习颞课

(1) 已知 $\triangle ABC$ 是锐角三角形, $P = \sin A + \sin B, Q = \cos A + \cos B$,则(

B. P > O

C.P = Q D.P = Q 的大小不能确定

(2) 在 $\triangle ABC$ 中, $\sqrt{2}\sin A + \sin B\sin C$ 的最大值为(

A. $\sqrt{2} + \frac{1}{2}$

B. 2 C. $\sqrt{3}$ D. $\sqrt{5}$

【解】 (1) $A+B > \frac{\pi}{2} \Rightarrow A > \frac{\pi}{2} - B \Rightarrow \sin A > \cos B$

同理可得: $\sin B > \cos A$

 $\therefore \sin A + \sin B > \cos A + \cos B, P > Q$, 选B。

(2) $\sqrt{2} \sin A + \sin B \sin C = \sqrt{2} \sin A + \frac{\cos(B-C) - \cos(B+C)}{2}$

 $=\sqrt{2}\sin A + \frac{\cos(B-C) + \cos A}{2} \le \sqrt{2}\sin A + \frac{1}{2}\cos A + \frac{1}{2}$,仅当 B=C 时取等号

而 $\sqrt{2} \sin A + \frac{1}{2} \cos A + \frac{1}{2} = \frac{3}{2} \sin(A + \varphi) + \frac{1}{2}$, 其中 φ 满足 $\tan \varphi = \frac{\sqrt{2}}{4}$;

故 $\sqrt{2}\sin A + \sin B\sin C \le 2$, 其最大值为 2。选 B。

2. 方程 $\sin \pi x = \frac{1}{4}x$ 的解的个数是()

A. 5

B. 6

C. 7

D.8

【解】问题 \Leftrightarrow 函数 $f(x) = \sin \pi x$ 与函数 $g(x) = \frac{1}{4}x$ 图象的交点个数,

易知 f(x) 与 g(x) 均为奇函数, 其图像均关于原点对称, 故可只考虑 $x \ge 0$ 的情况。数形结合, 如图。从图像知:x>0时,两函数之图像有3个交点,由于原点显然满足要求,再考虑到对称性, 知: f(x)与g(x)的图像共有7个交点,选C。

3. 设
$$a = \sin 14^{\circ} + \cos 14^{\circ}$$
, $b = \sin 16^{\circ} + \cos 16^{\circ}$, $c = \frac{\sqrt{6}}{2}$, 则 a,b,c 大小关系())

- A. a < b < c
- B. b < a < c
- C. c < b < a
- D. a < c < b

【解】
$$a = \sqrt{2}(\frac{\sqrt{2}}{2}\sin 14^0 + \frac{\sqrt{2}}{2}\cos 14^0) = \sqrt{2}\sin 59^0$$
,

同理可得: $b = \sqrt{2} \sin 61^{\circ}$, $c = \sqrt{2} \sin 60^{\circ}$

考虑到 $\sin x$ 在 $(0^{\circ}, 90^{\circ})$ 上单调递增, 故选 D。

4. 在 $\triangle ABC$ 中,角 A 、 B 、 C 的对边分别为 $a,b,c,a=2,A=\frac{\pi}{4}$,若三角形有两解,则 b的取值范围为(

- A. b > 2 B. 0 < b < 2 C. $2 < b < 2\sqrt{2}$ D. $2 < b < 2\sqrt{3}$

【解】如图,三角形有两解,等价于以C为圆心,2为半径的圆与射线AB有两个交点,即

【法二】由余弦定理得: $a^2 = b^2 + c^2 - 2bc \cos A$, 即 $c^2 - \sqrt{2}bc + b^2 - 4 = 0$;

由题意,上面关于c的一元二次方程有两个不相等的正根,故 $\begin{cases} \Delta = 2b^2 - 4(b^2 - 4) > 0 \\ b^2 - 4 > 0 \end{cases}$

5. 在锐角 $\triangle ABC$ 中,a,b 分别为角 A,B 的对边长,若 A=2B ,则 $\frac{b}{a}$ 的范围是()

A.
$$(\sqrt{2}, \sqrt{3})$$
 B. $(\sqrt{3}, 2)$ C. $(0, 2)$ D. $(\sqrt{2}, 2)$

B.
$$(\sqrt{3},2)$$

C.
$$(0,2)$$

D.
$$(\sqrt{2},2)$$

【解】 :: A = 2B ,所以,根据正弦定理得: $\frac{a}{b} = \frac{\sin A}{\sin B} = \frac{2\sin B\cos B}{\sin B} = 2\cos B$,

∵ △ABC 为锐角三角形,故 $A+B>90^\circ$,即 $3B>90^\circ \Rightarrow B>30^\circ$,以及 $A=2B<90^\circ$,

 $\therefore B < 45^{\circ}, \quad \therefore 30^{\circ} < B < 45^{\circ}$

∴
$$\frac{b}{a} = 2\cos B \in (\sqrt{2}, \sqrt{3})$$
, i.i. A .

