FEDERICO TRUCCO

Date of Birth: 27/05/1977

١ --

Address: H. Irigoyen 1655, San Jorge (2451) Pcia. Santa Fe

Email: trucco@indear.com

Education

2005 **PhD** Crop Sciences (GPA 4.0/4.0)

University of Illinois, Urbana-Champaign.

2003 **CBA** Certificate in Business Administration
University of Illinois, Urbana-Champaign.

2002 MS Pathology and Weed Science (GPA 4.0/4.0)

Colorado State University, Fort Collins.

1998 **BS** Biochemistry (GPA 3.6/4.0)

Louisiana State University, Baton Rouge.

Publications

Review articles and theses:

Tranel, P. J. and **F. Trucco**. 2008. 21st Century Weed Science: A Call for *Amaranthus Genomics*. In N. Stewart (ed.) Genomics of Weedy and Invasive Plants.

Blackwell, In Press.

Vila-Aiub, M. M., R. A. Vidal, M. C. Balbi, P. E. Gundel, F. Trucco, C. M. Ghersa.
2008. Glyphosate-resistant weeds of South American cropping systems: An overview. Pest Manag. Sci. 64: 366-371.

- Trucco, F. 2005. Hybridization between *Amaranthus tuberculatus* and *A. hybridus*.

 Doctoral Dissertation, University of Illinois, Urbana-Champaign, 132 pp.
- Tranel, P.J. and F. Trucco. 2004. Molecular biology applied to weed science. In R. M. Goodman (ed.) Encyclopedia of Plant and Crop Science. Marcel Dekker, New York.
- **Trucco, F**. 2002. Weed dynamics in glyphosate-tolerant crops: Herbicide resistance and population shifts. MS Thesis, Colorado State University, Fort Collins, 70 pp.

Research articles:

- Trucco, F., D. Zheng, A. J. Woodyard, J. R. Walter, T. Tatum, A. L. Rayburn, P. J. Tranel. 2007. Non-hybrid progeny from crosses of dioecious amaranths:

 Implications for gene flow research. Weed Sci. 55: 119-122.
- Trucco, F., T. Tatum, K. R. Robertson, A. L. Rayburn, and P. J. Tranel. 2006.
 Morphological, reproductive, and cytogenetic characterization of *Amaranthus tuberculatus* × A. hybridus F₁ hybrids. Weed Tech. 20: 14-22.
- **Trucco, F.**, A. G. Hager, and P. J. Tranel. 2006. *ALS* mutation conferring imidazolinone-specific herbicide resistance in *Amaranthus hybridus*. J. Plant Phys. 163: 475-479.
- **Trucco, F.**, T. Tatum, A. L. Rayburn, and P. J. Tranel. 2005. Fertility, segregation at a herbicide resistance locus, and genome structure in BC₁ hybrids between two important weedy *Amaranthus* species. Mol. Ecol. 14: 2717-2728.
- Trucco, F., M. R. Jeschke, A. L. Rayburn, and P. J. Tranel. 2005. Promiscuity in weedy amaranths: high frequency of female tall waterhemp (*Amaranthus tuberculatus*) x smooth pigweed (*A. hybridus*) hybridization under field conditions. Weed Sci. 53: 46-54.

Trucco, F., M. R. Jeschke, A. L. Rayburn, and P. J. Tranel. 2005. *Amaranthus hybridus* can be pollinated frequently by *A. tuberculatus* under field conditions. Heredity 94: 64-70.

Abstracts:

- **Trucco, F., T. C.** Tatum, A. L. Rayburn, and P. J. Tranel. 2004. Trade-off between fecundity and introgression in advanced waterhemp x smooth pigweed hybrid generations. Proc. N. Cent. Weed Sci. Soc. 59:53.
- Trucco, F., P. J. Tranel, M. R. Jeschke, and A. L. Rayburn. 2004. Field hybridization frequencies between monoecious smooth pigweed (*Amaranthus hybridus*) and dioecious waterhemp (*A. tuberculatus*). Proc. Weed Sci. Soc. 44: 228.
- Tranel, P. J., F. Trucco, T. C. Tatum, and A. L. Rayburn. 2004. Molecular, cytogenetic, and morphological analysis of smooth pigweed (*Amaranthus hybridus*) x waterhemp (*A. tuberculatus*) BC₁ progeny. Proc. Weed Sci. Soc. 44: 229.
- Trucco, F., P. J. Tranel, A. L. Rayburn, and K. R. Robertson. 2003. Morphology of waterhemp x smooth pigweed hybrids. Proc. N. Cent. Weed Sci. Soc. 58:61.
- **Trucco, F.**, P. J. Tranel, M. R. Jeschke, and A. L. Rayburn. 2002. Field hybridization rates between waterhemp and smooth pigweed. Proc. N. Cent. Weed. Sci. Soc. 57: 146.
- **Trucco, F.**, P. Westra, and T. D'Amato. 2001. Comparison of population dynamics in two different weed control systems: glyphosate vs paraquat-glyphosate. Proc. W. Soc. Weed Sci. 54: 37
- **Trucco, F.**, K. Fleming, L. Wiles, D. Wyse-Pester, and P. Westra. 2000.Use of organic matter management zones for metolachlor applications. Proc. W. Soc. Weed Sci. 53:?.

Fellowships

2003 Dr. Frederic Slife Fellow. University of Illinois, Urbana-Champaign.

Honorary Societies

1997 Phi Beta Kappa.

1995 Phi Eta Sigma.

Leadership

- 2004 Crop Sciences Graduate Student Organization Governing BoardUniversity of Illinois, Urbana-Champaign.
- 2000 Lory Student Center Governing Board

Colorado State University, Fort Collins

1994 House Captain and School Prefect

St. George's College, Quilmes.

Awards

- 2005 Graduate Student Research Award (Ph.D.) College of Agriculture, Consumer and Environmental Sciences, University of Illinois. Urbana.
- 2002 North Central Weed Sci. Soc. 1st place award, student paper contest. St. Louis.
- 2001 Western Soc. Weed Sci. 2nd place award, student poster contest. Idaho.
- 2000 Western Soc. Weed Sci. 1st place award, student paper contest. Arizona.
- 1997 Dean Arthur Choppin Honors Convocation. Louisiana State University.
- 1996 Chancellor William E. Davis Award. Louisiana State University.

Professional and Research Experience

- 2008-Present Head of Development. Ref. Dr. Alejandro Mentaberry INDEAR S.A.
- 2005-2007 Research Leader. Ref. Dr. Alejandro Mentaberry
 - INDEAR S.A.
- 2005 Post-Doctoral Research. Ref. Dr. Patrick Tranel.
 - University of Illinois, Urbana-Champaign.
- 2002-2005 Graduate Research Assistant. Ref. Dr. Patrick Tranel.
 - University of Illinois, Urbana-Champaign.
- 1999-2001 Graduate Research Assistant. Ref. Dr. Phillip Westra.
 - Colorado State University.
- 1997 Undergraduate Research Assistant. Ref. Dr. Norimoto Murai.

Louisiana State University.

Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996. 47:377–403 Copyright © 1996 by Annual Reviews Inc. All rights reserved

THE MOLECULAR BASIS OF DEHYDRATION TOLERANCE IN PLANTS

J. Ingram and D. Bartels

Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, 50829 Köln, Germany

KEY WORDS: dehydration stress, desiccation tolerance, late-embryogenesis-abundant (LEA) proteins, osmolytes, ABA responsiveness

ABSTRACT

Molecular studies of drought stress in plants use a variety of strategies and include different species subjected to a wide range of water deficits. Initial research has by necessity been largely descriptive, and relevant genes have been identified either by reference to physiological evidence or by differential screening. A large number of genes with a potential role in drought tolerance have been described, and major themes in the molecular response have been established. Particular areas of importance are sugar metabolism and late-embryogenesis-abundant (LEA) proteins. Studies have begun to examine mechanisms that control the gene expression, and putative regulatory pathways have been established. Recent attempts to understand gene function have utilized transgenic plants. These efforts are of clear agronomic importance.

CONTENTS

INTRODUCTION	37
RESEARCH STRATEGIES	37
	37
Genetic Model Systems	38
Crop Plants	
GENES WITH UPREGULATED EXPRESSION IN RESPONSE TO DEHYDRATION	38
Metabolism	38
Osmotic Adjustment	38
Structural Adjustment	38

378 INGRAM & BARTELS

Degradation and Repair	384
Removal of Toxins	385
Late-Embryogenesis-Abundant Proteins	385
SUGARS	388
REGULATION OF GENE EXPRESSION DURING DEHYDRATION	389
Promoter Studies	390 393
Posttranscriptional Control	394
Downregulation of Genes	395
TRANSGENIC PLANTS ASSESSING GENE FUNCTION	395
FUTURE PERSPECTIVES	396

INTRODUCTION

This review considers molecular mechanisms involved in dehydration tolerance in plants. Most plants encounter at least transient decreases in relative water content at some stage of their life, and many also produce highly desiccation-tolerant structures such as seeds, spores, or pollen. Indeed, physiological drought also occurs during cold and salt stresses, when the main damage caused to the living cell can be related to water deficit (84, 124). Although we are still far from a complete understanding of the damage caused by drought, or the plant's tolerance mechanisms, much molecular data has been collected over the past few years. Current knowledge of the regulatory network governing the drought-stress responses is also fragmentary, with almost no information on signal perception. However, signal transduction, via ABA at least, and the promoter modules of several response genes, are starting to be elucidated.

Some of the most recent efforts to understand gene function have used transgenic plants, and these studies have significant implications for crop development. Plant breeding has already provided an enormous improvement in the drought tolerance of crop plants (1), with selection often allowing desired traits to be transferred from close wild relatives. However, most of the traits are complex, and their molecular basis is frequently not understood. With our rapidly expanding knowledge of the underlying molecular processes involved in dehydration tolerance, together with the technology of gene manipulation, crop improvement can now also be based on genetic material transferred from any organism and used in a directed manner.

RESEARCH STRATEGIES

Dehydration tolerance has been investigated using three main approaches in plants: (a) examining tolerant systems, such as seeds and resurrection plants; (b) analyzing mutants from genetic model species; and (c) analyzing the effects of stress on agriculturally relevant plants.

Tolerant Systems

One approach of physiological research in dehydration tolerance has been to use specific structures or species that can withstand severe desiccation. Most prominent in this category are certain seeds (73, 82), but desiccation-tolerant species such as resurrection plants (angiosperms) (8), mosses (particularly *Tortula ruralis*), and ferns (98) are also included. Both seeds and the resurrection plant *Craterostigma plantagineum* survive severe dehydration; therefore, the detailed molecular analyses of these systems should reveal expressed genes that contain the genetic information for desiccation tolerance.

SEEDS The final maturation stage of the development of seeds is characterized by desiccation, and as much as 90% of the original water is removed in attaining a state of dormancy with unmeasurable metabolism (73). This desiccated state allows survival under extreme environmental conditions and favors wide dispersal. The embryo cannot withstand desiccation at all developmental stages; tolerance is usually acquired well before maturation drying but is lost as germination progresses. The seeds of many species have been used to isolate the mRNA and proteins related to the desiccation-tolerance response, including, in particular, those of *Arabidopsis thaliana* (100) and of crop species such as cotton (*Gossypium* spp.) (6), barley (*Hordeum vulgare*) (9), maize (*Zea mays*) (99), and rice (*Oryza sativa*) (91). However, a significant complication with these studies is the difficulty of separating the pathways leading to desiccation tolerance from those involved with other aspects of development.

The main achievement of molecular studies with seeds has been the identification and characterization of the late-embryogenesis-abundant (LEA) proteins. LEA-protein mRNAs first appear at the onset of desiccation, dominate the mRNA population in dehydrated tissues (111), and gradually fall several hours after embryos begin to imbibe water (see section on Late-Embryogenesis-Abundant Proteins).

RESURRECTION PLANTS Resurrection plants are unique among angiosperms in their ability to survive during drought, when protoplastic desiccation can leave <2% relative water content in the leaves (8). When water is withheld from mature individuals of *C. plantagineum*, changes rapidly occur at the mRNA and protein levels (8), eventually leading to the tolerant state. A particular advantage of these plants in studies at the molecular level is that desiccation tolerance can be investigated in both whole plants and undifferentiated callus cultures (Tolerant callus of *C. plantagineum* is obtained by pretreatment with ABA) (8). In the callus tissue, and to a certain extent in whole *C. plantagineum* plants, the transition to the tolerant state is largely free of the complications of development or other adjustments inherent in seeds or other plant systems. One of the most

striking features of the desiccation-induced genes characterized from vegetative tissues of *C. plantagineum* has been their similarity to the genes expressed in seeds of other species.

Genetic Model Systems

Genetic model systems are a second major approach to the examination of dehydration tolerance. These systems take advantage of detailed genetic information, a wide range of mutants, and the feasibility of positional gene cloning. Progress in understanding the role of ABA in desiccation tolerance has been achieved by characterizing mutants, such as the ABA-deficient mutants *flacca* (tomato, *Lycopersicon esculentum*) (22) and *droopy* (potato, *Solanum tuberosum*) (108). A number of mutations related to ABA action are also available in *A. thaliana*, and their analysis has provided many insights into ABA-mediated drought responses. *A. thaliana* lines that are less sensitive to ABA than the wild-type have mutations at the *abi* loci [43; see also the maize *vp1* mutant (82)]. The detailed genetic information available for *A. thaliana* facilitated the isolation of the *ABI1* and *ABI3* genes by positional cloning (42, 74, 86). *ABI3* is specifically expressed in seeds and probably encodes a transcription factor able to activate *lea*-type genes (100), and *ABI1* encodes a calcium-regulated phosphatase.

Crop Plants

A third approach in researching dehydration tolerance has been to use species important to agriculture to analyze the plant response after drought stress. This type of study is useful because, through intensive breeding or in vitro selection, lines are available with differing degrees of tolerance. Thus, correlative evidence can be sought for genes putatively involved in the drought response. The transient and moderate drought stress represented in studies of crop species probably describes the most common form of dehydration that most plants are likely to encounter. The intensity of research has thus enabled a much more complete picture of the possible factors involved in drought tolerance to emerge.

GENES WITH UPREGULATED EXPRESSION IN RESPONSE TO DEHYDRATION

To establish the basic responses of plants to drought, two of the approaches already outlined—examination of tolerant systems and crop plants—have been most productive. One type of analysis involves targeting genes thought to be important, such as those for the many enzymes in drought-induced metabolic pathways. A second approach uses differential screening to isolate upregulated genes. These experiments have been successful in describing many genes

encoding proteins of known function associated with desiccation (Table 1). Differential screening has also revealed many genes of unknown function, which are included in Tables 1 and 2; the largest group is the array of LEAprotein-related genes (Table 3). Some of the genes may be involved in secondary problems of drought-stressed plants, such as increased susceptibility to pathogens, e.g. pcht28 (encoding an acidic endochitinase) (Table 1; 17) and SC514 (encoding lipoxygenase) (Table 1; 10). Genes involved in signaling

Table 1 Genes upregulated by drought stress^a and encoding polypeptides of known function

cDNA	Source	Encoded polypeptide	Ref
GapC-Crat	Craterostigma plantagineum	Cytosolic glyceraldehyde 3- phosphate dehydrogenase	129
pSPS1	C. plantagineum	Sucrose-phosphate synthase	Ъ
pSS1; pSS2	C. plantagineum	Sucrose synthases	36
pPPC1	Mesembryanthemum crystallinum	Phosphoenolpyruvate carboxylase	130
pBAD	Hordeum vulgare (barley)	Betaine aldehyde dehydrogenase	54
cAtP5CS	Arabidopsis thaliana	δ^1 -pyrroline-5-carboxylate synthetase	145
RD28	A. thaliana	Water channel	141
SAM1; SAM3	Lycopersicon esculentum (tomato)	S-adenosyl-L-methionine synthetases	37
rd19A; rd21A	A. thaliana	Cysteine proteases	67
UBQI	A. thaliana	Ubiquitin extension protein	66
pMBM1	Triticum aestivum (wheat)	L-isoaspartyl methyltransferase	90
SC514	Glycine max (soybean)	Lipoxygenase	10
cATCDPK1; cATCDPK2	A. thaliana	Ca ²⁺ -dependent, calmodulin- independent protein kinases	127
PKABA1	T. aestivum	Protein kinase	4
cAtPLC1	A. thaliana	Phosphatidylinositol-specific phospholipase C	53
Apx1 gene	Pisum sativum (pea)	Cytosolic ascorbate peroxidase	89
Sod 2 gene	P. sativum	Cytosolic copper/zinc superoxide dismutase	135
P31	L. esculentum	Cytosolic copper/zinc superoxide dismutase	102
pcht28	L. chilense	Acidic endochitinase	17
Atmyb2	A. thaliana	MYB-protein-related transcription factor	128
ERD11; ERD13	A. thaliana	Glutathione S-transferases	63
cAtsEH	A. thaliana	Soluble epoxide hydrolase	61

^aThe best-characterized plant genes from which cDNA clones have been demonstrated to show increased mRNA expression levels in response to drought stress have been included. Drought stress has been taken to include quite diverse treatments, ideally where water has been withheld from the plant, but also for example by applying osmotic stress with mannitol solutions or by detaching plant organs.

^bIngram & Bartels, unpublished data.

and control processes are considered in the section on Second Messengers and Signaling Molecules.

Metabolism

Changes in primary metabolism are a general response to stress in plants. For example, a cDNA-encoding glyceraldehyde-3-phosphate dehydrogenase, isolated from the resurrection plant *C. plantagineum* (Table 1; 129), shows increased expression during drought and upon ABA treatment. However, increased levels of the enzyme are also associated with other environmental stresses in plants, possibly reflecting increased energy demand. Proteases may also be an important feature of stress metabolism, dispensing with redundant proteins and depolymerizing vacuolar storage polypeptides, thereby releasing amino acids for the massive synthesis of new proteins (Tables 1 and 2; 50).

Enzymes of sugar metabolism are probably critical in desiccation tolerance. It has been demonstrated that certain sugars may be central to the protection of a wide range of organisms against drought (see section on Sugars). In *C. plantagineum*, the overall transcript levels of sucrose-phosphate synthase and sucrose synthase increase immediately in response to drought (36; J Ingram & D Bartels, unpublished data). The expression pattern is complex if the kinetics of individual transcript types are followed over the entire course of dehydration.

Enzymes involved in the synthesis of other compounds that can act as compatible solutes—and whose transcript levels are clearly upregulated during drought—include $\delta\Delta^1$ -pyrroline-5-carboxylate synthesise (proline biosynthesis) (Table 1; 145) and betaine aldehyde dehydrogenase (glycine betaine biosynthesis) (Table 1; 54).

The induction of the mRNA encoding phosphoenolpyruvate carboxylase in *Mesembryanthemum crystallinum* (Table 1; 130) highlights the importance of Crassulacean acid metabolism in enabling carbon fixation with minimal water loss. Such metabolism is a major response in a wide variety of plants to growth in dry conditions (139).

Osmotic Adjustment

Total water potential can be maintained during mild drought by osmotic adjustment, which involves utilizing sugars or other compatible solutes (12). Both ion and water channels are likely to be important in regulating water flux, and the relevance of these channels to drought-stress has been supported by the isolation of channel protein genes expressed in response to water deficit. The 7a cDNA from pea (*Pisum sativum*) (Table 2; 50) encodes a polypeptide with characteristic features of ion channels, while the RD28 cDNA (*A. thaliana*) (Table 1; 141) and probably also the H2-5 cDNA (*C. plantagineum*)

Table 2 Genes upregulated by drought stress^a but encoding polypeptides of unknown function

cDNA	Source	Features of encoded polypeptide	Ref
26g	Pisum sativum (pea)	Some similarity to aldehyde dehydrogenase	50
7a	P. sativum	Similar to channel proteins	50
kin2	Arabidopsis thaliana	Similarity to animal antifreeze proteins	69
pcC 37-31	Craterostigma plantagineum	Similar to early-light-inducible proteins	7
TSW12	Lycopersicon esculentum (tomato)	A lipid transfer protein	125
pLE16	L. esculentum	Similar to lipid transfer proteins	107
15a	P. sativum	Similarity to proteases	50
pA1494	A. thaliana	Similarity to proteases	136
ERD1	A. thaliana	Similar to a Clp ATP-dependent protease subunit	64
Ha hsp17.6; Ha hsp17.9	Helianthus annuus (sunflower)	Low-molecular-weight heat-shock proteins	21
Athsp70-1	A. thaliana	Similar to the HSP70 heat-shock- protein family	66
Athsp81-2	A. thaliana	Similar to the HSP81 heat-shock- protein family	66
BLT4	Hordeum vulgare (barley)	Similar to protease inhibitors	32
P22	Raphanus sativus (radish)	Similar to protease inhibitors	77
BnD22	Brassica napus (rape)	Similar to protease inhibitors	31
рМАН9	Zea mays (maize)	Similar to RNA-binding proteins	47
MsaciA	Medicago sativa (alfalfa)	Similar to pUM90-1 and pSM2075 polypeptides	70
pUM90-1	M. sativa	Similar to MsaciA and pSM2075 polypeptides	80
pSM2075	M. sativa	Similar to MsaciA and pUM90-1 polypeptides	79
pBN115	B. napus	Similar to polypeptides encoded by pBN19 and pBN26 (B. napus), and COR15 (A. thaliana)	134
RD22	A. thaliana	Similar to an unidentified seed protein from Vicia faba	56
salT	Oryza sativa (rice)	•	18
lti65 gene; lti78 gene	A. thaliana		95
pcC 13-62	C. plantagineum		104

^aSee Footnote a in Table 1.

(J-B Mariaux & D Bartels, unpublished data) encode putative water-channel proteins (28).

Structural Adjustment

Drought stress has been shown to cause alterations in the chemical composition and physical properties of the cell wall (e.g. wall extensibility), and such changes may involve the genes encoding S-adenosylmethionine synthetase (Table 1; 37). Under nonstressful conditions, increased expression of S-adenosyl-L-methionine synthetase genes correlates with areas where lignification is occurring (101). Thus, the increased expression in drought-stressed tissue could thus also be due to lignification in the cell wall. Cell elongation stops under prolonged drought stress, and then lignification processes seem to begin (94a). Espartero et al (37) also noted that fungal elicitors cause the coinduction of S-adenosyl-L-methionine synthetase transcript with those of other enzymes, e.g. S-adenosyl-L-homocystein hydrolase or a methyltransferase, required for cell wall formation.

The *C. plantagineum pcC37-31* cDNA (Table 2; 7) encodes the dsp-22 protein, whose mRNA levels increase in response to various stresses. The cDNA shows significant homology to early light-inducible protein (ELIP) genes (1a). Light is involved in the regulation of the gene expression, and the encoded dsp-22 protein is chloroplastic. ELIPs may play a role in the assembly of the photosystem (1a). During desiccation, *C. plantagineum* chloroplasts undergo morphological changes, and thus the dsp-22 protein could bind pigments or help maintain assembled photosynthetic structures essential for resuming active photosynthesis during resurrection.

Degradation and Repair

Genes encoding proteins with sequence similarity to proteases, and which are induced by drought, have been isolated from both pea (Table 2; 50) and A. thaliana (Tables 1 and 2; 64, 67, 136). One of the functions of these enzymes could be to degrade proteins irreparably damaged by the effects of drought (50). During early drought in A. thaliana, there is an increase in levels of mRNA encoding ubiquitin extension protein (66), a fusion protein from which active ubiquitin is derived by proteolytic processing. This increase may be significant in terms of protein degradation, because ubiquitin has a role in tagging proteins for destruction. During drought stress, protein residues may be modified by chemical processes such as deamination, isomerization, or oxidation, and it is thus likely that enzymes with functions in protein repair are upregulated in response to drought. Indeed, the response to desiccation in mosses may largely be repair based (98). An example of such repair processes is the observation that L-isoaspartyl methyltransferases may convert modified L-isoaspartyl residues in damaged proteins back to L-aspartyl residues (Table 1; 90).

Mudgett & Clarke (90) have argued that such repair mechanisms could be particularly important during desiccation, when protein turnover rates are low. Although Escherichia coli mutants lacking the enzyme grow normally in the logarithmic phase when there is high protein turnover, they survive poorly in the stationary phase when turnover is much lower (75).

The products of two drought-induced genes isolated by differential screening have sequence similarity to heat-shock proteins (Table 2; 66). These encoded proteins are probably chaperonins, involved in protein repair by helping other proteins to recover their native conformation after denaturation or misfolding during water stress. The low-molecular-weight heat-shock proteins (Table 2; 21) may also be chaperonins. This function has been demonstrated for a mammalian low-molecular-weight heat-shock protein (58). An alternative function may be in the sequestration of specific mRNAs in cells subjected to drought (96).

Removal of Toxins

Enzymes concerned with removing toxic intermediates produced during oxygenic metabolism, such as glutathione reductase and superoxide dismutase, increase in response to drought stress and are probably very important in tolerance (89). Decreasing leaf water content and consequent stomatal closure result in reduced CO₂ availability and the production of active oxygen species such as superoxide radicals (117). Increased photorespiratory activity during drought is also accompanied by elevated levels of glycolate-oxidase activity, resulting in H₂O₂ production (89). This could explain why genes encoding enzymes that detoxify active oxygen species such as ascorbate peroxidase (Table 1; 89) and superoxide dismutase (Table 1; 102, 135) have been found upregulated in response to drought.

Late-Embryogenesis-Abundant Proteins

The genes encoding late-embryogenesis-abundant (LEA) proteins are consistently represented in differential screens for transcripts with increased levels during drought. LEA proteins were first described from research into genes abundantly expressed during the final desiccation stage of seed development (see above). Circumstantial evidence for their involvement in dehydration tolerance is strong: The genes are similar to many of those expressed in vegetative tissues of drought-stressed plants (Table 3), and desiccation treatments can often induce precocious expression in seeds. ABA can also induce the lea genes in seeds and vegetative tissues.

GENERAL FEATURES Groupings for dividing the LEA proteins originate from a dot matrix analysis with proteins from cotton. A group was assigned on the basis of one cotton LEA protein showing regions of significant homology with

386 INGRAM & BARTELS

Table 3 Genes upregulated by drought stress^a that encode polypeptides related to late-embryogenesis-abundant LEA proteins

cDNA	Source	Relationship of encoded polypeptide to LEA proteins	Ref
Ha ds 10	Helianthus annuus (sunflower)	D19-LEA-protein related	3
Em	Triticum aestivum (wheat)	D19-LEA-protein related	76
B19.1; B19.3; B19.4	Hordeum vulgare (barley)	D19-LEA-protein related	39
pLE25	Lycopersicon esculentum (tomato)	D113-LEA-protein related	23
Ha dsll	H. annuus	D113-LEA-protein related	3
pRABAT1	Arabidopsis thaliana	D11-LEA-protein related	72
pcC 27-04	Craterostigma plantagineum	D11-LEA-protein related	104
M3 (RAB-17)	Zea mays (maize)	D11-LEA-protein related	20
B8; B9; B17	H. vulgare	D11-LEA-protein related	20
pLE4	L. esculentum	D11-LEA-protein related	23
pcC 6-19	C. plantagineum	D11-LEA-protein related	104
TAS14	L. esculentum	D11-LEA-protein related	46
pLC30-15	L. chilense	D11-LEA-protein related	16
H26	Stellaria longipes	D11-LEA-protein related	110
pRAB 16A	Oryza sativa (rice)	D11-LEA-protein related	91
pcECP40	Daucus carota (carrot)	D11-LEA-protein related	62
ERD10; ERD14	A. thaliana	D11-LEA-protein related	65
pMA2005	T. aestivum	D7-LEA-protein related	26
pMA1949	T. aestivum	D7-LEA-protein related	27
pcC 3-06	C. plantagineum	D7-LEA-protein related	104
pcC 27-45	C. plantagineum	D95-LEA-protein-related	104

^aSee Footnote a in Table 1.

at least one protein from another species (33). The "type" of cotton proteins used for these groupings were LEA D19 (Group 1), LEA D11 [Group 2 (also termed dehydrins)], and LEA D7 (Group 3). The cotton proteins LEA D113 (34, 35) and LEA D95 (40) now define two additional classes. This system will remain useful until clear functions can be assigned.

LEA proteins appear to be located in many cell types and at variable concentrations (19, 34, 35, 45), and within the cell they appear to be predominantly—but not exclusively—cytosolic (19, 45, 91, 114). The concentrations in the cell are characteristically very high. For example, in mature cotton embryo cells, the D7 LEA proteins represent about 4% of nonorganellar cytosolic protein (about 0.34 mM) (111).

A general structural feature of the LEA proteins is their biased amino acid composition, which results in highly hydrophilic polypeptides, with just a few residues providing 20–30% of their total complement. For example, a deduced

D19 protein from cotton contains 13% glycine and 11% glutamic acid (6). Furthermore, most LEA proteins lack cysteine and tryptophan residues.

ROLES We await direct experimental evidence that LEA proteins can protect specific cellular structures or ameliorate the effects of drought stress. Because they are highly hydrophilic, it appears unlikely that they occur in specific cellular structures. Also, their high concentrations in the cell and biased amino acid compositions suggest that they do not function as enzymes (6).

The randomly coiled moieties of some LEA proteins are consistent with a role in binding water. Total desiccation is probably lethal, and therefore such proteins could help maintain the minimum cellular water requirement. McCubbin & Kay (83) have found that the Em protein (D19-group) (Table 3; 76) from wheat is considerably more hydrated than most globular polypeptides because it is over 70% random coil in normal physiological conditions. The random coil tails of the D113 proteins could also bind considerable amounts of water, although the long *N*-terminal helical domain would not share this property (34, 35).

A major problem under severe dehydration is that the loss of water leads to crystallization of cellular components, which in consequence damages cellular structures. This may be counteracted by LEA proteins, and some of the LEA proteins could essentially be considered compatible solutes, which supports the likely role of sugars in maintaining the structure of the cytoplasm in the absence of water. Baker et al (6) have suggested that LEA proteins D11 and D113 could be involved in the "solvation" of cytosolic structures. The random coiling would permit their shape to conform to that of other structures and provide a cohesive layer with possibly greater stability than would be formed by sugars. Their hydroxylated groups would solvate structural surfaces. Furthermore, they could be superior to sucrose as protectants in being less likely to crystallize. However, for the D11-related protein RAB-17, a regulatory role has been postulated (see below).

Baker et al (6) have hypothesized that the 11-amino-acid motif (T/A A/T Q/E A/T A/T K/R Q/ED K/R A/T X ED/Q) (34) of LEA protein D-29 (which is also present in D7 LEA proteins) could counteract the irreversibly damaging effects of increasing ionic strength in the cytosol during desiccation. Such problems could be mitigated by the formation of salt bridges with amino acid residues of highly charged proteins. The repeating elements most likely exist as amphiphilic helices (34), which means that hydrophobic and hydrophilic amino acids are contained in particular sectors of the helix. The helices probably form intramolecular bundles, which would present a surface capable of binding both anions and cations. Further analyses of the D7-group molecules have allowed precise structural predictions to be made: The intersurface edges

of the interacting helical regions of the (putative) dimer reveal periodically spaced binding sites for suitably charged ions.

SUGARS

The involvement of soluble sugars in desiccation tolerance in plants is suggested by studies in which the presence of particular soluble sugars can be correlated with the acquisition of desiccation tolerance (73). Such studies have followed work with animals, fungi, yeast, and bacteria, in which a high level of the disaccharide trehalose has been established as important in surviving desiccation. Trehalose is the most effective osmoprotectant sugar in terms of minimum concentration required (25). Whereas trehalose is extremely rare in plants, sucrose—together with other sugars—appears able to substitute. Although sugar accumulation is not the only way in which plants deal with desiccation (12), it is considered an important factor in tolerance.

Many studies with seeds have demonstrated the accumulation of soluble sugars during the acquisition of desiccation tolerance (73); similar results have been demonstrated in resurrection plants. A common theme has emerged. Various soluble carbohydrates may be present in fully hydrated tissues, but sucrose usually accumulates in the dried state. For example, desiccation in the leaves of *C. plantagineum* is accompanied by conversion of the C8-sugar 2-octulose (90% of the total sugar in hydrated leaves) into sucrose, which then comprises about 40% of the dry weight (11).

Total water potential can be maintained during mild drought by osmotic adjustment. Sugars may serve as compatible solutes permitting such osmotic adjustment, although many other compounds usually associated with salt stress are also active, such as proline, glycine betaine, and pinitol (54, 84, 145). Increasing sucrose synthesis and sucrose-phosphate synthase activity is not only a drought-response of desiccation-tolerant plants such as *C. plantagineum* (36) but also of plants that cannot withstand extreme drying, such as spinach (109).

One way sugars may protect the cell during severe desiccation is by glass formation: Rather than solutes crystallizing, through the presence of sugars a supersaturated liquid is produced with the mechanical properties of a solid (68). Glass formation has been demonstrated in viable maize seeds and has been associated with their viability (137). Differential scanning calorimetry has been used to examine the effect of termperature on glass formation by sugar mixtures; only sugar mixtures equivalent in concentration and composition to those in desiccation-tolerant embryos are able to form glass at ambient temperatures (68). It seems likely that sugar composition, rather than just concentration, is related to glass formation. During desiccation, glass would fill space, thus preventing cellular collapse, and in restricting the molecular

diffusion required by chemical reactions would permit a stable quiescent state (68).

Phosphofructokinase is a tetrameric enzyme that usually dissociates irreversibly into inactive dimers during dehydration (14). However, it was found that in vitro the disaccharides sucrose, maltose, and trehalose stabilize the activity of the enzyme during drying.

Crowe et al (24) have shown that, in vitro, drying and rehydration of the model-membrane sarcoplasmic reticulum usually results in the fusion of vesicles and loss of the ability to transport calcium. However, when the sugar trehalose was present at concentrations equivalent to those in desiccation-tolerant organisms, functional vesicles were preserved. Many other studies show that sugars can protect membranes in vitro (25); it is suggested that sugars alter physical properties of dry membranes so that they resemble those of fully hydrated biomolecules.

The mechanism by which proteins are stabilized by sugars is better understood than the situation with membranes. Infrared spectroscopy has shown that trehalose probably forms hydrogen bonds between its hydroxyl groups and polar residues in proteins (25). Hydrogen bonding between the hydroxyl group of trehalose and the phosphate head group of phospholipids can be inferred from comparisons of changes in the infrared spectrum of the molecules during dehydration. Strauss & Hauser (120) used the cation Eu³⁺, which is known to form a specific ionic bridge to the phosphate of phospholipids, to show that sucrose is probably bound between phosphate sites in dry membranes. This was inferred from experiments in which Eu3+ ions were added to preparations of sucrose and phosphatidylcholine vesicles; the stabilization of liposomes by sucrose during freeze drying decreased as the Eu3+ ions were added, which suggests competitive binding of sucrose and Eu³⁺ at the phosphate sites of the phospholipids.

REGULATION OF GENE EXPRESSION DURING DEHYDRATION

The machinery leading to the expression of drought-stress genes conforms to the general cellular model, with a complex signal transduction cascade that can be divided into the following basic steps: (a) perception of stimulus; (b) processing, including amplification and integration of the signal; and (c) a response reaction in the form of de novo gene expression. No molecular data are available on the perception of drought stress, although turgor change has been suggested as a possible physical signal. An attractive model for the activation of a transduction pathway by a stress signal has been derived from studying the heat-shock response in yeast (60). Kamada et al (60) suggest that heat-induced activation of a particular pathway is in response to increased

390 INGRAM & BARTELS

membrane fluidity in the cell wall. The cell detects this weakness in the cell wall by sensing stretch in the plasma membrane. Examples such as this from simple systems may provide the conceptual framework for devising experiments in plants.

The drought-activated signal transmission process has begun to be dissected at the molecular level, mostly on the basis of studies of isolated drought-responsive genes. Endogenous ABA levels have been reported to increase as a result of water deficit in many physiological studies, and therefore ABA is thought to be involved in the signal transduction (15, 43). Many of the drought-related genes can be induced by exogenous ABA; however, this does not necessarily imply that all these genes are also regulated by ABA in vivo.

We now discuss promoter studies, signaling molecules, and both posttranscriptional and posttranslational modifications in the context of drought-regulated gene expression.

Promoter Studies

CIS- AND TRANS-ACTING ELEMENTS Many of the changes in mRNA levels observed during drought reflect transcriptional activation. Treatment with ABA can also induce these changes, and this treatment has been utilized for setting up experimental systems to define cis- and trans-acting elements. cis- and trans-acting elements involved in ABA-induced gene expression have been analyzed extensively (Tables 4 and 5; 43).

Table 4 cis-acting promoter elements relevant to ABA or drought

		<u>v</u>	
Gene	Element	Sequence ^a	Ref
Rab16A (Oryza sativa)	ABRE (Motif I)	GT <i>ACGT</i> GGCGC	119
EM (Triticum aestivum)	EmlA	GGAC <i>ACGT</i> GGC	51
Hex3 (synthetic tetramer) (derived from Nicotiana tabacum)		GGTGACGTGGC	71
rab28 (Zea mays)	ABRE	CC <i>ACGT</i> GG	106
Cat1 (Zea mays)		CCAAGAAGTC- C <i>ACGT</i> GGAGGTGGAAGAG	138
HVA22 (Hordeum vulgare)	ABRE3 and CE1	GCCACGTACA and TGCCACCGG	118
CDeT27-45 (Craterostigma plantagineum)		AAGCCCAAATTTCA- CAGCCCGATAACCG	93
rd29 (Arabidopsis thaliana)	DRE	TACCGACAT	144

^aThe G-box core elements ACGT are in italic.

The best-characterized cis-element in the context of drought stress is the ABA-responsive element (ABRE), which contains the palindromic motif CACGTG with the G-box ACGT core element (44). ACGT elements have been observed in a multitude of plant genes regulated by diverse environmental and physiological factors. Systematic DNA-binding studies have shown that nucleotides flanking the ACGT core specify the DNA-protein interactions and subsequent gene activation (57). G-box-related ABREs have been observed in many ABA-responsive genes, although their functions have not always been proven experimentally. The best-studied examples of these ABRE promoter elements are Em1a from wheat and Motif I from the rice rab 16A gene (Table 4; 81, 92). Multiple copies of the elements fused to a minimal 35S promoter confer an ABA response to a reporter gene (51, 119), which supports the hypothesis that ABREs are critical for the ABA induction of relevant genes (although it is difficult to explain why single copies are not

Table 5 Characterization of promoters in transgenic plants

	The state of the s	•	
Gene	Native gene activity	Reporter gene activity	Ref
Rab 16B	Embryos of Oryza sativa	Nicotiana tabacum embryos	142
Em	Embryos of Triticum aestivum	Nicotiana tabacum embryos	81
Rab 17	Embryos of Zea mays	The embryos and endosperm of Arabidopsis thaliana	131
Hex3 (synthetic tet (derived from Ni	ramer) cotiana tabacum)	Mature seeds of <i>N. tabacum;</i> inducible in seedlings by desiccation, salt, and ABA	71
Rd 22	Dehydrated A. thaliana plants	Constitutive in flowers and stems of <i>A. thaliana</i> ; inducible in <i>N. tabacum</i> by ABA or dehydration	56
Rd 29A	Dehydrated A. thaliana plants	Inducible by dehydration in most vegetative parts of A. thaliana; inducible in N. tabacum by cold, ABA, and salt	143, 144
CDeT27-45	C. plantagineum dehydrated or ABA-treated vegetative tissues	In embryos and mature pollen of both A. thaliana and N. tabacum	39a, 88
CDeT6-19	C. plantagineum dehydrated or ABA-treated vegetative tissues	In developing embryos and mature pollen of both A. thaliana and N. tabacum also inducible in their leaves and guard cells	87, 39a, 123
CDeT11-24	C. plantagineum dehydrated or ABA-treated vegetative tissues	Embryos of both A. thaliana and N. tabacum; inducible in A. thaliana leaves by dehydration	а
DC8	Embryos of Daucus carota	D. carota seed tissues	49
DC3	Embryos of Daucus carota	N. tabacum seedlings; also induc- ible in the leaves by either drying or ABA treatment	132

^aR Velasco, F Salamini & D Bartels, unpublished data.

sufficient for this response). The ABA effect on transcription was orientation independent in both the wheat and rice elements, which suggests that they possibly function as enhancer elements in their native genes. Electrophoretic-mobility-shift assays and methylation-interference footprinting have shown that both Em1a and Motif1 interact with nuclear proteins; these DNA-binding proteins are constitutively expressed in an ABA-independent manner (51, 92). cDNAs encoding ABRE-binding proteins (wheat EMBP-1 and tobacco TAF-1) have been cloned and shown to contain a basic region adjacent to a leucine-zipper motif that is characteristic of transcription factors (51, 97). Despite the fact that both proteins exhibit specific and distinct binding properties, their roles in vivo are not understood. It seems possible that they are not directly involved in ABA-responsive gene expression but that they cooperate with other regulatory factors.

Recently, two different elements have been described that must be present to allow a single copy of the ABRE to mediate transcriptional activation in response to ABA, and thus define an ABA response complex. An ABRE element in the barley *Amy32b* α-amylase promoter has been shown to allow ABA-stimulated transcription to increase only in the presence of an O2S element that interacts with the ABRE within tight positional constraints. A second coupling element has been identified during promoter analysis of the ABA-induced barley *HVA22* promoter (118). The coupling element (CE1) acts together with a G-box-type ABRE (GCCACGTACA) in conferring high ABA induction, whereas the ABRE alone is not sufficient for transcriptional activation. CE1-like elements have been found in many other ABA-regulated promoters, but their function remains to be demonstrated (118). The specific sequence of a coupling element may profoundly affect the specificity of ABA-driven gene expression and may explain differences between functional and nonfunctional ABREs.

In promoters such as *CDeT27-45* or *CDeT6-19*, isolated from *C. plantagineum*, G-box-related ABREs do not appear to be major determinants of the ABA or drought response (87, 88). The *CDeT27-45* promoter contains an element that specifically binds nuclear proteins from ABA-treated tissue; this promoter fragment is essential but not sufficient for conferring a response to ABA on a reporter gene (93).

Besides the ABA-mediated gene expression, the investigation of drought-induced genes in A. thaliana has also revealed ABA-independent signal transduction pathways (144). The A. thaliana genes rd29A and rd29B are differentially induced under conditions of dehydration, salt or cold stress, and ABA treatment. The rd29A gene has at least two cis-acting elements. 1. The 9-bp direct repeat sequence, TACCGACAT, termed the dehydration-responsive element (DRE), functions in the initial rapid response of rd29A to drought, salt, or low temperature (144). 2. The slower ABA response is medi-

ated by another fragment that contains an ABRE (143). It will be interesting to see whether the same cis elements function in other A. thaliana genes that are induced during progressive drought; besides ABA, at least two other different signals are involved in this induction (48). The existence of ABA-dependent and -independent pathways is corroborated by studies on the accumulation of three distinct Lea transcripts in barley embryos. Selected transcripts increased in response to osmotic stress without requiring ABA, whereas induction by salt did require ABA (38).

A different class of potential transcription factors with relevance to drought stress is represented by the A. thaliana gene Atmyb2. This gene encodes an MYB-related protein and is induced by dehydration or salt stress and by ABA (128). Plant myb-related genes comprise a large family that may play various roles in gene regulation. The ATMYB2 protein expressed in E. coli has been shown to bind the MYB-recognition sequence, PyAACTG, which supports its role as a DNA-binding protein. Another A. thaliana drought stress-induced gene, rd22 (56), has a promoter with no ABRE but with two recognition sites for the transcription factors MYC and MYB. Binding of the ATMYB2 protein appears likely but has not been proven experimentally.

ASSESSMENT OF PROMOTERS IN TRANSGENIC PLANTS Promoter analysis using transient expression assays has resulted in the characterization of several distinct cis-acting elements and the cloning of related transcription factors. However, tests with a range of promoters derived from drought- or ABA-inducible structural genes in transgenic plants have shown that the promoter activities defined in transient assays are not always correlated with the expression patterns of their corresponding structural genes. A summary of results is given in Table 5. A problem with the approach could be the use of heterologous plant expression systems. Although the genes are always active in seeds, expression in vegetative tissues is not always induced upon drought or ABA treatment, which points to an incomplete activation of the transcriptional machinery. It is interesting to note that ectopic expression of the otherwise seed-specific abi-3 gene product (42) allows the ABA-mediated activation of Lea genes in vegetative tissues of A. thaliana (100). Similarly, the CDeT27-45 promoter from C. plantagineum was only fully responsive to ABA in A. thaliana in the presence of the ABI3 product (39a). These experiments suggest that the ABI3 gene product can functionally interact with different promoters.

Second Messengers and Signaling Molecules

Protein phosphorylation and dephosphorylation (via kinases and phosphorylases, respectively) are major mechanisms of signal integration in eukaryotic cells. Two A. thaliana genes encoding calcium-dependent kinases are induced by dehydration (Table 1; 127), which suggests that they may participate in phosphorylation processes occurring in response to drought. A serine-threon-ine-type protein kinase has also been isolated from wheat and shows accumulation in ABA-treated embryos and in dehydrated shoots (Table 1; 4). However, the phosphorylation targets of these kinases are not yet known, and their exact roles are obscure.

A role for protein phosphorylation in the drought-stress response is also suggested on the basis of functional studies of the ABA-responsive RAB17 protein from maize (45). This protein is highly phosphorylated in vivo, probably via catalysis by casein kinase 2. The RAB17 protein has been found to be distributed between the cytoplasm and the nucleus of maize embryos, in different states of phosphorylation (5, 45). Biochemical studies showed that RAB17 binds peptides with nuclear localization signals and that the binding is dependent on phosphorylation. It has been suggested that RAB17 mediates the transport of specific nuclear-targeted proteins during stress (45).

Cytoplasmic calcium acts as a second messenger in many cellular processes and may also be involved in the signaling pathways mediating the expression of drought-related genes (13). Stomatal closure is an early plant response to drought, and increases in the cytosolic concentration of free calcium, together with pH changes, are considered to be primary events in the ABA-mediated reduction of stomatal turgor (115). However, it is likely that calcium, together with phosphorylation processes, plays a more general role in the mechanisms associated with drought-stress perception. For example, the *A. thaliana ABII* gene product is thought to be a calcium-activated phosphoprotein phosphatase (74, 86). Furthermore, a transcript encoding a phosphatidylinositol-specific phospholipase C, an enzyme involved in catalyzing the synthesis of inositol 1,4,5-triphosphate, increases during dehydration (Table 1; 53); inositol-triphosphate stimulates the release of Ca²⁺ from intracellular stores.

Posttranscriptional Control

Much of the effort to understand gene regulation during drought has been devoted to transcriptional mechanisms, but it has become clear that other potential control points include mRNA processing, transcript stability, translation efficiency, and protein modification or turnover. General posttranscriptional mechanisms in plants have recently been reviewed (41, 121). Evidence is emerging that these mechanisms also play a role during stress responses. In *C. plantagineum*, drought stress induces some proteins that are synthesized in a light-dependent manner (see above); for some of these proteins the levels of the mRNA do not parallel those of the proteins, which suggests posttranscriptional regulation (2). A more detailed analysis of alfalfa (*Medicago sativa*) suggests that increased mRNA stability is involved in the accumulation of the MsPRP2 transcript (30). The maize *pMAH9* cDNA clone encodes a transcript that is upregulated by drought. The corresponding protein has RNA-binding

characteristics, which suggests that it may play a role in the selective stabilization of mRNAs (Table 2; 78).

A second major control point appears to be the posttranslational modification of proteins, in which phosphorylation is a key mechanism. For example, phosphorylation is involved in the modification of the fructose-1,6-bisphosphatase in drought-stressed leaves of sugar beet (Beta vulgaris) (52). Some of the proteases induced by drought stress (Tables 1 and 2) may also have a function in posttranslational modification. Schaffer & Fischer (113) have hypothesized that a thiol protease, the mRNA of which is cold-induced in tomato, could proteolytically activate certain proteins. This mechanism could also operate during drought stress. It has also been suggested that putative protease inhibitors induced during drought (Table 2) have a role in controlling the activity of endogenous proteases (31).

Downregulation of Genes

Until now, most research has focused on understanding how relevant genes are upregulated during drought stress. However, the response to drought also involves the downregulation of several genes. For example, studies of C. plantagineum have revealed that transcripts encoding proteins relevant to photosynthesis are downregulated during the dehydration process and thus possibly reduce photooxidative stress (C Bockel & D Bartels, unpublished data). Jiang et al (59) have also shown that the promoter regions of storage protein genes contain the information for their downregulation during seed desiccation. Furthermore, it has recently been reported that histone H1 transcripts accumulate in response to drought stress in vegetative tissues of tomato, and it was suggested that H1 histones are implicated in the repression of gene expression (E Bray, personal communication).

TRANSGENIC PLANTS ASSESSING GENE FUNCTION

Transgenic plants allow the targeted expression of drought-related genes in vivo and are therefore an excellent system to assess the function and tolerance conferred by the encoded proteins. With ectopic expression of genes involved in controlling ABA biosynthesis, it should also be possible to alter the hormonal balance in vivo and thus to clarify the role of ABA in the drought response. Another purpose for using transgenic plants is to improve drought tolerance in agronomically valuable plants. However, despite extensive research, examples of transgenic plants with improved stress tolerance are scarce (see also 12). A reason for this is that stress tolerance is likely to involve the expression of gene products from several pathways.

The accumulation of low-molecular weight metabolites that act as osmoprotectants is a widespread adaptation to dry, saline, and low-temperature conditions in many organisms. In engineering plants that synthesize protective osmolytes, microorganisms appear to be useful sources for genes. Transgenic tobacco plants that synthesize and accumulate the sugar alcohol mannitol have been obtained by introducing a bacterial gene that encodes mannitol 1-phosphate dehydrogenase. Plants producing mannitol showed increased salt tolerance (122). Similarly, a freshwater cyanobacterium that was transformed with *E. coli bet* genes produced significant amounts of glycine betaine; this stabilized photosynthetic activity in the presence of sodium chloride, allowing improved growth (94). Tobacco plants that accumulate the polyfructose molecule fructan have been engineered using microbial (*Bacillus subtilis* or *Streptococcus mutans*) fructosyltransferase genes. These plants showed improved growth under polyethylene-mediated drought stress (105), with a positive correlation observed between the level of accumulated fructans and degree of tolerance. The mechanism by which fructans confer tolerance is not known, although a mere osmotic effect seems unlikely.

One consequence of drought and many other stresses is the production of activated oxygen molecules that cause cellular injury, and therefore plants with increased concentrations of oxygen scavengers should show improved performances under nonlethal stress conditions. When tobacco Mn-superoxide dismutase was overexpressed in alfalfa, the plants showed an increased growth rate after freezing stress (85).

Although *Lea*-related genes are upregulated abundantly in most plants during all types of osmotic stress, separate ectopic expression of three different representatives in tobacco did not yield an obvious drought-tolerant phenotype (55). However, this result is perhaps less surprising considering that drought stress does induce an array of different LEA-related proteins in plants. It is also likely that other factors are required for the expression of tolerance where LEA-type proteins are involved.

FUTURE PERSPECTIVES

Despite the many genes that have been identified in association with drought stress, much of the data is descriptive, with the functions of only a few of the encoded proteins established. The production of mutants using an antisense-RNA approach is a powerful technique that should continue to elucidate certain aspects of stress tolerance, but it has been most successful only with well-characterized areas of plant metabolism. It is also difficult to devise screening procedures for useful dehydration-tolerance mutants, because of the array of processes simultaneously affected by drought. Resurrection plants would be an excellent source for mutants with decreased tolerance, but *C. plantagineum*, as well as many other resurrection-plant species, has a polyploid genome and is thus unsuitable. Mutant analyses so far exploited for

drought stress have been with ABA-related mutations, and the power of the approach is shown in the cloning of *Abi1* and *Abi3* (43), which has provided new perspectives. Another valuable approach may be to identify those metabolic steps that are most sensitive to drought stress (a technique used to genetically dissect salt stress in yeast) (116). Such an approach can at least begin to elucidate which gene products are of primary importance.

The plant hormone ABA regulates different aspects of the drought-stress response, and thus the synthesis of pure active ABA analogues (103) may help in the development of probes for ABA-binding proteins, which could then shed some light on primary signals. In contrast with the situation with signal perception, some information is available on *cis*- and *trans*-regulatory factors. Several elements in a promoter need to cooperate with multiple DNA-binding proteins to mediate gene expression. The recently described coupling elements (118) are probably only a beginning in resolving the regulatory network. Little progress has been made with the cloning and analysis of drought-related transcription factors, although a biochemical approach and use of the recently established yeast one- and two-hybrid systems (133) should produce new insights. Regulation at stages beyond transcription must also be further considered, because this could make a major contribution to the final gene expression pattern.

The complexity of drought tolerance apparent throughout this review points to control by multiple genes, and thus the identification of quantitative-trait-loci (QTLs) for drought resistance may well be an effective analytical tool. The approach has just begun to be applied to the environmental-stress responses of plants (126) and is particularly promising considering that saturated DNA-marker maps are now available for both genetic model plants and crop plants.

The molecular analysis of the drought response has arrived at a stage where research can build upon a large collection of characterized genes. The use of novel approaches combining genetic, biochemical, and molecular techniques should provide exciting results in the near future.

ACKNOWLEDGMENTS

The authors wish to thank F. Salamini for his support and for comments on the manuscript, M. Pasemann for help in preparing the manuscript, and the EU PTP project for financial support. We apologize to all colleagues who have contributed to this research area whose work has not been cited because of limited space.

Any Annual Review chapter, as well as any article cited in an Annual Review chapter, may be purchased from the Annual Reviews Preprints and Reprints service.

