TASK 1 - Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the (A) absoloute humidity,(B) the wet-bulb temperature and (C) the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Note: I supposed that the dimensions of the AULA A

The weather today in Piacenza Monday, 02 December 2019												
	1:00 pm	14:00	4:00 pm	18:00	8:00 pm	21:00	22:00					
	*	*	×k.	×	34K	63	*					
	PartlyCloud	PartlyCloud	LightCloud	LightCloud	PartlyCloud	Cloud	PartlyCloud					
Effective temperature	10 ° C	10 ° C	_9 ° C	6°C	7 ° C	7°C	8 ° C					
Perceived temperature	10 ° C	10 ° C	8 ° C	5°C	7 ° C	6 ° C	7 ° C					
Rainfall	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm					
Humidity	79 %	77 %	89 %	90 %	90 %	92 %	91 %					
Atmospheric pressure	1016 hPa	1015 hPa	1016 hPa	1017 hPa	1019 hPa	1019 hPa	1020 hPa					
Wind intensity	8 km / h	6 km / h	6 km / h	6 km / h	3 km / h	6 km / h	5 km / h					
Wind direction	\	\rightarrow	ζ,	↦	Ţ	>	←¬					
	NO	OR	NO	OR	S	SELF	IS					
Probability of fog	0 %	0 %	0 %	0 %	0 %	0 %	0 %					
Dew point	6 ° C	6 ° C	7°C	5°C	5 ° C	6 ° C	6 ° C					
Clouds	65 %	55 %	16 %	24 %	86 %	100 %	76 %					
Low clouds	4 %	0 %	15 %	7 %	38 %	100 %	49 %					
Medium clouds	34 %	54 %	2 %	23 %	84 %	85 %	70 %					
High clouds	55 %	7 %	0 %	0 %	0 %	0 %	0 %					

According to table; ROOM: 20 x 5 x 5 mt

EFFECTIVE TEMPRATURE : 9 $^{\circ}\text{C}$

HUMIDITY: 89 %

ATMOSPHERIC PRESSURE: 1016 hPa

According to Psychrometric Chart;

(A); ABSOLUTE HUMIDITY: 0,006 gm water/gm dry air

(B); WET-BULB TEMPERATURE: 7°C

(C) THE MASS OF WATER VAPOUR;

$$\phi = \frac{m_v}{m_g} \ = \frac{P_v}{P_g} \ - \rightarrow P_g = P_{sat} 7 \ ^{\circ}C \ = 1,016 \ kPa$$

$$\phi = \frac{P_v}{P_g} \Rightarrow P_V = \phi \times P_g = 0.89*1,016=0.90\;kPa$$

Mass of water vapour $M_V = P_V \times V_{room} / R_v \times T$

= 0,90 x (20x5x5) / 0,4615 x (273+7)

= 450 / 129,22

= 3.48 kg of water vapour (C)

TASK 2 - Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to (A)internal gains, (B)the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy.

Building height: 2,5 mt Floor area: 200 m² Wall area: 144 m² 2 occupants 1 bedroom Good construction quality Located in Brindisi, Italy

(A) Internal Gains:

$$q_{ig,s} = 136 + 2.2A_{cf} + 22N_{oc}$$

$$q_{ig,l} = 20 + 0.22A_{cf} + 12N_{oc}$$

where

 $q_{ig,s}$ = sensible cooling load from internal gains, W $q_{ig,l}$ = latent cooling load from internal gains, W A_{cf} = conditioned floor area of building, m²

 N_{oc} = number of occupants (unknown, estimate as $N_{br} + 1$)

$$q_{ig,sensible}$$
 = 136 + 2,2 x 200 + 22 x 2 = 620 W $q_{ig,latent}$ = 20 + 0,22 x 200 + 12 x 2 = 88 W

(B) Ventilation and Infiltration:

$$A_L = A_{es}A_{ul}$$

where

 A_{es} = building exposed surface area, m² A_{ul} = unit leakage area, cm²/m² (from Table 3)

Table 3 Unit Leakage Areas

Construction	Description	A_{ul} , cm ² /m ²
Tight	Construction supervised by air-sealing specialist	0.7
Good	Carefully sealed construction by knowledgeable builder	1.4
Average	Typical current production housing	2.8
Leaky	Typical pre-1970 houses	5.6
Very leaky	Old houses in original condition	10.4

