助教: 雷凡丁、乔同

Lab1 简单神经网络

北京航空航天大学计算机学院

1 实验目标

搭建基本的多层神经网络,并在给定测试集上进行精度测试,要求:

- 1. 不使用深度学习框架完成网络搭建
- 2. 不限制编程语言,推荐使用 python 进行神经网络搭建,允许使用 numpy, cupy 等工具包
- 3. 使用给定的训练集和测试集,可使用提供的模板项目 (BP-Mnist-Numpy-Template) 并在其基础上进行修改,也可以重新进行编写

2 数据集获取与使用

本次实验采用 Mnist 官方数据集¹,模板项目的 dataset 目录下亦有相关文件。 首先观察 mnist 的结构,以 train-images.idx3-ubyte 文件为例:

表 1: 数据集文件内容

TRAINING SET IMAGE FILE (train-images-idx3-ubyte):			
[offset]	[type]	[value]	[description]
0000	32 bit integer	$0 \times 000000803(2051)$	magic number
0004	32 bit integer	60000	number of images
0008	32 bit integer	28	number of rows
0012	32 bit integer	28	number of columns
0016	unsigned byte	??	pixel
0017	unsigned byte	??	pixel
xxxx	unsigned byte	??	pixel

前面若干字节为文件参数信息,包括了图片数量,图片行列大小等。从第 16 个字节起是图片的像素信息。

图 1: 示例图片

图片经过灰度处理后如图 1所示。

标签文件 train-labels-idx1-ubyte 内容结构与图片文件类似,有兴趣的同学可以参阅 1 自行理解。

 $^{^{1} \}rm http://yann.lecun.com/exdb/mnist/$

本次实验,我们为大家提供了数据读取函数 load_mnist,路径为: BP-Mnist-Numpy-Template utils

3 网络要求

- 1. 网络输入: 784 个输入节点,每个节点对应图片的一个像素
- 2. 网络输出: 10 个输出节点, 分别代表 0~9 这 10 个数字, 独热码编码
- 3. 网络深度建议为3至5层即可,如果太深则需要太长运行时间
- 4. 使用给定训练集 (train-labels-idx1-ubyte, train-images-idx3-ubyte) 进行权重训练,使用测试集 (t10k-images-idx3-ubyte, t10k-labels-idx3-ubyte) 测试并记录测试精度,不对精度做特别的要求,只需在合理范围内即可

4 作业提交

- 1. 将训练得到的权重数据用 numpy 保存为.npy 格式的文件, 让结果可以复现
- 2. 需撰写结果报告,包括但不限于网络结构介绍、测试精度结果截图等。报告命名格式: 学号+ 姓名,如 XXXXXXXXX+ 张三+ 作业一报告(更多细节参考"实验报告撰写格式")

5 其他

本次作业训练集大小为 60000, 若使用 CPU 训练时间过长,可以考虑采用 GPU,或者分batch 训练等方式(模板项目未进行 batch 划分,若有需求同学们可自己实现)。

由于本次作业并不涉及深度学习框架,只使用 numpy 等矩阵运算包,所以要想进行 GPU 加速则可以采用 CuPy,具体可以参考网上的相关资源 2 3。

 $^{^2 \}rm https://cupy.dev/$

 $^{^3 \}mathrm{https://github.com/cupy/cupy}$