Preview

■ 영상 처리

■ 특정 목적을 달성하기 위해 원래 영상을 개선된 새로운 영상으로 변환하는 작업

- 화질 개선 자체가 목적인 경우
 - 예) 도주 차량의 번호판 식별. 병변 위치 찾기 등
- 컴퓨터 비전은 전처리로 활용하여 인식 성능을 향상

각 절에서 다루는 내용

- 모폴로지
 - 이儿 豆羹到儿 对处 豆羹到儿
- 영상 처리의 세 가지 기본 연산
 - →र्यात्यरम्, ज्ञल्लरम्, गारेम्ल्रस्
- OpenCV의 시간 효율

모폴로지

- 모폴로지
 - 원래 생물학에서 생물의 모양 변화를 표현하는 기법
 - 영상을 표현하는데 유용한 영상 구성 성분을 추출하기 위하여 사용하는 영상처리기법
 - 구조 요소(Structuring Element)를 이용하여 영상의 구성 성분을 추출.
- 이진 모폴로지, 명암 모폴로지
- 집합 이론
- 소문자 $a = (a_x, a_y)$: 특정 픽셀 대문자 A : 서로 연결된 픽셀의 집합
- 팽창_{dilation}, 침식_{erosion}, 열림_{opening}, 닫힘_{closing}
 - 팽창은 작은 홈을 메우거나 끊어진 영역을 연결하는 효과. 영역을 키움
 - 침식은 경계에 솟은 돌출 부분을 깎는 효과. 영역을 작게 만듦
 - 열림은 침식한 결과에 팽창 적용. 원래 영역 크기 유지
 - 닫힘은 팽창한 결과에 침식을 적용. 원래 영역 크기 유지

■ 집합 이론(con't)

- 포함 관계

$$a \in A$$
, $a \notin A$, $B \subset A$, $B \subseteq A$

이동(translation)

$$(A)_b = \{c \mid c = \underline{a+b}, \text{ for } a \in A\}$$

- 대칭(reflection)

$$\hat{B} = \{x \mid x = -b, \text{ for } b \in B\}$$

- 여집합(complement) $A^c = \{x \mid x \notin A\}$

- 차집합(difference) $A-B = \{x \mid x \in A, x \notin B\}$ = $A \cap B^c$

- A, B: binary images
- basic definition
 - 1) translation of A by b $(A)_b = \{c | c = a + b, \text{ for } a \in A\}$

2) reflection of B

이진 모폴로지

■ 구조 요소: 모폴로지 연산의 결과를 조절하는 커널, 어두운 픽셀이 <u>원점</u>

	0	1	1	1	0	1		0
	1	1	1	1	1	1		1
0 1 0 1 1 1	1	1	1	1	1	1		1
1 1 1 1 1 1	1	1	1	1	1	1		1
0 1 0 1 1 1	0	1	1	1	0	1	1 1 1 1 1	1

그림 2-36 몇 가지 대표적인 구조요소

■ 팽창_{dilation}, 침식_{erosion}, 열림_{opening}, 닫힘_{closing}

$$S_{x} = \{ s + x \mid s \in S \}$$

$$f$$
의 팽창: $f \oplus S = \bigcup_{x \in f} S_x$

$$f$$
의 침식: $f \ominus S = \bigcup_{x \in f} \{x \mid S_x \subset f\}$

열기:
$$f \circ S = (f \ominus S) \oplus S$$
 \ominus 침식

닫기:
$$f \cdot S = (f \oplus S) \ominus S$$
 (표) 포함

이진 모폴로지

예제 2-5 모폴로지 연산(팽창, 침식, 열기, 닫기)

[그림 2-37]은 간단한 예제 영상과 1×3 크기의 가로 방향의 구조요소를 보여준다.

