BOEING VERTOL CO PHILADELPHIA PA
INTERACTIONAL AERODYNAMICS OF THE SINGLE ROTOR HELICOPTER CONFI--ETC(U)
SEP 78 P F SHERIDAN
USARTL-TR-78-23C-VOL-3A NL AD-A061 766 UNCLASSIFIED 1 of 2 AD61766

INTERACTIONAL AERODYNAMICS OF THE SINGLE ROTOR HELICOPTER CONFIGURATION

VOLUME IIIA - Flow Angle and Velocity Wake Profiles in Low Frequency Band, Basic Investigations and Hub 8061767 **Variations**

Philip F. Sheridan

9 9

K

Boeing Vertol Company

O P.O. Box 19142

Philadelphia, Pa. 19142

September 1978

Final Report for Period March 1977 - February 1978

Approved for public release; distribution unlimited.

Prepared for

APPLIED TECHNOLOGY LABORATORY U. S. ARMY RESEARCH AND TECHNOLOGY LABORATORIES (AVRADCOM) Fort Eustis, Va. 23604

APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT

In 1975 a wind tunnel test program was conducted in the Boeing-Vertol 20-foot V/STOL Wind Tunnel on a 1/5th-scale UTTAS model to investigate and find solutions for several aerodynamic problems encountered during the UTTAS flight-testing. Specifically, these tests focused upon (a) the structure of the hub/rotor wake in the vicinity of the empennage, (b) the formulation of the ground vortex and its relation to hub loads and fuselage loads during transition, and (c) the occurrence of vibratory air pressures from the blade passing over the fuselage. Only portions of the above-mentioned wind tunnel test data were reduced and analyzed in addressing the flight-test problems of the UTTAS aircraft.

Under Contract DAAJ02-77-C-0020, Boeing-Vertol completed analyses on the data to understand more completely the aerodynamic interactions that are involved and to formulate instructions for the guidance of designers in these respects. The results of these studies are applicable to all existing and future single-rotor/tail rotor helicopters. The data have been segregated according to aerodynamic interactions and associated phenomena/problem areas. From this body of knowledge, a generalized set of design guidelines meaningful to the single-rotor helicopter design concept formulation were developed and are included in these reports.

Mr. Robert P. Smith of the Aeronautical Technology Division, Aeromechanics Technical Area, served as project engineer for this effort.

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

Interactional Aerodynamics of the Single Rotor Helicopter Configuration, Volume IIIA, Flow Angle and Velocity Wake Profiles in Low Frequency Band, Basic Investigations and Hub Variations,

Unclassified TY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS
BEFORE COMPLETING FORM PREPORT DOCUMENTATION PAGE GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER TR-78-23C - V TITLE (and Subtitle) INTERACTIONAL AERODYNAMICS OF THE FINAL REPORT SINGLE ROTOR HELICOPTER CONFIGURATION, Volume III, Flow Angle and Velocity Wake Profiles 15 Mar 1977-13 Feb 1978. in Low Frequency Band, Sub-Volume A, Basic In-DERFORMING ORG. REPORT NUMBER vestigations and Hub Variations. 8. CONTRACT OR GRANT NUMBER Philip F. Sheridan DAAJ02-77-C-0020 PROGRAM ELEMENT, PROJECT, TASK AREA & PRAINLY NUMBERS / 62209A 11262209AH76 / PERFORMING ORGANIZATION NAME AND ADDRES Boeing Vertol Company P.O. Box 16858 00 189 EK Philadelphia, Pa. 19142 . CONTROLLING OFFICE NAME AND ADDRESS Applied Technology Laboratory, U.S. Army Research and September 1978 Technology Laboratories (AVRADCOM) Fort Eustis, Va. 23604 174 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES Volume III of an eight volume report. Volume III is comprised of two sub-volumes (A through B) 9. KEY WORDS (Continue on reverse side if necessary and identify by block number) Wake Flow Environment Powered Model Flow Configuration Hub Cap Interaction Empennage Flow Modifier Aerodynamic Interaction 1 omega This is the first of the two sub-volumes comprising Volume III. These

This is the first of the two sub-volumes comprising Volume III. These documents present profiles of the RMS values of the wake flow angles and velocities in the 1Ω to 2Ω range. The format is waterline on the ordinate and velocity or flow angle on the abscissa. Each graph shows a comparison of the baseline flow to the flow modified by some device or condition. This sub-volume covers build-up to baseline, baseline wake exploration and the effects of various hub caps.

