Summer bootcamp project 2024

SAHIL SINGH

S. No	Торіс
1	List of Tables
2	List of Figures
3	Problem
3	Statement
4	Necessary
	Libraries
5	Loading Dataset

LIST OF TABLES

Table	Cell
Number	Number
Table 1	3
Table 2	4
Table 3	10
Table 4	29
Table 5	31
Table 6	34
Table 7	37
Table 8	39
Table 9	41
Table 10	43
Table 11	45
Table 12	46
Table 13	48
Table 14	51
Table 15	55
Table 16	57
Table 17	59
Table 18	61
Table 19	63

LIST OF FIGURES

Figure Number	Cell Number
Figure 1	6
Figure 2	9
Figure 3	11
Figure 4	13
Figure 5	16
Figure 6	20
Figure 7	23
Figure 8	28
Figure 9	30
Figure 10	35
Figure 11	38
Figure 12	40
Figure 13	42
Figure 14	14

**PROBLEM STATEMENT

Bright Motor Company want to analyze the data to get a fair idea about the demand of customers which will help them in enhancing their customer experience. Suppose you are a Data Scientist at the company and the Data Science team has shared some of the key questions that need to be answered. Perform the data analysis to find answers to these questions that will help the company to improve the business.

IMPORTING THE NECESSARY LIBRARIES

LOADING THE DATASET

BASIC EXPLORATION

1. FIRST 5 ROWS

Table 1

	0	1	2	3	4
Age	53	53	53	53	53
Gender	Male	Femal	Female	Female	Male
Profession	Business	Salaried	Salaried	Salaried	NaN
Marital_status	Married	Married	Married	Married	Married
Education	Post Graduate	Post Graduate	Post Graduate	Graduate	Post Graduate
No_of_Dependents	4	4	3	?	3
Personal_loan	No	Yes	No	Yes	No
House_loan	No	No	No	No	No
Partner_working	Yes	Yes	Yes	Yes	Yes
Salary	99300.0	95500.0	97300.0	72500.0	79700.0
Partner_salary	70700.0	70300.0	60700.0	70300.0	60200.0
Total_salary	170000	165800	158000	142800	139900
Price	61000	61000	57000	61000	57000
Make	SUV	SUV	SUV	?	SUV

OBSERVATION

 $\hbox{'No_of_Dependants' and 'Make' has value '?'. Need to check that.}$

'Profession' is NULL at one place.

2. LAST 5 ROWS

Table 2

	1576	1577	1578	1579	1580
Age	22	22	22	22	22
Gender	Male	Male	Male	Male	Male
Profession	Salaried	Business	Business	Business	Salaried
Marital_status	Single	Married	Single	Married	Married
Education	Graduate	Graduate	Graduate	Graduate	Graduate
No_of_Dependents	2	4	2	3	4
Personal_loan	No	No	No	Yes	No
House_loan	Yes	No	Yes	Yes	No
Partner_working	No	No	No	No	No
Salary	33300.0	32000.0	32900.0	32200.0	31600.0
Partner_salary	0.0	NaN	0.0	NaN	0.0
Total_salary	33300	32000	32900	32200	31600
Price	27000	31000	30000	24000	31000
Make	Hatchback	Hatchback	Hatchback	Hatchback	Hatchback

OBSERVATIONS

'Partner_Salary' is NULL at places.

3. Shape

There are 1581 rows and 14 columns in the given dataset.

4.Datatypes

Figure 1

Age	int64
Gender	object
Profession	object
Marital_status	object
Education	object
No_of_Dependents	object
Personal_loan	object
House_loan	object
Partner_working	object
Salary	float64
Partner_salary	float64
Total_salary	int64
Price	int64
Make	object
dtype: object	

OBSERVATIONS

Data Types of 'Total_Salary' and 'Price' is int, it should be float.

Data Type of 'No_Of_Dependants' is object.

