«Обнаружение разладки с помощью метода SSA» Презентация ВКР

Кононыхин Иван Александрович, группа 20.М03-мм

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доцент Голяндина Н.Э. Рецензент: Лектор, Университет Кардиффа (Великобритания), Пепелышев А.Н.

Санкт-Петербург 2022г.

Временной ряд однороден, если его структура постоянна. При внешнем воздействии ряд терпит возмущение, появляется разладка в его структуре и возникает задача найти момент возмущения.

Задача обнаружения разладки: Определить момент изменения структуры ряда. Структура — подпространство сигнала.

Метод: Превышение заданного порога функцией обнаружения, основанной на скользящих отрезках ряда.

Временной ряд:

$$F_N = (f_1, \dots, f_N)$$
, где $f_n = egin{cases} C_1 \sin(2\pi\omega_1 n + \phi_1), & n < Q, \ C_2 \sin(2\pi\omega_2 n + \phi_2), & n \geq Q, \end{cases}$

Q — неизвестный момент возмущения.

Цель работы: Создать систему, автоматически выбирающую порог срабатывания и способную обнаруживать разладку, заданную изменением частоты в синусоидальном временном ряде F_N за указанный промежуток времени.

Параметры:

- $L: 2 \le L \le \min(B-1,T)$ длина окна,
- ullet B>L длина базовых подрядов, $T\geq L$ длина тестовых подрядов,
- ullet $F^{(1)}=(f_i,\ldots,f_{i+B-1}), 1\leq i\leq N-B+1$ базовые подряды,
- ullet $F^{(2)}=(f_i,\ldots,f_{i+T-1}), 1\leq i\leq N-T+1$ тестовые подряды,
- $U_l^{(1)}, l=1,\dots,L$ собственные векторы траекторной матрицы ряда $F^{(1)}$,
- ullet $I = \{i_1, \dots, i_r\}$ подмножество $\{1, \dots, L\}$, r ранг ряда,
- $\mathfrak{L}_r^{(1)} \stackrel{\mathsf{def}}{=} \mathrm{span}(U_l^{(1)}, l \in I)$,
- ullet $X_1^{(2)},\dots,X_{K_2}^{(2)}$ векторы вложений длины L ряда $F^{(2)}.$

Индекс неоднородности:

$$\begin{split} g(F^{(1)};F^{(2)}) &= \frac{\sum\limits_{l=1}^{K_2} \mathrm{dist}^2(X_l^{(2)},\mathfrak{L}_r^{(1)})}{\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2} = \frac{\sum\limits_{l=1}^{K_2} (\|X_l^{(2)}\|^2 - \sum\limits_{i=1}^r \langle X_l^{(2)}, U_i^{(1)} \rangle^2)}{\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2} = \\ &= 1 - \frac{\sum\limits_{l=1}^{K_2} \sum\limits_{i=1}^r \langle X_l^{(2)}, U_i^{(1)} \rangle^2}{\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2}. \end{split}$$

Матрица неоднородности:

Матрица $\mathbf{G} = \mathbf{G}_{B,T}$, состоящая из элементов g_{ij} :

$$g_{ij} = g(F_{i,i+B-1}; F_{j,j+T-1}),$$

 $1 \le i \le N - B + 1, \quad 1 \le j \le N - T + 1,$

есть **матрица неоднородности** временного ряда F_N .

Строковая:

Ряд $D_{T,N}^{(r)}$ с элементами $d_{n-1}^{(r)}\stackrel{\mathsf{def}}{=} g(F_{1,B};\; F_{n-T+1,n}),\;\; T\leq n\leq N.$

Столбцовая:

Ряд $D_{B,N}^{(c)}$ с элементами $d_{n-1}^{(c)}\stackrel{\mathsf{def}}{=} g(F_{n-B+1,n};\;F_{1,T}),\;\;B\leq n\leq N.$

Диагональная:

Ряд $D_{T+B,N}^{(d)}$ с элементами

$$d_{n-1}^{(d)} \stackrel{\mathsf{def}}{=} g(F_{n-T-B+1,n-T+1}; \ F_{n-T+1,n}), \ T+B \le n \le N.$$

Симметричная:

Ряд $D_{B,N}^{(s)}$ с элементами $d_{n-1}^{(s)}\stackrel{\mathsf{def}}{=} g(F_{n-B+1,n};\; F_{n-B+1,n}),\;\; B\leq n\leq N.$

Сравнение функций обнаружения

Постановка задачи: Численно сравнить имеющиеся четыре функций обнаружения неоднородности и выбрать лучшую в смысле момента преодоления заданного порога γ^* и скорости роста для ряда $F_N' = F_N + \epsilon, \epsilon \sim N(0,\sigma^2).$

Задание неоднородности ряда F_N :

1 Фазовый сдвиг: $\phi_1 \neq \phi_2$.

