

Universidade do Minho Escola de Ciências

Mestrado Integrado em Engenharia Informática

Número

Departamento de Matemática e Aplicações

2° Teste :: 2 de junho de 2017

Nome

Justifique, convenientemente, todas as suas respostas.

Exercício 1. [3 valores] Considere a função $f(x,y) = x^4 + y^4 - 4xy - 1$.

- a) Calcule os pontos críticos de f.
- b) Averigue se algum dos pontos críticos obtidos anteriormente é ponto extremante de f e, em caso afirmativo, classifique-o.

Exercício 2. [2 valores] Determine o cilindro inscrito numa esfera de raio 2 cujo volume é máximo.

Exercício 3. [3 valores] Considere a região $\mathcal D$ representada na figura ao lado. Calcule $\iint_{\mathcal D} xy\,d(x,y)$.

- Exercício 4. [3 valores] Considere o integral $\int_{-3}^2 \int_{y^2-4}^{2-y} f(x,y) \, dx dy$.
 - a) Faça um esboço da região de integração.
 - b) Inverta a ordem de integração.

Exercício 5. [5 valores] Considere o sólido \mathcal{S} limitado pelos parabolóides definidos pelas equações

$$z = x^2 + y^2$$
 e $z = \frac{1}{2}(x^2 + y^2) + 2$.

- a) Descreva ou faça um esboço do sólido S.
- b) Escreva uma expressão integral, utilizando integrais duplos e coordenadas cartesianas, que permita obter o volume de S.
- c) Escreva uma expressão integral, utilizando integrais triplos e coordenadas cilíndricas, que permita obter o volume de S.
- d) Calcule o volume de S.

As respostas ao exercício 6 são dadas na folha de enunciado.

Exercício 6. [4 valores] Indique, justificando, se as proposições seguintes são verdadeiras ou falsas:

a) Sejam $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ uma função contínua, g(x,y)=|f(x,y)| e $\mathcal{D}=\{(x,y)\in\mathbb{R}^2:x^2+2y^2=1\}.$ Se 1 e -2 são, respetivamente, o máximo e o mínimo de $f_{|_{\mathcal{D}}}$ então $g_{|_{\mathcal{D}}}$ não tem mínimo;

b) $\int_0^1 \int_0^1 e^{xy} dx dy \le e;$

 $\textit{c)} \quad \text{Se } f: \mathbb{R}^2 \longrightarrow \mathbb{R} \text{ \'e uma função contínua então } \int_0^2 \int_0^2 f(x,y) \, d(x,y) = 4 \int_0^1 \int_0^1 f(x,y) \, d(x,y);$

d) As coordenadas cartesianas de um ponto, cujas coordenadas esféricas são $\rho=1$, $\varphi=\frac{\pi}{4}$, $\theta=\frac{\pi}{2}$, são $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0\right)$.