کد فرم: FR/FY/11

(فرم طرح سئو الات امتحانات پایان ترم) دانشكده رياضي

گروه آموزشی : ریاضی امتحان درس : ریاضی ۱- فنی (۲ گروه هماهنگ) نیمسال (اول/دوم) ۸۷-۱۳۸۶ نام مدرس:

تاریخ: ۱۳۸۷/۳/۲۰ وقت: ۱۳۵ دقیقه

شماره دانشجویی:

نام و نام خانوادگی :

مطالب صفحه اول پاسخنامه را به دقت مطالعه نمایید. در طول برگزاری امتحان به هیچ سوالی پاسخ داده نمی شود.

نمره
$$L = \lim_{x \to \infty} \left(\frac{x+1}{x+1}\right)^{\frac{x^{\tau}}{x+1}}$$

سوال ۱- محاسبه کنید :

۱۰ نمره

سوال $z^{\dagger} + z^{\dagger} + z^{\dagger} + z^{\dagger} + z + 1 = 0$ را بیابید. $z^{\dagger} + z^{\dagger} + z^{\dagger} + z^{\dagger} + z + 1 = 0$ را بیابید.

نمره
$$\int \frac{\sin^7 x}{7 + \sin x} dx$$

سوال ٣- انتگرال نامعين مقابل را حل كنيد :

سوال ۲۰ مساحت ناحیه محدود به منحنی تابع
$$y=\frac{x+1}{x^{r}-1}$$
 محور $x=1$ ها و خط $x=1$ را بیابید.

سوال
$$y$$
 محور به منحنی تابع $y = \ln x$ و محورهای مختصات ، حول محور y ها دوران -۵ نمره می کند. حجم جسم حاصل را بیابید.

نمره
$$\int_{-\infty}^{\pi} \frac{\sin x}{x} dx$$

سوال۶– همگرایی یا واگرایی انتگرال ناسره مقابل را مشخص کنید :

سوال ۷۔ الف) همگرایی یا واگرایی دو سری
$$\sum_{k=1}^{\infty} \frac{1}{k \ln^{7} k}$$
 و $\sum_{k=1}^{\infty} \frac{1}{k \ln^{7} k}$ نمره را مشخص کنید.

ب) بسط مک لورن تابع $f(x) = \cos^{7} x$ را تا چهار جمله غیر صفر بنویسید.

موفق باشيد

نام خانوادگی : نام : شماره دانشجویی :

$$L = \lim_{x \to \infty} \left(\frac{x+1}{x+1} \right)^{\frac{x^{*}}{x+1}}$$

$$\ln y = \frac{x^{\mathsf{T}}}{x+\mathsf{T}} \ln(\frac{x+\mathsf{T}}{x+\mathsf{T}}) = \frac{\ln(\frac{x+\mathsf{T}}{x+\mathsf{T}})}{(\frac{x+\mathsf{T}}{x^{\mathsf{T}}})}$$
 آنگاه $y = (\frac{x+\mathsf{T}}{x+\mathsf{T}})^{\frac{x^{\mathsf{T}}}{x+\mathsf{T}}}$

اکنون $\lim_{x \to \infty} \ln y = \lim_{x \to \infty} \frac{\ln(\frac{x+1}{x+1})}{(\frac{x+1}{x^*})} = \frac{1}{1}$ که مبهم است و به کمک قاعده هوپیتال داریم

$$\lim_{x \to \infty} \ln y = \lim_{x \to \infty} \frac{\frac{1}{(x+1)(x+7)}}{-\frac{x+7}{x^{r}}} = \lim_{x \to \infty} \frac{-x^{r}}{(x+1)(x+7)^{r}} = -1$$

نام درس :

