1) Veröffentlichungsnummer:

0 318 893 A2

(2)

EUROPÄISCHE PATENTANMELDUNG

- 2 Anmeldenummer: 88119798.2
- @ Anmeldetag: 28.11.88

(a) Int. CI.4 CO7F 17/00 , C08F 2/50 , G03C 1/68 , C07F 7/10 , C07C 87/60 , C07C 103/375 , C07C 103/76

Claims for the following Contracting States: ES.

- Priorität: 01.12.87 CH 4682/87
- Veröffentlichungstag der Anmeldung: 07.06.89 Patentblatt 89/23
- Benannte Vertragsstaaten: AT BE CH DE ES FR GB IT LI NL SE
- Anmelder: CIBA-GEIGY AG
 Klybeckstrasse 141
 CH-4002 Basel(CH)
- © Erfinder: Rlediker, Martin, Dr. Gstattenralnweg 75
 CH-4125 Rlehen(CH)
 Erfinder: Steiner, Eginhard, Dr. Obere Hofackerstrasse 3
 CH-4414 Füllinsdorf(CH)
 Erfinder: Beyeler, Harry
 Marignanostrasse 35
 CH-4059 Basel(CH)
 Erfinder: Sitek, Franciszek, Dr. Grossmattweg 11
 CH-4106 Therwill(CH)
 Erfinder: Hüsler, Rinaldo, Dr. Route du Confin 52
 CH-1723 Marly(CH)
- Vertreter: Zumstein, Fritz, Dr. et al Bräuhausstrasse 4 D-8000 München 2(DE)
- Titanocene, deren Verwendung und N-substitulerte Fluoraniline.

Titanocene mit zwei 5-gliedrigen Cyclodienylgruppen, z.B. Cyclopentadienyl, und ein oder zwei 6-gliedrigen carbocyclischen oder 5-oder 6-gliedrigen heterocyclischen aromatischen Ringen, die in mindestens einer der beiden Orthostellungen zur Titankohlenstoffbindung mit einem Fluoratom substituiert sind und als weiteren Substituenten einen substituierten Aminorest enthalten, eignen sich als Photoinitiatoren für die strahlungsinduzierte Polymerisation von ethylenisch ungesättigten Verbindungen.

Interference 105,362 Dow Exhibit 1032

Titanocene, deren Verwendung und N-substitulerte Fluoraniline

Die vorliegende Erfindung betrifft Titanocene mit N-substituierten fluorhaltigen aromatischen Resten, eine photopolymerisierbare Zusammensetzung aus ethylenisch ungesättigten Verbindungen, die diese Titanocene als Photoinitiatoren enthalten, ein mit dieser Zusammensetzung beschichtetes Substrat, ein Verfahren zur Herstellung photographischer Reliefabbildungen unter Verwendung dieses beschichteten Substrates und N-substituierte Fluoraniline.

Aus der EP-A-0 122 223 ist es bekannt, dass Titanocene mit Fluorarylliganden ausgezeichnete Photoinitiatoren sind. Die Fluorarylliganden dieser Titanocene können zum Beispiel mit primären oder sekundären Aminogruppen substituiert sein. Die Substitution mit Acylaminogruppen ist nicht erwähnt.

Ein Gegenstand der Erfindung sind Titanocene der Formel I

worin beide R¹ unabhängig voneinander unsubstituiertes oder durch C₁-C₁a-Alkyl oder -Alkoxy, C₂-C₁a-Alkenyl, C₅-C₂-Cycloalkyl, C₅-C₁₅-Aryl, C₂-C₁₅-Aralkyl, SiR⁴₃, GeR⁴₃, Cyano oder Halogen substituiertes Cyclopentadienyl[⊖], Indenyl [⊖] oder 4,5,6,7-Tetrahydro-indenyl [⊖] bedeuten oder beide R¹ zusammen für einen unsubstituierten oder wie zuvor substituierten Rest der Formel II

stehen, worin X {CH₂}_n mit n = 1, 2 oder 3, gegebenenfalls durch Phenyl substituiertes Alkyliden mit 2 bis 12 C-Atomen, Cycloalkyliden mit 5 bis 7 Ringkohlenstoffatomen, SiR⁴₂, SiR⁴₂-O-SiR⁴₂, GeR⁴₂ oder SnR⁴₂ ist, und R⁴ C₁-C₁₂-Alkyl, C₅-C₁₂-Cycloalkyl, C₆-C₁₆-Aryl oder C₇-C₁₆-Aralkyl bedeutet, R² einen 6-gliedrigen carbocyclischen oder 5- oder 6-gliedrigen heterocyclischen aromatischen Rest bedeutet, der in mindestens einer der beiden ortho-Stellungen zur Titankohlenstoffbindung mit Fluoratomen substituiert ist und wobei der aromatische Rest weitere Substituenten enthalten kann. R³ eine der für R² gegebenen Bedeutungen hat oder R² und R³ zusammen einen Rest der Formel III bedeuten,

-Q-Y-Q- III

75

25

45

50

in dem Q für einen carbocyclischen aromatischen Rest steht, wobei die beiden Bindungen jeweils in Orthostellung zur Y-Gruppe stehen und die zweite Orthostellung zur Titankohlenstoffbindung jeweils durhc ein Fluoratom substituiert ist und wobei Q weltere Substituenten enthalten kann, und Y CH₂, Alkyliden mit 2 bis 12 C-Atomen, Cycloalkyliden mit 5 bis 7 Ringkohlenstoffatomen, NR⁴, O, S, SO, SO₂, CO, SiR⁴₂, GeR⁴₂ oder SnR⁴₂ bedeutet und R⁴ die zuvor angegebene Bedeutung hat, wobei die Titanocene dadurch gekennzeichnet sind, dass R² und R³ oder der Rest der Formel III durch einen Rest der Formel IV, IVa oder IVb substituiert sind.

worin R⁵ Wasserstoff, lineares oder verzweigtes C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_3 - C_8 -Cycloalkyl, C_4 - C_{20} -Cycloalkylalkyl oder -Alkylcycloalkyl, C_5 - C_{20} -Alkylcycloalkylalkyl, C_6 - C_{20} -Cycloalkenyl alkyl, C_6 - C_{14} -Aryl, C_7 - C_{20} -Aralkyl oder -Alkaryl, C_8 - C_{20} -Alkaralkyl oder C_3 - C_{12} -Trialkylsilyl darstellt, wobei diese Reste unsub-

stituiert oder durch C₁-C₁₈-Alkoxy, C₁-C₁₈-Alkylthio, C₁-C₁₈-Alkylsulfonyl, C₆-C₁₀-Arylsulfonyl, C₇-C₂₀-Alkarylsulfonyl, 2-Tetrahydrofuryl oder Cyano substituiert sind,

R⁵ eine der für R⁵ gegebenen Bedeutungen hat oder C₁-C₂₀-Halogenalkyl, durch -CO- unterbrochenes C₂-C₂₀-Alkyl oder durch -COOH oder -COOH substituiertes C₁-C₁₂-Alkyl ist und im Falle, dass Y¹ -CO-, -CS- oder -SO₂- ist, auch -NR⁷R⁸ bedeuten kann, worin R⁷ und R⁸ unabhängig voneinander eine der für R⁵ gegebenen Bedeutungen haben oder R⁷ und R⁸ zusammen C₂-C₇-Alkylen bedeuten, das durch -O-, -S- oder -N(R⁹)- unterbrochen werden kann, worin R⁹ Wasserstoff, C₁-C₁₂-Alkyl, C₃-C₁₂-Alkenyl, C₇-C₁₂-Aralkyl oder C₂-C₂₀-Alkanoyl bedeutet,

oder R⁵ und R⁶ zusammen lineares oder verzweigtes C₂-C₈-Alkylen oder durch Halogen, C₁-C₄-Alkoxy, and Allyloxy oder -NR⁷R⁸ substituiertes C₂-C₈-Alkylen oder einen zweiwertigen Rest der Formel

bedeuten.

15

Y¹ eine Gruppe -CO-, -CS-, -COO-, -SO₂- oder -SIR⁴₂- bedeutet, worin R⁴ die zuvor gegebene Bedeutung hat,

R¹⁰ eine der für R⁶ gegebenen Bedeutungen hat oder R¹⁰ und R⁶ zusammen C₁-C₈-Alkandiyl, C₂-C₈-Alkandiyl, C₆-C₁₄-Arendiyl, C₄-C₁₂-Cycloalkandiyl, C₅-C₁₂-Cycloalkendiyl, C₆-C₁₄-Cycloalkadiendiyl, C₇-C₂₀-Bicycloalkandiyl, C₇-C₂₀-Bicycloalkendiyl oder durch -O-, -S-oder -N(R³)-unterbrochenes C₂-C₄-Alkandiyl bedeuten, wobei diese Reste unsubstituiert oder durch einen oder mehrere der Substituenten Halogen, C₁-C₁₀-Alkoxy, C₁-C₂₀-Alkyl, C₃-C₂₀-Alkenyl oder C₆-C₁₄-Aryl substituiert sind.

Bel den Gruppen R¹ handelt es sich bevorzugt um gleiche Reste. Als Substituenten kommen für R¹ in Frage: lineares oder verzweigtes Alkyl oder Alkoxy mit 1 bis 18, besonders 1 bis 12 und insbesondere 1 bis 6 C-Atomen, und Alkenyl mit 2 bis 18, besonders 2 bis 12, und insbesondere 2 bis 6 C-Atomen, wie z.B. Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, tert.-Butyl, Pentyl, Hexyl, Octyl, Decyl, Dodecyl, Tetradecyl, Hexadecyl, Octadecyl und entsprechende Alkenyl-und Alkoxygruppen; Cycloalkyl mit 5 bis 8 Ringkohlenstoffatomen wie z.B. Cyclopentyl, Cyclohexyl, Cycloheptyl, Methylcyclopentyl und Methylcyclohexyl; Aryl mit 6 bis 16 C-Atomen und Aralkyl mit 7 bis 16 C-Atomen wie z.B. Phenyl, Naphthyl, Benzyl und Phenylethyl; Cyano und Halogen, besonders F, Cl und Br; SiR⁴3 oder GeR⁴3, worin R⁴ bevorzugt C₁-C8-Alkyl, Cyclohexyl, Phenyl oder Benzyl ist. Beispiele für R⁴ in der Bedeutung von Alkyl sind Methyl, Ethyl, n-und i-Propyl, n-, i- und t-Butyl, Pentyl, Hexyl, Heptyl und Octyl.

Die Reste R¹ können bis zu 5, besonders aber bis zu 3 Substituenten enthalten. Bevorzugt sind beide R¹ Cyclopentadienyl⁹- oder Methylcyclopentadienyl⁹-Reste, insbesondere Cyclopentadienyl⁹-Reste.

X in Formel II enthält in seiner Bedeutung als Alkyliden bevorzugt 2 bis 6 C-Atome. Beispiele für Alkyliden, das gegebenenfalls durch Phenyl substituiert sein kann, und Cycloalkyliden sind Ethyliden, Propyliden, Butyliden, Phenylmethylen, Diphenylmethylen, Cyclopentyliden und Cyclohexyliden. \mathbb{R}^4 in der Gruppe X in seiner Bedeutung als Alkyl enthält bevorzugt 1 bis 6 C-Atome, und ist z.B. Methyl, Ethyl, Propyl, Butyl oder Hexyl, und ist in seiner Bedeutung als Cycloalkyl bevorzugt Cyclopentyl oder Cyclohexyl, in seiner Bedeutung als Aryl bevorzugt Phenyl und in seiner Bedeutung als Aralkyl bevorzugt Benzyl. X in der Bedeutung von $\{CH_2\}$ $\frac{1}{n}$ ist bevorzugt Methylen.

Bei R² in seiner Bedeutung als 6-gliedriger carbocyclischer aromatischer und fluorsubstituierter Rest kann es sich um fluorsubstituiertes Indenyl, Indanyl, Fluorenyl, Naphthyl und besonders Phenyl handein. R² als heterocyclischer aromatischer und 5-gliedriger Rest enthält bevorzugt ein Heteroatom und als 6-gliedriger Rest bevorzugt 1 oder 2 Heteroatome. Bevorzugt sind beide Orthostellungen mit Fluor substituiert. Beisplele sind 4,6-Diffuorinden-5-yl, 5,7-Diffuorin dan-6-yl, 2,4-Diffuorfluoren-3-yl, 1,3-Diffuorphen-1-yl, 2,4-Diffuorphen-1-yl, 2,4-Diffuorphen-3-yl, 2,4-Diffuorphen-3-yl, 2,4-Diffuorphen-3-yl, 3,5-Diffuorphen-4-yl.

R² und R³ zusammen als Rest der Formel III können z.B. die Gruppe

sein. Y in Formel III und in obiger Formel ist bevorzugt Methylen, Ethyliden, Propyliden, S oder O.

R³ hat bevorzugt die Bedeutung von R². In einer bevorzugten Ausführungsform ist der Rest R² in beiden Orthostellungen durch Fluor substituiert.

Eine bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass R² und R³ für 2,6-Difluorphen-1-yl stehen, an das ein Rest der Formel IV, IVa oder IVb gebunden ist, und das weitere 1 oder 2 gleiche oder verschiedene Substituenten enthalten kann.

Eine bevorzugte Gruppe von Titanocenen der Formel I sind solche, worin beide R¹ Cyclopentadienyl[©] und R² und R³ Reste der Formel V

10

15

sind, worin A eine Gruppe der Formel IV, IVa oder IVb bedeutet, insbesondere solche, worin A eine Gruppe der Formel IV ist.

In Formel V ist die Gruppe A bevorzugt in Orthostellung zu einem F-Atom gebunden.

H⁵ kann substituiert sein durch C₁-C₁₈-Alkoy, C₁-C₁₈-Alkylthio und C₁-C₁₈-Alkylsulfonyt, die vorzugsweise 1 bis 12, besonders 1 bis 6 und insbesondere 1 bis 4 C-Atome enthalten. Beispiele für Alkylgruppen in diesen Substituenten sind Methyl, Ethyl und die Isomeren von Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tetradecyl, Hexadecyl und Octadecyl. Weitere Substituenten für R⁵ sind Arylsulfonyl und Alkerylsulfonyl, wie z.B. Phenylsulfonyl, Tolylsulfonyl oder p-Dodecylphenylsulfonyl.

Bei R^5 kann es sich um lineares oder verzweigtes C_1 - C_{20} -, bevorzugt C_1 - C_{12} - und besonders C_1 - C_8 -Alkyl handeln. Belspiele sind Methyl, Ethyl und die Isomeren von Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tetradecyl, Hexadecyl und Octadecyl. R^5 kann C_3 - C_8 -, bevorzugt C_5 bis C_7 - und besonders C_5 -oder C_6 -Cycloalkyl sein, z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl und Cyclooctyl. R^5 kann C_4 - C_{20} -, bevorzugt C_5 - C_{15} - Cycloalkylalkyl oder -Alkylcycloalkyl sein, wobei das Cycloalkyl vorzugsweise Cyclopentyl oder Cyclohexyl ist. Belspiele sind Cyclopentyl- oder Cyclohexylmethyl, Cyclopentyl- oder Cyclohexylethyl, Cyclopentyl- oder Cyclohexylpropyl, Cyclopentyl- oder Cyclohexylbutyl, Methyl-, Dimethyl-, Ethyl-, n-Propyl-, 1-Propyl-, n-Butyl-, i-Butyl-, t-Butylcyclopentyl oder -cyclohexyl. R^5 kann C_5 - C_{20} -, bevorzugt C_7 - C_{15} -Alkylcycloalkylalkyl bedeuten, z.B. (Methylcyclopentyl)methyl oder -ethyl, (Methylcyclohexyl)methyl oder -ethyl.

Bei R⁵ kann es sich auch um C₆-C₁₄-, bevorzugt C₆-C₁₀-Aryl handeln, z.B. Naphthyl und besonders Phenyl. R⁵ kann auch C₇-C₂₀-, bevorzugt C₇-C₁₆-Aralkyl oder -Alkaryl sein. Das Aryl ist hierbei bevorzugt ein Phenylrest. Beispiele sind Benzyl, Phenylethyl, Phenylpropyl, Phenylbutyl, Methylphenyl, Ethylphenyl, Propylphenyl und Butylphenyl. Bei R⁵ kann es sich auch um C₈-C₂₀-, bevorzugt C₈-C₁₆-Alkaralkyl handeln, worln das Aryl bevorzugt Phenyl ist. Beispiele sind Methylbenzyl, (Methylphenyl)ethyl, (Methylphenyl)propyl, (Methylphenyl)butyl, Ethylbenzyl und Propylbenzyl.

R⁶ kann eine der für R⁵ gegebenen Bedeutungen haben, einschliesslich der Bevorzugungen für R⁵. Bei R⁶ kann es sich um C₁-C₂₀-, bevorzugt C₁-C₁₂- und besonders C₁-C₆-Halogenalkyl handeln, wobei die Alkylgruppe teilweise oder ganz mit Halogen, bevorzugt Ci und/oder F substituiert sein kann. Belspiele sind Chlormethyl, Dichlormethyl, Trichlormethyl, Fluordichlormethyl, Diffluorchlormethyl, Trifluormethyl, 2,2-Dichlor- oder -2,2-Diffluorethyl, 1,1,1-Trichlor- oder -Trifluorethyl, Pentaftuorethyl, Chlorpopyl, Fluorpopyl, Perfluorpopyl, Chlorbutyl, Fluorbutyl, Perfluorbutyl, Pentaftuorpentyl und Perfluorhexyl.

Bei R⁶ und R⁵ kann es sich um lineares oder verzweigtes C₂-C₂₀-, bevorzugt C₂-C₁₂- und besonders C₂-C₆-Alkenyl handeln. Beispiele sind Vinyl, Crotonyl, Allyl, But-1-en-1-yl, But-1-en-4-yl, Pent-1-en-1-yl, Pent-2-en-2-yl, Hex-1-en-yl, Hex-3-en-3-yl und Hex-1-en-6-yl. R⁶ kann auch mit -CO- unterbrochenes C₂-C₂₀-, bevorzugt C₂-C₁₂- und besonders C₂-C₆-Alkyl sein, z.B. Acetylmethyl, Propionylmethyl, Acetylethyl und Propionylethyl.

R⁶ kann auch die Gruppe NR⁷R⁸ bedeuten, wenn Y¹ -SO₂-, -CO- oder -CS- ist, worin R⁷ und R⁸ unabhängig voneinander eine der für R⁵ gegebenen Bedeutungen haben, einschliesslich bevorzugter Ausführungsformen. Bevorzugt stehen R⁷ und R⁸ für ein Wasserstoffatom oder C₁-C₁₂-, besonders C₁-C₆-Alkyl, z.B. Hexyl, Pentyl, Butyl, Propyl und besonders Ethyl oder Methyl.

R⁵ und R⁶ zusammen können gegebenenfalls mit Halogen substituiertes C₂-C₈-Alkylen sein, z.B. 1,2-Ethylen, 1,3-Propylen, 1,4-Butylen, 1-Dimethylethylen, 1-Methyl-1-chlormethylethylen oder 1-Diethylethylen. Y ist bevorzugt -CO-, -COO- oder -SO₂-, R⁴ in der Gruppe -SiR⁴₂ bedeutet besonders Methyl.

Eine bevorzügte Ausführungsform ist dadurch gekennzeichnet, dass R² und R³ durch eine Gruppe der Formel IV substituiert sind, worin R⁵ Wasserstoff, unsubstituiertes oder durch C₁-C₁₂-Alkoxy oder Tetrahydrofuryl substituiertes C₁-C₁₂-Alkyl, C₂-C₅-Alkenyl, C₅-C₇-Cycloalkyl, C₆-C₁₈-Cycloalkylalkyl oder -Alkylcycloalkyl, C₇-C₁₈-Alkylcycloalkylalkyl, C₇-C₁₆-Aralkyl oder C₈-C₁₆-Alkaralkyl bedeutet, R⁵ eine der für R⁵ gegebenen Bedeutungen hat oder C₅-C₁₀-Aryl, C₇-C₁₈-Alkaryl, C₁-C₁₂-Halogenalkyl, oder -NR⁷R⁸ darstellt, worin R⁷ und R³ unabhängig voneinander Wasserstoff, C₁-C₁₂-Alkyl, Phenyl, Benzyl oder Cyclohexyl bedeuten oder R⁷ und R³ zusammen C₄-C₅-Alkylen oder 3-Oxapentamethylen bedeuten oder R⁵ und R⁶ zusammen C₂-C₈-Alkylen bedeuten und Y¹-CO-, -CS-, -COO- oder -SO₂- bedeutet.

