

GRUP A - Sessió 03-04

Tema 1 - Sistemes de representació numèrica

Conceptes fonamentals

BIT

- En els sistemes digitals, un 'bit' és la mínima unitat d'informació, la qual pot prendre només dos valors: '0' o '1'.
- Un 'bit' és un nombre binari d'un dígit.

Sistema binari

• És un sistema de numeració en el qual els nombres es representen utilitzant 2 tipus de dígits (bi = dos) '0' o '1' → bit.

Concepte de "dígit"

- Estrictament, un "dígit" en un nombre binari, és un bit → 110[0]101₂
- Però és més habitual referir-se a un dígit decimal representat en binari.
- Per exemple, el dígit "9" decimal en binari és → 1001₂

Conceptes fonamentals

Sobre els nombres binaris

- No comencen mai per '0', com tampoc passa amb el cas dels decimals: per exemple, diem que els alumnes de la classe són 35, no 0035. Una altra cosa és que ens obliguin a representar un número amb un cert número de bits.
 - **001 0101**₂ = No és estrictament incorrecte, però els zeros al davant no aporten res.

BYTE

- 8 bits
- Exemple: $01100101_2 = 101_{10}$

Emmagatzematge de la informació

• El valor d'un bit es guarda mitjançant un valor de voltatge:

5 volts → 1 lògic (Vcc)

0 volts → 0 lògic (GND)

Conceptes fonamentals

Capacitat de codificació

 Quantitat de combinacions (valors) que es poden representar amb un cert nombre de bits determinat.

Decimal	Binari (natural)
0 →	000
1 >	001
2 >	010
3 >	011
4 >	100
5 >	101
6 →	110
7 >	111

Exemple:

Amb 3 bits puc codificar 8 valors diferents (=> 8 combinacions possibles).

Bit de més pes MSB (Most Significant Bit) Bit de menys pes LSB (Less Significant Bit)

Sistemes numèrics:

- Decimal (Base:10)
- Binari (Base:2)
- Octal (Base:8)
- Hexadecimal (Base: 16)

Conversions de valors d'un sistema a un altre:

- Binari → Decimal (mètode de potencies) Decimal a Binari (mètode de divisions)
- Decimal → Octal (mètode de divisions) Octal a Decimal (mètode de potencies)
- Octal → Binari (igual que Binari a Octal) concatenant / codificació 0-7.
- Hexadecimal → Decimal (mètode de potencies) Decimal a Hexadecimal (mètode de divisions)
- Hexadecimal → Binari (igual que Binari a Hexadecimal) concatenant / codificació 0-F.

Sistema Octal (base: 8)

- SN en el qual cada dígit pot prendre 8 valores (=símbols) diferents (0-7).
- Els nombres en octal solen indicar-se amb un subíndex '8' o bé 'o'.

• Exemples: 76302₈ 31627_o 5410₈

Conversió: Octal a decimal (8 \rightarrow 10) ?

Sistema Octal (base: 8)

- SN en el qual cada dígit pot prendre 8 valores (=símbols) diferents (0-7).
- Els nombres en octal solen indicar-se amb un subíndex '8' o bé 'o'.
- Exemples:

76302₈

31627_o

5410₈

Conversió: Octal a decimal (8 \rightarrow 10) ?

Exemple: 76302₈ Observem que no hi haurà cap '8' ni cap '9'

$$\frac{8^4 \quad 8^3 \quad 8^2 \quad 8^1 \quad 8^0}{7 \cdot (4096) \quad 6 \cdot (512) \quad 3 \cdot (64) \quad 0 \cdot (8) \quad 2 \cdot (1) = 28672 + 3072 + 192 + 2 = 31.938_{10}}$$

$$31627_8 = 3.8^4 + 1.8^3 + 6.8^2 + 2.8^1 + 7.8^0 = 12288 + 512 + 384 + 14 + 7 = 13207_{10}$$

$$5410_8 = 5.8^3 + 4.8^2 + 1.8^1 + 0.8^0 = 2560 + 256 + 8 = 2824_{10}$$

Sistema Octal (base: 8)

Conversió: Decimal a octal (10 \rightarrow 8)

Usem el mètode de les divisions successives, aquest cop dividint entre 8.

Exemple

Sistema Octal (base: 8)

Conversió: Decimal a octal (10 \rightarrow 8)

Usem el mètode de les divisions successives, aquest cop dividint entre 8.

Exemple

Conversió: Octal a Binari (i viceversa)

Per representar números del 0-8 només necessitem 3 bits, per tant es tracta d'anar concatenant. Exemple → 3256₈:

$$3_8 = 011_2$$
 $2_8 = 010_2$
 $5_8 = 101_2$
 $6_8 = 110_2$
Aquest canvi funciona en les dues direccions
 $2_8 = 101_2$
8 és una potencia de $2^Y \rightarrow 2^3$

Sistema Hexadecimal (base: 16)

- Cada dígit pot prendre 16 valores diferents: { 0 al 9 + A, B, C, D, E, F }
- Les lletres A, B, C, D, E i F equivalen als valors 10, 11, 12, 13, 14 i 15 respectivament.
- La base es pot indicar amb un 16, però és més usual a través de la lletra 'h'.

