Sprawozdanie z ćwiczeń laboratoryjnych z Metod Numerycznych

Gabriel Naleźnik

Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

14.04.2020 r.

Laboratoria VI: Poszukiwanie pierwiastków równania nieliniowego metodą siecznych i Newtona.

1. Wstęp Teoretyczny.

Równanie nieliniowe z jedną niewiadomą:

$$f(x) = 0 \Leftrightarrow x \in \{x_1, x_2, \dots, x_k\}, x \in R$$

Równanie w którym poszukuje się zera rzeczywistego ciągłej funkcji f(x). Zazwyczaj nie można znaleźć rozwiązania równania nieliniowego w sposób dokładny. Istotnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych.

Nie istnieją na to wzory - trzeba używać **metod iteracyjnych.** Rozwiązanie problemu uzyskane metodą iteracyjną będzie przybliżone, a sami musimy pamiętać o właściwym wyborze punktu startowego.

Metoda siecznych - Metoda iteracyjna służąca do znajdowania rozwiązań równania nieliniowego. Polega ona na przeprowadzaniu prostej przez dwa ostatnie przybliżenia $x_k \ i \ x_{k-1}$ (metoda dwupunktowa). Przybliżanie rozwiązania wyznacza się według relacji rekurencyjnej.

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Wzór. 1.1 Kolejne przybliżenie miejsca zerowego metodą siecznych

Rząd zbieżności metody siecznych wynosi: $p=\frac{1}{2}\left(1+\sqrt{5}\right)\approx 1.618$.

Należy dodatkowo przyjąć, że $|f(x_k)|$ mają tworzyć ciąg wartości malejących. Jeśli w kolejnej iteracji $|f(x_k)|$ zaczyna rosnąć, należy przerwać obliczenia i ponownie wyznaczyć punkty startowe zawężając przedział izolacji. Metoda ta nadaje się do poszukiwania pierwiastków tylko o **nieparzystej** krotności.

Metoda Newtona - Jednopunktowa metoda iteracyjna, która pozwala na znalezienie rozwiązania równania nieliniowego poprzez prowadzenie kolejnych stycznych (w przedziale [a,b]) do wykresu badanej funkcji. Przybliżenie rozwiązania jest wyznaczane na podstawie punktów przecięcia stycznych z osią OX. Algorytm jest powtarzany iteracyjnie do momentu spełnienia warunku: $|x_{k+1} - x_k| \le \varepsilon$.

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Wzór. 1.2 Kolejne przybliżenie miejsca zerowego metodą Newtona

Rząd zbieżności metody Newtona wynosi: **p = 2**. Metoda pozwala znaleźć pierwiastki o parzystej i nieparzystej krotności.

2. Opis problemu.

Problemem w tym zadaniu z laboratoriów było znalezienie pierwiastków równania nieliniowego postaci: $f(x)=\sin(x)-\frac{x^2}{8}=0$.

Należało znaleźć dwa miejsca zerowe przy pomocy metody Newtona oraz przy pomocy metody siecznych.

Dla metody Newtona przyjęliśmy jako punkty startowe $x_0=-8$ dla pierwszego pierwiastka oraz $x_0=8$ dla drugiego. Natomiast w metodzie siecznych przyjęliśmy $x_0=-8$ i $x_1=-8$. 1 dla pierwszego rozwiązania oraz $x_0=8$ i $x_1=8$. 1 dla drugiego.

3. Wyniki

Napisałem program w języku C w którym zaimplementowałem metodę siecznych oraz metodę Newtona do wyznaczenia przybliżenia pierwiastków równania nieliniowego. Poniżej zamieszczam uzyskane wyniki:

Rys. 3.1 Wykresy funkcji $\sin(x)$ i $\frac{x^2}{8}$

Z wykresu można odczytać że punkty przecięcia prostych znajdują się w okolicach 0 i 2.

Rys. 3.2 Wykres funkcji $f(x) = \sin(x) - \frac{x^2}{8}$

Miejsca zerowe funkcji f(x) wynoszą kolejno: **0** oraz **2.3663**.

Numer iteracji (k)	x_k	$f(x_k)$	$f'(x_k)$
1	-3.15268	-1.23134	-0.211769
2	-8.96721	-10.4931	1.34467
3	-1.16374	-1.08757	0.686846
4	0.419697	0.385465	0.808288
5	-0.0571942	-0.0575719	1.01266
6	-0.000342219	-0.000342234	1.00009
7	-1.46247e-08	-1.46247e-08	1
8	-2.67351e-17	-2.67351e-17	1
9	0	0	1
10	0	0	1

Rys. 3.3 Wykres funkcji przybliżenia miejsca zerowego od numeru iteracji metodą Newtona dla $x_0=-8$

Jak widać rozwiązanie jest bardzo bliskie wartości teoretycznej (0) już po upływie 7 iteracji.

