Rough Draft of Supplemental Material

Bradley Hintze

November 2014

Contents

1	Filtered Top8000 Residue Counts	2
2	Outler counts: Top500 vs. Top8000	3
3	χ and Covalent Bond Angle Central Values	4
	3.1 SER	
	3.2 THR	5
	3.3 VAL	6
	3.4 PRO	7
	3.5 CYS	8
	3.6 MET	9
	3.7 GLU	13
	3.8 GLN	
	3.9 ASP	18
	3.10 ASN	19
	3.11 ILE	20
	3.12 LEU	22
	3.13 HIS	24
	3.14 TRP	26
	3.15 TYR	29
	3.16 PHE	30
	3.17 LYS	31
	3.18 ARG	39
4	Filtered Top8000 PDB Chains and Filtered Residue Counts	54

1 Filtered Top8000 Residue Counts

Residue Type	No Filter	Filter	%Kept
$_{ m LYS}$	69143	33746	48.81%
GLU	87622	55932	63.83%
ARG	63627	45310	71.21%
GLN	49542	36232	73.13%
ASP	87840	70701	80.49%
ASN	62843	52494	83.53%
MET	21458	18004	83.90%
HIS	33464	29179	87.20%
SER	83647	74623	89.21%
LEU	126255	112888	89.41%
PRO	64297	58207	90.53%
THR	81210	73532	90.55%
$_{ m ILE}$	77630	70312	90.57%
TYR	51018	46264	90.68%
PHE	59573	55141	92.56%
VAL	102509	95222	92.89%
TRP	19744	18355	92.96%
CYS	17586	16387	93.18%
Total	1159008	962529	83.05%

Table 1: Residue counts with and without residue-level filters ordered by % kept after filtering. 'No Filter' means no RSCC, $2mF_o$ -DF_c sigma, and B filters but all other residue-level filters applied.

2 Outler counts: Top500 vs. Top8000

Residue	n	Top500 <= 0.3%	Top8000 <= 1.0%	Δ
ARG	193295	7631	6034	-1597
ASN	161814	2243	2122	-121
ASP	225302	3934	2998	-936
CYS	50824	630	537	-93
GLN	140651	2845	3034	189
GLU	255560	4991	6973	1982
HIS	91316	1347	878	-469
ILE	222518	1870	3511	1641
LEU	347449	8447	10311	1864
LYS	209811	6590	8232	1642
MET	69395	1901	1963	62
PHE	153564	1972	799	-1173
PRO	174910	948	898	-50
SER	236825	2730	2874	144
THR	214960	2305	3015	710
TRP	53869	750	301	-449
TYR	134580	1848	812	-1036
VAL	280539	1720	3576	1856

 $\textbf{Table 2:} \ \ \text{Showing differences between outlier counts in the Top 500-analyzed and Top 8000-analyzed unfiltered dataset.}$

3 χ and Covalent Bond Angle Central Values

3.1 SER

SER new.fd new.fd p n = 36176				
χ	Smooth COM	StdDev		
chi1	65.916	8.591		
Bond Angle	Mean	StdDev		
$C\alphaC\betaOG$	111.000	1.336		
$C\alphaCO$	120.456	0.915		
$C\betaC\alphaC$	109.926	1.388		
$N_{-}C\alpha_{-}C$	111.619	2.525		
$NC\alphaC\beta$	110.665	1.115		

SER m n = 21102				
χ	Smooth COM	StdDev		
chi1	-63.982	7.656		
Bond Angle	Mean	StdDev		
$C\alphaC\betaOG$	110.523	1.454		
$C\alphaCO$	120.486	0.847		
$C\beta C\alpha C$	109.477	1.441		
$N_{-}C\alpha_{-}C$	111.468	2.445		
$N_{-}C\alpha_{-}C\beta$	110.561	1.027		

SER t n = 17121				
χ	Smooth COM	StdDev		
chi1	178.650	9.006		
Bond Angle	Mean	StdDev		
$C\alphaC\betaOG$	110.706	1.420		
$C\alphaCO$	120.567	0.814		
$C\betaC\alphaC$	109.791	1.442		
$N_C\alpha_C$	110.492	2.404		
$N_{-}C\alpha_{-}C\beta$	110.059	1.206		

3.2 THR

THR p n = 35387				
Smooth COM	StdDev			
61.450	7.641			
Mean	StdDev			
110.969	1.002			
109.503	0.960			
120.474	0.949			
108.826	1.697			
111.370	2.773			
111.785	1.255			
109.204	1.707			
	Smooth COM 61.450 Mean 110.969 109.503 120.474 108.826 111.370 111.785			

THR m n = 32805				
χ	Smooth COM	StdDev		
chi1	-60.109	6.112		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma_2$	111.143	0.934		
$C\alphaC\betaOG1$	108.916	0.967		
$C\alphaCO$	120.534	0.805		
$C\beta_{-}C\alpha_{-}C$	110.047	1.529		
$N_{-}C\alpha_{-}C$	110.211	2.312		
$N_{-}C\alpha_{-}C\beta$	110.720	1.184		
$OG1_{-}C\beta_{-}C\gamma_{2}$	108.771	1.662		

THR t $n = 5121$				
χ	Smooth COM	StdDev		
chi1	-172.707	7.394		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma_2$	111.717	1.088		
$C\alphaC\betaOG1$	109.534	0.984		
$C\alphaCO$	120.615	0.828		
$C\beta C\alpha C$	110.961	1.905		
$N_{-}C\alpha_{-}C$	110.122	2.334		
$N_{-}C\alpha_{-}C\beta$	111.304	1.337		
$OG1_C\beta_C\gamma2$	109.067	1.803		

3.3 VAL

VAL p n = 5892				
χ	Smooth COM	StdDev		
chi1	64.912	7.171		
Bond Angle	Mean	StdDev		
$C\alpha_{-}C\beta_{-}C\gamma 1$	111.508	1.082		
$C\alpha_{-}C\beta_{-}C\gamma_{2}$	110.757	1.019		
$C\alphaCO$	120.600	0.821		
$C\beta C\alpha C$	111.407	1.565		
$C\gamma 1_C\beta_C\gamma 2$	111.028	1.203		
$N_{-}C\alpha_{-}C$	110.309	2.481		
$N_{-}C\alpha_{-}C\beta$	111.582	1.260		

VAL m n = 17054				
χ	Smooth COM	StdDev		
chi1	-61.900	5.690		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma 1$	110.353	0.916		
$C\alphaC\betaC\gamma_2$	111.316	1.017		
$C\alphaCO$	120.549	0.905		
$C\beta C\alpha C$	109.813	1.592		
$C\gamma 1_C\beta_C\gamma 2$	110.887	1.167		
$N_{-}C\alpha_{-}C$	111.120	2.691		
$N_{-}C\alpha_{-}C\beta$	112.271	1.175		

VAL~t~n=71985				
χ	Smooth COM	StdDev		
chi1	175.704	6.347		
Bond Angle	Mean	StdDev		
$C\alpha_{-}C\beta_{-}C\gamma 1$	110.745	0.934		
$C\alphaC\betaC\gamma_2$	110.157	0.945		
$C\alphaCO$	120.547	0.786		
$C\beta C\alpha C$	110.187	1.508		
$C\gamma 1C\betaC\gamma 2$	110.461	1.126		
$NC\alphaC$	109.417	2.367		
$N_{-}C\alpha_{-}C\beta$	111.340	1.111		

3.4 PRO

PRO Cg_exo n = 29437			PRO Cg_endo $n = 28580$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-24.564	7.168	chi1	26.880	7.644
chi2 chi3	35.608 -31.827	7.827 7.125	chi2 chi3	-34.515 28.146	8.879 9.221
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	104.221	1.395	$C\alphaC\betaC\gamma$	104.230	1.466
$C\alphaCO$	120.177	1.025	$C\alphaCO$	120.221	1.058
$C\alpha_N_C\delta$	111.653	0.807	$C\alpha_N_C\delta$	111.798	0.844
$C\beta _C\alpha _C$	110.805	1.304	$C\beta _C\alpha _C$	110.911	1.412
$C\betaC\gammaC\delta$	104.694	2.311	$C\betaC\gammaC\delta$	105.294	2.360
$N_{-}C\alpha_{-}C$	112.651	2.419	$N_{-}C\alpha_{-}C$	112.935	2.599
$N_{-}C\alpha_{-}C\beta$	103.313	0.588	$N_{-}C\alpha_{-}C\beta$	103.192	0.716
$NC\deltaC\gamma$	102.712	0.872	$NC\deltaC\gamma$	103.060	0.874

3.5 CYS

CYS p n = 2895					
χ	Smooth COM	StdDev			
chi1	64.543	8.968			
Bond Angle	Mean	StdDev			
$C\alpha_{-}C\beta_{-}SG$	114.644	1.686			
$C\alphaCO$	120.523	0.976			
$C\betaC\alphaC$	110.467	1.507			
$N_{-}C\alpha_{-}C$	111.265	2.785			
$N_{-}C\alpha_{-}C\beta$	110.915	1.235			

C	CYS m n = 9132				
χ	Smooth COM	StdDev			
chi1	-65.374	8.192			
Bond Angle	Mean	StdDev			
$C\alpha_{-}C\beta_{-}SG$	113.550	1.865			
$C\alpha_{-}C_{-}O$	120.433	0.868			
$C\beta_{-}C\alpha_{-}C$	109.469	1.635			
N_Cα_C	111.517	2.435			
$N_{-}C\alpha_{-}C\beta$	110.612	1.065			

CYS t n = 4315					
χ	Smooth COM	StdDev			
chi1	-177.599	8.230			
Bond Angle	Mean	StdDev			
$C\alpha_C\beta_SG$	113.682	1.935			
$C\alphaCO$	120.482	0.858			
$C\betaC\alphaC$	110.328	1.288			
$N_C\alpha_C$	109.690	2.446			
$N_{-}C\alpha_{-}C\beta$	110.020	1.366			

3.6 MET

M	ET pmt n = 7		ME	ET ptm n = 373	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	71.340	3.364	chi1	64.860	8.164
chi2	-74.720	3.186	chi2	179.370	10.213
chi3	-162.328	4.884	chi3	-72.053	11.283
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.786	0.770	$C\alphaC\betaC\gamma$	114.669	1.690
$C\alphaCO$	120.997	0.636	$C\alphaCO$	120.624	0.934
$C\betaC\alphaC$	111.122	1.130	$C\betaC\alphaC$	110.368	1.454
$C\beta C\gamma SD$	111.744	2.285	$C\betaC\gammaSD$	112.721	2.135
$C\gammaSDC\epsilon$	100.246	1.914	$C\gammaSDC\epsilon$	100.857	1.773
$N_{-}C\alpha_{-}C$	109.009	1.550	$N_{-}C\alpha_{-}C$	110.855	2.783
$N_{-}C\alpha_{-}C\beta$	111.648	1.281	$N_{-}C\alpha_{-}C\beta$	111.162	1.208
ME	ET ttp $n = 1225$		M	ET ttt $n = 560$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-177.766	8.548	chi1	-176.725	8.829
chi2	179.141	11.453	chi2	176.823	9.573
chi3	71.790	10.513	chi3	176.456	15.731
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.541	1.658	$C\alphaC\betaC\gamma$	113.714	1.721
$C\alphaCO$	120.615	0.850	$C\alphaCO$	120.589	0.934
$C\betaC\alphaC$	110.040	1.160	$C\betaC\alphaC$	110.145	1.310
$C\betaC\gammaSD$	112.814	2.099	$C\betaC\gammaSD$	110.585	2.192
$C\gammaSDC\epsilon$	100.721	2.113	$C\gammaSDC\epsilon$	100.100	1.669
$N_{-}C\alpha_{-}C$	110.277	2.151	$N_{-}C\alpha_{-}C$	110.195	2.426
$N_{-}C\alpha_{-}C\beta$	110.374	1.307	$N_{-}C\alpha_{-}C\beta$	110.070	1.382
M	MET ppp $n = 48$		ME	T ttm $n = 1075$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	61.248	9.401	chi1	-175.045	9.403
chi2	78.960	11.124	chi2	179.637	8.195
chi3	70.700	9.854	chi3	-71.855	12.995
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	115.591	1.641	$C\alpha_{-}C\beta_{-}C\gamma$	113.528	1.721
$C\alphaCO$	120.670	0.854	$C\alphaCO$	120.509	0.788
$C\betaC\alphaC$	111.148	1.562	$C\beta C\alpha C$	109.946	1.162
$C\betaC\gammaSD$	114.342	2.359	$C\betaC\gammaSD$	112.755	2.173
$C\gamma_SD_C\epsilon$	100.371	4.017	$\mathrm{C}\gamma_{-}\mathrm{SD}_{-}\mathrm{C}\epsilon$	100.802	1.740
$N_{-}C\alpha_{-}C$		0 =04	NT CI CI	110 140	0.000
1120020	111.809	2.731	$N_{-}C\alpha_{-}C$	110.143	2.369
$N_{-}C\alpha_{-}C\beta$	111.809 110.937	2.731 1.040	$N_{-}C\alpha_{-}C$ $N_{-}C\alpha_{-}C\beta$	110.143 110.404	$\frac{2.369}{1.330}$

ME	T tpp n = 1101		ME	T pmm n = 40	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-174.981	9.422	chi1	72.629	7.836
chi2	63.633	7.967	chi2	-68.668	6.494
chi3	72.405	12.004	chi3	-68.863	8.290
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	114.203	1.349	$C\alphaC\betaC\gamma$	115.519	0.864
$C\alphaCO$	120.501	0.844	$C\alphaCO$	120.611	0.806
$C\beta_{-}C\alpha_{-}C$	110.321	1.131	$C\betaC\alphaC$	110.189	1.248
$C\beta_C\gamma_SD$	113.644	2.028	$C\betaC\gammaSD$	115.342	2.562
$C\gamma_SD_C\epsilon$	100.676	1.734	$C\gamma_SD_C\epsilon$	101.094	1.623
$N_{-}C\alpha_{-}C$	110.663	2.226	$N_{-}C\alpha_{-}C$	112.130	2.289
$N_{-}C\alpha_{-}C\beta$	110.492	1.157	$N_{-}C\alpha_{-}C\beta$	110.813	1.156
MI	ET ptt $n = 255$		MI	ET ptp $n = 404$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	65.361	8.183	chi1	64.508	8.538
chi2	-178.195	9.115	chi2	-176.358	11.433
chi3	179.354	15.498	chi3	73.220	11.523
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.739	1.694	$C\alphaC\betaC\gamma$	114.610	1.803
$C\alphaCO$	120.597	0.953	$C\alphaCO$	120.653	0.918
$C\beta C\alpha C$	110.343	1.471	$C\beta C\alpha C$	110.327	1.470
$C\beta C\gamma SD$	111.018	2.372	$C\beta C\gamma SD$	112.878	2.187
$C\gammaSDC\epsilon$	99.772	2.342	$C\gammaSDC\epsilon$	100.802	1.967
$N_C\alpha_C$	111.182	2.724	$N_C\alpha_C$	110.657	2.574
$N_{-}C\alpha_{-}C\beta$	111.147	1.301	$N_{-}C\alpha_{-}C\beta$	111.057	1.243
M	ET tmt $n = 33$		ME	$\Gamma \text{ pp-130 n} = 25$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-179.131	6.802	chi1	64.331	7.216
chi2	-85.941	7.670	chi2	82.303	4.913
chi3	173.719	24.069	chi3	-154.200	27.945
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	114.931	1.056	$C\alphaC\betaC\gamma$	115.459	1.202
$C\alphaCO$	120.666	0.571	$C\alphaCO$	120.981	0.586
$C\betaC\alphaC$	110.722	1.244	$C\beta_{-}C\alpha_{-}C$	111.112	0.943
$C\beta C\gamma SD$	112.722	1.792	$C\beta C\gamma SD$	113.811	2.038
$C\gammaSDC\epsilon$	100.439	1.266	$C\gammaSDC\epsilon$	100.809	2.026
$N_{-}C\alpha_{-}C$	110.032	2.930	$N_{-}C\alpha_{-}C$	110.846	1.804
$N_{-}C\alpha_{-}C\beta$	110.055	1.229	$N_{-}C\alpha_{-}C\beta$	110.961	0.993

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ME	T tmm n = 272		-	ME	T mmt n = 595	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{\chi}$	Smooth COM	StdDev	•	χ	Smooth COM	StdDev
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	chi1	-177.257	7.464		chi1	-64.971	8.702
chi3 -72.167 10.584 chi3 172.207 18.621 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha.C\beta.C\gamma$ 115.016 1.345 $C\alpha.C\beta.C\gamma$ 113.935 1.442 $C\alpha.C.O$ 120.520 0.784 $C\alpha.C.O$ 120.423 0.805 $C\beta.C\alpha.C$ 111.006 1.229 $C\beta.C\alpha.C$ 109.934 1.565 $C\beta.C\gamma.SD$ 114.013 2.127 $C\beta.C\gamma.SD$ 112.054 2.038 $C\gamma.SD.C\epsilon$ 100.852 1.655 $C\gamma.SD.C\epsilon$ 100.286 2.007 N.Cα.C 199.933 2.108 N.Cα.C 111.418 2.244 N.Cα.Cβ 110.096 1.166 N.Cα.Cβ 110.617 0.955 MET mpm n = 13 MET mmp n = 504 χ Smooth COM StdDev chi1 -77.183 5.132 chi1 -65.195 5.225 chi2 63.994 5.469 chi2 -61.634 6.375 chi3 -101.774							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alpha_{-}C\beta_{-}C\gamma$	115.016	1.345	-	$C\alphaC\betaC\gamma$	113.935	1.442
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alphaCO$	120.520	0.784		$C\alphaCO$	120.423	0.805
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\betaC\alphaC$	111.006	1.229		$C\betaC\alphaC$	109.934	1.562
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\beta_C\gamma_SD$	114.013	2.127		$C\beta_{-}C\gamma_{-}SD$	112.054	2.038
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\gamma_SD_C\epsilon$	100.852	1.655		$C\gamma_SD_C\epsilon$	100.286	2.007
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$N_{-}C\alpha_{-}C$	109.933	2.108		$N_{-}C\alpha_{-}C$	111.418	2.244
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$N_{-}C\alpha_{-}C\beta$	110.096			$N_{-}C\alpha_{-}C\beta$	110.617	0.955
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ME	T mpm n = 13		•	ME	T mmp n = 504	
chi2 63.994 5.469 chi2 -61.634 6.375 chi3 -101.774 5.027 chi3 102.180 9.173 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_{-}C\beta_{-}C\gamma$ 116.136 1.018 $C\alpha_{-}C\beta_{-}C\gamma$ 114.222 1.394 $C\alpha_{-}C\beta_{-}C\gamma$ 120.662 0.735 $C\alpha_{-}C\beta_{-}C\gamma$ 114.222 1.394 $C\alpha_{-}C\alpha_{-}C$ 109.135 1.274 $C\beta_{-}C\alpha_{-}C$ 110.240 1.537 $C\beta_{-}C\gamma_{-}SD$ 115.853 2.314 $C\beta_{-}C\gamma_{-}SD$ 113.838 2.127 $C\gamma_{-}SD_{-}C\epsilon$ 100.367 1.563 $C\gamma_{-}SD_{-}C\epsilon$ 101.229 2.164 $N_{-}C\alpha_{-}C\beta$ 111.036 1.046 $N_{-}C\alpha_{-}C\beta$ 110.829 1.096 MET mmm n = 3277 χ Smooth COM StdDev χ Smooth COM StdDev chi1 -65.551 8.899 chi1 -69.557 11.833 chi2 -60.977 8.698 chi2	χ	Smooth COM	StdDev	•	χ	Smooth COM	StdDev
chi3 -101.774 5.027 chi3 102.180 9.173 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 116.136 1.018 $C\alpha_C\beta_C\gamma$ 114.222 1.394 $C\alpha_C.O$ 120.662 0.735 $C\alpha_C.O$ 120.336 0.802 $C\beta_C\alpha_C$ 109.135 1.274 $C\beta_C\alpha_C$ 110.240 1.537 $C\beta_C\gamma_SD$ 115.853 2.314 $C\beta_C\gamma_SD$ 113.838 2.127 $C\gamma_SD_C\epsilon$ 100.367 1.563 $C\gamma_SD_C\epsilon$ 101.229 2.164 $N_C\alpha_C$ 110.742 1.813 $N_C\alpha_C$ 110.829 1.096 MET mmm n = 3277 χ Smooth COM StdDev chi1 -65.551 8.899 chi1 -69.557 11.833 chi2 -60.977 8.698 chi2 74.032 11.118 chi3 -69.165 10.164 chi3 167.387 18.897 Bond Angle Mean <t< td=""><td>chi1</td><td>-77.183</td><td>5.132</td><td>-</td><td>chi1</td><td>-65.195</td><td>5.225</td></t<>	chi1	-77.183	5.132	-	chi1	-65.195	5.225
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 116.136 1.018 $C\alpha_C\beta_C\gamma$ 114.222 1.394 $C\alpha_C_O$ 120.662 0.735 $C\alpha_C_O$ 120.336 0.802 $C\beta_C\alpha_C$ 109.135 1.274 $C\beta_C\alpha_C$ 110.240 1.537 $C\beta_C\gamma_SD$ 115.853 2.314 $C\beta_C\gamma_SD_C\epsilon$ 101.229 2.164 $N_C\alpha_C$ 110.742 1.813 $N_C\alpha_C$ 111.460 2.154 $N_C\alpha_C\beta$ 111.036 1.046 $N_C\alpha_C\beta$ 110.829 1.096 MET mmm n = 3277 MET mpt n = 33 MET mpt n = 32	chi2	63.994	5.469		chi2	-61.634	6.375
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	chi3	-101.774	5.027		chi3	102.180	9.173
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alphaC\betaC\gamma$	116.136	1.018		$C\alphaC\betaC\gamma$	114.222	1.394
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alphaCO$	120.662	0.735			120.336	0.802
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\betaC\alphaC$	109.135	1.274		$C\betaC\alphaC$	110.240	1.537
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\beta C\gamma SD$	115.853	2.314		$C\beta C\gamma SD$	113.838	2.127
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\gammaSDC\epsilon$	100.367	1.563		$C\gammaSDC\epsilon$	101.229	2.164
MET mmm n = 3277 MET mpt n = 33 χ Smooth COM StdDev χ Smooth COM StdDev chi1 -65.551 8.899 chi1 -69.557 11.833 chi2 -60.977 8.698 chi2 74.032 11.118 chi3 -69.165 10.164 chi3 167.387 18.897 Bond Angle Mean StdDev $C\alpha_{-}C\beta_{-}C\gamma$ 114.004 1.295 $C\alpha_{-}C\beta_{-}C\gamma$ 114.616 0.948 $C\alpha_{-}C\beta_{-}C\gamma$ 120.361 0.849 $C\alpha_{-}C\beta_{-}C\gamma$ 120.404 0.889 $C\beta_{-}C\alpha_{-}C$ 110.035 1.526 $C\beta_{-}C\alpha_{-}C$ 109.302 1.417 $C\beta_{-}C\gamma_{-}SD$ 113.636 1.954 $C\beta_{-}C\gamma_{-}SD$ 113.338 1.846 $C\gamma_{-}SD_{-}C\epsilon$ 100.890 1.779 $C\gamma_{-}SD_{-}C\epsilon$ 100.190 2.382 NCαC 111.616 2.388 NCαC 110.160 2.814	$N_C\alpha_C$	110.742	1.813		$N_C\alpha_C$	111.460	2.154
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$N_{-}C\alpha_{-}C\beta$	111.036	1.046		$N_{-}C\alpha_{-}C\beta$	110.829	1.096
chi1 -65.551 8.899 chi1 -69.557 11.833 chi2 -60.977 8.698 chi2 74.032 11.118 chi3 -69.165 10.164 chi3 167.387 18.897 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 114.004 1.295 $C\alpha_C\beta_C\gamma$ 114.616 0.948 $C\alpha_C_O$ 120.361 0.849 $C\alpha_C_O$ 120.404 0.889 $C\beta_C\alpha_C$ 110.035 1.526 $C\beta_C\alpha_C$ 109.302 1.417 $C\beta_C\gamma_SD$ 113.636 1.954 $C\beta_C\gamma_SD$ 113.338 1.846 $C\gamma_SD_C\epsilon$ 100.890 1.779 $C\gamma_SD_C\epsilon$ 100.190 2.382 N_C α_C 111.616 2.388 N_C α_C 110.160 2.814	MET	T mmm n = 3277	7		Ml	ET mpt $n = 33$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	χ	Smooth COM	StdDev	_	χ	Smooth COM	StdDev
chi3 -69.165 10.164 chi3 167.387 18.897 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 114.004 1.295 $C\alpha_C\beta_C\gamma$ 114.616 0.948 $C\alpha_C_O$ 120.361 0.849 $C\alpha_C_O$ 120.404 0.889 $C\beta_C\alpha_C$ 110.035 1.526 $C\beta_C\alpha_C$ 109.302 1.417 $C\beta_C\gamma_SD$ 113.636 1.954 $C\beta_C\gamma_SD$ 113.338 1.846 $C\gamma_SD_C\epsilon$ 100.890 1.779 $C\gamma_SD_C\epsilon$ 100.190 2.382 $N_C\alpha_C$ 111.616 2.388 $N_C\alpha_C$ 110.160 2.814	chi1	-65.551	8.899		chi1	-69.557	11.833
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 114.004 1.295 $C\alpha_C\beta_C\gamma$ 114.616 0.948 $C\alpha_C_O$ 120.361 0.849 $C\alpha_C_O$ 120.404 0.889 $C\beta_C\alpha_C$ 110.035 1.526 $C\beta_C\alpha_C$ 109.302 1.417 $C\beta_C\gamma_SD$ 113.636 1.954 $C\beta_C\gamma_SD$ 113.338 1.846 $C\gamma_SD_C\epsilon$ 100.890 1.779 $C\gamma_SD_C\epsilon$ 100.190 2.382 $N_C\alpha_C$ 111.616 2.388 $N_C\alpha_C$ 110.160 2.814	chi2	-60.977	8.698		chi2	74.032	11.118
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	chi3	-69.165	10.164		chi3	167.387	18.897
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bond Angle	Mean	StdDev	-	Bond Angle	Mean	StdDev
Cβ_Cα_C 110.035 1.526 Cβ_Cα_C 109.302 1.417 Cβ_Cγ_SD 113.636 1.954 Cβ_Cγ_SD 113.338 1.846 Cγ_SD_Cϵ 100.890 1.779 Cγ_SD_Cϵ 100.190 2.382 N_Cα_C 111.616 2.388 N_Cα_C 110.160 2.814		114.004	1.295	•	$C\alphaC\betaC\gamma$	114.616	0.948
$C\betaC\gammaSD$ 113.636 1.954 $C\betaC\gammaSD$ 113.338 1.846 $C\gammaSDC\epsilon$ 100.890 1.779 $C\gammaSDC\epsilon$ 100.190 2.382 $NC\alphaC$ 111.616 2.388 $NC\alphaC$ 110.160 2.814	$C\alphaCO$	120.361	0.849		$C\alphaCO$	120.404	0.889
$C\betaC\gammaSD$ 113.636 1.954 $C\betaC\gammaSD$ 113.338 1.846 $C\gammaSDC\epsilon$ 100.890 1.779 $C\gammaSDC\epsilon$ 100.190 2.382 $NC\alphaC$ 111.616 2.388 $NC\alphaC$ 110.160 2.814	$C\betaC\alphaC$	110.035	1.526		$C\beta_{-}C\alpha_{-}C$	109.302	1.417
$C\gamma_SD_C\epsilon$ 100.890 1.779 $C\gamma_SD_C\epsilon$ 100.190 2.382 $N_C\alpha_C$ 111.616 2.388 $N_C\alpha_C$ 110.160 2.814	$C\beta _C\gamma _SD$		1.954		$C\beta C\gamma SD$		1.846
$N_{-}C\alpha_{-}C$ 111.616 2.388 $N_{-}C\alpha_{-}C$ 110.160 2.814							
	$N_{-}C\alpha_{-}C$,		
	$NC\alphaC\beta$				$NC\alphaC\beta$	110.955	

MI	MET mpp $n = 73$				
χ	Smooth COM	StdDev			
chi1	-76.610	14.305			
chi2	73.172	12.244			
chi3	73.993	11.779			
Bond Angle	Mean	StdDev			
$C\alphaC\betaC\gamma$	114.613	1.338			
$C\alphaCO$	120.560	0.909			
$C\betaC\alphaC$	109.864	1.628			
$C\betaC\gammaSD$	114.196	2.171			
$C\gamma_SD_C\epsilon$	101.069	2.291			
$N_C\alpha_C$	110.683	2.689			
$N_{-}C\alpha_{-}C\beta$	110.800	1.230			

MET mtp $n = 2786$				
χ	Smooth COM	StdDev		
chi1	-66.650	7.093		
chi2	177.074	9.224		
chi3	70.464	10.141		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	113.153	1.638		
$C\alphaCO$	120.497	0.835		
$C\beta_{-}C\alpha_{-}C$	109.960	1.578		
$C\betaC\gammaSD$	112.868	2.067		
$C\gamma_SD_C\epsilon$	100.770	1.677		
$N_{-}C\alpha_{-}C$	111.249	2.347		
$N_{-}C\alpha_{-}C\beta$	110.473	1.005		

MET mtt $n = 1506$					
χ	Smooth COM	StdDev			
chi1	-67.154	7.781			
chi2	179.723	8.664			
chi3	-176.816	16.565			
Bond Angle	Mean	StdDev			
$C\alphaC\betaC\gamma$	113.590	1.725			
$C\alphaCO$	120.534	0.822			
$C\betaC\alphaC$	109.370	1.665			
$C\beta C\gamma SD$	110.372	2.190			
$C\gammaSDC\epsilon$	100.129	1.988			
$N_{-}C\alpha_{-}C$	111.160	2.251			
$N_{-}C\alpha_{-}C\beta$	110.661	0.990			

MET tpt $n = 390$					
χ	Smooth COM	StdDev			
chi1	-173.452	9.177			
chi2	65.814	7.765			
chi3	-156.289	31.207			
Bond Angle	Mean	StdDev			
$C\alphaC\betaC\gamma$	114.091	1.456			
$C\alphaCO$	120.527	0.740			
$C\beta C\alpha C$	110.472	1.138			
$C\betaC\gammaSD$	112.463	2.079			
$C\gammaSDC\epsilon$	100.438	2.106			
$N_{-}C\alpha_{-}C$	110.444	2.253			
$N_C\alpha_C\beta$	110.318	1.375			

MET mtm n = 1805					
χ	Smooth COM	StdDev			
chi1	-66.363	7.887			
chi2	-177.825	10.720			
chi3	-73.985	10.892			
Bond Angle	Mean	StdDev			
$C\alphaC\betaC\gamma$	113.186	1.706			
$C\alphaCO$	120.486	0.897			
$C\beta_{-}C\alpha_{-}C$	109.934	1.643			
$C\beta C\gamma SD$	112.910	2.147			
$C\gamma_SD_C\epsilon$	100.768	1.772			
$N_{-}C\alpha_{-}C$	111.046	2.320			
$NC\alphaC\beta$	110.674	1.065			

3.7 GLU

GLU pp20 n = 154			GLU tt0 n = 13252		
GL					0: ID
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	61.255	7.965	chi1	-176.677	8.640
chi2	85.644	8.039	chi2	177.900	10.316
chi3	19.654	17.432	chi3	1.122	41.331
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	115.526	1.295	$C\alpha_{-}C\beta_{-}C\gamma$	113.479	1.738
$C\alphaCO$	120.432	0.854	$C\alphaCO$	120.578	0.764
$C\beta_{-}C\alpha_{-}C$	111.610	1.873	$C\beta C\alpha C$	110.134	1.167
$C\betaC\gammaC\delta$	114.078	1.327	$C\betaC\gammaC\delta$	113.089	1.497
$C\gammaC\deltaO\epsilon 1$	119.009	1.429	$C\gammaC\deltaO\epsilon 1$	118.950	1.272
$C\gammaC\deltaO\epsilon 2$	118.383	1.360	$C\gammaC\deltaO\epsilon 2$	117.959	1.267
$N_{-}C\alpha_{-}C$	110.806	2.534	$N_{-}C\alpha_{-}C$	110.581	2.266
$N_{-}C\alpha_{-}C\beta$	111.442	1.256	$NC\alphaC\beta$	110.349	1.370
$O\epsilon 1_C\delta O\epsilon 2$	122.588	1.027	$O\epsilon 1 C\delta O\epsilon 2$	123.066	1.062
GLU	mm-30 n = 882	7	GLU	J tm-30 n = 834	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-66.002	8.684	chi1	-170.330	8.522
chi2	-66.544	10.539	chi2	-83.400	9.292
chi3	-31.662	26.892	chi3	-28.718	17.355
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	114.040	1.409	$C\alpha_{-}C\beta_{-}C\gamma$	114.512	1.350
$C\alphaCO$	120.414	0.822	$C\alphaCO$	120.511	0.830
$C\betaC\alphaC$	109.927	1.495	$C\beta_{-}C\alpha_{-}C$	110.950	1.298
$C\betaC\gammaC\delta$	113.359	1.332	$C\betaC\gammaC\delta$	113.802	1.459
$C\gammaC\deltaO\epsilon 1$	119.157	1.337	$C\gamma C\delta O\epsilon 1$	119.005	1.342
$C\gammaC\deltaO\epsilon 2$	118.207	1.255	$C\gammaC\deltaO\epsilon 2$	118.200	1.230
$N_{-}C\alpha_{-}C$	111.482	2.363	$N_{-}C\alpha_{-}C$	110.251	2.444
$N_{-}C\alpha_{-}C\beta$	110.749	1.014	$N_{-}C\alpha_{-}C\beta$	110.249	1.161
$O\epsilon 1_C\delta_O\epsilon 2$	122.618	1.085	$O\epsilon 1_C\delta_O\epsilon 2$	122.771	1.168
GLU	U tp30 n = 4517		GLU	mt-10 n = 2043	5
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-178.170	9.868	chi1	-66.989	7.734
chi2	64.992	9.194	chi2	179.213	11.391
chi3	25.784	26.056	chi3	-6.596	37.288
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	114.624	1.390	$C\alpha_{-}C\beta_{-}C\gamma$	113.034	1.847
$C\alphaCO$	120.487	0.801	$C\alphaCO$	120.491	0.820
$C\beta _C\alpha _C$	110.638	1.211	$C\beta _C\alpha _C$	110.013	1.730
$C\beta C\gamma C\delta$	113.765	1.352	$C\betaC\gammaC\delta$	113.251	1.498
$C\gammaC\deltaO\epsilon 1$	119.283	1.461	$C\gammaC\deltaO\epsilon 1$	119.080	1.288
$C\gammaC\deltaO\epsilon 2$	118.040	1.377	$C\gammaC\deltaO\epsilon 2$	117.941	1.283
$N_{-}C\alpha_{-}C$	110.864	2.098	$N_{-}C\alpha_{-}C$	111.369	2.319
$N_{-}C\alpha_{-}C\beta$	110.284	1.125	$N_{-}C\alpha_{-}C\beta$	110.592	1.005
$O\epsilon 1_C\delta_O\epsilon 2$	122.657	1.067	$O\epsilon 1_C\delta_O\epsilon 2$	122.956	1.064
	•			-	-

GLU mp0 n = 3570				
χ	Smooth COM	StdDev		
chi1	-66.877	7.314		
chi2	82.550	9.370		
chi3	3.347	27.571		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	114.363	1.328		
$C\alphaCO$	120.434	0.809		
$C\betaC\alphaC$	109.686	1.410		
$C\betaC\gammaC\delta$	114.151	1.383		
$C\gammaC\deltaO\epsilon 1$	119.757	1.672		
$C\gammaC\deltaO\epsilon 2$	117.768	1.507		
$N_C\alpha_C$	112.038	2.010		
$N_C\alpha_C\beta$	110.605	1.052		
$O\epsilon 1_C\delta_O\epsilon 2$	122.455	1.156		

GLU pm20 n = 1442				
χ	Smooth COM	StdDev		
chi1	69.039	8.862		
chi2	-84.712	8.530		
chi3	15.811	21.596		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	115.546	1.342		
$C\alphaCO$	120.198	0.828		
$C\betaC\alphaC$	110.500	1.241		
$C\betaC\gammaC\delta$	114.428	1.424		
$C\gammaC\deltaO\epsilon 1$	119.754	1.696		
$C\gammaC\deltaO\epsilon 2$	117.707	1.688		
$N_{-}C\alpha_{-}C$	112.894	1.830		
$N_{-}C\alpha_{-}C\beta$	110.902	1.048		
$O\epsilon 1C\deltaO\epsilon 2$	122.522	1.102		

GLU pt0 n = 2737				
χ	Smooth COM	StdDev		
chi1	65.363	8.368		
chi2	-177.309	10.096		
chi3	1.201	50.935		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	114.600	1.599		
$C\alphaCO$	120.522	0.920		
$C\beta C\alpha C$	110.505	1.492		
$C\betaC\gammaC\delta$	112.911	1.513		
$C\gammaC\deltaO\epsilon 1$	118.934	1.375		
$C\gamma_C\delta_O\epsilon_2$	118.167	1.348		
$N_{-}C\alpha_{-}C$	111.278	2.665		
$N_C\alpha_C\beta$	111.058	1.175		
$O\epsilon 1_C\delta_O\epsilon 2$	122.874	1.131		

3.8 GLN

chi1 -65.092 8.620 chi1 -176.823 8 chi2 -62.550 10.849 chi2 66.430 8	StdDev
chi2 -62.550 10.849 chi2 66.430	0.701
	8.781
chi3 100 265 23 025 chi3 41 056	8.201
Chi 103.209 23.329 Chi 41.000	24.280
Bond Angle Mean StdDev Bond Angle Mean S	StdDev
	1.428
	0.793
$C\beta C\alpha C$ 110.002 1.531 $C\beta C\alpha C$ 110.232	1.153
$C\beta C\gamma C\delta$ 112.863 1.383 $C\beta C\gamma C\delta$ 112.878	1.233
$C\gamma C\delta N\epsilon 2$ 116.570 0.905 $C\gamma C\delta N\epsilon 2$ 116.588	0.835
$C\gamma - C\delta - O\epsilon 1$ 120.808 0.913 $C\gamma - C\delta - O\epsilon 1$ 120.793	0.875
$N_{-}C\alpha_{-}C$ 111.600 2.285 $N_{-}C\alpha_{-}C$ 111.026	1.999
$N_{-}C\alpha_{-}C\beta$ 110.721 1.056 $N_{-}C\alpha_{-}C\beta$ 110.574	1.131
$Oε1_Cδ_Nε2$ 122.597 0.671 $Oε1_Cδ_Nε2$ 122.598	0.643
GLN mp10 n = 1187 GLN mt0 n = 14026	
χ Smooth COM StdDev χ Smooth COM S	StdDev
chi1 -66.517 9.049 chi1 -66.588	7.476
chi2 81.837 11.546 chi2 179.220	11.202
chi3 17.344 37.550 chi3 -3.560	62.388
Bond Angle Mean StdDev Bond Angle Mean	StdDev
$C\alpha_C\beta_C\gamma$ 114.250 1.346 $C\alpha_C\beta_C\gamma$ 113.237	1.811
$C\alpha_{-}C_{-}O$ 120.446 0.828 $C\alpha_{-}C_{-}O$ 120.497	0.847
$C\beta C\alpha C$ 109.772 1.526 $C\beta C\alpha C$ 109.920	1.708
$C\beta C\gamma C\delta$ 113.448 1.277 $C\beta C\gamma C\delta$ 112.642	1.529
$C\gamma C\delta N\epsilon 2$ 116.324 0.810 $C\gamma C\delta N\epsilon 2$ 116.445	0.841
$C\gamma C\delta O\epsilon 1$ 121.133 0.931 $C\gamma C\delta O\epsilon 1$ 120.847	0.890
$N_{-}C\alpha_{-}C$ 111.602 2.349 $N_{-}C\alpha_{-}C$ 111.409	2.257
$N_{-}C\alpha_{-}C\beta$ 110.833 1.087 $N_{-}C\alpha_{-}C\beta$ 110.563	1.036
$Oε1_Cδ_Nε2$ 122.523 0.586 $Oε1_Cδ_Nε2$ 122.682	0.689
GLN tt0 n = 6749 GLN mp- $120 n = 83$	
χ Smooth COM StdDev χ Smooth COM S	StdDev
	9.919
	10.790
chi3 2.032 60.613 chi3 -119.632	12.192
Bond Angle Mean StdDev Bond Angle Mean S	StdDev
	1.549
	0.847
	1.696
	1.500
·	0.649
$C\gamma _C\delta _O\epsilon 1$ 120.817 0.867 $C\gamma _C\delta _O\epsilon 1$ 120.637	1.108
$N_{-}C\alpha_{-}C$ 110.451 2.274 $N_{-}C\alpha_{-}C$ 111.532	2.739
$N_{-}C\alpha_{-}C\beta$ 110.304 1.357 $N_{-}C\alpha_{-}C\beta$ 110.709	0.977
$Oε1_Cδ_Nε2$ 122.706 0.685 $Oε1_Cδ_Nε2$ 122.749	0.812

GLN	V tm-30 n = 539		GL	N pp30 n = 177	
$\overline{\chi}$	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-171.950	10.161		62.991	7.823
chi2	-85.646	11.058	chi2	83.801	8.485
chi3	-29.401	20.426	chi3	29.841	20.931
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	114.612	1.344	$C\alpha_{-}C\beta_{-}C\gamma$	115.887	1.282
$C\alpha$ - C - O	120.536	0.819	$C\alpha_{-}C_{-}O$	120.325	0.953
$C\betaC\alphaC$	110.941	1.307	$C\beta_{-}C\alpha_{-}C$	111.407	1.624
$C\beta$ _ $C\gamma$ _ $C\delta$	113.498	1.404	$C\beta$ _ $C\gamma$ _ $C\delta$	113.607	1.405
$C\gamma_{-}C\delta_{-}N\epsilon_{2}$	116.468	0.706	$C\gamma_{-}C\delta_{-}N\epsilon_{2}$	116.445	0.893
$C\gamma_{-}C\delta_{-}O\epsilon 1$	120.874	0.810	$C\gamma_{-}C\delta_{-}N\epsilon_{2}$ $C\gamma_{-}C\delta_{-}O\epsilon_{1}$	120.889	0.949
N_Cα_C	110.165	2.523	N_Cα_C	111.018	2.559
$N_{-}C\alpha_{-}C\beta$	110.103	1.228	$N_{-}C\alpha_{-}C\beta$	111.503	1.154
$O_{\epsilon}1_{C}\delta_{N}\epsilon_{2}$	122.632	0.658	$O_{\epsilon}1_{-}C\delta_{-}N_{\epsilon}2$	122.628	0.671
OEL-CO-INEZ	122.032	0.008	OELCO_NEZ	122.028	0.071
GLN	mm-40 n = 5810		GLI	N pm20 n = 482	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-63.698	8.646	chi1	69.577	9.930
chi2	-66.032	10.451	chi2	-84.394	9.331
chi3	-38.665	24.773	chi3	16.576	32.807
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.889	1.415	$C\alphaC\betaC\gamma$	115.691	1.412
$C\alphaCO$	120.460	0.866	$C\alphaCO$	120.313	0.930
$C\betaC\alphaC$	109.906	1.487	$C\betaC\alphaC$	110.424	1.358
$C\betaC\gammaC\delta$	112.837	1.262	$C\betaC\gammaC\delta$	113.923	1.416
$C\gamma_{-}C\delta_{-}N\epsilon_{2}$	116.519	0.900	$C\gamma_{-}C\delta_{-}N\epsilon_{2}$	116.267	0.854
$C\gammaC\deltaO\epsilon 1$	120.852	0.903	$C\gammaC\deltaO\epsilon 1$	121.245	0.989
$N_{-}C\alpha_{-}C$	111.379	2.459	$N_{-}C\alpha_{-}C$	112.378	2.247
$N_{-}C\alpha_{-}C\beta$	110.631	1.031	$N_{-}C\alpha_{-}C\beta$	111.157	1.118
$O\epsilon 1 C\delta N\epsilon 2$	122.607	0.768	$O_{\epsilon}1_{-}C\delta_{-}N_{\epsilon}2$	122.467	0.703
GLN	$\frac{\text{T tp-100 n} = 521}{\text{Continuous}}$	G. ID		$\frac{\text{N tm}130 \text{ n} = 55}{\text{Continuous}}$	G. ID
<u>X</u>	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-176.963	8.590	chi1	-171.730	9.735
chi2	62.135	8.893	chi2	-75.893	10.370
chi3	-104.704	27.432	chi3	127.247	16.058
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	114.430	1.558	$C\alphaC\betaC\gamma$	114.897	1.440
$C\alphaCO$	120.564	0.833	$C\alphaCO$	120.546	0.938
$C\beta C\alpha C$	110.516	1.241	$C\beta C\alpha C$	111.262	1.629
$^{'}_{C\beta}$ _ $C\gamma$ _ $C\delta$	113.019	1.281	$C\beta C\gamma C\delta$	114.423	2.701
$C\gamma_C\delta_N\epsilon_2$	116.543	0.918	$C\gamma_C\delta_N\epsilon_2$	117.082	1.285
$C\gamma C\delta O\epsilon 1$	120.881	0.822	$C\gammaC\deltaO\epsilon 1$	120.469	1.172
$N_{-}C\alpha_{-}C$	110.370	2.300	$N_{-}C\alpha_{-}C$	108.797	3.399
$N_C\alpha_C\beta$	110.391	1.244	$N_{-}C\alpha_{-}C\beta$	110.136	1.370
$O\epsilon 1_C\delta_N\epsilon 2$	122.550	0.627	$O\epsilon 1_C\delta_N\epsilon 2$	122.423	0.743

GLN pt0 n = 1835				
χ	Smooth COM	StdDev		
chi1	64.891	8.131		
chi2	-177.468	11.198		
chi3	-2.755	74.395		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	114.517	1.517		
$C\alphaCO$	120.550	0.960		
$C\betaC\alphaC$	110.345	1.504		
$C\betaC\gammaC\delta$	112.491	1.445		
$C\gammaC\deltaN\epsilon_2$	116.506	0.933		
$C\gammaC\deltaO\epsilon 1$	120.837	0.965		
$N_{-}C\alpha_{-}C$	111.298	2.626		
$N_{-}C\alpha_{-}C\beta$	110.942	1.179		
$O\epsilon 1C\deltaN\epsilon 2$	122.633	0.755		

3.9 ASP

ASI	P p0 n = 11526		ASP	m-30 n = 36384	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1 chi2	62.914 -2.097	7.500 31.055	chi1 chi2	-68.819 -29.214	8.160 22.411
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.469	1.002	$C\alpha_{-}C\beta_{-}C\gamma$	112.902	0.936
$C\alphaCO$	120.397	0.901	$C\alphaCO$	120.452	0.853
$C\betaC\alphaC$	111.291	1.644	$C\betaC\alphaC$	109.347	1.666
$C\beta C\gamma O\delta 1$	119.663	1.557	$C\beta C\gamma O\delta 1$	119.177	1.359
$C\betaC\gammaO\delta 2$	118.192	1.766	$C\betaC\gammaO\delta 2$	118.245	1.700
$N_{-}C\alpha_{-}C$	112.193	2.552	$N_{-}C\alpha_{-}C$	111.688	2.299
$N_{-}C\alpha_{-}C\beta$	111.140	1.255	$N_{-}C\alpha_{-}C\beta$	110.770	1.053
$O\delta1$ - $C\gamma$ - $O\delta2$	122.119	1.637	$O\delta1$ _ $C\gamma$ _ $O\delta2$	122.552	1.551
AS	P t70 n = 5865		AS	P t0 n = 16717	
AS	P t70 n = 5865 Smooth COM	StdDev	AS	P t0 n = 16717 Smooth COM	StdDev
	Smooth COM	StdDev 9.216		Smooth COM	
χ			χ		StdDev 10.160 23.746
$\frac{\chi}{\text{chi1}}$	Smooth COM -174.210	9.216	$\frac{\chi}{\text{chi1}}$	Smooth COM -171.502	10.160
χ chi1 chi2	Smooth COM -174.210 74.194	9.216 19.794	χ chi1 chi2	Smooth COM -171.502 -1.704	10.160 23.746
χ chi1 chi2 Bond Angle	Smooth COM -174.210 74.194 Mean	9.216 19.794 StdDev	λ chi1 chi2 Bond Angle	Smooth COM -171.502 -1.704 Mean	10.160 23.746 StdDev
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \end{array}$	Smooth COM -174.210 74.194 Mean 112.426	9.216 19.794 StdDev 0.823	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \text{Bond Angle} \\ \hline \text{C}\alpha\text{-C}\beta\text{-C}\gamma \end{array}$	Smooth COM -171.502 -1.704 Mean 113.205	10.160 23.746 StdDev 0.900
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{C}\alpha\text{-C}\beta\text{-C}\gamma \\ \\ \text{C}\alpha\text{-C}\text{-O} \\ \end{array}$	Smooth COM -174.210 74.194 Mean 112.426 120.491	9.216 19.794 StdDev 0.823 0.796	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{C}\alpha\text{-C}\beta\text{-C}\gamma \\ \\ \text{C}\alpha\text{-C-O} \\ \end{array}$	Smooth COM -171.502 -1.704 Mean 113.205 120.702	10.160 23.746 StdDev 0.900 0.883
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \end{array}$	Smooth COM -174.210 74.194 Mean 112.426 120.491 110.134	9.216 19.794 StdDev 0.823 0.796 1.272	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha\text{-C}\beta\text{-C}\gamma \\ \\ \text{C}\alpha\text{-C}\text{-O} \\ \\ \text{C}\beta\text{-C}\alpha\text{-C} \\ \end{array}$	Smooth COM -171.502 -1.704 Mean 113.205 120.702 110.864	10.160 23.746 StdDev 0.900 0.883 1.228
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_O\delta1 \\ \end{array}$	Smooth COM -174.210 74.194 Mean 112.426 120.491 110.134 118.489	9.216 19.794 StdDev 0.823 0.796 1.272 1.107	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -171.502 -1.704 Mean 113.205 120.702 110.864 119.522	10.160 23.746 StdDev 0.900 0.883 1.228 1.384
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -174.210 74.194 Mean 112.426 120.491 110.134 118.489 118.722	9.216 19.794 StdDev 0.823 0.796 1.272 1.107 1.560	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta_\text{$C\gamma$} \\ \text{$C\alpha$_$C$_$O} \\ \text{$C\beta$_$C}\alpha_\text{$C$} \\ \text{$C\beta$_$C}\gamma_\text{$O\delta1$} \\ \text{$C\beta$_$C}\gamma_\text{$O\delta2$} \\ \end{array}$	Smooth COM -171.502 -1.704 Mean 113.205 120.702 110.864 119.522 118.080	10.160 23.746 StdDev 0.900 0.883 1.228 1.384 1.724

3.10 ASN

AS	N p0 n = 7385		AS	5N t160 n = 56	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	63.756	7.814	chi1	-161.337	7.578
chi2	6.662	43.346	chi2	163.600	8.776
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.139	0.870	$C\alpha_{-}C\beta_{-}C\gamma$	114.281	1.565
$C\alphaCO$	120.393	0.954	$C\alphaCO$	120.446	0.868
$C\betaC\alphaC$	111.269	1.680	$C\betaC\alphaC$	111.284	1.393
$C\beta_C\gamma_N\delta 2$	116.351	0.897	$C\beta_C\gamma_N\delta 2$	117.039	2.119
$C\beta C\gamma O\delta 1$	121.125	0.973	$C\betaC\gammaO\delta 1$	120.497	2.042
$N_{-}C\alpha_{-}C$	111.980	2.779	$N_{-}C\alpha_{-}C$	110.082	1.999
$N_{-}C\alpha_{-}C\beta$	111.066	1.277	$N_{-}C\alpha_{-}C\beta$	109.206	1.421
$O\delta1$ _ $C\gamma$ _ $N\delta2$	122.499	0.705	$O\delta1$ _ $C\gamma$ _ $N\delta2$	122.414	0.810
ASN m-40 n = 25697			ASN t0 n = 15308		
ASN	m-40 n = 25697		AS	N t0 n = 15308	
$\frac{\text{ASN}}{\chi}$	$\frac{\text{m-40 n} = 25697}{\text{Smooth COM}}$	StdDev	$\frac{AS}{\chi}$	$\frac{\text{N t0 n} = 15308}{\text{Smooth COM}}$	StdDev
					StdDev 10.519
χ	Smooth COM	StdDev	χ	Smooth COM	
$\frac{\chi}{\text{chi1}}$	Smooth COM -69.790	StdDev 9.114	$\frac{\chi}{\text{chi1}}$	Smooth COM -171.473	10.519
χ chi1 chi2	Smooth COM -69.790 -41.669	9.114 26.309	χ chi1 chi2	Smooth COM -171.473 -1.493	10.519 54.722
χ chi1 chi2 Bond Angle	Smooth COM -69.790 -41.669 Mean	9.114 26.309 StdDev	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \end{array}$	Smooth COM -171.473 -1.493 Mean	10.519 54.722 StdDev
χ chi1 chi2 Bond Angle $C\alpha C\beta C\gamma$	Smooth COM -69.790 -41.669 Mean 112.456	9.114 26.309 StdDev 0.907	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \end{array}$	Smooth COM -171.473 -1.493 Mean 112.732	10.519 54.722 StdDev 0.908
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha\text{_C}\beta\text{_C}\gamma \\ \\ \text{C}\alpha\text{_C}\text{_O} \end{array}$	Smooth COM -69.790 -41.669 Mean 112.456 120.432	StdDev 9.114 26.309 StdDev 0.907 0.865	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ \end{array}$	Smooth COM -171.473 -1.493 Mean 112.732 120.616	10.519 54.722 StdDev 0.908 0.872
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha\text{_C}\beta\text{_C}\gamma \\ \\ \text{C}\alpha\text{_C}\text{_O} \\ \\ \text{C}\beta\text{_C}\alpha\text{_C} \\ \end{array}$	Smooth COM -69.790 -41.669 Mean 112.456 120.432 110.002	9.114 26.309 StdDev 0.907 0.865 1.725	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \end{array}$	Smooth COM -171.473 -1.493 Mean 112.732 120.616 110.607	10.519 54.722 StdDev 0.908 0.872 1.304
χ chi1 chi2 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$ $C\beta_C\alpha_C$ $C\beta_C\alpha_C$ $C\beta_C\gamma_N\delta 2$	Smooth COM -69.790 -41.669 Mean 112.456 120.432 110.002 116.530	9.114 26.309 StdDev 0.907 0.865 1.725 0.836	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -171.473 -1.493 Mean 112.732 120.616 110.607 116.453	10.519 54.722 StdDev 0.908 0.872 1.304 0.843
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{$C\alpha$-$C\beta$-$C\gamma$} \\ \text{$C\alpha$-C-$O} \\ \text{$C\beta$-$C\alpha$-$C} \\ \text{$C\beta$-$C\alpha$-$C} \\ \text{$C\beta$-$C\gamma$-$N\delta2} \\ \text{$C\beta$-$C\gamma$-$O\delta1} \\ \end{array}$	Smooth COM -69.790 -41.669 Mean 112.456 120.432 110.002 116.530 120.778	9.114 26.309 StdDev 0.907 0.865 1.725 0.836 0.885	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \hline \text{$C\alpha$-C\beta$-$Cγ} \\ \hline \\ \hline \\ \hline \text{$C\alpha$-C-C0} \\ \hline \\ $	Smooth COM -171.473 -1.493 Mean 112.732 120.616 110.607 116.453 120.905	10.519 54.722 StdDev 0.908 0.872 1.304 0.843 0.913
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -69.790 -41.669 Mean 112.456 120.432 110.002 116.530 120.778 112.235	9.114 26.309 StdDev 0.907 0.865 1.725 0.836 0.885 2.548	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{$C\alpha$-$C\beta$-$C\gamma$} \\ \hline \\ \text{$C\alpha$-C-C} \\ \hline \\ \text{$C\beta$-$C\alpha$-C} \\ \hline \\ \text{$C\beta$-$C\gamma$-N} \\ \hline \\ \text{$C\beta$-$C\gamma$-O} \\ \hline \\ \text{N-$C\alpha$-C} \\ \hline \end{array}$	Smooth COM -171.473 -1.493 Mean 112.732 120.616 110.607 116.453 120.905 110.117	10.519 54.722 StdDev 0.908 0.872 1.304 0.843 0.913 2.823

ASN m110 n = 3886				
χ	Smooth COM	StdDev		
chi1	-63.571	9.679		
chi2	114.583	28.375		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	112.713	1.132		
$C\alphaCO$	120.506	0.899		
$C\beta C\alpha C$	109.539	1.836		
$C\beta C\gamma N\delta 2$	116.636	1.126		
$C\beta C\gamma O\delta 1$	120.721	1.167		
$N_{-}C\alpha_{-}C$	112.034	2.790		
$N_C\alpha_C\beta$	110.628	1.191		
$O\delta1_C\gamma_N\delta2$	122.605	0.788		

3.11 ILE

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		E pp $n = 249$			E pt $n = 8645$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	chi1	57.851	7.675	chi1	62.073	6.087	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	chi2	84.312	12.931	chi2	170.331	7.588	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alpha_{-}C\beta_{-}C\gamma 1$	112.485	1.254	$C\alpha_{-}C\beta_{-}C\gamma 1$	111.330	1.075	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alphaC\betaC\gamma_2$	109.879	1.139	$C\alphaC\betaC\gamma_2$	110.177	0.934	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alphaCO$	120.525	0.863	$C\alphaCO$	120.533	0.928	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\betaC\alphaC$	111.330	1.609	$C\betaC\alphaC$	110.103	1.672	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		114.992	1.744	$C\betaC\gamma_1C\delta_1$		1.247	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						2.736	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$N_{-}C\alpha_{-}C\beta$	112.297	1.259	$N_{-}C\alpha_{-}C\beta$	112.261	1.194	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ILE	$mm \ n = 11046$			E tt n = 4078		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	chi1	-59.020	7.075	chi1	-169.614	7.781	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	chi2	-61.129	7.345	chi2	166.622	6.921	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alphaC\betaC\gamma 1$	110.896	1.118	$C\alpha C\beta C\gamma 1$	110.677	1.069	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alphaC\betaC\gamma_2$	110.751	0.967	$C\alphaC\betaC\gamma_2$	111.388	1.031	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		120.511	0.804		120.602	0.824	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		109.830	1.601	•	111.624	1.486	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{ c c c c c c c c }\hline \chi & Smooth COM & StdDev \\\hline \hline \chi & Smooth COM & StdDev \\\hline \hline chi1 & -167.339 & 7.850 & chi1 & -62.999 & 6.422 \\ chi2 & 65.770 & 7.308 & chi2 & 169.237 & 7.398 \\\hline \hline Bond Angle & Mean & StdDev & Bond Angle & Mean & StdDev \\\hline \hline \hline $C\alpha_C\beta_C\gamma1$ & 111.100 & 1.136 & $C\alpha_C\beta_C\gamma1$ & 109.978 & 1.076 \\ \hline \hline $C\alpha_C\beta_C\gamma2$ & 111.430 & 1.023 & $C\alpha_C\beta_C\gamma2$ & 110.616 & 0.917 \\ \hline \hline $C\alpha_C_CO$ & 120.358 & 0.810 & $C\alpha_C_C$ & 120.542 & 0.787 \\ \hline \hline $C\beta_C\alpha_C$ & 111.524 & 1.465 & $C\beta_C\alpha_C$ & 110.356 & 1.578 \\ \hline \hline $C\beta_C\gamma1_C\delta1$ & 114.154 & 1.143 & $C\beta_C\gamma1_C\delta1$ & 113.965 & 1.222 \\ \hline \hline $C\gamma1_C\beta_C\gamma2$ & 110.812 & 1.705 & $C\gamma1_C\beta_C\gamma2$ & 110.758 & 1.434 \\ \hline \hline $N_C\alpha_C$ & 111.583 & 2.335 & $N_C\alpha_C$ & 109.402 & 2.339 \\\hline \hline \end{tabular}$	$N_{-}C\alpha_{-}C\beta$	111.306	1.147	$N_{-}C\alpha_{-}C\beta$	111.359	1.324	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IL	E tp n = 1847		ILF	ILE mt $n = 43618$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma1$ 111.100 1.136 $C\alpha_C\beta_C\gamma1$ 109.978 1.076 $C\alpha_C\beta_C\gamma2$ 111.430 1.023 $C\alpha_C\beta_C\gamma2$ 110.616 0.917 $C\alpha_C_O$ 120.358 0.810 $C\alpha_C_O$ 120.542 0.787 $C\beta_C\alpha_C$ 111.524 1.465 $C\beta_C\alpha_C$ 110.356 1.578 $C\beta_C\gamma1_C\delta1$ 114.154 1.143 $C\beta_C\gamma1_C\delta1$ 113.965 1.222 $C\gamma1_C\beta_C\gamma2$ 110.812 1.705 $C\gamma1_C\beta_C\gamma2$ 110.758 1.434 $N_C\alpha_C$ 111.583 2.335 $N_C\alpha_C$ 109.402 2.339	chi1	-167.339	7.850	chi1	-62.999	6.422	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	chi2	65.770	7.308	chi2	169.237	7.398	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C\alphaC\betaC\gamma 1$	111.100	1.136	$C\alphaC\betaC\gamma_1$	109.978	1.076	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C\alphaC\betaC\gamma_2$	111.430	1.023	$C\alphaC\betaC\gamma_2$	110.616	0.917	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		120.358	0.810		120.542	0.787	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		111.524	1.465		110.356	1.578	
$N_{-}C\alpha_{-}C$ 111.583 2.335 $N_{-}C\alpha_{-}C$ 109.402 2.339	$C\beta C\gamma 1C\delta 1$	114.154		· ·	113.965	1.222	
		110.812			110.758		
N_{-} Cα_Cβ 111.448 1.270 N_{-} Cα_Cβ 111.245 1.146							
	$N_{C}\alpha_{C}\beta$	111.448	1.270	$N_{-}C\alpha_{-}C\beta$	111.245	1.146	

