
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2010; month=3; day=4; hr=9; min=20; sec=57; ms=546;]

Validated By CRFValidator v 1.0.3

Application No: 10575505 Version No: 2.0

Input Set:

Output Set:

Started: 2010-03-01 16:51:10.259

Finished: 2010-03-01 16:51:13.402

Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 143 ms

Total Warnings: 28
Total Errors: 0

No. of SeqIDs Defined: 28

Actual SeqID Count: 28

Err	or code	Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (1)
W	213	Artificial or Unknown found in <213> in SEQ ID (2)
W	402	Undefined organism found in <213> in SEQ ID (3)
W	402	Undefined organism found in <213> in SEQ ID (4)
W	213	Artificial or Unknown found in <213> in SEQ ID (5)
M	213	Artificial or Unknown found in <213> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
W	402	Undefined organism found in <213> in SEQ ID (8)
W	213	Artificial or Unknown found in <213> in SEQ ID (9)
W	213	Artificial or Unknown found in <213> in SEQ ID (10)
W	213	Artificial or Unknown found in <213> in SEQ ID (11)
W	402	Undefined organism found in <213> in SEQ ID (12)
W	213	Artificial or Unknown found in <213> in SEQ ID (13)
W	213	Artificial or Unknown found in <213> in SEQ ID (14)
W	213	Artificial or Unknown found in <213> in SEQ ID (15)
W	213	Artificial or Unknown found in <213> in SEQ ID (16)
W	213	Artificial or Unknown found in <213> in SEQ ID (17)
W	213	Artificial or Unknown found in <213> in SEQ ID (18)
W	402	Undefined organism found in <213> in SEQ ID (19)
W	402	Undefined organism found in <213> in SEQ ID (20)

Input Set:

Output Set:

Started: 2010-03-01 16:51:10.259 **Finished:** 2010-03-01 16:51:13.402

Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 143 ms

Total Warnings: 28
Total Errors: 0
No. of SeqIDs Defined: 28

Actual SeqID Count: 28

Err	or code	Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (21)
W	213	Artificial or Unknown found in <213> in SEQ ID (22)
W	213	Artificial or Unknown found in <213> in SEQ ID (23)
W	213	Artificial or Unknown found in <213> in SEQ ID (24)
W	213	Artificial or Unknown found in <213> in SEQ ID (25)
W	213	Artificial or Unknown found in <213> in SEQ ID (26) This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

<110> Helmholtz-Institut fuer Infektionsforschung GmbH Ferrer, Manuel Chernikova, Tatjana Golyshin, Peter Timmis, Kenneth Yakimov, Michail <120> Transgenic organisms with lower growth temperatures <130> 4587.86047 <140> 10575505 <141> 2010-03-01 <150> EP 03023032.0 <151> 2003-10-13 <160> 28 <170> PatentIn version 3.5 <210> 1 <211> 97 <212> PRT <213> artificial sequence <220> <223> Cpn10 of Oleispira antarctica <400> 1 Met Lys Ile Arg Pro Leu His Asp Arg Ile Val Val Arg Arg Lys Glu 10 Glu Glu Thr Ala Thr Ala Gly Gly Ile Ile Leu Pro Gly Ala Ala Ala 20 25 Glu Lys Pro Asn Gln Gly Val Val Ile Ser Val Gly Thr Gly Arg Ile 35 40 Leu Asp Asn Gly Ser Val Gln Ala Leu Ala Val Asn Glu Gly Asp Val 50 55 60 Val Val Phe Gly Lys Tyr Ser Gly Gln Asn Thr Ile Asp Ile Asp Gly Glu Glu Leu Leu Ile Leu Asn Glu Ser Asp Ile Tyr Gly Val Leu Glu

