ÉNTÍAGROUPE RENAULT

Monte-Carlo Graph Search: the Value of Merging Similar States

Edouard Leurent^{1,2}, Odalric-Ambrym Maillard¹

¹Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 – CRIStAL, ²Renault Group

Motivation

Monte-Carlo Tree Search algorithms

• rely on a tree structure to represent their value estimates.

Motivation

Monte-Carlo Tree Search algorithms

• rely on a tree structure to represent their value estimates.

• performance independent of the size *S* of the state space

Tabular RL (UCBVI)
$$\sqrt{HSAn}$$

MCTS (OPD) $n^{-\log \frac{1}{\gamma}/\log A}$

• There can be several paths to the same state s

• s is represented several times in the tree

- s is represented several times in the tree
- No information is shared between these paths

Not accounting for state similarity hinders exploration

Not accounting for state similarity hinders exploration

Sparse gridworld: reward of 0 everywhere

Planners behaviours

Uniform planning in the space of sequences of actions

OPD, budget of n = 5460 moves

Concentration

• Does not lead to uniform exploration of the state space

Concentration

- Does not lead to uniform exploration of the state space
- 2D random walk \sim Rayleigh distribution $P(d) = \frac{2d}{H}e^{-\frac{-d^2}{H}}$

Concentration

- Does not lead to uniform exploration of the state space
- 2D random walk \sim Rayleigh distribution $P(d) = \frac{2d}{H}e^{-\frac{-d^2}{H}}$

Concentration

- Does not lead to uniform exploration of the state space
- 2D random walk \sim Rayleigh distribution $P(d) = \frac{2d}{H}e^{-\frac{-d^2}{H}}$

budget of 5460 samples, maximum distance d=6

Better exploit this wasted information

Better exploit this wasted information

• By merging similar states

Goal

Better exploit this wasted information

• By merging similar states into a graph

Better exploit this wasted information

• By merging similar states

Questions

- How to adapt MCTS algorithms to work on graphs?
- Can we quantify the benefit of using graphs over trees?

Optimism in the Face of Uncertainty: OPD

1. Build confidence bounds $L(a) \leq V(a) \leq U(a)$

- 1. Build confidence bounds $L(a) \leq V(a) \leq U(a)$
- 2. Follow optimistic actions, from the root down to a leaf b

- 1. Build confidence bounds $L(a) \leq V(a) \leq U(a)$
- 2. Follow optimistic actions, from the root down to a leaf b
- 3. Expand the leaf $b \in \partial T_n$

- 1. Build confidence bounds $L(a) \leq V(a) \leq U(a)$
- 2. Follow optimistic actions, from the root down to a leaf b
- 3. Expand the leaf $b \in \partial T_n$

Same principle: GBOP-D

1. Build confidence bounds $L(s) \leq V(s) \leq U(s)$

- 1. Build confidence bounds $L(s) \leq V(s) \leq U(s)$
- 2. Follow optimistic actions until an external node s is reached

- 1. Build confidence bounds $L(s) \leq V(s) \leq U(s)$
- 2. Follow optimistic actions until an external node s is reached
- 3. Expand the external node $s \in \partial \mathcal{G}_n$

- 1. Build confidence bounds $L(s) \leq V(s) \leq U(s)$
- 2. Follow optimistic actions until an external node s is reached
- 3. Expand the external node $s \in \partial \mathcal{G}_n$
 - > We are guaranteed to expand any state only once.

- 1. Build confidence bounds $L(s) \leq V(s) \leq U(s)$
- 2. Follow optimistic actions until an external node s is reached
- 3. Expand the external node $s \in \partial \mathcal{G}_n$
 - > We are guaranteed to expand any state only once.

