18.781 PROBLEM SET 5

JOHN WANG

1. Problem 1

Problem 1.1. Solve $x^2 \equiv 21 \pmod{41}$ using Tonelli's algorithm.

Solution First, we check if $a^{(p-1)/2}=a^{20}\equiv 1\pmod p$. We use repeated square to obatin the sequence $21^2\equiv 32\pmod {41},\ 21^4\equiv 18\pmod {41},\ 21^8\equiv 37\pmod {41},\ 21^{16}\equiv 16\pmod {41}$. Therefore, we see that $21^{20}=21^{16}21^4=(18)(16)\equiv 1\pmod {41}$. Therefore, we see that 21 is a quadratic residue modulo 41, and we continue the algorithm.

We write $p-1=40=(8)(5)=2^35$. From this, we see that t=5 and s=3. Now, we pick a quadratic non-residue modulo 41. We find obtain a list of quadratic residues modulo 41 and pick a number, n=11, which is not a part of that list. Now, we let $c=n^t=11^5\equiv 3\pmod{41}$. We see that $c^{-1}=3$ so that $r=a^t=21^5\equiv 9\pmod{41}$. In the first loop, we find that $d=r^{2^{s-i-1}}=9^{2^{3-1-1}}=9^2=81\equiv -1\pmod{41}$. Therefore, we continue the algorithm and set b=bc=3 and $r=rc^2=(9)(3^2)\equiv -1\pmod{41}$ and $c=c^2=9$. Now in the second loop, we find $d=(-1)^{2^{3-2-1}}=1$ so that we stop the algorithm. We set b=(3)(9)=27 and we return $a^{(t+1)/2}b$. This comes out to $21^{6/2}27=21^327\equiv 29\pmod{41}$. To get the other solution, we take $-21\equiv 12\pmod{41}$.

Thus, our two solutions are $x = 12, 29 \pmod{41}$. \square

2. Problem 2

Problem 2.1. Let p be a prime congruent to 2 modulo 3, and let (a,p) = 1. Show that the congruence $x^3 \equiv a \pmod{p}$ has the unique solution $x \equiv a^{(2p-1)/3} \pmod{p}$.

Solution First we shall show existence. By Fermat's Little Theorem, we know that $a^{p-1} \equiv 1 \pmod{p}$ and $a^p \equiv a \pmod{p}$ if (a,p)=1. Thus, we know that $a^{p-1}a^p \equiv a \pmod{p}$ by multiplying these two congruences together. This shows that $a^{2p-1} \equiv a \pmod{p}$. Now, if 3|2p-1, then it is clear that $a^{((2p-1)/3)^3} \equiv a \pmod{p}$. However, since $p \equiv 2 \pmod{3}$, we know that $2p \equiv 1 \pmod{3}$ which is equivalent to saying that 3|2p-1. This shows that $x = a^{(2p-1)/3} \pmod{p}$ is a solution to the congruence $x^3 \equiv a \pmod{p}$.

To show uniqueness, we assume there exist two solutions x_1 and x_2 to the congruence. Then we know that $x_1^3 \equiv x_2^3 \equiv a \pmod{p}$. Thus, since $x_1^3 \equiv x_2^3 \pmod{p}$, and we know that x_2^{-1} exists because p is a prime, we can rewrite the expression to $(x_1x_2^{-1})^3 \equiv 1 \pmod{p}$. Now let us set $a = x_1x_2^{-1}$. We know that $a^3 \equiv 1 \pmod{p}$ and also that $a^{p-1} \equiv 1 \pmod{p}$ from Fermat's Little Theorem. This means that the order of a must divide 3 and p-1. However, since p is a prime, we know that p-1 is even. The only number that divides 3 and p-1 is thus 1. Therefore, we know that $a^1 \equiv 1 \pmod{p}$. This implies that $x_1x_2^{-1} \equiv 1 \pmod{p}$, which can be rewritten as $x_1 \equiv x_2 \pmod{p}$. This shows uniqueness. \square

3. Problem 3

Problem 3.1. Let $f(x) = ax^2 + bx + c$ and let $D = b^2 - 4ac$ be the discriminant of this quadratic polynomial. Let p be an odd prime, such that $p \nmid a$. Show that if $p \mid D$ then $f(x) \equiv 0 \pmod{p}$ has exactly one solution. If $p \nmid D$ the $f(x) \equiv 0 \pmod{p}$ has either 0 or 2 solutions and if x_0 is a solution, then $f'(x_0) \not\equiv 0 \pmod{p}$.

