附录 1 fNIRS 在脑激活模式评定中的可用性研究

作者	领域	研究目的	任务环境	被试	研究方法	结果简要	研究意义	其他技术指标
Hamann &	心理负荷	研究通过控制心理疲	模拟飞行	普通人员	被试执行飞行模拟任务时,完成 n-back 和监测任务,	随任务难度增加,被试主观心	研究结果强调了在航	EEG
Carstengerdes,		劳, 分析逐步增加的心			fNIRS 用于评估其心理负荷。	理负荷得分越高,绩效下降,	空航天领域对机组人	
2022		理负荷对 PFC 激活的				前额 $θ$ 活动越高,PFC 的 HbR	员的生理测量的实际	
		影响。				浓度降低。	效益。	
Li et al., 2022	心理负荷	研究旨在结合 fNIRS 和	模拟飞行	普通人员	被试在不同心理负荷水平下完成多任务测试,fNIRS 用	与低心理负荷条件的多任务处	心率和 PFC 激活可	ECG
		ECG 来检测在模拟飞			于评估其心理负荷。	理相比,被试在高心理负荷多	用于检测在模拟飞行	
		行中个体多任务处理时				任务处理中表现出更高的主观	中个体多任务处理时	
		心理负荷的变化。				心理负荷报告得分、心率和	心理负荷的变化。	
						PFC 激活程度(通过 HbO 变化		
						来衡量),绩效表现更差(更长		
						的反应时、更少的反应次数		
						等)。		
Sun et al.,	工作负荷、	研究飞行员静态直立平	模拟飞行 vs 实	1. 飞 行 员	1. NASA-TLX 用于评估比较被试在真实飞行与模拟飞	1. 真实飞行和模拟飞行任务引	模拟飞行任务能够模	
2019	认知疲劳	衡功能和脑血氧参数对	际飞行	2.普通人员	行任务的工作负荷;	起的工作负荷之间存在显着相	拟真实飞行任务的负	
		飞行负荷的影响。			2. 平衡系统姿态记录仪和 fNIRS 用于评估模拟飞行任务	关性;	荷和静态平衡,	
					组和休息组间的工作负荷。其中模拟飞行任务被试需要	2.与休息组相比,实验组在模拟	fNIRS 可用于评估飞	
					完成 4 项不同任务,包括持续监控仪器、执行紧急任	飞行任务中的 rSO_2 更高以及 Δ	行员的负荷/疲劳。	
					务、持续跟踪飞行目标和执行其他要求的任务。	HbR 降低更多。		
Causse et al.,	心理负荷	改进 N-back 任务(数学	实验室任务	普通人员	被试完成 3 种不同难度的 N-back 任务(0-back、1-	随任务难度增加,被试认知能	改进后的 N-back 任	眼动
2017		计算结果代替经典 N-			back、2-back),fNIRS 用于评估其心理负荷。	力下降,表现为感受性 d'(Z 击	务能够产生高强度和	
		back 记忆内容)使其能				中-Z 虚报)降低,反应时增加,	持续性的心理负荷,	
		针对飞行员等高脑力工				PFC 氧合水平增加,特别地,	可以用来评估飞行员	
		作者测试其心理负荷。				2-back 下,左右 PFC 的 HbO	等个体的心理负荷。	
						浓度变化均高于中心 PFC 处。		

附录1(续)

作者	领域	研究目的	任务环境	被试	研究方法	结果简要	研究意义	其他技术指标
Causse et al.,	心理负荷、	考察飞行员在执行任务	模拟飞行 vs.实	飞行员	被试执行两种场景的任务: 飞行场景(两种不同认知需求的	任务变得复杂时, PFC 的	fNIRS 可应用于评估心理	
2018	神经效率	时与其心理负荷相关的	验室任务		着陆任务-容易着陆(无侧风和能见度高);困难着陆(强烈侧	HbO 浓度增加, HbR 浓度	负荷,且可作为测量神	
		大脑激活变化。			风和能见度低));实验室场景(选用 CANTAB 测试中空间能	降低。但 PFC 激活强度	经效率的一种工具。	
					力测试和执行功能测试)。fNIRS 用于评估其心理负荷。	(HbO 浓度)与任务表现的		
						相关性不显著。		
Ahlstrom et	认知参与、	评估舱内使用便携式天	模拟飞行	飞行员	实验组被试使用手持便携式天气应用程序(该程序包括航空	实验组的 PFC 氧合水平	研究结果支持了可以使	
al., 2016	决策	气应用程序对飞行员行			常规天气报告等,被试可以通过显示变焦来调节能见度、温	(HbO-HbR)显著高于对照	用便携式天气显示程序	
		为的影响。			度、结冰概率等图像);对照组被试没有天气应用程序。被试	组。.	而不会降低飞行员在与	
					在视觉气象条件下驾驶飞机执行任务,同时避免危险天气,		安全相关的飞行任务,	
					fNIRS 用于评估被试执行任务时心理负荷。		行动和决策上的表现。	
Ahlstrom,	认知参与	探讨天气显示符号的可	模拟飞行	飞行员	不同被试组使用不同的天气符号(即符号和颜色),fNIRS 用	飞行员组在天气偏差,认	天气显示中的符号和颜	
2015		识别性,评估天气显示			于评估被试认知参与的同时测量被试天气显示使用、交流、	知参与和天气显示使用方	色变化会导致感知不对	
		符号对飞行员行为和决			天气回避等行为指标。	面存在差异(其中不同组间	称,从而影响飞行员的	
		策的影响。				氧合水平存在差异)。	行为和决策。	
Durantin et al.,	心理负荷	评估 fNIRS 与 HRV 联	实验室任务	普通人	被试执行驾驶飞机追随相同或无颜色目标飞机,同时需要对	HbO 浓度和 HRV 对不同水	本研究显示了 fNIRS 进	HRV
2014		合使用对飞行员在飞行		员	听觉警告信号作出反应。任务难度通过处理负荷和控制难度	平的心理负荷均敏感,	行实验的可行性,以及	
		模拟任务过程中心理负			两个方面操纵。fNIRS 用于评估其心理负荷。	HbO 随任务难度增加而增	使用互补的行为(认知)和	
		荷的预测潜力。				加,但在最高难度水平下	生理测量得出操作者功	
						HbO 浓度下降以及 LF/HF	能状态的可能性。	
						比率较低。		
Ayaz et al.,	心理负荷	研究心理负荷和专业知	模拟飞行	普通人	1. fNIRS 用于评估其心理负荷。评估心理负荷:被试完成视	随任务难度增加,结果显	本文所报告的方法为开	
2012		识(相对水平的练习)对		员	觉识别 N-back 任务和两类 ATC 任务(语音和数据通信);	示出任务准确性的单调下	发复杂人机界面系统的	
		背外侧和腹外侧 PFC			2. fNIRS 用于评估其心理负荷。评估专业知识:被试执行无	降和响应时间增加,被试	必要战略需求提供了指	
		血流动力学反应的影			人机模拟进近任务与模拟着陆任务。	的 PFC 氧合水平(HbO-	导,并有助于评估操作	
		响。				HbR)增加。	员的绩效标准。	

