	[re= T~d: T+D] Analytic Expansion	
	EALAM	
	T x, T, TT2 [, x:T, reft, Nd: To +]	
	Γιλχ,e ← τ ~ λx: τ, d: τ, → τ, + Δ	
	EASUBSUME e + 104 PHE => T' ~> d -1 D t~ T'	
	Tr-00" ← T → 004 : Z +u::[[]Z [Fe€ T ~> d:7'1)	
	EANEHOLE	
	T+e=>7'~>d+D	
	Γraeb" ← τ ~> (dD" : τ + b, u::[r]τ	
	\d(\(\(\tau\)\)	
	Dirtd:7 Type Assignment	
	TACONST TAVAR THEAM	
	x: TET D; T, x > T, 1- el: T2	
	Ditte:b Dirtx: 7 Ditthx: 7.d: 4 -> 72	
	TAAR	
	D; Trd,: Tast D; Trda: Ta	
	D; Fr of (d2): 7	
	TANEHOLE D;TFd:T'	
	U::[T'] TED D; T + O · T' U:: [T'] TED D; T + O : T'	
	$\Delta_{j}\Gamma + \Omega_{0}^{u}: 7$ $\Delta_{j}\Gamma + \Omega_{0}^{u}: 7$	
	TACAST DIFFOIR down (0) = dom (r)	7
	DITTED: TIN Ta and for each dixe of we have	1
	$\Delta; \Gamma \vdash d \leftarrow \exists \exists$	/
#	TAFAILED CAST	
	DITH d: T, ground To ground T, \$To	
	△アトロイで⇒の⇒なり:で	

dual dis a value	T graind)
UCONST VLAM	BEROUND ARR-HOLE-CREALING
c val hx: -c. d vail	b ground (D -> (D) ground
a boxedual of is a possibly-	boxed value
VALS-ARE-BOXED ARROW-CAS	
dval Zi > To =	# T3 >> T4 d boxedual
al boxedual d <z,></z,>	Ty > T3 -> T47 boxedual
HOW CAST-BOXED	
d boxedual 7 ground	
d(Z > OD) boxedual	
al indet d is indeterminate	はなしくていってるコスランでか
INEHOLE	
d final	
all indet add indet	
I CASTARR	JCAST GROUND HOLE dindet T ground
Ti>Ta + Tz > Ty d indet	
d(T, > Ta => Ty > Ty > indet	$+$ $d < T \Rightarrow 0D > inded$
ICASTHOLEGROUND	<u> </u>
d ≠ d' < z' => (10)	IFALEDCAST
d indet T ground	d final to ground to ground To#To
$d < QD \Rightarrow \tau $ \forall indet	d(t, =) (1) ≠ 5,7 indet
d final a is final	
FBOXEDVAL FINDET	
	indet
d final	final

#


```
d -> d' | d takes an instruction transition to d'
ITBETA (ITLAM in POF)
       da final
(Ax: z.d,)d2 -> [d2/x]d,
IT CASTID
           d final
     かくてきてり一つの
ITCASTSUCCEED * ITCASTFALL
d final T ground [d final] T, ground T2 ground T1 = T2
くで中のドブトートライクにアトロでラント
IT APCAST
d, final de final
  (d,くて,つなすて,つな)) da -> (d, (dxくて,) コスフ))くてa コな)
MEROUND
d final I = T
 人くてきの) → るくて コで ) かり
d final I = Z
    人くのコナン一人へのかさって
I, = T') I has matered ground type z'
7, ->72 + 00 -> 00
(T,-77,=1) -> 1)
Theorem (Matched Ground Type Invariant)
If II = T' then T' ground and T~ I' and Tto!
```

Metatheory

Theorem (Expandability).

- (1) If Treat then Treat and A some d and A.
- (2) If TheET hun TreET Nod: T' + A for some d and i' and s.

Theorem (Correspondence).

- (1) If Tre=z~d+D hun Tre=z.
- (2) If TreEzond: Z'TS then Treez.

Theorem CTyped Expansion).

- (1) If The => T No d+D than DT+d: T.
- (2) If Treft md: T'As then TNZ' and DTHd=T'.

Theorem (Expansion Unicity).

- (1) If $\Gamma = \exists \tau \rightarrow d + D$ and $\Gamma = \exists \tau' \rightarrow d' + D$ then T = T' and and d = d' and $\Delta = D'$.
- (2) If $\Gamma + e \in \tau_{1} \rightarrow d: \tau_{2} + D$ and $\Gamma + e \in \tau_{1} \rightarrow d: \tau_{2} + D'$ then d = d' and $\tau_{3} = \tau_{3}'$ and D = D',

Theorem (Type Assignment Unicity).

If DT + d: T and DT + d: T' than T = T'.

