بسمه تعالى تجزیه و تحلیل سیگنالها و سیستمها خلاصهای از مهم ترین نکات و فرمولها مهدى تقدسى

قسمت اول _ نكات

نکته ۱:

$$\cos \omega_{\circ} t , \sin \omega_{\circ} t , e^{j\omega_{\circ} t} \qquad \longrightarrow \qquad T = \frac{r\pi}{|\omega_{\circ}|}$$

$$\tan \omega_{\circ} t , \cot \omega_{\circ} t , |\cos \omega_{\circ} t| , |\sin \omega_{\circ} t| \qquad \longrightarrow \qquad T = \frac{\pi}{|\omega_{\circ}|}$$

نکته ۲:

$$\cos \omega_{\circ} n \; , \; \sin \omega_{\circ} n \; , \; e^{j\omega_{\circ} n}$$
 \longrightarrow $N \triangleq \left(\frac{\tau_{\pi}}{\omega_{\circ}} \; \longrightarrow \; N \triangleq \left(\frac{\tau_{\pi}}{\omega_{\circ}} \; \bigcirc \right)$ نامتناوب \to غیرگویا

نکته ۳:

$$T$$
 متناوب با $x(t)$ متناوب با $x(\alpha t)$

نکته ٤:

$$N$$
 متناوب با $x[n]$ متناوب با $x_{(m)}[n]$

نکته ۵:

$$N$$
 متناوب با صورت کسر $\frac{N}{m}$ متناوب با $x[m]$

نکته ۶:

$$x(t) = \sum_{m=-\infty}^{+\infty} z(t-mT)$$
 حتناوب با T متناوب با $x(t)$

نکته ۷:

فرد
$$x(t)$$
 $x(\circ) = x_o(\circ) = \circ$, $\int_{-a}^a x(t) dt = \circ$ $x[\circ] = x_o[\circ] = \circ$, $\sum_{n=-m}^m x[n] = \circ$

نکته ۸:

$$z_{e}(\circ) = x_{e}(\circ) \quad , \quad \int_{-a}^{a} x(t) dt = r \int_{\circ}^{a} x(t) dt$$

$$x[\circ] = x_{e}[\circ] \quad , \quad \sum_{n=-m}^{m} x[n] = r \sum_{n=\circ}^{m} x[n] - x[\circ]$$

نکته ۹:

$$\dot{e}$$
فرد = فرد \times زوج \dot{e} ، \dot{e} زوج = فرد \dot{e} فرد = فرد \dot{e} زوج \dot{e}

نکته ۱۰:

$$x(t) = \circ, t < \circ \qquad \longrightarrow \qquad x(t) = \begin{cases} r x_e(t), & t > \circ \\ x_e(\circ), & t = \circ \\ \circ, & t < \circ \end{cases}, \quad x(t) = \begin{cases} r x_o(t), & t > \circ \\ ?, & t = \circ \\ \circ, & t < \circ \end{cases}$$

نکته ۱۱:

نکته ۱۲:

فرد
$$(x(t) \leftarrow x(t))$$
 فرد $(x(t) \leftarrow x(t)]$ فرد

نکته ۱۳:

سیگنال دورهمحدود و کراندار
$$\mathbf{E}_{\infty}<\infty$$
 , $\mathbf{P}_{\infty}=\circ$

نکته ۱٤:

$$E\left\{x(t)
ight\} = \sum_i E_i$$
 , $x(t)$ ها انرژی کل قسمتهای جداگانه از سیگنال E_i , $P\left\{x(t)
ight\} = \sum_i P_i$, $x(t)$ ها توان کل قسمتهای جداگانه از سیگنال P_i

نکته ۱۵:

اگر سیگنالهای
$$y(t)$$
 و $y(t)$ و فقط در یک $P\{x(t)\}=P\{y(t)\}$ قسمت کراندار و دورهمحدود، با هم تفاوت داشته باشند؛

نکته ۱۶:

$$\boxed{P_{\infty} = P_T = \frac{1}{T} \! \int_T \! \left| x(t) \right|^{\! \intercal} dt \qquad \text{,} \qquad P_{\infty} = P_N = \frac{1}{N} \sum_{n = < N >} \! \left| x[n] \right|^{\! \intercal}}$$

نکته ۱۷:

A cos at, A sin at
$$P = \frac{A^{r}}{r}$$
A, Ae^{jat}

$$P = A^{r}$$

نکته ۱۸:

$$x(t) = \alpha x_1(t) + \beta x_1(t) + \cdots$$
 $y(t) = \alpha y_1(t) + \beta y_1(t) + \cdots$

نکته ۱۹:

$$x(t) = \circ$$
 $\xrightarrow{\text{w.m.}}$ $y(t) = \circ$

نکته ۲۰:

$$x(t) = \circ$$
 , $t < t_{\circ}$ سیستم خطی و علی $y(t) = \circ$, $t < t_{\circ}$

نکته ۲۱:

نکته ۲۲:

$$x_{\gamma}(t) = x_{\gamma}(t - t_{\circ})$$
 $y_{\gamma}(t) = y_{\gamma}(t - t_{\circ})$

نکته ۲۳:.

$$x(t) = \alpha x_1(t-t_1) + \beta x_{\gamma}(t-t_{\gamma}) + \cdots \xrightarrow{LTI} y(t) = \alpha y_1(t-t_1) + \beta y_{\gamma}(t-t_{\gamma}) + \cdots$$

نکته ۲٤:

نکته ۲۵:

نکته ۲۶:

سیستم خطی
$$(x(t) = \circ \longleftrightarrow y(t) = \circ)$$

نکته ۲۷:

نکته ۲۸:

$$x(t) * y(t) = z(t) \longrightarrow x(at + t_1) * y(at + t_7) = \frac{1}{|a|} z(at + t_1 + t_7)$$

$$x(t) * y(t) = z(t)$$
 \longrightarrow $x(-t) * y(-t) = z(-t)$

نکته ۲۹:

$$x(t) = z(t) * \sum_{k=-\infty}^{+\infty} \delta(t-kT)$$
 متناوب با T متناوب با $x(t)$

نگته ۱۳۰۰
$$s[n] = \sum_{k=\circ}^{+\infty} h[n-k] \qquad , \qquad s[n] = \sum_{k=-\infty}^n h[k] \qquad , \qquad h[n] = s[n] - s[n-1]$$

نکته ۳۱:

$$s[+\infty] = \sum_{k=-\infty}^{+\infty} h[k]$$

نکته ۳۲:

نگته ۱۳۲ متث
$$s(t) = \int_{\circ}^{+\infty} h(t-\tau) \, d\tau \qquad , \qquad s(t) = \int_{-\infty}^{t} h(\tau) \, d\tau \qquad , \qquad h(t) = \frac{ds(t)}{dt} = s'(t)$$

خلاصه نکات و فرمولها 🔰 💮 خلاصه نکات و فرمولها

نکته ۳۳:

$$s(+\infty) = \int_{-\infty}^{+\infty} h(\tau) \, d\tau$$

نکته ۳٤:

بدون حافظه زمان گسسته LTI بدون حافظه زمان گسسته
$$h[n] = \circ$$
 , $n \neq \circ$ $y[n] = Ax[n]$ $h(t) = \circ$, $t \neq \circ$ $y(t) = Ax(t)$

نکته ۳۵:

سیستم LTI علی زمان گسسته
$$h[n] = \circ , n < \circ$$
 $h(t) = \circ , t < \circ$ سیستم LTI علی زمان پیوسته $h(t) = \circ , t < \circ$

نکته ۳۶:

سیستم LTI پایدار زمانگسسته
$$\sum_{n=-\infty}^{+\infty} \left|h[n]\right| < \infty$$
 $\int_{-\infty}^{+\infty} \left|h(t)\right| dt < \infty$

نکته ۳۷:

$$h(t) * h_i(t) = \delta(t)$$

نکته ۳۸:

$$\left| \int_{t+a}^{t+b} x(\tau) d\tau = x(t) * \left[u(t+b) - u(t+a) \right] \right|$$

کته ۳۹:

$$s[n,k] = \sum_{m=k}^{+\infty} h[n,m]$$
 , $h[n,k] = -(s[n,k+1] - s[n,k])$

نکته ۶۰:

$$s(t,\tau) = \int_{\tau}^{+\infty} h(t,\alpha) d\alpha \qquad , \qquad h(t,\tau) = -\frac{\partial s(t,\tau)}{\partial \tau}$$

نکته ۱۱:

حول مضارب زوج
$$\pi$$
 ($\omega=\circ$, $\pm 7\pi$, $\pm 7\pi$, $\pm 7\pi$, \cdots) حول مضارب فرد π ($\omega=\pm\pi$, $\pm \pi$, $\pm \pi$, $\pm \pi$, \cdots) خول مضارب فرد π

نکته ٤٢:

همگرا و پيوسته
$$X(\omega)$$
 همگرا و پيوسته $\int_{-\infty}^{+\infty} \left| x(t) \left| dt < \infty \right| \right.$ همگرا و پيوسته $\sum_{n=-\infty}^{+\infty} \left| x[n] \right| < \infty$

نکته ٤٣:

$$x_{e}(t)$$
 فرد $x_{e}(t)$ فرد $x_{$

نکته ٤٤:

نکته ۵٤:

$$X(\omega)$$
 حقیقی و زوج $X(t)$ حقیقی و زوج $X(\omega)$ حقیقی و زوج $X(\omega)$ موهومی و فرد $X(\omega)$

نکته ۶۶:

$$x(t) = \sum_{k=-\infty}^{+\infty} z(t - kT) \qquad \xrightarrow{FS} \qquad a_k = \frac{1}{T} Z(k\omega_\circ) = \frac{1}{T} Z(\omega) \Big|_{\omega = k\omega_\circ}$$

نکته ۷۷:

$$x_{e}(t) \stackrel{FS}{\longleftrightarrow} ev\{a_{k}\}$$
 بروج $x_{o}(t) \stackrel{FS}{\longleftrightarrow} v(t)$ فرد $x_{o}(t) \stackrel{FS}{\longleftrightarrow} v(t)$ فرد $x_{o}(t) \stackrel{FS}{\longleftrightarrow} v(t)$ بروج $x_{o}(t) \stackrel{FS}{\longleftrightarrow} v(t)$

