Algebra II, Santa's Extra Sheet

Remarks and Solutions

Exercise 1.

We observe first that instead of $1 \le i, j \le n$ the condition $1 \le i < j \le n$ is needed. We hence set

$$V \coloneqq \prod_{1 \le i < j \le n} (X_i - X_j)$$

and need to show that $V \mid f$.

We consider first the case i = 1 < 2 = j: We note that

$$k[X_1, \dots, X_n]/(X_1 - X_2) \cong k[Y_1, \dots, Y_{n-1}],$$

 $g(X_1, \dots, X_n) \mapsto g(Y_1, Y_1, Y_2, \dots, Y_{n-1}).$

We find that f is mapped to

$$f(Y_1, Y_1, Y_2, \dots, Y_{n-1}) = -f(Y_1, Y_1, Y_2, \dots, Y_{n-1}).$$

It follows from $\operatorname{char}(k) \neq 2$ that f is mapped to 0, and hence that $f \in (X_1 - X_2)$. This shows that $(X_1 - X_2) \mid f$.

We find in the same way that $X_i - X_j \mid f$ for all $1 \leq i < j \leq n$. These elements are pairwise non-equivalent primes of $k[X_1, \ldots, X_n]$, that they are prime follows from $k[X_1, \ldots, X_n]/(X_i - X_j) \cong k[Y_1, \ldots, Y_{n-1}]$ being an integral domain, and they are non-equivalent because they are monic and pairwise different. It follows, because $k[X_1, \ldots, X_n]$ is a UFD, that $V \mid f$.

Exercise 2.

Lemma 1. Let X be a topological space, let $U \subseteq X$ be open and let $D \subseteq X$ be dense. Then $D \cap U$ is dense in U.

Proof. Let $x \in U$ and let $V \subseteq U$ be an open neighbourhood of x in U. Then V is also an open neighbourhood of x in X, and hence contains an element $d \in D$. Then $d \in D \cap X$.

We know from the lecture that $GL_n(k) \subseteq M_n(k)$ is open, and that the set

$$D := \{A \in \mathcal{M}_n(k) \mid A \text{ is diagonalizable}\}\$$

is dense in $M_n(k)$. It follows that $G^{ss} = D \cap GL_n(k)$ is dense in $GL_n(k)$. (Here we use that the subspace topology that $GL_n(k)$ inherits from $M_n(k)$ coincides with the Zariski topology of $GL_n(k)$.)

Exercise 3.

The equivalence (a) \iff (b) holds because the k[G]-submodules of V are precisely the G-subrepresentations of V. The equivalence (b) \iff (c) holds by Burnside's theorem (which holds because V is finite-dimensional and k is algebraically closed).

Exercise 4.

It follows from the Artin-Wedderburn theorem that

$$\mathbb{C}[G] \cong \mathrm{M}_{m_1}(\mathbb{C}) \times \cdots \times \mathrm{M}_{m_r}(\mathbb{C})$$

where

$$n_i = \dim V_i = m_i \cdot \dim_{\mathbb{C}} \mathbb{C} = m_i$$
.

We therefore find that

$$|G| = \dim \mathbb{C}[G] = \sum_{i=1}^r m_i^2 = \sum_{i=1}^r n_i^2$$
.

Exercise 5.

(a)

This given set is $V(y^2 - x, z^3 - x)$ where $k[\mathbb{A}^3] = k[x, y, z]$.

(b)

Let $k[\mathbb{A}^1] = k[t]$.

The set $\mathbb{A}^1 = V(0)$ is closed. For every $x \in \mathbb{A}^1$ the singleton $\{x_0\} = V(t-x)$ is closed. Finite unions of closed subsets are again closed, therefore every finite subset is closed.

Let $C \subseteq \mathbb{A}^1$ be any closed subset. Then C = V(I) for some ideal $I \subseteq k[t]$. The algebra k[t] is a PID, therefore the ideal I is of the form I = (f) for some $f \in k[t]$. Then C = V(I) = V(f). If f = 0 then $C = V(0) = \mathbb{A}^1$. Otherwise the nonzero polynomial f has only finitely many roots, and then C = V(f) is finite.

(c)

Suppose that the fields k is finite. Let $k[\mathbb{A}^n] = k[t_1, \dots, t_n]$. For every point $x = (x_1, \dots, x_n) \in \mathbb{A}^n$ the singleton

$$\{x\} = V(t_1 - x_1, \dots, t_n - x_n)$$

is closed. It follows that any subset $C\subseteq \mathbb{A}^n$ is closed because it can be written as the finite union $C=\bigcup_{x\in C}\{x\}$.

Exercise 6.

Let $f \in J(k[x])$, and recall that the Jacobson radical J(k[x]) is the intersection of all maximal ideals of k[x]. The algebra k[x] contains infinitely many monic irreducible polynomials: If p_1, \ldots, p_n were all monic irreducible polynomials in k[x] then the polynomial $\prod_{i=1}^n p_i + 1$ would not be divisible by any p_i , which would then contradicts k[x] being a UFD.¹

It follows for every such monic irreducible polynomial p that $p \mid f$ because $f \in (p)$ (where we use that the algebra k[x] is a PID and the ideal (p) therefore already maximal). This shows that infinitely many non-equivalent primes divides f, which shows that f = 0 because k[x] is a UFD.

 $^{^1{\}rm This}$ is a classical proof technique due to Euclid.