Question Number	Answer		Mark
15ai	exponential growth curve starting at origin and levelling at 5 V (accept V_0)	(1)	2
	levelling off after at approx. 4 to 5 time constants Or curve through approx $2/3$ of maximum at T (accept labelled as 3.2 V or 63%)	(1)	
	Example of graph VC 5 V		
15aii	Either p.d. would decrease exponentially from 5 V Or p.d. would decrease exponentially to 0 V	(1)	2
	Because the sum of the p.ds across the capacitor and resistor must always add up to the supply p.d.	(1)	
	Or as capacitor charges then p.d. across resistor must decrease from 5 V.	(1)	
15aiii	so current in resistor decreases so rate of change of p.d. decreases $5 = V_R + V_C$	(1) (1)	2
	Use of $V_R = V_0 e^{-t/RC}$ and $V_0 = 5$ to give required equation	(1)	
15b	Use of $V_C = 5 - 5e^{-t/RC}$	(1)	3
	Takes In of both sides of equation	(1)	
	$C = 48 \mu F$ so select 47 μF	(1)	
	Example of calculation		
	$3.3 = 5 - 5e^{-3.5/68000 \times C}$		
	$ \ln \frac{1.7}{5} = -\frac{3.5}{68000 \times C} $		
	$1.08 C = 5.15 \times 10^{-5}$		
	$C = 4.77 \times 10^{-5} \mathrm{F}$		
	So 47 μF Total for question 15		9