ILE mp $n = 614$				
χ	Smooth COM	StdDev		
chi1	-62.667	11.655		
chi2	88.683	16.644		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma 1$	111.152	1.098		
$C\alphaC\betaC\gamma_2$	110.469	1.062		
$C\alphaCO$	120.467	0.810		
$C\betaC\alphaC$	110.120	1.628		
$C\betaC\gamma_1C\delta_1$	114.581	1.662		
$C\gamma 1C\betaC\gamma 2$	109.327	1.871		
$N_{-}C\alpha_{-}C$	108.384	2.266		
$N_{-}C\alpha_{-}C\beta$	111.945	1.274		

3.12 LEU

LE	U pp n = 512		LI	EU pt $n = 370$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	61.357	8.260	chi1	72.738	8.428
chi2	83.113	9.544	chi2	164.797	10.811
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	119.074	2.535	$C\alpha_C\beta_C\gamma$	118.708	2.158
$C\alphaCO$	120.599	0.824	$C\alphaCO$	120.799	0.825
$C\beta_{-}C\alpha_{-}C$	111.509	1.361	$C\betaC\alphaC$	110.378	1.437
$C\beta_{-}C\gamma_{-}C\delta 1$	111.513	1.887	$C\betaC\gammaC\delta 1$	109.758	1.529
$C\betaC\gammaC\delta_2$	109.775	1.660	$C\betaC\gammaC\delta 2$	111.528	1.838
$C\delta1_C\gamma_C\delta2$	109.707	1.213	$C\delta1_C\gamma_C\delta2$	110.465	1.219
$N_{-}C\alpha_{-}C$	110.709	2.388	$N_{-}C\alpha_{-}C$	110.509	2.441
$N_{-}C\alpha_{-}C\beta$	111.100	1.154	$N_{-}C\alpha_{-}C\beta$	111.534	1.191
LEV	U mm n = 474		LF	EU tt n = 1543	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-82.802	10.193	chi1	-172.476	8.444
chi2	-63.907	10.043	chi2	153.401	10.545
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	117.802	2.617	$C\alphaC\betaC\gamma$	117.300	2.743
$C\alphaCO$	120.327	0.897	$C\alphaCO$	120.591	0.855
$C\beta C\alpha C$	110.079	1.585	$C\betaC\alphaC$	111.048	1.242
$C\beta_{-}C\gamma_{-}C\delta 1$	110.837	1.600	$C\betaC\gammaC\delta 1$	110.116	1.529
$C\betaC\gammaC\delta_2$	111.869	1.704	$C\betaC\gammaC\delta_2$	111.579	1.817
$C\delta1_C\gamma_C\delta2$	110.713	1.358	$C\delta1_C\gamma_C\delta2$	110.451	1.308
$N_{-}C\alpha_{-}C$	111.122	2.643	$N_{-}C\alpha_{-}C$	109.129	2.493
$N_{-}C\alpha_{-}C\beta$	111.014	0.980	$N_{-}C\alpha_{-}C\beta$	110.195	1.261
LEU	U tp n = 34062		LEU	U mt n = 72793	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-177.276	8.225	chi1	-65.787	8.163
chi2	62.594	6.962	chi2	174.346	8.051
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_C\beta_C\gamma$	116.491	2.056	$C\alphaC\betaC\gamma$	115.860	2.171
$C\alphaCO$	120.525	0.785	$C\alphaCO$	120.430	0.817
$C\betaC\alphaC$	110.188	1.203	$C\beta C\alpha C$	109.809	1.417
$C\betaC\gammaC\delta 1$	111.063	1.552	$C\betaC\gammaC\delta 1$	109.881	1.463
$C\betaC\gammaC\delta_2$	109.781	1.492	$C\betaC\gammaC\delta_2$	110.956	1.546
$C\delta1_C\gamma_C\delta2$	110.707	1.132	$C\delta1_C\gamma_C\delta2$	110.777	1.105
$N_{-}C\alpha_{-}C$	110.160	2.381	$N_C\alpha_C$	111.390	2.344
$N_{-}C\alpha_{-}C\beta$	110.305	1.145	$N_{-}C\alpha_{-}C\beta$	110.598	0.982

LE	EU tm n = 145		LE	U mp n = 2658	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1 chi2	-171.753 -75.044	5.870 6.633	chi1 chi2	-77.359 71.504	$12.558 \\ 15.804$
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	120.433	2.351	$C\alpha_{-}C\beta_{-}C\gamma$	116.585	2.650
$C\alphaCO$	120.579	0.798	$C\alphaCO$	120.462	0.844
$C\betaC\alphaC$	111.294	1.167	$C\beta C\alpha C$	109.673	1.563
$C\beta_C\gamma_C\delta 1$	112.234	1.906	$C\beta_{-}C\gamma_{-}C\delta 1$	111.636	2.028
$C\beta_{-}C\gamma_{-}C\delta 2$	111.621	1.665	$C\betaC\gammaC\delta_2$	109.927	1.589
$C\delta1_C\gamma_C\delta2$	111.440	1.427	$C\delta1_C\gamma_C\delta2$	110.500	1.462
$N_{-}C\alpha_{-}C$	108.534	2.345	$N_{-}C\alpha_{-}C$	110.153	2.651
$N_{-}C\alpha_{-}C\beta$	109.909	1.162	$N_{-}C\alpha_{-}C\beta$	111.073	1.022

3.13 HIS

HIS	t-170 n = 1307			HIS	5 p90 n = 1454	
χ	Smooth COM	StdDev	2	χ	Smooth COM	StdDev
chi1	-173.314	9.678	_	chi1	62.492	9.688
chi2	-167.114	21.578	(chi2	86.558	21.823
Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.232	0.970		$C\alphaC\betaC\gamma$	114.190	1.058
$C\alphaCO$	120.605	0.808		$C\alphaCO$	120.637	0.942
$C\betaC\alphaC$	110.891	1.295		$C\betaC\alphaC$	110.827	1.573
$C\betaC\gammaC\delta_2$	131.374	0.961	($C\betaC\gammaC\delta 2$	131.002	0.858
$C\beta_C\gamma_N\delta 1$	122.411	1.046	($C\betaC\gammaN\delta 1$	122.771	0.912
$C\epsilon 1_N\epsilon 2_C\delta 2$	108.782	0.521	($C\epsilon 1 N\epsilon 2 C\delta 2$	108.819	0.565
$C\gamma C\delta 2N\epsilon 2$	107.235	0.431	($C\gamma_{-}C\delta_{2}N\epsilon_{2}$	107.268	0.481
$C\gamma N\delta 1C\epsilon 1$	109.222	0.647	($C\gamma_N\delta_{1}C\epsilon_{1}$	109.202	0.647
$N\delta1$ _ $C\epsilon1$ _ $N\epsilon2$	108.554	0.598	I	$N\delta 1_{-}C\epsilon 1_{-}N\epsilon 2$	108.520	0.611
$N\delta1_{-}C\gamma_{-}C\delta2$	106.182	0.516	I	$N\delta1_{-}C\gamma_{-}C\delta2$	106.169	0.512
$N_{-}C\alpha_{-}C$	109.220	2.607	I	$N_{-}C\alpha_{-}C$	111.243	2.740
$N_{-}C\alpha_{-}C\beta$	109.641	1.518	_ [$N_{-}C\alpha_{-}C\beta$	111.006	1.368
HIS	m90 n = 3820			HIS	t-90 n = 3460	
χ	Smooth COM	StdDev	_2	χ	Smooth COM	StdDev
chi1	-65.658	9.766	(chi1	-173.491	10.438
chi2	88.477	17.448	(chi2	-86.784	18.388
Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.466	1.120	($C\alphaC\betaC\gamma$	113.699	0.994
$C\alphaCO$	120.483	0.892	($C\alphaCO$	120.476	0.845
$C\beta_{-}C\alpha_{-}C$	109.741	1.962	($C\betaC\alphaC$	110.435	1.218
$C\beta_{-}C\gamma_{-}C\delta_{2}$	130.928	0.846	($C\beta_{-}C\gamma_{-}C\delta_{2}$	130.912	0.809
$C\betaC\gammaN\delta 1$	122.780	0.813	($C\betaC\gammaN\delta 1$	122.783	0.726
$C\epsilon 1_N\epsilon 2_C\delta 2$	108.857	0.547		$C\epsilon 1_N\epsilon 2_C\delta 2$	108.846	0.497
$C\gammaC\delta_2N\epsilon_2$	107.203	0.490	($C\gamma_C\delta_2N\epsilon_2$	107.194	0.449
$C\gamma_N\delta_1C\epsilon_1$	109.190	0.637		$C\gamma_N\delta_1C\epsilon_1$	109.176	0.692
$N\delta1_{-}C\epsilon1_{-}N\epsilon2$	108.498	0.613		$N\delta 1_{-}C\epsilon 1_{-}N\epsilon 2$	108.506	0.592
$N\delta1_{-}C\gamma_{-}C\delta2$	106.227	0.509	I	$N\delta1_C\gamma_C\delta2$	106.249	0.533
$N_{-}C\alpha_{-}C$	111.469	2.747		$N_C\alpha_C$	109.906	2.468
$N_C\alpha_C\beta$	110.638	1.177	I	$N_C\alpha_C\beta$	110.072	1.459

HIS	m170 n = 2642		HIS	m-70 n = 9299	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-67.985	8.174	chi1	-64.458	10.010
chi2	170.975	21.700	chi2	-75.228	19.362
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.738	0.933	$C\alphaC\betaC\gamma$	113.371	1.057
$C\alphaCO$	120.394	0.877	$C\alphaCO$	120.409	0.870
$C\betaC\alphaC$	109.690	1.802	$C\beta _C\alpha _C$	109.864	1.886
$C\betaC\gammaC\delta_2$	131.140	0.992	$C\betaC\gammaC\delta 2$	131.054	0.813
$C\betaC\gammaN\delta 1$	122.602	1.039	$C\betaC\gammaN\delta 1$	122.624	0.797
$C\epsilon 1_N\epsilon 2_C\delta 2$	108.801	0.517	$C\epsilon 1_N\epsilon 2_C\delta 2$	108.862	0.504
$C\gammaC\delta_2_N\epsilon_2$	107.210	0.464	$C\gamma_C\delta_2N\epsilon_2$	107.183	0.457
$C\gamma N\delta 1C\epsilon 1$	109.188	0.669	$C\gamma N\delta 1C\epsilon 1$	109.185	0.614
$N\delta1_{-}C\epsilon1_{-}N\epsilon2$	108.550	0.599	$N\delta1_{-}C\epsilon1_{-}N\epsilon2$	108.491	0.543
$N\delta1_{-}C\gamma_{-}C\delta2$	106.224	0.520	$N\delta1_{-}C\gamma_{-}C\delta2$	106.255	0.518
$N_{-}C\alpha_{-}C$	111.521	2.547	$N_{-}C\alpha_{-}C$	111.716	2.843
$NC\alphaC\beta$	110.748	1.158	$NC\alphaC\beta$	110.401	1.173
HIS	$8 \ t70 \ n = 4960$		HIS	p-80 n = 2158	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-178.423	10.054	chi1	64.769	9.924
chi2	73.865	17.261	chi2	-80.838	16.271
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.612	1.067	$C\alphaC\betaC\gamma$	114.063	1.027
$C\alphaCO$	120.572	0.826	$C\alphaCO$	120.396	0.973
$C\betaC\alphaC$	110.128	1.340	$C\betaC\alphaC$	110.363	1.530
$C\betaC\gammaC\delta_2$	131.028	0.812	$C\betaC\gammaC\delta 2$	131.018	0.803
$C\betaC\gammaN\delta 1$	122.666	0.789	$C\betaC\gammaN\delta 1$	122.744	0.804
$C\epsilon 1_N\epsilon 2_C\delta 2$	108.856	0.515	$C\epsilon 1_N\epsilon 2_C\delta 2$	108.836	0.560
$C\gamma_C\delta_2N\epsilon_2$	107.196	0.451	$C\gamma_C\delta_2N\epsilon_2$	107.236	0.511
$C\gammaC\delta_2_N\epsilon_2$ $C\gammaN\delta_1C\epsilon_1$	107.196 109.174	$0.451 \\ 0.581$	$C\gammaC\delta_2_N\epsilon_2$ $C\gammaN\delta_1C\epsilon_1$	107.236 109.208	$0.511 \\ 0.591$
$C\gamma_C\delta2_N\epsilon2$ $C\gamma_N\delta1_C\epsilon1$ $N\delta1_C\epsilon1_N\epsilon2$	107.196	0.451	$C\gamma_C\delta2_N\epsilon2$ $C\gamma_N\delta1_C\epsilon1$ $N\delta1_C\epsilon1_N\epsilon2$	107.236	0.511
$C\gammaC\delta_2_N\epsilon_2$ $C\gammaN\delta_1C\epsilon_1$	107.196 109.174	0.451 0.581 0.531 0.475	$\begin{array}{c} \text{C}\gamma\text{_C}\delta2\text{_N}\epsilon2 \\ \text{C}\gamma\text{_N}\delta1\text{_C}\epsilon1 \\ \text{N}\delta1\text{_C}\epsilon1\text{_N}\epsilon2 \\ \text{N}\delta1\text{_C}\gamma\text{_C}\delta2 \end{array}$	107.236 109.208 108.512 106.185	0.511 0.591 0.582 0.505
$C\gamma_C\delta2_N\epsilon2$ $C\gamma_N\delta1_C\epsilon1$ $N\delta1_C\epsilon1_N\epsilon2$	107.196 109.174 108.502	0.451 0.581 0.531	$C\gamma_C\delta2_N\epsilon2$ $C\gamma_N\delta1_C\epsilon1$ $N\delta1_C\epsilon1_N\epsilon2$	107.236 109.208 108.512	0.511 0.591 0.582

3.14 TRP

TRP m-90 n = 934			TRP m100 n = 6204		
			1111		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-67.780	12.531	chi1	-67.358	10.787
chi2	-89.279	13.865	chi2	97.262	16.987
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.832	2.468	$C\alpha_{-}C\beta_{-}C\gamma$	113.184	2.214
$C\alphaCO$	120.471	0.858	$C\alphaCO$	120.431	0.854
$C\beta C\alpha C$	109.402	2.033	$C\beta_{-}C\alpha_{-}C$	109.624	1.912
$C\beta C\gamma C\delta 1$	126.715	0.715	$C\beta_{-}C\gamma_{-}C\delta 1$	127.019	0.655
$C\betaC\gammaC\delta 2$	126.937	0.769	$C\beta_{-}C\gamma_{-}C\delta_{2}$	126.591	0.678
$C\delta1_C\gamma_C\delta2$	106.285	0.436	$C\delta1_C\gamma_C\delta2$	106.336	0.425
$C\delta 1_N\epsilon 1_C\epsilon 2$	108.928	0.477	$C\delta 1_N\epsilon 1_C\epsilon 2$	108.901	0.483
$C\delta 2_{-}C\epsilon 2_{-}C\zeta 2$	122.432	0.343	$C\delta 2_{-}C\epsilon 2_{-}C\zeta 2$	122.403	0.359
$C\delta 2C\epsilon 3C\zeta 3$	118.697	0.451	$C\delta 2C\epsilon 3C\zeta 3$	118.698	0.449
$C\epsilon 2_C\delta 2_C\epsilon 3$	118.844	0.377	$C\epsilon 2_C\delta 2_C\epsilon 3$	118.868	0.366
$C\epsilon 2_C\delta 2_C\gamma$	107.197	0.321	$C\epsilon 2_C\delta 2_C\gamma$	107.232	0.328
$C\epsilon 3 C\zeta 3C\eta 2$	121.019	0.456	$C\epsilon 3 C\zeta 3C\eta 2$	120.996	0.468
$C\gamma_C\delta_1N\epsilon_1$	110.119	0.494	$C\gamma C\delta 1N\epsilon 1$	110.086	0.481
$C\gamma_{-}C\delta_{2}C\epsilon_{3}$	133.943	0.373	$C\gamma_C\delta_2C\epsilon_3$	133.883	0.393
$C\eta_2C\zeta_2C\epsilon_2$	117.507	0.422	$C\eta_2 C\zeta_2 C\epsilon_2$	117.493	0.444
$C\zeta_3 C\eta_2 C\zeta_2$	121.475	0.442	$C\zeta_3 C\eta_2 C\zeta_2$	121.513	0.448
$N\epsilon 1C\epsilon 2C\delta 2$	107.449	0.342	$N\epsilon 1C\epsilon 2C\delta 2$	107.425	0.347
$N\epsilon 1_C\epsilon 2_C\zeta 2$	130.105	0.429	$N\epsilon 1_C\epsilon 2_C\zeta 2$	130.157	0.425
$N_{-}C\alpha_{-}C$	110.543	2.884	$N_{-}C\alpha_{-}C$	111.444	2.647
$N_{-}C\alpha_{-}C\beta$	110.689	1.116	$N_{-}C\alpha_{-}C\beta$	110.551	1.104

TRI	P p90 n = 952		TR	P t60 n = 3316	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	60.293	9.995	chi1	-178.686	9.796
chi2	87.822	14.399	chi2	64.773	33.012
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	115.020	2.031	$C\alpha_{-}C\beta_{-}C\gamma$	114.283	2.134
$C\alphaCO$	120.576	0.853	$C\alphaCO$	120.656	0.800
$C\betaC\alphaC$	110.666	1.419	$C\beta _C\alpha _C$	110.553	1.349
$C\betaC\gammaC\delta 1$	126.998	0.698	$C\betaC\gammaC\delta 1$	127.132	0.782
$C\betaC\gammaC\delta_2$	126.756	0.752	$C\betaC\gammaC\delta_2$	126.517	0.810
$C\delta1C\gammaC\delta2$	106.200	0.370	$C\delta1C\gammaC\delta2$	106.296	0.475
$C\delta 1_N\epsilon 1_C\epsilon 2$	108.930	0.600	$C\delta1_N\epsilon_1C\epsilon_2$	108.910	0.507
$C\delta 2_{-}C\epsilon 2_{-}C\zeta 2$	122.449	0.372	$C\delta2_C\epsilon2_C\zeta2$	122.392	0.364
$C\delta 2_{-}C\epsilon 3_{-}C\zeta 3$	118.689	0.346	$C\delta2_C\epsilon3_C\zeta3$	118.693	0.412
$C\epsilon 2_C\delta 2_C\epsilon 3$	118.831	0.360	$C\epsilon 2_C\delta 2_C\epsilon 3$	118.874	0.352
$C\epsilon 2_C\delta 2_C\gamma$	107.258	0.317	$C\epsilon 2_C\delta 2_C\gamma$	107.259	0.373
$C\epsilon 3 C\zeta 3C\eta 2$	121.023	0.413	$C\epsilon 3 C\zeta 3C\eta 2$	120.990	0.446
$C\gamma_{-}C\delta 1_{-}N\epsilon 1$	110.151	0.494	$C\gamma_C\delta_1N\epsilon_1$	110.060	0.526
$C\gamma_C\delta_2C\epsilon_3$	133.893	0.344	$C\gamma_C\delta_2C\epsilon_3$	133.851	0.417
$C\eta_2 C\zeta_2 C\epsilon_2$	117.471	0.448	$C\eta_2C\zeta_2C\epsilon_2$	117.488	0.451
$C\zeta_3C\eta_2C\zeta_2$	121.508	0.461	$C\zeta3_C\eta2_C\zeta2$	121.536	0.454
$N\epsilon 1_C\epsilon 2_C\delta 2$	107.442	0.369	$N\epsilon 1_C\epsilon 2_C\delta 2$	107.453	0.377
$N\epsilon 1_C\epsilon 2_C\zeta 2$	130.097	0.411	$N\epsilon 1_C\epsilon 2_C\zeta 2$	130.138	0.448
$N_{-}C\alpha_{-}C$	111.190	2.409	$N_{-}C\alpha_{-}C$	110.124	2.157
$NC\alphaC\beta$	111.113	1.263	$N_{-}C\alpha_{-}C\beta$	109.963	1.422
TRP	t-100 n = 2840		TRP	m-10 n = 2152	
χ	t-100 n = 2840 Smooth COM	StdDev	χ	m-10 n = 2152 Smooth COM	StdDev
		StdDev 11.610		Smooth COM -68.163	StdDev 9.051
χ	Smooth COM		χ	Smooth COM	
$\frac{\chi}{\text{chi1}}$	Smooth COM -177.069	11.610	$\frac{\chi}{\text{chi1}}$	Smooth COM -68.163	9.051
χ chi1 chi2	Smooth COM -177.069 -102.575	11.610 15.321	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \end{array}$	Smooth COM -68.163 -7.490	9.051 21.659
chi1 chi2 Bond Angle	Smooth COM -177.069 -102.575 Mean	11.610 15.321 StdDev	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \end{array}$	Smooth COM -68.163 -7.490 Mean	9.051 21.659 StdDev
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \\ \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \end{array}$	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328	11.610 15.321 StdDev 2.322 0.865 1.328	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \\ \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \end{array}$	Smooth COM -68.163 -7.490 Mean 114.737 120.477 109.175	9.051 21.659 StdDev 1.639 0.876 1.708
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328 126.902	11.610 15.321 StdDev 2.322 0.865	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \\ \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta1 \\ \end{array}$	Smooth COM -68.163 -7.490 Mean 114.737 120.477	9.051 21.659 StdDev 1.639 0.876
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta1 \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta2 \\ \\ \end{array}$	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328	11.610 15.321 StdDev 2.322 0.865 1.328 0.685 0.706	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{Cα_C\beta$_$Cγ} \\ \text{Cα_C_$O} \\ \text{C$\beta$_$Cα_C} \\ \text{Cβ_C\gamma$_$Cδ1} \\ \text{Cβ_C\gamma$_$Cδ2} \\ \end{array}$	Smooth COM -68.163 -7.490 Mean 114.737 120.477 109.175 127.540 126.112	9.051 21.659 StdDev 1.639 0.876 1.708
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ $	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328 126.902	11.610 15.321 StdDev 2.322 0.865 1.328 0.685	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{Cα_Cβ_Cγ} \\ \text{Cα_C$-O} \\ \text{C$\beta$_C$\alpha$_C$} \\ \text{Cβ_Cγ_Cδ1} \\ \text{Cβ_Cγ_Cδ2} \\ \text{Cδ1$_C$\gamma$_C$\delta$2} \\ \hline \end{array}$	Smooth COM -68.163 -7.490 Mean 114.737 120.477 109.175 127.540	9.051 21.659 StdDev 1.639 0.876 1.708 0.705
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328 126.902 126.743	11.610 15.321 StdDev 2.322 0.865 1.328 0.685 0.706	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{Cα_C\beta$_$Cγ} \\ \text{Cα_C_$O} \\ \text{C$\beta$_$Cα_C} \\ \text{Cβ_C\gamma$_$Cδ1} \\ \text{Cβ_C\gamma$_$Cδ2} \\ \end{array}$	Smooth COM -68.163 -7.490 Mean 114.737 120.477 109.175 127.540 126.112	9.051 21.659 StdDev 1.639 0.876 1.708 0.705 0.762
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328 126.902 126.743 106.291 108.931 122.409	11.610 15.321 StdDev 2.322 0.865 1.328 0.685 0.706 0.423 0.452 0.358	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.163 -7.490 Mean 114.737 120.477 109.175 127.540 126.112 106.304 108.831 122.350	9.051 21.659 StdDev 1.639 0.876 1.708 0.705 0.762 0.444 0.448 0.395
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328 126.902 126.743 106.291 108.931 122.409 118.698	11.610 15.321 StdDev 2.322 0.865 1.328 0.685 0.706 0.423 0.452 0.358 0.446	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.163 -7.490 Mean 114.737 120.477 109.175 127.540 126.112 106.304 108.831 122.350 118.696	9.051 21.659 StdDev 1.639 0.876 1.708 0.705 0.762 0.444 0.448 0.395 0.417
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328 126.902 126.743 106.291 108.931 122.409 118.698 118.847	11.610 15.321 StdDev 2.322 0.865 1.328 0.685 0.706 0.423 0.452 0.358 0.446 0.343	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.163 -7.490 Mean 114.737 120.477 109.175 127.540 126.112 106.304 108.831 122.350 118.696 118.909	9.051 21.659 StdDev 1.639 0.876 1.708 0.705 0.762 0.444 0.448 0.395 0.417 0.361
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_C\beta$_$Cγ} \\ \text{$C\alpha$_C-$O} \\ \text{$C\beta$_$Cα_$C} \\ \text{$C\beta$_$Cα_$C} \\ \text{$C\beta$_$Cγ_C\delta$1} \\ \text{$C\beta$_$Cγ_C\delta$2} \\ \text{$C\delta$1.N$\epsilon$1.C$\epsilon$2} \\ \text{$C\delta$2.C$\epsilon$2.C$\varsigma$2} \\ \text{$C\delta$2.C$\epsilon$3.C$\varsigma$3} \\ \text{$C\epsilon$2.C$\delta$2.C$\epsilon$3} \\ \text{$C\epsilon$2.C$\delta$2.C$\varsigma$3} \\ \text{$C\epsilon$2.C$\delta$2.C$\varsigma$3} \\ \hline \end{array}$	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328 126.902 126.743 106.291 108.931 122.409 118.698 118.847 107.215	11.610 15.321 StdDev 2.322 0.865 1.328 0.685 0.706 0.423 0.452 0.358 0.446 0.343 0.320	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_Cβ_Cγ} \\ \text{$C\alpha$_C$_O$} \\ \text{$C\beta$_Cα_C$} \\ \text{$C\beta$_C$\gamma$_C$\delta$1} \\ \text{$C\beta$_C$\gamma$_C$\delta$2} \\ \text{$C\delta1_Cγ_Cδ2} \\ \text{$C\delta$1$_N$\epsilon1_Cϵ2} \\ \text{$C\delta$2$_C$\epsilon2_Cζ2} \\ \text{$C\delta$2$_C$\epsilon3_Cζ3} \\ \text{$C\epsilon$2$_C$\delta2_Cϵ3} \\ \text{$C\epsilon$2$_C$\delta2_Cς3} \\ \text{$C\epsilon$2$_C$\delta2_Cγ} \end{array}$	Smooth COM -68.163 -7.490 Mean 114.737 120.477 109.175 127.540 126.112 106.304 108.831 122.350 118.696 118.909 107.323	9.051 21.659 StdDev 1.639 0.876 1.708 0.705 0.762 0.444 0.448 0.395 0.417 0.361 0.370
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta1 \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta2 \\ \text{C}\delta1_\text{C}\gamma_\text{C}\delta2 \\ \text{C}\delta1_\text{C}\gamma_\text{C}\delta2 \\ \text{C}\delta2_\text{C}\epsilon2_\text{C}\zeta2 \\ \text{C}\delta2_\text{C}\epsilon3_\text{C}\zeta3 \\ \text{C}\epsilon2_\text{C}\delta2_\text{C}\epsilon3 \\ \text{C}\epsilon2_\text{C}\delta2_\text{C}\gamma \\ \text{C}\epsilon3_\text{C}\zeta3_\text{C}\gamma \\ \text{C}\epsilon3_\text{C}\zeta3_\text{C}\gamma \\ \text{C}\epsilon3_\text{C}\zeta3_\text{C}\gamma \\ \hline \end{array}$	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328 126.902 126.743 106.291 108.931 122.409 118.698 118.847 107.215 121.007	11.610 15.321 StdDev 2.322 0.865 1.328 0.685 0.706 0.423 0.452 0.358 0.446 0.343 0.320 0.474	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_Cβ_Cγ} \\ \text{$C\alpha$_C$-$O} \\ \text{$C\beta$_Cα_C$} \\ \text{$C\beta$_C$\gamma$_C$\delta$1} \\ \text{$C\beta$_C$\gamma$_C$\delta$2} \\ \text{$C\delta1_Cγ_Cδ2} \\ \text{$C\delta$1$_N$\epsilon1_Cϵ2} \\ \text{$C\delta$2$_C$\epsilon2_Cζ2} \\ \text{$C\delta$2$_C$\epsilon3_Cζ3} \\ \text{$C\epsilon$2$_C$\delta2_Cϵ3} \\ \text{$C\epsilon$2$_C$\delta2_Cγ} \\ $C\epsilon$3$_C$\zeta3_Cγ2$_C$\gamma2_Cγ2$_C$\gamma$	Smooth COM -68.163 -7.490 Mean 114.737 120.477 109.175 127.540 126.112 106.304 108.831 122.350 118.696 118.909 107.323 121.001	9.051 21.659 StdDev 1.639 0.876 1.708 0.705 0.762 0.444 0.448 0.395 0.417 0.361 0.370 0.422
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328 126.902 126.743 106.291 108.931 122.409 118.698 118.847 107.215 121.007 110.106	11.610 15.321 StdDev 2.322 0.865 1.328 0.685 0.706 0.423 0.452 0.358 0.446 0.343 0.320 0.474	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.163 -7.490 Mean 114.737 120.477 109.175 127.540 126.112 106.304 108.831 122.350 118.909 107.323 121.001 110.040	9.051 21.659 StdDev 1.639 0.876 1.708 0.705 0.762 0.444 0.448 0.395 0.417 0.361 0.370 0.422 0.479
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328 126.902 126.743 106.291 108.931 122.409 118.698 118.847 107.215 121.007 110.106 133.921	11.610 15.321 StdDev 2.322 0.865 1.328 0.685 0.706 0.423 0.452 0.358 0.446 0.343 0.320 0.474 0.474	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.163 -7.490 Mean 114.737 120.477 109.175 127.540 126.112 106.304 108.831 122.350 118.696 118.909 107.323 121.001 110.040 133.753	9.051 21.659 StdDev 1.639 0.876 1.708 0.705 0.762 0.444 0.395 0.417 0.361 0.370 0.422 0.479 0.380
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328 126.902 126.743 106.291 108.931 122.409 118.698 118.847 107.215 121.007 110.106 133.921 117.509	11.610 15.321 StdDev 2.322 0.865 1.328 0.685 0.706 0.423 0.452 0.358 0.446 0.343 0.320 0.474 0.474 0.364 0.445	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.163 -7.490 Mean 114.737 120.477 109.175 127.540 126.112 106.304 108.831 122.350 118.696 118.909 107.323 121.001 110.040 133.753 117.472	9.051 21.659 StdDev 1.639 0.876 1.708 0.705 0.762 0.444 0.395 0.417 0.361 0.370 0.422 0.479 0.380 0.458
$\frac{\chi}{\text{chi1}}$ $\frac{\chi}{\text{chi2}}$ Bond Angle $\frac{\chi}{\chi}$	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328 126.902 126.743 106.291 108.931 122.409 118.698 118.847 107.215 121.007 110.106 133.921 117.509 121.502	11.610 15.321 StdDev 2.322 0.865 1.328 0.685 0.706 0.423 0.452 0.358 0.446 0.343 0.320 0.474 0.474 0.364 0.445	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.163 -7.490 Mean 114.737 120.477 109.175 127.540 126.112 106.304 108.831 122.350 118.696 118.909 107.323 121.001 110.040 133.753 117.472 121.546	9.051 21.659 StdDev 1.639 0.876 1.708 0.705 0.762 0.444 0.448 0.395 0.417 0.361 0.370 0.422 0.479 0.380 0.458
$\frac{\chi}{\text{chi1}}$ $\frac{\chi}{\text{chi2}}$ Bond Angle $\frac{\chi}{\chi}$	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328 126.902 126.743 106.291 108.931 122.409 118.698 118.847 107.215 121.007 110.106 133.921 117.509 121.502 107.437	11.610 15.321 StdDev 2.322 0.865 1.328 0.685 0.706 0.423 0.452 0.358 0.446 0.343 0.320 0.474 0.474 0.474 0.445 0.455 0.337	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.163 -7.490 Mean 114.737 120.477 109.175 127.540 126.112 106.304 108.831 122.350 118.696 118.909 107.323 121.001 110.040 133.753 117.472 121.546 107.481	9.051 21.659 StdDev 1.639 0.876 1.708 0.705 0.762 0.444 0.448 0.395 0.417 0.361 0.370 0.422 0.479 0.380 0.458 0.456 0.360
$\frac{\chi}{\text{chi1}}$ $\frac{\chi}{\text{chi2}}$ Bond Angle $\frac{\chi}{\chi}$	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328 126.902 126.743 106.291 108.931 122.409 118.847 107.215 121.007 110.106 133.921 117.509 121.502 107.437 130.138	11.610 15.321 StdDev 2.322 0.865 1.328 0.685 0.706 0.423 0.452 0.358 0.446 0.343 0.320 0.474 0.474 0.364 0.445	$\begin{array}{ c c c }\hline \chi\\\hline \text{chi1}\\\hline \text{chi2}\\\hline \\\hline \\$	Smooth COM -68.163 -7.490 Mean 114.737 120.477 109.175 127.540 126.112 106.304 108.831 122.350 118.696 118.909 107.323 121.001 110.040 133.753 117.472 121.546 107.481 130.155	9.051 21.659 StdDev 1.639 0.876 1.708 0.705 0.762 0.444 0.448 0.395 0.417 0.361 0.370 0.422 0.479 0.380 0.458 0.456 0.360 0.444
$\frac{\chi}{\text{chi1}}$ $\frac{\chi}{\text{chi2}}$ Bond Angle $\frac{\chi}{\chi}$	Smooth COM -177.069 -102.575 Mean 113.568 120.572 110.328 126.902 126.743 106.291 108.931 122.409 118.698 118.847 107.215 121.007 110.106 133.921 117.509 121.502 107.437	11.610 15.321 StdDev 2.322 0.865 1.328 0.685 0.706 0.423 0.452 0.358 0.446 0.343 0.320 0.474 0.474 0.474 0.445 0.455 0.337	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.163 -7.490 Mean 114.737 120.477 109.175 127.540 126.112 106.304 108.831 122.350 118.696 118.909 107.323 121.001 110.040 133.753 117.472 121.546 107.481	9.051 21.659 StdDev 1.639 0.876 1.708 0.705 0.762 0.444 0.448 0.395 0.417 0.361 0.370 0.422 0.479 0.380 0.458 0.456 0.360

TRP	p-90 n = 1905	
χ	Smooth COM	StdDev
chi1	61.771	9.864
chi2	-89.374	12.958
Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	115.034	1.900
$C\alphaCO$	120.452	0.925
$C\betaC\alphaC$	110.445	1.427
$C\beta_{-}C\gamma_{-}C\delta 1$	126.857	0.666
$C\betaC\gammaC\delta 2$	126.896	0.702
$C\delta1_C\gamma_C\delta2$	106.197	0.429
$C\delta1_N\epsilon1_C\epsilon2$	108.956	0.458
$C\delta 2_C\epsilon 2_C\zeta 2$	122.437	0.337
$C\delta 2_C\epsilon 3_C\zeta 3$	118.713	0.467
$C\epsilon 2_C\delta 2_C\epsilon 3$	118.807	0.383
$C\epsilon 2_C\delta 2_C\gamma$	107.246	0.326
$C\epsilon 3 C\zeta 3C\eta 2$	121.030	0.455
$C\gamma_{-}C\delta_{1}N\epsilon_{1}$	110.150	0.460
$C\gamma_{-}C\delta_{2}C\epsilon_{3}$	133.932	0.411
$C\eta_2$ _ $C\zeta_2$ _ $C\epsilon_2$	117.525	0.442
$C\zeta_3 C\eta_2 C\zeta_2$	121.461	0.459
$N\epsilon 1_C\epsilon 2_C\delta 2$	107.431	0.341
$N\epsilon 1_C\epsilon 2_C\zeta 2$	130.119	0.405
$N_{-}C\alpha_{-}C$	112.158	2.608
$N_{-}C\alpha_{-}C\beta$	111.097	1.241

3.15 TYR

TY	R p90 n = 5345		TYF	R m-10 n = 2573	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	63.561	10.540	chi1	-68.127	9.902
chi2	-89.699	10.105	chi2	-14.743	20.163
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_C\beta_C\gamma$	114.844	1.858	$C\alphaC\betaC\gamma$	115.768	1.570
$C\alphaCO$	120.661	0.926	$C\alphaCO$	120.431	0.844
$C\betaC\alphaC$	110.639	1.408	$C\betaC\alphaC$	109.050	1.742
$C\betaC\gammaC\delta 1$	120.990	0.643	$C\betaC\gammaC\delta 1$	121.580	1.015
$C\betaC\gammaC\delta_2$	120.858	0.596	$C\betaC\gammaC\delta_2$	120.365	0.933
$C\delta 1_C\epsilon 1_C\zeta$	119.525	0.619	$C\delta1_C\epsilon1_C\zeta$	119.493	0.614
$C\delta1C\gammaC\delta2$	118.110	0.547	$C\delta1C\gammaC\delta2$	118.013	0.549
$C\epsilon 1 C\zeta C\epsilon 2$	120.454	0.659	$C\epsilon 1 C\zeta C\epsilon 2$	120.409	0.640
$C\epsilon 1C\zetaOH$	119.792	1.238	$C\epsilon 1C\zetaOH$	120.085	1.314
$C\gamma_C\delta_1C\epsilon_1$	121.160	0.575	$C\gamma_C\delta_1C\epsilon_1$	121.074	0.590
$C\gamma_C\delta_2C\epsilon_2$	121.161	0.547	$C\gamma_C\delta_2C\epsilon_2$	121.324	0.571
$C\zeta_{-}C\epsilon_{2}C\delta_{2}$	119.559	0.620	$C\zetaC\epsilon_2C\delta_2$	119.651	0.639
$N_{-}C\alpha_{-}C$	111.078	2.655	$N_{-}C\alpha_{-}C$	111.388	2.337
$N_C\alpha_C\beta$	111.207	1.220	$N_{-}C\alpha_{-}C\beta$	111.006	1.144
$\mathrm{OH}_{-}\mathrm{C}\zeta_{-}\mathrm{C}\epsilon 2$	119.737	1.232	$\mathrm{OH}_{-}\mathrm{C}\zeta_{-}\mathrm{C}\epsilon 2$	119.487	1.333
TYR	m-80 n = 22199)	TYI	R t80 n = 15992	
χ	m-80 n = 22199 Smooth COM	StdDev	ΥΥΙ	R t80 n = 15992 Smooth COM	StdDev
					StdDev 10.487
χ	Smooth COM	StdDev	χ	Smooth COM	
$\frac{\chi}{\text{chi1}}$	Smooth COM -66.760	StdDev 10.454	$\frac{\chi}{\text{chi1}}$	Smooth COM -178.297	10.487
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \end{array}$	Smooth COM -66.760 -80.589 Mean 113.209	StdDev 10.454 16.828	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \end{array}$	Smooth COM -178.297 75.767 Mean 113.704	10.487 16.666
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \end{array}$	Smooth COM -66.760 -80.589 Mean 113.209 120.440	StdDev 10.454 16.828 StdDev	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.704 120.621	10.487 16.666 StdDev
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \\ \\ \text{C}\beta_\text{C}\alpha_\text{C} \end{array}$	Smooth COM -66.760 -80.589 Mean 113.209 120.440 109.628	StdDev 10.454 16.828 StdDev 2.039	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha\text{-C}\beta\text{-C}\gamma \\ \\ \text{C}\alpha\text{-C-O} \\ \\ \text{C}\beta\text{-C}\alpha\text{-C} \\ \end{array}$	Smooth COM -178.297 75.767 Mean 113.704 120.621 110.301	10.487 16.666 StdDev 2.129
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{C} \\ \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta1 \\ \end{array}$	Smooth COM -66.760 -80.589 Mean 113.209 120.440	StdDev 10.454 16.828 StdDev 2.039 0.872	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.704 120.621	10.487 16.666 StdDev 2.129 0.797
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.209 120.440 109.628 120.855 120.850	StdDev 10.454 16.828 StdDev 2.039 0.872 1.926	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.704 120.621 110.301	10.487 16.666 StdDev 2.129 0.797 1.250
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.209 120.440 109.628 120.855 120.850 119.504	StdDev 10.454 16.828 StdDev 2.039 0.872 1.926 0.619	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.704 120.621 110.301 120.902 120.835 119.512	10.487 16.666 StdDev 2.129 0.797 1.250 0.650 0.637 0.594
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.209 120.440 109.628 120.855 120.850	StdDev 10.454 16.828 StdDev 2.039 0.872 1.926 0.619 0.609	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.704 120.621 110.301 120.902 120.835 119.512 118.213	10.487 16.666 StdDev 2.129 0.797 1.250 0.650 0.637
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.209 120.440 109.628 120.855 120.850 119.504 118.245 120.505	StdDev 10.454 16.828 StdDev 2.039 0.872 1.926 0.619 0.609 0.901 0.576 0.729	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.704 120.621 110.301 120.902 120.835 119.512 118.213 120.509	10.487 16.666 StdDev 2.129 0.797 1.250 0.650 0.637 0.594 0.515 0.647
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.209 120.440 109.628 120.855 120.850 119.504 118.245	StdDev 10.454 16.828 StdDev 2.039 0.872 1.926 0.619 0.609 0.901 0.576	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.704 120.621 110.301 120.902 120.835 119.512 118.213 120.509 119.747	10.487 16.666 StdDev 2.129 0.797 1.250 0.650 0.637 0.594 0.515
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.209 120.440 109.628 120.855 120.850 119.504 118.245 120.505	StdDev 10.454 16.828 StdDev 2.039 0.872 1.926 0.619 0.609 0.901 0.576 0.729	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.704 120.621 110.301 120.902 120.835 119.512 118.213 120.509	10.487 16.666 StdDev 2.129 0.797 1.250 0.650 0.637 0.594 0.515 0.647
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.209 120.440 109.628 120.855 120.850 119.504 118.245 120.505 119.719	StdDev 10.454 16.828 StdDev 2.039 0.872 1.926 0.619 0.609 0.901 0.576 0.729 1.227	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.704 120.621 110.301 120.902 120.835 119.512 118.213 120.509 119.747	10.487 16.666 StdDev 2.129 0.797 1.250 0.650 0.637 0.594 0.515 0.647 1.267
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.209 120.440 109.628 120.855 120.850 119.504 118.245 120.505 119.719 121.096	StdDev 10.454 16.828 StdDev 2.039 0.872 1.926 0.619 0.609 0.901 0.576 0.729 1.227 0.857	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.704 120.621 110.301 120.902 120.835 119.512 118.213 120.509 119.747 121.092	10.487 16.666 StdDev 2.129 0.797 1.250 0.650 0.637 0.594 0.515 0.647 1.267 0.547
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.209 120.440 109.628 120.855 120.850 119.504 118.245 120.505 119.719 121.096 121.094	StdDev 10.454 16.828 StdDev 2.039 0.872 1.926 0.619 0.609 0.901 0.576 0.729 1.227 0.857 0.861	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.704 120.621 110.301 120.902 120.835 119.512 118.213 120.509 119.747 121.092 121.136	10.487 16.666 StdDev 2.129 0.797 1.250 0.650 0.637 0.594 0.515 0.647 1.267 0.547 0.553
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.209 120.440 109.628 120.855 120.850 119.504 118.245 120.505 119.719 121.096 121.094 119.512	StdDev 10.454 16.828 StdDev 2.039 0.872 1.926 0.619 0.609 0.901 0.576 0.729 1.227 0.857 0.861 0.904	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.704 120.621 110.301 120.902 120.835 119.512 118.213 120.509 119.747 121.092 121.136 119.506	10.487 16.666 StdDev 2.129 0.797 1.250 0.650 0.637 0.594 0.515 0.647 1.267 0.547 0.553 0.624

3.16 PHE

PH	E p90 n = 6173		PHE	E m-10 n = 3795	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	63.561	9.553	chi1	-68.127	9.354
chi2	-89.699	9.392	chi2	-14.743	19.816
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.401	0.955	$C\alpha_{-}C\beta_{-}C\gamma$	114.782	0.944
$C\alphaCO$	120.708	0.883	$C\alphaCO$	120.421	0.867
$C\betaC\alphaC$	110.881	1.461	$C\betaC\alphaC$	108.942	1.778
$C\betaC\gammaC\delta 1$	120.728	0.611	$C\betaC\gammaC\delta 1$	121.533	1.211
$C\betaC\gammaC\delta_2$	120.603	0.572	$C\betaC\gammaC\delta 2$	119.895	1.159
$C\delta1_C\epsilon1_C\zeta$	119.889	0.602	$C\delta1_C\epsilon1_C\zeta$	119.896	0.603
$C\delta1C\gammaC\delta2$	118.623	0.527	$C\delta1C\gammaC\delta2$	118.528	0.558
$C\epsilon 1 C\zeta C\epsilon 2$	119.824	0.626	$C\epsilon 1 C\zeta C\epsilon 2$	119.839	0.610
$C\gamma_{-}C\delta 1_{-}C\epsilon 1$	120.857	0.585	$C\gamma C\delta 1C\epsilon 1$	120.779	0.593
$C\gamma_C\delta_2C\epsilon_2$	120.853	0.571	$C\gamma_C\delta_2C\epsilon_2$	120.990	0.611
$C\zeta_C\epsilon_2C\delta_2$	119.920	0.589	$C\zeta_{-}C\epsilon_{2}C\delta_{2}$	119.931	0.610
$N_{-}C\alpha_{-}C$	110.875	2.562	$N_{-}C\alpha_{-}C$	111.046	2.423
$N_{-}C\alpha_{-}C\beta$	111.386	1.319	$N_{-}C\alpha_{-}C\beta$	111.198	1.109
PHE	m-80 n = 26111		PHI	E t80 n = 18909	
PHE χ	m-80 n = 26111 Smooth COM	StdDev	PHI	E t80 n = 18909 Smooth COM	StdDev
					StdDev 9.987
χ	Smooth COM	StdDev	χ	Smooth COM	
$\frac{\chi}{\text{chi1}}$	Smooth COM -66.760	StdDev 10.137	χ chi1	Smooth COM -178.297	9.987
χ chi1 chi2	Smooth COM -66.760 -80.589	StdDev 10.137 16.842	χ chi1 chi2	Smooth COM -178.297 75.767	9.987 17.425
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \end{array}$	Smooth COM -66.760 -80.589 Mean	StdDev 10.137 16.842 StdDev	chi1 chi2 Bond Angle	Smooth COM -178.297 75.767 Mean	9.987 17.425 StdDev
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \end{array}$	Smooth COM -66.760 -80.589 Mean 113.522	StdDev 10.137 16.842 StdDev 1.018	χ chi1 chi2 Bond Angle $C\alpha _ C\beta _ C\gamma$	Smooth COM -178.297 75.767 Mean 113.789	9.987 17.425 StdDev 1.068
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \end{array}$	Smooth COM -66.760 -80.589 Mean 113.522 120.453	StdDev 10.137 16.842 StdDev 1.018 0.858	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha\text{_C}\beta\text{_C}\gamma \\ \\ \text{C}\alpha\text{_C}\text{_O} \end{array}$	Smooth COM -178.297 75.767 Mean 113.789 120.596	9.987 17.425 StdDev 1.068 0.799
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \\ \\ \text{C}\beta_\text{C}\alpha_\text{C} \end{array}$	Smooth COM -66.760 -80.589 Mean 113.522 120.453 109.802	StdDev 10.137 16.842 StdDev 1.018 0.858 1.989	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \\ \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \end{array}$	Smooth COM -178.297 75.767 Mean 113.789 120.596 110.333	9.987 17.425 StdDev 1.068 0.799 1.299
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \\ \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta1 \\ \end{array}$	Smooth COM -66.760 -80.589 Mean 113.522 120.453 109.802 120.578	StdDev 10.137 16.842 StdDev 1.018 0.858 1.989 0.597	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{C} \\ \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta1 \\ \end{array}$	Smooth COM -178.297 75.767 Mean 113.789 120.596 110.333 120.646	9.987 17.425 StdDev 1.068 0.799 1.299 0.719
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta1 \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta2 \\ \end{array}$	Smooth COM -66.760 -80.589 Mean 113.522 120.453 109.802 120.578 120.567	StdDev 10.137 16.842 StdDev 1.018 0.858 1.989 0.597 0.585	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.789 120.596 110.333 120.646 120.535	9.987 17.425 StdDev 1.068 0.799 1.299 0.719 0.679
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.522 120.453 109.802 120.578 120.567 119.861	StdDev 10.137 16.842 StdDev 1.018 0.858 1.989 0.597 0.585 0.574	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.789 120.596 110.333 120.646 120.535 119.859	9.987 17.425 StdDev 1.068 0.799 1.299 0.719 0.679 0.582
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta$_$C}\gamma \\ \text{$C\alpha$_$C$_$O} \\ \text{$C\beta$_$C}\alpha$_$C} \\ \text{$C\beta$_$C}\gamma$_$C}\delta1 \\ \text{$C\beta$_$C}\gamma$_$C}\delta2 \\ \text{$C\delta1$_$C}\epsilon1$_$C}\zeta \\ \text{$C\delta1$_$C}\gamma$_$C}\delta2 \\ \hline \end{array}$	Smooth COM -66.760 -80.589 Mean 113.522 120.453 109.802 120.578 120.567 119.861 118.802	StdDev 10.137 16.842 StdDev 1.018 0.858 1.989 0.597 0.585 0.574 0.520	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.789 120.596 110.333 120.646 120.535 119.859 118.768	9.987 17.425 StdDev 1.068 0.799 1.299 0.719 0.679 0.582 0.543
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.522 120.453 109.802 120.578 120.567 119.861 118.802 119.894	StdDev 10.137 16.842 StdDev 1.018 0.858 1.989 0.597 0.585 0.574 0.520 0.601	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.789 120.596 110.333 120.646 120.535 119.859 118.768 119.921	9.987 17.425 StdDev 1.068 0.799 1.299 0.719 0.679 0.582 0.543 0.625
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.522 120.453 109.802 120.578 120.567 119.861 118.802 119.894 120.766	StdDev 10.137 16.842 StdDev 1.018 0.858 1.989 0.597 0.585 0.574 0.520 0.601 0.555	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.789 120.596 110.333 120.646 120.535 119.859 118.768 119.921 120.765	9.987 17.425 StdDev 1.068 0.799 1.299 0.719 0.679 0.582 0.543 0.625 0.575
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta1$} \\ \text{$C\beta_C\gamma_C\delta2$} \\ \text{$C\delta1_C\epsilon1_C\zeta$} \\ \text{$C\delta1_C\gamma_C\delta2$} \\ \text{$C\epsilon1_C\zeta_C\epsilon2$} \\ \text{$C\gamma_C\delta1_C\epsilon1$} \\ \text{$C\gamma_C\delta1_C\epsilon1$} \\ \text{$C\gamma_C\delta2_C\epsilon2$} \\ \hline \end{array}$	Smooth COM -66.760 -80.589 Mean 113.522 120.453 109.802 120.578 120.567 119.861 118.802 119.894 120.766 120.765	StdDev 10.137 16.842 StdDev 1.018 0.858 1.989 0.597 0.585 0.574 0.520 0.601 0.555 0.565	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -178.297 75.767 Mean 113.789 120.596 110.333 120.646 120.535 119.859 118.768 119.921 120.765 120.789	9.987 17.425 StdDev 1.068 0.799 1.299 0.719 0.679 0.582 0.543 0.625 0.575 0.583

3.17 LYS

LY	S tppt $n = 262$		LYS	S mtpt $n = 1302$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-178.194	7.884	chi1	-69.197	8.112
chi2	63.490	9.400	chi2	174.242	11.443
chi3	69.535	9.208	chi3	70.524	11.862
chi4	177.447	9.222	chi4	175.197	10.265
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.808	1.236	$C\alphaC\betaC\gamma$	113.226	1.551
$C\alphaCO$	120.561	0.746	$C\alphaCO$	120.472	0.834
$C\betaC\alphaC$	110.615	1.108	$C\betaC\alphaC$	109.992	1.629
$C\betaC\gammaC\delta$	113.119	1.507	$C\betaC\gammaC\delta$	112.297	1.526
$C\deltaC\epsilonN\zeta$	111.182	1.862	$C\deltaC\epsilonN\zeta$	110.836	2.148
$C\gammaC\deltaC\epsilon$	112.375	1.458	$C\gammaC\deltaC\epsilon$	112.338	1.494
$NC\alphaC$	110.631	2.114	$NC\alphaC$	111.388	2.178
$N_{-}C\alpha_{-}C\beta$	110.315	1.072	$N_{-}C\alpha_{-}C\beta$	110.670	1.028
LYS	S mtpp $n = 382$		LY	S mtpm $n = 20$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-68.535	7.513	chi1	-70.323	7.483
chi2	176.954	10.793	chi2	174.831	16.544
chi3	70.471	10.561	chi3	90.638	14.260
chi4	67.722	10.787	chi4	-70.024	12.307
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.232	1.649	$C\alphaC\betaC\gamma$	113.518	2.044
$C\alphaCO$	120.413	0.809	$C\alphaCO$	120.393	0.854
$C\betaC\alphaC$	110.143	1.537	$C\beta_{-}C\alpha_{-}C$	109.711	2.119
$C\beta C\gamma C\delta$	112.417	1.436	$C\betaC\gammaC\delta$	112.286	1.595
$C\deltaC\epsilonN\zeta$	112.761	2.047	$C\deltaC\epsilonN\zeta$	113.304	1.836
$C\gammaC\deltaC\epsilon$	112.685	1.332	$C\gammaC\deltaC\epsilon$	113.039	1.525
$NC\alphaC$	111.430	2.505	$NC\alphaC$	111.147	2.477
$N_{-}C\alpha_{-}C\beta$	110.479	0.982	$N_{-}C\alpha_{-}C\beta$	110.441	1.089
LYS	8 ttmm n = 196		LY	S mmpt $n = 31$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-174.055	8.787	chi1	-60.371	7.892
chi2	179.742	10.210	chi2	-70.556	19.909
chi3	-71.028	12.157	chi3	93.615	14.916
chi4	-67.045	11.023	chi4	175.537	10.770
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.653	1.471	$C\alphaC\betaC\gamma$	115.223	1.103
$C\alphaCO$	120.540	0.817	$C\alphaCO$	120.365	0.885
$C\betaC\alphaC$	110.229	1.299	$C\betaC\alphaC$	109.774	1.684
$C\betaC\gammaC\delta$	112.149	1.564	$C\betaC\gammaC\delta$	113.421	1.782
$C\deltaC\epsilonN\zeta$	112.684	2.274	$C\deltaC\epsilonN\zeta$	111.551	1.763
$C\gammaC\deltaC\epsilon$	112.507	1.566	$C\gammaC\deltaC\epsilon$	112.028	1.393
$N_{-}C\alpha_{-}C$	110.163	2.445	$N_{-}C\alpha_{-}C$	111.336	2.523
$N_{-}C\alpha_{-}C\beta$	110.340	1.405	$N_{-}C\alpha_{-}C\beta$	111.122	1.384

LY	S tptt $n = 1179$		LY	S pttm $n = 262$	
χ	Smooth COM	StdDev	$\overline{\chi}$	Smooth COM	StdDev
chi1	-178.908	9.119	chi1	64.251	6.979
chi2	69.056	9.057	chi2	-177.627	8.999
chi3	175.565	10.218	chi3	-178.897	9.880
chi4	177.246	12.012	chi4	-67.053	11.968
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$\frac{\text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma}{\text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma}$	114.784	1.306	$\frac{\Box \alpha \Box C\beta \Box C\gamma}{\Box C\alpha \Box C\beta \Box C\gamma}$	114.863	1.484
$C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$	120.542	0.773	$C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$	120.416	0.959
$C\beta_{-}C\alpha_{-}C$	110.423	1.225	$C\beta_{-}C\alpha_{-}C$	110.374	1.448
$C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$	112.032	1.582	$C\beta C\alpha C\delta$	110.685	2.038
$C\delta_{-}C\epsilon_{-}N\zeta$	111.094	2.255	$C\deltaC\epsilonN\zeta$	112.285	2.207
$C\gammaC\deltaC\epsilon$	111.035	1.468	$C_0 C_{\epsilon_1} \zeta$ $C_{\gamma_{-}} C_{\delta_{-}} C_{\epsilon}$	111.943	1.507
$N_{-}C\alpha_{-}C$	110.639	2.173	N_Cα_C	112.006	2.537
	110.039				
$N_{-}C\alpha_{-}C\beta$	110.237	1.107	$N_{-}C\alpha_{-}C\beta$	110.949	1.132
LY	S ptpt $n = 149$		L	YS ttpm $n = 4$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	64.802	8.137	chi1	-176.905	10.026
chi2	179.088	12.200	chi2	175.311	6.851
chi3	72.966	10.510	chi3	87.099	18.038
chi4	174.545	11.089	chi4	-84.400	4.171
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.757	1.637	$C\alphaC\betaC\gamma$	115.353	1.109
$C\alphaCO$	120.558	0.881	$C\alphaCO$	120.752	0.322
$C\betaC\alphaC$	110.514	1.369	$C\betaC\alphaC$	110.281	0.444
$C\betaC\gammaC\delta$	112.136	1.644	$C\betaC\gammaC\delta$	111.616	0.992
$C\delta_C\epsilon_N\zeta$	111.404	2.002	$C\deltaC\epsilonN\zeta$	113.892	1.178
$C\gammaC\deltaC\epsilon$	112.329	1.673	$C\gamma_{-}C\delta_{-}C\epsilon$	113.140	0.242
$N_C\alpha_C$	111.277	2.881	$N_{-}C\alpha_{-}C$	110.149	1.306
$N_{-}C\alpha_{-}C\beta$	111.100	1.261	$N_{-}C\alpha_{-}C\beta$	110.149	0.835
LY	TS mtmp n = 9		LYS	S mmtp $n = 455$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-67.465	5.792	chi1	-61.499	8.233
chi2	-175.781	8.346	chi2	-68.646	11.677
chi3	-95.844	7.431	chi3	179.724	12.077
chi4	73.531	12.322	chi4	67.912	12.953
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.802	1.228	$C\alphaC\betaC\gamma$	114.706	1.532
$C\alphaCO$	120.633	0.607	$C\alphaCO$	120.424	0.926
$C\betaC\alphaC$	109.891	1.198	$C\betaC\alphaC$	109.536	1.583
$C\betaC\gammaC\delta$	111.699	1.976	$C\betaC\gammaC\delta$	112.007	1.566
$C\deltaC\epsilonN\zeta$	113.681	2.374	$C\deltaC\epsilonN\zeta$	112.683	2.352
$C\gammaC\deltaC\epsilon$	112.703	0.792	$C\gammaC\deltaC\epsilon$	111.918	1.343
$N_{-}C\alpha_{-}C$	110.375	2.291	$N_{-}C\alpha_{-}C$	111.132	2.592
$N_{-}C\alpha_{-}C\beta$	110.828	0.914	$N_{-}C\alpha_{-}C\beta$	110.696	1.055
			<u> </u>		

