

Pilsung Kang
School of Industrial Management Engineering
Korea University

• Data Set: Toyota Corolla Used Car Price Prediction

Variable	Description	Variable	Description
		Guarantee_Period	Guarantee period in months
		ABS	Anti-Lock Brake System (Yes=1, No=0)
Price	Offer Price in EUROs	Airbag_1	Driver_Airbag (Yes=1, No=0)
Age_08_04	Age in months as in August 2004	Airbag_2	Passenger Airbag (Yes=1, No=0)
Mfg_Month	Manufacturing month (1-12)	Airco	Airconditioning (Yes=1, No=0)
Mfg_Year	Manufacturing Year	Automatic_airco	Automatic Airconditioning (Yes=1, No=0)
KM	Accumulated Kilometers on odometer	Boardcomputer	Boardcomputer (Yes=1, No=0)
Fuel_Type	Fuel Type (Petrol, Diesel, CNG)	CD_Player	CD Player (Yes=1, No=0)
HP	Horse Power	Central_Lock	Central Lock (Yes=1, No=0)
Met_Color	Metallic Color? (Yes=1, No=0)	Powered_Windows	Powered Windows (Yes=1, No=0)
Automatic	Automatic ((Yes=1, No=0)	Power_Steering	Power Steering (Yes=1, No=0)
CC	Cylinder Volume in cubic centimeters	Radio	Radio (Yes=1, No=0)
Doors	Number of doors	Mistlamps	Mistlamps (Yes=1, No=0)
Cylinders	Number of cylinders	Sport_Model	Sport Model (Yes=1, No=0)
Gears	Number of gear positions	Backseat_Divider	Backseat Divider (Yes=1, No=0)
Quarterly_Tax	Quarterly road tax in EUROs	Metallic_Rim	Metallic Rim (Yes=1, No=0)
Weight	Weight in Kilograms	Radio_cassette	Radio Cassette (Yes=1, No=0)
Mfr_Guarantee	Within Manufacturer's Guarantee period (Yes=1, No=0)	Parking_Assistant	Parking assistance system (Yes=1, No=0)
BOVAG_Guarantee	BOVAG (Dutch dealer network) Guarantee (Yes=1, No=0)	Tow_Bar	Tow Bar (Yes=1, No=0)

Purpose

- √ Compare the regression performances of single models and ensemble models
 - Single classifier: MLR with forward variable selection, ANN
 - Ensemble classifier: Bagging with ANN, Random Forests, Gradient Boosting Machine (GBM)
 with Stump Tree

√ Experimental Settings

- Use the same dataset for training and test
- Use the best parameter found in the previous R exercise for ANN
- Use the same parameter for Bagging with ANN

• Create a performance evaluation function

```
# Part 1: Regression with Single Model ------
# Performance Evaluation Function
perf eval <- function(target, haty){</pre>
    # Mean squared error (MSE)
    MSE <- mean((target - haty)^2)</pre>
    # Root mean squared error (RMSE)
    RMSE <- sqrt(MSE)
   # Mean absolute error
    MAE <- mean(abs(target-haty))</pre>
    # Mean absolute percentage error
    MAPE <- mean(abs((target-haty)/target))</pre>
    return(c(MSE, RMSE, MAE, MAPE))
}
perf table <- matrix(0, nrow = 5, ncol = 4)
rownames(perf_table) <- c("MLR", "ANN", "Bagging ANN", "GBM", "Random Forests")</pre>
colnames(perf table) <- c("MSE", "RMSE", "MAE", "MAPE")</pre>
```

Load the dataset and randomly split the dataset into training (70%) and test (30%)

```
# Read data file
corolla <- read.csv("Toyota_Corolla.csv")

# Split the data into the training/validation sets
set.seed(12345)
trn_idx <- sample(1:dim(corolla)[1], round(0.7*dim(corolla)[1]))
trn_data <- corolla[trn_idx,]
tst_data <- corolla[-trn_idx,]</pre>
```

