

FSC-BT6XX

BT5.0 Programming User Guide
Version 3.0

Copyright © 2013-2017 Feasycom Technology Co., Ltd. All Rights Reserved.

Revision History

Version	Data	Notes	Author	
1.0	2016/05/12	First Release	Eric	
2.0	2016/10/13	Add Commands	Eric	
3.0	2017/03/10	Add GPIO Indications	Navy	
	-12			
不				
<i></i>				
		X		

Contact Us:

Shenzhen Feasycom Technology Co., Ltd

Web: www.feasycom.com

Email:<u>support@feasycom.com</u>

Tel: +86-755-27924639,+86-755-23062695

Address: Room 2004-2005,20th Floor, Huichao Technology Building,

Jinhai Road, Xixiang, Baoan District, Shenzhen, 518100, China.

Contents

1.	Introduction	4	
	1.1 Terms	4	
	1.2 Hardware Interface	4	
	1.3 Supported Bluetooth Profile		
	1.4 Command Format		
	1.5 Indication Format	5	
	1.6 Module Default Settings	5	
2.	Command Table		
	2.1 General Commands	6	
	2.1.1 UART Communication Test	6	
	2.1.2 Read Firmware Version	6	
	2.1.3 Read MAC Address	6	
	2.1.4 Read/Write Local Name	7	
	2.1.5 Read/Write UART Baudrate	7	
	2.1.6 Turn On/Off Throughput Mode	7	
	2.1.7 Turn On/Off Low Power Mode	8	
	2.1.8 Turn On/Off Hardware Flow Control	8	
	2.1.9 Read/Write Master/Slave Mode	9	
	2.1.10 PIO Function Configuration	9	
	2.1.11 Scan Nearby Devices	9	
	2.1.12 Release All Connections	10	
	2.1.13 Soft Reboot	10	
	2.1.14 Restore Factory Settings	10	
	2.1.15 Establish GATT Connection (GATT Client only)		
	2.1.16 Send Data Via GATT	11	
3. I	ndication Table		
	3.1 General Indications	11	
	3.1.1 Scan Result	11	
	3.1.2 GATT Received Data	12	
	3.2 GPIO Indications	12	
	3.2.1 LED Pin	12	
	3.2.2 State Pin	12	

1. Introduction

This specification presents design guidelines for software engineers that use FSC-BT6XX series modules for Bluetooth requirements.

1.1 Terms

Throughout this specification:

- {} : Content between {...} is optional
- << : Content behind << represents a COMMAND sent from Host to Module
- >> : Content behind >> represents a *RESPONSE* sent from Module to Host

1.2 Hardware Interface

- GPIO
- PWM
- UART
- SPI Master/Slave
- I2C Master/Slave
- Analog Input/Output

1.3 Supported Bluetooth Profile

- GATT Server (Generic Attribute Profile)
- GATT Client (Generic Attribute Profile)
- HID Keyboard (Human Interface Profile)

1.4 Command Format

AT+ Command {=Param1{, Param2{, Param3...}}} <CR><LF>

- All commands start with "AT", end with <CR><LF>
- <CR> stands for "carriage return", corresponding hex is 0x0D
- <LF> stands for "line feed", corresponding hex is 0x0A
- If command has parameter, parameter keep behind "="
- If command has multiple parameters, parameter must be separated by ""
- If command has response, response start with <CR><LF>, end with <CR><LF>
- Module will always report command's execution result using "OK" for success or "ERROR" for failure

e.g.

- 1. Read module's BR/EDR local name
 - << AT+NAME
 - >> +NAME=Feasycom
 - >> OK
- 2. Write a baudrate which is not supported
 - << AT+BAUD=0
 - >> ERROR

1.5 Indication Format

<CR><LF>+ Indication {=Param1{, Param2{, Param3...}}} <CR><LF>

- All indications start with <CR><LF>, end with <CR><LF>
- If indication has parameter, parameter keep behind "="
- If indication has multiple parameters, parameter must be separated by ","

e.g.

1. Received "1234567890" from mobile phone via GATT Server profile
>> +GATTDATA=10,1234567890

1.6 Module Default Settings

Local Name Feasycom
Service-UUID FFF0
Write-UUID FFF2

Notify-UUID FFF1

Physical UART Baudrate 115200bps/8/N/1

2. Command Table

2.1 General Commands

2.1.1 UART Communication Test

Format: AT

Response: OK

Description: Test the UART communication between HOST and Module after power on, baudrate changed, etc.

Example: UART communication test

<< AT

>> OK

2.1.2 Read Firmware Version

Format: AT+VER

Response: +VER=Param

Param: Firmware version (15 Bytes ASCII)

Example: Read module's firmware version

<< AT+VER

>> +VER=1.0.1,FSC-BT630

>> OK

2.1.3 Read MAC Address

Format: AT+ADDR

Response: +ADDR=Param

Param: Module's LE MAC address (12 Bytes ASCII)

2.1.4 Read/Write Local Name

Format: AT+NAME {=Param1{, Param2}}

Param1: BLE local name (1~29 Bytes ASCII, default: Feasycom)

Param2: MAC address suffix (0/1, default: 0)

(0) Disable suffix

(1) Enable suffix "-XXXX" (lower 4 bytes of MAC address) after local name

Response: +NAME=Param

Description: Write local name if parameter existence, otherwise read current local name

Example: Read current local name

<< AT+NAME

>> +NAME=Feasycom

>> *OK*

Example: Change module's local name to "ABC"