6. 在平面凸四边形 ABCD中,AB=3, BC=4, CD=5, DA=6,则四边形 ABCD 面积的 最大值为()

B.
$$6\sqrt{10}$$

C.
$$10\sqrt{5}$$

D.
$$4\sqrt{10}$$

【巧解】不妨令该四边形的四条边长分别为a,b,c,d, p为该四边形的半周长,则p=9由婆罗摩笈多公式得

$$S = \sqrt{(p-a)(p-b)(p-c)(p-d) - abcd\cos^2\frac{A+C}{2}} \le \sqrt{(9-3)(9-4)(9-5)(9-6)} = 6\sqrt{10}$$

仅当 $A+C=\pi$ 时取等号,故,四边形ABCD面积的最大值为 $6\sqrt{10}$,选B。

【**另解**】设 $\angle B = \beta, \angle D = \alpha$,

则在 $\triangle ABC$ 中, $AC^2 = 9 + 16 - 2 \times 3 \times 4\cos \beta = 25 - 24\cos \beta$ 在 $\triangle ACD$ 中, $AC^2 = 25 + 36 - 2 \times 5 \times 6\cos\alpha = 61 - 60\cos\alpha$, $\therefore 5\cos\alpha - 2\cos\beta = 3$

$$S_{ABCD} = S_{\triangle ABC} + S_{\triangle ACD} = \frac{1}{2} \times 3 \times 4 \sin \beta + \frac{1}{2} \times 5 \times 6 \sin \alpha = 3(5 \sin \alpha + 2 \sin \beta)$$

 $\Rightarrow M = 5\cos\alpha - 2\cos\beta, N = 5\sin\alpha + 2\sin\beta,$

则
$$M^2 + N^2 = 29 - 20\cos(\alpha + \beta) = 9 + N^2 \Rightarrow N^2 = 20 - 20\cos(\alpha + \beta)$$

所以 $\alpha+\beta=\pi$,即 $\cos\alpha=\frac{3}{7},\cos\beta=-\frac{3}{7}$ 时,N取得最大值 $\sqrt{40}$,所以满级的最大值为 $6\sqrt{10}$,选 B。

7. 设锐角 $\triangle ABC$ 的三个内角 A , B , C 的对边分别为 a , b , c ,且 c=1 , A=2C ,则 $\triangle ABC$ 周长的取值范围为(

A.
$$(0,2+\sqrt{2})$$
 B. $(0,3+\sqrt{3})$ C. $(2+\sqrt{2},3+\sqrt{3})$ D. $(2+\sqrt{2},3+\sqrt{3})$

【解】因 $\triangle ABC$ 为锐角三角形,故 $A=2C<\frac{\pi}{2}$,得 $C<\frac{\pi}{4}$;

另外,由
$$A+C=3C>\frac{\pi}{2}$$
知 $C>\frac{\pi}{6}$,故 $\frac{\pi}{6}< C<\frac{\pi}{4}$, $\frac{\sqrt{2}}{2}<\cos C<\frac{\sqrt{3}}{2}$;

又因为A=2C, 所以 $\sin A=2\sin C\cos C$, 又因为c=1, 所以 $a=2\cos C$;

$$\mathbb{Z}$$
, $b = \frac{c\sin B}{\sin C} = \frac{\sin 3C}{\sin C} = 4\cos^2 C - 1$,

所以 $a+b+c=4\cos^2C+2\cos C$, 令 $t=\cos C$,

则
$$t \in (\frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2})$$
 , 又因 $y = 4t^2 + 2t$ 在 $(\frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2})$

上单调递增,所以函数值域为 $(2+\sqrt{2},3+\sqrt{3})$,选 C.

8. 如图, l_1,l_2,l_3 是同一平面内的三条平行直线, l_1 与 l_2 间的距离是 1, l_2 与 l_3 间的距离是 2,正 $\triangle ABC$ 的三顶点分别在 l_1,l_2,l_3 上,则 $\triangle ABC$ 的边长是

(A)
$$2\sqrt{3}$$
 (B) $\frac{4\sqrt{6}}{3}$ (C) $\frac{3\sqrt{17}}{4}$ (D) $\frac{2\sqrt{21}}{3}$

【解】如图,易知
$$AB = \frac{1}{\sin \alpha}, BC = \frac{2}{\sin(60^{\circ} - \alpha)}$$
,

由题意: $\frac{1}{\sin \alpha} = \frac{2}{\sin(60^\circ - \alpha)}$,

$$\exists \sin(60^\circ - \alpha) = 2\sin\alpha \Rightarrow \sqrt{3}\cos\alpha = 5\sin\alpha , \exists \tan\alpha = \frac{\sqrt{3}}{5}$$

故, $\sin \alpha = \frac{\sqrt{21}}{14}$,故 $AB = \frac{1}{\sin \alpha} = \frac{2\sqrt{21}}{3}$,即 $\triangle ABC$ 的边长为 $\frac{2\sqrt{21}}{3}$ 。

9. 已知
$$\sin(\alpha + \frac{\pi}{6}) = \frac{3}{5}$$
,则 $\cos(2\alpha + \frac{\pi}{3}) = ($

- $A. \frac{16}{25}$
- B. $\frac{16}{25}$ C. $-\frac{7}{25}$
- D. $\frac{7}{25}$

【解】
$$\cos(2\alpha + \frac{\pi}{3}) = 1 - 2\sin^2(\alpha + \frac{\pi}{6}) = 1 - \frac{18}{25} = \frac{7}{25}$$
,选 D。