LYS	5 mtmt n = 1288		LYS	5 mmtt n = 3032		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-66.838	6.884	chi1	-61.713	8.309	
chi2	-173.335	9.861	chi2	-67.230	9.812	
chi3	-73.733	11.415	chi3	-176.776	10.172	
chi4	-175.371	10.611	chi4	-178.237	11.034	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	113.220	1.588	$C\alphaC\betaC\gamma$	114.528	1.318	
$C\alpha_{-}C_{-}O$	120.395	0.858	$C\alpha_{-}C_{-}O$	120.437	0.909	
$C\beta_{-}C\alpha_{-}C$	110.085	1.567	$C\beta_{-}C\alpha_{-}C$	109.621	1.550	
$C\betaC\gammaC\delta$	112.309	1.510	$C\betaC\gammaC\delta$	111.896	1.485	
$C\deltaC\epsilonN\zeta$	111.022	2.203	$C\delta_{-}C\epsilon_{-}N\zeta$	111.060	2.088	
$C\gammaC\deltaC\epsilon$	112.110	1.439	$C\gammaC\deltaC\epsilon$	111.123	1.537	
N_Cα_C	111.320	2.147	N_Cα_C	111.460	2.474	
$N_{-}C\alpha_{-}C\beta$	110.677	0.963	$N_{-}C\alpha_{-}C\beta$	110.685	1.006	
LY	S ptmt n = 180		LYS	$\frac{8 \text{ mtmm n} = 413}{2 \text{ mtmm n}}$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	66.652	8.266	chi1	-63.898	6.529	
chi2	-175.856	11.695	chi2	-177.154	10.112	
chi3	-71.430	11.949	chi3	-70.378	10.781	
chi4	-175.836	10.280	chi4	-66.004	9.536	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.529	1.554	$C\alphaC\betaC\gamma$	113.461	1.535	
$C\alphaCO$	120.496	0.993	$C\alphaCO$	120.496	0.839	
$C\betaC\alphaC$	110.383	1.607	$C\betaC\alphaC$	109.827	1.564	
$C\betaC\gammaC\delta$	112.149	1.595	$C\betaC\gammaC\delta$	112.257	1.362	
$C\delta_{-}C\epsilon_{-}N\zeta$	111.502	2.102	$C\deltaC\epsilonN\zeta$	112.742	2.086	
$C\gammaC\deltaC\epsilon$	112.382	1.893	$C\gammaC\deltaC\epsilon$	112.847	1.506	
$N_{-}C\alpha_{-}C$	111.040	2.758	$N_{-}C\alpha_{-}C$	111.498	2.399	
$N_{-}C\alpha_{-}C\beta$	111.040	1.104	$N_{-}C\alpha_{-}C\beta$	110.576	1.050	
LYS	8 mmtm n = 701		LY	LYS pttt n = 1348		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-60.188	8.300	chi1	65.436	7.710	
chi2	-65.555	10.930	chi2	-178.083	8.719	
chi3	-173.090	11.132	chi3	-179.332	9.677	
chi4	-68.899	13.211	chi4	-179.680	9.677	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alpha_{-}C\beta_{-}C\gamma$	114.535	1.395	$C\alphaC\betaC\gamma$	114.833	1.450	
$C\alphaCO$	120.544	0.871	$C\alphaCO$	120.426	0.926	
$C\betaC\alphaC$	109.741	1.562	$C\betaC\alphaC$	110.445	1.382	
$C\betaC\gammaC\delta$	111.938	1.423	$C\betaC\gammaC\delta$	110.825	1.800	
$C\deltaC\epsilonN\zeta$	112.450	1.980	$C\deltaC\epsilonN\zeta$	111.323	2.000	
$C\gammaC\deltaC\epsilon$	111.954	1.442	$C\gammaC\deltaC\epsilon$	111.009	1.622	
$N_{-}C\alpha_{-}C$	111.438	2.505	$N_{-}C\alpha_{-}C$	111.326	2.766	
$N_{-}C\alpha_{-}C\beta$	110.625	1.015	$N_{-}C\alpha_{-}C\beta$	111.127	1.106	

$\begin{array}{ c c c c c }\hline \chi & Smooth COM & StdDev\\\hline chil & 73.156 & 8.365 & chil & 67.562 & 8.321\\chi2 & -74.065 & 10.515 & chi2 & -179.054 & 10.395\\chi3 & -168.029 & 10.580 & chi3 & 178.259 & 11.424\\chi4 & -174.606 & 10.738 & chi4 & 66.699 & 12.404\\\hline Bond Angle & Mean & StdDev & Bond Angle & Mean & StdDev\\\hline Ca.C.\beta.C.\gamma & 116.445 & 1.641 & Ca.C.\beta.C.\gamma & 114.798 & 1.434\\Ca.C.O & 120.801 & 0.552 & Ca.C.O & 120.362 & 0.910\\C\beta.C.\alpha.C. & 110.351 & 1.279 & C\beta.C.\alpha.C & 110.358 & 1.459\\C\beta.C.\gamma.C.\delta & 112.587 & 2.234 & C\beta.C.C.\gamma.C.\delta.C. & 110.901 & 1.689\\C.S.C.E.N_\zeta & 111.694 & 2.248 & C\delta.C.E.N_\zeta & 112.404 & 2.292\\C.\gamma.C.S.C.C.\delta.C.e & 111.327 & 1.312 & C\gamma.C.S.C.e & 111.710 & 1.396\\N.C.\alpha.C.D & 112.145 & 2.128 & N.C.\alpha.C. & 111.882 & 2.534\\N.C.\alpha.C.D & 112.145 & 2.128 & N.C.\alpha.C. & 111.882 & 2.534\\N.C.\alpha.C.D & 112.145 & 2.128 & N.C.\alpha.C. & 111.994 & 1.061\\\hline LYS pmmt n = 2 & LYS ptpn n = 88\\\hline \chi & Smooth COM & StdDev\\chi1 & 77.882 & 1.900 & chi1 & 65.327 & 6.504\\chi2 & -73.692 & 0.100 & chi2 & 178.405 & 8.210\\chi3 & -71.417 & 0.650 & chi3 & 72.033 & 10.196\\chi4 & 179.050 & 3.501 & chi4 & 66.034 & 8.526\\\hline Bond Angle & Mean & StdDev\\\hline Bond Angle & Mean & StdDev\\\hline Ca.C.B.C.\gamma & 117.188 & 0.414 & Ca.C.B.C.\gamma & 114.593 & 1.165\\Ca.C.O & 120.505 & 0.860 & Ca.C.O & 120.218 & 0.949\\C.B.C.A.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha.C\beta.C\gamma$ 116.445 1.641 $C\alpha.C\beta.C\gamma$ 114.798 1.434 $C\alpha.C.0$ 120.801 0.552 $C\alpha.C.O$ 120.362 0.910 $C\beta.C\alpha.C$ 110.351 1.279 $C\beta.C\alpha.C$ 110.358 1.459 $C\beta.C\gamma.C\delta$ 112.587 2.234 $C\beta.C\gamma.C\delta$ 110.901 1.689 $C\delta.C\epsilon.N\zeta$ 111.694 2.248 $C\delta.C\epsilon.N\zeta$ 112.404 2.292 $C\gamma.C\delta.C\epsilon$ 111.327 1.312 $C\gamma.C\delta.C\epsilon$ 111.710 1.396 N.Cα.C 109.953 2.378 N.Cα.C 111.882 2.534 N.Cα.Cβ 112.145 2.128 N.Cα.Cβ 110.964 1.061 LYS pmmt n = 2 LYS ptpp n = 88 χ Smooth COM StdDev χ Smooth COM StdDev chi1 77.882 1.900 chi1 65.327 6.504 chi2 -73.692 0.100 chi2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 117.188 0.414 $C\alpha_C\beta_C\gamma$ 114.593 1.165 $C\alpha_C_O$ 120.505 0.860 $C\alpha_C_O$ 120.218 0.949 $C\beta_C\alpha_C$ 111.392 0.287 $C\beta_C\alpha_C$ 110.015 1.295 $C\beta_C\gamma_C\delta$ 112.478 0.183 $C\beta_C\gamma_C\delta$ 112.236 1.244 $C\delta_C\in N\zeta$ 112.973 1.327 $C\delta_C\in N\zeta$ 112.492 1.705 $C\gamma_C\delta_C\epsilon$ 114.628 0.726 $C\gamma_C\delta_C\epsilon$ 112.732 1.316 $N_C\alpha_C$ 110.777 0.060 $N_C\alpha_C$ 111.882 2.008 $N_C\alpha_C\beta$ 112.732 0.611 $N_C\alpha_C\beta$ 110.830 1.213 LYS tmtp n = 11 LYS mptt n = 127 χ Smooth COM StdDev chi1 -176.649 7.224 chi1 -79.911 13.329 chi2 -97.994 8.621 chi2 72.964 17.299
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c } \hline LYS \ tmtp \ n = 11 & LYS \ mptt \ n = 127 \\ \hline \chi & Smooth \ COM & StdDev & \chi & Smooth \ COM & StdDev \\ \hline chi1 & -176.649 & 7.224 & chi1 & -79.911 & 13.329 \\ chi2 & -97.994 & 8.621 & chi2 & 72.964 & 17.299 \\ chi3 & -178.365 & 12.364 & chi3 & 176.124 & 12.654 \\ chi4 & 65.083 & 6.727 & chi4 & 175.095 & 11.799 \\ \hline Bond \ Angle & Mean & StdDev & Bond \ Angle & Mean & StdDev \\ \hline C\alpha_C\beta_C\gamma & 114.530 & 1.208 & C\alpha_C\beta_C\gamma & 114.888 & 1.339 \\ C\alpha_C_O & 120.750 & 0.371 & C\alpha_C_O & 120.557 & 0.775 \\ \hline \end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
chi4 65.083 6.727 chi4 175.095 11.799 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 114.530 1.208 $C\alpha_C\beta_C\gamma$ 114.888 1.339 $C\alpha_C_O$ 120.750 0.371 $C\alpha_C_O$ 120.557 0.775
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_Cβ_Cγ$ 114.530 1.208 $Cα_Cβ_Cγ$ 114.888 1.339 $C\alpha_C$ O 120.750 0.371 $Cα_C$ O 120.557 0.775
$ \begin{array}{ccccccccccccccccccccccccccccccccc$
$C\alpha_{-}C_{-}O$ 120.750 0.371 $C\alpha_{-}C_{-}O$ 120.557 0.775
00 0 0 110 000
$C\beta_{-}C\alpha_{-}C$ 110.380 0.684 $C\beta_{-}C\alpha_{-}C$ 109.759 1.520
$C\beta_{-}C\gamma_{-}C\delta$ 111.895 1.500 $C\beta_{-}C\gamma_{-}C\delta$ 112.493 1.974
$C\delta_C\epsilon_N\zeta$ 113.336 2.960 $C\delta_C\epsilon_N\zeta$ 110.777 2.254
$C\gamma C\delta C\epsilon$ 111.833 1.208 $C\gamma C\delta C\epsilon$ 111.215 1.635
$N_{-}C\alpha_{-}C$ 110.290 3.100 $N_{-}C\alpha_{-}C$ 110.632 2.494
$N_{-}C\alpha_{-}C\beta$ 110.329 0.877 $N_{-}C\alpha_{-}C\beta$ 110.834 1.080

LYS tmtt $n = 76$			LYS mptp $n = 24$			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-172.661	8.381	chi1	-74.901	17.297	
chi2	-91.117	9.791	chi2	86.563	17.226	
chi3	-176.853	10.984	chi3	171.631	9.474	
chi4	-178.511	10.300	chi4	65.232	12.367	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.536	1.091	$C\alphaC\betaC\gamma$	114.507	1.245	
$C\alphaCO$	120.767	0.570	$C\alphaCO$	120.337	1.070	
$C\betaC\alphaC$	110.874	1.034	$C\betaC\alphaC$	109.962	1.397	
$C\betaC\gammaC\delta$	111.941	1.465	$C\betaC\gammaC\delta$	112.925	1.955	
$C\deltaC\epsilonN\zeta$	110.930	1.901	$C\delta_{-}C\epsilon_{-}N\zeta$	113.461	2.349	
$C\gammaC\deltaC\epsilon$	110.910	1.343	$C\gammaC\deltaC\epsilon$	112.483	2.810	
$N_{-}C\alpha_{-}C$	110.141	1.880	$N_{-}C\alpha_{-}C$	110.446	2.733	
$N_{-}C\alpha_{-}C\beta$	110.081	0.837	$N_{-}C\alpha_{-}C\beta$	111.004	0.900	
LYS	8 mmmt n = 543		LY	S tmmt $n = 31$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-62.678	7.633	chi1	-179.225	10.299	
chi2	-64.116	10.721	chi2	-93.418	11.458	
chi3	-70.703	9.501	chi3	-70.433	9.062	
chi4	-176.812	9.721	chi4	-179.549	10.512	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.600	1.291	$C\alphaC\betaC\gamma$	114.968	1.756	
$C\alphaCO$	120.386	0.970	$C\alphaCO$	120.553	0.898	
$C\betaC\alphaC$	109.614	1.454	$C\betaC\alphaC$	110.799	1.116	
$C\betaC\gammaC\delta$	113.087	1.498	$C\betaC\gammaC\delta$	113.476	1.742	
$C\delta_C\epsilon_N\zeta$	111.132	2.211	$C\deltaC\epsilonN\zeta$	110.762	2.948	
$C\gammaC\deltaC\epsilon$	112.304	1.535	$C\gammaC\deltaC\epsilon$	112.420	2.932	
$N_C\alpha_C$	111.744	2.329	$N_{-}C\alpha_{-}C$	110.150	1.984	
$NC\alphaC\beta$	110.664	1.046	$N_{-}C\alpha_{-}C\beta$	109.907	1.053	
LYS pptt $n = 25$			LYS tttm $n = 1121$			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	64.183	7.527	chi1	-176.393	8.120	
chi2	89.871	8.334	chi2	177.818	9.690	
chi3	175.578	11.861	chi3	-176.243	10.410	
chi4	179.092	7.380	chi4	-67.353	11.982	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	116.057	1.244	$C\alpha C\beta C\gamma$	113.869	1.587	
$C\alphaCO$	120.408	0.698	$C\alphaCO$	120.554	0.823	
$C\betaC\alphaC$	111.303	1.430	$C\betaC\alphaC$	110.236	1.118	
$C\betaC\gammaC\delta$	112.212	1.704	$C\betaC\gammaC\delta$	111.025	1.728	
$C\deltaC\epsilonN\zeta$	111.319	1.822	$C\deltaC\epsilonN\zeta$	112.289	1.930	
$C\gammaC\deltaC\epsilon$	110.556	1.940	$C\gammaC\deltaC\epsilon$	111.816	1.408	
$N_{-}C\alpha_{-}C$	111.714	2.089	$N_{-}C\alpha_{-}C$	110.499	2.132	
$N_{-}C\alpha_{-}C\beta$	111.577	1.190	$N_{-}C\alpha_{-}C\beta$	110.449	1.158	
•						

LYS mppt $n = 30$			$\frac{\text{LYS mmmm n} = 84}{\text{LYS mmmm n}}$			
$\frac{1}{\chi}$	Smooth COM	StdDev	$\frac{1}{\chi}$	Smooth COM	StdDev	
chi1	-82.599	8.920	chi1	-61.396	7.210	
chi2	73.518	13.474	chi2	-61.832	10.222	
chi3			chi3			
chi4	69.157	7.573	chi4	-66.893	10.824	
	177.385	5.503		-64.659	10.834	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	115.149	2.009	$C\alphaC\betaC\gamma$	114.697	1.362	
$C\alphaCO$	120.402	0.897	$C\alphaCO$	120.389	1.092	
$C\betaC\alphaC$	109.855	1.241	$C\beta_{-}C\alpha_{-}C$	109.559	1.464	
$C\betaC\gammaC\delta$	113.706	1.587	$C\betaC\gammaC\delta$	113.177	1.448	
$C\deltaC\epsilonN\zeta$	111.345	1.953	$C\deltaC\epsilonN\zeta$	112.615	2.804	
$C\gammaC\deltaC\epsilon$	112.207	1.389	$C\gammaC\deltaC\epsilon$	113.211	1.913	
$N_{-}C\alpha_{-}C$	108.769	2.005	$N_{-}C\alpha_{-}C$	111.602	2.528	
$N_{-}C\alpha_{-}C\beta$	110.866	0.910	$N_{-}C\alpha_{-}C\beta$	110.482	1.127	
LY	S tmmm $n = 8$		LY	S tttt $n = 4861$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-177.527	11.864	chi1	-175.451	8.169	
chi2	-81.761	7.499	chi2	176.592	8.767	
chi3	-63.102	8.026	chi3	179.677	9.260	
chi4	-64.475	4.939	chi4	-179.889	10.200	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	116.243	2.695	$C\alphaC\betaC\gamma$	113.873	1.541	
$C\alphaCO$	120.272	0.848	$C\alphaCO$	120.582	0.775	
$C\beta_{-}C\alpha_{-}C$	111.246	1.126	$C\beta C\alpha C$	110.231	1.130	
$C\beta_C\gamma_C\delta$	114.871	1.367	$C\betaC\gammaC\delta$	111.144	1.751	
$C\delta_{-}C\epsilon_{-}N\zeta$	113.141	1.476	$C\deltaC\epsilonN\zeta$	111.168	1.988	
$C\gammaC\deltaC\epsilon$	114.998	1.617	$C\gammaC\deltaC\epsilon$	111.041	1.555	
$N_{-}C\alpha_{-}C$	108.983	2.013	$N_{-}C\alpha_{-}C$	110.548	2.283	
$N_{-}C\alpha_{-}C\beta$	109.523	1.258	$N_C\alpha_C\beta$	110.335	1.208	
LYS tptm $n = 186$			LYS tptp $n = 397$			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-177.928	7.743	chi1	-179.932	7.711	
chi2	67.158	9.851	chi2	67.443	10.094	
chi3	-179.368	11.634	chi3	173.601	13.627	
chi4	-66.243	13.119	chi4	66.191	12.712	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alpha_{-}C\beta_{-}C\gamma$	114.935	1.380	$C\alphaC\betaC\gamma$	114.794	1.326	
$C\alphaCO$	120.385	0.782	$C\alphaCO$	120.523	0.836	
$C\betaC\alphaC$	110.358	1.052	$C\betaC\alphaC$	110.213	1.216	
$C\betaC\gammaC\delta$	111.872	1.408	$C\betaC\gammaC\delta$	112.053	1.463	
$C\deltaC\epsilonN\zeta$	112.546	1.999	$C\deltaC\epsilonN\zeta$	112.637	1.911	
$C\gammaC\deltaC\epsilon$	111.915	1.346	$C\gammaC\deltaC\epsilon$	112.163	1.302	
$N_{-}C\alpha_{-}C$	110.318	2.024	$N_{-}C\alpha_{-}C$	110.295	2.083	
$N_{-}C\alpha_{-}C\beta$	110.247	1.184	$N_{-}C\alpha_{-}C\beta$	110.322	1.121	

LY	S mptm $n = 12$		LY	S ttmt n = 660	_
χ	Smooth COM	StdDev	$\overline{\chi}$	Smooth COM	StdDev
chi1	-91.748	10.291	chi1	-174.573	9.248
chi2	61.180	11.718	chi2	-177.288	10.547
chi3	-173.655	8.343	chi3	-73.479	11.991
chi4			chi4		11.331 11.332
	-60.981	12.837		-175.112	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.555	0.798	$C\alphaC\betaC\gamma$	113.693	1.603
$C\alphaCO$	120.631	0.553	$C\alphaCO$	120.605	0.861
$C\betaC\alphaC$	110.339	1.030	$C\betaC\alphaC$	110.198	1.171
$C\betaC\gammaC\delta$	112.639	0.748	$C\betaC\gammaC\delta$	112.167	1.536
$C\deltaC\epsilonN\zeta$	113.329	1.651	$C\deltaC\epsilonN\zeta$	110.954	2.327
$C\gammaC\deltaC\epsilon$	111.743	0.606	$C\gammaC\deltaC\epsilon$	112.228	1.660
$N_{-}C\alpha_{-}C$	110.398	2.154	$N_{-}C\alpha_{-}C$	110.305	2.344
$NC\alphaC\beta$	110.566	0.850	$N_{-}C\alpha_{-}C\beta$	110.345	1.237
LY	S $tmtm n = 18$		LY	S tttp $n = 1184$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-172.233	10.952	chi1	-177.650	8.175
chi2	-90.510	5.643	chi2	175.444	9.837
chi3	-172.543	12.826	chi3	173.929	10.972
chi4	-64.869	7.988	chi4	65.901	12.639
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.721	1.478	$C\alphaC\betaC\gamma$	113.948	1.528
$C\alphaCO$	120.578	0.678	$C\alphaCO$	120.577	0.751
$C\betaC\alphaC$	111.018	0.821	$C\betaC\alphaC$	110.208	1.091
$C\beta_{-}C\gamma_{-}C\delta$	112.129	1.268	$C\betaC\gammaC\delta$	111.139	1.588
$C\deltaC\epsilonN\zeta$	112.795	1.744	$C\deltaC\epsilonN\zeta$	112.275	2.010
$C\gammaC\deltaC\epsilon$	112.083	1.552	$C\gammaC\deltaC\epsilon$	111.838	1.358
$N_{-}C\alpha_{-}C$	109.908	1.712	$N_{-}C\alpha_{-}C$	110.677	2.233
$N_{-}C\alpha_{-}C\beta$	109.668	0.722	$N_{-}C\alpha_{-}C\beta$	110.404	1.146
LY	TS ttpt $n = 858$		LY	S ttpp $n = 217$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-178.343	8.179	chi1	-178.427	8.698
chi2	174.555	12.325	chi2	174.058	14.697
chi3	73.017	11.821	chi3	71.618	11.437
chi4	175.105	11.350	chi4	68.201	9.320
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.747	1.617	$C\alphaC\betaC\gamma$	113.616	1.605
$C\alphaCO$	120.605	0.754	$C\alphaCO$	120.600	0.801
$C\betaC\alphaC$	110.063	1.167	$C\beta C\alpha C$	110.087	1.255
$^{'}$ C β _ $^{'}$ C γ _ $^{'}$ C δ	112.132	1.476	$C\betaC\gammaC\delta$	112.162	1.668
$C\deltaC\epsilonN\zeta$	111.095	2.063	$C\deltaC\epsilonN\zeta$	112.803	2.394
$C\gammaC\deltaC\epsilon$	112.144	1.567	$C\gammaC\deltaC\epsilon$	112.733	1.464
$N_{-}C\alpha_{-}C$	110.324	2.318	$N_{-}C\alpha_{-}C$	110.242	2.451
$N_{-}C\alpha_{-}C\beta$	110.250	1.312	$N_{-}C\alpha_{-}C\beta$	110.406	1.369

LYS	5 mttm n = 1793		LY	VS tppp n = 35	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-66.855	7.316	chi1	-177.926	12.227
chi2	-177.777	10.010	chi2	62.258	10.225
chi3	-176.656	10.804	chi3	65.517	8.325
chi4	-67.384	12.631	chi4	67.940	11.042
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.405	1.721	$C\alpha_{-}C\beta_{-}C\gamma$	115.248	1.528
$C\alpha_{-}C_{-}O$	120.480	0.845	$C\alphaCO$	120.677	0.833
$C\betaC\alphaC$	110.077	1.549	$C\betaC\alphaC$	110.438	0.767
$C\betaC\gammaC\delta$	111.191	1.731	$C\betaC\gammaC\delta$	113.603	1.889
$C\delta_{-}C\epsilon_{-}N\zeta$	112.202	2.051	$C\deltaC\epsilonN\zeta$	113.089	1.700
$C\gammaC\deltaC\epsilon$	111.733	1.461	$C\gammaC\deltaC\epsilon$	113.467	1.753
$N_{-}C\alpha_{-}C$	111.384	2.368	$N_{-}C\alpha_{-}C$	110.994	1.841
$N_{-}C\alpha_{-}C\beta$	110.610	0.996	$N_{-}C\alpha_{-}C\beta$	110.242	1.136
LYS	S mttp $n = 1364$		LYS	S mttt $n = 8346$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-65.910	8.334	chi1	-67.654	7.115
chi2	-179.442	10.432	chi2	-178.811	9.043
chi3	176.319	10.992	chi3	-179.106	9.828
chi4	66.691	13.396	chi4	179.484	10.340
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.462	1.699	$C\alphaC\betaC\gamma$	113.450	1.626
$C\alphaCO$	120.505	0.828	$C\alphaCO$	120.466	0.825
$C\betaC\alphaC$	110.079	1.600	$C\betaC\alphaC$	109.994	1.554
$C\betaC\gammaC\delta$	111.245	1.729	$C\betaC\gammaC\delta$	111.139	1.844
$C\delta_{-}C\epsilon_{-}N\zeta$	112.222	1.990	$C\deltaC\epsilonN\zeta$	111.114	2.090
$C\gammaC\deltaC\epsilon$	111.727	1.427	$C\gammaC\deltaC\epsilon$	111.046	1.587
$N_{-}C\alpha_{-}C$	111.267	2.497	$N_{-}C\alpha_{-}C$	111.329	2.236
$N_{-}C\alpha_{-}C\beta$	110.596	1.017	$N_{-}C\alpha_{-}C\beta$	110.670	0.985
L	YS ttmp n = 9		LY	S ptmm $n = 78$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-174.170	3.389	chi1	66.614	8.430
chi2	-179.415	7.426	chi2	-177.929	10.052
chi3	-95.701	17.014	chi3	-69.614	9.318
chi4	76.743	24.622	chi4	-66.129	6.833
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.035	1.097	$C\alphaC\betaC\gamma$	114.440	1.310
$C\alphaCO$	120.617	0.500	$C\alphaCO$	120.631	1.040
$C\betaC\alphaC$	110.407	1.609	$C\betaC\alphaC$	109.920	1.510
$C\betaC\gammaC\delta$	112.734	1.712	$C\betaC\gammaC\delta$	112.368	1.441
$C\deltaC\epsilonN\zeta$	114.122	1.260	$C\deltaC\epsilonN\zeta$	112.964	1.788
$C\gammaC\deltaC\epsilon$	112.855	0.789	$C\gammaC\deltaC\epsilon$	113.025	1.147
$N_{-}C\alpha_{-}C$	110.834	1.481	$N_{-}C\alpha_{-}C$	110.448	2.720
$N_{-}C\alpha_{-}C\beta$	111.415	1.053	$N_{-}C\alpha_{-}C\beta$	110.825	1.214
			-		

3.18 ARG

ARG	ttp-170 n = 1479	9	ARC	$\frac{1}{2}$ pmt170 n = 40	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-175.447	9.255	chi1	73.963	11.175
chi2	179.359	13.108	chi2	-78.972	15.497
chi3	66.850	8.920	chi3	-169.420	10.046
chi4	-171.036	17.135	chi4	-169.441	15.483
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.661	1.643	$C\alphaC\betaC\gamma$	116.305	1.176
$C\alphaCO$	120.599	0.749	$C\alphaCO$	120.754	0.693
$C\beta_{-}C\alpha_{-}C$	109.991	1.239	$C\beta C\alpha C$	110.786	1.109
$C\betaC\gammaC\delta$	111.638	1.684	$C\betaC\gammaC\delta$	112.699	1.260
$C\delta_N\epsilon_C\zeta$	124.480	1.163	$C\delta_N\epsilon_C\zeta$	124.364	1.048
$C\gammaC\deltaN\epsilon$	111.498	1.579	$C\gammaC\deltaN\epsilon$	111.664	1.950
$N\epsilon C\zeta N\eta 1$	120.443	0.880	$N\epsilon C\zeta N\eta 1$	120.360	0.773
$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.775	0.868	$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.982	0.637
$N\eta_1 C\zeta N\eta_2$	119.763	0.690	$N\eta_1 C\zeta N\eta_2$	119.646	0.551
$N_C\alpha_C$	110.447	2.202	$N_{-}C\alpha_{-}C$	110.714	2.371
$N_{-}C\alpha_{-}C\beta$	110.437	1.311	$N_{-}C\alpha_{-}C\beta$	111.768	1.065
ARG	mtp180 n = 2444	4	ARG	pmm-80 n = 19	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-66.448	8.180	chi1	73.642	12.608
chi2	178.975	12.987	chi2	-75.958	11.183
chi3	66.423	9.105	chi3	-56.789	8.115
chi3 chi4	66.423 -171.573	9.105 16.488	chi3 chi4	-56.789 -81.265	8.115 7.401
chi4	-171.573	16.488	chi4	-81.265	7.401
chi4 Bond Angle	-171.573 Mean	16.488 StdDev	chi4 Bond Angle	-81.265 Mean	7.401 StdDev
$\frac{\text{chi4}}{\text{Bond Angle}}$ $\frac{\text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma}{\text{C}\gamma}$	-171.573 Mean 113.198	16.488 StdDev 1.794	$\frac{\text{chi4}}{\text{Bond Angle}}$ $\frac{\text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma}{\text{C}\gamma}$	-81.265 Mean 115.931	7.401 StdDev 1.019
$\frac{\text{chi4}}{\text{Bond Angle}}$ $\frac{\text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma}{\text{C}\alpha_{-}\text{C}_{-}\text{O}}$	-171.573 Mean 113.198 120.477	16.488 StdDev 1.794 0.832	$\begin{array}{c} \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \hline \text{$C\alpha$_$C}\beta$_$C}\gamma \\ \hline \text{$C\alpha$_C_$O} \end{array}$	-81.265 Mean 115.931 120.769	7.401 StdDev 1.019 0.553
$\begin{array}{c} \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \hline \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \hline \text{C}\alpha_\text{C}_\text{O} \\ \hline \text{C}\beta_\text{C}\alpha_\text{C} \end{array}$	-171.573 Mean 113.198 120.477 110.045	16.488 StdDev 1.794 0.832 1.655		-81.265 Mean 115.931 120.769 110.942	7.401 StdDev 1.019 0.553 1.227
chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\gamma C\delta$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$	-171.573 Mean 113.198 120.477 110.045 111.700 124.378 111.556	16.488 StdDev 1.794 0.832 1.655 1.780	chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\gamma$ $C\alpha C\gamma$ $C\beta C\gamma C\gamma$ $C\beta C\gamma C\delta$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$	-81.265 Mean 115.931 120.769 110.942 113.505 125.145 112.540	7.401 StdDev 1.019 0.553 1.227 1.558
chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta_{1}$	-171.573 Mean 113.198 120.477 110.045 111.700 124.378	16.488 StdDev 1.794 0.832 1.655 1.780 1.201	chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\gamma$ $C\alpha C\gamma$ $C\beta C\gamma C\delta$ $C\beta C\gamma C\delta$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$ $N\epsilon C\zeta N\eta 1$	-81.265 Mean 115.931 120.769 110.942 113.505 125.145	7.401 StdDev 1.019 0.553 1.227 1.558 1.080
chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\gamma C\delta$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$	-171.573 Mean 113.198 120.477 110.045 111.700 124.378 111.556	16.488 StdDev 1.794 0.832 1.655 1.780 1.201 1.557	chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\gamma$ $C\alpha C\gamma$ $C\beta C\gamma C\gamma$ $C\beta C\gamma C\delta$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$	-81.265 Mean 115.931 120.769 110.942 113.505 125.145 112.540	7.401 StdDev 1.019 0.553 1.227 1.558 1.080 1.304
chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta_{1}$	-171.573 Mean 113.198 120.477 110.045 111.700 124.378 111.556 120.430	16.488 StdDev 1.794 0.832 1.655 1.780 1.201 1.557 0.998	chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\gamma$ $C\alpha C\gamma$ $C\beta C\gamma C\delta$ $C\beta C\gamma C\delta$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$ $N\epsilon C\zeta N\eta 1$	-81.265 Mean 115.931 120.769 110.942 113.505 125.145 112.540 120.428	7.401 StdDev 1.019 0.553 1.227 1.558 1.080 1.304 0.947
chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\alpha C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$ $N\epsilon C\zeta N\eta 1$ $N\epsilon C\zeta N\eta 2$	-171.573 Mean 113.198 120.477 110.045 111.700 124.378 111.556 120.430 119.776	16.488 StdDev 1.794 0.832 1.655 1.780 1.201 1.557 0.998 0.964	chi4 Bond Angle $C\alpha \cdot C\beta \cdot C\gamma$ $C\alpha \cdot C \cdot C\gamma$ $C\beta \cdot C\alpha \cdot C$ $C\beta \cdot C\alpha \cdot C$ $C\beta \cdot C\gamma \cdot C\delta$ $C\gamma \cdot C\delta \cdot N\epsilon$ $N\epsilon \cdot C\zeta \cdot N\eta \cdot 1$ $N\epsilon \cdot C\zeta \cdot N\eta \cdot 2$	-81.265 Mean 115.931 120.769 110.942 113.505 125.145 112.540 120.428 120.291	7.401 StdDev 1.019 0.553 1.227 1.558 1.080 1.304 0.947 0.953

ARG	ttp-110 n = 616		ARC	3 pmt-80 n = 26	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-174.744	8.634	chi1	81.229	9.470
chi2	177.160	13.078	chi2	-68.144	7.677
chi3	64.599	10.834	chi3	-176.905	11.168
chi4	-113.458	9.921	chi4	-84.063	8.278
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.833	1.642	$C\alphaC\betaC\gamma$	115.724	1.165
$C\alphaCO$	120.601	0.805	$C\alphaCO$	120.979	0.655
$C\betaC\alphaC$	110.165	1.235	$C\betaC\alphaC$	110.263	1.032
$C\betaC\gammaC\delta$	111.993	1.747	$C\betaC\gammaC\delta$	113.303	1.809
$C\delta_N\epsilon_C\zeta$	125.367	1.365	$C\delta_N\epsilon_C\zeta$	124.962	0.996
$C\gammaC\deltaN\epsilon$	111.873	2.149	$C\gammaC\deltaN\epsilon$	112.046	1.732
$N\epsilon_{-}C\zeta_{-}N\eta 1$	121.080	1.283	$N\epsilon C\zeta N\eta 1$	121.047	0.855
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.472	1.155	$N\epsilon C\zeta N\eta 2$	119.621	0.610
$N\eta_1 C\zeta N\eta_2$	119.427	0.892	$N\eta 1C\zetaN\eta 2$	119.312	0.539
$N_{-}C\alpha_{-}C$	110.689	2.197	$NC\alphaC$	110.675	2.058
$N_{-}C\alpha_{-}C\beta$	110.301	1.286	$N_{-}C\alpha_{-}C\beta$	111.431	1.161
ARG	mpt180 n = 241	:	ARG	mtt90 n = 2402	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-84.592	7.920	chi1	-67.677	7.490
chi2	69.331	13.033	chi2	179.859	13.521
chi3	173.629	9.225	chi3	178.901	10.618
chi4	174.437	16.865	chi4	90.605	15.171
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$					
$\circ \alpha \circ \rho \circ \gamma$	114.784	1.415	$C\alpha_{-}C\beta_{-}C\gamma$	113.333	1.721
$C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$	$114.784 \\ 120.569$	1.415 0.863	$ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \end{array} $	113.333 120.441	1.721 0.801
$C\alphaCO$	120.569	0.863	$C\alphaCO$	120.441	0.801
$C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$	$120.569 \\ 109.472$	0.863 1.661	$C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$	120.441 109.901 111.536 124.857	$0.801 \\ 1.716$
$C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$	120.569 109.472 112.991	0.863 1.661 1.807	$C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$	120.441 109.901 111.536	0.801 1.716 2.046
$C\alphaCO$ $C\betaC\alphaC$ $C\betaC\gammaC\delta$ $C\deltaN\epsilonC\zeta$ $C\gammaC\deltaN\epsilon$ $N\epsilonC\zetaN\eta 1$	120.569 109.472 112.991 124.413 110.708 120.394	0.863 1.661 1.807 1.462	$C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta_{1}$	120.441 109.901 111.536 124.857	0.801 1.716 2.046 1.137
$\begin{array}{c} \text{C}\alpha_{-}\text{C}_{-}\text{O} \\ \text{C}\beta_{-}\text{C}\alpha_{-}\text{C} \\ \text{C}\beta_{-}\text{C}\gamma_{-}\text{C}\delta \\ \text{C}\delta_{-}\text{N}\epsilon_{-}\text{C}\zeta \\ \text{C}\gamma_{-}\text{C}\delta_{-}\text{N}\epsilon \\ \text{N}\epsilon_{-}\text{C}\zeta_{-}\text{N}\eta 1 \\ \text{N}\epsilon_{-}\text{C}\zeta_{-}\text{N}\eta 2 \end{array}$	120.569 109.472 112.991 124.413 110.708 120.394 119.743	0.863 1.661 1.807 1.462 2.005 1.019 0.915	$C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta 1$ $N\epsilon_{-}C\zeta_{-}N\eta 2$	120.441 109.901 111.536 124.857 111.014 120.851 119.532	0.801 1.716 2.046 1.137 2.489 1.075 1.059
$\begin{array}{c} \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta1 \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta2 \\ \text{N}\eta1_\text{C}\zeta_\text{N}\eta2 \end{array}$	120.569 109.472 112.991 124.413 110.708 120.394 119.743 119.835	0.863 1.661 1.807 1.462 2.005 1.019	$C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta_{1}$	120.441 109.901 111.536 124.857 111.014 120.851	0.801 1.716 2.046 1.137 2.489 1.075
$C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta_{1}$ $N\epsilon_{-}C\zeta_{-}N\eta_{2}$	120.569 109.472 112.991 124.413 110.708 120.394 119.743	0.863 1.661 1.807 1.462 2.005 1.019 0.915	$C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta 1$ $N\epsilon_{-}C\zeta_{-}N\eta 2$	120.441 109.901 111.536 124.857 111.014 120.851 119.532	0.801 1.716 2.046 1.137 2.489 1.075 1.059

ARG	ttt-90 n = 1340		ARG	mpp-170 n = 61	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-176.754	9.428	chi1	-78.876	12.782
chi2	177.849	11.359	chi2	81.734	17.546
chi3	-178.261	9.828	chi3	65.059	7.321
chi4	-89.587	12.432	chi4	-166.895	17.175
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.981	1.610	$C\alphaC\betaC\gamma$	114.670	1.401
$C\alphaCO$	120.539	0.783	$C\alphaCO$	120.576	0.634
$C\betaC\alphaC$	110.257	1.264	$C\betaC\alphaC$	109.621	1.429
$C\betaC\gammaC\delta$	110.911	2.070	$C\betaC\gammaC\delta$	112.663	1.759
$C\delta_N\epsilon_C\zeta$	124.824	1.144	$C\deltaN\epsilonC\zeta$	124.402	1.168
$C\gammaC\deltaN\epsilon$	111.838	2.499	$C\gamma_C\delta_N\epsilon$	111.588	1.339
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.767	1.014	$N\epsilon C\zeta N\eta 1$	120.721	0.995
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.594	0.967	$N\epsilonC\zetaN\eta 2$	119.657	0.708
$N\eta_1 C\zeta N\eta_2$	119.618	0.868	$N\eta 1C\zetaN\eta 2$	119.604	0.725
$N_{-}C\alpha_{-}C$	110.395	2.306	$NC\alphaC$	110.015	3.139
$N_{-}C\alpha_{-}C\beta$	110.231	1.293	$N_{-}C\alpha_{-}C\beta$	111.347	1.049
ARG	mtm110 n = 765	5	ARG ptm160 n = 496		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-68.128	8.122	chi1	63.484	8.764
chi2	-177.015	9.654	chi2	-179.108	15.002
chi3	-68.916	10.457	chi3	-67.148	9.871
chi4	112.867	10.511	chi4	165.337	25.676
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.144	1.800	$C\alpha_{-}C\beta_{-}C\gamma$	114.589	1.650
$C\alphaCO$	120.421	0.868	$C\alphaCO$	120.504	0.981
$C\beta _C\alpha _C$	110.062	1.756	$C\beta_{-}C\alpha_{-}C$	110.445	1.562
$C\betaC\gammaC\delta$	112.398	1.710	$C\betaC\gammaC\delta$	111.718	1.807
$C\delta_N\epsilon_C\zeta$	125.289	1.468	$C\delta_N\epsilon_C\zeta$	124.670	1.398
$C\gamma_C\delta_N\epsilon$	112.093	1.877	$C\gammaC\deltaN\epsilon$	111.561	2.103
$N\epsilon C\zeta N\eta 1$	121.038	1.239	$N\epsilon C\zeta N\eta 1$	120.580	1.283
$N\epsilon_C \zeta_N \eta^2$	119.456	1.108	$N\epsilon_C \zeta_N \eta^2$	119.713	1.128
$N\eta 1_C\zeta_N\eta 2$	119.487	0.911	$N\eta 1_C\zeta_N\eta 2$	119.686	1.003
~ ~	111 050	0.446	N C	110 011	0.501
$N_{-}C\alpha_{-}C$ $N_{-}C\alpha_{-}C\beta$	111.650 110.680	2.446	$N_{-}C\alpha_{-}C$ $N_{-}C\alpha_{-}C\beta$	110.911	2.561

ARC	$\frac{1}{3} \text{ tpm-80 n} = 19$		ARC	358 tpp = 358	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-177.264	5.205	chi1	-177.765	10.202
chi2	78.524	8.110	chi2	65.211	10.766
chi3	-80.359	10.480	chi3	59.806	9.550
chi4	-79.824	9.270	chi4	84.211	9.220
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.183	1.414	$C\alphaC\betaC\gamma$	114.937	1.366
$C\alphaCO$	120.634	1.078	$C\alphaCO$	120.532	0.755
$C\betaC\alphaC$	110.271	1.141	$C\betaC\alphaC$	110.478	1.226
$C\betaC\gammaC\delta$	112.940	1.157	$C\betaC\gammaC\delta$	112.980	1.577
$C\delta_N\epsilon_C\zeta$	125.286	1.195	$C\delta_N\epsilon_C\zeta$	125.002	1.060
$C\gamma_C\delta_N\epsilon$	113.647	2.247	$C\gammaC\deltaN\epsilon$	112.613	2.056
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.670	0.978	$N\epsilon C\zeta \eta 1$	120.719	0.869
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	120.045	0.947	$N\epsilon C\zeta \eta 2$	119.747	0.827
$N\eta_1 C\zeta N\eta_2$	119.266	0.643	$N\eta 1_C\zeta N\eta 2$	119.514	0.717
$N_{-}C\alpha_{-}C$	110.861	1.497	$N_{-}C\alpha_{-}C$	110.767	2.017
$N_{-}C\alpha_{-}C\beta$	109.906	1.129	$N_{-}C\alpha_{-}C\beta$	110.356	1.121
ARG	ptp-170 n = 378	3	ARC	6 ttt90 n = 1019	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	67.375	7.738	chi1	-176.157	9.349
			chi1 chi2		
chi1 chi2 chi3	67.375 -175.630 68.232	7.738 12.343 9.386	chi1 chi2 chi3	-176.157 176.118 176.454	9.349 10.768 9.625
chi1 chi2	67.375 -175.630	7.738 12.343	chi1 chi2	-176.157 176.118	9.349 10.768
chi1 chi2 chi3	67.375 -175.630 68.232	7.738 12.343 9.386	chi1 chi2 chi3	-176.157 176.118 176.454	9.349 10.768 9.625
chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$	67.375 -175.630 68.232 -172.286 Mean 114.529	7.738 12.343 9.386 16.066	chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$	-176.157 176.118 176.454 86.745	9.349 10.768 9.625 10.698
chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$ $C\alphaCO$	67.375 -175.630 68.232 -172.286 Mean	7.738 12.343 9.386 16.066 StdDev	chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C CO$	-176.157 176.118 176.454 86.745 Mean	9.349 10.768 9.625 10.698 StdDev
chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$ $C\alphaCO$ $C\betaC\alphaC$	67.375 -175.630 68.232 -172.286 Mean 114.529 120.570 110.367	7.738 12.343 9.386 16.066 StdDev 1.454	chi1 chi2 chi3 chi4 Bond Angle Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C	-176.157 176.118 176.454 86.745 Mean 113.863 120.576 110.241	9.349 10.768 9.625 10.698 StdDev 1.705
chi1 chi2 chi3 chi4 Bond Angle Cα_Cβ_Cγ Cα_C Cο Cβ_Cα_C Cβ_Cγ_Cδ	67.375 -175.630 68.232 -172.286 Mean 114.529 120.570	7.738 12.343 9.386 16.066 StdDev 1.454 0.949	chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C_ O$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$	-176.157 176.118 176.454 86.745 Mean 113.863 120.576	9.349 10.768 9.625 10.698 StdDev 1.705 0.785
chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$ $C\beta_C\alpha_C$ $C\beta_C\alpha_C$ $C\beta_C\gamma_C\delta$ $C\delta_N\epsilon_C\zeta$	67.375 -175.630 68.232 -172.286 Mean 114.529 120.570 110.367	7.738 12.343 9.386 16.066 StdDev 1.454 0.949 1.549	chi1 chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}C$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$	-176.157 176.118 176.454 86.745 Mean 113.863 120.576 110.241	9.349 10.768 9.625 10.698 StdDev 1.705 0.785 1.230
chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C _ C$ $C\beta _ C\alpha _ C$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$ $C\delta _ N\epsilon _ C\zeta$ $C\gamma _ C\delta _ N\epsilon$	67.375 -175.630 68.232 -172.286 Mean 114.529 120.570 110.367 111.274 124.587 111.439	7.738 12.343 9.386 16.066 StdDev 1.454 0.949 1.549 1.751	chi1 chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}C$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$	-176.157 176.118 176.454 86.745 Mean 113.863 120.576 110.241 111.310 124.740 111.625	9.349 10.768 9.625 10.698 StdDev 1.705 0.785 1.230 2.083 0.979 2.562
chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$ $C\beta_C\alpha_C$ $C\beta_C\alpha_C$ $C\beta_C\gamma_C\delta$ $C\delta_N\epsilon_C\zeta$	67.375 -175.630 68.232 -172.286 Mean 114.529 120.570 110.367 111.274 124.587	7.738 12.343 9.386 16.066 StdDev 1.454 0.949 1.549 1.751 1.110	chi1 chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}C$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$	-176.157 176.118 176.454 86.745 Mean 113.863 120.576 110.241 111.310 124.740	9.349 10.768 9.625 10.698 StdDev 1.705 0.785 1.230 2.083 0.979
chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C _ O$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$ $C\delta _ N\epsilon _ C\zeta$ $C\gamma _ C\delta _ N\epsilon$	67.375 -175.630 68.232 -172.286 Mean 114.529 120.570 110.367 111.274 124.587 111.439	7.738 12.343 9.386 16.066 StdDev 1.454 0.949 1.549 1.751 1.110 1.582	chi1 chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}C$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$	-176.157 176.118 176.454 86.745 Mean 113.863 120.576 110.241 111.310 124.740 111.625	9.349 10.768 9.625 10.698 StdDev 1.705 0.785 1.230 2.083 0.979 2.562
chi1 chi2 chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _C$ $C\beta _C\alpha _C$ $C\gamma _C\delta _N\epsilon$ $N\epsilon _C\zeta _N\eta 1$ $N\epsilon _C\zeta _N\eta 2$	67.375 -175.630 68.232 -172.286 Mean 114.529 120.570 110.367 111.274 124.587 111.439 120.448 119.788 119.735	7.738 12.343 9.386 16.066 StdDev 1.454 0.949 1.549 1.751 1.110 1.582 0.945	chi1 chi2 chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _O$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$ $C\delta _N\epsilon _C\zeta$ $C\gamma _C\delta _N\epsilon$ $N\epsilon _C\zeta _N\eta 1$ $N\epsilon _C\zeta _N\eta 2$	-176.157 176.118 176.454 86.745 Mean 113.863 120.576 110.241 111.310 124.740 111.625 120.723	9.349 10.768 9.625 10.698 StdDev 1.705 0.785 1.230 2.083 0.979 2.562 0.971
chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\beta C\alpha C$ $C\beta C\alpha C\beta C\gamma C\delta C\alpha C$ $C\alpha C\beta C\alpha C\gamma C\alpha C\beta C\gamma C\alpha C\alpha C\gamma C\alpha C\alpha C\gamma C\alpha $	67.375 -175.630 68.232 -172.286 Mean 114.529 120.570 110.367 111.274 124.587 111.439 120.448 119.788	7.738 12.343 9.386 16.066 StdDev 1.454 0.949 1.549 1.751 1.110 1.582 0.945 0.845	chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C_ O$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$ $C\delta _ N\epsilon _ C\zeta$ $C\gamma _ C\delta _ N\epsilon$ $N\epsilon _ C\zeta _ N\eta 1$ $N\epsilon _ C\zeta _ N\eta 2$	-176.157 176.118 176.454 86.745 Mean 113.863 120.576 110.241 111.310 124.740 111.625 120.723 119.635	9.349 10.768 9.625 10.698 StdDev 1.705 0.785 1.230 2.083 0.979 2.562 0.971 0.944

ARG	ttt180 n = 2294	:	ARO	G ptt90 n = 797	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-176.225	9.089	chi1	64.935	7.664
chi2	176.468	11.199	chi2	178.802	12.133
chi3	178.543	11.535	chi3	176.614	8.716
chi4	179.245	18.737	chi4	87.625	9.730
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.469	1.751	$C\alphaC\betaC\gamma$	114.806	1.433
$C\alphaCO$	120.563	0.807	$C\alphaCO$	120.591	0.868
$C\betaC\alphaC$	110.173	1.174	$C\betaC\alphaC$	110.212	1.421
$C\betaC\gammaC\delta$	111.349	2.176	$C\betaC\gammaC\delta$	110.981	1.951
$C\delta_N\epsilon_C\zeta$	124.338	1.175	$C\delta_N\epsilon_C\zeta$	124.866	0.905
$C\gammaC\deltaN\epsilon$	110.642	1.927	$C\gammaC\deltaN\epsilon$	111.888	2.446
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.403	0.892	$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.742	0.972
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.614	0.881	$N\epsilon C\zeta N\eta 2$	119.700	0.900
$N\eta_1$ _ $C\zetaN\eta_2$	119.965	0.799	$N\eta 1C\zetaN\eta 2$	119.539	0.696
$N_{-}C\alpha_{-}C$	110.511	2.403	$N_{-}C\alpha_{-}C$	110.796	2.517
$N_{-}C\alpha_{-}C\beta$	110.185	1.379	$N_{-}C\alpha_{-}C\beta$	111.045	1.145
ARC	349 tpt-90 n = 349		ARO	G mpt90 n = 48	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	179.343	8.509	chi1	-76.133	12.986
			chi1 chi2		
chi1	179.343	8.509	chi1	-76.133	12.986
chi1 chi2	179.343 67.144	8.509 10.528	chi1 chi2	-76.133 84.673	12.986 13.882
chi1 chi2 chi3	179.343 67.144 -179.669	8.509 10.528 8.884	chi1 chi2 chi3	-76.133 84.673 170.244	12.986 13.882 9.976
chi1 chi2 chi3 chi4	179.343 67.144 -179.669 -89.385	8.509 10.528 8.884 12.112	chi1 chi2 chi3 chi4	-76.133 84.673 170.244 93.427	12.986 13.882 9.976 10.968
chi1 chi2 chi3 chi4 Bond Angle	179.343 67.144 -179.669 -89.385 Mean	8.509 10.528 8.884 12.112 StdDev	chi1 chi2 chi3 chi4 Bond Angle	-76.133 84.673 170.244 93.427 Mean	12.986 13.882 9.976 10.968 StdDev
chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$	179.343 67.144 -179.669 -89.385 Mean 114.746	8.509 10.528 8.884 12.112 StdDev 1.231	chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$	-76.133 84.673 170.244 93.427 Mean 114.551	12.986 13.882 9.976 10.968 StdDev 1.718
chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$ $C\alphaC$ _O	179.343 67.144 -179.669 -89.385 Mean 114.746 120.498	8.509 10.528 8.884 12.112 StdDev 1.231 0.704	chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$	-76.133 84.673 170.244 93.427 Mean 114.551 120.424	12.986 13.882 9.976 10.968 StdDev 1.718 0.638
chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$ $C\alphaCO$ $C\betaC\alphaC$	179.343 67.144 -179.669 -89.385 Mean 114.746 120.498 110.562	8.509 10.528 8.884 12.112 StdDev 1.231 0.704 1.204	chi1 chi2 chi3 chi4 Bond Angle Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C	-76.133 84.673 170.244 93.427 Mean 114.551 120.424 109.252	12.986 13.882 9.976 10.968 StdDev 1.718 0.638 1.448
chi1 chi2 chi3 chi4 Bond Angle Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C Cβ_Cα_C	179.343 67.144 -179.669 -89.385 Mean 114.746 120.498 110.562 112.329	8.509 10.528 8.884 12.112 StdDev 1.231 0.704 1.204 1.639	chi1 chi2 chi3 chi4 Bond Angle Cα_Cβ_Cγ Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C Cβ_Cγ_Cδ	-76.133 84.673 170.244 93.427 Mean 114.551 120.424 109.252 112.595	12.986 13.882 9.976 10.968 StdDev 1.718 0.638 1.448 1.663
chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$ $C\beta_C\alpha_C$ $C\beta_C\alpha_C$ $C\beta_C\gamma_C\delta$ $C\delta_N\epsilon_C\zeta$	179.343 67.144 -179.669 -89.385 Mean 114.746 120.498 110.562 112.329 124.831	8.509 10.528 8.884 12.112 StdDev 1.231 0.704 1.204 1.639 1.149	chi1 chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$	-76.133 84.673 170.244 93.427 Mean 114.551 120.424 109.252 112.595 125.017	12.986 13.882 9.976 10.968 StdDev 1.718 0.638 1.448 1.663 0.927
chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C _ C$ $C\beta _ C\alpha _ C$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$ $C\delta _ N\epsilon _ C\zeta$ $C\gamma _ C\delta _ N\epsilon$	179.343 67.144 -179.669 -89.385 Mean 114.746 120.498 110.562 112.329 124.831 111.143	8.509 10.528 8.884 12.112 StdDev 1.231 0.704 1.204 1.639 1.149 2.461	chi1 chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$	-76.133 84.673 170.244 93.427 Mean 114.551 120.424 109.252 112.595 125.017 111.068	12.986 13.882 9.976 10.968 StdDev 1.718 0.638 1.448 1.663 0.927 2.089
chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\beta C\alpha C$ $C\beta C\gamma C\delta$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$ $N\epsilon C\zeta N\eta 1$	179.343 67.144 -179.669 -89.385 Mean 114.746 120.498 110.562 112.329 124.831 111.143 120.708	8.509 10.528 8.884 12.112 StdDev 1.231 0.704 1.204 1.639 1.149 2.461 0.996	chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C_ O$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$ $C\delta _ N\epsilon _ C\zeta$ $C\gamma _ C\delta _ N\epsilon$ $N\epsilon _ C\zeta _ N\eta 1$	-76.133 84.673 170.244 93.427 Mean 114.551 120.424 109.252 112.595 125.017 111.068 121.075	12.986 13.882 9.976 10.968 StdDev 1.718 0.638 1.448 1.663 0.927 2.089 0.893
chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\alpha C$ $C\alpha C\beta C\alpha C$ $C\alpha C\alpha C\alpha C$ $C\alpha$	179.343 67.144 -179.669 -89.385 Mean 114.746 120.498 110.562 112.329 124.831 111.143 120.708 119.670	8.509 10.528 8.884 12.112 StdDev 1.231 0.704 1.204 1.639 1.149 2.461 0.996 0.955	chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C_ O$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$ $C\delta _ N\epsilon _ C\zeta$ $C\gamma _ C\delta _ N\epsilon$ $N\epsilon _ C\zeta _ N\eta 1$ $N\epsilon _ C\zeta _ N\eta 2$	-76.133 84.673 170.244 93.427 Mean 114.551 120.424 109.252 112.595 125.017 111.068 121.075 119.387	12.986 13.882 9.976 10.968 StdDev 1.718 0.638 1.448 1.663 0.927 2.089 0.893 0.679

ARG	G ppp80 n = 10		ARG	pmm150 n = 12	}
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	62.201	5.082	chi1	75.579	3.166
chi2	86.595	6.961	chi2	-75.440	5.561
chi3	57.216	3.753	chi3	-64.975	6.260
chi4	79.687	8.472	chi4	151.999	15.442
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	116.109	0.884	$C\alphaC\betaC\gamma$	116.190	1.499
$C\alphaCO$	120.837	0.551	$C\alphaCO$	120.267	0.926
$C\betaC\alphaC$	111.013	1.509	$C\betaC\alphaC$	110.409	1.045
$C\betaC\gammaC\delta$	113.944	0.819	$C\betaC\gammaC\delta$	112.425	1.153
$C\delta_N\epsilon_C\zeta$	125.029	0.341	$C\delta_N\epsilon_C\zeta$	125.348	2.473
$C\gamma_C\delta_N\epsilon$	112.507	1.082	$C\gammaC\deltaN\epsilon$	111.569	2.064
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.628	0.683	$N\epsilon C\zeta N\eta 1$	121.076	1.741
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.754	0.628	$N\epsilon C\zeta N\eta 2$	119.660	1.033
$N\eta_1 C\zeta N\eta_2$	119.607	0.318	$N\eta 1C\zetaN\eta 2$	119.218	1.385
$N_{-}C\alpha_{-}C$	111.134	2.176	$N_{-}C\alpha_{-}C$	109.038	0.995
$N_{-}C\alpha_{-}C\beta$	111.870	1.188	$N_{-}C\alpha_{-}C\beta$	112.126	0.964
ARG	ptm-80 n = 212		ARC	3 ptp90 n = 219	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	65.373	8.242	chi1	65.165	9.386
chi2	-178.472	14.457	chi2	178.845	11.358
chi3	-66.034	10.268	chi3	64.039	8.608
chi4	-84.515	10.771	chi4	87.873	11.161
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.587	1.276	$C\alphaC\betaC\gamma$	114.899	1.486
$C\alphaCO$	120.412	0.852	$C\alphaCO$	120.463	0.961
$\alpha \alpha \alpha \alpha$	440 040		000	440 450	
$C\betaC\alphaC$	110.310	1.386	$C\betaC\alphaC$	110.453	1.389
$C\beta C\alpha C$ $C\beta C\gamma C\delta$	110.310 111.859	1.386 1.750	$C\beta_C\alpha_C$ $C\beta_C\gamma_C\delta$	110.453 111.832	1.389 1.558
,					
$^{'}\!\!eta_{-}\!$	111.859	1.750	$C\betaC\gammaC\delta$	111.832	1.558
$C\betaC\gammaC\delta$ $C\deltaN\epsilonC\zeta$	111.859 124.958	$1.750 \\ 1.447$	$C\betaC\gammaC\delta$ $C\deltaN\epsilonC\zeta$	111.832 124.915	$1.558 \\ 1.162$
$C\betaC\gammaC\delta$ $C\deltaN\epsilonC\zeta$ $C\gammaC\deltaN\epsilon$	111.859 124.958 112.317	1.750 1.447 2.278	$C\betaC\gammaC\delta$ $C\deltaN\epsilonC\zeta$ $C\gammaC\deltaN\epsilon$	111.832 124.915 112.175	1.558 1.162 2.187
$C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta 1$	111.859 124.958 112.317 120.705	1.750 1.447 2.278 1.220	$C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta 1$	111.832 124.915 112.175 120.749	1.558 1.162 2.187 1.027
$C\betaC\gammaC\delta$ $C\deltaN\epsilonC\zeta$ $C\gammaC\deltaN\epsilon$ $N\epsilonC\zetaN\eta_1$ $N\epsilonC\zetaN\eta_2$	111.859 124.958 112.317 120.705 119.900	1.750 1.447 2.278 1.220 1.459	$C\betaC\gammaC\delta$ $C\deltaN\epsilonC\zeta$ $C\gammaC\deltaN\epsilon$ $N\epsilonC\zetaN\eta 1$ $N\epsilonC\zetaN\eta 2$	111.832 124.915 112.175 120.749 119.716	1.558 1.162 2.187 1.027 0.978

