Extra Enrichment:

1. Evaluate: $\lim_{n\to\infty} \left(\sqrt{n^2 + n} - n \right)$.

JE MATHS

2. Find the value of k for which $\lim_{x\to 3} \frac{4x^2 + kx + 7k - 6}{2x^2 - 5x - 3}$ exists and hence evaluate the limit.

JE MATHS

3. Evaluate: $\lim_{x\to 1} \frac{\sqrt[3]{x}-1}{\sqrt{x}-1}$.

JE MATHS

4. Evaluate: $\lim_{x \to \infty} \frac{\left(\sqrt{x^2 + 4} + x\right)^2}{\sqrt[3]{x^6 + 4}}.$

JE MATHS

Solutions:

1.
$$\lim_{n\to\infty} \left(\sqrt{n^2 + n} - n\right) = \lim_{n\to\infty} \frac{\left(\sqrt{n^2 + n} - n\right)\left(\sqrt{n^2 + n} + n\right)}{\sqrt{n^2 + n} + n}$$

$$= \lim_{n\to\infty} \frac{n^2 + n - n^2}{\sqrt{n^2 + n} + n}$$

$$= \lim_{n\to\infty} \frac{n}{\sqrt{n^2 + n} + n}$$

$$= \lim_{n\to\infty} \frac{n}{\sqrt{n^2 + n} + n}$$

$$= \lim_{n\to\infty} \frac{1\mathbb{B} \text{ MATHS}}{\sqrt{1 + \frac{1}{n} + 1}}$$

$$= \frac{1}{\sqrt{1 + 0} + 1}$$

$$= \frac{1}{\sqrt{1 + 0} + 1}$$

$$= \lim_{n\to\infty} \frac{1 \text{ B MATHS}}{\sqrt{1 + \frac{1}{n} + 1}}$$

$$= \lim_{n\to\infty} \frac{1 \text{ B MATHS}}{\sqrt{1 + \frac{1}{n} + 1}}$$

$$= \lim_{n\to\infty} \frac{1 \text{ B MATHS}}{\sqrt{1 + 0} + 1}$$

$$= \lim_{n\to\infty} \frac{1 \text{ B MATHS}}{\sqrt{1 + 0} + 1}$$

$$= \lim_{n\to\infty} \frac{1 \text{ B MATHS}}{\sqrt{1 + 0} + 1}$$

$$= \lim_{n\to\infty} \frac{1 \text{ B MATHS}}{\sqrt{1 + 0} + 1}$$

$$= \lim_{n\to\infty} \frac{1 \text{ B MATHS}}{\sqrt{1 + 0} + 1}$$

$$= \lim_{n\to\infty} \frac{1 \text{ B MATHS}}{\sqrt{1 + 0} + 1}$$

$$= \lim_{n\to\infty} \frac{1 \text{ B MATHS}}{\sqrt{1 + 0} + 1}$$

$$= \lim_{n\to\infty} \frac{1 \text{ B MATHS}}{\sqrt{1 + 0} + 1}$$

2.
$$\lim_{x \to 3} \frac{4x^2 + kx + 7k - 6}{2x^2 - 5x - 3} = \lim_{x \to 3} \frac{4x^2 + kx + 7k - 6}{(x - 3)(2x + 1)}$$

When $x \to 3$, $(x-3) \to 0$ in the denominator.

If $4x^2 + kx + 7k - 6$ do not have a factor (x-3),

then $4x^2 + kx + 7k - 6 \rightarrow C$ as $x \rightarrow 3$, where C is a non-zero value,

hence $\lim_{x\to 3} \frac{4x^2 + kx + 7k - 6}{(x-3)(2x+1)} = \frac{C}{0} = \infty$, the limit does not exist.

