Improvement of regression model

Author: Yelu Date: 2024/9/17

Content: 1. Feature selection; 2. Correlation analysis + (3. Issues; 4. Appendix; 5. References.)

Feature selection

Dependent variables

Presence of accident

```
Severity of accident (Not finished)
        Presence of person injury
        Presence of property damage
        Value of person injury
             Severely injured person
            Lightly injured person
        Value of property damage
Feature selection methods:
    Sequential feature selection
        SFFS: sequential forward floating selection
        SBFS: sequential backward floating selection
Parameters setting for sequential feature selection:
    Forward/Backward
    Estimator/Model
        Linear regression
        Logistic regression model
    Metrics used in scoring performance in feature selection
        For linear regression:
            Neg mean squared error
            R2 score
            Neg median absolute error
            Neg mean absolute error
        For logistic regression (Not finished)
             Accuracy
            F1
            Recall
            Roc_auc
    Cv
        K value for stratified k-fold cross-validation: 5/10/15/20/25
Comparison
    Between forward and backward
    Between linear regression and logistic regression
    Between different scoring metrics
    Between different k values for cross validation
```

Regression model with all features

For comparison, regression result with all features without any feature selection: (split is with 0.3 test size)

			R squared	Adj R	accuracy	precision	recall	f1 score
	OLS	all	0.672	0.641	0.937	0.930	0.906	0.917
Original		split	0.716	0.676	0.878	0.864	0.836	0.848
Original	Logit		Pseudo R squared		accuracy	precision	recall	f1 score
		all	0.780		0.949	0.936	0.935	0.936
		split	0.837	,	0.960	0.954	0.932	0.942

Find the best size of feature selection

Linear regression model

With four scoring metrics and four to five cv values setting, there are 17 selection results of forward and 16 results of backward with linear regression model in total.

Best size of feature selection (of both forward and backward)

Average size of feature selection with linear regression

average selection size					
sffs sbfs average					
37	31	34			

Best size of feature selection is around 34 for linear regression.

Logistic regression model

With four scoring metrics and four cv values setting, there are 16 selection results of forward and 16 results of backward with logistic regression model in total.

Average size of feature selection with linear regression

average selection size				
sffs	sbfs	average		
54	28	41		

Best size of feature selection is around 41 for logistic regression.

Comparison between feature selection using linear regression and logistic regression

Overall, best size of feature selection is around 37-38. And SFFS always has a larger 'best' number of features than SBFS. As for SFFS, feature selection with OLS has a smaller 'best' number than that with Logit, while feature selection with Logit has a smaller 'best' number than that with OLS for SBFS.

	average selection size					
sffs sbfs average						
OLS	37	31	34			
Logit	54	28	41			

Summarize the selected features with best size of selection

Linear regression model

The following table shows features ordered by number of being selected. Curb-related variables including **cp**, **cmax**, **cmin**, **cmean** are always among the selection with the top number of being selected. Other numeric values such as **r_width_value**, **speedlimt_value**, **dtrafficarea** are also mostly frequently selected.

Summary table of feature selection results – linear regression

	SFFS		SBFS		SFS Tota	I
No.	Feature	Number	Feature	Number	Feature	Number
INO.	1 speedlimit_6		speedlimit_2		speedlimit_2	30
	2 trafficarea_2		trafficarea_2		trafficarea_2	28
	3 speedlimit_2		r_width_7		speedlimit_6	28
	4 r_surface_2		speedlimit_6		r_width_value	23
	5 r_width_6		r_width_value		r_width_2	23
	6 speedlimit_4		speedlimit_value		r_width_6	23
	7 speedlimit_5		r_width_2		speedlimit_value	
	8 r_width_value		speedlimit_1		r_width_7	22
	9 r_width_2		speedlimit_3		speedlimit_1	22
	LO r_surface_1		cp		speedlimit_4	22
	1 speedlimit_value		cmax		speedlimit_5	22
	L2 curbtype_2		dtrafficarea		r_surface_1	21
	L3 z_gnr_30		r_width_5		speedlimit_3	21
	L4 z_qnr_31		r_width_6		ср	20
	L5 r_width_4		r_surface_1		dtrafficarea	20
	L6 speedlimit_1		speedlimit_4		cmax	19
	L7 cp	10	speedlimit_5		curbtype_2	19
	L8 dtrafficarea	10	curbtype_2	8	r_width_4	19
	L9 trafficarea_3		z_qnr_26	8	r_width_5	19
2	20 r_width_7	10	trafficarea_1	8	z_qnr_30	18
	21 speedlimit_3	10	trafficarea_3	8	trafficarea_3	18
	22 cmax	9	r_width_3	8	r_surface_2	18
	23 curbtype_1	9	r_width_4	8	z_qnr_26	17
	24 z_qnr_3	9	cmean	7	z_qnr_31	17
	25 z_qnr_23	9	curbtype_1	7	curbtype_1	16
	26 z_qnr_26	9	z_qnr_30	7	trafficarea_1	16
	27 r_width_5	9	z_knr_9	7	r_width_3	16
	28 <mark>cmin</mark>		cmin	6	z_qnr_3	15
	29 z_qnr_7	8	z_qnr_3		cmin	14
	30 z_qnr_25		z_qnr_7		z_qnr_7	14
	31 trafficarea_1		z_qnr_10		z_qnr_23	14
	32 r_width_1		z_qnr_16		z_knr_9	14
	33 r_width_3		z_qnr_31		cmean	13
	34 z_qnr_8		dtraml		z_qnr_25	13
	35 z_knr_9		dtrainl		r_width_1	13
	36 iemin		gvm_dwv		z_qnr_8	12
3	37 <mark>cmean</mark>	6	z_qnr_8	5	z_qnr_10	11

