

Algoritmos: Conceitos Fundamentais

Instituto de Ciências Matemáticas e de Computação

Slides elaborados pela

Prof(a). Simone do Rocio Senger de Souza

DADOS, INSTRUÇÕES E EXPRESSÕES

Uso da Informação

- Computador manipula informações contidas em sua memória.
- Classificadas em dois tipos:
 - Instruções: comandam o funcionamento da máquina e determinam a maneira como os dados devem ser tratados.
 - <u>Dados</u>: informação que devem ser manipulada pelo computador.

1- DADOS

- Objetivo do computador: realizar tarefas envolvendo informações ou <u>DADOS</u>
- Exemplo de DADOS:
 - notas
 - nomes
 - medidas
- Existem vários tipos de dados
 - cada tipo é representado e processado de forma diferente

2- TIPO DE DADOS

- Definir um tipo de dados serve a dois propósitos:
 - Classificar os dados de acordo com as informações contidas neles.
 - indicar quanto <u>espaço</u> de memória deve ser <u>alocado</u>

2- TIPO DE DADOS

2- TIPO DE DADOS - INTEIRO

- Inteiro: Toda e qualquer informação numérica que pertença ao conjunto dos números inteiros relativos (negativa, nula ou positiva)
- Exemplos:
 - Ele tem 15 irmãos
 - A escada possui 8 degraus
 - Meu vizinho comprou 2 carros novos
- Linguagem C: tipo int, long int, unsigned int, ...

2- TIPO DE DADOS - REAL

- Real: Toda e qualquer informação numérica que pertença ao conjunto dos números reais (negativa, nula ou positiva)
- Exemplos:
 - Ela tem 1,73 metro de altura (usamos 1.73)
 - Meu saldo bancário é de 215,20 (215.20)
 - No momento estou pesando 82,5 Kg (82.5)

2- TIPO DE DADOS - REAL

- Números reais muito grandes ou muito pequenos são escritos em forma de ponto flutuante (ou notação científica)
- Exemplo:

```
+3.14E+07 (3.14 x 10<sup>7</sup>)
5.1E-18 (5.1 x 10<sup>-18</sup>)
```

Linguagem C: tipo float, double, long double

2- TIPO DE DADOS - Literal

- <u>Literal</u>: Toda e qualquer informação composta por um conjunto de caracteres alfanuméricos: numéricos (0...9), alfabéticos (A...Z, a... Z) e especiais (por exemplo, #, ?, !, @).
- Exemplos:
 - Constava na prova: 'Use somente caneta!'.
 - O parque municipal estava repleto de placas: 'Não pise na grama'.
 - O nome do vencedor é 'Felisberto Laranjeira.'
- Linguagem C: tipo char, unsigned char

2- TIPO DE DADOS - LÓGICO

<u>Lógico</u>: Toda e qualquer informação que pode assumir apenas duas situações (biestável)

- Exemplos:
 - A porta pode estar aberta ou fechada.
 - A lâmpada pode estar apagada ou acesa.
- Linguagem C: não tem tipo lógico!!!

2- TIPO DE DADOS

Valores típicos para a linguagem C (padrão ANSI)

Tipo	Tamanho (bytes)	Intervalo
Char	1	-127 a 127
Unsigned char	1	0 a 255
Int	2	-32.768 a 32.767
Unsigned int	2	0 a 65.535
Long int	4	-2.147.483.647 a 2.147.483.647
Unsigned long int	4	0 a 4.294.967.295
Float	4	Seis dígitos de precisão
Double	8	Dez dígitos de precisão
Long double	10	Dez dígitos de precisão

- Durante a execução do programa os dados estão sendo manipulados
- Para que o computador <u>não esqueça</u> das informações contidas em um dado é necessário guarda-las em sua memória.
- As <u>variáveis</u> guardam informações sobre os dados (o seu conteúdo) que estão sendo manipulados.

Armazenamento das <u>variáveis</u> na memória do computador.

Armazenamento das <u>variáveis</u> na memória do computador.

Armazenamento das <u>variáveis</u> na memória do computador.

Declaração

de variáveis

- O nome da variável é único em todo o algoritmo.
- O conteúdo da variável deve ser do mesmo tipo usado na declaração da variável.
- O conteúdo da variável é substituído por outro que lhe será atribuído.
- O uso de uma variável em uma expressão representa o seu conteúdo naquele momento.
 - O uso não muda o seu conteúdo

Forma de declaração:

```
Algoritmo: C:

var

inteiro: idade; int idade;

real: peso; float peso;

caracter: sexo, nome[30]; char sexo, nome[30];

lógico: tem-filhos; char tem-filhos;
```

Após a declaração:

• Qual o nome que uma variável pode receber?

