Lecture 12 Let S be a set. Let Perm(S) be the set of permutations of S.

permutations of S.

We know that Perm(S) is a group under the binary operation of composition.

We will focus on the case in which S is a finite set. For any positive integer n,

For any positive integer n, we define S_n to be the group of permutations of $\{1, 2, \dots, n\}$.

Array notation

Let $\sigma \in S_n$. Then, we can write σ as a $2 \times n$ array

as follows:

[1 2 3 ---- n]

[5(1) 5(2) --- --- o(n).]

Example

n=5 $\sigma(1) = 2$, $\sigma(2) = 5$, $\sigma(3) = 4$, $\sigma(4) = 3$, $\sigma(5) = 1$

This makes it easy to calculate compositions, inverses, etc.

For example,
$$5^{-1} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 4 & 3 & 2 \end{bmatrix}$$

Suppose
$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{bmatrix}$$

We want to calculate 5. T.

$$5.7 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 & 5 & 4 \end{bmatrix}$$

Remember: The function on the right acts first.

 $= \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{bmatrix}$

Order of Sn Suppose we want to construct a permutation of the set 21,2,...,nz. Let us denote

the permutation by 5.

We will construct of by choosing the elements o(1), o(2),

We have n choices for o(1) After o(1) is chosen, we have (n-1) choices for o (2) as $\sigma(2) \neq \sigma(1)$. After o(1) and o(2) are chosen, we have (n-2) choices

for 5 (3).

Continuing in this manner, we see that o can be constructed in n(n-1) (n-2) ... 2.1 ways. We call this number the factorial of n, and write it as n!. Thus, $|S_n| = n!$

Example
$$n=3$$
, $|S_3|=3!=6$
 $|S_3|=3!=6$

Cycle decomposition

Let o be a permutation of £1,2,--., ng.

Consider the sequence

1,0(1),02(1),

Since ord (o) is finite, we know that there exists a positive integer m such that $\sigma^{m}(1) = 1$.

Let r be the smallest positive integer such that $5^{r}(1) = 1$. (Note that we do not need

 $\sigma^r = id$, only that $\sigma^r(1) = 1$. So r may be smaller than ord (5). Thus, the sequence looks like 1, 5(1), 5²(1), ..., 1, 5(1), 5²(1), ...

We claim that the elements

1, o(1), --- or-1(1) are

all distinct.

If not, there exist non-negative integers i < j such that $\sigma^i(1) = \sigma^j(i)$. Composing with σ^i on both sides, we get $\sigma^{j-i}(i) = 1$.

But j-i>0 and j-i< r.

This contradicts the minimality

Thus the elements 1,0(1),..., of(1) are all distinct. In fact the infinite sequence $\cdots \sigma^{-2}(1), \sigma^{-1}(1), 1, \sigma(1), \sigma^{-2}(1), \cdots$ consists of the pattern 1, on, ···· ort(1) repeating indefinitely (in both directions)

A pictorial representation

$$N=8. \quad \sigma(1)=5, \ \sigma(2)=3, \ \sigma(3)=7, \ \sigma(4)=1$$

$$\sigma(5)=4, \ \sigma(6)=6, \ \sigma(7)=8, \ \sigma(8)=2$$

Let
$$A_1 = \{1, \sigma(1), \dots, \sigma^{r-1}(1)\}$$
.

If $A_1 \neq \{1,2,\dots, n\}$, choose some $x \notin A_1$ and repeat the process to obtain a "cycle" x , $\sigma(x)$, $\sigma^{s-1}(x)$ (for some integer s).

Let $A_2 = \{x, \sigma(x), \dots, \sigma^{s-1}(x)\}$.

In our example, we take x=2. S(1)=5 S(2)=3 S(3)=7 S(3)=1

$$\sigma(1) = 5$$
, $\sigma(2) = 3$, $\sigma(3) = 7$, $\sigma(4) = 1$
 $\sigma(5) = 4$, $\sigma(6) = 6$, $\sigma(7) = 8$, $\sigma(8) = 2$

Observe that A, and Az are disjoint. If $A_1 \cup A_2 = \{1, 2, --- n\}$, we Stop. Otherwise, we choose some y & A, UA2 and repeat

the process.

This process must end in at most n steps. Suppose, after p steps, we

have disjoint sets A, Az, ..., Ap

such that o acts on the

elements of each Ai "cyclically".

Definition A permutation o of a set S is called a cycle if there exists a finite set $A = \{a_1, \dots, a_r\}$ such that $\sigma(a_1) = a_2$, $\sigma(a_2) = a_3$ $\sigma(\alpha_i) = \alpha_i$

The integer r is called the length of the cycle. The cycle of is then written as (a_1, a_2, \dots, a_r) . Two cycles (a,,..., ar) and (b₁, -·· , b₂) are said to be disjoint if $a_k \neq b_k$ for any k, l.

Recall that we have partitioned the set {1,2,-.. n} into p disjoint subsets A,, ... Ap such that for each i, 1≤i≤p,

p disjoint subsets
$$A_1, \dots A_p$$

such that for each i , $i \le i \le p$,
 $A_i = \{a_{i_1}, a_{i_2}, \dots a_{ir_i}\}$ and

 $\sigma(a_{ij}) = a_{i2}$, $\sigma(a_{i2}) = a_{i3}$, ...

 $\sigma(\alpha_{ir_i}) = \alpha_{ii}$

Then, we observe that if $\sigma_i = (a_{i1}, a_{i2}, \dots a_{iri})$, then $\sigma = \sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_p$

Indeed for any $x \in \{1, 2, \dots, n\}$

there is some i such that x ∈ Ai.

Let us compute 5,000,0000 (x).

If
$$j > i$$
, $\sigma_j(x) = x$.

