- A : « la table vendue est en chêne » ;
- B : « la table vendue est une table à manger ».

Déterminer la probabilité conditionnelle $p_A(B)$.

5. Déterminer la probabilité que la table soit une table basse sachant qu'elle est en cerisier.

42

Un épicier vend des fruits et des légumes. Il possède deux fournisseurs A et B. Il vend 340 kg de légumes et 770 kg de fruits. 55% de ses légumes proviennent du fournisseur A et 70% des fruits proviennent du fournisseur B.

- 1. Établir un tableau croisé d'effectifs.
- 2. On choisit au hasard un aliment dans la production du fournisseur A. Calculer la probabilité que ce soit un légume.
- 3. Établir un tableau des fréquences par rapport à l'effectif global.
- 4. En déduire le pourcentage de fruits vendus par l'épicier.
- 5. Établir un tableau de fréquences conditionnelles des différents fournisseurs par rapport aux fruits.

43

Un designer graphique met en vente la plupart de ses productions originales. Celles-ci existent sous deux formats : A0 ou A3. Son carnet d'adresses comporte une liste de 600 clients qu'il contacte pour cette vente. Une fois cette opération terminée, il fait ses comptes :

- 126 clients ont achetés une œuvre au format A0;
- 160 clients ont acheté une œuvre au format A3;
- 30 clients ont acheté une œuvre dans les deux formats.

Soit

- A₀ l'événement « le client a acheté une production au format A0 »
- et A_3 l'événement « le client a acheté une production au format A3 ».

1. Compléter le tableau croisé d'effectifs cidessous.

	A_0	$\overline{A_0}$	TOTAL
A_3			
$\overline{A_3}$			
TOTAL			600

- 2. Quel est le pourcentage de clients ayant acheté une production au format A3?
- 3. L'affirmation suivante est-elle vraie : « Au moins 5 % des clients ont acheté des productions dans les deux formats ».
- 4. Calculer $p_{A_0}(A_3)$. On arrondira à 10^{-3} près.
- 5. Calculer $p(\overline{A_0} \cap A_3)$. On arrondira à 10^{-3} près.

44

Un designer choisit deux sous-traitants pour fabriquer ses principaux produits. Sur les 3500 produits qu'il a commandés, 7% sont non conformes. Il sait que 92% des 1200 produits fabriqués par le sous-traitant A sont conformes.

1. Compléter le tableau croisé d'effectifs cidessous.

	Conforme	Non conforme	TOTAL
Α			
В			
TOTAL			

- 2. Quel est le pourcentage de produits non conformes produits par le sous-traitant B?
- 3. Donner le tableau croisé de fréquences associé au tableau ci-dessus.
- 4. L'affirmation suivante est-elle vraie : « Le sous-traitant A est le principal sous-traitant du designer ». Justifier.
- 5. On choisit un produit au hasard parmi ceux fabriqués. On note :
 - A l'événement « le produit a été fabriqué par le sous-traitant A ».
 - C l'événement « le produit est conforme ».
- 6. Calculer la probabilité que le produit soit conforme sachant qu'il vient de l'usine A.

7. Calculer $p_{\overline{C}}(A)$.

45

Une usine de textile est approvisionnée par trois producteurs. 60% de la production de l'usine provient du producteur STYLE, 20% provient du producteur MODE et le reste provient du producteur CLASSE. On sait que :

- 5% de la production de STYLE présente un défaut;
- − 3% de MODE est rejetée également;
- $-\,$ de même que 1% de celle de chez CLASSE.
- 1. Sachant que l'usine a besoin de 9700 m^2 de tissus, combien de m^2 de tissu doit-elle commander?
- 2. Compléter le tableau croisé d'effectifs cidessous.

	Conforme	Non conforme	TOTAL
STYLE			
MODE			
CLASSE			
TOTAL	9700		

- 1. Donner le nombre de m^2 de tissus conforme provenant du producteur MODE.
- 2. Établir le tableau des fréquences conditionnelles des producteurs par rapport aux tissus non conformes.
- 3. Un m^2 de tissu est non conforme. Le patron de l'usine affirme qu' « il provient sûrement de chez MODE ». Son affirmation est-elle justifiée?

46

Une boulangerie prépare 300 pâtisseries dont 50% sont des éclairs. En utilisant le tableau des fréquences conditionnelles en lignes ci-contre, déterminer le nombre de pâtisseries au chocolat que cette boulangerie prépare.

	Chocolat	Vanille	Total
Éclairs	30 %	70 %	100 %
Tartes	40 %	60 %	100 %

47

Un vaccin atteint 4 % d'une population de 50 000 habitants. On soumet l'ensemble de la population à un dépistage. À l'aide du tableau des fréquences conditionnelles par colonnes ci-contre, déterminer le nombre de tests positifs obtenus à l'issue du dépistage.

	Vacciné	Non vacciné	Total
Test positif	95 %	2 %	
Test négatif	5 %	98 %	
Total	100 %	100 %	100 %

48

Un nouveau médicament est testé sur une population de 20 000 personnes pour traiter une certaine maladie. On soumet cette population à un test. Parmi les personnes malades, 1,5% ont un test positif. Parmi les personnes non malades, 98 ont un test positif. Parmi les personnes malades, 99 ont un test négatif.

1. Compléter le tableau suivant :

	Malades	Non malades	Total
Test positif			
Test négatif			
Total			20 000

- 2. Construire le tableau des fréquences.
- On choisit au hasard un individu de cette population. On considère les événements T et M suivants :
 - T: « le test est positif pour l'individu choisi »,
 - M: « l'individu choisi est malade ».
 - (a) Calculer la probabilité de chacun des événements T et M.
 - (b) Définir par une phrase l'événement \overline{T} et calculer sa probabilité.
 - (c) Définir par une phrase chacun des événements $M \cap T$ et $M \cup \overline{T}$, puis calculer sa probabilité.
- 4. On décide de traiter toutes les personnes qui ont un test positif. On choisit au hasard une personne traitée. Quelle est la probabilité qu'elle soit non malade?