1-800-347-8007; 415-259-5017; email: arpr@class.org

Literature Cited

- Acevedo E, Fereres E. 1993. Resistance to abiotic stresses. In *Plant Breeding*, ed. MD Hayward, NO Bosemark, I Romagosa, pp. 406-21. London: Chapman & Hall
- Adamska I, Kloppstech K. 1994. The role of early light-induced proteins (ELIPs) during light stress. In Environmental Plant Biology Series, ed. WJ Davies, Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field, ed. NR Baker, JR Bowyer, pp. 205-19. Oxford: BIOS Sci.
- Alamillo JM, Bartels D. 1996. Light and stage of development influence the expression of desiccation-induced genes in the resurrection plant Craterostigma plantagineum. Plant Cell Environ. 19:In press
- Almoguera C, Jordano J. 1992. Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs. *Plant Mol. Biol.* 19:781–92
- Anderberg RJ, Walker-Simmons MK. 1992. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc. Natl. Acad. Sci. USA 89:10183-87
- Asghar R, Fenton RD, DeMason DA, Close TJ. 1994. Nuclear and cytoplasmic localization of maize embryo and aleurone dehydrin. *Protoplasma* 177:87–94
- 6. Baker J, Steele C, Dure L III. 1988. Sequence and characterization of 6 *Lea* proteins and their genes from cotton. *Plant Mol. Biol.* 11:277-91
- Bartels D, Hanke C, Schneider K, Michel D, Salamini F. 1992. A desiccation-related Elip-like gene from the resurrection plant Craterostigma plantagineum is regulated by light and ABA. EMBO J. 11(8):2771-78
- Craterostigma plantagineum is regulated by light and ABA. EMBO J. 11(8):2771-78

 8. Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F. 1990. Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181:27-34
- Bartels D, Singh M, Salamini F. 1988. Onset of desiccation tolerance during development of the barley embryo. *Planta* 175: 485-92.
- Bell E, Mullet JE. 1991. Lipoxygenase gene expression is modulated in plants by water deficit, wounding, and methyl jasmonate. Mol. Gen. Genet. 230:456-62
- Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D. 1991. Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J. 1(3): 355-59
- Bohnert HJ, Nelson DE, Jensen RG. 1995.
 Adaptations to environmental stresses. Plant Cell 7:1099–111

- Bush DS. 1995. Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:95–122
- Carpenter JF, Crowe LM, Crowe JH. 1987. Stabilization of phosphofructokinase with sugars during freeze-drying: characterization of enhanced protection in the presence of divalent cations. *Biochim. Bio*phys. Acta 923:109–15
- Chandler PM, Robertson M. 1994. Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 113. 41
- Chen R-D, Campeau N, Greer AF, Bellemare G, Tabaeizadeh Z. 1993. Sequence of a novel abscisic acid—and drought-induced cDNA from wild tomato (Lycopersicon chilense). Plant Physiol. 103:301
- Chen R-D, Yu L-X, Greer AF, Cheriti H, Tabaeizadeh Z. 1994. Isolation of an osmotic stress- and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense. Mol. Gen. Genet. 245:195-202
- Claes B, Dekeyser R, Villarroel R, Van den Bulcke M, Bauw G, et al. 1990. Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell 2:19-27
- 18a. Close TJ, Bray EA, eds. 1993. Current Topics in Plant Physiology: An American Society of Plant Physiologists Series, Vol. 10, Plant Responses to Cellular Dehydration During Environmental Stress. Rock ville, MD: Am. Soc. Plant Physiol.
- Close TJ, Fenton RD, Yang A, Asghar R, DeMason DA, et al. 1993. Dehydrin: the protein. See Ref. 18a, pp. 104–18
 Close TJ, Kortt AA, Chandler PM. 1989. A
- Close TJ, Kortt AA, Chandler PM. 1989. A cDNA-based comparison of dehydrationinduced proteins (dehydrins) in barley and corn. *Plant Mol. Biol.* 13:95–108
- Coca MA, Almoguera C, Jordano J. 1994. Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible functional implications. *Plant Mol. Biol.* 25:479–92
- Cohen A, Bray EA. 1990. Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid. *Planta* 182: 27–33
- Cohen A, Plant ÁL, Moses MS, Bray EA. 1991. Organ-specific and environmentally regulated expression of two abscisic acidinduced genes of tomato. *Plant Physiol*. 97:1367-74
- Crowe JH, Crowe LM, Jackson SA. 1983. Preservation of structural and functional

- activity in lyophilized sarcoplasmic reticulum. *Arch. Biochem. Biophys.* 220(2): 477-84
- Crowe JH, Hoekstra FA, Crowe LM. 1992.
 Anhydrobiosis. Annu. Rev. Physiol. 54: 579-99
- Curry J, Morris CF, Walker-Simmons MK. 1991. Sequence analysis of a cDNA encoding a Group 3 LEA mRNA inducible by ABA or dehydration stress in wheat. Plant Mol. Biol. 16:1073-76
- Curry J, Walker-Simmons MK. 1993. Unusual sequence of group 3 LEA (II) mRNA inducible by dehydration stress in wheat. Plant Mol. Biol. 21:907–12
- Daniels MJ, Mirkov TE, Chrispeels MJ. 1994. The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol. 106:1325-33
- 29. Deleted in proof
- Deutsch CE, Winicov I. 1995. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. *Plant Mol. Biol.* 27:411–18
- Downing WL, Mauxion F, Fauvarque M-O, Reviron M-P, de Vienne D, et al. 1992.
 A Brassica napus transcript encoding a protein related to the Künitz protease inhibitor family accumulates upon water stress in leaves, not in seeds. Plant J. 2(5): 685-93
- Dunn MA, Hughes MA, Zhang L, Pearce RS, Quigley AS, Jack PL. 1991. Nucleotide sequence and molecular analysis of the low temperature induced cereal gene, BLT4. Mol. Gen. Genet. 229:389-94
- Dure L III, Crouch M, Harada J, Ho T-HD, Mundy J, et al. 1989. Common amino acid sequence domains among the LEA proteins of higher plants. *Plant Mol. Biol.* 12: 475–86
- Dure L III. 1993. A repeating 11-mer amino acid motif and plant desiccation. *Plant J.* 3(3):363-69
- 35. Dure L III. 1993. Structural motifs in Lea proteins. See Ref. 18a, pp. 91–103
- 36. Elster R. 1994. Physiologische und molek ulare Charakterisierung des Saccharosestoffwechsels der trockentoleranten Wiederauferstehungspflanze Craterostigma plantagineum Hochst. PhD thesis. Univ. Köln
- Espartero J, Pintor-Toro JA, Pardo JM. 1994. Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. *Plant Mol. Biol.* 25:217-27
- Espelund M, De Bedout JA, Outlaw WH Jr, Jakobsen KS. 1995. Environmental and hormonal regulation of barley late-embryogenesis-abundant (Lea) mRNAs is via dif-

- ferent signal transduction pathways. Plant Cell Environ. 18:943-49
- Espelund M, Sæboe-Larssen S, Hughes DW, Galau GA, Larsen F, Jakobsen KS. 1992. Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J. 2(2):241-52
- 39a. Furini A, Parcy F, Salamini F, Bartels D. 1996. Differential regulation of two ABAinducible genes from Craterostigma plantagineum in transgenic Arabidopsis plants. Plant Mol. Biol. In press
- Galau GA, Wang HY-C, Hughes DW. 1993. Cotton Lea5 and Lea14 encode atypical late embryogenesis-abundant proteins. Plant Physiol. 101:695-96
- Gallie DR. 1993. Posttranscriptional regulation of gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 77-105
- Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM. 1992. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251-61
- Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, et al. 1994. Current advances in abscisic acid action and signalling. *Plant Mol. Biol.* 26:1557–77
- Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnick PA, Cashmore AR. 1988. An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc. Natl. Acad. Sci. USA 85: 7089-93
- Goday A, Jensen AB, Culiáñez-Macià FA, Albà MM, Figueras M, et al. 1994. The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell 6:351-60
- Godoy JA, Pardo JM, Pintor-Toro JA.
 1990. A tomato cDNA inducible by salt stress and abscisic acid: nucleotide sequence and expression pattern. *Plant Mol. Biol.* 15:695-705
- 47. Gómez J, Sánchez-Martínez D, Stiefel V, Rigau J, Puigdomènech P, Pagès M. 1988. A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. *Nature* 334: 262-64
- Gosti F, Bertauche N, Vartanian N, Giraudat J. 1995. Abscisic acid-dependent and -independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Mol. Gen. Genet. 246: 10-18
- Goupil P, Hatzopoulos P, Franz G, Hempel FD, You R, Sung ZR. 1992. Transcriptional regulation of a seed-specific carrot gene, DC8. Plant Mol. Biol. 18:1049–63
- 50. Guerrero FD, Jones JT, Mullet JE. 1990.

- Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted: sequence and expression of three inducible genes. *Plant Mol. Biol.* 15:11–26
- Guiltinan MJ, Marcotte WR Jr, Quatrano RS. 1990. A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250:267-71
- element. Science 250:267-71
 52. Harn C, Daie J. 1992. Regulation of the cytosolic fructose-1,6-bisphosphatase by post-translational modification and protein level in drought-stressed leaves of sugarbeet. Plant Cell Physiol. 33(6):763-70
- Hirayama T, Ohto C, Mizoguchi T, Shinozaki K. 1995. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 92:3903-7
- Ishitani M, Nakamura T, Han SY, Takabe T. 1995. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. *Plant Mol. Biol.* 27:307-15
- Iturriaga G, Schneider K, Salamini F, Bartels D. 1992. Expression of desiccationrelated proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol. Biol. 20:555–58
- 56. Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K. 1995. Identification of a cisregulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol. Gen. Genet. 247(4): 391–98
- Izawa T, Foster R, Chua N-H. 1993. Plant bZIP protein DNA binding specificity. J. Mol. Biol. 230:1131-44
- Jakob U, Gaestel M, Engel K, Buchner J. 1993. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268(3): 1517–20
- Jiang L, Downing WL, Baszczynski CL, Kermode AR. 1995. The 5' flanking regions of vicilin and napin storage protein genes are down-regulated by desiccation in transgenic tobacco. *Plant Physiol.* 107: 1419–49
- 60. Kamada Y, Jung US, Piotrowski R, Levin DE. 1995. The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev. 9: 1559–71
- Kiyosue T, Beetham JK, Pinot F, Hammock BD, Yamaguchi-Shinozaki K, Shinozaki K. 1994. Characterization of an Arabidopsis cDNA for a soluble epoxide hydrolase gene that is inducible by auxin and water stress. Plant J. 6(2):259-69
 Kiyosue T, Yamaguchi-Shinozaki K, Shi-
- Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K, Kamada H, Harada H. 1993.

- cDNA cloning of ECP40, an embryogeniccell protein in carrot, and its expression during somatic and zygotic embryogenesis. *Plant Mol. Biol.* 21:1053–68
- 63. Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. 1993. Characterization of two cDNAs (ERD11 and ERD13) for dehydration-inducible genes that encode putative glutathione S-transferases in Arabidopsis thaliana L. FEBS Lett. 335(2):189–92
- 64. Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. 1993. Characterization of cDNA for a dehydration-inducible gene that encodes a CLP A, B-like protein in Arabidopsis thaliana L. Biochem. Biophys. Res. Comm. 196(3):1214–20
- Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. 1994. Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol. 35(2):225-31
- 66. Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. 1994. Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. Plant Mol. Biol. 25:791-98
- cognate genes. *Plant Mol. Biol.* 25:791–98
 67. Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, Shinozaki K. 1993. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in *Arabidopsis thaliana*. *Gene* 129:175–82
- Koster KL. 1991. Glass formation and desiccation tolerance in seeds. *Plant Physiol*. 96:302–4
- Kurkela S, Borg-Franck M. 1992. Structure and expression of kin2, one of two coldand ABA-induced genes of Arabidopsis thaliana. Plant Mol. Biol. 19:689-92
- Laberge S, Castonguay Y, Vézina L-P. 1993. New cold- and drought-regulated gene from Medicago sativa. Plant Physiol. 101:1411-12
- Lam E, Chua N-H. 1991. Tetramer of a 21-base pair synthetic element confers seed expression and transcriptional enhancement in response to water stress and abscisic acid. J. Biol. Chem. 266(26): 17131-35
- Lång V, Palva ET. 1992. The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 20:951-62
- Leprince O, Hendry GAF, McKersie BD. 1993. The mechanisms of desiccation tolerance in developing seeds. Seed Sci. Res. 3:231-46
- Leung J, Bouvier-Durand M, Morris P-C, Guerrier D, Chefdor F, Giraudat J. 1994. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264:1448-52

- Li C, Clarke S. 1992. A protein methyltransferase specific for altered aspartyl residues is important in *Escherichia coli* stationary-phase survival and heat-shock resistance. *Proc. Natl. Acad. Sci. USA* 89: 9885–89
- Litts JC, Colwell GW, Chakerian RL, Quatrano RS. 1987. The nucleotide sequence of a cDNA clone encoding the wheat E_m protein. Nucleic Acids Res. 15(8):3607–18
- 77. Lopez F, Vansuyt G, Fourcroy P, Casse-Delbart F. 1994. Accumulation of a 22-kDa protein and its mRNA in the leaves of Raphanus sativus in response to salt stress or water deficit. Physiol. Plant. 91:605-14

 Ludevid MD, Freire MA, Gómez J, Burd CG, Albericio F, et al. 1992. RNA binding characteristics of a 16-kDa glycine-rich protein from maize. *Plant J*. 2(6):999-1003

- Luo M, Lin L, Hill RD, Mohapatra SS. 1991. Primary structure of an environmental stress and abscisic acid-inducible alfalfa protein. *Plant Mol. Biol.* 17: 1267-69
- Luo M, Liu J-H, Mohapatra S, Hill RD, Mohapatra SS. 1992. Characterization of a gene family encoding abscisic acid—and environmental stress—inducible proteins of alfalfa. J. Biol. Chem. 267(22):15367–74
- Marcotte WR Jr, Russell SH, Quatrano RS. 1989. Abscisic acid-responsive sequences from the Em gene of wheat. *Plant Cell* 1:969-76
- McCarty DR. 1995. Genetic control and integration of maturation and germination pathways in seed development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:71-93
- McCubbin WD, Kay CM. 1985. Hydrodynamic and optical properties of the wheat Em protein. Can. J. Biochem. 63:803-10
- McCue KF, Hanson AD. 1990. Drought and salt tolerance: towards understanding and application. Trends Biotech. 8:358-62
- McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, et al. 1993. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol. 103:1155–63
- Meyer K, Leube M, Grill E. 1994. A protein phosphatase in ABA signal transduction in Arabidopsis thaliana. Science 264: 1452–55
- Michel D, Furini A, Salamini F, Bartels D. 1994. Structure and regulation of an ABAand desiccation-responsive gene from the resurrection plant Craterostigma plantagineum. Plant Mol. Biol. 24:549-60
- Michel D, Salamini F, Bartels D, Dale P, Baga M, Szalay A. 1993. Analysis of a desiccation and ABA-responsive promoter isolated from the resurrection plant Craterostigma plantagineum. Plant J. 4(1): 29-40
- 89. Mittler R, Zilinskas BA. 1994. Regulation

- of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. *Plant J.* 5(3): 397–405
- Mudgett MB, Clarke S. 1994. Hormonal and environmental responsiveness of a developmentally regulated protein repair Lisoaspartyl methyltransferase in wheat. J. Biol. Chem. 269(41):25605-12
- 91. Mundy J, Chua N-H. 1988. Abscisic acid and water-stress induce the expression of a novel rice gene. FMRO 1.7(8):2279-86
- novel rice gene. EMBO J. 7(8):2279-86
 92. Mundy J, Yamaguchi-Shinozaki K, Chua N-H. 1990. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc. Natl. Acad. Sci. USA 87:1406-10
- Nelson D, Salamini F, Bartels D. 1994. Abscisic acid promotes novel DNA-binding activity to a desiccation-related promoter of Craterostigma plantagineum. Plant J. 5(4):451-58
- Nomura M, Ishitani M, Takabe T, Rai AK, Takabe T. 1995. Synechococcos sp. PCC7942 transformed with Escherichia coli bet genes produces glycine betaine from choline and acquires resistance to salt stress. Plant Physiol. 107:703-8
- 94a. Nonami H, Boyer JS. 1990. Wall extensibility and cell hydraulic conductivity decrease in enlarging stem tissues at low water potentials. *Plant Physiol.* 93:1610-19
- Nordin K, Vahala T, Palva ET. 1993. Differential expression of two related, low-temperature-induced genes in *Arabidopsis thaliana* (L.) Heynh. *Plant Mol. Biol.* 21: 641-53
- Nover L, Scharf K-D, Neumann D. 1989. Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol. Cell. Biol. 9(3):1298–308
- Oeda K, Salinas J, Chua N-H. 1991. A tobacco bZIP transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. EMBO J. 10(7):1793–802
- Oliver MJ, Bewley JD. 1996. Desiccationtolerance of plant tissues: a mechanistic overview. Hort. Rev. In press
- Pagès M, Vilardell J, Jensen AB, Albà MM, Torrent M, Goday A. 1993. Molecular biological responses to drought in maize. In Global Environmental Change, NATO Adv. Sci. Inst. Ser., Vol. I 16, Interacting Stresses on Plants in a Changing Climate, ed. MB Jackson, CR Black, pp. 583–91. Berlin/Heidelberg: Springer-Verlag
 Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J. 1994.
- 00. Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J. 1994. Regulation of gene expression programs during *Arabidopsis* seed development: roles of the *ABI3* locus and of endogenous abscisic acid. *Plant Cell* 6:1567–82

- 101. Peleman J, Boerjan W, Engler G, Seurinck J, Botterman J, et al. 1989. Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding S-adenosylmethionine synthetase. Plant Cell 1:81-93
- 102. Perl-Treves R, Galun E. 1991. The tomato Cu,Zn superoxide dismutase genes are developmentally regulated and respond to light and stress. Plant Mol. Biol. 17:745-60
- 103. Perras MR, Abrams SR, Balsevich JJ. 1994. Characterization of an abscisic acid carrier in suspension-cultured barley cells.
- J. Exp. Bot. 45(280):1565-73

 104. Piatkowski D, Schneider K, Salamini F, Bartels D. 1990. Characterization of five abscisic acid-responsive cDNA clones isolated from the desiccation-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. Plant Physiol. 94:1682–88
- 105. Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weisbeek PJ, Smeekens SCM. 1995. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol. 107: 125-30
- 106. Pla M, Vilardell J, Guiltinan MJ, Marcotte WR, Niogret MF, et al. 1993. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28. Plant Mol. Biol. 21:
- 107. Plant AL, Cohen A, Moses MS, Bray EA. 1991. Nucleotide sequence and spatial expression pattern of a drought- and abscisic acid-induced gene of tomato. Plant Physiol. 97:900-6 108. Quarrie SA. 1982. Droopy: a wilty mutant
- of potato deficient in abscisic acid. Plant Cell Environ. 5:23-6
- 109. Quick P, Siegl G, Neuhaus E, Feil R, Stitt M. 1989. Short-term water stress leads to a stimulation of sucrose synthesis by activating sucrose-phosphate synthase. *Planta* 177:535-46
- 110. Robertson M, Chandler PM. 1992. Pea dehydrins: identification, characterisation and expression. Plant Mol. Biol. 19:
- 111. Roberts JK, DeSimone NA, Lingle WL, Dure L III. 1993. Cellular concentrations and uniformity of cell-type accumulation of two Lea proteins in cotton embryos. Plant Cell 5:769-80
- 112. Rogers JC, Rogers S. 1992. Definition and functional implications of gibberellin and abscisic acid cis-acting hormone response complexes. Plant Cell 4:1443-51
- 113. Schaffer MA, Fischer RL. 1988. Analysis of mRNAs that accumulate in response to low temperature identifies a thiol protease gene in tomato. *Plant Physiol*. 87:431-36 114. Schneider K, Wells B, Schmelzer E,

- Salamini F, Bartels D. 1993. Desiccation leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigma plantagineum Hochst. Planta 189:120-31
- 115. Schroeder JI. 1995. Anion channels as central mechanisms for signal transduction in guard cells and putative functions in roots for plant-soil interactions. Plant Mol. Biol. 28:353-61
- 116. Serrano R. 1995. Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Intern. Rev. Cytol. 165:
- 117. Sgherri CLM, Pinzino C, Navari-Izzo F. 1993. Chemical changes and O₂ production in thylakoid membranes under water stress. Physiol. Plant. 87:211-16
- 118. Shen Q, Ho T-HD. 1995. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a Gbox and a novel cis-acting element. Plant Cell 7:295-307
- 119. Skriver K, Olsen PL, Rogers JC, Mundy J. 1991. Cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc. Natl. Acad. Sci. USA 88: 7266-70
- 120. Strauss G, Hauser H. 1986. Stabilization of lipid bilayer vesicles by sucrose during freezing. Proc. Natl. Acad. Sci. USA 83: 2422-26
- 121. Sullivan ML, Green PJ. 1993. Post-transcriptional regulation of nuclear-encoded genes in higher plants: the roles of mRNA stability and translation. Plant Mol. Biol. 23:1091-104
- 122. Tarczynski MC, Jensen RG, Bohnert H. 1993. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508-10
- 123. Taylor JE, Renwick KF, Webb AAR, McAinsh MR, Furini A, et al. 1995. ABAregulated promoter activity in stomatal guard cells. Plant J. 7(1):129-34
- 124. Thomashow MF. 1993. Characterization of genes induced during cold acclimation in Arabidopsis thaliana. See Ref. 18a, pp.
- 125. Torres-Schumann S, Godoy JA, Pintor-Toro JA. 1992. A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. Plant Mol. Biol. 18: 749-57
- 126. Touzet P, Winkler RG, Helentjaris T. 1995. Combined genetic and physiological analysis of a locus contributing to quantitative variation. Theor. Appl. Genet. 91: 200-5
- 127. Urao T, Katagiri T, Mizoguchi T, Yama-guchi-Shinozaki K, Hayashida N, Shinozaki K. 1994. Two genes that encode Ca²⁺-dependent protein kinases are in-

- Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 1996.47:377-403. Downloaded from arjournals.annualreviews.org by University of Illinois Urbana Champaign on 08/21/08. For personal use only.
- duced by drought and high-salt stresses in Arabidopsis thaliana. Mol. Gen. Genet. 244:331-40
- 128. Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. 1993. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:
- 129. Velasco R, Salamini F, Bartels D. 1994. Dehydration and ABA increase mRNA levels and enzyme activity of cytosolic GAPDH in the resurrection plant Craterostigma plantagineum. Plant Mol. Biol. 26: 541-46
- 130. Vernon DM, Ostrem JA, Bohnert HJ. 1993. Stress perception and response in a facultative halophyte: the regulation of salinity-induced genes in Mesembryanthemum crystallinum. Plant Cell Environ. 16:437-44
- 131. Vilardell J, Martínez-Zapater JM, Goday A, Arenas C, Pagès M. 1994. Regulation of the rab17 gene promoter in transgenic Arabidopsis wild-type, ABA-deficient and ABA-insensitive mutants. Plant Mol. Biol.
- 132. Vivekananda J, Drew MC, Thomas TL. 1992. Hormonal and environmental regulation of the carrot lea-class gene DC3. Plant Physiol. 100:576-81
- Physiol. 100.376-61

 133. Wang MM, Reed RR. 1993. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364:121-26

 134. Weretilnyk E, Orr W, White TC, Lu B, Singh
- J. 1993. Characterization of three related low-temperature-regulated cDNAs from winter Brassica napus. Plant Physiol. 101: 171-77
- 135. White DA, Zilinskas BA. 1991. Nucleotide sequence of a complementary DNA encoding pea cytosolic copper/zinc superoxide dismutase. Plant Physiol. 96:1391-92
- 136. Williams J, Bulman M, Huttly A, Phillips A, Neill S. 1994. Characterization of a cDNA from Arabidopsis thaliana encoding a potential thiol protease whose expression is induced independently by wilting and abscisic acid. *Plant Mol. Biol.* 25:259-70 137. Williams RJ, Leopold AC. 1989. The

- glassy state in corn embryos. Plant Physiol. 89:977-81
- 138. Williamson JD, Scandalios JG. 1994. The maize (Zea mays L.) Cat1 catalase promoter displays differential binding of nuclear proteins isolated from germinated and developing embryos and from embryos grown in the presence and absence of abscisic acid. Plant Physiol. 106:1373-80
- 139. Winter K, Smith JAC, eds. 1996. Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution. Berlin: Springer-Verlag, In press
- 140. Deleted in proof
- 141. Yamaguchi-Shinozaki K, Koizumi M, Urao S, Shinozaki K. 1992. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol. 33(3):217-24
- 142. Yamaguchi-Shinozaki K, Mino M, Mundy J, Chua N-H. 1990. Analysis of an ABA-responsive rice gene promoter in transgenic
- tobacco. *Plant Mol. Biol.* 15:905–12 143. Yamaguchi-Shinozaki K, Shinozaki K. 1993. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol. Gen. Genet. 236:331-40
- Yamaguchi-Shinozaki K, Shinozaki K. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251-64
- 145. Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, et al. 1995. Correlation between the induction of a gene for δ^1 -pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J. 7(5):
- 146. Zhang X-H, Moloney MM, Chinnappa CC. 1993. Nucleotide sequence of a cDNA clone encoding a dehydrin-like protein from Stellaria longipes. Plant Physiol. 103: 1029-30

CONTENTS

REFLECTIONS OF A BIO-ORGANIC CHEMIST, Jake MacMillan	1
HOMOLOGY-DEPENDENT GENE SILENCING IN PLANTS, P. Meyer, H. Saedler	23
14-3-3 PROTEINS AND SIGNAL TRANSDUCTION, Robert J. Ferl	49
DNA DAMAGE AND REPAIR IN PLANTS, Anne B. Britt	75
PLANT PROTEIN PHOSPHATASES, Robert D. Smith, John C. Walker THE FUNCTIONS AND REGULATION OF GLUTATHIONE S-	101
TRANSFERASES IN PLANTS, Kathleen A. Marrs	127
PHYSIOLOGY OF ION TRANSPORT ACROSS THE TONOPLAST OF	
HIGHER PLANTS, Bronwyn J. Barkla, Omar Pantoja THE ORGANIZATION AND REGULATION OF PLANT GLYCOLYSIS,	159
William C. Plaxton LIGHT CONTROL OF SEEDLING DEVELOPMENT, Albrecht von	185
Arnim, Xing-Wang Deng	215
DIOXYGENASES: Molecular Structure and Role in Plant Metabolism, Andy G. Prescott, Philip John	245
PHOSPHOENOL PYRUVATE CARBOXYLASE: A Ubiquitous, Highly Regulated Enzyme in Plants, Raymond Chollet, Jean Vidal, Marion H.	
O'Leary XYLOGENESIS: INITIATION, PROGRESSION, AND CELL DEATH,	273
Hiroo Fukuda	299
COMPARTMENTATION OF PROTEINS IN THE ENDOMEMBRANE	
SYSTEM OF PLANT CELLS, <i>Thomas W. Okita, John C. Rogers</i> WHAT CHIMERAS CAN TELL US ABOUT PLANT DEVELOPMENT,	327
Eugene J. Szymkowiak, Ian M. Sussex THE MOLECULAR BASIS OF DEHYDRATION TOLERANCE IN	351
PLANTS, J. Ingram, D. Bartels	377
BIOCHEMISTRY AND MOLECULAR BIOLOGY OF WAX PRODUCTION IN PLANTS, <i>Dusty Post-Beittenmiller</i>	405
ROLE AND REGULATION OF SUCROSE-PHOSPHATE SYNTHASE IN	
HIGHER PLANTS, Steven C. Huber, Joan L. Huber STRUCTURE AND BIOGENESIS OF THE CELL WALLS OF GRASSES,	431
Nicholas C. Carpita	445
SOME NEW STRUCTURAL ASPECTS AND OLD CONTROVERSIES	
CONCERNING THE CYTOCHROME b of COMPLEX OF OXYGENIC PHOTOSYNTHESIS, W. A. Cramer, G. M. Soriano, M. Ponomarev, D.	
Huang, H. Zhang, S. E. Martinez, J. L. Smith CARBOHYDRATE-MODULATED GENE EXPRESSION IN PLANTS,	477
K. E. Koch	509
CHILLING SENSITIVITY IN PLANTS AND CYANOBACTERIA: The	
Crucial Contribution of Membrane Lipids, I. Nishida, N. Murata	541

THE MOLECULAR-GENETICS OF NITROGEN ASSIMILATION INTO	
AMINO ACIDS IN HIGHER PLANTS, HM. Lam, K. T. Coschigano, I.	
C. Oliveira, R. Melo-Oliveira, G. M. Coruzzi	569
MEMBRANE TRANSPORT CARRIERS, W. Tanner, T. Caspari	595
LIPID-TRANSFER PROTEINS IN PLANTS, Jean-Claude Kader	627
REGULATION OF LIGHT HARVESTING IN GREEN PLANTS, P.	
Horton, A. V. Ruban, R. G. Walters	655
THE CHLOROPHYLL-CAROTENOID PROTEINS OF OXYGENIC	
PHOTOSYNTHESIS, B. R. Green, D. G. Durnford	685

.

Update on Signaling

Gene Expression and Signal Transduction in Water-Stress Response¹

Kazuo Shinozaki* and Kazuko Yamaguchi-Shinozaki

Laboratory of Plant Molecular Biology, Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), 3–1–1 Koyadai, Tsukuba, Ibaraki 305, Japan (K.S.); and Biological Resources Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ministry of Agriculture, Forestry, and Fisheries, 2–1 Ohwashi, Tsukuba, Ibaraki 305, Japan (K.Y.-S.)

Land plants suffer from dehydration or water stress not only under drought and high-salt-concentration conditions but also under low-temperature conditions. They respond and adapt to water stress to survive these environmental stress conditions. Water stress induces various biochemical and physiological responses in plants. Under water-stress conditions plant cells lose water and decrease turgor pressure. The plant hormone ABA increases as a result of water stress, and ABA has important roles in the tolerance of plants to drought, high salinity, and cold. A number of genes that respond to drought, salt, and cold stress at the transcriptional level have recently been described (for review, see Ingram and Bartels, 1996; Shinozaki and Yamaguchi-Shinozaki, 1996; Bray, 1997). The mRNAs of water-stress-inducible genes decrease when the plants are released from stress conditions, which is consistent with evidence that shows that these genes respond to water stress or dehydration. The functions of some gene products have been predicted from sequence homology with known proteins and are thought to have a role in protecting the cells from water deficit (Ingram and Bartels, 1996; Bray, 1997).

Expression patterns of dehydration-inducible genes are complex. Some genes respond to water stress very rapidly, whereas others are induced slowly after the accumulation of ABA. Most of the genes that respond to drought, salt, and cold stress are also induced by exogenous application of ABA (for review, see Shinozaki and Yamaguchi-Shinozaki, 1996; Bray et al., 1997). It appears that dehydration triggers the production of ABA, which in turn induces various genes. Several genes that are induced by water stress are not responsive to exogenous ABA treatment. These findings suggest the existence of both ABA-independent and ABA-dependent signal transduction cas-

Details of molecular mechanisms regulating responses of plant genes to water stress remain to be discovered, and there are many questions to be examined at the molecular level. These include the sensing mechanisms of water stress or osmotic stress, modulation of the stress signals to cellular signals, transduction of the cellular signals to the nucleus, transcriptional control of stress-inducible genes, and the function and cooperation of stress-inducible genes allowing water-stress tolerance. This *Update* focuses on recent progress toward understanding the signal transduction cascades leading to expression of water-stress-inducible genes. Possible sensors of osmotic stress in plants are discussed based on our knowledge of yeast and bacterial sensors. A glossary of terms is included to facilitate the reading.

GLOSSARY OF TERMS

Promoter Regulatory Elements

ABRE, ABA-responsive element (PyACGTGGC). G-box, Ubiquitous regulatory elements (CACGTG). DRE, Dehydration-responsive element (TACCGACAT). MYBRS, MYB recognition sequence (PyAACPyPu). MYCRS, MYC recognition sequence (CANNTG).

Proteins That Bind to Promoter Regulatory Elements

bZIP, A family of transcription factors with basic region and Leu-zipper motif.

MYC, A family of transcription factors with basic-helix loop-helix (bHLH) and Leu-zipper motif.

MYB, A family of transcription factors with Trp cluster motif.

VP1, A maize transcriptional activator that is mutated in the viviparous 1 mutant.

cades between the initial signal of drought or cold stress and the expression of specific genes (Shinozaki and Yamaguchi-Shinozaki, 1996; Bray et al., 1997). Promoter analysis of drought- and cold-inducible genes has identified several *cis*-acting elements that are involved in ABA-dependent and ABA-independent responses to conditions of water stress.

¹ This work was supported by the Program for Promotion of Basic Research Activities for Innovative Bioscience, the Human Frontier Science Program (grant no. RG-303/95), the Special Coordination Fund of the Science and Technology Agency, and a Grant-in-Aid from the Ministry of Education, Science, and Culture of Janan

^{*} Corresponding author; e-mail sinozaki@rtc.riken.go.jp; fax 81–298-36-9060.

Proteins of the Signal Transduction Pathways

PLC, Phospholipase C that produces two second messengers, inositol 1,4,5-triphosphate (IP₃) and 1,2-diacylglycerol.

CDPK, Calcium-dependent protein kinase.

MAPK, Mitogen-activated protein kinase.

MAPKK, A protein kinase that phosphorylates MAPK. MAPKKK, A protein kinase that phosphorylates MAPKK.

RSK, Ribosomal S6 protein kinase.

Two-component His kinase, Bacterial-type sensory kinase. 14-3-3 protein, A signaling molecule acting by kinase modulation and protein-protein interactions.

FUNCTION OF WATER-STRESS-INDUCIBLE GENES

A variety of genes have been reported to respond to water stress in various species, and the functions for many of the proteins they encode have been predicted from sequence homology with known proteins. Genes induced during water-stress conditions are thought to function not only in protecting cells from water deficit by the production of important metabolic proteins but also in the regulation of genes for signal transduction in the water-stress response (Fig. 1). Thus, these gene products are classified into two groups. The first group includes proteins that probably function in stress tolerance: water channel proteins involved in the movement of water through membranes, the enzymes required for the biosynthesis of various osmoprotectants (sugars, Pro, and Gly-betaine), proteins that may protect macromolecules and membranes (LEA protein, osmotin, antifreeze protein, chaperon, and mRNA binding proteins), proteases for protein turnover (thiol proteases, Clp protease, and ubiquitin), the detoxification enzymes (glutathione S-transferase, soluble epoxide hydrolase, catalase, superoxide dismutase, and ascorbate peroxidase). Some of the stress-inducible genes that encode proteins, such as a key enzyme for Pro biosynthesis, were overexpressed in transgenic plants to produce a stresstolerant phenotype of the plants; this indicates that the gene products really function in stress tolerance (Kavi Kishor et al., 1995). The second group contains protein factors involved in further regulation of signal transduction and gene expression that probably function in stress response: protein kinases, transcription factors, PLC, and 14-3-3 proteins. Now it becomes more important to elucidate the role of these regulatory proteins for further understanding of plant responses to water deficit. The possible function of the drought-, high-salinity-, and coldinducible genes were recently reviewed by Ingram and Bartels (1996).

REGULATION OF GENE EXPRESSION BY WATER STRESS

Most water-stress-inducible genes respond to treatment with exogenous ABA, whereas others do not. Analyses of the expression of water-stress-inducible genes by ABA in ABA-deficient (aba) or ABA-insensitive (abi) Arabidopsis mutants have indicated that some of the stress-inducible

Figure 1. Function of water-stress-inducible gene products in stress tolerance and stress response. The gene products are roughly classified into two groups: functional proteins that are involved in water-stress tolerance and cellular adaptation, and regulatory proteins that may function in gene expression and signal transduction in stress response.

genes do not require an accumulation of endogenous ABA under drought or cold conditions (for review, see Ingram and Bartels, 1996; Shinozaki and Yamaguchi-Shinozaki, 1996; Bray et al., 1997). Therefore, there are not only ABA-dependent pathways but also ABA-independent pathways involved in the water-stress response. Analysis of the expression of ABA-inducible genes revealed that several genes require protein biosynthesis for their induction by ABA, suggesting that at least two independent pathways exist between the production of endogenous ABA and gene expression during stress.

As shown in Figure 2, it is now hypothesized that at least four independent signal pathways function in the activation of stress-inducible genes under dehydration conditions (Shinozaki and Yamaguchi-Shinozaki, 1996): two are ABA dependent (pathways I and II) and two are ABA independent (pathways III and IV). One of the ABA-independent pathways overlaps with that of the cold response (pathway IV). One of the ABA-dependent pathways

Figure 2. Signal transduction pathways between the perception of a water-stress signal and gene expression. At least four signal transduction pathways exist (I-IV): two are ABA-dependent (I and II) and two are ABA-in-dependent (III and IV). Protein biosynthesis is required in one of the ABA-dependent pathways (I). In another ABA-dependent pathway, ABRE does not require protein biosynthesis (II). In one of the ABA-independent pathways, DRE is involved in the regulation of genes not only by drought and salt but also by cold stress (IV). Another ABA-independent pathway is controlled by drought and salt but not by cold (III).

requires protein biosynthesis (pathway II). Each pathway is discussed separately below.

ABA-Responsive Gene Expression during Water Stress (Pathway II)

Many water-stress-inducible genes are up-regulated by exogenous ABA treatment. The levels of endogenous ABA increase significantly in many plants under drought and high-salinity conditions (Ingram and Bartels, 1996; Bray, 1997). In one of the ABA-dependent pathways (Fig. 2, pathway II), water-stress-inducible genes do not require protein biosynthesis for their expression (for review, see Giraudat et al., 1994; Ingram and Bartels, 1996; Shinozaki and Yamaguchi-Shinozaki, 1996). These dehydrationinducible genes contain potential ABREs (PyACGTGGC) in their promoter regions. An ABRE functions as a cis-acting DNA element involved in ABA-regulated gene expression. ABREs were first identified in wheat Em and rice rab genes, and the ABRE-DNA-binding protein EmBP-1 was shown to encode a bZIP protein. The G-box resembles the ABRE motif and functions in the regulation of plant genes in a variety of environmental conditions, such as red light, UV light, anaerobiosis, and wounding. cDNAs for ABRE and G-box-binding proteins have been isolated and have a basic region adjacent to a Leu-zipper motif (bZIP) and constitute a large gene family. Nucleotides around the ACGT core motif have been shown to be involved in determining the binding specificity of bZIP proteins (for review, see Menkens et al., 1995). Furthermore, a coupling element is required to specify the function of the ABRE, constituting an ABA-responsive complex in the regulation of the HVA22 gene (Shen and Ho, 1995). However, it has not been resolved how ABA activates bZIP proteins to bind to ABRE and initiate transcription of ABA-inducible genes. Further

studies are necessary for the precise understanding of the molecular mechanisms of ABA-responsive gene expression that require ABRE as a cis-acting element.

There are several *cis*-acting elements other than ABRE that function in ABA-responsive gene expression not only under water-stress conditions but also in seed desiccation. The Sph box and GTGTC motifs regulate ABA- and VP1-dependent expression of the maize *C1* gene, whose product is an MYB-related transcription factor and functions as a controlling element in anthocyanin biosynthesis during seed development (for review, see McCarty, 1995). VP1 encodes a transcriptional activator and is thought to cooperate with bZIP proteins, and the Arabidopsis ABI3 protein has sequence and functional similarity with maize VP1.

ABA-Dependent Gene Expression Requiring Protein Biosynthesis (Pathway I)

In one of the two ABA-dependent pathways (Fig. 2, pathway I), biosynthesis of protein factors is necessary for the expression of water-stress-inducible genes. The induction of an Arabidopsis drought-inducible gene, rd22, is mediated by ABA and requires protein biosynthesis for its ABA-dependent expression (Shinozaki and Yamaguchi-Shinozaki, 1996). A 67-bp region of the rd22 promoter is essential for this ABA-responsive expression and contains several conserved motifs of DNA-binding proteins, such as MYC and MYB, but this region has no ABREs (Iwasaki et al., 1995). A cDNA for a transcription factor MYC homolog, named rd22BP1, was cloned by the DNA-ligand-binding method using the 67-bp DNA as a probe. The rd22BP1 gene is induced by drought and salt stress. These results suggest that a drought- and salt-inducible MYC homolog might function in the ABA-inducible expression of rd22 (Abe et al., 1997). The Atmyb2 gene that encodes a MYB-related protein is induced by dehydration stress (Urao et al., 1993). High-salt-concentration conditions and application of exogenous ABA also result in the induction of Atmyb2, although Atmyb2 does not respond to cold or heat stress. Recombinant ATMYB2 protein binds to the MYBRS in the 67-bp region of the rd22 promoter. Therefore, the ATMYB2 protein might also cooperatively function with the rd22BP1 protein as a transcription factor that controls the ABA-dependent expression of the rd22 gene (Fig. 2, pathway I; Abe et al., 1997).

Several bZIP transcription factors from rice, maize, and Arabidopsis plants (Kusano et al., 1995; Lu et al., 1996; Nakagawa et al., 1996) respond to cold, dehydration, and exogenous ABA treatment. These bZIP proteins bind to G-box-like sequences. These results suggest that ABA-inducible bZIP proteins are also involved in one of the ABA-dependent pathways (Fig. 2, pathway I). Many stress-and ABA-inducible genes encoding various transcription factors have now been reported. These transcription factors are thought to function in the regulation of ABA-inducible genes, which respond to water stress rather slowly after the production of ABA-inducible transcription factors (pathway I).

ABA-Independent Gene Expression during Water Stress (Pathways IV and III)

Several genes are induced by drought, salt, and cold in aba (ABA-deficient) or abi (ABA-insensitive) Arabidopsis mutants. This suggests that these genes do not require ABA for their expression under cold or drought conditions but do respond to exogenous ABA (for review, see Thomashow, 1994; Ingram and Bartels, 1996; Shinozaki and Yamaguchi-Shinozaki, 1996; Bray, 1997). These genes include rd29A (lti78 and cor78), kin1, cor6.6 (kin2), and cor47 (rd17). Among them, the expression of a drought-inducible gene for rd29A/lti78/cor78 was extensively analyzed (Yamaguchi-Shinozaki and Shinozaki, 1994). At least two separate regulatory systems function in gene expression during drought and cold stress; one is ABA independent and the other is ABA dependent. A 9-bp conserved sequence, TACCGACAT, termed DRE, is essential for the regulation of the induction of rd29A under drought, lowtemperature, and high-salt-concentration stress conditions but does not function as an ABRE (Fig. 2, pathway IV). The rd29A promoter contains ABRE, which probably functions in ABA-responsive expression. DRE-related motifs have been reported in the promoter regions of many cold- and drought-inducible genes (Thomashow, 1994; Shinozaki and Yamaguchi-Shinozaki, 1996). These results suggest that DRE-related motifs, including C-repeat, which contains a CCGAC core motif, are involved in drought- and coldresponsive but ABA-independent gene expression. Protein factor(s) that specifically interact with the 9-bp DRE sequence were detected in a nuclear extract prepared from either dehydrated or untreated Arabidopsis plants (Yamaguchi-Shinozaki and Shinozaki, 1994). Recently, several independent cDNAs for DRE/C-repeat-binding proteins have been cloned (Stockinger et al., 1997; H. Liu, Q. Abe, K. Yamaguchi-Shinozaki, and K. Shinozaki unpublished data) using the yeast one-hybrid-screening method. All of the DRE/C-repeat-binding proteins contain a conserved DNA-binding motif that has also been reported in EREBP and AP2 proteins (EREBP/AP2 motif) that are involved in ethylene-responsive gene expression and floral morphogenesis, respectively. Analyses of the transcriptional control with these DRE/C-repéat-binding proteins will provide a precise mechanism of the ABA-independent pathway in the water-stress response.

There are several drought-inducible genes that do not respond to either cold or ABA treatment, which suggests that there is a fourth pathway in the dehydration-stress response (Fig. 2, pathway III). These genes include *rd19* and *rd21*, which encode different thiol proteases, and *erd1*, which encodes a Clp protease regulatory subunit (Nakashima et al., 1997). Promoter analysis of these genes will give us more information about the pathway III.

SIGNAL TRANSDUCTION IN RESPONSE TO WATER STRESS

Signal transduction cascades from the sensing of water stress signals to the expression of various genes and the signaling molecules that function in the cascade have not been extensively studied in plants and are attractive research subjects. Stomata closure is well characterized as a model system in the responses of plant cells to water stress (Kearns and Assmann, 1993; Giraudat et al., 1994). During stomata closure, the level of cytoplasmic Ca2+ is increased, which suggests that Ca2+ functions as a second messenger in the osmotic stress response. In animal cells, IP3 is involved in the release of Ca2+ into the cytoplasm from intracellular stores, and it may play a similar role in plant cells. Ca2+ and IP3 are the most probable candidates as second messengers in water-stress responses in plant cells (Fig. 3; for review, see Coté, 1995). Phosphorylation processes are now thought to have important roles in various signal transduction cascades in plants as well as in yeasts and animals. Various protein kinases have been reported in plants and are thought to function in phosphorylation processes in various signal transduction pathways, including water-stress and ABA responses (Fig. 3; Shinozaki and Yamaguchi-Shinozaki, 1996).

Second Messengers

The turgor pressure of plant cells is subject to feedback in response to changes in external osmotic pressure. The cytoplasmic Ca²⁺ signal transduction pathway is involved in turgor regulation in plant cells (for review, see Coté, 1995; Niu et al., 1995). An increase of cytoplasmic Ca²⁺ serves to stimulate ion transport pathways under hypo-osmotic stress. Stomata closure is induced by the release of Ca²⁺ into the cytoplasm. Phosphoinositide signaling has been implicated in the elevation of cytoplasmic Ca²⁺ in guard cells because artificial elevation of IP₃ in the cytoplasm results in Ca²⁺ mobilization (Blatt et al., 1990; Gilroy et al., 1990). The IP₃ content has been demonstrated to increase following hyperosmotic stress. There are changes in the levels of precursor lipids to IP₃ and in the activity of

Figure 3. Second messengers and factors involved in the signal perception and the signal transduction in water-stress response. Two-component His kinase is thought to function as an osmosensor in plants. Ca²⁺ and IP₃ are the most probable second messengers of the dehydration signal. The phosphorylation process functions in water-stress and ABA signal transduction pathways. ABA plays important roles in the regulation of gene expression as well as physiological responses during water stress.

enzymes involved in the metabolism of inositol phospholipids after hyperosmotic stress. Phosphatidylinositol 4,5-bisphosphate levels decrease and $\rm IP_3$ levels increase prior to ABA-induced stomatal closure in guard cells. The competence of vacuoles to respond to $\rm IP_3$ is enhanced by hyperosmotic stress. These observations provide more evidence for the role of phosphoinositide signaling in osmotic responses.

Cytoplasmic pH is another possible second messenger of ABA signaling in guard cells, and it functions in the Ca²⁺-independent pathway. ABA evokes an alkalization of the cytoplasm of guard cells, and this has a relationship with the activation of outward-rectifying K⁺ channels by ABA (for review, see Giraudat et al., 1994).

Water-Stress-Inducible Genes for Signaling Factors

In higher plants many genes involved in signal transduction pathways, such as those encoding for calmodulins, G-proteins, protein kinases, and transcription factors, are induced by environmental stimuli. The genes for several protein kinases and for PLC are also induced by drought,

salt, and cold stress (Shinozaki and Yamaguchi-Shinozaki, 1996).

A cDNA for PLC, AtPLC1, was isolated from dehydrated Arabidopsis (Hirayama et al., 1995). The AtPLC1 gene is strongly induced by salt and drought and slightly induced by cold at the transcriptional level. Moreover, two genes for the CDPKs, ATCDPK1 and ATCDPK2, have been demonstrated to be rapidly induced by drought and salt stresses in Arabidopsis (Urao et al., 1994). The stressinducible PLC and CDPKs might function in the signal transduction cascade under water stress (Fig. 3). In animals, PLC digests phosphatidylinositol 4,5-bisphosphate to generate two second messengers, IP3 and 1,2-diacylglycerol. IP₃ induces the release of Ca²⁺ into the cytoplasm, which in turn causes various responses in the cytoplasm. In plants a similar system may function in the water-stress response. Recently, co-expression of the constitutively active catalytic domain of a stress-inducible CDPK, ATCDPK1, was demonstrated to induce the expression of an ABA-inducible HVA1 promoter-reporter fusion gene in maize protoplasts (Sheen, 1996). The HVA1 promoter is also activated not only by cold, high salt, and ABA treatment but also by Ca2+ in protoplasts. These observations also supportthat Ca2+ might function as a second messenger and that ATCDPK1 functions as a positive regulator in the signal transduction pathways under water-stress conditions in plants.

MAPK is involved in the signal transduction pathways associated not only with growth-factor-dependent cell proliferation but also with environmental stress responses in yeast and animals. Many genes for protein kinases involved in MAPK cascades have been identified. There are at least four subfamilies of MAPK based on phylogenetic analysis (for review, see Mizoguchi et al., 1997). One of the MAPK genes, ATMPK3, is induced at the mRNA level by drought, low temperature, high salinity, and touch (Mizoguchi et al., 1996). Moreover, two genes for protein kinases involved in the MAPK cascade, MAPKKK (AT-MEKK1) and ribosomal S6 kinase (RSK; ATPK19), are induced by similar stresses. Recently, alfalfa MAPK, MMK4, was demonstrated to be activated at posttranslational levels by a variety of stresses, including drought, low temperature, and mechanical stimuli (Jonak et al., 1996). The MMK4 gene is also induced by these stresses at the transcriptional level. These observations indicate that the MAPK cascades might function in the signal transduction pathways in the water-stress response (Fig. 3). In Saccharomyces cerevisiae, one of the MAPK cascades (Ssk2/Ssk22, Pbs2, and Hog1) functions in response and adaptation to high osmolarity (for review, see Wurgler-Murphy and Saito, 1997). Furthermore, the mammalian MAPKs p38 and JNK1 can functionally complement yeast hog1. These MAPKs are parts of the MAPK cascades that are activated by various stresses, including high osmolarity. There are several other signaling molecules of which genes are upregulated by water stress (Fig. 1; Shinozaki and Yamaguchi-Shinozaki, 1996). Their roles in the water-stress response have not yet been elucidated.

ABA Signal Transduction

The role of ABA in water-stress signal transduction has been analyzed with ABA-insensitive mutants in various species. Of these, maize VP1 and Arabidopsis abi1, abi2, and abi3 have been extensively characterized and their genes cloned. Among them, ABI1 and ABI2 gene products function mainly in vegetative tissues and also participate to some extent in seed development. Because of the wilty phenotypes of abi1 and abi2 mutants, ABI1 and ABI2 are thought to have important roles in ABA-dependent signal transduction pathways during water stress (for review, see Giraudat et al., 1994). The ABI1 and ABI2 genes have been cloned and shown to encode proteins that are related to type 2C protein Ser/Thr phosphatases (PP2Cs) (Leung et al., 1994, 1997; Meyer et al., 1994). The ABII gene product functions in stomata closure, and the abil plant accordingly has a wilty phenotype (Armstrong et al., 1995). ABI1 was demonstrated to function as a negative regulator in ABAdependent gene expression in a transient expression experiment in which maize protoplasts were used (Sheen, 1996). By contrast, the dehydration-inducible ATCDPK1 encoding CDPK functions as a positive regulator in this regulation. These results indicate that a protein phosphorylation and dephosphorylation process might be involved in ABAresponsive signaling during water deficit. Recently, ABA was shown to induce a rapid and transient activation of MAPK in barley aleurone protoplasts (Knetsch et al., 1996). Correlation between ABA-induced MAPK activation and ABA-induced gene expression implies that MAPK might be involved in ABA signal transduction (Fig. 3). Another Arabidopsis mutant, era, that confers an enhanced response to exogenous ABA, has mutations in the ERA1 gene, which encodes the β -subunit of farnesyl transferase (Culter et al., 1996). This suggests that a negative regulator of ABA sensitivity may require farnesylation to function.

Under water-stress conditions ABA is synthesized de novo, and this increase in ABA level requires protein biosynthesis. As mentioned above, this process is important for drought-inducible gene expression. Many ABAdeficient mutants that do not produce ABA have been isolated in various plants. Recently, an ABA-deficient tobacco mutant, aba2, was isolated by transposon-tagging using the maize Ac transposon (Marin et al., 1996). The ABA2 cDNA encodes a chloroplast-imported protein that exhibits zeaxanthin epoxidase activity, which functions in the first step of the ABA biosynthesis pathway. The tobacco ABA2 gene corresponds to the Arabidopsis ABA1 gene. Recently, Arabidopsis aba2 and aba3 mutants were isolated. Molecular analysis of the expression of these genes will aid the study of the regulation of ABA biosynthesis and ABAdependent gene expression during water stress (Fig. 2).

SIGNAL PERCEPTION AND SENSORS OF WATER STRESS

Water deficits occur not only during drought and under conditions of high salt concentrations but also during cold conditions. They probably also cause the decrease of turgor pressure at the cellular level. A change in the osmotic potential across a plasma membrane, caused by the decrease of turgor pressure, might be a major trigger of the water-stress response at the molecular level. Osmosensors of yeasts have been extensively studied (for review, see Wurgler-Murphy and Saito, 1977), and cloning of osmosensors involved in the signal perception of water stress in plants is in progress based on the knowledge of osmosensors in yeast.

Osmosensors

The "two-component system" is known to be widespread and involved in various signal transduction pathways in bacteria. In Escherichia coli, a two-component system is involved in sensing osmotic change and osmotic responses. EnvZ, a two-component His kinase, functions as an "osmosensor," or a "sensory kinase," and monitors mechanical changes of the plasma membrane during osmotic stress (for review, see Wurgler-Murphy and Saito, 1997). EnvZ is activated by autophosphorylation at a His residue under hyperosmotic conditions and then phosphorylates an Asp residue of the OmpR protein, a "response regulator." Phosphorylated OmpR functions as a transcription factor to up-regulate the OmpC gene and downregulate the OmpF gene. Both genes encode proteins of the bacterial outer membrane, and together these proteins regulate turgor pressure.

In yeast, exposure to high osmolarity activates a MAPK cascade that includes PBS2 (MAPKK) and HOG1 (MAPK) and then activates several genes involved in the biosynthesis of glycerol, which is an important osmoprotectant. Three gene products (Sln1p, Ypd1p, and Ssk1p) that act in an early phase of the hyperosmolarity-stress response encode signaling molecules that constitute a prokaryote-type two-component regulatory system (Posas et al., 1996; for review, see Wurgler-Murphy and Saito, 1997). Sln1p is thought to act as a sensor protein, phosphorylating response regulator proteins Ypd1 and Ssk1p under conditions of high osmolarity. The three protein factors perform a four-step phosphorelay (His-Asp-His-Asp). At high osmolarity phosphorylated Ssk1p activates Ssk2p or Ssk22p (MAPKKKs; Maeda et al., 1995), which results in the activation of Pbs2p (MAPKK) by Ser-Thr phosphorylation. Then, phosphorylated Pbs2p activates Hog1p (MAPK) by Thr-Tyr phosphorylation. A similar osmosensing mechanism might operate in higher plants in response to a water deficit. One of the two-component His kinases might also function as a osmosensor in water-stress response in higher plants because an Arabidopsis SLN1 homolog, ATHK1, was recently shown to complement yeast sln1 mutants and functions as a osmosensor in yeast (T. Urao, K. Yamaguchi-Shinozaki, and K. Shinozaki, unpublished data; Fig. 3). In higher plants another two-component His kinase, ETR1, is a receptor in ethylene signal transduction (Chang, 1996). Two-component His kinases may function as sensors or receptors in various signal transduction pathways in plants.

Another transmembrane osmosensor, Sho1p, has been reported by Maeda et al. (1995). Sho1p contains four closely packed hydrophobic transmembrane peptides. The COOH-

terminal region contains an SH3 domain that modulates various signal transduction pathways. Under conditions of high osmolarity, Sho1p activates the PBS2-HOG1 MAPK cascade. A Sho1p-like membrane protein might be another candidate as an osmosensor in plants (Fig. 3).

Other Cellular Triggers of Water-Stress Responses

Drought stress induces genes for detoxification enzymes, such as ascorbate peroxidase, superoxide dismutase, glutathione S-transferases, and soluble epoxide hydrolase (Ingram and Bartels, 1996; Shinozaki and Yamaguchi-Shinozaki, 1996). Cold stress also induces similar genes. An oxidative burst might function as one of the triggers of the water-stress responses.

In addition, change in the physical tension of cytoskeletons during water stress might be one of the triggers of osmotic responses. Some of the water-stress-inducible genes are also induced by touch (Mizoguchi et al., 1997). Touch not only induces the release of Ca²⁺ in the cytoplasm but also induces many genes, named touch genes, such as calmodulins, Ca²⁺-binding proteins, xyloglucan endotransglycosylase, and protein kinases involved in the MAPK cascade. However, the sensing mechanism of oxidative burst or touch have not yet been identified.