مع اما,

 $S = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

(a) 원래 영상

(b) 구조요소

그림 2-37 예제 영상과 구조요소

0	0	0	0	0	0	0	0		0		
1	1	1	1	0	1	1	1		0		
1	1	1	1	0	1	1	1		0		
1	1	1	1	1	1	1	1		0		
1	1	1	1	1	1	1	1		0		
1	1	1	1	1	1	1	1		0		
0	0	0	1	1	1	1	1		0		
0	0	0	0	0	0	0	0		0		
/ \ :	/ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\										

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	1	1	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	1	1	0	0	0	0
0	1	1	1	1	1	1	0
0	0	0	0	1	1	1	0
0	0	0	0	0	0	0	0

효과를 분석 해 보자.

(a) 팽창(*f* ⊕ *S*)

(b) 침식(*f* ⊝ *S*)

(c) 열기(f ∘ S)

(d) 닫기(f · S)

그림 2-38 모폴로지 연산 적용 결과 중에 이 사실적으로 芸のたっけり

■ 이진 영상의 침식(erosion) 연산 : 객체 축소

$$A \boxminus B = \{x \mid (B)_x \subset A\}$$

■ 이진 영상의 팽창(dilation) 연산 : 객체 확대

$$A \oplus B = \{x \mid (\hat{B})_x \cap A \neq \emptyset\} = \{x \mid [(\hat{B})_x \cap A] \subseteq A\}$$

■ 다양한 구성 요소에 따른 침식 연산 결과

■ 다양한 구성 요소에 따른 팽창 연산 결과

- 이진 영상의 열기(opening) 연산
 - 침식 연산 후 팽창 연산 수행

$$A \circ B = (A \square B) \oplus B$$

- 이진 영상의 닫기(closing) 연산
 - 팽창 연산 후 침식 연산 수행

$$A \bullet B = (A \oplus B) \Box B$$

■ 이진 영상의 열기 연산 과정 및 결과

■ 이진 영상의 닫기 연산 과정 및 결과

■ 열기 연산을 이용한 잡음 제거

레이블링 수행 결과, 레이블의 개수가 186 개로 나타남(잡음의 영향)

열기 연산 수행 후 레이블 링 결과, 레이블의 개수가 96개로 나타남 (비교적 정확한 결과)

Opening and Closing

Figure 8.31 Morphological filtering: (a) original, noisy image; (b) result of erosion; (c) opening of A; (d) result of performing dilation on the opening; (e) final result showing the closing of the opening. (Adapted from Giardina and Dougherty [1988].)

```
erode()
                   dilate() 는 erode()와 동일한 매개변수
void cv::erode ( InputArray
                              SIC.
               OutputArray
                             dst.
               InputArray
                              kernel,
               Point
                              anchor = Point(-1,-1),
                              iterations = 1.
               int
                              borderType = BORDER_CONSTANT,
               int
               const Scalar & borderValue = morphologyDefaultBorderValue()
Python:
   cv.erode( src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]] ) -> dst
```

- **src** input image; the number of channels can be arbitrary, but the depth should be one of CV_8U, CV_16U, CV_16S, CV_32F` or ``CV_64F.
- dst output image of the same size and type as src.
- **element(kernel)** structuring element used for erosion; if element=Mat() , a 3 x 3 rectangular structuring element is used.
- **anchor** position of the anchor within the element; default value (-1, -1) means that the anchor is at the element center.
- iterations number of times erosion is applied.
- borderType pixel extrapolation method (see <u>borderInterpolate()</u> for details).
- borderValue border value in case of a constant border (see <u>createMorphologyFilter()</u> for details).

3.2.4 모폴로지

모폴로지 연산 적용하기 프로그램 3-4 01 import cv2 as cv 02 import numpy as np import matplotlib.pyplot as plt 03 04 img=cv.imread('JohnHancocksSignature.png',cv.IMREAD_UNCHANGED) 05 06 t,bin_img=cv.threshold(img[:,:,3],0,255,cv.THRESH_BINARY+cv.THRESH_OTSU) 07 plt.imshow(bin_img,cmap='gray'), plt.xticks([]), plt.yticks([]) 1 80 09 plt.show() matplotlib.pyplot.imshow(X, cmap=None, norm=None, *, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, interpolation_stage=None, filternorm=True, filterrad=4.0, resample=None, source url=None, data=None, **kwarqs) Display data as an image, i.e., on a 2D regular raster. The input may either be actual RGB(A) data, or 2D scalar data, which will be rendered as a pseudocolor image. For displaying a grayscale image set up the colormapping using the parameters cmap='gray', vmin=0, vmax=255. matplotlib.pyplot.xticks(ticks=None, labels=None, *, minor=False, **kwargs)

Get or set the current tick locations and labels of the x-axis.

