计算机组成原理——CPU

刘宏伟

哈尔滨工业大学 计算机科学与技术学院

我们现在在哪里——这部分我们将介绍什么

第7章 指令系统

✓指令系统在计算机中的地位

第7章 指令系统

- 7.1 机器指令
- 7.2 操作数类型和操作类型
- 7.3 寻址方式
- 7.4 指令格式举例
- 7.5 RISC 技术

7.1 机器指令

- 指令的格式是什么
 - 操作码 地址码 寻址方式

- 指令的字长
 - 固定字长、可变字长

7.1 机器指令

一、指令的一般格式

操作码字段

地址码字段

- 1. 操作码 反映机器做什么操作
 - (1)长度固定

用于指令字长较长的情况 , RISC 如 IBM 370 操作码 8 位

(2) 长度可变

操作码分散在指令字的不同字段中

(3) 扩展操作码技术

7.1

操作码的位数随地址数的减少而增加

1111

(3) 扩展操作码技术

7.1

操作码的位数随地址数的减少而增加

4位操作码

8位操作码

1111 1111	$\begin{array}{c} 0000 \\ 0001 \end{array}$	$egin{array}{c} \mathbf{A_2} \ \mathbf{A_2} \end{array}$	$egin{array}{c} \mathbf{A_3} \ \mathbf{A_3} \end{array}$
	•	: -	•
1111	1110	${\bf \dot{A}_2}$	$\dot{ ext{A}}_3$

12 位操作码

16 位操作码

三地址指令操作码 每减少一种最多可多构成 2⁴种二地址指令

二地址指令操作码 每减少一种最多可多 构成24 种一地址指令

2. 地址码

7.1

(1) 四地址

A₁第一操作数地址

A₂ 第二操作数地址

A3结果的地址

A₄下一条指令地址

 $(A_1) OP(A_2) \longrightarrow A_3$

设指令字长为 32 位

操作码固定为8位

4次访存

寻址范围 $2^6 = 64$

若 PC 代替 A₄

(2) 三地址

 $(A_1) OP(A_2) \longrightarrow A_3$

4次访存

寻址范围 $2^8 = 256$

若 A_3 用 A_1 或 A_2 代替

(3) 二地址

7.1

8

12

12

OP

 $\mathbf{A_2}$ $\mathbf{A_1}$

 $(A_1) OP(A_2) \longrightarrow A_1$

 $(A_1) OP(A_2) \longrightarrow A_2$

4次访存

寻址范围 $2^{12} = 4 \text{ K}$

若结果存于ACC 3次访存

若ACC 代替 A₁(或A₂)

(4) 一地址

24

OP

 $\mathbf{A_1}$

2次访存

 $(ACC) OP(A_1) \longrightarrow ACC$

寻址范围 $2^{24} = 16 M$

(5) 零地址 无地址码

二、指令字长

7.1

指令字长决定于 { 操作码的长度 操作数地址的长度 操作数地址的个数

1. 指令字长 固定

指令字长 = 存储字长

2. 指令字长 可变

按字节的倍数变化

小结 7.1

- > 当用一些硬件资源代替指令字中的地址码字段后
 - 可扩大指令的寻址范围
 - 可缩短指令字长
 - 可减少访存次数
- > 当指令的地址字段为寄存器时

三地址 OP R_1 , R_2 , R_3

二地址 OP R_1 , R_2

一地址 $OP R_1$

- 可缩短指令字长
- 指令执行阶段不访存