INTRODUCCIÓN A SIMULINK/SYSTEM GENERATOR (XILINX FPGA)

Algoritmos DSP

Implementación Algoritmos DSP

Flujo de Diseño

DSP Blocks

Xilinx FPGAs

Xilinx FPGA – Bloque DSP48

 Desde un punto de vista simple el DSP48 puede multiplicar dos números de 18 bits (18x18) y acumular el resultado en un ACC de 48 bits. Todo expresado en complemento a dos.

SE - Sign Extension

Nota: Dos DSP48 slices componen lo que se llama un Xtreme DSP Tile

C7

Xilinx DSP48 Tile

C77

Bloque DSP48 - Registros

Existen diferentes opciones del uso de los registros disponibles en el DSP48

Los registros \square ueden tener n = 0, I o 2 para las entradas del multiplicador.

Los registros \square ueden tener m = 0 o 1.

C7

Xilinx FPGA – Bloque DSP48

- El bloque DSP48 es parte del los bloques prediseñados ASMBLs (Application Specific Modular Blocks).
- El bloque DSP48 casi no usa el ruteo del FPGA, solo entrada y salidas. Ello implica: bajo consumo de potencia, muy alta frecuencia de trabajo y una implementación en silicio muy eficiente.
- Bloques DSP48E pueden fácilmente conectarse con sus bloques DSP48 vecinos. Pudiendo formar una cascada de bloques DSP48.

DSP48E - Virtex 5/6

DSP48 – FPGA Vista Interna I

Bloques DSP48

C77

Introducción a MatLab – Simulink

Matlab

- Matlab provee un entorno de computación técnica que facilita la exploración de soluciones matemáticas a problemas de sistemas:
 - Extensas librerías de funciones matemáticas, procesamiento de señales, comunicaciones, etc.
 - Visualización: gran variedad de funciones para el ploteo y visualización de datos.

Simulink

- Simulink provee un entorno de diseño gráfico para el desarrollo y simulación de sistemas dinámicos:
 - Totalmente integrado a Matlab
 - Editor gráfico
 - Simulador disparado por evento
 - Extensa librería de funciones parametrizadas
 - Bloques: matemática, fuentes, destinos, comunicaciones, DSP, Sistemas de Control, etc.

Simulink

- Visual Data Flow.
- Alternativa al uso de lenguajes de programación ('C').
- Posibilita visualizar la naturaleza dinámica de un sistema.
- Puede modelar concurrencia en un sistema:
 - Ejecuta secciones de un sistema en paralelo.
 - Similar a la concurrencia en HDLs

C7 © C. Sisterna

Fuentes de Señales en Simulink

- Algunos de las fuentes de señales mas usadas en diseños DSP son:
 - White-Noise (band limited)
 - Constante
 - Rampa
 - Onda Senoidal
 - Función Escalón
 - Generador de Pulsos
 - Contador/Contador Libre
 - Datos binarios de un archivo
 - Datos proveniente del espacio MatLab

C7 © C. Sisterr

Periodo de Muestreo

- Cada señal usada en un diseño DSP en Simulink debe ser muestreada cada cierto tiempo llamado periodo de muestreo.
- Si bien el periodo de muestro puede ser arbitrario, los diferentes bloques disponibles en Simulink usan un periodo de muestreo.
- Un periodo de muestreo de 1/1000 (0.001) indica que la función del bloque se ejecutará cada 0.001 segundo y producirá la respectiva salida.
- Recordar el Teorema de Nyquist:
 - Fm >= 2f_{max}

Periodo de Muestreo (cont.)

- El periodo de muestreo de un bloque tiene relación directa con la frecuencia del reloj del hardware que implementará el bloque
- El periodo de muestreo debe ser fijado sí o sí en:
 - Bloque denominado 'Gateway In'
 - Bloque sin entradas
- En los bloques que no es especificado, el periodo de muestreo es derivado del periodo de muestreo de las entradas al mismo.

Ejemplo Simulink I

Ejemplo Simulink 2

SYSTEM GENERATOR

System Generator

 Flujo de diseño integrado a Simulink, generando directamente el archivo de configuración del FPGA (.bit)

Integra:

- MatLab, Simulink
- HDL Síntesis
- Librerías de DSP
- Herramientas de implementación del FPGA
- Simulación en doble precisión y punto fijo
- Abstracción Aritmética
 - · Punto-fijo arbitrario, incluyendo cuantización y overflow

C7

System Generator

- Es un 'Toolbox' plug-in al entorno Simulink.
- Provee:
 - Bloques de distintas funciones implementables en FPGA
 - Generación de archivos VHDL
 - Simulación
 - IP Cores (48, hasta ahora)
 - Test benches

Generación de Archivos FPGA

- Generación del código VHDL y Verilog para:
 - Virtex-7, Virtex-6, Virtex-5, Virtex-4, Spartan-7, Spartan-6,
 Spartan-3E
- Mapeo y expansión del hardware respectivo a cada bloque
- Preservación de la jerarquía del modelo una vez generados los códigos VHDL y Verilog
- Utilización de IP cores de CoreGenerator
- Generación automática de:
 - Un proyecto ISE
 - Archivo de restricciones (constraint file *.ucf)
 - Archivo de simulación Test Bench y script *.do (ModelSim)

