

RadSeq vs. Genome Skimming:

Variant Matrix Construction

Jennifer Chien, Sigal Shaul, and Akshat Singhal

What is RAD-seq?

- Restriction site associated DNA sequencing
- Restriction enzymes fragment DNA, creating reads
- Targets a subset of a genome;
 provides better depth per locus

Restriction-site Associate DNA Sequencing (RADseq)

Motivation

RadSeq

- Pros:
 - High amplification for sections of the genome that contain restriction site (more depth)
 - Alignment by restriction site
- Cons:
 - Less coverage Only captures region around restriction sites

Genome Skimming

- Pros:
 - More coverage across the genome
 - More variant loci (more likely to capture mutations)
- Cons:
 - Brute force approach is computationally heavy

Simulated RAD-Seq Experiment

- C. Elegans Genome (100Mbp)
- RADInitio Using reference genome and msprime, creates simulated population of individuals with mutations;
 returns a vcf file, restriction site loci files, and read files
- Directly use restriction site files to estimate θ The files contain restriction site loci; each loci is 1000bp long and there are 634 such loci

Proposed Method Using Genome Skimming

- 1. **Take a reference data** Chromosome 1 of C. elegans
- 2. **Simulate a population** 20 sequences (10 diploid individuals) created using RADinitio variant simulation
- 3. **Generate skims** Reads generated using art-illumina with 5x coverage
- 4. **Get the k-mers for each skim** Used jellyfish to get the common k-mers with at least 20x frequency (n)
- 5. *Compare the skims Align the reads for each k-mer to form a SNP matrix
- 6. *Provide an estimate of θ Watterson's estimate or Tajima's estimate

Our Pipeline

5. Comparing the Skims

Our Pipeline

Consider kmers in all Individuals

- Total number of kmers reported:
 10599778
- Limited to kmers that are present in all individuals

Creating SNP Matrix and Calculating Theta

1. Align contigs for each kmer

kmer: AAAAAAAA

TAAAAAAAAAAATTGAAAAA GCCTTAAAAAAAAATCGTTT GGGAAAAAAAATAGATTG CCCCGGAAAAAAAATCGT TTAAAAAAAAATC

Creating SNP Matrix and Calculating Theta

- 1. Align contigs for each kmer
- 2. Convert each site to SNP column
 - a. Set initial allele to 0, mutated alleles to 1+

-	-	-	-	-	Т	Α	Α	Т	Т	G	Α	Α	Α	Α	Α
-	G	С	С	Т	Т	Т	С	G	Т	Т	Т	-	-	-	-
-	-	-	G	G	G	Т	Α	G	Α	Т	Т	G	-	-	-
С	С	С	С	G	G	Т	С	G	Т	-	-	-	-	-	-
-	-	-	-	Т	Т	Т	С	-	-	-	-	-	-	-	-


```
[[-1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0]

[-1 0 0 0 0 0 1 1 1 1 1 1 -1 -1 -1 -1]

[-1 -1 -1 1 1 1 1 0 1 0 1 1 1 -1 -1 -1]

[0 1 0 0 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1]

[-1 -1 -1 -1 0 0 1 1 -1 -1 -1 -1 -1 -1]
```

kmer AAAAAAAA

Creating SNP Matrix and Calculating Theta

Theta Estimate:

- Count number of columns with mutations
 - a. Only if number alleles present is greater than threshold
- 2. Estimate with m / ln(n)

```
[[-1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0]

[-1 0 0 0 0 0 1 1 1 1 1 1 -1 -1 -1 -1]

[-1 -1 -1 1 1 1 1 0 1 0 1 1 1 -1 -1 -1]

[ 0 1 0 0 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1]

[-1 -1 -1 -1 -1 0 0 1 1 -1 -1 -1 -1 -1 -1 -1]
```


Results

	M	θ
True SNPs	180,568	60275.1
RADSeq	100,000	63,485.7*
Our Implementation	177,696	59316.4

^{*} Effective θ : RadInitio covers about 52.59% of the genome. We projected this coverage linearly to Chromosome 1, i.e., effective $\theta = M/(\ln(n))$ * effective coverage)

A STATE OF THE STA

Assumptions

- Determining genome skimming coverage (5x)
- Determining unique loci for kmers (how much coverage is too much?)
 - Used 8x for the genome skimming experiment
- Determining kmer coverage threshold (for both if statements)
 - For kmer to be considered (all individuals)
 - For SNP to be considered (60%)
 - Should use binomial probability

Our Pipeline

Special Thanks: Shahabeddin Sarmashghi and Vineet Bafna

Here is a question for you to answer using Lander Waterman like statistics as discussed in class.

Suppose you have a sample of n haploid individuals, each sampled to a coverage of c. For example, n=10, c=5. What is the probability that a random nucleotide on the genome is sampled with at least k reads (e.g. k>=30) from all sampled individuals. With high values of k we should be able to get high polymorphic sites up to a certain minor allele frequency.

Please give your answer in terms of n,c,k.

Pr(coverage of a random nucleotide with ≥ k reads) =

$$\sum_{k=30}^{nc} (1-e^{-nc})^k / \sum_{k=1}^{nc} (1-e^{-nc})^k$$