#

Доказательство.

$$\lambda \neq \mu, \ x \neq 0, y \neq 0$$

 $Ax = \lambda x, \ y$ скалярно справа $Ay = \mu y, \ x$ скалярно слева

$$0 = (Ax, y) - (x, Ay) = \lambda(x, y) - (x, \mu y) = \lambda(x, y) - \overline{\mu}(x, y) = \underbrace{(\lambda - \mu)}_{\neq 0}(x - y) \Rightarrow$$
$$\Rightarrow (x, y) = 0 \Rightarrow x \perp y$$

1. Инвариантное подпространство

Определение 1. H - гильбертово подпространство $A: H \to H$ линейный оператор, $S \in H$ подпространство S является инвариантным подпространством A, если $\forall x \in S$ $Ax \in S$

Тривиальные примеры: $\{0\}, H$

Нетривиальные примеры: $A: H \to H, \ \lambda \in \sigma_p(A)$

 $S_{\lambda} = \{0, \text{ все собственные векторы отвечающие собственным } \lambda \}$

$$x \in S_{\lambda} \xrightarrow{?} Ax \in S_{\lambda}$$

- 1) x = 0 $A0 = 0 \in S_{\lambda}$
- 2) $Ax = \lambda x$

$$A(\lambda x) = \lambda \lambda x \Rightarrow Ay = \lambda y, y \in S_{\lambda}$$

Теорема 1. A - линейный ограниченные оператор, S - инвариантное подпространство A. Тогда S^{\perp} - инвариантное подпространство в A^{\perp}

Доказательство.

$$x \in S, A \in S$$

$$(x,y)=0 \quad (Ax,y)=0 \quad (x,A^*y)=0, \ x\perp A^*y \Rightarrow A^*y \in S^\perp$$

 S^\perp - инвариантное подпространство A^*

Если $A=A^*,\ A$ действует инвариантно в $S,\ S^\perp:H=S\oplus S^\perp$

#

2. Компактное множество. Компактные операторы

Определение 2. Множество $K \subset H$ - гильбертово подпространство называется компактным, если из любой его бесконечной последовательности можно выделить последовательность сходящуюся к некоторому вектору K

Свойства: 1) В конечном подпространстве $(\dim H = +\infty)$ K компактно \Leftrightarrow замкнуто и ограничено (ранее было доказано в Математическом анализе)

2) Общий случай: K - компактно \Leftrightarrow замкнуто и ограничено.

Доказательство.

1) $K \stackrel{?}{=} \overline{K}$ рассмотрим предельную точку $x_0 \Rightarrow x_n \to x_0$

$$x_{n_k} \to x_1 \in K$$
 в силу! предела $x_0 = x, \ x \in K$

Тогда K содержит точку $x_0 \Rightarrow$ замкнуто.

2) Докажем ограниченность K от противного. Пусть K не является ограниченным множеством. Тогда $\forall \alpha \; \exists x \in K \, ||x|| > \alpha$

Построим последовательность x_1, \ldots, x_n из K

$$||x_1|| > 1$$
 \vdots
 $||x_n|| > ||x_{n-1}|| + 1$
 $||x_n - x_m|| \ge ||x_n|| - ||x_m||| \ge |n - m| > 1$

 $\{x_n\}$ не является фундаментальной последовательностью \Rightarrow не является сходящейся $\Rightarrow K$ - не компактно.

#

3) Контрпример: замкнутое + ограниченное \neq компактное. Орты в l_2 :

$$e_1 = (1, 0, 0, \dots,)$$

 $e_2 = (0, 1, 0, \dots,)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1, 0, \dots,)$

- 1. $\{e_i\} \subset \{\|x\| \le 1\}$ множество ограничено.
- 2. Предельных точек нет

Не компактно $\|e_n - e_m\|^2 = 2 \Rightarrow$ не фунд. \Rightarrow не сход. \Rightarrow не комп.

4) Если замкнутый единичный шар в гильбертовом подпространстве H компактен, то $dim H < +\infty$

Пусть $dim H = +\infty \stackrel{\Gamma\text{-III}}{\Rightarrow}$ ортонормированная система x_1, \dots, x_n счетный линейный независимый набор

$$\|x_n - x_m\| = 2 \Rightarrow M$$
 - не комп.

