Intro to Math Thinking Fall 2024: Assignment 7

- 1. False. Counterexample. A penguin is a bird that cannot fly.
- 2. False. Counterexample. Let x = y = 1. Then $(x y)^2 = (1 1)^2 = 0 \ge 0$.
- 3. True. Let $x,y \in \mathbb{Q}$ where x < y. Let $x = \frac{p}{q}$ and $y = \frac{r}{s}$ where $p,q,r,s \in \mathbb{Z}$ and $q \neq 0 \land s \neq 0$. Then

$$\frac{x+y}{2} = \frac{\frac{p}{q} + \frac{r}{s}}{2} \text{ (substitute)}$$
$$= \frac{ps + qr}{2qs} \text{ (simplify)}$$

Since $\frac{ps+qr}{2qs} \in \mathbb{Q}$, and $x < \frac{x+y}{2} < y$, there exists a third rational between any 2 unequal rationals.

- 4. Constructing a truth table for $[(\phi \Rightarrow \psi) \land (\psi \Rightarrow \phi)] \Rightarrow [\phi \Leftrightarrow \psi]$ would result in a tautology.
- 5. $[(\neg \phi) \Rightarrow (\neg \psi)] \Leftrightarrow [\psi \Rightarrow \phi]$ is the contrapositive. Then from **4.**, $[(\phi \Rightarrow \psi) \land (\neg \phi \Rightarrow \neg \psi)] \Rightarrow [\phi \Leftrightarrow \psi]$ would result in a tautology.
- 6. Suppose \$2M is split evenly among 5 investors. 2M/5 = 400000, which is the most each investor will receive if split evenly. Thus, at least 1 investor receives at least \$400000.
- 7. Suppose $\sqrt{3}$ is rational. Then there exists $p, q \in \mathbb{N}$ such that p, q have no common factors.

$$\sqrt{3} = \frac{p}{q}$$

$$3 = \frac{p^2}{q^2} \text{ (square)}$$

$$3q^2 = p^2 \text{ (rearrange)}$$

 p^2 is a multiple of 3, and thus p is a multiple of 3. Let $r \in \mathbb{N}$ such that p = 3r.

$$3q^2 = (3r)^2$$
 (substitute)
 $3q^2 = 9r^2$ (simplify)
 $q^2 = 3r^2$ (divide by 3)

 q^2 is a multiple of 3, and thus q is a multiple of 3. p,q both are a multiple of 3, however p,q have no common factors, which is a contradiction. Thus, $\sqrt{3}$ is irrational.

- 8. (a) If the Yuan rises, the Dollar will fall.
 - (b) $(\forall x, y \in \mathbb{R})[(-y < -x) \Rightarrow (x < y)]$
 - (c) If 2 triangles have the same area, they are congruent.

Intro to Math Thinking Fall 2024: Assignment 7

- (d) If $b^2 \ge 4ac$, then $ax^2 + bx + c = 0$ (where $a, b, c, x \in \mathbb{R}$ and $a \ne 0$).
- (e) If the opposite angles of quadrilateral ABCD are pairwise equal, then the opposite sides are pairwise equal.
- (f) If all 4 angles of quadrilateral ABCD are equal, then all 4 sides are equal.
- (g) $(\forall n \in \mathbb{N})[3|(n^2+5) \Rightarrow \neg(3|n)]$
- 9. (b) og: True. $(\forall x, y \in \mathbb{R})[x < y \Rightarrow -y < -x]$ conv: True. $(\forall x, y \in \mathbb{R})[-y < -x \Rightarrow x < y]$

 $(\forall x, y \in \mathbb{R})[x < y \Leftrightarrow 0 < y - x \Leftrightarrow -y < -x]$. Thus, equivalent.

(c) og: True. Congruent triangles are the same size and shape, thus will have the same area.

conv: False. The triangles could have the same area but not be congruent.

Not equivalent.