CONCLUSIONS AND FUTURE PERSPECTIVES

Many genes that are regulated by water stress have been reported in a variety of plants. Analyses of stress-inducible gene expression have revealed the presence of multiple signal transduction pathways between the perception of water stress and gene expression. This explains the complex stress response observed after exposure of plants to drought, salt, and cold. At least four different transcription factors have been suggested to function in the regulation of dehydration-inducible genes; two are ABA responsive and two are ABA independent. The transcriptional regulatory regions of the dehydration-induced genes have been analyzed to identify several cis- and trans-acting elements that are involved in the water-stress response. A newly identified DRE cis element functions in the regulation of rapidly inducible genes in an ABA-independent manner. ABRE functions in the induction of genes after the accumulation of ABA during water stress. Several genes for transcription factors are induced by water stress and ABA at transcriptional levels, which might be involved in the regulation of slowly induced stress-involved genes. In addition, many genes for factors involved in the signal transduction cascades, such as protein kinases and PLC, are regulated by water-stress signals (Shinozaki and Yamaguchi-Shinozaki 1996; Mizoguchi et al., 1997). These signaling factors might be involved in the amplification of the stress signals and adaptation of plant cells to water-stress conditions. Based on the knowledge of osmosensors in yeasts and bacteria, cloning of homologs of the two-component His kinase as osmosensors in higher plants is in progress.

Molecular analyses of these factors should provide a better understanding of the signal transduction cascades during water stress. Transgenic plants that modify the expression of these genes will give more information about the function of their gene products. Recently, mutants that had a resistant or a sensitive phenotype to water stress were reported. Isolation of these mutant genes will give more information concerning factors involved in the signal transduction cascades and sensors. A combination of genetic and molecular approaches will give more insight into the molecular mechanisms of water-stress responses in plants.

ACKNOWLEDGMENTS

We thank Drs. Tsuyoshi Mizoguchi, Takeshi Urao, Kohji Mikami, Takashi Hirayama, and Kazuo Nakashima for critical reading of this manuscript.

Received April 28, 1997; accepted May 12, 1997. Copyright Clearance Center: 0032-0889/97/115/0327/08.

LITERATURE CITED

Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell (in press)

Armstrong F, Leung J, Grabov A, Brearley J, Giraudat J, Blatt MR (1995) Sensitivity to abscisic acid of guard-cell K⁺ channels is suppressed by abi1-1, a mutant Arabidopsis gene encoding a putative protein phosphatase. Proc Natl Acad Sci USA 92: 9520-9524

Blatt MR, Thiel G, Trentham DR (1990) Reversible inactivation of K⁺ channels of *Vicia* stomatal guard cells following the photolysis of caged inositol 1,4,5-triphosphate. Nature 346: 766-768

Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2: 48-54

Chang C (1996) The ethylene signal transduction pathway in Arabidopsis: an emerging paradigm? Trends Biol Sci 21: 129–133 Coté GG (1995) Signal transduction in leaf movement. Plant Physiol 109: 729–734

Culter S, Ghassemian, Bonetta D, Cooney S, McCourt P (1996) A protein farnesy transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273: 1239–1241

Gilroy S, Read ND, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium and caged inositol triphosphate initiates stomatal closure. Nature 346: 769-771

Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris P-C, Bouvier-Durand M, Vartanian N (1994) Current advances in abscisic acid action and signaling. Plant Mol Biol 26: 1557–1577

abscisic acid action and signaling. Plant Mol Biol 26: 1557–1577 Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995) A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in *Arabidopsis thaliana*. Proc Natl Acad Sci USA 92: 3903–3907

Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 377-403

Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K (1995) Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol Gen Genet 247: 391–398

Jonak C, Kiegerl M, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signalling in plants: a MAP kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93: 11274-11279

Kavi Kishor PB, Hong Z, Miao G-H, Hu CAA, Verma DPS (1995) Overexpression of Δ^1 -pyrroline 5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108: 1387–1394

- Kearns EV, Assmann SM (1993) The guard cell-environment connection. Plant Physiol 102: 711–715
- Knetsch MLW, Wang M, Snaar-Jagalska BE, Heimovaara-Dijkstra S (1996) Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. Plant Cell 8: 1061–1067
- Kusano T, Berberich T, Harada M, Suzuki N, Sugawara K (1995) A maize DNA-binding factor with a bZIP motif is induced by low temperature. Mol Gen Genet 248: 507-517
- Leung J, Bouvier-Durand M, Moris PC, Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264: 1448– 1452
- Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9: 759-771
- Lu G, Paul AL, McCarty DR, Ferl RJ (1996) Transcription factor veracity: is GBF3 responsible for ABA-regulated expression of Arabidopsis Adh? Plant Cell 8: 847–857
- Maeda T, Takehara M, Saito H (1995) Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269: 554–558
- Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A, Marion-Poll A (1996) Molecular identification of zeaxanthin epoxidase of *Nicotiana plumbaginifolia*, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of *Arabidopsis thaliana*. EMBO J 15: 2331–2342
- McCarty DR (1995) Genetic control and integration of maturation and germination pathways in seed development. Annu Rev Plant Physiol Plant Mol Biol 46: 71-93
- Menkes AE, Schindler U, Cashmore AR (1995) The G-box: a ubiquitous regulatory DNA element in plants bound by GBF family of bZIP proteins. Trends Biochem Sci 20: 506-510
- Meyer K, Leube MP, Grill E (1994) A protein phosphatase 2C involved in ABA signal transduction in *Arabidopsis thaliana*. Science 264: 1452-1455
- Mizoguchi T, Ichimura K, Shinozaki K (1997) Environmental stress response in plants: the role of mitogen-activated protein kinases (MAPKs). Trends Biotechnol 15: 15–19
- Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a MAP kinase kinase kinase is induced simultaneously with genes for a MAP kinase and an S6 kinase by touch, cold and water stress in *Arabidopsis thaliana*. Proc Natl Acad Sci USA 93: 765-769

- Nakagawa H, Ohmiya K, Hattori T (1996) A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. Plant J 9: 217-227
- Nakashima K, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1997) A nuclear gene erd1 encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally upregulated during senescence in Arabidopsis thaliana. Plant J (in press)
- Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109: 735–742
- Posas F, Wurgler-Murphy SM, Maeda T, Witten TC, Thai TC, Saito H (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in SLN1-YPD1-SSK1 'two component' osmosensor. Cell 86: 865–875
- Sheen J (1996) Ca²⁺-dependent protein kinase and stress signal transduction in plants. Science **274**: 1900–1902
- Shen Q, Ho THD (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7: 295–307
- Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr Opin Biotechnol 7: 161–167
- Stockinger EJ, Glimour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94: 1035–1040
- Thomashow MF (1994) Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. In E Meyrowitz, C Somerville, eds, Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
- Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K (1994) Two genes that encode Ca²⁺-dependent protein kinases are induced by drought and high-salt stresses in *Arabidopsis thaliana*. Mol Gen Genet 224: 331-340
- Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis *myb* homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5: 1529–1539
- Wurgler-Murphy SM, Saito H (1997) Two-component signal transducers and MAPK cascades. Trends Biochem Sci 22: 172–176
- Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251–264

The Plant Cell, Vol. 10, 1391-1406, August 1998, www.plantcell.org @ 1998 American Society of Plant Physiologists

Two Transcription Factors, DREB1 and DREB2, with an EREBP/AP2 DNA Binding Domain Separate Two Cellular Signal Transduction Pathways in Drought- and Low-Temperature-Responsive Gene Expression, Respectively, in Arabidopsis

Qiang Liu, a,1 Mie Kasuga, a Yoh Sakuma, a Hiroshi Abe, a Setsuko Miura, a Kazuko Yamaguchi-Shinozaki, a,2 and Kazuo Shinozaki b

- ^a Biological Resources Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ministry of Agriculture, Forestry, and Fisheries, 2-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
- ^b Laboratory of Plant Molecular Biology, Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan

Plant growth is greatly affected by drought and low temperature. Expression of a number of genes is induced by both drought and low temperature, although these stresses are quite different. Previous experiments have established that a cis-acting element named DRE (for dehydration-responsive element) plays an important role in both dehydration- and low-temperature-induced gene expression in Arabidopsis. Two cDNA clones that encode DRE binding proteins, DREB1A and DREB2A, were isolated by using the yeast one-hybrid screening technique. The two cDNA libraries were prepared from dehydrated and cold-treated rosette plants, respectively. The deduced amino acid sequences of DREB1A and DREB2A showed no significant sequence similarity, except in the conserved DNA binding domains found in the EREBP and APETALA2 proteins that function in ethylene-responsive expression and floral morphogenesis, respectively. Both the DREB1A and DREB2A proteins specifically bound to the DRE sequence in vitro and activated the transcription of the β-glucuronidase reporter gene driven by the DRE sequence in Arabidopsis leaf protoplasts. Expression of the DREB1A gene and its two homologs was induced by low-temperature stress, whereas expression of the DREB2A gene and its single homolog was induced by dehydration. Overexpression of the DREB1A cDNA in transgenic Arabidopsis plants not only induced strong expression of the target genes under unstressed conditions but also caused dwarfed phenotypes in the transgenic plants. These transgenic plants also revealed freezing and dehydration tolerance. In contrast, overexpression of the DREB2A cDNA induced weak expression of the target genes under unstressed conditions and caused growth retardation of the transgenic plants. These results indicate that two independent families of DREB proteins, DREB1 and DREB2, function as trans-acting factors in two separate signal transduction pathways under low-temperature and dehydration conditions, respectively.

INTRODUCTION

Drought and low temperature are adverse environmental conditions that affect the growth of plants and the productivity of crops. However, it has been suggested that plants have common mechanisms in their physiological responses and tolerance to drought and low temperature. For example, abscisic acid (ABA) is produced under both drought and low-temperature stresses and plays important roles in allowing plants to tolerate both stresses. Also, plants grown

temperature stress than do well-watered plants.

A number of genes have been described that respond to

under dehydration conditions show higher tolerance to low-

A number of genes have been described that respond to both drought and low-temperature stress at the transcriptional level (reviewed in Thomashow, 1994; Shinozaki and Yamaguchi-Shinozaki, 1996). The functions of some gene products have been predicted from sequence homology with known proteins and are thought to play a role in protecting the cells from water deficit and low temperature (reviewed in Thomashow, 1994; Shinozaki and Yamaguchi-Shinozaki, 1996). Most of the drought- and cold stress-inducible genes that have been studied to date are also induced by ABA. Dehydration appears to trigger the production of ABA, which in turn induces expression of various

¹ Current address: Department of Biological Sciences and Biotechnology, Tsinghua University, Tsinghua Yuan, Haidian, Beijing 100084, China.

²To whom correspondence should be addressed. E-mail kazukoys @jircas.affrc.go.jp; fax 81-298-38-6643.

genes. *cis*- and *trans*-acting factors involved in ABA-induced gene expression have been analyzed extensively (reviewed in Chandler and Robertson, 1994; Giraudat et al., 1994; Ingram and Bartels, 1996; Shinozaki and Yamaguchi-Shinozaki, 1997).

However, expression of several ABA-inducible genes is induced by both cold and drought in ABA-deficient (aba) and ABA-insensitive (abi) Arabidopsis mutants. This suggests that these genes do not require ABA for their expression under cold and drought conditions but do respond to ABA (reviewed in Thomashow, 1994; Shinozaki and Yamaguchi-Shinozaki, 1996). These genes include rd29A/Iti78/cor78, kin1, cor6.6/kin2, and cor47/rd17 (Nordin et al., 1991; Kurkela and Borg-Franck, 1992; Horvath et al., 1993; Yamaguchi-Shinozaki and Shinozaki, 1993; Iwasaki et al., 1997). The promoter region of the rd29A gene was analyzed, and a novel cis-acting element responsible for dehydration- and cold-induced expression was identified at the nucleotide sequence level by using transgenic plants (Yamaguchi-Shinozaki and Shinozaki, 1994). A 9-bp conserved sequence, TACCGACAT, termed the dehydration-responsive element (DRE), is essential for the regulation of dehydrationresponsive gene expression. The DRE has been demonstrated to function as a cis-acting element involved in the induction of rd29A expression by low-temperature stress.

DRE-related motifs have been reported in the promoter regions of cold- and drought-inducible genes such as *kin1*, *cor6.6*, and *rd17* (Wang et al., 1995; Iwasaki et al., 1997). A similar motif was also reported (C repeat; TGGCCGAC) in the promoter region of cold-inducible *cor15a* (Baker et al., 1994). The CCGAC core sequence was found in the promoter regions of the cold-inducible oilseed rape gene *BN115* and designated the low-temperature-responsive element (Jiang et al., 1996). These results suggest that DRE-related motifs are involved in both drought- and cold-responsive but ABA-independent gene expression.

It is important to understand how two different stress signals, drought and cold, are transmitted separately in plant cells to activate DRE-dependent transcription of the rd29A/ cor78 gene. For this purpose, it is critical to identify transacting factors that regulate DRE-dependent gene expression. We attempted to isolate cDNAs for DRE binding proteins by using the DNA ligand binding screening method, but we were not successful. Next, we tried to isolate cDNAs for DRE binding proteins by using the yeast one-hybrid screening system. Meanwhile, Stockinger et al. (1997) reported cloning a cDNA (named CBF1) for a C repeat/DRE binding protein from Arabidopsis by using yeast one-hybrid screening. The CBF1 protein has a DNA binding motif found in tobacco EREBP1 (Ohme-Takagi and Shinshi, 1995), which is involved in ethylene-responsive gene expression, and in Arabidopsis APETALA2 (AP2; Jofuku et al., 1994), which is involved in floral morphogenesis. The CBF1 protein can bind to the C repeat/DRE motif in the cor15a promoter and function as a trans-activator in yeast. However, the CBF1 cDNA clone was isolated from a cDNA library prepared from unstressed normally grown Arabidopsis plants,

and it had an abnormally fused structure with the 25S rRNA gene (Stockinger et al., 1997).

In contrast, we cloned two different cDNAs encoding DRE binding proteins (DREB1A and DREB2A) of Arabidopsis that specifically interact with the DRE sequence in the promoter region of the rd29A gene from dehydrated and low-temperature-treated Arabidopsis plants by using the yeast onehybrid screening method. Genes encoding the DREB1A protein and its two homologs were induced to express by cold stress; genes encoding the DREB2A protein and its single homolog rapidly were induced to express by dehydration and high-salt stress. Both the DREB1A and DREB2A homologs contain the EREBP/AP2 DNA binding domain like that of CBF1. We analyzed the function of the DREB1A and DREB2A proteins as trans-acting factors by using transient expression in Arabidopsis leaf protoplasts and overexpression in transgenic Arabidopsis plants. We discuss the different functions of the DREB1A and DREB2A proteins in the separation of two signaling pathways under cold and dehydration stress conditions in ABA-independent gene expression in vegetative tissues.

RESULTS

Isolation of cDNAs Encoding DNA Binding Proteins That Recognize DRE in the 71-bp DNA Fragment of the rd29A Promoter

To isolate cDNAs encoding DNA binding proteins that interact with the DRE motif, we used the yeast one-hybrid screening system. We first constructed a parental yeast strain carrying as dual reporter genes integrated copies of HIS3 and lacZ with four-times tandemly repeated 71-bp DNA fragments of the rd29A promoter upstream of the TATA element (Figure 1). The 71-bp fragment contains a DRE motif at center. The resulting yeast strain transcribes the HIS3 gene at basal levels, grows on media lacking histidine (but not in the presence of 10 mM 3-aminotriazole [3-AT], a competitive inhibitor of the HIS3 gene product), and forms white colonies on filter papers containing X-gal. The yeast cells were then separately transformed with three expression libraries of cDNA fragments of mRNAs prepared from Arabidopsis rosette plants that had been dehydrated for 2 hr, cold treated for 24 hr, or undehydrated. The cDNA fragments were fused to the transcriptional activation domain of the yeast GAL4 (Figure 1).

We screened 1.8×10^6 , 1.2×10^6 , and 1.5×10^6 yeast transformants of libraries prepared from 2-hr dehydrated, 24-hr cold-treated, and unstressed Arabidopsis rosette plants, respectively. Clones 2 to 41 and clone 1 were 3-AT resistant and isolated from libraries prepared from 2-hr dehydrated and 24-hr cold-treated plants, respectively (Table 1). All of the isolated cDNA clones induced *lacZ* activity and formed blue colonies on filter papers containing X-gal. The

Figure 1. Strategy for the Isolation of cDNAs Encoding DRE Binding Proteins by Selection in Yeast.

An expression library of hybrid proteins was transformed into the yeast strain carrying dual reporter genes HIS3 and IacZ under the control of the 71-bp promoter region of rd29A containing the DRE. The hybrids contain protein coding sequences fused to the end of the GAL4 activation domain (AD). Hybrid proteins that recognize the binding site act as transcriptional activators of the reporter genes, allow the cells to grow in the presence of 3-AT (a competitive inhibitor of the HIS3 gene product), and turn the cells blue in β -galactosidase assay. $P_{minHis3}$ indicates the minimal promoter of the HIS3 gene, and P_{CVC1} indicates the minimal promoter of the yeast cyclin gene. PADH1 indicates the promoter of the alcohol dehydrogenase1 (ADH1) gene, and TADH1 indicates the terminator of the ADH1 gene.

cDNA fragments of the isolated plasmids were analyzed by restriction enzyme digestion and DNA sequencing, which led to the classification of these 41 cDNA clones into seven distinct cDNA groups. Among the seven groups, clone 18 was most abundant in the cDNA library prepared from dehydrated plants (Table 1).

To select cDNAs that encode transcriptional activators in the seven independent cDNA clones that were isolated, the insert cDNA fragments were cloned into the yeast expression vector YepGAP (Figure 2A). Plasmids containing each insert DNA fragment were transformed into yeast strains carrying the dual reporter genes HIS3 and lacZ that had been fused to 71-bp DNA fragments of the rd29A promoter containing the DRE sequence. Yeast cells carrying the plasmid containing the cDNA inserts of clones 1 and 18 grew on medium lacking histidine in the presence of 10 mM 3-AT, but yeast cells carrying the plasmid containing the cDNA inserts of five other clones did not. Both the 3-AT-resistant yeast strains also induced lacZ activity and formed blue colonies (Figure 2B). In contrast, when plasmids containing the DNA insert of clone 1 or 18 were transformed into yeast strains carrying the dual reporter genes fused to the 71-bp DNA fragment with base substitutions in the DRE sequence mDRE, the yeast strains neither grew on media lacking histidine in the presence of 10 mM 3-AT nor induced lacZ activity (Figure 2C). These data indicate that cDNA clones 1 and

18 encode polypeptides that specifically bind to the DRE sequence and activate the transcription of the dual reporter genes in yeast. cDNA clones 1 and 18 were designated DREB1A and DREB2A, respectively, and analyzed further.

Structural Analysis of the DREB1A and DREB2A cDNAs

To examine the structures of the DREB1A and DREB2A cDNA clones, we sequenced inserted DNA fragments of 0.9 and 1.4 kb, respectively. The DREB1A cDNA contains a single open reading frame of 216 amino acids and encodes a putative protein with a predicted molecular mass of 24.2 kD (Figure 3). The DREB2A cDNA contains an open reading frame of 335 amino acids and encodes a putative protein with a predicted molecular mass of 37.7 kD (Figure 3).

We searched DNA and protein databases for sequences homologous to those of the DREB1A and DREB2A proteins and found that each DREB protein has a conserved DNA binding domain of 58 amino acids present in a large family of plant genes for DNA binding proteins, including EREBPs of tobacco and AP2 of Arabidopsis (Figure 4). The deduced amino acid sequences of DREB1A and DREB2A showed no significant sequence identity except in the conserved DNA binding domain. However, each DREB protein contains a basic region in its N-terminal region that might function as a nuclear localization signal and an acidic C-terminal region that might act as an activation domain for transcription. These data suggest that each DREB cDNA encodes a DNA binding protein that might function as a transcriptional activator in plants.

DNA Binding Regions of the DREB1A and DREB2A Proteins Bind Specifically to the DRE Sequence of the *rd29A* Promoter

To identify the target sequence of the DREB1A and DREB2A proteins, the 143 and 166 amino acids of the DNA binding

Table 1. General Characteristics of the cDNA Clones Isolated in This Study^a

Group	Clone	Insert Size (kb)	No. of Clones Obtained
1	1	0.94	1
2	18	1.4	35
3	63	1.8	1
4	75	0.48	1
5	104	0.77	1
6	125	0.48	1
7	127	1.2	1

^a Forty-one positive clones were isolated from libraries prepared from dehydrated and cold-treated plants. These 41 cDNA clones were divided into seven distinct cDNA groups.

Figure 2. Activation of Dual Reporter Genes in Yeast by Proteins Encoded by Isolated cDNAs.

- (A) The insert DNA fragments of the isolated cDNA clones were cloned into the yeast expression vector YepGAP and used for transformation into yeast carrying the dual reporter genes HIS3 and IacZ under the control of the 71-bp promoter region containing the DRE or the 71-bp promoter region containing a mutated DRE (mDRE; M2 in Figure 5). Other abbreviations are as given in the legend to Figure 1. P_{GAP} indicates the promoter of the glyceraldehyde 3-phosphate dehydrogenase gene. TADH1 indicates the terminator of the ADH1 gene.
- (B) All of the yeast transformants carrying dual reporter genes under the control of the wild-type 71-bp promoter region were examined for growth in the presence of 3-AT and β -galactosidase activity. Numbers indicate isolated clone names.
- (C) Two plasmids containing insert DNA from clones 1 and 18 were transformed into yeast strains carrying the dual reporter genes under the control of the 71-bp promoter region containing the DRE (W1 and W18) or the mutated DRE sequence (M1 and M18). The transformants were examined for growth in the presence of 3-AT and β-galactosidase activity.

domains of DREB1A and DREB2A, respectively, were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli. The ability of the DREB1A and DREB2A fusion proteins to bind the wild-type or mutated DRE sequences was examined using the gel retardation method. As shown in Figure 5B, both the recombinant DREB1A and DREB2A fusion proteins bound the wild-type 71-bp DNA

fragment but not the base-substituted 71-bp fragments M1, M2, and M3. By contrast, both of the fusion proteins bound to the base-substituted 71-bp fragments M4 and M5. The DRE sequence was base-substituted in M1, M2, and M3 but not in M4 and M5 (Figure 5A). These results indicate that the binding of the DREB1A and DREB2A fusion proteins to the DRE sequence is highly specific.

Expression of the DREB1A and DREB2A Genes

The expression patterns of the DREB1A and DREB2A genes were analyzed using RNA gel blot hybridization to compare them with that of the rd29A gene (Figure 6A). DREB2A gene expression was induced within 10 min after dehydration began, and DREB2A was strongly expressed after 2 hr. However, there was no significant DREB1A mRNA accumulation within 24 hr. There was significant DREB2A mRNA accumulation within 10 min after high-salt treatment, whereas the DREB1A mRNA was not accumulated (Figure 6A). When, as a control, the plants were transferred from agar to water, rapid but low-level accumulation of DREB2A mRNA was detected, whereas DREB1A mRNA accumulation was not ap-

DREB1A

DREB2A

Figure 3. Full-Length Sequences of DREB1A and DREB2A cDNAs.

The EREBP/AP2 domains are underlined. Each DREB protein contains a basic region in the N-terminal region that might function as a nuclear localization signal (double underlines) and an acidic C-terminal region that might act as a transcriptional activation domain. The DREB1A and DREB2A cDNA sequences have been submitted to the GenBank, EMBL, and DDBJ data bases with accession numbers AB007787 and AB007790, respectively.

parent. Similar results were obtained for the exogenous ABA treatment. By contrast, the DREB1A gene was induced to express within 1 hr after exposure to low temperature (4°C), and the level of the DREB1A mRNA peaked after 2 hr. However, DREB2A mRNA did not accumulate significantly within 24 hr after exposure to low temperature (Figure 6A). These results indicate that the transcription of the DREB1A gene is activated by cold stress and that that of the DREB2A gene is activated by dehydration and high-salt stress.

Expression of the rd29A gene was induced within 20 min by dehydration, and the gene was strongly expressed after 2 hr (Figure 6A). The rd29A gene also was induced to express by low-temperature treatment within 2 hr and was strongly expressed after 5 hr. Rapid and strong expression of the rd29A gene was observed within 10 min after the initiation of ABA treatment as well as by high-salt treatment. When plants were transferred from agar to water, rapid but weak expression of the rd29A gene was detected. The expression of the DREB1A gene during cold stress preceded that of the rd29A gene (Figure 6A). In contrast, the expression pattern of the DREB2A gene during dehydration and high-salt stress was similar to that of the rd29A gene. We could detect both DREB2A mRNA and rd29A mRNA but not DREB1A mRNA in all of the tissues of unstressed plants (Figure 6B).

Isolation of cDNAs That Encode Homologs of the **DREB1A and DREB2A Proteins**

The number of DREB-related genes in the Arabidopsis genome was estimated by DNA gel blot analysis (Figure 7). Nuclear DNA from Arabidopsis was digested with BamHI, EcoRI, and HindIII and hybridized under both high- and lowstringency conditions by using the DREB1A and DREB2A cDNA inserts as probes. Under high-stringency hybridization conditions, each probe hybridized with a few bands of DNA fragments. Under low-stringency conditions, a few additional bands were detected, suggesting that there may be a few DREB-related genes in the Arabidopsis genome.

To isolate cDNAs for the DREB-related genes, three λgt11 cDNA libraries prepared from dehydrated, cold-treated, and unstressed plants, respectively, were screened with the DREB1A and DREB2A cDNA inserts as probes. Three independent cDNA clones were isolated using the DREB1A cDNA as a probe; one is identical to DREB1A and the other two are homologs (named DREB1B and DREB1C). The DREB1B clone is identical to CBF1 (Stockinger et al., 1997). The DREB1C cDNA contains a single open reading frame of 216 amino acids and encodes a putative protein with a predicted molecular mass of 24.3 kD (Figure 8A). The three DREB1A homologs have highly homologous amino acid sequence identity (Figure 8A, DREB1A and DREB1B, 86%; DREB1B and DREB1C, 86%; DREB1A and DREB1C, 87%). Moreover, the low-temperature-inducible expression of the DREB1B and the DREB1C genes was also similar to that of the DREB1A gene (data not shown).

Consensus	RGVR. RGKWV.E.REPNR.WLGTF.TAAA.A.D.AA.AGA.LNF.
DREB1	IYEGVRR-RNSGKWVCEVREPNK-KTRIWLGTFQTAEMAARAHDVAALALRGRSACINFA
DREB2	SFRG RO-RIWCKWVAEIREPNR-GSRLWLGTFPTAQEAASAYDEAAKAMYGPLARLNFP
CBF1	IYRCVRQ-RNSCKWVSEVREPNK-KTRIWLCTFQTAEMAARAHDVAALALRCRSACLNGA
TINY	VYRGVRK-RNWGKWVSEIREPRK-KSRIWLGIFPSPEMAARAHDVAALSIKGASAILNEP
EREBP1	HYRCVRR-RPWCKFAAEIRDPAKNGARVWLGTYETDEFAATAYDKALYRMRGSKAHLNFP
EREBP2	HYRCVRQ-RPWCKFAAEIRDPAKNGARVWLCTYETAEFAALAYDKAAYRMRGSKALLNEP
EREBP3	HYRCVRK-RPWCRYAAEIRDPGK-KSRVWLCTFDTAEFAAKAYDTAAREPRCPKAKTNFP
EREBP4	HYRGVRQ-RPWGKFAAEIRDPNRKGTRVWLGTFDTAIEAAKAYDRAAFKLRGSKAIVNFP
Pt14	HYRGVRQ-RPWGKFAAEIRDPAKNGARVWLGTYETAEFAATAYDKAAYRMRGSKAHLNFP
Pti5	KYRCVRR-RPWCKYAAEIRDWARHGARVWLCTFETAEEAALAYDRAMFRMRCAKALLNFP
Pti6	KFRCVRQ-RPWCRWAAEIRDPTR-GKRVWLCTYDTPEEAAVVYDKAAVKLKCPDAVTNFP
Atebp	VYRGIRK-RPWGKWAAEIRDPRK-GVRVWEGTFNTAEEAAMAYDVAAKQIRGDKAKINFP
AP2 R1	QYRGVTFYRRTGRWESHIWDCGKQVYLGGFDTAHAAARAYDRAAIKFRGVEADINEN
ANT R1	QYRGVTRHRWIGRYEAHLWDNGRQVYLGGYDMEEKAARAYDLAALKYWGPSTHTNES
GLSY15 R1	QYRGVTFYRRTGRWESHIWDCGKQVYLGGFDTAQAAARAYDQAAIKFRGVNADINFT
AP2 R2	KYRCVTLHKC-CRWEARMGQFLGKKY-VYLCLFDTEVFAARAYDKAAIKCNGKDAVINFD
ANT R2	IYRGVTRHHQHGRWQARIGRVAGNKD-LYLGTFGTQEBAAEAYDVAAIKFRGTNAVINFD
GLSY15 R2	RFRGVTQHKC-GKWEARIGQLMGKKY-VYLGLYDTETFAAQAYDKAAIKCYGKEAVINED

Figure 4. Comparison of Deduced Amino Acid Sequences of the DNA Binding Domains of DREB1A and DREB2A with Those of Other EREBP/AP2–Related Proteins.

The deduced amino acid sequences of DREB1A and DREB2A are compared with EREBP/AP2-related proteins, namely, Arabidopsis CBF1 (Stockinger et al., 1997), Arabidopsis TINY (Wilson et al., 1996), tobacco EREBP1 to EREBP4 (Ohme-Takagi and Shinshi, 1995), tomato Pti4 to Pti6 (Zhou et al., 1997), Arabidopsis AteBP1 (AteBP; Buttner and Singh, 1997), Arabidopsis AP2 (Jofuku et al., 1994), Arabidopsis AINTEGU-MENTA (ANT; Klucher et al., 1996), and maize GLOSSY15 (GLSY15; Moose and Sisco, 1996). The black background represents perfectly conserved amino acid residues, and dashes indicate gaps introduced to maximize alignment. Consensus indicates the conserved amino acids in DREB1A and DREB2A. Asterisks represent different amino acids in the consensus between DRE binding proteins and GCC box binding proteins. R1 and R2 indicate repeated amino acid sequences of the EREBP/AP2 motif.

No DREB2A homolog was isolated by screening cDNA libraries by using the DREB2A cDNA as a probe. Arabidopsis cDNA libraries were then screened using the yeast onehybrid system. We screened 7.6 \times 106, 7.4 \times 106, and 7.8 \times 106 yeast transformants of the libraries prepared from 2-hr dehydrated, 24-hr cold-treated, and unstressed Arabidopsis rosette plants, respectively. We isolated cDNA clones encoding a DREB2A homolog from the library prepared from 2-hr dehydrated plants (named DREB2B; Figure 8B). The DREB2B cDNA contains a single open reading frame of 330 amino acids and encodes a putative protein with a predicted molecular mass of 37.1 kD (Figure 8B). DREB2A and DREB2B show sequence similarity (Figure 8B; 53.8%), especially in the N-terminal region. A serine- and threonine-rich region following the DNA binding domain and a glutaminerich region in the C-terminal region were found in both the DREB2A and DREB2B proteins (Figure 8B). The dehydration-induced and high-salinity-induced expression of the DREB2B gene was similar to that of the DREB2A gene (data not shown). These observations indicate that the two DREB2 genes are clearly different from the three DREB1 genes.

DREB1A and DREB2A Proteins Transactivate the *rd29A* Promoter–*GUS* Fusion Gene in Leaf Protoplasts

To determine whether the DREB1A and DREB2A proteins are capable of transactivating DRE-dependent transcription in plant cells, we performed transactivation experiments

using protoplasts prepared from Arabidopsis leaves. Protoplasts were cotransfected with a β -glucuronidase (GUS) reporter gene fused to the trimeric 71-bp fragments containing the DRE motif and the effector plasmid (Figure 9A). The effector plasmid consisted of the cauliflower mosaic virus (CaMV) 35S promoter fused to DREB1A or DREB2A cDNAs. The tobacco mosaic virus (TMV) Ω sequence was inserted upstream from these cDNAs to strengthen their translation efficiency. Coexpression of the DREB1A or DREB2A proteins in protoplasts transactivated the expression of the GUS reporter gene (Figure 9B). These results suggest that DREB1A and DREB2A proteins function as transcription activators involved in the cold- and dehydration-responsive expressions, respectively, of the rd29A gene.

Analysis of the in Vivo Roles of DREB1A and DREB2A in Expression of the *rd29A* Gene by Using Transgenic Plants

To analyze the effects of overproduction of DREB1A and DREB2A proteins on the expression of the rd29A gene, we generated transgenic plants in which DREB1A or DREB2A cDNAs were introduced to overproduce DREB proteins. Arabidopsis plants were transformed with binary vectors carrying fusions of the enhanced CaMV 35S promoter (Mituhara et al., 1996) and the DREB1A (35S:DREB1A) or DREB2A (35S:DREB2A) cDNAs in the sense orientation. The TMV Ω sequence (Gallie et al., 1987) was inserted upstream from

these cDNAs to strengthen their translation level. Eighteen and eight antibiotic-resistant Arabidopsis transformants for DREB1A and DREB2A, respectively, were generated by using a vacuum infiltration method (Bechtold et al., 1993). Transgenic plants of the T₂ generation were used for further analyses.

All of the 18 plants carrying the 35S:DREB1A transgene (the 35S:DREB1A plants) had dwarf phenotypes under normal growth conditions. The 35S:DREB1A plants showed variations in phenotypic changes in growth retardation that may have been due to the different levels of expression of the DREB1A transgenes for the position effect. Three different phenotypic changes in growth of the 35S:DREB1A plants were compared with wild-type plants (Figure 10). Three of the 18 35S:DREB1A plants, including the 35S: DREB1Aa plants, showed severe dwarf phenotypes, whereas the others revealed growth retardation as shown by the results with the 35S:DREB1Ab and 35S:DREB1Ac plants (Figure 10). In the severely dwarfed 35S:DREB1Aa plants, the DREB1A transcript accumulated to a high level under the unstressed control condition. The higher level of the DREB1A transcripts in the 35S:DREB1A plants caused the more severe dwarf phenotypes of the transgenic plants (Figure 11).

To analyze whether overproduction of the DREB1A protein caused the expression of the target gene in unstressed plants, we compared the expression of the *rd29A* gene in control plants carrying pBl121 vector (wild type) with that in the 35S:DREB1A plants. Transcription of the *rd29A* gene

was low in the unstressed wild-type plants but high in the unstressed 35S:DREB1A plants. The level of the *rd29A* transcripts under the unstressed control condition was found to depend on the level of the DREB1A transcripts. Expression of the *rd29A* gene was induced by dehydration, high salt and cold stress, and ABA treatment in the 35S:DREB1A plants as well as in wild-type plants. However, the level of the *rd29A* transcripts in the 35S:DREB1A plants was higher than that in the wild-type plants, even under stressed conditions (Figure 11).

The transgenic plants carrying the 35S:DREB2A transgene (the 35S:DREB2A plants) showed little phenotypic change. However, 35S:DREB2Aa plants exhibited slight growth retardation (Figure 10). The level of *DREB2A* mRNA was higher in 35S:DREB2Aa plants than in the normal 35S:DREB2Ab plants (Figure 11). Expression of the *rd29A* gene in the 35S:DREB2Aa plants having little phenotypic change under unstressed conditions was slightly higher than in the normal 35S:DREB2Ab plants (Figure 11).

Freezing and Dehydration Tolerance of Transgenic Plants

The tolerance to freezing and dehydration of the transgenic plants was analyzed using the 35S:DREB1Ab and 35S:DREB1Ac plants grown in pots at 22°C for 3 weeks. When plants grown in pots were exposed to a temperature of -6°C for 2 days, returned to 22°C, and grown for 5 days,

Figure 5. Characterization of the DNA Binding Affinity of the Recombinant DREB1A and DREB2A Proteins to the 71-bp Fragment (Positions –215 to –145) of the *rd29A* Promoter.

(A) Upper strand sequence of the 71-bp fragment of the *rd29A* promoter (WT) and its mutated fragments (M1 to M5) used as probes. (B) Gel retardation assay of sequence-specific binding of the recombinant DREB1A and DREB2A proteins. The radioactive probes were incubated in the presence or absence (None) of the recombinant DREB1A or DREB2A proteins.

all of the wild-type plants died, whereas the 35S:DREB1Ab plants survived at high frequency (83.9% survival; Figure 12). The surviving plants continued to grow and flowered under unstressed conditions. Freezing tolerance was correlated with the level of expression of the stress-inducible genes under unstressed control conditions. The 35S:DREB1Ab plants with high-level expression of the target genes showed higher freezing tolerance than did the 35S:DREB1Ac plants with their low-level expression (35.7% survival; Figure 12).

To test whether the introduction of the DREB1A gene enhances tolerance to dehydration stress, for 2 weeks we did not water the wild-type and transgenic plants grown in pots (Figure 12). Although all of the wild-type plants died within 2 weeks, 42.9% of the 35S:DREB1Ab plants survived and continued to grow after rewatering. Drought tolerance was

also dependent on the level of expression of the target genes in the 35S:DREB1A plants under unstressed conditions. The survival rate of the 35S:DREB1Ac plants was lower than that of the 35S:DREB1Ab plants (21.4% survival; Figure 12).

DISCUSSION

Using the yeast one-hybrid screening system, we identified two distinct cDNAs, DREB1A and DREB2A, encoding DNA binding proteins that specifically interact with the DRE sequence involved in dehydration-, high-salt-, and low-temperature-responsive gene expression. The DREB1A and

Figure 6. RNA Gel Blot Analysis of DREB1A and DREB2A Transcripts.

(A) Expression of the *DREB1A*, *DREB2A*, and *rd29A* genes in response to dehydration, low temperature, high salt, or ABA. Each lane was loaded with 20 μg of total RNA from 3-week-old unbolted Arabidopsis plants that had been dehydrated (Dry), transferred to and grown at 4°C (Cold), transferred from agar plates for hydroponic growth in 250 mM NaCl (NaCl), transferred from agar plates to hydroponic growth in 100 μM ABA (ABA), or transferred from agar plates to water (H₂O) for hydroponic growth, as described in Methods. The number above each lane indicates the number of minutes or hours after the initiation of treatment before isolation of RNA. RNA was analyzed by RNA gel blotting, with gene-specific probes from the 3′ flanking sequences of *DREB1A*, *DREB2A*, and *rd29A*.

(B) Expression of the *DREB1A*, *DREB2A*, and *rd29A* genes in a variety of organs of normally grown Arabidopsis. Each lane was loaded with 40 μg of total RNA prepared from flowers (F), roots (R), leaves (L), siliques (Sq), stems (St), whole plants (Control), whole plants treated with 250 mM NaCl for 5 hr (NaCl), and whole plants cold-treated at 4°C for 5 hr (Cold). rRNAs blotted on the membrane were visualized by staining with methylene blue.

Figure 7. DNA Gel Blot Analysis of Genomic Sequences That Correspond to DREB1A and DREB2A cDNAs.

Genomic DNA was digested with HindIII (H), BamHI (B), and EcoRI (E). A full-length DREB1A or DREB2A cDNA was used as a probe. Filters were washed in either $0.5 \times SSC$ (1 $\times SSC$ is 0.15 M NaCI and 0.015 M sodium citrate) and 0.5% SDS at 50° C (low stringency; Low) or $0.1 \times SSC$ and 0.1% SDS at 65° C (high stringency; High). Numbers at right are molecular length markers in kilobases.

DREB2A proteins were demonstrated to function as transcriptional activators for DRE-dependent transcription not only in yeast cells (Figure 2) but also in transactivation experiments using Arabidopsis leaf protoplasts (Figure 9). These results strongly suggest that both the DREB1A and DREB2A proteins are involved in DRE-dependent expression of the rd29A gene. However, they have no significant sequence identity, except for the conserved DNA binding domain, which suggests that they can be assigned to different classes. Two DREB1A-related cDNAs, DREB1B and DREB1C, and one DREB2A-related cDNA, DREB2B, were isolated by screening cDNA libraries prepared from dehydrated, cold-treated, and untreated Arabidopsis plants (Figure 8). These observations suggest that at least five distinct DRE binding proteins in two groups, DREB1 and DREB2, bind to the same target sequence, DRE, and are involved in the activation of the rd29A gene in response to dehydration, high-salt, and low-temperature stress.

The bacterially expressed DREB1A and DREB2A proteins specifically bound to the DRE sequence (Figure 5). Both the DREB1A and DREB2A proteins bound to the 71-bp DNA fragment with the DRE sequence but not to the 71-bp DNA fragments with base substitutions in the DRE sequence (M1, M2, and M3). In contrast, the fusion proteins bound to the 71-bp DNA fragments with base substitutions (M4 and M5) in the flanking sequence (Figure 5). These results indicate that the DRE sequence is the target sequence for DNA binding of the DREB1A and DREB2A proteins.

We have shown, using transgenic tobacco and Arabidopsis plants, that the DRE sequence is essential for the transcription of *rd29A* under conditions of drought, high salt, and low temperature (Yamaguchi-Shinozaki and Shinozaki, 1994). We used the same set of 71-bp fragments for the analyses of *cis*-acting elements. The 71-bp fragments with base substitutions (M1, M2, and M3) in the DRE sequence did not function in dehydration-induced expression, whereas the 71-bp fragments with base substitutions (M4 and M5) in the flanking sequence responded to dehydration stress in transgenic plants. These results coincide with the DNA

Α		
DREB1A	MNSFSAFSEMFGSDYESSVSSGGDYIPTLASSCPKKPAGR	40
DREB1B	**********************************	37
DREB1C	**************************************	40
DREB1A	KKFRETRHPIYRGVRRRNSGKWVCEVREPNKKTRIWLGTF	80
DREB1B	******************************	77
DREB1C	******************************	80
DREB1A	QTAEMAARAHDVAALALRGRSACLNFADSAWRLRIPESTC	120
DREB1B	***************	117
DREB1C	***************	120
DREB1A	AKDIQKAAARAALAFQDEMCDATT-DHGFDMEETLVEAIY	159
DREB1B	**D***********************************	157
DREB1C	**E***********************************	160
DREB1A	TAEQSENAFYMHDRAMFEMPSLLANMAEGMLLPLPSVQNN	199
DREB1B	*P***EG****DE*T*PG*PT**D*********	197
DREB1C	*P***OD****DE*Y*FG*88**D*********	201
DREB1A	HNHEVDGDDDDVSLWSY	216
DREB1B	H*YDGE*-*G******	213
DREB1C	X*FDVE*-*D******	217
В		
DREB2A	MAVYDOSGDRNRTOIDTSRKRKSRSRGDGTTVAERLKRWK	40
_	MAVYDQSGDRNRTQIDTSRKRKSRSRGDGTTVAERLKRMK ****E*T**E-Q-PK******AG*L***D***K**	40 34
DREB2A	****E*T**E-Q-PK*****A*AG*L***D***K**	34
DREB2A DREB2B		
DREB2A DREB2B DREB2A	****E*T**E-Q-PK*****A*AG*L***D***K** EYNETVEEVSTK-KRKVPAKGSKKGCMKGRGGPENS ****I**ASA*KEGE*P*********************************	34 75
DREB2A DREB2B DREB2A DREB2B	****E*T**E-Q-PK*****A*AG*L***D***K** EYNETVEEVSTK-KRKVPAKGSKKGCMKGKGGPENS	34 75 74
DREB2A DREB2B DREB2B DREB2B DREB2B DREB2B	EYNETVEEVSTK-KRKVPAKGSKKGCMKGRGGPENS ****I**ASA*KEGE*P*********************************	34 75 74 115 114
DREB2A DREB2B DREB2A DREB2B DREB2A DREB2B	EYNETVEEV-STK-KRKVPAKGSKKGCMKGKGGPENS ****I**ASA*KEGE*P*********************************	34 75 74 115 114
DREB2A DREB2B DREB2B DREB2B DREB2B DREB2B	EYNETVEEVSTK-KRKVPAKGSKKGCMKGRGGPENS ****I**ASA*KEGE*P*********************************	34 75 74 115 114
DREB2A DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B	EYNETVEEVSTK-KRKVPAKGSKKGCMKGKGGPENS ****I**ASA*KEGE*P*********************************	34 75 74 115 114 155 154
DREB2A DREB2B DREB2B DREB2B DREB2A DREB2A DREB2A DREB2B	EYNETVEEVSTK-KRKVPAKGSKKGCMKGRGGPENS ****I**ASA*KEGE*P*********************************	34 75 74 115 114 155 154
DREB2A DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B	EYNETVEEVSTK-KRKVPAKGSKKGCMKGKGGPENS ****I**ASA*KEGE*P*********************************	34 75 74 115 114 155 154 189 194
DREB2A DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B	EYNETVEEVSTK-KRKVPAKGSKKGCMKGRGGPENS ****I**ASA*KEGE*P*********************************	34 75 74 115 114 155 154 189 194
DREB2A DREB2B DREB2B DREB2A DREB2A DREB2A DREB2A DREB2B DREB2B DREB2B DREB2B	EYNETVEEVSTK-KRKVPAKGSKKGCMKGKGGPENS ****I**ASA*KEGE*P*********************************	34 75 74 115 114 155 154 189 194 225 233
DREB2A DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B	EYNETVEEVSTK-KRKVPAKGSKKGCMKGKGGPENS ****I**ASA*KEGE*P*********************************	34 75 74 115 114 155 154 189 194 225 233 265
DREB2A DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B	EYNETVEEVSTK-KRKVPAKGSKKGCMKGKGGPENS ****I**ASA*KEGE*P*********************************	34 75 74 115 114 155 154 189 194 225 233 265 270
DREB2A DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B DREB2B	EYNETVEEVSTK-KRKVPAKGSKKGCMKGKGGPENS ****I**ASA*KEGE*P*********************************	34 75 74 115 114 155 154 189 194 225 233 265 270 305

Figure 8. Comparison of the Deduced Amino Acid Sequences of the DREB1 and DREB2 Families.

Asterisks represent identical amino acid residues, and dashes indicate gaps introduced to maximize alignment. The underlined regions indicate the EREBP/AP2 DNA binding domains. A conserved Ser/Thr-rich region in DREB2A and DREB2B is indicated by a dashed underline.

- (A) Comparison of DREB1A, DREB1B, and DREB1C.
- (B) Comparison of DREB2A and DREB2B.

binding specificity of the two DREB proteins to the DRE sequence (Figure 5).

Both the DREB1A and DREB2A proteins contain a typical EREBP/AP2 DNA binding motif (Figure 4), which is found in tobacco EREBPs (Ohme-Takagi and Shinshi, 1995) and Arabidopsis AP2 (Jofuku et al., 1994). Recently, the EREBP/AP2 DNA binding motif also has been found in various plant regulatory genes, such as Arabidopsis *TINY* (Wilson et al., 1996), *CBF1* (Stockinger et al., 1997), *AtEBP* (Buttner and Singh, 1997), and *AINTEGUMENTA* (Elliott et al., 1996;

Figure 9. Transactivation of the *rd29A* Promoter–*GUS* Fusion Gene by DREB1A and DREB2A Proteins by Using Arabidopsis Protoplasts.

- (A) Schematic diagram of the effector and reporter constructs used in cotransfection experiments. The effector constructs contain the CaMV 35S promoter and TMV Ω sequence (Gallie et al., 1987) fused to the DREB1A or DREB2A cDNA. Nos-T indicates the polyadenylation signal of the gene for nopaline synthetase. The reporter construct contains the 71-bp fragments of the rd29A promoter tandemly repeated three times (DRE \times 3). The promoter was fused to the -61 rd29A minimal TATA promoter-GUS construct.
- (B) Transactivation of the rd29A promoter–GUS fusion gene by the DREB1A and DREB2A proteins. The reporter gene was transfected with each effector plasmid or the vector as control treatments. To normalize for transfection efficiency, the CaMV 35S promoter–luciferase (LUC) plasmid was cotransfected in each experiment. Bars indicate the standard error of three replicates. Ratios indicate the multiplicities of expression compared with the value obtained with the pBI35S Ω vector.

Klucher et al., 1996), maize *Glossy15* (Moose and Sisco, 1996), and tomato *Pti*s (Zhou et al., 1997).

These genes are divided into two classes based on the number of the EREBP/AP2 motifs. One class includes *AP2*, *AINTEGUMENTA*, and *Glossy15*, each of which encodes a protein containing two EREBP/AP2 motifs. The other class includes *EREBPs*, *TINY*, *CBF1*, *Ptis*, *AtEBP*, and *DREBs*, each of which encodes a protein with only one EREBP/AP2 motif. The *EREBPs*, *Ptis*, and *AtEBP* in the second class specifically bind to the GCC box sequence containing the core GCCGCC sequence, which is present in the promoter region of a large number of ethylene-inducible genes encoding pathogenesis-related proteins (Ohme-Takagi and Shinshi, 1995). The DREB1A, DREB2A, and CBF1 proteins specifically bind to the DRE/C repeat sequence containing the core sequence, PuCCGAC. These sequences resemble the GCC box and contain CCGNC as a common core sequence.

We compared the amino acid sequences of the DNA binding domains of the DREB1A, DREB2A, and CBF1 proteins and found consensus amino acids in their DNA binding domains (Figure 4, Consensus). All of the consensus amino acids are conserved in the DNA binding domains of EREBPs, Ptis, and AtEBP, except for the fourteenth valine (V) and nineteenth glutamate (E) in the binding domain of DREB1A and DREB2A (Figure 4). These two amino acids are also conserved in the DREB1A and DREB2A homologs (Figure 8). These conserved amino acids in the binding domains of DREB1A, DREB2A, and their homologs, including CBF1, may be important for binding specificity to the target sequence, PuC-CGAC. The EREBP/AP2 motif contains an 18-amino acid core region that has been proposed to form an amphipathic α-helix; the latter could play a role in protein-protein interactions to facilitate DNA binding (Okamuro et al., 1997). The region of DREB1A and DREB2A proteins also theoretically is capable of forming the amphipathic α -helix structure.

Expression of DREB1A, DREB1B (CBF1), and DREB1C was strongly induced by low-temperature stress, whereas that of DREB2A and DREB2B was induced by dehydration and high-salt stress (Figure 6; Z.K. Shinwari, K. Nakashima, S. Miura, M. Kasuga, K. Yamaguchi-Shinozaki, and K. Shinozaki, unpublished data). The CBF1 gene is identical to the DREB1B gene. We demonstrated that DREB1B/CBF1 as well as DREB1A and DREB1C gene expression is induced by low temperature, whereas Stockinger et al. (1997) showed that the CBF1 gene is constitutively expressed even under unstressed conditions. This difference may be due to differences in stress treatment or growth conditions of Arabidopsis plants. rd29A gene expression was induced by dehydration, high-salt, and low-temperature stress (Figure 6). These results suggest that the DREB1A-related proteins function in the DRE/C repeat-dependent expression of rd29A during low-temperature stress, whereas the DREB2Arelated proteins are involved in the expression of rd29A during dehydration and high-salt stress. The expression of the DREB1A genes during low-temperature stress precedes that of the rd29A gene (Figure 6). Furthermore, the induction

Figure 10. Effects of Overexpressing DREB1A and DREB2A cDNAs in Transgenic Plants.

Shown are 3-week-old seedlings carrying the 35S:DREB1A transgene with a variety of dwarf phenotypes (35S:DREB1Aa, 35S:DREB1Ab, and 35S:DREB1Ac), those carrying the 35S:DREB2A transgene with growth retardation (35S:DREB2Aa and 35S:DREB2Ab), and 3-week-old seed-lings carrying pBI121 (wt).

of *rd29A* expression by high-salt and low-temperature stress was inhibited by half when cycloheximide was used (data not shown), whereas the induction of *rd29A* expression by exogenous ABA treatment was not inhibited (Yamaguchi-Shinozaki and Shinozaki, 1993). These results suggest that induction of the DREB proteins by these stresses is required for the expression of *rd29A*.

However, expression of the *rd29A* gene was induced rapidly by high salt (within 10 min) and dehydration (within 20 min), suggesting that the DREB2A-related transcription factors may be activated directly by these stresses. Indeed, we detected *DREB2A* mRNA in the unstressed control plants. However, we could not detect *DREB1A* mRNA in the unstressed plants (Figure 6B). These observations indicate that both induction and modification of the DREB2A transcription factors are needed for the transactivation of the *rd29A* gene under dehydration and high-salt stress conditions and that the induction of DREB1A transcription factors is important for the expression of *rd29A* under low-temperature stress conditions (Figure 13).

The above-mentioned hypothesis is supported by our analyses of transgenic plants that overexpressed the DREB1A or DREB2A cDNAs. The *rd29A* mRNA as well as the *DREB1A* mRNA accumulated in 35S:DREB1Aa trans-

genic plants that overexpressed the DREB1A cDNA and revealed a severe dwarf phenotype under unstressed growth conditions (Figures 10 and 11). The level of accumulated DREB1A mRNA correlated with the level of rd29A mRNA and the phenotypic changes of growth retardation of the transgenic plants (35S:DREB1Ab and 35S:DREB1Ac; Figures 10 and 11). The expression of the rd17/cor47 gene, which is induced by dehydration and low temperature (Gilmour et al., 1992; Iwasaki et al., 1997), was also observed in the 35S:DREB1A plants under unstressed conditions (data not shown). The overproduction of the DREB1Arelated proteins is enough to induce the expression of target genes. TINY has sequence similarity with DREBs and CBF1 (Figure 4). Ectopic overexpression of the TINY protein by the 35S promoter resulted in a semidominant dwarf phenotype (Wilson et al., 1996). This phenotype may be due to an effect similar to that causing overexpression of DREB1A in transgenic plants. The 35S:DREB1A transgenic plants revealed freezing and dehydration tolerance (Figure 12) as well as growth retardation. This may have been due to the overexpression of stress-inducible genes that are controlled by the DREB proteins under unstressed conditions. Overproduction of stress-related proteins is likely to make these transgenic plants more stress tolerant under normal growth

conditions, which may cause growth retardation of the plants. Independently, Jaglo-Ottosen et al. (1998) reported that CBF1 overexpression also enhances freezing tolerance.

In contrast, 35S:DREB2A transgenic plants that overexpressed the DREB2A cDNA revealed weak phenotypic changes in growth retardation experiments (35S:DREB2Aa; Figure 10). In 35S:DREB2A transgenic plants, *rd29A* mRNA did not accumulate significantly, although *DREB2A* mRNA accumulated even under unstressed conditions (Figure 11). Expression of the DREB2A protein is not sufficient for the induction of the *rd29A* gene. Modification, such as phosphorylation of the DREB2A protein, seems to be necessary for it to function in response to dehydration. The DREB2A and DREB2B proteins contain a conserved Ser/Thr–rich region adjacent to the EREBP/AP2 DNA binding domain, although the DREB1A-related proteins do not (Figure 8). We are investigating whether this Ser/Thr–rich region is phosphorylated under dehydration conditions.

Figure 11. Expression Analyses of the *DREB1A*, *DREB2A*, and *rd29A* Genes in Transgenic Plants.

RNA gel blotting was conducted to measure the amount of DREB1A, DREB2A, or rd29A mRNA in transgenic Arabidopsis plants carrying the 35S:DREB1A transgene (35S:DREB1Aa, 35S:DREB1Ab, and 35S:DREB1Ac), those carrying the 35S:DREB2A transgene (35S:DREB2Aa and 35S:DREB2Ab), and those carrying pB1121 (wt). Transgenic plants were dehydrated (Dry), transferred from agar plates for hydroponic growth in water (H₂O), transferred from agar plates for hydroponic growth in 250 mM NaCl (NaCl), transferred from agar plates for hydroponic growth in 100 μ M ABA (ABA), transferred to 4°C (Cold), and then treated for 5 hr under each condition or were untreated (Control). DNA fragments for the DREB1A and DREB2A cDNAs or the 3' flanking region of rd29A were used as probes.