Определение 3. H, H_1 - гильбертовы подпространства $A: H \to H_1$ линейный оператор A является компактным, если \exists последовательность A_1, \ldots, A_n - линейных операторов:

- 1) $A_n: H \to H_1$ ограниченность операторов $\forall n$
- 2) $\forall n \ dim(imA_n) < +\infty \ \{A_nx\}$ конечномерно. 3) $A_n \xrightarrow{n \to \infty} A \ (\|A_n A\| \xrightarrow{n \to \infty} 0)$

Определение 4. $A: H \to H_1$ компактен, если любое ограниченное множество $X \subset H$ переводит $\overline{AX} \subset H_1$ - компактно.

Свойства компактных операторов:

- 1. $A: H \to H_1 \Rightarrow$ комп. , α, β числа Тогда $\alpha A + \beta B$ комп. $B: H \to H_1$
- 2. $A: H \to H_1$ комп. Тогда A ограниченный оператор.
- 3. $A: H \to H_1$ ограниченный линейный оператор $dim H_1 < +\infty$. Тогда A комп-н
- 4. $I: H \to H$ комп $\Leftrightarrow dimH < +\infty$
- 5. $A: H \to H_1$ комп

$$\frac{B:H_1\to H_2}{C:H_3\to H}\Rightarrow \text{orp.}$$

BA, AC - комп.

6. $dim H_1 = +\infty$, $A: H \to H_1$ - комп. обратим $\Rightarrow A^{-1}$ не огр.

Доказательство.

- 1) Из комп $A, B \Rightarrow \exists A_n, B_n$ со свойствами из определения компактных операторов
- 1)-3). Рассмотрим последовательность $\alpha A_1 + \beta B_1, \alpha A_2 + \beta B_2, ..., \alpha A_n + \beta B_n$

Проверим свойства компактных операторов:

$$\forall n \ \alpha A_n + \beta B_n$$
 - лин. последов. операторов
$$\|\alpha A_n - \beta B_n\| \le |\alpha| \, \|A_n\| + |\beta| \, \|B_n\|$$

2) $dim(im(\alpha A_n + \beta B_n)) < +\infty$ в силу:

$$im(\alpha A_n + \beta B_n) = \{\alpha A_n x + \beta B_n x | x \in H\} \subset \{\alpha A_n x | x \in H\} \cup \{\beta B_n y | y \in H\} = im(\alpha A N n) + im(\beta B_n)$$

$$dim(\alpha A_n + \beta B_n) \leq dim(im(\alpha A_n)) + dim(im(\beta B_n)) < +\infty$$
 по 2

3)
$$\alpha A_n + \beta B_n \xrightarrow{n \to \infty} \alpha + \beta B$$

$$\lim(\alpha A_n + \beta B_n) = \alpha \lim A_n + \beta \lim B_n = \alpha A + \beta B$$

#

- 5. Упр. Взять что то там.
- 2. A является пред. $\stackrel{3)}{\text{огр.}} \Rightarrow$ огр.
- $3. A: H \rightarrow H_1 \text{orp.} \Rightarrow 1)$

 $dim H_1 = +\infty \Rightarrow 2$

- 4. Ix = x
- 1) $dim H < \infty$. Докажем компактность I. I огр (||I|| = 1) по свойству 3) компактен.
- 2) I компактен. Докажем $dim H < \infty$

Пусть это не так $dim H = +\infty$. \exists последовательность $A_1,...,A_n$ соот $1),2) <math>A_n \xrightarrow{n \to \infty} I$

$$\frac{dimH = \infty}{dim(imA_n) < \infty} \Rightarrow$$

$$\exists x \in H : ||x|| = 1 \ x \perp imA_n$$

 $||x - A_n x|| > ||x|| = 1$

$$\forall n \ \|I - A_n\| = \sup_{\|y\| < 1} \|Iy - A_ny\| \ge \|Ix - A_nx\| \ge 1$$

 $\forall n$ поэтому 3) не выполн \Rightarrow противоречие $\Rightarrow dim H < +\infty$

6) Докажем что A^\perp не огр. Пусть это не так A^{-1} огр оператор A - комп, тогда по свойству 5 $AA^{-1}=I$, где A - комп, A^{-1} - огр

по $4\ I: H_1 \to H$ не комп $\Rightarrow A^{-1}$ - не огр