Linear Solvers

For jcer matrices

Goal: Solve Ax=b as quickly as possible

Input 4 sets of matrices (called

seq), with 3 A matrices

each and the

corresponding b vectors

Libraries used

AMGCL: https://github.com/ddemidov/amgcl MIT license

Eigen(iterative_solver_branch):

https://gitlab.com/jenswehner/eigen/-/tree/linear_solvers

Click to add text

Benchmark Code: https://github.com/NLESC-JCER/sparse solver

Machines used: CPU benchmark Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz 4 hardware threads GCC 7.5 -O3 -DNDEBUG -march=native -mtune=native

GPU benchmark CUDA Version: 10.2 GeForce GTX 980 Intel(R) Xeon(R) CPU E5-1630 v4 @ 3.70GHz

Setup

Tolerance for solution is 1e-14

Initial guess was the zero vector. All libraries allow the specification of an initial guess, which typically lowers the iterations count by 10% for a tolerance of 1e-14

All solvers converged for all problems within the limit of 1000 iterations. Each seq was profiled independently. Timings were averaged over the 3 matrices in set.

Solvers used: Eigen: BICGSTAB, BICGSTABL, IDRSTAB with diagonal preconditioner (the Eigen::IncompleteLUT took longer to setup than the whole benchmark ran)

AMGCL: BICGSTAB, BICGSTABL, IDRS with AMG preconditioner and with ilu0/ilut preconditioner

AMGCL can use different backends for the mat-vec product: The CUDA, Eigen and the internal backend where used.

CPU benchmarks, where run with 1,2,4 threads. CUDA benchmarks are given with 0 threads

Iteration count

AMG preconditioner needs a lot less iterations then other preconditioners for seq1 and seq2. Backend does not change iteration count, which is good. For seq3 and seq4 ilu0/ilut preconditioner seems better.

Timings

CUDA backend is fastest, AMG preconditioner is good for seq1 and seq2. Ilu0 might be better for seq3 and seq4

Setup vs solve

iterations

For seq4 ilut is better than amgcl as a preconditioner

Timings setup vs solve

No benefits after roughly 8 threads