

slido

Join at slido.com #2389787

Click **Present with Slido** or install our <u>Chrome extension</u> to display joining instructions for participants while presenting.

A Reminder to start the Zoom recording!

Lots of demo code today. Get ready to type!

LECTURE 5

Data Cleaning and EDA

Exploratory Data Analysis and its role in the data science lifecycle.

Data 100, Summer 2025 @ UC Berkeley

Josh Grossman and Michael Xiao

Lab 2A due tonight!

Homework 2A due Wednesday!

If you completed the Pre-Semester Survey on time, and requested the Graded Discussion Scheme, then **you have been assigned a discussion to attend – starting today**!

- If you didn't complete the Pre-Semester Survey, or opted for Non-Graded Discussion, you won't have a discussion section.
- Check the Sections Tool for more info (linked on Ed)

OH continues as usual! Check the course calendar for the specific hours.

Reminder to make sure your DSP accommodations are submitted ASAP

- By Sunday, July 6th at the latest
- Very important if you have exam accommodations

Plan for Next Few Weeks

(Week 1) (Week 2)

Exploring and Cleaning Tabular Data From datascience to pandas

Data Science in Practice

EDA, Data Cleaning, Text processing (regular expressions), Visualization

EDA is unboxing for data!

Exploratory Data Analysis (EDA)

From Lecture 1

The Data Science Lifecycle is a Cycle

In practice, EDA informs whether you need more data to address your research question.

Structure -- the "shape" of a data file

Granularity -- how fine/coarse is each datum

Temporality -- how is the data situated in time

Faithfulness -- how well does the data capture "reality"

Key Data Properties to Consider in EDA

Rectangular Data

2389787

We often prefer **rectangular data** for data analysis

- Easy to manipulate and analyze
- Big part of data cleaning: Reshape to be more rectangular
- Example: dataset of spam emails → table of word counts

Two kinds of rectangular data: **Tables** and **Matrices**.

Fields/Attributes/ Features/Columns

Tables (DataFrames in R/Python)

- Named columns with different types
- Manipulated w/ data transformation functions (group by, join, filter ...)

Matrices

- Numeric data of the same type (float, int, etc.)
- Manipulated w/ linear algebra
- Faster computation, but less flexible

Other Illnesses During the COVID-19 Pandemic

Source: New York Times

Other Illnesses During the COVID-19 Pandemic

TB incidence [†]			
2019	2020	2021	
2.71	2.16	2.37	

You're an analyst at the CDC.

How do you calculate these values?

TB: Tuberculosis

Incidence: # cases per 100,000 people

Source: <u>CDC (Centers for Disease Control and Prevention)</u>

U.S. TB incidence → Need U.S. TB case counts and U.S. population

U.S. TB case counts → **State-level TB case counts**

State-level TB case counts → Hospital-level TB case counts

CSV: Comma-Separated Values

2389787

TB data from CDC (source)

CSV is a very common tabular file format.

- Records (rows) are delimited by a newline: '\n'
- Fields (columns) are delimited by commas: ', '

Pandas: pd.read_csv (header=...)

Demo Slides

lec05-part-1-eda-tuberculosis.ipynb

Fields/Attributes/Features/Columns

ds/Rows		U.S. jurisdiction	TB cases 2019	
Records/	0	Total	8,900	
	1	Alabama	87	

Other Data Formats

- **Image:** medical diagnosis
- **Audio:** speech recognition, sentiment analysis
- **Video:** object tracking, facial recognition
- **Text:** LLMs, legal document review
- ...

All formats above can be represented in tabular/matrix form.

(we'll come back to this!)

Structure -- the "shape" of a data file

Granularity -- how fine/coarse is each datum \rightarrow a single "piece" of data

Temporality -- how is the data situated in time

Faithfulness -- how well does the data capture "reality"

Key Data Properties to Consider in EDA

An Important Conundrum in Data Science

Singular "data"	"The data show s "		
Plural "data" (datums)	"The data show"		

Either is fine ellow

Granularity: How Fine/Coarse Is Each Datum?

What does each **record** (row) represent?

- Examples: a single purchase, a single person, a group of users
- Some data will include summaries (aka rollups) as records.

If the data are **coarse**, how were the records aggregated?

Summing, averaging, or something else?

Granularity of TB data

What does each row of the TB data represent?

Do all rows have the same granularity?

Image source: NPR

Demo Slides

lec05-part-1-eda-tuberculosis.ipynb

File Format Variable Type

Structure -- the "shape" of a data file

Granularity -- how fine/coarse is each datum

Temporality -- how is the data situated in time

Faithfulness -- how well does the data capture "reality"

Key Data Properties to Consider in EDA

Joining Multiple Files

Incidence = Case Count / Population

TB case counts → CDC data

U.S. population → Census data

It's time to merge!

Demo Slides

lec05-part-1-eda-tuberculosis.ipynb

2-minute stretch break!

Multiple Files **File Format**Variable Type

Structure -- the "shape" of a data file

Granularity -- how fine/coarse is each datum

Temporality -- how is the data situated in time

Faithfulness -- how well does the data capture "reality"

Key Data Properties to Consider in EDA

TSV: Tab Separated Values

2389787

Another common table file format.

