Metódy v bioinformatike CB #01 Informatika pre biológov

Jana Černíková

FMFI UK

26/09/2024

Dnešné ciele

- 1. Pojem problému, algoritmu
- 2. Ukážka prevodu biologického problému na informatický
- 3. Efektivita algoritmu, pojem časovej zložitosti, O-notácia
- 4. NP-ťažké algoritmy

Formulácia problému, algoritmus

- Formulácia problému: jasne definované vstupné a výstupné dáta a aký výstup očakávame pre každý vstup.
- Formulácia neuvádza akým spôsobom sa majú zo vstupov vypočítať výstupy.
- Správny algoritmus: Postup, ktorý určuje spôsob, akým pre každý vstup vypočítame príslušný výstup.

Biologický problém

Pomocou hmotnostného spektrometra (mass spectrometer) sme odmerali vo vzorke peptid s hmotnosťou K. Máme databázu proteínov a chceme zistiť, ktorý z proteínov obsahuje peptid s touto hmotnosťou.

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Príklad

```
K=19
3 4 6 3 6 4 9 2 8
```

Otázka na zamyslenie

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Príklad

```
K=19
3 4 6 3 6 4 9 2 8
```

Ako túto úlohu vyriešiť?

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Triviálne riešenie

Skúšame všetky možnosti

```
pre každé i od 1 po n
|    pre každé j od i po n
|    |    suma := 0;
|    |    pre každé u od i po j
|    |    |    suma := suma + a[u]
|    |    ak suma = K, vypíš i,j

K=19
3 4 6 3 6 4 9 2 8
i    i
i
```

Ako dlho takýto program pobeží?

- Naimplementovať do počítača a odmerať
- ► Na akom počítači? Na akých vstupoch?
- Časová zložitosť počet operácií, ktoré program vykoná, v závislosti od množstva dát.
- Pre každú veľkosť vstupu odhadneme najhorší možný prípad

```
pre každé i od 1 po n
| pre každé j od i po n
| suma := 0;
| pre každé u od i po j
| suma := suma + a[u]
| ak suma = K, vypíš i,j
```

Výpočet časovej zložitosti

```
pre každé i od 1 po n
| pre každé j od i po n
| suma := 0;
| pre každé u od i po j
| | suma := suma + a[u]
| ak suma = K, vypíš i,j
```

Počet operácií := a +

$$T(n) = \sum_{i=1}^{n} \left(\sum_{j=i}^{n} \left(1 + \sum_{u=i}^{j} 2 \right) \right) = \ldots = \frac{1}{6} n^3 - n^2 + \frac{5}{6} n$$

Zaujíma nás najvýznamnejší člen tejto sumy, a to je $\frac{1}{6}n^3$. Navyše, nezaujíma nás konštanta pri tom člene. Výsledok takéhoto "zjednodušenia" píšeme ako $O(n^3)$ a hovoríme, že daný algoritmus má kubickú časovú zložitosť.

Prečo používame O-notáciu?

Úlohou O-notácie je odpovedať na otázky typu "ak budem máť X krát viac dát, koľkokrát dlhšie budem čakať na výsledok?" Napríklad, $T(10^5)=\frac{1}{6}\cdot 10^{15}-10^{10}+\frac{5}{6}\cdot 10^5=166656666750000$ $T(2\cdot 10^5)=\frac{1}{6}\cdot 2^3\cdot 10^{15}-2^2\cdot 10^{10}+2\cdot \frac{5}{6}\cdot 10^5=1333293333500000$

$$\frac{1333293333500000}{166656666750000} = 8.000240011400564$$

Tento výpočet môžem spraviť len s najvýznamnejšími členmi:

$$\frac{\frac{1}{6}\cdot 2^3\cdot 10^{15}}{\frac{1}{6}\cdot 10^{15}}=2^3=8.$$
 Všimnite si, že na konštante $\frac{1}{6}$ nezáleží.

Prečo používame O-notáciu?

Teda, namiesto porovnávania presných funkcií stačí porovnať ich pomocou "zjednodušených" funkcií:

$$\frac{T(X \cdot n)}{T(n)} \approx \frac{(X \cdot n)^3}{n^3} = \frac{X^3 \cdot n^3}{n^3} = X^3$$

Ak by časová zložitosť bola napríklad $O(2^n)$, tak by zmena času behu algoritmu vyzerala následovne:

$$\frac{2^{X \cdot n}}{2^n} = 2^{(X-1) \cdot n}$$

Všimnite si, že pri exponenciálnej zložitosti nárast závisí nielen od X, ale aj od pôvodnej veľkosti vstupu n.

Merania

		O(n)	$O(n^2)$	$O(n^3)$	O(2 ⁿ)
Čas na	10	ε	ε	ε	ε
vyriešenie	50	ε	ε	arepsilon	2 weeks
problému	100	ε	ε	arepsilon	2800 univ.
veľkosti	1000	ε	0.02s	4.5s	_
	10000	ε	2.1s	75m	
	100000	0.04s	3.5m	52d	_
	1 mil.	0.42s	5.8h	142yr	_
	10 mil.	4.2s	24.3d	140000yr	
Max veľkosť	1s	2.3 mil.	6900	610	33
problému	1m	140 mil.	53000	2400	39
vyriešená za	1d	200 bil.	2 mil.	26000	49
Zvýšenie	+1	_	_	_	×2
času so	×2	×2	$\times 4$	×8	_
zvýšeným <i>n</i>					

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Skúsme počítať sumy a[i] + ... + a[j] rýchlejšie.

- Nech S[i] = a[1] + a[2] + ... + a[i], S[0] = 0.
- Ak hodnoty S[i] poznáme, ako vieme rýchlo zrátať súčet a[i] + ... + a[j]?

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Skúsme počítať sumy a[i] + ... + a[j] rýchlejšie.

- Nech S[i] = a[1] + a[2] + ... + a[i], S[0] = 0.
- Ak hodnoty S[i] poznáme, ako vieme rýchlo zrátať súčet $a[i] + \ldots + a[j]$? $a[i] + \ldots + a[j] = S[j] S[i-1]$

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Skúsme počítať sumy a[i] + ... + a[j] rýchlejšie.

- Nech S[i] = a[1] + a[2] + ... + a[i], S[0] = 0.
- Ak hodnoty S[i] poznáme, ako vieme rýchlo zrátať súčet $a[i] + \ldots + a[j]$? $a[i] + \ldots + a[j] = S[j] S[i-1]$
- Ako vieme spočítať hodnoty S[i]?

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Skúsme počítať sumy $a[i] + \ldots + a[j]$ rýchlejšie.

- Nech S[i] = a[1] + a[2] + ... + a[i], S[0] = 0.
- Ak hodnoty S[i] poznáme, ako vieme rýchlo zrátať súčet $a[i] + \ldots + a[j]$? $a[i] + \ldots + a[j] = S[j] S[i-1]$
- Ako vieme spočítať hodnoty S[i]?

```
S[0] := 0
pre každé i od 1 po n:
| S[i] := S[i-1] + a[i]
```

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Skúsme počítať sumy $a[i] + \ldots + a[j]$ rýchlejšie.

- Nech S[i] = a[1] + a[2] + ... + a[i], S[0] = 0.
- Ak hodnoty S[i] poznáme, ako vieme rýchlo zrátať súčet $a[i] + \ldots + a[j]$? $a[i] + \ldots + a[j] = S[j] S[i-1]$
- Ako vieme spočítať hodnoty S[i]?

```
S[0] := 0
pre každé i od 1 po n:
| S[i] := S[i-1] + a[i]
```

Akú má časovú zložitosť výpočet S[i]?

