XI – Séries entières

I. Comparaisons de rayons de convergence

1) Ces deux séries entières ont le même rayon de convergence, et pour le montrer il suffit de montrer que si $\alpha\geqslant 0$, les séries entières $\sum a_nz^n$ et

 $\sum n^{\alpha}a_nz^n$ ont le même rayon de convergence. En effet, si le résultat est vrai

pour $\alpha > 0$, alors $\sum_{n \geq 0} a_n z^n$ et $\sum_{n \geq 0} \frac{a_n}{n^{\alpha}} z^n$ ont le même rayon de convergence

puisque $a_n = n^{\alpha} \times \frac{a_n}{n^{\alpha}}$. Et ainsi le résultat sera aussi vrai pour $\alpha < 0$. Pour cela posons $b_n = n^{\alpha} a_n$, et notons R_a et R_b les rayons de convergence

des deux séries entières associées.

- Si $\alpha = 0$, $a_n = b_n$ et donc le résultat est immédiat.
- Si $\alpha > 0$, alors $a_n = o(b_n)$ donc $R_a \geqslant R_b$. Soit $r < R_a$. Alors il existe $\rho \in]r, R_a[$. Alors $b_n r^n = a_n \rho^n \times n^\alpha \left(\frac{r}{\rho}\right)^n =$ $o(a_n \rho^n)$ par croissances comparées. Donc $\sum_{n > 0} b_n r^n$ converge, car

 $\sum a_n \rho^n$ converge. Ainsi $r \leqslant R_b$, et ainsi étant valable pour tout

 $r < R_a$, nous avons $R_a \leqslant R_b$.

Finalement, $R_a = R_b$.

2) Soit $\alpha = \deg P - \deg Q$. Alors $\frac{P(n)}{Q(n)} \sim n^{\alpha}$. Donc $\sum_{n \geq 0} \frac{P(n)}{Q(n)} z^n$ a même rayon

de convergence que $\sum_{n\geq 0} a_n z^n$.

II. Calculs de rayons de convergence (Banque CCP MP)

1) Soit $\sum a_n z^n$ une série entière.

Le rayon de convergence R de la série entière $\sum a_n z^n$ est l'unique élément $de \mathbb{R}^+ \cup \{+\infty\}$ défini par :

 $R = \sup \{r \ge 0 / (a_n r^n) \text{ est bornée} \}.$

On peut aussi définir le rayon de convergence de la manière suivante :

 $\exists ! R \in \mathbb{R}^+ \cup \{+\infty\} \text{ tel que} :$

- i) $\forall z \in \mathbb{C}, |z| < R \Longrightarrow \sum a_n z^n$ converge absolument.
- ii) $\forall z \in \mathbb{C}, |z| > R \Longrightarrow \sum a_n z^n$ diverge (grossièrement).

R est le rayon de convergence de la série entière $\sum a_n z^n$.

Remarque : pour une série entière de la variable réelle, la définition est identique.

2) a) Notons R le rayon de convergence de $\sum \frac{(n!)^2}{(2n)!} z^{2n+1}$ et posons : $\forall n \in \mathbb{N}$,

$$\forall z \in \mathbb{C}, \ u_n(z) = \frac{(n!)^2}{(2n)!} z^{2n+1}.$$

Pour z = 0, $\sum u_n(0)$ converge.

Pour
$$z \neq 0$$
, $\left| \frac{u_{n+1}(z)}{u_n(z)} \right| = \frac{n+1}{4n+2} |z|^2$. Donc $\lim_{n \to +\infty} \left| \frac{u_{n+1}(z)}{u_n(z)} \right| = \frac{|z|^2}{4}$.

D'après la règle de d'Alembert,

Pour |z| < 2, la série numérique $\sum u_n(z)$ converge absolument.

Pour |z| > 2, la série numérique diverge grossièrement.

On en déduit que R=2.

b) Notons R le rayon de convergence de $\sum n^{(-1)^n} z^n$ et posons : $\forall n \in \mathbb{N}$, $a_n = n^{(-1)^n}.$

On a, $\forall n \in \mathbb{N}, \forall z \in \mathbb{C}, |a_n z^n| \leq |n z^n|$ et le rayon de convergence de

la série entière $\sum nz^n$ vaut 1.

