Am Dienstag, den 15. Dezember, ist Eulenfest.

Eulenfest - Glühnlein statt Impfung

Di. 15.12. im Infobau - ab 19 Uhr Musik - Glühwein - Bier - Waffeln - Grill - Cocktails Mithelfen: www.fsmi.uni-karlsruhe.de/helfen

Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen

Thomas Worsch

Karlsruher Institut für Technologie, Fakultät für Informatik

Wintersemester 2009/2010

Überblick

Repräsentation von Graphen im Rechner

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

2-Erreichbarkeit an einem Beispiel Matrixmultiplikation Matrixaddition

Einfache Berechnung der Erreichbarkeitsrelation

Potenzen der Adjazenzmatrix Erste Möglichkeit für die Berechnung der Wegematrix Zählen durchzuführender arithmetischer Operationen Weitere Möglichkeiten für die Berechnung der Wegematrix

Algorithmus von Warshall

Überblick 3/60

Überblick

Repräsentation von Graphen im Rechner

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

2-Erreichbarkeit an einem Beispiel Matrixmultiplikation Matrixaddition

Einfache Berechnung der Erreichbarkeitsrelation

Potenzen der Adjazenzmatrix Erste Möglichkeit für die Berechnung der Wegematrix Zählen durchzuführender arithmetischer Operationen Weitere Möglichkeiten für die Berechnung der Wegematrix

Algorithmus von Warshall

```
class Vertex {
   String name;
                         // oder was auch immer
class Edge {
   Vertex start;
   Vertex end;
class Graph {
   Vertex[] vertices;
   Edge[] edges;
```

```
class Vertex {
   String name;
                         // oder was auch immer
class Edge {
   Vertex start;
   Vertex end;
class Graph {
   Vertex[] vertices;
   Edge[] edges;
```

```
class Vertex {
   String name;
                         // oder was auch immer
class Edge {
   Vertex start;
   Vertex end;
class Graph {
   Vertex[] vertices;
   Edge[] edges;
```

```
class Vertex {
   int id;
class Edge {
   Vertex start;
   Vertex end;
class Graph {
   Vertex[] vertices;
   Edge[] edges;
```

Adjazenzlisten

```
class Vertex {
   int id;
  Vertex[] neighbors; // Feldlänge = Knotengrad
class Edge {
  Vertex start;
  Vertex end;
class Graph {
   Vertex[] vertices;
  Edge[] edges;
```

Inzidenzlisten

```
class Vertex {
   int id;
   Edge[] incoming;
   Edge[] outgoing;
class Edge {
   Vertex start;
   Vertex end;
class Graph {
   Vertex[] vertices;
   Edge[] edges;
```

Variante von Adjazenzlisten

```
class Vertex {
   int id;
   boolean[] is_connected_to; // Feldlänge = |V|
}
class Graph {
   Vertex[] vertices;
}
```

- Knoten: Objekte u, v der Klasse Vertex
- ▶ u.is_connected_to[v.id] = $\begin{cases} true & falls (u, v) \in E \\ false & falls (u, v) \notin E \end{cases}$

Beispielgraph

Objekt u, das Knoten 0 repräsentiert:

u.id	$u.\mathtt{is_connected_to}$					
0	false	true	false	true		
	0	1	2	3		

Beispielgraph

Objekte für alle Knoten untereinander:

u.id	$u.\mathtt{is_connected_to}$					
0	false	true	false	true		
1	false	false	false	false		
2	false	true	true	true		
3	false	false	true	false		
	0	1	2	3		

Adjazenzmatrix

Adjazenzmatrix eines gerichteten Graphen G = (V, E) mit |V| = n ist eine $n \times n$ -Matrix A mit der Eigenschaft:

$$A_{ij} = \begin{cases} 1 & \text{falls } (i,j) \in E \\ 0 & \text{falls } (i,j) \notin E \end{cases}$$

► Beispiel:

Adjazenzmatrix eines ungerichteten Graphen U = (V, E) ist die Adjazenzmatrix von $G = (V, E_g)$

Adjazenzmatrix

Adjazenzmatrix eines gerichteten Graphen G = (V, E) mit |V| = n ist eine $n \times n$ -Matrix A mit der Eigenschaft:

$$A_{ij} = \begin{cases} 1 & \text{ falls } (i,j) \in E \\ 0 & \text{ falls } (i,j) \notin E \end{cases}$$

► Beispiel:

Adjazenzmatrix eines ungerichteten Graphen U = (V, E) ist die Adjazenzmatrix von $G = (V, E_g)$

Repräsentation von Relationen durch Matrizen

- endliche Menge M mit n Elementen
- ▶ binäre Relation $R \subseteq M \times M$
- repräsentiert durch $n \times n$ -Matrix A(R):

$$(A(R))_{ij} = egin{cases} 1 & \text{falls } (i,j) \in R & \text{d. h. also } iRj \\ 0 & \text{falls } (i,j) \notin R & \text{d. h. also } \neg (iRj) \end{cases}$$

zu verschiedenen Relationen gehören verschiedene Matrizen und umgekehrt

Wegematrix eines Graphen

- Erreichbarkeitsrelation E* als Matrix repräsentierbar
- ▶ die sogenannte *Wegematrix W* des Graphen:

$$W_{ij} = \begin{cases} 1 & \text{falls } (i,j) \in E^* \\ 0 & \text{falls } (i,j) \notin E^* \end{cases}$$
$$= \begin{cases} 1 & \text{falls es in } G \text{ einen Pfad von } i \text{ nach } j \text{ gibt} \\ 0 & \text{falls es in } G \text{ keinen Pfad von } i \text{ nach } j \text{ gibt} \end{cases}$$

