1990 HKCE Additional Mathematics II

IM 1A 1A 1M	Deduct 1 mark for missing
1 A 1 A	•
1 A	•
1 A	
1 A	
1M	
·	
1A 	
1	
1	
1 .	
1	
15	Awarded if previous steps all correct.
	1

Solution	Marks	Remarks
3. $du = 2\sin x \cos dx$ $\int \frac{\sin x \cos x}{\sqrt{9\sin^2 x + 4\cos^2 x}} dx = \int \frac{1}{2\sqrt{5u + 4}} du$	1A 2A	Integrated must be in terms of u
$= \frac{1}{5} \sqrt{5u + 4} + c$ $= \frac{1}{5} \sqrt{5\sin^2 x + 4} + c$ $(or \frac{1}{5} \sqrt{9\sin^2 x + 4\cos^2 x} + c)$	1A 1A 5	Deduct l mark for omitting c
4. $\int_{0}^{\pi/2} [\cos x - k(x - \frac{\pi}{2})^{2}] dx$	1 A	
$= \left[\sin x - \frac{k}{3}(x - \frac{\pi}{2})^{3}\right]_{0}^{\pi/2}$	1A .	
$=1-\frac{k\eta^3}{24}=2$	1A+1M	
$k = \frac{-24}{\pi 3} (-0.774)$	1A 5	
Alt. Solution $\int_{0}^{\frac{\pi}{2}} \cos x dx = \left[\sin x\right]_{0}^{\frac{\pi}{2}}$ $= 1$ $\int_{0}^{\frac{\pi}{2}} k\left(x - \frac{\pi}{2}\right)^{2} ds = \frac{k}{3}\left(x - \frac{\pi}{2}\right)^{3} \int_{0}^{\frac{\pi}{2}}$	1A	
$=\frac{k\pi^3}{24}$ $1-\frac{k\pi^3}{24}=2$	1A	
$k = \frac{-24}{\pi 3} (-0.774)$	1A+1M	•

Solution	Marks	Remarks
$2\sin\frac{x}{2}\sin\frac{3x}{2} = 1$		
cosx - cos2x = 1	1 A	
$\cos x - (2\cos^2 x - 1) = 1$	1A	
$2\cos^2 x - \cos x = 0$		
$cosx = 0 \text{ or } \frac{1}{2}$	1A	
$x = 2n \pi \pm \frac{\pi}{2} \qquad \left(\frac{2n+1}{2}\widehat{i}\right)$	1A	360n° ± 90°, (2n + 1) 90°
or $2n^{\pi} \pm \frac{\pi}{3}$ where $n \in \mathbb{Z}$	1A 	360n° ± 60° use different units (pp - 1)
Alt. Solution		
Let $\sin \frac{x}{2} = t$		
$t(3t - 4t^3) = \frac{1}{2}$	1A	
$t(3t - 4t^3) = \frac{1}{2}$ $8t^4 - 6t^2 + 1 = 0$	1A -	
$(2t^2 - 1) (4t^2 - 1) = 0$		
$t = \pm \frac{\sqrt{2}}{2} \text{ or } \pm \frac{1}{2}$	1A	
$\frac{x}{2} = n \pi \pm \frac{\pi}{4} \text{or} n \pi \pm \frac{\pi}{6}$		
$x = 2n\pi \pm \frac{\pi}{2} \text{or} 2n\pi \pm \frac{\pi}{3}$	1A+1A	
	• •	
6. (a) $r = \sqrt{1^2 + (\sqrt{3})^2} = 2$ $tan = \sqrt{3}$ $\therefore \alpha = 60^\circ$	1A 1A	no mark if in radian
(b) $x = \frac{1}{2\cos(\theta - 60^{\circ}) + 5}$		
$-1 \leq \cos(\theta - 60^{\circ}) \leq 1$	1M	
$\frac{1}{7} \leqslant x \leqslant \frac{1}{3}$	1A+1A	
	,	