DD 1 JAN 73 1473 EDITION OF NOV 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

403 682

PREFACE

The entire report describing the investigation of INTERACTIONAL AERODYNAMICS OF THE SINGLE-ROTOR HELICOPTER CONFIGURATION comprises eight numbered volumes bound as 33 separate documents. The complete list of these documents is as follows:

Volume I, Final Report

Volume II, Harmonic Analyses of Airframe Surface Pressure Data

- A Runs 7-14, Forward Section
- B Runs 7-14, Mid Section
- C Runs 7-14, Aft Section
- D Runs 15-22, Forward Section
- E Runs 15-22, Mid Section
- F Runs 15-22, Aft Section
- G Runs 23-33, Forward Section
- H Runs 23-33, Mid Section
- I Runs 23-33, Aft Section

Volume III, Flow Angle and Velocity Wake Profiles in Low-Frequency Band

- A Basic Investigations and Hubcap Variations
- B Air Ejector Systems and Other Devices

Volume IV, One-Third Octave Band Spectrograms of Wake Split-Film Data

- A Buildup to Baseline
- B Basic Configuration Wake Explorations
- C Solid Hubcaps
- D Open Hubcaps
- E Air Ejectors
- F Air Ejectors With Hubcaps; Wings
- G Fairings and Surface Devices

Volume V, Harmonic Analyses of Hub Wake

Volume VI, One-Third Octave Band Spectrograms of Wake Single Film Data

- A Buildup to Baseline
- B Basic Configuration Wake Exploration
- C Hubcaps and Air Ejectors

Volume VII, Frequency Analyses of Wake Split-Film Data

- A Buildup to Baseline
- B Basic Configuration Wake Explorations
- C Solid Hubcaps

D - Open Hubcaps

E - Air Ejectors

F - Air Ejectors With Hubcaps; Wings

G - Fairings and Surface Devices

Volume VIII, Frequency Analyses of Wake Single Film Data

A - Buildup to Baseline

B - Basic Configuration Wake Exploration

C - Hubcaps and Air Ejectors

TABLE OF CONTENTS

	PAGE
INTRODUCTION	6
OUTLINE OF WAKE INVESTIGATIONS (TABLE 1)	7
LIST OF TEST RUNS (TABLE 2)	11
INDEX TO RAKE POSITIONS (TABLE 3)	18
RAKE ORIENTATION DIAGRAM (FIGURE 1)	24
HOT FILM RAKE LOCATIONS (FIGURE 2-6)	25
UTTAS 1/4.85 - SCALE MODEL GEOMETRY AND PRESSURE TRANSDUCER LOCATION (FIGURE 7)	30
WAKE VELOCITY AND FLOW ANGLE PROFILES	31

INTRODUCTION

Volume III presents profiles of the wake split film data appearing in Volume IV in the one-third octave band format. Specifically, bands 7, 8, 9 and 10 in the plots of Volume IV are averaged to produce a mean value typifying the 1Ω to 2Ω regime where structural frequencies are likely to occur.

Volume III presents graphs of these 1Ω to 2Ω mean values for the four wake parameters plotted versus measurement location. The profile for each run (configuration) is compared in this format to the baseline profile. The difference in the profiles displays the effectivity of the model configuration in reducing the flow angles and velocity components and, hence, gauges the success of each step in the investigations.

The graphs showing these profiles are arranged in the same order as the runs in the Outline of Wake Investigations (Table 1). Volume III-A includes the following categories from Table 1:

- Build-up to Baseline
- Basic Configuration
- Effect of Hub Caps

Volume III-B includes the following categories:

- Effect of Air Ejectors
- Air Ejectors with Open Hub Caps and Underbodies
- Effect of Wings and Miscellaneous

The Table I outline and other material is included for reference and as context to the work of each sub-volume. Table 2, the List of Test Runs, arranges the runs in numerical order and gives pertinent text parameters.

The Index of Rake Positions, Table 3, lists the hot film transducer rake positions in the model coordinate system for each run and its test points. The main feature of Table 3 is the indexing of the test point number to the model water line station and butt line as it varied from run to run. The table groups the runs as they shared the indexing correspondence of point with position. It is emphasized that the runs in a group do not necessarily all share the same number of test points but they do have same correspondence within their respective ranges of test points.