Conversió: hexadecimal a decimal (16 \rightarrow 10)

Exemple: **1A340h** \rightarrow **1A340h** \rightarrow **1(10)340h**

$$1 \cdot (16^4)$$
 $10 \cdot (16^3)$ $3 \cdot (16^2)$ $4 \cdot (16^1)$ $0 \cdot (16^0)$ = 65536 + 40960 + 768 + 64 = **107.328**₁₀

Conversió: hexadecimal a binari (16 → 2)

Per representar números del 0-15 només necessitem 4
 bits, per tant es tracta d'anar concatenant (dígit = 4 bits).

1	0	0	0	0	1	1	0	0	0	0	1 ₂ = 861 _h
8				(6				1		

→ el canvi és el mateix en les dues direccions.

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Sistema Hexadecimal (base: 16)

Conversió: hexadecimal a binari

• Fan falta 4 bits per representar un dígit hexadecimal.

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

Binario	Hexadecimal
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	Ш
1111	F

• Exemples:

el 1010011010₂ lo convertimos en 001010011010₂

RESUM

Sistemes numèrics:

Decimal (base: 10)

Binari (base: 2)

Octal (base: 8)

Hexadecimal (base: 16)

Sistemes amb altre bases:

Base 3, Base 4, Base 6...?

Conversions de valors d'un sistema a un altre:

- Binari a Decimal (mètode de potencies) Decimal a Binari (mètode de divisions)
- Decimal a Octal (mètode de divisions) Octal a Decimal (mètode de potencies)
- Octal a Binari (igual que Binari a Octal) concatenant / codificació 0-7.
- Hexadecimal a Decimal (mètode de potencies) Decimal a Hexadecimal (mètode de divisions)
- Hexadecimal a Binari (igual que Binari a Hexadecimal) concatenant / codificació 0-F.

Transformacions amb números de altres bases diferents a les anteriors

- Usem el "sistema decimal" com intermediari.
- Per exemple, per passar un nombre de "base 6" → "base 4".

Exemple: 3451₆

passos: 1) Base 6 -> Base 10 (mètode de les potencies)

2) Base 10 → base 4 (mètode de les divisions)

Transformacions amb números de altres bases diferents a les anteriors

- Usem el "sistema decimal" com intermediari.
- Per exemple, per passar un nombre de "base 6" → "base 4".

Exemple: 3451₆

passos: 1) Base 6 -> Base 10 (mètode de les potencies)

ERRORS TIPICS:

- 1. Arribar fins al final \rightarrow el quocient ha de quedar sempre "0".
- 2. Repassar els càlculs (divisions, potencies, etc.) \rightarrow $X^0 = 1$.
- 3. Indicar el sistema numèric amb el subíndex → 111 podria ser base 2 o 10 o

Codis Binaris BASE 2,

BASE 3, BASE 4, BASE 5, BASE 6, BASE 7, BASE 8,

Codis Binaris

- Codi Binari Natural (BN)
- El que ja hem vist

- Codi GRAY
- Codi Johnson
- Codi BCD
 - BCD Natural
 - BCD Exces 3
 - BCD Aiken

Binari NO Natural (BNN) (segueixen unes regles)

Codis Binaris (conceptes bàsics)

Codis binaris: Concepte de codificació

- Representació d'una combinació de símbols (S) a través d'una altra combinació de símbols (S').
- Aplicació entre un conjunt de dades a representar i un conjunt de possibles representacions

$$\frac{1 \quad 0 \quad 0 \quad 0}{8} \quad \frac{0 \quad 1 \quad 1 \quad 0}{6} \quad 0 \quad \frac{0 \quad 0 \quad 1_2 = 861_h}{1}$$

Codis binaris: Concepte de codificació

- Representació d'una combinació de símbols (S) a través d'una altra combinació de símbols (S').
- Aplicació entre un conjunt de dades a representar i un conjunt de possibles representacions

$$\frac{1 \quad 0 \quad 0 \quad 0}{8} \quad \frac{0 \quad 1 \quad 1 \quad 0}{6} \quad 0 \quad \frac{0 \quad 0 \quad 1_2}{1} = 861_h$$

Codis binaris: Codi Binari Natural (BN) - El que hem vist anteriorment

- El codi BN és un sistema de numeració ponderat amb base fixa.
- És a dir, un nombre N a representar segueix la fórmula:

$$N = a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + \dots + a_i b^i + \dots + a_0 b^0 + a_{-1} b^{-1} + \dots + a_{-p} b^{-p}$$

$$2^{3} \quad 2^{2} \quad 2^{1} \quad 2^{0}$$

$$1000_{2} \rightarrow 1 \quad 0 \quad 0 \quad 0 = 8_{10}$$

Codis binaris: Concepte de codificació

Decimal	Binari Natural
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

El codi **Binari Natural (BN)** es correspon amb el sistema de numeració binari ponderat. És a dir, cada posició d'una seqüència de dígits (zeros i uns) té associat un pes. Aquest fet permet extreure una relació directa amb el valor corresponent en el sistema numèric decimal.

