Machine Learning & Machine Learning (extended)

Practice Exercise Sheet - Linear Regression/Modelling

Question (Book exercise 1.2): Write a MATLAB script that can find linear model parameters w_0 and w_1 for an arbitrary dataset of x_n , t_n pairs. Use this script to learn a model for Olympics 100m men's data.

Question (Book exercise 1.3): Show that:

$$\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} = w_0^2 \left(\sum_{n=1}^{N} x_{n1}^2 \right) + 2w_0 w_1 \left(\sum_{n=1}^{N} x_{n1} x_{n2} \right) + w_1^2 \left(\sum_{n=1}^{N} x_{n2}^2 \right),$$
 where
$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \\ \vdots & \vdots \\ x_{N1} & x_{N2} \end{bmatrix}.$$

Hint: it's probably easiest to do the X^TX first!

Question (Book exercise 1.6): Write a MATLAB script that can find linear model parameters \boldsymbol{w} for an arbitrary dataset of \boldsymbol{x}_n , t_n pairs with \boldsymbol{x}_n being of arbitrary dimensions. Use this script to learn a model for Olympics 100m men's data.

Question: Suppose we have a set of values as below. Is it possible to find a function f such that y = f(x)? Can you describe this function f and suggest how it can be estimated from the data given?

x	у
1.2	1.1
2.3	2.1
3.0	3.1
3.8	4.0
4.7	4.9
5.9	5.9

Question: What is model complexity in linear modelling? If the model complexity increases, does it help or hinder function modelling? Comment on both scenarios.

Question (Book exercises 1.7 and 1.8): Given the linear models below to predict winning time t from Olympic year x for 100m race:

Men's model: t = 36.4165 - 0.0133x

Women's model: t = 40.9242 - 0.0151x

- a) Can you predict what year the Women's winning time will be lower than the Men's winning time?
- b) What are the predicted winning times for both Men's race and Women's race for that year? Comment on that.

Question: Let's consider that a linear model (as a line) has two parameters \widehat{w}_0 and \widehat{w}_1 which can be estimated as below:

$$\widehat{w}_0 = \bar{t} - \widehat{w}_1 \bar{x}$$

$$\widehat{w}_1 = \frac{\overline{xt} - \bar{x}\bar{t}}{\overline{x^2} - (\bar{x})^2}$$

a) Given the data below, can you estimate the model parameters using above equations.

x	t
1.2	1.1
2.3	2.1
3.0	3.1
3.8	4.0
4.7	4.9
5.9	5.9

- b) Having found the model parameters, can you use the model to predict target labels t?
- c) Is there a way to find how good the model is doing by comparing model predictions with actual targets?

Question (Book exercise 1.10): Given the total training loss estimate function below between actual target labels t_n and model predicted target labels $w^T x_n$ where x_n denote the attributes and w denote model parameters:

$$\mathcal{L} = \sum_{n=1}^{N} (t_n - \boldsymbol{w}^T \boldsymbol{x}_n)^2 = (\boldsymbol{t} - \boldsymbol{X} \boldsymbol{w})^T (\boldsymbol{t} - \boldsymbol{X} \boldsymbol{w})$$

Can you mathematically derive the expression for parameters estimate $\hat{\boldsymbol{w}}$ for linear modelling that minimizes this total loss? How does it compare with the parameters $\hat{\boldsymbol{w}}$ for linear model that minimizes average loss?

Question: A linear model can attempt to consider the noise present in the following way:

 $t_n = \mathbf{w}^T \mathbf{x}_n + \varepsilon_n$ where ε_n denotes the additive noise.

- a) Why is the noise considered to be additive?
- b) Is there a way to model the statistical distribution of this noise?