So $\sigma_{i+1} \cdot \cdots \cdot \sigma_p(x) = x$.

 $\sigma_i(x) = \sigma(x)$

So $\sigma_i \circ \sigma_{i+1} \circ \cdots \circ \sigma_p(x) = \sigma(x)$

So $\sigma_1(\sigma(x)) = \sigma(x)$ for

 $\sigma(x) \in A_i \Rightarrow \sigma(x) \notin A_i$, for j < i.

any j< i.

$$50$$
,
 $\sigma_{1} \circ \sigma_{2} \cdots \sigma_{i-1}(\sigma_{i} \circ \cdots \circ \sigma_{i-1}(\sigma_{i}))$

$$= \sigma_{1} \circ \sigma_{2} \cdots \sigma_{i-1}(\sigma_{i} \circ \cdots \circ \sigma_{i-1}(\sigma_{i}))$$

= 5 (x).

Thus $\sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_p(x) = \sigma(x)$

for any $x \in \{1, 2, \dots n\}$

So o = o, o o, o,

This is called the cycle decomposition of o.

For example:

1 = 8. $\sigma(1) = 5$, $\sigma(2) = 3$, $\sigma(3) = 7$, $\sigma(4) = 1$ $\sigma(5) = 4$, $\sigma(6) = 6$, $\sigma(7) = 8$, $\sigma(8) = 2$

Then, $\sigma = (1,5,4)(2,3,7,8)(6)$

The cycle decomposition of a

permutation is unique.

However, a single cycle may be

written in multiple ways.

For example, (a,b,c)=(b,c,a).

any order. (See Gallian, Thm 5.2) For example, (1, 3, 4)(2, 5) = (2, 5)(1, 3, 4).Except for this, it is easy to see that cycle decomposition is unique.

So, they may be composed in

Secondly, <u>disjoint</u> cycles commute.

Also, note that a cycle of length 1 is just the identity element.

So, we often choose not to write 1-cycles in a cycle decomposition.

Examples

Elements of S_{a} :

id, (1,2), (2,3), (1,3), (1,2,3),

(1,3,2).

Elements of S4:

Identity element: id

 $\frac{2-\text{cycles}:}{(2,3),(1,3),(1,4),}$

$$3$$
-cycles: $(1,2,3)$, $(1,3,2)$, $(1,2,4)$, $(1,4,2)$, $(1,3,4)$, $(1,4,3)$, $(2,3,4)$, $(2,4,3)$

(1,2)(3,4), (1,4)(2,3),

(1,3)(2,4).

$$\frac{4-\text{cycles}:}{(1,2,3,4),(1,2,4,3),}$$

 $(1,3,2,4),(1,3,4,2),$
 $(1,4,2,3),(1,4,3,2)$
"Types" of cycle decomposition
 \iff Ways to partition 4.

(More on this later.)

= 3+1

4= |+ |+ | + | = 2+ |+ | = 2+2

Order of a permutation Let S be a set.

Let $\sigma = (\alpha_1, \dots, \alpha_m)$ and $T = (b_1, \dots, b_n)$ be disjoint cycles in Perm(S). Then,

we will prove that $ord(\sigma \tau) = 1 cm (m, n)$.

Let $A = \{a_1, \dots, a_m\}$, $B = \{b_1, \dots, b_n\}$ and $C = S \setminus (AUB)$. So, S is the <u>disjoint</u> union of A, B and C.

Let r be an integer. Then, $(\sigma \tau)' = id \iff (\sigma \tau)'(x) = x$ for all $x \in S$.

* That if
$$x \in A$$
, $(\sigma \tau)(x) = \sigma(\tau(x)) = \sigma(x)$.

Also, note that in this c

Also, note that in this case $\sigma(x) \in A$.

So $(\sigma \tau)^2(x) = (\sigma \tau)(\sigma(x))$ $= (\sigma \tau)(\sigma(x))$

$$S_{0}(S_{0}(x)) = (G_{0}(T_{0}(G_{0}(x)))$$

$$= (G_{0}(T_{0}(G_{0}(x)))$$

$$= (G_{0}(T_{0}(G_{0}(x)))$$

$$= (G_{0}(T_{0}(G_{0}(x)))$$

$$= (G_{0}(T_{0}(G_{0}(x)))$$

$$= (G_{0}(T_{0}(X)))$$

$$= (G_{0}(T_{0}(X)))$$

$$= (G_{0}(T_{0}(X))$$

$$= (G_{0}(T_{0}(X))$$

$$= (G_{0}(T_{0}(X)))$$

$$= (G_{0}(T_{0}(X))$$

Continuing in this manner, we see that $(\sigma \tau)^k(x) = \sigma^k(x)$ for any positive integer. So, $(\sigma \tau)'(x) = x \Leftrightarrow \sigma'(x) = x$ $\iff m/r$. Similarly, if $x \in B$, we see that $(\sigma \tau)'(x) = x \iff n \mid r$. If $x \in C$, $\sigma(x) = x$ and $\tau(x) = x$. So, in that case $(\sigma \tau)'(n) = x$

for any r.

Thus $(\sigma \tau)^r(x) = x$ for all x \Leftrightarrow m/r and n/r.

The smallest positive r with this property is lcm (m, n).

More generally, with this argument we can prove: Theorem Let S be a finite set and let $\sigma \in Perm(S)$. If $\sigma = \sigma_1 \circ \cdots \circ \sigma_p$ is the cycle de composition of o, where of is a cycle of length n_i , then ord $(\sigma) = lcm(n_i, n_2, \dots, n_p)$. Example

n = 10. $\sigma = (1, 4, 7, 2, 9, 3) (5, 8, 6, 10).$

Then, ord $(\sigma) = 1 cm(6, 4) = 12$.