SO

3.2.4 모폴로지

```
10
    b=bin_img[bin_img.shape[0]//2:bin_img.shape[0],0:bin_img.shape[0]//2+1]
11
12
    plt.imshow(b,cmap='gray'), plt.xticks([]), plt.yticks([]) ②
13
    plt.show()
14
15
    se=np.uint8([[0,0,1,0,0],
                                                                       # 구조 요소
16
                  [0,1,1,1,0],
17
                  [1,1,1,1,1],
18
                  [0,1,1,1,0],
19
                  [0,0,1,0,0]]
20
21
    b_dilation=cv.dilate(b,se,iterations=1)
                                                                       # 팽창
22
    plt.imshow(b_dilation,cmap='gray'), plt.xticks([]), plt.yticks([]) 3
    plt.show()
23
24
25
    b_erosion=cv.erode(b,se,iterations=1)
                                                                       # 침식
26
    plt.imshow(b_erosion,cmap='gray'), plt.xticks([]), plt.yticks([]) 4
27
    plt.show()
28
29
    b_closing=cv.erode(cv.dilate(b,se,iterations=1),se,iterations=1) # 닫기
    plt.imshow(b_closing,cmap='gray'), plt.xticks([]), plt.yticks([]) (5)
30
    plt.show()
31
```

3.2.4 모폴로지

영상 처리의 세 가지 기본 연산

점 연신

■ 오직 자신의 명암 값에 따라 새로운 값을 결정

영역 연산

■ 이웃 화소의 명암 값에 따라 새로운 값 결정

기하 연산

■ 일정한 기하 규칙으로 결정된 화소(다른 픽셀)의 명암 값에 따라 새로운 값 결정

점 연산

- 점 연산을 식으로 쓰면,
 - 대부분은 *k*=1 (즉 한 장의 <u>영상을 변환)</u>

$$f_{out}(j,i) = t(f_1(j,i), f_2(j,i), \dots f_k(j,i))$$

(2.10)

- 선형 연산
 - 예)

$$f_{out}(j,i) = t(f(j,i))$$
 255
$$= \begin{cases} \min(f(j,i) + a, L - 1), & (밝게) \\ \max(f(j,i) - a, 0), & (어둡게) \\ (L - 1) - f(j,i), & (반전) \end{cases}$$

(a) 원래 명상

(c) 어巨게(a=32)

(b) 對7Ka=32)

그램 2-18 여러 가지 선형 점 연산

점 연산

■ 비선형 연산

- 예) 감마 수정 (모니터나 프린터 색상 조절에 사용): 모니터는 실제 밝기 보다 어둡게 표현
- 이를 바로 잡아주는 것이 감마 수정임; γ = 1/2.5

$$f_{out}(j,i) = (L-1) \times (\hat{f}(j,i))^{T} \qquad \text{old} \quad \hat{f}(j,i) = \frac{f(j,i)}{(L-1)}$$

점 연산

- 장면 디졸브: 영상 f_1 이 영상 f_2 로 서서히 전환 됨
 - *k*=2인 경우 α=1.0 에서 0.2씩 감소

$$f_{out}(j,i) = \alpha f_1(j,i) + (1-\alpha) f_2(j,i)$$
 (2.13)