ARC	G ptt-90 n = 701		ARG	mtp85 n = 1815	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	66.303	7.919	chi1	-66.328	8.551
chi2	-175.118	12.042	chi2	177.775	11.141
chi3	-176.524	9.175	chi3	64.643	9.712
chi4	-87.098	11.773	chi4	87.715	10.990
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.834	1.507	$C\alphaC\betaC\gamma$	113.269	1.811
$C\alphaCO$	120.480	0.932	$C\alphaCO$	120.491	0.903
$C\betaC\alphaC$	110.425	1.553	$C\betaC\alphaC$	110.148	1.671
$C\betaC\gammaC\delta$	110.986	2.045	$C\betaC\gammaC\delta$	112.062	1.700
$C\delta_N\epsilon_C\zeta$	124.854	1.160	$C\delta_N\epsilon_C\zeta$	124.890	1.193
$C\gamma_C\delta_N\epsilon$	111.684	2.685	$C\gammaC\deltaN\epsilon$	112.297	1.979
$N\epsilonC\zetaN\eta 1$	120.746	1.010	$N\epsilon C\zeta \eta 1$	120.792	1.042
$N\epsilon C\zeta N\eta 2$	119.694	1.145	$N\epsilon C\zeta \eta 2$	119.682	1.018
$N\eta 1_C\zeta_N\eta 2$	119.538	1.036	$N\eta 1_C\zeta_N\eta 2$	119.506	0.780
$N_{-}C\alpha_{-}C$	111.689	2.532	$N_{-}C\alpha_{-}C$	111.093	2.396
$N_{-}C\alpha_{-}C\beta$	110.948	1.151	$N_{-}C\alpha_{-}C\beta$	110.595	1.042
ARG	mmm160 n = 93	6	ARG	4 ptp-110 n = 76	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-61.827	9.223	chi1	67.597	8.250
chi2	-66.167	13.640	chi2	-179.670	11.943
chi3	-64.223	10.076	chi3	64.784	9.524
chi4	163.153	24.085	chi4	-108.305	9.870
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.473	1.606	$C\alphaC\betaC\gamma$	114.848	1.903
$C\alphaCO$	120.402	0.877	$C\alphaCO$	120.797	1.200
$C\beta_{-}C\alpha_{-}C$	109.777	1.549	$C\beta C\alpha C$	110.400	1.408
$C\betaC\gammaC\delta$	112.534	1.733	$C\betaC\gammaC\delta$	111.843	1.470
$C\delta_N\epsilon_C\zeta$	124.583	1.308	$C\delta_N\epsilon_C\zeta$	125.631	1.395
$C\gammaC\deltaN\epsilon$	111.843	1.891	$C\gammaC\deltaN\epsilon$	111.737	2.292
$N\epsilonC\zetaN\eta 1$	120.562	1.166	$N\epsilonC\zetaN\eta 1$	121.013	1.390
$N\epsilon_C\zeta_N\eta^2$	119.780	1.119	$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.566	1.570
$N\eta 1_C\zeta N\eta 2$	119.635	0.777	$N\eta 1_C\zeta_N\eta 2$	119.397	1.125
$N_{-}C\alpha_{-}C$	111.413	2.408	$N_{-}C\alpha_{-}C$	111.088	2.363
$N_C\alpha_C\beta$	110.744	1.184	$N_C\alpha_C\beta$	111.017	1.198

ARO	G pmt100 n = 4		ARG	mmm-85 n = 992	2
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	70.210	7.245	chi1	-63.497	9.137
chi2	-90.541	9.055	chi2	-67.585	10.907
chi3	-174.190	5.432	chi3	-60.741	9.315
chi4	97.849	2.006	chi4	-86.156	10.015
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	115.830	0.421	$C\alpha_{-}C\beta_{-}C\gamma$	114.631	1.530
$C\alphaCO$	120.581	0.283	$C\alphaCO$	120.538	0.881
$C\betaC\alphaC$	110.812	0.494	$C\betaC\alphaC$	109.677	1.540
$C\betaC\gammaC\delta$	112.728	0.575	$C\betaC\gammaC\delta$	112.808	1.599
$C\delta_N\epsilon_C\zeta$	125.083	0.125	$C\delta_N\epsilon_C\zeta$	124.980	1.075
$C\gammaC\deltaN\epsilon$	111.181	0.920	$C\gamma_C\delta_N\epsilon$	112.438	2.268
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.967	0.288	$N\epsilonC\zetaN\eta 1$	120.836	0.998
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.634	0.266	$N\epsilonC\zetaN\eta 2$	119.665	0.929
$N\eta 1_C\zeta_N\eta 2$	119.397	0.052	$N\eta_1 C\zeta N\eta_2$	119.479	0.816
$N_{-}C\alpha_{-}C$	110.231	1.442	$N_{-}C\alpha_{-}C$	111.266	2.648
$N_{-}C\alpha_{-}C\beta$	111.390	0.423	$N_{-}C\alpha_{-}C\beta$	110.736	1.103
ARG	mmt90 n = 556		ARG	f tmm-80 n = 71	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-60.697	8.901	chi1	-174.294	9.153
chi2	-68.408	12.521	chi2	-86.372	8.784
chi3	179.437	10.390	chi3	-56.434	10.717
chi4	90.018	12.897	chi4	-82.108	8.527
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.642	1.383	$C\alphaC\betaC\gamma$	115.257	1.317
$C\alphaCO$	120.477	0.872	$C\alphaCO$	120.621	0.778
$C\betaC\alphaC$	109.543	1.645	$C\betaC\alphaC$	111.061	1.008
$C\betaC\gammaC\delta$	112.215	1.625	$C\betaC\gammaC\delta$	113.720	2.294
$C\delta N\epsilon C\zeta$	124.963	1.175	$C\delta_N\epsilon_C\zeta$	124.893	1.247
$C\gammaC\deltaN\epsilon$	111.520	2.338	$C\gammaC\deltaN\epsilon$	112.553	1.891
$N\epsilonC\zetaN\eta 1$	120.858	1.209	$N\epsilonC\zetaN\eta 1$	120.861	1.095
$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.541	1.091	$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.709	0.923
	119.577	0.708	$N\eta 1_C\zeta_N\eta 2$	119.397	0.720
$N\eta_1 C\zeta N\eta_2$	119.577	0.100		110.001	0.120
$N\eta 1_{-}C\zeta_{-}N\eta 2$ $N_{-}C\alpha_{-}C$ $N_{-}C\alpha_{-}C\beta$	119.577 111.328 110.691	2.714	N ₋ Cα ₋ C N ₋ Cα ₋ Cβ	109.672 110.067	1.698 1.009

ARG	mmp80 n = 162	2	ARC	G ppt170 n = 57	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-62.526	6.718	chi1	59.128	10.191
chi2	-75.134	12.775	chi2	87.628	12.303
chi3	74.408	11.818	chi3	173.545	12.401
chi4	77.834	6.740	chi4	173.353	17.304
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.737	1.395	$C\alphaC\betaC\gamma$	116.231	1.391
$C\alphaCO$	120.409	0.955	$C\alphaCO$	120.322	0.969
$C\betaC\alphaC$	109.778	1.494	$C\betaC\alphaC$	111.874	1.266
$C\betaC\gammaC\delta$	113.410	1.628	$C\betaC\gammaC\delta$	112.335	1.538
$C\delta_N\epsilon_C\zeta$	125.038	1.163	$C\delta_N\epsilon_C\zeta$	124.240	1.283
$C\gammaC\deltaN\epsilon$	113.473	2.237	$C\gammaC\deltaN\epsilon$	111.432	1.579
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.552	1.001	$N\epsilonC\zetaN\eta 1$	120.487	1.072
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.973	0.861	$N\epsilonC\zetaN\eta 2$	119.804	0.864
$N\eta_1 C\zeta N\eta_2$	119.455	0.644	$N\eta 1C\zetaN\eta 2$	119.688	0.650
$N_{-}C\alpha_{-}C$	111.404	1.837	$NC\alphaC$	110.914	2.502
$N_{-}C\alpha_{-}C\beta$	110.864	0.946	$N_{-}C\alpha_{-}C\beta$	111.565	1.316
ARG	tmt170 n = 102		ARG	4 tpt 170 n = 814	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	150 000	12.427	chi1	-178.826	0.007
	-173.869				9.067
chi2	-91.306	12.847	chi2	66.313	10.382
chi2 chi3			chi2 chi3		
chi2	-91.306	12.847	chi2	66.313	10.382
chi2 chi3	-91.306 -173.542	12.847 9.387	chi2 chi3	66.313 177.963	$10.382 \\ 11.762$
chi2 chi3 chi4 Bond Angle	-91.306 -173.542 -170.971	12.847 9.387 17.686	chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$	66.313 177.963 171.354 Mean 114.523	10.382 11.762 19.192
chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C O$	-91.306 -173.542 -170.971 Mean	12.847 9.387 17.686 StdDev	chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$	66.313 177.963 171.354 Mean	10.382 11.762 19.192 StdDev
chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$	-91.306 -173.542 -170.971 Mean 115.033	12.847 9.387 17.686 StdDev 1.341	chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\alpha C$	66.313 177.963 171.354 Mean 114.523	10.382 11.762 19.192 StdDev 1.230
chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$	-91.306 -173.542 -170.971 Mean 115.033 120.639 110.881 112.666	12.847 9.387 17.686 StdDev 1.341 0.748 1.078 1.686	chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C_ O$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$	66.313 177.963 171.354 Mean 114.523 120.503	10.382 11.762 19.192 StdDev 1.230 0.727 1.151 1.665
chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\alpha C$	-91.306 -173.542 -170.971 Mean 115.033 120.639 110.881 112.666 124.504	12.847 9.387 17.686 StdDev 1.341 0.748 1.078 1.686 0.916	chi2 chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _C$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$ $C\delta _N\epsilon _C\zeta$	66.313 177.963 171.354 Mean 114.523 120.503 110.564 112.231 124.482	10.382 11.762 19.192 StdDev 1.230 0.727 1.151 1.665 1.130
chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\gamma C\delta$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$	-91.306 -173.542 -170.971 Mean 115.033 120.639 110.881 112.666 124.504 110.691	12.847 9.387 17.686 StdDev 1.341 0.748 1.078 1.686 0.916 1.634	chi2 chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _O$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$ $C\delta _N\epsilon _C\zeta$ $C\gamma _C\delta _N\epsilon$	66.313 177.963 171.354 Mean 114.523 120.503 110.564 112.231 124.482 110.871	10.382 11.762 19.192 StdDev 1.230 0.727 1.151 1.665 1.130 1.840
chi2 chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _O$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$ $C\delta _N\epsilon _C\zeta$ $C\gamma _C\delta _N\epsilon$ $N\epsilon _C\zeta _N\eta 1$	-91.306 -173.542 -170.971 Mean 115.033 120.639 110.881 112.666 124.504 110.691 120.698	12.847 9.387 17.686 StdDev 1.341 0.748 1.078 1.686 0.916 1.634 1.053	chi2 chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _O$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$ $C\delta _N\epsilon _C\zeta$ $C\gamma _C\delta _N\epsilon$ $N\epsilon _C\zeta _N\eta 1$	66.313 177.963 171.354 Mean 114.523 120.503 110.564 112.231 124.482 110.871 120.524	10.382 11.762 19.192 StdDev 1.230 0.727 1.151 1.665 1.130 1.840 0.932
chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$ $C\alphaCO$ $C\betaC\alphaC$ $C\betaC\gammaC\delta$ $C\deltaN\epsilonC\zeta$ $C\gammaC\deltaN\epsilon$ $N\epsilonC\zetaN\eta_1$ $N\epsilonC\zetaN\eta_2$	-91.306 -173.542 -170.971 Mean 115.033 120.639 110.881 112.666 124.504 110.691 120.698 119.557	12.847 9.387 17.686 StdDev 1.341 0.748 1.078 1.686 0.916 1.634 1.053 0.823	chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\gamma$ $C\beta C\alpha C$ $C\beta C\gamma C\delta$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$ $N\epsilon C\zeta N\eta 1$ $N\epsilon C\zeta N\eta 2$	66.313 177.963 171.354 Mean 114.523 120.503 110.564 112.231 124.482 110.871 120.524 119.679	10.382 11.762 19.192 StdDev 1.230 0.727 1.151 1.665 1.130 1.840 0.932 0.874
chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta_{1}$ $N\epsilon_{-}C\zeta_{-}N\eta_{2}$ $N\eta_{1}C\zeta_{-}N\eta_{2}$	-91.306 -173.542 -170.971 Mean 115.033 120.639 110.881 112.666 124.504 110.691 120.698 119.557 119.730	12.847 9.387 17.686 StdDev 1.341 0.748 1.078 1.686 0.916 1.634 1.053	chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\beta C\alpha C$ $C\beta C\gamma C\delta$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$ $N\epsilon C\zeta N\eta 1$ $N\epsilon C\zeta N\eta 2$	66.313 177.963 171.354 Mean 114.523 120.503 110.564 112.231 124.482 110.871 120.524 119.679 119.777	10.382 11.762 19.192 StdDev 1.230 0.727 1.151 1.665 1.130 1.840 0.932
chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$ $C\alphaCO$ $C\betaC\alphaC$ $C\betaC\gammaC\delta$ $C\deltaN\epsilonC\zeta$ $C\gammaC\deltaN\epsilon$ $N\epsilonC\zetaN\eta_1$ $N\epsilonC\zetaN\eta_2$	-91.306 -173.542 -170.971 Mean 115.033 120.639 110.881 112.666 124.504 110.691 120.698 119.557	12.847 9.387 17.686 StdDev 1.341 0.748 1.078 1.686 0.916 1.634 1.053 0.823	chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\gamma$ $C\beta C\alpha C$ $C\beta C\gamma C\delta$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$ $N\epsilon C\zeta N\eta 1$ $N\epsilon C\zeta N\eta 2$	66.313 177.963 171.354 Mean 114.523 120.503 110.564 112.231 124.482 110.871 120.524 119.679	10.382 11.762 19.192 StdDev 1.230 0.727 1.151 1.665 1.130 1.840 0.932 0.874

ARG	mtm180 n = 234	5	ARG	tpm170 n = 107	
$\overline{\chi}$	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-66.409	8.085	chi1	178.317	8.224
chi2	179.025	12.788	chi2	70.416	10.485
chi3	-67.433	8.793	chi3	-85.345	12.696
chi4	172.922	15.175	chi4	171.668	18.898
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.293	1.630	$C\alphaC\betaC\gamma$	115.673	1.247
$C\alphaCO$	120.454	0.896	$C\alphaCO$	120.654	0.816
$C\betaC\alphaC$	109.863	1.611	$C\betaC\alphaC$	110.589	1.350
$C\betaC\gammaC\delta$	111.616	1.670	$C\betaC\gammaC\delta$	112.743	2.166
$C\delta_N\epsilon_C\zeta$	124.440	1.085	$C\delta_N\epsilon_C\zeta$	124.733	2.270
$C\gamma_C\delta_N\epsilon$	111.354	1.543	$C\gammaC\deltaN\epsilon$	111.912	2.110
$N\epsilonC\zetaN\eta 1$	120.429	0.902	$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.506	1.047
$N\epsilonC\zetaN\eta 2$	119.767	0.885	$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.754	0.922
$N\eta 1_C\zeta_N\eta 2$	119.787	0.769	$N\eta 1C\zetaN\eta 2$	119.724	0.725
$NC\alphaC$	111.289	2.647	$NC\alphaC$	111.149	1.468
$N_{-}C\alpha_{-}C\beta$	110.530	1.055	$N_{-}C\alpha_{-}C\beta$	109.925	1.146
ARG	G tpt90 n = 644		ARG	3 ptt 180 n = 795	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	178.926	8.158	chi1	65.305	8.311
chi2	65.741	7.697	chi2	-177.454	10.457
chi3	178.589	9.978	chi2 chi3	-177.454 -179.814	$10.457 \\ 10.366$
			chi2	-177.454	10.457
chi3	178.589	9.978	chi2 chi3	-177.454 -179.814	$10.457 \\ 10.366$
chi3 chi4	178.589 86.350	9.978 10.341	chi2 chi3 chi4	-177.454 -179.814 179.152	10.457 10.366 17.477
$\begin{array}{c} \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \\ \end{array}$	178.589 86.350 Mean	9.978 10.341 StdDev	chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha CO$	-177.454 -179.814 179.152 Mean	10.457 10.366 17.477 StdDev
$\frac{\text{chi3}}{\text{chi4}}$ $\frac{\text{Bond Angle}}{\text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma}$	178.589 86.350 Mean 114.738	9.978 10.341 StdDev 1.264	chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$	-177.454 -179.814 179.152 Mean 114.547	10.457 10.366 17.477 StdDev 1.516
$\begin{array}{c} \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \\ \end{array}$	178.589 86.350 Mean 114.738 120.467	9.978 10.341 StdDev 1.264 0.801	chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha CO$	-177.454 -179.814 179.152 Mean 114.547 120.583	10.457 10.366 17.477 StdDev 1.516 1.010
chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _O$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$ $C\delta _N\epsilon _C\zeta$	178.589 86.350 Mean 114.738 120.467 110.300	9.978 10.341 StdDev 1.264 0.801 1.185	chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C_ O$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$ $C\delta _ N\epsilon _ C\zeta$	-177.454 -179.814 179.152 Mean 114.547 120.583 110.523	10.457 10.366 17.477 StdDev 1.516 1.010 1.494
chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C _ O$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$	178.589 86.350 Mean 114.738 120.467 110.300 112.110	9.978 10.341 StdDev 1.264 0.801 1.185 1.646	chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C_ C$ $C\beta _ C\alpha _ C$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$ $C\delta _ N\epsilon _ C\zeta$ $C\gamma _ C\delta _ N\epsilon$	-177.454 -179.814 179.152 Mean 114.547 120.583 110.523 111.126	10.457 10.366 17.477 StdDev 1.516 1.010 1.494 2.020
chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta_{1}$	178.589 86.350 Mean 114.738 120.467 110.300 112.110 124.786 111.926 120.799	9.978 10.341 StdDev 1.264 0.801 1.185 1.646 0.938	chi2 chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _O$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$ $C\delta _N\epsilon _C\zeta$ $C\gamma _C\delta _N\epsilon$ $N\epsilon _C\zeta _N\eta 1$	-177.454 -179.814 179.152 Mean 114.547 120.583 110.523 111.126 124.436 110.738 120.461	10.457 10.366 17.477 StdDev 1.516 1.010 1.494 2.020 1.108
chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta_{1}$ $N\epsilon_{-}C\zeta_{-}N\eta_{2}$	178.589 86.350 Mean 114.738 120.467 110.300 112.110 124.786 111.926 120.799 119.728	9.978 10.341 StdDev 1.264 0.801 1.185 1.646 0.938 2.246	chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\alpha C\beta C\alpha C$ $C\beta C\alpha C$ $C\alpha C\beta C\alpha C$ $C\alpha $	-177.454 -179.814 179.152 Mean 114.547 120.583 110.523 111.126 124.436 110.738 120.461 119.609	10.457 10.366 17.477 StdDev 1.516 1.010 1.494 2.020 1.108 1.963
chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta_{1}$ $N\epsilon_{-}C\zeta_{-}N\eta_{2}$ $N\eta_{1}C\zeta_{-}N\eta_{2}$	178.589 86.350 Mean 114.738 120.467 110.300 112.110 124.786 111.926 120.799 119.728 119.453	9.978 10.341 StdDev 1.264 0.801 1.185 1.646 0.938 2.246 0.964	chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\alpha C\beta C\alpha C$ $C\beta C\alpha C$ $C\alpha C\alpha C$ C	-177.454 -179.814 179.152 Mean 114.547 120.583 110.523 111.126 124.436 110.738 120.461 119.609 119.911	10.457 10.366 17.477 StdDev 1.516 1.010 1.494 2.020 1.108 1.963 0.938
chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta_{1}$ $N\epsilon_{-}C\zeta_{-}N\eta_{2}$	178.589 86.350 Mean 114.738 120.467 110.300 112.110 124.786 111.926 120.799 119.728	9.978 10.341 StdDev 1.264 0.801 1.185 1.646 0.938 2.246 0.964 0.883	chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\alpha C\beta C\alpha C$ $C\beta C\alpha C$ $C\alpha C\beta C\alpha C$ $C\alpha $	-177.454 -179.814 179.152 Mean 114.547 120.583 110.523 111.126 124.436 110.738 120.461 119.609	10.457 10.366 17.477 StdDev 1.516 1.010 1.494 2.020 1.108 1.963 0.938 0.894

ARG	6 ttp 80 n = 1860		ARG	mmt-90 n = 139	2
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-177.383	8.106	chi1	-63.806	6.645
chi2	179.646	13.594	chi2	-68.992	8.133
chi3	62.978	9.992	chi3	-175.179	7.629
chi4	82.895	9.629	chi4	-91.022	11.173
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.688	1.494	$C\alphaC\betaC\gamma$	114.531	1.417
$C\alphaCO$	120.681	0.797	$C\alphaCO$	120.513	0.838
$C\betaC\alphaC$	110.046	1.204	$C\betaC\alphaC$	109.577	1.627
$C\betaC\gammaC\delta$	112.066	1.516	$C\betaC\gammaC\delta$	112.041	1.661
$C\delta_N\epsilon_C\zeta$	124.878	1.035	$C\deltaN\epsilonC\zeta$	124.924	0.999
$C\gammaC\deltaN\epsilon$	112.547	1.930	$C\gammaC\deltaN\epsilon$	111.774	2.258
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.749	0.956	$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.931	0.982
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.767	0.848	$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.615	0.875
$N\eta_1 C\zeta N\eta_2$	119.465	0.751	$N\eta 1C\zetaN\eta 2$	119.428	0.770
$N_{-}C\alpha_{-}C$	110.739	2.050	$N_{-}C\alpha_{-}C$	110.058	2.662
$N_{-}C\alpha_{-}C\beta$	110.429	1.200	$N_{C}\alpha_{C}\beta$	110.880	1.109
ARG	mtp-110 n = 471	1	ARG	ttm-80 n = 1462	2
χ ARG	$\frac{\text{mtp-110 n} = 471}{\text{Smooth COM}}$	StdDev	χ	$\frac{\text{ttm-80 n} = 1462}{\text{Smooth COM}}$	2 StdDev
$\frac{\chi}{\text{chi1}}$	Smooth COM -65.062	StdDev 8.026	χ chi1	Smooth COM -174.135	StdDev 9.513
χ	Smooth COM	StdDev	χ chi1 chi2	Smooth COM	StdDev
$\frac{\chi}{\text{chi1}}$	Smooth COM -65.062	StdDev 8.026	χ chi1	Smooth COM -174.135	StdDev 9.513
χ chi1 chi2	Smooth COM -65.062 179.092	StdDev 8.026 10.811	χ chi1 chi2	Smooth COM -174.135 179.281	StdDev 9.513 9.839
χ chi1 chi2 chi3	Smooth COM -65.062 179.092 66.411	8.026 10.811 11.409	χ chi1 chi2 chi3	Smooth COM -174.135 179.281 -64.732	9.513 9.839 10.594
χ chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$	Smooth COM -65.062 179.092 66.411 -109.636 Mean 113.341	8.026 10.811 11.409 9.572	χ chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$	Smooth COM -174.135 179.281 -64.732 -84.522	9.513 9.839 10.594 9.788
χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$	Smooth COM -65.062 179.092 66.411 -109.636 Mean 113.341 120.363	8.026 10.811 11.409 9.572 StdDev 1.666 0.920	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C C$	Smooth COM -174.135 179.281 -64.732 -84.522 Mean 113.681 120.535	9.513 9.839 10.594 9.788 StdDev 1.675 0.780
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \end{array}$	Smooth COM -65.062 179.092 66.411 -109.636 Mean 113.341 120.363 110.083	8.026 10.811 11.409 9.572 StdDev 1.666 0.920 1.683	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\alpha C$	Smooth COM -174.135 179.281 -64.732 -84.522 Mean 113.681 120.535 110.229	9.513 9.839 10.594 9.788 StdDev 1.675 0.780 1.204
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \end{array}$	Smooth COM -65.062 179.092 66.411 -109.636 Mean 113.341 120.363 110.083 112.345	8.026 10.811 11.409 9.572 StdDev 1.666 0.920	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \hline \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \hline \\ \text{C}\alpha_\text{C}_\text{O} \\ \hline \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \hline \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \end{array}$	Smooth COM -174.135 179.281 -64.732 -84.522 Mean 113.681 120.535	9.513 9.839 10.594 9.788 StdDev 1.675 0.780
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ \end{array}$	Smooth COM -65.062 179.092 66.411 -109.636 Mean 113.341 120.363 110.083	8.026 10.811 11.409 9.572 StdDev 1.666 0.920 1.683	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{Cα_C\beta$_$Cγ} \\ \text{Cα_C_CO} \\ \text{Cβ_C\alpha$_$C$} \\ \text{C$\beta$_$Cα_C\delta$} \\ \text{C$\delta$_$Nϵ_C\zeta$} \end{array}$	Smooth COM -174.135 179.281 -64.732 -84.522 Mean 113.681 120.535 110.229	9.513 9.839 10.594 9.788 StdDev 1.675 0.780 1.204
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \end{array}$	Smooth COM -65.062 179.092 66.411 -109.636 Mean 113.341 120.363 110.083 112.345 125.232 111.659	8.026 10.811 11.409 9.572 StdDev 1.666 0.920 1.683 1.634	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \hline \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \hline \text{$\text{C}\alpha_\text{C}_\text{C}$} \\ \hline \text{$\text{C}\alpha_\text{C}_{-}\text{C}$} \\ \hline \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \hline \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \hline \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \hline \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \end{array}$	Smooth COM -174.135 179.281 -64.732 -84.522 Mean 113.681 120.535 110.229 111.980 124.861 112.440	9.513 9.839 10.594 9.788 StdDev 1.675 0.780 1.204 1.635
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ \end{array}$	Smooth COM -65.062 179.092 66.411 -109.636 Mean 113.341 120.363 110.083 112.345 125.232	8.026 10.811 11.409 9.572 StdDev 1.666 0.920 1.683 1.634 1.195	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{Cα_C\beta$_$Cγ} \\ \text{Cα_C_CO} \\ \text{Cβ_C\alpha$_$C$} \\ \text{C$\beta$_$Cα_C\delta$} \\ \text{C$\delta$_$Nϵ_C\zeta$} \end{array}$	Smooth COM -174.135 179.281 -64.732 -84.522 Mean 113.681 120.535 110.229 111.980 124.861	9.513 9.839 10.594 9.788 StdDev 1.675 0.780 1.204 1.635 1.286
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ \end{array}$	Smooth COM -65.062 179.092 66.411 -109.636 Mean 113.341 120.363 110.083 112.345 125.232 111.659	8.026 10.811 11.409 9.572 StdDev 1.666 0.920 1.683 1.634 1.195 1.883	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \hline \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \hline \text{$\text{C}\alpha_\text{C}_\text{C}$} \\ \hline \text{$\text{C}\alpha_\text{C}_{-}\text{C}$} \\ \hline \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \hline \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \hline \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \hline \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \end{array}$	Smooth COM -174.135 179.281 -64.732 -84.522 Mean 113.681 120.535 110.229 111.980 124.861 112.440	9.513 9.839 10.594 9.788 StdDev 1.675 0.780 1.204 1.635 1.286 2.018
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \text{$N\eta1_C\zeta_N\eta2$} \\ \hline \end{array}$	Smooth COM -65.062 179.092 66.411 -109.636 Mean 113.341 120.363 110.083 112.345 125.232 111.659 121.023 119.482 119.471	8.026 10.811 11.409 9.572 StdDev 1.666 0.920 1.683 1.634 1.195 1.883 1.138	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta1 \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta2 \\ \text{N}\eta1_\text{C}\zeta_\text{N}\eta2 \\ \end{array}$	Smooth COM -174.135 179.281 -64.732 -84.522 Mean 113.681 120.535 110.229 111.980 124.861 112.440 120.730	StdDev 9.513 9.839 10.594 9.788 StdDev 1.675 0.780 1.204 1.635 1.286 2.018 1.000
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \hline \end{array}$	Smooth COM -65.062 179.092 66.411 -109.636 Mean 113.341 120.363 110.083 112.345 125.232 111.659 121.023 119.482	8.026 10.811 11.409 9.572 StdDev 1.666 0.920 1.683 1.634 1.195 1.883 1.138 1.039	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \hline \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \hline \\ \hline \text{$\text{C}\alpha_\text{C}_{-}\text{C} \\ \text{$\text{C}\alpha_\text{C}_{-}\text{C} \\ \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$}$} \\ \hline \\ \hline \\ \hline \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \hline \\ \hline \\ \hline \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \hline \\ \hline \\ \hline \text{$\text{N}\epsilon_\text{C}\zeta_\text{N}\eta1$} \\ \hline \\ \hline \\ \hline \text{$\text{N}\epsilon_\text{C}\zeta_\text{N}\eta2$} \\ \end{array}$	Smooth COM -174.135 179.281 -64.732 -84.522 Mean 113.681 120.535 110.229 111.980 124.861 112.440 120.730 119.733	StdDev 9.513 9.839 10.594 9.788 StdDev 1.675 0.780 1.204 1.635 1.286 2.018 1.000 1.026

ARC	$\frac{1}{6} \text{ mpt-90 n} = 84$		ARO	$\frac{1}{3} \text{ mpp } 80 \text{ n} = 52$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-78.778	13.763	chi1	-76.744	11.978
chi2	74.660	16.163	chi2	81.853	12.146
chi3	177.663	9.583	chi3	57.995	7.467
chi4	-87.847	13.189	chi4	84.630	10.212
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	114.931	1.316	$C\alphaC\betaC\gamma$	115.453	1.753
$C\alphaCO$	120.439	0.758	$C\alphaCO$	120.425	1.063
$C\betaC\alphaC$	109.923	1.571	$C\betaC\alphaC$	109.151	2.000
$C\betaC\gammaC\delta$	112.886	2.297	$C\betaC\gammaC\delta$	113.483	1.590
$C\delta_N\epsilon_C\zeta$	124.887	1.005	$C\delta_N\epsilon_C\zeta$	124.889	1.017
$C\gammaC\deltaN\epsilon$	111.530	2.487	$C\gammaC\deltaN\epsilon$	113.135	2.325
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.602	1.077	$N\epsilon C\zeta \eta 1$	120.818	1.181
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.817	0.851	$N\epsilon C\zeta \eta 2$	119.710	1.102
$N\eta 1_C\zeta_N\eta 2$	119.561	0.669	$N\eta 1_C\zeta_N\eta 2$	119.449	0.734
$N_{-}C\alpha_{-}C$	110.369	2.731	$N_{-}C\alpha_{-}C$	109.625	2.583
$N_{-}C\alpha_{-}C\beta$	110.869	1.048	$N_{C}\alpha_{C}\beta$	111.427	1.269
ARG	ttm170 n = 1289	9	ARC	g = 4	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-177.285	10.038	chi1	58.431	3.025
chi2	176.943	12.404	chi2	91.756	4.604
chi3	-67.797	9.990	chi3	62.263	10.579
chi4	171.206	17.575	chi4	-143.455	12.578
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.744	1.740	$C\alphaC\betaC\gamma$	115.223	0.896
$C\alphaCO$	120.579	0.817	$C\alphaCO$	120.687	0.538
$C\betaC\alphaC$	110.102	1.172	$C\beta_{-}C\alpha_{-}C$	111.973	1.456
$C\betaC\gammaC\delta$	111.466	1.806	$C\betaC\gammaC\delta$	112.231	1.497
$C\delta_N\epsilon_C\zeta$	124.428	1.167	$C\delta_N\epsilon_C\zeta$	125.872	1.184
$C\gamma_C\delta_N\epsilon$	111.259	1.661	$C\gammaC\deltaN\epsilon$	113.783	2.259
$N\epsilonC\zetaN\eta 1$	120.512	0.950	$N\epsilon C\zeta N\eta 1$	120.992	1.242
$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.740	0.927	$N\epsilon_C \zeta_N \eta^2$	120.128	1.383
$N\eta 1_C \zeta_N \eta 2$	119.729	0.845	$N\eta 1_C\zeta_N\eta 2$	118.855	0.611
$N_{-}C\alpha_{-}C$	110.295	2.387	$N_{-}C\alpha_{-}C$	113.626	2.343
$N_{-}C\alpha_{-}C\beta$	110.260		$N_{-}C\alpha_{-}C\beta$	111.211	1.258

ARG	mmp-170 n = 11	8	ARG	G tmt90 n = 24	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-64.124	7.206	chi1	-178.402	9.046
chi2	-65.485	14.458	chi2	-93.565	8.929
chi3	85.873	9.639	chi3	-177.879	11.138
chi4	-167.047	20.100	chi4	87.027	12.177
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.481	1.279	$C\alphaC\betaC\gamma$	115.158	1.454
$C\alphaCO$	120.377	0.997	$C\alphaCO$	120.625	0.966
$C\betaC\alphaC$	109.443	1.541	$C\betaC\alphaC$	110.438	1.309
$C\betaC\gammaC\delta$	112.767	1.700	$C\betaC\gammaC\delta$	112.853	2.293
$C\delta_N\epsilon_C\zeta$	124.840	1.335	$C\delta_N\epsilon_C\zeta$	125.081	1.237
$C\gammaC\deltaN\epsilon$	111.511	1.636	$C\gammaC\deltaN\epsilon$	111.395	2.787
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.441	1.161	$N\epsilon C\zeta \eta 1$	120.866	1.819
$N\epsilonC\zetaN\eta 2$	119.810	1.058	$N\epsilon C\zeta \eta 2$	119.666	1.430
$N\eta 1_C\zeta_N\eta 2$	119.732	1.159	$N\eta 1C\zetaN\eta 2$	119.430	0.726
$N_{-}C\alpha_{-}C$	110.952	2.092	$NC\alphaC$	110.374	1.542
$N_{-}C\alpha_{-}C\beta$	111.093	1.107	$N_{-}C\alpha_{-}C\beta$	109.916	1.111
ARO	G ppt-90 n = 15		ARG	mmt180 n = 117	6
ARC	G ppt-90 n = 15 $Smooth COM$	StdDev	χ	mmt180 n = 117 Smooth COM	6 StdDev
$\frac{\chi}{\text{chi1}}$	Smooth COM 61.770	9.125	$\frac{\chi}{\text{chi1}}$	Smooth COM -61.912	StdDev 9.056
χ	Smooth COM		χ chi1 chi2	Smooth COM	StdDev
χ chi1 chi2 chi3	Smooth COM 61.770 90.213 177.663	9.125 11.134 5.499	χ chi1 chi2 chi3	Smooth COM -61.912 -68.373 -176.971	9.056 12.923 11.436
χ chi1 chi2	Smooth COM 61.770 90.213	9.125 11.134	χ chi1 chi2	Smooth COM -61.912 -68.373	StdDev 9.056 12.923
χ chi1 chi2 chi3	Smooth COM 61.770 90.213 177.663	9.125 11.134 5.499	χ chi1 chi2 chi3	Smooth COM -61.912 -68.373 -176.971	9.056 12.923 11.436
χ chi1 chi2 chi3 chi4	Smooth COM 61.770 90.213 177.663 -92.246	9.125 11.134 5.499 14.372	chi1 chi2 chi3 chi4	Smooth COM -61.912 -68.373 -176.971 -176.339	9.056 12.923 11.436 17.496
χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$	Smooth COM 61.770 90.213 177.663 -92.246 Mean	9.125 11.134 5.499 14.372 StdDev	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha CO$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean	9.056 12.923 11.436 17.496 StdDev
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \hline \text{$\text{C}\alpha_\text{C}_\text{O}$} \\ \hline \text{$\text{C}\alpha_\text{C}_\text{O}$} \\ \hline \text{$\text{C}\beta_\text{C}\alpha_\text{C}$} \\ \end{array}$	Smooth COM 61.770 90.213 177.663 -92.246 Mean 115.763 120.637 111.235	9.125 11.134 5.499 14.372 StdDev 1.382 0.931 1.747	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C_ O$ $C\beta _ C\alpha _ C$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean 114.491 120.406 109.366	9.056 12.923 11.436 17.496 StdDev 1.384 0.872 1.617
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \end{array}$	Smooth COM 61.770 90.213 177.663 -92.246 Mean 115.763 120.637 111.235 113.040	9.125 11.134 5.499 14.372 StdDev 1.382 0.931 1.747 1.278	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \end{array}$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean 114.491 120.406 109.366 112.027	9.056 12.923 11.436 17.496 StdDev 1.384 0.872
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \hline \text{$C\alpha_C\beta_C\gamma$} \\ \hline \text{$C\alpha_C_O$} \\ \hline \text{$C\beta_C\alpha_C$} \\ \hline \text{$C\beta_C\gamma_C\delta$} \\ \hline \text{$C\beta_N\epsilon_C\zeta$} \\ \hline \end{array}$	Smooth COM 61.770 90.213 177.663 -92.246 Mean 115.763 120.637 111.235 113.040 124.988	9.125 11.134 5.499 14.372 StdDev 1.382 0.931 1.747 1.278 0.738	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_{-}\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \end{array}$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean 114.491 120.406 109.366 112.027 124.416	9.056 12.923 11.436 17.496 StdDev 1.384 0.872 1.617
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$-C\beta$-$Cγ} \\ \text{$C\alpha$-C-C0} \\ \text{$C\beta$-C\alpha$-$C$} \\ \text{$C\beta$-$Cγ-C\delta$} \\ \text{$C\delta$-$Nϵ-C\zeta$} \\ \text{$C\gamma$-$Cδ-N\epsilon$} \\ \end{array}$	Smooth COM 61.770 90.213 177.663 -92.246 Mean 115.763 120.637 111.235 113.040 124.988 111.689	9.125 11.134 5.499 14.372 StdDev 1.382 0.931 1.747 1.278 0.738 1.956	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \hline \text{$\text{C}\alpha_\text{C}_\text{C}$} \\ \hline \text{$\text{C}\beta_\text{C}\alpha_\text{C}$} \\ \hline \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \hline \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \hline \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \hline \end{array}$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean 114.491 120.406 109.366 112.027 124.416 111.007	9.056 12.923 11.436 17.496 StdDev 1.384 0.872 1.617 1.711 1.183 1.818
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta-N\eta1$} \\ \hline \end{array}$	Smooth COM 61.770 90.213 177.663 -92.246 Mean 115.763 120.637 111.235 113.040 124.988 111.689 120.569	9.125 11.134 5.499 14.372 StdDev 1.382 0.931 1.747 1.278 0.738	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta1 \\ \hline \end{array}$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean 114.491 120.406 109.366 112.027 124.416 111.007 120.488	9.056 12.923 11.436 17.496 StdDev 1.384 0.872 1.617 1.711 1.183
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \hline \end{array}$	Smooth COM 61.770 90.213 177.663 -92.246 Mean 115.763 120.637 111.235 113.040 124.988 111.689 120.569 119.890	9.125 11.134 5.499 14.372 StdDev 1.382 0.931 1.747 1.278 0.738 1.956	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon_\text{N}\epsilon\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\eta1 \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta2 \\ \end{array}$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean 114.491 120.406 109.366 112.027 124.416 111.007 120.488 119.666	9.056 12.923 11.436 17.496 StdDev 1.384 0.872 1.617 1.711 1.183 1.818
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \text{$N\eta1_C\zeta_N\eta2$} \\ \hline \end{array}$	Smooth COM 61.770 90.213 177.663 -92.246 Mean 115.763 120.637 111.235 113.040 124.988 111.689 120.569 119.890 119.520	9.125 11.134 5.499 14.372 StdDev 1.382 0.931 1.747 1.278 0.738 1.956 1.315 1.166 0.600	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta 1 \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta 2 \\ \text{N}\eta 1_\text{C}\zeta_\text{N}\eta 2 \\ \hline \end{array}$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean 114.491 120.406 109.366 112.027 124.416 111.007 120.488 119.666 119.825	StdDev 9.056 12.923 11.436 17.496 StdDev 1.384 0.872 1.617 1.711 1.183 1.818 0.851 0.858 0.704
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \hline \end{array}$	Smooth COM 61.770 90.213 177.663 -92.246 Mean 115.763 120.637 111.235 113.040 124.988 111.689 120.569 119.890	9.125 11.134 5.499 14.372 StdDev 1.382 0.931 1.747 1.278 0.738 1.956 1.315 1.166	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon_\text{N}\epsilon\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\eta1 \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta2 \\ \end{array}$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean 114.491 120.406 109.366 112.027 124.416 111.007 120.488 119.666	9.056 12.923 11.436 17.496 StdDev 1.384 0.872 1.617 1.711 1.183 1.818 0.851 0.858

ARG	ttm110 n = 707	•	ARG	mtt-85 n = 2772	2
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-175.260	9.175	chi1	-67.013	7.854
chi2	178.639	9.448	chi2	-178.550	10.723
chi3	-64.314	10.889	chi3	-176.240	9.281
chi4	112.805	9.664	chi4	-88.795	11.696
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.890	1.647	$C\alpha_{-}C\beta_{-}C\gamma$	113.461	1.692
$C\alphaCO$	120.595	0.792	$C\alphaCO$	120.440	0.817
$C\betaC\alphaC$	110.255	1.210	$C\betaC\alphaC$	109.824	1.655
$C\betaC\gammaC\delta$	112.168	1.688	$C\betaC\gammaC\delta$	111.353	1.974
$C\delta_N\epsilon_C\zeta$	125.329	1.304	$C\delta_N\epsilon_C\zeta$	124.786	1.050
$C\gammaC\deltaN\epsilon$	111.643	1.924	$C\gamma_C\delta_N\epsilon$	111.400	2.439
$N\epsilon_{-}C\zeta_{-}N\eta 1$	121.007	1.231	$N\epsilon C\zeta N\eta 1$	120.794	1.013
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.542	1.112	$N\epsilon C\zeta N\eta 2$	119.579	0.927
$N\eta 1_C\zeta_N\eta 2$	119.428	0.818	$N\eta 1_C\zeta_N\eta 2$	119.608	0.766
$N_{-}C\alpha_{-}C$	110.508	2.148	$N_{-}C\alpha_{-}C$	111.437	2.300
$N_{-}C\alpha_{-}C\beta$	110.381	1.242	$N_{-}C\alpha_{-}C\beta$	110.636	1.048
ARC	G tmt-80 n = 61		ARG	mtm-85 n = 277	2
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-174.441	10.837	chi1	-68.282	8.098
chi2	-92.932	11.397	chi2	-171.664	9.296
chi3	-177.757	10.097	chi3	-63.903	9.544
chi4	-84.998	11.511	chi4	-88.066	8.875
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.683	1.344	$C\alphaC\betaC\gamma$	113.535	1.556
$C\alphaCO$	120.548	0.778	$C\alphaCO$	120.470	0.805
$C\betaC\alphaC$	111.349	1.340	$C\beta_{-}C\alpha_{-}C$	110.034	1.481
$C\betaC\gammaC\delta$	112.474	1.937	$C\betaC\gammaC\delta$	111.967	1.572
$C\delta_N\epsilon_C\zeta$	124.697	1.123	$C\delta_N\epsilon_C\zeta$	124.894	1.181
$C\gammaC\deltaN\epsilon$	111.276	2.098	$C\gammaC\deltaN\epsilon$	112.688	1.950
$N\epsilonC\zetaN\eta 1$	120.618	0.914	$N\epsilon C\zeta N\eta 1$	120.774	1.029
$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.730	0.903	$N\epsilon_C\zeta_N\eta^2$	119.745	0.999
$N\eta 1_C \zeta_N \eta 2$	119.628	0.628	$N\eta 1_C\zeta_N\eta 2$	119.464	0.774
$111/1 - C\zeta - 111/2$					
$N_{-}C\alpha_{-}C$	110.080	2.465	$N_{-}C\alpha_{-}C$ $N_{-}C\alpha_{-}C\beta$	111.345	1.977

ARG	$\frac{1}{3} \text{ tmm} 160 \text{ n} = 90$		ARG	mtt180 n = 4505	Ď
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-172.150	10.975	chi1	-67.383	7.814
chi2	-90.073	11.030	chi2	179.853	11.048
chi3	-61.282	11.612	chi3	-179.128	10.682
chi4	163.764	18.517	chi4	177.093	17.944
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.778	1.273	$C\alphaC\betaC\gamma$	112.906	1.755
$C\alphaCO$	120.623	0.812	$C\alphaCO$	120.450	0.845
$C\betaC\alphaC$	111.249	1.056	$C\betaC\alphaC$	109.969	1.663
$C\betaC\gammaC\delta$	112.555	1.784	$C\betaC\gammaC\delta$	111.523	2.022
$C\delta_N\epsilon_C\zeta$	124.629	1.171	$C\delta_N\epsilon_C\zeta$	124.356	1.096
$C\gamma_C\delta_N\epsilon$	111.864	1.946	$C\gammaC\deltaN\epsilon$	110.629	1.820
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.639	0.972	$N\epsilon C\zeta \eta 1$	120.418	0.891
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.689	0.898	$N\epsilon C\zeta \eta 2$	119.630	0.896
$N\eta 1C\zetaN\eta 2$	119.648	0.773	$N\eta 1C\zetaN\eta 2$	119.933	0.790
$N_{-}C\alpha_{-}C$	109.962	2.040	$NC\alphaC$	111.572	2.324
$N_C\alpha_C\beta$	110.034	1.120	$N_{-}C\alpha_{-}C\beta$	110.572	1.048
AR	G ppt90 n = 18		ARG	tpp-160 n = 482	}
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	63.537	5.443	chi1	178.900	9.674
chi2	99.251	8.151	chi2	65.564	10.819
chi3	-179.890	9.880	chi3	65.339	9.793
chi4	87.261	12.365	chi4	-167.680	19.787
Bond Angle					
	Mean	StdDev	Bond Angle	Mean	StdDev
$\frac{\text{Bolid Alight}}{\text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma}$	Mean 115.304	StdDev 1.918	$\frac{\text{Bond Angle}}{\text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma}$	Mean 114.742	StdDev 1.291
$C\alpha_{-}C\beta_{-}C\gamma$	115.304	1.918	$C\alpha_{-}C\beta_{-}C\gamma$	114.742	1.291
$ \begin{array}{c} \hline $	115.304 120.718	1.918 0.836	$ \begin{array}{c} \hline $	114.742 120.532	1.291 0.822
$ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \end{array} $	115.304 120.718 110.703	1.918 0.836 1.689	$ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \end{array} $	114.742 120.532 110.423	1.291 0.822 1.277
Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C Cβ_Cγ_Cδ	115.304 120.718 110.703 112.029	1.918 0.836 1.689 2.351	Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C Cβ_Cγ_Cδ	114.742 120.532 110.423 112.675	1.291 0.822 1.277 1.745
$\begin{array}{c} C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \end{array}$	115.304 120.718 110.703 112.029 125.367	1.918 0.836 1.689 2.351 1.150	$\begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \end{array}$	114.742 120.532 110.423 112.675 124.523	1.291 0.822 1.277 1.745 1.369
$\begin{array}{c} C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \end{array}$	115.304 120.718 110.703 112.029 125.367 112.954	1.918 0.836 1.689 2.351 1.150 2.854	$\begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \\ C\gamma_{-}C\delta_{-}N\epsilon \end{array}$	114.742 120.532 110.423 112.675 124.523 111.876	1.291 0.822 1.277 1.745 1.369 1.830
$\begin{array}{c} C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ N\epsilon_C\zeta \\ N\epsilon_C\zeta_N\eta1 \end{array}$	115.304 120.718 110.703 112.029 125.367 112.954 120.972	1.918 0.836 1.689 2.351 1.150 2.854 1.007	$\begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \\ C\gamma_{-}C\delta_{-}N\epsilon \\ N\epsilon_{-}C\zeta_{-}N\eta_{1} \end{array}$	114.742 120.532 110.423 112.675 124.523 111.876 120.507	1.291 0.822 1.277 1.745 1.369 1.830 0.999
$\begin{array}{c} C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ N\epsilon_C\zeta_N\eta1 \\ N\epsilon_C\zeta_N\eta2 \end{array}$	115.304 120.718 110.703 112.029 125.367 112.954 120.972 119.738	1.918 0.836 1.689 2.351 1.150 2.854 1.007 0.957	$\begin{array}{c} C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ N\epsilon_C\zeta_N\eta1 \\ N\epsilon_C\zeta_N\eta2 \end{array}$	114.742 120.532 110.423 112.675 124.523 111.876 120.507 119.785	1.291 0.822 1.277 1.745 1.369 1.830 0.999 1.089

4 Filtered Top8000 PDB Chains and Filtered Residue Counts

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
1a2p	В	73	1a2z	С	130	1a34	A	106	1a3a	A	85	1a4i	В	195
1a7d	A	88	1a7s	A	133	1a7t	В	142	1a88	A	166	1a8q	A	196
1a8s	A	165	1aba	A	56	1afb	3	66	1ag9	В	82	1aii	A	186
1ajk	В	122	1ako	A	168	1aky	A	77	1amu	В	216	1atg	A	135
1atl	В	103	1atz	В	121	1aun	A	114	1avb	A	118	1awd	A	53
1ax0	A	121	1aye	A	203	1b0b	A	79	1b1c	A	91	1b2s	F	59
1b37	В	269	1b3a	В	41	1b4f	В	36	1b5e	A	131	1b63	A	112
1b67	A	24	1b6a	A	232	1b80	A	240	1b8a	В	285	1b8d	K	86
1b8d	L	97	1b8z	A	28	1b9j	A	319	1bdo	A	53	1beh	A	118
1bg 0	A	213	1bgf	A	79	1bgp	A	176	1bhp	A	21	1bj7	A	83
1bkb	A	3	1bn8	A	272	1bq8	A	44	1bqk	A	74	1brt	A	187
1bsg	A	156	1bu8	A	257	1bue	A	165	1bx1	A	145	1bx7	A	28
1bxu	A	56	1bxy	A	25	1byi	A	122	1bzs	A	96	1c02	A	93
1c0p	A	229	1c1k	A	123	1c3c	A	257	1c4q	В	49	1c75	A	1
1c7j	A	273	1c7k	A	94	1c7n	F	235	1c9s	A	38	1c9y	A	209
1cf3	A	357	1cg5	A	97	1 cg 5	В	92	1chd	A	116	1 ci 4	В	48
1cip	A	199	1cjc	A	239	1cka	A	7	1cpq	A	55	1cqm	В	62
1cru	В	305	1ctj	A	36	1cuo	A	83	1cxl	A	419	1cxy	A	42
1cyo	A	54	1cz 9	A	76	1cza	N	387	1czf	A	201	1d0b	A	129
1d2n	A	115	1d2s	A	75	1d2t	A	117	1d3g	A	188	1d4o	A	115
1d4t	A	67	1d5l	В	82	1d5l	D	289	1d5t	A	279	1d7o	A	106
1dbf	A	80	1dbi	A	160	1dbw	В	61	1deu	A	158	1 dgf	A	351
1di2	В	22	1djr	G	86	1dk8	A	84	1dl5	В	194	1doi	A	86
1dow	A	95	1dp7	P	51	1dpj	A	178	1dpt	A	77	1duv	Н	135
1 dw0	В	63	1dwk	A	98	1dxj	A	150	1dxy	A	173	1dys	В	211
1dzk	A	79	1e0c	A	153	1e0w	A	211	1e25	A	151	1e29	A	75
1e2v	A	133	1e3d	В	318	1e3d	C	154	1e4c	P	125	1e4m	M	346
1e59	A	168	1e5k	A	101	1e5m	A	221	1e6y	В	262	1e6y	C	159
1e6y	D	360	1eaj	В	87	1eao	A	80	1ear	A	50	1eb6	A	112
1edg	A	240	1edq	A	325	1eej	В	87	1ef1	D	37	1 eg 2	A	143
1egw	В	36	1eis	A	42	1ejb	A	98	1ejd	В	207	1ekq	В	129
1elj	A	177	1elk	A	116	1elr	A	71	1elt	A	157	1elu	A	215
1elw	A	66	1eo6	В	49	1eq6	A	87	1es5	A	170	1esw	A	269
1eu3	A	156	1 ex2	В	76	1exa	A	133	1exr	A	52	1ext	A	120
1eyb	A	244	1eyh	A	78	1eyl	A	82	1ez3	В	39	1f0k	В	141
1f0l	В	274	1f0y	В	166	1f1u	A	239	1f2f	A	65	1f3u	G	24
1f4p	A	70	1f5j	A	136	1f5v	A	142	1f60	A	287	1f60	В	62
1f7b	C	189	1f8e	A	289	1f94	A	4	1f9z	В	65	1fd3	A	22
1fec	В	237	1 fg7	A	212	1fj0	A	70	1fm4	A	85	1fn9	A	264
1fny	A	134	1fo9	A	223	1fob	A	174	1fp2	A	234	1fpo	В	94
1fqt	В	59	1fsg	A	179	1ftr	A	167	1fu0	В	49	1fur	В	248
1fw4	A	8	1fx4	A	104	1fxl	A	78	1fxo	G	170	1fy2	A	129
1fz1	В	240	1g12	A	106	1g16	A	56	1g1j	A	21	1g29	2	181
1g2r	A	54	1g3p	A	123	1g4i	A	66	1g60	A	147	1g61	Ā	154
1g6a	A	168	1g6c	В	121	1g6h	A	99	1g6u	В	24	1g7j	A	73
1g7m	В	56	1g87	A	378	1g8a	A	136	1g8i	В	80	1g8s	A	110
1g94	A	298	1g97	A	216	1g9g	A	392	1g9k	A	249	1g9o	A	58
1ga6	A	214	1gai	A	324	1gbg	A	126	1gc 0	В	160	1gcq	$\stackrel{\Lambda}{\mathrm{C}}$	41
1 gd0	A	84	1gde	B	210	1gee	E	134	1geg	G	150	1geq 1ges	В	201
1gk6	A	29	1gk7	A	20	1gk8	G	302	1gk9	A	147	1gk9	В	330
1810	1 4.	20	1811	11	20	1 -21.0	1 4	302	1810	11	171	1 22.0	٠ ٠	550

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
1gkp	Е	326	1gmu	С	63	1gmy	A	149	1gn0	A	52	1gnt	A	387
1gny	A	108	1go 3	E	97	1go3	N	57	1goi	В	326	1gpe	A	284
1gpi	A	270	1gpp	A	136	1gpu	A	363	1gq 1	A	378	1gq6	С	183
1gq 8	A	208	1gql	В	490	1gt1	A	46	1gte	D	530	1gtt	A	220
1gu2	A	86	1gu7	В	225	1gud	A	186	1gui	A	115	1gut	Е	39
1gv5	A	29	1gvf	A	152	1gvj	A	76	1gvn	С	62	1gvn	D	148
1gwe	A	343	1gwi	В	185	1gwu	A	209	1gx1	A	68	1gx4	A	209
1gxn	A	224	1gxr	A	153	1gxu	A	52	1gxy	A	128	1gyh	С	221
1gyo	A	63	1gyv	A	76	1gyy	В	48	1gz 8	A	180	1gzw	В	78
1h03	P	34	1 h0s	A	82	1h16	A	470	1h1n	A	219	1h1y	A	122
1h2b	В	180	1h2c	A	86	1h2e	A	76	1h2s	A	103	1h2s	В	14
1h32	A	150	1 h4a	X	122	1h4g	A	146	1h4p	A	242	1h4r	A	184
1h5q	L	165	1 h5 v	A	212	1h6w	A	94	1h72	С	39	1h75	A	35
1h7e	В	131	1h80	В	220	1h8p	В	58	1h9m	A	53	1hbg	A	48
1hc9	В	44	1 hd 2	A	91	1 hd 5	A	127	1hdh	A	320	1hfo	E	72
1hfs	A	102	1hfu	A	319	1hgx	В	92	1hh8	A	103	1hjs	В	212
1hl7	В	184	1hlq	C	42	1hp1	A	335	1hq0	A	149	1ht6	A	260
1hw1	В	135	1hx 1	В	18	1hxi	A	66	1hxr	В	64	1hyo	A	282
1hz6	$^{-}$ C	40	1hzj	A	190	1hzo	A	159	1i0l	A	102	1i0v	A	53
1i12	$\stackrel{\circ}{\mathrm{C}}$	94	1i19	A	314	1i1j	В	65	li1n	A	125	1i24	A	259
1i2h	A	80	1i2m	В	166	1i2t	A	39	1i3c	В	75	1i4u	A	123
1i58	В	99	1i60	A	174	1i6m	A	144	1i88	A	258	li8f	F	9
1i8k	В	73	1i9c	A	76	lia6	A	230	1iap	A	57	1icp	A	204
1idr	A	34	1ie0	A	88	1ig3	A	105	1ig5	A	39	1igq	A	29
1ii5	A	119	1iir	A	203	1ijb	A	118	1ijx	$\frac{1}{C}$	51	lijy	В	82
1ikp	A	317	1ikt	A	45	1inj	A	93	1inl	A	189	1io0	A	108
1iom	A	237	1ioo	В	136	1iqz	A	54	1isp	A	108	1itx	A	240
1iu8	В	121	1iue	В	64	1iuq	A	204	1iuz	A	61	liwd	A	138
1ix1	В	108	1ix2	A	50	1ix9	A	134	1iy8	C	148	1iyb	A	136
1iyn	A	141	1izc	A	160	1ize	A	201	1j05	В	73	1j0h	В	345
1j1g	A	124	1j1y	A	67	1j24	A	77	1j2j	В	26	1j2r	A	132
1j30	В	68	1j34	A	65	1j34	В	69	1j3w	C	62	1j5x	A	178
1j71	A	193	1j75	A	10	1j77	A	95	1j7d	Ā	80	1j7g	A	65
1j7k	A	113	1j8e	A	31	1j8u	A	204	1j97	В	132	1j9b	A	93
1j9l	A	99	1jak	A	289	1jat	A	64	1jat	В	48	1jay	В	128
1jcd	A	24	1jcv	A	99	1 jd 0	В	169	1jdl	A	49	1jf8	A	84
1jfu	A	94	1jfx	A	135	1jg1	A	129	1jhd	A	250	1jhf	A	101
1ji1	A	435	1jid	A	68	1jiw	P	278	1jkg	A	79	1jkx	A	124
1jl3	D	68	1jlt	A	77	1jlt	В	76	1jm1	A	1	1jnd	A	281
1jo0	A	47	1jo8	A	34	1jp4	A	202	1jpe	A	61	1jr8	A	64
1jrl	A	83	1jt 2	A	139	1jub	В	157	1juh	D	215	1juv	A	11
1jv1	A	293	1jvb	A	154	1jw9	В	122	1jw9	D	23	1jwq	A	110
1jy2	N	26	1jy 2	R	29	1jy3	P	36	1jya	A	48	1jyh	A	104
1jzt	A	124	1 k 97	A	171	1336 1k2e	A	102	1 k 2 x	C	96	1k33	A	27
1k38	В	139	1k3i	A	3	1k3s	A	43	1k5c	A	205	1k50 $1k5n$	A	198
1k66	В	81	1k6a	A	12	1k6d	В	101	1k75	В	266	1k77	A	134
1k7c	A	150	1k8w	A	142	1k92	A	244	1k94	A	95	1k9u	В	37
1ka1	A	252	1kao	A	89	1kb0	A	410	1kcq	A	63	1kcz	В	241
1keq	В	136	1kfr	A	88	1kfw	A	245	1kgd	A	100	1kgs	A	146
1khi	A	79	1kj9	A	217	1kiw 1kjv	A	166	1kl9	A	50	1klx	A	60
1km9	A	70	$1 \mathrm{kms}$	A	106	1kmt	A	91	1kng	A	78	1koe	A	100
1kms	A	60	1kms	В	69	1kq1	В	30	1kq3	A	245	1kqf	A	657
1 TrP	1 11	1 30	Inpu		00	1 -1141	٦	1 30	Indo	1 11		tinued or	1	