Figure 13 summarizes a model of the role of the two DREB proteins in the separation of two different signaling pathways under drought and cold stress conditions. Expression of DREB1A and its homologs is induced by low temperature, and the accumulated DREB1A homologs in turn transactivate the DRE-dependent gene expression of rd29A. Therefore, the expression of the rd29A gene is slower than that of DREB1A under low-temperature conditions. Overexpression of DREB1A in transgenic Arabidopsis activates the expression of the rd29A gene under normal unstressed conditions. Transgenic Arabidopsis plants overproducing DREB1A revealed abnormal stressed phenotypes. These observations indicate that the transcriptional activation of the rd29A gene is controlled directly by the induction of the DREB1A protein in Arabidopsis plants. In contrast, expression of DREB2A and its homolog is induced by drought and high salt; however, these genes are also expressed in unstressed control plants at low levels. The induced DREB2A and its homolog then transactivate DRE-dependent gene expression under drought and high-salt conditions.

The expression of the *rd29A* gene as well as the *DREB2A* gene is induced rapidly by drought and high-salt stress. In this case, the induction of DREB2A proteins alone is not sufficient for the induction of *rd29A* gene expression; the DREB2A protein probably requires modification (such as phosphorylation) for its function because overexpression of DREB2A had little effect on the expression of the *rd29A* gene under unstressed conditions (Figure 11). A stress signal is necessary for the modification of the DREB2A homologs to their active forms in the transcription of the *rd29A* gene under water-deficient conditions. Both the DREB1A and DREB2A families of proteins bind to the same *cis*-acting element, DRE, and activate the gene expression, but these two families of proteins function in different signal transduction pathways under low-temperature and dehydration stress.

METHODS

Plant Materials and Stress Treatments

Plants (*Arabidopsis thaliana* ecotype Columbia) were grown on germination medium agar plates for 3 weeks, as described previously (Yamaguchi-Shinozaki and Shinozaki, 1994). Dehydration, high-salt, and cold stress treatments and treatment with abscisic acid (ABA) were performed as described previously (Yamaguchi-Shinozaki and Shinozaki, 1994). The plants were subjected to the stress treatments for various periods and then frozen in liquid nitrogen for further analyses.

Construction of Reporter Plasmids for Yeast One-Hybrid Screening

The 71-bp polymerase chain reaction fragment between positions –215 and –145 in the *rd29A* promoter, which contains a dehydration-responsive element (DRE) and HindIII sites at its 5' and 3' ends

Figure 12. Freezing and Drought Tolerance of the 35S:DREB1Ab and 35S:DREB1Ac Transgenic Plants.

Control, 3-week-old plants growing under normal conditions; freezing stress, plants exposed to a temperature of -6° C for 2 days and returned to 22°C for 5 days; drought stress, water withheld from plants for 2 weeks. Percentages of surviving plants and numbers of surviving plants per total number of tested plants are indicated under the photographs. wt, wild type.

(Yamaguchi-Shinozaki and Shinozaki, 1994), was ligated into four tandemly repeated copies and then inserted into the HindIII site in the multicloning site (MCS) of the pBluescript II SK— (Stratagene, La Jolla, CA) vector. The fragment containing four tandem copies of the 71 bp was excised by EcoRI and HincII from the pBluescript II SK—vector and cloned into MCS upstream from the *HIS3* minimal promoter in the pHISi-1 expression vector, which had been digested with EcoRI and MIuI (Clontech, Palo Alto, CA). The same fragment was excised by EcoRI and Sall from the pBluescript II SK—vector and cloned into MCS upstream from the lacZ minimal promoter in the pLacZi expression vector (Clontech), which had been digested with the same enzymes. Two kinds of expression plasmids were transformed simultaneously into yeast YM4271 strain (Figure 1). Yeast transformants containing the *HIS3* and *lacZ* reporter genes were obtained in selective medium plates (without His and Ura). The yeast

transformant strains that could not grow under 10 mM 3-aminotriazole (3-AT) were used to screen the cDNA libraries.

Construction of Activation Domain-Tagged cDNA Libraries Derived from Dehydrated and Undehydrated Arabidopsis Rosette Plants

Twenty grams of whole rosette plants grown on GM agar plates for 3 weeks was used to prepare cDNA libraries. In the preparation of a cDNA library from dehydrated plants, we dehydrated harvested Arabidopsis plants at room temperature and 60% humidity under dim light for 2 hr and then froze them in liquid nitrogen. The weight of the plants decreased 22% after 2 hr of dehydration. In the preparation of a cDNA

Figure 13. A Model for the Induction of *rd29A* Gene Expression under Dehydration, High-Salt, and Low-Temperature Conditions.

There are at least two independent signal transduction pathways—ABA independent and ABA responsive—between environmental stress and expression of the *rd29A* gene. The DRE functions in the ABA-independent pathway, and the ABA-responsive element (ABRE) is one of the *cis*-acting elements in the ABA-responsive induction of *rd29A*. Two independent families of DRE binding proteins, DREB1 and DREB2, function as *trans*-acting factors and separate two signal transduction pathways in response to cold, and drought and high-salinity stresses, respectively. bZIP, basic leucine zipper.

library from cold-treated plants, we transferred Arabidopsis plants to 4°C for 24 hr and harvested them. Total RNA, poly(A)⁺ RNA, and cDNAs were prepared as described previously (Yamaguchi-Shinozaki et al., 1992). The cDNAs were ligated with the EcoRi-Noti-BamHI adapter fragment (Amersham) and then cloned into the EcoRI site in MCS downstream of the GAL4 activation domain in the pAD-GAL4 phagemid vector containing the *LEU2* reporter gene (Stratagene).

Yeast One-Hybrid Screening of Arabidopsis cDNA Libraries

Approximately 0.8×10^6 , 1.2×10^6 , and 1.5×10^6 yeast transformants were screened using cDNA libraries prepared from dehydrated, cold-treated, and unstressed Arabidopsis plants, respectively, according to the manufacturer's protocol (Clontech Matchmaker one-hybrid system). We obtained 203 positive colonies from selective medium plates (without His, Ura, and Leu but containing 10 mM 3-AT). Growth of these clones was examined at 30, 45, and 60 mM 3-AT. The β -galactosidase activities of the clones were then further analyzed. Finally, 41 clones, which grew normally on the 60 mM 3-AT plate and had β -galactosidase activity, were selected from the 203 positive clones. The cDNA of these 41 clones was isolated with a yeast DNA isolation system (Stratagene). The cDNA inserts were excised with EcoRI from the pAD-GAL4 plasmids and ligated into the pBIuescript II SK— vector for sequencing.

Construction of Reporter Plasmids for the Transactivation Experiment with Yeast

To analyze transactivation activity of isolated cDNA clones, we fused three tandemly repeated copies of the wild-type or the mutated 71-bp fragment containing the DRE sequence to the MCS upstream from

the *HIS3* minimal promoter in the pHISi-1 expression vector and the *IacZ* minimal promoter in the pLacZi expression vector, as shown in Figure 2. The DRE sequence TACCGACAT in the mutated 71-bp fragment was replaced with TATTTTCAT (Figure 5A, M2; Yamaguchi-Shinozaki and Shinozaki, 1994). These plasmids were transformed into the yeast YM4271 strain and used for the transactivation experiment with yeast (Figure 2).

Preparation of Glutathione S-Transferase Fusion Proteins and Gel Mobility Shift Assays

A 429-bp (119 to 547) fragment of the DREB1A cDNA and a 500-bp (167 to 666) fragment of the DREB2A cDNA were prepared by polymerase chain reaction and cloned into the EcoRI-Sall sites of the pGEX-4T-1 vector. The primer sets used for the amplification of the DREB1A and DREB2A cDNA fragments were 5'-CAGAGAATT-CCGGATCCCAATGAACTCATTTTCTGCT-3' and 5'-CCGCACTCG-AGGTCGACCGTCGCATCACACATCTC-3' and 5'-GATCCGAATTCA-TGGCAGTTTATGATCAGAGTGG-3' and 5'-CAGCACTCGAGG-TCGACGGATCCTCTGTTTTCAC-3', respectively. The recombinant pGEX-4T-1 plasmids (Pharmacia) were transformed to Escherichia coli Blue XL-1. Production and purification of the glutathione S-transferase (GST) fusion proteins were performed as described previously (Urao et al., 1993). The 71-bp fragments containing DRE of the rd29A promoter with or without base substitutions were labeled with a 32P-dCTP, as described previously. Gel mobility shift assays were conducted as described previously (Urao et al., 1993).

DNA and RNA Gel Blot Analyses

DNA gel blot hybridization and RNA gel blot hybridization were performed as described previously (Yamaguchi-Shinozaki and Shinozaki, 1994).

Transactivation Experiments with Protoplasts

Effector plasmids used in the transient transactivation experiment were constructed with DNA fragments containing the *DREB1A* or *DREB2A* coding regions that were cloned into polylinker sites of the plant expression vector pBI35S Ω , which was derived from pBI221 (Clontech). The pBI35S Ω vector was constructed as described previously (Abe et al., 1997). To construct 35S- Ω -DREB1A and 35S- Ω -DREB2A, we cloned the Notl fragment containing the coding region of DREB1A or DREB2A cDNA into the Notl site of the pBI35S Ω vector. To construct a reporter plasmid, we replaced the 35S promoter of pBI221 (Yamaguchi-Shinozaki and Shinozaki, 1994) with the *rd29A* minimal TATA promoter, and we then ligated the 71-bp fragment of the *rd29A* promoter into the HindIII site located upstream from the *rd29A* minimal TATA promoter with three tandem copies.

Isolation of Arabidopsis mesophyll protoplasts and polyethylene glycol–mediated DNA transfection were performed as described previously (Abel and Theologis, 1994). β-Glucuronidase (GUS) activity was measured as picomoles of product formed per minute per milligram of protein by using the standard protocol (Jefferson et al., 1986). Luciferase assays were performed using a PicaGene luciferase assay kit (Toyo-lnk, Tokyo, Japan), according to the manufacturer's instructions. Protein concentration was determined by the Bradford method (Bio-Rad).

Transgenic Plants Overexpressing the DREB cDNAs

Plasmids used in transformation of Arabidopsis were constructed with DREB1A or DREB2A full-length cDNA that was cloned into a polylinker site of a binary vector, pBl2113Not, which was derived from pBl2113 (Mituhara et al., 1996) in the sense orientation. For the construction of the pBl2113Not vector, pBl2113 was digested with Smal and Sacl to delete the GUS coding region and ligated with a Smal-Notl-Sacl polylinker (Takara, Tokyo, Japan). To construct the 35S:DREB1A and 35S:DREB2A plasmids, the EcoRV-Smal fragment of the DREB1A cDNA and the Sacl-EcoRV fragment of the DREB2A cDNA were cloned into the Sacl-Smal or Smal site of the pBl2113Not vector, respectively. The constructs were introduced into Agrobacterium tumefaciens C58, as described previously (Yamaquchi-Shinozaki and Shinozaki, 1994).

Arabidopsis plants used for transformation were grown in 8-cm pots filled with soil under continuous illumination at \sim 2500 lux at 22°C for 6 weeks. Plants were transformed by the vacuum infiltration method, as described by Bechtold et al. (1993).

Freezing and Drought Stress Tolerance of Transgenic Plants

Plants were grown in 9-cm pots filled with a 1:1 mixture of perlite/vermiculite. They were grown under continuous illumination of \sim 2500 lux at 22°C. Three-week-old plants were exposed to freezing and drought stress. Freezing stress was conducted by exposure of plants to a temperature of -6°C for 2 days and returned to 22°C for 5 days. Drought stress was conducted by withholding water for 2 weeks.

ACKNOWLEDGMENTS

We thank Satomi Yoshida, Atsuko Yahiro, and Ekuko Ohgawara for their excellent technical assistance. This work was supported in part by the Program for Promotion of Basic Research Activities for Innovative Biosciences to K.Y.-S. This work also was supported in part by a grant-in-aid from the Ministry of Education, Science, and Culture of Japan to K.S.

Received March 27, 1998; accepted June 8, 1998.

REFERENCES

- Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D., and Shinozaki, K. (1997). Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9, 1859–1868.
- **Abel, S., and Theologis, A.** (1994). Transient transformation of *Arabidopsis* leaf protoplasts: A versatile experimental system to study gene expression. Plant J. **5,** 421–427.
- Baker, S.S., Wilhelm, K.S., and Thomashow, M.F. (1994). The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 24, 701–713.

- Bechtold, N., Ellis, J., and Pelletier, G. (1993). In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Ser. III Sci. Vie 316, 1194–1199.
- Buttner, M., and Singh, K.B. (1997). *Arabidopsis thaliana* ethyleneresponsive element binding protein (AtEBP) and ethylene-inducible, GCC box DNA-binding protein interact with an OCS element binding protein. Proc. Natl. Acad. Sci. USA **94**, 5961–5966.
- Chandler, P.M., and Robertson, M. (1994). Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 113–141.
- Elliott, R.C., Betzner, A.S., Huttner, E., Oakes, M.P., Tucker, W.Q.J., Gerentes, D., Perez, P., and Smyth, D.R. (1996). *AIN-TEGUMENTA*, an *APETALA2*-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8, 155–168.
- Gallie, D.R., Sleat, D.E., Watts, J.W., Turner, P.C., and Wilson, T.M.A. (1987). A comparison of eukaryotic viral 5'-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res. 15, 8693–8711.
- Gilmour, S.J, Artus, N.N., and Thomashow, M.F. (1992). cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol. Biol. 18, 13–21.
- Giraudat, T., Parcy, F., Bertandre, N., Gosti, F., Leung, J., Morris, P.-C., Bouvier-Durand, M., and Vartanian, N. (1994). Current advances in abscisic acid action and signaling. Plant Mol. Biol. 26, 1557–1577.
- Horvath, D.P., McLarney, B.K., and Thomashow, M.F. (1993).Regulation of *Arabidopsis thaliana* L. (Heynh.) cor78 in response to low temperature. Plant Physiol. 103, 1047–1053.
- Ingram, J., and Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 377–403.
- Iwasaki, T., Kiyosue, T., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1997). The dehydration-inducible rd17 (cor47) gene and its promoter region in Arabidopsis thaliana. Plant Physiol. 115, 1287.
- Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., and Thomashow, M.F. (1998). Arabidopsis CBF1 overexpression induces cor genes and enhances freezing tolerance. Science 280, 104–106.
- Jefferson, R.A., Burgess, S.M., and Hirsh, D. (1986). β-Glucuronidase from *Escherichia coli* as a gene-fusion marker. EMBO J. **83**, 8447–8451.
- Jiang, C., Iu, B., and Singh, J. (1996). Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol. Biol. 30, 679–684.
- Jofuku, K.D., den Boer, B.G.W., Van Montagu, M., and Okamuro, J.K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6, 1211–1225.
- Klucher, K.M., Chow, H., Reiser, L., and Fischer, R.L. (1996). The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8, 137–153.
- Kurkela, S., and Borg-Franck, M. (1992). Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol. Biol. 19, 689–692.
- Mituhara, I., Ugaki, M., Hirochika, H., Ohshima, M., Murakami, T., Gotoh, Y., Katayose, Y., Nakamura, S., Honkura, R., Nishimiya,

- S., Ueno, K., Mochizuki, A., Tanimoto, H., Tsugawa, H., Otsuki, Y., and Ohashi, Y. (1996). Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol. 37, 49–59.
- Moose, S.P., and Sisco, P.H. (1996). Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev. 10, 3018–3027.
- Nordin, K., Heino, P., and Palva, E.T. (1991). Separate signal pathways regulate the expression of a low-temperature-induced gene in *Arabidopsis thaliana* (L.) Heynh. Plant Mol. Biol. 16, 1061–1071.
- Ohme-Takagi, M., and Shinshi, H. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element, Plant Cell 7, 173–182.
- Okamuro, J.K., Caster, B., Villarroel, R., Van Montagu, M., and Jofuku, K.D. (1997). The AP2 domain of *APETALA2* defines a large new family of DNA binding proteins in *Arabidopsis*. Proc. Natl. Acad. Sci. USA **94**, 7076–7081.
- Shinozaki, K., and Yamaguchi-Shinozaki, K. (1996). Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7, 161–167.
- Shinozaki, K., and Yamaguchi-Shinozaki, K. (1997). Gene expression and signal transduction in water-stress response. Plant Physiol. **115**, 327–334.
- Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain–containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94, 1035–1040.
- **Thomashow, M.F.** (1994). *Arabidopsis thaliana* as a model for studying mechanisms of plant cold tolerance. In *Arabidopsis*, E. Meyerowitz and C. Somerville, eds (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press), pp. 807–834.

- Urao, T., Yamaguchi-Shinozaki, K., Urao, S., and Shinozaki, K. (1993). An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5, 1529–1539.
- Wang, H., Datla, R., Georges, F., Loewen, M., and Cuter, A.J. (1995). Promoters from Kin1 and cor6.6, two homologous Arabidopsis thaliana genes: Transcriptional regulation and gene expression induced by low temperature, ABA osmoticum and dehydration. Plant Mol. Biol. 28, 605–617.
- Wilson, K., Long, D., Swinburne, J., and Coupland, G. (1996). A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8, 659-671.
- Yamaguchi-Shinozaki, K., and Shinozaki, K. (1993). The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration-stress in Arabidopsis thaliana. Mol. Gen. Genet. 238, 17–25.
- Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994). A novel cisacting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251–264.
- Yamaguchi-Shinozaki, K., Koizumi, M., Urao, S., and Shinozaki, K. (1992). Molecular cloning and characterization of nine cDNAs for genes that are responsive to desiccation in *Arabidopsis thaliana*: Sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol. 33, 217–224
- Zhou, J., Tang, X., and Martin, G. (1997). The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a *cis*-element of pathogenesis-related genes. EMBO J. 16, 3207–3218.

REVIEW

Molecular Studies on Stress-Responsive Gene Expression in *Arabidopsis* and Improvement of Stress Tolerance in Crop Plants by Regulon Biotechnology

Kazuo NAKASHIMA¹ and Kazuko YAMAGUCHI-SHINOZAKI¹,2*

- ¹ Biological Resources Division, Japan International Research Center for Agricultural Sciences (JIRCAS) (Tsukuba, Ibaraki 305–8686, Japan)
- ² Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo (Bunkyo, Tokyo 113–8657, Japan)

Abstract

Molecular studies have shown that several genes with various functions are induced by environmental stresses such as drought, high-salinity and low temperature in plants. Most of the dehydration responsive genes are induced by the plant hormone abscisic acid (ABA), but others are not. Expression analyses of dehydration-responsive genes have provided at least four independent regulatory systems (regulons) for gene expression in a model plant Arabidopsis thaliana. The cis-acting elements in the promoters of some genes that have a typical stress-inducible expression profile and the transcription factors that affect the expression of these genes have been analyzed. Transcription factors that bind to a DRE/CRT (dehydration-responsive element / C-repeat) cis-acting element were isolated and termed DREB1/CBF (DRE-binding protein 1/ C-repeat binding factor) and DREB2 (DRE-binding protein 2). Overexpression of DREB1/CBF in transgenic Arabidopsis plants increased tolerance to freezing, drought and high salt concentrations. The DREB1/CBF genes have been successfully used to improve abiotic stress tolerance in a number of different crop plants. Studies on the other transcription factors associated with stress response are in progress. We collaborate with many research groups to improve stress tolerant crop plants utilizing regulon biotechnology. We hope the results of these collaborative studies will contribute to the sustainable food production in developing countries and help to prevent the global-scale environmental damage.

Discipline: Biotechnology

Additional key words: DREB1, environmental stress, transcription factors, transgenic plants

Introduction

As plants are sessile organisms, they are directly exposed to environmental stresses such as drought, high salinity and low temperature. Plants respond to environmental stress, and the transduced signals cause expression of numerous genes associated with stress tolerance. A number of genes have been described that respond to environmental stresses such as drought, high salinity and low temperature in plants^{4,15,33,47,48,60}.

We isolated more than 60 independent cDNAs for dehydration inducible genes using molecular techniques such as differential screening in a model plant *Arabidopsis thaliana*^{33,47,48}. Recently, 299 drought-inducible genes, 54 cold-inducible genes, and 213 high-salinity-

stress-inducible genes were identified using a cDNA microarray containing around 7,000 independent Arabidopsis full-length cDNA groups^{46,48}. Functions of their gene products have been predicted from sequence homology with known proteins. Genes induced during dehydration stress conditions are thought to function not only in protecting cells from dehydration by the production of important metabolic proteins (functional proteins) but also in the regulation of genes for signal transduction in the dehydration stress response (regulatory proteins). The functional proteins contain water channel proteins, chaperons, proteases, LEA (Late Embryogenesis Abundant) proteins, and enzymes for the synthesis of osmoprotectants (compatible solutes; sugars, proline, etc.). The regulatory proteins contain transcription factors, protein kinases, and enzymes for phosphoinositide (PI) turn-

^{*}Corresponding author: fax +81-29-838-6643; e-mail kazukoys@jircas.affrc.go.jp Received 2 March 2005; accepted 22 April 2005.

over, and enzymes for the synthesis of the plant hormone abscisic acid (ABA). So far, various kinds of functional proteins such as enzymes for the synthesis of osmoprotectants were overexpressed in plants to improve the stress tolerance^{5,59}. However, it seems that the engineering of one enzyme is not enough as many kinds of stress responses are necessary for plants to survive in severe stress conditions.

In plants, one transcription factor can control the expression of many target genes through the specific binding of the transcription factor to the *cis*-acting element in the promoters of the target genes. Such kind of a transcription unit is called a "regulon". Northern analysis of dehydration-inducible genes revealed that there appear to be at least four independent regulons in *Arabidopsis* (Fig. 1). They are (1) DREB regulon, (2) NAC (NAM, ATAF1, 2, and CUC2) and ZF-HD (zinc-finger homeodomein) regulon, (3) AREB/ABF (ABA-responsive ele-

ment binding protein / ABA-responsive element binding factor) regulon, and (4) MYC (myelocytomatosis oncogene) and MYB (myeloblastosis oncogene) regulon. The DREB regulon and the NAC and ZF-HD regulon are ABA-independent. The AREB/ABF regulon and the MYC and MYB regulon are ABA-dependent. Regulon biotechnology, by controlling the expression of the regulon system, is expected to improve the tolerance against stresses in plants.

DREB regulon involved in ABA-independent gene expression

1. Isolation of DREB1/CBF regulon and DREB2 regulon

The promoter of an Arabidopsis drought-, high-salinity- and cold-inducible gene RD29A (responsive to dehydration 29A) encoding a LEA-like protein has been

Fig. 1. Regulatory network of gene expression in response to drought, high salinity and cold stresses: specificity and crosstalk of gene networks

Cis-acting elements that are involved in stress-responsive transcription are shown in boxes. Transcription factors that control stress-inducible gene expression are shown in circles or ovals. Small circles indicate the modification of transcription factors in response to stress signals for their activation, such as phosphorylation. Dotted lines indicate possible regulation. Double arrow lines indicate possible cross talk. ABF: ABRE-binding factor, ABRE: ABA-responsive element, AREB: ABRE-binding protein, CBF: C-repeat-binding factor, CRT: C-repeat, DRE: dehydration-responsive element, DREB: DRE-binding protein, ERD: early responsive to dehydration, ICE: inducer of CBF expression, MYBR: MYB recognition site, MYCR: MYC recognition site, NACR: NAC recognition site, RD: responsive to dehydration, ZF-HD: zinc finger homeodomain protein.

222

found to contain two major cis-acting elements, the ABA-responsive element (ABRE) and the dehydrationresponsive element (DRE)/C-repeat (CRT), that are involved in stress-inducible gene expression⁵⁶. DRE/ CRT (CCGAC) is a cis-acting element that functions in ABA-independent gene expression in response to abiotic stress (Fig. 1). Transcription factors belonging to the AP2/ERF (APETALA2 / ethylene-responsive element binding factor) family that bind to DRE/CRT have been isolated and termed DREB1/CBF and DREB210,26,50. The conserved DNA-binding motif of DREB1/CBF and DREB2 is A/GCCGAC⁴². The DREB1/CBF genes are quickly and transiently induced by cold stress, and their products activate the expression of target stress-inducible genes. The DREB2 genes are induced by dehydration, leading to the expression of various genes that are involved in drought-stress tolerance²⁶.

2. Improved stress tolerance of transgenic plants overexpressing DREB1/CBF

Overexpression of DREB1A/CBF3 in transgenic Arabidopsis plants showed increased tolerance to freezing, drought and high salt concentrations 17,19,26, suggesting that the DREB1A/CBF3 proteins function without modification of the proteins in the development of stress tolerance. Many candidates for the DREB1A/CBF3 target genes have been identified using microarray^{9,30,45}. Most of these target genes contain DRE- or DRE-related CCGAC core motif sequences in their promoter regions. We analyzed the expression of these candidate genes using RNA gel blot and identified more than 40 genes as the DREB1A downstream genes. Many of the products of these genes were proteins known to function against stress and were probably responsible for the stress tolerance of the transgenic plants. The downstream genes also included genes for transcription factors involved in further regulation of signal transduction and gene expression in response to stress.

The overexpression of the *DREB1/CBF* gene results in multiple biochemical changes associated with cold acclimation¹¹: *DREB1A/CBF3*-expressing plants had elevated levels of proline (Pro) and total soluble sugars, including sucrose, raffinose, glucose, and fructose. Plants overexpressing *DREB1A/CBF3* also had elevated *P5CS* (for delta(1)-pyrroline-5-carboxylate synthase) transcript levels suggesting that the increase in Pro levels resulted, at least in part, from increased expression of the key Pro biosynthetic enzyme P5CS. These results lead us to propose that DREB1A/CBF3 integrates the activation of multiple components of the cold acclimation response.

Dwarfism is observed in transgenic Arabidopsis overexpressing DREB1A/CBF3, DREB1B/CBF1,

DREB1C/CBF2 or DREB1D/CBF4^{11,12,19,26}. The development of dwarf phenotypes was also found in transgenic tomato overexpressing Arabidopsis DREB1B/CBF1, and it was prevented by exogenous application of gibberellin (GA)¹⁴. These suggest that an inhibition of GA biosynthesis is a function common to the DREB1/CBF genes. However, microarray analysis did not detect the changes in transcript levels of GA-related genes in transgenic Arabidopsis overexpressing DREB1A/CBF3, DREB1B/CBF1, or DREB1C/CBF2⁹. Recently, DREB1F is reported to be involved in the regulation of GA biosynthesis and stress tolerance²⁹. It is not clear yet whether other DREB1/CBF proteins are related to GA synthesis or not.

In contrast to the *DREB1/CBF* genes, overexpression of *DREB2* in transgenic plants does not improve stress tolerance, suggesting that DREB2 proteins require posttranslational activation²⁶. The DREB2 protein is expressed under normal growth conditions and is activated in the early stage of the osmotic stress response through posttranslational modification (Fig. 1).

3. Regulation of the expression of DREB1/CBF regulon

The ICE1 (inducer of CBF expression 1) gene was identified through the map-based cloning of the Arabidopsis ice 1 mutation, which affected the expression of the DREB1A/CBF3 promoter-LUC (luciferase) transgene⁶. ICE1 encodes a MYC-type bHLH (basic helix-loophelix) transcription factor that regulates the expression of DREB1A/CBF3 but not of other DREB1/CBF genes (Fig. 1). Overexpression of *ICE1* in transgenic plants resulted in improved freezing tolerance, supporting an important role for ICE1 in the cold-stress response. Molecular analysis of the DREB1C/CBF2 promoter has identified multiple cis-acting elements that are involved in cold-inducible gene expression⁵⁷ (Imura et al., unpublished data). The DNA-binding protein has been cloned and shown to be a MYC-type bHLH transcription factor that is different from ICE1 (Imura et al., unpublished data). These results suggest the redundant involvement of MYC-type bHLH transcription factors in the up-regulation of the DREB1/ CBF genes. A cold signal is necessary for the activation of the ICE proteins but the mechanism of this signal remains to be solved. Analysis of the cbf2 mutant, in which the DREB1C/CBF2 gene was disrupted, indicated that DREB1C/CBF2 is a negative regulator of DREB1A/ CBF3 and DREB1B/CBF1 expression and plays a central role in stress tolerance in Arabidopsis³⁵. These data suggest that the regulation of the expression of the DREB1/ CBF genes might be more complex than previously thought.

NAC and ZF-HD regulon involved in ABA-independent gene expression

The ERD1 (early responsive to dehydration 1) gene encoding a Clp (caseinolytic protease) protease regulatory subunit responds to dehydration and high salinity before the accumulation of ABA, suggesting the existence of an ABA-independent pathway in the dehydration stress response³¹. Analysis of the ERD1 promoter identified two novel cis-acting elements that are involved in induction by dehydration stress⁴⁹. Base substitution analysis showed that a 14-bp rps1-like region (CACTAAAT-TGTCAC) and a CATGTG motif are necessary for the induction of the ERD1 gene in dehydrated plants (Fig. 1). Recently, we isolated three cDNA clones encoding proteins that bind to the 63-bp promoter region of ERD1, which contains the CATGTG motif 52 (Fig. 1). These three cDNA clones encode proteins which belong to the NAC transcription factor family including RD26. Microarray analysis of transgenic plants overexpressing the NAC genes revealed that several drought inducible genes were up-regulated in the transgenic plants, and the plants showed significantly increased drought tolerance. However, ERD1 was not up-regulated in the transgenic plants. We recently isolated zinc-finger homeodomain (ZF-HD) transcription factors containing a homeodomain that can bind to the rps1 site 1-like sequence using the yeast one-hybrid system. Overexpression of both NAC and ZF-HD proteins activated the expression of ERD1 under unstressed normal growth conditions in the transgenic Arabidopsis plants.

AREB/ABF regulon involved in ABA-dependent gene expression

ABRE (ABA-responsive elements: ACGTGG/TC) is a major cis-acting element in ABA-responsive gene expression (Fig. 1). Two ABRE motifs are important in the ABA-responsive expression of the Arabidopsis gene RD29B encoding a LEA-like protein⁵³. The bZIP (basic leucine zipper) transcription factors ABRE-binding protein (AREB)/ABRE-binding factor (ABF) can bind to ABRE and activate ABA-dependent gene expression^{7,53}. Activation of the AREB1 and AREB2 proteins has been shown to require an ABA-mediated modification⁵³, which is probably ABA-dependent phosphorylation (Fig. 1). Overexpression of ABF3 or AREB2/ABF4 caused ABA hypersensitivity, reduced transpiration rate and enhanced drought tolerance of the transgenic plants¹⁸. The AREB1/ABF2 is reported to be an essential component of glucose signaling and its overexpression affects multiple stress tolerance including drought, salt and heat²².

MYC and MYB regulon involved in ABA-dependent gene expression

The induction of the Arabidopsis drought-inducible gene RD22 encoding a protein having a homology to an unidentified seed protein is mediated by ABA, and this gene requires protein biosynthesis for its ABA-dependent expression¹. A MYC transcription factor, AtMYC2 (Arabidopsis thaliana MYC 2), and a MYB transcription factor, AtMYB2 (Arabidopsis thaliana MYB 2), have been shown to bind cis-elements, MYCR (MYC-recognition site: CANNTG) and MYBR (MYB-recognition site: C/ TAACNA/G) in the RD22 promoter and cooperatively activate RD221 (Fig. 1). These MYC and MYB proteins are synthesized after the accumulation of endogenous ABA, indicating that their role is in a late stage of the stress responses. Microarray analysis of MYC- and MYB-overexpressing transgenic plants revealed target genes for MYC and MYB, such as the alcohol dehydrogenase gene and ABA- or jasmonic-acid (JA)-inducible genes². Overexpression of both AtMYC2 and AtMYB2 not only caused an ABA-hypersensitive phenotype but also improved the osmotic-stress tolerance of the transgenic plants².

Recently, AtMYC2 transcription factors function as members of a MYC-based regulatory system conserved in dicotyledonous plants with a key role in JA-induced defense gene activation^{3,28}. These reports highlight the crosstalk between biotic stress signaling and abiotic stress signaling.

Crosstalk between the DREB regulon and the other regulons

Many drought- and cold-inducible genes contain both DRE/CRT and ABRE motifs in their promoters. These *cis*-acting elements are thought to function independently. However, precise analysis of these *cis*-acting elements in the *RD29A* gene expression revealed that DRE/CRT functions cooperatively with ABRE as a coupling element in ABA-responsive gene expression in response to drought stress³⁴. This indicates that there are interactions between the DREB regulon and the AREB/ABF regulon (Fig. 1).

Recently, an osmotic-stress inducible *CBF4/DREB1D* gene has been identified¹². Genes of the *DREB1/CBF* family are mainly induced by cold stress, but the drought-inducible gene *CBF4/DREB1D* functions to provide crosstalk between DREB2 and DREB1/CBF regulatory systems. The drought-inducible expres-

27A T DO 30 (A) 2005

sion of CBF4/DREB1D is controlled by ABA-dependent pathways, suggesting that CBF4/DREB1D may function in the slow response to drought that relies on the accumulation of ABA (Fig. 1). Moreover, ABA induces the DREB1/CBF gene transcription and subsequent induction of cold-regulated genes via the DRE/CRT promoter element²⁴. A maize DRE-binding protein, DBF1, has been shown to function as a transcriptional activator of the rab17 (responsive to abscisic acid 17) promoter by ABA²³. This also suggests the existence in some plants of an ABA-dependent pathway for the regulation of stress-inducible genes that involves DRE/CRT.

Gene expression in recovery process from abiotic stress in *Arabidopsis*

Microarray analysis has revealed many genes that respond to rehydration after drought stress, indicating

their involvement in the process of recovery from abiotic stress³⁶. The products of these genes are thought to function not only in recovery from stress but also in cell growth and elongation. The expression and function of the rehydration-inducible ERD5 gene encoding a proline dehydrogenase (ProDH) gene has been precisely analyzed. This gene is involved in the degradation of the proline that accumulates during dehydration³². Promoter analysis of the ProDH gene revealed an important cisacting element, ACTCAT, that is involved in rehydrationinducible gene expression⁴³. Many rehydration-inducible gene promoters contain the ACTCAT motif. Recently we showed that the ATB2 subgroup bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the *ProDH* gene in *Arabidopsis*⁴⁴. The molecular information in the process of recovery from abiotic stress may allow us to improve the resilient plants.

Fig. 2. Collaboration for development of stress tolerant crops

CGIAR: Consultative Group on International Agricultural Research, CIAT: International Center for Tropical Agriculture (Colombia), CIMMYT: International Maize and Wheat Improvement Center (Mexico), ICARDA: International Center for Agricultural Research in the Dry Areas (Syrian Arab Republic), ICRISAT: International Crops Research Institute for the Semi-Arid Tropics (India), IRRI: International Rice Research Institute (The Philippines), JIRCAS: Japan International Research Center for Agricultural Sciences (Japan).

Table 1. Abiotic stress tolerance by regulon biotechnology

Arabidopsis 35S, RD29A Freezing, salt, and drought Wheat RD29A Drought Tobacco 35S, RD29A Freezing and drought Brassica napus 35S Freezing and drought Arabidopsis 35S Freezing and drought Brassica napus 35S Freezing and drought Brassica napus 35S Freezing and drought Arabidopsis 35S Drought, salt, and freezing Arabidopsis 35S Drought, salt, and freezing Arabidopsis 35S Salt Arabidopsis 35S Drought, salt, etal, and oxidative stress Arabidopsis 35S Drought, salt, chilling, freezing, heat, and oxidative stress Arabidopsis 35S Drought, salt, chilling, freezing, heat, and oxidative stress Arabidopsis 35S Drought, salt, chilling, freezing, heat, and oxidative stress Arabidopsis 35S Low	Transcription factor	Type	Gene source	Transgenic Species	Promoter	Tolerance	Reference
ByCBE AP2IERF Arabidopsis Arabidops	DREB1A/CBF3	AP2/ERF	Arabidopsis	Arabidopsis	35S, RD29A	Freezing, salt, and drought	11, 19, 26
Propector Prop				Wheat	RD29A	Drought	39
HRCBFI APZIERF Arabidopsis 355 Freezing and drought chilling and oxidative stress and drought languages Prezing and drought chilling and oxidative stress and drought languages Arabidopsis Braxistea napus and streeting and drought languages Arabidopsis				Tobacco	35S, RD29A	Freezing and drought	20
IB/CBF1 APZ/ERF Arabidopsis 355 Freezing IB/CBF2 Arabidopsis Arabidopsis 355 H7422 Drought, chilling, and oxidative stress IC/CBF2 APZ/ERF Arabidopsis Brazisca napus 355 Freezing and drought ID/CBF4 APZ/ERF Arabidopsis Arabidopsis 355 Freezing and drought IB/CCBF4 APZ/ERF Arabidopsis Arabidopsis 355 Drought and drought EB1 APZ/ERF Arabidopsis Arabidopsis 355 Drought and drought EB1 APZ/ERF Arabidopsis 355 Drought and freezing B1A APZ/ERF Tobacco 355 Salt APZ/ERF Trobacco 355 Salt APZ/ERF Trobacco 355 Salt APZ/ERF Arabidopsis Arabidopsis Arabidopsis Arabidopsis APZ/ERF Arabidopsis Arabidopsis 355 Drought and salt APZ/ERF Arabidopsis Arabidopsis 355				Brassica napus	355	Freezing and drought	16, 59
Tomato 355 Freezing and drought centers	DREB1B/CBF1	AP2/ERF	Arabidopsis	Arabidopsis	358	Freezing	11, 17
CCBF2 AP2/ERF Arabidopsis Brassica napus 355 Freezing and drought DOCBF4 AP2/ERF Arabidopsis Brassica napus 355 Freezing and drought DOCBF4 AP2/ERF Arabidopsis Arabidopsis 355 Freezing and drought EB1 AP2/ERF Arabidopsis Arabidopsis 355 Freezing and drought EB1 AP2/ERF Arabidopsis Arabidopsis 355 Drought and freezing B10 AP2/ERF Tobacco 355 Salt Drought, and freezing B10 MYB Arabidopsis Arabidopsis Arabidopsis 355 Salt AP2/ERF Tomato Tobacco 355 Salt Brought and freezing B10 MYB Arabidopsis Arabidopsis 355 Obacupt, salt, drilling freezing ANABEA BZIP Arabidopsis Arabidopsis 355 Drought, salt, casing ANABEA BZIP Arabidopsis Arabidopsis 355 Drought, salt, casing ANABA<				Tomato	35S, HVA22	Drought, chilling, and oxidative stress	13, 14, 25
CICCREA APPZIERR Arabidopsis Brassica napus 355 Freezing and drought ID/CREA APPZIERR Arabidopsis Arabidopsis 355 Freezing and drought ID/CREA APPZIERR Arabidopsis 355 Freezing and drought BIA APPZIERR Arabidopsis 355 Drought and freezing BIA APPZIERR Tobacco Tobacco 355 Salt C2 & ALMYDS APPZIERR Trobacco 355 Salt C2 & ALMYDS AVZIERR Arabidopsis Arabidopsis 355 Drought, salt, and freezing C2 & ALMYDS AVZIERR Arabidopsis Arabidopsis 355 Drought, salt, and freezing B10 MYB Rice Arabidopsis 355 Drought, salt, dilling, freezing A4 MYB Rice Arabidopsis 355 Drought, salt, dealt, neat, and oxidative stress BABFA Arabidopsis Arabidopsis Arabidopsis 355 Drought, salt, dilling, freezing, neat, and oxidative stress BABFA Arabid				Strawberry	355	Freezing	37
IC/CBF2 AP2/ERF Arabidopsis Brassica napus 355 Freezing and drought ID/CBF4 AP2/ERF Arabidopsis Arabidopsis 355 Freezing and drought IB/DDF1 AP2/ERF Arabidopsis Arabidopsis 355 Drought, and freezing EB1A AP2/ERF Maize Arabidopsis 355 Drought, and freezing B1A AP2/ERF Tobacco 355 Drought, and freezing C2 & ALMYBE Tomato Tobacco 355 Salt AP2/ERF Tomato Tobacco 355 Drought, and freezing C2 & ALMYBE Arabidopsis Arabidopsis 355 Drought, and freezing B10 MYB Arabidopsis 355 Drought, and freezing tolerance ALMS Arabidopsis 355 Drought, salt, chilling, freezing, heat, and oxidative stress ALMS Arabidopsis Arabidopsis 355 Drought, salt, chilling, freezing, heat, and oxidative stress ALMS Arabidopsis 355 Drought, salt, chilling, freezing, and oxidative stress				Brassica napus	355	Freezing and drought	16, 59
ID/CBF4 APZERF Arabidopsis 35.5 Freezing and drought IB/DDF1 APZERF Arabidopsis 35.5 Drought and freezing EB1 APZERF Maize Arabidopsis 35.5 Drought and freezing EB1 APZERF Rice Arabidopsis 35.5 Drought, salt, and freezing SB1A APZERF Tobacco 35.5 Salt APZERF Tomato Tobacco 35.5 Salt C2 & AMYPB Arabidopsis Salt Arabidopsis Arabidopsis B10 MYB Arabidopsis 35.5 Drought, salt, decining A4 MYB Arabidopsis Arabidopsis 35.5 Drought, salt, decining B10 MYB Arabidopsis Arabidopsis 35.5 Drought, salt, decining ABF Arabidopsis Arabidopsis Arabidopsis 35.5 Drought, salt, decining, freezing B1 Arabidopsis Arabidopsis 35.5 Drought, salt, deciling, freezing Arabidopsis Arabidopsi	DREB1C/CBF2	AP2/ERF	Arabidopsis	Brassica napus	355	Freezing and drought	16, 59
IFDDF1 AP2ERF Arabidopsis 355 High salmity EB1 AP2ERF Maize Arabidopsis 355 Drought, and freezing SB1A AP2ERF Rice Arabidopsis 355 Salt AP2ERF Tomato Tobacco 355 Salt AP2ERF Arabidopsis 355 Osmotic stress B10 MYB Arabidopsis 355 Drought, salt, chilling, freezing, heat, and oxidative stress AMBF2 Arabidopsis Arabidopsis 355 Drought, salt, chilling, freezing, heat, and oxidative stress AMBF3 Arabidopsis Arabidopsis Arabidopsis 355 Drought, salt, chilling, freezing, heat, and oxidative stress AMBF4 Arabidopsis Arabidopsis 355 Low temperature stre	DREB1D/CBF4	AP2/ERF	Arabidopsis	Arabidopsis	355	Freezing and drought	12
EB1 AP2/ERF Maize Arabidopsis 355 Drought, salt, and freezing SB1A AP2/ERF Rice Arabidopsis 355 Salt AP2/ERF Tobacco 355 Salt AP2/ERF Tomato Tobacco 355 Osmotic stress AP2/ERF Arabidopsis 355 Osmotic stress B10 MYB Craterostigma plantagineum Arabidopsis 355 Drought, salt, chilling, freezing, tolerance 4 MYB Rice Arabidopsis 355 Drought, salt, chilling, freezing, tolerance 1/ABF2 bZIP Arabidopsis Arabidopsis 355 Drought, salt, chilling, freezing, teass 2/ABF4 bZIP Arabidopsis Arabidopsis 355 Drought, salt, chilling, freezing, and chilling, freezing, teass - LZIP Arabidopsis <	DREB1F/DDF1	AP2/ERF	Arabidopsis	Arabidopsis	355	High salinity	29
BIA APZIERF Rice Arabidopsis 355 Drought, salt, and freezing APZIERF Tobacco 176bacco 355 Salt APZIERF Tomato Tobacco 355 Salt C2 & ALMYB Arabidopsis Arabidopsis 355 Osmotic stress B10 MYB Craterostigma plantagineum Arabidopsis 355 Drought and salt 4 MYB Craterostigma plantagineum Arabidopsis 355 Drought and salt 4 MYB Craterostigma plantagineum Arabidopsis 355 Drought and salt 4 MYB Rice Arabidopsis 355 Drought, salt, chilling, freezing, totals and oxidative stress 2/ABF4 bZIP Arabidopsis Arabidopsis Arabidopsis 355 Drought, salt, chilling, freezing, heat, and oxidative stress All ARABA VPI Arabidopsis Arabidopsis 355 Drought All Arabidopsis Arabidopsis 355 Drought All Arabidopsis Arabidopsis 355 Drought </td <td>ZmDREB1</td> <td>AP2/ERF</td> <td>Maize</td> <td>Arabidopsis</td> <td>355</td> <td>Drought and freezing</td> <td>40</td>	ZmDREB1	AP2/ERF	Maize	Arabidopsis	355	Drought and freezing	40
AP2/ERF Tobacco 755 Salt AP2/ERF Tomato Tobacco 35S Salt LLH Arabidopsis Arabidopsis Arabidopsis 35S Osmotic stress C2 & AIMYB2 MYB Arabidopsis Arabidopsis 35S Osmotic stress B10 MYB Rice Arabidopsis 35S Drought, salt, heat, and oxidative stress L/ABF2 bZIP Arabidopsis Arabidopsis 35S Drought, salt, heat, and oxidative stress L/ABF2 bZIP Arabidopsis Arabidopsis 35S Drought, salt, chilling, freezing, heat, and oxidative stress PISIP Arabidopsis Arabidopsis 35S Drought, salt, chilling, freezing, heat, and oxidative stress July BABA) VPI Arabidopsis Arabidopsis 35S Low temperature stress July BABA VPI Arabidopsis Arabidopsis 35S Low temperature stress July BABA NAC Arabidopsis Arabidopsis 35S Drought July BABA NAC Arabi	OsDREBIA	AP2/ERF	Rice	Arabidopsis	355	Drought, salt, and freezing	&
AP2/ERF Tomato Tobacco 35S Salt C2 & AMYB2 Arabidopsis Arabidopsis Superpromoter* Freezing B10 MYB Arabidopsis 35S Osmotic stress B10 MYB Arabidopsis 35S Drought and salt -	Tsil	AP2/ERF	Tobacco	Tobacco	355	Salt	38
HLH Arabidopsis Arabidopsis Superpromoter* Freezing YC2 & ALMYB2 MYC MYB Arabidopsis 355 Osmotic stress YB10 MYB Cratevostigma plantagineum Arabidopsis 355 Drought and salt AMYB Arabidopsis Arabidopsis 355 Drought, salt, heat, and oxidative stress BI/ABF2 bZIP Arabidopsis Arabidopsis 355 Drought, salt, chilling, freezing, heat, and oxidative stress BZABF4 bZIP Arabidopsis Arabidopsis 355 Drought, salt, chilling, freezing, heat, and oxidative stress Arabidopsis Arabidopsis Arabidopsis Arabidopsis 355 Low temperature stress F-1 Zn finger Arabidopsis Arabidopsis 355 Low temperature stress C019ANAC NAC Arabidopsis Arabidopsis 355 Drought C025ANADS6 NAC Arabidopsis 355 Drought	JERFI	AP2/ERF	Tomato	Tobacco	35S	Salt	58
C2 & ALMYB2 MYC & MYB Arabidopsis 35S Osmotic stress B10 MYB Craterostigma plantagineum Arabidopsis 35S Drought and salt . 4 MYB Rice Arabidopsis 35S Cold and freezing tolerance 1/ABF2 bZIP Arabidopsis Arabidopsis 35S Drought, salt, heat, and oxidative stress 2/ABF4 bZIP Arabidopsis Arabidopsis 35S Drought, salt, chilling, freezing, heat, and oxidative stress 2/ABF4 bZIP Arabidopsis Arabidopsis 35S Drought 2/ABF4 bZIP Arabidopsis Arabidopsis 35S Low temperature stress 2/ABF4 Soybean Arabidopsis Arabidopsis 35S Low temperature stress -1 Zn finger Arabidopsis Arabidopsis 35S Drought -1 Arabidopsis Arabidopsis 35S Drought -1 Arabidopsis Arabidopsis 35S Drought	ICE1	нгн	Arabidopsis	Arabidopsis	Superpromoter*	Freezing	9
B10 MYB Craterostigma plantagineum Arabidopsis 355 Drought and salt . JABF2 MYB Rice Arabidopsis 355 Cold and freezing tolerance JABF2 bZIP Arabidopsis Arabidopsis 355 Drought, salt, heat, and oxidative stress 2/ABF4 bZIP Arabidopsis Arabidopsis 355 Drought, salt, chilling, freezing, heat, and oxidative stress plus ABA) VP1 Arabidopsis Arabidopsis 355 Water stress plus ABA) VP1 Arabidopsis Arabidopsis 355 Low temperature stress -1 Zn finger Arabidopsis Arabidopsis 355 Low temperature stress -1 Zn finger Arabidopsis Arabidopsis 355 Drought -09/ANAC NAC Arabidopsis 355 Drought -0019/ANAC NAC Arabidopsis 355 Drought -0010/ANAC NAC Arabidopsis 355 Drought	AtMYC2 & AtMYB2	MYC & MYB	Arabidopsis	Arabidopsis	355	Osmotic stress	2
44 MYB Rice Arabidopsis 35S Cold and freezing tolerance 1/ABF2 bZIP Arabidopsis Arabidopsis 35S Drought, salt, heat, and oxidative stress 2/ABF4 bZIP Arabidopsis Arabidopsis 35S Drought, salt, chilling, freezing, heat, and oxidative stress plus ABA) VPI Arabidopsis Arabidopsis 35S Water stress plus ABA) VPI Arabidopsis Arabidopsis 35S Low temperature stress -1 Zn finger Soybean Arabidopsis 35S Low temperature stress -1 Zn finger Arabidopsis Arabidopsis 35S Drought -019/ANAC NAC Arabidopsis Arabidopsis 35S Drought -025/ANAC NAC Arabidopsis Arabidopsis Arabidopsis 35S Drought	CpMYB10	MYB	Craterostigma plantagineum	Arabidopsis	355	Drought and salt ,	55
1/ABF2bZIPArabidopsisArabidopsis355Drought, salt, heat, and oxidative stress2/ABF4bZIPArabidopsisArabidopsis355Drought, salt, chilling, freezing, heat, and oxidative stress2/ABF4bZIPArabidopsisArabidopsis355Drought, salt, chilling, freezing, heat, and oxidative stressbZIPArabidopsisArabidopsis355Low temperature stress-IZn fingerSoybeanArabidopsisArabidopsis355Low temperature stress-IZn fingerArabidopsisArabidopsisArabidopsis355Drought>019/ANACNACArabidopsisArabidopsis355Drought0012/RD26NACArabidopsisArabidopsis355Drought	Osmyb4	MYB	Rice	Arabidopsis	358	Cold and freezing tolerance	54
2/ABF4bZIPArabidopsisAr	AREB1/ABF2	bZIP	Arabidopsis	Arabidopsis	35S	Drought, salt, heat, and oxidative stress	22
bZIPArabidopsisArabidopsis35SDrought, salt, chilling, freezing, heat, and oxidative stressplus ABA)VP1ArabidopsisArabidopsis35SFreezing-1Zn fingerSoybeanArabidopsis35SLow temperature stress-1Zn fingerArabidopsisArabidopsis35SDrought2019/ANACNACArabidopsisArabidopsisArabidopsisArabidopsisArabidopsis2072/RD26NACArabidopsisArabidopsisArabidopsisArabidopsisArabidopsisBrought	AREB2/ABF4	bZIP	Arabidopsis	Arabidopsis	355	Drought, salt, chilling, freezing, heat, and oxidative stress	18, 22
(plus ABA)VP1ArabidopsisArabidopsis35SFreezing-1Zn fingerSoybeanArabidopsis35SLow temperature stress-1Zn fingerArabidopsisArabidopsis35SDrought2019/ANACNACArabidopsisArabidopsisArabidopsisArabidopsis2072/RD26NACArabidopsisArabidopsisArabidopsisArabidopsis	ABF3	bZIP	Arabidopsis	Arabidopsis	355	Drought, salt, chilling, freezing, heat, and oxidative stress	18, 22
(plus ABA)VPIArabidopsis35SFreezingF-1Zn fingerSoybeanArabidopsis35SLow temperature stressZn fingerArabidopsisArabidopsis35SDroughtCO19/ANACNACArabidopsisArabidopsis35SDroughtCO72/RD26NACArabidopsisArabidopsis35SDrought	ABIS	bZIP	Arabidopsis	Arabidopsis	358	Water stress	27
F-I Zn finger Soybean Arabidopsis 35S Low temperature stress Tobacco 35S Low temperature stress Tobacco 35S Low temperature stress Arabidopsis 35S Drought CO19/ANAC NAC Arabidopsis 35S Drought Arabidopsis 35S Drought CO72/RD26 NAC Arabidopsis 35S Drought	ABI3 (plus ABA)	VP1	Arabidopsis	Arabidopsis	35S	Freezing	51
Tobacco 35S Low temperature stress Zn finger Arabidopsis 35S Drought CO19/ANAC NAC Arabidopsis 35S Drought CO55/AtNAC3 NAC Arabidopsis 35S Drought CO72/RD26 NAC Arabidopsis 35S Drought	SCOF-1	Zn finger	Soybean	Arabidopsis	355	Low temperature stress	21
CO19/ANAC NAC Arabidopsis Arabidopsis 35S Drought CO55/AtNAC3 NAC Arabidopsis Arabidopsis 35S Drought CO72/RD26 NAC Arabidopsis Arabidopsis 35S Drought				Tobacco	355	Low temperature stress	21
NAC Arabidopsis Arabidopsis 35S Drought 3 NAC Arabidopsis Arabidopsis 35S Drought NAC Arabidopsis Arabidopsis 35S Drought	STZ	Zn finger	Arabidopsis	Arabidopsis	35S	Drought	41
C3 NAC Arabidopsis Arabidopsis 35S Drought NAC Arabidopsis Arabidopsis 35S Drought	ANAC019/ANAC	NAC	Arabidopsis	Arabidopsis	355	Drought	52
NAC Arabidopsis 35S Drought	ANAC055/AtNAC3	NAC	Arabidopsis	Arabidopsis	355	Drought	52
	ANAC072/RD26	NAC	Arabidopsis	Arabidopsis	355	Drought	52

* Superpromoter consists of three copies of the octopine synthese upstream-activating sequence in front of the manopine synthese promoter.

Application of regulon biotechnology to improve stress tolerance in crop plants

The orthologous genes of *DREB1/CBF* have been found in many crop plants such as canola, broccoli, tomato, alfalfa, wheat, barley, corn, and rice⁵⁹. These indicate that the DREB1/CBF regulon system is ubiquitous in the plant kingdom, and the "DREB technology" with controlling the expression of the DREB1/CBF regulon system is expected to improve the tolerance against stresses in crop plants. So far the *DREB1/CBF* genes of *Arabidopsis* have been successfully used to engineer abiotic stress tolerance in a number of different species (Table 1). For example, constitutive overexpression of the *Arabidopsis DREB1/CBF* genes in canola results in increased freezing tolerance¹⁶ and drought tolerance⁵⁹.

We have isolated rice orthologs for DREB1/CBF and DREB2, four OsDREB1s and one OsDREB2, in the rice genome sequence and they function in stress-inducible gene expression. Overexpression of OsDREB1A in *Arabidopsis* revealed that this gene has a similar function to that of its *Arabidopsis* homolog in stress-responsive gene expression and stress tolerance. This indicates that similar transcription factors function in dicotyledons and monocotyledons. A novel DREB1/CBF transcription factor ZmDREB1A was also identified in *Zea mays*⁴⁰. The ZmDREB1A was involved in cold-responsive gene expression and overexpression of the *ZmDREB1A* gene in *Arabidopsis* which resulted in increased drought and freezing tolerance.