Solution Divididing the congruence by a yields the congruence $x^2 + (b/a)x + c/a \equiv 0 \pmod{p}$. This can be done because p is a prime. Next, we complete the square, to get the congruence $x^2 + (b/a)x + (b^2/4a^2) - (b^2/4a^2) + c/a \equiv 0 \pmod{p}$ which can be simplified to:

$$(3.1) ax^2 + bx + c \equiv 0 \pmod{p}$$

$$\left(x + \frac{b}{2a}\right)^2 \equiv \frac{b^2}{4a^2} - \frac{c}{a} \pmod{p}$$

(3.3)
$$\left((2a) \left(x + \frac{b}{2a} \right) \right)^2 \equiv b^2 - 4ac \pmod{p}$$

2 JOHN WANG

Now, if p|D, then we know that $p|b^2 - 4ac$ by definition, which also implies that $p|((2a)(x + (b/2a)))^2$. Since $p \nmid a$, we know that $p \nmid a^2$, and also that $p \nmid 4$ if p > 2. Therefore, we find that $p|(x + b/2a)^2$, so that we must have:

(3.4)
$$\left(x + \frac{b}{2a}\right)^2 \equiv 0 \pmod{p}$$

We see that $x = -b(2a)^{-1} \pmod{p}$ is the only unique solution which solves the congruence. Since p is a prime, we know the inverse of 2a exists and is unique. Therefore, the case where p|D has exactly one solution.

Now if $p \nmid D$, then we must solve $((2a)(x+b/2a))^2 \equiv b^2 - 4ac \pmod{p}$. Let us say that x_1 is a solution to this congruence. Then we must have $-(x_1+b/2a) = x_2+b/2a$ also satisfying the congruence. This implies that $x_2 = -x_1 - b/a$ will also satisfy the congruence. Thus, in the case of $p \nmid D$, we have either two solutions or zero solutions if x_1 is not a solution.

Now, we must show that if x_0 is a solution, then $f'(x_0) \not\equiv 0 \pmod{p}$. First, we rewrite the congruence $f(x) \equiv 0 \pmod{p}$ into:

(3.5)
$$(2ax_0 + b)^2 \equiv b^2 - 4ac \pmod{p}$$

We know that $f'(x_0) \equiv 2ax_0 + b \pmod{p}$. Thus, if $p \nmid D$, then we know that $(2ax_0 + b)^2 \not\equiv 0 \pmod{p}$ so that clearly $f'(x) \not\equiv 0 \pmod{p}$. Now if p|D, we know that the square root of $(2ax_0 + b)^2 \not\equiv 0 \pmod{p}$, so that $f'(x_0) = 2ax_0 + b \not\equiv 0 \pmod{p}$. This completes the proof. \square

Problem 3.2. Show that if p is an odd prime, e a natural number, and (a,p) = 1, then $x^2 \equiv a \pmod{p^e}$ has exactly $1 + \left(\frac{a}{p}\right)$ solutions.

Solution First we will show that if (a,p) = 1, then $x^2 \equiv a \pmod{p}$ has exactly $1 + \left(\frac{a}{p}\right)$ solutions. Note that there are a maximum of 2 solutions by the previous problem. Also note that the determinant is D = (-4)(-a) = 4a. First, if p|4a, then we know that $\left(\frac{a}{p}\right) = 0$ by definition. Moreover, from the previous problem, we know that if p|D, there will be exactly 1 solution, so $1 + \left(\frac{a}{p}\right)$ correctly gives the number of solutions in this case.

Now, if $p \nmid 4a$, then $p \nmid D$ so there are either 0 or 2 solutions by the previous problem's results. Thus, we have $\binom{a}{p} = \pm 1$. If $\binom{a}{p} = 1$, then there is at least one solution, so there must be two solutions to $x^2 \equiv a \pmod{p}$. This means that $1 + \binom{a}{p} = 2$ gives the correct number of solutions. If $\binom{a}{p} = -1$, then there are no solutions to $x^2 \equiv a \pmod{p}$, and $1 + \binom{a}{p} = 0$ also gives the correct number of solutions.

