Stability for anisotropic curvature functionals

Julian Scheuer (Goethe University Frankfurt) joint work with Xuwen Zhang (Freiburg)

Happy birthday Michael and Guofang

Scan me for the slides!

Isoperimetric problem: Determine properties of area minimising surface, given volume constraint.

Isoperimetric problem: Determine properties of area minimising surface, given volume constraint.

Round spheres in \mathbb{R}^{n+1} are unique closed minimisers of

$$\mathcal{R}(\Omega) = \frac{\operatorname{Area}^{\frac{n+1}{n}}(\partial\Omega)}{\operatorname{Volume}(\Omega)}$$

Isoperimetric problem: Determine properties of area minimising surface, given volume constraint.

Round spheres in \mathbb{R}^{n+1} are unique closed minimisers of

$$\mathcal{R}(\Omega) = \frac{\mathsf{Area}^{rac{n+1}{n}}(\partial\Omega)}{\mathrm{Volume}(\Omega)}$$

Standard variational methods:

Isoperimetric problem: Determine properties of area minimising surface, given volume constraint.

Round spheres in \mathbb{R}^{n+1} are unique closed minimisers of

$$\mathcal{R}(\Omega) = \frac{\mathsf{Area}^{\frac{n+1}{n}}(\partial\Omega)}{\mathrm{Volume}(\Omega)}$$

Standard variational methods:

ightharpoonup Minimisers of \mathcal{R} have constant mean curvature

$$H = \operatorname{tr}(A) = \sum_{i=1}^{n} \kappa_i$$

 (κ_i) are eigenvalues of the Weingarten map A, principal curvatures.

Is a closed embedded constant mean curvature (CMC) hypersurface of \mathbb{R}^{n+1} necessarily a sphere?

¹A characteristic property of spheres, Ann. Mat. Pura Appl. **58** (1962), no. 4, 303–315.

Is a closed embedded constant mean curvature (CMC) hypersurface of \mathbb{R}^{n+1} necessarily a sphere?

Answer: **YES!** (Alexandrov¹)

¹A characteristic property of spheres, Ann. Mat. Pura Appl. **58** (1962), no. 4, 303–315.

Is a closed embedded constant mean curvature (CMC) hypersurface of \mathbb{R}^{n+1} necessarily a sphere?

Answer: **YES!** (Alexandrov¹)

▶ Proof: Reflection across moving planes and the maximum principle.

¹ A characteristic property of spheres, Ann. Mat. Pura Appl. **58** (1962), no. 4, 303–315

Is a closed embedded constant mean curvature (CMC) hypersurface of \mathbb{R}^{n+1} necessarily a sphere?

Answer: YES! (Alexandrov¹)

- ▶ Proof: Reflection across moving planes and the maximum principle.
- We are going to see another elegant proof today.

¹A characteristic property of spheres, Ann. Mat. Pura Appl. **58** (1962), no. 4, 303–315.

Is a closed embedded constant mean curvature (CMC) hypersurface of \mathbb{R}^{n+1} necessarily a sphere?

Answer: YES! (Alexandrov¹)

- ▶ Proof: Reflection across moving planes and the maximum principle.
- We are going to see another elegant proof today.

Relaxed CMC condition: Suppose for some $\delta >$ 0, on a hypersurface M

$$n - \delta \le H \le n + \delta$$
.

¹ A characteristic property of spheres, Ann. Mat. Pura Appl. **58** (1962), no. 4, 303–315.

Is a closed embedded constant mean curvature (CMC) hypersurface of \mathbb{R}^{n+1} necessarily a sphere?

Answer: YES! (Alexandrov¹)

- ▶ Proof: Reflection across moving planes and the maximum principle.
- We are going to see another elegant proof today.

Relaxed CMC condition: Suppose for some $\delta >$ 0, on a hypersurface M

$$n - \delta \le H \le n + \delta$$
.

Can we conclude

$$dist(M, S) \leq C\epsilon$$

for the unit sphere S, a constant C and where

$$\lim_{\delta \to 0} \epsilon(\delta) = 0 ?$$

¹ A characteristic property of spheres, Ann. Mat. Pura Appl. **58** (1962), no. 4, 303–315.

Theorem (Giulio Ciraolo and Luigi Vezzoni)

A sharp quantitative version of Alexandrov's theorem via the method of moving planes, J. Eur. Math. Soc. **20** (2018), no. 2, 261–299.

Let Ω be a smooth domain with connected boundary, then $\partial\Omega$ lies within an annulus of thickness $C \operatorname{osc}(H)$. C depends on $|\partial\Omega|$ and a lower bound for interior and exterior balls.

² Quantitative stability for hypersurfaces with almost constant curvature in space forms, Ann. Mat. Pura Appl. **200** (2021), no. 5, 2043–2083.

