

五段式指令流水 线

考研大纲要求&备考方法

考察简单的概念题

(六) 指令流水线

指令流水线的基本实现 指令流水线的基本概念;

五段式指令流水线。指令 按序发射,按序完成

数据冒险和控制冒险的处理; 超标量和动态流水线的基本概念 结构冒险、

结合MIPS指令序列分析 并处理冒险(重点&难点)

考察简单的概念题

备考方法:

- 1.简单的概念题——复习王道书指令流水线课后小题即可
- 2.分析指令流水线是否发生冒险,以及冒险的处理。
 - a. 结构冒险——较少考察。通常考概念、简答。
 - --最常考。常结合MIPS指令序列考察
 - 控制冒险——较常考。常结合MIPS指令序列考察

结构冒险及其处理

结构冒险及其处理

真题实战:结构冒险

- 16. 采用指令 Cache 与数据 Cache 分离的主要目的是 ()。
 - A. 降低 Cache 的缺失损失
 - C. 降低 CPU 平均访存时间

- B. 提高 Cache 的命中率
- D. 减少指令流水线资源冲突

同义术语: 结构冒险=结构冲突=资源冲突

2014

只要考察五段式指令流水线,都可以默认数据 Cache和指令Cache 分离

真题窥探:结构冒险

44. (12 分) 某 16 位计算机中,带符号整数用补码表示,数据 Cache 和指令 Cache 分离。 题 44 表给出了指令系统中部分指令格式,其中 Rs 和 Rd 表示寄存器,mem 表示存储单元地址,(x)表示寄存器 x 或存储单元 x 的内容。

该计算机采用 5 段流水方式执行指令,各流水段分别是取指(IF)、译码/读寄存器(ID)、执行/计算有效地址(EX)、访问存储

题 44 表 指令系统中部分指令格式

名称	指令的汇编格式	指令功能				
加法指令	ADD Rs, Rd	(Rs) + (Rd) -> Rd				
算术/逻辑左移	SHL Rd	2*(Rd) -> Rd				
算术右移	SHR Rd	(Rd)/2 -> Rd				
取数指令	LOAD Rd, mem	(mem) -> Rd				
存数指令	STORE Rs, mem	(Rs) -> mem				
C						

器(M)和结果写回寄存器(WB),流水线采用"按序发射,按序完成"方式,没有采用转发技术处理数据相关,并且同一个寄存器的读和写操作不能在同一个时钟周期内进行。请回答下列问题。

- 1) 若 int 型变量 x 的值为-513, 存放在寄存器 R1 中,则执行指令 "SHR R1"后, R1 的内容 是多少? (用十六进制表示。)
- 2) 若某个时间段中,有连续的4条指令进入流水线,在其执行过程中没有发生任何阻塞,则执行这4条指令所需的时钟周期数为多少?
- 3) 若高级语言程序中某赋值语句为 x = a + b, x、a 和 b 均为 int 型变量,它们的存储单元

橙色:可能导 致数据冒险

绿色:可能导 致控制冒险

如何分析 数据冒险、控制冒险?

	IF (取指)	ID (译码/取数)	EX (执行/计算地址)	M (访存)	WB (写回)
	Q III	A			
<mark>Load指令</mark>	取指令	译码、取数(可能会读寄存器)	计算访存地址	从主存(Data Cache)读数据	将数据写回 某个寄存器
			K. S.	H	
Store指令	取指令	译码、取数(可能会读寄存器)	计算访存地址	往主存(Data Cache)写数据	空
	0.5				
转移类指令	取指令	译码、取数(可能会读寄存器)	计算转移地址	更新PC值	空
		All S		S	
运算类指令	取指令	译码、取数(可能会读寄存器)	执行(算数运算、 逻辑运算等)	空	将数据写回 某个寄存器

注: 熟悉四类指令在各个段分别做了什么

自主训练

先集中训练以下题目, 找找感觉:

- 真题实战——2016年 19题
- 真题实战——2019年 18题
- 真题实战——2023年 19题
- 真题实战——2012年 44题 (2)(3)(4) 小问
- 真题实战——2014年 44题 (4) 小问

数据冒险的分析和处理

考数据冒险?

