30 5 etg data > < 7=

八世里 多古 公計 (多性礼, 玉型礼)

변도 / 월, /일 / 시간 / 30분/ 보선/ 역 / 승차인원

/ 51차인원

* 호선 별 떡

〈垣性〉 (2克性) 24 1 10

성수 사당 강상역 신동일 서울역 중로 3가 시험 건대임구

* ハウラロ Pto 1018から 218を

2018년 열명군 숭하자인원 순위(서울고롱공사 수상실력)						
순위	લાંલ	일평균 승하차인임	순위	લાલ	일평균 승하자인원	
1	강남	204,144	11	선용	101,233	
2	잠실(2)	175,376	12	물지로입구	98,762	
3	홍대입구	165,072	13	신혼	98,409	
4	신림	138,692	14	역상	96,490	
5	구로디지털단지	124,380	15	건대입구(2)	93,505	
6	교속터미널(3)	120,887	16	강번	92,784	
7	삼성	119,572	17	사당(2)	91,263	
8	신도림	119,414	18	0(2)	85,496	
9	서울역(1)	108,475	19	총각	85,370	
10	서울대입구	105,330	20	엔진대(3)	82,994	

서울시 지화철 30분 단위 이용 통계 → 승하가 인원 SUM 값 홈케내서

subway use best = subway use.sort values(ascending = False.by = '승하차인원

합').head(10)

plt,figure(figsize=[10,10]) sns.scatterplot(data=subway_use_best, x='역이름', y = '승하차인원합')

हर्जार्म रामिर्ड > 이부 덕이음

くらけ Data>

주외시설, 중소기업 공간데이터 이용하HM 2dsphere MHH

외로식으로 나타내면 좋을 듯

2dsphere 관련 연산자들

- \$near: 거리 계산해 가까운 곳에서 먼 곳의 결과 도출

- \$geoNear: near 와 유사하나, aggregation operator (해년하) - \$nearSphere : 특정 거리 내에 존재하는지 확인

- \$geoWithin : 특정 지역 안에 존재하는지 확인 - \$geoIntersects : 특정 지역을 포함하는지 확인

-> 통과하다

\$ geowithm

\$ geometrsects

& near Sphere

중육정인 7	지하철 인원 분배	생님, 그러, 생대장 대통 /6개			
— 데이터 전체리		list_df =df_sub_station['지하철 역'].to_list() list_df[0]			
- 지하철 역별 등 하차 인원 시각화		sub_df = pd.DataFrame() for i in list_df:			
- 시간대변 노선 승·하나 인원 추이 시각화		a =raw[raw['지하철 역']==i] sub_df = sub_df.append(a) sub_df			
2.020 -03 -01 → 묶음 건지 그룹되슬 할건지		일가 된번 어 등하면 타가면 요일			
data_station = r aggfunc='sum').	raw.pivot_table(index = ['지하철 역'], values = '하차인원', .astype('int')				
data_station1 =r	aw.pivot_table(index = ['지하철 역'], values = '승차인원', aggfunc='sum')	.astype('int')			
a = data_station	n.sort_values(by="하차인원",ascending=False).head(11).reset_index()				
aa=data_station	i1.sort_values(by="승차인원",ascending=False).head(11).reset_index()	* 시각호h			
/০০০ ণুল্ব	olds व पांत -> रिष्ठ अभन उम	서울시 역병 하자인원. 승차인원			
df_sub_station = a[a['하차인원']>=10000000] df_sub_station2 = aa[aa['승차인원']>=10000000] df_sub_station2		cd= sub_df.pivot_table(index='지하철 역',values=['승차인원','하차인 원'],aggfunc='sum').reset_index() cd cd =cd.sort_values(by='하차인원',ascending=False)			
자하철 역	승.하나 안원	plt.figure(figsize=(15,15)) plt.subplot(221)			
र्वा		cd.boxplot()			
강남 2독점이덕,		plt.subplot(222) sns.violinplot(data=cd)			
:					
		90'ES 00'ES 00'ES 00'ES 00'ES			