그림 2-21 디졸브효과

3.3.1 명암 조절

■ 프로그래밍 실습: 감마 보정

```
프로그램 3-5
              감마 보정 실험하기
    import cv2 as cv
01
                           numpy.float64 형
    import numpy as np
02
03
    img=cv.imread('soccer.jpg')/ numpy.uint8 형으로 변환
04
    img=cv.resize(img,dsize=(0,0),fx=0.25,fy=0.25)
05
06
07
    def gamma(f,gamma=1)
08
       f1=f/255.0
                                         # L=256이라고 가정
       return np.uint8(255*(f1**gamma))
09
10
11
    gc=np.hstack((gamma(img,0.5),gamma(img,0.75),gamma(img,1.0),gamma(img,2.0),gamma
             ((img,3.0)))
    cv.imshow('gamma',gc)
12
                         numpy.hstack 함수로 이어붙이기
13
    cv.waitKey()
14
15
    cv.destroyAllWindows()
```


- 히스토그램 평활화_{histogram equalization}
 - 히스토그램이 평평하게 되도록 영상을 조작해 영상의 명암 대비를 높이는 기법

$$l' = \text{round} \left(\ddot{h}(l) \times (L-1) \right)$$

누적 정규화 히스토그램 사용

■ [예시 3-4] ([그림 3-9]를 재활용)

				_			
1	2	2	2	1	1	2	0
2	6	7	6	6	4	3	0
2	6	7	6	6	4	3	2
2	5	6	6	6	4	3	2
2	5	6	6	5	5	3	2
2	5	5	5	3	3	3	2
2	2	3	3	3	1	1	1
2	2	1	1	1	1	1	1

(a) 입력 영상

(b) 히스토그램

[그림 3-9]

1	h	h	ĥ	$\ddot{h} \times 7$	1'
0	2	0.03125	0.03125	0.21875	0
1	12	0.1875	0.21875	1,53125	2
2	17	0,265625	0.484375	3,390625	3
3	10	0.15625	0.640625	4.484375	4
4	3	0.046875	0.6875	4.8125	5
5	7	0.109375	0.796875	5.578125	6
6	11	0.171875	0.96875	6.78125	7
7	2	0.03125	1.0	7.0	7

2	3	3	3	2	2	3	0
3	7	7	7	7	5	4	0
3	7	7	7	7	5	4	3
3	6	7	7	7	5	4	3
3	6	7	7	6	6	4	3
3	6	6	6	4	4	4	3
3	3	4	4	4	2	2	2
3	3	2	2	2	2	2	2

그림 3-15 히스토그램 평활화된 영상

히스토그램 평활화하기 프로그램 3-6 import cv2 as cv 01 02 import matplotlib.pyplot as plt 03 img=cv.imread('mistyroad.jpg') 04 05 06 gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY) # 명암 영상으로 변환하고 출력 plt.imshow(gray,cmap='gray'), plt.xticks([]), plt.yticks([]), plt.show() 07 08 h=cv.calcHist([gray],[0],None,[256],[0,256]) # 히스토그램을 구해 출력 09 plt.plot(h,color='r',linewidth=1), plt.show() 10 11 equal=cv.equalizeHist(gray) 12 # 히스토그램을 평활화하고 출력 plt.imshow(equal,cmap='gray'), plt.xticks([]), plt.yticks([]), plt.show() 13 14 15 h=cv.calcHist([equal],[0],None,[256],[0,256]) # 히스토그램을 구해 출력 plt.plot(h,color='r',linewidth=1), plt.show() 16

cv.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]]) -> hist

아래는 calcHist의 파라미터 입니다. 배열 이라고 표시한 부분은 반드시 리스트로 입력해야 합니다.

- images : 히스토그램을 계산할 영상의 배열 입니다. 영상은 같은 사이트, 깊이의 8bit unsigned 정수 또는 32bit 실수 형 입니다.
- channels : 히스토그램을 계산할 channel의 [배열]. (배열 형태로 입력 필요함), RGB면 channels이 3개입니다.
- mask : images[i]와 같은 크기의 8bit 이미지로, mask(x, y)가 0이 아닌 경우에만 image[i](x,y)을 히스토그램 계산에 사용합니다.
 - mask = None이면 마스크를 사용하지 않고, 모든 화소에서 히스토그램을 계산합니다.
- histSize : 히스토그램 hist (return 값)의 각 빈(bin) 크기에 대한 정수 [배열] 입니다.
- ranges : 히스토그램 각 빈의 경계값에 대한 배열 입니다. opencv는 기본적으로 등간격 히스토그램을 제공합니다.
- accumulate : True 이면 calcHist() 함수를 수행할 때, 히스토그램을 초기화 하지 않고, 이전 값을 계속 누적합니다.
- hist : 히스토그램 리턴값

