Tutorial 2: Contour Integrals

- 1. For each of the following smooth curves give an admissible parametrization that is consistent with the indicated direction.
 - (a) The line segment from z = 1 + i to z = -1 3i.
 - (b) the circle |z-2i|=4 traversed once in the clockwise direction starting from the point z=-2i.
 - (c) the segment of the parabola $y = x^2$. from point (1,1) to (3,9).

Answer:

(a) Let $z_1 = 1 + i$ and $z_2 = -1 - 3i$. Then the line segment from z_1 to z_2 is given by

$$z(t) = z_1 + (z_2 - z_1)t, t: 0 \to 1$$

(b) It is given that the center is at $z_0 = 2i$ and the radius R = 4. The parametrization is

$$z(t) = z_0 + Re^{-it}, t: \pi/2 \to 5\pi/2$$

= $2i + 4e^{-it}.$

The negative sign in the exponential ensures that the orientation is clockwise. Just to check:

t	z(t)
$\pi/2$	$2i + 4e^{-i\pi/2} = 2i + 4(-i) = -2i$
π	$2i + 4e^{-i\pi} = 2i + 4(-1) = 2i - 4$
$3\pi/2$	$2i + 4e^{-i3\pi/2} = 2i + 4(i) = 6i$
2π	$2i + 4e^{-i\pi} = 2i + 4(1) = 2i + 4$

2. Show that if m and n are integers,

$$\int_0^{2\pi} e^{im\theta} e^{-in\theta} d\theta = \begin{cases} 0 & \text{when } m \neq n \\ 2\pi & \text{when } m = n. \end{cases}$$

Answer

If m=n, then the integrand is 1 and hence the integral is 2π . When $m \neq n$ then

$$\int_0^{2\pi} e^{im\theta} e^{-in\theta} d\theta = \int_0^{2\pi} \cos((m-n)\theta) d\theta + i \int_0^{2\pi} \sin((m-n)\theta) d\theta$$
$$= 0 + i0 = 0.$$

3. A semicircular contour is given by two separate parametrization

$$z_{1}(t) = 2e^{it} \left(-\frac{\pi}{2} \le t \le \frac{\pi}{2}\right)$$

$$z_{2}(\tau) = \sqrt{4 - \tau^{2}} + i\tau \quad (-2 \le \tau \le 2).$$

(a) Find the length of the contour using each parametrization.

(b) Find a function $t = \phi(\tau)$ such that $z_2(\tau) = z_1(\phi(\tau))$.

Answer:

(a) $z_{1}'(t)=2ie^{it}$. Then, $\left|z_{1}'(t)\right|=2$. Thus, the length is given by

$$L = \int_{-\pi/2}^{\pi/2} |z_1'(t)| dt = 2\pi.$$

$$z_{2}'\left(\tau\right)=\frac{-\tau}{\sqrt{4-\tau^{2}}}+i.$$
 Then, $\left|z_{2}'\left(\tau\right)\right|=\frac{2}{\sqrt{4-\tau^{2}}}$ and

$$L = \int_{-2}^{2} |z_2'(\tau)| d\tau = \int_{-2}^{2} \frac{2}{\sqrt{4 - \tau^2}} d\tau$$
$$= 2 \sin^{-1} \frac{\tau}{2} \Big|_{-2}^{2} = 2\pi$$

- (b) Comparing imaginary part of z_1 and z_2 , we get $2\sin t = \tau$. Thus, $\phi(\tau) = \sin^{-1}(\tau/2)$.
- 4. Let C be the perimeter of a square with vertices at z = 0, z = 1, z = 1 + i and z = i traversed once in that order. Compute following integrals using primary definition:
 - (a) $\int_C e^z dz$;
 - (b) $\int_C \bar{z}^2 dz$.