Donc $R \geqslant 1$. (*)

De même, $\forall n \in \mathbb{N}^*, \forall z \in \mathbb{C}, \left|\frac{1}{n}z^n\right| \leq |a_nz^n|$ et le rayon de convergence

de la série $\sum_{n\geq 1} \frac{1}{n} z^n$ vaut 1.

Donc $R \leq 1$. (**)

D'après (*) et (**), R = 1.

c) Notons R le rayon de convergence de $\sum \cos nz^n$ et posons : $\forall n \in \mathbb{N}$, $a_n = \cos n$.

On a, $\forall n \in \mathbb{N}$, $\forall z \in \mathbb{C}$, $|a_n z^n| \leq |z^n|$ et le rayon de convergence de la série entière $\sum z^n$ vaut 1.

Donc $R \geqslant 1$. (*)

Pour z=1, la série $\sum \cos nz^n=\sum \cos n$ diverge grossièrement car $\cos n \not\longleftrightarrow 0.$

Donc $R \leqslant 1$. (**)

D'après (*) et (**), R = 1.

III. Une fonction de classe \mathscr{C}^{∞} (Banque CCP MP)

1) Notons R le rayon de convergence de la série entière $\sum \frac{x^n}{(2n)!}$.

Pour $x \neq 0$, posons $u_n = \frac{x^n}{(2n)!}$

$$\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to +\infty} \frac{|x|}{(2n+2)(2n+1)} = 0.$$

On en déduit que la série entière $\sum \frac{x^n}{(2n)!}$ converge pour tout $x \in \mathbb{R}$ et donc $R = +\infty$.

- 2) $\forall x \in \mathbb{R}$, $\operatorname{ch}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$ et le rayon de convergence du développement en série entière de la fonction ch est égal à $+\infty$.
- 3) a) Pour $x \ge 0$, on peut écrire $x = t^2$ et $S(x) = \sum_{n=0}^{+\infty} \frac{x^n}{(2n)!} = \sum_{n=0}^{+\infty} \frac{t^{2n}}{(2n)!} =$ $\operatorname{ch}(t) = \operatorname{ch}\sqrt{x}$. Pour x < 0, on peut écrire $x = -t^2$ et $S(x) = \sum_{n=0}^{+\infty} \frac{x^n}{(2n)!} =$

$$\sum_{n=0}^{+\infty} \frac{(-1)^n t^{2n}}{(2n)!} = \cos(t) = \cos\sqrt{-x}.$$

b) D'après la question précédente, la fonction f n'est autre que la fonction S.

S est de classe \mathcal{C}^{∞} sur \mathbb{R} car développable en série entière à l'origine avec un rayon de convergence égal à $+\infty$.

Cela prouve que f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

IV. Une équation différentielle (Banque CCP MP)

1) Soit $\sum a_n x^n$ une série entière de rayon de convergence R > 0 et de somme S.

Pour tout $x \in]-R, R[, S(x) = \sum_{n=0}^{+\infty} a_n x^n, S'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} \text{ et } S''(x) =$

$$\sum_{n=2}^{+\infty} n(n-1)a_n x^{n-2} = \sum_{n=1}^{+\infty} (n+1)na_{n+1} x^{n-1}.$$

Donc $x(x-1)S''(x) + 3xS'(x) + S(x) = \sum_{n=0}^{+\infty} ((n+1)^2 a_n - n(n+1)a_{n+1}) x^n$.

Par unicité des coefficients d'un développement en série entière, la fonction S est solution sur]-R,R[de l'équation étudiée si, et seulement si, $\forall n \in \mathbb{N}, (n+1)^2a_n-n(n+1)a_{n+1}=0.$

C'est-à-dire : $\forall n \in \mathbb{N}, na_{n+1} = (n+1)a_n$.

Ce qui revient à : $\forall n \in \mathbb{N}, a_n = na_1$.

Le rayon de convergence de la série entière $\sum nx^n$ étant égal à 1, on peut affirmer que les fonctions développables en série entière solutions de l'équation sont les fonctions :

$$x \mapsto a_1 \sum_{n=0}^{+\infty} nx^n = a_1 x \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{1-x} \right) = \frac{a_1 x}{(1-x)^2}$$
 définies sur]-1,1[, avec $a_1 \in \mathbb{R}$.

