

SRM Institute of Science and Technology College of Engineering and Technology

SET A

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022 (EVEN)

Test: CLAT-II Date: 25.05.2022
Course Code & Title: 18ECE206J Advanced Digital System Design
Year & Sem: II & IV
Max. Marks: 50

Course Articulation Matrix:

	Program Outcomes (POs) Graduate Attributes								Program Specific Outcomes (PSO)							
S.No.	S.No. Course Outcomes (CO):			3	4	5	6	7	8	9	10	11	12	1	2	3
1	Apply advanced theorems to simplify the design aspects of various practical circuits and design Mealy and Moore models of sequential circuit.	2	-	2	-	-	1	1	1	1	ı	ı	ı	1	1	1
2	Implement synchronous sequential circuits and write VHDL Code	-	2	2	-	-	1	1	1	1	1	-	1	1	1	-
3	Analyze asynchronous sequential circuits and write code using VHDL.	-	2	2	-	-	1	1	1	1	1	-	1	1	1	-
4	Implement Hazard free circuits and various digital circuits using Programmable Logic Devices.	-	2	2	-	-	1	1	1	1	-	-	-	1	1	-
5	Demonstrate FPGAs and Construct digital circuits using VHDL.	-	3	3	-	-	-	-	-	-	-	-	-	-	-	2
6	Design and verify the experiments in the laboratory with hardware and software.		-	-	-	3	-	-	-	2	-	-	3	3	-	2

	Part - A								
	$(10 \times 1 = 10 \text{ Marks})$								
	Answer all Q. Question Mark BL CO PO P								
Q. No	Question	Mark	DL	CO	10	PI Code			
1	Component instantiation is done under model.								
	a). structural								
	b). Behavioral	1	1	2	2	2.3.1			
	c). Switch								
	d). Dataflow								
2	The result of the shift operation: 1001010 srl 2 is								
	a). 0101000								
	b). 0010010	1	2	2	3	3.1.1			
	c). 1001011								
	d). 1111000								
3	State reduction in the sequential circuit represents the reduction								
	of	1	1	2	2	2.3.1			
	a). Number of flip flops								

	b). Number of OR gates					
	<u> </u>					
	c). Number of AND gates					
	d). Number of Counters					
4	Which one of the following is not the element of the ASM					
	Chart?					
	a). state box	1	1	2	3	3.1.1
	b). decision box	_		_		
	c).data box					
	d). conditional box					
5	A can't be declared inside a process.					
	a). Signal					
	b). Variable	1	1	2	2	2.3.1
	c). Constants					
	d). Subprograms					
6	The following vhdl code represents					
	process (A, B, S)					
	begin					
	if (S='1') then					
	$Z \stackrel{\prime}{<=} A;$					
	else					
	$Z \leq B$;	1	2	3	3	3.2.1
	end if;					
	end process;					
	a). 4x2 encoder					
	b). 2x4 decoder					
	c). 2 x1 multiplexer					
	d). 1x4 demultiplexer					
7	If the states are named by letter symbol in transition table, then					
	it is called table.					
	a). flow b). truth	1	1	3	2	2.1.1
	c). look up					
	d). FSM					
8	If the final stable state does not depend on the change order of					
	state variable, then it is said to be					
	a). critical race	1	1	3	2	2.1.1
	b). non critical race	1	_		_	2.1.1
	c). steady state					
9	d). hazard					
9	In asynchronous sequential circuit ,the output changes occur with the change of a					
	a). Input					
	b). output	1	1	3	2	2.1.1
	c). clock pulse					
	d). Time					
10	Which of the following expression remove hazard from: xy+zx'?					
	a). xy+zx'	_				2.5.1
	b). xy+zx'+wyz	1	2	3	3	3.2.1
	c). xy+zx'+yz d). xy+zx'+wz					
	Section B1 (2 x 10 = 20 Ma)	rks)	1	<u> </u>	<u> </u>	l
	Answer any two questions					
11	i) List out sequential statement in VHDL and Explain briefly					
	any three statement (5)	10	2	2	2	2.3.1
	ii) What is concurrent statement? Explain with one	10				4.3.1
	example (5)					
12	i) convert the given state diagram into ASM chart (5)	10				221
		10	3	2	3	3.2.1
				<u> </u>		

	T					ı		1	Т	
	ii)List out different data types in VHDL.Compare signal and variable (5)									
13			ate table	using Imp	lication chart (8)					
1	Present	Next		output						
	state	X=0	X=1	output						
	a	e	e	1						
	b	c	e	1						
	С	i	h	0						
	d	h	a	1		10	_	_		211
	e	i	f	0		10	2	2	3	3.1.1
	f	e	g	0						
	g	h	b	1						
	h	c	d	0						
	i	f	b	1						
	ii)Write abo	out State a	ssignmer	nt and its t	ype (2)					
					DA (A 10 A015					
					on B2 $(2 \times 10 = 20 \text{ Ma})$					
1/1	Answer any two questions 14 i) Write about Race condition and its type in asynchronous							1		
14	sequential circuit with example (5)									
	ii) analyze the following asynchronous sequential circuit (5)									
	ii) analyze the following asynchronous sequential eneutr (5)									
			•							
								_	_	
	x ^y 1		$\exists \bigcirc$	TY		10	3	3	3	3.2.1
	y ₂									
	$\frac{1}{\sqrt{2}}$									
15	Design a as	ynchrono	us sequen	itial circui	t in gated latch with					
	inputs X and Y ,output Whenever Y is 1 input X is transferred							3	3	3.2.1
				emains in	the same state even if	10	4			J.2.1
1.0	X is change			11 7	1 10					
16			tor a Full	adder des	ign using two half	10	3	3	3	3.2.1
	adder circuit.									

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Evaluation Sheet

Name of the Student: Register No.:

	Part- A (10x 1= 10 Marks)							
Q. No	CO	PO	Marks Obtained	Total				
1	2	2						
2	2	3						
3	2	2						
4	2	3						
5	2	2						
6	3	3						
7	3	2						
8	3	3						
9	3	3						
10	3	3						
			Part -B					
		Sec	tion -B1 (2 x 10= 20 Marks)					
11	2	2						
12	2	3						
13	2	3						
	Section -B2 (2 x 10= 20 Marks)							
14	3	3						
15	3	3						
16	3	3						

Consolidated Marks:

	Marks Scored
CO2	
CO3	
PO2	
PO3	
Total	