一、是非判断(对的在括号内打"√",错的打"×")

- 1. 若晶闸管的控制电流由小变大,则正<u>向转折电压</u>由大变小。 (**X**)
- 2. 只要引入正反馈, 电路就会产生正弦波振荡。 **U**60 (X)
- 3. 与甲类功放方式相比, 乙类互补对称功放的主要优点是无交越失真。 (★)
- 4.555 集成定时器构成应用电路时,若电压控制端不外加电压,可以出现阈值端电压大于 2/3Um,触发端电压小于 1/3Um的情况。 (**X**)
- 5. 正弦波振荡电路中只允许存在正反馈,不可能存在负反馈。 (X)
- 6. 在 OCL 功率放大电路中,负载流过的直流电流为零。 (✓)
- 7. 波形产生电路的特点是自激和必须在电路中引入足够强的负反馈。 (人)
- 8. 晶闸管属于半控型器件,只能控制其导通,而不能控制其关断。 (人)
- 9. 施密特触发器没有稳定状态,属于无稳态触发器。 (X)

二、单项选择

- ▲ 1. 在 RC 正弦波振荡电路中, RC 串并联网络的功能是()。
 - A. 正反馈和选频 B. 选频和稳幅
 - C. 放大和稳幅 D. 正反馈和放大
- 2. 下列关于功率放大电路问题,正确的说法是()。
 - ★ 功率放大电路所要研究的问题★是一个输出功率大小的问题。
 - B. 功率放大电路的主要作用是向负载提供足够大的功率信号。
 - 💢 乙类互补对称功率放大电路中,输入信号越大,交越失真也越大。
 - ➤ 所谓 OTL 电路是指无输出电容的功率放大电路。
- ✓ 3. 右图电路是由一个 555 集成定时器构成的 ()。
 - A. 多弦振荡器 无输入 从;
 - B. 单稳态触发器
 - C. 施密特触发器
 - **X** 正弦波振荡电路

$$k = \frac{220}{44}$$
 $I_1 = \frac{1}{K} \cdot 20$

- **人** 4. 某单相变压器,容量为 10 KVA,当一次绕组加交流电压 $U_1 = 220 \text{V}$ 时,测得二次绕组电压 $U_2 = 44 \text{V}$,电流 $I_2 = 20 \text{A}$,则一次绕组电流 $I_1 = ($) 。
 - A. 4A
- B. 100A
- C.20A
- D.45.45A
- **A** 5. 整流电路输出端加上<u>电感滤波</u>后,会使负载电压的()。
 - (a) 交流分量减小, 平均值不变
- (b) 交流分量不变, 平均值增大
- (c) 交流分量增大, 平均值增大
- (d) 交流分量减小, 平均值增大
- **3** 6. 几种类型的 *LC* 振荡电路如图所示,电感三点式振荡电路是指下列图中()。

- **7**. 整流电路输出端加上<u>电容滤波</u>后,会使负载电压的()。
 - (a) 交流分量减小, 平均值不变
- (b) 交流分量不变, 平均值增大
- (c) 交流分量增大, 平均值增大
- (d) 交流分量减小, 平均值增大

三、填空题(将答案填入空格内)

- 1. 直流稳压电源一般采用由交流电源经调压、整流、滤波和凝压而得到的。
- 2. 整流电路如左下图所示,已知变压器一次绕组匝数 N_1 =1100 匝,二次绕组匝数 N_2 =100 匝。当一次绕组 加交流电压 U_1 =220V 时,

输出电压平均值 Uo= 18 V。

 $\begin{array}{c} \bullet \\ u_1 \\ \end{array} \begin{array}{c} \bullet \\ U_2 \\ \bullet \\ \end{array} \begin{array}{c} \bullet \\ D_1 \\ \end{array} \begin{array}{c} D_2 \\ R_L \\ \bullet \\ \end{array} \begin{array}{c} \bullet \\ u_0 \\ \bullet \\ \end{array}$