← Exemple de codi binari de 4 bits

Un codi BN pot ser de tants bits com es necessitin per a poder representar (codificar) una valor màxim en decimal.

Codis binaris: Concepte de codificació:

Codis: (1) ADJACENTS, (2) CONTINUS, i (3) CICLICS

Decimal	Binari Natural
0	0000
1	0 <mark>001</mark>
	0 <mark>010</mark>
3	0 <mark>011</mark>
2 3 4	0 <mark>100</mark>
5	0 <mark>101</mark>
6	0 <mark>110</mark>
7	0 <mark>111</mark>
8	1000
9	1 <mark>001</mark>
10	1 <mark>010</mark>
11	1 <mark>011</mark>
12	1 <mark>100</mark>
13	1 <mark>101</mark>
14	1 <mark>110</mark>
15	1111
••••	••••

- Combinacions adjacents → aquelles que difereixen en un sol bit. Per exemple la combinació 1010 i el 1000 són adjacents, 1100 i 1101 són també adjacents, mentre que 1001 i 1100 no ho són.
- Codi continu → quan totes les combinacions corresponent al codi decimal son sempre adjacents de forma consecutiva.

Per exemple → Codi BN NO és continu

$$\rightarrow$$
 combinations $3 = 0011_2$ $4 = 0100_2$

veiem que hi ha 3 bits diferents

Codis binaris: Concepte de codificació:

Codis: (1) ADJACENTS, (2) CONTINUS, i (3) CICLICS

- 1. Combinacions adjacents → Les que difereixen només en un sol bit.
- 2. Codi continu

 Combinacions corresponent al codi decimal a on aquestes són sempre adjacents de forma consecutiva.

D	ecim	al	Binari No N	latural (BNN)	D	ecim	al	Binari No I	Natural (BNN)
	0		000		1	0		000	
	1		100	6 1: .:		1		010	
	2		101	Codi continu:		2		011 /	Codi continu:
	3		001 🥄	adjacents		3		111 🥄	adjacents
	4		011			4		110	-
	5		010	de forma		5		100	de forma
	6		110	consecutiva		6		101	consecutiva
	7		111	consecutiva		7		001	Consecutiva

- BNN: Codis binaris que no es corresponen amb el sistema de numeració binari ponderada.
- Aquests 2 exemples són <u>continus</u>: sempre hi ha <u>adjacència</u> consecutiva en tots els termes.
- El segon, a més a més, és cíclic.

Codis binaris: Concepte de codificació:

Codis: (1) ADJACENTS, (2) CONTINUS, i (3) CICLICS

- 1. Combinacions adjacents → Les que difereixen només en un sol bit.
- 2. Codi continu

 Combinacions corresponent al codi decimal a on aquestes són sempre adjacents de forma consecutiva.

Decimal Binari No Natural (BNN) Decimal Binari N	lo Natural (BNN)
0 1 1 2 3 3 001 3 001 4 011 5 6 7	Ha de funcionar amb totes les combinacions per N bits

- BNN: Codis binaris que no es corresponen amb el sistema de numeració binari ponderada.
- Aquests 2 exemples són <u>continus</u>: sempre hi ha <u>adjacència</u> consecutiva en tots els termes.
- El segon, a més a més, és <u>cíclic</u>.

Codis binaris: Concepte de codificació:

Codis: (1) ADJACENTS, (2) CONTINUS, i (3) CICLICS

3. Codis cíclic → codi continu en el que la primera i última combinació són també adjacents.

Decimal	Binari No Natural (BNN)	Decimal	Binari No Natural (BNN)	
0 1 2 3 4 5 6 7	000 100 101 001 011 010 110	0 1 2 3 4 5 6 7	Ha de funcio amb totes les combinacion per N bits	S

- Per què? faciliten la detecció d'errors.
- Exemple codi taula 1: és un codi continu, però no cíclic: la primera combinació (000) no és adjacent amb l'última (111).
- Exemple codi taula 2: és un codi continu, i cíclic: la primera combinació (000) <u>és</u> adjacent amb l'última (001). Això no pot dependre del número de bits. És a dir per 4 bits o més s'ha de mantenir.

Codis Binaris

- Codi Binari Natural (BN)
- Codi GRAY
- Codi Johnson
- Codi BCD
 - BCD Natural
 - BCD Exces 3
 - BCD Aiken

Binari NO Natural (BNN) (segueixen unes regles)

Codis binaris: Codi GRAY (Binari No Natural)

- Codi "reflectit" → Per formar el codi Gray de "N" bits, es fan servir els valors del codi de "N-1" bits i es reflecteixen, de manera que queden 2·2^{N-1} combinacions.
- A les primeres 2^{N-1} se'ls afegeix un "0" per l'esquerra, mentre que a les següents 2^{N-1} valen un 1.

