Spenser Smith

Table of Contents

Problem 1	′
Problem 2.	
Problem 3	
Problem 4	
Problem 5	

Problem 1.

This problem asks for a script that modifies the backsub and forelim function that we were given in pp 36 of Module 2 Lectures Slides. It also asks us to formulate a new function called Itinverse that provides the inverse of a lower triangular matrix.

```
format rat %necessary in order to get fractions

L1 = [2 0 0; 8 -7 0; 4 9 -27];
X1 = ltinverse(L1);
fprintf('The inverse of the first matrix is: \n')
```

The inverse of the first matrix is:

```
disp(X1)
```

```
1/2 0 0
4/7 -1/7 0
50/189 -1/21 -1/27
```

```
L2 = [1 0 0 0; 1/3 1 0 0; 0 1/3 1 0; 0 0 1/3 1];

X2 = ltinverse(L2);

fprintf('The inverse of the second matrix is: \n')
```

The inverse of the second matrix is:

disp(X2)

Problem 2.

This problem asks for a script that completes the function myplu on pp 56 of Module 2 Lecture Slides. Mathworks Section 2.7 was accessed for the creation of this function. It also asks us to create a random integer matrix of size 500 by 50 and find the Upper and Lower Triangular matrices as well as the permutation matrix.

A=rand	i(500,500)						
A =							
107		382	477	246	128	59	265
427		17	163	447	483	390	149
454	4 373	476	310	287	96	414	181
178		464	272	171	305	476	401
	2 60	448	33	327	394	381	26
50		474	304	224	331	340	304
48!	5 243	380	307	351	23	419	192
:							
[L,U,P] = myplu(A)						
L =							
	1 0	0	0	0	0	0	0
	4/497 1	0	0	0	0	0	0
	8/497 144/1777		0	0	0	0	0
	3/497 277/5994		1	0	0	0	0
	7/497 -1345/1777		497/1000	1	0	0	0
	9/497 394/419	479/575	1735/6206	-711/1678	1	0	0
	7/71 234/419	769/2511	533/3194	1114/5877	-384/5167	1	0
	,,,,,	, 05, 2522	333, 312 .	111., 50	301,310.	-	C
:							
U =							
497	7 351	350	158	140	449	488	417
	0 112398/251	-218/71	4177/26	14831/36	7516/127	14527/44	7701/5
	0 0	53633/110	-4325/444	89689/486	14628/35	2888/7	16480/5
	0	0	23762/49	-6208/95	6123/673	-95241/676	-3470/6
	0 0	0	0	39244/53	-4654/25	16934/67	32617/2
	0	0	0	0	-19783/37	-3463/8	-2895/1
	0 0	0	0	0	0	-25811/44	-13283/1
	-	-	•			,	
:							
P =							
	0	0	0	0	0	0	0
	0 0	0	0	0	0	0	0
	0 0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0 0	0	0	0	0	0	0
	0 0	0	0	0	0	0	0
	0 0	0	0	0	0	0	0

Problem 3.

This problem asks for a script that computes the determinant of a matrix A by calling a function called 'determinant.' Then, it asks us to find the relative error between our function and the built-in MATLAN function 'det' for a series of magic matrices for n = 3,4,...,7.

% Part A

```
if A=LU

then det(A): olet (LU) = det(L) det(U)

but we know det(L) = \prod_{i=1}^{n} l_{i,i}

det(L) = \prod_{i=1}^{n} l_{i,i}

and since the diagonal of L is always just 1's then

det(A) = 1 \cdot \prod_{i=1}^{n} l_{i,i}
```

```
% Part B
A=randi(10,3,3)
A =
      7
                   2
                                 2
                   5
                                9
      5
X=determinant(A); %test to make sure function works
fprintf('The determinant is: %d \n',X)
The determinant is: 4.000000e+00
fprintf('n
                my value
                                relative eror')
     my value
                  relative eror
for n=3:7
    magic(n);
    Y=det(magic(n)); %actual MATLAB function to get det.
    X=determinant(magic(n)); %my function to get det.
    rel_err=abs((X-Y)/Y); %calculates relative error
                     %5.2e
    fprintf('%d
                                 %f\n',n,X,rel_err)
end
3
     -3.60e+02
                  0.000000
4
     3.62e-13
                 0.294118
5
     5.07e+06
                 0.000000
                1.000000
     0.00e+00
6
7
     -3.48e+11
                 0.000000
```

Problem 4.

This problem asks us to find the most efficient (and correct) way to code a variety of problems and count the corresponding flops that each one requires.

```
% a) x = A*(B*(C*(D*b))) and it takes 8n^2 flops
% because a matrix times vector is 2n^2 and
```

```
% we are doing that 4 times.

% b) x = B*(A\b) and it takes 2n^3 for large n
% because A\b takes 2n^3 and B times a vector is
again 2n^2 so for large values of n the number
% of flops is approx 2n^3.

% d) x = (B)\(C+A)*b and it takes 2n^3 for large n
because B\(C+A) takes 2n^3 flops and that answer
times a vector only takes 2n^2 flops so for large
values of n the number of flops is approx 2n^3.
```

Problem 5.

