# Итеративное улучшение тематической модели с обратной связью от пользователя

#### Алексей Ильич Горбулев

Московский физико-технический институт

Курс: Моя первая научная статья/Группа Б05-021а Эксперт: д. ф.-м. н. К.В. Воронцов Консультант: В.А. Алексеев

2023

## Цель исследования

Мотивация: тематические модели неустойчивы, неполны Цель исследования: получить интерпретируемую тематическую модель за некоторое число итераций Метод: итеративное улучшение тематической модели с использованием регуляризаторов пользовательской разметки тем на релевантные, нерелевантные и «мусорные»

## Литература

- ► Alekseev V. et al. "TopicBank: Collection of coherent topics using multiple model training with their further use for topic model validation"
- Victor Bulatov, Evgeny Egorov, Eugenia Veselova, Darya Polyudova, Vasiliy Alekseev, Alexey Goncharov, Konstantin Vorontsov. "TopicNet: Making Additive Regularisation for Topic Modelling Accessible"
- Воронцов К.В. "Вероятностное тематическое моделирование: теория, модели, алгоритмы и проект BigARTM"

# О тематическом моделировании и ARTM

- ▶ D множество (коллекция) документов
- $lackbox{W}$  множество термов Термами могут быть слова в нормальной форме, словосочетания. Каждый документ  $d \in D$  представляет собой последовательность термов.
- T множество тем Как правило, количество тем |T| заранее задано.

При построении вероятностной тематической модели

$$p(w \mid d) = \sum_{t \in T} p(w \mid t)p(t \mid d) - \sum_{t \in T} \varphi_{wt}\theta_{td}$$

в подходе ARTM происходит максимизация  $\log$  правдоподобия с k регуляризаторами  $R_i$ :

$$\sum_{d,w} n_{dw} \ln \sum_{t} \varphi_{wt} \theta_{td} + \sum_{i=1}^{k} \tau_{i} R_{i}(\Phi, \Theta) \rightarrow \max_{\Phi, \Theta}$$

# О тематическом моделировании и ARTM

#### Далее применяется ЕМ-алгоритм.

**Е**-шаг:

$$p_{tdw} = \underset{t \in T}{\mathsf{norm}} (\varphi_{wt} \theta_{td})$$

М-шаг:

$$\varphi_{wt} = \underset{w \in W}{\text{norm}} (n_{wt} + \varphi_{wt} \frac{\partial R}{\partial \varphi_{wt}})$$
$$\theta_{td} = \underset{t \in T}{\text{norm}} (n_{td} + \theta_{td} \frac{\partial R}{\partial \theta_{td}})$$

### Постановка задачи

Пусть D — коллекция документов, количество тем |T| задано заранее.

После обучения базовой тематической модели  $M_0$  каждая из тем  $t \in \mathcal{T}$  отнесена пользователем в одну из трёх категорий:

- ▶ T<sub>+</sub> (релевантные, имеющие отношение к исследовани.)
- $ightharpoonup T_0$  (нерелевантные, дублирующие релевантные)
- ▶ Т\_ («мусорные», не имеющие отношение к исследованию)

После обучения новой тематической модели  $M_1 \mid T_+ \mid$  должно увеличиться, и должно быть сохранено как можно больше тем из  $T_+$ , а  $\mid T_- \mid$  должно уменьшиться. Процесс продолжается итеративно.

#### Решение

#### На каждой итерации:

С помощью регуляризатора сглаживания

$$R(\Phi,\Theta) = \beta_0 \sum_{t \in T_0} \sum_{w \in W} \beta_{wt} \ln \varphi_{wt} + \alpha_0 \sum_{d \in D_0} \sum_{t \in T} \alpha_{td} \ln \theta_{td}$$

зафиксировать столбцы матрицы Ф, соответствующие релевантным темам, используя с достаточно большим коэффициентом

Для выявления новых релевантных тем использовать регуляризатор декоррелирования, используя матрицу Ф предыдущей модели:

$$R(\Phi) = - au \sum_{t \in T_{+}} \sum_{s \in T_{-}} \sum_{w \in W} arphi_{wt} \widetilde{arphi}_{ws} o \max$$

$$\varphi_{wt} = \underset{w \in W}{\mathsf{norm}} \left( n_{wt} - \tau \varphi_{wt} [t \in T_+] \sum_{s \in T_-} \widetilde{\varphi}_{ws} \right)$$

модели на предыдущей итерации.

В качестве коллекции текстов используется набор из 16 449 новостей, опубликованных на сайте Lenta.ru в период с мая по август 2008-го года. Предполагается разделение на 100 тем.

#### Предобработка:

- Заголовок и текст каждой новости разбиваются на токены, далее происходит лемматизация.
- Далее по РМІ отбирается 10 000 биграмм, которые характеризуют коллекцию текстов.

**Базовая модель:** TopicNet, 50 предметных тем, без регуляризаторов на темы **Новая модель:** TopicNet, 50 предметных тем, регуляризатор сглаживания для тем  $T_+$  с  $\tau=10^9$ , регуляризатор декоррелирования для тем из  $T_-$  *Каждая последующая модель строится аналогично, используя данные* 

Внешний критерий: количество тем в  $T_+$ ,  $T_0$ ,  $T_-$ .

Чем больше  $|T_+|$  и меньше  $|T_-|$ , тем лучше.

#### Внутренние критерии:

Перплексия

$$\mathcal{P}_m(D; p) = \exp\left(-\frac{1}{n_m} \sum_{d \in D} \sum_{w \in W^m} n_{dw} \ln p(w \mid d)\right)$$

- Разреженность матрицы Ф
- Средняя контрастность тем, где контрастность темы определяется как

$$con_t = \frac{1}{|W_t|} \sum_{w \in W_t} p(t \mid w), \ W_t = \{ w \in W \mid \varphi_{wt} > \frac{1}{|W|} \}$$

| Модель           | $ T_+ $ | $ T_0 $ | $   T_{-}   $ |
|------------------|---------|---------|---------------|
| $\overline{M_0}$ | 5       | 1       | 44            |
| $M_1$            | 7       | 1       | 42            |
| $M_2$            | 8       | 1       | 41            |
| $M_3$            | 8       | 1       | 41            |

Таблица: Данные по группам по пользовательской разметке

На каждой итерации удалось сохранить ранее найденные релевантные темы.



Рис.: Перплексия



Рис.: Разреженность Ф



Рис.: Средняя контрастность тем

#### Заключение

#### Результаты:

- предложен метод итеративного улучшения тематической модели,
- ightharpoonup показано, как использовать регулятор сглаживания для сохранения тем из  $\mathcal{T}_+$ ,
- ightharpoonup предложен регуляризатор декоррелирования тем из  $T_-$ .