B- Travail demandé

- Qu'elle est l'intérêt de l'utilisation de système à trois réservoirs dans l'industrie en général et au niveau de la commande de processus moderne en particulier.
- 2. En se basant sur les règles de Torricelli, montrer que le modèle du système peut être décrit par les équations suivantes :

Réservoir 1:
$$\dot{h}_1 = \frac{1}{S} [u_1(t) - Q_{13}(t)]$$

Réservoir 2: $\dot{h}_2 = \frac{1}{S} [u_2(t) - Q_{32}(t) - Q_{20}(t)]$
Réservoir 3: $\dot{h}_3 = \frac{1}{S} [Q_{13}(t) - Q_{32}(t)]$
où $Q_{13}(t) = a_1 S_n \operatorname{sgn}(h_1(t) - h_3(t)) \sqrt{2g|h_1(t) - h_3(t)|}$
 $Q_{20}(t) = a_2 S_n \sqrt{2g h_2(t)}$
 $Q_{32}(t) = a_3 S_n \operatorname{sgn}(h_3(t) - h_2(t)) \sqrt{2g|h_3(t) - h_2(t)|}$
 $u = [Q_1 \quad Q_2]^T$

- Expliquer pourquoi ce système est caractérisé de non-linéarités complexes.
- Réaliser le benchmark sur une maquette réelle et/ou virtuelle tout en présentant la méthodologie de dimensionnement du matériel.

5. Concevoir:

- Une interface LaBVIEW pour piloter la maquette.
- La carte électronique nécessaire sous Proteus pour établir une communication entre la maquette et le logiciel LabVIEW qui vous permet de résoudre la problématique posée.
- 6. Proposer une commande afin de contrôler les niveaux de liquide des réservoirs 1et 2 en manipulant les débits des pompes 1 et 2. Affiner les paramètres de votre commande afin d'améliorer vos résultats
- 7. Présenter les résultats obtenus simulés et réels et les comparer :
 - l'évolution du niveau d'eau dans le 1^{er} réservoir ;
 - l'évolution du niveau d'eau dans le 2^{éme} réservoir ;
 - l'évolution du niveau d'eau dans le 2^{éme} réservoir.
- 8. Analyser les résultats obtenus, conclure et définir une liste de perspectives

Projet 7. Three-Tank Liquid Level System

A- Description du benchmark

Le système à trois réservoirs "Three-Tank Liquid Level System" présenté sur la figure A7 est un système multi-entrées multi-sorties (MIMO) qui exhibe des caractéristiques de couplage assez forts et de non-linéarités complexes.

Figure A7. Three-Tank Liquid Level System

Les paramètres du système ainsi que ses variables sont cités dans le tableau A7.

Tableau A7. Paramètres et variables du système

Paramètre	Description	unité
h_i	Hauteur de l'eau dans le réservoir i (i=1,2,3)	m
Q_j	Débit de la pompe j vers le réservoir j $(j = 1, 2)$	m^3s^{-1}
Q13	Débit du réservoir 1 au réservoir 3	m3 s-1
Q32	Débit du réservoir 3 au réservoir 2	m3 s-1
Q20	Débit du réservoir 2 au Réservoir	m3 s-1
S	Section du réservoir 1, 2, 3	m^2
S_n	Section de l'orifice	m ²
a i	Coefficients de débit (i=1, 2, 3)	(4)
g	Coefficient de gravitation	m s ⁻²