Lecture 1: Intro to logistic regression

Ciaran Evans

Motivating example: Dengue fever

Dengue fever: a mosquito-borne viral disease affecting 400 million people a year

Motivating example: Dengue data

Data: Data on 5720 Vietnamese children, admitted to the hospital with possible dengue fever. Variables include:

- ► Sex: patient's sex (female or male)
- Age: patient's age (in years)
- ► WBC: white blood cell count
- ► *PLT*: platelet count
- other diagnostic variables...
- ▶ Dengue: whether the patient has dengue (0 = no, 1 = yes)

Motivating example: Dengue data

Research questions:

- How well can we predict whether a patient has dengue?
- Which diagnostic measurements are most useful?
- Is there a significant relationship between WBC and dengue?

Research questions

- How well can we predict whether a patient has dengue?
- Which diagnostic measurements are most useful?
- Is there a significant relationship between WBC and dengue?

How can I answer each of these questions? Discuss with a neighbor for 2 minutes, then we will discuss as a class.

Fitting a model: initial attempt

What if we try a linear regression model?

$$Y_i =$$
dengue status of i th patient

$$Y_i = \beta_0 + \beta_1 WBC_i + \varepsilon_i$$
 $\varepsilon_i \stackrel{iid}{\sim} N(0, \sigma_{\varepsilon}^2)$

What are some potential issues with this linear regression model?

Second attempt

Let's rewrite the linear regression model:

Second attempt

$$Y_i \sim Bernoulli(p_i)$$
 $p_i = \mathbb{P}(Y_i = 1|WBC_i)$

$$p_i = \beta_0 + \beta_1 WBC_i$$

Are there still any potential issues with this approach?

Don't fit linear regression with a binary response

Fixing the issue: logistic regression

$$Y_i \sim Bernoulli(p_i)$$

$$g(p_i) = \beta_0 + \beta_1 WBC_i$$

where $g:(0,1)\to\mathbb{R}$ is unbounded.

Usual choice:
$$g(p_i) = \log\left(\frac{p_i}{1-p_i}\right)$$

Odds

Definition: If $p_i = \mathbb{P}(Y_i = 1|WBC_i)$, the **odds** are $\frac{p_i}{1 - p_i}$

Example: Suppose that $\mathbb{P}(Y_i = 1 | WBC_i) = 0.8$. What are the *odds* that the patient has dengue?

Odds

Definition: If $p_i = \mathbb{P}(Y_i = 1|WBC_i)$, the **odds** are $\frac{p_i}{1 - p_i}$

The probabilities $p_i \in [0,1]$. The linear function $\beta_0 + \beta_1 WBC_i \in (-\infty,\infty)$. What range of values can $\frac{p_i}{1-p_i}$ take?

Log odds

$$g(p_i) = \log\left(\frac{p_i}{1 - p_i}\right)$$

Binary logistic regression

$$Y_i \sim Bernoulli(p_i)$$

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 WBC_i$$

Note: Can generalize to $Y_i \sim Binomial(m_i, p_i)$, but we won't do that yet.

Example: simple logistic regression

$$Y_i = \text{dengue status } (0 = \text{no, } 1 = \text{yes})$$
 $Y_i \sim \textit{Bernoulli}(p_i)$

$$\log\left(\frac{\widehat{p}_i}{1-\widehat{p}_i}\right) = 1.737 - 0.361 \ WBC_i$$

Work in groups of 2-3 for 5 minutes on the following questions:

- Are patients with a higher WBC more or less likely to have dengue?
- Interpret the estimated slope in context of a unit change in the log odds.
- ▶ What is the change in *odds* associated with a unit increase in WBC?