Multi-View Geometry - 1 Camera Modeling and Calibration

RRC Summer School 2024

Rohit Jayanti

Skydio's 3D Scan Autonomous Drone Inspection

Visual Odometry on Mars!

Oreo AR Box Demo

Decoupled Human and Camera Pose Estimation

Language Embedded Radiance Fields

Why Vision?

- Most powerful sense half of primate cerebral cortex is devoted to visual processing
- Enormous data-rate of ~3GB/s
- Extract meaning, both geometric, semantic, from light (nothing travels faster!)
- J. Malik's 3R's Reorganization (segmentation), Recognition, and Reconstruction

Lecture Objectives

- Camera Modeling
 - Geometric Image Formation and Pinhole Camera
 - Transformations and Projective Geometry
 - General Camera Equation
- Camera Calibration
 - Direct Linear Transform
 - Anatomy of the Projection Matrix (M)

Camera Modeling

Geometric Image Formation

Would this work?
What would the resulting image look like?

Geometric Image Formation

Placing a barrier helps - opening called <u>aperture</u> What happens if it's too small?

Pinhole Camera Model

Mathematical Camera Model

Both models are equivalent, with appropriate change of image coordinates

Pinhole Camera Model

Perspective Projection - Chaining Transformations

$$\tilde{\mathbf{x}}_s = \begin{bmatrix} \mathbf{K} & \mathbf{0} \end{bmatrix} \ \bar{\mathbf{x}}_c = \begin{bmatrix} \mathbf{K} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \bar{\mathbf{x}}_w = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \bar{\mathbf{x}}_w = \mathbf{P} \ \bar{\mathbf{x}}_w$$

Intrinsics

Extrinsics

Perspective Projection 1/4 - Camera Frame to Image Plane

 $P_c = [X_c, Y_c, Z_c]^T$ projects to p = (x, y) onto the image plane

$$\frac{x}{f} = \frac{X_c}{Z_c} \Rightarrow x = \frac{fX_c}{Z_c}$$

$$\frac{y}{f} = \frac{Y_c}{Z_c} \Rightarrow y = \frac{fY_c}{Z_c}$$

Perspective Projection 2/4 - Image Plane to Pixel Coords.

$$u = u_0 + k_u x \rightarrow u = u_0 + \frac{k_u f X_C}{Z_C}$$

$$v = v_0 + k_v y \rightarrow v = v_0 + \frac{k_v f Y_C}{Z_C}$$

Image plane

Perspective Projection 3/4 - Mapping from 3D to 2D

Homogeneous Coordinates to the rescue!

$$p = \begin{pmatrix} u \\ v \end{pmatrix} \qquad \qquad \widetilde{p} = \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$$

K / Calibration matrix / Intrinsic Parameter Matrix

<u>Note</u>: In the past, it was common to assume a skew factor $(K_{12} \neq 0)$ to account for sensor manufacturing errors. However, nowadays with updated build quality, it is safe to assume $(K_{12} = s = 0)$

Perspective Projection 4/4 - From World to Camera Frame

$$\begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} = \begin{bmatrix} R & T \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$

Substituting this into our Perspective Projection Equation

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$$

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix} \qquad \lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K \begin{bmatrix} R \mid T \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$
Projection Matrix (M)

Geometric Image Formation - Self Study

- Normalized Image Coordinates
- Lens Distortion Models
 - Simple Quadratic Model of Radial Distortion

Camera Calibration

Camera Calibration

- What are we determining? Intrinsic parameters (K plus lens distortion) and extrinsic parameters (R, T) - for now we'll neglect lens distortion
- *K*, *R*, *T* can be determined by applying the perspective projection equation to known 3D-2D point correspondences
- Mainstream Methods:
 - Tsai's Method: Uses 3D objects
 - Zhang's Method: Uses Planar Grids

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K[R \mid T] \cdot \begin{vmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{vmatrix}$$

Tsai's Method: Calibration from 3D Objects

 Method proposed in 1987 by Tsai and consists of measuring the 3D position of n ≥ 6 control points on a 3D calibration target and the 2D coordinates of their projection in the image.