10.
$$4\cos 50^{\circ} - \tan 40^{\circ} =$$
 (

A.
$$\sqrt{2}$$

A,
$$\sqrt{2}$$
 B, $\frac{\sqrt{2} + \sqrt{3}}{2}$ C, $\sqrt{3}$ D, $2\sqrt{2} - 1$

$$C \sqrt{3}$$

D.
$$2\sqrt{2} - 1$$

【解】原式 =
$$4\sin 40^{\circ} - \frac{\sin 40^{\circ}}{\cos 40^{\circ}} = \frac{4\sin 40^{\circ}\cos 40^{\circ} - \sin 40^{\circ}}{\cos 40^{\circ}}$$

$$= \frac{2\sin 80^{\circ} - \sin 40^{\circ}}{\cos 40^{\circ}} = \frac{2\cos 10^{\circ} - \sin 40^{\circ}}{\cos 40^{\circ}}$$

$$= \frac{2\cos(40^{\circ} - 30^{\circ}) - \sin 40^{\circ}}{\cos 40^{\circ}} = \frac{\sqrt{3}\cos 40^{\circ} + \sin 40^{\circ} - \sin 40^{\circ}}{\cos 40^{\circ}} = \sqrt{3} \circ \text{ \& C.}$$

11. 已知 $\triangle ABC$ 的内角 A,B,C 满足 $\sin 2A + \sin(A-B+C) = \sin(C-A-B) + \frac{1}{2}$,面积 S

满足1 < S < 2, a,b,c 分别为A,B,C 所对的边,则下列不等式成立的是(

$$A.bc(b+c) > 8$$

B.
$$ab(a+b) > 16\sqrt{2}$$

$$D.12 \le abc \le 24$$

【解】
$$\sin 2A + \sin (A - B + C) = \sin (C - A - B) + \frac{1}{2}$$

$$\Rightarrow \sin 2A + \sin(\pi - 2B) + \sin(\pi - 2C) = \frac{1}{2}$$

$$\Rightarrow \sin 2A + \sin 2B + \sin 2C = \frac{1}{2} \tag{1}$$

另一方面:
$$\sin 2A + \sin 2B + \sin 2C = \sin 2A + 2\sin(B+C)\cos(B-C)$$

$$= 2\sin A(\cos A + \cos(B - C)) = 2\sin A(\cos(B - C) - \cos(B + C)) = 4\sin A\sin B\sin C$$

结合 (1) 得:
$$\sin A \sin B \sin C = \frac{1}{8}$$
, 从而

$$S^{3} = \left(\frac{1}{2}bc\sin A\right)\left(\frac{1}{2}ac\sin B\right)\left(\frac{1}{2}ab\sin C\right) = \frac{a^{2}b^{2}c^{2}}{64},$$

故,
$$1 \le S \le 2 \Rightarrow 1 \le S^3 \le 8 \Rightarrow 1 \le \frac{a^2b^2c^2}{64} \le 8 \Rightarrow 8 \le abc \le 16\sqrt{2}$$
,选 (A)。

12. (1) 设 $\alpha, \beta \in [0, \pi]$, 且 满 足 $\sin \alpha \cos \beta - \cos \alpha \sin \beta = 1$, 则 $\sin(2\alpha - \beta) + \sin(\alpha - 2\beta)$ 的取值范围为()

A.
$$[-\sqrt{2}, 1]$$

B.
$$[-1, \sqrt{2}]$$

$$C.[-1,1]$$

D.
$$[1, \sqrt{2}]$$

【解】由题意得 $\sin(\alpha-\beta)=1$,考虑到 $\alpha,\beta\in[0,\pi]$,

得
$$\alpha - \beta = \frac{\pi}{2}$$
,即 $\alpha = \beta + \frac{\pi}{2}$,因此

$$\sin(2\alpha - \beta) + \sin(\alpha - 2\beta) = \sin(\pi + \beta) + \sin(\frac{\pi}{2} - \beta)$$

$$= -\sin \beta + \cos \beta = \sqrt{2}(\frac{\sqrt{2}}{2}\cos \beta - \frac{\sqrt{2}}{2}\sin \beta) = \sqrt{2}\cos(\beta + \frac{\pi}{4}),$$

考虑到
$$\beta + \frac{\pi}{4} \in \left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$$
,故 $\sqrt{2}\cos(\beta + \frac{\pi}{4}) \in \left[-\sqrt{2}, 1\right]$,选A。

13. (1)
$$[2\sin 50^\circ + \sin 10^\circ (1 + \sqrt{3} \tan 10^\circ)] \sqrt{2\sin^2 80^\circ} =$$

(2)已知
$$\alpha, \beta \in (0,\pi)$$
,且 $\tan(\alpha - \beta) = \frac{1}{2}$, $\tan \beta = -\frac{1}{7}$,则 $2\alpha - \beta$ 的值为_____.

【解】(1)由于1+√3 tan 10° =
$$\frac{\cos 10^\circ + \sqrt{3} \sin 10^\circ}{\cos 10^\circ} = \frac{2(\frac{1}{2}\cos 10^\circ + \frac{\sqrt{3}}{2}\sin 10^\circ)}{\cos 10^\circ} = \frac{2\sin 40^\circ}{\cos 10^\circ}$$
,

故,原式=
$$[2\sin 50^{\circ} + \sin 10^{\circ} \times \frac{2\sin 40^{\circ}}{\cos 10^{\circ}}] \times \sqrt{2}\sin 80^{\circ}$$

$$= (2\sin 50^{\circ} \cos 10^{\circ} + 2\sin 40^{\circ} \sin 10^{\circ})\sqrt{2}$$

$$=2\sqrt{2}(\sin 50^{\circ}\cos 10^{\circ}+\cos 50^{\circ}\sin 10^{\circ})=2\sqrt{2}\sin 60^{\circ}=\sqrt{6}$$

(2) 由题意得:
$$\tan \alpha = \tan((\alpha - \beta) + \beta) = \frac{\tan(\alpha - \beta) + \tan \beta}{1 - \tan(\alpha - \beta) \tan \beta} = \frac{\frac{1}{2} - \frac{1}{7}}{1 - \frac{1}{2} \times (-\frac{1}{7})} = \frac{1}{3}$$
.

