General Disclaimer

One or more of the Following Statements may affect this Document

•	This document has been reproduced from the best copy furnished by the
	organizational source. It is being released in the interest of making available as
	much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CR-150970) EARLIEST ABORT ONCE AROUND TIME FOR THE FIRST ORBITAL FLIGHT TEST MISSION (McDonnell-Douglas Technical Services) 31 p HC \$4.00

N76-32216

CSCL 22B

Unclas G3/13 05301

MCDONNELL DOUGLAS TECHNICAL SERVICES CO. HOUSTON ASTRONAUTICS DIVISION

NASA CR-150970

SPACE SHUTTLE ENGINEERING AND OPERATIONS SUPPORT

DESIGN NOTE NO. 1.4-7-15

EARLIEST ABORT ONCE AROUND TIME FOR THE FIRST ORBITAL FLIGHT TEST MISSION

MISSION PLANNING, MISSION ANALYSIS AND SOFTWARE FORMULATION

26 September 1975

This Design Note is Submitted to NASA Under Task Order No. DO309. Task Assignment C. Contract NAS 9-13970

PREPARED BY:

Task Manager

Dept. E904, Ext. 238

APPROVED BY:

T. H. Wenglinski

Work Package Manager

Dept. E914, Ext. 228

APPROVED BY:

W. E. Hayes

WBS Manage≠

Dept. E914, Ext. 266

1.0 Introduction

A study has been conducted to determine the earliest abor+
once around (AOA) time for the first orbital flight test
(OFT-1) mission. The study uses latest estimates of vehicle
weights and propulsion for OFT-1. Trade analyses to indicate
variations in AOA time for shuttle subsystem changes (such as
orbital maneuvering system (ONS) or reaction control system
(RCS) propellant loadings) are included in this paper. In
addition, the effects of first stage attitude steering as a
function of relative velocity for a nominal profile are presented. Data are presented to indicate the effect of
designing first stage steering for earliest AOA time and then
having engine out at times after the design point.

2.0 Groundrules and Constraints

This earliest AOA analysis is for OFT-1. Vehicle weights used in the analysis are indicated in Tables I through III. Data are presented in the tables for nominal and AOA profiles. Table I contains weight evaluations for dry weights, propellant residuals, reserve propellants, and for the solid rocket booster (SRB). Tables II and III contain main propulsion system (MPS) propellant weights and OMS and RCS weights, respectively.

Some of the significant groundrules and constraints used in this analysis are:

- a. three-degree-of-freedom flight (3 DOF) is simulated.
- b. no loads or maximum dynamic pressure limits are imposed

on the trajectory simulations

- c. launch from KSC
- d. payload is 10000 pounds
- e. orbit inclination is 38. degrees, launch azimuth of approximately 62. degrees
- f. the 270-75 solid rocket motors (SRM) are used (Table IV)
- g. 100% space shuttle main engine (SSME) thrust from liftoff to AOA
- h. SSME throttled to 109% thrust following main engine out (AOA)
- OMS and RCS are not required for nominal flight to main engine cutoff (MECO)
- j. OMS and RCS ignition at SRB separation in AOA simulations
- k. MECO targets are

60. NMI

Altitude

0.5 DEG

Flight-Path Angle

25668. FT/SEC

Inertial Velocity

for both nominal and AOA

1. OMS and RCS propellant post MECO for AOA are:

OMS 6276 LB (approximately 280 FT/SEC)

RCS 5780 LB

- m. nominal profile is optimized for earliest AOA
- n. maximum acceleration limit is 3 g's

The Space Vehicle Dynamics Simulation (SVDS) Program is the simulation tool used in this study. The 3-DOF simulation mode of the program is used with no winds or yaw biasing being simulated. Co-planar flight is simulated from liftoff to MECO.

3.0 Earliest AOA Analysis

In order to determine the earliest AOA time for the shuttle vehicle as configured in this study, first stage steering (including the pitch over maneuver) is optimized for various engine out times. The earliest engine out time for which the given MECO conditions can be achieved is defined as the earliest AOA time.

First stage steering for the AOA is simulated by

- a. vertical flight to tower clearance
- b. vehicle pitch over at a constant body rate for 10.0 seconds
- c. zero angle of attack flight from time of pitch over termination to SRB separation

Figure 1 contains SSME propellant at MECO for various engine out times and pitch over rates. The data constitutes an optimization of pitch over rate for each of the engine out times and indicates that the earliest engine out time for which MECO conditions can be achieved is approximately 24. seconds from liftoff. Examination of the optimum pitch over rate data indicates a rate of change of .003 DEG/SEC/SEC of AOA time.

