Visualizacion-tarea

November 13, 2020

1 Visualización Tarea

```
[1]: library(ggplot2)
     library(tidyverse)
     library(ggthemes)
     library(plotly)
      Attaching packages
                                               tidyverse
    1.3.0
     tibble 3.0.3
                         dplyr 1.0.1
     tidyr 1.1.1
                         stringr 1.4.0
     readr 1.3.1
                         forcats 0.5.0
             0.3.4
     purrr
      Conflicts
    tidyverse_conflicts()
     dplyr::filter() masks stats::filter()
     dplyr::lag()
                     masks stats::lag()
    Attaching package: 'plotly'
    The following object is masked from 'package:ggplot2':
        last_plot
    The following object is masked from 'package:stats':
        filter
    The following object is masked from 'package:graphics':
        layout
```

2 Parte 1

De la base de datos de proyecciones poblacionales de CONAPO (aquí la base), hacer al menos 5 visualizaciones para entender el crecimiento poblacional. Se tienen muchas variables y categorías por explorar, se espera un análisis y contexto de las gráficas así como una interpretación.

```
[2]: CONAPO <- read.csv(file="pob_mit_proyecciones.csv", fileEncoding = 'iso-8859-1') head(CONAPO)
```

		RENGLON	AÑO	ENTIDAD	CVE_GEO	EDAD	SEXO	POBLA
		<int></int>	<int $>$	<fct $>$	<int $>$	<int $>$	<fct $>$	<int $>$
A data.frame: 6×7	1	1	1950	República Mexicana	0	0	Hombres	572103
	2	2	1950	República Mexicana	0	0	Mujeres	559162
	3	3	1950	República Mexicana	0	1	Hombres	514540
	4	4	1950	República Mexicana	0	1	Mujeres	505269
	5	5	1950	República Mexicana	0	2	Hombres	478546
	6	6	1950	República Mexicana	0	2	Mujeres	469322

```
[3]: options(repr.plot.width=15, repr.plot.height=10)
CONAPO %>%

group_by(AÑO) %>%

summarise(POBLACION = sum(POBLACION)) %>%

ggplot(aes(x=AÑO,y=POBLACION)) +

geom_line(colour="steelblue", size = 3) +

labs(title = "Población por año") +

ylim(2000000,300000000) +

xlim(1950, 2050) +

scale_x_continuous(breaks=seq(from = 1950, to = 2050, by = 5)) +

scale_y_continuous(breaks=seq(from = 2000000, to = 400000000, by =□

→20000000), labels = scales::comma)
```

Scale for 'x' is already present. Adding another scale for 'x', which will replace the existing scale.

Scale for 'y' is already present. Adding another scale for 'y', which will replace the existing scale.

[`]summarise()` ungrouping output (override with `.groups` argument)

- Se puede observar que alrededor de 1970 hubo un gran incremento en la población, esto puede ser porque se comenzó a contabilizar más formalmente a la población.
- Entre 1970 y 2015 se puede observar un crecimiento casi constante de la población.
- A partir del año 2015 y con los pronósticos hacia el 2050 se espera que la población llegue a estabilizarse probablemente porque está llegando al nivel máximo de población M.

```
[5]: CONAPO %>%

group_by(SEXO, AÑO) %>%

summarise(POBLACION = sum(POBLACION)) %>%

ggplot(aes(x=AÑO,y=ifelse(SEXO=='Mujeres', -POBLACION, POBLACION), fill = SEXO)) +

geom_bar(stat = "identity", width = .6)+

scale_x_continuous(breaks=seq(from = 1950, to = 2050, by = 5)) +

scale_y_continuous(breaks=seq(from = -1500000000, to = 1500000000, by = S0000000),

labels = pasteO(as.character(c(seq(15, 0, -5), seq(5, S))), "m")) +

ylab("POBLACION EN MILLONES")+

coord_flip() +

theme(plot.title = element_text(hjust = .5), axis.ticks = element_blank())
```

[`]summarise()` regrouping output by 'SEXO' (override with `.groups` argument)

- Podemos observar que a lo largo de los años practicamente se ha mantenido equivalente la proporción entre hombres y mujeres.
- Después del año 2000 se puede apreciar una mayor proporción de mujeres que de hombres

`summarise()` regrouping output by 'SEXO' (override with `.groups` argument)

