

SIM800系列_MUX _应用文档

GPRS 模组

芯讯通无线科技(上海)有限公司

上海市长宁区金钟路633号晨讯科技大楼B座6楼

电话: 86-21-31575100

技术支持邮箱: support@simcom.com

官网: www.simcom.com

名称:	SIM800 系列_MUX_应用文档
版本:	1.04
日期:	2020.06.15
状态:	已发布

版权声明

本手册包含芯讯通无线科技(上海)有限公司(简称:芯讯通)的技术信息。除非经芯讯通书面许可,任何单位和个人不得擅自摘抄、复制本手册内容的部分或全部,并不得以任何形式传播,违反者将被追究法律责任。对技术信息涉及的专利、实用新型或者外观设计等知识产权,芯讯通保留一切权利。芯讯通有权在不通知的情况下随时更新本手册的具体内容。

本手册版权属于芯讯通,任何人未经我公司书面同意进行复制、引用或者修改本手册都将承担法律责任。

芯讯通无线科技(上海)有限公司

上海市长宁区金钟路 633 号晨讯科技大楼 B座 6楼

电话: 86-21-31575100

邮箱: simcom@simcom.com 官网: www.simcom.com

了解更多资料,请点击以下链接:

http://cn.simcom.com/download/list-230-cn.html

技术支持,请点击以下链接:

http://cn.simcom.com/ask/index-cn.html_或发送邮件至 support@simcom.com

版权所有 © 芯讯通无线科技(上海)有限公司 2020, 保留一切权利。

www.simcom.com 2 / 25

关于文档

版本历史

版本	日期	作者	备注
1.00	2013-07-25	杨明	第一版
1.01	2014-06-30	陈海兵	适用范围,增加项目
			2.6 章节,增加"注意事项"
1.02	2016-11-17	来文洁	适用范围
1.03	2019-08-12	郑玉龙	修改 UA 帧格式
1.04	2020-06-15	谭艺哲	修改结构和格式
		/来文洁	

适用范围

本手册描述 SIM800 多路复用协议及其使用方法,同时包括了应用举例。

本手册适用于带多路复用功能的 SIM800 系列版本

www.simcom.com 3 / 25

目录

版	汉声明		2
关 -	于文档		3
	版本历史		3
	适用范围		3
目表	录		4
1	介绍		6
		τ目的	
	1.2 参考	音文档	6
	1.3 术语	5. 日和描述	6
2	MUX 简介		8
		十目的	
	2.2 架材	,—… 妇框图	8
		ij	
3	SIMCOM	Ⅰ 多路复用协议综述	11
•		- シロタバ ル グぶ足	
	3.1.1		
	3.1.2	地址域	
	3.1.3	· 2 — · · · · · · · · · · · · · · · · ·	
	3.1.4	信息域	
	3.1.5	 长度指示域	
	3.2 传递	É 帧类型	13
	3.2.1	SABM	13
	3.2.2	UA	13
	3.2.3	DISC	13
	3.2.4	DM	14
	3.2.5	UIH	14
	3.2.6	UI	14
	3.3 建立	Z DLC 通道	14
	3.4 关闭	引 DLC 通道	14
	3.5 控制	通道	15
	3.5.1	PSC	15
	3.5.2	CLD	15
	3.5.3	Test	16
	3.5.4	MSC	16
	3.5.5	FCoff	16
	3.5.6	FCon	17

	3.	5.7 F	N, N	SC,	RPN,	RLS,	SNC.	 	 	 	 17
	3. 6	逻辑通过	道					 	 	 	 17
	3. 7	控制通道	道					 	 	 	 17
	3. 8	控制通道	道					 	 	 	 18
	3. 9	控制通道	道					 	 	 	 19
4	MUX	使用举	例							 	20
-	4. 1	~ 47 . 4									20
	4. 2	帧收发.						 	 	 	 21
	4. 3	睡眠状态	た 及 喚	醒				 	 	 	 22
	4. 4	流量控制	訓					 	 	 	 23
	4. 5	出错帧处	· 少理					 	 	 	 24
		土田名									2/