1.分析是否存在数据冒险?

核心特点:两条指令,前"写"后"读"同一个寄存器。

分析方法:从第一条指令开始,结合注释,观察该指令"写"了某个寄存器,并观察后续相邻的3

条指令是否"读"了同一个寄存器。若发现此类情况,则存在数据冒险。

2.常见的解决数据冒险的方法

- a. <mark>硬件阻塞</mark>:将"读寄存器指令"的ID段硬件阻塞若干个时钟,确保其ID段在"写寄存器指令"的WB段之后
- b. 转发 (旁路)技术
 - i. 转发(旁路)技术<mark>可以解决大部分数据冒险</mark>?
 - ii. 转发(旁路)技术不能解决由 Load 指令写寄存器引起的 Load-use 数据冒险?

控制冒险的分析和处理

考控制冒险?

1.分析是否存在控制冒险?

只有转移类指令的执行才会引发控制冒险。因此只需观察指令序列中是否包含"转移类指令"即可。

2.常见的解决控制冒险的方法

硬件阻塞:将转移类指令后一条指令的IF段硬件阻塞3个时钟

19. 在无转发机制的五段基本流水线(取指、译码/读寄存器、运算、访写回寄存器)中,下列指令序列存在数据冒险的指令对是()。

I1: add R1, R2, R3 $(R2) + (R3) \rightarrow R1$

I2: add R5, R2, R4 ; $(R2) + (R4) \rightarrow R5$

I3: add R4, R5, R3 ; $(R5) + (R3) \rightarrow R4$

I4: add R5, R2, R6 ; $(R2) + (R6) \rightarrow R5$

A. I1 和 I2 B. I2 和 I3

C. I2 和 I4

D. I3 和 I4

19. 在无转发机制的五段基本流水线(取指、译码/读寄存器、运算、访写回寄存器)中,下列指令序列存在数据冒险的指令对是()。

I1: add R1, R2, R3 $(R2) + (R3) \rightarrow R1$

I2: add R5, R2, R4 ; $(R2) + (R4) \rightarrow R5$

I3: add R4, R5, R3 ; $(R5) + (R3) \rightarrow R4$

I4: add R5, R2, R6 ; $(R2) + (R6) \rightarrow R5$

A. I1 和 I2

B. I2和I3

C. I2 和 I4

D. I3 和 I4

时钟	1	2	3	4	5	6	7	8	9	10	11	12
指令1	JF .	ID	EX	M	WB							
指令2		IF	ID	EX	M	WB 写R5			54204			
指令3			IF	阻塞	阻塞	阻塞	ID 读R5	EX	M	WB		
指令4			76				IF	ID	EX	М	WB	

18. 在采用"取指、译码/取数、执行、访存、写回"5 段流水线的处理器中,执行如下指令序列, 其中 s0、s1、s2、s3 和 t2 表示寄存器编号。

下列指令对中,不存在数据冒险的是()

A. I1和I3

B. I2和I3

C. I2 和 I4

D. I3 和 I4

本题未说明如何 处理数据冒险

真题实战:数据冒险

18. 在采用"取指、译码/取数、执行、访存、写回"5 段流水线的处理器中,执行如下指令序列, 其中 s0、s1、s2、s3 和 t2 表示寄存器编号。

假设没有转发 技术,采用硬 件阻塞处理数 据冒险

下列指令对中,不存在数据冒险的是()。

A. II 和 I3

B. I2和I3

C. I2 和 I4

D. I3 和 I4

时钟	1	2	3	4	5	6	7	8	9	10	11	12	13	14
指令1	IF	ID	EX	M	WB 写R[s2]		A				COUL			
指令2	10 cs	IF	ID	EX	M	WB 写R[s3]			X	20423	y			
指令3	1		IF	阻塞	阻塞	阻塞	ID 读R[s2] 读R[s3]	EX	M	WB 写R[s2]				
指令4			-3(0)	Stroo,			IF	阻塞	阻塞	阻塞	ID 读R[s2]	EX	М	WB

