Embedded Systems Einführung

Eingebettetes System

- o integrierte, elektronische Schaltung mit spezifischer Aufgabe, mit der ein Benutzer nur indirekt in Verbindung kommt
- Teil eines Gesamtsystems mit stark beschränkten Ressourcen, bestehend aus Hard- und Software (teilweise ohne Betriebssystem)
- HW/SW-Codedesign z.B. mit VHDL, allgemein tool- bzw. modellbasierter Entwurf
- o 75 % verwenden ein Betriebssystem (Tendenz steigend)
 - 25 % mit Main-Loop
- o Ist eine Kombination aus Hard- und Softwarekomponenten, die in einen technischen Kontext zur Steuerung, Regelung und Überwachung eines Systems eingebunden sind
- o Es verrichtet vordefinierte Aufgaben, oftmals mit Echtzeitberechnungs-Anforderungen
- Speicherprogrammierbare Steuerung (SPS): Verwendet zur Fabrikautomatisierung, Verkehrsleitung
- Standardarchitektur auf einem PC: Preiswerte Hardware (allerdings oft nicht industrietauglich)
 preiswerte Software, häufig ohne Echtzeitfaehigkeit
- o Industrie-PC: Unterstützt Echtzeitbetriebssysteme

Definition: Technischer Prozess

- o Prozess, in dem Zustandsgrößen durch technische Hilfsmittel festgestellt und beeinflusst werden
 - Prozess definiert als Gesamtheit von aufeinander einwirkenden Vorgängen in einem System, durch die Information verändert wird
- o Sensoren (z.B. Thermometer, Kamera, Mikrofon) erfassen Zustandsgrößen, Aktoren (z.B. Motoren, Relais, Ventile) beeinflussen sie

Klassifikation: Technischer Prozess

- Fließprozess (Regler): physikalische Größe mit stückweise kontinuierlichem Wertebereich,
 ablaufende Vorgänge sind zeit- und ortsabhängig, z.B. chemische Reaktoren, Energieerzeugung in Kraftwerken
- o Folgeprozess (State Machine): Binäre, diskrete Informationselemente werden gemeldet oder ausgelöst,
 - z.B. Ampel- oder Aufzugsteuerung
- Stückprozess (Datenbank): Informationselemente werden einzeln identifizierbaren Objekten (Stücken) zugeordnet z.B. Transport- oder Ladevorgänge, Fertigung

Definition: Rechenprozess

o *Task* als Instanz zur dynamischen Abarbeitung eines Programms zur Berechnung von Ausgabewerten aus Eingabewerten über Umformen, Transportieren oder Speichern von Information

Definition: Kognitiver Prozess

- o Umformen, transportieren oder verarbeiten von Information im menschlichen Bediener
- o Einflussnahme des Bedieners auf den Rechenprozess über Man Machine Interface (MMI)

Definition: Steuerungssystem

- o Umfasst zur Steuerung erforderliche Rechenprozesse sowie deren Hard- bzw. Software
- Aufgaben:
 - Erfassen von Zustandsgrößen
 - Koordinaten & Überwachung der Prozessabläufe

Definition: Steuerung und Regelung

- o Steuerung: Kein geschlossener Regelkreis, Rechenprozess reagiert nicht auf sich ändernde Sensorwerte im technischen Prozess
- o Regelung: Geschlossener Regelkreis, Sensor- bzw. Messwerte werden verwendet, um Stellgrößen daraus zu berechnen

Self-Hosted-Entwicklung

o Entwicklungsumgebung und Zielsystem sind identisch (so wie wir es alle kennen)

Host-Target-Entwicklung

o Self-Hosted-Entwicklung oft nicht möglich da Hardware proprietär oder zu leistungsschwach für Entwicklungsumgebung