- (d) Suppose $(\forall b, c \in \mathbb{R} \land \forall a \in \mathbb{R} \setminus \{0\})$ and $\exists x \in \mathbb{R}$ such that $ax^2 + bx + c = 0 \Leftrightarrow x^2 + \frac{b}{a}x + \frac{c}{a} = 0 \Leftrightarrow (x + \frac{b}{2a})^2 + \frac{c}{a} = \frac{b^2}{4a^2} \Leftrightarrow (x + \frac{b}{2a})^2 = \frac{b^2 4ac}{4a^2} \Leftrightarrow x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 4ac}}{2a} \Leftrightarrow x = -\frac{b \pm \sqrt{b^2 4ac}}{2a}.$ Since $b^2 4ac \ge 0 \Leftrightarrow b^2 \ge 4ac$. Thus, a solution exists if $b^2 \ge 4ac$, and the converse is also true. Thus, equivalent.
- (e) If opposite sides of quadrilateral ABCD are pairwise equal, it is a parallelogram. Then the opposite angles are pairwise equal. The converse is also true. Thus, equivalent.
- (f) og: False. Counterexample. ABCD is a rhombus. conv: False. ABCD is a rectangle.

Not equivalent.

- (g) If $(n \in \mathbb{N})$ and $3 \nmid n$, then $n = (3k+1) \vee (3k+2)$ where $k \in \mathbb{Z}$. Then $n^2 + 5 = [3(3k^2 + 2k+2) \vee 3(3k^2 + 4k+3)]$. Thus, $3 \mid (n^2 + 5)$. If $3 \mid (n^2 + 5)$, then $n^2 + 5 = (3k+1) \vee (3k+2)$. Consider the case where $n^2 + 5 = 3k + 2$. Then $n^2 = 3k 3 = 3(k-1)$. Therefore, $3 \mid n^2$, and by Euclid's lemma, $3 \mid n$. Thus, the converse is false, and the statement and its converse are not equivalent.
- 10. (\Rightarrow) If $n \in \mathbb{N}$ and $12 \mid n$, then $(\forall k \in \mathbb{Z})[n = 12k]$. Then $n^3 = 12^3k^3$ that can be written as $12 \mid n^3$.
 - (\Leftarrow) False. Counterexample. Let n=6 such that $n^3=216$. Since 216=12*18, it can be written $12 \mid n^3$. However, $12 \nmid n$, which is a contradiction.

Thus, the statement is false.

11. 1, 2, 5 are irrational.

For the following, let r, s be irrationals.

- 1. Let r+3 be rational such that $p,q\in\mathbb{Z}$ where p,q have no common factors. Then $r+3=\frac{p}{q}\Leftrightarrow r=\frac{p}{q}-3\Leftrightarrow r=\frac{p-3q}{q}\in\mathbb{Q}$. But r was assumed to be irrational, which is a contradiction. Thus, r+3 must be irrational.
- 2. Let 5r be rational such that $p,q\in\mathbb{Q}$ where p,q have no common factors. Then $5r=\frac{p}{q}\Leftrightarrow r=\frac{p}{5q}\in\mathbb{Q}$. But r was assumed to be irrational, which is a contradiction. Thus, 5r is irrational.
- 3. Counterexample. Let $r=-s=\sqrt{2}$. Then $r+s=\sqrt{2}-\sqrt{2}=0\in\mathbb{Q}$. Thus, r+s could be rational.
- 4. Counterexample. Let $r = s = \sqrt{2}$. Then $rs = \sqrt{2} * \sqrt{2} = 2 \in \mathbb{Q}$. Thus, rs could be rational.
- 5. Let \sqrt{r} be rational such that $p, q \in \mathbb{Q}$ where p, q have no common factors. Then $\sqrt{r} = \frac{p}{q} \Leftrightarrow r = \frac{p^2}{q^2} \in \mathbb{Q}$. But r was assumed to be irrational, which is a contradiction. Thus, \sqrt{r} is irrational.
- 6. Consider

Case 1. If $\sqrt{2}^{\sqrt{2}}$ is rational, let $r = s = \sqrt{2}$. Case 2. If $\sqrt{2}^{\sqrt{2}}$ is irrational, let $r = \sqrt{2}^{\sqrt{2}}$ and $s = \sqrt{2}$. Then $r^s = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^2 = 2 \in \mathbb{Q}$. Thus, r^s is rational.

