



Sumo wrestling is a sport that originated in Japan, with a history spanning centuries. It has become an integral part of Japanese culture and tradition, captivating audiences with its unique combination of athleticism and strategy.

#### **Problem Statement**

In this project, I will be analyzing data on sumo wrestlers to predict the outcome of matches. The dataset contains information on wrestlers' physical characteristics such as their height and weight, as well as details on each wrestler's rank and the result of each tournament match.

My goal is to use machine learning algorithms, such as logistic regression, decision trees, and random forests to build a prediction model that will achieve an accuracy score of at least 0.75.

This model will be valuable for both fans and practitioners of sumo wrestling, providing insights into the key factors that contribute to a wrestler's success or failure.

Additionally, a Tableau dashboard will be created to visualize the data and predictions, allowing sumo fans and practitioners to explore and interact with the data in a meaningful way.

#### Key steps in research process





Data Modeling & Evaluation



Conclusion & Recommendations



# DATA COLLECTION



### The project's dataset was created by merging two different sets of data



#### A dataset

Size (226,590 x 29)

The below data are found in both datasets

Basho (Tournament)

Wrestler's ID

Wrestler's Name

Wrestler's Rank

#### Results.csv

(Size: 226,590 x 13)

### The dataset covers a comprehensive range of wrestlers and tournaments information

#### Wrestler 1

ID

name

rank

hometown

birth date

height

weight

Previous tournament results



match outcome (win or loss)
 kimarite

results at the time of the tournament final record at the end of the tournament

| wrestrer z (opponent) |
|-----------------------|
| ID                    |
| name                  |
| rank                  |
| hometown              |
| birth date            |
| height                |

weight

Previous tournament

results

Wrestler 2 (opponent)





### DATA CLEANING

### 31 missing values were identified in a fairly clean dataset

31 missing values are identified under weight and height

These missing values are from two wrestlers: **Takeuchi** and **Miyabiyama** 

| 4 df.loc[df['rl_height'].isnull() |         |     |       |         |            |  |  |  |  |
|-----------------------------------|---------|-----|-------|---------|------------|--|--|--|--|
|                                   | basho   | day | r1_id | r1_rank | r1_shikona |  |  |  |  |
| 89652                             | 1998.09 | 13  | 842   | Ms6w    | Takeuchi   |  |  |  |  |
| 90425                             | 1998.11 | 8   | 842   | J11w    | Miyabiyama |  |  |  |  |

### Missing values were handled based on the available data for each wrestler

#### Miyabiyama

| r1_weight | r1_height | r1_shikona | basho   |
|-----------|-----------|------------|---------|
| NaN       | NaN       | Miyabiyama | 1998.11 |
| NaN       | NaN       | Miyabiyama | 1999.01 |
| 171.0     | 187.7     | Miyabiyama | 1999.03 |
| 171.0     | 187.7     | Miyabiyama | 1999.05 |
| 171.0     | 187.7     | Miyabiyama | 1999.07 |
| 171.0     | 187.7     | Miyabiyama | 1999.09 |
| 171.0     | 187.7     | Miyabiyama | 1999.11 |
| 171.0     | 187.7     | Miyabiyama | 2000.01 |
| 175.5     | 188.0     | Miyabiyama | 2000.03 |
| 175.5     | 188.0     | Miyabiyama | 2000.05 |
| 175.5     | 188.0     | Miyabiyama | 2000.07 |

Takeuchi

| basho r1_shikona |          | r1_height | r1_weight |  |  |
|------------------|----------|-----------|-----------|--|--|
| 1998.09          | Takeuchi | NaN       | NaN       |  |  |

Takeuchi only had one record of his tournament match, which had the missing values. This record was dropped from the dataset.

Miyabiyama's height and weight information were missing in Nov 1998 and Jan 1999. However, his info was recorded in Mar 1999, and remained unchanged until Mar 2003. The data from the Mar 1999 tournament was used to fill in the missing values.