- Entre los 15 y 20 años hay una mayor proporción de hombres que de mujeres
- La esperanza de vida de las mujeres es mayor que la de los hombres

```
[7]: CONAPO %>%
    group_by(ENTIDAD) %>%
    summarise(POBLACION = sum(POBLACION)) %>%
    subset(ENTIDAD!="República Mexicana") %>%
    ggplot(aes(ENTIDAD, POBLACION)) +
        geom_bar(stat="identity", width = 0.5, fill="steelblue") +
        labs(title="Población por estados a lo largo del tiempo") +
        theme(axis.text.x = element_text(angle=65, vjust=0.6))
```

[`]summarise()` ungrouping output (override with `.groups` argument)

- Estado de México, CDMX y Veracruz son los estados más poblados.
- Baja California Sur, Colima y Campeche son los estados menos poblados

```
[8]: CONAPO %>%
    group_by(ENTIDAD, AÑO) %>%
    summarise(POBLACION = sum(POBLACION)) %>%
    subset(ENTIDAD!="República Mexicana") %>%
    ggplot(aes(AÑO, POBLACION)) +
        geom_line(size=1) +
        facet_wrap(~ENTIDAD)
```

`summarise()` regrouping output by 'ENTIDAD' (override with `.groups` argument)

- Zacatecas ha aumentado su población muy lentamente
- Estado de México ha aumentado su población muy rápidamente y está llegando a su límite
- Se espera que la CDMX comience a reducir su población en los próximo años

3 Parte 2

Con la misma base de datos, se requiere hacer todas las visualizaciones interactivas; las mismas 5 o más visualizaciones, ahora interactivas (recuerden plot.ly). Sugerencia: el año tiene que ser una de estas categorías ya que son proyecciones.

```
`summarise()` ungrouping output (override with `.groups` argument)
```

Scale for 'x' is already present. Adding another scale for 'x', which will replace the existing scale.

Scale for 'y' is already present. Adding another scale for 'y', which will replace the existing scale.

HTML widgets cannot be represented in plain text (need html)

```
[11]: b <-CONAPO %>%
              group_by(SEXO, AÑO) %>%
              summarise(POBLACION = sum(POBLACION)) %>%
              ggplot(aes(x=AÑO,y=ifelse(SEXO=='Mujeres', -POBLACION, POBLACION), fillu
       →= SEXO)) +
              geom_bar(stat = "identity", width = .6)+
              scale_x_continuous(breaks=seq(from = 1950, to = 2050, by = 5)) +
              scale_y = continuous (breaks=seq (from = -150000000, to = 150000000, by =
       →50000000).
                                  labels = paste0(as.character(c(seq(15, 0, -5), __
       \rightarrowseq(5, 15, 5))), "m")) +
              ylab("POBLACION EN MILLONES")+
              coord flip() +
              theme(plot.title = element_text(hjust = .5), axis.ticks =_
       →element_blank())
      ggplotly(b)
```

`summarise()` regrouping output by 'SEXO' (override with `.groups` argument)

HTML widgets cannot be represented in plain text (need html)

```
theme(plot.title = element_text(hjust = .5), axis.ticks = 

⇒element_blank())

ggplotly(c)
```

`summarise()` regrouping output by 'SEXO' (override with `.groups` argument)

HTML widgets cannot be represented in plain text (need html)

`summarise()` ungrouping output (override with `.groups` argument)

HTML widgets cannot be represented in plain text (need html)

`summarise()` regrouping output by 'ENTIDAD' (override with `.groups` argument)

```
Warning message:
```

"`group_by_()` is deprecated as of dplyr 0.7.0.

Please use `group_by()` instead.

See vignette('programming') for more help

This warning is displayed once every 8 hours.

Call `lifecycle::last_warnings()` to see where this warning was

generated."

HTML widgets cannot be represented in plain text (need html)

4 Parte 3

Hacer 1 ejercicio de cada sección

4.1 Ejercicios intro

4.1.1 Velocidad de la luz

Tenemos 5 experimentos con 20 corridas de mediciones de la velocidad de la luz.

