Dissertation presented to the Instituto Tecnológico de Aeronáutica, in partial fulfillment of the requirements for the degree of Master of Science in the Graduate Program of Engenharia Aeronáutica e Mecânica, Field of Propulsão Aeroespacial e Energia.

Ronaldo Chaves Reis

OPTIMIZATION OF PRELIMINARY DESIGN OF AXIAL FLOW TURBINES FOR TURBOPUMP APPLICATIONS BASED ON REDUCED ORDER METHODOLOGY

Dissertation approved in its final version by signatories below:

Prof. Dr. Jesuíno Takachi Tomita Advisor

Prof. Dr. Pedro Teixeira Lacava Dean for Graduate Education and Research

> Campo Montenegro São José dos Campos, SP – Brazil 2021

Cataloging-in Publication Data

Documentation and Information Division

Reis, Ronaldo Chaves

Optimization of Preliminary Design of Axial Flow Turbines for Turbopump Applications Based on Reduced Order Methodology / Ronaldo Chaves Reis. São José dos Campos, 2021.

Dissertation of Master of Science – Course of Engenharia Aeronáutica e Mecânica. Area of Propulsão Aeroespacial e Energia – Instituto Tecnológico de Aeronáutica, 2021. Advisor: Prof. Dr. Jesuíno Takachi Tomita.

1. Axial Flow Turbine. 2. Turbopumps. 3. Optimization. I. Instituto Tecnológico de Aeronáutica. II. Title.

BIBLIOGRAPHIC REFERENCE

REIS, Ronaldo Chaves. **Optimization of Preliminary Design of Axial Flow Turbines for Turbopump Applications Based on Reduced Order Methodology**. 2021. 30f. Dissertation of Master of Science – Instituto Tecnológico de Aeronáutica, São José dos Campos.

CESSION OF RIGHTS

AUTHOR'S NAME: Ronaldo Chaves Reis

PUBLICATION TITLE: Optimization of Preliminary Design of Axial Flow Turbines for

Turbopump Applications Based on Reduced Order Methodology.

PUBLICATION KIND/YEAR: Dissertation / 2021

It is granted to Instituto Tecnológico de Aeronáutica permission to reproduce copies of this dissertation and to only loan or to sell copies for academic and scientific purposes. The author reserves other publication rights and no part of this dissertation can be reproduced without the authorization of the author.

Ronaldo Chaves Reis Rua República do Líbano, 314 12.216-590 – São José dos Campos – SP

OPTIMIZATION OF PRELIMINARY DESIGN OF AXIAL FLOW TURBINES FOR TURBOPUMP APPLICATIONS BASED ON REDUCED ORDER METHODOLOGY

Ronaldo Chaves Reis

Thesis Committee Composition:

Prof. Dr.	Alan Turing	Presidente	-	ITA
Prof. Dr.	Jesuíno Takachi Tomita	Advisor	-	ITA
Prof. Dr.	Linus Torwald	Membro externo	-	UXXX
Prof. Dr.	Richard Stallman		-	UYYY
Prof. Dr.	Donald Duck		-	DISNEY
Prof ^a . Dr ^a .	Minie Mouse		_	DISNEY

Aos amigos da Graduação e Pós-Graduação do ITA por motivarem tanto a criação deste template pelo Fábio Fagundes Silveira quanto por motivarem a mim e outras pessoas a atualizarem e aprimorarem este excelente trabalho.

Acknowledgments

Primeiramente, gostaria de agradecer ao Dr. Donald E. Knuth, por ter desenvolvido o T_EX .

Ao Dr. Leslie Lamport, por ter criado o L^AT_EX, facilitando muito a utilização do T_EX, e assim, eu não ter que usar o Word.

Ao Prof. Dr. Meu Orientador, pela orientação e confiança depositada na realização deste trabalho.

Ao Dr. Nelson D'Ávilla, por emprestar seu nome a essa importante via de trânsito na cidade de São José dos Campos.

