ЛАБОРАТОРНАЯ РАБОТА 1

Tema: Разработка консольных приложений с помощью Microsoft Visual Studio. Программирование линейных и разветвляющихся вычислительных процессов.

Цель работы: научиться использовать интегрированную среду разработки Microsoft Visual Studio для создания, запуска и отладки программ, изучить правила составления программ на языке Си: базовые типы данных, операции, ввод-вывод данных, основные математические функции. Научиться программировать линейные алгоритмы.

ЗАДАНИЕ 1: ЛИНЕЙНЫЙ АЛГОРИТМ

Составить программу для расчета значений z_1 и z_2 (результаты должны совпадать). Составить схему алгоритма.

ВАРИАНТЫ:

1.	$z_1 = 2\sin^2(3\pi - 2\alpha)\cos^2(5\pi + 2\alpha), z_2 = \frac{1}{4} - \frac{1}{4}\sin(\frac{5}{2}\pi - 8\alpha)$
2.	$z_1 = \cos \alpha + \sin \alpha + \cos 3\alpha + \sin 3\alpha$, $z_2 = 2\sqrt{2}\cos \alpha \cdot \sin\left(\frac{\pi}{4} + 2\alpha\right)$
3.	$z_1 = \frac{\sin 2\alpha + \sin 5\alpha - \sin 3\alpha}{\cos \alpha + 1 - 2\sin^2 2\alpha}, z_2 = 2\sin \alpha$
4.	$z_1 = \cos \alpha + \sin \alpha + \cos 3\alpha + \sin 3\alpha$, $z_2 = 2\sqrt{2}\cos \alpha \cdot \sin\left(\frac{\pi}{4} + 2\alpha\right)$
5.	$z_1 = 1 - \frac{1}{4}\sin^2 2\alpha + \cos 2\alpha$, $z_2 = \cos^2 \alpha + \cos^4 \alpha$
6.	$z_1 = \cos \alpha + \cos 2\alpha + \cos 6\alpha + \cos 7\alpha$, $z_2 = 4\cos \frac{\alpha}{2} \cdot \cos \frac{5}{2}\alpha \cdot \cos 4\alpha$
7.	$z_1 = \cos^2\left(\frac{3}{8}\pi - \frac{\alpha}{4}\right) - \cos^2\left(\frac{11}{8}\pi + \frac{\alpha}{4}\right), z_2 = \frac{\sqrt{2}}{2}\sin\frac{\alpha}{2}$
8.	$z_1 = \cos^4 x + \sin^2 y + \frac{1}{4}\sin^2 2x - 1$, $z_2 = \sin(y + x) \cdot \sin(y - x)$
9.	$z_1 = (\cos \alpha - \cos \beta)^2 - (\sin \alpha - \sin \beta)^2$, $z_2 = -4 \sin^2 \frac{\alpha - \beta}{2} \cdot \cos(\alpha + \beta)$
10.	$z_1 = \frac{\sin\left(\frac{\pi}{2} + 3\alpha\right)}{1 - \sin(3\alpha - \pi)}, z_2 = ctg\left(\frac{5}{4}\pi + \frac{3}{2}\alpha\right)$