Eine weitere bevorzugte Klasse von Titanocenen sind die Verbindungen der Formel I, worin R² und R³ durch eine Gruppe der Formel IV substituiert sind, worin R⁵ Wasserstoff, C₁-C₁₂-Alkyl, Cyclohexyl, Cyclohexylmethyl, 2-Tetrahydrofurylmethyl, C₂-C₀-Alkoxyalkyl, Allyl oder Cȝ-C₃-Aralkyl ist, R⁶ C₁-C₁₃-Alkyl, C₁-C₄-Halogenalkyl, Cyclohexyl, C₆-C₁₀-Aryl oder -Halogenaryl oder Cȝ-C₁₃-Alkaryl bedeutet oder R⁵ und R⁶ zusammen C₂-C₆-Alkylen bedeuten und Y¹ -CO-, -COO- oder -SO₂- ist oder der Rest -Y¹-R⁶ eine Gruppe -CO-NHRʔ, -CS-NHRʔ, -CO-NRʔ R⁶ oder -SO₂-NRʔ R⁶ bedeutet, worin Rʔ C₁-C₁₂-Alkyl oder Phenyl ist, R⁶ C₁-C₁₂-Alkyl ist oder Rʔ und R⁶ zusammen C₄-C₅-Alkylen oder З-Oxapentamethylen bedeuten, insbesondere solche Verbindungen der Formel I mit der Gruppe der Formel IV, worin R⁵ Wasserstoff, C₁-C₃-Alkyl oder Cȝ-C₃-Aralkyl ist, R⁶ C₁-C₁₃-Alkyl, Trifluormethyl, Phenyl oder durch Halogen oder C₁-C₁₂-Alkyl substituiertes Phenyl bedeutet oder R⁵ und R⁶ zusammen C₂-C₆-Alkylen bedeuten und Y¹-CO- oder -SO₂- ist.

Eine weltere bevorzugte Klasse von Titanocenen sind die Verbindungen der Formei I, worin R² und R³ durch eine Gruppe der Formei IVa substituiert sind, worin R⁵ und R¹⁰ zusammen C₂-C₈-Alkandiyl, C₂-C₈-Alkandiyl, C₆-C₁₄-Arendiyl oder C₇-C₁₂-Bicycloalkendiyl bedeuten und Y¹ -CQ- ist.

Beispiele für einzelne Verbindungen der Formel I sind:

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-ethyl-pivaloylamino)phenyl]-titan,

Bis(cyclopentadionyl)-bis[2,6-difluor-3-(N-butyl-pivaloylamino)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-ethyl-acetylamino)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-methyl-acetylamino)phenyl]-titan,

Bis(cyclopentadlenyl)-bls[2,6-difluor-3-(N-ethyl-propionylamino)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-ethyl-(2,2-dimethylbutanoyl)-amino)phenyl]titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-(2,2-dimethylbutanoyl)amino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-pentyl-(2,2-dimethylbutanoyl)amino)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,8-difluor-3-(N-hexyl-(2,2-dimethylbutanoyl)amino)phenyl]-titan,

Bis(cyclopentadienyl)-bis(2,6-diffuor-3-(N-methyl-butyrylamino)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-methyl-pentanoylamino)phenyl]-titan,

35 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-methyl-cyclohexylcarbonylamino)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-ethyl-isobutyrylamino)phenyl]-titan,

Bis(cyclopentadienyl)-bis(2,6-difluor-4-(N-ethyl-acetylamino)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2,2,5,5-tetramethyl-1,2,5-azadisilolidin-1-yl)-phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(methylsulfonamido)phenyl]-titan,

40 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(octylsulfonamido)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(4-tolylsulfonamido)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(4-dodecylphenylsulfonylamido)phenyl]-titan,

Bis(cyclopentadlenyl)-bis[2,6-difluor-3-(4-(1-pentylheptyl)phenylsulfonylamido)phenyl1-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(ethylsulfonylamido)phenyl]-titan,

45 Bis(cyclopentadienyl)-bis[2,6-difluor-3-((4-bromphenyl)sultonylamido)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2-naphthylsulfonylamido)phenyl]-titan,

Bis(cyclopentadienyl)-bis(2,6-difluor-3-(hexadecylsulfonylamido)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-methyl-(4-dodecylphenyl)sulfonylamido)phenyl1-titan.

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-methyl-(4-(1-pentylheptyl)phenyl)sulfonylamido)phenyl]-titan,

60 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-(4-tolyl)sulfonylamido)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(pyrrolidin-2,5-dion-1-yl)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3,4-dimethyl-3-pyrrolin-2,5-dion-1-yl)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-phthalimido)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(isobutoxycarbonylamino)phenyl]-titan,

55 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(ethoxycarbonylamino)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-((2-chlorethoxy)carbonylamino)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(phenoxycarbonylamino)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3-phenylthioureido)phenyl]-titan,

```
Biş(cyclopentadienyl)-bis[2,6-difluor-3-(3-butylthioureido)phenyi]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3-phenylureido)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3-butylureido)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N,N-diacetylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis(2,6-difluor-(3,3-dimethylureido)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(acetylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(butyrylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(decanoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(octadecanoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(isobutyrylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2-ethylhexanoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2-methylbutanoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(pivaloylamino)phenyl]-titan, ."
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2,2-dimethylbutanoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2-ethyl-2-methylheptanoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(cyclohexylcarbonylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2,2-dimethyl-3-chlorpropanoylamino)phenyl]-titan,
Bis(cyclopentadienyi)-bis[2,6-difluor-3-(3-phenylpropanoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2-chlormethyl-2-methyl-3-chlorpropanoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3,4-xyloylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(4-ethylbenzoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2,4,8-mesitylcarbonylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(benzoylamino)phenyl]-titan,
Bls(cyclopentadienyl)-bis(2,6-diffuor-3-(N-(3-phenylpropyl)-benzoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3-ethylheptyl)-2,2-dimethylpentanoylamino)phenyl-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-isobutyl-(4-toluyl)amino)phenyl ititan,
Bis(cyclopentadienyl)-bis(2,6-difluor-3-(N-isobutyl-benzoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexylmethyl-pivaloylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-diffuor-3-(N-(oxolan-2-ylmethyl)-benzoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,8-diffluor-3-(N-(3-ethylheptyl)-2,2-dimethylbutanoylamino]phenyl-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3-phenylpropyl)-(4-toluyl)amino)phenyl]-titan,
Bis(cyclopentadlenyl)-bis[2,6-difluor-3-(N-(oxolan-2-ylmethyl)-(4-toluyl)amino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(4-tolylmethyl)-benzoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(4-tolylmethyl)-(4-toluyl)amino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-diftuor-3-(N-butyl-benzoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-(4-toluyl)amino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-(4-tokyl)-amino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,8-difluor-3-(N-(2,4-dimethylpentyl)-2,2-dimethylbutanoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2,4-dimethylpentyl)-2,2-dimethylpentanoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-((4-toluyl)amino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2,2-dimethylpentanoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2,2-dimethyl-3-ethoxypropanoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-diffuor-3-(2,2-dimethyl-3-allyloxypropanoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-allyl-acetylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2-ethylbutanoylamino)phenyl]-titan,
Bls(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexylmethyl-benzoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-(N-cyclohexylmethyl-(4-toluyl)-amino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2-ethylhexyl)-benzoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-isopropyl-benzoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3-phenylpropyl)-2,2-dimethylpentanoyl)amino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-benzoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexylmethyl-2,2-dimethylpentanoyl)amino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-benzoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2-ethylhexyl)-2,2-dimethylpentanoyl)amino)phenyl]-titan,
Bis{cyclopentadienyl}-bis[2,6-difluor-3-(N-hexyl-2,2-dimethylpentanoylamino)phenyl]-tltan,
Bis(cyclopentadienyl)-bis[2.6-difluor-3-(N-isopropyl-2.2-dimethylpentanoylamino)phenyl]-titan,
Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3-phenylpropyl)-pivaloylamino)phenyl]-titan,
```

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-2,2-dimethylpentanoylamino)phenyl]-titan,

- Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2-methoxyethyl)benzoylamino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-benzyl-benzoylamino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-benzyl-(4-toluyl)amino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2-methoxyethyl)-(4-toluyl)amino)phenyl]-titan,
- 5 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(4-methylphenylmethyl)-2,2-dimethylpentanoylamino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2-methoxyethyl)-2,2-dimethylpentanoylamino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexylmethyl-(2-ethyl-2-methylheptanoyl)amino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-bexyl-(2-ethyl-2-methylbutanoyl)amino)phenyl]-titan,
- Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexyl-2,2-dimethylpentanoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(oxolan-2-ylmethyl)-2,2-dimethylpentanoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexyl-(4-chlorbenzoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexyl-(2-chlorbenzoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3,3-dimethyl-2-azetidinon-1-yl)phenyl]-titan,
- Bis(cyclopentadienyl)-bis(2,6-difluor-3-isocyanatophenyl)-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-ethyl-(4-tolylsulfonyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-(4-tolylsulfonyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-(4-tolylsulfonyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-isobutyl-(4-tolylsulfonyl)amino)phenyl]-titan,
- Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-(2,2-dimethyl-3-chiorpropanoyl)amino)phenyl]-titan.
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3-phenylpropyl)-(2,2-dimethyl-3-chiorpropanoyl)amino)phenyl]-titan.
 - Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexylmethyl-(2,2-dimethyl-3-chlorpropanoyl)amino)phenyl]-titan,
- 25 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-isobutyl-(2,2-dimethyl-3-chlorpropanoyl)amino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-(2-chlormethyl-2-methyl-3-chlorpropanolyl)amino)phenyl]-titan,
 - Bis(cyclopentadienyl)-bis[2,6-difluor-3-(butylthiocarbonylamino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,8-difluor-3-(phenylthiocarbonylamino)phenyl]-titan,
- Bis(methylcyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-2,2-dimethylbutanoyl)amino)phenyl]-titan, Bis(methylcyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-2,2-dimethylpentanoylamino)phenyl]-titan, Bis(methylcyclopentadienyl)-bis[2,6-difluor-3-(N-ethyl-acetylamino)phenyl]-titan, Bis(methylcyclopentadienyl)-bis[2,6-difluor-3-(N-ethylpropionylamino)phenyl]-titan, Bis(trimethylsilylpentadienyl)-bis[2,6-difluor-3-(N-butyl-2,2-dimethylpropanoylamino)phenyl]-titan,
- 35 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2-methoxyethyl)-trimethylsilylamino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-hexyldimethylsilylamino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-ethyl-(1,1,2-trimethylpropyl)dimethylsilylamino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3-ethoxymethyl)-3-methyl-2-azetidinon-1-yl)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3-allyloxymethyl)-3-methyl-2-azetidinon-1-yl)phenyl]-titan,
- Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3-chlormethyl-3-methyl-2-azetidinon-1-yl)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-benzyl-2,2-dimethylpropanoylamino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(5,5-dimethyl-2-pyrrolidinon-1-yl)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(6,6-diphenyl-2-plperidinon1-yl)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2,3-dihydro-1,2-benzisothlazol-3-on-1,1-dioxid-2-yl)phenyl]-titan,
- 45 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-(4-chlorbenzoyl)amino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-(2-chlorbenzoyl)amino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-isopropyl-(4-chlorbenzoyl)amino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(4-methylphenylmethyl)-(4-chlorbenzoyl)amino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(4-methylphenylmethyl)-(2-chlorbenzoyl)amino)phenyl]-titan,
- Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-(4-chlorbenzoyl)amino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-benzyl-2,2-dimethylpentanoylamino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2-ethylhexyl)-(4-tolylsulfonyl)amino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3-oxaheptyl)-benzoylamino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3,6-dioxadecyl)-benzoylamino)phenyl]-titan,
- Bis(cyclopentadienyl)-bis[2,6-difluor-3-(trifluormethylsulfonyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(trifluoracetylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-((2-chlorbenzoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-((4-chlorbenzoyl)amino)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3,6-dioxadecyl)-2,2-dimethylpentanoylamino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3,7-dimethyl-7-methoxyoctyl)-benzoylamino)phenyl]-titan, Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexyl-benzoylamino)phenyl]-titan.

Die Herstellung der Titanocene der Formel I kann nach bekannten oder analogen Verfahren erfolgen, indem man 1 Mol einer Verbindung der Formel VI

worin R¹ die angegebene Bedeutung hat und Z für Halogen, besonders Chlor, steht, entweder mit einem Mol LiR² oder LiR³ und danach mit einem Mol LiR³ bzw. LiR² umsetzt, oder mit 2 Mol LiR² oder mit 1 Mol Li₂QYQ umsetzt, wobei R², R³ und QYQ die zuvor angegebenen Bedeutungen haben, und danach die Verbindung der Formel I in an sich bekannter Weise isoliert.

Die bekannten Verfahren sind z.B. in J. Organometal. Chem., 2 (1964) 206-212, J. Organometal. Chem., 4 (1965) 445-446 und in der EP-A-0 122 223 beschrieben.

Die Ausgangsverbindungen der Formel VI, in denen Z besonders für Chlor steht, sind bekannt oder können nach analogen Verfahren durch die Umsetzung von TiCk mit 2 Mol einer Natriumverbindung NaR¹ erhalten werden.

Die Lithiumverbindungen LiR², LiR³ und Li₂QYQ sind neu. Sie können nach an sich bekannten Verfahren durch die Umsetzung von z.B. Lithiumbutyl mit Verbindungen der Formel VII oder VIII hergestellt werden.

Ein weiterer Gegenstand der Erfindung sind die Zwischenprodukte der Formel VII

worin Ar einen 6-gliedrigen carbocyclischen oder 5- oder 6-gliedrigen heterocyclischen aromatischen Rest, der mindestens ein Fluoratom, in Orthostellung hierzu ein Wasserstoffatom oder ein Halogenatom und gegebenenfalls weitere Substituenten enthält, oder Ar einen Rest der Formel

bedeutet, worin D für ein in Orthostellung zu Y gebundenes Wasserstoffatom oder Halogenatom steht, Q einen carbocyclischen aromatischen Rest bedeutet, der in Orthostellung zur D-Gruppe jeweils durch ein Fluoratom substituiert ist und Q weitere Substituenten enthalten kann, und Y, Y¹, R⁵ und R⁶ die zuvor angegebenen Bedeutungen haben.

Für Ar, Y¹, R⁵, R⁶, Q und Y gelten sinngemäss die gleichen Ausführungsformen und Bevorzugungen wie sie zuvor für R² bzw. R² und R³ zusammen und für den Rest der Formel IV beschrieben sind.

Der Rest Ar in der Bedeutung eines 6-gliedrigen carbocyclischen oder 5- oder 6-gliedrigen heterocyclischen aromatischen Restes enthält vorzugsweise in Orthostellung zum Wasserstoff- bzw. Halogenatom ein weiteres Fluoratom. Das Halogenatom ist bevorzugt aus F, Cl oder Br ausgewählt. Beim aromatischen Rest handelt es sich vorzugsweise um einen substituierten Phenylrest. In Orthostellung zum Fluoratom bzw. zu Y ist insbesondere ein Wasserstoffatom gebunden. Die Gruppe -N(R5)-Y¹R5 ist vorzugsweise in Orthostellung zu einem der F-Atome gebunden. Es wurde gefunden, dass überraschend bei solchen Verbindungen das zu den F-Atomen benachbarte H-Atom direkt durch Lithium ersetzt werden kann. Eine bevorzugte Gruppe von Verbindungen sind solche der Formel VIIa

55

10

25

45

50

55

worin R⁵, R⁶ und Y¹ die zuvor angegebenen Bedeutungen haben. Die Gruppe -N(R⁵)-Y¹R⁶ ist vorzugsweise in Orthostellung zum Fluoratom gebunden.

Die Herstellung der Verbindungen der Formel VII kann durch N-Acytierung nach an sich bekannten Verfahren erfolgen. Man kann z.B. von den entsprechenden primären oder sekundären Fluorarylaminen ausgehen, die teilweise kommerziell erhältlich sind oder nach an sich bekannten Verfahren hergestellt werden können. Sekundäre Amine können auch durch Alkylierung und Aralkylierung von primären Aminen nach bekannten Methoden erhalten werden. Beispielsweise kann man ein primäres Amin mit einem Aldehyd umsetzen und das gebildete Azomethin hydrieren. Man kann auch von einem fluorierten Nitrobenzol ausgehen und durch Hydrierung in Gegenwart eines Aldehydes das monoalkylierte Anilin herstellen.

Die Acylierung (Y¹ = -CO-, -CS- oder -SO₂-) kann nach bekannten Verfahren durch die Umsetzung der Amine mit Säurehalogeniden, Säureanhydriden oder Säureestern erfolgen. Urethane (Y¹ = -CO-) können durch die Umsetzung der Amine mit Chlorkohlensäureestern erhalten werden. Harnstoffe (Y¹ = -CO- oder -CS- und R⁶ = -NRⁿ R⁶) können z.B. durch die Umsetzung der Amine mit isocyanaten, iso thiocyanaten oder Carbamoyihalogeniden hergestellt werden. Silylamine können z.B. durch die Umsetzung eines Amins mit einem entsprechenden Silylhalogenid, R⁶Si(R⁴)₂CI erhalten werden.

Gleichzeitige Alkyllerung und Acyllerung der primären Amine kann durch Reaktion mit Orthocarbonsäureestem geschehen.

Verbindungen der Formel VII, worin R⁵ und R⁶ zusammen lineares oder verzweigtes C₂-C₈-Alkylen oder durch Halogen substitutiertes C₂-C₈-Alkylen oder einen zweiwertigen Rest der Formel

bedeuten, können z.B. aus den primären Fluoranilinen durch Umsetzung mit einem entsprechenden Halogencarbonsäurehalogenid oder Halogensulfonsäurehalogenid hergestellt werden. Belspiele hierfür sind β-Chlorpropionsäurechlorid, β-Chlorpivalinsäurechlorid, γ-Brombutyrylbromid, δ-Bromvalerylbromid, ο-Chlormethylbenzoylchlorid oder 2-(Chlormethyl)-cyclohexancarbonylchlorid. Eine weitere Methode ist die Umsetzung der primären Amine mit Lactonen.

Weitere Zwischenprodukte sind die Verbindungen der Formel VIII

worin Ar, Y¹, R⁶ und R¹⁰ die vorhin gegebenen Bedeutungen haben. Bevorzugt ist Ar ein 1,3-Difluorphenylrest, was den Verbindungen der Formel VIIIa entspricht:

Die Gruppe -N(Y¹R¹0)-Y¹R6 befindet sich bevorzugt in Orthostellung zum Fluoratom.

Bevorzugt sind Verbindungen der Formel VIIIa, worin Y¹ die Gruppe -CO- ist und R⁶ und R¹⁰ zusammen C₂-C₈-Alkandiyl, C₂-C₈-Alkendiyl, C₆-C₁₂-Arendiyl, C₆-C₁₂-Cycloalkandiyl, C₆-C₁₂-Cycloalkandiyl, C₆-C₁₂-Bicycloalkandiyl bedeuten.

Die Verbindungen der Formel VIII können durch zweifache Acylierung der entsprechenden primären Amine hergestellt werden. Verbindungen der Formel VIII, worin Y¹ die Gruppe -CO- ist und R¹ und R¹ zusammen einen zweiwertigen Rest bilden, können durch Umsetzung der primären Amine mit cyclischen 1,2-Dicarbonsäureanhydriden hergestellt werden. Beispiele hierfür sind Bernsteinsäure-, Maleinsäure-, Phthalsäure-, Hexahydrophthalsäure- oder Cyclohexen-4,5-dicarbonsäureanhydrid.

