

Design and Analysis of Operating Systems CSCI 3753

Distributed Systems

Dr. David Knox
University of
Colorado Boulder

Material adapted from: Operating Systems: A Modern Perspective : Copyright © 2004 Pearson Education, Inc.

Distributed Systems

Multicore vs Distributed

- Multi-core systems have access to shared resources
 - RAM
 - cache
 - devices

Multicore vs Distributed

Multicore vs Distributed

Distributed System

- A collection of loosely coupled processors interconnected by a communications network
- Processors variously called nodes, computers, machines, hosts
 - Network is used to communicate between machines
 - Generally a server has a resource a client node at a different site wants to use

Distributed System

- Reasons for a Distributed System
 - Resource sharing
 - Computational speed up (load balancing)
 - Reliability (thru redundancy)
 - Remote connections thru communications

Network-Operating Systems

- Users are aware of multiplicity of machines
- Access to resources of various machines is done explicitly by:
 - Remote logging into the appropriate remote machine (telnet, ssh)
 - Remote Desktop (Microsoft Windows)
 - Transferring data from remote machines to local machines, via the File Transfer Protocol (FTP) mechanism
- Users must change paradigms
 - establish a session
 - give network-based commands
 - More difficult for users

Distributed-Operating Systems

Users not aware of multiplicity of machines

Access to remote resources similar to access to local resources

Data Migration

- transfer data by transferring entire file
- or transferring only those portions of the file necessary for the immediate task

Computation Migration

- Transfer the computation, rather than the data, across the system
- Via remote procedure calls (RPCs)
- or via messaging system

Distributed-Operating Systems (Cont.)

Process Migration

- Execute an entire process, or parts of it, at different sites
- Load balancing distribute processes across network to even the workload
- Computation speedup subprocesses can run concurrently on different sites
- Hardware preference process execution may require specialized processor
- Software preference required software may be available at only a particular site
- Data access run process remotely, rather than transfer all data locally

Network Structure

- Local-Area Network (LAN)
 - Designed to cover small geographical area
 - Multiple topologies like star or ring
 - Speeds from 1Mb per second (Appletalk, bluetooth)
 40 Gbps for Ethernet over twisted pair copper or optical fibre
 - Consists of multiple computers (mainframes through mobile devices), peripherals (printers, storage arrays), routers (specialized network communication processors) providing access to other networks
 - Ethernet most common way to construct LANs
 - Multiaccess bus-based
 - Defined by standard IEEE 802.3
 - Wireless spectrum (WiFi) increasingly used for networking
 - I.e. IEEE 802.11g standard implemented at 54 Mbps

Local-area Network

Network Types (Cont.)

- Wide-Area Network (WAN) links geographically separated sites
 - Point-to-point connections over long-haul lines (often leased from a phone company)
 - Implemented via connection processors known as routers
 - Internet WAN enables hosts world wide to communicate
 - Hosts differ in all dimensions but WAN allows communications
 - Speeds
 - T1 link is 1.544 Megabits per second
 - T3 is 28 x T1s = 45 Mbps
 - OC-12 is 622 Mbps
 - WANs and LANs interconnect, similar to cell phone network:
 - Cell phones use radio waves to cell towers
 - Towers connect to other towers and hubs

Communication Processors in a Wide-Area Network

Communication Structure

Design of a communication network must address four basic issues:

Naming and name resolution

How do two processes locate each other to communicate?

Routing strategies

How are messages sent through the network?

Connection strategies

How do two processes send a sequence of messages?

Contention

The network is a shared resource, so how do we resolve conflicting demands for its use?

Naming and Name Resolution

- Name systems in the network
- Address messages with the process-id
- Identify processes on remote systems by

<host-name, identifier> pair

- Domain name system (DNS)
 - specifies the naming structure of the hosts, as well as name to address resolution (Internet)

Routing Strategies

- Fixed routing A path from A to B is specified in advance; path changes only if a hardware failure disables it
 - Since the shortest path is usually chosen, communication costs are minimized
 - Fixed routing cannot adapt to load changes
 - Ensures that messages will be delivered in the order in which they were sent
- Virtual routing- A path from A to B is fixed for the duration of one session. Different sessions involving messages from A to B may have different paths
 - Partial remedy to adapting to load changes
 - Ensures that messages will be delivered in the order in which they were sent

Routing Strategies (Cont.)

Dynamic routing

- Path used to send a message form site A to site B is chosen only when a message is sent
- Usually a site sends a message to another site on the link least used at that particular time
- Adapts to load changes by avoiding routing messages on heavily used path
- Messages may arrive out of order
 - This problem can be remedied by appending a sequence number to each message
- Most complex method to set up

Tradeoffs mean all methods are used

- UNIX provides ability to mix fixed and dynamic
- Hosts may have fixed routes and gateways connecting networks together may have dynamic routes

Routing Strategies (Cont.)

- Router is communications processor responsible for routing messages
- Must have at least 2 network connections
- Maybe special purpose or just function running on host
- Checks its tables to determine where destination host is, where to send messages
 - Static routing table only changed manually
 - Dynamic routing table changed via routing protocol

Routing Strategies (Cont.)

- More recently, routing managed by intelligent software more intelligently than routing protocols
- Messages vary in length
 - simplified design breaks them into packets (or frames, or datagrams)
- Connectionless message is just one packet
 - Otherwise need a connection to get a multi-packet message from source to destination

Design and Analysis of Operating Systems CSCI 3753

Dr. David Knox
University of
Colorado Boulder

Material adapted from: Operating Systems: A Modern Perspective : Copyright © 2004 Pearson Education, Inc.