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Skúsme počítať sumy $a[i] + \ldots + a[j]$ rýchlejšie.

- Nech S[i] = a[1] + a[2] + ... + a[i], S[0] = 0.
- Ak hodnoty S[i] poznáme, ako vieme rýchlo zrátať súčet $a[i] + \ldots + a[j]$? $a[i] + \ldots + a[j] = S[j] S[i-1]$
- Ako vieme spočítať hodnoty S[i]?

```
S[0] := 0
pre každé i od 1 po n:
| S[i] := S[i-1] + a[i]
```

Akú má časovú zložitosť výpočet S[i]? O(n)

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Máme spočítané S[i] pre všetky i = 1, ..., n (výpočet má časovú zložitosť O(n))

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

- Máme spočítané S[i] pre všetky i = 1, ..., n (výpočet má časovú zložitosť O(n))
- Chceme pre všetky dvojice i, j spočítať $a[i] + \ldots + a[j] = S[j] S[i-1]$ a porovnať túto hodnotu s K

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

- Máme spočítané S[i] pre všetky i = 1,..., n (výpočet má časovú zložitosť O(n))
- Chceme pre všetky dvojice i, j spočítať $a[i] + \ldots + a[j] = S[j] S[i-1]$ a porovnať túto hodnotu s K

```
pre každé i od 1 po n
| pre každé j od i po n
| ak S[j]-S[i-1] = K, vypíš i,j
```

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

- Máme spočítané S[i] pre všetky i = 1,..., n (výpočet má časovú zložitosť O(n))
- ► Chceme pre všetky dvojice i, j spočítať $a[i] + \ldots + a[j] = S[j] S[i-1]$ a porovnať túto hodnotu s K

```
pre každé i od 1 po n
| pre každé j od i po n
| ak S[j]-S[i-1] = K, vypíš i,j
```

Aká bude časová zložitosť?

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

- Máme spočítané S[i] pre všetky i = 1,..., n (výpočet má časovú zložitosť O(n))
- Chceme pre všetky dvojice i, j spočítať $a[i] + \ldots + a[j] = S[j] S[i-1]$ a porovnať túto hodnotu s K

```
pre každé i od 1 po n
| pre každé j od i po n
| ak S[j]-S[i-1] = K, vypíš i,j
```

Aká bude časová zložitosť? kvadratická, alebo $O(n^2)$

Problém # 2: Najkratšie spoločné nadslovo

Formulácia problému

- ► Vstup: niekoľko reťazcov
- Výstup: najkratší reťazec, ktorý obsahuje všetky vstupné reťazce ako súvislé podreťazce

Príklad

Vstup: GCCAAC, CCTGCC, ACCTTC

Výstup: CCTGCCAACCTTC (najkratšie možné)

Problém # 2: Najkratšie spoločné nadslovo

Najlepší algoritmus?

- Nepoznáme algoritmus, ktorý by bežal v polynomiálnom čase t.j. $O(n^k)$ pre nejakú konštantu k.
- Daný problém je NP-ťažký.

"I can't find an efficient algorithm, I guess I'm just too dumb."

"I can't find an efficient algorithm, because no such algorithm is possible!"

"I can't find an efficient algorithm, but neither can all these famous people."

Ako sa vysporiadať s NP-ťažkými problémami?

Heuristické algoritmy

- Nájde aspoň nejaké riešenie, aj keď nie nutne optimálne
- ► Nejde teda o správny algoritmus riešiaci náš problém, lebo pre niektoré vstupy dáva zlú odpoveď
- Radšej ale horšia odpoveď rýchlo, ako perfektná o milión rokov

Príklad

Heuristika pre najkratší spoločný nadreťazec: v každom kroku

zlepíme dva reťazce s najväčším prekryvom

Príklad: CATATAT, TATATA, ATATATC

Optimum: CATATATATC, dĺžka 10

Heuristika: CATATATCTATATA, dĺžka 14

Ako so vysporiadať s NP-ťažkými problémami?

Aproximačný algoritmus

Často vieme dokázať, že nejaká heuristika sa vždy priblíži k optimálnemu riešeniu aspoň po určitú hranicu

Príklad

Heuristika pre najkratší spoločný nadreťazec: v každom kroku zlepíme dva reťazce s najväčším prekryvom

Je dokázané, že vždy nájde najviac 3,5-krát dlhší reťazec ako najlepšie riešenie.

Informatici predpokladajú, že v skutočnosti najviac 2-krát dlhší, ale nevieme to dokázať.

Ako so vysporiadať s NP-ťažkými problémami?

Exaktný výpočet pomocou iného problému

- Preformulovať do podoby jedného z dobre známych NP-ťažkých problémov (napr. celočíselné lineárne programovanie, a pod.)
- Múdri ľudia napísali programy, ktoré vedia riešiť tieto známe problémy aspoň v niektorých prípadoch (CONCORD, CPLEX, a pod.)

Preformulovať problém

► Je toto skutočne jediná rozumná formulácia biologického problému ktorý chceme vyriešiť?

Zhrnutie

- Problémy zo skutočného života je dobré najskôr sformulovať tak, aby bolo jasné, aké výsledky očakávame pre každý možný vstup.
- Takáto formulácia by mala byť oddelená od postupu (algoritmu) riešenia.
- Informatici merajú čas v O-čkach, ktoré abstrahujú od detailov konkrétneho počítača.
- Vytvorenie efektívneho algoritmu je umenie! Časť z toho sú finty (ako napr. dynamické programovanie).
- Pre niektoré problémy poznáme iba Nechutne Pomalé algoritmy (NP-ťažké problémy).
- Aj napriek tomu vo veľa prípadoch vieme pomôcť.

Metódy v bioinformatike CB #2 Úvod do dynamického programovania

Jana Černíková

FMFI UK

3/10/2024

Problém platenia minimálnym počtom mincí

Vstup: hodnoty k mincí m_1, m_2, \ldots, m_k a cieľová suma X

(všetko kladné celé čísla).

Výstup: najmenší počet mincí, ktoré potrebujeme na zaplatenie X.

Problém platenia minimálnym počtom mincí

Vstup: hodnoty k mincí m_1, m_2, \ldots, m_k a cieľová suma X

(všetko kladné celé čísla).

Výstup: najmenší počet mincí, ktoré potrebujeme na zaplatenie X.

Príklad: k = 3, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, X = 13.

Odbočka: ešte matematickejšia formulácia bez slov minca, suma, ...

Vstup: kladné celé čísla m_1, m_2, \ldots, m_k a X.

Výstup: celé číslo n a n čísel x_1, \ldots, x_n , pre ktoré platia nasledujúce podmienky:

- $x_i \in \{m_1, m_2, \dots, m_k\}$ pre každé $i = 1, 2, \dots, n$.
- $\sum_{i=1}^{n} x_i = X$.
- *n* je najmenšie možné.

Problém platenia minimálnym počtom mincí

Vstup: hodnoty k mincí m_1, m_2, \ldots, m_k a cieľová suma X (všetko kladné celé čísla).

Výstup: najmenší počet mincí, ktoré potrebujeme na zaplatenie X.

Príklad: k = 3, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, X = 13.