Theorem (Preservation) If Diprd: 2 and did then Diprd: 2 Theorem (Progress) IF DIØF d: Then either (i) d H)d' 6r (2) d casterr or (3) d indet or (4) d boxedual. Theren (Canonical Value Forms) If Dø:d:z and dual then z + 00 and a) If 7=6 then d=c. b) If T=7, > 7, hun d= 1x:7, d' where Dix:7, rd: 72. Theorem (Canonical Boxed Forms) If Ap+d: I and I boxedual hun a) If t=b, then d=c. b) If T= T, > Ta, then either i. d= xx: \tau, d' where D; x: \tau, \tau d: \tau or and DØFd': T' >> T' c) If T=10, then d=d'<T=>10> where T ground and DØ+d': 7!

Theorem (Canonical Indeterminate torms) If DØrd: 7 and d inlot hun 1. If Z=b hun eitier a) d= 10 and u: [T] b & D or b) d= (d') o and d' final and DD+d': [-] be Dor () d = d1(d2) and DØ + d1: 3 > b and DØ + d2: 72 and d, indet and do final and d, \$ < \(\ta > \ta \) \ta \(\ta \) d) $d = d'(\Omega) \Rightarrow b$) and d' hold and $d' \neq d''(T' \Rightarrow \Omega)$ * e) d = d' < t = 10 = h) and t' ground and t' ± b and DQ1-d: t'. 2. If to TII > TIZ her cities a) d= Or and u: [[]] Tinto eD or b) d= (d' D' and d' final and DØ+d': Z' and u: [I]] => Zp &D or c) d=d,(da) and DØHd, : to >(T1, -> T12) and DØ1-da: 5 and d, in det and da final and d, + (T3 7 Ty=) T3+) Ty) d) d=d'(T,) T,) T1,) T127 and d' indet and T1 > T2 + T1,-> T12 e) $\tau_h = 10$ and $\tau_{12} = 10$ and $d = d' < 40 \Rightarrow 40 \Rightarrow <10^{7}$ and d' indet and d' 7 d' (T > (D). 3. If Z= 40 her eiher a) d= 40 and u= [r'] CD CD ~ b) d=ad'Do and d' final and Dø1-d': T' and u:[T]aDGD or c) d=d,(da) and DØFdi: Ta 700 and DØFda: Ta and d, indet and de final and di + < z3-> Ty => z's >> Zy'> d) d=d'(T > 40) and T' ground and d'indet.

B-GMPLETE ARR-COMPLETE
[Complete] to complete T, complete Ta complete
T, > To complete
d complete X Complete C complete
DLAM-COMPLETE PAP-COMPLETE
T complete d'acomplete da complete
Xx: 7.d complete di(dz) complete -
B CAST- COMPLETE
d complete To complete
d(z, => Two complete
le complète EVAR-COMPLÈTE
x complete c complete
ESTANAM - COMPLETE EART COMPLETE
C complète e complète e complète e, complète es complète
XX: T. e complete XX.e complete
EASC_COMPLETE
e complete z complete
e: T complete
Theorem (Complete Progress)
If DOLDIT and of complete then either alod or dual.
by Presentitive
Theorem (Complete Preservation)
If DØrd: T and of complete and did hun sord ?
and d' complete.
Theorem (Complete Expansion)
1. If e complete and The>Trad+D then a complete.
2. If e complete and TheEznation's hun a complete.

d multister-REFL MULTISTER-STEB

d matter-REFL MULTISTER-STEB

d matter-REFL MULTISTER-STEB

Id/u]d'=d"

Id/u]c=c

Id/u]x=x

Id/u]d,(d2)= (Id/uId,)(Id/uId2)

Id/u]d,(d2)= [o]d

Id/u]d'Cz=cold

Id/uId'Cz=t'>= (Id/uId')(z=z')

Y Id/uId'(n+z)= (Id/uId')(n+z')

Theorem (Instantiation)

If $\Delta : \Gamma + d : \tau$ and $u :: \Gamma \cap T = \Delta$ and $\Delta \cap T \cap T = \Delta$ Then $\Delta : \Gamma \vdash T = T = \Delta$

Lemma (Finality)

If d final and d > * d' then d=d'.