- algorithmisches Problem:
 - gegebene Probleminstanz: Adjazenzmatrix eines Graphen
 - gesucht: zugehörige Wegematrix des Graphen

Was ist wichtig

Das sollten Sie mitnehmen:

- Repräsentation von Relationen als Matrizen
- z. B. Kantenrelation eines Graphen: Adjazenzmatrix

Das sollten Sie üben:

- ▶ zu gegebenem Graphen die Adjazenzmatrix hinschreiben
- zu gegebener Adjazenzmatrix den Graphen hinmalen
- z.B. für irgendwelche "speziellen" Graphen und Matrizen

Überblick

Repräsentation von Graphen im Rechne

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

2-Erreichbarkeit an einem Beispiel Matrixmultiplikation Matrixaddition

Einfache Berechnung der Erreichbarkeitsrelation

Potenzen der Adjazenzmatrix

Erste Möglichkeit für die Berechnung der Wegematrix Zählen durchzuführender arithmetischer Operationen Weitere Möglichkeiten für die Berechnung der Wegematrix

Algorithmus von Warshall

Überblick

Repräsentation von Graphen im Rechne

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

2-Erreichbarkeit an einem Beispiel

Matrixmultiplikation Matrixaddition

Einfache Berechnung der Erreichbarkeitsrelation

Potenzen der Adjazenzmatrix

Erste Möglichkeit für die Berechnung der Wegematrix Zählen durchzuführender arithmetischer Operationen

Weitere Möglichkeiten für die Berechnung der Wegematrix

Algorithmus von Warshal

Ein Beispielgraph

von Interesse: Pfade der Länge 2 von Knoten 2 zu Knoten 4

Ein Beispielgraph

- ▶ von Interesse: Pfade der Länge 2 von Knoten 2 zu Knoten 4
- \blacktriangleright hinsehen: (2,1,4) und (2,1,6)

- Wie findet man "systematisch" alle interessierenden Pfade?
- ▶ prüfe *alle* Knoten $k \in V$:
 - ► Ist (2, *k*, 4) ein Pfad?
 - ▶ lst $(2, k) \in E$ und $(k, 4) \in E$?
 - ▶ Ist $A_{2k} = 1$ und $A_{k4} = 1$?
 - ▶ Ist $A_{2k} \cdot A_{k4} = 13$
- durchlaufe nacheinander parallel
 - ightharpoonup alle A_{2k} und alle A_{k4} , d. h.
 - Zeile für Knoten 2 und Spalte für Knoten 4

- Wie findet man "systematisch" alle interessierenden Pfade?
- ▶ prüfe *alle* Knoten $k \in V$:
 - ► Ist (2, *k*, 4) ein Pfad?
 - ▶ Ist $(2, k) \in E$ und $(k, 4) \in E$?
 - ▶ Ist $A_{2k} = 1$ und $A_{k4} = 1$?
 - ▶ Ist $A_{2k} \cdot A_{k4} = 1$?
- durchlaufe nacheinander parallel
 - ightharpoonup alle A_{2k} und alle A_{k4} , d. h.
 - ► Zeile für Knoten 2 und Spalte für Knoten 4

- Wie findet man "systematisch" alle interessierenden Pfade?
- ▶ prüfe *alle* Knoten $k \in V$:
 - ▶ Ist (2, k, 4) ein Pfad?
 - ▶ Ist $(2, k) \in E$ und $(k, 4) \in E$?
 - ▶ Ist $A_{2k} = 1$ und $A_{k4} = 1$?
 - ▶ Ist $A_{2k} \cdot A_{k4} = 13$
- durchlaufe nacheinander parallel
 - ightharpoonup alle A_{2k} und alle A_{k4} , d. h.
 - ► Zeile für Knoten 2 und Spalte für Knoten 4

- Wie findet man "systematisch" alle interessierenden Pfade?
- ▶ prüfe *alle* Knoten $k \in V$:
 - ► Ist (2, *k*, 4) ein Pfad?
 - ▶ Ist $(2, k) \in E$ und $(k, 4) \in E$?
 - ▶ Ist $A_{2k} = 1$ und $A_{k4} = 1$?
 - ▶ Ist $A_{2k} \cdot A_{k4} = 1$?
- durchlaufe nacheinander parallel
 - ightharpoonup alle A_{2k} und alle A_{k4} , d. h.
 - ► Zeile für Knoten 2 und Spalte für Knoten 4

- Wie findet man "systematisch" alle interessierenden Pfade?
- ▶ prüfe *alle* Knoten $k \in V$:
 - ▶ Ist (2, *k*, 4) ein Pfad?
 - ▶ Ist $(2, k) \in E$ und $(k, 4) \in E$?
 - ▶ Ist $A_{2k} = 1$ und $A_{k4} = 1$?
 - ▶ Ist $A_{2k} \cdot A_{k4} = 1$?
- durchlaufe nacheinander parallel
 - ightharpoonup alle A_{2k} und alle A_{k4} , d. h.
 - Zeile für Knoten 2 und Spalte für Knoten 4