Ah, já estava esquecendo... agradeço também, mais uma vez ao TEX, por ele não possuir vírus de macro :-)

Resumo

Aqui começa o resumo do referido trabalho. Não tenho a menor idéia do que colocar aqui. Sendo assim, vou inventar. Lá vai: Este trabalho apresenta uma metodologia de controle de posição das juntas passivas de um manipulador subatuado de uma maneira subótima. O termo subatuado se refere ao fato de que nem todas as juntas ou graus de liberdade do sistema são equipados com atuadores, o que ocorre na prática devido a falhas ou como resultado de projeto. As juntas passivas de manipuladores desse tipo são indiretamente controladas pelo movimento das juntas ativas usando as características de acoplamento da dinâmica de manipuladores. A utilização de redundância de atuação das juntas ativas permite a minimização de alguns critérios, como consumo de energia, por exemplo. Apesar da estrutura cinemática de manipuladores subatuados ser idêntica a do totalmente atuado, em geral suas caraterísticas dinâmicas diferem devido a presença de juntas passivas. Assim, apresentamos a modelagem dinâmica de um manipulador subatuado e o conceito de índice de acoplamento. Este índice é utilizado na sequência de controle ótimo do manipulador. A hipótese de que o número de juntas ativas seja maior que o número de passivas $(n_a > n_p)$ permite o controle ótimo das juntas passivas, uma vez que na etapa de controle destas há mais entradas (torques nos atuadores das juntas ativas), que elementos a controlar (posição das juntas passivas).

Abstract

Well, the book is on the table. This work presents a control methodologie for the position of the passive joints of an underactuated manipulator in a suboptimal way. The term underactuated refers to the fact that not all the joints or degrees of freedom of the system are equipped with actuators, which occurs in practice due to failures or as design result. The passive joints of manipulators like this are indirectly controlled by the motion of the active joints using the dynamic coupling characteristics. The utilization of actuation redundancy of the active joints allows the minimization of some criteria, like energy consumption, for example. Although the kinematic structure of an underactuated manipulator is identical to that of a similar fully actuated one, in general their dynamic characteristics are different due to the presence of passive joints. Thus, we present the dynamic modelling of an underactuated manipulator and the concept of coulpling index. This index is used in the sequence of the optimal control of the manipulator.

List of Figures

FIGURE 2.1 -	- Fluxograma	do processo	de design	ótimo.							19
--------------	--------------	-------------	-----------	--------	--	--	--	--	--	--	----

List of Tables

List of Abbreviations and Acronyms

CTq computed torque

DC direct current

EAR Equação Algébrica de Riccati

GDL graus de liberdade

ISR interrupção de serviço e rotina

LMI linear matrices inequalities

MIMO multiple input multiple output

PD proporcional derivativo

PID proporcional integrativo derivativo

PTP point to point

UARMII Underactuated Robot Manipulator II

VSC variable structure control

List of Symbols

- a Distância
- a Vetor de distâncias
- \mathbf{e}_j Vetor unitário de dimensão ne com o $j\text{-}\mathrm{\acute{e}simo}$ componente igual a 1
- ${f K}$ Matriz de rigidez
- m_1 Massa do cumpim
- δ_{k-k_f} Delta de Kronecker no instante k_f

Contents

1	Int	ROI	OUCTION			 	 	 		 •	 	•	15
	1.1	Obj	etivo			 		 		 			15
	1.2	Mot	ivação			 		 		 			15
	1.3	Org	anização do trabalho			 		 		 			16
2	Ов.	JEC	ГІVЕ			 	 	 	•		 		17
	2.1	Tur	binas			 		 		 			17
	2.1	.1	Modelos de Perdas			 		 		 			18
	2.2	Alge	oritmo Genético			 		 		 			18
	2.3	Otin	nização			 		 		 			18
	2.3	3.1	Variáveis de Projeto			 		 	•	 			19
	2.3	5.2	Função Objetivo			 		 		 			19
	2.3	3.3	Restrições			 		 		 			20
	2.3	3.4	Limites das Variáveis de F	'roje	eto .	 		 		 			20
	2.3	5.5	Modelagem			 		 		 			20
	2.3	5.6	NSGA-II			 		 		 			21
3	Lit	ERA	TURE SURVEY			 	 			 •	 	•	22
	3.1	Defi	nição do problema			 		 		 			22
4	Dis	SCUS	SION			 	 	 			 		23

CONTENTS xiv

5 CONCLUSION	24
Bibliography	25
Appendix A – Tópicos de Dilema Linear	29
A.1 Uma Primeira Seção para o Apêndice	29
Annex A – Exemplo de um Primeiro Anexo	30
A 1 Uma Seção do Primeiro Anevo	30

1

Introduction

1.1 Objetivo

O objetivo deste projeto de mestrado é desenvolver uma ferramenta computacional para otimização de projeto preliminar de turbinas axiais, com enfoque em maximização da relação de pressão e da eficiência ao longo do seu envelope de operação.

