Introducción a Métodos Econométricos en R.

Professor: Horacio Larreguy

TA: Eduardo Zago

ITAM Investigación Aplicada 1 / Microeconometría Aplicada, 30/08/2023

General Perspective

DIFFERENCE-IN-DIFFERENCE

Datos Panel

Tratamiento Dicotómico

TWFE

Event Study

Leads y Lags

Tratamiento Continuo

Event Study

¿Qué son los datos panel?

- ▶ Para realizar un análisis de DiD, se necesita cierta estructura en nuestra base de datos.
- Los datos panel combinan las dimensiones de corte transversal y serie de tiempo.
- Las unidades pueden ser observadas repetidamente a través de distintos periodos en el tiempo.
- Estas unidades pueden ser individuos, estados, países y para los proyectos que ustedes verán regularmente serán municipios.

¿Qué son los datos panel?

▶ Se pueden definir de la siguiente manera:

$$\{x_{it}: i=1,2,...n, t=1,2,...,T\}$$

Table: Datos Panel Balanceados

unidades	$_{ m tiempo}$	Y	X
i_1	t_1	1.3	.0064436723
i_1	t_2	1.2	.51859677
i_1	t_3	3	.3410252
i_2	t_1	1.25	.88488311
i_2	t_2	1.32	2.954581
i_2	t_3	4	4.2451215
		••	
i_n	t_1	0.94	3.49329
i_n	t_2	1.1	3.8499
i_n	t_3	4	2.629

Balanceados vs. No-Balanceados

Los paneles balanceados tienen los mismos periodos de tiempo para cada unidad. Una base no balanceada se vería así:

Table: Datos Panel No-Balanceados

unidades	tiempo	Y	X
i_1	t_1	1.3	.0064436723
i_1	t_2	1.2	.51859677
i_1	t_3	3	.3410252
i_1	t_4	1.25	.88488311
i_2	t_1	1.32	2.954581
i_2	t_2	4	4.2451215
		••	
i_{n-1}	t_1	0.94	3.49329
i_{n-1}	t_2	1.1	3.8499
i_n	t_1	4	2.629

Tratamiento Dicotómico

- ► Empezamos el tutorial observando un ejemplo sencillo, con tratamiento dicotómico y además, todas las unidades del grupo de tratamiento seran tratadas al mismo tiempo.
- ▶ Para eso es necesario hacer dos cosas: (1) cargar los paquetes necesarios y (2) generar una base de datos.

```
library(tidyverse)
library(plm)
library(haven)
library(fixest)
library(lfe)
```

SIMULACIÓN DE LA BASE

Con el objetivo de encontrar los resultados desados (en terminos didácticos), generaremos una base de datos a partir de la siguiente simulación:

```
set.seed(32) # Semilla aleatoria
# Vector de errores que diferenciara entre individuos sin
# generarnos errores estandar muy amplios.
error <- runif(80, min=0, max=1)
# Variable de Salario
control <- rep(floor(runif(10, min=10, max=20)), 8)
# Variable de tiempo (T=10)
time <- rep(c(1:10), 8)
# Variable que distinque entre tratamiento y control (n=8)
treatment \leftarrow c(rep(0,10), rep(1,10), rep(0,10), rep(1,10),
             rep(0.10), rep(1.10), rep(0.10), rep(1.10))
# Generamos la variable para distinguir entre individuos
unidades \leftarrow c(rep(1, 10), rep(2, 10), rep(3, 10), rep(4, 10),
             rep(5, 10), rep(6, 10), rep(7, 10), rep(8, 10))
# Variable indicadora despues de tratamiento
post \leftarrow \text{rep}(c(\text{rep}(0,5), \text{rep}(1,5)), 8)
post pretrend \leftarrow \text{rep}(c(\text{rep}(0.4), \text{rep}(1.6)), 8)
```

SIMULACIÓN DE LA BASE

- Necesitamos ahora generar nuestras variables dependientes de salario.
- Noten la diferencia entre la variable con **tendencias** paralelas y la que tiene **tendencias** diferenciales.

