

DIALOG(R) File 345:Inpadoc/Fam.& Legal Stat
(c) 2003 EPO. All rts. reserv.

4701074

Basic Patent (No,Kind,Date): JP 59123670 A2 840717 <No. of Patents: 002>

Patent Family:

Patent No	Kind	Date	Applie No	Kind	Date
JP 59123670	A2	840717	JP 82230072	A	821228 (BASIC)
JP 93051458	B4	930802	JP 82230072	A	821228

Priority Data (No,Kind,Date):

JP 82230072 A 821228

PATENT FAMILY:

JAPAN (JP)

Patent (No,Kind,Date): JP 59123670 A2 840717

INK JET HEAD (English)

Patent Assignee: CANON KK

Author (Inventor): INAMOTO TADAKI; AOKI SEIICHI; SAITOU AKIO; YOKOI KATSUYUKI; IKEDA MASAMI

Priority (No,Kind,Date): JP 82230072 A 821228

Applie (No,Kind,Date): JP 82230072 A 821228

IPC: * B41J-003/04

JAPIO Reference No: * 080244M000126

Language of Document: Japanese

Patent (No,Kind,Date): JP 93051458 B4 930802

Patent Assignee: CANON KK

Author (Inventor): INAMOTO TADAKI; AOKI SEIICHI; SAITO AKIO; YOKOI KATSUYUKI; IKEDA MASAMI

Priority (No,Kind,Date): JP 82230072 A 821228

Applie (No,Kind,Date): JP 82230072 A 821228

IPC: * B41J-002/05; B41J-002/16

Language of Document: Japanese

THIS PAGE BLANK (USPTO)

DIALOG(R) File 347:JAPIO
(c) 2002 JPO & JAPIO. All rts. reserv.

01412070 **Image available**
INK JET HEAD

PUB. NO.: 59-123670 A]
PUBLISHED: July 17, 1984 (19840717)
INVENTOR(s): INAMOTO TADAKI
AOKI SEIICHI
SAITO AKIO
YOKOI KATSUYUKI
IKEDA MASAMI
APPLICANT(s): CANON INC [000100] (A Japanese Company or Corporation), JP
(Japan)
APPL. NO.: 57-230072 [JP 82230072]
FILED: December 28, 1982 (19821228)
INTL CLASS: [3] B41J-003/04
JAPIO CLASS: 29.4 (PRECISION INSTRUMENTS -- Business Machines)
JAPIO KEYWORD: R005 (PIEZOELECTRIC FERROELECTRIC SUBSTANCES); R044
(CHEMISTRY -- Photosensitive Resins); R105 (INFORMATION
PROCESSING -- Ink Jet Printers)
JOURNAL: Section: M, Section No. 337, Vol. 08, No. 244, Pg. 126,
November 09, 1984 (19841109)

ABSTRACT

PURPOSE: To obtain an ink jet head simply at low cost by a method in which a groove is formed in a plate part to form a liquid flow path and a discharge port is provided in the bottom of the groove.

CONSTITUTION: A desired number of energy-generating elements 2 are provided on a base plate 1, and a curable photo resist film 3H of a photo-sensitive composition is provided in regions other than the elements 2 to form an ink flow groove. A dry film photo resist is laminated without drooping into the ink flow groove and hardened, and the hardened resist film 6H on the uppermost layer is cut and processed through the ink flow groove 8 to form a discharge port 7. A liquid supply tube is connected to a liquid supply port 10. An ink jet head having a high dimensional accuracy can be obtained with good yield by reducing the number of manufacturing processes.

THIS PAGE BLANK (USPTO)

⑨ 日本国特許庁 (JP)

⑩ 特許出願公開

⑪ 公開特許公報 (A)

昭59-123670

⑫ Int. CL³
B 41 J 3'04

識別記号
103

序内整理番号
7810--2C

⑬ 公開 昭和59年(1984)7月17日

発明の数 1
審査請求 未請求

(全 6 頁)

⑭ インクジェットヘッド

⑮ 特 願 昭57-230072

⑯ 出 願 昭57(1982)12月28日

⑰ 発明者 稲本忠喜

東京都大田区下丸子3丁目30番

2号キヤノン株式会社内

⑱ 発明者 青木誠一

東京都大田区下丸子3丁目30番

2号キヤノン株式会社内

⑲ 発明者 斎藤昭男

東京都大田区下丸子3丁目30番

2号キヤノン株式会社内

⑳ 発明者 横井克幸

東京都大田区下丸子3丁目30番

2号キヤノン株式会社内

㉑ 発明者 池田雅実

東京都大田区下丸子3丁目30番

2号キヤノン株式会社内

㉒ 出願人 キヤノン株式会社

東京都大田区下丸子3丁目30番

2号

㉓ 代理人 弁理士 丸島儀一

明細書

1 発明の名称

インクジェットヘッド

2 特許請求の範囲

液体を吐出させて飛翔的液滴を形成する為の吐出口を有し、途中に於いて曲折されている液流路と、該液流路の少なくとも一部を構成し、その内部を満たす液体が液滴形成の為のエネルギーの作用を受けるところであるエネルギー作用部と、該作用部を満たす液体に伝達する為の液滴形成エネルギーを発生するエネルギー発生体とを有するインクジェットヘッドに於いて、該部を有し、該部中に前記吐出口が設けてある事を特徴とするインクジェットヘッド。