Príklad: k = 3, $m_1 = 1$, $m_2 = 3$, $m_3 = 4$, X = 6.

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

príklad pre k = 3, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, X = 13:

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - ▶ odčítaj hodnotu mince od X

príklad pre
$$k = 3$$
, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, $X = 13$:

použijeme 5, X = 8

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

príklad pre
$$k = 3$$
, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, $X = 13$:

- použijeme 5, X = 8
- použijeme 5, X = 3

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - ▶ odčítaj hodnotu mince od X

príklad pre
$$k = 3$$
, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, $X = 13$:

- použijeme 5, X = 8
- použijeme 5, X = 3
- použijeme 2, X = 1

- opakuj kým X > 0:
 - ightharpoonup použi najväčšiu mincu, ktorá je najviac X
 - ▶ odčítaj hodnotu mince od X

príklad pre
$$k = 3$$
, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, $X = 13$:

- použijeme 5, X = 8
- použijeme 5, X = 3
- použijeme 2, X = 1
- použijeme 1, X = 0

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - ▶ odčítaj hodnotu mince od X

príklad pre
$$k = 3$$
, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, $X = 13$:

- použijeme 5, X = 8
- použijeme 5, X = 3
- použijeme 2, X = 1
- použijeme 1, X = 0

Problém s týmto riešením?

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - ▶ odčítaj hodnotu mince od X

príklad pre
$$k = 3$$
, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, $X = 13$:

- použijeme 5, X = 8
- použijeme 5, X = 3
- použijeme 2, X = 1
- použijeme 1, X = 0

Problém s týmto riešením? nefunguje vždy

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

Problém s týmto riešením: nefunguje vždy

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

Problém s týmto riešením: nefunguje vždy

- mince hodnôt 1,3,4
- X = 6

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

Problém s týmto riešením: nefunguje vždy

- mince hodnôt 1,3,4
- X = 6
- algoritmus:

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

Problém s týmto riešením: nefunguje vždy

- mince hodnôt 1,3,4
- X = 6
- ullet algoritmus: 4+1+1

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

Problém s týmto riešením: nefunguje vždy

- mince hodnôt 1,3,4
- X = 6
- ullet algoritmus: 4+1+1
- optimum:

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

Problém s týmto riešením: nefunguje vždy

- mince hodnôt 1,3,4
- X = 6
- ullet algoritmus: 4+1+1
- optimum: 3 + 3

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]										

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0									

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0	1								

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0	1	2							

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0	1	2	1						

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0	1	2	1	1					

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0	1	2	1	1	2				

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0	1	2	1	1	2	2			

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0	1	2	1	1	2	2	2		

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0	1	2	1	1	2	2	2	2	

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

	i	0	1	2	3	4	5	6	7	8	9
ſ	A[i]	0	1	2	1	1	2	2	2	2	3

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4
X - prvá			

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4
X - prvá	10 - 1 = 9		

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

X = 10, mince: 1, 3, 4

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme			

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

X = 10, mince: 1, 3, 4

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3		

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

X = 10, mince: 1, 3, 4

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

X = 10, mince: 1, 3, 4

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	2

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	2
dokopy mincí			

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	2
dokopy mincí	4		

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	2
dokopy mincí	4	3	

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	2
dokopy mincí	4	3	3

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	2
dokopy mincí	4	3	3

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	2
dokopy mincí	4	3	3

$$A[10] = \min\{A[9] + 1, A[7] + 1, A[6] + 1\}$$

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	2
dokopy mincí	4	3	3

$$A[10] = min\{A[9] + 1, A[7] + 1, A[6] + 1\}$$

$$A[i] = min\{A[i-1]+1, A[i-3]+1, A[i-4]+1\}$$

Algoritmus pre všeobecnú sústavu k mincí m_1, m_2, \ldots, m_k

Podproblém A[i]

$$A[i] = 1 + \min\{A[i - m_1], A[i - m_2], \dots, A[i - m_k]\}$$

```
m = [1,3,4]
X = 11
k = len(m)
nekonecno = math.inf
A = [0]
for i in range(1, X + 1):
    min = nekonecno
    for j in range(k):
        if i \ge m[j] and A[i - m[j]] < min:
        min = A[i - m[j]]
    A.append(1 + min)
print(A)
```

Pridáme druhú tabuľku B, kde v B[i] si pamätáme, ktorá bola najlepšia prvá minca, keď sme počítali A[i] (ak je viac možností, zoberieme ľubovoľnú, napr. najväčšiu)

Pridáme druhú tabuľku B, kde v B[i] si pamätáme, ktorá bola najlepšia prvá minca, keď sme počítali A[i] (ak je viac možností, zoberieme ľubovoľnú, napr. najväčšiu)

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3
B[i]	-	1	1	3	4	4	3	4	4	4	4

Pridáme druhú tabuľku B, kde v B[i] si pamätáme, ktorá bola najlepšia prvá minca, keď sme počítali A[i] (ak je viac možností, zoberieme ľubovoľnú, napr. najväčšiu)

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3
B[i]	-	1	1	3	4	4	3	4	4	4	4

Pridáme druhú tabuľku B, kde v B[i] si pamätáme, ktorá bola najlepšia prvá minca, keď sme počítali A[i] (ak je viac možností, zoberieme ľubovoľnú, napr. najväčšiu)

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3
B[i]	-	1	1	3	4	4	3	4	4	4	4

Rekonštrukcia riešenia pre sumu 10:

ullet B[10] = 4, zostane nám zaplatiť 6

Pridáme druhú tabuľku B, kde v B[i] si pamätáme, ktorá bola najlepšia prvá minca, keď sme počítali A[i] (ak je viac možností, zoberieme ľubovoľnú, napr. najväčšiu)

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3
B[i]	-	1	1	3	4	4	3	4	4	4	4

- ullet B[10] = 4, zostane nám zaplatiť 6
- B[6] = 3, zostane nám zaplatiť 3

Pridáme druhú tabuľku B, kde v B[i] si pamätáme, ktorá bola najlepšia prvá minca, keď sme počítali A[i] (ak je viac možností, zoberieme ľubovoľnú, napr. najväčšiu)

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3
B[i]	-	1	1	3	4	4	3	4	4	4	4

- ullet B[10] = 4, zostane nám zaplatiť 6
- B[6] = 3, zostane nám zaplatiť 3
- B[3] = 3, zostáva 0

Pridáme druhú tabuľku B, kde v B[i] si pamätáme, ktorá bola najlepšia prvá minca, keď sme počítali A[i] (ak je viac možností, zoberieme ľubovoľnú, napr. najväčšiu)

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3
B[i]	-	1	1	3	4	4	3	4	4	4	4

- ullet B[10] = 4, zostane nám zaplatiť 6
- B[6] = 3, zostane nám zaplatiť 3
- B[3] = 3, zostáva 0
- riešenie: 4 + 3 + 3

Program aj s výpisom mincí

```
m = [1,3,4]
X = 11
k = len(m)
nekonecno = 1000000
A = [0]
B = \lceil -1 \rceil
for i in range(1, X + 1):
    min = nekonecno
    min_minca = -1
    for j in range(k):
        if i \ge m[j] and A[i - m[j]] < min:
        min = A[i - m[j]]
        min_minca = m[j]
    A.append(1 + min)
    B.append(min_minca)
while X > 0:
    print(B[X])
    X = X - B[X]
```

 Okrem riešenia celého problému riešime aj menšie problémy (nazývame ich podproblémy).

