Alex Havrilla

alumhavr

Hw7

Question 1:

Prop 1. Show $x: \mathbb{R}^2 \to \mathbb{R}^4$ given by

$$x(\theta, \phi) = \frac{1}{\sqrt{2}}(\cos(\theta), \sin(\theta), \cos(\phi), \sin(\phi)), (\theta, \phi) \in \mathbb{R}^2$$

is an immersion

Proof. Clearly the image of x lies in S^3 . To show an immersion we just show the differential is injective. Compute

$$dx(\theta,\phi) = \frac{1}{\sqrt{2}} \begin{bmatrix} -\sin(\theta) & 0\\ \cos(\theta) & 0\\ 0 & -\sin(\phi)\\ 0 & \cos(\phi) \end{bmatrix}$$

Which is clearly injective for all θ , ϕ . Note we've showed previously this a torus. So to conclude we show this has sectional curvature 0.

Recall we define

$$K(x,y) = \frac{\langle R(x,y)x,y\rangle}{|x \wedge y|^2}$$

We take the area formula to be 1 and compute for basis tangent vectors $\frac{d}{d\theta}$, $\frac{d}{d\phi}$ using Gauss theorem

$$K(\frac{d}{d\theta}, \frac{d}{d\phi}) = \langle B(\frac{d}{d\theta}, \frac{d}{d\phi}), B(\frac{d}{d\theta}, \frac{d}{d\phi}) \rangle - |B(\frac{d}{d\theta}, \frac{d}{d\phi})|^{2}$$

$$= \langle \overline{\nabla}_{\frac{d}{d\theta}} \overline{\frac{d}{d\theta}} - \nabla_{d/d\theta} \frac{d}{d\theta}, \overline{\nabla}_{\frac{d}{d\phi}} \overline{\frac{d}{d\phi}} - \nabla_{d/d\phi} \frac{d}{d\phi} \rangle - |\overline{\nabla}_{\overline{d/d\theta}} \overline{\frac{d}{d\phi}} - \nabla_{d/d\theta} \frac{d}{d\phi}|^{2}$$

$$= \langle \overline{\nabla}_{\overline{d/d\theta}} \overline{\frac{d}{d\theta}}, \overline{\nabla}_{d/d\phi} \overline{\frac{d}{d\phi}} \rangle - |\overline{\nabla}_{\overline{d/d\phi}} \overline{\frac{d}{d\phi}}|^{2}$$

Further note $\nabla_{d/d\theta} \frac{d}{d\theta} = \nabla_{d/d\phi} \frac{d}{d\phi} = 0$ and $\nabla_{d/d\theta} \frac{d}{d\phi} = 0$. Further extending $d/d\theta$ we find $\overline{\nabla}_{d/d\theta} \frac{\overline{d}}{d\theta} = 1/2(-x_1, -x_2, 0, 0)$ and similarly for $d/d\phi$.

We then have $\langle \overline{\nabla}_{\overline{d/d\theta}} \overline{\frac{d}{d\theta}}, \overline{\nabla}_{d/d\phi} \overline{\frac{d}{d\phi}} \rangle - |\overline{\nabla} \overline{\frac{d}{d\phi}}|^2 = \langle -(x_1, -x_2, 0, 0), (0, 0, -x_3, -x_4) \rangle - 0 = 0$ to conclude the proof

Question 2:

Prop 2. Prove that the sectional curvature of the Riemannian manifold $M = S^2 \times S^2 = M_1 \times M_2$ with the product metric, where S^2 is the unit sphere in \mathbb{R}^3 , is non-negative. Find a totally geodesic, flat torus, T^2 , embedded in $S^2 \times S^2$.

Proof. We know our product metric defined as $\langle (X_1, X_2), (Y_1, Y_2) \rangle_M = \langle X_1, Y_1 \rangle_{M_1} + \langle X_2, Y_2 \rangle_{M_2}$. We know M_1, M_2 have constant sectional curvature. Let $X_1, ..., X_m$ basis of open set in M and $Y_1, ..., Y_n$ basis of open set in N. Note we have $\nabla_{X_i} Y_j = \nabla_{Y_j} X_i = 0$ in where ∇ is the corresponding riemannian connection to the product metric. Then we see for u, v, w which are written as a sum of both X_i and Y_i , the curvature tensor R(u, v)w is 0 since we have $R(u, v)w = \nabla_u \nabla_v w -_v \nabla_u w + \nabla_{[u,v]} w$. Then since S^2 has nonnegative curvature, $S^2 \times S^2$ has nonnegative curvature, since it is otherwise 0.

Now we consider $S^1 \times S^1$ embedded in $S^2 \times S^2$ flat and totally geodesic. The total geodesic part is clear since locally at each point S^1 is a geodesic in S^2 . Further it's also flat via an argument to the above. Thus the product is totally geodesic follows from problem 4 in chapter 6.

Question 3:

Let x be the immersion defined in Question 1.

Prop 3. The vectors $e_1 = (-\sin(\theta), \cos(\theta), 0, 0)$ and $e_2 = (0, 0, -\sin(\phi), \cos(\phi))$ form an orthonormal basis of the tangent space, and that the vectors $n_1 = \frac{1}{\sqrt{2}}(\cos(\theta), \sin(\theta), \cos(\phi), \sin(\phi))$ with $n_2 = \frac{1}{\sqrt{2}}(-\cos(\theta), -\sin(\theta), \cos(\phi), \sin(\phi))$ form an orthonormal basis of the normal space

Proof. First note under the metric inherited from \mathbb{R}^4 . e_1 and e_2 are orthograml. Further note $e_1 = \frac{d}{d\theta}$ and $e_2 = \frac{d}{d\phi}$ and hence span the tangent space.