- 12. For the following, let $m, n \in \mathbb{Z}$.
 - (a) Let m, n be even such that $\forall q, r \in \mathbb{Z}, m = 2q$, and n = 2r. Then m + n = 2q + 2r = 2(q + r), or $2 \mid (m + n)$. Thus, m + n is even.
 - (b) Let m, n be even such that $\forall q, r \in \mathbb{Z}, m = 2q$, and n = 2r. Then mn = (2q)(2r) = 4qr, or $4 \mid mn$. Thus, mn is divisible by 4.
 - (c) Let m, n be odd such that $\forall q, r \in \mathbb{Z}, m = 2q + 1$, and n = 2r + 1. Then m + n = (2q + 1) + (2r + 1) = 2q + 2r + 2 = 2(q + r + 1), or $2 \mid (m + n)$. Thus, m + n is even.
 - (d) Let m be even and n be odd such that $\forall q, r \in \mathbb{Z}, m = 2q$, and n = 2r + 1. Then m + n = 2q + 1 + 2r = 2(q + r) + 1, or $\neg 2 \mid (m + n)$. Thus, m + n is odd.
 - (e) Let m be even and n be odd such that $q, r \in \mathbb{Z}, m = 2q$, and n = 2r + 1. Then mn = (2q)(2r + 1) = 2(2qr + q), or $2 \mid (m + n)$. Thus, mn is even.

1 OPTIONAL PROBLEM

- (a) True. Let $x, y \in \mathbb{R}$ such that x = 0 and $(\forall y \in \mathbb{R}) \mid [x + y = y]$.
- (b) True. Let $x, y \in \mathbb{R}$ and $\forall x \exists y (x + y = 0)$ where x = -y.
- (c) False. Let $a, b, c \in \mathbb{Z}$ such that $a \mid bc$. Let a = 4 and b = c = 2. Then $a \mid bc \Leftrightarrow 4 \mid (2 * 2) \Leftrightarrow 4 \mid 4$, but $(a \nmid b \lor a \nmid c) \Leftrightarrow (4 \nmid 2 \lor 4 \nmid 2)$.

Intro to Math Thinking Fall 2024: Assignment 7

- (d) True. Let $x \in \mathbb{R}$ and $y \in \mathbb{R} \setminus \mathbb{Q}$. Let x + y is rational such that $p, q \in \mathbb{Q}$ where p, q have no common factors. Then $x + y = \frac{p}{q} \Leftrightarrow y = \frac{p}{q} x \Leftrightarrow y = \frac{p qx}{q} \in \mathbb{Q}$. But y is irrational, which is a contradiction. Thus, x + y is irrational.
- (e) True. Case 1. Let $x \in \mathbb{R}$ and $y \in \mathbb{R} \setminus \mathbb{Q}$. See (d). Case 2. Let $x, y \in \mathbb{R}$ such that $p, q \in \mathbb{Z}$ where p, q have no common factors. Then $x + y = \frac{p}{q} \Leftrightarrow x = \frac{p}{q} y \Leftrightarrow x = \frac{p qy}{q} \in \mathbb{Q}$. Thus, $x + y \in \mathbb{Q} \in \mathbb{R}$. Case 3. See (11.3).
 - Thus, at least 1 of x, y is irrational.
- (f) False. Counterexample. Let $x, y \in \mathbb{R} \setminus \mathbb{Q}$ such that $x = -y = \sqrt{2}$. Then $x + y = \sqrt{2} \sqrt{2} = 0 \in \mathbb{Q}$. Thus, x + y could be rational without either $x, y \in \mathbb{Q}$.