💌 tpark94@stanford.edu | 🧥 taehajeffpark.com | 🖸 tpark94 | 🛅 taehajeffpark | 😂 Tae Ha Park

Education

Stanford University Stanford, CA

Ph.D. in Aeronautics & Astronautics | Advisor: Dr. Simone D'Amico

Apr. 2018 - Current

- Title: Robust Machine Learning for Vision-Based Navigation about Non-Cooperative Resident Space Objects
- Teaching Assistant for AA279A: Space Mechanics (2019, 2021, 2022).

Stanford University Stanford, CA

M.S. IN AERONAUTICS & ASTRONAUTICS

Sep. 2017 - Apr. 2020

· Conducted research on deep learning, computer vision, spacecraft swarm navigation and optimization

Harvey Mudd College (HMC)

Claremont, CA

B.S. IN ENGINEERING

Aug. 2013 - May 2017

- Graduated with High Distinction (GPA: 3.81/4.0)
- Member of the Tau Beta Pi Engineering Honors Society
- · De Pietro fellow in Civil Engineering

Experience

Infinite Orbits SAS

Toulouse, France

COMPUTER VISION AND GUIDANCE, NAVIGATON AND CONTROL INTERN

Jun. 2022 - Aug. 2022

 Constructed a satellite rendezvous simulator and scene renderer based on Unreal Engine 5 and C++ to train and validate convolutional neural networks for monocular pose estimation and tracking of known noncooperative spacecraft

Space Rendezvous Laboratory (SLAB), Stanford University

Stanford, CA

RESEARCH ASSISTANT | ADVISOR: DR. SIMONE D'AMICO

Jan. 2019 - Current

- Developed robust deep learning models and navigation algorithms for vision-based Rendezvous and Proximity Operations (RPO) in space to support various missions (e.g., on-orbit servicing, debris removal) for sustainable space development
- Developed the Testbed for Rendezvous and Optical Navigation (TRON) facility at SLAB that can simulate various RPO scenarios using a mockup satellite model under high-fidelity spaceborne illumination settings
- Developed advanced open-source benchmark datasets (e.g., SPEED+, SHIRT) using TRON to train and validate spaceborne vision-based deep learning and navigation algorithms with emphasis on robustness across domain gap between synthetic and spaceborne data

Dynamics Laboratory, HMC

Claremont, CA

DE PIETRO FELLOW | ADVISOR: DR. ZIYAD DURON

May 2016 - May 2017

- Developed a method to assess the functionality of steel anchors embedded within a concrete dam based on the Performance-Based Testing using spectral analysis, spectrogram, and model verification
- Analyzed the earthquake response of Monticello dam by constructing and evaluating a lumped element model of dam, reservoir and a spillway

HMC Claremont, CA

STUDENT RESEARCHER | ADVISOR: DR. PHILIP D. CHA

May 2016 - May 2017

• Developed a method to accelerate the modal convergence of eigen-characteristics of (non-)uniform rods carrying various lumped attachments

Publications

Preprints

[P1] T. H. Park, S. D'Amico. "Online Supervised Training of Spaceborne Vision during Proximity Operations using Adaptive Kalman Filtering." arXiv preprint arxiv:2309.11645 (2023). arXiv

Peer-Reviewed Journal Articles

[J6] T. H. Park, S. D'Amico. "Adaptive Neural-Network-Based Unscented Kalman Filter for Robust Pose Tracking of Noncooperative Spacecraft." Journal of Guidance, Control, and Dynamics (2023). DOI: 10.2514/1.G007387.

- [J5] **T. H. Park**, S. D'Amico. "Robust Multi-Task Learning and Online Refinement for Spacecraft Pose Estimation across Domain Gap." *Advances in Space Research* (2023). **7 O** DOI: 10.1016/j.asr.2023.03.036.
- [J4] L. Pasqualetto Cassinis, T. H. Park, N. Stacey et al. "Leveraging Neural Network Uncertainty in Adaptive Unscented Kalman Filter for Spacecraft Pose Estimation." Advances in Space Research (2023). DOI: 10.1016/j.asr.2023.02.021.
- [J3] **T. H. Park**, M. Märtens, M. Jawaid et al. "Satellite Pose Estimation Competition 2021: Results and Analyses." *Acta Astronautica* (2023). CDI: 10.1016/j.actaastro.2023.01.002.
- [J2] M. Kisantal, S. Sharma, T. H. Park et al. "Satellite Pose Estimation Challenge: Dataset, Competition Design and Results." IEEE Transactions on Aerospace and Electronic Systems (2020). DOI: 10.1109/TAES.2020.2989063.
- [J1] P. D. Cha, **T. H. Park** "Improved Modal Convergence Using the Assumed Modes Method for Rods Carrying Various Lumped Elements." *International Journal of Mechanical Engineering Education* (2018). Z DOI: 10.1177/0306419017720424.