The orientation of the rake is shown pictorially in Figures 1 through 6 for the various test runs. Figure 7 presents a scaled drawing of the model with reference to the three-axis coodinate system.

TABLE 1			
OUTLINE OF WAKE IN	VESTIGATIONS		
Description	Configuration Code	Run No.	Base- line
Build-up to Baseline			
1. Nacelles removed	K ₁₃ +H ₁ -N	149	150
2. Blades off, rotating hub	K ₁₃ -M+H _{1.0}	160	156
3. " , non-rotating hub	K ₁₃ -M+H _{1.0}	158	156
4. " , hub off	K ₁₃ -M-H _{1.0}	159	156
Basic Configuration			
1. Wake Explorations near Empennage			
(a) 15" Long. + traverse at T/R C.L.	K ₁₁	111	
(b) 9" Vert. + " above T/R " (c) 2" " in vortex	"	112	
(d) 8" " (continue 112)	n	113	
(e) 13" " behind stab.	"	115	
(f) Lateral traverse, left stab. (One T.P. only)		116	
(g) Same continued	n	117	
(h) Same continued (One T.P. only)(i) Lateral traverse right stab,	"	118	
(j) T/R effect on wake	$K_{11} + T_2^0$	121	115
2. Climb/Descent Studies			
(a) Climb 900 FPM (b) Descent 800 FPM	K _{1 1}	135 136	
Effect Of Hub Caps			
1. Solid Caps on Canister			
(a) 7.6" diam. 2.17" ht. soft	K ₁₁ -H _{1.0} +H _{1.2}	137	136
(b) 7.6" diam. 2.17" ht. stiff Pitch Arms	K ₁₃ +H _{1.2}	153	156
(b) 7.6" diam. 2.45" ht. flt. test config.	$K_{1 3} + H_{1 \cdot 2 \cdot 1} + I_{1} + E_{1 \cdot 0}$	207	188

TABLE 1 (CONT	INUED)		
OUTLINE OF WAKE INVI	ESTIGATIONS		
Description	Configuration Code*	Run No.	Base- line
Effect of Hub Caps (Continued)			
2. Solid Caps Raised Above Caniste	<u>r</u>		
(a) 7.6" diam. 2.45" ht. 70"	H _{1.2.2} +I ₁ +E _{1.0}	208	188
depth, .55 gap (b) 10.0" diam. 3.25" ht. 1.55"	H _{1.8.1} +I ₁ +E _{1.0}	189	188
depth, .50" gap (c) 10.0" diam. 4.125" ht. 2.05" depth, .875" gap	H _{1.8.2} +I ₁ +E _{1.0}	190	188
(d) Repeat of 189	" " "	210	188
3. Open Caps Without Underbody			
(a) 10.0" diam. 1.25" gap, blades (b) " " gap, no	$\begin{bmatrix} H_{1 \cdot 0 \cdot 2} + I_{1 + E_{1 \cdot 0}} \\ H_{1 \cdot 0 \cdot 1} - M^{1 + E_{1 \cdot 0}} \end{bmatrix}$	193 166	188/166 158
(c) " " 2.05" gap,blades (d) " " 1.75" gap, no blades	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	211 165	188 158
(e) " " 1.87" gap,blades (f) 16" diam. 2.00" gap,blades (g) " " gap, no blades	$H_1 \cdot 7 \cdot 1 - M$	191 168 167	188 156/167 158
(h) " " 4.00" gap, blades	H _{1.7.2}	169	156
4. Open Caps with Underbody			
(a) 7.6" diam. 1.25" gap (b) " " " " center post	H _{1.11.1} +I ₂ +E _{1.0} H _{1.11.1} +I ₂ +E _{4.0} H _{1.11.2} +I ₂	194 198 202	188 188 194
(d) 10.0" diam5" gap, no blades	H _{1.5.1} -M	164	158
(e) " " 1.25" gap, no blades	H _{1.5.2} -M	161	158
(f) " " 2.0" gap, no blades	H _{1.5.4} -M	163	158
(g) " " 4.0" gap, no blades	H _{1.5.3} -M	162	158
(h) " " 1.25" gap	H _{1.5.2}	154	156/161
*Basic Code is Kl3.			