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
1kqr	A	101	1krh	A	209	1krn	A	49	1ks8	A	267	1ku1	A	102
1kug	A	143	1kvd	С	32	1kve	D	46	1kw4	A	35	1kw6	В	179
1kwg	A	374	1ky3	A	90	1kzq	A	125	1l1d	В	80	1l2p	A	21
112t	В	89	1l3i	E	33	1l3k	A	88	1l5o	A	181	115w	В	422
116r	A	143	116w	В	112	1171	A	88	119x	A	171	1lc3	A	170
1lc5	A	220	1 le 6	A	62	1les	В	31	1lfk	A	176	1lj5	A	209
1lj8	A	326	1lk 5	В	125	1lkd	A	142	1lke	A	62	1llf	В	371
1lml	A	237	1106	A	100	1lq9	A	74	1lqa	A	225	1lqv	A	96
1lqx	A	40	1lr0	A	69	1 lr 7	A	44	1lrh	A	119	1lri	A	61
1lrk	A	166	1 ls 6	A	151	1ls 9	A	50	1lua	C	160	1lv7	A	143
1lvw	В	173	1lw6	E	188	11w6	I	48	1lwd	В	242	1ly2	A	75
1 m 0 d	C	12	1 m0s	В	120	1m0u	A	115	1 m 0 z	A	162	1m1f	A	72
1 mod $1 m1r$	A	47	1 m 22	В	246	1 mod $1 m2t$	В	62	1 moz $1 m2x$	D	120	1m33	A	137
1m11 1m3u	$\frac{\Lambda}{C}$	152	1m22 $1m48$	A	61	1 m 2 t $1 m 4 i$	A	$\frac{02}{122}$	1 m 2 x $1 m 4 j$	A	61	1 m 55 $1 m 5 t$	A	83
1 m 6 m	A	133	1 m 48 $1 m 66$	A	167	1 m4 i $1 m6 i$	A	245	1 m4j $1 m6j$	В	150	1 m 6 s	A	196
1m05 1m70	D	101	1 m 60 $1 m 7 a$	В	116	$1 \mathrm{mor}$ $1 \mathrm{m7g}$	A	137	1 m 6 j $1 m 7 j$	A	335	1 mos $1 m7s$	D	338
1m70 1m7y	A	219	1 m/a $1 m/s$	A	60	1 m/g $1 m/g$	В	94	1 m t $1 mb 4$	A	216	1 m/s $1 mc 2$	A	83
1 m t y $1 md 6$	A	91	1mos 1mdo	A	179		A	148		A	123		H	121
	L A					1me8	B		1meo		40	1mex		
1mex		140	1mg4	A	64	1mg7	1	208	1mgq	С		1mgr	A	55
1mgt	A	108	1mhn	A	38	1mhx	A	27	1 mi3	В	233	1mjf	В	159
1mjh	В	76	1mk 0	A	65	1mkk	A	61	1mky	A	213	1mlw	A	150
1mn8	В	59	1 mo 0	В	129	1mo 1	A	46	1moq	A	203	1mpl	A	238
1mpx	В	408	1mvf	A	54	1mvf	D	9	1mvo	A	75	1mw9	X	272
1mwq	A	58	1mxg	A	272	1mxr	A	242	1my6	В	118	1mz4	A	70
1mzb	A	39	1n08	В	87	1n0q	В	56	1 n 0 w	A	109	1n12	A	73
1n13	G	29	1n 1 j	A	51	1n 1 j	В	58	1 n 2 x	A	140	1 n3 y	A	104
1n40	A	256	1n45	В	104	1n71	C	78	1n7e	A	40	1 n7h	В	219
1 n7s	A	26	1n7s	В	35	$1 \mathrm{n} 7 \mathrm{s}$	$^{\circ}$	44	1n7s	D	31	1n83	A	156
1n8f	В	218	1n8k	A	254	1n93	X	208	1n 9 l	A	44	1n9p	A	107
1na5	A	112	1naa	A	389	1nb9	A	79	1nbu	D	44	1nc 7	D	70
1ncw	H	149	1ndb	В	311	1ndd	A	41	1 ne7	C	155	1nep	A	97
1 nf8	A	129	$1 \mathrm{nff}$	В	115	1 nfv	N	77	1nh2	A	97	1nh2	В	10
1nh2	D	50	$1 \mathrm{nhc}$	E	215	1nhk	L	85	1nki	В	79	1nlf	A	110
1nli	A	170	1nls	A	155	1 nn 5	A	131	$1\mathrm{nnf}$	A	196	1nnh	A	215
1nnl	A	98	1nns	A	187	1nnw	В	104	1noa	A	62	1nof	A	246
1nox	A	113	1npy	В	163	1nq 6	A	211	1nq 7	A	145	1nqu	В	97
1nr 0	A	361	1nr 4	G	27	1nrj	A	36	1nrj	В	114	1nrv	В	55
1nrw	A	154	1 ns 5	В	87	1nte	A	61	1nth	A	277	$1 \mathrm{ntv}$	A	71
1 nu 0	A	67	1nul	A	64	1nut	A	109	1nvm	С	215	1nvm	F	164
1 nw 2	Н	58	1nwa	A	119	1nwp	A	75	1nww	A	96	1nxc	A	339
1nxj	A	97	1nxm	A	129	1nxo	A	62	1ny 1	В	142	1nyk	В	89
1nyt	С	172	1nz 0	A	64	1nza	A	47	1nzi	A	86	1nzj	A	186
1004	E	358	100e	В	115	100y	В	105	1013	A	53	1o1x	A	98
1o1y	A	153	1o1z	A	153	1026	С	102	1o2d	A	229	1o3u	A	65
1o4s	A	196	1o4t	A	49	104v	A	85	104w	A	2	1050	A	55
1054	A	144	1058	D	159	105k	В	154	105u	A	17	105x	A	161
1066	В	113	1069	В	196	106a	A	54	1075	A	114	107e	В	167
107i	A	76	1082	A	35	108b	В	133	108s	A	88	108v	A	83
108x	A	99	1091	C	83	1097	D	185	1098	A	287	109g	A	124
109r	E	115	10a0	В	374	10a2	C	154	1oai	A	39	1oal	A	84
1oao	A	411	1oaq	Н	78	1oaq	L	71	10b3	A	139	10b8	A	64
1obb	A	227	1oaq 1obf	O	235	1obo	A	102	1003 $10c2$	В	214	1000 1007	A	251
1000	11		1001		100	1000	**	1 102	1002			tinued or		1 1

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
1oc8	A	91	1ocy	A	138	10d6	A	76	1odk	A	120	1odm	A	246
1odo	A	220	1odv	A	67	1odz	A	273	10ew	A	203	1of1	A	128
1of8	В	231	1ofc	X	122	1off	A	57	1ofl	A	301	1ofs	С	110
1ofz	A	202	1ogm	X	433	1oh0	A	74	1oh4	A	100	loh9	A	124
1oi0	С	54	1oi2	A	215	1oi6	В	138	1oi7	A	151	1oih	D	102
1ojh	F	27	1ojk	A	302	1ojx	С	145	1ok0	A	37	1oki	В	124
1okt	A	93	1 om 0	A	144	10n3	A	267	1ong	A	135	1oni	С	72
1onj	A	41	1onr	A	146	1ooe	A	154	1oot	A	29	loq1	В	120
1oqj	A	64	1orn	A	72	1orr	A	169	1oru	В	100	10s6	A	32
1osy	В	82	1ou8	В	64	louw	С	96	1ow1	A	90	1ow3	A	131
1owf	A	13	10x0	A	275	1oxs	C	190	1oyg	A	341	loyw	A	253
1oz9	A	86	1p0f	В	199	1p0h	A	162	1p0k	A	89	1p1j	A	317
1p1m	A	236	1p1x	В	149	1p28	В	83	1p2f	A	109	1p31	В	255
1p3c	A	145	1p5g	X	289	1p5z	В	152	1p6o	В	106	1p6z	N	36
1p71	A	44	1p99	A	124	1p9h	A	77	1pa2	A	79	1pbj	A	66
1pcf	C	36	1pdo	A	57	1pe9	В	208	1pfb	A	39	1ps _j	A	121
1pg4	В	368	1pg6	A	83	1pgv	A	87	1phn	A	104	1pi2	A	546
1pk3	В	34	1pkh	A	108	1pko	A	57	1pl2	В	149	1pl3	A	118
1plc	A	55	1pmh	X	103	1pn0	В	441	1pn2	C	162	1pnc	A	63
1pp0	$^{\rm C}$	96	1pmn 1pqh	В	61	1psr	A	64	1pt6	A	107	1pu7	A	139
1puc	A	43	1pqfi 1puf	В	11	1puo	В	97	1pvb	A	65	1pvm	A	95
1puc 1pvx	A	127	1pui 1pwa	A	78	1pa5	В	179	1pvb 1pxv	В	114	1pviii 1pyf	A	186
1pvx 1pyl	A	62	1pwa 1pyo	В	56	1pzg	A	205	1pzs	A	106	1q08	В	52
1q0p	A	80	1q0q	A	$\frac{30}{247}$	1q0r	A	182	1q11	A	180	1q00 1q1r	В	$\frac{32}{220}$
1q0p 1q1y	A	114	1q0q 1q2o	B	235	1q35	A	216	1q11 1q40	A	65	1q11 1q40	В	72
1q1y 1q44	A	129	1q20 1q4r	A	64	1q35 1q4u	В	67	1q5m	B	222	1q5z	A	90
1q44 1q6h	A	140	1q41 1q60	A	138	1q4u 1q74	C	165	1q5m 1q7e	A	246	1q32 1q7l	A	151
1q7l	В	67	1q7r	A	42	1q8b	A	53	1q8d	A	58	1q8f	A	211
1q9u	A	67	1qad	A	74	1qb5	E	46	1qb4 1qb7	A	126	1qba	A	487
1qsu 1qcs	A	100	1qd9	$\frac{\Lambda}{C}$	80	1qb5 1qfo	В	50	1qg6	$\frac{\Lambda}{C}$	135	1qga 1qg8	A	163
1qcs 1qgj	A	180	1qu ₃ 1qgu	A	316	1qto 1qgu	D	381	1qg0 $1qh5$	В	169	1qgo	A	487
1qhq	A	71	1qgu 1qhv	A	123	1qgu 1qjw	В	198	1qh5 1qkr	A	80	1q10 1q10	В	161
1qlq 1qlw	A	212	1qmv	H	99	1qjw 1qmy	C	95	1qnn	C	112	1qnx	A	116
1qou	B	110	1qniv 1qoz	В	124	1qniy 1qq7	В	118	1qm 1qrp	E	158	1qsa	A	420
1qtu	A	68	1qo2 1qu1	D	50	1qq1 1qu9	A	84	1qrp 1qul	A	187	1qsa 1 qus	A	172
	$\stackrel{\Lambda}{\text{C}}$	122	_	В	79		В	116	1qui 1qw9	В	334	_	A	102
1qv9 1qwg	A	159	1qve 1qwk	A	177	1qvz 1qwm	В	333	1qw9 1qwo	A	314	1qwd 1qwr	A	161
1qwg	В	81	1qwk 1qwy	A	160	1qwiii 1qwz	A	136	1qwo 1qxy	A	168	1qw1 $1qy6$	A	1114
1qwx 1qyb	A	98	1qwy 1qyz	A	63	1qwz 1qz9	A	237	1qxy 1qzr	A	230	1qy0 1r0d	G	64
1qyb 1r0k	A	101	$\frac{1 \text{qyz}}{1 \text{r0m}}$	B	246	1qz9 1r0u	A	84	$\frac{1}{1}$	A	159	110d 1r17	A	224
1r26	A	80	1r0m $1r29$	A	78	110u 1r2m	A	46	$\frac{1112}{1r2r}$	B	162	1117 $1r3d$	A	127
1r3q	A	179	$\frac{1129}{1r45}$	B	135	112m $1r4v$	A	74	$\frac{1121}{1r4x}$	A	201	115d 1r55	A	96
115q 1r5l	A	143	$\frac{1145}{1r5m}$	A	213	1140 $1r62$	A	77	$\frac{114x}{1r6d}$	A	180	1155 1r6w	A	204
1r6x		$\frac{145}{235}$	1r5m 1r77	B	65	1r02 1r7a	B	304			50	1r6w 1r89	1	$\frac{204}{220}$
1rox 1r8h	A D	34	1r8s			1r7a 1r9c		66	1r7j 1r9d	A	412	1r9f	A	51
1r9h		69	1ros 1r9w	A	101 79		A	296	1rga 1rc9	A	143	1rgi 1rdg	A	34
1	$\begin{array}{ c c } A \\ 2 \end{array}$	67		A E	235	1ra0 1rff	A B	290		A	72		A B	54 54
1rdo	!	91	1rdq	C	I				1rfs	A	29	1rfy	l .	!
1rg8	В		1rgx		46	1rgz	A	204	1rh6	В		1rh9	A	241
1rhc	A	163	1rhf	В	41	1rie	A	81	1rjc	A	60	1rk8	A	50 136
1rk8	В	140	1rkd	A	147	1rki	A	47	1rkq	A	187	1rku	A	136
1rkx	C	148	1rky	A	343	1rl0	A	169	1rlh	A	70	1rli	A	69
1rlk	A	65	1 rm 6	A	451	1 rm 6	В	178	1 rm 6	$\mid C \mid$	105	1roc	A	104

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
1rp 0	В	168	1rq2	В	107	1rqb	A	231	1rro	A	74	1rtt	A	103
1ru 4	A	264	1rut	X	95	1rw9	A	501	1rwi	A	166	1rwj	A	35
1rwr	A	170	1 rwz	A	124	1rx 0	С	213	1rxq	С	103	1rxy	A	155
1ry9	С	82	1ryi	В	181	1ry l	A	80	1ryo	A	196	1ryq	A	35
1rz 3	A	88	1rzh	Н	132	1rzh	L	150	$1 \mathrm{rzh}$	M	135	1rzl	A	48
1s0a	В	234	1s0i	A	423	1s1d	В	203	1s1f	A	197	1s2o	A	154
1s2w	A	150	1s4k	В	62	1s57	В	69	1s5a	В	72	1s5d	A	139
1s5u	D	63	1s69	A	64	1s7k	A	81	1s99	A	97	1s9u	A	137
1sa3	A	144	1sau	A	67	1 sbp	A	182	1 sbx	A	64	1sby	A	166
1sd5	A	97	1sdi	A	127	1 sds	A	43	1se8	A	95	1seg	A	39
1seh	A	73	1sf9	A	59	1sff	С	226	1sfs	A	100	1sfx	В	67
1 sg 4	С	149	1 sg6	A	150	1 sgv	В	136	1sgw	A	134	1 sh7	В	183
$1\mathrm{sh}8$	В	69	$1 \mathrm{shk}$	A	38	1shu	X	113	1sk4	A	97	1skz	A	63
1sl9	A	125	$1 \mathrm{smb}$	A	68	1 smo	A	80	$1 \mathrm{smx}$	В	40	1 sn2	В	62
1sng	A	199	1snn	A	115	1sny	A	67	1so7	A	199	1soi	A	69
1spj	A	153	1sqn	В	154	1sqs	В	129	1ss4	В	69	1suu	A	169
1svd	M	73	1sw5	В	181	1swy	A	100	1sxq	В	229	1sxr	A	101
1sxv	A	103	1 sy7	В	391	1syy	A	175	1szd	A	128	1szh	A	77
1szn	A	280	1szo	K	171	1t00	A	67	1t06	A	120	1t07	A	38
1t0a	A	97	1t0b	D	164	1t0f	В	106	1t0f	C	18	1t0h	A	53
1t0p	В	41	1t 1 j	В	75	$1 \mathrm{t} 1 \mathrm{v}$	В	63	1t2a	В	198	1t2d	A	221
1t2h	В	72	1t2w	С	56	1t3i	В	217	1t3q	A	91	1t3q	В	415
1t3y	A	81	1t4b	В	218	1t61	С	130	1t61	E	128	1t6c	A	200
1t6g	A	207	1t6g	D	132	1t6t	1	62	1t6u	L	84	1t6v	N	75
1t 7 r	A	165	1t82	C	68	1 t8h	A	141	1t8t	В	147	1t8z	C	29
1t92	В	65	1t95	A	14	1t 9 m	В	94	1ta8	A	173	1taw	В	20
1taz	A	191	1tbf	A	213	1 tc 5	В	104	1tca	A	222	1tcv	C	171
1tcz	C	50	1 td4	A	54	1te2	A	131	1tez	В	221	1tf4	A	285
1 tg 0	A	32	1 tg 7	A	602	1tgr	A	26	1tgx	В	18	1th7	H	46
1thg	A	290	1thq	A	69	1thx	A	60	1tjy	A	215	1tke	A	142
1tmx	A	176	1to4	A	88	1toa	В	140	1top	A	77	1tov	A	55
1tp6	A	77	1tp9	В	110	1tq 4	A	210	1tqh	A	127	1tqj	В	138
1tr0	J	83	1tsf	A	40	1tu1	В	78	1tu7	В	153	1tu9	A	79
1tua	A	97	1tuh	A	48	1tuk	A	37	1tvn	В	194	1tw9	С	102
1twd	A	118	1twy	D	120	1 tx 2	A	154	1txg	В	218	1txo	В	104
1ty0	В	122	1tz0	В	53	1tzj	В	78	1tzp	A	182	1tzw	A	76
1tzy	C	14	1tzy	F	14	1u02	A	127	1u07	A	45	1u0a	D	150
1u0f	A	373 80	1u0k	В	173 62	1u11	A	91	1u1s	D	33 33	1u1w	В	172
1u2b	A		1u2h	A	1	1u2p 1u55	A	75 70	1u2w	В	33 73	1u36	A	47 3
1u3i 1u60	A B	120 206	1u53 1u69	A	104 95	1u55 1u6e	A	70 185	1u5d 1u6r	B B	277	1u5f 1u6t	A	69
1u60 1u6z	В	331	1u09 1u7i	D	88	1uoe 1u7l	A A	189	1uor 1u7p	A	90	1uot 1u84	A	42
1uoz 1u8f	Q	204	1u71 1u8v	A C			B	106	1u7p 1u94		135	1u84 1u9c	A	151
1u81 1u9k	A	67	1uov 1u9p	A	341 40	1u8y 1ua4		223	1u94 1uai	A A	147	1u9c 1ual	A A	139
1ugk 1uar	A	142	1usp 1uas	A	$\frac{40}{221}$	1ua4 1uay	A B	117	1uai 1ub3	A	119	1 uai 1 uc4	A	339
1uar 1uc4	G	75	1uas 1udr	B	$\begin{vmatrix} 221 \\ 60 \end{vmatrix}$	1uay 1ueb	A	108	1uec	A	75	1 uc4	A	202
1uc4 1ueh	A	106	1udi 1uek	A	145	1ueb 1uf5	A	186	1uec 1ufi	B	28	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A	78
1ug6	A	280	1uek 1ugi	E	33	1ui5 1ugp	A	136	1um 1ugp	В	153	1 ury 1 ugx	A	88
1ugo 1uha	A	51	1ugi 1 uhe	A	47	1ugp 1uhg	D	179	1ugp 1uhk	В	127	1ugx	A	127
1uia 1uix	A	29	1uile 1uj0	A	30	1ung 1uj2	A	104	1uiik 1uj6	A	115	1ui0 1uj8	A	43
1uix 1ujn	A	$\frac{23}{126}$	1ujo 1ujp	A	140	$1 \text{u} \text{y}^2$ 1 u k 7	A	179	1ujo 1ukf	A	116	1ukk	A	48
1ukm	A	77	1ukm	В	66	1uku	A	71	1ukz	A	94	1 ulr	A	52
Taxiii	1 11	'''	1 GIVIII		00	1 unu	'1	'1	TUIL	11		tinued or	1	

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
1umd	С	185	1umd	D	200	1umg	A	193	1umk	A	186	1umz	A	129
1uow	A	95	1uoy	A	41	1uoz	A	177	1ups	В	284	1upt	D	27
1upt	E	100	1uqx	A	72	1uqz	A	227	1ur5	A	156	lurn	С	55
1urr	A	41	1urs	A	195	1urx	A	191	1us5	A	151	1use	A	19
1usf	В	99	1usg	A	200	1uso	A	42	1usp	В	59	1usq	В	79
1ut7	В	78	1uti	A	33	1uu3	A	194	1uu4	A	162	1uuf	A	191
1uuj	A	44	1uuq	A	279	1uuy	A	99	1uv4	A	196	1uvq	A	116
1uvq	В	110	1uw4	C	56	1uw4	D	183	1uwc	A	179	1uwf	A	102
1uwk	В	348	1uws	В	238	1uww	A	135	1uwz	A	70	1uxo	A	132
1uxx	X	77	1uy1	A	86	1uyx	A	88	1uz3	A	75	1uzn	В	88
1v05	A	62	1v08	В	322	1v0a	A	107	1v0w	A	322	lv0z	В	275
1v2b	В	112	1v2z	A	66	1v37	A	97	1v3y	В	97	lv4p	С	111
1v4v	A	133	1v58	В	99	1v5f	A	312	1v5i	В	46	1v5v	В	263
1v5y	A	128	1v6s	A	224	1v6t	A	129	1v70	A	51	1v7p	$^{-}$ C	99
1v7r	A	109	1v7w	A	498	1v84	A	132	1v8c	C	81	1v8f	A	128
1v8h	A	55	1v8y	A	82	1v96	В	68	1v98	Ā	39	1v9y	В	53
1va0	A	48	1vbi	A	168	1vbk	В	158	1vbu	A	208	1vbw	A	35
1vc4	В	127	1vcd	A	56	1vch	C	32	1vd1	A	97	1vd6	A	115
1vdk	В	169	1vdw	A	130	1ve1	A	159	1vef	В	217	1vf1	A	139
1vfy	A	54	1vg8	C	100	1vgg	A	107	1vgy	В	158	1 vh4	В	254
1vh5	A	83	1vhc	F	115	1vhe	A	199	1vhf	A	62	1vhn	A	169
1vhq	A	122	1vhs	A	57	1vht	В	137	1vhu	A	114	1vhv	A	132
1vhq 1vhw	A	147	1vi3	A	98	1vi4	A	99	1vi6	В	94	1via	В	85
1vic	В	106	1vim	A	128	1vio	A	126	1vje	A	100	1via	A	63
1vio	A	226	1vk1	A	147	1vk2	A	109	1vkc	A	66	1vke	F	64
1vkf	C	92	1vki 1vkh	A	154	1vki	A	123	1vke	A	98	1vkm	C	152
1vkn	A	147	1vl1	A	154	1vl2	В	240	1vl4	A	201	1vl5	В	114
1vl7	A	73	1vla	C	65	1vlc	A	119	1vlj	A	68	1vlp	C	285
1vlr	A	199	1vly	A	185	1 vm 0	A	59	1vm9	A	71	1vma	A	143
1vmb	A	70	1vme	В	203	1vmf	C	100	1vmg	A	49	1vmh	A	91
1vmj	A	95	1vp2	A	110	1vnn 1vp6	C	62	1vng	A	119	1vpb	A	98
1vnj	A	173	1vp2	E	92	1vpo 1vpm	В	68	1vpc 1vpr	A	169	1vps	A	168
1vq3	В	51	1vqs	D	76	1vqu	A	66	1vqz	A	147	1 vr 5	В	330
1vr6	C	1	1vr8	A	81	1vrm	A	192	1vsr	A	79	1vyf	A	60
1vyk	A	84	1vzi	В	77	1vzm	В	18	1vzy	В	102	1w0d	A	168
1w0h	A	153	1w0n	A	72	1 w0p	A	412	1w0u	A	34	1w1d	A	111
1w1q	A	315	1w2i	В	55	1 w2y	A	108	1w3h	A	162	1w3i	A	193
1w3w	A	205	1w3y	A	450	1 w 4 r	F	94	1w4s	A	97	1w4t	A	154
1 w 4 v	В	74	1w4x	A	312	1 w 5 r	В	178	1w66	A	143	1w6s	C	426
1w6s	D	34	1w70	A	38	1w7x	L	33	1w8u	A	93	1w96	В	276
1w99	A	293	1w9a	В	91	1w9i	A	450	1w9p	A	276	1 w9s	A	93
1wa0	X	225	1wa3	A	108	1wb0	A	203	1wb6	В	201	1wba	A	104
1wao	A	117	1wbh	В	119	1wbj	A	158	1wbj	В	243	1wc1	$\frac{\Lambda}{C}$	60
1 wc 2	A	120	1wc9	A	91	1wcg	В	349	1wck	A	90	1wcu	A	99
1 wd 3	A	307	1wdd	S	63	1wcg 1wdr	A	333	1wdv	В	94	1 weu	A	115
1whz	A	44	1wdd 1wj9	A	93	1waa 1wka	A	68	1wko	A	120	1wkq	В	100
1whz 1wkr	A	251	1wku	В	150	1wka	A	33	1wky	A	260	1wkq 1wl4	A	240
1wki 1wl8	A	$\frac{231}{124}$	1wku	В	171	1wkx	A	90	1wky 1wly	A	190	1wlz	$\frac{\Lambda}{C}$	58
1wm2	A	45	1wng 1wma	A	179	1wnd	A	260	1wny 1wmh	A	50	1 wnw	A	188
1wmz	D	99	1 wina $1 win 2$	A	51	1wma	A	40	1wnn 1wo8	D	74	1 winw	E	169
1wnz	В	109	1wnz 1wor	A	173	1wna 1wov	В	150	1 wo 5	A	195	1wog 1wpa	A	69
1woq 1wpn	В	123	1wor 1wpu	A	62	1 wov $1 wq 8$	A	63	1wqj	В	45	1wqi	I	32
1 bii	ر ا	140	I wpu	11	02	1 * W YO	**	1 33	- w qj			tinued or	1	1

Iwr8	PDB	Cn	N	PDB	Cn	N									
Iwsg	1wr8	В	123	1wrd	A	58	1wri	A	51	1wrm	A	72	1ws0	A	87
Invive D	1ws8	A	66	1wsd	A	174	1wst	A	210	1wt6	A	40	1wte	A	175
lovve D	1wtj	A	171	1wto	A	38	1wu9	В	47	1wur	В	115	1wv3	A	110
lwxz		D	45		A		1wwi	A	77	1wwz	В		1wx1	1	
1802 1802 1804 1804 1805		В	l				1wxx				A		I	1	
1x0c			l					1		· ·			1		
1x10													1	1	
1x30								1					1	1	
1x66								1					I		
1x91	l .												1	1	
1xbb								1					1		
1xdw												l	1	1	
1xes								1					1	1	
1xg2													!	1	
1 1 1 1 1 1 1 1 1 1			l											1	
1xiw	_			_				1							
1xki									I .		1		1		
Ixiq								1					I	1	
1xmt			l	_			_						1	1	
1xod A 55	_		l								1		_		
1xqa			l										1	1	
1xrf A 203 1xrk B 82 1xru B 156 1xs5 A 125 1xsq A 84 1xt5 A 79 1xtp A 140 1xtt C 108 1xu1 D 81 1xu1 T 24 1xv5 A 232 1xvg C 234 1xvg E 104 1xvq A 80 1xvw B 82 1xvx A 201 1xw6 A 87 1xwt A 282 1xwv A 59 1xww A 105 1xx1 C 148 1xxq D 100 1xy7 B 50 1y07 C 69 1y08 A 168 1y0b D 126 1y0h A 67 1y0k A 113 1y0m A 43 1y0u A 56 1y0y A 165 1y12 A 94 1y1p A 205 1y1x A 83 1y20 A 168 1y2b B 246 1y2m C 440 1y2t B 110 1y37 A 189 1y3n A 280 1y42 X 194 1y4j B 140 1y4w A 361 1y51 A 52 1y55 Y 86 1y5e A 87 1y5h A 58 1y5i B 344 1y60 E 70 1y63 A 91 1y66 C 23 1y6x A 57 1y71 A 57 1y7p B 105 1y7r B 78 1y9q A 95 1y9w B 67 1y92 B 291 1yac B 128 1yal A 128 1yar D 77 1yar N 104 1yar S 124 1yb0 B 99 1yb1 A 126 1yb5 A 172 1ybi B 236 1ybk D 39 1yc5 A 168 1yc7 B 78 1yc9 A 210 1yd3 A 67 1ydy A 165 1ye8 A 126 1yfn C 54 1yfu A 70 1yg9 A 201 1yif A 314 1yj7 A 108 1ykd A 237 1yki B 163 1yle A 198 1ylm B 98 1ylx B 50 1ym3 A 107 1ymd A 123 1ymt A 125 1yn3 B 59 1yn8 E 40 1yn9 A 117 1ynb C 71 1ynh B 226 1ynp B 184 1yo3 A 51 1yoa A 99 1yoc B 86 1yoe A 203 1yon A 117 1yp1 A 80 1yth D 87 1yth E 66 1yq2 C 668 1yqd A 202 1yqe A 133 1yqh A 72 1yqw B 153 1yqw Q 347 1yqz A 281 1yrk A 97 1yv1 A 103 1ytq A 127 1yu4 B 232 1yu6 B 173 1yuc A 97 1yv1 A 103 1ytq A 127 1yu4 B 232 1yu6 B 173 1yuc A 97 1yv1 A 103 1ytq	l .			_						_					
1xt5 A 79 1xtp A 140 1xtt C 108 1xu1 D 81 1xu1 T 24 1xv5 A 232 1xvg C 234 1xvg E 104 1xvq A 80 1xvw B 82 1xv1 C 148 1xxq D 100 1xy7 B 50 1y07 C 69 1y08 A 168 1y0b D 126 1y0h A 67 1y0k A 13 1y0m A 48 1y0u A 168 1y0b D 126 1y0h A 67 1y0k A 140 1y4 A 205 1y1x A 83 1y20 A 168 1y0y A 165 1y12 A 94 1y1p A 205 1y1x A 83 1y20 A 168 1y20 <td< td=""><td></td><td></td><td>l</td><td>_</td><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td>1</td><td>1</td><td></td></td<>			l	_				1	1				1	1	
1xv5 A 232 1xvg C 234 1xvg E 104 1xvq A 80 1xvw B 82 1xvx A 201 1xw6 A 87 1xwt A 282 1xwv A 59 1xww A 105 1xx1 C 148 1xxq D 100 1xy7 B 50 1y07 C 69 1y08 A 105 1y0b D 126 1y0h A 67 1y0k A 113 1y0m A 43 1y0u A 56 1y0b D 126 1y0h A 67 1y0k A 113 1y0m A 43 1y0u A 56 1y0b A 165 1y12 A 94 1y1b A 235 1y2m A 83 1y20 A 156 1y3h A 193 1y3h <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td>1 -</td><td></td><td></td></t<>								1			1		1 -		
1xvx A 201 1xw6 A 87 1xwt A 282 1xwv A 59 1xww A 105 1xx1 C 148 1xxq D 100 1xy7 B 50 1y07 C 69 1y08 A 168 1y0b D 126 1y0h A 67 1y0k A 113 1y0m A 43 1y0u A 56 1y0b A 165 1y12 A 94 1y1p A 205 1y1x A 83 1y20 A 168 1y2b B 246 1y2m C 440 1y2t B 110 1y37 A 189 1y3n A 280 1y4e X 194 1y4j B 140 1y4w A 361 1y5t A 58 1y5t B 344 1y60 E 70 1y63				_				1					I	1	
1xx1 C 148 1xxq D 100 1xy7 B 50 1y07 C 69 1y08 A 168 1y0b D 126 1y0h A 67 1y0k A 113 1y0m A 43 1y0u A 56 1y0y A 165 1y12 A 94 1y1p A 205 1y1x A 83 1y20 A 168 1y2b B 246 1y2m C 440 1y2t B 110 1y37 A 189 1y3n A 280 1y42 X 194 1y4j B 140 1y4w A 361 1y51 A 52 1y55 Y 86 1y5b A 87 1y4j B 140 1y4w A 361 1y51 A 52 1y55 Y 86 1y5b B 136 <td< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>1</td><td></td><td></td></td<>				_						_			1		
1y0b		1	l		1			1					I	1	
1y0y A 165 1y12 A 94 1y1p A 205 1y1x A 83 1y20 A 168 1y2b B 246 1y2m C 440 1y2t B 110 1y37 A 189 1y3n A 280 1y42 X 194 1y4j B 140 1y4w A 361 1y51 A 52 1y55 Y 86 1y5e A 87 1y5h A 58 1y5i B 344 1y60 E 70 1y63 A 91 1y66 C 23 1y6x A 57 1y71 A 57 1y7p B 105 1y7r B 78 1y7t B 158 1y7w A 157 1y8a A 193 1y9i A 75 1y9l A 21 1y6 A 193 1y9i <td< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>l.</td><td></td><td>1</td><td></td></td<>				_					1			l.		1	
1y2b B 246 1y2m C 440 1y2t B 110 1y37 A 189 1y3n A 280 1y42 X 194 1y4j B 140 1y4w A 361 1y51 A 52 1y55 Y 86 1y5e A 87 1y5h A 58 1y5i B 344 1y60 E 70 1y63 A 91 1y6e C 23 1y6x A 57 1y71 A 57 1y7p B 105 1y7r B 78 1y7t B 158 1y7w A 157 1y8a A 193 1y9i A 75 1y9l A 58 1y9q A 95 1y9w B 67 1y9z B 291 1yac B 128 1yal A 128 1yar D 77 1y			l											1	
1y42 X 194 1y4j B 140 1y4w A 361 1y51 A 52 1y55 Y 86 1y5e A 87 1y5h A 58 1y5i B 344 1y60 E 70 1y63 A 91 1y6e C 23 1y6x A 57 1y71 A 57 1y7p B 105 1y7r B 78 1y7t B 158 1y7w A 157 1y8a A 193 1y9i A 75 1y9l A 58 1y9q A 95 1y9w B 67 1y9z B 291 1yac B 128 1yal A 128 1yar D 77 1yar N 104 1yar S 124 1yb0 B 99 1yb1 A 126 1yb5 A 172 1yb		1	l		1	!		1						1	
1y5e A 87 1y5h A 58 1y5i B 344 1y60 E 70 1y63 A 91 1y66 C 23 1y6x A 57 1y71 A 57 1y7p B 105 1y7r B 78 1y7t B 158 1y7w A 157 1y8a A 193 1y9i A 75 1y9l A 58 1y9q A 95 1y9w B 67 1y9z B 291 1yac B 1yal A 128 1yar D 77 1yar N 104 1yar S 124 1yb0 B 99 1yb1 A 126 1yb5 A 172 1ybi B 236 1ybk D 39 1yc5 A 168 1yc7 B 78 1yc9 A 210 1yd3 A<		1	l			1					1			1	1 1
1y66 C 23 1y6x A 57 1y71 A 57 1y7p B 105 1y7r B 78 1y7t B 158 1y7w A 157 1y8a A 193 1y9i A 75 1y9l A 58 1y9q A 95 1y9w B 67 1y9z B 291 1yac B 128 1yal A 128 1yar D 77 1yar N 104 1yar S 124 1yb0 B 99 1yb1 A 126 1yb5 A 172 1ybi B 236 1ybk D 39 1yc5 A 168 1yc7 B 78 1yc9 A 201 1ydy A 165 1ye8 A 126 1yfn C 54 1yfu A 31 1yif A 314 1			l					1							
1y7t B 158 1y7w A 157 1y8a A 193 1y9i A 75 1y9l A 58 1y9q A 95 1y9w B 67 1y9z B 291 1yac B 128 1yal A 128 1yar D 77 1yar N 104 1yar S 124 1yb0 B 99 1yb1 A 126 1yb5 A 172 1ybi B 236 1ybk D 39 1yc5 A 168 1yc7 B 78 1yc9 A 210 1yd3 A 67 1ydy A 165 1ye8 A 126 1yfn C 54 1yfu A 70 1yg9 A 201 1yif A 314 1yj7 A 108 1ykd A 237 1yki B 163 <t< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td></t<>		1												1	
1y9q A 95 1y9w B 67 1y9z B 291 1yac B 128 1yal A 128 1yar D 77 1yar N 104 1yar S 124 1yb0 B 99 1yb1 A 126 1yb5 A 172 1ybi B 236 1ybk D 39 1yc5 A 168 1yc7 B 78 1yc9 A 210 1yd3 A 67 1ydy A 165 1ye8 A 126 1yfn C 54 1yfu A 70 1yg9 A 201 1yif A 314 1yj7 A 108 1ykd A 237 1yki B 163 1yle A 198 1ylm B 98 1ylx B 50 1ym3 A 107 1yki A 123 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>I .</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									I .						
1yar D 77 1yar N 104 1yar S 124 1yb0 B 99 1yb1 A 126 1yb5 A 172 1ybi B 236 1ybk D 39 1yc5 A 168 1yc7 B 78 1yc9 A 210 1yd3 A 67 1ydy A 165 1ye8 A 126 1yfn C 54 1yfu A 70 1yg9 A 201 1yif A 314 1yj7 A 108 1ykd A 237 1yki B 163 1yle A 198 1ylm B 98 1ylx B 50 1ym3 A 107 1ymd A 123 1ymt A 125 1yn3 B 59 1yn8 E 40 1yn9 A 117 1ymb C 71 <td< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td></td></td<>					1			1			1		1		
1yb5 A 172 1ybi B 236 1ybk D 39 1yc5 A 168 1yc7 B 78 1yc9 A 210 1yd3 A 67 1ydy A 165 1ye8 A 126 1yfn C 54 1yfu A 70 1yg9 A 201 1yif A 314 1yj7 A 108 1ykd A 237 1yki B 163 1yle A 198 1ylm B 98 1ylx B 50 1ym3 A 107 1ymd A 123 1ymt A 125 1yn3 B 59 1yn8 E 40 1yn9 A 117 1ymb C 71 1ynh B 226 1ynp B 184 1yo3 A 51 1yoa A 99 1yoc B 86		1												1	
1yc9 A 210 1yd3 A 67 1ydy A 165 1ye8 A 126 1yfn C 54 1yfu A 70 1yg9 A 201 1yif A 314 1yj7 A 108 1ykd A 237 1yki B 163 1yle A 198 1ylm B 98 1ylx B 50 1ym3 A 107 1ymd A 123 1ymt A 125 1yn3 B 59 1yn8 E 40 1yn9 A 117 1ymb C 71 1ynh B 226 1ynp B 184 1yo3 A 51 1yoa A 99 1yoc B 86 1yoe A 203 1yon A 117 1yp1 A 80 1yph D 87 1yph E 66 1								!						!	
1yfu A 70 1yg9 A 201 1yif A 314 1yj7 A 108 1ykd A 237 1yki B 163 1yle A 198 1ylm B 98 1ylx B 50 1ym3 A 107 1ymd A 123 1ymt A 125 1yn3 B 59 1yn8 E 40 1yn9 A 117 1ymb C 71 1ynh B 226 1ynp B 184 1yo3 A 51 1yoa A 99 1yoc B 86 1yoe A 203 1yon A 117 1yp1 A 80 1yph D 87 1yph E 66 1yq2 C 668 1yqd A 202 1yqe A 133 1yqh A 72 1yqw B 153			!			!!!								1	
1yki B 163 1yle A 198 1ylm B 98 1ylx B 50 1ym3 A 107 1ymd A 123 1ymt A 125 1yn3 B 59 1yn8 E 40 1yn9 A 117 1ynb C 71 1ynh B 226 1ynp B 184 1yo3 A 51 1yoa A 99 1yoc B 86 1yoe A 203 1yon A 117 1yp1 A 80 1yph D 87 1yph E 66 1yq2 C 668 1yqd A 202 1yqe A 133 1yqh A 72 1yqw B 153 1yqw Q 347 1yqz A 281 1yrk A 91 1ys1 X 225 1ysl B 195	-		l	-				1							
1ymd A 123 1ymt A 125 1yn3 B 59 1yn8 E 40 1yn9 A 117 1ynb C 71 1ynh B 226 1ynp B 184 1yo3 A 51 1yoa A 99 1yoc B 86 1yoe A 203 1yon A 117 1yp1 A 80 1yph D 87 1yph E 66 1yq2 C 668 1yqd A 202 1yqe A 133 1yqh A 72 1yqw B 153 1yqw Q 347 1yqz A 281 1yrk A 91 1ys1 X 225 1ysl B 195 1ysq A 111 1ysr B 26 1yt3 A 208 1yt8 A 310 1ytq A 127 <td< td=""><td>-</td><td></td><td>!</td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></td<>	-		!			1		1			1				
1ynb C 71 1ynh B 226 1ynp B 184 1yo3 A 51 1yoa A 99 1yoc B 86 1yoe A 203 1yon A 117 1ypl A 80 1yph D 87 1yph E 66 1yq2 C 668 1yqd A 202 1yqe A 133 1yqh A 72 1yqw B 153 1yqw Q 347 1yqz A 281 1yrk A 91 1ys1 X 225 1ysl B 195 1ysq A 111 1ysr B 26 1yt3 A 208 1yt8 A 310 1ytq A 127 1yu4 B 232 1yu6 B 173 1yuc A 97 1yv1 A 103 1yvr A 220 <t< td=""><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>l .</td><td></td></t<>	-			-				1						l .	
1yoc B 86 1yoe A 203 1yon A 117 1yp1 A 80 1yph D 87 1yph E 66 1yq2 C 668 1yqd A 202 1yqe A 133 1yqh A 72 1yqw B 153 1yqw Q 347 1yqz A 281 1yrk A 91 1ys1 X 225 1ysl B 195 1ysq A 111 1ysr B 26 1yt3 A 208 1yt8 A 310 1ytq A 127 1yu4 B 232 1yu6 B 173 1yuc A 97 1yv1 A 103 1yvr A 220 1yw5 A 115 1yx1 A 140 1yxj B 80 1yxm B 121 1yxy A 146	-	1						1					I "		
1yph E 66 1yq2 C 668 1yqd A 202 1yqe A 133 1yqh A 72 1yqw B 153 1yqw Q 347 1yqz A 281 1yrk A 91 1ys1 X 225 1ysl B 195 1ysq A 111 1ysr B 26 1yt3 A 208 1yt8 A 310 1ytq A 127 1yu4 B 232 1yu6 B 173 1yuc A 97 1yv1 A 103 1yvr A 220 1yw5 A 115 1yx1 A 140 1yxj B 80 1yxm B 121 1yxy A 146 1yya A 156 1yzf A 123 1yzx A 87 1z0n B 60 1z0s C 139	-		l						1				1 .	1	
1yqw B 153 1yqw Q 347 1yqz A 281 1yrk A 91 1ys1 X 225 1ysl B 195 1ysq A 111 1ysr B 26 1yt3 A 208 1yt8 A 310 1ytq A 127 1yu4 B 232 1yu6 B 173 1yuc A 97 1yv1 A 103 1yvr A 220 1yw5 A 115 1yx1 A 140 1yxj B 80 1yxm B 121 1yxy A 146 1yya A 156 1yzf A 123 1yzx A 87 1z0n B 60 1z0s C 139 1z11 A 204 1z1s A 78 1z21 A 68 1z2n X 216 1z3e A 83	1yoc		l	1yoe	1		1yon	A		1yp1	A		1yph	D	
1ysl B 195 1ysq A 111 1ysr B 26 1yt3 A 208 1yt8 A 310 1ytq A 127 1yu4 B 232 1yu6 B 173 1yuc A 97 1yv1 A 103 1yvr A 220 1yw5 A 115 1yx1 A 140 1yxj B 80 1yxm B 121 1yxy A 146 1yya A 156 1yzf A 123 1yzx A 87 1z0n B 60 1z0s C 139 1z1l A 204 1z1s A 78 1z21 A 68 1z2n X 216 1z3e A 83 1z3e B 42 1z3q A 140 1z3x A 155 1z40 E 98	1yph		l	1yq2			1yqd	A		1yqe	A	l	1yqh	1	
1ytq A 127 1yu4 B 232 1yu6 B 173 1yuc A 97 1yv1 A 103 1yvr A 220 1yw5 A 115 1yx1 A 140 1yxj B 80 1yxm B 121 1yxy A 146 1yya A 156 1yzf A 123 1yzx A 87 1z0n B 60 1z0s C 139 1z1l A 204 1z1s A 78 1z21 A 68 1z2n X 216 1z3e A 83 1z3e B 42 1z3q A 140 1z3x A 155 1z40 E 98	1yqw	В	l	1yqw	Q	347	1yqz	A		1yrk	A	L	1ys1	X	
1yvr A 220 1yw5 A 115 1yx1 A 140 1yxj B 80 1yxm B 121 1yxy A 146 1yya A 156 1yzf A 123 1yzx A 87 1z0n B 60 1z0s C 139 1z1l A 204 1z1s A 78 1z2l A 68 1z2n X 216 1z3e A 83 1z3e B 42 1z3q A 140 1z3x A 155 1z40 E 98	1ysl	В	l	1ysq	A		1ysr	1	26	1yt3	A		l 1yt8	A	
1yvr A 220 1yw5 A 115 1yx1 A 140 1yxj B 80 1yxm B 121 1yxy A 146 1yya A 156 1yzf A 123 1yzx A 87 1z0n B 60 1z0s C 139 1z1l A 204 1z1s A 78 1z2l A 68 1z2n X 216 1z3e A 83 1z3e B 42 1z3q A 140 1z3x A 155 1z40 E 98	1ytq	A	127	1yu4	В	232	1yu6	В	173	1yuc	A	97	l 1yv1	A	103
1yxy A 146 1yya A 156 1yzf A 123 1yzx A 87 1z0n B 60 1z0s C 139 1z1l A 204 1z1s A 78 1z2l A 68 1z2n X 216 1z3e A 83 1z3e B 42 1z3q A 140 1z3x A 155 1z40 E 98		A	220	_	A	115		A	140		В	80	1	В	121
1z0s C 139 1z1l A 204 1z1s A 78 1z2l A 68 1z2n X 216 1z3e A 83 1z3e B 42 1z3q A 140 1z3x A 155 1z40 E 98		A	146	-	A	156		A	123		A	87		В	60
			139		A			1				68	1	X	
	1z3e	A	83	1z3e	В	42	1z3q	A	140	1z3x	A	155	1z40	E	98
			214		A	132						83	l .	A	

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
1z6m	A	104	1z6n	A	92	1z6o	D	96	1z6o	M	102	1z70	X	180
1z72	A	117	1z76	В	84	1z7a	D	198	1z7g	В	80	1z7x	W	240
1z84	A	207	1z8g	A	226	1z8o	A	216	1z96	A	19	1z9l	A	65
1z9t	A	138	1zar	A	161	1zb9	A	76	1zbf	A	81	1zc0	A	133
1zce	A	91	1zch	A	153	1zcz	A	50	1zd7	В	98	1zd8	A	142
1zd9	A	101	1zdy	A	167	1zel	В	155	1zem	A	130	1zgd	В	185
1zgz	D	69	$1\mathrm{zh}\overset{\circ}{5}$	В	123	$1\mathrm{zhh}$	A	156	1zhh	В	49	1zhq	A	75
$1\mathrm{zhv}$	A	69	1zhx	A	253	1zi9	A	135	1zja	A	364	1zjc	A	273
1zjj	В	148	1zk 4	A	138	1zk5	A	106	1zk7	A	264	1zkc	A	119
1zke	В	59	1zki	В	67	1zkk	В	113	1zkl	A	218	1zko	В	78
1zkp	В	161	1zl0	В	177	1zle	A	26	1z l h	В	47	1zlm	A	37
1zm 8	A	70	1zma	A	55	1zn 6	A	107	1zn8	A	107	lzo2	A	76
1zos	С	136	1zp3	С	143	1zpd	F	369	1zps	В	61	1zpv	A	40
1zpw	X	48	1zq9	В	184	1zr0	D	30	1zr3	В	65	1zr6	A	271
1zru	A	189	1zs4	D	49	1zs9	A	144	1zsw	A	151	1zsy	A	186
1zt5	A	49	1zu3	A	45	1zuo	A	73	1zuw	C	131	1zuy	A	26
1zv1	A	32	1zv9	A	113	1zvt	A	144	1zwh	A	119	1zwx	A	166
1zwy	C	91	1zwz	A	83	1zx6	A	38	1zx8	C	56	1zxt	В	37
1zxx	Ā	100	1zy 7	A	251	1zz0	A	236	1zzg	В	205	1zzk	A	36
1zzo	A	66	1zzw	A	94	256b	В	66	2a07	K	53	2a0m	A	188
2a0n	A	150	2a13	A	100	2a14	A	187	2a15	A	76	2a26	C	30
2a2m	В	127	2a2n	C	65	2a2r	В	121	2a33	A	81	2a35	A	113
2a3n	A	218	2a3t	A	210	2a40	E	162	2a47	A	91	2a4a	A	143
2a4v	A	105	2a53	C	39	2a5d	A	95	2a5j	A	118	2a5l	A	96
2a5s	A	169	2a61	$\stackrel{\circ}{\mathrm{C}}$	80	2a6c	В	37	2a6s	В	47	2a6v	A	157
2a70	A	174	2a7l	В	51	2a84	A	146	2a8n	A	62	2a8y	C	136
2a9i	A	68	2a9s	A	97	2aan	A	73	2aax	A	164	2ab0	A	114
2aba	A	224	2abs	A	170	2abw	В	130	2acf	D	109	2ad6	A	330
2ad6	D	40	2ae2	A	142	2aee	В	113	2aen	E	125	2aex	A	170
2ag4	В	104	2ag5	В	145	2agd	В	181	2agk	A	149	2ah4	X	148
2ab5	A	143	2ah6	В	75	2aga 2ahe	A	133	2ahf	A	228	2ahn	A	143
2ahu	A	272	2aie	P	97	2aj6	A	47	2aj7	A	90	2akz	В	238
2ami	В	86	2aml	В	259	2anv	A	86	2any	A	157	2ao9	D	76
2anj 2ap1	A	154	2ann 2ap3	A	116	2anv	A	324	2anj	C	152	2apo	A	110
2apr	A	209	2apx	A	76	$\frac{2apg}{2aq5}$	A	275	2apj 2aqm	A	93	2apo 2aqp	A	88
2aqv	В	161	2ar1	A	91	2arc	В	96	2arr	A	216	2as0	A	187
2aq	В	106	2asc	A	37	2asd	A	211	2asf	A	86	2ash	В	192
2asu	В	106	2at8	X	87	2atv	A	26	2au7	A	102	2avd	В	138
2avk	A	81	2axc	A	144	2axq	A	252	2axy	A	41	2ayd	A	58
2azw	A	76	2b06	A	103	2b0a	A	80	2b0t	A	308	2b0v	A	97
2b1k	A	62	2b1v	A	126	2b1y	A	41	2b3f	D	269	2b3g	A	63
2b3m	A	76	2b49	A	157	2b4v	A	263	2b4y	A	147	2b4z	A	51
2b58	A	102	2b5a	A	45	2b5h	A	126	2b5w	A	212	2b61	A	242
2b69	A	219	2b6e	H	53	2b6n	A	187	2b7k	A	86	2b7r	A	397
2b82	A	$\frac{213}{160}$	2b8m	A	69	2b94	A	124	2b7k 2b9e	A	187	2b9h	A	237
2b9w	A	179	2ba2	$\frac{\Lambda}{C}$	34	2bay	E	47	2bba	A	124	2bbe	A	69
2bbr	A	123	2baz $2bcg$	G	293	2bay $2bcg$	Y	119	2bcm	В	85	2bcr	A	128
2bdr	A	93	2bei	В	66	2bek	D	110	2bem	A	122	2beq	D	8
2ber	A	392	2ber 2bez	C	37	2bf6	A	327	2bff	A	207	2bff	В	$\frac{3}{220}$
2bfw	A	$\frac{392}{107}$	2 bez $2 bg 1$	A	216	2b10 $2b$ gs	A	200	2bh4	X	66	2bh8	В	38
2bhz	A	311	2bi 0	A	190	2big	В	$\frac{200}{230}$	2bii	В	266	2bik	В	151
2biv	В	123	2bif	A	233	2big 2bji	A	174	2bii	A	136	2bk9	A	103
2017	ן ט	120	2011	11	200	20J1	11	114	20JV	11		tinued or	1	

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
2bka	A	141	2bkf	A	9	2bkm	В	77	2bko	A	72	2bkr	A	151
2bkx	A	165	2bky	В	55	2bky	Y	51	2bl0	A	32	2bl0	В	100
2bl8	В	55	2blf	A	252	2blf	В	52	2bln	В	198	2bm3	A	89
2bmo	A	244	2bmo	В	123	2bnm	В	95	2bo1	A	71	2bo4	F	266
2bog	X	169	2boo	A	134	2boy	C	140	2bpq	A	175	2bqx	A	94
2br9	A	133	2bcc $2brf$	A	61	2boy 2brj	A	115	2bry	В	279	2bqx 2 bsj	A	69
2bt6	A	79	2bt9	A	58	2bij 2 bu 3	В	135	2bry 2buu	A	111	2bsj 2buw	В	155
2bv2	В	57	2bv4	A	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2bw0	A	191	2bw4	A	183	2bw8	A	128
2bwf	A	57 57	2bv4 2bwl	A	67	2bw0 $2bwq$	A	72	2bwr	В	267	2bws $2b$ z1	A	91
2bz6	H	155	2bxr $2b$ zg	A	152	$\frac{2 \text{bwq}}{2 \text{bzl}}$	A	180	2bv1 2bzv	A	90	$\frac{2021}{2c07}$	A	133
1	A	$\frac{155}{224}$	_	В	111		B	52	2c0h		252		1	
2c0c			2c0d			2c0g	l .			A		2c0n	A	116
2c0r	В	211	2c0z	A	119	2c15	A	182	2c1d	A	159	2c1d	D	72
2c1i	A	246	2c1s	A	77	2c1z	A	252	2c29	F	161	2c2i	В	95
2c2n	A	201	2c2p	A	104	2c2u	A	114	2c3b	В	6	2c3n	С	148
2c3v	A	58	2c41	F	106	2c42	В	643	2c43	A	164	2c46	C	131
2c4e	A	150	2c4f	T	55	2c4j	D	160	2c4n	A	126	2c53	A	152
2c5a	В	249	2c5q	E	167	2c60	A	58	2c61	A	287	2c6q	В	190
2c6u	A	85	2c6z	A	171	2c71	A	139	2c78	A	247	2c82	В	159
2c8h	D	124	2c8m	A	102	2c92	D	88	2c95	В	120	2c9i	D	124
2c9j	\mathbf{F}	116	2c9q	A	52	2c9w	A	32	2cay	A	93	2cb2	E	147
2cb8	A	49	2cb9	A	122	2cbz	A	170	2cc0	В	119	2cc6	A	44
2ccj	В	91	2ccq	A	62	2ccw	A	57	2cdn	A	112	2cdp	C	78
2cdu	В	256	2cf7	С	106	2cfe	A	109	2cft	A	147	2cfu	A	359
2cg1	A	415	2cg7	A	37	$2\mathrm{cgh}$	A	119	2cgq	A	48	2ch5	В	220
2chc	В	81	2ci0	A	218	2cia	A	55	2cio	A	116	2cir	A	197
2ciu	A	71	2ciw	A	220	2cj4	A	97	2cjj	A	39	2cjl	В	138
2cjp	A	177	2 cjs	С	34	2cjt	A	89	2cjz	A	183	2ckf	D	124
2ckk	A	85	2cks	A	190	2 cm 4	A	83	2 cm 5	A	67	$2 \mathrm{cmj}$	В	192
2cmt	A	86	2cn0	Н	155	2 cn 3	В	475	2cnq	A	154	2 cnz	A	74
2cov	I	63	2cs7	A	38	2cu5	A	76	2cul	A	119	2cvd	D	137
2cve	A	103	2cvi	В	59	2cvl	С	65	2cvz	D	148	2 cw 5	В	94
2cw9	A	72	2cwa	A	69	2cwd	A	71	2cwi	В	72	2cwq	В	60
2cwr	A	57	2cws	A	150	2cwy	A	53	2cwz	D	72	2cx1	A	103
2cx7	A	60	2cxa	A	129	$2\mathrm{cxh}$	A	87	2cxi	В	199	2cxk	E	48
2cxx	В	109	2cxy	A	62	2cye	С	71	$2 \mathrm{cyg}$	A	207	2cyy	A	78
2cz2	A	139	2cz4	A	39	2cz9	A	204	2czd	A	131	2czl	A	159
2czq	В	129	2d0i	В	165	2d16	A	95	2d1c	A	247	2d1l	В	78
2d1s	Ā	368	2d1x	A	25	2d1y	C	119	2d29	A	171	2d2e	A	97
2d2r	В	101	2d37	A	109	2d3d	A	65	2d3n	A	294	2d4k	A	61
2d4n	A	66	2d4p	A	79	2d4v	C	275	2d52	В	264	2d5b	A	248
2d5c	A	98	2d5k	C	98	2d5m	A	119	2d5z	В	98	2d68	В	54
2d69	A	235	2d6m	A	97	2d73	A	459	2d7t	Н	80	2d7t	L	70
2d7v	A	68	2d8d	В	49	2d8l	A	214	2db7	A	33	2dbn	A	221
2dby	A	190	2dc3	A	99	2dc4	В	93	2dd7	A	115	2ddb	$\frac{\Lambda}{C}$	136
2ddr	A	177	2ddx	A	224	2 de 4 $2 de 3$	A	222	2 de t	A	205	2dab 2de6	F	56
2deb	В	$\frac{177}{427}$	2dax 2dep	A	$\frac{224}{235}$	2des 2dfa	A	48	2deo 2dfb	A	128	2deo 2dfd	С	186
	С						1							
2dg1		203	2dg5	C	190	2dga	A	300	2dge	В	68	2dgk	A	251
2dho	A	152	2dka	A	232	2dkh	A	276	2dkj	A	238	2dko	A	60
2dlb	A	50	2dlf	H	71	2dm9	В	84	2dok	A	91	2dp6	A	137
2dp9	A	53	2dpf	D	61	2dpl	A	173	2dqa	A	85	2dqd	L	66
2dql	A	75	2dr1	В	172	2dri	A	139	2drm	В	37	2ds2	D	19
2ds5	Α	32	2 dsj	В	208	2 dsn	В	249	2 dsy	С	47	$\frac{2dt4}{tinued}$ or	A	95

