

UNIVERSIDAD DEL BÍO BÍO

DEPARTAMENTO DE MATEMÁTICA

SUMATIVO N°2 ÁLGEBRA Y TRIGONOMETRÍA - MÓDULO 2 220143

ALUMNO:	 • • • • • •	 	 		•••••	 	R	RUT:		•
	 	 	 _	I		 	1		٦	

P1 (20 ptos)	P2 (30 ptos)	P3 (15 ptos)	P4 (35 ptos)	Total Ptos	Nota (1-7)

INSTRUCCIONES

- Escribir sus respuestas con letra clara y legible con lápiz pasta.
- Las respuestas deben venir debidamente justificadas.
- Cada una de las hojas de respuestas debe venir con **Nombre, rut** y **número de la pregunta.**
- Al enviar la resolución de la evaluación, esta debe venir en un único archivo pdf de la siguiente forma:

NombreApellidoAlumno_codigoasignatura_seccion_sumativo2.pdf

- Tiene 80 minutos para responder + 20 minutos para el envío del archivo.
- 1. Cuando la Luna gira alrededor de la Tierra, el lado que da la cara a la Tierra por lo general está sólo parcialmente iluminado por el Sol. Las fases de la Luna describen cuánto de la superficie parece estar a la luz del Sol. Una medida astronómica está dada por la fracción F del disco lunar que está iluminado. Cuando el ángulo entre el Sol, la Tierra y la Luna es θ (0° $\leq \theta \leq 360$ °), entonces

$$F = \frac{1}{2}(1 - \cos \theta)$$

Determine los ángulos θ que corresponden a las siguientes fases:

a)
$$F = 1/4$$
 (cuarto creciente)

b)
$$F = 1$$
 (luna llena)

- 2. MARQUE LA ALTERNATIVA CORRECTA. Justifique en cada caso.
 - i) El valor de la expresión $E = \left(\frac{1+i}{1-i}\right)^{30}$ es:

$$a)^{-1}$$

$$b) -1$$

d)
$$1 + i$$

- ii) Dos raíces de la ecuación $z^3 = 1$ son:
 - a) 1; $\frac{1}{2}(1+i\sqrt{3})$

b) 1;
$$-\frac{1}{2}(1+i\sqrt{3})$$

c) 1;
$$\frac{1}{2}(1-i\sqrt{3})$$

c) 1;
$$\frac{1}{2}(1 - i\sqrt{3})$$

d) $\frac{1}{2}(1 + i\sqrt{3})$; $\frac{1}{2}(1 - i\sqrt{3})$

3. MARQUE LA ALTERNATIVA CORRECTA. Justifique en el caso que se pida.

El máximo número de regiones formadas al conectar n puntos de un círculo puede ser descrita por la función polinómica:

$$f(n) = \frac{1}{24}(n^4 - 6n^3 + 23n^2 - 18n + 24)$$

- i) Determine el grado, el coeficiente principal y el término independiente de f(n).
- a) 4; 1; 24 b) 4; n^4 ; 24 c) 4; $\frac{1}{24}$; 1 d) 4; $\frac{n^4}{24}$; 1
- ii) ¿Cuál es el máximo número de regiones formadas al conectar 8 puntos de un círculo?,
 - *a*) 4

b) 98

- c) 2376
- d) N.A.
- iii) ¿Cuál es el **resto** de dividir f(n) por n-8?, ¿Es n-8 un **factor** de f(n)? Justifique su respuesta.
 - a) 0 ; Sí

- b) 0; No c) 99; Sí d) 99; No
- 4. Dado el polinomio

$$P(x) = 2x^4 + 5x^3 - 8x^2 - 17x - 6$$

- a) Use división larga para dividir P(x) entre $D(x)=x^2-x+2$. Encuentre el cociente y el resto.
- b) Use división sintética para dividir P(x) entre 2x + 1. Encuentre el cociente y el resto.