

IUT GEII - Outils Mathématiques et Logiciels IV (OML4)

Séries numériques

Andrés F. López-Lopera Université Polytechnique Hauts-de-France (UPHF)

Thèmes

- 1. Séries numériques
 - Convergence d'une série numérique
 - Séries de références
 - Opérations sur les séries
- 2. Séries à termes positifs
- 3. Séries à termes de signe quelconque

1

Séries numériques

Séries numériques

- · Après avoir étudié les suites numériques, nous nous intéressons maintenant au calcul de la somme infinie des termes d'une suite.
- · Soit la suite numérique $(u_n)_{n\in\mathbb{N}}$. On peut associer à (u_n) la suite des sommes partielles $(S_n)_{n\in\mathbb{N}}$ de rang n, définie par :

$$S_n = \sum_{k=0}^n u_k.$$

· La suite (S_n) est appelée série numérique de terme général u_n .

Convergence d'une série numérique

· On dit qu'une série (S_n) converge vers une limite ℓ si et seulement si :

$$\lim_{n\to+\infty}(S_n)=\sum_{k=0}^{+\infty}u_n=\ell.$$

 \cdot Si (S_n) n'a pas de limite, on dit que la série de terme général u_n est divergente, par exemple :

$$\lim_{n\to+\infty}(S_n)=\sum_{k=0}^{+\infty}u_n=\pm\infty.$$

3

Convergence d'une série numérique

Exemple. Pour la suite (u_n) où $u_n = \left(\frac{1}{2}\right)^n$, on a :

$$S_n = 1 + \frac{1}{2} + \dots + \frac{1}{2^n} = \sum_{k=0}^n \frac{1}{2^k} = \frac{1 - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}} = 2 \left[1 - \frac{1}{2^{n+1}} \right].$$

· En calculant la limite, on obtient :

$$\lim_{n\to +\infty} S_n = \lim_{n\to +\infty} 2 \left[1-\frac{1}{2^{n+1}}\right] = 2,$$

d'où on peut conclure que la série est convergente.

4

Convergence d'une série numérique

Condition nécessaire de convergence

Si la série $\lim_{n\to+\infty} S_n = \sum_{n=0}^{+\infty} u_n$ est convergente, alors

$$\lim_{n\to+\infty}(u_n)=0.$$

· Ce critère s'utilise généralement dans l'autre sens (la condition n'est pas suffisante !) :

si
$$\lim_{n\to+\infty} (u_n) \neq 0$$
, alors $\sum_{n\to+\infty}^{+\infty} u_n$ diverge (grossièrement)

Séries géométriques

 \cdot On appelle série géométrique toute série de terme général $u_n=aq^n$. Propriété

$$\sum_{n=0}^{+\infty}aq^n \text{ est } \begin{cases} \text{convergente, de somme } a\frac{1}{1-q} \text{ si } |q| < 1 \\ \text{divergente si } |q| \geq 1 \end{cases}$$

Démonstration. D'après les résultats obtenus sur les suites numériques, on sait que :

$$\lim_{p \to +\infty} \sum_{n=0}^{p} aq^{n} = \lim_{p \to +\infty} a \frac{1 - q^{p+1}}{1 - q} = \begin{cases} a \frac{1}{1 - q}, & \text{si } |q| < 1, \\ +\infty, & \text{si } |q| \ge 1. \end{cases}$$

Séries de Riemann

· On appelle série de Riemann toute série de terme général $u_n = \frac{1}{n\alpha}$, avec $\alpha \in \mathbb{R}^+$.

Propriété

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} \text{ est } \begin{cases} \text{convergente si } \alpha > 1, \\ \text{divergente si } \alpha \leq 1. \end{cases}$$

Exemples

- $\sum_{n=0}^{+\infty} \frac{1}{n}$ (série harmonique) diverge.
- $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ converge.
- $\sum_{n=1}^{+\infty} \frac{1}{n \cdot \sqrt{n}} = \sum_{n=1}^{+\infty} \frac{1}{n^{3/2}}$ converge.

Série télescopique

On appelle série télescopique toute série de terme général $u_n = \frac{1}{n(n+1)}$.

Propriété

$$\sum_{n=0}^{+\infty} \frac{1}{n(n+1)}$$
 est convergente.

