The k-Facility Location Problem Via Optimal Transport: A Bayesian Study of the Percentile Mechanisms

Kodai Adachi

2024年10月10日

1 Introduction

- Scope of Mechanism Design: Procedures to aggregate agents' private information to optimize a social objective, while addressing self-interested behavior and manipulation.
- Truthfulness in Mechanism Design: A crucial property ensuring no agent benefits from misreporting their private information, often requiring a compromise on social objective optimization.
- Approximation Ratio: Introduced by Nisan and Ronen to quantify efficiency loss, comparing the social objective achieved by a truthful mechanism to the optimal objective over all possible reports.
- k-Facility Location Problem (k-FLP):
 - Central authority locates k facilities among n agents.
 - Agents prefer facilities to be as close as possible.
 - Applications: Disaster relief, supply chain management, healthcare, public facilities accessibility.

• Algorithmic Mechanism Design in k-FLP:

- Initiated by Procaccia and Tennenholtz, focusing on locating one facility among agents on a line.
- Various methods with fixed approximation ratios for one or two facilities on different structures (e.g., trees, circles, graphs, metric spaces) have been developed.
- Positive outcomes for limited agents or up to 2 facilities; **negative results** for $k \geq 3$ facilities.

• Challenges for $k \ge 3$ Facilities:

- No deterministic, anonymous, and truthful mechanisms with bounded approximation ratio for $k \geq 3$ on the line.
- Possible to define truthful mechanisms with bounded approximation ratio for specific cases (number of agents = facilities + 1) or using randomized mechanisms.

• Percentile Mechanisms:

- そもそもこれを理解したほうがよさそう
- 下のほうで例を挙げて理解しました。したつもりカモ。。。。
- Class of truthful mechanisms for generic k-FLP introduced in [45].
- Typically have an **unbounded approximation ratio**.
- Study shows they can be optimal if agents' types are sampled from a probability distribution (Bayesian Mechanism Design).
- Main contribution: Selecting a percentile mechanism that asymptotically minimizes the expected social objective.

1.1 Our Contribution

• Comprehensive investigation of k-Facility Location Problem (k-FLP) from a Bayesian Mechanism Design perspective.

- Assumption: Agents' positions on the line follow a distribution μ [18,29].
- Focus on percentile mechanisms [45] and explore conditions for bounded Bayesian approximation ratio.
- Establish that percentile mechanisms exhibit different performances based on the measure μ .
- Identify the optimal percentile mechanism tailored to distribution μ .
- Connection between k-FLP and a projection problem in the Wasserstein space.
 - ここを一番理解したい
 - 理解できればそこからは OT の教科書に戻るだけ
 - 最適化した距離が何を表すのか。degree of happiness? hate?
 - 表裏一体か。
- ↓からはあまり興味ない。
- Use of tools and techniques from Optimal Transport theory to approach k-FLP.
- Demonstrate convergence of the expected cost ratio to a bounded value as the number of agents increases.
- Characterize both the limit value of the ratio and the speed of convergence.
- Use of Bahadur's representation formula to relate the j-th ordered statistic of a random variable to a suitable quantile.
- Derive a bound on the performances of percentile mechanisms for any finite number of agents.
- Tackle the problem of retrieving the best percentile mechanism for distribution μ and number of facilities k.
- Show existence of a percentile vector $v_{\mu} \in (0,1)^k$ that induces the optimal percentile mechanism.
- \bullet Characterize the percentile vector as the solution to a system of k equations.
- Compute the optimal percentile vector for **common probability measures** (e.g., Uniform, Gaussian distributions).
 - Gumbel distribution でも成り立ってくれればめっちゃ嬉しい
- Show that the optimal percentile vector is invariant under positive affine transformations of the probability measures.
- Present a study on the stability of the optimal percentile vector.
- Demonstrate that the Bayesian approximation ratio limit deviates from 1 proportionally to the infinity Wasserstein distance between μ and an approximation $\tilde{\mu}$.
- Highlight that the more precise the approximation of μ , the better the performance of the optimal percentile mechanism.