- ¿Cómo exponen los resultados?
- ¿Los resultados se ven equivalentes entre los experimentos?

```
[16]: library(MASS)

[18]: vl <- data.frame(michelson)
    vl</pre>
```

		Speed	Run	Expt
		<int></int>	<fct></fct>	<fct></fct>
-	1	850	1	1
	2	740	2	1
	3	900	3	1
	4	1070	4	1
	5	930	5	1
	6	850	6	1
	7	950	7	1
	8	980	8	1
	9	980	9	1
	10	880	10	1
	11	1000	11	1
	12	980	12	1
	13	930	13	1
	14	650	14	1
	15	760	15	1
	16	810	16	1
	17	1000	17	1
	18	1000	18	1
	19	960	19	1
	20	960	20	1
	21	960	1	2
	22	940	2	2
	23	960	3	2
	24	940	4	2
	25	880	5	2
	26	800	6	2
	27	850	7	2
	28	880	8	2
	29	900	9	2
A data.frame: 100×3	30	840	10	2
	71	910	11	4
	72	920	12	4
	73	890	13	4
	74	860	14	4
	75	880	15	4
	76	720	16	4
	77	840	17	4
	78	850	18	4
	79	850	19	4
	80	780	20	4
	81	890	1	5
	82	840	2	5
	83	780	3	5
	84	810	4	5
	85	760	5	5
	86	810	6	5
	87	790	7	$ \bar{p}_1 $
	88	810	8	5
	89	820	9	5
	90	850	10	5

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Podemos observar que los resultados se ven uniformes entre los experimentos y que la mayor concentración se encuentra entre 800 y 900

4.1.2 Pima Indians

• ¿Qué dice este gráfico de barras?

```
[66]: ggplot(Pima.tr2, aes(type))+geom_bar()
```


Son las personas que tienen diabetes.

[65]: Pima.tr2

	npreg	glu	bp	skin	bmi	ped	age	type
1	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	<int></int>	<fct></fct>
$\frac{1}{2}$	5 7	86 195	68 70	28 33	$30.2 \\ 25.1$	$0.364 \\ 0.163$	24	No Yes
$\frac{2}{3}$	5	195 77	82	აა 41	35.8		$\frac{55}{35}$	No
4	$\begin{vmatrix} 3 \\ 0 \end{vmatrix}$	165	82 76	41	33.8 47.9	$0.156 \\ 0.259$	33 26	No No
5	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	105 107	60	$\frac{45}{25}$	26.4	0.239 0.133	23	No
6	$\begin{bmatrix} 0 \\ 5 \end{bmatrix}$	97	76	$\frac{25}{27}$	35.6	0.133 0.378	23 52	Yes
7	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	83	58	31	34.3	0.376	$\frac{32}{25}$	No
8	$\begin{vmatrix} 3 \\ 1 \end{vmatrix}$	193	50	16	25.9	0.655	24 24	No
9	$\begin{vmatrix} 1 \\ 3 \end{vmatrix}$	193 142	80	16 15	32.4	0.035 0.200	63	No
10	$\begin{vmatrix} 3 \\ 2 \end{vmatrix}$	128	78	$\frac{15}{37}$	43.3	1.224	31	Yes
11	$\begin{vmatrix} z \\ 0 \end{vmatrix}$	137	40	35	43.1	2.288	33	Yes
12	$\begin{vmatrix} 0 \\ 9 \end{vmatrix}$	157 154	78	30	30.9	0.164	45	No
13	$\begin{vmatrix} 3 \\ 1 \end{vmatrix}$	189	60	$\frac{30}{23}$	30.1	0.104 0.398	59	Yes
14	$\begin{vmatrix} 1 \\ 12 \end{vmatrix}$	92	62	7	27.6	0.926	44	Yes
15	1	86	66	52	41.3	0.920 0.917	29	No
16	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$	99	76	15	23.2	0.223	$\frac{23}{21}$	No
17	1	109	60	8	25.4	0.223 0.947	21	No
18	11	143	94	33	36.6	0.254	51	Yes
19	1	149	68	29	29.3	0.349	42	Yes
20	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	139	62	17	22.1	0.207	21	No
21	$\begin{vmatrix} 0 \\ 2 \end{vmatrix}$	99	70	16	20.4	0.235	27	No
22	1	100	66	29	32.0	0.444	42	No
23	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$	83	86	19	29.3	0.317	34	No
24	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	101	64	17	21.0	0.252	21	No
25	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	87	68	34	37.6	0.401	24	No
26	9	164	84	21	30.8	0.831	32	Yes
27	1	99	58	10	25.4	0.551	21	No
28	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	140	65	26	42.6	0.431	24	Yes
29	5	108	72	43	36.1	0.263	33	No
A data.frame: 300×8 30	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	110	74	29	32.4	0.698	27	No
271	2	87	NA	23	28.9	0.773	25	No
272	10	108	66	NA	32.4	0.272	42	Yes
273	10	139	80	NA	27.1	1.441	57	No
274	4	110	92	NA	37.6	0.191	30	No
275	4	114	64	NA	28.9	0.126	24	No
276	0	101	62	NA	21.9	0.336	25	No
277	2	91	62	NA	27.3	0.525	22	No
278	8	133	72	NA	32.9	0.270	39	Yes
279	1	111	94	NA	32.8	0.265	45	No
280	5	147	75	NA	29.9	0.434	28	No
281	4	92	80	NA	42.2	0.237	29	No
282	2	90	60	NA	23.5	0.191	25	No
283	7	114	64	NA	27.4	0.732	34	Yes
284	7	125	86	NA	37.6	0.304	51	No
285	2	119	NA	NA	19.6	0.832	72	No
286	5	115	76	NA	31.2	0.343	44	Yes
287	0	141	ŊĄ	NA	42.4	0.205	29	Yes
288	0	167	NA	NA	32.3	0.839	30	Yes
289	4	90	NA	NA	28.0	0.610	31	No
290	5	132	80	NA	26.8	0.186	69	No