TABLE 1 (CONT	rinued)		
OUTLINE OF WAKE INV	/ESTIGATIONS		
Description	Configuration Code*	Run No.	Base- line
	H _{1.3} H _{1.9.0} +E _{1.2} H _{1.9.1} +E _{1.2}	151 182 183	150 181 181
3. " " 150 psi 4. Wide chord shroud 40 psi 5. Wide " " 150 psi	H _{1.0} +E _{1.0} H _{1.0} +E _{2.5.1} H _{1.0} +E _{3.5.2} H _{1.0} +E _{3.5.2} H _{1.0} +E _{3.5.4}	173 174 175 176 184 187 203 204	156 156/172 156/173 156/174 156/173 156/174 156 156/203 156/203
Air Ejectors with Open Hub Caps with Underbodies 1. 7.6" diam. 1.25" gap, 0 psi 2. " " " 20 psi 3. " " " 40 psi 4. " " " 150 psi 5. " " " 0 psi 6. " " " 40 psi 7. " " 150 psi 8. Same with center post 9. 10.0" diam. 2.0" gap wide ch'd. shroud (150 psi)	H _{1.11.2} +I ₂ +E _{4.6}	196 197 198 199 200 201	188/172 188 188/173 188/174 188/194 188/196 188/196 188/200 156/176
Effect of Wings and Misc. 1. Wings (a) Nacelle-mounted stub wing (b) Single slotted flapped wing (c) Dougle slotted flapped wing (d) Boom-mounted stub wing	H _{1.0} +W _{1.0} +E _{1.1} H _{1.0} +W _{3.0} +E _{1.0} H _{1.0} +W _{2.0} +E _{1.0} H _{1.0} +W _{4.0}	178 180 179 186	181 181 181 156
*Basic Code is Kl3.			

TABLE 1 (CONTINUED)

OUTT. THE	OF	WAKE	INVESTIGATIONS	
OUT LITTE	Or	MWL	TINVESTITIALIONS	

	OUTLINE OF WAKE INV.	ESTIGATIONS		
	Description	Configuration Code*	Run No.	Base- line
2.	Crown Fairings (a) Flat top behind shaft (b) Round top behind shaft (c) Extended flat top fairing (d) Flat top + 16" cap, 4" gap (e) Forward fairing/nacelle fairing	K ₁₁ +D ₁ K ₁₁ +D ₂ H ₁ +D ₄ H _{1·7·2} +D ₄ P _{1·0}	140 141 170 171 152	138 138 156 170 156
3.	Surface Devices (a) Vortex generators (b) Guidevane between nacelles (c) Longitudinal strakes (d) 14% porosity spoiler	K ₁₁ +VG _{2.1} K ₁₁ +FV ₁ H _{1·5.3} +S ₄ K ₁₁ +X ₁	139 142 155 143	138 138 156 138

*Basic Code is K13 unless noted otherwise.

		WAKE
		HUB
	RUNS	THE
7	F	OF
TABLE 2	TES	SNC
TAE	OF	TIC
	LIST OF TEST	BASIC INVESTIGATIONS OF THE HUB
		BASIC

RUN	CONFIGURATION	VTUN	RPM	DISK	MODEL	MODEL	MR HT.	TAIL
NO.		KNOTS	MR/TR	pst.	9	° 2	p/q	ROTOR
111	$ exttt{K}_{11}/15 exttt{"}$ Long, wake traverse at TR center line	80	1433/0	8	0.9	-2.0	8	Off
112	" /9" Vert. wake traverse above TR center line	=	=	-		=	=	=
113	" /2" Vert traverse through MR vortex		=	=		=	=	:
114	" /8" Vert. traverse below TR center line		=	=		=	=	
115	" /13" Vert. traverse behind stabilizer	=	=	=	=	=	=	=
116	" /Lateral traverse - left stabilizer		=		=	=	=	:
117	" /116 continued	u	=		-		=	
118	" /116 continued		=	-	=		=	=
119	" /Lateral traverse - right stabilizer	=	-	=	=	=	=	
121	K ₁₁ +T ₂ /Effect of tail rotor flow on wake	=	1433/	=	=	=	=	on
135	$K_{11}/Wake$ in 900 fpm climb	н	=	ш	0.9-	-4.5	=	Off
136	" /Wake in 800 fpm descent		=	=	0.9	-2.0	=	

		DEVICES
IUED)	RUNS	ERING
TABLE 2 (CONTINUED)	LIST OF TEST RUNS	AKE-ALT
LE 2	T OF	OF W
TAB	FIS	EVALUATION OF WAKE-ALTERING DEVICES