Now, since we have shown that $1 + \binom{a}{p}$ is the number of solutions to $x^2 \equiv a \pmod{p}$, we can use Hansel's lemma to lift the solutions to $x^2 \equiv a \pmod{p^e}$. Since we know that $f'(x_0) \not\equiv 0 \pmod{p}$ for each solution x_0 to $f(x_0) \equiv 0 \pmod{p}$, the conditions for Hansel's lemma are satisfied. Since Hansel's lemma shows that there is a unique $t \pmod{p}$ such that $f(a+tp^j) \equiv 0 \pmod{p^{j+1}}$, we know there are exactly $1 + \binom{a}{p}$ solutions to the equation $f(x) \equiv 0 \pmod{p^e}$. This completes the proof. \square

4. Problem 4

Which of the following congruences have solutions, and how many? To complete this problem, we use the following two lemmas proven in class:

Lemma 4.1. Suppose that $m = 1, 2, 4, p^{\alpha}, 2p^{\alpha}$ where p is an odd prime. If (a, m) = 1 then the congreuence $x^n \equiv a \pmod{m}$ has $(n, \phi(m))$ solutions or no solutions according as $a^{\phi(m)/(n,\phi(m))}, 1 \pmod{m}$.

Lemma 4.2. Let f(x) be a fixed polynomial with integral coefficients and for any positive integer m, let N(m) denote the number of solutions of the congruence $f(x) \equiv 0 \pmod{m}$. If $m = m_1 m_2$ iwhere $(m_1, m_2) = 1$, then $N(m) = N(m_1)N(m_2)$. If $m = \prod p^{\alpha}$ is the canonical factorization of m, then $N(m) = \prod N(p^{\alpha})$.

These two lemmas will allow us to the determine the number of solutions the following congruences:

Problem 4.1. $x^2 \equiv -2 \pmod{118}$

Solution First, we note that $118 = 2 \cdot 59$, where both 2 and 59 are primes. Because we know this, we can now apply lemma 4.1 to determine the number of solutions to $x^2 \equiv -2 \pmod{59}$ and $x^2 \equiv -2 \pmod{59}$. We know that $\phi(59) = 58$ because it is a prime. Moreover, $\phi(59)/(2, \phi(59)) = 29$ and we see that $(-2)^{29} \equiv 1 \pmod{58}$. This means there are 2 solutions to the congruence $x^2 \equiv -2 \pmod{59}$. Next, we see from inspection that x = 0 is the only solution to $x^2 \equiv -2 \pmod{2}$. The total number of solution of $x^2 \equiv -2 \pmod{118}$ is therefore $2 \cdot 1 = 2$. \square

18.781 PROBLEM SET 5

Problem 4.2. $x^2 \equiv -1 \pmod{244}$.

Solution We note that $244 = 4 \cdot 61$. We now want to determine the number of solutions to $x^2 \equiv -1 \pmod{4}$ and $x^2 \equiv -1 \pmod{61}$. However, we see that $x^2 \equiv -1 \pmod{4}$ has no solutions because x = 0, 1, 2, 3 do not work. This means there are no solutions to $x^2 \equiv -1 \pmod{4}$, and thus that there are no solutions to $x^2 \equiv -1 \pmod{244}$. \square

Problem 4.3. $x^2 \equiv -1 \pmod{365}$.

Solution We see that $365 = 5 \cdot 73$. Thus, we need to determine the number of solutions of $x^2 \equiv -1 \pmod{5}$ and $x^2 \equiv -1 \pmod{73}$. First, we note that the number of solutions to $x^2 \equiv -1 \pmod{5}$ is given by $1 + \binom{4}{5}$ due to a lemma from class, which can be rewritten $1 + \binom{2^2}{5} = 2$. Next, we note that $\binom{-1}{73} = 1$ because $73 \equiv 1 \pmod{4}$ so that $x^2 = -1 \pmod{73}$ has $1 + \binom{-1}{73} = 2$ solutions. Thus, we see that $x^2 \equiv -1 \pmod{365}$ has $2 \cdot 2 = 4$ solutions. \square

Problem 4.4. $x^2 \equiv 7 \pmod{227}$.