Conference Proceedings & Presentations

- [C8] T. H. Park, S. D'Amico. "Rapid Abstraction of Spacecraft 3D Structure from Single Image." 2024 AIAA SciTech Forum (2024). [Accepted]
- [C7] J. Kruger, T. Guffanti, **T. H. Park** et al. "Modular and Flexible Architecture for Autonomous Guidance, Navigation and Control of Spacecraft During Rendezvous and Proximity Operations." 34th AlAA/AAS Space Flight Mechanics Meeting (2024). [Accepted]
- [C6] **T. H. Park**, S. D'Amico. "Adaptive Neural Network-based Unscented Kalman Filter for Spacecraft Pose Tracking at Rendezvous." 2022 AAS/AIAA Astrodynamics Specialist Conference, Charlotte, North Carolina, August 7-11 (2022).
- [C5] **T. H. Park**, S. D'Amico. "Robust Multi-Task Learning and Online Refinement for Spacecraft Pose Estimation across Domain Gap." 11th International Workshop on Satellite Constellations & Formation Flying, Milano, Italy, June 7-10 (2022).
- [C3] **T. H. Park**, J. Bosse, S. D'Amico. "Robotic Testbed for Rendezvous and Optical Navigation: Multi-Source Calibration and Machine Learning Use Cases." 2021 AAS/AIAA Astrodynamics Specialist Conference, Virtual, August 8 12 (2021).
- [C2] **T. H. Park**, S. D'Amico. "Generative Model for Spacecraft Image Synthesis using Limited Dataset." 2020 AAS/AIAA Astrodynamics Specialist Conference, South Lake Tahoe, California, August 9 13 (2020).
- [C1] **T. H. Park**, S. Sharma, S. D'Amico. "Towards Robust Learning-Based Pose Estimation of Noncooperative Spacecraft." 2019 AAS/AIAA Astrodynamics Specialist Conference, Portland, Maine, August 11 15 (2019). (2019). (2019).

Datasets

- [D3] **T. H. Park**, S. D'Amico. "SHIRT: Satellite Hardware-In-the-loop Rendezvous Trajectories Dataset." *Stanford Digital Repository* (2022). Available at https://purl.stanford.edu/zg716br5462.
- [D2] **T. H. Park**, M. Märtens, G. Lecuyer et al. "Next Generation Spacecraft Pose Estimation Dataset (SPEED+)." *Stanford Digital Repository* (2021). Available at https://purl.stanford.edu/wv398fc4383.
- [D1] S. Sharma, **T. H. Park**, S. D'Amico. "Spacecraft Pose Estimation Dataset (SPEED)." *Stanford Digital Repository* (2019). Available at https://purl.stanford.edu/dz692fn7184.

Activities

Organizer Kelvins Satellite Pose Estimation Competition (2021)

Reviewer Journal of Spacecraft and Rockets (2020), Journal of Aerospace Information Systems (2021 - 22), Advances in Space Research (2022), IEEE Transactions on Aerospace and Electronic Systems (2022 - 23), Journal of Guidance, Control, Dynamics (2023)

Skills

Programming MATLAB/Simulink, Python, C/C++, ŁTEX

Deep Learning PyTorch, LibTorch, ONNXRuntime, TensorRT, MATLAB Deep Learning Toolbox™

Libraries OpenCV, OpenMP, CVX/CVXPY **Rendering** OpenGL, Unreal Engine

Languages Korean (native), English (fluent), Japanese (proficient), Chinese (elementary), French (elementary)

Honors & Awards

2019	Best Paper Award, 2019 AAS/AIAA Astrodynamics Specialist Conference	Portland, ME
2015	Tau Beta Pi Engineering Honors Society, HMC	Claremont, CA
2015	De Pietro Fellowship in Civil Engineering, HMC	Claremont, CA
2013	Harvey S. Mudd Merits, HMC	Claremont, CA
2013-17	Dean's List, HMC	Claremont, CA