- Okrem riešenia celého problému riešime aj menšie problémy (nazývame ich podproblémy).
- Riešenia podproblémov ukladáme do tabuľky a používame pri riešení väčších podproblémov.

- Okrem riešenia celého problému riešime aj menšie problémy (nazývame ich podproblémy).
- Riešenia podproblémov ukladáme do tabuľky a používame pri riešení väčších podproblémov.
- Technika dynamického programovania sa používa na viacero problémov v bioinformatike.
 - napr. hľadanie zarovnaní sekvencií

Metódy v bioinformatike Zarovnávanie sekvencií

Jana Černíková

FMFI UK

10/10/2024

Problém: Lokálne zarovnávanie (local alignment)

ggcccttggagttgactgtcctgctgctccttgagg ccattctcagagagaggagtggcctcattttaatc cgcttcccacagccttgtcctttccagacccatggg agagggggggtgagggtgggtgagcccaccca agccgtcactctgcaggtcctctcccccaag gccgtggccttgggagccgtggatcccagtgagtg acgcctccaccccgccctactcgggcagtttaac ccttgttgtcacttgcagacatcgtgaacacggcc cggccgacgagaaggccataatgacctatgtgcc agcttctaccatgcctttcaggagcgcagaaggta ccgagcagggccaggcaggccctctcgcccac gcgcaatgcgccgcgcgcctctcgcccacc gcgcaatgcgccgctgcctctcgcctccggccac acctcatttctcttgcagacggcagtggcctctc caactggaagccaccccagtccct... Vstup: dve sekvencie

Problém: Lokálne zarovnávanie (local alignment)

ggcccttggagttgactgtcctgctgctccttgagg ccattctcagaggaggaggagtggcctcattttaatc cgcttcccacagccttgtcctttccagacccatggg agagggaggggtgagggtgtggctgagcccaccca agtcacgcgtcactctgcaggtcctctcccccaag gccgtggccttgggagccgtggatcccagtgagtg acgcctccacccccgcctaatcgggcagtttaac ccttgttgttcacttgcagacatcgtgaacacggcc cggccgacgagaaggccataatgacctatgtgcc agcttctaccatgccttttcaggagcgcagaaggta ccgagcagggccaggcaggccctctcgcccacc gcgcaatgccgcgcgccgcctctcgcctcccggccaacccactgcgccatctttctcttgcagacggggcctctctc accttatttctttgcagacggcagtggcctctct caactggaagccacccccagctcct... Výstup: podobné úseky (zarovnania, alignments).

Vlož pomlčky (medzery, gaps) tak, aby rovnaké bázy boli pod sebou. Dobré zarovnanie má veľa zarovnaných rovnakých báz, málo medzier.

Na čo sú dobré zarovnania?

- Orientácia v obrovských databázach.
 Genbank WGS má vyše 22 TB sekvencií.
 Napr. z ktorého genómu (a odkiaľ) pochádza daná sekvencia?
- Prekryvy čítaní pri skladaní genómov, mapovanie čítaní
- Určovanie funkcie (napr. proteínu).
 Podobné sekvencie často majú rovnakú/podobnú funkciu.
- Štúdium evolúcie.

Hľadáme homológy: sekvencie, ktoré sa vyvinuli z tej istej sekvencie v spoločnom predkovi.

V ideálnom prípade medzery zodpovedajú inzerciám a deléciám, zarovnané bázy zachovaným bázam a substitúciám.

Zarovnávanie sekvencií ako optimalizačný problém

- Cieľ: nájdi páry homologických sekvencií (tých, čo pochádzajú z rovnakého spoločného predka)
- Modelovacia fáza: vytvor skórovaciu schému, ktorá
 - skutočným homologickým párom dáva vysoké skóre
 - falošne pozitívnym párom dáva nízke skóre
- Optimalizačná fáza:

pre dané dve vstupné sekvencie, nájdi zarovnanie s najlepším skóre (Optimalizačná fáza je téma dnešnej prednášky.)

Formulácia problému

Skórovanie zarovnania: napr. zhoda +1, nezhoda -1, medzera -1.

22 zhôd, 6 nezhôd, 3 medzery → skóre 13. V praxi zložitejšie skórovanie.

Problém 1: globálne zarovnanie (global alignment)

Vstup: sekvencie $X = x_1 x_2 \dots x_n$ a $Y = y_1 y_2 \dots y_m$.

Výstup: zarovnanie X a Y s najvyšším skóre.

Problém 2: lokálne zarovnanie (local alignment)

Vstup: sekvencie $X = x_1 x_2 \dots x_n$ a $Y = y_1 y_2 \dots y_m$.

Výstup: zarovnania podreťazcov $x_i \dots x_j$ a $y_k \dots y_\ell$ s najvyšším skóre.

Dynamické programovanie pre globálne zarovnanie (Needleman, Wunsch 1970)

Podproblém: A[i,j]: najvyššie skóre globálneho zarovnania reťazcov $x_1x_2...x_i$ a $y_1y_2...y_j$.

Jeden z reťazcov dĺžky 0: druhý reťazec je zarovnaný s medzerou. A[0,j] = -j, A[i,0] = -i.

Všeobecný prípad, i > 0, j > 0:

- ullet ak $x_i=y_j$ sú zarovnané A[i,j]=A[i-1,j-1]+1
- ak $x_i \neq y_j$ sú zarovnané A[i,j] = A[i-1,j-1] 1
- ak x_i je zarovnané s medzerou A[i,j] = A[i-1,j] 1
- ak y_j je zarovnané s medzerou A[i,j] = A[i,j-1] 1

Dynamické programovanie pre globálne zarovnanie

Podproblém: A[i,j]: najvyššie skóre globálneho zarovnania reťazcov $x_1x_2...x_i$ a $y_1y_2...y_j$.

Všeobecný prípad, i > 0, j > 0:

- ak $x_i = y_i$ sú zarovnané A[i,j] = A[i-1,j-1] + 1
- ullet ak $x_i
 eq y_j$ sú zarovnané A[i,j] = A[i-1,j-1]-1
- ak x_i je zarovnané s medzerou A[i,j] = A[i-1,j] 1
- ullet ak y_j je zarovnané s medzerou A[i,j]=A[i,j-1]-1

Rekurencia:

$$A[i,j] = \max \left\{ egin{array}{l} A[i-1,j-1] + s(x_i,y_j), \ A[i-1,j] - 1, \ A[i,j-1] - 1 \end{array}
ight.$$

 $\mathsf{kde}\ s(x,y) = 1\ \mathsf{ak}\ x = y\quad s(x,y) = -1\ \mathsf{ak}\ x \neq y$

Príklad globálneho zarovnania

CATGTCGTA vs CAGTCCTAGA

$$A[i,j] = \max \left\{ egin{array}{l} A[i-1,j-1] + s(x_i,y_j), \ A[i-1,j] - 1, \ A[i,j-1] - 1 \end{array}
ight.$$

Príklad globálneho zarovnania

CATGTCGTA vs CAGTCCTAGA

$$A[i,j] = \max \left\{ egin{array}{l} A[i-1,j-1] + s(x_i,y_j), \ A[i-1,j] - 1, \ A[i,j-1] - 1 \end{array}
ight.$$

イロトイ御トイミトイミト ミ か990

Ako získať zarovnanie?

