

8 under test (DUT);
9 a test result compaction module composer to generate a test result compaction module
10 code; and
11 a code merger to merge code from the RIT-G composer, the test execution directive
12 composer and the test result compaction module composer to generate the software built-in
13 self-test engine (SBE).

A/ Comed

1 3. (Amended) The system as claimed in claim 1, wherein said SBE is to be merged
2 with an expected test result and then loaded on-board a complex device under test (DUT) so
3 as to activate a re-generative functional test on the complex device under test (DUT) and
4 make a comparison between test results of the re-generative functional test and the expected
5 test result to check for design validations and/or manufacturing defects.

1 5. (Amended) The system as claimed in claim 2, wherein said SBE generation tool is
2 a software tool installed to generate the software built-in self-test engine (SBE), and wherein
3 individual components of said SBE generation tool, including the random instruction test
4 generator (RIT-G) composer, the test execution directive composer, the test result
5 compaction module composer, and the code merger, are software modules written in any
6 computer language.

A/ 2

1 7. (Amended) The system as claimed in claim 2, wherein said SBE generation tool is
2 a hardware implementation installed to generate the software built-in self-test engine (SBE).

1 8. (Amended) The system as claimed in claim 2, wherein said run time environment

2 includes a test execution environment including an exception handler to handle illegal
3 conditions such as undesirable memory accesses, deadlock, shut-down, and infinite loops,
4 and a RIT environment to provide equivalent operating system (OS) functions needed by the
5 RIT generator to generate the re-generative functional test.

1 **9. (Amended)** The system as claimed in claim 2, wherein said compact RIT-G code
2 produced is a C-language program compiled by a C-compiler to produce an assembly
3 language version of the RIT-G code, and when the run time environment, the test result
4 compaction module code and the assembly language version of the RIT-G code are
5 assembled by an assembler, a single program indicating the SBE in the target DUT's object
6 code is obtained.

1 **10. (Amended)** The system as claimed in claim 9, wherein said compact RIT-G
2 code includes an instruction generation module to generate individual instructions during
3 testing application.

1 **11. (Amended)** The system as claimed in claim 1, wherein said software built-
2 in self-test engine (SBE) comprises:

3 a RIT generator including RIT machine code reside on-board the complex device
4 under test (DUT) for generating the re-generated functional test;
5 a test program execution module including test execution directives for providing a
6 run time environment to store and run the re-generated functional test; and
7 a test result compaction module including compression machine code to compress
8 test results of the re-generated functional test for storage on-board the complex device under

9 test (DUT).

1 **12. (Amended)** The system as claimed in claim 11, wherein said test execution
2 environment employs an exception handler to handle illegal conditions, including
3 undesirable memory accesses, deadlock, shut-down, and infinite loops.

1 **13. (Amended)** The system as claimed in claim 1, wherein said complex device
2 under test (DUT) includes a microprocessor.

1 **18. (Amended)** The computer readable medium as claimed in claim 17,
2 wherein said SBE generation tool comprises:
3 a random instruction test generator (RIT-G) composer to receive the user directives
4 and the instruction information and generate a compact RIT-G code;
5 a test execution directive composer to receive the user directives and the device
6 constraints and create a run time environment needed to enable the re-generative functional
7 test to repeatedly generate functional tests and execute generated tests on-board the complex
8 device under test (DUT);
9 a test result compaction module composer to generate a test result compaction module
10 code; and
11 a code merger to merge code from the RIT-G composer, the test execution directive
12 composer and the test result compaction module composer to generate the software built-in
13 self-test engine (SBE).

1 **19. (Amended)** The computer readable medium as claimed in claim 18,

all work

2 wherein said SBE is to be merged with an expected test result and then loaded on-board a
3 complex device under test (DUT) so as to activate a re-generative functional test on the
4 complex device under test (DUT) and make a comparison between test results of the re-
5 generative functional test and the expected test result to check for design validations and/or
6 manufacturing defects.

X5

1 **21.** The computer readable medium as claimed in claim 18, wherein said run time
2 environment includes a test execution environment including an exception handler to handle
3 illegal conditions such as undesirable memory accesses, deadlock, shut-down, and infinite
4 loops, and a RIT environment to provide equivalent operating system (OS) functions needed
5 by the RIT generator to generate the re-generative functional test.

1 **22. (Amended)** The computer readable medium as claimed in claim 18,
2 wherein said compact RIT-G code produced is a C-language program compiled by a C-
3 compiler to produce an assembly language version of the RIT-G code, and when the run time
4 environment, the test result compaction module code and the assembly language version of
5 the RIT-G code are assembled by an assembler, a single program indicating the SBE in the
6 target DUT's object code is obtained.

1 **23. (Amended)** The computer readable medium as claimed in claim 18,
2 wherein said compact RIT-G code includes an instruction generation module to generate
3 individual instructions during testing application.

1 **24. (Amended)** The computer readable medium as claimed in claim 17,

2 wherein said software built-in self-test engine (SBE) comprises:
3 a RIT generator including compact RIT machine code reside on-board the complex
4 device under test (DUT) for generating the re-generated functional test;
5 a test program execution module including test execution directives for providing a
6 run time environment to store and run the re-generated functional test; and
7 a test result compaction module including compression machine code to compress
8 test results of the re-generated functional test for storage on-board the complex device under
9 test (DUT).

1 **28. (Amended)** The method as claimed in claim 27, wherein said software
2 built-in self-test engine (SBE) is generated by:
3 generating a compact random instruction test generator (RIT-G) code based on the
4 user directives and the instruction information;
5 creating a run time environment to enable the re-generative functional test to
6 repeatedly generate functional tests and execute generated tests on-board the complex device
7 under test (DUT) based on the device constraints;
8 generating a test result compaction module code based on the user directives and the
9 device constraints; and
10 merging the RIT-G code, the run time environment and the test result compaction
11 module code to obtain the software built-in self-test engine (SBE).

1 **29. (Amended)** The method as claimed in claim 27, wherein said SBE is to be
2 merged with an expected test result and then loaded on-board a complex device under test
3 (DUT) so as to activate a re-generative functional test on the complex device under test

Re-Gen
5 (DUT) and make a comparison between test results of the re-generative functional test and
the expected test result to check for design validations and/or manufacturing defects.

1 **31. (Amended)** The method as claimed in claim 28, wherein said run time
2 environment includes a test execution environment including an exception handler to handle
3 illegal conditions such as undesirable memory accesses, deadlock, shut-down, and infinite
4 loops, and a RIT environment to provide equivalent operating system (OS) functions needed
5 by the RIT generator to generate the re-generative functional test.

1 **32. (Amended)** The method as claimed in claim 28, wherein said compact RIT-
2 G code produced is a C-language program compiled by a C-compiler to produce an assembly
3 language version of the RIT-G code, and when the run time environment, the test result
4 compaction module code and the assembly language version of the RIT-G code are
5 assembled by an assembler, a single program indicating the SBE in the target DUT's object
6 code is obtained.

1 **33. (Amended)** The method as claimed in claim 28, wherein said complex
2 device under test (DUT) include a microprocessor.
