Coupon Using Prediction of Tmall Customers

Background: "Tmall", formerly known as Taobao Mall, is a comprehensive on-line shopping website and is a brand new B2C (Business-to-Consumer) brand created by Ma Yun Taobao. It integrates thousands of brands and manufacturers, providing one-stop solutions for merchants and consumers, providing 100% quality-guaranteed goods, and good after-sales service such as 7-day return without reason, and shopping-points rewards.

Question: Based on the data given, using logistic regression to predict whether the customers will use the coupon.

1. Check the data dictionary and know the meaning of each field

Column	definition
ID	record id
age	age
job	job title
marital	marital status
default	wheather got default in HuaBei
returned	returned products or not before
loan	billed with Huabei or not
coupon_used_in_last6_month	the number of coupon used in last 6 months
coupon_used_in_last_month	the number of coupon used in last 1 months
coupon_ind	used coupon or not in current activity

2. Data Cleaning and Pre-processing (abnormal data clean, variable conversion/rename, etc.)

```
In [1]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
In [2]: Tmall=pd.read_csv('L2_Week3.csv')
```

Data cleaning and pre-processing

```
In [59]: Tmall.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 25317 entries, 0 to 25316
          Data columns (total 10 columns):
           ID
                                         25317 non-null int64
           age
                                         25317 non-null int64
                                         25317 non-null object
           job
                                         25317 non-null object
          marital
                                         25317 non-null object
          default
                                         25317 non-null object
          returned
                                         25317 non-null object
          coupon used in last6 month
                                         25317 non-null int64
          coupon_used_in_last_month
                                         25317 non-null int64
          coupon ind
                                         25317 non-null int64
          dtypes: int64(5), object(5)
          memory usage: 1.9+ MB
```

```
[60]: Tmall. job. value counts() #got unknown value inside
Out[60]: blue-collar
                                5456
            management
                                5296
            technician
                                4241
            admin.
                                2909
            services
                                2342
            retired
                                1273
            self-employed
                                  884
            entrepreneur
                                  856
            unemployed
                                  701
                                  663
            housemaid
            student
                                  533
            unknown
                                  163
            Name: job, dtype: int64
In [61]: sns.countplot(y='job', hue='coupon_ind', data=Tmall) #check the coupon used status of different jobs
Out[61]: <matplotlib.axes._subplots.AxesSubplot at 0xe30db00>
              management
                technician
                  admin.
                 services
                  retired
                  student
                blue-collar
                 unknown
              entrepreneur
               housemaid
                                                              coupon ind
                                                                  0
             self-employed
                                                                   1
              unemployed
```

The number of job_unknown is quiet few and most are the ones didn't use the coupon, this part got low value for analysis; users in management used coupons more than other customers while the number of not used coupon also quiet high, so as the users in blue-collar; from the diagram, the job's effect on coupon using is not so obvious.

3000

count

5000

4000

```
In [62]: #check the field which type is object if got unknown values inside
          Tmall. marital. value counts()
Out[62]: married
                      15245
          single
                       7157
          divorced
                       2915
          Name: marital, dtype: int64
In [63]: Tmall.default.value_counts()
Out[63]: no
                 24869
                   448
          Name: default, dtype: int64
In [64]: Tmall. returned. value_counts()
Out[64]: yes
                 14020
                 11297
          Name: returned, dtype: int64
In [65]: Tmall.loan.value_counts()
Out[65]: no
                 21258
                  4059
          Name: loan. dtvne: int64
```

1000

```
In [3]: #convert variables to numerical variable
             Tmall=pd.get_dummies(Tmall)
In [67]:
           Tmall. head()
 Out[67]:
                          coupon_used_in_last6_month coupon_used_in_last_month coupon_ind job_admin.
                 ID age
                                                      2
              0
                      43
                                                                                                  0
                                                                                                              0
                      42
                                                      1
                                                                                                  0
                                                                                                              0
              2
                 3
                      47
                                                      2
              3
                 4
                      28
                                                      2
                                                                                    0
                                                                                                  0
                                                                                                              0
                                                      5
                 5
                                                                                    Λ
                                                                                                  Λ
                      42
                                                                                                              \cap
            5 rows × 26 columns
   [4]: Tmall.drop(['ID', 'job_unknown', 'marital_divorced', 'default_no', 'returned_no', 'loan_no'], axis=1, inplace=True)
         Tmall=Tmall. rename(columns={'coupon_ind':'flag'})
n [78]: Tmall.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 25317 entries, 0 to 25316
         Data columns (total 20 columns):
                                      25317 non-null int64
         coupon_used_in_last6_month
                                      25317 non-null int64
         coupon_used_in_last_month
                                      25317 non-null int64
         flag
                                      25317 non-null int64
         job_admin.
                                      25317 non-null uint8
         job blue-collar
                                      25317 non-null uint8
         job_entrepreneur
                                      25317 non-null uint8
                                      25317 non-null uint8
         job_housemaid
                                      25317 non-null uint8
         iob management
         job_retired
                                      25317 non-null uint8
         job_self-employed
                                      25317 non-null uint8
                                      25317 non-null uint8
         iob services
         job_student
                                      25317 non-null uint8
                                      25317 non-null uint8
         job_technician
                                      25317 non-null uint8
         iob unemploved
         marital_married
                                      25317 non-null uint8
         marital single
                                      25317 non-null uint8
```