DATOS PANEL SIMULADOS

FIGURE:

unidades	‡	time ‡	post ‡	treatment ‡	wage ‡	wage_pretrend ‡
					15.50584	15.50584
					15.59481	15.59481
					15.80875	15.80875
					10.72882	10.72882
					11.15199	11.15199
					15.95619	15.95619
					14.75354	14.75354
					18.85206	18.85206
					11.67344	11.67344
					18.38713	18.38713
					15.65800	15.65800
					15.32137	15.32137
					15.61208	15.61208
					10.77264	10.77264
					11.56621	12.26621
					18.04880	18.74880
					19.09945	19.79945
					24.71947	25.41947
					19.92221	20.62221
	2	10	1	1	29.20759	29.90759

- Cuando trabajamos con datos en el tiempo regularmente es útil graficar la tendencia de las variables.
- ► En este caso sera util ver la tendencia del grupo de control y el de tratamiento.
- ► Comenzamos modificando la base:

► Hacemos el line plot para la variable con tendencias paralelas:

```
stat2 <- ggplot(graph_treat, aes(time_dd, wage_mean)) +
    geom_line(aes(color="Treated"), size = .6) +
    geom_line(data = graph_control, aes(color = "Control"),
    size = .6) +
    labs(color="", x = "Days from T", y = "Wage") +
    theme_bw() +
    scale_color_manual(values=c("black", "darkred")) +
    geom_vline(xintercept=0, color="black",
        linetype="dotted") +
    scale_x_continuous(breaks=seq(-5,4,1)) +
    ggtitle("Wage evolution through time",
        subtitle = "Non-Differential Pre-Trends")
stat2</pre>
```


► Ahora para la variable sin tendencias paralelas:

```
stat <- ggplot(graph_treat, aes(time_dd, wage_p_mean)) +
    geom_line(aes(color="Treated"), size = .6) +
    geom_line(data = graph_control, aes(color = "Control"),
    size = .6) +
    labs(color="", x = "Days from T", y = "Wage") +
    theme_bw()+
    scale_color_manual(values=c("black", "darkred")) +
    geom_vline(xintercept=0, color="black", linetype="dotted") +
    scale_x_continuous(breaks=seq(-5,4,1)) +
    ggtitle("Wage evolution through time",
    subtitle = "Differential Pre-Trends")
stat</pre>
```


DID CANÓNICO

▶ Como visto en clase, nos interesa estimar este valor:

$$\tau = (\hat{Y}_t^1 - \hat{Y}_{t-1}^1) - (\hat{Y}_t^0 - \hat{Y}_{t-1}^0)$$

- ▶ Donde \hat{Y} son medias de la variable dependiente en el tiempo t (antes y después del tratamiento) para $i = \{0, 1\}$.
- ▶ Para hacer esto hay dos formas, la antigua (canónica) y la nueva (TWFE).
- La especificación para la primera:

$$Y_{it} = \alpha + \beta Treat_i + \gamma Post_t + \tau Treat_i \cdot Post_t + \epsilon_{it}$$

TWFE

La forma en la que nosotros estimaremos a lo largo del curso estas regresiones es utilizando el modelo de *Two Way Fixed Effects*, el cual esta especificado de la siguiente forma:

$$Y_{it} = \alpha + \gamma_i + \lambda_t + \tau Treat_i \cdot Post_t + \epsilon_{it}$$

- ▶ Donde γ_i son unit fixed effects y λ_t son time fixed effects.
- **►** En R:

TWFE VS. CANÓNICO

Y observamos los resultados (solo para el caso donde se cumple el supuesto de tendencias paralelas):

	Dependent variable:		
	Canonic	TWFE	
	(1)	(2)	
DiD Estimate	6.185***	6.185***	
	(0.067)	(0.066)	
Treatment	0.076		
	(0.075)		
Post	2.123***		
	(0.051)		
Unit Fixed Effects	No	Yes	
Time Fixed Effects	No	Yes	
Observations	80	80	
\mathbb{R}^2	0.571	0.941	

Notes: Standard errors are clustered at the unit level. * denotes p<0.1, ** denotes p<0.05, and *** denotes p<0.01.