RPM DISK ANGLES HT MR/TR psf α° ψ° h/d 1433/0 8 6 -3.8 ∞ " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " <t< th=""><th>DISK ANGLES LDG. LDG. R 6 -3.8 R 6 -3.8 R 7 R R R R R R R R R R R R R R R R R</th><th>DISK ANGLES LDG. LDG. R 6 -3.8 R 6 -3.8 R 7 " " " " " " " " " " " " " " " " " "</th></t<>	DISK ANGLES LDG. LDG. R 6 -3.8 R 6 -3.8 R 7 R R R R R R R R R R R R R R R R R	DISK ANGLES LDG. LDG. R 6 -3.8 R 6 -3.8 R 7 " " " " " " " " " " " " " " " " " "
1 8	8 = = = = = = = = = = = = = = = = = = =	8 = = = 8 8 - = = 8
1075/	1075/	" " 1075/
= = = 09 =		
Kll+Dl/Flat-topped "doghouse" fair ing on aft crown ing on aft crown Kll+D2/Rounded-top fairing Kll+FV1/Deflection vane on crown between nacelles Kll+X1/Variable porosity spoiler Kl3+H1-N1/Effect of nacelles off also Kl3+H1-60 knot baseline		
K ₁₁ +D ₂ /Rounded-top fairing K ₁₁ +FV ₁ /Deflection vane on crown between nacelles K ₁₁ +X ₁ /Variable porosity spoiler K ₁₃ +H ₁ -N ₁ /Effect of nacelles off also K ₁₃ +H ₁ -N ₁ /Effect of nacelles off also K ₁₃ +H ₁ /60 knot baseline	K ₁₁ +D ₂ /Rounded-top fairing K ₁₁ +FV ₁ /Deflection vane on crown between nacelles K ₁₁ +X ₁ /Variable porosity spoiler K ₁₃ +H ₁ -N ₁ /Effect of nacelles off also K ₁₃ +H ₁ -N ₁ /Effect of nacelles off also K ₁₃ +H ₁ /60 knot baseline K ₁₃ +H ₁ ,3/16 inch diam. helmet fairing	
own ler also	own ler also fair-	own ler also fair- rings
ler	ler also fair-	ler also fair-
also	also fair-	also fair-
t baseline	seline diam. helmet fair-	baseline ch diam. helmet fair- and intake fairings
	diam, helmet fair-	K ₁₃ +H _{1,3} /16 inch diam. helmet fairing

		TAIL	ROTO	Off		2	=	:						:	:
		MR HT.	h/d	8	=	=	=	=	=	=		=	=	=	=
		MODEL	0	-3.8	=	=	=	•	=	=		=	=	=	=
		MODEL	9 8	9	-	=	=		=	=	u	=	=	=	=
	ES	DISK	LDG.	8	=	2		"	=	н				=	
D)	NG DEVIC	RPM	MR/TR	1433/0	=	/ Î	0/0	,,	1433/0	0/0	=		=		
TEST RUN	-ALTERII	Vrun	KNOTS	80			=		=					=	
TABLE 2 (CONTINUED) LIST OF TEST RUNS	EVALUATION OF WAKE-ALTERING DEVICES	NOTH I GNOO! NOTH WAITS LANCO		K ₁₃ +H _{1.5.2} /10" open hub cap, 7" underbody, 1.25"gap	K ₁₃ ^{+H} 1.5.2 ^{+S} 4/Same as strakes	K ₁₃ +H _{1.0} /Baseline with K ₁₃ ,i.e., stiff pitch arms	K ₁₃ -M+H _{1.0} /Wake studies with blades off, hub not rotating	K_{13} -M- $H_{1.0}$ /Wake studies with hub of	K ₁₃ -M+H _{1.0} /Same as 158 except hub is rotating	K ₁₃ -M+H _{1.5.2} /Repeat of 154 without blades	K ₁₃ -M+H _{1.5.3} /Same as 161 except 4"	K ₁₃ -M+H _{1.5.4} /Same as 161 except 2"	K ₁₃ -M+H _{1.5.1} /Same as 161 except 0.5" gap		K ₁₃ -M+H _{1.0.2} /Same as 165 with cap lowered by 0.5"
		RUN	NO.	154	155	156	158	159	160	161	162	163	164	165	166

