JÁDRO

JÁDRO SE SKLÁDÁ $Z \land NUKLEONŮ$ (A = HMOTNOSTNÍ ČÍSLO),Z NICHŽ Z (NÁBOJOVÉ ČÍSLO) JE PROTONŮ $<math>A \land A = A - Z (NEUTRONOVÉ ČÍSLO) NEUTRONŮ.$

HMOTNOST JÁDRA JE S PŘESNOSTÍ 1% ROVNA A u , KDE u = ATOMOVÁ HMOTNOSTNÍ JEDNOTKA - u = 1,660 538 86(28) x 10^{-27} kg \approx 931.5 MeV

PŘESNĚJI $M(A,Z) = ZW_p + NW_N - W(A,Z)/c^2$, KDE $M_p = 1,672~621~71(29)~x~10^{-27}~kg \approx 938.3~MeV$ $M_N = 1,674~927~28(29)~x~10^{-27}~kg \approx 939.6~MeV$ A W(A,Z) JE VAZEBNÁ ENERGIE JÁDRA

JÁDRO MÁ ROZLOŽENÍ NUKLEONŮ POPSANÉ VZTAHEM

 $\rho = \rho_o / \left[\exp(\frac{r-R}{a}) + 1 \right]$

KDE ρ_o = 0.17 n/fm³ = 2.7x 10¹⁷kg/m³ JE HUSTOTA JÁDRA, R = 1.2 fm A^{1/3} POLOMĚR JÁDRA A a \approx 0.6 fmTLOUŠŤKA POVRCHOVÉ VRSTVY

VAZEBNÁ ENERGIE ČINÍ cca 8 MeV NA NUKLEON.

Neutron number

2010

DÁNO A,Z – NUKLID, A – IZOBAR, Z - IZOTOP (URČUJE CHEMII), N - IZOTON

LICHO-LICHÁ JÁDRA JSOU AŽ NA 4 NESTABILNÍ, LICHO-SUDÁ A SUDO LICHÁ STABILNĚJŠÍ, NEJSTABILNĚJŠÍ JSOU SUDO-SUDÁ JÁDRA A Z NICH NEJSTABILNÉJŠÍ TA, KTERÁ MAJÍ "MAGICKÝ" POČET PROTONŮ, RESP. NEUTRONŮ, RESP PROTONŮ I NEUTRONŮ

NEUTRONŮ V JÁDŘE JE OBVYKLE VÍCE NEŽ PROTONŮ – PROTONY SE ODPUZUJÍ.

PŘEBYTEK NEUTRONŮ VEDE K β- ROZPADU, PŘEBYTEK PROTONŮ K β+ ROZPADU NEBO ZÁCHYTU ELEKTRONU. U TĚŽKÝCH JADER DOCHÁZÍ K ALFA ROZPADU.

MOMENT HYBNOSTI JÁDRA ZVANÝ SPIN JÁDRA (OZN. I)

JE VEKTOROVÝM SOUČTEM ORBITÁLNÍCH A SPINOVÝCH MOMENTŮ NUKLEONŮ.

PROTONY I NEUTRONY VYKAZUJÍ TENDENCI K PÁROVÁNÍ – CELKOVÝ SPIN JE MALÝ (MAX 6). SUDO-SUDÁ JÁDRA MAJÍ SPIN 0.

MAGNETICKÝ MOMENT

JE VEKTOROVÝM SOUČTEM ORBITÁLNÍHO MOMENTU NUKLEONŮ A VLASTNÍCH MOMENTŮ PROTONU A NEUTRONU (!)

ORBITÁLNÍ MAGNETICKÝ MOMENT JE γ I μ_N MAGNETICKÝ MOMENT PROTONU 2.793 μ_N MAGNETICKÝ MOMENT NEUTRONU –1.913 μ_N

SUDO-SUDÁ JÁDRA MAJÍ NULOVÝ MAGNETICKÝ MOMENT.