1.2 Motivação

Turbinas desempenham papel importante quando se trata de sistemas propulsivos (aeronáuticos e espaciais) e também sistemas de geração de energia. Assim sendo, diversas nações incluindo seus milhares de cientistas e engenheiros já dedicaram recursos financeiros, temporais e computacionais ao desenvolvimento de turbinas, buscando sobretudo melhoria de sua eficiência.

É sabido que qualquer ganho na eficiência de uma turbina tem efeitos diretos na redução do consumo de combustível e uma consequente economia financeira. Tal benefício pode ser obtido também se as ferramentas utilizadas nas fases iniciais do projeto sejam mais eficientes e acelerem o anti-projeto da turbina. Surge então a demanda e a necessidade por ferramentas desse tipo.

1.3 Organização do trabalho

O capítulo 1 contém a introdução do trabalho, onde são expostos o objetivo e a motivação do mesmo, afim de embasar e justificar a necessidade desse trabalho.

No capítulo 2 traz a revisão da literatura em duas frentes, ao longo da apresentação da nomenclatura utilizada. A primeira é a física que descreve a turbina e seu projeto que inclui basicamente conceitos de fluido e termodinâmica enquanto que a segunda apresenta uma descrição dos algoritmos genéticos e sua metaeurística que tenta mimetizar os conceitos de evolução natural e genética.

O capítulo 3 apresenta a metodolodia utilizada para o desevolvimento da ferramenta computacional, com a definição do processo de otimização.

É também apresentado no capítulo 4 os resultados obtidos para as simulações, considerando como caso de validação a turbina XX.

O capítulo 5 e último traz as considerações finais incluindo a conclusão do trabalho.

Objective

2.1 Turbinas

Uma modelagem simplificada e uni-dimensional para projetos de turbomáquinas pode produzir informações qualitativas de grande valor aos projetistas nas fases iniciais de desenvolvimento. Como exemplo, tendências específicas sobre o desempenho e funcionamento de uma turbina facilita a determinação da geometria básica da máquina (dimensões e formas), com baixo uso de recursos temporais e computacionais.

A primeira etapa é uma análise criteriosa dos requisitos e parâmetros do projeto. A ánalise do ciclo do motor vai fornecer informações como condições de entrada, razão de pressão, vazão e rotação.

Lista de referências pretendida para elaboração desta seção:

- 1. (SARAVANAMUTTOO et al., 2017)
- 2. Notas de aula ME-211
- 3. (OLIVEIRA *et al.*, 2020)
- 4. (SCHOBEIRI, 2018)
- 5. (DENTON, 1993)
- 6. (MAIA et al., 2019)
- 7. (DENTON; XU, 1998)

- 8. (CRAIG; COX, 1970)
- 9. (LEACH, 1983)
- 10. (KADHIM, 2018)
- 11. (WALLIS; DENTON, 1998)

2.1.1 Modelos de Perdas

2.2 Algoritmo Genético

De acordo com a [ref] Optimization for Engineering Design Algorithms and Examples, Algoritmos Genéticos (AG, daqui em diante) permitem uma maneira fácil de encontrar múltiplas soluções ótimas simultaneamente em uma única rodada de simulação. Em se tratando de problemas de otimização multiobjetivo, surge um conjunto de soluções ótimas conhecida como Soluções Ótimas de Pareto ou Fronteira de Pareto. Também, AG demonstra um maneira de lidar com múltiplos objetivos e ajuda a encontrar multiplas soluções ótimas de Pareto simultaneamente.

2.3 Otimização

[ref] Optimization for Engineering Design Algorithms and Examples

Procedimento de formulação do problema tem o propósito de criar um modelo matemático do problema de design ótimo, a fim de que possa ser solucionado usando um algoritmo de otimização.