✓ Use the same index for training/test data split for all models

Single model I: MLR

√ Use step() function to conduct forward variable selection

Single model I: MLR

Signif. codes:

```
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
                                               < 2e-16
(Intercept)
                 -2.870e+06 9.915e+04 -28.949
Mfg_Year
                  1.432e+03 4.975e+01
                                       28.776
                                               < 2e-16
                            1.975e+02
                                       11.222
Automatic_airco
                  2.216e+03
                                                < 2e-16
                            1.341e-03 -12.803
                 -1.717e-02
                                                < 2e-16
KM
Weight
                  1.205e+01
                           1.296e+00
                                         9.299
                                                < 2e-16
                                        6.018 2.49e-09
                  2.060e+01 3.424e+00
HP
Guarantee_Period 7.961e+01 1.500e+01
                                        5.309 1.36e-07
                 4.878e+02 1.351e+02
                                         3.611
BOVAG_Guarantee
                                                0.00032
Powered Windows
                  3.223e+02 8.139e+01
                                         3.960 8.05e-05
Quarterly_Tax
                 1.517e+01 1.849e+00
                                         8.208 7.03e-16
Petrol
                  2.314e+03 3.759e+02
                                         6.156 1.09e-09
                 -2.181e+02 8.284e+01 -2.633
                                               0.00859 **
Tow Bar
                  2.415e+02
                             9.668e+01
                                        2.498
Metallic Rim
                                               0.01267 *
CD_Player
                  2.482e+02
                             1.067e+02
                                         2.327
                                                0.02015 *
Backseat_Divider -3.576e+02
                            1.238e+02
                                        -2.888
                                                0.00397 **
                                        2.600
Sport_Model
                  2.364e+02 9.092e+01
                                               0.00947 **
                           7.801e+01
                                         2.507
Mfr_Guarantee
                 1.956e+02
                                               0.01233 *
                  9.928e+02
                            3.677e+02
                                         2.700
                                               0.00705 **
Diesel
                            1.530e+02
                                         1.889
                                               0.05924
Automatic
                  2.889e+02
Boardcomputer
                 -2.784e+02
                           1.272e+02
                                       -2.189
                                               0.02884 *
                           1.048e+02
                                       -2.015
                                               0.04423 *
ABS
                 -2.111e+02
Mfq_Month
                  2.344e+01
                            1.098e+01
                                         2.135
                                               0.03297 *
                 -2.059e+02
                                               0.05751 .
Radio_cassette
                            1.083e+02
                                        -1.902
```

- 22 variables are selected from a total of 35 variables
- Adjusted R²: 0.9018 the 90.18% of variance is explained by the regression model
- There is a strong linear relationship between the input variables and the target variable

Residual standard error: 1126 on 982 degrees of freedom Multiple R-squared: 0.904, Adjusted R-squared: 0.9018 F-statistic: 420.2 on 22 and 982 DF, p-value: < 2.2e-16

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Single model I: MLR

```
# Show the selected variable in each step
MLR_model$anova$Step
MLR_model$anova$AIC

# AIC decrease according the the selected variable
plot(MLR_model$anova$AIC, pch = 17, cex=2, main = "AIC Decrease (Forward Selection)", xlab = "Number of Steps", ylab = "AIC")

text(MLR_model$anova$AIC, MLR_model$anova$Step, cex=1, pos=3, col="blue")
```


• Single model I: MLR

```
MLR_haty <- predict(MLR_model, newdata = tst_data)

perf_table[1,] <- perf_eval(tst_data$Price, MLR_haty)
perf_table</pre>
```

	MSE	RMSE	MAE	AMPE
MLR	1,539,502	1240.77	880.86	8.90%
ANN				
Bagging ANN				
GBM				
Random Forests				