CA-GTCCTAGA CATGTCGT--A

Časová zložitosť celého algoritmu O(nm)

Dynamické programovanie pre lokálne zarovnanie (Smith, Waterman 1981)

Podproblém: A[i,j]: najvyššie skóre lokálneho zarovnania reťazcov $x_1x_2...x_i$ a $y_1y_2...y_j$, ktoré obsahuje bázy x_i a y_j , alebo je prázdne.

Jeden z reťazcov dĺžky 0: prázdne zarovnanie A[0,j] = A[i,0] = 0

Všeobecný prípad, i > 0, j > 0:

- ullet ak x_i a y_j sú zarovnané $A[i,j] = A[i-1,j-1] + s(x_i,y_j)$
- ak x_i je zarovnané s medzerou A[i,j] = A[i-1,j] 1
- ullet ak y_j je zarovnané s medzerou A[i,j] = A[i,j-1]-1
- ullet ak x_i a y_j nie sú časťou zarovnania s kladným skóre A[i,j]=0

Dynamické programovanie pre lokálne zarovnanie (Smith, Waterman 1981)

Podproblém: A[i,j]: najvyššie skóre lokálneho zarovnania reťazcov $x_1x_2...x_i$ a $y_1y_2...y_j$, ktoré obsahuje bázy x_i a y_j , alebo je prázdne.

Všeobecný prípad, i > 0, j > 0:

- ullet ak x_i a y_j sú zarovnané $A[i,j]=A[i-1,j-1]+s(x_i,y_j)$
- ullet ak x_i je zarovnané s medzerou A[i,j] = A[i-1,j]-1
- ullet ak y_j je zarovnané s medzerou A[i,j]=A[i,j-1]-1
- ullet ak x_i a y_j nie sú časťou zarovnania s kladným skóre A[i,j]=0

Rekurencia:

$$A[i,j] = \max \left\{ egin{array}{l} 0, \ A[i-1,j-1] + s(x_i,y_j), \ A[i-1,j] - 1, \ A[i,j-1] - 1 \end{array}
ight.$$

Príklad lokálneho zarovnania

CATGTCGTA CA-GTCCTA

Časová zložitosť celého algoritmu O(nm)

Zložitejšie skórovanie

Problémy +1, -1 skórovania:

- Je skutočne jedna nezhoda alebo medzera až taká zlá v porovnaní s jednou zhodou?
- Čo urobíme pre zarovnávanie proteínov?
 (20 prvková abeceda ≈ 200 parametrov)

Úloha skórovacej schémy:

- Chceme vedieť rozlíšiť lepšie zarovnania od horších zarovnaní:
 - Ktoré usporiadania pomlčiek dávajú väčší zmysel
- Chceme vedieť, či dané zarovnanie má biologický význam:
 - lde o homológy, alebo sú zarovnané len náhodou?

Povedali sme si:

- Globálne a lokálne zarovania
- Needlemanov-Wunschov a Smithov-Watermanov algoritmus

Pokračovanie prednášky

https://youtu.be/OGkhkRiqbl4?feature=shared&t=2227

- Skórovanie zarovnaní pomocou porovnávania modelov
- Proteínové BLOSUM matice
- Afínne skórovanie medzier

Metódy v bioinformatike CB #3 Zarovnávanie sekvencií

Jana Černíková

FMFI UK

10/10/2024

Globálne zarovnanie

Uvažujme skórovanie zhoda +3, nezhoda -1, medzera -2 Reťazce TAACGG a CACACT

$$A[i,j] = \max \begin{cases} A[i-1,j-1] + s(x_i,y_j), \\ A[i-1,j] - 2, \\ A[i,j-1] - 2 \end{cases}$$

$$s(x_i, y_j) = 3 \text{ ak } x_i = y_j,$$

$$s(x_i, y_j) = -1 \text{ ak } x_i \neq y_j$$

$$A[i,0] = -2i$$
$$A[0,j] = -2j$$

Globálne zarovnanie

		С	Α	С	Α	С	Т
	0	-2	-4	-6	-8	-10	-12
Т	-2						
Α	-4						
Α	-6						
С	-8						
G	-10						
G	-12						

Globálne zrovnanie

C A C A C 0 0 -2 -4 -6 -8 -10 1 T -2 -1 -3 -5 -7 -9 2 A -4 -3 2 0 -2 -4	6	5	4	3	2	1	0		
0 0 -2 -4 -6 -8 -10 1 T -2 -1 -3 -5 -7 -9 2 A -4 -3 2 0 -2 -4	Т	С	Α	С	Α	С			
1 T -2 -1 -3 -5 -7 -9 2 A -4 -3 2 0 -2 -4	-12	-10	-8	-6	-4	-2	0		0
2 A -4 -3 2 0 -2 -4	-7	-9	-7	-5	-3	-1	-2	Т	1
	-6	-4	-2	0	2	-3	-4	Α	2
3 A -6 -5 0 1 3 1	-1	1	3	1	0	-5	-6	Α	3
4 C -8 -3 -2 3 1 6	4	6	1	3	-2	-3	-8	С	4
5 G -10 -5 -4 1 2 4	5	4	2	1	-4	-5	-10	G	5
6 G -12 -7 -6 -1 0 2	3	2	0	-1	-6	-7	-12	G	6

CACACT-

TA-ACGG

alebo

CACAC-T

TA-ACGG

Lokálne zarovnanie

Uvažujme skórovanie zhoda +3, nezhoda -1, medzera -2 Reťazce TAACGG a CACACT

$$A[i,j] = \max \begin{cases} 0, \\ A[i-1,j-1] + s(x_i, y_j), \\ A[i-1,j] - 2, \\ A[i,j-1] - 2 \end{cases}$$

$$s(x_i, y_j) = 3$$
 ak $x_i = y_j$,
 $s(x_i, y_j) = -1$ ak $x_i \neq y_j$

$$A[i,0] = 0,$$

 $A[0,j] = 0$

Lokálne zarovnanie

		С	Α	С	Α	С	Т
	0	0	0	0	0	0	0
Т	0						
Α	0						
Α	0						
С	0						
G	0						
G	0						

Lokálne zarovnanie

		0	1	2	3	4	5	6
			С	Α	С	Α	С	Т
0		0	0	0	0	0	0	0
1	T	0	0	0	0	0	0	3
2	Α	0	0	3	1	3	1	1
3	Α	0	0	3	2	4	2	0
4	С	0	3	1	6	4	7	5
5	G	0	1	2	4	5	5	6
6	G	0	0	0	2	3	4	4

 ACAC

A-AC

Mitochondriálny genóm človeka vs. ryba Danio rerio

A: Homo_sapiens/Homo_sapiens,NCBI36,52,dna_rm,chromosome,MT.Parese alignment

B: Danio_rerio/Danio_rerio,2FISH7,52,dna_rm,chromosome,MT,7aForward alignment

Mitochondriálny genóm človeka vs. Drosophila melanogaster

- A: Homo_sapiens/Homo_sapiens.NGBI36.52.dna_rm.chromosome.MT.Pererse alignment
- B: Drosophila_melanogaster/Drosophila_melanogaster.BDGP5.4.52.0691_rli;CPS-dms

Mitochondriálny genóm človeka vs. to isté

A: Homo_sapiens/Homo_sapiens.NOBI36.52.dna_rm.chromosome.MT.Payersa alignment

B; Homo_saplens/Homo_saplens,NCBI36,52,dns_rm,chromosome,MT.Fgrward alignment

Drosophila mRNA Oaz zinc finger vs. genomický usek (časť chr2R)