Eine spezielle Type von Verbindungen der Formel VIII bzw. VIIIa sind solche der Formel VIIIb:

70

75

Diese können z.B. aus den entsprechenden primären Aminen durch Umsetzung mit X¹-Si(R⁴)₂-CH₂-CH₂-CH₂-Si-(R⁴)₂-X¹, worln X¹ Chlor oder Dimethylamino ist, hergestellt werden. Die Verbindungen der Formel VIIIb stellen eine maskierte Form der primären Amine dar. Nach ihrer Umsetzung zu den entsprechenden Titanocenen kann die Schutzgruppe -Si(R⁴)₂-CH₂-CH₂-Si(R⁴)₂- hydrolytisch abgespalten werden unter Zurückbildung der NH₂-Gruppe.

Die Herstellung der Titanocene der Formel I erfolgt im allgemeinen in Gegenwart inerter Lösungsmittel wie z.B. Kohlenwasserstoffen oder Ethern, bei Temperaturen von -30 bis -100°C, vorzugsweise -60 bis -90°C und unter Schutzgasatmosphäre. In einer Ausführungsform des Verfahrens wird zunächst LiR² bzw. LiR³ durch Umsetzung der Ver bindungen der Formel VII oder VIII in einem Ether als Lösungsmittel, z.B. Tetrahydrofuran, mit Lithiumbutyl bei Temperaturen um -78°C hergestellt. Zu der gekühlten Reaktionsmischung gibt man dann das entsprechende Titanocendihalogenid, entfernt die Kühlung und lässt auf Raumtemperatur erwärmen. Die Reaktionsmischung wird dann, gegebenenfalls nach Zugabe von Lösungsmitteln, filtriert und aus der Lösung durch Ausfällen oder Verdampfen des Lösungsmittels das erfindungsgemässe Titanocen isollert.

Verwendet man für die Umsetzung mit Lithiumbutyl und Titanocendichlerid ein maskiertes primäres Amin, beispielsweise eine Verbindung der Formel Villb, so kann durch Hydrolyse des gebildeten Titanocens eine Verbindung der Formel I hergestellt werden, in der R² und R³ durch eine NH₂-Gruppe substituiert sind. Diese NH₂-Gruppe kann anschliessend durch entsprechende N-Substitution in die Gruppe -N(R⁵)-Y¹R⁵ oder -N(Y¹R¹0)-Y¹R⁵ übergeführt werden. Hierfür kommen dieselben Verfahren in Frage wie für die Herstellung von VII und VIII. Die NH₂-Gruppe kann auch durch Umsetzung mit Phosgen oder Triphosgen in eine isocyanatgruppe -NCO übergeführt werden, wodurch man zu Verbindungen der Formel I gelangt, in denen R² und R³ durch einen Rest der Formel IVb substituiert sind.

Bei den Verbindungen der Formel I handelt es sich im allgemeinen um kristalline, meist orangegefärbte, Verbindungen, die sich durch eine hohe thermische Stabilität auszeichnen und sich erst bei hohen Temperaturen zersetzen. Auch unter Lufteinwirkung sowie unter Einwirkung von Wasser wird keine Zersetzung beobachtet. Viele dieser Verbindungen können in härtbaren Zusammensetzungen auch in höheren Mengen gelöst werden, und bieten daher wertvolle anwendungstechnische Eigenschaften. Die Verbindungen sind auch in Lösungsmitteln gut löslich, und können in Form von Lösungen in härtbare Zusammensetzungen eingearbeitet werden, wonach das Lösungsmittel gegebenenfalls entfernt wird.

Die Verbindungen sind dunkellagerstabil und können ohne Schutzgas gehandhabt werden. Sie eignen sich alleine hervorragend als sehr wirksame Photoinitiatoren für die lichtinduzierte Polymerisation ethylenisch ungesättigter Verbindungen. Sie zeichnen sich hierbei durch eine hohe Lichtempfindlichkeit und Wirksamkeit über einen grossen Wellenlängenbereich von ca. 200 nm (UV-Licht) bis etwa 600 nm aus. Ferner vermögen die Titanocene auch wirksam die Polymerisation unter dem Einfluss von Wärme zu initiieren, wobei ein Erwärmen auf 170°C bis 240°C zweckmässig ist. Selbstverständlich kann auch Lichteinwirkung in Kombination mit Erwärmung zur Polymerisation benutzt werden, wobei eine Erwärmung nach der Belichtung tiefere Temperaturen, z.B. 80-150°C, zur Polymerisation erlaubt. Die Lichtempfindlichkeit ist überraschend höher als bei den entsprechenden Dialkylaminderivaten.

Ein weiterer Gegenstand vorliegender Erfindung ist eine durch Strahlung polymerisierbare Zusammensetzung, enthaltend (a) mindestens eine nichtflüchtige, monomere, oligomere oder polymere Verbindung mit mindestens einer polymerisierbaren ethylenisch ungesättigten Doppelbindung und (b) mindestens ein Titanocen der Formel I als Photoinitiator.

Die Zusammensetzungen können weitere von (b) verschiedene Photoinitiatoren (c), z.B. solche vom Typ der Benzophenone, Benzoinalkylether, Benzilketale, 4-Aroyl-1,3-dioxolane, Dialkoxyacetophenone, α-Hydroxy- oder α-Aminoacetophenone, α-Hydroxycycloalkylphenylketone oder Mischungen davon enthalten. Der Vorteil besteht darin, dass man geringere Mengen der erfindungsgemässen Titanocene verwenden kann und trotzdem gleiche oder verbesserte Lichtempfindlichkeiten erzielen kann. Das Gewichtsverhältnis dieser Komponenten (c):(b) kann z.B. von 1:1 bis 30:1, bevorzugt 5:1 bis 15:1 betragen.

Die Zusatzmenge der erfindungsgemässen Titanocene richtet sich im wesentlichen nach wirtschaftlichen Gesichtspunkten, deren Löstlichkeiten und nach der gewünschten Empfindlichkeit. Im allgemeinen werden 0,01 bis 20, vorzugsweise 0,05-10 und besonders 0,1 bis 5 Gew.% verwendet, bezogen auf die Komponente (a).

Als Komponente (a) kommen solche ethylenisch ungesättigten monomeren, oligomeren und polymeren Verbindungen in Frege, die durch Photopolymerisation zu höhermolekularen Produkten reagieren und hierbei ihre Löslichkeit verändern.

Besonders geeignet sind z.B. Ester von ethylenisch ungesättigten Carbonsäuren und Polyolen oder Polyepoxiden, und Polymere mit ethylenisch ungesättigten Gruppen in der Kette oder in Seitengruppen, wie z.B. ungesättigte Polyester, Polyamide und Polyurethane und Copolymere hiervon, Polybutadien und Butadien-Copolymere, Polyisopren und Isopren-Copolymere, Polymere und Copolymere mit (Meth)-Acrylgruppen in Seitenketten, sowie Mischungen von einem oder mehreren solcher Polymere.

Beispiele für ungesättigte Carbonsäuren sind Acrylsäure, Methacrylsäure, Crotonsäure, Itaconsäure, Zimtsäure, ungesättigte Fettsäuren wie Linolensäure oder Celsäure. Bevorzugt sind Acryl- und Methacrylsäure.

Als Polyole sind aromatische und besonders aliphatische und cycloaliphatische Polyole geeignet. Beispiele für aromatische Polyole sind Hydrochinon, 4,4'-Dihydroxydiphenyl, 2,2-Di(4-hydroxyphenyl)-propan, sowie Novolake und Resole. Beispiele für Polyopoxide sind solche auf der Basis der genannten Polyole, besonders der aromatischen Polyole und Epichlorhydrin. Ferner sind auch Polymere oder Copolymere, die Hydroxyigruppen in der Polymerkette oder in Seitengruppen enthalten, wie z.B. Polyvinylalkohol und Copolymere davon oder Polymethacrytsäurehydroxyalkylester oder Copolymere davon, als Polyole geeignet. Weitere geeignete Polyole sind Oligoester mit Hydroxylendgruppen.

Beispiele für aliphatische und cycloaliphatische Polyole sind Alkylendiole mit bevorzugt 12 bis 12 C-Atomen, wie Ethylenglykol, 1,2- oder 1,3-Propandiol, 1,2-, 1,3 oder 1,4-Butandiol, Pentandiol, Hexandiol, Octandiol, Dodecandiol, Diethylenglykol, Triethylenglykol, Polyethylenglykole mit Molekulargewichten von bevorzugt 200 bis 1500, 1,3-Cyclopentandiol, 1,2-, 1,3- oder 1,4-Cyclohexandiol, 1,4-Dihydroxymethylcyclohexan, Glycerin, Tris-(8-hydroxyethyl)amin, Trimethylolethan, Trimethylolpropan, Pentaerythrit, Dipentaerythrit und Sorbit.

Die Polyole können teilwelse oder vollständig mit einer oder verschledenen ungesättigten Carbonsäuren verestert sein, wobei in Teilestern die freien Hydroxylgruppen modifiziert, z.B. verethert oder mit anderen Carbonsäuren verestert sein können.

Beispiele für Ester sind:

Trimethylolpropantriacrylat, Trimethylolethantriacrylat, Trimethylolpropantrimethacrylat, Trimethylolethantrimethacrylat, Tetramethylenglykoldimethacrylat, Triethylenglykoldimethacrylat, Tetramethylenglykoldiacrylat, Pentaerythritdiacrylat, Pentaerythrittetraacrylat, Dipentaerythritdiacrylat, Dipentaerythritdiacrylat, Dipentaerythritdiacrylat, Dipentaerythritdiacrylat, Dipentaerythritdimethacrylat, Tripentaerythritdimethacrylat, Dipentaerythritdimethacrylat, Dipentaerythritdimethacrylat, Dipentaerythritdimethacrylat, Dipentaerythritdimethacrylat, Dipentaerythritdiaconat, Dipentaerythrittisitaconate, Dipentaerythritpentaitaconat, Dipentaerythrithexaitaconat, Ethylenglykoldimethacrylat, 1,3-Butandioldiacrylat, 1,3-Butandioldimethacrylat, 1,4-Butandioldiitaconat, Sorbittriacrylat, Sorbittetraacrylat, Sorbittetramethacrylat, Sorbittetramethacrylat, 1,4-Cyclohexandiacrylat, Bisacrylate und Bismethacrylate von Polyethylenglykol mit Molekulargewicht von 200-1500, oder Gemische davon.

Als Komponente (a) sind auch die Amide gleicher oder verschiedener ungesättigter Carbonsäuren von aromatischen, cycloaliphatischen und aliphatischen Polyaminen mit bevorzugt 2 bis 6, besonders 2 bis 4 Aminogruppen geeignet. Beispiele für solche Polyamine sind Ethylendiamin, 1,2- oder 1,3-Propylendiamin, 1,2-, 1,3- oder 1,4-Butylendiamin, 1,5-Pentylendiamin, 1,6-Hexylendiamin, Octylendiamin, Dodecylendiamin, 1,4-Diaminocyclohexan, Isophorondiamin, Phenylendiamin, Bisphenylendiamin, Di-β-aminoethylether, Diethylentriamin, Triethylentetramin, Di-(β-aminoethoxy)- oder Di(β-aminopropoxy)ethan. Weitere geeignete Polyamine sind Polymere und Copolymere mit Aminogruppen in der Seitenkette und Oligoamide mit

Aminoendgruppen.

Beispiele für solche ungesättigten Amide sind: Methylen-bis-acrylamid, 1,6-Hexamethylen-bis-acrylamid, Diethylentriamin-tris-methacrylamid, Bis(methacrylamidopropoxy)-ethan, β -Methacrylamidoethylmethacrylat, N[(β -Hydroxyethoxy)ethyl]-acrylamid.

Geeignete ungesättigte Polyester und Polyamide leiten sich z.B. von Maleinsäure und Diolen oder Diamlnen ab. Die Maleinsäure kann teilweise durch andere Dicarbonsäuren ersetzt sein. Sie können zusammen mit ethylenisch ungesättigten Comonomeren, z.B. Styrol, eingesetzt werden. Die Polyester und Polyamide können sich auch von Dicarbonsäuren und ethylenisch ungesättigten Diolen oder Diaminen ableiten, besonders von längerkettigen mit z.B. 6 bis 20 C-Atomen. Beispiele für Polyurethane sind solche, die aus gesättigten oder ungesättigten Diisocyanaten und ungesättigten bzw. gesättigten Diolen aufgebaut sind.

Polybutadien und Polyisopren und Copolymere davon sind bekannt. Geeignete Comonomere sind z.B. Polyblefine wie Ethylen, Propen, Buten, Hexen, (Meth)Acrylate, Acrylnitrit, Styrol oder Vinylchlorid. Polymere mit (Meth)Acrylatgruppen in der Seitenkette sind ebenfalls bekannt. Es kann sich z.B. um Umsetzungsprodukte von Epoxidharzen auf Novolakbasis mit (Meth)Acrylsäure handeln, um Homo- oder Copolymere des Polyvinylalkohols oder deren Hydroxyalkylderivaten, die mit (Meth)Acrylsäure verestert sind, oder um Homo- und Copolymere von (Meth)Acrylaten, die mit Hydroxyalkyl(meth)acrylaten verestert sind.

Die photopolymerisierbaren Verbindungen können alleine oder in beliebigen Mischungen eingesetzt werden. Bevorzugt werden Gemische von Polyol-(Meth)Acrylaten verwendet.

Den erfindungsgemässen Zusammensetzungen können auch Bindemittel zugesetzt werden, was besonders zweckmässig ist, wenn es sich bei den photopolymerisierbaren Verbindungen um filüssige oder viskose Substanzen handelt. Die Menge des Bindemittels kann z.B. 5-95, vorzugsweise 10-90 und besondere 50-90 Gew.% betragen, bezogen auf die gesamte Zusammensetzung. Die Wahl des Bindemittels erfolgt je nach dem Anwendungsgebiet und hierfür geforderter Eigenschaften wie Entwickelbarkeit in wässrigen und organischen Lösungsmittelsystemen. Adhäsion auf Substraten und Sauerstoffempfindlichkeit.

Geeignete Bindemittel sind z.B. Polymere mit einem Molekulargewicht von etwa 5000-2 000 000, bevorzugt 10 000 bis 1 000 000. Beispiele sind: Homo- und copolymere Acrylate und Methacrylate, z.B. Copolymere aus Methylmethacrylat/Ethylacrylat/Methacrylsäure, Poly(methacrylsäurealkylester), Poly-(acrylsäurealkylester); Celluloseester und -ether wie Celluloseacetat, Celluloseacetatbutyrat, Methylcellulose, Ethylcellulose; Polyvinylbutyral, Polyvinylformal, cyclisierter Kautschuk, Polyether wie Polyethylenoxid, Polypropylenoxid, Polytetrahydrofuran; Polystyrol, Polycarbonat, Polyurethan, chlorierte Polyolefine, Polyvinylchlorid, Copolymere aus Vinylchlorid/Vinylidenchlorid, Copolymere von Vinylidenchlorid mit Acrylnitril, Methylmethacrylat und Vinylacetat, Polyvinylacetat, Copoly(ethylen/vinylacetat), Polyamide wie Polycaprolactam und Poly(hexamethylenadipamid), Polyester wie Poly(äthylenglykolterephthalat) und Poly-(hexamethylenglykolsuccinat).

Die erfindungsgemässen Zusammensetzungen eignen sich als Beschichtungsmittel für Substrate aller Art, z.B. Holz, Papier, Keramik, Kunststoffe, wie Polyester und Celluloseacetatfilme, und Metalle, wie Kupfer und Aluminium, bei denen durch Photopolymerisation eine Schutzschicht oder eine photographische Abbildung aufgebracht werden soll. Ein welterer Gegenstand vorliegender Erfindung sind die beschichteten Substrate und ein Verfahren zum Aufbringen photographischer Abbildungen auf den Substraten. Die beschichteten Substrate können auch als Aufzeichnungsmaterial für Hologramme (Volumen-Phasen-Diagramm) verwendet werden, wobel vorteilhaft ist, dass für diesen Zweck keine Nassentwicklung notwendig ist.

Die Beschichtung der Substrate kann erfolgen, indem man eine flüssige Zusammensetzung, eine Lösung oder Suspension auf das Substrat aufbringt. Flüssige Zusammensetzungen ohne Lösungsmittel sind bevorzugt. Hierbei kann es zweckmässig sein, die erfindungsgemässen Titanocene in Form eines flüssigen Photoinitiatorengemisches, enthaltend andere Photoinitiatoren, z.B. ein Benzilketal, ein 4-Aroyl-1,3-dioxolan, ein Dialkoxyacetophenon, ein α -Hydroxy-oder α -Aminoacetophenon, ein α -Hydroxycycloalkylphenylketon oder Mischungen hiervon einzusetzen. Besonders vorteilhaft sind flüssige Mischungen aus flüssigen bis festen Photoinitiatoren und flüssigen Titanocenen oder flüssigen Photoinitiatoren und sirupösen bis festen Titanocenen. Diese Gemische bieten anwendungstechnische Vorteile und zeichnen sich durch eine hohe Dunkellagerstabilität aus.

Beispiele für Benzilketale sind solche der Formel

50

 $-(CH_2CH_2O)_3C_2H_5$

-(CH2CH2O)3C12H25

```
-(CH2CH2O)5C10H21
                                -(CH_2CH_2O)_8C_9H_{19}-bis-C_{11}H_{23} (Gemisch)
                                -(CH2CH2O)1g-
                                -CH2CH2N(C2H5)2
10
                                -CH2CH2-N
15
20
                  R^{15} = CH_3, R^{13} = C_6H_{13}
                       = CH_3, R^{13} = C_{10}H_{21}
                       = CH_3, R^{13} = \{CH_2CH_2O\}_3-C_{12}H_{25} bis-C_{15}H_{31} (Gemisch)
25
                       = CH_3, R^{13} = \{CH_2CH_2O\}_5 + C_9H_{19} \text{ bis } -C_{11}H_{23} \text{ (Gemisch)}\}
                  R^{1+} = CH_3, R^{13} = (-CH_2CH_2O)_8 - (-C_{11}H_{23})
30
        Beispiele für 4-Aroyl-1,3-dioxotane sind:
    4-Benzoyi-2,2,4-trimethyl-1,3-dioxolan
    4-Benzoyl-4-methyl-2,2-tetramethylen-1,3-dioxolan
    4-Benzoyl-4-methyl-2,2-pentamethylen-1,3-dioxolan
    cis-trans 4-Benzoyl-2,4-dimethyl-2-methoxymethyl-1,3-dioxolan
    cis-trans 4-Benzoyl-4-methyl-2-phenyl-1,3-dioxolan
    4-(4-Methoxybenzoyl)-2,2,4-trimethyl-1,3-dloxolan
    4-(4-Methoxybenzoyl)-4-methyl-2,2-pentamethylen-1,3-dioxolan
    4-(4-Methylbenzoyl)-2,2,4-trimethyl-1,3-dioxolan
    cis-trans 4-Benzoyl-2-methyl-4-phenyl-1,3-dioxolan
    4-Benzoyl-2,2,4,5,5-pentamethyl-1,3-dioxotan
    cis-trans 4-Benzoyl-2,2,4,5-tetramethyl-1,3-dioxolan
    cis-trans 4-Benzoyl-4-methyl-2-pentyl-1,3-dioxolan
    cis-trans 4-Benzoyl-2-benzyl-2,4-dimethyl-1,3-dioxolan
    cis-trans 4-Benzoyl-2-(2-furyl)-4-methyl-1,3-dioxolan
    cis-trans 4-Benzoyl-5-phenyl-2,2,4-trimethyl-1,3-dioxolan
    4-(4-Methoxybenzoyl)-2,2,4,5,5-pentamethyl-1,3-dioxolan.
        Beispiele für Dialkoxyacetophenone sind:
    a.a-Dimethoxyacetophenon
    a,a-Diethoxyacetophenon
    a,a-Di-isopropoxyacetophenon
    α,α-Di-(2-methoxyethoxy)acetophenon
    α-Butoxy-α-ethoxyacetophenon
    a,a-Dibutoxy-4-chloracetophenon
    a.a-Diethoxy-4-fluoroacetophenon
    α,α-Dimethoxy-4-methylacetophenon
    a,a-Diethoxy-4-methylacetophenon
    a.a-Dimethoxypropiophenon
```

a.a-Diethoxypropiophenon

a,a-Diethoxybutyrophenon

a,a-Dimethoxyisovalerophenon

a,a-Diethoxy-a-cyclohexylacetophenon

a,a-Dipropoxy-4-chlorpropiophenon.

