Load Balancing

- Causes of load imbalance
- Load Balancing Approaches
 - Independent tasks
 - Tasks with dependencies
 - Tasks with communication
- Task Scheduling
 - Static
 - Dynamic
 - Randomization, Diffusion
 - DAG Scheduling

Causes of Poor Scaling

- Amdahl's Law
 - Serial code, outside OpenMP regions, inside critical regions, etc.
- Insufficient parallelism
 - Size of data N < P number of processors
- Too much parallelism overhead
 - Thread creation, synchronization, communication, scheduling
- Poor locality
 - E.g., false sharing
- Load imbalance
 - Different amounts of work across processors
 - Different data movement costs, compute cost, etc.

Looking for Load Imbalance

- High synchronization overhead
 - Expensive barriers or locks
- Load imbalance
 - Load imbalance
 - Extreme: Lack of parallelism including serial bottleneck (Amdahl's law)

Measuring Load Imbalance

- Basic measurement: timers around barriers
- Don't just average!
- Need to look at all values or histogram
- Load imbalance: average time wasted (max – average) / average
- "Spin locks" look like useful work (but obviously are not)

Sources of Load Imbalance

- Variable and often unknown:
 - Cost of tasks
 - Number of tasks
 - Structure of task tree (or graph)
- Machine variability (next...)

System performance variability

 Load imbalance isn't always an application level problem: Performance variability can come from hardware or operating system effects

Public clouds (e.g., AWS) have high variability

 Variability of node performance (Round-Trip-Time) in the cloud

Load Balancing Approaches

- Static Load balancing: Divide into equal size parts
 - Straightforward if you know the problem size
 - Can be expensive to estimate / optimize (graph partitioning)
- Dynamic load balancing:
 - When work costs are unknown
 - Observation: Load balancing and locality often trade off

Load balancing independent tasks

Loop over a set of independent computations

```
for (i = 0, i < n; i++) {
... loop body ...
}
```

- Easy: Statements and loops with fixed bounds, no conditionals to vary workload
- Harder: Switch where each branch has "known" work, e.g., images of different sizes
- Hardest: Conditionals, computed loop bounds, breaks, exceptions, etc.
- None of these have communication / dependencies between iterations

Task cost variability (due to application)

Easy: Equal costs, fixed count	Regular meshes, dense matrices, direct n-body
Hard: Tasks have different but estimable times, fixed count	Adaptive and unstructured meshes, sparse matrices, tree- based n-body, particle-mesh methods
Hardest: Times or count are not known until mid-execution	Search, irregular boundaries, subgrid physics, unpredictable machines

Bin-packing for statically known costs is hard ... NP-hard

- Hard: Tasks have different but estimable times; known count
- When memory is limited this is the classic binpacking problem
- NP-hard (only exponential time algorithms are known)
- So good load balance is done approximately

Dynamic Scheduling

- What if work estimates are unknown?
 - Until mid-execution of an iteration / chunk
 - E.g., Mandelbrot, game trees
- Dynamic scheduling:
 - Self Scheduling
 - Chunk Scheduling
 - Guided Self Scheduling

Self Scheduling

- "Self Scheduling" [Tang and Yew '86]
 - Shared queue of tasks
 - Processors (workers) take / add tasks to queue

Chunked Scheduling

- "Chunked" (Self) Scheduling [Kruskal and Weiss '85]
 - Shared queue of tasks, workers remove chunks of size K
 - Reduce queue contention (locking)
 - How to choose K?
 - Large chunks: lower contention / overhead
 - Small chunks: even finish time

Guided Self Scheduling

- "Guided" Self Scheduling [Kuck and Polychronopolous '87]
 - The chunk size K_i at the ith access to the task pool is given by K_i = ceiling(R_i/p) where R_i is the # of tasks remaining and p is the number of processors

Privatizing the Queue

- Avoid bottleneck of a shared queue
- Use a "distributed" queue (1 per processor)
- But what if the queue is empty?
 - Then steal from another processor's queue, which one?
 - A different one each time
 - Neighbors good for locality
 - Far away good for load balance
 - How many to steal (see chunking)?
 - Which jobs to steal?

Balls-in-bins: Randomization

- Classic balls-and-bins result [Kotz '97, Kolchin '98]
- Tasks are balls and processors are bins
- Can prove properties "with high probability" using randomization
- Given n balls thrown randomly into p bins

Self scheduling Algorithms

Load Balancing *Tasks with Dependencies*Trees, Graphs (DAGs)

Easy: Set of ready tasks	Matrix multiply, domain decomposition (loops over space)
Medium: Tasks have known relationship (task graph)	Chains: Loops over time; iterative methods (outer loop) Trees: (in-tree and out-trees); divide-and-conquer algorithms Graphs: Direct solvers (dense and sparse), i.e., LU, Cholesky
Hard: Task structure is not known until runtime	Trees: Search Graphs: Discrete events

Task Trees: Search example

- Search problems are often:
 - Computationally expensive
 - Have very different parallelization strategies than physical simulations.
 - Require dynamic load balancing
- Examples:
 - Chess and other games (N-queens)
 - Optimal layout of VLSI chips
 - Robot motion planning
 - Computing a (Gröbner) basis for set of polynomials
 - Constructing phylogeny tree from set of genes

Depth vs Breadth First Search (Review)

- DFS with Explicit Stack little parallelism
 - Put root into Stack (LIFO)
 - While Stack not empty
 - Remove top of stack
 - If found goal? → return success
 - Else push child nodes on stack
- BFS with Explicit Queue lots of parallelism (depending on graph)
 - Put root into Queue (FIFO)
 - While Queue not empty
 - Remove front of queue
 - If found goal? → return success
 - Else enqueue child nodes onto the end of the queue

Sequential Search Algorithms

- Simple backtracking
 - Search to bottom, backing if necessary
- Branch-and-bound
 - Keep track of best solution so far ("bound")
 - Cut off sub-trees that are guaranteed to be worse than bound
- Iterative Deepening ("in between" DFS and BFS)
 - Choose a bound d on search depth, and use DFS up to depth d
 - If no solution is found, increase d and start again
 - Can use an estimate of cost-to-solution to get bound on d

Parallel Search Algorithms

- Consider backtracking search
- Try static load balancing: spawn each new task on an idle processor, until all have a subtree
- Clearly a bad idea...unknown task count. And they arrive 'sequentially.'

