## **ANNA UNIVERSITY: CHENNAI 600025**



## **BONAFIDE CERTIFICATE**

Certified that this project report "BCX MODEL FOR CROSS-SITE REQUEST FORGERY" is the bonafide work of "R.HARINI (312415104033) and C. M. KANIMOZHI (312415104042)", who carried out the project work under my supervision.

### **SIGNATURE**

Dr. J. DAFNI ROSE M.E, Ph.D.,

Professor,

Head of the Department,

**Computer Science and Engineering,** 

St. Joseph's Institute of Technology,

Old Mamallapuram road,

Chennai - 600 119.

### **SIGNATURE**

Mr. K. S. ARIKUMAR M.E, (Ph.D.),

**Assistant Professor**,

Computer Science and Engineering,

St. Joseph's Institute of Technology,

Old Mamallapuram road,

Chennai - 600 119.

#### **ACKNOWLEDGEMENT**

We take this opportunity to thank our honourable Chairman **Dr. B. Babu Manoharan, M.A., M.B.A., Ph.D.** for the guidance he offered during our tenure in this institution.

We extend our heart felt gratitude to our honourable Managing Director Mrs. B. Jessie Priya, M.Com. and Director Mr. B. Sashisekar, M.Sc. (INTL Business) for providing us with the required resources to carry out this project.

We are indebted to our Principal **Dr. P. Ravichandran, M.Tech., Ph.D.** for granting us permission to undertake this project.

We would like to express our earnest gratitude to our Head of the Department **Dr. J. Dafni Rose, M.E., Ph.D.** for her commendable support and encouragement for the completion of the project with perfection.

We also take this opportunity to express our profound gratitude to our guide Mr. K. S. Arikumar, M.E., (Ph.D.), Assistant professor for his guidance, constant encouragement, immense help and valuable advice for the completion of this project.

We wish to convey our sincere thanks to all the teaching and non-teaching staff of the department of **Computer Science and Engineering**, **St. Joseph's Institute of Technology** without whose co-operation this venture would not have been a success.

## **CERTIFICATE OF EVALUATION**

College Name : St. JOSEPH'S INSTITUTE OF TECHNOLOGY

Branch : COMPUTER SCIENCE AND ENGINEERING

Semester : VIII

| Name of the Students | Title of the project                          | Name of the Supervisor with designation   |
|----------------------|-----------------------------------------------|-------------------------------------------|
| R. Harini            | BCX Model for                                 | Mr. K. S. Arikumar M.E, (Ph.D.)           |
| (312415104033)       | Cross-Site Request                            | Assistant Professor,                      |
| C. M. Kanimozhi      | Forgery.                                      | CSE Department,                           |
| (312415104042)       |                                               | St. Joseph's Institute of                 |
|                      |                                               | Technology.                               |
|                      |                                               |                                           |
|                      |                                               |                                           |
| 3                    | 2. Harini<br>312415104033)<br>2. M. Kanimozhi | BCX Model for Cross-Site Request Forgery. |

The report of the project work submitted by the above students in partial fulfilment for the award of Bachelor of Engineering Degree in **Computer Science and Engineering** of Anna University were evaluated and confirmed to be report of the work done by above students.

| Submitted for  | nroiect r | eview and | viva voce e | exam held on    |  |
|----------------|-----------|-----------|-------------|-----------------|--|
| Dublintica for | projectr  | cview and | 1114 1000 C | Maili licia oli |  |

(INTERNAL EXAMINER)

(EXTERNAL EXAMINER)

#### **ABSTRACT**

Cross-Site Request Forgery is a widely exploited Website vulnerability. The CSRF is a major security threat to the Online Transaction, in which the user is forced to enter into some malicious websites and reveal their login credentials, or the attacker enter into the user's authenticated session, without the user's knowledge. The existing approaches to prevent CSRF such as OTP, Tokens and removal of the Same-site cookies from the web application doesn't yield the expected security to the applications. Hence, this proposal uses the Mathematical Binary Conversion, Combination and X-OR (BCX) Model to remove CSRF attacks. In order to confirm that the user who makes the login and the Money transaction is one and the same and to prove that there is no Attacker intervention into the logged on session, the MAC address off the system is taken and subjected to the BCX Algorithm and the hash value of the MAC is saved on login and verified on making a transaction. Moreover, the Anti-Forgery Token(AFT) is produced from the combination of the IP Address and the password of the user and it is also subjected to the BCX Algorithm. The AFT is generated and saved during Login and verified on making a transaction. Thus, by using the BCX model, the security threats to the end user of the various applications is reduced and the Cross Site Request Forgery attacks on the web pages during the transaction is avoided.

