 1.8 1.9 1.9 1.8 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1) (3(1) (8(1) (6((1.9) \$ (1.9) \$ (9.0) \$ (0.0) \$ (0.8) \$ (0.6)
(8.1) (8.1) (8.1) (8.1) (8.1) (8.1) (8.1) (8.1) (8.1) (8.1)	1.9 1.9 (2.0) 5 (2.0) 5 (2.0) 5 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
1) (81) (81) (61) (61) (61) 61 81 81	1) (8) (14) (15) (17) (18) (18) (18) (18) (18) (18)
(8.1) (8.1) (6.1) (6.1) (6.1) 8.1	31 31 24 31 30 30 30 29
	31 31 24 31 30 30 29

Manual [Autamatic []

National Bureau of Standards Scaled by: B.E.B. - By: H. H.

 $TABLE \quad 42$ Central Radia Propogation Lobaratary, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

020

May (Month)

(M3000)F2 Mc (Characteristic) (Unit) (Observed of Washington, D. C.

20) 02 03 04 05 06 07 08 09 09 09 09 09 09 09 09 09 09 09 09 09		Mean	200						-	
(20) 2 2 (20) 2 (20) 2 (20) 3	11 01 60	12 13	4	15	17 91	81	19 20	21 22	2 23	
(20) (20) (20) (20) (20) (20) (20) (20)	17P (26) 28	(26)5 20	6 28	2.7 (28/5 (29)	5 (29)5 (2	9)P (2.7)5	(2.7) 5 (2	6)5 (2.6)3	
(20)5 (25)5 27 27 27 23 5 25 5 7 (20)5 20 5 27 20 5 20 5 20 5 20 5 20 5 20 5	38 28 26	(2.6)5 (26	1)5 26	26 ((27) 5 (28)	5 (29)8	7) & K(27) &	(29) × (2	6) \$ 1(23) \$	
(30) 28 27 30 29 30 (20) (20) 28 27 30 29 30 (20) 20 (20)	4K 23K 21K	22K 23	3 K (23) 8	(24) E(HC)	(25)3 26	K (27) & (2	818 (2.7) x	(27)5 (2	7) 3 (27)3	and or process
(47) \$\frac{1}{2} (26) \frac{1}{2} 29 \frac{1}{2} 26 \frac{1}{2} 27 \frac{1}{2} 28 \frac{1}{2} 28 \frac{1}{2} 28 \frac{1}{2} 28 \frac{1}{2} 28 \frac{1}{2} 28 \frac{1}{2} 29 \frac{1}{2} 28 \frac{1}{2} 29 \frac{1}{2} 2	778 (29)k 25 K	24K 2	5 K (25) &	26 K	26 K 26	K C K (2	6)\$ C K		: (27)5	
(47) (47) (46) (46) (47) (47) (47) (47) (47) (47) (47) (47	15 K 1(23) & 1(23) 8	(23)5 21	4K (2.5) 8	(25) s	25 K 26	K 27 2	8 (27) 8	(26)5 2.	7 2.9 8	
2	10 (26)8 27	25 26	27	26	28 28	28 2	8 27	(26)3 C	2	
28 (28)5 (29)5 30 31 22 (30)7 (25)5 2.5 2.8	17 K 26 K 24 K	24K 25	- K 25 K	2.7 K	27K 27	K 28K 2	8 (2.6)5	27F 2	75 275	
28 (28)5 (29)5 31 32 (30)7 (2)5 2.5 2.8 (20)5 3.1 3.2 (30)7 (2)5 2.8 (20)5 (20	38 28 28	28 27	27	28	28 28	28 2	8 2.8	(27)3 (2.7)	1)5 (27)5	CO-
(26) 5 25 28 F 31 2.9 (29) 8 (28) 8 (27) 8 2 2 31 2.9 (29) 8 32 31 2.9 (29) 8 32 31 2.9 (29) 8 32 31 8 2 2 31 8 2 2 31 8 2 2 31 8 2 2 31 8 2 2 31 8 2 2 31 8 2 2 31 8 2 2 2 31 8 2 2 2 31 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1914 28V 28	(2.8) \$ 28	2.8	28	(38) = (38)	5 (28) 5 (2	3/8 (38)8	(2.8)3 (2.	7) 5 (2.6) 5	
2.8 (2.0)	1815 27 27	28 28	8 6 8	30 (2812 28	(38)8 (2	8)5 (28)3	(28)5 (26)	5(92) 519	
(25) 5 27 28 29 32 31 29 23 (25) 5 27 28 (29) 4 30 31 18 (27) 5 27 26 (29) 4 30 31 18 (27) 5 (27) 5 (31) 7 31 30 31 18 (27) 5 (27) 5 (31) 7 31 30 20 20 20 (28) 5 (28) 5 (29) 5 (29) 5 20 31 18 18 (28) 5 (29) 5 (29) 5 (29) 5 20 30 30 30 30 (27) 5 (28) 5 (29) 5 (29) 5 (29) 5 (29) 5 20 30 30 30 (28) 5 (28) 5 (29) 5 (29) 5 (29) 5 (29) 5 20 30 30 30 30 (28) 5 (28) 5 (29) 5 (29) 5 (29) 5 (29) 5 20 30	C (27) P (2.7) F	(27) 5 2'	7 26	27 (2713 27	28F (2	8)5 2.7	(28) = 2	78 26F	
(25) 5 27 28 (29) 4 30 31 18 (28) 5 27 28 (29) 4 30 31 (20) 5 21 (20) 5	9 28 28	27 2	7 26	27	28 (28)	5 29 (2	8/8 (3.8)8	(28)5 2	6F 25F	-
(20)5 29 (30)5 31 (33)5 25 2 (20)5 (20)5 (31)7 31 F (30)5 (3 28 26 20 33 30 20 31 H 1 28 26 20 33 30 31 H 1 28 26 20 33 N 31 2 28 26 (20)5 (20)5 C 31 3 27 N 27 K (20)5 (20)5 C 31 3 27 N 27 K (20)5 (20)5 C 31 3 28 27 20 30 0 20 0 30 28 27 20 20 20 0 30 28 20 27 20 30 0 20 28 27 20 20 20 20 28 20 20 20 20 20 20 28 20 20 20 20 20 20 20 28 20 20 20 20 20 20 20 28 20 20 20 20 20 20 20 20 20 20 20 20 20	R 24 26 V	282 2	1 28	(28)3 ((27) (28)	5 (28)5 2	8 (29)5	(28) 5	(2.7) 5 (26)5	
(28)5 (26)5 (30)7 (31)7 31 F (30)5 (37)7 (37)5 (37)7 (6 C 30	27 23	7 27	27	26 2.7	(28)5 (2	915 2.9	(28)3 2	7 (26)3	
(2.7)5 (2.7)5 (2.9)5 31 30 3.8 3.1 2.8 2.8 2.9 3.3 30 3.1 4 2.8 2.9 3.3 30 3.1 4 2.8 2.9 3.3 30 2.9 4 2.8 2.7 3.2 (3.0)5 C 3.1 3 2.7 2.7 (2.9)5 (2.9)5 2.9 3 3 3 2.7 2.7 (2.9)5 (2.9)5 (2.9)5 3.0 3 2.7 2.6 2.7 3.0 3.0 3 3 2.8 2.7 2.9 3.1 1 2.6 2.7 3 3 3 2.8 2.7 2.6 2.7 3.0 3.0 3 3 3 3 2.8 2.7 2.6 2.7 3.0 3.0 3 3 3 3 2.8 2.7 2.6 2.7 3.0 3 <t< td=""><td>3115 33 28</td><td>2.8 27</td><td>1 27</td><td>2.8</td><td>28 30</td><td>2.9 (3</td><td>015 (29)5</td><td>5(82)</td><td>(31) = (26) =</td><td></td></t<>	3115 33 28	2.8 27	1 27	2.8	28 30	2.9 (3	015 (29)5	5(82)	(31) = (26) =	
28	5(82) 5(42) 82	(27) 3 (29	7)5 (2.7)3	2.8	2.8 (29)	S 29 F (2	3/8	(30) \$ (28)	8) & (28) \$	
28 28 29 33 30 31 H 1	3015 (28)5 (28)5	29 28	8 2.7	18	29 2.9	28 2	6	(29)5 2	8 (28)5	
(28)5 29 31 33 31 30 3 28 26 (26)5 30 2.9 A 3 2.8 27 32 (30)5 C 31 3 2.7 X 27 X (29)5 (29)5 24 K (23)5 (20)5 C 31 3 2.7 X 27 X (29)5 (29)5 24 X (23)5 (20)5 (29)5 30 30 2 2.8 5 2.7 (30)5 (29)5 30 30 2 2.7 26 27 30 30 30 30 30 3 2.8 5 28 K 28 K (29)5 (26)5 (26)5 24 K 2 2.8 5 28 K 28 K (29)5 (26)5 (26)5 24 K 2 2.8 5 28 K 28 K (29)5 (26)5 (26)5 24 K 2 2.8 5 28 K 28 K (29)5 (26)5 (26)5 24 K 2 2.8 5 28 K 28 K (29)5 (26)5 (26)5 24 K 2 2.8 5 28 K 28 K 30 K (29)5 (26)5 20 3 2.9 5 29 20 3 30 X (28)5 (26)5 (26)5 24 K 2 2.9 7 2.9 7 2.9 30 30 30 2 2	N 28 × 2.8	28 28	29	(29)I	28 29	(29)5 (2	915 (31)5	(28)5 (2	8/5 28	
28 26 (26) 30 N 31 A 28 26 (26) 30 2.9 A 2.8 27 32 (30) C 3.1 3 2.7 K 27 K (29) K (29) K (29) K (29) K (20) K (29) K 2.8 K 2.7 (30) S 2.7	30 29	(28) 29	(28)3	2.9	2.9 3.0	(30) 5 (3	0)5 (2	2	5 (2	
28	19 29 271	27 27	28	2.7 *	2.8 *(2.9)	D = (5.9) 5 * (2	915 * (28)5	(3.27) 5 * (2.8)	8)5 2.8	
2.8 27 3.2 (30)5 C 3.1 3 2.7 K 27 K (29)5 (24)5 24 K (23)5 (23)5 (24)5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	77 (29)5 (27)#	27 27	38	200	28 (29)	5 30 (2	8)5 (28)	(29)5 2	9 (28)5	
27 N 27 K (29) k (29) k 24 K (23) k (20) k (20) s (24) s 24 K (23) k (20) s (20) s (24) s 26 (20) s 20 30 30 30 30 30 30 30 30 30 30 30 30 30	30 A A	A 78	8 26	28	2.7 (28)	5 28 (2	7)5 (27)5	5	5 K (26)8	
(29) f (29) f (20) f (29) f (2	B K (23) & 24 K	(23) x (24)	98 22 K	(25) x	24K 26	K 27 K K2	9)3 28K	(26)8 M(27)	5	
(27)5 (26)5 (29)5 (29)5 30 30 2 28 7 27 (30)5 31 N 28 3 2.7 26 27 30 30 30 3 2.8 5 28 N 30 N (29)5 (26)5 24 N 2 (26)5 28 5 (29)5 (26)5 (24)7 30 N (29)5 (26)5 (29)5	16/5 2.7 28	2.7 2.8	7 2.7	28	2.7 2.8	(29)5 (2	67 56	28 2	8 (2.8)5	
2.8 F 2.7 (3.0)s 3.1 N 2.8 3 2.7 26 2.7 30 30 30 30 3 2.8 F 2.8 K 3.0 K (2.9)F (2.6)F 2.4 K 2 (2.6)F 2.8 F (2.9)F (2.6)H (2.7)H 3.0 K (2.7)F (2.7)H (17# 27 27	(20)3 (27)	15 27	(38) 5	2.9 (28)	5 5 (2	3/5 (2.9)5	(27)3 (27)	7)5 2.7	
2.7 26 2.7 30 30 30 30 30 30 30 30 30 30 30 30 30	30 29 28	28 28	29	* 2.8 *	2.8 * 28	*3.0 *(3	0)5 *(28)5	(88) \$ (38)	95 43(8	
(26) 5 27 k 29 k G K * G K * 21 K * 6 28 k 28 k 30 k (29) k (26) k 24 k 2 (26) 8 28 k (29) k (26) k (27) k 30 k (2 29 f (31) f 31 31 30 (3 (28) 27 29 30 30 2	30# 26# 26	28 2.5	7.7	26 K *	25K 26	K (25) & K(2	7/3 2	K(28) \$ (23) F	31/2 1/(2.3) /2	
	G K* 23 K* G K	420K#21	K* 22 K	25K	26K 27	K 28 K (2.	9) & (3.0) \$	K(2.8) 5 K(2	618 25 K	
F (26) 28 F (29) F (26) F (27) F 30 K (2 7 29 F 29 F (31) F 31 31 30 (3 (28) 27 29 30 30 30 2	OK GK	6 (24	4)# 23 K	24 K	27 K 2.8	x (29) % 3	8)8 2.7K	(2.7) x 1/2.	8) F K26) F	
(28) 2.7 2.9 30 30 30 3	61K (28)# (23)#	26 20	82 8	27 ((28)5 (29)	3 (3.0) 5 (2.	3/8 (2.8)8	7) 5(82)	8)5 29F	
(28) 2.7 2.9 30 30 30 3	3115 29 29	2.7 2.1	8 29	28	2.8 29	(29)8 (2	9/5 (29)5	E (0E)	7 (28)5	
(70) (7) (7) (7)		1	7 27	27	00 00	(101)	10 61 16	() (8 ()	(101)	
200	7 / 7 0 0	Υ	Ý i		Υ .	100	Σ.	x / (, ', '	7	
30 30 41 48 30 48 30 41	7 30	30 31	31	5	31	47 3	35	30 27	\dashv	