附录1(续)

作者	领域	研究目的	任务环境	被试	研究方法	结果简要	研究意义	其他技术指标
Menda et al.,	认知负荷	评估 fNIRS 对无人机飞行过	无人机模拟飞	普通人员	被试分别在实验(追逐视图)条件、控制(机载摄	被试在机载摄像条件下的平	fNIRS 在无人机操作员执	
2011		程中(机载摄像和追逐视图)认	行		像)条件下模拟飞行,fNIRS用于评估被试的认知	均氧合水平(HbO-HbR)高于	行视觉搜索/警戒任务中能	
		知负荷高低状态的敏感性。			状态,同时记录被试模拟飞行的事件信息、飞机	追逐视图条件下, 表明机载	够区分高低认知负荷。	
					姿态高度和速度,以及控制器的运动数据。	摄像条件下产生更高的认知	fNIRS可能成为监测和改	
						负荷。	善无人机操作中人为因素	
							的有力工具。	
Kikukawa et	认知负荷	在考虑运动伪迹的情况下,	实际飞行	飞行员	被试驾驶 BK117 和 UH-60J 单旋翼直升机进行空	随着直升机飞行认知需求的	fNIRS 为直升机飞行员的	
al., 2008		使用 fNIRS 检查直升机飞行			中检查(包含驾驶舱休息,滑行,起飞,水平飞	提高,被试的 HbO 浓度逐渐	认知需求监测提供可行	
		员在实际飞行过程中的认知			行,接近山顶和着陆),进行了9架次飞行。	升高, HbR 浓度的变化相对	性。	
		相关的 PFC 血氧状态。			fNIRS 用于评估其认知负荷。	较小。		
Takeuchi,	心理压力	使用 fNIRS 测量了被试在压	模拟飞行	飞行员	被试在不同侧风难度下降落,设置4种风速:低	左 PFC 的 HbO 浓度随着风速	fNIRS 测定的大脑氧合程	
2000		力任务中 PFC 血氧状态的变			难度,中低难度(21.6km/h),中等高难度	的增加而增加,右 PFC 的	度与心理压力的强度相对	
		化。			(28.8km/h)以及高难度(36.0 km/h)。 fNIRS 用	HbO 浓度和左右 PFC 的 HbR	应。	
					于评估其心理压力。	浓度几乎没有变化。		
Reddy et al.,	技能训练	研究旨在利用生态有效的双	无人机模拟飞	普通人员	被试完成3个简单和2个困难的无人机模拟飞行	任务练习可以改善行为绩	多任务训练会导致个体差	
2022	水平、个	重任务、行为和大脑活动测	行		任务(搜索和监视),其中简单和复杂任务主要	效, PFC 的 HbO 浓度降低。	异,这些差异可能是由于	
	体差异	量来研究技能习得和迁移的			区别在于实验模拟发生时间,简单任务发生在模	此外,复杂任的任务会引起	个人偏好造成的。未来的	
		个体差异的影响。			拟的上午11:00,而困难任务发生在模拟的晚	PFC 内多区域的资源召集,	研究应在评估多任务训练	
					上 8:00 或早上 6:00,fNRIS 用于评估其心理	特别是左前内测 PFC,其	中的技能习得和迁移时考	
					负荷。	HbO 浓度增加,可能与任务	虑个体差异。	
						切换有关。		

附录1(续)

作者	领域	研究目的	任务环境	被试	研究方法	结果简要	研究意义	其他技术指标
Causse et al.,	飞行经验/	调查飞行员群体中与年龄相	实验室任务	飞行员	三个年龄段(年轻,中年,年龄较大)被试完	被试PFC活动倾向随着任务难度	有助于评估年长飞行员相	
2019	技能训练	关的执行绩效变化,以评估			成 CANTAB 测试中两项任务(空间工作记忆	增加而增加,任务绩效下降,	比年轻飞行员可能增加的	
	水平	潜在认知随年龄增加的风			能力和执行功能),fNIRS 用于评估被试 PFC	HbO 增加;与年轻飞行员相比,	认知风险;飞行员的专业	
		险。			的 HbO 浓度变化。	老年飞行员在完成 CANTAB 测试	知识可能有助于维持认知	
						时行为绩效较差,PFC活动存在	能力。	
						峰值(上限); 当年龄组之间的行		
						为表现相当或较年长组仅轻微受		
						损时,PFC 活动没有任务与年龄		
						相关的差异。		
Choe et al.,	飞行经验/	测试 tDCS 是否可以通过调节	模拟飞行	普通人员	被试被随机分配四组之一: DLFPC 刺激、	DLFPC 刺激组被试轻松着陆任务	tDCS 产生了更有效的神经	EEG,
2016	技能训练	神经元功能,以改善飞机着			DLPFC 安慰、M1 刺激和 M1 安慰。所有被	中 DLFPC 通道中 HbO 和 Hbtot	激活,以巩固新学习的程	tDCS,EOG
	水平	陆程序的飞行模拟器训练期			试每天进行一次模拟飞行训练,共4天。	浓度减少。	序技能;通过tDCS可以提	
		间的技能学习和绩效表现。			fNIRS 和 EEG 用来评估被试完成飞行模拟任		高认知和现实任务中技能	
					务和 N-back 任务诱发的功能活动变化。		的学习率;建立神经元功	
							能与行为的联系。	
Hernandez-	飞行经验/	使用 fNIRS 评估被试学习模	模拟飞行	普通人员	被试完成飞行模拟任务,包含遵守空中交通	在飞行模拟器任务中,被试的	揭示了使用飞行模拟器进	
Meza et al.,	技能训练	拟驾驶任务期间,其 PFC 的			管制员提供的航向和高度,导航至航路点,	PFC 氧合水平(HbO-HbR)随着专	行飞行的复杂认知任务期	
2015	水平	血流动力学反应与心理负			控制垂直速度,完成平稳转弯以及遵守	业技能发展而降低。	间,飞行员专业技能发展	
		荷,专业水平和任务绩效的			C130-J 的安全准则。 fNIRS 用于评估其 PFC		对 PFC 皮层中血液动力学	
		变化之间的关系。			氧合水平。		响应的影响。	

