План курса

- Лекция 1
 - Введение, картирование, сборка транскриптома, и подсчёт транскриптомных ридов
 - Проверка самосогласованности: корреляционная тепловая карта, PCA/MDS
- Лекция 2
 - Нормализация
 - Im/ANOVA; glm/ANODEV;
 - Дифф. экспрессия (edgeR)
 - Кластеризация (hclust, k-means, PAM)
 - Функциональный анализ (goseq)
- Лекция 3
 - Дифф. сплайсинг (cuffdiff, DEXseq, MISO, SAJR)
 - Визуализация

Дедлайн по всем ДЗ блока РНК-Сек наступает через 4 недели после занятия, на котором было дано ДЗ

Транскриптомика

• Анализ клеточной РНК (полученной в результате ДНКзависимого синтеза)

Подсчёт ридов

	sample1	sample1	
gene1	124	78	
gene2	171	63	
gene3	126	87	

Картирование на геном

- Задачи транскриптомики:
 - определение структуры (нт последовательности молекул РНК)
 - определение концентраций молекул РНК
 - сравнение концентраций в нескольких образцах

Объект исследования

- Биологические отличия
 - биологический вид
 - орган (ткани)
 - состояние (болезнь, воздействие)
- Фракция РНК
 - общая (все подряд)
 - по наличию полиА
 - CAP/5'-3p
 - удаление тРНК и рРНК
 - по размеру
 - по внутриклеточной локализации
 - ядро
 - нуклеоплазма
 - ядрышки
 - хромосомы
 - цитоплазма
 - свободная
 - связанная с рибосомой

Evolutionary Dynamics of Gene and Isoform Regulation in Mammalian Tissues
Jason Merkin *et al.*

Science 338, 1593 (2012); DOI: 10.1126/science.1228186

Качество РНК: RNA Integrity Number (RIN)

Time (seconds)

Результаты секвенирования

- Качество ридов
- цепь-специфичность
- Парность (SRA!)
- To trim or not to trim?
- SOLiD!

распределение вероятности ошибки вдоль рида

Practice: FastQC

- Google for FastQC
- Download (wget) it to cluster and unzip
- Chmod +x FastQC/fastqc
- Run fastqc on any of /mnt/local/bioinf_labs/home/mazin2/fq/*gz
- Copy results to your computer (WinSCP, scp, etc)

Картирование ридов

Как картировать риды на экзон-экзонные границы?

- использование аннотации
 - только аннотированные экзон-экзонные границы
 - все возможные экзон-экзонные границы

• Предсказание аннотации из данных

разрезаем рид на несколько кусков и картируем на геном по отдельности

продолжаем куски и ищем положение разрыва — потенциальный интрон

находим интрон

Hisat2

- Замена tophat2
- Очень быстрый (~15*16 мин*ядер на 80 млн ридов)
- Может включать полиморфизмы в референс
- Как использовать:
 - построить индекс (hisat2-build), [используя доступную информацию о генах]
 - картировать fq.gz на индекс

Hisat2, подробности

- Скрипты hisat2_extract_splice_sites.py и hisat2_extract_exons.py позволяют извлечь информацию о экзонах и сайтах сплайсинга из аннотации
- Которую надо передать hisat2-build при помощи параметров --ss и --exon. Это правильно, но тогда hisat2-build будет требовать до 200G при построении индекса. Альтернатива передать координаты сайту самому hisat2 при помощи параметра --known-splicesite-infile
- Параметры **hisat2**
 - --dta-cufflinks искать интроны более строго и добавить атрибут XS необходимый для работы cufflinks
 - --no-unal не печатать невыровненные риды
 - -х путь к индексу
 - **-U** путь к ридам
- hisat2 по умолчанию печатает риды в стандартный выход. Чтобы записать их в файл надо указать параметр -S (будет печатать sam-файл) или использовать пайпы:
 - hisat2 | samtools view -Sb > out.bam

Hisat2: scoring options

- **--mp MX,MN** границы штрафа за ошибку. Пропорционален качеству нуклеотида. **Default: MX = 6, MN = 2**
- **--sp MX,MN** штраф за обрезание рида **Default: MX = 2, MN = 1.**
- --no-softclip отключить обрезание
- **--np** штраф за N. **Default: 1**
- **--rdg/--rfg <int1>,<int2>** штраф за открытие и продолжение гэпа. **Default: 5, 3**.
- --pen-... Штрафы связанные с интронами
- --score-min <func> Минимальный допустимый вес выравнивания в зависимости от длины рида. **Default is L,0,-0.2.**
- Функции бывают константные (С), линейные (L), корень (S), логарифм (G).

Еще есть:

- STAR
- gsnap
- tophat2 медленный, заменен на hisat2

samtools

samtools view in.bam [chr:start-end] | less -S

- -h, -H print header
- -S, -b input sam, output bam
- -f, -F filter by flag

samtools sort

samtools index

samtools faidx

Картирование: аннотация это важно!

• эффективность предсказания экзон-экзонных границ зависит от глубины покрытия:

Хорошо покрытый образец: все экзон-экзонные границы нашлись

Ложные выводы:

Уникальный альтернативный сплайсинг? Часть ридов не удаётся картировать → пониженная экспрессии?

Что же делать?

