IMAGE PROCESSING BENTUK JARIMATIKA DENGAN DETEKSI CANNY DAN EKTRAKSI MOMEN HU

Image Processing of Jarimatic shape With Canny Detection and Moment Hu Extraction

Maura Widyaningsih¹, Susi Hendartie²

1,2</sup> STMIK Palangkaraya, JI G. Obos No. 114 Palangka Raya
e-mail: ¹maurawidya@gmail.com, ²sesyhendartiealang@gmail.com

ABSTRAK

Ilmu Processing merupakan sub keilmuan Computer vision pada Artifical Intelegence, yang membantu dalam analisis akan kebutuhan informasi dengan obyek citra. Pada konsep pembelajaran jarimatika peranan jari membantu informasi dalam mempermudah hitungan matematika. Jarimatika merupakan teknik belajar matematika praktis bagi siswa dengan menggunakan jari pada 2 belah tangan kanan dan kiri. Namun obyek citra perlu dianalisis terlebih dahulu dengan menggunakan metode dan konsep penyelesaiannya. Pengembangan dan pengujian dilakukan dan dikembangkan secara terus menerus demi kemajuan manusia khususnya pendidikan. Aplikasi pengenalan bentuk jari diproses dengan metode image processing dengan teknik filtering Gausian Blur, resize, grayscale, dan teknik segmentasi dengan menggunakan deteksi tepi Canny dan deteksi contour, dilanjutkan dengan dilation. Ekstraksi ciri menggunakan Moment Hu dari hasil citra kontur Dari hasil segmentasi dan deteksi tepi memberikan hasil obyek dapat menunjukan tepian dengan jelas dan penebalan dengan dilasi untuk memperkuat tepian citra, sehingga membantu dalam penentuan nilai kontur. Hasil citra direkomendasikan pada proses pembelajaran data sehingga memastikan apakah citra jarimatika dikenal bentuknya secara berbeda atau tidak, yang selanjutnya dapat dikembangkan pada penerapan pola jari pada machine learning untuk jarimatika.

Kata kunci: Jarimatika, Pengolahan Citra , Deteksi tepi Canny, Moment Hu

ABSTRACT

Processing Science is a sub-science of Computer vision on Artificial Intelligence, which helps in the analysis of information needs with image objects. In the concept of learning Jarimatika the role of the finger helps information in facilitating mathematical calculations. Jarimatika is a practical mathematics learning technique for students by using two fingers on the right and left hands. However, the image object needs to be analyzed first by using the method and the concept of completion. Development and testing are carried out and developed continuously for human progress, especially education. Finger shape recognition application is processed by image processing method with Gausian Blur filtering technique, resize, grayscale, and segmentation technique using Canny edge detection and contour detection, followed by dilation. Feature extraction using Moment Hu from contour image results. From the results of segmentation and edge detection, the object can show edges clearly and thickening with dilation to strengthen the edges of the image, thus helping in determining contour values. The image results are recommended in the data learning process so as to ensure whether the Jarimatika image is known for its different shape or not, which can then be developed in the application of finger patterns in machine learning for Jarimatika.

Keywords: Jarimatika, Image Processing, Canny edge detection, Moment Hu

Pendahuluan

Matematika merupakan suatu mata pelajaran yang diajarkan pada setiap jenjang pendidikan di Indonesia Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern yang mempunyai peran penting dalam berbagai disiplin dan memajukan daya pikir manusia (Amir & Nuraisyah, 2017). Pendidikan merupakan salah satu hal penting untuk menentukan maju mundurnya suatu bangsa, maka untuk menghasilkan

sumber daya manusia sebagai subyek dalam pembangunan yang baik, diperlukan modal dari hasil pendidikan itu sendiri. Dalam proses belajar mengajar di kelas terdapat keterkaitan yang erat antara guru, siswa, kurikulum, sarana dan prasarana. Guru mempunyai tugas untuk memilih model dan media pembelajaran yang tepat sesuai dengan materi yang disampaikan demi tercapainya tujuan pendidikan. Namun sampai saat ini masih banyak ditemukan kesulitan-kesulitan yang dialami siswa didalam mempelajari matematika (Septiyawili, 2016). Kini telah

dikembangkan berbagai metode pembelajaran untuk mengatasi kesulitan-kesulitan siswa dalam belajar matematika, terutama dalam hal berhitung. Salah satu metode yang ditemukan yaitu berhitung dengan menggunkan jari-jari tangan (Jarimatika). Menurut Aulia Jarimatika adalah metode pembelajaran yang dapat dilakukan oleh guru untuk memudahkan menyampaikan materi pelajaran yang berkaitan dengan operasi hitung baik kali, bagi, kurang serta tambah dan bagi siswa untuk memudahkan penyelesaian berhitung dengan melibatkan jari-jari pada tangan. (Septiyawili, 2016).

