## CLAIMS:

10

15

20

25

30

35

1. A device for use in introducing or withdrawing an agent through a body surface, comprising:

a member having a plurality of microprotrusions extending from a body surface proximal portion of the member; and

a structural support which contacts and extends across at least a portion of the member, the support having greater rigidity than the member.

- 2. The device of claim 1, wherein the support has greater rigidity to a force applied perpendicular to the body surface than does the member.
- 3. The device of claim 1, wherein the support is sufficiently rigid to deflect less than 300  $\mu m$  under manually applied finger or hand pressing of the device against skin.

4. The device of claim 3, wherein the support deflects less than 50  $\mu$ m under said pressing.

- 5. The device of claim 1, wherein the support is sufficiently incompressible to compress less than 250 μm under manually applied finger or hand pressing of the device against skin.
  - 6. The device of claim 5, wherein the support compresses less than 50  $\mu m$  under said pressing.
  - 7. The device of claim 1, wherein the member comprises a sheet which in use is oriented approximately parallel to the body surface, the sheet having a plurality of openings therein and the plurality of microprotrusions extending from a body proximal surface of the sheet, said microprotrusions being adapted to pierce the body surface.

10

15

20

30

35

- 5 8. The device of claim 1, wherein the structural support defines a void for an agent-containing or agent-receiving reservoir.
  - 9. The device of claim 7, wherein the reservoir is in agent-transmitting communication with the openings in the sheet.
  - 10. The device of claim 1, wherein the support comprises a peripheral member and a plurality of cross-members.
  - 11. The device of claim 1, wherein the support has a honeycomb structure.
  - 12. The device of claim 1, wherein the support comprises a corrugated sheet.
  - 13. The device of claim 1, wherein the support has a curved surface which contacts the member.
  - 14. The device of claim 13, wherein the curved surface has a shape selected from the group consisting of convex and cylindrical.
- 25 15. The device of claim 7, wherein the support comprises a plurality of wavy strips arranged in perpendicular alignment to the sheet.
  - 16. The device of claim 1, wherein the member has a thickness of less than 100  $\mu$ m.
  - 17. The device of claim 16, wherein the member is comprised of metal.
  - 18. The device of claim 1, wherein the member comprises a sheet having the plurality of microprotrusions extending from a body surface proximal edge of the sheet for piercing the body surface, the sheet when in use being oriented

10

20

25

- in an approximately perpendicular relation to the body surface with the body surface proximal edge having the microprotrusions engaging the body surface.
  - 19. The device of claim 18, wherein the sheet has a configuration which defines a void for an agent-containing of agent-receiving reservoir.
  - 20. The device of claim 18, wherein the support contacts a second edge of the sheet, which second edge is opposite to the body surface proximal edge having microprotrusions.
- 21. A method of maintaining open agent-transmitting pathways through a body surface having the device of claim 1 positioned adjacent thereto, comprising periodically reapplying a body surface directed force to said device.
  - 22. The method of claim 21, wherein said reapplying causes said microprotrusions to repierce the body surface.
  - 23. The method of claim 21, wherein said force is applied manually.
  - 24. The method of claim 21, wherein the structural support comprises an annular member.
    - 25. The method of claim 24, wherein the annular member is a circular, square or rectangular annular member having a diagonal cross-member.
- 26. The method of claim 21, wherein the structural support has a plurality of cross-members.
  - 27. The method of claim 26, wherein the plurality of cross-members intersect generally in the center of the structural support.

20

25



an inner annular member having a diameter less than a diameter of the outer annular member; and

the cross-member joins the inner annular member to the outer annular member.

- 29. The method of claim 21, wherein the support has greater rigidity to a force applied perpendicular to the body surface than does the member.
- 15 30. The method of claim 21, wherein the support is sufficiently rigid to deflect less than 300 μm under manually applied finger or hand pressing of the device against skin.
  - 31. The method of claim 30, wherein the support deflects less than 50  $\mu m$  under said pressing.
  - 32. The method of claim 21, wherein the support is sufficiently incompressible to compress less than 250  $\mu m$  under manually applied finger or hand pressing the device against skin.
  - 33. The method of claim 32, wherein the support compresses less than 50 μm under said pressing.
  - 34. The method of claim 21, wherein the member comprises a sheet which in use is oriented approximately parallel to the body surface, the sheet having a plurality of openings therein and the plurality of microprotrusions extending from a body proximal surface of the sheet, said microprotrusions being adapted to pierce the body surface.
- 35. The method of claim 21, wherein the structural support defines a void for an agent-containing or agent-receiving reservoir.

20143