[]: help(Pima.tr2)

• ¿Por qué la parte superior izquierda está vacía?

[67]: ggplot(Pima.tr2, aes(age,npreg))+geom_point()

No hay muchas mujeres con muchos embarazos a los 20 años

4.1.3 Titanic

[62]: head(data.frame(Titanic))

```
{\it Class}
                                  Sex
                                            Age
                                                    Survived
                                                               Freq
                          <fct>
                                  <fct>
                                            <fct>
                                                    <fct>
                                                                <dbl>
                          1st
                                  Male
                                            Child
                                                    No
                                                               0
                         2nd
                                  Male
                                            Child
                                                    No
                                                               0
A data.frame: 6 \times 5
                         3rd
                                  Male
                                            Child
                                                    No
                                                               35
                      4
                         Crew
                                  Male
                                            Child
                                                    No
                                                               0
                      5
                         1st
                                  Female
                                            Child
                                                    No
                                                               0
                                            Child
                                                    No
                         2nd
                                  Female
                                                               0
```

`summarise()` ungrouping output (override with `.groups` argument)

A tibble:
$$4 \times 2$$

$$\begin{array}{c|ccc}
Class & count \\
 &
\end{array}$$

$$\begin{array}{c|ccc}
1st & 325 \\
2nd & 285 \\
3rd & 706 \\
Crew & 885
\end{array}$$

- ¿Qué se les ocurre para graficar todo?
- ¿Cuántos pasajeros en total viajaban por clase?
- Exploren una por una las otras variables categóricas del dataset

4.1.4 Swiss

Tenemos datos de fertilidad y otras variables socioeconómicas de 47 provincias franco-parlantes en Swiza en 1888.

[68]: head(data.frame(swiss))

		Fertility	Agriculture	Examination	Education	Catholic	Infant.Morta
		<dbl></dbl>	<dbl $>$	<int $>$	<int $>$	<dbl $>$	<dbl $>$
A data.frame: 6×6	Courtelary	80.2	17.0	15	12	9.96	22.2
	Delemont	83.1	45.1	6	9	84.84	22.2
	Franches-Mnt	92.5	39.7	5	5	93.40	20.2
	Moutier	85.8	36.5	12	7	33.77	20.3
	Neuveville	76.9	43.5	17	15	5.16	20.6
	Porrentruy	76.1	35.3	9	7	90.57	26.6

- ¿Cómo conjuntarían todas las variables?
- Hagan gráficas para cada variable. ¿Se ve algo especial o raro?
- Hagan un scatterplot de Fertilidad vs el porcentaje de católicos. ¿Se ve algo interesante?
- ¿Hay relación entre agricultura y Educación?

4.2 Ejercicios variables continuas

4.2.1 Galaxias

Usando el conjunto galaxies de MASS, que contiene velocidades para 82 planetas.