2 Preliminaries

- The k-Facility Location Problem (k-FLP):
 - Given a set of self-interested agents $\mathcal{N} = [n] := \{1, 2, \dots, n\}.$
 - Denote the set of their positions as $\mathcal{X} := \{x_i\}_{i \in [n]}$ over \mathbb{R} .
 - Assume agents are indexed such that positions x_i are in non-decreasing order.
 - * agent は数直線上にいる
 - Vector $\mathbf{x} := (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ contains the elements of \mathcal{X} .
 - -k facilities are located at entries of vector $\mathbf{y} := (y_1, y_2, \dots, y_k) \in \mathbb{R}^k$.
 - An agent at position x_i incurs a cost $c_i(x_i, \mathbf{y}) = \min_{j \in [k]} |x_i y_j|$ to access a facility.
 - Social Cost (SC) of \boldsymbol{y} is the sum of all agents' costs: $SC(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i \in [n]} c_i(x_i, \boldsymbol{y})$.
 - Goal: Find locations for k facilities that minimize SC(x, y).
 - Rescaled Social Cost: $SC(\boldsymbol{x}, \boldsymbol{y}) = \frac{1}{n} \sum_{i \in [n]} c_i(x_i, \boldsymbol{y}).$
- Mechanism Design and Worst-Case Analysis:
 - A k-facility location mechanism is a function $f: \mathbb{R}^n \to \mathbb{R}^k$.
 - Takes agents' reports x and returns a set of k locations y.
 - Agents may misreport their positions to reduce their incurred cost.

- A mechanism f is truthful (**strategyproof**) if, for every agent, reporting their true position minimizes their cost: $c_i(x_i, f(\boldsymbol{x})) \leq c_i(x_i, f(\boldsymbol{x}_{-i}, x_i'))$ for any misreport $x_i' \in \mathbb{R}$, where \boldsymbol{x}_{-i} is \boldsymbol{x} without its i-th component.
 - * agent が嘘をつくと逆にコストが増える関数を仮定
 - * すると agent は self-interested でありながらも正直に報告するよう動機づけができると解釈した
 - * 要するに各 agent は正直に位置申告するのが最適
- Truthful mechanisms prevent misreporting but result in efficiency loss.
- To evaluate this efficiency loss, approximation ratio of a truthful mechanism f (introduced by Nisan and Ronen) is defined as:

$$\operatorname{ar}(f) := \sup_{\boldsymbol{x} \in \mathbb{R}^n} \frac{SC_f(\boldsymbol{x})}{SC_{\operatorname{opt}}(\boldsymbol{x})},$$

where $SC_f(x)$ is the Social Cost of placing facilities at f(x) and $SC_{\mathrm{opt}}(x)$ is the optimal Social Cost.

- The worst-case approximation ratio defined above is referred to as the approximation ratio.
- Evaluating a mechanism f from its approximation ratio is known as the worst-case analysis of f.

• Bayesian Analysis:

- Bayesian Mechanism Design:

- * Assumes agents' types follow a probability distribution.
- * Performance of mechanisms is studied from a probabilistic viewpoint.
- * Each agent's type is described by a random variable X_i .
- * Each X_i is identically distributed according to a law μ and independent from other random variables.

- Truthful Mechanism:

* A mechanism is truthful if, for every agent i, the following holds:

$$\mathbb{E}_{\boldsymbol{X}_{-i}}\left[c_{i}\left(x_{i}, f\left(x_{i}, \boldsymbol{X}_{-i}\right)\right)\right] \leq \mathbb{E}_{\boldsymbol{X}_{-i}}\left[c_{i}\left(x_{i}, f\left(x_{i}', \boldsymbol{X}_{-i}\right)\right)\right] \quad \forall x_{i} \in \mathbb{R},$$

where x_i is agent i's true type, X_{-i} is the (n-1)-dimensional random vector describing other agents' types, and $\mathbb{E}_{X_{-i}}$ is the expectation with respect to the joint distribution of X_{-i} .