Inicialmente, deve-se perceber a necessidade de usar uma otimização nesse problema específico de projeto. Posto isso, deve-se escolher as variáveis de projeto associadas ao problema de projeto da Turbina. Em seguida, envolver outras considerações como restrições, função objetivo e intervalo das variáveis. A figura 2.1 traz um fluxograma típico para boa definição de um problema de otimização. Uma vez definido e declarado o problema, escolhe-se qual algoritmo de otimização será usado.

Figure 1.1 A flowchart of the optimal design procedure.

FIGURE 2.1 – Fluxograma do processo de design ótimo.

2.3.1 Variáveis de Projeto

Sensibilidade de variáveis de projeto: O quão 'importante' é uma variável com relação a uma função objetivo. É possível que a mesma variável seja mais sensível em um aspecto do que em outro.

2.3.2 Função Objetivo

É interessante evitar, por questão de simplificação do processo computacional, o problema de otimização com várias funções objetivos. Usualmente, escolhe-se a principal delas como função objetivo e modifica-se as outras em formas de restrições do problema, deixando elas em certo um intervalo.

2.3.3 Restrições

2.3.4 Limites das Variáveis de Projeto

Usa-se uma primeiro chute dos limites das variáveis, considerando que a solução ótima está dentro desse intervalo. Em seguida, analisa-se o resultado da primeira simulação do algoritmo de otimização. A partir daí, faz-se os ajustes necessários no intervalo.

2.3.5 Modelagem

Normalmente, a modelagem matemática do problema de otimização não é facilmente atingível. Uma aternativa é fazer uma modificação nas equações governantes, principalmente quando se possui valores experimentais e observáveis do sistema. Assim, a formulação vai levar em consideração valores simulados versus valores observados, onde cria-se variáveis de projeto de maneira auxiliar (espaço de busca β , nesse caso), sendo a função objetivo $f(\beta)$ da equação 2.1, a qual deve ser minimizada. Tal processo tem muita similaridade com a metodologia de regressão linear, onde f representa o erro.

$$f(\beta) = (E_{observado} - E_{simulado})^2 \tag{2.1}$$

De acordo com [ref] Optimization for Engineering Design Algorithms and Examples, a inclusão de variáveis de projeto artificais frequentemente com que o entendimento do problema seja simplificado, incluindo sua modelagem matemática.

Lista de referências pretendida para elaboração desta seção:

- 1. (MENGISTU; GHALY, 2004)
- 2. (ASGARSHAMSI et al., 2014)
- 3. (THORN; HARTFIELD, 2016)
- 4. (ARABNIA; GHALY, 2009)
- 5. (CERVANTES; HARTFIELD, 2018)
- 6. (JUANGPHANICH et al., 2019)

- 7. (JUANGPHANICH et al., 2017)
- 8. (AGROMAYOR; NORD, 2019)
- 9. (ABADI et al., 2017)
- 10. (AMINYAVARI *et al.*, 2016)
- 11. (BA et al., 2019)
- 12. (LÉONARD; ADAM, 2008)
- 13. (ÖKSüZ; AKMANDOR, 2010)
- 14. (ARABNIA, 2012)
- 15. (JENKINS, 1982)
- 16. (JENKINS, 1983)
- 17. (CERVANTES, 2018)
- 18. (SIVASHANMUGAM, 2011)
- 19. (MENGISTU, 2005)
- 20. (AMANO; XU, 2003)
- 21. (RAO; SAVSANI, 2012)
- 22. (DEB, 2012)

2.3.6 NSGA-II

Lista de referências pretendida para elaboração desta seção:

1. (DEB et al., 2002)

Literature Survey

3.1 Definição do problema

A tarefa de otimização será cumprida com o uso de algoritmos genéticos, enquanto que o projeto preliminar da turbina será simplificado e uni-dimensional.

Pretende-se utilizar um estudo de caso mais simples com o objetivo de entender o funcionamento da ferramenta de otimização e familiarização do método. Tal exemplo base pode ser feito considerando apenas uma variável de projeto. Após essa fase, o processo formulado como um todo deverá ser resolvido. Pretende-se limitar a quantidade de variáveis de projeto para 3, sendo estas facilmente adimensionalizadas para fim de comparação.