 $\lim_{x \to \infty} y = \frac{1}{e}$ یعنی $\lim_{x \to \infty} \ln y = \ln \lim_{x \to \infty} y = -1$ اما

$$L = \lim_{x \to \infty} \left(\frac{x+1}{x+1}\right)^{\frac{x'}{x+1}} = \lim_{x \to \infty} \left[\left(1 - \frac{1}{x+1}\right)^{x+1}\right]^{\frac{x'}{(x+1)(x+1)}} = \left(e^{-1}\right)^{1} = \frac{1}{e}$$
 : روش دوم

در هر حالت داريم :

 $L = \frac{1}{e}$

چهار ریشه مختلط معادله $z^*+z^*+z^*+z^*+z^*+z^*$ را بیابید. طرفین معادله را در (z-1) ضرب می کنیم داریم : $z^0-1=0$ این معادله z^0 ریشه دارد که z^0 ریشه آن ریشه های معادله اصلی هستند

 $z_1 = e^{\frac{\imath \pi i}{\delta}}, z_{\imath} = e^{\frac{\imath \pi i}{\delta}}$

و ریشه z=1 که غیر قابل قبول است.

.

نام خانوادگی : نام : شماره دانشجویی :

$$\int \frac{\sin^{\gamma} x}{\tau + \sin x} dx = \int (\sin x - \tau + \frac{\tau}{\tau + \sin x}) dx = -\cos x - \tau x + \tau \int \frac{1}{\tau + \sin x} dx = \int (\sin x - \tau + \frac{\tau}{\tau + \sin x}) dx = -\cos x - \tau x + \tau \int \frac{1}{\tau + \sin x} dx = \int \frac{1}{\tau + \cot x} dx = \int \frac{1}{\tau$$

$$\int \frac{\sin^{7} x}{7 + \sin x} dx = -\cos x - 7x + \frac{\Lambda}{\sqrt{7}} Arc \tan \frac{7\sin x + \cos x + 1}{\sqrt{7}(1 + \cos x)} + c$$

نام درس:

روش دوم : اگر از همان ابتدا تغییر متغیر $t= anrac{x}{x}$ استفاده کنیم خواهیم داشت :

$$\int \frac{\sin^{7} x}{7 + \sin x} dx = \int \frac{ft^{7} dt}{(1 + t^{7})^{7} (1 + t + t^{7})} = \int (\frac{-f}{1 + t^{7}} + \frac{ft}{(1 + t^{7})^{7}} + \frac{f}{1 + t + t^{7}}) dt$$

$$= -f \arctan t - \frac{f}{1 + t^{7}} + \int \frac{f}{1 + t + t^{7}} dt$$

$$= -fx - f \cos^{7} \frac{x}{f} + \frac{\Lambda}{\sqrt{f}} \arctan \frac{ft + f}{\sqrt{f}} + c$$

$$= -\cos x - fx + \frac{\Lambda}{\sqrt{f}} Arc \tan \frac{f \sin x + \cos x + f}{\sqrt{f} (1 + \cos x)} + c'$$

 $\int \frac{\sin^{7} x}{7 + \sin x} dx = -\cos x - 7x + \frac{\Lambda}{\sqrt{r}} Arc \tan \frac{7 \sin x + \cos x + 1}{\sqrt{r}(1 + \cos x)} + c'$

•

مساحت ناحیه محدود به منحنی تابع $y = \frac{x+1}{x^{r}-1}$ ، محور x ها و خط y = x را بیابید. $S = \int_{\tau}^{\infty} \frac{x+1}{x^{r}-1} dx = \frac{1}{\tau} \int_{\tau}^{\infty} (\frac{\tau}{x-1} - \frac{\tau x+1}{x^{\tau}+x+1}) dx = \frac{1}{\tau} [\tau \ln(x-1) - \ln(x^{\tau}+x+1)]_{\tau}^{\infty}$ $= \frac{1}{\tau} [\ln \frac{(x-1)^{\tau}}{x^{\tau}+x+1}]_{\tau}^{\infty} = -\frac{1}{\tau} \ln \frac{1}{\tau} = \frac{\ln \tau}{\tau}$ $S = \frac{\ln \tau}{\tau}$ بنابر این