Solution We note that 227 is a prime number, so the number of solutions of the congruence is $1 + \left(\frac{7}{227}\right)$. This means, we simply need to evaluate $\left(\frac{7}{227}\right) = \left(\frac{227}{7}\right)$ using quadratic reciprocity because $227 \equiv 3 \pmod{4}$. and $7 \equiv 3 \pmod{4}$. This simplifies to $\left(\frac{227}{7}\right) = \left(\frac{7}{3}\right) = \left(\frac{7}{3}\right)$, again by quadratic reciprocity. Since $\left(\frac{7}{3}\right) = \left(\frac{1}{3}\right) = 1$, we have shown that $x^2 \equiv 7 \pmod{227}$ has 2 solutions. \square

Problem 4.5. $x^2 \equiv 267 \pmod{789}$.

Solution We see that the prime factorization of 789 is 789 = $3 \cdot 263$. Thus, we need to check the number of solutions to $x^2 \equiv 267 \pmod{3}$ and $x^2 \equiv 267 \pmod{3}$. These congruences simplify to $x^2 \equiv 0 \pmod{3}$ and $x^2 \equiv 14 \pmod{263}$ respectively. Clearly, $x^2 \equiv 0 \pmod{3}$ has 2 solutions because $\binom{0}{3} = 1$. However, we know that $\phi(263)/(2, \phi(263)) = 262/2 = 131$ and that $14^{131} \equiv -1 \pmod{263}$. This means that $x^2 \equiv 14 \pmod{263}$ has no solutions. This implies that $x^2 \equiv 267 \pmod{789}$ also has no solutions. \Box

5. Problem 5

Problem 5.1. Show that for all primes p, the congruence $x^8 \equiv 16 \pmod{p}$ has a solution.

Solution First, we note that if p=2, we can choose $x\equiv 0\pmod 2$, which will solve the congruence. Thus, we can prove the statement for odd primes p. We know from a theorem in class that if p is a prime and (a,p)=1, then $x^n\equiv a\pmod p$ has (n,p-1) solutions if and only if $a^{(p-1)/(n,p-1)}\equiv 1\pmod p$. First, we know that (16,p)=1 for all primes p. Thus, we only have to evaluate $16^{(p-1)/(n,p-1)}\pmod p$. We see that (8,p-1) can only take on values 2,4,8 since p is an odd prime, so p-1 is even.

If (8, p-1)=2, then we see that $16^{(p-1)/2}=8^{p-1}\equiv 1\pmod{p}$ by Fermat's Little Theorem. If (8, p-1)=4, then $16^{(p-1)/4}=2^{(p-1)}\equiv 1\pmod{p}$ also by Fermat. If (8, p-1)=8, then $16^{(p-1)/8}=2^{(p-1)/2}$. Using the definition of quadratic residues, we see that $2^{(p-1)/2}=\left(\frac{2}{p}\right)$. Since (8, p-1)=8 implies that $p-1\equiv 0\pmod{8}$, we see that $\left(\frac{2}{p}\right)=1$ by a lemma proven in class. This completes the proof. \square

6. Problem 6

Problem 6.1. Prove that there are infinitely many primes of the form 8k + 7.

Solution Suppose the contrary. Then there exists a finite set of primes p_1, p_2, \ldots, p_m which are the only primes satisfying $p \equiv 7 \pmod 8$. Now let us construct the number $N = (4p_1p_2 \ldots p_m)^2 - 2$. Note that N is even so it must have a prime factor since it is greater than 2. Let us find an odd prime factor q. Then by construction, we know that 2 is a quadratic residue modulo q. However, we see that $\binom{2}{q} = 1$ implies that $q = \pm 1 \pmod 8$ by a lemma shown in class. If we assume that none of the prime factors of N have the form 8k + 7, then they must all be of the form 8k + 1. However, this implies that $N = (8k + 1)(8k + 1) = 64k^2 + 16k + 1 = 8(8k^2 + 2k) + 1 = 8k' + 1$, which is a contradiction since N = 8k + 6. This means that some prime factor of N is congruent to N = 2k + 1. However, this means that N = 2k + 1 is not in the list N = 2k + 1. This is a contradiction, and thus, there must be infinitely many primes of the form N = 2k + 1. This is a contradiction, and thus, there must be infinitely many primes of the form N = 2k + 1.