注: CANTAB: Cambridge Neuropsychological Test Automatic Battery,剑桥自动化成套神经心理测试; DLPFC: Dorsolateral Prefrontal Cortex,背外侧前额叶皮层; ECG: Electrocardiogram,心电图; EEG: Electroencephalogram,脑电; EOG: electro-oculogram,眼电; fNIRS: functional near-infrared spectroscopy,功能性近红外光谱; HbO: oxy-hemoglobin,氧合血红蛋白; HbR: deoxy-hemoglobin,脱氧血红蛋白; Hbtot: total hemoglobin concentrations,总血红蛋白浓度; HF: high frequency,高频; HRV: heart rate variability,心率变异率; LF: low frequency,低频; M1: motor cortex,运动皮层; NASA-TLX: NASA Task Load Index,NASA 任务负荷指数; PFC: prefrontal cortex,前额叶皮层; rSO₂: regional cerebral oxygen saturation,脑组织血氧饱和度; tDCS: transcranial direct current stimulation,经颅直流电刺激。

附录 2 fNIRS 在识别脑激活模式中的准确性研究

作者	领域	研究目的	任务环境	被试	研究方法	BCI 算法	结果简要	研究意义	其他技术指标
Pan et al.,	认知疲	开展基于 fNRIS 的飞行	模拟飞行	飞行员	利用 fNIRS 记录飞行任务中飞	SDAE、	SDAE 模型的识别准确率为91.32%,比 LDA 模型和	基于 fNIRS 的飞	
2022	劳	员疲劳状态研究。			行员 HbO 的变化,对数据进行	LDA, SVM	SVM 模型分别高出 23.26%和 15.97%。结果表明,所建	行员疲劳状态识	
					预处理,确定有效样本 1080		立的 SDAE 模型具有较高的识别精度,能够准确识别飞	别对于减少飞行	
					个,提取各通道 HbO 的均值、		行员的不同疲劳状态。	员疲劳导致的飞	
					方差、标准差等,将这些指标			行事故具有重要	
					作为 SDAE 的输入,用于训练			的现实意义。	
					飞行员疲劳状态识别模型。				
Verdière et al.,	认知参	在模拟飞行的生态环境	模拟飞行	飞行员	被试执行手动或自动辅助着	sLDA	1.手动着陆条件心理负荷显著高于自动着陆条件;	连通性指标比传	
2018	与	中使用 fNIRS 连通性评			陆。fNIRS 用于评估其认知参		2.单个特征的分类:基于小波相关性的 HbO 和 HbR 分	统的氧合指标有	
		估飞行员认知参与的可			与。		类准确度平均 65.34%和 59.94%,协方差(62.93 和	更好的分类性	
		行性。					56.03%), HbO 和 HbR 的曲线下面积(61.76 和	能。	
							57.83%);		
							3.组合分类: 最佳组合(协方差-小波相关性)、基于 HbO		
							和 HbR 分类准确度分别为 66.4%和 59.8%。		
Dehais et al.,	心理负	开发基于 fNIRS-EEG 的	模拟飞行	飞行员	被试在飞行模拟器和实际的轻	基于 fNIRS-	1.飞行员在实验的高认知疲劳组错过的听觉目标显著高	基于 fNIRS 和	EEG
2018	荷、认	pBCI,以推断飞行中的	vs 实际飞		型飞机上执行四种交通模式以	EEG 的分类	于低认知疲劳组;	EEG 的 pBCI 可	
	知疲劳	认知疲劳。	行		及次要听觉任务。交通模式区	器,sLDA	2.在飞行模拟器条件下认知疲劳高低的分类精度达到	以监视嘈杂环境	
					分为高、低认知疲劳等级。		87.2%,在实际飞行条件下的分类精度达到87.6%。	中的心理状态。	
					fNIRS 用于评估其心理负荷。				
Gateau et al.,	工作记	实现基于 fNIRS 的在线	模拟飞行	飞行员	被试完成与 ATC 交互任务(高	SVM, MACD	1.在真实的飞行条件下,飞行员在完成认知要求较高的	在生态有效环境	
2018	忆负荷	pBCI,以区分高度生态	vs 实际飞		低工作记忆负荷)。fNIRS 用于	滤波器	任务时,比模拟器中的飞行员犯下了更多的错误,并且	中开发基于	
		飞机驾驶任务中的两个	行		评估其心理负荷。		PFC的激活程度更高;	fNIRS 的	
		级别的工作记忆负荷。					2.对单个试验工作记忆负荷分类的评估显示,在两种实	pBCI.	
							验条件下,其负荷分类准确性都很高(>76%)。		

附录 2 (续)

作者	领域	研究目的	任务环境	被试	研究方法	BCI 算法	结果简要	研究意义	其他技术指标
Çakır et al.,	心理负荷	1.探索在模拟飞行环境中	模拟飞行	飞行员	被试执行模拟飞行场景任务,	LDA	使用单个飞行员的训练模型可以预测其余模拟飞行中	fNIRS 在现	
2016		fNIRS 实时评估心理负荷			研究者手动标记低、中、高心		68%情况的心理负荷水平。	实飞行模拟	
		的潜力;			理负荷场景。fNIRS 用于评估			环境中进行	
		2.开发了 LDA 分类器来			其心理负荷。			实时评估心	
		区分真实飞行模拟场景						理负荷的潜	
		中低、中、高水平的心						力。	
		理负荷。							
Durantin et	工作记忆负	设计一个卡尔曼滤波器	模拟飞行	飞行员	1.被试执行数字序列记忆任务	卡尔曼滤波	与传统的 IIR 滤波器相比,MACD 的统计效果更好;与	卡尔曼滤波	
al., 2016	荷	来改善神经工程学应用			时,fNIRS 用于评估其 PFC 活		MACD 和 IIR 滤波器相比,卡尔曼滤波器的使用效果更	器是一种实	
		中的 fNIRS 信号。			动。收集的数据用于选择滤波		好。	时改善	
					器参数 Q/R 的值;			fNIRS 信号	
					2.被试在模拟飞行中执行 ATC			的合适方	
					指令(高/低难度),评估滤波算			法。	
					法对信号的改善效果。				
Gateau et	工作记忆负	实现在线 fNIRS 预测系	模拟飞行	飞行员	被试执行与 ATC 交互任务(高	基于 MACD	1.基于 MACD 的实时状态估计算法估计飞行员的心理	这两个估算	
al., 2015	荷	统,该系统集成了两个			低工作记忆负荷)。fNIRS 用于	的实时状态估	状态与其真实状态的匹配度好于随机性(62%的准确	器为进一步	
		互补估计器。基于			评估其工作记忆负荷。	算;SVM	度);	基于 fNIRS	
		MACD 的实时状态估计					2. SVM 专用于评估单个试验工作记忆负荷,80%的分	的被动脑机	
		算法,旨在识别飞行员					类精度。	接口开发建	
		的瞬时心理状态(非任务						立了可重用	
		与任务状态);基于 SVM						库。	
		的在线分类器, 能够区							
		分任务难度(高低工作记							
		忆负荷)。							