- **Fields** are delimited by '\t' (tab)
- Like a CSV with tabs instead of commas

pd.read_csv: Need to specify
delimiter='\t'

Demo Slides

lec05-part-2-eda-structure.ipynb

JSON: JavaScript Object Notation

CA Senators+Reps data (congress.gov API)²³⁸⁹⁷⁸⁷

Very similar to Python dictionaries

• **Self-documenting**: Metadata (data about the data) + records in the same file

pd.read_json()

pd.DataFrame(json_dict)

JSON is **non-rectangular**, so good to inspect the file before importing.

- Nested tables
- Inconsistent fields across records

Demo Slides

lec05-part-2-eda-structure.ipynb

Multiple Files
File Format
Variable Type

Structure -- the "shape" of a data file

Granularity -- how fine/coarse is each datum

Temporality -- how is the data situated in time

Faithfulness -- how well does the data capture "reality"

Key Data Properties to Consider in EDA

Variable Feature Types

@ ① **⑤** ②

(assigned, not measured!)

Variable Types

What is the feature type of each variable?

Q	Variable	Feature Type
1	CO ₂ level (ppm)	Quantitative
2	Income bracket (low, med, high)	Qualitative Ordinal
3	Race/Ethnicity	Qualitative Nominal
4	Political party	Qualitative Ordinal / Nominal
5	Year	Quantitative / Qualitative Ordinal
6	GPA	Quantitative / Qualitative Ordinal
7	Date and time	Slido!

The distinction between categories is sometimes murky. Context matters!

slido

What type of variable is a datetime (e.g., 01/01/2025 3:30pm)?

Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

Structure -- the "shape" of a data file

Granularity -- how fine/coarse is each datum

Temporality -- how is the data situated in time

Faithfulness -- how well does the data capture "reality"

Key Data Properties to Consider in EDA

Efficiently Storing Datetimes

As humans, we write datetimes as strings: **01/01/2025 3:30pm**

There are 13 characters in the string **010120250330p**

Datetime column with 1 billion entries $\rightarrow \sim 13$ billion characters $\rightarrow 13$ GB column \odot

What if we stored datetimes as **integers**?

1 billion integers \rightarrow ~4 billion bytes \rightarrow 4 GB column \bigcirc

Temporality: Unix / POSIX Time

Datetimes measured in seconds since January 1st 1970 UTC (Coordinated Universal Time)

Jun 30, 2025 11:00am PDT \rightarrow **1751306400** (1,751,306,400 seconds)

Jun 30, 1950 11:00am PDT \rightarrow **-615535200** (-615,535,200 seconds)

Another bonus of numeric representation: We can do math!

For example, we can calculate # days between dates using subtraction and division.

Unix / POSIX Time

Berkeley PD calls for service data

```
pd.to_datetime()
```

```
pd.series.dt.date()
pd.series.dt.dayofweek()
pd.series.dt.hour()
...
```

Demo Slides

lec05-part-2-eda-structure.ipynb

Structure -- the "shape" of a data file

Granularity -- how fine/coarse is each datum

Temporality -- how is the data situated in time

Faithfulness -- how well does the data capture "reality"

Key Data Properties to Consider in EDA

What are some potential issues with this dataset?

Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

What are Some Potential Issues with this Dataset?

2389787

ID	Category	State	Location	Device	Purchased	•••
0	Shoes	CA	CA	1	1	
1	Socks	NM	NM	1	0	
2	Socks	XY	XY	1	0	
3	Shirts	NY	NY	1	NA	
4	Shoes	FL	FL	1	0	
4	Shoes	FL	FL	1	0	
5	Shirts	CA	CA	1	0	
6	Pnts	TX	TX	1	1	
7	Hats	CA	CA	1	-1	

Faithfulness: Do I trust this data?

Fully Duplicated Records or Fields

Identify and ignore/drop.

Labeling or Spelling Errors

Apply corrections. Only ignore if you have to.

Missing data

Need to think carefully about **why** the data is missing.

11 11

1970, 2000

0, -1

NaN

999, 12345 Null

NaN: "Not a Number"

Real zero or NaN placeholder? Sometimes both!

See footnote 12 in onlinelibrary.wiley.com/doi/abs/10.1111/jels.12343

Missing Data: Approaches

A. Keep as NaN

- A good default.
- If qualitative/categorical → Create a "Missing" category.

B. Drop records with missing values

- Typically a <u>bad</u> default!
- Temperature probe went offline for a minute \rightarrow Likely **missing at random** \rightarrow OK to drop
- Police officer never records outcomes of vehicle stops → Likely <u>not</u> missing at random

C. Imputation/Interpolation: Infer missing values (with caution!)

- **Mean/median imputation**: replace NaN with mean/median
- Hot deck imputation: use a random non-NaN value
- **Regression imputation**: use a model to predict value
- Multiple imputation: multiple random values + check sensitivity

(beyond this course)

Missing Values

Berkeley PD calls for service data

Approaches:

- Keep missing values as NaN
- Drop missing values
- Impute

pd.series.isna()

pd.DataFrame.info()

Demo Slides

lec05-part-2-eda-structure.ipynb

We did it!

Structure -- the "shape" of a data file

Granularity -- how fine/coarse is each datum

Temporality -- how is the data situated in time

Faithfulness -- how well does the data capture "reality"

LECTURE 5

Data Cleaning and EDA

Content credit: Acknowledgments