## EDA & FEATURE ENGINEERING



| #  | Column            | Non-Null Count  | Dtype   |
|----|-------------------|-----------------|---------|
|    |                   |                 |         |
| 0  | basho             | 226588 non-null | float64 |
| 1  | day               | 226588 non-null | int64   |
| 2  | r1_id             | 226588 non-null | int64   |
| 3  | r1_rank           | 226588 non-null | object  |
| 4  | r1_shikona        | 226588 non-null | object  |
| 5  | r1_result         | 226588 non-null | object  |
| 6  | r1_win            | 226588 non-null | int64   |
| 7  | kimarite          | 226588 non-null | object  |
| 8  | r2_id             | 226588 non-null | int64   |
| 9  | r2_rank           | 226588 non-null | object  |
| 10 | r2_shikona        | 226588 non-null | object  |
| 11 | r2_result         | 226588 non-null | object  |
| 12 | r1_heya           | 226588 non-null | object  |
| 13 | r1_shusshin       | 226588 non-null | object  |
| 14 | $r1\_birth\_date$ | 226588 non-null | object  |
| 15 | r1_height         | 226588 non-null | float64 |
| 16 | r1_weight         | 226588 non-null | float64 |
| 17 | r1_prev           | 226588 non-null | object  |
| 18 | r1_prev_w         | 226588 non-null | float64 |
| 19 | r1_prev_l         | 226588 non-null | float64 |
| 20 | r2_heya           | 226588 non-null | object  |
| 21 | r2_shusshin       | 226588 non-null | object  |
| 22 | r2_birth_date     | 226588 non-null | object  |
| 23 | r2_height         | 226588 non-null | float64 |
| 24 | r2_weight         | 226588 non-null | float64 |
| 25 | r2_prev           | 226588 non-null | object  |
| 26 | r2_prev_w         | 226588 non-null | float64 |
| 27 | r2_prev_l         | 226588 non-null | float64 |

### Feature engineering process was performed

- Convert categorical features with numeric values
  - shusshin (hometown)
  - wrestler ranks
  - kimarite (winning techniques)
  - heya (organization/clubs)
- Calculations
  - Age
  - Number of wins in
    - the previous tournament
    - the current tournament





### **TABLEAU**

<u>Link</u>

Match Win Probabilities Based On A Wrestler's Height and Weight

Time Period: Jan 1983 - Mar 2023



Match Win Probabilities Based On A Wrestler's Demographics (Jan 1983 - Mar 2023)

Time Period: Jan 1983 - Mar 2023





#### Match Win Probabilities By Home Country



Key Findings: The green chart by age shows that younger wrestlers have a higher chance of winning, especially up to the age of 24, with a slight decline in win probabilities as the wrestler ages. Meanwhile, the chart by home country show.

Match Win Probabilities Based On A Wrestler's Rank In The Previous & Current Tournament (Jan 1983 - Mar 2023)





#### Match Win Probabilities By Wrestler Rank In The Current Tournament



Key Findings: There are correlations between ranks and match outcomes in both previous and current tournaments, with higher-ranked wrestlers having a greater chance of winning matches. That's especially true for Yokozuna, Ozeki and Sekiwake ranks.

Match Win Probabilities Based On A Wrestler's Number Of Wins

10

Number of Wins

Time Period: Jan 1983 - Mar 2023

Number of Wins



Key Findings: The current tournament data shows strong correlation between number of matches and match oucomes, as the number of win increases the winning probabilities also increase. Also, both charts show a higher probability of winning matches with 7 wins compared to 8 wins. In sumo wrestling, winning 8 matches is an important achievement for maintaining or getting promoted to a higher rank. Therefore, wrestlers who have already won 7 matches may have a higher sense of motivation or urgency to win their 8th match, leading to a slightly higher win probability than those with 8 wins.



# DATA MODELING & EVALUATION







Data Preparation



Analysis & Interpretability



Model



Training

Selection



Experiment Logging

### What is PyCaret?

- PyCaret is an open-source machine learning library in Python that automates machine learning workflows with minimal coding required.
- With PyCaret, data scientists can spend less time coding and more time analyzing data.