* SWEEPTIME = .25 MIN.

Sweep 1.0 Mc ta 25.0 Mc In 0.25 min Manual Automotic 🖾

Form adapted June 1946

IONOSPHERIC DATA

	c.																											-0					A STATE OF THE PARTY OF THE PAR		
200	C H.																																		
(Institution)	(B)	23																																	
ed by: B.E.B. — By.H.	Calculoted by: By, H B.E.B. MC	22																																	
B - By	Ву. Н	21																																	
Scaled by: B.E.B.	loted by:	20									Breaked 2 ratio													ERENCE IN											
Scaled	Calcu	61															-																		
		18	0	Ø	× ×	S	7	7	¥ 7	7	Ø	7	7	0	17	7	7	V	0	Ø	7	Y	7	7	* 1	7	Ø	*	9		3.44	7	R	1	`
	!	11	7	7	7	7	* 7	7	"	7	7	7	3.5	- 1	7	7	7	(3.3)	7	7	7	7	7	7	(c)	7	7	S 6	£ 25		3.64		Y	3	c
		91	7	7	(3.3)	- 1	(33)E	(3,3)P	3.4	7	(3.4)	7	ry oj	(3.5)	5	(3.3)	9.3)	(4.4)	, s,	7	C. Q)	7	2,5	34	(3.7) A	(3.4)	7	7				n)	(3.5)	34	22
Ø		3	7	7	A 10.5)	ę) A	BA	, ,		_	7	(3.6)		4.65	3.4	3.4	(3.3)	(3.4)	3.4	3 6	7	8	9 3	3	x	2.5	(36)	2		10.4			(35)"	3.5	25
DATA	ıme	14		- 1		1	ψ,	4.8	£ 6.€	J.	7	(3E)	ńy.	y. 5.	6) (1)	ic sj	ŋ Ŋ	(3.5)	(h)	(8.2)	- 1	Ø	1 1	(3.4)		10,07	(3.5)	f) *j	3.5	4 × × C.E.	₹ 00 .5)	× 3.E		(S. S)	30 10 20 50
	- Mean Time	13	(5.5)	(3.4)	(3.5) 1 (3.6)	3.6 x	φ*	J. J.	* K	3.0		3.6		(P)	4.0	30	4.8	3.7	3.6	(3.4)	X	(3.3)	10	(3.4)	(3.8)x	10.6	(3.2)	(3.8)	(3.4)	きつみ	٠ 00 0)		(a)	3.5	00
IONOSPHERIC	75° W	12	7	(3.1)	(3.5)x	x 25.5	3,7 %	a) En	A	3.2		3.5	(3.4)	(3.6)	3.5	A	(3.5)	(3.6)	3.6	4.0	(3.6)"	(38)	J. 7 H		₹	3.0	-5.5	(3.7)					4.5	13.5	26
NOSF	7	=	(3.1)		£ 80. E	A 2.5	× ∞ γ	18.8	A	7	(3.5)	4.6	(3.5)	ير ري	g).			C (5)	(3.8)"	(h)	(3.5)	(32)	(A)	V	+ 6	3.6	100	>	34	# OF	するが	00 (1)	3.7	3.6	25
Ó		0	(3.3)	(3.6)5	x (3.7) x	× 9.6	3.7 4	e)	* 4	4		l.	(3.8)	ري پ	(8.3)	Ú	7	(35)	7	(3.7)	3.4	(3.9)	(3.8)	T	×	40	& E5	(3.6)	(3.5)	* 0 %	(3.C)A	* 95	- 5	3.5	34
		60	(3.2)	7	A C. E	3.6	3.7 *	Ø	× 20.5	34	7	3	U	(J. 5)	(3.6)	3.6	7	(3.6)	(3.7)	7	7	(3.6)	د ی	00	B	00	3.6	(3.3)	(3.8)	* + 4.00	(g, b)	X 7 X	7	3.5	ò
		80	7	7	* * *	(3.5)	* CF.	3.4	404	7	(3.6)	7	3.4	7	7	D)	7	3.4	3.5	7	7	(3.5)	1		(3.6)x	3.9	(3.5)	7	3.5	Mr I			- 1	3.0	0
		07	0	Ø	3.2.4	7	* 17	7	X X	7	7	7	3.4	7	7	, Y	Υ,	7	(3.4)	7	7	N	(34)	V	A 4.8	0	7	7	(3.5)	n) n)	£ 33 ₹	(3.8)	7	3.4	a
		90	a	7	à	Ø	0 *	0	C *	0	O	7	7	7	7	7	7	7	7	7	0	0	O	0	* 0	0	7	7	7	3.0 4	9 *	. E. E.	7	1	ď
2		90																												4.5 x				١	`
	7.1° W	0.4																																	
(Month) D. C.	Lat 38.7°N, Lang 77.1°W	03																																	
	8.7°N	02																																	
- Page	Lat	10																																	
		00																																	
(Characteris	Opserv	Doy	-	2	3	4	2	9	7	8	6	0	=	21	13	4	15	9	17	8	6	50	21	22	23	24	25	26	27	28	29	30	31	Medion	Count

28

National Bureau

Scaled by: B.E.B. - By.

TABLE & Central Redio Propagation Laboratory, National Bureau of Standards, Wasting and 25, 70 C

050

Washington, D. C.

Observed at

(M 1500) E (Unit)

ONOSPHERIC DATA

C. - H. C. MC H . B.F. B 22 Calculated by: By. 2 20 3 0.4 0.7 4.4 4.4 0 T T A(E.4) 0 + 0.4 007 0.4 7.7 0.7 4.3 4.4 4.2 4.0 4.2 €. W. 8 4.3 4.2 5 4.3 1.7 4.2 3 9 Ų 3 2 200 T オイナ 4.04 4.0.4 (3.9)5 4.0 4.0 1.4 0 74 0 7 1.4 4.0 3.9 7.7 * ナメ 4.0 4 3 4.1 3 4.0 4.3 3.9 3.0 7:7 7 7 d t 4.3 4.3 00 3.9 _ 4.3 T (4.1)2 4.3 X 3.9 # 4.14 (44) 4.1 1 4.7 14.1)7 0.4 0.4 4.3 3.9 4.0 0 7 4.3 4.2 7 1.7 0.7 7 7 4.0 4.0 4 4 4. 4.0 9 3 9 1 + 7 4 7 7 7 5 90 4.1 K S (0.7) 4.14 3.9 4.0 X 4.14 4.0 4.0 3 1.4 3.9 4.0 4.0 1:4 0.4 4.2 4.4 4.1 1.4. 4.3 7. 7. J 1.7 3.9 9 T RO Ţ (4.2)A*A 4 Pa T (4.1) (4.0)A (4.1) B 4.2 4 (4.2)A X 8.3 40K 4.1K 4 4.1 " (4.2)" X 1.4 4.14 7:7 1.4 1.4 4.1 4.2 4.0 1.4 8 4.4 0.4 4.1 7 (4) 4.3 4.2 PQ. 109 ¢ 0 T Mean Time * 42 K * N 1.4 - / 7 (4.2) B (4.1) A 4.0 (4.2)A (4.2)P 4.7 4 3 1.4 4.3 Ψ * 10 7 47 - 7 6 6 ¢ 4.4 4 Ţ 4.4 Ţ T T Pg J T T Ţ (4.0)P * 4.3 % * (4.1)A (41)x (+.) A 43 M.51 0 7 4.2 4.1 1:7 1.7 3.9 4.3 4.0 4.5 7. 4.2 2 Pa P T 7 PQ T T 9 Ţ ₹ V T ₹ T Ţ (4.1) A 4.5 (42)x P(6.4) A(1.4) 4.31 4.17 (4.4) (4.3) K (4.2) K 4.1 1 43 (4.7) 4.1 % 7 7 7 07 7.7 4.7 4.4 77 4.7 A 1.4 1.4 4.0 1.7 3.0 Ţ = T T T P 4.2K (4.1) 4.0 4 4.07 4.4 4 59 4.2 4.2 1.7 4.2 1.4 4.3 4.7 4.0 1.4 ∢ 4.2 1.7 4.3 43 0 (2) T V 4.7 T T T Ţ T T T XA (4.1) B 4.0 K P(4.2)A (4.1)A 40x (4.2) (4.2) x 4.3 % 6.4.3 4.4 4.4 4.0 4.2 4.7 4 4 7 7 4.2 7: 4.7 4.3 4.2 4.3 17 4.2 4.1 60 4.2 4.3 4.2 69 PD Pa PQ J 3.9 X X / 4.3 K (4.1) 5 No to 4.3 7 4.4 45 4.7 7 4 4.3 4.3 4.2 4.3 4.3 1.7 08 1:4 4.3 4.2 4.2 1.7 3.9 4.2 4.2 7 4.2 1.4 T 42 × (4.0) 7 (4.0) A (3.9) P (4.4)A 4.2 (4.3) 4.0 44 (4,3) 4.2 4.3 4.2 39 3.7 4.7 4.1 1:7 43 4.2 1.4 7:7 43 07 3.9 7 1.7 4.3 7. 3 1.4 Ţ T T 1 (4.0) A # (4.2)A 4 (1.4) (3.9) B 4.2 X A.4.X 0.4 4:1 77 1.4 J 3 90 3.0 1:4 4.0 4.0 4.0 3.9 4.2 4.3 4.7 7 4.3 イナ 7 4.1 7:4 P X(8E) 7 7 (4.0) 7 0.53 4.3 4.4 Lot 38.7°N, Long 77.1° W 04 03 020 0 00 Median 4 Day N 140 0 0 20 22 22 23 23 24 25 26 26 26 28 28 29 D _ 00 0 <u>~</u> 4 7 8 2 9 30