However, constitutive overexpression of the DREB1/CBF plants in showed dwarf genes phenotype^{11,26}. To overcome these problems, stressinducible promoters that have low background expression under normal growth condition have been used in conjunction with the DREB1/CBF genes to achieve increased stress tolerance without the retardation^{19,25}. Constitutive overexpression of Arabidopsis DREB1A/CBF3 improved drought- and low-temperature stress tolerance in tobacco²⁰. The stress-inducible RD29A promoter minimized the negative effects on the plant growth in tobacco. Furthermore, we detected overexpression of stress-inducible target genes of DREB1A/ CBF3 in tobacco. The Arabidopsis DREB1A/CBF3 gene was placed under control of the RD29A promoter and transferred via biolistic transformation into bread wheat³⁹. Plants expressing the DREB1A/CBF3 gene demonstrated substantial resistance to water stress in comparison through checks under experimental greenhouse conditions, manifested by a 10-day delay in wilting when water was withheld. These results indicate that a combination of the RD29A promoter and DREB1A is useful for improvement of various kinds of transgenic plants that are tolerant to environmental stress.

Now we collaborate with many research groups to improve stress tolerant crop plants utilizing regulon biotechnology (Fig. 2). We hope the results of these collaborative studies will contribute to the sustainable food production in developing countries and help to prevent the global-scale environmental damage.

References

- Abe, H. et al. (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. *Plant Cell*, 9, 1859–1868.
- 2. Abe, H. et al. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. *Plant Cell*, **15**, 63–78.
- Boter, M. et al. (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev., 18, 1577-1591.
- 4. Bray, E. A. (1997) Plant responses to water deficit. Trends Plant Sci., 2, 48-54.
- Chen, T. H. & Murata, N. (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. *Curr. Opin. Plant Biol.*, 5, 250-257.
- Chinnusamy, V. et al. (2003) ICE1: a regulator of coldinduced transcriptome and freezing tolerance in *Arabi*dopsis. Genes Dev., 17, 1043-1054.
- Choi, H. -I. et al. (2000) ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem., 275, 1723–1730.
- Dubouzet, J. G. et al. (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high salt- and cold- responsive gene expression. Plant J., 33, 751-763.
- Fowler, S. & Thomashow, M. F. (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. *Plant Cell*, 14, 1675-1690.
- Gilmour, S. J. et al. (1998) Low temperature regulation of *Arabidopsis* CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. *Plant J.*, 16, 433-442.
- 11. Gilmour, S. J. et al. (2000) Overexpression of the Arabidopsis *CBF3* transcriptional activator mimics multiple biochemical changes associated with cold acclimation. *Plant Physiol.*, **124**, 1854–1865.
- Haake, V. et al. (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. *Plant Physiol.*, 130, 639–648.
- 13. Hsieh, T. H. et al. (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. *Plant Physiol.*, 130, 618–626.
- 14. Hsieh, T. H. et al. (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant

- Physiol., 129, 1086-1094.
- Ingram, J. & Bartels, D. (1996) The molecular basis of dehydration tolerance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 47, 377-403.
- Jaglo, K. R. et al. (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in *Brassica napus* and other plant species. *Plant Physiol.*, 127, 910-917.
- 17. Jaglo-Ottosen, K. R. et al. (1998) *Arabidopsis CBF1* overexpression induces *COR* genes and enhances freezing tolerance. *Science*, **280**, 104–106.
- Kang, J. Y. et al. (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. *Plant Cell*, 14, 343-357.
- Kasuga, M. et al. (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stressinducible transcription factor. *Nat. Biotechnol.*, 17, 287– 291
- Kasuga, M. et al. (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol., 45, 346—350.
- Kim, J. C. et al. (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. *Plant J.*, 25, 247-259.
- Kim, S. et al. (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. *Plant J.*, 40, 75–87.
- Kizis, D. & Pages, M. (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in *rab17* regulation through the drought-responsive element in an ABAdependent pathway. *Plant J.*, 30, 679-689.
- Knight, H. et al. (2004) Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. *Plant Physiol.*, 135, 1710–1717.
- Lee, J. T. et al. (2003) Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. *Plant Cell Environ.*, 26, 1181-1190.
- Liu, Q. et al. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. *Plant Cell*, 10, 1391– 1406.
- Lopez-Molina, L., Mongrand, S. & Chua, N. -H. (2001)
 A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in *Arabidopsis*. *Proc. Natl. Acad. Sci. USA*, 98, 4782-4787.
- Lorenzo, O. et al. (2004) JASMONATE-INSENSITIVE1
 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense
 responses in Arabidopsis. Plant Cell, 16, 1938–1950.
- Magome, H. et al. (2004) dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J., 37, 720-729.

- Maruyama, K. et al. (2004) Identification of cold-inducible downstream genes of the *Arabidopsis* DREB1A/CBF3 transcriptional factor using two microarray systems. *Plant J.*, 38, 982-993.
- 31. Nakashima, K. et al. (1997) A nuclear gene, *erd1*, encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in *Arabidopsis thaliana*. *Plant J.*, 12, 851–861.
- Nakashima, K. et al. (1998) A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. *Plant Physiol.*, 118, 1233-1241.
- Nakashima, K. & Yamaguchi-Shinozaki, K. (2002) Use of β-glucuronidase (GUS) to show dehydration and high-salt gene expression. *In* Molecular methods of plant analysis, Vol. 22, eds. Jackson, J. F. & Linskens, H. F., Springer-Verlag Berlin, Germany, 37-61.
- Narusaka, Y. et al. (2003) Interaction between two cisacting elements, ABRE and DRE, in ABA-dependent expression of *Arabidopsis rd29A* gene in response to dehydration and high-salinity stresses. *Plant J.*, 34, 137–148.
- Novillo, F. et al. (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA, 101, 3985-3990.
- Oono, Y. et al. (2003) Monitoring expression profiles of *Arabidopsis* gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. *Plant J.*, 34, 868–887.
- Owens, C. L. et al. (2002) CBF1 orthologs in sour cherry and strawberry and the heterologous expression of CBF1 in strawberry. J. Am. Soc. Hortic. Sci., 127, 489

 –494.
- 38. Park, J. M. et al. (2001) Overexpression of the tobacco *Tsi1* gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. *Plant Cell*, 13, 1035–1046.
- Pellegrineschi, A. et al. (2004) Stress-induced expression in wheat of the *Arabidopsis thaliana DREB1A* gene delays water stress symptoms under greenhouse conditions. *Genome*, 47, 493-500.
- Qin, F. et al. (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in coldresponsive gene expression in *Zea mays L. Plant Cell Physiol.*, 45, 1042-1052.
- 41. Sakamoto, H. et al. (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. *Plant Physiol.*, **136**, 2734–2746.
- Sakuma, Y. et al. (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Com., 290, 998— 1000
- Satoh, R. et al. (2002) ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the *ProDH* gene encoding proline dehydrogenase in Arabidopsis. *Plant Physiol.*, 130, 709-719.
- 44. Satoh, R. et al. (2004) A novel subgroup of bZIP proteins

278 1 DO 30/4) 2005

- functions as transcriptional activators in hypoosmolarityresponsive expression of the *ProDH* gene in *Arabidop*sis. *Plant Cell Physiol.*, **45**, 309–317.
- Seki, M. et al. (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. *Plant* Cell, 13, 61-72.
- Seki, M. et al. (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and highsalinity stresses using a full-length cDNA microarray. Plant J., 31, 279–292.
- 47. Shinozaki, K. & Yamaguchi-Shinozaki, K. (1997) Gene expression and signal transduction in water-stress response. *Plant Physiol.*, 115, 327–334.
- Shinozaki, K., Yamaguchi-Shinozaki, K. & Seki, M. (2003) Regulatory network of gene expression in the drought and cold stress responses. *Curr. Opin. Plant Biol.*, 6, 410-417.
- Simpson, S. D. et al. (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J., 33, 259-270.
- Stockinger, E. J., Gilmour, S. J. & Thomashow, M. F. (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA, 94, 1035–1040.
- 51. Tamminen, I. et al. (2001) Ectopic expression of *ABI3* gene enhances freezing tolerance in response to abscisic acid and low temperature in *Arabidopsis thaliana*. *Plant J.*, 25, 1–8.
- 52. Tran, L.-S. P. et al. (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription

- factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 16, 2481-2498.
- Uno, Y. et al. (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and highsalinity conditions. Proc. Natl. Acad. Sci. USA, 97, 11632-11637.
- Vannini, C. et al. (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J., 37, 115-127.
- Villalobos, M. A., Bartels, D. & Iturriaga, G. (2004) Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the *CpMYB10* transcription factor gene. *Plant Physiol.*, 135, 309–324.
- Yamaguchi-Shinozaki, K. & Shinozaki, K. (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 6, 251-264.
- 57. Zarka, D. G. et al. (2003) Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol., 133, 910-918.
- Zhang, H. et al. (2004) The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. *Planta*, 220, 262–270.
- Zhang, J. Z. et al. (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. *Plant Physiol.*, 135, 615-621.
- 60. Zhu, J. K. (2002) Salt and drought stress signal transduction in plants. *Annu. Rev. Plant Biol.*, **53**, 247–273.

Water Resources: Agriculture, the Environment, and Society

An assessment of the status of water resources

David Pimentel, James Houser, Erika Preiss, Omar White, Hope Fang, Leslie Mesnick, Troy Barsky, Stephanie Tariche, Jerrod Schreck, and Sharon Alpert

ater is a renewable resource, but its availability is variable and limited. Nearly every country in the world experiences water shortages during certain times of the year (Gleick 1993a), and more than 80 countries now suffer from serious water shortages (Falkenmark and Lindh 1993).

Factors such as rainfall, temperature, evaporation, and runoff determine water availability. Clean water resources per capita are declining rapidly as the needs of the growing population increase (Pimentel et al. 1994). Population growth not only reduces water availability per person but stresses the entire environmental system. As the world population increased from 3.8 billion to 5.4 billion during the last two decades, water use worldwide increased threefold (Postel 1992). In addition, factors such as pollution, erosion, runoff, and salinization associated with irrigation, plus the overall inefficient use of water, contribute to the decline in water resources (Pimentel et al. 1994).

Major difficulties exist in allocating the world's scarce freshwater resources. These problems exist between and within countries, between New water supplies likely
will result from
conservation, recycling,
reuse, and improved
water use efficiency
rather than from large
development projects

industries, and between individual communities. Consider that agriculture alone consumes 87% of the fresh water withdrawn in the world (Postel 1992). Water shortages can be expected to severely reduce biodiversity in both aquatic and terrestrial ecosystems (Postel et al. 1996).

In this assessment of the status of water resources, we analyze consumption of water by individuals, agriculture, and energy production. We also address the relationship of water availability to biodiversity. Finally, considering projected population growth, climate change, and water use patterns, we suggest strategies for improving water use to meet the increasing and conflicting needs of agriculture, society, and the environment in future decades.

Water resources

Water resources depend on the hydrologic cycle, on climate change, and to some degree on fossil water in the ground. Hydrologic cycle. The earth's atmosphere contains approximately 1.3 x 1013 m3 of water and is the source of all of the rain that falls on Earth. Each year, approximately 151,000 quads (1 quad = 1015 BTU) of solar energy distills and moves 5 × 10¹⁴ m³ of water from the earth's surface into the atmosphere-86% from oceans and 14% from land (Postel 1985). This is approximately 400 times the total amount of fossil energy (320 quads) burned each year in the world. Although only 14% of the evaporation occurs from land, approximately 24% (1.2 \times 10¹⁴ m³ per year) of the world's precipitation falls onto land (Shiklomanov 1993). The sun's energy therefore transfers a significant portion of the water from the oceans to the continents each year.

The 1.3×10^{13} m³ of water in the atmosphere is a small percentage (0.001%) of the 1.4×10^{18} m³ water estimated to be in the oceans (WRI 1989). The total amount of fresh water held on the surface of the earth, in streams and lakes is approximately 1 × 1014 m3. This represents approximately 0.3% of the total fresh water on Earth, including water in ice caps, glaciers, ground water, and as soil moisture. Approximately 23% of the total fresh water on Earth is stored as ground water, which is 82 times more abundant than the amount of fresh water in streams and lakes (Shiklomanov 1993).

Groundwater resources. Ground water has accumulated over many

David Pimentel is a professor and James Houser, Erika Preiss, Omar White, Hope Fang, Leslie Mesnick, Troy Barsky, Stephanie Tariche, Jerrod Schreck, and Sharon Alpert are graduate students in the College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853-0901. © 1997 American Institute of Biological Sciences.

 millions of years in aguifers located below the surface of the earth. An estimated 8.2 × 1015 m3 of water are now present in the world's aquifers (WRI 1989). Most aquifers are replenished slowly, with an average recharge rate that ranges from 0.1% to 0.3% per year (Covich 1993). Assuming an average 0.2% recharge rate, only 16.4×10^{12} m³ of water per year is available for sustainable use. The amount of fresh water stored in the top 0.2 m of world soil is estimated to be 16.5×10^{12} m³ (Levine et al. 1979). On average, water accounts for nearly one-quarter of the weight of the upper-soil level.

In the United States, ground water provides approximately 46% of the water used by all households (Solley et al. 1993), although approximately 97% of the water used by rural households is from groundwater sources (NGWPF 1987). Irrigation for agriculture also relies heavily on ground water. For example, 66% of irrigation water in Texas and 38% in California is pumped from ground water (Solley et al. 1993).

Population growth and the associated increase in irrigated agriculture have led to the mining of groundwater resources—that is, the rate of water withdrawal is considerably faster than the recharge rate, causing water tables in the United States to fall approximately 3-120 cm/yr in some irrigated regions (Sloggett and Dickason 1986). The Ogallala aquifer, which underlies parts of Nebraska, Kansas, Colorado, Oklahoma, New Mexico, and Texas is nearly half depleted, and recharge rates are only a small fraction of the withdrawal rates (Soule and Piper 1992, Thomas 1987). In Beijing, China, water tables are falling at a rate of 1 to 2 m/yr (Postel 1992). The rapid depletion of ground water by irrigation poses serious threats to the sustainable use of groundwater supplies in rural and irrigated farming regions.

Water availability. Although water is a renewable resource, its availability is finite in terms of the amount available per unit time in various regions of the earth (Table 1). Overall water availability is affected by many factors, such as the amounts

Table 1. Regions of the world with water problems (based on the criterion that yearly water availability per capita is less than 1000 m³/yr) and their per capita water availability (Falkenmark and Lindh 1993).

Region	Water availability per capita (m³/yr)	
Egypt	40	
Malta	50	
West Bank	126	
Gaza Strip	133	
Yemen	220	
Jordan	255	
Israel	376	
Saudi Arabia	300	
Libva	300	
Hai-Luan River	4-0	
Basin, China	308	
Huai He River		
Basin, China	424	
Syria	440	
Tunisia	600	
Kenya	610	
•		

and patterns of rainfall, substrate qualities, temperature, evaporation rate, vegetation cover, and runoff. The average precipitation for most continents is approximately 700 mm/yr (7 million liters/ha). Australia and South America vary from this figure significantly, with 450 mm/yr and 1600 mm/yr, respectively (Shiklomanov 1993). Africa, however, is relatively arid despite having a similar average rainfall to other continents because its warm climate causes 80% of its water to evaporate before it is available for use (Budyko 1986).

Some areas simply receive insufficient rainfall (less than 500 mm/yr) for agriculture, which leads to serious water and food problems. Of the 14 Middle Eastern countries, nine are facing shortages of water (less than 1000 m³ per person per year; Postel 1992). Egypt, which receives practically no rainfall and also has a high rate of evaporation, depends almost totally (97%) on the lower Nile, which flows in from its upstream neighbors, including the Sudan and Ethiopia.

Some hydrologists define water scarcity based on the flow or runoff in rivers after evaporative losses (Falkenmark and Lindh 1993). In general, a nation is considered water scarce when the availability of water drops below 1000 m³ per person per year (2740 liters per person per

day; Table 1). Water stress occurs when water availability ranges from 1000 to 1700 m³ per person per year (Engelman and LeRoy 1993). The result is a lack of water for irrigation, industry, and protection of the environment. Twenty-six nations, including Egypt, Jordan, Israel, Syria, Iraq, Iran, and Saudi Arabia, are currently defined as water scarce (Engelman and LeRoy 1993, Postel 1992). At least 11 countries experience water stress, including Ethiopia, Kenya, Somalia, Algeria, and Libya.

Even in countries that possess abundant water resources, such as the United States, many existing sources of water are being stressed by withdrawals from groundwater wells and diversions from rivers and reservoirs to meet the needs of homes, cities, farms, and industries. Increasing requirements to leave water in streams and rivers to meet environmental, human, and recreational needs further complicate the problem. In the past, water management in the United States has focused on developing ways to exploit the country's supplies of fresh water. Many large dams were built during the early twentieth century to increase the supply of fresh water. The era of constructing large dams and conveyance systems to meet water demand in the United States is drawing to a close; the limited water supply and established infrastructure require that demand be managed effectively within the available supply (Figure 1). New water supplies likely will result from conservation, recycling, reuse, and improved water use efficiency rather than from large development projects, as in the past (Postel et al. 1996).

Climate and other human-induced environmental changes. Estimates of water resources and their availability are based on present world climate patterns. However, the continued loss of forests and other vegetation and the accumulation of carbon dioxide, methane gas, and nitrous oxides in the atmosphere may

¹W. Solley, 1995, personal communication. US Department of the Interior, US Geological Survey, Washington, DC.

Figure 1. Total reservoir storage capacity (in millions of acre-feet; 1 acre-foot = 1231 m³) in the United States from 1880 to 1990 (USGS 1995).

lead to global warming, which would change precipitation and temperature patterns (Downing and Parry 1994). Meeting agricultural and other societal needs for fresh water will become even more difficult in some regions; however, in other regions benefits might accrue because of warmer temperatures and higher rainfall for agriculture.

For example, California, which is already experiencing water shortages, is likely to have a 20%-40% decrease in mountain snowpack and water flow through its river basins (Vaux 1991). And the snowpack would most likely melt earlier in the year, creating early summer shortages and more severe water short-On the other hand, areas like Canada may benefit from warming, which would create longer growing seasons: however, these areas may be faced with water shortages (Parry and Carter 1989).

3°-4°C, rainfall in the US corn belt region is projected to decline by approximately 10% (Downing and Parry 1994). Low rainfall and increased evaporation rates would combine to limit corn production in the region (Rosenzweig and Parry 1994). The predicted global warming could increase world irrigation needs by 26% to maintain current production (Postel 1989). In addition to global warming, population growth and associated activities may influence water resources through other environmental changes, such as deforestation, desertification, soil erosion, and loss of biodiversity (Heywood 1995).

Water use

Water resources are withdrawn for use and consumption in many human activities. The term use implies that some of the withdrawn water is returned for reuse, for example, cooking water or wash water. In contrast, consumption means that the water is nonrecoverable and is not returned to the water resource.

Human use of water. The water content of all living organisms ranges from 60% to 95%. Humans need to consume 1 to 2 liters of water per day per person (Watson 1988). Americans use approximately 400 liters of water per person per day for drinking, cooking, washing, disposing of wastes, and other personal uses (USBC 1994). This use is much higher than the average world personal use of 90 liters per person per day (Brewster 1987). Worldwide, total use of fresh water averages approximately 1800 liters per person per day for all uses (WRI 1991).

Total US freshwater withdrawals are approximately 1280 billion liters per day, or approximately 5100 liters per person per day including water use in irrigation, with 77% coming from surface water and 23% withdrawn from ground water (Solley et al. 1993). In China, only ages late in the summer (Vaux 1991). approximately 1100 liters per person per day are withdrawn for all purposes, one-fourth of the use in the United States (Zhang 1990). Postel et al. (1996) report that humankind now uses 26% of total evapotranspiration and 54% of all If mean annual temperatures rise runoff in rivers, lakes, and other cover, high levels of soil organic accessible sources.

> Crop production. Agricultural production consumes more fresh water than any other human activity (Falkenmark 1989). US agriculture accounts for 87% of the fresh water consumed after being withdrawn (Figure 2). Plants render all water that passes through them nonrecoverable through evaporation and transpiration. In the United States, approximately 62% of the water used in agriculture comes from surface sources and 38% comes from groundwater sources (Solley et al. 1993). Approximately 68% of all ground water withdrawn in the

Figure 2. Annual human water use worldwide (data from Shiklomanov 1993). Water withdrawn refers to water pumped, and consumption refers to water that is used and is nonrecoverable (per year).

United States is used for agriculture (Solley et al. 1993).

Different crops and regions vary in their water requirements. Rainfall patterns, temperature, soil quality, and vegetative cover all influence soil moisture levels. For ideal growing conditions, soil moisture should not fall below 50% in the root zone (Blackshaw 1990), but for some crops, like rice, more than 50% is needed for full yields (Bhuiyan 1992). Good vegetative matter, active soil biota, and slow water runoff increase the percolation of rainfall into the soil for use by growing crops.

The transfer of water to the atmosphere from the terrestrial environment by transpiration through vegetation is estimated to range between 38% and 65% of precipitation depending on the terrestrial ecosystem.2 The processes of carbon dioxide fixation and temperature control require plants to transpire enormous amounts of water. For example, a squash plant transpires ten times its fresh weight in

²T. Dawson, 1995, personal communication. Cornell University, Ithaca, NY.

water per day, and many deciduous trees transpire two to six times their

fresh weight per day.

The water required to grow various food and forage crops ranges from 500 to 2000 liters of water per kg of yield produced (Table 2). For instance, 1 ha of US corn transpires approximately 4 million liters (4000 m³/ha) of water during its growing season, and an additional 2 million liters/ha evaporate concurrently from the soil (Donahue et al. 1990). Thus, during the growing season approximately 600 mm (6 million liters/ha) of rainfall is needed for corn production. Even with 800-1000 mm (8-10 million liters/ha) of annual rainfall in the corn belt region, corn usually suffers from lack of water at some point during the summer growing season (Troeh and Thompson 1993).

High-yielding rice requires much more water for production, from 10 to 18 million liters of water/ha. Up to 50% more rice per hectare is produced under flooded conditions than under sprinkler irrigation.

The biomass and total yields of soybeans (2.3×10³ kg/ha) and wheat (2.7 × 10³ kg/ha) produce less biomass and total yields than corn (7.6 × 10³ kg/ha) or rice (6.2×10³ kg/ha) on average (USDA 1993). Nevertheless, soybeans are highly consumptive of water, requiring approximately 4.6 million liters/ha for transpiration. Wheat, by contrast, requires only approximately 2.4 million liters/ha.

Sorghum and millet production require only 250-300 mm (2.5-3 million liters/ha) of annual rainfall (Gleick 1993a), and some cereal production can take place with annual rainfall levels as low as 200-250 mm (Rees et al. 1990). Under these relatively arid conditions, crop yields are low (1-2.5 × 10³ kg/ha), even with adequate amounts of fertilizer (USDA 1993).

US agricultural production is projected to expand because of increased food needs and the increase in population. The projected 30% increase in US crop and livestock production during the next two decades will significantly stress water resources in the central United States. Increasing crop yields carries a parallel increase in freshwater consumption in agriculture.

Table 2. Estimated liters of water required to produce 1 kg of food and forage crops.

Стор	Liters/kg	
Potatoes	500	
Wheat	900	
Alfalfa	900	
Sorghum	1110	
Corn	1400	
Rice	1912	
Soybeans	2000	
Broiler chicken	3500	
Beef	100,000	
	•	

Livestock production. Producing 1 kg of animal protein requires approximately 100 times more water than producing 1 kg of vegetable protein (Pimentel and Pimentel 1996). In the United States, livestock directly use only 1.3% of the total water used in agriculture, but including the water required for forage and grain production greatly increases the water requirements for livestock production. Producing 1 kg of beef requires approximately 100 kg of hay-forage and 4 kg of grain (Pimentel et al. 1980). Producing this much forage and grain requires approximately 100,000 liters of water to produce approximately 100 kg of plant biomass plus 5400 liters to produce 4 kg of grain (Falkenmark 1994). On rangeland, more than 200,000 liters of water are needed to produce 1 kg of beef (Thomas 1987). Forage, some cereals, and livestock can be produced with rainfalls of only 150 to 200 mm per year (1.5-2 million liters/ha; Rees et al. 1990, USDA 1993), but production is low under such arid conditions.

Animals vary in the amounts of water required for their production. In contrast to beef, 1 kg of broiler chickens can be produced with approximately 2.5 kg of grain requiring approximately 3500 liters of water.

Irrigation and energy use. Both water and energy resources are expended in the irrigation of arid land to make them productive. Approximately 16% of the world's cropland is irrigated (WRI 1992) and approximately 33% of the world's food is produced on this irrigated land (Postel 1992). Worldwide, the

amount of land under irrigation is slowly expanding, even though salinization, waterlogging, and siltation are decreasing productivity of some irrigated lands. Despite a small annual increase in irrigated areas, the per capita irrigated area has been declining since 1978 (Postel 1992). For example, per capita irrigated land in the United States has declined 8% between 1978 and 1988 (USDA 1993).

Irrigation requires a significant amount of energy for pumping and moving irrigation water. Annually, approximately 120×10^{12} kcal/yr, or approximately 10% of the total energy expended each year in US crop and livestock production, is used to pump water for irrigation. Partially irrigated wheat uses 4.2 times more energy than rainfed wheat, and in the US, irrigated alfalfa requires three times more energy than if it is rainfed (Singh and Mittal 1992). In Nebraska, irrigated corn production requires more than three times the energy of rainfed corn production (Pimentel 1980). Delivering the 7 million liters of irrigation water needed by a hectare of irrigated corn from surface water sources requires approximately 8 million kcal of fossil fuel (Pimentel 1980), This irrigation energy is 1.5 times the total of all other energy inputs required for corn production. If the water has to be pumped from a depth of 100 m, the energy cost rises to approximately 24,500 kcal, more than three times the energy cost of surface water (Gleick 1993a). In some areas, water must be pumped from 200 m, requiring a much greater fossil energy investment. Furthermore, the dollar cost of delivering 7 million liters of water per hectare from a depth of 30 m is approximately \$1000/ha (Hinz 1985). Few crops are sufficiently valuable to justify spending \$1000/ha for irrigation alone. In regions with falling groundwater tables, the high costs of pumping ground water eventually make crop production progressively less economical.

In total, approximately 10 million kcal are expended for machinery, fuel, fertilizers, pesticides, par-

³D. Haith, 1994, personal communication. Cornell University, Ithaca, NY.

tial irrigation, and other inputs to produce 1 ha of corn in the United States (Pimentel and Wen 1990). The large quantities of energy needed to pump irrigation water place significant demands on energy and water resource management. This factor can be expected to influence the economics of irrigated crops and selection of specific crops worth irrigating.

Water use in energy production. Producing energy for all types of fuel requires pumping large quantities of water. Based on the current per capita use of electricity (24,300 kWh; USBC 1994) in the United States, the amount of water consumed by a conventional coal-generating plant is 29 m³ per capita per year (Gleick: 1994a). If cooling towers are used, water consumption jumps to 63 m³ per capita per year. For an average hydroelectric plant, water consumption increases to 413 m³ per capita per year, largely due to evaporation from the reservoirs (Gleick 1994a). To produce a total of 1 million kWh requires 1190 m³, 2590 m³, and 16,930 m³ (Gleick 1994a), respectively, for a conventional plant, a plant with cooling towers, and a hydroelectric plant.

Electric power production requires large amounts of water to be pumped. For example, thermoelectric power generation withdraws approximately the same amount of US water as agriculture (496 million m³/day versus 534 million m³/day; Solley et al. 1993) but presents no significant consumption problems because 97% of the water that is withdrawn is returned directly to its source (Solley et al. 1993).

Currently, for example, with onshore oil extraction, between 0.2 m³ and 1.2 m³ of water must be withdrawn for the amount of oil (37,800 kWh, or 32.5 million kcal) that is consumed per capita per year (Table 3; USBC 1994). When the world's sources of oil and natural gas are depleted, other sources of fuel may have to be developed. Oil shale, coal gasification, or coal liquification will require pumping between 20 and 50 times more water to produce an equivalent amount of energy as surface mining (Table 3). For instance, oil produced from oil shale by mine retort requires 110-220 m³ of water

Table 3. Withdrawal of water for energy production and electricity generation (after Gleick 1994a).

Water used for energy oduction (m³/106 kWh)	Water used for electricity generation (m³/10° kWh)
72	NAb
29-36	NA
180	NA
NA	3200
7	NA
325	NA.
NA	2600
140-340	NA
120-250	NA
6-29	NA
433	NA
	2600
110-220	NA
NA	17,000
	72 29-36 180 NA 7 325 NA 140-340 120-250 6-29 433 NA 110-220

Nuclear and fossil fuel production.

^bNot applicable.

to produce 1 million kWh (Table 3). Producing the same amount of oil by enhanced oil recovery requires pumping 433 m³ water per million kWh produced.

Conflicts over water resources. The rapid rise in consumption of fresh water for food production and other uses has spurred conflicts over water resources. At least 20 nations obtain more than half of their water from rivers that cross national boundaries (Gleick 1993a), and 14 countries receive 70% or more of their surface water resources from rivers that are totally outside their borders. For example, Egypt obtains 97% of its fresh water from the River Nile, which originates in other countries, including the Sudan; for Botswana, the percentage of water obtained from rivers outside its borders is 94%; and for Syria it is 79% (Gleick 1993a). Approximately 47% of the surface water located in international drainage basins is shared by two or more countries (McCaffrey 1993) and this water supports approximately 40% of the world's population (Postel 1993). In addition, many underground aquifers are shared by several countries.

Historically, countries in the Middle East have had the most conflicts over water, largely because they have less water per capita than other world regions (Gleick 1994b, c) and because every major river in the region crosses international borders (Gleick 1993b). Furthermore, their populations are increasing rapidly, some having doubled in the last 20 to 25 years (PRB 1995). The combination of water scarcity and population growth ensures that conflicts, like Syria's diversion of the Jordan headwaters, which played a leading role in the June 1967 Arab and Israeli War (Gleick 1993a), will continue.

Many conflicts have erupted on the African continent over the use of the Nile River (Gleick 1994c). This river, the second longest in the world, is shared by the Sudan, Ethiopia, Egypt, Burundi, Kenya, Rwanda, Tanzania, Zaire, Eritrea, and Uganda. The Nile is so dammed and overused that for parts of the year little or no fresh water reaches the sea (Postel 1995). The Egyptians have been using the Nile for irrigation for 5500 years, but until recently other nations in the upper drainage basin have made little use of Nile water (McCaffrey 1993). However, all the nations through which the Nile passes are becoming increasingly dependent on it as their populations increase and their food situations worsen.

Distribution of river water has also created conflicts between several states of the United States, Mexico, and Canada (Gleick 1994c). For instance, the Colorado River is shared by several states, including California, Nevada, Colorado, New Mexico, Utah, and Arizona. Because these states depend heavily on the river water, the Colorado River is a trickle by the time it reaches the Gulf of California and after Mexico takes its share of the water (Postel 1995).

Dam construction on the Ganges River has also led to water rights disputes. The Ganges River arises in the Himalayas and flows through India and eventually into Bangladesh. Between 1961 and 1975, India constructed a dam to divert water to a tributary that carries water to Calcutta (McCaffrey 1993). This dam has reduced the flow of water to Bangladesh, where it is needed for irrigation. In addition, the natural flow of the Ganges is essential to prevent siltation and flooding in Bangladesh and to prevent salt water intrusion from the Bay of Bengal. India's continued diversion of more and more water from the Ganges has recently led to riots and protests in Bangladesh (Khurshida 1989).

Limits to water use

Utilization of fresh water is limited by pollution, economic costs, and land management practices.

Costs of water treatment. Surface and groundwater pollution not only pose a threat to public and environmental health, but the high cost of water treatments further limits the availability of water for use. Depending on the water quality and the purification treatment used, potable water costs from 30¢ to 33¢ per 1000 liters (Table 4; Gleick 1993a).4 If the water has to be run through charcoal filters for further purification, it costs an additional 13¢ per 1000 liters. If salts also have to be removed from the water, costs rise by an additional 21¢ per 1000 liters (EPA 1980). In the United States, the cost of treating sewage for release

Table 4. Cost of delivering 1000 liters of clean, safe water in the United States.

Treatment	Cost	Source
Chlorination	0.3-17¢	Troyan and Hanson 1989
Sewage treatment	8–10¢	EPA 1980, Gleick 1993a
Activated carbon	13¢	Gammie and Giesbreck 1986
Removing salts	21¢	EPA 1980
Potable water (processing)	30–33¢	Unpublished data*
Desalinization (ocean water)	Approximately \$2.00	Gruen 1994, Ingram 1991, Kally 1994

⁴J. Rogers, 1980, personal communication. Village of Cayuga Heights, NY.

into streams and lakes ranges from 8¢ to 10¢ per 1000 liters (EPA 1980, Gleick 1993a). If salt water from oceans has to be desalinated, the costs are enormous, ranging up to \$2 per 1000 liters (Table 4). At this rate, for an average per capita use of water of 5100 liters/day (the total US freshwater withdrawal rate), it would cost approximately \$10 per person per day to use desalinated water. In some cases, sewage effluent might be used for crop and forage production, and this would reduce overall water costs (Tanji and Enos 1994).

Cleaning water and reducing the BOD (biological oxygen demand) is energy costly; removing 1 kg of BOD requires 1 kWh (Trobish 1992). Most of the cost of cleaning water arises from the energy and equipment costs involved in pumping and delivering water. Delivering 1 m³ (1000 liters or 1 metric ton) of water in the United States requires the expenditure of approximately 1140 kcal. Excluding the energy for pumping sewage, the amount of energy required to process 1 m³ in a tertiary waste water treatment plant requires approximately 70 kcal of energy.5 The cost of water treatment and the energy used to purify water will most likely increase in the future as population growth increases both water pollution and water demand.

Economic costs and subsidies for water. Because the high cost of treating and delivering water can limit its availability and use, many governments throughout the world subsidize water for agriculture. For example, farmers in California pay as little as $0.5 \, \phi$ per m³, whereas the public pays approximately $2.5 \, \phi$ per

m³ (Bolling 1990). If US farmers paid the full cost of water, they would probably manage irrigation water more effectively (LaVeen and King 1985).

The 12% of US cropland that is irrigated produces 27% of the dollar value of all crops (USDA 1993). However, this 27% dollar value does not take into account the costs to the government of supplying and subsidizing a large portion of US irrigation water. The construction cost subsidy for western irrigation is approximately \$4870/ha, which represents an annual construction cost subsidy of approximately \$440 -ha-1 · yr-1 over the life of the project (US Congress 1989). An annual \$540/ha is added to the construction cost for water and power for moving water (LaVeen and King 1985). Thus, the total subsidy for irrigation per hectare in the western region of the United States is approximately \$980 · harl · yr-1; based on these data, this irrigation costs approximately 10¢/m³. The total annual government subsidy is estimated to be approximately \$4.4 billion for the 4.5 million ha irrigated in the West.

Other nations have similar patterns of subsidies. For example, farmers in Mexico pay only 11% of their water's full cost, and farmers in Indonesia and Pakistan pay only 13% (Postel 1992). Such undercharging for irrigation water in the United States and other nations encourages the planting of relatively low-value crops and the inefficient use of water. In general, vegetable and fruit crops return more per dollar invested in irrigation water than field crops. For example, in Israel 1 m³ of water from irrigation produces 79¢ worth of groundnuts and 57¢ worth of tomatoes but only 13¢ worth of corn grain and 12¢ worth of wheat (Fishelson 1994).

⁴J. Rogers, 1980, personal communication. Village of Cayuga Heights, NY.

SB. Cross, 1994, personal communication. Village of Cayuga Heights, NY.

As fossil energy prices increase, irrigation costs also increase. For example, from 1973 to 1983 US irrigation costs increased from \$551 million to \$2.5 billion per year (Sloggett 1985). As a result, many US farmers who had been irrigating low-value crops such as alfalfa switched to high-value crops such as cotton, lettuce, and strawberries (Lacewell and Collins 1986).

Improving agricultural water use. Coupled with inefficient crop choice, some irrigation practices waste large amounts of water. Most farmers use flooding or channeling methods to irrigate their crops; thus, irrigation efficiency, or the amount of water reaching the crop, worldwide is estimated to be less than 40%. Large amounts of water are lost through pumping and transporting (Postel 1992). In the United States, less than 50% of irrigation water actually reaches the crop (van der Leeden et al. 1990).

Although improving irrigation efficiency is difficult, conservation technologies can improve irrigation and reduce the irrigation water needed to produce the same crop yield. For example, some farmers are turning to "surge flow" irrigation to replace traditional flooding and channeling irrigation (Verplaneke et al. 1992). This practice involves an automated gated-pipe irrigation system that uses a microprocessor control instead of releasing water in a continuous, slow stream in field channels. Using this method, farmers in Texas have been able to reduce water pumping 38% to 56%, compared with continuous flood irrigation of the same area (Sweeten and Jordan 1987).

Another strategy is irrigating at night to reduce evaporation. This technique improves irrigation efficiency by two to three times (Dubenok and Nesvar 1992). The use of low-pressure sprinklers also may improve water efficiency by 60% to 70%, compared with high-pressure sprinklers (Verplaneke et al. 1992). Avoiding overhead watering can reduce evaporation and water needs by 45% (O'Keefe 1992).

Low-Energy Precision Application (LEPA) is another technique for conserving water. LEPA sprinklers deliver water to the crop by drop tubes

that extend down to the crop from a sprinkler arm (Sweeten and Jordan 1987). Water application efficiency of the LEPA system ranges from 88% to 99% (Sweeten and Jordan 1987). Combined ridge-tillage (planting crops on top of permanent ridges) and LEPA can significantly increase irrigation efficiency (Lal 1994).

The "drip" or "microirrigation" technique developed in the 1960s has spread rapidly worldwide, especially to Israel, Australia, New Zealand, and some regions in the United States. Drip irrigation delivers water to each individual plant by plastic tubes. This method uses from 30% to 50% less water than surface irrigation (Tuijl 1993). Although drip systems achieve up to 95% efficiency, they are expensive and energy intensive, and relatively clean water is needed to prevent the clogging of the fine delivery tubes (Snyder 1989). A comparison of drip irrigation with subirrigation and seepage for tomato production in Florida indicated that drip irrigation reduced water needs by 50% but added \$328/ha to the production costs (Pitts and Clark 1991).

Planting trees to serve as shelter belts reduces evaporation and transpiration from the crop ecosystem from 13% to 20% during the growing season (Mari et al. 1985). The resulting increase in crop yields ranges from 10% to 74% for corn (Gregersen et al. 1989). Furthermore, this practice can reduce wind erosion by as much as 50% (Troch et al. 1991). Also, intercropping crops with trees, if they are "hydraulic lifters" (e.g., Acer and Eucalyptus), may increase water availability for the crop as well as productivity.

Runoff and erosion. Because crops require large quantities of water for their growth, it is vital that as much water as possible percolate into the soil instead of running off. Soil erosion often limits the amount of water available for crop use (Lal and Stewart 1990). When raindrops hit exposed soil they have an explosive effect, launching soil particles into the air. If the water does not percolate into the soil, it runs off and carries soil with it. More than half of

the soil contained in the splashes is carried downhill on land with a slope greater than 1% (Foster et al. 1985). In most fields, raindrop splash and sheet erosion are the dominant forms of erosion (Foster et al. 1985). Eroded soils absorb from 10 to 300 mm ·ha⁻¹·yr⁻¹·less water, or from 7% to 44% of total rainfall (Pimentel et al. 1995). As expected, loss of rainwater severely reduces crop productivity. A runoff of even 20% to 30% of total rainfall can result in significant water shortages for crops and ultimately low crop yields (Elwell 1985).

Because soil erosion decreases both soil depth and its organic matter content, the ability of the remaining soil to retain water is significantly decreased (Fullen 1992). Thus, soil erosion is a self-degrading process—as erosion removes topsoil and organic matter, runoff intensifies and erosion worsens, only to be repeated with more intensity during subsequent rains. For example, Lal (1976) reported that in the tropics, erosion may reduce water infiltration by up to 93% and dramatically increase water runoff and loss. Water runoff and the transport of sediments, nutrients, and pesticides from agriculture to surface and ground waters are the leading cause of nonpoint source pollution in the United States (EPA 1994).

Water runoff and soil loss can be reduced by using vegetative cover, such as intercropping and ground cover (Lal 1993). For example, when silage corn is interplanted with red clover, water runoff can be reduced from 45% to 87%, and soil loss can be reduced 46% to 78%, compared with silage corn grown without clover (Wall et al. 1991). Reducing water runoff in this way is an important step in increasing water availability to crops, conserving water, decreasing nonpoint pollution, and ultimately decreasing water shortages (NGS 1995).

Salinization and waterlogging. Dissolved salts in surface and ground water used for irrigation can increase soil salinity. Irrigation water that is applied to crops returns to the atmosphere via plant transpiration and evaporation, leaving the dissolved salts behind in the soil. Soil type, drainage, and water table depth

⁶See footnote 2.

all influence salt accumulation (Dinar and Zilberman 1991). Worldwide, approximately half of all irrigation systems are adversely affected by salinization (Szabolcs 1989). Agricultural land lost by salinization is estimated to be approximately 2 million ha/yr (Umali 1993).

Subsurface runoff and leaching from saline soil can increase salt levels in river and stream water. Some ground water and aquifers also accumulate salts after extensive irrigation (Stolte et al. 1992). As the Colorado River flows through the Grand River Valley in Colorado and water is withdrawn for irrigation, some is later returned to the river along with an estimated 18×103 kg/ ha of salts leached from the irrigated land (EPA 1976). At times during the summer, the Red River in Texas and Oklahoma is more saline than seawater, because of leached salts (USWRC 1979). Disposal of saline water also has a detrimental impact on agriculture and aquatic species (Kelman and Qualset 1991). The addition of salts to water not only severely limits water use, but the process of desalinization is expensive.

The severity of water use and salinization is illustrated by the Aral Sea in Kazakhstan and Uzbekistan. The surface area of the Aral Sea has been reduced by nearly 50% and its volume by 75% during the last 33 years (Postel 1995), while its salinity has more than tripled (WRI 1994). The reduction and salinization in the Aral Sea was brought about by diversion of river water for irrigation primarily for cotton production (WRI 1994).

Waterlogging is another problem associated with irrigation. Over time, seepage from canals and irrigation of fields results in the rise of water tables and waterlogging. In the absence of adequate drainage, this water rises into the root zone and damages the growing crops. These waterlogged fields are sometimes referred to as "wet deserts" because they are rendered unproductive (Postel 1992). To prevent salinization and waterlogging, sufficient water and adequate drainage must be available to leach out salts and drain the excess water from the soil.

Conclusions

The availability and quality of fresh water has become a major international problem. Limited water resources and inefficient water use, combined with the rapidly growing world population, will further stress the world's finite freshwater supply. Competition for water within regions and countries continues to grow.

Water resources, along with fertile soil, energy, and biodiversity, are vital to maintaining the world's food supply. Agricultural production currently accounts for approximately 87% of the world's freshwater consumption. In the future, the need for and the use of water in agriculture will increase as the production of food and fiber is augmented to meet the needs of the expanding world population. In many parts of the world, per capita freshwater resources available for food production and for other human needs are declining and are, becoming scarce in the arid regions. In the future, in arid regions where groundwater resources are the primary source of water, irrigation probably will have to be curtailed and the types of crops and livestock altered to meet the changing water situation.

To encourage conservation and to increase overall efficiency, subsidies for irrigation water should be phased out. Irrigation technologies that make efficient use of water for crop production must be encouraged. In general, more efficient use of water in agricultural production could be achieved by providing farmers with incentives to conserve water and soil resources. Controlling erosion also helps conserve water by reducing rapid water runoff. Protecting forests and other biological resources facilitates effective use of water resources and helps maintain the hydrologic cycle.

Most human activities adversely affect the quality of freshwater resources. Chemical and pathogen pollution of water supplies not only diminish the quality of water but cause human health problems. Agricultural and industrial chemicals and the lack of community sanitary facilities are the primary causes of

water pollution. According to the World Health Organization (1992), approximately 90% of all illnesses in developing countries result from waterborne parasites and pathogens.

As fossil energy supplies decline, large amounts of water will be needed to make use of some less common forms of fossil energy, such as shale oil. New renewable energy technologies that require less water than existing fossil energy technologies need

to be developed.

Water limits exist in many regions of the world even without the effects of the projected global warming. By causing changes in rainfall patterns and more rapid evaporation, global warming is likely to intensify the water crisis in many regions of the earth. Increased water stress, with or without global warming, is projected to have a negative impact on agricultural and forest production and other plant and animal species throughout the world ecosystem.

To avoid further water problems and lessen projected harsh outcomes for the future, humankind must conserve water and energy, and must protect land and biological resources—all of which are vital for a sustainable economy and environment. Humans can manage water resources more efficiently in agriculture and in other activities. Conservation of water and pollution control by individuals as well as by society is essential if the integrity of the water supply is to be protected.

Acknowledgments

We thank the following people for reading an earlier draft of this article and for their many helpful suggestions: S. I. Bhuiyan, International Rice Research Institute; T. Dawson, Cornell University; Wen Dazhong, Chinese Academy of Sciences; J. D. Hamilton, George Washington University; M. Giampietro, National Nutrition Institute, Rome; P. Gleick, Pacific Institute, Oakland, California; J. Hardy, Cornell University; P. Harriot, Cornell University; R. D. Lacewell, Texas A&M University; J. Lancaster, Science Policy Institute, Boston, Massachusetts; J. Letey, University of California, Riverside; G. Levine, Cornell University; M. Pimentel, Cornell University; Z.

Plaut, Ministry of Agriculture, Israel; S. Postel, Global Water Project, Amherst, Massachusetts; C. Scott, Cornell University; C. H. Southwick, University of Colorado; K. K. Tanji, University of California, Davis; F. W. M. von Mallinckrodt, United Nations Development Programme; and S. Willardson, Utah State University.

References cited

Bhuiyan SI. 1992. Water management in relation to crop production: case study on rice. Outlook on Agriculture 21: 293-299.

Blackshaw RE. 1990. Influence of soil temperature, soil moisture, and seed burial -depth on the emergence of round-leaved mallow (Malva pusilla). Weed Science 38:

Bolling D. 1990. Should water subsidies for California farmers be eliminated? Friends of the River July-August: 233.

Budyko ML. 1986. The evolution of the earth's biosphere. Dordrecht (the Netherlands): Reidel.

Brewster JA. 1987. World resources 1987: a report by the International Institute for Environment and Development and The World Resources Institute. New York: Basic Books.

Covich AP. 1993. Water and ecosystems. Pages 40-55 in Gleick PH, ed. Water in crisis. New York: Oxford University Press.

Dinar A, Zilberman D. 1991. The economics and management of water and drainage in agriculture. Boston (MA): Kluwer Academic Publishers.

Donahue RH, Follett RH, Tulloch RN. 1990. Our soils and their management. Danville (IL): Interstate Pub.

Downing TE, Parry ML. 1994. Introduction: climate change and world food security.

Food Policy 19: 99-104.

Dubenok NN, Nesvat AP. 1992. The effect of irrigation with elements of water saving technology on productivity of alfalfa in South Urals. Izvestiya Timiryazevskoi Sel'sko Khozyaistvennoi Akademii 1: 21-26.

Elwell HA. 1985. An assessment of soil erosion in Zimbabwe. Zimbabwe Science News 19: 27-31

Engelman R, LeRoy P. 1993. Conserving land: population and sustainable food production. Washington (DC): Population Action International.

[EPA] US Environmental Protection Agency. 1976. Evaluating economic impacts of programs for control of saline irrigation return flows: a case study of the Grand Valley, Colorado. Denver (CO): EPA.

_____ 1980. Estimating water treatment costs. NTIS, EPA-600/7-77-072a-d. Wash-

ington (DC): EPA.

. 1994. National water quality inventory, 1992: report to Congress. Washington (DC): EPA Office of Wetlands, Oceans, Watersheds.

Falkenmark M. 1989, Water scarcity and food production. Pages 164-191 in Pimentel D, Hall CW, eds. Food and natural resources. San Diego (CA): Academic Press.

. 1994. Landscape as life support provider water-related limitations. Pages 103-116 in Graham-Smith F, ed. Population: the complex reality. London (UK): The Royal Society.

Falkenmark M, Lindh G. 1993. Water and economic development. Pages 80-91 in Gleick P, ed. Water in crisis: a guide to the world's fresh water resources. Oxford (UK): Oxford University Press.

Fishelson G. 1994. The allocation and marginal value product of water in Israeli agriculture. Pages 427-440 in Isaac J, Shuval H, eds. Water and peace in the Middle East. Amsterdam (the Netherlands): Elsevier.

Foster GR, Young RA, Ronkens MJM, Onstad CA. 1985. Processes of soil erosion by water. Pages 137-162 in Stewart FRF, Stewart BA, eds. Soil erosion and crop productivity. Madison (WI): American Society of Agronomists, Crop Science Society of America.

Fullen MA. 1992. Erosion rates on bare loamy soils in east Shropshire UK. Soil Use and

Management 9: 157-162.

Gammie L, Giesbrecht G. 1986. Operation of full-scale granular activated carbon contactors for removal of organics. Pages 67-86 in Huck PM, Toft P, eds. Treatment of drinking water for organic contaminants. New York: Pergamon Press.

Gleick PH. 1993a. Water in crisis. New York:

Oxford University Press.

. 1993b. Water and conflict: fresh water resources and international security. International Security 18: 79-112.

1994a. Water and energy. Annual Review of Energy 19: 267-299.

1994b. Water, war, and peace in the Middle East. Environment 36: 7-15, 35-

. 1994c. Reducing the risks of conflict over fresh water resources in the Middle East. Pages 41-54 in Isaac J, Shuval H, eds. Water and peace in the Middle East. Amsterdam (the Netherlands): Elsevier.

Gregersen HM, Draper S, Elz D. 1989. People and trees: the role of social forestry in sustainable development. Washington

(DC): World Bank.

Gruen GE. 1994. Contribution of water imports to Israeli-Palestinian-Jordanian peace. Pages 273-288 in Isaac J, Shuval H, Parry ML, Carter TR. 1989. The impact of eds. Water and peace in the Middle East. Amsterdam (the Netherlands): Elsevier.

Heywood VH, ed. 1995. Global biodiversity assessment. United Nations Environment Programme. Cambridge (UK): Cambridge University Press.

Hinz W. 1985. Estimating irrigation water pumping costs. Arizona Farmer-Stockman

64(5): 16ff.

Ingram C. 1991. The drinking water book. Berkeley (CA): Ten Speed Press.

Kally E. 1994. Costs of inter-regional conveyance of water and costs of sea water desalination. Pages 289-300 in Isaac J, Shuval H, eds. Water and peace in the Middle East. Amsterdam (the Netherlands): Elsevier

Kelman WM, Qualset CO. 1991. Breeding for salinity-stressed environments: recombinant inbred wheat lines under saline irrigation. Crop Science 31: 1436-1442.

Khurshida B. 1989. Tension of the Farakka

Barrage: a techno-political rangle in South Asia. Pacific Affairs 62: 414-415.

Lacewell RD, Collins GS. 1986. Energy inputs on western groundwater irrigated areas. Pages 155-176 in Whittlesey NK, ed. Energy and water management in Western irrigated agriculture. Boulder (CO): Westview Press.

Lal R. 1976. Soil erosion problems on an alisol in western Nigeria and their control. Lagos (Nigeria): International Institute of

Tropical Agriculture.

. 1993. Soil erosion and conservation in West Africa. Pages 7-26 in Pimentel D. ed. World soil erosion and conservation. Cambridge (UK): Cambridge University Press.

1994. Water management in various crop production systems related to soil tillage. Soil & Tillage Research 30: 169-185.

Lal R, Stewart BA. 1990. Soil degradation.

New York: Springer-Verlag.

LaVeen EP, King LB. 1985. Turning off the tap on federal water subsidies. Vol I: The Central Valley project—the \$3.5 billion giveaway. San Francisco (CA): Natural Resources Defense Council and California Rural Legal Assistance Foundation.

Levine G, Oram P, Zapata JA. 1979. Water: conference on agricultural productionresearch and development strategies for the 1980s. New York: Rockefeller Foun-

dation.

Mari HS, Rama-Krishna RN, Lall SD. 1985. Improving field microclimate and crop yield with temporary low cost shelter belts in the the Punjab. International Journal of Ecology and Environmental Sciences 11: 111-117

McCaffrey SC. 1993. Water, politics, and international law. Pages 92-104 in Gleick P, ed. Water in crisis: a guide to the world's fresh water resources. Oxford (UK): Ox-

ford University Press.

[NGS] National Geographic Society. 1995. Water: a story of hope. Washington (DC): NGS.

[NGWPF] National Ground Water Policy Forum. 1987. Groundwater protectionsaving the unseen resource. Washington (DC): NGWPF.

O'Keefe JM. 1992. Water-conserving gardens and landscapes: water-saving ideas. Pownal (VT): Storey Publishing.

climate change on agriculture. Pages 180-184 in Topping IC, ed. Proceedings of the Second North American Conference on Preparing for Climate Change. Washington (DC): Climate Institute.

Pimentel D. 1980. Handbook of energy utilization in agriculture. Boca Raton (FL):

CRC Press.

Pimentel D, Pimentel M. 1996. Food, energy and society. Niwot (CO): University Press of Colorado.

Pimentel D, Wen D. 1990. Technological changes in energy use in US agricultural production. Pages 147-164 in Carrol CR, Vandermeer JH, Rosser PM, eds. Agroecology. New York: McGraw Hill.

Pimentel D, Oltenacu PA, Nesheim MC, Krummel J, Allen MA, Chick S. 1980. The potential for grass-fed livestock: resource constraints. Science 207: 843-848.

Pimentel D, Harman R, Pacenza M, Pecarsky J, Pimentel M. 1994. Natural resources and an optimum human population. Population and Environment 15: 347-369.

Pimentel D, et al. 1995. Environmental and economic costs of soil erosion and conservation benefits. Science 267: 1117-1123.

Pitts DJ, Clark GA. 1991. Comparison of drip irrigation for tomato production in southwest Florida. Applied Engineering in Agriculture 7: 177–184.

Postel S. 1985. Water: rethinking management in an age of scarcity. Interciencia 10: 290-298, 322.

1989. Water for agriculture: facing the limits. Washington (DC): Worldwatch Institute.

_____. 1992. Last oasis: facing water scarcity. New York: W. W. Norton and Co.

_____. 1993. The politics of water. World Watch 6(4): 10-18.

World Watch 8(3): 9-19.

Postel SL, Daily GC, Ehrlich PR. 1996. Human appropriation of renewable fresh water. Science 271: 785-787.

[PRB] Population Reference Bureau. 1995. World population data sheet. Washington (DC): PRB.

Rees DJ, Samillah A, Rehman F, Kidd CHR, Keatinge JDH, Raza SH. 1990. Precipitation and temperature regimes in upland Balochistan Pakistan and their influence on rain-fed crop production. Agricultural Meteorology 52: 381-396.

Rosenzweig C, Parry ML. 1994. Potential impact of climate on world food supply.

Nature 367: 133-138.

Shiklomanov IA. 1993. World fresh water resources. Pages 13-24 in Gleick P, ed. Water in crisis: a guide to the world's fresh water resources. Oxford (UK): Oxford University Press.