4 JOHN WANG

7. Problem 7

Problem 7.1. Determine by congruence conditions the set of primes p such that $\left(\frac{10}{p}\right) = 1$.

Solution First, the properties of the Jacobi symbol allow us to factor $\left(\frac{10}{p}\right) = \left(\frac{5}{p}\right)\left(\frac{2}{p}\right)$. By a lemma from class, we know the following:

In order to evaluate $(\frac{5}{p})$, we note that $5 \equiv 1 \pmod{4}$ which means we can use quadratic reciprocity to find that $(\frac{5}{p}) = (\frac{p}{5})$. We know that half of the reduced residue system modulo 5 will be quadratic residues. First, we know that $(\frac{-1}{5}) = 1$ by a lemma shown in class and trivially that $(\frac{1}{5}) = 1$. We know that $(\frac{2}{5}) = -1$ because $5 \equiv -3 \pmod{8}$. Finally, we know that $(\frac{3}{5}) = (\frac{5}{3}) = (\frac{2}{3}) = -1$. Therefore, we find:

Using the Chinese Remainder Theorem, we can then solve for all p such that $(\frac{5}{p})(\frac{2}{p}) = 1$. This occurs if $p \equiv \pm 1 \pmod{8}$, $p \equiv \pm 1 \pmod{5}$ or when $p \equiv \pm 3 \pmod{8}$, $p \equiv \pm 2 \pmod{5}$. The Chinese Remainder Theorem says there is a unique solution to each of the systems of congruences modulo 40. The system $p \equiv 1 \pmod{8}$, $p \equiv 1 \pmod{5}$ has a solution $p \equiv -9 \pmod{40}$. The system $p \equiv 1 \pmod{8}$, $p \equiv -1 \pmod{5}$ gives the solution $p \equiv -1 \pmod{40}$. Continuing in this manner, we find the following characterization of all primes $p \equiv 1 \pmod{40}$.

(7.3)
$$p = \pm 1, \pm 3, \pm 9, \pm 13 \pmod{40}$$

8. Problem 8

Problem 8.1. Determine, by congruence conditions, the set of primes p such that -3 is a quadratic residue $mod\ p$.

Solution We need to determine the primes p such that $\left(\frac{-3}{p}\right) = 1$. We use the properties of Legendre symbols to symplify this expression:

$$\left(\frac{-3}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)$$

$$= \left(\frac{-1}{p}\right) \left(\frac{p}{3}\right) c$$

Where c is a constant depending on p. From the lemma proven in class, we know the following:

(8.3)
$$\left(\frac{-1}{p}\right) = \begin{cases} -1 & \text{if } p \equiv 3 \pmod{4} \\ 1 & \text{if } p \equiv 1 \pmod{4} \end{cases}$$

From quadratic reciprocity, we know that c is given by:

(8.4)
$$c = \begin{cases} -1 & \text{if } p \equiv 3 \pmod{4} \\ 1 & \text{if } p \equiv 1 \pmod{4} \end{cases}$$

Thus, if $p \equiv 3 \pmod{4}$, then $\left(\frac{-1}{p}\right) = -1$ and c = -1, so that $\left(\frac{-1}{p}\right)c = 1$. If $p \equiv 1 \pmod{4}$, we see that $\left(\frac{-1}{p}\right)c = (1)(1) = 1$. This, we see that $\left(\frac{-1}{p}\right)c = 1$ in all cases. Therefore, we can further simplify out expression to:

$$\left(\frac{-3}{p}\right) = \left(\frac{p}{3}\right)$$

Since $\binom{p}{3}$ simplifies to $\binom{k}{3}$ where $k \equiv p \pmod{3}$, we see that we can break expression down to evaluate $\binom{0}{3}$, $\binom{1}{3}$, and $\binom{2}{3}$. Since $\binom{0}{3} = 0$, we ignore it. We see that $\binom{1}{3} = 1$ and $\binom{2}{3} = \binom{-1}{3} = -1$ by the lemma proven in class. Therefore, we have:

(8.6)
$$\left(\frac{-3}{p}\right) = \begin{cases} -1 & \text{if } p \equiv -1 \pmod{3} \\ 1 & \text{if } p \equiv 1 \pmod{3} \end{cases}$$

18.781 PROBLEM SET 5

Problem 8.2. Prove that there are infinitely many primes of the form of each of the forms 3k + 1 and 3k - 1.