3. Select the key variables for modeling

Analyze 0/1 ratio of target variable and correlation with other variables

```
[79]: Tmall.flag.value_counts(1) #sample is unbalanced, need over/under-sampling to reach balance
[79]: 0
           0.883043
           0.116957
      Name: flag, dtype: float64
[80]: Tmall.groupby('flag').mean()#correlation analysis
[80]:
                 age coupon_used_in_last6_month coupon_used_in_last_month job_admin. job_blue- job_entrepreneur job_housemaid job_mar
       flag
         0 40.819601
                                        2.857846
                                                                  0.260378
                                                                             0.114868 0.226740
                                                                                                       0.035293
                                                                                                                      0.027062
                                        2.124282
                                                                              0.115164
                                                                                       0.130699
                                                                                                                      0.019588
```

The sample is unbalanced, need to do some actions for optimization afterwards.

But first, we can analyze from mean_summary: **coupon_used_in_last_month**, **job_retired**, **returned_yes** 0/1 differ a lot, can do simple visualization to analyze first.

```
[91]: sns.countplot(y='coupon_used_in_last_month', hue='flag', data=Tmall) plt.legend(loc='lower right')
         #coupon_flag both performanced low in the number of coupon_used_in_last_month, so this feature has the low reference value
ut[91]: <matplotlib.legend.Legend at 0x10b74160>
          11
            15
                    2500
                           5000
                                       10000 12500 15000
                                       count
 [90]: sns. countplot(y='job_retired', hue='flag', data=Tmall) plt.legend(loc='lower right')
it[90]: <matplotlib.legend.Legend at 0x10723da0>
             0
           job retired
                                                                      0
                    2500
                          5000
                                 7500 10000 12500 15000 17500 20000
                                          count
 [84]: sns. countplot(y='returned_yes', hue='flag', data=Tmall)
         #it's more possible to use the coupon for those who never returned before
t[84]: <matplotlib.axes._subplots.AxesSubplot at 0x1061cb00>
                                                                    flag
                                                                       0
             0
          returned yes
            1
                      2000
                              4000
                                       6000
                                               8000
                                                        10000
                                                                12000
```

Can be found that there's the weak effects on coupon using for these three variables.

```
[85]: #coupon_used_in_last_month & returned_yes impact more on flag
Tmall.corr()[['flag']].sort_values('flag', ascending=False)
```

t[85]:

			flag
f		1.00	00000
coupon_used_in_last_m	onth	0.1	16550
job_ret		0.08	33868
job_student		0.0	69058
marital_single		0.0	57574
job_management		0.035234	
	age	0.02	29916
job_unemployed		0.02	23980
job_self-employed		0.00	01078
job_admin.		0.000298	
job_techn	ician	-0.00	04942
job_housemaid		-0.0	15041
job_entrepre	eneur	-0.02	22519
default_yes	-0.024	1608	
job_services	-0.026	688	
marital_married			
loan_yes			
job_blue-collar	-0.075	065	
coupon_used_in_last6_month	-0.075	5173	
returned_yes	-0.143	3589	

4. Data Modeling

Data Modeling

Coefficient analysis: 1.coupon_used_in_last_month, job_retired showed positive correlation;

loan_yes, returned_yes showed negative correlation;

- 2.if used coupon in last month, then the possibility of using current coupon is e^0.38=1.46 times more than the other customers who didn't use coupon last month;
- 3.the using-current-coupon's possibility of people retired is e^0.38=1.46 times that of people have jobs;
- 4.the customer who used Huabei for billing maybe won't use current coupon, the possibility only is $e^{-(-0.56)}=0.57$ times those who didn't use Huabei;
- 5.the customer who returned before also maybe won't use current coupon, the possibility only is $e^{-0.9}=0.41$ times those who never returned.