Pembelajaran tehnologi yang berkembang pada dunia pendidikan sekarang ini lebih melibatkan pada teknologi secara visual, sehingga membuat siswa tidak jenuh dalam belajar. Menurut Lesle J. Briggs bahwa media pembelajaran sebagai: the physical means of conveying instructional content, book, films, videotapes, etc. Lebih jauh Briggs menyatakan media adalah alat untuk memberi perangsang bagi peserta didik supaya terjadi proses belajar (Muyaroah & Fajartia, 2017). Pendidikan merupakan proses pembelajaran yang diperoleh dari pengajaran, pelatihan maupun pengalaman yang didapat untuk mengembangkan dirinya sehingga dapat menghadapi segala perubahan dan permasalahan. Teknologi informasi dapat dimanfaatkan untuk membantu penyelenggaraan pendidikan di Indonesia agar dapat bersaing secara global di tingkat nasional maupun internasional (Mutia, 2013).

Image processing telah banyak dikembangkan baik dalam konsep dan metode untuk pengenalan sebuah obyek. Peluang ini memberikan kesempatan bagi pengembang teknologi untuk menerapkan konsep dan metode model hitung matematika dengan jarimatika melalui citra. Citra yang akan dikenali mewakili sebuah data dalam menyajikan informasi dengan melalui konsep image processing dan pattern recognition. Unsur jari tangan setiap manusia sama dengan manusia lain diseluruh dunia, dan jari dapat mewakili obyek dalam bentuk citra jika telah diakusisi obyek jarinya dengan menggunakan konsep pengolahan citra yang terpadu melalui beberapa tahapan seperti enhancement, segmentation, fiture extraction dan representation. Fitur yang dapat digunakan adalah dengan bentuk dari 10 jari, yang mewakili pola angka sebagai tujuan untuk perhitungan matematika. Pembelajaran teknologi secara offline dikembangkan oleh para pengembang sistem yang melibatkan konsep dan pengetahuan dalam menyajikan memaparkan pelatihan sebuah objek, sehingga menghasilkan sebuah sistem cerdas yang dapat memiliki kemampuan pola pikir manusia. Hal ini lah yang menjadikan dasar keinginan penulis untuk mengembangkan kosep dan metode pada objek pengenalan jenis jarimatika yang masih belum diuji untuk dianalisis.Beberapa penelitian yang dikembangkan pada penelitian jarimatika yang masih dianalisis, dan masih dikembangkan kerobot. Pengenalan gerakan

menggunakan korelasi dan korelasi silang. Korelasi ternormalisasi digunakan untuk mencari kecocokan terdekat. Eksperimen untuk 37 gerakan tangan statis yang terkait dengan huruf PSL Dataset pelatihan terdiri dari 10 sampel setiap simbol PSL dalam kondisi pencahayaan yang berbeda, ukuran dan bentuk tangan yang berbeda oleh 5 penanda tangan yang berbeda. Perbandingan juga dibuat antara korelasi yang dinormalisasi dan korelasi silang yang dinormalisasi. Dibandingkan dengan teknik lainnya, teknik ini dapat bekerja dengan ukuran dataset yang kecil. Tekniknya didasarkan pada unsupervised learning (Saqib, et al., 2017).

Pengenalan gestur berbasis visi menjadi alat yang alami untuk mendukung efisiensi dan intituitif interaksi antara manusia dan computer, dengan menganalisa computer vision-based dan interpretasi gestur tangan. Hasil review faktor-faktor yang mempengaruhi adalah efisiensi komputasi, toleransi pengguna, skalabilitas mampu interaksi berbasis visi harus sama untuk lingkungan dekstop, *Sign Language Recognition*, dan navigasi robot (Sunyoto dan Hardjoko; 2014).

Pengenalan gerakan tangan waktu nyata menggunakan segmentasi jari sangat penting untuk interaksi manusia-komputer Pengenalan gerakan tangan didasarkan pada hasil pengenalan jari. Pengenalan dilakukan dengan pengklasifikasi aturan yang sederhana dan efisien daripada pengklasifikasi yang canggih tetapi rumit seperti SVM dan CRF. Metode yang diusulkan menunjukkan kinerja yang lebih baik daripada metode canggih pada kumpulan data gerakan tangan lainnya Chen, et al. (2014).

Pengenalan vena jari dengan perlindungan template berdasarkan jaringan saraf convolutional. Fitur vena jari telah mendapat perhatian luas karena karakteristik keamanan dan stabilitasnya yang tinggi, dan secara bertahap digunakan di berbagai bidang, memiliki risiko keamanan yang sangat besar. Skema enkripsi gambar vena jari baru, yang menerapkan teknologi enkripsi Rivest-Shamir-Adleman ke enkripsi gambar vena jari. Serangkaian eksperimen komparatif dan analisis keamanan yang ketat telah dilakukan pada empat database terbuka Ren, et al. (2020).