Beispielgraph: Zählen der Pfade

Beispielgraph: Zählen der Pfade (2)

$$P_{24} = \sum_{k=0}^{6} A_{2k} \cdot A_{k4}$$

$$\begin{bmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & & & 1 & \\
& & & 0 & \\
& & & 0 & \\
& & & 0 & \\
& & & 0 & \\
& & & 1 & \\
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
& & & & 1 & \\
& & & & 0 & \\
& & & & 0 & \\
& & & & 1 & \\
\end{bmatrix}$$

Überblick

Repräsentation von Graphen im Rechne

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

2-Erreichbarkeit an einem Beispiel

Matrixmultiplikation

Matrixaddition

Einfache Berechnung der Erreichbarkeitsrelation

Potenzen der Adjazenzmatrix

Erste Möglichkeit für die Berechnung der Wegematrix

Zählen durchzuführender arithmetischer Operationen

Weitere Möglichkeiten für die Berechnung der Wegematrix

Algorithmus von Warshal

Matrix multiplikation

- es sei
 - A eine $\ell \times n$ -Matrix
 - \triangleright B eine $n \times m$ -Matrix
- ▶ die $\ell \times m$ -Matrix C mit

$$C_{ij} = \sum_{k=0}^{n-1} A_{ik} \cdot B_{kj}$$

- heißt das Produkt von A und B
- ▶ geschrieben $C = A \cdot B$
- ▶ Achtung: im Allgemeinen $A \cdot B \neq B \cdot A$!

Matrixmultiplikation: algorithmisch

$$C_{ij} = \sum_{k=0}^{n-1} A_{ik} \cdot B_{kj}$$

- erst mal nur die naheliegende Möglichkeit
- es geht auch anders!

```
\begin{array}{l} \textbf{for } i \leftarrow 0 \textbf{ to } \ell-1 \textbf{ do} \\ \textbf{for } j \leftarrow 0 \textbf{ to } m-1 \textbf{ do} \\ C_{ij} \leftarrow 0 \\ \textbf{for } k \leftarrow 0 \textbf{ to } n-1 \textbf{ do} \\ C_{ij} \leftarrow C_{ij} + A_{ik} \cdot B_{kj} \\ \textbf{od} \\ \textbf{od} \\ \textbf{od} \\ \textbf{od} \end{array}
```

Einheitsmatrizen

▶ Einheitsmatrix: $n \times n$ -Matrix I, bei der für alle i und j gilt:

$$I_{ij} = \begin{cases} 1 & \text{falls } i = j \\ 0 & \text{falls } i \neq j \end{cases}$$

• für jede $m \times n$ -Matrix A gilt:

$$I \cdot A = A = A \cdot I$$

 Beachte: verschiedene Größen der Einheitsmatrizen links und rechts

Potenzen quadratischer Matrizen

$$A^{0} = I$$
$$\forall n \in \mathbb{N}_{0} : A^{n+1} = A^{n} \cdot A$$

Quadrierte Adjazenzmatrix

 Quadrat der Adjazenzmatrix A enthält nach Definition der Matrixmultiplikation als Eintrag in Zeile i und Spalte j

$$(A^2)_{ij} = \sum_{k=0}^{n-1} A_{ik} A_{kj} .$$

- ▶ Jeder Summand $A_{ik}A_{ki}$ ist 1 gdw.
 - ▶ $A_{ik} = A_{kj} = 1$ ist, also gdw.
 - ► Kanten von *i* nach *k* und von *k* nach *j* existieren, also gdw.
 - (i, k, j) ein Pfad der Länge 2 von i nach j ist.

und 0 sonst.

- ▶ Für $k_1 \neq k_2$ sind (i, k_1, j) und (i, k_2, j) verschiedene Pfade.
- ► Also ist

$$(A^2)_{ij} = \sum_{k=0}^{n-1} A_{ik} A_{kj}$$

gleich der Anzahl der Pfade der Länge 2 von i nach j.

Überblick

Repräsentation von Graphen im Rechne

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

2-Erreichbarkeit an einem Beispie Matrixmultiplikation

Matrixaddition

Einfache Berechnung der Erreichbarkeitsrelation

Potenzen der Adjazenzmatrix

Erste Möglichkeit für die Berechnung der Wegematrix Zählen durchzuführender arithmetischer Operationen

Weitere Möglichkeiten für die Berechnung der Wegematrix

Algorithmus von Warshal

Matrixaddition

- es seien A und B zwei $m \times n$ -Matrizen
- ▶ die $m \times n$ -Matrix C mit

$$C_{ij}=A_{ij}+B_{ij}$$

- ▶ heißt die *Summe* von *A* und *B*
- geschrieben C = A + B
- \triangleright stets A + B = B + A
- ▶ neutrales Element: die *Nullmatrix*, die überall Nullen enthält
- geschrieben 0
- algorithmisch:

```
\begin{array}{c} \textbf{for } i \leftarrow 0 \textbf{ to } m-1 \textbf{ do} \\ \textbf{for } j \leftarrow 0 \textbf{ to } n-1 \textbf{ do} \\ \textbf{$C_{ij} \leftarrow A_{ij} + B_{ij}$} \\ \textbf{od} \\ \textbf{od} \end{array}
```

Überblick

Repräsentation von Graphen im Rechne

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

2-Erreichbarkeit an einem Beispiel Matrixmultiplikation Matrixaddition

Einfache Berechnung der Erreichbarkeitsrelation

Potenzen der Adjazenzmatrix Erste Möglichkeit für die Berechnung der Wegematrix Zählen durchzuführender arithmetischer Operationen Weitere Möglichkeiten für die Berechnung der Wegematrix

Algorithmus von Warshal

► Benutze

$$E^* = \bigcup_{i=0}^{\infty} E^i$$

- ► Probleme:
 - ▶ Was kann man gegen das unendlich tun?
 - Woher kommen die Matrizen f
 ür die Relationen Eⁱ?
 - Welcher Matrizen-Operation entspricht die Vereinigung?

