CS 3133: Homework 3

Adam Camilli (aocamilli@wpi.edu)

September 18, 2017

1. **5.1** (184) Let M be the DFA defined by

(a) Give the state diagram of M.

(b) Trace the computations of M that process the strings *abaa*, *bbbabb*, *bababa*, and *bbbaa*.

$$[q_0, abaa] \qquad [q_0, bbbabb] \qquad [q_0, bababa] \qquad [q_0, bbbaa]$$

$$\vdash [q_0, baa] \qquad \vdash [q_1, bbabb] \qquad \vdash [q_1, ababa] \qquad \vdash [q_1, bbaa]$$

$$\vdash [q_1, aa] \qquad \vdash [q_1, babb] \qquad \vdash [q_2, baba] \qquad \vdash [q_1, baa]$$

$$\vdash [q_2, a] \qquad \vdash [q_1, abb] \qquad \vdash [q_0, aba] \qquad \vdash [q_1, aa]$$

$$\vdash [q_2, \lambda] \checkmark \text{ (Accept)} \vdash [q_2, bb] \qquad \vdash [q_0, ba] \qquad \vdash [q_2, a]$$

$$\vdash [q_0, b] \qquad \vdash [q_1, a] \qquad \vdash [q_2, \lambda] \checkmark \text{ (Accept)}$$

$$\vdash [q_1, b] \qquad \vdash [q_2, \lambda] \checkmark \text{ (Accept)}$$

$$\vdash [q_1, \lambda] \mathbf{X} \text{ (Reject)}$$

- (c) Which of the strings from part (b) are accepted by M?

 All of them except bbbabb.
- (d) Give a regular expression for L(M).

$$a^*b^+a^+(ba^*b^+a^+)^*$$

2. **5.11** (185) Build a DFA that accepts the set of strings over $\{a, b\}$ in which the number of a's is divisible by three.

This set of strings is equivalent to the regular expression $(b^*ab^*ab^*)^*$ which can be modeled in the following state diagram where each state $q_i \in Q$ represents the remainder of current number of a's divided by three (derived from previous state).

q_i	a	b
(q_0)	q_1	q_0
q_1	q_2	q_1
q_2	q_0	q_2

which corresponds to the state diagram

3. Design a DFA that accepts the language consisting of the set of those strings over $\{a, b, c\}$ in which the number of a's plus the number of b's plus twice the number of c's is divisible by six.

The language L that we wish to accept is $L = \{a^l \cup b^m \cup c^n \mid (l+m+2n) \mod 6 = 0\}$. Designing a regular expression for this language is quite difficult, so it will be more efficient to jump straight to a state table to describe the behavior of a DFA M that accepts this language, with each state $q_i \in Q$ representing the remainder i of dividing the current (l+m+2n) by 6 (derived from previous state). Since a and b affect this value equally, they are grouped together:

q_i	(a,b)	c
(q_0)	q_1	q_2
q_1	q_2	q_3
q_2	q_3	q_4
q_3	q_4	q_5
q_4	q_5	q_0
q_5	q_0	q_1

From here, we can draw the state diagram:

4. Draw an NFA that accepts the following language over the alphabet a, b, c:

$$(abc)^{\star}(ab)^{\star}$$

Since this language includes λ , we make the starting state accepting, and simply ensure that from there $\not\equiv$ any path to an accepting state that does not go from a to b or from a to b to c. Since this is an NFA, we are perfectly fine with only assigning transitions to "correct" inputs and allowing "incorrect" inputs such as ac or b to cause the automaton to choke and not progress.

5. **5.36** (187) Let M be the NFA- λ

(a) Compute λ -closure (q_i) for i = 0, 1, 2.

$$\lambda - (q_0) = \{q_0, q_2\}$$
$$\lambda - (q_1) = \{q_1\}$$
$$\lambda - (q_2) = \{q_2\}$$

(b) Give the input transition function t for M.

Defining

$$t(q_i, a) = \bigcup_{q_j \in \lambda \text{-}closure(q_i)} \lambda \text{-}closure(\delta(q_j, a))$$

we may convert from

$$\begin{array}{c|ccccc} \delta & a & b & c & \lambda \\ \hline q_0 & \{q_0\} & \emptyset & \{q_1\} & \{q_2\} \\ q_1 & \emptyset & \emptyset & \{q_1\} & \emptyset \\ q_2 & \emptyset & \{q_2, q_1\} & \emptyset & \emptyset \\ \end{array}$$

 \Rightarrow

$$\begin{array}{c|cccc} t & a & b & c \\ \hline q_0 & \{q_0, q_2\} & \{q_2, q_1\} & \{q_1\} \\ q_1 & \emptyset & \emptyset & \{q_1\} \\ q_2 & \emptyset & \{q_2, q_1\} & \emptyset \\ \end{array}$$

(c) Use Algorithm 5.6.3 to construct a state diagram of a DFA that is equivalent to M.

5

i. Initialize a new set of states Q' as λ -closure(q_0).

$$Q' = \{q_0, q_2\}$$

ii. Begin a transition table with
$$\sum \{a,b,c\}$$
 using Q':
$$\frac{\delta \quad | \quad a \quad b \quad c}{\{q_0,q_2\} \quad | \quad q_0 \quad \{q_2,q_1\} \quad q_1}$$

iii. Here we see two new states $\{q_1\}, \{q_2, q_1\} \not\in \mathbf{Q}'$, so add them to the table:

δ	a	b	c
$\overline{\{q_0,q_2\}}$	$\{q_0\}$	$\{q_2,q_1\}$	$\{q_1\}$
$\{q_2,q_1\}$	Ø	$\{q_2,q_1\}$	$\{q_1\}$
$\{q_1\}$	Ø	Ø	$\{q_1\}$

iv. We have no more new states, so now we may draw a DFA, with all invalid inputs going to a "death state":

(d) Give a regular expression for L(M).

$$L(M) = a^*b^*c^*$$