Solution Suppose by contradiction, that there exists a finite set $S = \{k_1, k_2, \ldots, k_n\}$ for which $3k_i + 1$ and $3k_i - 1$ are both primes for any $i \in \{1, 2, \ldots, n\}$. Let k_n be the largest k_n possible where $3k_n + 1$ and $3k_n - 1$ are both prime. Let $P = \{p_1, p_2, \ldots, p_m\}$ be the set consisting of all primes of the form 3k + 1 less than or equal to $3k_n + 1$ and $Q = \{q_1, q_2, \ldots, q_r\}$ be the set consist of all primes of the form 3k - 1 less than or equal to $3k_n + 1$. Now, we shall construct the number $N = (q_1q_2 \ldots q_rp_1p_2 \ldots p_m)^2 + 3$. Since we know that $q_i \equiv -1 \pmod{3}$, we know that $q_i^2 \equiv 1 \pmod{3}$. We also know that $p_i \equiv 1 \pmod{3}$ so that $p_i^2 \equiv 1 \pmod{3}$. This means that $(q_1q_2 \ldots q_rp_1p_2 \ldots p_m)^2 \equiv 1 \pmod{3}$, implying that $N \equiv 1 \pmod{3}$. This also implies that $N - 2 = (q_1q_2 \ldots q_rp_1p_2 \ldots p_m)^2 + 1 \equiv -1 \pmod{3}$. However, we see that N must be prime. This is because any prime s which divides N would have the

However, we see that N must be prime. This is because any prime s which divides N would have the following congruence: $(q_1q_2 \dots q_rp_1p_2 \dots p_m)^2 \equiv -3 \pmod{s}$. By the previous problem, we see that $s \equiv 1 \pmod{3}$. However, since p_1, p_2, \dots, p_m consist of all the primes of this form, none of them can possibly divide $(q_1q_2 \dots q_rp_1p_2 \dots p_m)^2 + 1$. Therefore, we see that N does not have any prime factors, and is thus a prime.

Moreover, we see that N-2 must be prime. This is because there does not exist any prime s for which $s|(q_1q_2\ldots q_rp_1p_2\ldots p_m)^2+1$, since this is equivalent to $(q_1q_2\ldots q_rp_1p_2\ldots p_m)^2\equiv -1\pmod s$. This follows because the only primes s for which this congruence is solvable are primes of the form 4k+1. Since the union $P\cup Q$ consists of all primes less than $3k_n+1$, s cannot belong to the set $P\cup Q$ which implies that s cannot be a prime. Since N-2 does not have any prime factors, it must be a prime.

We have therefore found a new pair N and N-2 which have the forms 3k+1 and 3k-1 which are prime, and which do not belong to the lists P and Q respectively. This is a contradiction. \square

9. Problem 9

Problem 9.1. Let p be an odd prime, and let (k,p) = 1. Show that the number of solutions (x,y) to $y^2 \equiv x^2 + k \pmod{p}$ is exactly p - 1.

Solution We know that the congruence $y^2 \equiv x^2 + k \pmod{p}$ can be rewritten as $y^2 - x^2 \equiv k \pmod{p}$. Factoring out the left hand side, we obtain $(y - x)(y + x) \equiv k \pmod{p}$. Now we can set new variables z = x + y and w = x - y so that we obtain the congruence $zw \equiv k \pmod{p}$. Thus, there exists a bijection between the solutions of the congruence $y^2 \equiv x^2 + k \pmod{p}$ and the congruence $zw \equiv k \pmod{p}$.

