7.9 Exercises

7.9.1. To see the effect on fits that "good" and "bad" points of high leverage can have, consider the following dataset:

х	1	2	3	4	5	6	7	8	9	10	20
У	5	7	6	14	14	25	29	33	31	41	75
y ₂	5	7	6	14	14	25	29	33	31	41	20

The point x = 20 is a point of high leverage. The data for \mathbf{y} (rounded) are realizations from the model $\mathbf{y} = 4x + \mathbf{e}$, where \mathbf{e} has a N(0, 9) distribution. Hence, the the value of \mathbf{y} follows the model and is a "good" point of high leverage. Notice that \mathbf{y}_2 is the same as \mathbf{y} , except the last component of \mathbf{y}_2 has been changed to 20 and, thus, is a "bad" point of high leverage.

- (a) Obtain the scatterplot for x and y, the Wilcoxon and HBR fits, and overlay these fits on the scatterplot.
- (b) Obtain the scatterplot for x and y_2 , the Wilcoxon and HBR fits, and overlay these fits on the scatterplot.
 - (c) Comment on the differences among the fits and plots.
- **7.9.3.** There is some loss of efficiency when using the HBR fit instead of the Wilcoxon for "good" data. Verify this for a simulation of the model y = 4x+e, where e has a N(0, 625) distribution and x = 1 : 20, using 10,000 simulations.
- **7.9.4.** Using the set up Exercise 7.9.3, check the validity of the 95% confidence intervals for β 1 obtained by the Wilcoxon and HBR fits.