90

85

145

<210> 2 <211> 548 <212> PRT <213> artificial sequence <220> <223> Cpn60 of Oleispira antarctica <400> 2 Met Ala Ala Lys Asp Val Leu Phe Gly Asp Ser Ala Arg Ala Lys Met 1 5 10 15 Leu Val Gly Val Asn Ile Leu Ala Asp Ala Val Arg Val Thr Leu Gly 20 25 Pro Lys Gly Arg Asn Val Val Ile Glu Lys Ser Phe Gly Ala Pro Ile 40 45 35 Ile Thr Lys Asp Gly Val Ser Val Ala Arg Glu Ile Glu Leu Lys Asp 50 55 60 Lys Phe Glu Asn Met Gly Ala Gln Met Val Lys Glu Val Ala Ser Gln 70 75 65 Ala Asn Asp Gln Ala Gly Asp Gly Thr Thr Thr Ala Thr Val Leu Ala 85 90 95 Gln Ala Ile Ile Ser Glu Gly Leu Lys Ser Val Ala Ala Gly Met Asn 100 105 Pro Met Asp Leu Lys Arg Gly Ile Asp Lys Ala Thr Ala Ala Val Val 115 120 125 Ala Ala Ile Lys Glu Gln Ala Gln Pro Cys Leu Asp Thr Lys Ala Ile 135 140 130

Leu Ile Ala Glu Ala Met Glu Lys Val Gly Lys Glu Gly Val Ile Thr \$165\$ \$170\$ \$175\$

Ala Gln Val Gly Thr Ile Ser Ala Asn Ala Asp Glu Thr Val Gly Arg

150

155

Val	Glu	Glu	Gly 180	Lys	Gly	Leu	Glu	Asp 185	Glu	Leu	Asp	Val	Val 190	Glu	Gly
Met	Gln	Phe 195	Asp	Arg	Gly	Tyr	Leu 200	Ser	Pro	Tyr	Phe	Ile 205	Asn	Asn	Gln
Glu	Lys 210	Met	Thr	Val	Glu	Met 215	Glu	Asn	Pro	Leu	Ile 220	Leu	Leu	Val	Asp
Lys 225	Lys	Ile	Asp	Asn	Leu 230	Gln	Glu	Leu	Leu	Pro 235	Ile	Leu	Glu	Asn	Val 240
Ala	Lys	Ser	Gly	Arg 245	Pro	Leu	Leu	Ile	Val 250	Ala	Glu	Asp	Val	Glu 255	Gly
Gln	Ala	Leu	Ala 260	Thr	Leu	Val	Val	Asn 265	Asn	Leu	Arg	Gly	Thr 270	Phe	Lys
Val	Ala	Ala 275	Val	Lys	Ala	Pro	Gly 280	Phe	Gly	Asp	Arg	Arg 285	Lys	Ala	Met
Leu	Gln 290	Asp	Leu	Ala	Ile	Leu 295	Thr	Gly	Gly	Gln	Val 300	Ile	Ser	Glu	Glu
Leu 305	Gly	Met	Ser	Leu	Glu 310	Thr	Ala	Asp	Pro	Ser 315	Ser	Leu	Gly	Thr	Ala 320
Ser	Lys	Val	Val	Ile 325	Asp	Lys	Glu	Asn	Thr 330	Val	Ile	Val	Asp	Gly 335	Ala
Gly	Thr	Glu	Ala 340	Ser	Val	Asn	Thr	Arg 345	Val	Asp	Gln	Ile	Arg 350	Ala	Glu
Ile	Glu	Ser 355	Ser	Thr	Ser	Asp	Tyr 360	Asp	Ile	Glu	Lys	16u 365	Gln	Glu	Arg
	370					375					380			Ala	
Ser 385	Glu	Met	Glu	Met	Lys 390	Glu	Lys	Lys	Asp	Arg 395	Val	Asp	Asp	Ala	Leu 400

His Ala Thr Arg Ala Ala Val Glu Glu Gly Val Val Ala Gly Gly Gly 405 410 415	
Val Ala Leu Ile Arg Ala Leu Ser Ser Val Thr Val Val Gly Asp Asn 420 430	
Glu Asp Gln Asn Val Gly Ile Ala Leu Ala Leu Arg Ala Met Glu Ala 435 440 445	
Pro Ile Arg Gln Ile Ala Gly Asn Ala Gly Ala Glu Gly Ser Val Val 450 455 460	
Val Asp Lys Val Lys Ser Gly Thr Gly Ser Phe Gly Phe Asn Ala Ser 465 470 475 480	
Thr Gly Glu Tyr Gly Asp Met Ile Ala Met Gly Ile Leu Asp Pro Ala 485 490 495	
Lys Val Thr Arg Ser Ser Leu Gln Ala Ala Ala Ser Ile Ala Gly Leu 500 505 510	
Met Ile Thr Thr Glu Ala Met Val Ala Asp Ala Pro Val Glu Gly 515 520 525	
Ala Gly Gly Met Pro Asp Met Gly Gly Met Gly Gly Met 530 535 540	
Pro Gly Met Met 545	
<210> 3 <211> 2783 <212> DNA <213> Oleispira antarctica	
<400> 3 atcaaaaaat gcagcaagga cagatteetg eccaagaatt agcagaaggt ttettgttag	60
cactggccgg cgctttatta ttaacgccgg gttttgtcac tgatgcgctg ggttttacat	120
tactcgtccc cgcgacgcgt aaagcgttgg tccataaggt gattgcattt attacccctc	180
gcatgatgac tgcaagcagc tttcaagcga cgggtagttt tcaggaaggc tcgtttaaag	240
atgtacattc gcacactgac tcgcaaagca gtcatgaaaa aatcacaatt gaaggcgaat	300
ataccaaaga cgataagtag gtatttttc ggctagccgt tgaaatccta gtaaaagccc	360