SPIN A MAGNETICKÝ MOMENT NĚKTERÝCH JADER

n	1/2	-1.91	р	1/2	2.79
² H	1	0.86	³ H	1/2	3
³ He	1/2	-2.1	⁶ Li	1	0.82
⁷ Li	3/2	3.3	⁹ Be	3/2	-1.2
¹⁰ B	3	1.8	¹³ C	1/2	0.7
14 N	1	0.4	¹⁵ N	1/2	-0.28
¹⁷ 0	5/2	-1.9	¹⁹ F	1/2	2.6

JÁDRA S I > 1/2 BÝVAJÍ NESFÉRICKÁ.

MODEL: SFÉROID

CHARAKTERIZUJE KVADRUPÓLOVÝ MOMENT

 $Q = 2/5 (a^2 - b^2).Ze$

SHLAZENÁ ZÁVISLOST Q NA Z RESP. N

Q = 2/5 (a² - b²).Ze = 4/5
$$\varepsilon$$
R².Ze ,
 ε = (a² - b²)/ (a² + b²) , R² = 1/2 (a² + b²) .

UŽÍVÁME R ~ A118

KAPKOVÝ MODEL JÁDRA

JÁDRO JAKO NABITÁ KAPKA:

VAZBA NUKLEONŮ V JÁDŘE JE PŘIBLIŽNĚ KONSTANTNÍ - PŘÍSPĚVEK K VAZEBNÉ ENERGII 2.4

NUKLEONY NA POVRCHU JSOU VÁZÁNY MÉNĚ
– ZESLABENÍ ÚMĚRNÉ POVRCHU, TJ. —2, A^{2/3}

ELEKTROSTATICKÉ ODPUZOVÁNÍ PROTONŮ – ZESLABENÍ – ZZ²/A^{1/3}

PRO DOBROU SHODU POTŘEBUJEME JEŠTĚ 2 ČLENY

SYMETRIZAČNÍ ČLEN – BEZ ELEKTROSTATICKÉHO ODPUZOVÁNÍ BY BYLO STEJNĚ PROTONŮ I NEUTRONŮ – 2. (A-2Z)²/A

"ZUBOVÝ" ČLEN ROZLIŠUJÍCÍ SS, SL A LS A LL JÁDRA : $D = +\delta/A^{3/4}$ PRO SS, = 0 PRO SL A LS, $= -\delta/A^{3/4}$ PRO LL

CELKEM : W(A,Z) =

 $a_1A - a_2A^{2/3} - a_3Z^2/A^{1/3} - a_4(A-2Z)^2/A + D$

TZV. WEZSÄCKEROVA FORMULE

PODÍL ČLENŮ NA VAZEBNÉ ENERGII

BEST FIT (v MeV) : $a_1 = 15.67$, $a_2 = 17.23$, $a_3 = 0.75$, $a_4 = 93.2$, $\delta = 12$

EXISTENCE JÁDRA VYŽADUJE NOVOU "SILNOU SÍLU".

(ELEKTRICKÉ SÍLY JSOU ODPUDIVÉ, MAGNETICKÉ SLABÉ.)

VLASTNOSTI:

SILNĚJŠÍ NEŽ ELEKTRICKÉ (8 MeV/N PROTI 0.75/NP)

PŮSOBÍ MEZI HADRONY

MAJÍ KRATKÝ DOSAH (2-3 fm – NEJSOU MAKRO)

NEZÁVISEJÍ NA NÁBOJI

VYKAZUJÍ NASYCENÍ (U cca 4 NUKLEONŮ)

