

Which of these is a ML application?

- Face recognition
- Finding the shortest path between two addresses
- Finding the fastest path between two addresses
- Searching for videos and images
- Is it always the case that training data has labels?
- Which type of ML is the following task?
 - Predicting the price of new house
 - A machine playing football
 - Grouping similar news together
 - Predicting the genre of a book
 - Predicting the age of a person
 - Predicting the gender of a person

CMPS 460 – Spring 2022

MACHINE

LEARNING

Tamer Elsayed

Image hosted by: WittySparks.com | Image source: Pixabay.com

1.c

Decision Trees

Chapter 1

جامعة قطر QATAR UNIVERSITY

Why Decision Trees (DTs) First?

- A classic and natural model of learning.
- Easy to understand.
- Closely related to the fundamental computer science notion of "divide and conquer."

What is a Decision Tree?

Example: Play Tennis?

- Given some attributes of the current weather
- Should I play tennis today or not?

Weather attributes

- Outlook: sunny, overcast, rain
- Temperature: hot, mild, cool
- Humidity: high, normal
- Wind: weak, strong

Day Outlook Temperature Humidity Wind PlayTennis?

D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Classify a new day?

A possible "decision tree"

Decision Trees

Representation

• Each internal node tests a feature

 Each branch corresponds to a feature value

 Each leaf node assigns a classification

 Decision trees represent functions that map examples in X to classes in Y

f: <Outlook, Temp, Humidity, Wind> → PlayTennis?

Predict

<Outlook, Temp, Humidity, Wind>
<Rain, Hot, High, Weak>

Exercise: Boolean Functions as DTs DE CATAR UNIVERSIT

How would you represent the following Boolean functions with decision trees?

- $A \cap B$
- $A \cup B$
- $A \oplus B$
- $A \cap B \cup (C \cap \neg D)$

How to learn a decision tree from data?

Learning in DT

- What questions to ask
- In what order to ask them
- What answer to predict once you have asked enough questions.

- Questions Features
- Answers Feature values
- Classification at leaf: Label

- SO MANY possible DTs!
 - exhaustive search infeasible!
- We will use a heuristic greedy search algorithm.

- SO MANY possible DTs!
 - exhaustive search infeasible!
- We will use a heuristic greedy search algorithm.
 - Pick questions to ask, in order
 - Such that classification accuracy is maximized

If I could only ask one question, what question would I ask?

 You want to find a feature that is most useful in helping you guess whether to play tennis or not.

جامعة قطر QATAR UNIVERSITY

How to select the "best" feature?

- A good feature is a feature that lets us make correct classification decision
- Criteria to measure how good a feature is
 - classification accuracy
 - entropy

– ...

Approach ...

- Consider the entire training data.
- Look at the histogram of labels for each feature.
 - For each value of the feature, build a histogram over the labels.
- Now, suppose you were to ask the (feature) question on a random example and observe a value and you must immediately guess the label for this example.
 - Guess the majority label!
 - How well would I have done? In particular, how many examples would I classify correctly?
- Let's try it on the PlayTennis dataset

Will I play tennis today?

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	М	Н	W	+
5	R	С	N	W	+
6	R	С	Ν	S	-
7	0	С	N	S	+
8	S	М	Н	W	-
9	S	С	N	W	+
10	R	М	Ν	W	+
11	S	М	N	S	+
12	0	М	Н	S	+
13	0	Н	N	W	+
14	R	М	Н	S	-

O(utlook): S(unny),

O(vercast),

R(ainy)

T(emperature): H(ot),

M(ild),

C(ool)

H(umidity): H(igh),

N(ormal),

L(ow)

W(ind): S(trong),

W(eak)

Overall ...

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	М	Н	W	+
5	R	С	N	W	+
6	R	С	Ν	S	-
7	0	С	N	S	+
8	S	М	Н	W	-
9	S	С	N	W	+
10	R	М	N	W	+
11	S	М	N	S	+
12	0	М	Н	S	+
13	0	Н	N	W	+
14	R	М	Н	S	-

Overall

- Acc(overall) = 9/14

Outlook ...