cgataaatta	accatctatt	tttcacagag	gcaatttagc	ctttgtttac	cttattgatc	420	
ctaatacttg	ggatccaaca	gttggagagt	ctagcaaatg	aaaatccgtc	cattacatga	480	
tcgtattgtt	gttcgccgta	aagaagaaga	gaccgcaact	gcgggtggta	ttattttacc	540	
gggcgctgcg	gcagaaaaac	caaatcaagg	tgttgttatc	tctgtgggta	ctggccgtat	600	
tcttgataat	ggttcagtgc	aagcgctggc	ggttaacgaa	ggcgatgttg	tcgtttttgg	660	
taaatactca	ggtcaaaata	ctatcgatat	cgatggtgaa	gaattattga	ttttgaatga	720	
aagtgatatc	tacggcgttt	tagaagctta	attattacac	tcacttttt	atttaaccta	780	
caaaatttaa	ggaaagatca	tggctgctaa	agacgtatta	tttggtgata	gcgcacgcgc	840	
aaaaatgttg	gtaggtgtaa	acattttagc	cgacgcagta	agagttacct	taggacctaa	900	
aggtcgtaac	gttgttatag	aaaaatcatt	tggtgcaccg	atcatcacca	aagatggtgt	960	
ttctgttgcg	cgtgaaatcg	aattgaaaga	caaattcgaa	aacatgggcg	cacagatggt	1020	
taaggaagtt	gcttctcaag	ccaacgacca	agccggtgac	ggcacaacga	cagcgactgt	1080	
actagcacag	gcgattatca	gcgaaggctt	gaaatctgtt	gcggctggca	tgaatccaat	1140	
ggatcttaaa	cgtggtattg	ataaagctac	ggctgctgtt	gttgccgcca	ttaaagaaca	1200	
agctcagcct	tgcttggata	caaaagcaat	cgctcaggta	gggacaatct	ctgccaatgc	1260	
cgatgaaacg	gttggtcgtt	taattgctga	agcgatggaa	aaagtcggta	aagaaggtgt	1320	
gattaccgtt	gaagaaggca	aaggccttga	agacgagctt	gatgttgtag	aaggcatgca	1380	
gttcgatcgc	ggttacttgt	ctccgtactt	catcaacaac	caagaaaaaa	tgaccgtaga	1440	
aatggaaaat	ccattaattc	tattggttga	taagaaaatt	gataaccttc	aagagctgtt	1500	
gccaattctt	gaaaacgtcg	ctaaatcagg	tcgtccatta	ttgatcgttg	ctgaagatgt	1560	
tgaaggccaa	gcactagcaa	cattggtagt	aaacaacttg	cgcggcacat	tcaaggttgc	1620	
agcggttaaa	gcccctggtt	ttggcgatcg	tcgtaaagcg	atgttgcaag	atcttgccat	1680	
cttgacgggt	ggtcaggtta	tttctgaaga	gctagggatg	tctttagaaa	ctgcggatcc	1740	
ttcttctttg	ggtacggcaa	gcaaggttgt	tatcgataaa	gaaaacaccg	tgattgttga	1800	
tggcgcaggt	actgaagcaa	gcgttaatac	tcgtgttgac	cagatccgtg	ctgaaatcga	1860	
aagctcgact	tctgattacg	acatcgaaaa	gttacaagaa	cgcgttgcta	agcttgcggg	1920	
cggcgttgcc	gtgattaagg	ttggtgcggg	ttctgaaatg	gaaatgaaag	agaagaaaga	1980	
ccgtgttgac	gatgcacttc	atgcaactcg	cgcagcggtt	gaagaaggtg	ttgttgcggg	2040	

