Organisations: Lab 1

ofer engel

15/11/2021

```
## -- Attaching packages ------ tidyverse 1.3.1 --
## v ggplot2 3.3.5
                    v purrr
                            0.3.4
## v tibble 3.1.2
                    v dplyr
                            1.0.7
## v tidyr
           1.1.3
                    v stringr 1.4.0
## v readr
                    v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
      group_rows
```

Exercise 1: Introducing myself

- 1 Picture and stuff
- 2 Statistics and me
 - 3. Use nested lists, and a link...

Exercise 2: Manually presenting tables with data

la lal allallala kjfklajdfkja sd;klfj

Exercise 3: using mathematical notation in RMarkdown

akdfadfka jkj oi nk kl

- 1 Take a picture of yourself, your cat or something else that is personal to you. And explain what it is about: ANSWER HERE:
- 2 Write a little introduction about your relationship with statistics and sustainable organisations. Do you have any background in statistics? How would learning statistics benefit you in the future? ANSWER HERE:
 - 3. Use nested lists...
- 3 For example, what are the things you are looking forward to? (add links, emphasis) * A link to web-pages about anything you feel could be relevant * Doing cool stuff with fonts, such as Using italic font to emphasize really important ideas! Using bold fonts. * A link to a video...!

Exercise 2: Manually presenting tables with data

Here is a table - oh now we need some code...

I found the data here...

20. Academy Awards The following tables list the ages of female and male actors when they starred in their Oscar-winning Best Actor performances.

22.

Ages of Best Female Actor Award Recipients, Academy Awards, 1975–2010

42	41	36	32	41	33	31	74	33	49	38	61
21	41	26	80	42	29	33	36	45	49	39	34
26	25	33	35	35	28	30	29	61	32	33	45

Ages of Best Male Actor Award Recipients, Academy Awards, 1975–2010

5	66	38	60	30	40	42	37	76	39	53	45	36
6	52	43	51	32	42	54	52	37	38	32	45	60
4	6	40	36	47	29	43	37	38	45	50	48	60

Figure 1: my dat

age	year	sex
42	1975	female
41	1976	female
25	1975	male
38	1976	male

Exercise 3: using mathematical notation in RMarkdown

Ok let's look for example at a geometric sequence. So we all know that if we have a geometric sequence like so:

$$1, q, q^2, q^3 q^{100}$$

The sum of the terms would then be...

$$1 + q + q^2 + q^3 + \dots + q^{100} = S_{100} = \frac{q^{100} - 1}{q - 1}$$

So let's say q = 0.75 and we have

$$0.75^{0} + 0.75 + 0.75^{2} + \dots + 0.75^{100} = S_{100} = \frac{0.75^{100} - 1}{0.75 - 1}$$

So if we add them all up $0.75^0 + 0.75 + ... + 0.75^{100}$, we get 4. Another way, is to use the formula: $\frac{0.75^{100} - 1}{0.75 - 1}$ The result will be 4. We can see that whether we sum up the numbers or use the formula, we get the same result. Hooray!