- 1. Hagan histogramas, boxplots y la aproximación de la densidad.
- 2. Cambien los anchos de las bandas y expliquen cuál es el mejor?
- 3. Elijan el número de gráficas que se requieren para este experimento

```
[89]: data(galaxies, package="MASS")
  Galaxies <- data_frame(galaxies)
  head(Galaxies)</pre>
```

```
\begin{array}{c} {\rm galaxies} \\ < {\rm dbl} > \\ \hline 9172 \\ 9350 \\ 9483 \\ 9558 \\ 9775 \\ 10227 \end{array}
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
[94]: Galaxies %>%
    boxplot(pch=16, outcol="red")
```


El mejor ancho de banda fue aquel que permitió visualizar los datos de manera más clara.

4.2.2 Estudiantes.

El conjunto survey contiene información de estudiantes tomando su primer curso de estadística:

- 1. Hacer el histograma y poner encima la estimación de la densidad, ¿hay bimodalidad?
- 2. Jueguen con los anchos para tener mejores estimaciones de la densidad, ¿cuál es mejor?
- 3. Comparen las distribuciones de hombres y mujeres, que compartan la escala, con distintas estimaciones de densidad.

4.2.3 Presupuesto

El conjunto zuni del paquete lawstat, contiene 3 variabbles, distrito, ingreso por estudiante en dólares y el número de estudiantes.

- 1. ¿Considerarías el 5% más bajo outliers o extremos?
- 2. Quitando el 5% inferior hagan el gráfico de estimación de densidad ¿Es simétrico?
- 3. Hagan un Q-Q plot y comenten si es normal o no.

4.3 Ejercicios variables categóricas

4.3.1 Máquinas tragamonedas

En el paquete DAAG, está el dataset vlt, muestren si los símbolos que aparecen tienen la misma frecuencia, o no. Ejes comparables.

```
[42]: data(vlt, package="DAAG")
head(vlt)
```

```
window1
                                  window2 window3
                                                      prize
                                                               night
                        <int>
                                  <int>
                                            <int>
                                                              <int>
                                                       <int>
                        2
                                  0
                                            0
                                                       0
                                                               1
                        0
                                                       0
                                                               1
                                  5
                                            1
A data.frame: 6 \times 5
                       0
                                  0
                                            0
                                                       0
                                                               1
                        2
                                  0
                                            0
                                                       0
                                                               1
                    5
                       0
                                  0
                                            0
                                                       0
                                                               1
                       0
                                  0
                                            1
                                                       0
                                                               1
```

`summarise()` ungrouping output (override with `.groups` argument)

`summarise()` ungrouping output (override with `.groups` argument)

`summarise()` ungrouping output (override with `.groups` argument)


```
[46]: vlt %>%
    pivot_longer(cols = starts_with('window'), names_to = "window", values_to = 
    →"figure" )
```

	prize	night	window	figure
	<int></int>	<int></int>	<chr></chr>	<int></int>
	0	1	window1	2
	0	1	window2	0
	0	1	window3	0
	0	1	window1	0
	0	1	window2	5
	0	1	window3	1
	0	1	window1	0
	0	1	window2	0
	0	1	window3	0
	0	1	window1	2
	0	1	window2	0
	0	1	window3	0
	0	1	window1	0
	0	1	window2	0
	0	1	window3	0
	0	1	window1	0
	0	1	window2	0
	0	1	window3	1
	0	1	window1	1
	0	1	window2	0
	0	1	window3	1
	0	1	window1	0
	0	1	window2	0
	0	1	window3	0
	5	1	window1	1
	5	1	window2	2
	5	1	window3	1
	0	1	window1	0
	0	1	window2	0
A tibble: 1035×4	0	1	window3	1
	0	2	window1	1
	0	2	window2	0
	0	2	window3	1
	5	2	window1	1
	5	2	window2	2
	5	2	window3	3
	0	2	window1	0
	0	2	window2	2
	0	2	window3	0
	0	2	window1	0
	0	2	window2	0
	0	2	window3	0
	0	2	window1	0
	0	2	window2	1
	0	2	window3	0
	0	2	window1	7
	0	2	window2	$_{24}^{0}$
	0	2	window3	0
	0	2	window1	0
	0	2	window2	0

```
[47]: vlt %>%
    pivot_longer(cols = starts_with('window'), names_to = "window", values_to =
    →"figure" ) %>%
    group_by(window, figure) %>%
    summarise(n = n()) %>%
    ggplot(aes(x = figure, weight = n, fill = window)) +
    facet_wrap(~window) +
    geom_bar()
```

`summarise()` regrouping output by 'window' (override with `.groups` argument)

Podemos observar que claramente no todos los simbolos tienen la misma frecuencia

4.3.2 Daño gastrointestinal

Del conjunto de datos Lanza del paquete HSAUR2, hay cuatr estudios, dibujen un gráfico para comparar los tamaños de los estudios, ¿son iguales? El resultado se mide en la variable classificación, ¿qué opinan?