► Benutze

$$E^* = \bigcup_{i=0}^{\infty} E^i$$

- ► Probleme:
 - ► Was kann man gegen das unendlich tun?
 - Noher kommen die Matrizen für die Relationen E^{i} ?
 - ► Welcher Matrizen-Operation entspricht die Vereinigung?

Benutze

$$E^* = \bigcup_{i=0}^{\infty} E^i$$

- Probleme:
 - Was kann man gegen das unendlich tun?
 - ▶ Woher kommen die Matrizen für die Relationen *E*ⁱ?
 - Welcher Matrizen-Operation entspricht die Vereinigung?

► Benutze

$$E^* = \bigcup_{i=0}^{\infty} E^i$$

- Probleme:
 - ▶ Was kann man gegen das unendlich tun?
 - ▶ Woher kommen die Matrizen für die Relationen Eⁱ?
 - Welcher Matrizen-Operation entspricht die Vereinigung?

- ▶ bei Graphen spezieller: nur *endlich* viele Knoten
- ► Frage: Existiert ein Pfad in *G* von Knoten *i* nach Knoten *j* ?
- Sei
 - ightharpoonup G = (V, E) mit |V| = n Knoten.
 - $p = (i_0, i_1, \dots, i_k)$ ein Pfad mit $i_0 = i$ und $i_k = j$.
- ▶ Wenn $k \ge n$, dann
 - ▶ kommen in der Liste p also $k+1 \ge n+1$ "Knotennamen" vor.
 - ▶ aber *G* hat nur *n* verschiedene Knoten.
 - ▶ Also muss ein Knoten *x* doppelt in der Liste *p* vorkommen.
 - p enthält Zyklus von x nach x
- Weglassen des Zyklus
 - ergibt kürzeren Pfad,
 - ▶ der immer noch von *i* nach *j* führt.
- \triangleright wiederhole, solange Pfad mindestens n+1 Knoten enthält
- ► Ergebnis: Pfad, in dem höchstens noch n Knoten, also höchstens n − 1 Kanten, vorkommen, und der auch immer noch von i nach j führt.

- ▶ bei Graphen spezieller: nur *endlich* viele Knoten
- ► Frage: Existiert ein Pfad in *G* von Knoten *i* nach Knoten *j* ?
- Sei
 - ightharpoonup G = (V, E) mit |V| = n Knoten.
 - $ightharpoonup p = (i_0, i_1, \dots, i_k)$ ein Pfad mit $i_0 = i$ und $i_k = j$.
- ightharpoonup Wenn k > n, dann
 - ▶ kommen in der Liste p also $k+1 \ge n+1$ "Knotennamen" vor.
 - ▶ aber *G* hat nur *n* verschiedene Knoten.
 - ▶ Also muss ein Knoten *x* doppelt in der Liste *p* vorkommen.
 - p enthält Zyklus von x nach x
- Weglassen des Zyklus
 - ergibt kürzeren Pfad,
 - ▶ der immer noch von *i* nach *j* führt.
- \triangleright wiederhole, solange Pfad mindestens n+1 Knoten enthält
- ► Ergebnis: Pfad, in dem höchstens noch n Knoten, also höchstens n − 1 Kanten, vorkommen, und der auch immer noch von i nach j führt.

- bei Graphen spezieller: nur *endlich* viele Knoten
- ▶ Frage: Existiert ein Pfad in *G* von Knoten *i* nach Knoten *j* ?
- Sei
 - ightharpoonup G = (V, E) mit |V| = n Knoten.
 - $ightharpoonup p = (i_0, i_1, \dots, i_k)$ ein Pfad mit $i_0 = i$ und $i_k = j$.
- ▶ Wenn $k \ge n$, dann
 - ▶ kommen in der Liste p also $k+1 \ge n+1$ "Knotennamen" vor.
 - ▶ aber *G* hat nur *n* verschiedene Knoten.
 - ▶ Also muss ein Knoten *x* doppelt in der Liste *p* vorkommen.
 - p enthält Zyklus von x nach x
- Weglassen des Zyklus
 - ergibt kürzeren Pfad,
 - ▶ der immer noch von *i* nach *j* führt.
- \triangleright wiederhole, solange Pfad mindestens n+1 Knoten enthält
- ► Ergebnis: Pfad, in dem höchstens noch n Knoten, also höchstens n − 1 Kanten, vorkommen, und der auch immer noch von i nach j führt.

- ▶ bei Graphen spezieller: nur *endlich* viele Knoten
- ► Frage: Existiert ein Pfad in *G* von Knoten *i* nach Knoten *j* ?
- Sei
 - G = (V, E) mit |V| = n Knoten.
 - $ightharpoonup p = (i_0, i_1, \dots, i_k)$ ein Pfad mit $i_0 = i$ und $i_k = j$.
- ▶ Wenn $k \ge n$, dann
 - ▶ kommen in der Liste p also $k+1 \ge n+1$ "Knotennamen" vor.
 - ▶ aber *G* hat nur *n* verschiedene Knoten.
 - ▶ Also muss ein Knoten *x* doppelt in der Liste *p* vorkommen.
 - p enthält Zyklus von x nach x
- Weglassen des Zyklus
 - ergibt kürzeren Pfad,
 - ▶ der immer noch von *i* nach *j* führt.
- \blacktriangleright wiederhole, solange Pfad mindestens n+1 Knoten enthält
- ► Ergebnis: Pfad, in dem höchstens noch n Knoten, also höchstens n − 1 Kanten, vorkommen, und der auch immer noch von i nach j führt.