Beispleie für α-Hydroxy- und α-Aminoacetophenone sind:

2-Hydroxy-2-methyl-1-phenyl-propanon-1

2-Hydroxy-2-ethyl-1-phenylhexanon-1

1-(4-Dodecylphenyl)-2-hydroxy-2-methylpropanon-1

1-(2.4-Dimethylphenyl)-2-hydroxy-2-methylpropanol-1

2-Hydroxy-1-(4-methoxyphenyl)-2-methylpropanon-1

2-Hydroxy-2-methyl-1-phenylbutanon-1

2-Hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methylpropanon-1

2-Dimethylamino-2-methyl-1-phenylpropanon-1

2-Dibutylamino-2-methyl-1-phenylpropanol-1

1-(4-Fluorphenyl)-2-methyl-2-morpholinopentanon-1

2-Methyl-1-(4-methylthiophenyl)-2-morpholinopropanon-1

2-Dimethylamino-1-(4-methoxyphenyl)-2-methylpropanon-1

2-Diethylamino-1-(4-diethylaminophenyl)-2-methylpropanon-1.

2-Dimethylamino-2-(4-methylbenzyl)-1-(4-morpholinophenyl)-butanon-1

2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanon-1

Beispiele für α-Hydroxycycloalkylphenylketone sind:

a-Hydroxycyclohexylphenylketon

a-Hydroxycyclopentylphenylketon

Das Photoinitiatorengemisch (b) + (c) kann in Mengen von 0,5-20, vorzugsweise 1 bis 10 Gew.-%, zugegeben werden, bezogen auf die Komponente (a).

Die Wahl des Lösungsmittels und die Konzentration richtet sich hauptsächlich nach der Art der Zusammensetzung und nach dem Beschichtungsverfahren. Die Zusammensetzung wird mittels bekannter Beschichtungsverfahren auf ein Substrat gleichförmig aufgebracht, z.B. durch Tauchen, Rakelbeschichtung, Vorhanggiessverfahren, Elektrophorese, Aufpinseln, Sprayen oder Reverseroll-Beschichtung. Die Auftragsmenge (Schichtdicke) und Art des Substrates (Schichtträger) sind abhängig vom gewünschten Applikationsgebiet. Als Schichtträger für photographische Informationsaufzeichnung dienen z.B. Folien aus Polyester, Celluloseacetat oder mit Kunststoff beschichtele Papiere; für Offsetdruckformen speziell behandeltes Aluminium und für die Hersteilung gedruckter Schaltungen kupferkaschierte Laminate. Die Schichtdicken für photographische Materialien und Offsetdruckformen betragen im allgemeinen ca. 0,5 bis ca. 10 µm; für gedruckte Schaltungen im allgemeinen 1 bis ca. 100 µm. Bei Mitverwendung von Lösungsmitteln werden diese nach dem Beschichten entfernt.

Photohärtbare Zusammensetzungen, wie sie für die verschiedenen Zwecke verwendet werden, enthalten meist ausser den photopolymerislerbaren Verbindungen und den Photoinitiatoren eine Reihe sonstiger Zusätze. So ist es vielfach üblich, thermische Inhibitoren zuzusetzen, die vor allem während der Herstellung der Zusammensetzungen durch Mischen der Komponenten vor einer vorzeitigen Polymerisation schützen sollen. Hierzu werden beispielsweise Hydrochinon, Hydrochinonderivate, p-Methoxyphenol, β-Naphthole oder sterisch gehinderte Phenole wie z.b. 2,6-Di(tert-butyl)-p-kresol verwendet. Weiter können geringe Mengen von UV-Absorbern zugesetzt werden, wie z.B solche vom Benztriazol-, Benzophenon- oder Oxalanliid-Typ. Ebenso lassen sich Lichtschutzmittel vom Typus sterisch gehinderter Amine (HALS) zusetzen.

Zur Erhöhung der Dunkellagerstabilität können Kupferverbindungen, wie Kupfernaphthenat, -stearat, oder -octoat, Phosphorverbindungen, wie Triphenylphosphin, Tributylphosphin, Triethylphosphit, Triphenylphosphit oder Tribenzylphosphit, quaternäre Ammoniumverbindungen, wie Tetramethylammoniumchlorid oder Trimethyl-benzylammoniumchlorid oder Hydroxylaminderivate, wie z.B. N-Diethylhydroxylamin, zugesetzt werden.

Um die inhibierende Wirkung des Luftsauerstoffs auszuschliessen setzt man photohärtbaren Gemischen häufig Paraffin oder ähnliche wachsartige Stoffe zu. Diese schwimmen bei Beginn der Polymerisation wegen mangelnder Löslichkeit im Polymeren aus und bilden eine transparente Oberflächenschicht, die den Zutritt von Luft verhindert.

Weitere übliche Zusätze sind Photosensibilisatoren, welche in bestimmten Wellenlängen absorbieren und die absorbierte Energie an den Initiatoren weitergeben oder selbst als zusätzlicher initiator fungieren. Beispiele hierfür sind vor allem Thioxanthon-, Anthracen-, Anthrachinon- und Cumarinderivate.

Weitere übliche Zusätze sind Beschleuniger vom Amin-Typ, die vor allem in pigmentierten Zubereitun-

gen von Bedeutung sind, da sie als Kettenüberträger wirken. Beispiele hierfür sind N-Methyldiethanolamin. Triethylamin. p-Dimethylaminobenzoesäureethylester oder Michler's Keton. Die Wirkung der Amine kann verstärkt werden durch den Zusatz von aromatischen Ketonen vom Benzophenontyp. Weitere Beschleuniger sind Thiadiazolderivate, wie z.B. 2-Mercapto-2-methylthio-1,3,4-thiadiazol.

Weitere übliche Zusätze sind z.B. Füllstoffe, Pigmente, Farbstoffe, Haft-, Netz- und Verlaufmittel.

Grosse Bedeutung hat die Photohärtung für Druckfarben, da die Trocknungszeit des Bindemittels ein massgeblicher Faktor für die Produktionsgeschwindigkeit graphischer Erzeugnisse ist und in der Grössenordnung von Bruchteilen von Sekunden liegen soll. Insbesondere für den Siebdruck sind UV-härtbare Druckfarben von Bedeutung.

Gut geeignet sind die erfindungsgemässen photohärtbaren Zusammensetzungen auch zur Herstellung von Druckplatten, insbesondere Flexodruckplatten. Hierbei werden z.B. Gemische von löstichen Ilnearen Polyamiden oder von Styrol-Butadien-Kautschuk mit photopolymerisierbaren Monomeren, beispielsweise Acrylamiden oder Acrylaten, und einem Photoinitiator verwendet. Filme und Platten aus diesen Systemen werden über das Negativ (oder Positiv) der Druckvorlage belichtet und die ungehärteten Anteile anschliessend mit einem Lösungsmittel eluiert.

Ein weiteres Einsatzgebiet der Photohärtung ist die Metallbeschichtung, beispielsweise bei der Lackierung von Blechen für Tuben, Dosen oder Flaschenverschlüssen, sowie die Photohärtung von Kunststoffbeschichtungen, beispielsweise von Fussboden- oder Wandbelägen auf PVC-Basis.

Beispiele für die Photohärtung von Papierbeschichtungen sind die farblose Lackierung von Etiketten, Schallplatten-Hüllen oder Buchumschlägen.

Wichtig ist auch die Verwendung der photohärtbaren Zusammensetzungen für Abbildungsverfahren und zur optischen Herstellung von Informationsträgern. Hierbei wird die auf dem Träger aufgebrachte Schicht (nass oder trocken) durch eine Photomaske mit kurzwelligem Licht bestrahlt und die unbelichteten Stellen der Schicht durch Behandlung mit einem Lösungsmittel (= Entwickler) entfernt. Die belichteten Stellen sind vernetzt-polymer und dadurch unlöslich und bleiben auf dem Träger stehen. Bei entsprechender Anfärbung entstehen sichtbare Bilder. Ist der Träger eine metallisierte Schicht, so kann das Metall nach dem Belichten und Entwickeln an den unbelichteten Stellen weggeätzt oder durch Galvanisieren verstärkt werden. Auf diese Weise lassen sich gedruckte Schaltungen und Photoresists herstellen.

Zur Belichtung eignen sich Lichtquellen mit hohem Anteil an kurzwelligem Licht. Hierfür stehen heute entsprechende technische Vorrichtungen und verschiedene Lampenarten zur Verfügung. Beispiele sind Kohleilichtbogenlampen, Xenonlichtbogenlampen, Quecksilberdampflampen. Metall-Halogenlampen, Fluoreszenzlampen, Argonlampen oder photographische Flutlichtlampen. Neuerdings werden auch Laserlichtqueilen verwendet. Diese haben den Vorteil, dass keine Photomasken notwendig sind; der gesteuerte Laserstrahl schreibt direkt auf die photohärtbare Schicht.

Die erfindungsgemässen Titanocene sind mit den Komponenten der photohärtbaren Zusammensetzungen gut vermischbar bzw. in der Zusammensetzung gut löslich, wodurch eine hohe Lichtempfindlichkeit erzielt werden kann. Sie sind auch gut zugänglich, da die Lithiumfluorarylamine als Ausgangsprodukte durch einen Lithium/Wasserstoffaustausch erhältlich sind. Eine vorherige Einführung von Halogenen in das Fluorarylamin erübrigt sich daher.

Die nachfolgenden Beispiele erläutem die Erfindung näher. Darin bedeuten Teile und % Gewichtsteile und Gewichts-%, soweit nicht anders angegeben. Die Temperaturen sind in °C angegeben.

A) Herstellung der sekundären 2,4-Difluoranillne

a) aus 2,4-Difluoranilin

55

$$F -NH_2$$
 + RCHO $\xrightarrow{H_2}$ $F -NH-CH_2R$

1 Mol 2,4-Difluoranilin wird mit 2 Mol des entsprechenden Aldehyds in 1 l Tetrahydrofuran gelöst. Nach Zusatz von 19 g Raney-Nickel und 2 g Essigsäure wird bei 60° und 60 bar H₂ hydriert. Der Endpunkt der Reaktion kann dünnschicht- oder gas-chromatographisch bestimmt werden. Die Aufarbeitung erfolgt durch

Abdestillieren des Lösungsmittels am Rotationsverdampfer und Rektifikation des Rückstandes.

Tabelle 1

5	R	Кр
	CH ₃	86-88°/20 mbar
	n-C ₃ H ₇	108-110°/20 mbar
10	iso-C₃H ₇	100-101°/20 mbar
tu .	n=C4H9	58-62°/0,6 mbar
	n=C ₅ H ₁₁	115°/2 mbar
	n-C ₇ H ₁₅	81-83°/0,15 mbar
	,C₂H5	
	-сн	70~80°/1.5 mbar
15	СьНэ	
	-CH ₂ OCH ₃	124-25°/23 mbar
	-CH2O(CH2)2OCH3	98-104°/0,04 mbar
	-CH2OC4H9	84-87°/0.04 mbar
	∫• —•<	
20	e	79°/2 mbar
	`'	
	-• <u>{</u> }•	119°/0.04 mbar
	`+= • ´	
25	, , , ,	
	-CH ₂ CH ₂ *	106-9°/2 mbar
	`• # •′	•
	i i	
	·· 、	74-78°/2 mbar
30	` O'	

Ebenso werden mit 2 Mol des entsprechenden Ketons erhalten:

b) aus 2,4-Difluornitrobenzol

50

159,1 g 2,4-Diffuor-nitrobenzol und 150 g 4-Methyl-pentanon-2 werden in 1,2 l Methanol mit 3 g H₂SO₄ konz. und 5 g Pt/C 5 % gemischt und während 3 Stunden bei 30 - 35 unter konstant 5 bar H₂ katalytisch hydriert. Der Fortgang der Hydrierung wird dünnschichtchromatographisch an Kleselgel mit dem Gemisch Petrolether/Dioxan 4:1 als Laufmittel verfolgt. Nach beendeter Reaktion wird der Katalysator abfiltriert und das Lösungsmittel am Rotationsverdampfer abdestilliert. Es bleibt ein braunes Oel zurück, das nach der

Entfernung von etwas harzigem Nebenprodukt im Vakuum rektifiziert wird. Die Fraktion von Kp. 120 - 125° bei 14 mbar wird aufgefangen. Man erhält 173,4 g N-(1,3-Dimethylbutyl)-2,4-difluoranilin als farbioses Oel.

5 B) Herstellung der Zwischenprodukte der Formel VII und VIII

Beispiel 1: N-Ethyl-N-pivaloyl-2,4-difluoranilin

15.7 g N-Ethyl-2,4-difluoranilin und 11,0 g Triethylamin werden in 40 ml Toluol gelöst. Unter Kühlung werden 12,1 g Pivalinsäurechlorid zugetropft und das Gemisch hierauf während 1 Stunde zum Sieden erhitzt. Nach dem Aufgiessen auf 100 ml Eiswasser wird die Toluolphase abgetrennt, mit 1N-HCl und darauf mit H₂O gewaschen und im Vakuum eingedampft. Man erhält 23,7 g eines gelblichen Oels das beim Stehen kristallisiert. Schmelzpunkt: 69 - 71° (aus verdünntem Ethanol umkristallisiert).

Elementaranalyse:	ber.	С	64,7	Н,	7,1	F	15.8	N	5.8 %
	gef.	C	65,0	н	7,1	F		N	5,8 %

Beispiele 2 - 43:

20

30

36

45

50

55

In Analogie zu Beispiel 1 werden weitere N-Acyl-2,4-difluoraniline hergestellt. Diese Verbindungen sind in der tabelle 2 aufgeführt.

Tabelle 2

Produkte der Formel F-- RS

Beispiel Nr.	l R ⁵	R ⁶	Physikal. Eigenschaften	Analyse	%'N gef.
2	H	CH ₃	Fp. 116-120°	8,2	8,1
3	H	-CH(CH ₃) ₂	Fp. 99-101°	7,0	6,9
3	п	CH ₃	rp. 35-101	,,,,	0.15
4	H	-C-CH2Cl	Fp. 88-93°	5,7	5,3
	ı	Ċн _э	•		
5	H	$-C(CH_3)(CH_2C1)_2$	Fp. 83-86°	4,9	4.6
6	Ħ	-C(CH ₃) ₃	Fp. 67°	6.6	6,6
7	CH ₃	n-C ₃ H ₇	Kp ₉ 100-103°	6,6	6,6
8	CH ₃	n-C.H9	Kpg 115-117°	6.2	6.2
9	C ₂ H ₅	CH ₃	Kp20 92-95°	7,0	7.1
10	C ₂ H ₅	C ₂ H ₅	Kp., 120-125°	6,6	6,7
		ÇH₃			
11	C ₂ H ₅	¢C2H5	Fp. 47-50°	5,5	5,6
		ĊH₃		•	
		· /**			
12	C ₂ H ₅	→ ()•	Fp. 67-68°	5,5	5,4
		ไของใ			
13	C ₂ H ₅	-CH(CH ₃) ₂	Fp. 46-47°	6,2	6,3
14	iso-C ₃ H ₇	Phenyl	Fp. 110-112°	5,1	5,0
15	1so-C ₃ K ₇	p-Tolyl	Fp. 90-94°	4,8	4,9
16	n-C4H9	CH ₃	Kp. _{0.5} 80-83°	6.2	6,3
16a	n-C4H9	CF ₃	Kp. 10 102-10	5,0	5,0
17	n-C ₄ H9	-C(CH ₃) ₃	Kp. 0.5 80-83° Kp. 102-10° Kp. 5 143°	5,2	5,3
		ÇH₃			
18	n-C4H9	- ¢-C₂H₅	Kp. _{0,4} 92-95°	5,0	5,2
		ĊH ₃			
		ÇH₃			
18a	n-C4H9	-¢-C₃H ₇	0e1	4,7	4,4
		ĊH₃ .			
		CH ₃	05 1000		, ,
19	n-C4H9	-C-CH2Cl	Kp.0.6 95-100°	4.6	4,8
		CH ₃		L o	5,0
20	n-C4H9	Phenyl	0e1	4,8 4,6	4,4
21	n-C4H9	p-Tolyl	0el	4,8	
22	n-C4H9	o-Chlorphenyl	Fp. 60-67° Fp. 69-73°	4.8	4,1 4,6
23	1so~C4H9	Phenyl	Fp. 82-84°	4,3	4,2
23a	iso-C ₄ H ₉	p-Chlorphenyl	rp. 02-04		
24	iso-C ₄ H ₉	p-Tolyl	Fp. 70-75°	4,6	4,5
0.5	3 e	CH₃	n-1	4 7	<i>)</i> . 1
25	iso-C ₄ H ₉	—Ç—C₃H7	Oel	4.7	4,1
		ĊH₃			

	Beisp Nr.	oiel R ⁵	R ⁶	Physikal. Eigenschaften	Analyse ber.	% N gef.
5	26	iso-C ₄ H ₉	CH ₃ -C-CH ₂ C1 CH ₃	Fp. 65-70°	4,6	4,5
10	27	n-C5H11	CH ₃ -C-C ₂ H ₅ CH ₃	Kp _{0,5} 95-100°	4,7	4,5
	28	n-C ₆ H ₁₃	CH ₃ CH ₃	Kp _{0.5} 94-98°	5,5	5.7
	29	n-C ₆ H ₁₃	-С-С2H ₅ СН ₃	Kp _{0,2} 122-124°	4,5	4,4
15	30	n-C ₆ H ₁₃	Phenyl	0el	4,4	4,4
19	31	n-C ₆ H ₁₃	p-Tolyl	Oel	4.2	
	,-	061173	CH3	067	.4 - 4	3,9
	32	n-C ₆ H ₁₃	-Ç-C₃H ₇ CH₃	Oel	4,3	4.2
20	33	n-C6H13	p~Chlorphenyl	0e1	4,0	3,7
	34	n-C ₆ H ₁₃	o-Chlorphenyl	0el	4,0	3,8
	35	n-C ₈ H ₁₇	CH ₃	Vn 115-1100		
	36	2-Ethylhexyl	Phenyl	Kp _{0,5} 115-118°	5,0 4,1	5,3
	37	2-Ethylhexyl	p-Tolyl	0el	3,9	4,1
25	7-		ÇH ₃	OGI	3,3	3,9
	38	2-Ethylhexyl	-C-C ₃ H ₇	Oel	4,0	3,9
	39	-CH2CH2OCH3	Phenyl	0e1 ·	4,8	5,0
	40	-CH2CH2OCH3	p-Tolyl	0el	4,6	4,5
30			ÇH ₃	****		
	41	-CH2CH2OCH3	-¢-С₃Н ₇ СН₃	0el	4.7	4,3
	42	-CH2CH2OC4H9	Phenyl	Oel	4,4	4,4
35	43	-CH2CH2OC4H9	CH ₃ -C-C ₃ H ₇ CH ₃	Oel '	3,9	4,0
	44 -	-CH2CH2O(CH2)2OC	Cn3 H ₃ Phenyl ÇH ₃	Fp. 70°	4,0	4,3
40	45 -	-CH2CH2O(CH2)2OC	H ₃ —Ç—C ₃ H ₇ CH ₃	Cel	4,1	4,0
	46		Phenyl	Fp. 60-63°	4,4	4,0
45	47	-CH ₂ <	Phenyl	Fp. 75-80°	4.2	4,0
	48	-CH ₂ <	p-Tolyl	Fp. 87-91°	4,1	4,3
50	49	-CH ₂	p-Chlorphenyl	Fp₁ 87-90°	3,9	3,7

EP 0 318 893 A2

5		piel	R ⁵	R ⁶	Physikal. Eigenschaften	Analyse ber.	% N gef
	50	-СН2	\ >.	CH ₃ -C-CH ₂ Cl CH ₃	Oel	4,1	4.0
10	51	-СН2-	·(;)·	-C(CH ₃) ₃	Fp. 74~78°	4,5	4,5
	52	-CH ₂	·<>.	CH₃ −C−C₃H ₇ CH₃	Fp. 52-54°	4,2	4,0
15	53	-CH2	·	Ç2H5 −Ç−CH3 C2H5	Oel	4,2	4,0
20	54	-CH ₂	.()	Phenyl	Fp. 128-34°	4,3	4.2
	55	-CH ₂	·	p-Tolyl	Fp. 87-93°	3,99	3,7.
25	56	-CH2-	-CH	3 Phenyl	Fp. 85-90°	4,15	4,04
	56a	-CH ₂	—CH	p-Chlorphenyl	Fp. 107-10°	3,8	3,7
30	57	-СН2-	-CH;	3 p-Tolyl	Fp. 87-93°	4,0	3,8
35	58	-(CH ₂)	3	Phenyl	Oel	4,0	4.0
	59	-(CH ₂)	3	p-Tolyl	Oel	3,8	3.7
40	60	-(CH ₂)	3	-C(CH ₃) ₃	Oel	4,3	4.1
	61	-(CH ₂)	3	CH3 -C-CH2Cl CH3	Oe1	3,8	3,5
45	62	-(CH ₂)	3{	CH ₃ -C-C ₃ H ₇ CH ₃	0el	3,9	3,7
50	63	-СH ₂	-Сн	ÇH₃	Fp. 76-77°	4,1	4,0
	64	-CH ₂ -		Phenyl	Oel	4,4	4,3
55	65	-CH 2-	<u>.</u>	p-Tolyl	Cel	4,2	4,0

Beispiel			Physikal.	Analys	- 2 N
Nr.	R ^S	R ⁶	Eigenschaf		· gef.
66 —Сн	2-1-1	CH ₃ CC ₃ F CH ₃	H ₇ Oel	4,3	4,3

Beispiel 67: Acylierung mit Carbonsäureanhydrid

10

20

35

50

55

15,7 g N-Ethyl-2,4-difluoranilin werden in 40 mt Toluol gelöst und mit 23,2 g Pivalinsäureanhydrid versetzt. Es wird zum Sieden erhitzt und das Reaktionsgemisch während 8 Stunden am Sieden gehalten. Nach dem Aufgiesssen auf Eiswasser wird die Toluolphase mit 1N-HCl, Wasser, Bicarbonatlösung und nochmals mit Wasser gewaschen. Man erhält 21,0 g eines geiblichen Oels, das beim Stehen kristallisiert. Das Produkt ist mit der nach Beispiel 1 hergestellten Verbindung identisch.