ZÁVISEJÍ NA SPINU A JSOU NECENTRÁLNÍ

U VÍCE ČÁSTIC NESTAČÍ PÁROVÉ SÍLY

SILNÉ PŮSOBENÍ NUKLEONŮ MŮŽEME POPSAT NAPŘ. PAŘÍŽSKÝM POTENCIÁLEM

 $V = V_{CO}$ PRO ANTISYMETRICKÝ STAV, $V = V_{C1} + \frac{1}{2} V_{SO} S.L$ PRO SYMETRICKÝ STAV

PRO VĚTŠÍ VZDÁLENOSTI MŮŽEME POUŽÍT JEDNOPIONOVOU APROXIMACI, KDE VZÁJEMNÉ PŮSOBENÍ JE ZPŮSOBENO VÝMĚNOU PIONŮ

ROVNICE PRO POTENCIÁL

$$\left[\Delta - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \left(\frac{m_{\pi}c}{\hbar}\right)^2\right] \Phi(r,t) = 0$$

SE STACIONÁRNÍM ŘEŠENÍM

$$\Phi(r,t) = g_{\pi} \exp(-m_{\pi} c r/\hbar)/r$$

 $m_{\pi} \approx 140 \text{ MeV}$ DÁ DOSAH m_{π}^{c} 1.4 fm.

$$m_{\pi}c$$
 1.4 fm

SLUPKOVÝ MODEL JÁDRA

NEZÁVISLÉ NUKLEONY V EFEKTIVNÍ POTENCIÁLOVÉ JÁMĚ

POTENCIÁL WOODSŮV-SAXONŮV:

 $V = -V_o / (exp((r-R)/a) + 1)$

- + ELEKTROSTATICKÉ ODPUZOVÁNÍ PRO PROTONY
- + SPIN ORBITÁLNÍ ČLEN ÚMĚRNÝ L.S

ZÍSKANÉ HLADINY

UZAVŘENÉ SLUPKY = MAGICKÁ JÁDRA

MODEL UMOŽŇUJE URČIT ENERGETICKÉ STAVY A JEJICH SPIN

RADIOAKTIVITA

3 HLAVNÍ TYPY:

POČET ROZPADŮ JE ÚMĚRNÝ MNOŽSTVÍ LÁTKY

$$\frac{dn}{dt} = -\lambda n$$

S ŘEŠENÍM

$$n = n_{\rm o} \exp(-\lambda t)$$

$$T_{1/2} = \ln 2/\lambda$$

© Copyright 2002, The Nuclear History Site, All Rights Reserved

ALFA ROZPAD

ALFA ČÁSTICE JAKO KVAZISTABILNÍ PODSYSTÉM JÁDRA TUNELUJE COULOMBOVSKOU BARIÉROU

$$\lambda = 1/\tau = vT = 1/\tau_o T$$

$$\tau_{\rm o} = \sqrt{(2{\rm R/v})} \approx {\rm konst.} \approx 10^{-21}{\rm s}$$

$$\log T \approx a' - b/\sqrt{(E)}$$

$$\log \tau \approx a + b/\sqrt{(E)}$$

ENERGIE ALFA ČÁSTIC 4 ÷ 9 MeV

ODPOVÍDAJÍCÍ POLOČASY ROZPADU 10¹⁰ a ÷ 10⁻⁷ s

BETA ROZPAD

JE PROCESEM SUBJADERNÝM, RESP. DOKONCE SUBNUKLEONOVÝM (NÍŽE)

POTŘEBUJEME NOVOU ČÁSTICI – NEUTRINO (PAULI 1930) A NOVOU INTERAKCI, TZV. SLABOU

β-- ROZPAD ODPOVÍDÁ ROZPADU NEUTRONU PODLE REAKCE $n \rightarrow p^+ + e^- + \overline{\nu}$

 β^{+-} ROZPAD ODPOVÍDÁ ROZPADU PROTONU PODLE REAKCE $p^{+} \rightarrow n + e^{+} + v$

NEŽ β^+ - ROZPAD BÝVÁ PRAVDĚPODOBNĚJŠÍ ZÁCHYT ELEKTRONU $p^+ + e^- \rightarrow n + \nu$