نکته ۸۸:

نکته ۶۹:

$$a_k$$
 حقیقی و زوج $x(t)$ حقیقی و زوج a_k حقیقی و زوج $x(t)$ حقیقی و فرد a_k

نکته -۵:

نکته ۵۱:

نکته ۵۲:

نکته ۵۳:

$$x^*(t) = x(t)$$
 حقیقی $x(t)$ $x^*(t) = x(t)$ $x^*(t) = x(t)$

نکته ع۵:

نکته ۵۵:

نکته ۷۷:

نکته ۸۵:

$$x[n] = \pm x[-n]$$
 حکس هم می باشند.
$$X(z) = \pm X(z^{-1})$$

$$\begin{cases} X(z) = \pm X(z^{-1}) \\ X(z) = \pm X(z^{-1}) \end{cases}$$

$$\begin{cases} X(z) = \pm X(z^{-1}) \\ Z_{\circ} & \longrightarrow \\$$

نکته ۵۹:

$$x^*[n] = x[n]$$
 حقیقی $x[n]$ حقیقی $x^*[n] = x[n]$ حقیقی $z^*[n]$ حقیقی $z^*[n]$ عطب $z^*[n]$ عطب $z^*[n]$ عطب $z^*[n]$ عطب $z^*[n]$ عصب $z^*[n]$

نکته ۶۰:

$$|z| > \alpha$$
 $A \alpha^n u[n]$ $z = \alpha$ $A \alpha^n u[-n]$ $A \alpha^n u[-n]$ $A \alpha^n u[-n]$ $z = re^{\pm j\omega_o}$ $z = re^{\pm j\omega_o}$

نکته ۶۱:

$$\int_{-\infty}^{+\infty} y(t) \, dt = \int_{-\infty}^{+\infty} x(t) \, dt \, \cdot \int_{-\infty}^{+\infty} h(t) \, dt \qquad , \qquad \sum_{n=-\infty}^{+\infty} y[n] = \sum_{n=-\infty}^{+\infty} x[n] \cdot \sum_{n=-\infty}^{+\infty} h[n]$$

نکته ۶۲:

$$\begin{cases} s(t) = \int_{-\infty}^{t} h(\tau) d\tau \\ h(t) = s'(t) \end{cases}$$

$$\begin{cases} S(\omega) = H(\omega) \left[\frac{1}{j\omega} + \pi \delta(\omega) \right] \\ H(\omega) = j\omega S(\omega) \end{cases}$$

$$\begin{cases} S(s) = \frac{1}{s} H(s) , R_s \ge \left(R_h \cap Re[s] > \circ \right) \\ H(s) = s S(s) , R_h \ge \left[R_s \cap \left(-\infty < Re[s] < +\infty \right) \right] \end{cases}$$

نکته ۶۳:

$$\begin{cases} s[n] = \sum_{k=-\infty}^{n} h[k] \\ h[n] = s[n] - s[n-1] \end{cases}$$

$$\begin{cases} S(\omega) = H(\omega) \left[\frac{1}{1 - e^{-j\omega}} + \pi \tilde{\delta}(\omega) \right] \\ H(\omega) = (1 - e^{-j\omega}) S(\omega) \end{cases}$$

$$\begin{cases} S(z) = \frac{1}{1 - z^{-1}} H(z) &, \quad R_s \ge \left[R_h \cap \left(\left| z \right| > 1 \right) \right] \\ H(z) = (1 - z^{-1}) S(z) &, \quad R_h \ge \left[R_s \cap \left(\left| z \right| > 0 \right) \right] \end{cases}$$

نکته ۶۶:

$$x(t) \longrightarrow [x_1, x_{\tau}]$$

$$* + +$$

$$h(t) \longrightarrow [h_1, h_{\tau}]$$

$$y(t) = x(t) * h(t) \longrightarrow [y_1 = x_1 + h_1, y_{\tau} = x_{\tau} + h_{\tau}]$$

نکته ۶۵:

$$x(t) = e^{at} \quad \xrightarrow{LTI} \quad \text{with} \quad y(t) = \begin{cases} H(a)e^{at} &, \ a \in ROC\big[H(s)\big] \\ H(a)e^{at} = \infty &, \ a \notin ROC\big[H(s)\big] \end{cases}$$

نکته ۶۶:

$$x[n] = \alpha^n$$
 \xrightarrow{LTI} $\xrightarrow{\text{سیستم}}$ $y[n] = \begin{cases} H(\alpha)\alpha^n &, & \alpha \in ROC[H(z)] \\ H(\alpha)\alpha^n = \infty &, & \alpha \notin ROC[H(z)] \end{cases}$

نکته ۶۷:

$$x(t) = e^{j\omega_{\circ}t}$$
 $y(t) = H(\omega_{\circ})e^{j\omega_{\circ}t}$

$$H(\omega)$$

$$x[n] = e^{j\omega_{\circ}n}$$
 $y[n] = H(\omega_{\circ})e^{j\omega_{\circ}n}$

$$x(t) = e^{j\gamma\pi f_{\circ}t} \xrightarrow[\text{LTI with }]{\text{LTI with }} y(t) = H(f_{\circ})e^{j\gamma\pi f_{\circ}t}$$

$$x[n] = e^{j\gamma\pi f_{\circ}n} \xrightarrow[\text{H}(f)]{\text{H}(f)} y[n] = H(f_{\circ})e^{j\gamma\pi f_{\circ}n}$$

نکته ۶۸:

$$z[n] = \begin{cases} A & \text{, if } n \\ B & \text{, if } n \end{cases} = \frac{A+B}{\tau} + \frac{A-B}{\tau} (-\iota)^n$$

نکته ۶۹:

$$\mathbf{x}(t) = \cos(\omega_{\circ}t + \theta)$$
 \longrightarrow $\mathbf{y}(t) = \left|\mathbf{H}(\omega_{\circ})\right| \cos\left(\omega_{\circ}t + \theta + \measuredangle \mathbf{H}(\omega_{\circ})\right)$ $\times \mathbf{y}(t) = \sin(\omega_{\circ}t + \theta)$ \longrightarrow $\mathbf{y}(t) = \left|\mathbf{H}(\omega_{\circ})\right| \sin\left(\omega_{\circ}t + \theta + \measuredangle \mathbf{H}(\omega_{\circ})\right)$

نکته ۷۰:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_\circ t}$$
 \xrightarrow{LTI} $y(t) = \sum_{k=-\infty}^{+\infty} a_k H(k\omega_\circ) e^{jk\omega_\circ t}$

$$x[n] = \sum_{k = < N >} a_k e^{jk\omega_\circ n} \qquad \xrightarrow{\quad LTI \quad \\ \quad H(\omega) \quad } \qquad y[n] = \sum_{k = < N >} a_k H(k\omega_\circ) e^{jk\omega_\circ n}$$

نکته ۷۱:

$$x(t) = e^{at}$$
 $y(t) = A e^{at}$

$$x[n] = \alpha^{n}$$
 $y[n] = A \alpha^{n}$

نکته ۷۲:

نکته ۷۳:

نکته ۷٤:

نکته ۲۵:

$$H_i(s) = \frac{1}{H(s)}$$
, ROC: R_i , $R_i \cap R \neq \emptyset$

خلاصه نکات و فرمولها خلاصه نکات و فرمولها

نکته ۷۶:

نکته ۷۷:

نکته ۷۸:

نکته ۷۹:

نکته ۰۸:

نکته ۸۱:

$$j_{00} \quad j_{00} \quad j$$

نکته ۸۲:

نکته ۸۳:

نکته ۱۶:

$$T$$
 متناوب با $x(t)$ متناوب با $x(t+T) = x(t)$ $\Rightarrow \begin{cases} x\left(f(t)+T\right) = x\left(f(t)\right) \\ x\left(f(t+T)\right) = x\left(f(t)\right) \end{cases}$

نکته ۵۸:

$$T$$
 متناوب با $f(t)$ متناوب با $x(f(t))$

نکته ۸۶:

$$\cos(\frac{a\pi}{b}n^{r})$$
 , $\sin(\frac{a\pi}{b}n^{r})$, $e^{j\frac{a\pi}{b}n^{r}}$ \longrightarrow $\begin{cases} a,b & \longrightarrow N=rb \end{cases}$ $N=rb$ $\begin{cases} a,b & \longrightarrow N=rb \end{cases}$ $N=rb$ $\begin{cases} a\pi & b \\ b & \longrightarrow N=b \end{cases}$

نکته ۸۷:

$$x(t) = \sum_{m=-\infty}^{+\infty} f(m) z(t-mT)$$
 \longrightarrow $M \times T$ متناوب با $x(t)$

خلاصه نکات و فرمولها خلاصه نکات و فرمولها

نکته ۸۸:

$$x(-t) = x(t)$$
 \Rightarrow
$$\begin{cases} x(-f(t)) = x(f(t)) \\ x(f(-t)) = x(f(t)) \end{cases}$$
 خود
$$x(-t) = -x(t) \Rightarrow \begin{cases} x(-f(t)) = x(f(t)) \\ x(f(-t)) = -x(f(t)) \end{cases}$$
 فرد

نکته ۸۹:

روح
$$\mathbf{x}$$
 وح \mathbf{x} وح \mathbf{x}

نکته ۹۰:

$$x(+\infty)=B$$
 و $x(-\infty)=A$ کراندار و $x(t)$

نکته ۹۱:

$$x(t) \perp y(t) \qquad \qquad = \begin{cases} E\{x(t) + y(t)\} = E\{x(t)\} + E\{y(t)\} \\ P\{x(t) + y(t)\} = P\{x(t)\} + P\{y(t)\} \end{cases}$$

نکته ۹۲:

$$\deltaig(f(t)ig) = \sum_i rac{1}{\left|f'(t_i)
ight|} \delta(t-t_i)$$
 , $f(t)$ حقیقی t_i

نکته ۹۳:

نکته ۹۶:

نکته ۹۵:

نکته ۹۶:

$$y(t) = Ax(at + t_1) + Bx(bt + t_1)$$
 $A \neq \pm B$, $a = -b$ وارون پذیر $y[n] = Ax[an + n_1] + Bx[bn + n_1]$ $A \neq \pm B$, $a = -b = \pm 1$ وارون پذیر