- bei Graphen spezieller: nur *endlich* viele Knoten
- ► Frage: Existiert ein Pfad in *G* von Knoten *i* nach Knoten *j* ?
- Sei
 - G = (V, E) mit |V| = n Knoten.
 - $ho = (i_0, i_1, \dots, i_k)$ ein Pfad mit $i_0 = i$ und $i_k = j$.
- ▶ Wenn $k \ge n$, dann
 - ▶ kommen in der Liste p also $k+1 \ge n+1$ "Knotennamen" vor.
 - ▶ aber *G* hat nur *n* verschiedene Knoten.
 - ▶ Also muss ein Knoten *x* doppelt in der Liste *p* vorkommen.
 - p enthält Zyklus von x nach x
- Weglassen des Zyklus
 - ergibt kürzeren Pfad,
 - ▶ der immer noch von *i* nach *j* führt.
- \triangleright wiederhole, solange Pfad mindestens n+1 Knoten enthält
- ► Ergebnis: Pfad, in dem höchstens noch n Knoten, also höchstens n − 1 Kanten, vorkommen, und der auch immer noch von i nach j führt.

Für Erreichbarkeit in einem endlichen Graphen mit n Knoten angeht, gilt:

$$E^* = \bigcup_{i=0}^{n-1} E^i$$

Betrachtung höherer Potenzen (längerer Pfade) schadet nicht:

Lemma

Für jeden gerichteten Graphen G = (V, E) mit n Knoten gilt:

$$\forall k \ge n-1 : E^* = \bigcup_{i=0}^k E^i$$

Für Erreichbarkeit in einem endlichen Graphen mit n Knoten angeht, gilt:

$$E^* = \bigcup_{i=0}^{n-1} E^i$$

Betrachtung höherer Potenzen (längerer Pfade) schadet nicht:

Lemma

Für jeden gerichteten Graphen G = (V, E) mit n Knoten gilt:

$$\forall k \geq n-1 : E^* = \bigcup_{i=0}^k E^i$$

Überblick

Repräsentation von Graphen im Rechner

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

2-Erreichbarkeit an einem Beispiel Matrixmultiplikation Matrixaddition

Einfache Berechnung der Erreichbarkeitsrelation Potenzen der Adjazenzmatrix

Erste Möglichkeit für die Berechnung der Wegematrix Zählen durchzuführender arithmetischer Operationen Weitere Möglichkeiten für die Berechnung der Wegematrix

Algorithmus von Warshal

Potenzierte Adjazenzmatrix

Lemma

Es sei G ein gerichteter Graph mit Adjazenzmatrix A. Für alle $k \in \mathbb{N}_0$ gilt:

 $(A^k)_{ij}$ ist die Anzahl der Pfade der Länge k in G von i nach j.

- Beweis durch vollständige Induktion.
- Induktionsschritt fast wie im Fall k = 2.

Die Signum-Funktion

Signum-Funktion

$$\operatorname{sgn}: \mathbb{R} \to \mathbb{R}: \operatorname{sgn}(x) = egin{cases} 1 & \operatorname{falls} \ x > 0 \\ 0 & \operatorname{falls} \ x = 0 \\ -1 & \operatorname{falls} \ x < 0 \end{cases}$$

 Erweiterung auf Matrizen durch komponentenweise Anwendung

$$\operatorname{sgn}: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}: (\operatorname{sgn}(M))_{ij} = \operatorname{sgn}(M_{ij})$$

Matrizen für die Relationen E^k

Korollar

Es sei G ein gerichteter Graph mit Adjazenzmatrix A. Für alle $k \in \mathbb{N}_0$ gilt:

1.

$$\operatorname{sgn}((A^k)_{ij}) = \begin{cases} 1 & \text{falls in } G \text{ ein Pfad der Länge } k \\ & \text{von } i \text{ nach } j \text{ existiert} \\ 0 & \text{falls in } G \text{ kein Pfad der Länge } k \\ & \text{von } i \text{ nach } j \text{ existiert} \end{cases}$$

2. Matrix $sgn(A^k)$ repräsentiert die Relation E^k .

Überblick

Repräsentation von Graphen im Rechne

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

2-Erreichbarkeit an einem Beispiel Matrixmultiplikation Matrixaddition

Einfache Berechnung der Erreichbarkeitsrelation

Potenzen der Adjazenzmatrix

Erste Möglichkeit für die Berechnung der Wegematrix

Zählen durchzuführender arithmetischer Operationen Weitere Möglichkeiten für die Berechnung der Wegematrix

Algorithmus von Warshal

Vereinigung von Relationen

- Seien Relationen R ⊆ M × M und R' ⊆ M × M repräsentiert durch Matrizen A und A'.
- dann:

$$(i,j) \in R \cup R' \iff (i,j) \in R \lor (i,j) \in R'$$

$$\iff A_{ij} = 1 \lor A'_{ij} = 1$$

$$\iff A_{ij} + A'_{ij} \ge 1$$

$$\iff (A + A')_{ij} \ge 1$$

$$\iff \operatorname{sgn}(A + A')_{ij} = 1$$

▶ also: $R \cup R'$ wird durch sgn(A + A') repräsentiert.