Solution	Marks	Remarks
Equation of CD : $y = mx+1$ (1)	1 A	
Equation of AB: $\frac{x}{3} + \frac{y}{5} = 1$ (2)	1 A	
Subs. (1) into (2): $\frac{x}{3} + \frac{mx+1}{5} = 1$		
$x = \frac{12}{5 + 3m}$	1A	
Area of $\triangle BCD = \frac{1}{2} (5 - 1) (\frac{12}{5 + 3m})$ $\frac{24}{5 + 3m} = \frac{1}{2} \cdot \frac{15}{2} = \frac{24}{5 + 3m}$	1A	
$\frac{24}{5+3m} = \frac{1}{2} \cdot \frac{15}{2}$	ім	
$m = \frac{7}{15}$		
•• Equation of CD is $y = \frac{7x}{15} + 1$	1A 6	7x - 15y + 15 =
	-	
Alt. Solution		
Let coordinates of D be (x, y)		·
$\frac{4x}{2} = \frac{1}{2} \cdot \frac{15}{2}$	1M	
$x = \frac{15}{8}$	1A	
Equation of AB: $\frac{x}{3} + \frac{y}{5} = 1$	1A	$\frac{y}{\frac{15}{8} - 3} = \frac{5}{-3} \qquad 1$
Subs. $x = \frac{15}{8}$, $y = \frac{15}{8}$	1A	$\frac{y}{\frac{15}{8} - 3} = \frac{5}{-3} - 1$ $y = \frac{15}{8} - 3 = \frac{1}{3}$
·• Equation of CD		
$\frac{y-1}{x} = \frac{\frac{15}{8} - 1}{15/8}$	1M	
	1 1	

	Solution	Marks	Remarks
•	Let coordinates of S and T be (a, 0), (b, b) respectively	1 A	
	coordinates of mid-point is $(\frac{a+b}{2}, \frac{b}{2})$	1A	
	Let $x = \frac{a+b}{2}$, $y = \frac{b}{2}$		
	b = 2y, $a = 2(x - y)$	1M	For making a, b
	$(a - b)^2 + (b - 0)^2 = 4$	1M	as subjects
	$(2x - 4y)^2 + (2y)^2 = 4$	1 A	
	$(x - 2y)^2 + y^2 = 1$		
	$x^2 - 4xy + 5y^2 - 1 = 0$	1A 6	
	Alt. Solution		
	Let coordinates of P be (x, y)		
	then coordinates of T is (2y, 2y)	1 A	
	coordinates of S is (2x - 2y, 0)	2A	
	$(2x - 4y)^2 + 4y^2 = 4$	1M+1A	
	$x^2 - 4xy + 5y^2 - 1 = 0$	1A	
		ļJ	1

	Solution	Marks	Remarks
9. (a)	(i) $\int_{c}^{\pi} \cos^{2}x dx = \int_{c}^{\pi} \frac{1}{2} (1 + \cos 2x) dx$	1A	
	$= \left[\frac{1}{2}(x + \frac{\sin 2x}{2})\right]_{0}^{\pi}$	1 A	
	$= \pi/2$ (ii) Put $x = \pi - y$	1A	
	$\int_0^{\pi} x \cos^2 x dx = \int_{\pi}^{0} (\pi - y) \cos^2 (\pi - y) - dy$	1A .	
	$= \widehat{\eta} \int_{0}^{\widehat{\eta}} \cos^2 y dy - \int_{0}^{\widehat{\eta}} y \cos^2 y dy$	1M	For separating into 2 integrals
	$2 \int_{c}^{\pi} x \cos^{2}x dx = \pi \int_{c}^{\pi} \cos^{2}x dx$ $= \pi^{2}/2$	1M	
	$\int_0^{\pi} x \cos^2 x dx = \sqrt{1/4}$	1A 7	
(b)	(i) Put $x = \widehat{y} + y$	1A	
	$\int_{\tau}^{2\pi} x \cos^2 x dx = \int_{0}^{\pi} (\pi + y) \cos^2 (\pi + y) dy$	1 A	
	$= \Re \int_0^{\Re} \cos^2 y dy + \int_0^{\Re} y \cos^2 y dy$		
	$= \widehat{\pi} \int_0^{\pi} \cos^2 x dx + \int_0^{\infty} x \cos^2 x dx$	1	
	(ii) $\int_0^{2\pi} \cos^2 x dx = \int_0^{\pi} \cos^2 x dx + \int_{\pi}^{2\pi} \cos^2 x dx$	1 A	
	$= \int_0^{\pi} x \cos^2 x dx + \pi \int_0^{\pi} \cos^2 x dx$		
	$+\int_{0}^{\pi} x\cos^{2}x dx$	1M	For subs. (6)(i)
	$= \frac{\pi^2}{4} + \pi(\frac{\pi}{2}) + \frac{\pi^2}{4}$		
	= \(\bar{\eta}^2\)	1 6	
(c) I	Put $x^2 = y$	1A	
:	2xdx = dy		
J,	$\int_{0}^{\sqrt{2\pi}} x^{3} \cos^{2} x^{2} dx = \int_{0}^{2\pi} y \cos^{2} y \cdot \frac{1}{2} dy$	1A	
C	$= \frac{1}{2} \int_{\Omega}^{\Omega f} y \cos^2 y dy$		
	$=\frac{\pi^2}{2}$	1A	• 1 11 1 1