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	М	Н	W	+
5	R	С	N	W	+
6	R	С	Ν	S	-
7	0	С	N	S	+
8	S	М	Н	W	-
9	S	С	N	W	+
10	R	М	N	W	+
11	S	М	N	S	+
12	0	М	Н	S	+
13	0	Н	N	W	+
14	R	M	Н	S	-

- Overall
 - Acc(overall) = 9/14
- Outlook

Outlook: Sunny ...

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	М	Н	W	+
5	R	С	N	W	+
6	R	С	N	S	-
7	0	С	N	S	+
8	S	М	Н	W	-
9	S	С	N	W	+
10	R	М	N	W	+
11	S	М	N	S	+
12	0	М	Н	S	+
13	0	Н	N	W	+
14	R	М	Н	S	-

Overall

- Acc(overall) = 9/14

Outlook

$$-Acc(S)=3/5$$

Outlook: Overcast ...

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	М	Н	W	+
5	R	С	N	W	+
6	R	С	N	S	-
7	0	С	N	S	+
8	S	М	Н	W	-
9	S	С	N	W	+
10	R	М	N	W	+
11	S	М	N	S	+
12	0	М	Н	S	+
13	0	Н	N	W	+
14	R	M	Н	S	-

Overall

- Acc(overall) = 9/14

Outlook

- -Acc(S)=3/5
- Acc(O) = 4/4

Outlook: Rainy ...

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	M	Н	W	+
5	R	С	N	W	+
6	R	С	N	S	-
7	0	С	N	S	+
8	S	М	Н	W	-
9	S	С	N	W	+
10	R	M	N	W	+
11	S	М	N	S	+
12	0	М	Н	S	+
13	0	Н	N	W	+
14	R	M	Н	S	-

Overall

- Acc(overall) = 9/14

Outlook

- -Acc(S)=3/5
- Acc(O) = 4/4
- -Acc(R)=3/5

Outlook overall ...

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	М	Н	W	+
5	R	С	N	W	+
6	R	С	N	S	-
7	0	С	N	S	+
8	S	М	Н	W	-
9	S	С	N	W	+
10	R	М	N	W	+
11	S	М	N	S	+
12	0	М	Н	S	+
13	0	Н	N	W	+
14	R	M	Н	S	-

Overall

- Acc(overall) = 9/14

Outlook

- -Acc(S)=3/5
- Acc(O) = 4/4
- -Acc(R)=3/5
- Acc(Outlook)=10/14

Other features?

First split!

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	М	Н	W	+
5	R	С	N	W	+
6	R	С	Ν	S	-
7	0	С	N	S	+
8	S	М	Н	W	-
9	S	С	N	W	+
10	R	М	Ν	W	+
11	S	М	N	S	+
12	0	М	Н	S	+
13	0	Н	N	W	+
14	R	М	Н	S	-

Continue until:

- All examples in the leaf have same label, or
- Every attribute is included in path

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
8	S	M	Н	W	-
9	S	С	N	W	+
11	S	М	Ν	S	+

Full DT

DT Training Algorithm

Algorithm 1 DecisionTreeTrain(data, remaining features)

```
// default answer for this data
1: guess ← most frequent answer in data
2: if the labels in data are unambiguous then
     return Leaf(guess)
                                                  // base case: no need to split further
4: else if remaining features is empty then
     return Leaf(guess)
                                                      // base case: cannot split further
6: else
                                                   // we need to query more features
     for all f \in remaining features do
        NO \leftarrow the subset of data on which f=no
        YES \leftarrow the subset of data on which f=yes
        score[f] \leftarrow \# of majority vote answers in NO
10:
                  + # of majority vote answers in YES
11:
                                  // the accuracy we would get if we only queried on f
     end for
     f \leftarrow the feature with maximal score(f)
     NO \leftarrow the subset of data on which f=no
     YES \leftarrow the subset of data on which f=yes
     left \leftarrow DecisionTreeTrain(NO, remaining features \setminus \{f\})
     right \leftarrow DecisionTreeTrain(YES, remaining features \setminus \{f\})
     return Node(f, left, right)
19: end if
```

Binary

features

Prediction with DT

Algorithm 2 DECISIONTREETEST(*tree*, *test point*)

```
return guess
selse if tree is of the form Node(f, left, right) then
if f = no in test point then
return DecisionTreeTest(left, test point)
else
return DecisionTreeTest(right, test point)
end if
end if
```

Other feature selection criteria

- Entropy
- Information Gain
- Gini index