Formel für die Wegematrix

Lemma

Es sei G ein gerichteter Graph mit Adjazenzmatrix A. Dann gilt für alle $k \ge n - 1$:

- ▶ Die Matrix $\operatorname{sgn}(\sum_{i=0}^k A^i)$ repräsentiert die Relation E^* .
- ► Mit anderen Worten:

$$W = \operatorname{sgn}\left(\sum_{i=0}^k A^i\right)$$

ist die Wegematrix des Graphen G.

Beweis

Man muss sich noch überlegen:

- ▶ $\bigcup_{i=0}^{n-1} E^i$ wird durch Matrix $sgn(\sum_{i=0}^k sgn(A^i))$ repräsentiert.
 - ▶ leichte Verallgemeinerung des Falles $R \cup R'$
- ▶ In dieser Formel darf man die "inneren" Anwendungen von sgn weglassen.
 - ▶ Wenn alle Matrixeinträge ≥ 0 sind, gilt:

$$\operatorname{sgn}(\operatorname{sgn}(M)+\operatorname{sgn}(M'))_{ij}=\operatorname{sgn}(M+M')_{ij}$$

Einfachster Algorithmus für die Wegematrix

```
Matrix A sei die Adjazenzmatrix
   Matrix W wird am Ende die Wegematrix enthalten
   Matrix M wird benutzt um A^i zu berechnen
W \leftarrow 0
                                     Nullmatrix
for i \leftarrow 0 to n-1 do
  M \leftarrow I
                                     Einheitsmatrix
  for i \leftarrow 1 to i do
     M \leftarrow M \cdot A
                                     Matrixmultiplikation
  od
  W \leftarrow W + M
                                     Matrixaddition
od
W \leftarrow \operatorname{sgn}(W)
```

Überblick

Repräsentation von Graphen im Rechne

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

2-Erreichbarkeit an einem Beispiel Matrixmultiplikation Matrixaddition

Einfache Berechnung der Erreichbarkeitsrelation

Potenzen der Adjazenzmatrix
Erste Möglichkeit für die Berechnung der Wegematrix

Zählen durchzuführender arithmetischer Operationen

Weitere Möglichkeiten für die Berechnung der Wegematrix

Algorithmus von Warshal

Was ist der "Aufwand"' eines Algorithmus?

- Anzahl Codezeilen?
- Entwicklungszeit?
- ► Anzahl Schritte?
 - nicht immer gleich
- benötigter Speicherplatz?
 - nicht immer gleich
- vorläufig(!): Anzahl arithmetischer Operationen

Wieviele elementare Operationen für Matrixaddition?

Matrixaddition:

```
for i \leftarrow 0 to m-1 do
for j \leftarrow 0 to n-1 do
C_{ij} \leftarrow A_{ij} + B_{ij}
od
od
```

- ▶ m · n Additionen
- für $n \times n$ -Matrizen: n^2

Wieviele elementare Operationen für Matrixmultiplikation?

Matrixmultiplikation

```
\begin{array}{l} \textbf{for } i \leftarrow 0 \textbf{ to } \ell-1 \textbf{ do} \\ \textbf{for } j \leftarrow 0 \textbf{ to } m-1 \textbf{ do} \\ C_{ij} \leftarrow 0 \\ \textbf{for } k \leftarrow 0 \textbf{ to } n-1 \textbf{ do} \\ C_{ij} \leftarrow C_{ij} + A_{ik} \cdot B_{kj} \\ \textbf{od} \\ \textbf{od} \\ \textbf{od} \\ \textbf{od} \end{array}
```

- $\ell \cdot m \cdot n$ Additionen und $\ell \cdot m \cdot n$ Multiplikationen
- ▶ kleine Variante: $\ell \cdot m \cdot (n-1)$ Additionen
- ▶ insgesamt für $n \times n$ -Matrizen: $2n^3$ bzw. $2n^3 n^2$
- ► Achtung: Niemand sagt, dass das die einzige oder gar beste Methode ist. Sie ist es nicht!

Algorithmus:

$$W \leftarrow 0$$

for $i \leftarrow 0$ to $n-1$ do
 $M \leftarrow I$
for $j \leftarrow 1$ to i do
 $M \leftarrow M \cdot A$
od
 $W \leftarrow W + M$
od
 $W \leftarrow \operatorname{sgn}(W)$

$$\left(\sum_{i=0}^{n-1} i\right) \cdot (2n^3 - n^2) + n \cdot n^2 + n^2 = n^5 - \frac{3}{2}n^4 + \frac{3}{2}n^3 + n^2$$

Algorithmus:

$$W \leftarrow 0$$
for $i \leftarrow 0$ to $n-1$ do
 $M \leftarrow I$
for $j \leftarrow 1$ to i do
 $M \leftarrow M \cdot A$
od
 $W \leftarrow W + M$
od
 $W \leftarrow \operatorname{sgn}(W)$

$$\left(\sum_{i=0}^{n-1} i\right) \cdot (2n^3 - n^2) + n \cdot n^2 + n^2 = n^5 - \frac{3}{2}n^4 + \frac{3}{2}n^3 + n^2$$

