22 - Introduction to Distributed Databases

- 1. System Architecture
 - A. Shared Everything
 - B. Shared Memory
 - i. CPUs access to global memory
 - ii. Each CPU should know about other CPU's action
 - C. Shared Disk
 - i. Each CPU has separate memory, access to global disk
 - ii. CPUs must communicate with network to know about other's current state (like update)
 - D. Shared Nothing
 - i. Each DBMS has separate CPU, memory, disk
 - ii. DBMSs must communicate with network
 - iii. Hard to increase capacity and ensure capacity, but better performance
- 2. Design Issues
 - A. Homogenous Nodes: all nodes can do same tasks
 - B. Heterogenous Nodes: nodes are assigned specific tasks

3. Partitioning Schemes

DBMS executes query fragment on each partition and combines it

A. Naïve table partitioning

- i. Each table is one partition
- ii. Queries that doesn't communicate between tables are ideal

B. Horizontal Partitioning

- Choose partitioning key and partition table using some partition technique(range partition, hash partition, etc)
- ii. Queries that searching with partitioning key is ideal
- iii. Consistent hashing
 - 1. Hash space is like ring
 - Using one direction, nearest node to hash key is selected.
 It is efficient to add node and re-hash
 because just one node is affected by new node.

iv. Logical vs. Physical

- Logical: All records are contained in same disk, but managed by separate nodes. (shared disk)
- 2. Physical: all records are contained in different node with separate disk (shared nothing)

4. Distributed Concurrency Control

A. Centralized coordinator:

Coordinator determines whether to lock the partition and commit the change of the partition

B. Decentralized Coordinator:

Each partition has coordinator...

5. What is it?

A. How Decentralized coordinator work…?