The limit only exists when $4x^2 + kx + 7k - 6$ has a factor (x-3).

$$4x + (k+12)$$

$$(x-3)\sqrt{4x^2 + kx} + 7k - 6$$

$$4x^2 + kx + 7k - 6$$

$$(x-3)\sqrt{4x^2 + kx} + 7k - 6$$

$$(k+12)x + 7k - 6$$

$$(k+12)x + 7k - 6$$

$$(k+12)x - 3(k+12)$$

$$10k + 30$$

The remainder must be zero:
$$10k + 30 = 0$$

 $\Rightarrow k = -3$

JE MATHS

Let
$$k = -3$$
: $\lim_{x \to 3} \frac{4x^2 + kx + 7k - 6}{2x^2 - 5x - 3} = \lim_{x \to 3} \frac{4x^2 - 3x - 27}{2x^2 - 5x - 3}$

$$= \lim_{x \to 3} \frac{(x - 3)(4x + 9)}{(x - 3)(2x + 1)}$$

$$= \lim_{x \to 3} \frac{4x + 9}{2x + 1}$$

$$= \lim_{x \to 3} \frac{4x + 9}{2x + 1}$$

$$= \frac{12 + 9}{6 + 1}$$
IB MATES

3.
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1} = \lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1} \cdot \frac{\sqrt{x} + 1}{\sqrt{x} + 1} \cdot \frac{\sqrt[3]{x^2} + \sqrt[3]{x} + 1}{\sqrt[3]{x^2} + \sqrt[3]{x} + 1}$$
 (rationalize both numerator and denominator)
$$= \lim_{x \to 1} \frac{\left(\sqrt[3]{x} - \frac{1}{x}\right)\left(\sqrt[3]{x^2} + \sqrt[3]{x} + 1\right)}{\left(\sqrt{x} - 1\right)\left(\sqrt{x} + 1\right)} \cdot \frac{\sqrt{x} + 1}{1} \cdot \frac{1}{\sqrt[3]{x^2} + \sqrt[3]{x} + 1}$$

$$= \lim_{x \to 1} \frac{x - 1}{x - 1} \cdot \frac{\sqrt{x} + 1}{\sqrt[3]{x^2} + \sqrt[3]{x} + 1}$$

$$= \lim_{x \to 1} \frac{\sqrt{x} + 1}{\sqrt[3]{x^2} + \sqrt[3]{x} + 1}$$

$$= \lim_{x \to 1} \frac{\sqrt{x} + 1}{\sqrt[3]{x^2} + \sqrt[3]{x} + 1}$$

$$= \lim_{x \to 1} \frac{\sqrt{x} + 1}{\sqrt[3]{x^2} + \sqrt[3]{x} + 1}$$

$$= \frac{1 + 1}{1 + 1 + 1}$$

$$= \frac{2}{3}$$

$$= \lim_{x \to 1} \frac{\sqrt{x} + 1}{\sqrt[3]{x^2} + \sqrt[3]{x} + 1}$$

$$= \frac{1 + 1}{1 + 1 + 1}$$

$$= \frac{2}{3}$$

4.
$$\lim_{x \to \infty} \frac{\left(\sqrt{x^2 + 4} + x\right)^2}{\sqrt[3]{x^6 + 4}} = \lim_{M \to \infty} \frac{x^2 + 4 + 2x\sqrt{x^2 + 4} + x^2}{\sqrt[3]{x^6 + 4}}$$

$$= \lim_{x \to \infty} \frac{2x^2 + 4 + 2\sqrt{x^4 + 4x^2}}{\sqrt[3]{x^6 + 4}}$$

$$= \lim_{x \to \infty} \frac{\left(2x^2 + 4 + 2\sqrt{x^4 + 4x^2}\right)}{\sqrt[3]{x^6 + 4}}$$

$$= \lim_{x \to \infty} \frac{x^2}{\sqrt[3]{x^6 + 4}}$$

$$= \lim_{x \to \infty} \frac{2 + \frac{4}{x^2} + 2\sqrt{x^4 + 4x^2}}{\sqrt{x^4}}$$

$$= \lim_{x \to \infty} \frac{2 + \frac{4}{x^2} + 2\sqrt{1 + \frac{4}{x^2}}}{\sqrt{1 + \frac{4}{x^6}}}$$

$$= \lim_{x \to \infty} \frac{2 + 2\sqrt{1 + \frac{4}{x^2}}}{\sqrt{1 + \frac{4}{x^6}}}$$

$$= \frac{2 + 0 + 2\sqrt{1 + 18}}{\sqrt{1 + 0}}$$

$$= \frac{2 + 2}{1}$$

$$= 4$$

$$= 1$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$