Ryerson University

Department of Electrical and Computer Engineering

ELE734: LOW-POWER DIGITAL INTEGRATED CIRCUITS Mid-Term Examination, October 24th 2019

Duration: 1hr 45mins

Student's Name: SOLUTION	•••••••••••••
Student's Number:	Section:

NOTES:

- 1. This is a **Closed Book** examination. No aids other than the approved calculators are allowed.
- 2. Answer all questions.
- 3. No questions are to be asked in the examination hall. If doubt exists as to the interpretation of any question, the student is urged to submit with the answer paper, a clear statement of any assumptions made.

Question No.	Mark of each question	Mark obtained
Q1	15	
Q2	15	
Q3	15	
Q4	05	
Total	(Out of 50):	

Q1:

Design a static CMOS gate that has the following output.

$$Out = !((A+B)*C*D)$$

- a) Draw the transistor-level schematic of your design. Sizing is not required. (6 marks)
- b) Draw stick diagram of the gate that you have designed (*please minimize layout area by maximizing diffusion sharing* and clearly label metal, poly, n-diffusion and p-diffusion regions on your stick diagram). (6 marks)
- c) Estimate the area of the gate based on your stick diagram. (3 marks)

Pull of own network

CHI

Pull down network

(3) marks

(3) marks

pull down retwork

(A h parallel with B) in

Sevies with C in sevies

with D

pull up network

apply demorgans law

A+B+C+D=(A,B)+C+D

(A in sevier with B) parallel

(with C) parallel with D

Blank page

c)
$$5 \times 8 = 40$$
 D mark $6 \times 8 = 48$ D mark $40 \times 48 = 1920 \times^2$ D mark

Assume the on-resistance of a unit nMOS is 15Kohms and the on-resistance of a unit pMOS is 30Kohms. Also assume the drain, source, and gate capacitances of a unit transistor are all equal to 15fF. Using Elmore delay to calculate the delay of the gate when the input of the gate is transitioned from A=1, B=0, C=0 to A=0, B=0, C=0. Please assume diffusion sharing is always used to minimize layout area of the gate. (15 marks)

Blank page

- a) Calculate the optimum path delay for the following circuit and the value of x, y, and z in order to achieve the optimum delay. (inverter: g=1, p=1; 2-input nor: g=5/3, p=2; 2-input nand: g=4/3, p=2; 4-input nand: g=6/3, p=4). (7 marks)
- b) Draw the transistor level diagram for the 2-input nor gate and clearly label the size of each transistor in the diagram. (2 marks)
- c) Draw the transistor level diagram for the 2-input nand gate and clearly label the size of each transistor in the diagram. (2 marks)
- d) Draw the transistor level diagram for the 4-input nand gate and clearly label the size of each transistor in the diagram. (2 marks)
- e) Calculate the optimum path delay if additional inverter stages can be added between the 4-input nand gate and its load capacitance (2 marks).

Blank page

4.518 x4 = 3.614

nmos widle = 0.904x3=2.712 c) nmos widle = 12.245x37 pmos 55.32 x2 = 18.44

PMOS width = 3.614 x3 = 9.49 C

= 36.735c pmos width = 12.245x3 = 36.735c

(1) mark

nmos widt 36.88 ×3 7 = 110.64C

pmos widk = 18.44x3

1 mark.

e F = Tigihi = 6666.67

 $(F)^{1/N} = 3.59$ $(6666.67)^{1/N} = 3.59$

1 log (6666.67) = log 3.59

N= log (6666.67)

Log 3.59

N = 6.89

N=7 Omark

Dmin = N(F) 1/N + E Pi

= 7(6666.67) 1/7 + 1+2+2+4+3

= 7 (3.5178)+12

= 36.63

Optimal Delay = 36.63 T () mark

Q4: Multiple Choice Questions

1.	M	odern process technologies in which device sizes are redu	ced require
		high VDD	
~	b)	low VDD	
	c)	zero VDD	
	d)	infinite VDD	
2.	Ea	ch transistor switch is modeled by a finite ON resistance,	which is the
		gate-drain resistance	
~	b)	source-drain resistance	
	c)	source-gate resistance	
	d)	source -body resistance	
3.	To	reduce power dissipation in a circuit, C must be	
	a)	maximum	
\	b)	minimum	
	c)	infinite	
	d)	10 F	
4.	Coı	mplementary CMOS of inverters switched by	
	a)	supply voltage	
	b)	output voltage	
•		input voltage	
	d)	load capacitance	
	- 0		
		-transistor conducts and has large voltage between source	and drain, then it is
		to be in region	
		linear	
		saturation	
		non saturation	
(d) (cut-off	