<< AT+NAME=ABC

>> OK

Example: Change module's local name to "ABC" and enable suffix

<< AT+NAME=ABC,1

>> OK

2.1.5 Read/Write UART Baudrate

Format: AT+BAUD{=Param}

Param: Baudrate (1200/2400/4800/9600/19200/38400/57600/115200/

230400, default:115200)

Response: +BAUD=Param

Description: Module's baudrate will be changed immediately after received this command

2.1.6 Turn On/Off Throughput Mode

Format: AT+TPMODE{=Param}

Param: Throughput mode (0/1, default:0)

(0) Turn Off

(1) Turn On

Response: +TPMODE=Param

Description: When GATT profile connected and throughput mode is on, the AT command will be de-active, every byte received via physical UART will be sent to air, vice visa

Example: Read current throughput mode

<< AT+TPMODE

>> +TPMODE=1

>> OK

Example: Turn off throughput mode

<< AT+TPMODE=0

>> *OK*

2.1.7 Turn On/Off Low Power Mode

Format: AT+LPM{=Param}

Param: Low Power Mode (0/1, default: 0)

(0) Turn Off

(1) Turn On

Response: +LPM=Param

2.1.8 Turn On/Off Hardware Flow Control

Format: AT+FLOWCTL{=Param}

Param: Hardware Flow Control (0/1, default: 0)

(0) Turn Off

(1) Turn On

Response: +FLOWCTL=Param

2.1.9 Read/Write Master/Slave Mode

Format: AT+ROLE{=Param}

Param: Master/Slave mode (0/1, default: 0)

(0) Slave Mode(GATT Server)

(1) Master Mode(GATT Client)

Response: +ROLE=Param

Description: After the command is executed, the BT6XX switches to the new Mode

Example: Read current Master/Slave mode

<< AT+ROLE

>> +ROLE=0

>> OK

2.1.10 PIO Function Configuration

Format: AT+PIOCFG{=Param1,Param2}

0: Disable Command/Transmission mode switch function

1: Enable Command/Transmission mode switch function

Param2 0: Disable Bluetooth disconnect function

1: Enable Bluetooth disconnect function

Response: +PIOCFG=Param1,Param2

2.1.11 Scan Nearby Devices

Format: AT+SCAN =Param1{, Param2{, Param3}}

Param1: (0~3)

(0) Stop scan

(1) Scan nearby BLE devices

Param2: (1~48) Scan period. unit:1.28s, default:12.8s

Param3: (1~25 Bytes ASCII) Name filter. Filter scan results with name if set

Description: Refer to Chapter 3 for format description of scan result

2.1.12 Release All Connections

Format: AT+DISC

Description: Module release all Bluetooth connections with remote device

2.1.13 Soft Reboot

Format: AT+REBOOT

Description: Module release all Bluetooth connections with remote device then reboot

2.1.14 Restore Factory Settings

Format: AT+RESTORE

Description: Module restore all factory settings then reboot

2.1.15 Establish GATT Connection (GATT Client only)

Format: AT+LECCONN=Param1{,Param2,Param3,Param4}

Param1: MAC address of target device & MAC address type (13 Bytes ASCII)

Param2: Service-UUID, Support 16 Bit and 128 Bit (4 Bytes/32 Bytes ASCII)

Param3: Write-UUID, Support 16 Bit and 128Bit (4 Bytes/32 Bytes ASCII)

Param4: Notify-UUID, Support 16 Bit and 128Bit (4 Bytes/32 Bytes ASCII)

Description: If parameter 2, parameter 3, parameter 4 do not exist, the module will automatically search for the GATT service connected to the remote device

Example: Specified remote device service connections

<< AT+LECCONN=123456ABCDEF0,FFF0,FFF2,FFF1

>> OK

2.1.16 Send Data Via GATT

Format: AT+LESEND=Param1, Param2

Param1: Payload length (1~155)

Param2: Payload (1~155 Bytes UTF8)

Description: If throughput mode is on, this command is de-active

Example: Send data "1234567890" to remote device via GATT

<< AT+LESEND=10,1234567890

>> OK

3. Indication Table

3.1 General Indications

3.1.1 Scan Result

Format: +SCAN =Param1, Param2, Param3, Param4{, Param5, Param6}

Param1: Index (1~8)

Param2: Device address type $(0\sim2)$

(0)LE public address (1)LE random address

Param3: MAC address (12 Bytes ASCII)

Param4: RSSI $(-255 \sim 0)$

Param5: Size of Param6 if exist Param6: Remote Device Name

Description: Param5/Param6 may not exist if remote device out of distance

Example: Scan nearby BLE devices

<< AT+SCAN=1

>> OK

+SCAN=1,0, DC0D30000003, -32,8, Feasycom

+SCAN=2,1, DC0D30000044, -64,8, Feasycom_0044

+SCAN=3,0, DC0D30000097, -47,8, FSC_BT906

3.1.2 GATT Received Data

Format: +GATTDATA=Param1, Param2

Param1: Payload length

Param2: Payload

Example: Received data "1234567890" from remote device via GATT

<< +GATTDATA=10,1234567890

3.2 GPIO Indications

3.2.1 LED Pin

PIN32 (Output)

Low Level Initializing

Blink in 1Hz Ready to connecting

High Level Connected

3.2.2 State Pin

PIN33 (Output)

Low Level Disconnected High Level Connected