What is a linear combination of v_1, \dots, v_n ?	What is the name for the scalars multiplying the vectors in a linear combination?
When is a linear combination $lpha_1 oldsymbol{v}_1 + \dots + lpha_n oldsymbol{v}_n$ also an affine combination?	What is an affine space?
What conditions ensure that $\mathcal V$ is a vector space?	What are the names of the three definitions of matrix-vector multiplication and vector-matrix multiplication?
What is the linear-combination definition of matrix-vector multiplication?	What is the dot-product definition of matrix-vector multiplication?
What is the linear-combination definition of vector-matrix multiplication?	What is the dot-product definition of vector-matrix multiplication?

	T
Coefficients	$lpha_1oldsymbol{v}_1+\dots+lpha_noldsymbol{v}_n$
The set $a + \mathcal{V}$ where \mathcal{V} is a vector space.	When $\alpha_1 + \dots + \alpha_n = 1$
 The linear-combinations definition, the dot-product definition, and the "ordinary" definition. 	 V1: V contains the zero vector, V2: For every vector v, if V contains v then it contains α v for every scalar α, is closed under scalar-vector multiplication, and V3: For every pair u and v of vectors, if V contains u and v then it contains u + v.
Entry r of $M*v$ is the dot-product of row r with v .	M*v is the linear combination of the columns of M where the coefficients are the entries of v .
Entry c of $\boldsymbol{v}*M$ is the dot-product of \boldsymbol{v} with column c of M .	$m{v}*M$ is the linear combination of the rows of M where the coefficients are the entries of $m{v}$.

What are the three definitions of matrix-matrix multiplication?	What is the matrix-vector definition of matrix-matrix multiplication?
What is the vector-matrix definition of matrix-matrix multiplication?	What is the dot-product definition of matrix-matrix multiplication?
What is the definition of a linear function?	What is the matrix-vector definition of matrix-matrix multiplication?
What is the vector-matrix definition of matrix-matrix multiplication?	Transpose of AB is ?
Outer product of u and v is ?	What is the null space of a matrix?

For each column-label s of B , column s of $AB = A * (\text{column } s \text{ of } B)$	 The matrix-vector definition, the vector-matrix definition, and the dot-product definition.
Entry rc of AB is the dot-product of row r of A with column c of B .	For each row-label r of A , row r of $AB = (\text{row } r \text{ of } A) * B$
Column c of A times B equals A times column c of B .	A function $f: \mathcal{U} \longrightarrow \mathcal{V}$ whose domain and codomain are vector spaces, such that L1: For any vector \boldsymbol{u} in the domain of f and any scalar α in \mathbb{F} , $f(\alpha \boldsymbol{u}) = \alpha f(\boldsymbol{u})$ L2: For any two vectors \boldsymbol{u} and \boldsymbol{v} in the domain of f , $f(\boldsymbol{u} + \boldsymbol{v}) = f(\boldsymbol{u}) + f(\boldsymbol{v})$
B^TA^T	Row r of A times B equals (row r of A) times B .
Null space of A is $\{\boldsymbol{x}\ : A*\boldsymbol{x} = \boldsymbol{0}\}$	$egin{bmatrix} oldsymbol{u} & oldsymbol{u}^T & oldsymbol{v}^T & oldsymbol{v}^T$