# TABLE OF CONTENTS

| CHAPTER NO. | ,    | TITLE                             | PAGE NO. |  |
|-------------|------|-----------------------------------|----------|--|
|             | ABS  | ABSTRACT                          |          |  |
|             | LIS' | T OF FIGURES                      | ix       |  |
|             | LIS' | T OF TABLES                       | хi       |  |
|             | LIS' | T OF ABBREVIATIONS                | xii      |  |
| 1.          | INT  | RODUCTION                         | 1        |  |
|             | 1.1  | Overview                          | 1        |  |
|             | 1.2  | Problem Statement                 | 3        |  |
|             | 1.3  | Existing system                   | 5        |  |
|             |      | 1.3.1 Secured Connection          | 5        |  |
|             |      | 1.3.2 Https POST Method           | 5        |  |
|             |      | 1.3.3 Same-Site Cookies           | 5        |  |
|             |      | 1.3.4 Token Authentication and    |          |  |
|             |      | Captcha                           | 6        |  |
|             |      | 1.3.5 Avoiding Transition between |          |  |
|             |      | Web pages                         | 6        |  |
|             |      | 1.3.6 Time-Out and                |          |  |
|             |      | Re-Authentication                 | 6        |  |
|             | 1.4  | Proposed System                   | 7        |  |
|             |      | 1.4.1 Login Validation            | 7        |  |
|             |      | 1.4.2 BCX Hash Algorithm for      |          |  |
|             |      | Mac Address                       | 8        |  |
|             |      | 1.4.3 BCX Hash Algorithm for      |          |  |
|             |      | Anti-Forgery Token Generatio      | n 9      |  |
|             |      | 1.4.4 Transaction Validation      | 9        |  |

| 2. | LITERATU    | RE REVIEW               | 11 |
|----|-------------|-------------------------|----|
| 3. | SYSTEM DI   | ESIGN                   | 19 |
|    | 3.1 Unified | modelling language      | 19 |
|    | 3.1.1 Us    | se case diagram of      |    |
|    | ВС          | CX model for Cross-Site |    |
|    | Re          | equest Forgery          | 19 |
|    | 3.1.2 CI    | ass diagram of          |    |
|    | ВС          | CX model for Cross-Site |    |
|    | Re          | equest Forgery          | 21 |
|    | 3.1.3 Se    | quence diagram of       |    |
|    | ВС          | CX model for Cross-Site |    |
|    | Re          | equest Forgery          | 22 |
|    | 3.1.4 Ac    | ctivity diagram of      |    |
|    | ВС          | CX model for Cross-Site |    |
|    | Re          | equest Forgery          | 23 |
|    | 3.1.5 Co    | ollaboration diagram of |    |
|    | ВС          | CX model for Cross-Site |    |
|    | Re          | equest Forgery          | 24 |
|    | 3.1.6 Co    | omponent diagram of     |    |
|    | ВС          | CX model for Cross-Site |    |
|    | Re          | equest Forgery          | 25 |
|    | 3.1.7 De    | eployment diagram of    |    |
|    | ВС          | CX model for Cross-Site |    |
|    | Re          | equest Forgery          | 26 |

|    |     | 3.1.8 Package diagram of              |    |
|----|-----|---------------------------------------|----|
|    |     | BCX model for Cross-Site              |    |
|    |     | Request Forgery                       | 27 |
|    |     | 3.1.9 Object diagram of               |    |
|    |     | BCX model for Cross-Site              |    |
|    |     | Request Forgery                       | 29 |
| 4. | SYS | TEM ARCHITECTURE                      | 31 |
|    | 4.1 | Architecture Description              | 31 |
|    | 4.2 | Client Module                         | 33 |
|    |     | 4.2.1 BCX Hash Algorithm in Client    |    |
|    |     | Module for Generating Hash            |    |
|    |     | Value of MAC Address                  | 34 |
|    | 4.3 | Server Module                         | 35 |
|    |     | 4.2.1 BCX Hash Algorithm in Server    |    |
|    |     | Module for Generating the             |    |
|    |     | Anti-Forgery Token                    | 36 |
| 5. | SYS | TEM IMPLEMENTATION                    | 37 |
|    | 5.1 | Implementation of BCX Model for       |    |
|    |     | Cross-Site Request Forgery            | 37 |
|    | 5.2 | Pseudo code for generating hash value |    |
|    |     | of MAC Address                        | 40 |
|    | 5.3 | Pseudo code for generating Anti-      |    |
|    |     | Forgery Token                         | 41 |
| 6. | RES | ULTS AND OUTPUT                       | 43 |
|    | 6.1 | BCX Model for Cross-Site              |    |

