Disjunctive Normal Form

A compound proposition is in **disjunctive normal form** (DNF) if

- negations occur only on the atomic propositions.
- conjunctions occur only on inputs containing no disjunctions.
- there are no operations besides negation, conjunction and disjunction.

Several (tauto)logical equivalences can be used to re-express compound propositions in DNF.

- p → q ≡ ¬p ∨ q, to eliminate implications.
 Note how this provides direction for removing biconditionals, too.
- $p \oplus q \equiv (p \vee q) \wedge (\neg p \vee \neg q)$, to eliminate EXCLUSIVE ORs.
- $\neg (p \lor q) \equiv \neg p \land \neg q$, and $\neg (p \land q) \equiv \neg p \lor \neg q$, to move negation inside of conjunction/disjunction.

• $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$, to move a conjunction past a disjunction.

Exercise: Put the compound proposition $(p \to (q \land r)) \lor \neg (p \lor \neg (r \lor s))$ into DNF. **Answer**: $(\neg p \lor (q \land r)) \lor ((\neg p \land r) \lor (\neg p \land s))$.

While reading this page, I hope you have become convinced that every compound proposition is logically equivalent to a logical statement written in terms of its atomic propositions and using only the three operators: \neg , \wedge , and \vee . We say the three operators are **functionally complete**. In fact, it is possible to show that \neg , \wedge , these two alone, are functionally complete, as is the pair \neg , \vee .