SWEEPTIME = . 25 MIN. *

Sweep 1 0 Mc 10 25 0 Mc In 0.25 min Monual . 🗆 Automatic 🕅

0

27

0

23

23

50

4

30

77

Count

Table 45

Ionospheric Storminess at Washington, D. C.

May 1950

Day	Ionospheric	character* 12-24 GCT	Principal Beginning GCT		Geomagnetic	character** 12-24 GCT
1	1	3			1	2
2	2	3 6			2	3
2 3 4	4	6	0100		4	
4	2	4	1500	0200	3	3
5	2	5		0200	3 _	2
			1100	2300		-
6	2	2			3	2
7	10 to 10	4	##	2400	3 3 2	2
8	2	1	10 10		2	2
9					1	1
10	2	2 2			2	2
11	2				3	3
12	2 2 2 3 2	3			2 3 2 3 4	í
13	2				3	3
14	2	3			3	3
15	2	2				3
16	2 2 2	3 2 3 2			3 2	2 1 2 3 1 3 3 3 2
17	2	2			2	1
18	2	3			1	1
19	0	3			1	1
20	1	3			2	2
21	1	3 3 3 2 2 5 2 2			2	2
22	2	2			2	4
23 24	4	5	0300		4	4
24	4	2		1000	3	2
25	1	2			3 2	3
26	2	3			4	3
27	1		2000		3	2 3 3 5 3 3 3 2
28	7	6			6	3
29	4	5	∞		4	3
30	L.	6 5 3 2	-	1600	4	3
31	1	2			2	2

*Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

#Time of beginning unknown because of lack of record.

^{***}No readable record. Refer to table 34 for detailed explanation.

⁻⁻⁻⁻ Dashes indicate continuing storm.

Table 46

Sudden Ionosphere Disturbances Observed at Washington, D. C.

May 1950

1950	GCF	pt.		intensity		1950	#05		Relative	
Day	Beginning End	og End	Location of transmitters	at minimum #	Other phenomena	Day	Beginning End	Location of transmitters	at minimum #	Other phenomena
May	1830	40	Obio, D. C.	*	Solar flare	Way 20	1830 2000	Ohto. D. C., England	000	Solar flare**
					1827 Solar flare**	21		Ohio, D. C.	0.1	1816 Solar flare
3	1710	1730	Obio	0°3	Solar flare	22	0940 1005	England	0.01	1745 Solar flare ************************************
44	1412	1435	Obto, D. C.	2000	1705	22	1402 1420	Obio, D. C., England	0°0	0937 Solar flare
~ ~	1722	1845	Obio, D. C., England, New	50.0	Solar flare					Solar flare**
5	1937	2045	Ohio, D. C., England, New	0.0	Solar flare	22	1600 1625	Ohio, D. C., England, Mew	0°0	1357 Solar flare*
9	1330	1455	obio, D. C., England	0°0	Solar flare	22	1649 1750	Brunswick Ohio, D. C., England, Hew	0.0	1600 Solar flare
					1400			Brunswick		1640
					1330					Solar flare
					Solar flare ***	22	2040 2110	Ohio, D. C., England	0.0	Solar flare
00	2035	2120	Obio, D. C. New Brunewick	0.2	Solar flare	22	2215 2245	Ohio, D. C., England	0.01	Solar flare*
10	1036	0111	England	0.01		23	1228 1250	Ohio, D. C., England	0.05	2200
19	7111	1230	England Obto. D. C. England	0.03		23	1359 1435	Ohio, D. C., England	0.03	Solar flare
16	1920	1940	Obio, D. C., England, New Brunswick	0.1		23	2159 2220	Ohio, D. C., England	0.3	Solar flare
19	1955	2020	Ohio, D. C., England, New	0.05	Terr. mag. puls of	†√2	1640 1710	Ohio, D. C., England, Mew	0.0	(4))
19	2100	2135	obio, D. C., England	0.0	1951-2015 Terr. mag.pulseff	77		Brunswick Obio, D. C.	0,1	
20	1805		Ohio, D. C., England	0.02	2055-2115 Solar flare®	56 26	1450 1530 2200 2320	Ohio, D.C., Ergland Ohio, D. C.	0.03	

#Ratio of received field intensity during SID to average field intensity before and after, for station RQZXAU (formerly WEXAL), 6080 kilocycles, 600 kilometers distant, for all SID except the following: Station GLH, 13525 kilocycles, received in New York, 5340 kilometers distant, was used for the SID on May 10; on May 19 at 1117; and on May 22 at 0940.

###Values not given because of insufficient data.

Time of observation at the High Altitude Observatory, Boulder, Colorado, **Time of observation at McMath-Hulbert Observatory, Pontlac, Michigan. ***Time of observation at Wendelstein Observatory, Germany.

Sudden lonosphere Disturbances Reported by Engineer-in-Chief, Cable and Wireless, Ltd., as Observed in England

Day	Beginning End	ng End	Mecelving etation	Location of transmitters	phenomena	Deg.	Beginning End	og End	station	Location of transmittere	Other
Apr11 26	1058	1115	Brentwood	Bahrein I., Belgian Congo, Bulgaria, Canary Is., Greece, India, Iran,		May 10	5460	1005	Brentwood	Belgian Congo, Bulgaria, Ganary Is.,	
				Kenya, Malta, Fortugal, Southern Rhodeela, Spain, Switzerland, Syria,		30	1042	1105	Brentwood	Rhodesta, Switzerland, Turkey Auetria, Bahrein I., Barbados, Bel-	
22	2660	1005	Brentwood	Irane-vorum, carricar Belgian Congo, Bulgaria, Canary Ie., Gresce, India, Israel, Kenya, Portu-						glan Congo, Bulgaria, Canary 1s., Greece, India, Iran, Kenya, Pales- tine, Portugal Southern Rhodeela.	
				gal, Southern Rhodesia, Spain, Switterland, Syria, Trans-Jordan, U.S.S.R.,				-		Spain, Switzerland, Trans-Jordan, Turkey, U.S.S.R., Ingoelavia,	
27	04/60	1025	Somerton	Ageottes, cantres, Ceylon, India, India, India,		19	5460	1005	Brentwood	Spain, Switzerland, Turkey, Zan-	
May					1	19	1120	1200	Brentwood	Austria, Bahrein I., Chile, Co-	
	0935	1010	Brentwood	Belgian Congo, Canary 1s., French Equatorial Africa, Greece, India,	0950					lombia, Greece, Iran, Kenya, Madagascar, Malta, Paleetine,	
				gal, Southern Rhodesia, Spain, Seit-	0956	;				Spain, Switzerland, Syria, Tur- key, Uruguay, Yugoslavia	
				Zerland, Syria, Trans-Jordan, U.S.S.K., Tugoelavia, Zanribar		61	1130	1200	Somerton	Aden, Argentine, Brazil, Ceylon, China, Gold Coast, India, Union	
6	04/60	1045	Somerton		Solar flare**					of S. Africa	
				Canada, Ceylon, China, Gold Coast, India, New York, Union of S. Africa	0950 Solar flaress	22	0925	0950	Brentwood	Bulgaria, Spain, Switzerland, Swria, Trans-Jordan	
					9560	22	04/60	1010	Brentwood	go, Canary	Solar flare
5 0	0850	1025	Brentwood	Belgian Congo, Bulgaria, Canary Is., Greece, Iran, Kenya, Madagascar,						Is., Eritres, Greece, India, Iran, (Kenya, Malta, Palentine, Portugal,	2660
				Malta, Paleetine, Southern Rhodesta,						Southern Rhodeela, Spain, Switzer-	,
				Jordan, Turkey, U.S.S.R., Zangibar						land, Syria, Thailand, Trans-Jordan, Turkey, U.S.S.R., Zanzibar	ď
8	0955	1015	Somerton	Aden, Argentina, Brazil, Ceylon, China, Egypt, Gold Coast, India,		22	0460	0955	Somerton	China.	Solar flare***
4	01/00	0.00	Description	Union of S. Africa							
5	2	1010	TOO BATTO TO	land, Syrla, Trans-Jordan, Turkey		22	1139	1155	Brentwood	Chile, India, Iran, Portugal,	
9	1335	1400	Brentwood	Bahrein I., Barbados, Belgian Congo,	Solar flare					Spain, Switzerland, Syria, Thai-	
				Greece, Iran, Malta, Falestine, Portu-	1330	22	1402	1415	Brentwood	land, Ingoelavia Barbados, Belgian Congo, Canary	Solar flare*
				gal, Spain, Switzerland, Thailand,							1357
				Turcelavia, Zanzibar						Southern Rhodesia, Spain, Swit-	1350
9	.1337	1355	Somerton	Argentina, Australia, Brazil, Canada,	Solar flare"						
				Ceylon, Unite, Colu Coset, India, New York, Union of S. Africa.	200	22	1402	1410	Somerton	Argentine, Brazil, Canada, China,	Solar flare
											1357
											1350

Sudden Ionosphere Disturbances Reported by International Telephone and
Telegraph Corporation, as Observed at Platance, Argentina

1950 Day	GC1 Beginnin		Location of transmitters	Other phenomena
April 12	1452	1545	Belgium, Bolivia, Brazil, Chile, Colombia, Cuba, England, France, Germany, Netherlands, New York, Peru, Portugal, Switzerland, Venezuela	Solar flare*
12	1840	1930	Bolivia, Cuba, England, France, Italy, Netherlands, New York, Peru, Spain, Switzerland	Solar flare*
14	1254	1315	Belgium, Bolivia, Brazil, Chile, Guba, Denmark, England, Germany, Italy, Notherlands, New York, Peru, Switzerland, Venezuela	

^{*}Time of observation at the High Altitude Observatory, Boulder, Colorado.