ناحیه محصور به منحنی تابع $y=\ln x$ و محورهای مختصات ، حول محور yها دوران می کند. حجم جسم حاصل را بیابید.

$$V = \int_{-1}^{1} 7\pi x \left| \ln x \right| dx = -7\pi \left[\frac{1}{7} x^{7} (7 \ln x - 1) \right] = \frac{\pi}{7} \left(1 - \lim_{x \to 1^{+}} x^{7} (\ln x - 1) \right) = \frac{\pi}{7}$$
 : روش اول :

$$V = \int_{-\infty}^{\cdot} \pi \ x^{\mathsf{T}} dy = \int_{-\infty}^{\cdot} \pi \ e^{\mathsf{T} y} dy = \left[\frac{\pi}{\mathsf{T}} e^{\mathsf{T} y}\right]_{-\infty}^{\cdot} = \frac{\pi}{\mathsf{T}} - \cdot = \frac{\pi}{\mathsf{T}}$$
 : دوش دوم :

$$V = \frac{\pi}{\gamma}$$
 بنابر این

.

همگرایی یا واگرایی انتگرال ناسره مقابل را مشخص کنید : $\frac{\sin x}{x}dx$: همگرایی یا واگرایی انتگرال ناسره مقابل را مشخص کنید : $y = \frac{\sin x}{x}$ در مورد تابع $y = \frac{\sin x}{x}$ در مورد تابع $y = \frac{\sin x}{x}$ در مورد تابع ناتگرال ناسره داده شده همگرا است.

6

نام خانوادگی: نام: شماره دانشجویی: نام درس:

الف) همگرایی یا واگرایی دو سری و سری
$$\sum_{k=1}^{\infty} \frac{1}{k \ln^{7} k}$$
 و سری و سری و سری الف) مشخص کنید.

سری اول طبق آزمون انتگرال همگرا است زیرا انتگرال $\int_{\tau}^{\infty} \frac{dx}{x \ln^{\tau} x} = \left[\frac{-1}{\ln x}\right]_{\tau}^{\infty} = \frac{1}{\ln \tau}$ همگرا می باشد.

سری دوم را می توان به صورت $\sum_{n=1}^{\infty} \frac{1}{n}$ نوشت و طبق آزمون مقایسه حدی در مقایسه با سری $\sum_{n=1}^{\infty} \frac{1}{1 \cdot n + 1}$ داریم

يعنى دو سرى رفتار مشابه دارند و چون سرى $\sum_{n=1}^{\infty} \frac{1}{n}$ واگرا است پس سرى داده شده نيز واگرا خواهد . $\lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{(1\cdot n+1)}}$

ب) بسط مک لورن تابع $f(x) = \cos^{1} x$ را تا چهار جمله غیر صفر بنویسید.

 $f'(x) = -\sin x$, $f''(x) = -\cos x$, $f'''(x) = \sin x$, $f^{(\tau)}(x) = A\cos x$,

 $f^{(\delta)}(x) = -1 \sin \tau x$, $f^{(f)}(x) = -\tau \cos \tau x$

 $f(\cdot) = 1, f'(\cdot) = \cdot, f''(\cdot) = -7, f'''(\cdot) = \cdot, f^{(\tau)}(\cdot) = \lambda, f^{(\Delta)}(\cdot) = \cdot, f^{(\beta)}(\cdot) = -77$ $f(x) = \cos^{\tau} x = 1 - \frac{7}{7!} x^{\tau} + \frac{\Lambda}{7!} x^{\tau} - \frac{77}{7!} x^{\beta} + \cdots$ $= 1 - x^{\tau} + \frac{1}{7!} x^{\tau} - \frac{7}{7!} x^{\beta} + \cdots$

 $\cos^{\tau} x = 1 - x^{\tau} + \frac{1}{\tau} x^{\tau} - \frac{\tau}{\tau_{\Delta}} x^{s} + \cdots$

در نتیجه