SLABÁ INTERAKCE

PŘI ENERGII cca 1 GeV JE O cca 12 ŘÁDŮ SLABŠÍ NEŽ SILNÁ

JEJÍ INTENZITA S ENERGIÍ ROSTE

JE TAKŘKA BODOVÁ – JEJÍ DOSAH JE 2 x 10⁻¹⁸ m

JE UNIVERZÁLNÍ – PŮSOBÍ MEZI (TAKŘKA) VŠEMI ČÁSTICEMI

INTERAKCE ROZLIŠUJÍ MEZI PRAVOU A LEVOU STRANOU A MEZI ČÁSTICEMI A ANTIČÁSTICEMI

VÍCE ČÁSTIC VYLÉTÁ PROTI SMĚRU SPINU – LZE KOMPENZOVAT ZÁMĚNOU ZA ANTIKOBALT

GAMA ROZPAD

PŘI PŘECHODU JÁDRA Z VYŠŠÍ ENERGETICKÉ HLADINY SE EMITUJE GAMA ZÁŘENÍ = ELMG ZÁŘENÍ O ENERGII cca 10 keV – 10 MeV, tj. VLNOVÉ DÉLCE cca 0.1 nm – 0.1 pm

OBVYKLE DOPROVÁZÍ BETA NEBO ALFA ROZPAD

RODIOKARBONOVÉ DATOVÁNÍ

LIBBY 1949

UHLÍK MÁ 2 STABILNÍ IZOTOPY C12 (98.9 %) A C13 (1.1%)

NAVÍC JE DÍKY KOSMICKÉMU ZÁŘENÍ V ATMOSFÉŘE cca 10⁻¹² C14

ZA ŽIVOTA MAJÍ ORGANISMY KONCENTRACI C14 V ROVNOVÁZE S ATMOSFÉROU, PO SMRTI MNOŽSTVÍ C14 EXPONENCIÁLNĚ KLESÁ

Z RELATIVNÍHO ZASTOUPENÍ C14 URČÍME STÁŘÍ POLOČAS ROZPADU ČINÍ 5730 ± 40 a

ODTUD - $t = 8267 \ln (N_{C14}(vzorek)/N_{C14}(st))$

VZOREC PŘEDPOKLÁDÁ KONSTANTNÍ ÚROVEŇ C14 V ATMOSFÉŘE - JSOU ODCHYLKY cca 5 % -PROTO KALIBRACE- OBVYKLE POMOCÍ LETOKRUHŮ

METODA JE POUŽITELNÁ DO cca 50 000 LET CHYBA SE POHYBUJE OD cca 25 LET PRO TISÍC LET K cca 100 LET PRO 25 000 LET

JADERNÉ REAKCE

INTERAKCE JÁDRA S ČÁSTICÍ NEBO JINÝM JÁDREM, PŘI NĚMŽ VZNIKÁ NOVÉ JÁDRO

NEJJEDNODUŠŠÍ:

částice + jádro → jiné jádro + jiná částice

PŘÍKLAD: ${}^{4}\text{He} + {}^{14}\text{N} \rightarrow {}^{17}\text{O} + \text{p}$ (RUTHERFORD 1919 – 1. UMĚLÁ REAKCE)