Sudden Ionosphere Disturbances Reported by ECA Communications, Inc., as Observed at Riverhead, New York

1950 Day	GC: Beginni:		Location of transmitters	Other	
May 6	1340	1500	Argentina, Canada, England, Italy, Morocco, Panama, Union of S. Africa		flare*
22	1400	1420	Argentina Camada, England, Italy, Morocco, Panama	Solar 1350	flare*

^{*}Time of observation at the High Altitude Observatory, Boulder, Colorado.
**Time of observation at McMath-Hulbert Observatory, Pontisc, Michigan.

Sudden Ionosphere Disturbances Reported by Enginesr-in-Chief, Cable and Wirelsss, Ltd., as Observed in England

Table 47

1950 Day	GCT Beginning End	Tog End	Receiving	Location of transmitters	Other phenomena	1950 Day	GOT Beginning End	r End	Receiving station	Location of transmitters	Other
Apr11 26	1058	1115	Brentwood	Bahrein I., Belgian Congo, Bulgaria, Canary Is., Greece, India, Iran,		May 10	5460	1005	Brentwood	Belgian Congo, Bulgaria, Ganary Is., Madagascar, Palestine, Southern	
				Kenya, Malta, Portugal, Southern Rhodesta, Spain, Switzerland, Syria,		10	1042	1105	Brentwood	Rhodesia, Switzerland, Turkey Austria, Bahrein I., Barbadoe, Bel-	
27	0937	1005	Brentwood	Belgian Congo, Bulgaria, Canary Is.,						gian Congo, bugaria, canary 18., Greece, India, Iran, Kenya, Palee-	
				gal, Southern Rodesia, Spain, Swit-						tine, Portugal Southern Rhodesia, Spain, Switzerland, Trans-Jordan,	
		1		Yugoslavia, Zanzibar			,			Turkey, U.S.S.M., Ingosiavia, Zanzibar	
22	0760	1025	Somerton	Argentins, Australia, Ceylon, India, Union of S. Africa		19	9460	1005	Brentwood	Spain, Switzerland, Turkey, Zan-	
May						19	1320	1200	Brentwood	Austria, Bahrein I., Chile, Co-	
2	6660	0101	Brentwood	Boustorial Africa. Greece. India.	Solar Ilare					Lombia, Greece, Iran, Kenya,	
				Iran, Kenya, Madagascar, Malta, Portu-	Solar flaress					Spain, Switzerland, Syria, Tur-	
				zerland, Syria, Trans-Jordan, U.S.S.R.,	0000	19	1130	1200	Somerton	Key, Uruguay, Iugoslavia Aden, Argentina, Brazil, Cevlon.	
				Yugoslavia, Zanzibar		`				China, Gold Coast, India, Union	
<u>س</u>	0460	1045	Somerton	65	Solar flares					of S. Africa	
				Canada, Ceylon, China, Gold Coast,	9950	27	0925	0950	Brentwood	Bulgaria, Spain, Switzerland,	
					DOCK LLEGE	ć	0	0,00	4	Syria, Trans-Jordan	400
v	0650	1025	Brentwood	Belejan Conen. Bulearia, Canare Is.	06.60	77	2470	OTOT	Brentwood	Austria, Belgian Congo, Canary	Solar Ilare
`				Greece, Iran, Kenya, Madagascar,							1000
				Walta, Palestine, Southern Rhodesla,						Southern Rhodeela, Spain, Switzer-	
				Jorden Turkev II.S.S.R. Zanether						Runkow H S C D Trans-Jordan	4
ν,	0955	1015	Somerton	Aden, Argentins, Brasil, Ceylon,		22	04760	0955	Somerton	Australia, Brazil, Ceylon, China,	Solar flaresses
				China, Egypt, Gold Coast, India,							0937
9	04760	1010	Brentwood	Greece, Iran, Malta, Spain, Switzer-						Africa Artica	
		11.00		land, Syria, Trans-Jordan, Turkey		ส	1139	1155	Brentwood	Chile, India, Iran, Portugal,	
0	4,732	1400	prentwood	Canary Is. Chile. Colombia. Estings.	SOLAT ILARGE					Spain, Switzerland, Syria, Thai-	
				Greece, Iran, Malta, Palestine, Portu-	200-	22	1402	1415	Brentwood	Barbados, Belgian Congo, Canary	Solar flare*
				gal, Spain, Switzerland, Thailand,				1			1357
				Turkey, Uruguay, U.S.S.R., Venezuela,						٠	Solar flare
9	.1337	1355	Somerton	Argenting, Australia, Brazil, Canada.	Solar flare					southern Modesla, Spain, Swit-	1350
				Ceylon, China, Gold Coast, India,	1330					U.S.S.R., Venezuela, Yugoslavia	
				Mew York, Union of S. Africa		22	1402	1410	Somerton	ed.	Solar flare
											Solar flareses
											200

Time of observation:

Sudden Ionosphere Disturbances Reported by International Telephone and
Telegraph Corporation, as Observed at Platanos, Argentina

1950 Day	GCT Beginnin		Location of transmitters	Other phenomena
April 12	1452	1545	Belgium, Bolivia, Brazil, Chile, Colombia, Cuba, England, France, Germany, Netherlands, New York, Peru, Portugal, Switzerland, Venezuela	Solar flare*
12	1840	1930	Bolivia, Cuba, England, France, Italy, Metherlands, New York, Peru, Spain, Switzerland	Solar flare*
14	1254	1315	Belgium, Bolivia, Brazil, Chile, Cuba, Denmark, England, Germany, Italy, Netherlands, New York, Peru, Switzerland, Venezuela	

^{*}Time of observation at the High Altitude Observatory, Boulder, Colorado.

Sudden Ionosphere Disturbances Reported by RGA Communications, Inc.,
as Observed at Riverhead, New York

1950 Day	GCT Beginning End		Location of transmitters	Other phenomena	
May 6	1340	1500	Argentina, Canada, England, Italy, Morecco, Panama, Union of S. Africa		flare*
22	1400	1420	Argentina Canada, England, Italy, Morocco, Panana	Solar 1350	flare*

^{*}Time of observation at the High Altitude Observatory, Boulder, Colorado.
**Time of observation at McMath-Eulbert Observatory, Pontiac, Michigan.

Sudden Ionosphere Disturbances Reported by RCA Communications, Inc., as Observed at Point Reyes, California

1950 Day	GCT Boginning End	Location of transmitters	Other phenomena
May			
5	1945 2020	Australia, China, Hawaii, Japan, New York, New Zealand, Philip- pine Is.	Solar flare* 1935
20	0015 0520	Australia, China, Hawaii, Japan, Java, Philippine Is.	
22	2215 2245	Anstralia, China, Chosen, Japan, Philippine Is.	Solar flare® 2215

^{*}Time of observation at the High Altitude Observatory, Boulder, Colorado.

Sudden Ionosphere Disturbances Reported by Engineer-in-Chief,
Cable and Wireless, Ltd., as Observed in Barbados, B.W.I.

1950 Day	GCT Beginnin		Location of transmitters	Other phenomena
April 11	2010	2020	Australia, Jamaica	Terr.mag.pulse® 2004-2030 Solar flare®® 2004
12	1500	1530	Canada, Peru	Solar flare**
12	1850	1950	Australia, Jamaica, Peru	Solar flare**
14	1242	1315	England, Jamaica, Trinidad	
14	1337	1350	England, Florida, Jazaica, Trinidad, Windward Is.	Terr.mag.pulse

^{*}As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

^{**}Time of observation at the High Altitude Observatory, Boulder, Colorado.

Sudden Ionosphere Disturbances Reported by Technical Supervisor.

Kackay Radio and Telegraph Company, Indan as Observed in New York

1950 Day	GC: Beginni	THE RESERVE THE PARTY OF THE PA	Location of transmitters	Other phenomena
April 5	0830	1015	Austria, Brazil, Csechoslovakia, Denmark, England, France, Ger- many, India, Italy, Merocco	
12	1455	1600	Argentina, Austria, Bermuda Is., Bolivia, Brazil, Chile, Colom-	Solar flare*
12	1850	2000	bia, Caba, Czechoslovakia, Ben- mark, Dominican Republic, Eng-	Solar flare*
14	1250	1355	land, Egypt, France, Germany, Haiti, India, Italy, Morocco,	
15	1300	1345	Peru, Salvador, Spain, Truguay	
16	0820	0910		
28	1300	1400		
30	2130	2230		
Hay 4	1658	1706		
6	1340	1410		Solar flare** 1330

^{*}Time of observation at the High Altitude Observatory, Boulder, Colorado.

^{**}Time of observation at McMath-Hulbert Observatory, Pontiac, Michigan.

Sudden Ionosphere Disturbances Reported by Institut für Ionesphärenforschung.

as Observed at Lindau, Hars, Germany

Day	GC Beginni		Location of transmitters	Relative intensity at minimum [‡]	Other phenomena
April	1950				
9	0705	0803	Stuttgart# Lindaw	0.15	
10	1140	1230	Stuttgarter, Lindaus	0.0	
10	1310	1415	Stuttgart ##. Lindauf	0.1	
11	0803	0820	Stuttgart##, Berlinese	0.2	
11	1235	1245	Stuttgart##, Berlin***	0.4	
12	0948	1035	Stuttgart##, Berlin***,	0.3	
12	1222	1240	Stuttgart##, Lindauf	0.3	
12	1335	1348	Stuttgart Lindau	0.3	
12	1455	1545	Stuttgart##. Berlin***.	0.2	
13	1105	1145	Stuttgart##, Berliz***, Lindan#	0.1	
14	1235	1320	Stuttgart##, Berlin***, Lindar#	0.1	
14	1320	1420	Stuttgarter, Lindaus	0.2	
15	1255	1315	Munchenee, Lindaus	0.0	Terr.mag.puls diff
16	1220	1230	Munchenes, Lindar	0.1	
18	1315	1335	Minchen Lindau	0.2	
26	1052	1115	Munchen Lindaus	0.2	
27	0942	1058	Munchen Lindau	0.17	

*Ratio of received field intensity during SID to average field intensity before and after, for station Voice of America, 6078.9 kilocycles, 400 kilometers distant.

**Station Voice of America, 6078.9 kilocycles.

***Station DAB, 3840 kilocycles, 200 kilometers distant.

#Lindau station, 1780 kilocycles, pulse, transmitter and receiver at Lindau.

##Station Stattgart, 6200 kilocycles, 330 kilometers distant.

***As observed at Lindau.

Mote: Observers are invited to send to the CEPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, Maticaal Bureau of Standards, Washington 25, D. C.