王道考研/CSKAOYAN.COM

44. (12 分) 某 16 位计算机中,带符号整数用补码表示,数据 Cache 和指令 Cache 分离。 题 44 表给出了指令系统中部分指令格式,其中 Rs 和 Rd 表示寄存器,mem 表示存储单元地址,(x)表示寄存器 x 或存储单元 x 的内容。

该计算机采用 5 段流水方式执行指令,各流水段分别是取指(IF)、译码/读寄存器(ID)、执行/计算有效地址(EX)、访问存储

题 44 表 指令系统中部分指令格式

名称	指令的汇编格式	指令功能
加法指令	ADD Rs, Rd	(Rs) + (Rd) -> Rd
算术/逻辑左移	SHL Rd	2*(Rd) -> Rd
算术右移	SHR Rd	(Rd)/2 -> Rd
取数指令	LOAD Rd, mem	(mem) -> Rd
存数指令	STORE Rs, mem	(Rs) -> mem

器(M)和结果写回寄存器(WB),流水线采用"按序发射,按序完成"方式,没有采用转发技术处理数据相关,并且同一个寄存器的读和写操作不能在同一个时钟周期内进行。请回答下列问题。

- 1) 若 int 型变量 x 的值为-513, 存放在寄存器 R1 中,则执行指令 "SHR R1"后, R1 的内容 是多少? (用十六进制表示。)
- 2) 若某个时间段中,有连续的4条指令进入流水线,在其执行过程中没有发生任何阻塞,则执行这4条指令所需的时钟周期数为多少?
- 3) 若高级语言程序中某赋值语句为 x = a + b, x、a 和 b 均为 int 型变量,它们的存储单元

地址分别表示为[x]、[a]和[b]。该语句对应的指令序列及其在指令流水线中的执行过程如题 44 图所示。

I_1	LOAD	R1, [a]
I_2	LOAD	R2, [b]
I_3	ADD	R1, R2
I_4	STORE	R2, [x]

	时间单元													
指令	1	2	3	4	5	6	7	8	9	10	11	12	13	14
I	IF	ID	EX	M	WB			5						
\sim I_2		IF	ID	EX	M	WB	74.							
<u>I</u> 3			IF		SQ III	1	ID	EX	M	WB				O.Q.
I ₄					H	AN, CO	IF				ID	EX	M	WB

题 44 图 指令序列及其执行过程示意图

则这 4 条指令执行过程中, I₃ 的 ID 段和 I₄ 的 IF 段被阻塞的原因各是什么?

4) 若高级语言程序中某赋值语句为 x = 2*x + a, x 和 a 均为 unsigned int 类型变量,它们的存储单元地址分别表示为[x]、[a],则执行这条语句至少需要多少个时钟周期?要求模仿题 44 图画出这条语句对应的指令序列及其在流水线中的执行过程示意图。

真题实战:控制冒险

44. (12 分)某程序中有如下循环代码段 P: "for(int i=0; i< N; i++) sum += A[i];"。假设编译时变量 sum 和 i 分别分配在寄存器 R1 和 R2 中。常量 N 在寄存器 R6 中,数组 A 的首地址在寄存器 R3 中。程序段 P 起始地址为 0804 8100H,对应的汇编代码和机器代码如下表所示。

编号	地址	机器代码	汇编代码	注释
1	08048100Н	00022080Н	loop: sll R4, R2, 2	$(R2) << 2 \rightarrow R4$
2	08048104Н	00832020Н	add R4, R4, R3	$(R4) + (R3) \rightarrow R4$
3	08048108H	8C850000H	load R5, 0(R4)	$((R4) + 0) \rightarrow R5$
4	0804810CH	00250820Н	add R1, R1, R5	$(R1) + (R5) \rightarrow R1$
5	08048110H	20420001H	addi R2, R2, 1	$(R2) + 1 \rightarrow R2$
6	08048114H	1446FFFAH	bne R2, R6, loop	if (R2) != (R6) goto loop

