EJERCICIOS TAREA 8

Ejercicio 1

En base al siguiente esquema de red, reconoce los dispositivos 1 y 2, y rellena la tabla con los datos pedidos.

	Nombre	Nivel OSI	Función del dispositivo
Dispositivo 1	Router (Enrutador)	Capa 3, capa de RED.	Conectar dos redes diferentes (o más de dos), un router tiene como función
Dispositivo 2	Hub (Concentrador)	Capa 1, Capa Física.	Un hub es un dispositivo que permite conectar varios ordenadores, perol a información se envía a todos por igual. (Obsoleta)
Dispositico 2 (opción 2)	Switch (Conmutador)	Capa 2. Capa de enlace de datos.	Permite conectar varios equipos, pero de una forma muy efectiva e inteligente, el dispositivo sabe a quien va dirigido un paquete y por lo tanto solo se lo envía a ese dispositivo. (La opción actual)

José Ramón Blanco Gutiérrez 1/5

Ejercicio 2

Con respecto al anterior esquema, contestar:

- ¿Qué topología de conexión tenemos en el esquema si tomamos como referencia el Dispositivo 2?
 - Topología en Estrella
- ¿Qué tipo de cable usarías para conectar los dispositivos y los ordenadores con el Dispositivo 2?
 - Cable de par trenzado
- ¿Qué conectores usarías y con qué estándar de conexión?
 - Conectores RJ-45 con el estándar ANSI/EIA/TIA 568 B en ambos extremos, los cables directos.

Ejercicio 3

Rellenar si se necesita cable directo o cruzado (desde el punto de vista teórico) para unir los 2 elementos indicados en cada fila:

2 dispositivos a unir con cable ¿Cable directo o cruzado?

1 PC y 1 switch	Cable Directo, para unir un dispositivo con otro de nivel inmediato, PC nivel 1(OSI) y switch nivel 2(OSI)
1 PC y 1 router	Cable Cruzado, para unir dos dispositivos que tienen 2 niveles de diferencia, en este caso el PC o mejor dicho la tarjeta de red es de nivel 1 (OSI) y el router de nivel 3 (OSI).
2 PC	Cable Cruzado, para unir dispositivos del mismo nivel, PC Nivel 1 (OSI)
1 switch y 1 router	Cable Directo, para unir un dispositivo con otro de nivel inmediato Switch Nivel 2 (OSI) y router Nivel 3(OSI)
2 switch	Cable Cruzado, para unir dispositivos del mismo nivel, Switch nivel 2

Ejercicio 4

Averiguar la dirección física (dirección MAC) y la dirección lógica (dirección IP) de tu tarjeta de red, en una máquina windows y en una maquina Linux. Los comandos a utilizar son:

En Linux: ifconfig / ip a / ip r / sudo apt install net-tools

En Windows: ipconfig /all

El ifconfig ya es un paquete que Ubuntu ha quitado de su instalación base, para obtenerle tenemos que instalar la net-tools.

Sudo apt install net-tools

```
irblanco@SistemasUbuntu:~$ sudo apt install net-tools
Leyendo lista de paquetes... Hecho
Creando árbol de dependencias
Leyendo la información de estado... Hecho
Los paquetes indicados a continuación se instalaron de forma automática y ya no
son necesarios.
fonts-liberation2 fonts-opensymbol gir1.2-gst-plugins-base-1.0
gir1.2-gstreamer-1.0 gir1.2-gudev-1.0 gir1.2-udisks-2.0
grilo-plugins-0.3-base gstreamer1.0-gtk3 libboost-date-time1.65.1
libboost-locale1.65.1 libcdr-0.1-1 libclucene-contribs1v5 libclucene-core1v5
libcmis-0.5-5v5 libcolamd2 libdazzle-1.0-0 libe-book-0.1-1
```

José Ramón Blanco Gutiérrez 2/5

Windows			
Adaptador Ethernet (No está en uso)	Adaptador de Ethernet Ethernet 2: Estado de los medios : medios desconectados Sufijo DNS específico para la conexión: Descripción : Realtek PCIe GbE Family Controller #2 Dirección física : 30-9C-23-FF-59-5A DHCP habilitado : sí Configuración automática habilitada : sí		
Adaptador Inalámbrica	Adaptador de LAN inalámbrica Wi-Fi: Sufijo DNS específico para la conexión. : Descripción		

