Task: Exploratory Data Analysis - Terrorism

Our Aim:

- Perform 'Exploratory Data Analysis' on dataset 'Global Terrorism'
- As a security/defense analyst, try to find out the hot zone of terrorism.
- What all security issues and insights you can derive by EDA?

DATA PREPROCESSING

In [1]:

```
import math
import warnings
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import plotly.offline as py
import plotly.graph_objs as go
import matplotlib.pyplot as plt
warnings.filterwarnings('ignore')
```

In [2]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px

import warnings
warnings.filterwarnings('ignore')
```

In [3]:

```
# Let's import to our data and check the basics.
data = pd.read_csv(r"globalterrorismdb_0718dist[1].csv",encoding='latin1')
```

```
In [4]:
```

```
data.head()
```

Out[4]:

	eventid	iyear	imonth	iday	approxdate	extended	resolution	country	country_txt	ı
0	197000000001	1970	7	2	NaN	0	NaN	58	Dominican Republic	_
1	197000000002	1970	0	0	NaN	0	NaN	130	Mexico	
2	197001000001	1970	1	0	NaN	0	NaN	160	Philippines	
3	197001000002	1970	1	0	NaN	0	NaN	78	Greece	
4	197001000003	1970	1	0	NaN	0	NaN	101	Japan	

5 rows × 135 columns

```
→
```

In [5]:

```
data.shape
```

Out[5]:

(181691, 135)

In [6]:

```
nul=[]
for i in data.columns:
    if data[i].isna().sum() > 0:
        nul.append(i)
len(nul)
```

Out[6]:

106

In [7]:

```
for i in nul:
    data.drop(i,axis=1,inplace=True)

data.shape
```

Out[7]:

(181691, 29)

In [8]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 181691 entries, 0 to 181690
Data columns (total 29 columns):

Column Non-Null Count Dtype _____ _____ _ _ _ 0 eventid 181691 non-null int64 1 iyear 181691 non-null int64 2 imonth 181691 non-null int64 3 iday 181691 non-null int64 4 extended 181691 non-null int64 5 country 181691 non-null int64 6 181691 non-null object country_txt 7 region 181691 non-null int64 8 region_txt 181691 non-null object 9 vicinity 181691 non-null int64 10 crit1 181691 non-null int64 11 crit2 181691 non-null int64 12 crit3 181691 non-null int64 13 success 181691 non-null int64 14 suicide 181691 non-null int64 15 attacktype1 181691 non-null int64 attacktype1_txt 181691 non-null object 16 17 181691 non-null int64 targtype1 18 targtype1_txt 181691 non-null object 19 181691 non-null object gname 20 individual 181691 non-null int64 181691 non-null int64 21 weaptype1 weaptype1_txt 181691 non-null object 23 property 181691 non-null int64 24 dbsource 181691 non-null object 25 INT LOG 181691 non-null int64 INT_IDEO 181691 non-null int64 26 INT_MISC 181691 non-null int64 27 28 INT_ANY 181691 non-null int64

dtypes: int64(22), object(7)

memory usage: 40.2+ MB

```
In [9]:
```

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 181691 entries, 0 to 181690
Data columns (total 29 columns):

	columns (total 2)	•	
#	Column	Non-Null Count	Dtype
0	eventid	181691 non-null	int64
1	iyear	181691 non-null	int64
2	imonth	181691 non-null	int64
3	iday	181691 non-null	int64
4	extended	181691 non-null	int64
5	country	181691 non-null	int64
6	country_txt	181691 non-null	object
7	region	181691 non-null	int64
8	region_txt	181691 non-null	object
9	vicinity	181691 non-null	int64
10	crit1	181691 non-null	int64
11	crit2	181691 non-null	int64
12	crit3	181691 non-null	int64
13	success	181691 non-null	int64
14	suicide	181691 non-null	int64
15	attacktype1	181691 non-null	int64
16	attacktype1_txt	181691 non-null	object
17	targtype1	181691 non-null	int64
18	targtype1_txt	181691 non-null	object
19	gname	181691 non-null	object
20	individual	181691 non-null	int64
21	weaptype1	181691 non-null	int64
22	weaptype1_txt	181691 non-null	object
23	property	181691 non-null	int64
24	dbsource	181691 non-null	object
25	INT_LOG	181691 non-null	int64
26	INT_IDEO	181691 non-null	int64
27	INT_MISC	181691 non-null	int64
28	INT_ANY	181691 non-null	int64

dtypes: int64(22), object(7)
memory usage: 40.2+ MB

Data Visualization

In [10]:

```
fig,ax = plt.subplots(1,1,figsize=(15,7))
sns.heatmap(data.corr())
plt.show()
```


In [11]:

```
data.hist(figsize=(24,18))
```

Out[11]:

```
array([[<AxesSubplot:title={'center':'eventid'}>,
        <AxesSubplot:title={'center':'iyear'}>,
        <AxesSubplot:title={'center':'imonth'}>,
        <AxesSubplot:title={'center':'iday'}>,
        <AxesSubplot:title={'center':'extended'}>],
       [<AxesSubplot:title={'center':'country'}>,
        <AxesSubplot:title={'center':'region'}>,
        <AxesSubplot:title={'center':'vicinity'}>,
        <AxesSubplot:title={'center':'crit1'}>,
        <AxesSubplot:title={'center':'crit2'}>],
       [<AxesSubplot:title={'center':'crit3'}>,
        <AxesSubplot:title={'center':'success'}>,
        <AxesSubplot:title={'center':'suicide'}>,
        <AxesSubplot:title={'center':'attacktype1'}>,
        <AxesSubplot:title={'center':'targtype1'}>],
       [<AxesSubplot:title={'center':'individual'}>,
        <AxesSubplot:title={'center':'weaptype1'}>,
        <AxesSubplot:title={'center':'property'}>,
        <AxesSubplot:title={'center':'INT_LOG'}>,
        <AxesSubplot:title={'center':'INT_IDEO'}>],
       [<AxesSubplot:title={'center':'INT_MISC'}>,
        <AxesSubplot:title={'center':'INT_ANY'}>, <AxesSubplot:>,
        <AxesSubplot:>, <AxesSubplot:>]], dtype=object)
```


In [12]:

```
fig,axes = plt.subplots(1,2,figsize=(15,5))
data.groupby('attacktype1_txt')['suicide','success'].agg(sum).plot(kind='bar',ax=axes[0])
data.groupby('property')['suicide','success'].agg(sum).plot(kind='bar',ax=axes[1])
```

Out[12]:

<AxesSubplot:xlabel='property'>

In [13]:

```
sns.barplot(y=data['targtype1'], x=data['weaptype1'])
```

Out[13]:

<AxesSubplot:xlabel='weaptype1', ylabel='targtype1'>

In [14]:

```
fig,ax = plt.subplots(1,2,figsize=(15,7))
sns.countplot(data.success,ax=ax[0])
sns.countplot(data.vicinity,ax=ax[1])
```

Out[14]:

<AxesSubplot:xlabel='vicinity', ylabel='count'>


```
In [15]:
```

```
fig,ax = plt.subplots(1,1,figsize=(15,7))
sns.countplot(data['iyear'],hue=data['success'])
plt.xticks(rotation=90)
plt.show()
```


In [16]:

```
dat = data.groupby(['country_txt'],as_index=False).count()
```

Terrorist Organisation with Highest Terror Attacks

In [17]:

```
sns.barplot(data['gname'].value_counts()[1:15].values,data['gname'].value_counts()[1:15].in
plt.xticks(rotation=90)
fig=plt.gcf()
fig.set_size_inches(10,8)
plt.title('Terrorist Organisation with Highest Terror Attacks')
plt.show()
```


Using of Pyplot to show this visualization

```
In [18]:
```

CONCLUSION:

So after different type of analyzation ,Overall terrorism is suddenly increased from 2010. I have ranked the Hot zone in terms of terrorist activities in all regions.

Middle East & North Africa

- 1.lraq
- 2.Libya
- 3.Yemen

South Asia

- 1.Pakistan
- 2.Afghanistan
- 3.India

Sub-Saharan Africa

- 1.Nigeria
- 2.Somalia
- 3.Sudan