KM3NaiveBayes

Mikołaj Malec

April 21, 2020

Czym jest algorytm Naiwnego Bayesa?

Jest to klasyfikator, a raczej rodzina klasyfikatorów, która opiera swoje działanie na wzorze Bayesa. Podstawowym założeniem jest tutaj niezależność wszystkich zmiennych. Sprawdźmy, czy jest to prawdą.

Przygotowanie danych

Nasza ramka danych nie jest przygotowana na takie algorytmy. Wiele kolumn ma wartości ciągłe jak np.: wzrost czy wynagrodzenie. Musimy podzielić takie wartości na przedziały tak, aby nasze prawdopodobieństwa warunkowe nie miały tylko jednego przypadku.

```
data <- read.csv("german_credit_data_weka_dataset.csv")</pre>
levels(data[,1]) <- c("low", "fair", "high", "not_have") #DM low<0<fair<200<high</pre>
levels(data[,3]) <- c("all_paid", "all_paid_here", "paid_till_now", "delay", "critical")</pre>
levels(data[,4]) <- c("new_car", "used_car", "furniture/equipment", "radio/television", "domestic", "re</pre>
levels(data[,6]) <- c("low", "normal", "high", "very high", "not have/unknown") #DM low<100<normal<500<high
levels(data[,7]) <- c("unemployed", "less_than_year", "1-3_years", "4-6_yeras", "7+_years")</pre>
levels(data[,9]) <- c("male_d/s", "female_d/s/m", "male_single", "male_m/w") #d = divorsed, s = seperat</pre>
levels(data[,10]) <- c("none", "co-applicant", "guarantor")</pre>
levels(data[,12]) <- c("real_estate", "building_savings", "car", "not_have/unknown")</pre>
levels(data[,14]) <- c("bank", "stores", "none")</pre>
levels(data[,15]) <- c("rent", "own", "for_free")</pre>
levels(data[,17]) <- c("unskilled_non_resident", "unskilled_resident", "skilled_employee", "highly_qual</pre>
levels(data[,19]) <- c("no", "yes")</pre>
levels(data[,20]) <- c("yes", "no")</pre>
data[,21] <- as.factor(as.character(data[,21]))</pre>
levels(data[,21]) <- c("Good", "Bad")</pre>
#podział ciąqłych danych.
data$age <- cut( data$age, breaks = seq( 10, 80, by = 10))
data\$duration <- cut( data\$duration, breaks = c(0,12,24,36,48,60,72))
for (column in names(data)) {data[,column] <- as.factor( data[,column])}</pre>
n <-which( names( data) =="customer_type")</pre>
set.seed(3114)
rows <- sample(nrow(data))</pre>
num_data <- data[rows, ]</pre>
test_data <- head(data,n = 200)
train_data <- tail(data,n = 800)</pre>
```

Metryka Dokładności

Do przetestowania modelu użyjemy czterech metryk.

```
accuracy <- function( table in){</pre>
sum( diag( table_in)) / sum( table_in)
f1 <- function( table_in) {</pre>
recall <- table_in[2,2] / sum( table_in[2,])</pre>
precicion <- table_in[2,2] / sum( table_in[,2])</pre>
( 2*recall*precicion) / (recall + precicion)
}
confusion_matrix_values <- function(confusion_matrix){</pre>
TP <- confusion_matrix[2,2]</pre>
TN <- confusion_matrix[1,1]</pre>
FP <- confusion_matrix[1,2]</pre>
FN <- confusion_matrix[2,1]</pre>
return (c(TP, TN, FP, FN))
}
accuracy2 <- function(confusion_matrix){</pre>
conf_matrix <- confusion_matrix_values(confusion_matrix)</pre>
return((conf_matrix[1] + conf_matrix[2]) / (conf_matrix[1] + conf_matrix[2] + conf_matrix[3] + conf_matrix
precision <- function(confusion_matrix){</pre>
conf_matrix <- confusion_matrix_values(confusion_matrix)</pre>
return(conf_matrix[1]/ (conf_matrix[1] + conf_matrix[3]))
}
recall <- function(confusion_matrix){</pre>
conf_matrix <- confusion_matrix_values(confusion_matrix)</pre>
return(conf_matrix[1] / (conf_matrix[1] + conf_matrix[4]))
f2 <- function(confusion matrix){</pre>
conf_matrix <- confusion_matrix_values(confusion_matrix)</pre>
rec <- recall(confusion_matrix)</pre>
prec <- precision(confusion_matrix)</pre>
return(2 * (rec * prec) / (rec + prec))
```

Trening Naszego Modelu

Do modelowania użyjemy funkcji naiveBayes() z pakietu "e1071". Oprócz danych i zmiennej celu nasz model ma jeszcze parametr laplace. Parametr ten jest głównie używany w NLP i po krótkiej analizie wnioskuje, że nie wpływa on dobrze na model, dlatego zostawimy go na domyślnym parametrze 0.

```
true_labels <- test_data[,n]
#training | no need for higher laplance;
nB <- naiveBayes( customer_type~. , data = train_data, laplace = 0)
pred_nB_raw <- predict( nB, test_data[-n], type = "raw")</pre>
```

Krzywa ROC

Pokażmy teraz krzywą ROC

Najlepsze Parametry Odcięcia

Nasz model nie klasyfikuje binarnie, tylko wyznacza prawdopodobieństwa dla każdej klasy zmiennej celu. Nasz model ma tylko dwie wartości 0 i 1. Można więc spróbować ustawić taki punkt odcięcia, dla którego nasz model okaże się najlepszy według naszych metryk.

```
acc <- rep(0,9)
f<-rep(0,9)
rec<-rep(0,9)
pre<-rep(0,9)
for (i in 1:9) {
    pred_nB <- factor( ifelse( pred_nB_raw[,1] > i/10, "Good", "Bad"), levels = c("Good", "Bad"))
    tab <- table( true_labels, pred_nB)
    acc[i]<-accuracy(tab)
    f[i]<- f1(tab)
    rec[i] <- recall(tab)
    pre[i] <- precision(tab)
}
acc_max <- which.max(acc)
f1_max <- which.max(f)</pre>
```

Najlepsze parametry odcięcia otrzymujemy dla metryki celność w stosunku 60%/40%.

Najlepsze parametry odcięcia otrzymujemy dla metryki f1 w stosunku 60%/40%.

Dokładne wyniki naszego modelu

Podsumujmy teraz prace naszego modelu:

```
i=f1_max
pred_nB <- factor( ifelse( pred_nB_raw[,1] > i/10, "Good", "Bad"), levels = c("Good", "Bad"))
tab <- table( true_labels, pred_nB)
knitr::kable(tab)</pre>
```

	Good	Bad
Good	117	26
Bad	19	38

Dla punktu odcięcia 0.6 otrzymujemy następujące wyniki:

Celność : 0.775

 $\mathrm{F1}:\,0.628099173553719$

 $Recall:\,0.66666666666667$

Precision: 0.59375