

Links for documentation files

Google doc -

https://docs.google.com/document/d/16mei-kUy l-ponoLJgfMpnZRmnh4rlv7 t0WOB 1fvk/edit

Excel -

https://docs.google.com/spreadsheets/d/132fGrDHev7mpNY4GyRv98tLuYg6zL9SAoV5Evk5WL0A/edit#gid=0

Ownership rights not shared due to confidentiality reasons. Please ask for permission to access the content of the files

CONTENT

- Made Standing the Properties of Conducting Yarns
- Experimental Data Collection and it's Analysis
- Exploration of such yarns for various applications

INTRODUCT

- The acipline of e-fabrics combines the power of electronics with the flexibility of textiles to create unique products. Power, networking, and communication are all enabled by the use of conductive yarns and fibers.
- The conductive qualities of the composite yarn depend on the kind of cover yarns chosen to wrap around the core. One or both of the cover yarns may be conductors. A stretchy conductive yarn should be resilient to repeated stretching and washing.
 - We have done out a detailed study of yarns, it's various important properties and most importantly proceeded out towards it's real life applications.

What are conducting

yarn is an established with e fiber. It must be oodichactive and must be machine sewable.

TYPES OF YARN USED

Blended Steel Yarn

20% blended steel uniformly mixed up with 80% polyester

Tungsten Core Yarn

13 um radius tungsten core with polyester(polyamide+p- Aramide) on outer layer

Specifications -33 tex

Properties studied and results

PHYSIC AL

- LOWWEIGHT
- FLEXIBILI
- TY
- STRENGT

DIIDARIII

Н

ELECTRI CAL

- RESISTANCE
 WITH
 VARIANCE IN
 LENGTH
 - RESISTANCE WITH
- DIFFERENTNO. OF

MECHANIC AL

- TENSILE
 STRENG
 TH
 - THERMAL COEFFICIENT
- OF RESISTANCE

Experimental Data and

Analysis
Following Experiments were being carried out in CASE and Basic Lab Building:

UTM (Universal Testing

• UTM was use **Machine** akdown point based on its mechanical properties, as well as its elongation was measured(shown in table below) and breakdown point helped us to understand the extent to which yarns can be stretched while stitching and weaving.

a)	b)	
Number of strands	2	Number of strands	2
Length	2.5 cm	Length	5 cm
Elonagtion (mm)	Load(Kgf)	Elongation (mm)	Load(Kgf
0	0	0	0
0.1	0.1	0.1	0.1
0.291	0.3	0.277	0.1
0.575	0.39	0.476	0.188
0.591	0.39	0.675	0.188
0.798	0.39	0.978	0.3
1.48	0.705	1.687	0.293
1.779	0.705	1.886	0.398
1.986	0.795	2.189	0.39
2.194	0.795	2.39	0.5
2.5	0.9	2.9	0.5
2.7	0.6	3.1	0.6
2.807	0	3.3	0.6
		3.6	0.5
		3.79	0

Table 1 a) Breakdown point of type 1 yarn (with outer polyester layer) b)Breakdown point of type 2

TCR (Temperature Coefficient of Resistance)

• TCR Machine was used in this experiment to get the Voltage-Current Graph at different temperatures for the blended steel yarn (type 2) to calculate the thermal coefficient of resistance as shown in data in the slides shown up next.

$R = R_{ref} \left[1 + \alpha (T - T_{ref}) \right]$

Where,

R = Conductor resistance at temperature "T"

R_{ref} = Conductor resistance at reference temperature T_{ref} , usually 20°C, but sometimes 0°C.

 Temperature coefficient of resistance for conductor material.

T = Conductor temperature in degrees Celcius.

 $T_{ref} = Reference temperature that <math>\alpha$ is specified at for the conductor material

Resistance and voltage of the conducting yarn with different current passed at temperature 30 degree Celsius

		re = 30 °C	Temperatu	
Resistance Ω)	Average Voltage (mV)	Voltage - V2 (mV)	Voltage - V1 (mV)	Current (uA)
	0	0	0	0
196.75	19 675	19.45	19.9	100
203.8	40.055	40.31	39.8	200
200.5	60.105	60.51	59.7	300
158.95	76	72.5	79.5	400
204.35	96 435	93.33	99.54	500
139.15	110.35	121.2	99.5	600
236.7	134.02	127.75	140.29	700
133.55	147.375	143.16	151.59	800
132.85	160.68	160.54	160.78	900
181.1	178.77	178.77	178.77	1000
178.770000	Average resitance =			
178	Resistance from linear regression =			