- Nome das variáveis:
 - Devem começar por um caracter alfabético;
 - Podem ser seguidos por caracteres alfabético e alfanuméricos;
 - Não é permitido o uso de caracteres especiais (menos o sublinha);

- Nome das variáveis:
 - Por convenção, os nomes das variáveis utilizam letras minúsculas (maiúsculas para nome de constantes);
 - Em C existe diferença entre maiúsculo e minúsculo:
 - nomeNOMENomevariáveis diferentes!
 - Podem ter qualquer tamanho, entretanto, apenas os 31 primeiros caracteres são utilizados pelo compilador;
 - Não é permitido o uso de palavras <u>reservadas</u> da linguagem C
 - Exemplo: for, while, do, if, else, nome de funções existentes...

- Nome das variáveis:
 - Utilizar nomes significativos para as variáveis.
 - Exemplo:
 - Que informação é armazenada na variável idade?
 - E na variável endereco?
 - E na variável **x12aa?**

EXEMPLOS DE NOMES DE VARIÁVEIS:

Inválidos:

5x, e(13), a:b, x-y, nota/2, awq*, p&aa

Válidos:

a, alpha, x, bj152, notas, h_12q

- As variáveis representam um dos tipos de identificadores que podem ser definidos em um programa (ou algoritmo)
- Um <u>identificador</u> pode identificar:
 - variáveis
 - constantes
 - tipos de dados definidos pelo usuário
 - funções

3- Exemplo

- Defina variáveis para armazenar os seguintes dados sobre uma pessoa:
 - Nome, RG, endereço, telefone, sexo, rendimento, número de dependentes.

Var

```
caracter: nome[30], rg[12], fone[10],
```

caracter: sexo;

real: rend;

inteiro: num_dep;

INSTRUÇÕES

Comandos que determinam ações que devem ser realizadas

1- Instruções Primitivas

- Comando de atribuição
- Comando de entrada
- Comando de saída

1- Comando de Atribuição

- Permite que se atribua um valor a uma certa variável.
- A natureza desse valor deve ser compatível com o tipo da variável na qual está sendo armazenado.
- Para se realizar uma atribuição em C, utiliza-se o sinal =

1- Comando de Atribuição

Linguagem Algorítmica	С
k = 1; TOTAL = $\sqrt{N} + X^2$ cor = "VERDE" ligado = 's';	<pre>k = 1; TOTAL = sqrt (N) + pow(X,2); strcpy(cor, "VERDE"); ligado = 's';</pre>

1- Comando de Atribuição

constante numérica

Linguagem Algorítmica

k = 1;
TOTAL =
$$\sqrt{N} + X^2$$

cor = "VERDE" | k = 1;
TOTAL = sqrt (N) + pow(X,2);
strcpy(cor, "VERDE") | ligado = 's',

$$k = 1;$$

strcpy(cor, "VERDE":

ligado = 's'

expressão aritmética

constante literal

2- Comando de Entrada

- O comando de <u>entrada</u> é utilizado para receber dados digitados pelo usuário (DADOS DE ENTRADA) e <u>armazená-los</u> em variáveis.
- Os dados de entrada são fornecidos ao sistema através de uma unidade de entrada, por exemplo o teclado.

2- Comando de Entrada

Algoritmo	C
leia(nome);	gets(nome);
leia(num);	scanf("%d", #);
leia(salario);	scanf("%f", &salario);
leia(sexo);	sexo = getch();
leia(num1, num2);	scanf("%d %d", &num1, &num2);

2- Comando de Entrada

- Na execução de um comando de entrada, o processamento é interrompido, até que sejam fornecidos, via unidade de entrada, valores para os dados de entrada.
- Os valores digitados pelo teclado devem ser separados pela digitação da tecla <ENTER>
- Os identificadores são separados por vírgula

3- Comandos de Saída

 O comando de saída é utilizado para que o sistema forneça, numa unidade de saída, os resultados do processamento e mensagens.

3- Comandos de Saída

- Resultados de Processamento: podem ser fornecidos através de conteúdos de variáveis, conteúdos de constantes e resultados de expressões aritméticas e lógicas.
- Mensagens: são utilizadas para que o programa dê informações ao usuário a respeito do processamento que está se realizando. Podem ser fornecidas através de conteúdo de variáveis, ou constantes do tipo string ou da mensagem propriamente dita.