tggtggtgtt	gctttgattc	gcgcactctc	ttcagtaacc	gttgttggtg	ataacgaaga	2100
tcaaaacgtc	ggtattgcat	tggcacttcg	tgcgatggaa	gctcctatcc	gtcaaatcgc	2160
gggtaacgca	ggtgctgaag	ggtcagtggt	tgttgataaa	gtgaaatctg	gcacaggtag	2220
ctttggtttt	aacgccagca	caggtgagta	tggcgatatg	attgcgatgg	gtattttaga	2280
ccctgcaaaa	gtcacgcgtt	catctctaca	agccgcggcg	tctatcgcag	gtttgatgat	2340
cacaaccgaa	gccatggttg	cggatgcgcc	tgttgaagaa	ggcgctggtg	gtatgcctga	2400
tatgggcggc	atgggtggaa	tgggcggtat	gcctggcatg	atgtaatcac	tttgtgattc	2460
attgtcctga	tctgcttacc	gtgtaaaaag	atcaggctca	aggctgtctc	tataaaaagc	2520
cgtatctttg	atgagtgttg	tctttctgct	gaaaacgaca	ttcttggagt	gcggcttttt	2580
ttgattttgg	tcataaaatt	cagaatattg	tgtaatttta	tgtaactagc	tggcctataa	2640
tgttgagttc	ctctgggtgg	catgatctca	tggtacttca	cttaagcctg	attcactgcg	2700
gctttaacag	taaaataata	acgcaacgta	gaaacataat	aagcgtatgg	cattaatgaa	2760
gacggctgca	tttaattcag	atc				2783

<210> 4

<211> 333

<212> PRT

<213> Oleispira antarctica

<400> 4

Met Lys Asn Thr Leu Lys Ser Ser Ser Arg Phe Ser Leu Lys Gln Leu 1 5 10 15

Gly Thr Gly Ala Leu Ile Ile Ser Ser Leu Phe Phe Gly Gly Cys Thr
20 25 30

Thr Thr Gln Gln Asp Asn Leu Tyr Thr Gly Val Met Ser Leu Ala Arg 35 40 45

Asp Ser Ala Gly Leu Glu Val Lys Thr Ala Ser Ala Gly Asp Val Asn 50 55 60

Leu Thr Tyr Met Glu Arg Gln Gly Ser Asp Lys Asp Asn Ala Glu Ser 65 70 75 80

Val Ile Leu Leu His Gly Phe Ser Ala Asp Lys Asp Asn Trp Ile Leu 85 90 95

Phe Thr	Lys	Glu 100	Phe	Asp	Glu	Lys	Tyr 105	His	Val	Ile	Ala	Val 110	Asp	Leu
Ala Gly	His 115	Gly	Asp	Ser	Glu	Gln 120	Leu	Leu	Thr	Thr	Asp 125	Tyr	Gly	Leu
Ile Lys 130	Gln	Ala	Glu	Arg	Leu 135	Asp	Ile	Phe	Leu	Ser 140	Gly	Leu	Gly	Val
Asn Ser 145	Phe	His	Ile	Ala 150	Gly	Asn	Ser	Met	Gly 155	Gly	Ala	Ile	Ser	Ala 160
Ile Tyr	Ser	Leu	Ser 165	His	Pro	Glu	Lys	Val 170	Lys	Ser	Leu	Thr	Leu 175	Ile
Asp Ala	Ala	Gly 180	Val	Asp	Gly	Asp	Thr 185	Glu	Ser	Glu	Tyr	Tyr 190	Lys	Val
Leu Ala	Glu 195	Gly	Lys	Asn	Pro	Leu 200	Ile	Ala	Thr	Asp	Glu 205	Ala	Ser	Phe
Glu Tyr 210	Arg	Met	Gly	Phe	Thr 215	Met	Thr	Gln	Pro	Pro 220	Phe	Leu	Pro	Trp
Pro Leu 225	Arg	Pro	Ser	Leu 230	Leu	Arg	Lys	Thr	Leu 235	Ala	Arg	Ala	Glu	Ile 240
Asn Asn	Lys	Ile	Phe 245	Ser	Asp	Met	Leu	Lys 250	Thr	Lys	Glu	Arg	Leu 255	Gly
Met Thr	Asn	Phe 260	Gln	Gln	Lys	Ile	Glu 265	Val	Lys	Met	Ala	Gln 270	His	Pro
Leu Pro	Thr 275	Leu	Ile	Met	Trp	Gly 280	Lys	Glu	Asp	Arg	Val 285	Leu	Asp	Val
Ser Ala 290	Ala	Ala	Ala	Phe	Lys 295	Lys	Ile	Ile	Pro	Gln 300	Ala	Thr	Val	His
Ile Phe 305	Pro	Glu	Val	Gly 310	His	Leu	Pro	Met	Val 315	Glu	Ile	Pro	Ser	Glu 320

