Endomorphismes d'un espace euclidien

Feuille d'exercices #16

⊗ Partie A – Isométries vectorielles

Exercice 1 — Dans \mathbb{R}^3 muni du produit scalaire usuel, on considère le sous-espace F défini par les équations x - y + z = 0, x + y + 2z = 0. Déterminer la matrice de la symétrie orthogonale par rapport à F dans la base canonique.

Exercice 2 — On considère un espace euclidien orienté *E* de dimension 2.

- 1. Que peut-on dire de la composée de deux rotations? de deux réflexions?
- 2. Que peut-on dire de la composée d'une rotation et d'une réflexion?
- 3. Montrer que toute rotation s'écrit comme la composée de deux réflexions.
- 4. Montrer que ce dernier résultat se généralise en dimension 3.

Exercice 3 — Déterminer la nature géométrique des endomorphismes dont la matrice dans la base canonique de \mathbb{R}^2 ou \mathbb{R}^3 est donnée par :

$$A = \frac{1}{25} \begin{bmatrix} -7 & 24 \\ 24 & 7 \end{bmatrix} \quad B = \frac{1}{16} \begin{bmatrix} -11 & 9 & 3\sqrt{6} \\ 9 & 13 & -\sqrt{6} \\ 3\sqrt{6} & -\sqrt{6} & 14 \end{bmatrix} \quad C = \frac{1}{9} \begin{bmatrix} -1 & 4 & -8 \\ 4 & -7 & -4 \\ -8 & -4 & -1 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad E = \frac{1}{4} \begin{bmatrix} -2 & -\sqrt{6} & \sqrt{6} \\ \sqrt{6} & 1 & 3 \\ -\sqrt{6} & 3 & 1 \end{bmatrix} \qquad F = \frac{1}{7} \begin{bmatrix} -2 & 6 & -3 \\ 6 & 3 & 2 \\ -3 & 2 & 6 \end{bmatrix}$$

Exercice 4 — Soit $\mathcal{B} = (i, j, k)$ la base canonique de \mathbb{R}^3 . Donner la matrice dans la base \mathcal{B} de la rotation de \mathbb{R}^3 d'axe orienté par i + j + k et d'angle de mesure $\frac{\pi}{4}$.

Exercice 5 — Soient E un espace euclidien et u un vecteur unitaire de E. Pour α réel, on définit φ_{α} sur E par $\varphi_{\alpha}(x) = x + \alpha \langle x | u \rangle u$.

- 1. Vérifier que $\varphi_{\alpha} \in \mathcal{S}(E)$ puis déterminer ses éléments propres.
- 2. Peut-on avoir φ_{α} orthogonal? Caractériser alors géométriquement φ_{α} .

Exercice 6 — Dans $E = \mathbb{R}^3$, on pose $f(x) = u \land x$ où $x \in E$ et $u \in \mathbb{R}^3$ est non nul.

- 1. Montrer que $f \in \mathcal{L}(E)$ et déterminer sa matrice dans une base adaptée.
- 2. Montrer que $id_E + f$ est une bijection et déterminer $(id_E + f)^{-1}$.
- 3. Montrer que $g = (id_E f) \circ (id_E + f)^{-1}$ est une rotation et préciser ses caractéristiques géométriques.

Exercice 7 — Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice :

$$A = \begin{bmatrix} a^2 & ab-c & ac+b \\ ab+c & b^2 & bc-a \\ ac-b & bc+a & c^2 \end{bmatrix}$$

On supposera que le vecteur u(a, b, c) est unitaire.

- 1. Décomposer f sous la forme p + g où p est la projection orthogonale sur la droite vectorielle engendrée par u et g une application à préciser.
- 2. En déduire la nature de f.

Exercice 8 — Soient E un espace vectoriel euclidien, $u \in E$ non nul et $\varphi \in O(E)$. On note σ la réflexion par rapport à l'hyperplan $Vect(u)^{\perp}$.

- 1. Montrer que $\varphi \circ \sigma \circ \varphi^{-1}$ est une réflexion et préciser ses caractéristiques géométriques.
- 2. À quelle condition nécessaire et suffisante φ et σ commutent-elles?
- 3. Déterminer les applications ψ de O(E) qui vérifient pour tout $\varphi \in O(E)$, $\psi \circ \varphi = \varphi \circ \psi$.

Exercice 9 — Soit E un espace euclidien de dimension $N \ge 2$ et $f \in O(E)$.

Pour tout $n \in \mathbb{N}^*$, on pose $p_n = \frac{1}{n} \sum_{k=0}^{n-1} f^k$.

- 1. Vérifier que $E = \text{Im}(f \text{id}_E) \stackrel{\perp}{\bigoplus} \text{Ker}(f \text{id}_E)$.
- 2. En déduire la nature de l'endomorphisme $g = \lim_{n \to +\infty} p_n$.
- 3. Généraliser le résultat précédent pour $f \in \mathcal{L}(E)$ tel que $||f||_{op} \le 1$.