Beispiel 68: Alkylierung einer N-Acylverbindung

Eine Mischung von 60,8 g n-Butyl-methansulfonat und 22,5 g Trifluoracetyl-2,4-difluoranilin werden in 50 ml Aceton bei 40°C gelöst und mit 22,4 g KOH-Pulver versetzt. Die Reaktlonsmischung wird 30 Minuten am Rückfluss gehalten, filtriert und am Rotationsverdampfer eingedampft. Der ölige Rückstand wird rektifiziert. Man erhält 15 g N-Butyl-trifluoracetyl-2,4-difluoranilin als bei 106 • 110°/11,7 mbar destillierendes gelbliches Oel.

							The state of the s		
Analyse:	ber.	С	51,25	Н	4,30	F	33,78	N	4.98 %
	gef.	С	51,3	н	4,4	F	33,4	N	5,0 %

Beispiele 69 - 73: N-Sulfonylierung

Eine Lösung von 14,8 g N-Butyl-2,4-difluoranilin, 16,2 g Triethylamin und 0,5 g Dimethylaminopyridin in 150 ml Toluol wird bei 0 - 5 °C tropfenweise mit einer Lösung von 15,2 g p-Toluolsulfonsäurechlorid in 80 ml Toluol versetzt. Dann wird das Reaktionsgemisch auf 90 °C erwärmt und 48 h bei dieser Temperatur gerührt. Nach dem Abkühlen wird mit 5%iger HCl und mit Wasser gewaschen, die Toluol-Lösung wird über Na₂SO₄ getrocknet und eingedampft. Der Rückstand wird bei 0,01 mbar destilliert. Bei 150 - 160 ° erhält man 18,5 g N-Butyl-N-(2,4-difluorphenyl)-p-toluolsulfonamid als farbioses Oel.

Nach dieser Methode wurden die in Tabelle 3 aufgeführten Sulfonamide hergestellt.

Tabella 3:

30

35

55

Verbindungen der Formel

10	Beispie Nr.	1 R ⁵	R ⁶	Physik. Eigensch.	Analyse ber.	% N gef.	
	69	n-CuH9	p-Tolyl	0el	4.1	. 4.0	
	70	iso-C ₄ H ₉	p-Tolyl	Fp. 68 - 70°	4.1	4.1	
	71	n-C6H13	p-Tolyl	Fp. 45 ~ 49°	3.8	3.8	
15	72 2	-Ethylhexyl	p-Tolyl	Oel	3,5	3,5	
	73	C ₂ H ₅	p-Tolyl	Fp. 100°	4 , 5	4.6	

Beispiele 74 - 80: Cyclische Imide

18,1 g 2,4-Difluoranilin und 14 g Bernsteinsäureanhydrid werden in 300 ml Toluol gelöst und die Lösung mit 0,5 g 4-(Dimethylamino)pyridin versetzt. Danach wird zum Rückfluss erhitzt, bis gemäss DC-Analyse kein 2,4-Difluoranilin mehr nachgewiesen werden kann (16 Std). Nach dem Abkühlen wird auf 2N HCl ausgegossen, die organische Phase mit Wasser gewaschen und nach Trocknen über Magnesiumsulfat eingeengt. Man erhält 23,4 g Rohprodukt, das nach Umkristallisation aus Isopropanol bei 140 - 143 °C schmilzt.

Nach dieser Methode werden die in Tabelle 4 aufgeführten Verbindungen hergestellt.

Tabelle 4:

Verbindungen der Formel

40	Beispiel Nr.	R	Fp	Analyse ber.	% N gef.
	74	-CH2-CH2-	140~143°	6,63	6,61
	75 76	-CH2-CH(CH3)- -CH=CH-	83-87° 79-82°	6,22 6,70	6,12 6,75
45	77	-CH=C(CH ₃)-	80-84°	6,28	6,15
	78	$-C(CH_3)=C(CH_3)-$	76-80°	5,91	5.74
50	79	, i	166-170°	5,40	5,36
	80	i CHz ii	150-53°	5,09	4.89

Beispiel 81: Gleichzeitige Alkylierung und Acylierung

EP 0 318 893 A2

Eine Mischung von 12,9 g 2,4-Difluoranilin und 24,3 g Orthoessigsäure-triethylester wird mit einem Tropfen H₂SO₄ versetzt und am absteigenden Kühler erwärmt bis die Innentemperatur 120 °C erreicht hat. Das Reaktionsgemisch wird im Vakuum destilliert und man erhält bei 86 - 87 '.8 mbar 18,9 g N-Ethyl-N-acetyl-2,4-difluoranilin.

Beispiel 82: Cyclische Anilide (Lactame)

Zu einer Lösung von 11,4 g N-(3-Chlorpivaloyl)-2,4-diffuoranilin (Beispiel 4) in 30 ml Methyl-ethyl-keton werden 10,4 g K₂CO₃ zugegeben. Die Suspension wird 24 h bel 50 °C gerührt, dann mit 50 ml Wasser versetzt und zweimal mit 50 ml Toluol extrahiert. Die Toluol-Lösung wird über MgSO₄ getrocknet und im Vakuum eingedampft. Man erhält 9,3 g rohes 1-(2,4-Difluorphenyl)-3,3-dimethyl-2-azetidinon, das nach Umkristallisation aus Hexan bel 86 - 87° schmilzt.

15

25

20

Analyse:	ber.	C	62,5	H	5,3	N	6,6	Z
	gef.	C	62,3	H	5,2	N	6,5	%

In analoger Weise wird hergestellt die Verbindung 82a

30

35

die bei 70° schmilzt.

40

Analyse:	ber.	C 53,8	H 4,1	N 5,7	C1 14,4 %
	gef.	C 53,7	H 4.1	N 5.6	C1 14.4 %

45

Beispiel 83: 1-(2,4-Difluorphenyl)-2,2,5,5-tetramethyl-1,2,5-azadisilolidin

50

$$F \xrightarrow{\text{CH}_3} F \xrightarrow{\text{CH}_3} F \xrightarrow{\text{CH}_3} F \xrightarrow{\text{CH}_3} F \xrightarrow{\text{CH}_2} F \xrightarrow{\text{CH}_3} F \xrightarrow$$

Eine Mischung von 12,9 g 2,4-Difluoranilin und 23,2 g 1,1,4,4-Tetramethyl-1,4-bis(dimethylamino)-disilethylen wird mit 0,5 g Zinkiodid versetzt und unter Stickstoff auf 140 C erwärmt bis kein Dimethylamin mehr entweicht. Das Reaktionsgemisch wird im Vakuum destilliert. Man erhält die Titelverbindung als farblose Flüssigkeit, die bei 119 - 122 /16 mbar destilliert.

Beispiel 84: Alkyllerung eines N-Acylanilins

5

10

30

36

45

50

55

Zu einer Lösung von 3,4 g N-Acetyl-2,4-difluoranilin (Beispiel 2) in 60 ml Toluol werden 0,9 g Triethylbenzylammoniumchlorid, 6,9 g Butylbromid und eine Lösung von 5,7 g KOH in 6 ml Wasser unter Rühren zugegeben. Die entstehende Emulsion wird auf 97° (Rückfluss) erwärmt. Nach 1 h wird die Emulsion auf Raumtemperatur gekühlt und mit 20 ml Wasser verdünnt. Die beiden Phasen werden getrennt und die organische Phase wird über MgSO₄ getrocknet und Im Vakuum eingedampft. Das flüssige Rohprodukt wird durch Mitteldruck-Chromatographie gereinigt. Man erhält 3,1 g N-Butyl-N-acetyl-2,4-difluoranilln als bräunilches Oel.

Analyse:	ber.	Ç	63,42	Н	6,65	N	6,16 %
	get.	С	63,72	н	6,80	N	5,99 %

Beispiel 85: Umsetzung mit Lactonen

Ein Gemisch aus 64,6 g 2,4-Difluoranilin, 51,7 g Butyrolacton, 2 g p-Toluolsulfonsäure und einigen Troplen Wasser wird unter Rühren zum Rückfluss (100°C) erwärmt. Das sich bildende Wasser wird durch einen starken Stickstoffstrom abdestilliert. Dabei steigt die Innentemperatur innerhalb von 15 h aus 162°. Nach Abkühlen auf Raumtemperatur wird mit 100 ml Diethylether verdünnt. Die Etherlösung wird erst mit 5 %iger HCl und dann mit 10 %iger NaOH gewaschen, getrocknet und eingedampft. Der kristalline Rückstand wird aus Ethanol Umkristallisiert. Das so erhaltene 1-(2,4-Difluorphenyl)-pyrrolidon-2 schmilzt bei 95 - 97°.

į	Analyse:	ber.	С	60,9	Н	4,6	N	7,1 %
į		gef.	С	60,8	Н	4,7	N	7,2 %

Beispiel 86: N-Ethyl-N-acetyl-3,5-difluoranilin

Diese Verbindung wird analog Beispiel 1 durch Acetylierung von N-Ethyl-3,5-difluoranilin hergestellt. Sie siedet bis 10 mbar bei 92 - 93°.

C) Herstellung der Titanocene der Formel I

Beispiel 87: Bis(cyclopentadienyl)-bis-[2,8-difluor-3-(N-ethylpivaloylamino)phenyl]-titan

48.2 g N-Ethyl-N-pivaloyl-2,4-difluoranilin (0.2 Mol) (Beispiel 1) werden in der Mischung von 100 ml Tetrahydrofuran und 300 ml Diethylether unter Argon-Schutzgas bei -75° vorgelegt. Nach dem Zutropfen von 136 ml einer 1,6-molaren Lithiumbutyl-Hexan-Lösung wird noch 30 Minuten bei -75° gerührt. Hierauf setzt man 24,9 g Biscyclopentadienyititandichlorid (0.1 Mol) als Pulver zu und entfernt die Kühlung. Die Mischung erwärmt sich Innert 3 Stunden auf Raumtemperatur. Das Reaktionsgemisch wird 1 I Wasser gegossen und in Portionen mit total 800 ml Ethylacetat extrahiert. Die organische Phase wird mit Na₂SO₄ getrocknet und im Vakuum eingedampft. Der Rückstand besteht aus 57 g eines zähflüssigen orangeroten Oels. Durch Behandeln mit n-Hexan kann dieses Oel zur Kristallisation gebracht werden. Man erhält 32,3 g oranger Kristalle vom Schmelzpunkt 215° (aus Ethanol umkristallisiert).

0	J		A= A	·	-				
Analyse:	ber.	C	65,6	Н	6,4	F	11,5	N	4,2 %
	gef.	C	65,2	н	6,5	F	11,4	N	4,2 %

Beispiele 88 - 142:

10

30

35

50

55

In analoger Weise werden die in Tabelle 5 aufgeführten Titanocene hergestellt.

Tabelle 5:

Verbindungen der Formel (Cp)₂Ti (P)₂Cp = Cyclopentadienyl

	Beispiel Nr.	Anilinderiva aus Beispiel		Fp	Analy ber.	se % N gef.
5	88	7	-N CO-C 3H7-n	Oel	4,7	4,6
10	89	8	CH ₃ CO-C ₄ H ₉ -n	Oel	4,4	4.5
	90	9	CO-CH ₃	131-33°	4,9	5,0
15	91	10	C ₂ H ₅ -N -N -CO-C ₂ H ₅	125-27°	4,7	4.8
20	92	11 N	C ₂ H ₅ CO-C(CH ₃) ₂ -C ₂ H ₅	177-78°	4,1	4,1
	93	12	-N C0	Oel	3.9	4,1
25	94	13	Co-CH(CH ₃)	185-86°	4,4	4,4
ao	95	14	CH(CH ₃) ₂ -N CO-Phenyl	120-30°	3,9	3,5
	96	17	-N CO-C(CH ₃) ₃	85-88°	3,9	3,7
35	97	18	CO-C(CH ₃)-	143-45° C ₂ H ₅	3,8	3,8
40	98	18a N	C4H9-n CO-C(CH3)2-C3H7	135-41°	3,7	3,4
45	99	20 N	C4H9-n CO-Phenyl	180-85°	3,7	3,4
	100	21 -N	C4H9-n	Glas	3,6	3,3

,	Beispiel Nr.	Anilinde			Analy:	se % N
. 5	101	′22	C ₄ H ₉ -n	205-09°	3,4	3,1
1			C1 .=.	1 · · · · · · · · · · · · · · · · · · ·		
10	102	23	C.Hi CO-Phenyl	Glas	3,7	3,5
15	103	24	C.H9-i -NCOCH3	Glas	3.6	3,0
20	104	26	C0-C(CH ₃) ₂ -CH ₂ C1	95-100°	3,6	3,2
	105	27	C0-C(CH ₃) ₂ -C ₂ H ₅	119 -21°	3,6	3,7
25	106	29	-N CO-C(CH ₃) ₂ -C ₂ H ₅	102-04°	3,5	3,6
30	107	-30	C6H13-n CO-Phenyl	78-88°	3,5.	3,2
	108	31	-N CO	Glas	3,3	3,1
35	109	32	CO-C(CH ₁) ₂ -C ₃ H ₇	Glas	3,4	3,2
40	110	33	-N CO	208-09°	3,2	2,9
45	111	34	C ₆ H ₁₃ -n	Glas	3,2	3,1
50 .	112	36	CH ₂ CH(C ₂ H ₅)C ₄ H ₅ -N CO-Phenyl	80-86°	3,2	3,1

EP 0 318 893 A2

	Beispiel Nr.	Anilinder		Ř .	Fp	Analys	se % N
5	113	38	-N	CH(C ₂ H ₅)C ₄ H ₉	Glas	3,2	2,6
10	114	39	− N	CH ₂ OCH ₃ Phenyl	204-09°	3,7	3,5
15	115	40	-N CH20	CH ₂ OCH ₃	183-89°	3,6	3,4
	116	41	- N∕	CH ₂ OCH ₃ C(CH ₃) ₂ -C ₃ H ₇	55-60°	3,6	3,4
20	117	42	-N_	CH ₂ OC ₄ H ₉	Glas	3,3	3,1
25	117a	43	_W_CO-	CH2OC4H9 C(CH3)2-C3H7	Glas	3,3	2,6
20	118	44	-N	CH ₂ O(CH ₂) ₂ OCE Phenyl	l _l Glas	3,2	3,1
35	118a	46	-N CO-	Phenyl	Glas	3,5	3,0
	119	47	-N CH 5	Phenyl	125-35°	3,4	3,2
40	120	48	-N CH2	СН3	130-40°	3,3	2,9
45			,CH	2			
50	121	49	-M_CO-		133-35°	3,1	2,7

	Beispiel Nr.	Anilinder aus Beisp		R	Fp	Analys ber.	
5	122	50	CH₂∸ CO−C	(CH ₃) ₂ -CH ₂ Cl	195–202°	3,2	3,0
10	123	_. 51	-M_COC	(CH ₃) ₃	Glas		3,1
15	124	52	-N CO-C	(CH ₃) ₂ -C ₃ H ₇	90–100°	3,3	3,0
20	124a	53		(C ₂ H ₅) ₂ -CH ₃	Glas	3,5	3,1
25	125	54	CO-Pi	nenyl	105-08°		2,9
30	126	55	CH ₂	-CH ₃	`110-20°	3,3	2,8
35	127	56	CO-51	-CH ₃	Glas	3,3	3,1
40	128	57	CO		Glas	3,2	2,9
45	129	58	-N (CH ₂)	enyl	Glas	3,2	2,8
50	130	59	-N (CH ₂)	nenyl	Glas	3,1	2,9

•	Beispiel Nr.	Anilinder aus Beisp		R	Fp	Analya ber.	e % N gef.
5	131	60	- 1	2)3(CH3)3	165-70°	3,3	2.9
10	132	61	-N (CH:	2)3	80-85°		2,9
15	133	62	-N CO-	2)3	70-80°	3,2	2,9
20	134	64	CH ₂ ·	99	Glas	3,5	3,1
25	135	65	-N CH₂-		Glas	3,3	3,0
30	136	66	-N CH z	-C(CH ₃) ₂ -C ₃ H			
35	137	69	C.H SO2	9-n 	165-70°	3.3	3,0
40	138	70	-N SO 2		227-31°		
45	139	71		13-n 		3,1	2,8
	140	72	-N SO 2	CH(C2H5)C4H9	Glas	2,9	2,7

EP 0 318 893 A2

	Beispiel Nr.	Anilinder aus Beist		R .	Fp	Analy: ber.	se % N gef.
5	141	73	-N C2H	/*•\	231-33°	.3,5	3,3
10	142	82	-N	CH ₃	130-40°	4,7	4,3

Beispiel 143:

15

20

25

30

35

In analoger Weise wird aus N-Ethyl-N-acetyl-3,5-difluoranilin (Beispiel 86) die Verbindung

hergestellt, die bei 168-169° schmilzt.

Analyse ber. C 62,7 H 5,3 N 4,9 % gef. C 62,6 H 5,4 N 5,0 %

Beispiele 144-146: Methylcyclopentadienyltitanocene

Verwendet man anstelle von Bis(cyclopentadienyl)titandichlorid das Bis(methylcyclopentadienyl)titandichlorid zur Umsetzung mit den entsprechenden Anilinderlyaten in Analogie zu Beispiel 87, so erhält man die folgenden verbindungen der Formel

50·	Beispiel Nr.	Anilinderivat aus Beispiel	R	Fp	Analyse ber.	% N gef.
	144	9	C ₂ H ₅ CO-CH ₃	138-39°	4,6	4,6

	Beispiel Nr.	Anilinderivat aus Beispiel	R	Fp	Analys ber.	se % N gef.
5	145	10	-N C ₂ H ₅	139-41°	4,4	4,5
10	146	29	C ₆ H ₁ 3-n CH ₃ CO-C-C ₂ H ₅ CH ₃	50~60°	3,4	3,2

Beispiel 147: Bis(cyclopentadienyl)-bis(2,6-difluor-3-aminophenyl)-titan

30

40

50

55

a) 87 g (0,32 Mol) 1-(2,4-Difluorphenyi)-2,2,5,5-tetramethyl-1,2,5-azadisilolidin werden (Beispiel 83) in einer Mischung von 160 ml Tetrahydrofuran und 480 ml Diethylether gelöst und unter Stickstoff als Schutzgas und Lichtausschluss auf -75° gekühlt. Dann werden unter Kühlung 218 ml 1,8 molare Lithiumbutyl-Hexan-Lösung zugetropft und 30 Minuten nachgerührt bel -75°. Anschliessend setzt man 39,5 g (0,16 Mol) Bis(cyclopentadien)-titandichlorid als Pulver zu. Die Temperatur des Reaktionsgemisches lässt man hierauf innerhalb von 12 Stunden auf Raumtemperatur ansteigen. Die Suspension wird filtriert und der Rückstand mit 100 ml Diethylether gewaschen. Das Filtrat wird am Rotationsverdampfer vollständig eingedampft. Man erhält 139 g eines orangen Oels. Dieses Oel wird mit 150 ml Acetonitril digeriert, wobei Kristallisation eintritt. Nach der Filtration des kristallisierten Produktes erhält man 71,6 g geiborange Kristalle vom Smp. 207-211°.