(a) See the same procedure as in part (b):

$$\int_C e^z dz = 0$$

- (b) Let A = 0, B = 1, C = 1 + i and D = i.
 - \triangleright Then along AB, z(t) = t where $t: 0 \to 1$. Then, z'(t) = 1 and

$$\int_{AB} \bar{z}^2 dz = \int_0^1 t^2 dt = \frac{1}{3}$$

ightharpoonup Along BC, z(t)=1+it where $t:0\to 1$. Then z'(t)=i and

$$\int_{BC} \bar{z}^2 dz = \int_0^1 (1 - it)^2 \cdot i \cdot dt = 1 + \frac{2}{3}i$$

ightharpoonup Along CD, z(t)=1-t+i where $t:0\to 1$. Then z'(t)=-1 and

$$\int_{CD} \bar{z}^2 dz = \int_0^1 (1 - t - i)^2 \cdot (-1) \cdot dt = \frac{2}{3} + i$$

ightharpoonup Along DA, $z(t)=i\left(1-t\right)$ where $t:0\rightarrow1$. Then $z'\left(t\right)=-i$ and

$$\int_{BC} \bar{z}^2 dz = \int_0^1 (-i)^2 (1-t)^2 \cdot (-i) \cdot dt = \frac{1}{3}i$$

Thus, the net integral around the square is 2 + 2i.

- 5. Practice line integrals in real plane.
 - (a) Evaluate $\int_{(0,1)}^{(2,5)} ((3x+y) dx + (2y-x) dy)$ along (a) the curve $y=x^2+1$, (b) the straight line joining the two limit points.
 - (b) Evaluate $\oint ((x+2y) dx + (y-2x) dy)$ around the ellipse C defined by $x=4\cos\theta$ and $y=3\sin\theta,\ 0\leq\theta<2\pi$.

Answer:

(a) For the curve $y = x^2 + 1$, we can use x as the parameter of the curve. Then, dy = 2xdx. Thus,

$$\int_{(0,1)}^{(2,5)} ((3x+y) dx + (2y-x) dy)$$

$$= \int_0^2 ((3x+x^2+1) dx + (2(x^2+1)-x) 2x dx)$$

$$= 32 - \frac{8}{3}$$

Along straight line, y = 2x + 1 and using x as the parameter (dy = 2dx), we get

$$\int_{(0,1)}^{(2,5)} ((3x+y) dx + (2y-x) dy)$$

$$= \int_0^2 ((5x+1) dx + (2(2x+1) - x) 2dx)$$

$$= 32$$

Why are these two integrals not equal?

(b) Left for you. Answer: -48π .

6. Evaluate $\int_{C} (x - 2xyi) dz$ over the contour $C: z = t + it^{2}, 0 \le t \le 1$.

Answer:

The parametrization for the contour is x(t) = t and $y(t) = t^2$. And, dz = (1 + 2it) dt. Thus,

$$\int_C (x - 2xyi) dz = \int_0^1 (t - 2 \cdot t \cdot t^2 i) (1 + 2it) dt$$
$$= \int_0^1 (4t^4 + t + 2i(t^2 - t^3)) dt = \frac{13}{10} + \frac{i}{6}$$

7. Evaluate $\int_C \overline{z}^2 dz$ around the circles (a) |z| = 1, (b) |z - 1| = 1.

Answer:

(a) |z| = 1 can be parametrized as $z(\theta) = e^{i\theta}$ with $\theta: 0 \to 2\pi$. Then, $z'(\theta) = ie^{i\theta}d\theta$.

$$\int_C \overline{z}^2 dz = \int_0^{2\pi} \left(e^{-i\theta} \right)^2 i e^{i\theta} d\theta = i \int_0^{2\pi} e^{-i\theta} d\theta = 0$$

(b) |z-1|=1 can be parametrized as $z\left(\theta\right)=1+e^{i\theta}$ with $\theta:0\to 2\pi.$ Then, $z'\left(\theta\right)=ie^{i\theta}d\theta.$

$$\int_C \overline{z}^2 dz = \int_0^{2\pi} \left(1 + e^{-i\theta} \right)^2 i e^{i\theta} d\theta = i \int_0^{2\pi} \left(e^{i\theta} + 2 + e^{-i\theta} \right) d\theta = 4\pi i$$

8. Verify Green's Theorem in the plane for $\int_C (x^2 - 2xy) dx + (y^2 - x^3y) dy$ where C is a square with vertices at (0,0), (2,0), (2,2) and (0,2).

