Калибриране на МЕМЅ Акселерометри

Курсов проект на:

Никола Тотев

ПО

Приложение на Математиката за Моделиране на Реални Процеси

Съдържание

Резюме	1
Въведение	4
Запознаване с акселерометри	2
MEMS акселерометри	
Видове грешки	2
Constant Bias	3
Scaling Errors	3
Errors due to the non-orthogonality of the axes	
Математически модел	4
Входни данни	2
Очакван резултат	2
Детайли калибрация	2
Използвани методи за калибрация	2
Метод на НМК	3
Метод на Нютон	3
Резултати	2
Практически приложения	4
Приложения в индустрията	2
Приложения в роботиката	2
Пример проект по "Практическа роботика и умни неща"	3
Заключения	4

Резюме

В рамките на този проект се разглежда задачата за калибриране на МрС акселерометри. За целта е използвана линейна връзка между калибрираните данни и некалибрираните данни. Построена е функция на грешките, която се минимизира като се реши една система от 12 уравнения

В секция 1, се запознава с различите видове акселерометри, по-подробно се разглежда начина на работа на NHMC акселерометрите които се наблюдават при такъв вид сензори.

В секция 2 се разглежда математическия модел, който се използва за да се реши задачата. Сравняват се входни и изходни данни. Специално внимание се обръща на изходните данни получени с вградените функции и тези имплементирани в рамките на този проект.

В секция 3 се дава повече информация за практическите приложение на MEMC акселерометрите.

В секция 4 се правят заключения за проекта.

Въведение

- Запознаване с акселерометри
- Акселерометрите са сензор, който измерва ускорение и измери ускорение, но основните видове са следните:
 - о Пиезоелектричени (piezoelectric)
 - о Пиезорезистивени (piezoresistive)
 - Капацитивни акселерометри (capacitive accelerometers)
 - о MEMS Акселерометри (MEMS Accelerometers)

• MEMS акселерометри

МЕМЅ акселерометрите са един от многото видове, като едно от предимствата са им, че имат малки размери и лесно могат да бъдат използвани в проекти където има ограничено място. Приможение за Microelectromechanical systems и такъв вид акселерометри се изработва от силиций.

Фигура 1 – Показва и начина на работа на MEMS акселерометър. При ускорение, сините части се движат и се отдалечават/приближават до фиксираните електроди.

• Видове грешки

Като всяко измервателно устройство и при акселерометрите има различни видове грешки осе наблюдават. Основните видове, които се получават при производствот а:

- Постоянно отклонение
- Отклонения в мерните единици
- Грешки, които идват от неортогоналността на осите

Освен тези грешки има и други грешки. Например грешки, които се появяват заради условията при, които работи акселерометъра или електромагнитен шум.

Този проект се фокусира върху коригирането на грешките, които се получават при производството. Поради тази причина е важно те да се обяснят в поподробно.

• Постоянно отклонение

Това е някакъв постоянен офсет, който възниква при производство. При такава грешка, при положение на покой сензора може да показва ускорение азлично от (X, Y, Z) (0, 0, 9.8).

- Отклонения в мерните единици
 Тази грешка означава, че данните оито идват от сензора в неизвестна за нас мерна единица,
 {вместо m/s например}
- Грешки, които идват от неортогоналността на осите
- Тази грешка е отново грешка, която се появява при производството на сензора и както се показва в името означава, че осите X, Y, Z не са ортогонални една на друга и това води до грешни измервания.

Математически модел

• Входни данни

Като входни данни използвам dataset от една ратия. Първоначалния план беше да използвам данни от собствен сензор, но това не се реализира, защото при по-задълбочено проучване на сензорите, които мога да закупя се оказа, че те се калибрират от производителя.

В таблици 1 са показани некалибрираните данни а в таблица 2 са пресметнати нормите на тези данни.

Uncalibrated		
X	Υ	Z
0.686143985	9.693013241	0.146230973
0.307313184	-9.555131822	0.121707371
10.20588166	0.146627372	0.293913142
-9.235730337	0.149835656	-0.153514714

Таблица 1

• Очакван резултат

Когато сензора се намира в покой и е успореден на земната повърхност, очакваните данни са (X, Y,Z)=(0, 0, 9.8) или нормата на вектора (X, Y,Z) да бъде 9.8. От таблиците *1 и 2* се вижда, че при сурови данни – данни директно от сензора, това условие не е изпълнено. Целта на този проект е да използва математически модел, който обработва данните по такъв начин, че да се стигне до норма на калибрираните вектори 9.8

• Детайли за калибрацията

Както беше обяснено в предишната точка едно условие, което показва дали данни от сензор са калибрирани е дали нормата на вектора v=(X, Y ,Z) e-9.8. Това условие се използва за да се калибрират данните.

Ако искаме да разберем дали данни са калибрирани, може да го направим като вземем следната разлика

$$|v| - 9.8 \approx 0$$

Ако това дава нула, означава, че данните са калибрирани. Това ще го означа като Err(M,B). Това може да се разглежда като грешката от калибрацията. Важно е да съобразим, че в реалния живот, при наличието на много данни е невъзможно да се получи резултат точно равен на нула. Поради тази причина се стремим да е възможно най-близко до нула.