- $\circ \ \textbf{Host:} \ Entwicklungsrechner, \ enthält \ \textit{Cross-Compiler, Remote-Debugger, Target-Libraries } \ und \ -Betriebssystem$
 - Cross-Compiler: Erzeugt Image, dass eigentliche Applikation sowie Betriebssystem- und Laufzeitkomponenten + Startupcode enthält
 - Remote-Debugger: Auf dem Host läuft GUI mit Debug-Info, über JTAG etc. sieht man den Systemzustand des Targets (Stack, Variablenbelegung) an gewählten Breakpoints
 - Ohne Remote-Debugger: Konsolenausgaben per printf, LEDs blinken lassen
- Schnittstelle: Zum Downloaden der Applikation auf das Target oder fürs Debugging, verschiedenste Variationen möglich (z.B. Ethernet, USB, JTAG, Flash, ...)
- o Target: System, für das entwickelt wird
 - Boot-Monitor: Programm auf dem Target, über das Software geladen und gestartet werden kann, erfolgt über ähnliche Schnittstellen wie die Host-Target-Entwicklung an sich

Softwareentwicklung in einem Host-Target System

Target system

- o Object File: Symboltabelle
- o Linker: Symbol-Auflösung und Relocation
- o Executable File: Code & Daten zur Ausführung, Umsetzung auf virtuellen Speicher
- o Shared object file: Code und Daten zum (dynamischen) linken mit anderen object files
- o **Relocatable file:** Code und Daten zum linken mit anderen *object files* um Executable
 - zu erstellen
- o Dynamic Linker: Laden von shared Libraries

Tools: Kernel-Tracer

o Zeigt Signale, Task-Zustaende, Semaphoren, Interrupts

Tools: Stack-Monitor

o Zeigt maximal verfügbarer Stack pro Task, aktuelle Auslastung und maximale je gemessene Auslastung (Hochwassermarke) des Stacks

Weitere Tools

o Anzeige der Speicherbelegung und Auslastung der CPU, Memory-Leak-Detection, Code-Coverage

Echtzeitbetrieb

Kriterien für Echtzeitsysteme

- Schnelligkeit bzw. Geschwindigkeit ist nicht wichtig im Kontext einer harten Echtzeitschranke ein schnellerer PC ist zwar häufiger vor der Schranke fertig, aber eben auch nicht zu 100%
- o Wichtig dagegen sind:
 - Pünktlichkeit (Ober- und Untergrenze) bzw. Rechtzeitigkeit (Nur Obergrenze) (timeliness)
 - Verfügbarkeit
 - Determinismus (bei gleicher Eingabe im gleichen Zustand liefert das System immer die gleiche Ausgabe)
- Verletzungen von Zeitbedingungen ggf. katastrophal (fristgerechte Bearbeitung von Anforderungen aus einem technischen Prozess)

Vorbedingungen für Echtzeitbetrieb

- o Verarbeitungszeit von Aufgaben berücksichtigen, bei mehreren Aufgaben Reihenfolge der Abarbeitung planen
- o Reihenfolge entscheidend für fristgerechte Ergebnisse
- o Priorität von Aufgaben gemäß ihrer Wichtigkeit als Planungsgrundlage
- o Unterbrechung einer Aufgabe muss durch einen Prozess zur Bearbeitung höher-priorer Aufgaben möglich sein
 - ⇒ Formaler Rahmen zum Nachweis schritthaltender Verarbeitung

Echtzeitbedingung: Auslastung

- $\circ t_V := Verarbeitungszeit$
- $\circ t_P :=$ Prozesszeit, Abstand zwischen zwei Anforderungen (*Jobs*) desselben Typs, wenn t_P konstant handelt es sich um einen zyklischen bzw. periodischen Prozess

$$\circ \rho = \frac{t_{V}}{t_{P}} := \text{Auslastung}
- \rho_{A} = \frac{t_{VA}}{t_{PA}}
- \rho_{B} = \frac{t_{VB}}{t_{PB}}
- \rho_{A+B} = \frac{t_{VA}}{t_{PA}} + \frac{t_{VB}}{t_{PB}}
\circ \rho = \sum_{i=0}^{n} \frac{t_{V}i}{t_{P}i} := \text{Gesamtauslastung bei } n \text{ Prozessen}$$

o **1.** *Echtzeitbedingung:* Gesamtauslastung aller Prozesse $\leq 1 \Leftrightarrow \rho = \sum_{i=0}^{n} \frac{t_{y}i}{t_{p}i} \leq 1$

