研究背景		第一章: 绪论						
		研究背景及意义						
		康复辅助机器人研究现状: 1. 关节运动辅助机器人 2. 移动辅助机器人 3. 功能性辅助机器人		人-机器人交互感 知系统研究现状			研究发展动态 分析	
研究方法基础		第二章: 人-机器人交互研究理论基础						
		闭环人机交互过程的不定性分析: 1. 机器人行为建模 2. 闭环人机交互过程	強	人机共享自主			运动技能模仿 学习	
		移动辅助机器人	功能性辅助机器人		关节运动辅助机器人			
		第三章: 柔性可穿 戴体-机交互接口 的自适应解码方法	第四章:基于模型匹配的机器人辅助人体坐立运动时间自适应			第五章: 主动膝关节 矫形器交互式自适应 运动参考轨迹生成		
应用		柔性体-机交互接口 系统设计	自适	应辅助轨迹优化 框架	主动式膝关节矫形器 系统设计			
应用研究		传感器数据处理与 解码方法	概率化的动态运动基元 (PDMP)			基于共享自主系统的 交互式对称步态轨迹		
		人机交互实验设计	基于期望最大化算法的 人体坐立运动时间预测			生成		
		实验验证	实验验证			实验验证		
第六章: 总结与展望								