Démonstration.

$$\sum_{n=1}^{p} \frac{1}{n(n+1)} = \sum_{n=1}^{p} \left[\frac{1}{n} - \frac{1}{n+1} \right]$$

$$= \left[1 - \frac{1}{p} \right] + \left[\frac{1}{p} - \frac{1}{p} \right] + \left[\frac{1}{p} - \frac{1}{p+1} \right]$$

$$= 1 - \frac{1}{p+1}.$$

· En appliquant la limite, on obtient :

$$\lim_{p\to+\infty} S_p = \lim_{p\to+\infty} \sum_{n=1}^p \frac{1}{n(n+1)} = \lim_{p\to+\infty} \left[1 - \frac{1}{p+1}\right] = 1$$

Opérations sur les séries

- · Soient deux séries numériques convergentes : $\sum_{n=0}^{+\infty} u_n$ et $\sum_{n=0}^{+\infty} v_n$. On a les propriétés suivantes :
 - La somme de deux séries convergentes est convergente :

$$\sum_{n=0}^{+\infty} (u_n + v_n) = \sum_{n=0}^{+\infty} u_n + \sum_{n=0}^{+\infty} v_n.$$

· Une constante multipliant une série convergente donne une série convergente:

$$\sum_{n=0}^{+\infty} \lambda u_n = \lambda \sum_{n=0}^{+\infty} u_n, \quad \text{avec } \lambda \in \mathbb{R}.$$

• En revanche, on ne peut pas conclure en général sur la convergence de la série produit $\sum_{n=0}^{+\infty} (u_n \cdot v_n)$.

Séries à termes positifs

Séries à termes positifs

- · Une série est dite à termes positifs si, pour tout $n \in \mathbb{N}$, on a $u_n \ge o$.
- · Il existe des critères de convergence spécifiques pour les séries à termes positifs.

Théorème de comparaison

- · Soient deux séries à termes positifs $\sum_{n=0}^{+\infty} u_n$ et $\sum_{n=0}^{+\infty} v_n$.
- · Si $u_n \le v_n$ à partir d'un certain rang, alors :
 - Si $\sum\limits_{n=0}^{+\infty}v_n$ est convergente, alors $\sum\limits_{n=0}^{+\infty}u_n$ est également convergente.
 - Si $\sum_{n=0}^{+\infty} u_n$ est divergente, alors $\sum_{n=0}^{+\infty} v_n$ est divergente.

Critère d'équivalence

- · Soient deux séries à termes positifs $\sum_{n=0}^{+\infty} u_n$ et $\sum_{n=0}^{+\infty} v_n$.
- · Si $u_n \sim v_n$, c'est-à-dire $\lim_{n \to +\infty} \left(\frac{u_n}{v_n} \right) = 1$, alors les séries $\sum_{n=0}^{+\infty} u_n$ et $\sum_{n=0}^{+\infty} v_n$ sont de la même nature (c'est-à-dire elles sont toutes deux convergentes ou toutes deux divergentes).

Exemples.

- $\frac{n^2 + 4n}{n^3 + 5} \sim \frac{1}{n}$ donc $\sum_{n=1}^{+\infty} \frac{n^2 + 4n}{n^3 + 5}$ diverge, car $\sum_{n=1}^{+\infty} \frac{1}{n}$ diverge.
- $\ln\left(1+\frac{1}{n^2}\right)\sim\frac{1}{n^2}$ donc $\sum_{n=1}^{+\infty}\ln\left(1+\frac{1}{n^2}\right)$ converge, car $\sum_{n=1}^{+\infty}\frac{1}{n^2}$ converge.

Critère de d'Alembert

· Soit la série numérique à termes positifs $\sum_{n=0}^{+\infty} u_n$ telle que

$$\lim_{n\to +\infty}\left(\frac{u_{n+1}}{u_n}\right)=\ell.$$

· Alors

$$\sum_{n=0}^{+\infty} u_n \text{ est } \begin{cases} \text{convergente si } \ell < 1, \\ \text{divergente si } \ell > 1, \\ \text{on ne peut pas conclure si } \ell = 1. \end{cases}$$

Exemple.