Codis binaris: Codi GRAY (Binari No Natural)

Què passa quan tractem valors binaris grans?

Per exemple, donat el valor **345**₁₀,

Com obtenir el cadi GRAY equivalent?

Codis binaris: Codi GRAY (Binari No Natural)

Què passa quan tractem valors binaris grans?

Per exemple, donat el valor **345**₁₀, Com obtenir el cadi GRAY equivalent?

Hi ha una operació en lògica binaria que es diu X-OR

А	В	A XOR B
О	0	0
0	1	1
1	0	1
1	1	0

Ho podem veure com una suma a on 1 + 1 = 0 (2 \rightarrow 10)

Codis binaris: Codi GRAY (Binari No Natural)

Què passa quan tractem valors binaris grans?

Per exemple, donat el valor **345**₁₀, Com obtenir el cadi GRAY equivalent?

IDEA

 Convertir el valor a binari natural (mètode de les divisions).

$$345_{10} = 101011001_{b}$$

Codis binaris: Codi GRAY (Binari No Natural)

Què passa quan tractem valors binaris grans?

Per exemple, donat el valor **345**₁₀, Com obtenir el cadi GRAY equivalent?

IDEA

 Convertir el valor a binari natural (mètode de les divisions).

$$345_{10} = 101011001_{b}$$

2. Desplaçar 1 bit a la dreta ("shiftar") i aplicar la operació **X-OR** bit a bit

А	В	A XOR B
О	0	0
0	1	1
1	0	1
1	1	0

Decimal → GRAY

Introducció als ordinadors

Codis binaris: Codi GRAY (Binari No Natural)

Què passa quan tractem valors binaris grans?

Per exemple, donat el valor **345**₁₀, Com obtenir el cadi GRAY equivalent?

Exemple senzill amb el '7'

Decimal	GRAY	Binari (natural)		
 0 1 2 3 4 5	000 001 011 010 110 111	000 001 010 011 100 111 101		
6 7	111 101 100	101 110 111 100		

А	В	A XOR B	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Codis Binaris

- Codi Binari Natural (BN)
- Codi GRAY
- Codi Johnson
- Codi BCD
 - BCD Natural
 - BCD Exces 3
 - BCD Aiken

Binari NO Natural (BNN) (segueixen unes regles)

Codis binaris: Codi JOHNSON (Binari No Natural)

- Codi binari continu i cíclic.
- Capacitat de codificació menor que els anteriors Es necessiten més bits:
 - Codi "Gray" i "BN" codifiquen els valors amb 2^N combinacions.
 - Codi "Johnson" de N bits els valors es codifiquen amb 2N combinacions.

Exemple

 Codificar 10 números decimals en GRAY fan falta 4 bits. 		Decimal	Binari JOHNSON
	 Codificar 10 números decimals en Johnson fan falta 5 bits. 		00000
	Counted to numeros accimais en joinison fan fanta 5 bits.	1	00001
	Arch F hits and CDAY > 25 22 combined are (differents)	2	00011
	• Amb 5 bits codi GRAY \rightarrow 2 ⁵ = 32 combinacions (diferents).	3	00111
	• Amb 5 bits codi Johnson \rightarrow 2 · 5 bits = 10 combinacions .	4	01111
		5	11111
	MECANICA: el codi Johnson de N bits parteix de la combinació formada	6	11110
	per tots els bits a zero i va posant a 1 els bits de la dreta de manera	7	11100
	seqüencial, fins que obtenim la combinació formada per tots els bits a 1.	. 8	11000
	A partir d'aquesta combinació es tornen a posar a zero els bits començar	nt 9	10000
	per la dreta fins a trobar de nou la combinació de partida (00000).		-

Codis binaris: Codi JOHNSON (Binari No Natural)

Què passa quan tractem valors binaris grans?

Per exemple, donat el valor **555**₁₀ Com obtenir el cadi Johnson equivalent?

Codis binaris: Codi JOHNSON (Binari No Natural)

Què passa quan tractem valors binaris grans?

Per exemple, donat el valor **555**₁₀ Com obtenir el cadi Johnson equivalent?

- 1. Determinar el rang [0...X] on:
 - $X = 2 \cdot N 1$
 - N = número de bits mínim necessari

Quants bits necessito per definir combinacions fins arribar al decimal 555? (màxim valor)

Recordem que en Johnson:

- Número de combinacions → Parell (2, 4, 6...∞)
- Últim valor sempre senar (1, 3, 5, ...∞)

Rang \rightarrow [0..2·N-1]

Codi **Johnson** de 3 bits

Introducció als ordinadors

Codis binaris: Codi JOHNSON (Binari No Natural)

Què passa quan tractem valors binaris grans?

Per exemple, donat el valor **555**₁₀ Com obtenir el cadi Johnson equivalent?