故,
$$\tan(2\alpha-\beta) = \tan(\alpha+(\alpha-\beta)) = \frac{\tan\alpha+\tan(\alpha-\beta)}{1-\tan\alpha\tan(\alpha-\beta)} = \frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{3}\times\frac{1}{2}} = 1$$

由于
$$\alpha, \beta \in (0,\pi)$$
,故由 $\tan \alpha = \frac{1}{3} \Rightarrow 0 < \alpha < \frac{\pi}{4}$ 且 $\tan \beta = -\frac{1}{7} \Rightarrow \frac{\pi}{2} < \beta < \pi$,

故
$$0 < 2\alpha < \frac{\pi}{2}, -\pi < -\beta < -\frac{\pi}{2}, 从而 -\pi < 2\alpha - \beta < 0,$$

故, 由
$$\tan(2\alpha - \beta) = 1$$
 得 $2\alpha - \beta = -135^\circ$

14.
$$\cos^2 10^\circ + \cos^2 50^\circ - \sin 40^\circ \sin 80^\circ$$
 的值为_____。

【解】构造对偶模型求解.

设 $A = \cos^2 10^\circ + \cos^2 50^\circ - \sin 40^\circ \sin 80^\circ$, $B = \sin^2 10^\circ + \sin^2 50^\circ - \cos 40^\circ \cos 80^\circ$,则 $A + B = 2 - \cos 40^\circ$.

$$A - B = \cos 20^{\circ} + \cos 100^{\circ} + \cos 120^{\circ} = \cos(60^{\circ} - 40^{\circ}) + \cos(60^{\circ} + 40^{\circ}) - \frac{1}{2}$$
$$= 2\cos 60^{\circ} \cos 40^{\circ} - \frac{1}{2} = \cos 40^{\circ} - \frac{1}{2}$$

解得 $A = \frac{3}{4}$.

【解法二】 原式= $\cos^2 10^\circ + \cos^2 50^\circ - \sin 40^\circ \sin 80^\circ$

$$= \frac{1 + \cos 20^{\circ}}{2} + \frac{1 + \cos 100^{\circ}}{2} - \sin 40^{\circ} \sin 80^{\circ} = 1 + \frac{1}{2} (\cos 20^{\circ} + \cos 100^{\circ}) - \sin 40^{\circ} \sin 80^{\circ}$$

$$= 1 + \frac{1}{2} (2 \cos 60^{\circ} \cos 40^{\circ}) - \sin 40^{\circ} \sin 80^{\circ} = 1 + \frac{1}{2} \cos 40^{\circ} - \sin 40^{\circ} \sin 80^{\circ}$$

$$= 1 + \frac{1}{2} \cos(80^{\circ} - 40^{\circ}) - \sin 40^{\circ} \sin 80^{\circ} = 1 + \frac{1}{2} (\cos 80^{\circ} \cos 40^{\circ} - \sin 40^{\circ} \sin 80^{\circ})$$

$$= 1 + \frac{1}{2} \cos 120^{\circ} = \frac{3}{4}$$

15. 在锐角三角形 $\triangle ABC$ 中,若 $\sin A = 2\sin B\sin C$, $\tan A\tan B\tan C$ 的最小值是____。

【巧解】 $\exists \sin A = \sin(B+C) = \sin B \cos C + \cos B \sin C = 2\sin B \sin C$

由题意知 $\cos B \cos C \neq 0$, 上式两侧同时除以 $\cos B \cos C$ 得: $\tan B + \tan C = 2 \tan B \tan C$,

 \mathbb{Z} , $\tan A + \tan B + \tan C = \tan A \tan B \tan C$,

 \pm tan A tan B tan C = tan A + tan B + tan C = 2 tan B tan C + tan A ≥ 2 $\sqrt{2}$ tan B tan C tan A

即 $(\tan A \tan B \tan C)^2 \ge 8 \tan A \tan B \tan C$,故 $\tan A \tan B \tan C \ge 8$

易知等号可取,故 $\tan A \tan B \tan C$ 的最小值为8。

由题意知 $\cos B \cos C \neq 0$, 上式两侧同时除以 $\cos B \cos C$ 得: $\tan B + \tan C = 2 \tan B \tan C$,

故,
$$\tan A = -\tan \left(B + C\right) = -\frac{\tan B + \tan C}{1 - \tan B \tan C} = -\frac{2 \tan B \tan C}{1 - \tan B \tan C}$$
 (2)

则
$$\tan A \tan B \tan C = -\frac{2(\tan B \tan C)^2}{1 - \tan B \tan C} = -\frac{2t^2}{1 - t}$$
 , 其中 $t = \tan B \tan C$)

由题意知, $\tan A > 0$, 结合 (2) 知 $1 - \tan B \tan C < 0$, 即t > 1

当且仅当
$$t-1=\frac{1}{t-1}$$
,即 $t=2$ 时取等号,

由 $t=2 \Rightarrow \tan B \tan C = 2$; 考虑到 $\tan B + \tan C = 2 \tan B \tan C = 4$,

