The movie recommender system

Rodion Efremov a.t.a. Machine Funkeehs

Project in Practical Machine Learning, spring 2015, Department of Computer Science, University of Helsinki

Objective of the machine learning system

Objective of the machine learning system

• Let a user rate some movies of her/his choice. A rating is an integer within range [1, 5].

Objective of the machine learning system

- Let a user rate some movies of her/his choice. A rating is an integer within range [1,5].
- After rating, recommend some movies to the user taking her/his ratings into account.

• The smallest movielens data package.

- The smallest **movielens** data package.
- Contains 943 users, 1682 movies and 1e5 ratings.

- The smallest movielens data package.
- Contains 943 users, 1682 movies and 1e5 ratings.
- Of course, the system supports adding more users and ratings to the database.

- The smallest movielens data package.
- Contains 943 users, 1682 movies and 1e5 ratings.
- Of course, the system supports adding more users and ratings to the database.
- Ratings may be updated or removed.

- The smallest movielens data package.
- Contains 943 users, 1682 movies and 1e5 ratings.
- Of course, the system supports adding more users and ratings to the database.
- Ratings may be updated or removed.
- It is not, however, possible to modify the movie set in our implementation.

4 / 7

• How do we recommend movies to a user U_0 ?

- How do we recommend movies to a user U_0 ?
- Find, say k, other users U_1, \ldots, U_k that act like U_0 and recommend U_0 whatever U_1, \ldots, U_k tend to like!

- How do we recommend movies to a user U_0 ?
- Find, say k, other users U_1, \ldots, U_k that act like U_0 and recommend U_0 whatever U_1, \ldots, U_k tend to like!
- \bullet So we use the famous k-nearest neighbor algorithm.

- How do we recommend movies to a user U_0 ?
- Find, say k, other users U_1, \ldots, U_k that act like U_0 and recommend U_0 whatever U_1, \ldots, U_k tend to like!
- ullet So we use the famous k-nearest neighbor algorithm.
- What does like means? We need a similarity measure here...

• The basic Jaccard-coefficient is applicable here:

$$d(U_i, U_j) = \frac{f_{11}}{f_{01} + f_{10} + f_{11}},$$

• The basic Jaccard-coefficient is applicable here:

$$d(U_i, U_j) = \frac{f_{11}}{f_{01} + f_{10} + f_{11}},$$

where

• The basic Jaccard-coefficient is applicable here:

$$d(U_i, U_j) = \frac{f_{11}}{f_{01} + f_{10} + f_{11}},$$

where

• f_{01} is the amount of all movies seen by the user U_j ,

• The basic Jaccard-coefficient is applicable here:

$$d(U_i, U_j) = \frac{f_{11}}{f_{01} + f_{10} + f_{11}},$$

where

- f_{01} is the amount of all movies seen by the user U_j ,
- ullet f_{10} is the amount of all movies seen by the user U_i ,

Rodion Efremov a.t.a. Machine Funtech: The movie recommender system

• The basic Jaccard-coefficient is applicable here:

$$d(U_i, U_j) = \frac{f_{11}}{f_{01} + f_{10} + f_{11}},$$

where

- \bullet f_{01} is the amount of all movies seen by the user U_{i} ,
- f_{10} is the amount of all movies seen by the user U_i ,
- ullet $f_{11}=|M|$ is the amount of all movies seen by **both** U_j and U_i .

Rodion Efremov a.t.a. Machine Funtech: The movie recommender system

We used the following measure:

$$d(U_i, U_j) = \frac{f_{11} - \sigma(U_i, U_j)}{f_{01} + f_{10} + f_{11}},$$

We used the following measure:

$$d(U_i, U_j) = \frac{f_{11} - \sigma(U_i, U_j)}{f_{01} + f_{10} + f_{11}},$$

where

$$\sigma(U_i, U_j) = \sum_{m \in \mathcal{M}} \frac{|r_i(m) - r_j(m)|}{5},$$

We used the following measure:

$$d(U_i, U_j) = \frac{f_{11} - \sigma(U_i, U_j)}{f_{01} + f_{10} + f_{11}},$$

where

$$\sigma(U_i, U_j) = \sum_{m \in M} \frac{|r_i(m) - r_j(m)|}{5},$$

where

ullet M is the set of movies which both the users U_i and U_j have seen,

We used the following measure:

$$d(U_i, U_j) = \frac{f_{11} - \sigma(U_i, U_j)}{f_{01} + f_{10} + f_{11}},$$

where

$$\sigma(U_i, U_j) = \sum_{m \in \mathcal{M}} \frac{|r_i(m) - r_j(m)|}{5},$$

where

- ullet M is the set of movies which both the users U_i and U_j have seen,
- $r_x(m)$ gives the rating score for the movie m by user U_x .

Rodion Efremov a.k.a. Machine Funkech: The movie recommender system

We used the following measure:

$$d(U_i, U_j) = \frac{f_{11} - \sigma(U_i, U_j)}{f_{01} + f_{10} + f_{11}},$$

where

$$\sigma(U_i, U_j) = \sum_{m \in \mathcal{M}} \frac{|r_i(m) - r_j(m)|}{5},$$

where

- M is the set of movies which both the users U_i and U_j have seen,
- $r_x(m)$ gives the rating score for the movie m by user U_x .
- $|r_i(m) r_i(m)|$ is the integer within interval [0, 4].

4 D > 4 D > 4 E > 4 E > E 9 9 0

So we use the Jaccard coefficient, but we penalize the similarity at those movies that have drastically different rating scores and we do not penalize at all those movies that have the same scores (as given by the two users, whose similarity is measured).