1.1 本文目的

基于 AT 指令手册扩展,本文主要介绍 MUX 的业务流程。 参考此应用文档,开发者可以很快理解并快速开发相关业务。

1.2 参考文档

- [1] SIM800 Series AT Command Manual
- [2] Digital cellular telecommunications system (Phase 2+)
- [3] Terminal Equipment to Mobile Station (TE-MS)multiplexer protocol(GSM 07.10 version 7.1.0 Release 1998)

1.3 术语和描述

术语	描写
DLC	Data Link Connection
DLCI	Data Link Connection Identifier
RLS	Remote Line Status Command
SABM	Set Asynchronous Balanced Mode
UA	Unnumbered Acknowledgement
DM	Disconnected Mode
DISC	Disconnect (DISC) command
UIH	Unnumbered information with header check (UIH) command and response
UI	Unnumbered Information command and response
PSC	Power Saving Control
CLD	Multiplexer Close Down
MSC	Modem Status Command

www.simcom.com 6 / 25

TE	Terminal Equipment
MS	Mobile Station
FC	Flow Control
RTC	Ready To Communicate
RTR	Ready To Receive
IC	Incoming Call Indicator
DV	Data Valid
PN	Parameter Negotiation
FCon	Flow Control On Command
FCoff	Flow Control Off Command
NSC	Non Support Command
RPN	Remote Port Negotiation
RLS	Remote Line Status Command
SNC	Service Negotiation Command
TE	Terminal Equipment
MS	Mobile Station

www.simcom.com 7 / 25

2 MUX 简介

本文档旨在描述 SIMCom 多路复用协议及其使用方法。

2.1 设计目的

具有GSM和GPRS功能的设备需要同时处理(发送和接收)各种数据流,例如AT指令流(AT Command),GPRS数据流,GSM线路交接数据流(circuit switched data)等,这些数据流彼此独立。

对于不使用多路复用的设备来说,在某个时间段只能处理一种数据流或者一路数据流,这样,设备的使用率不高,因此设计采用GSM0710规范定义的标准多路复用协议,将传输设备划分成多个逻辑链路通道(Channel或者DLC),来同时传输这些数据流,每个逻辑通道都具备独立的缓冲区(buffer)和流量控制。

2.2 架构框图

SIMCom 多路复用器架构框图如下图所示:

www.simcom.com 8 / 25

SIM 多路复用器架构框图

SIMCom 多路复用器构建在系统传输设备之上(通常是串行通信端口),将数据流按照 GSM0710 协议(见第二章节 SIMCom 多路复用协议综述)进行封装和编址(逻辑通道号),使用传输设备提供的接口发送数据流。

2.3 限制

- 不支持 DC1/XON and DC3/XOFF 流量控制
- 不支持纠错模式(Error Recovery Mode)
- 不支持 PN, NSC, RPN, RLS, SNC 消息帧,
- 所有参数都为 GSM 0710 默认值(最大帧长度为 127), 如下表

参数	值	注释
T1	100 milliseconds	等待肯定应答的时间,仅使用在对DISC帧的
(Acknowledgement Timer)		回复
N1	255	一帧所包含的最大字节数
(Maximum Frame Size)		
N2	3	重传次数(不使用)
(Maximum number of		
retransmissions)		

www.simcom.com 9 / 25

T2 (Response Timer for multiplexer control channel)	300 milliseconds	控制通道(DLC_0)响应时间(不使用)
T3 (Response Timer for wake-up procedure)	10 seconds	唤醒时间
K (Window Size)	N/A	不使用

- 不支持 UI Frames
- 仅支持多路复用基本选项(GSM 0710 Basic Option)

3 SIMCOM 多路复用协议综述

SIMCOM 多路复用协议给出了一种通过在 TE 和 MS 之间建立起 DLC 链路来进行数据流(帧见 2.1)传输的方式,在 TE 和 MS 之间可以建立起多个 DLC,每个 DLC 相互独立,具有各自的 buffer 管理和流量控制。

3.1 传输帧结构

当前协议使用8位字节起止传输机制,以帧形式进行数据通讯。

多路复用器基本选项下的帧结构如下表:

标记域	地址域	控制域	长度指示域	信息域	帧校验域	标记域
1字节	1字节	1 字节	1~2 字节	多字节	1字节	1 字节

3.1.1 标记域

该域长度占用1个字节,多路复用器在基本选项下,该字节等于 0xF9。

3.1.2 地址域

该域长度占用1个字节,位定义如下表

位号							
1	2	3	4	5	6	7	8
EA	CR	DLCI	DLCI	DLCI	DLCI	DLCI	DLCI

其中:

