Geometry

Nicolas Mansard

Gepetto
LAAS-CNRS & ANITI

Robot configuration q

Robot configuration q

$$l_1 \cos(q_1) + l_2 \cos(q_1 + q_2) l_1 \sin(q_1) + l_2 \sin(q_1 + q_2)$$

Robot configuration q

Robot configuration q

... such that

$$(x_1-x_2)^2+(y_1-y_2)^2 = cst$$

 $(x_2-x_3)^2+(y_2-y_3)^2 = cst$
... etc ...

Rotation

Rotation matrices

$$R = \begin{pmatrix} r00 & r01 & r02 \\ r10 & r11 & r12 \\ r20 & r21 & r22 \end{pmatrix}$$

Derivation of a matrix

$$\dot{R} = \cdots$$

- Representation of rotations
 - Matrices n=9, usable, non vector
 - Quaternion n=4, partly usable, vector, simple constraint
 - Angle vector n=3, non usable, vector, minimal unconstrained
 - Euler angle / roll-pitch-yaw don't use it

Angular velocity / Angle vector

Formal definition

$$\dot{R} = \omega \times R$$

- From rotation to velocity
 - $R \rightarrow \omega$
- From velocity to rotation?
 - $\omega \rightarrow R$... integrate

- Meaning of ω ?
- Angle axis representation

Direct geometry

• The geometric model is a tree of joints and bodies

$$\mathbf{M}(\mathbf{q}) = \mathbf{M}_1 \oplus \mathbf{M}_1(\mathbf{q}_1) \oplus \mathbf{M}_2 \oplus \ldots \oplus \mathbf{M}_4 \oplus \mathbf{M}_4(\mathbf{q}_4) \oplus \mathbf{M}_e$$

About representation of motion

$$\mathbf{M}(\mathbf{q}) = \mathbf{M}_1 \oplus \mathbf{M}_1(\mathbf{q}_1) \oplus \mathbf{M}_2 \oplus \ldots \oplus \mathbf{M}_4 \oplus \mathbf{M}_4(\mathbf{q}_4) \oplus \mathbf{M}_e$$

$$M = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \qquad \qquad \dot{R} = \omega \times R$$
 Canonical definition of angular velocity ... represents SE(3)

The geometric model is a tree of joints and bodies

What is $M \in SE(3)$

What is \dot{M} (and \dot{R})

Links with the differential geometry

Joint models

- Maps
 - From configuration space
 - To SE3 space

$$h(q) = {}^{k}M_{k+1}(q) \in SE(3)$$

• For example, Revolute-Z is:

$$h(q) = \begin{bmatrix} \cos q & \sin q & 0 & 0 \\ -\sin q & \cos q & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Kinematic model parametrization

Parent-to-child joint transformation

• Modern solution: with your favorite SE3 representation

Good-old days:

with Denavit-Hartenberg

minimal parameters

Direct geometry

From

Robot configuration q

To

Effector cartesian placement M

 $M: q \to M(q)$

Inverse geometry

Being given a M* ...

what is q such that $M(q) = M^*$

 $M^{-1}: M^* \to q = M^{-1}(M^*)$

Numerical inversion of the geometry

- Computing analytically h⁻¹ is difficult and tedious
- We can compute it numerically!

Problem definition

$$search f(x) - f^* = 0$$

$$min || f(x) - f^* ||^2$$