

Processamento de Linguagem Natural Modelos Neurais em PLN

Marlo Souza¹
¹Universidade Federal da Bahia - Brasil

31 de julho de 2024

Arquitetura Decodificador (Encoder-

Mecanismo de Atenção

Arquitetura

Redes Neurais Artificiais Aplicando RNA para PLN

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Aplicando RNA para PLN

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer

Redes Neurais Artificiais

Aplicando RNA para PL

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer

Figura: Representação simplificada de um neurônio

Redes Neurais Artificiais

Aplicando RNA para PLI

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer

Figura: Um modelo matemático para o funcionamento do neurônio

Redes Neurais Artificiais

Aplicando RNA para PLI

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer

Figura: Um modelo matemático para o funcionamento do neurônio

$$y = \sigma(w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_3 + b)$$

Redes Neurais Artificiais

Aplicando RNA para PLN

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer Podemos então compreender um neurônio como uma função $f: \mathbb{R}^n \mapsto \mathbb{R}$ tal que $y = f(x_1, \dots, x_n) = f_1(\sum_{i=1}^n w_i x_i + b)$, com $f_1: \mathbb{R} \to \mathbb{R}$.

Redes Neurais Artificiais

Aplicando RNA para PL

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer Podemos então compreender um neurônio como uma função $f: \mathbb{R}^n \to \mathbb{R}$ tal que $y = f(x_1, \dots, x_n) = f_1(\sum_{i=1}^n w_i x_i + b)$, com $f_1: \mathbb{R} \to \mathbb{R}$.

 f_1 é chamada então de função de ativação do neurônio e descreve a condição de disparada (o processamento realizado) por aquele neurônio.

Redes Neurais Artificiais

Aplicando RNA para PL

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer Podemos então compreender um neurônio como uma função $f: \mathbb{R}^n \to \mathbb{R}$ tal que $y = f(x_1, \dots, x_n) = f_1(\sum_{i=1}^n w_i x_i + b)$, com $f_1: \mathbb{R} \to \mathbb{R}$.

 f_1 é chamada então de função de ativação do neurônio e descreve a condição de disparada (o processamento realizado) por aquele neurônio.

Podemos também descrever o termo $z = \sum_{i=1}^{n} w_i x_i + b$ de forma vetorial como

$$z = w \cdot x + b$$
, com $w = \langle w_1, \dots, w_n \rangle$, $x = \langle x_1, \dots, x_n \rangle^T$.

Redes Neurais Artificiais

Aplicando RNA para PLN

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer As funções de ativação descrevem o processo de funcionamento de um neurônio, numa rede neural, ajudam a definir o viés de aprendizado das mesmas.

Redes Neurais Artificiais

Aplicando RNA para PLI

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura

As funções de ativação descrevem o processo de funcionamento de um neurônio, numa rede neural, ajudam a definir o viés de aprendizado das mesmas. As propriedades dessas funções vão definir aspectos computacionais importantes, como a expressividade da rede e sua complexidade computacional.

Redes Neurais Artificiais

Aplicando RNA para PL

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer As funções de ativação descrevem o processo de funcionamento de um neurônio, numa rede neural, ajudam a definir o viés de aprendizado das mesmas. As propriedades dessas funções vão definir aspectos computacionais importantes, como a expressividade da rede e sua complexidade computacional. É necessário que a função de ativação escolhida não seja linear! (por quê?)

Redes Neurais Artificiais

Aplicando RNA para PL

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer As funções de ativação descrevem o processo de funcionamento de um neurônio, numa rede neural, ajudam a definir o viés de aprendizado das mesmas. As propriedades dessas funções vão definir aspectos computacionais importantes, como a expressividade da rede e sua complexidade computacional. É necessário que a função de ativação escolhida não seja linear! (por quê?) Algumas funções comuns:

- ightharpoonup Função sigmóide (σ)
- ► Função tangente hiperbólico (tanh)
- ► Função Linear Unitária Retificada (*ReLU*)

Funções de ativação: sigmóide

Redes Neurais Artificiais

Aplicando RNA para PLN

Arquitetura Codificador-Decodificador (Encoder-

Mecanismo de Atenção

$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Funções de ativação: sigmóide

Redes Neurais Artificiais

Aplicando RNA para PL

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Figura: Gráfico da função sigmóide

Funções de ativação: tangente hiperbólico

Redes Neurais Artificiais

Aplicando RNA para PLN

Arquitetura Codificador-Decodificador (Encoder-

Mecanismo de Atenção

$$y = tanh(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

Funções de ativação: tangente hiperbólico

Redes Neurais Artificiais

Aplicando RNA para PL

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

$$y = tanh(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

Figura: Gráfico da função tangente hiperbólico

Funções de ativação: ReLU

Redes Neurais Artificiais 10

Anlicando RNA nara PLN

Aplicando RNA para PL

Arquitetura Codificador-

Decodificador (Encoder-

Mecanismo de Atenção

Arquitetura Transformer y = ReLU(z) = max(z,0)

Funções de ativação: ReLU

Redes Neurais Artificiais

Aplicando RNA para PLN

Arquitetura

Codificador-Decodificador (Encoder-

Decoder)

Mecanismo de Atenção

$$y = ReLU(z) = max(z,0)$$

Figura: Gráfico da função ReLU

Redes neurais artificiais

Redes Neurais Artificiais

Arquitetura Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura

Uma rede neural artificial é um grafo direcionado e rotulado em cada cada nó representa um neurônio (descrito por uma função de ativação) e cada aresta é rotulada com um peso de associação.