Now, let us fix z and find the number of solutions w to $zw \equiv k \pmod{p}$ is simply $\gcd(z,p)$ if $\gcd(z,p)|k$ and 0 otherwise. Notice that if $z \neq p$, then $\gcd(z,p) = 1$ because p is a prime. Moreover, it is clear that 1|k. However, if z = p, then $\gcd(z,p) = p \nmid k$. This implies that when z = p, there are no solutions. This means that the total number of solutions is $\sum_{z=1}^{p-1} \gcd(z,p)$ since we must exclude $\gcd(p,p)$ from the solutions. Since $\gcd(z,p) = 1$ for $x \in \{1,2,\ldots,p-1\}$, we see that this sum is equal to p-1. Thus, the congruence has p-1 solutions. \square

Problem 9.2. Show that $\sum_{x=1}^{p} \left(\frac{x^2+k}{p}\right) = -1$.

Solution We know that the number of solutions to the congruence $y^2 \equiv x^2 + k \pmod{p}$ given a fixed x is $1 + \left(\frac{x^2 + k}{p}\right)$ by a lemma shown in class. Thus, the total number of solutions to $y^2 \equiv x^2 + k \pmod{p}$ is given by the expression:

(9.1)
$$\sum_{x=1}^{p} 1 + \left(\frac{x^2 + k}{p}\right) = p + \sum_{x=1}^{p} \left(\frac{x^2 + k}{p}\right)$$

However, we know from the previous problem that the number of solutions to the congruence is p-1. This implies that $\sum_{x=1}^{p} \left(\frac{x^2+k}{p}\right) = -1$. \square

Problem 9.3. Now let (ab, p) = 1, show that the number of solutions to the congruence $ax^2 + by^2 \equiv 1 \pmod{p}$ is $p - \left(\frac{-ab}{p}\right)$.

Solution We know that $ax^2 + by^2 \equiv 1 \pmod{p}$ can be rewritten as $by^2 \equiv 1 - ax^2 \pmod{p}$. Moreover, since p is a prime, we know that b^{-1} exists, so we can write $y^2 \equiv b^{-1}(1-ax^2) \pmod{p}$. From a lemma proven in class, we know that the number of solutions to this congruence, holding x fixed, is simply $1 + {b^{-1}(1-ax^2) \choose p}$. Thus, the total number of solutions to the congruence is the sum of this expression, ranging over all possible

JOHN WANG

x values. This can be written:

(9.2)
$$\sum_{x=1}^{p} 1 + \left(\frac{b^{-1}(1 - ax^2)}{p}\right) = p + \sum_{x=1}^{p} \left(\frac{b^{-1}}{p}\right) \left(\frac{1 - ax^2}{p}\right)$$

(9.3)
$$= p + \sum_{x=1}^{p} {b \choose p} \left(\frac{1 - ax^2}{p}\right)$$

$$= p + \sum_{r=1}^{p} \left(\frac{b - bax^2}{p}\right)$$

$$= p + \sum_{x=1}^{p} \left(\frac{-ab}{p}\right) \left(\frac{x^2 - a^{-1}}{p}\right)$$

$$(9.6) = p + (-1)\left(\frac{-ab}{p}\right)$$

Which is what we wanted to prove. Note that the second step from above comes about because $\left(\frac{b}{p}\right)^{-1} = \left(\frac{b}{p}\right)$. We also know that a^{-1} exists because p is a prime. The final step uses the result from the previous problem that $\sum_{x=1}^{p} \left(\frac{x^2+k}{p}\right) = -1$, where in this case $k = -a^{-1}$. \square

10. Problem 10

Problem 10.1. Write a gp program to calculate the number of quadratic residues R and quadratic non-residues N in the set $\{1, 2, ..., (p-1)/2\}$ for any given odd prime p. Tabulate the results for the first 100 odd primes. What do you observe?

Solution The program to tabulate the number of quadratic residues and non residues in the set $\{1, 2, \dots, (p-1)/2\}$ for the first 100 odd primes is given below:

We observe that when $p \equiv 1 \pmod{4}$, the number of quadratic residues and non-residues is the same. When $p \equiv 3 \pmod{4}$, there are more quadratic residues than non-residues in the set. \square