Boletín nº 4.Diagonalización de matrices.

1. Obtener los autovalores y bases para los subespacios propios asociados a cada autovalor de las siguientes matrices

a)
$$\begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}$$
 b) $\begin{bmatrix} 0 & 3 \\ 4 & 0 \end{bmatrix}$ c) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

e)
$$\begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$
 f)
$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 3 & 0 \\ -4 & 13 & -1 \end{bmatrix}$$
 g)
$$\begin{bmatrix} 5 & 0 & 1 \\ 1 & 1 & 0 \\ -7 & 1 & 0 \end{bmatrix}$$

- 2. Calcular los autovalores de la matriz $A = \begin{bmatrix} 10 & -9 & 0 & 0 \\ 4 & -2 & 0 & 0 \\ 0 & 0 & -2 & -7 \\ 0 & 0 & 1 & 2 \end{bmatrix}$.
- 3. Encontrar los autovalores y bases para los subespacios propios asociados de la matriz A^{25} , siendo

$$A = \left[\begin{array}{rrr} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{array} \right].$$

- 4. Encontrar los autovalores y autovectores de A^{-1} , siendo $A = \begin{bmatrix} -2 & 2 & 3 \\ -2 & 3 & 2 \\ -4 & 2 & 5 \end{bmatrix}$.
- 5. Determinar cuáles de las siguientes matrices son diagonalizables

a)
$$\begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$$
 b) $\begin{bmatrix} 2 & -3 \\ 1 & -1 \end{bmatrix}$ c) $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ d) $\begin{bmatrix} 4 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 4 & 3 \end{bmatrix}$ e) $\begin{bmatrix} 2 & -1 & 0 & 1 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 3 \end{bmatrix}$

6. Determinar si las siguientes matrices son diagonalizables y en caso afirmativo encontrar una matriz de paso P y obtener $P^{-1}AP$.

a)
$$\begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$$
 b) $\begin{bmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{bmatrix}$ c) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 1 \end{bmatrix}$.

- 7. Encontrar una matriz cuadrada de orden dos cuyos autovalores sean 1 y 2 y tal que $V(1) = L\{(1,1)\}$ y $V(2) = L\{(1,0)\}$.
- 8. Encontrar una matriz cuadrada de orden tres cuyos autovalores sean -1 y 2 y tal que $V(2) = L\{(1,1,-1)\}$ y $V(-1) = \{(x,y,z) \in \mathbb{R}^3 : x-z=0\}$.
- 9. Sean $A=\begin{bmatrix} -1 & 7 & -1 \\ 0 & 1 & 0 \\ 0 & 15 & -2 \end{bmatrix}$ y $B=\begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$. Hallad A^6 y B^{10} (sugerencia diagonalizar previamente A y B).

10. Diagonalizar las siguienets matrices simétricas.

a)
$$\begin{bmatrix} 6 & -2 \\ -2 & 3 \end{bmatrix}$$
 b) $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ c) $\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$ d) $\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$ e) $\begin{bmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{bmatrix}$

- 11. Los autovalores de una matriz simétrica A, de orden tres, son 1, -2 y 3 y los subespacios propios asociados son $V(1) = L\{(1,1,-1)\}$, $V(-2) = L\{(0,1,1)\}$. Obtener una base para V(3) y averiguar cuál es la matriz A.
- 12. De una matriz simétrica de orden tres se sabe que tiene por autovalores 1 y -1 y que $V(1) = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$. Obtener la matriz.

Solución de los ejercicios del boletín nº 4.