Drosophila proteín Escargot zinc finger vs. to isté

Zhluk génov PRAME v človeku vs. to isté

Zarovnávanie sekvencií (cvičenie)

Broňa Brejová 8.10.2021

Mitochondriálny genóm človeka vs. ryba Danio rerio

A: Homo_sapiens/Homo_sapiens.NGBI36.52.dna_rm.chromosome.MT.Peyerse alignment

B: Danio_rerio/Danio_rerio.ZFISH7.52.dna_rm.chromosome.MT.‡aForward alignment

Mitochondriálny genóm človeka vs. Drosophila melanogaster

A: Homo_sapiens/Homo_sapiens.NGBI36.52.dna_rm.chromosome.MT.Fayerse alignment

B: Drosophila_melanogaster/Drosophila_melanogaster.BDGP5.4.52.dAd_rM.chromk

Mitochondriálny genóm človeka vs. to isté

A: Homo_sapiens/Homo_sapiens.NGBI36.52.dna_rm.chromosome.MT.Peyerse alignment

B: Homo_sapiens/Homo_sapiens.NCBI36.52.dna_rm.chromosome.MT.Fgrward alignment

Drosophila proteín Escargot zinc finger vs. to isté

Drosophila proteín Escargot zinc finger

Description:	Protein escargot		
Source organism:	Drosophila melanogaster (Fruit fly View Pfam proteome data.		
Length:	470 amino acids		

Pfam domains

Metódy v bioinformatike CB05: HMM, E-value

Jana Černíková

FMFI UK

24/10/2024

Bioinformatický problém: Hľadanie génov

Vstup: DNA sekvencia

Cieľ: označ každú bázu ako intrón/exón/medzigénovú oblasť (anotácia)

Výstup: anotácia s maximálnym skóre

(segmentácia pôvodnej sekvencie na neprekrývajúce sa regióny, ktoré reprezentujú intróny, exóny a medzigénové úseky, pre ktorú dostaneme max. skóre na základe pravdepodobnostného modelu)

Pravdepodobnostný model génov

Žiadna informácia nám neumožňuje jednoznačne určiť, čo je gén. Skombinujeme dostupnú informáciu pravdepodobnostným modelom.

 $\Pr(S,A)$ – pravdepodobnosť, že model vygeneruje pár (S,A). Model zostavíme tak, aby páry s vlastnosťami podobnými skutočným génom mali veľkú pravdepodobnosť.

Použitie: pre novú sekvenciu S nájdi najpravdepodobnejšiu anotáciu $A = \arg\max_A \Pr(A|S)$

Pravdepodobnostný model génov

Použitie: pre sekvenciu *S* nájdi najpravdepodobnejšiu anotáciu *A*

```
Hračkársky príklad modelu: sekvencie dĺžky 2
```

Tabuľka pravdepodobností pre 16 sekvencií, 9 anotácií (súčet 1)

```
Najpravdepodobnejšia anotácia pre S = aa je aa.
     0.008
             ac
                  0.009
                             0.0085
             ac
 aa
      0
      0.011
 aa
 aa
      0.009
 aa
 aa
      0.007
 aa
```

0.010

Skrytý Markovov model, hidden Markov model (HMM)

Spôsob, ako zadefinovať model pre dlhšie sekvencie.

- Konečný automat, stavy napr. exón, intrón, medzigénová oblasť
- Sekvenciu aj anotáciu generuje bázu po báze
- V každom kroku je v jednom stave a náhodne vygeneruje jednu bázu podľa tabuľky v stave
- Potom sa presunie do d'alšieho stavu podl'a pravdepodobností na hranách

Skrytý Markovov model (HMM)

Predpokladajme, že model vždy začína v modrom stave.

Príklad:

$$Pr(\textbf{aca}) = 0.27 \cdot 0.001 \cdot 0.27 \cdot 0.99 \cdot 0.24 = 0.000017$$

$$Pr(\textbf{aca}) = 0.27 \cdot 0.999 \cdot 0.23 \cdot 0.999 \cdot 0.27 = 0.017$$

Uvažujme HMM so špeciálnym začiatočným stavom b a koncovým stavom e, ktoré nič negenerujú.

Uvažujme HMM so špeciálnym začiatočným stavom b a koncovým stavom e, ktoré nič negenerujú.

 Úloha 1: Nakreslite HMM (stavový diagram), ktorý generuje sekvencie, ktoré začíajú niekoľkými červenými písmenami a potom obsahujú niekoľko modrých

Uvažujme HMM so špeciálnym začiatočným stavom b a koncovým stavom e, ktoré nič negenerujú.

- Úloha 1: Nakreslite HMM (stavový diagram), ktorý generuje sekvencie, ktoré začíajú niekoľkými červenými písmenami a potom obsahujú niekoľko modrých
- Úloha 2: Ako treba zmeniť HMM, aby dovoloval ako "niekoľko" aj nula?

Uvažujme HMM

so špeciálnym začiatočným stavom b a koncovým stavom e, ktoré nič negenerujú.

- Úloha 1: Nakreslite HMM (stavový diagram), ktorý generuje sekvencie, ktoré začíajú niekoľkými červenými písmenami a potom obsahujú niekoľko modrých
- Úloha 2: Ako treba zmeniť HMM, aby dovoloval ako "niekoľko" aj nula?
- Úloha 3: Ako treba zmeniť HMM, aby počet červených aj modrých bol vždy parne číslo?

Uvažujme HMM

so špeciálnym začiatočným stavom b a koncovým stavom e, ktoré nič negenerujú.

- Úloha 1: Nakreslite HMM (stavový diagram), ktorý generuje sekvencie, ktoré začíajú niekoľkými červenými písmenami a potom obsahujú niekoľko modrých
- Úloha 2: Ako treba zmeniť HMM, aby dovoloval ako "niekoľko" aj nula?
- Úloha 3: Ako treba zmeniť HMM, aby počet červených aj modrých bol vždy parne číslo?
- Úloha 4: Ako zmeniť HMM, aby sa striedali červené a modré kusy párnej dĺžky?

V ďaľších príkladoch uvažujeme aj to, ktoré písmená su v ktorom stave povolené (pravdepodobnosť emisie > 0) a ktoré sú zakázané

V ďaľších príkladoch uvažujeme aj to, ktoré písmená su v ktorom stave povolené (pravdepodobnosť emisie > 0) a ktoré sú zakázané

• Úloha 5: Model generujúci červené sekvencie dĺžky dva, ktoré začínajú na A

V ďaľších príkladoch uvažujeme aj to, ktoré písmená su v ktorom stave povolené (pravdepodobnosť emisie > 0) a ktoré sú zakázané

- Úloha 5: Model generujúci červené sekvencie dĺžky dva, ktoré začínajú na A
- Úloha 6: Model generujúci červené sekvencie dĺžky dva, ktoré môzu byť čokoľvek iné ako AA

V ďaľších príkladoch uvažujeme aj to, ktoré písmená su v ktorom stave povolené (pravdepodobnosť emisie > 0) a ktoré sú zakázané

- Úloha 5: Model generujúci červené sekvencie dĺžky dva, ktoré začínajú na A
- Úloha 6: Model generujúci červené sekvencie dĺžky dva, ktoré môzu byť čokoľvek iné ako AA
- Úloha 7: Rozšírte predošlý model na sekvencie dĺžky 3 bázy, tak aby to nemohli byť stop kodóny TAA, TAG, TGA