DLT simply refers to rewriting the projection equation as a **homogeneous linear equation** and solve it using standard techniques from linear algebra

Each 3D point gives two observation equations, one for each image coordinate

$$x = \frac{p_{11}X + p_{12}Y + p_{13}Z + p_{14}}{p_{31}X + p_{32}Y + p_{33}Z + p_{34}}$$

$$y = \frac{p_{21}X + p_{22}Y + p_{23}Z + p_{24}}{p_{31}X + p_{32}Y + p_{33}Z + p_{34}}$$

$$\mathbf{x}_{i} = \Pr_{3 \times 4} \mathbf{X}_{i} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \end{bmatrix} \mathbf{X}_{i}$$

So what we can rewrite the equation as

$$\begin{bmatrix} u_i \\ v_i \\ w_i \end{bmatrix} = \mathbf{x}_i = \mathsf{P}\mathbf{X}_i = \begin{bmatrix} \mathbf{A}^\mathsf{T} \\ \mathbf{B}^\mathsf{T} \\ \mathbf{C}^\mathsf{T} \end{bmatrix} \mathbf{X}_i = \begin{bmatrix} \mathbf{A}^\mathsf{T}\mathbf{X}_i \\ \mathbf{B}^\mathsf{T}\mathbf{X}_i \\ \mathbf{C}^\mathsf{T}\mathbf{X}_i \end{bmatrix}$$

$$x_i = \frac{\mathbf{A}^\mathsf{T} \mathbf{X}_i}{\mathbf{C}^\mathsf{T} \mathbf{X}_i} \quad \Rightarrow \quad x_i \, \mathbf{C}^\mathsf{T} \mathbf{X}_i - \mathbf{A}^\mathsf{T} \mathbf{X}_i = 0$$
$$y_i = \frac{\mathbf{B}^\mathsf{T} \mathbf{X}_i}{\mathbf{C}^\mathsf{T} \mathbf{X}_i} \quad \Rightarrow \quad y_i \, \mathbf{C}^\mathsf{T} \mathbf{X}_i - \mathbf{B}^\mathsf{T} \mathbf{X}_i = 0$$

Leads to a system of equations, which is <u>linear in parameters A, B, and C</u>

$$-\mathbf{X}_{i}^{\mathsf{T}}\mathbf{A} + x_{i}\mathbf{X}_{i}^{\mathsf{T}}\mathbf{C} = 0$$
$$-\mathbf{X}_{i}^{\mathsf{T}}\mathbf{B} + y_{i}\mathbf{X}_{i}^{\mathsf{T}}\mathbf{C} = 0$$

Rewriting
$$-\mathbf{X}_i^{\mathsf{T}}\mathbf{A} + x_i \, \mathbf{X}_i^{\mathsf{T}}\mathbf{C} = 0$$
 $-\mathbf{X}_i^{\mathsf{T}}\mathbf{B} + y_i \, \mathbf{X}_i^{\mathsf{T}}\mathbf{C} = 0$
as $\mathbf{a}_{x_i}^{\mathsf{T}}\mathbf{p} = 0$
 $\mathbf{a}_{y_i}^{\mathsf{T}}\mathbf{p} = 0$

where
$$\begin{array}{lcl} m{p} &=& (p_k) = \mathrm{vec}(\mathsf{P}^\mathsf{T}) \\ m{a}_{x_i}^\mathsf{T} &=& (-\mathbf{X}_i^\mathsf{T}, \, \mathbf{0}^\mathsf{T}, x_i \mathbf{X}_i^\mathsf{T}) \\ &=& (-X_i, \, -Y_i, \, -Z_i, \, -1, 0, \, 0, \, 0, \, x_i X_i, \, x_i Y_i, \, x_i Z_i, \, x_i) \\ m{a}_{y_i}^\mathsf{T} &=& (\mathbf{0}^\mathsf{T}, -\mathbf{X}_i^\mathsf{T}, \, y_i \mathbf{X}_i^\mathsf{T}) \\ &=& (0, \, 0, \, 0, \, 0, \, -X_i, \, -Y_i, \, -Z_i, \, -1, y_i X_i, \, y_i Y_i, \, y_i Z_i, \, y_i) \end{array}$$