5 Model Assessment

Model Assessment

```
[85]:
        y_pred_train=lr.predict(x_train)
        y_pred_test=lr. predict(x_test)
 [86]:
        import sklearn.metrics as metrics
        from sklearn metrics import (classification report,
                                      roc_curve, auc)
        #check the confusion matrix
        metrics.confusion_matrix(y_train, y_pred_train)
t[87]: array([[15589,
                          34],
               [ 2085,
                          13]], dtype=int64)
 [88]: metrics.confusion_matrix(y_test, y_pred_test)
t[88]: array([[6721,
                        12],
               [ 862,
                         1]], dtype=int64)
n [89]:
         #check the accuracy
         metrics. accuracy_score(y_train, y_pred_train)
Out[89]: 0.8804243552846904
   [90]: metrics.accuracy_score(y_test, y_pred_test)
Out [90]: 0.8849394418114798
```

```
[91]: #check the precision&recall&F1-score
       print(classification report(y train, y pred train))
                     precision
                                  recall f1-score
                                                      support
                  0
                          0.88
                                    1.00
                                              0.94
                                                        15623
                          0.28
                                              0.01
                                                         2098
                                    0.01
       avg / total
                          0.81
                                    0.88
                                              0.83
                                                        17721
[92]:
       print(classification_report(y_test, y_pred_test))
                     precision
                                  recall f1-score
                                                      support
                  0
                          0.89
                                    1.00
                                              0.94
                                                         6733
                          0.08
                                    0.00
                                              0.00
                                                          863
       avg / total
                          0.79
                                    0.88
                                              0.83
                                                         7596
[93]: #check the area under the curve
       fpr, tpr, threshold=roc_curve(y_train, y_pred_train)
       roc_auc=auc(fpr, tpr)
       print(roc_auc)
       0.5020100494693636
[94]: fpr, tpr, threshold=roc_curve(y_test, y_pred_test)
       roc_auc=auc(fpr, tpr)
       print(roc_auc)
       0.4996882410513651
```

From confusion matrix, accuracy, F1 score and area under the curve can see, this model isn't a qualified model, it is not precise and accurate. Recall is quiet low due to unbalanced sample, so accuracy also can not represent anything meaningful.