Singh S, Mittal JP. 1992. Energy in production agriculture. New Delhi (India): Mittal

Publications.

Sloggett G. 1985. Energy and US agriculture: irrigation pumping, 1974–83. Washington (DC): Agricultural Economics, USDA.

Sloggett G, Dickason C. 1986. Ground-water mining in the United States. Washington (DC): Agricultural Economics, USDA.

Snyder RL. 1989. Drought tips for vegetable and field crop production. Oakland (CA): University of California.

Solley WB, Pierce RB, Pearlman HA. 1993. Estimated use of water in the United States, 1990. Washington (DC): US Geological Survey.

Soule JD, Piper D. 1992. Farming in nature's image: an ecological approach to agriculture. Washington (DC): Island Press.

Stolte WJ, Barbour SL, Eilers RG. 1992. A study of the mechanisms influencing salinity development around prairie sloughs. Transactions of the ASAE 35: 795-800.

Sweeten JM, Jordan WR. 1987. Irrigation water management for the Texas high plains: a research summery. College Station (TX): Texas Water Resources Institute, Texas A & M University Press.

Szabolcs I. 1989. Amelioration of soils in salt affected areas. Soil Technology 2: 331-344.

Tanji KK, Enos CA. 1994. Global water resources and agricultural use. Pages 3-24 in Tanji KK, Yaron B, eds. Management of water use in agriculture. Berlin (Germany): Springer-Verlag.

Thomas GW. 1987. Water: critical and evasive resource on semiarid lands. Pages 83– 90 in Jordan WR, ed. Water and water policy in world food supplies. College Station (TX): Texas A & M University Press.

Trobish KH. 1992. Recent development in the treatment of chemical waste water in Europe. Water Science Technology 26: 319–322.

Troeh FR, Hobbs JA, Donahue RL. 1991.
Soil and water conservation. 2nd ed.
Englewood Cliffs (NJ): Prentice Hall.

Troch FR, Thompson LM. 1993. Soils and soil fertility. 5th ed. New York: Oxford University Press.

Troyan JJ, Hansen SP. 1989. Treatment of microbial contaminants in potable water supplies: technologies and costs. Park Ridge (NJ): Noyes Data Corporation.

Tuijl W. 1993. Improving water use in agriculture: experience in the Middle East and North Africa. Washington (DC): World Bank.

Umali DL. 1993. Irrigation-induced salinity: a growing problem for development and the environment. Technical Paper nr 215. Washington (DC): World Bank.

[USBC] US Bureau of the Census. 1994. Statistical abstract of the United States 1993. Washington (DC): US Government Print-

ing Office.

US Congress. 1989. Department of Interior's efforts to estimate the cost of federal irrigation subsidies: a record of deceit—an investigative report together with dissenting views. Washington (DC): US Congress, Committee on Interior and Insular Affairs, Subcommittee on General Oversight and Investigations.

[USDA] US Department of Agriculture. 1993. Agricultural statistics. Washington (DC):

USDA.

[USGS] US Geological Survey. 1995. National water-use information program fact sheet. FS-057-95. Washington (DC): USGS.

[USWRC] US Water Resources Council. 1979. The nation's water resources, 1975–2000. Second National Water Assessment. Washington (DC): USWRC.

Van der Leeden F, Troise FL, Todd DK. 1990. The water encyclopedia. 2nd ed. Chelsea

(MI): Lewis Pub.

Vaux HJ. 1991. Global climate change and California's water resources. Pages 69-96 in Knoz JB, ed. Global climate change and California. Berkeley (CA): University of California Press.

Verplaneke HJW, DeStooper EBA, De Boot MFL. 1992. Water saving techniques for plant growth. Dordrecht (the Netherlands):

Kluwer Academic Publishers.

Wall GJ, Pringle EA, Sheard RW. 1991. Intercropping red clover with silage corn for soil erosion control. Canadian Journal of Soil Science 71: 137-145.

Watson L. 1988. The water planet. New York:

Crown Publishers.

World Health Organization. 1992. Our planet, our health. Geneva (Switzerland): WHO.

[WRI] World Resources Institute. 1989. World resources 1988-89. New York: WRI, International Institute for the Environment and Development in Collaboration with the United Nations Environment Programme, and Basic Books.

_____. 1991. World resources 1990–91. New

York: Oxford University Press.

. 1992. World resources 1991–92. Oxford University Press.

. 1994. World resources 1993-94. Washington (DC): WRI.

Zhang T. 1990. Water resource and environment in China. Beijing (China): Kexue Press. Copyright of Bioscience is the property of American Institute of Biological Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

SHORT COMMUNICATION

The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid

Eva Söderman, Jim Mattsson and Peter Engström* Department of Physiological Botany, University of Uppsala, Villavägen 6, S-752 36 Uppsala, Sweden

Summary

Homeodomain-leucine zipper (HD-Zip) proteins are putative transcription factors encoded by a class of recently discovered homeobox genes as yet found only in plants. This paper reports on the characterization of one of these genes, ATHB-7, in Arabidopsis thaliana. ATHB-7 transcripts were present in all organs of the plant at low levels, but expression was induced several-fold by water deficit, osmotic stress as well as by exogenous treatment with abscisic acid (ABA), a response being detectable at 10⁻⁸ M and reaching a maximum at 10⁻⁶ M ABA. The ATHB-7 transcript was detected within 30 min after treatment with ABA and the transcript level was rapidly reduced after removal of the hormone. The induction of ATHB-7 was shown to be mediated strictly via ABA, since no induction of ATHB-7 was detectable in the ABA-deficient mutant aba-3 subjected to drought treatment. Induction levels in two ABA-insensitive mutants abi2 and abi3 were similar to the wild-type response. In the abi1 mutant, however, induction was impaired as 100-fold higher concentrations of ABA were required for a maximum induction as compared with wild-type. In this mutant the ATHB-7 response was reduced also after drought and osmotic stress treatments. These results indicate that ATHB-7 is transcriptionally regulated in an ABA-dependent manner and may act in a signal transduction pathway which mediates a drought response and also includes ABI1.

Introduction

Water availability is a major determinant of plant growth and development. In nature as well as in culture plants are exposed to highly variable water conditions. The plant response to variations in water supply includes a range of biochemical, physiological and morphological adaptations. Water deficit induces a rapid physiological response; stomata are closed in the leaves to prevent further water loss. Over a somewhat longer time perspective growth

Received 5 February 1996; revised 25 April 1996; accepted 24 May 1996. *For correspondence (fax +46 18 559 885; e-mail Peter.Engstrom@fysbot.uu.se).

characteristics are adjusted; the leaf area is reduced and root growth increased.

The signal transduction pathways mediating these responses are poorly known. The plant hormone abscisic acid (ABA) appears to play a central role in the process (Mansfield, 1988). This conclusion was initially drawn from the observation of a stress-induced increase in endogenous ABA levels (Cohen and Bray, 1990) and from experiments using exogenous application of ABA which showed effects on plant growth and development resembling the environmental stress responses (for reviews see Mansfield, 1988; Trewavas and Jones, 1991; Zeevaart and Creelman, 1988). Under conditions of water deficiency, ABA is responsible for the onset of stomatal closure. This has been demonstrated by electrophysiological studies as well as by the inability of ABA-deficient Arabidopsis mutants to respond to water deficiency by stomatal closure (Koornneef et al., 1982; Neill and Horgan, 1985).

ABA-deficient mutants (aba) in Arabidopsis were isolated in a screen for reversion of gibberellic acid-deficient (ga) mutant phenotypes (Koornneef et al., 1982). Three alleles of the ABA locus exist (aba-1, aba-3 and aba-4), and they are characterized by reduced seed dormancy, reduced stem length and leaf size, increased transpiration, wilting and a lowered ABA content. Mutation analysis has also identified a set of potential components of the transduction systems mediating the ABA response. Three classes of ABA-insensitive mutations, abi1, abi2 and abi3, are defined by their ability to germinate in the presence of exogenous ABA at concentrations that inhibit germination of wild-type seeds (Koornneef et al., 1984). Phenotypically, these mutants resemble the aba mutants in that they exhibit reduced seed dormancy. They all, however, have at least wild-type levels of endogenous ABA, indicating that their insensitivity to ABA does not result from an increased turnover or inactivation of the hormone, but from an impaired hormone sensitivity. The effects of the abi3 mutation are essentially seed specific whereas the abi1 and abi2 mutations primarily affect vegetative growth. The abi1 and abi2 mutants have impaired stomatal regulation and are defective to varying extents in many ABA- and/or stress-regulated responses (Finkelstein and Somerville, 1990; Gilmour and Thomashow, 1991; Gosti et al., 1995; Koornneef et al., 1984; Nordin et al., 1991; Schnall and Quatrano, 1992). Recently, two new ABA-insentitive mutants, abi4 and abi5. have been identified (Finkelstein, 1994). They both show seed development-related phenotypes similar to the abi3 mutant. Genetic analysis using double mutants of pairwise combinations of the *abi1*, *abi2* and *abi3* mutations (Finkelstein and Somerville, 1990) have suggested the existence of at least two partially overlapping ABA-related signal transduction pathways, one defined by *ABI3* and including also the *ABI4* and *ABI5* genes (Finkelstein, 1994), and a second pathway including the *ABI1* and *ABI2* genes.

A large number of genes which are regulated both by water deficit stress and/or exogenously applied ABA have been identified in different plant species (for reviews see Bray, 1993; Chandler and Robertson, 1994; Skriver and Mundy, 1990). These include the LEA genes, expressed also during the normal embryonic programme in association with seed desiccation (Dure et al., 1981). The LEA genes, like a majority of genes induced by water stress are ABA responsive, but genes also exist which are inducible by wilting but not by ABA (Koizumi et al., 1993). Recently, several lines of evidence demonstrate the existence of ABA-independent pathways mediating gene regulation in response to stress. For example, among genes that were differentially expressed in relation to water stress in Arabidopsis, Gosti et al. (1995), identified both ABA-responsive and ABA-non-responsive genes. How these pathways interact is not clear. The search for possible transcription factors that potentially mediate the ABA effect on gene expression is therefore of great interest.

In this paper, we report on the identification of a putative transcription factor which potentially is part of a transduction pathway mediating a drought stress response in *Arabidopsis*; the product of the homeobox gene *ATHB-7* (Söderman *et al.*, 1994).

ATHB-7 is a member of a recently discovered class of homeodomain-containing transcription factors, the HD-Zip proteins, identified in Arabidopsis (Mattsson et al., 1992; Ruberti et al., 1991; Schena and Davis, 1992), but present also in other plants (Chan and Gonzales, 1994; Kawahara et al., 1995; Meissner and Theres, 1995). The number of different HD-Zip proteins in Arabidopsis is likely to exceed 15 (Söderman et al., 1994). Unlike other homeodomain proteins identified, the HD-Zip proteins contain a leucine zipper in a conserved position carboxy-terminal to the DNA-binding homeodomain. Leucine zippers are known to mediate dimerization in the bZip class of transcription factors, including the oncoproteins Fos and Jun (Bush and Sassone-Corsi, 1990). Two Arabidopsis HD-Zip proteins, the ATHB-1 and ATHB-2 gene products, have been shown to bind DNA in a sequence-specific manner as homodimers (Sessa et al., 1993).

The functions of the genes of the HD-Zip class are as yet largely unknown. Ectopic expression of the HD-Zip gene HAT4 (which is closely related or identical to ATHB-2, Ruberti et al., 1991) causes a series of developmental alterations in transgenic plants including increased hypocotyl elongation, early flowering, altered leaf morphology

and dark green pigmentation (Schena et al., 1993), suggesting an involvement of the gene in the phytochrome-mediated light control of development in Arabidopsis. This is consistent with the strong light dependence of expression recorded for ATHB-2 (Carabelli et al., 1993). Recent data on the expression of ATHB-8 (Baima et al., 1995) indicate this gene to function in the control of early stages of vascular tissue development.

We have previously reported on the expression patterns of four HD-Zip-encoding genes in *Arabidopsis*, *ATHB-3*, *ATHB-5*, *ATHB-6* and *ATHB-7* (Söderman *et al.*, 1994). All four genes were found to be expressed at low levels in the vegetative organs of the plant. In this report we present a detailed analysis of the expression of *ATHB-7*, which shows the gene to be regulated by water stress, by a mechanism which is dependent on abscisic acid as well as on *ABI1*. This suggests that *ATHB-7* may be part of a mechanism that controls the plant response to water deficit.

Results

Expression of ATHB-7 is induced by water deficit, osmotic stress and treatment with exogenous abscisic acid

We have previously reported that the ATHB-7 gene is expressed at low levels in all organs of the plant, transcript levels being relatively high in leaves and flowers, and lower in roots, stems and seed pods (Söderman et al., 1994). The low transcript level in the extracts of whole plants is confirmed by the Northern blot data shown in Figure 1 (lane C). This figure also shows the abundance of the ATHB-7 transcript to be strongly dependent on the growth conditions of the plant; transcript levels being increased in seedlings exposed for 12 or 72 h to drought or to high-salt conditions, whereas low-temperature conditions had no effect. Even higher levels of transcript were observed in seedlings exposed to exogenous abscisic acid (ABA, Figure 1). In experiments using liquid root cultures of Arabidopsis thaliana a strong induction of ATHB-7 was observed after treatment with exogenous ABA, but not after treatment with other hormones; gibberellic acid (GA3), the auxin indole acetic acid (IAA), or the cytokinin kinetin or by a combination of auxin and cytokinin (Figure 2). The effect of ABA was not affected by the simultaneous treatment with equimolar amounts of GA3, but a severalfold reduction in the induction level was observed at a 10fold molar excess of GA3 over ABA (data not shown);

As shown in Figure 3(a), the ATHB-7 response to ABA was detectable in seedlings within 30 min and reached a maximum at 2 h after addition followed by a progressive decrease from 4 to 12 h. Removal of ABA after a 2 h incubation resulted in a reduction in ATHB-7 transcript levels, with a half life of approximately 30 min, the unin-

Figure 1. ATHB-7 expression in seedlings exposed to drought, osmotic stress or to the plant hormone abscisic acid (ABA).

Northern blot analysis of total RNA 30 up per sample from 10-day-old

Northern blot analysis of total RNA, 30 μg per sample, from 10-day-old Arabidopsis seedlings exposed to ABA (10 μM), drought, NaCl (0.1 M) or low-temperature (LT) treatment for 12 or 72 h. C represents uninduced control seedlings. The filter was hybridized to a 516 bp HindIII–Acd fragment of the ATHB-7 clone. The lower panel shows a control hybridization of the same filter to an rRNA probe.

Figure 2. ATHB-7 expression in response to plant hormones. Northern blot analysis of total RNA, 12 μg per sample, from 14-day-old seedlings from liquid Arabidopsis cultures exposed to 10 μM abscisic acid (ABA), 10 μM giberillic acid (GA), 10 μM kinetin (Kin), 10 μM indole-3-acetic acid (IAA) or equimolar combinations of ABA+GA and kinetin+IAA. C1 is a water-treated control sample and C2 a sample derived from ethanol-treated control plants. The filter was hybridized to a 516 bp HindIII-Accl fragment of the ATHB-7 clone. The lower panel shows a control hybridization of the same filter to an rRNA probe.

duced background level being reached after 4 h (Figure 3b). The degree of induction was dependent on the concentration of ABA in the medium. An increase in *ATHB-7* transcript was recorded at a minimal concentration of approximately 10⁻⁸ M of ABA and a maximum response at approximately 10⁻⁶ M ABA (Figure 4a).

Induction of ATHB-7 is reduced in the abi1 mutant.

Koornneef and co-workers have isolated two classes of ABA mutants in A. thaliana; ABA-deficient (aba) mutants (Koornneef et al., 1982) in which endogenous ABA levels

Figure 3. Time-course of the response of ATHB-7 to ABA. Northern blot analysis of 10 μg total RNA samples isolated from Arabidopsis seedlings from liquid cultures grown for 14 days and thereafter exposed to ABA. In (a), ABA (1 μM) was added to the medium and samples collected at different times after addition as indicated in the figure. In (b), ABA (1 μM) was added to the culture medium and the cultures incubated for 2 h at which time the medium was exchanged for medium without ABA. Samples were collected at different times after ABA removal as indicated in the figure. C indicates the untreated control. The filters were hybridized to a 516 bp Hindlll-Acd fragment of the ATHB-7 clone. Lower panels in both (a) and (b) show control hybridizations of the filters to an rRNA probe.

are abnormally low in both seeds and whole plants, and ABA-insensitive (abi) mutants (Koornneef et al., 1984) in which ABA responses are reduced. As shown by the Northern blot data in Figure 5, ATHB-7 is induced to similar levels by ABA in both the wild-type and the aba-3 mutant, consistent with the fact that the response to ABA is unaffected by the aba-3 mutation. Figure 5 also shows ABA induction of ATHB-7 to wild-type levels in both the abi2 and abi3 mutants. Thus, neither the ABI2 nor the ABI3 gene products are required for the ATHB-7 transcription response to ABA. In contrast, induction by ABA at 1 μM was distinctly impaired in the abi1 mutant. The degree of induction was quantitatively determined in several independent experiments and found to be approximately 30 % of the induction level in the wild-type (data not shown). In addition, the concentration of ABA required for a maximum response in the abi1 mutant was 10-4 M; 100 times higher than for the wild-type (Figure 4b).

Taken together these data indicate that the ABA-induction of *ATHB-7* requires the *ABI1* gene product, and suggests that *ATHB-7* acts downstream to *ABI1* in an ABA-mediated signal transduction pathway for the plant response to water deficit. This hypothesis is supported by data on the effect

Figure 4. The expression of ATHB-7 is ABA concentration-dependent.

Northern blot analysis of total RNA, 20 µg per lane, from 10-day-old wild-type (Ler) seedlings (a), or from abi1 mutant seedlings of A. thaliana (b). The seedlings were exposed to different concentrations of ABA (in M as indicated) for 12 h. The filter was hybridized to a 516 bp HindIII-Acc fragment of the ATHB-7 clone. The lower panel shows a control hybridization of the same filter to an rRNA probe.

Figure 5. The expression of *ATHB*-7 in different *aba* and *abi* mutants in response to ABA, drought, salt and low-temperature treatment. Northern blot analysis of total RNA samples (10 μ g) from 10-day-old wild-type (Ler), ABA-insensitive (*abi*) and ABA-deficient (*aba*) mutant seedlings of *A. thaliana* exposed to 1 μ M ABA (A), drought (D), 0.1 M NaCl (N) or low-temperature treatment (LT). C indicates non-treated control plants. The filters were hybridized to a 516 bp *Hin*dIII-*Acc*l fragment of the *ATHB*-7 clone. The panels to the right in each case show control hybridizations of the different filters to an rRNA probe.

of water- and osmotic-stress conditions on the expression of ATHB-7 in the abi1 mutant, shown in Figure 5. These Northern blot data show that ATHB-7 transcript levels after water deficit and salt treatments were reduced in abi1 as compared with the wild-type, the magnitude of the reduction being similar to that observed after ABA treatment. No reduction in the response to either water deficit or salt treatment was observed in the abi2 or abi3 mutants. In fact, the induced transcript levels in these two mutants were slightly but reproducibly higher than that observed in the wild-type. These increased transcript levels are possibly attributable to an increased endogenous ABA

level in the mutant plantlets, as has previously been documented for seeds of the *abi1*, *abi2* and *abi3* mutants (Koornneef *et al.*, 1984). In contrast to the wild-type, the *abi1* mutant responded to a low-temperature treatment with a two- to threefold increase in *ATHB-7* transcript level. This response is similar to the *ATHB-7* response to salt treatment in this mutant. A small but reproducible increase in *ATHB-7* transcript in response to low temperature was recorded also in the *abi2* and *abi3* mutants (Figure 5).

Water deficit and osmotic stress induction of ATHB-7 is mediated by ABA

The above results suggest that ATHB-7 induction by water deficit is mediated by a mechanism involving an increase in endogenous ABA levels, as well as the activity of the ABI1 gene product. To test whether an alteration in endogenous ABA is required for induction we analysed ATHB-7 expression in the ABA-deficient mutant aba-3. Owing to its deficiency in ABA synthesis (Rock and Zeevaart, 1991), the aba-3 mutant, in contrast to wild-type Arabidopsis, does not respond to drought by an increase in ABA. The results (Figure 5) show an increase in ATHB-7 transcription in the aba-3 mutant after treatment with exogenous ABA at levels similar to wild-type. No induction, however, could be detected in the aba-3 mutant after exposure to water deficit, high-salt or low-temperature treatments. Therefore, ATHB-7 induction by water deficit or osmotic stress is mediated by a mechanism that involves an increase in endogenous ABA.

Discussion

This report describes the first case of a plant homeobox gene which is dependent for its expression on the water conditions of the plant. It also provides the first documentation of a direct functional relationship between a transcription factor and a mutationally defined component of a signal transduction pathway mediating a response to drought in the vegetative part of the plant. Previous work in *Arabidopsis* has identified a transcription factor of the

Myb class which is inducible by water deficit as well as by ABA in a pattern that qualitatively resembles that of ATHB-7 expression (Urao et al., 1993). This gene, ATMYB2 differs from ATHB-7 in that its transcriptional response to ABA is relatively slow; several hours are required for full activation, and the concentration of exogenously added ABA required for a response is considerably higher. ATHB-7 induction is detectable at concentrations as low as 10⁻⁸ M ABA and the response is observed within 30 min. As shown by the absence of a drought and salt response in the ABA-deficient aba mutant, the drought-induced increase in ATHB-7 transcription requires endogenous ABA synthesis. Even though the mutant allele used in these experiments, aba-3, is a relatively weak allele (Koornneef et al., 1982), the inhibition of induction in the mutant is complete, indicating a strong requirement for ABA synthesis as a mediator of induction. These data strongly indicate that drought and salt-induction of ATHB-7 is mediated by an increase in endogenous ABA in the plant, and suggest that ATHB-7 activation is a primary effect, rather than an indirect consequence of drought.

The induction pattern of ATHB-7 strongly resembles that of some drought-inducible genes previously described from different plants (Gomez et al., 1988; Mundy and Chua, 1990; reviewed by Skriver and Mundy, 1990). Most of these are poorly characterized as regards function. Most likely, though, these genes include ones that take part in the alterations of cellular physiology which result in a tolerance to a reduced water availability, and in the altered growth patterns associated with drought. Since ATHB-7 like ATHB-1 and ATHB-2 (Sessa et al., 1993) is likely to function as a transcription factor, it is an attractive hypothesis that ATHB-7 may be directly active in the transcriptional control of such drought-inducible genes, and thereby constitute the end-point of a signal transduction pathway mediating the response of the plant to water deficit.

The information available on other components of such signal transduction mechanisms is limited to the ABIgenes, which when mutated confer an ABA-insensitive phenotype to the plant. Our data indicate that ATHB-7 is a target of the ABA signalling pathway defined by ABI1 and we propose that ATHB-7 may function in this signal transduction pathway, downstream to ABI1. This suggestion is based on the reduced response of ATHB-7 to induction conditions in the abi1 mutant. The recorded induction in abi1 was approximately 30% of the wild-type response. The fact that ATHB-7 is still inducible to low levels in the mutant is likely attributable to residual gene activity in this mutant. ABI1 has been cloned and found to encode a Ca-dependent serine/threonine protein phosphatase (Leung et al., 1994; Meyer et al., 1994). The mutant allele of the gene carries a single base substitution wich causes an alteration in an amino acid located within a domain conserved among S/T phosphatases. The consequences of this mutation for the activity of the enzyme

have not been established. The dependence of ATHB-7 on ABI1 implies protein phosphorylation to be involved in the transcriptional control of the ATHB-7 gene. The presence of potential phosphorylation sites for serine/threonine kinases in the sequence of the ATHB-7 protein (Söderman et al., 1994; our unpublished observations) suggests the additional possibility of an influence of ABI1 directly on the activity of the ATHB-7 protein.

The absence of an effect on ATHB-7 transcription of the abi3 mutation is consistent with the proposed role for ATHB-7, since the phenotypic effects of this mutation are restricted to the developing seed. Our data also show ATHB-7 transcription to be independent of the activity of the ABI2 gene, which when mutated causes phenotypic effects that are very similar to those of the abi1 mutation. Thus, ABI2 either acts to mediate an ABA response in a second response pathway, independent from that defined by ABI1, or functions in the same pathway, downstream to ATHB-7. The slightly increased induction levels of ATHB-7 in response to drought and salt treatments, in both abi1 and abi3 mutants as compared with wild-type, are possibly attributable to increased endogenous ABA levels in the mutant plantlets, as has previously been documented for seeds of these mutants (Koornneef et al., 1984).

It is interesting to note that ATHB-7 transcription in wild-type Arabidopsis is unaffected by low-temperature treatment, even though this treatment in Arabidopsis as well as in other plant species leads to an increase in endogenous ABA (Chen et al., 1983; Lalk and Dörffling, 1985; Lång et al., 1994). In the abi1 mutant, on the other hand, ATHB-7 transcription is induced significantly by the treatment. Thus, it appears that in this mutant, but not in wild-type Arabidopsis, ATHB-7 transcription is influenced by temperature via mechanisms that do not involve ABA. We note the resemblance between this response and that of the ABA-inducible Arabidopsis gene LT178, which is inducible by cold, but not by ABA, in the abi1 mutant (Gilmour and Tomashow, 1991; Nordin et al., 1991).

The documentation of a function of an HD-Zip gene in response to water deficit is interesting, since little is known about the functions of genes of this class. Among the homeobox genes as yet discovered in plants the HD-Zip genes in terms of primary structure of the homeodomain are the most closely related to the animal homeobox genes which act to control essential elements of embryo development. The information available from Arabidopsis indicates that the different HD-Zip genes may be active in guite different contexts, but suggests that they also function in the control of developmental processes; ATHB-8 in the auxin-dependent control of vascular tissue development in the embryo, as well as in the regeneration of vascular tissue after wounding (Baima et al., 1995), and ATHB-2/ HAT4 in the control of plant development in relation to light (Carabelli et al., 1993; Schena et al., 1993), possibly

as a mediator of a phytochrome response. Based on the data presented in this paper we propose that *ATHB-7* may have a similar function in the of control plant growth and development in relation to water availability.

Experimental procedures

Plant material

Arabidopsis thaliana (L.) Heynh., ecotype Columbia was used except in experiments involving the mutants aba-3, abi1, abi2 and abi3, which are all in the Landsberg erecta (Ler) ecotype background (Koornneef et al., 1982, 1984). Mutant seeds were kindly provided by the Arabidopsis Biological Resource Center (ABRC), Ohio State University, Columbus, Ohio, USA. In experiments involving mutants, the Ler ecotype was used as a wild-type control.

The identity of the *abi1* mutant was confirmed by PCR amplification of part of the *ABI1* gene, followed by sequencing and identification of the molecular alteration described for the *abi1* mutant allele (Leung *et al.*, 1994).

Growth conditions and treatments of plants

Seeds were surface sterilized in a 50% hypochlorite solution containing 0.1% Tween 20 for 10 min and then washed in 70% ethanol for 30 sec and in sterile distilled water several times. The seeds were then either plated on 30 ml solidified (0.8% (w/v) agar) 0.5×MS medium (Murashige and Skoog, 1962; Duchefa Biochemie B.V., Haarlem, The Netherlands) supplemented with 1% sucrose and grown in a culture room at 22°C with a 12 h photoperiod (50 µmol m⁻² sec⁻¹) or put in 50 ml liquid Gamborg's B5 medium (Gamborg *et al.*, 1968; Duchefa Biochemie) supplemented with 4% sucrose and incubated at 25°C on a rotary platform under continuous illumination (6 µmol m⁻² sec⁻¹). The plants on solid medium were grown for 10 days and the liquid culture plants for 14 days before treatment.

ABA treatments were performed by addition of ABA (mixed isomers, Sigma) dissolved in Gamborg's B5 medium supplemented with 2% glucose and 0.05% Mes, pH 5.7, to the plant medium. The final concentration of ABA in the medium was 1 μ M except when indicated. Control plants were treated with B5 medium without ABA.

NaCl treatments were done by the addition of NaCl to a final concentration of 0.1 M and drought treatments by removal of the lid of the tissue culture plates allowing the plantlets to air-dry. The cold treatment was performed by incubation of the seedlings at +4°C. Treatments with hormones other than ABA were performed by addition of the plant hormones GA3, IAA or kinetin respectively, to liquid cultures to final concentrations of 10 μM . Incubations were for 12 or 72 h or as indicated.

RNA isolation and Northern blot analysis

Total RNA was isolated from plantlets according to the protocol of Chang et al. (1993), with the addition of a phenol/chloroform extraction after resuspension of the total RNA pellet. Samples of total RNA (12-30 µg) were subjected to electrophoresis in a 1% agarose gel containing formaldehyde and blotted on to nylon membrane (Hybond-N, Amersham International, Buckinghamshire, UK). The filters were hybridized to a 516 bp HindIll-Accl

fragment of the 3'end of ATHB-7 (Söderman et al., 1994) which does not contain the conserved homeobox and does not cross-hybridize to other ATHB-transcripts (Söderman et al., 1994). The probe was labelled with $[\alpha^{-32}P]$ dCTP (3000 Ci mmol⁻¹, Amersham) using the Megaprime DNA Labelling Kit (Amersham). Prehybridization and hybridization were performed at 63°C as described by the filter supplier and the filters were washed at high stringency (0.1×SSPE; 0.1%SDS) at 65°C twice for 5 min. X-ray films were exposed to the filters between intensifying screens.

Equal loading was confirmed by hybridization of the filters to an rRNA probe from Norway spruce (Sundas and Engström, unpublished) and washed at high stringency as above. Quantitative data on hybridization were obtained by use of a BAS 2000 (Fuji) image plate reader.

Acknowledgements

We thank Agneta Ottosson and Marie Svenson for skilful technical assistance and Dr Eva Sundberg for critical comments on the manuscript. We also thank the C-course students in plant cell and molecular biology, 1994, for their contribution to Figure 3(b). This work was supported by a grant from the Swedish Council for Forestry and Agricultural Research (SJFR).

References

- Baima, S., Nobili, F., Sessa, G., Lucchetti, S., Ruberti, I. and Morelli, G. (1995) The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development, 121, 4171–4182.
- Bray, E.A. (1993) Molecular responses to water deficit. *Plant Physiol.* 103, 1035–1040.
- Bush, S.J. and Sassone-Corsi, P. (1990) Dimers, leucine zippers and DNA-binding domains. *Trends Genet.* 6, 36–40.
- Carabelli, M., Sessa, G., Baima, S., Morelli, G. and Ruberti, I. (1993) The *Arabidopsis Athb-2* and 4 genes are strongly induced by far-red-rich light. *Plant J.* 4, 469–479.
- Chan, R.L. and Gonzalez, D.H. (1994) A cDNA encoding an HD-Zip protein from sunflower. Plant Physiol. 106, 1687–1688.
- Chandler, P. M. and Robertson, M. (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance. Ann. Rev. Plant Physiol. Plant Mol. Biol. 45, 113-141.
- Chang, S., Puryear, J. and Cairney, J. (1993) A simple and efficient method for isloating RNA from pine trees. *Plant Mol.Biol. Rep.* 11, 113–116.
- Chen, H.-H., Li, P.H. and Brenner, M.L. (1983) Involvement of abscisic acid in potato cold acclimation. *Plant Physiol.* 71, 362–365.
- Cohen, A. and Bray, E.A. (1990) Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid. *Planta*, 182, 27–33.
- Dure III, L., Greenway, S. C. and Galau, G.A. (1981) Developmental biochemistry of cottonseed embryogenesis and germination. XIV. Changing mRNA populations as shown by in vitro and in vivo protein synthesis. *Biochemistry*, 20, 4162–4168.
- Finkelstein, R.R. (1994) Mutations at two new *Arabidopsis* ABA response loci are similar to the *abi3* mutations. *Plant J. 5*, 765–771.
- Finkelstein, R.R. and Somerville, C.R. (1990) Three classes of abscisic acid (ABA)-insensitive mutations of *Arabidopsis* define genes that control overlapping subsets of ABA responses. *Plant Physiol.* 94, 1172–1179.
- Gamborg, O.L., Miller, R.A. and Ojima, K. (1968) Nutrient

- requirements of suspension cultures of soybean root cells. Exp. Cell. Res. 50, 148-151.
- Gilmour, S.J. and Thomashow, M.F. (1991) Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol. Biol. 17, 1233-1240.
- Gomez, J., Sanchez-Martinez, D., Stiefel, V., Rigau, J., Puigdomenech, P. and Pages, M. (1988) A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature, 334, 262-264.
- Gosti, F., Bertauche, N., Vartanian, N. and Giraudat, J. (1995) Abscisic acid-dependent and -independent regulation of gene expression by progressive drought in Arabidopsis thaliana, Mol. Gen. Genet. 246, 10-18.
- Kawahara, R., Komamine, A. and Fukuda, H. (1995) Isolation and characterization of homeobox-containing genes of carrot. Plant Mol. Biol. 27, 155-164.
- Koizumi, M., Yamaguchi-Shinozaki, K., Tsuji, H. and Shinozaki, K. (1993) Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene, 129, 175-182.
- Koornneef, M., Jorna, M.L., Brinkhorst-van der Swan, D.L.C. and Karssen, C.M. (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in nongerminating gibberelin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theor. Appl. Genet. 61, 385-393.
- Koornneef, M., Reuling, G. and Karssen, C.M. (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol. Plant. 61, 377-383.
- Lalk,I. and Dörffling, K. (1985) Hardening, abscisic acid, proline and freezing resistance in two winter wheat varieties. Physiol. Plant. 63, 287-292.
- Lång, V., Mäntylä, E., Welin, B., Sundberg, B. and Palva, E.T. (1994) Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol. 104,
- Leung, J., Bouvier-Durand, M., Morris, P.-C., Guerrier, D., Chefdor, F. and Giraudat, J. (1994) Arabidopsis ABA response gene ABI1: Features of a calcium-modulated protein phosphatase. Science, 264, 1448-1452.
- Mansfield, T.A. (1988) Hormones as regulators of water balance. In Plant Hormones and their Role in Plant Growth and Development (Davies R.D., ed.). Dordrecht: Martinus Nijhoff, pp. 411-430.
- Mattsson, J., Söderman, E., Svenson, M., Borkird, C. and Engström, P. (1992) A new homeobox-leucine zipper gene from Arabidopsis thaliana. Plant Mol. Biol. 18, 1019-1022.
- Meissner, R. and Theres, K. (1995) Isolation and characterization of the tomato homeobox gene THOM1. Planta, 195, 541-547.
- Meyer, K., Leube, M.P. and Grill, E. (1994) A protein phosphatase

- 2C involved in ABA signal transduction in Arabidopsis thaliana. Science, 264, 1452-1455.
- Mundy, J. and Chua, N.-H. (1988) Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J. 7, 2279-
- Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473-497.
- Neill, S.J. and Horgan, R. (1985) Abscisic acid production and water relations in wilty tomato mutants subjected to water defiency. J. Exp. Bot. 36, 1222-1231.
- Nordin, K., Heino, P. and Palva, E.T. (1991) Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 16, 1061-1071.
- Rock, C.D. and Zeevaart, J.A.D. (1991) The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc. Natl Acad. Sci. USA, 88, 7496-7499.
- Ruberti, I., Sessa, G.; Lucchetti, S. and Morelli, G. (1991) A novel class of plant proteins containing a homeodomain with a closely linked leucine zipper motif. EMBO J. 10, 1787-1791.
- Schena, M. and Davis, R.W. (1992) HD-Zip protein members of an Arabidopsis homeodomain protein superfamily. Proc. Natl Acad. Sci. USA, 89, 3894-3898.
- Schena, M., Lloyd, A.M. and Davis, R.W. (1993) The HAT4 gene of Arabidopsis encodes a developmental regulator. Genes Devel.
- Schnall, J.A. and Quatrano, R.S. (1992) Abscisic acid elicits the water-stress response in root hairs of Arabidopsis thaliana. Plant Physiol, 100, 216-218.
- Sessa, G., Morelli, G. and Ruberti, I. (1993) The Athb-1 and -2 HD-Zip domains homodimerize forming complexes of different DNA binding specificities. EMBO J. 12, 3507-3517.
- Skriver, K. and Mundy, J. (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell, 2, 503-512.
- Söderman, E., Mattsson, J., Svenson, M., Borkird, C. and Engström, P. (1994) Expression patterns of novel genes encoding homeodomain leucine-zipper proteins in Arabidopsis thaliana. Plant Mol. Biol. 26, 145-154.
- Trewavas, A.J. and Jones, H.G. (1991) An assessment of the role of ABA in plant development. In Abscisic Acid: Physiology and Biochemistry (Davies, W.J. and Jones, H.G., eds). Oxford: BIOS Scientific Publishers, pp. 169-188.
- Urao, T., Yamaguchi-Shinozaki, K., Urao, S. and Shinozaki, K. (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 5, 1529-1539.
- Zeevaart, J.A.D. and Creelman, R.A. (1988) Metabolism and physiology of abscisic acid. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39, 439-473.

Short communication

A new homeodomain-leucine zipper gene from *Arabidopsis thaliana* induced by water stress and abscisic acid treatment

Yong-Hun Lee and Jong-Yoon Chun*

Kumho Life and Environmental Science Laboratory, 572 Sangam-Dong, Kwangsan-Gu, Kwangju-City, 506-712, Korea (*author for correspondence)

Received 2 June 1997; accepted in revised form 25 January 1998

Key words: abscisic acid, Arabidopsis, homeobox, leucine zipper, water stress

Abstract

We report the isolation and characterization of a new homeobox gene from Arabidopsis thaliana using a polymerase chain reaction (PCR) cloning strategy. The full-length cDNA, designated Athb-12, encodes a protein of 235 amino acids. It contains the conserved DNA binding domain and the leucine zipper motif, characteristic of the homeodomain-leucine zipper family of transcription factors. The deduced amino acid sequence of Athb-12 shows over 80% identity to the Arabidopsis Athb-7 in the homeodomain (82%) and the leucine zipper motif (80%) of the proteins. However, outside the homeodomain and the leucine zipper motif, the homology is significantly lower. RNA analysis identified only one 0.96 kb transcript consistent with the size of Athb-12 cDNA. The Athb-12 transcript was detected in stem, leaf, flower and root as well as in seedlings. Treatment with water stress and exogenous abscisic acid (ABA) resulted in the accumulation of Athb-12 mRNA, similar to that of Athb-7. However, the time course of the Athb-12 response to ABA differed from that of Athb-7, suggesting that both genes, in response to ABA, are regulated in different manners. Taken together, these data suggest that Athb-12 and Athb-7 are members of a related gene family involved in the plant's response to water stress.

Homeobox genes have been identified in several organisms including various animal species, yeast, fungi, and higher plants. These genes contain a conserved sequence motif, the homeobox, that encodes a sequence-specific DNA-binding domain known as the homeodomain (HD) (for a review, see [3]). In higher plants, a class of the HD genes was first discovered in Arabidopsis thaliana [30]. Unlike other classic homeobox proteins, the products of these genes contain a second element that codes for a putative leucine zipper motif, which is closely linked to the carboxy-terminal region of the HD. So far, these proteins termed homeodomain-leucine zipper (HD-Zip) have been identified only in plants such as sunflower [7], carrot [15], soybean [24], tomato [22, 42], rice [21] and Arabidopsis [6, 9, 20, 30–33, 40].

The nucleotide sequence data reported will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession number AF001949.

The uniqueness of the HD-Zip proteins in plants suggests that these HD-Zip proteins function as a mediator of plant development, for example, coupling of the developmental response to an environmental signal [31]. Several lines of evidence support this notion. Two members of the HD-Zip family, Arabidopsis Athb-2 and Athb-4, show a strong increase in mRNA abundance when treated with far-red-rich light [5, 6]. Athb-7 and Athb-8 genes were induced by exogenous plant hormones such as abscisic acid (ABA) and auxin [1, 29, 39]. ABA is involved in the response of plants to environmental stresses (for a review, see [23, 37, 38]. For example, treatment with ABA enhances the resistance of plants to drought [2], salt [17], and cold stress [8]. Several ABA-response genes are induced in response to drought [12], salt [25, 41], and cold stress [16]. A homeobox gene, Athb-7, has been reported to be induced by drought as well as ABA [39].

GGCACGAGCCTTCTCTTAATCAAAATCAAGAAACTTACAAGATCTGGTGAAAACCATG GAAGAAGGAGATTTTTCAACTGCTGTTTCAGCGAGATTAGTAGTGGCATGACCATGAAT E E G D F F N C C F S E I S S G M T M N AAGAAGAAGATGAAGAAGAGCAATAACCAAAAGAGGTTTAACGAGGAACAGATCAAGTCA K K K M <u>K K S N N Q K R F N E E Q I K S</u> CTTGAGCTTATATTTGAGTCTGAGACGAGGCTTGAGCCGAGGAAGAAGGTTCAGGTAGCT L E L I F E S E T R L E P R K K V Q V A AGAGAGCTAGGGCTGCAACCAAGACAAATGACTATATGGTTTCAAAACAAGAGGGCTCGA RELGLOPROMTIWFONKRAR TGGAAAACTAAGCAACTTGAGAAAGAGTATAACACTCTTAGAGCCAATTACAACAATTTG WKTKQ DEKEYNT DRANYNN D GCTTCACAATTTGAAATCATGAAGAAAGAAAGCAATCTCTGGTCTCTGAGCTGCAGAGA A S Q F E I 🛂 K K E K Q S 🖪 V S E L Q R CTAAACGAAGAGATGCAAAGGCCTAAAGAAGAAAAGCATCATGAGTGTTGTGGTGATCAA IN EEMQRPKEEK.HHECCGDQ GGACTGGCTCTAAGCAGCACCAGAGTCGCATAATGGAAAGAGTGAGCCAGAAGGGAGG LALSSSTESHNGKSEPEGR TTAGACCAAGGGAGTGTTCTATGTAATGATGGTGATTACAACAACAACAATAAAACAGAG D Q G S V L C N D G D Y N N N I K T E TATTTTAGGGTCCAGGGAGAGACTGATCATGAGCTGATGAACATTGTGGAGAAAGCTGAT Y F R V Q G E T D H E L M N I V E K A D GATAGTTGCTTGACATCTTCTGAGAATTGGGGAGGTTTCAATTCTGATTCTCTTAGAC D S C L T S S E N W G G F N S D S L L D CAATCTAGCAGCAATTACCCTAACTGGTGGGAGTTTTGGTCATAAAAGCATATAAGAAAA Q S S S N Y P N W W E F W S * 781 AAACAGAACATAAGCGAAGAGAAGAGTGTGAATAGTTTGTAAATTATGTGTTAAGAAAA 841 TARATTTAGTTTAGTTTAAATCTTGTTTCGATCTATGTATCTACTATGTTCAATACTCTT 901 961 AAAAA

Figure 1. Nucleotide and predicted amino acid sequences of the Arabidopsis thaliana cDNA clone encoding Athb-12. The homeodomain is underlined, and the leucine and methionine in the proposed leucine-zipper motif are highlighted in black. The asterisk represents the termination codon. The putative polyadenylation signal is shown in bold-face type. The sequence has been submitted to GenBank/EMBL databases under the accession number AF001949.

Here we report the isolation of an ABA- and water stress-responsive cDNA clone (Athb-12) from A. thaliana. This gene encodes a new homeodomain-leucine zipper protein. The effect of water stress and ABA on

the accumulation of Athb-12 transcript was studied by northern blot analysis.

PCR isolation of a cDNA fragment that contains a homeobox sequence

To find new homeobox genes from A. thaliana, PCR was used to isolate the segments of cDNAs containing homeobox sequences using the A. thaliana cDNA library (Stratagene, La jolla, CA) as a template. The universal T3 primer was used as a 5' primer (forward) for the PCR. A degenerate oligonucleotide, 5'-TTCTGAACCA (G/A/T) AT (A/C) G (C/T) (A/C) A (C/T) (C/T) TG-3', complementary to the sequences encoding the highly conserved homeodomain helix three was designed based on a comparative analysis of 15 different plant homeodomain DNA sequences selected from GenBank and EMBL databases and used as a 3' primer (reverse). The PCR reaction mixture contained 10 mM Tris-HCl pH 8.3, 50 mM KCl, 1.5 mM MgCl₂, 200 μ M dNTP, 1 μ M of each primer, 2.5 units of Taq DNA polymerase (Promega, Madison, WI) and 2 μ l cDNA library suspension containing about 10⁸ plaque-forming bacteriophage in a final 50 μ l volume. The reaction mixture was heated to 94 °C for 5 min, followed by 40 cycles of amplification at 94 °C for 1 min, 58 ° for 1 min, and 72 ° for 1 min. After the last amplification cycle the samples were incubated at 72 °C for 5 min. The PCR amplification yielded two PCR products, 0.4 kb and 0.3 kb, which were cloned into the pGEM-T vector (Promega) and sequenced. The sequence analysis of both PCR clones showed that 0.4 kb PCR product contains a novel homeobox sequence (not shown). This PCR clone was digested with SpeI and SacII and fractionated by electrophoresis. The 0.4 kb PCR DNA fragment was gel-purified with a QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany) and was used as a probe to screen the Arabidopsis cDNA library.

Screening of Arabidopsis cDNA library and isolation of the HD-Zip protein cDNA Athb-12

A. thaliana whole-plant cDNA library (1×10^6 plaques) was plated at the density of 5×10^4 plaques per plate. A nylon membrane (Hybond-N, Amersham International, Buckinghamshire, UK) was lifted and screened with the labelled 0.4 kb PCR product. The probe was labelled with $[\alpha^{-32}P]dCTP$ using the random labelling kit (Boehringer Mannheim, Mannheim, Germany). The filters were pre-hybridized in a buffer containing $5 \times SSPE$, $5 \times Denhardt's$ solution, 0.1% SDS and 0.2 mg/ml denatured salmon sperm DNA for 2 h at 55 °C. Hybridization was carried out overnight at 55 °C

Figure 2. Southern blot analysis of Arabidopsis thaliana genomic DNA. Arabidopsis genomic DNA (10 μ g) was digested with HindIII (H) or Pstl (P). After separation in a 1.0% agarose gel, the digested DNA was transferred onto a nylon membrane and hybridized with the ³² P-labelled 3' end of Athb-12 cDNA which excluded the homeodomain and leucine zipper region.

in the same solution containing the probe. Filters were washed at 55 °C as follows: two times for 10 min each at $2 \times SSC/0.1\%$ SDS; once at $1 \times SSC/0.1\%$ SDS for 10 min; two times for 10 min each at $0.1 \times SSC/0.1\%$ SDS. X-ray films were exposed to the filters between the intensifying screens. One positive clone hybridized to the 0.4 kb probe was identified and recovered as a plagemid plasmid (designated as pAthb-12) by in vivo excision (Uni-ZAP XR Cloning Kit, Stratagene) according to the manufacturer's protocol. The insert of the pAthb-12 cDNA clone was fully sequenced on both strands by the dideoxy chain termination method using Sequenase Version 2.0 Kit (U.S. Biochemicals, Cleveland, OH). Computer-assisted sequence analysis was done with the DNASIS program (Hitachi Software, San Bruno, CA). The cDNA is a 965 bp with a major open reading frame predicted to encode a 235 amino acid polypeptide with a molecular mass of 27 551 Da (Figure 1). The nucleotide sequence around the first ATG codon AACCATGGA (position 54-62) strongly matches the proposed plant translation initiation motif, AACAAUGGC [19]. In addition, the presence of an in-frame TAA stop codon located 37 bp upstream of the 235 amino acid open reading frame suggests that the cDNA is full-length. The open reading frame is followed by 200 bp untranslated region terminating in a poly(A) tail. A putative polyadenylation signal sequence (AATAAA) [14] is present in the 103 bp 5' end of the poly(A) tail. A search of the NCBI

A. Homeodomain

		helix 1	loop	helix 2	turn	helix3			
		* *				** * * *	Identity(%)		
Athb-12	KKSNNQKRFN	EEQIKSLEL	I FESETRLE	PRKKVQVA	RELGLQPR	QMTIWFQNKRARWKTKQ	100		
Athb-7	HNKR	DM	M	L-		-VAS	82		
Athb-6	GL-EKKR-L-	IN-V-AK	NL-NK	-ERKL-	2	-VAVR	59		
СНВ6	QI-EKKR-LS	IN-V-AK	NV-NK	-ERKL-(2	-VAVR	57		
СНВ3	QQPEKKR-LH	ADQFK	STDNK	-EL-1	K	-VAT	57		
Athb-5	TAAEKKR-LO	VV-AK	NIDNK	-ERKL-	2	-VAR	57		
CHB1	HPPEKKR-LT	'VD-V-YK	SVENK	-DRL-1	KD	-VARY	54		
CHB4	SGGSKKR-LN	MVRTK	SMGNK	-DR-LEL-	-A	-IAR	54		
Athb-1	QLPEKKR-LT	TVHLK	STNKN	-ER-T-L-1	кк	-VAVR	52		
B. Leucine zipper motif									
Athb-12	L EKEYNT I	RANYNN L	ASQFEI	KKEKQS	VSELQR	L	100		
Athb-7	TI -	-QD-	s L	A		-	80		
Athb-6	GD -	KTQ-DS -	RHN-DS L	RRDNE-	LQ-ISK	-	36		
СНВ6	RD-GV -	KDS -	KLKNDT L	QQ-N	LK-IRE	-	39		
СНВЗ	- עם-ם- -	QNSS -	KADYDN L	LAEK	KA-VLD	-	36		
Athb-5	RD-GV -	KS-FDA -	KRNRDS L	QRDND-	- LGQIKE	-	25		
CHB1	D-DS -	KEC-DK -	RDDHDR L	SNEK	- RL-VIL	ם	31		
CHB4	D-DL -	KSQFDA V	KAENDS L	QSHN-K	HAQIMA	-	22		
Athb-1	-RD-DL	KST-DOL-	L-NYDS L	J VMDNDK L	RVTS	_	31		

Figure 3. Comparison of the amino acid sequence of the homeodomain and leucine zipper motif of Athb-12 with the corresponding domains of the HD-Zip family members; Athb-5, -6, -7 [40], CHB1, 3, 4, 6 [15] and Athb-1 [30]. Dashes indicate identical amino acids between Athb-12 and other sequences. The highly conserved residues and the four invariant residues in all homeodomains are marked by asterisks (A). The conserved leucine residues in the leucine zipper motif are boxed (B).

database showed that its 5' end fragment sequence is highly homologous to several Arabidopsis expressed sequence tags (ESTs) (accession number N38387, 97% in 315 bp; R30223, 94% in 344 bp; N97195, 97% in 176 bp (identity in nucleotides) [28]). These minor differences in homology suggest that these ESTs may be allelic forms of our cDNA.

Southern blot analysis was used to examine the number of genes encoding Athb-12 in Arabidopsis. To avoid cross-hybridization, the 3' end 550 bp fragment of Athb-12 cDNA which does not contain the homeodomain and leucine zipper motif region was used as a probe in the Southern blot. The 550 bp fragment was subcloned into pBluescript SK- by removing the 5' and 410 bp PstI fragment from the cDNA clone, pAthb-12, and self-ligating the plasmid, resulting in plasmid pAthb12-1. The fragment was labelled with $[\alpha^{-32}P]dCTP$ using the random labelling kit (Boehringer Mannheim). Hybridization was done at 55 °C in QuikHyb solution as recommended by the manufacturer (Stratagene). After hybridization overnight, the DNA filters were washed as described for cDNA library screening. Each digestion with the restriction enzymes produced a single signal

(Figure 2), suggesting that Athb-12 gene is a singlecopy gene in A. thaliana.

Deduced amino acid sequence comparisons

Computer-assisted search through NCBI databases revealed that the deduced protein sequence of Athb-12 contains a homeodomain (amino acids 26-86) and a leucine zipper motif (amino acids 87-122) (Figure 3). When compared to the available HD-Zip family protein sequences, the Athb-12 protein shares the highest homology with Athb-7 protein: 82%/93% and 80%/89% (identity/similarity) in homeodomain and leucine zipper motif, respectively (Figure 3). We therefore propose that these genes are members of a related gene family. Several related HD-Zip family genes have been identified from Arabidopsis. Arabidopsis Athb-2 and Athb-4 genes, which have a high amino acid identity (89%) in the HD-Zip motif region, seem to regulate morphological adaptations to changes in light quality [5, 6]. Also, two other related genes, Arabidopsis KNAT1 and KNAT2, which encode proteins with 80% amino acid identity in the homeodomain, may play a role in leaf morphogenesis [18]. Outside the homeodo-

Figure 4. Northern blot analysis of Athb-12 mRNA expression in Arabidopsis thaliana. Total RNA samples of Arabidopsis thaliana seedling (3 days old), root, stem, leaf and flower were isolated using RNeasy Plant Total RNA Isolation Kit (Qiagen). RNA was denatured in 1× MOPS buffer (20 mM MOPS, 8 mM sodium acetate, 1 mM EDTA), 50% (v/v) deionized formamide and 2.2 M formaldehyde at 65 °C for 15 min and fractionated by electrophoresis on a 1% agarose gel containing 2.2 M formaldehyde and 1× MOPS buffer. RNA was capillary-blotted in 10× SSC onto a Hybond-N membrane (Amersham). The filter was prehybridized in QuikHyb solution (Stratagene) containing 0.2 mg/ml salmon sperm DNA at 55 °C for 1 h. The probe used was the radiolabeled 550 bp Xbal-XhoI fragment of the 3' end of Athb-12 cDNA, which does not contain homeodomain and leucine zipper motifs. Hybridization was carried out at 55 °C. After hybridization overnight, the RNA filters were washed as described for the cDNA library screening in the text. Each lane contains 10 μ g of total RNA. The position of Athb-12 (0.96 kb) is indicated (arrow), as are the positions of the ethidium-stained rRNAs (25S and 18S).

main and leucine zipper motif, the homology between Athb-12 and Athb-7 proteins is significantly lower.

Figure 3 shows the alignment of the homeodomain and leucine zipper motif of Athb-12 with the corresponding amino acid sequences of the published plant sequences. The amino acid sequences of the HDs are more similar to each other than to the leucine zipper motifs. This feature has also been usually observed in other HD-Zip family proteins. All of these proteins showing a high homology to Athb-12 belong to the class I HD-Zip family. Based on their sequence homology, the HD-Zip proteins have been tentatively grouped into four different families, named HD-Zip I, II, III and IV [21, 35]. The homeodomain in Athb-12 possesses the four invariant amino acid residues found in all the homeodomains of higher eukaryotes [34] as well as five out of the eight highly conserved residues [10].

