

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson

Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen utgörs av de första tre uppgifterna. Till antalet erhållna poäng från del A adderas dina bonuspoäng, upp till som mest 12 poäng. Poängsumman på del A kan alltså bli högst 12 poäng, bonuspoäng medräknade. Bonuspoängen beräknas automatiskt och antalet bonuspoäng framgår av din resultatsida.

De tre följande uppgifterna utgör del B och de sista tre uppgifterna del C, som främst är till för de högre betygen.

Betygsgränserna vid tentamen kommer att ges av

Betyg	A	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst två poäng.

2

DEL A

- 1. Betrakta funktionen f som ges av $f(x) = x 2 \arctan x$.
 - A. Bestäm definitionsmängden till f.
 - B. Bestäm de intervall där f är växande respektive avtagande.
 - C. Bestäm alla lokala extrempunkter till f.
 - D. Bestäm alla asymptoter till funktionsgrafen y = f(x).
 - E. Skissa med hjälp av ovanstående funktionsgrafen y = f(x).
- 2. Beräkna nedanstående integraler.

A.
$$\int_0^{\ln 3} \frac{e^x}{1+e^x} dx$$
 (använd gärna substitutionen $u=1+e^x$)

B. $\int_1^2 \frac{dx}{x^2-3x-4}$ (använd gärna partialbråksuppdelning)

B.
$$\int_{1}^{2} \frac{dx}{x^2 - 3x - 4}$$
 (använd gärna partialbråksuppdelning)

3. Bestäm den lösning till differentialekvationen

$$2y''(t) - 20y'(t) + 50y(t) = t$$

som också uppfyller initialvillkoren y(0) = 1/125 och y'(0) = 1.

DEL B

4. Beräkna integralen $\int_0^{1/2} \frac{1}{2 + 8x^2} dx$.

(För full poäng krävs att integralen beräknas exakt, men delpoäng kan ges för en approximativ beräkning. Svaret ska förenklas så långt som möjligt.)

- 5. Betrakta ekvationen $e^x + \arcsin x = 0$.
 - A. För vilka x är uttrycket $e^x + \arcsin x$ definierat?
 - B. Visa att ekvationen $e^x + \arcsin x = 0$ har exakt en lösning.
 - C. Finn ett närmevärde till lösningen med ett fel på högst 0.5.
- 6. Ett område som ligger på ena sidan om ett plant snitt genom en sfär kallas en *sfärisk kalott*.
 - A. Beräkna volymen av den sfäriska kalott man får genom att låta området mellan kurvan $y = \sqrt{100 x^2}$ och x-axeln, på intervallet $10 h \le x \le 10$, rotera runt x-axeln (vi antar att 0 < h < 10).
 - B. En sfär med radie 10 meter fylls med vatten i en takt av 0.2 kubikmeter per minut. Med vilken hastighet stiger vattenytan i det ögonblick då vattendjupet h (på det djupaste stället) är 2 meter? (Tips: från uppgift A får du att sambandet mellan vattenvolymen V och vattendjupet h ges av $V = 10h^2\pi h^3\pi/3$.)

DEL C

- 7. Denna uppgift handlar om teorin för kontinuitet och deriverbarhet.
 - A. Definiera vad det betyder att en funktion är kontinuerlig i en punkt a.
 - B. Definiera vad det betyder att en funktion är deriverbar i en punkt a.
 - C. Bevisa att en funktion som är deriverbar i a också måste vara kontinuerlig i a.
 - D. Ge exempel som visar att en funktion kan vara kontinuerlig utan att vara deriverbar.
- 8. Betrakta funktionen f given av $f(x) = x^2 + \int_0^x \sin^2 t \, dt$.
 - A. Beräkna Taylorpolynomet av grad 2 till f kring punkten x = 0.
 - B. Ange feltermen och visa att den är begränsad om $|x| \le 1$.
 - C. Beräkna gränsvärdet $\lim_{x\to 0} \frac{f(x)}{x^2}$.
- 9. Finn tal a och b sådana att $a \leq \sum_{n=1}^{\infty} \frac{1}{n^2} \leq b$. För full poäng krävs, förutom ett korrekt resonemang, att $b-a \leq 0.2$.