Fraktální audio vizualizér

Autorka: Radka Hošková Vedoucí práce: Ing. Radek Richtr, Ph.D.

Fakulta informačních technologií ČVUT

1 Úvod do tématu

2 Zvolené řešení

3 Ukázka prototypu

Výběr tématu

Předchůdci nápadu vizualizace hudby pomocí fraktálů

Jak získat data z hudby?

- MIDI noty
- rozložení kanálů
- existující API
- kombinace postupů

Fourierova transformace

Spotify API

- informace o skladbě
- hudební atributy
 - "acousticness"
 - "danceability"
 - "speechiness"
 - atd.
- analýza skladby
 - "confidence"
 - vektor "pitches"
 - vektor "timbre"
 - atd.

Hudební atributy

Distribuce hodnot atributu danceability

Analýza skladby

Spotify intervaly jedné skladby

Příklad proměnlivých parametrů


```
// pulsace beatu
let beatPulse = beat.elapsed/beat.duration;
```

```
// stroboskop
if (barPulse > 0.5) {
    color *= podsviceniTextury;
}
```

```
// rozplynuti stromu
vec2 z = vec2(x * beatPulse * 1.5, y * beatPulse * 1.5);
```

Příklad proměnlivých parametrů


```
// tanecni parket
if ( danceability > 0.65 ) {
    uniforms.option.value = 0;
// zive publikum
if (liveness \geq 0.8) {
    scene.add(audienceGroup);
   klidnejsi vlny
if ( energy < 0.4 ) {</pre>
    uniforms.wavelength.value = 3.26;
    uniforms.amplitude.value = 2.7;
```


Otázky oponenta

- Jak je řešena synchronizace hudby a vizualizace, aby to přesně odpovídalo tomu, co slyšíme?
- Využívá některá vizualizace například proměnlivou hloubku iterace fraktálů v závislosti na hudbě (např. košatění stromů, detailnější Kochova křivka, atd.)?