نکته ۹۷:

$$y(t) = Ax(at + t_1) + Bx^*(bt + t_1)$$

$$y(t) = Ax(at + t_1) + Bx^*(bt + t_1)$$

$$|A| \neq |B|, a = -b$$

$$y[n] = Ax[an + n_1] + Bx^*[bn + n_1]$$

$$|A| \neq |B|, a = b = \pm 1, n_1 = n_1$$

$$|A| \neq |B|, a = -b = \pm 1$$

نکته ۹۸:

$$y(t) = T\{x(t)\} + f(t)$$
 \longrightarrow $y(t) = T\{x(t)\}$ $y(t) = T\{x(t)\}$ $y(t) = T\{x(t)\} \cdot g(t)$ \longrightarrow $y(t) = T\{x(t)\}$ $y(t) = T\{x(t)\}$

نکته ۹۹:

نکته ۱۰۰:

سیستم خطی علی زمانگسسته
$$h[n,k] = \circ \;,\; n < k$$

$$h(t,\tau) = \circ \;,\; t < \tau$$

$$h(t,\tau) = \circ \;,\; t < \tau$$

نکته ۱۰۱:

تابعی از "
$$n-k$$
" \triangleq " $n-k$ " سیستم خطی TI زمانگسسته $h[n,k]\triangleq$ " $n-k$ " تابعی از " $t-\tau$ " \triangleq " $t-\tau$ " مان پیوسته

خلاصه نکات و فرمولها خلاصه نکات و فرمولها

نکته ۱۰۲:

$$\forall n: \sum_{k=-\infty}^{+\infty} \left|h[n,k]\right| < \infty$$
 $\forall n: \sum_{k=-\infty}^{+\infty} \left|h[n,k]\right| < \infty$ $\forall t: \int_{-\infty}^{+\infty} \left|h(t,\tau)\right| d\tau < \infty$

نکته ۱۰۳:

نکته ۱۰٤:

نکته ۱۰۵:

نکته ۱۰۶:

$$\begin{cases} x(t) = \circ &, \ t \neq \circ, \pm \alpha, \pm \mathsf{Y}\alpha, \cdots \\ x[n] = \circ &, \ n \neq \circ, \pm \alpha, \pm \mathsf{Y}\alpha, \cdots \end{cases} \qquad \longleftarrow \qquad \frac{\mathsf{Y}\pi}{\alpha} \ \mathsf{U} \text{ where } X(\omega)$$

نکته ۱۰۷:

نکته ۱۰۸:

$$X(\omega)$$
 موهومی و زوج F موهومی و زوج $X(\omega)$ موهومی و زوج $X(\omega)$ حقیقی و فرد $X(\omega)$ موهومی و فرد

نکته ۱۰۹:

$$x^*(t) = x(-t)$$
 جون $x(t)$ جون $x(t)$ جون $x_R(t)$ بروج $x_R(t)$ بروج $x_R(t)$ بروج $x_R(t)$ جون $x_R(t) = x_R(t)$ بروج $x_R(t) = x_R(t)$

نکته ۱۱۰:

خلاصه نکات و فرمولها خلاصه نکات و فرمولها

نکته ۱۱۱:

نکته ۱۱۲:

$$x(t\pm\frac{T}{r})=-x(t) \qquad \longleftarrow \qquad a_{\gamma k}=\circ$$

نکته ۱۱۳:

$$\begin{cases} x(t) = \circ \ , \ t \neq \circ, \pm \alpha, \pm \tau \alpha, \cdots \\ x[n] = \circ \ , \ n \neq \circ, \pm \alpha, \pm \tau \alpha, \cdots \end{cases} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \frac{N}{\alpha} \ \, \text{ln} \ \, \frac{T}{\alpha} \ \, \text{ln} \ \, \text{ln}$$

نکته ۱۱٤:

نکته ۱۱۵:

$$a_k$$
 موهومی و زوج $rac{F}{F} \longleftrightarrow x(t)$ موهومی و زوج a_k حقیقی و فرد a_k موهومی و فرد

نکته ۱۱۶:

نکته ۱۱۷:

نکته ۱۱۸:

$$\begin{cases} x(t+T) = x(t) \ , \ t \ge \circ \\ x(t) = \circ \ , \ t < \circ \end{cases} \qquad \qquad \qquad \begin{cases} X(s) = \frac{F(s)}{1 - e^{-sT}} \ , \ Re[s] > \circ \\ f(t) = x(t) \ , \ \circ \le t < T \end{cases}$$

نکته ۱۱۹:

نکته ۱۲۰:

$$(\operatorname{Re}[s] = \circ) \in \operatorname{ROC} \longrightarrow X(\omega) \equiv X(s) \Big|_{s = j\omega} < \infty$$

$$\operatorname{ROC} \text{ in a point } (\operatorname{Re}[s] = \circ)$$

$$\operatorname{JW} \text{ in a point } S = s_i \text{ in a point } S = s$$

خلاصه نكات و فرمولها خلاصه نكات و فرمولها

نکته ۱۲۱:

نکته ۱۲۲:

$$x[n] = \circ \ , \ n \neq \circ, \pm m, \pm \tau m, \cdots$$
 \longrightarrow z^m تابعی از $X(z)$

نکته ۱۲۳:

$$x_{\gamma}(t) = x_{\gamma}(t) * f(t)$$

LTI
 $y_{\gamma}(t) = y_{\gamma}(t) * f(t)$

$$X_{\tau}(s) = X_{\iota}(s) \cdot F(s)$$
 TTI
 $Y_{\tau}(s) = Y_{\iota}(s) \cdot F(s)$

نکته ۱۲٤:

$$x'(t) \xrightarrow{LTI} y'(t)$$
 , $\int_{-\infty}^{t} x(\tau) d\tau \xrightarrow{LTI} \int_{-\infty}^{t} y(\tau) d\tau$

نکته ۱۲۵:

$$x(t) = e^{j\omega_{\circ}t}u(t) \quad \xrightarrow{LTI \longrightarrow \qquad \qquad } \quad y_{ss}(t) = H(\omega_{\circ}) \, e^{j\omega_{\circ}t}$$

نکته ۱۲۶:

نکته ۱۲۷:

$$\begin{split} h[n] = h[M-n] & \longleftrightarrow & \measuredangle H(\omega) = \alpha \omega + \beta \ , \ \alpha = -\frac{M}{r} \ , \ \beta = \circ \text{ or } \pi \\ h[n] = -h[M-n] & \longleftrightarrow & \measuredangle H(\omega) = \alpha \omega + \beta \ , \ \alpha = -\frac{M}{r} \ , \ \beta = \frac{\pi}{r} \text{ or } -\frac{\pi}{r} \end{split}$$

نکته ۱۲۸:

نکته ۱۲۹:

نکته ۱۳۰:

نکته ۱۳۱:

سیستم خطی بدون حافظه
$$y(t) = f(t) \cdot x(t)$$

نکته ۱۳۲:

شرط لازم و کافی شناسایی یک سیستم خطی بدون حافظه
$$\forall t: \ x(t)
eq x(t)$$
 با ورودی (t)

نکته ۱۳۳:

سیستم LTI و بدون حافظه
$$y(t) = Ax(t)$$

نکته ۱۳٤:

نکته ۱۳۵:

$$TI$$
 سیستم بدون حافظه و $y(t) = f(x(t))$

نکته ۱۳۶:

نکته ۱۳۷:

هر ورودی دلخواه را بتوان بر حسب برای شناسایی یک سیستم خطی
$$B_i(\omega)$$
 ها یا $B_i(\omega)$ ها نوشت. $B_i(\omega)$ ها نوشت.

نکته ۱۳۸:

نکته ۱۳۹:

$$x(t) = \alpha x_1(t) + \beta x_1(t) + \cdots$$
 \longrightarrow $y(t) = \alpha y_1(t) + \beta y_1(t) + \cdots$

نکته ۱۶۰:

$$x(t) = \circ$$
 سبستم خطی $y(t) = \circ$

نکته ۱٤۱:

$$x_{\gamma}(t_{\circ}) = x_{\gamma}(t_{\circ})$$
 سیستم بدونحافظه $y_{\gamma}(t_{\circ}) = y_{\gamma}(t_{\circ})$

نکته ۱٤۲:

$$x_{\gamma}(t_{\circ}) = \alpha x_{1}(t_{\circ})$$
 سیستم خطی بدون حافظه $y_{\gamma}(t_{\circ}) = \alpha y_{1}(t_{\circ})$

نکته ۱٤۳:

$$x(t_\circ)$$
 = \circ سیستم خطی بدون حافظه $y(t_\circ)$

نکته ۱٤٤:

$$x_{\gamma}(t) = x_{\gamma}(t)$$
 , $t < t_{\circ}$ سیستم علی $y_{\gamma}(t) = y_{\gamma}(t)$, $t < t_{\circ}$

نکته ۱٤۵:

$$\boxed{ x(t) = \alpha x_1(t) + \beta x_{\gamma}(t) + \cdots , \, t < t_o \xrightarrow{\text{dus.} e \text{ also } e \text{ also } e \text{ also } y_1(t) + \beta y_{\gamma}(t) + \cdots , \, t < t_o }$$

نکته ۱٤۶:

نکته ۱٤٧:

$$x_{\gamma}(t) = x_{\gamma}(t - t_{\circ})$$
 $\xrightarrow{\text{TI optimize}}$ $y_{\gamma}(t) = y_{\gamma}(t - t_{\circ})$

نکته ۱٤۸:

$$x(t) = x(t-T)$$
 \xrightarrow{TI} $y(t) = y(t-T)$ $y(t) = C_{\gamma}$

نکته ۱٤٩:

نکته -۱۵:

$$x(t) = e^{at}$$
 \longrightarrow $y(t) = A e^{at}$
 $x[n] = \alpha^n$ \longrightarrow $y[n] = A \alpha^n$

نکته ۱۵۱:

نکته ۱۵۲:

$$X(\omega) = \circ$$
 , $\omega_1 < \omega < \omega_7$ \longleftarrow $Y(\omega) = \circ$, $\omega_1 < \omega < \omega_7$