Table 54

Provisional Radio Propagation Quality Figures
(Including Comparisons with CRPL Warnings and Forecasts)

April 1950

	North Atlantic quality figure	CRPL* Warning	CRPL** Forecast (J-reports)	North Pacific quality figure	Geo- mag- netic KCh	
Day	Half day GCT (1) (2)	Half day G OT (1) (2)		Half day GOT (1) (2)	Half day GCT (1) (2)	Scales: Quality Figures (1)- Useless (2)- Very poor (3)- Poor
1 2 3 4 5	(4) 5 (4) 5 5 5 5 5 (4) 5	W W W W W W W U		6 (4) 5 5 6 5 7 5 5 (4)	(4) (4) (4) 3 3 3 (4) 3 (5) (4)	(4)- Poor to fair 5 - Fair 6 - Fair to good 7 - Good 8 - Very good 9 - Excellent Geomagnetic Kch - O to 9,
6 7 8 9 10	55666	w (w)		6 5 7 6 7 7 7 7 8 8	(4) 3 3 2 2 2 2 2 2 2	9 representing the greatest disturbance; Kch > 4 indicates significant disturbance, enclosed in () for emphasis. Symbols: W Disturbed conditions expected
11 12 13 14 15	7 6 5 6 7 7 7	บ (บ)	x	7 7 8 7 7 7 8 8 7 7	2 2 (4) 2 3 1 2 2 (4) 3	U Unstable conditions expected N No disturbance expected X Probable disturbed date
16 17 18 19 20	6 7 7 6 5 6 6 6 5 6	ប (ប) ប ប	x x	g 7 7 6 7 6 7 6 7 7	2 2 2 2 3 3 3 3 3 2	Scoring: H Storm (Q < 4) hit (M) Storm severer than predicted M Storm missed
21 22 23 24 25	5 6 7 6 7 6 (4) 6	U (W) W W U	x	7 7 8 7 7 6 7 5 7 6	1 1 1 3 3 (5) 3 3	G Good day forecast O Overwarning Scoring by half day according to following table: Quality Figure 43 4 5 > 6
26 27 28 29 30	6 7 7 7 6 5 6 6 (4) (4)	M M	X X	8 7 7 6 7 6 7 5	2 1 0 2 3 2 2 3 (5) 3	W H H O O U (M) H H O N M M G G X H H O O
Score: H (M) M G	coadcast on W	Warning N.A. N.P. 11 3 0 0 0 0 31 31 18 26	Forecast N.A. N.P. 2 0 0 0 4 2 40 42 14 16			ded to nearest

*Broadcast on WWV, Washington, D.C. Times of warnings recorded to nearest half day as broadcast. () broadcast for one-quarter day. Blanks signify N. **In addition to dates marked X, the following were designated as probable disturbed days on forecasts more than eight days in advance of said dates: April 23, 24 and 28.

Table 55

American and Zurich Provisional Relative Sunspot Numbers

May 1950

Date	RA*	RZ**	Date	RA	Rz a a
1	200	144	17	86	61
2	179	146	18	113	79
3	158	111	19	124	86
4	158	106	20	138	89
5	139	129	SI	146	92
6	143	139	22	173	112
7	144	130	23	187	128
8	148	121	24	194	162
9	104	108	25	184	142
10	100	105	26	176	134
11	101	101	27	162	131
12	77	71	28	134	121
13	65	69	29	117	109
14	59	60	30	94	86
15	56	47	31	92	72
16	74	57	Mean:	129.8	104.8

^{*}Combination of reports from 44 observers; see page 8.
**Dependent on observations at Zurich Observatory and its
stations at Locarno and Arosa.

Table 56a

Coronal observations at Climax, Colorado (5303A), east limb

Date	egrees north of the solar equator Oc Degrees south of the solar equator	
GCT 90 85 80	75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8	30 85 90
GCT 90 85 80 1950 2 2 8 3 1,6 3 1,6 3 1,6 6 10,9 1 11,6 1 12,6	1 2 2 3 2 2 5 11 13 14 12 14 14 14 12 13 13 15 16 20 19 14 9 5 3 2 2 - 1 1 2 3 3 2 1 2 4 9 10 10 9 9 10 10 11 10 9 11 13 13 11 10 7 6 3 2 1 1 1 1 5 11 10 9 9 10 13 15 18 17 16 14 12 13 13 12 10 6 6 4 2 2 - 2 1 1 1 3 4 7 10 10 11 12 14 14 20 21 18 15 13 10 6 4 3 4 4 3 4 7 8 6 4 2 3 3 2 1 3 2 4 4 5 7 9 9 11 12 13 14 12 11 5 4 5 3 2 1 3 3 2 2 3 3 3 2	- 1

Note: Observation low weight: May 6.6 at N65 - N90 and S50 - S90; May 14.7 at N80 - N90; May 16.6 at N35 - N90 and S65 - S90.

Note: Observation low weight: May 6.6 at N65 - N90 and S55 - S90; May 14.7 at N80 - N90; May 16.6 at N35 - N90 and S75 - S90.

Table 56b

Coronal observations at Glimax, Colorado (5303A), west limb

Note: Observation low weight: May 14.7 at N35 - N90; May 19.7 at S35 - S90 and N65 - N90; May 24.7 at S40 - S60.

Table 57b

Coronal observations at Climax, Colorado (6374A), west limb

Date										of											00	2			Deg	ree	8 1	107° i	h c	ft	he	sol	ar	eçı	ate	m			
GCT	90	8	5 8	30	75	70	65	60	55	5 50	14	5 4	0 3	35 .	30	25	20	15	10	- 5	ľ	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950 May 1.6 2.8 3.7 1.6 6.6a 8.7 9.6a 10.9a 11.6 12.6 13.6 14.7 15.6 16.6a 17.6 19.7 10.6 20.6 21.6 21.6	2		5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 - 3	55	of 55 50	1 4		3 5 35 x 1 4 - 36 2 - 1		1 3 3			11 10 14 11 23 12 10 12 13 13 10 9 9 6 9 6 2	8 10 9 10 32 12 13 9 14 X 10 10 8 8	3 4 4 8 12 2 10 7 7 11 x .5 2 2 10 8 11 16 15 7	23-51310 1248 X 53-51213514661			10 - 4 8 13 3 9 10 15 X 21													80 2 6 1 2 6 X 2 2 2 1 1 1	85 4 2 2 2 3 3	90
24.7 26.6 29.7 30.6 31.6	1 -		1 -	- - -	- 1 - -	2 -	1	-		1 1		2	3	1 -	1 1 1	9 1 2 2	3 6 13 10 2	8 13 10	10	1 4 15	1 3 2 10 6	2 3 4 9 9	2 4 11 9	2 6 4	1 8 4 8	1 10 9 3	2 7 8 5	- - 10 2	1 -	1	60 10 10	2 -	3 3	1 3	1	1	2	2	1

Note: Observation low weight; May 14.7 at N30 - N90; May 19.7 at S35 - S90 and N80 - N90; May 24.7 at S35 - S60.

Table 58a

Coronal observations at Climax, Colorado (6702A), east limb

ate				Deg	ree	s r	ort	h o	ft	he	sol	ar	equ	ato	T				00				Deg	T00	8 3	out	n o	τt	ne	SOT	ar	equ	A TC	T			
GCT 1	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950 4y 1.6 2.8 3.7 4.6 6.6 8.7 9.6 10.9 11.6 12.6 14.7 15.6 16.6 17.6	90	85 	80 	75 75 75	70 70 	88 r 65	x 2	1 o o o o o o o o o o o o o o o o o o o	2 - 2 - 1 - 1 - 1	2 x 1 1 1	sol 40 - 1 - 1 1 1 1 1 1 1 X 2	ar 35 1 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	122232344 - 31 - 1 - 1114	334233344 - 312312h	344332452 - 31 2313h	236332432-234345	2344423322-1-33131	1 1 1 1 1 3 3 2 2 1 2 1 1 1 1 2 1 3 1 3	2353512-1-11-3322	3243311212133221	322 - 2 - 1 1 2 2 1 3 3 - 2 3	322-11333342222	ред 20 4 3 2 4 3 4 4 3 3 3 3 3 3 3 3 3 3 3 3	34-1222223333	-2 -1 -2 2 1 1 2 2 1 2 2 2 2 2 2 2 2 2	35 	1 1 1 1 1 2 2	1 - 2 - 1 - 2 1 - 2 1	50 	55		65	70	75	1	85 	90 1 1 - - -
21.6 22.6 23.6 24.7 26.6	MO.	-	_	-	-	con	00	-	-	_	- 7	1	1	2	3	14	3	3			2	2	3	3	2	2	2	ī	3	-	-	-	-	-	-	-	-
23.6	_	_	_	-	_	-	_	_	_	т.	<i>></i>	2	3	4	4	4	5	1	4	4	<i>3</i>	3	4	2	3	2	1	_	_	-	_	_	_	_	_	_	_
24.7	_	_	_	_	_	900	_	2	2	2	2	3	3	14	3	3	3	2	2	2	í	1	2	2	í	1	_	_	_	_	_	-	_	_	_	_	_
26.6	-	-	950	-	_	-	-	1	1	2	1	2	4	3	3	3	2	2	1	1	1	1	-	1	1	1	1	1	-	-	-	-	-	-	-	-	-
29.7 30.6		40.00	-	-	-	-	_	-	-	2	1	2	2	2	2	3	3	3	3	2	2	2	2	2	1	1	1	1	-	-	-	-	-	-	_	-	-
30.6 31.6a	-	-	-	-	_	_	1	2	1	_	2	2	3	2	6	3	3	3	3	2	2	2	2	2	1	1	_	-	_	_	_	_	-	-	_	_	-

Note: Observation low weight: May 6.6 at N65 - N90 and S55 - S90; May 14.7 at N80 - N90; May 16.6 at N40 - N90 and S75 - S90.

Table 59a

Coronal observations at Sacramento Peak, New Mexico (5303A), east limb

Da te					ree														00				Deg	gree	98 8	out	th o	of t	he	sol	ar.	өqu	ato	m			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	Ľ	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950																																					
Apr. 2.7	-	-	_	_	-	2	3	14	6									18									11	9	4	5	3	-	_	-	_	_	-
3.9	-	_	-	_	emp	-	100	2	14	9	12							16								10	7	4	2	_	_	-	-	-	-	-	_
4. 9a	-	-	-	-	_	_	-	_	4	5	9							10				114	13	13	11	7	Į‡	-	-	_	-	-	-	_	-	_	-
9.7	-	00	-	0.00	2	1	4	-		10								20				5	_	-	40	3	2	6	6	4	3	2	14	14	3	-	_
10.7	1	_	2	1	2	4	3	6	9	12				20				32				13	8	- 7	9	8	6	5	8	9	9	9	11	10	5	2	1
11.8	60	_	-	-	_	-	-	3	14	- 4	8	10						17			9	1	-	4	2	2	2	-	-	-	-	_	-	14	2	-	-
13.8	-	-	_	-	-	4	4	_						30	32			34				13	8	8	11	12	9	11	.7	8	9	9	9	10	6	3	1
14.7	-	-	2	_	3	2	4	7	11			17						21			14	5	4		10	11	11	9	4	4	6	7	7	5	5	2	3
15.8	-	_	_	_	_	1	2	8	_		-			1							7	5	6	5	11	9	10	11	4	14	3	14	3	6	3	-	-
16.8	-	_	-	2	5	3	5	8	_			25						14				12	9	_			-	10	7	9	6	5	7	6	3	-	-
17.7	-	_	2	2	0	1	9	۶	11					32				25						10		11	9	10	9	9	9	5	Ų.	4	4	1	-
18.7 19.8a	-	_	Т	_)	1,	8	6	4									17						12		8	T	4	4	3	3	4	3	2	-	-	-
20.7	_	-	_	- 7	31	4	4	0	1	TO	11	10						10							9	8	14	_	-	-	_	-	-	_	-	_	-
21.7	2	_	_	2	2	_	اد	6	2	7	2	2	14					17					27		9 9	14	4	2	_	-	-	-	-	-	-	_	-
23.62	-	_	_	_	_		4	0	2	7	6	_		11				15					32 22		18	14	9	3	Т	_	_	-	-	_	_	_	
24.7	_	_	_	_	_	_	-	7	g.	12	14							36								18	12	-	1	_	-	-	-	_	_	-	
26.8	l ī	1	_	_	_	_	_	7	12	_		17						22								9	6) 1	2	_		-	_	_	-	7	-
27.7	_	-	_	-	-	_	1	6	9	h			22	26	22	20	70	22	114	11	10	13	15	16	13			7),	2	2	_	_	-	_	_	_
28.7a	_	_	_	_	_	_	2	ž	3	1	4					13						10				10	g	1	7	_	_	_	_	_	_	_	_
29.7	1	1	_	_	2	3	3	3	14	7								25										q	6	1	_	_	_	_	_	_	Ξ
30.6	_	_	_	_	2	4	4	4	14	5	9	15	17	23	17	24	25	16	13	12	13	14	23	30	25	16	11	7	14	2	1	_	_	_	2	2	_