解得
$$\tan B = 2 + \sqrt{2}$$
, $\tan C = 2 - \sqrt{2}$, $\tan A = 4$ (或 $\tan B$, $\tan C$ 互换),

此时A,B,C均为锐角,满足要求,故所求的最小值为8。

16.
$$\triangle ABC$$
中, $\angle B = 60^{\circ}, b = 2, a = x$,如该三角形有两解,则 x 的范围为 。

【解】由余弦定理知: $b^2 = x^2 + c^2 - 2cx \cos B$, 即 $c^2 - xc + x^2 - 4 = 0$, 由题意,该方程有两个正根,

故,
$$\begin{cases} \Delta = x^2 - 4(x^2 - 4) > 0 \\ x^2 - 4 > 0 \end{cases}$$
, 解得 $2 < x < \frac{4\sqrt{3}}{3}$

【法二】如图,三角形有两解,等价于以C为圆心,2为半径的圆与射线BA有两个交点,

即
$$\begin{cases} x \sin B < 2 \\ x > 2 \end{cases}$$
, 解得 $2 < x < \frac{4\sqrt{3}}{3}$

17. 化简:
$$\frac{(1+\sin\alpha+\cos\alpha)(\cos\frac{\alpha}{2}-\sin\frac{\alpha}{2})}{\sqrt{2+2\cos\alpha}}(0<\alpha<\pi)=\underline{\hspace{1cm}}.$$

【解】原式 =
$$\frac{(1+2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}+2\cos^2\frac{\alpha}{2}-1)(\cos\frac{\alpha}{2}-\sin\frac{\alpha}{2})}{\sqrt{2+2(2\cos^2\frac{\alpha}{2}-1)}}$$

$$=\frac{2\cos\frac{\alpha}{2}(\sin\frac{\alpha}{2}+\cos\frac{\alpha}{2})(\cos\frac{\alpha}{2}-\sin\frac{\alpha}{2})}{\sqrt{4\cos^2\frac{\alpha}{2}}}=\frac{2\cos\frac{\alpha}{2}\cos\alpha}{2\cos\frac{\alpha}{2}}=\cos\alpha$$

18.
$$\sqrt{2+2\cos 8} + 2\sqrt{1-\sin 8}$$
 的化简结果是______.

【解】由于
$$4 \in (\frac{5\pi}{4}, \frac{3\pi}{2})$$
,故 $\sin 4 < \cos 4 < 0$,

故原式 =
$$\sqrt{2 + 2(2\cos^2 4 - 1)} + 2\sqrt{\sin^2 4 - 2\sin 4\cos 4 + \cos^2 4}$$

= $\sqrt{4\cos^2 4} + 2\sqrt{(\cos 4 - \sin 4)^2} = -2\cos 4 + 2(\cos 4 - \sin 4) = -2\sin 4$

19. $\triangle ABC$ 中,角 A,B,C 所对的边分别为 a,b,c ,如 $a=2\sqrt{3},b^2+c^2=24$,则 $\triangle ABC$ 面积的最大值为

【解】由余弦定理知:
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{24 - 12}{2bc} = \frac{6}{bc}$$
,

$$\mathbb{Z}$$
, $\boxplus b^2 + c^2 = 24 \Rightarrow 24 \ge 2bc \Rightarrow bc \le 12$,

故
$$S_{\triangle ABC} = \frac{1}{2} \sqrt{b^2 c^2 - 36} \le \frac{1}{2} \sqrt{12^2 - 36} = 3\sqrt{3}$$
,

当 $b=c=2\sqrt{3}$ 时取等号,故 $\triangle ABC$ 面积的最大值为 $3\sqrt{3}$ 。

【方法二】 $b^2 + c^2 = 24 \Rightarrow 24 \ge 2bc \Rightarrow bc \le 12$,

故,
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{24 - 12}{2bc} = \frac{6}{bc} \ge \frac{6}{12} = \frac{1}{2}$$
,故 $\sin A \le \frac{\sqrt{3}}{2}$

因此,
$$S_{\triangle ABC} = \frac{1}{2}bc\sin A \le \frac{1}{2} \times 12 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$$
,

当且仅当 $A = 60^{\circ}$ (此时仍有 $b = c = 2\sqrt{3}$)时取等号。

【解】如图,设 $\angle CDA = \theta$,则 $\angle CDB = \pi - \theta$,

在 $\triangle CDA$ 和 $\triangle CDB$ 中,分别由余弦定理可得

$$\cos \theta = \frac{\frac{c^2}{4} + 1 - b^2}{c}$$
, $\cos (\pi - \theta) = \frac{\frac{c^2}{4} + 1 - a^2}{c}$,

两式相加,整理得
$$\frac{c^2}{2} + 2 - (a^2 + b^2) = 0$$
, $\therefore c^2 = 2(a^2 + b^2) - 4$, ①

由
$$\left(a-\frac{1}{2}b\right)$$
sin $A=(c+b)(\sin C-\sin B)$ 及正弦定理得

$$\left(a-\frac{1}{2}b\right)a=(c+b)(c-b)$$
, 整理得 $a^2+b^2-c^2=\frac{ab}{2}$, ②

由余弦定理的推论可得 $\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{1}{4}$, $\sin C = \frac{\sqrt{15}}{4}$.

