Reg. No.: E N G G T R E E . C O M

Question Paper Code: 40989

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2024

Fifth Semester

Electronics and Communication Engineering

For More Visit our Website EnggTree.com

EC 3552 - VLSI AND CHIP DESIGN

(Common to: Electronics and Telecommunication Engineering)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

www.EnggTree.com

- How NMOS and PMOS act as a switch?
- 2. What is the body effect of MOS transistor?
- 3. Draw the stick diagram for two input NOR gate.
- 4. What is the significance of propagation delay?
- Differentiate latches and flipflops.
- 6. What are the basic timing classifications of digital systems?
- 7. List the interconnect parameters in chip design.
- 8. Write the logic equation for 4-bit comparators.
- Sketch the ASIC design flow?
- 10. Differentiate embedded cores and SOCs.

PART B — $(5 \times 13 = 65 \text{ marks})$

11.	(a)		and explain the regions of operation of MOS transistor and obtain current for all regions.	tain		
			Or			
	(b)	Disc	cuss the MOS transistor under dynamic conditions.			
12.	(a)	Real	lize the 2:1 multiplexer using			
		(i)	Static CMOS logic	(5)		
		(ii)	Dynamic CMOS logic	(4)		
		(iii)	Pass transistor logic	(4)		
			Or			
	(b)	(i)	Illustrate the low power design principles of CMOS circuits.	(7)		
		(ii)	Explain the design considerations in static CMOS logic.	(6)		
13.	(a)	(i)	Elucidate the dynamic latches and registers suitable for sequen	tial		
	0.70.70	71.0000	circuit design.	(7)		
		(ii)	Elaborate the sense amplifier based register for sequential cirdesign.	cuit (6)		
			Or Or			
	(b)		pare the mono-stable and bistable multivibrator circuit be IOS transistors.	ısed		
14.	(a)	Design a high speed 4-bit adder and compare with the existing adders with respect to speed of operation.				
			Or			
	(b)	(i)	Implement the full adder using PLA.	(6)		
		(ii)	Explain the memory architecture and the basic building blocks.	(7)		

2 40989

EnggTree.com

15.	(a)	(i)	Illustrate the microchip design process and identify the issues in
			test. Validate the verification of the complex chips? (7)
		(ii)	Model the faults associated in CMOS design. (6)
			Or
	(b)	(i)	What is the need for testing? Explain the operation of automatic
			test pattern generation. (7)
		(ii)	Write the test bench for VHDL code to test the 2-to-4 decoder logic.
			(6)
			PART C — $(1 \times 15 = 15 \text{ marks})$
16.	(a)	(i)	Obtain the elmore delay constant for the four input NAND gate. (8)
	. ,	(ii)	Write the disadvantage(s) of dynamic CMOS logic. Provide three
		(11)	possible solutions to overcome the disadvantages. (7)
			Or
	(b)	(i)	Design a master-slave register using transmission gates and draw
			the logic waveform. Find the setup time and hold time for the
			register. (8)
		(ii)	Implement a 2-to-4 decoder using ROM. (7)
			EnggTree.com