Theorem (Giulio Ciraolo and Luigi Vezzoni)

A sharp quantitative version of Alexandrov's theorem via the method of moving planes, J. Eur. Math. Soc. **20** (2018), no. 2, 261–299.

Let Ω be a smooth domain with connected boundary, then $\partial\Omega$ lies within an annulus of thickness $C \operatorname{osc}(H)$. C depends on $|\partial\Omega|$ and a lower bound for interior and exterior balls.

² Quantitative stability for hypersurfaces with almost constant curvature in space forms, Ann. Mat. Pura Appl. **200** (2021), no. 5, 2043–2083.

Theorem (Giulio Ciraolo and Luigi Vezzoni)

A sharp quantitative version of Alexandrov's theorem via the method of moving planes, J. Eur. Math. Soc. **20** (2018), no. 2, 261–299.

Let Ω be a smooth domain with connected boundary, then $\partial\Omega$ lies within an annulus of thickness $C \operatorname{osc}(H)$. C depends on $|\partial\Omega|$ and a lower bound for interior and exterior balls.

Generalization to spaceforms and other curvature functions

$$F = F(\kappa_i)$$

was given by Ciraolo/Roncoroni/Vezzoni.²

² Quantitative stability for hypersurfaces with almost constant curvature in space forms, Ann. Mat. Pura Appl. **200** (2021), no. 5, 2043–2083.

Theorem (Rolando Magnanini and Giorgio Poggesi)

On the stability for Alexandrov's soap bubble theorem, J. Anal. Math. 139 (2019), no. 1, 179–205.

Let Ω be a smooth domain with connected boundary, then $\partial\Omega$ lies within an annulus of thickness at most $C\|H - H_0\|_{L^1(\partial\Omega)}^{\tau_n}$, where

$$H_0 = \frac{n}{n+1} \frac{|\partial \Omega|}{|\Omega|},$$

 τ_n is a dimensional constant and C depends on few geometric quantities, such as interior and exterior ball conditions.

• ${\cal W}$ (aka Wulff shape) smooth boundary of convex body ${\cal W}_0$ containing the origin.

- \mathcal{W} (aka Wulff shape) smooth boundary of convex body \mathcal{W}_0 containing the origin.
 - Minkowski norm

$$F^0(x) = \inf\{s > 0 \colon x \in s\mathcal{W}_0\}$$

- \mathcal{W} (aka Wulff shape) smooth boundary of convex body \mathcal{W}_0 containing the origin.
 - Minkowski norm

$$F^0(x) = \inf\{s > 0 \colon x \in sW_0\}$$

▶ Then $W = \{F^0 = 1\}.$

- ${\cal W}$ (aka Wulff shape) smooth boundary of convex body ${\cal W}_0$ containing the origin.
 - Minkowski norm

$$F^0(x) = \inf\{s > 0 \colon x \in s\mathcal{W}_0\}$$

- ▶ Then $W = \{F^0 = 1\}.$
- $q(x) = \frac{1}{2}(F^0(x))^2$ is smooth, convex and hence

$$\bar{g}(x) := D^2 q(x)$$

is a metric on $\mathbb{R}^{n+1}\setminus\{0\}$.

- \mathcal{W} (aka Wulff shape) smooth boundary of convex body \mathcal{W}_0 containing the origin.
 - Minkowski norm

$$F^0(x) = \inf\{s > 0 \colon x \in s\mathcal{W}_0\}$$

- ▶ Then $W = \{F^0 = 1\}.$
- $q(x) = \frac{1}{2}(F^0(x))^2$ is smooth, convex and hence

$$\bar{g}(x) := D^2 q(x)$$

is a metric on $\mathbb{R}^{n+1}\setminus\{0\}$.

• Let $F(z) = \sup_{x \in \mathcal{W}} \langle x, z \rangle$ be the support function of \mathcal{W} ,

- ${\cal W}$ (aka Wulff shape) smooth boundary of convex body ${\cal W}_0$ containing the origin.
 - Minkowski norm

$$F^0(x) = \inf\{s > 0 \colon x \in s\mathcal{W}_0\}$$

- ▶ Then $W = \{F^0 = 1\}.$
- $q(x) = \frac{1}{2}(F^0(x))^2$ is smooth, convex and hence

$$\bar{g}(x) := D^2 q(x)$$

is a metric on $\mathbb{R}^{n+1}\setminus\{0\}$.

- Let $F(z) = \sup_{x \in \mathcal{W}} \langle x, z \rangle$ be the support function of \mathcal{W} ,
 - $\Phi = (D^{\sharp}F)_{|\mathbb{S}^n} \colon \mathbb{S}^n \to \mathcal{W}$ is an embedding of the Wulff shape.