- 1. Determinar el rang [0...X] on:
 - $X = 2 \cdot N 1$
 - N = número de bits mínim necessari

Quants bits necessito per definir combinacions fins arribar al decimal 555? (màxim valor)

$$555 = [2 \cdot N - 1]$$
 ← Rang [0...555]
 $(555 + 1) / 2 = N$
 $N = 278$ → $2 \cdot (N = 278) - 1 = 555$

Número de dígits necessari i el número o valor de la combinació del mig de la taula, coincideixen

278 dígits

Codis binaris: Codi JOHNSON (Binari No Natural)

Què passa quan tractem valors binaris grans?

Per exemple, donat el valor **555**₁₀ Com obtenir el cadi Johnson equivalent?

- 1. Determinar el rang [0...X] on:
 - $X = 2 \cdot N 1$
 - N = número de bits mínim necessari

Quants bits necessito per definir combinacions fins arribar al decimal 555? (màxim valor)

$$555 = [2 \cdot N - 1]$$
 ← Rang [0...555]
(555 + 1) / 2 = N
N = 278 → 2·(N=278) - 1 = 555

Si hagués estat parell, seria el penúltim valor (ex: 556 → hauríem de incloure fins a 557)

Número de dígits necessari i el número o valor de la combinació del mig de la taula, coincideixen

278 dígits

Codis binaris: Codi JOHNSON (Binari No Natural)

Exemple. Si tinc 10 valors necessito 5 bits en Johnson

Què passa quan tractem valors binaris grans?

Per exemple, donat el valor **555**₁₀ Com obtenir el cadi Johnson equivalent?

- 1. Determinar el rang [0...X] on:
 - $X = 2 \cdot N 1$
 - N = número de bits mínim necessari

Quants bits necessito per definir combinacions fins arribar al decimal 555? (màxim valor)

555 =
$$[2 \cdot N - 1] \leftarrow \text{Rang} [0...555]$$

(555 + 1) / 2 = N
N = 278 $\rightarrow 2 \cdot (N=278) - 1 = 555$

Si hagués estat parell, seria el penúltim valor (ex: 556 → hauríem de incloure fins a 557)

Binari JOHN	ISON 🗡
00000	- , , , , , , ,
00001	Exemple:
00011	N=5 bits
00111	Rang?
01111	nang.
11111	[02·N-1]_
11110	•
11100	$[02\cdot 5-1]$
11000	[09]
10000	[0
_	00000 00001 00011 00111 01111 11111 11110 11100

Codis binaris: Codi JOHNSON (Binari No Natural)

Què passa ara si ens diuen que donat el valor 555_{10} com a màxim, ens demanen la combinació del número 300_{10} ?

Com la obtenim?

Codis binaris: Codi JOHNSON (Binari No Natural)

Què passa ara si ens diuen que donat el valor 555₁₀ com a màxim, ens demanen

la combinació del número **300**₁₀?

ia combinació del numero 300 ₁₀ !	Decimal	Binari JOHNSON
	0	00000
PAS 1:	1	00001
Si màxim = 555, el rang és [0555], la meitat és 278	2	00011
, 5	3	00111
Per representar 555 (última combinació) \rightarrow un 1 + 277	ze <u>4</u>	01111
o sigui \rightarrow 555 = 10000000000000000	5	11111
0 sigui / 333 – 100000000000000000000000000000000	6	11110
	7	11100
278 dígits	8	11000
270 digits	9	10000
	Exemple pel	cas de 10

combinacions

Codis binaris: Codi JOHNSON (Binari No Natural)

Què passa ara si ens diuen que donat el valor 555_{10} com a màxim, ens demanen la combinació del número 300_{10} ?

PAS 1:

Si màxim = 555, el rang és [0...555], la meitat és **278**

Per representar 555 (última combinació) → un 1 + 277 zeros

278 dígits

PAS 2:

300 està per sobre o sota de la meitat (278)? \rightarrow (300 > 278)

Una mica per sota → Per tant tindrà alguns 1's i molts 0's

300 - 278 =
$$22 \rightarrow 22$$
 posicions per sota = 256 uns + 22 zeros

Codis binaris: Codi JOHNSON (Binari No Natural)

Exemple 2: Ens demanen la codificació del 555_{10} en codi Johnson on N=300 (o sigui, on cada una de les combinacions és de 300 bits)

Codis binaris: Codi JOHNSON (Binari No Natural)

Exemple 2: Ens demanen la codificació del 555₁₀ en codi Johnson on N=300

(o sigui, on cada una de les combinacions és de 300 bits)

555 ja no és el valor màxim de la meva taula

Número de dígits

Codis binaris: Codi JOHNSON (Binari No Natural)

Exemple 2: Ens demanen la codificació del 555_{10} en codi Johnson on N=300 (o sigui, on cada una de les combinacions és de 300 bits)

Pas 1: Calcular el valor màxim: $2 \cdot N - 1 \rightarrow 2 \cdot (300) - 1 = 599 \rightarrow [0..599]$

Codis binaris: Codi JOHNSON (Binari No Natural)