把①代入②整理得 $a^2 + b^2 + \frac{ab}{2} = 4$,

又 $a^2 + b^2 \ge 2ab$, 当且仅当a = b时等号成立,

∴
$$4 \ge 2ab + \frac{ab}{2} = \frac{5ab}{2}$$
, 放得 $ab \le \frac{8}{5}$.

$$\therefore S_{\triangle ABC} = \frac{1}{2} ab \sin C \le \frac{1}{2} \times \frac{8}{5} \times \frac{\sqrt{15}}{4} = \frac{\sqrt{15}}{5} .$$

即 $\triangle ABC$ 面积的最大值是 $\frac{\sqrt{15}}{5}$. 故答案为 $\frac{\sqrt{15}}{5}$

- (2) 已知 $\sin \frac{\alpha}{2} \cos \frac{\alpha}{2} = \frac{1}{5}$, 求 $\sin \alpha$ 的值;
- (3) 已知 $\sin^4\theta + \cos^4\theta = \frac{5}{9}$, 求 $\sin 2\theta$ 的值;
- (4) 已知 $\cos 2\theta = \frac{3}{5}$,求 $\sin^4 \theta + \cos^4 \theta$ 的值。

【解】(1) 易知 $\sin \theta = -\frac{4}{5}$,

故,
$$(\sin\frac{\theta}{2} - \cos\frac{\theta}{2})^2 = \sin^2\frac{\theta}{2} - 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} + \cos^2\frac{\theta}{2} = 1 - \sin\theta = 1 + \frac{4}{5} = \frac{9}{5}$$

- (2) 原式两边平方得: $1-\sin\alpha = \frac{1}{25}$, 故 $\sin\alpha = \frac{24}{25}$
- (3) 由題意得: $(\sin^2\theta + \cos^2\theta)^2 2\sin^2\theta\cos^2\theta = \frac{5}{9}$,即 $1 \frac{1}{2}(2\sin\theta\cos\theta)^2 = \frac{5}{9}$,也即

$$\sin^2 2\theta = \frac{8}{9}$$
, $\sin 2\theta = \pm \frac{2\sqrt{2}}{3}$

(4) 由题意得: $\sin^2 2\theta = \frac{16}{25}$, 故

$$\sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta = 1 - \frac{1}{2}\sin^2 2\theta = 1 - \frac{1}{2} \times \frac{16}{25} = \frac{17}{25}$$

- 22. (1) 已知 $\cos(\alpha + \beta) = \frac{1}{5}$, $\cos(\alpha \beta) = \frac{3}{5}$, 求 $\tan \alpha \tan \beta$ 的值;
- (2) 已知 $\cos \alpha + \cos \beta = \frac{1}{2}$, $\sin \alpha + \sin \beta = \frac{1}{3}$, 求 $\cos(\alpha \beta)$ 的值。

【解】(1) 易知
$$\frac{\cos(\alpha-\beta)}{\cos(\alpha+\beta)} = 3$$
,即 $\frac{\cos\alpha\cos\beta + \sin\alpha\sin\beta}{\cos\alpha\cos\beta - \sin\alpha\sin\beta} = 3$,

故
$$\frac{1+\tan\alpha\tan\beta}{1-\tan\alpha\tan\beta} = 3$$
,解得 $\tan\alpha\tan\beta = \frac{1}{2}$

(2) 由題意知: $\cos^2 \alpha + 2\cos \alpha \cos \beta + \cos^2 \beta = \frac{1}{4}$, $\sin^2 \alpha + 2\sin \alpha \sin \beta + \sin^2 \beta = \frac{1}{9}$,

两式相加得:
$$2+2\cos(\alpha-\beta)=\frac{13}{36}$$
, 故 $\cos(\alpha-\beta)=-\frac{59}{72}$

23. 求下列各式的值

(1)
$$\tan 20^{\circ} + 4\sin 20^{\circ}$$
 (2) $\frac{\sin 7^{\circ} + \cos 15^{\circ} \sin 8^{\circ}}{\cos 7^{\circ} - \sin 15^{\circ} \sin 8^{\circ}}$.

【解】(1) 原式=
$$\frac{\sin 20^{\circ} + 4\sin 20^{\circ}\cos 20^{\circ}}{\cos 20^{\circ}}$$

$$=\frac{\sin 20^{0}+2\sin 40^{0}}{\cos 20^{0}}=\frac{\sin 20^{0}+2\sin (60^{0}-20^{0})}{\cos 20^{0}}$$

$$=\frac{\sin 20^{0}+\sqrt{3}\cos 20^{0}-\sin 20^{0}}{\cos 20^{0}}=\sqrt{3}$$

24. 已知定义在区间 $\left[-\pi, \frac{2}{3}\pi\right]$ 上的函数 y = f(x) 的图象关于直线 $x = -\frac{\pi}{6}$ 对称,当

$$x \in [-\frac{\pi}{6}, \frac{2}{3}\pi]$$
时,函数 $f(x) = A\sin(\omega x + \varphi)$ $(A > 0, \omega > 0, -\frac{\pi}{2} < \varphi < \frac{\pi}{2})$,其图象如图所示.

(1)求函数
$$y = f(x)$$
 在[$-\pi$, $\frac{2}{3}\pi$]的表达式;

(2)求方程
$$f(x) = \frac{\sqrt{2}}{2}$$
 的解.