V ďaľších príkladoch uvažujeme aj to, ktoré písmená su v ktorom stave povolené (pravdepodobnosť emisie > 0) a ktoré sú zakázané

- Úloha 5: Model generujúci červené sekvencie dĺžky dva, ktoré začínajú na A
- Úloha 6: Model generujúci červené sekvencie dĺžky dva, ktoré môzu byť čokoľvek iné ako AA
- Úloha 7: Rozšírte predošlý model na sekvencie dĺžky 3 bázy, tak aby to nemohli byť stop kodóny TAA, TAG, TGA

toto sa dá rozšíriť na HMM, ktorý reprezentuje ORF (open reading frame): začína štart kodónom, potom niekoľko bežných kodónov, ktoré nie sú stop kodónom a na koniec stop kodón

Iný príklad použitia HMM: Topológia transmembránových proteínov

Chceme označiť aminokyseliny v proteíne – vonku z bunky, v membráne, vo vnútri bunky

Nie každá postupnosť označení dáva zmysel – napr. vonku—vnútri alebo vonku—v_membráne—vonku

Iný príklad použitia HMM: Topológia transmembránových proteínov

Chceme označiť aminokyseliny v proteíne – vonku z bunky, v membráne, vo vnútri bunky

Nie každá postupnosť označení dáva zmysel – napr. vonku—vnútri alebo vonku—v_membráne—vonku

Čo by reprezentovali stavy v tomto prípade?

E-value: Hračkársky prípad

Dotaz: ATGCTCAAAC (dĺžka m=10)

Databáza: (dĺžka n = 300)

Skórovacia schéma: zhoda +1, nezhoda -1, medzera -1

Lokálne zarovnanie so skóre S=6

GCTCAAAC

GCTCA-AC

E-value: koľko očakávame lokálnych zarovnaní so skóre aspoň S v náhodnej databáze dĺžky n pri náhodnom dotaze dĺžky m

Dotaz: GTGCCTGCAG

Databáza:

Dotaz: TCGACCGAAA

Databáza:

tactccattagggattataacgactaaagcccgtcgtggcgggatcactt tgagattcaactttaacgcatcacagaggaatctgagacaaagcaaaacc gatcataatgatcgatccaggtaataagtctccttgatggcgttagactg gaaataacagttgacttccgactatagtttaatgaacgttcgtaattaga cgatcgtgtaacttaaccaaaggctgcccccaaactagctgagtaatagc tcgtcctgagcatgtaaggtcagcctccacggaacactgcaacgttctt

Dotaz: CCCGTCGTAG

Databáza:

cagcattagccccgttatttCGTCGTtctccaacgggtctgcctttctgg aacgtggcgaaccttcacaggtcagtctgtcatcgcctgcgcttagagcg gacggtactcgaaaggtcggttcagtgtggcgctggaaagaagaatagca acacatgcactaatggaaggtcccagtggtgtggggacattctggaCCCGTGTgtgccaacctatgtgagctccggcgttgactcggaggatgttaacaag atcaagctgtaggcgacgatcccggcggtttcctctactgcctcgagc

Dotaz: AGGATGAGGA

Databáza:

 $\label{eq:total_control_control} ttatcgattctccggtgcccagtacagcacaaggctcggatcctgtaaa acactacaccttaaaaactaagtcAGGATGtgatctcccttaaGATGAGa cagtctctaatgcggcgtagtggggaccctcgtgaccgagctaagcagttc acaatgggcgctctgagcgattggctggagaccttgacttcccggtaggt gtggtgttagttctgtgcccagagataaccatccaccgtaatggatctcg taactttacGATGAAGAccggcatcatctcagttatatttctaggacggg$

Celkovo opakujeme 100 krát

$$S = 6$$
, $m = 10$, $n = 300$, obsah GC 50%

Počet výskytov: 2, 0, 2, 3, 3, 1, 0, 1, 1, 1, 0, 0, 4, 2, 0, 1, 0, 1, 0, 0, 1, 0, 0, 4, 3, 1, 1, 0, 0, 0, 2, 3, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 4, 1, 1, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 2, 0, 1, 1, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 0, 1, 0, 0, 1, 0, 3, 2, 0, 2, 2, 1, 0, 0, 2, 0, 0, 1, 2, 1, 1, 3, 2, 2, 1, 1, 0, 2, 0, 1, 3

Priemerný počet výskytov: 1.05

Keď celé opakujeme viackrát, dostávame hodnoty 0.99, 1.15, 1.02, 1.07, 0.98, . . .

Správna hodnota E-value: 0.99

K-means clustering

Tomáš Vinař 21.11.2024

Formulácia problému

Vstup: n-rozmerné vektory x_1, x_2, \ldots, x_t a počet zhlukov k

Výstup: Rozdelenie vektorov do k zhlukov:

- priradenie vstupných vektorov do zhlukov zapísané ako čísla c_1,c_2,\ldots,c_t , kde $c_i\in\{1,2,\ldots,k\}$ je číslo zhluku pre x_i
- ullet centrum každého zhluku, t.j. n-rozmerné vektory $\mu_1, \mu_2, ..., \mu_k$

Hodnoty c_1, \ldots, c_t a μ_1, \ldots, μ_k volíme tak, aby sme minimalizovali súčet štvorcov vzdialeností od každého vektoru k centru jeho zhluku:

$$\sum_{i=1}^{t} \|x_i - \mu_{c_i}\|_2^2$$

Pre vektory $a=(a_1,\ldots,a_n)$ a $b=(b_1,\ldots b_n)$ je druhá mocnina vzdialenosti $\|a-b\|_2^2=\sum_{i=1}^n(a_i-b_i)^2$

Príklad vstupu

x_1	-2.00	-0.50
x_2	-1.20	0.20
x_3	-0.60	-0.20
x_4	-0.50	1.80
x_5	-0.30	1.50
x_6	0.00	-2.00
x_7	0.10	-0.40
x_8	0.20	1.90
x_9	0.40	0.10
x_{10}	0.40	-1.50
x_{11}	0.50	0.40
x_{12}	1.00	2.00
x_{13}	1.20	-1.50
x_{14}	1.60	-0.80
x_{15}	2.00	-1.10
k = 3	}	

Príklad výstupu

α .	2.00	0.50	4
x_1	-2.00	-0.50	1
x_2	-1.20	0.20	1
x_3	-0.60	-0.20	1
x_4	-0.50	1.80	3
x_5	-0.30	1.50	3
x_6	0.00	-2.00	2
x_7	0.10	-0.40	1
x_8	0.20	1.90	3
x_9	0.40	0.10	1
x_{10}	0.40	-1.50	2
x_{11}	0.50	0.40	1
x_{12}	1.00	2.00	3
x_{13}	1.20	-1.50	2
x_{14}	1.60	-0.80	2
x_{15}	2.00	-1.10	2
μ_1	-0.47	-0.07	
μ_2	1.04	-1.38	
μ_3	0.10	1.80	

Algoritmus

Heuristika, ktorá nenájde vždy najlepšie zhlukovanie.

Začne z nejakého zhlukovania a postupne ho zlepšuje.