执行上述代码的计算机 M 采用 32 位定长指令字, 其中分支指令 bne 采用如下格式:

31	26	25	21	20	16	15	9,0
О	P	Rs	s]	Rd		OFFSET

OP 为操作码; Rs 和 Rd 为寄存器编号; OFFSET 为偏移量,用补码表示。请回答下列问题,并说明理由。

真题实战:控制冒险

- 1) M 的存储器编址单位是什么?
- 2) 已知 sll 指令实现左移功能,数组 A 中每个元素占多少位?
- 3) 表中 bne 指令的 OFFSET 字段的值是多少? 已知 bne 指令采用相对寻址方式,当前 PC 内容为 bne 指令地址,通过分析表中指令地址和 bne 指令内容,推断出 bne 指令的转移目标地址计算公式。
- 4) 若 M 采用如下"按序发射、按序完成"的 5 级指令流水线: IF(取值)、ID(译码及取数)、EXE(执行)、MEM(访存)、WB(写回寄存器),且硬件不采取任何转发措施。分支指令的执行均引起 3 个时钟周期的阻塞,则 P 中哪些指令的执行会由于数据相关而发生流水线阻塞? 哪条指令的执行会发生控制冒险? 为什么指令 1 的执行不会因为与指令 5 的数据相关而发生阻塞?

真题实战:数据冒险——采用转发技术

19. 在采用"取指、译码/取数、执行、访存、写回"5 段流水线的 RISC 处理器中,执行如下指令序列(第一列为指令序号),其中 s0、s1、s2、s3 和 t2 表示寄存器编号。

I1	add	s2, s1, s0	$// R[s2] \leftarrow R[s1] + R[s0]$
I2	load	s3, 0(s2)	$// R[s3] \leftarrow M[R[s2] + 0]$
I3	beq	t2, s3, L1	// if $R[t2] = R[s3]$ jump to L1
I4	addi	t2, t2, 20	$// R[t2] \leftarrow R[t2] + 20$
15	T 1.	• •	

若采用转发(旁路)技术处理数据冒险,采用硬件阻塞方式处理控制冒险,则在指令 I1~I4 执行过程中,发生流水线阻塞的指令有()。

A. 仅 I3

- B. 仅 I2、I4
- C. 仅 I3、I4
- D. 仅 I2、I3、I4

真题实战:数据冒险——采用转发技术

注意:

- i. 转发(旁路)技术<mark>可以解决大部分数据冒险</mark>
- ii. 转发(旁路)技术<mark>不能解决由 Load 指令写寄存器引起的 Load-use 数据冒险</mark>

真题实战:数据冒险——采用转发技术

		I1	ado	d s2	, s1, s0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	R[s2] ←	R[s1] +	R[s0]					
		I 2	loa	d s3	0(s2)	//]	R[s3] ←	M[R[s2]]]+0]					
		I3	bed	q t2,	s3, L1	// i	if R[t2]	=R[s3]	jump to	L1				
		I4	ado	di t2,	t2, 20	//]	R[t2] ←]	R[t2] + 2	20					
		15 L:	1:											
时钟	1	2	3	4	5	6	7	8	9	10	11	12	13	14
指令1	IF	ID 读R[s0]	EX ALU己	M	WB 写R[s2]		St	,			H	200		
		读R[s1]	算出 R[s2]											
指令2		JF	ID 读R[s2]	EX 转发技 术 运算 R[s2]+0	M 从主存 取数	WB ≒R[s3]				10 4 8 P				
指令3			IF	阻塞	阻塞	阻塞	ID 读R[s2] 读R[s3]	EX	M	WB 写R[s2]				
指令 4 或指 令		4					阻塞	阻塞	阻塞	IF	ID 读R[s2]	EX	M	WB