· · · · · · · · · · · · · · · · · · ·											
Analyse:	ber.	С	56,8	Н	6,4	N	3,9	F	10,6	Si	15,6 %
	gef.	С	56,0	н	6,4	N	3,9	F	10,5	Si	15,6 %

b) 30 g des unter a) beschriebenen Titanocens werden unter Lichtausschluss in einer Mischung von 250 ml Dioxan und 10 ml Methanol gelöst. Nach Zusatz von 0,6 g p-Toluolsulfosäure wird 3 h bei 40°C gerührt. Die Reaktionslösung wird auf 0° gekühlt und unter Rühren zu 250 ml Eiswasser zugetropft, wobei das Rohprodukt in Form von orangeroten Kristallen ausfällt, die über 200°C unter Zersetzung schmelzen.

Analyse:	ber.	С	60,9	Н	4,2	F	17,5	N	6.5 %
	gef.	C.	61,3	Н	4,2	F	17,5	N	6.4 %

EP 0 318 893 A2

Beispiele 148 - 168: Bis(cyclopentadienyl)-bis[2,6-difluor-3-(acetylamino)phenyl]-litan

In einem Sulfierkolben werden 4,3 g (0,01 Mol) Bis(cyclopentadienyl)-bis(2,6-diffuor-3-aminophenyl)-titan (Beispiel 147) und 4,4 g (0,044 Mol) Triethylamin in 30 ml Dimethylformamid gelöst. Dann werden unter Rühren bei 0 - 5° innerhalb 20 Minuten 1,6 g (0,02 Mol) Acetylchlorid zugetropft. Es bildet sich eine rote Suspension, die noch 5 Stunden, bis zum Verschwinden des Eduktes im DC, bei Raumtemperatur nachgerührt wird. Die Suspension wird mit 50 ml Wasser verdünnt und dann zweimal mit 100 ml Ethylacetat extrahiert. Die organischen Phasen werden abgetrennt, mit MgSO₄ getrocknet und im Vakuum eingeengt. Das erhaltene braune Oel wird in 50 ml Diethylether erwärmt und die Lösung dann langsam mit 400 ml Hexan verdünnt. Anschliessend wird auf Raumtemperatur gekühlt und filtriert. Man erhält 4,3 g orange Kristalle mit einem Schmelzpunkt von 85°.

In analoger Weise werden die in Tabelle 6 aufgeführten Verbindungen hergestellt.

Tabelle 6:

Verbindungen der Formel (Cp)₂Ti
$$\left(\begin{array}{c} F \\ \end{array}\right)_2$$

10	Beispiel R ⁶ Nr.	Fp	Analyse % N ber. gef.
	148 CH ₃	85°	5,4 5,8
	149 CF ₃	146-48°	4,5 4,3
	150 C ₃ H ₇ -n	170-75°	4,9 5,1
15	151 - CH(CH3)2	195-200°	4,9 5,1
	152 -CH(CH3)C2H5	120-30°	4,7 4,6
	$153 - C(CH_3)_3$	ca. 150°	4,7 5,5
	154 -C(CH3)2-CH2Cl	125-45°	4,2 3,3
	$155^{\circ} -C(CH_2C1)_2-CH_3$	108-15°	3,8 3,4
20	156 - CH(C2H5)2	ca. 180°	4,4 4,7
	$157 - C(CH_3)_2 - C_2H_5$	Sirup	4,4 3,9
	$158 - C(CH_3)_2 - C_3H_7$	50-70°	4,3 3,7
	$159 - CH(C_2H_5) - C_4H_9$	155°	4,1 4,8
	160 -C ₉ H ₁₉ -n	60-65°	3,9 3,8
25	$161 - C_{17}H_{35} - n$	67-69°	2,9 3,3
	162	150-60°	4,3 4,3
30	163 CH ₃	204-06°	4,2 4,1
	164	233 - 36°	3,9 3,8
3 5	165	225-30°	3,9 3,8
	C1′		
40	166 C2H5	160-70°	4,0 3,6
	167 CH ₃	80~90°	4,0 3,3
45	CH ₃ 168 -CH ₂ CH ₂	70-80°	4,0 5,3

Beispiel 169: N-Allylierung

50

In eine Emulsion von 4,1 g Bis(cyclopentadienyl)-bis(2,6-difluor-3-acetylaminophenyl)-titan (Beisplel 148) in 120 ml CH₂Cl₂ und 53,2 g 30 %ige Natroniauge werden 0,8 g Triethylbenzylammoniumchlorid und 4,8 g Allylbromid unter Rühren zugegeben. Nach 5 h ist die Reaktion beendet. Die Emulsion wird mit 50 ml Wasser verdünnt und mit 100 ml CH₂Cl₂ extrahiert. Die organische Phase wird abgetrennt, über MgSO₄ getrocknet und im Vakuum eingedampft. Das hinterbleibende Oel wird in wenig Ethylacetat gelöst und

durch Zusatz von Hexan zur Kristallisation gebracht. Man erhält 3,6 g Bis(cyclopentadieny!)-bis[2,6-difluor-3-(N-allyl-acetylamino)-phenyl]-titan in Form von orangen Kristallen, die bei 168 - 172 schmelzen.

Analyse:	ber.	С	64,2	Н	5,0	N	4,7 %
	gef.	Ç	63,6	H	5,2	N	4,4 %

Beispiel 170: Bis(cyclopentadienyl)-bis(2,6-difluor-3-diacetylaminophenyl)-titan

8,7 g Bis(cyclopentadienyl)-bis(2,6-difluor-3-aminophenyl)-titan (Beispiel 147) werden in 100 ml Pyridin gelöst und bei 20 - 30° mit 9,4 g Acetylchlorid versetzt. Das Reaktionsgemisch wird 2 h bei Raumtemperatur und danach 5 Tage bei 60° gerührt. Dann werden weitere 9,4 g Acetylchlorid zugegeben und nochmals 5 Tage auf 60° erwärmt. Nach Erkalten wird die Reaktionslösung mit Wasser verdünnt und mit Ethylacetat extrahiert. Die organische Phase wird mit 1 N HCl und Wasser gewaschen, über MgSO₄ getrocknet und eingedampft. Der ölige Rückstand wird durch Chromatographie über einer SiO₂-Säule gereinigt. Man erhält die Titelverbindung als orange Kristalle, die bei 211° unter Zersetzung schmelzen.

	_ COCH3	
(Cp) ₂ Ti (-	COCH,),

Analyse:	ber.	C	59,8	Н	4,4	.N	4,6 %
	gef.	С	58,9	н	4.4	N	4,4 %

Beispiele 171 - 174: Carbamate

20

30

50

55

4,3 g Bis(cyclopentadlenyl)-bis-(2,6-difluor-3-aminophenyl)titan (Verbindung aus Bsp. 147) und 2,4 g Triethylamin werden in 100 ml DMF gelöst und die Lösung auf 0° gekühlt. Die Lösung wird tropfenwelse mit 3,0 g Chlorameisensäureisobutylester versetzt und 7 Std. bei 0° gerührt. Nach dieser Zeit werden nochmals 2,4 g Triethylamin und 3,0 g Chlorameisensäureisobutylester zugegeben und über Nacht bei 0° C gerührt. Anschliessend wird mit 100 ml Essigester und 100 ml Wasser versetzt, die Phasen getrennt und die organische Phase über MgSO4 getrocknet. Nach dem Einengen wird ein orange-braunes Oel erhalten, das durch Chromatographie an Kleseigel (Elutionsmittel: Hexan/Essigester 3:1) weiter gereinigt wird. Die das Produkt enthaltende Fraktion wird aus Ether/Hexan umkristallisiert. Fp 90° (Zersetzung).

In analoger Weise werden die in Tabelle 7 aufgeführten Verbindungen hergestellt.

Tabelle 7:

Beispiel Nr.	R	Fp	Analyse % N ber. gef.
171	C4H9-1	90° (Zers.)	4,4 4,2
172	C ₂ H ₅	90° (Zers.)	4,8 4,8
173	-CH2CH2C1	90° (Zers.)	4,3 3,9
174	()	110° (Zers.)	4,2 4,2

10

15

Beispiel 175: Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3,3-dimethylureido)-phenyl] -titan

8,7 g Bis(cyclopentadienyl)-bis-(2,6-difluor-3-aminophenyl)titan (Beispiel 147) und 3,8 g Pyridin werden in 150 ml DMF gelöst und auf 0°C gekühlt. Die Lösung wird tropfenweise mit 5,2 g Dimethylcarbamoyichlorid versetzt und während 6 Std. bei 0° gerührt. Anschliessend wird 10 Std. bei Raumtemperatur gerührt. Danach werden nochmals 5,2 g Dimethylcarbamoylchlorid zugegeben und auf 40° erwärmt. Nach 7 Stunden wird auf Wasser ausgegossen, mit Toluol aufgenommen und über MgSO4 getrocknet. Nach dem Einengen wird der Rückstand durch Chromatographie an Kleseigel [Elutionsmittel: Hexan/Essigester (Methanol 2:7:1) gereinigt. Man erhält die Titelverbindung als glasigen Feststoff, der sich bei 110° zersetzt.

	Analyse	ber.	С	58,34	Н	4,90	N	9,72 %
Ì		geL	C	57,29	н	5.37	N	8.83 %

35

Beispiele 176 - 179: Harnstoff- und Thioharnstoffderivate

Zu einer Suspension von 8,7 g Bis(cyclopentadienyl)-bls(2,6-difluor-3-aminophenyl)-titan (Beispiel 147) in 50 ml Tetrahydrofuran werden 0,1 g Triethylamin zugegeben und bei 0 - 5° C unter Rühren 0,04 Mol des jeweiligen Isocyanates oder Isothiocyanates zugetropft. Dann lässt man die Temperatur langsam auf 25 steigen und rührt bei dieser Temperatur 10 Stunden. Die resultierende Lösung wird im Vakuum eingedampft und der ölige Rückstand mit einem Gemisch Ethylacetat/Ethanol 1:1 zur Kristallisation gebracht. Nach dieser Methode werden die in Tabelle 8 aufgeführten Verbindungen hergestellt.

Tabelle 8

50

Beispiel Nr.	Ř	Fp	Analys	e % N gef.
176	-CO-NH-C4H9	210° (Zers.)	8,9	8.7
177	-co-nh-	> 250° (Zers.)	8,3	8,2
178	-CS-NH-C+H9	182 - 84°	8,4	8,3
179	-CS-NH()	210° (Zers.)	8,0	7,7

Beispiele 180 - 182: Cyclische Imidderlyate

Eine Suspension von 4,3 g Bis(cyclopentadienyi)-bis(2,6-difluor-3-aminophenyi)-titan (Beispiel 147) und 2,4 g Bernsteinsäureanhydrid in 100 ml Toluol wird unter Zusatz von 0,2 g 4-Dimethylaminopyridin während 24 h am Wasserabscheider zum Rückfluss erwärmt. Die Reaktionslösung wird im Vakuum eingedampft. Der ölige Rückstand kristallisiert beim Stehen und wird aus Ethanol umkristallisiert. Das erhaltene Bis(cyclopentadienyi)-bis[2,6-difluor-3-(pyrrolldin-2,5-dion-1-yl)-phenyl]-titan schmilzt bei 251 - 253 unter Zersetzung.

in analoger Weise werden die folgenden Verbindungen hergestellt.

Tabelle 9:

Verbindungen der Formel Beispiel R Fp Analyse % N Nr. ber. gef. 180 $251 - 53^{\circ}(z)$ 4,3 4.5 CH₃ 181 $208 - 10^{\circ} (Z)$ 4,1

.50

5

10

30

35

40

45

Beispiel Nr.	R	Fp.	Analyse % N ber. gef.
182		191 - 93° (Z)	4,0 3,7

15

5

Beispiele 183 - 189: N-Sulfonyllerung

8,7 g Bis(cyclopentadienyl)-bis(2,6-difluor-3-aminophenyl)-titan (Beispiel 147) werden in einem Gemisch von 50 ml Toluol und 50 ml Dimethylformamid suspendiert. Nach Zusatz von 3,8 g Pyrldin wird die Suspension auf 0° gekühlt und bei dieser Temperatur eine Lösung von 5,5 g Methansulfochlorid in 50 ml Toluol zugetropft. Die Suspension wird 5 h bei 0° gerührt und dann auf Wasser gegossen. Das Produkt wird mit Ethylacetat extrahiert, die organische Phase mit 1 N HCl und Wasser gewaschen, über MgSO4 getrocknet und eingedampft. Der feste Rückstand wird mit Ethanol digeriert, filtriert und getrocknet. Man erhält 7,1 g Bis(cyclopentadienyl)-bis(2,6-difluor-3-methylsulfonamidophenyl)-titan als gelbes Pulver, das bei 209 - 11° schmilzt.

in analoger Weise werden die in Tabelle 10 aufgeführten Verbindungen hergestellt.

25

30

Tabelle 10:

35	Beispiel Nr.	R	Fp	Analy: ber	se % N gef.
	183	-CH ₃	209 - 11°	4,7	4,3
	184	-C2H5	Glas	4,5	4,2
	185	-C ₈ H ₁₇ -n	Glas	3,6	3,4
40	186		208 - 10°	3,8	3,4

45 Beispiel R Fр Analyse % N Nr. ber. gef. •-C₁₂H₂₅ 187 2,7 2,6 50 172 - 76° (Z) 188 2,8 55 190 - 92° (Z) 189 3,1

Beispiel 190: Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-methyl-p-dodecylphenylsulfonamido)-phenyl]-titan

5,3 g Bis(cyclopentadienyl)-bis[2,6-difluor-3-(4-dodecylphenylsulfonamido)-phenyl]-titan (Belsplel 187) und 2,8 g trockenes K₂CO₃ werden in 50 ml Aceton gerührt und mit 1,7 g Methyliodid versetzt. Nach 2 h bei Raumtemperatur wird das Reaktionsgemisch filtriert und das Filtrat eingedampft. Man erhält 4,6 g eines glasigen Rückstandes.

	,						•		
Analyse:	ber.	С	66,7	Н	7,3	N	2,6	S	5,9 %
	gef.	С	66,1	Н	7,3	N	2,4	\$	6,0 %

Beispiel 191: Bls(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-p-methylphenylsulfonamido)-phenyl]-titan

Analog Beispiel 190 wird das Produkt von Beispiel 186 mit 1-Jodhexan bei 50° umgesetzt. Das Produkt ist ein oranges Harz.

Analyse: N ber. 3,1 % gef. 2,8 %

10

15

20

35

45

50

55

Beispiel 192: Bis(cyclopentadienyl)-bis(2,6-difluor-3-isocyanatophenyl)-titan

4,3 g Bis(cyclopentadienyl)-bis(2,6-difluor-3-aminophenyl)-titan (Beispiel 147) wird in 50 ml Dichlorben-zol suspendiert. Dazu gibt man 2,0 g Bis(trichlormethyl)carbonat und tropft 4,0 g Triethylamin zu. Die Reaktion ist schwach exotherm. Anschliessend wird 2 h auf 70° erwärmt, Nach dem Abkühlen wird das Reaktionsgemisch filtriert und im Vakuum eingedampft.

Der teilkristalline Rückstand wird mit Diethylether digeriert. Die Kristalle werden verworfen und die Lösung eingedampft. Der Rückstand word in CH₂Cl₂ gelöst und durch Zugabe von Hexan das Isocyanat ausgefällt. Das abfiltrierte und getrocknete Produkt ist ein oranges Pulver, das bis 224° unter Zersetzung schmilzt.

	······						
Analyse:	ber.	C	59,3	Н	2,9	N	5,8 %
	gef.	C	58,6	н	3,5	N	5,4 %

Beispiel 193: Bis(cyclopentadienyl)-bis[2,6-difluor-3-(dimethylaminosulfonylamino)phenyl]-titan

In eine Lösung von 8,7 g der Aminoverbindung von Beispiel 147 und 3,5 g Pyrldin in 100 ml Dimethylformamid werden bei 0° 6,3 g Dimethylsulfamoylchlorid zugetropft. Das Reaktionsgemisch wird 4 h bei 0° und anschliessend 10 h bei Raumtemperatur gerührt. Dann werden 200 ml Wasser und 200 ml

Ethylacetat zugegeben. Die organische Phase wird abgetrennt, mit 1 N HCl und Wasser gewaschen, über MgSO₄ getrocknet und im Vakuum eingedampft. Der viskose Rückstand wird mit 20 ml Ethylacetat kurz erwärmt. In der Kälte fällt ein gelbes Pulver aus, das nach Trocknung bei 185-86° schmilzt.

ſ	Analyse:	ber.	Ν	8,6	S	9,9 %
		gef.	N	8,4	S	9,7 %

D) Anwendungsbeispiele

5

10

15

20

25

45

50

55

Beisplel 194: Photohärtung eines Acrylat-Gemisches

Es wird eine photohärtbare Zusammensetzung hergestellt durch Mischen der folgenden Komponenten:

	Feststoffgehalt
150,30 g Scripset 540 ¹⁾ (30 %-ige Lsg. in Aceton) 48.30 g Trimethylolpropantriacrylat 6,60 g Polyethylenglykoldiacrylat 0,08 g Kristallviolett	45,1 g 48,3 g 6,8 g
205,28 g	100,0 g

¹⁾ Polystyrol-Maleinsäureanhydrid-Copolymer (Monsanto)

Portionen dieser Zusammensetzung werden mit jeweils 0,3 % (bezogen auf den Feststofigehalt) an Photoinitiator vermischt. Alle Operationen werden unter Rotlicht oder Geiblicht ausgeführt.

Die mit Initiator versetzten Proben werden in einer Stärke von 150 μm auf 200 μm Aluminiumfolie (10 x 15 cm) aufgetragen. Das Lösungsmittel wird durch Erwärmung auf 60°C während 15 Minuten im Umluftofen entfernt. Auf die flüssige Schicht wird eine 76 μm dicke Polyesterfolie gelegt und auf diese ein standardisiertes Testnegativ mit 21 Stufen verschiedener optischer Dichte (Stouffer-Keil) gelegt. Darüber wird eine zweite Polyesterfolie gelegt und das so erhaltene Laminat auf einer Metalliplatte fixiert. Die Probe wird dann mit einer 5 KW-Metallhalogenid-Lampe im Abstand von 30 cm belichtet und zwar in einer ersten Testreihe 10 Sekunden, einer zweiten Testreihe 20 Sekunden und einer dritten Testreihe 40 Sekunden. Nach der Belichtung werden die Folien und die Maske entfernt, die belichtete Schicht in einem Ultraschallbad 120 Sekunden mit Entwickler A entwickelt und anschliessend bei 60° 15 Minuten im Umluftofen getrocknet. Die Empfindlichkeit des verwendeten Initiatorsystems wird durch die Angabe der letzten klebefrel abgebildeten Keilstufe charakterisiert. Je höher die Zahl der Stufen ist, desto empfindlicher ist das System. Eine Erhöhung um zwei Stufen bedeutet dabei etwa eine Verdopplung der Härtungsgeschwindigkeit. Die Ergebnisse sind in Tabelle 11 angegeben. Entwickler A enthält 15 g Natriummetasilikat•9 H₂O; 0,16 g KOH; 3 g Polyethylenglykol 6000; 0,5 g Lävulinsäure und 1000 g deionisiertes Wasser.