Table 58b

Coronal observations at Climax, Colorado (6702A), west limb

ate				Deg	gree	98 8	out	th :	of t	the	30	ar	eqt	nato	Σľ				00	L			Deg	ree	s n	ort	h c	î t	he	80.	Lar	eqt	12.tc	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	ľ	5	10:	15	20	25	30_	35	40	45	50	55	60	65	70	75	80	85	9
1950 pr.29.7 30.6	-	-	-	-	-	-	-	2	2	-	1	<u>-</u>	-	-	1	-	-	-	-	-		1	2	1	2	1	1	1 ~	1	-	-		0100 2000	609	_		4
ay 1.6 2.8	_	_	_	_	_	_	_	_	_	_	***	_	=	1	2	5	3 14	2	2	2	1	1	1	1	1	1	1	1	-	***	_	82	GIO.	C100	_	co3	
3.7 4.6	1	2	-	_		2	2	_	2	2	cna —		-	2	2	3	3	2	2	2	2	2	1	1	1	-	-	-	_	_	-	600			-	629	٠
6.6 ₂ 8.7	_	<u>-</u>	-	-	-	_	-	-	3	2	2	3	3	5	3	3	3	3	2	2	2)ı	4	Ji Ti	3	3	3	3	3	3	3	-	000	1	60	end	820	
9.6a	-	_	_	-	-	***	-	-	_	-	_	_	_	-	1	1	2	1	2	i	3	4	4	4	Ĭ	Ĭ	4	3	3	2	1	1	2	_	con con	-	
10.9a 11.6	-	_	_	_	-	_	_		_	_	_	_	-	3	2	2	3	2	2	2	3	3	4 14	4 14	4	4 14	3	3	3	2	2	1	1	-	90		
12.6	X	X	Χ_	χ.	X	X	Χ	X -	X	X	X	X	X	X 2	2 X	X 2	X 2	X 2	X 2	X 2	X 2	X 3	Υ	X 14	X 3	X 3	X	X 2	X	X	X	X	X	X	X	X	
14.7 15.6	-	-	-	-	***	-	-	-	-	-	-	-	-	1	1	2	2	1 2	1	1	1	ž	2	1	3	2	2	1	2	ī	1	_	-	_	-	_	
15.6a	-	_	_	_	_	2	1	_	_	1	1	1	_	1	1	2	1	1	2	5	3	14	3	3	4	3	3	2	1	2	1	-	_	_	-	-	
17.6 19.7 20.6	-	-	_	_	-	_	_		_	-	_	_	_	_	1	1	3	3	3	14 3	5	5 4	4	1 ₄	3	2	2	2	1	2	1	1	cm uat	_	_	=	
20.6	-	_	-	-	-		-	-	-	800		-	_	***	1	1	1	2	3	3	Ţ	3 11	Įį li	4	3	2	2	1	1	1	***	400	-	***	-	653	
22.6		-	-	-	639	-	-	_	-	-	***	er3	-	-	2	2	2	3	3	3	3	4	6	5.	3	2	2	2	-	-	-	_	-	40	860	_	
23.6 24.7 26.6	_		_		-	-	_	_	_	_	_	-	_	000	_	_	-		1	3	1	1	3	2	1	1	-	_	no no	_	***	***	***	-	80	600	
29.7	-	_	_	_	_	_	_	_	_	_	_	-	2	2	1 2	1	1	1 2	1 2	2	1	2	2	3 4	3	2	2	1	1	-	e	-	99	_	90	60)	
30.6 31.6	_	_	_	-	_	_		-	-		1	2	2	3	4	4	3	2	1	3	3	4	4	4	3	2	4	4	3	2	1	***	-	-	-	0.0	

Note: Observation low weight: May 14.7 at N30 - N90; May 19.7 at S35 - S90 and N75 - N90; May 24.7 at S35 - S60.

Notes omitted from Table 57b of F69: Observation low weight: Apr 2.7 at \$70 - \$90; intensity of yellow line (5694A) west limb on Apr. 20.6 - 2 et \$03. \$04, \$05, \$06, \$07.

Table 59b

Coronal observations at Sacramento Peak, New Mexico (5303A), west limb

Date				Deg	gree	98 8	sout	th (of i	the	80	lar	eq.	uat	or°				10	0			De	gre	98 1	nort	th	ol .	the	30.	lar	691	19 to	T.			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	10	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950																																					
Apr. 2.7		-	_	-	-	-	-	2	3	3	6	10	9				14					14	19	29	35	22			13	10	9	7	2	-	-	40m	any
3.9	_	-	-	••	-	-	2	2	2	-	5	5	5	5	4	9		17	-		16						14	12	10	g	3	-	-	40	-	-	œ
4.9a	_	_	-	-	-	-	-	-	-	_	-	000	_	- 1			8	10		11	11	12	13	13	13	12	- 5	-	- 60	-		-	_	W/a	delle	6.00	Brob
9.7		-	***	-	_	-	1	_	-	-	_	~					21														4		863	639	610	-	7
10.7	T	Ţ	-	-	_	-	_	₹	_	-	2	6	9	26								37	26				_	17		15	Ö	Τ	e(C)	***	653	7	1
11.8	-	-	_	0.0	-	_	0.0	0.0	_	7	2	77	.9				11 16					20		_	15 32		15 20	12	10	9	5	31		460	-	000	-
13.8 14.7	7	_	-	***			7	400	~	2	77		13				22							-	~	27		15	9	7 8	11	31	7	2	-	_	-
15.8)	_		_		_	_	_	7	6	7						16											14	10	9	ì	7	_	-	_		~
16.8	_	_	_	_	_	_	_	7	Ъ	g	g						20					17						_		_	9	ú	2	2	_	000	623
17.7	-	_	_	-	660		_	2	6	9	g	12			36		28				20			22				31	20	14	11	10	14	2	1	-	æ
18.7	_	_	_	_	-	-	2	_	7	6	7	9	12	15	-			22							24					16	12	.7	2	663	923	410	CED.
19.8			_	_	-	-	-	4	3.	_	3	9	6								16				16			18	17	14	9	4	-	450	_	_	490
20.7	_	_	-	-	_	4	2	6	8	7	4	10	11	13	17		13				30		38	36	20	19	18	16	18	15	12	5	***	000	GHIP	410	003
21.7	-	_	_	_	_	-	2	3	3	2	2	4	Ţį	6	9	4	5	8	11		25	34	36	26	23	19	14	12	13	14	12	14	1	cas	453	-	2
23.6a	010	***	-	***	-	-	***	_	-	-	-	-	410	-	_	_	603	4	7	7	10	14			15	13	10	5	5	3	3	2	con	-	610	_	0.3
24.7	_	_	-	-	_		2	14	3	3	14	3	3	1	_	2	8		10		22								11	11	9	4	-	-	eso	-	-
26.8	_	-	-	2	3	6	5	6	4	6	2	2	2	6	4	2	7		13		20	26	20	20	20	20	15	12	12	10	5	4	1	2	2	3	1
27.7	-	-	800	4	4	8	7	4	4	5	3	5	5	6	6	2	9	12	1,11	12	16	26			25						9	5	3	cse	cne	639	orth
28.7a	***	000		_	9	3	.4	2	2	3	4	3	3	5	5	4	3	3	8	7	9	12			18					9	8	3	-	***		_	en
29.7	-	-	3	2	2	4	5	5	3	5	- 7	- 5	-7	10	- 6	- 6	- 7	8	- 4	9	11	13	18	25	28	20	22	14	12		5	3	2	3	2	2	1
30.6	-	-	2	2	1	5	7	5	- 7	9	10	10	12	11	14	13	15	15	13	12	12	15	23	30	25	24	26	18	14	9	9	5	2	1	1	1	_

Note: Observation low weight: Apr. 19.8 at S60 - S90 and N60 - N90.

Table 60a

Coronal observations at Sacramento Peak, New Mexico (6374A), east limb

Date				Deg	ree	s n	ort	h o	£ 1	he	sol	ar	equ	nto	or				00				Des	gree	8 5	out	h c	of t	he	so.	lar	901	ato	r			
GCT	90	85	80	75	70	65 .	60	55	50	45	40	35	30	25	20	15	10	5	Ľ	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950 Apr 2.7 3.9 4.9a 9.7 10.7 11.8 13.8 14.7 15.8 16.8 17.7 19.8 20.7 21.7 23.6a 24.7 26.8 27.7 28.7a 29.7	52434-364423225-484486	4 322334453323 - 373 - 23	3 1 3 5 3 2 2 3 1 - 5 1 2 8 2 - 5 6	3-1-2-232464129-552-44	5 4 - 6 4 4 4 4 10 3 - 4 10 3	4-149-5753921-8-344-45	6 - 392387584 - 4 - 232 444	73-4845074523-3-24-236	52 - 2146432 - 2 - 4 - 33 - 333	73-2-431143423-34	ц 1 2 - 2 - 10 - 31 5 3 6 ц	-2	4 3 2 3 1 - 3 2 3 10 8 2 2 2 12 14 8 9 6	65 	93 -37 -37 17 17 17 19 4 38 1 12 13 10 3 4 3	1 ¹ 4 - 10 2 2 9 13 9 2 11 10 11 11 13	11 12 6 0 3 22 1 4 6 2 1 1 7 9 9 5 4 4 1 1 2 2 0	1754521249354521347	6 4 3 10 12 12 1 2 2 5 10 13 3 6 10 10 8	72-486 13111-2124 14292237 13	52 - 5406 - 2433528453392	10 4 2 - 9 3 9 2 1 3 2 4 10 15 11 7 10 1 2 - 4 14	12 8 3 5 0 1 4 4 1 6 0 1 1 4 4 1 8 3 5 - 4 5 9 5 15	2 13 16 12	9 4 1 1 1 1 1 1 1 1 1 1 1 1 1	32122259474222-	31-244149-523-11	2 - 1 - 2 - 33 - 2222 35 - 313 - 24	4 - 1 1 2 - 31 33 2 4 4 1 2 1 3 4	1 - 1 - 1 - 3 - 4 - 3 - 3 - 3 - 3 - 5 - 3			121 - 3 12	1 - 1 - 3 - 1 3 1 2 2 3 - 1 4 3 3	212122224	2 3 - 1 2 2 1 2 3 - 1 3 2	1 - 2 - 1 2 1 2

