

Revolutionizing Boutique Hotel Development

DL for LBM Fluid Dynamics Simulation

Team Fluid

Heidi Ongkowijaya Cornell Master in Hospitality '25

Eirwyn Zhang Carnegie Mellon SCS MIT GAI & LLM '25

James Lee MBA '25

- Why Deep Learning as the solution?
- How have it been done before?
- Model Implementation (Preliminary)

Hamza Naeem Northeastern Master in Al '26

Khubaib Khan Northeastern Master in Robotics '26

Large Hotel Chains Adaptive Reuse of Historical Buildings

Temple Court Building 1883

The Beekman Hotel, by Hyatt

525 Lexington Avenue

Marriott East Manhattan

For \$10 million boutique hotel project...

Operational	& Maintenance	(Annual))
-------------	---------------	----------	---

\$500,000 - \$1,000,000

Inefficient systems increase energy and maintenance costs

Regulatory Compliance & Permitting

\$100,000 - \$300,000

Delays extend construction, **delaying** revenue.

Risk Management & Scheduling

\$500,000 - \$1,000,000

Material

\$4,000,000 - \$5,000,000

Wrong materials raise operational costs.

Prototyping and Testing

\$200,000 - \$500,000

Engineering & System Optimization (HVAC, Plumbing, Electrical, etc.)

\$600,000 - \$1,500,000

Poor optimization adds 5-15% to engineering costs.

Architectural & Engineering

\$1,000,000 - \$2,500,000

Design iterations add 10-15% to fees.

How does this relate to Fluid Dynamics?

Comparison with Traditional Techniques

Feature	CFD (Computational Fluid Dynamics)	LBM (Lattice Boltzmann Method)	Deep Learning (RNN)
Computational Speed	Slow	Faster than CFD	10-100x faster
Memory	High	Moderate	Low (via representations

No

Built-in

No

Built-in

Requirements

Real-Time Predictions

Physical Constraints

in low-dim latent space)

Yes

Physics-informed loss

function

Previous Work: PINNs in Fluid Dynamics

Physics-Informed Neural Networks (PINNs) (Raissi 2019)

Limitations

Relies on knowledge of equations

Struggle with 3D Simulations

Computationally Expensive

Slow for real-time

Previous Work: GANs & DRL in Fluid Dynamics

Classic Dam Break problem using Physics Informed GANs (Li 2022)

Computationally Expensive

Large Dataset Lack of Temporal Modeling

Deep Reinforcement Learning (Rabault 2019)

Temporal Modeling

I. Data Generation Phase

- LBM Simulation of cylinder flow
- Reynolds number = 100 (von Kármán vortex shedding)
- Save velocity fields every 10 timesteps
- Data format: 2D velocity components (u, v)

© 2025 Eirwyn Zhang, MIT Introduction to Deep Learning Project Proposal Carnegie Mellon University

II. Data Processing & Preparation

- Create training sequences from saved fields
- Input: 10 consecutive timesteps (t-9 to t)
- Output: Next timestep prediction (t+1)
- Preserve spatial structure (no flattening)

```
class LBMDataset(Dataset):
    def __getitem__(self, idx):
        # Input: 10 consecutive timesteps
        input_sequence = load_velocity_sequence(idx, seq_len=10)
        # Output: Next timestep
        target = load_next_velocity(idx + 10)

# Preserve spatial structure
    inputs = torch.FloatTensor(input_sequence) # (10, 2, H, W)
        target = torch.FloatTensor(target) # (2, H, W)
```

III. Neural Network Architecture -- ConvLSTM: Hybrid architecture incorporating convolution operations for spatial features (CNN-like) and memory cells for temporal sequences (RNN-like)

- Input Layer: Velocity field sequences
- Three ConvLSTM Layers:
 - Each layer processes both spatial and temporal features
 - Hidden channels: 64
 - Kernel size: 3x3
- Output Layer: 1x1 Convolution
 - Maps features back to velocity field
 - Predicts next timestep

```
class ConvLSTMCell(nn.Module):
   def init (self, input channels, hidden channels=64):
        # Spatial feature extraction
        self.conv = nn.Conv2d(
            in channels=input channels + hidden channels,
           out channels=4 * hidden channels,
           kernel size=3, # 3x3 kernel
           padding=1
    def forward(self, x, h prev, c prev):
        # Combine spatial and temporal features
        combined = torch.cat([x, h prev], dim=1)
        # Process through convolutional LSTM cell
        conv output = self.conv(combined)
        # Gate computation & state update
        gates = torch.split(conv output, self.hidden channels, dim=1)
        # LSTM update rules applied...
```

IV. Training Configuration

Batch size: 8

Learning rate: 0.001

Optimizer: Adam

Loss function: MSE

- Learning rate scheduling
- Gradient clipping

```
for epoch in range(num epochs):
    model.train()
     total loss = 0
     for batch inputs, batch targets in tqdm(dataloader, desc=f'Epoch {epoch+1}/{num epochs}'):
         batch inputs = batch inputs.to(device) # (batch, seq, channels, height, width)
         batch_targets = batch_targets.to(device) # (batch, channels, height, width)
         optimizer.zero grad()
         outputs, _ = model(batch_inputs)
         loss = criterion(outputs, batch targets)
         loss.backward()
         # Gradient clipping to prevent exploding gradients
         torch.nn.utils.clip grad norm (model.parameters(), max norm=1.0)
         optimizer.step()
         total loss += loss.item()
     avg loss = total loss / len(dataloader)
    print(f'Epoch {epoch+1}, Average Loss: {avg loss:.6f}')
     # Learning rate scheduling
     scheduler.step(avg loss)
```

Epoch 1/50: 12% 310/2499 [5:49:39<37:02:38, 60.92s/it]

V. Expected Output

- Predicted velocity field at t+1
- Same spatial dimensions as input
- Two channels (u, v components)

```
def predict next timestep(model, input sequence):
    Predicts next velocity field
    Maintains input spatial dimensions
    11 11 11
    predicted field = model(input sequence)
    return predicted field # Shape: (2, H, W)
Velocity Field Prediction:
V(t+1) = ConvLSTM(V(t-9), ..., V(t))
Where:
- V(t): Velocity field at timestep t
- ConvLSTM: Learns spatiotemporal mapping
```