【解】: (1) 由图像知:
$$x \in [-\frac{\pi}{6}, \frac{2}{3}\pi]$$
时 $A = 1, \frac{T}{4} = \frac{2\pi}{3} - \frac{\pi}{6}$, 故 $T = 2\pi, \omega = 1$

故
$$f(x) = \sin(x + \varphi)$$
 , 易知 $\sin(\frac{\pi}{6} + \varphi) = 1$, 因 $|\varphi| < \frac{\pi}{2}$, 得 $\varphi = \frac{\pi}{3}$, 所以 $f(x) = \sin(x + \frac{\pi}{3})$

又, 函数
$$y = f(x)$$
 的图象关于直线 $x = -\frac{\pi}{6}$ 对称, 故 $f(x) = f(-x - \frac{\pi}{3})$,

易知:
$$x \in [-\pi, -\frac{\pi}{6})$$
 时, $-x - \frac{\pi}{3} \in (-\frac{\pi}{6}, \frac{2\pi}{3}]$

$$to x ∈ [-π, -\frac{π}{6})$$
 $to f(x) = f(-x - \frac{π}{3}) = sin(-x - \frac{π}{3} + \frac{π}{3}) = -sin x$

$$\frac{4\pi}{3}, \quad f(x) = \begin{cases} \sin(x + \frac{\pi}{3}), & x \in [-\frac{\pi}{6}, \frac{2\pi}{3}] \\ -\sin x, & x \in [-\pi, -\frac{\pi}{6}) \end{cases}$$

(2) 考虑到对称性,只需在
$$[-\pi, -\frac{\pi}{6}]$$
上解方程 $f(x) = \frac{\sqrt{2}}{2}$ 即可,此时 $f(x) = -\sin x$

由对称性知:
$$x_3 = -\frac{\pi}{3} - (-\frac{\pi}{4}) = -\frac{\pi}{12}$$
 和 $x_4 = -\frac{\pi}{3} - (-\frac{3\pi}{4}) = \frac{5\pi}{12}$ 也为其根

所以,原方程之解为
$$x_1 = -\frac{\pi}{4}, x_2 = -\frac{3\pi}{4}, x_3 = -\frac{\pi}{12}, x_4 = \frac{5\pi}{12}$$

25. 如图,正方形 ABCD 的边长为 1,P,Q 分别为边 AB,DA 上的点,当 $\triangle APQ$ 的周长为 2时,求 $\triangle PCQ$ 的大小。

【解法】
$$\Leftrightarrow AP = x, AQ = y, \angle BCP = \alpha, \angle DCQ = \beta$$
 , 则 $PQ = \sqrt{x^2 + y^2}$,

 $\tan \alpha = 1 - x$, $\tan \beta = 1 - y$

另外, 由题意知: $\sqrt{x^2+y^2}+x+y=2$,

故
$$x^2 + y^2 = (2 - x - y)^2$$
, 化简得 $xy = 2x + 2y - 2$, 带入①得

$$\tan(\alpha+\beta) = \frac{2-x-y}{2-x-y} = 1,$$

考虑到 $\alpha, \beta \in (0,90^\circ)$,故 $\alpha + \beta = 45^\circ$,从而 $\angle PCQ = 45^\circ$

26. 如图,已知直线 $l_1//l_2$,A是 l_1,l_2 之间的一定点,并且点A到 l_1,l_2 的距离分别为 h_1,h_2 ,B是直线 l_2 上一动点,作 $AC \perp AB$,且使AC与直线 l_1 交于点C,设 $\angle ABD = \alpha$

- (1) 写出 $\triangle ABC$ 面积 S 关于角 α 的函数解析式 $S(\alpha)$;
- (2) 画出上述函数的图像;
- (3) 由 (2) 中的图像求 $S(\alpha)$ 的最小值。

【解】(1) 易知
$$AB = \frac{h_2}{\sin \alpha}, AC = \frac{h_1}{\cos \alpha},$$

故
$$S(\alpha) = \frac{1}{2}AB \times AC = \frac{h_1 h_2}{2\sin\alpha\cos\alpha} = \frac{h_1 h_2}{\sin2\alpha} \quad (\alpha \in (0, \frac{\pi}{2}))$$

(2)
$$S(\alpha) = \frac{h_1 h_2}{\sin 2\alpha}$$
 ($\alpha \in (0, \frac{\pi}{2})$)的图像如下图

(3) 因 $S(\alpha) = \frac{h_1 h_2}{\sin 2\alpha}$ ($\alpha \in (0, \frac{\pi}{2})$),显然,当 $\alpha = \frac{\pi}{4}$ 时, $S(\alpha)$ 取得最小值,最小值为 $h_1 h_2$ 。

27. 已知
$$A + B = \frac{\pi}{4}$$
,

(1) 求证:
$$(1 + \tan A)(1 + \tan B) = 2$$

(2) 求
$$(1 + \tan 1^\circ)(1 + \tan 2^\circ)(1 + \tan 3^\circ)$$
•····• $(1 + \tan 44^\circ)$ 的值

(1) 证明: 由题意得
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} = 1$$

$$\Rightarrow$$
 tan $A + \tan B = 1 - \tan A \tan B \Rightarrow 1 + \tan A + \tan B + \tan A \tan B = 2$

$$\Rightarrow$$
 $(1 + \tan A)(1 + \tan B) = 2$

(2) 利用(1)的结论得:

$$(1 + \tan 1^\circ)(1 + \tan 2^\circ)(1 + \tan 3^\circ) \cdot \cdot \cdot \cdot (1 + \tan 44^\circ) = 2^{22}$$

- 28. 在平面四边形 ABCD中, $\angle ADC = 90^{\circ}$, $\angle A = 45^{\circ}$,AB = 2,BD = 5.
- (1) 求 $\cos \angle ADB$;
- (2) 若 $DC = 2\sqrt{2}$, 求BC.