Eksplorasi pendekatan representasi fitur yang kuat yang cocok untuk berbagai modalitas tetap menjadi masalah penting dan menantang dalam komunitas otentikasi. Dalam aplikasi praktis, sistem pengenalan biometrik yang andal membutuhkan banyak sumber daya, karena sulit untuk memalsukan beberapa karakteristik dari seorang individu secara bersamaan. Convolutional Neural Network (CNN) diusulkan pengkodean lokal diskriminatif untuk representasi dan pengenalan fitur jari multimodal, terdiri dari empat fase, termasuk pengambilan gambar, prapemrosesan gambar, representasi fitur. serta penggabungan dan pencocokan fitur .model local coding based convolutional neural network (LC-CNN) untuk pengenalan jari multimodal dengan menggabungkan ciri

sidik jari, urat jari, dan sidik jari. Hasil eksperimen menunjukkan bahwa metode yang diusulkan mencapai kinerja yang stabil, sangat akurat, dan kuat dalam pengenalan jari multimodal (Li, et al., 2021).

Pengenalan biometrik berdasarkan gambar vena jari inframerah dekat, representasi fitur vena jari baru berdasarkan histogram piramida dari gradien berorientasi dan kuantisasi fase lokal. Permasalahan pada kesulitan untuk mengekstrak fitur vena secara akurat karena gambar vena jari yang ditangkap oleh cahaya inframerah dekat selalu berkualitas buruk. Karena jaringan vena terdiri dari fitur tekstur dan orientasi yang melimpah, operator deskripsi fitur tekstur pada berbagai skala digunakan pada citra vena jari untuk mengurangi efek deformasi geometrik yang terjadi pada akuisisi citra karena postur dan posisi jari yang berbeda. Pengkodekan informasi gambar vena tidak hanya dalam domain frekuensi tetapi juga di antara orientasi dan skala yang berbeda. Hasil eksperimen mengungkapkan bahwa sistem fusi yang diusulkan dapat membuat peningkatan kinerja pengenalan vena jari yang menjanjikan (Ma, et al. (2020). Representasi jari dan strategi berbasis jari dalam perolehan arti angka dan aritmatika, keterlibatan jari dalam pengembangan representasi numerik dan dalam pemrosesan aritmatika. Tinjauan data perilaku dan neuroimaging dan menyarankan bahwa strategi berbasis jari mungkin membentuk proses khusus operasi. Strategi berbasis jari yang berbeda secara kualitatif dapat mempengaruhi representasi numerik, pemrosesan, dan kinerja aritmatika secara berbeda (Berteletti and Booth, 2016). Dalam hal ini hampir semua keberhasilan pengenalan tergantung pada akuisisi citra sehingga mempengaruhi ukuran dan skala citra yang diambil, termasuk metode yang tepat dalam pengolahan citra.

Metode

Dari beberapa sumber seperti menjelaskan bagaimana teknik dan metode yang dapat memproses citra jarimatika dalam menentukan keberhasilan pelatihan data.

Jarimatika adalah cara berhitung KaBaTaKu (kali, bagi, tambah, kurang) dengan menggunakan jari tangan. Kebanyakan anak-anak paling takut dan paling tidak senang dengan pelajaran berhitung, namun metode jarimatika memberikan sebuah solusi yang mudah dipahami dan menyenangkan. Keunggulan jarimatika dibandingkan metode lain, yaitu memberikan visualisasi dalam proses berhitung, menggembirakan pengunaannya, tidak memberatkan memori otak, praktis, mudah, dan merangsang potensi otak (Rustam, 2012).

Tahapan proses analisis keseluruhan sistem pada proses pengolahan citra sehingga dapat direkomendasikan pada proses pelatihan data. Sehingga hasil ekstraksi ciri bentuk dari jarimatika dapat membantu untuk transfer learning terhadap data itu sendiri Berikut adalah gambaran proses pengolahan citra di dalam analisis sistem pengolahan citra seperti yang ditunjukkan oleh Gambar I.

Gambar I. Pemrosesan citra di dalam analisis sistem

- Image Acquisition, marupakan teknik pengambilan citra dari kamera dari jari kanan dan kiri , menjadikan citra digital, untuk pemrosesan selanjutnya.
- Pre image processing adalah proses awal citra untuk meningkatkan kualitasnya melalui pelabelan citra, melakukan pengkaburan dengan filter lolos rendah menggunakan Filtering Gaussian, resize, dan grayscale
- Image segmentation merupakan proses untuk memisahkan obyek dengan latar dari hasil gambar pada proses pre image processing. Dalam hal ini hasil proses adalah citra grayscale dengan melakukan deteksi tepi dengan Canny, dilanjutkan dengan teknik dilation, kemudian untuk mendapatkan tepian yang jelas untuk pembacaan ciri bentuk citra di proses ke deteksi contour. Dari citra hasil citra contour diperoleh bentuk dari citra , sehingga dapat dilanjutkan ke proses feature extraction.