C7 © C. Sister

SysGen – Archivos Generados

Archivos de Diseño - .vhd o .v .edn o .ngc .xcf

.ise .tcl Archivos de Proyecto

Simulink Librería 📣 MATLAB 7.8.0 (R2009a) File Edit Debug Parallel Desktop Window Help Simulink Library Browser File Edit View Help → → → □ Enter search term Libraries Library: Simulink/Sinks Search Results: (none) · 🙀 Report Generator 🖬 Robust Control Toolbox Display Signal Processing Blockset SimEvents Floating Scope **ଭ** SimPowerSystems Simscape Out1 Simulink 3D Animation 🙀 Simulink Control Design Simulink Design Optimization Scope 🙀 Simulink Design Verifier · 🙀 Simulink Extras Stop Simulation Simulink Verification and Validation Stateflow System Identification Toolbox Terminator Target Support Package FM5 Target Support Package IC1 Nuntitled mat To File 🙀 Target Support Package TC2 🚺 Target Support Package TC6 To Workspace imout 🖟 🖬 Vehicle Network Toolbox 🖫 🙀 Xilinx Blockset Nilinx Reference Blockset XY Graph 🙀 Xilinx XtremeDSP Kit 🛨 🙀 xPC Target Block Description Simulink/Sinks/Display: Numeric display of input values.

Librería de Xilinx

Librería de Xilinx

- Elementos básicos: contadores, retardos, lógica binaria, etc.
- Comunicaciones: ECC bloques, Viterbi, Reed Solomon, etc.
- Tipo de Datos: convertir, rotar, concatenar, etc.
- DSP: IIR, FIR, FFT, etc.
- Math: multiplicar, acumular, invertir, contadores, etc.
- Memoria, dual port RAM, single port RAM, ROM, FIFO.
- Tools: ModelSim, Estimador de Recursos, SysGen Token

C7

Xilinx Librería

Bloque de Filtro FIR disponible en la librería

Interface Simulink-FPGA

- Simulink usa 'double' para representar números en simulación. A double es un número en punto flotante en complemento a dos de 64 bits.
- TODOS los bloques de Xilinx usan representación en n-bits en punto fijo (complemento a dos es opcional).
- Por ello se usa un bloque para la conversión de datos desde Simulink a un bloque de Xilinx, llamado Gateway In.Y otro bloque para la conversión desde un bloque de Xilinx a Simulink, llamado Gateway Out.

Ejemplo de Diseño

Bloque Gateway In

- Controla la conversión desde un número representado en double, entero o punto fijo a un número booleano de N-bits, que puede ser con signo (complemento a dos) o sin signo, con o sin punto fijo.
- Presenta la opción de manejar los extra bits durante la conversión (ovreflow).
- Este bloque define cuales van a ser las entradas del diseño codificado en HDL por SysGen.
- Define los estímulos en caso de que la opción de 'Create Testbench' haya sido seleccionada.
- Nombra los correspondientes puertos de entrada de la entidad (entity) generada por System Generator.

C77

Bloque Gateway In

🔀 Gateway In1 (Xilinx Gateway In) 🕒 🔲 🔀
Gateway in block. Converts inputs of type Simulink integer, double and fixed point to Xilinx fixed point type.
Hardware notes: In hardware these blocks become top level input ports.
Basic Implementation
Output type: Output type: Unsigned Output type:
Number of bits 8
Binary point 6
Quantization: Truncate • Round (unbiased: +/- Inf)
Overflow: Owrap Saturate Flag as error
Sample period 1
Simulation
Override with doubles
OK Cancel Help Apply

Bloque Gateway Out

- Convierte los datos de punto fijo del sistema en el FPGA a punto flotante Simulink.
- Define cuales van a ser los puertos de salida del sistema generado por System Generator.
- Nombra los correspondientes puertos de salida de la entidad (entity) generada por System Generator.

SysGen – Tipo de Datos

- FIX: tipo de dato fijo, es un número en punto fijo representado en complemento a dos.
- UFIX: es un número en punto fijo representado sin signo.

SysGen – Tipo de Datos

 Boolean: pueda tomar valores 'l' o '0'. Se usa para controlar señales como LOAD, CS, RESET, etc.

SysGen – Parámetros de un Bloque

Bloque System Generator

- Cada diagrama usando bloques de Xilinx in Simulink requiere que el bloque System Generator sea colocado en el diagrama.
- El bloque no se conecta a nada. Pero controla el proceso de generación del código HDL y de la implementación del sistema.
- Parámetros del bloque SysGen determinan
 FPGA a usar, código HDL, frecuencia objetivo, directorio de trabajo, etc.

C7 © C. Sisterna

Bloque System Generator

Creando un Diseño en Simulink

Usando Xilinx Blockset

Ejemplo de Diseño

Simulink Graficos de Senal

Simulación en Simulink

Proyecto FPGA – Xilinx ISE

C7 © C. Sisterna

Simulacion en Xilinx

Implementación del Diseño

Muchas Gracias!

C7 Technology

http://www.c7t-hdl.com

http://hdl-fpga.blogspot.com.ar/

C7 © C. Sisterna