	TABLE 2 (CONTINUED) LIST OF TEST RUNS EVALUATION OF WAKE-ALTERING DEVICES	CONTINUE REST RUN	O) IS 3 DEVICE	S				
RUN	CONPIGURATION/CONDITION	VTUN	RPM	DISK	MODEL	MODEL	MR HT.	TAIL
NO.		KNOTS	MR/TR	pst.	° 5	0	p/q	ROTOR
167	K ₁₃ -M+H _{1.7.1} /16" open cap, no underbody, 2" gap	80	0/0	æ	9	-3.8	8	Off
168	1,	=	1433/0	=	=	E	=	=
169	K ₁₃ +H _{1.7.2} /16" open cap, no under- body, 4" gap	=		=	=	=	=	=
170	K ₁₃ +H _{1.0} +D _{4.0} /Extended flat top fairing on aft crown			=	=	=	=	=
171	K ₁₃ +H _{1.7.2} +D _{4.0} /Same fairing as 170 same cap as 169	=	=	=		2	=	=
172	Kl3+H1.0+E1.0(Opsi)/Basic air ejector zero blowing baseline	=	=	=	=	=	=	=
173	$\mbox{K}_{13}^{+H}_{1.0}^{+E}_{1.0}^{(40~psi)/Same}$ as 172 with 40 psi supply			=	=	=	=	=
174	K ₁₃ +H _{1.0} +E _{1.0} (150 psi)/Same as 172 with 150 psi supply	=	=	=	=	=	=	=
175	K13+H1,0+E2,5,1(40 psi)/Ejector with wide chord shroud at 40 psi				=	=	=	=
176	K ₁₃ +H _{1.0} +E _{2.5.1} (150 psi)/Same as 174 with 150 psi supply	=			=			
177	K ₁₃ +H ₁ .5 ₁ 4+E ₂ 5,1(150 psi)/Same as	=			=	=	=	=
178	$^{K_{13}+H_{1.0}+W_{1.0}+E_{1.1}}$ (0 psi)/Nacelle mounted wing		п	и		=	2	E

	1144	ROTOR	Off	=		=	=		=		-			
	MR HT.	h/d	8	=			=		=	=			=	
	MODEL	•	-3.8			*	=		=	=	E		=	
	MODEL	• 8	9		=	=	=		=					
σ.	DISK	LDG. psf	8						=				н	Е
is DEVICE	200	MR/TR	1433/0		=									
ONTINUED TEST RUN ALTERING	Varin	KNOTS	80		=									
TABLE 2 (CONTINUED) LIST OF TEST RUNS EVALUATION OF WAKE-ALTERING DEVICES		CONFIGURATION/ CONDITION	K ₁₃ +H _{1.0} +W _{2.0} +E _{1.0} (0 psi)/Double slotted flapped wing	FE1.0	K ₁₃ +H _{1.0} +E _{1.2} (0 psi)/Baseline with ejector tube moved aft	K ₁₃ +H _{1.9.0} +E _{1.2} (0 psi)/Standard 10" frisbee	K ₁₃ +H _{1.9.1} +E _{1.2} (0 psi)/16" fabri- cated frisbee	Kl3+Hl.0+E3.5.2 (40 psi)/Wide chord with lip at 40 psi		K ₁₃ +H _{1.0} +W _{4.0} /Boom mounted stub wing	K ₁₃ +H _{1.0} +E _{3.5.4} (150 psi)/Like 185 with modified shroud	K ₁₃ +H _{1.0} +I ₁ +E _{1.0} (0 psi)/Baseline with I ₁ instr. ring	K ₁₃ +H _{1.8.1} +I ₁ +E _{1.0} (0 psi)/Solid cap, 10" diam. 3.25" height	K ₁₃ +H _{1.8.2} +I ₁ +E _{1.0} (0 psi)/Same as 190 except + 4.12" height
	RUN	NO.	179	180	181	182	183		185	186	187	188	189	190