خلاصه نكات و فرمول ها خطاصه نكات و غرمول ها

نکته ۱۵۳:

$$x(t_{\Upsilon}) = x(t_{1})$$
 سیستم بدونحافظه و $y(t_{\Upsilon}) = y(t_{1})$

نکته ۱۵۶:

$$x_{\gamma}(t_{\gamma}) = x_{\gamma}(t_{\gamma})$$
 سیستم بدونحافظه و $y_{\gamma}(t_{\gamma}) = y_{\gamma}(t_{\gamma})$

نکته ۱۵۵:

$$x_{\gamma}(t) = x_{1}(t - t_{\circ}) , t < t_{\circ} \xrightarrow{\text{TI } y \text{ summar also } y_{\gamma}(t) = y_{1}(t - t_{\circ}) , t < t_{\circ}$$

نکته ۱۵۶:

نکته ۱۵۷:

سیستم LTI و بدون حافظه
$$\mathbf{y}(t) = \mathbf{A}\mathbf{x}(t)$$

نکته ۱۵۸:

$$\begin{array}{c} x(t) = \alpha \, x_1(t-t_1) + \beta \, x_{\tau}(t-t_{\tau}) + \cdots \,, \ t < t_{\circ} & \longrightarrow & y(t) = \alpha \, y_1(t-t_1) + \beta \, y_{\tau}(t-t_{\tau}) + \cdots \,, \ t < t_{\circ} \\ x(t) = f_1(t) * x_1(t) + f_{\tau}(t) * x_{\tau}(t) + \cdots \,, \ t < t_{\circ} & \longrightarrow & y(t) = f_1(t) * y_1(t) + f_{\tau}(t) * y_{\tau}(t) + \cdots \,, \ t < t_{\circ} \\ \end{array}$$

نکته ۱۵۹:

$$x(t) = e^{at}$$
 , $t < t_{\circ}$ \longrightarrow $y(t) = A e^{at}$, $t < t_{\circ}$ \longrightarrow $x[n] = \alpha^{n}$, $n < n_{\circ}$ \longrightarrow $y[n] = A \alpha^{n}$, $n < n_{\circ}$

نکته ۱۶۰:

$$\forall t: |x(t)| < \infty$$
 سیستم پایدار $\forall t: |y(t)| < \infty$

نکته ۱۶۱:

$$\forall t: \left|\alpha x_1(t) + \beta x_7(t) + \cdots \right| < \infty$$
 \longrightarrow $\forall t: \left|\alpha y_1(t) + \beta y_7(t) + \cdots \right| < \infty$

نکته ۱۶۲:

$$x(t) = \alpha x_1(t) + \beta x_1(t) + \cdots$$
 سیستم خطی و پایدار $y(t) = \alpha y_1(t) + \beta y_1(t) + \cdots$

نکته ۱۶۳:

$$\left|x(t_\circ)
ight| < \infty$$
 سیستم بدون حافظه و پایدار $\left|y(t_\circ)
ight| < \infty$

نکته ۱۶٤:

$$x_{\gamma}(t_{\circ}) = x_{1}(t_{\circ})$$
 سیستم بدونحافظه و پایدار $y_{\gamma}(t_{\circ}) = y_{1}(t_{\circ})$

نکته ۱۶۵:

$$\left| x(t) \right| < \infty$$
 , $t < t_{\circ}$ ملی و پایدار $\left| y(t) \right| < \infty$, $t < t_{\circ}$

نکته ۱۶۶:

$$x_{\gamma}(t) = x_{\gamma}(t)$$
 , $t < t_{\circ}$ سیستم علی و پایدار $y_{\gamma}(t) = y_{\gamma}(t)$, $t < t_{\circ}$

نکته ۱۶۷:

سیستم خطی و بدون حافظه و پایدار
$$y(t)=f(t)\cdot x(t)$$
 , $\forall t: |f(t)|<\infty$

نکته ۱۶۸:

سيستم LTI و بدونحافظه و پايدار
$$igwedge y(t) = Ax(t) \; , \; ig| A ig| < \infty$$

نکته ۱۶۹:

$$x_1(t) = x_{\gamma}(t)$$
 سیستم وارون پذیر $y_1(t) = y_{\gamma}(t)$

نکته ۱۷۰:

$$x(t) = \alpha x_1(t) + \beta x_1(t) + \cdots$$
 سیستم خطی و وارون پذیر $y(t) = \alpha y_1(t) + \beta y_1(t) + \cdots$

نکته ۱۷۱:

$$x(t) = \circ$$
 سیستم خطی و وارون پذیر $y(t) = \circ$

نکته ۱۷۲:

$$x_{\gamma}(t_{\circ})=x_{\gamma}(t_{\circ})$$
 سیستم بدونحافظه و وارونپذیر $y_{\gamma}(t_{\circ})=y_{\gamma}(t_{\circ})$

نکته ۱۷۳:

$$x_{\gamma}(t) = x_{1}(t-t_{\circ})$$
 سیستم TI و وارونپذیر $y_{\gamma}(t) = y_{1}(t-t_{\circ})$

نکته ۱۷٤:

$$x(t) = x(t-T)$$
 $x(t) = x(t-T)$ $y(t) = y(t-T)$ $x(t) = C_{\gamma}$ $y(t) = C_{\gamma}$

نکته ۱۷۵:

$$x_{r}(t_{\circ}) = \alpha x_{1}(t_{\circ})$$
 سبستم خطی و بدون حافظه و وارون پذیر $y_{r}(t_{\circ}) = \alpha y_{1}(t_{\circ})$

نکته ۱۷۶:

$$\mathbf{x}(\mathbf{t}_\circ) = \circ$$
 سبستم خطی و بدون حافظه و وارون پذیر $\mathbf{y}(\mathbf{t}_\circ) = \circ$

نکته ۱۷۷:

سیستم خطی و بدونحافظه و وارونپذیر
$$ullet$$
 $ullet$ $y(t)=f(t)\cdot x(t)$, $\forall t:\ f(t)
eq \circ$

نکته ۱۷۸:

$$x(t) = \alpha \, x_1(t-t_1) + \beta \, x_{\gamma}(t-t_{\gamma}) + \cdots$$

$$y(t) = \alpha \, y_1(t-t_1) + \beta \, y_{\gamma}(t-t_{\gamma}) + \cdots$$

$$x(t) = f_1(t) * x_1(t) + f_{\gamma}(t) * x_{\gamma}(t) + \cdots$$

$$y(t) = f_1(t) * y_1(t) + f_{\gamma}(t) * y_{\gamma}(t) + \cdots$$

نکته ۱۷۹:

$$x(t_{\gamma}) = x(t_{\gamma})$$
 سیستم بدون حافظه و TI و وارون پذیر $y(t_{\gamma}) = y(t_{\gamma}) = y(t_{\gamma})$

نکته ۱۸۰:

$$x_{\gamma}(t_{\gamma}) = x_{\gamma}(t_{\gamma})$$
 سیستم بدونحافظه و TT و وارون پذیر $y_{\gamma}(t_{\gamma}) = y_{\gamma}(t_{\gamma}) = y_{\gamma}(t_{\gamma})$

نکته ۱۸۱:

سیستم LTI و بدونحافظه و وارونپذیر
$$y(t) = Ax(t)$$
 , $A \neq \circ$

نکته ۱۸۲:

سیستم LTI و بدونحافظه و پایدار و وارونپذیر
$$\mathbf{y}(t) = \mathbf{A}\mathbf{x}(t)$$
 , $\mathbf{A} \neq \circ, \infty$

نکته ۱۸۳:

$$x_{p}(t) = x_{c}(t) \cdot \sum_{n = -\infty}^{+\infty} \delta(t - nT) \qquad \xrightarrow{F} \qquad X_{p}(\omega) = \frac{1}{T} X_{c}(\omega) * \sum_{n = -\infty}^{+\infty} \delta(\omega - n\omega_{s}) \quad , \quad \omega_{s} = \frac{\tau \pi}{T}$$

نکته ۱۸۶

$$x_p(t) = x_c(t) \cdot \sum_{n = -\infty}^{+\infty} \delta(t - nT) \qquad \xrightarrow{F} \qquad X_p(f) = \frac{1}{T} X_c(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s) \quad , \quad f_s = \frac{1}{T} X_s(f) * \sum_{n = -\infty}^{+\infty} \delta(f - nf_s)$$

نکته ۱۸۵:

نکته ۱۸۶:

$$x_{d}[n] \equiv x_{c}(nT) \leftarrow \xrightarrow{F} X_{d}(\omega) = \frac{1}{T}X_{c}(\frac{\omega}{T}), |\omega| < \pi$$

قضایای مقدار اولیه و نهایی در لاپلاس:

${\mathcal Z}$ قضایای مقدار اولیه و نهایی در

$$x[n] = \circ, n < \circ$$
 $x[\circ] = \lim_{z \to \infty} X(z)$

$$x[n] = \circ \; , \; n < n_\circ$$
 همه قطبهای محدود $x[+\infty] = \lim_{z \to 1} (1-z^{-1}) \, X(z) \; , \quad (1-z^{-1}) \, X(z) \, ,$ $x[+\infty] = \lim_{z \to 1} (1-z^{-1}) \, X(z) \; , \quad (1-z^{-1}) \, X(z) \, ,$ $x[+\infty] = \lim_{z \to 1} (1-z^{-1}) \, X(z) \; ,$ $x[+\infty] = \lim_{z \to 1} (1-$

قسمت دوم _ فرمولها

ک.م.مِ دو عدد کسری
$$lcm(\frac{a}{b}, \frac{c}{d}) = \frac{lcm(a, c)}{gcd(b, d)}$$

سیگنالهای پالس و مثلث

$$\operatorname{rect}\left(\frac{t}{rT}\right) = \prod \left(\frac{t}{rT}\right) = \begin{cases} 1 & , & |t| < T \\ \circ & , & \text{o.w} \end{cases} , \quad \operatorname{tri}\left(\frac{t}{rT}\right) = \Lambda\left(\frac{t}{rT}\right) = \begin{cases} 1 - \frac{|t|}{rT} & , & |t| < rT \\ \circ & , & \text{o.w} \end{cases}$$

$$\boxed{\int_{-\infty}^{+\infty} \mathrm{sinc}(t) \, \mathrm{d}t = 1} \quad , \quad \int_{-\infty}^{+\infty} \left| \mathrm{sinc}(t) \right| \mathrm{d}t = \infty \quad , \quad \int_{-\infty}^{+\infty} \left| \mathrm{sinc}(t) \right|^{\Upsilon} \mathrm{d}t = 1$$

