Nan	ıe :				• • • •		
Roll	<i>No.</i> :				• • • •	•••••	
Invig	gilato	r's Si	ignature :			• • • • • • • • • • • • • • • • • • • •	
			CS/B.Tec	h (ECE)/\$	SEM-4/EC-	404/2011
			20	11			
E	LEC	TR	OMAGNETIC V SYS	VAVES FEMS	S A	AND RAD	ATING
Time Allotted: 3 Hours						Full Marks : 70	
		Th	e figures in the mar	gin indi	cat	e full marks	
Ca	ndide	ates o	are required to give as far o	their an Is practi			wn words
			GRO	UP A			
(Multiple Choice Type Questions)							
1. Choose the correct alternatives for any <i>ten</i> of the fo							O
							$10 \times 1 = 10$
	i)	A region of field for which $\nabla \times A \neq 0$ is called					
		a)	solenoidal field				
		b)	vortex field				
		c)	irrotational field				
		d)	conservative field				
ii) The unit of magnetic vector potential is							
		a)	volt/m	b)		weber/m	
		c)	coulomb/m	d)		newton/m.	
415	3						[Turn over

- iii) A circularly polarised wave results when
 - a) magnitudes of two waves are same
 - b) phase of the two waves are same
 - c) magnitudes of two waves are same but phase difference is 90
 - d) magnitudes of two waves are same and phase difference is 0.
- iv) In a transmission line, the distance between adjacent maxima and minima of a standing wave is
 - a) $\lambda/8$

b) $\lambda/4$

c) $\lambda/2$

- d) λ .
- v) Tropospheric scat er is used with frequencies in the range
 - a) HF

b) VHF

c UHF

- d) VLF.
- vi) The Stokes' theorem is

a)
$$\int_L H.dL = \oint_S (\nabla \times H).dS$$

b)
$$\int_L H.dL = \oint_s (\nabla . H).dS$$

c)
$$\oint H.dL = \int_{s} (\nabla \times H).dS$$

d)
$$\oint H.dL = \int_{S} (\nabla .H).dS$$
.

4153

The magnetic field intensity at any distance ρ from an infinity long current carrying conductor is

- a) $H = (I/2\pi\rho)a_{\varphi}$ b) $H = (I^2/2\pi\rho)a_{\varphi}$
- c) $H = (I/\pi\rho)a_{\varphi}$ d) $H = (I/\rho)a_{\varphi}$.

viii) The divergence of $G = xa_x + ya_y + za_z$ at point P(2, 2, 2,) is

1 a)

b) 2

c) 3 d) 4.

If the volume charge density is $\rho = 40xyz \ C/m^3$. The ix) total charge within the regi n defined by $0 \le x$, y, $z \le 1$, is

10 C a)

b) 20 C

c) 30 C d) 40 C.

The electric field intensity due to sheet charge density is X)

- a) $E = \frac{\rho_s}{2\epsilon_0} a_\rho$ b) $E = \frac{\rho_s}{2\epsilon_0} a_N$
- c) $E = \frac{\rho_s}{2\epsilon_0} a_z$ d) $E = \frac{\rho_s}{2\epsilon_0} a_\theta$.

Reflector in Yagi-Uda antenna is xi)

- a) active element
- b) driven element
- identical to dipole c)
- parasitic element. d)

4153

3

[Turn over

- xii) Duct propagation is similar to
 - a) free space propagation
 - b) propagation in waveguides
 - c) propagation in water
 - d) uniform plane wave.

xiii) Fresnel region is

- a) Far field region
- b) Near field region
- c) The region of constant field
- d) The region of no field.
- xiv) Gradient of a scalar function results in
 - a) Vector functi n
 - b) Scalar funct on
 - c) Peak function.
- xv) If the frequency of the incident wave increase by a factor of 4 the depth to which a wave penetrates a conducting material
 - a) increases by a factor of 2
 - b) increases by a factor of 4
 - c) decreases by a factor of 2
 - d) decreases by a factor 4.

4153 4

GROUP – B (Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. The vector potential \overrightarrow{A} and the scalar potential ϕ in a certain region of space are given by :

$$\vec{A} = \frac{1}{2} \propto t \left(\vec{a_y} x - \vec{a_x} y \right)$$

$$\phi = \frac{1}{4} \alpha \left(x^2 + y^2 \right)$$

where α is a constant. Calculate the electric and magnetic fields.

- 3. a) What do you mean by skin effect?
 - b) If the skin depth is 80 μ M at 4 MHz in a certain conducting medium, calculate the skin depth if the frequency is changed to 16 MHz.
- 4. A transmission line has characteristic impedance of 70 Ω and a phase constant of 3 rad/m at 100 MHz. Calculate the inductance per metre and capacitance per metre of the line.
- 5. Why is ionosphere important for raido wave propagation?Describe the different layers of ionosphere.5
- 6. a) What is radiation resistance of an antenna?
 - b) Define directivity of an antenna. What is the minimum value of directivity? 2 + (2 + 1)

4153 5 [Turn over

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) What is a Lorentz gauge?

- 2
- b) Use this gauge to obtain the inhomogeneous wave equations for the scalar and vector potentials.
- c) Indicate how solutions of the above wave equations leadto retarded scalar and vector potentials.3
- 8. a) For spherical polar coordinates $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$ and $z = r \cos \theta$, show that the unit vectors $\overrightarrow{a_r}$, $\overrightarrow{a_\theta}$, $\overrightarrow{a_\varphi}$ are related to the unit vectors $\overrightarrow{a_x}$, $\overrightarrow{a_y}$ and $\overrightarrow{a_z}$ as follows

$$\begin{pmatrix} \overrightarrow{a_r} \\ \overrightarrow{a_{\theta}} \\ \overrightarrow{a_{\phi}} \end{pmatrix} = \begin{pmatrix} \sin \theta \cos \varphi & \sin \theta \sin \varphi & \cos \theta \\ \cos \theta \cos \varphi & \cos \theta \sin \varphi & -\sin \theta \\ \sin \varphi & \cos \varphi & 0 \end{pmatrix} \begin{pmatrix} \overrightarrow{a_x} \\ \overrightarrow{a_y} \\ \overrightarrow{a_z} \end{pmatrix}$$
10

- b) H nce find the spherical components of a vector \overrightarrow{A} in terms of the rectangular components.
- 9. a) What is critical frequency? Derive secant law. 4 + 7
 - A signal is propagated at an angle of 22° with the surface of the earth, after reflection from the ionosphere, it is received at a station 1800 km away.
 Assuming flat earth, find out the virtual height.

4153

- 10. a) Explain what you understand by the term "Line parameter" in the context of a transmission line.

 Mention the units of the line parameters.

 4
 - b) Draw the equivalent circuit of a transmission line and hence write the transmission line equations for an elemental section of a transmission line.
 - c) A lossless line has a characteristic impedance of 50 ohm and is terminated in a load impedance of 75 ohm. If the length of line is $\lambda/2$, determine
 - i) Input impedance
 - ii) Reflection coefficient
 - iii) VSWR.

What will be the value of reflection coefficient, if the load impedance is 50 ohm?

- d) Show that for a lossless transmission line the impedance of a line repeats over every distance. 5
- 11. Write sho t note on any *three* of the following: 3×5
 - a) Horn antenna
 - b) MUF
 - c) Propagation constant
 - d) Sky wave propagation
 - e) Boundary conditions for electric field.

4153 7 [Turn over