TWFE VS. CANÓNICO

- ▶ Lo primero que resalta es la diferencia en errores estándar entre especificaciones, siendo la de TWFE más eficiente (de menor varianza).
- ightharpoonup A su vez, la R^2 es mayor, por lo que TWFE explica mejor la variabilidad en el outcome de interés.
- ➤ Con TWFE se controla por un mayor número de características constantes en el tiempo y entre unidades, que tan solo agregando las dummies.
- ▶ Veamos que pasa si agregamos efectos fijos y dummies de tiempo y tratamiento.

TWFE vs. Canónico

▶ Observamos que como las variables de tratamiento y tiempo son colineares a los efectos fijos, R las dropea (el modelo técnicamente esta mal especificado)

```
reg3 <- lfe::felm(wage ~ treat_post + treatment + post |
                   unidades + time, data = dd data)
Call:
lfe::felm(formula = wage ~ treat_post + treatment + post | unidades +
            time, data = dd_data)
Residuals:
    Min
             10 Median 30
                                      Max
-2.64764 -0.37221 0.00372 0.32630 2.40302
Coefficients:
        Estimate Std. Error t value Pr(>|t|)
treat_post 6.1850 0.5573 11.1 2.29e-16 ***
               NaN
                           NΑ
treatment
                                 NaN
                                          NaN
               NaN
                           NA
                                 NaN
                                          NaN
post
```

Supuestos: Tendencias Paralelas y No Anticipación

- Como visto en clase, estos resultados no nos dicen nada sobre la magnitud y dirección del efecto causal si no se cumplen los supuestos de **tendencias paralelas** y **no** anticipación.
- Para verificar que se cumplan podemos realizar dos pruebas:
 - 1. Event Study Design: efectos dinámicos del tratamiento
 - 2. **Leads and Lags:** efecto de adelantar el tratamiento t periodos

- ► El Event Study Design nos proporcionara los efectos dinámicos del tratamiento.
- La idea básica es interactuar las dummies de tiempo (λ_t) , con la de tratamiento. La especificación es la siguiente:

$$Y_{it} = \alpha + \gamma_i + \lambda_t + \tau Treat_{it} + \sum_{t'=-T}^{0} \delta_{t'} \lambda_{t'} \cdot Treat_i + \sum_{t'=1}^{T} \delta_{t'} \lambda_{t'} \cdot Treat_i + \epsilon_{it}$$

- Nos interesa que los coeficientes de -T a 0 sean estadísticamente iguales a 0.
- ➤ Si alguno de los coeficientes es distinto de 0, existe evidencia en favor de que no se cumple el supuesto de tendencias paralelas.
- Excluimos el periodo previo al tratamiento, que será nuestro periodo de referencia.

- ▶ Modificamos la base de datos para poder realizarlo.
- ▶ No necesitamos generar las dummies de tiempo, solo generar una variable que nos diga la distancia de cada observación al periodo de tratamiento (si hay)

- Corremos la regresión usando el paquete fixest, dada la practicidad de la función i().
- Noten que la sintáxis es casi idéntica a la de felm().

Los resultados del Event Study siempre se presentan en gráfica, por lo que podemos usar **iplot()**.

```
iplot(dd_plot_reg)
```

EVENT STUDY: PARALLEL TRENDS

EVENT STUDY: PRE-TRENDS

Effect on wage_pretrend

- ► El problema con iplot() es que no nos da mucha flexibilidad para manipular la gráfica (solo cambiar títulos, ejes, y así).
- ➤ Se vuelve entonces importante saber interactuar con los objetos que salen tanto de feols() como de felm():