- · $\mathbb{E}_{\boldsymbol{X}_{-i}}$ is the expectation with respect to the joint distribution of \boldsymbol{X}_{-i}
- . これ何??
- · strategyproof との違いがわからない

$-\beta$ -Approximation:

* A mechanism f is a β -approximation if:

$$\mathbb{E}\left[SC_f\left(\boldsymbol{X}_n\right)\right] \leq \beta \mathbb{E}\left[SC_{\text{opt}}\left(\boldsymbol{X}_n\right)\right],$$

- * The lower the β , the better the mechanism.
- * 不等式右辺が optimal なので $\beta \geq 1$

- Bayesian Approximation Ratio:

- * Defined as the ratio between the expected Social Cost of a mechanism and the expected Social Cost of the optimal solution.
- * For a mechanism f, the Bayesian approximation ratio is

$$B_{\mathrm{ar}}^{(n)}(f) := \frac{\mathbb{E}\left[SC_f\left(\boldsymbol{X}_n\right)\right]}{\mathbb{E}\left[SC_{\mathrm{opt}}\left(\boldsymbol{X}_n\right)\right]},$$

- * The expected value is taken over the joint distribution of the vector $X_n := (X_1, \dots, X_n)$.
- * If $B_{\rm ar}^{(n)}(f) < +\infty$, then f is a $B_{\rm ar}^{(n)}(f)$ approximation.

- Notation:

- * Use x to denote the vector containing the agents' reports and the agents' real positions interchangeably.
- * Use the capital letter X_n to denote the random vector describing the agents' types.

• The Percentile Mechanisms:

- Definition:

- * Given a vector $\mathbf{v} = (v_1, v_2, \dots, v_k)$, such that $0 \le v_1 \le v_2 \le \dots \le v_k \le 1$.
- * The percentile mechanism induced by v, denoted as \mathcal{PM}_v , proceeds as follows:
 - · Step (i): The mechanism designer collects all the reports of the agents, namely $\{x_1, \ldots, x_n\}$ and reorders them non-decreasingly. Assume the reports are already ordered, i.e., $x_i \leq x_{i+1}$.
 - Step (ii): The designer places the k facilities at the positions $y_j = x_{i_j}$, where $i_j = \lfloor (n-1)v_j \rfloor + 1$.

- Properties:

- * If the values x_i are sampled from a distribution, the output of any percentile mechanism is composed by the $(|(n-1)v_i|+1)$ -th order statistics of the sample.
- * Percentile mechanisms are truthful whenever the cost of an agent placed at x_i is $c_i = \min_{j \in [k]} |x_i y_j|$, where y_j are the positions of the facilities.
- * エージェントの位置: {2,8,4,6,1}
- * reorder non-decreasingly: $\{1, 2, 4, 6, 8\}$
- * **ベクトル** v: {0.2, 0.5, 0.8} (3 つの施設を配置する)
 - $v_1 = 0.2$ の場合:

$$i_1 = |(5-1) \cdot 0.2| + 1 = |4 \cdot 0.2| + 1 = |0.8| + 1 = 1$$

- 1番目の順序統計量は1
- · $v_2 = 0.5$ の場合:

$$i_2 = |(5-1) \cdot 0.5| + 1 = |4 \cdot 0.5| + 1 = |2| + 1 = 3$$

- 3番目の順序統計量は4
- · $v_3 = 0.8$ の場合:

$$i_3 = |(5-1) \cdot 0.8| + 1 = |4 \cdot 0.8| + 1 = |3.2| + 1 = 4$$

- 4番目の順序統計量は6
- ・施設の配置: メカニズムは、1番目の順序統計量(1)、3番目の順序統計量(4)、および4番目の順序統計量(6)の位置に施設を配置する
- · したがって、施設は位置 1、4、6 に配置される

- Approximation Ratio:

- * For k > 2, the approximation ratio of any percentile mechanism becomes unbounded.
- * Percentile mechanisms are anonymous and deterministic, hence ar $(\mathcal{PM}_{v}) = +\infty$ for every percentile vector v.

- Truthfulness:

- * Since percentile mechanisms are truthful in the classic setting, they also retain their truthfulness within the Bayesian framework [29].
- Basic Notions on Optimal Transport:
 - Probability Measures:
 - * $\mathcal{P}(\mathbb{R})$: Set of probability measures over \mathbb{R}
 - * For $\gamma \in \mathcal{P}(\mathbb{R})$, spt $(\gamma) \subset \mathbb{R}$ denotes the support of γ
 - * The support is the smallest closed set $C \subset \mathbb{R}$ such that $\gamma(C) = 1$
 - Probability Measures with Finite Support:
 - * $\mathcal{P}_k(\mathbb{R})$: Set of probability measures over \mathbb{R} whose support consists of k points
 - * $\nu \in \mathcal{P}_k(\mathbb{R})$ if and only if $\nu = \sum_{j=1}^k \nu_j \delta_{x_j}$, where $x_j \in \mathbb{R}$, $\nu_j \geq 0$, $\sum_{j=1}^k \nu_j = 1$, and δ_{x_j} is Dirac's delta centered at x_j^{*1}
 - Wasserstein Distance:

$$\delta_x(A) = \begin{cases} 1 & x \in A, \\ 0 & x \in X \backslash A \end{cases}$$

