

Arboles

ESTRUCTURA DINÁMICA ÁRBOL BINARIO

En ciencias de la computación, un árbol binario es una estructura de datos en la cual cada nodo siempre tiene cero hijos (0), un hijo (1) o un hijo izquierdo y un hijo derecho (2). No pueden tener más de dos hijos (de ahí el nombre 'Binario'). Si algún hijo tiene como referencia a null, es decir que no almacena ningún dato, entonces este es llamado un nodo externo. En el caso contrario el hijo es llamado un nodo interno

TERMINOLOGÍA:

- Nodo: Cada elemento de un árbol
- Nodo Raíz: Primer elemento agregado al árbol

- Nodo Padre: Se le llama así al nodo predecesor de un elemento.
- Nodo Hijo: Es el nodo sucesor de un elemento.
- Nodo Hermano: Nodos que tienen el mismo nodo padre

Subárbol:

• Si el nodo tiene 0 relaciones recibe el nombre de hoja.

- Si el nodo raíz tiene 1 relación a la izquierda, el segundo elemento de la relación es el subárbol izquierdo.
- Si el nodo raíz tiene 1 relación a la derecha, el segundo elemento de la relación es el subárbol derecho.

Altura y Niveles:

La altura corresponde a la cantidad de niveles que existen, los niveles se inician desde 0.

 Peso: Conocemos como peso a el número de nodos que tiene un Árbol. Este factor es importante por que nos da una idea del tamaño del árbol y el tamaño en memoria que nos puede ocupar en tiempo de ejecución(Complejidad Espacial en análisis de algoritmos.)

Orden: El Orden de un árbol es el número máximo de hijos que puede tener un Nodo.

 Grado: El grado se refiere al número mayor de hijos que tiene alguno de los nodos del Árbol y esta limitado por el Orden, ya que este indica el número máximo de hijos que puede tener un nodo.

 Sub-Árbol: Conocemos como Sub-Árbol a todo Árbol generado a partir de una sección determinada del Árbol, Por lo que podemos decir que un Árbol es un nodo Raíz con N Sub-Árboles.

Árboles binarios

 Esta estructura se caracteriza por que cada nodo solo puede tener máximo 2 hijo, dicho de otra manera es un Árbol n-ario de Grado 2.

Árbol binario lleno: Es aquel que el que todos los nodos tiene cero o 2 hijos con excepción de la Raíz.

 Árbol binario perfecto: Es un Árbol lleno en donde todos las Hojas están en el mismo Nivel.

Los árboles binarios poseen una especialización denominada árboles binarios de búsqueda o ABB, estos árboles se distinguen por tener un método particular para ingresar datos, respetan las siguientes reglas:

1. El primer elemento que se ingresa al árbol se convierte en la raíz

- 2. Todos los elementos que se ingresan posteriormente serán comparados con la raíz del árbol y con las raíces de los subárboles consecuentes.
- a. Todo valor mayor a la raíz será enviado al subárbol derecho para otra comparación o para su inserción inmediata.
- b. Todo valor menor a la raíz será enviado al subárbol izquierdo para otra comparación o para su inserción inmediata.

Recorridos en árboles binarios

Un recorrido de un árbol consiste en visitar todos los elementos del árbol una sola vez

Recorridos en profundidad de árboles binarios:

- Recorrido en pre-orden:
 - se visita la raíz
 - 2. se recorre en pre-orden el hijo izquierdo
 - 3. se recorre en pre-orden el hijo derecho
- Recorrido en post-orden:
 - 1. se recorre en post-orden el hijo izquierdo
 - 2. se recorre en post-orden el hijo derecho
 - 3. se visita la raíz
- Recorrido en in-orden:
 - 1. se recorre en in-orden el hijo izquierdo
 - 2. se visita la raíz
 - 3. se recorre en in-orden el hijo derecho

Recorrido Preorden: El recorrido inicia en la Raíz y luego se recorre en pre-orden cada unos de los sub-árboles de izquierda a derecha.

Recorrido Pos-orden: Se recorre el posorden cada uno de los sub-árboles y al final se recorre la raíz

• Recorrido in-orden: Se recorre en inorden el primer sub-árbol, luego se recorre la raíz y al final se recorre en in-orden los demas sub-árboles

• Búsqueda en amplitud.

- Se recorre primero la raíz, luego se recorren los demás nodos ordenados por el nivel al que pertenecen en orden de Izquierda a derecha.
- Este tipo de búsqueda se caracteriza por que la búsqueda se hace nivel por nivel y de izquierda a derecha