3 発明の詳細な説明

本発明は、インクジェットヘッド（液体噴射配管ヘッド）、詳しくは、所謂、インクジェット配管方式に用いる配管用インク小孔を発生する為のインクジェットヘッドに関するもの。

インクジェット配管方式に適用されるインクジ

エットヘッドは、一般に繊細なインク液吐出口、インク液流路及びこのインク液流路の一部に設けられるエネルギー作用部と、該作用部にある液体に作用させる液滴形成エネルギーを発生するインク液吐出エネルギー発生体を具えている。

従来、この様なインクジェットヘッドを作成する方法として、例えば、ガラスや金属性の板に切削やエッティング等により、繊細な溝を形成した後、この溝を形成した板に他の吐出口を、例えば金属性板をエッティングしたり、感光性組成物をフォトフォーミングしたりして形成した板と接合して液流路の形成を行なう方法が知られている。

しかし、従来形状の吐出口を有するインクジェットヘッドは、ヘッドを作製する際に液流路となる溝が形成された導板と、吐出口が形成された板を接合する際に、夫々の位置合わせが難しく、正確性に欠けるという問題点を有している。又、エッティングにより吐出口を形成する場合は、エッティング速度の差から吐出口形状に差が生じたり、吐出口の形状にバラツキが出て、寸法精度の良い吐

出口を多留り良く作製することが難しく、加えて製造工程の多さから製造コストの上昇を招くという問題点も有している。更に、エフテングを用いた場合は、有得且つ危険な薬品を使用することが多いため安全衛生上の設備が必要で、又、使用後の薬品は公害防止の観点からそのまま廃棄できないので必要な処置を施す必要があり、この点についても製造の煩雑さと製造コストの上昇を招くという問題点を有している。更には、近年インクジェット記録装置に高品質、分解能度が求められている為、吐出口も高密度化が要求されているが、エフテングやフォトフォーミングでは、現在のところ相手、多留り等に於いて限界があるといつた問題点も有している。

これ等の問題点は、殊に液流路が直線的ではなく、設計の上から曲折された部分を有するタイプのインクジェットヘッドの場合には、一層深刻な問題として浮上されるものである。

本発明は上記の問題点に鑑み成されたもので、簡略な製造方法で作製することとの可能なローコス

トのインクジェットヘッドを提供することを目的とする。

又、本発明は、精度良く正確に且つ多留り良い液滴加工が行なえる様な吐出口形状を有するインクジェットヘッドを提供することも目的とする。

更に本発明は、簡単に複数の吐出口を形成出来る様な形状の吐出口を有するインクジェットヘッドを提供することも目的とする。

そして、以上の諸目的を達成する本発明のインクジェットヘッドは、液体を吐出させて液滴を形成する為の吐出口を有し、途中に於いて曲折されている液流路と、該液流路の少なくとも一部を開成し、その内部を満たす液体が液滴形成の為のエネルギーの作用を受けるところであるエネルギー作用部と、該作用部を満たす液体に伝達する為の液滴形成エネルギーを発生するエネルギー発生体とを有するインクジェットヘッドに於いて、導部を有し、該導中に前記吐出口が設けてある事を特徴とする。

即ち、本発明のインクジェットヘッドの吐出口

は、従来のインクジェットヘッドの様に一箇所分の液滴吐出口が複数個配設されているのではなく、少なくとも2箇所以上分の液滴吐出口が導部の導の底面に設けられている。

本発明のインクジェットヘッドに於ける吐出口は、液流路を形成する板状部材に、好ましくは液流路に到達する深さに導を設け、該導の底面に設けられるもので、該導の形状、寸法は使用されるインクの種類、液滴形成の為のエネルギー作用部、エネルギー発生体その他のインクジェットヘッドを開成する要素の形状や各々の条件によって最適条件になる様に形成される。本発明に於いて最適条件とは、記録部材上に液滴が精度良く漏れする様な条件である。