	Solution	Marks	Remarks
10.	(a) $\frac{dy}{dx} \Big _{x = t} = 2t - 2$	1A	
	y-coordinates of $P = t^2 - 2t + 3$	1A	
		I A	
	Equation of tangent : $y - (t^2 - 2t + 3)$		
	= (2t - 2) (x - t)	1M	
	$y = (2t - 2)x - t^2 + 3(*)$	1A 4	
	Alt. Solution		
	Using the formula $\frac{y + y_1}{2} = xx_1 - (x + x_1) + 3$		
	Equation of tangent: $y + (t^2 - 2t + 3)$	·	
•	= tx - (t + x) + 3	1M+1A +1A	1A for $y_1 = t^2 - 2t + 3$
	$y = (2t - 2)x - t^2 + 3$	1A .	
	(b) (i) Put $t = \frac{1}{3}$ in (*)		
	Equation of $T_1 : y = \frac{-4}{3}x + \frac{26}{9}$	1A	
y within	(ii) Coordinates of C: (1, 2)	1A .	
	Coordinates of D: $(1, \frac{14}{9})$	1A	
	(iii) Subs. $(1, \frac{14}{9})$ into (*)		
	$\frac{14}{9} = 2t - 2 - t^2 + 3$	1 M	
	$9t^2 - 18t + 5 = 0$		
	$t = \frac{1}{3} \text{ or } \frac{5}{3}$		•
	$\therefore x-coordinate of B = \frac{5}{3}$	IA	
	y-coordinate of B = $(\frac{5}{3})^2 - 2(\frac{5}{3}) + 3 = \frac{22}{9}$		
	Coordinates of B = $(\frac{5}{3}, \frac{22}{9})$	<u>1A</u>	

Provided by dse.life

Solution	Marks	Remarks
Alt. Solution (iii) Since S is symmetrical about x = 1 and		
x-coordinate of A = $\frac{1}{3}$, by symmetry x coordinate of B = 1 + $(1 - \frac{1}{3}) = \frac{5}{3}$	1M+1A	
coordinates of B = $(\frac{5}{3}, \frac{22}{9})$	1 A	
(c) Centre of circle lies on x = l		
let its coordinates be (1, a)	1A	
Radius = Distance to T_1		
$= \begin{vmatrix} -\frac{4}{3} - a + \frac{26}{9} \\ \sqrt{1 + (\frac{4}{3})^2} \end{vmatrix}$		
$= \left \frac{14 - 9a}{15} \right $	1A ·	
Since the circles pass through C (1, 2)		
Radius = $\begin{vmatrix} 2 - a \end{vmatrix}$	1M	
$\begin{vmatrix} 2 - \mathbf{a} \end{vmatrix} = \left \frac{14 - 9\mathbf{a}}{15} \right $	1M	
$a = \frac{8}{3} \text{ or } \frac{11}{6}$		
Coordinates of centres are $(1, \frac{8}{3})$ or $(1, \frac{11}{6})$	1 <u>A+1A</u>	

