

FCC TEST REPORT

For

Shenzhen Kaipule Technology Co., Ltd.

Z-Wave PIR Sensor

Model No.: IX30-Z-Wave

Prepared For : Shenzhen Kaipule Technology Co., Ltd.

Address Floor 3, Building A2, Tengjieshun Industrial Area, Shihuan Road, Shiyan

Street, Baoan District, Shenzhen, Guangdong, China

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan

District, Shenzhen, Guangdong, China

Tel: (86) 755-26066544 Fax: (86) 755-26014772

Report Number : R0217030111W

Date of Test : Apr. 01, 2017~May 19, 2017

Date of Report : May 19, 2017

Contents

1. General Information.	4
1.1. Client Information	Z
1.2. Description of Device (EUT)	4
1.3. Auxiliary Equipment Used During Test	4
1.4. Description of Test Modes	5
1.5. List of channels	
1.6. Description Of Test Setup	6
1.7. Test Equipment List	7
1.8. Measurement Uncertainty	
1.9. Description of Test Facility	8
2. Summary of Test Results	g
3. Radiation Spurious Emission and Band Edge	10
3.1. Test Standard and Limit	10
3.2. Test Setup	11
3.3. Test Procedure	12
3.4. Test Data	
5. 20dB Bandwidth Test	18
5.1. Test Standard and Limit	18
5.2. Test Setup	18
5.3. Test Procedure	18
5.4. Test Data	
8. Antenna Requirement	
8.1. Test Standard and Requirement	20
8.2. Antenna Connected Construction	
APPENDIX I TEST SETUP PHOTOGRAPH	21
APPENDIX II EXTERNAL PHOTOGRAPH	2 3
ADDENINIVIII INTERNAI DIOTOCE ADII	26

TEST REPORT

Applicant : Shenzhen Kaipule Technology Co., Ltd.

Manufacturer : Shenzhen Kaipule Technology Co., Ltd.

Product Name : Z-Wave PIR Sensor

Model No. : IX30-Z-Wave

Trade Mark : N.A.

Rating(s) : DC 3V via "AA" Battery*2

Test Standard(s) : FCC Part15 Subpart C, Paragraph 15.249

Test Method(s) : **ANSI C63.10: 2013**

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test:		Apr. 01, 201/~May 19, 201/	
Prepared by :	MBOTE	Winkey Wang	
	Anbotek	(Tested Engineer / Winey Wang)	
		Dolm mo	
Reviewer:			
	_	(Project Manager / Dolly Mo)	
Approved & Aut	: horized Signer :	Ton Aren	
••			-
		(Manager / Tom Chen)	

1. General Information

1.1. Client Information

Applicant	:	Shenzhen Kaipule Technology Co., Ltd.			
Address	:	Floor 3, Building A2, Tengjieshun Industrial Area, Shihuan Road, Shiyan Street,			
		Baoan District, Shenzhen, Guangdong, China			
Manufacturer	:	Shenzhen Kaipule Technology Co., Ltd.			
Address	:	Floor 3, Building A2, Tengjieshun Industrial Area, Shihuan Road, Shiyan Street,			
		Baoan District, Shenzhen, Guangdong, China			

1.2. Description of Device (EUT)

:	Z-Wave PIR Sensor							
:	X30-Z-Wave							
:	N.A.	.A.						
:	DC 3V Battery	C 3V Battery						
:	Operation Frequency:	908.4MHz						
	Number of Channel:	1 Channels						
	Modulation Type:	FSK/GFSK						
	Antenna Type:	Spring Antenna						
	Antenna Gain(Peak):	-5.52 dBi						
	:	: DC 3V Battery Operation Frequency: Number of Channel: : Modulation Type: Antenna Type:						

Remark: 1)For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

N/A			
- "			