4

Discussion

Validação da metodologia utilizada com um caso mais simples

Discussão dos resultados

Conclusion

Conclusão

Bibliography

- ABADI, S. N. R.; AHMADPOUR, A.; ABADI, S.; MEYER, J. CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows. **Applied Thermal Engineering**, Elsevier BV, v. 112, p. 1575–1589, fev. 2017. Disponível em: https://doi.org/10.1016/j.applthermaleng.2016.10.058.
- AGROMAYOR, R.; NORD, L. O. Preliminary design and optimization of axial turbines accounting for diffuser performance. **International Journal of Turbomachinery, Propulsion and Power**, MDPI AG, v. 4, n. 3, p. 32, set. 2019. Disponível em: https://doi.org/10.3390/ijtpp4030032.
- AMANO, R. S.; XU, C. Aerodynamic blade optimal design of turbomachinery. In: **International Gas Turbine Congress**. [S.l.]: Gas Turbine Society of Japan, 2003.
- AMINYAVARI, M.; MAMAGHANI, A. H.; SHIRAZI, A.; NAJAFI, B.; RINALDI, F. Exergetic, economic, and environmental evaluations and multi-objective optimization of an internal-reforming SOFC-gas turbine cycle coupled with a rankine cycle. **Applied Thermal Engineering**, Elsevier BV, v. 108, p. 833–846, set. 2016. Disponível em: https://doi.org/10.1016/j.applthermaleng.2016.07.180.
- ARABNIA, M. Aerodynamic Shape Optimization of Axial Turbines in Three Dimensional Flow. Tese (Doutorado) Concordia University, Montréal, Québec, Canada, mar. 2012.
- ARABNIA, M.; GHALY, W. A strategy for multi-point shape optimization of turbine stages in three-dimensional flow. In: **Volume 7: Turbomachinery, Parts A and B**. ASMEDC, 2009. Disponível em: https://doi.org/10.1115/gt2009-59708>.
- ASGARSHAMSI, A.; BENISI, A. H.; ASSEMPOUR, A.; POURFARZANEH, H. Multi-objective optimization of lean and sweep angles for stator and rotor blades of an axial turbine. **Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering**, SAGE Publications, v. 229, n. 5, p. 906–916, jun. 2014. Disponível em: https://doi.org/10.1177/0954410014541080.
- BA, W.; WANG, Z.; LI, X.; GU, C. Three-dimensional optimal design of a cooled turbine considering the coolant-requirement change. **Open Physics**, Walter de Gruyter GmbH, v. 17, n. 1, p. 768–778, dez. 2019. Disponível em: https://doi.org/10.1515/phys-2019-0080.

BIBLIOGRAPHY 26

CERVANTES, N. An Evolutionary Strategies Method to Optimize Turbine and Compressor Blades. Dissertação (Mestrado) — Auburn University, Auburn, Alabama, maio 2018.