Art von Rechenprozessen

- o zyklisch: konstanter Abstand zwischen zwei Anforderungen
- o azyklisch: Keine Untergrenze zwischen zwei Nachrichten, kommen beliebig (gefaehrlich)
- o sporadisch: ähnlich wie azyklisch aber mit Untergrenze zwischen zwei Nachrichten (z.B. Netzwerktreiber)

Echtzeitbedingung: Pünktlichkeit

- o Aufgabe darf nicht vor spezifizierten Zeitpunkt t_{Zmin} erledigt sein(meist unwichtig oder trivial)
- o Aufgabe muss spätestens bis Zeitpunkt t_{Zmax} erledigt sein (Rechtzeitigkeit)
- \circ Verbleibende Reaktionszeit: $t_R=t_V+t_W$ (Verarbeitungszeit + Wartezeit) *Wartezeit* := Zeit, bis Rechenkern frei ist

• **2.** *Echtzeitbedingung:* Um Aufgaben rechtzeitig zu erledigen, muss die Reaktionszeit zwischen der minimal und maximal zulässigen Reaktionszeit liegen: $t_{Zmin} \le t_{Rmin} \le t_{Rmax} \le t_{Zmax}$

Harte und weiche Echtzeit

- Harte Echtzeit: Verletzung der Rechtzeitigkeit hat katastrophale Folgen (z.B. Airbag, Herzschrittmacher)
- \circ Weiche Echtzeit: Schlechteres Ergebnis (z.B. ruckelnde Videowiedergabe, GPS-Latenz) \Rightarrow Häufig Graubereich
- o Kostenfunktion: Kosten explodieren bei Überschreitung der Echtzeitschranke (Deadline) im Falle von Harter Echtzeit, bei Weicher Echtzeit steigen Kosten nur linear an

 \circ *Nutzenfunktion:* Ergebnisse außerhalb des Intervalls [t_{Zmin} , t_{Zmax}] haben bei Harter Echtzeit nahezu *keinen* Nutzen mehr, bei Weicher Echtzeit ungefähr *lineare* Ab- bzw. Zunahme

Echtzeitbetriebssysteme

Aufgaben und Anforderungen

- o Steuern und Überwachen: Ausführung der Benutzerprogramme & Verteilung der Betriebsmittel (Speicher, Prozessor, Dateien)
- o Stellt dem Benutzer die Sicht einer einfacher als die Hardware zu bedienenden virtuellen Maschine zur Verfügung
 - Aus Sicht des Benutzers steht der Rechner ihm allein zur Verfügung
 - Einfacher, standardisierter Zugriff auf Ressourcen (Speicher, Geräte, Dateien per Gerätetreiber, Dateisystem, Speichermanagement)

o Zeitverhalten

- Schnelligkeit (bei einem RTOS insbesondere Realisierung kurzer Antwortzeiten)
- Zeitlicher Determinismus (Speicherverwaltung und Garbage Collection sind problematisch)
 - * Scheduling, IPC und Synchronisation
 - * Angabe und Einhalten von Zeitbedingungen, Bereitstellen von Zeitdiensten

o Geringer Ressourcenverbrauch

- Hauptspeicher & Prozessorzeit

o Zuverlässigkeit & Stabilität

- Programmfehler dürfen Betriebssystem und andere Programme nicht beeinflussen
- Linux: Treiber & Kernelmodule laufen im Kernel-Adressraum
- QNX: Mikrokernel-Architektur: sogar Treiber haben eigenen Adressraum

o Sicherheit

- Datei- und Zugangsschutz

o Portabilität, Flexibilität und Kompatibilität von Systemkomponenten

- Erweiterbarkeit, Einhalten von Standard (z.B. POSIX)
- Möglichkeit für andere Betriebssysteme, geschriebene Programme zu portieren (anpassen, übersetzen, ausführen)