Parametric trajectory data for the simulation cases of Figure 1 are presented in Figures 2 through 5. Figures 2 through 4 contain SRB staging data (staging altitude, inertial velocity, and inertial flight-path angle, respectively) as a function of pitch over rate and engine out time. Figure 5 contains down range position at MECO. The data are for an AOA profile and

evaluations of the parameters at the optimum pitch over rates are indicated for each engine out time. Data of Figure 2 indicate that SRB staging altitude changes at the rate of .23 K·FT/SEC of AOA time when the pitch over maneuver is optimized for the engine out. Figure 6 contains range at MECO and staging altitude as a function of engine out time. The data are based on optimum pitch over rate for each engine out time.

4.0 Earliest AOA Variation For Subsystem Changes Figure 7 contains data indicating SSME propellant at MECO as a function of engine out time. The data indicate that the rate of change of SSI'E propellant at I'ECO to AOA time variations is 250 LB/SEC. That is, 250 pounds of SSME propellant (at MECO) is required to change the AOA time by 1. second. Based upon the current estimate of OFT-1 weights and propulsion, earliest AOA time is 24.4 seconds. This implies SSNE propellant depletion at MECO of the AOA profile. An additional 6100 pounds of SSME propellant at MECO (250 LB/SEC * 24.4 SEC) is required to reduce earliest AOA to liftoff. This 6100 pounds of SSME propellant at MECO is equivalent to a 6600 pound reduction in payload (1.08 LB Payload/LB SSME prop * 6100 LB). AOA capability off the pad is available for a payload of 3400 pounds (10000 -6600) for current OFT-1 weight and propulsion data. One control element which may be used to provide earlier AOA capability while keeping the payload fixed (at 10000 pounds) is to vary the OMS and RCS loadings. This may be done in

either of two ways:

- a. reduction of the total OMS and RCS loading with reduction in the post-MECO propellant requirement
- b. fixed ONS and RCS loading with more propellant allotted for pre-MECO burn

Consider AOA time capability variation by method (a). A 1000-pound ONS and RCS off loading (with 1000 LB post-NECO requirement reduction) results in an increase of 926 pounds of SSNE propellant at NECO. This is equivalent to a 3.7 second reduction in earliest AOA time.

Using method (b) as a control element with fixed OI'S and RCS loadings, allowing 1000 pounds more propellant to be burned pre-MECO results in 1130 pounds of SSME propellant at MECO. This is equivalent to a 4.52 second reduction in earliest AOA time.

It should be noted that extremely large variations in the OMS and RCS loadings are required if this would be the only element employed to reduce earliest AOA time from its present value to liftoff.

5.0 Nominal Profile

As part of this analysis, a nominal profile was developed.

The first stage steering profile for the nominal trajectory is the attitude/relative velocity history of the AOA trajectory.

This results in a lofted profile for the nominal trajectory.

Figure 8 illustrates the altitude histories for the nominal and AOA profiles. One result of the lofted nominal trajectory

is a reduction in maximum dynamic pressure. Figure 9 contains dynamic pressure histories for the nominal and AOA trajectories. Tables V and VI contain trajectory data for the two boost profiles. Table V contains data for the time of maximum dynamic pressure and Table VI contains data for MECO. The targeted guidance cutoff conditions are also included in Table VI. Data of Table V indicate a 600 ft/sec variation in staging velocity between the nominal and AOA profiles. Since first stage steering for the nominal trajectory is derived from the AOA profile, nominal steering commands for the last 600 ft/sec velocity region had to be obtained. Figure 10 contains vehicle attitude commands as a function of relative velocity. Five candidate profiles are indicated to cover the velocity gap from AOA SRB separation to nominal SRB separation. The attitude profile numbered 5 in Figure 10 is selected for use in the nominal trajectory of this study. Selection of profile 5 is based on obtaining a continuous pitch over rate during the region in question. However, profile 5 does not provide maximum nominal performance. Figures 11 and 12 indicate the effects of using steering profiles 1 through 5. Profiles 1 through 4 are indicative of a pitch down maneuver. Since the nominal trajectory has been lofted by optimum AOA steering commands up to a velocity of 3600 ft/sec, a pitch down maneuver during the terminal phase of first stage flight increases vehicle performance. (See SSME propellant at MECO, Figure 11.) The data of Figures 11 and 12 indicate pitching

the vehicle down during the last portion of SRB flight has the following effects:

- a. increases performance
- b. decreases separation altitude and flight-path angle
- c. increases separation velocity and dynamic pressure
- d. decreases the initial guidance pitch command

 Since the nominal profile in this study is not performance

 critical, no further investigation of the pitch down maneuver

 was conducted. This item may be pursued at a later date when

 the definition of acceptable SRB staging conditions are obtained.
- As previously stated, the profiles in this study are designed for the engine out case. The nominal trajectory uses first stage steering commands from the engine out (AOA) profile.