Data disimpan dalam format digital ".png" dan disimpan dalam Drive Google dalam bentuk folder zip untuk data train dan data test. Program di bangun dengan menggunakan Bahasa Python dengan Library yang membantu dalam penyajian, image processing, segmentasi, dan representasi citra. Yang fasilitasnya memberikan paket-paket yang memudahkan untuk memproses citra. Karena citra berukuran besar makan Google Colab memberikan alternatif yang membantu dalam persediaan data di cloud, sehingga mempercepat akses Kelola data citra.

1. Gaussian blur Filter

Gaussian blur Filter diperoleh dengan memburamkan (smoothing) gambar menggunakan fungsi Gaussian untuk mengurangi tingkat noise. Ini dapat dianggap sebagai filter low-pass yang tidak seragam yang mempertahankan frekuensi spasial rendah dan mengurangi noise gambar dan detail yang dapat diabaikan dalam gambar. Hal ini biasanya dicapai dengan menggulung gambar dengan kernel Gaussian. (Harikrishnan, et al, 2020) Kernel Gaussian ini dalam bentuk 2-D dinyatakan sebagai:

$$Gx = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-x^2}{2\sigma^2}} \tag{I}$$

di mana δ adalah standar deviasi dari distribusi dan x dan y adalah indeks lokasi. Nilai δ mengontrol varians di sekitar nilai rata-rata dari distribusi Gaussian, yang menentukan sejauh mana efek kabur di sekitar piksel, nilai siqma membantu menghasilkan segmentasi baik (Misra, et al. 2020).

2. Canny Edge Detector

Dalam mengembangkan filter yang dibahas di atas, ada dua masalah yang ditemui. Karena elemen data bersifat diskrit, tidak selalu jelas bagaimana menghitung nilai gradien dan, dengan adanya noise, banyak tepi palsu dapat menjadi jelas. Meningkatkan ukuran filter dapat mengurangi anomali ini. Detektor tepi Canny dirancang untuk mengatasi beberapa masalah ini dan terdiri dari tiga tahap utama:

- a. Gaussian mengaburkan gambar untuk mengurangi jumlah noise dan menghilangkan bintik-bintik di dalam gambar. Penting untuk menghapus komponen frekuensi sangat tinggi yang melebihi yang terkait dengan filter gradien yang digunakan, jika tidak, ini dapat menyebabkan tepi palsu terdeteksi.
- b. Deteksi gradien menggunakan salah satu filter di atas, membuat dua gambar, satu berisi besaran gradien G, dan satu lagi berisi orientasi (G). Implementasi yang paling umum menggunakan turunan orde pertama diskrit simetris sederhana.
- c. Ambang batas besaran gradien di atas nilai ambang minimum tertentu sehingga hanya tepi utama yang terdeteksi. Selain nilai ambang batas rendah minimum ini, nilai ambang batas tinggi juga ditentukan. Pada setiap garis yang terhubung, setidaknya salah satu titik tepi harus melebihi nilai tinggi ini. Ini menghilangkan segmen garis kecil atau tidak signifikan. Dengan mengontrol deviasi standar dari operasi pengaburan Gaussian, dan nilai ambang batas tinggi dan rendah, sebagian besar tepi umum dapat dideteksi. Jika diketahui secara apriori jenis tepi apa yang akan dideteksi dan jenis noise yang ada pada citra, maka filter alternatif dapat diterapkan sebagai pengganti filter Gaussian. (Kabade and Sangam, 2016; Mathur, et al., 2016)

3. Dilation

Dilation adalah operasi membesarkan atau mengentalkan objek pada citra biner. Cara dan tingkat penebalan ini dikendalikan oleh bentuk yang disebut sebagai structuring element (disingkat strel). Elemen penataan komputasi diwakili oleh matriks 0 dan 1. Secara matematis, dilatasi didefinisikan dalam bentuk operasi himpunan.

Dilatasi citra f oleh elemen penataan s (dilambangkan fs) menghasilkan citra biner baru g = fs dengan citra di semua lokasi (x,y) asal elemen penataan di mana elemen penataan s mengenai citra input f, yaitu g(x,y) = 1 jika s mengenai f dan f0 sebaliknya, berulang untuk semua koordinat piksel (x,y). Dilatasi menambahkan lapisan piksel ke batas dalam dan luar daerah (Zhou, et al., 2010)

$$A \oplus B = \{ z \mid (\hat{B})_z \cap A \neq \Phi \}$$
 (2)

4. Moment Hu

Dalam visi komputer dan pemrosesan gambar, momen gambar sering digunakan untuk mengkarakterisasi bentuk suatu objek dalam suatu gambar. Momen-momen ini menangkap informasi dasar seperti area objek, titik pusat (yaitu koordinat pusat (x, y) objek), orientasi, dan properti lain yang diinginkan.