Algorithmus:

$$W \leftarrow 0$$
for $i \leftarrow 0$ to $n-1$ do
 $M \leftarrow I$
for $j \leftarrow 1$ to i do
 $M \leftarrow M \cdot A$
od
 $W \leftarrow W + M$
od
 $W \leftarrow \operatorname{sgn}(W)$

$$\left(\sum_{i=0}^{n-1} i\right) \cdot (2n^3 - n^2) + n \cdot n^2 + n^2 = n^5 - \frac{3}{2}n^4 + \frac{3}{2}n^3 + n^2$$

Algorithmus:

$$W \leftarrow 0$$

for $i \leftarrow 0$ to $n-1$ do

 $M \leftarrow I$

for $j \leftarrow 1$ to i do

 $M \leftarrow M \cdot A$

od

 $W \leftarrow W + M$

od

 $W \leftarrow \operatorname{sgn}(W)$

$$\left(\sum_{i=0}^{n-1} i\right) \cdot (2n^3 - n^2) + n \cdot n^2 + n^2 = n^5 - \frac{3}{2}n^4 + \frac{3}{2}n^3 + n^2$$

Algorithmus:

$$W \leftarrow 0$$

for $i \leftarrow 0$ to $n-1$ do

 $M \leftarrow I$

for $j \leftarrow 1$ to i do

 $M \leftarrow M \cdot A$

od

 $W \leftarrow W + M$

od

 $W \leftarrow \operatorname{sgn}(W)$

$$\left(\sum_{i=0}^{n-1} i\right) \cdot (2n^3 - n^2) + n \cdot n^2 + n^2 = n^5 - \frac{3}{2}n^4 + \frac{3}{2}n^3 + n^2$$

Algorithmus:

$$W \leftarrow 0$$
for $i \leftarrow 0$ to $n-1$ do
 $M \leftarrow I$
for $j \leftarrow 1$ to i do
 $M \leftarrow M \cdot A$
od
 $W \leftarrow W + M$
od
 $W \leftarrow \operatorname{sgn}(W)$

$$\left(\sum_{i=0}^{n-1} i\right) \cdot (2n^3 - n^2) + n \cdot n^2 + \frac{n^2}{n^2} = n^5 - \frac{3}{2}n^4 + \frac{3}{2}n^3 + n^2$$

Überblick

Repräsentation von Graphen im Rechne

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

2-Erreichbarkeit an einem Beispiel Matrixmultiplikation Matrixaddition

Einfache Berechnung der Erreichbarkeitsrelation

Potenzen der Adjazenzmatrix Erste Möglichkeit für die Berechnung der Wegematrix Zählen durchzuführender arithmetischer Operationen Weitere Möglichkeiten für die Berechnung der Wegematrix

Algorithmus von Warshal

Da kann man etwas besser machen!

- ▶ haben so getan, als wären für A^i immer i-1 Matrixmultiplikationen nötig
- ightharpoonup es werden aber ohnehin *alle* Potenzen A^i benötigt
- ightharpoonup also besser immer das alte A^{i-1} merken und wiederverwenden
- ► Algorithmus:

$$\label{eq:weights} \begin{split} \mathcal{W} &\leftarrow 0 \\ \mathcal{M} &\leftarrow \mathrm{I} \\ \text{for } i \leftarrow 0 \text{ to } n-1 \text{ do} \\ \mathcal{W} &\leftarrow \mathcal{W} + \mathcal{M} \\ \mathcal{M} &\leftarrow \mathcal{M} \cdot \mathcal{A} \\ \text{od} \\ \mathcal{W} &\leftarrow \mathrm{sgn}(\mathcal{W}) \end{split}$$

$$n \cdot (n^2 + (2n^3 - n^2)) + n^2 = 2n^4 + n^2$$

Schon vergessen?

$$\forall k \geq n-1 : E^* = \bigcup_{i=0}^k E^i$$

Alle $k \ge n - 1$ sind in Ordnung.

- Aber warum kann das helfen?
 - lacktriangle wählen statt n-1 kleinste

Zweierpotenz $k = 2^m \ge n$, also $m = \lceil \log_2 n \rceil$

- ▶ finden eine Matrix F mit $W = F^{2^m} = (\cdots ((F^2)^2) \cdots)^2$
- ▶ Das sind nur noch $m = \lceil \log_2 n \rceil$ Matrixmultiplikationen!
- ▶ Preisfrage: Wie sieht *F* aus?
- ▶ Antwort: Wähle $F = E^0 \cup E^1 = I_V \cup E$.

Schon vergessen?

$$\forall k \ge n-1 : E^* = \bigcup_{i=0}^k E^i$$

Alle $k \ge n - 1$ sind in Ordnung.

- ▶ Aber warum kann das helfen?
 - ▶ wählen statt n-1 kleinste Zweierpotenz $k=2^m \ge n$, also $m=\lceil \log_2 n \rceil$
 - finden eine Matrix F mit $W = F^{2^m} = (\cdots ((F^2)^2) \cdots)^2$
 - ▶ Das sind nur noch $m = \lceil \log_2 n \rceil$ Matrixmultiplikationen!
- ▶ Preisfrage: Wie sieht *F* aus?
- ▶ Antwort: Wähle $F = E^0 \cup E^1 = I_V \cup E$.

Schon vergessen?

$$\forall k \geq n-1 : E^* = \bigcup_{i=0}^k E^i$$

Alle $k \ge n-1$ sind in Ordnung.

