Lecture 5 Group Operators

COMP3204 Computer Vision

How do we combine points to make a new point in a new image?

Content

- 1. How can we collect points as a group?
- 2. How can we apply processes to that group?

Template convolution

Calculate a new image from the original

Template is convolved in a raster fashion

Template is inverted for convolution

Original image

Convolution template

Result image

Template convolution

Image

100	100	200	200	200
100	100	200	200	200
100	100	200	200	200
200	200	400	400	400
300	300	400	400	400

0	0	0	0	0
0	400	400	0	0
0	400	400	0	0
0	400	400	0	0
0	0	0	0	0

 G_{y}

Result

0	0	0	0	0
0	400	400	Q-	0
0	640	806	800	0
0	894	894	800	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
0	500	700	800	0
0	800	800	800	0
0	0	0	0	0

 G_{x}

3×3 template and weighting coefficients

w ₀	w_I	w_2
W3	W4	W5
W6	w_7	W8

$$\mathbf{N}_{x,y} = \sum_{i \in \text{template } j \in \text{template}} w_{i,j} \times \mathbf{O}_{x(i),y(j)}$$

where $w_{i,j}$ are the weights and x(i), y(j) denote the position of the point that matches the weighting coefficient position

Border?

Three options

- 1. Set border to black
- 2. Assume wrap-around
- 3. Make template smaller near edges

Normally we assume object of interest is near centre so set border to black

3×3 averaging operator

$$\mathbf{N}_{x,y} = \frac{1}{9} \sum_{i \in 3} \sum_{j \in 3} \mathbf{O}_{x(i),y(j)}$$

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Illustrating the effect of window size

Larger operators remove more noise, but lose more detail

Nasty bit

Template is actually flipped around both axes

$$\mathbf{I} * \mathbf{T} = \sum_{(x,y) \in W} \mathbf{I}_{x,y} \mathbf{T}_{x-i,y-j}$$

This does not matter for symmetric templates (i.e. the deep learning ones!)

Template convolution via the Fourier transform

Convolution theorem allows for fast computation via FFT for template size ≥ 7×7

$$\mathbf{P} * \mathbf{T} = \mathfrak{I}^{-1} \left(\mathfrak{I} \left(\mathbf{P} \right) \times \mathfrak{I} \left(\mathbf{T} \right) \right)$$

Template convolution *

Fourier transform of the picture, $\mathfrak{I}(\mathbf{P})$

Fourier transform of the template, $\Im(T)$

Point by point multiplication $(\cdot \times)$ for sampled signals

This is fast!!

The inversion is implicit in Fourier

The theory is at end, for information only

$$f(x,y) * h(x,y) \Leftrightarrow F(u,v)H(u,v)$$

Imperial

$$w(t) = u(t) * v(t) \Leftrightarrow W(f) = U(f)V(f)$$

it's point by point!!

Template Convolution via the Fourier Transform

Fireside time

Biometrics – Southampton on ABC news for the second time

GAIT Biometric Smart Cameras to ID Americans

https://www.youtube.com/watch?v=6KuMe5n_jdQ

2D Gaussian function

$$g(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{\frac{-(x^2+y^2)}{2\sigma^2}}$$

Used to calculate template values

Note compromise between variance σ^2 and window size

Common choices 5×5, 1.0; 7×7, 1.2; 9×9, 1.4

2D Gaussian function and template

0.002	0.013	0.022	0.013	0. 002
0.013	0.060	0. 098	0.060	0.013
0.022	0. 098	0.162	0. 098	0.022
0.013	0. 060	0.098	0.060	0.013
0. 002	0.013	0.022	0.013	0. 002

Template for the 5×5 Gaussian Averaging Operator ($\sigma = 1.0$).

Applying Gaussian averaging

Comparison

Direct averaging

Which one is better?

Gaussian averaging

Finding the median from a 3×3 template

(a) 3×3 region

(b) unsorted vector

(c) sorted vector, giving median

Finding the median from a 3×3 template

Preserves edges

Removes salt and pepper noise

Newer stuff: non local means

Averaging which preserves regions

Applying non local means

(a) original image

(c) nonlocal means

Even newer stuff: Image Ray Transform

Use analogy to light to find shapes, removing remainder

Applying Image Ray Transform

FEATURE EXTRACTION

AND IMAGE PROCESSING
FOR COMPUTER VISION

Takeaway time

- 1 collection of points is called a template
- 2 application to an image is called template convolution
- 3 can use Fourier to improve speed
- 4 averaging reduces noise

How do we find features? That's edge detection, coming next

Convolution theorem, for completeness only!

1-D convolution is defined as $\mathbf{p} * \mathbf{q} = \sum_{i=0}^{N-1} p_i \ q_{m-i}$

by the DFT, for component u

$$\mathcal{F}(\mathbf{p} * \mathbf{q})_{u} = \frac{1}{N} \sum_{m=0}^{N-1} \left(\sum_{i=0}^{N-1} p_{i} q_{m-i} \right) e^{-j\frac{2\pi}{N}mu}$$

by re-ordering

$$= \frac{1}{N} \sum_{i=0}^{N-1} p_i \sum_{m=0}^{N-1} q_{m-i} e^{-j\frac{2\pi}{N}mu}$$

by shift th^m
$$\mathcal{F}(\mathbf{q}[i-\Delta]) = \mathbf{F}\mathbf{q}[i] \times e^{-j\omega\Delta}$$

$$= \frac{1}{N} \sum_{i=0}^{N-1} p_i \sum_{m=0}^{N-1} q_m e^{-j\frac{2\pi}{N}mu} e^{-j\frac{2\pi}{N}iu}$$

by grouping like terms

$$= \frac{1}{N} \sum_{i=0}^{N-1} p_i e^{-j\frac{2\pi}{N}iu} \sum_{m=0}^{N-1} q_i e^{-j\frac{2\pi}{N}mu}$$

and (by serendipity?)

$$= (\mathcal{F}(\mathbf{p}) \times \mathcal{F}(\mathbf{q}))_{u}$$

By this, the implementation of discrete convolution using the DFT is achieved by multiplication. For two sampled signals each with N points we have

$$\mathcal{F}(\mathbf{p} * \mathbf{q}) = \mathcal{F}(\mathbf{p}) \times \mathcal{F}(\mathbf{q})$$

So convolution is the point-wise multiplication of the two transforms, and the template does not need to be inverted. The inversion is implicit in the use of the Fourier transform.