Zelts	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
2duy	2dt8	A	153	2dtc	В	58	2dtj	A	95	2dtx	A	160	2dur	A	178
2dx6	2duy	A	31	2dvm	В	240		В	206	2dwc	A	178	2dwu	A	145
2ely		A	65		A	90	2dxe	В	97	2dxq	A	98	ı	A	106
2-c0n		A	299	2dyj	В	40		A	67		A	197		A	
2c1v B 2c1 2c1z A 191 2c27 L 47 2c20 A 143 2c2r A 147 2c3a A 239 2c3h A 45 2c3p B 156 2c3z B 287 2c42 A 117 2c7z A 329 2c85 A 74 2c8c A 73 2c8v B 140 2c9m A 229 2c9v B 147 2ca3 A 95 2c6m B 467 2c9b A 602 2c9b B 140 2c9m A 262 2ces A 41 2ccu A 92 2cem B 76 2ceo B 51 2cey A 69 2cfi B 33 2cfv A 41 2cgl A 54 2cg3 A 141 2cgd B 3cf	-	A	186		A	77		A	95		В	122	l	1	
2e3a			l	_		!		1			A			!	
2e4t		A						1						1	
2e7z							_	1			X				
2e9y B 147 2ea3 A 95 2eab A 602 2eb4 B 167 2ebb A 62 2ecc A 41 2ecu A 92 2ecn B 76 2ecc B 51 2ecy A 69 2efr B 33 2efv A 41 2eg1 A 54 2eg3 A 141 2egd B 56 2eg3 A 141 2eg4 B 56 2eg3 A 141 2eg4 B 56 2eg3 A 142 2eg4 B 56 2eg3 A 142 2eg4 A 54 2eg3 A 141 2eg2 A 132 2eh3 A 122 2eh6 A 150 2ehg A 69 2ehp A 67 2ehq A 354 2eht A 51 2ehz A 188 2ei5 B 38 2eiq B 69 2eip A 152 2eju A 151 2ejx A 74 2eja B 202 2ejn B 102 2ejn A 171 2ejx A 154 2ejx A 75 2ekg A 134 2eky C 66 2ekc B 165 2elf A 193 2ec4 A 65 2ec5 A 220 2ejn A 242 2ejn A 27 2exx A 93 2ev7 B 102 2es4 D 66 2esk A 88 2esl A 102 2est B 62 2ess A 70 2et1 A 136 2etb A 164 2etj A 98 2ev1 A 96 2evb A 30 2eve A 86 2evf A 134 2evv A 188 2ev2 A 188 2ev3 A 144 2ew0 B 57 2ev1 A 96 2evb A 30 2eve A 86 2evf A 193 2ev7 A 128 2ev2 A 27 2ev2 A 257 2ex4 A 140 2exh D 276 2exx A 277 2exv A 98 2ev2 A 257 2ex4 A 140 2exh D 276 2exr A 277 2exv A 96 2evb A 398 2101 B 64 2f02 B 139 2f0c A 98 2f1k B 166 2f22 B 32 2f6r A 85 2f6u A 146 2f2e B 44 2f46 A 77 2f4p B 28 2f51 A 59 2f5g B 58 2f5t X 159 2f5v A 141 2f8 A 67 2f4p B 28 2f6r A 85 2f6u A 127 2f71 A 196 2f7b A 152 2f7v A 177 2f8a A 125 2f9i A 146 2f2e B 44 2f46 A 77 2f4p B 28 2f6r A 85 2f6u A 127 2f7i A 196 2f7b A 152 2f6r A 85 2f6u A 152 2f6v A 66 2f6w B 32 2f6r A 85 2f6u A 152 2f6w A 66 2f6w B 51 2f6d A 85 2		A			A			A			В	140	I	A	
2 ccs			l					1					I	1	
2efr		A	l					1					I	1	
2egj								A			A	L		1	
2eh3 A 122 2eh6 A 150 2ehg A 69 2ehp A 67 2ehq A 354 2eiy B 180 2ej8 A 74 2eja B 202 2ejin B 102 2eju A 151 2ejw A 154 2ejx A 75 2ekg A 138 2ekp A 134 2eky C 66 2ele B 165 2elf A 193 2eqa A 175 2eef A 262 2ev A 262 2evf A 132 2eef A 262 2eef A 132 2eef A 188 2est A 129 2eer X 86 2eef A 139			l							_				!	
Zeht A 51 Zehz A 188 Zei5 B 38 Zeiq B 69 Zeix A 155 Zeiyw A 154 2eja B 202 2ejn B 102 2eju A 154 Zeiw A 154 2ejx A 75 2ekg A 138 2ekp A 134 2ekp A 132 2ekp A 136 2etp A 202 2epj A 238 Zeprl X 392 2eqf B 102 2exd A 165 2erj A 238 Zerx A 93 2ery B 102 2exd A 175 2erf A 131 2erw A 26 2ext A 182 2est A 102 2ex A 103 2evr A 103 2evr A 103 2evr A										_				1	
2eiy								1		_				1	
2ejw								1						1	
Zelc B 165 Zelf A 193 Zeo4 A 65 Zeo5 A 220 Zepj A 238 Zepl X 392 Zeeg B 232 Zeqa A 175 Zerf A 131 Zerw A 27 Zerx A 93 Zery B 102 Zes4 D 66 Zesk A 88 Zesl A 102 Zesr B 62 Zess A 70 Zett A 136 Zevt A 162 Zevt A 162 Zevt A 262 A 267 2ext A 227 Zev0 B 57 2ev1 A 96 2evb A 30 Zeec A 86 2evf A 193 Zevr A 122 2evd A 180 2evo0 B 237 2ex2 A <				-										1	
Zepl X 392 Zeq6 B 232 Zeqa A 175 Zerf A 131 Zerw A 27 Zerx A 93 Zery B 102 Zes4 D 66 Zesk A 88 Zest A 102 Zerx A 188 Zetx A 129 Zeurl A 136 Zebt A 164 Zetj A 98 Zev1 A 96 Zewh A 30 Zeve A 86 Zevf A 193 Zevr A 128 Zew1 A 96 Zewh A 41 Zewt A 42 Zewu A 69 Zex0 B 33 Zevt A 42 Zewu A 69 Zex0 B 337 Zev2 A 398 2f01 B 64 2f02 B 139 2f0c <th< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td>_</td><td>1</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></th<>		1					_	1		_					
Detail															
2esr			l	_				1					l		
2etv				~									l		
2ev1 A 96 2evb A 30 2eve A 86 2evf A 193 2evr A 128 2ew0 A 96 2ewh A 41 2ewt A 42 2ewu A 69 2ex0 B 237 2ex2 A 257 2ex4 A 140 2exh D 276 2exr A 277 2exv A 9 2ex9 A 398 2f01 B 64 2f02 B 139 2f0c A 98 2f1k B 166 2f22 B 92 2f23 B 67 2f2b A 146 2f2e B 44 2f46 A 77 2f4p B 28 2f51 A 59 2f5g B 58 2f5t X 159 2f5v A 419 2f4p B 23 2f60 </td <td></td> <td></td> <td>l</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td>			l					1							
2ew0 A 96 2ewh A 41 2ewt A 42 2ewu A 69 2ex0 B 237 2ex2 A 257 2ex4 A 140 2exh D 276 2exr A 277 2exv A 9 2ex9 A 398 2f01 B 64 2f02 B 139 2f0c A 98 2f1k B 166 2f22 B 92 2f23 B 67 2f2b A 146 2f2e B 44 2f46 A 77 2f4p B 28 2f51 A 59 2f5g B 58 2f5t X 159 2f5v A 146 2f2b B 158 2f5t X 159 2f5v A 419 2f60 A 83 2f6u A 129 2f6e A 83 2f6u A 1			l										ı		
2ex2 A 257 2ex4 A 140 2exh D 276 2exr A 277 2exv A 9 2ez9 A 398 2f01 B 64 2f02 B 139 2f0c A 98 2f1k B 166 2f22 B 92 2f23 B 67 2f2b A 146 2f2ee B 44 2f46 A 77 2f4p B 28 2f51 A 59 2f5g B 58 2f5t X 159 2f5v A 419 2f5x A 184 2f60 K 33 2f6u A 127 2f71 A 196 2f7b A 152 2f7v A 177 2f8a A 125 2f91 A 162 2f9w B 117 2fa8 A 54 2fad A 2f9n <t< td=""><td></td><td></td><td>l</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>l</td><td>1</td><td></td></t<>			l										l	1	
2ez9 A 398 2f01 B 64 2f02 B 139 2f0c A 98 2f1k B 166 2f22 B 92 2f23 B 67 2f2b A 146 2f2e B 44 2f46 A 77 2f4p B 28 2f51 A 59 2f5g B 58 2f5t X 159 2f5v A 419 2f5x A 184 2f60 K 33 2f6u A 125 2f9t A 126 2f7b A 419 2f6q B 32 2f60 K 85 2f6u A 127 2f7t A 196 2f7b A 152 2f7v A 177 2f8a A 125 2f9t A 162 2f9p C 78 2f9i C 117 2f8id A 46								1							
2f22 B 92 2f23 B 67 2f2b A 146 2f2e B 44 2f46 A 77 2f4p B 28 2f51 A 59 2f5g B 58 2f5t X 159 2f5v A 419 2f5x A 184 2f60 K 33 2f64 B 103 2f68 X 129 2f6e A 83 2f6q B 32 2f6r A 85 2f6u A 127 2f71 A 196 2f7b A 152 2f7v A 177 2f8a A 125 2f91 A 162 2f99 C 78 2f7b A 152 2fad A 46 2faf A 379 2fao B 155 2fb5 A 126 2fb6 A 67 2fba A 364 2								1			1			1	
2f4p B 28 2f51 A 59 2f5g B 58 2f5t X 159 2f5v A 419 2f5x A 184 2f60 K 33 2f64 B 103 2f68 X 129 2f6e A 83 2f6q B 32 2f6r A 85 2f6u A 127 2f71 A 196 2f7b A 152 2ffv A 177 2f8a A 125 2f91 A 162 2f99 C 78 2f9i C 117 2f9i D 90 2f9n B 131 2f9s B 76 2f9w B 117 2fas A 54 2f1g A 46 2faf A 379 2fao B 155 2fb5 A 126 2fb6 A 67 2fba A 364			l								1		I		
2f5x A 184 2f60 K 33 2f64 B 103 2f68 X 129 2f6e A 83 2f6q B 32 2f6r A 85 2f6u A 127 2f71 A 196 2f7b A 152 2f7v A 177 2f8a A 125 2f91 A 162 2f99 C 78 2f9b C 117 2f9i D 90 2f9n B 131 2f9s B 76 2f9w B 117 2fa8 A 54 2fad A 46 2faf A 379 2fa0 B 155 2fby A 112 2fa6 A 67 2fba A 364 2fbd A 74 2fbn A 108 2fby A 112 2fa8 A 51 2fc3 A 60 2faf <			l					1					I	1	
2f6q B 32 2f6r A 85 2f6u A 127 2f71 A 196 2f7b A 152 2f7v A 177 2f8a A 125 2f91 A 162 2f99 C 78 2f9i C 117 2f9i D 90 2f9n B 131 2f9s B 76 2f9w B 117 2fa8 A 54 2fad A 46 2faf A 379 2fa0 B 155 2fb5 A 126 2fb6 A 67 2fba A 364 2fbd A 74 2fbn A 108 2fbq A 112 2fc3 A 63 2fcb A 31 2f6d A 81 2fd7 A 29 2fdx A 122 2fcw A 63 2fcw B 51 2f	_		l		1			1			1	L	I	1	
2f7v A 177 2f8a A 125 2f91 A 162 2f99 C 78 2f9i C 117 2f9i D 90 2f9n B 131 2f9s B 76 2f9w B 117 2fa8 A 54 2fad A 46 2faf A 379 2fao B 155 2fb5 A 126 2fb6 A 67 2fba A 364 2fbd A 74 2fbn A 108 2fbq A 112 2fc3 A 63 2fcf A 1 2fcl A 99 2fco B 92 2fct A 112 2fcw A 66 2fcw B 51 2fd5 A 81 2fd7 A 29 2fds A 126 2fw A 291 2fds A 182 2fdv A		1											I	!	
2f9i D 90 2f9n B 131 2f9s B 76 2f9w B 117 2fa8 A 54 2fad A 46 2faf A 379 2fao B 155 2fb5 A 126 2fb6 A 67 2fba A 364 2fbd A 74 2fbn A 108 2fbq A 112 2fc3 A 63 2fcf A 1 2fcl A 99 2fco B 92 2fct A 112 2fcw A 66 2fcw B 51 2fd5 A 81 2fd7 A 29 2fds A 182 2fdv A 291 2fc3 A 90 2fe5 A 61 2fe8 A 178 2fef B 152 2fex A 106 2fg0 A 46 2fgr<	_							1			1		I	1	
2fad A 46 2faf A 379 2fao B 155 2fb5 A 126 2fb6 A 67 2fba A 364 2fbd A 74 2fbn A 108 2fbq A 112 2fc3 A 63 2fcf A 1 2fc1 A 99 2fc0 B 92 2fct A 12 2fcw A 66 2fcw B 51 2fd5 A 81 2fd7 A 29 2fds A 182 2fdv A 291 2fe3 A 90 2fe5 A 61 2fe8 A 178 2fef B 152 2fex A 106 2ff4 A 237 2ffc A 178 2ffu A 310 2fg1 A 80 2fgb A 203 2fg0 A 46 2fgr			l		1			1					I	1	
2fba A 364 2fbd A 74 2fbn A 108 2fbq A 112 2fc3 A 63 2fcf A 1 2fcl A 99 2fco B 92 2fct A 12 2fcw A 66 2fcw B 51 2fd5 A 81 2fd7 A 29 2fds A 182 2fdv A 291 2fe3 A 90 2fe5 A 61 2fe8 A 178 2fef B 152 2fex A 106 2ff4 A 237 2ffc A 178 2ffu A 310 2fg1 A 80 2fgb A 106 2ffy A 46 2fgr A 203 2fhf A 543 2fhp A 47 2fim B 23 2fhz A 69 2fhz<								1						1	
2fcf A 1 2fcl A 99 2fco B 92 2fct A 12 2fcw A 66 2fcw B 51 2fd5 A 81 2fd7 A 29 2fds A 182 2fdv A 291 2fe3 A 90 2fe5 A 61 2fe8 A 178 2fef B 152 2fex A 106 2ff4 A 237 2ffc A 178 2ffu A 310 2fg1 A 80 2fgb A 203 2fg0 A 46 2fgr A 203 2fhf A 543 2fhp A 120 2fhx B 23 2fhz A 69 2fhz B 62 2fi1 A 152 2fi9 A 47 2fim A 103 2fj8 A 90 2fjz<													I		
2fcw B 51 2fd5 A 81 2fd7 A 29 2fds A 182 2fdv A 291 2fe3 A 90 2fe5 A 61 2fe8 A 178 2fef B 152 2fex A 106 2ff4 A 237 2ffc A 178 2ffu A 310 2fg1 A 80 2fgb A 203 2fg0 A 46 2fgr A 203 2fhf A 543 2fhp A 120 2fhx B 23 2fhz A 69 2fhz B 62 2fil A 152 2fi9 A 47 2fim A 103 2fj8 A 90 2fjz A 46 2fk9 A 91 2fkk A 34 2fl7 A 106 2flh B 98 2fl		1	l					1			1		I		
2fe3 A 90 2fe5 A 61 2fe8 A 178 2fef B 152 2fex A 106 2ff4 A 237 2ffc A 178 2ffu A 310 2fg1 A 80 2fgb A 203 2fg0 A 46 2fgr A 203 2fhf A 543 2fhp A 120 2fhx B 23 2fhz A 69 2fhz B 62 2fi1 A 152 2fi9 A 47 2fim A 103 2fj8 A 90 2fjz A 46 2fk9 A 91 2fkk A 34 2fl7 A 106 2flh B 98 2flu X 172 2fm6 A 174 2fmm C 47 2fmp A 207 2fn0 A 182 2		1		2fd5	1			1	29		1	182	I	1	
2ff4 A 237 2ffc A 178 2ffu A 310 2fg1 A 80 2fgb A 203 2fg0 A 46 2fgr A 203 2fhf A 543 2fhp A 120 2fhx B 23 2fhz A 69 2fhz B 62 2fi1 A 152 2fi9 A 47 2fim A 103 2fj8 A 90 2fjz A 46 2fk9 A 91 2fkk A 34 2fl7 A 106 2flh B 98 2flu X 172 2fm6 A 174 2fmm C 47 2fmp A 207 2fn0 A 182 2fn3 A 286 2fn4 A 55 2fn9 B 190 2fne A 3 2fnu A 245 2f			!									1	!		
2fgo A 46 2fgr A 203 2fhf A 543 2fhp A 120 2fhx B 23 2fhz A 69 2fhz B 62 2fi1 A 152 2fi9 A 47 2fim A 103 2fj8 A 90 2fjz A 46 2fk9 A 91 2fkk A 34 2ff7 A 106 2flh B 98 2flu X 172 2fm6 A 174 2fmm C 47 2fmp A 207 2fn0 A 182 2fn3 A 286 2fn4 A 55 2fn9 B 190 2fne A 3 2fnu A 245 2fo3 A 55 2foj A 94 2fom A 25 2fom B 79 2fos A 170 2foz<			!			!!!							ı	1	
2fhz A 69 2fhz B 62 2fi1 A 152 2fi9 A 47 2fim A 103 2fj8 A 90 2fjz A 46 2fk9 A 91 2fkk A 34 2ff7 A 106 2flh B 98 2flu X 172 2fm6 A 174 2fmm C 47 2fmp A 207 2fn0 A 182 2fn3 A 286 2fn4 A 55 2fn9 B 190 2fne A 3 2fnu A 245 2fo3 A 55 2foj A 94 2fom A 25 2fom B 79 2fos A 170 2foz A 199 2fp2 B 114 2fp7 A 19 2fp7 B 84 2fpe A 30 2fpq </td <td></td> <td></td> <td>!</td> <td></td> <td>1</td> <td></td>			!											1	
2fj8 A 90 2fjz A 46 2fk9 A 91 2fkk A 34 2fl7 A 106 2flh B 98 2flu X 172 2fm6 A 174 2fmm C 47 2fmp A 207 2fn0 A 182 2fn3 A 286 2fn4 A 55 2fn9 B 190 2fne A 3 2fnu A 245 2fo3 A 55 2foj A 94 2fom A 25 2fom B 79 2fos A 170 2foz A 199 2fp2 B 114 2fp7 A 19 2fp7 B 84 2fpe A 30 2fpq A 259 2fpx B 123 2fq3 A 54 2fq4 A 90 2fq6 B 246 2fqp<	_			_		1		1		_					
2flh B 98 2flu X 172 2fm6 A 174 2fmm C 47 2fmp A 207 2fn0 A 182 2fn3 A 286 2fn4 A 55 2fn9 B 190 2fne A 3 2fnu A 245 2fo3 A 55 2foj A 94 2fom A 25 2fom B 79 2fos A 170 2foz A 199 2fp2 B 114 2fp7 A 19 2fp7 B 84 2fpe A 30 2fpq A 259 2fpx B 123 2fq3 A 54 2fq4 A 90 2fq6 B 246 2fqp C 65 2fqw A 144 2fr2 A 102 2fr5 C 65 2fre A 129 2fr			90		A							34	2fl7	1	
2fn0 A 182 2fn3 A 286 2fn4 A 55 2fn9 B 190 2fne A 3 2fnu A 245 2fo3 A 55 2foj A 94 2fom A 25 2fom B 79 2fos A 170 2foz A 199 2fp2 B 114 2fp7 A 19 2fp7 B 84 2fpe A 30 2fpq A 259 2fpx B 123 2fq3 A 54 2fq4 A 90 2fq6 B 246 2fqp C 65 2fqw A 144 2fr2 A 102 2fr5 C 65 2fre A 129 2frg P 64 2fs6 A 87 2fsj A 187 2fsq A 135 2fsr A 88 2fss		В	98	_		172	2 fm 6		174		1	47	2fmp		
2fnu A 245 2fo3 A 55 2foj A 94 2fom A 25 2fom B 79 2fos A 170 2foz A 199 2fp2 B 114 2fp7 A 19 2fp7 B 84 2fpe A 30 2fpq A 259 2fpx B 123 2fq3 A 54 2fq4 A 90 2fq6 B 246 2fqp C 65 2fqw A 144 2fr2 A 102 2fr5 C 65 2fre A 129 2frg P 64 2fs6 A 87 2fsj A 187 2fsq A 135 2fsr A 88 2fss C 144 2fsx A 85 2ft0 A 136 2ft6 A 85 2ftr B 63 2ftx	2 fn 0	A	182		A	286					В	190	-	l .	
2fos A 170 2foz A 199 2fp2 B 114 2fp7 A 19 2fp7 B 84 2fpe A 30 2fpq A 259 2fpx B 123 2fq3 A 54 2fq4 A 90 2fq6 B 246 2fqp C 65 2fqw A 144 2fr2 A 102 2fr5 C 65 2fre A 129 2frg P 64 2fs6 A 87 2fsj A 187 2fsq A 135 2fsr A 88 2fss C 144 2fsx A 85 2ft0 A 136 2ft6 A 85 2ftr B 63 2ftx A 49 2ftx B 40 2ftz A 101 2fu0 A 108 2fu4 A 51 2fu	2fnu	A	245		A	55	2foj		94	2fom	A		2fom	1	
2fpe A 30 2fpq A 259 2fpx B 123 2fq3 A 54 2fq4 A 90 2fq6 B 246 2fqp C 65 2fqw A 144 2fr2 A 102 2fr5 C 65 2fre A 129 2frg P 64 2fs6 A 87 2fsj A 187 2fsq A 135 2fsr A 88 2fss C 144 2fsx A 85 2ft0 A 136 2ft6 A 85 2ftr B 63 2ftx A 49 2ftx B 40 2ftz A 101 2fu0 A 108 2fu4 A 51 2fue A 151 2ful A 105 2fup A 57 2fur B 94			l					1					ı	1	
2fq6 B 246 2fqp C 65 2fqw A 144 2fr2 A 102 2fr5 C 65 2fre A 129 2frg P 64 2fs6 A 87 2fsj A 187 2fsq A 135 2fsr A 88 2fss C 144 2fsx A 85 2ft0 A 136 2ft6 A 85 2ftr B 63 2ftx A 49 2ftx B 40 2ftz A 101 2fu0 A 108 2fu4 A 51 2fue A 151 2ful A 105 2fup A 57 2fur B 94		A	30		A	259		В			A	54		A	90
2fre A 129 2frg P 64 2fs6 A 87 2fsj A 187 2fsq A 135 2fsr A 88 2fss C 144 2fsx A 85 2ft0 A 136 2ft6 A 85 2ftr B 63 2ftx A 49 2ftx B 40 2ftz A 101 2fu0 A 108 2fu4 A 51 2fue A 151 2ful A 105 2fup A 57 2fur B 94			246		С	65		A				102		1	
2fsr A 88 2fss C 144 2fsx A 85 2ft0 A 136 2ft6 A 85 2ftr B 63 2ftx A 49 2ftx B 40 2ftz A 101 2fu0 A 108 2fu4 A 51 2fue A 151 2ful A 105 2fup A 57 2fur B 94			l		P	1							!	A	
2ftr B 63 2ftx A 49 2ftx B 40 2ftz A 101 2fu0 A 108 2fu4 A 51 2fue A 151 2ful A 105 2fup A 57 2fur B 94			l		С				1						
2fu4 A 51 2fue A 151 2ful A 105 2fup A 57 2fur B 94			1		A			1					l		
		A	51		A	151		A	105	2fup	A		I	В	
	2fvh	A	43	2fvv	A	51	2fwh	A	55		A	101	2fyf	A	237

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
2fyg	A	77	2fym	D	251	2fyq	A	110	2fyx	A	1	2fzp	A	85
2 fzv	В	128	2 fzw	В	228	2g0c	A	20	2g0i	В	67	2g0w	A	160
2g 1 u	A	80	2g2c	A	92	2g2n	С	80	2g30	A	49	2g3a	A	65
2g3d	A	44	2g40	A	94	2g50	A	332	2g5c	D	133	2g5r	A	62
2g5x	A	154	2g64	A	80	2g6y	С	121	2g76	A	160	2g7s	A	102
2g81	I	36	2g82	Р	219	2g84	A	113	2g8o	В	194	2g8s	В	212
2g9f	A	34	2g9w	A	69	2ga4	A	201	2ga4	D	50	2ga8	A	165
2gag	A	488	2gag	В	181	2gag	С	88	2gai	В	350	2gas	A	151
2gau	A	120	2gax	A	71	2gb7	D	165	2gbt	A	69	2gbw	E	212
2gc4	В	80	2gc4	L	45	2gc6	A	236	2 gco	A	115	2gcu	С	179
2gd2	A	203	2gdq	В	225	$2 \mathrm{gdz}$	A	157	2gec	A	81	2gen	A	87
2gey	D	90	2gf3	В	228	2gf6	D	82	2gff	A	55	2gfh	A	11
2gfn	В	92	2gfq	В	180	2gg2	A	181	2gg6	A	292	2gh0	В	64
2gh0	D	34	2gh9	A	190	$_{ m 2gha}$	A	263	$_{ m 2ghs}$	A	191	2gi3	A	253
2gia	В	80	2gib	В	60	2gig	A	124	$2 \mathrm{gim}$	A	69	2giy	A	51
2gj3	A	79	2gj8	A	92	2gjd	С	86	$_{ m 2gjs}$	В	42	$_{ m 2gke}$	A	199
2gkp	A	100	$2 \mathrm{gkr}$	I	35	$2 \mathrm{glz}$	В	80	$2 \mathrm{gm} 6$	A	41	$2 \mathrm{gmq}$	A	38
2gmy	E	101	2gn4	В	103	$2 \mathrm{gnc}$	A	27	2gok	A	181	2gom	A	42
2gou	A	242	$2 \mathrm{gpc}$	В	132	$_{2\mathrm{gpe}}$	В	24	2gpi	A	60	2gq1	A	174
2gqp	В	111	2gqt	A	149	2gqw	A	237	$2 \mathrm{grc}$	A	82	2grr	В	94
2gs5	A	119	2gs8	A	179	2gsd	A	249	2gso	В	242	2gsv	В	32
2gte	A	88	$_{ m 2gtr}$	A	137	2gu2	В	171	2gu3	A	71	2gud	В	70
2guh	A	80	2gui	A	111	2guv	$^{-}$ C	44	2guy	A	323	2gvk	A	180
2gw3	В	106	2gw4	D	68	2gwg	В	171	2gwm	A	125	2gwn	A	260
2gx5	D	91	2gxg	A	81	2gxu	A	108	2gyq	В	87	2gz1	В	227
2gz4	A	126	2gz5	A	177	2gze	A	55	2gze	В	85	2gzg	В	100
2gzv	A	48	2h0u	A	127	2h12	A	246	2h1c	A	63	2h1r	A	132
2h1t	В	123	2h1v	A	190	2h26	A	127	2h2b	A	60	2h2r	В	82
2h2z	A	170	2h30	A	99	2h3h	A	215	2h3l	A	71	2h4p	A	227
2h4v	В	185	2h56	В	63	2h62	A	55	2h64	В	10	2h6e	A	148
2h6f	A	218	2h6f	В	263	2h6n	A	215	2h88	A	332	2h88	В	158
2h88	D	19	2h88	P	40	2h8e	A	63	2h8g	В	116	2h8o	A	141
2h9b	A	144	2h9d	В	34	2h9h	A	133	2ha8	В	99	2hax	В	36
2haz	A	59	2hba	A	11	2hbo	A	26	2hbv	A	151	2hc1	A	128
2hc8	A	63	2hc9	A	279	2hcf	A	142	2hd9	A	91	2hda	A	29
2hdo	A	118	2he0	A	99	2he2	A	63	2he4	A	49	2hei	В	107
2hek	В	99	2heu	В	226	2hew	F	80	2hf1	В	21	2hf2	В	89
2hf9	A	134	2hfk	A	128	2hhc	A	159	2hhg	A	83	2hhj	A	168
2hhv	A	361	2hi0	A	158	2hin	В	31	2hiy	A	127	2hilj 2hjh	A	183
2hjv	A	68	2hke	В	163	2hkv	A	27	2hl7	A	32	2hlc	A	136
2hlr	A	45	2hls	A	104	2hly	A	121	2hmc	A	147	2hmq	D	82
2hng	A	48	2hos	В	8	2 hox	A	271	2hpg	В	176	2hhq 2hps	A	128
2hpw	A	160	2hq1	A	103	2 hq2	A	212	2hq4	A	78	2hps $2hq6$	A	84
2hq9	В	71	$\frac{2 \text{hq}_1}{2 \text{hqh}}$	C	44	2hqk	A	107	$\frac{2 \text{hq}4}{2 \text{hqs}}$	D	284	$\frac{2 \text{hqo}}{2 \text{hqs}}$	H	61
2hqy	A	161	2hqn 2hra	A	90	2hrz	A	197	$\frac{2 \text{hqs}}{2 \text{hsa}}$	A	230	$\frac{2 \text{hqs}}{2 \text{hsb}}$	A	3
2hqy 2hsj	D	141	$\frac{2 \text{m a}}{2 \text{hsz}}$	B	132	$\frac{2 \text{mz}}{2 \text{ht} 9}$	B	48	2lisa 2hta	A	185	2htd	A	69
2hu9	A	55	2huc	A	142	2huh	A	92	2huj	A	68	2hur	В	88
2hu9 2hv8	A	114	2huc 2hv8	E	35	2hvm	A	162	2hvw	C	93	$\frac{2 \text{hul}}{2 \text{hw} 4}$	A	46
2hwn	D	13	2hx5	A	81	$\frac{2 \text{HVIII}}{2 \text{hxi}}$	B	102	2hxm	A	168	2hxp	A	78
2hxt	A	269	$\frac{2 \text{hx}}{2 \text{hx}}$	A	167	$\frac{2\pi x_1}{2hxw}$	A	139	$\frac{200000}{200000000000000000000000000000$	A	63	$\frac{2 \text{nxp}}{2 \text{hy} 5}$	B	69
$\frac{2 \text{hx} t}{2 \text{hy} 7}$	A	244	2hyk	A	123	2hyt	A	102	$\frac{2 \text{hy}}{2 \text{hy}}$	A	199	$\frac{2 \text{hy}_3}{2 \text{hyx}}$	D	180
2hy i 2hze	В	52	$\frac{2 \text{Hy K}}{2 \text{hzl}}$	B	219	2i02	A	60	2i1y v 2i0q	A	204	2i0z	A	161
LILLE	ر ا	1 52	21121	ם ו	213	2102	11	50	210q	11		tinued or		1 1

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
2i13	В	15	2i1n	A	52	2i24	N	81	2i2o	A	129	2i2q	A	68
2i33	В	142	2i3d	A	133	2i3f	A	135	2i49	A	258	2i4a	A	68
2i51	A	111	2i5c	С	11	2i5d	A	105	2i5r	В	57	2i5u	A	38
2i5v	O	185	2i61	Ā	38	2i62	D	160	2i6c	A	91	2i6d	A	130
2i6g	В	104	2i6h	A	111	2i6v	A	62	2i71	В	247	2i7a	A	43
2i7c	C	205	2i7d	A	152	2i7f	В	60	2i7g	В	152	2i8d	В	80
2i8g	A	82	2i9a	D	78	2i9i	A	137	2i9x	A	48	2ia1	A	68
2ia7	A	70	2iai	A	108	2iay	A	77	2ib5	A	130	2ib8	A	237
2ibd	A	123	2ibj	A	52	2ibl	A	78	2ibn	A	144	2ibp	В	245
2ic0	A	220	2ic2	В	60	2ic5	A	88	2ic6	A	47	2ic7	В	128
2icg	A	84	2ici	A	151	2icr	A	148	2ict	A	49	2icu	A	143
2icx	A	296	2id3	В	103	2id4	A	316	2id6	A	85	2id8	A	175
2idl	В	65	2ie6	A	2	2iel	A	78	2ieq	A	58	2ifc	$\frac{\Lambda}{C}$	239
2ifq	C	62	2ig6	A	$\frac{2}{32}$	2ig8	A	77	2igi	A	119	2igp	A	82
2igv	A	106	2igx	A	161	2ig3	$\frac{\Lambda}{C}$	45	2ih5	A	266	2ihd	A	78
2ihy	В	118	2igx 2ii1	D	151	2ii2	A	212	2iia	A	48	2ij2	A	325
2ijh	A	33	2ijq	A	87	2ijx	D	16	2ikb	В	93	2iks	A	164
2im9	A	193	2inq $2imf$	A	119	2ijx 2imh	В	133	2imi	В	158	2imj	$\stackrel{\Lambda}{\text{C}}$	96
2iml	C	117	2 imq	X	164	2imr	A	192	2 ims	A	98	2 im j	В	72
2in3	A	1	2inq $2in8$	A	74	2inc	A	94	2inc	В	113	2inw	В	67
2ion	A	85	2ior	A	111	2ioy	В	145	2inc 2ip1	A	241	2inw $2ip2$	В	146
2ip6	A	51	2ipr	В	95		A	131	2iq7	A	212	2ip2 2iru	В	165
2is8	A	81	2igi	A	142	$ \begin{array}{c} 2ipx \\ 2isa \end{array} $	H	347	2iqt $2isb$		88	2ist	A	152
		127		C	36		l .			A	128			
2it1 2iuw	A A	130	$\frac{2it9}{2ivf}$	A	526	2ite 2ivf	A B	88 205	2iu5	A A	128	2ium 2ivx	A A	143 165
		60		A			A		2ivn	B			1	52
2ivy	A B	44	2iw0	A	137 86	2iw1	A	260	2iw2	В	319 252	$\frac{2 \text{iwn}}{2 \text{ixc}}$	A	
2iwo	В	105	2iwr	A	123	2iwz	A	210	2ix4	A			A	142 249
2ixd			2ixk	A	95	2ixm	B	209	2iy9		176	2iya	A	
2iyf	A	234	2iyv			2iz6	l .	66	2izu	A	181	2izz	В	158
2j05	A	40	2j0i	A	177	2j0v	C	77	2j13	A	98	2j1a	A	92
2j1p	В	151	2j1s	A	101	2j23	A	81	2j27	A	167	2j2j	F	131
2j3x	A	287	2j41	D C	103	2j43	B A	145	2j5g	A	189 70	2j5i	F	148 23
2j5y	A	29	2j5z	F	101	2j6a	l	92	2j6b	A		2j6f	A	
2j6g	A	173	2j6l		335	2j6v	В	161	2j6y	D	66 228	2j73	В	71
2j78	В	299	2j7p	E	98	2j7q	C	149	2j7u	A		2j7y	A	20
2j80	A	79	2j8b	A	54	2j8g	A	224	2j8k	A	110	2j8m	A	92
2j91	A	237	2j97	A	57	2j9a	A	290	2j9b	В	68	2j9o	В	163
2j9w	A	78	2ja2	A	209	2jae	В	342	2jah	A	136	2jam	A	171
2jay	A	80	2jb0	A	41	2jb7	В	103	2jb8	A	167	2jba	В	67
2jc4	A	176	2jc5	A	160	2jc9	A	299	2jcb	A	106	2jcq	A	100
2jda	A	97	2jdd	A	96	2jdf	A	95	2jdi	A	246	2jdi	D	277
2jdk	D	78	2je3	A	82	2je8	В	574	2jek	A	97	2jep	В	254
2jer	F	262	2jfg	A	276	2jft	A	135	2jg2	A	254	2jg6	A	134
2jgn	В	74	2jgs	С	63	2jh1	A	136	2jhn	В	177	2jhq	A	149
2ji7	A	363	2jig	В	122	2jik	A	62	2jil	A	47	2jis	A	321
2jjb	A	308	2jjc	A	137	2jjf	A	266	2jjn	A	213	2jjq	A	206
2jjs	\mathbf{C}	86	2jju	В	79	2jk9	A	111	2jkb	A	457	2jkg	A	92
2jkh	A	133	2jko	A	151	2jl1	A	148	2jlp	A	85	2jlq	A	258
2lis	A	94	2mnr	A	228	2nl9	A	75	2nli	A	212	2nlo	A	171
2nlr	A	4	2nlv	В	68	2nm0	В	78	2nml	A	51	2nmu	A	84
2nmx	A	156	2nn5	A	107	2nn8	A	96	2nnr	A	11	2nnu	A	137
2no4	A	123	2noo	A	310	2np5	В	84	2npn	A	120	2npt	C	51

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
2npt	D	46	2nq3	A	60	2nq9	A	166	2nql	В	217	2nqt	В	205
2nqw	A	57	2 nr 5	С	33	$2\mathrm{nr}7$	A	143	2nrk	A	96	2nrr	A	36
2ns 1	A	167	2 ns1	В	5	2nsa	A	56	2nsf	A	132	2nsq	A	59
2nt4	A	65	2ntp	A	215	2nug	В	101	2nuh	A	49	2nuk	A	97
2nuw	A	182	2nv0	В	67	2nva	В	252	2 nw 2	В	175	2nw8	В	164
2nwh	A	138	2nwv	A	59	2nx0	A	78	2nx4	С	113	2nxb	В	96
2nxf	A	208	2nxv	A	173	2nxw	A	312	2nyb	A	108	2nyi	В	92
2nyn	С	202	2nyu	A	73	2nz7	A	59	2nzc	A	23	2nzh	A	71
2007	В	193	2008	A	58	2o0a	A	150	2o0b	A	252	$200 \mathrm{m}$	A	148
2011	A	159	2016	A	82	2o1c	В	92	201q	В	76	2020	F	176
2023	В	137	2028	A	102	2o2c	С	366	2o2g	A	113	2o2k	A	212
2o2p	D	319	2o2x	A	130	2030	Ā	48	2036	A	341	2037	A	43
2038	A	32	2o3f	В	25	203h	A	158	2o4a	A	23	2o4d	A	77
204v	В	262	2057	C	170	2o5f	В	56	205u	A	92	2062	A	164
2066	A	61	206f	A	85	206l	A	66	206p	A	83	206s	A	138
206x	A	196	206y	G	318	2074	F	121	207i	A	415	207r	A	210
208p	A	150	208q	A	58	2090	A	63	2o9c	A	175	2o9s	A	39
200P 20a2	A	83	2oaa	В	157	2ob0	A	21	2ob3	В	231	20b5	A	87
2obi	A	120	2obl	A	174	2obp	A	38	20c3	A	175	20c5	A	129
2006	A	61	2ocg	A	154	$2\cos \beta$	A	51	2ocz	A	27	2od0	В	52
2od4	A	63	2od5	A	25	2od6	$\frac{\Lambda}{C}$	51	2oda	В	130	2ode	D	61
2odf	E	133	2odi	В	148	2odk	$\stackrel{\circ}{\mathrm{C}}$	31	2odl	A	227	20e3	A	73
2oeb	A	96	20em	A	210	2ofk	A	107	2ofz	A	74	20c3 $20g1$	A	163
20eb $20g5$	A	$\frac{30}{217}$	20em $20g9$	В	137	20 k 2 og f	В	77	2ogi	A	75	$2 \log 1$ $2 \log x$	A	139
20g3 20h1	D	87	2069 $20h5$	A	187	20g1 20hw	В	94	20g1 20ik	D	90	2ogx 2oix	A	80
2oiz	В	262	2oiz	D	72	201W 20j6	C	115	20jh	A	110	20kf	В	73
20km	A	95	20kq	A	53	20ju 20ku	A	74	20J1 20l1	В	78	20ln	A	246
20km 20lp	A	94	20kq 20lr	A	352	20mk	A	130	2onl	A	122	2omo	G	66
2onp 2omy	В	59	2onz	A	$\frac{332}{328}$	2005	A	141	2onf	В	85	2000	A	258
2011y 2001	В	65	201112 200a	A	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20115 200c	В	46	2011 200j	В	47	2000 200k	A	31
2001 200q	A	128		A	89		A	70		В	57		A	142
	В	113	2op6	A	139	2opc	B	151	2opg	A	68	2opj	B	456
2opl	В	45	2opw	D	199	2oqa	A	55	2oqb	D	83	2oqe 2oqx	A	227
2oqg 2oqz	A	45 111	$ \begin{array}{c} 2 \text{oqh} \\ 2 \text{or } 7 \end{array} $	A	62	20qk 20rd	В	$\frac{33}{261}$	2oqm 2 orw	A	115	20qx $20s0$	A	116
2 oqz $2 os5$	A	85	2017 $20s9$	B	97	2010 $20sa$	A	25	201 w 20so	A	90	2oso $2osv$	B	155
$20s_{0}$ $20s_{0}$	A	$\frac{65}{283}$	20s9 20t9	A		20sa $2otm$	B			E	68	20sv 2ou3		88
	В	107			85			90	2otu		215		A	229
2ou5		107	2ou6	A	113	2oua 2ov9	A C	113	2oui	A		2ous	A	
2ouw	A		2ov0	A	70			77	2ovj	A	131	2ow9	В	118
2ows	A	200	20x0	A	159	20x4	H	249	20x6	В	112	20x7	В	80
2oxc	A	142	2oxg	A	70	2oxg	Y	63	2oxl	В	30	2oxn	A	204
2oxw	A	106	20y7	A	200	20y9	В	53	2oya	В	57	2oyn	A	80
2oyo	A	136	2oyp	A	68	2oze	A	184	2ozf	A	53	2ozh	A	87
2ozl	A	189	2ozn	A	87	2ozn	В	86	2ozt	A	205	2p02	A	255
2p09	A	51	2p0a	В	197	2p0f	A	59	2p0n	A	91	2p0s	A	70
2p0u	A	225	2p0w	В	221	2p12	A	93	2p13	A	19	2p14	A	130
2p17	A	151	2p18	A	171	2p1g	В	156	2p1h	A	12	2p1m	В	390
2p1t	A	148	2p25	A	69	2p2d	С	188	2p2r	A	35	2p2s	A	213
2p2v	A	116	2p2w	A	213	2p35	В	125	2p39	A	90	2p3e	A	236
2p3h	A	43	2p3p	В	138	2p3w	A	67	2p49	В	73	2p4d	A	91
2p4e	P	62	2p4h	X	187	2p4k	A	137	2p4o	A	35	2p51	A	148
2p54	A	141	2p58	A	26	2p58	С	61	2p5y	A	170	2p65	A	113
2p67	A	136	2p68	A	158	2p6h	В	72	2p6w	A	155	2p6x tinued or	A	99

Page	ı N	Cn	PDB	N	Cn	PDB	N	Cn	PDB	N	Cn	PDB	N	Cn	PDB
2p8g	177	В	2p8e	191	A	2p8b	108	В	2p7i	80	A	2p6z	72	A	2p6y
2p9b	102	В	2p97	41	В	2p92	104	A		70	D	2p8i	118	A	
2pa6	202	A		45	A	_	47	D	-	201	A	_	205	A	
2pbd	53	ı		234	В	-	1 1	A	-	74	В	-		В	
2pbp	155	!				-					C				
2pcn	122	ı				_									
Opef A 227 Opet A 136 Opey B 98 Opf5 A 45 Opf6 B 2pf6 A 78 Opf5 A 180 Ope9 B 226 Ope9 A 179 Ope8 A 179 Ope8 A 128 Ope9 A 146 Oph0 B 75 Oph3 A 179 Ope8 A 128 Ope9 A 146 Oph0 B 75 Oph3 A 179 Oph6 A 128 Oph0 A 179 Oph6 A 140 Oph6 A 141 Oph6 A 147 Oph6 A 147 Oph6 A 141 Oph6 A 141 Oph6 A 141 Oph6 A 141 Oph6 A 141 </td <td>50</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	50														
2pfi A 78 2pfz A 180 2pg0 B 226 2pge A 179 2pgf A 2ppo A 3777 2pgw F 191 2pgz A 146 2pho B 75 2ph3 A 2phn A 127 2phx B 128 2pi6 A 218 2pie A 88 2pji A 2plw B 199 2pjs A 137 2pk3 A 179 2pk8 A 2pke A 87 2pkf A 215 2pkh H 73 2pk3 A 179 2pk8 A 2pky X 178 2pl1 A 72 2pkh A 137 2pk8 A 212 2pk A 22pl A 247 2pln A 247 2pln A 247 2pln A 227 2pln	100	l				_		l .	-			-			
2pgo A 377 2pgw F 191 2pgz A 146 2ph0 B 75 2ph3 A 2phn A 127 2phx B 128 2pi6 A 218 2pie A 88 2pij A 2piy B 199 2pjs B 59 2pjz A 137 2pk3 A 179 2pk8 A 2pke A 87 2pkl H 73 2pk3 A 47 2pkt A 2pky X 178 2pll A 72 2pli A 50 2plt A 47 2pkt A 2plr A 191 2pll A 43 2pb A 44 2ppt A 2pt A 2pt D 4 2pp A 2pp A 2pp A 2pp A 2pp B 50 2ppt	224							l							
2phm A 127 2phx B 128 2pi6 A 218 2pie A 88 2pij A 2piy B 199 2pjs B 59 2pjz A 137 2pk3 A 179 2pk8 A 2pke A 87 2pkf A 215 2pkh H 73 2pko A 47 2pkt A 2pky X 178 2pll A 50 2plj A 47 2pkt A 2plr A 119 2plw A 113 2pma A 62 2pmb C 143 2pmk A 2pmq A 213 2pmr A 49 2pn0 B 75 2pn2 A 4 2pnk A 22pmk A 42pn6 A 22pmk A 22pn6 A 22pna A 22pn6 A 22pna	108	1					1								
2piy B 199 2pjs B 59 2pjz A 137 2pk3 A 179 2pk8 A 2pke A 87 2pkf A 215 2pkh H 73 2pko A 47 2pkt A 2pky X 178 2pl1 A 72 2pli A 50 2plj A 247 2pln A 2pmy A 119 2pw A 113 2pma A 62 2ppmb C 143 2pmk A 2pm8 B 135 2pnd A 49 2pn0 B 75 2ppw A 4 2pn6 A 2pny A 151 2poc A 198 2poi A 28 2pnw A 221 2pnx A 2pos D 70 2poy A 111 2ppp A 51 2pp	25	!					1								
2pke A 87 2pkf A 215 2pkh H 73 2pko A 47 2pkt A 2pky X 178 2pl1 A 72 2pli A 50 2plj A 247 2pln A 2plr A 119 2plw A 113 2pma A 62 2pmb C 143 2pmk A 2pmq A 213 2pmr A 49 2pn0 B 75 2pn2 A 4 2pn6 A 2pms B 135 2poc A 198 2poi A 43 2pok B 2p1 2pn6 A 22p 2pn7 A 2pos D 70 2poy A 111 2ppp A 51 2ppt B 62 2pq7 A 2pom B 180 2pog B 71 2prb	59	!					1 1	1							
2pky X 178 2pl1 A 72 2pli A 50 2plj A 247 2pln A 2pmq A 119 2plw A 113 2pma A 62 2pmb C 143 2pmk A 2pmq A 213 2pmr A 49 2pn0 B 75 2pn2 A 4 2pn6 A 2pns B 135 2pnd A 85 2pne A 28 2pnw A 221 2pnx A 2pos D 70 2poy A 111 2ppp A 51 2ppt B 62 2pq7 A 2pos D 70 2poy A 111 2ppp A 51 2ppt B 62 2pq7 A 2pom B 180 2pq A 108 2pq A 108 2pq <td>65</td> <td>!</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ı</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	65	!						ı							
2plr A 119 2plw A 113 2pma A 62 2pmb C 143 2pmk A 2pmq A 213 2pmr A 49 2pn0 B 75 2pn2 A 4 2pn6 A 2pn8 B 135 2pnd A 85 2pne A 28 2pnw A 221 2pnx A 2pny A 151 2poc A 198 2poi A 43 2pok B 255 2por A 2pos D 70 2poy A 111 2ppp A 51 2ppt B 62 2pqr A 2pos D 70 2poy A 111 2ppp A 126 2prv A 92 2prz D 2pst A 196 2psd A 216 2psp B 50 2ps	66	!						1							
2pmq A 213 2pmr A 49 2pn0 B 75 2pn2 A 4 2pn6 A 2pn8 B 135 2pnd A 85 2pne A 28 2pnw A 221 2pnx A 2pny A 151 2poc A 198 2poi A 43 2pok B 255 2por A 2pos D 70 2poy A 111 2ppp A 51 2ppt B 29qr A 2pqm B 180 2pqr B 79 2pr7 B 71 2ppb A 126 2ppv A 108 2pqx A 2ps2 A 196 2psd A 216 2psp B 50 2pst X 43 2pto B 2ptt B 77 2ptv A 70 2ptz A </td <td>113</td> <td>!</td> <td></td>	113	!													
2pn8 B 135 2pnd A 85 2pne A 28 2pnw A 221 2pnx A 2pny A 151 2poc A 198 2poi A 43 2pok B 255 2por A 2pos D 70 2poy A 111 2ppp A 51 2ppt B 62 2pq7 A 2pqm B 180 2pqr B 79 2pqr D 20 2pqv A 108 2pqx A 2pr5 A 97 2prd B 71 2prb A 126 2prv A 92 2prz D 2ps2 A 196 2psd A 216 2pps B 50 2pst X 43 2pt0 B 2pt1 B 77 2ptv A 760 2ptz A 299 2pu	90	1							-						
2pny A 151 2poc A 198 2poi A 43 2pok B 255 2por A 2pos D 70 2poy A 111 2ppp A 51 2ppt B 62 2pq7 A 2pqm B 180 2pqr B 79 2pqr D 20 2pqv A 108 2pqx A 2pr5 A 97 2pr7 B 71 2prb A 126 2prv A 92 2prz D 2ps2 A 196 2psd A 216 2psp B 50 2pst X 43 2pt0 B 2ptt B 77 2ptv A 70 2ptz A 57 2pst X 43 2pt0 B 2pv9 A 168 2pv2 A 57 2pv4 A 18 2pva </td <td>37</td> <td> </td> <td>_</td> <td></td>	37		_												
2pos D 70 2poy A 111 2ppp A 51 2ppt B 62 2pq7 A 2pqm B 180 2pqr B 79 2pqr D 20 2pqv A 108 2pqx A 2pr5 A 97 2pr7 B 71 2prb A 126 2prv A 92 2prz D 2ps2 A 196 2psd A 216 2psp B 50 2pst X 43 2pt0 B 2ptt B 77 2ptv A 70 2ptz A 209 2pu3 A 121 2pu9 A 2pu9 B 49 2pur A 168 2py4 A 94 2py5 A 305 2pyq B 2pyt A 69 2pyw A 304 2pyx A 342 2py0	119						1								
2pqm B 180 2pqr B 79 2pqr D 20 2pqv A 108 2pqx A 2pr5 A 97 2pr7 B 71 2prb A 126 2prv A 92 2prz D 2ps2 A 196 2psd A 216 2psp B 50 2pst X 43 2pt0 B 2ptt B 77 2ptv A 70 2ptz A 209 2pu3 A 121 2pu9 A 2pu9 B 49 2pur A 168 2py4 A 94 2py5 A 305 2pyq B 2pvt A 69 2pyw A 304 2pyx A 342 2pz0 B 148 2pze B 2pxh B 86 2q03 A 44 2q01 A 212 2q0	87	!					1								
2pr5 A 97 2pr7 B 71 2prb A 126 2prv A 92 2prz D 2ps2 A 196 2psd A 216 2psp B 50 2pst X 43 2pt0 B 2ptt B 77 2ptv A 70 2ptz A 209 2pu3 A 121 2pu9 A 2pu9 B 49 2pur A 169 2pv2 A 57 2pv4 A 18 2pvq A 2pw0 A 241 2pwy A 168 2py4 A 94 2py5 A 305 2pyq B 2pyt A 69 2pyw A 304 2pyx A 342 2pz0 B 148 2pze B 2pyh A 88 2q12 A 86 2q16 B 94 2q1u	125	!					1	1							
2ps2 A 196 2psd A 216 2psp B 50 2pst X 43 2pt0 B 2ptt B 77 2ptv A 70 2ptz A 209 2pu3 A 121 2pu9 A 2pu9 B 49 2pur A 169 2pv2 A 57 2pv4 A 18 2pvq A 2pw0 A 241 2pwy A 168 2py4 A 94 2py5 A 305 2pyq B 2pyt A 69 2pyw A 304 2pyx A 342 2pz0 B 148 2pze B 2pxh B 86 2q03 A 44 2q01 A 212 2q0t C 159 2q0u A 2q2y A 86 2q16 B 94 2q1u B 204 2q	138	1						1							
2ptt B 77 2ptv A 70 2ptz A 209 2pu3 A 121 2pu9 A 2pu9 B 49 2pur A 169 2pv2 A 57 2pv4 A 18 2pvq A 2pw0 A 241 2pwy A 168 2py4 A 94 2py5 A 305 2pyq B 2pyt A 69 2pyw A 304 2pyx A 342 2pz0 B 148 2pze B 2pzh B 86 2q03 A 44 2q01 A 212 2q0t C 159 2q0u A 2q0y A 88 2q12 A 86 2q16 B 94 2q1u B 204 2q20 B 2q24 A 69 2q28 A 355 2q2a D 156 2q	209							ı							
2pu9 B 49 2pur A 169 2pv2 A 57 2pv4 A 18 2pvq A 2pw0 A 241 2pwy A 168 2py4 A 94 2py5 A 305 2pyq B 2pyt A 69 2pyw A 304 2pyx A 342 2pz0 B 148 2pze B 2pyt A 69 2pyw A 304 2pyx A 342 2pz0 B 148 2pze B 2pyt A 86 2q16 B 94 2q1u B 2q2u B 2q2y A 86 2q16 B 94 2q1u B 204 2q2u B 2q24 A 69 2q28 A 355 2q2a D 156 2q2f A 22 2q2g A 2q2g A<															
2pw0 A 241 2pwy A 168 2py4 A 94 2py5 A 305 2pyq B 2pyt A 69 2pyw A 304 2pyx A 342 2pz0 B 148 2pze B 2pzh B 86 2q03 A 44 2q0l A 212 2q0t C 159 2q0u A 2q0y A 88 2q12 A 86 2q16 B 94 2q1u B 204 2q20 B 2q24 A 69 2q28 A 355 2q2a D 156 2q2f A 22 2q2g A 2q2h A 89 2q2v B 143 2q30 E 42 2q35 A 153 2q3b A 2q2g A 54 2q3h A 1 2q3x B 78 2q5c	56	!					1 1								
2pyt A 69 2pyw A 304 2pyx A 342 2pz0 B 148 2pze B 2pzh B 86 2q03 A 44 2q01 A 212 2q0t C 159 2q0u A 2q0y A 88 2q12 A 86 2q16 B 94 2q1u B 204 2q20 B 2q24 A 69 2q28 A 355 2q2a D 156 2q2f A 22 2q2g A 2q2h A 89 2q2v B 143 2q30 E 42 2q35 A 153 2q3b A 2q3g A 54 2q3h A 1 2q3x B 78 2q5c A 102 2q5x A 2q62 G 149 2q66 A 288 2q6k A 158 2q7	103	ı						1	-						
2pzh B 86 2q03 A 44 2q01 A 212 2q0t C 159 2q0u A 2q0y A 88 2q12 A 86 2q16 B 94 2q1u B 204 2q20 B 2q24 A 69 2q28 A 355 2q2a D 156 2q2f A 22 2q2g A 2q2h A 89 2q2v B 143 2q30 E 42 2q35 A 153 2q3b A 2q3g A 54 2q3h A 1 2q3x B 78 2q5c A 102 2q5x A 2q62 G 149 2q66 A 288 2q6k A 158 2q73 C 55 2q79 A 2q7d A 193 2q7e A 8 2q7w A 199 2q86<	44														
2q0y A 88 2q12 A 86 2q16 B 94 2q1u B 204 2q20 B 2q24 A 69 2q28 A 355 2q2a D 156 2q2f A 22 2q2g A 2q2h A 89 2q2v B 143 2q30 E 42 2q35 A 153 2q3b A 2q3g A 54 2q3h A 1 2q3x B 78 2q5c A 102 2q5x A 2q62 G 149 2q66 A 288 2q6k A 158 2q73 C 55 2q79 A 2q7d A 193 2q7e A 8 2q7w A 199 2q86 A 86 2q86 B 2q87 A 131 2q8r G 52 2q8x B 163 2q9k<	117						1								
2q24 A 69 2q28 A 355 2q2a D 156 2q2f A 2q2g A 2q2h A 89 2q2v B 143 2q30 E 42 2q35 A 153 2q3b A 2q3g A 54 2q3h A 1 2q3x B 78 2q5c A 102 2q5x A 2q62 G 149 2q66 A 288 2q6k A 158 2q73 C 55 2q79 A 2q7d A 193 2q7e A 8 2q7w A 199 2q86 A 86 2q86 B 2q87 A 53 2q88 A 132 2q8g A 206 2q8k A 205 2q8n C 2q8p A 131 2q8r G 52 2q8x B 163 2q9k A	238	ı					1								
2q2h A 89 2q2v B 143 2q30 E 42 2q35 A 153 2q3b A 2q3g A 54 2q3h A 1 2q3x B 78 2q5c A 102 2q5x A 2q62 G 149 2q66 A 288 2q6k A 158 2q73 C 55 2q79 A 2q7d A 193 2q7e A 8 2q7w A 199 2q86 A 86 2q86 B 2q87 A 53 2q88 A 132 2q8g A 206 2q8k A 205 2q8n C 2q8p A 131 2q8r G 52 2q8x B 163 2q9k A 82 2q9o B 2q9u A 291 2qa1 A 27 2qa9 E 112 2qa	60														
2q3g A 54 2q3h A 1 2q3x B 78 2q5c A 102 2q5x A 2q62 G 149 2q66 A 288 2q6k A 158 2q73 C 55 2q79 A 2q7d A 193 2q7e A 8 2q7w A 199 2q86 A 86 2q86 B 2q87 A 53 2q88 A 132 2q8g A 206 2q8k A 205 2q8n C 2q8p A 131 2q8r G 52 2q8x B 163 2q9k A 82 2q9o B 2q9u A 291 2qa1 A 27 2qa9 E 112 2qac A 68 2qap A 2qc5 A 167 2qck A 46 2qcv A 140 2qd	104	!													
2q62 G 149 2q66 A 288 2q6k A 158 2q73 C 55 2q79 A 2q7d A 193 2q7e A 8 2q7w A 199 2q86 A 86 2q86 B 2q87 A 53 2q88 A 132 2q8g A 206 2q8k A 205 2q8n C 2q8p A 131 2q8r G 52 2q8x B 163 2q9k A 82 2q9o B 2q9u A 291 2qa1 A 27 2qa9 E 112 2qac A 68 2qap A 2qc5 A 167 2qck A 46 2qcv A 140 2qd6 A 58 2qde F 2qdx A 183 2qe8 A 232 2qe9 A 38 2	187							1							
2q7d A 193 2q7e A 8 2q7w A 199 2q86 A 86 2q86 B 2q87 A 53 2q88 A 132 2q8g A 206 2q8k A 205 2q8n C 2q8p A 131 2q8r G 52 2q8x B 163 2q9k A 82 2q9o B 2q9u A 291 2qa1 A 27 2qa9 E 112 2qac A 68 2qap A 2qc5 A 167 2qck A 46 2qcv A 140 2qd6 A 58 2qde F 2qdx A 183 2qe8 A 232 2qe9 A 38 2qec A 7 2qed A 2qee F 268 2qeu C 73 2qev A 2 2qf4<	82						1 1								
2q87 A 53 2q88 A 132 2q8g A 206 2q8k A 205 2q8n C 2q8p A 131 2q8r G 52 2q8x B 163 2q9k A 82 2q9o B 2q9u A 291 2qa1 A 27 2qa9 E 112 2qac A 68 2qap A 2qc5 A 167 2qck A 46 2qcv A 140 2qd6 A 58 2qde F 2qdx A 183 2qe8 A 232 2qe9 A 38 2qec A 7 2qed A 2qee F 268 2qeu C 73 2qev A 2 2qf4 B 111 2qf9 A 2qfa A 86 2qfa B 42 2qfa C 26 2qfe<	36	ı													
2q8p A 131 2q8r G 52 2q8x B 163 2q9k A 82 2q9o B 2q9u A 291 2qa1 A 27 2qa9 E 112 2qac A 68 2qap A 2qc5 A 167 2qck A 46 2qcv A 140 2qd6 A 58 2qde F 2qdx A 183 2qe8 A 232 2qe9 A 38 2qec A 7 2qed A 2qee F 268 2qeu C 73 2qev A 2 2qf4 B 111 2qf9 A 2qfa A 86 2qfa B 42 2qfa C 26 2qfe A 92 2qff A 2qfs A 286 2qg1 A 48 2qg3 A 68 2qg6 <td>121</td> <td>ı</td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	121	ı													
2q9u A 291 2qa1 A 27 2qa9 E 112 2qac A 68 2qap A 2qc5 A 167 2qck A 46 2qcv A 140 2qd6 A 58 2qde F 2qdx A 183 2qe8 A 232 2qe9 A 38 2qec A 7 2qed A 2qee F 268 2qeu C 73 2qev A 2 2qf4 B 111 2qf9 A 2qfa A 86 2qfa B 42 2qfa C 26 2qfe A 92 2qff A 2qfs A 286 2qg1 A 48 2qg3 A 68 2qg6 A 113 2qgu A	36														
2qc5 A 167 2qck A 46 2qcv A 140 2qd6 A 58 2qde F 2qdx A 183 2qe8 A 232 2qe9 A 38 2qec A 7 2qed A 2qee F 268 2qeu C 73 2qev A 2 2qf4 B 111 2qf9 A 2qfa A 86 2qfa B 42 2qfa C 26 2qfe A 92 2qff A 2qfs A 286 2qg1 A 48 2qg3 A 68 2qg6 A 113 2qgu A	395	1					1								
2qdx A 183 2qe8 A 232 2qe9 A 38 2qec A 7 2qed A 2qee F 268 2qeu C 73 2qev A 2 2qf4 B 111 2qf9 A 2qfa A 86 2qfa B 42 2qfa C 26 2qfe A 92 2qff A 2qfs A 286 2qg1 A 48 2qg3 A 68 2qg6 A 113 2qgu A	192	1					1 1								
2qee F 268 2qeu C 73 2qev A 2 2qf4 B 111 2qf9 A 2qfa A 86 2qfa B 42 2qfa C 26 2qfe A 92 2qff A 2qfs A 286 2qg1 A 48 2qg3 A 68 2qg6 A 113 2qgu A	210	1													
2qfa A 86 2qfa B 42 2qfa C 26 2qfe A 92 2qff A 2qfs A 286 2qg1 A 48 2qg3 A 68 2qg6 A 113 2qgu A	124	!													
2qfs A 286 2qg1 A 48 2qg3 A 68 2qg6 A 113 2qgu A	84	1	1					1							
	37														
2qgy B 249 2qh9 A 98 2qhk A 74 2qhl B 58 2qho B	122	l													
	39	l .					1 1	l .							
2qhp A 156 2qhq B 80 2qhs A 144 2qia A 167 2qib A	139													A	
2qif A 34 2qih B 81 2qik A 173 2qim A 80 2qip A	111	!			A									A	
2qiw A 122 2qiy B 77 2qjj D 235 2qjv B 67 2qjw B	98	1	1				1 1							A	
2qjx A 66 2qk1 A 147 2qkf C 135 2qkh A 39 2qkp C	85	$^{\rm C}$	2qkp		A			1	2qkf		A	2qk1		A	
2ql8 B 97 2qlt A 153 2qlw B 72 2qm0 B 124 2qm8 A	189	A	2qm8		В	2qm0		В	2qlw	153	A	2qlt		В	2ql8
2qmc A 214 2qmc D 122 2qmj A 521 2qml A 105 2qmm A	125	A	2qmm	105	A	2qml	521	A	2qmj	122	D	2qmc	214	A	2qmc
2qmo A 147 2qmq A 186 2qn0 A 266 2qng A 98 2qnk A	194	A	2qnk	98	A	2qng	266	A	2qn0	186	A	2qmq	147	A	2qmo
2qnl A 100 2qnt A 67 2qnw A 48 2qo4 A 94 2qod A	157	A	2qod	94	A	2qo4	48	A	2qnw	67	A	2qnt	100	A	2qnl
2qor A 126 2qos C 85 2qpn B 158 2qpw A 94 2qpx A	232	Α	2qpx	94	A	2qpw	158	В	2qpn	85	C		126	A	2qor
2qq4 B 53 2qq5 A 74 2qqi A 164 2qqj A 184 2qr3 A	75	Α		184	A	2qqj	164	A		74	A	2qq5	53	В	2qq4