VÝZNAMNÝM TYPEM JADERNÉ REAKCE JE ŠTĚPENÍ JADER A SLUČOVÁNÍ JADER

ČÁSTICE 30. LET

ELEKTRON – IDEA HELMHOLTZ 1881, POTVRZENÍ J.J. THOMSON 1897

STABILNÍ LEHKÁ ČÁSTICE (M≈ 0.51 MeV) SE SPINEM 1/2 (FERMION), NÁBOJEM -1 INTERAGUJÍCÍ ELEKTROMAGNETICKY A SLABĚ

FOTON – IDEA EINSTEIN 1905 EXPERIMENTÁLNĚ HERTZ 1887, MILLIKAN 1912

STABILNÍ NENABITÁ ČÁSTICE S NULOVOU HMOTNOSTÍ A SPINEM 1 ZPROSTŘEDKOVÁVÁ ELEKTROMAGNETICKOU INTERAKCI

PROTON – IDEA PROUT 1815, JÁDRO ATOMU VODÍKU RUTHERFORD 1911

STABILNÍ TĚŽKÁ ČÁSTICE (M ≈ 938 MeV) SE SPINEM 1/2, NÁBOJEM 1 INTERAGUJÍCÍ SILNĚ (HADRON), ELEKTROMAGNETICKY A SLABĚ

NEUTRON – IDEA RUTHERFORD 1920, POTVRZENÍ CHADWICK 1932

NESTABILNÍ (DOBA ŽIVOTA \approx 15 min) NENABITÁ TĚŽKÁ (M \approx 940 MeV) ČÁSTICE SE SPINEM 1/2 INTERABUJE SILNĚ, ELEKTROMAGNETICKY (MAGNETICKÝ MOMENT) A SLABĚ

NEUTRINO – IDEA PAULI 1930, POTVRZENÍ COWAN, REINES 1956

OSCILUJÍCÍ NENABITÁ VELMI LEHKÁ (M < 2 eV) ČÁSTICE SE SPINEM 1/2 INTERAGUJE SLABĚ

PION – IDEA YUKAWA 1935, POTVRZENÍ POWELL 1947, BOERKLUND 1950

NESTABILNÍ (26 ns) NABITÉ ČÁSTICE (π^+ , π^-) STŘEDNÍ HMOTNOSTI (140 MeV) (MEZON) SE SPINEM 0

NEUTRÁLNÍ VARIANTA (π°): NESTABILNÍ (0.08 fs), STŘEDNÍ HMOTNOST (135 MeV), SPIN 0 INTERABUJÍ SILNĚ, ELEKTROMAGNETICKY I SLABĚ

ANTIHMOTA

DIRAC (1930) (S POMOCÍ WEYLOVOU)
NA ZÁKLADĚ SVÉ ROVNICE (1928) A
HYPOTÉZY MOŘE A DĚR PŘEDPOVĚDĚL
EXISTENCI POZITRONU – ANTIČÁSTICE
K ELEKTRONU

STAVY S KLADNOU A ZÁPORNOU ENERGIÍ

POZITRON OBJEVIL ANDERSON (1932)

ANTIČÁSTICE MÁ STEJNOU HMOTNOST, DOBU ŽIVOTA A SPIN JAKO ČÁSTICE A OPAČNÉ NÁBOJE (RESP. ČÍSLA) NEŽ ČÁSTICE.

ČÁSTICE DNES

PÁR ELEKTRON A (ELEKTRONOVÉ) NEUTRINO PATŘÍ K SOBĚ

EXISTUJÍ JEŠTĚ 2 TAKOVÉ RODINY (GENERACE)

MION (M \approx 106 MeV, Q = -1, $\tau\approx$ 2.2 $\mu s,\,s$ = 1/2) A JEHO NEUTRINO (M < 0.19 MeV, Q = 0, s = 1/2)

A TAU (M \approx 1777 MeV, Q = -1, τ \approx 0.3 ps, s = 1/2) A JEHO NEUTRINO (M < 18.2 MeV, Q = 0, s = 1/2)

TYTO ČÁSTICE NAZÝVÁME LEPTONY. LEPTONY NEINTERAGUJÍ SILNĚ.