역별

acd=cd.sort_values(by='승차인원',ascending=False).reset_index()

acd

bunmo=acd['승차인원'].sum()

ratio1=acd['승차인원']/bunmo ratio1

ratio2=acd['하차인원']/bunmo ratio2

141102

_=plt.figure(figsize=(10,8)) plt.xticks(rotation=45)

_=plt.title('역별 하차인원',fontsize=30)

_=sns.barplot(data=cd.head(10), x='지하철 역', y='하차인원')

시간대별

c=timeraw.filter(regex='하차')

d=timeraw.filter(regex='승차')

#시간대별 승차 인원 plt.figure(figsize=(27,15)) a=sns.barplot(data=d,ci=False) =plt.xticks(fontsize=18) =plt.yticks(fontsize=18)

#시간대별 하차 인원
plt.figure(figsize=(27,15))
a=sns.barplot(data=c,ci=False)
_=plt.xticks(rotation=30,fontsize=18)
_=plt.tyticks(fontsize=18)
=plt.title('시간대별 하차인위' fontsize = 30)

_=plt.title('시간대별 승차인원',fontsize = 30)

지도로 시각화 -> 관업이터 위도 전 사용하면 되려나? 길 모르겠음 ㅜ,ㅜ

· 셔니 지현역 광 data

서울시 구위일 공간 data

import folium

from folium.plugins import MiniMap

from folium.plugins import MarkerCluster

bs= folium.Map(location = ['37.5536067','126.9674308'], zoom_start = 15)

bs= folium.Map(location = ['37.5536067','126.9674308'], zoom_start = 15)

marker_cluster = MarkerCluster().add_to(bs) for i in range(len(bus_site_df)):

long = bus_site_df.loc[i,'X좌표'] #loc['행 번호','열 이름']

lat = bus_site_df.loc[i,'Y좌표']

name = bus_site_df.loc[i,'정류소명'] name1=bus site df.loc[i,'정류소번호']

folium.Marker([lat, long],tooltip=name,popup= name1).add to(marker cluster)

bs

이렇게 역 구변 몇개 배서 → 지도 합지기

bo- Folium Maphocation = [37.5550057] 126.50643007], zoom, start = 131 maker, dooler = MarkerChater) add (stdta) maker, dooler = MarkerChater) add (stdta) for its range(stertbas, start, diff); bug = boss, start, disk(std[38]) = \$6-107 (\$155, \$10.005); start = boss, start, disk(std[38]) = \$6-107 (\$155, \$10.005); starter = boss, start, disk(std[38]) = \$6-107 (\$155, \$10.005); starter = boss, start, disk(std[38]) = \$6-107 (\$155, \$10.005); starter = boss, start, disk(std[38]) = \$6-107 (\$155, \$10.005); starter = boss, start, disk(std[38]) = \$6-107 (\$155, \$10.005); starter = boss, start, disk(std[38]) = \$6-107 (\$155, \$10.005); starter = boss, start, disk(std[38]) = \$6-107 (\$155, \$10.005); starter = boss, start, disk(std[38]) = \$6-107 (\$155, \$10.005); starter = boss, start, disk(std[38]) = \$6-107 (\$155, \$10.005); starter = boss, start, disk(std[38]) = \$6-107 (\$155, \$10.005); starter = boss, starter = \$6-107 (\$10.005); star

olium Marker([lat, long] toohip-mame,popup- mame().ac in range(len(sub_site_df)): ata의 영안은 전체을 하려면 range(len(data)) 를 받다.

season (NCC) (제도) 에oc(영변호: 열이용) long = sub_site_diloc((제도) Moc(영변호: 열이용) long = sub_site_diloc((제도) Moc(영변호: 열이용) name = sub_site_diloc((제원 역) folum Marker(lut_long).codbjo-name+"에;con-folum.tcon(color-green)).ad