注: ATC: air traffic control, 空中交通管制; EEG: Electroencephalogram, 脑电; fNIRS: functional near-infrared spectroscopy, 功能性近红外光谱; HbO: oxy-hemoglobin, 氧合血红蛋白; HbR: deoxy-hemoglobin, 氧合血红蛋白; H

附录 3 fNIRS 在特殊环境中的应用性研究

作者	领域	研究目的	任务环境	被试	研究方法	结果简要	研究意义	其他技术指标
Fresnel et al.,	高过载	探索特技飞行员在	实际飞行	飞行员	个案研究,飞行员在两次执飞任务中完成多个	被试飞行过程中,连续正、负 Gz 暴露对	fNIRS 提供了一些有价值的和	
2021*		经历急性+Gz 暴露			特技飞行机动,以此暴露于急性+Gz。fNIRS	脑血流动力学改变有很大影响,特别是其	敏感的指标监测飞行员飞行过	
		其生理反应变化情			用于评估其过载中的脑组织血氧变化。	与 HbO 浓度显著正相关。	程中暴露于多个和高+Gz情形	
		况					下的脑血流动力学反应。	
Gerega et al.,	高过载/	fNIRS 评估空军飞	模拟离心功	飞行员和普	被试于工作台经历不同倾斜角度,如0°	普通人员在经历不同阶段时相比飞行员的	fNIRS 可以作为一种重要的工	
2020	离心训练	行员直立应激和下	能的下体负	通人员	~+70°, 0°, +70°~-30°。fNIRS 评估不同	Hbtot 变化较大,根据 Hbtot 浓度可以将被	具来筛选直立耐力和训练提高	
		体负压时脑组织血	压腔(lower		阶段的脑组织氧合水平。	试 100%正确区分飞行员或普通人员。	飞行员的+Gz 耐受性。	
		氧状态	body					
			negative					
			pressure) \bot					
			作台					
Kobayashi et	高过载/	探索被试在+Gz 暴	离心机	飞行学员	被试暴露于+Gz,其中+Gz水平由离心机的训	多数被试成功执行抗荷动作(anti-g	虽然 fNIRS 是一种有效的监测	
al., 2012	离心训练	露期间 fNIRS 记			练程序产生,包括逐渐运作(增长速率: 0.1Gz/	straining maneuver),并在+Gz 暴露期间保	抗 G 机动性能的工具,但应根	
		录的一般模式和个			s)最大为8Gz;快速运作,短期重复暴露(增长	持或增加了 HbO 水平。与 HbO 反应相	据颅内氧合结果谨慎评估。	
		体差异。			速率 1Gz/s)Gz 水平 4-7Gz 变化。fNIRS 用于评	反,TOI在 Gz 开始时的抗 G 应变操作期		
					估其高过载过程中的脑组织血氧变化。	间或在离心机快速运作期间降低。		
Tripp et al.,	高过载/	追踪 G-LOC 期间	离心机	普通人员	被试暴露于+Gz, 其中+Gz水平由计算机控制	在 G-LOC 发生后,离心停止不久, rSO_2	利用 rSO_2 损失、性能下降和	
2009	离心训练	飞行员的 rSO_2 和			系统生成,包括两个加速度曲线:逐渐增加	恢复到基线水平。然而,性能缺陷持续了	G-LOC 发作之间的联系开发一	
		行动表现。			0.1Gz/s 建立被试+Gz 容忍度;快速增加	49.45 秒。	种预警系统, 使飞行员能够采	
					3Gz/s, 引起意识丧失。fNIRS 用于评估其高过		取有效行动避免 G-LOC 丧失	
					载过程中的脑组织血氧变化。		能力。	

附录3(续)