- ▶ Aber warum kann das helfen?
 - ▶ wählen statt n-1 kleinste Zweierpotenz $k=2^m \ge n$, also $m=\lceil \log_2 n \rceil$
 - finden eine Matrix F mit $W = F^{2^m} = (\cdots ((F^2)^2) \cdots)^2$
 - ▶ Das sind nur noch $m = \lceil \log_2 n \rceil$ Matrixmultiplikationen!
- ▶ Preisfrage: Wie sieht F aus?
- ▶ Antwort: Wähle $F = E^0 \cup E^1 = I_V \cup E$.

Schon vergessen?

$$\forall k \geq n-1 : E^* = \bigcup_{i=0}^k E^i$$

Alle $k \ge n - 1$ sind in Ordnung.

- ▶ Aber warum kann das helfen?
 - ▶ wählen statt n-1 kleinste Zweierpotenz $k=2^m \ge n$, also $m=\lceil \log_2 n \rceil$
 - finden eine Matrix F mit $W = F^{2^m} = (\cdots ((F^2)^2) \cdots)^2$
 - ▶ Das sind nur noch $m = \lceil \log_2 n \rceil$ Matrixmultiplikationen!
- ▶ Preisfrage: Wie sieht *F* aus?
- ▶ Antwort: Wähle $F = E^0 \cup E^1 = I_V \cup E$.

- ▶ Sei $F = E^0 \cup E^1$
- dann

$$F^2 = (E^0 \cup E^1) \circ (E^0 \cup E^1) = E^0 \cup E^1 \cup E^1 \cup E^2 = E^0 \cup E^1 \cup E^2$$

und

$$F^{4} = (F^{2})^{2} = (E^{0} \cup E^{1} \cup E^{2}) \circ (E^{0} \cup E^{1} \cup E^{2})$$

$$= \dots$$

$$= E^{0} \cup E^{1} \cup E^{2} \cup E^{3} \cup E^{4}$$

▶ per Induktion: Für alle $m \in \mathbb{N}_0$ gilt:

$$F^{2^m} = \bigcup_{i=0}^{2^m} E^i$$

Algorithmus:

$$W \leftarrow A + I$$
 $m \leftarrow \lceil \log_2 n \rceil$
for $i \leftarrow 1$ to m do
 $W \leftarrow W \cdot W$
od
 $W \leftarrow \operatorname{sgn}(W)$

Aufwand:

$$n^2 + \lceil \log_2 n \rceil + \lceil \log_2 n \rceil \cdot (2n^3 - n^2) + n^2$$

▶ Beachte: Für die Berechnung des Wertes $\lceil \log_2 n \rceil$ aus n sind höchstens $\lceil \log_2 n \rceil$ Operationen nötig.

Was ist wichtig

Das sollten Sie mitnehmen:

- Manchmal ist der naheliegende Algorithmus nicht der einzige oder gar der schnellste.
- Denken/Mathematik/Kreativität/Einfach-mal-drüber-schlafen helfen

Das sollten Sie üben:

- Aufwandsabschätzungen bei (ineinander geschachtelten)
 Schleifen
- auch mal verrückte Ideen ausprobieren

Überblick

Repräsentation von Graphen im Rechner

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

2-Erreichbarkeit an einem Beispiel Matrixmultiplikation Matrixaddition

Einfache Berechnung der Erreichbarkeitsrelation

Potenzen der Adjazenzmatrix Erste Möglichkeit für die Berechnung der Wegematrix Zählen durchzuführender arithmetischer Operationen Weitere Möglichkeiten für die Berechnung der Wegematrix

Algorithmus von Warshall

Der Algorithmus von Warshall

```
for i \leftarrow 0 to n-1 do
   for j \leftarrow 0 to n-1 do
      W[i,j] \leftarrow \begin{cases} 1 & \text{falls } i = j \\ A[i,j] & \text{falls } i \neq j \end{cases}
   od
od
for k \leftarrow 0 to n-1 do
   for i \leftarrow 0 to n-1 do
       for i \leftarrow 0 to n-1 do
           W[i,j] \leftarrow \max(W[i,j], \min(W[i,k], W[k,j]))
       od
   od
od
```

Zur Funktionsweise des Algorithmus von Warshall

- algorithmische Idee geht auf eine fundamentale Arbeit von Stephen Kleene zurück
- ▶ Redeweise bei einem Pfad $p = (v_0, v_1, \dots, v_{m-1}, v_m)$ der Länge $m \ge 2$
 - by die Knoten v_1, \ldots, v_{m-1} nennen wir Zwischenknoten des Pfades.
 - ▶ Pfade der Längen 0 und 1 besitzen keine Zwischenknoten.
- ▶ Invariante für die äußere Schleife

$$\label{eq:continuous_section} \begin{array}{l} \mbox{for } k \leftarrow 0 \mbox{ to } n-1 \mbox{ do} \\ & \cdots \\ \mbox{od} \end{array}$$

lautet:

▶ Für alle $i, j \in \mathbb{G}_n$: Nach k Durchläufen der äußeren Schleife ist W[i,j] genau dann 1, wenn es einen wiederholungsfreien Pfad von i nach j gibt, bei dem alle Zwischenknoten Nummern in \mathbb{G}_k (also k) haben.

Zum Aufwand des Algorithmus von Warshall

- drei ineinander geschachtelte Schleifen
- ▶ deren jeweiliger Rumpf *n*-mal durchlaufen wird
- ▶ "irgendwie ungefähr" *n*³ Operationen

Zusammenfassung

- Repräsentationen von Graphen im Rechner
- Berechnung der Wegematrix
 - mit vielen oder weniger Operationen
 - ► Algorithmus Warshall kommt mit weniger Operationen aus als alle unsere vorherigen Versuche