Logistic regression model

The following table shows features ordered by number of being selected. Curb-related variables including **cp**, **cmin**, **cmean** are always among the selection with the top number of being selected. Other numeric values such as **ie**, **mew**, **meg**, **r_width_value**, **speedlimt_value**, **dbusl**, **dtraml**, **droad**, **bicyclecount** are frequently selected.

Summary table of feature selection results – logistic regression

	SFFS		SBFS		SFS Total	
No.	Feature	Number		Number		Number
1	curbtype_1	16	trafficarea_2	16	speedlimit_4	32
2	z gnr 4	16	speedlimit_4	16	curbtype_1	30
3	z gnr 16	16	curbtype_1	14	trafficarea_2	28
4	speedlimit_4	16	ср	13	ср	26
5	iemin	15	speedlimit_2	13	r_surface_1	26
6	iemax	15	speedlimit_6	13	z_qnr_16	25
7	curbtype_2	15	speedlimit_value	12	speedlimit_2	25
8	z_qnr_23	15		12	z_qnr_23	24
			z_knr_4			
9	z_qnr_30	15	z_knr_9	12	r_width_2	24
10	r_width_2	15	r_surface_1	12	iemin	23
11	z_qnr_2	14	dtraml	11	speedlimit_value	23
12	z_qnr_6	14	z_qnr_26	11	z_qnr_26	23
13	z_qnr_25	14	z_knr_5	11	speedlimit_6	23
14	z_qnr_31	14	r_width_value	10	cmean	22
15	r_surface_1	14	cmean	9	curbtype_2	22
16	speedlimit_5	14	z_qnr_10	9	z_knr_9	22
17	ср	13	z_qnr_16	9	ie	20
18	ie	13	z_qnr_23	9	z_qnr_13	19
19	mew	13	r_width_2	9	z_qnr_25	19
20	meg	13	r_width_7	9	z_knr_4	19
21	cmean	13	iemin	8	mew	18
22	z gnr 14	13	dbusl	8	mewmax	18
23	z_qnr_29	13	droad	8	z_qnr_10	18
24	mewmin	12	z gnr 8	8	z_qnr_29	18
25	mewmax	12	r_width_5	8	r width 7	18
26	cmin	12	ie	7	cmin	17
27	z_qnr_3	12	dtrainl	7	z gnr 4	17
28	z_qnr_13	12	curbtype_2	7	z_qnr_7	17
29	z_qnr_26	12	z_qnr_13	7	z_qnr_33	17
30	trafficarea 2	12		7		
	_		z_qnr_33	7	iemax	16
31	speedlimit_2	12	r_width_1		dbusl	16
32	megmin	11	mewmax	6	dtraml	16
33	megmax	11	gvm_dwv	6	droad	16
34	dcurb	11	z_qnr_7	6	z_qnr_30	16
35	dvfpath	11	z_knr_8	6	z_qnr_31	16
36	speedlimit_value	11	r_width_3	6	z_knr_5	16
37	z_qnr_7	11	mew	5	z_knr_8	16
38	r_surface_2	11	cmin	5	r_width_1	16
39	z_qnr_9	10	cmax	5	meg	15
40	z_qnr_12	10	bicyclecount	5	r_width_value	15
41	z_qnr_33	10	z_qnr_25	5	z_qnr_2	15
42	z_knr_2	10	z_qnr_29	5	z_qnr_6	15
43	z_knr_8	10	z_knr_11	5	z_qnr_8	15
44	z_knr_9	10	r_width_4	5	r_width_5	15
45	speedlimit_6	10	dparktw	4	bicyclecount	14
46	gvm_msp	9	z_qnr_28	4	z_knr_11	14
47	bicyclecount	9	dstopsign	3	speedlimit_5	14
48	z gnr 5	9	z_qnr_5	3	mewmin	13
49	z_qnr_10	9	z_qnr_11	3	megmin	13
50	z_qnr_28	9	z_knr_1	3	dcurb	13
51	z_qnr_32	9	z_knr_10	3	dvfpath	13
				2		
52	z_knr_11	9	meg		z_qnr_3	13
53	r_width_1	9	megmin	2	z_qnr_14	13
54	r_width_6	9	dcurb	2	z_qnr_28	13

Apply selected features to regression model

Linear regression model

Compare R-squared value and Adj R-squared value of regression model with 17 forward selection results as well as 16 backward selection results.