3- Comandos de Saída

Algoritmo	C
escreva(nome);	printf("%s", nome);
escreva(nome, num);	printf("%s %d", nome, num);
escreva("valor inválido!");	printf("valor inválido!");

EXPRESSÃO ARITMÉTICA

- Denomina-se expressão aritmética aquela cujos operadores são aritméticos e cujos operandos são constantes ou variáveis do tipo numérico (inteiro ou real).
- Exemplo:

$$\frac{45.6}{A} - |D - COS(B)|$$

OPERADORES NUMÉRICOS

- + adição
- subtração
- * multiplicação
- *I* divisão
- I quociente inteiro (para int)
- % resto da divisão

- Os operadores +, -, *, / atuam com operandos do tipo integer ou real:
 - se pelo menos um dos operandos for do tipo real:
 - Resultado do tipo real
 - se os operandos são do tipo integer:
 - Resultado do tipo integer

- Operador /:
 - Para integer: parte inteira da divisão
 - Para float: considera a parte decimal
- Operador %: resto da divisão
 - Só se aplica para operadores integer
- Exemplo:

```
30 / 7 = \text{resulta } 4 30 \% 7 = \text{resulta } 2
5 / 7 = \text{resulta } 0 5 \% 7 = \text{resulta } 5
```

 Na <u>resolução</u> das expressões aritméticas, as operações guardam uma hierarquia entre si, sendo resolvidos da esquerda para direita se são de igual prioridade:

• Exemplo:

$$5^{2} - \frac{4}{2} + \sqrt{(1+3*5)/2}$$

$$5^{2} - \frac{4}{2} + \sqrt{(1+15)/2}$$

$$5^{2} - \frac{4}{2} + \sqrt{16/2}$$

$$25 - \frac{4}{2} + 4/2$$

$$25 - 2 + 4/2$$

$$25 - 2 + 2$$

$$25$$

EXPRESSÃO LÓGICA

- Denomina-se expressão lógica aquela cujos operadores são lógicos ou relacionais e cujos operandos são relações ou variáveis ou constantes do tipo lógico.
- Exemplo:

$$(A+B == 0)$$
 and $(C! = 1)$

- Denomina-se expressão lógica aquela cujos operadores são lógicos ou relacionais e cujos operandos são relações ou variáveis ou constantes do tipo lógico.
- Exemple

O que são
<u>Operadores Relacionais</u>
e
<u>Operadores Lógicos</u>?

OPERADORES RELACIONAIS

- Utilizam-se os operadores relacionais para realizar comparações entre dois valores de mesmo tipo primitivo.
- Tais valores são representados por <u>constantes</u>, <u>variáveis</u> ou <u>expressões</u> <u>aritméticas</u>
- O <u>resultado</u> obtido de uma relação é sempre um valor lógico.

OPERADORES RELACIONAIS

OPERADORES	==	igual
	!=	diferente
	>	maior
	<	menor
	>=	maior ou igual
	<=	menor ou igual

OPERADORES RELACIONAIS

• Exemplos:

OPERADORES LÓGICOS

 Utilizam-se três conectivos básicos para a formação de novas proposições lógicas compostas a partir de outras proposições lógicas simples.

OPERADORES LÓGICOS	&&	е
		ou
	!	não

TABELAS VERDADE

 Tabelas Verdade é o conjunto de todas as possibilidades combinatórias entre os valores de diversas variáveis lógicas, as quais se encontram em apenas duas situações (V ou F), e um conjunto de operadores lógicos

TABELAS VERDADE

Operação de Negação

TABELAS VERDADE

Operação de Conjunção (e)

Α	В	A && B
true	true	true
true	false	false
false	true	false
false	false	false

Exemplo:

A = Tenho dinheiro?

B = Tenho onde ir?

TABELAS VERDADE

Operação de Disjunção Não-Exclusiva (ou)

A	В	A B
true	true	true
true	false	true
false	true	true
false	false	false

Exemplo:

A = Tenho dinheiro?

B = Tenho onde ir?

OPERADORES LÓGICOS

 Na <u>resolução</u> das expressões lógicas, os <u>operadores</u> <u>lógicos</u> guardam uma hierarquia entre si:

OPERADORES LÓGICOS

 Na <u>resolução</u> das expressões lógicas, os <u>diversos</u> <u>operadores</u> gardam uma hierarquia entre si:

> parenteses mais internos operadores aritméticos operadores relacionais operadores lógicos

• Exemplos:

```
!(5!=10/2|V&&2-5>5-2|V)
(5!=5|V&& -3>3|V)
         || V && F || V )
```

Exemplos:

```
2^{4} = 4 + 2 \parallel 2 + 3 * 5/3 \% 5 > 0
16 = 6 \parallel 2 + 15 / 3 \% 5 > 0
16 = 6 \parallel 2 + 5 \% 5 > 0
16 = 6 \parallel 2 + 0 > 0
16 = 6 \parallel 2 + 0 > 0
V \parallel V
```

Exercícios

- Escreva um algoritmo que calcula o preço total de um produto, tendo como entrada o preço unitário e a quantidade vendida.
- 2. Escreva um algoritmo para calcular o consumo médio de um automóvel (medido em km/l), dada a distância total percorrida e o volume de combustível consumido para percorre-la (em litros).
- 3. Faça um algoritmo para cálculo do quadrado de um número, ou seja, o produto de um número por si mesmo.
- 4. Faça um algoritmo para o cálculo da função 2x + 3y² num domínio real.