• Let $x: M^n \to \mathbb{R}^{n+1}$ embedding with M closed manifold, $\tilde{\nu}: M \to \mathbb{S}^n$ its normal vector field aka Gauss map.

- Let $x: M^n \to \mathbb{R}^{n+1}$ embedding with M closed manifold, $\tilde{\nu}: M \to \mathbb{S}^n$ its normal vector field aka Gauss map.
 - ▶ Anisotropic normal $\nu = \Phi \circ \tilde{\nu} =$ "position $\nu(x)$ on the Wulff shape, at which the normal of the Wulff shape equals $\tilde{\nu}(x)$ "

- Let $x: M^n \to \mathbb{R}^{n+1}$ embedding with M closed manifold, $\tilde{\nu}: M \to \mathbb{S}^n$ its normal vector field aka Gauss map.
 - Anisotropic normal $\nu = \Phi \circ \tilde{\nu} =$ "position $\nu(x)$ on the Wulff shape, at which the normal of the Wulff shape equals $\tilde{\nu}(x)$ "
- Tangent space coincidence: $T_x M = T_{\tilde{\nu}(x)} \mathbb{S}^n = T_{\nu(x)} \mathcal{W}$.

- Let $x: M^n \to \mathbb{R}^{n+1}$ embedding with M closed manifold, $\tilde{\nu}: M \to \mathbb{S}^n$ its normal vector field aka Gauss map.
 - Anisotropic normal $\nu = \Phi \circ \tilde{\nu} =$ "position $\nu(x)$ on the Wulff shape, at which the normal of the Wulff shape equals $\tilde{\nu}(x)$ "
- Tangent space coincidence: $T_x M = T_{\tilde{\nu}(x)} \mathbb{S}^n = T_{\nu(x)} \mathcal{W}$.
 - ▶ Homogeneity of F^0 implies for all tangent vectors $V \in T_x M$,

$$ar{g}_{
u}(
u,
u)=1,\quad g_{
u}(
u,V)=0$$

- Let $x: M^n \to \mathbb{R}^{n+1}$ embedding with M closed manifold, $\tilde{\nu}: M \to \mathbb{S}^n$ its normal vector field aka Gauss map.
 - ▶ Anisotropic normal $\nu = \Phi \circ \tilde{\nu} =$ "position $\nu(x)$ on the Wulff shape, at which the normal of the Wulff shape equals $\tilde{\nu}(x)$ "
- Tangent space coincidence: $T_x M = T_{\tilde{\nu}(x)} \mathbb{S}^n = T_{\nu(x)} \mathcal{W}$.
 - ▶ Homogeneity of F^0 implies for all tangent vectors $V \in T_x M$,

$$\bar{g}_{\nu}(\nu,\nu)=1,\quad g_{\nu}(\nu,V)=0$$

▶ Induced anisotropic metric and second fundamental form:

$$g_{ij}(x) = \bar{g}_{\nu(x)}(\partial_i x, \partial_j x), \quad h_{ij} = \bar{g}_{\nu(x)}(\partial_i \nu, \partial_j x).$$

- Let $x: M^n \to \mathbb{R}^{n+1}$ embedding with M closed manifold, $\tilde{\nu}: M \to \mathbb{S}^n$ its normal vector field aka Gauss map.
 - ▶ Anisotropic normal $\nu = \Phi \circ \tilde{\nu} =$ "position $\nu(x)$ on the Wulff shape, at which the normal of the Wulff shape equals $\tilde{\nu}(x)$ "
- Tangent space coincidence: $T_x M = T_{\tilde{\nu}(x)} \mathbb{S}^n = T_{\nu(x)} \mathcal{W}$.
 - ▶ Homogeneity of F^0 implies for all tangent vectors $V \in T_x M$,

$$\bar{g}_{\nu}(\nu,\nu)=1,\quad g_{\nu}(\nu,V)=0$$

Induced anisotropic metric and second fundamental form:

$$g_{ij}(x) = \bar{g}_{\nu(x)}(\partial_i x, \partial_j x), \quad h_{ij} = \bar{g}_{\nu(x)}(\partial_i \nu, \partial_j x).$$

• Anisotropic mean curvature $H = g^{ij}h_{ij} \equiv tr(A)$.