2) Notons (E) l'équation x(x-1)y'' + 3xy' + y = 0.

Prouvons que les solutions de (E) sur]0;1[ne sont pas toutes développables en série entière à l'origine. Raisonnons par l'absurde.

Si toutes les solutions de (E) sur]0; 1[étaient développables en série entière à l'origine alors, d'après 1., l'ensemble des solutions de (E) sur]0; 1[serait égal à la droite vectorielle $\mathrm{Vect}(f)$ où f est la fonction définie par $\forall x \in$]0; 1[, $f(x) = \frac{x}{(1-x)^2}$.

Or, d'après le cours, comme les fonctions $x \mapsto x(x-1)$, $x \mapsto 3x$ et $x \mapsto 1$ sont continues sur]0;1[et que la fonction $x \mapsto x(x-1)$ ne s'annule pas sur]0;1[, l'ensemble des solutions de (E) sur]0;1[est un plan vectoriel. D'où l'absurdité.

V. Calculs de sommes de séries entières (Banque CCP MP)

1) On note R le rayon de convergence de $\sum_{n\geqslant 1} \frac{3^n x^{2n}}{n}$ et pour tout réel x, on

$$pose u_n(x) = \frac{3^n x^{2n}}{n}.$$

Pour
$$x$$
 non nul, $\left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \left| \frac{3nx^2}{n+1} \right| \underset{n \to +\infty}{\longrightarrow} |3x^2|$.

Donc, d'après la règle de d'Alembert :

si
$$|3x^2| < 1$$
 c'est-à-dire si $|x| < \frac{1}{\sqrt{3}}$ alors $\sum_{n\geqslant 1} \frac{3^n x^{2n}}{n}$ converge absolument

et si
$$\left|3x^2\right|>1$$
 c'est-à-dire si $\left|x\right|>\frac{1}{\sqrt{3}}$ alors $\sum_{n\geqslant 1}\frac{3^nx^{2n}}{n}$ diverge.

On en déduit que $R = \frac{1}{\sqrt{3}}$.

On pose:
$$\forall x \in \left] -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right[, S(x) = \sum_{n=1}^{+\infty} \frac{3^n x^{2n}}{n}.$$

On a:
$$\forall x \in \left] -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right[, S(x) = \sum_{n=1}^{+\infty} \frac{(3x^2)^n}{n}.$$

Or, d'après les développements en séries entières usuels, on a : $\forall t \in]-1,1[$,

$$\sum_{n=1}^{+\infty} \frac{t^n}{n} = -\ln(1-t).$$

Ainsi :
$$\forall x \in \left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right[, S(x) = -\ln(1 - 3x^2).$$

2) Notons R le rayon de convergence de $\sum a_n x^n$.

On considère les séries
$$\sum a_{2n}x^{2n} = \sum 4^nx^{2n}$$
 et $\sum a_{2n+1}x^{2n+1} = \sum 5^{n+1}x^{2n+1}$.

Notons R_1 le rayon de convergence de $\sum 4^n x^{2n}$ et R_2 le rayon de convergence de $\sum 5^{n+1} x^{2n+1}$.

Le rayon de convergence de $\sum x^n$ vaut 1.

Or,
$$\sum 4^n x^{2n} = \sum (4x^2)^n$$
.

Donc pour $|4x^2| < 1$ c'est-à-dire $|x| < \frac{1}{2}$, $\sum 4^n x^{2n}$ converge absolument et pour $|4x^2| > 1$ c'est-à-dire $|x| > \frac{1}{2}$, $\sum 4^n x^{2n}$ diverge.

On en déduit que $R_1 = \frac{1}{2}$.

Par un raisonnement similaire et comme $\sum 5^{n+1}x^{2n+1} = 5x\sum (5x^2)^n$, on trouve $R_2 = \frac{1}{\sqrt{5}}$.