Redes neurais artificiais

Redes Neurais Artificiais

Aplicando RNA para Pl

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer Uma rede neural artificial é um grafo direcionado e rotulado em cada cada nó representa um neurônio (descrito por uma função de ativação) e cada aresta é rotulada com um peso de associação.

Figura: Representação de uma RNA

Aplicando RNA para PL

Aplicando RNA para PL

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer Redes *feedforward*, redes densas, perceptron multicamadas, ou redes lineares, são RNA acíclicas com múltiplas camadas completamente conectadas.

Aplicando RNA para PL

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer Redes *feedforward*, redes densas, perceptron multicamadas, ou redes lineares, são RNA acíclicas com múltiplas camadas completamente conectadas.

São o tipo mais básico de rede neural e, comumente, uma camada densa faz parte da maioria das arquiteturas empregadas na prática.

Figura: Rede Feedforward

Regressão Multinomial

Redes Neurais Artificiais

Arquitetura Codificador-Decodificador (Encoder-

Mecanismo de Atenção

Arquitetura Transformer

Podemos implementar uma regressão multinomial usando redes neurais empregando funções softmax

Aplicando RNA para Pl

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer Podemos implementar uma regressão multinomial usando redes neurais empregando funções softmax

$$y = \operatorname{softmax}(Wx + b)$$

Figura: Camada Softmax

Regressão Multinomial

Redes Neurais Artificiais

Anlicando RNA para PI

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer Podemos implementar uma regressão multinomial usando redes neurais empregando funções softmax

$$y = \operatorname{softmax}(Wx + b)$$

Figura: Camada Softmax

$$\operatorname{softmax}(z) \ = \ \left[\frac{\exp(z_1)}{\sum_{i=1}^k \exp(z_i)}, \frac{\exp(z_2)}{\sum_{i=1}^k \exp(z_i)}, ..., \frac{\exp(z_k)}{\sum_{i=1}^k \exp(z_i)}\right]$$

Aplicando RNA para PL

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer

Aplicando RNA para PLN

Classificação de texto: Análise de sentimentos

Redes Neurais Artificiais

Aplicando RNA para Pl

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Figura: Uma rede neural para análise de sentimentos

Classificação de texto: Análise de sentimentos

embeddings = torch.cat(embeddings) #embeddings.shape ==(1,n_words*s

z = self.hidden (embeddings) #z.shape == (1,number_neurons)
z = self.hidden_act(z) #z.shape == (1,number_neurons)

```
class AS(nn.Module):
Redes Neurais
Artificiais
                  def __init__(self):
                     self.embeddings = nn.Embeddings(size_vocab,size_repr)
Arquitetura
Codificador-
                     self.hidden = nn.Linear(size_repr*number_words, number_neurons)
Decodificador
                     self.hidden act = nn.ReLu()
(Encoder-
Decoder)
                     self.out = nn.Linear(number neurons.1)
Mecanismo de
                     self.out_act = nn.Sigmoid()
Atenção
                  def forward(self,data)
Arquitetura
                     #data.shape == (1,n_words)
                     embeddings = self.embeddings(data) #embeddings.shape ==(1,n_words,s
```

y = self.out # y.shape ==(1,1)

return v

 $y = self.out_act(y) #y.shape == (1,1)$

Um modelo de linguagem neural

Redes Neurais Artificiais

Aplicando RNA para P

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Vantagens sobre os modelos de n-gramas

Redes Neurais Artificiais

Aplicando RNA para PL

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de

Atenção

Arquitetura Transformer Note que como o modelo aprende a partir das representações vetoriais de palavras (embeddings), não das sequências de palavras em si, o modelo pode explorar as similaridades entre palavras codificadas nelas para realizar suas predições.

Vantagens sobre os modelos de n-gramas

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura

Note que como o modelo aprende a partir das representações vetoriais de palavras (embeddings), não das sequências de palavras em si, o modelo pode explorar as similaridades entre palavras codificadas nelas para realizar suas predições.

Assim, mesmo que uma sequência não tenha sido vista explicitamente nos dados de treino, o modelo pode avaliar sua probabilidade com base nessas similaridades.

Vantagens sobre os modelos de n-gramas

Redes Neurais Artificiais

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura

Note que como o modelo aprende a partir das representações vetoriais de palavras (embeddings), não das sequências de palavras em si, o modelo pode explorar as similaridades entre palavras codificadas nelas para realizar suas predições.

Assim, mesmo que uma sequência não tenha sido vista explicitamente nos dados de treino, o modelo pode avaliar sua probabilidade com base nessas similaridades.