- Let $x: M^n \to \mathbb{R}^{n+1}$ embedding with M closed manifold, $\tilde{\nu}: M \to \mathbb{S}^n$ its normal vector field aka Gauss map.
 - ▶ Anisotropic normal $\nu = \Phi \circ \tilde{\nu} =$ "position $\nu(x)$ on the Wulff shape, at which the normal of the Wulff shape equals $\tilde{\nu}(x)$ "
- Tangent space coincidence: $T_x M = T_{\tilde{\nu}(x)} \mathbb{S}^n = T_{\nu(x)} \mathcal{W}$.
 - ▶ Homogeneity of F^0 implies for all tangent vectors $V \in T_x M$,

$$\bar{g}_{\nu}(\nu,\nu)=1,\quad g_{\nu}(\nu,V)=0$$

Induced anisotropic metric and second fundamental form:

$$g_{ij}(x) = \bar{g}_{\nu(x)}(\partial_i x, \partial_j x), \quad h_{ij} = \bar{g}_{\nu(x)}(\partial_i \nu, \partial_j x).$$

- Anisotropic mean curvature $H = g^{ij}h_{ij} \equiv tr(A)$.
- Anisotropic volume element $d\mu = F(\tilde{\nu})d \operatorname{vol}_n \neq \operatorname{volume}$ element induced from g).

• For a function f on \mathbb{R}^{n+1} , define the F-gradient by

$$\nabla_F^{\sharp} f = F(D^{\sharp} f) D^{\sharp} F(D^{\sharp} f).$$

• For a function f on \mathbb{R}^{n+1} , define the F-gradient by

$$\nabla_F^{\sharp} f = F(D^{\sharp} f) D^{\sharp} F(D^{\sharp} f).$$

▶ On a regular level set *M* of *f* this coincides with the definition

$$\bar{g}_{\nu(x)}(\nabla_F^{\sharp}f,V)=Df(x)V\quad\forall V\in T_xM.$$

• For a function f on \mathbb{R}^{n+1} , define the F-gradient by

$$\nabla_F^{\sharp} f = F(D^{\sharp} f) D^{\sharp} F(D^{\sharp} f).$$

▶ On a regular level set *M* of *f* this coincides with the definition

$$\bar{g}_{\nu(x)}(\nabla_F^{\sharp}f,V) = Df(x)V \quad \forall V \in T_xM.$$

• Define the F-Hessian endomorphism by

$$\nabla^2_F f = D^2(\tfrac{1}{2}F^2)(D^\sharp f) \circ D^2 f$$

• For a function f on \mathbb{R}^{n+1} , define the F-gradient by

$$\nabla_F^{\sharp} f = F(D^{\sharp} f) D^{\sharp} F(D^{\sharp} f).$$

▶ On a regular level set *M* of *f* this coincides with the definition

$$\bar{g}_{\nu(x)}(\nabla_F^{\sharp}f,V) = Df(x)V \quad \forall V \in T_xM.$$

• Define the F-Hessian endomorphism by

$$\nabla_F^2 f = D^2(\tfrac{1}{2}F^2)(D^\sharp f) \circ D^2 f$$

▶ On a regular level set *M* of *f* this coincides with

$$abla_F^2 f = \operatorname{tr}(\bar{g}_{\nu(x)}^{-1} \circ D^2 f)$$

• For a function f on \mathbb{R}^{n+1} , define the F-gradient by

$$\nabla_F^{\sharp} f = F(D^{\sharp} f) D^{\sharp} F(D^{\sharp} f).$$

▶ On a regular level set *M* of *f* this coincides with the definition

$$\bar{g}_{\nu(x)}(\nabla_F^{\sharp}f,V)=Df(x)V\quad\forall V\in T_xM.$$

• Define the F-Hessian endomorphism by

$$\nabla_F^2 f = D^2(\tfrac{1}{2}F^2)(D^\sharp f) \circ D^2 f$$

On a regular level set M of f this coincides with

$$abla_F^2 f = \operatorname{tr}(\bar{g}_{
u(\varkappa)}^{-1} \circ D^2 f)$$

Operator degenerates where Df = 0.

Anisotropic level-set stability

Theorem (with Xuwen Zhang)

Stability of the Wulff shape with respect to anisotropic curvature functionals, (2021), arxiv:2308.15999.

Let $n \geq 2$, $M \subset \mathbb{R}^{n+1}$ closed hypersurface, F an elliptic integrand, $\mu(M) = 1$. Let \mathcal{U} be one-sided neighbourhood of M, given by level sets of $f \in C^2(\bar{\mathcal{U}})$,

$$\bar{\mathcal{U}} = \bigcup_{0 \leq t \leq \max|f|} M_t, \quad M_t = \{|f| = t\},$$

with $f_{|M}=0$ and $df_{|\bar{\mathcal{U}}}>0$. Let p>n and $\max_{0\leq t\leq \max|f|}\|A\|_{p,M_t}\leq C_0$. Then

$$\operatorname{dist}(M, \mathcal{W}) \leq \frac{C(n, p, F, C_0)}{\min(\max|f|, \min|df|)^{\frac{p}{p+1}}} \left(\int_{\mathcal{U}} |\mathring{\nabla}_F^2 f|^p \right)^{\frac{1}{p+1}}$$

for the Wulff shape corresponding to F, provided the RHS is small.