EA 位:按 ISO/IEC 13239:1997标准规定,地址域可以通过使用 EA 位来扩展;若 EA 置为 1,表示该字节是地址域的最后一个字节。若 EA 置为 0,表示 EA 位所属字节的后一个字节也属于地址域。SIMCom 多路复用器只支持地址域长度为一个字节的情况,因此,地址域的 EA 位总是设定为 1。

C/R 位: 表明了消息帧是指令还是响应。

DLCI 位: 共6位,表示逻辑通道号,通道值取0~32。

www.simcom.com 11 / 25

3.1.3 控制域

该域定义了帧类型(见 2.2 传输帧类型),占用 1 个字节,控制帧可分为 6 种类型,参见下表。

位号	<u>i.</u>						in a service of H	किस्ट और संक	Art N.S.	
1	2	3	4	5	6	7	8	HEX[注]	帧类型	备注
1	1	1	1	P/F	1	0	0	0x2F	SABM	设置异步平衡模式
1	1	0	0	P/F	1	1	0	0x63	UA	未编号确认
1	1	1	1	P/F	0	0	0	0x0F	DM	断开连接模式
1	1	0	0	P/F	0	1	0	0x43	DISC	断开连接
1	1	1	1	P/F	1	1	1	0xEF	UIH	头校验无编号信息
1	1	0	0	P/F	0	0	0	0x03	UI	无编号信息 (可选)

注: Hex 未计入位 5 的值

3.1.4 信息域

信息域为传输帧的有效载荷(payload),携带用户数据,如 AT Command。在 SIMCom 多路复用器中,信息域仅出现在 UIH 帧中。

3.1.5 长度指示域

如下表

位号							
1	2	3	4	5	6	7	8
EA	L1	L2	L3	L4	L5	L6	L7

其中 L1----L7 指示携带的数据长度。

EA 设置为 1 代表此字节为长度指示域中最后一个字节,设置为 0 代表长度指示域中有两个字节,在此字节之后还存在一个字节指示长度。SIMCom 多路复用器仅支持 EA 为 1 的情况(一个字节)。

注:长度指示域必须始终存在,即使信息域为空。

3.2 传送帧类型

3.2.1 **SABM**

SABM 帧用来在 TE 和 MS 之间建立逻辑通道,为命令帧,具体用法见使用举例 3.1 建立逻辑通道。

3.2.2 UA

UA 帧是对 SABM 帧和 DISC 帧的回应,为响应帧,见下图,具体用法见使用举例 3.1 建立逻辑通道和 3.6 关闭多路复用。

3.2.3 DISC

DISC 帧用来关闭逻辑通道,为命令帧,当接收方收到 DISC,在处理关闭动作之前应先发一个 UA 帧作为回应,见上图所示,具体用法见使用举例 3.6 关闭多路复用

若在控制通道 DLC 0 收到 DISC 帧代表关闭多路复用功能。

3.2.4 DM

DM 帧代表当前逻辑通道已经处于关闭状态,为响应帧,具体用法见使用举例 3.1 建立逻辑通道。

3.2.5 UIH

UIH 用来传输用户数据,为命令帧或响应帧,具体用法见使用举例.3.2 帧收发。

3.2.6 UI

不支持。

3.3 建立 DLC 通道

TE 通过发送 SABM 帧至 MS 来建立 DLC 通道,其中 P bit 设置为 1,地址域包含指定通道的 DLCI 值,若 MS 收到并准备打开指定的通道,必须回送 UA 帧表示确认,其中 F bit 设置为 1,若 MS 没有准备好打开通道,则必须回送 DM 帧表示拒绝,其中 F bit 设置为 1。具体流程见使用举例 3.1 建立逻辑通道。