Table 61a

Coronal observations at Sacramento Peak, New Mexico (6702A), east limb

ate				Deg	gree	33	nort	th o	of .	the	80	lar	equ	ato	œ				00				Deg	ree	8 8	out	h	of 1	the	so.	lar	9Q1	ua to	or			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	10	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950																																					
pr. 2.7		1	-	_	-	_	_	_	_	_	2	1	4	2	14	3	_	_	-	_	_	_	3	3	3	-	40	_	-	-	_	-	_	-	_	_	96
3.9	-	-	_	-	_	_	-	_	_	2	1	2	2	2	-	_	1	_	-	-	-	_	í	Ĭ4	_	_	_	_	-	-	_	-	-	_	-	_	_
4.9a	-	_	_	_	_	_	_	_	_	_	_	_	_	-	_	-	_	_	2	2	_	_	_	2	_	_	_	_	-	_	_	_	-	-	-	-	-
9.7	-	-	_	_	_	_	_	-	_	_	-	_	-	_	7	14	4	3	3	14	_	1	-	_	_	_	_	_	-	-	_	-	-	_	_	-	-
10.7	-	-	_	-	_	_	_	-	3	1	2	1	2	2	4	3	14	4	2	1	400	-	2	1	1	1	_	-	2	-	_	_	_	-	_		-
11.8	-	_	_	_	_	_	_	_	-	-	_	_	_	_	_	1	2	2	-	-	-	_	_	-	-	_	-	_	_	_	_	_	-	-	-	_	-
13.8	1	_	_	_	_	_	1	1	1	1	1	1	1	1	6	14	14	3	2	2	2	1	_	-	-	_	_	_	_	_	-	-	-	_	-	-	-
14.7	-	-	_	_	_	_	1	1	1	_	1	1	3	14	4	4	3	1	-	_	-	-	-	_	_	_	-	_	-	-	-	-	-	-	_	-	-
15.8	2	_	1	_	_	-	_	_	_	_	_	-	2	2	14	2	1	1	-	1	-	_	-	_	440	-	-	-	_	_	-	-	-	-	60	-	
16.8	1	1	wite	_	_	-	1	2	1	1	3	2	2	2	2	1	2	1	2	1	_	-	-	-	-	-	_	- Cop	_	99	4500	-	-	-	WO.	-	
17.7	-	_	_	_	_	-	-	2	1	_	-	3	2	2	2	1	2	1	2	1	1	_	-	-	-	-	-	-	-	_	-	_	99	-	_	-	•
18.7	-	_	_	_	-	_	_	_	_	-	-	1	1	2	_	_	2	2	1	-	-	1	2	1	-	-	80	-	-	-	-	-	-	-	-	_	-
19.8a	-	_	_	-	-	-	_	_	-	-	000	-	_	-	-	-	3	2	1	-	-	-	2	2	2	_	-	_	-	-	90	629	-	-		-	-
20.7	-	-	-	_	_	-	_	_	-	_	-	-	_	_	_	-	_	-	-	-	1	2	2	1	-	-	00	-	_	_	-	-	_	-		-	
21.7	-	_	_	_	_	-	_	_	OM/CV	2	-	-	_	_	2	1	2	2	3	1	3	14	4	3	3	2	2	1	_	_	***	_	-	-	-	_	-
23.6	-	_	-	_	_	_	_	_	_	2	-	1	-	_	-	2	1	1	2	2	_	_	-	-	2	_	_	_	_	_	_	-	-	-	-	-	-
24.7	-	-	_	_	_	-	_	400	_	_	-	-	2	14	14	14		10	5	2	_	-	-	14	5	3	-	_	_	-	-	_	-	-	-	-	-
26.8	-	_	_	-	-	-	1	1	2	1	3	2	-3	14	14	3	5	3	2	-	_	-	_	_	-	_	-	-	-	_	-	_	-	-	_	-	-
27.7	-	-	-	-	-	-	_	2	1	1	-	-	2	1	1	2	2	1	1	-	-	-	-	-	-	-	400	_	-	-	-	-	-	-	-	-	-
28.7a	-	-	_	-	-	-	_	-	-	3	2	-	2	3	2	3	2	3	1	2	2	-	_	-	-	-	-	-	-	***	-	-	-	-	-	-	¢2
29.7	-	-	-	-	_	-	-	1	2	1	-	-	2	1	3	3	5	3	1	-	-	_	-	_	-	-	-	-	000	-	-	-	-	-	-	-	-
30.6	1	-	-	-	-	1	1	1	-	1	1	2	1	3	3	Ħ	3	3	1	1	-	2	3	3	5	2	2	2	-	2	2	-	1	-	-	-	-

Table 60b

Coronal observations at Sacramento Peak, New Mexico (6374A), west limb

Date				Dea	7100	9 8	out	:h» c	of ·	the	80	lar	eq	uate	or				0				De	gre	es r	ort	h	of 1	the	30]	ar	eat	ato	T			
	90	85										35				15	10	_5	1	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950																																					
Apr. 2.7	1	-	2.	2	2	2	1	-	-	4.	2	-	-	-	-	-	71	14	3	2	-	5	4	3	10	949	5	2	2	-	**	4	3	3	g	7	5
3-9	-	-	-	-	-	-	-	***	-	-	-		-	esty	-	1	5	12	3	-	2	3	2	14	7	3	-	2	-	-	-	1	-	-	5	2	2
4.9a	-		_	-	_	-	_	-	-	-	-	-	-	_	-	-	4	2	- 1		-	_	_		_	_	-	_	_	-	-	-	_	5	3	3	14
9.7	_	_	-	-	-	-	14	1,	4	1	2	-	.4	10	10 28	12	TT	9	118	12	3	12	3	q	16	9	4	3	3	14	3	2	4	•••	2	14	3
10.7 11.8	2	_	_	_	_	3	-	-4	2	-4	-	2	7	10	11	12	20	13	12	10	11	12	10	17	16	ファ	7	10	1	4	4)	2	2	3	1	4
13.8	_	ī	_	_	_	2	2	11	2	2	Ъ	Į,	7	12	Ţ,	3	12	8	10	9	_	11	26	11	12	6	9	11	li.	_	_	2	7	1),	1	7
14.7	_	_	_	_	2	1	2	3	1,	14	4	1,	3	2	2	14	7	13	12	5	17	16	15	22	14	14	9	10	10	3	1	1	2	2	2	3	6
15.8	1	1	1	2	1	_	2	ź	3	3	3	3	4	4	2	11	12	10	14	14	12	9	13	18	5	9	5	4	14	4	2	ī	2	2	ī	4	14
16.8	-	⊷.	_	-	-	1	1	2	2	3	3	3	1	1	14	16	14	2	3	9	12	6	14	9	Ţį	5	2	3	3	2	2	***	man	1	3	3	1,
17.7	2	2	2	2	1	2	3	3	3	14	9	14	1	9	12	23	10	7	3	10	7	11	3	14	8	5	2	3	2	2	1	2	2	3	Į.	3	2
18.7	1	-		3	2	-	3	3	3	2	2	***	-	7	9	13	11	2	-	1	13	12	6	3	5	3		***	-	-	-	-	2	3	ŢŤ	2	3
19.8	-	-	-	-	-	-	cosp	-	-	-	-	-	***	4	2	1	-	_	==	CHI 1.	14	18	10	13	_		-	***	600	-	-	-	3	7	2	-	2
20.7 21.7	_	Т	-	2	2	Τ	-	2	2	-	-	21	2	7	14	(9	_	- g	8		15	15	14	Τ	-	-	_	2	2	_	2	3	2	3	3	2
23.6a	_	_	_	_	-	_	_	_	2	_	_	4	_	2	-	1	7	2	0	1	10	10	TT	10	7	5	_	Τ	2	2	5	4	2	2	6	4	5
24.7	_	_	_	_	_	_	_	_	_	3	_	-	-	_	14	q	7	11	7	5	10	11	9	13),	3	_		_	_			<u>-</u>	mak	7	-	1.
26.8	-	3	_	_	_	-	••	_	1	í		1	_	_	1	-	5	5	6	14	13	12	1	10		2	_	_	_	_		10	9	2	2	1,	g
27.7	-	_	_	**	emp	3	1		2	1	1	2	3	2	3	5	5	7	8	10	13	15	9	11	-	_	-	colo	-	3	5	h	11	14	5	5	li.
28.7a	-	-	-	**	-	-	-	-	-	-	2	-	-	2	3	-	14	7	10	6	5	8	Ĺ	2	**	_	_	***	(80)	_	2	14	1	1	14	6	4
29.7	~	-	-		-	-	-	1	14	3	1	-	-	2	4	14	4	7	5	14	3	1	14	10	2	-	-	-	-	2	2	3	5	4	7	9	8
30.6	-	-	-	-	14	1	2	5	14	2	14	2	2	1	14	12	12	12	14	3	2	g	9	2	11	-	1	2	***	2	3	3	6	14	6	7	6

Note: Observation low weight: Apr. 19.8 at S60 - S90 and N55 - N90.