② Выброс:
$$f_n = \begin{cases} C_1 \sin(2\pi\omega_1 n + \phi_1), & n \neq Q, \\ 10 \cdot C_1, & n = Q. \end{cases}$$

- **③** Изменение амплитуды: $C_1 \neq C_2$.
- **4** Изменение частоты: $\omega_1 \neq \omega_2$.

Сравнение функций обнаружения

 $N=700,\ Q=301,\ \omega_1=0.1,\ \omega_2=0.2,\ C_1=1,\ C_2=2,\ \phi_1=0,\ \phi_2=\frac{n}{2},\ \sigma^2=0.25,\ L=60,\ B=T=100$

Рис.: Функции обнаружения. Пример на одной реализации шума.

Рассмотрим ряд F_N с неоднородностью, заданной изменением частоты периодики — $\omega_1 \neq \omega_2$. Пусть $C_1 = C_2 = 1$.

Постановка задачи: Аналитически упростить индекс неоднородности $g(F^{(1)};F^{(2)})$ для строковой функции обнаружения $d_{n-1}^{(r)}$, чтобы получить в явном виде зависимость от частот до и после разладки.

Результат:

$$g(F^{(1)}; F^{(2)}) = 1 - \frac{\sum\limits_{l=1}^{K_2} \sum\limits_{i=1}^r \langle X_l^{(2)}, U_i^{(1)} \rangle^2}{\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2} \approx$$

$$\approx 1 - \frac{\left[\left(\frac{\sin(2\pi Lb)}{4\pi b} - \frac{\sin(2\pi La)}{4\pi a} \right)^2 + \left(\frac{\cos(2\pi Lb) - 1}{4\pi b} - \frac{\cos(2\pi La) - 1}{4\pi a} \right)^2 \right]}{\frac{L^2}{4}} = g_a(\omega_1, \omega_2),$$

где
$$a=\omega_1+\omega_2$$
, $b=\omega_1-\omega_2$. При $\varepsilon\to 0$ и $L\to\infty, K_2\to\infty$, $|g(F^{(1)};F^{(2)})-g_a(\omega_1,\omega_2)|<\varepsilon$.

Аппроксимация индекса однородности: точность аппроксимации

Рис.: Корректность аппроксимации $g(\omega_1,\omega_2)$.

Аппроксимация переходного интервала

При достаточно маленьком значении L по отношению к T переходный интервал становится линейным.

Рис.: Линейность переходного интервала при большом значении T-L.

Система обнаружения момента возмущения

Постановка задачи: Создать систему, способную обнаружить разладку за заданный промежуток времени в синусоидальных временных рядах, порожденную изменением частоты. Сигнал о моменте возмущения — превышение $d_{n-1}^{(r)}$ порога γ^* .

Описание системы:

ullet Входные данные: F_N , k, Δ_{min} .

Результат: Q̂.

Рис.: Система. Пример работы.

Оценка качества системы

Характеристики системы:

- $\operatorname{FP}(\gamma^*)$ при $\hat{Q} < Q$.
- ullet $\mathrm{TP}(\gamma^*)$ при $\hat{Q} \in [Q,Q+k].$
- $\mathrm{FN}(\gamma^*)$ при $\hat{Q} > Q + k$.

Промоделируем $n_{iter}=200$ раз реализацию шума ϵ и на каждой итерации посчитаем характеристики системы.

Вероятности обнаружения:

•
$$\operatorname{FPR}(\gamma^*) = \frac{\sum\limits_{i=1}^{n_{iter}} \operatorname{FP}_i(\gamma^*)}{n_{iter}}.$$

• TPR(
$$\gamma^*$$
) = $\frac{\sum\limits_{i=1}^{n_{iter}} \text{TP}_i(\gamma^*)}{n_{iter}}$.

•
$$FNR(\gamma^*) = \frac{\sum\limits_{i=1}^{n_{iter}} FN_i(\gamma^*)}{n_{iter}}$$
.

Оценка системы: параметр T

Рис.: Работы системы. Оценка, T=70.

Рис.: Работы системы. Оценка, T=130.

Оценка системы: T-L

Рис.: Работы системы. Одна итерация, T-L=10.

Рис.: Работы системы. Одна итерация, T-L=70.

Оценка системы: параметр B

Рис.: Функция d_n . Реализации шума, B=90.

Рис.: Функция d_n . Реализации шума, B=200.

Рис.: Система. Пример работы.

Рис.: Функция d_n . Поведение функции при $\omega_2=\frac{1}{7}$ и $\omega_2=\frac{1}{9}$.