Problem 1 (20%). How many integer solutions are there to $x_1 + x_2 + x_3 + x_4 = 21$ with

- 1. $x_i \ge 0$. 2. $x_i > 0$. 3. $0 \le x_i \le 12$.

Problem 2 (20%). Prove the following identities using path-walking argument.

1. For any $n, r \in \mathbb{Z}^{\geq 0}$,

$$\sum_{0 \le k \le r} \binom{n+k}{k} = \binom{n+r+1}{r}.$$

2. For any $m, n, r \in \mathbb{Z}^{\geq 0}$ with $0 \leq r \leq m + n$,

$$\sum_{0 \le k \le r} \binom{m}{k} \binom{n}{r-k} = \binom{m+n}{r}.$$

Problem 3 (20%). Let \mathcal{F} be a set family on the ground set X and d(x) be the degree of any $x \in X$, i.e., the number of sets in \mathcal{F} that contains x. Use the double counting principle to prove the following two identities.

$$\sum_{x \in Y} \, d(x) \; = \; \sum_{A \in \mathcal{F}} \, |Y \cap A| \; \text{ for any } Y \subseteq X.$$

$$\sum_{x \in X} d(x)^2 \ = \ \sum_{A \in \mathcal{F}} \sum_{x \in A} d(x) \ = \ \sum_{A \in \mathcal{F}} \sum_{B \in \mathcal{F}} |A \cap B|.$$

Problem 4 (20%). Let H be a 2α -dense 0-1 matrix. Prove that at least an $\alpha/(1-\alpha)$ fraction of its rows must be α -dense.

Problem 5 (20%). Let \mathcal{F} be a family of subsets defined on an *n*-element ground set X. Suppose that \mathcal{F} satisfies the following two properties:

- 1. $A \cap B \neq \emptyset$ for any $A, B \in \mathcal{F}$.
- 2. For any $A \subseteq X$, $A \notin \mathcal{F}$, there always exists $B \in \mathcal{F}$ such that $A \cap B = \emptyset$.

Prove that

$$2^{n-1} - 1 \le |\mathcal{F}| \le 2^{n-1}.$$

Hint: Consider any set $A \subseteq X$ and its complement \overline{A} . Apply the conditions given above and prove the two inequalities "\le " and "\ge " separately.