Some words about the proof

If h is the anisotropic 2^{nd} fundamental form of any regular level set of f, then

$$\nabla^2 f_{|M} = F(D^{\sharp} f) h.$$

Some words about the proof

If h is the anisotropic 2^{nd} fundamental form of any regular level set of f, then

$$\nabla^2 f_{|M} = F(D^{\sharp} f) h.$$

Hence

$$F^2(D^{\sharp}f)|\mathring{A}|^2 \leq |\mathring{\nabla}_F^2 f|^2,$$

If h is the anisotropic 2^{nd} fundamental form of any regular level set of f, then

$$\nabla^2 f_{|M} = F(D^{\sharp} f) h.$$

Hence

$$F^2(D^{\sharp}f)|\mathring{A}|^2 \leq |\mathring{\nabla}_F^2 f|^2,$$

where \mathring{A} is the tracefree part of the anisotropic second fundamental form,

$$|\mathring{A}|^2 = c_n \sum_{i < j} (\kappa_i - \kappa_j)^2.$$

Hence \mathring{A} can be controlled by $\mathring{\nabla}^2_F f$.

³Yijun He and Haizhong Li: *Integral formula of Minkowski type and new characterization of the Wulff shape*, Acta Math. Sin. **24** (2008), no. 4, 697–704.

Hence \mathring{A} can be controlled by $\mathring{\nabla}^2_F f$.

Classical result from (isotropic) hypersurface theory, due to Darboux:

$$\mathring{A} = 0 \Rightarrow M =$$
Sphere.

³Yijun He and Haizhong Li: *Integral formula of Minkowski type and new characterization of the Wulff shape*, Acta Math. Sin. **24** (2008), no. 4, 697–704.

Hence \mathring{A} can be controlled by $\mathring{\nabla}^2_F f$.

Classical result from (isotropic) hypersurface theory, due to Darboux:

$$\mathring{A} = 0 \Rightarrow M =$$
Sphere.

► A similar result holds in the anisotropic world³

³Yijun He and Haizhong Li: *Integral formula of Minkowski type and new characterization of the Wulff shape*, Acta Math. Sin. **24** (2008), no. 4, 697–704.

Hence \mathring{A} can be controlled by $\mathring{\nabla}^2_F f$.

Classical result from (isotropic) hypersurface theory, due to Darboux:

$$\mathring{A} = 0 \Rightarrow M =$$
Sphere.

► A similar result holds in the anisotropic world³

Stability versions in the isotropic case are plentyfull and due to De Lellis/Müller, Topping, Grosjean.

³Yijun He and Haizhong Li: *Integral formula of Minkowski type and new characterization of the Wulff shape*, Acta Math. Sin. **24** (2008), no. 4, 697–704.

Hence \mathring{A} can be controlled by $\mathring{\nabla}^2_F f$.

Classical result from (isotropic) hypersurface theory, due to Darboux:

$$\mathring{A} = 0 \Rightarrow M =$$
Sphere.

► A similar result holds in the anisotropic world³

Stability versions in the isotropic case are plentyfull and due to De Lellis/Müller, Topping, Grosjean.

▶ In the anisotropic world there is a recent one...

³Yijun He and Haizhong Li: *Integral formula of Minkowski type and new characterization of the Wulff shape*, Acta Math. Sin. **24** (2008), no. 4, 697–704.

Theorem (Antonio De Rosa, Stefano Gioffré)

Absence of bubbling phenomena for non-convex anisotropic nearly umbilical and quasi-Einstein hypersurfaces, J. Reine Angew. Math. **780** (2021), 1–40.

Let $M \subset \mathbb{R}^{n+1}$ be a closed hypersurface, \mathcal{W} a Wulff shape, p > n and

$$|M|=|\mathcal{W}|, \quad ||A||_{L^p(M)}\leq c_0.$$

Then there exist $C = C(n, p, F, c_0) > 0$, such that: if

$$\|\mathring{A}\|_{L^p(M)} \leq \frac{1}{C},$$

then there exists $c \in \mathbb{R}^{n+1}$ and a parametrization $\psi \colon \mathcal{W} \to M$, such that

$$\|\psi - \mathsf{id} - c\|_{W^{2,p}(\mathcal{W})} \le C \|\mathring{A}\|_{L^p(M)}.$$

Application I: Anisotropic Heintze-Karcher

• Stability of the domain in the Heintze-Karcher inequality. In the Euclidean space \mathbb{R}^{n+1} , for every domain Ω with mean-convex $\partial\Omega$:

$$\int_{\partial\Omega}rac{n}{H}\geq (n+1)\operatorname{vol}(\Omega)$$

with equality precisely when Ω is a ball.