■ 상관

- 원시적인 매칭 연산 (물체를 윈도우 형태로 표현하고 물체를 검출)<mark>: f 에서 u를 검출</mark>
- 아래 예에서는 최대값 29를 갖는 위치 6에서 물체가 검출됨

■ 컨볼루션

- 윈도우를 원점에 대해 대칭 이동 후 상관 적용
- 임펄스 반응 함수

- 2차원 영상
 - 단위 임펄스인 경우

입력 영상 f=

-1 0 1

5

8

6 0

출력 영상 g=

윈도우 *u* =

1	2	3
4	5	6
7	8	9

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	9	8	7	0	0	0	0
0	6	5	4	0	0	0	0
0	3	2	1	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

9	8	7
6	5	4
3	2	1

			•				
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	1	2	3	0	0	0	0
0	4	5	6	0	0	0	0
0	7	8	9	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

상관

컨볼루션

■ 수식으로 쓰면,

- 이 책은 둘 구분하지 않고 상관을 사용하는데 모두 컨볼루션이라는 용어 를 사용
- 윈도우는 마스크, 커널, 템플릿, 필터라고도 불림.

- 컨볼루션 예제
 - 오른쪽 박스와 가우시안은 스무딩 효과
 - 샤프닝은 명암 대비 강조 효과
 - 수평 에지와 수직 에지는 에지 검출 효과
 - 모션은 45도 방향의 모션 효과
- 컨볼루션은 선형 연산

-	
1	
0	Г
-1	
	0 -1

(a) 원래 영상과 여러 가지 마스크들

수평 에지

111.15							
.0000	.0000	.0002	.0000	.0000			
.0000	.0113	.0837	.0113	.0000			
.0002	.0837	.6187	.0837	.0002			
.0000	.0113	.0837	.0113	.0000			
.0000	.0000	.0002	.0000	.0000			

가오시아

	샤프닝	
0	-1	0
-1	5	-1
0	-1	0

		7.5					
		.0304	.0501	0	0	0	
직 에	지	.0501	.1771	.0519	0	0	
0	-1	0	.0519	.1771	.0519	0	
0	-1	0	0	.0519	.1771	.0501	
0	-1	0	0	0	.0501	.0304	
	-		71				

> 수평 에지

> 수직 에지

> 가우시안

> 모션

(b) 다양한 마스크로 컨볼루션한 영상들

- 비선형 연산
 - 예) 메디안 필터
 - 솔트페퍼 잡음에 효과적임
 - 메디안은 가우시 안에 비해 에지 보 존 효과 뛰어남

(a) 원래 영상

(b) 솔트페퍼 잡음

(c) 가우시안 필터

(d) 메디안 필터

그림 2-25 가우시안과 메디안 필터의 비교

3.4.2 다양한 필터

■ 가우시안 필터

1차원 가우시안:
$$g(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$
2차원 가우시안: $g(y,x) = \frac{1}{\sigma^2 2\pi}e^{-\frac{y^2+x^2}{2\sigma^2}}$ (3.9)

그림 3-18 1차원과 2차원 가우시안 함수

- **src** input image; the image can have any number of channels, which are processed independently, but the depth should be CV_8U, CV_16U, CV 16S, CV 32F or CV 64F.
- dst output image of the same size and type as src.
- ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be positive and odd. Or, they can be zero's and then they are computed from sigma*.
- **sigmaX** Gaussian kernel standard deviation in X direction.
- sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height, respectively (see getGaussianKernel()) for details); to fully control the result regardless of possible future modifications of all this semantics, it is recommended to specify all of ksize, sigmaX, and sigmaY.

