

Agenda Intro to IRT: Limitations of CTT Key assumptions Item characteristic curves The 3PL model Local independence

Classical Test Theory is Great,

- OCTT parameters are population dependent.
 - O To use CTT to predict how an individual will respond to an item, you have to have pretested that item with people similar to the one you are interested in.
 - For example, math item difficulties from a population of HS students don't tell us anything about item difficulties for college students.
 - You can't use CTT item parameters to estimate the true score for a person from a new population.
- OCTT assumes we are measuring equally well (or poorly) across the entire ability distribution.
 - SEM is the same across all possible true scores.

CTT is a Rough Approximation

- The CTT model posits a linear relationship between item response and the underlying latent construct.
 - Limited set of response options...
 - ... but a theoretically large possible range of true scores.
- Of Can predict off-the-scale responses at extreme true score values.

IRT Improves on CTT By...

- Estimating individuals' true score on the construct, not using total test score as a proxy.
 - And we can determine how precise these estimates are.
- This allows us to predict performance on an item for an individual with a given true score/ability, across examinee populations.
 - OIRT item parameters are **not** population dependent.
- Resolving the improper estimates problem by more accurately modeling the relationship between the latent trait and the item response.

IRT Applications

- Maintain test security by being able to create parallel forms from a large test bank.
- Obtain precise estimates of the latent trait (e.g., in high-stakes applications) and know just how good your estimate is.
- Identify mismeasured individuals (those whose scores do not reflect their ability); detect cheating.
- Evaluate the equivalence of translated versions of the same test.
- O Detect bias at the test or item level.
- O Etc.

Key IRT Assumptions and Conventions

- We are measuring an underlying latent (not observable) characteristic of individuals.
 - o In IRT notation, an individual's standing on the latent trait (i.e., true score) is written as θ .
 - Owe often write $P(\theta)$ this is **not** the probability **of** θ , but the probability of a **correct/positive response given** θ .
- We assume that θ is distributed **continuously** (and can be measured on an interval scale).
 - O Do not need to assume that it is distributed normally.
- We scale θ to have a mean of 0 and SD of 1.
 - It's unobservable we can scale it however we want!
- O Early models were developed for **binary** data.
 - O There are models for more complex data, but we won't get to them today.

Item Characteristic Curves

- o If we plot the actual probability of getting the item right against θ we often get something like this:
 - Equal changes in θ do **not** mean equal changes in probability.
- The linear CTT model doesn't fit so well.
 - But a curvilinear function works much better!

The Ogive Function

- *O* This S-shaped pattern looks like the **normal ogive** function.
 - Normal ogive cumulative version of the normal probability distribution.
 - Area under the standardized normal curve from a *z*-score of ∞ to $a_i(\theta-b_i)$.
 - Naturally bounded by 0 and 1
- Height of this function at θ = probability of a correct response for an examinee with ability θ .
- We could integrate (calculus) to estimate a_i and b_i for a particular item.
 - Or we can avoid the calculus by using the logistic ogive function instead.
 - The logistic ogive is nearly identical to the normal one if we add a scaling constant.

The 3PL Model

• The most general IRT model for binary data is the 3-parameter logistic model, or 3PL:

$$P_i(\theta) = c_i + (1 - c_i) \frac{1}{[1 + \exp\{-Da(\theta - b_i)\}]}$$

- o Gives us the height of the ICC at any given value of θ .
 - a = steepness of the curve at its inflection point (the point where the curve changes direction) – indicator of discrimination
 - b = value of θ at the inflection point indicator of *difficulty*
 - c = lower asymptote of the ICC $guessing\ parameter$ probability of a correct response even given very low θ .

Interpreting the Parameters: a = item discrimination

- Increasing a means that our item makes a sharper distinction between examinees.
 - Why is this a good thing?
- When *a* is large, the curve is steep around *b* and flat elsewhere.
 - In other words, high a gives us good discriminating power around b, but not at other points on the continuum.
 - $^{\circ}$ This is very different from classical test theory, where we are used to thinking of item parameters as applying at all levels of θ .
- Items with low a values have some (though probably not much) discriminating power through a broader range of values.
 - ${\color{blue} o}$ These items may sometimes be useful if we don't know the range of $\theta.$
- o a must be a positive real number.
 - Usually ranges from about .30 to 2.0

Interpreting the Parameters: b = item difficulty

- At what point in the theta continuum does this item measure the best?
 - No longer about the number of people who got it right!
- Ocan be any real number; usually between -3.0 and 3.0
- O Now a low difficulty parameter = an easier item.
 - The farther to the right the ICC is shifted, the harder the item.

Interpreting the Parameters: c = guessing

- For very low values of θ , the last term of our item response function becomes essentially zero, so our best estimate of $P_i(\theta) = c_i$.
- o c must be between 0 and 1.
 - c often comes close to 1/m for multiple choice items where m is the number of response options.
 - However, in practice, c_i is often less than the probability of guessing randomly. Why?
- Including a c_i parameter means we will have smaller discrimination (a_i) parameters.
 - o Restricts our ICC to fall between c_i and 1 (instead of 0 and 1).

Simpler Models

- otin 2PL: all *c* = 0
 - Appropriate when "guessing" is not expected to be an issue.
 - o In this model, b_i is the value of θ for which the probability of getting a correct response is 0.5.
 - OThis is *not* the case in the 3PL model.
- 1PL or Rasch: all c = 0 and all a = 1.
 - In other words, all items are assumed to be equally discriminating – all that varies is difficulty.
 - O This model is quite popular in some circles and unpopular in others – why do you think that is?

Questions?

For next time: More . Read: R & M 11.1 -11.7

Reading Response: Explain, in simple language, what local independence is. Is it a good thing or a bad thing for our IRT models? Why?