Application I: Anisotropic Heintze-Karcher

• Stability of the domain in the Heintze-Karcher inequality. In the Euclidean space \mathbb{R}^{n+1} , for every domain Ω with mean-convex $\partial\Omega$:

$$\int_{\partial\Omega}rac{n}{H}\geq (n+1)\operatorname{vol}(\Omega)$$

with equality precisely when Ω is a ball.

► The same holds in the anisotropic setting, if we integrate w.r.t. the anisotropic area measure.

Application I: Anisotropic Heintze-Karcher

Theorem (with Xuwen Zhang, Stability in the anisotropic Heintze-Karcher)

Let $n \geq 2$, $\alpha > 0$ and F be an elliptic integrand on \mathbb{R}^{n+1} . Let $\Omega \subset \mathbb{R}^{n+1}$ be a bounded domain with connected F-mean convex $C^{2,\alpha}$ -boundary that satisfies a uniform interior Wulff sphere condition with radius r. Then there exists a positive constant C depending only on $n, \alpha, F, r, \mu(\partial\Omega)$ and $|\partial\Omega|_{2,\alpha}$, such that

$$\mathsf{dist}(\partial\Omega,\mathcal{W}) \leq C \left(\int_{\partial\Omega} rac{1}{H} \, d\mu - rac{n+1}{n} |\Omega|
ight)^{rac{1}{n+2}}$$

for some Wulff sphere $\mathcal{W} \subset \mathbb{R}^{n+1}$, provided the RHS is sufficiently small.

• The key for stability is the following estimate

$$\int_{\Omega} |\mathring{\nabla}_F^2 f|^2 dx \leq \left(\frac{n}{n+1}\right)^2 \int_{\partial \Omega} \frac{1}{H} d\mu - \frac{n+1}{n} |\Omega|,$$

where

$$\operatorname{div}(D^{\sharp}(\frac{1}{2}F^{2})(D^{\sharp}f)) =: \Delta_{F}f = 1 \quad \text{in } \Omega$$
$$f = 0 \quad \text{on } \partial\Omega.$$

• The key for stability is the following estimate

$$\int_{\Omega} |\mathring{\nabla}_F^2 f|^2 dx \leq \left(\frac{n}{n+1}\right)^2 \int_{\partial \Omega} \frac{1}{H} d\mu - \frac{n+1}{n} |\Omega|,$$

where

$$\operatorname{div}(D^{\sharp}(\frac{1}{2}F^{2})(D^{\sharp}f)) =: \Delta_{F}f = 1 \quad \text{in } \Omega$$
$$f = 0 \quad \text{on } \partial\Omega.$$

► Follows from divergence theorem type argument and Hölder's inequality.

• The key for stability is the following estimate

$$\int_{\Omega} |\mathring{\nabla}_F^2 f|^2 dx \leq \left(\frac{n}{n+1}\right)^2 \int_{\partial \Omega} \frac{1}{H} d\mu - \frac{n+1}{n} |\Omega|,$$

where

$$\operatorname{div}(D^{\sharp}(\frac{1}{2}F^{2})(D^{\sharp}f)) =: \Delta_{F}f = 1 \quad \text{in } \Omega$$
$$f = 0 \quad \text{on } \partial\Omega.$$

- ► Follows from divergence theorem type argument and Hölder's inequality.
- f shall serve as the foliation function in a neighbourhood of $\partial\Omega$.

• The key for stability is the following estimate

$$\int_{\Omega} |\mathring{\nabla}_F^2 f|^2 dx \leq \left(\frac{n}{n+1}\right)^2 \int_{\partial \Omega} \frac{1}{H} d\mu - \frac{n+1}{n} |\Omega|,$$

where

$$\operatorname{div}(D^{\sharp}(\frac{1}{2}F^{2})(D^{\sharp}f)) =: \Delta_{F}f = 1 \quad \text{in } \Omega$$
$$f = 0 \quad \text{on } \partial\Omega.$$

- ► Follows from divergence theorem type argument and Hölder's inequality.
- f shall serve as the foliation function in a neighbourhood of $\partial\Omega$.
- For this we need a lower gradient bound of f on $\partial\Omega$.