作者	领域	研究目的	任务环境	被试	研究方法	结果简要	研究意义	其他技术指标
Kurihara et al.,	高过载/离心训	测量不同水平+Gz 暴露	离心机	飞行员	被试在七种离心机曲线下的表现,Gz水	在加速导致意识丧失的飞行员的	证明了 TOI 对于评估抗 G	
2007	练	时飞行员的 PFC 氧合情			平为4至8Gz,增长速率为0.1至6.0	PFC的 TOI下降了 15%。	保护系统的效果是有用的。	
		况,以确定在高+Gz 暴			Gz/s。fNIRS 用于评估其高过载过程中		然而,由于个体对脑氧合减	
		露时失去意识和没有意			的脑组织血氧变化。		少的敏感性差异很大,PFC	
		识的被试之间的差异。					的 TOI 和 HbO 浓度的变化	
							不能预测 G-LOC。	
Ryoo et al., 2004	高过载/离心训	研究 rSO_2 的相对变化与	模拟飞行	普通人员	被试暴露在+6,+8和+10Gz三种水平	持续 $+$ Gz 运行期间 rSO $_2$ 的下降较	rSO ₂ 下降幅度与 ICAP 长度	
	练	G-LOC 发作的关系,探			下,研究 G-LOC 在持续 15s +Gz 和重复	小,但 ICAP 更长,而脉冲运行期	的关系表明,+Gz 暴露类型	
		讨其是否可以作为意识			短时+Gz 脉冲的血流动力学变化。	间 rSO2 水平的平均下降更大,	可能是影响 G-LOC 事件性	
		丧失的预测指标。			fNIRS 用于评估其高过载过程中的脑组	ICAP较短。	质和深度的因素。这些结果	
					织血氧变化。		可以纳入高性能飞机驾驶员	
							个人防护装备的闭环控制系	
							统的设计中。	
Bouak et al.,	急性缺氧	研究缺氧暴露对情绪和	低压舱	飞行员	被试分别2天,每天6小时暴露于8000	rSO_2 受海拔高度影响显著下降,但	在没有补充氧气的情况下暴	
2019	/低氧环境	表现等的影响			或 9900 英尺海拔高度,然后完成模拟飞	在暴露 6 小时内,该值保持稳定,	露于轻度缺氧长达6小时的	
					行任务和认知测试。fNIRS 用于评估脑	在被试认知或模拟飞行性能方面没	被试,没有观察到表现缺陷	
					区血氧浓度(rSO ₂)。	有观察到负的下降。	的明确证据。	
Bouak et al.,	急性缺氧	在 8000 和 14,000 英尺	低压舱	飞行员	实验设置 4 种高度(8000、10000、	rSO2受海拔高度和运动水平增加的	轻度缺氧对较低海拔(即	
2018	/低氧环境	之间研究了急性轻度缺			12000、14000 英尺)和 3 种运动体力消	影响。rSO ₂ 在高海拔(14000 英尺)显	8000 和 10000 英尺) 的飞	
		氧缺氧和身体活动对模			耗水平。在每次运动后,被试完成认知	著减少,运动会加剧这种减少。	行员绩效没有明显的影响。	
		拟飞行任务的生理测			任务测试,fNIRS 用于评估脑区血氧浓			
		量,体征和症状,情			度(rSO ₂)。			
		绪,疲劳,认知和性能						
		的影响。						

附录3(续)

作者	领域	研究目的	任务环境	被试	研究方法	结果简要	研究意义	其他技术指标
Phillips et al.,	急性缺氧	建立急性缺氧对认	低氧呼吸装	普通人员(有飞	被试低氧暴露前、期间和暴露后60分	被试低氧暴露期间对比敏感度,色	低氧暴露后某些性能特	
2015	/低氧环境	知,心理运动和知觉	置	行体检记录)	钟、120分钟和24小时接受一系列关于	觉和主观负荷受到不同程度的影	征会受到损害, 有些会	
		能力的影响,并记录			视力、对比敏感度、色觉、执行控制和	响,但在恢复常氧后不久又恢复到	持续相当长的一段时	
		这些能力完全恢复至			反应时间的测试。fNIRS 用于评估其低	基线水平; 相反, 反应时间和局部	间。缓解措施应更多地	
		暴露前水平所需的时			氧暴露期间的血氧水平。	脑氧饱和度 rSO ₂ ,直到暴露 24 小	集中于预防低氧暴露,	
		间。				时后才回到基线水平。	而不是仅仅依靠培训操	
							作员来早期识别低氧症	
							状并对其做出反应。	

注:由于 Fresnel 等(2021)文章检索过程中无法获取全文,故无法知悉其 fNIRS 设备规格等信息,因此未在后续"附录 4 fNIRS 设备或探针设置与规格"等表中报告;fNIRS:functional near-infrared spectroscopy,功能性近红外光谱;G-LOC:+Gz-induced loss of consciousness,+Gz 引起的意识丧失;Hbtot:total hemoglobin concentrations,总血红蛋白浓度;ICAP:incapacitation time,失能时间;PFC:prefrontal cortex,前额叶皮层;rSO2:regional cerebral oxygen saturation,脑组织血氧饱和度;TOI:tissue oxygenation index,组织氧合指数(反映脑内氧气生成变化的)。

附录 4 fNIRS 设备或探针设置与规格

作者	领域	fNIRS 设备	监控通道数	使用波长(nm)	采样频率(Hz)	电极距离(cm)
Hamann & Carstengerdes, 2022	心理负荷	NIRSport2	15		10	2.6~3.9
Li et al., 2022	心理负荷	OctaMon CW fNIRS 设备	8	760和850	2	3.5
Sun et al., 2019	工作负荷、认知疲劳	TASH-100			2	
Causse et al., 2017	心理负荷	CW fNIR 设备(fNIR Devices LLC)	16	730和850	2	
Causse et al., 2018	心理负荷、神经效率	fNIR 100 (Biopac)	16	730和850	2	2.5
Ahlstrom et al., 2016	认知参与、决策	CW fNIRS 设备	16	730和850	2	
Ahlstrom, 2015	认知参与	CW fNIRS 设备	16	730和850	2	
Durantin et al., 2014	心理负荷	fNIR 100 (Biopac)	16		2	
Ayaz et al., 2012	心理负荷	CW fNIR 设备 (fNIR Devices LLC)	16		2	2.5
Menda et al., 2011	认知负荷、情景意识		16			
Kikukawa et al., 2008	认知负荷	NIRO-300G 和 Hamamatsu Photonics				4
Takeuchi, 2000	心理压力	NIRO-500 和 Mamamatsu- hotonichs	2	730和850	2	4.5
Pan et al., 2022	认知疲劳	Gowerlabs LUMO 系统	108	730和850	10	
Verdière et al., 2018	认知参与	NIRx Medical Technologies	42	760和850	7.8125	最大3
Dehais et al., 2018	心理负荷、认知疲劳	NIRSport NIRX	12		8.93	
Gateau et al., 2018	工作记忆负荷	fNIR 100 (Biopac)		730和850	2	2.5
Çakır et al., 2016	心理负荷	fNIRS 系统	16	730、805和850	2	2.5
Durantin et al., 2016	工作记忆负荷	fNIR 100 (Biopac)	16		2	
Gateau et al., 2015	工作记忆负荷	fNIR 100 (Biopac)	16		2	
Reddy et al., 2022	技能训练水平、个体差异	fNIR Imager 1200 (fNIR Devices LLC)	18	750和830	10	1、2.5
Causse et al., 2019	飞行经验/技能训练水平	fNIR 100 (Biopac)	16	730和850	2	2.5
Choe et al., 2016	飞行经验/技能训练水平	NIRSport NIRX	20	760和850	8	3.5
Hernandez-Meza et al., 2015	飞行经验/技能训练水平	CW fNIR 设备	16	730和850	2	2.5
Gerega et al., 2020	高过载/离心训练	6 通道 fNIRS 系统	6	735 和 850		2和3
Kobayashi et al., 2012	高过载/离心训练	NIRO-150		775、810和850	2	4
Tripp et al., 2009	高过载/离心训练	Somentics				

