Struttura della Sottointerfaccia Parallela di Uscita interna al Controllore delle Interruzioni

Tabella di verità della rete combinatoria

Ovvero, ottimizzando

	/s	/iow	a_3	a_2	a ₁	a_0	e ₀	e_1	(9 ₁₅
	0	0	0	0	0	0	1	0		0
	0	0	0	0	0	1	0	1		0
	:	:	:	:	:	:	:	:		:
	:	:	:	:	:	:	:	:		:
	0	0	1	1	1	1	0	0		1
altro							0	0		0

Tabella di verità della rete combinatoria

CHI E COME INIZIALIZZA I REGISTRI TR0, TR1, ..., TR15

Questi registri sono utilizzati dal controllore per associare un tipo a ciascuna delle sorgenti di interruzione. La legge di associazione è la seguente: «alla k-esima sorgente, cioè alla sorgente connessa al controllore tramite la variabile ir_k (con k=0,1,...,15), il controllore assegna come tipo il contenuto del registro TR_k ». Per questo motivo il contenuto del registro TR_k deve essere inizializzato durante l'esecuzione del programma bootstrap mediante, ad esempio, la funzione C++:

outport(TRk_offset, tipo del sottoprogramma adatto alla k-esima sorgente)