Team Meeting

11 May 2022 / 10:00 AM / ZOOM

Attendees

Ate, Stefan, Xavier, Jiadong, Zexi, Ni, Shuai

Agenda

Outline

- 1. Explain results (Ni),
- 2. Supplementary software (Zexi)
- 3. Ask biology term (Ate),
- 4. Jiadong will ask some questions as well
- 5. What can the results conclude?
- 6. Access to other datasets,
- 7. What is the application of these machine learning classifier (why is it important)?

New Business

Results:

- Supplementary data 13 and 14 are the two classifiers of the nature paper
- Supplementary data 13: MZ vs DZ
- Supplementary data 14: MZ vs (DZ & family)
- Zygosity: Classifier 13 MZ vs DZ
- MZ twin: Classifier 14 MZ vs (DZ & family)
- There are 1658 samples in E-Risk dataset, 194 NA, 852MZ, 612DZ
- 194 NA samples were removed when calculating the model performance
- If the missing values were not removed, the auc for classifier 13 would be 0.696
- Should we remove the missing values? 200 out of 1600,

	А	AF	AG	AH	Al	AJ	AK	AL	AM	AN	AO	AP
1		Test dataset 3 (whole blood 450k array, E-Risk)										
							MZ twins correctly	proportion DZ twins correctly	proportio n non- twins correctly	twins incorrectl y	proportio n DZ twins incorrectl y	twins incorrectl y
2	Description	N total	N MZ twins	N DZ twins	N non-twin	AUC	predicted	predicted	predicted	predicted	predicted	predicted
3	Zygosity 450k - standardized	1658	852	612	0							
4	Zygosity meta-analysis - standardized*	1658	852	612	0	0.728	0.684	0.683	NaN	0.316	0.317	NaN
5	MZ twin 450k - standardized	1658	852	612	0							
6	MZ twin meta-analysis - standardized	1658	852	612	0	0.739	0.621	0.740	NaN	0.379	0.260	NaN

[1] "cutoff: 0.6392671063064" Area under the curve: 0.7276 Confusion Matrix and Statistics

pred_b 0 1 Supplementary Data 13 0 418 269 0: DZ 1 194 583 1: MZ

Accuracy : 0.6837

95% CI: (0.6592, 0.7075)

No Information Rate : 0.582 P-Value [Acc > NIR] : 6.783e-16

Kappa : 0.361

Mcnemar's Test P-Value: 0.0005837

Sensitivity: 0.6843 Specificity: 0.6830 Pos Pred Value: 0.7503 Neg Pred Value: 0.6084 Precision: 0.7503 Recall: 0.6843

F1 : 0.7158

Prevalence: 0.5820
Detection Rate: 0.3982

Detection Prevalence: 0.5307 Balanced Accuracy: 0.6836

'Positive' Class : 1

[1] "cutoff for supplementary data 14: 0.526967877315572" Area under the curve: 0.7388
Confusion Matrix and Statistics

 Supplementary Data 14
0: DZ

1: MZ

0.6700

Accuracy : 0.6708

95% CI: (0.646, 0.6948)

No Information Rate : 0.582 P-Value [Acc > NIR] : 1.829e-12

Kappa: 0.348

Mcnemar's Test P-Value : 1.133e-13

Sensitivity: 0.6209 Specificity: 0.7402 Pos Pred Value: 0.7689 Neg Pred Value: 0.5838 Precision: 0.7689 Recall: 0.6209

F1: 0.6870 Prevalence: 0.5820

Detection Rate: 0.3613 Detection Prevalence: 0.4699 Balanced Accuracy: 0.6805

'Positive' Class : 1

Notes

- Importance of studying zygosity: methodologies to infer, this project is only using methylation data method
- One twin vs pair of twins (Both of the MZ twins should be considered as they have different methylation levels)
- Genetic markers are almost the same for MZ
- Do not consider the R software file
- Data Linkage, algorithms
- Computing time
- Stabilized regression
- Generalisation confusion on appearance when growing up

Action Items

- 1. Keep testing on the 4 other datasets.
- 2. Focus on the report and presentation

Next Meeting Agenda