Assignment Date	
Student Name	GUDAPATI NITHIN SRINIVAS
Student Roll Number	111519104038
Maximum Marks	2 Marks

#Problem Statement: Customer Segmentation Analysis

###**Description:** You own the mall and want to understand the customers who can quickly converge [Target Customers] so that the insight can be given to the marketing team and plan the strategy accordingly.

Download and load Dataset

import numpy as np import pandas as pd import matplotlib.pyplot as pltimport seaborn as sns import matplotlib as rcParams

df=pd.read_csv('Mall_Customers.csv') #No Target Column - UnsupervisedMachine Learning df.head()

	CustomerID	G	ender	Age	Annual Incom	e (k\$) Spending Score (1-100)0	1
		M	ale 1	19	15	39	
1		2	ſ	Male	21	15	81
2		3	Fema	ale	20	16	6
3		4	Fema	ale	23	16	77
4		5	Fema	ale	31	17	40

df = df.rename(columns = {'Annual Income (k\$)': 'Annual_Income', 'Spending Score (1-100)':
'Spending_Score'})df.head()

CustomerID	G	ender Age	Annual_Income	Spending_Score0	1
	Ma	ale 19	15	39	
	2	Male	21	15	81
	3	Female	20	16	6
	4	Female	23	16	77
	5	Female	31	17	40
	CustomerID	Ma 2 3 4	Male 19	Male 19 15 2 Male 21 3 Female 20 4 Female 23	2 Male 21 15 3 Female 20 16 4 Female 23 16

df.shape

(200, 5)

df.info()

 $<\!\!\text{class 'pandas.core.frame.DataFrame'}\!\!>\!\!\text{RangeIndex:}$

200 entries, 0 to 199 Data columns (total 5 columns):

#	Column	Non-Null Count Dtyp	e
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	object

2 Age 200 non-null int64 3 Annual_Income 200 non-null int64 4 Spending_Score 200 non-null int64

dtypes: int64(4), object(1)memory

usage: 7.9+ KB

df.Gender.unique()

array(['Male', 'Female'], dtype=object)df.Age.unique()

array([19,54,

29, 21, 20, 23, 31, 22, 35, 64, 30, 67, 58, 24, 37, 52, 25, 46, 69, 45, 40, 60, 53, 18, 49, 42, 36, 65, 48, 50, 27, 33, 59, 47, 41])

df.Gender.value_70_u63_Female 68, 32, 26, 57, 38, 55, 34, 66, 39, 44, 28, 56,

112

Male 88

Name: Gender, dtype: int64

Visualizations

Univariate Analysis

sns.displot(df.Spending_Score)

<seaborn.axisgrid.FacetGrid at 0x7f700626b950>

plt.pie(df.Gender.value_counts(),[0,0.2],shadow='True',autopct="1%.1f%%") #categorial column

sns.kdeplot(df.Age,color="red")

<matplotlib.axes._subplots.AxesSubplot at 0x7f700549a450>

Bi-variate Analysis

sns.jointplot(df.Spending_Score,df.Age)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`,

and passing other arguments without an explicit keyword will result inan error or misinterpretation. FutureWarning

<seaborn.axisgrid.JointGrid at 0x7f7005459c50>

sns.scatterplot(df.Age, df.Annual Income, color="green")

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7f7005268410>

sns.lineplot(df.Gender,df.Spending_Score)
plt.xlabel('Gender') plt.ylabel('Spending_Score')
plt.title('LinePlot')

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result inan error or misinterpretation. FutureWarning

Text(0.5, 1.0, 'LinePlot')

Multi-variate Analysis

df.hist(figsize=(10,10))

sns.pairplot(df,kind='scatter',hue='Age')

<seaborn.axisgrid.PairGrid at 0x7f700510cd90>

sns.pairplot(data=df[['Age','Annual_Income','Spending_Score']],kind='kde',diag_kind='hist') <seaborn.axisgrid.PairGrid at 0x7f7004bd3cd0>

Descriptive statistics

df.describe()

	CustomerID	Age	Annual Income	Spending Score
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

Handle missing data

df.isnull().any() #no missing data

CustomerID False
Gender False
Age False
Annual_Income False
Spending_Score False

dtype: bool

#Outliers Replacement

sns.boxplot(df.Age) #no outliers

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7f7004604090>

Check for Categorical column and perform encoding

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

```
df.Gender=le.fit transform(df.Gender)
df.head()
  CustomerID Gender Age Annual Income Spending Score
     1
0
            1 19
                                15
         2
                1 21
                                             81
1
                                15
2
         3
                0 20
                                16
                                             6
3
                                             77
         4
                0 23
                               16
         5
               0 31
                               17
                                             40
```