Theoretical random results

Simple randomized algorithms are optimal with high probability

- Generalizations for independent tasks
 - "Throw n balls into n random bins": O(log n / log log n) in fullest bin
 - Throw d times and pick the emptiest bin: log log n / log d [Azar]
 - Extension to parallel throwing [Adler et all 95]
 - Shows p log p tasks leads to "good" balance
- For a tree of unit cost tasks [Karp, Zhang]
 - Parent must be done before children
 - Tree unfolds at runtime
 - Task number/priorities not known a priori
 - Children "pushed" to random processors

More theoretical results

- Blumofe and Leiserson [94] show this for a fixed task tree of variable cost tasks
 - Task pulling (stealing), when a processor becomes idle, it steals from random processor
 - Good for locality, balances slowly
 - Also have (loose) bounds on the total memory required
- Chakrabarti et al [94] show this for a dynamic tree of variable cost tasks
 - Uses randomized pushing
 - Quickly load balances, worse for locality
 - Works for branch and bound, i.e. tree structure can depend on execution order

Randomized Load Balancing

- Want to avoid bottlenecks of shared queue
 - Especially in distributed memory (but even in shared)
 - So Self-scheduling, Chunked Self Scheduling, Guided Self Scheduling are not good
- Use distributed queues with stealing / sharing
- How to select processor?
 - Asynchronous or global round robin
 - Randomize pushing: balances quickly, may lose spatial locality
 - Randomized pulling: balances slowly, preserves locality as much as possible

Greedy Scheduling

Do as much as possible on every step.

- Definition: A thread is ready if all its predecessors have Executed.
- Complete step
 - $\ge P$ threads ready.
 - Run any P.
- Incomplete step
 - < P threads ready.</p>
 - Run all of them.

Distributed Task Queues

- The obvious extension of task queue to distributed memory is:
 - a distributed task queue (or "bag"), i.e., one per processor
 - Idle processors can "pull" work, or busy processors "push" work
- When are "distributed" queues a good idea?
 - Distributed memory multiprocessors
 - Often on shared memory to avoid synchronization contention
 - Locality between tasks is not (very) important
 - The costs of tasks and/or number is not known in advance
- Side note on terminology:
 - Queue: First-In-First-Out (FIFO)
 - Stack: Last-In-First-Out (LIFO)
 - Bag: Arbitrary-Out

Diffusion-Based Load Balancing

- In the randomized schemes, the machine is treated as fully-connected.
- Diffusion-based load balancing takes topology into account
 - Send some extra work to a few nearby processors: Average work with nearby neighbors
 - Locality properties better than choosing random processor
 - Load balancing somewhat slower than randomized
 - Cost of tasks must be known at creation time
 - No dependencies between tasks

Scalability of DAG Schedulers

- How many tasks are there in DAG for dense linear algebra operation on an n x n matrix with b x b blocks?
 - $O((n/b)^3) = 1M$, for n=10,000 and b = 100
- Creating, scheduling entire DAG does not scale
 - PLASMA: static scheduling of entire DAG
 - QUARK: dynamic scheduling of "frontier" of DAG at any one time
 - DAGuE: Symbolic interpretation of the DAG

DAG Scheduler

How to Select a Donor/Acceptor Processor

- Independent round robin (common bug: all start looking at p0)
 - Each processor k, keeps a variable "target_k"
 - When a processor runs out of work, requests work from target_k
 - Set target_k = (target_k +1) mod procs
- Global round robin
 - Proc 0 keeps a single variable "target"
 - When a processor needs work, gets target, requests work from target
 - Proc 0 sets target = (target + 1) mod procs
- Random stealing
 - When a processor needs work, select a random processor and request work from it
- Random pushing
 - When a processor has too much work (at least two tasks), push tasks to a random processor

Load Balancing Tasks with communication

Static	Regular meshes, dense matrices, direct n-body, FFT
Semi-Static: Communication pattern can be pre-computed	Adaptive and unstructured meshes, sparse matrices, tree- based n-body, particle-mesh methods
Dynamic: Random access – pattern is not known in advance and does not repeat	Search, irregular boundaries, subgrid physics, unpredictable machines, hashing

Load balancing based on Over-decomposition

- Context: "Iterative Applications"
- Repeatedly execute similar set of tasks
- Idea: decompose work/data into chunks, units for load balance
- How to predict the computational load and communication?
 - user-provided
 - simple metrics (e.g. data size)
 - principle of persistence
 - Performance changes slowly, can rebalance occasionally
- Implemented in charm++ (UIUC)

Summary

- There is often a trade-off between locality and load balance
- Many algorithms, papers, & software for load balancing
- Key to understanding how and what to use means understanding your application domain and their target
 - Shared vs. distributed memory machines
 - Dependencies among tasks, tasks cost, communication
 - Locality oblivious vs locality "encouraged" vs locality optimized:
 Computational intensity: ratio of computation to data movement cost
 - When you know information is key (static, semi, dynamic)
- Will future architectures require dynamic load balancing?