Formale Modellierung Übungsblatt 1

0.3 Lösung Aufgabe 1

(a)

Alle x sind y.

Manche z sind x.

Manche z sind y.

Gültig!

Alle rationalen Zahlen sind als Bruch darstellbar. Manche reelle Zahlen sind rationale Zahlen. Manche reelle Zahlen sind als Bruch darstellbar. (b)

Kein x ist ein y.
Alle z sind x.
Kein z ist ein y.
Gültig!

Kein Parallelogram ist ein Kreis. Alle Rauten sind Parallelogramme. Keine Raute ist ein Kreis. (c)

Alle x machen y.
Kein z ist ein x.
Kein z macht y.
Gültig!

Alle Katzen haben ein Fell. Kein Mensch ist eine Katze. Kein Mensch hat ein Fell.

^{0.4} Lösung Aufgabe 2

(a)

Die Erdbeeren sind süß. x = Die Erdbeeren y = sind süßx = y (b)

Ich gehe ins Kino oder ich bleibe daheim.

x = Gehe ins Kino

y = bleibe daheim_

 $x \vee y$

(c)

Wenn ich mich nicht beeile, werde ich die Vorlesung versäumen.

x = Ich beeile mich

y = ich versäume die Vorlesung

$$\neg x \supset y$$

(d)

Nur wenn ich jetzt losfahre komme ich rechtzeitig zum Flughafen.

x = jetzt losfahre

y = komme rechtzeitig

(e)

Bei nur dreht sich Implikation um

Entweder fahre ich im Juli oder im August auf Urlaub. Beides geht sich zeitlich nicht aus.

x = fahre im Juli

y = fahre im August

$$x \not\equiv u$$

(f)

Ich koche heute nicht, lasse mir jedoch eine Pizza liefern.

x = Ich koche heute

y = lass Pizza liefern

$$\neg x \searrow y$$

(g)

AND

Wenn der Bus nicht rechtzeitig kommt, so werde ich nicht pünktlich sein.

x = Bus kommt rechtzeitig

y = ich bin pünktlich

$$\neg x \supset \neg y$$

(h)

Ich putze nur dann die Fenster, wenn es nicht regnet.

x = Putze die Fenster

$$y = es regnet$$

$$x \supset \neg u$$

0.3 Lösung Aufgabe 5

(a) A, B und C sind Formeln.

 $A \wedge B$ ist eine Formel.

Wenn $A \wedge B$ und C Formeln sind, so ist auch $(A \wedge B) \supset C$ eine Formel.

 $B\supset C$ ist eine Formel.

 $A\supset (B\supset C)$ ebenfalls.

 $(((A \land B) \supset C) \equiv (A \supset (B \supset C)))$ ist eine Formel.

(b)
$$I(A)=0, \quad I(B)=1, \quad I(C)=1$$

$$A\wedge B \quad 0$$

$$0\supset C \quad 1$$

$$B\supset C \quad 1$$
 Keine schrittweise Berechnung, siehe ML für Syntax

 $A\supset 1$ 1

 $1 \equiv 1 \quad 1$

 $val_I(F) = 1$

(c)

	A	В	\mathbf{C}	((A	\wedge	B)	\supset	C)	=	(A	\supset	(В	\supset	C))
Ī	1	1	1	1		1	1	1	1	1	1	1	1	1
	1	1	0	1	1	1	0	0	1	1	0	1	0	0
	1	0	1	1	0	0	1	1	1	1	1	0	1	1
	1	0	0	1	0	0	1	0	1	1	1	0	1	0
	0	1	1	0	0	1	1	1	1	0	1	1	1	1
	0	1	0	0	0	1	1	0	1	0	1	1	0	0
	0	0	1	0	1	0	1	1	1	0	1	0	1	1
	0	0	0	0	1	0	0	0	1	0	1	0	1	0
$u(I,F) = 1$ für alla $I \rightarrow F$ ict gültig und arfüllbar (Tautalogie													logia	

 $val_I(F) = 1$ für alle $I \Rightarrow F$ ist gültig und erfüllbar (Tautologie)

Lösung Aufgabe 8

Sollte eine DNF und eine KNF werden

0.2 (a)

DNF:
$$A \wedge B \wedge \neg C$$

KNF: $(\neg A \vee \neg B \vee \neg C) \wedge (A \vee \neg B \vee C) \wedge (A \vee \neg B \vee \neg C)$
DNF: $(\neg A \wedge B \wedge C) \vee (\neg A \wedge B \wedge \neg C) \vee (\neg A \wedge \neg B \wedge \neg C)$
KNF: $\neg A \vee \neg B \vee C$

Schau dir die KNF nochmals an, oder lasse sie dir nochmal erklären

^{0.4} Lösung Aufgabe 10

(a)

$$A \not\equiv B$$

$$(B \lor E) \supset \neg W$$
 Wofür stehen F, A,B ,...???
$$A \lor B$$

$$A \supset (B \land E)$$

(b) Die Zutaten sind B, E und F, F, damit der Trank dickflüssig wird, nach Aussage Nummer 4 kommt E dazu, A kommt jedoch durch Aussage 1 nicht hinein, dafür aber B nach Aussage 2.

lst nur eine Lösung, brauche dazu Wahrheitstabelle um alle Lösungen zu bekommen