Single model 2:ANN

```
# Model 2: Artificial Neural Network ------
# nnet package install
install.packages("nnet", dependencies = TRUE)
library(nnet)
corolla_input <- corolla[,-1]
corolla_target <- corolla[,1]

# Data normalization
corolla_input_scaled <- scale(corolla_input, center = TRUE, scale = TRUE)

# Input/Target configuration
ANN_trn_input <- corolla_input_scaled[trn_idx,]
ANN_trn_target <- corolla_target[trn_idx]
ANN_tst_input <- corolla_input_scaled[-trn_idx,]
ANN_tst_target <- corolla_target[-trn_idx]</pre>
```

Single model 2:ANN

- ✓ Set the number of hidden nodes to 10 (it can be optimized through cross validation process)
- ✓ Note that "linout = TRUE" option is used for regression

	MSE	RMSE	MAE	AMPE
MLR	1,539,502	1240.77	880.86	8.90%
ANN	3,286,328	1,812.82	1,288.35	12.62%
Bagging ANN				
GBM				
Random Forests				

Ensemble model 1: Bagging ANN

- ✓ Set the same number of hidden nodes (10) with the single model
- √ Use 100 bootstraps

	MSE	RMSE	MAE	AMPE
MLR	1,539,502	1240.77	880.86	8.90%
ANN	3,286,328	1,812.82	1,288.35	12.62%
Bagging ANN	2,810,978	1,676.60	1,137.86	10.83%
GBM				
Random Forests				

Ensemble model 2: GBM

√ Use [distribution = "gaussian"] option for regression

• Ensemble model 2: GBM

> summary(GBM_mo	del)	
	var	rel.inf
Age_08_04	Age_08_04	65.963054014
Mfg_Year	Mfg_Year	17.164856889
Weight	Weight	4.432563011
KM	KM	3.865313552
Automatic_airco	Automatic_airco	2.580794435
HP	HP	2.320149525
Quarterly_Tax	Quarterly_Tax	1.159423763
Airco	Airco	0.949990225
Mfr_Guarantee	Mfr_Guarantee	0.304297238
Mistlamps	Mistlamps	0.258035552
BOVAG_Guarantee	BOVAG_Guarantee	0.240231857
Guarantee_Period	Guarantee_Period	0.228343372
Automatic	Automatic	0.157408595
Powered_Windows	Powered_Windows	0.145473497
Doors	Doors	0.119571882
Metallic_Rim	Metallic_Rim	0.066544933
CC	CC	0.017055262
CD_Player	CD_Player	0.011439660
Sport_Model	Sport_Model	0.011229340
Mfg_Month	Mfg_Month	0.004223397
Met_Color	Met_Color	0.000000000
Gears	Gears	0.000000000
ABS	ABS	0.000000000
Airbag_1	Airbag_1	0.000000000
Airbag_2	Airbag_2	0.000000000
Boardcomputer	Boardcomputer	0.000000000
Central_Lock	Central_Lock	0.000000000
Power_Steering	Power_Steering	0.000000000
Radio	Radio	0.000000000
_	Backseat_Divider	0.000000000
Radio_cassette	Radio_cassette	0.000000000
Tow_Bar	Tow_Bar	0.000000000
Petrol	Petrol	0.000000000
Diesel	Diesel	0.000000000
CNG	CNG	0.000000000

Ensemble model 2: GBM

	MSE	RMSE	MAE	AMPE
MLR	1,539,502	1240.77	880.86	8.90%
ANN	3,286,328	1,812.82	1,288.35	12.62%
Bagging ANN	2,810,978	1,676.60	1,137.86	10.83%
GBM	2,353,836	1,534.22	1,088.47	11.12%
Random Forests				

Ensemble model 3: Random Forest

- √ randomForest() function
 - If the variable type of the second argument is factor: classification model
 - If the variable type of the second argument is numeric: regression model