Сега е момента да разгледаме начина по който данните се калибрират. За целта се използва линейна връзка между калибрираните и суровите данни:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \underbrace{\begin{pmatrix} M_{xx} & M_{xy} & M_{xz} \\ M_{yx} & M_{yy} & M_{yz} \\ M_{zx} & M_{zy} & M_{zz} \end{pmatrix}}_{M} \cdot \begin{pmatrix} \hat{X} \\ \hat{Y} \\ \hat{Z} \end{pmatrix} + \begin{pmatrix} B_{x} \\ B_{y} \\ B_{z} \end{pmatrix} \tag{1}$$

където

- Вектора $\binom{X}{Y}$ е вектора от калибрираните данни.
- Матрицата М тази матрица се грижи за ортогоналноста на осите X, Y, Z както и за мащаба.
 По диагонала са коефициентите за мащаба, а останалите са за ортогоналноста
- Вектора $\begin{pmatrix} \hat{X} \\ \hat{Y} \end{pmatrix}$ + представлява суровите данни от сензора.
- Вектора В този вектор се грижи за коригирането на постоянното отместване.

Очевидно е, че след прости операции с матрици стигаме до следните уравнения:

$$X = M_{xx}x + M_{xy}x + M_{xz}x + B_{x}$$

$$Y = M_{yx}y + M_{yy}y + M_{yz}y + B_{y}$$

$$Z = M_{zx}z + M_{zy}z + M_{xz}z + B_{z}$$

F

Уравнения 2

Това са стойностите за вектора $\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$. За него може да

намерим норма. Ако искаме да намерим коефициентите на матрицата М и вектор В, трябва да заместим получената норма в уравнение , след което получаваме

$$Err(M,B) = \sum_{i=1}^{n} (M_{xx}x_i + M_{xy}y_i + M_{xz}z_i + B_x)^2 + (M_{yx}x_i + M_{yy}y_i + M_{yz}z_i + B_y)^2 + (M_{zx}x_i + M_{zy}y_i + M_{zz}z_i + B_z)^2 - g^2$$

Функция 1

която трябва да минимизираме.

• Използвани методи при калибрация

За минимизирането на функция і има различни

варианти, като първоначално се спрята метода на най-малките квадрати, а след това използвамиетода на Нютонов да реша системата от 12 частни производни.

• Метод на Нютон

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \qquad x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

имплементация на този метод във Wolfram Mathematica. Този метод е популярен за минимизиране на функции. Намирам частните производни на уравнение 3 които са 12 на брой и нелинейни. Използвайки метода на Нютон, но вместо за едно уравнение, за система, намирам коефициентите, за които уравнение 3 се минимизира.

За да мога да го използвам, направих собствена

• Резултати

Norms After Calibration (LSM)
9.79577
9.7911
9.80487
9.79417
9.7825

Norms After Calibration (NM)
9.79577
9.7911
9.80487
9.79417
9.7825

Таб<mark>ш</mark>ца 4

Таблица 3

Таблици 3 & 4 показват нормите след калибрацията на векторите. Както се вижда имплементацията на Метода на Нютон (*MH*), която съм направиле звежда еднакви резултати като Метода на Най-Малките Квадрати (*MHMK*), който използва вградени функции за минимизация.

M Matrix Values (LSM)		
1.00432	-0.0247	-0.0738
0.01773	1.01322	-0.0892
0.07967	0.08645	0.99275

M Matrix Values (NM)		
0.22671	0.07337	0.97174
0.60662	0.7872	-0.1967
-0.772	0.64003	0.12634

Таблица 5

Таблица 6

Таблиците 5 & 6 показват стойностите на матрицата М. Както описах по-горе това са коефициентите ри които грешката

(уравнение 3) е най-малка, Вижда се, че тук вече има разлика между МНМК и МН.

B Matrix Values (LSM)
-0.488037
-0.0814727
0.0155627

B Matrix Values (NM)
-0.0558736
-0.35741
0.337929

Таблица 7

Таблица 8

Таблиците 7 & 8 показват стойностите на вектора В, като отново както при матрицата М и тук има разминаване между стойностите получени с МНМК и МН.

Calibrated (LSM)		
X	Y	Z
-0.0487887	9.73885	1.05333
0.0473013	-9.76837	-0.665145
9.73665	0.22181	1.13312
-9.75604	-0.0796934	-0.859694

Calibrated (NM)		
X	Y	Z
0.952926	7.66039	6.03053
-0.568964	-7.71673	-5.9995
2.55426	5.89126	-7.40974
-2.28789	-5.81181	7.54415

Таблица 9

Таблица 10

Таблиците 9 & 10 показват данните след калибрация, съответно с МНКМ и МН. Отново се виждат разлики между двата метода.

Въпреки разликите, в матрицата М и вектора В, от нормите ясно се вижда, че данните са калибрирани.

Практически приложения

Акселерометрите намират много приложение в индустрията, както и хоби роботиката и електрониката.

- Използват се за диагностика на машини, като се следи за вибрации и колко са силни.
- Служат за да се измерва ускорението на роботи, например мобилни роботи.
- Намират приложение в Донове и самолети.

Заключения

От получените резултати се вижда, че този проект успешно приложи математически модел, за да реши задачата за калибриране на М С акселерометър ижда се, че резултатите от вградените функции и имплементираната в рамките на този проект функция имат сходни резултати, което показва успешното решаване на задачата.

