

Battery technology and QUB EV lab

Dr Jing Deng, Mr Cheng Zhang, Prof Kang Li

Electric Vehicle Laboratory, EEECS, QUB

Content

Lead Acid Battery

- Mechanism
- Category
- Characterization
- **Life cycle**

Other Batteries

- Advanced Lead Acid
- > Li-lon
- **▶** Lead Acid + Supercapacitor
- > QUB EV lab
- Our research

Machnism

Lead-Acid Reactions

Equation 1 Electrolyte
$$H_2SO_4$$
 $H^+ + HSO_4$

Equation 2 Pb_(metal) + HSO₄ Discharge PbSO₄ + H⁺ + 2e⁻

Negative Electrode Equation 3 Positive Electrode PbO₂ + 3H⁺ + HSO₄ + 2e⁻

Equation 4 Pb_(metal) + PbO₂ + 2H₂SO₄ Discharge PbSO₄ + 2H₂O

Charge PbSO₄ + 2H₂O

Total Reaction

Background of lead acid battery

Starter battery

- Low internal resistance
- High power

Deep-cycle battery

- Designed for cycling
- Small continuous power

Lead Acid Battery Categories

ECM (Enhanced Cyclic Mat)
AFB (Advanced Flooded Battery)
EFB (Enhanced Flooded Battery)

AGM (Absorbed Glass Mat)

Good for Brake Energy Regeneration

Background of lead acid battery

Standard

EFB

AGM

Bosch S4 Car Battery Type 096

Amp Hours (Ah): 74Ah Cold Cranking Amp (CCA): 680cca

£71.49

Bosch S5 Car Battery Type 100

Amp Hours (Ah): 74Ah Cold Cranking Amp (CCA): 750cca

£84.95

Bosch S6 Car Battery Type 096

Amp Hours (Ah): 70Ah Cold Cranking Amp (CCA): 760cca

£123.32

Standard Charging

Stage 1: Voltage rises at constant current to V-peak.

Stage 2: Current drops; full charge is reached when current levels off

Stage 3: Voltage is lowered to float charge level

Queen's University Belfast

Lead Acid Performance vs Temperature

Cycle life versus DoD

Battery life

Depth of Discharge	Starter Battery	Deep-cycle Battery
100%	12–15 cycles	150-200 cycles
50%	100-120 cycles	400–500 cycles
30%	130–150 cycles	1,000 and more cycles

From http://batteryuniversity.com/

lead acid battery aging

Advanced Lead Acid Battery

Advanced Lead-Carbon

Li ion Battery

Anode
$$LiFePO_4 \rightarrow FePO_4 + Li^+ + e^-$$
 Cathode $Li^+ + e^- + C_6 \rightarrow LiC_6$

Li ion Battery Characterization

Fig 1. Typical Charging Profile

Fig 3. Temperature effect on usable capacity and internal resistance

ueen's University

Fig 2. usable capacity versus discharging current

Fig 4. Battery aging process vs temperature & Cycle number

Aging is also affected by discharging current level, discharging depth,

energy, power & intelligent control

Lead Acid vs Li-ion

Specification	Lead-acid	Li-ion
Energy Density (Wh/L)	60-110	300 - 700
Specific Energy (Wh/kg)	40	100 - 260
Energy Density (W/kg)	180	250 - 350
Cycle life	800 @ 50% DoD	2000 @ 80% DoD
Temperature Sensitivity	Degrades significantly above 25°C	Degrades significantly above 45°C
Efficiency	100% @ 0.05 C-rate 80% @ 0.25 C-rate 60% @1 C-rate	100% @ 0.05 C-rate 99% @ 0.25 C-rate 92% @1 C-rate
Cost (\$/kWh)	100	400
Maintenance	free	BMS

EV lab at QUB (EPSRC-NSFC jointly funded)

10kW Resister load Bank

15kw EA charger

10.5kW EA electronic load

3kW DC/AC inverter

DC Bus

Li-ion Battery Pack

Retrofitted EVs

Super Capacitor Pack

Electronic bike

Other DC load

EV Lab

1. Battery testing system

Functionality:

- 1. Fully automatic charging/discharging test
- 2. Temperature control
- 3. User-defined VIP test sequence (within charger / load capacity limit)
- 4. Expandable
- 5. User interface (Labview)