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
2qr6	A	141	2qrl	A	242	2qrr	В	41	2qru	A	165	2qrw	I	72
2qs9	A	124	2qsa	A	58	2qsb	A	35	2qsi	A	60	2qsk	A	56
2qsq	В	33	2qsw	A	41	2qsx	A	116	2qt7	В	51	2qt8	A	180
2qtd	A	54	2qtq	A	76	2qtz	A	255	2qub	I	398	2qud	A	63
2qul	С	176	2quy	Н	238	2qv5	A	117	2qvb	A	209	2qvg	A	67
2qvk	A	86	2qvo	A	43	2qvu	В	161	2qw5	В	210	2qwl	A	252
2qwo	В	53	2qwu	A	109	2qx0	A	60	2qx2	A	93	2qx8	В	151
2qxf	A	269	2qxi	A	126	2qxy	В	50	2qy1	В	204	2qy9	A	160
2qyc	В	47	2qzc	A	130	2qzq	A	115	2qzt	В	58	2r01	A	115
2r0b	A	91	2r0c	A	142	2r0h	С	77	2r0x	A	88	2r0y	A	132
2r11	A	169	2r14	A	21	2r16	Ā	102	2r1b	В	122	2r1i	A	66
2r1j	R	43	2r2a	A	106	2r2c	В	67	2r2d	A	150	2r2y	A	67
2r2z	A	43	2r31	A	113	2r37	A	114	2r3b	В	160	2r47	A	86
2r48	A	50	2r4g	A	143	2r4i	D	83	2r4q	A	50	2r4v	A	105
2r5o	В	103	2r5t	A	105	2r5u	D	38	2r6j	В	195	2r6n	A	118
2r6o	В	123	2r6u	В	61	2r6v	A	106	2r6z	В	113	2r75	1	190
2r77	A	123	2r78	A	75	2r7h	A	34	2r80	$\frac{1}{C}$	92	2r84	В	165
2r8e	E	125	2r8q	A	208	2r8w	В	174	2r99	A	122	2r9f	A	210
2ra2	C	31	2ra3	В	147	2ra4	A	36	2ra6	В	82	2ra9	A	97
2raf	$\stackrel{\circ}{\mathrm{C}}$	122	2ras	A	20	2rau	A	187	2rb7	В	204	$\frac{2ras}{2rbb}$	A	70
2rbc	A	166	2rbd	A	90	2rbg	В	95	2rbk	A	161	2rc3	A	95
2rc8	В	177	2rcc	В	187	2rci	A	131	2rcq	A	108	2rcv	E	125
2rcz	В	47	2rdc	В	58	$\frac{2rcr}{2rdh}$	$\frac{\Lambda}{C}$	124	2rdm	A	36	2rdq	A	174
2rdu	A	234	2 rdz	A	284	2re2	A	67	2ree	A	107	2reg	A	168
2rek	A	51	2 rem	B	65	$\frac{2rez}{2rer}$	A	54	2rff	A	72	2rfg	A	197
2rfi	В	157	2rfm	В	90	2rfq	В	239	2rfr	A	80	$\frac{2}{2}$ rfv	A	209
2rgi	A	54	2rh0	В	58	$\frac{2\text{rq}}{2\text{rhf}}$	A	50	$\frac{2111}{2\text{rhi}}$	A	207	$\frac{211}{2\text{rhk}}$	$\frac{\Lambda}{C}$	12
2rhm	В	100	2ri0	В	150	2ri7	A	118	2ri9	A	313	2rij	A	198
2rik	A	188	2ril	A	44	2ris	A	134	2rji	A	55	2rjw	A	51
2rk3	A	103	2rk5	A	53	2rk9	В	67	$\frac{2r_{\rm h}}{2r_{\rm kl}}$	A	25	2rkq	A	108
2rku	A	49	2rkv	A	285	2rky	C	54	2rld	D	71	$\frac{2 \text{rkq}}{2 \text{tnf}}$	B	81
2uur	A	96	2uuu	$\frac{\Lambda}{C}$	293	2uuy	В	32	2uvj	A	216	2uvk	A	175
2uvo	B	106	2uw1	A	199	2uuy 2uxq	A	252	2uxw	A	351	2uxy	A	$\frac{175}{225}$
2uy2	A	173	2uyq	A	143	2uxq 2uyt	A	303	2uxw 2uyw	A	65	2uxy 2uyz	A	103
2uyz	В	41	2uy $q2$ uz 0	A	167	2uyt $2uz1$	D	347	2uzc	$\frac{\Lambda}{C}$	56	2uzj	В	169
2v03	A	182	2v05	A	208	2v09	A	265	2v0c	A	513	2v0h	A	307
2v0p	A	67	2v0s	A	155	2v0s 2v0u	A	100	2v1o	В	87	2v1q	A	41
2v0p 2v1w	В	43	2v25	A	90	2v27	A	154	2v16 2v2f	F	199	2v1q $2v2g$	$\frac{\Lambda}{C}$	155
2v1w 2v2k	В	74	2v2p	A	116	2v27 $2v33$	В	42	2v21 $2v36$	D	119	2v2g 2v3f	В	339
2v2k 2v3g	A	181	2v2p $2v3s$	A	62	2v40	A	237	2v4n	A	163	2v4v	A	90
2v3g 2v4x	A	90	2v55	C	74	2v40 $2v5i$	A	388	2v4n 2v5j	A	163	2v4v $2v5z$	A	352
2v62	A	99	2v6a	o	96	2v6h	A	66	2v6k	B	137	2v6u	A	66
2v6v	В	98	2v6x	A	56	2v6x	В	17	2vok 2 v76	A	62	2v7b	A	$\frac{66}{265}$
2v0v 2v7f	A	77	2v0x 2v7k	A	187	2v0x $2v7s$	A	89	2v7w	$\begin{array}{ c c } \hline C \\ \hline \end{array}$	156	2v76 $2v84$	A	157
2v71 2v87	В	51	2v7K 2v8c	A	83	2v7s 2v8i	A	306	2v7w 2v8u	A	189	2v94	A	38
2v9m	A	160	2v 9 t	B	136	2vac	A	87	2vag	A	178	2v94 2vap	A	150
2vba	D	$\frac{100}{255}$	2v9t 2vbf	A	355	2vac 2vbk	A	326	2 vag $2 vc 3$	A	189	$\frac{2\text{vap}}{2\text{vc8}}$	A	$\frac{130}{32}$
2vba 2vch	A	$\frac{255}{307}$	2vck	D	150	2 vd 8	A	239	2vcs 2vdx	A	3	2 ve 8	E	6
2veh		15	2vck 2vec		77	2vas 2vef		162			133	2ves 2vfk		137
2veb 2vfq	A A	$\frac{15}{371}$	2vec 2vfr	A A	268	2ver 2vfx	A C	$102 \\ 127$	2vep	A B	122	$\frac{2\text{VIK}}{2\text{vg}3}$	A C	187
	B	184		D	12		A	70	$ \begin{array}{r} 2\text{vg1} \\ 2\text{vh3} \end{array} $	A	65	2vg3 2vha	B	168
2vgp 2vi3		124	2vgp 2vi8	A	266	2vgx $2vid$	A	117	2vii5 2vif	A	77	2vna 2vig	A	164
ZV10	A	124	2V10	Α	200	∠ V1U	A	111	2 V 11	Α		ZVIG tinued or	1	

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
2vj0	A	177	2vjp	В	266	2vjv	В	66	2vk2	A	205	2vk8	С	346
2vkj	A	65	2vkl	A	41	2vkp	В	56	2vkv	A	71	2vla	A	179
2vlf	В	285	2vlg	В	58	2vli	В	98	2vlu	A	56	2 vm 2	С	19
2 vm 5	A	67	2vmb	A	60	2vmc	A	189	2vmi	A	103	2vn6	A	112
2vn6	В	43	2vng	A	116	2vnk	С	170	2vnl	A	53	2vnz	X	163
2vo4	A	115	2vo8	A	83	2vo9	В	88	2voa	A	167	2voc	A	45
2vof	A	72	2vov	A	177	2voz	A	201	2vpa	A	118	2vpg	A	44
2vph	В	36	2vpj	A	122	2vpn	A	184	2vpt	A	138	2vq2	A	143
2vq4	A	69	2vq8	A	76	2vqg	D	41	2vqp	A	159	2vqq	В	223
2vqr	A	358	2vqx	A	210	2vre	A	95	2vri	A	96	2vro	В	309
2vrs	\mathbf{C}	134	2vrw	В	231	2vs0	A	45	2 vsm	A	267	2vsm	В	83
2vsv	Ā	58	2vtc	В	164	2vtf	В	414	2vuj	A	125	2vun	В	226
2vuo	A	117	2vuv	A	71	2vuw	A	181	2vv6	D	66	2vve	A	157
2vvm	A	310	2vvp	В	99	2vvt	В	184	2vvw	A	82	2vw8	A	193
2vwf	A	41	2vwr	A	56	2vws	C	175	2vx5	A	260	2vxg	В	71
2vxk	A	101	2vxn	A	157	2vxq	A	36	2vxs 2vxr	A	313	2vxt	Н	116
2vxt	I	79	2vxt	L	134	2vxq 2vxy	A	124	2vxz	A	92	2vy8	A	80
2vyo	A	122	2vyq	A	216	2vxy 2vyw	A	101	2vyx	$\frac{\Lambda}{C}$	44	2vz5	A	42
2vzc	A	61	2vyq $2vzm$	A	221	2vzp	В	75	2w0i	A	64	2 w0p	В	46
2w15	A	143	2w1j	В	129	2w1p	A	156	2 wor $2 w1r$	A	70	2 wop $2 w1s$	A	98
2w1v	A	189	2 w1j $2 w1z$	В	161	2w1p $2w20$	A	311	2w^{11} 2w^{2} b	В	127	2 w1s 2 w2k	A	$\frac{36}{243}$
2 w1V $2 w2r$	A	95	2w_{12} 2w_{31}	В	101	2 w 20 $2 w 39$	A	200	2 w 2 b $2 w 3 g$	A	86	2 w 2 K $2 w 3 j$	A	76
2 w 2 i $2 w 3 p$	В	$\frac{374}{374}$	2w3q	A	135	2 w 39 2 w 3 v	A	89	2 w3g 2 w3x	A	51	2 w3j $2 w3z$	A	170
2w40	A	320	2 w 3 q $2 w 43$	A	126	2w3v $2w47$	A	87	2 w3x $2 w4c$	A	66	2w3z $2w4f$	A	47
2w40 2w4i	F	$\frac{320}{152}$	$\frac{2\text{w45}}{2\text{w50}}$	В	66	$\frac{2\text{w}47}{2\text{w}56}$	В	41	2w40 $2w59$	A	67	2w_{5a}	A	136
2w41 $2w5w$	В	190	$\frac{2 \text{w} 50}{2 \text{w} 61}$	A	318	2 w 6 a	В	32	$\frac{2 \text{w} 39}{2 \text{w} 70}$	A	312	2 w 5 a $2 w 79$	B	124
2w3w 2w7a	В	61	2 wor $2 w7n$	A	38	2w0a 2 w7s	В	126	2 w 7 w $2 w 7 w$	В	125	2 w 79 $2 w 7z$	A	141
2w7a 2w83	С	34	2 w 7 fi $2 w 86$	A	70	2 w/s $2 w87$	A	83	2 w/w 2 w8x	A	42	2 w 72 $2 w 91$	A	450
2w9h		89		В	67	$\frac{2\text{wo}}{2\text{w}}$	A	64		A	81	2wa2	B	$\frac{450}{153}$
	A	210	2w9k		514		ı		2w9y	!	91	2 wa2 $2 wb6$!	42
2waa	A X		2wan	A		2wao	A	211	2waw	A	44	l	A	
2wbf		135	2wbm	В	106	2wbp	A	171	2wbs	A		2wbw	A	143
2wc8	В	58	2wci	A	67	2wcj	A	82	2wco	A	380	2wcr	A	95
2wcu	A	69	2wcv	C	67	2wcw	В	51	2wdc	A	331	2wds	A	59
2wdu	В	119	2we2	A	147	2we5	C	149	2wee	B C	98 92	2wei	A	187
2wel	A	188	2weu	A	333	2wf6	A	153	2wfc			2wfh	В	5
2wfj	A	118	2wfo	A	111	2wfw	В	66	2wfz	A	320	2wge	A	202
2wgp	В	108	2wgy	A	243	2wh7	A	106	2whg	В	117	2whl	A	187
2wi8	A	173	2wiy	A	277	2wj5	A	51	2wj9	В	94	2wje	A	158
2wji	В	42	2wjm	H	127	2wjn	C	169	2wjn	L	129	2wjn	M	161
2wjr	A	122	2wk0	A	168	2wk1	A	163	2wkk	C	101	2wkx	A	176
2wl1	A	93	2wl9	В	182	2wlr	A	269	2wlu	A	109	2wm3	A	186
2wm5	A	278	2wmf	A	432	2wmi	В	393	2wml	A	169	2wn3	C	199
2wn4	A	277	2wnh	A	236	2wnp	F	131	2wns	A	112	2wnv	A	80
2wnv	Е	73	2wnv	F	91	2wnx	A	87	2wny	В	44	2wo1	A	84
2woe	$^{\rm C}$	159	2wol	A	383	2wot	A	203	2woy	A	231	2wp3	O	37
2wp7	A	74	2wpg	A	361	2wpq	С	66	2wpv	D	34	2wpv	E	172
2wq4	С	77	2wq9	A	107	2wqi	D	23	2wqk	A	127	2wr8	A	42
2wra	A	69	2wry	A	98	2wsb	C	126	2wsd	A	349	2wsh	В	48
2wsi	A	149	2wso	A	138	2wt1	A	101	2wt4	A	185	2wta	A	123
2wte	В	86	2wtg	A	105	2wtm	C	174	2wto	A	53	2wu6	A	231
2wu9	A	228	2wue	A	141	2wuh	A	87	2wuk	A	39	2wuq	В	162
2wut	A	73	2wuu	A	242	2wux	A	108	2wv3	A	31	2wvf	A	62

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
2wvv	A	272	2wvx	С	484	2ww2	В	476	2ww5	A	307	2wwe	A	85
2wwf	С	128	2wwk	T	63	2wwx	A	120	2wwx	В	143	2wxu	A	178
2wy3	A	67	2wy3	В	81	2wy4	A	90	2wy7	Q	39	2wy8	A	192
2wyc	A	98	2wye	В	279	2wyh	В	623	2wyk	Å	193	2wyu	В	31
2wz1	A	119	2wz8	A	81	2wz9	A	70	2wzb	A	270	2wzi	В	327
2wzm	A	169	2wzw	В	111	2wzx	A	232	2x0k	A	205	2x0q	A	350
2x18	E	76	2x1b	A	55	2x1d	D	204	2x1p	C	72	2x1q	В	69
2x23	В	174	2x26	В	151	2x2o	A	76	2x32	A	111	2x3c	A	133
2x3e	В	163	2x3f	A	158	2x3g	A	67	2x3h	C	328	2x3m	A	94
2x3n	A	198	2x45	A	93	2x47	A	160	2x49	A	197	2x4j	A	48
2x4k	В	40	2x4l	A	183	2x55	A	98	2x5c	В	20	2xf $2x5f$	В	228
2x4k $2x5h$	В	41	2x5p	A	56	2x5x	A	217	2x5y	A	122	2x61	A	129
2x6u	A	68	2x6y 2x6w	A	395	2x7b	A	86	2x7m	A	58	2x8h	A	406
2x8j	$\frac{\Lambda}{C}$	156	2x8r	A	128	2x75 $2x8s$	A	206	2x/m $2x8x$	X	2	2x96	A	218
2x98	В	248	2x9x	A	$\frac{120}{234}$	2xau	A	378	2xb1	$\frac{\Lambda}{C}$	52	$\begin{array}{c} 2xb4 \\ 2xb4 \end{array}$	A	111
2xba	A	151	2xbk	A	178	2xau $2xbl$	A	124	2xc2	A	61	2xc3	A	268
2xcb	A	59	2xce	F	73	2xcj	A	48	2xcz	A	71	2xda	A	83
2xde	A	77		A	36		F	31		A	61	2xda 2xdw	A	514
		l	2xdg			2xdj	А		2xdp					
2xed	A	141	2xeg	A	400	2xeh	1	44	2xet	В	67	2xeu	A	34
2xev	A	74	2xex	A	73	2xf2	A	451	2xf7	A	25	2xfe	A	74
2xfr	A	313	2xfv	A	61	2xgy	A	48	2xh2	C	242	2xhd	A	164
2xhi	A	183	2xhn	A	359	2xi9	В	152	2xij	A	358	2xio	A	187
2xiv	A	123	2xj3	A	45	2xjq	A	149	2xkg	A	63	2xkr	A	264
2xl8	A	55	2xla	A	155	2xlk	A	81	2xmj	A	37	2xmx	A	170
2xn4	A	151	2xn6	A	221	2xnq	A	52	2xoc	В	140	2xon	L	87
2xov	A	91	2xpp	A	91	2xq0	A	200	2xqo	A	133	2xqu	A	32
2xs4	A	113	2xst	A	74	2xsu	A	212	2xtp	A	131	2xw9	A	134
2xwc	A	128	2xws	A	86	2xwt	C	152	2xxj	D	135	2xxl	В	215
2xxz	A	152	2xy2	A	70	2xz2	A	34	2xzi	A	272	2xzv	A	117
2y1q	A	63	2y27	В	271	2y3z	A	148	2y44	A	86	2y5s	В	117
2y69	A	300	2y69	D	10	2y69	E	7	2y69	P	30	2y7b	A	69
2y88	A	126	2y8k	A	317	2y8m	A	86	2yay	A	40	2yb1	A	161
2yqc	A	275	2yqu	В	290	2yqz	A	134	2yr5	В	473	2yrx	A	150
2ysk	A	84	2yv1	A	134	2yv5	A	159	2yv7	A	90	2yv9	В	104
2yva	В	98	2yve	A	111	2yvi	A	56	2yvo	A	125	2yvt	A	163
2yw2	A	6	2ywd	A	101	2ywi	В	106	2ywj	A	110	2ywk	A	55
2ywl	A	95	2ywn	A	92	2ywo	A	108	2yxm	A	52	2yxn	A	185
2yxo	В	141	2yxw	A	173	2yxz	A	104	2yyh	С	26	2yyk	A	265
2yyv	В	97	2yz1	В	80	2yzc	D	165	2yzh	С	98	2yzk	В	77
2yzt	A	37	2yzu	A	42	2yzv	A	142	2yzy	A	88	2z0a	В	42
2z0e	A	115	2z0j	E	144	2z0m	A	178	2z0q	A	165	2z0t	С	63
2z0x	A	92	2z10	A	108	2z14	A	77	2z1a	A	283	2z1f	A	120
2z1n	A	137	2z1y	A	215	2z26	A	233	2z2f	A	85	2z2o	A	151
2z2y	A	204	2z38	A	169	2z3g	D	83	2z3v	A	76	2z48	A	289
2z4u	A	184	2z62	A	181	2z68	A	143	2z6i	A	163	2z6n	A	57
2z6o	A	99	2z6r	A	159	2z6w	A	101	2z72	A	204	2z 7 b	A	103
2z7f	E	139	2z7f	I	36	2z84	A	108	2z8a	A	96	2z8f	A	258
2z8l	A	121	2z8q	A	36	2z8u	В	52	2z8x	A	412	2z9b	A	130
2z9v	В	253	2za0	A	135	2zad	D	214	2zb7	A	208	2zbc	E	55
2zbl	A	298	2zbo	A	62	2zbt	В	134	2zbx	A	263	2zc8	A	191
2zca	A	76	2zcn	A	79	2zco	A	166	2zcw	A	85	2zd1	A	172
2zdh	A	173	2zdo	В	73	$\frac{2zco}{2zdr}$	A	212	2zed	A	228	2zex	A	108
LEGII	**	1 110	2200		10	=241	**			11		tinued or		1 1

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
2zez	В	64	2zf9	A	97	2zfd	A	133	2zfd	В	77	2zfg	A	191
2zfn	A	195	2zfy	A	126	2zfz	D	45	2zgd	A	46	2zgq	A	96
2zhj	A	190	$2\mathrm{zhn}$	A	111	2zhz	С	98	2zib	A	82	2zjd	С	83
2zkg	A	119	2zkm	X	526	2zl6	В	203	2zm0	A	259	2zmu	A	113
2znd	A	121	2znr	A	130	2zo6	A	136	2zod	A	112	2z00	A	256
2zos	A	117	2zou	В	88	2zpd	A	97	2zpm	A	44	2zpo	A	65
2zpu	A	166	2zqe	A	52	2zpa	A	61	2zqn	В	96	2zs0	A	86
$\frac{2zpa}{2zs0}$	D	81	2zqc $2zs1$	В	65	2zqm $2zs1$	$^{\rm L}$	79	2zqn $2zsc$	В	61	2zsg	В	194
2zsh	В	22	2zsi	A	$\begin{vmatrix} 05 \\ 207 \end{vmatrix}$	2zsi	D	137	2zu1	В	121	2zu2	A	146
2zut	С	494	2zux	В	391	$\frac{2z_{\rm SJ}}{2z_{\rm UY}}$	A	380	2zur 2zvp	X	210	$\frac{2zu2}{2zw2}$	A	50
2zwa	В	329	2zux 2zwd	A	197	2zuy 2zwj	A	109	$\frac{2zvp}{2zwn}$	A	226	2zw2 2zwu	A	214
$\frac{2zwa}{2zx2}$	A	148		B	6		A	41		В	306		B	291
1		226	2zxj	С		2zxy	E		2zya	1		2zyh		
2zyo	A		2zzd		158	2zzd	l .	115	2zzd	J	85	2zzj	A	156
2zzs	O	44	2zzv	В	204	3a02	A	34	3a03	A	36	3a04	A	110
3a07	A	88	3a0u	A	80	3a0y	В	101	3a1c	A	67	3a1u	A	132
3a21	A	426	3a2q	A	170	3a2v	I	152	3a2z	A	104	3a3d	В	274
3a3v	A	266	3a40	X	199	3a4u	A	156	3a4u	В	40	3a4w	В	216
3a55	A	180	3a57	A	114	3a5f	В	205	3a5p	D	70	3a5r	A	223
3a6r	В	73	3a6s	В	57	3a71	A	266	3a74	В	279	3a77	A	124
3a7i	A	140	3a7l	A	76	3a7n	A	129	3a8g	A	129	3a8g	В	140
3a8k	A	212	3a8u	X	294	3a9b	A	264	3a9f	A	58	3a9i	A	185
3a9l	В	127	3a9q	N	115	3a9s	В	353	3a9z	A	250	3aa0	A	159
3aa6	В	147	3aaf	В	15	3aal	A	188	3aam	A	139	3aar	A	220
3aay	В	159	3ab6	A	68	3ab8	A	134	3aba	A	262	3abd	В	110
3abf	\mathbf{E}	21	3acd	A	88	3aci	A	136	3act	В	568	3acz	С	243
3adg	A	47	3ado	A	188	3adr	A	134	3aey	A	165	3afm	A	143
3afv	A	310	3ag7	A	67	3agn	A	80	3agx	В	49	3ah2	A	222
3ahc	A	570	3ahn	A	376	3ahx	D	280	3ahy	A	309	3ahz	A	349
3ai3	\mathbf{C}	157	3aia	A	149	3aii	A	212	3aj7	A	462	3ajd	A	172
3ajo	A	117	3ajx	С	114	3ak2	В	155	3ak8	Н	115	3akb	A	97
3akh	A	317	3alf	A	260	3alu	A	107	3amn	В	164	3anp	С	76
3ans	В	161	3ap9	A	106	3apa	A	91	3aq2	В	119	3b2t	В	193
3b2y	A	72	3b34	A	566	3b3t	A	187	3b42	A	60	3b49	A	137
3b4n	A	199	3b4q	В	41	3b4u	В	196	3b4w	A	249	3b4y	В	166
3b51	X	395	3b5e	В	107	3b5g	В	63	3b5l	В	136	3b5m	В	112
3b5o	A	109	3b64	A	78	3b6e	A	101	3b6h	A	294	3b6i	A	107
3b76	A	60	3b79	A	62	3b7c	A	60	3b7e	A	293	3b7l	A	119
3b7n	A	184	3b7o	A	175	3b7s	A	442	3b84	A	44	3b8b	A	138
3b8f	C	92	3b8i	E	157	3b8z	В	145	3b9c	C	84	3b9d	A	353
3b9q	A	175	3b9t	A	279	3b9y	A	216	3ba1	A	199	3ba3	A	87
3bal	В	92	3bb0	A	395	3bb7	A	191	3bb9	В	61	3bbb	D	96
3bby	A	123	3bc1	В	28	3bc1	E	120	3bc9	A	406	3bcb	A	280
3bcw	A	72	3bcr 3bcy	A	105	3bd1	A	37	3bd2	A	76	3bde	A	69
3bdf	A	258	3bdi	A	114		E	27	3 bdz $3 bdv$	A	105	3be4		116
	$\stackrel{\mathbf{A}}{\mathbf{C}}$			1		3bdu	B	$\frac{27}{65}$		1			A	
3be6		181	3bec	A	209	3bed			3bei	A	17	3bem	A	110
3ber	A	139	3beu	В	129	3bex	A	166	3bf5	A	39	3bf7	В	147
3bfk	В	114	3bfm	A	93	3bfo	В	41	3bfq	G	74	3bfv	A	170
3bg8	A	145	3bge	A	82	3bgo	P	36	3bgu	В	48	3bgy	В	99
3bh4	A	280	3bh7	A	97	3bh7	В	181	3bhd	В	118	3bhg	A	213
3bhn	A	127	3bhq	A	106	3bhw	В	83	3bhy	A	171	3bio	A	180
3bit	A	248	3bix	A	299	3biy	A	4	3bj1	С	54	3bj1	D	78
3bjd	В	185	3bje	A	210	3bjh	A	1	3bjk	В	62	3bjn	A	82

30kg	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
3bkx	3bkj	Н	154	3bkp	A	114	3bkr	A	89	3bkt	A	47	3bkw	В	104
Sampage Samp	3bkx	A	156		A	127	3bld	A	210	3blz	В	79	3bm3	В	151
Sabor		A	56	3bmb	В	52	3bmw	A	526	$3 \mathrm{bmx}$	В	415	3bmz	В	111
3bod A 112 3boe A 133 3bof B 268 3bom C 95 3bom D 82 3bog A 37 3bp5 A 70 3bpk B 112 3bpt A 228 3bpu A 45 3bpv A 68 3bpw A 222 3bpz D 137 3bq9 B 228 3bpu B 43 3bs2 A 104 3bs3 A 37 3bs4 A 160 3bs6 A 150 3bs9 B 23 3bss A 245 3bsy B 123 3bt5 A 76 3but A 48 3bum A 245 3bsy B 123 3bt5 A 76 3but A 48 3bum A 245 3bsy B 123 3bt5 A 76 3but A 48 3bum A 145 3bsy B 223 3bsy B 23 3bsw B 244 3bv6 D 220 3bv8 A 49 3bvk F 123 3bwh A 181 3bw1 B 74 3bws B 250 3bwn C 103 3bwn D 51 3bwn F 55 3bvy B 103 3bvy A 82 3bv4 B 80 3bve B 157 3bvy B 39 3by4 A 89 3bv9 A 160 3byb B 39 3byp A 50 3byy C 111 3bzh A 54 3bzq A 71 3bzw A 148 3bzz B 52 3c35 A 39 3c55 A 3c0c A 103 3c0f B 56 3c0f A 123 3c2u A 392 3c37 B 108 3c4j A 64 3c1o A 145 3c1v B 64 3c24 B 133 3c2u A 392 3c37 B 108 3c4j A 3c5 A 3c1 3c4 A 3c4 3c4 A 3c4 3c5 B 3c5 A		A	89	3bn7	A	65	3bnj	A		3bo5	A	156		В	
3bon						1		1							
3bpy			l			1		1					ı	!	
3bpv						1		1							
3bcy								1						1	
3bsc A 104 3bs3 A 37 3bs4 A 160 3bs6 A 150 3bs9 B 23 3bsn A 245 3bsy B 123 3bt5 A 76 3but A 48 3buu A 140 3buv B 214 3bv6 D 220 3bv8 A 49 3bvk F 123 3bwh A 181 3bvd B 74 3bv8 B 250 3bwu C 103 3bwu D 51 3bwu F 55 3bv9 B 100 3bwx A 173 3bx4 A 82 3bx4 B 80 3bx9 A 50 50 50 50 50 50 50										_					
3bsn			l											1	
Shuy B 214 3bv6 D 220 3bv8 A 49 3bvk F 123 3bwh A 181			l			1		1				L	I		
3bwl B			l												
3bwv B 100 3bwx A 173 3bx4 A 82 3bx4 B 80 3bxe B 157 3bxp B 139 3by4 A 89 3by9 A 160 3byb B 39 3byp A 50 3byq C 111 3bzh A 54 3bzq A 71 3bzw A 148 3bzz B 52 3c05 A 39 3c05 D 34 3c0c A 10 3c0f B 56 3c0i A 123 3c18 A 104 3c1d A 64 3c1o A 145 3c1v B 64 3c24 B 133 3c2u A 392 3c37 B 108 3c3j F 238 3c3m A 72 3c3p C 68 3c3ay B 68 3c4b A 137 3c4s A 31 3c4z A 147 3c58 A 185 3c5a A 175 3c5e A 300 3c5j A 104 3c5j B 93 3c5k A 72 3c5n A 88 3c5y L 91 3c61 D 189 3c65 A 75 3c6e B 404 3c6a A 80 3c6e A 172 3c6k A 207 3c6v B 92 3c6w A 33 3c7f A 318 3c7t A 142 3c7x A 110 3c85 C 57 3c8e B 129 3c8e A 193 3c8i A 62 3c8l B 57 3c8m A 201 3c8o A 88 3c9u B 158 3c9x A 205 3c9z A 150 3ca7 A 31 3cai A 230 3can A 98 3cb0 D 106 3cb6 A 257 3cb1 A 85 3cbn A 32 3cc1 A 193 3cef A 63 3ceg A 55 3cek A 131 3cai A 230 3cc2 A 159 3cg1 A 186 3cg4 A 69 3c66 A 46 3cgh A 33 3cgi C 57 3cgx A 105 3ch0 A 180 3chk A 181 3chm C 47 3chx A 148 3ci6 B 95 3ci7 A 30 3cij A 145 3cc8 A 101 3ck0 B 135 3cg A 186 3cg4 A 69 3c66 A 46 3cgh A 33 3cgi C 57 3cgx A 105 3ch0 A 180 3chk A 181 3chm C 47 3cin A 162 3cit B 77 3civ A 184 3ciw A 209 3cj1 A 258 3cin A 162 3cit B 77 3civ A 184 3ciw A 209 3cj1 A 258 3cin A 162 3cit B 77 3civ A 184 3ciw A 209 3cj1 A 258 3cin A 162 3cit B 77 3civ A 184 3ciw A 209 3cj1 A 258 3cin A 162 3cit B 77 3civ A 184 3ciw			l			1							ı	!	
3bxp						1		1					l		
30yq C						1							I	!	
3c05	_					I								1	
3c18							_		I .						
3c2u			l			1							I	1	
3c3y						1		1					l		
3c5a						1						L	-	1	
3c5n			l			1							l		
3c6a						1		1					l		
3c7f			l			1							l		
3c8e A 193 3c8i A 62 3c8l B 57 3c8m A 201 3c8o A 88 3c8p A 34 3c8u A 94 3c8x A 58 3c8z A 253 3c97 A 58 3c9u B 135 3c9f B 217 3c9h B 174 3c9p A 82 3c9q A 133 3c9u B 158 3c9x A 205 3c9z A 150 3ca7 A 31 3cai A 230 3can A 98 3cb0 D 106 3cb6 A 257 3cb1 A 81 3cai A 81 3cbt A 123 3cbw B 239 3cbx A 48 3cc6 A 141 3cet B 228 3ce1 A 150						1			1				l		
3c8p A 34 3c8u A 94 3c8x A 58 3c8z A 253 3c9q A 58 3c9a B 135 3c9f B 217 3c9h B 174 3c9p A 82 3c9q A 133 3c9u B 158 3c9x A 205 3c9z A 150 3ca7 A 31 3cai A 230 3can A 98 3cb0 D 106 3cb6 A 257 3cb1 A 85 3cbn A 81 3cbt A 180 3cb6 A 295 3ccd A 48 3cc6 A 143 3cc8 A 101 3cc1 A 191 3ce6 A 295 3cc7 A 66 3cce A 41 3cc1 B 171 3cf2 A 159 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td></td><td></td></td<>													I		
Seya													l		
3c9u B 158 3c9x A 205 3c9z A 150 3ca7 A 31 3cai A 230 3can A 98 3cb0 D 106 3cb6 A 257 3cb1 A 85 3cbn A 81 3cbt A 123 3cbw B 239 3cbx A 48 3cc6 A 145 3cc8 A 101 3ccd B 53 3ccf A 63 3ccg A 95 3cck A 73 3ccz B 228 3ce1 A 186 3cg4 A 69 3cg6 A 46 3cgh A 181 3ch B 171 3ciz A 148 3ci6 B 95 3ci7 A 30 3cij A 181 3ch A 182 3cih A 182 3cih <td< td=""><td>_</td><td>1</td><td>l</td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>I</td><td>1</td><td></td></td<>	_	1	l			1			1				I	1	
3can A 98 3cb0 D 106 3cb6 A 257 3cbl A 85 3cbn A 81 3cbt A 123 3cbw B 239 3cbx A 48 3ce6 A 145 3cc8 A 101 3ccd B 53 3cef A 63 3ccg A 95 3cck A 73 3ccz B 228 3ce1 A 91 3ce6 A 295 3ce7 A 66 3cec A 41 3cet B 171 3cfz A 159 3cg1 A 186 3cg4 A 69 3cg6 A 46 3cgh A 181 3ctm A 182 3cib B 171 3cib A 180 3chk A 181 3ctm A 182 3cib A 181 3ctm A <			l			1				_		L		1	
3cbt A 123 3cbw B 239 3cbx A 48 3ce6 A 145 3cc8 A 101 3ced B 53 3cef A 63 3ceg A 95 3cck A 73 3ccz B 228 3ce1 A 91 3ce6 A 295 3ce7 A 66 3cec A 41 3cet B 171 3cfz A 159 3cg1 A 186 3cg4 A 69 3cg6 A 46 3cgh A 333 3cgi C 57 3cgx A 105 3ch0 A 180 3chk A 181 3chm A 89 3chv A 148 3ci6 B 95 3ci7 A 30 3cij A 181 3cim C 47 3cin A 162 3c			l					1				L	ı	!	
3ccd B 53 3ccf A 63 3ccg A 95 3cck A 73 3ccz B 228 3ce1 A 91 3ce6 A 295 3ce7 A 66 3cec A 41 3cet B 171 3cfz A 159 3cg1 A 186 3cg4 A 69 3cg6 A 46 3cgh A 333 3cgi C 57 3cgx A 105 3ch0 A 180 3chk A 181 3chm A 89 3chv A 148 3ci6 B 95 3ci7 A 30 3cij A 181 3chm C 47 3cin A 162 3cit B 77 3civ A 184 3ciy A 181 3cin C 47 3cip B 111 3cj			l			1		1					I	!	
3ce1 A 91 3ce6 A 295 3ce7 A 66 3cec A 41 3cet B 171 3cfz A 159 3cg1 A 186 3cg4 A 69 3cg6 A 46 3cgh A 333 3cgi C 57 3cgx A 105 3ch0 A 180 3chk A 181 3chm A 89 3chv A 148 3ci6 B 95 3ci7 A 30 3cij A 181 3chm A 258 3cj8 B 111 3cjd A 94 3cje A 73 3cjm A 173 3cjn A 75 3cjp B 135 3cjs A 38 3cjs B 39 3cjy A 133 3ckl A 69 3ck6 B 127 3c						1							l	1	
3cfz A 159 3cg1 A 186 3cg4 A 69 3cg6 A 46 3cgh A 333 3cgi C 57 3cgx A 105 3ch0 A 180 3chk A 181 3chm A 89 3chv A 148 3ci6 B 95 3ci7 A 30 3cij A 181 3chm C 47 3cin A 162 3cit B 77 3civ A 184 3ciw A 209 3cj1 A 258 3cj8 B 111 3cjd A 94 3cje A 73 3cjm A 173 3cjn A 75 3cjp B 135 3cjs A 38 3cjs B 39 3cjy A 133 3ckl A 69 3ck6 B 127 3			l			1							l	1	
3cgi C 57 3cgx A 105 3ch0 A 180 3chk A 181 3chm A 89 3chv A 148 3ci6 B 95 3ci7 A 30 3cij A 181 3cim C 47 3cin A 162 3cit B 77 3civ A 184 3ciw A 209 3cj1 A 258 3cj8 B 111 3cjd A 94 3cje A 73 3cjm A 173 3cjn A 75 3cjp B 135 3cjs A 38 3cjs B 39 3cjy A 133 3ck1 A 69 3ck6 B 127 3ckc B 318 3ckf A 150 3ckj A 150 3ckk A 119 3ckm A 182 <td< td=""><td></td><td></td><td>l</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>l</td><td></td><td></td></td<>			l			1							l		
3chv A 148 3ci6 B 95 3ci7 A 30 3cij A 181 3cim C 47 3cin A 162 3cit B 77 3civ A 184 3ciw A 209 3cj1 A 258 3cj8 B 111 3cjd A 94 3cje A 73 3cjm A 173 3cjn A 75 3cjp B 135 3cjs A 38 3cjs B 39 3cjy A 133 3ck1 A 69 3ck6 B 127 3ckc B 318 3ckf A 150 3ckj A 150 3ckk A 119 3ckm A 182 3cl5 A 245 3clm A 225 3cls C 137 3clv A 112 3cm0 A 182 <															
3cin A 162 3cit B 77 3civ A 184 3ciw A 209 3cj1 A 258 3cj8 B 111 3cjd A 94 3cje A 73 3cjm A 173 3cjn A 75 3cjp B 135 3cjs A 38 3cjs B 39 3cjy A 133 3ck1 A 69 3ck6 B 127 3ckc B 318 3ckf A 150 3ckk A 119 3ck6 B 127 3ckc B 318 3ckf A 150 3ckk A 119 3ckm A 182 3cl5 A 245 3clm A 150 3ckk A 119 3ckm A 182 3cl5 A 245 3clm A 225 3cls C 137			l		1	1							l	1	
3cj8 B 111 3cjd A 94 3cje A 73 3cjm A 173 3cjn A 75 3cjp B 135 3cjs A 38 3cjs B 39 3cjy A 133 3ck1 A 69 3ck6 B 127 3ckc B 318 3ckf A 150 3ckj A 150 3ckk A 119 3ckm A 182 3cl5 A 245 3clm A 225 3cls C 137 3clv A 112 3cm0 A 67 3cmb D 154 3cmc Q 175 3cmg A 410 3cmj A 112 3cm4 B 69 3cne C 96 3cnh A 73 3cnk B 60 3cnr B 30 3cp0 A 31		1	l			1					1		I	1	
3cjp B 135 3cjs A 38 3cjs B 39 3cjy A 133 3ck1 A 69 3ck6 B 127 3ckc B 318 3ckf A 150 3ckj A 150 3ckk A 119 3ckm A 182 3cl5 A 245 3clm A 225 3cls C 137 3clv A 112 3cm0 A 67 3cmb D 154 3cmc Q 175 3cmg A 410 3cmj A 112 3cm4 B 69 3cne C 96 3cnh A 73 3cnk B 60 3cnr B 30 3cnu A 69 3cny A 191 3co8 A 231 3cou A 108 3cox A 318 3cp0 A 31 <t< td=""><td></td><td></td><td>!</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>l.</td><td></td><td>1</td><td></td></t<>			!									l.		1	
3ck6 B 127 3ckc B 318 3ckf A 150 3ckj A 150 3ckk A 119 3ckm A 182 3cl5 A 245 3clm A 225 3cls C 137 3clv A 112 3cm0 A 67 3cmb D 154 3cmc Q 175 3cmg A 410 3cmj A 306 3cn4 B 69 3cne C 96 3cnh A 73 3cnk B 60 3cnr B 30 3cnu A 69 3cny A 191 3co8 A 231 3cou A 108 3cox A 318 3cp0 A 31 3cp5 A 63 3cp7 B 134 3cpg A 138 3cpq B 50 3cps B 193 <			l	_		I	-								
3ckm A 182 3cl5 A 245 3clm A 225 3cls C 137 3clv A 112 3cm0 A 67 3cmb D 154 3cmc Q 175 3cmg A 410 3cmj A 306 3cn4 B 69 3cne C 96 3cnh A 73 3cnk B 60 3cnr B 30 3cnu A 69 3cny A 191 3co8 A 231 3cou A 108 3cox A 318 3cp0 A 31 3cp5 A 63 3cp7 B 134 3cpg A 138 3cpq B 50 3cps B 193 3cpt A 61 3cq0 A 200 3cq2 A 22 3cq5 B 228 3cqb B 54			l	_		I		1					!	1	
3cm0 A 67 3cmb D 154 3cmc Q 175 3cmg A 410 3cmj A 306 3cn4 B 69 3cne C 96 3cnh A 73 3cnk B 60 3cnr B 30 3cnu A 69 3cny A 191 3co8 A 231 3cou A 108 3cox A 318 3cp0 A 31 3cp5 A 63 3cp7 B 134 3cpg A 138 3cpq B 50 3cps B 193 3cpt A 61 3cq0 A 200 3cq2 A 22 3cq5 B 228 3cqb B 54 3cql A 160 3cqt A 39 3cqv A 102 3crm A 68 3crn B 51 3cr			l					1			1		ı	1	
3cn4 B 69 3cne C 96 3cnh A 73 3cnk B 60 3cnr B 30 3cnu A 69 3cny A 191 3co8 A 231 3cou A 108 3cox A 318 3cp0 A 31 3cp5 A 63 3cp7 B 134 3cpg A 138 3cpq B 50 3cps B 193 3cpt A 61 3cq0 A 200 3cq2 A 22 3cq5 B 228 3cqb B 54 3cql A 160 3cqt A 39 3cqv A 102 3crm A 68 3crn B 51 3cry A 106 3csk A 73 3css A 173 3ct1 A 123 3ctg A 72 3ctk					1	1		1					l	1	
3cnu A 69 3cny A 191 3co8 A 231 3cou A 108 3cox A 318 3cp0 A 31 3cp5 A 63 3cp7 B 134 3cpg A 138 3cpq B 50 3cps B 193 3cpt A 61 3cq0 A 200 3cq2 A 22 3cq5 B 228 3cqb B 54 3cql A 160 3cqt A 39 3cqv A 102 3crm A 68 3crn B 51 3cry A 106 3csk A 73 3css A 173 3ct1 A 123 3ctg A 72 3ctk A 173 3ctp B 164 3ctz A 385 3cu0 A 119 3cu2 B 128 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>·</td><td>1</td><td></td></td<>										_			·	1	
3cp0 A 31 3cp5 A 63 3cp7 B 134 3cpg A 138 3cpq B 50 3cps B 193 3cpt A 61 3cq0 A 200 3cq2 A 22 3cq5 B 228 3cqb B 54 3cql A 160 3cqt A 39 3cqv A 102 3crm A 68 3crn B 51 3cry A 106 3csk A 73 3css A 173 3ct1 A 123 3ctg A 72 3ctk A 173 3ctp B 164 3ctz A 385 3cu0 A 119 3cu2 B 128 3cu4 A 42 3cu9 A 205 3cui A 228 3cux A 276 3cwv A 126 <td< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td>l .</td><td></td></td<>			1										I	l .	
3cps B 193 3cpt A 61 3cq0 A 200 3cq2 A 22 3cq5 B 228 3cqb B 54 3cql A 160 3cqt A 39 3cqv A 102 3crm A 68 3crn B 51 3cry A 106 3csk A 73 3css A 173 3ct1 A 123 3ctg A 72 3ctk A 173 3ctp B 164 3ctz A 385 3cu0 A 119 3cu2 B 128 3cu4 A 42 3cu9 A 205 3cui A 228 3cux A 276 3cv1 A 396 3cvb A 69 3cve A 38 3cvo C 85 3cwr B 90 3cwv A 126	l .		l					1						1	
3cqb B 54 3cql A 160 3cqt A 39 3cqv A 102 3crm A 68 3crn B 51 3cry A 106 3csk A 73 3css A 173 3ct1 A 123 3ctg A 72 3ctk A 173 3ctp B 164 3ctz A 385 3cu0 A 119 3cu2 B 128 3cu4 A 42 3cu9 A 205 3cui A 228 3cux A 276 3cv1 A 396 3cvb A 69 3cve A 38 3cvo C 85 3cwr B 90 3cwv A 126 3cww A 545 3cx5 E 42 3cx5 F 3 3cx5 G 36	_		!											1	
3crn B 51 3cry A 106 3csk A 73 3css A 173 3ct1 A 123 3ctg A 72 3ctk A 173 3ctz A 385 3cu0 A 119 3cu2 B 128 3cu4 A 42 3cu9 A 205 3cui A 228 3cux A 276 3cv1 A 396 3cvb A 69 3cve A 38 3cvo C 85 3cwr B 90 3cwv A 126 3cww A 545 3cx5 E 42 3cx5 F 3 3cx5 G 36			l		A							L		B	
3ctg A 72 3ctk A 173 3ctp B 164 3ctz A 385 3cu0 A 119 3cu2 B 128 3cu4 A 42 3cu9 A 205 3cui A 228 3cux A 276 3cv1 A 396 3cvb A 69 3cve A 38 3cvo C 85 3cwr B 90 3cwv A 126 3cww A 545 3cx5 E 42 3cx5 F 3 3cx5 G 36		В	l	3cql	A	I		A			A		!	A	
3cu2 B 128 3cu4 A 42 3cu9 A 205 3cui A 228 3cux A 276 3cv1 A 396 3cvb A 69 3cve A 38 3cvo C 85 3cwr B 90 3cwv A 126 3cww A 545 3cx5 E 42 3cx5 F 3 3cx5 G 36	3crn	В	l	3cry	A	106	3csk		73	3css	A		3ct1	A	123
3cv1 A 396 3cvb A 69 3cve A 38 3cvo C 85 3cwr B 90 3cwv A 126 3cww A 545 3cx5 E 42 3cx5 F 3 3cx5 G 36	3ctg	A	72	3ctk	A	173	3ctp	В	164	3ctz	A	385	3cu0	A	119
3cwv A 126 3cww A 545 3cx5 E 42 3cx5 F 3 3cx5 G 36	3cu2	В	128	3cu4	A	42	3cu9	A	205	3cui	A	228	3cux	A	276
	3 cv 1	A	396	3cvb	A	69	3cve	A	38	3cvo	C	85	3cwr	В	90
3cx5 I 7 3cx5 O 100 3cxk A 77 3cxm A 156 3cxn B 133	3cwv	A	126	3cww	A	545	3 cx5	E	42	3cx5	F	3	3cx5	G	36
	3cx5	I	7	3cx5	О	100	3cxk	A	77	3cxm	A	156	3cxn	В	133

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
3cy4	A	100	3cyi	A	68	Зсур	В	74	3czf	В	70	3czt	X	57
3czx	В	116	3czz	В	74	3d00	A	20	3d01	D	91	3d03	В	178
3d06	A	108	3d0c	В	108	3d0f	A	56	3d0j	A	71	3d0k	A	149
3d0n	A	167	3d0o	A	187	3d1b	С	75	3d1g	A	153	3d1k	A	98
3d1p	A	63	3d1r	A	154	3d22	A	81	3d2l	В	89	3d2q	A	50
3d2w	A	51	3d30	A	85	3d32	A	78	3d33	В	55	3d34	A	116
3d3b	A	70	3d3r	A	32	3d3s	D	52	3d3y	A	169	3d3z	A	140
3d40	A	153	3d43	В	138	3d47	A	243	3d4e	A	94	3d4i	A	143
3d4u	A	192	3d59	A	187	3d5p	A	74	3d6i	В	75	3d6r	A	65
3d79	A	114	3d7a	В	60	3d7i	В	45	3d7j	D	78	3d85	С	39
3d8t	A	116	3d9n	В	95	3d9t	A	64	3d9x	С	65	3d9y	A	66
3da0	С	93	3da8	A	132	3dac	A	48	3dai	A	69	3dal	A	108
3dan	A	260	3dao	A	153	3daq	A	221	3das	A	182	3dau	A	95
3db7	A	80	3dbk	A	178	3dbo	В	63	3dc5	С	129	3dc8	В	318
3dcd	В	207	3dcn	A	108	3dcy	A	136	3dcz	A	98	3dd6	A	117
3dd7	$\overline{\mathrm{C}}$	68	3ddj	A	147	3ddl	В	52	3ddq	В	183	3dds	В	487
3def	Ā	120	3del	В	141	3deo	A	100	3dew	A	88	3df7	A	161
3df8	A	61	3dff	A	152	3dfg	A	81	3dfq	A	183	3dg3	A	217
3dgb	A	208	3dgp	A	41	3dgp	В	43	3dgt	A	188	3dha	A	155
3dhf	В	320	3dhi	В	203	3dhi	C	44	3dho	C	146	3dhp	A	352
3di4	В	181	3die	A	55	3dj9	A	59	3dje	В	267	3djl	A	308
3djo	A	85	3dk9	A	275	3dkc	A	197	3dkm	A	51	3dkr	A	158
3dl0	A	139	3dlc	A	138	3dlm	A	126	3dlq	I	66	3dlq	R	91
3dlv	A	32	3dm8	A	78	$3 \mathrm{dmc}$	A	88	3dme	В	194	3dmg	A	224
3dmi	A	54	3dmo	A	83	3 dms	A	255	3dn7	В	77	3dnf	В	119
3dnh	В	36	3dnp	A	144	3dnu	A	215	3do8	A	81	3dou	A	95
3dpg	В	136	3dpk	A	84	3dqg	A	87	3dqp	A	148	3dqy	A	60
3dr0	C	47	3dr4	В	137	3dr6	В	101	3dra	A	206	3dra	В	223
3drw	В	225	3drz	В	42	3ds4	В	54	3ds8	A	160	3dsb	В	108
3dsk	A	315	3dso	A	31	3dt5	A	24	3dt9	A	130	3dtb	A	393
3dtt	A	129	3dtz	C	131	3dup	A	160	3dur	В	73	3duw	A	112
3dv9	A	132	3dvw	A	134	3dwg	A	197	3dwg	$^{-}$ C	51	3dwv	В	91
3dxl	A	204	3dxs	X	38	3dxt	A	203	3dxz	A	128	3 dy 0	A	156
3dyj	A	153	3dz1	A	152	3dz4	В	43	3dza	A	101	3dzw	A	69
3dzz	A	215	3e02	A	110	3e03	A	150	3e05	В	65	3e0e	A	49
3e0h	A	55	3e0i	A	172	3e0x	A	171	3e0z	A	64	3e11	В	72
3e13	X	225	3e17	В	49	3e18	В	152	3e23	A	105	3e2d	A	341
3e2v	В	256	3e39	В	112	3e3m	D	189	3e3u	A	122	3e48	A	141
3e49	A	134	3e4g	A	116	3e4v	A	118	3e4w	В	143	3e55	A	106
3e57	A	88	3e58	A	142	3e5h	A	104	3e5u	A	108	3e6j	A	149
3e6q	G	70	3e6s	F	88	3e6z	X	48	3e7d	A	99	3e7h	A	67
3e7r	L	23	3e8o	В	67	3e8t	A	128	3e96	В	188	3e97	A	106
3e99	A	73	3e9a	A	157	3e9f	A	57	3e9k	A	285	3e9t	В	73
3e9v	A	66	3ea3	В	184	3ea6	A	99	3eau	A	164	3eaz	A	74
3ebb	В	144	3ebh	A	611	3ebl	A	180	3ebt	A	85	3ebv	A	188
3eby	A	85	3ec0	В	63	3ec3	В	117	3ec4	В	109	3ec6	A	70
3ec9	В	70	3ecd	A	235	3ecf	В	74	3ech	A	80	3ecy	В	14
3ed4	В	243	3ed5	A	111	3ed7	A	111	3edf	A	390	3edg	A	133
3edn	A	184	3edo	В	104	3eds	A	80	3edv	A	184	3ee4	A	172
3eea	В	92	3eeh	A	56	3ees	A	32	3eet	A	66	3ef2	В	205
3ef4	A	70	3ef6	A	188	3ef8	A	96	3efy	A	112	3eg4	A	156
3ega	A	136	3egg	A	176	3egg	D	32	3ego	В	105	3egw	C	117
10	1 -	1	- 00		, ,		1 -		- 0-			tinued or	1	