11.	$z_1 = \frac{1 - 2\sin^2\alpha}{1 + \sin 2\alpha} , z_2 = \frac{1 - tg\alpha}{1 + tg\alpha}$
12.	$z_1 = \frac{\sin 4\alpha}{1 + \cos 4\alpha} \cdot \frac{\cos 2\alpha}{1 + \cos 2\alpha} , z_2 = ctg \left(\frac{3}{2}\pi - \alpha\right)$
13.	$z_1 = \frac{\sin \alpha + \cos(2\beta - \alpha)}{\cos \alpha - \sin(2\beta - \alpha)}, z_2 = \frac{1 + \sin 2\beta}{\cos 2\beta}$
14.	$z_1 = \frac{(m-1)\sqrt{m} - (n-1)\sqrt{n}}{\sqrt{m^3 n} + nm + m^2 - m}$, $z_2 = \frac{\sqrt{m} - \sqrt{n}}{m}$
15.	$z_{1} = \frac{\sqrt{2b + 2\sqrt{b^{2} - 4}}}{\sqrt{b^{2} - 4} + b + 2}, z_{2} = \frac{1}{\sqrt{b + 2}}$ $z_{1} = \frac{(m - 1)\sqrt{m} - (n - 1)\sqrt{n}}{\sqrt{m^{3}n} + nm + m^{2} - m}, z_{2} = \frac{\sqrt{m} - \sqrt{n}}{m}$
16.	$z_1 = \frac{(m-1)\sqrt{m} - (n-1)\sqrt{n}}{\sqrt{m^3 n} + nm + m^2 - m}$, $z_2 = \frac{\sqrt{m} - \sqrt{n}}{m}$
17.	$z_1 = \frac{\sin 2\alpha + \sin 5\alpha - \sin 3\alpha}{\cos \alpha + 1 - 2\sin^2 2\alpha}, z_2 = 2\sin \alpha$
18.	$z_1 = \cos \alpha + \sin \alpha + \cos 3\alpha + \sin 3\alpha$, $z_2 = 2\sqrt{2}\cos \alpha \cdot \sin\left(\frac{\pi}{4} + 2\alpha\right)$

ЗАДАНИЕ 2: ЛИНЕЙНЫЙ АЛГОРИТМ

ВАРИАНТЫ:

№	Условие	Контрольный пример
1.	$2\cos\left(x-\frac{\pi}{2}\right)$	x=14.26, y=-1.22,
	$t = \frac{2\cos\left(x - \frac{\pi}{6}\right)}{0.5 + \sin^2 y} \left(1 + \frac{z^2}{3 - z^2/5}\right).$	$z=3.5\times10^{-2}$
	$0.5 + \sin^2 y \left(\frac{1}{3} - \frac{z^2}{5} \right)$	t=0.564849
2.	$\sqrt[3]{8+ x-y ^2+1}$	$x=-4.5, y=0.75\times10^{-4},$
	$u = \frac{\sqrt[3]{8 + x - y ^2 + 1}}{x^2 + y^2 + 2} - e^{ x - y } (tg^2 z + 1)^x.$	$z=0.845\times10^{2}$
		u=-55.6848
3.	$v = \frac{1 + \sin^2(x + y)}{\left x - \frac{2y}{1 + x^2 y^2} \right } x^{ y } + \cos^2\left(arctg\frac{1}{z}\right).$	$x=3.74\times10^{-2}$, $y=-0.825$,
	$\left \begin{array}{ccc} z & z \\ z & z \end{array} \right $	$z=0.16\times10^{2}$,
	$\left 1 + x^2 y^2 \right $	v=1.0553
4.	$w = \left \cos x - \cos y\right ^{\left(1 + 2\sin^2 y\right)} \left(1 + z + \frac{z^2}{2} + \frac{z^3}{3} + \frac{z^4}{4}\right).$	$x=0.4\times10^4$, y=-0.875,
	$w = \cos x - \cos y $ $\left(1 + 2 + \frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{4}\right)$.	$z=-0.475\times10^{-3}$
		w=1.9873
5.	$\alpha = \ln\left(y^{-\sqrt{ x }}\right)\left(x - \frac{y}{2}\right) + \sin^2 arctg(z).$	$x=-15.246$, $y=4.642\times10^{-2}$,
	() (2)	$z=20.001\times10^{2}$
		$\alpha = -182.036$
6.	$\beta = \sqrt{10(\sqrt[3]{x} + x^{y+2})} (\arcsin^2 z - x - y).$	$x=16.55\times10^{-3}$, y=-2.75,
		z=0.15
7	, , , , , , , , , , , , , , , , , , , ,	$\beta = -40.63$
7.	$w = \left \cos x - \cos y\right ^{\left(1 + 2\sin^2 y\right)} \left(1 + z + \frac{z^2}{2} + \frac{z^3}{3} + \frac{z^4}{4}\right).$	$x=0.4\times10^{-2}$, $y=-0.875$,
	(2 3 4)	$z=-0.475\times10^{-3}$
8.	x-y $ x+y $	w=1.9873
0.	$\varphi = \frac{e^{ x-y } x-y ^{x+y}}{arctg(x) + arctg(z)} + \sqrt[3]{x^6 + \ln^2 y}.$	$x=-2.235\times10^{-2}$, $y=2.23$, $z=15.221$
	arctg(x) + arctg(z)	$\varphi = 39.374.$
9.	Z 200 11 Z	$x=1.825\times10^2$, $y=18.225$,
	$y = \begin{vmatrix} \frac{y}{x} & \sqrt{y} \\ -\frac{y}{x} & 3 \end{vmatrix} + (y - x)$	$z=-3.298 \times 10^{-2}$
	$\psi = \left x^{\frac{y}{x}} - \sqrt[3]{\frac{y}{x}} \right + (y - x) \frac{\cos y - \frac{2}{(y - x)}}{1 + (y - x)^2}.$	Ψ=1.2131
10.	$a = 2^{-x} \sqrt{x + \sqrt[4]{ y }} \sqrt[3]{e^{x-1/\sin z}}.$	$x=3.981\times10^{-2}$
	V V 12- 1	$y=-1.625\times10^3$, $z=0.512$
		<i>a</i> =1.26185