 $^{^{*1}}$ 可測空間 (X,\mathcal{F}) に対し, $\{x\}\in\mathcal{F}$ とする。このとき, $A\in\mathcal{F}$ に対し

* Given two measures $\alpha, \beta \in \mathcal{P}(\mathbb{R})$, the Wasserstein distance $W_1(\alpha, \beta)$ is defined as:

$$W_1(\alpha, \beta) = \min_{\pi \in \Pi(\alpha, \beta)} \int_{\mathbb{R} \times \mathbb{R}} |x - y| d\pi$$

- * $\Pi(\alpha, \beta)$ is the set of probability measures over $\mathbb{R} \times \mathbb{R}$ whose first marginal is equal to α and the second marginal is equal to β
- * The infinity Wasserstein distance $W_{\infty}(\alpha, \beta)$ is defined as:

$$W_{\infty}(\alpha, \beta) = \min_{\pi \in \Pi(\alpha, \beta)} \max_{(x,y) \in \operatorname{spt}(\pi)} |x - y|$$

* Both W_1 and W_{∞} are metrics over $\mathcal{P}(\mathbb{R})$

- References:

* For a complete introduction to Optimal Transport theory, refer to [47]

• Basic Assumptions:

– Underlying Distribution μ :

- * The measure μ is absolutely continuous with density ρ_{μ}
- * The support of μ is an interval (bounded or unbounded) and ρ_{μ} is strictly positive on the interior of the support
- * The density function ρ_{μ} is differentiable on the support of μ

- Cumulative Distribution Function (c.d.f.):

- * The c.d.f. F_{μ} of a probability measure μ satisfying these properties is locally bijective
- * The pseudo-inverse function of F_{μ} , denoted $F_{\mu}^{[-1]}$, is well-defined on (0,1)

3 The Bayesian Analysis of the Percentile Mechanism

- Study the percentile mechanisms within the Bayesian Mechanism Design framework
- Consider a scenario where agents' reports are drawn from a shared distribution μ
- The distribution μ satisfies the basic assumptions outlined in Section 2
- Establish a connection between the k-Facility Location Problem (k-FLP) and the Wasserstein distance
- Use the connection to investigate the convergence behaviour of the Bayesian approximation ratio
- Focus on the scenario as the number of agents tends to infinity

3.1 The k-FLP as a Wasserstein Projection problem

- Given a vector $\mathbf{x} := (x_1, x_2, \dots, x_n)$ containing the reports of n agents
- Define the measure $\mu_{\boldsymbol{x}} := \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$
- Using the map $x \to \mu_x$, associate any agents' profile to a probability measure in $\mathcal{P}_n(\mathbb{R}) \subset \mathcal{P}(\mathbb{R})$
- Consider the following minimization problem:

$$\min_{\lambda \in \mathcal{P}_k(\mathbb{R})} W_1\left(\mu_{\boldsymbol{x}}, \lambda\right) \tag{5}$$

- 今回の問題は外部性を持たない (agent 同士のいざこざがない) ため W_1 でイケる
- エージェントの報告位置: {2, 5, 8, 10}
- これに基づく分布 μ_x は次のように定義される:

$$\mu_{\boldsymbol{x}} = \frac{1}{4}\delta_2 + \frac{1}{4}\delta_5 + \frac{1}{4}\delta_8 + \frac{1}{4}\delta_{10}$$