Resistance and voltage of the conducting yarn with different current passed at temperature 35 degree Celsius

	Temperature = 35 °C					
Resistance Ω)	Average Voltage (mV)	Voltage - V2 (mV)	Voltage - V1 (mV)	Current (uA)		
	0	0	0	0		
158.1	15.81	16	15.62	100		
158.9	31.7	32.1	31.3	200		
156.4	47.34	47.71	46.97	300		
157.75	63.115	63.56	62.67	400		
158.3	78.945	79.45	78.44	500		
158.3	94.775	95.37	94.18	600		
156.85	110.46	111.1	109.82	700		
159.1	126.37	126.72	126.02	800		
159.75	142.345	142.54	142.15	900		
158.05	158.15	158.15	158.15	1000		
158.15	Average resitance =					
158	Resistance from linear regression =					

Resistance and voltage of the conducting yarn with different current passed at temperature 40 degree Celsius

		e = 40 °C	Temperatu	
Resistance Ω)	Average Voltage (mV)	Voltage - V2 (mV)	Voltage - V1 (mV)	Current (uA)
	0	0	0	0
159.85	15.985	16.46	15.51	100
160.05	31.99	32.88	31.1	200
160.85	48.075	49.4	46.75	300
158.75	63.95	65.45	62.45	400
156.95	79.645	81.13	78.16	500
158.25	95.47	97.06	93.88	600
159.65	111.435	113.2	109.67	700
159.55	127.39	129.18	125.6	800
177.85	145.175	145.29	145.06	900
161.25	161.3	161.3	161.3	1000
161.30	Average resitance =			
160.5	Resistance from linear regression =			

Resistance and voltage of the conducting yarn with different current passed at temperature 45 degree Celsius

Temperature = 45 °C					
Current (uA)	Voltage - V1 (mV)	Voltage - V2 (mV)	Average Voltage (mV)	Resistance Ω)	
0	0	0	0		
100	16.68	17.64	17.16	171.6	
200	33.38	45.68	39.53	223.7	
300	50.1	53.28	51.69	121.6	
400	66.8	72.29	69.545	178.55	
500	83.48	90.23	86.855	173.1	
600	95.46	130.77	113.115	262.6	
700	111.07	152.3	131.685	185.7	
800	126.82	171.2	149.01	173.25	
900	143.45	149.01	146.23	27.8	
1000	161.14	161.14	161.14	149.1	
			Average resitance =	166.70	
			Resistance from linear regression =	169	

Resistance and voltage of the conducting yarn with different current passed at temperature 50 degree Celsius

		re = 50 °C	Temperatu	
Resistance Ω)	Average Voltage (mV)	Voltage - V2 (mV)	Voltage - V1 (mV)	Current (uA)
	0	0	0	0
210.65	21.065	23.34	18.79	100
196.1	40.675	43.76	37.59	200
190.15	59.69	62.97	56.41	300
184.65	78.155	81.2	75.11	400
192.65	97.42	101	93.84	500
190.8	116.5	120.21	112.79	600
194.6	135.96	139.53	132.39	700
190.7	155.03	158.37	151.69	800
179.75	173.005	174.54	171.47	900
185.55	191.56	191.56	191.56	1000
191.56	Average resitance =			
191	Resistance from linear regression =			

Resistance and voltage of the conducting yarn with different current passed at temperature 55 degree Celsius

	Temperature = 55 °C					
Resistanc Ω)	Average Voltage (mV)	Voltage - V2 (mV)	Voltage - V1 (mV)	Current (uA)		
	0	0	0	0		
218.65	21.865	23.49	20.24	100		
218.7	43.735	46.98	40.49	200		
218.9	65.625	70.47	60.78	300		
218.8	87.505	94	81.01	400		
219.2	109.425	117.53	101.32	500		
176.15	127.04	132.45	121.63	600		
184.05	145.445	148.84	142.05	700		
206.4	166.085	169.66	162.51	800		
208.1	186.895	190.54	183.25	900		
244.25	211.32	211.27	211.37	1000		
211.32	Average resitance =					
207.5	Resistance from linear regression =					

Resistance and voltage of the conducting yarn with different current passed at temperature 60 degree Celsius

	Temperatu	re = 60 °C		
Current (uA)	Voltage - V1 (mV)	Voltage - V2 (mV)	Average Voltage (mV)	Resistance Ω)
0	0	0	0	
100	24.42	26.24	25.33	253.3
200	48.77	51.57	50.17	248.4
300	73.17	81.47	77.32	271.5
400	97.75	109.92	103.835	265.15
500	122.25	139.49	130.87	270.35
600	146.97	169.58	158.275	274.05
700	181.55	229.94	205.745	474.7
800	198.3	205.12	201.71	40.35
900	223.87	229.47	226.67	249.6
1000	252.72	252.72	252.72	260.5
			Average resitance =	260.79
			Resistance from linear regression =	257.5