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	CH01

For Radiated Emission							
Final Test Mode Description							
Mode 1	CH01						

1.5. List of channels

Channel	Frequency					
	(MHz)					
01	908.4					

1.6. Description Of Test Setup

RE

1.7. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Two-Line V-network	Rohde & Schwarz	ENV216	100055	Jul. 19, 2016	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Jun. 17, 2016	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Jun. 17, 2016	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Jul. 12, 2016	1 Year
5	Preamplifier	Instruments corporation	EMC011830	980100	Jun. 17, 2016	1 Year
6.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Jun. 17, 2016	1 Year
7.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	May 06, 2017	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	May 06, 2016	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB1519	012	May 11, 2017	1 Year
10.	Pre-amplifier	SONOMA	310N	186860	Jun. 17, 2016	1 Year
11	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
12.	Power Sensor	Agilent	KFSW150502	15I00041SN045	Jun. 17, 2016	1 Year
13.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Jun. 17, 2016	1 Year
14.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Jun. 17, 2016	1 Year
15	Signal Generator	Agilent	E4421B	MY41000743	Jun. 17, 2016	1 Year
16.	DC Power supply	IV	IV-8080	YQSB0096	Jun. 17, 2016	1 Year
17.	TEMP&HUMI PROGRAMMABLE CHAMBER	Bell Group	BE-THK-150 M8	SE-0137	Jun. 17, 2016	1 Year

1.8. Measurement Uncertainty

Radiation Uncertainty : Ur = 4.1 dB (Horizontal)			
		Ur = 4.3 dB (Vertical)	
Conduction Uncertainty	:	Uc = 3.4dB	

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 06, 2016.

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A, June 13, 2016.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

2. Summary of Test Results

Standard Section	Test Item	Result			
15.203	Antenna Requirement	PASS			
15.207	Conducted Emission	N/A			
15.249	Spurious Emission	PASS			
15.215(c)	20dB Bandwidth	PASS			
15.249(c) Band Edge		PASS			
Remark: "N/A" is an abbreviation for Not Applicable.					

3. Radiation Spurious Emission and Band Edge

3.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.209 and 15.205									
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)					
	0.009MHz~0.490MHz	2400/F(kHz)	-	<u>-</u>	300					
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30					
Test Limit	1.705MHz-30MHz	30	-	1	30					
	30MHz~88MHz	100	40.0	Quasi-peak	3					
	88MHz~216MHz	150	43.5	Quasi-peak	3					
	216MHz~960MHz	200	46.0	Quasi-peak	3					
	960MHz~1000MHz	500	54.0	Quasi-peak	3					
	Above 1000MHz	500	54.0	Average	3					
	AUUVE 1000IVIIIZ	-	74.0	Peak	3					

Remark:

(2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test Standard	FCC Part15 C Section 15.249							
Test Limit	Frequency (MHz)	Field Strength of fundamental ((millivolts /meter)	Field Strength of Harmonics (microvolts/meter)	Harmonics Limit		Measurement distance (m)		
	902~928	50	-	94.0	QP	3		

⁽¹⁾The lower limit shall apply at the transition frequency.

3.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

3.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz,Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

3.4. Test Data

PASS

During the test, Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis is the worst case.

During the test, Pre-scan all kind of Modulation mode (FSK Mode and GFSK Mode), and found the FSK Mode is the worst case, so only test result of FSK Mode show in the report.

The test results of above 18000MHz are attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Test Results (9KHz~30MHz)

Job No.: 0217030111W Temp.(°C)/Hum.(%RH): 24.3°C/55%RH

Standard: FCC PART 15C Power Source: DC 3V

Test Mode: TX Mode Polarization: Horizontal

Note: The test result is more than 20dB below the permissible limits, so the test point record didn't show in the report

Job No.: 0217030111W Temp.(°C)/Hum.(%RH): 24.3°C/55%RH

Standard: FCC PART 15C Power Source: DC 3V

Test Mode: TX Mode Polarization: Vertical

Note: The test result is more than 20dB below the permissible limits, so the test point record didn't show in the report