附录 4(续)

作者	领域	fNIRS 设备	监控通道数	使用波长(nm)	采样频率(Hz)	电极距离(cm)
Kurihara et al., 2007	高过载/离心训练	NIRO-300G		775、810 和 850	2	4
Ryoo et al., 2004	高过载/离心训练	NIRS 系统		810和 840	33.33	4.4
Bouak et al., 2019	急性缺氧/低氧环境	EQUANOX 传感器				
Bouak et al., 2018	急性缺氧/低氧环境				0.25	
Phillips et al., 2015	急性缺氧/低氧环境	INVOS 5100C			0.2	

注: CW: continuous wave,连续波; fNIRS: functional near-infrared spectroscopy,功能性近红外光谱。

附录 5 fNIRS 数据收集规范

作者	人数	总试次(条件数)	单次 trial 时长	基线时长(类型、何时)	监控脑区	探针参考系统
Hamann & Carstengerdes, 2022	35	[8]			PFC	
Li et al., 2022	26	3 [3]	180 s	1 min(局部,每次任务开始前)	PFC	
Sun et al., 2019	50(阶段 2)	8 [2]	20 min	20 min(全局,任务开始前)	PFC	
Causse et al., 2017	10(记录 fNIRS 数据)	30 [3]	54s(试次间休息 18s)		PFC	
Causse et al., 2018	26(阶段1)	2 [2], [3]	2.5 to 3 min	10 s (全局, 每次任务开始前)	PFC	
	18 (阶段 2)		(1 阶段)			
			~20 s (2 阶段)			
Ahlstrom et al., 2016	70	1 [1]	20 min		双侧 PFC	
Ahlstrom, 2015	24	1 [3]	25 min		PFC	
Durantin et al., 2014	12	160 [4]	~10 s	10 s	PFC	
Ayaz et al., 2012	7	160 [2]	2 h~3 h/20 次	(局部,每个任务开始时的休息时	背侧和腹侧 PFC	10/20 国际系统
				间)		
Menda et al., 2011	11	6 [2]		20 s(局部,每次飞行前闭眼休息)	PFC	
Kikukawa et al., 2008	4	1	2 h		双侧 PFC	
Takeuchi, 2000	9	4 [4]	<3 min	1 min (局部,每个任务开始时的	PFC	
				休息时间)		
Pan et al., 2022	30	1	10 min		PFC	
Verdière et al., 2018	12	8 [2]	6 min	飞机巡航阶段飞行员被要求放	PFC 和枕叶	
				松,以此为基线		
Dehais et al., 2018	4	1 [4]	50 min			
Gateau et al., 2018	14	20 [2]				
Çakır et al., 2016	8	4		10 s		
Durantin et al., 2016	18(飞行模拟)	40 [2]	~30 s		PFC	
Gateau et al., 2015	19	40 [2]	~30 s		PFC	
Reddy et al., 2022	13	30 [5]	2 min		PFC	
Causse et al., 2019	61		30 min	10 s(全局,实验前放松 2 min 后)	PFC	
Choe et al., 2016	32	20		1 min(实验前后休息状态)		

附录5(续)

作者	人数	总试次(条件数)	单次 trial 时长	基线时长(类型、何时)	监控脑区	探针参考系统
Hernandez-Meza et al., 2015	10	1[1]	1 h		PFC	
Gerega et al., 2020	24	[3]	~14 min	180 s(局部, 阶段前静息)	PFC 和运动皮层	
Kobayashi et al., 2012	22	[5]		30s(全局, 离心开始前的平	右侧 PFC	
				均值)		
Tripp et al., 2009	6	[2]	5 min	10 s(全局,实验阶段之前)	右侧 PFC	
Kurihara et al., 2007	141	7		30 s(全局, 离心开始前的平	PFC	
				均值)		
Ryoo et al., 2004	9	[6]				
Bouak et al., 2019	17	[2]		(全局,低氧暴露前)	PFC	
Bouak et al., 2018	16	[12]		(全局,实验开始前)	PFC	
Phillips et al., 2015	19	4 [4]	30 min		双侧 PFC	

注: PFC: prefrontal cortex, 前额叶皮层。

附录 6 fNIRS 信号质量控制处理

作者	信号质量控制	运动伪迹去除方法	试验次数、渠道、参与者排除	信号处理流
Hamann & Carstengerdes,		利用 gamma 血流动力学响应函数建立一般线性		
2022		模型,将 n-back 水平作为预测因子,短距离通道		
		作为额外的预测因子,以便在统计上控制生理混		
		淆和运动伪迹。		
Li et al., 2022	小波变换对原始数据进行平滑处理,			
	减小高频噪声分量;血流动力学响应			
	函数作为低通滤波器被用来减少高频			
	生理噪声如心跳。			
Sun et al., 2019			由于实验过程中某些仪器出现故障,部分学	
			员的数据无法纳入分析。	
Causse et al., 2017			一个被试的通道 5 和 11、另一个被试的通道	截止频率为 0.01 Hz ~0.1 Hz 且阶数为 20 的
			5和15	FIR 滤波器
Causse et al., 2018	去除饱和光极(平均浓度值低于-15		在着陆场景下1名被试的1个通道排除,实	截止频率为 0.02-0.40 Hz 且阶数为 20 的 FIR
	μmol/L 或高于 +15 μmol/L)		验室环境下另一个被试的3个通道被排除,	滤波器;
			缺失值由该被试在所有其他可用光极上计算	基于相关性的信号改善算法用于消除尖峰信
			的平均浓度代替。	号并改善信号质量(基于 HbO 和 HbR 之间假
			10 1 - 3.10 Z.1 VII -	设的负相关性); 然后目视检查数据并移除所
				有饱和光极
Ahlstrom et al., 2016			一名飞行员的数据丢失	1, 12, 11.9 6 12.
Ahlstrom, 2015				
Durantin et al., 2014				
Ayaz et al., 2012	排除光强度高于模数转换器限制的饱	排除高运动伪迹和低信噪比试验	两名受试者因运动伪迹被排除在外。	具有有限脉冲响应的低通滤波器、截止频率
	和通道			为 0.1 Hz 且阶数为 20 的 FIR 滤波器
Menda et al., 2011		数据首先清除运动伪迹		FIR 滤波器,截止频率为 0.2 Hz
Kikukawa et al., 2008				
Takeuchi, 2000				