EV Lab

NI CRIO 9022 test controller

- Embedded controller runs LabVIEW Real-Time for deterministic control, data logging, and analysis
- 533 MHz processor, 2 GB non-volatile storage, 256 MB DDR2 memory
- Dual Ethernet ports with embedded web and file servers for remote user interfacing
- Hi-Speed USB host port for connection to USB flash and memory devices
- RS232 serial port for connection to peripherals; dual 9 to 35 VDC supply inputs

Electronic Load

> Charger

EA-ELR 9250-210 ELECTRONIC LOAD with recovery function

- Output power: 10.5kw
- Output voltage: 0 250v
- Output current: 0 210A
- Program interface: USB, Ethernet, CAN, RS-232

EA Elektro-Automatik EA-PS 500-90 3U

- Output power: 15kw
- Output voltage: 0-500v
- Output current: 0-90A
- Program interface: USB, Ethernet,

CAN, RS-232

Electronic Load 2

Charger 2

EA-ELR 9080-170 ELECTRONIC LOAD with recovery function

- Output power: 3.5 kw
- Output voltage: 0 80v
- Output current: 0 170A
- Program interface: USB, Ethernet, CAN, RS-232

EA-PSI 9080-120 1 phase

- Output power: 3kw
- Output voltage: 0-80v
- Output current: 0-120A
- Program interface: USB, Ethernet,

CAN, RS-232

Temperature range: Temperature accuracy:

-20°C to +80°C ∓2°C

Cold test environment

Hot test environment

Automatic Temperature controller

► Li ion Battery

- LiFePO4
- 3.2 V
- 10 Ah
- 3C discharge
- 1C charge

- LiFePO4
- 3.2 V
- 100 Ah
- 1C discharge
- 1C charge

> Super capacitor

Capacitance: 2000 Farad

Voltage: 2.7V

Continuous current: 130A

Peak current: 1800A

G-Wiz electric car

- DimensionsL 2.6m, W 1.3m, H 1.6m
- Motor power: 6kW continuous
- Weight: 400 kg excl batteries
- Battery: 200AH, 48V, Lead-acid
- Range: 48 miles

Retrofit: Li-ion battery, BMS, wireless communication, standard charging plug

(205V, 60AH, 12.3KWH)

Battery holder with waste heat recovery

Wireless charging

Driving style simulation platform to mimic city bus driving

Battery pack monitoring and control

Communication module

Voltage and current module

Relay signal module

Digital input/output module

Temperature module

BMS module

Protocol converter module

Interface card for main controller

Test data

HPPC tests at different temperatures: [0, 10, 23, 32, 39, 52]°C

Thermal test

Our Research

1. Battery modelling

Fig 1: Li ion battery model

Modelling procedure

- Select model structure
- Test data collection
- Model parameter optimization
- Model validation
- Model application

Fig 3: Supercapacitor model

Our Research

2. Battery State estimation

1. State-of-charge (SOC) estimation Current methods:

- a) Hydrometer, battery impedance (drawbacks: not suitable for online application)
- b) OCV measurement (drawbacks: long relaxation process)
- c) Current integration method (drawbacks: open loop method; current measurement error build up) We proposed *model-based method using Extended Kalman Filter algorithm*
- 2. Internal temperature estimation

Battery thermal model based internal temperature estimation using surface temperature measurements and advanced state estimation algorithm

By battery internal resistance estimation and usable capacity estimation

How fast battery ages with different load condition? (e.g., peak load) How to prolong battery life?

4. Other applications

Battery internal resistance estimation, battery power capacity prediction

energy, power & intelligent control

Our Research

3. Battery control

1. Battery charging/discharging control

Based on the developed battery model and state estimation methods

- 1. Prevent over-charging, over-discharging
- 2. Prevent over-current
- 3. Prevent over-temperature

2. Battery temperature control

based on developed battery thermal model

- 1. Battery temperature estimation
- 2. Battery warming/cooling
- 3. Reduce battery thermal management parasitic energy consumption

3. Battery balancing

QUB support

How can we contribute?

- 1. Battery test
 - a) Charging/discharging, regenerative break; deep recycling, ...
 - b) Different temperature settings
 - c) Any user defined VIP test sequence
- 2. Data analysis
 - a) Load analysis
 - b) Battery life analysis
- 3. System design improvement
- 4. Charging/discharging control
 - a) Model, state estimation, control
 - b) To prolong battery life

Questions?

Prof Kang Li (K.LI@QUB.AC.UK)

