Progetto Introduzione Intelligenza Artificiale A.A. 2021/2022

Docente: Prof. Valentina Poggioni Assistente alla didattica: Dr. Alina Elena Baia

Il progetto consiste nella realizzazione di una applicazione di Intelligenza Artificiale completa degli aspetti di gestione di: *sensori* per l'acquisizione dei dati dall'esterno relativi a *stati* e *obiettivi*, *ragionamento/ricerca* della soluzione per i goal acquisiti, *esecutori* per la realizzazione delle azioni che conducono alla soluzione.

Progetto Uniform Coloring

Uniform Coloring è un dominio in cui si hanno a disposizione alcune celle da colorare, e vari colori a disposizione. Per semplicità immaginiamo una griglia rettangolare in cui è possibile spostare una testina colorante fra le celle attigue secondo le 4 direzioni cardinali (N,S,E,W), senza uscire dalla griglia. Tutte le celle hanno un colore di partenza (B=blu, Y=yellow, G=green) ad eccezione di quella in cui si trova la testina indicata con T. La testina può colorare la cella in cui si trova con uno qualsiasi dei colori disponibili a differenti costi (cost(B)=1, cost(Y)=2, cost(G)=3), mentre gli spostamenti hanno tutti costo uniforme pari a 1. L'obiettivo è colorare tutte le celle dello stesso colore (non importa quale) e riportare la testina nella sua posizione di partenza. La codifica di tutto il dominio (topologia della griglia, definizione delle azioni etc.) è parte dell'esercizio. Partendo dalla posizione iniziale della testina e combinando azioni di spostamento e colorazione, si chiede di trovare la sequenza di azioni dell'agente per raggiungere l'obiettivo. La posizione iniziale della testina, la struttura della griglia e la colorazione iniziale delle celle sono passati al sistema tramite un'immagine.

Il progetto consiste nel produrre:

- 1) **Descrizione formale del dominio e dei vincoli** che le azioni eseguibili dall'agente (la testina) nella griglia devono rispettare (esempio vincoli: v1="l'agente può compiere un solo passo alla volta", v2="l'agente si può muovere solo fra celle adiacenti", etc.). La descrizione sarà un testo che descrive le regole da rispettare e le assunzioni desunte dall'analisi del dominio.
- 2) **Implementazione delle classi per la ricerca nello spazio degli stati di Smart Vacuum.**Utilizzando le classi di AIMA-python si implementi quindi un dominio *UniformColoring* come classe derivata da *Problem*, scegliendo e definendo una *rappresentazione per gli stati* e ridefinendo opportuni metodi *actions* e *result* e tutti gli eventuali metodi aggiuntivi , es. *goal_test*, che si rendessero necessari.
- Si descriva e si implementi almeno una **euristica** definenendone le caratteristiche di consistenza e ammissibilità rispetto al dominio dato. L'euristica definita mantiene le stesse proprietà nel caso in cui le azioni di spostamento costassero 0 o le colorazioni avessero tutte lo stesso costo?
- 3) **Acquisizione e classificazione degli input, stato iniziale e goal.** Si realizzi un programma che, passata in input un'immagine contenente la configurazione della griglia e la posizione iniziale dell'agente:
- a) interpreti l'immagine individuando la configurazione della griglia e, **attraverso un metodo di classificazione,** la posizione iniziale dell'agente e la colorazione iniziale delle celle. Non ci sono vincoli sul metodo/modello utilizzato per la classificazione. Si consiglia di utilizzare il dataset

eMNIST/MNIST per la classficazione di lettere e cifre scritte a mano, visto a lezione e facilmente reperibile su Web. Assumiamo che le lettere siano solo maiuscole;

- b) traduca i dati risultanti dall'analisi delle immagini negli stati *stato_iniziale e stato_goal* del problema, secondo la rappresentazione definita per il punto 2;
- c) **invochi il solutore (vedi punto 2)**, tramite una tecnica di ricerca informata e almeno una non informata, della classe *UniformColoring*, e **produca**, se esiste, la **soluzione del problema**, ovvero la sequenza azioni da eseguire per raggiungere lo stato goal. E' interessante mostrare come algoritmi diversi possano portare a soluzioni diverse nel caso in cui ottimizzino rispetto al costo della soluzione oppure rispetto la sua lunghezza.
- 4) **Esecuzione.** Si implementi un simulatore dell'esecuzione del piano di azioni calcolato, anche semplicemente attraverso una sequenza di immagini.

Dovrà inoltre essere prodotta una relazione che, oltre alla descrizione del dominio richiesta nel punto 1, dovrà contenere statistiche e valutazione dei risultati ottenuti relativi a:

- classificazione lettere e cifre ed estrazione stati dalle immagini
- prestazioni della ricerca nello spazio degli stati, problemi risolti/irrisolti dimensione dei problemi risolti.

Relazione e codice prodotto dovranno essere consegnati attraverso la procedura messa a disposizione nella pagina di Unistudium del corso.

Di seguito sono forniti alcuni esempi di immagini. Griglia e lettere possono essere prodotte digitalmente oppure possono essere disegnate/scritte a mano.

Al momento della presentazione del progetto verrà richiesta la soluzione di problemi descritti con immagini nuove (mai viste dal sistema).

Note:

- Per l'elaborazione delle immagini in input, e per la generazione della sequenza di immagini che simula il processo di esecuzione si consiglia l'utilizzo della libreria OpenCV.

Per qualunque incertezza sul testo, sullo sviluppo o per la discussione di versioni parziali del progetto scrivere una email a docente e assistenti alla didattica.

ESEMPI di problemi, con possibili soluzioni e relativi costi

Lunghezza = 9

Costo = 15

Stato iniziale						Stato iniziale			Possibile stato goal			
G	T	G	В	G		G		Y	Υ			
G	Y	G	В	Y		Y		Y	Υ			
				Y	× i	T		Y	Т			
Possibile stato goal												
G	Т	G	G	Pos	Possibile soluzione							
G	G	G	G	Noi	Nord, Nord, col-Y, West, col-Y, East, Sud, Sud							
Possibile soluzione							Costo = 10 Lunghezza = 8					
Sud, col-G, East, East, col-G, Nord, col-G, West, West												