Exercice 10 — Soient x et y deux vecteurs d'un espace euclidien E tels que $x \neq y$ et ||x|| = ||y||. Montrer qu'il existe une unique réflexion échangeant x et y.

⊗ Partie B – Adjoint, endomorphismes autoadjoints

Exercice 11 — Méli-mélo

- 1. Soit $u \in \mathcal{L}(E)$. Montrer que $u^* \circ u \in \mathcal{L}^+(E)$ puis que $\operatorname{Ker}(u^* \circ u) = \operatorname{Ker}(u)$ et $\text{Im}(u^* \circ u) = \text{Im}(u^*)$. Que dire de $\text{rg}(u^* \circ u)$?
- 2. Soit $(u, v) \in \mathcal{S}(E)^2$. Montrer que $u \circ v \in \mathcal{S}(E)$ si et seulement $u \circ v = v \circ u$.
- 3. Soit $(u, v) \in \mathcal{S}(E) \times \mathcal{S}^{++}(E)$. Montrer qu'il existe $w \in \mathcal{S}^{++}(E)$ tel que $v = w^2$. En déduire que $v^{-1} \circ u$ est diagonalisable.

Exercice 12 — On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire défini par $\langle X|Y\rangle = \text{Tr}(X^\top Y)$.

- 1. Soient $A \in \mathcal{M}_n(\mathbb{R})$ et φ l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par $\varphi(X) = AX$. Déterminer l'adjoint de φ .
- 2. Donner une CNS sur A pour que φ soit une isométrie.

Exercice 13 — Soit $u \in \mathcal{L}(E)$ tel que $u^2 = 0$. Justifier l'équivalence :

$$\operatorname{Im}(u) = \operatorname{Ker}(u) \iff u + u^* \in \operatorname{GL}(E)$$

Exercice 14 — Quelles sont les matrices A de $\mathcal{M}_n(\mathbb{R})$ vérifiant $AA^{\top}A = I_n$?

Exercice 15 — Soient $A, B \in \mathcal{S}_n(\mathbb{R})$ telles que $A^{2023} = B^{2023}$. Montrer que A = B.

Exercice 16 — *Endomorphismes antisymétriques* Soit f un endomorphisme d'un espace euclidien E vérifiant :

$$\forall x \in E, \quad \langle f(x) | x \rangle = 0$$

- 1. Montrer que f est antisymétrique, i.e. $f^* = -f$.
- 2. Que dire de la matrice représentative de *f* dans une base orthonormale?
- 3. Déterminer le spectre de f. À quelle condition f est-elle diagonalisable?
- 4. Montrer que Ker $f = (\operatorname{Im} f)^{\perp}$. En déduire la matrice de f dans une base orthonormale adaptée à $E = \text{Im}(f) \oplus \text{Ker}(f)$.

Exercice 17 — Soient $E = \mathbb{R}^3$ et u un vecteur non nul. Montrer que l'endomorphisme $x \mapsto u \land (u \land x)$ est symétrique. Déterminer ses éléments propres.

Exercice 18 — Soit $u \in \mathcal{L}(E)$. On suppose que $u^* \circ u = u \circ u^*$.

- 1. Montrer que u et u^* ont les mêmes sous-espaces propres.
- 2. Montrer que ces sous-espaces sont deux à deux orthogonaux.

Exercice 19 — Soit $\mathscr{A} = \{u \in \mathscr{L}(E) \mid u \circ u^* \circ u = u\}.$

Montrer que les assertions suivantes sont équivalentes :

(i) $u \in \mathcal{A}$

- (ii) $u \circ u^*$ est un proj. orthogonal
- (iii) $u^* \circ u$ est un proj. orthogonal (iv) $\operatorname{Ker}(u)^{\perp} = \{x \in E \mid ||u(x)|| = ||x||\}$

Exercice 20 — *Ouotient de Rayleigh*

Soit $u \in \mathcal{S}(E)$ où E est euclidien.

- 1. Montrer que l'application $x \mapsto \frac{\langle u(x)|x\rangle}{\|x\|^2}$ atteint sur $E \setminus \{0\}$ un minimum et un maximum que l'on exprimera en fonction des valeurs propres de u.
- 2. Pour quels vecteurs *x* le minimum et le maximum sont-ils atteints?
- 3. *Application* Déterminer :

$$\max \left\{ \sum_{1 \le i < j \le n} x_i x_j \mid (x_1, \dots, x_n) \in \mathbb{R}^n \text{ et } \sum_{i=1}^n x_i^2 = 1 \right\}$$

Exercice 21 — Soient E un espace euclidien, A un endomorphisme symétrique défini positif et *B* un endomorphisme symétrique. On pose :

$$\forall x, y \in E, \quad \langle x | y \rangle_A = \langle A^{-1} x | y \rangle$$

- 1. Montrer que $\langle \cdot | \cdot \rangle_A$ est un produit scalaire.
- 2. Montrer que AB est diagonalisable.
- 3. Si M est un endomorphisme diagonalisable de E, on note $\lambda_{\min}(M)$ sa plus petite et $\lambda_{\max}(M)$ sa plus grande valeurs propres. Soit φ définie par :

$$\forall x \in E \setminus \{0\}, \quad \varphi(x) = \frac{\langle Bx | x \rangle}{\langle A^{-1}x | x \rangle}$$

Montrer que l'image de $E \setminus \{0\}$ par φ est le segment $[\lambda_{\min}(AB), \lambda_{\max}(AB)]$.