3.4 关闭 DLC 通道

TE 发送 DISC 帧至 MS 来关闭 DLC 通道,其中 P bit 设置为 1,地址域包含指定通道的 DLCI 值,MS 必须回送 UA 帧表示确认,其中 F bit 设置为 1。若 MS 在收到 DISC 帧时,DLC 已经处在关闭状态,则回送 DM 帧。具体流程见使用举例 3.6 关闭多路复用。

www.simcom.com 14 / 25

3.5 控制通道

控制通道是多路复用器传输管理信息的基本通道,逻辑通道的建立和关闭,睡眠模式的启动和唤醒,流量控制等控制信息都通过控制通道来实现的。

控制通道的 DLCI 为 0,是在启动多路复用功能后建立的第一个通道。

控制通道通过 UIH 帧可以传输消息, 所有消息帧中的信息域使用如下格式:

Туре	Len	gth	Value 1	Value 2			Value n
甘山 Tv	pe 字节格式》	h.					
<u> </u>	2	3	4	5	6	7	8
EA	C/R	T1	T2	T3	T4	T5	T6
其中 T1	T6 为消息	种类的代码,	见 2.5.12	.5.6。			
长度字	长度字节格式为						
1	2	3	4	5	6	7	8
EA	L1	L2	L3	L4	L5	L6	L7

消息帧种类可分为如下类型。

3.5.1 PSC

消息类型代码为

1	2	3	4	5	6	7	8
EA	C/R	0	0	0	0	1	0

对应 Hex 值为 0x43(命令), 0x41(响应)。

TE 发送 PSC 消息命令帧至 MS, MS 回送 PSC 消息响应帧表示确认。

PSC 帧中信息域长度为 0,没有 value 字节。

3.5.2 CLD

消息类型代码为

1	2	3	4	5	6	7	8
EA	C/R	0	0	0	0	1	1

对应 Hex 值为 0xC3(命令), 0xC1(响应)。

www.simcom.com 15 / 25

CLD 帧中信息域长度为 0,没有 value 字节。

3.5.3 Test

消息类型代码为

1	2	3	4	5	6	7	8
EA	C/R	0	0	0	1	0	0

Test 消息帧用来测试 TE 和 MS 之间的连接状况,命令中携带的 value 值必须在回应帧中返回。 对应 Hex 值为 0x23(命令),0x21(响应)。

3.5.4 MSC

MSC 消息帧传送 V.24 control signals。

字节格式为

Туре	Leng	th D	LCI	V.24 control sig	ınals Brea	ak signals (0	Optional)		
消息类	型代码为:			AF					
1	2	3	4	5	6	7	8		
EA	C/R	0	0	0	1	1	1		
	对应 Hex 值为 0xE3(命令),0xE1(回应)。 V.24 control signals 格式为								
1	2	3	4	5	6	7	8		
EA	FC	RTC	RTR	保留(0)	保留(0)	IC	DV		

Break signals 为 0x01。

3.5.5 FCoff

消息类型代码为

1	2	3	4	5	6	7	8
EA	C/R	0	0	0	1	1	0

FCoff 帧中信息域长度为 0,没有 value 字节。 对应 Hex 值为 0x63(命令), 0x61(回应)。

3.5.6 FCon

消息类型代码为

1	2	3	4	5	6	7	8
EA	C/R	0	0	0	1	0	1

FCon 帧中信息域长度为 0,没有 value 字节。 对应 Hex 值为 0xA3(命令), 0xA1(回应)。

3.5.7 PN, NSC, RPN, RLS, SNC

不支持

3.6 逻辑通道

逻辑通道传输用户数据,比如 AT 命令数据,GPRS 数据流,GSM 线路交接数据流等。逻辑通道只有在 DLCI 0 控制通道联接后才会建立,详见 3.1。

注意

如果用户想传输大数据,比如 PPP 拨号等,强烈推荐使用 DLCI 1。因为 DLCI 1 的缓存(16K Byte)远大于其他逻辑通道(1K Byte)。

3.7 控制通道

SIMCom 多路复用协议使用软件流控,不支持硬件流控。 软件采用 GSM 0710 MSC, FCoff 和 FCon 消息帧发送的方式进行。

www.simcom.com 17 / 25

当 MS 拒绝接收数据的时候会发送 MSC 消息帧至 TE 端,其中 V.24 control signals 字节的 FC 位置为 1, 代表 MS 端无法收数据,反之,若 MS 恢复接收数据,则发送 MSC 消息帧至 TE 端,其中 V.24 control signals 字节的 FC 位置为 0,代表 MS 端恢复接收数据。