데이터 형과 컨볼루션

■ 연산 결과를 저장하는 변수의 유효 값 범위

- OpenCV는 주의를 기울여 작성되어 있음
- 때로 프로그래머가 직접 신경 써야 하는 경우 있음. 예) filter2D 함수

■ 데이터 형

■ Opencv는 영상 화소를 주로 numpy.uint8 형으로 표현 ([0,255] 범위)

■ [0,255] 범위를 벗어나는 경우 문제 발생

```
In [2]: a=np.array([-3,-2,-1,0,1,254,255,256,257,258],dtype=np.uint8)
In [3]: print(a)
       [253 254 255 0 1 254 255 0 1 2]
```

■ 예) 엠보싱의 경우 [-255~255] 발생하는데 어떻게 해결하나?

3.4.3 데이터 형과 컨볼루션

프로그램 3-7 컨볼루션 적용(가우시안 스무딩과 엠보싱)하기 import cv2 as cv 01 import numpy as np 02 03 img=cv.imread('soccer.jpg') 04 img=cv.resize(img,dsize=(0,0),fx=0.4,fy=0.4)05 gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY) 06 cv.putText(gray,'soccer',(10,20),cv.FONT_HERSHEY_SIMPLEX,0.7,(255,255,255),2) 07 cv.imshow('Original',gray) ① 09 smooth=np.hstack((cv.GaussianBlur(gray,(5,5),0.0),cv. 10 GaussianBlur(gray, (9,9),0.0), cv. GaussianBlur(gray, (15,15),0.0))) cv.imshow('Smooth',smooth) @ 11 12 13 femboss=np.array([[-1.0, 0.0, 0.0],14 [0.0, 0.0, 0.0],15 [0.0, 0.0, 1.0]16 17 gray16<u>=np.int16(gray)</u> emboss=np.uint8(np.clip(cv.filter2D(gray16,-1,femboss)+128,0,255)) 18 emboss_bad=np.uint8(cv.filter2D(gray16,-1,femboss)+128) 19 20 emboss_worse=cv.filter2D(gray,-1,femboss) 21 cv.imshow('Emboss',emboss) 3 22 cv.imshow('Emboss_bad',emboss_bad) @ 23 24 cv.imshow('Emboss_worse',emboss_worse) 5 25 cv.waitKey() 26 cv.destroyAllWindows()

numpy.clip(array, min, max)

array 내의 element들에 대해서 min 값 보다 작은 값들을 min값으로 바꿔주고 max 값 보다 큰 값들을 max값으로 바꿔주는 함수.

3.4.3 데이터 형과 컨볼루션

엠보싱(embossing)

- 엠보싱 (embossing) 은 <u>직물</u>, <u>종이</u>, <u>금속</u> 등의 표면에 돋을새김으로 무늬를
 찍어내는 가공 방법
- 입력영상에서 픽셀 값 변화가 적은 평탄한 영역은 회색으로 설정하고 객체의
 경계 부분은 좀 더 밝거나 어둡게 설정

dst = cv2.filter2D(src, ddepth, kernel, dst, anchor, delta, borderType)

src: 입력 영상, Numpy 배열

ddepth: 출력 영상의 dtype (-1: 입력 영상과 동일)

kernel: 컨볼루션 커널, float32의 n x n 크기 배열

dst(optional): 결과 영상

anchor(optional): 커널의 기준점, default: 중심점 (-1, -1)

delta(optional): 필터가 적용된 결과에 추가할 값 borderType(optional): 외곽 픽셀 보정 방법 지정

3.5 기하 연산

- 영상 처리 연산: 화소에 새로운 값을 결정하는 과정
- 기하 연산
 - 기하학적 변환에 따라 정해진 위치의 화소에서 값을 가져옴
 - 주로 물체의 이동, 크기, 회전에 따른 기하 변환

■ <u>동차 좌표</u>homogeneous coordinate(전위 곱셈)