Skalierbarkeit

- Hinzunehmen oder Weglassen von Betriebssystem-Komponenten möglich machen
- Geringer Programm- und Datenspeicherbedarf bei kleinen Anwendungen (Footprint)
- Komfort und umfassende Funktionalität bei großen Anwendungen

Aufbau und Struktur

- Ein Betriebssystem besteht aus aufbauenden Systemkomponenten (Dienstprogramme, Werkzeuge) und einem Betriebssystemkern
- o (1): Hardware-Interrupt
- o (2): Software-Interrupt (Systemcall)
- o (3): Hardware-Interrupt (während eines Systemcalls)
- o (4): Hardware-Interrupt (Scheduler wird aufgerufen)
- \circ (5): Scheduler übergibt CPU einem Task auf $\textit{User}\text{-}\mathsf{Ebene}$
- Betriebssystem-Dienste werden fast bei jedem Betriebssystem über Software-Interrupts (Supervisor Call / Systemcall) angefordert

Prozessmanagement

Unterbrechung ohne Betriebssystem

PC = Program Counter

Unterbrechung mit präemptivem Scheduling (Multitasking Betriebssystem)

- o (1): CPU arbeitet Programm ab
- o (2): Interrupt während der Programmabarbeitung:
 - Abarbeitung des aktuellen Befehls beenden
 - Befehlszähler und Registerinhalte auf den Stack legen
 - Befehlszähler auf Interrupt Service Routine (ISR) legen
- o (3): ISR rettet von ihr benötigte CPU-Register
- o (4): Eigentliche Interrupt-Behandlung
- o (5): Gerettete CPU-Register wiederherstellen
- o (6): Befehl Return from Interrupt:
 - Auf Stack abgelegte Register (Flags, Befehlszaehler) wiederherstellen
- o (7): Normalen Programmablauf fortsetzen
- o Softwareinterrupts (Systemcalls):
 - Benutzerprogramme fordern Dienste des Betriebssystems an
- o Hardwareinterrupts:
 - Hardwarekomponenten (Systemuhr, HDD) fordern Dienste des Betriebssystems an
 - Präemptiv (bei RTOS): Rechnerkern wird bei Interrupt der aktuell rechnende Task entzogen wenn höherpriore Task auf Interrupt reagieren muss
 - Interrupt zum Kontextwechsel
 - Retten des Kontextes des unterbrochenen Prozesses *j*
 - eventuelle Auftragsbearbeitung
 - Scheduler: Auswahl nächster Rechenprozess i
 - Kontext von Rechenprozess i laden
 - Return zu PCi

Bei Interrupt (z.B. *Timer* oder *I/O*) wird Scheduler gestartet und zu höher priorem Prozess gewechselt um obere Reaktionsschranke eines *RTOS* einhalten zu können (Interrupt-Sperre im *Kernel* so kurz wie möglich, obere Schranke einhalten wichtig)

Nicht-präemptiv (normales Betriebssystem):
 Scheduling nur bei Systemcall oder zeitgesteuert,
 nicht bei Interrupt

 Beinhaltet: Priorität, Maschinenzustand (Register, Stack), Task-Zustand, Zeit-Quantum, Verwaltungsdaten für Betriebsmittel (Filedeskriptor), Speicherabbildungstabellen für virtuellen Speicher (Prozessadressraum → realer Speicher (Code, Data, Stack))

```
char*
                         name;
                                                      task name
uint
                         status;
                                                     status of task
uint
                         priority;
                                                     task's current priority */
uint
                         prioNormal:
                                                      task's normal priority */
FUNCPTR
                         entry;
                                                      entry point of
                                     ptr to signal info for task */
struct sigtcb
                 * pSignalInfo :
                         taskTicks;
uint
                                                   /* total number of ticks
                         taskIncTicks;
uint
                                          /* number of ticks in slice */
                 *taskStdFp[3]; int taskStd[3]; /* stdin, stdout, stderr fps /
struct
char
                         **ppEnviron;
                                             environment var table */
int
                                  envTblSize;
                                                           /* number of slots in table */
                                  nEnvVarEntries; /* num env vars used */
EXC_INFO excInfo; REG_SET regs;
                                          /* exception info & register set */
```

