The questions for this discussion are Exercises 6.17, 6.52, and 6.88 from textbook.

Exercise 6.17

A member of the power family of distributions has a distribution function given by

$$F(y) = \begin{cases} 0, & y < 0, \\ \left(\frac{y}{\theta}\right)^{\alpha}, & 0 \le y \le \theta, \\ 1, & y > \theta \end{cases}$$

where $\alpha, \theta > 0$.

- a Find the probability density function.
- **b** For fixed values of θ and α , find a transformation G(U) so that G(U) has a distribution function of F when U has a uniform distribution on the interval (0,1).
- **c** Given that a random sample of size 5 from a uniform distribution on the interval (0,1) yielded the values .2700, .6901, .1413, .1523, and .3609, use the transformation derived in part **b** to give values associated with a random variable with a power family distribution with $\alpha = 2$, $\theta = 4$.

b and **c** can be used to sample from a known strictly increasing distribution function (Inverse transform sampling): We can first uniformly sample u from the interval (0,1), then apply the transformation $G(\cdot)$ and G(u) is equivalent to sampling directly from the distribution F.

Exercise 6.52 (correlated to exercise 6.54)

Let Y_1 and Y_2 be independent Poisson random variables with means λ_1 and λ_2 , respectively. Find the

- **a** probability function of $Y_1 + Y_2$.
- **b** conditional probability function of Y_1 , given that $Y_1 + Y_2 = m$.

Exercise 6.88

Suppose that the length of time Y it takes a worker to complete a certain task has the probability density function given by

$$f(y) = \begin{cases} e^{-(y-\theta)}, & y > \theta, \\ 0, & elsewhere, \end{cases}$$

where θ is a positive constant that represents the minimum time until task completion. Let Y_1, Y_2, \dots, Y_n denote a random sample of completion times from this distribution. Find

- **a** the density function for $Y_{(1)} = \min(Y_1, Y_2, \dots, Y_n)$.
- **b** $E(Y_{(1)}).$

Supplement content:

- 1. Let Y_1, \ldots, Y_n be a random i.i.d sample with mean μ and variance σ^2 . Find $E[(Y_i \bar{Y})^2]$.
- 2. From 1., find $E(S^2)$, where $S^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i \bar{Y})^2$.
 - i. The sum of the squares of Y_1,\ldots,Y_n is: $\sum_{i=1}^n Y_i^2 = (n-1)S^2 + n\bar{Y}^2$
 - ii. From 2.i., we have $\sum_{i=1}^{n} (Y_i \mu)^2 = \sum_{i=1}^{n} (Y_i \bar{Y})^2 + n(\bar{Y} \mu)^2$.
- 3. Further consider that all samples Y_1, \ldots, Y_n come from a normal distribution:
 - i. How to prove that \bar{Y} and $Y_i \bar{Y}$ are independent for all $i = 1, \dots, n$?
 - ii. From 3.i., how to prove \bar{Y} and S^2 are independent?
 - iii. From 2.ii. and 3.ii., how to prove $\frac{(n-1)S^2}{\sigma^2}$ has a χ^2 distribution with (n-1) degrees of freedom? (Hint: moment generating function)
- 4. Suppose $U \sim U(0,1), \beta > 0$. Then $-\beta \ln(U) \sim Exp(\beta) = Gamma(1,\beta)$.
 - Suppose all Z_i are independent standard normal random variables, then $\sum_{i=1}^k Z_i^2 \sim \chi^2(k) = Gamma(\frac{k}{2}, 2)$.
- 5. About Gamma distribution:

Summation: If X_i has a $Gamma(\alpha_i, \beta)$ distribution for i = 1, ..., m and all X_i are independent, then $\sum_{i=1}^m X_i \sim Gamma(\sum_{i=1}^m \alpha_i, \beta)$

Scaling: If $X \sim Gamma(\alpha, \beta)$, then for any c > 0: $cX \sim Gamma(\alpha, c\beta)$.

Solution

Exercise 6.17

- **a** Taking the derivative of $F(y), f(y) = \frac{\alpha y^{\alpha-1}}{\theta^{\alpha}}, 0 \le y \le \theta$.
- **b** Following Ex.6.15 and 6.16, let $u = \left(\frac{y}{\theta}\right)^{\alpha}$ so that $y = \theta u^{1/\alpha}$. Thus, the random variable $Y = \theta U^{1/a}$ has distribution function $F_Y(y)$.
- **c** From part (b), the transformation is $y = 4\sqrt{u}$. The values are 2.0785, 3.229, 1.5036, 1.5610, 2.403.

Exercise 6.52

The mgfs for Y_1 and Y_2 are, respectively, $m_{Y_1}(t) = e^{\lambda_1(e^t - 1)}, m_{Y_2}(t) = e^{\lambda_2(e^t - 1)}$.

- a Since Y_1 and Y_2 are independent, the mgf for $Y_1 + Y_2$ is $m_{Y_1}(t) \times m_{Y_2}(t) = e^{(\lambda_1 + \lambda_2)(e^t 1)}$. This is the mgf of a Poisson with mean $\lambda_1 + \lambda_2$.
- **b** From Ex. 5.39 , the distribution is binomial with m trials and $p=\frac{\lambda_1}{\lambda_1+\lambda_2}.$

Exercise 6.88

This is somewhat of a generalization of Ex. 6.87. The distribution function of Y is

$$F(y) = P(Y \le y) = \int_{\theta}^{y} e^{-(t-\theta)} dy = 1 - e^{-(y-\theta)}, y > \theta$$

- $\mathbf{a} \ g_{(1)}(y) = n \left[e^{-(y-\theta)} \right]^{n-1} e^{-(y-\theta)} = n e^{-n(y-\theta)}, y > \theta.$
- **b** $E(Y_{(1)}) = \frac{1}{n} + \theta$.