Lemma (Gradient bound on $\partial\Omega$)

Let $\Omega \subset \mathbb{R}^{n+1}$ be a bounded domain with C^2 -boundary that satisfies the uniform interior Wulff sphere condition with radius r and let $f \in C^{1,\beta}(\overline{\Omega}) \cap W^{2,2}(\Omega)$ for some $\beta \in (0,1)$ be a solution of

$$\operatorname{div}(D^{\sharp}(\frac{1}{2}F^{2})(D^{\sharp}f)) = 1$$
 in Ω
 $f = 0$ on $\partial\Omega$.

then

$$|D^{\sharp}f| \geq C(n,F)r$$
 on $\partial\Omega$.

Lemma (Gradient bound on $\partial\Omega$)

Let $\Omega \subset \mathbb{R}^{n+1}$ be a bounded domain with C^2 -boundary that satisfies the uniform interior Wulff sphere condition with radius r and let $f \in C^{1,\beta}(\overline{\Omega}) \cap W^{2,2}(\Omega)$ for some $\beta \in (0,1)$ be a solution of

$$\operatorname{div}(D^{\sharp}(\frac{1}{2}F^{2})(D^{\sharp}f)) = 1$$
 in Ω
 $f = 0$ on $\partial\Omega$.

then

$$|D^{\sharp}f| \geq C(n,F)r$$
 on $\partial\Omega$.

 \bullet From here, higher regularity in a controlled neighbourhood of $\partial\Omega$ follows from Schauder theory.

Lemma (Gradient bound on $\partial\Omega$)

Let $\Omega \subset \mathbb{R}^{n+1}$ be a bounded domain with C^2 -boundary that satisfies the uniform interior Wulff sphere condition with radius r and let $f \in C^{1,\beta}(\overline{\Omega}) \cap W^{2,2}(\Omega)$ for some $\beta \in (0,1)$ be a solution of

$$\operatorname{div}(D^{\sharp}(\frac{1}{2}F^{2})(D^{\sharp}f)) = 1 \quad \text{in } \Omega$$
$$f = 0 \quad \text{on } \partial\Omega.$$

then

$$|D^{\sharp}f| \geq C(n,F)r$$
 on $\partial\Omega$.

- From here, higher regularity in a controlled neighbourhood of $\partial\Omega$ follows from Schauder theory.
- The level set stability theorem completes the proof of the anisotropic Heintze-Karcher stability.

Application II: Stability in the anisotropic soap bubble theorem

Theorem (with Xuwen Zhang, Stability in the anisotropic soap bubble theorem)

Let $n \geq 2$, $\alpha > 0$ and F be an elliptic integrand on \mathbb{R}^{n+1} . Let $\Omega \subset \mathbb{R}^{n+1}$ be a bounded domain with connected boundary $\partial \Omega \in C^{2,\alpha}$ that satisfies a uniform interior Wulff sphere condition with radius r. Then there exists a positive constant C depending only on $n, \alpha, F, r, \mu(\partial \Omega)$, such that

$$\operatorname{dist}(\partial\Omega,\mathcal{W}) \leq C \left\| H - \frac{n}{n+1} \frac{\mu(\partial\Omega)}{|\Omega|} \right\|_{1,\partial\Omega}^{\frac{1}{n+2}}$$

for some Wulff sphere $\mathcal{W} \subset \mathbb{R}^{n+1}$, provided the RHS is sufficiently small.

Application II: Stability in the anisotropic soap bubble theorem

Theorem (with Xuwen Zhang, Stability in the anisotropic soap bubble theorem)

Let $n \geq 2$, $\alpha > 0$ and F be an elliptic integrand on \mathbb{R}^{n+1} . Let $\Omega \subset \mathbb{R}^{n+1}$ be a bounded domain with connected boundary $\partial \Omega \in C^{2,\alpha}$ that satisfies a uniform interior Wulff sphere condition with radius r. Then there exists a positive constant C depending only on $n, \alpha, F, r, \mu(\partial \Omega)$, such that

$$\operatorname{dist}(\partial\Omega,\mathcal{W}) \leq C \left\| H - \frac{n}{n+1} \frac{\mu(\partial\Omega)}{|\Omega|} \right\|_{1,\partial\Omega}^{\frac{1}{n+2}}$$

for some Wulff sphere $\mathcal{W} \subset \mathbb{R}^{n+1}$, provided the RHS is sufficiently small.

• Basically the same proof as in Heintze-Karcher, up to few algebraic modifications. We again estimate $\int_{\Omega} |\mathring{\nabla}_F^2 f|^2$.

Application III: Serrin' problem

ullet Serrin's overdetermined problem asks which domains Ω allow solutions to

$$\Delta u = 1 \quad \text{in } \Omega$$

$$u = 0 \quad \text{on } \partial \Omega$$

$$|\nabla u| = c \quad \text{on } \partial \Omega.$$

⁴ Overdetermined anisotropic elliptic problems, Math. Ann. **345** (2009), no. 4, 859–881.