<210> 5

<211> 3939

<212> DNA

<213> artificial sequence

<220>

 $<\!223\!>\,$ DNA fragment from plasmid pBK1Est coding for esterase of Oleispira antarctica

<400> 5

<400> 5 acaggaaaca gctatgacct	tgattacgcc	aagctcgaaa	ttaaccctca	ctaaagggaa	60
caaaagctgg agctcgcgcg	cctgcaggtc	gacactagtg	gatcaacggc	gttcatggta	120
ctggctgagt tcagcgtcat	aatgccgatg	cgatactggc	cgtcatgact	gagtacttct	180
tctgctagca ccgattttc	taatagcgca	gcttctttta	tttctgaacg	ggcaactgat	240
gtagtttttt tactaaccgg	ctttttaggc	atggtaaact	cttcgatatt	caaaattatt	300
actgttcata ttacaatcat	agtacaggct	agaggcccaa	aattgcagct	gatattcacc	360
tttattattc taagcattat	tacactcatc	gcggtgttat	taattgtgct	aaataaaaat	420
acccgtagcg gaaaaattca	gcaaatagcc	aaagaaaacg	attggcaata	ccaagaattc	480
atcgattttg atgatgacat	taagcaggca	aactttggcc	tattaaacta	cagtcaaaat	540
gcaattttta gacatctcat	tcaagcaact	gacgaacact	atggcttagc	gtttaagacc	600
tttgactgtc gagcgttaga	accttcaggt	attcacaata	gcagtcttat	tttatttacc	660
ctcgcactaa agactgaatt	caataaccta	cacatttgct	taagtcgaca	tattcaagat	720
aaagatgcct tcactgacat	cagtcaccaa	caatcaatca	aacaccaata	ccaatcgcaa	780
aaactcataa aactagccga	tcaccaaatc	ccaaaagcgt	tcaaaaatga	aacgagcacg	840
tcacacaaaa tcaatttata	cgctaacgaa	ccaggtcaaa	cttatcgttt	ttttgagcac	900
gtttgttcca ctaatgaaag	agaaaagtcg	ttaattcact	ggcttttggc	gtatccgcac	960
cttcacatag aaattagtaa	tggcatgcta	ctggccttta	aaaagaatca	gttaattgaa	1020
gaaacctcgc ttatctcagc	cattaccgct	gtagccgaat	ttgcgcttat	cctcagccat	1080
gattaaactg acgccaatta	atataagaca	tactaattaa	taactccctt	aattgagaag	1140
aataatgaaa aacacactca	aatcctcatc	acgttttagt	ctgaaacaac	tcggcaccgg	1200
cgctctgatt atctccagtt	tgttcttcgg	tggttgcacc	acaacacaac	aagataattt	1260
atacacaggg gttatgtctc	ttgcgagaga	cagegetgge	ctagaagtta	aaacagcctc	1320