4.4 Ejercicios estructura

4.4.1 Películas:

¿Cómo se ve el scatterpl
pot si quitamos los que tienen más de 1000 votos? Ahora filtremos los mayores a 9. ¿Pasa algo?

[58]: library(ggplot2movies) head(movies)

	title	year	length	budget	rating	votes	r1	r2	r3
	<chr></chr>	<int $>$	<int $>$	<int $>$	<dbl $>$	<int $>$	<dbl $>$	<dbl $>$	<d< td=""></d<>
A tibble: 6×24	\$	1971	121	NA	6.4	348	4.5	4.5	4.5
	\$1000 a Touchdown	1939	71	NA	6.0	20	0.0	14.5	4.5
	\$21 a Day Once a Month	1941	7	NA	8.2	5	0.0	0.0	0.0
	\$40,000	1996	70	NA	8.2	6	14.5	0.0	0.0
	\$50,000 Climax Show, The	1975	71	NA	3.4	17	24.5	4.5	0.0
	\$pent	2000	91	NA	4.3	45	4.5	4.5	4.5

[59]: table(movies\$mpaa)

```
NC-17 PG PG-13 R
53864 16 528 1003 3377
```

```
[60]: #Estamos quitando todo lo ruidoso (los de mas de 100 votos)
movies %>%
    filter(votes < 1000) %>%
    ggplot(aes(votes, rating)) +
        geom_point()
```



```
[61]: #Estamos quitando todo lo ruidoso (los de mas de 1000 votos y los de menos de 9)
movies %>%
    filter(votes < 1000, votes > 9) %>%
    ggplot(aes(votes, rating)) +
        geom_point()
```


4.4.2 Autos:

Grafiquen 1/MPG.City, vs horsepowerhay ¿una relación lineal? ¿Cuáles son los outliers?

```
[48]: data(Cars93, package = "MASS")
head(Cars93)
```

	ľ	Manufacturer	Model	Type	Min.Price	Price	Max.Price	MPG.city	\mathbf{M}
		<fct></fct>	<fct $>$	<fct $>$	<dbl $>$	<dbl></dbl>	<dbl $>$	<int $>$	<i< td=""></i<>
-	1	Acura	Integra	Small	12.9	15.9	18.8	25	31
A data.frame: 6×27	2	Acura	Legend	Midsize	29.2	33.9	38.7	18	25
A data. Hame. $0 \times 2i$	3	Audi	90	Compact	25.9	29.1	32.3	20	26
	4	Audi	100	Midsize	30.8	37.7	44.6	19	26
	5	BMW	535i	Midsize	23.7	30.0	36.2	22	30
	6	Buick	Century	Midsize	14.2	15.7	17.3	22	31

```
[50]: Cars93 %>%
    mutate(inverse = 1/MPG.city) %>%
    select(Horsepower, inverse) %>%
    ggplot(aes(x=Horsepower, inverse)) +
        geom_point()
```

6. freduce(value, `_function_list`)

7. function_list[[i]](value)

```
[55]: Cars93 %>%
    mutate(inverse = 1/MPG.city) %>%
    ggplot(aes(x=Horsepower, inverse)) +
        geom_point()
```


Existe una relación directa entre el gasto de gasolina y los caballos de fuerza que tiene el motor. Aquellos que se encuentran separados en la parte superior derecha son autos deportivos.

4.4.3 Bancos

Dentro del paquete Sleuth2, los datos: case1202, tiene tres variables medidas en meses, de: Edad, Seniority, Experience.

¿Qué hay en la matriz de scatterplots? ¿Por?

5 Euler

Problema 13 y 16 del Projecto Euler

6 Fecha de entrega

• Sabado 14 de Noviembre