Linux Ubuntu (VirtualBox) Usamos el ifconfig enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 inet 10.0.2.15 netmask 255.255.25.0 broadcast 10.0.2.255 inet6 fe80::1f29:646d:6678:2ff prefixlen 64 scopeid 0x20<link> ether 08:00:27:e4:ad:de txqueuelen 1000 (Ethernet) RX packets 254444 bytes 383316297 (383.3 MB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 74877 bytes 4627519 (4.6 MB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536 inet 127.0.0.1 netmask 255.0.0.0 inet6 ::1 prefixlen 128 scopeid 0x10<host> loop txqueuelen 1000 (Bucle local) RX packets 486 bytes 40919 (40.9 KB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 486 bytes 40919 (40.9 KB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 jrblanco@SistemasUbuntu:~\$ ip a Y como ahora se usa en Linux 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group defaul ip a t qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 ip r inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_tft forever 2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP gr oup default qlen 1000 link/ether 08:00:27:e4:ad:de brd ff:ff:ff:ff:ff inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic noprefixroute enp0s3 valid_lft 84391sec preferred_lft 84391sec inet6 fe80::1f29:646d:6678:2ff/64 scope link noprefixroute valid_lft forever preferred_lft forever jrblanco@SistemasUbuntu:~\$ ip r default via 10.0.2.2 dev enp0s3 proto dhcp metric 100 10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.15 metric 100 169.254.0.0/16 dev enp0s3 sc<u>o</u>pe link metric 1000 jrblanco@SistemasUbuntu:~\$ S

José Ramón Blanco Gutiérrez 3/5

	Dirección física	Dirección IP
Máquina Windows - Ethernet	Dirección física : 30-9C-23-FF-59-5A 30:9C:23:FF:59:5A	NO CONECTADA
Máquina Windows - Inalámbrica	Dirección física : 3C-6A-A7-CA-4A-9F 3C:6A:A7:CA:4A:9F	Dirección IPv4 : 192.168.8.162(Preferido) 192.168.0.162
Máquina Linux Ethernet	ether 08:00:27:e4:ad:de txqueuelen 1000 (Ethernet) 08:00:27:E7:AD:DE	inet 10.0.2.15 netmask 255.255.255.0 10.0.2.15/24
Máquina Linux Inalámbrica	NO PRESENTE	NO PRESENTE

Ejercicio 5

Dividir la dirección de red 200.200.10.0 en las siguientes subredes:

- 3 redes de 50 ordenadores.
- 4 redes de 12 ordenadores.

Para cada subred, especificar:

- Dirección de red y dirección de broadcast
- Dirección del primer equipo y último equipo
- Máscara de red

Dirección RED	Broadcast	1 ^{er} Equipo	Ultimo Equipo	Mascara
200.200.10.0	200.200.10.63	200.200.10.1	200.200.10.62	255.255.255.192
200.200.10.64	200.200.10.127	200.200.10.65	200.200.10.126	255.255.255.192
200.200.10.128	200.200.10.191	200.200.10.129	200.200.10.190	255.255.255.192
200.200.10.192	200.200.10.207	200.200.10.193	200.200.10.206	255.255.255.240
200.200.10.208	200.200.10.223	200.200.10.209	200.200.10.222	255.255.255.240
200.200.10.224	200.200.10.239	200.200.10.225	200.200.10.238	255.255.255.240
200.200.10.240	200.200.10.255	200.200.10.241	200.200.10.254	255.255.255.240

Especificar, ¿cuántas direcciones se pierden en total en la red?

Se pierden 14 redes, dos por cada red que son la dirección de red y de broadcast.

Ejercicio 6

Queremos crear varias subredes de 2000 PC.

Partiendo de la red dirección de red 150.200.0.0, responder:

¿A qué clase pertenece esta red?

Pertenece a la clase B que van desde el 128 hasta el 191

• ¿Cuál es el máximo número de subredes con 2000 PC que se pueden crear? 32 subredes se pueden hacer de 2000 PC. 65.536 / 2048 = 32

¿Cuántos PC exactamente puede haber en cada subred?

2046 equipos pueden formar parte de cada red: $2^{11}-2 = 2048 - 2 = 2046$

José Ramón Blanco Gutiérrez 4/5

Como son muchas subredes, especificar de las 4 primeras subredes:

- Dirección de red y broadcast
- Dirección de primer y último equipo
- Máscara de red

Dirección RED	Broadcast	1 ^{er} Equipo	Ultimo Equipo	Mascara
150.200.0.0	150.200.7.255	150.200.0.1	150.200.7.254	255.255.248.0
150.200.8.0	150.200.15.255	150.200.8.1	150.200.15.254	255.255.248.0
150.200.16.0	150.200.23.255	150.200.16.1	150.200.23.254	255.255.248.0
150.200.24.0	150.200.31.255	150.200.24.1	150.200.31.254	255.255.248.0

José Ramón Blanco Gutiérrez 5/5