

PRÁCTICA CALIFICADA No. 2

CURSO: Fundamentos de Econometría

CÓDIGO: 1ECO27

PROFESOR: Juan Palomino

JEFE DE PRÁCTICA: Tania Paredes FECHA: 12 de noviembre de 2022

DURACIÓN DE LA PRUEBA: 1 hora y 50 minutos

SEMESTRE: 2022-2

Sí está permitido el uso de material de consulta durante el desarrollo de la prueba.

• Puntaje: 20 puntos

1. El problema de autocorrelación. (6 puntos)

Al estudiar el movimiento en la participación de la producción de los trabajadores en el valor agregado (es decir, la participación laboral), Gujarati¹ consideró los siguientes modelos:

Modelo A

$$Y_t = \beta_0 + \beta_1 t + u_t$$

Modelo B

$$Y_t = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + u_t$$

donde Y participación laboral y t tiempo. Con base en información anual de 1949 a 1964 se obtuvieron los siguientes resultados para la industria metalúrgica básica:

Modelo A

$$\widehat{Y}_t = 0.4529 - 0.0041t$$
, $R^2 = 0.5284$, $d = 0.8252$ (-3.9608)

Modelo B

$$\widehat{Y}_t = 0.4786 - 0.0127t + 0.0005t^2, R^2 = 0.6629, d = 1.82$$
(-3.2724) (2.7777)

donde las cifras entre paréntesis son los valores t y el valor del estadístico DW son los valores d.

- a. ¿Hay correlación serial en el modelo A? ¿En el modelo B? (2 puntos)
- b. ¿Qué explica la correlación serial? (2 puntos)
- c. ¿Cómo distinguiría entre autocorrelación "pura" y sesgo de especificación? (2 puntos)

¹ Damodar Gujarati, "Labor's Share in Manufacturing Industries", Industrial and Labor Relations Review, vol. 23, núm. 1, octubre de 1969, pp. 65-75.

2. El problema de endogeneidad y el uso de variables instrumentales (6 puntos)

Se utilizan datos sobre mujeres trabajadoras casadas para estimar el rendimiento de la educación en el modelo de regresión simple:

$$\log(wage) = \beta_0 + \beta_1 educ + u$$

Y se obtienen los siguientes datos de la estimación:

$$\log(wage) = -0.185 + 0.109 educ$$

Donde las desviaciones estándar de β_0 y β_1 son 0.185 y 0.14, respectivamente. Otros datos son: N=428, $R^2 = 0.118$

a. Interprete el resultado del estimador de β_1 obtenido (1 punto)

Se propone utilizar la educación del padre (*fatheduc*) como variable instrumental para educación, para lo cual se obtienen los siguientes resultados de la estimación

$$\widehat{educ} = 10.24 + 0.269$$
 fatheduc

Donde las desviaciones estándar de β_0 y β_1 son 0.28 y 0.29, respectivamente Otros datos son: N=428, $R^2 = 0.173$ y el t-estadístico=9.28

b. ¿Es este será un buen instrumento? Presente dos argumentos que justifiquen su respuesta (2 puntos).

Finalmente, cuando se realiza la estimación incorporando la variable instrumental *fatheduc* de *educ*:

$$\log(\widehat{wage}) = 0.441 + 0.059 \, \widehat{\text{educ}}$$

Donde las desviaciones estándar de β_0 y β_1 son 0.446 y 0.350, respectivamente. Otros datos son: N=428, $R^2=0.093$

c. ¿Qué podríamos concluir de comparar esta estimación (que incluye el uso de una variable instrumental) con la de la parte 2a.? (3 puntos).

3. Ecuaciones Simultáneas [8 puntos]

Considere el modelo:

$$Q_{t}^{o} = \alpha_{1} + \alpha_{2} P_{t} + \alpha_{3} T_{t} + \varepsilon_{t}^{o}$$

$$Q_{t}^{d} = \beta_{1} + \beta_{2} P_{t} + \beta_{3} N_{t} + \beta_{4} R_{t} + \varepsilon_{t}^{d}$$

- a) Expresa matricialmente el sistema de ecuaciones y encuentre los parámetros reducidos en función de los parámetros estructurales. (2 puntos)
- b) Estudie la identificación del modelo por condición de orden. (2 puntos)
- c) Estudie la identificación del modelo por condición de rango. (2 puntos)
- d) De acuerdo a la identificación, establecer que método de estimación es apropiado para solucionar la ecuación. Justifique su respuesta. (2 punto)