- CERVANTES, N.; HARTFIELD, R. J. An evolutionary strategies method for optimizing compressor and turbine blades. In: **2018 Joint Propulsion Conference**. American Institute of Aeronautics and Astronautics, 2018. Disponível em: https://doi.org/10.2514/6.2018-4736.
- CRAIG, H. R. M.; COX, H. J. A. Performance estimation of axial flow turbines. **Proceedings of the Institution of Mechanical Engineers**, SAGE Publications, v. 185, n. 1, p. 407–424, jun. 1970. Disponível em: https://doi.org/10.1243/pime_proc_1970_185_048_02.
- DEB, K. Optimization for Engineering Design Algorithms and Examples. [S.l.]: PHI Learning Private Limited, 2012. ISBN 978-81-203-4678-9.
- DEB, K.; PRATAP, A.; AGARWAL, S.; MEYARIVAN, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. **IEEE Transactions on Evolutionary Computation**, Institute of Electrical and Electronics Engineers (IEEE), v. 6, n. 2, p. 182–197, abr. 2002. Disponível em: https://doi.org/10.1109/4235.996017>.
- DENTON, J. D. Loss mechanisms in turbomachines. In: American Society of Mechanical Engineers, 1993. Disponível em: https://doi.org/10.1115/93-gt-435.
- DENTON, J. D.; XU, L. The exploitation of three-dimensional flow in turbomachinery design. **Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science**, SAGE Publications, v. 213, n. 2, p. 125–137, fev. 1998. Disponível em: https://doi.org/10.1243/0954406991522220.
- JENKINS, J. M. A comprehensive method for preliminary design optimization of axial gas turbine stages. In: **18th AIAA/SAE/ASME Joint Propulsion Conference**. [S.l.]: American Institute of Aeronautics and Astronautics, 1982.
- JENKINS, J. M. A comprehensive method for preliminary design optimization of axial gas turbine stages, part ii: Code verification. In: **19th AIAA/SAE/ASME Joint Propulsion Conference**. [S.l.]: American Institute of Aeronautics and Astronautics, 1983.
- JUANGPHANICH, P.; MAESSCHALCK, C. D.; PANIAGUA, G. Turbine passage design methodology to minimize entropy production—a two-step optimization strategy. **Entropy**, MDPI AG, v. 21, n. 6, p. 604, jun. 2019. Disponível em: https://doi.org/10.3390/e21060604>.
- JUANGPHANICH, P.; MAESSCHALCK, C. G. D.; PANIAGUA, G. From conceptual 1d design towards full 3d optimization of a highly loaded turbine stage. In: **55th AIAA Aerospace Sciences Meeting**. American Institute of Aeronautics and Astronautics, 2017. Disponível em: https://doi.org/10.2514/6.2017-0110.
- KADHIM, H. T. K. Effect of non-axisymmetric casing on flow and performance of an axial turbine. Tese (Doutorado) University of Leicester, 2018.

BIBLIOGRAPHY 27

LEACH, K. P. Energy Efficient Engine High-Pressure Turbine Component Rig Performance Test Report. maio 1983.

- LÉONARD, O.; ADAM, O. A quasi-one-dimensional CFD model for multistage turbomachines. **Journal of Thermal Science**, Springer Science and Business Media LLC, v. 17, n. 1, p. 7–20, mar. 2008. Disponível em: https://doi.org/10.1007/s11630-008-0007-z.
- MAIA, A. A. G.; SILVA, J. F. da; TOMITA, J. T.; BRIGHENTI, C. Preliminary design of axial flow turbine for a small jet engine. In: **Proceedings of the 5th World Congress on Mechanical, Chemical, and Material Engineering**. Avestia Publishing, 2019. Disponível em: https://doi.org/10.11159/htff19.189.
- MENGISTU, T.; GHALY, W. Single and multipoint shape optimization of gas turbine blade cascades. In: **10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference**. American Institute of Aeronautics and Astronautics, 2004. Disponível em: https://doi.org/10.2514/6.2004-4446.
- MENGISTU, T. T. Aerodynamic Design and Optimization of Turbomachinery Blading. Tese (Doutorado) Concordia University, Montréal, Québec, Canada, abr. 2005.
- ÖKSüZ Özhan; AKMANDOR, İ. S. Multi-objective aerodynamic optimization of axial turbine blades using a novel multilevel genetic algorithm. **Journal of Turbomachinery**, ASME International, v. 132, n. 4, maio 2010. Disponível em: https://doi.org/10.1115/1.3213558.
- OLIVEIRA, I.; SILVA, G. P.; TONON, D.; BRINGHENTI, C.; TOMITA, J. T. Interactive learning platform for turbine design using reduced order methods. In: . American Society of Mechanical Engineers, 2020. Disponível em: https://doi.org/10.1115/gt2020-16028.
- RAO, R. V.; SAVSANI, V. J. **Mechanical Design Optimization Using Advanced Optimization Techniques**. Springer London, 2012. Disponível em: https://doi.org/10.1007/978-1-4471-2748-2.
- SARAVANAMUTTOO, H. I. H.; ROGERS, G. F. C.; COHEN, H.; STRAZNICKY, P. V.; NIX, A. C. **Gas Turbine Theory (7th Edition)**. Pearson, 2017. ISBN 1292093099. Disponível em: https://www.xarg.org/ref/a/1292093099/.
- SCHOBEIRI, M. T. **Gas Turbine Design, Components and System Design Integration**. Springer International Publishing, 2018. Disponível em: https://doi.org/10.1007/978-3-319-58378-5.
- SIVASHANMUGAM, V. K. **Three Dimensional Aero-Structural Shape Optimization of Turbomachinery Blades**. Dissertação (Mestrado) Concordia University, Montréal, Québec, Canada, jan. 2011.
- THORN, C. R.; HARTFIELD, R. J. Three dimensional turbine blade optimization using evolutionary algorithm with viscous flow analysis. In: **54th AIAA Aerospace Sciences Meeting**. American Institute of Aeronautics and Astronautics, 2016. Disponível em: https://doi.org/10.2514/6.2016-0115.