	TAIL	ROTOR) jjo						=	=		=	=	=
	MR HT.	p/q	8		=	=	=	=	E		=	=	z	=
	MODEL	. 4	-3.8		=		=	=			=		=	=
	MODEL	9 10	9	н	н	ıı	=		=	=		=	=	
S	DISK	psf.	8							=			=	=
IS DEVICE	RPM	MR/TR	1433/0	=	=	=						=		=
ONTINUEL FEST RUN	Vrun	KNOTS	80				=	=	и			:		=
TABLE 2 (CONTINUED) LIST OF TEST RUNS EVALUATION OF WAKE-ALTERING DEVICES	NOT#IGNOO/ NOT########OO		Kl3+Hl.0.2+Il+El.0 (0 psi)/10" cap, no underbody, 1.87" gap	(0 I	Kl3+Hl.ll.l+I2+El.0(0 psi)/7.6" cap, underbody, 1.25" gap	K13+H1.11.1+I2+E1.0(20 psi)/Same as 194 with 20 psi air	+124	K13+H1.11.1+I2+E1.0(150 psi)/Same as 194 with 150 psi air	2+E b]	K13+H1.11.1+I2+E4.0 (40 psi)/Same as 198 with 40 psi air	K ₁₃ +H _{1.11.1} +I ₂ +E _{4.0} (150 psi)/Same as 198 with 150 psi air	K ₁₃ +H _{1.11.2} +I ₂ +E _{4.0} (150 psi)/Same as 200 except center support cap	$_{\rm 2}^{+1}_{\rm 2}/{\rm Baseline}$ with I ₂ wing tube	K ₁₃ +H _{1.0} +E _{5.0} (0 psi)/Bifurcated air duct baseline
	RUN	NO.	191	193	194	195	196	197	198	199	200	201	202	203

	TAIL	ROTOR	Off			=	-	-			
	MR HT.	h/d R	8	=			=	=			
	EL	0	-3.8	=	=	=	=	=			
	MODEL	• 8	9	=		=	=	-			
, w	DISK	psf.	ω	=	=	=	=	=			
4S 3 DEVICE:	RPM	MR/TR	1433/0	=	π	=	=	=			
CONTINUED TEST RUN	VTUN	KNOTS	80		<u>-</u>	-	=				
TABLE 2 (CONTINUED) LIST OF TEST RUNS EVALUATION OF WAKE-ALTERING DEVICES	CONFIGURATION/CONDITION		K13+H1.0+E5.0 (150 psi)/Bifurcated duct with 150 psi air	K ₁₃ +H _{1.0} +E _{5.0} (40 psi)/Same as 204 with 40 psi air	K ₁₃ +H _{1.2.1} +I ₁ +E _{1.0} (0 psi)/7.6" solid cap, no gap	K ₁₃ +H _{1.2.2} +I ₁ +E _{1.0} (0 psi)/Same as 207 except 0.55" gap	K ₁₃ +H _{1.15.1} +I ₁ +E _{1.0} (0 psi)/Repeat of 189	K ₁₃ +H _{1.14.1} +I ₁ +E _{1.0} (0 psi)/Like 189 and 210 except cap is open			
	RUN	NO.	204	205	207	208	210	211			

TABLE 3 INDEX TO RAKE POSITIONS RUN TEST WATER MODEL BUTT LOCATION NUMBER POINT LINE STATION FIGURE LINE 111 53.5 20 103.1 1 -7.25 21 H 22 105.0 24 107.0 ** 26 109.0 11 28 111.0 ** 30 112.9 ** 32 114.9 34 116.9 36 118.9 112 2 48.9 107.3 -7.25 1 4 50.8 6 52.7 103.3 8 54.5 10 56.2 11 12 57.2 113 2 51.7 103.3 -3.251 52.3 4 11 6 52.8 " 8 53.3 11 10 53.9 11 53.3 114 44.5 103.0 1 2 -3.25 46.4 4 " 48.2 6 11 ** 8 50.0 " 10 51.9 -3.25 124.7 52.9 115 1 3 52.0 4 6 50.0 9 48.0 46.0 10 12 44.1 42.1 14 53.0 16 54.0 18 55.0 20

TAB	LE	3	(C(ONTINUED)
INDEX	то	R	AKE	POSITIONS

RUN NUMBER	TEST POINT	WATER LINE	MODEL STATION	BUTT LINE	LOCATION FIGURE
116	7	36.9	100.5	-17.5	1
117	2 4 6 8 10	37.6 37.3	100.5	-16.0 -14.0 -12.0 -10.0 - 8.0	1
118	2	37.6	100.5	- 6.0	1
119	2 5 8 9 14 16 20 25	37.3 " " " 51.5 52.3	99.6 " " 102.5 101.7	+ 6.0 8 10 " 14 16 17.5 -17.5	1
121	3 4 6 8 10	62.9 53.5 50.1 46.0 42.1	129.0	+ 5.7	2
135	2 4 6 8 10 12 14	56.9 54.5 52.5 50.5 48.5 46.5 44.5	106.3	- 5.7 " "	3
136	2 4 6 8 10 12 14 17 18	56.5 54.5 52.5 50.6 48.5 46.5 44.5 37.1 39.0 41.0	104.0	- 8.0	4