Solution	Marks	Remarks
1. (a) Equation of family of circles $2x^2 + 2y^2 - 4x + 8y - 13 + k(x - y) = 0$ $2x^2 + 2y^2 + (k - 4)x + (8 - k)y - 13 = 0$	1A	$x^{2} + y^{2} - 2x + 4y$ $-\frac{13}{2} + k(x - y) = 0$ $(x - y) + k(2x^{2} + 2y^{2} - 4x + 8y - 13) = 0$
$(\text{Radius})^2 = (\frac{k-4}{4})^2 + (\frac{8-k}{4})^2 + \frac{13}{2}$	1M 1M+1A	Area A = πr^2 $= \frac{\pi}{2}(k^2 - 12k)$
$= \frac{1}{8}(k - 6)^2 + 7$ For minimum area, $k = 6$		$= \frac{\pi}{8} (k^2 - 12k + 92) \text{ 1M}$ $\frac{dA}{dA} = \frac{\pi}{4} (k - 6) \text{ 1M}$
Equation of C_1 is $2x^2 + 2y^2 + 2x + 2y - 13 = 0$	1A ——6	$\frac{dA}{dk} = \frac{\pi}{4} (k - 6) 1M$ $\frac{dA}{dk} = 0 \text{at } k = 6$ $\frac{d^2A}{dk^2} = \frac{\pi}{4}$ $k = 6 \text{ is a min. } 1$
Alt. Solution The centre of C_1 lies on $y = x$ Centre of C_1 is $(\frac{4-k}{2}, \frac{k-8}{2})$ The circle is smallest if C_1 lies on $y = x$	1A	
$\frac{4-k}{2} = \frac{k-8}{2}$ $k = 6$	2M 1A 1A	

	Solution	Marks	Remarks
(b)	(i) Let equation of L_1 be $y = mx + 2$	1A	
	centre of C, is $(-\frac{1}{2}, -\frac{1}{2})$, radius $r = \sqrt{7}$	1A	
	Distance from centre to L_1		
	$d = \frac{m(\frac{-1}{2}) - (\frac{-1}{2}) + 2}{\sqrt{1 + m^2}}$	1M	
	$= \frac{5 - m}{2\sqrt{1 + m^2}}$		
	Since $d^2 = r^2 - (\frac{\sqrt{2}}{2})^2$	1M	
	$\left(\frac{5-m}{2\sqrt{1+m^2}}\right)^2 = \left(\sqrt{7}\right)^2 - \left(\frac{\sqrt{2}}{2}\right)^2$		
	$25 m^2 + 10 m + 1 = 0$		
	$(5 m + 1)^2 = 0$		·
	$m = \frac{-1}{5}$		
	Equation of L_1 is $y = \frac{1}{5}x + 2$	1 A	x + 5y - 10 = 0
	Alt. Solution		
	Let equation of L_1 be $y = mx + 2$	1A	
	Subs. into C ₁		
	$2x^{2} + 2(mx + 2)^{2} + 2x + 2(mx + 2) - 13 = 0$	1 M	
	$(2m^2 + 2)x^2 + (10m + 2)x - 1 = 0$		
	Let coordinates of intersecting points be $(x_1, y_1), (x_2, y_2)$		
	$x_1 + x_2 = \frac{-(5m + 1)}{1 + m^2}$, $x_1 x_2 = \frac{-1}{2(1 + m^2)}$	1M	
	$AB^{2} = (x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}$		
	$= (1 + m^2) (x_1 - x_2)^2$	1A	
	$= (1 + m^2) [(x_1 + x_2)^2 - 4x_1x_2]$		
	$= \frac{(5m + 1)^2}{1 + m^2} + 2 = 2$		
	$m = -\frac{1}{5}$		

Equation of L₁ is $y = \frac{-1}{5}x + 2$ Provided by dse.life

Solution		Marks	Remarks
(ii) The locus is the perpo	endicular bisector of	2M	
Since AB is a chord of bisector of AB passes $C_1(-\frac{1}{2}, -\frac{1}{2})$	f C _l , the perpendicular through centre of	2M	
Equation of locus	is $y + \frac{1}{2} = 5(x + \frac{1}{2})$		·
	y = 5x + 2	1 <u>A</u> 10	
Alt. Solution		·	
$x^2 + y^2 + x + y - \frac{13}{2} + k(\frac{1}{5}x)$	+ y - 2) = 0	1M	
$x^2 + y^2 + (1 + \frac{k}{5})x + (1 + k)$	$y - (2k + \frac{13}{2}) = 0$		
coordinate of centre is (-($\frac{1+\frac{k}{5}}{2}$, $-\frac{(k+1)}{2}$)	1M+1A	·
Let coordinates of centre b	e (x, y)		
$\begin{cases} x = -\frac{1}{2}(1 + \frac{k}{5}) \\ y = -\frac{1}{2}(k + 1) \end{cases}$		1M	
Eliminating k,			
y = 5x + 2		1A	