Tabelle 11:

	Titanocen			deten Stuf	
	Beispiel	10s	20s	40s	Belichtung
5	87	12	14	17	1
	90	10	12	15	
	91	9	11	13	
•	92	12	14	16	,
	94	10	12		
10	95	9	12	1'5	
	96	11	13	15	
	97	12		16	
	100	12	14	16 14	
	101		12		
15	103	7 6	10	13	
	106		11	13	•
	108	11	13	16	
	109	8	11	13	
	110	9	13	15	1
20	111	8	11	14	
	112	9	13	15	
	113	8	11	14	
	114	. 8	12	14	
		8	11	15	
26	115 116	8	10	12	
20	117	7	11	13	
	117a	8	11	12	·
	1178	9	11	13	
	118a	7	10	. 13	
20	1104	7	9	11	•
30	121	8 7	12	114	
	124	1	11	13	
	124a	8	11	. 15	
	126	9	12	15	
	127	7	9	11	
35	128	8	11	13	
	130	6	10	13	
	131	8	10	13	
	135	7	12	14	
	136	" 8	11	13	
40	137	7	11	13	
		9	12	14	
	138	6	8	12	

Beispiel 10s 20s 40s Belichtung 5 140 8 11 13 141 8 12 15 142 10 14 16 144 7 10 12 145 7 10 12 145 7 10 12 145 7 10 12 144 7 10 12 144 17 8 10 12 148 11 13 16 149 9 12 14 17 150 10 14 17 15 151 10 13 16 14 17 153 10 14 16 11 13 16 13 16 14 17 15 15 15 15 15 15 15 15 16 15 16 11 14		Titanocen	Zahl de	r abgebil	deten Stufe	en nach
140						
141		20202	100			2
141	E	140	8	11	13	
142	•	141		12	15	
144 7 10 12 145 7 10 12 146 7 10 13 147 8 10 12 148 11 13 16 149 9 12 14 150 10 14 17 151 10 13 15 153 10 14 16 154 10 11 13 156 9 14 17 157 10 13 16 157 10 13 16 157 10 13 16 159 10 13 16 160 11 14 16 161 8 12 15 162 10 13 16 162 10 13 16 162 10 13 16 162 10 13 16 166 9 13 15 166 9 13 15 167 7 10 13 16 168 10 14 16 167 7 10 13 16 168 10 14 16 170 9 12 15 174 10 14 16 177 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 178 10 13 16 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 13 189 7 12 14 190 8 12 15 187 10 12 15 188 9 12 13 190 8 12 15 191 191 9 11 13 192 9 12 15 193 12 15 17			10			
145 7 10 12 146 7 10 13 147 8 10 12 148 11 13 16 149 9 12 14 150 10 14 17 15 151 10 13 15 153 10 14 16 154 10 11 13 156 9 14 17 157 10 13 16 158 11 13 15 160 11 14 17 157 10 13 16 160 11 14 16 161 8 12 15 162 10 13 16 164 8 11 13 156 9 12 166 9 12 166 9 13 167 7 10 13 168 10 14 16 170 9 12 168 10 14 16 170 9 12 168 10 14 16 177 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 178 10 13 16 180 11 14 16 181 12 15 17 182 12 14 171 13 16 183 11 13 180 11 14 16 181 12 15 17 182 12 14 17 183 10 13 16 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 13 189 7 12 14 190 8 12 15 191 191 9 11 13 192 9 12 15			7			
10					12	
147			· •			•
148	10					
149						
150			11			•
15			9			
153						
154 10 11 13 15 15 157 10 13 16 157 10 13 16 158 11 13 15 15 160 11 14 16 161 161 18 12 15 165 6 9 12 165 6 9 12 1666 9 13 15 15 167 7 10 13 16 167 7 10 13 16 167 7 10 13 16 167 170 9 12 15 177 11 11 13 16 177 9 12 14 16 177 9 12 14 16 177 9 12 14 17 183 11 13 16 181 12 15 17 182 12 14 17 183 11 13 16 186 11 13 16 181 12 15 17 182 12 14 17 183 11 13 16 186 186 9 13 15 17 185 10 14 16 181 12 15 17 182 12 14 17 183 11 13 16 16 186 186 9 13 15 17 185 10 14 16 181 12 15 17 182 12 14 17 183 11 13 16 16 186 186 9 13 15 18 187 10 12 15 18 185 10 14 16 186 186 9 13 15 18 185 10 14 16 18 185 10 14 16 18 185 10 14 16 18 185 10 14 16 18 18 12 15 17 18 18 11 13 16 18 18 11 13 16 18 18 11 13 16 18 18 11 13 16 18 18 11 13 16 18 18 11 13 16 18 18 11 13 16 18 18 11 13 16 18 18 11 13 16 18 18 11 13 16 18 18 11 13 16 18 18 11 13 16 18 19 13 15 18 18 11 13 15 15 17 18 18 10 12 15 18 18 11 13 15 15 17 19 19 11 13 19 11 13 19 11 13 19 11 13 19 11 13 19 11 13 19 11 13 19 19 11 11 11 11 11 11 11 11 11 11 11	15					
156 9 14 17 157 10 13 16 158 11 13 15 159 10 13 16 160 11 14 16 161 8 12 15 162 10 13 16 164 8 11 13 25 165 6 9 12 166 9 13 15 167 7 10 13 16 168 10 14 16 170 9 12 15 30 171 11 13 16 174 10 14 16 176 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 178 10 13 16 180 11 14 16 181 12 15 17 182 12 14 17 182 12 14 17 183 11 13 16 181 12 15 17 182 12 14 17 183 11 13 16 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 13 15 187 10 12 15 188 9 12 13 45 189 7 12 14 179 8 12 13 46 189 7 12 14 179 191 9 11 13 192 9 12 15 193 12 15			10		16	
157 10 13 16 158 11 13 15 160 11 14 16 161 8 12 15 162 10 13 16 164 8 11 13 25 165 6 9 12 166 9 13 15 167 7 10 13 168 10 14 16 170 9 12 15 170 9 12 15 171 11 13 16 174 10 14 16 176 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 178 10 13 16 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 15 188 9 12 13 45 189 7 12 14 179 8 12 13 46 188 9 12 13 188 9 12 13 190 8 12 15 188 9 12 13 191 9 11 13 192 9 12 15 193 12 15			10		13	
158			9			
159 10 13 16 160 11 14 16 161 8 12 15 162 10 13 16 164 8 11 13 25 165 6 9 12 166 9 13 15 167 7 10 13 168 10 14 16 170 9 12 15 30 171 11 13 16 174 10 14 16 176 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 178 10 13 16 35 179 8 11 13 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 40 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 13 45 189 7 12 14 170 12 15 181 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15					16	,
160 11 14 16 161 8 12 15 162 10 13 16 164 8 11 13 165 6 9 12 166 9 13 15 167 7 10 13 168 10 14 16 170 9 12 15 30 171 11 13 16 174 10 14 16 176 9 12 14 177 9 12 14 177 9 12 14 178 10 13 16 35 179 8 11 13 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 40 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 15 188 9 12 13 45 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15	20			13		
161	20				16	
162 10 13 16 164 8 11 13 165 6 9 12 166 9 13 15 167 7 10 13 168 10 14 16 170 9 12 15 30 171 11 13 16 174 10 14 16 176 9 12 14 177 9 12 14 178 10 13 16 35 179 8 11 13 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 40 184 10 12 15 185 10 14 16 186 9 13 15 186 9 13 15 187 10 12<			11			
162 10 13 16 164 8 11 13 165 6 9 12 166 9 13 15 167 7 10 13 168 10 14 16 170 9 12 15 30 171 11 13 16 174 10 14 16 176 9 12 14 177 9 12 14 178 10 13 16 35 179 8 11 13 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 40 184 10 12 15 185 10 14 16 186 9 13 15 186 9 13 15 187 10 12<		161	8	12	15	
164		162		13	16	i e
165 6 9 12 166 9 13 15 167 7 10 13 168 10 14 16 170 9 12 15 30 171 11 13 16 174 10 14 16 176 9 12 14 177 9 12 14 178 10 13 16 179 8 11 13 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 181 12 15 17 182 12 14 17 183 11 13 16 40 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 13 45 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 17				11		
166 9 13 15 167 7 10 13 168 10 14 16 170 9 12 15 171 11 13 16 174 10 14 16 176 9 12 14 177 9 12 14 177 9 12 14 177 9 12 14 179 8 11 13 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 184 10 12 15 17 185 10 14 16 181 12 15 17 182 12 14 17 183 11 13 16 40 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 13 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 17	25		6	9		
168 10 14 16 170 9 12 15 171 11 11 13 16 174 10 14 16 176 177 9 12 14 177 177 9 12 14 178 10 13 16 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 183 11 13 16 184 10 12 15 17 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 13 15 188 9 12 13 14 17 190 8 12 13 15 189 7 12 14 17 190 8 12 15 191 191 9 11 13 192 9 12 15 193 12 15 191 192 193 12 15 17			9	13		
168 10 14 16 170 9 12 15 171 11 11 13 16 174 10 14 16 176 177 9 12 14 177 177 9 12 14 178 10 13 16 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 183 11 13 16 184 10 12 15 17 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 13 15 188 9 12 13 14 17 190 8 12 13 15 189 7 12 14 17 190 8 12 15 191 191 9 11 13 192 9 12 15 193 12 15 191 192 193 12 15 17			7			
170 9 12 15 171 11 11 13 16 174 10 14 16 176 9 12 14 177 9 12 14 178 10 13 16 35 179 8 11 13 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 40 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 187 10 12 15 188 9 12 13 45 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 17						
171			- 9			
174 10 14 16 176 9 12 14 177 9 12 14 178 10 13 16 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 40 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 13 45 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 17	30					
176 9 12 14 177 9 12 14 178 10 13 16 179 8 11 13 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 13 145 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 193 12 15						
177 9 12 14 178 10 13 16 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 40 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 13 45 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 191 192 19 11 13 192 9 12 15 193 12 15			10	12		
35 178 10 13 16 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 40 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 13 45 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 17			á			
35 179 8 11 13 180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 40 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 13 45 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 17			10			
180 11 14 16 181 12 15 17 182 12 14 17 183 11 13 16 40 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 15 188 9 12 13 45 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15	35		70			
181 12 15 17 182 12 14 17 183 11 13 16 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 15 188 9 12 13 45 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 17						
182 12 14 17 183 11 13 16 40 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 13 45 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 17						
183 11 13 16 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 13 45 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 17						
40 184 10 12 15 185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 13 45 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 17						
185 10 14 16 186 9 13 15 187 10 12 15 188 9 12 13 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 17	40				16	•
186 9 13 15 187 10 12 15 188 9 12 13 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 17	70			12		
187 10 12 15 188 9 12 13 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 17			10			•
188 9 12 13 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 17						
45 189 7 12 14 190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 17			10			
190 8 12 15 191 9 11 13 192 9 12 15 193 12 15 17			9	12		
191 9 11 13 192 9 12 15 193 12 15 17	45		7			
193 12 15 17			8:			
193 12 15 17			9			
193 12 15 17			9			
			12	15	17	
	50					

Beispiel 195: Photohärtung eines Monomer-Polymer-Gemisches

⁵⁵ Es wird eine photohärtbare Zusammensetzung hergestellt durch Mischen der folgenden Komponenten:

37,64 g	Sartomer SR 444 (Pentaerythritol-triacrylat) (Sartomer Company, Westchester)
10,76 g	Cymel 301 Hexamethoxymethylmelamin (Cyanamid)
47,30 g	Carboset 525 (Thermoplastisches Polyacrylat mit Carboxylgruppen/B.F. Goodrich
4,30 g	Polyvinylpyrrolidon PVP (GAF)
100,00 g	der obigen Mischung
0.50 g	Irgalitgrün GLN
319,00 g	Methylenchlorid
30,00 g	Methanol
450,00 g	

Portionen dieser Zusammensetzung werden mit jeweils 0,3 % (bezogen auf Feststoff) der in der folgenden Tabelle angegebenen Titanocene vermischt. Alle Operationen werden unter Rotlicht oder Gelblicht ausgeführt.

Die mit Initiator versetzten Proben werden in einer Stärke von 200 μm auf 200 μm Aluminiumfolie (10 x 15 cm) aufgetragen. Das Lösungsmittel wird durch Erwärmung auf 60°C während 15 Minuten im Umluftofen entfernt. Auf die flüssige Schicht wird eine 76 μm dicke Polyesterfolie gelegt und auf diese ein standardisiertes Testnegativ mit 21 Stufen verschiedener optischer Dichte (Stouffer-Keif) gelegt. Darüber wird eine zweite Polyesterfolie gelegt und das so erhaltene Laminat auf einer Metallplatte fixiert. Die Probe wird dann mit einer 5 KW-Metallhalogenid-Lampe im Abstand von 30 cm belichtet und zwar in einer ersten Testreihe 10 Sekunden, in einer zweiten Testreihe 20 Sekunden und in einer dritten Testreihe 40 Sekunden. Nach der Belichtung werden die Folien und die Maske entfernt, die belichtete Schicht in einem Ultraschallbad 240 Sekunden mit Entwickler A entwickelt und anschliessend bei 60° 15 Min. im Umluftofen getrocknet. Die Empfindlichkeit des verwendeten Initiatorsystems wird durch die Angabe der letzten klebefrei abgebildeten Keilstufe charakterisiert. Je höher die Zahl der Stufen ist, desto empfindlicher ist das System. Eine Erhöhung um zwei Stufen bedeutet dabei etwa eine Verdopplung der Härtungsgeschwindigkeit. Die Ergebnisse sind in Tabelle 12 angegeben.

30

10

15

35

40

50

5.

Tabelle 12:

Titanocen Zahl	Zahl der abgebildeten Stufen nach			
5 Beispiel 10s	20s 40s	Belichtung		
87 12	14 17			
	10 13			
90 8 91 7	10 12	* F		
92 12	14 16	-		
10 94 12	14 17			
95 9	12 15			
96 11	13 15	•		
97	13 16			
	12 15			
¹⁵ 101 9	12 14			
100 9 101 9 103 9	12 14	т.		
106 11	13 15			
108 8	11 13			
109 10	13 15			
20 110 8	10 13			
111 8	10 13			
112	12 14			
113 8	12 14	• •		
114 9	12 14	•		
25 115 8	12 14			
116 9	12 15			
117 9	12 14	•		
117a 9	11 14			
118 7	11 14			
117 9 117a 9 118 7 30 118a 7	10 12			
119 9	12 14			
119 9 121 7	10 13			
124 8	11 13			
124a 10	12 14			
	9 12			
127 7	11 13			
128 7	10 13			
130 8	10 12	A		
131 8	11 14			
40 134 7	11 13	•		
35 126 6 127 7 128 7 130 8 131 8 40 134 7 135 9	12 13			

•	Titanocen Zahl der			abgebildeten Stufen nach		
	Beispiel	10s	20s	· 40s	Belichtung	
	100			- 4		
5	136	9	12	. 14	•	
	137	8	11	13		
1	138	9	11	. 13	1	
	140	8	10	13	• •	
	141	9	12	15		
10	142	11	14	17		
	144	, 9	12	14		
	145	9	12	14 .		
	146	٠٠ \$	10	., 13		
	148	10	13	16		
15	149	10	13	15		
	150	11	13	16	i	
	151	12	14	18		
	153	9	. 12	14		
	154	10	14	16		
20	156	11	14	16		
	157	11	14	17		
	158	12	15	17		
	159	10	13	16		
	160	10	12	15		
25	161	9	12	14		
	162	10	13	16	-	
	164	9	12	14		
	165	9	12	15		
	166	10	13	15		
30	167	9	11	, 13		
	168	10	13	16		
	170	10	13	15		
	171	10	13	16		
	174	11	14	16		
35	176	11	14	.16		
	177	9	12	14		
	178	11	13	15		
	179	9	11	13		
	180	- 11	14	16		
40	181	10	13	15		
	182	10	13	15		
	183	12	13	16		
	184	9	13	16		
	185	10	13	15		
45	186	9	12	15		
~~	187	8	10	12		
	188	8	10	12		
	189	8 8	11	13		
	190	8	11	14		
60	191	8	10	12		
50.	192	9	12	14		
	193	11	14	16		

Beispiel 196:

55

Es wird die Prozedur von Beispiel 195 wiederholt, jedoch wird das jeweilige Titanocen in einem 1:1-

Gemisch von Benzophenon und 1-Hydroxycyclohexyl-phenyl-keton vorgelöst. Verwendet werden jeweils (bezogen auf Feststoffgehalt) 0,3 % Titanocen, 0,85 % Benzophenon und 0,85 % 1-Hydroxycyclohexyl-phenyl-keton. Tabelle 13 gibt die dabei erreichte Anzahl der Abbildungsstufen an.

Tabelle 13

Titanecen Beispiel	Zahl der abgebildeten Stufen nach Belichtung			
	10s	20s	40s	
87	12	14	17	
90	11	13	15	
91	- 11	13	15	
92	11	13	15	
96	11	13	15	
97	11	13	16	
105	10	12	14	
106	11	13	16	

Ansprüche

5

10

15

25

30

40

1. Titanocene der Formel I

$$\begin{array}{c}
R^1 \\
\vdots \\
R^3
\end{array}$$

stehen, worin X $\{CH_2\}_n$ mit n=1,2 oder 3, unsubstitulertes oder durch Phenyl substituiertes Alkyliden mit 2 bis 12 C-Atomen, Cycloalkyliden mit 5 bis 7 Ringkohlenstoffatomen, SiR_2^4 , SiR_2^4 -O- SiR_2^4 , GeR_2^4 oder SnR_2^4 ist, und R^4 C_1 - C_{12} -Alkyl, C_5 - C_{12} -Cycloalkyl, C_6 - C_{15} -Aryl oder C_7 - C_{15} -Aralkyl bedeutet,

R² einen 6-gliedrigen carbocyclischen oder 5- oder 6-gliedrigen heterocyclischen aromatischen Rest bedeutet, der in mindestens einer der beiden ortho-Stellungen zur Titankohlenstoffbindung mit Fluoratomen substituiert ist und wobei der aromatische Rest weitere Substituenten enthalten kann.

R³ eine der für R² gegebenen Bedeutungen hat oder R² und R³ zusammen einen Rest der Formel III bedeuten,

in dem Q für einen carbocyclischen aromatischen Rest steht, wobei die beiden Bindungen jeweils in Orthostellung zur Y-Gruppe stehen und die zweite Orthostellung zur Titankohlenstoffbindung jeweils durch ein Fluoratom substituiert ist und wobei Q weitere Substituenten enthalten kann, und Y CH₂, Alkyliden mit 2 bis 12 C-Atomen, Cycloalkyliden mit 5 bis 7 Ringkohlenstoffatomen, NR⁴, O, S, SO, SO₂, CO, SiR⁴₂, GeR⁴₂ oder SnR⁴₂ bedeutet und R⁴ die zuvor angegebene Bedeutung hat,

wobei die Titanocene dadurch gekennzeichnet sind, dass R² und R³ oder der Rest der Formel III durch einen Rest der Formel IV, IVa oder IVb substituiert sind,

worin R⁵ Wasserstoff, lineares oder verzweigtes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₃-C₈-Cycloalkyl, C₄-C₂₀-Cycloalkylalkyl oder -Alkylcycloalkyl, C₅-C₂₀-Alkylcycloalkylalkyl, C₆-C₂₀-Cycloalkenylalkyl, C₆-C₁₄-Aryl, C₇-C₂₀-Aralkyl oder -Alkaryl, C₈-C₂₀-Alkaralkyl oder C₃-C₁₂-Trialkylslyl darstellt, wobel diese Reste unsubstituiert oder durch C₁-C₁₈-Alkoxy, C₁-C₁₈-Alkylthio, C₁-C₁₈-Alkylsulfonyl, C₆-C₁₀-Arylsulfonyl, C₇-C₂₀-Alkarylsulfonyl, 2-Tetrahydrofuranyl oder Cyano substituiert sind,

R⁶ eine der für R⁵ gegebenen Bedeutungen hat oder C₁-C₂₀-Halogenalkyl, durch -CO- unterbrochenes C₂-C₂₀-Alkyl oder durch -COOH oder -COOR⁴ substituiertes C₁-C₁₂-Alkyl ist und im Falle, dass Y¹ -CO-, -CS- oder -SO₂- ist, auch -NR⁷R⁵ bedeuten kann, worin R⁷ und R⁸ unabhängig voneinander eine der für R⁵ gegebenen Bedeutungen haben oder R⁷ und R⁸ zusammen C₃-C₇-Alkylen bedeuten, das durch -O-, -S- oder -N(R⁹)- unterbrochen werden kann, worin R⁹ Wasserstoff, C₁-C₁₂-Alkyl, C₂-C₁₂-Alkenyl, C₇-C₁₂-Aralkyl oder C₂-C₂₀-Alkanoyl bedeutet,

oder R⁵ und R⁶ zusammen lineares oder verzweigtes C₂-C₈-Alkylen oder durch Halogen, C₁-C₄-Alkoxy, Allyloxy oder -NR⁷R⁸ substituiertes C₂-C₈-Alkylen oder einen zweiwertigen Rest der Formel

bedeuten

5

20

25

50

55

Y¹ eine Gruppe -CO-, -CS-, -COO-, -SO₂- oder -SiR⁴₂- bedeutet, worin R⁴ die zuvor gegebene Bedeutung hat,

R¹º eine der für R⁶ gegebenen Bedeutungen hat oder R¹º und R⁶ zusammen C₁-C₃-Alkandiyi, C₂-C₃-Alkandiyi, C₅-C₁₄-Arendiyi, C₄-C₁₂-Cycloalkandiyi, C₅-C₁₂-Cycloalkandiyi, C₅-C₁₄-Cycloalkandiyi, C₂-C₂₀-Bicycloalkandiyi, C₂-C₂₀-Bicycloalkandiyi oder durch -O-, -S-oder -N(R³)-unterbrochenes C₂-C₄-Alkandiyi bedeuten, wobei diese Reste unsubstituiert oder durch einen oder mehrere der Substituenten Halogen, C₁-C₁₀-Alkoxy, C₁-C₂₀-Alkyi, C₃-C₂₀-Alkenyl oder C₅-C₁₄-Aryl substituiert sind.