11.	$b = y^{\sqrt[3]{ x }} + \cos^3(y) \frac{ x - y \left(1 + \frac{\sin^2 z}{\sqrt{x + y}}\right)}{e^{ x - y } + \frac{x}{2}}.$	x=6.251, y=0.827, z=25.001 b=0.7121
12.	$(\pi \times \pi)$	x=3.251, y=0.325,
	$y = arcigz - \frac{1}{6}$	$z=0.466\times10^{-4}$
	$c = 2^{\sqrt{1+(3)}} - \frac{1}{1+1+1}$	c=4.025
	$c = 2^{(y^{x})} + (3^{x})^{y} - \frac{y\left(arctgz - \frac{\pi}{6}\right)}{ x + \frac{1}{y^{2} + 1}}.$	
13.	$\sqrt[4]{v + \sqrt[3]{x - 1}}$	x=17.421,
	$f = \frac{\sqrt[4]{y + \sqrt[3]{x - 1}}}{ x - y (\sin^2 z + tgz)}$	$y=10.365\times10^{-3}$,
	J (= - 8-)	$z=0.828\times10^{5}$
		f=0.33056
14.	$x + \frac{y}{x}$	$x=12.3\times10^{-1}$, $y=15.4$,
	$g = \frac{y^{x+1}}{\sqrt[3]{ y-2 } + 3} + \frac{x + \frac{y}{2}}{2 x+y } (x+1)^{-1/\sin z}$	$z=0.252\times10^3$
	$\sqrt[3]{ y-2 +3}$ $2 x+y $	g=82.8257
15.	$h = \frac{x^{y+1} + e^{y-1}}{1 + x - t\sigma z } (1 + y - x) + \frac{ y - x ^2}{2} - \frac{ y - x ^3}{3}$	$x=2.444, y=0.869\times10^{-2},$
	$1 + x y - tgz ^{(x + y - 3)} $ 2 3	$z=-0.13\times10^{3}$
		h = -0.49871
16.	$\frac{1}{(x+3 x-y +x^2)}$	x=0.1722, y=6.33,
	$\gamma = 5arctg(x) - \frac{1}{4}arccos(x)\frac{x+3 x-y +x^2}{ x-y z+x^2}.$	$z=3.25\times10^{-4}$
	.	$\gamma = -205.306$
17.	$v = \frac{1 + \sin^2(x + y)}{ x ^{ y } + \cos^2(arcta^{\frac{1}{2}})}$	$x=3.74\times10^{-2}$, y=-0.825,
	$v = \frac{1 + \sin^2(x + y)}{\left \frac{2y}{x - \frac{2y}{z}} \right } x^{ y } + \cos^2\left(arctg\frac{1}{z}\right).$	$z=0.16\times10^{2}$
	$\left \frac{x-1}{1+x^2y^2}\right $	v=1.0553
18.	$\sqrt[3]{8+ x-y ^2+1}$	$x=-4.5, y=0.75\times10^{-4},$
	$u = \frac{\sqrt[3]{8 + x - y ^2 + 1}}{x^2 + y^2 + 2} - e^{ x - y } (tg^2 z + 1)^x.$	$z=0.845\times10^{2}$
	x 1 y 12	u=-55.6848