- 最小化問題: サポートが k=2 の分布 λ を見つける。つまり、次の形の分布を見つける:

$$\lambda = \nu_1 \delta_{u_1} + \nu_2 \delta_{u_2}$$

ここで、
$$\nu_1 + \nu_2 = 1$$
 かつ $\nu_1, \nu_2 \ge 0$

- この問題の目的は、 μ_x と λ の間の Wasserstein 距離を最小化するような λ を見つけること
- これにより、エージェントの報告位置を基にして、2つの位置に施設を配置することになる
- Due to the metric properties of W_1 , this problem is also known as the Wasserstein projection problem on $\mathcal{P}_k(\mathbb{R})$
- Since $\mathcal{P}_k(\mathbb{R})$ is closed with respect to any W_1 metric, any Wasserstein projection problem admits at least one solution [3]
- When μ_x is clear from the context, denote the solution to this problem as $\nu^{(k,n)}$
- Given a measure ζ , say that ν is the projection of ζ over $\mathcal{S} \subset \mathcal{P}(\mathbb{R})$ with respect to W_1 if $\nu \in \mathcal{S}$ and $W_1(\zeta, \nu) \leq W_1(\zeta, \rho)$ for every $\rho \in \mathcal{S}$
 - 射影とは、ある対象を別の対象に最も近づける操作のこと
 - ζ と一番距離が近いのが ν だからそれはそう
- In particular, $\nu^{(k,n)}$ is the projection of μ_x over $\mathcal{P}_k(\mathbb{R})$ with respect to W_1
- \bullet The starting point of the Bayesian analysis of percentile mechanisms connects the k-FLP to a Wasserstein projection problem
- The objective value of the Wasserstein projection problem is the same as the objective value of the k-FLP

Theorem 1. Let x be the reports of n agents. Let y be the solution to the k-FLP, i.e., the facility locations that minimize the Social Cost. Then the set $\{y_j\}_{j\in[k]}$ is the support of a measure $\nu^{(k,n)}$ that solves problem (5). Moreover, we have that

$$SC_{opt}(\boldsymbol{x}) = W_1\left(\mu_{\boldsymbol{x}}, \nu^{(k,n)}\right) = \min_{\lambda \in \mathcal{P}_k(\mathbb{R})} W_1\left(\mu_{\boldsymbol{x}}, \lambda\right).$$

Vice-versa, if $\nu \in \mathcal{P}_k(\mathbb{R})$ is a solution to problem (5), then its support $\{y_j\}_{j \in [k]}$ is a solution to the k-FLP.

Proof.

- Let x be the vector containing the reports of n agents, and let y be the vector containing the optimal location for k facilities when the agents are located according to x.
- Assume that the closest facility to each agent x_i is **unique** so that the sets A_j , defined as $A_j := \{x_i : \min_{l \in [k]} |x_i y_l| = |x_i y_j| \}$, are well-defined and disjoint.
 - 各 agent に対してどの集合に属するかが明確に決まる、かつ、一つの施設にのみ割り当てられる
 - ??
 - こいつは x_i の集合 ? y_j の集合 ? x_i の集合っぽいけどなぜ A の添え字が j 何だろうか
 - $-y_i$ に一番近い agent の集合ですね。
- Show that, given an optimal facility location y, it is possible to retrieve a measure $\nu \in \mathcal{P}_k(\mathbb{R})$ that solves the projection problem (5) and whose support is $\{y_j\}_{j \in [k]}$.
- For every y_j , set $\nu_j = \frac{\ell_j}{n}$, where $\ell_j := |A_j|$ is the number of agents whose closest facility is located at y_j . Then set $\nu = \sum_{j \in [k]} \nu_j \delta_{y_j}$. Since A_j are disjoint sets, we have $\nu \in \mathcal{P}_k(\mathbb{R})$.
- Consider the transportation plan, namely π , between μ_x and ν defined as

$$\pi_{i,j} := \pi_{x_i,y_j} = \begin{cases} \frac{1}{n} & \text{if } x_i \in A_j \\ 0 & \text{otherwise} \end{cases}$$

• Since according to π every agent goes to its closest facility, π is optimal, thus we have

$$W_1(\mu_x, \nu) = \sum_{i \in [n], j \in [k]} |x_i - y_j| \, \pi_{i,j} = \frac{1}{n} \sum_{j \in [k]} \sum_{x_i \in A_j} |x_i - y_j|$$

- Show that ν solves problem (5). Toward a **contradiction**(背理法), **assume** that $\tilde{\nu} = \sum_{j=1}^k \tilde{\nu}_j \delta_{\tilde{y}_j} \in \mathcal{P}_k(\mathbb{R})$ is such that $W_1(\mu_x, \tilde{\nu}) < W_1(\mu_x, \nu)$.
- Define the partition of agents A'_j related to the set of points $\{y'_j\}_{j\in[k]}$. Then we have

$$\frac{1}{n} \sum_{j \in [k]} \sum_{x_i \in A'_j} \left| x_i - y'_j \right| = W_1 \left(\mu_x, \tilde{\nu}_j \right) < W_1 \left(\mu_x, \nu \right) = \frac{1}{n} \sum_{j \in [k]} \sum_{x_i \in A_j} \left| x_i - y_j \right|,$$

which contradicts the optimality of y, proving the first part of the Theorem.