Inicializácia:

náhodne vyber k centier $\mu_1, \mu_2, ..., \mu_k$ spomedzi vstupných vektorov

Opakuj, kým sa niečo mení:

- ullet priraď každý bod najbližšiemu centru: $c_i = rg \min_j \left\| x_i \mu_j
 ight\|_2$
- $\bullet\,$ vypočítaj nové centrá: $\mu_j\,$ bude priemerom (po zložkách) z vektorov $x_i,$ pre ktoré $c_i=j$

Zvolíme náhodné centrá μ_i

Vektory priradíme do zhlukov (hodnoty c_i)

Zabudneme μ_i

Dopočítame nové μ_i (suma klesla z 30.05 na 19.66)

Dopočítame nové c_i (suma klesla z 19.66 na 17.39)

Prepočítame μ_i

Prepočítame c_i

Prepočítame μ_i

Prepočítame c_i (žiadna zmena, končíme)

Cvičenia pre biológov, 12.12.2024 Zhrnutie semestra

Tvorba bioinformatického nástroja

- Sformulujeme biologické ciele
 (aké máme dáta, aké typy otázok sa chceme pýtať).
- Sformulujeme informaticky/matematicky

 (napr. ako pravdepodobnostný model).

 Dostaneme informatické zadanie problému, v ktorom je presne daný vzťah medzi vstupom a želaným výstupom

 (napr. nájsť zarovnanie s max. skóre v určitej skórovacej schéme).
- Hľadáme efektívne algoritmy na riešenie informatického problému.
- Ak sa nám nepodarí nájsť dosť rýchly algoritmus, použijeme heuristiky, ktoré dávaju približné riešenia.
- Testujeme na reálnych dátach, či sú výsledky biologicky správne
 (či bol model dobre zvolený, či heuristiky dobre fungujú).

Použitie bioinformatického nástroja

- Sformulujeme biologické ciele (aké máme dáta, aké typy otázok sa chceme pýtať).
- Porozmýšľame, aký typ nástroja, resp. ich kombinácia by nám mohli pomôcť
- Alebo hľadáme v literatúre nástroj na typ problému, s ktorým sme sa ešte nestretli
- Pre správne nastavenie parametrov a interpretovanie výsledkov je dôležité poznať model, predpoklady, ktoré autori nástroja použili, resp. zdroj dát v príslušnej databáze
- Konkrétne nástroje a webstránky sa rýchlo menia, celkové princípy sa menia pomalšie

Prehľad preberaných tém

- Zostavovanie genómov (najkratšie spoločné nadslovo, heuristiky, de Bruijnov graf)
- Zarovnania (skórovanie ako pravdepodobnostný model, dynamické programovanie, heuristické zarovnávanie, E-value a P-value, lokálne vs. globálne, párové vs. viacnásobné, celogenómové)
- Evolúcia (pravdepodobnostné modely substitúcií, metóda maximálnej vierohodnosti, metóda maximálnej úspornosti, metóda spájania susedov)
- Hľadanie génov (skryté Markovove modely)
- Komparatívna genomika (hľadanie konzervovaných oblastí, komparatívne hľadanie génov, pozitívny výber, fylogenetické HMM, kodónové matice)

Prehľad preberaných tém (pokračovanie)

- Expresia génov (zhlukovanie, klasifikácia, regulačné siete, transkripčné faktory, hľadanie motívov)
- Proteíny (predikcia štruktúry, profily a profilové HMM rodín/domén)
- RNA štruktúra (dynamické programovanie, stochastické bezkontextové gramatiky)
- Populačná genetika (mapovanie asociácií, väzbová nerovnováha, genetický drift, štruktúra a história populácie)

Nahliadli sme do sveta informatiky

- Algoritmus, časová zložitosť
- NP-ťažké problémy, presné algoritmy, heuristiky, aproximačné algoritmy
- Dynamické programovanie
- Stromy, grafy
- Skryté Markovove modely a bezkontextové gramatiky

Ďalšie predmety

- Genomika N-mCBI-303, Nosek a kol. (LS, 2P, 3kr)
- Linux pre používateľov 1-AIN-500, Uhliarik (LS, 2K, 2kr) alebo
 Operačné systémy a počítačové siete 1-DAV-103 (ZS, 2P+2C, 5k)
- Programovanie (1) 1-MAT-130, Salanci (ZS, 2P+2C, 5kr) alebo
 Programovanie (1) 1-AIN-130 Blaho (ZS, 4P+4C, 9kr)

Pre pokročilejších

- Seminár z bioinformatiky 1, 2 Brejová, Vinař (ZS/LS, 2S, 2kr)
 journal club o bioinformatických metódach
- Úvod do bioštatistiky 1-BMF-331 Waczulíková (LS, 2P+1C, 4kr)
 predmet pre biomedicínskych fyzikov a dátovú vedu
- Vizualizácia dát 1-DAV-105 Brejová, Bátorová (LS, 2P+2C, 5kr)
 vyžaduje základy Pythonu
- Manažment dát 1-DAV-105 Brejová, Boža, Vinař (LS, 1P+2C, 5kr)
 vyžaduje znalosť programovania, základy práce na príkazovom riadku

Teória grafov

Broňa Brejová 19.12.2020

Grafy a grafové algoritmy

Graf: 7 vrcholov (mestá), 8 hrán (cestné spojenia)

Počet vrcholov n, počet hrán mNezáleží na rozmiestnení vrcholov

Cesta: Postupnosť nadväzujúcich hrán, žiadny vrchol sa neopakuje

Napr. Plzeň-Praha-Brno-Bratislava je cesta Brno-Ostrava-Košice-Brno-Praha nie je cesta

Najkratšia cesta z a do b: Cesta spájajúca vrcholy a a b s najmenším súčtom vzdialeností na hranách

Možno spočítať v čase $O(n^2)$ Dijkstrovym algoritmom.

Cyklus: Postupnosť nadväzujúcich hrán, ktorá sa vracia do východzieho bodu, nemá žiadne iné opakujúce sa vrcholy.

Proctor and Gamble súťaž, 1962

Problém obchodného cestujúceho

Vrcholy: mestá na mape

Hrany: medzi každými dvoma vrcholmi, váha je vzdušná vzdialenosť

Úloha: obcestovať všetky mestá tak, aby celková vzdušná vzdialenosť bola minimálna (**Hamiltonovská kružnica**)

Jednoduchá heuristika: Vždy pokračuj v najbližšom meste, ktoré sme ešte nenavštívili.

Správny a efektívny algoritmus? Nanešťastie, obchodný cestujúci je **NP-ťažký problém**.

Príklad: Sieť interakcií proteínov

Vrcholy: proteiny

Hrany: priame interakcie

Metabolické dráhy zodp. cestám

Metabolické cykly zodp. cyklom

Kliky: Skupiny vrcholov priamo prepojené každý s každým

Komplexy zodpovedajú klikám

Komponenty súvislosti: Najväčšie skupiny vrcholov tak, aby sa v každom komponente dalo dostať z každého vrcholu do každého.

Príklad: Fylogenetický strom

- Stromy sú špeciálna podtrieda grafov (acyklické, súvislé)
- Vrcholy: listy, vnútorné (spolu n)
- Hrany: n-1
- Binárny strom: každý vnútorný vrchol má 2 synov

Ďalšie príklady stromov: hierarchické zhlukovanie, dátové štruktúry na rýchle vyhľadávanie

Ďalšie príklady grafov: de Bruijnov graf, fylogenetická sieť (evolúcia s horizontálnym prenosom génov alebo rekombináciou), regulačné siete, hierarchia GO (gene ontology)