生命科学基础 I

第三章 物质代谢 脂代谢 其他脂肪的代谢

孔宇

西安交通大学生命科学与技术学院 2020年3月10日

11.7 磷脂的代谢

1、甘油醇磷脂

生命科学基础工

1

甘油二酯合成途径

3 S-腺苷同型半胱氨酸 3 S-腺苷 蛋氢酸 乙醇胺 ATP 胆碱激酶 乙醇胺激酶 ADP 磷酸胆碱 磷酸乙醇胺 CTP 转胞苷酸酶 转胞苷酸酶 PPi CDP-胆碱 CDP-乙醇胺 甘油二酯 磷酸胆碱甘油 磷酸乙醇胺甘 二酯转移酶 油二酯转移酶

CMP

磷脂酰乙醇胺

生命科学基础I

CDP-甘油二酯合成途径

磷脂酰胆碱

生命科学基础I

2

鞘氨醇磷脂

- ❖ 将CDP-胆碱或CDP-乙醇胺携带的磷酸胆碱或磷酸乙醇胺转移至N-脂酰鞘 氨醇上,生成神经鞘磷脂。
- ❖ 神经鞘磷脂分解:由神经鞘磷脂酶催化,产物为磷酸胆碱 (磷酸乙醇胺)及N-脂酰鞘氨醇

生命科学基础I

西安克通大學

生命科学基础 I

胆固醇及其酯

胆固醇(cholesterol,Ch)

胆固醇酯(cholesterol ester,CE)

生命科学基础I

11.9.2 胆固醇的合成

(一) 合成部位

组织定位:除成年动物脑组织及成熟红细胞外, 几乎全身各组织均可合成,以肝、小肠 为主。

细胞定位: 胞液、光面内质网

生命科学基础 I

西安克通大學

(二) 合成原料

乙酰CoA通过柠檬酸-丙酮酸循环出线粒体

生命科学基础I

西安交通大學

2. 鲨烯的合成

3 CH₃-COO- 乙酰CoA

3. 胆固醇的合成

生命科学基础I

西安克通大学

11.9.3 胆固醇的降解和转变

——主要去路:转化成胆汁酸及类固醇激素

胆固醇的母核——环戊烷多氢菲在体内不能被降解 ,但侧链可被氧化、还原或降解,实现胆固醇的转化。

(一) 胆固醇可转变为胆汁酸

胆固醇在肝细胞中转化成胆汁酸(bile acid),随胆汁经胆管排入十二指肠,是体内代谢的主要去路。

生命科学基础I

西安克通大學

(二) 胆固醇可转化为类固醇激素

器官		合成的类固醇激素
肾上腺	皮质球状带	醛固酮
	皮质束状带	皮质醇
	皮质网状带	雄激素
睾丸	间质细胞	睾丸酮
卵巢	卵泡内膜细胞	雌二醇、孕酮
	黄体	

(三) 胆固醇可转化为维生素D3的前体 7-脱氢胆固醇

生命科学基础I

胆固醇代谢

生命科学基础I

🥌 11.10 脂代谢调节

抑制脂肪分解: 胰岛素

促进储脂动员和氧化:

肾上腺素、生长激素、性激素等。

生命科学基础I

₩ 11.11 脂类代谢紊乱

- √高脂血症 (高脂蛋白血症)
- ✓动脉粥样硬化
- ✓肥胖症
- ✓脂肪肝

生命科学基础I

一、高脂血症(hyperlipidemia)高脂蛋白血症)

- >概念:空腹血脂浓度持续高于正常
- >主要是血浆胆固醇及甘油三酯含量超过正常
- ▶分为六型:Ⅰ、Ⅱa、Ⅱb、Ⅲ、Ⅳ、Ⅴ
- >原发性: 遗传基因缺陷、家族史、肥胖等
- ▶继发性:糖尿病、肾病、甲状腺功能减退等
- > 易引起心血管疾病

生命科学基础I

西安克通大学

二、动脉粥样硬化

防治原则:降低LDL、VLDL,提高HDL 控制饮食、适当运动、服降脂药

生命科学基础I

西安克通大學

─ 三、肥胖症

- ❖肥胖症:全身性脂肪堆积过多,导致体内一系列病理生 理变化
- ❖肥胖度的衡量标准:体重指数(body mass index)

 $BMI = 体重(kg)/身高^2(M^2)$

24~26: 轻度肥胖

26~28: 中度肥胖

>28: 重度肥胖

※肥胖症常伴有高血糖、高血脂、高血压、高胰岛素血症

~~ 四、脂肪肝

- ❖脂肪肝是指由于各种原因引起的肝细胞内脂肪堆 积过多的病变。脂肪性肝病严重威胁国人的健康, 成为仅次于病毒性肝炎的第二大肝病、已被公认 为隐蔽性肝硬化的常见原因。
- ❖正常人的肝内总脂肪量,约占肝重的5%,内含磷 脂、甘油三酯、脂酸、胆固醇及胆固醇脂。脂肪 量超过5%为轻度脂肪肝,超过10%为中度脂肪肝, 超过25%为重度脂肪肝。当肝内总脂肪量超过30% 时, 用B超才能检查出来, 被B超检查确诊为"脂 肪肝"。

🍑 练习题

- 1. acyl carrier protein, ACP, BCCP
- 2. 血脂的构成
- 3. 机体内甘油磷酸的来源
- 4. 饱和脂酸合成发生在胞浆,线粒体中生成的乙酰 COA是脂酸合成原料。乙酰COA如何从线粒体转 运到胞浆中?
- 5. 脂肪酸需要进入线粒体中进行 β 氧化, 简介脂 酸进入线粒体的方式及相关酶
- 6. 比较软脂酸合成与分解过程的区别
- 7. 图示胆固醇在体内的代谢途径

生命科学基础I