سیگنالهای مختلط
$$\mathrm{Re}\big[x(t)\big] = \frac{x(t) + x^*(t)}{\tau} \qquad , \qquad \mathrm{Im}\big[x(t)\big] = \frac{x(t) - x^*(t)}{\tau j}$$

$$|x(t)|^{r} = x(t) \cdot x^{*}(t)$$

$$E_{\infty} = \int_{-\infty}^{+\infty} \left| x(t) \right|^{\gamma} dt = \lim_{T \to \infty} \int_{-T}^{T} \left| x(t) \right|^{\gamma} dt \quad , \quad P_{\infty} = \lim_{T \to \infty} \frac{E_{\infty}}{\gamma T} = \lim_{T \to \infty} \frac{1}{\gamma T} \int_{-T}^{T} \left| x(t) \right|^{\gamma} dt$$

$$\left| E_{\infty} = \sum_{n=-\infty}^{+\infty} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} \quad , \quad P_{\infty} = \lim_{N \to \infty} \frac{E_{\infty}}{\text{T}N + \text{1}} = \lim_{N \to \infty} \frac{\text{1}}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} \quad , \quad P_{\infty} = \lim_{N \to \infty} \frac{E_{\infty}}{\text{T}N + \text{1}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}N + \text{1}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}N + \text{1}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} \sum_{n=-N}^{N} \left| x[n] \right|^{\text{T}N + \text{1}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} = \lim_{N \to \infty} \frac{1}{\text{T}N + \text{1}} = \lim_{N \to$$

$$\sum_{n=m_{1}}^{m_{\tau}}\alpha^{n}=\alpha^{m_{1}}+\alpha^{m_{1}+1}+\cdots+\alpha^{m_{\tau}}=\begin{cases} \frac{\alpha^{m_{1}}-\alpha^{m_{\tau}+1}}{1-\alpha} &, & \alpha\neq 1\\ m_{\tau}-m_{1}+1 &, & \alpha=1 \end{cases}$$

فرمولهای اویلر

$$\begin{cases} e^{j\theta} = \cos\theta + j\sin\theta \\ e^{-j\theta} = \cos\theta - j\sin\theta \end{cases}, \quad \cos\theta = Re \bigg[e^{j\theta} \bigg] = \frac{e^{j\theta} + e^{-j\theta}}{\tau} \quad , \quad \sin\theta = Im \bigg[e^{j\theta} \bigg] = \frac{e^{j\theta} - e^{-j\theta}}{\tau j}$$

$$\delta[f(n)] = \begin{cases} 1, & f(n) = 0 \\ 0, & f(n) \neq 0 \end{cases}, \quad u[f(n)] = \begin{cases} 1, & f(n) \geq 0 \\ 0, & f(n) < 0 \end{cases}$$

$$r[n] = \begin{cases} n & , & n \ge \circ \\ \circ & , & n < \circ \end{cases} = nu[n] \qquad , \qquad r[f(n)] = \begin{cases} f(n) & , & f(n) \ge \circ \\ \circ & , & f(n) < \circ \end{cases} = f(n) \cdot u[f(n)]$$

$$\sum_{n=-\infty}^{+\infty} \delta[n-n_{\circ}] = 1$$

$$\begin{split} x[n] \cdot \delta[n-n_{\circ}] &= x[n_{\circ}] \cdot \delta[n-n_{\circ}] = \begin{cases} x[n_{\circ}] \ , \ n = n_{\circ} \\ \circ \ , \ n \neq n_{\circ} \end{cases} \\ \sum_{k=-\infty}^{+\infty} \delta[n-k] &= i \\ \sum_{k=-\infty}^{+\infty} x[k] \delta[n-k] &= x[n] \\ \delta[an] &= \delta[n] \ , \quad \delta[af(n)] &= \delta[f(n)] \ , \quad a \neq \circ \\ u[mn] &= u[n] \ , \quad u[mf(n)] &= u[f(n)] \ , \quad m > \circ \\ u[n] &- u[n-i] &= \delta[n] \\ \sum_{k=\infty}^{+\infty} \delta[n-k] &= u[n] \ , \quad \sum_{m=-\infty}^{n} \delta[m] &= u[n] \\ \sum_{k=m_{i}}^{+\infty} \delta[k-n_{\circ}] &= u[m_{i}-n_{\circ}] - u[m_{i}-i-n_{\circ}] \ , \quad m_{i} \geq m_{i} \\ \sum_{k=-\infty}^{+\infty} \delta[n-kN] &= \sum_{k=-\infty}^{+\infty} \delta[n+kN] &= \begin{cases} i \ , \quad N \$$

ضربه، یله و شیب زمان پیوسته

$$u(t-t_{\circ}) = \int_{-\infty}^{t-t_{\circ}} \delta(\tau) d\tau = \int_{-\infty}^{t} \delta(\tau-t_{\circ}) d\tau$$

$$\begin{split} u(t-t_\circ) &= \int_{-\infty}^{t-t_\circ} \delta(\tau) d\tau = \int_{-\infty}^t \delta(\tau-t_\circ) d\tau \\ \\ u\left(f(t)\right) &= \begin{cases} 1 & , & f(t) > \circ \\ \circ & , & f(t) < \circ \end{cases}, \qquad \delta\left(f(t)\right) = u'\left(f(t)\right) = \frac{\left[u\left(f(t)\right)\right]'}{f'(t)} \\ \\ r\left(f(t)\right) &= f(t) \cdot u\left(f(t)\right) = \begin{cases} f(t) & , & f(t) > \circ \\ \circ & , & f(t) < \circ \end{cases} \end{split}$$

$$r(f(t)) = f(t) \cdot u(f(t)) = \begin{cases} f(t), & f(t) > 0 \\ 0, & f(t) < 0 \end{cases}$$

$$\int_{-\infty}^{+\infty} \delta(t - t_{\circ}) dt = 1$$

$$x(t)\delta(t - t_{\circ}) = x(t_{\circ})\delta(t - t_{\circ})$$

$$\int_{-\infty}^{+\infty} \delta(t - \tau) d\tau = 1$$

$$\int_{-\infty}^{+\infty} x(\tau)\delta(t - \tau) d\tau = x(t)$$

$$\begin{split} \delta(at) &= \frac{1}{|a|} \delta(t) \quad , \quad \delta \big(a f(t) \big) = \frac{1}{|a|} \delta \big(f(t) \big) \quad , \quad a \neq \circ \\ \\ u(at) &= u(t) \quad , \quad u \big(a f(t) \big) = u \big(f(t) \big) \quad , \quad a > \circ \\ \\ \delta(t) &= \frac{d u(t)}{dt} \\ \\ \int_{\circ}^{+\infty} \delta(t - \tau) \, d\tau = u(t) \quad , \quad \int_{-\infty}^{t} \delta(\alpha) \, d\alpha = u(t) \\ \\ \int_{\alpha}^{\beta} \delta(\tau - t_{\circ}) \, d\tau = u(\beta - t_{\circ}) - u(\alpha - t_{\circ}) \\ \\ \int_{\alpha}^{\beta} u(\tau - t_{\circ}) \, d\tau = r(\beta - t_{\circ}) - r(\alpha - t_{\circ}) = (\beta - t_{\circ}) u(\beta - t_{\circ}) - (\alpha - t_{\circ}) u(\alpha - t_{\circ}) \end{split}$$

فرمول يادمشتق

$$\frac{d\left[\int_{g(t)}^{f(t)} h(\tau) d\tau\right]}{dt} = f'(t) \cdot h(f(t)) - g'(t) \cdot h(g(t))$$

رابطه مثلث و پالس

$$\boxed{ \Lambda\left(\frac{t}{\mathsf{YT}}\right) = \frac{1}{\mathsf{YT}} \Pi\left(\frac{t}{\mathsf{YT}}\right) * \Pi\left(\frac{t}{\mathsf{YT}}\right) }$$

خاصیت انتقال دهندگی ضربه

$$x(t)*\delta(t-t_{\circ}) = x(t-t_{\circ})$$

محاسبه كانولوشن متناوب

$$z(t) = x(t) \circledast y(t) = \hat{x}(t) * y(t)$$

خلاصه نکات و فرمولها خلاصه نکات و فرمولها

رابطه کلی سیستمهای خطی در حوزه زمان

CT:
$$y(t) = \int_{-\infty}^{+\infty} x(\tau) h(t, \tau) d\tau$$

DT:
$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n,k]$$

رابطه کلی سیستمهای خطی در حوزه فرکانس

CT:
$$Y(\omega) = \frac{1}{7\pi} \int_{-\infty}^{+\infty} X(\omega_{\circ}) H(\omega, \omega_{\circ}) d\omega_{\circ}$$

DT:
$$\hat{Y}(\omega) = \frac{1}{7\pi} \int_{7\pi} \hat{X}(\omega_{\circ}) H(\omega, \omega_{\circ}) d\omega_{\circ}$$

توابع ویژه (مشتقات و انتگرالهای ضربه)

$$x(t) * \delta^{(n)}(t - t_{\circ}) = x^{(n)}(t - t_{\circ})$$

$$\boxed{x(t)*u(t-t_\circ) = \int_{-\infty}^{t-t_\circ} x(\tau) d\tau = \int_{-\infty}^t x(\tau-t_\circ) d\tau \quad , \quad x[n]*u[n-n_\circ] = \sum_{k=-\infty}^{n-n_\circ} x[k] = \sum_{k=-\infty}^n x[k-n_\circ]}$$

$$x(t) * u_{-n}(t) = \underbrace{\iiint \cdots \int}_{n} x(\tau) d\tau$$

$$\int_{-\infty}^{+\infty} \delta^{(n)}(t-t_{\circ}) dt = 0$$

$$\int_{-\infty}^{+\infty} \left| \delta^{(n)}(t - t_{\circ}) \right| dt = +\infty$$

$$\delta'(af(t)) = \frac{1}{a|a|f'(t)}\delta'(f(t))$$

$$x(t)\delta'(t-t_{\circ}) = x(t_{\circ})\delta'(t-t_{\circ}) - x'(t_{\circ})\delta(t-t_{\circ})$$

$$\int_{-\infty}^{+\infty} x(t) \delta^{(n)}(t-t_\circ) dt = (-1)^n x^{(n)}(t_\circ)$$