The leucine zipper motif lies adjacent to the C-terminal side of the homeodomain of Athb-12. The

Figure 5. Northern blots showing the effect of water stress on the accumulation of Athb-12 mRNA. Each lane contains 10 μ g of total RNA from Arabidopsis thaliana plants raised under standard growth conditions for 14 days and then treated with water-stress. Seeds of Arabidopsis thaliana (columbia ecotype) were surface-sterilized in a 70% ethanol for 15 s and then in 10% chlorox solution for 10 min, followed by at least five rinses in sterile distilled water. The seeds were plated on 30 ml solidified 0.8% agar plates containing 0.5 × MS medium [27] supplemented with 1.5% sucrose. They were grown in a culture room at 25 °C with a 16 h photoperiod for 14 days before water stress treatment. Isolation of total RNA from whole plants and northern blot were done as described for Figure 4. C represents untreated control plants. A. RNAs from control plants or plants harvested 1 (D1), 2 (D2), 3 (D3), and 4 (D4) days after exposure to water stress were probed with the 3'-specific probe of Athb-12 cDNA. B. Blot A was reprobed with a 3'-specific probe of Athb-7 after removing the Athb-12 probe. The Athb-7 cDNA fragment, which does not contain homeodomain and leucine zipper motifs, was amplified by using the Athb-7-specific primers (5' primer, 5'-AAAGAGGCGACGCAAAAGAAGA'-3 and 3', primer, 5'-CTACTTAGCTACAAAGCATGACGAG-3'). The PCR products were subcloned into pGEM-T vector (Promega) and verified by sequencing analysis. The positions of the Athb-12 (0.96 kb) and Athb-7 (1.17 kb) are indicated (arrow). C. The photograph of ethidium bromide-stained rRNAs (25S and 18S).

leucine zipper motif is known to form an amphipathic α -helix with a series of leucine residues spaced by exactly seven amino acid residues and to be responsible for dimerization to juxtapose a pair of target DNA contacting surface [4]. Recently, it has been shown that the HD-Zip family proteins Athb-1 and Athb-2 recognize dyad-symmetric DNA sequences as homodimers formed via dimerization of the leucine zipper [36]. Therefore, the presence of a homeodomain and a leucine zipper motif in the Athb-12 suggests that Athb-12 encodes a DNA-binding protein which may also exist as a dimer.

Figure 6. Northern blot analysis showing the effect of exogenously applied plant hormones on the accumulation of Athb-12 and Athb-7 mRNAs. The sterilized seeds of Arabidopsis thaliana (Columbia ecotype) were placed in 50 ml liquid MS medium supplemented with 1.5% sucrose and grown on a rotary platform for 14 days before hormone treatment. Treatments with hormones were performed by addition of the plant hormones abscisic acid (ABA), gibberellic acid (GA₃), indole-acetic acid (IAA), kinetin or a combination of ABA + GA3 or IAA + kinetin to liquid cultures to the final concentration of $10 \,\mu\text{M}$. Samples were harvested after treatment for 72 h. Isolation of total RNA from seedlings and northern blot were done as described for Figure 4. Each lane contains 10 μ g of total RNA. Lane 1 is a MS medium-treated control sample without hormone treatments. A. The blot was hybridized with the 3'-specific probe of Athb-12 cDNA. C. The blot was hybridized with the 3'-specific probe of Athb-7 cDNA. The positions of the Athb-12 and Athb-7 are indicated (arrow). B and D. The photographs of ethidium bromide-stained rRNAs (25S and 18S).

Expression of the Athb-12 gene in different organs

To determine the expression pattern and size of Athb-12 transcript in different organs of Arabidopsis, we conducted a RNA gel blot hybridization analysis using the 3'-specific cDNA probe of Athb-12. This probe does not contain the homeodomain and leucine zipper region. Figure 4 shows that a single band of ca. 0.96 kb transcript is detected in mRNAs isolated from all organs such as root, stem, leaf and flower as well as seedling. The Athb-7 gene has also been reported to be expressed in all organs of plant [40]. The estimated

Figure 7. The time courses of accumulation of the Athb-12 and Athb-7 mRNAs in response to ABA. A 10 μ g portion of total RNA samples isolated from Arabidopsis seedling grown in liquid cultures for 14 days and then treated with ABA was used in each lane. The final concentration of $10~\mu$ M ABA was added into the liquid medium and samples were harvested at the indicated times (0 min, 30 min, 1 h, 2 h, 4 h, 6 h, 8 h, 12 h, and 24 h) after treatment with ABA. Isolation of total RNA from seedlings and northern blot were done as described for Figure 4. A. The blot was hybridized with the 3'-specific probe of Athb-12 cDNA B. The blot in A was reprobed with a 3'-specific probe of Athb-7 after removing the Athb-12 probe. The positions of the Athb-12 and Athb-7 are indicated (arrow). C. The photograph of ethidium bromide-stained rRNAs (25S and 18S).

size of the *Athb-12* transcript closely agrees with the size of the *Athb-12* cDNA.

Effect of water stress and ABA on the accumulation of Athb-12 mRNA

Athb-7 mRNA is induced by environmental stress such as drought and exogenous ABA [39]. Since the similar expression pattern and the high amino acid sequence homology between Athb-12 and Athb-7 observed, we tested whether Athb-12 is induced by water stress. Exposure to water stress was done by removing the lid of the tissue culture plates and letting the plantlets to air-dry for the times indicated. The level of Athb-12 mRNA increased in response to water stress under our experimental conditions (Figure 5A). The higher level of accumulation was detected after 4 days of treatment by air drying (Figure 5A). When the plants were treated for 5 days of air drying, they were too dry to isolate RNA samples (not shown). The conditions of water stress treatment were tested by reprobing the same RNA blots with a cDNA fragment derived from the Athb-7 gene, described as a drought-inducible gene, after removing the Athb-12 probe. The level of Athb-7

transcript also increased in response to these waterstress conditions (Figure 5B). These results strongly suggest that the accumulation of *Athb-12* mRNA is regulated by water status of the plant.

Many drought-inducible genes have been shown to be responsive to exogenous ABA [11, 12, 13, 26, 43]. We examined the effect of exogenous ABA on the expression of Athb-12 by RNA gel blot analysis. The expression level of Athb-12 increased in response to exogenous ABA, as compared to the MS mediumtreated control without ABA (Figure 6A, lanes 1 and 4). We also examined the effects of other plant hormones, gibberellic acid (GA3), indoleacetic acid (IAA) and the cytokinin kinetin, on the expression of Athb-12. Treatment with these hormones did not result in a significant change in the expression level of Athb-12 under our experimental conditions (Figure 6A, lanes 2, 3 and 5). The Athb-12 mRNA level also increased by the combination of ABA and GA3, but not by the combination of IAA and kinetin (Figure 6A, lanes 6 and 7). To establish whether the concentrations and activities of the hormones are effective under our experimental conditions, the RNA gel blot was stripped and reprobed with a cDNA fragment derived from Athb-7 gene described as an ABA-inducible gene. As we expected, the Athb-7 transcript was induced by ABA but not by other hormones, consistent with that of Athb-12 (Figure 6C).

We further examined the time course of accumulation of Athb-12 mRNA in response to exogenous ABA. The expression of Athb-12 transcript was strongly induced within 30 min after ABA treatment (Figure 7A). The transcript level reached a maximum at 1 h and then gradually decreased until 24 h (Figure 7A). To compare the time course of the Athb-12 and Athb-7 responses to ABA, the same RNA blots were reprobed with Athb-7 gene. The induction pattern of Athb-7 in response to ABA differed from that of Athb-12 (Figure 7A and B). A significantly increased level of Athb-7 mRNA was observed after 1 h of ABA treatment and reached a maximum at 4 h (Figure 7B). These results suggest that both genes in response to ABA are regulated in different manners.

Taken together we propose that Athb-12 and Athb-7 proteins are involved in the plant's response to water stress in different manners. Most of the homeobox genes identified in plants have been reported to be responsible for the development of plant. However, Athb-12 appears to be involved in environmental stress signaling such as water stress. It can serve as a useful model system to study the functions of homeo-

box genes in the plant's responses to environmental stresses.

Acknowledgements

We thank Dr Hyeonsook Cheong (Department of Genetic Engineering, Chosun University) for a generous gift of the *Arabidopsis thaliana* seeds (Columbia ecotype). We also thank Dong-Ho Shin for his help in growing *Arabidopsis* and Dr Pill Soon Song and Dr Kyung-Hwan Han for critical reading of the manuscript and helpful comments.

Kumho Life and Environmental Science Laboratory Publication No. 9.

References

- Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G: The expression of the *Athb-8* homeobox gene is restricted to provascular cells in *Arabidopsis thaliana*. Development 121: 4171–4182 (1995).
- Bartels D, Scheneider K, Terstappen G, Piatkowski D, Salamini F: Molecular cloning of abscisic acid-modulation genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181: 27-34 (1990).
- Bürglin TR: A comprehensive classification of homeobox genes. In: Duboule D (ed) Guidebook to the Homeobox Genes, pp. 27-71. Oxford University Press, Oxford (1994).
- Busch SJ, Sassone-Corsi P: Dimers, leucine zippers and DNAbinding domains. Trends Genet 6: 36-40 (1990).
- Carabelli M, Morelli G, Whitelam G, Ruberti I: Twilight-zone and canopy shade induction of the Athb-2 homeobox gene in green plants. Proc Natl Acad Sci USA 93: 3530-3535 (1996).
- Carabelli M, Sessa G, Baima S, Morelli G, Rubert I: The Arabidopsis Athb-2 and -4 genes are strongly induced by farred-rich light. Plant J 4: 469-479 (1993).
- 7. Chan RL, Gonzalez DH: A cDNA encoding an HD-Zip protein from sunflower. Plant Physiol 106: 1687–1688 (1994).
- Chen THH, Gusta LV: Abscisic acid induced freezing resistance in cultured plant cells. Plant Physiol 73: 71-75 (1983).
- Cristina MD, Sessa G, Dolan L, Linstead P, Baima S, Ruberti I, Morelli G: The *Arabidopsis Athb-10* (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant J 10: 393–402 (1996).
- Gehring WJ, Muller M, Affolter M, Percival-Smith A, Billeter M, Qian YG, Otting G, Wuthrich K: The structure of the homeodomain and its functional implication. Trends Genet 6: 323-329 (1990).
- Gosti F, Bertauche N, Vartanian N, Giraudat J: Abscisic aciddependent and -independent regulation of gene expression by progressive drought in *Arabidopsis thaliana*. Mol Gen Genet 246: 10-18 (1995).
- Hong SW, Jon JH, Kwak JM, Nam HG: Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in the Arabidopsis thaliana. Plant Physiol 113: 1203-1212 (1997).

- Ishitani M, Nakamura T, Han SY, Takabe T: Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol 27: 307-315 (1995)
- Joshi CP: Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucl Acids Res 15: 9627-9640 (1987).
- Kawahara R, Komanine A, Fukuda H: Isolation and characterization of homeobox-containing genes of carrot. Plant Mol Biol 27: 155-164 (1995).
- Kirch HH, Berkel Jv, Blaczinski H, Salamini F, Gebhardt C: Structural organization, expression and promoter activity of a cold-stress-inducible gene of potato (Solanum tuberosum L.). Plant Mol Biol 33: 897-909 (1997).
- LaRosa PC, Hasegawa PM, Rhodes D, Clithero JM, Watad A, Bressan RA: Abscisic acid stimulated osmotic adjustment and its involvement in adaptation of tobacco cells to NaCl. Plant Physiol 85: 174–181 (1987).
- Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S: A knotted1-like homeobox gene in *Arabidopsis* is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plant. Plant Cell 6: 1859–1876 (1994).
- Lütcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA: Selection of AUG initiation codons differs in plants and animals. EMBL J 6: 43-48 (1987).
- Mattsson J, Söderman E, Svenson M, Borkird C, Engström
 P: A new homeobox-leucine zipper gene from Arabidopsis thaliana. Plant Mol Biol 18: 1019–1022 (1992).
- Meijer AH, Scarpella E, van Dijk EL, Qin L, Taal AJC, Rueb S, Harrington SE, McCouch SR, Schilperoort RA, Hoge JHC: Transcriptional repression by Oshox1, a novel homeodomain leucine zipper protein from rice. Plant J 11: 263-276 (1997).
- Meissner R, Theres K: Isolation and characterization of the tomato homeobox gene TOM1. Planta 195: 541-547 (1995).
- Merlot S, Giraudat J: Genetic analysis of abscisic acid signal transduction. Plant Physiol 114: 751-757 (1997).
- Moon YH, Choi DS, Kim JC, Han TJ, Cho SH, Kim WT, Lee KW: Isolation and characterization of a homeodomain-leucine zipper gene, Gmh1, from soybean somatic embryo. Mol Cells 6: 366-373 (1996).
- Moons A, Keyser AD, Montagu MV: A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene 191: 197–204 (1997).
- Mundy J, Chua NH: Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7: 2279–2286 (1988).
- Murashige T., Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497 (1962).
- 28. Newman T, de Bruijin FJ, Green P, Keegstra K, Kende H, McIntosh L, Ohlrogge J, Raikhel N, Somerville S, Thomashow M, Retzel E, Somerville C: Genes galore: a summary of methods for accessing results from large-scale partial sequence-

- ing of anonymous *Arabidopsis* cDNA clones. Plant Physiol 106: 1241–1255 (1994).
- Plesch G, Störmann K, Torres JT, Walden R, Somssich IE: Developmental and auxin-inducible expression of the Arabidopsis prha homeobox gene. Plant J 12: 635-647 (1997).
- Ruberti I, Sessa G, Lucchetti S, Morelli G: A novel class of plant proteins containing a homeodomain with a closely linked leucine zipper motif. EMBO J 10: 1787-1791 (1991).
- Schena M, Davis RW: HD-Zip proteins: Members of an Arabidopsis homeodomain protein superfamily. Proc Natl Acad Sci USA 89: 3894–3898 (1992).
- Schena M, Davis RW: Structure of homeobox-leucine zipper genes suggests a model for the evolution of gene families. Proc Natl Acad Sci USA 91: 8393–8397 (1994).
- Schena M, Lloyd AM, Davis RW: The HAT4 gene of Arabidopsis encodes a developmental regulator. Genes Devel 7: 367-379 (1993).
- Scott MP, Tamkun JW, Hartzell III GW: The structure and function of the homeodomain. Biochim Biophys Acta Rev Cancer 989: 25-48 (1989).
- Sessa G, Carabelli M, Ruberti L, Lucchetti S, Beima S, Morelli G: Identification of distinct families of HD-ZIP proteins in Arabidopsis thaliana. In: Puigdomenech P, Coruzzi G (eds) Molecular Genetic Analysis of Plant Development and Metabolism, pp. 411-426. Springer-Verlag, Berlin (1994).
- Sessa G, Morelli G, Ruberti L: The Athb-1 and -2 HD-Zip domains homodimerize forming complexes of different DNA binding specificities. EMBO J 12: 3507-3517 (1993).
- Shinozaki K, Yamaguchi-Shinozaki K: Molecular responses to drought and cold stress. Curr Opin Biotechnol 7: 161-167 (1996).
- Shinozaki K, Yamaguchi-Shinozaki K: Gene expression and signal transduction in water-stress response. Plant Physiol 115: 327–334 (1997).
- Söderman E, Mattsson J, Engström P: The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J 10: 375–381 (1996).
- Söderman E, Mattsson J, Svenson M, Borkird C, Engströn P: Expression patterns of novel genes encoding homeodomain leucine-zipper proteins in *Arabidopsis thaliana*. Plant Mol Biol 26: 145–154 (1994).
- Strizhov E, Ábrahám E, Ökrész L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L: Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12: 557-569 (1997).
- Tornero P, Conejero V, Vera P: Phloem-specific expression of a plant homeobox gene during secondary phases of vascular development. Plant J 9: 639-648 (1996).
- Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K: An *Arabidopsis myb* homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5: 1529–1539 (1993).

The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis

Anna S.B. Olsson, Peter Engström and Eva Söderman*

Department of Physiological Botany, Evolutionary Biology Centre, University of Uppsala, Villavägen 6, SE-752 36 Uppsala, Sweden (*author for correspondence; e-mail Eva.Soderman@ebc.uu.se)

Received 26 March 2004; accepted in revised form 22 July 2004

Key words: abscisic acid, abi1/abi2 mutants, Arabidopsis thaliana, homeodomain, leucine-zipper, transcription factor

Abstract

The Arabidopsis thaliana homeodomain leucine-zipper gene ATHB7, which is active specifically under water deficit conditions, is proposed to act as a negative regulator of growth (Söderman et al., 1996, Plant J. 10: 375-381; Hjellström et al., 2003, Plant Cell Environ 26: 1127-1136). In this report we demonstrate that the paralogous gene, ATHB12, has a similar expression pattern and function. ATHB12, like ATHB7, was upregulated during water deficit conditions, the up-regulation being dependent on abscisic acid (ABA) and on the activity of the Ser/Thr phosphatases ABI1 and ABI2. Plants that are mutant for ATHB12, as a result of T-DNA insertions in the ATHB12 gene, showed a reduced sensitivity to ABA in root elongation assays, whereas transgenic Arabidopsis plants expressing ATHB12 and/or ATHB7 as driven by the CaMV 35S promoter were hypersensitive in this response compared to wild-type. High-level expression of either gene also resulted in a delay in inflorescence stem elongation growth and caused plants to develop rosette leaves with a more rounded shape, shorter petioles, and increased branching of the inflorescence stem. Transgenic Arabidopsis plants expressing the reporter gene uidA under the control of the ATHB12 promoter showed marker gene activity in axillary shoot primordia, lateral root primordia, inflorescence stems and in flower organs. Treatment of plants with ABA or water deficit conditions caused the activity of ATHB12 to increase in the inflorescence stem, the flower organs and the leaves, and to expand into the vasculature of roots and the differentiation/elongation zone of root tips. Taken together, these results indicate that ATHB12 and ATHB7 act to mediate a growth response to water deficit by similar mechanisms.

Abbreviations: ABRE, ABA responsive element; ATHB, Arabidopsis thaliana homeobox; CE, coupling element; HDZip, homeodomain leucine-zipper; PP2C, protein phosphatase 2C

Introduction

When grown under water deficit conditions plants respond at the molecular, cellular and physiological level to reduce water loss and develop long-term tolerance to low water availability. Some responses, like the closure of stomata to minimise transpiration, are fast, whereas others, like an overall growth reduction, are slower (Himmelbach

et al., 1998). Plants are exposed to decreased water availability when subjected to drought, cold or high salinity. These conditions cause an increase in the endogenous levels of abscisic acid (ABA), a crucial growth-inhibiting hormone, which controls vegetative growth in response to environmental stress (associated with high levels of endogenous ABA) and acts as a growth promoter in the absence of stress (associated with low levels of

endogenous ABA (Himmelbach et al., 1998; Cheng et al., 2002). ABA also acts as a developmental signal to regulate diverse processes such as seed maturation, seed germination and the general response of vegetative tissues to environmental stress conditions (Zeevaart and Creelman, 1988; McCarty, 1995; Leung et al., 1998).

A number of mutants have identified genetic loci involved in ABA biosynthesis and perception. Their pleiotropic phenotypes demonstrate the importance of ABA and the complexity of the regulatory networks in which ABA is involved (for recent reviews see Finkelstein et al., 2002; Fedoroff, 2002). In Arabidopsis the ABA insensitive mutants abi1, abi2, abi3, abi4 and abi5 germinate on medium with ABA at concentrations that are inhibitory to wild-type (Kornneef et al., 1984; Finkelstein, 1994). The abi3, abi4 and abi5 mutants have reduced ABA responses that are mainly restricted to seed development, whereas the abil and abi2 mutants affect ABA sensitivity both in the seed and in the vegetative parts of the plant. ABI1 and ABI2 encode related serine/ threonine protein phosphatases (PP2C; Leung et al., 1994, 1997; Meyer et al., 1994; Bertauche et al., 1996) suggested to act as negative regulators of ABA signalling (Gosti et al., 1999; Merlot et al., 2001). The dominant abi1-1 and abi2-1 mutants, with base pair substitutions at equivalent positions in the PP2C encoding domains of each gene, exhibit similar phenotypic alterations, including reduced ABA sensitivity during seed germination and root elongation, reduced seed dormancy and an altered ABA response of stomata, as compared to wild-type (Koornneef et al., 1984; Finkelstein and Sommerville, 1990; Leung et al., 1997). Putative abil and abi2 loss-of-function mutations, referred to as abi1-1R1-abi1-1R7 and abi2-1R1, are recessive intragenic suppressor mutations, and cause plants to be ABA hypersensitive (Gosti et al., 1999; Merlot et al., 2001). By similar screens, mutants with enhanced sensitivity to ABA, have also been identified (reviewed by Finkelstein et al., 2002).

Among the drought, cold, high salinity and/or ABA induced genes that encode transcription factors, a few have been shown to bind to cisacting elements of stress induced genes. This group includes members of the drought/cold response element binding protein (DREB/CBF) class (Stockinger et al., 1997; Liu et al., 1998) of

the AP2 family; the ABA response element binding protein class (AREB/ABF) of the bZIP family (Choi et al., 2000; Uno et al., 2000; Kang et al., 2002); and the MYB and MYC families (Abe et al., 1997, 2003; Gilmour et al., 1998; Chinnusamy et al., 2003). Other stress induced transcription factor genes have also been identified (Seki et al., 2002a, b). This group includes genes that encode homeodomain leucine-zipper (HDZip) proteins.

The HDZip gene family in Arabidopsis includes 42 genes (Arabidopsis Genome Initiative, 2000). HDZip proteins interact as dimers by their leucinezippers domains, and bind DNA sequence specifically via their homeodomains (Sessa et al., 1993; Aoyama et al., 1995; Meijer et al., 1997; Frank et al., 1998; Johannesson et al., 2001). Based on sequence criteria, the HDZip proteins have been grouped into four classes (Sessa et al., 1994). Functional data available on a subset of the class I and II genes have shown a number of them to be involved in developmental reprogramming in response to changes in environmental conditions. The class II genes ATHB2 and ATHB4 are essential for the shade avoidance response (Carabelli et al., 1996; Steindler et al., 1999; Ohgishi et al., 2001). The class I gene ATHB16 is thought to mediate blue-light-responses (Wang et al., 2003) and ATHB13 is suggested to have a role in sucrose signalling (Hanson et al., 2001). The class I genes ATHB5, ATHB6 and ATHB7 are suggested to regulate aspects of the plant response to ABA. The expression pattern of ATHB5 in seedlings is altered in response to ABA treatment, and transgenic Arabidopsis plants that express ATHB5 at high levels have an enhanced sensitivity to the inhibitory effects of ABA on germination and seedling growth (Johannesson et al., 2003). ATHB6, ATHB7 and ATHB12 are implicated in the plant response to water deficit as deduced from their transcriptional induction by water deficit conditions or ABA treatment (Söderman et al., 1996 and 1999; Lee and Chun, 1998). High-level expression of ATHB6 confers a reduced ABA sensitivity to germinating seeds and stomata in transgenic Arabidopsis plants (Himmelbach et al., 2002). The growth pattern of transgenic plants with high-level expression of ATHB7 during normal growth conditions, mimics the phenotype of wild-type plants grown under water limiting conditions, with reduced elongation of the

inflorescence stem and rosette leaves (Hjellström et al., 2003). The phenotypes of transgenic plants with constitutive high-level expression of ATHB6 or ATHB7 support the notion that the genes have water deficit response functions.

In this report we describe the functional characterisation of ATHB12 in Arabidopsis. ATHB12 is closely related to ATHB7, the two genes sharing over 80% identity in the deduced amino acid sequence of their HDZip motives and a common intron-exon organisation, distinct from other members of the HDZip class I. In contrast to other class I HDZip proteins, ATHB12 and ATHB7 do not bind in vitro to the class I consensus binding sequence CAATNATTG in electrophoretic mobility shift assays (Johannesson et al., 2001). Our data show that ATHB12 and ATHB7 both act as growth regulators in response to water deficit conditions by similar mechanisms.

Materials and methods

Growth conditions and treatments of plants

Seeds were surface sterilised in 35% chlorine and 0.2 % Tween 20 (v/v), washed in sterile distilled water several times and plated on 0.8% (w/v) agar, 0.5 × MS medium (Murashige and Skoog, 1962; Duchefa Biochemie B. V., Haarlem, the Netherlands) supplemented with 1% sucrose in petri dishes. Seeds were cold treated for 2 days at 4 °C in darkness, transferred to continuous cool light (70 μ Em²s) at 21 °C, germinated and grown for 10 days. Plants to be studied at later stages were transferred to a mixture of soil and vermiculite (1:1) and grown with a photoperiod of 8 h darkness/16 h light at 100 μ Em²s.

For ABA treatments, seeds were germinated and grown according to Gosti et al. (1999) on sucrose free medium containing 0.5 × MS (Murashige and Skoog, 1962). ABA (mixed isomers; Sigma) was diluted from a 50 mM stock solution prepared in 70% ethanol and equivalent volumes of ethanol were included in all samples.

Seedlings exposed to water deficit conditions were left on the growth plate with the lid off for approximately 24 h. In experiments with adult plants seeds were germinated and grown for 10 days on 0.5 × MS supplemented with 1% sucrose and transferred to soil. Water deficit

conditions were induced by withholding of water after transfer to soil.

For test of other stress conditions, 10-14-day-old seedlings were exposed to $50\mu M$ ACC (amino-cyclopropane-carboxylic acid) for 6 h or low temperature (4 °C) for 12 h. Three weeks old plants were completely flooded for 1, 4 or 8 h. Adult plants were mechanically wounded and analysed after 24 h, innoculated with *Pseudomonas syringae* and analysed after 1, 2, 3 or 4 h, treated with 1 mM SA (salicylic acid) for 12 h or with $150 \mu M$ MeJA (methyl jasmonate) for 48 h.

For root elongation assays, seeds were germinated and grown on vertical plates for four days on ABA-free medium in continuous light and thereafter transferred to vertical plates supplemented with ABA at 0, 0.1, 1, 5, 10, 50 or $100\mu M$. After four additional days, root growth was measured.

Germination was scored as radicle emergence after two days in continuous light on sucrose free $0.5 \times MS$ medium containing 0, 0.25, 0.5, 0.75, 1 or $2 \mu M$ ABA.

The time of flowering was recorded by a stereomicroscope, as the time point of appearance of flower meristems.

RNA gel blot analysis

Total RNA was isolated according to the protocols of Chang et al. (1993) or Verwoerd et al. (1989). About $10 \mu g$ samples of total RNA ($20 \mu g$ in the experiments shown in Figure 1A) were loaded onto 1% agarose gels containing formaldehyde, subjected to electrophoresis and blotted to nylon membranes (Hybond-XL, Amersham Pharmacia Biotech, Uppsala Sweden). These membranes were pre-hybridised, hybridised, washed and stripped according to the manufacturer's instructions. Probes were labelled with $[\alpha^{-32}P]$ dCTP (3000 Ci/mmol, Amersham) using the Megaprime DNA Labelling Kit (Amersham). The final washes were conducted in $0.1 \times SSC$, 0.1%(w/v) SDS at 65 °C. The ATHB12 probe used was a 350 bp PCR fragment amplified by use of the following 5'-CGCGGATCCGAprimers: CTAAACGAAGAGATGCAAAGGC-3' and 5'-CGCGGATCCGCTTTTATGACCAAAACTCCC ACC-3'. The ATHB7 probe was a 516 bp HindII-AccI fragment from the ATHB7 cDNA. A uidA specific probe was PCR amplified with the

Figure 1. Water deficit induction of ATHB12 depends on abscisic acid, ABI1 and ABI2. RNA gel blot analyses of RNA samples extracted from 10-day-old: (A) Ler (wt) and ABA deficient aba1-3 seedlings treated with control solution, 100 mM NaCl for four hours or exposed to water deficit conditions that resulted in approximately 50% water loss; (B) Ler, aba1-3, abi1-1, abi2-1, abi3-1 (all in Ler background), Col (wild-type background to abi4-1), abi4-1, Ws (wild-type background to abi5-1) and abi5-1 seedlings non-treated (-) or treated with 10 μM ABA for four hours (+); (C) abi1-1R4/abi2-1R1, abi1-1R5/abi2-1R1, abi1-1R4, abi1-1R5, abi2-1R1, Ler (wt), abi1-1 and abi2-1 exposed to 10 μM ABA for 0, 1, 4 or 8 h as indicated. The gels were blotted to filters that were subjected to hybridisation of gene specific probes corresponding to ATHB12, ATHB7 and control probes, consecutively. The bottom panels in A and B show ethidium bromide stained RNA gels before blotting, as a control for equal loading of RNA. Interpretations from results in C are based on quantitative data normalised to the hybridisation signal from the control probe and from results from repeated experiments. The control probe was an 536 bp EcoRI fragment of the ribosomal gene AtL18 (Baima et al., 1995).

following primers: 5'-TGATGTCAGCGTTGAAC-TGCG-3' and 5'-TCAGCGTAAGGGTAATGC-GAGG-3'. An *Eco*RI fragment corresponding to 563 bp of the ribosomal gene *AtL18* was used as probe in control hybridisations (Baima *et al.*, 1995). The hybridisation results were visualised and quantified using a BAS2000 Image Plate Reader (Fuji Photo Film, Tokyo, Japan).

Screening T-DNA insertion libraries for athb12-mutants

An athb12-1 mutant was isolated, from the CD6-7 DNA pool by use of PCR (Arabidopsis Biological Resource Center, ABRC, Ohio State University, Columbus, USA), with the use of the following primers: T-DNA left border; 5'-CATCGG-TCTCAATGCAAAAGGGGAACG-3'; T-DNA right border; 5'-ACGTCGTGATGGGAAAAC-CTGGCGTTAC-3'; ATHB12 forward primer; 5'-GCTGTTTCAGCGAGATTAGTAGTG-3';

ATHB12 reverse primer; 5'-AGCAATTACCCT-AACTGGTG-3'.

The athb12-2 and -4 mutants were isolated from the Wisconsin activation tagging T-DNA BASTA-collections and athb12-3 from the Wisconsin ALPHA-collection (http://www.biotech.wisc.edu/) according to Krysan et al. (1999) using the T-DNA primer JL202; 5'-CA-TTTTATAATAACGCTGCGGACATCTAC-3', the ATHB12 specific forward; 5'-AAACTGAAA-GAGACATGAGCCAATTCGTG-3' and reverse; 5'-CAAACTATTCACACTCTTTCTCTTCGCT-T-3' primers.

Using Southern blot, positive PCR products that hybridised to the ATHB12 cDNA were identified. The PCR products were cloned and sequenced to determine the position of the T-DNA insertion. The corresponding athb12-mutant plants were identified according to the protocol described by Krysan et al. (1999). Plant lines showing 100% growth on 50 µg/ml kanamycin or

8 mg/ml Basta were back-crossed to wild-type and F2 plants with 3:1 segregation on selective medium were isolated for propagation of homozygous mutant plants and further analyses.

Generation of transgenic plants with high-level expression of ATHB12

An ATHB12 cDNA fragment was isolated from EST 157L22T7 (ABRC), cut with BamHI and BglII and ligated in the sense orientation into the BamHI site downstream of the CaMV 35S promoter in pHTT202 vector (Elomaa et al., 1993), confirmed by sequencing and transferred to Agrobacterium tumefaciens strain C58::pGV2260 by triparental mating.

Transformation of Arabidopsis thaliana ecotype Wassilevskija (Ws) and 35S::ATHB7 sense transformants in Ws background (the M4 line described by Hjellström et al., 2003) was performed using an infiltration technique (Clough and Bent, 1998). Independent lines segregating 1:3 on selective medium in the F2 generation were propagated to give homozygous seeds.

Generation of ATHB12 promoter-uidA fusion constructs, and GUS assays

Approximately 240 000 plaques from an Arabidopsis ecotype Columbia (Col) genomic library, constructed in \(\lambda \text{EMBL3}\) SP6/T7 were screened according to standard protocols (Sambrook et al., 1989) with a gene specific *PstI-BamHI* fragment of the ATHB12 cDNA as probe. A 3.5 kb SaII genomic DNA fragment was subcloned into the pBluescript SK + vector (Stratagene, La Jolla, CA) from which a 3.2 kb HindIII-PstI fragment was isolated and fused in frame with the uidA gene (Jeffersson et al., 1987) in the pBI101.1 binary vector (Clontech, Palo Alto, CA, USA), resulting in a translational fusion between ATHB12 and the reporter gene. Correct identity of the construct was confirmed by sequencing using an ABI automated sequencer (Perkin-Elmer, Norwalk, CT). The plasmid was transferred to A. tumefaciens strain GV3101, with the helper plasmid pMP90 by triparental mating and to Arabidopsis ecotype Ws by use of vacuum infiltration (Clough and Bent, 1998). Nine independent lines that segregated 3:1 on $50 \,\mu\text{g/ml}$ kanamycin in the T2 generation were generated. 10-day-old ABA treated homozygous T3 seedlings from these nine lines and flowers from plants grown under normal conditions were assayed for GUS activity in situ. Three representative lines were selected for detailed histochemical analyses with 5-bromo-4-chloro-3-indolyl- β -Dglucuronide (X-gluc) as described by Jefferson et al. (1987). Stained tissues were cleared in ethanol or essentially according to the protocol of Berleth and Jürgens (1993); chloral hydrate being substituted by 8 M NaOH for incubation over night, followed by a treatment with 0.1 M potassium phosphate buffer, pH 7.5. GUS stained plants were fixed in 4% formaldehyde and 0.1 M PIPES buffer according to Di Laurenzio et al. (1996), embedded in epoxiplast (TAAB 812) and sectioned to 2 μ m. The plants were photographed with interference contrast microscopy or normal light stereomicroscopy.

Results

Water deficit induced transcription of ATHB12 is dependent on abscisic acid, ABI1 and ABI2

Arabidopsis seedlings, when exposed to water deficit stress conditions or high salinity, show a distinct increase in the level of ATHB12 transcript (Figure 1A, Lee and Chun, 1998). Similar or higher increases in transcript levels are observed in seedlings treated with ABA (Figure 1B, Lee and Chun, 1998) whereas treatment with MeJA, SA, ACC or exposure to chilling, flooding, inoculation of the pathogen P. syringae or wounding did not affect ATHB12 transcript levels (data not shown). The specificity in the transcriptional response suggests that ATHB12 has a role in ABA regulated water stress responses.

In the ABA-deficient mutant, aba1-3, the ATHB12 transcript level in plants exposed to water deficit or NaCl treatment did not differ from the non-treated control plants (Figure 1A). In contrast, aba1-3 plants responded to exogenously applied ABA by an increase in ATHB12 transcript levels similar to that in the wild-type (Figure 1B). These findings show that the transcriptional response of ATHB12 to water deficit is dependent on ABA.

As shown in Figure 1B the transcriptional response of ATHB12 to ABA was reduced in the ABA response mutants abi1-1 and abi2-1, whereas

the response in the abi3-1, abi4-1 and abi5-1 mutants did not differ reproducibly from the wild-type response. Figure 1B also demonstrates that the transcriptional response of ATHB7 to ABA in the ABA synthesis and the ABA response mutants, was very similar to that of ATHB12. The ABA induction of ATHB7 was reduced in abi1-1 (Figure 1B) as well as in abi2-1. The reduction in the transcriptinal response of both genes was more pronounced in abi1-1 than in abi2-1, and the reduction in the ATHB12 response was more severe than that of ATHB7 in both mutants.

The ABA induced increases in transcript levels of both ATHB12 and ATHB7 in the wild-type were initiated within one hour and reached a maximum at 4 h after the ABA application (Figure 1C). In abil-1 and abi2-1 the ABA induction of ATHB12 and ATHB7 showed similar timecourses as in the wild-type, but the levels of induction were reduced. In the putative loss off function abil and abi2 mutants; abil-1R4, abi1-1R5, abi2-1R1, abi1-1R4/abi2-1R1 and abi1-1R5/abi2-1R1 the time course of ATHB12 and ATHB7 induction was also similar to wild-type. The level of induction of ATHB12 in these mutant varied between experiments, but was consistently lower than in the wild-type. In the single abi1-1R4, abi1-1R5 and abi2-1R1 mutants the ATHB12 mRNA levels were reduced by 15-50% and in the corresponding double mutants by 20-65% as compared to wild-type. The transcriptional response of ATHB7 to ABA, in these mutants plants was similar to that of ATHB12, except that the reduction in the response, as compared to wildtype, was less pronounced (Figure 1C).

athb12 T-DNA insertion mutant plants show a decreased sensitivity to ABA in root elongation assays

Screens of Arabidopsis T-DNA insertion mutant collections for mutants in ATHB12 resulted in four T-DNA insertion lines, referred to as athb12-1, athb12-2, athb12-3 and athb12-4. athb12-1 carries a T-DNA insert (Figure 2A) 900 nucleotides downstream of the transcription start, in the coding sequence at a position corresponding to the C-terminal part of the deduced protein, up-stream of the putative activation domain (Lee et al., 2001). athb12-1 encodes an ATHB12 transcript, which is shorter than the wild-type transcript (Figure 2B),

consistent with the position of the T-DNA insert. This transcript, like the wild-type transcript was inducible by ABA (Figure 2B). The athb12-2, -3 and -4 mutants harbour T-DNA insertions positioned 178, 277 and 413 nucleotides upstream of the transcription start of ATHB12 (Figure 2A). As shown in Figure 2B no ATHB12 transcript can be detected in RNA gel blot analyses of athb12-2 plants treated with 50 µM ABA or non-treated plants. ABA treated athb12-3 and athb12-4 plants produced an ATHB12 transcript, but at levels that were approximately 10% of the wild-type level (data not shown). In all four athb12-mutants, the basal level of ATHB7 mRNA and the ABA induced increase was similar to that in wild-type (Figure 2B).

The four *athb12*-mutants were similar to wildtype plants in large scale morphology when grown under normal or water deficit conditions (data not shown).

In assays for root growth, the four athb12mutants were indistinguishable from wild-type when grown on medium lacking ABA. On medium supplemented with $10 \,\mu\text{M}$ ABA the roots of wildtype seedlings, Col6 and Ws2, grew to approximately 50% of the length of seedlings grown on medium without ABA. Roots of athb12-1 and athb12-2 (Figure 2C), and athb12-3 and athb12-4 (data not shown) responded like the corresponding wild-types to the presence of ABA in the medium, by a reduction in elongation. The response, however was consistently approximately 10% less than the wild-type response. On media containing ABA at 1, 5, 50 or $100 \,\mu\text{M}$, the athb12-mutants showed similar 10% reductions in root sensitivity to ABA (data not shown).

Transgenic plants with high-level expression of ATHB12 and/or ATHB7 show growth patterns similar to those of wild-type plants subjected to water deficit

To further address the function of ATHB12, we transformed wild-type plants with a construct carrying the ATHB12 cDNA in the sense orientation under the control of the 35S CaMV promoter, to generate five independent homozygous single insert 35S::ATHB12 lines. The same 35S::ATHB12 construct was introduced by transformation into M4 plants (Hjellström et al., 2003) which express ATHB7 at increased level, under the

Figure 2. athb12-mutant seedlings are insensitive to ABA. (A) A schematic representation of the positions of the T-DNA insertions in the different athb12-mutants. (B) Transcript levels of ATHB12 and ATHB7 in 10-day-old Col6 (wild-type background to athb12-1) athb12-1, Ws2 (wild-type background to athb12-2) and athb12-2 seedlings, non-treated (-) or treated with (+) $50 \mu M$ ABA for four hours. The bottom panel shows the ethidium bromide stained gel before blotting. (C) Inhibition of root elongation growth of seedlings grown on medium containing $10 \mu M$ ABA. The ABA mediated inhibition of root growth over a four days period was calculated as the ratio between the increment in root length of seedlings treated with ABA and untreated control seedlings. The experiment was repeated three times and evaluated with students t-test with similar results. One of these experiments is presented. The difference between Col6 and athb12-1 and between Ws2 and athb12-2 are statistical significant (p = 0.04 and 0.01 respectively, n = 12-24). Ler, abi1-1 and abi1-1R5/abi2-1R1 were included as internal controls (n < 12). Error bars represent SE.

control of the 35S-promoter to generate seven independent homozygous single insert transformants 35S::ATHB12;7 lines. The ATHB12 mRNA levels in the transformant lines ranged from 5 to 30 times the wild-type non-induced level (data not shown). One 35S::ATHB12 line (12s) and one 35S::ATHB12;7 line (12s7s), which both expressed ATHB12 at a level approximately 26 times the wild-type level under normal growth conditions were selected for further characterisation together with the M4 and one additional 35S::ATHB7 line; S5, which expresses ATHB7 at a higher level (Figure 3A, Hjellström et al., 2003).

To examine whether high-level expression of ATHB12 and ATHB7 affected ABA sensitivity, the germination and root elongation responses to ABA were analysed in the transgenic plants. Root elongation in the transgenic lines did not differ from wild-type in plants grown on medium

without ABA (data not shown). The transgenic plants, however, differed from wild-type in their root growth response to ABA. On medium supplemented with $10 \,\mu\text{M}$ ABA the inhibition of root growth of both 12s and M4 was enhanced; roots developing to approximately 70% of the length of the wild-type roots (Figure 3B). The response of 12s7s roots to ABA was more strongly enhanced and similar to that of S5. On media containing 1, 5, 50 or $100 \,\mu\text{M}$ ABA the 12s and 12s7s plants showed a quantitatively and qualitatively similar enhancement of the ABA-response, as compared to wild-type (data not shown). In assays for germination on ABA supplemented media the transgenic lines did not differ from wild-type (data not shown).

Further, the 35S::ATHB12 and 35S::ATHB-12;7 plants differed from wild-type in the elongation of the inflorescence stem. Compared to wild-

type plants, the inflorescence stem elongation in the different 35S::ATHB12 and 35S::ATHB12;7 plants was delayed by 3-7 days. Among the different 35S::ATHB12 lines, as well as among the 35S::ATHB12;7 lines, the delay in inflorescent stem elongation correlated with the expression levels of ATHB12 (data not shown). The 12s7s plants showed a retardation of stem elongation that was more severe than that of either the M4 or 12s line (Figure 3C). The S5 line, which expresses ATHB7 at approximately twice the level of 12s7s, exhibited a retardation in stem elongation similar to that of 12s7s (Figure 3A and C). The time of flower initiation did not differ significantly from wild-type plants in either of the 12s or 12s7s lines (data not shown).

The petioles of the 12s and M4 plants rosette leaves were shorter than those of the wild-type and the 12s7s and S5 plants had even shorter petioles. The leaf blades of the transgenic lines were also more rounded in shape than the wild-type leaves (Figure 3D). The 12s plants, on average, had one more branch on the inflorescence stem than the wild-type. 12s7s and S5 plants had more than one

Figure 3. Characterisation of transgenic plants with constitutive high-level expression of ATHB12 and/or ATHB7. (A) Gene specific probes corresponding to ATHB12 or ATHB7 (as indicated in the figure) hybridised to a Northern blot membrane containing RNA samples derived from 10-day-old wild-type seedlings (Ws), or transgenic seedlings expressing 35S::ATHB12 (12s), 35S::ATHB7 (M4) or both the 35S::ATHB12 and the 35S::ATHB7 gene constructs (12s7s), and seedlings expressing a different 35S::ATHB7 construct (S5). The bottom panel shows the ethidium bromide stained gel before blotting. (B) Inhibition of root elongation growth by ABA. Growth of seedlings of different genotypes, for four days on media containing ABA at $10\,\mu\text{M}$ ABA, expressed as a fraction of the growth of control seedlings grown on medium without ABA. The abil-1 and abil-1R5/abi2-1R1 seedlings were included as ABA insensitive and ABA hypersensitive controls. The difference in ABA response between wild-type and transgenic plants was demonstrated to be of statistical significance (t-test, p < 0.01). The results are presented as means with error bars representing SE (n = 16-24)from four independent experiments. (C) Inflorescence stem elongation in the different genotypes, represented as means \pm SE (n = 7-12). The lower panel shows a picture of the transgenic lines on day 28 after germination. (D) The fourth rosette leaf from representative individuals of 21-day-old transgenic plants. (E) The mean number of branches on the main inflorescence stem, of 55-day-old plants. Error bars represent SE (n = 20). Mann-Whitney-U test was performed to verify statistical significance.

additional branch compared to M4 and 12s (Figure 3E).

ATHB12 and ATHB7 promoter activities are similarly regulated by ABA and water deficit

A 3.2 kb genomic DNA fragment of ATHB12 containing 2581 nucleotides of the sequence upstream from the transcriptional start site, including the homeobox, the intron and the major part of the sequence corresponding to the leucine zipper, was fused to the reporter gene uidA, and the construct was transformed into Arabidopsis plants.

10-day-old ATHB12::uidA seedlings grown under normal conditions showed GUS staining at low levels in leaf primordia, developing petioles, the basal part of young rosette leaves and in lateral root primordia (Figure 4A). ABA or water deficit treatments caused the staining in these tissues to increase in intensity and induce ATHB12 promoter activity in whole leaves, cotyledons, root vasculature and the root tips (Figure 4B, C and D). The staining in the root tip was mainly localised to the cortex and endodermis of the elongation/differentiation zone (Figure 4D, E and F). In root tip sections, strong GUS staining could be detected in a subcellular pattern, which likely reflects a nuclear localisation of the hybrid protein (Figure 4F), consistent with a nuclear function of ATHB12.

The ATHB12::uidA construct contains eleven putative ABA responsive elements (ABRE; Izawa et al., 1993; Shen and Ho, 1995), and three CE1 elements, two of which are in close proximity to ABREs. The two ABRE-CE1 elements in ATHB12 reside in a sequence of the promoter that is noticeably similar in sequence to a corresponding ATHB7 promoter sequence, which also includes two putative ABRE-CE1 elements (Hjellström et al., 2003). ATHB7::uidA seedlings (Hjellström et al., 2003) grown under normal conditions showed no detectable GUS activity, except in the root tip, in which two zones of weak gene activity on opposite sides of the differentiation/elongation zone of root tips were observed (Figure 4G). After ABA treatment, GUS staining in this region increased in intensity and extended to surround the whole root tip in all cell layers, and showed a subcellular distribution similar to that of the ATHB12-GUS protein (Figure 4H, I, J and K).

GUS staining was also detected in the root vasculature, lateral root primordia, leaf primordia, cotyledons and in young leaves (Figure 4H and I).

Promoter activities of ATHB12 and ATHB7 in adult plants grown under well-watered conditions were high in axillary buds (Figure 4L; Hjellström et al., 2003) and ATHB12 activity was also present in the vasculature of leaves and in inflorescence stems (Figure 4L and N). In the flowers, ATHB12::uidA expression could be detected (Figure 4N) in the expanding gynoecia of young flower buds in stage 5-12 (Smyth et al., 1990). After pollination, at stage 14, GUS staining was observed in basal part of anther filaments and below stigmatic papillae. At stage 17A (Ferrandiz et al., 1999), when all organs had abscised from the receptacle, the nectaries stained blue and the ATHB12 promoter was also active in developing seeds (Figure 4N). The ATHB7::uidA plants grown parallel to these plants showed similar staining in anther filaments and in developing seeds (Figure 4O; Hjellström et al., 2003).

Adult plants responding to water deficit, as indicated by decreased growth of the inflorescence stem and leaves and a tendency to wilt, showed ATHB12::uidA activity in the inflorescence stem, the cauline- and rosette leaves, at high levels in the vasculature (Figure 4L and P). GUS activity was also observed in all organs of developing flowers and elongating siliques, particular their receptacles (Figure 4P). Adult ATHB7::uidA plants grown under the same conditions showed high gene activity in the inflorescence stem, the rosette leaves; particularly in the vasculature, and in flower organs (Figure 4M and Q; Hjellström et al., 2003).

In the water deficit experiments on adult plants, described above, ATHB12::uidA and ATHB7::uidA plants were harvested in parallel for RNA-extraction from the rosette leaves and the apical and the basal parts of the inflorescence stems. RNA gel blot analyses were performed and ATHB12, ATHB7 and uidA gene specific probes were hybridised to the blotted membranes. The results showed that the ratio of the levels of ATHB12 or ATHB7 transcript to that of each uidA-transcript was similar in the different samples (data not shown), indicating that the GUS staining patterns represented ATHB12 and ATHB7 expression in the different plants.

Discussion

In this report we present an analysis of the regulation and the function of the homeodomain-leucine zipper (HDZip) gene ATHB12 in Arabidopsis. We demonstrate that the expression of the gene is dependent on water availability to the plant, and on ABA signalling. In these aspects of the gene activity, ATHB12 is similar to the paralogous gene, ATHB7 (Söderman, et al., 1996). The ATHB12 and ATHB7 share similarities in sequence, a common intron-exon organisation and similar specificities in DNA-binding (Johannesson at al., 2001), that distinguish the two paralogs from other class I HDZip genes in Arabidopsis.

Our data on the transcriptional regulation of ATHB12 and ATHB7 in different ABA synthesis and signalling mutants demonstrate that the two genes are highly similar as regards the mechanisms by which their expression is controlled by the water status of the plant and to abscisic acid signalling and, thus, indicate that both genes may have regulatory roles related to ABA signalling and act in the plant response to water limiting conditions. The specific roles of ATHB12 and ATHB7 in the ABA signalling mechanism are difficult to deduce from our data on the abil and

Figure 4. Histochemical localisation of GUS activity in ATHB-12::uidA and ATHB7::uidA plants. GUS activity in 10-day-old ATHB12::uidA seedlings grown under normal conditions [(A), inserted are enlarged sections showing staining in lateral root primordia], or treated with $50 \,\mu\text{M}$ ABA (B, C, D, E and F). Figure E shows a longitudinal section and F a transverse section of a root tip, the arrow in F indicates staining in a part of the cell that likely corresponds to the nucleus. Figure (G-K) shows ATHB7::uidA seedlings, in G grown under normal conditions (insert shows an enlargement of a root tip) and in H, I, J and K plants of the same genotype treated with $50\mu M$ ABA. Figure K shows a longitudinal section of a root tip and the arrow in K indicates staining of a cell compartment that likely corresponds to the nucleus. Figure L and M show 28-day-old plants grown on well-watered soil (left plants in L and M, inflorescence in N and O) or under water deficit conditions, as a result of withholding water for approximately two weeks (right plant in L and M and inflorescence in P and Q). L, N and P show ATHB12::uidA plants (arrow pointing to an axillary shoot bud in L) and M, O and Q ATHB7::uidA plants. Both control and plants exposed to water deficit conditions were submerged and sectioned longitudinally in their stems in GUS staining solution to allow efficient penetration of the staining solution. The unstained part of the stem of the water deficit exposed ATHB7::uidA plant (indicated by an arrow in M) was not sectioned, as a control.

abi2 mutants, since the mechanisms of actions in the ABA response of ABI1 and ABI2 are poorly understood. Our finding that ATHB12 and ATHB7 induction by ABA is impaired in the dominant abi1-1 and abi2-1 mutants, as well as in plants carrying the presumed loss-of-function revertant alleles of the genes (abi1-1R4, abi1-1R5 and abi2-1R1) is in apparent contradiction to the reported phenotypes of these mutants. Previous data (Gosti et al., 1999; Merlot et al., 2001) has demonstrated the revertant plants to have an enhanced sensitivity to ABA, whereas the abil-1 and abi2-1 mutants are insensitive to ABA. However, both categories of mutants are reported to have reduced phosphatase activity, as a result of the mutations (Bertauche et al., 1996; Leung et al., 1997; Gosti et al., 1999; Merlot et al., 2001). Therefore, it is possible that the reduced response of ATHB12 and ATHB7 in both classes of mutant reflects a requirement for ABI phosphatase activity as part of the mechanism that leads to the transcriptional activation of ATHB12 and ATHB7.

Our data also supports the notion proposed by Merlot et al. (2001) that ABI1 and ABI2 are functionally redundant, since the abi1/abi2 double loss-of-function mutants show a more severe deviation from wild-type than either of the single mutants in their transcriptional response of ATHB12 and ATHB7 to ABA. The residual, low level response of ATHB12 and ATHB7 to ABA in the double mutants may be due to the activities of additional redundant PP2Cs, possibly AtPP2CA and HAB1, which like ABI1 and ABI2 are suggested to negatively regulate ABA signalling (Rodriguez et al., 1998; Sheen, 1998; Tähtiharju and Palva, 2001; Saez et al., 2004).

In addition to the similarities in the mechanism by which the ATHB12 and ATHB7 are up-regulated in response to water limiting conditions, the genes also share extensive similarities in their spatial patterns of expression in the plants. Both genes are expressed in a wide range of organs, primarily in ontogenetially young and expanding tissues, and their expression domains essentially overlap. Therefore, ATHB12 and ATHB7, at least to a large extent, may have overlapping functions in a range of different organs.

Our functional data from transgenic Arabidopsis plants which express ATHB12 and/or ATHB7 at high-levels, support this notion, in that the plants show similar phenotypic deviations from wild-type in inflorescence stems and leaves as well as in the root. For both genes the phenotypic effects are restricted to the post-germinative phase of growth. Arabidopsis responds to water deficit conditions by reduced growth of the inflorescence stems, leaves and roots (Himmelbach et al., 1998). This growth pattern is essentially mimicked by the phenotypes of ATHB12 and/or ATHB7 expressing transgenic plants. The phenotypic deviation in the above ground parts of the plants differed from the root-phenotype in that the effect of high-level expression of ATHB12 and ATHB7 on root development was apparent only after ABA treatment i.e., conditional on water-stress signalling. Shoot growth is very sensitive to inhibition by water limiting conditions whereas root growth is usually less affected (Saab et al., 1990). The mechanisms responsible for this difference in sensitivity between root and shoot growth in response to water stress are not well understood, but ABA, sugar and ethylene signalling have been implicated. The involvement of ATHB12 and ATHB7 in the growth response to water deficit in the shoot as well as the root suggests that the drought response in both organs is regulated by common signalling mechanisms, which include ATHB12 and ATHB7.

In support of the notion that ATHB12 and ATHB7 act directly as negative regulators of stem elongation, the level of ATHB12/ATHB7 transcript in the transgenic over-expressor lines correlated quantitatively with the reduction in stem elongation. Further, plants that express both genes at high-levels showed more severe phenotypes than plants expressing each single gene at elevated levels. The phenotypic properties of the 12s7s plants were similar to those of the S5 line, which expressed ATHB7 at a level approximately twice that of 12s7s but showed wild-type levels of ATHB12 expression. These data indicate that the effects of increases in expression levels of ATHB12 and ATHB7 are additive, and that the two genes either have similar targets or that their targets, if different, have similar effects on plant growth and that these effects are additive.

The absence of a mutant phenotype in the above ground parts of the athb12-mutant presented in this report may be due to the capacity of ATHB7 to substitute functionally for the loss of ATHB12 in these mutants. We note that this

potential functional redundancy between the genes is not complete, since the athb12-mutants differ from wild-type in the root response to ABA, indicating that ATHB12 is essential for this response, and that ATHB7 cannot substitute for ATHB12 in this aspect of the ABA response.

The functions of ATHB12 and ATHB7 as regulators of cell elongation is interesting in relation to the roles of other class I HDZip proteins, which have also been implicated in the regulation of cell expansion in response to different environmental stimuli. ATHB13, which has a function related to sucrose signalling (Hanson, 2000), and the closely related ATHB3, ATHB20 and ATHB23 are suggested to act as negative regulators of lateral cell expansion in leaves (Mattsson et al., 1992; Hanson et al., 2001). ATHB16 has a role in the regulation of leaf cell expansion, but in response to light (Wang et al., 2003). The related ATHB5 and ATHB6 genes are thought to mediate ABA responses (Himmelbach et al., 2002; Johannesson et al., 2003), and ATHB5 is suggested to be a negative regulator of cell expansion (Johannesson et al., 2003). Even though homodimers of ATHB12 or ATHB7 do not interact in vitro with the target sequence recognised by other HDZip factors, ATHB12 and ATHB7, as well as ATHB6 and ATHB16 can form heterodimers in vitro with ATHB5 (Johannesson et al., 2001). This implies that the class I HDZip proteins may constitute a network of interacting factors that mediate responses to environmental stimuli of different kinds, and integrates information on environmental conditions to regulate similar sets of target genes.