- (x, y)과 같은 2차원 좌표에 1을 추가해 (x, y, 1)과 같이 3차원 벡터로 표현
- 3개 요소에 같은 값을 곱하면 같은 좌표. 예) (-2,4,1), (-4,8,2) 과 (-0.2, 0.4, 0.1)은 (-2,4)에 해당(모두 같은 좌표임)

$$\overline{p} = (x, y, 1) \tag{3.10}$$

■ 여러 가지 기하 변환

그림 3-19 여러 가지 기하 변환

■ 기하 변환을 동차 행렬_{homogeneous matrix}로 표현(전위 곱셈)

■ [표 3-1] 변환은 모두 어파인 변환_{affine transform}: 평행을 평행으로 유지

표 3-1 3가지 기하 변환

기하 변환	동차 행렬	설명
이동	$T(t_x, t_y) = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix}$	x 방향으로 t_x , y 방향으로 t_y 만큼 이동
회전	$R(\theta) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$	원점을 중심으로 반시계 방향으로 <i>0</i> 만큼 회전
ヨ기	$\mathbf{S}(s_{x}, s_{y}) = \begin{pmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{pmatrix}$	x 방향으로 s_x y 방향으로 s_x 만큼 크기 조정(1보다 크면 확대, 1보다 작으면 축소)

■ [예시 3-5] 동차 행렬을 이용한 기하 변환

■ 정사각형을 x 방향으로 2, y 방향으로 -1만큼 이동한 다음 반시계 방향으로 30도

회전

■ 변환을 위한 동차 행렬(전위 곱셈)

$$T(2,-1) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}, R(30^{\circ}) = \begin{pmatrix} 0.8660 & 0.5000 & 0 \\ -0.5000 & 0.8660 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

■ 이동 적용

$$\overline{p}_{1}^{'T} = T(2,-1)\overline{p}_{1}^{T} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

■ 회전 적용

$$\overline{p}_{1}^{"T} = R(30^{\circ}) \overline{p}_{1}^{T} = \begin{pmatrix} 0.8660 & 0.5000 & 0 \\ -0.5000 & 0.8660 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3.598 \\ 0.232 \\ 1 \end{pmatrix}$$

- 동차 행렬을 이용하면 계산이 효율적임(전위 곱셈)
 - 복합 변환을 위한 행렬을 미리 곱해 놓으면, 모든 점에 대해 한번의 행렬 곱셈으로 기하 변환 가능(행렬 곱셈은 결합 법칙 성립)

$$\mathbf{A} = R(30^{\circ})T(2,-1) = \begin{pmatrix} 0.8660 & 0.5000 & 0 \\ -0.5000 & 0.8660 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0.8660 & 0.5000 & 1.232 \\ -0.5000 & 0.8660 & -1.866 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{A}\overline{p}_{1}^{\mathrm{T}} = \begin{pmatrix} 0.8660 & 0.5000 & 1.232 \\ -0.5000 & 0.8660 & -1.866 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3.598 \\ 0.232 \\ 1 \end{pmatrix}$$

- 임의의 점 (c_x, c_y) 를 중심으로 회전
 - $T(c_x, c_y) R(\theta) T(-c_x, -c_y)$

3.5.2 영상의 기하 변환

- 기하 연산을 영상에 적용
 - 전방 변환은 값을 받지 못하는 화소가 생기는 에일리어싱aliasing 현상
 - 후방 변환을 이용한 안티 에일리어싱

3.5.3 영상 보간

- 보간에 의한 안티 에일리어싱
 - 실수 좌표를 반올림(최근<u>접 이웃)하여</u> 정수로 변환하는 <u>과정에서 에일리어싱 발생</u>
 - 주위 화소 값을 이용한 보간으로 안티 에일리어싱
 - <u>양선형 보간법</u>: 걸치는 비율에 따라 선형 곱을 함으로써 안티 에일리어싱 //// ¼

그림 3-22 실수 좌표의 화솟값을 보간하는 과정

$$f(j',i') \neq \alpha \beta f(j,i) + (1-\alpha)\beta f(j,i+1) + \alpha (1-\beta) f(j+1,i) + (1-\alpha)(1-\beta) f(j+1,i+1)$$

$$+(1-\alpha)(1-\beta) f(j+1,i+1)$$

$$(3.11)$$

$$f(x) = \begin{cases} (a+2)|x|^3 - (a+3)|x|^2 + 1 & 0 \le |x| < 1 \\ a|x|^3 - 5a|x|^2 + 8a|x| - 4a & 1 \le |x| < 2 \\ 0 & 2 \le |x| \end{cases}$$

 $a = -1.0 \le a \le -0.5$!