当 TE 拒绝接收数据的时候可以发送 MSC 消息帧至 MS 端,其中 V.24 control signals 字节的 FC 位置为 1,代表 TE 端无法收数据,反之,若 TE 恢复接收数据,则可以发送 MSC 消息帧至 MS 端,其中 V.24 control signals 字节的 FC 位置为 0,代表 TE 端恢复接收数据。

当 TE 拒绝接收数据的时候也可以发送 FCoff 消息帧至 MS 端表示无法接收数据,MS 收到后回送相同的消息响应帧,并停止除了控制通道 DLC 0 之外的所有通道的数据发送。反之 TE 可以发送 FCon 消息帧表示恢复接收数据,MS 收到后回送相同的消息响应帧,继续发送数据。

MSC 方式和 FCon, FCoff 方式的区别在于前者是针对某个通道的流量控制,后者为除了控制通道之外的所有通道。

具体用法见使用举例 4.4 流量控制。

3.8 控制通道

示例帧 1:

F9	03	3F	01	1C	F9
标志域	地址域	控制域	长度指示域	帧校验域	标志域
头	代表控制通道 DLC 0	代表 SABM 帧	长度为0,没有信息域		尾

以上数据代表一个 SABM 帧,用于打开控制通道 0。

示例帧 2:

F9	05	EF	09	41 54 49 0D	58	F9
标志域	地址域	控制域	长度指示域	信息域	帧校验域	标志域
头	代表逻辑通道 DLC 1	代表 UIH 帧	信息域长度为4	ATI		尾

以上数据代表一个 UIH 数据帧,用与在逻辑通道传输数据 ATI。

示例帧 3:

F9	01	EF	0B	E3 07 07 0D 01	79	F9
标志域	地址域	控制域	长度指示域	信息域	帧校验域	标志域
头	代表控制通道 DLC 0	代表 UIH 帧	信息域长度为5	代表 MSC 消息, 长度为 3		尾

以上数据代表一个 MSC 消息帧。

www.simcom.com 18 / 25

3.9 控制通道

所有字节将使用 1 位起始,8 位数据位,1 位停止位来传输,不使用校验位。 所有上述提到的帧格式中,传输顺序从位 1 开始(先传输低位)。

4 MUX 使用举例

4.1 控制通道

步骤 1: 启动多路复用

序 号	步骤	数据流向 TE<>MS	Hex	<u>备注</u>
	TE 启动 MS 多路复用, 使用 AT 指令	<i>─</i> >	61 74 2B 63 6D 75 78 3D 30 0D 0D 0A 4F 4B 0D 0A 0D 0A	AT+CMUX=0 <cr><lf></lf></cr>
1	MS 返回启动信息	<	61 74 2B 63 6D 75 78 3D 30 0D 0D 0A 4F 4B 0D 0A 0D 0A	AT+CMUX=0 <cr><lf>OK<cr><lf>OK<cr><lf>注 1 收到 OK 后,需要快速发送建立控制通道帧,否则模块会退出 MUX 状态。</lf></cr></lf></cr></lf></cr>

注意

● 该处 4 个帧头标志指令的发送有三个作用:

该处 4 个帧头标志指令的发送有三个作用:

- 1) 表明 MS 端 MUX 状态初始化完成;
- 2) TE 或 MS 间一方唤醒睡眠状态的另一方;
- 3) TE 或 MS 间数据失步后的同步。这里是起到 1)的作用。

步骤 2: 建立控制通道 DLC 0

序		数据流向	Hov		
号	少 森	TE<>MS	Hex	一样 任	
	TE 建立控制通道 DLCI 0	>	F9 03 ^[±2] 3F ^[±3] 01 1C	SABM 帧	
1	使用 SABM 帧		F9		
'	MS 收到 SABM 帧响应	<	F9 03 73 01 D7 F9	UA 帧	
	UA ^[注 1] 帧				