 Several trajectories were simulated to evaluate the effects of designing first stage steering for earliest AOA time and having the engine go out at a later time.

Figures 13 and 14 illustrate the effects of engine out after the design (earliest) point. Figure 13 indicates the variation in vehicle state at SRD separation as a function of engine out time. The first stage steering profile used in all the simulations is optimized for an engine out time of 24 seconds. Data are presented in the figure to indicate staging velocity, flight-path angle and altitude of the nominal trajectory, the nominal profile being the limiting case for delayed engine out (i.e.

time of delayed engine out is MECO time). Similarly, Figure 14 presents variations at MECO for engine out later than the earliest AOA time. The data indicate performance increases (SSME propellant at MECO) from the zero value for engine out at 24.4 seconds toward the nominal trajectory value. Range at MECO shows little variation for the engine out times of Figure 14.

7.0 Conclusions and Recommendations

The earliest AOA time for OFT-1 is 24.4 seconds as the vehicle is currently configured (10000 pound payload). Engine out off the pad capability has been reduced to a payload of approximately 3400 pounds. The increase in earliest AOA time and decrease in maximum payload for engine out on the pad are a result of updated evaluations of 1) aerodynamic predictions and vehicle weights and 2) a change in groundrules governing SSME operation. The trade factors for earliest AOA time as a function of SSME propellant at MECO and the parametric data of this report should provide a data base for predicting AOA time as updates are made in the OFT-1 vehicle.

It is recommended that the engine out and nominal profiles of this study be evaluated relative to load constraints. Throttling may be necessary to reduce maximum dynamic pressure in the nominal trajectory. The earliest AOA time may be effected by having to adhere to a constraint profile.

TABLE I FIRST MANNED ORBITAL FLIGHT

SUMMARY WEIGHT STATEMENT

Participation (Participation)	Neminel- 19	AOA - LB
(DFI) Pallet etc.)	10,000	10,000
Personnel Orbiter - Emoty	132,597	132,597
•	4,175	4,175
- Usable RCS	5,534	4,852
	1,209	0
Residuals	394	394
Propertiant	5,463	•
- One Propertiant (De-Orbit)	. 008	008
	557	557
SSME Empty	19,333	19,338
Trapped L H ₂ at OMS 1 Cutoff Trapped L OX at OMS 2 Cutoff	00	
Orbiter at 0.45 2 Cutoff	(184,285)	(173,/13)
MECO 084S Cutoff - 085 2 Propellant - 685 1 Propellant	2,598 (141 8 2,537 (133	FT/SEC) 0 FT/SEC) 4,919
- RCS Propellant Trapped MPS Propellant - Orbiter	1,075	280 1,834
SSME - SSME	1,366	1,366
Flight Pertormance Keserve (FPR) - Orbiter	+9C*7	+co
Orbiter at OMS 1 Ignition	(194,445)	(183,936)
RCS Propellant	254	254
External Tank (ET) - Empty	75,633	75,633
Flight Performance Reserve - ET	2,616	3,346
Fuel Bias	1,225 ()	8 <u>.</u>
Expelled MPS Propellant (Tailoff)	183	122
Injected Weight at MECO	(②)	(②)

HARRIER OF DESCRIPTION THE CORRESPONDE OF THE CORRESPOND OF THE CORRESPONDE OF THE CORRESPOND OF THE CORRESPONDE OF THE CORRESPONDE OF THE CORRESPOND OF THE COR

AO

Propellant Burned - AOA/RTLS (Return to Launch Site) to MECO		
MPS 0.18	(D) (O) (O) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	
OMS Propellant Dumped (RCS Burn) Expelled MPS Propeilant	0 0 0 0 0	
Weight at AOA/RTLS	(②)	
MPS Fropellant Burned (SRB Sep to AOA/RTLS)	Θ	
Weight After 5.8 Separation	(②)	
SRB Structure and Recovery System SRM Inert Weight SRM Residual Propellant	69,200 281,680 550	
Inerts Consumed SRN Propellant Consumed MPS Propellant Burned (Liftoff to SRS Sep)	10,133 2,211,570 · · · · · · · · · · · · · · · · · · ·	
Liftoff (Thrust/Weight = 1.0)	4,399,184	E
SRB Propellants SRB Inerts MPS Propellant	1,236 2 976	
SRB Ignition Command (T-O)	4,401,398	
MPS Thrust Buildup LO ₂ Overboard Bleed (3 minutes) Non-Propulsive Consumables	3,039 2,160 51	
Prelaunch Weight (T-5 min.)	4,406,648	
	•	