Task-Zustände

o Tasks und Threads:

- Leichtgewichtige Prozesse um Aufwand für Kontextwechsel zu minimieren
- Mehrere Threads teilen sich fast kompletten Task-Kontext
- Lediglich Stack (mit Program Counter) und Thread-Status unterschiedlich
- sind effizient zu erzeugen und zu schedulen
- gemeinsamer (kein getrennter) Prozessadressraum
- gemeinsame Betriebsmittel wie Files / Devices
- gemeinsamer globaler Speicher, oft aus Effizienzgründen verwendet

o Thread erzeugen:

- o int_pthread_create(pthread_t * thread, pthread_attr_t * attr, void * (*start_routine)(void *), void * arg):
 - Erzeugt neuen Thread (Einstiegsfunktion start_routine mit Argument arg)
 - Thread wird nebenläufig mit aufrufenden Thread abgearbeitet
 - Beenden mit pthread_exit oder beenden von start_routine
 - Attribute: Scheduling (Art, Parmeter), Stack (Größe, Adresse), JOINABLE / DETACHED
 - JOINABLE: Thread Control Block wird solange aufgehoben, bis JOIN auf diesen Thread aufgerufen wird
 - DETACHED: TCB wird direkt nach Beendigung des Threads weggeworfen
- o void pthread_exit(void * retval):
 - Beendigung des Threads mit retval
 - Alternative zu Beenden der start routine
 - Cleanup-Handler aufrufen (Ressourcen freigeben (Speicher, Filedeskriptor))
- o int pthread_join(pthread_tthread,void * *thread_return):
 - Aufruf blockiert, bis Thread sich beendet (Ergebnis steht dann in thread_return)
- o int pthread_detach(pthread_tth):
 - Wenn keiner auf Thread wartet, räumt er sich bei Beendigung komplett auf (Thread Deskriptor, Stack)

Speichermanagement

- o Aufgaben einer Memory-Management-Unit (MMU): Speicherschutz & Adressumsetzung
- MMU ist in Hardware implementiert und wird durch das Betriebssystem mittels Speicherabbildungstabellen konfiguriert

Speicherschutz:

- Jeder Prozess (nicht Thread) hat eigenen Prozessadressraum
- Zugriff nur auf eigene Daten-, Stack- und Codesegmente
- Zugriff auf nicht abgebildete Adresse führt zur Interrupt (Segmentation Fault) durch MMU

Speicherverwaltung ohne MMU / Adressumsetzung

- o Alle Programme sind zur *Link-*Zeit bekannt, Linker kann unterschiedliche Adressbereiche pro Programm zuordnen und *Sprungadressen* (d.h. Funktionsaufrufe) auflösen, es gibt ein Executable (*Image*)
- o Wenn mehrere Programme dynamisch zur Laufzeit in den Hauptspeicher geladen werden sollen:
 - unterschiedliche, zur Lade-Zeit festgelegte Programmadressen (Sprünge bei Funktionsaufrufen)
 - Der *Loader* ersetzt Adressen zur *Lade-*Zeit eines Programms (z.B. Ersetzen des Symbols einer Funktion *printf*() durch Adresse, unter der Funktion tatsächlich verfügbar durch Symboltabelle erst zur *Ladezeit* bekannt)
 - Verwendung von Position Independent Code (PIC) da natürlich zur Compile-Zeit absolute Sprünge nicht bekannt PIC bedeutet die Verwendung von Relativsprüngen (d.h. anstatt absoluter Sprung von $0x900 \rightarrow 0x1000$ wird relativer Sprung um 0x100 eingetragen)