 $\sum a_n x^n$ étant la série somme des séries $\sum a_{2n} x^{2n}$ et $\sum a_{2n+1} x^{2n+1}$, on en déduit, comme $R_1 \neq R_2$, que $R = \min(R_1, R_2) = \frac{1}{\sqrt{5}}$. D'après ce qui précéde, on en déduit également que :

$$\forall x \in \left[-\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right[, S(x) = \sum_{n=0}^{+\infty} a_n x^n = \sum_{n=0}^{+\infty} (4x^2)^n + 5x \sum_{n=0}^{+\infty} (5x^2)^n = \frac{1}{1 - 4x^2} + \frac{5x}{1 - 5x^2}.$$

VI. Développements en série entière (Banque CCP MP)

1) On pose : $\forall n \in \mathbb{N}$, $u_n = \frac{(2n)!}{(n!)^2 2^{4n} (2n+1)}$. On a : $\forall n \in \mathbb{N}$, $u_n > 0$. $\forall n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} = \frac{(2n+2)(2n+1)(2n+1)}{(n+1)^2 2^4 (2n+3)} = \frac{(2n+1)^2}{8(n+1)(2n+3)} \underset{+\infty}{\sim} \frac{1}{4}$. Ainsi, $\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{\longrightarrow} \frac{1}{4} < 1$.

Donc, d'après la règle de d'Alembert, $\sum u_n$ converge.

2) D'après le cours, $\forall \alpha \in \mathbb{R}, u \mapsto (1+u)^{\alpha}$ est développable en série entière en 0 et le rayon de convergence R de son développement en série entière vaut 1 si $\alpha \notin \mathbb{N}$.

De plus, $\forall u \in]-1, 1[, (1+u)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} u^n.$

En particulier, pour $\alpha = -\frac{1}{2}$ et u = -t:

$$R = 1 \text{ et } \forall t \in]-1, 1[, \frac{1}{\sqrt{1-t}} = 1 + \sum_{n=1}^{+\infty} \frac{(-1)(-3)\cdots(-(2n-1))}{2^n n!} (-t)^n.$$

En multipliant numérateur et dénominateur par $2.4....2n = 2^n n!$, on obtient :

$$\forall t \in]-1,1[, \frac{1}{\sqrt{1-t}} = 1 + \sum_{n=1}^{+\infty} \frac{(2n)!}{(2^n n!)^2} t^n$$

Conclusion: R = 1 et $\forall t \in]-1, 1[, \frac{1}{\sqrt{1-t}} = \sum_{n=0}^{+\infty} \frac{(2n)!}{(2^n n!)^2} t^n.$

3) D'après la question précédente, en remarquant que : $x \in]-1,1[\Leftrightarrow t=x^2 \in [0,1[$ et $[0,1[\subset]-1,1[$, il vient :

 $\forall x \in]-1,1[, \frac{1}{\sqrt{1-x^2}} = \sum_{n=0}^{+\infty} \frac{(2n)!}{(2^n n!)^2} x^{2n}$ avec un rayon de convergence R=1.

Arcsin est dérivable sur] – 1,1[avec Arcsin' : $x \mapsto \frac{1}{\sqrt{1-x^2}}$.

D'après le cours sur les séries entières, on peut intégrer terme à terme le développement en série entière de $x\mapsto \frac{1}{\sqrt{1-x^2}}$ et le rayon de convergence est conservé.

De plus, on obtient:

$$\forall x \in]-1,1[, \text{ Arcsin } x = \underbrace{\text{Arcsin } 0}_{=0} + \sum_{n=0}^{+\infty} \frac{(2n)!}{(2^n n!)^2 (2n+1)} x^{2n+1} \text{ avec un rayon}$$

de convergence R=1.

4) Prenons $x = \frac{1}{2} \in]-1,1[$ dans le développement précédent.

On en déduit que Arcsin $\left(\frac{1}{2}\right) = \sum_{n=0}^{+\infty} \frac{(2n)!}{2^{2n}(n!)^2(2n+1)} \frac{1}{2^{2n+1}}$

C'est-à-dire, en remarquant que Arcsin $\left(\frac{1}{2}\right) = \frac{\pi}{6}$, on obtient

$$\sum_{n=0}^{+\infty} \frac{(2n)!}{(n!)^2 2^{4n} (2n+1)} = \frac{\pi}{3}.$$