The sum of these weights should be equal to total usable MPS Prop. <u>(j</u>

These weights can only be determined after the trajectory is flown. <u>(3</u>)

TABLE II OFT MPS PROPELLANT SUMMARY

N. We e	Nominal - LB	AGA - LB
TOTAL LOADED MPS	1,561, 715	1,561,715
RESIDUALS - ET	- 4,055	- 4,341
TRAPPED SSIME MPS	- 1,366	- 1,366
TRAPPED ORBITER MPS	- 1,075 .	- 1,804
EXPELLED MPS	- 183	- 183
FPR - ET	- 2,616	- 3,346
FPR - ORBITER	- 2,584	- 1,854
SRB IGNITION TO LIFTOFF	- 976	- 976
FUEL BIAS	- 1,225	- 1,100
USABLE MPS PROPELLANT	1,547,635	1,546,745

TABLE III OFT OMS PROPELLANT SUMMARY

•	Nominal - LB	AOA - LB
ON ORBIT OHS	3,468	0
DEORBIT ONS	5,213	0
OMS RESERVES	800	800
MECO OMS 2	2,598	0
MECO OMS 1	2,537	4,919
AOA/RTLS TO MECO	0	8,897
TOTAL OMS LOAD	15,173	15,173

OFT RCS PROPELLANT SUMMARY

	Nominal - LB	AOA - LB
USABLE RCS	5,534	4,852
RCS RESERVES	1,209	0
RCS RESIDUALS	394	394
MECO RCS	0	280
ET SEPARATION RCS	254	254
AOA/RTLS TO MECO	0	1,611
TOTAL RCS LOAD	7,391	7,391

PROWN ARTON	
OROSON TO THE	
ELSE REPORT	
257000-12579	
AND BEING	
A DESCRIPTION OF THE PARTY.	
	63
- To Y 1967	
A CHARLES	
Control of the	
Alexander Charles	353
T18 T1 T1	-
	- 1
Section 1	
	200
AND THE REAL PROPERTY.	-5
10 10 10 10 10 10	-
4	
C. 1200	
454	
THE PERSON NAMED IN	300
	200
-	
	-
45	
AND LEVELS	
	- 4
Control of	- 1
	- (
	_
	•
A	٠,
	- 5
1	
-	
- 1	•
1	
3.	

		ni lenami nas	THE PERMIT		
TIME	THRUST	FLOW RATE	WEIGHT (LES)	_ ^	LOTAL PEOP
6.090000	26.4		1287198.0	9.6	8.6
R. 098497		414.3	1360167	6	
Ø. 106993	525040.9	2001.2	1:8764s.6	dall's	
B			1.28to.(ff.);	=	
		10	1.86.0	15	600 ·
	J	7 9465.0	1265799.1	700	6.0381
9. T.O.183	1	481.	. 1284015.8	63	2372.2
0. 596380	87541	18	3761.	3	3436.1
6.683477	2927196.4	11115.2	1282676.7	. 1885.1	4511.3
9.787973	92126	.30	1577.		5616.7
0.006470	96273	53	0471.	106	6717.8
0.904070	97745	12	9359.	1111	7928.4
1.969931	60263	21.	8164.	1195	19624.8
8.90x078	05563	60	5460.	2783	41727.6
5.989893	10132	31.	2381.	3078	480
7.879734	125693.	895.	9641.	3346.	4 13
9.849784	150061.	990.	5514.	3526	1167
11.819605	170367.	.990	1819.	3694	3536
13.739507	188643.	138.	.6262	3840.	5920
4,	205904.	206.	4000.	3979.	8318
	223165.	101	1.886	4112.	0730
υ.	233947.	100	5565	4222	318
_	114270.	872	1339.	3025	5534
23.505560	02434	11536.2	0347.	21492.9	276841.8
ш,	935583.	205.	9465.	9881.	9772
-	384095.	915.	9063.	0482	1812
.,,	835613.	837.	8988	9965.	3818
2	788065.	629	9566	9838	5792
1.11	739350.	486.	9849.	P 176	7733
7	869820.	217.	0344.	96	, gr
	601377.	960.	2317.	3	1487
	531847.	697.	4267.	40	3292
-	463403.	4	.9699	571.	5649
41.869244	407597.	CI	9550.	7	763
	4	9	2728.	822.	484459.6