Situation	Include	Exclude
Ceiling/roof combination (e.g., cathedral ceiling without attic)	Gross surface area	
Ceiling or wall adjacent to attic	Ceiling or wall area	Roof area
Wall exposed to ambient	Gross wall area (including fenestra- tion area)	
Wall adjacent to unconditioned buffer space (e.g., garage or porch)	Common wall area	Exterior wall area
Floor over open or vented crawlspace	Floor area	Crawlspace wall area
Floor over sealed crawlspace	Crawlspace wall area	Floor area
Floor over conditioned or semiconditioned basement	Above-grade basement wall area	Floor area
Slab floor		Slab area

$$A_L = A_{es} \times A_{ul}$$

 $A_{es} = A_{wall} + A_{roof}$
= 144 + 200 = 344 m²

 $A_L = 344 \text{ m}^2 \text{ x 1,4 cm}^2/\text{m}^2 = 481,6 \text{ cm}^2$

$$Q_i = A_L IDF$$

where

Coldest Month

 A_L = building effective leakage area (including flue) at reference pressure difference = 4 Pa, assuming discharge coefficient C_D = 1, cm²

IDF = infiltration driving force, L/(s·cm²)

Н.			ting Departu				Cooling Tempera	Design ture, °C	;	
m		-30	-20	-10	0	10	30	35	40	
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040	
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043	
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049	IDF $_{\text{heating}}$ = 0,065 L / s. c
5	0.16	0.14	0.12	0.10	0.086	0,069	0.036	0.046	0.055	
6	0.18	0.16	0.14	0.17	0.093	0.072	0.039	0.050	0.061	IDF $_{cooling} = 0.042 L/s.c$
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068	, ,
8	0.22	0.19	0.16	0.14	0.1/1	0.079	0.043	0.058	0.074	
				,		BRINI	DISI, Italy	,		WMO#: 163200

	4 - 7		4 - 7	4 - 7	7	4 - 3	107	4 ,		127	6 5	4 - 3	,	4 ,	4 - 7		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	ooling, Deh	umidificatio	on, and Enth	alpy Desig	n Condition	•										
	Hottest Hottest					DB/MCWB					Evaporation	MCWS					
	Month 0.4%			1	1%	2	1%	0.4	4%	1	1%	2	%	to 0.4	% DB		
	Month	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(0)	(P)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
				Dehumidifi	cation DP/M	CDB and HF	₹					Enthalp	y/MCDB			Hours	
	0.4%					1% 2%				0.4%			1% 2			8 to 4 &	
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(0)	(P)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme A	Annual Desi	gn Conditi	ons													

	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(P)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme A	nnual Desi	ign Conditi	ons													l .
	Extreme Annual WS Extreme				Extreme Annual DB					n-Year Return Period Values of Extreme DB]
	Extreme Arridal WS		Max	Mean St			Standard deviation		n=5 years		n=10 years		n=20 years		years		
	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(0)	(p)	

-0.6

39.4

-1.4

41.1

-3.2

44.9

42.8

$$\dot{V}_{infiltration_{heating}} = A_L \times IDF$$

$$= 481.6 \times 0.065 = 31.304 \text{ L/s}$$

37.3

$$\dot{V}_{infiltration_{cooling}} = A_L \times IDF$$

$$= 481,6 \times 0,042 = 20,227 \text{ L/s}$$

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1)$$

where

11.3

8.7

31.4

 Q_v = required ventilation flow rate, L/s A_{cf} = building conditioned floor area, m² N_{br} = number of bedrooms (not less than 1)

$$\dot{V}_{ventilation} = 0.05A_{cf} + 3.5 (N_{br} + 1)$$

= 0.05 x 200 + 3.5 x (1+1) = 17 L/s

$$\dot{V}_{inf-ventilation_{heating}} = \dot{V}_{infiltration_{heating}} + \dot{V}_{ventilation}$$

$$= 31,304 + 17 = 48,304 \text{ L/s}$$

$$\dot{V}_{inf-ventilation_{cooling}} = \dot{V}_{infiltration_{cooling}} + \dot{V}_{ventilation}$$

$$= 20,227 + 17 = 37,227 \text{ L/s}$$