以下、図面を用いて本発明を説明する。

第1図乃至第6図(b)は、本発明のインクジェットヘッドの作成工程を説明する為の図である。

先ず、第1図に示す様に、ガラス、セラミック、プラスチック成る金属性、適当な基板1上にビニル系等の飛散的液滴形成の為のエネルギー

を発生するエネルギー発生素子(エネルギー発生体)2が所望の個数、配設された(図に於いては2個)。前記エネルギー発生素子2は近傍のインク液体を加圧することにより、インク吐出圧を発生させる。

尚、これ等の素子2には図示されていない信号入力用電極が接続されている。

次に、エネルギー発生素子2を設けた基板1表面を清浄化すると共に乾燥させた後、素子2を設けた基板面1Aに、第2回間に断面図示される如く60°C~150°C程度に加温された感光性樹脂のフィルムであるドライフォトレジスト3(商品名リストン730S:DuPont社製:膜厚7.5μm)が0.5~0.4%/分の速度、1~3μm/mmの加压条件でラミネートされた。

尚、第2図(b)は、第2図(a)に於けるX-X'で示す一点銀線で示す位置での切断面に相当する切断面図である。

このとき、ドライフィルムフォトレジスト3は基板面1Aに圧着して固定され、以後、多少の外

第1表

	本実施例	金属性エッチング系	感光性組成物のフォトフォーミング (ネガ型ドライフィルム系)
工程数	3	6	4
主な工程	貼合せ ↓ 硬化処理 ↓ 切削加工 ↓ エッチング ↓ 感光性組成物 ↓ 貼合せ(位置合わせ)	感光性組成物塗布 ↓ 露光(位置合わせ) ↓ 現像 ↓ 露光(位置合わせ) ↓ 現像 ↓ 硬化処理	貼付け ↓ 露光(位置合わせ) ↓ 現像 ↓ 硬化処理
吐出口形成 所要時間 (分/ヘッド)	20	120	40

図10.1mmのステンレス板をエッチングして接着剤で貼付けた。

又、実際にインクジェットヘッドを形成した場合に吐出口の寸法精度が設計値と較べて、どの位ずれが生じたかを第2表に示す。

第2表

	本実施例	金属性エッチング (丸形吐出口)	感光性組成物のフォトフォーミング (丸形吐出口)
設計値 からのずれ	0~1.5%	5~8.3%	0~2.5%
設計値	30.0μ(平均)	40.0μ(直角)	40.0μ(直角)
実測値	30.0~30.3μ	42.0~43.0μ	40.0~41.0μ

以上の具体例である第1表及び第2表で示される様に、本発明のインクジェットヘッドに於ける吐出口は従来のものと較べてその作製工程の面からも仕上り精度の面からも優れたものであつた。

感光性組成物のフォトフォーミングを用いた丸形吐出口を有する従来のインクジェットヘッドは、金属性エッチングで丸形吐出口を有するものと比べてはるかに優れたものであるが、それ以上に本発明

による吐出口を有するインクジェットヘッドは優れたものであつた。

以上、詳述した様に、本発明によれば、インクジェットヘッドの製作工程を減らす事が出来るため生産性が良好で、低コスト且つ寸法精度の高いヘッドが歩留り良く得られる。又、ヘッド材料に本発明の実施例様に感光性組成物が用いられた場合は、エッチング液を使用する方法に比して、安全衛生の面でも優れたものになる。更に、本発明によれば、複数の吐出口を有するインクジェットヘッドが簡単に得ることが出来る。

尚、実施例中では感光性組成物として、光硬化型樹脂が挙げられているが、これは別に光硬化型樹脂に限るものではないし、例として挙げられている感光性樹脂に限られるのではなくインクジェットヘッド材料として一般に用いられているもので、良いのはいうまでもない。

又、切削加工も精密な切削加工が行なえるものであれば、本実施例中で述べたダイシングに限らないではない。

4 図面の簡単な説明

第1図乃至第6図(b)は、本発明の液体噴射記錄ヘッドの構成とその製作手順を説明する為の模式図であつて、第1図は第1工程を説明する為の模式的斜視図、第2図(a)は第2工程を説明する為の模式的斜視図、第2図(b)は第2図(a)に示す一点綫線XX'での切断面部分図、第3図は第3工程を説明する為の模式的斜視図、第4図は第4工程を説明する為の模式的斜視図、第5図は第5工程を、第6図(a)は第6工程を各々説明する為の模式的斜視図、第6図(b)は、第6図(a)に一点綫線YY'で示す位置で切断した場合の切断面図である。

1…基板、2…エネルギー発生素子、3, 6…ドライフィルムホトレジスト、3H, 6H…ドライフィルムホトレジスト硬化膜、4…ホトマスク、7…吐出口、8…インク枝流路、9…インク幹流路、10…液給供管口。

出願人 キヤノン株式会社

代理人 九島謙一

第2図(a)

第1図

第2図(b)

第3図

第5図

第4図

第 6 (a)

第 6 (b)

THIS PAGE BLANK (USPTO)