附录 6(续)

作者	信号质量控制	运动伪迹去除方法	试验次数、渠道、参与者排除	信号处理流
Pan et al., 2022		样条插值		0.01 Hz 的低通滤波器和 0.2 Hz 的高通滤波
Verdière et al., 2018		小波插值		3 阶截止频率 0.01 Hz 的高通滤波器和 5 阶截
				止频率 0.5 Hz 的低通滤波器
Dehais et al., 2018		样条插值		5 阶截止频率 0.01 Hz 的高通滤波器和 3 阶截
				止频率 0.5 Hz 的低通滤波器
Gateau et al., 2018	检查光级信号是否饱和			
Çakır et al., 2016				
Durantin et al., 2016	包括具有良好 Q/R 值的信号(状态噪声			卡尔曼滤波器
	方差/测量噪声方差)			
Gateau et al., 2015	包括具有良好 Q/R 值的信号(状态噪声			卡尔曼滤波器
	方差/测量噪声方差)			
Reddy et al., 2022	去除饱和(>4500),高暗电流值	基于小波的运动伪迹去除去除突变峰值		截止频率为 0.005 和 0.1 Hz 的高通和低通
	(>200),波长与环境测量值之间高相			FIR 滤波器
	关的通道			
Causse et al., 2019			由于一名被试的 fNIRS 数据不可用,排除其	FIR 滤波器,基于相关性的信号改进算法过
			数据	滤尖峰伪像,并根据 HbO 和 HbR 之间的假
G1				定负相关性提高信号质量
Choe et al., 2016			Marina Ma	带通滤波器(0.01 Hz~2 Hz)
Hernandez-Meza et al., 2015			饱和及被低估的通道被排除	具有有限脉冲响应的低通滤波器、截止频率
				为 0.1 Hz 且阶数为 20 的 FIR 滤波器
Gerega et al., 2020 Kobayashi et al., 2012				
Tripp et al., 2009				
Kurihara et al., 2007			由于在+Gz 暴露期间缺少被试右侧 PFC 数	
			据,故只是用左侧完整的数据。	

附录6(续)

作者	信号质量控制	运动伪迹去除方法	试验次数、渠道、参与者排除	信号处理流
Ryoo et al., 2004				带通滤波器(0.01 Hz、1 Hz)
Bouak et al., 2019				
Bouak et al., 2018				
Phillips et al., 2015			rSO_2 测试值不大于 50 时,不能表征被试大	
			脑皮层中 rSO ₂ 浓度,故排除 4 名被试	

注: FIR: Finite Impulse Response,有限长单位冲激响应滤波器,又称为非递归型滤波器;HbO: oxy-hemoglobin,氧合血红蛋白;HbR: deoxy-hemoglobin,脱氧血红蛋白;PFC: prefrontal cortex,前额叶皮层;

Q: 状态噪声; R: 测量噪声; rSO₂: regional cerebral oxygen saturation,脑组织血氧饱和度。

附录 7 fNIRS 数据分析

DV 的开始时间和持续时间	DV	统计分析	报告了多项更正
	Δ HbR	一般线性模型	FDR
每个条件的平均 Δ HbO(基于基线)	Δ HbO	一般线性模型	Bonferroni 校正
		单因素重复测量方差分析	
	\triangle HbO, \triangle HbR, \triangle Hbtot, rSO ₂	重复测量方差分析比较休息对照组和模拟飞行实验组之间的差异以	
		及测量前后的差异。	
	Δ HbO, Δ HbR		
HbO 和 HbR 浓度在每个条件下的所	Δ HbO, Δ HbR	方差分析用于测试关于在任务期间增加难度是否会导致任务表现相	
有试验中取平均值		对于 Δ HbO 和 Δ HbR 降低的假设	
DV 是对照组和实验组的平均值	HbO - HbR		
DV 是飞行场景期间的平均值	HbO - HbR	贝叶斯估计	
每个条件的平均 Δ HbO(基于基线)	Δ HbO(相对于 10 秒基线)	重复测量方差分析:被试内因素"处理负荷"和"控制难度",以	
		及每个通道的ΔHbO	
DV 在各阶段训练中取平均值且相对	HbO - HbR	重复测量方差分析	FDR
于基线水平			
刺激前后 100s,每个通道的平均值	Δ HbO、ΔHbR、ΔHbtot (相对于局部基线)	Mann-Whitney U 非参数检验	
DV 是飞行场景中各个阶段平均值	\triangle HbO, \triangle HbR		
Δ HbO 的最大振幅	Δ HbO(相对于开始时的值)	三因素方差分析	
DV 是飞行场景中各个阶段相应时间	Δ HbO 及其相关的氧合测量(如峰值、平均值、方		
窗口(15 s)的均值	差等)		
DV 是飞行场景中各个阶段平均值	Δ HbO, Δ HbR 及其相关的氧合测量(如峰值、平均	二分类分类器(基于二项分布)、重复测量方差分析比较不同特征的分	Tukey's HSD
	值、方差等)	类性能	
		小波相干性度量,计算时频空间中的局部相关系数,基于 fNIRS-	
fNIRS 的数据针对每个试验的响应窗			
	每个条件的平均 Δ HbO(基于基线) HbO 和 HbR 浓度在每个条件下的所有试验中取平均值 DV 是对照组和实验组的平均值 DV 是飞行场景期间的平均值 每个条件的平均 Δ HbO(基于基线) DV 在各阶段训练中取平均值且相对于基线水平 刺激前后 100s,每个通道的平均值 DV 是飞行场景中各个阶段平均值 Δ HbO 的最大振幅 DV 是飞行场景中各个阶段相应时间窗口(15 s)的均值	毎个条件的平均 Δ HbO(基于基线) Δ HbO	6个条件的平均 ΔHbO(基于基线) ΔHbO 一般线性模型 EDM 工具製量方差分析 在BMO、ΔHbR、ΔHbtot, rSO; 重复测量方差分析比较休息对照组和模拟飞行实验组之间的差异以及测量前后的差异。 AHbO、ΔHbR、ΔHbtot, rSO; 更复测量方差分析比较休息对照组和模拟飞行实验组之间的差异以及测量前后的差异。 AHbO、ΔHbR 方差分析用于测试关于在任务期间增加率度是否会导致任务表现相对于AHbO 和ΔHbR 降低的假设 DV 是对照组和实验组的平均值 HbO - HbR 贝叶斯估计 BY 条件的平均 ΔHbO(基于基线) 其例量方差分析:被试内因素"处理负荷"和"控制速度",以及与个通道的入HbO DV 在各阶设训练中取平均值且相对 并BO - HbR 其处人通道的产生分析:被试内因素"处理负荷"和"控制速度",以及与个通道的平均值 DV 是飞行场景中各个阶段平均值 人HbO、AHbR、AHbtot (相对于局部基线) Mann—Whitney U 非参数检验 DV 是飞行场景中各个阶段平均值 人HbO、AHbR、AHbtot (相对于局部基线) Mann—Whitney U 非参数检验 DV 是飞行场景中各个阶段平均值 人HbO、AHbR、在Hbtot (相对于局部基线) Mann—Whitney U 非参数检验 DV 是飞行场景中各个阶段平均值 人HbO、AHbR、在Hbtot (相对于局部基线) Mann—Whitney U 非参数检验 DV 是飞行场景中各个阶段平均值 人HbO、AHbR、在Hbtot (相对于局部基线) ED展素方差分析 DV 是飞行场景中各个阶段平均值 人HbO、AHbR 及其相关的氧合测量(如峰值、平均值、方 二分类分类器(基于二项分布)、重复测量方差分析比较不同特征的分类分类器(基于二项分布)、重复测量方差分析比较不同特征的分类分类器(基于 (NIRS-使用)、方差的分析的是有关系数,基于 (NIRS-使用)、数据中性度量、计算时频空间中的局部相关系数,基于 (NIRS-使用)、数据中性度量、计算时频空间中的局部积关系数,基于 (NIRS-使用)、数据中的人类数量的分析的人类数量的分析的人类的类型的分析的人类的类型的分类的类型的分析的人类的类型的分析的人类的类型的分析的人类的类型的分析的人类的类型的分析的人类的类型的分析的人类的类型的分析的人类的分析的人类的分析的人类的类型的分析的人类的类型的分析的人类的类型的分析的人类的类型的分析的人类的类型的分析的人类的分析的人类的分析的人类的分析的人类的类型的分析的人类的类型的分析的人类的类型的分析的人类的类型的分析的人类的类型的分析的人类的分析的人类的人类的分析的人类的类型的分析的人类的类型的分析的人类的类型的分析的人类的分析的人类的类型的分析的人类的类型的分析的人类的分析的人类的类型的分析的人类的类型的分析的人类的类型的分析的人类的类型的分析的人类的类型的分析的人类的分析的人类的类型的分析的人类的类型的