BIBLIOGRAPHY 28

WALLIS, A. M.; DENTON, J. D. Comparison of design intent and experimental measurements in a low aspect ratio axial flow turbine with three-dimenisonal blading. In: **International Gas Turbine and Aeroengine Congress and Exibition**. [S.l.]: American Society of Mechanical Engineers, 1998.

Appendix A -

Tópicos de Dilema Linear

A.1 Uma Primeira Seção para o Apêndice

se necessário

Annex A -

Exemplo de um Primeiro Anexo

A.1 Uma Seção do Primeiro Anexo

Algum texto na primeira seção do primeiro anexo.

FOLHA DE REGISTRO DO DOCUMENTO ². DATA: ^{3.} DOCUMENTO N^{0} : 1. CLASSIFICAÇÃO/TIPO: ^{4.} N^o DE PÁGINAS: DMMarch 25, 2015 DCTA/ITA/DM-018/2015 30 ^{5.} TÍTULO E SUBTÍTULO: Optimization of Preliminary Design of Axial Flow Turbines for Turbopump Applications Based on Reduced Order Methodology 6. AUTOR(ES): Ronaldo Chaves Reis 7. INSTITUIÇÃO(ÕES)/ÓRGÃO(S) INTERNO(S)/DIVISÃO(ÕES): Instituto Tecnológico de Aeronáutica – ITA 8. PALAVRAS-CHAVE SUGERIDAS PELO AUTOR: Cupim; Cimento; Estruturas 9. PALAVRAS-CHAVE RESULTANTES DE INDEXAÇÃO: Cupim; Dilema; Construção ¹⁰. APRESENTAÇÃO: (X) Nacional () Internacional ITA, São José dos Campos. Curso de Master. Programa de Pós-Graduação em Engenharia Aeronáutica e Mecânica. Área de Propulsão Aeroespacial e Energia. Advisor: Prof. Dr. Jesuíno Takachi Tomita. : Prof. Dr. Coadvisor's Name. Defesa em 17/02/2021. Publicada em 25/03/2015. ^{11.} RESUMO: Aqui começa o resumo do referido trabalho. Não tenho a menor idéia do que colocar aqui. Sendo assim, vou inventar. Lá vai: Este trabalho apresenta uma metodologia de controle de posição das juntas passivas de um manipulador subatuado de uma maneira subótima. O termo subatuado se refere ao fato de que nem todas as juntas ou graus de liberdade do sistema são equipados com atuadores, o que ocorre na prática devido a falhas ou como resultado de projeto. As juntas passivas de manipuladores desse tipo são indiretamente controladas pelo movimento das juntas ativas usando as características de acoplamento da dinâmica de manipuladores. A utilização de redundância de atuação das juntas ativas permite a minimização de alguns critérios, como consumo de energia, por exemplo. Apesar da estrutura cinemática de manipuladores subatuados ser idêntica a do totalmente atuado, em geral suas caraterísticas dinâmicas diferem devido a presença de juntas passivas. Assim, apresentamos a modelagem dinâmica de um manipulador subatuado e o conceito de índice de acoplamento. Este

índice é utilizado na sequência de controle ótimo do manipulador. A hipótese de que o número de juntas ativas seja maior que o número de passivas $(n_a > n_p)$ permite o controle ótimo das juntas passivas, uma vez que na etapa de controle destas há mais entradas (torques nos atuadores das juntas ativas), que elementos a controlar (posição das juntas passivas).

^{12.} GRAU DE SIGILO:			
(X) OSTENSIVO	() RESERVADO	$(\)$ SECRETO	