- 1. a) $\lambda = 4$, m = 2, $V(\lambda) = L\{(3,2)\}$.
 - b) $\lambda_1 = 2\sqrt{3}$, $\lambda_2 = -2\sqrt{3}$. $V(\lambda_1) = L\{(\sqrt{3}, 2)\}$. $V(\lambda_2) = L\{(-\sqrt{3}, 2)\}$.
 - c) $\lambda = 0$, m = 2. $V(\lambda) = \mathbb{R}^2$, cualquier base, por ejemplo, $\{(1,0), (0,1)\}$.
 - d) $\lambda_1 = 1$, $m_1 = 2$. $V(\lambda_1) = \mathbb{R}^2$ y $\{(1,0), (0,1)\}$ una base de $V(\lambda_1)$.
 - e) $\lambda_1 = 1, \lambda_2 = 2$ y $\lambda_3 = 3$. $V(\lambda_1) = L\{(0,1,0)\}, V(\lambda_2) = L\{(1,-2,-1)\}.$ $V(\lambda_3) = L\{(-1,1,1)\}.$
 - f) $\lambda_1 = 2$, $m_1 = 1$. $V(\lambda_1) = L\{(1, 1, 3)\}$.
 - g) $\lambda_1 = 2$, $m_1 = 3$. $V(\lambda_1) = L\{(-1, -1, 3)\}$.
- 2. $\lambda_1 = 4$, $m_1 = 2$.
- 3. Autovalores de $A: \lambda_1 = 1$ y $\lambda_2 = -1$. Los autovalores de $A^{25}: \lambda_1 = 1^{25} = 1$ y $\lambda_2 = (-1)^{25} = -1$. Los subespacios coinciden: $V(1) = L\{(-1, 1, 0), (-1, 0, 1)\}, V(-1) = L\{(2, -1, 1)\}.$
- 4. Los autovalores de A son 1, 2 y 3 y los de A^{-1} son sus inversos: $1, \frac{1}{2}$ y $\frac{1}{3}$. $V_{A^{-1}}(1) = V_A(1) = L\{(1,0,1)\}, \ V_A(2) = V_{A^{-1}}(\frac{1}{2}) = L\{(1,2,0)\} \ y \ V_A(3) = V_{A^{-1}}(\frac{1}{3}) = L\{(1,1,1)\}.$
- 5. a) A no es diagonalizable, pues $\lambda_1 = 2$, $m_1 = 2 \neq \mu_1 = 1$.
 - b) A no posee ningún autovalor real y es no diagonalizable en \mathbb{R} .
 - c) A no es diagonalizable, pues $\lambda_1 = 1$, $m_1 = \mu_1 = 1$, y $\lambda_2 = 2$, $m_1 = 2 \neq \mu_2 = 1$.
 - d) Los autovalores son todos distintos: 4, -1, 2 y 3, y la matriz es diagonalizable.
 - e) No es diagonalizable, pues $\lambda_1 = 2$, $m_1 = 2 \neq \mu_1 = 1$ y $\lambda_2 = 3$, $m_2 = 2$.

6. a)
$$P = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.

b) La matriz no es diagonalizable, pues $\lambda_1 = 5$, $m_1 = 3 \neq \mu_1 = 1$.

c)
$$P = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$
, $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$7. \ \ A = \left[\begin{array}{cc} 2 & -1 \\ 0 & 1 \end{array} \right].$$

8.
$$A = \begin{bmatrix} \frac{1}{2} & 0 & -\frac{3}{2} \\ \frac{3}{2} & -1 & -\frac{3}{2} \\ -\frac{3}{2} & 0 & \frac{1}{2} \end{bmatrix}.$$

9.
$$A^6 = \begin{bmatrix} 1 & -315 & 63 \\ 0 & 1 & 0 \\ 0 & -315 & 64 \end{bmatrix}$$
, $B^{10} = \begin{bmatrix} 1 & 0 \\ -1023 & 1024 \end{bmatrix}$.

10. a)
$$P = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$$
 $D = \begin{bmatrix} 2 & 0 \\ 0 & 7 \end{bmatrix}$ b) $P = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ c) $P = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

d)
$$P = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{bmatrix}$$
 y $D = \begin{bmatrix} 8 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ e) $P = \begin{bmatrix} -1 & -1 & 2 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{bmatrix}$ y $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{bmatrix}$.

11.
$$V(3) = L\{(2, -1, 1\}, A = \begin{bmatrix} \frac{7}{3} & -\frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & -\frac{1}{6} & -\frac{11}{6} \\ \frac{2}{3} & -\frac{11}{6} & -\frac{1}{6} \end{bmatrix}$$

12.
$$A = \frac{1}{3} \begin{bmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix}$$
.