Vision System for Traffic Violation Detection

— Huandong Chang, Raphael Krief ——

Motivation & Project Objectives

Motivation

- In US, over 40,000 people died in motor vehicle traffic crashes in 2023¹
- A lot of people are unaware of their bad driving behaviors
- Current literature on traffic violation detection rely on CCTVs

Project Objectives

- Given a dashcam setup and a telematic sensor, we detect traffic rule violations
- Enhance driver safety by our vision-based system
 - Help new drivers form good driving habits
 - Collaborate with insurance company to offer discounts to safe drivers

Image & Video Dataset

Training set: Mapillary Traffic Sign Dataset (MTSD)

- Comprehensive Coverage: Over 250,000 annotated traffic signs from diverse geographic locations.
- Detail Rich: Features 313 unique traffic sign classes across 52,453 high-quality annotated images.
- Research Utility: Designed to reflect real-world variability, enhancing the robustness of detection algorithms.

Test set: Different driving videos

- Video Excerpts: Contains traffic signs from our dataset, ensuring relevant test scenarios.
- Diverse Locations: Includes one video captured in Cambridge and another in the countryside, providing varied environmental contexts.

Algorithm Pipeline

Finetune Yolov9 and make inference on testing videos (each frame independent)

Correct False Positives

Reduced the original dataset to 16,598 images spanning 33 distinct labels

Get an ID for each traffic sign (frames become dependent)

Build rule-based models to detect traffic sign violations

Object Detection with YOLOv9

Why Yolo (You Only Look Once) Architecture?

Fast: Only process the image once to predict multiple bounding boxes and class probabilities

Finetune Yolo

Batch Size: 16

• Epoch: 300

• Image Size: 640*640

• Validation Precision: 0.719

Validation Recall: 0.599

<u>Inference on video (Demo)</u>

Confidence Threshold: 0.5

Object Tracking with SORT

SORT (Simple Online and Realtime Tracking)

- The Kalman filter predicts the future state of each object based on its current state
- Then use Hungarian Algorithm (a combinatorial optimization algorithm) to assign detections to tracks (assign detections to object IDs)

Denoising

- Only keep traffic signs that appear more than 20 frames (60 frames/second, so 0.33 seconds)
- If an ID has >1 class predictions, take the mode

Video Demo

Traffic Sign Violation Detection

Stop Sign Violation Detection

- Stability-Based Detection: The algorithm identifies when the associated bounding box of a stop sign remains nearly identical (99% IoU similarity) for more than 30 consecutive frames (0.5 second)
- Stop Time Tracking
- Visual Indication

<u>Video Demo</u>

Limitations

- Cannot handle complex scenarios
- Real-Time Processing

Thanks!