For each point, we have $m{a}_{x_i}^{\mathsf{T}} m{p} = 0$ $m{a}_{y_i}^{\mathsf{T}} m{p} = 0$

stacking everything together

$$\left[egin{aligned} oldsymbol{a}_{x_1}^{\mathsf{T}} \ oldsymbol{a}_{y_1}^{\mathsf{T}} \ oldsymbol{a}_{x_i}^{\mathsf{T}} \ oldsymbol{a}_{y_i}^{\mathsf{T}} \ oldsymbol{a}_{y_I}^{\mathsf{T}} \end{array}
ight] oldsymbol{p} = egin{aligned} \mathsf{M} & oldsymbol{p} \ 2I imes 12 & 12 imes 1 \end{aligned} = 0$$

How do we solve this Ax=0 ? (Hint: We're finding the null-space of A)

- How do we solve this Ax=0 ? (Hint: We're finding the null-space of A)
- We can apply Singular Value Decomposition (SVD) on M
- p is the singular vector belonging to singular value of 0
- Which corresponds to ?

$$M_{2I \times 12} = U S_{II \times 12} S_{I2 \times 12} V^{\mathsf{T}}_{12 \times 12} = \sum_{i=1}^{12} s_i u_i v_i^{\mathsf{T}}$$

- How do we solve this Ax=0 ? (Hint: We're finding the null-space of A)
- We can apply Singular Value Decomposition (SVD) on M
- p is the singular vector belonging to singular value of 0
- Which corresponds to ?
- Pick the last row of V^T

$$M_{2I \times 12} = U S_{I \times 12} S_{12 \times 12} V^{\mathsf{T}}_{12 \times 12} = \sum_{i=1}^{12} s_i u_i v_i^{\mathsf{T}}$$

Reshaping 12x1 to 3x4

$$\mathbf{p} = \begin{bmatrix} p_{11} \\ \vdots \\ p_{34} \end{bmatrix} \longrightarrow \mathsf{P} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix}$$

Now, we need to arrive at K, X₀, and R

Decomposition of P

Structure of P_{3x4}

$$P = [KR \mid -KRX_0] = [H \mid h]$$

Projection Center

$$X_0 = -H^{-1}h$$

- Some things we know about H = KR
 - K is an upper triangular matrix
 - R is a rotation matrix
- Is there a matrix decomposition into a rotation matrix and a triangular one?

Decomposition of P

QR Decomposition of H⁻¹ yields R & K

$$H^{-1} = (K R)^{-1} = R^{-1} K^{-1} = R^{T} K^{-1}$$

Q
R

- H = KR is homogenous
- Therefore recovered K matrix is in homogenous form too
- Normalize as K:K/K₃₃

Anatomy of the Projection Matrix

- Any 3x4 P with a nonsingular left submatrix represents a valid camera! It can be decomposed as shown in the previous slides as
 - A non-singular upper diagonal matrix K
 - An orthonormal matrix R and a vector C with their usual meanings!
- The 4-vector C with PC=0 is the camera center.
- Can you find the world origin just by looking at the projection matrix?

Anatomy of the Projection Matrix

- Any 3x4 P with a nonsingular left submatrix represents a valid camera! It can be decomposed as shown in the previous slides as
 - A non-singular upper diagonal matrix K
 - An orthonormal matrix R and a vector C with their usual meanings!
- The 4-vector C with PC=0 is the camera center.
- Can you find the world origin just by looking at the projection matrix?
 - [0, 0, 0] in homogeneous coordinates is the world origin
 - Thus p_₄ (last column of P) is the image of the world origin
 - $o \mathbf{p}_{\mathbf{A}} = \mathbf{P}[0\ 0\ 0\ 1]^{\mathsf{T}}$

More on Calibration in upcoming sessions...

- Zhang's Method Complete Intrinsics and Extrinsics using Planar Grids
- Perspective N-Point (PnP) Only Extrinsics using 2D-3D correspondences

Resources

- Cyrill Stachniss' Mobile Sensing and Robotics 2 (2021) [Youtube]
 - Lectures 23-27: Camera Parameters and DLT
- Shree K Nayar's First Principles of Computer Vision [Youtube]
 - Image Formation Sub-Playlist [Youtube]
 - Camera Calibration Series [Youtube]
 - <u>Fun fact</u>: The first student who'd go on to do their PhD from IIIT-H went under Prof. Shree
 K Nayar
- Andreas Geiger's Computer Vision @ Tübingen [Youtube][Course Page]
 - Lecture 02: Image Formation [Slides]

Acknowledgments:

Slides and Images adapted from Andreas Geiger, Wikiwand, Davide Scaramuzza, RRC SS-23