步骤 3: 建立逻辑通道 DLC 1, 2

	序	步骤	数据流向	Hex	备注
--	---	----	------	-----	----

www.simcom.com 20 / 25

号		TE<>MS		
	TE 请求建立逻辑通道 DLCI 1,	>	F9 07 3F 01 DE F9	
	使用 SABM 帧			
1	MS 回送 UA 帧表示收到	<	F9 07 73 01 15 F9	
	MS 发送 UIH 帧 MSC 消息	<	F9 01 EF 09 E3 ^[注4] 05 07 ^{[注}	UIH 帧
			^{5]} 0D 9A F9	
	TE 请求建立逻辑通道 DLCI 2,	>	F9 0B 3F 01 59 F9	
	使用 SABM 帧			
2	MS 回送 UA 帧表示收到	<	F9 0B 73 01 92 F9	
	MS 发送 UIH 帧 MSC 消息	<	F9 01 EF 09 E3 05 0B 0D	
			9A F9	
	DLC 3, 4 建立过程依次类推			
	至此,4路逻辑通道建立完毕,			
	复用器正常工作。			

注意

● 注 1:

该指令用于确认 MS 的多路复用模式:

- 1) 若 MS 以 DM 帧响应,说明 MS 建立 DLCI 失败;
- 2) 若 MS 以 UA 帧响应,说明 MS 建立 DLCI 成功。

对于 SIM800, 当 MS 以 UA 帧响应时,回送的长度是以一个字节来表示,比如 F9 07 73 01 15 F9。 而对于 SIM900, 当 MS 以 UA 帧响应时,回送的长度是以两个字节来表示,比如 F9 03 73 00 00 A4 F9。

● 注 2:

表示 DLCI 通道,03 表示控制通道 DLCI 0,07 表示逻辑通道 DLCI 1,ob 表示逻辑通道 DLCI 2,0F 表示逻辑通道 DLCI 3,13 表示逻辑通道 DLCI 4。

● 注 3:

表示帧类型: 3F表示 SABM 帧, 73表示 UA 帧, 1F表示 DM 帧, 53表示 DISC 帧, EF表示 UIH 帧。

● 注 4:

表示 UIH 帧发送的消息: E3 表示 MSC 消息, 43 表示 PSC 消息, 63 表示 FCoff 消息, A3 表示 FCon 消息, C3 表示 CLD 消息。

● 注 5:

表示在 MSC 消息下的通道。

4.2 帧收发

在完成控制通道和逻辑通道建立之后,TE 和 MS 之间可以通过 UIH 帧正常收发数据。

www.simcom.com 21 / 25

序号	步骤	数据流向 TE<>MS	Hex	备注
	TE 通过 DLC 1 发送 AT 命令 "ATI"	>	F9 07 EF 09 41 54 49 0D 58 F9	UIH 帧
1	MS 通过 DLC 1 回送响应	<	F9 07 EF 09 41 54 49 0d 3F F9 F9 07 EF 21 0D 0A 53 49 4D 39 30 30 20 52 31 31 2E 30 0D 0A FF F9 F9 07 EF 0D 0D 0A 4F 4B 0D 0A 4A F9	UIH 帧
	TE 通过 DLC 2 发送"AT"	>	F9 0B EF 07 41 54 0D 35 F9	UIH 帧
2	MS 通过 DLC 2 回送响应	<	F9 0B EF 06 00 61 74 0D EF F9 F9 0B EF 0C 00 0D 0A 4F 4B 0D 0A DF F9	UIH 帧
3	DLC 3, 4 依次类推			

4.3 睡眠状态及唤醒

睡眠

序 号	步骤	数据流向 TE<——>MS	Hex	备注
1	TE 通过控制通道 DLC 0 发送 PSC 消息,请求睡眠	>	F9 03 EF 05 43 01 F2 F9	PSC 命令帧
'	MS 通过控制通道 DLC 0 回送 PSC 消息	<	F9 03 EF 05 41 01 F2 F9	PSC 响应帧

注意

- 允许 MS 进入睡眠状态的必要条件:
- 1. 设置 AT+CSCLK=1,以便允许模块进入睡眠模式,默认情况下,模块是不允许进入睡眠模式。
- 2. 拉高 DTR, 以便从硬件上允许模块进入睡眠模式。