6. Model Optimization

Model Optimization

```
[15]:
       #data re-sampling: over-sampling
       from imblearn.over_sampling import SMOTE
[163]:
       #seperate features and labels
       # 1:inlcuding all variables as features
       columns=Tmall.columns
       features_columns=columns.drop('flag')
       features=Tmall[features_columns]
       labels=Tmall['flag']
[130]:
       # 2:re-select variables group as features
       features_columns=[u'coupon_used_in_last_month', u'job_retired',
                         u'returned_yes', u'loan_yes']
       features=Tmall[features_columns]
       labels=Tmall['flag']
```

```
[131]: features train, features test, labels train, labels test = train test split(features,
                                                                                       labels,
                                                                                       test size=0.3,
                                                                                       random state=100)
 [164]: # 3:re-select sample size (under condition 1)
         features train, features test, labels train, labels test = train test split(features,
                                                                                       test size=0.5,
                                                                                       random state=100)
 [165]:
        oversampler=SMOTE(random_state=100)
        o features train, o labels train-oversampler. fit sample (features train, labels train)
            o features train. shape, o labels train. shape
   [166]:
Out[166]: ((22388L, 19L), (22388L,))
            lr=linear_model.LogisticRegression()
             lr. fit(o_features_train, o_labels_train)
Out[167]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                        intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
                        penalty='12', random state=None, solver='liblinear', tol=0.0001,
                        verbose=0, warm start=False)
Compare the results
                                     [129]: # 1
                                           lr.coef
In [128]:
            lr. intercept
                                   ut[129]: array([[-0.00495529, -0.13832846, 0.39640771,
                                                                                   0. 29869164, 0. 03019951,
                                                  -0.17385206, -0.34929796,
                                                                        0.5141064 ,
                                                                                   1.02069377.
                                                                                              0.13707739.
Out[128]: array([0.47427662])
                                                  -0. 03716222, 0. 74092394, 0. 28677175,
                                                                                   0.46168682,
                                                                                              0.08111704,
                                                  0.2332854 , -0.89016293, -0.93862611, -0.71039494]])
In [135]: | # 2
                                     [136]: # 2
                                           1r.coef_
            lr. intercept
                                   ut[136]: array([[ 0.45724557, 0.59153382, -0.86599627, -0.53094198]])
Out[135]: array([0.25505115])
                                     [169]: # 3
                                           1r.coef
In [168]:
            1r. intercept_
                                   ut[169]: array([[-0.00352738, -0.14514534, 0.40248386,
                                                                                   0. 22751968, -0. 03975685,
                                                  -0.0812331 , -0.19693163,
                                                                        0.43130432,
                                                                                   0.94557428, -0.38990977,
Out[168]: array([0.49306065])
                                                  -0.07374383, 0.62084024, 0.15988295, 0.2863408,
                                                  0. 25748121, -1. 47265425, -0. 93080918, -0. 5754277 ]])
In [170]: labels pred train=lr.predict(o features train)
             labels_pred_test=lr.predict(features_test)
```

```
In [34]: # 1
            metrics.confusion matrix(o labels train, labels pred train)
  Out[34]: array([[10273, 5350],
                   [ 5280, 10343]], dtype=int64)
 In [35]: # 1
            metrics.confusion matrix(labels test, labels pred test)
  Out[35]: array([[4501, 2232],
                   [ 310, 553]], dtype=int64)
  [139]:
          # 2
          metrics.confusion_matrix(o_labels_train, labels_pred_train)
ut[139]: array([[ 9306, 6317],
                  [ 5360, 10263]], dtype=int64)
  [140]: # 2
          metrics.confusion_matrix(labels_test, labels_pred_test)
ut[140]: array([[4095, 2638],
                  [ 301, 562]], dtype=int64)
 [172]: # 3
        metrics.confusion_matrix(o_labels_train, labels_pred_train)
t[172]: array([[7320, 3874],
               [3845, 7349]], dtype=int64)
 [173]: # 3
        metrics.confusion_matrix(labels_test, labels_pred_test)
t[173]: array([[7355, 3807],
               [ 534, 963]], dtype=int64)
n [36]: # 1
         metrics.accuracy_score(o_labels_train, labels_pred_train)
Out[36]: 0.6597964539461051
n [37]: # 1
         metrics.accuracy_score(labels_test, labels_pred_test)
Out[37]: 0.6653501843075302
  [141]: # 2
         metrics.accuracy_score(o_labels_train, labels_pred_train)
ut[141]: 0.6262881648851053
  [142]: # 2
         metrics.accuracy_score(labels_test, labels_pred_test)
ut[142]: 0.6130858346498157
  [174]: # 3
         metrics.accuracy_score(o_labels_train, labels_pred_train)
ut[174]: 0.6552170805788815
  [175]: # 3
         metrics.accuracy_score(labels_test, labels_pred_test)
ut[175]: 0.6570819180030019
```

```
ı [38]: # 1
         print(classification_report(o_labels_train, labels_pred_train))
                      precision
                                   recall f1-score
                                                       support
                           0.66
                                     0.66
                   0
                                                0.66
                                                         15623
                   1
                           0.66
                                     0.66
                                                0.66
                                                         15623
         avg / total
                           0.66
                                     0.66
                                                0.66
                                                         31246
1 [39]: # 1
         print(classification_report(labels_test, labels_pred_test))
                      precision
                                   recall f1-score
                                                       support
                   0
                                     0.67
                           0.94
                                                0.78
                                                          6733
                   1
                           0.20
                                     0.64
                                                0.30
                                                           863
         avg / total
                                     0.67
                           0.85
                                                0.73
                                                          7596
[143]: # 2
        print(classification_report(o_labels_train, labels_pred_train))
                                   recall f1-score
                      precision
                                                        support
                   0
                           0.63
                                      0.60
                                                 0.61
                                                          15623
                           0.62
                                      0.66
                                                 0.64
                                                          15623
                   1
        avg / total
                           0.63
                                      0.63
                                                 0.63
                                                          31246
[144]: # 2
        {\tt print}({\tt classification\_report}({\tt labels\_test}, {\tt labels\_pred\_test}))
                                    recall f1-score
                      precision
                                                        support
                   0
                           0.93
                                      0.61
                                                0.74
                                                           6733
                           0.18
                                      0.65
                                                 0.28
                                                            863
        avg / total
                           0.85
                                      0.61
                                                 0.68
                                                           7596
 [176]: # 3
         print(classification_report(o_labels_train, labels_pred_train))
                      precision recall f1-score
                                                   support
                   0
                          0.66
                                    0.65
                                              0.65
                                                       11194
                   1
                          0.65
                                    0.66
                                              0.66
                                                       11194
         avg / total
                          0.66
                                    0.66
                                              0.66
                                                       22388
 [177]: # 3
         print(classification_report(labels_test, labels_pred_test))
                                 recall f1-score
                      precision
                                                     support
                   0
                          0.93
                                    0.66
                                              0.77
                                                       11162
                          0.20
                                    0.64
                                              0.31
                                                       1497
                   1
                                   0.66
         avg / total
                          0.85
                                              0.72
                                                       12659
```

```
In [40]: # 1
          fpr, tpr, threshold=roc_curve(o_labels_train, labels_pred_train)
          roc_auc=auc(fpr, tpr)
          print(roc_auc)
          0.6597964539461051
In [41]: # 1
          fpr, tpr, threshold=roc_curve(labels_test, labels_pred_test)
          roc_auc=auc(fpr, tpr)
          print(roc_auc)
          0.6546431947659606
[145]: # 2
        fpr, tpr, threshold=roc_curve(o_labels_train, labels_pred_train)
        roc_auc=auc(fpr, tpr)
        print(roc_auc)
        0.6262881648851053
[146]: # 2
        fpr, tpr, threshold=roc_curve(labels_test, labels_pred_test)
        roc_auc=auc(fpr, tpr)
        print(roc_auc)
        0.6297075558218898
[178]: # 3
        fpr, tpr, threshold=roc_curve(o_labels_train, labels_pred_train)
        roc_auc=auc(fpr, tpr)
        print(roc_auc)
        0.6552170805788814
[179]:
        fpr, tpr, threshold=roc_curve(labels_test, labels_pred_test)
        roc_auc=auc(fpr, tpr)
        print(roc_auc)
        0.6511093320847033
After data re-sampling did twice adjustment, there's no large difference among these three models according
to kinds of score method, but the model gets better compared to previous, so select the #1 as ideal one so
far, that's including all variables and test size is 0.3.
```

