Con anshuct a regular n-gon using stranglitedge and composs
es can construct PrEC.
$\Leftrightarrow \mathcal{H} \in \Theta.$
Lenna: If you can construct a regular n-gon, hun
n must have be form n=2mp,-px, where
piccpc are primes with pi= 2° +1 for some
ar, ∈ M.
Pf: If In EC Man (Q[In]: Q) must be a power of Z.
But CQ (4n): Q] = em). Suppose n= qq'q = for
primes que caje N. Then
(e/n)= q"," (q,-1) q"z" (qz-1) q"z" (qe-1).
This implies he result. a
Fauts: If p is a prime of the form 2°+1 Men
p must have the Form 2t+1 for some 6=0.
Let F= 22 el, n=0. [nM Fernal murbers)
Onj 1: There are he only prime
1 5 2 17 prime formal #15. 3 257
3 757
(onj 2 ("easier"): There are only fulfely many fernal primes.
Mystely may ternat primes.

Lannar of n is a ferral prime Non 9,68. Pf: e[n]=n-1= 2°. Mgo Gal(Q(4n)/Q)= Cn Since Cn has subgroups of orders 2, OELEA, by the F161, there are int. Frolds Ku=Q=K, S... = Kan = Ka=Olyn) with CK; = Ki-, J=Z, +i. 8) Thin: A regular night is constr. using stredge and compass if and only if n=2mp--px, where p.c.--cpx are primes with p= 2" +1. Pf: One direction follows from lemme on privates page. For the other, suppore n=2 p1-px as above. We know from the press. Lan. that Jp,,..., TREE. Let a, b 6 2 be chosen s.t. apropos=). Men (erailpr) = erailpr) = erailpr ⇒ Pripz EC. Continuing in Mis way, Spinge EC. By using angle breceton in Hives, The C. a

Last problem Nat he Greeks couldn't solve: 4) Triscotting on arbitrary angle. Con't do it: if you could, then you brisect a 60° ongle to make a regular 9-gon, which contradicts our theorem. Another way: Use the triple angle Formula to show Nat cos(20°) sutisfies a cubic irred. pay. in alx). eize = (coso tismb) =----> it follows from Mys Mut the only integer angles, neasured in degrees, that can be constructed, are integer multiples of 3°.

Note: $\frac{2\pi}{5} = 72^{\circ}$, $\frac{2\pi}{6} = 60^{\circ}$

(Origani folding) Constructing tangents to a parabola

A tangent to two parabolas

Solvability

Work over Q. A polynomial f(x) \in \(\mathcal{Q}(x) \) is solvable by radicals if \(\frac{1}{2} \text{kell} \) and a sequence of \(\text{Fields} \)
\(\text{Formula} - \in \text{First} \);

i) Fo= Q and Fx contains the splitting field of flow ii) \tisisk, \(\frac{1}{2} \arisis \C_1 \) mi \(\text{N} \) sit. \(\text{F}_i = \text{F}_{i-1} \(\text{L}_i \) and \(\arisis \text{F}_{i-1} \).