附录7(续)

作者	DV 的开始时间和持续时间	DV	统计分析	报告了多项更正
Çakır et al., 2016		HbO 和 HbR 信号的平均值、标准偏差、坡度、最	LDA 分类器	
		小值、最大值和范围值,以及一个特征载体,包括		
		平均值、标准偏差、坡度和 HbO 和 HbR 信号的范		
		围测量		
Durantin et al., 2016		\triangle HbO 、 \triangle HbR	两因素方差分析(16个通道,三个难度级别)、SVM 分类器	
Gateau et al., 2015	在每个时间窗口内对每个通道的 DV	Δ HbO、Δ HbR(与基线相比)	两因素重复测量方差分析	
	进行平均			
Reddy et al., 2022	试次开始后 15 s~试次结束前 15 s 这	Δ HbO、Δ HbR,利用 HbO 和 HbR 等计算相对效	线性混合效应回归模型	FDR
	个时间窗口内对每个通道的 DV 进行	率和相对卷入		
	平均			
Causse et al., 2019	Δ HbO 浓度变化在每个条件的所有试	Δ HbO	三因素重复测量方差分析任务伴随 HbO 浓度变化	Fisher 检验(Fisher's
	验中平均			least significant
				difference, LSD)
Choe et al., 2016	被试执行任务期间的血氧变化平均值	\triangle HbO, \triangle HbR, \triangle HbT	t检验	
Hernandez-Meza et al.,		HbO - HbR	两因素重复测量方差分析	FDR
2015			V = 1 \ V = 15	
Gerega et al., 2020		Δ HbT	单因素方差分析	
Kobayashi et al., 2012	离心机加速前基线期开始到相对失能	Δ HbO、TOI		
	阶段之后持续测量 HbO。			
Tripp et al., 2009	离心机加速前基线期开始到相对失能	Δ rSO ₂	方差分析	
	阶段之后的 5 分钟恢复期结束,持续			
	测量 rSO ₂ 。			
Kurihara, et al., 2007	+Gz 暴露期间与基线浓度相比的变化	\triangle HbO, \triangle HbR, TOI, % \triangle TOI	方差分析	Tukey 事后检验
	值			
Ryoo et al., 2004		Δ rSO ₂	方差分析	Fisher 最小二乘差异事
				后检验

附录7(续)

作者	DV 的开始时间和持续时间	DV	统计分析	报告了多项更正
Bouak et al., 2019	整个实验过程中连续收集血氧仪数	Δ rSO ₂	配对样本 t 检验; 三因素重复测量方差分析	
	据,包括暴露前(基线)和暴露后。			
Bouak et al., 2018	Δ rSO ₂ 的比较基于每个活动窗口的最	Δ rSO ₂	两因素重复测量方差分析	
	后 5 分钟数据			
Phillips et al., 2015	被试低氧暴露结束后 30min 的认知评	Δ rSO ₂	单因素方差分析	
	估期间的平均变化值			

注: DV: dependent variabl, 因变量; EEG: Electroencephalogram, 脑电; FDR: False Discovery Rate, 错误发现率; fNIRS: functional near-infrared spectroscopy, 功能性近红外光谱; HbO: oxy-hemoglobin, 氧合血红蛋白; HbR: deoxy-hemoglobin,,脱氧血红蛋白; Hbtot: total hemoglobin concentrations,总血红蛋白浓度; LDA: Linear Discriminant Analysis,线性判别分析; rSO₂: regional cerebral oxygen saturation,脑组织血氧饱和度; sLDA: shrinkage Linear Discriminant Analysis,收缩线性判别分析; SVM: Support Vector Machine,支持向量机; TOI: tissue oxygenation index,组织氧合指数(反映脑内氧气生成变化的)。