Numer iteracji (k)	x_k	$f(x_k)$	$f'(x_k)$
1	4.7324	-3.79925	-1.16309
2	1.46589	0.725898	-0.26176
3	4.23903	-3.13621	-1.51564
4	2.16979	0.237404	-1.10626
5	2.38439	-0.023775	-1.32286
6	2.36642	-0.000152012	-1.3059
7	2.3663	-6.43529e-09	-1.30579
8	2.3663	-1.11022e-16	-1.30579
9	2.3663	-1.11022e-16	-1.30579
10	2.3663	-1.11022e-16	-1.30579

Rys. 3.4 Wykres funkcji przybliżenia miejsca zerowego od numeru iteracji metodą Newtona dla $x_0=8$

Tutaj również od 7. iteracji przybliżenie jest bardzo bliskie wartości teoretycznej (2.3663)

Dane zebrane podczas 15 iteracji metody siecznych dla $x_0=-8$ i $x_1=-8.1$:

Numer iteracji (k)	x_{k+1}	$f(x_k)$	$f(x_{k-1})$
1	-3.05486	-9.17114	-8.98936
2	-2.25638	-1.25315	-9.17114
3	-9.41557	-1.41046	-1.25315
4	-1.21327	-11.0908	-1.41046
5	-0.291223	-1.12077	-11.0908
6	0.0423159	-0.297725	-1.12077
7	0.00101238	0.0420794	-0.297725
8	-5.6969e-06	0.00101225	0.0420794
9	7.21988e-10	-5.69691e-06	0.00101225
10	5.14133e-16	7.21988e-10	-5.69691e-06
11	-4.63998e-26	5.14133e-16	7.21988e-10
12	0	-4.63998e-26	5.14133e-16
13	0	0	-4.63998e-26
14	-nan	0	0
15	-nan	-nan	0

Rys. 3.5 Wykres funkcji przybliżenia miejsca zerowego od numeru iteracji metodą siecznych dla $x_0=-8$ i $x_1=-8.1$

Przybliżenie rozwiązania zaczyna być bardzo dokładne po 9 iteracjach metody siecznych

Numer iteracji (k)	x_{k+1}	$f(x_k)$	$f(x_{k-1})$
1	4.82372	-7.23136	-7.01064
2	0.983196	-3.90234	-7.23136
3	1.5754	0.711439	-3.90234
4	20.4119	0.689754	0.711439
5	1.82636	-51.0807	0.689754
6	2.02455	0.550569	-51.0807
7	2.49125	0.386457	0.550569
8	2.34848	-0.170328	0.386457
9	2.36554	0.0231226	-0.170328
10	2.36631	0.000990854	0.0231226
11	2.3663	-6.49953e-06	0.000990854
12	2.3663	1.79524e-09	-6.49953e-06
13	2.3663	3.33067e-15	1.79524e-09
14	2.3663	-1.11022e-16	3.33067e-15
15	-nan	-1.11022e-16	-1.11022e-16

Rys. 3.6 Wykres funkcji przybliżenia miejsca zerowego od numeru iteracji metodą siecznych dla $x_0=8$ i $x_1=8.1$

Po 10 iteracjach algorytmu, przybliżenie pierwiastka zaczyna być bardzo dokładne.

4. Wnioski

Wykorzystane metody iteracyjne pozwoliły bardzo dokładnie przybliżyć wartości rozwiązań równania nieliniowego $f(x)=\sin(x)-\frac{x^2}{8}=0$.

Wykonywanie wszystkich 10 lub 15 nie było konieczne za każdym razem, gdyż w pewnym momencie zacząłem otrzymywać ten sam wynik przybliżenia w każdej kolejnej iteracji. By nie wykonywać zbędnych iteracji można wprowadzić warunek STOP-u polegający na przerwaniu pętli jeżeli poprzednie przybliżenie rozwiązania nie różni się od aktualnego o więcej niż pewne bardzo małe ε .

Kolejne przybliżenia zdają się w początkowych iteracjach oscylować wokół wartości teoretycznej. Wynika to z tego, że wyraz odejmowany od poprzedniego przybliżenia tj.: $\frac{f(x_k)(x_k-x_{k-1})}{f(x_k)-f(x_{k-1})}$ w metodzie siecznych oraz $\frac{f(x_k)}{f'(x_k)}$ w metodzie Newtona, jest czasami naprzemiennie dodatni lub ujemny w kolejnych iteracjach algorytmu.

Metoda siecznych wydaje się być niestabilna z powodu możliwości dzielenia przez zero we wzorze na kolejne przybliżenie rozwiązania. Jak widać, nastąpiło to w 14 i 15 iteracji algorytmu. Aby zapobiec wynikom w postaci '-nan' (not a number) - należy się zabezpieczyć za pomocą przerwania pętli jeżeli spełniony jest warunek $f(x_k) = f(x_{k-1})$.

Metoda Newtona okazała się być szybsza od metody siecznych, gdyż udało się uzyskać bardzo dobre przybliżenie rozwiązania w mniejszej liczbie iteracji. Potwierdza to również fakt, że rząd zbieżności metody Newtona (p=2) jest większy od rzędu zbieżności metody siecznych (p=1.618).

Mimo tego obie metody można uznać za bardzo dobre i wydajne w celu szukania rozwiązań równań nieliniowych, jednak należy w implementacji zwrócić uwagę na obsługę sytuacji w której mielibyśmy dzielenie przez zero.