Momen Hu tidak boleh digunakan dalam situasi di mana terdapat noise, oklusi, atau kurangnya segmentasi yang bersih (sangat). deskriptor gambar Hu Moments digunakan untuk mengukur bentuk suatu objek dalam sebuah gambar. Hu Moments adalah deskriptor gambar yang digunakan untuk mengkarakterisasi bentuk suatu objek dalam suatu gambar. Bentuk yang akan dideskripsikan dapat berupa citra biner tersegmentasi atau batas objek (yaitu "garis besar" atau "kontur" bentuk). Secara umum, bentuk biner tersegmentasi lebih disukai daripada batas bentuk karena kurang rentan terhadap noise. Deskriptor Hu Moments mengembalikan vektor fitur bernilai nyata dari 7 nilai. 7 nilai ini menangkap dan mengukur bentuk objek dalam sebuah gambar. Kami kemudian dapat membandingkan vektor fitur bentuk kami dengan vektor fitur lainnya untuk menentukan seberapa "mirip" dua bentuk tersebut (Huang and Leng, 2011)

Momen reguler suatu bentuk dalam citra biner ditentukan oleh:

$$M_{ij} = \sum_{x} \sum_{y} x^{i} y^{j} I(x, y)$$
(3)

di mana I (x, y) adalah nilai intensitas piksel pada koordinat (x, y)-koordinat. Untuk mendapatkan invarian translasi, kita perlu melakukan pengukuran bentuk relatif terhadap pusat massa bentuk. Centroid hanyalah pusat(x)

,y)-koordinat dari bentuk, yang kita definisikan masingmasing sebagai x- dan y-.

$$\bar{x} = M_{10}/M_{00}$$
 and $\bar{y} = M_{01}/M_{00}$ (4)

Pada gambar di atas kita telah menandai pusat (x, y)-koordinat (yaitu centroid) dari gambar kita dengan lingkaran hijau. Sekarang kita memiliki centroid kita, kita dapat menghitung momen relatif yang berpusat di sekitar centroid:

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \bar{x})^{p} (y - \bar{y})^{q} I(x, y)$$
(5)

Namun, momen relatif ini tidak memiliki banyak kekuatan diskriminatif untuk mewakili bentuk, juga tidak memiliki sifat invarian. Dan di situlah pekerjaan Hu masuk. Hu mengambil momen-momen relatif ini dan membangun 7 momen terpisah yang cocok untuk diskriminasi bentuk:

$$M_1 = (\mu_{20} + \mu_{02})$$

$$M_2 = \left(\mu_{20} - \mu_{02}\right)^2 + 4\mu_{11}^2)$$

$$M_3 = (\mu_{30} - 3\mu_{12})^2 + (3\mu_{21} - \mu_{30})^2$$

$$M_4 = (\mu_{30} + \mu_{12})^2 + (\mu_{21} + \mu_{03})^2$$

$$M_5 = (\mu_{30} - 3\mu_{12})(\mu_{30} + \mu_{12})((\mu_{30} + \mu_{12})^2 - 3(\mu_{21} + \mu_{03})^2) + (3\mu_{21} - \mu_{03})(\mu_{21} + \mu_{03})(3(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2)$$

$$M_6 = (\mu_{20} - \mu_{02})((\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2) + 4\mu_{11}(\mu_{30} + 3\mu_{12})(\mu_{21} + \mu_{03})$$

$$\begin{array}{l} M_7 = (3\mu_{21} - \mu_{03})(\mu_{30} + \mu_{12})((\mu_{30} + \mu_{12})^2 - 3(\mu_{21} + \mu_{03})^2) - (\mu_{30} - 3\mu_{12})(\mu_{21} + \mu_{03})(3(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2) \end{array} \tag{6}$$

Tujuh momen ini kemudian membentuk vektor fitur:

$$V = [M_1, M_2, \dots, M_7]$$
 (Zekovich and Tuba, 2013)

Hasil Dan Pembahasan

Program untuk melakukan image processingdan segmentasi serta representasi diangun dengan failitas Google Colab menggunakan Bahasa Phyton menddunakan library os, Tensorflow, open cv, numpy, math, pandas, dan matplotlib.