Theorem (Commutativity)
If do myd, then [d/u]do my [d/u]di.
Theorem (Confluence)
If d >* d, and d >* da ben there exists d' such
front d, world' and da world'.
Corollary (Final Confluence)
If d > *d, and d, final and d > *d, hun d, > *d.
Pf By confluence and finality.
Theorem (Resumption)
If distal and do final and Idalu Id, worldy and
dy final hen Ida/4 Ida ->* dy.
Pf D By commutativity, [d3/u]d, - # [d3/u]d2
@ By final confluence, we can conclude.
of the copposition of the contraction of the contra
(Some of home housens might need additions)
(some of those theorems might need additional) typing premises)
Address Arguines

```
Extension: Sum Types
   HTyp t ::= ... | T+T
 HEXP e:= ... | in | e | inr e | case e of in (x) = e | inr (x) = e
 DHEXP d:= ... intd intd cased of int(x)=>dlinr(x)=>d
Tre€z~d:z'-1D
                                                                                                                                                                                                                                                                                                                                                                                                       7 >+ T,+ T2

T, + T2 >, T, + T2
        The ET, Ndiz 145
   Triale = T N inld: 71+ 5-15
                                                                                                                                                                                                                                                                                                                                                                                                               ad >, ad + ad
 TITITE FREEZONDIZOND
 \Gamma \vdash e_1 \Rightarrow \tau_1 \sim d_1 + d_1 = \tau_1 \rightarrow \tau_{11} + \tau_{12} = \tau_1 \rightarrow 
[,x:T1, +e2 = TMd2:T2-1D2 [,x:T12+e3 = TMd3:T3-1D3
   Trase e, of ind(x) = es line(x) = e3 = T >
                                      Case d_1(T_1 \Rightarrow T_{11} + T_{12}) of inl(x) \Rightarrow d_1(T_2 \Rightarrow T') \mid inr(x) \Rightarrow d_3(T_3 \Rightarrow T');
                                      T' 1 D1 U D2 U D3
    join TITZ=T the join of TI and TZ is T
        join (1) T = T
       join t ap = T
         your Ti + To Ti - Too! = (join Ti Ti) -> poin(TI Ti)
         join T,+ 72 T1+ 72 = (join T, T1) + join(72 T2)
   Theorem (Joins)
```

If join TI TZ=T then TINTZ and TINT and TZNTZ.

Ditrd	: 7				
DITLA	: 7,	Dirrd	: 72		
DITHIA	1 7 d: 7,+7,	DICTIO	ς, d: τ, + τ,		
			A . T		
	T,+T2 D; T,			03,2	
DITYC	use d_1 of $in0(x)$	7d2 1 in (x)=1d3	: T		
d val	d val	d val	[ground		
	inlzd val	inr d val		D+ CID	ground
~					
d boxedu	al d boxedual	d boxed val	7, + 7, + 7, +	ta' d	hoxedual
	•	al inized boxadual			
		•			
d indet	d indet	d indet	Ti+ Ta + Zi+ Ta	ding	det
	inl _z d indet				
		7		•	
d, + inl, (d_i^{\dagger}) $d_i \neq inr_{\tau}$ (c	(i) d, # d, < z	ナなきでけてごう	d, ind	et
	case d, of inl				
ا = ک	inl, (E) inr,	(E) \case E	of inl(x) \$ d2	1i~(x)>)d	,
who love 3	E evalctx	E evol	ctx E eu	icel C+×	
3400(-1)	inl, (2) ev	Mar in (E)) evelly case	E ol e	volctx
	m1- (2 / W				
4=88213	d = 28d'3				
		= Case E of	Ed 13		
	~/C 0 v7 ···				

à → a'

[d, final]

case into (d1) of int(x)=d2 [inr(y)=d3 -> [d1/x]d2

d, Final

case inr_ (d,) of inl(x) >d, linr(y) >d3 -> [d,/y]d3

d, final

case $d_1 < \overline{c_1 + \overline{c_2}} \Rightarrow \overline{c_1' + \overline{c_2'}} > of inl(x) \Rightarrow d_2 | inr(y) \Rightarrow d_3 \rightarrow case d_1 of inl(x) \Rightarrow \left[x < \overline{c_1} \Rightarrow \overline{c_1'} > / x \right] d_2 | inr(y) \Rightarrow \left[y < \overline{c_2} \Rightarrow \overline{c_2'} / y \right] d_3$

(7 - 7) (7 + 7) = (10 + 10)

Theorem (Canonical Value Forms-Sums)

If $\Delta \not = d' \cdot \tau_1 + \tau_2$ and d val then either

1. $d = inl_{z_1} d'$ where d' val and $\Delta \not = d' \cdot \tau_1$.

2. $d = inr_{z_1} d'$ where d' val and $\Delta \not = d \cdot \tau_2$.

Theorem (Canonical Boxed Value Forms - Sums)

If D&Fd: 7, + 7s and d boxed val hun either

I. d: inl z d' where d' boxedual and DØFd: T, or

2. d: inl z d' where d' boxedual and DØFd: T, or

3. d: d'< T, + 7s => T, + Ts> where T, + Ts + T, + Ts and d'boxedual

and DØFd: T, + Ts.

Theorem (Canonical Independent Forms)
-> have to add clauses about indeterminate case expressions
to each clause in previous theorem
(TUDO - think alpout how to state this the oren
more consenatively