U.H.B.C. Chlef Faculté des Sciences Exactes Département des maths

A.U. 2016/2017

Niveau: 1^{ère} Master/ Option: M.A.S. Module: Processus Stochastiques 1

Examen de Moyenne Duree

I) Cha \hat{i} nes de Markov (T.D.) :

Considérons une chaîne de Markov $\{X_n; n = 0, 1, 2, ...\}$ d'espace d'état $E = \{0, 1, 2, 3\}$, donnée par la matrice de transition:

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0.2 & 0 & 0.8 & 0 \\ 0.3 & 0 & 0.7 & 0 \\ 0.4 & 0.6 & 0 & 0 \end{bmatrix}$$

- 1. Tracer le diagramme des transitions de cette chaîne.
- 2. La chaîne est-elle réductible? Commenter sur l'étude de la chaîne à long terme.
- 3. Trouver les états récurrents, transitoires, absorbants et réfléchissants de cette chaîne.
- 4. Calculer la proportion du temps de séjour dans l'état "0" à long terme.
- 5. En moyenne, combien de temps faut-il pour atteindre l'état "0" en démarrant de l'état "2".

II) Processus de Poisson:

Un radar est placé sur une route où il passe en moyenne 5 véhicules en excès de vitesse par heure. On admet que ces véhicules forment un processus de Poisson.

- 1. Déterminer la probabilité qu'une voiture ait été prise dans le 1^{er} $\frac{1}{4}$ d'heure sachant que 2 ont été prises en 1 heure.
 - **2.** Quelle est l'heure espérée (à quelle heure) du $5^{ième}$ véhicule en excès de vitesse après 8:00?
 - 3. Quelle est le nombre moyen des véhicule en excès de vitesse arrivant entre 8 : 00 et 10 : 00?
- 4. On suppose ici que le radar ne peut pas tomber en panne mais qu'il ne détecte que 80% des véhicules en excès de vitesse.
- Déterminer la loi du nombre des véhicule détectés par le radar après 100 heures de fonctionnement et le nombre moyen de ces véhicules.

a) Chaînes de Markov		
1) Une Chaîne signifie que le temps est discret.	□ Vrai	□ Faux
2) Un état périodique est forcément récurrent.	□ Vrai	□ Faux
3) Chaque C.M. finie contient au moins un état récurrent.	□ Vrai	□ Faux
4) Tous les états récurrents d'une C.M. se communiquent entre eux.	□ Vrai	□ Faux
5) Toute C.M a une unique loi stationnaire.	□ Vrai	□ Faux
6) Si les nombres des étapes (des transitions) d'un état " i " à " i " sont multiples de k , alors $\mathbf{d}(\mathbf{i}) = \mathbf{k}$	□ Vrai	□ Faux
b) Processus de Poisson $(N_t)_{t \in \mathbb{R}_+}$ est un processus de Poisson d'intensité $\lambda > 0$.		
1) Le processus à temps discret analogue au processus de Poisson est		
2) La loi du nombre des arrivées entre s et t est		
3) Un processus de Poisson est dit homogène si		
4) La loi du temps d'attente jusqu'à l'arrivée suivante est		
5) $1 - e^{-\lambda t}$ est la probabilité de		
6) Les arrivées sont <i>Poissonniènnes</i> si et seulement si les temps inter-arrivées sont		
Nom: Prénoms:		

III) Questions de cours :