Social Intelligence in Computer Vision: A Review of Cues, Models, and Applications

Mohmmad M. Zare'i

University of Tehran

September 27, 2025

Outline

Introduction

Complexity of Group Activities Social and Cognitive Cues Technical Challenges From Recognition to Understanding

Literature Review

SoGAR: Self-supervised Spatiotemporal Attention-based Social

Group Activity Recognition

LaIAR: Language-Model-Guided Interpretable Video Action

Reasoning

Introduction

- Activity Recognition (Individual) Identifying what a person is doing. Datasets: UCF101, Kinetics
- Group Activity Recognition (Social) Understanding coordinated or interacting actions within groups. Datasets: Collective Activity, Volleyball Dataset
- Why It Matters
 - Moves beyond visual labels → requires reasoning about roles, relationships, intentions.
 - Foundation for social intelligence in computer vision.
 - Applications: autonomous driving, social robotics, surveillance, human—Al collaboration.

Complexity Beyond Actions

- Group activities involve multiple people and their interactions.
- Requires modeling of:
 - ► Roles (leader, follower, bystander)
 - Relationships (friend, rival, teammate)
 - Intentions (cooperation, competition, avoidance)
 - Context (sports field, meeting room, street)
- Moves beyond simple action recognition → toward social reasoning.

Social and Cognitive Cues

- Key cues from social psychology and cognitive science:
 - ► Facial expressions → emotions
 - ightharpoonup Body language ightarrow posture, gestures
 - ▶ Gaze direction → attention, focus
 - ▶ Proxemics → distance and spatial relationships
 - ightharpoonup Turn-taking ightarrow conversational dynamics
- ► These cues provide the foundation for **interpreting group interactions**.

Technical Challenges

- Multi-person detection and tracking across frames.
- ► Temporal reasoning: modeling interactions over time.
- ► Multimodal integration: vision + audio + language.
- Ambiguity and context dependence of group behaviors.
- Generalization: handling unseen group dynamics.

From Recognition to Understanding

- Traditional goal: recognize what is happening.
- Emerging goal: understand why it is happening.
 - ▶ Infer group goals, intentions, and social context.
 - Connect low-level cues with high-level reasoning.
- ► This leap is the essence of **social intelligence in video**.

Literature Review

- Overview of key works in social intelligence and computer vision.
- Discussion of methodologies, datasets, and findings.
- ▶ Identification of gaps and future directions.

SoGAR: Self-supervised Spatiotemporal Attention-based Social Group Activity Recognition

- Datasets: Volleyball Dataset, JRDB-PAR, NBA Dataset
- Key Contributions:
 - Introduced a self-supervised learning framework.
 - Leveraged spatiotemporal attention for improved interaction modeling.
 - Demonstrated effectiveness on multiple group activity datasets.
- Model Architecture:
 - Base: Vision Transformer (ViT) and TimeSformer
 - Learning: Self-supervised pretraining on large video datasets

SoGAR

- Methodology:
- Uses a self-supervised transformer framework (Vision Transformer backbone) for social group activity recognition.
- Key idea: generate local and global spatio-temporal views from the same video, with variation in frame rate and spatial crop size.
- ▶ A teacher-student architecture: teacher processes global view, student processes local views. The student is trained to align its features to those of the teacher.
- ► Two contrastive / correspondence objectives:
 - ► Temporal Collaborative Learning (TCL): relate views differing in temporal resolution.
 - Spatio-temporal Cooperative Learning (SCL): relate views that differ in spatial crop + temporal sampling.
- ▶ Does not require actor bounding boxes or individual action labels during pre-training, reducing annotation burden.
- Uses motion as supervisory signal from RGB alone; the model becomes invariant to scale, viewpoint, and motion speed.

LaIAR: Language-Model-Guided Interpretable Video Action Reasoning

- ▶ **Datasets**: Charades, CAD-120
- ► Key Contributions:
 - Proposed a framework that integrates large language models (LLMs) for interpretable action reasoning. Utilizing knowledge transfer between LLMs and video model.
 - Utilized LLMs to generate explanations and rationales for recognized actions. Inferring high-level actions from low-level changes in relationships between actors and objects.

Model Architecture:

- R-CNN and ResNet-101 as backbones for object, category, and relation detection.
- Relations and visual features are mapped to a joint embedding space.
- Embeddings are fed into a dynamic token transformer (DT-Former).

LaIAR

- Methodology:
- Introduces a dual-branch framework: a video model and a language model, trained together so the video model learns reasoning from the language model.
- Uses relationship transitions between humans/objects as cues: visual relations (appearance, bounding boxes, spatial configuration) and semantic relations (human/object categories + relationships) are encoded.
- ▶ Both visual and semantic relations are encoded via Faster R-CNN + ResNet-101 for detecting entities, extracting features, forming human-object pairs.
- Core architecture: DT-Former (Dynamic Token Transformer) which applies adaptive token selection (spatio-temporal tokens) and then transformer layers to model relation transitions. Tokens with low importance are discarded via a Gumbel-Softmax mechanism.
- Learning scheme includes:
 - ▶ Joint visual-semantic embedding: aligning visual relation