Remark: Level = Reading + Cable Loss+ Ant Factor-Amplifier

Test Results (30~1000MHz)

Job No.: 0217030111W Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 24.3 $^{\circ}$ C/55 $^{\circ}$ RH

Standard: FCC PART 15C Power Source: DC 3V

Test Mode: TX Mode Polarization: Horizontal

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/	Over Limit (dB)	Detector
1	39.9942	39.19	-10.87	28.32	40.00	-11.68	QP
2	54.8348	40.51	-14.91	25.60	40.00	-14.40	QP
3	133.6188	45.25	-18.06	27.19	43.50	-16.31	QP
4	327.8873	44.38	-13.88	30.50	46.00	-15.50	QP
5	622.8900	37.67	-9.06	28.61	46.00	-17.39	QP
6	908.4000	86.04	-4.28	81.76	94.00	-12.24	QP

Remark: Level = Reading + Cable Loss+ Ant Factor-Amplifier

Job No.: 0217030111W Temp.(℃)/Hum.(%RH): 24.3℃/55%RH

Standard: FCC PART 15C Power Source: DC 3V

Test Mode: TX Mode Polarization: Vertical

Remark: Level = Reading + Cable Loss+ Ant Factor-Amplifier

Harmonics Emissions

Frequency	Antenna	Reading	Cable Loss	Ant Factor	Amplifier	Level	Limits	Margin	Det.
(MHz)	Pol.	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Mode
1816.8000	Н	49.46	7.39	28.73	26.32	59.26	74.00	-14.74	PK
1816.8000	Н	32.57	7.39	28.73	26.32	42.37	54.00	-11.63	AV
2725.2000	Н	43.48	8.08	29.71	27.01	54.26	74.00	-19.74	PK
2725.2000	Н	31.20	8.08	29.71	27.01	41.98	54.00	-12.02	AV
3633.6000	Н								PK
3633.6000	Н								AV
1816.8000	V	51.29	7.39	28.73	26.32	61.09	74.00	-12.91	PK
1816.8000	V	35.48	7.39	28.73	26.32	45.28	54.00	-8.72	AV
2725.2000	V	46.32	8.08	29.71	27.01	57.10	74.00	-16.90	PK
2725.2000	V	32.45	8.08	29.71	27.01	43.23	54.00	-10.77	AV
3633.6000	V					-			PK
3633.6000	V			/					AV

Remark:

- 1. Level = Reading + Cable Loss+Ant Factor-Amplifier
- 2. "-- " Mark indicated Background Noise Level

Radiated Band Edge:

Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Det.
902.0000	38.17	22.45	4.48	31.33	33.77	46.00	-12.23	Н	QP
928.0000	39.45	22.59	4.54	31.35	35.23	46.00	-10.77	Н	QP
902.0000	41.44	22.45	4.48	31.33	37.04	46.00	-8.96	V	QP
928.0000	41.78	22.59	4.54	31.35	37.56	46.00	-8.44	V	QP

5. 20dB Bandwidth Test

5.1. Test Standard and Limit

Pest Standard FCC Part15 C Section 15.249

5.2. Test Setup

5.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW = 100kHz, VBW \geqslant 3*RBW = 300kHz,

Detector= CISPR quasi-peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and -20dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

5.4. Test Data

Test Item : 20dB Bandwidth Test Mode : TX Test Voltage : DC 3V Battery inside Temperature : 24° C Test Result : PASS Humidity : 55° RH

Frequency (MHz)	Bandwidth (kHz)	Result
908.4	307.5	PASS

8. Antenna Requirement

8.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203
Requirement	1) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

8.2. Antenna Connected Construction

The antenna is a Spring antenna which permanently attached, and the best case gain of the antenna is -5.52dBi. It complies with the standard requirement.

APPENDIX I -- TEST SETUP PHOTOGRAPH

APPENDIX II -- EXTERNAL PHOTOGRAPH

APPENDIX III -- INTERNAL PHOTOGRAPH