• Initialize with trivial bounds:
$$L = 0$$
, $U = \frac{1}{1-\gamma}$

- Initialize with trivial bounds: L = 0, $U = \frac{1}{1-\gamma}$
- Apply the Bellman operator $B:V o max_aR(s,a)+\gamma V(s')$

$$L(a) \leq B(L)(a) \leq V(a) \leq B(U)(a) \leq U(a)$$

- Initialize with trivial bounds: L = 0, $U = \frac{1}{1-\gamma}$
- Apply the Bellman operator $B:V o max_aR(s,a)+\gamma V(s')$

$$L(a) \leq B(L)(a) \leq V(a) \leq B(U)(a) \leq U(a)$$

- Initialize with trivial bounds: L = 0, $U = \frac{1}{1-\gamma}$
- Apply the Bellman operator $B:V o max_aR(s,a)+\gamma V(s')$

$$L(a) \leq B(L)(a) \leq V(a) \leq B(U)(a) \leq U(a)$$

• **Trees**: Converges in d_n steps

How to bound $V(s) = \sup \sum_{t=0}^{\infty} \gamma^t r_t$?

- Initialize with trivial bounds: L = 0, $U = \frac{1}{1-\gamma}$
- Apply the Bellman operator $B:V o max_aR(s,a)+\gamma V(s')$

$$L(a) \leq B(L)(a) \leq V(a) \leq B(U)(a) \leq U(a)$$

- **Trees**: Converges in *d_n* steps
- Graphs: May converge in ∞ steps when there is a loop

Is GBOP-D more efficient than OPD?

Is GBOP-D more efficient than OPD? Performance: $r_n = V^* - V(a_n)$

Is GBOP-D more efficient than OPD?

Performance: $r_n = V^* - V(a_n)$

Theorem (Sample complexity of OPD, Hren and Munos, 2008)

$$r_n = \widetilde{\mathcal{O}}\left(n^{-\log \frac{1}{\gamma}/\log \kappa}\right),$$

where κ is a problem-dependent difficulty measure.

Is GBOP-D more efficient than OPD?

Performance: $r_n = V^* - V(a_n)$

Theorem (Sample complexity of OPD, Hren and Munos, 2008)

$$r_n = \widetilde{\mathcal{O}}\left(n^{-\log \frac{1}{\gamma}/\log \kappa}\right),$$

where κ is a problem-dependent difficulty measure.

Theorem (Sample complexity of GBOP-D)

$$r_n = \widetilde{\mathcal{O}}\left(n^{-\log\frac{1}{\gamma}/\log\kappa_\infty}\right),$$

where κ_{∞} is a tighter problem-dependent difficulty measure:

$$\kappa_{\infty} \leq \kappa$$

• $\kappa_{\infty} = \kappa$ if the MDP has a tree structure

- $\kappa_{\infty} = \kappa$ if the MDP has a tree structure
- $\kappa_{\infty} < \kappa$ when trajectories intersect a lot

- $\kappa_{\infty} = \kappa$ if the MDP has a tree structure
- $\kappa_{\infty} < \kappa$ when trajectories intersect a lot
 - > actions cancel each-other out (e.g. moving left or right)

- $\kappa_{\infty} = \kappa$ if the MDP has a tree structure
- $\kappa_{\infty} < \kappa$ when trajectories intersect a lot
 - > actions cancel each-other out (e.g. moving left or right)
 - > actions are commutative (e.g. placing pawns on a board)

- $\kappa_{\infty} = \kappa$ if the MDP has a tree structure
- $\kappa_{\infty} < \kappa$ when trajectories intersect a lot
 - > actions cancel each-other out (e.g. moving left or right)
 - > actions are commutative (e.g. placing pawns on a board)

Illustrative example: 3 states, K > 2 actions

$$\kappa_{\infty} = 1 < \kappa = K - 1$$

Experiment: sparse gridworld

Rewards in a ball around (10, 10) of radius 5, with quadratic decay

Extension to stochastic MDPs

Extension to stochastic MDPs

- Use state similarity to tighten the bounds $L \leq V \leq U$.
- We adapt MDP-GapE (Jonsson et al., 2020) to obtain GBOP

Noisy transitions with probability p = 10%

Exploration-Exploitation score

$$S = \sum_{t=1}^{n} \underbrace{d(s_t, s_0)}_{\text{Exploration}} - \underbrace{d(s_t, s_g)}_{\text{Exploitation}}$$

n = 5640 samples

Sailing Domain (Vanderbei, 1996)

Sailing Domain (Vanderbei, 1996)

Effective branching factor κ_e :

- ullet κ_epprox 3.6, for BRUE, KL-OLOP, MDP-GapE, UCT
- $\kappa_e \approx 1.2$ for GBOP, which suggests our results may still hold

