Universidad del Istmo

Facultad de Ingeniería

Budget Energético

Curso: Trabajo de graduaciónNombre: Diego José Girón Figueroa

Fecha: septiembre de 2025

Resumen de escenarios

■ Modo de operación: 6 h continuas por día.

■ Conversión 12 \rightarrow 5 V: buck con $\eta \approx 90.00 \%$.

 \blacksquare Batería: 12.8 V . DoD asumida: $80.00\,\%$.

■ Solar: HSP ≈ 5 (Guatemala), eficiencia global del sistema $\eta_{\text{sistema}} \approx 75.00 \%$.

■ Margen de diseño: +25.00 % sobre la energía de 6 h.

1. Inventario de cargas: rail 5 V (vía buck desde 12 V)

Carga	V (V)	$\begin{array}{c}I_{\mathbf{min}}\\(\mathbf{A})\end{array}$	$I_{\mathbf{tip}}$ (A)	$I_{\mathbf{pico}}$ (A)	P_{\min} (W)	$P_{\mathbf{tip}}$ (W)	
Orange Pi Zero 3	5	0.50	0.60	1.00	2.50	3.00	5.00
Cámara USB	5	0.10	0.20	0.50	0.50	1.00	2.50
Módulo USB LoRa	5	0.02	0.05	0.20	0.10	0.25	1.00
Subtotal 5 V					3.10	4.25	8.50

Equivalente a 12 V (entrada del buck, $\eta = 90\%$):

$$P_{\rm in,12V}^{\rm min} = \frac{3.10}{0.90} = 3.44\,{\rm W}, \quad P_{\rm in,12V}^{\rm típ} = \frac{4.25}{0.90} = 4.72\,{\rm W}, \quad P_{\rm in,12V}^{\rm pico} = \frac{8.50}{0.90} = 9.44\,{\rm W}.$$

2. Inventario de cargas: rail 12 V (directo a batería)

Carga	\mathbf{V} (V)	$I_{\mathbf{min}}$ (A)	$I_{\mathbf{tip}}$ (A)		P_{\min} (W)	$P_{\mathbf{tip}}$ (W)	$P_{\mathbf{pico}}$ (W)
Sirena 12 V	12	0.00	0.15	0.30	0.00	1.80	3.60
Estrobo LED	12	0.30	0.60	1.00	3.60	7.20	12.00
Subtotal 12 V					3.60	9.00	15.60

3. Totales por escenario y dimensionamiento

Potencia y energía

	Mínimo	Típico	Pico
Potencia total P_{tot} (W)	$P_{\text{in},12\text{V}}^{\text{min}} + 3.60 = 7.04$	4.72 + 9.00 = 13.72	9.44 + 15.60 = 25.04
Energía 6 h E_{6h} (Wh)	$7.04 \times 6 = 42.24$	$13.72 \times 6 = 82.32$	$25.04 \times 6 = 150.24$
Energía con $+25\%~E'$ (Wh)	52.80	102.90	187.80

Batería (12.8 V, DoD = 80%)

$$C_{\text{req}} = \frac{E'}{V_{\text{nom}} \cdot \text{DoD}} = \frac{E'}{12.8 \times 0.80} = \frac{E'}{10.24}$$
 (Ah)

	Mínimo	Típico	Pico
Capacidad requerida C_{req} (Ah)	$\frac{52.80}{10.24} = 5.16$	$\frac{102.90}{10.24} = 10.06$	$\frac{187.80}{10.24} = 18.34$

Panel solar (HSP = 5, $\eta_{sistema} = 75\%$)

$$P_{\text{PV,min}} = \frac{E'}{\text{HSP} \cdot \eta_{\text{sistema}}} = \frac{E'}{5 \times 0.75} = \frac{E'}{3.75} \text{ (W)}$$

	Mínimo	Típico	Pico
Potencia de panel requerida (W)	$\frac{52.80}{3.75} = 14.08$	$\frac{102.90}{3.75} = 27.44$	$\frac{187.80}{3.75} = 50.08$

4. Selección propuesta

- Batería: 12.8 V 20 Ah (cubre pico con holgura y mejora vida útil).
- Panel: 100 W a 12 V (supera sobradamente el escenario pico diario considerando pérdidas y nubes).
- Controlador: PWM 10 A compatible.
- Buck 12 \rightarrow 5 V: \geq 5.00 A.
- Fusibles orientativos: principal batería 20.00–30.00 A; buck 5.00–10.00 A; sirena 5.00–10.00 A; estrobo 10.00–15.00 A.

5. Fórmulas

$$P = V \cdot I, \qquad P_{\rm in} = \frac{P_{\rm out}}{\eta}, \qquad E = P \cdot t,$$

$$C_{\rm req} \text{ (Ah)} = \frac{E' \text{ (Wh)}}{V_{\rm nom} \text{ (V)} \cdot \text{DoD}}, \qquad P_{\rm PV,min} = \frac{E'}{\text{HSP} \cdot \eta_{\rm sistema}}.$$