CSE 575: Statistical Machine Learning

Jingrui He

CIDSE, ASU

Dimensionality Reduction

Lower dimensional projections

 Rather than picking a subset of the features, we can create new features that are combinations of existing features

- Let's see this in the unsupervised setting
 - just X, but no Y

Linear projection and reconstruction

Linear projections, a review

- Project a point into a (lower dimensional) space:
 - point: $x = (x_1, ..., x_n)$
 - select a basis set of basis vectors $(\mathbf{u}_1,...,\mathbf{u}_k)$
 - we consider orthonormal basis:
 - $\mathbf{u}_{i} \bullet \mathbf{u}_{i} = 1$, and $\mathbf{u}_{i} \bullet \mathbf{u}_{i} = 0$ for $i \neq j$
 - select a center \bar{x} , defines offset of space
 - **best coordinates** in lower dimensional space defined by dot-products: $(z_1,...,z_k)$, $z_i = (\mathbf{x} \overline{\mathbf{x}}) \cdot \mathbf{u}_i$
 - minimum squared error

PCA finds projections that minimize reconstruction error

- Given m data points: $\mathbf{x}^{i} = (x_{1}^{i},...,x_{n}^{i})$, i=1...m
- Will represent each point as a projection:

$$- \hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j \text{ where: } \bar{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^m \mathbf{x}^i \text{ and } z_j^i = (\mathbf{x}^i - \bar{\mathbf{x}}) \cdot \mathbf{u}_j$$

- PCA:
 - Given k, find (u₁,...,u_k)
 minimizing reconstruction error:

$$error_k = \sum_{i=1}^{m} (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

Understanding reconstruction error

 Note that xⁱ can be represented exactly by n-dimensional projections:

$$\mathbf{x}^i = \bar{\mathbf{x}} + \sum_{j=1}^n z_j^i \mathbf{u}_j$$

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$
$$z_j^i = (\mathbf{x}^i - \bar{\mathbf{x}}) \cdot \mathbf{u}_j$$

☐ Given k, find $(\mathbf{u}_1,...,\mathbf{u}_k)$ minimizing reconstruction error:

$$error_k = \sum_{i=1}^m (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

Rewriting error:

Reconstruction error and covariance matrix

$$error_k = \sum_{i=1}^m \sum_{j=k+1}^n [\mathbf{u}_j \cdot (\mathbf{x}^i - \bar{\mathbf{x}})]^2$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}^{i} - \bar{\mathbf{x}}) (\mathbf{x}^{i} - \bar{\mathbf{x}})^{T}$$

Minimizing reconstruction error and eigen vectors

 Minimizing reconstruction error equivalent to picking orthonormal basis (u₁,...,u_n) minimizing:

$$error_k = m \sum_{j=k+1}^n \mathbf{u}_j^T \mathbf{\Sigma} \mathbf{u}_j$$

• Eigen vector:

• Minimizing reconstruction error equivalent to picking $(\mathbf{u}_{k+1},...,\mathbf{u}_n)$ to be eigen vectors with the smallest eigen values

Basic PCA algorithm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X

$$- X_c \leftarrow X - \overline{X}$$

Compute covariance matrix:

$$-\Sigma \leftarrow 1/m X_c^T X_c$$

- Find **eigen vectors and values** of Σ
- Principal components: k eigen vectors with highest eigen values

PCA example

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$

PCA example – reconstruction

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$

only used first principal component

Eigenfaces [Turk, Pentland '91]

Input images:

Principal components:

Eigenfaces reconstruction

 Each image corresponds to adding 8 principal components:

Scaling up

- Covariance matrix can be really big!
 - $-\Sigma$ is n by n
 - 10000 features ! $|\Sigma|$
 - finding eigenvectors is very slow...

- Use singular value decomposition (SVD)
 - finds up to k eigenvectors
 - great implementations available, e.g., Matlab svd

SVD

- Write $X = W S V^T$
 - $X \leftarrow$ data matrix, one row per data point
 - W ← weight matrix, one row per data point coordinate of xⁱ in eigen space
 - S ← singular value matrix, diagonal matrix
 - in our setting each entry is squareroot of eigenvalue $\boldsymbol{\lambda}_j$
 - **V**^T ← singular vector matrix
 - in our setting each row is eigenvector v_i

PCA using SVD algorithm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X

$$- X_c \leftarrow X - \overline{X}$$

- Call SVD algorithm on X_c ask for k singular vectors
- Principal components: k singular vectors with highest singular values (rows of V^T)
 - Coefficients become: