Tutorial Sheet

Bipolar Junction Transistor

- 1. In a npn transistor, 10^8 holes/ μ s move from the base to the emitter region while 10^{10} electrons/ μ s move from the emitter to the base region. An ammeter reads the base current as $I_B = 16\mu$ A.
 - a) Determine the emitter current I_E and the collector current I_C .

- b) For the previous example, find the α and β , if the leakage currents are considered negligible, and the described charge flow is constant.
 - Given data: npn transistor, $I_B = 16\mu A$, $I_E = 1.618m A$, $I_C = 1.602m$
- 2. A BJT has α =0.99, Base current, I_B =25 μ A, Leakage current, I_{CBO} = 200nA Find the following parameters:
 - i. DC collector Current
 - ii. DC emitter Current
 - iii. % Error in the emitter current when the leakage current is neglected.
- 3. In the circuit of Figure, β = 100; I_{BQ} = 20 μ A, V_{CC} =15 V and R_C = 3k. If I_{CBO} = 0, find (a) I_{EQ} b) V_{CEQ} . (c) Find V_{CEQ} if R_C is changed to 6 K Ω and all else remains the same.

4. For the emitter bias circuit shown below, determine collector current *Ic* (in mA). Assume $V_{BE} = 0.7 \text{ V}$

5. The transistor in the given circuit should always be in the active region. Take $V_{CE(Sat)} = 0.2 \text{ V}$, $V_{BE} = 0.7 \text{ V}$. What is the maximum value of R_c in Ω which can be used?

6. In the circuit of given figure Vcc = 12 V, Vs = 2V, Rc = 4 k Ω , and R = 100 k Ω . The Ge transistor is characterized by β = 50; I_{CEO} = 0, and V = 0.2V. Find the value of R (in k Ω) that just results in saturation if the capacitor is replaced with a short circuit. V_{BE} for germanium transistor = 0.3 V