Exemple 2: Ens demanen la codificació del 555_{10} en codi Johnson on N=300 (o sigui, on cada una de les combinacions és de 300 bits)

Pas 1: Calcular el valor màxim: $2 \cdot N - 1 \rightarrow 2 \cdot (300) - 1 = 599 \rightarrow [0..599]$

Pas 2: Si la combinació del 599 = 10000.....0000 (o sigui un 1 i 299 zeros)

Aleshores 599 - 555 = 45 + 1 uns, i la resta zeros

Codis Binaris

- Codi Binari Natural (BN)
- Codi GRAY
- Codi Johnson
- Codi BCD
 - BCD Natural
 - BCD Exces 3
 - BCD Aiken

Binari NO Natural (BNN) (segueixen unes regles)

Codis binaris: Codi BCD (Binari No Natural)

- BCD (Binary Coded Decimal).
- Codi que només contindrà valors codificats de valors decimals.
- Cada dígit "decimal" es codificarà amb 4 bits, ja que amb tres (2³ = 8) només es podrien representar del 0 al 7.
- Com s'utilitzen 4 bits (2⁴ = 16) per representar els dígits del 0 al 9, es perden 6 combinacions.

0 ₁₀ →	00002
1 ₁₀ →	00012
2 ₁₀ →	00102
3 ₁₀ →	00112
4 ₁₀ →	01002
5 ₁₀ →	0101 ₂
6 ₁₀ →	01102
7 ₁₀ →	0111 ₂
8 ₁₀ →	1000 ₂
9 ₁₀ →	1001 ₂

Codis binaris: Codi BCD (Binari No Natural)

- BCD (Binary Coded Decimal).
- Codi que només contindrà valors codificats de valors decimals.
- Cada dígit "decimal" es codificarà amb 4 bits, ja que amb tres (2³ = 8) només es podrien representar del 0 al 7.
- Com s'utilitzen 4 bits ($2^4 = 16$) per representar els dígits del **0 al 9**, es perden 6 combinacions.

0 ₁₀ → 0000 ₂
$1_{10} \rightarrow 0001_2$
$2_{10} \rightarrow 0010_2$
$3_{10} \rightarrow 0011_2$
$4_{10} \rightarrow 0100_2$
$5_{10} \rightarrow 0101_2$
$6_{10} \rightarrow 0110_2$
$7_{10} \rightarrow 0111_2$
$8_{10} \rightarrow 1000_2$
9 ₁₀ → 1001 ₂

Exemple

9.999 en BCD → 4 dígits x 4 bits / dígit = 16 bits XXXX-XXXX-XXXX

```
No confondre amb el codi Binari Natural (BN) \rightarrow 14 bits \leftarrow 2<sup>14</sup> (0 - 16.384) 9999 = 10 0111 0000 1111
```

Si es representés aquesta xifra en BN serien suficients 14 bits, ja que 2^{14} = 16384, que és més gran que 9999, i 2^{13} = 8.192, que és menor que 9999, així que realment s'estan utilitzant, en aquest cas, dos bits més dels necessaris en la representació binària natural.

Resum codis binaris no naturals (BNN) que hem vist fins ara: Exemples

Codi GRAY: Codi JOHNSON:

Decimal	Binari GRAY		Decimal	Binari JOHN	ISON
0	000	_	0	00000	_
1	001		1	00001	
2	011		2	00011	
3	010		3	00111	
4	110		4	01111	
5	111		5	11111	
6	101 _		- 6	11110	
7	100	continu + cíclic	7	11100	
		continu + ciciic	8	11000	
			9	10000	
di <mark>BCD</mark> (natural):	Decim	nal Binari BCI	D		continu + cíclic

Codi BCD (natural)	:
------------	----------	---

Decimal	Binari BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

NO continu NO cíclic

Codis alfanumèrics

- Els codis estudiats anteriorment només permeten representar informació numèrica.
- A vegades es fa imprescindible representar informació alfabètica, incloent símbols especials → codis alfanumèrics.
- El codi alfanumèric més utilitzat és el codi ASCII (American Standard Code for Information Interchange).
- Per poder representar 26 caràcters alfabètics i els 10 numèrics són necessaris 6 bits.
- Però, com sobren 28 combinacions \rightarrow 2⁶ (26 + 10) = 64-36, aquestes s'aprofiten per poder codificar els símbols especials necessaris.
- La taula del codi ASCII original era de 6 bits, però estès en dues ocasions per permetre altres caràcters i símbols, com són 'ç', 'à', 'ñ', ... que en l'original no estaven inclosos.
- La taula ASCII més utilitzada és la de 8 bits, amb la qual es poden representar 256 caràcters diferents.