	591916.3	.000	3046	.0076	1000	7787	4141	1604	9265.	7138	5226	3513.	1962.	9552	9286	3163	71.8	6428.	9186.	7	8514.	1342.	:918.	39.43	. B		De 0.94	08623.	16271.	19753	114.5	1116	1.124	59.	1142	11472.
を は 一般の は 一般の は 一般の ない と と と と と と と と と と と と と と と と と と	16556.8	.74	1000	00	200	100	6353	463	7669	7873	8088	8287.	8448.	8590	8733.	8877.	9904.	9260.	2757.	.056	471.	2827	.929	924.	117.	S S.	264.	529.	643.	181.		-	ni	4	6	
	786171,7	000	000000	0000		9468	3046.	5583.	7922.	6900	1961.	3674,	5225.	£635.	7901.	9624;	6019.	.6520	8991.	3145.	8678.	5845.	9169.	3344.	8327.		1634	8564.	6.316.	6.134.	6130.	6025.	5042.	5828.	5759.	5715.
	8943.9	900	0 0	. 7	· (1)	31	00	22	31.	40.	25	45	18	CI CI	64.	88	100	26.	19.	0	.20	-	5	5	8		25	60	23	67.	5.	.18	0	72.	60	·
	2331949.0		070000	000000	302616.	315653	328689	352590.	380837.	416179.	429502.	463403.	488888	561427.	520083.	540538.	555748.	563129.	351608.	140588.	877680.	852713.	677905.	453465.	142003.		71149.	58351.		97.130	20004.	613	1186.	3926.	7331.	.2636
A	45.541942	2146	1 0510	2000	7237	6.5501	8.3965	0.3423	2.2878	4.233	6.1793	8.1.43	0.0700	2.0161	3.9618	5.9676	7. 053	8.7971	8.6.111	S. 5 901	0.740	1.1382	04	3.10	114,002.53	72	. E.O.	. M.	. M.S.	•	116	9.2046	9.51630		6.49579	6.95931

-16-

UN MANHON INTO TO CH.

MATICIANE TRACING PAPER INDIANA

UN 23019GM 10X10 TO CH. LITHO IN U.S.A.

NATIONAL TRACING P.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

FIGURE & ALTITUDE HISTORY - NOMINAL AND AGA

VEHICLE STATE AT MAXIMUM DYNAMIC PRESSURE AND SOLID ROCKET BOOSTER STAGING

I. Maximum Dynamic Pressure

		Nominal Nominal	AOA
	Time - SEC	56.	56.
	Altitude - FT	33144.	31769.
	Inertial Velocity - FT/SEC	2042.	1959.
	Inertial Flight-Path Angle - DEG	34.30	33.03
	Dynamic Pressure - LB/FT ²	596.	532.
п.	SRB Staging		
	Time - SEC	121.23	121.23
	Altitude - FT	171046.	156132.
	Inertial Velocity - FT/SEC	5153.	4579.
	Inertial Flight-Path Angle - DEG	34.63	34.21
	Dynamic Pressure - LB/FT ²	15.	19.
	Range - IIII	7.59	15.11

TABLE VI

-VEHICLE STATE AT MAIN ENGINE CUTOFF (MECO)

I. Trajectory Cutoff Conditions

Altitude	60. NMI
Inertial Flight-Path Angle	0.5 DEG
Inertial Velocity	25668. FT/SEC

II. Vehicle MECO State

	Nominal	AOA
Time - SEC	498.184	682.610
Weight - LB	315639.	268733.
Inertial Velocity - FT/SEC	25667.1	25667.6
Inertial Flight-Path Angle - DEG	0.506	0.502
Inclination - DEG	38.01	37.92
Latitude - DEG		
Geocentric	33.2721	34.2679
Geod. *1c	33.4456	34.4439
Longitude - DEG	-68.1931	-64.7499
Radius - FT	21290308.	21290308.
Inertial Azimuth - DEG	70.4650	72.6569
Range - NMI	701.62	883.46

-26-

ADA

PROFILE

9/14/75

2000

-

4

u

Œ

160.

ø.

20.

40

FIGURE 13 VEHICLE STATE AT SRB SEPARATION -29-

60.

8.0

100.

out - Sec

Nemunal Partile

-30-

UN ESCIEDA IONIO TO CM.

^