- A. И. ГЕРЦЕН

 ISTO

 BILLOBAT ?
- По возможности картирование проводить с использованием аннотации. Возможно следует сделать два картирования.
- Использовать существующую аннотацию если возможно (человек — GENCODE)
- Использовать всю имеющуюся информацию (существующая аннотация, все образцы текущего исследования) для создания аннотации *de novo* (или улучшения):
 - картируем каждый образец предсказывая новые экзонэкзонные границы (hisat2, STAR, etc)
 - делаем аннотацию (stringtie, cufflinks, cuffmerge)
 - перекартируем образцы по одному.
- При сравнении нескольких видов аннотации должны быть унифицированы

Ошибки и проблемы картирования

- Неправильное картирование на экзонэкзоное соединение:
 - Маленькое перекрывание (overhang)
 - Только один вариант перекрывания (все риды картировались с одним overhang)
- Картирование на псевдогены вместо генов
 - Надо перекартировать
- Множественное картирование
 - Удалять по NH тагу в бам файле (большинство программ делают это сами)

5'-3' перекос покрытия

Ровность покрытия

Низкое качество исходной РНК или оверамплификация в ходе подготовки библиотеки, может приводить к тому, что покрытие генов ридами будет очень не ровным, вплоть до появления «стопок» идентичных ридов

Что делать:

- Ничего
- Убрать идентично-картируемые риды (не работает для непарных ридов)
- Менять экспериментальную процедуру (меньше циклов ПЦР, использовать баркодирование)

Оценка неровности покрытия: отклонение от распределения Пуассона

Formats: sam (bam)

Sequence Alignment/Map format, tab-delimited, consists of two sections:

- Header (optional)
 - All lines starts with '@'
 - @HD first header line
 - Lines are tab-delimited, consist of pairs: TAG:VALUE
 - @HD VN:1.5 SO:coordinate
 - @SQ SN:ref LN:45
- Alignment 11 fields:
 - QNAME read name
 - FLAG bit flag that says whether read was mapped, whether it was mapped in multiple places, strand, is it first or second mate (for paired reads), etc
 - RNAME reference (chromosome) name
 - POS 1-based leftmost mapping POSition
 - MAPQ mapping (usually just read) quality
 - CIGAR junction, indels, etc: 8M200N10M (I, D indels, S, H clipping)
 - RNEXT, PNEXT RNAME and POS for the mate
 - TLEN observed Template LENgth
 - SEQ read sequence
 - Optional attrobutes in form of TAG:TYPE:VALUE
 - NH:i:1 number of alignments
 - NM:i:0 number of mismatches
 - XS:A:- strand (by junctions)

For more details: http://samtools.github.io/hts-specs/SAMv1.pdf

Доступ на кластер

- Под windows используйте putty
- Host: mg.uncb.iitp.ru
- Port: 9022
- Получить логин и пароль у преподавателя

Bash

```
Is -lh — lists files in current directory
cd new.path — change directory
    home directory
    ./ current directory
    ../ parent directory
        root directory
less,more,cat — see text file
cp — copy file
rm — remove file
my from to — move file
mkdir — create directory
grep — look for pattern
find — search for files
wget — download from Internet
gzip, gunzip, tar -xzf — compress/decompress files
man cp — get manual for cp command
Is > Is.out — redirects output of Is command into file
Ls -1 | grep txt — redirectd output of ls command as input of grep
echo PATH
Loops:
for i in `ls -1`
do
    echo $i
done
```

Vim

- i insert
- Esc escape insert mode
- :wq write and exit

Практикум он же Д31

Сегодня мы будем работать с данными РНК-сек полученными из коры (В) и мозжечка (С), мышей разного возраста (от 15.5 до 34 дней от зачатия). Данные лежат на кластере в папке /mnt/local/vse2019/shared/rnaseq. Для сокращения объема расчетов вы получите данные только для 19ой хромосомы.

Ответом на данный практикум будет текстовый файл содержащий необходимый код (на bash и/или других языках при необходимости, включая скачивание и распаковывание программ, картирование и подсчет количества ридов — пункты 7-11)

Задание:

- 1) Найдите в интернете и скачайте бинарники для последних версий hisat2
- 2)Зайти на ensembl.org \rightarrow downloads \rightarrow Download data via FTP \rightarrow скачать последовательность 19 хромосомы мыши и её аннотацию в формате gtf (для всего генома).
- 3)отфильтруйте из аннотации только 19ую хромосому при помощи команды grep -P '^19\t'
- 4)Постройте индекс по последовательности 19ой хромосомы при помощи команды hisat2build (без координат сайтов)
- 5)Прокартируйте все fq файлы (начните с одного) на 19ую хромосому при помощи hisat2 не допуская обрезания ридов и сообщив hisat2 координаты сайтов сплайсинга
- 6)Выберите случайно один образец
- 7)Сколько ридов картируется в регион 19:12485000-12490000 в этом образце?
- 8) Сколько из них картируются только в одно место генома?
- 9) Сколько ридов картровалось без замен? Сколько с 1, 2 и т. д. заменами?
- 10)Сколько ридов картировалось на экзон-экзонные границы? Перечислите координаты всех интронов в данном интервале подтверждённых хотя бы одним ридом в формате: 11)chr:from-to coverage