Answer:

We want to verify that

$$\int_C (Pdx + Qdy) = \int_A (Q_x - P_y) \, dx dy.$$

The line integral has four sections corresponding to the 4 sides of the square.

$$\triangleright$$
 Section 1: $y = 0$, $dy = 0$ and $x : 0 \to 2$. $I_1 = \int_0^2 x^2 dx = \frac{8}{3}$

▷ Section 2:
$$x = 2$$
, $dx = 0$ and $y : 0 \to 2$. $I_2 = \int_0^2 (y^2 - 8y) dy = -\frac{40}{3}$

$$\triangleright$$
 Section 3: $y = 2$, $dy = 0$ and $x : 2 \to 0$. $I_1 = \int_2^0 (x^2 - 4x) dx = \frac{16}{3}$

$$\triangleright$$
 section 4: $x = 0$, $dx = 0$ and $y : 2 \to 0$. $I_1 = \int_2^0 y^2 dy = -\frac{8}{3}$

Thus, the required integral is -8. And

$$\int_{0}^{2} \int_{0}^{2} dx dy \left(2x - 3x^{2}y\right) = 8 - 3 \cdot \frac{8}{3} \cdot 2 = -8$$

Thus the theorem is verified.

9. Verify Cauchy's theorem for the function $z^3 - iz^2 - 5z + 2i$ if C is the ellipse |z - 3i| + |z + 3i| = 20.

Semi-major and semi-minor axes are a=10 and $b=\sqrt{91}$. Then the parametrization for ellipse can be written as

$$z(\theta) = (b\cos\theta, a\sin\theta)$$
 $\theta: 0 \to 2\pi$

Then

$$\int z^3 dz = \int_0^{2\pi} \left[b \cos \theta + ia \sin \theta \right]^3 \left[-b \sin \theta + ia \cos \theta \right] d\theta = 0$$

You can do the remaining terms:) .

10. Show that

- (a) $\left| \int_C \frac{dz}{z^2 1} \right| \le \frac{3\pi}{4} \text{ if } C : |z| = 3.$
- (b) $\left| \int_C \frac{e^{3z}}{1+e^z} dz \right| \leq \frac{2\pi e^{3R}}{e^R-1}$ if C is a vertical line segment from z = R (> 0) to $z = R + 2\pi i$.

Answer:

(a) Clearly, $|z^2 - 1| \ge ||z|^2 - 1| \ge 8$ since |z| = 3. Thus, $\left|\frac{1}{z^2 - 1}\right| \le \frac{1}{8}$. The length of the curve is 6π . By the rules of integration

$$\left| \int_C \frac{dz}{z^2 - 1} \right| \le \frac{1}{8} \cdot 2\pi \cdot 3 = \frac{3\pi}{4}.$$

(b) Along C, $|e^z| = e^R > 1$. Then $\left| \frac{1}{e^z + 1} \right| \le \frac{1}{||e^z| - 1|} = \frac{1}{e^R - 1}$ also $|e^{3z}| = e^{3R}$. The length of the curve is 2π . Thus,

$$\left| \int_C \frac{e^{3z}}{1+e^z} dz \right| \leq \frac{2\pi e^{3R}}{e^R-1}$$

11. Use antiderivatives to evaluate following integrals:

- (a) $\int_i^{i/2} e^{\pi z} dz$;
- (b) $\int_0^{\pi+2i} \cos(z/2) dz$
- (c) $\int_{1}^{3} (z-2)^{3} dz$.

Answer:

- (a) Since $\frac{d}{dz} \left(\frac{1}{\pi} e^{\pi z} \right) = e^{\pi z}$, required integral is $\int_{i}^{i/2} e^{\pi z} dz = \frac{1}{\pi} e^{\pi z} \Big|_{i}^{i/2} = \frac{1}{\pi} \left(e^{i\pi/2} e^{i\pi} \right) = \frac{1}{\pi} \left(i + 1 \right)$.
- (b) Since $\frac{d}{dz} (2 \sin \frac{z}{2}) = \cos \frac{z}{2}$, we get $\int_0^{\pi + 2i} \cos(z/2) dz = e^{-1} + e$.
- (c) Left for you.

12. Use antiderivatives to show that

$$\int \frac{dz}{z^2 - a^2} = \frac{1}{2a} \log \left(\frac{z - a}{z + a} \right) + c_1 = \frac{1}{a} \coth^{-1} \left(\frac{z}{a} \right) + c_2$$

Answer:

Clearly,

$$\frac{1}{2a}\frac{d}{dz}\log\left(\frac{z-a}{z+a}\right) = \frac{1}{2a}\frac{d}{dz}\left[\log\left(z-a\right) - \log\left(z+a\right)\right]$$
$$= \frac{1}{2a}\left(\frac{1}{z-a} - \frac{1}{z+a}\right) = \frac{1}{z^2 - a^2}.$$

The second part is left for you.