· Si
$$u_n = \frac{2^n}{n!}$$
, alors

$$\frac{u_{n+1}}{u_n} = \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n} = \frac{2}{n+1}, \quad \text{et} \quad \lim_{n \to +\infty} \frac{2}{n+1} = 0 < 1,$$

donc $\sum_{n=0}^{+\infty} \frac{2^n}{n!}$ converge.

Critère de Cauchy

· Soit la série numérique à termes positifs $\sum\limits_{n=0}^{+\infty}u_n$ telle que

$$\lim_{n\to+\infty}\sqrt[n]{u_n}=\ell.$$

· Alors

$$\sum_{n=0}^{+\infty} u_n \text{ est } \begin{cases} \text{convergente si } \ell < 1, \\ \text{divergente si } \ell > 1, \\ \text{on ne peut pas conclure si } \ell = 1. \end{cases}$$

Exemple.

· Si
$$u_n = \frac{1}{(\sqrt{n})^n}$$
, alors

$$\sqrt[n]{u_n} = \sqrt[n]{\frac{1}{(\sqrt{n})^n}} = \frac{1}{\sqrt{n}}$$
 et $\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0 < 1$,

donc $\sum_{n=0}^{+\infty} \frac{1}{(\sqrt{n})^n}$ converge.

Critère intégral de Cauchy

- · Soit f une fonction continue, positive et décroissante sur l'intervalle $[a; \infty[$.
- · La série $\sum_{n=0}^{+\infty} f(n)$ converge si et seulement si l'intégral $\int_{-\infty}^{+\infty} f(x) dx$ converge.

· Ici, on s'intéresse aux séries dont le terme général u_n oscille autour de zéro.

Séries absolument convergentes

- · Une série $\sum_{n=0}^{+\infty} u_n$ est absolument convergente si $\sum_{n=0}^{+\infty} |u_n|$ converge. Si $\sum_{n=0}^{+\infty} |u_n|$ est convergente, alors $\sum_{n=0}^{+\infty} u_n$ est convergente.

 - Si $\sum_{n=0}^{+\infty} |u_n|$ est divergente, alors on ne peut rien dire de $\sum_{n=0}^{+\infty} u_n$.

Exemple. Considérons une série de terme général $u_n = \frac{\sin(n)}{n^2}$.

· On sait que

$$\left|\frac{\sin(n)}{n^2}\right| \leq \frac{1}{n^2},$$

donc par comparaison sur les séries à termes positifs (d'après Riemann), $\sum\limits_{n=0}^{+\infty} \left| \frac{\sin(n)}{n^2} \right|$ converge.

· Alors, $\sum_{n=1}^{+\infty} \frac{\sin(n)}{n^2}$ est absolument convergente et convergente.

Remarque.

- \cdot Il existe des séries qui convergent mais qui ne sont pas absolument convergentes.
- · Si $\sum_{n=0}^{+\infty} u_n$ est convergente mais pas absolument convergente, on dit qu'elle semi-convergente.

Séries alternées

· La série $\sum_{n=0}^{+\infty} u_n$ est dite *alternée* si ses termes sont alternativement positifs et négatifs.

Théorème des séries alternées (critère de Leibniz)

- · Soit $\sum_{n=0}^{+\infty} u_n$ une série alternée.
- · Si $\lim_{n\to +\infty}(|u_n|)=$ o, et si $|u_n|$ est décroissante, alors $\sum_{n=0}^{+\infty}u_n$ est convergente.

Exemple.

- · Soit $\sum_{n=0}^{+\infty} u_n$ une série alternée de terme général $u_n = \frac{(-1)^n}{n}$.
- · La suite $(|u_n|) = \left| \frac{(-1)^n}{n} \right| = \frac{1}{n}$ est une suite décroissante qui tend vers o.

- · D'après le critère des séries alternées, la série $\sum_{n=1}^{+\infty}u_n=\sum_{n=1}^{+\infty}\frac{(-1)^n}{n}$ est convergente.
- · Cependant, la série des valeurs absolues $\sum_{n=1}^{+\infty} |u_n| = \sum_{n=1}^{+\infty} \frac{1}{n}$ est divergente (série harmonique).
- Par conséquent, la série $\sum_{n=1}^{\infty} u_n$ est semi-convergente.

Références

Frédéric Guegnard and Marc Bourcerie.

Mathématiques IUT GEII 1ère Année.

Ellipses, 2017.