4. Montrer que $\lambda_{\min}(A)\lambda_{\min}(B) \leq \lambda_{\min}(AB) \leq \lambda_{\max}(AB) \leq \lambda_{\max}(A)\lambda_{\max}(B)$.

Exercice 22 — Soient $(E, \langle \cdot | \cdot \rangle)$ un espace euclidien et u un endomorphisme défini par $u(x) = \langle b | x \rangle a + \langle a | x \rangle b$, où (a, b) une famille libre.

- 1. Montrer que $u \in \mathcal{S}(E)$ et déterminer ses éléments propres.
- 2. Calculer $\sup_{\|x\|=1} \{ |\langle a|x\rangle\langle b|x\rangle| \}.$

Exercice 23 — Soit $A \in \mathcal{S}_n^{++}(\mathbb{R})$.

Montrer que $\langle X|Y\rangle = X^{\top}AY$ définit un produit scalaire sur $\mathcal{M}_{n,1}(\mathbb{R})$.

Exercice 24 — Soient $A \in \mathcal{S}_n^+(\mathbb{R})$ et $\Omega \in \mathcal{O}_n(\mathbb{R})$. Montrer que $\text{Tr}(A\Omega) \leq \text{Tr}(A)$.

Exercice 25 — Soit $S \in \mathcal{S}_n^+(\mathbb{R})$. Montrer que $\det(S)^{1/n} \leq \frac{\operatorname{Tr}(S)}{n}$.

Exercice 26 — Soient $A, B \in \mathcal{S}_n^+(\mathbb{R})$. Montrer que pour tout $t \in]0,1[$,

$$(\det(A))^t (\det(B))^{1-t} \le \det(tA + (1-t)B)$$

 \mathfrak{H} Exercice 27 — Réduction simultanée Soit $A \in \mathscr{S}_n^{++}(\mathbb{R})$.

- 1. Montrer qu'il existe $P \in GL_n(\mathbb{R})$ telle que $A = P^\top P$.
 - 2. Soit $B \in \mathcal{S}_n(\mathbb{R})$. Montrer qu'il existe $P \in GL_n(\mathbb{R})$ telle $A = P^\top P$ et $B = P^\top DP$.
 - 3. En déduire que le polynôme det(B XA) est scindé.

⊗ Partie C – Décompositions matricielles

Exercice 28 — Racine carrée et décomposition polaire

Soit $n \in \mathbb{N}^*$. On note $\mathscr{S}_n^{++}(\mathbb{R})$ les matrices symétriques réelles dont les valeurs propres sont strictement positives.

- 1. Soit $A \in \mathcal{S}_n^{++}(\mathbb{R})$.
 - a) Établir l'existence de $R \in \mathcal{S}_n^{++}(\mathbb{R})$ telle que $A = R^2$.
 - b) Justifier l'unicité de la matrice R à l'aide du lemme des noyaux.
- 2. Soit $M \in GL_n(\mathbb{R})$.
 - a) Montrer que $M^{\top}M$ admet une unique racine carrée, notée R.
 - b) Montrer que $R \in GL_n(\mathbb{R})$ puis que $MR^{-1} \in O_n(\mathbb{R})$.
 - c) Justifier l'existence de $(\Omega, R) \in O_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R})$ tel que $M = \Omega R$.

Exercice 29 — Décomposition en valeurs singulières

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe $P,Q \in O_n(\mathbb{R})$ telles que PAQ soit diagonale à coefficients positifs.

Exercice 30 — Décomposition QR et inégalité d'Hadamard Soit $n \in \mathbb{N}^*$. On considère une matrice $A \in GL_n(\mathbb{R})$.

- 1. On note \mathcal{B} la base constituée des colonnes de A et \mathcal{B}' son orthonormalisée par Gram-Schmidt.
 - a) Préciser la forme de la matrice de passage de \mathscr{B} à \mathscr{B}' .
 - b) Montrer que A peut s'interpréter comme une matrice de passage.
 - c) En déduire qu'il existe $(Q, R) \in O_n(\mathbb{R}) \times \mathcal{T}_n(\mathbb{R})$ tel que A = QR.
- 2. Quel intérêt présente une telle décomposition dans la résolution du système linéaire AX = Y?
- 3. Montrer que pour tout $M \in \mathcal{M}_n(\mathbb{R})$,

$$\det(M) \le \prod_{i=1}^{n} \|C_i\|$$
 où C_i est la i -ème colonne de M

Préciser le cas d'égalité.