- Titanocene gemäss Anspruch 1, dadurch gekennzeichnet, dass R¹ Cyclopentadienyi[©] oder Methylcyclopentadienyi[©] ist.
 - 3. Titanocene gemäss Anspruch 1, dadurch gekennzeichnet, dass R¹ Cyclopentadienyl[©] ist.
- 4. Titanocene gemäss Anspruch 1, dadurch gekennzeichnet, dass R² und R³ die gleiche Bedeutung haben.
- 5. Titanocene gemäss Anspruch 1, dadurch gekennzeichnet, dass der Rest R² in beiden Orthostellungen mit Fluor substituiert ist.
- 6. Titanocene gemäss Anspruch 1, dadurch gekennzeichnet, dass R² und R³ für 2,6-Difluorphen-1-yl stehen, an das ein Rest der Formel IV, IVa oder IVb gebunden ist, und das weitere 1 oder 2 gleiche oder verschiedene Substituenten enthalten kann.
- 7. Titanocene gemäss Anspruch 6, dadurch gekennzeichnet, dass in formel I beide R¹ Cyclopentadienyl[©] und R² und R³ Reste der Formel V

bedeuten, worin A eine Gruppe der Formel IV, IVa oder IVb bedeutet.

- 8. Titanocene gemäss Anspruch 7, dadurch gekennzelchnet, dass in Formel V die Gruppe A in Orthostellung zu einem F-Atom gebunden ist.
 - 9. Titanocene gernäss Anspruch 7, dadurch gekennzeichnet, dass A eine Gruppe der Formel IV ist.

- 10. Titanocene gemäss Anspruch 1, dadurch gekennzeichnet, dass R² und R³ durch eine Gruppe der Formel IV substituiert sind, worin R⁵ Wasserstoff, unsubstituiertes oder durch C_1-C_{12} -Alkoxy oder Tetrahydrofuryl substituiertes C_1-C_{12} -Alkyl, C_2-C_5 -Alkenyl, C_5-C_7 -Cycloalkyl, C_6-C_{18} -Cycloalkylalkyl oder -Alkylcycloalkylalkyl, C_7-C_{18} -Alkylcycloalkylalkyl, C_7-C_{18} -Aralkyl oder C_8-C_{16} -Alkaralkyl bedeutet, R⁵ eine der für R⁵ gegebenen Bedeutungen hat oder C_6-C_{10} -Aryl, C_7-C_{18} -Alkaryl, C_1-C_{12} -Halogenalkyl oder -NR 7 R³ darstellt, worin R 7 und R 8 unabhängig voneinander Wasserstoff, C_1-C_{12} -Alkyl, Phenyl, Benzyl oder Cyclohexyl bedeuten oder R 7 und R 8 zusammen C_4-C_5 -Alkylen oder 3-Oxapentamethylen bedeuten, oder R 5 und R 6 zusammen C_2-C_8 -Alkylen bedeuten und Y 1 -CO-, -CS-, -COO-oder -SO₂-bedeutet.
- 11. Titanocene gemäss Anspruch 1, dadurch gekennzeichnet, dass R² und R³ durch eine Gruppe der Formel IV substituiert sind, worin R⁵ Wasserstoff, C₁-C₁₂-Alkyl, Cyclohexyl, Cyclohexylmethyl, 2-Tetrahydrofurylmethyl, C₂-C₈-Aikoxyaikyl, Allyl oder C₇-C₉-Aralkyl ist, R⁵ C₁-C₁₈-Alkyl, C₁-C₄-Halogenaikyl, Cyclohexyl, C₆-C₁₀-Aryl oder -Halogenaryl oder C₇-C₁₈-Alkaryl bedeutet oder R⁵ und R⁶ zusammen C₂-C₆-Alkylen bedeuten und Y¹ -CO-, -COO-oder -SO₂- ist oder der Rest -Y¹-R⁶ eine Gruppe -CO-NHR², -CS-NHR², -CO-NR² R³ oder -SO₂-N² R³ bedeutet, worin R² C₁-C₁₂-Alkyl oder Phenyl ist, R⁵ C₁-C₁₂-Alkyl ist oder R² und R⁵ zusammen C₄-C₅-Alkylen oder 3-Oxapentamethylen bedeuten.
- 12. Titanocene gemäss Anspruch 11, worin R^s Wasserstoff, C₁-C₈-Alkyl oder C₇-C₉-Aralkyl ist, R⁶ C₁-C₁₈-Alkyl, Trifluormethyl, Phenyl, oder durch Halogen oder C₁-C₁₂-Alkyl substituiertes Phenyl bedeutet oder R^s und R⁶ zusammen C₂-C₆-Alkylen bedeuten und Y¹ -CO- oder -SO₂- ist.
- 13. Titanocene gemäss Anspruch 1, dadurch gekennzeichnet, dass R² und R³ durch eine Gruppe der Formel IVa substituiert sind, worin R⁵ und R¹0 zusammen C₂-C8-Alkandiyl, C₂-C8-Alkendiyl, C6-C14-Arendiyl oder C7-C12-Bicycloalkendiyl bedeuten und Y³ -CO- ist.
- 14. Verfahren zur Herstellung von Titanocenen der Formel I gemäss Anspruch 1, dadurch gekennzelchnet, dass man 1 Mol einer Verbindung der Formel VI

- worin R¹ die in Anspruch 1 angegebene Bedeutung hat und Z für Halogen, besonders Chlor, steht, entweder mit einem Mol LiR² oder LiR³ und danach mit einem Mol LiR³ bzw. LiR² umsetzt, oder mit 2 Mol LiR² oder mit 1 Mol Li₂QYQ umsetzt, wobei R², R³ und QYQ die in Anspruch 1 angegebenen Bedeutungen haben und danach die Verbindung der Formel I in an sich bekannter Weise isoliert.
- 15. Durch Strahlung polymerisierbare Zusammensetzung, enthaltend (a) mindestens eine nichtflüchtige, monomere, oligomere oder polymere Verbindung mit mindestens einer polymerisierbaren ethylenisch ungesättigten Doppelbindung und (b) mindestens ein Titanocen der Formel I nach Anspruch 1 als Photoinitiator.
- 16. Zusammensetzung gemäss Anspruch 15, dadurch gekennzeichnet, dass zusätzlich mindestens ein von (b) verschiedener Photoinitiator (c) enthalten ist.
- 17. Zusammensetzung gemäss Anspruch 16, enthaltend als Photoinitiator (c) ein Benzophenon, einen Benzoinalkylether, ein Benzilketal, ein 4-Aroyl-1,3-dioxolan, ein Dialkoxyacetophenon, ein α-Hydroxy-oder α-Aminoacetophenon oder ein α-Hydroxycycloalkylphenylketon oder Mischungen davon als zusätzlichen Photoinitiator.
- 18. Verwendung einer Zusammensetzung gemäss Anspruch 15 zur Herstellung von Lacken, Druckfarben, Druckplatten, Resistmaterialien sowie als Bildaufzeichnungsmaterial.
- Beschichtetes Substrat, das auf mindestens einer Oberfläche mit einer Zusammensetzung gemäss Anspruch 15 beschichtet ist.
- 20. Verfahren zur photographischen Herstellung von Reliefabbildungen, dadurch gekennzeichnet, dass man ein beschichtetes Substrat gemäss Anspruch 19 bildmässig belichtet und die unbelichteten Anteile danach mit einem Lösungsmittel entfernt.
- 21. Verwendung von Titanocenen der Formel I gemäss Anspruch 1 alleine oder zusammen mit anderen Initiatoren als Photoinitiatoren für die Photopolymerisation von nichtflüchtigen monomeren, ollgomeren oder polymeren Verbindungen mit mindestens einer polymerisierbaren ethylenisch ungesättigten Doppelbindung.
- 22. Photoinitiatorengemisch, enthaltend einen Photoinitiator vom Typ der Benzophenone, Benzoinalkylether, Benzilketale, 4-Arcyl-1,3-dioxolane, Dialkoxyacetophenone, α-Hydroxyacetophenone, α-Hydroxyacetophenone, α-Hydroxyacetophenone, α-Hydroxyacetophenone alkylphenylketone, α-Aminoacetophenone oder Mischungen hiervon und ein Titanocen der Formel I gemäss Anspruch 1.

23. Verbindungen der Formei VII

15

25

30

38

ď٦

45

50

55

worin Ar einen 8-gliedrigen carbocyclischen oder 5- oder 6-gliedrigen heterocyclischen aromatischen Rest, der mindestens ein Fluoratom, in Orthostellung hierzu ein Wasserstoffatom oder ein Halogenatom und gegebenenfalls weitere Substituenten enthält, oder Ar einen Rest der Formel

bedeutet, worin D für ein in Orthostellung zu Y gebundenes Wasserstoffatom oder Halogenatom steht, Q einen carbocyllschen aromatischen Rest bedeutet, der in Orthostellung zur D-Gruppe jeweils durch ein Fluoratom substituiert ist und Q weitere Substituenten enthalten kann, und Y, Y¹, R⁵ und R⁶ die in Anspruch 1 angegeberien Bedeutungen haben.

- 24. Verbindungen gemäss Anspruch 23, worin Ar als aromatischer Rest ein substituierter Phenylring ist.
- 25. Verbindungen gemäss Anspruch 23, dadurch gekennzeichnet, dass sie der Formel VIIa

TOTMET ATTY

F N Y1-R6 VIIa

entsprechen, worin R5, R6, und Y1 die in Anspruch 1 angegebenen Bedeutungen haben.

26. Verbindungen gemäss Anspruch 25 der Formet VIIa, worin die Gruppe -N(R⁵)-Y¹R⁶ in Orthostellung zum Fluoratom gebunden ist.

27. Verbindungen der Formel VIII

worin Ar die in Anspruch 23 gegebene Bedeutung hat und Y¹, R⁵ und R¹º die in Anspruch 1 gegebene Bedeutungen haben.

28. Verbindungen gemäss Anspruch 27 der Formel VIIIa

worin $Y^{t},\,R_{c}$ und $R^{t\theta}$ die in Anspruch 1 gegebenen Bedeutungen haben.

29. Verbindungen gemäss Anspruch 28 der Formel VIIIa, worin die Gruppe -N(Y'R10)-Y'R6 in Orthosteilung zum Fluoratom gebunden ist.

30. Verbindungen gemäss Anspruch 28 der Formel VIIIa, worin Y¹ die Gruppe -CO- ist und R¹ und R¹0 zusammen C₂-C8-Alkandiyl, C₂-C8-Alkandiyl, C6-C12-Arendiyl, C6-C12-Cycloalkandiyl, C6-C12-Cycloalkandiyl, C6-C12-Cycloalkandiyl bedeuten.

Patentansprüche für folgende Vertragsstaaten: AT,ES

1. Verfahren zur Herstellung von Titanocenen der Formel I

worin beide R¹ unabhängig voneinander unsubstituiertes oder durch C₁-C₁a-Alkyl oder -Alkoxy, C₂-C₁a-Alkenyl, C₅-Ca-Cycloalkyl, C₅-C₁₅-Aryl, C₁-C₁₅-Aralkyl, SiR⁴₃, GeR⁴₃, Cyano oder Haiogen substituiertes Cyclopentadienyl oder 4,5,6,7-Tetrahydroindenyl bedeuten oder beide R¹ zusammen für einen unsubstituierten wie zuvor substituierten Rest der Formel II

stehen, worin X {CH₂}_n mit n = 1, 2 oder 3, unsubstituiertes oder durch Phenyl substituiertes Alkyliden mit 2 bis 12 C-Atomen, Cycloalkyliden mit 5 bis 7 Ringkohlenstoffatomen, SiR₂ , SiR₂ -O-SiR₂ , GeR₂ oder SnR₂ ist, und R⁴ C₁-C₁₂-Alkyl, C₅-C₁₂-Cycloalkyl, C₆-C₁₆-Aryl oder C₇-C₁₅-Aralkyl bedeutet,

R² einen 6-gliedrigen carbocyclischen oder 5- oder 6-gliedrigen heterocyclischen aromatischen Rest bedeutet, der in mindestens einer der beiden ortho-Stellungen zur Titankohlenstoffbindung mit Fluoratomen substituiert ist und wobel der aromatische Rest weitere Substituenten enthalten kann,

R³ eine der für R² gegebenen Bedeutungen hat oder R² und R³ zusammen einen Rest der Formel III bedeuten,

5

10

20

45

in dem Q für einen carbocyclischen aromatischen Rest steht, wobei die beiden Bindungen jeweils in Orthostellung zur Y-Gruppe stehen und die zweite Orthostellung zur Titankohlenstoflbindung jewells durch ein Fluoratom substituiert ist und wobei Q weitere Substituenten enthalten kann, und Y CH₂, Alkyliden mit 2 bis 12 C-Atomen, Cycloalkyliden mit 5 bis 7 Ringkohlenstoffatomen, NR⁴, O, S, SO, SO₂, CO, SiR⁴₂, GeR⁴₂ oder SnR⁴₂ bedeutet und R⁴ die zuvor angegebene Bedeutung hat,

wobel die Titanocene dadurch gekennzeichnet sind, dass R² und R³ oder der Rest der Formel III durch einen Rest der Formel IV, IVa oder IVb substituiert sind,

worin R⁵ Wasserstoff, lineares oder verzweigtes C_1 - C_2 0-Alkyl, C_2 - C_2 0-Alkenyl, C_3 - C_8 -Cycloalkyl, C_4 - C_2 0-Cycloalkylalkyl oder -Alkylcycloalkyl, C_5 - C_2 0-Alkylcycloalkylalkyl, C_6 - C_2 0-Cycloalkenylalkyl, C_6 - C_1 2-Aryl, C_7 - C_2 0-Aralkyl oder -Alkaryl, C_8 - C_2 0-Alkaralkyl oder C_8 - C_1 2-Trialkylsilyl darstellt, wobei diese Reste unsubstituiert oder durch C_1 - C_1 8-Alkoxy, C_1 - C_1 8-Alkylthio, C_1 - C_1 8-Alkylsulfonyl, C_6 - C_1 0-Arylsulfonyl, C_7 - C_2 0-Alkarylsulfonyl, 2-Tetrahydrofuranyl oder Cyano substituiert sind,

R⁶ eine der für R⁵ gegebenen Bedeutungen hat oder C₁-C₂₀-Halogenalkyl, durch -CO- unterbrochenes C₂-C₂₀-Alkyl oder durch -COOH oder -COOR⁴ substituiertes C₁-C₁₂-Alkyl ist und im Falle, dass Y¹ -CO-, -CS- oder -SO₂- ist, auch -NR⁷R⁸ bedeuten kann, worin R⁷ und R⁸ unabhängig voneinander eine der für R⁵ gegebenen Bedeutungen haben oder R⁷ und R⁸ zusammen C₃-C₇-Alkylen bedeuten, das durch -O-, -S- oder -N(R³)- unterbrochen werden kann, worin R⁹ Wasserstoff, C₁-C₁₂-Alkyl, C₃-C₁₂-Alkenyl, C₇-C₁₂-Aralkyl oder C₂-C₂₀-Alkanoyl bedeutet,

oder R⁵ und R⁶ zusammen lineares oder verzweigtes C₂-C₈-Alkylen oder durch Halogen, C₁-C₄-Alkoxy, Allyloxy oder -NR⁷R⁸ substituiertes C₂-C₈-Alkylen oder einen zweiwertigen Rest der Formel

bedeuten,

20

Y¹ eine Gruppe -CO-, -CS-, -COO-, -SO₂- oder -SiR⁴₂- bedeutet, worin R⁴ die zuvor gegebene Bedeutung hat,

R¹¹¹ eine der für R¹² gegebenen Bedeutungen hat oder R¹¹¹ und R¹² zusammen C₁-C₃-Alkandiyl, C₂-C₃-Alkandiyl, C₅-C₁₄-Arendiyl, C₄-C₁₂-Cycloalkandiyl, C₅-C₁₂-Cycloalkandiyl, C₅-C₁₄-Cycloalkandiyl, C₂-C₂-Bicycloalkandiyl, C₂-C₂-Bicycloalkandiyl oder durch -O-, -S-oder -N(R³)-unterbrochenes C₂-C₄-Alkandiyl bedeuten, wobel diese Reste unsubstitulert oder durch einen oder mehrere der Substituenten Halogen, C₁-C₁₀-Alkoxy, C₁-C₂₀-Alkyl, C₃-C₂₀-Alkenyl oder C₅-C₁₄-Aryl substituiert sind, dadurch gekennzeichnet, dass man 1 Mol einer Verbindung der Formel VI

worin R¹ die in Anspruch 1 angegebene Bedeutung hat und Z für Halogen, besonders Chlor, steht, entweder mit einem Mol LiR² oder LiR³ und danach mit einem Mol LiR³ bzw. LiR² umsetzt, oder mit 2 Mol LiR² oder mit 1 Mol Li₂QYQ umsetzt, wobei R², R³ und QYQ die in Anspruch 1 angegebenen Bedeutungen haben und danach die Verbindung der Formel I in an sich bekannter Weise isoliert.

2. Durch Strahlung polymerisierbare Zusammensetzung, enthaltend (a) mindestens eine nichtflüchtige, monomere, oligomere oder polymere Verbindung mit mindestens einer polymerisierbaren ethylenisch ungesättigten Doppelbindung und (b) mindestens ein Titanocen der Formel 1 nach Anspruch 1 als Photoinitiator.

3. Zusammensetzung gemäss Anspruch 15, dadurch gekennzeichnet, dass zusätzlich mindestens ein von (b) verschiedener Photoinitiator (c) enthalten ist.

4. Zusammensetzung gemäss Anspruch 16, enthaltend als Photoinitiator (c) ein Benzophenon, einen Benzoinalkylether, ein Benzilketal, ein 4-Aroyl-1,3-dioxolan, ein Dialkoxyacetophenon, ein α-Hydroxy-oder α-Aminoacetophenon oder ein α-Hydroxycycloalkylphenylketon oder Mischungen davon als zusätzlichen Photoinitiator.

5. Verwendung von Titanocenen der Formel I gemäss Anspruch 1 alleine oder zusammen mit anderen Initiatoren als Photoinitiatoren für die Photopolymerisation von nichtflüchtigen monomeren, oligomeren oder polymeren Verbindungen mit mindestens einer polymerisierbaren ethylenisch ungesättigten Doppelbindung.

55

50