- For the inverse implication, repeat the same argument backwards. Let ν' be a solution to the W_1 Projection problem. Toward a contradiction, assume that the support of ν' is not a solution to the k-FLP. Given a solution to the k-FLP problem, use the argument used in the first part of the proof to build a new measure that has a lower cost than ν' , which would contradict the optimality of the initial solution.
- こんなの言わなくても分かるくないか?

• By restricting the set on which the projection problem is defined, we retrieve a similar characterization for the cost of any k-facility location mechanism.

Theorem 2. Let $f: \mathbb{R}^n \to \mathbb{R}^k$ be a k-facility location mechanism. Then, the following identity holds

$$SC_f(\boldsymbol{x}) = \min_{\{\lambda_j\}_{j \in [k]} \subset \mathbb{R}} W_1(\mu_{\boldsymbol{x}}, \lambda)$$
 (7)

where $\lambda = \sum_{j \in [k]} \lambda_j \delta_{y_j}$ and $\mathbf{y} = (y_1, y_2, \dots, y_k) = f(\mathbf{x})$.

- 証明の前に少し復習
- Rescaled Social Cost: $SC(\boldsymbol{x}, \boldsymbol{y}) = \frac{1}{n} \sum_{i \in [n]} c_i(x_i, \boldsymbol{y}).$
- $SC_f(x)$ is the Social Cost of placing facilities at f(x)
- つまり $SC_f(\boldsymbol{x}) = SC(\boldsymbol{x}, f(\boldsymbol{x}))$

Proof.

- Let f be a mechanism, x the vector containing the reports of n agents, and let y be the vector containing the positions returned by the mechanism f, so that y = f(x).
 - theorem 1 では y は最適解であったが、今回はそうでない。
- For every $j \in [k]$, denote A_i as the set of agents that are closer to the facility placed at y_i .
- Assume without loss of generality that every A_j is disjoint from the others, so that $A_j \cap A_r = \emptyset$ for every $j \neq r$.
- Define $\nu^{(n)}$ as

$$\nu^{(n)} = \sum_{j \in [k]} \nu_j^{(n)} \delta_{y_j}$$

where $\nu_j^{(n)} = \frac{\ell_j}{n}$ and $\ell_j = |A_j|$. (facility j に近いエージェントの数)

• Show that $\nu^{(n)}$ is a solution to problem (7). The discrete probability measure π is defined as

$$\pi_{i,j} := \pi_{x_i,y_j} = \begin{cases} \frac{1}{n} & \text{if } x_i \in A_j \\ 0 & \text{otherwise} \end{cases}$$

which is a transportation plan between μ_x and $\nu^{(n)}$.

• Since according to π every agent goes to its closest facility, we have

$$\sum_{i \in [n]} |x_i - y_j| \, \pi_{i,j} = W_1\left(\mu_{\boldsymbol{x}}, \nu^{(n)}\right).$$

- If $\tilde{\nu}$ is such that $\operatorname{spt}(\tilde{\nu}) = \operatorname{spt}(\nu) = \{y_j\}_{j \in [k]}$ and $W_1(\mu_{\boldsymbol{x}}, \tilde{\nu}) < W_1(\mu_{\boldsymbol{x}}, \nu^{(n)})$, we infer that there exists at least one agent that can be reallocated to a closer facility, which would contradict the definition of A_j .
- Notice that the projection problem (7) is a further restricted version of the projection problem (5).
- Indeed, in (5), the support of the solution can be any subset of \mathbb{R} containing k elements.
- While in (7), the support of the solution is fixed by the mechanism f.
- 言ってる意味は分かるが、これが今後どのように影響してくるかまでは想像できない

7