Codis alfanumèrics

DEC	HEX	OCT	CHAR	DEC	HEX	OCT	СН	DEC	HEX	OCT	СН	DEC	HEX	OCT	СН
0	0	000	NUL	32	20	040		64	40	100	@	96	60	140	`
1	1	001	SOH	33	21	041	ļ	65	41	101	Α	97	61	141	а
2	2	002	STX	34	22	042	"	66	42	102	В	98	62	142	b
3	3	003	ETX	35	23	043	#	67	43	103	С	99	63	143	С
4	4	004	EOT	36	24	044	\$	68	44	104	D	100	64	144	d
5	5	005	ENQ	37	25	045	%	69	45	105	Е	101	65	145	е
6	6	006	ACK	38	26	046	&	70	46	106	F	102	66	146	f
7	7	007	BEL	39	27	047	'	71	47	107	G	103	67	147	g
8	8	010	BS	40	28	050	(72	48	110	H	104	68	150	h
9	9	011	TAB	41	29	051)	73	49	111		105	69	151	i
10	Α	012	LF	42	2A	052	*	74	4A	112	J	106	6A	152	j
11	В	013	VT	43	2B	053	+	75	4B	113	K	107	6B	153	k
12	С	014	FF	44	2C	054		76	4C	114	L	108	6C	154	1
13	D	015	CR	45	2D	055	- A.	77	4D	115	M	109	6D	155	m
14	E	016	SO	46	2E	056	100	78	4E	116	Ν	110	6E	156	n
15	F	017	SI	47	2F	057	1	79	4F	117	0	111	6F	157	0
16	10	020	DLE	48	30	060	0	80	50	120	80	112	70	160	р
17	11	021	DC1	49	31	061	1	81	51	121	Q	113	71	161	q
18	12	022	DC2	50	32	062	2	82	52	122	R	114	72	162	r
19	13	023	DC3	51	33	063	3	83	53	123	S	115	73	163	S
20	14	024	DC4	52	34	064	4	84	54	124	Т	116	74	164	t
21	15	025	NAK	53	35	065	5	85	55	125	U	117	75	165	u
22	16	026	SYN	54	36	066	6	86	56	126	٧.	118	76	166	٧
23	17	027	ETB	55	37	067	7	87	57	127	W	119	77	167	W
24	18	030	CAN	56	38	070	8	88	58	130	Х	120	78	170	Х
25	19	031	EM)	57	39	071	9	89	59	131	Y	121	79	171	У
26	1A	032	SUB	58	3A	072	:	90	5A	132	Z.	122	7A	172	z
27	1B	033	ESC	59	3B	073	i,	91	5B	133	[123	7B	173	{
28	1C	034	FS	60	3C	074	<	92	5C	134	1	124	7C	174	Ţ
29	1D	035	GS BB	61	3D	075	=	93	5D	135]	125	7D	175	}
30	1E	036	RS	62	3E	076	?	94	5E	136	٨	126	7E	176	~ DEI
31	1F	037	US	63	3F	077	7	95	5F	137	_	127	7F	177	DEL

Codis Binaris Detecció d'ERRORS

Detecció d'errors en codis binaris

Transmissions de dades entre sistemes digitals:

Hi ha errors deguts a vàries causes:

- Sorolls.
- Interferències electromagnètiques.
- Mal funcionament d'algun component electrònic.
- etc...
- Detecció d'errors no es senzilla:

Si s'altera un valor binari el codi pot seguir sent vàlid en funció del sistema de detecció que s'utilitzi.

Exemple: error en una codificació en BCD Natural

```
0111 → 1111 (7 → 16) = incorrecte (detectable) → 16 \notin { 0-9 } 0111 → 0011 (7 → 3) = correcte (no detectable)
```


Detecció d'errors en codis binaris

Conceptes relacionats amb la detecció d'errors

1. "Distància" entre 2 combinacions binàries: nombre de bits diferents.

Exemple: distància entre la combinació en BCD Natural del 2 i el 7 $0010 \rightarrow 0111 (2 \rightarrow 7)$ la distancia és 2, ja que canvien 2 bits.

- 2. "Distància mínima d'un codi (dm)" és la menor de les distàncies entre 2 combinacions qualssevol del codi (és a dir, no cal que siguin consecutives).
 - Tots els codis que hem vist tenen una dm = 1 → Sempre hi ha una combinació que respecte d'una altre "qualsevol "només es diferencien amb 1 bit.
 - dm = 1 suposa un problema per poder detectar errors quan hi ha un error d'1 bit en una combinació → Una "combinació mutada" es pot convertir en una altra combinació vàlida que pertany al codi.
 - Per poder detectar errors d'1 bit en una combinació, la dm té que se superior a 1 bit.

Detecció d'errors en codis binaris

Conceptes relacionats amb la detecció d'errors

DETECCIÓ

- La solució són els "codis detectors d'errors", una eina que permet a un sistema digital receptor determinar si la informació que ha rebut és correcta o no.
- Si (ERROR) detectat → Es pot enviar al sistema transmissor una petició de reenviament.

SOLUCIÓ

→ Usar Codis de detecció d'errors

Codis de detecció d'errors

- Els "codis detectors d'errors" detecten errors en 1 sol bit de la informació.
- Existeixen un gran nombre de codis detectors d'errors.
- En aquest curs només estudiarem els codis detectors "de paritat".

