Exercices d'application

On considère la relation f définie par :

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \to f(x) = \frac{x}{2x-1}$

- 1 f est-elle une application? Sinon, quelle est la condition pour qu'elle soit application?
- **2** Déterminer, dans ce cas, les antécédents des nombres suivants : -1; 3 et 0.

On considère les applications f et g définies par :

$$f: \]0;\pi[\rightarrow \mathbb{R}$$
 et $g: \]0;\pi[\rightarrow \mathbb{R}$ $x \rightarrow f(x) = \frac{\sin(x)}{1 + \cos(x)}$ et $x \rightarrow g(x) = \frac{1 - \cos(x)}{\sin(x)}$

Montrer que f = g.

- On considère l'application f définie par : $f: \mathbb{R} \to \mathbb{R}$ $x \to f(x) = 2x |x| + 3$ Déterminer $f_{||-\infty;0||}$ la restriction de l'application f à l'intervalle $]-\infty;0]$.
- On considère l'application f définie par : $f: \mathbb{R}^- \to \mathbb{R}$ $x \to f(x) = -x^3 + x - 2$ Déterminer l'application h, le prolongement de f à \mathbb{R} .
- On considère l'application f définie par : $f: \mathbb{R} \{-1\} \to \mathbb{R}$ $x \to f(x) = \frac{3x-1}{x+1}$ Déterminer $f(]-\infty;-1[)$
- On considère l'application f définie par : $f: \mathbb{R} \to \mathbb{R}$ $x \to f(x) = x^2 + 2x$ Déterminer f(]-1;0[) et $f([-1;0[\cup[1;2])$

- On considère l'application f définie par : $f: \mathbb{R}^+ \to \mathbb{R}^+$ $x \to f(x) = x + \sqrt{x}$ Montrer que f est une application injective de \mathbb{R}^+ à \mathbb{R}^+ .
- On considère l'application f définie par : $f: \mathbb{R}^+ \to]-\infty;3]$ $x \to f(x) = 3-x^2$ Montrer que f est une application surjective de \mathbb{R}^+ à $]-\infty;3]$.
- On considère l'application f définie par : $f:]-\infty;0[\rightarrow \mathbb{R}$ $x \rightarrow f(x) = x \frac{1}{x}$ Montrer que f est une application bijective de $]-\infty;0[$ à \mathbb{R} et déterminer son application réciproque f^{-1} .
- On considère les applications f et g définies par :

$$f: \mathbb{R} \to \mathbb{R}^+$$
 et $g: \mathbb{R}^+ \to \mathbb{R}^+$
 $x \to f(x) = x^2 + 2$ $x \to g(x) = 3 + \sqrt{x}$

Déterminer $g \circ f$ et $g \circ g$

Exercices d'approfondissement

- On considère l'application f définie par : $f: \mathbb{R}^+ \to \mathbb{R}$ $x \to f(x) = x - \sqrt{x}$
 - \blacksquare Montrer que f n'est pas injective
 - **2 a.** Résoudre dans \mathbb{R}^+ l'équation : f(x) = -1
 - **b.** Que peut-on conclure?
 - Soit g la restriction de f à $\left[\frac{1}{4}; +\infty\right]$.

 Montrer que g est bijective de $\left[\frac{1}{4}; +\infty\right]$ à un intervalle J qu'il faut déterminer et déterminer son application réciproque g^{-1}
- On pose $I =]0; +\infty[$ et on considère l'application f définie par :

$$f: I \times I \rightarrow I \times I$$

 $(x;y) \rightarrow f(x;y) = \left(xy; \frac{x}{y}\right)$

- **1** Montrer que *f* est injective et surjective.
- **2** En déduire que f est une bijection et déterminer sa bijection réciproque f^{-1} .
- On considère les applications f définie de \mathbb{R} dans \mathbb{R} par : $(\forall x \in \mathbb{R})$; f(3x) = 2f(x).
 - **1** Montrer que $(\forall n \in \mathbb{N})$; $f(x) = 2^n f\left(\frac{x}{3^n}\right)$.
 - **2** Calculer f(2007) sachant que f(223) = 2006.
- Déterminer toutes les applications f définies de \mathbb{R} dans \mathbb{R} par :

$$(\forall (x;y) \in \mathbb{R}^2); f(xy) = f(x)f(y) - x - y$$