[181]: data=np. array([[-0.00495529, -0.13832846, 0.39640771, 0.29869164, 0.03019951, -0.17385206, -0.34929796, 0.5141064, 1.02069377, 0.13707739, -0.03716222, 0.74092394, 0.28677175, 0.46168682, 0.08111704, 0.2332854, -0.89016293, -0.93862611, -0.71039494]])

[182]: data=pd.DataFrame(data)

[183]: data.columns=features_columns

lr.coef :

```
[188]: data.stack().sort_values(ascending=False)
t[188]: 0 job_retired
                                     1.020694
          job_student
                                     0.740924
          job_management
                                     0.514106
          job_unemployed
                                     0.461687
          coupon_used_in_last_month 0.396408
          job_admin.
                                     0. 298692
          job_technician
                                    0. 286772
                                    0. 233285
          marital_single
                                    0.137077
          job_self-employed
          marital_married
                                    0.081117
          job_blue-collar
                                    0.030200
          age
                                    -0.004955
          job services
                                    -0.037162
          coupon_used_in_last6_month -0.138328
          job_entrepreneur
                                    -0.173852
          job_housemaid
                                    -0.349298
          loan_yes
                                    -0.710395
          default yes
                                    -0.890163
          returned yes
                                    -0.938626
       dtype: float64
lr.intercept array([0.47427662]),
```

Coefficient analysis: job_retired impacts more among the all features with positive correlation, the possibility of retired users would use coupon is $e^1.02=2.7$ times larger than the users do not retire; return_yes has the largest effect on using coupon or not among the features with negative correlation, people returned before, the possibility of using coupon is $e^{-0.93}=0.39$ times that people never returned.

```
Assessment:
confusion matrix test: array[[4501, 2232],
                             [ 310, 553]],
accuracy score test: 0.6653501843075302
classification_report test:
                                       precision recall f1-score support
                                                          0.78
                                           0.94
                                                  0.67
                                                                  6733
                                     1
                                           0.20
                                                  0.64
                                                          0.30
                                                                   863
                             avg / total
                                           0.85
                                                   0.67
                                                          0.73
                                                                  7596
roc auc test: 0.6546431947659606
```

Conclusion: 1.When model assessment, should select the proper method to score based on different kinds of business, or comprehensive perspectives;

- 2. When encountering sample imbalance, select appropriate methods to adjust so as to ensure the accuracy of the model;
- 3. Try multiple times for model optimization properly and continually until reach ideal.