tgccggtgac	gtcaatctta	cttatatgga	acgccaaggc	agtgacaaag	ataatgccga	1380
aagcgttatt	ttattacacg	gtttctctgc	tgataaagat	aactggattc	tttttaccaa	1440
agaattcgat	gaaaaatatc	atgttatcgc	tgtcgattta	gcgggacatg	gcgattcaga	1500
acaattatta	acgactgatt	acggtctcat	aaaacaagcc	gagcgtttag	atatcttctt	1560
atctggctta	ggggttaact	catttcacat	cgccggtaat	tcaatggggg	gggctatcag	1620
cgcaatctac	agtttgagtc	acccagagaa	agttaaaagt	cttacattga	tcgatgcagc	1680
aggtgtcgat	ggcgatactg	aaagcgaata	ctacaaagtt	ttggcagaag	gtaagaatcc	1740
tttaattgca	actgatgaag	caagttttga	ataccgcatg	ggtttcacca	tgactcagcc	1800
tcctttccta	ccttggccac	taagaccttc	tttattacgt	aaaacgctag	cccgtgccga	1860
gatcaataac	aaaatttttt	ccgatatgct	gaaaaccaaa	gaacgtttag	gaatgactaa	1920
ctttcaacag	aaaattgaag	tgaaaatggc	tcaacatcca	ttgccaacac	tgattatgtg	1980
gggcaaagaa	gatcgcgttc	ttgacgtatc	cgcagcagcg	gccttcaaaa	aaataattcc	2040
acaagcaact	gttcatattt	ttcctgaagt	aggccaccta	cctatggtag	aaattcctag	2100
tgaaagcgct	aaagtttatg	aagagttttt	gtcctctatt	aaataagagc	acataatcat	2160
gactgactta	taaacagcca	agcatttaaa	atgcttggct	gtttatttta	atggccaaat	2220
tattcaacga	ccaagctctg	cggtaaaatc	gcagtgggtt	tcttgttttc	atcaacagca	2280
acaaacgtga	aataccccgt	aatcgcattt	ttctgattat	caaaatacat	actttccacc	2340
agcatattaa	cttcaacttt	taaactcgtc	cgccctacct	ctataacact	ggcagtcaat	2400
tcgacaatgg	tacctgcggg	aacaggatgc	ttaaaatcga	ttcgatcact	gctgacggtt	2460
acgatgcttt	gtcgagaaaa	acgagtcgct	gcaataaaag	aaacctcatc	catccactgc	2520
attgcagtgc	caccgaataa	cgtatcatga	tgatttgttg	tctctggaaa	taccgcttta	2580
gaaatagtgg	tttttgatac	gcgctttcgc	tgcgcaataa	tatcttctct	gctaagagtt	2640
gcggatggca	tacataaact	cgcttgatta	agattaataa	taaatagtta	acagtatatt	2700
gaactgaggg	tctgaagaac	tctaatacct	ctgaagaact	ttgaggccgc	tagagagaaa	2760
agaccagtga	taatatttca	tcttgccatg	agagettate	atgaaagcct	gtgcttaaaa	2820
tcaatcatta	tatttattca	tctttaattg	aaataatacc	aatatatttc	atatataatt	2880
tcacactacc	cttatctcac	tagacttccc	gcgcataggc	gcaaacaatc	aacgcaagtt	2940
cacaataaag	cggttcgctg	caacacatgc	cctagcgtct	aaagtagcac	gcacaacact	3000

ggccagtcgt	actagcccct	ttgcgattcg	tgcagacgag	caacaagcgc	tattaaactt	3060
acctaaattt	ctaaccacca	ccattggttc	ttttccacaa	actcaaaaaa	ctcgtcaaat	3120
ccgcttgcaa	tttaaacgcg	atgacataga	tctaatcgat	tatcaaaccc	gcattcaagc	3180
gctcattaaa	aacgcaccac	tggcaagaag	ttctacctgc	actgaccaat	atgcaagcgg	3240
cggcggaaga	gctgcctttg	atcgatcaag	aagaagggag	cagcaaagag	gaaaacaatc	3300
aaaaagagga	gagcaatcaa	ataaaaacga	gttattgagg	attttaattt	taaaacaggt	3360
atattaatac	cctctctcgt	agtaaacaat	gactgtattt	acacaaaaat	aaatagaggt	3420
ataccatgtc	aaacatctgg	tttgaagtac	caaagattga	agtattaaac	cgtcaaatgg	3480
aaaatactgc	ctgcagcaac	ttaggcattc	aaattacaga	aattggcgat	gattatatca	3540
ctggcacaat	gccagcagat	gcacgtacct	tccagccaat	gggactgatt	catggcggct	3600
caaatgtatt	gctggcagaa	acactgggca	gcatggcagc	taactgctgt	attaatttgt	3660
ctcaagaata	ttgtgttggc	caagaaatta	acgccaacca	catacgcggt	gttcgttccg	3720