Rank-355 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_3^3 + X_0^2 X_1 + X_0^2 X_3 + X_1^2 X_2 = 0$$

(0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) The point rank of the equation over ${\rm GF}(4)$ is 26273

General information

Number of lines	3
Number of points	25
Number of singular points	1
Number of Eckardt points	0
Number of double points	2
Number of single points	11
Number of points off lines	12
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{3}
Type of lines on points	$2^2, 1^{11}, 0^{12}$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_5 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_5 = \mathbf{Pl}(1,0,1,0,1,0)_{33}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{100} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{100} = \mathbf{Pl}(0,1,1,0,0,0)_6$$

Rank of lines: (16, 5, 100)

Rank of points on Klein quadric: (2, 33, 6)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 2 Double points: The double points on the surface are:

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_1$$

$$P_2 = (0, 0, 1, 0) = \ell_0 \cap \ell_2$$

Single Points

The surface has 11 single points: The single points on the surface are:

$0: P_4 = (1, 1, 1, 1)$ lies on line ℓ_1	6: $P_{42} = (0, 1, 1, 1)$ lies on line ℓ_1
1: $P_8 = (1,0,1,0)$ lies on line ℓ_0	7: $P_{43} = (2, 1, 1, 1)$ lies on line ℓ_1
$2: P_9 = (2,0,1,0)$ lies on line ℓ_0	8: $P_{44} = (3, 1, 1, 1)$ lies on line ℓ_1
$3: P_{10} = (3,0,1,0)$ lies on line ℓ_0	9: $P_{54} = (1, 0, 2, 1)$ lies on line ℓ_2
$4: P_{23} = (1,0,0,1)$ lies on line ℓ_2	10: $P_{70} = (1,0,3,1)$ lies on line ℓ_2
$5: P_{39} = (1,0,1,1)$ lies on line ℓ_2	

The single points on the surface are:

Points on surface but on no line

The surface has 12 points not on any line: The points on the surface but not on lines are:

$0: P_1 = (0, 1, 0, 0)$	$7: P_{52} = (3,3,1,1)$
$1: P_{12} = (1, 1, 1, 0)$	$8: P_{61} = (0, 2, 2, 1)$
$2: P_{18} = (3, 2, 1, 0)$	$9: P_{66} = (1,3,2,1)$
$3: P_{21} = (2, 3, 1, 0)$	$10: P_{78} = (1, 2, 3, 1)$
$4: P_{33} = (3, 2, 0, 1)$	$11: P_{81} = (0, 3, 3, 1)$
$5: P_{36} = (2, 3, 0, 1)$	
$6: P_{47} = (2, 2, 1, 1)$	

Line Intersection Graph

$$\begin{array}{c|c} 012 \\ \hline 0 & 011 \\ 1 & 100 \\ 2 & 100 \\ \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_0	P_2

Line 1 intersects

Line	ℓ_0
in point	P_0

Line 2 intersects

Line	ℓ_0
in point	P_2

The surface has 25 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$9: P_{21} = (2,3,1,0)$	18: $P_{52} = (3, 3, 1, 1)$
$1: P_1 = (0, 1, 0, 0)$	10: $P_{23} = (1,0,0,1)$	19: $P_{54} = (1,0,2,1)$
$2: P_2 = (0,0,1,0)$	11: $P_{33} = (3, 2, 0, 1)$	$20: P_{61} = (0, 2, 2, 1)$
$3: P_4 = (1, 1, 1, 1)$	12: $P_{36} = (2, 3, 0, 1)$	$21: P_{66} = (1,3,2,1)$
$4: P_8 = (1,0,1,0)$	13: $P_{39} = (1, 0, 1, 1)$	$22: P_{70} = (1,0,3,1)$
$5: P_9 = (2,0,1,0)$	$14: P_{42} = (0, 1, 1, 1)$	$23: P_{78} = (1, 2, 3, 1)$
$6: P_{10} = (3, 0, 1, 0)$	15: $P_{43} = (2, 1, 1, 1)$	$24: P_{81} = (0,3,3,1)$
$7: P_{12} = (1, 1, 1, 0)$	16: $P_{44} = (3, 1, 1, 1)$	
$8: P_{18} = (3, 2, 1, 0)$	17: $P_{47} = (2, 2, 1, 1)$	