Reconstruction of B-Spline Surfaces From Scattered Data Points

Benjamin Gregorski, Bernd Hamann, and Kenneth I. Joy

Visualization and Graphics Group University of California, Davis

Overview

- Problem Description
- Previous Work
- Algorithm
- Error Metrics
- Conclusions
- Future Work

The Problem

- Scattered Point Sets from Digitization Devices, Range Scanners
- Surfaces (NURBS), Triangle Meshes,
 Conics for CAD Systems
- Applications
 - Preservation
 - Modeling
 - Reverse Engineering

Previous Work

- Types of Scattered data sets
 - Surfaces represented by a single sheet
 - Arbitrary surfaces of any genus
- Reconstructing B-Splines
 - Automatic methods (Hoppe et. al. SIGGRAPH 1996)
 - Interactive methods (Levoy et. al. SIGGRAPH 1996)
- Triangulation algorithms
 - Clustering approaches (Heckel et. al. IEEE VIS 1998)
 - Voronoi Diagrams/Delaunay Triangulations (Amenta et. al. SIGGRAPH 1998)
- Subdivision surfaces
 - Arbitrary topologies (DeRose et. al. SIGGRAPH 1994)

Algorithm Overview

- Decompose Scattered Point Set in a top down fashion using a 3-D strip tree .
- Compute bounding box of data points.
- Re-orient the bounding box along the *principal* directions.
- Recursively subdivide the root box until the resulting set of boxes adequately approximates the data points.
- The resulting tree, called a *strip-tree*, is used to fit surfaces.

Oriented Bounding Boxes

- Root bounding box for scattered point set
- Oriented using PCA
- Error calculation for an oriented bounding box

Generalized Strip Tree

- Quad-tree in 3-D space whose nodes are oriented bounding boxes.
- Each level approximates the data points.
- The boxes at one level are decomposed or subdivided to form the next finer level.
- Currently the subdivision is uniform.
 - All nodes must be subdivided.

Bounding Box Subdivision

- Find a subdivision point.
- Distribute data points.
- Re-orient the children.

Box Points

- Strip Tree with four nodes.
- Box Points for the four nodes.

Root Bounding Box

Strip tree after one subdivision

Box points for the strip tree

Strip tree after 4 subdivisions

Reconstruction of B-Spline Surfaces

Fitting Surfaces

- Decompose strip tree.
- Use next-to-last level to fit surfaces.
- Fit bi-quadratic surface to box points.
 - Elevate to bi-cubic.

Blending Surfaces

- Initial fitting process yields a collection of B-Spline surfaces.
- Blending Process consists of three steps:
 - C⁰ continuity is achieved by averaging control points of adjacent surfaces.
 - C¹ continuity is achieved by using the strip tree to approximate derivatives.
 - Average twist-vectors are computed and the interior control points are adjusted.

Curve Blending

 C^0 : p3 = q0

 C^1 : (p2 p3): (q0 q1) = A : B

A and B are the parameter ranges of the curves

Surface Blending

- C⁰ continuity
 - Equate four black points each blue pair
- C¹ continuity
 - Derivatives boundary curves in u,v directions (adjust blue and black points)
 - Twist vectors (adjust red points)

Box points for strip tree

Strip tree after 4 subdivisions

Initial surfaces for the strip tree

Wireframe of final surfaces

Error Calculations

- Error due to bounding box approximation
 - Size of the bounding box in the direction of the best-fit plane's normal vector.
- Error due to blending process.
 - Difference between the control points of the surfaces before and after blending.
- Total Error is the sum of these two errors.
- Upper bound of the actual deviation.

Performance Analysis

- For n data points, PCA runs in O(n).
- Expected O(n log n) time is necessary to completely subdivide the tree.
 - Assuming points are divided uniformly
- Worst case O(n²)
 - A good subdivision point is necessary.
- Memory Usage
 - Storage of data points. (small n)
 - Size of strip tree. (large n)

Crater Lake

Strip Tree

Initial Surfaces

Wireframe Surfaces

Final Surfaces

Wireframe Surfaces

Final Surfaces

Visualization and Graphics Research Group

Center for Image Processing and Integrated Computing
University of California, Davis

Reconstruction of B-Spline Surfaces

Conclusions

- Introduced a strip tree structure for approximating scattered data.
- Construct surfaces that approximate the data.
- Works well on scattered data that represents a smooth surface.
- Does not work well for twisting or self intersecting surfaces.
- Limitations arise from the Quad-Tree structure in the strip tree.

Future Work

- Incorporate non-uniform subdivision
 - Adaptive refinement in regions with more data, and more complicated behavior.
- Use an adaptive fitting process for regions of higher curvature.
- Approximate sharper features, darts, cliffs, etc...
- Extend algorithm to operate on more topologically complex data sets.
 - Represent the strip tree nodes as Voronoi tiles.
 - Use strip tree to develop a "curve on surface" scheme.
 - Construct subdivision surface from strip tree nodes.

Acknowledgements

- National Science Foundation
- Office of Naval Research
- ALSTOM Schilling Robotics, Chevron, Silicon Graphics Inc. and ST MicroElectronics Inc
- NASA Ames Research Center
- Lawrence Livermore National Laboratory