#### Minimal coding required

#### **Install PyCaret**

```
!pip install pycaret
import pycaret
```

#### Setup

```
from pycaret.classification import *
setup(data = df, target = 'rl_win', train_size = 0.8, session_id=123)
```

#### **Compare Models**

```
best = compare models()
```

#### **Analyze Model**

```
p = plot_model(best, plot = 'auc')
plot_model(best, plot = 'confusion_matrix')
```



### Classification models using existing numeric data and feature-engineered data are developed







This process allows me to see how these features impacted the performance of the models and whether they enhance the predictive ability of match outcomes

### The best performing model only achieved an accuracy score of 0.57



Models using existing numeric data only

|          | Model                           | Accuracy | AUC    | Recall | Prec.  | F1     | Карра  | мсс    | TT (Sec) |
|----------|---------------------------------|----------|--------|--------|--------|--------|--------|--------|----------|
| xgboost  | Extreme Gradient Boosting       | 0.5713   | 0.6090 | 0.5757 | 0.5707 | 0.5732 | 0.1427 | 0.1427 | 17.4200  |
| lightgbm | Light Gradient Boosting Machine | 0.5678   | 0.6045 | 0.5758 | 0.5667 | 0.5712 | 0.1356 | 0.1356 | 2.3570   |
| gbc      | Gradient Boosting Classifier    | 0.5570   | 0.5877 | 0.5635 | 0.5563 | 0.5598 | 0.1140 | 0.1140 | 22.8280  |
| rf       | Random Forest Classifier        | 0.5519   | 0.5788 | 0.5373 | 0.5534 | 0.5452 | 0.1037 | 0.1038 | 42.4100  |
| ada      | Ada Boost Classifier            | 0.5478   | 0.5742 | 0.5468 | 0.5479 | 0.5473 | 0.0955 | 0.0955 | 5.8420   |
| knn      | K Neighbors Classifier          | 0.5441   | 0.5621 | 0.5437 | 0.5441 | 0.5439 | 0.0881 | 0.0881 | 1.8620   |
| et       | Extra Trees Classifier          | 0.5400   | 0.5627 | 0.5264 | 0.5411 | 0.5337 | 0.0800 | 0.0800 | 30.2730  |
| qda      | Quadratic Discriminant Analysis | 0.5334   | 0.5540 | 0.5438 | 0.5327 | 0.5381 | 0.0667 | 0.0667 | 0.3640   |
| nb       | Naive Bayes                     | 0.5315   | 0.5520 | 0.5362 | 0.5312 | 0.5337 | 0.0630 | 0.0630 | 0.1740   |
| dt       | Decision Tree Classifier        | 0.5237   | 0.5237 | 0.5259 | 0.5235 | 0.5247 | 0.0473 | 0.0473 | 1.9230   |
| ridge    | Ridge Classifier                | 0.5227   | 0.0000 | 0.5230 | 0.5227 | 0.5228 | 0.0454 | 0.0454 | 0.1860   |
| lda      | Linear Discriminant Analysis    | 0.5227   | 0.5348 | 0.5230 | 0.5227 | 0.5228 | 0.0454 | 0.0454 | 0.4890   |
| Ir       | Logistic Regression             | 0.5220   | 0.5341 | 0.5217 | 0.5220 | 0.5218 | 0.0439 | 0.0439 | 1.5560   |
| svm      | SVM - Linear Kernel             | 0.5018   | 0.0000 | 0.4077 | 0.5550 | 0.3954 | 0.0036 | 0.0056 | 8.7650   |
| dummy    | Dummy Classifier                | 0.5000   | 0.5000 | 0.5000 | 0.2500 | 0.3333 | 0.0000 | 0.0000 | 0.1320   |