0.9 Uz

M2 = 22V

- 3. 功率放大电路有 OCL,OTL 两种不同形式,现对一个<u>输入大小合适的直流信号</u>进行功率放大,应选用_**OCL**_形式电路。
- 4. 正弦波振荡电路中按选频电路的不同,可以分为_**RC**_振荡电路和_**LC**振荡电路。
- 5. 用 555 集成定时器分别可以构成双稳态触发器即 **施密特触发器** 无稳态触发器即 **多谐振荡器** 以及 **单稳态触发器**。
- 7. 右图是一个尚末接线完毕的 RC 正弦波振荡电路,为满足自激振荡的相位条件,应将电路中的_____端和______端相连,_____端和_____端相连。若 R=8.2k Ω ,C=0.22 μ F,则振荡频率 f_0 =____**28.22 HZ**。

- 8. 555 定时器的接法如右图所示电路,则,这是一个_**单稳**之触发器。若要使输出脉冲的下降沿近级 5.5 秒,则 C=__**lo MF**_。 **Lirc = \$5 R = \$00k**...
- 9. 图示为一可控整流电路,其输入电压 U₂=220V,

$$U_{L=0.902} = 0.9 \times \frac{1 + \frac{1}{2}}{2}$$

$$= 0.9 \times 220 \times \frac{1 + \frac{1}{2}}{2}$$

$$= 0.9 \times 1.5 \times 220$$

10. 图示电路是一个单相桥式全控整流电路, 忽略晶闸管的正向导通压降。 当控制角 g =90°时 负载电压平均值为 25

当控制角 α =90°时,负载电压平均值为 25V。现欲使负载电压升高一倍,则

- 四、图示为直流稳压电路, 要求:
 - (1) 在图上画出四个整流二极管
 - (2) 计算 R_W 在中点时的输出电压 U_L (U_Z =6 V),此时若调整管 T 上的电压为 6 伏,计算交流电压 U_2 的有效值
 - (3) 本电源输出电压的调节范围解

(2)

$$U_{t} = U_{z} = 6V$$

 $M_{-} \approx M_{t} = 6V$
 $U_{L} = 2 M_{-} = 12V$
 $\therefore U_{c} = U_{L} + U_{T} = 16V$
 $\therefore U_{2} = U_{c} / 1.2 = 15V$

(3)
$$U_{L} = \frac{4+Rw}{2+Rp} U_{-} = \frac{30}{2+Rp} (V)$$

当 $R_{P} = 0.2$ 时, $U_{L} = 15 V$ 4
当 $R_{P} = 1k2$ 时, $U_{L} = 10 V$
 $10 V \le U_{L} \le 15 V$

五、电路如图所示,设运放为理想的。7805为三端稳压器,试求输出电压Uo的可调范围。

解:

$$U_3 = SV$$
 $U_{R3} = \frac{R_3}{R_2 t R_3} U_3 = 0.SV$

$$\frac{Uo}{RtR_W} = \frac{Ut}{RwP} \implies Uo = \frac{8}{1b - RwP}$$

- 六、下图为由 555 定时器所构成的应用电路图,其中, U_{cc} =+5V, R_A =10 $K\Omega$,C=1 μ F,回答:

当 U。输出低电平,电容 C 电压 $U_{\rm C}$ 变化至 $\frac{1}{2}$ $V_{\rm D}$ 时, $U_{\rm C}$ 输出将翻转为 高电平。

- (4) 计算输出 U。高电平的时间宽度, 计算输出 U。低电平的时间宽度。

输出Uo低电平分而> きしな 争放电

七. 在图示电路中, R_f 为反馈元件,设三极管饱和管压降为0V。

- 1. 为稳定输出电压 vo,应引入何种负反馈?在图中画出 R_f的连接电路;
- 2. v_I=0 时,流过 R_L 的电流有多大?
- 3. 若 V₁,V₂中有一个接反, 电路能正常工作吗?
- 4. 若使闭环电压增益 $A_{vf} = 10$,确定 $R_f = ?$ 求最大不失真输出功率 $P_{omax} = ?$ 以及最大不失真输出功率时的输入电压幅值为多少? (假设运放最大输出电压为 $\pm 14V$, $R_i = 10 \Omega$)

$$U_{om} = 14V$$
 $V_{omax} = (U_{om}/J_{\perp})^{2}/R_{\perp} = \frac{14^{2}/2}{10} = 9.8W$
 $U_{Dm} = U_{om}/A_{VI} = 1.4V$