Citra jarimatika yang diambil dari dataset di Github, dengan jumlah data yang terdiri dari 240 data latih, dan 60 data uji, yang tediri dari 5 masing-msaing jari kanan dan kiri untuk data latih, 3 jari kanan dan kiri untuk data uji. Tahapan yang dilakukan dalam mengolah citra adalah enhancement dengan menggunakan filter lolos rendah dengan fungsi Gaussian Blur, Grayscale, deteksi tepi dengan Canny, deteksi contour, dilasi untuk menebalkan tepian

contour, dan dilanjutkan ke proses ekstraksi ciri dengan Moment Hu.

Data disimpan dalam format ".png" dan disimpan dalam Drive google.

Tahapan prosses yang dilakukan dalam sistem adalah sebagai berikut :

 Menggunakan Library yang diperlukan di Google Colab, library ini memberikan paket-paket lengkap dalam kelola citra, sehingga memudahkan untuk proses data yang banyak dan kompleks.

import os

import tensorflow as tf

import cv2 as cv

import matplotlib.pyplot as plt

import numpy as np

import math

import pandas as pd

from keras.preprocessing import image

from google.colab.patches import cv2_imshow # for i

mage display

from matplotlib import pyplot as plt

from google.colab import drive

 Mengambil data set yang disimpan di Google Drive dalam bentuk file ZIP, untuk di-eksport ke Gogole Colab drive dan menampilkan hasil isi dari file yang disimpan di Google Colab Drive, terdiri dari Folder data train dan test.

drive.mount("/content/drive")

!unzip "./drive/My Drive/Colab Notebooks/data finger.

zip"

!ls "/content/train"

!ls "/content/test"

Hasil:

tr01 0L.png tr04 2L.png tr07_4L.png trll_0L.png tr14_2L.png tr17_4L.png tr01_0R.png tr04_2R.png tr07_4R.png trll_0R.png trl4 2R.png trl7 4R.png tr01 IL.png tr04 3L.png tr07_5L.png trll_IL.png trl4_3L.png trl7_5L.png tr01 IR.png tr04 3R.png tr07 5R.png tr11 IR.png tr14 3R.png tr17 5R.png, dan seterusnya hingga semua data tersimpan dan dipindahkan sementara ke proses Google Colab.

3. Membuat fungsi untuk menampilkan citra asli, grayscale, deteksi tepi, dan hasil dilasi,dengan menampilkan perbaris muncul 4 citra hasil proses.

```
def visualize(original, grayscaled, edges, delates, conto urs):

fig = plt.figure()
plt.subplot(1,5,1)
plt.imshow(original)

plt.subplot(1,5,2)
plt.imshow(grayscaled, cmap="gray")
plt.subplot(1,5,3)
plt.imshow(edges, cmap="gray")
plt.subplot(1,5,4)
plt.subplot(1,5,4)
plt.imshow(delates, cmap="gray")
plt.subplot(1,5,5)
plt.contour(delates, cmap="gray", origin="image")
```

4. Menghitung isi folder train dan test di Google drive

f1 = '/content/train'
f2 = '/content/test'
nt1 = sum([len(files) for _, _, files in os.walk(f1)])
nt2 = sum([len(files) for _, _, files in os.walk(f2)])
print(nt1, nt2)

Hasil:

240 60

Citra latih terdiri dari 240 data dan citra ujii terdiri dari 60 data

 Membuat file baru dalam Google Colab Drive untuk menyimpan hasil data hasil ekstraksi ciri f = open('/content/ekstraksiHu.csv', 'w')

Hasil dari Langkah 2 dan 5 , ditunjukkan dari Gambar 2 :

Gambar 2 Tampilan Folder data Train dan Test, serta File baru yang dibetuk

 Menampilkan hasil citra asli, grayscale, deteksi dan dilasi dari data train dan hasil ekstraksi ciri t = os.listdir('/content/train')

```
t2 = os.listdir('/content/train')
i=0
```

```
for each_image in t:
  if each_image.endswith(".png"):
   full path = "/content/train/" + each image
   img = cv.imread(full path)
   img blur = cv.GaussianBlur(img, (7, 7), 1)
   gray = cv.cvtColor(img blur ,cv.IMREAD GRAYS
CALE)
   edge = cv.Canny(gray, 128, 128)
   kernel = np.ones((3))
   delate = cv.dilate(edge, kernel, iterations=1)
   contour = cv.findContours(delate,cv.RETR TREE,
cv.CHAIN APPROX SIMPLE) #berupa matrik
   cnt = cv.HuMoments(cv.moments(delate)).flatten()
   print(i, each image, 'rata-rata = ',sum(cnt,0)/7)
   visualize(img, tf.squeeze(gray), edge, delate)
   plt.show()
i=i+1
```