بسط تيلور

$$\begin{split} e^{z} &= \mathsf{1} + z + \frac{z^{\mathsf{r}}}{\mathsf{r}!} + \frac{z^{\mathsf{r}}}{\mathsf{r}!} + \frac{z^{\mathsf{r}}}{\mathsf{r}!} + \cdots = \sum_{n=\circ}^{+\infty} \frac{z^{n}}{n!} \quad , \quad \left|z\right| < \infty \\ &\cos z = \mathsf{1} - \frac{z^{\mathsf{r}}}{\mathsf{r}!} + \frac{z^{\mathsf{f}}}{\mathsf{r}!} - \cdots = \sum_{n=\circ}^{+\infty} \frac{(-\mathsf{1})^{n} \, z^{\mathsf{r}n}}{(\mathsf{r}n)!} \quad , \quad \left|z\right| < \infty \\ &\sin z = z - \frac{z^{\mathsf{r}}}{\mathsf{r}!} + \frac{z^{\Delta}}{\Delta!} - \cdots = \sum_{n=\circ}^{+\infty} \frac{(-\mathsf{1})^{n} \, z^{\mathsf{r}n+\mathsf{1}}}{(\mathsf{r}n+\mathsf{1})!} \quad , \quad \left|z\right| < \infty \\ &\frac{\mathsf{1}}{\mathsf{1} - z} = \mathsf{1} + z + z^{\mathsf{r}} + z^{\mathsf{r}} + \cdots = \sum_{n=\circ}^{+\infty} z^{n} \quad , \quad \left|z\right| < \mathsf{1} \\ &\ln(\mathsf{1} - z) = -z - \frac{z^{\mathsf{r}}}{\mathsf{r}} - \frac{z^{\mathsf{r}}}{\mathsf{r}} - \frac{z^{\mathsf{r}}}{\mathsf{r}} - \cdots = \sum_{n=\circ}^{+\infty} -\frac{z^{n}}{n} \quad , \quad \left|z\right| < \mathsf{1} \end{split}$$

نمونهبرداري

$$x_{c}(t)$$
 ماکزیمم فرکانس m_{M} (rad/s) , $\omega_{M}= \mathrm{Y}\pi f_{M}$, $\omega_{M}= \mathrm{Y}\pi f_{M}$

$$X_{d}(\omega) = \frac{1}{T}X_{c}(\frac{\omega}{T})$$
 , $|\omega| < \pi$

$$\frac{\left| \mathbf{H}_{d}(\omega) = \mathbf{H}_{c}(\frac{\omega}{T}) , \left| \omega \right| < \pi}{\left| \mathbf{h}_{d}[\mathbf{n}] = T \, \mathbf{h}_{c}(\mathbf{n}T) \right|}$$

قسمت سوم ـ جداول

جدول تبديل فوريه زمان پيوسته

حوزه زمان	حوزه فركانس
$e^{at}u(t)$, $Re[a] < \circ$	$\frac{1}{j\omega - a}$
$te^{at}u(t)$, $Re[a] < \circ$	$\frac{1}{(j\omega-a)^{r}}$
$\delta(t+t_{\circ})$, $\delta(t)$	$\mathrm{e}^{\mathrm{j}\omega t_{\circ}}$, \
$\mathrm{e}^{\mathrm{j}\omega_{\mathrm{o}}t}$, 1	$\operatorname{tp}\delta(\omega-\omega_\circ)$, $\operatorname{tp}\delta(\omega)$
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$
$\frac{\sin wt}{\pi t}$, $w > 0$	$\Pi(\frac{\omega}{r_{ m W}})$
$\Pi(\frac{\mathbf{t}}{rT})$	$\frac{r\sin T\omega}{\omega}$
$\Lambda(\frac{t}{rT})$	$\frac{1}{2} \left(\frac{7 \sin T\omega}{\omega} \right)^{2}$
$\sum_{k=-\infty}^{+\infty}a_k e^{jk\omega_\circ t}$	$\sum_{k=-\infty}^{+\infty} T\pi a_k \delta(\omega - k\omega_\circ)$
$\sum_{k=-\infty}^{+\infty} \delta(t-kT)$	$\sum_{k=-\infty}^{+\infty} \omega_{\circ} \delta(\omega - k\omega_{\circ}) , \omega_{\circ} = \frac{\tau \pi}{T}$
$e^{a t }\ ,\ a<\circ$	$\frac{-ra}{\omega^r + a^r}$
$\delta^{(n)}(t)$	$(j\omega)^n$
sgn t	Υ jω

جدول تبديل فوريه زمان گسسته

حوزه زمان	حوزه فركانس
$\alpha^n u[n]$, $ \alpha < n$	$\frac{1}{1-\alpha e^{-j\omega}}$
$(n+1)\alpha^n u[n]$, $ \alpha < 1$	$\frac{1}{(1-\alpha e^{-j\omega})^{r}}$
$\delta[n+n_{\circ}]$, $\delta[n]$	$e^{j\omega n_{\circ}}$, \
$\mathrm{e}^{\mathrm{j}\omega_{\mathrm{o}}n}$, ۱	$7\pi \tilde{\delta}(\omega - \omega_{\circ})$, $7\pi \tilde{\delta}(\omega)$
u[n]	$\frac{1}{1-e^{-j\omega}}+\pi\tilde{\delta}(\omega)$
$\frac{\sin w n}{\pi n} , \circ < w < \pi$	$\widetilde{\Pi}(\frac{\omega}{rw})$
$\Pi(\frac{\mathbf{n}}{r N})$	$\sin\left((\tau N + 1)\frac{\omega}{\tau}\right) / \sin\frac{\omega}{\tau}$
$\sum_{k=< N>} a_k e^{jk\omega_o n}$	$\sum_{k=-\infty}^{+\infty} T \pi a_k \delta(\omega - k\omega_\circ)$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\sum_{k=-\infty}^{+\infty} \omega_{\circ} \delta(\omega - k \omega_{\circ}) , \omega_{\circ} = \frac{\tau \pi}{N}$
$\alpha^{ n }$, $ \alpha < 1$	$\frac{1-\alpha^{r}}{1-r\alpha\cos\omega+\alpha^{r}}$

 $oldsymbol{\omega}$ جدول خواص تبدیل فوریه در حوزه

خاصیت	حوزه زمان	حوزه فركانس
خطی بودن	Ax(t) + By(t) $Ax[n] + By[n]$	$AX(\omega) + BY(\omega)$
انتقال زمانی	$x(t+t_{\circ})$ $x[n+n_{\circ}]$	$X(\omega)e^{j\omega t_{\circ}} \ X(\omega)e^{j\omega n_{\circ}}$
انتقال فركانسي	$x(t)e^{j\omega_{o}t}$ $x[n]e^{j\omega_{o}n}$	$X(\omega - \omega_{\circ})$
وارونگی	x(-t) x[-n]	Χ(-ω)
مزدوجى	$x^*(t)$, $x^*(-t)$ $x^*[n]$, $x^*[-n]$	$X^*(-\omega)$, $X^*(\omega)$
مقیاسدهی	$x(\alpha t) , \frac{1}{ \alpha }x\left(\frac{t}{\alpha}\right)$ $x_{(m)}[n]$ $x[mn]$	$\begin{split} \frac{1}{ \alpha } X \Big(\frac{\omega}{\alpha} \Big) &, X(\alpha \omega) \\ X(m \omega) &\\ \frac{1}{m} \sum_{i=0}^{m-1} X \Big(\frac{\omega}{m} - \frac{\gamma \pi}{m} i \Big) \end{split}$
کانولوشن در زمان	x(t)*y(t) $x[n]*y[n]$	$X(\omega) Y(\omega)$
ضرب در حوزه زمان	x(t)y(t) $x[n]y[n]$	$\frac{1}{7\pi}X(\omega) * Y(\omega)$ $\frac{1}{7\pi}X(\omega) \circledast Y(\omega)$
مشتق گیری (تفاضل گیری) در زمان	x'(t) $x[n]-x[n-1]$	$j\omega X(\omega)$ $(\iota - e^{-j\omega}) X(\omega)$
انتگرال گیری (انباشتگی) در زمان	$\int_{-\infty}^{t} x(\tau) d\tau$ $\sum_{k=-\infty}^{n} x[k]$	$\frac{X(\omega)}{j\omega} + \pi X(\circ) \delta(\omega)$ $\frac{X(\omega)}{1 - e^{-j\omega}} + \pi X(\circ) \tilde{\delta}(\omega)$
مشتق گیری در حوزه فرکانس	tx(t) nx[n]	jX'(ω)
دوگانی تبدیل فوریه زمان پیوسته با خودش (تبدیل ـ تبدیل)	$x(t) \leftarrow F$ $X(t) \leftarrow F$	$X(\omega)$ $X \rightarrow X\pi x(-\omega)$