This problem asks us to perform a variety of tasks that are centered around the norm and condition number of matrices.

a) NO, ble the rorm is zero only when A is the zero matrix.

For example, consider
$$t = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$
 which is singular but how possitive mount.

AT= $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$

ATA = $\begin{bmatrix} 2 & 4 \\ 4 & 8 \end{bmatrix}$
 $\begin{bmatrix} 2-2 & 4 \\ 4 & 8-2 \end{bmatrix}$

(1-2)(8-2) -16 = 0

 $\begin{bmatrix} 12-102 \\ 2(2-10) = 0 \\ 2=10 \end{bmatrix}$

and is nonzero

b) is cond. It of sing. matrix nec. as?

You since "bilt=11A-14||p = cond. #

min 11A74||p

11H1p=1

and the hylps [A yllp of a singular matrix is a thus the ratio will always be _x where x is any number. This gives a condition number that is always in finite.

c) is $K_{P}(A) = K_{P}(A^{-1})$ for nonsingular TRLE

Yes, since cond(A)= $||A|| \cdot ||A^{-1}||$ then cond(A')= $||A^{-1}|| \cdot ||A||$ which means that $K_{P}(A) = K_{P}(A^{-1})$.

d) any matrices that yield k(A) < 1

No, since we know it's max the condition min number will always be 21.

```
function X = backsub(U,B) % MODIFIED BACKSUB
% BACKSUB X = backsub(U,b)
% Solve an upper triangular linear system.
% Input:
% U upper triangular square matrix (n by n)
% B right-hand side matrix (n by p)
% Output:
% X solution of UX=B (n by p matrix)
```

```
[n,p] = size(B);
X = zeros(n,p); % preallocate
    for j=1:p
        for i = n:-1:1 %since backward its n back to 1
        X(i,j) = (B(i,j) - U(i,i+1:n)*X(i+1:n,j)) / U(i,i);
        end
    end
end
% MODIFIED FORELIM
function X = forelim(L,B)
% FORELIM X = forelim(L,B)
% Solve a lower triangular linear system.
% Input:
% L lower triangular square matrix (n by n)
% B right-hand side matrix (n by p)
% Output:
% X solution of LX=B (n by p matrix)
[n,p]=size(B);
X=zeros(n,p); %preallocate
    for j=1:p
        for i=1:n %since forward its 1 to n
            X(i,j) = (B(i,j) - L(i,1:i-1)*X(1:i-1,j)) / L(i,i);
        end
    end
end
function X = ltinverse(L)
% LTINVERSE I = ltinverse(L)
% Solves the inverse of a lower triangular linear system.
% Input:
% L lower triangular square matrix (n by n)
% Output:
% I solution of the inverse of L (n by n matrix)
    n=length(L);
    I=eye(n); %grabs identity matrix
    X = forelim(L,I); %calls modified forelim to get inverse
end
function [L,U,P] = myplu(A)
% MYPLU [L,U,P] = myplu(A)
% Solves the PLU factorization for a given n by n matrix A.
% Input:
% A starting matrix (n by n)
% Output:
% L lower triangular matrix (n by n)
% U upper triangular matrix (n by n)
% P permutation matrix (n by n)
```

```
[n,n] = size(A);
P=eye(n);
   for k = 1:n-1
    % Find largest element below diagonal in k-th column
    [r,m] = \max(abs(A(k:n,k)));
    m = m+k-1;
    % Skip elimination if column is zero
        if (A(m,k) \sim 0)
        % Swap pivot row
            if (m \sim = k)
            A([k m],:) = A([m k],:);
            P([k m],:) = P([m k],:);
            end
        % Compute multipliers
        i = k+1:n;
        A(i,k) = A(i,k)/A(k,k);
        % Update the remainder of the matrix
        j = k+1:n;
        A(i,j) = A(i,j) - A(i,k)*A(k,j);
        end
    end
% Separate result
L = tril(A,-1) + eye(n,n);
U = triu(A);
end
function X = determinant(A)
    n = length(A);
    L = eye(n); % grabs identity matrix
   % Gaussian elimination
    for j = 1:n-1
        for i = j+1:n
        L(i,j) = A(i,j) / A(j,j); % row multiplier
        A(i,j:n) = A(i,j:n) - L(i,j)*A(j,j:n);
        end
    end
    U = triu(A);
    V = diag(U); %grabs diagonal values of U
    X = prod(V); %multiplies the diagonal values of U to get det.
end
```