			Solution	Marks	Remarks
12.	(a)	Volume	$= \pi \int_{-b}^{-(b-h)} x^2 dy$	1A+1A	lA for n∫x²dy lA for limit
			$= \pi \int_{-b}^{-(b-h)} a^{2}(1-\frac{y^{2}}{b^{2}}) dy$	1M	
			$= \pi a^{2} \left[y - \frac{y^{3}}{3b^{2}} \right]^{-(b-h)}$	· 1A	
			$= \pi a^{2}[-b + h + (\frac{b - h}{3b^{2}})^{3} + b - \frac{b^{3}}{3b^{2}}]$		
			$= \frac{\pi a^2}{3b^2} h^2 (3b - h)$	15	
	(b)	(i)	Put $a = b = 2$	1M	
			h = 2k	1M	
			Vol. of water = $\frac{\pi}{3}(2k)^2[3(2) - 2k]$		
		•	$= \frac{8\pi}{3}k^2(3 - k)$	1 A	
		(ii)	Depth of object immersed = $\frac{3}{4}k + \frac{1}{4}k$		
			= k	1A	
			Put $a = 1$, $b = h = k$	1M	
			Vol. of object immersed = $\frac{\hat{k}^2}{3k^2}k^2(3k - k)$		
			$=\frac{2}{3}\widehat{n}k$	1	
			$\frac{8\pi}{3}k^{2}(3-k) + \frac{2}{3}\pi k = \frac{\pi}{3}(2k + \frac{k}{4})^{2}$ $[3(2) -(2k + \frac{k}{4})]$	1M+1A	1A for RHS
	•		$8k^2(3 - k) + 2k = k^2(\frac{9}{4})^2(6 - \frac{9k}{4})$		
			$128 + 1536k - 512k^2 = 81k(24 - 9k)$		
			$217k^2 - 408k + 128 = 0$	2A	·
			k = 0.40 or 1.48 (rejected)	1A11	

	- 1 - 1	1	
	Solution	Marks	Remarks
13. (a)			
	$\frac{AB}{\sin \theta} = \frac{AQ}{\sin \angle ABQ}$		
	$\sin \angle ABQ = \frac{AQ}{AB} \sin \theta$	1A	
	$\sin \angle APQ = \frac{AQ}{PO}$	1 A	
	$\angle APQ = \angle ABQ$	1A	
	$\frac{AQ}{AB} \sin\theta = \frac{AQ}{PQ}$		
	$PQ = \frac{AB}{\sin \theta}$	1A	
(b)	By Cosine Law,		
•	$AB^2 = AP^2 + BP^2 - 2AP \cdot BP\cos(\pi - \theta)$	1M	•
	$= AP^2 + BP^2 + 2AP \cdot BP\cos\theta$	1 A	
	$\therefore PQ = \frac{\sqrt{AP^2 + BP^2 + 2AP \cdot BP\cos\theta}}{\sin\theta}$	13	
(c)	$\cot^2 \phi = \frac{PQ^2}{VP^2}$	1A	•
	$= \frac{AP^2 + BP^2 + 2AP \cdot BP\cos\theta}{AP^2 + AP}$	•••	
	$VP^{2}sin^{2}\theta$ $1 (AP)_{2} (BP)_{3} (AP)_{4}BP$	1M	
	$= \frac{1}{\sin^2\theta} \left[\left(\frac{AP}{VP} \right)^2 + \left(\frac{BP}{VP} \right)^2 + 2 \left(\frac{AP}{VP} \right) \left(\frac{BP}{VP} \right) \cos\theta \right]$	1M	
•	$= \frac{\cot^2 \alpha + \cot^2 \beta + 2\cot \alpha \cot \beta \cos \theta}{\sin^2 \theta}$	1	
	(11) $\cot^2 \frac{\pi}{6} = \frac{1}{\sin^2 \theta} (\cot^2 \frac{\pi}{4} + \cot^2 \frac{\pi}{3})$		
	$+ 2 \cot \frac{\pi}{4} \cot \frac{\pi}{3} \cos \theta$		
	$3\sin^2\theta = \frac{4}{3} + \frac{2}{\sqrt{3}}\cos\theta$	1A	
	$9\cos^2\theta + 2\sqrt{3}\cos\theta - 5 = 0$	1 A	
	$\cos\theta = \frac{\sqrt{3}}{3}$ or $\frac{-5\sqrt{3}}{9}$	1A	
	θ = 0.955 or 2.87 (rejected)	1A	
	, ·• 0 = 0.955	1A	
	.	- Th	11.11. 1