f جدول خواص تبدیل فوریه در حوزه

خاصیت	حوزه زمان	حوزه فركانس
خطی بودن	Ax(t)+By(t) $Ax[n]+By[n]$	AX(f) + BY(f)
انتقال زمانی	$x(t+t_{\circ})$ $x[n+n_{\circ}]$	$X(f)e^{j\gamma\pi ft_{\circ}} \ X(f)e^{j\gamma\pi fn_{\circ}}$
انتقال فركانسي	$x(t)e^{j\tau\pi f_{\circ}t}$ $x[n]e^{j\tau\pi f_{\circ}n}$	$X(f-f_{\circ})$
وارونگی	x(-t) x[-n]	X(-f)
مزدوجي	$x^*(t)$, $x^*(-t)$ $x^*[n]$, $x^*[-n]$	$X^*(-f)$, $X^*(f)$
مقیاسدهی	$x(\alpha t)$, $\frac{1}{ \alpha }x(\frac{t}{\alpha})$ $x_{(m)}[n]$ $x[mn]$	$\frac{\frac{1}{ \alpha }X\left(\frac{f}{\alpha}\right)}{X(mf)}, X(\alpha f)$ $\frac{1}{m}\sum_{i=0}^{m-1}X\left(\frac{f}{m}-\frac{1}{m}i\right)$
کانولوشن در زمان	x(t)*y(t) $x[n]*y[n]$	X(f)Y(f)
ضرب در حوزه زمان	x(t)y(t) $x[n]y[n]$	X(f) * Y(f) $X(f) \circledast Y(f)$
مشتق گیری (تفاضل گیری) در زمان	x'(t) $x[n]-x[n-1]$	$j \forall \pi f X(f)$ $(i - e^{-j \forall \pi f}) X(f)$
انتگرال گیری (انباشتگی) در زمان	$\int_{-\infty}^{t} x(\tau) d\tau$ $\sum_{k=-\infty}^{n} x[k]$	$\frac{X(f)}{j\tau f} + \frac{1}{\tau}X(\circ)\delta(f)$ $\frac{X(f)}{1 - e^{-j\tau f}} + \frac{1}{\tau}X(\circ)\tilde{\delta}(f)$
مشتق گیری در حوزه فرکانس	tx(t) nx[n]	$\frac{j}{r\pi}\mathrm{X}'(\mathrm{f})$
دوگانی تبدیل فوریه زمان پیوسته با خودش (تبدیل ـ تبدیل)	$x(t) \leftarrow F$ $X(t) \leftarrow F$	

خلاصه نکات و فرمولها معالم معالم

روابط پارسوال در تبدیل فوریه

حالت زمان گسسته	حالت زمان پيوسته
$\sum_{n=-\infty}^{+\infty} \left x[n] \right ^{\gamma} = \frac{1}{\gamma \pi} \int_{\gamma \pi} \left X(\omega) \right ^{\gamma} d\omega$	$\int_{-\infty}^{+\infty} \left x(t) \right ^{\gamma} dt = \frac{1}{\gamma \pi} \int_{-\infty}^{+\infty} \left X(\omega) \right ^{\gamma} d\omega$
$\sum_{n=-\infty}^{+\infty} x[n] y[n] = \frac{1}{2\pi} \int_{7\pi} X(\omega) Y(-\omega) d\omega$	$\int_{-\infty}^{+\infty} x(t) y(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) Y(-\omega) d\omega$
$\sum_{n=-\infty}^{+\infty} x[n] y[-n] = \frac{1}{7\pi} \int_{7\pi} X(\omega) Y(\omega) d\omega$	$\int_{-\infty}^{+\infty} x(t) y(-t) dt = \frac{1}{7\pi} \int_{-\infty}^{+\infty} X(\omega) Y(\omega) d\omega$
$\sum_{n=-\infty}^{+\infty} x[n] y^*[n] = \frac{1}{7\pi} \int_{7\pi} X(\omega) Y^*(\omega) d\omega$	$\int_{-\infty}^{+\infty} x(t) y^*(t) dt = \frac{1}{7\pi} \int_{-\infty}^{+\infty} X(\omega) Y^*(\omega) d\omega$
$\sum_{n=-\infty}^{+\infty} x[n] ^{Y} = \int_{Y} X(f) ^{Y} df$	$\int_{-\infty}^{+\infty} x(t) ^{r} dt = \int_{-\infty}^{+\infty} X(f) ^{r} df$
$\sum_{n=-\infty}^{+\infty} x[n] y[n] = \int_{1} X(f) Y(-f) df$	$\int_{-\infty}^{+\infty} x(t) y(t) dt = \int_{-\infty}^{+\infty} X(f) Y(-f) df$
$\sum_{n=-\infty}^{+\infty} x[n] y[-n] = \int_{\gamma} X(f) Y(f) df$	$\int_{-\infty}^{+\infty} x(t) y(-t) dt = \int_{-\infty}^{+\infty} X(f) Y(f) df$
$\sum_{n=-\infty}^{+\infty} x[n]y^*[n] = \int_{V} X(f)Y^*(f)df$	$\int_{-\infty}^{+\infty} x(t) y^*(t) dt = \int_{-\infty}^{+\infty} X(f) Y^*(f) df$

روابط پارسوال در سری فوریه

حالت زمان گسسته	حالت زمان پيوسته
$\frac{1}{N} \sum_{n = \langle N \rangle} \left x[n] \right ^{Y} = \sum_{k = \langle N \rangle} \left a_k \right ^{Y}$	$\frac{1}{T} \int_{T} \left x(t) \right ^{\Upsilon} dt = \sum_{k=-\infty}^{+\infty} \left a_{k} \right ^{\Upsilon}$
$\frac{1}{N} \sum_{n = < N >} x[n] y[n] = \sum_{k = < N >} a_k b_{-k}$	$\frac{1}{T} \int_{T} x(t) y(t) dt = \sum_{k=-\infty}^{+\infty} a_k b_{-k}$
$\frac{1}{N} \sum_{n = < N>} x[n]y[-n] = \sum_{k = < N>} a_k b_k$	$\frac{1}{T} \int_{T} x(t) y(-t) dt = \sum_{k=-\infty}^{+\infty} a_k b_k$
$\frac{1}{N} \sum_{n=< N>} x[n] y^*[n] = \sum_{k=< N>} a_k b_k^*$	$\frac{1}{T} \int_{T} x(t) y^{*}(t) dt = \sum_{k=-\infty}^{+\infty} a_{k} b_{k}^{*}$

جدول خواص سری فوریه

خاصیت	حوزه زما <i>ن</i>	ضرايب فوريه
		صرایب حوریه
خطی بودن $\mathrm{T}_{\mathrm{x}}=\mathrm{T}_{\mathrm{y}}$ به شرط	Ax(t) + By(t) $Ax[n] + By[n]$	$Aa_k + Bb_k$
انتقال زمانی	$x(t+t_{\circ})$ $x[n+n_{\circ}]$	$rac{a_k e^{\mathrm{j} k \omega_\circ t_\circ}}{a_k e^{\mathrm{j} k \omega_\circ n_\circ}}$
انتقال فرکانسی به شرط ∑ € m	$x(t)e^{jm\omega_{o}t} \ x[n]e^{jm\omega_{o}n}$	a _{k-m}
وارونگی	x(-t) x[-n]	a_{-k}
مزدوجي	$x^*(t)$, $x^*(-t)$ $x^*[n]$, $x^*[-n]$	a_{-k}^* , a_k^*
مقیاسدهی زمانی	$x(\alpha t)$, $\alpha > 0$ $x_{(m)}[n]$ $x[mn]$	$\begin{bmatrix} a_k \\ \frac{1}{m} a_k \\ \sum_{i=o}^{m-1} a_{(\frac{M}{N})} \left[k - \frac{M}{m} i \right] \text{, } M \!=\! lcm(N,m) \end{bmatrix}$
کانولوشن متناوب به شرط $\mathrm{T}_{\mathrm{x}}=\mathrm{T}_{\mathrm{y}}$	$x(t) \circledast y(t)$ $x[n] \circledast y[n]$	Ta _k b _k Na _k b _k
ضرب ${ m T}_{ m x}={ m T}_{ m y}$ به شرط	x(t)y(t) $x[n]y[n]$	$egin{aligned} a_k * b_k \ a_k \circledast b_k \end{aligned}$
مشتق گیری (تفاضل) در زمان	x'(t) $x[n]-x[n-1]$	$jk\omega_{\circ}a_{k}$ $((-e^{-jk\omega_{\circ}})a_{k}$
انتگرال گیری (انباشتگی) در زمان ${ m a}_{\circ}=\circ$ به شرط	$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$ $y[n] = \sum_{k=-\infty}^{n} x[k]$	$\begin{split} b_k = & \begin{cases} \frac{a_k}{jk\omega_\circ} &, & k \neq \circ \\ \frac{1}{T}\int_T y(t)dt &, & k = \circ \end{cases} \\ b_k = & \begin{cases} \frac{a_k}{1-e^{-jk\omega_\circ}} &, & k \neq \circ \\ \frac{1}{N}\sum_{n = < N >} y[n] &, & k = \circ \end{cases} \end{split}$
دوگانی سری ـ سری $ ho_a=N$ به شرط	$x[n] \xleftarrow{F}$ $a[n] \xleftarrow{F}$	$\xrightarrow{S} a[k]$ $\xrightarrow{S} \frac{1}{N}x[-k]$
دوگانی تبدیل ـ سری	$T_X = 7\pi$ نوع اول؛ به شرط $x[n] \xleftarrow{F} X(\omega)$ $X(t) \xleftarrow{F_S} x[-k]$	$x(t) \stackrel{\text{FS}}{\longleftrightarrow} a_k$ $a_n \stackrel{\text{F}}{\longleftrightarrow} x(-\frac{T}{\tau\pi}\omega)$

جدول تبديل لاپلاس

حوزه زمان	حوزه لاپلاس	ناحیه همگرایی
e ^{at} u(t)	1	Re[s] > Re[a]
$-e^{at}u(-t)$	$\frac{1}{s-a}$	Re[s] < Re[a]
t ⁿ e ^{at} u(t)	<u>n!</u>	Re[s] > Re[a]
$-t^n e^{at} u(-t)$	$\overline{(s-a)^{n+1}}$	Re[s] < Re[a]
u(t)	١	Re[s] > ∘
-u(-t)	$\frac{1}{s}$	Re[s] < ∘
t ⁿ u(t)	$\frac{n!}{s^{n+1}}$	Re[s] > ∘
$-t^n u(-t)$	s^{n+1}	Re[s] < 0
$\delta(t)$	١	S کل صفحه
$\delta(t+t_{o})$	$\mathrm{e}^{\mathrm{st}_{\circ}}$	$Re[s] > -\infty$ يا $Re[s] < +\infty$
$\cos \omega_{\circ} t u(t)$	$\frac{s}{s^{\gamma}+\omega_{0}^{\gamma}}$	Re[s] > 0
$-\cos\omega_{\circ}t\mathrm{u}(-t)$	$s^{r} + \omega_{\circ}^{r}$	Re[s] < 0
$\sin \omega_{\circ} t u(t)$	$\frac{\omega_{\circ}}{s^{\gamma} + \omega_{\bullet}^{\gamma}}$	Re[s] > ∘
$-\sin \omega_{\circ} t u(-t)$	$s^{r} + \omega_{\circ}^{r}$	Re[s] < ∘
$[A\cos\omega_{\circ}t + B\sin\omega_{\circ}t]u(t)$	$As + B\omega_{\circ}$	Re[s] > 0
$-[A\cos\omega_{\circ}t+B\sin\omega_{\circ}t]u(-t)$	$s^{r} + \omega_{\circ}^{r}$	Re[s] < ∘
$e^{a t }$, $Re[a] < \circ$	$\frac{ra}{s^r-a^r}$	Re[a] < Re[s] < -Re[a]
$\delta^{(n)}(t)$	s ⁿ	$-\infty < \text{Re}[s] < +\infty$
$\sum_{k=0}^{+\infty} \delta(t-kT)$	$\frac{1}{1-e^{-sT}}$	Re[s] > 0