Figure 2

	<class 'pandas.core.frame.dataframe'=""></class>			
Range	RangeIndex: 1581 entries, 0 to 1580			
Data	columns (total 14	columns):		
#	Column	Non-Null Count	Dtype	
0	Age	1581 non-null	int64	
1	Gender	1528 non-null	object	
2	Profession	1575 non-null	object	
3	Marital_status	1581 non-null	object	
4	Education	1581 non-null	object	
5	No_of_Dependents	1579 non-null	object	
6	Personal_loan	1581 non-null	object	
7	House_loan	1581 non-null	object	
8	Partner_working	1581 non-null	object	
9	Salary	1568 non-null	float64	
10	Partner_salary	1475 non-null	float64	
11	Total_salary	1581 non-null	float64	
12	Price	1581 non-null	float64	
13	Make	1581 non-null	object	
dtypes: float64(4), int64(1), object(9)				
memory usage: 173.1+ KB				

Observations

NULL values in several columns.

5. Statistical Summary

Table 3

	Age	Salary	Partner_salary	Total_salary	Price
count	1581.000000	1568.000000	1475.000000	1581.000000	1581.000000
mean	31.952562	60276.913265	20225.559322	79625.996205	35948.170778
std	8.712549	14636.200199	19573.149277	25545.857768	21175.212108
min	14.000000	30000.000000	0.000000	30000.000000	58.000000
25%	25.000000	51900.000000	0.000000	60500.000000	25000.000000
50%	29.000000	59450.000000	25600.000000	78000.000000	31000.000000
75%	38.000000	71700.000000	38300.000000	95900.000000	47000.000000
max	120.000000	99300.000000	80500.000000	171000.000000	680000.000000

Figure 3

Age	0
Gender	53
Profession	6
Marital_status	0
Education	0
No_of_Dependents	0
Personal_loan	0
House_loan	0
Partner_working	0
Salary	13
Partner_salary	106
Total_salary	0
Price	0
Make	0
dtype: int64	

7. Duplicated Values

0 duplicated values in the dataset.

8. Outliers

Figure 4

9. Data Cleaning

Filling NULL values in numerical columns with medians due to the presence of outliers.

Figure 5

Age	0
Gender	53
Profession	6
Marital_status	0
Education	0
No_of_Dependents	0
Personal_loan	0
House_loan	0
Partner_working	0
Salary	0
Partner_salary	0
Total_salary	0
Price	0
Make	0
dtype: int64	

Treating anomalies present in the 'Gender','No_of_Dependents' and 'Make' columns of the dataset and dealing with their NULL values.

Figure 6

Age	0
Gender	0
Profession	0
Marital_status	0
Education	0
No_of_Dependents	0
Personal_loan	0
House_loan	0
Partner_working	0
Salary	0
Partner_salary	0
Total_salary	0
Price	0
Make	0
dtype: int64	

Dealing with outliers present in the data.

Figure 7

Descriptive Statistics

o What are the mean, median, and standard deviation of the ages of individuals in the dataset?

The mean is 31.91302972802024

The median is 29.0

Data Distribution

o What is the distribution of gender in the dataset? Represent it using a pie chart.

Figure 8

Correlation Analysis

o Is there a correlation between age and salary? Provide the correlation coefficient and interpret the result.

Table 4

	Age	Salary
Age	1.000000	0.599922
Salary	0.599922	1.000000

The correlation coefficient is 0.599922.

This means that Age and Salary are not related to each other significantly.

Salary Analysis

Figure 9

Table 5

Education	
Graduate	48514.597315
Post Graduate	67383.096447
Name: Salary,	dtype: float64

The average salary of Post Graduates is higher than that of Graduates.

Loan Status

o What percentage of individuals have taken a personal loan? How does this compare between males and females?

The percentage of people who have taken a personal loan is 50.094876660341555

Table 6

Gender	r Personal_loa	an
Female	e No	180
	Yes	149
Male	Yes	643
	No	609
Name:	count, dtype:	int64

Figure 10

Males have taken more Personal Loans than Females.