Application III: Serrin' problem

ullet Serrin's overdetermined problem asks which domains Ω allow solutions to

$$\begin{split} \Delta u &= 1 & \text{ in } \Omega \\ u &= 0 & \text{ on } \partial \Omega \\ |\nabla u| &= c & \text{ on } \partial \Omega. \end{split}$$

▶ The answer is: Only balls.

⁴ Overdetermined anisotropic elliptic problems, Math. Ann. **345** (2009), no. 4, 859–881.

Application III: Serrin' problem

ullet Serrin's overdetermined problem asks which domains Ω allow solutions to

$$\begin{split} \Delta u &= 1 & \text{ in } \Omega \\ u &= 0 & \text{ on } \partial \Omega \\ |\nabla u| &= c & \text{ on } \partial \Omega. \end{split}$$

- ► The answer is: Only balls.
- The anisotropic version (yielding equality to the Wulff shape)

$$\operatorname{div}(D^\sharp(rac{1}{2}F^2)(D^\sharp f)) = 1 \quad ext{in } \Omega$$
 $f = 0 \quad ext{on } \partial \Omega$ $F(D^\sharp f) = c \quad ext{on } \partial \Omega$

is due to Cianchi/Salani.4

⁴ Overdetermined anisotropic elliptic problems, Math. Ann. **345** (2009), no. 4, 859–881.

Theorem (with Xuwen Zhang, Stability in the anisotropic Serrin problem)

Let $n \geq 2$, $\alpha > 0$ and F be an elliptic integrand on \mathbb{R}^{n+1} . Let $\Omega \subset \mathbb{R}^{n+1}$ be a bounded domain with connected boundary $\partial \Omega \in C^{2,\alpha}$ that satisfies a uniform interior Wulff sphere condition with radius r. Then there exists a positive constant depending only on $n, \alpha, F, r, \operatorname{diam}(\Omega)$, $\mu(\partial \Omega)$ and $|\partial \Omega|_{2,\alpha}$, such that

$$\operatorname{dist}(\partial\Omega,\mathcal{W}) \leq C \left\| F(D^{\sharp}f) - \frac{|\Omega|}{\mu(\partial\Omega)} \right\|_{1,\partial\Omega}^{\frac{1}{2(n+2)}}$$

for some Wulff sphere $\mathcal{W}\subset\mathbb{R}^{n+1}$, provided the RHS is sufficiently small. Here

$$\operatorname{div}(D^{\sharp}(\frac{1}{2}F^{2})(D^{\sharp}f)) = 1 \quad \text{in } \Omega$$
$$f = 0 \quad \text{on } \partial\Omega.$$

• The proof works via the use of a so-called P-function. In our setting,

$$P = \frac{F^2(D^{\sharp}f)}{2} - \frac{1}{n+1}f.$$

• The proof works via the use of a so-called P-function. In our setting,

$$P = \frac{F^2(D^{\sharp}f)}{2} - \frac{1}{n+1}f.$$

► A computation gives

$$\operatorname{div}(\nabla_F^\sharp P) = |\mathring{\nabla}_F^2 f|^2.$$

• The proof works via the use of a so-called P-function. In our setting,

$$P = \frac{F^2(D^{\sharp}f)}{2} - \frac{1}{n+1}f.$$

► A computation gives

$$\operatorname{div}(\nabla_F^\sharp P) = |\mathring{\nabla}_F^2 f|^2.$$

• The next crucial ingredient is the Pohozaev-type identity

$$\int_{\Omega} P = \frac{1}{2(n+1)} \int_{\partial \Omega} F^2(D^{\sharp} f) \langle x, \tilde{\nu} \rangle.$$

• The proof works via the use of a so-called P-function. In our setting,

$$P = \frac{F^2(D^{\sharp}f)}{2} - \frac{1}{n+1}f.$$

► A computation gives

$$\operatorname{div}(\nabla_F^\sharp P) = |\mathring{\nabla}_F^2 f|^2.$$

• The next crucial ingredient is the Pohozaev-type identity

$$\int_{\Omega} P = \frac{1}{2(n+1)} \int_{\partial \Omega} F^2(D^{\sharp} f) \langle x, \tilde{\nu} \rangle.$$

Further computations lead to

$$\int_{\Omega} (-f) |\mathring{\nabla}_F^2 f|^2 dx = \frac{1}{2} \int_{M} \left(F^2 (D^{\sharp} f) - \frac{|\Omega|^2}{\mu(M)^2} \right) \left\langle \bar{\nabla}_F^{\sharp} f - \bar{\nabla}_F^{\sharp} \ell, \tilde{\nu} \right\rangle d\tilde{\mu},$$
 where $\ell(x) = (F^0(x))^2/(2(n+1))$.

Thank you!