

INTRODUCTION

THE Open Studio SOFTWARE

DESIGN OF THE BUILDING

ANALYSIS OF THE BUILDING PERFORMANCE

THE BUILDING

GEOMETRY AND CHARACTERISTICS

TOTAL EXTERNAL WALL AREA CALCULATION

Let's start by considering just the first storey

STORAGE: area of storage façade = area of storage external wall Area of storage external wall = $20 \text{ m} \times 4 \text{ m} \times 4 = 320 \text{ m}^2$

OPEN OFFICE AND VENDING: window to wall ratio 0.75 Area of open office and vending façade = $(30 \text{m x } 4 \text{m x } 6) + (20 \text{m x } 4 \text{m x } 2) + (10 \text{m x } 4 \text{m x } 2) = 960 \text{ m}^2$ Area of open office and vending external wall = $960 \text{ m}^2 \text{ x } 25/100 = 240 \text{ m}^2$

Total external wall area for one storey = $320 \text{ m}^2 + 240 \text{ m}^2 = 560 \text{ m}^2$ All the storeys are the same

Total external wall area = $560 \text{ m}^2 \times 3 = 1680 \text{ m}^2$

THE LOCATION

NYC - STOCKHOLM - ALEXANDRIA

LOCATION

United States of America

LATITUDE: **40.78** LONGITUDE: -73.97 ELEVATION: 57 m/seglevel

WORST CASE SCENARIOS

WINTER DESIGN DAY: 21.01 MINIMUM DRY BULB TEMPERATURE: -10.7 °C SUMMER DESIGN DAY: 21.07 MAXIMUM DRY BULB TEMPERATURE: 31.1 °C

LOCATION

Sweden | Europe

LATITUDE: **59.65** LONGITUDE: 17.95 ELEVATION: 61 m/sealevel

WORST CASE SCENARIOS

WINTER DESIGN DAY: 21.02 MINIMUM DRY BULB TEMPERATURE: -17.8 °C SUMMER DESIGN DAY: 21.07 MAXIMUM DRY BULB TEMPERATURE: 27.1 °C

LOCATION

Egypt I Africa

LATITUDE: 31.2 LONGITUDE: 29.95 ELEVATION: 7 m/sealevel

WORST CASE SCENARIOS

WINTER DESIGN DAY: 21.01 MINIMUM DRY BULB TEMPERATURE: 6.9 °C

SUMMER DESIGN DAY: 21.08

MAXIMUM DRY BULB TEMPERATURE: 33 °C

THE WALLS

COMPOSITION AND U-VALUE

OVERALL HEAT TRANSFER COEFFICIENT (U-factor) CALCULATION U = 1/R (overall unit thermal resistance)

[Glass fiber insulation 2.5 cm: $R = 0.70 \text{ m}^{2} ^{\circ} \text{C/W}$

Glass fiber insulation 9 cm: $R = (0.70/2.5) \times 9 = 2.52 \text{ m}^{2} \text{°C/W}$

 $R_{TOTAL} = (0.22 + 0.12 + 2.52 + 0.079) \text{ m}^{2\circ}\text{C/W} = 2.94 \text{ m}^{2\circ}\text{C/W}$

 $U_{TOTAL1} = 1 / 2.94 \text{ m}^{2} \text{ C/W} = 0.34 \text{ W/m}^{2} \text{ C}$

 $U_{TOTAL1} X A_{TOTALWALL} = 0.34 W/m^{2} C X 1680 m^{2} = 571.43 W/^{\circ}C$

OVERALL HEAT TRANSFER COEFFICIENT (U-factor) CALCULATION

$$R_{TOTAL} = (0 + 2.52 + 0.27 + 0.11) \text{ m}^{2} \text{°C/W} = 2.9 \text{ m}^{2} \text{°C/W}$$

$$U_{TOTAL2} = 1/2.9 \text{ m}^{2} \text{°C/W} = 0.35 \text{ W/m}^{2} \text{°C}$$

$$U_{TOTAL1} X A_{TOTALWALL} = 0.35 W/m^{2}°C X 1680 m^{2} = 579.31 W/°C$$

3. THICKER WALL plaster 2.5 cm R = 0.037 m²°C/W glass fiber insulation 9 cm R = 2.52 m²°C/W h. concrete 20 cm R = 0.12 m²°C/W acustic insulation 5 cm R = 0.32 m²°C/W gypsum 1.3 cm R = 0.079 m²°C/W

OVERALL HEAT TRANSFER COEFFICIENT (U-factor) CALCULATION

$$R_{TOTAL} = (0.037 + 2.52 + 0.12 + 0.32 + 0.079) \text{ m}^{2\circ}\text{C/W} = 3.08 \text{ m}^{2\circ}\text{C/W}$$

$$U_{TOTAL1} = 1 / 3.08 \text{ m}^{2} \text{°C/W} = 0.33 \text{ W/m}^{2} \text{°C}$$

$$U_{TOTAL1} X A_{TOTALWALL} = 0.33 W/m^{2} C X 1680 m^{2} = 545.45 W/^{\circ}C$$

ENERGY USE - ANNUAL OVERVIEW

HVAC MONTHLY LOAD PROFILE

THE RESULTS

CONFRONTATION AND CONCLUSIONS

WALL 1

	NYC	Stockholm	Alexandria
HEATING [GJ]	1272,45	2046,03	69,2
COOLING [GJ]	1489,63	591,1	2950,96
TOTAL [GJ]	2762,08	2637,13	3020,16

WALL 2

	NYC	Stockholm	Alexandria
HEATING [GJ]	1256,67	2042,18	66,5
COOLING [GJ]	1487,56	584,96	2953,28
TOTAL [GJ]	2744,23	2627,14	3019,78

WALL 3

	NYC	Stockholm	Alexandria
HEATING [GJ]	1252,59	2018,16	66,18
COOLING [GJ]	1490,49	591,18	2955,52
TOTAL [GJ]	2743,08	2609,34	3021,7

The results reflect the different climates of the cities

The best performance of the walls is in Stockholm

THE BEST WALL IS WALL 3