Marital Status and Dependents

o What is the average number of dependents for married individuals versus single individuals

Table 7

```
Marital_status
Married 2.547471
Single 1.608696
Name: No_of_Dependents, dtype: float64
```


Partner Employment

o How does the employment status of a partner affect the total combined salary?

Table 8

```
Partner_working
No 60527.208976
Yes 94900.000000
Name: Total_salary, dtype: float64
```

The total salary is more in cases where the partner is working.

Figure 12

Salary Comparison

o Compare the average salary of individuals whose partners are working versus those whose partners are not working.

Table 9

Partner_working
No 60256.451613
Yes 60281.336406
Name: Salary, dtype: float64

Figure 13

Average salary is slightly more in the case where the partner is working.

House Loan Analysis

Table 10

Profession	House_loan	
Business	No	456
	Yes	229
Salaried	No	598
	Yes	298
Name: count	, dtype: int64	

Figure 14

People who are salaried have taken more House Loans than people who are salaried.

Salary Distribution

o What is the distribution of salaries for individuals with personal loans versus those without personal loans? Represent it using a box plot.

Table 11

Personal_loar	n Salary	
No	51400.0	6
	56000.0	6
	56400.0	6
	59450.0	6
	59900.0	6
Yes	95500.0	1
	97700.0	1
	98400.0	1
	98600.0	1
	99300.0	1
Name: count,	Length: 817,	dtype: int64

Table 12

Personal_loan No 61155.13308 Yes 59388.44697

Name: Salary, dtype: float64

Figure 15

Salary of people with no personal loan is on average greater than those with personal loans. Although there are a few people with high salaries who have a personal loan.

Automobile Make Analysis:

o How does the type of automobile relate to the salary of the individuals? Provide insights based on the make of the automobile.

Table 13

Make Hatchback 55083.505155 SUV 71642.203390 Sedan 59792.613636 Name: Salary, dtype: float64

Figure 16

People who have SUVs have the highest salaries on average. Sedan Makes are a second while Hatchbacks are the lowest.

Price Analysis

The average price of the products is 35568.66413662239

Table 14

	Price	Total_salary
Price	1.000000	0.358806
Total_salary	0.358806	1.000000

Figure 17

The price of the products do not vary much(close to almost none) with the salaries of the individual. The correlation coefficient between them is 0.358806

Marital Status and Loans

o Is there a significant difference in the number of personal loans taken by married individuals compared to single individuals?

Figure 18

There is a significant difference. People who have married have taken more personal loans than people who are single.

Educational Qualification Impact

o How does educational qualification impact the likelihood of taking a house loan?

Table 15

Education	House_loan	
Graduate	No	394
	Yes	202
Post Graduate	No	660
	Yes	325
Name: count, d	type: int64	

Post Graduates are more likely to take a house loan.

Dependent Count Analysis

o Analyze the number of dependents based on the profession of the individual. Which profession has the highest average number of dependents?

Table 16

Profession
Business 2.490511
Salaried 2.446429
Name: No_of_Dependents, dtype: float64

Figure 20

Gender and Salary

o Is there a significant difference in salaries between males and females? Provide statistical evidence.*

Table 17

Gender
Female 65948.024316
Male 58778.075080
Name: Salary, dtype: float64

Figure 21

Females have a higher average salary than males, although it is not very significant.

Loan Status Impact

o How does having a personal loan affect the total combined salary of the individual and their partner?

Table 18

Personal_loan No 80742.839037 Yes 78059.343434 Name: Total_salary, dtype: float64

Figure 22

Partner's Salary Contribution

o What is the average partner's salary for individuals with and without house loans?

Table 19

House_loan No 21028.462998 Yes 19700.759013 Name: Partner_salary, dtype: float64

Figure 23

Total Salary Distribution

o Create a histogram showing the distribution of total combined salaries. Identify and discuss any skewness or outliers in the data.

Figure 24