جدول خواص تبديل لاپلاس

خاصیت	حوزه زمان	حوزه لاپلاس	ناحيه همگرايي
خطی بودن	Ax(t) + By(t)	AX(s) + BY(s)	$\geq (R_x \cap R_y)$
انتقال زمانى	$x(t+t_{\circ})$	$X(s)e^{st_{\circ}}$	$R_x \stackrel{?}{\pm} \{s = +\infty \text{ or } s = -\infty\}$
انتقال فركانسى	$x(t)e^{S_{\circ}t}$	$X(s-s_{\circ})$	$R_x + Re[s_o]$
وارونگی	x(-t)	X(-s)	$-R_x$
مزدوجي	x*(t)	$X^*(s^*)$	R_x
مقياسدهي	$\frac{x(at)}{ a }x(\frac{t}{a})$	$\frac{1}{ a }X(\frac{s}{a})$ $X(as)$	$\frac{aR_x}{a}$
كانولوشن	x(t)*y(t)	X(s)Y(s)	$\geq (R_x \cap R_y)$
مشتق گیری در زمان	x'(t)	s X(s)	$\geq \left[R_X \cap \left(-\infty < \text{Re}[s] < +\infty \right) \right]$
انتگرال گیری در زمان	$\int_{-\infty}^t x(\tau) d\tau$	$\frac{1}{s}X(s)$	$\geq \left[R_x \cap (Re[s] > \circ) \right]$
مشتق گیری در فرکانس	tx(t)	-X'(s)	R _x

 $oldsymbol{\mathcal{Z}}$ جدول تبدیل

حوزه زمان	حوزه ۵	ناحیه همگرایی
$\alpha^n u[n]$	1	$ z > \alpha $
$-\alpha^n u[-n-1]$	$\frac{1-\alpha z^{-1}}{1-\alpha z^{-1}}$	$ z < \alpha $
$(n+1)\alpha^n u[n]$	1	$ z > \alpha $
$-(n+1)\alpha^n u[-n-1]$	$\frac{1}{(1-\alpha z^{-1})^{r}}$	$ z < \alpha $
u[n]	_ 1	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
(n+1)u[n]	1	z > 1
-(n+1)u[-n-1]	$\frac{1}{(1-z^{-1})^{r}}$	z < 1
$\delta[n]$	١	کل صفحه
$\delta[n+n_{\circ}]$	$z^{n_{\circ}}$	$ z > \circ$ $ z < \infty$
$\cos \omega_{\circ} n u[n]$	$1-(\cos\omega_{\circ})z^{-1}$	z > 1
$-\cos\omega_{\circ} n u[-n-1]$	$1-\Upsilon(\cos\omega_{\circ})z^{-1}+z^{-\Upsilon}$	z < 1
$\sin \omega_{\circ} n u[n]$	$\frac{(\sin \omega_{\circ})z^{-1}}{1-\Upsilon(\cos \omega_{\circ})z^{-1}+z^{-\Upsilon}}$	z > 1
$-\sin\omega_{\circ} n u[-n-1]$	$1-\Upsilon(\cos\omega_{\circ})z^{-1}+z^{-\Upsilon}$	z < 1
$[A\cos\omega_{\circ}n + B\sin\omega_{\circ}n]u[n]$	$A - (A\cos\omega_{\circ} - B\sin\omega_{\circ})z^{-1}$	z > 1
$-[A\cos\omega_{\circ}n + B\sin\omega_{\circ}n]u[-n-1]$	$1-\Upsilon(\cos\omega_{\circ})z^{-1}+z^{-\Upsilon}$	z < 1
$\sum_{k=\circ}^{+\infty} \delta[n-kN]$	$\frac{1}{1-z^{-N}}$	z > 1

 $oldsymbol{\mathcal{Z}}$ جدول خواص تبدیل

خاصیت	حوزه زمان	حوزه ۵	ناحیه همگرایی
خطی بودن	Ax[n] + By[n]	AX(z) + BY(z)	$\geq (R_x \cap R_y)$
انتقال زمانى	$x[n+n_{\circ}]$	$X(z) z^{n_{\circ}}$	$R_x \stackrel{?}{\pm} \{ z = \infty \text{ or } z = \circ \}$
مقیاسدهی در حوزه 🏖	$x[n]z_{\circ}^{n}$	$X(\frac{Z}{Z_{\circ}})$	$ z_{\circ} \cdot R_{x}$
وارونگی زمانی	x[-n]	$X(z^{-1})$	$(R_x)^{-1}$
مزدوجي	$x^*[n]$	$X^*(z^*)$	R _x
مقیاسدهی در زمان	x _(m) [n] x[mn]	$\frac{X(z^m)}{m\sum_{i=\circ}^{m-1}X\Big(z^{\frac{1}{m}}e^{-j\frac{\tau_m}{m}i}\Big)}$	$(R_x)^{\frac{1}{m}}$ $(R_x)^m$
كانولوشن	x[n]*y[n]	X(z)Y(z)	$\geq (R_x \cap R_y)$
تفاضل گیری در زمان	x[n]-x[n-1]	$(1-z^{-1})X(z)$	$\geq \left[R_x \cap (z > \circ)\right]$
انباشتگی در زمان	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	$\geq \left[R_x \cap (z > 1) \right]$
مشتق گیری در حوزه 🏿	nx[n]	$-z\frac{dX(z)}{dz} = z^{-1}\frac{dX(z)}{dz^{-1}}$	R _x

جدول خواص تبدیل لاپلاس و Z یکطرفه

خاصیت	حوزه زمان	حوزه لاپلاس و 🏖
خطی بودن	Ax(t) + By(t) $Ax[n] + By[n]$	$AX_{u}(s) + BY_{u}(s)$ $AX_{u}(z) + BY_{u}(z)$
انتقال زمانی	$x(t+t_{\circ})$ $x[n+1]$ $x[n-1]$	$e^{st_{\circ}}X_{u}(s) - e^{st_{\circ}} \int_{\circ}^{t_{\circ}} x(t)e^{-st}dt$ $zX_{u}(z) - zx[\circ]$ $z^{-1}X_{u}(z) + x[-1]$
انتقال فرکانسی مقیاسدهی در حوزه 🏖	$x(t)e^{s_{\circ}t}$ $x[n]z_{\circ}^{n}$	$X_{\mathrm{u}}(\mathrm{s-s_{\circ}})$ $X_{\mathrm{u}}\left(\frac{\mathrm{z}}{\mathrm{z_{\circ}}}\right)$
مزدوجى	x*(t) x*[n]	$egin{aligned} X_{\mathrm{u}}^{*}(\mathrm{s}^{*}) \ X_{\mathrm{u}}^{*}(\mathrm{z}^{*}) \end{aligned}$
مقیاسدهی در زمان	x(at) x _(m) [n] x[mn]	$\begin{split} \frac{\frac{1}{a}X_{u}\left(\frac{s}{a}\right)}{X_{u}\left(z^{m}\right)} \\ \frac{1}{m}\sum_{i=0}^{m-1}X_{u}\left(z^{\frac{1}{m}}e^{-j\frac{\tau\pi}{m}i}\right) \end{split}$
كانولوشن	x(t)*y(t) $x[n]*y[n]$	$X_{u}(s)Y_{u}(s)$ $X_{u}(z)Y_{u}(z)$
مشتق گیری در زمان تفاضل گیری در زمان	x'(t) $x[n]-x[n-1]$	$s X_{u}(s) - x(\circ)$ $(1-z^{-1}) X_{u}(z) - x[-1]$
انتگرال گیری در زمان انباشتگی در زمان	$\int_{\circ}^{t} x(\tau) d\tau$ $\sum_{k=\circ}^{n} x[k]$	$\frac{\frac{1}{s}X_{u}(s)}{\frac{1}{1-z^{-1}}X_{u}(z)}$
مشتق گیری در فرکانس	t x(t) nx[n]	$-X'_{u}(s)$ $-z\frac{dX_{u}(z)}{dz} = z^{-1}\frac{dX_{u}(z)}{dz^{-1}}$

 \mathcal{Z} جدول خواص ناحیه همگرایی در تبدیل لاپلاس و

ناحیه همگرایی در تبدیل گ	ناحیه همگرایی در تبدیل لاپلاس	نوع سيگنال
$\left \mathbf{z} \right = \infty$ شامل ROC	ROC شامل ∞+ = Re[s]	سیگنال علی
z = ۰ شامل ROC	ROC شامل ∞− = Re[s]	سیگنال ضدعلی
$\left z\right =\infty$ לו ROC	Re[s] = +∞ ט ROC	سیگنال سمت راستی
z = ٥ تا ROC	$Re[s] = -\infty$ تا ROC	سیگنال سمت چپی
$ z =\circ,\infty$ تا ROC اتا ROC الك صفحه بهجز احتمالاً	$Re[s] = -\infty, +\infty$ تا ROC تا ROC (Re[s] = $\pm\infty$ کل صفحه بهجز احتمالاً	سیگنال دورهمحدود
ROC یک حلقه	ROC یک نوار عمودی	سیگنال دو سمتی