- ► Tenho que lembrar de alimentar o gato hoje a noite (visto nos dados)
- ► Tenho que lembrar de alimentar o cachorro (não visto)

Aplicando RNA para PLN

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer

Redes Recorrentes e Sequências

Redes Neurais Recorrentes

Redes Neurais Artificiais

Aplicando RNA para Pi

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer Redes Recorrentes são aqueles em que acontecem ciclos na rede, i.e. em que a saída de um neurônio (ou camada) retroalimenta ele(a) mesmo(a).

Rede Neural Recorrente

Redes Neurais Recorrentes

Redes Neurais Artificiais

Aplicando RNA para Pl

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer os enlaces recorrentes numa RNN funcionam como um mecanismo de memória, que mantém uma noção de estado na rede.

(21)

Redes Neurais Recorrentes

Redes Neurais Artificiais

Aplicando RNA para P

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer os enlaces recorrentes numa RNN funcionam como um mecanismo de memória, que mantém uma noção de estado na rede. A execução de uma RNN é implementada através da expansão iterada da rede a partir da saída da execução anterior.

Redes Neurais Artificiais

Aplicando RNA para PLN

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer

treinamento de uma RNA

Treinando uma rede neural

Redes Neurais Artificiais

Aplicando RNA para PL

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer O treinamento de uma rede neural se dá num processo iterativo sobre os dados de treinamento em duas etapas:

- ► Passo de programação direta (forward propagation)
- ► Passo de propagação retrograda (backward propagation)

Treinando uma rede neural

Artificiais

Arquitetura (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura

Transformer

O treinamento de uma rede neural se dá num processo iterativo sobre os dados de treinamento em duas etapas:

- ► Passo de programação direta (forward propagation)
- ► Passo de propagação retrograda (backward propagation)
- necessário definir alguns ingredientes da metodologia de treino:
 - ▶ Quantidade de épocas de treino, i.e. quantas vezes a rede processará o conjunto de treino para aprender
 - ► A função de perda (*loss*), que representa a computação do erro cometido pela rede em seu processamento

Treinando uma rede neural: grafo de computação

Redes Neurais Artificiais

Aplicando RNA para Pl

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer Um grafo de computação determina uma ordenação topológica das operações necessárias a serem realizadas para se obter um determinado resultado.

Treinando uma rede neural: grafo de computação

Redes Neurais Artificiais

Aplicando RNA para PL

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer Um grafo de computação determina uma ordenação topológica das operações necessárias a serem realizadas para se obter um determinado resultado.

Treinando uma rede neural: propagação direta

Redes Neurais Artificiais

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer

Na propagação direta, as ações do grafo de computação são executadas em ordem, i.e. uma operação é executada somente quando todas as operações das quais ela depende já o foram.

Treinando uma rede neural: propagação direta

Redes Neurais Artificiais

Arquitetura Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer

Na propagação direta, as ações do grafo de computação são executadas em ordem, i.e. uma operação é executada somente quando todas as operações das quais ela depende já o foram.

Treinando uma rede neural: cálculo do erro

Redes Neurais Artificiais

Arquitetura Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer Ao final da execução, a função de perda $L(y, \hat{y})$ é aplicada sobre o resultado encontrado e o resultado conhecido (rótulo).

Treinando uma rede neural: cálculo do erro

Artificiais

Aplicando RNA para Pl

Arquitetura Codificador-Decodificado (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer Ao final da execução, a função de perda $L(y,\hat{y})$ é aplicada sobre o resultado encontrado e o resultado conhecido (rótulo).

Para ajustar os pesos da rede neural, precisamos entender a contribuição de cada componente da rede ao erro obtido. Fazemos isso computando a derivada parcial de cada peso para a perda, i.e.

$$\frac{\partial L(y,\hat{y})}{\partial w_i}$$

Treinando uma rede neural: cálculo do erro

Artificiais

Arquitetura (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer Ao final da execução, a função de perda $L(y,\hat{y})$ é aplicada sobre o resultado encontrado e o resultado conhecido (rótulo).

Para ajustar os pesos da rede neural, precisamos entender a contribuição de cada componente da rede ao erro obtido. Fazemos isso computando a derivada parcial de cada peso para a perda, i.e.

26

$$\frac{\partial L(y,\hat{y})}{\partial w_i}$$

Tal valor será computado de forma numérica e propagado para trás usando a regra da cadeia $\frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$

Treinando uma rede neural: propagação retrograda

Redes Neurais Artificiais

Aplicando RNA para P

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer Na propagação retrograda, calculamos as iterativamente as derivadas parciais do erro em relação aos pesos e atualizamos os pesos da rede, propagando para trás as mudanças.

Treinando uma rede neural: propagação retrograda

Redes Neurais Artificiais

Arquitetura (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer

Na propagação retrograda, calculamos as iterativamente as derivadas parciais do erro em relação aos pesos e atualizamos os pesos da rede, propagando para trás as mudanças.

Redes Neurais Artificiais

Aplicando RNA para PLN

Arquitetura Codificador-Decodificador (Encoder-Decoder)

Mecanismo de Atenção

Arquitetura Transformer

Aplicação: Geração de texto