Perform clustering algorithm

```
from sklearn import cluster
error =[]
for i in range (1,11):
    kmeans=cluster.KMeans(n clusters=i,init='k-means+
+', random state=0)
    kmeans.fit(df)
    error.append(kmeans.inertia)
error
[975512.0600000003,
 387065.71377137717,
 271384.508782868,
 195401.19855991466,
 157157.7579059829,
 122625.19813553878,
 103233.01724386725,
 86053.67444777445,
 76938.97565600359,
 69231.33607611558]
import matplotlib.pyplot as plt
plt.plot(range(1,11),error)
plt.title('Elbow method')
plt.xlabel('no of cluster')
plt.ylabel('error')
plt.show()
```


k_means_model=cluster.KMeans(n_clusters=3,init='k-means+
+',random state=0)

k means model.fit(df)

KMeans(n clusters=3, random state=0)

clustered data =k means model.predict(df)

Add the cluster data with the primary dataset

df['Clustered_data'] = pd.Series(clustered_data)
df.head()

CustomerID	Gender	Age	Annual_Income	Spending_Score
Clustered_data				
0 1	1	19	15	39
0				
1 2	1	21	15	81
0				
2 3	0	20	16	6
0				
3 4	0	23	16	77
0				
4 5	0	31	17	40
0				

Split the data into dependent and independent variables

```
y=df['Clustered data']
                        #y - target columns
У
0
       0
1
       0
2
       0
3
       0
       0
195
       2
196
       2
197
       2
198
199
Name: Clustered data, Length: 200, dtype: int32
X=df.drop(columns=['Clustered data'], axis=1)
                                              #X - predicting columns
X.head()
   CustomerID Gender Age Annual Income Spending Score
0
       1
                       19
                    1
1
            2
                    1
                        21
                                       15
                                                       81
2
            3
                    0
                        20
                                       16
                                                        6
3
            4
                    0
                        23
                                       16
                                                       77
                    0
                        31
                                       17
                                                       40
```

Scale the independent variables

from sklearn.preprocessing import scale

data=pd.DataFrame(scale(X),columns=X.columns)
data.head()

	CustomerID	Gender	Age	Annual Income	Spending Score
0	-1.723412	1.128152	-1.424569	-1.738999	-0.434801
1	-1.706091	1.128152	-1.281035	-1.738999	1.195704
2	-1.688771	-0.886405	-1.352802	-1.700830	-1.715913
3	-1.671450	-0.886405	-1.137502	-1.700830	1.040418
4	-1.654129	-0.886405	-0.563369	-1.662660	-0.395980

Split the data into training and testing

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test=train_test_split(data, y, test_size=0.3, ra
ndom_state=1)
X_train.shape, X_test.shape
((140, 5), (60, 5))
```

```
y_train.shape,y_test.shape
((140,), (60,))
```

Build the model

```
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()

model.fit(X_train,y_train) # K - Nearest Neighbour model (KNN)
KNeighborsClassifier()
```

Train the model

Test the data

```
y test
58
        0
40
        \cap
34
        0
102
        1
        2
184
198
        2
95
        1
4
        0
29
        0
168
        2
171
        2
18
        0
        0
11
89
        1
```

```
110
       1
118
       1
159
       2
35
       0
       2
136
59
       0
51
       0
16
       0
44
       0
94
       1
       0
31
162
       2
       0
38
28
       0
       2
193
27
       0
47
       0
       2
165
194
       2
177
      2
176
       2
97
       1
       2
174
73
       1
       1
69
       2
172
108
      1
107
       1
189
       2
14
       0
56
       0
19
       0
114
       1
39
       0
       2
185
124
      1
98
       1
123
       1
119
       1
53
       0
33
       0
179
       2
      2
181
106
       1
       2
199
138
       2
Name: Clustered_data, dtype: int32
pred_test=model.predict(X_test)
pred_test
```

```
array([0, 1, 0, 1, 2, 2, 1, 0, 0, 2, 2, 0, 0, 1, 1, 1, 2, 0, 2, 1, 1,
       0, 1, 0, 2, 0, 0, 2, 0, 0, 2, 2, 2, 2, 1, 2, 1, 0, 2, 1, 1, 2,
Ο,
       0. 0, 1, 0, 2, 1, 1, 1, 1, 0, 2, 2, 1, 2, 2], dtype=int32)
pred =
pd.DataFrame({'Actual value':y test,'Predicted value using KNN':pred t
pred.head()
     Actual value Predicted value using KNN
58
40
                                           1
                0
34
                0
                                           0
102
                1
                                           1
                                           2
184
                2
```

Measure the performance using metrics

from sklearn.metrics import
accuracy_score,confusion matrix,classification report

#Accuracy Score

print('Training accuracy: ',accuracy_score(y_train,pred_train))
print('Testing accuracy: ',accuracy_score(y_test,pred_test))

#Confusion Matrix

pd.crosstab(y_test,pred_test)

col_0	0	1	2
Clustered_data			
0	19	4	0
1	1	16	0
2	0	0	20

#Classification Report

print(classification_report(y_test,pred_test))

support	f1-score	recall	precision	
23 17 20	0.88 0.86 1.00	0.83 0.94 1.00	0.95 0.80 1.00	0 1 2
60 60	0.92	0.92	0.92	accuracy macro avq

weighted avg 0.92 0.92 0.92 60