Codis de detecció d'errors "de paritat"

- Afegeixen un bit més al codi com a nou bit LSB o MSB.
- El valor del bit dependrà de si s'ha escollit paritat parell o imparell:
 - Paritat parell → Nombre d'1s de cada combinació es parell (ex: 00110)
 - Paritat imparell → Nombre d'1s de cada combinació es imparell (ex: 00100)
- Els codis inicials estudiats fins ara (BN, Gray, Johnson, BCD, ...) presenten distància mínima (dm) = 1. En afegir 1 bit més de paritat, obtenim codis amb distància mínima (dm) = 2.
- La detecció d'errors s'encarrega de comptar el nombre d'1s dels bits rebuts.
- Sabent quina paritat s'utilitza sabrem si el valor és "correcte" o "erroni".

Codis de detecció d'errors

Exemple: codi BCD natural amb 1 bit de paritat imparell.

Decimal	BCD natural
0	000 <mark>0 1 capyi</mark>
1	0001 1 canvi
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Codis de detecció d'errors

Exemple: codi BCD natural amb 1 bit de paritat imparell.

Decimal	BCD natural	Bit paridad
0	0000	1 2 canvis
1	0001	0 Z Carryis
2	0010	0
3	0011	1
4	0100	0
5	0101	1
6	0110	1
7	0111	0
8	1000	0
9	1001	1

- Si revisem totes les combinacions veurem que la distància mínima d'aquest codi és 2.
- Per tant, permetrà detectar canvis d'un bit a on abans no es podia.

Codis de detecció d'errors

Exemple: codi BCD natural amb 1 bit de paritat imparell.

Decimal	BCD natural	Bit parid	dad_
0	0000	1	2 canvis
1	0001	0	Z Carryis
2	0010	0	
3	0011	1	
4	0100	0	
5	0101	1	
6	0110	1	
7	0111	0	
8	1000	0	
9	1001	1	

- Si revisem totes les combinacions veurem que la distància mínima d'aquest codi és 2.
- Per tant, permetrà detectar canvis d'un bit a on abans no es podia.

Paritat imparell

- Enviem $97_{10} = 10011\ 0111\ 1 \leftarrow 7\ 1's$ (imparell, ok)
- Rebem 10001 0111 1 ← 6 **1's** (parell, error)

Detecció d'errors en codis binaris: RESUM

- "Distància" entre dues combinacions binàries: nombre de bits que cal canviar d'una de les dues combinacions per formar l'altra.
- La "distància mínima d'un codi" (dm) és la menor de les distàncies entre dues combinacions qualssevol del codi. 1 → (4,3,2,1).
- Codis de detecció d'errors -> Codis de detecció d'errors "de paritat"
 - Paritat parell → Nombre d'1s de cada combinació es parell.
 - Paritat imparell -> Nombre d'1s de cada combinació es imparell.

EXERCICI 2

Canvis de base i codificació

- 1. Donat el nombre **3Bh** expressar-lo en **base** 3, **base 5** i base **binària**.
- 2. Donat el nombre **367** expressar-lo en base **octal**, **hexadecimal** i **binària**.
- 3. Donat el nombre **133.610** expressar-lo en base **octal**, **hexadecimal** i **base 7**.
- 4. Quants bits fan falta per codificar 20 números decimals en codi GRAY?
- 5. Quan bits necessito per codificar 64 combinacions amb codi **GRAY**?
- 6. Quan bits necessito per codificar 32 combinacions amb codi **JOHNSON**?

Solució

1. Donat el nombre 3Bh expressar-lo en base 3, base 5 i base binària.

$$3.16^1 + B(11).16^0 = 59_{10}$$
 (decimal)

Base
$$3 = 2012_3$$

Base
$$5 = 214_5$$

Base 2 =
$$11\ 1011_2$$

Alternativa per passar de hexadecimal directament a binari: 3Bh = 0011 1011 b = 111011₂

2. Donat el nombre **367** expressar-lo en base **octal**, **hexadecimal** i **binària**.

3. Donat el nombre **133.610** expressar-lo en base **octal**, **hexadecimal** i **base 7**.

Base
$$8 = 404752_8$$

Base
$$16 = 209EA_{16}$$

Base
$$7 = 1064351_7$$

4. Quants bits fan falta per codificar 20 números decimals en codi GRAY?
 Igual que en codi binari natural → 2⁵ = 32 (32 > 20 > 16 → 2⁴)
 5 bits.

$$20 \rightarrow [0..31] \rightarrow 10100 (BN) \rightarrow 10100$$

$$\frac{10100}{11110_{2}}$$

- 5. Quan bits necessito per codificar 64 combinacions amb codi **GRAY**? Igual que en codi BN (combinacions 0..63): $2^N = 64 \rightarrow 2^N = 2^6$ N = 6 bits.
- 6. Quan bits necessito per codificar 32 combinacions amb codi **JOHNSON**?

 Número de combinacions = $2 \cdot N$ on N és el número de bits necessaris. N = 32/2 = 16 bits