PAPER REVIEW: LARGE POSE 3D FACE RECONSTRUCTION FROM A SINGLE IMAGE VIA DIRECT VOLUMETRIC CNN REGRESSION

ESTUDIANTES:

LÓPEZ CÁCERES, JORGE ROBERTO MAURICIO CONDORI, MANASSES ANTONI

PROFESOR:

DSC MANUEL EDUARDO LOAIZA FERNÁNDEZ IMÁGENES

UNIVERSIDAD CATÓLICA DE SAN PABLO MAESTRÍA EN CIENCIAS DE LA COMPUTACIÓN

08 DE FEBRERO, 2018

3D FACE RECONSTRUCTION

[1] Choi, J., Medioni, G., Lin, Y., Silva, L., Regina, O., Pamplona, M., & Faltemier, T. C. (2010, August). 3D face reconstruction using a single or multiple views. In Pattern Recognition (ICPR), 2010 20th International Conference on (pp. 3959-3962). IEEE.

HOURGLASS NETWORKS

Stacked Hourglass Networks for Human Pose Estimation [2]

[2] Newell, Alejandro, Kaiyu Yang, and Jia Deng. "Stacked hourglass networks for human pose estimation." European Conference on Computer Vision. Springer, Cham, 2016.

ARQUITECTURAS PROPUESTAS I

(a) VRN acepta como entrada una entrada RGB y regresa directamente un volumen 3D evitando por completo el ajuste de un 3DMM. Cada rectángulo es un módulo residual de 256 características.

(a) VRN-guided primero detecta la proyección 2D de los puntos de referencia en 3D y los apila con la imagen original. Esta pila se alimenta a la red de reconstrucción, que directamente regresa el volumen.

ARQUITECTURAS PROPUESTAS II

(c) VRN-multitask regresa tanto el volumen facial 3D como un conjunto de puntos faciales escasos.

ENTRENAMIENTO - RESULTADOS

METHOD	DESCRIPTION	
Learning Algorithm	RMSProp	
learning rate	10e-4 / 10e-5	
Data Augmentation	Random augmentation:	
	- Rotation/Translation/ Scaling.	
	- 20% flipped	
Cost Function	Sigmoid cross entropy loss function	
Input	2D images	
Output	- 3D Volume - Scan Images	

(Tabla 1) Parámetros del Entrenamiento

Method	AFLW2000	BU4DFE	Florence
VRN	0.0676	0.0600	0.0568
VRN - Multitask	0.0698	0.0625	0.0542
VRN - Guided	0.0637	0.0555	0.0509
3DDFA [28]	0.1012	0.1227	0.0975
EOS [7]	0.0971	0.1560	0.1253

(Tabla 2) Resultados