▶ Utilizando ggplot(), noten que eje X es el tiempo al tratamiento, el eje y es el valor del coeficiente:

```
colors <- c("#000000", "#0072B2", "#D55E00")
DID_plot <- ggplot(data = datos_did,</pre>
            mapping = aes(y = coeficientes, x = time)) +
            geom_point(aes(colour = factor(type)), size = 2) +
            geom_errorbar(aes(ymin=(coeficientes-1.96*ses),
                ymax=(coeficientes+1.96*ses),
                colour = factor(type)),
                width=0.2) +
            geom_hline(yintercept = 0, linetype="solid",
                    color ="grey", 2) +
            geom_vline(xintercept = 5,
                    linetype="dashed", color ="red", 2) +
            theme bw() +
            vlab("Valor estimado (95% IC)") +
            xlab("Años desde tratamiento") +
            scale_color_manual(name = "Periodo",
                    values= colors) +
            theme(legend.position = "none")
```

EVENT STUDY: PARALLEL TRENDS

EVENT STUDY: PRE-TRENDS

- Para probar que se cumplen tanto los supuestos de tendencias paralelas como los de no anticipación, podemos también correr una regresión con Leads y Lags.
- Como veremos más adelante, si podemos hacer un Event Study (el tratamiento es discreto) nunca recurriremos a este test ya que perdemos observaciones.
- ► La idea general es analizar que sucede si adelantamos el tratamiento n periodos, a traves de la siguiente especificación:

$$Y_{it} = \alpha + \gamma_i + \lambda_t + \tau Treat_i \cdot Post_t + \sum_{t'=1}^{f} \delta_{t'} Treat_i \cdot Post_{t+t'} + \sum_{t'=1}^{l} \delta_{-t'} Treat_i \cdot Post_{t-t'} + \epsilon_{it}$$

$$(1)$$

ightharpoonup Donde f es el número de adelantos y l el de retrasos.

▶ Lo primero que hay que hacer es generar estas variables.

```
# Creamos múltiples leads and lags
dd <- pdata.frame(dd_data, index = c("unidades", "time"))</pre>
dd <- cbind(dd, plm::lag(dd$treat_post, c(-2, -1, 1, 2)))</pre>
dd <- as.data.frame(transform(dd))</pre>
names(dd)[(length(dd) - 3):length(dd)] <- c("tratamiento_Lead_2",
            "tratamiento_Lead_1", "tratamiento_Lag_1",
            "tratamiento_Lag_2")
# Revertimos los factores creados por plm
dd <- unfactor(dd)
# Cambiamos los valores NAs
dd[dd$treatment == 0, c("tratamiento_Lead_2",
                         "tratamiento_Lead_1", "tratamiento_Lag_1",
                         "tratamiento_Lag_2")] <- 0
```

➤ Y corremos la regresión utilizando felm()

Los resultados se pueden presentar tanto en tabla, como en gráfica.

Leads y Lags

▶ Para la tabla usamos stargazer()

```
# Tabla
dep var <- c("\\shortstack{Differential \\\\ Pre-Trend}".</pre>
        "\\shortstack{Non-Differential \\\\ Pre-Trend}")
tablaleads <- stargazer(leads1, leads2,
                        header = FALSE.
                        font.size = "scriptsize",
                        dep.var.labels.include = FALSE,
                        table.placement = "H".
                        omit = c("Constant", "unidades", "time",
                             "tratamiento_Lag_1",
                             "tratamiento_Lag_2"),
                        column.labels = dep var.
                        covariate.labels = c("Treatment", "Lead 1", "Lead 2"),
                        omit.stat = c("f", "ser", "adj.rsq"),
                        add.lines = list(c("Unit Fixed Effects", "Yes", "Yes"),
                                   c("Time Fixed Effects", "Yes", "Yes")),
                        title = "Leads and Lags",
                        type = "latex")
note.latex <- "\\multicolumn{3}{c} {\\parbox[t]{7cm}{ \\textit{Notes:}}</pre>
Standard errors are clustered at the time level.
Lag variables are included but not shown.
* denotes p$<$0.1, ** denotes p$<$0.05, and *** denotes p$<$0.01.}} \\\"
tablaleads[grepl("Note", tablaleads)] <- note.latex
cat(tablaleads)
```

