Département de Mathématiques Faculté des Sciences Université Badji Mokhtar-Annaba

Masters: -Probabilités et Statistique -Actuariat

Probabilités1(Série N°2)

Exercice 1:

1-Soit $(X_n)_{n\geq 1}$ une suite de v.a.d. i.i.d. telles que

$$P(X_n = 1) = p \text{ et } P(X_n = 0) = q = 1 - p.$$

On pose pour tout $n \geq 1$

$$S_n = X_1 + X_2 + \dots + X_n.$$

Etablir que

$$\forall \delta > 0$$
, on a $P(|n^{-1}S_n - p| > \delta) \le \frac{1}{4n\delta^2}$.

2—Soit f une fonction continue sur [0,1] et soit $\varepsilon>0$. On considère pour tout $n\geq 1$, le polynôme

$$B_n(p) = \mathbb{E}\left(f\left(n^{-1}S_n\right)\right).$$

Montrer que pour n très grand, on a

$$\sup_{x \in [0,1]} |B_n(x) - f(x)| \le \varepsilon.$$

Indications:

Utiliser les propriétés suivantes, d'une fonction continue sur un compact:

- -f est bonée: $|f(x)| \le K$ pour tout $x \in [0,1]$
- -f est uniformément continue: $\exists \delta > 0 : |x y| \le \delta \Longrightarrow |f(x) f(y)| \le \frac{\varepsilon}{2}$

Exercice 2:

Soit $X_N \rightsquigarrow \mathcal{H}(N,n,p)$ (loi hypergéométrique de paramètres N,n et p). Notons S l'esnsemble des entiers naturels N tels que Np soit un entier. Montrer que

$$X_N \xrightarrow{\mathcal{L}} X$$
 de loi binomiale $\mathcal{B}\left(n,p\right)$.

Exercice 3:

Soit $(X_n)_{n\geq 1}$ une suite de v.a.d. telle que pour tout entier n on ait

$$X_n \leadsto \mathcal{B}(n, p_n)$$
 où p_n est tel que $\lim_{n \to \infty} np_n = \lambda$.

Montrer que $(X_n)_{n\geq 1}$ converge en loi vers une v.a.d. X de loi de Poisson de paramètre λ , $\mathcal{P}(\lambda)$.