Akademia Górniczo - Hutnicza im. Stanisława Staszica w Krakowie

Projekt techniczny chwytaka ciśnieniowego Jakub Iskrzycki APiR, IMiR, gr 1

1. Element chwytany:

Elementem chwytanym jest blacha:

- Długość: a = 650 mm

- Szerokość: b = 350 mm

- Wysokość: h = 1 mm

- Materiał: drewno nieoszlifowane - dąb

- Gęstość: 670 kg/m^3

- Objętość:

$$V = a \cdot b \cdot h$$

$$V = 650 \cdot 350 \cdot 1 \cdot 10^{-9} = 227, 5[cm^3] = 2,275 \cdot 10^{-4}[m^3]$$

- Masa:

$$m = \delta \cdot V$$

 $m = 670 \cdot 2.275 \cdot 10^{-4} = 0.152425[kg]$

- Ciężar statyczny:

$$F = m \cdot g$$

$$F = 0.1524 \cdot 9.81 = 1,495[N]$$

- Współczynnik tarcia: założony na 0,5

- 2. Koncepcja mocowania przyssawek:
 - Ze względu na wymiary blachy 65 x 35 [cm] zostanie użyty uchwyt z dwunastoma przyssawkami
 - Przyssawki będą miały średnice mniejsze niż 5 [cm] w zależności od obliczeń
 - Ze względu na małą masę przenoszonej blachy można dobrać robota o stosunkowo niewielkim udźwigu

3. Dobór robota:

Fanuc M-10D/8L:

- Udźwig: 8 [kg]

- Zakres ruchu: 340°

- Prędkość obrotu robota w osi pionowej: 210°/s

- Maksymalny wyciąg: 2032[mm]

4. Obliczenia:

Obliczanie siły ssącej potrzebnej przy obciążeniu statycznym (współczynnik bezpieczeństwa S=2):

$$F_{S1} = F_{stat} \cdot S$$
 $F_{S1} = 2 \cdot 1,495 = 2.990[N]$

Obliczanie przypadku dynamicznego:

Czas obrotu dla
$$340^\circ=\frac{340^\circ}{210^\circ}=1$$
, $62[s]$
$$\alpha=210^\circ=1$$
, 17π

Przyspieszenie kątowe:

$$\varepsilon = \frac{\Delta \varepsilon}{\Delta t}$$

$$\varepsilon = 2, 26 \frac{1}{s^2}$$

Prędkość kątowa:

$$\omega = \varepsilon \cdot t$$

$$\omega = 3,66 \frac{1}{s} = 210^{\circ}/\text{s}$$

Obliczanie siły odśrodkowej:

m=0.152[kg]
r=2032[mm]

$$F_{o} = m \cdot \omega^{2} \cdot r$$

$$F_{o} = 4,13[N]$$

Obliczanie siły stycznej:

$$F_{sd} = m \cdot \varepsilon \cdot r$$
$$F_{sd} = 0,698[N]$$

Obliczanie siły wypadkowej:

$$F_{w} = \sqrt{F_{o}^{2} + F_{sd}^{2}}$$

$$F_{w} = \sqrt{17,544} = 4,188[N]$$

Obliczanie potrzebnej siły ssącej s2:

$$\sum F_{x} = 0$$
: $F_{t} - F_{w} = 0 ==> F_{w} = F_{t}$

$$\sum Fy = 0$$
: $F_{s2} - F_{dyn} - F_{stat} = 0 ==> F_{dyn} = F_{s2} - F_{stat}$

Siła tarcia jest równa:

$$F_t = F_{dyn} \cdot \mu = (F_{s2} - F_{stat}) \cdot \mu$$

Siła ssąca:

$$\mu = 0, 5$$

$$F_{s2} = \frac{F_{w}}{\mu} + F_{stat}$$

$$F_{s2} = 9,871[N]$$

5. Dobór przyssawki:

Przyssawka VAS-15-1/8-PUR-B

Przyłącze podciśnienia	G1/8
Kompensator wysokości przyssawki	1.2 mm
Twardość wg Shore'a	60 +/- 5
Objętość przyssawki	0.228 cm3
Siła trzymania przy nominalnym ciśnieniu roboczym	8.5 N
Położenie przyłącza	na górze
Wielkość nominalna	3 mm
Klasa odporności na korozję CRC	2 – Średnia odporność na korozję
Uwaga dotycząca materiałów	Zgodne z RoHS
Temperatura otoczenia	-20 60 °C
Medium robocze	Powietrze atmosferyczne w oparciu o ISO 8573-1:2010 [7:-:-]
EAN-13	4052568062057

- Siła trzymania przy nominalnym ciśnieniu: 8,5 N

- Nominalne ciśnienie robocze: 0.7[bar]

6. Obliczanie minimalnej ilości przyssawek: Dynamiczny współczynnik bezpieczeństwa:

$$Sd = \frac{F_{s1}}{F_{przyssawki}}$$
$$Sd = 0,373$$

llość przyssawek:

$$n > \frac{F_{s2} \cdot S_d}{F_{przyssawki}}$$

$$n > 0.43$$

7. Podsumowanie obliczeń:

Ze względu na małą masę przedmiotu nawet jedna przyssawka powinna podnieść przedmiot, jednak użycie większej ilości jest konieczne ze względów bezpieczeństwa. Materiał może się też wyginać. Dlatego zostanie użyte 12 przyssawek.

8. Dobór generatora podciśnienia:

VAD-ME-1/8

Feature	Value
Nominal width of Laval nozzle	0.95 mm
Mounting position	Any
Ejector characteristics	High vacuum
Integrated function	Shut off valve, electric
Structural design	T-shape
Symbol	00991492
Operating pressure	1.5 bar 8 bar
Max. vacuum	85 %
Duty cycle	100%
Operating medium	Compressed air as per ISO 8573-1:2010 [7:4:4]
Information on operating and pilot media	Operation with oil lubrication not possible
LABS (PWIS) conformity	VDMA24364-B2-L
Temperature of medium	0 ℃ 40 ℃
Degree of protection	IP65
Ambient temperature	0 ℃ 40 ℃
Product weight	123 g
Electrical connection	Plug
Type of mounting	With internal thread
Pneumatic connection 1	G1/8
Vacuum connection	G1/8
Housing material	Aluminum