- 1. (6 points) Consider the vector space $V = \text{span}\{u(t), v(t)\}$ where u(t) and v(t) are linearly independent functions.
 - (a) Define two new functions p(t) = a(u(t) + v(t)) and q(t) = b(u(t) v(t)). Show that for any $a, b \neq 0$ the set $\{p(t), q(t)\}$ is also a basis for V.

Metars bel' del pare to 26 / 1/2 / 1

(b) Verify that $u(t) = e^{it}$ and $v(t) = e^{-it}$ are linearly independent solutions of x'' + x = 0. $\sqrt{e^{it}} = e^{it} - e^{-it} - e^{-i$

(c) Use Euler's identity $(e^{it} = \cos(t) + i\sin(t))$ along with part (a) to show that $\{\cos(t), \sin(t)\}$ is a basis for the solution space of x'' + x = 0.

2. (7 points) Let P be the following set:

$$P = {\mathbf{p}_1(x), \ \mathbf{p}_2(x), \ \mathbf{p}_3(x), \ \mathbf{p}_4(x)},$$

where $\mathbf{p}_1(x) = 1$, $\mathbf{p}_2(x) = x$, $\mathbf{p}_3(x) = 3x^2 - 1$, and $\mathbf{p}_4(x) = 5x^3 - 3x$.

(a) Determine whether the set P is linearly independent or linearly dependent.

(b) Find a linear combination of elements of P that represents the polynomial $y(x) = 1 + x + x^2 + x^3$. $(x_1 + x_2 + x_3) + (x_2 + x_3) + (x_3 + x_4) + (x_4 + x_3) + (x_4 + x_4) + (x_4 + x_4)$

(c) Does P span the vector space V of all polynomials of third-degree or less? Justify your answer.

Yes. Pis linearly independent and is 3" order