Hasil data akan ditampilkan hingga 240 dan data test hingga 60 data, berikut adalah sampel dari tampilan datanya di sistem, dengan susunan Baris pertama adalah hasil citra dengan urutan citra asli, citra Gaussian Blur, citra gray, citra dilasi, dan citra contour dari contoh 5 jari.kiri dan kanan dengan urutan 0 sampai 5 jari, dengan urutan nama file random. Baris kedua dengan urutan no urut, Nama File, 7 nilai Moment Hu, dan Rata-rata Moment Hu.

a. Tampilan hasil di sistem untuk jari tangan kiri

3 tr06_IL.png [2.53380653e-03 2.05007498e-06 I.05537747e-08 4.82345206e-09 3.41521958e-17 6.88270393e-12 4.24052229e-18]
Rata-rata ciri = 0.00036226742635602253

17 trll_2L.png [3.45652248e-03 6.10207829e-06 5.60065927e-10 1.14460687e-09 2.72461544e-19 2.75736301e-12 8.75001270e-19]
Rata-rata ciri = 0.000494660895039557

0.00030172414501098

b. Tampilan hasil di sistem untuk jari tangan kanan

52 tr06_3R.png [2.89954556e-03 2.42294719e-06 2.32553865e-09 1.30240568e-10 3.22568473e-20 9.69823259e-14 6.40087563e-20] Rata-rata ciri = 0.0004145672806545264

Dari hasil tampilan diatas cukup jelas bentuk dari image processing dari citra jarimatika kiri dan kanan yang mewakili hasil dari keseluruhan data dari rampilan hasil citra asli, citra yang mengalami Gaussian Blur, grayscale, dilasi hingga citra contour serta hasil ekstraksi ciri dari file citra dengan menerapkan metode Moment Hu.

Simpulan dan Saran Simpulan

- 1. Hasil dari deteksi tepian bentuk jari dengan metode segmentasi dengan Canny menujukkan kejelasan tegas dari tepian obyek.
- Hasil dengan metode deteksi contour menunjukan bahw citra terlihat jelas bentuk dari obyek jarinyaMasih ada beberapa kelas sulit teridentifikasi.

 Momen Hu memberikan hasil informasi ciri darl kontur jari yang dapat membantu untuk pembelajaran bentuk jarimatika.

Saran

- Dapat dikembangkan metode yang baik dalam image processing saat mengolah data sehingga feature extraction dapat memberikan informasi ciri yang lebih baik.
- 2. Data hasil ekstraksi ciri dapat dikembangkan untuk pelatihan dan pengujian data untuk identifikasi, kalsifikasi ataupun prediksi.
- 3. Dapat dikembangkan dengan menerapkan hasil jarimatika dengan Momen Hu ke transfer *learning*.

Pustaka Acuan

- Amir, A., & Nuraisyah, 2017, Peningkatan Kemampuan Berhitung Pembagian Melalui Metode Jarimatika Pada Siswa Kelas III SD Negeri 195 Pagaran Baru Kotanopan. *Jurnal Penelitian Tindakan Kelas dan Pengembangan Pembelajaran (PeTeKa)*, I (p-ISSN:2599-1914; e-ISSN:2599-1132), 48-53.
- Artha Gilang Saputra, Ema Utami dan Hanif Al Fatta, Analisis Penerapan Metode Convex Hull Dan Convexity Defects Untuk Pengenalan Isyarat Tangan , Jurnal SAINTEKOM ((Sain, Teknologi, Komputer dan Manajemen) , Vol 8 No 2, DOI: 10.33020/saintekom.v8i2.59
- Amruta L Kabade and V.G. Sangam, 2016, Canny edge detection algorithm, International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE), ISSN:2278 –909X, Volume 5, Issue 5, May2016, http://ijarece.org/wp-content/uploads/2016/05/IJARECE-VOL-5-ISSUE-5-1292-1295.pdf
- Chen Z.,1 Kim JT.,,1 Liang J.,1 Zhang, J. and Yuan, YB., 2014, Real-Time Hand Gesture Recognition Using Finger Segmentation, Hindawi Publishing Corporationte Scientific World JournalVolume 2014, Article ID 267872, 9 page, https://doi.org/10.1155/2014/267872
- Huang Z., and Leng, J., 2011, Analysis of Hu's Moment Invariants on Image Scaling and Rotation Rotation, Edith Cowan University Edith Cowan University Research Online Research Online ECU Publications, Edith Cowan University Edith Cowan Univ, https://ro.ecu.edu.au/ecuworks
- Hui Ma, Na Hu, Chunxin Fang, 2020, The biometric recognition system based on near-infrared finger vein image, Infrared Physics & Technology, Volume 116, August 2021, 103734, https://doi.org/10.1016/j.infrared.2021.103734
- Jonathan M.Blackledge, 2005, Segmentation and Edge Detection, Digital Image Processing ,