在满足上面两个条件下,TE 发送 PSC 帧,模块返回 PSC 响应帧之后,模块在空闲后会进入睡眠模式。

唤醒

序	上 廊	数据流向	Hov	夕 汁
号	少辣	TE<>MS	пех	一样 在

www.simcom.com 22 / 25

1	TE 发送唤醒标志	>	F9 F9 F9 F9	注 1
1	MS 回送	<	F9 F9 F9 F9	
2	MS 被唤醒,数据收发恢复正常			

注意

- 唤醒可以使用一般的帧或 4 个 Flag, 这里以 4 个 Flag 为例:
- a. 以上睡眠指令是单次有效指令。
- b. 关于标志 F9 的作用请参考 3.1 节中的步骤 1 注 1。

4.4 流量控制

序 号	步骤	数据流向 TE<——>MS	Hex	备注
1	MS 通过控制通道 DLC 0 发送 MSC 消息命令表示逻辑通道 DLC 1 拒绝接收数据	<	F9 01 EF 0B E3 07 07 8F 01 79 F9	注1
2	MS 通过控制通道 DLC 0 发送 MSC 消息表示逻辑通道 DLC 1 恢复接收数据	<	F9 01 EF 0B E3 07 07 8D 01 79 F9	注 2
3	TE 通过控制通道 DLC 0 发送 MSC 消息命令表示逻辑通道 DLC 1 拒绝接收数据	>	F9 01 EF 0B E3 07 07 8F 01 79 F9	
4	TE 通过控制通道 DLC 0 发送 MSC 消息命令表示逻辑通道 DLC 1 恢复接收数据	>	F9 01 EF 0B E3 07 07 8D 01 79 F9	
5	TE 通过控制通道 DLC 0 发送 FCoff 消息表示 TE 拒绝接收数据	>	F9 01 EF 05 63 01 93 F9	注 3
6	TE 通过控制通道 DLC 0 发送 FCon 消息表示 TE 恢复接收数据	>	F9 01 EF 05 A3 01 93 F9	注 3

注意

● 注 1:

其中字节 8F 中的 FC 位被设置为 1 表示无法接收数据。

● 注 2:

其中字节 8D 中的 FC 位被设置为 0 表示恢复接收数据。

● 注 3:

TE 端除了控制通道 DLC 0 外所有通道。

www.simcom.com 23 / 25

4.5 出错帧处理

通道正常建立,TE 和 MS 两端处于正常多路复用状态。

序号	步骤	数据流向 TE<——>MS	Hex	备注
1	TE 端发送十六进制 0xF1	>	F1	注 1
	TE 通过通道 1 发送"AT"测试	>	F9 07 EF 07 41 54 0D 06 F9	注 2
2	MS 回送响应	<	F9 07 EF 07 41 54 0D 67 F9 F9 07 EF 0D 0D 0A 4F 4B 0D 0A 8A F9	

注意

● 注 1:

发送非正常帧数据,使得 MS 收到一个错误的帧。

● 注 2:

MS 端收到非正常帧则自动丢弃,继续等待下一帧,如果是正确的则继续正常处理,MS 端会给出正确的响应,如果是错误的帧则直接丢弃等待下一帧。

4.6 关闭多路复用

序	步骤	数据流向	Hex	备注
号	<i>₩</i>	TE<>MS	HEX	田仁
	TE 发送 DISC 帧 请求关闭 DLC	>	F9 07 53 01 3f F9	
1	1			
	MS 回送 UA 帧,表示收到	<	F9 07 73 01 15 F9	
	TE 发送 DISC 帧 请求关闭 DLC	>	F9 0B 53 01 B8 F9	
2	2			
	MS 回送 UA 帧,表示收到	<	F9 0B 73 01 92 F9	
	TE 发送 DISC 帧 请求关闭 DLC	>	F9 0F 53 01 3f F9	
3	3			
	MS 回送 UA 帧,表示收到	<	F9 0F 73 01 50 F9	
4	TE 发送 DISC 帧 请求关闭 DLC	>	F9 13 53 01 3f F9	

www.simcom.com 24 / 25

	4			
	MS 回送 UA 帧,表示收到	<	F9 13 73 01 5D F9	
5	TE 通过控制通道 DLC 0 发送 CLD 消息	>	F9 01 EF 05 C3 01 F2 F9	
	MS 回送 CLD 消息,表示收到	<	F9 01 EF 05 C1 01 D3 F9	
6	至此, 关闭成功			

www.simcom.com 25 / 25