Acknowledgements

We thank the groups of J. Giraudat for the gift of abi1-1R4, abi1-1R5, abi2-1R1, abi1-1R4/abi2-1R1 and abi1-1R5/abi2-1R1 seeds, T. Teeri for the gift of the pHTT202 vector and G. Morelli for the AtL18 control probe. We are grateful to Kerstin Nordin-Henriksson and Sandra Kuusk for critical reading of the manuscript, Anette Axén, Marie Lindersson, Cecilia Wärdig for skilful technical assistance, Stefan Gunnarsson for providing excellent interference contrast microscopy-facilities and to M. Hjellström for sharing ATHB-7::uidA lines at an uncharacterised stage. We acknowledge the Arabidopsis Knockout Facility

(University of Wisconsin Biotechnology, Madison, WI) for performing PCR screens of their T-DNA collections. This work was supported by grants from FORMAS, the Wallenberg Foundation Consortium North and Grant No. QLK3-2000-00328 (TF-STRESS) from the European Commission.

References

- Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63-78.
- Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D. and Shinozaki, K. 1997. Role of *Arabidopsis* MYC and MYB homologs in drought- and abscisic acidregulated gene expression. Plant Cell 9: 1859-1868.
- Aoyama, T., Dong, C.H., Wu, Y., Carabelli, M., Sessa, G., Ruberti, I., Morelli, G. and Chua, N.H. 1995. Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco. Plant Cell 7: 1773-1785.
- The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.
- Baima, S., Sessa, G., Ruberti, I. and Morelli, G. 1995. A cDNA encoding *Arabidopsis thaliana* cytoplasmic ribosomal protein L18. Gene 153: 171-174.
- Berleth, T. and Jürgens, G. 1993. The role of the *monopteros* gene in organising the basal body region of the *Arabidopsis* embryo. Development 118: 575-587.
- Bertauche, N., Leung, J. and Giraudat, J. 1996. Protein phosphatase activity of abscisic acid insensitive 1 (ABI1) protein from *Arabidopsis thaliana*. Eur. J. Biochem. 241: 193-200.
- Carabelli, M., Morelli, G., Whitelam, G. and Ruberti, I. 1996. Twilight-zone and canopy shade induction of the Athb-2 homeobox gene in green plants. Proc. Natl. Acad. Sci. USA 93: 3530-3535.
- Chang, S., Purear, J. and Cairney, J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11: 113-116.
- Cheng, W.H., Endo, A., Zhou, L., Penney, J., Chen, H.C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., Koshiba, T. and Sheen, J. 2002. A unique short-chain dehydrogenase/reductase in *Arabidopsis* glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14: 2723–2743.
- Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M. and Zhu, J.K. 2003. ICEI: a regulator of coldinduced transcriptome and freezing tolerance in *Arabidopsis*. Genes Dev. 17: 1043-1054.
- Choi, H., Hong, J., Ha, J., Kang, J. and Kim, S.Y. 2000. ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 275: 1723-1730.
- Clough, S.J. and Bent, A.F. 1998. Floral dip: a simplified method for *Agrobacterium*-mediated transformation of *Arabidopsis thaliana*. Plant J. 16: 735-743.
- Di Laurenzio, L., Wysocka-Diller, J., Malamy, J.E., Pysh, L., Helariutta, Y., Freshour, G., Hahn, M.G., Feldmann, K.A.

- and Benfey, P.N. 1996. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the *Arabidopsis* root. Cell 86: 423-433
- Elomaa, P., Honkanen, J., Puska, R., Seppänen, P., Helariutta,
 Y., Mehto, M., Kotilainen, M., Nevalainen, L. and Teeri,
 T.H. 1993. Agrobacterium-mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Bio/Technology 11: 508-511.
- Fedoroff, N.V. 2002. Cross-talk in abscisic acid signaling. Sci. STKE 9: RE10.
- Ferrandiz, C., Pelaz, S. and Yanofsky, M.F. 1999. Control of carpel and fruit development in *Arabidopsis*. Annu. Rev. Biochem. 68: 321-354.
- Finkelstein, R.R. 1994. Mutations at two new *Arabidopsis* ABA response loci are similar to the *abi3* mutations. Plant J. 5: 765-771.
- Finkelstein, R.R., Gampala, S.S.L. and Rock, C.D. 2002. Abscisic acid signaling in seeds and seedlings. Plant Cell 14: S15-S45.
- Finkelstein, R.R. and Sommerville, C.R. 1990. Three classes of abscisic acid (ABA) insensitive mutations of *Arabidopsis* define genes that control overlapping subsets of ABA responses. Plant Physiol. 94: 1172–1179.
- Frank, W., Phillips, J., Salamini, F. and Bartels, D. 1998. Two dehydration-inducible transcripts from the resurrection plant *Craterostigma plantagineum* encode interacting homeodomain-leucine zipper proteins. Plant J. 15: 413-421.
- Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., M., H.J., F., T.M. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16: 433-442.
- Gosti, F., Beaudoin, N., Serizet, C., Webb, A.A., Vartanian, N. and Giraudat, J. 1999. ABI1 protein phosphatase 2C Is a negative regulator of abscisic acid signaling. Plant Cell 11: 1897-1910.
- Hanson, J. 2000. Functional characterization of the pointed cotyledon subclass of HDZip genes in Arabidopsis thaliana.
 Comprehensive Summaries of Uppsala Dissertation from the Faculty of Science and Technology. 580 Uppsala, Acta Universitatis Upsaliensis.
- Hanson, J., Johannesson, H. and Engström, P. 2001. Sugar-dependent alterations in cotyledon and leaf development in transgenic plants expressing the HDZhdip gene ATHB13. Plant Mol. Biol. 45: 247-262.
- Himmelbach, A., Hoffmann, T., Leube, M., Höhner, B. and Grill, E. 2002. Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in *Arabidopsis*. EMBO J. 21: 3029-3038.
- Himmelbach, A., Iten, M. and Grill, E. 1998. Signalling of abscisic acid to regulate plant growth. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353: 1439-1444.
- Hjellström, M., Olsson, A.S.B., Engström, P. and Söderman, E. 2003. Constitutive expression of the water deficit-inducible homeobox gene ATHB7 in transgenic Arabidopsis causes a suppression of stem elongation growth. Plant Cell Environ. 26: 1127-1136.
- Izawa, T., Foster, R. and Chua, N.H. 1993. Plant bZIP protein DNA binding specificity. J. Mol. Biol. 230: 1131-1144.
- Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901-3907.

- Johannesson, H., Wang, Y. and Engström, P. 2001. DNAbinding and dimerization preferences of *Arabidopsis* homeodomain-leucine zipper transcription factors in vitro. Plant Mol. Biol. 45: 63-73.
- Johannesson, H., Wang, Y., Hanson, J. and Engström, P. 2003. The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings. Plant Mol. Biol. 51: 719-729.
- Kang, J.Y., Choi, H.I., Im, M.Y. and Kim, S.Y. 2002. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14: 343-357.
- Koornneef, M., Reuling, G. and Karssen, C.M. 1984. The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Plant Physiol. 61: 377-383.
- Krysan, P.J., Young, J.C. and Sussman, M.R. 1999. T-DNA as an insertional mutagen in *Arabidopsis*. Plant Cell 11: 2283–2290.
- Lee, Y.H. and Chun, J.Y. 1998. A new homeodomain-leucine zipper gene from *Arabidopsis thaliana* induced by water stress and abscisic acid treatment. Plant Mol. Biol. 37: 377-384.
- Lee, Y.H., Oh, H.S., Cheon, C.I., Hwang, I.T., Kim, Y.J. and Chun, J.Y. 2001. Structure and expression of the *Arabidopsis* thaliana homeobox gene *Athb-12*. Biochem. Biophys. Res. Commun. 284: 133-141.
- Leung, J., Bouvier-Durand, M., Morris, P.C., Guerrier, D., Chefdor, F. and Giraudat, J. 1994. *Arabidopsis* ABA response gene *ABII*: features of a calcium-modulated protein phosphatase. Science 264: 1448-1452.
- Leung, J., Merlot, S. and Giraudat, J. 1997. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9: 759-771.
- Leung, J., Merlot, S., Gosti, F., Bertauche, N., Blatt, M.R. and Giraudat, J. 1998. The role of ABI1 in abscisic acid signal transduction: from gene to cell. Symp. Soc. Exp. Biol. 51: 65-71.
- Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/ AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperatureresponsive gene expression, respectively, in *Arabidopsis*. Plant Cell 10: 1391-1406.
- Mattsson, J., Söderman, E. Svensson., Borkird, C. and Engström, P. 1992. A new homeobox-leucine zipper gene from Arabidopsis thaliana. Plant Mol. Biol. 18: 1019-1022.
- McCarty, D.R. 1995. Genetic control and integration of maturation and germination pathways in seed development. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 46: 71-93.
- Meijer, A.H., Scarpella, E., van Dijk, E.L., Qin, L., Taal, A.J., Rueb, S., Harrington, S.E., McCouch, S.R., Schilperoort, R.A. and Hoge, J.H. 1997. Transcriptional repression by Oshox1, a novel homeodomain leucine zipper protein from rice. Plant J. 11: 263-276.
- Merlot, S., Gosti, F., Guerrier, D., Vavasseur, A. and Giraudat, J. 2001. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J. 25: 295-303.
- Meyer, K., Leube, M.P. and Grill, E. 1994. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264: 1452-1455.

- Ohgishi, M., Oka, A., Morelli, G., Ruberti, I. and Aoyama, T. 2001. Negative autoregulation of the *Arabidopsis* homeobox gene ATHB-2. Plant J. 25: 389-98.
- Rodriguez, P.L., Benning, G. and Grill, E. 1998. ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS Lett. 421: 185-190.
- Saab, I.N., Sharp, R.R., Pritchard, J. and Voetberg, G.S. 1990. Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol. 93: 1329-1336.
- Saez, A., Apostolova, N., Gonzalez-Guzman. M., Gonzalez-Garcia, M.P., Nicolas, C., Lorenzo, O. and Rodriguez, P.L. 2004. Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J. 37: 354-369.
- Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning. A Laboratory Manual, 2nd edn. Cold Spring Harbour Laboratory Press, New York.
- Seki, M., Ishida, J., Narusaka, M., Fujita, M., Nanjo, T., Umezawa, T., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002a. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct. Integr. Genomics 2: 282-291.
- Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002b. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31: 279-292.
- Sessa, G., Carabelli, M. and Ruberti, I. 1994. Identification of distinct families of HD-Zip proteins in *Arabidopsis thaliana*.
 In: Coruzzi, G.a.P., P. (Ed.), Plant Molecular Biology, Springer-Verlag, Berlin, pp. 412-426. (1994).
- Sessa, G., Morelli, G. and Ruberti, I. 1993. The Athb-1 and -2 HD-Zip domains homodimerize forming complexes of different DNA binding specificities. EMBO J. 12: 3507-3517.
- Sheen, J. 1998. Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc. Natl. Acad. Sci. USA. 95: 975-980.
- Shen, Q. and Ho, T.H. 1995. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7: 295-307.
- Smyth, D.R., Bowman, J.L. and Meyerowitz, E.M. 1990. Early flower development in *Arabidopsis*. Plant Cell 2: 755-767.
- Steindler, C., Matteucci, A., Sessa, G., Weimar, T., Ohgishi, M., Aoyama, T., Morelli, G. and Ruberti, I. 1999. Shade avoidance responses are mediated by the ATHB-2 HD-zip protein, a negative regulator of gene expression. Development 126: 4235-4245.
- Stockinger, E.J., Gilmour, S.J. and Thomashow, M.F. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA. 94: 1035-1040.
- Söderman, E., Hjellstrom, M., Fahleson, J. and Engstrom, P. 1999. The HD-Zip gene ATHB6 in *Arabidopsis* is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions. Plant Mol. Biol. 40: 1073-1083.

- Söderman, E., Mattsson, J. and Engstrom, P. 1996. The *Arabidopsis* homeobox gene *ATHB-7* is induced by water deficit and by abscisic acid. Plant J. 10: 375-381.
- Tähtiharju, S. and Palva, T. 2001. Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J. 26: 461-470.
- Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic aciddependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA 97: 11632-116327.
- Verwoerd, T.C., Dekker, B.M. and Hoekema, A. 1989. A small scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 17: 2362.
- Wang, Y., Henriksson, E., Söderman, E., Nordin Henriksson, K., Sundberg, E. and Engström, P. 2003. The Arabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiod in Arabidopsis. Dev. Biol. 264: 228-239.
- Zeevaart, J.A.D. and Creelman, R.A. 1988. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 439-473.

Constitutive expression of the water deficit-inducible homeobox gene *ATHB7* in transgenic *Arabidopsis* causes a suppression of stem elongation growth

M. HJELLSTRÖM, A. S. B. OLSSON, P. ENGSTRÖM & E. M. SÖDERMAN

University of Uppsala, Evolutionary Biology Center, Department of Physiological Botany, Villavägen 6, SE-752 36 Uppsala, Sweden

ABSTRACT

The Arabidopsis gene ATHB7 encodes a transcription factor of the homeodomain-leucine zipper class. The activity of the gene is dependent on the water conditions of the plant; expression being strongly induced in plants subjected to water deficit or to treatment with abscisic acid (ABA). In this report we demonstrate that ATHB7, when constitutively expressed at levels typical for plants exposed to water-deficit conditions, caused a reduction in elongation growth in the leaf and in the inflorescence stem. The reduction in stem growth mimics the effect on growth caused by water-deficit conditions, but is independent of water conditions in plants that express ATHB7 constitutively. These results indicate that ATHB7 in the wild-type plant may be a mediator of the plant growth response to limiting water conditions in the leaf and in the inflorescence stem. In support of this notion we also show that the ATHB7 promoter in wild-type plants exposed to water-deficit conditions is highly active in the elongating parts of the inflorescence stem as well as leaves.

Key-words: Arabidopsis thaliana; abscisic acid; abscisic acid responsive elements; homeodomain; leucine zipper; transcription factor; water deficit.

INTRODUCTION

Plants exposed to different environmental conditions, such as different light- and water-availability and temperature, adapt by altering their growth characteristics. In response to water-deficit conditions several morphological, physiological and biochemical processes are altered. The immediate response includes the closure of stomata in leaves, which reduces further water loss, a process mediated by the plant hormone abscisic acid (ABA) (for reviews, see Finkelstein & Zeevaart 1994; Leung & Giraudat 1998). Morphological changes due to extended water deficit include an inhibition of stem elongation, a reduction in leaf

Correspondence: Eva Söderman. Fax: + 46 18 559885; e-mail: Eva.Soderman@ebc.uu.se

area and an increase in root growth (Trewavas & Jones 1991). Cellular responses to water-limiting conditions include modifications of the lipid composition of the cytoplasmic membrane and synthesis of osmoprotectant solutes (for reviews see Bray 1993; Daugherty et al. 1994).

A common factor mediating most but not all plant responses to water deficit, high salinity and cold is ABA. It has been shown that the endogenous level of ABA increases in response to drought and cold (Chen, Li & Brenner 1983; Lalk & Dörffling 1985; Lång et al. 1994) and that treatment with ABA makes many plants more resistant to drought (Bartels et al. 1990), salt (LaRosa et al. 1987) and cold (Chen & Gusta 1983). Using the ABA-deficient aba mutant (Koornneef et al. 1982) it has further been demonstrated that ABA is required for stomatal closure as well as for the development of freezing tolerance in Arabidopsis (Heino et al. 1990). Consequently, the elucidation of the mechanisms involved in the control of gene expression in response to ABA is important for understanding the mechanisms which control adaptive processes in response to water deficit. Recently, substantial progress has been made in the characterization of ABA signal transduction cascades (Bonetta & McCourt 1998; Busk & Pagès 1998). ABA signalling seems to involve a complex network (Söderman et al. 2000) of kinases and phosphatases with both positiveand negative-regulating activities (Gosti et al. 1999; Merlot et al. 2001).

Long-term changes in plants in response to water deficit, high salinity and cold are linked to changes in gene expression. Specific genes are transcriptionally activated, several of them also by exogenous treatment with ABA (Skriver & Mundy 1990; Chandler & Robertson 1994). The genes differ in the specificity of their response to drought, cold and ABA. Cis-acting elements and trans-acting factors involved in the ABA response have been identified. The most well-characterized class of cis-acting elements among the ABA-responsive gene promoters are the abscisic acid responsive elements (ABREs). One example is the Em promoter from wheat (Marcotte, Russell & Quatrano 1989) where a region that is important for ABA responsiveness, which also interacts with nuclear proteins, has been identified (Guiltinan, Marcotte & Quatrano 1990). The transcription factor,

EmBP-1, which binds specifically to this sequence element, belongs to the bZip class of transcription factors.

We have previously reported on the isolation and char-, acterization of the Arabidopsis homeodomain-leucine zipper (HD-Zip) transcription factor gene ATHB7 (Söderman et al. 1994), which is induced by water-deficit conditions as well as by ABA (Söderman, Mattsson & Engström 1996). This class of transcription factor also includes ATHB6 and ATHB12 (Lee & Chun 1998; Söderman et al. 1999), two genes that are also up-regulated by water-deficit conditions and by ABA. With the recent sequencing of the Arabidopsis genome the total number HD-Zip proteins in Arabidopsis has been determined to be 42 (Arabidopsis Genome Initiative, AGI 2000). Based on sequence criteria, the HD-Zip proteins have been grouped into four classes, HD-Zip class I-IV (Sessa et al. 1994). ATHB6, -7and -12 all belong to HD-Zip class I. Other class I proteins in Arabidopsis include for example ATHB13, which has been suggested to function in sucrose signalling (Hanson, Johannesson & Engström 2001). Experiments on transgenic plants and expression analyses in Arabidopsis of the HD-Zip class I gene ATHB1 (Aoyama et al. 1995), the class II gene ATHB2 (Carabelli et al. 1996; Steindler et al. 1999), the class III genes ATHB8 (Baima et al. 1995) and IFL1 (Zhong & Ye. 1999) and the class IV genes ATHB10 (Rerie, Feldmann & Marks 1994; DiCristina et al. 1996; Masucci et al. 1996) and ATMLI (Lu et al. 1996) suggests that the HD-Zip genes might control important aspects of plant development.

In a previous study we suggested ATHB7 to act in ABA signal transduction as a mediator of a water-deficit response in Arabidopsis, downstream to the ABII gene (Söderman et al. 1996), which encodes a serine/threonine phosphatase (Leung et al. 1994; Meyer, Leube & Grill 1994). In this study we show that the ATHB7 promoter is active in the elongating parts of the inflorescence stem as well as in young leaf primordia. We have also investigated the role of ATHB7 by use of transgenic Arabidopsis plants with altered levels of expression of ATHB7. Together, these data indicate that the role of ATHB7 may be to regulate inflorescence stem and leaf elongation growth in response to water-deficit stress conditions.

MATERIALS AND METHODS

Library screening and DNA sequencing

A λ EMBL-3 genomic library containing partially digested *MboI* fragments of *Arabidopsis thaliana* Columbia DNA was screened using an 845 bp *XhoI* – *EcoRI* fragment of *ATHB7*, not containing the conserved homeobox, as a probe. The probe was labelled with $[\alpha^{-32}P]$ dCTP (3000 Ci mmol⁻¹; Amersham Biosciences, Uppsala, Sweden) using the Megaprime DNA labelling kit (Amersham). About 100 000 clones were plated on each of two 23 cm × 23 cm plates and replica filters (Hybond-N, Amersham) were lifted. The filters were hybridized as recommended by the filter supplier and washed at moderate

stringency [1 \times SSPE (Sambrook, Fritsch & Maniatis 1989); 0.1% sodium dodecyl sulphate (SDS)] at 65 °C for 3×15 min. X-ray films were exposed to the filters between intensifying screens at -70 °C.

The λ -DNA was prepared from a single isolated positive plaque, digested with different restriction enzymes, subjected to gel electrophoresis and blotted onto filters (Hybond-N) according to standard methods (Sambrook et al. 1989). The filters were hybridized to a probe containing a 516 bp HindIII-AccI fragment from ATHB7 cDNA. Overlapping fragments from a 8 kb EcoRI fragment, a 3 kb SalI fragment and a 3 kb HindIII fragment was subcloned into pBluescript SK + (Stratagene, La Jolla, CA, USA).

Sequencing of the 3 kb SalI fragment and the 3 kb HindIII fragment were performed using the chain-termination method (Sanger, Niklen & Coulson 1977) with Sequenase DNA polymerase (USB, Cleveland, OH, USA) or by use of cycle sequencing, using synthetic oligonucleotides and an automatic sequencer, ABI PRISM 377 (Perkin-Elmer Corp., Applied Biosystems Division, Foster City, CA, USA).

Map position of ATHB7

The chromosomal location of ATHB7 was determined by use of recombinant inbred (RI) lines (Lister & Dean 1993). Segregation analysis of EcoRV restriction fragment length polymorphism among 65 RI lines was performed according to Reiter, Young & Scolnik (1992), using the 8 kb EcoRI genomic fragment as a probe. The mapping was carried out using the program MAPMAKER (Lander et al. 1987).

Construction of an ATHB7 promoter fusion and plant transformation

A 2.9 kb HindIII-XhoI DNA fragment of the ATHB7 genomic sequence containing 2.6 kb of upstream sequences was subcloned in frame with the GUS coding sequence (uidA; Jefferson, Kavanagh & Bevan 1987) in the pBI101 binary vector (Clontech, Palo Alto, CA. USA). The construct was checked by sequencing and introduced into the MP90 Agrobacterium tumefaciens strain by standard methods. The resulting Agrobacterium strain was used to transform Arabidopsis thaliana ecotypes Wassilevskija, Landsberg and Columbia by an infiltration protocol (Bechtold, Ellis & Pelletier 1993), and transformants were selected on 50 μg mL⁻¹ kanamycin. The resultant transgenic plants were self-fertilized and the T₂ seeds screened for 3:1 segregation on kanamycin. Homozygous T₃ seeds from three independent transformant plants were used for further characterization.

Plant material and growth conditions

The plant material used was Arabidopsis thaliana (L.) Heynh., ecotypes Columbia, Wassilevskija (Ws-0) and Landsberg erecta (Ler) and plants homozygous for the gal-

5 allele. In the experiments involving the gal-5 mutant, which is in the Landsberg erecta (Ler) ecotype background, the Ler ecotype was used as a wild-type control.

Seeds were surface sterilized (70% EtOH for 2 min, 15% chlorine, 0.5% SDS for 10 min followed by three washes in sterile water) and sown on GM medium [0.5 × MS (Murashige and Skoog 1962); Duchefa Biochemie B.V., Haarlem, The Netherlands] supplemented with 1% sucrose. After 12 d of growth on solid GM medium the plants were put on soil mixed with vermiculite (3:1). Prior to cultivation, seed dormancy was broken by 3 d of cold treatment (4 °C). All plants were cultivated in controlled environmental chambers at 20-22 °C, soil-grown material under long day conditions (16 h light: 8 h darkness) and in vitro-grown plants in 12 h light: 12 h darkness. Light intensity generated by the fluorescent lights was 200 μE m⁻² s⁻¹. Water-deficit stress treatment of the transgenic plants, carrying the promoter GUS construct, was performed by withholding water from the plants until they showed a visible water-deficit response, approximately 3 to 6 d prior to analysis. Water-deficit stress treatments of the 35S::ATHB7 transformant plants, starting at initiation of reproductive development, was performed by withholding water to the degree that the water-stressed plants were visibly but not permanently wilting.

Histochemical localization of GUS activity

Histochemical staining for GUS activity was performed using 5-bromo-4-chloro-3-indolyl β -D-glucuronide (X-gluc) as chromogenic substrate (Jefferson et al. 1987). Plant material was cut and incubated in GUS staining solution containing 50 mm sodium phosphate pH 7.0; 0.1% Triton X-100; K3/K4 FeCN 0.5 mM and 1 mM X-gluc at 37 °C for 12-24 h. Tissues were cleared of chlorophyll in 70% ethanol (see Fig. 2a & b) or according to the method of Berleth & Jürgens (1993) except that the incubation in chloralhydrate was exchanged for a 16 h incubation in 8 N NaOH followed by 1 h in 0.1 M potassium phosphate buffer, pH 7.5 (see Fig. 2c & d). Photographs were taken using a stereomicroscope.

Generation of transgenic plants with ATHB7 sense and antisense constructs

The full length ATHB7 cDNA (Söderman et al. 1994) was cloned in sense or antisense orientation downstream of the 35S promoter in the expression vectors pHTT 202 (Elomaa et al. 1993) and pBin-HYG-TX (Gatz, Kaiser & Wendenburg 1991) and introduced into the Agrobacterium tumefaciens strain C58::pGV2260 by triparental mating. The resulting Agrobacterium strain was used to transform Arabidopsis thaliana ecotype Wassilevskija and Landsberg erecta by an infiltration protocol (Bechtold et al. 1993), and transformants were selected on 50 µg mL⁻¹ kanamycin (pHTT202) or hygromycin (pBin-HYG-TX). The resultant transgenic plants were selfed and the T2 seeds screened for 3:1 segregation. Homozygous T₃ seedlings were analysed

for ATHB7 RNA levels by Northern blot hybridization and used for further characterization.

RNA isolation and Northern blot analysis

Total RNA was isolated according to Söderman et al. (1996). Samples of total RNA, 10 μg per lane, were subjected to electrophoresis in a 1% agarose gel containing formaldehyde and blotted onto nylon membrane (Hybond-N; Amersham International, Buckinghamshire, UK). Equal loading was confirmed by ethidium bromide staining of the agarose gel. The filters were hybridized to the 516 bp HindIII-AccI fragment from ATHB7 cDNA not containing the conserved homeobox. The probe was labelled with $[\alpha^{-32}P]$ dCTP (3000 Ci mmol⁻¹, Amersham) using the Megaprime DNA Labelling Kit (Amersham). Prehybridization and hybridization was performed at 63 °C as described by the filter supplier and the filters were washed at high stringency $(0.1 \times SSPE; 0.1\%SDS)$ at 65 °C for 2×5 min. Quantitative data on hybridization were obtained by use of a BAS 2000 (Fuji Photo Film Co., Tokyo, Japan) image plate reader.

Rosette leaf area measurement

Rosette leaves were collected from six wild-type and from six 35S::ATHB7 transformant plants at 24-32 d after germination. The areas of individual rosette leaves were measured using NIH Image 1.61 (National Institutes of Health; http://rsb.info.nih.gov./nih-image/) and the total area of the rosette leaves of each plant was calculated.

Hormone treatments

To test stem elongation responses, plants were sprayed with 1 mM GA3 (Duchefa, Haarlem, The Netherlands) and 0.02% Tween-20 approximately 1 week before bolting. The plants were then sprayed every fourth or fifth day until harvest. The control plants were sprayed with a solution containing only 0.02% Tween-20.

Scanning electron microscopy

Plants were harvested at an inflorescence stem length of 100 mm, and 10 mm fragments from the central parts of the first internode were sampled. Tissues were fixed in 50% EtOH, 5.0% acetic acid and 3.7% formaldehyde and exposed to 30 min vacuum. After dehydration through an ethanol series (50% EtOH for 2 × 30 min, 60% EtOH for 30 min and 70% EtOH until no chlorophyll remained), samples were stored in 70% ethanol until exposure to 85% and 95% EtOH and critical point drying. Samples were coated with gold, analysed in a XL 30 scanning electron microscope (SEM; Philips Technologies, Cheshire, CT, USA) and micrographs were taken. Six samples from each plant line were analysed, and from each sample at least four cells were measured with respect to length Using NIH Image 1.61 (National Institutes of Health).

RESULTS

Isolation of a genomic clone corresponding to ATHB7

By use of a probe derived from the 3'-end of the ATHB7 cDNA (Söderman et al. 1994), three overlapping clones were isolated from a genomic Arabidopsis library. A 3.0 kb HindIII clone was sequenced and shown to contain upstream sequences and 350 bp of the sequence corresponding to the ATHB7 cDNA. This clone was further characterized (Fig. 1).

The map position of the ATHB7 locus was determined to the bottom of chromosome 2 by use of recombinant inbred (RI) lines (Lister & Dean 1993). This position is consistent with the sequencing data derived from the Arabidopsis genome project (AGI 2000). As deduced from a comparison between the cDNA and the genomic sequence, the ATHB7 gene contains only one intron. This intron is located within the leucine zipper region in a position conserved among class I HD-Zip proteins. Data from the rapid amplification of 5'-cDNA ends revealed the untranslated leader to be 60 bp long. A sequence identical to the consensus sequence of transcriptional initiation sites (CTCATCA) (Joshi 1987) is located at a position 70 bp upstream from the translation initiation site of the longest open reading frame. Further, a putative TATA box (TATATAA) is found at a position 22 nucleotides upstream

The 5' upstream promoter region of the ATHB7 gene includes eight different sequence motifs similar to the consensus sequence of the ABRE (Fig. 1). Two of the ABREs, at position -762 and -2052, respectively, were accompanied by putative coupling elements (CACC) (Shen & Ho 1995; Shen, Zhang & Ho 1996). Sequence analysis also revealed a putative drought-responsive element (DRE), with the core sequence CCGAC, at position -1674 from the transcriptional start site.

ATHB7::GUS is expressed in expanding organs of transgenic Arabidopsis plants exposed to water-deficit stress

In order to characterize the cellular and tissue distribution of ATHB7 promoter activity, we analysed the expression of an ATHB7::GUS chimeric gene in transgenic Arabidopsis plants. A 2.9 kb genomic HindIII-XhoI fragment (Fig. 1) of ATHB7 including 2.6 kb of upstream and promoter region was cloned as a translational fusion in frame with the coding sequence of the GUS reporter gene (ATHB7::GUS) and transgenic Arabidopsis plants were generated with this construct. Three independent ATHB7::GUS transformant lines showing a 3:1 segregation of the resistance marker in the T₂ generation were selected for further analysis.

Transgenic ATHB7::GUS plants, histochemically stained for GUS activity are shown in Fig. 2. Plants grown under optimal water conditions showed no or very low GUS activity in all organs and tissues analysed, with an exception for

Figure 1. Genomic organization of ATHB7. Schematic representation of promoter and upstream sequences of the ATHB7 gene. The location of the encoding region in the 3'- end of the genomic clone is indicated by a box. Positions of the homeodomain and the leucine zipper are indicated within the box. The location of the transcriptional start site is indicated with an arrow. The position of motifs similar to a TATA box, the consensus sequence of abscisic acid responsive elements (ABRE), putative coupling elements (CACC) and a drought-response element (DRE) are indicated. HindIII and Xho I endonuclease restriction sites are indicated with H and X, respectively.

the axillary buds that showed strong GUS activity (Fig. 2a). In contrast, the GUS activity was strongly induced in plants exposed to limiting water supply. In adult plants, high promoter activity could be detected in the developing leaf primordia and in inflorescence stems and flowers of plants exposed to extended water limitation (Fig. 2b & d). The GUS activity was most intense in the young parts of the inflorescence and the elongating parts of the stem. Water deficit-induced promoter activity was also detected in the expanding siliques (Fig. 2d). In plants exposed to limiting water supply, strong GUS activity was detected in young leaves but at later stages of leaf development, expression was maintained at a moderate level only in the vascular tissue (data not shown). In well-watered plants, the axillary bud (Fig. 2a) showed the most intense GUS staining in the developing leaf primordia and low or no expression in the meristematic tissue (data not shown).

Phenotypic effects of alterations in *ATHB7* expression levels in transgenic *Arabidopsis*

Transgenic Arabidopsis plants harboring the ATHB7 cDNA in the sense or antisense orientations under the control of the 35S CaMV promoter were generated in the Wassilevskija (WS) background. Ten independent sense (35S::ATHB7) and five independent antisense transformant lines (35S:: $\alpha ATHB7$) that showed a 3:1 segregation of the resistance marker in the T_2 generation were selected for further analysis.

Figure 2. ATHB7::GUS gene expression in transgenic Arabidopsis plants. Histochemical localization of GUS activity in (a); shoot of a 23-day-old plant grown in non-limiting water conditions (b); shoot of 23-day-old plant subjected to limiting water conditions (c); inflorescence of an adult plant grown in non-limiting water conditions (d); inflorescence of an adult plant subjected to limiting water conditions.

Among the five antisense lines, two lines showed 30 and 60% reduction in transcript levels, respectively, when analysed in a Northern blot experiment. None of these lines showed any apparent difference from wild type, when grown under optimal or limiting water conditions.

The 10 35S::ATHB7 lines were analysed for ATHB7 mRNA expression levels by Northern blot analysis. The transcript levels ranged from two- to 25-fold the wild-type level. For comparison, ATHB7 expression levels in wildtype plants subjected to 10 µM ABA was determined to eight times the wild-type control after 4 h of ABA treatment. Two lines, S5 and M4, with elevated levels of ATHB7 transcription were selected for further analysis (Fig. 3a). The S5 line had a 25-fold increase in ATHB7 expression

Figure 3. Characterization of transgenic Arabidopsis plants with constitutive ATHB7 expression.(a); Northern blot containing 10 μ g of total RNA in each lane, extracted from wild-type control plants (wt) and two independent overexpressor lines of ATHB7 (S5 and M4). (b)-(f); Wild-type and 35S::ATHB7 transgenic plants grown under non-limiting water conditions. (b); 33-day-old wildtype plant (c); 33-day-old 35S::ATHB7 plant (d); 70-day-old wildtype plant (e); 70-day-old 35S::ATHB7 plant (f); shoot length of wild-type (grey bars) and 35S::ATHB7 transformant (green bars) plants at 28-68 d after germination.

compared to wild type and the M4 line a 20-fold increase in ATHB7 expression. The most striking phenotypic alterations in these lines were a suppression of inflorescence stem elongation growth and increased branching of the main inflorescence stem (Fig. 3b-f). The occurrence of this

phenotypic deviation from wild type showed a quantitative correlation to the level of ATHB7 expression, the strongest phenotypic effects being detected in the 35S::ATHB7 S5 line. After initiation of reproductive development the elongation rate of the main inflorescence stem was reduced in these plants and as a consequence, the time point at which the stem reached 5 mm in length was delayed by 8 d in the 35S::ATHB7 plants compared to wild type. The reduction in stem length, caused by the delay in elongation of the inflorescence stem, was maintained throughout the life span of the plants (Fig. 3f). The final length of the main inflorescence stem was reduced by approximately 15% in the 35S::ATHB7 plants in comparison with the wild-type control plants. Plants were also grown under water-limiting conditions. Under these conditions, both the wild-type and the 35S::ATHB7 plants reduced their final inflorescence stem length to the same extent (Fig. 4a), approximately 50%.

In addition to the reduction in inflorescence stem elongation growth, the 35S::ATHB7 plants also showed an increased branching of the main inflorescence stem in comparison with the wild-type plants (Fig. 4b). Plants with elevated levels of ATHB7 displayed twice the number of side-branch internodal segments, as compared to the wild-type control. Further, rosette leaves of the plants expressing the 35S::ATHB7 transgene were more rounded and petioles shorter as compared to the wild type (Fig. 3b & c). There was no difference in total leaf area, however, between plants expressing the ATHB7 transgene and wild-type plants (Fig. 4c).

The observed delay in elongation growth of the main inflorescence stem could hypothetically be due either to a delay in the transition to reproductive development or to a delayed onset of elongation of the bolting inflorescence stem. To distinguish between these two alternatives, the

Figure 4. The phenotypic effects of alterations in ATHB7 expression levels in transgenic Arabidopsis. (a) Final length of shoot axis of wild-type (light grey bars) and 35S::ATHB7 transformant plants (dark grey bars) after growth in non-limiting or limiting water conditions, treatments starting at initiation of reproductive development. Measurements were made at 70 d after germination. Lengths of plants grown in limiting water conditions are presented as percentages of the respective lengths in wild-type plants or the 35S::ATHB7 transformant plants grown in non-limiting water conditions (%) (n = 12). (b) Final number of side-branch internodes of the main inflorescence stem. The y-axis denotes frequency within class of wild-type (light grey bars) and 35S::ATHB7 transformant plants (dark grey bars) (%) (n = 30). (c) Total area of rosette leaves of wild-type (light grey bars) and 35S::ATHB7 transformant (dark grey bars) plants at 24-32 d after germination (n = 6). (d) Length of shoot axis of Landsberg erecta (Ler), the GA biosynthetic mutant gal-5 and the 35S::ATHB7 transformant. Light grey bars represent plants sprayed with control solution containing 0.02% Tween-20, and hatched bars represent plants treated with 1 mm GA3 in 0.02% Tween-20. Measurements were performed at 40 d after germination (n = 12). In (a), (c) and (d) the results are presented as means, with error bars representing SE (n = 6-12).

timing of flower bud initiation was determined in 35S::ATHB7 transformant and wild-type control plants under long day conditions. The result showed that there was no significant difference between the plants in the time point of flower bud initiation under long day conditions. The wild-type plants initiated flower bud formation 15 d after germination (at 6-7 leaves) and the 35S::ATHB7 line 15-16 d after germination (at 6-7 leaves).

To determine whether the difference in inflorescence stem growth between wild-type and 35S::ATHB7 plants was due to a difference in cell numbers along the stem, or to a difference in elongation of the stem cells, we analysed the epidermal cell size of the inflorescence stem in both plant types. Data obtained by use of SEM, demonstrated that the cell number per unit length of stem in plants with a stem length of 100 mm did not differ significantly between plants. The epidermal stem cells of the 35S::ATHB7 and wild-type plants were 321 ± 19 and $299 \pm 15 \mu m$, respectively (mean \pm SE, n = 24), resulting in no statistical difference (Z-test). Therefore, the reduced final stem length in the 35S::ATHB7 plants is due to reduced stem cell expansion, rather than a reduction in cell numbers in the stem.

During the process of analysing the 35S::ATHB7 plants we noted, in addition to reduced elongation of the inflorescence stem, a slight reduction in the distance between siliques in the 35S::ATHB7 plants compared to wild-type plants. To test whether the ATHB7 effect on stem elongation and the intersilique distance was due to an altered level of, or an altered response to gibberellins, we analysed the effect of GA on inflorescence stem elongation in 35S::ATHB7 plants transformed into the Landsberg erecta (Ler) background, in the GA-deficient mutant gal-5 and in wild-type control plants (Fig. 4d). The plants were repeatedly sprayed with either 1 mm GA (GA3) or with a control solution without GA, starting prior to the initiation of reproductive development. The experiment showed that exogenous application of GA did not fully restore the elongation of the transgenic 35S::ATHB7 Ler inflorescence stem to wild type and that the 35S::ATHB7 plants respond to GA in a manner similar to the wild-type control. Therefore, the effect of the 35S::ATHB7 transgene on inflorescence stem elongation growth is unlikely to be due to an altered level of active GA or an altered GA responsiveness in the plant.

DISCUSSION

ATHB7 is strongly and rapidly induced by treatments that reduce water availability to the plant, by a mechanism that requires the endogenous production of abscisic acid, as well as the product of the ABII gene (Söderman et al. 1996). This data suggests that ATHB7 constitutes the end-point in a water-deficit signal transduction pathway, which includes the ABII gene product, and that ATHB7 may act as a mediator of a response to reduced water availability (Söderman et al. 1996). In this report we demonstrate that constitutive expression of ATHB7 at elevated levels, in transgenic Arabidopsis plants, results in alterations in plant phenotype that are consistent with this hypothesis.

In plants, in which ATHB7 expression is driven by the constitutive 35S-promoter, the elongation of the main inflorescence stem was significantly reduced, as compared to the wild type. The reduction in stem length, in turn, was the consequence of a reduction in the elongation of the cells of the stem, and was independent of the activity of gibberellins. Similarly, the elongation of the leaves was reduced in the transgenic plants, but the total rosette leaf area was independent of ATHB7 expression, the primary effect of ATHB7 expression being an alteration in leaf shape. We conclude from these data that ATHB7, when expressed constitutively, acts as a negative regulator of inflorescence stem and leaf cell elongation.

In addition to causing a reduction in final length of the inflorescence stem, ATHB7 also caused a distinct delay in the onset of its elongation. This delayed bolting was not the result of a delay in the transition from the vegetative to the reproductive growth phase, since the timing of flower induction was unaffected by ATHB7 expression levels. Instead, ATHB7 appears to specifically affect the timing of the onset of internode cell elongation in the bolting inflorescence stem. An additional phenotypic change produced by elevated ATHB7 expression levels was an increased branching of the main inflorescence stem, suggesting a decreased apical dominance in the plants. Even though ATHB7 transcription is unaffected by exogenous treatments with plant hormones other than ABA (Söderman et al. 1996) we can not exclude the possibility that ATHB7, when expressed at elevated levels, might affect the response of the plant to other growth regulators, such as auxin or brassinosteroids.

The expression pattern of ATHB7 in the wild type, as deduced from the pattern of the ATHB7 promoter activity, is consistent with a function of ATHB7 related to cell elongation, expansion or differentiation in the context of waterdeficit stress. The promoter activity was highly induced in expanding inflorescence stems, leaf primordia, siliques and young flower buds after exposure of plants to water limiting conditions. The expression of the gene, thus, is tightly associated with cells that are in an expansion/differentiation phase of growth in both the inflorescence stem and in leaves.

Phenotypic effects of ectopic expression of transgenes in transgenic plants are intrinsically somewhat difficult to interpret, in relation to the wild-type function of the gene, since gene function may differ between cells in which the gene is active in the wild type, and cells where it is not. In the case of ATHB7, however, an alteration in expression levels is part of the mechanism by which the activity of the gene is controlled in wild-type Arabidopsis, and the level of expression in expanding inflorescence stems and leaves in wild-type plants exposed to limiting water conditions are in the same order of magnitude as that in the transgenic lines. Therefore, we believe that the observed phenotypic effects of elevated expression levels in transgenic Arabidopsis on elongation growth, are very likely to reflect the function of the gene in the wild-type plant.

A reduction in inflorescence stem length, as well as a reduction in leaf surface area, and an altered root growth pattern, is part of the response to limiting water conditions in many plant species, including *Arabidopsis*. In our experiments, limiting water conditions in the wild type as well as in the 35S::ATHB7 line, caused a reduction in final length of the stem of about 50%. The transgenic ATHB7-expressing plants grown under well-watered conditions also reduced their final length, by approximately 15% compared to wild-type control plants. This data is consistent with ATHB7 being part of a mechanism that regulates inflorescence stem elongation in response to limiting water conditions in the wild-type plant.

The absence of an effect on growth properties from the expression of an antisense construct of ATHB7 might suggest that a loss of ATHB7 function in the plant is compensated for by the activity of a second gene, and thus that ATHB7 gene function might be redundant. Possible candidates for such genes are the HD-Zip genes ATHB6 (Söderman et al. 1999) and ATHB12 (Lee & Chun 1998). These two genes are also induced by water deficit and ABA, and have expression patterns that partly overlap with that of ATHB7 (Söderman et al. 1999; our unpublished observations). An alternative possibility is that the absence of an effect in these transgenic lines is due to the rather small decrease in steady-state ATHB7 mRNA levels observed in the transgenic plants. In the absence of data on the phenotypic properties of an ATHB7 null mutant, we can not distinguish between these possibilities.

Data on the effects of altered expression levels of other HD-Zip class I genes in Arabidopsis is limited to a few examples. The effects of ectopic expression of ATHB1 in tobacco have been interpreted to indicate ATHB1 to be involved in the control of leaf development (Aoyama et al. 1995). Constitutive high-level expression of ATHB13 cDNA in transgenic plants results in altered development of cotyledons and leaves, specifically in plants grown on media containing metabolizable sugars, suggesting ATHB13 to be a component of a sucrose-signalling pathway (Hanson et al. 2001). Thus, the functional information available on two genes of the HD-Zip class I implies that these genes mediate the influence of growth conditions on development and in one case control the development of specific cell types. Our data, derived from constitutive expression of ATHB7, taken together with the promoter GUS data indicate that ATHB7 may act as a regulator of growth and development of the elongating leaf and the inflorescence stem in response to water availability.

ACKNOWLEDGMENTS

We thank Dr T. Teeri for the gift of the pHTT202 vector and Dr C Gatz for the gift of the pBin-HYG-TX vector. We are also grateful to Marie Englund, Charlotta Thornberg and Cecilia Wärdig for skilful technical assistance. Seeds from the GA mutant gal-5 were kindly provided by the

Arabidopsis Biological Resource center (ABRC), Ohio State University, Columbus, Ohio, USA. This work was supported by grants from the Swedish Council for Forestry and Agricultural Research (SJFR), the Swedish Foundation for Strategic Research (SSF), the Wallenberg Foundation Consortium North to the *Arabidopsis* transgenic plant facility in Uppsala and by grant No QLK3-2000–00328 (TF-STRESS) from the European Commission.

REFERENCES

- Aoyama T., Dong C.H., Wu Y., Carabelli M., Sessa G., Ruberti I., Morelli G. & Chua N.H. (1995) Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco. *Plant Cell* 7, 1773-1785.
- Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant *Arabidopsis thaliana*. *Nature* 408, 796-815.
- Baima S., Nobili F., Sessa G., Lucchetti S., Ruberti I. & Morelli G. (1995) The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121, 4171-4182.
- Bartels D., Scheneider K., Terstappen G., Piatkowski D. & Salamini F. (1990) Molecular cloning of abscisic acid-modulation genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181, 27-34.
- Bechtold N., Ellis J. & Pelletier G. (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Comptes Rendus de l'Academie des Sciences Paris Life Sciences, Molecular Biology and Genetics 316, 1194–1199.
- Berleth T. & Jürgens G. (1993) The role of the *monopterous* gene in organising the basal body region of the *Arabidopsis* embryo. *Development* 118, 575–587.
- Bonetta D. & McCourt P. (1998) Genetic analysis of ABA signal transduction pathways. Trends in Plant Science 3, 231– 235.
- Bray E.A. (1993) Molecular responses to water deficit. *Plant Physiology* **103**, 1035–1040.
- Busk P.K. & Pagès M. (1998) Regulation of abscisic acid induced transcription. *Plant Molecular Biology* 37, 425-435.
- Carabelli M., Morelli G., Whitelam G. & Ruberti I. (1996) Twilight zone and canopy shade induction of the Athb-2 homeobox gene in green plants. Proceedings of the National Academy of Sciences of the USA 93, 3530-3535.
- Chandler P.M. & Robertson M. (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance. *Annual Review of Plant Physiology and Plant Molecular Biology* **45**, 113–141.
- Chen T.H.H. & Gusta L.V. (1983) Abscisic acid induced freezing resistance in cultured plant cells. *Plant Physiology* 73, 71-75.
- Chen H.-H., Li P.H. & Brenner M.L. (1983) Involvement of abscisic acid in potato cold acclimation. *Plant Physiology* 71, 362-365.
- Daugherty C.J., Rooney M.F., Paul A.-L., deVetten N., Vega-Palas M.A., Lu G., Gurley W.B. & Ferl R.J. (1994) Environmental stress and gene regulation. In ARABIDOPSIS (eds E.M. Meyerowitz & C.R. Somerville), pp. 769–806. Cold Spring. Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
- DiCristina M., Sessa G., Dolan L., Linstead P., Baima S., Ruberti I. & Morelli G. (1996) The *Arabidopsis* Athb-10 (GLABRA2) is a HD-Zip protein required for regulation of root hair development. *Plant Journal* 10, 393-402.

- Elomaa P., Honkanen J., Puska R., Seppänen P., Helariutta Y., Mehto M., Kotilainen M., Nevalainen L. & Teeri T.H. (1993) Agrobacterium-mediated transfer of antisense chalcone synthase cDNA to Gerbera hybtida inhibits flower pigmentation. Bio/Technology 11, 508-511.
- Finkelstein R.R. & Zeevaart J.A.D. (1994) Gibberellin and abscisic acid biosynthesis and response. In ARABIDOPSIS (eds E.M. Meyerowitz & C.R. Somerville), pp. 523-553. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY,
- Gatz C., Kaiser A. & Wendenburg R. (1991) Regulation of a modified CaMV 35S promoter by the Tn10-encoded Tet repressor in transgenic tobacco. Molecular and General Genetics 1 227, 229-237.
- Gosti F., Beaudoin N., Seruzet C., Webb A.A.R., Vartanian N. & Giraudat J. (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signalling. Plant Cell 11, 1897-1909.
- Guiltinan M.J., Marcotte W.R. & Quatrano R.S. (1990) A plant leucine zipper protein that recognises an abscisic acid response element. Science 250, 267-271.
- Hanson J., Johannesson H. & Engström P. (2001) Sugardependent alterations in cotyledon and leaf development in transgenic plants expressing the HDZhdip gene Athb13. Plant Molecular Biology 45, 247–262.
- Heino P., Sandman G., Lång V., Nordin K. & Palva E.T. (1990) Abscisic acid defiency prevents development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. Theoretical and Applied Genetics 79, 801-806.
- Jefferson R.A., Kavanagh T.A. & Bevan M.W. (1987) GUSfusions: β -glucuronidase as a sensitive and versatile fusion marker in higher plants. EMBO Journal 6, 3901-3907.
- Joshi C.P. (1987) An inspection of the domain between putative TATA box and translational start site in 79 plant genes. Nucleic Acids Research 15, 6643-6653.
- Koornneef M., Jorna M.L., Brinkhorst-van der Swan D.L.C. & Karssen C.M. (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theoretical and Applied Genetics 61, 385-
- Lalk I. & Dörffling K. (1985) Hardening, abscisic acid, proline and freezing resistance in two winter wheat varieties. Physiologia Plantarum 63, 287-292.
- Lander E.S., Green P., Abrahamson J., Barlow A., Day M.J., Lincoln S.E. & Newberg L. (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genetics 121, 174-181.
- Lång V., Mäntylä E., Welin B., Sundberg B. & Palva E.T. (1994) Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiology 104, 1341-1349.
- LaRosa P.C., Hasegawa P.M., Rhodes D., Clithero J.M., Watad A. & Bressan R.A. (1987) Abscisic acid stimulated osmotic adjustment and its involvement in adaptation of tobacco cells to NaCl. Plant Physiology 85, 174-181.
- Lee Y.H. & Chun J.Y. (1998) A new homeodomain-leucine zipper gene from Arabidopsis thaliana induced by water stress and abscisic acid treatment. Plant Molecular Biology 37, 377-
- Leung J., Bouvier-Durand M., Morris P.C., Guerrier D., Chefdor F. & Giraudat J. (1994) Arabidopsis ABA response gene ABII: Features of a calcium-modulated protein phosphatase. Science 264, 1448-1452.
- Leung J. & Giraudat J. (1998) Abscisic acid signal transduction.

- Annual Review of Plant Physiology and Plant Molecular Biology 49, 199-222.
- Lister C. & Dean C. (1993) Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant Journal 4, 745-750.
- Lu P., Porat R., Nadeau J.A. & O'Neill S.D. (1996) Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes. Plant Cell 8, 2155-2168.
- Marcotte W.R., Russell S.H. & Quatrano R.S. (1989) Abscisic acid-responsive sequences from the Em gene of wheat. Plant Cell 1, 969–976.
- Masucci J.D., Rerie W.G., Foreman D.R., Zhang M., Galway M.E., Marks M.D. & Schiefelbein J.W. (1996) The homeobox gene GLABRA2 is required for position dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development 122, 1253-1260.
- Merlot S., Gosti F., Guerrier D., Vavasseur A. & Giraudat J. (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant Journal 25, 295-303.
- Meyer K., Leube M.P. & Grill E. (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264, 1452-1455.
- Murashige T. & Skoog F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473-497.
- Reiter R.S., Young R.M. & Scolnik P.A. (1992) Genetic linkage of the Arabidopsis genome: methods for mapping with recombinant inbreds and random amplified polymorphic DNAs (RAPDs). In Methods in Arabidopsis Research (eds C. Koncz, N.-H. Chua & J. Schell), pp. 170-190. World Scientific Publishing, Singapore.
- Rerie W.G., Feldmann K.A. & Marks M.D. (1994) The GLABRA2 gene encodes a homeodomain protein required for normal trichome development in Arabidopsis. Genes Development 8, 1388-1399.
- Sambrook J., Fritsch E.F. & Maniatis T. (1989) Molecular Cloning, A Laboratory Manual, 2nd edn. Cold Spring. Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
- Sanger F., Niklen S. & Coulson A.R. (1977) DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences of the USA 74, 5463-5467.
- Sessa G., Carabelli M., Ruberti I., Lucchetti S., Baima S. & Morelli G. (1994) Identification of distinct families of HD-ZIP proteins in Arabidopsis thaliana. NATO ASI Series H81,
- Shen Q. & Ho T.H. (1995) Functional dissection of an abscisic acid (ABA) -inducible gene reveals two independent ABA-resposnive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7, 295-307.
- Shen Q., Zhang P. & Ho T.H. (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8, 1107-1119.
- Skriver K. & Mundy J. (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2, 503-512.
- Söderman E.M., Brocard I., Lynch T.J. & Finkelstein R.R. (2000) Regulation and function of the Arabidopsis ABA-insensitive4 (ABI4) gene in seed and ABA response signaling networks. Plant Physiology 124, 1752-1765.
- Söderman E., Hjellström M., Fahleson J. & Engström P. (1999) The HD-Zip gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water-deficit conditions. Plant Molecular Biology 40, 1073-1083.
- Söderman E., Mattsson J. & Engström P. (1996) The Arabidopsis

- homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant Journal 10, 375-381.
- Söderman E., Mattsson J., Svenson M., Borkird C. & Engström P. (1994) Expression patterns of novel genes encoding homeodomain leucine-zipper proteins in Arabidopsis thaliana. Plant Molecular Biology 26, 145-154.
- Steindler C., Mattucci A., Sessa G., Weimar T., Ohgishi M., Aoyama T., Morelli G. & Ruberti I. (1999) Shade avoidance responses are mediated by the ATHB-2 HD-Zip protein, a negative regulator of gene expression. *Development* 126, 4235-4245.
- Trewavas A.J. & Jones H.G. (1991) An assessment of the role of ABA in plant development. In *Abscisic Acid: Physiology and Biochemistry* (eds W.J. Davies & H.G. Jones), pp. 169–188. BIOS. Scientific Publishers, Oxford, UK.
- Zhong R. & Ye Z.-H. (1999) *IFL1*, a gene regulating interfascicular fiber differentiation in *Arabidopsis* encodes a homeodomain-leucine zipper protein. *Plant Cell* 11, 2139–2152.

Received 19 December 2002; received in revised form 15 January 2003; accepted for publication 17 January 2003

Evaluation of Hahb4 performance in Wheat and Maize

Figure 1. Evaluation of wheat (Triticum aestivum) GMO lines B and G:

Progeny derived from two independent transgenic events (T₁) were grown and compared with wild-type (non-GMO) germplasm. All individuals were exposed to the same treatment (i.e. fertilization, soil medium, watering, and overall growing conditions), and grain yield was compared for the different genotypes. Watering was discontinued for all individuals once male flowers opened and re-established after severe stress was induced. Progeny expressing Hahb4 show an average 75% increase in yield compared to wild-type individuals subjected to the same condition.

Figure 2. Evaluation of maize (Zea mays) GMO lines 3, 6 and 7:

Progeny derived form three independent transgenic events (T₁) were grown and compared with wild-type (non-GMO) germplasm. All individuals were exposed to the same treatment (i.e. fertilization, soil medium, watering, and overall growing conditions), and total leaf surface areas were measured before and after a 4-week water-stress period. Progeny expressing Hahb4 retained on average approximately 50% of total leaf area measured prior to stress induction; whereas the non-GMO control only retained 24% of the original leaf area.

