Politecnico di Bari

Complementi di Analisi Matematica

Laurea Ingegneria Informatica e Automazione

A.A. 2016/2017 II esonero – I chance 19 gennaio 2017

Traccia A

Cognome_____Nome_____No Matricola_____

1) Dare la definizione di forma differenziale esatta e di forma differenziale chiusa. Dimostrare, poi, che la forma differenziale $\omega = \frac{4y}{x^2+y^2} dx - \frac{4x}{x^2+y^2} dy$ è chiusa ma non è estta su $\mathbb{R}^2 \setminus \{(0,0)\}$.

7 pts.

2) Quanto valgono i seguenti integrali? Motivare la risposta:

(a)
$$\int_{\partial -Q} z^2 dz$$
, dove Q è il quadrato di vertici $0, 1, 1+i, i$;

(b)
$$i \int_0^{2\pi} \frac{\cos(2e^{it})}{4e^{2it}} dt$$
.

7 pts.

3) Quali sono i residui in 1 delle seguenti funzioni:

(a)
$$f(z) = \frac{\pi}{z-1} + \frac{1}{(z+1)^2} + \cos z;$$

(b)
$$g(z) = \frac{\pi}{(z-1)^2} + \frac{1}{z-1} + \cos z;$$

(c)
$$h(z) = (z-1)^4 e^{1/(z-1)}$$
.

6 pts.

4) Sia $f(z) = \frac{z}{(z^2+1)^8}$. Dimostrare che $\operatorname{Res}(f;i) = -\operatorname{Res}(f;-i)$.

7 pts.

5) sapendo che $\frac{4}{3} + \sum_{k=1}^{+\infty} \frac{4}{k^2 \pi^2} \cos(k\pi x) + \sum_{k=1}^{+\infty} \frac{-4}{k\pi} \sin(k\pi x)$ è la serie di Fourier della funzione $f(x) = x^2$, $x \in [0,2]$, calcolare $\sum_{k=1}^{+\infty} \left(\frac{1}{k^4 \pi^4} + \frac{1}{k^2 \pi^2}\right)$. Quali fra le seguenti serie non sono sicuramente la serie di soli coseni di f? Motivare la risposta:

(a)
$$\sum_{k=1}^{+\infty} a_k^{(1)} \cos(k\pi x/2);$$

(b)
$$\frac{4}{3} + \sum_{k=1}^{+\infty} a_k^{(2)} \cos(k\pi x);$$

(c)
$$\frac{4}{3} + \sum_{k=1}^{+\infty} a_k^{(3)} \cos(k\pi x/2)$$
.