An Introduction to Complex Networks - Part 3

Malayaja Chutani (IIT Madras)

Dynamics of Complex Systems 2018

Network Construction

Erdős-Rényi random network:

- Start with N nodes.
 Connect each pair of nodes with probability p.
- This creates a graph with $\frac{pN(N-1)}{2}$ edges, on average.
- In a random graph with connection probability p, the degree k_i of a node i follows a binomial distribution:

$$P(k_i = k) = {N-1 \choose k} p^k (1-p)^{N-1-k}$$
.

This probability represents the number of ways in which k edges can be drawn from a node i.

Let X_k = number of nodes with degree k. We want to find the probability that X_k takes on a given value, $P(X_k = r)$.

Expectation value of number of nodes with degree k:

$$E(X_k) = NP(k_i = k) = N\binom{N-1}{k} p^k (1-p)^{N-1-k} = \lambda_k.$$

For large N, $P(k) \approx e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$

Small-world network:

- Watts and Strogatz (1998) showed a way to construct networks in between regular and random, i.e. with high clustering coefficients and small characteristic path lengths.
- Start with a ring lattice with N nodes and k edges per node.
- Rewire each edge randomly with probability p, excluding self-connections and duplicate edges.
 p = 0 corresponds to regularity, p = 1 corresponds to disorder.

Figure: From Watts and Strogatz, 1998

- Random connections act like shortcuts, and connect distant parts of the graph.
- Small-world networks are highly clustered, like regular networks, and have small characteristic path lengths, like random graphs.

Figure: From Watts and Strogatz, 1998

Scale-free network:

Most real-world networks grow by the adding new nodes, and likelihood of connecting to a node depends on the node's degree, i.e. preferential attachment (Barabási and Albert, 1999).

Figure: Degree distributions for (A) actor collaboration graph: $N=212250,\ \langle k\rangle=28.78,\ \gamma=2.3,\ (B)$ WWW: $N=325729,\ \langle k\rangle=5.46,\ \gamma=2.1,\ (C)$ power grid data: $N=4941,\ \langle k\rangle=2.67,\ \gamma=4.$ From Barabási and Albert, 1999.

- Start with a small number (m_0) of nodes. At every time step, add a new node with $m \leq m_0$ edges. A new node will link to an existing node with probability $\Pi(k_i) = k_i/\Sigma_j k_j$.
- After t time steps this procedure results in a network with $N = t + m_0$ nodes and mt edges.
- It has been reported that this network evolves such that the degree distribution follows a power law.

Networkx Tutorial

References for Networkx Tutorial

- https://networkx.github.io/documentation/stable/
 index.html
- http://snap.stanford.edu/class/cs224w-2012/nx_ tutorial.pdf
- https://networkx.github.io/documentation/stable/ auto_examples/drawing/plot_degree_histogram.html

For more information, see:

- D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature 393, 440 (1998).
- A.-L. Barabaśi and R. Albert, Emergence of Scaling in Random Networks, Science, 286, 509 (1999).
- R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys. 74, 47 (2002).
- M. E. J. Newman, The Structure and Function of Complex Networks, SIAM Rev. 45, 2 (2003).
- M. E. J. Newman, Networks: An Introduction (Oxford University Press, New York, 2010).
- A.-L. Barabási, Network Science. http://networksciencebook.com/