LEPTONOVÉ ČÍSLO = POČET LEPTONŮ – POČET ANTILEPTONŮ SE ZACHOVÁVÁ

POVAŽUJEME JE NADÁLE ZA ELEMENTÁRNÍ

NEUTRINA SE VZÁJEMNĚ PŘEMĚŇUJÍ - OSCILUJÍ

ARGUMENTY: ATMOSFÉRICKÁ NEUTRINA SHORA A ZDOLA, MĚŘENÍ NA VELKÉ VZDÁLENOSTI (250 km A 180 km) A SLUNEČNÍ NEUTRINA

Atmosférické
$$\delta m_{13}^2 = \delta m_{\text{atm}}^2 \approx 2.5 \times 10^{-3} \text{ eV}^2$$

Sluneční
$$\delta m_{12}^2 = \delta m_{\text{sun}}^2 \approx 8 \times 10^{-5} \,\text{eV}^2$$

BARYONY

ČÁSTIC PODOBNÝCH NUKLEONŮM JE MNOHO, ŘÍKÁME JIM BARYONY. MAJÍ SPIN 1/2 NEBO 3/2.

ROZLIŠUJEME N A Δ BARYONY, PODIVNÉ BARYONY (Λ , Σ , Ξ , Ω), PŮVABNÉ A SPODNÍ BARYONY (ROZLIŠENÍ INDEX)

ČÁSTICE S NEJNIŽŠÍ ENERGIÍ ŽIJÍ DLOUHO (VÍCE NEŽ 0.1 ns), ČÁSTICE S VYŠŠÍ ENERGIÍ KRÁTCE ($\approx 10^{-23}$ s) (= EXCITOVANÉ STAVY)

NEJSOU ELEMENTÁRNÍ

BARYONOVÉ ČÍSLO = POČET BARYONŮ – POČET ANTIBARYONŮ SE ZACHOVÁVÁ.

MEZONY

ČÁSTIC PODOBNÝCH PIONŮM JE MNOHO. ŘÍKÁME JIM MEZONY. MAJÍ SPIN 0 NEBO 1.

ZNÁME MEZONY BEZ VŮNĚ (π , b, ρ , a) MEZONY PODIVNÉ (K), PŮVABNÉ (D), SPODNÍ (B)...

ČÁSTICE S NEJNIŽŠÍ ENERGIÍ ŽIJÍ DLOUHO (VÍCE NEŽ 0.1 ns), ČÁSTICE S VYŠŠÍ ENERGIÍ KRÁTCE ($\approx 10^{-23}$ s) (= EXCITOVANÉ STAVY)

NEJSOU ELEMENTÁRNÍ

+ ANTIČÁSTICE

BARYONY + MEZONY DOHROMADY TVOŘÍ SKUPINU HADRONŮ (SILNĚ INTERAGUJÍCÍCH ČÁSTIC).

HADRONY JSOU SLOŽENY Z KVARKŮ.

KVARKY MAJÍ BARYONOVÉ ČÍSLO 1/3, LEPTONOVÉ ČÍSLO 0 A SPIN 1/2.

KVARKŮ JE ŠEST A TVOŘÍ TŘI PÁRY:

UP ($M \approx 2.5 \text{ MeV}$, Q = 2/3, $I_z = 1/2$) A DOWN ($M \approx 6 \text{ MeV}$, Q = -1/3, $I_z = -1/2$)

CHARM ($M \approx 1.25$ GEV, Q = 2/3, C = 1) A STRANGE ($M \approx 105$ MeV, Q = -1/3, S = -1)

A TOP ($M \approx 174 \text{ GeV}$, Q = 2/3, T = 1) A BOTTOM (4.3 GeV, Q = -1/3, b = -1)

POVAŽUJEME JE ZA ELEMENTÁRNÍ.

KVARKY MAJÍ BAREVNÝ NÁBOJ (R, G, B) A PŮSOBÍ NA SEBE BAREVNÝMI SILAMI PŘENÁŠENÝMI GLUONY (8 BAREV-ANTIBAREV).