R-squared value of regression model using selected features (of both forward and backward)

Average R-squared value of OLS regression model with feature selection

average i	rsquared
sffs	sbfs
0.559	0.574

R-squared value of regression model using only selected features from forward selection is around 0.559, using those from backward selection is around 0.574.

Adj R-squared value of regression model using selected features (of both forward and backward)

Average Adj. R-squared value of OLS regression model with feature selection

average ad	lj r squared
sffs	sbfs
0.544	0.563

Adj. R-squared value of regression model using only selected features from forward selection is around 0.544, using those from backward selection is around 0.563.

Logistic regression model

Pseudo R-squared value of regression model using only selected features from forward selection is around 0.583, using those from backward selection is around 0.574.

0.574

Comparison between feature selection using linear regression and logistic regression

0.583

Overall, R-squared value of Logit is slightly larger than that of OLS after feature selection.

Correlation analysis

Pairwise correlation is analysed for all features, of which the visualization result is in appendix.

Summary of sorted correlation values of variable pairs is shown in the following table, only pairs with a correlation value higher than 0.5 or lower than -0.5 are included here. Among curb-related variables (cp, cmean, cmax) are correlated with each other.

Pairs o	of variables	Correlation	
curbtype_2	curbtype_1	-1.000	
r_surface_2	r_surface_1	-1.000	
speedlimit_2	speedlimit_value	-0.844	
trafficarea_2	trafficarea_1	-0.778	
speedlimit_1	dtrafficarea	-0.621	
trafficarea_3	trafficarea_1	-0.581	
speedlimit_3	speedlimit_value	0.508	
z_knr_9	z_qnr_19	0.547	
z_knr_10	z_qnr_33	0.549	
mewmax	mewmin	0.560	
z_knr_11	z_qnr_24	0.567	
z_knr_11	z_qnr_25	0.575	
z_knr_1	z_qnr_1	0.575	
droad	dcurb	0.580	
r_width_3	r_width_value	0.596	
z_knr_3	z_qnr_15	0.620	
z_knr_12	z_qnr_31	0.622	
z_knr_5	z_qnr_10	0.641	
z_knr_12	z_qnr_32	0.646	
z_knr_2	z_qnr_2	0.691	
z_knr_8	z_qnr_18	0.730	
megmax	meg	0.749	
iemax	iemin	0.788	
mewmax	mew	0.844	
megmin	meg	0.859	
mewmin	mew	0.862	
cmean	ср	0.906	
iemax	ie	0.920	
cmax	ср	0.940	
iemin	ie	0.957	
cmax	cmean	0.964	
gvm_msp	gvm_dwv	0.982	
gvm_asp	gvm_msp	0.982	
gvm_asp	gvm_dwv	0.986	

For visualization of correlation matrix, features could be divided into several groups:

- 1.curb-related features
- 2.entropy features
- 3.traffic-transport numeric features
- 4.traffic-transport categorical features urban zone and city districts
- 5.traffic-transport categorical features others

Curb-related variables

Entropy variables

Traffic-transport numeric variables

Traffic-transport categorical variables - others

Traffic-transport categorical variables – Urban districts & statistical zones

Issues:

Sequential feature selection with floating and cross validation is time consuming, especially in local environment without parallel jobs.

Errors of setting scoring metric were found for feature selection with logistic regression and therefore that part needs to be corrected and not included in this report.

Working on correct feature selection with logistic regression has been paused since 09.04.

09.09.2024 18:00

Appendix:

Process visualization of finding the best size of feature selection:

SFFS of linear regression, scoring = neg mean square error, cv = 5. The best size is 26.

References:

https://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/https://scikit-learn.org/stable/modules/model evaluation.html#regression-metrics

Joe Bemister-Buffington, Alex J. Wolf, Sebastian Raschka, and Leslie A. Kuhn (2020) Machine Learning to Identify Flexibility Signatures of Class A GPCR Inhibition Biomolecules 2020, 10, 454. https://www.mdpi.com/2218-273X/10/3/454#

Ferri, F. J., Pudil P., Hatef, M., Kittler, J. (1994). "Comparative study of techniques for large-scale feature selection." Pattern Recognition in Practice IV: 403-413.

Pudil, P., Novovičová, J., & Kittler, J. (1994). "Floating search methods in feature selection." Pattern recognition letters 15.11 (1994): 1119-1125.