- Ensemble model 3: Random Forest
 - √ Variable importance

• Ensemble model 3: Random Forest

√ Variable importance of RF and GBM

> summary(GBM_model)					
	var	rel.inf			
Age_08_04	Age_08_04	59.617320526			
Mfg_Year	Mfg_Year	23.432509028			
Weight	Weight	4.466906834			
KM	KM	3.927265378			
Automatic_airco	Automatic_airco	2.683857864			
HP	HP	2.272759360			
Quarterly_Tax	Quarterly_Tax	1.160952140			
Airco	Airco	0.848673170			
Mistlamps	Mistlamps	0.324353196			
Mfr_Guarantee	Mfr_Guarantee	0.267628115			
BOVAG_Guarantee	BOVAG_Guarantee	0.246253885			
Guarantee_Period	Guarantee_Period	0.242808358			
Automatic	Automatic	0.161310896			
Doors	Doors	0.118199214			
Powered_Windows	Powered_Windows	0.109775320			
Metallic_Rim	Metallic_Rim	0.072000314			
CC	CC	0.024786843			
CD_Player	CD_Player	0.015270228			
Sport_Model	Sport_Model	0.005054391			
Mfg_Month	Mfg_Month	0.002314941			
Met_Color	Met_Color	0.000000000			
Gears	Gears	0.000000000			
ABS	ABS	0.000000000			
Airbag_1	Airbag_1	0.000000000			
Airbag_2	Airbag_2	0.000000000			
Boardcomputer	Boardcomputer	0.000000000			
Central_Lock	Central_Lock	0.000000000			
Power_Steering	Power_Steering	0.000000000			
Radio	Radio	0.000000000			
Backseat_Divider	Backseat_Divider	0.000000000			
Radio_cassette	Radio_cassette	0.000000000			
Tow_Bar	Tow_Bar	0.000000000			
Petrol	Petrol	0.000000000			
Diesel	Diesel	0.000000000			
CNG	CNG	0.000000000			

> Var_imp		
	%IncMSE	IncNodePurity
Age_08_04	11.1504523	3707150467
Mfg_Month	2.2755854	98079113
Mfg_Year	14.0241485	4331523755
KM	10.9540156	827446727
HP	7.6907742	205065089
Met_Color	-0.3599107	27382527
Automatic	4.1801747	14215308
CC	6.9311401	122906195
Doors	5.4717214	42427626
Gears	1.8847491	8419435
Quarterly_Tax	9.0277874	229836967
Weight	9.2322720	687946223
Mfr_Guarantee	3.7905260	37281923
BOVAG_Guarantee	1.6816841	27582053
Guarantee_Period	2.8339027	22958574
ABS	2.9816172	26164959
Airbag_1	0.2547517	4980504
Airbag_2	3.2369906	24120154
Airco	5.3700727	73424028
Automatic_airco	4.7557439	672751814
Boardcomputer	7.1153288	1390684441
CD_Player	4.1612230	107575452
Central_Lock	4.0662990	55075686
Powered_Windows	3.8707544	76151464
Power_Steering	0.9105631	2609527
Radio	0.8541061	12091741
Mistlamps	4.5580650	39070876
Sport_Model	5.3639339	139673995
Backseat_Divider	1.5663182	15473928
Metallic_Rim	3.5787926	37510212
Radio_cassette	0.2463033	13283659
Tow_Bar	2.7859789	25821047
Petrol	3.5219052	24975174
Diesel	3.7901764	20481394
CNG	0.8096385	4278186

• Ensemble model 3: Random Forest

```
# Prediction
RF_haty <- predict(RF_model, newdata = tst_data[,-1], type = "response")
perf_table[5,] <- perf_eval(tst_data$Price, RF_haty)
perf_table</pre>
```

	MSE	RMSE	MAE	AMPE
MLR	1,539,502	1240.77	880.86	8.90%
ANN	3,286,328	1,812.82	1,288.35	12.62%
Bagging ANN	2,810,978	1,676.60	1,137.86	10.83%
GBM	2,353,836	1,534.22	1,088.47	11.12%
Random Forests	1,079,293	1,038.89	774.27	7.95%