NA MALÉ VZDÁLENOSTI (POD fm) JSOU SLABÉ – tzv. ASYMPTOTICKÁ VOLNOST

MAJÍ TENDENCI VYTVÁŘET "BEZBARVÉ" SYTÉMY : $q\overline{q}$ (MEZONY) A qqq (BARYONY)

SILNÁ INTERAKCE JE vdW EFEKT BAREVNÉ INTERAKCE

NA VELKÉ VZDÁLENOSTI LINEÁRNÉ ROSTE – TO VEDE K UVĚZNĚNÍ KVARKŮ – DŘÍVE NEŽ BY SE KVARK UVOLNIL VZNIKNE MEZON (resp. TRYSK)

KVARKOVÉ SLOŽENÍ BARYONŮ

A MEZONŮ

κo

vdW SÍLA U MOLEKUL A NUKLEONŮ

Z "ENERGIE" VZNIKÁ PÁR KVARK-ANTIKVARK

PŘI VZNIKU VÍCE PÁRŮ KVARK-ANTIKVARK VZNIKAJÍ TRYSKY (JET)

INTERAKČNÍ BOSONY

DNES ZNÁME 4 INTERAKCE:

ELEKTROMAGNETICKOU – PŘENÁŠENOU FOTONY

BAREVNOU – PŘENÁŠENOU 8 GLUONY

SLABOU - PŘENÁŠENOU BOSONY W+, W- A Zº

PRO GRAVITAČNÍ INTERAKCI KVANTOVOU TEORII NEMÁME – OČEKÁVÁME EXISTENCI GRAVITONŮ EFEKTIVNÍ HMOTNOST W BOSONŮ JE 80 GeV, BOSONU Z 91 GeV.

TUTO HMOTNOST ZÍSKÁVAJÍ DÍKY INTERAKCI S ČÁSTICÍ ZVANOU HIGGS.

TATO ČÁSTICE SE ZDÁ, "ZE EXISTUJE A MÁ HMOTNOST CCA 125 GeV.

SLABÁ INTERAKCE JE OVŠEM PROCES NA ÚROVNI LEPTONŮ A KVARKŮ.

HIGGS

At the Moriond Conference today, the ATLAS and CMS collaborations at the <u>Large Hadron Collider</u> (LHC) presented preliminary new results that further elucidate the particle discovered last year. Having analysed two and a half times more data than was available for the discovery announcement in July, they find that the new particle is looking more and more like a Higgs boson, the particle linked to the mechanism that gives mass to elementary particles. It remains an open question, however, whether this is the Higgs boson of the **Standard Model** of particle physics, or possibly the lightest of several bosons predicted in some theories that go beyond the Standard Model. Finding the answer to this question will take time.

POTENCIÁL TYPU SOMBRERO

$$V(\phi) = -\mu^2 \phi^+ \phi + \lambda (\phi^+ \phi)^2$$

MÁ MINIMUM VE $v = \mu/\sqrt{2\lambda}$

VÝPOČET PROVÁDÍME V OKOLÍ TOHOTO MINIMA

HMOTNOST HIGGSE VYJDE $M_H = \sqrt{\mu}$

HMOTNOSTI ZÍSKAJÍ I BOSONY W a Z

$$M_W = vg/\sqrt{2}$$
 a $M_Z = v\sqrt{(\frac{1}{2}(g^2 + g^2))}$

KDE $e = g \sin \theta_W = g' \cos \theta_W$

A HMOTNOSTI LEPTONŮ A KVARKŮ JSOU $M_i = \lambda_i v$, λ_i JSOU INTERAKČNÍ KONSTANTY

NĚKTERÉ PROBLÉMY STANDARDNÍHO MODELU

MÁ MNOHO VOLNÝCH PARAMETRŮ – HMOTNOSTI, SMĚŠOVACÍ ÚHLY, INTERAKČNÍ KONSTANTY

NEJASNÉ PROČ 3 GENERACE

NE ZCELA JASNÝ HIGGSŮV SEKTOR

NESYMETRIE HMOTA - ANTIHMOTA

NEZAHRNUJE GRAVITACI

NEVYSVĚTLUJE KVANTOVÁNÍ NÁBOJE

TEMNÁ HMOTA? (INFLATON?)