

Silicon PIN Photodiode

Description

BPW41N is a high speed and high sensitive PIN photodiode in a flat side view plastic package.

The epoxy package itself is an IR filter, spectrally matched to GaAs or GaAs on GaAlAs IR emitters ($\lambda_D = 950 \text{ nm}$).

The large active area combined with a flat case gives a high sensitivity at a wide viewing angle.

Features

- Large radiant sensitive area (A=7.5 mm²)
- Wide angle of half sensitivity $\varphi = \pm 65^{\circ}$
- High radiant sensitivity
- Fast response times
- Small junction capacitance
- Plastic case with IR filter (λ=950 nm)
- Suitable for near infrared radiation

Applications

High speed photo detector

Absolute Maximum Ratings

 $T_{amb} = 25^{\circ}C$

Parameter	Test Conditions	Symbol	Value	Unit
Reverse Voltage		V_{R}	60	V
Power Dissipation	$T_{amb} \leq 25 ^{\circ}C$	P_V	215	mW
Junction Temperature		T _i	100	°C
Storage Temperature Range		T _{stg}	<i>–</i> 55+100	°C
Soldering Temperature	t ≦ 5 s	T _{sd}	260	°C
Thermal Resistance Junction/Ambient		R_{thJA}	350	K/W

94 8480

Vishay Semiconductors

Basic Characteristics

 $T_{amb} = 25^{\circ}C$

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Breakdown Voltage	$I_R = 100 \mu\text{A}, E = 0$	V _(BR)	60			V
Reverse Dark Current	V _R = 10 V, E = 0	Ìro		2	30	nA
Diode Capacitance	$V_R = 0 \text{ V, } f = 1 \text{ MHz, } E = 0$	C_D		70		pF
	$V_R = 3 \text{ V, f} = 1 \text{ MHz, E} = 0$	C_D		25	40	pF
Open Circuit Voltage	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	V_{o}		350		mV
Temp. Coefficient of Vo	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	TK_Vo		-2.6		mV/K
Short Circuit Current	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	l _k		38		μΑ
Temp. Coefficient of I _k	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	TK _{lk}		0.1		%/K
Reverse Light Current	$E_e = 1 \text{ mW/cm}^2$, $\lambda = 950 \text{ nm}$, $V_R = 5 \text{ V}$	I _{ra}	43	45		μΑ
Angle of Half Sensitivity		φ		±65		deg
Wavelength of Peak Sensitivity		λ_{p}		950		nm
Range of Spectral Bandwidth		$\lambda_{0.5}$		8701050		nm
Noise Equivalent Power	$V_R = 10 \text{ V}, \ \lambda = 950 \text{ nm}$	NEP		4x10 ⁻¹⁴		W/√ Hz
Rise Time	$V_R = 10 \text{ V}, R_L = 1 \text{k } \Omega,$ $\lambda = 820 \text{ nm}$	t _r		100		ns
Fall Time	$V_R = 10 \text{ V}, R_L = 1 \text{k } \Omega,$ $\lambda = 820 \text{ nm}$	t _f		100		ns

Typical Characteristics $(T_{amb} = 25^{\circ}C \text{ unless otherwise specified})$

Figure 1. Reverse Dark Current vs. Ambient Temperature

Figure 2. Relative Reverse Light Current vs.
Ambient Temperature

Vishay Semiconductors

Figure 3. Reverse Light Current vs. Irradiance

Figure 4. Reverse Light Current vs. Reverse Voltage

Figure 5. Diode Capacitance vs. Reverse Voltage

Figure 6. Relative Spectral Sensitivity vs. Wavelength

Figure 7. Relative Radiant Sensitivity vs. Angular Displacement

Vishay Semiconductors

VISHAY

Dimensions in mm