Speicherverwaltung mit Adressumsetzung

- o Einheitlicher, virtueller Adressraum für Programme:
 - beginnt bei 0, umfasst kompletten adressierbaren (Adressbusbreite) Adressbereich für jedes Programm
 - Linker legt virtuelle Adressen in Executable fest, Adressen werden nicht verändert, nur durch MMU auf reale abgebildet
 - → schnelles Laden da keine Veränderung des Executables erforderlich (nur initiale Konfiguration der MMU)
 - Verwendung von Shared Libraries: Mehrere Tasks teilen sich (Code-) Segment
 - → beliebige, virtuelle Adresse durch Linker vergeben, Abbildung auf bereits geladene Shared Library durch MMU
 - ⇒ Reduziert Hauptspeicherbedarf
 - Physikalischer Adressraum meist kleiner als virtueller Adressraum
 - Abbildung durch Swappen (=Auslagern des zugeordneten, physikalischen Speichers eines gesamten Prozesses auf HDD)
 - Abbildung durch Paging (=Auslagern selten genutzter Speicherseiten (4kByte-Pages) auf HDD)
 - Swappen und Paging führen zu Nichtdeterminismus, für Echtzeitbetriebssysteme also ungeeignet
 - → Es ist nicht deterministisch, wann & wie lange eine Page geswapped wird, auch nicht, wie lange das Laden aus HDD in RAM dauert

Adressabbildung

- o Virtuelle Adresse (z.b. 32-Bit lang) besteht aus zwei Teilen: Seitendeskriptoradresse [31:12] und Seitenoffset [11:0]
 - Seitenoffset (Adresse innerhalb einer 4kByte Page) ist äquivalent zur physikalischen Adresse
 - Über den Seitendeskriptor wird die Adressierung der Page vorgenommen
 - Seitendeskriptor enthält Zugriffsrechte [15:12] und tatsächliche Page-Nummer [11:0], Zugriffsrechte-Flags:
 - Schreibflag: 1 := Page darf geschrieben werden, 0 := Schreibzugriff führt zu Bus-Error
 - Datenflag: 1 := Page darf gelesen werden, 0 := Lesezugriff führt zu Bus-Error
 - Codezugriff: 1 := Prozessor darf Pageinhalt als Befehl ausführen, 0 := Versuch, Inhalt als Code auszuführen führt zu Bus-Error
 - Validflag: 1:= Seite ist im Hauptspeicher, 0:= Seite ausgelagert o Seite-Fehlt-Hardware-Interrupt o Kernel lädt Seite von HDD

I/O

- o Aufgaben:
 - Aus Applikationssicht: Schnittstelle für einheitlichen Zugriff auf unterschiedlichste Hardware-Ressourcen
 - Aus Hardwaresicht: Umgebung, um Hardware einfach & systemkonform in Kernel zu integrieren
 - Zusätzlich: Realisiert Organisationsstrukturen auf Hintergrundspeicher (Filesystem)
- Schnittstellenfunktion:
 - Peripherie-Zugriffe abgebildet durch:
 - Lesen und Schreiben (read und write)
 write(fd, &value, sizeof(value));
 - Konfigurieren (ioctl)
 - Öffnen und Schließen (open und close)
 - Open-Funktion des Gerätetreibers wird aufgrund der System-Call Parameter ausgewählt (z.B. serielle, parallele, oder analoge Schnittstelle)

```
fd = open('Tuer', O\_RDWR);
... close(fd);
```

- Anforderung einer Ressource beim Betriebssystem ggf. Ablehnen aufgrund:
 - fehlender Zugriffsrechte
 - Ressource bereits belegt

Realisierung von Treibern:

- o Device wird mit Namen sowie primären- und sekundären Identifier angelegt: mknod/dev/carrera 240 0
 - Führt dazu, dass primären Identifier eine Funktion *init_module(){...}* zum Initialisieren einer *struct carrera_table* zugeordnet wird. Diese Struktur enthält *Funktionspointer* zu *Treiberfunktionen* wie *carrera_open(){...}*, *carrera_close{...}*, *carrera_write(){...}*
- o Codezeile *open('/dev/carrera',O_RDWR)*; führt dazu, dass die bei */dev/carrera* bzw. in *carrera_table* hinterlegte Funktion aufgerufen wird:*carrera_open()*{...}