Further we have n_1, n_2 orthonormal under the inerited metric. They are also orthogonal to e_1, e_2 . We know the normal space is 2-dimensional and thus this constitutes a basis.

Prop 4. We know $\langle S_{n_k}(e_i), e_j \rangle = -\langle \overline{\nabla}_{e_i} n_k, e_j \rangle = \langle \overline{\nabla}_{e_i} e_j, n_k \rangle$ where $\overline{\nabla}$ is covariant derivative of \mathbb{R}^4 and i, j, k = 1, 2. Then we claim the matrices of S_{n_1} and S_{n_2} with respect to the basis $\{e_1, e_2\}$ are

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Proof. Recall the shape operator can be written as

$$S_n(x) = -(\overline{\nabla}_X \overline{\eta})^T$$

for $\eta \in T_p M^{\perp}$ and $x \in T_p M$. Then we compute

$$\langle S_{n_1}(e_1), e_1 \rangle = \langle \overline{\nabla}_{e_1} e_1, n_1 \rangle = \langle \overline{\nabla}_{\sqrt{2} \frac{d}{d\theta}} \sqrt{2} \frac{d}{d\theta}, n_1 \rangle$$

$$= \langle (-\cos(\theta), -\sin(\theta), 0, 0), \frac{1}{\sqrt{2}} (\cos(\theta), \sin(\theta), \cos(\phi), \sin(\phi)) \rangle$$

$$= -1$$

where we recall $e_1 = \sqrt{2} \frac{d}{d\theta}$. The rest of the computations follow similarly.

Prop 5. x is a minimal immersion

Proof. We know minimality is equivalent to having 0 mean curvature. Clearly the trace of S_{n_2} is 0, ie the sum of the eigenvalues. Further we know n_2 is orthogonal to T_pT^2 since n_1 orthogonal to S^3 , establishing 0 mean curvature since S_{n_2} is the corresponding shape operator and thus minimality.

Question 4:

Let $f: \overline{M}^{n+1} \to \mathbb{R}$ be a differentiable function. Let Hessian, Hess(f) of f at $p \in \overline{M}$ as the linear operator $Hess(f)Y = \overline{\nabla}_Y grad(f)$ for $Y \in T_p \overline{M}$. Let a be a regular value of f and $M^n \subseteq \overline{M}^{n+1}$ be the hypersurface in \overline{M} defined by $M = \{p \in \overline{M}; f(p) = a\}$.

Prop 6. The laplacian $\overline{\Delta}f$ is given by $\overline{\Delta}f = trace(Hess(f))$

Proof. For $p \in \overline{M}$ we let E_i be an orthonormal basis of $T_p\overline{M}$. Then compute

$$\overline{\Delta}f = div_{\overline{M}} \overline{\nabla}f = \sum_{i} \langle \overline{\nabla}_{E_{i}} \overline{\nabla}f, E_{i} \rangle = \sum_{i} \langle Hess(f)E_{i}, E_{i} \rangle = trace(Hess(f))$$

Prop 7. If $X, Y \in X(\overline{M})$ then $\langle Hess(f)Y, X \rangle = \langle Y, Hess(f)X \rangle$. Then Hess(f) is self-adjoint and determines symmetric bilinear form via $Hess(f)(X,Y) = \langle Hess(f)X,Y \rangle$.

Proof. Compute

$$\begin{split} \langle Hess(f)Y,X\rangle &= \langle \overline{\nabla}_Y \overline{\nabla} f,X\rangle = Y \langle \overline{\nabla} f,X\rangle - \langle \overline{\nabla} f,\overline{\nabla}_Y X\rangle \\ &= YX[f] - (\overline{\nabla}_Y X)[f] = XY[f] - (\overline{\nabla}_Y X)[f] = \langle Y,Hess(f)X\rangle \end{split}$$

This shows Hess(f) self adjoint and we can then defines the symmetric bilinear form given above, where symmetry comes from self-adjointness.

Prop 8. The mean curvature H of $M \subseteq \overline{M}$ is given by

$$nH = -div(\frac{grad(f)}{|grad(f)|})$$

Proof. We again fix orthonormal vector fields E_i and compute for $\eta = \overline{\nabla} f$ which we wlog assume to have norm 1,

$$\begin{split} nH &= trace(S_{\eta}) = \sum_{i} \langle S_{\eta}(E_{i}), E_{i} \rangle = \sum_{i} \langle \overline{\nabla}_{\eta} \eta, \eta \rangle - \langle \overline{\nabla}_{E_{i}} \eta, E_{i} \rangle \\ &= - \sum_{i} \langle \overline{\nabla}_{E_{i}} \eta, E_{i} \rangle = - div_{\overline{M}} \eta = - div(\overline{\nabla} f) \end{split}$$

Prop 9. We know every embedded hypersurface $M^n \subseteq \overline{M}^{n+1}$ is locally the inverse image of a regular value. Then the mean curvature H of such a hypersurface is given by $H = -\frac{1}{n} \operatorname{div}(N)$ where N is local extension of unit normal vector field on M^n .

Proof. We can use implicit function theorem then calculate for the corresponding f,

$$\langle \overline{\nabla} f, \frac{d}{dx_i} \rangle = \frac{d}{dx_i} [f] = 0$$

for $i \in [n]$ and then we can conclude $H = (-1/n) div(\overline{\nabla} f) = (-1/n) div(N)$ for some extension N.