【解】(1) 在 $\triangle ABD$ 中,由正弦定理得 $\frac{BD}{\sin \angle A} = \frac{AB}{\sin \angle ADB}$.

由题设知
$$\frac{5}{\sin 45^{\circ}} = \frac{2}{\sin \angle ADB}$$
,故 $\sin \angle ADB = \frac{\sqrt{2}}{5}$.

由题设知, $\angle ADB < 90^{\circ}$,故 $\cos \angle ADB = \sqrt{1 - \frac{2}{25}} = \frac{\sqrt{23}}{5}$.

(2) 由题设及 (1) 知
$$\cos \angle BDC = \sin \angle ADB = \frac{\sqrt{2}}{5}$$
。

在 $\triangle BCD$ 中,由余弦定理得

$$BC^2 = BD^2 + DC^2 - 2 \cdot BD \cdot DC \cdot \cos \angle BDC = 25 + 8 - 2 \times 5 \times 2\sqrt{2} \times \frac{\sqrt{2}}{5} = 25$$
,
所以 $BC = 5$.

- 29. 在 $\triangle ABC$ 中, A,B,C 的对边分别是 a,b,c ,已知 $3a\cos A = c\cos B + b\cos C$ 。
- (1) 求cosA的值;

(2) 若
$$a = 1, \cos B + \cos C = \frac{2\sqrt{3}}{3}$$
, 求边 c 的值。

【解】(1) 由射影定理知: $c\cos B + b\cos C = a$,

从而 $3a\cos A = a$, 因此 $\cos A = \frac{1}{3}$

(2): 由 (1) 知
$$\sin A = \frac{2\sqrt{2}}{3}$$
, 从而

 $\pm \cos B + \cos C = \cos(\pi - (A + C)) + \cos C = \cos C - \cos A \cos C + \sin A \sin C$

$$=\frac{2}{3}\cos C + \frac{2\sqrt{2}}{3}\sin C = \frac{2\sqrt{3}}{3}$$
 (7):

$$\cos C + \sqrt{2} \sin C = \sqrt{3} \Rightarrow \sin C = \frac{\sqrt{6}}{3}$$
,

再由正弦定理知:
$$\frac{a}{\sin A} = \frac{c}{\sin C} \Rightarrow c = \frac{\sqrt{3}}{2}$$

30. 在
$$\Delta$$
 ABC 中, $a^2 + c^2 = b^2 + \sqrt{2}ac$

- (I) 求**B** 的大小
- (II) 求 $\sqrt{2}\cos A + \cos C$ 的最大值

【解】(I) 由余弦定理及题设得
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{\sqrt{2}ac}{2ac} = \frac{\sqrt{2}}{2}$$
.

又因为
$$0 < B < \pi$$
,所以 $B = \frac{\pi}{4}$.

(II) 由(I) 知
$$A+C=\frac{3\pi}{4}$$

$$\sqrt{2}\cos A + \cos C = \sqrt{2}\cos A + \cos(\frac{3\pi}{4} - A) = \sqrt{2}\cos A + \cos\frac{3\pi}{4}\cos A + \sin\frac{3\pi}{4}\sin A$$

$$= \frac{\sqrt{2}}{2}\cos A + \frac{\sqrt{2}}{2}\sin A = \cos(A - \frac{\pi}{4})$$

因为
$$0 < A < \frac{3\pi}{4}$$
,所以当 $A = \frac{\pi}{4}$ 时, $\sqrt{2}\cos A + \cos C$ 取得最大值1.

31. 已知函数
$$f(x) = \sin\left(x + \frac{\pi}{6}\right) + \sin\left(x - \frac{\pi}{6}\right) + \cos x + a$$
 的最大值为 1.

- (1) 求常数 a 的值;
- (2) 求函数f(x)的单调递减区间;
- (3) 求使 $f(x) \ge 0$ 成立的 x 的取值集合。

【解】
$$f(x) = 2\sin x \cos \frac{\pi}{6} + \cos x + a$$

$$= \sqrt{3} \sin x + \cos x + a = 2 \sin(x + \frac{\pi}{6}) + a \quad (1) \quad \text{smax} = 2 + a ,$$

由题意有: 2+a=1, 即a=-1。

(2) 由 (1) 知
$$f(x) = 2\sin(x + \frac{\pi}{6}) - 1$$
,因为 $\sin x$ 的单调递减区间为 $[2k\pi + \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2}]$

即
$$f(x)$$
 的递减区间为[$2k\pi + \frac{\pi}{3}, 2k\pi + \frac{4\pi}{3}$]($k \in \mathbb{Z}$)

(3)
$$f(x) \ge 0 \Rightarrow \sin(x + \frac{\pi}{6}) \ge \frac{1}{2}$$
, $2k\pi + \frac{\pi}{6} \le x + \frac{\pi}{6} \le 2k\pi + \frac{5\pi}{6}$, $2k\pi + \frac{\pi}{6} \le 2k\pi + \frac{5\pi}{6}$

$$2k\pi \le x \le 2k\pi + \frac{2\pi}{3}(k \in \mathbb{Z}) \ ,$$

即
$$f(x) \ge 0$$
的 x 的集合为 $[2k\pi, 2k\pi + \frac{2\pi}{3}](k \in \mathbb{Z})$