|    |     | Reque | est Forgery                    | 43 |
|----|-----|-------|--------------------------------|----|
|    | 6.2 | Outpu | nt and Comparison              | 54 |
|    |     | 6.2.1 | Hash Value of the MAC Address  | 54 |
|    |     | 6.2.2 | Generation of the Anti-Forgery |    |
|    |     |       | Token                          | 55 |
|    |     | 6.2.3 | Result Analysis                | 56 |
| 7. | CON | CLUS  | ION AND FUTUREWORK             | 58 |
|    | 7.1 | Concl | usion                          | 58 |
|    | 7.2 | Futur | e work                         | 58 |
|    | REF | EREN  | CES                            |    |

# LIST OF FIGURES

| LIST OF FIGURES | NAME OF THE FIGURE       | PAGE NO. |
|-----------------|--------------------------|----------|
| 3.1             | Use case diagram of      |          |
|                 | BCX Model for Cross-Site |          |
|                 | Request Forgery          | 20       |
| 3.2             | Class diagram of         |          |
|                 | BCX Model for Cross-Site |          |
|                 | Request Forgery          | 21       |
| 3.3             | Sequence diagram of      |          |
|                 | BCX Model for Cross-Site |          |
|                 | Request Forgery          | 22       |
| 3.4             | Activity diagram of      |          |
|                 | BCX Model for Cross-Site |          |
|                 | Request Forgery          | 23       |
| 3.5             | Collaboration diagram of |          |
|                 | BCX Model for Cross-Site |          |
|                 | Request Forgery          | 25       |
| 3.6             | Component diagram of     |          |
|                 | BCX Model for Cross-Site |          |
|                 | Request Forgery          | 26       |
| 3.7             | Deployment diagram of    |          |
|                 | BCX Model for Cross-Site |          |
|                 | Request Forgery          | 27       |
| 3.8             | Package diagram of       |          |
|                 | BCX Model for Cross-Site |          |
|                 | Request Forgery          | 28       |

| 3.9 | Object diagram of                    |    |
|-----|--------------------------------------|----|
|     | BCX Model for Cross-Site             |    |
|     | Request Forgery                      | 30 |
| 4.1 | System Architecture of               |    |
|     | BCX Model for Cross-Site             |    |
|     | Request Forgery                      | 31 |
| 4.2 | Interactions between Client Module,  |    |
|     | Server Module and Database           | 32 |
| 5.1 | Login Page                           | 38 |
| 5.2 | Transaction Page                     | 39 |
| 6.1 | Hash Value of the MAC Address        | 54 |
| 6.2 | Generation of the Anti-Forgery Token | 55 |
| 6.3 | Performance Analysis                 | 57 |

# LIST OF TABLES

| LIST OF TABLES | NAME OF THE TABLE              | PAGE NO. |
|----------------|--------------------------------|----------|
| 5.1            | Structure of Login Table       | 39       |
| 5.2            | Structure of Hash Table        | 40       |
| 6.1            | Comparison of Hash Algorithm's | 56       |

#### LIST OF ABBREVATIONS

CSRF Cross-Site Request Forgery

BCX Binary conversion-Combination-eXclusive OR

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

MAC Medium Access Control

IP Internet Protocol

AFT Anti-Forgery Token

ASCII American Standard Code for Information Interchange

SHA Secured Hash Algorithm

URL Uniform Resource Locator

XSS Cross-Site Scripting

DOM Document Object Model

MD Message Digest

AES Advanced Encryption Standard

DES Data Encrytion Standard

RSA Rivest Shamir Adleman

CPU Central Processing Unit

PHP Hypertext Preprocessor

HMAC Hash Message Authentication Code

UML Unified Modelling Language

CSS Cascading Style Sheet

IMEI International Mobile Equipment Identity