13. Let C be a square with vertices on $z = \pm 2 \pm 2i$. Evaluate following integrals using Cauchy integral formula to evaluate following integrals:

(a)
$$\int_C \frac{e^{-z}dz}{z-(\pi i/2)};$$

(b)
$$\int_C \frac{\cos z}{z(z^2+8)} dz;$$

(c)
$$\int_C \frac{\tan(z/2)}{(z-x_0)^2} dz$$
 $(-2 < x_0 < 2)$.

Answers:

The Cauchy integral formula to evaluate integrals, so we will write it as

$$\int_{C_R} \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0).$$

The contour in all examples is same and is shown in the figure below.

(a) In this integral $\int_C \frac{e^{-z}dz}{z-(\pi i/2)}$, we identify $f(z)=e^{-z}$ and $z_0=i\pi/2$ (purple point in the figure) and n=0. Since the point z_0 is inside the contour.

$$\int_C \frac{e^{-z}dz}{z - (\pi i/2)} = \frac{2\pi i}{0!} f(i\pi/2) = 2\pi i e^{-i\pi/2} = 2\pi.$$

(b) In this integral $\int_C \frac{\cos z}{z(z^2+8)} dz$, we identify $f(z) = \cos z / \left(z^2+8\right) = \frac{\cos z}{\left(z+i2\sqrt{2}\right)\left(z-i2\sqrt{2}\right)}$. Since the points $\pm i2\sqrt{2}$ (green points) are outside the contour, the function f(z) is analytic inside and on the contour. Here, $z_0 = 0$ is inside the contour and hence

$$\int_C \frac{(\cos z) / (z^2 + 8)}{(z - 0)} dz = 2\pi i \frac{\cos 0}{0 + 8} = \frac{\pi i}{4}$$

(c) In this integral $\int_C \frac{\tan(z/2)}{(z-x_0)^2} dz$, $f(z) = \tan(z/2)$, $z_0 = x_0$ and n = 1. Question is if f is analytic inside the contour? Since $\tan(z/2) = \sin(z/2)/\cos(z/2)$, the singularities occurs when $\cos(z/2) = 0$, that is at $z/2 = (m+1/2)\pi$ where m is an integer. That is at points are $(2m+1)\pi$ and notice that all these points are outside the contour. Then

$$\int_C \frac{\tan\left(z/2\right)}{\left(z-x_0\right)^2} dz = \frac{2\pi i}{1!} \left. \frac{d}{dz} \tan\left(\frac{z}{2}\right) \right|_{z=x_0} = \pi i \sec^2 x_0$$

14. Show that $\frac{1}{2\pi i} \int_C \frac{e^{zt}}{z^2+1} dz = \sin t$ if t(>0) is a real constant and C: |z| = 3.

Answer:

Note that

$$\frac{1}{2\pi i} \int_C \frac{e^{zt}}{z^2 + 1} dz = \frac{1}{2i} \left(\frac{1}{2\pi i} \int_C \frac{e^{zt}}{z - i} dz - \frac{1}{2\pi i} \int_C \frac{e^{zt}}{z + i} dz \right)$$
$$= \frac{1}{2i} \left(e^{it} - e^{-it} \right) = \sin t.$$

15. Prove Cauchy's Inequality which states that if f(z) is analytic on and inside of a circle of radius R and center a, then

$$\left| f^{(n)}\left(a\right) \right| \le \frac{M \cdot n!}{R^n}$$

where M is a maximum of |f(z)| on the circle.

Answer:

Let the circle be parametrized as $z(\theta) = a + Re^{i\theta}$, $\theta: 0 \to 2\pi$. Using Cauchy integral formula

$$\left| f^{(n)}(a) \right| = \left| \frac{n!}{2\pi i} \int_{C_R} \frac{f(z)}{(z-a)^{n+1}} dz \right|$$

$$= \frac{n!}{2\pi} \left| \int_0^{2\pi} \frac{f(z)}{R^{n+1} e^{i(n+1)\theta}} iRe^{i\theta} d\theta \right|$$

$$= \frac{n!}{2\pi R^n} \left| \int_0^{2\pi} f(z) e^{-in\theta} d\theta \right|$$

$$\leq \frac{n!}{2\pi R^n} M \cdot 2\pi = \frac{M \cdot n!}{R^n}$$