RUN NUMBER	TEST POINT	WATER LINE	MODEL STATION	BUTT LINE	LOCATION FIGURE
137	3 5 7 9 11 13 15 17	38.7 39.9 42.0 44.0 46.0 48.0 50.0 52.0 54.0	98.4 100.5 103.6	- 8.0	5
138-41, 143	2 3 4 5 6 7 8 9	38.8 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0	98.4 100.5 103.6	- 8.0 " " "	5
142	7 8 9 10 11 12 13 14 15 16	37.8 40.2 42.0 44.0 46.0 48.0 50.0 52.0 54.0 56.8	98.4 " 100.5 103.6	- 8.0 "" ""	5
	16	54.0			

TABLE 3 (CONTINUED)

INDEX TO RAKE POSITIONS

RUN NUMBER	TEST POINT	WATER LINE	MODEL STATION	BUTT	LOCATION FIGURE
149-151	2 3 4 5 6 7 8 9	38.8 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0	98.5 100.6 103.5	- 8.0 " " "	5
152-6, 158 161-4, 166 167, 169-71 175, 177-9 180,182,184 186-8, 190 191,193,194 196,198,201 204,207,208 211	5 6 7 8 9	42.9 44.9 46.9 48.9 50.9 52.9 54.9 56.9	97.9 100.6 104.6	0.0	6
159	1 2 3 4 5	54.9 52.9 50.7 48.6 46.7	104.6	0.0	6
160,203	5 6 7 8 9 10	42.9 44.9 46.9 48.9 50.9 52.9 54.9	97.9 100.6 104.6	0.0	6
165	3 4 5 6 7 8	44.9 42.9 46.9 48.9 50.9 52.9	97.9 100.6 104.6	0.0	6

TABLE 3 (CONTINUED) INDEX TO RAKE POSITIONS

		,			
RUN NUMBER	TEST POINT	WATER LINE	MODEL STATION	BUTT LINE	LOCATION FIGURE
168, 183	4 5 6 7 8 9	42.9 44.9 46.9 48.9 50.9 52.9 54.9	97.9 100.6 104.6	0.0 "" "	6
172	3 4 6 7 8 9 10	42.9 44.9 44.9 46.9 48.9 50.9 52.9 54.9	97.9 " 100.6 " 104.6	0.0	6
173,174,176 185,195,197 199,200,205 210	2	42.9 44.9 46.9 48.9 50.9 52.9 54.9	97.9 100.6 104.6	0.0	6
181	2 3 4 5 6 7 9 10 11 12 13	42.9 44.9 46.9 48.9 50.9 52.9 54.9	97.9 100.6 104.6 "	0.0	6

TABLE 3 (CONTINUED)

INDEX TO RAKE POSITIONS

RUN NUMBER	TEST POINT	WATER LINE	MODEL STATION	BUTT	LOCATION FIGURE
189	29 30 31 32 33 34 35 36 37 38 39	42.9 44.9 46.9 48.9 50.9 50.9 52.9 54.9	97.9 100.6 " 104.6 100.6 104.6	0.0	6
202	3 4 5 6 7	43.4 44.9 46.9 48.9 50.9	97.9 100.6 104.6	0.0	6

FIGURE 1 - RAKE ORIENTATION DIAGRAM

FIGURE 2 -HOT FILM RAKE LOCATIONS

FIGURE 3 -HOT FILM RAKE LOCATIONS

FIGURE 4 -HOT FILM RAKE LOCATIONS

RUN 137, 138, 139, 140, 141, 142, 143, 148, 149, 150, 151

FIGURE 5 -HOT FILM RAKE LOCATIONS

FIGURE 6 -HOT FILM RAKE LOCATIONS

Y

-1/4.85 SCALE MODEL GEOMETRY AND SURFACE PRESSURE TRANSDUCER LOCATIONS

V

Nº

V

