RÉPUBLIQUE TUNISIENNE
MINISTÈRE DE L'ÉDUCATION
EXAMEN DU BACCALAURÉAT
SESSION 2019

Session	principale
---------	------------

Épreuve : Mathématiques

Sciences de l'informatique

①Durée : 3h

Coefficient de l'épreuve: 3

ल्ड ल्ड ल्ड ल्ड ल्ड ल्ड

Le sujet comporte 4 pages numérotées de 1/4 à 4/4. La page 4/4 est à rendre avec la copie.

Exercice 1:(6.5 points)

Soit la fonction f définie sur $[0,+\infty[$ par $f(x)=\ln(1+x^2)$ et (C) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .

- 1) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement les résultats.
- 2) a) Calculer f'(x), pour tout $x \ge 0$.
 - b) Montrer que pour tout $x \ge 0$, $f''(x) = \frac{2(1-x^2)}{(1+x^2)^2}$.
 - c) Déduire que le point $A(1, \ln 2)$ est un point d'inflexion de la courbe (C).
- 3) Dans l'annexe ci-jointe, on donne le repère (O, \vec{i}, \vec{j}) , la courbe (C) et les points A, E $(0, \ln 2 1)$ et K $(1 \ln 2, 0)$.
 - a) Soit T la tangente à (C) au point A. Montrer qu'une équation de T est $y = x 1 + \ln 2$.
 - b) Montrer que T coupe l'axe des ordonnées au point E et l'axe des abscisses en K.
 - c) Tracer la tangente T dans le repère (O, \vec{i}, \vec{j}) .
- 4) Soit L l'aire du triangle OKE et S l'aire de la partie du plan limitée par la courbe (C), la droite T et les droites d'équations x=0 et x=1.
 - a) Montrer que $L = \frac{(1-\ln 2)^2}{2}$.
 - b) Montrer que pour tout $x \in [0,1]$, $ln(1+x^2) \le ln(1+x)$.
 - c) Montrer que pour tout $x \ge 0$, $\frac{x}{1+x} = 1 \frac{1}{1+x}$.
 - d) En déduire que $\int_0^1 \ln(1+x) dx = 2\ln 2 1$.
 - e) Montrer que $\frac{(1-\ln 2)^2}{2} \le S \le \ln 2 \frac{1}{2}$.

Exercice 2:(4 points)

- Pour tout $\alpha \in \mathbb{R}$, on considère la matrice $M_{\alpha} = \begin{pmatrix} \alpha & 2 & 2 \\ -2\alpha & -4 & 0 \\ 1 & 1 & -1 \end{pmatrix}$. 1)
 - a) Montrer que le déterminant de $\,{\rm M}_{\alpha}\,$ est égal à $\,-4\alpha+8\,$.
 - b) Pour quelle valeur de α , M_{α} est-elle non inversible? A simple and substantial α
- Dans cette question, on prend $\alpha = 2$ et on note $C = M_2$. 2)

Résoudre dans
$$\mathbb{R}^3$$
, le système (S) : C $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ -4 \\ -4 \end{pmatrix}$ onem el sup symbét nê (d $\frac{1}{2}$) construction $\frac{1}{2}$ and $\frac{1}{2}$ a

- 3) Dans cette question, on prend $\alpha = -2$ et on note $A = M_{-2}$ et $B = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{pmatrix}$.
 - a) Montrer que $AxB = 4I_3$ où I_3 est la matrice unité d'ordre 3.
 - b) En déduire A^{-1} la matrice inverse de A.
 - c) Résoudre alors dans \mathbb{R}^3 , le système (S') : A $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ -4 \\ -4 \end{pmatrix}$.

Exercice 3:(4 points)

On considère la suite (u_n) définie sur \mathbb{N} par $\begin{cases} u_0 = 1, \\ (\exists) \text{ notaine} \mathbb{I} \mathbb{X} \mathbb{X} \text{ and enburse} \end{cases}$ (de $u_{n+1} = \sqrt{1 + u_n} - 1.$

- 1) a) Montrer par récurrence que pour tout entier naturel n $0 \le u_n \le 1$.
 - b) Montrer que pour tout entier naturel n , $u_{n+1} u_n = \sqrt{1 + u_n} \left(1 \sqrt{1 + u_n} \right)$. En déduire que la suite (u_n) est décroissante.
 - c) Montrer que la suite (un) est convergente et calculer sa limite.
- On considère la suite (v_n) définie sur \mathbb{N} par $v_n = \ln(1+u_n)$. 2)
 - Montrer que (v_n) est une suite géométrique de raison $\frac{1}{2}$ et de premier terme $v_0 = \ln 2$.
 - b) Déterminer v_n puis u_n en fonction de n.

Exercice 4:(5.5 points)

- 1) a) Vérifier que $(2 2i)^2 = -8i$.
 - b) Résoudre dans \mathbb{C} l'équation $z^2 (2 + 8i)z 15 + 10i = 0$.
- 2) Le plan complexe P est rapporté à un repère orthonormé direct.

On considère les points A, B et C d'affixes respectives $z_A = 2 + 3i$, $z_B = -1$ et $z_C = 5i$.

- a) Calculer $(z_B z_A) \overline{(z_C z_A)}$. To tell the briefly no note expectation (S
- b) En déduire que le triangle ABC est rectangle en A.
- 3) Soit x et y deux entiers tels que $y \neq 0$.

Dans le plan P, on considère les points M et N d'affixes respectives x et iy . On se propose de déterminer les affixes des points M et N tels que AMN est rectangle en A.

a) Montrer que
$$(z_M - z_A)(\overline{z_N - z_A}) = (-2x - 3y + 13) + i(-xy + 3x + 2y)$$
.

- b) Montrer que $(-2x-3y+13)+i(-xy+3x+2y) \neq 0$.
- c) Montrer que le triangle AMN est rectangle en A si et seulement si 2x + 3y = 13.
- 4) Soit dans $\mathbb{Z}x\mathbb{Z}$ l'équation (E) : 2x + 3y = 13.
 - a) En utilisant la question 2), donner une solution particulière de l'équation (E).
 - b) Résoudre dans $\mathbb{Z}x\mathbb{Z}$ l'équation (E).
 - c) Trouver les affixes des points M et N tels que AMN est rectangle en A et $-4 \le x \le 4$.

c) Montesi que la suite (u) est convergente et calculer sa limite.

	Section:	Signatures des surveillants
~	Date et lieu de naissance :	••••••
~	Epreuve : MATHEMATIQUES – Section : Sciences de l'informatique (Session principale 2019)	

Annexe à rendre avec la copie