3.5.3 영상 보간

프로그램 3-8

보간을 이용해 영상의 기하 변환하기

```
01
    import cv2 as cv
02
    img=cv.imread('rose.png')
03
04
    patch=img[250:350,170:270,:]
05
06
    img=cv.rectangle(img,(170,250),(270,350),(255,0,0),3)
    patch1=cv.resize(patch,dsize=(0,0),fx=5,fy=5,interpolation=cv.INTER_NEAREST)
07
    patch2=cv.resize(patch,dsize=(0,0),fx=5,fy=5,interpolation=cv.INTER_LINEAR)(2)
80
    patch3=cv.resize(patch,dsize=(0,0),fx=5,fy=5,interpolation=cv.INTER_CUBIC)
09
              371 475L
10
    cv.imshow('Original',img)
11
    cv.imshow('Resize nearest',patch1)
12
    cv.imshow('Resize bilinear',patch2)
13
                                                   양 3 차 보간법
14
    cv.imshow('Resize bicubic',patch3)
15
    cv.waitKey()
16
17
    cv.destroyAllWindows()
```

3.5.3 영상 보간

기하 연산

■ 최근접 이웃, 양선형 보간, 양 3차 보간의 비교

(a) 원래 영상과 조각 영상

> 최근접 이웃

> 양선형 보간

> 양 3차 보간

(b) 10° 회전한 영상

3.6 OpenCV의 시간 효율

- 컴퓨터 비전은 인식 정확률 뿐 아니라 시간 효율도 중요
 - 특히 실시간 처리가 요구되는 응용

- OpenCV는 효율적으로 구현되었기 때문에 OpenCV 함수를 사용하는 것이 유리
 - C/C++로 구현하고 인텔 마이크로프로세서에 최적화

■ 직접 구현하는 경우 파이썬의 배열 연산 사용하는 것이 유리

3.6 OpenCV의 시간 효율

프로그램 3-9

직접 작성한 함수와 OpenCV가 제공하는 함수의 시간 비교하기

```
01
    import cv2 as cv
02
    import numpy as np
    import time
03
04
05
    def my_cvtGray1(bgr_img):
        g=np.zeros([bgr_img.shape[0],bgr_img.shape[1]])
06
        for r in range(bgr_img.shape[0]):
07
           for c in range(bgr_img.shape[1]):
08
               g[r,c]=0.114*bgr_img[r,c,0]+0.587*bgr_img[r,c,1]+0.299*bgr_img[r,c,2]
09
        return np.uint8(g)
10
11
    def my_cvtGray2(bgr_img):
12
        g=np.zeros([bgr_img.shape[0],bgr_img.shape[1]])
13
        g=0.114*bgr_img[:,:,0]+0.587*bgr_img[:,:,1]+0.299*bgr_img[:,:,2]
14
        return np.uint8(g)
15
16
```

3.6 OpenCV의 시간 효율

```
img=cv.imread('girl_laughing.png')
17
18
    start=time.time()
19
    my_cvtGray1(img)
20
21
    print('My time1:',time.time()-start) ①
22
23
    start=time.time()
    my_cvtGray2(img)
24
25
    print('My time2:',time.time()-start) ②
26
27
    start=time.time()
    cv.cvtColor(img,cv.COLOR_BGR2GRAY)
28
    print('OpenCV time:',time.time()-start) 3
```

```
My time1: 4.798288106918335 ①
My time2: 0.015836000442504883 ②
OpenCV time: 0.013601541519165039 ③
```