3ch	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
3acij	3eh1	A	400	3ehe	В	125	3ehg	A	77	3ehw	В	85	3ei9	В	294
3eju	3eif	A	471	3ein	A	139		A	189	3eiz	A	106	3ej9	В	33
3eju A 742 3ejv A 89 3ek2 A 161 3ek3 A 109 3eki A 222 3els A 75 3elw A 159 3ex A 76 3emi A 213 3elk A 70 3emu A 108 3en0 C 159 3en8 A 72 3enk B 131 3eou A 173 3eof A 187 3erb B 3ed A 4 3eof A 187 3erb B 180 A 190 3eof A 190 3eof A 190 3eof A 190 3eof A 59 3est A 143 3eef C 253 3etn A 149 3eof A 55 3ewl D 254 3eof A 143 3eef D 153 3eul A	3ej9	С	38	3eja	A	145	3ejf	A	125	3ejg	A	114		A	83
3clo		A			A	89		A			A	109		A	
3els		В	142		A	183		В			A		1	A	
Semr							_						1	1	
3enu			l					1						1	
3coi															
Seqx		A	73	3eoi	A	187		A			A	212	1	1	
3erp			l	~				1							
3est			l											1	
3etu					A										
Seun			l					1						1	
3evy A			l										I	1	
3ewi													I		
3exn A 88 3exr A 152 3ey6 A 81 3ey8 B 68 3eye A 91 3eyg A 152 3eyi A 44 3eyp B 11 3eyt D 86 3ezi B 47 3f09 A 42 3f0d F 82 3f0h A 218 3f0i A 82 3f0n B 181 3f0y C 149 3f1p B 1 3f2e A 42 3f2k A 167 3f3x A 62 3f2z A 107 3f40 A 55 3f42 B 35 3f34 A 69 3f44 A 120 3f51 B 342 3f50 G 65 3f5v B 137 3f67 A 130 3f6c B 70 3f6b B 125 3f60 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>I</td> <td>1</td> <td></td>								1					I	1	
3eyg				-									1		
3f09			l					1						1	
3f0y													1	1	
3f2z			l										1	1	
3f3z A 155 3f40 A 55 3f42 B 35 3f43 A 69 3f44 A 120 3f47 A 171 3f4m A 66 3f4s A 101 3f52 A 42 3f5h B 20 3f51 B 342 3f50 G 65 3f5v B 137 3f67 A 130 3f6c B 70 3f6d B 125 3f60 A 164 3f74 B 121 3f75 A 131 3f75 P 46 3f7e A 81 3f71 A 95 3f7q A 112 3f7w A 133 3f7x A 69 3f8d B 182 3f8k A 61 3f8m B 103 3f8x A 224 3f8x D 78 3f95 B 94 3f			l					1					1		
3647			l					1		_			1	1	
3f51 B 342 3f50 G 65 3f5v B 137 3f67 A 130 3f6c B 70 3f6d B 125 3f60 A 56 3f6q A 116 3f6q B 47 3f6v A 58 3f7e A 81 3f71 A 95 3f7q A 112 3f7w A 133 3f7x A 69 3f8d B 182 3f8k A 61 3f8m B 103 3f8t A 224 3f8x D 78 3f95 B 94 3f9b A 197 3f9r A 136 3f9s B 80 3faj A 49 3fan A 103 3fau A 41 3f9r A 136 3f9s B 80 3faj A 49 3fau A 197 3f9			l										1	1	
3f6d B 125 3f6o A 56 3f6q A 116 3f6q B 47 3f6v A 58 3f6w C 27 3f6y A 164 3f74 B 121 3f75 A 131 3f75 P 46 3f7e A 81 3f71 A 95 3f7q A 112 3f7w A 133 3f7x A 69 3f8d B 182 3f8k A 61 3f8m B 103 3f8t A 224 3f8x D 78 3f95 B 94 3f9b A 197 3f9b A 197 3f9t A 49 3fan A 103 3fau A 41 3f9p A 52 3fbg A 197 3f0l A 49 3fbu B 96 3fc0 B 58 3fcd								1					1	1	
3f6w C 27 3f6y A 164 3f74 B 121 3f75 A 131 3f75 P 46 3f7e A 81 3f71 A 95 3f7q A 112 3f7w A 133 3f7x A 69 3f8d B 182 3f8k A 61 3f8m B 103 3f8t A 224 3f8x D 78 3f95 B 94 3f9b A 197 3f9r A 136 3f9s B 80 3faj A 49 3fam A 103 3fau A 41 3fb9 A 52 3fbg B 98 3faj A 49 3fbu B 96 3fe0 B 58 3fcd B 56 3fde B 137 3fdh A 49 3fdh A 26 3fde B </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>								1					1		
3f7e A 81 3f7l A 95 3f7q A 112 3f7w A 133 3f7x A 69 3f8d B 182 3f8k A 61 3f8m B 103 3f8t A 224 3f8x D 78 3f95 B 94 3f9b A 197 3f9r A 136 3f9s B 80 3faj A 49 3fan A 103 3fau A 41 3f9p A 52 3fbg A 197 3fb1 A 49 3fbu B 96 3fc0 B 56 3fcp D 137 3fb1 A 49 3fd3 A 112 3fd7 B 77 3fdb A 26 3fde B 131 3fdh A 265 3fdj A 486 3fe4 B 141 3fe							_	1		_			1	1	
3f8d B 182 3f8k A 61 3f8m B 103 3f8t A 224 3f8x D 78 3f95 B 94 3f9b A 197 3f9r A 136 3f9s B 80 3faj A 49 3fan A 103 3fau A 41 3fb9 A 52 3fbg A 197 3fb1 A 49 3fbu B 96 3fc0 B 58 3fcd B 56 3fcp D 137 3fcx B 178 3fd3 A 112 3fd7 B 77 3fdb A 26 3fde B 131 3fdh A 265 3fdj A 155 3fdl A 98 3fdq A 71 3fdr A 433 3fex A 72 3fev A 43 3ff0			l								1		1		
3f95 B 94 3f9b A 197 3f9r A 136 3f9s B 80 3faj A 49 3fan A 103 3fau A 41 3fb9 A 52 3fbg A 197 3fbl A 49 3fbu B 96 3fe0 B 58 3fcd B 56 3fep D 137 3fcbl A 49 3fd3 A 112 3fd7 B 77 3fdb A 26 3fde B 131 3fdh A 265 3fdj A 155 3fd1 A 98 3fdq A 71 3fdr A 433 3feb A 72 3fev A 43 3ff0 B 74 3ff1 B 297 3fg2 A 49 3ff5 B 35 3fgv A 54 3fgy </td <td></td> <td>1</td> <td>l</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td></td>		1	l					1			1		1	1	
3fan A 103 3fau A 41 3fb9 A 52 3fbg A 197 3fbl A 49 3fbu B 96 3fc0 B 58 3fcd B 56 3fcp D 137 3fcx B 178 3fd3 A 112 3fd7 B 77 3fdb A 26 3fde B 131 3fdh A 265 3fdij A 155 3fdl A 98 3fdq A 71 3fdr A 56 3fdx A 73 3fe0 A 86 3fe4 B 141 3fe7 A 59 3fed A 433 3fes A 72 3fev A 43 3ff9 B 54 3ff1 B 297 3fg2 A 49 3ff5 B 35 3fg8 A 56 3fg9 </td <td></td> <td></td> <td>l</td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td>I</td> <td></td> <td></td>			l										I		
3fbu B 96 3fc0 B 58 3fcd B 56 3fcp D 137 3fcx B 178 3fd3 A 112 3fd7 B 77 3fdb A 26 3fde B 131 3fdh A 265 3fdj A 155 3fdl A 98 3fdq A 71 3fdr A 56 3fdx A 73 3fe0 A 86 3fe4 B 141 3fe7 A 59 3fed A 433 3fes A 72 3fev A 43 3ff0 B 74 3ff1 B 297 3ff2 A 49 3ff5 B 35 3fg8 A 56 3fg9 E 106 3fgd A 207 3fge A 99 3fgr A 100 3fgv A 54 3fgy </td <td></td> <td></td> <td>l</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>			l					1						1	
3fd3 A 112 3fd7 B 77 3fdb A 26 3fde B 131 3fdh A 265 3fdj A 155 3fdl A 98 3fdq A 71 3fdr A 56 3fdx A 73 3fe0 A 86 3fe4 B 141 3fe7 A 59 3fed A 433 3fes A 72 3fev A 43 3ff0 B 74 3ff1 B 297 3ff2 A 49 3ff5 B 35 3ff7 C 69 3ff9 B 54 3ffr A 218 3fg0 F 309 3fg1 D 36 3fg8 A 56 3fg9 E 106 3fgd A 207 3fge A 99 3fgr A 100 3fgv A 54 3fgy </td <td></td> <td></td> <td>l</td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td>_</td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td>			l		1			1		_			1	1	
3fdj A 155 3fdl A 98 3fdq A 71 3fdr A 56 3fdx A 73 3fe0 A 86 3fe4 B 141 3fe7 A 59 3fed A 433 3fes A 72 3fev A 43 3ff0 B 74 3ff1 B 297 3ff2 A 49 3ff5 B 35 3ff7 C 69 3ff9 B 54 3ffr A 218 3fg0 F 309 3fg1 D 386 3fg8 A 56 3fg9 E 106 3fgd A 207 3fge A 99 3fgr A 100 3fgv A 54 3fgy B 71 3fh1 A 58 3fh2 A 85 3fh9 A 100 3fgv A 56 3fid <td></td> <td></td> <td>l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td>			l										1	1	
3fe0 A 86 3fe4 B 141 3fe7 A 59 3fed A 433 3fes A 72 3fev A 43 3ff0 B 74 3ff1 B 297 3ff2 A 49 3ff5 B 35 3ff7 C 69 3ff9 B 54 3ffr A 218 3fg0 F 309 3fg1 D 386 3fg8 A 56 3fg9 E 106 3fgd A 207 3fge A 99 3fgr A 100 3fgv A 54 3fgy B 71 3fh1 A 58 3fh2 A 85 3fh9 A 105 3fhd A 261 3fhf A 108 3fhg A 78 3fh1 C 120 3fhw B 48 3fiy A 98 3fka<			l					1						1	
3fev A 43 3ff0 B 74 3ff1 B 297 3ff2 A 49 3ff5 B 35 3ff7 C 69 3ff9 B 54 3ffr A 218 3fg0 F 309 3fg1 D 386 3fg8 A 56 3fg9 E 106 3fgd A 207 3fge A 99 3fgr A 100 3fgv A 54 3fgy B 71 3fh1 A 58 3fh2 A 85 3fh9 A 100 3fgv A 261 3fhf A 108 3fhg A 78 3fh1 C 120 3fhw B 48 3fig B 89 3fia A 56 3fid A 185 3fil B 36 3fiq A 102 3fiv A 98 3fk8<													1		
3ff7 C 69 3ff9 B 54 3ffr A 218 3fg0 F 309 3fg1 D 386 3fg8 A 56 3fg9 E 106 3fgd A 207 3fge A 99 3fgr A 100 3fgv A 54 3fgy B 71 3fh1 A 58 3fh2 A 99 3fgr A 100 3fhd A 54 3fgy B 71 3fh1 A 58 3fh2 A 85 3fh9 A 105 3fhd A 261 3fhf A 108 3fhg A 78 3fh1 C 120 3fhw B 48 3fig B 36ia A 56 3fid A 185 3fil B 36 3fiq A 102 3fiu D 135 3fj2 A<		1	l					1					1	1	
3fg8 A 56 3fg9 E 106 3fgd A 207 3fge A 99 3fgr A 100 3fgv A 54 3fgy B 71 3fh1 A 58 3fh2 A 85 3fh9 A 105 3fhd A 261 3fhf A 108 3fhg A 78 3fhl C 120 3fhw B 48 3fi9 B 89 3fia A 56 3fid A 185 3fil B 36 3fiq A 102 3fiu D 135 3fj1 A 197 3fj2 A 99 3fjs C 50 3fju B 55 3fjv A 98 3fk8 A 76 3fka A 67 3fkb E 97 3fkc A 64 3fm2 B 160 3fl2 </td <td></td> <td>1</td> <td>l</td> <td></td> <td>В</td> <td></td> <td></td> <td>1</td> <td></td> <td>3 fg 0</td> <td>1</td> <td>309</td> <td>I</td> <td>D</td> <td></td>		1	l		В			1		3 fg 0	1	309	I	D	
3fgv A 54 3fgy B 71 3fh1 A 58 3fh2 A 85 3fh9 A 105 3fhd A 261 3fhf A 108 3fhg A 78 3fhl C 120 3fhw B 48 3fi9 B 89 3fia A 56 3fid A 185 3fil B 36 3fiq A 102 3fiu D 135 3fj1 A 197 3fj2 A 99 3fjs C 50 3fju B 55 3fyv A 98 3fk8 A 76 3fka A 67 3fkb E 97 3fkc A 64 3fkr B 160 3fl2 A 59 3flb A 105 3flg A 82 3fm0 A 212 3fm2 B 36 3fn5 <td></td> <td></td> <td>!</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>l.</td> <td></td> <td></td> <td></td>			!		1							l.			
3fhd A 261 3fhf A 108 3fhg A 78 3fhl C 120 3fhw B 48 3fi9 B 89 3fia A 56 3fid A 185 3fil B 36 3fiq A 102 3fiu D 135 3fj1 A 197 3fj2 A 99 3fjs C 50 3fju B 55 3fyv A 98 3fk8 A 76 3fka A 67 3fkb E 97 3fkc A 64 3fkr B 160 3fl2 A 59 3flb A 105 3flg A 82 3fm0 A 212 3fm2 A 75 3fmb B 58 3fmc A 222 3fmk A 239 3fmu A 1 3fm3 A 384 3fo8 </td <td></td> <td></td> <td>l</td> <td></td> <td></td> <td>!!!</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			l			!!!		1							
3fi9 B 89 3fia A 56 3fid A 185 3fil B 36 3fiq A 102 3fiu D 135 3fj1 A 197 3fj2 A 99 3fjs C 50 3fju B 55 3fjv A 98 3fk8 A 76 3fka A 67 3fkb E 97 3fkc A 64 3fkr B 160 3fl2 A 59 3flb A 105 3flg A 82 3fm0 A 212 3fm2 A 75 3fmb B 58 3fmc A 222 3fmk A 239 3fmu A 1 3fmy A 36 3fn2 B 36 3fn5 A 101 3fn8 B 25 3fnc A 97 3fo3 A 384 3fo8 <td></td> <td></td> <td>!</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>I</td> <td>1</td> <td></td>			!								1		I	1	
3fiu D 135 3fj1 A 197 3fj2 A 99 3fjs C 50 3fju B 55 3fjv A 98 3fk8 A 76 3fka A 67 3fkb E 97 3fkc A 64 3fkr B 160 3fl2 A 59 3flb A 105 3flg A 82 3fm0 A 212 3fm2 A 75 3fmb B 58 3fmc A 222 3fmk A 239 3fmu A 1 3fmy A 36 3fn2 B 36 3fn5 A 101 3fn8 B 25 3fnc A 97 3fo3 A 384 3fo8 D 152 3fob B 170 3foj A 57 3fot A 321 3fpq B 144 3fpr </td <td></td> <td></td> <td>l</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>			l			1			1				1		
3fjv A 98 3fk8 A 76 3fka A 67 3fkb E 97 3fkc A 64 3fkr B 160 3fl2 A 59 3flb A 105 3flg A 82 3fm0 A 212 3fm2 A 75 3fmb B 58 3fmc A 222 3fmk A 239 3fmu A 1 3fmy A 36 3fn2 B 36 3fn5 A 101 3fn8 B 25 3fnc A 97 3fo3 A 384 3fo8 D 152 3fob B 170 3foj A 57 3fot A 321 3fp2 A 175 3fp5 A 67 3fpc A 223 3fpf A 179 3fpk B 145 3fp3 C 118 3fq4								1			1			1	
3fkr B 160 3fl2 A 59 3flb A 105 3flg A 82 3fm0 A 212 3fm2 A 75 3fmb B 58 3fmc A 222 3fmk A 239 3fmu A 1 3fmy A 36 3fn2 B 36 3fn5 A 101 3fn8 B 25 3fnc A 97 3fo3 A 384 3fo8 D 152 3fob B 170 3foj A 57 3fot A 321 3fp2 A 175 3fp5 A 67 3fpc A 223 3fpf A 179 3fpk B 145 3fpq B 144 3fpr D 38 3fpu B 35 3fpw A 77 3fpz B 192 3fq3 C 118 3f		A													
3fm2 A 75 3fmb B 58 3fmc A 222 3fmk A 239 3fmu A 1 3fmy A 36 3fn2 B 36 3fn5 A 101 3fn8 B 25 3fnc A 97 3fo3 A 384 3fo8 D 152 3fob B 170 3foj A 57 3fot A 321 3fp2 A 175 3fp5 A 67 3fpc A 223 3fpf A 179 3fpk B 145 3fpq B 144 3fpr D 38 3fpu B 35 3fpw A 77 3fpz B 192 3fq3 C 118 3fq4 A 68 3fqm A 58 3fr7 A 299 3frh A 154 3frq A 60 3fs			1					1	1						
3fmy A 36 3fn2 B 36 3fn5 A 101 3fn8 B 25 3fnc A 97 3fo3 A 384 3fo8 D 152 3fob B 170 3foj A 57 3fot A 321 3fp2 A 175 3fp5 A 67 3fpc A 223 3fpf A 179 3fpk B 145 3fpq B 144 3fpr D 38 3fpu B 35 3fpw A 77 3fpz B 192 3fq3 C 118 3fq4 A 68 3fqm A 58 3fr7 A 299 3frh A 154 3frq A 112 3frr A 94 3fs2 B 120 3fs5 A 79 3fs1 C 57 3fsd A 60 3f		A	l					1					3fmu	1	
3fo3 A 384 3fo8 D 152 3fob B 170 3foj A 57 3fot A 321 3fp2 A 175 3fp5 A 67 3fpc A 223 3fpf A 179 3fpk B 145 3fpq B 144 3fpr D 38 3fpu B 35 3fpw A 77 3fpz B 192 3fq3 C 118 3fq4 A 68 3fqm A 58 3fr7 A 299 3frh A 154 3frq A 112 3frr A 94 3fs2 B 120 3fs5 A 79 3fs7 A 57 3fsd A 60 3fse A 52 3fss A 127 3fsy A 129 3ft1 C 57			l		1			1			1	L			
3fp2 A 175 3fp5 A 67 3fpc A 223 3fpf A 179 3fpk B 145 3fpq B 144 3fpr D 38 3fpu B 35 3fpw A 77 3fpz B 192 3fq3 C 118 3fq4 A 68 3fqm A 58 3fr7 A 299 3frh A 154 3frq A 112 3frr A 94 3fs2 B 120 3fs5 A 79 3fs7 A 57 3fsd A 60 3fse A 52 3fss A 127 3fsy A 129 3ft1 C 57			l		D			1				l	3fot		1
3fpq B 144 3fpr D 38 3fpu B 35 3fpw A 77 3fpz B 192 3fq3 C 118 3fq4 A 68 3fqm A 58 3fr7 A 299 3frh A 154 3frq A 112 3frr A 94 3fs2 B 120 3fs5 A 79 3fs7 A 57 3fsd A 60 3fse A 52 3fss A 127 3fsy A 129 3ft1 C 57			l										1	1	
3fq3 C 118 3fq4 A 68 3fqm A 58 3fr7 A 299 3frh A 154 3frq A 112 3frr A 94 3fs2 B 120 3fs5 A 79 3fs7 A 57 3fsd A 60 3fse A 52 3fss A 127 3fsy A 129 3ft1 C 57			!					1						1	
3frq A 112 3frr A 94 3fs2 B 120 3fs5 A 79 3fs7 A 57 3fsd A 60 3fse A 52 3fss A 127 3fsy A 129 3ft1 C 57		1	l			1									1
3fsd A 60 3fse A 52 3fss A 127 3fsy A 129 3ft1 C 57														1	
								1					1	1	
			l					1			1		1		

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
3fv3	G	230	3fv5	A	99	3fv9	G	226	3fvb	В	110	3fvh	A	148
3fvu	В	296	3fvy	A	465	3fw2	В	80	3fw3	A	165	3fwa	A	310
3fwh	A	190	3fwy	A	172	3fwz	В	81	3fx4	A	191	3fx7	A	58
3fxg	F	225	3fxh	A	41	3fxq	A	170	3fxz	A	163	3fy1	В	250
3 fy 3	A	43	3fyb	A	56	3fym	A	56	3fyn	A	75	3fyq	A	74
3fz4	A	66	3fza	A	80	3fze	A	77	3g00	A	175	3g02	В	256
3g08	A	159	3g0e	A	227	3g 0 k	A	85	3g0m	A	71	3g0o	A	141
3g 0 t	В	304	3g14	A	102	3g16	A	102	3g1j	В	45	3g1l	A	113
3g1v	A	133	3g1z	A	175	3g20	В	81	3g23	A	163	3g25	A	277
3g26	A	49	3g2b	A	51	3g2s	В	84	3g36	С	33	3g39	A	104
3g3s	В	110	3g 3 t	A	146	3g48	A	74	3g51	A	140	3g5j	В	86
3g5p	D	117	3g 5 r	A	226	3g5t	A	5	3g5w	С	215	3g66	A	109
3g68	A	232	3g6k	F	213	3g 6 m	A	258	3g 7 d	A	207	3g7g	E	72
3g7n	В	166	3g 7 r	В	110	3g7u	A	137	3g 7 w	A	245	3g85	A	132
3g89	В	121	3g8h	A	86	3g8y	A	232	3g 8 z	A	69	3g98	В	43
3g 9 a	В	77	3g9k	L	138	3g9m	В	24	3ga3	A	91	3ga4	A	78
3ga7	A	153	3gad	F	83	3gag	В	124	3gah	A	120	3gas	E	132
3gay	В	128	3gaz	В	153	3gba	D	174	3gbe	A	355	$3 \mathrm{gbs}$	A	104
3gbw	A	101	$3 \mathrm{gbz}$	A	121	3gc6	A	144	3gcz	A	162	3 gd 6	A	169
3gd8	A	122	$3 \mathrm{gdc}$	A	191	3gdl	В	155	3 gdp	В	334	3ge3	A	324
3ge3	E	58	3ge5	В	115	3ge6	A	122	3ged	A	114	3gef	A	67
3gem	$\overline{\mathrm{C}}$	127	3geu	D	59	3gf3	A	362	3gf6	В	144	3gfa	A	111
3gfu	A	83	3gfv	A	132	3gg2	D	229	3gg7	A	158	3gg9	В	83
3ggw	В	133	3ggw	C	175	3gh5	A	358	3gh6	A	147	3ghd	A	40
3ghj	A	55	3gi7	В	44	3gip	A	269	3gir	A	207	3giu	A	130
3giw	A	164	3gj0	В	116	3gju	A	293	3gjy	A	167	3gk6	A	45
3gk7	В	287	3gkb	C	160	3gkj	A	140	3gkm	A	89	3gkr	A	231
3gkt	A	72	3gkv	В	83	3gl0	A	159	3gl1	В	234	3gl9	C	78
3glr	A	143	3glv	В	63	3gmf	A	84	3gmg	A	82	3gmi	A	202
$3 \mathrm{gms}$	A	188	3gmv	X	87	3gmx	В	94	3gn6	В	167	3gne	A	145
3gnl	В	148	3gnr	A	322	3gnz	P	120	3go2	A	265	3go5	A	182
3go6	A	150	3go9	A	304	3goa	В	214	3goc	В	115	3goh	A	142
3gon	A	178	3gox	В	125	3gp3	D	145	3gp4	В	78	3gp7	A	155
3gpg	В	99	3gpi	A	162	3gpk	В	54	3gpu	A	157	3gqh	A	73
3gqj	A	149	3gqq	A	91	3gqv	A	201	3 gr 3	В	140	3grd	В	71
3grh	A	248	3grn	A	57	3gru	A	43	3gs 2	A	57	3gs9	A	180
3gsh	A	50	3gt 2	A	56	3gt5	A	243	3gt9	В	52	3gue	A	267
3gux	В	144	3guy	В	110	3gv6	A	33	3gve	A	214	3gvg	В	158
3gvl	A	464	3gvo	A	210	3gw 9	C	246	3gwa	A	207	3gwb	A	148
3gwc	D	143	3gwh	В	49	3gwi	A	118	3gwk	E	64	3gwm	A	2
3gwn	A	73	3gwo	A	24	$3 \mathrm{gwz}$	A	191	3gx 8	A	55	3gxb	A	85
3gxh	В	82	3gxr	В	108	3gy1	A	253	3gy 9	A	85	3gyb	A	153
3gyc	В	218	3gyd	В	90	3gyk	В	97	3gyl	В	160	3gza	A	287
3gzb	A	100	3gzg	A	119	3gzh	A	275	3gzk	A	321	3gzr	В	92
3gzx	A	283	3gzx	В	126	3h04	A	164	3h05	A	104	3h08	A	71
3h09	В	610	3h0n	A	120	3h0o	A	158	3h0u	C	176	3h11	A	76
3h12	В	252	3h14	A	171	3h1d	A	166	3h1g	A	92	3h1n	A	137
3h1s	В	138	3h1w	A	239	3h20	A	38	3h2d	В	70	3h2g	A	218
3h2s	В	117	3h2z	A	210	3h34	A	40	3h36	A	32	3h3h	В	57
3h3l	В	94	3h3n	X	156	3h41	A	202	3h49	В	132	3h4i	A	244
3h4n	A	32	3h4o	A	125	3h4x	A	187	3h50	A	72	3h51	В	71
3h55	В	205	3h5i	A	41	3h5j	В	91	3h5l	В	268	3h5n	D	198
1	I	I				, ,	1					tinued or	1	

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
3h5q	A	240	3h62	В	213	3h6p	В	36	3h6p	С	30	3h6x	С	69
3h70	A	196	3h74	A	182	3h78	A	185	3h7a	A	97	3h7c	X	225
3h7f	В	288	3h7h	A	73	3h7h	В	71	3h7i	A	194	3h7o	В	124
3h7r	A	196	3h7u	A	215	3h81	С	149	3h87	В	5	3h87	D	32
3h8g	С	274	3h8u	В	57	3h8x	A	104	3h8z	A	46	3h91	A	32
3h93	A	90	3h95	A	87	3h9c	A	379	3h9e	0	220	3h9m	A	255
3h9u	С	280	3h9w	A	46	3ha2	A	101	3ha9	A	97	3hap	A	130
3hbd	A	118	3hbg	A	205	3hbn	A	199	3hbv	P	224	3hbw	В	58
3hc1	A	122	3hc3	L	142	3hcj	A	101	3hcn	В	177	3hcz	A	88
3hd4	A	57	3hdc	A	98	3hdf	В	60	3hdj	В	168	3hdl	A	156
3hdo	В	195	3hdx	A	315	3he8	В	90	3hef	В	56	3hfo	A	45
3hfq	A	215	3hft	A	108	3hfw	A	212	3hg3	В	245	3hgb	A	74
3hgl	A	37	3hgm	A	54	3hgu	A	120	3hh1	A	59	3hh7	A	47
3hh8	A	172	3hhi	В	188	3hhp	D	174	3hhs	A	468	3hhs	В	450
3hht	A	156	3hht	В	159	3hi7	В	506	3hid	A	260	3his	A	174
3hj4	В	233	3hjb	A	334	3hje	A	477	3hjr	A	377	3hjs	A	135
3hjv	В	150	3 hjz	A	213	3hk1	A	94	3hk4	$\frac{1}{C}$	36	3hko	A	169
3hkw	A	363	3hkx	A	10	3hl0	В	166	3hl1	A	104	3hl5	В	57
3hlx	A	164	3hlz	В	173	3 hm 4	В	92	3hmc	A	116	3hms	A	40
3hmz	A	124	3hn0	A	141	3hn3	В	262	3hn5	В	133	3hn7	A	277
3hnb	M	90	3hnt	H	142	3hnx	A	68	3ho6	A	136	3hog	A	54
3hoi	A	92	3hol	A	283	3hp4	A	114	3hp7	A	162	3hpc	X	87
3hpw	A	65	3hq1	В	356	3hq9	В	190	3hqc	A	65	3hqx	A	76
3hr0	A	160	3hr7	A	88	3hra	A	125	3hrl	A	60	3hrp	A	246
3hrq	В	147	3 hrv	A	67	3hrx	A	126	3hs3	A	164	3hsa	A	67
3hsh	A	32	3hsr	D	62	3hss	В	155	3hsv	A	88	3ht1	A	94
3ht5	A	210	3htl	X	254	3htn	C	86	3htw	A	125	3hty	O	26
3hu5	A	113	3huh	A	73	3huu	В	89	3hv2	В	85	3hvi	A	139
3hvu	C	77	3hvv	A	97	3hvw	A	81	3hwu	A	82	3hx3	A	118
3hx8	D	69	3hx9	A	49	3hxa	F	49	3hxd	A	72	3hxf	В	179
3hxi	A	127	3hxl	A	166	3hxs	В	30	3hxt	A	103	3hxw	A	255
3hyn	A	123	3hyq	A	64	3hz2	A	49	3hz6	A	290	3hzb	E	53
3hzp	A	57	3i06	A	132	3i09	A	3	3i0w	A	181	3i0y	A	74
3i0z	В	252	3i10	A	182	3i11	A	129	3i1a	A	157	3i1j	A	144
3i1u	A	219	3i24	A	88	3i26	D	291	3i2n	A	42	3i2v	A	83
3i2z	A	44	3i31	A	19	3i33	A	247	3i35	A	36	3i36	A	153
3i3f	В	85	3i3g	A	70	3i45	A	243	3i47	A	186	3i48	В	159
3i4g	A	342	3i4j	D	150	3i4o	В	36	3i4q	A	97	3i4s	A	81
3i4z	В	61	3i57	В	110	3i5c	В	42	3i5r	A	47	3i5x	A	322
3i6c	A	74	3i6i	A	181	3i6t	В	226	3i6y	A	154	3i7m	A	82
3i7u	В	61	3i83	В	119	3i8s	C	128	3i95	A	149	3i96	A	66
3ia1	В	80	3ia2	F	170	3ia4	D	104	3ia7	В	162	3ia8	В	78
3ian	A	208	3iar	A	245	3iav	A	239	3ib0	A	208	3ib5	A	195
3ib7	A	199	3ibo	A	77	3ibw	A	41	3ibz	A	94	3ic3	В	53
3ic4	A	55	3icc	В	150	3ich	A	126	3icj	A	64	3ics	A	151
3id1	A	41	3id7	A	241	3ida	A	378	3idu	A	50	3idw	A	1
3ie4	A	59	3ie5	A	79	3ie7	A	135	3iee	A	144	3iei	$\begin{array}{ c c } \hline C \\ \hline \end{array}$	191
3iev	A	164	3ifd	A	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	3ife	A	238	3ig9	$\begin{array}{ c c } \hline C \\ \hline \end{array}$	25	3igh	X	106
3igs	A	128	3igx	В	175	3igz	В	$\frac{236}{324}$	3igs	A	46	3iht	A	107
3ihu	A	105	3igx $3ihv$	A	384	$\frac{3igz}{3ihz}$	В	81	3ii7	A	182	3ii9	A	219
3iib	A	262	3iii	A	392	3iij	A	116	3iiu	M	81	3ij3	A	263
3ijl	A	216	3ijw	A	134	3ik7	D	84	3ikb	В	132	3ikw	A	220
օւյլ	1 11	210	OIJ W	11	104	OIKI	ו	04	OIKD	ן ט		tinued or	1	

3il9 B 190 3ilo A 84 3ilw A 256 3im1 A 172 3im6 A 3im9 A 206 3imf B 96 3imh A 230 3imk A 97 3imo B 3ing A 165 3io3 A 120 3iof A 145 3ioh A 191 3ioq A 3iox A 265 3ioy B 12 3ip4 A 267 3ip8 A 146 3ipc A 3ipf A 21 3ipi A 107 3ipw A 173 3iq0 A 134 3iq1 D 3iq2 B 95 3iq3 A 7 3iqi X 197 3iql A 40 3iqt A 3irv A 143 3is6 A 138 3isa B 121 <t< th=""><th>77 24 120 211 101 85 303 150 187</th></t<>	77 24 120 211 101 85 303 150 187
3im9 A 206 3imf B 96 3imh A 230 3imk A 97 3imo B 3ing A 165 3io3 A 120 3iof A 145 3ioh A 191 3ioq A 3iox A 265 3ioy B 12 3ip4 A 267 3ip8 A 146 3ipc A 3ipf A 21 3ipi A 107 3ipw A 173 3iq0 A 134 3iq1 D 3iq2 B 95 3iq3 A 7 3iqi X 197 3iql A 40 3iqt A 3ir3 B 45 3ir4 A 136 3ir8 A 141 3irb A 70 3irp X 3irv A 143 3is6 A 138 3isa B 121 <td< td=""><td>120 211 101 85 303 150 187 70</td></td<>	120 211 101 85 303 150 187 70
3iox A 265 3ioy B 12 3ip4 A 267 3ip8 A 146 3ipc A 3ipf A 21 3ipi A 107 3ipw A 173 3iq0 A 134 3iq1 D 3iq2 B 95 3iq3 A 7 3iqi X 197 3iql A 40 3iqt A 3ir3 B 45 3ir4 A 136 3ir8 A 141 3irb A 70 3irp X 3irv A 143 3is6 A 138 3isa B 121 3isg A 135 3iso A 3isq A 265 3isr A 173 3ist B 139 3isu A 47 3isx A 3it3 B 210 3it4 B 135 3it4 C 107 <t< td=""><td>211 101 85 303 150 187 70</td></t<>	211 101 85 303 150 187 70
3iox A 265 3ioy B 12 3ip4 A 267 3ip8 A 146 3ipc A 3ipf A 21 3ipi A 107 3ipw A 173 3iq0 A 134 3iq1 D 3iq2 B 95 3iq3 A 7 3iqi X 197 3iql A 40 3iqt A 3ir3 B 45 3ir4 A 136 3ir8 A 141 3irb A 70 3irp X 3irv A 143 3is6 A 138 3isa B 121 3isg A 135 3iso A 3isq A 265 3isr A 173 3ist B 139 3isu A 47 3isx A 3it3 B 210 3it4 B 135 3it4 C 107 <t< td=""><td>101 85 303 150 187 70</td></t<>	101 85 303 150 187 70
3ipf A 21 3ipi A 107 3ipw A 173 3iq0 A 134 3iq1 D 3iq2 B 95 3iq3 A 7 3iqi X 197 3iql A 40 3iqt A 3ir3 B 45 3ir4 A 136 3ir8 A 141 3irb A 70 3irp X 3irv A 143 3is6 A 138 3isa B 121 3isg A 135 3iso A 3isq A 265 3isr A 173 3ist B 139 3isu A 47 3isx A 3it3 B 210 3it4 B 135 3it4 C 107 3itd A 163 3itf B 3itq A 129 3iu0 A 189 3iu1 A 263 <	101 85 303 150 187 70
3iq2 B 95 3iq3 A 7 3iqi X 197 3iql A 40 3iqt A 3ir3 B 45 3ir4 A 136 3ir8 A 141 3irb A 70 3irp X 3irv A 143 3is6 A 138 3isa B 121 3isg A 135 3iso A 3isq A 265 3isr A 173 3ist B 139 3isu A 47 3isx A 3it3 B 210 3it4 B 135 3it4 C 107 3itd A 163 3itf B 3itq A 129 3iu0 A 189 3iu1 A 263 3iu4 H 117 3iu5 A	85 303 150 187 70
3ir3 B 45 3ir4 A 136 3ir8 A 141 3irb A 70 3irp X 3irv A 143 3is6 A 138 3isa B 121 3isg A 135 3iso A 3isq A 265 3isr A 173 3ist B 139 3isu A 47 3isx A 3it3 B 210 3it4 B 135 3it4 C 107 3itd A 163 3itf B 3itq A 129 3iu0 A 189 3iu1 A 263 3iu4 H 117 3iu5 A	303 150 187 70
3irv A 143 3is6 A 138 3isa B 121 3isg A 135 3iso A 3isq A 265 3isr A 173 3ist B 139 3isu A 47 3isx A 3it3 B 210 3it4 B 135 3it4 C 107 3itd A 163 3itf B 3itq A 129 3iu0 A 189 3iu1 A 263 3iu4 H 117 3iu5 A	150 187 70
3isq A 265 3isr A 173 3ist B 139 3isu A 47 3isx A 3it3 B 210 3it4 B 135 3it4 C 107 3itd A 163 3itf B 3itq A 129 3iu0 A 189 3iu1 A 263 3iu4 H 117 3iu5 A	187 70
3it3 B 210 3it4 B 135 3it4 C 107 3itd A 163 3itf B 3itq A 129 3iu0 A 189 3iu1 A 263 3iu4 H 117 3iu5 A	70
3itq A 129 3iu0 A 189 3iu1 A 263 3iu4 H 117 3iu5 A	
	77
orato II to train II 200 train II train	69
3iup A 205 3ius B 133 3iuw A 36 3iux A 59 3iuz A	190
3iv0 A 266 3iv4 A 48 3ive A 325 3iwf B 65 3iwl A	39
3iwv B 66 3ix3 B 95 3ixc A 95 3ixq D 122 3ixr A	100
3jpz B 137 3jq0 A 320 3jq1 B 328 3jqd A 129 3jqj C	49
3jql A 83 3jqu A 55 3jqy C 126 3jr2 C 138 3jrr B	100
3jrv A 92 3js4 B 138 3js5 A 113 3js8 A 322 3jsc A	63
3jsl B 206 3jsr A 52 3jsy B 107 3jsz A 323 3jte A	34
3jst B 265 3jst A 52 3jsy B 107 3jsz A 523 3jte A 3jtx B 265 3jtz A 51 3ju2 A 57 3ju3 A 62 3ju5 D	217
3ju8 B 140 3jub A 106 3jun A 77 3juu A 182 3jva F	182
	136
	221
	75
	151
	167
	60
3k3k A 43 3k3t A 85 3k3v A 56 3k40 B 219 3k4i A	120
3k4w H 150 3k59 A 403 3k5j A 127 3k62 A 206 3k69 A	91
3k6f A 69 3k6g C 34 3k6i A 65 3k6m A 299 3k6q B	79
3k6v A 204 3k6y A 148 3k7f B 334 3k7p B 94 3k89 A	172
3k8d A 112 3k8g A 126 3k8u A 75 3k8w A 174 3k9o A	127
3k9r B 33 3k9w A 102 3ka4 A 118 3ka5 A 25 3ka7 A	234
3kao A 209 3kax A 190 3kbb A 110 3kbf A 90 3kbg A	94
3kbr A 76 3kby A 105 3kc2 B 219 3kcc A 79 3kcg H	124
3kci A 208 3kcp A 136 3kd3 A 156 3kd6 B 134 3kda A	198
3kde C 38 3kdf A 42 3kdf D 34 3kdw A 125 3ke4 A	88
3ke7 B 75 3keb B 115 3kef B 141 3keo B 133 3kep B	77
3kev A 49 3kez B 288 3kfa A 209 3kfi A 87 3kfo A	116
3kfq C 40 3kg0 C 63 3kg4 A 69 3kg9 B 143 3kgd B	141
3kgk A 56 3kgw B 244 3kgy B 120 3kgz B 83 3kh1 A	120
3kh7 A 105 3khe A 90 3khf B 65 3khi A 105 3khy A	163
3ki8 A 172 3kij C 106 3kiz A 233 3kjd B 226 3kjq A	109
3kjy A 67 3kk4 B 76 3kkb A 59 3kkf A 67 3kkg A	90
3kki A 234 3kkq A 138 3kky A 97 3kkz A 138 3kl0 B	282
3kl6 B 36 3klb A 85 3klk A 553 3klq A 48 3klr A	50
3km5 B 120 3kmi A 74 3kmt C 66 3kmu A 157 3kmv D	93
3knv A 40 3ko8 A 148 3kog A 125 3kol A 78 3kom A	393
3kop D 96 3kor D 66 3kos A 111 3kp8 A 55 3kpb D	69
3kpe A 28 3kq0 A 83 3kqf D 129 3kqi A 47 3kqr A	139
3kre A 177 3krr A 187 3kru A 240 3ks6 B 145 3ks9 A	101
3ksh A 91 3ksm B 163 3ksv A 60 3ksx A 124 3kt7 A	369

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
3kt9	A	64	3kta	В	88	3kta	С	84	3ktc	В	188	3kto	В	47
3ktz	A	135	3ku3	В	75	3kus	В	46	3kuu	С	98	3kuv	A	79
3kv0	A	69	3kv1	A	85	3kvc	A	299	3kvh	A	118	3kwe	A	92
3kwk	A	101	3kwl	A	332	3kwo	С	74	3kwr	A	50	3kws	A	171
3kwu	A	77	3kxq	В	150	3kxt	A	18	3kxw	A	336	3kya	A	312
3kyj	A	68	3kyj	В	51	3kyz	A	66	3kz5	A	28	3kz7	A	57
3kzd	A	53	3kzj	A	74	3kzn	A	192	3kzu	В	258	3kzx	A	134
3100	A	90	3107	В	177	3101	В	158	310q	В	289	3112	A	174
3l18	A	124	3l1e	A	67	3l1n	A	89	3l1v	В	55	3l1w	F	145
3123	A	154	3129	A	76	3l2c	A	55	3l2h	D	104	3132	A	33
3139	A	136	3l3b	A	73	313f	X	204	3141	A	153	3l4a	A	75
314e	A	94	3l4h	A	62	3l4n	A	69	3l4p	A	536	3l4r	A	104
3151	A	86	3151	В	78	3152	A	162	3155	В	205	3l5a	A	235
315e	В	265	3l5i	A	132	3l6b	A	197	316d	В	125	316g	A	150
3l6n	A	135	3l6t	A	53	3177	A	139	3l7h	В	42	3170	A	135
317t	В	51	317x	A	80	3180	A	99	3181	A	122	3184	A	423
318a	В	253	318d	A	92	3l8h	В	113	3l9a	X	47	3l9c	В	125
319f	D	98	319q	A	94	319s	A	123	319u	A	125	319w	В	156
319y	В	75	3la7	В	57	3laa	A	100	3lab	A	101	3lae	A	32
3lag	A	62	3las	В	114	3lat	A	129	3lb2	A	53	3lb5	A	83
3lbe	D	78	3lbf	C	30	3lbl	A	59	3lbm	В	194	3lc0	A	155
3lcc	A	143	3ld3	A	112	3ld7	В	53	3ldc	A	53	3ldg	A	175
3ldu	A	143	3ldv	В	128	3le0	A	88	3le3	A	57	3le4	A	35
3lec	A	140	3led	A	$\frac{120}{230}$	3leq	A	40	3let	A	119	3lew	A	311
3lez	A	144	3lf3	A	123	3lf5	В	53	3lf6	В	22	3lfh	F	39
3lfj	В	101	3lfk	$\frac{\Lambda}{C}$	60	3lfr	A	76	3lft	A	176	3lg3	A	232
3lg5	A	208	3lgb	В	112	3lgi	A	122	3lgn	A	77	3lh4	A	68
3lhe	A	63	3lhi	A	127	3lhn	A	65	3lho	A	146	3lhq	A	120
3lhr	B	53	3 lhx	В	145	3li5	A	183	3li9	A	155	3lid	В	170
3lij	A	109	3liy	A	47	3ljq	A	162	3lju	X	244	3ljw	В	81
3lk5	A	132	3lk 7	A	273	3lke	A	112	3lkm	A	155	3lkt	В	124
3lkt	Q	170	3115	В	108	3117	A	219	3llb	A	53	3llc	A	132
3llo	A	81	3llp	В	281	3llv	A	76	3llx	A	199	3 lm 2	В	111
3lm3	A	$\frac{31}{265}$	3 lm 4	D	172	3 lm 7	В	172	3lma	В	130	3 lm 2	A	105
3lmp	A	126	3 lmz	A	154	$3\ln 7$	A	199	3lnc	В	90	3lny	A	39
3108	A	6	$3\log$	C	185	3lop	A	195	3lot	C	192	3lou	C	156
3lp6	C	87	3lpc	A	217	3lpe	В	20	3lpe	G	132	3lpw	В	125
3lpz	A	153	3lq4	В	293	3lqb	A	135	3lqs	A	186	3lqw	A	75
3lqx	A	22	3 l q 4 $3 l r 2$	A	58	3lq5 3lr4	A	62	3lrt	A	161	3lru	B	76
3 ls 0	A	63	3ls6	A	126	3ls9	A	293	3lsn	A	139	3lss	A	102
3lsu	B	121	3lso	D	99	3lt6	F	32	3ltj	A	77	3luc	A	83
3luf	В	136	3lui	В	71	3lul	A	167	3lum	D	190	3lur	B	93
3lus	В	69	3luu	A	42	3lv0	A	114	3lv8	A	105	3lvf	P	93 127
3lvu	D	134	3lvz		170	3lw0	B	187	31w6		138	3lwa		87
3lwc		40	3lwd	A	125	3lwg	В	81	3lwk	A	99	3lwx	A	106
3lwz	A	71	3lx3	A	99	3lx4	В	196	3lx5	A	167	3lxl	A	177
3lxp	A	183		A B	208	3lx4 3lxr		128	3lxr	A F	126	3lxs	A	152
	A	!	3lxq		I		A B	$\frac{128}{220}$		C	220	ı	A	
3lxy	A	181	3lxz	A	137	3ly0			3ly1			3ly7	A	212
3lyd	A	86	3lyf	D	119	3lyg	A	78	3lyh	A	57	3lyl	B C	92 50
3lyp	В	125	3lyy	A	55	3lz5	A	205	3lza	В	90	3lzk		59
3lzo	В	67	3lzw	A	186	3m07	A	327	3m0f	A	124	3m0j	A	160
3 m 0 m	В	272	3 m 0 r	A	10	3 m 0 s	A	29	3m19	A	143	3m1h	B	112

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
3m1t	A	128	3m1u	A	247	3m21	D	23	3m2o	A	80	3 m2 r	D	360
3 m2 r	Ε	269	3m31	A	89	3m32	С	167	3 m 3 h	A	96	$3 \mathrm{m} 3 \mathrm{m}$	A	141
3m3p	A	173	3m4a	A	184	3 m 4 d	A	140	3 m4 i	A	49	3 m 58	A	158
3m5k	В	99	$3 \mathrm{m} 5 \mathrm{m}$	В	115	3m5q	A	229	3 m 5 v	A	158	3m66	A	133
3m6b	A	182	3m6j	A	77	3m 6 u	A	240	3 m 6 z	A	175	3m70	A	89
3m73	A	200	$3 \mathrm{m} 7 \mathrm{a}$	A	87	3 m 7 k	A	31	3 m 7 o	A	53	3m7q	В	40
3m84	A	173	3m86	В	56	3m8j	A	64	3m8o	Н	119	3m8u	A	329
3m97	X	68	3m 9 l	A	114	3m9q	В	59	3mab	A	51	3man	A	185
3mao	A	65	3maz	A	54	3mb4	В	44	3 mb 5	A	174	3mbg	В	62
3mbk	В	178	3mbx	Н	135	3 mc 1	A	103	3mc4	В	143	3mcb	В	3
3mcq	A	147	3mcw	В	117	3mcx	A	321	3mcz	В	198	3 md 1	A	51
3 md 7	A	190	3 md 9	A	149	3mdm	A	273	3mdo	В	192	3mdp	A	62
3mdq	A	177	3mdu	A	264	3mdx	A	83	3 me 5	A	7	3me7	В	107
3mea	A	115	3meb	В	290	3 mf7	A	74	3mfd	A	177	3mfi	A	346
3mg1	В	144	3mgd	A	75	3mgg	В	115	3mgn	В	22	3mgw	A	103
3mh9	A	99	3mhg	$\frac{\Lambda}{C}$	$\begin{vmatrix} 10 \\ 209 \end{vmatrix}$	$3 \mathrm{mhr}$	A	135	$3 \mathrm{mhs}$	A	195	3mhs	В	9
3mhw	U	167	3mhy	$\stackrel{\circ}{\operatorname{C}}$	61	$3 \mathrm{mhz}$	A	291	3mil	A	163	3mio	A	115
3miy	В	148	3mjd	A	112	3mjf	A	239	3mjo	В	200	3mjv	В	$\frac{113}{253}$
3mk1	A	288	3 mk 6	C	162	$3 \mathrm{mkc}$	A	197	$3 \mathrm{mkh}$	В	198	3mkk	В	439
3mm6	A	159	3mm6	В	210	3mmg	A	152	3mmh	В	91	3mmw	D	155
3mmy	D	21	3mmy	E	208	3mmz	$\stackrel{\Lambda}{\text{C}}$	93	3mn1	C	84	3mn2	В	37
3mnm	В	50	3mno	A	141	3 mo 4	A	204	3 mo 8	A	77	3mol	В	71
3mos	A	362		A	162		В	151		A	63	1	A	161
3mpr	D	$\frac{302}{155}$	3moy	В	76	3mpb 3 mq 0	В	100	3 mpc $3 mq 2$	В	119	3mpm 3mqd	A	$\frac{101}{272}$
3mqh	D	135	3mpz	A	53	3 mqv	F	81	3 mqz	A	99	3mr5	A	188
3 mgn	A	$\frac{155}{253}$	3mqq 3 mst	A	117	3msu	В	210	$3 \mathrm{mgz}$	A	43	3 msx	В	60
3mt0	A	$\frac{255}{129}$	3m t 6	D	117	3mte	A	94	3mti	A	71	l	В	81
	В	114		A	240		A	181		A	109	3mtq	В	76
3mtr	В		3mtw	3	581	3mu7	B	69	3mu9	G	86	3muj 3mvn	ļ	1
3mux		165	3muz			3mvc			3mvk			!	A	65
3mvp	A	89	3mvr	A	280	3mvs	A	147	3mvu	A	69	3mw8	A	110
3mwc	A	64	3mwf	A	173	3mwx	A	215	3mx6	В	189	3mxn	A	113
3mxn	В	66	3mxo	В	118	3mxt	A	112	3mxu	A	80	3mxz	A	58
3myb	A	168	3myf	C	44	3myu	В	133	3myv	В	292	3myx	A	145
3mz0	A	208	3mz2	A	172	3mzo	A	96	3mzv	В	68	3n07	В	104
3n08	A	100	3n0l	В	157	3 n 0 r	A	131	3n0w	A	193	3n0x	A	207
3n10	В	112	3n11	A	222	3n1e	В	69	3n1f	A	99	3n1f	D	53
3n1s	M	70	3n1u	A	73	3n29	В	227	3n2a	A	172	3n2b	A	151
3n2n	Е	126	3n2s	D	123	3n37	A	192	3n3s	A	438	3n4f	С	222
3n4i	В	106	3n4k	В	98	3n5a	A	79	3n5b	A	37	3n5b	В	28
3n5l	В	147	3n5o	В	153	3n5w	В	221	3n6y	В	68	3n6z	A	182
3n72	В	83	3n79	A	85	3n7o	A	137	3n8b	A	41	3n8u	A	216
3n98	A	309	3n9b	В	73	3n9g	H	148	3n9i	В	168	3n9r	A	167
3n9u	В	120	3n 9 u	C	50	3na5	A	308	3naq	В	148	3nbm	A	62
3nci	A	570	3nda	A	225	3ndd	A	202	3ndh	В	114	3ndj	A	261
3ndn	D	76	3ndo	A	137	3 ne 8	A	129	3nec	В	90	3nep	X	131
3neu	A	40	3nf5	В	58	3nfi	В	55	3nfq	A	84	3nft	A	151
3nfu	A	56	3nfw	В	138	3 ng 7	X	239	3ngf	A	173	3ngg	В	38
3ngh	A	52	3ngj	A	152	3nhe	A	229	3nhe	В	56	3nht	A	210
3ni0	A	53	3ni2	A	292	3niw	A	136	3nj2	A	96	3njc	В	63
3njd	В	189	3nje	В	96	3njg	A	61	3nke	В	119	3nkl	A	40
3nkq	A	375	3nl9	A	86	3nm 4	В	118	3nn1	A	97	3nnb	A	250
3no0	A	154	3no 2	A	156	3no 3	A	163	3no 5	В	87	3no6	C	148

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
3no7	A	39	3nof	В	60	3noh	A	50	3noj	A	77	3nok	A	139
3nol	A	168	3noo	В	130	3npd	A	70	3npf	В	191	3npk	A	182
3nqi	A	108	3nqn	В	35	3nqp	A	312	3nqx	A	193	3nr1	A	89
$3\mathrm{nr}5$	A	68	3nr 6	В	9	3nre	С	184	$3\mathrm{nrf}$	A	54	3nrh	В	76
3nrl	В	36	3nrr	В	334	3nrw	A	46	3nrx	A	52	3ns 2	A	71
3ns6	В	56	3nsl	F	56	3nsz	A	237	3nt1	В	373	3nt3	В	149
3ntc	L	112	3ntk	A	71	3nu8	В	204	3nua	A	136	3nuf	A	66
3nul	Ā	72	3nuq	A	162	3nv1	A	89	3nvb	A	253	3nvt	В	148
3nvw	J	111	3nwc	В	58	3nwo	A	198	3nwp	В	118	3nwr	A	235
3nx3	Å	202	3nx4	A	85	3nxb	В	54	3nxg	E	179	3nxl	A	216
3nxq	A	330	3ny3	A	41	3ny 5	В	30	3ny 7	A	71	3nye	A	232
3nyh	A	318	3nyi	A	102	3nyk	A	75	3nym	В	61	3nyq	A	259
3nyv	A	143	3nyy	A	140	3nze	В	138	3nzn	В	70	3nzz	A	167
3003	A	143	3004	A	193	3007	A	152	300a	В	126	300d	C	207
300f	A	143	300g	D	61	3o0h	A	261	300k	В	166	3o0l	A	27
300m	В	82	300p	A	9	300q	A	273	$300\mathrm{w}$	A	154	300y	A	410
3o10	В	85	3o12	A	103	3o14	В	135	3o18	В	88	301k	В	19
3o10	A	155	3012 301p	A	142	3022	A	65	3026	A	126	302j	A	146
302r	D	78	301p 302t	A	193	3035	В	92	3038	D	107	302J 303 m	C	195
303m	D	181	302t $303t$	A	158	303u	N	353	3041	A	119	304h	A	151
304r	В	112	304v	В	129	305u 305v	B	57	3066	A	153	304H 306d	A	95
3041 306n	A	196	304v 306p	A	111	3070	A	23	3072	C	199	3079	A	52
307b	A	148	300p 307i	A	101	3070 307m	D	69	3072	В	284	3085	B	36
1	A	$\frac{148}{323}$		A	131		C		3083 309z	A		3089		
308m	В	$\frac{323}{159}$	308q	A		3091	A	132	3obe	B	191 160	3obh	C	159 8
3oa3 3obi	С	168	30aj 30bl	B	195 62	3oam 3obx	A	130 82		A	157	30c9	A	223
				A	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1		3oc7	A			A	1
3ocj	A	167	30cm			3ocr	A	105	3ocu	1	165	3od1	A	101
3od5	В	158	3od9	A	78	3odg	A	173	3odt	A	191	3odv	A	20
30e3	В	36	3oec	C	166	3oep	A	275	3of4	С	100	3of5	A	111
3of7	A	242	3ofg	В	28	3ofk	С	74	30g9	В	133	3oga	A	59
3ogg	A	289	3ogh	В	90	3ogn	В	80	3ogr	A	672	3ohe	В	81
3ohg	A	184	3ohr	A	165	30i8	A	42	3oid	C	166	3oig	A	165
3oin	A	30	3oio	A	49	3oir	В	72	3oiu	A	101	3oiz	A	43
3oj0	A	66	30j6	В	83	30j7	A	76	3ojc	D	93	3ojg	A	167
3ojs	A	135	3oks	В	283	3okx	В	97	3010	A	30	3ol3	A	50
3olq	A	127	3om0	A	175	3omc	В	121	3omd	В	82	3oms	A	45
3omt	A	53	3on1	A	44	3on2	A	85	3on4	E	109	3ono	A	99
3onp	A	41	3onr	I	31	3008	A	271	300i	A	126	3oon	A	38
3000	В	91	300p	A	48	300s	A	166	3oou	A	70	300w	C	84
3oox	A	179	3 op 4	A	125	30p7	A	167	3op 8	A	33	3op9	A	29
3opk	A	60	3oq 2	A	40	3oqi	В	135	3oqp	A	120	3oqv	A	69
3oqy	В	64	3or3	A	89	3or5	A	87	3oro	A	138	3oru	A	148
3orv	В	192	3orv	D	154	3os4	A	190	30s7	A	229	3osd	A	149
3ose	A	69	3osm	A	68	3osu	В	98	3ot1	A	114	3ot2	В	1
3ot3	A	138	3ot9	В	263	3oti	В	212	3otl	A	82	3otn	В	286
3ou2	A	118	3ouf	В	60	3oug	I	68	3oui	A	117	3out	В	183
3ouz	В	174	3ovc	A	83	3ovp	В	112	3ovx	A	146	3owa	В	111
3owc	В	42	3owr	С	80	3owv	A	107	3oxp	A	106	Зоуу	В	83
3oz2	A	171	3ozh	A	197	3p02	A	173	3p09	В	90	3p0b	A	291
3p0q	С	120	3p0r	A	117	3p0t	A	79	3p1a	A	176	3p1f	A	87
3p1g	A	72	3p1v	A	184	3p1w	A	197	3p1x	A	16	3p24	С	175
3p2c	В	284	3p2n	A	233	3p2t	A	125	3p2u	В	143	3p2y tinued or	A	189

PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N	PDB	Cn	N
3p32	A	88	3p3c	A	188	3p3e	A	190	3p3g	A	117	3p3o	A	184
3p3v	В	98	3p48	A	69	3p4h	A	31	3p4l	A	130	3p4t	A	231
3p5h	A	75	3p5p	A	412	3p5u	A	141	3p6l	A	142	3p73	A	168
3p73	В	64	3p94	D	108	3p97	С	181	3p9c	A	196	3p9p	A	500
3p9x	A	59	3pa6	A	55	3pas	В	91	3pb6	X	202	3pbf	A	59
$3 \mathrm{pbo}$	A	210	3pc3	A	336	3pct	В	122	3pcv	A	55	3pd2	В	75
3pde	A	34	$3 \mathrm{pdn}$	A	256	3pdw	A	152	3pe4	A	358	3 pe6	A	173
3 pe7	A	254	3 pe 8	A	139	3pea	В	123	3pel	В	93	3pes	A	55
3pew	A	250	3pf2	A	203	3pf6	A	37	3pfo	A	205	3pfs	A	80
3pg6	С	74	3pgx	A	171	3 phs	A	156	3phx	В	53	3pi7	A	148
3pim	A	114	3pj0	В	228	3pj3	A	130	3рјр	В	128	3pjv	D	47
Зрју	В	78	3pk0	A	150	3 pkv	A	128	3p 10	В	101	3pl2	В	148
3plf	D	174	3plw	A	67	3plx	В	55	3pmc	В	84	$3 \mathrm{pmd}$	A	83
3pmm	A	161	$3 \mathrm{pms}$	A	217	$3 \mathrm{pmt}$	A	28	3pn8	A	88	3pna	A	56
3pnn	A	100	3pnx	A	6	3po0	A	42	3po8	A	62	3poh	A	250
3poz	A	117	3pp9	A	91	3ppl	В	259	3pqa	В	309	3 pro	D	76
3prp	A	95	$3 \mathrm{psm}$	A	37	3pt1	A	245	3pu9	A	113	3pua	A	116
3pve	A	86	3pvi	В	103	3px2	A	136	3pxl	A	340	3pzf	A	135
3pzj	В	59	3pzs	В	138	3pzw	A	509	3pzy	A	81	3q0h	A	58
3q0i	A	135	3q12	С	176	3q1c	A	197	3q1n	A	186	3q20	В	37
3q23	В	625	3q2e	A	59	3q34	A	102	3q3u	A	203	3q3w	В	80
3q4s	A	136	3q4t	A	124	3q4u	A	149	3q58	A	100	3q5y	A	143
3q60	A	165	3q62	В	92	3q64	A	109	3q6d	В	175	3q6j	A	306
3q7c	A	127	3q7m	A	174	3q90	A	63	3q93	В	24	3qan	С	199
3qao	A	48	3qat	В	196	3qbm	В	101	3qbp	A	278	3qc7	A	109
3qd5	В	92	3 qds	В	98	3 qe1	A	63	3qee	A	196	3qh4	A	199
3qhx	A	238	3qhz	M	93	3qi7	В	152	3qit	A	159	3qk3	A	83
3qk8	С	166	3qki	В	335	3qle	A	108	3qlj	D	155	3 qm 3	E	221
3qmd	A	7	3qmn	P	58	3qn1	A	124	3qn1	В	167	3qnm	A	145
3qoj	A	61	3qom	A	335	3qoo	A	81	3qp4	A	95	3qqi	В	117
3qry	A	304	3qu1	В	110	3qug	A	31	3quv	В	146	3qxb	В	181
3qxf	A	206	3qxz	В	161	3qy1	В	103	3qy3	A	63	3qyf	A	148
3qyj	A	184	3qyq	С	83	3qz6	A	143	3qzb	A	85	3r0p	В	39
3r1i	A	153	3r1w	С	120	3r3r	A	122	3r3s	С	189	3r6f	A	77
4 dmr	A	520	$4\mathrm{rhn}$	A	65	4ubp	A	71	4ubp	В	74	4ubp	С	345
6cel	A	297	6fdr	A	70	6rxn	A	33	7rsa	A	83			