Thermal coefficient of resistance for the different temperatures and the average TCR

for the yarn

T1(celsius)	T2(celsius)	R1(ohm)	R2(ohm)	TCR(ppm/celsius) X(10'
35	40	158	160.5	0.3
40	45	160.5	169	1.05
45	50	169	191	2.6
50	55	191	207.5	1.72
55	60	207.5	257.5	4.8
30	60	178	257.5	1.4
			avg.TCR	1.978333

Source

• Using the Source Meter , Meter fulated out the values of change in Resistance vs Number of strands over a particular sweep voltage and current for the fixed particular lengths to get an overview of strand based

Stud Yable. 10 Results obtained from testing on source meter

SI no	Current (uA)	Voltage -1 (V11)	Reverse -1 (V12)	Voltage- 2(V21)	Reverse- 2 (V22)	Resistance per unit length (Ohm / cm) from V21	Resistance per unit length (Ohm / cm) from V22	Mean
0	0	0	0	0	0			
1	100	1.7	0.6	0.6	0.44	1000	733.333333 3	866.666 6667
2	200	2	0.8	1.14	0.86	900	700	800
3	300	2.7	1.1	1.32	1.28	300	700	500
4	400	3.2	1.5	1.73	1.51	683.3333333	383.333333 3	533.333 3333
5	500	3.5	1.9	2.25	1.89	866.6666667	633.333333 3	750
6	600	3.4	2.2	2.8	2.29	916.6666667	666.666666 7	791.666 6667
7	700	3.4	2.6	3.2	2.71	666.6666667	700	683.333 3333
8	800	3.4	3	3.7	3.16	833.3333333	750	791.666 6667
9	900	3.9	3.5	4	3.63	500	783.333333 3	641.666 6667
10	1000	4.1	4.1	4.2	4.2	333.3333333	950	641.666 6667

Resistance vs weight-Probe

• We proceeded on experimental set-up shown below using Probe Station to calculate the Resistance vs Weight to see how the increase of load is impacting our resistance of the conducting wire.

Table.11 Change in	resistance with the weight applied
weight	resistance(10^3 ohm)

weight	resistance(10^3 ohm)
11	1030
22.9	736.25
34.8	705.64
46.7	439.29
58.6	405.4
70.5	368.43
82.4	349.73
94.3	343.84
106.2	367.78
118.1	353.21
130	394.65
141.9	405.1
153.8	412.08

Fig. 10 The setup for the experiment

Fig.11 Plot of resistance vs. weight

Junctions and

• Using the Microscope housings observed out the various knots and junction points to get an overview of knotting based study.

Fig.13 Weaving pattern

Fig. 14 Junction of conducting yarn and normal yarn under microscope

Fig.15 Knot between the yarn

Capacitance using Dielectric as

• We have stace of the sample with two yarns weaved parallelly to each other on using dielectric as ionic solutions.

The plot below shows the three cases: (a.) In presence of no dielectric

(b.) Capacitance change in presence of deionized water (c.) Capacitance

change in presence of ionic (NaCl) solution

Capacitance-Time Measurement

1.000E-9

800.000E-12

400.000E-12

200.000E-12

0.000E+0

Fig. 16 Plot of capacitance vs. time gradually as the dielectric is changed between two parallely weaved conducting yarns

Yarns a) Sensor in Underwater work station

Sudden peak and change in capacitance of the two parallelly weaved conducting yarn in presence of ions can be utilized to make sensors which can be used in underwater workstations.

Application of Conducting Yarns b) Heat sensor in wearable textiles

Inthis a simple adjustable regulator to detect resistance change with temperature can be designed in order to use it a sensor for humans.

Application of Conducting Yarns Large Bio-Potential Electrodes

These material can act out as Biopotential electrodes which will act as an interface between the biological tissue and the electronic measuring circuit, performing the transduction of ion current into electronic current.

Application of Conducting Yarnsd) Sensor based Diapers

Conducting Yarns can be used for the application in the Med Tech industry where the patients are in the high need of getting sensor based Diapers so as to prevent bed sores and other serious medical issues.

Application of Conducting Yarns e) Heart Attack Sensing Technology

Conducting yarns can be used as sensors to detect if a person is sweating profusely in case when one gets a heart attack.

Rest list of applications is inexhaustible in nature