### Incorporating new features led to a significant improvement in model performance



Models incorporating new features

|          | Model                           | Accuracy | AUC    | Recall | Prec.  | F1     | Карра  | мсс    | TT (Sec) |
|----------|---------------------------------|----------|--------|--------|--------|--------|--------|--------|----------|
| lightgbm | Light Gradient Boosting Machine | 0.7799   | 0.8785 | 0.7795 | 0.7802 | 0.7798 | 0.5598 | 0.5599 | 4.9240   |
| xgboost  | Extreme Gradient Boosting       | 0.7796   | 0.8781 | 0.7805 | 0.7791 | 0.7798 | 0.5592 | 0.5593 | 48.9350  |
| gbc      | Gradient Boosting Classifier    | 0.7731   | 0.8730 | 0.7777 | 0.7706 | 0.7741 | 0.5462 | 0.5462 | 65.6110  |
| lda      | Linear Discriminant Analysis    | 0.7720   | 0.8677 | 0.7695 | 0.7734 | 0.7714 | 0.5440 | 0.5440 | 1.8290   |
| ridge    | Ridge Classifier                | 0.7719   | 0.0000 | 0.7695 | 0.7733 | 0.7714 | 0.5439 | 0.5439 | 0.6030   |
| rf       | Random Forest Classifier        | 0.7686   | 0.8678 | 0.7623 | 0.7721 | 0.7671 | 0.5372 | 0.5373 | 53.2930  |
| et       | Extra Trees Classifier          | 0.7672   | 0.8656 | 0.7616 | 0.7702 | 0.7659 | 0.5344 | 0.5344 | 45.1910  |
| ada      | Ada Boost Classifier            | 0.7631   | 0.8642 | 0.7598 | 0.7658 | 0.7621 | 0.5262 | 0.5272 | 13.9880  |
| qda      | Quadratic Discriminant Analysis | 0.7610   | 0.8454 | 0.7624 | 0.7602 | 0.7613 | 0.5219 | 0.5219 | 1.1990   |
| Ir       | Logistic Regression             | 0.7606   | 0.8430 | 0.7537 | 0.7643 | 0.7589 | 0.5212 | 0.5213 | 24.1150  |
| nb       | Naive Bayes                     | 0.7434   | 0.8282 | 0.7405 | 0.7447 | 0.7426 | 0.4867 | 0.4867 | 0.5010   |
| dt       | Decision Tree Classifier        | 0.7078   | 0.7078 | 0.7087 | 0.7074 | 0.7081 | 0.4156 | 0.4156 | 3.8840   |
| svm      | SVM - Linear Kernel             | 0.6626   | 0.0000 | 0.5944 | 0.7376 | 0.6220 | 0.3251 | 0.3668 | 17.4540  |
| knn      | K Neighbors Classifier          | 0.5625   | 0.5877 | 0.5630 | 0.5625 | 0.5627 | 0.1250 | 0.1250 | 46.1080  |
| dummy    | Dummy Classifier                | 0.5000   | 0.5000 | 0.5000 | 0.2500 | 0.3333 | 0.0000 | 0.0000 | 0.3660   |

### Light Gradient Boosting Machine performed the best





|          | Model                           | Accuracy | AUC    | Recall | Prec.  | F1     | Kappa  | мсс    | TT (Sec) |
|----------|---------------------------------|----------|--------|--------|--------|--------|--------|--------|----------|
| lightgbm | Light Gradient Boosting Machine | 0.7799   | 0.8785 | 0.7795 | 0.7802 | 0.7798 | 0.5598 | 0.5599 | 4.9240   |



# CONCLUSION & RECOMMENDATIONS



#### **Conclusion**

- Through extensive data cleaning, exploratory data analysis, and feature engineering, I have identified key factors that contribute to a wrestler's success or failure in sumo wrestling matches.
- My analysis has shown that the number of wins in previous and current tournaments, wrestler rank, and age are important predictors of match outcomes.
- I have developed several machine learning models to predict match outcomes, with Light Gradient Boosting Machine and Extreme Gradient Boosting achieving the highest accuracy score of 0.78.
- My Tableau dashboard provides an interactive platform for fans and practitioners to explore and visualize the data and predictions.

#### Recommendations

- To further improve my model's performance, I recommend collecting more information on sumo wrestlers, including:
  - Physical characteristics (such as muscle mass, grip strength, flexibility, endurance),
  - Injury history
  - The number of wins based on the wrestler's rank
- Based on user feedback and needs, I will expand/update the Tableau dashboard to provide more features and insights.
- I also recommend developing an app on Streamlit that allows sumo fans to predict different sumo wrestling games.
- My findings can provide practitioners and coaches with valuable insights into the key factors that contribute to their wrestlers' success or failure, allowing them to make more informed decisions when developing training and coaching strategies.





### THANK YOU!



Any questions?