Table 61b

Coronal observations at Sacramento Peak, New Mexico (6702A), west limb

Date																r e							00													өдт					
GCT	, 90	3 (35	80	7	5	70	65	6	0 !	55	50	45	40	3:	5_3() 2	5 2	50	15	10	5		5	10	15	.20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950 Apr. 2.7 3.9 4.72 9.7 10.7 11.8 13.8 14.7	90	8 0	35	80	7	5	70	65		0 :	55	50	45		- - - 1	5 30	0 2	5 2 - - 1 1 2	2 5 - 3	15 - 1 5 - 3	3 2 4 1 2	5 - 2 4 1 1 2	- - 4 6 - 1	26.	10 - - 36 2 3	- 36 4 4 -	.20 -3 -4 -4 -4 -3 -1	25 1 3 - 3 4 2 4 1	30 4 1 2 4 3 4 3	2 - 1 4 2 2 3	3 - 1 3 3 3 3 3	2 - 2 3 1 3 2	2 - 1 3 - 2 2	55	60	65	70	75	80	2 - 1	90
15.8 16.8	-		-	_	-	-	_	-	-		-	-	1	2]	. 2		2	3	2	2	1	1	1 2	2	2	1	1	2	3	2	1	1	-	1	1	em	e0 10	_	1	2
17.7 18.7	_		***	_			_	-	-		0	_	_	-	***	-		2	2	3	3	3	2	2	60	(D)	2	- 3	2	3	2	2	1		-	-	eno	-	-	_	_
19.8 20.7	_			_	-	-	_	8	-		-	_	8	-	=	_	· -	0	2	3 2	3	2	3	1	3	11	5 1 1	5	5	4	2	2	2		-	-	_	***	<.a	000 Not	***
21.7 23.ба	-		-	_	-	-	-	-	-		-	-	_	-	-	-	-	-	-		1	1	2	3	7	9	9	_ }†	4	<u></u>	3	2	1	_	_	_	_		-	=	***
24.7 26.8	_			_	40		_		-		-	1. 1	-	-	-	-	-	•	-	000 100	=	-	-	-	3	3	5	3	6	9	2	2	_	_		_	62	en	120	670	800
27.7 28.7a 29.7	_		-	-	-		-		-				1 1	-	2	-	-	•	2		9. 8	- 1	1	2	2	5 1 1	3	5 3 3	5 2	3 5 3	2 2	1 - 2	2	60 60	-	66 69	0 0	3	1. 1	600	= 0
30.6			-	-	-	-	-	=			_	1	-	=	-	-	. 2	2	1	1	2	2	2	=	1	2	2	2	3	2	14	2	-	***	***	1	2	_	_	1	1

Note: Observation low weight: Apr. 19.8 at S60 - S90 and N55 - N90.

Table 62

Indices of Geomagnetic Activity for April 1950

Preliminary values of mean K-indices, Kw, from 34 observatories;
Preliminary values of international character-figures, C;
Geomagnetic planetary three-hour-range indices, Kp;
Magnetically selected quiet and disturbed days

					,	
Gr. Day 1950	Values Kw	Sum	С	Values Kp	Sum	Final Sel. Days
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	3.6 3.2 2.4 2.6 3.1 2.3 2.9 2.1 2.5 1.4 2.1 1.6 2.0 2.0 1.5 0.8 0.8 1.1 1.8 2.3 2.9 2.6 1.6 1.4 2.5 3.2 1.1 0.9 2.0 1.4 1.6 2.3 1.3 1.8 0.9 1.0 1.4 1.4 2.6 2.5 2.5 3.7 3.7 3.6 2.6 1.6 1.4 2.2 3.6 3.0 1.8 2.3 1.9 0.9 1.1 0.9 0.7 1.3 1.6 1.5 1.5 0.6 1.3 2.5 1.6 3.2 3.8 3.3 3.6 2.0 1.6 2.8 1.4 1.1 2.0 1.5 2.0 2.3 2.8 3.4 3.1 2.0 1.3 1.7 2.0 2.6 2.8 2.8 2.5 2.8 2.3 2.3 2.9 3.3 2.8 2.7 2.9 3.6 1.9 3.3 3.6 4.0 3.0 3.2 4.4 3.3 1.6 1.0 1.3 3.9 3.5 1.7 1.1 0.9 1.1 0.9 0.9 0.9 0.7 0.4 0.4 0.6 0.7 3.0 2.0 1.5 0.8 1.2 2.0 3.7 2.9 3.2 3.7 2.8 2.4 3.2 4.2 4.5 4.0 3.1 2.9 3.8 2.4 3.2 1.8 3.0 2.9 2.0 1.3 1.5 0.9 0.6	31.3 29.2 28.3 28.4 33.6 27.8 22.2 13.9 14.5 15.0 12.9 21.3 15.5 11.0 21.9 21.3 21.2 25.0 22.2 7.7 10.2 23.9 28.1 14.0	1.4 1.2 1.3 1.2 1.5 1.0 0.8 0.3 0.4 0.4 0.3 0.8 0.5 0.3 0.8 0.5 0.3 1.0 1.0 0.8	5-6-5-3+ 5-3+5+50 4+4+5+40 304+4+5+ 4+3+304+ 3+4=5+5+ 3+50504+ 4-5=4030 4+504+5= 5-5+7-6= 4+4+5-4= 3+305-5- 4040303+ 4-3-3020 302-3=2= 2+201+1= 1=1+2+3= 3+3+1+10 3-401+10 202-2-20 1+3-1+1+ 1+1+3-2+ 3-40504+ 3+201+2+ 4+3+202+ 2+1+1=1= 1=1+201+ 2=1=1+2+ 2=4-503+ 4+2+1+3= 1+1-2+2= 2+3-3-4= 3+2+2-2= 2+2+3030 3-3+303= 3-304-30 3+405-20 4-4+4+3+ 406-402= 1=1+4+40 2=10101+ 1=1+0+0+ 0+0+1=30 201+1=10 204-3-40 4=303-4= 5-6-5+4= 304+3-4= 204-3+2+ 1+1+101=	37- 350 33- 330 41- 33- 26- 15+ 160 16+ 14+ 250 170 11+ 24+ 17+ 20- 240 30- 26- 8- 9+ 25+ 330 16-	Five Quiet 11 14 21 26 27 Five Dist. 1 2 3 5 30 Ten Quiet 8 9 10 11 14 21
26 27 28 29 30	1.4 1.9 1.6 1.4 1.0 1.0 0.3 0.5 0.3 0.4 0.6 0.9 1.3 0.8 2.9 2.4 1.3 1.4 2.0 2.3 2.6 3.0 2.8 3.5 3.6 1.8 1.1 3.2 2.9 3.6 3.3 2.7 3.6 4.5 3.4 3.5 3.6 4.2 3.9 2.8	9.1 9.6 18.9 22.2 29.5	0.0 0.3 0.7 0.8 1.1	2-202-1+ 101-0+0+ 0+0+0+1= 100+302+ 101+3-2+ 3-30304+ 4020103+ 4-403+3- 405+4+4= 4+504+3+	90 8+ 20+ 240 34+	21 22 25 26 27
Mean	2.49 2.45 2.46 2.63 2.66 2.40 2.39 2.62	2,51	0.73			

LOCAL

TIME

Fig. 21. HUANGAYO, PERU 12.0°S, 7.5.3°W

APRIL 1950

Index of Tables and Graphs of Ionospheric Data

in CRPL-F70

												Tab	le page	Figure page
Bagneux, France														
November 1949 .													14	56
October 1949						•	•	•	•	•	•	•	15	59
Baton Rouge, Louisis			•	•	•	0	•		9	•	•	•		"
April 1950							_						12	48
Bombay, India	, 9	ca ca	19	a,	6)	0	9			•	~	•	~	
December 1949 .								•	a				14	54
November 1949			-			9			-				15	57
Boston, Massachusett		6	O	9	60	0	10	0	0	0	0	0	3 J	21
April 1950													11	46
Capetown, Union of S		API	ri.	P.A.	9	89	9	9	0	•	9		24 40	
March 1950													13	52
De Bilt. Holland	, 6		9		9	ø	0	Ψ	Ø	9	0	0	- J)~
April 1950										_			11	46
Delhi, India		0	0	· e	9		G .	6	9	9	0	8	6,0 dis	•
December 1949 .				_									14	5/4
November 1949		ED	0	49	9	0	•	0	0	60	40	4	15	57
Formosa, China	9	0	49	0	•	•	-6	0	9	9	€	0	20 J	21
March 1950													13	51
Huancayo, Peru		0	6	•	0	•	0	•	0	8	•	6	· 30	26
April 1950													12	50
Johannesburg, Union							0	0	0	0	c	0	తప లేజు)6
March 1950													13	51
Lindau/Harz, Germany	7	9	0	3	0	0	9	0	0	9	9	•	ره	JE
March 1950													12	50
February 1950 .		0	0	٥	0	8	٥	*	٥	٥	00	٠	13	52
September 1949.		9	•	•	6	•	٥	0	0	9	6	•	16	<i>J</i> 6
August 1949		•	0	0	٥	9	0	0	Φ	4	0	G	16	CIDINA.
February 1949		•	0	0	0	0	•	0	0	9		•	16	₩ ₩
Madras, India		8	٥	0	•	•	•	0	0	8	•	(0)	20	400
December 1949 .													14	55
November 1949 .	•		•	•	•	0	•	٥	0	0	Ð	•		
Maui. Hawaii	•	6	•	٠	0	•	•	9	0	•	6	0	15	58
April 1950													12	48
Oslo, Norway	•	•	•	•	•	•	•		0	•	80	3	4	40
April 1950													11	la ee
November 1948			•	0	•	•	•	0	0	0	٥	0		45
Poitiers, France		•	0	•	•	0	•	0	•	9	•	0	16	60
December 1949													30	699)
Eovember 1949 .	•	•	•	0	0	9	0	9	•	0	0	•	13	53
October 1949 .		٥	•	0	•	•	0	0	•		٥	0	14	56
Aconer 1343 •	•	•	•	0	9	•	9	0	•	0	•	0	15	59

Index (CRPL-170, continued)

	Table page	Figure page
San Francisco, California April 1950	11	47
	• •	·
San Juan, Puerto Rico April 1950	12	49
Tiruchy. India		
December 1949	14	55
November 1949	15	58
Trinidad. British West Indies		49
April 1950		.,
Washington, D. C.	2.2	45
May 1950	• • +1	45
Watheroo, West Australia		70
February 1950	13	53
White Sands, New Mexico		l.m
April 1950	11	47

CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request]

Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly:
CRPL-Ja. Semimonthly Frequency Revision Factors for CRPL Basic Radio Propagation Prediction Reports.

Monthly:
CRPL-D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC-13-1.)

DNC-13-1.)

CRPL-F. Ionospheric Data.

Quarterly:
*IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.

*IRPL-H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards:

NBS Circular 462. Ionospheric Radio Propagation. NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:
IRPL-C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944.
IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.

IRPL-R. Nonscheduled reports:

Methods Used by 1RPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.

R5. Criteria for Ionospheric Storminess.

R6.

Experimental Studies of Ionospheric Propagation as Applied to the Loran System. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System. An Automatic Instantaneous Indicator of Skip Distance and MUF. R7.

R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.

A Nomographic Method for Poth Prediction and Observation Correlation of Ionosphere Characteristics.

R12. Short Time Variations in Ionospheric Characteristics.

R14. A Graphical Method for Calculating Ground Reflection Coefficients.
R15. Predicted Limits for 12-Layer Radio Transmission Throughout the Solar Cycle.

R17. Japanese Ionospheric Data—1943.
R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.
R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For

distances out to 4000 km.)

R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.

R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.

R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.
R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.
R26. The Ionosphere as a Measure of Solar Activity.
R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.
R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.
R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.
R33. Ionospheric Data on File at IRPL.
R34. The Interpretation of Recorded Values of fEs.
R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.

3 Mc.

IRPL-T. Reports on tropospheric propagation: T1. Radar operation and weather. (Supe (Superseded by JANP 101.) (Superseded by JANP 102.) T2. Radar coverage and weather.

CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

^{*}Items bearing this symbol are distributed only by U S. Navy. They are issued under one cover as the DNC-14 series.