- Mathematical and Computational Methods Woodhead Publishing Series in Electronic and Optical Materials 2005, Pages 487-511, https://www.sciencedirect.com/science/article/pii/B9781898563495500161, diunduh Juli 2020.
- Mutia, I., 2013, Kajian Penerapan E_Learning Dalam Proses Pembelajaran di Perguruan Tinggi. Faktor Exacta, 6 (ISSN: 1979-276X), 278-289.
- Muyaroah, S., and Fajartia, M., 2017, Pengembangan Media Pembelajaran Berbasis Android dengan menggunakan Aplikasi Adobe Flash CS 6 pada Mata Pelajaran Biologi. Innovative Journal of Curriculum and Educational Technology (IJCET) , 6 (e-ISSN 2502-4558 p-ISSN 2252-7125), 79-83.
- Popmama.com Sarrah Ulfah Diterbitkan : 12.30, 23/07/2019, https://today.line.me/id/article/Cara+Mudah+Men gajarkan+Penjumlahan+Pengurangan+dengan+Jari matika-BOgmjG
- Ramdhani, A. S., and Murinto., 2013, Alat Bantu Pembelajaran Mata Kuliah Computer Vision Pada Materi Edge Based Segmentasi Citra Berbasis Multimedia. *Jurnal Sarjana Teknik Informatika*, I (e-ISSN: 2338-5197), 209-218.
- Ren, H., Sun, L., Guo, J., Han, C., Wu, F. 2020, Finger vein recognition system with template protection based on convolutional neural network, *Knowledge-Based Systems*, Volume 227, 5 September 2020, 107159, https://doi.org/10.1016/j.knosys.2021.107159
- Rustam, 2012, rustamfresh.wordpress.com. Retrieved 2018, from https://rustamfresh.wordpress.com/2012/06/19/metode-jarimatika-sebagai-inovasi-dalampembelajaran-matematika: https://rustamfresh.wordpress.com
- Samiyarsih, S. (diunduh 2018). Struktur Dasar dan Terminologi Tumbuhan Berbiji. Universitas Terbuka; Google Scholar.
- Saqib, S., and Kazmi, SAR., 2018, Recognition of static gestures using correlation and cross-correlation, International Journal of Advanced and Applied Sciences, 5(6) Page 11-18, Journal homepage: http://www.science-gate.com/IJAAS.htm
- Septiyawili, B. Y., 2016. Penggunaan Metode Jarimatika Dalam Meningkatkan Kecepatan Berhitung Perkalian Bilangan 6 Sampai 10 Untuk Siswa SD Kelas 3 Di SD Blunyahan I Bantul Yogyakarta. Yogyakarta: Universitas Negeri Yogyakarta.
- Li, S., Zhang, B., Zhao, S., Yang, J., 2021, Local discriminant coding based convolutional feature representation for multimodal finger recognition, Information Sciences, Volume 547, 8 February 2021, Pages 1170-1181, https://doi.org/10.1016/j.ins.2020.09.045

- Misra, S. and Wu, Y., 2020, Machine learning assisted segmentation of scanning electron microscopy images of organic-rich shales with feature extraction and feature ranking, Machine Learning for Subsurface Characterization, Pages 289-314, https://doi.org/10.1016/B978-0-12-817736-5.00010-7
- Snezana Zekovich and Milan Tuba, 2013, Hu Moments Based Handwritten Digits Recognition Algorithm, Recent Advances in Knowledge Engineering and Systems Science, ISBN: 978-1-61804-162-3, http://www.wseas.us/e-library/conferences/2013/CambridgeUK/AISE/AI SE-15.pdf
- Sunyoto, A., and Harjoko, A., 2014. Pengenalan Smbol Jarimatika Menggunakan Orientasi Histogram dan Multilayer Preceptron. Citec Journal, I (ISSN: 2354-5771), 326-340.
- Harikrishnan, V.K., Vijarania, M., Gambhir, A., 2020, Diabetic retinopathy identification using autoML, Computational Intelligence and Its Applications

- in Healthcare, Pages 175-188, https://doi.org/10.1016/B978-0-12-820604-1.00012-1
- Widyaningsih, M., 2015. Segmentasi Canny Dan Otsu pada Citra. Seminar Nasional Proceding Seminaskit, I, pp. 43-48. Politeknik Jember, ISSN: 2477-5649.
- Widyaningsih, M., 2017. Identifikasi Kematangan Buah Apel Dengan Gray Level Co-Occurence Matrix (GLCM). Jurnal Saintekom, 6 (ISSN 2088-1770, E ISSN 2503-3247.), 71-88.
- Zhou H., Wu, J., Zhang, J., 2010, Digital Image Processing:
 Part II, bookboon.com; ISBN 978-87-7681-542-4;
 https://library.ku.ac.ke/wpcontent/downloads/2011/08/Bookboon/IT,Progr
 amming%20and%20Web/digital-imageprocessing-part-two.pdf

26