	Dependent variable:		
	Differential Pre-Trend	Non-Differential Pre-Trend	
	(1)	(2)	
Treatment	1.878***	1.878***	
	(0.337)	(0.337)	
Lead 1	0.673**	-0.027	
	(0.250)	(0.250)	
Lead 2	-0.041	-0.041	
	(0.231)	(0.231)	
Unit Fixed Effects	Yes	Yes	
Time Fixed Effects	Yes	Yes	
Observations	64	64	
\mathbb{R}^2	0.996	0.996	

Notes: Standard errors are clustered at the time level. Lag variables are included but not shown. * denotes p<0.1, ** denotes p<0.05, and *** denotes p<0.01.

Para la gráfica, generamos la base y usamos ggplot:

```
# leads2 para no pre-trends
datos <- data.frame(coeficientes=coef(leads1), ses = leads1$se , time <- c(0:2, -1, -2),
                    type = rep(1:3, c(2,1,2))
datos$time <- factor(datos$time, levels = c(2,1,0,-1,-2))
colors <- c("#000000", "#0072B2", "#D55E00")
leads lags <- ggplot(data = datos, mapping = aes(v = coeficientes, x = time)) +</pre>
     geom point(aes(colour = factor(type)), size = 2) +
     geom_errorbar(aes(ymin=(coeficientes-1.96*ses), ymax=(coeficientes+1.96*ses),
                colour = factor(type)), width=0.2) +
     vlim(c(-4.4)) +
     geom_hline(yintercept = 0, linetype="solid", color ="grey", 2) +
     geom_vline(xintercept = 2.5,linetype="dashed", color ="red", 2) +
     theme bw() +
     vlab("Valor estimado (95% IC)") +
     xlab("Periodo") +
     scale x discrete(labels = c("t+2", "t+1", "tratamiento", "t-1", "t-2"), breaks = 2:-2) +
     scale color manual(name = "Periodo", values= colors) +
     theme(legend.position = "none")
```

PARALLEL TRENDS

PRE-TRENDS

- ▶ Uno de los problemas de correr leads y lags es que pierdes observaciones igual al número de rezagos/adelantos que incluyas × el número de unidades que uno tiene.
- Esto puede darnos coeficientes sesgados y llevarnos a conclusiones erróneas.
- ▶ Un truco que podemos utilizar, si tenemos una base de tratamiento con mayor número de periodos que la de outcomes, es realizar los Leads/Lags en esa base.
- Supongamos que tenemos dos bases distintas, tratamiento y outcomes:

```
df_outcomes <- dd_data |> select(unidades, time, wage)
df_tratamiento <- dd_data |> select(unidades, time, treat_post)
```

Leads y Lags

▶ Más aún, supongamos que la base de tratamiento tiene 2 periodos más que la de outcomes:

Noten que nos acoplamos a la misma simulación.

Ahora nos conviene realizar los leads en esta base, ya que tenemos dos periodos más de donde conseguir información:

Unimos con nuestra base de outcomes, noten que no perdemos ninguna observación:

Leads y Lags

Corremos la regresión y hacemos la tabla:

	Dependent variable: wage	
	(1)	(2)
Tratamiento	6.192***	6.185***
	(0.210)	(0.066)
Adelanto 1	-0.027	
	(0.244)	
Adelanto 2	0.024	
	(0.237)	
Jnit Fixed Effects	Yes	Yes
Γime Fixed Effects	Yes	Yes
Observations	80	80
\mathbb{R}^2	0.941	0.941
Vote:	*p<0.1; **p<0.05; ***p<0.01	

Tratamiento Continuo

- ➤ Supongamos ahora que tenemos una base de datos tipo panel que tiene unidades, tiempo, un **tratamiento continuo** y una variable que llamamos *outcome*.
- ► Cuando hablamos de tratamiento continuo, regularmente nos referimos a differences in intensity.
- ▶ Un buen ejemplo es el de cobertura 3G, donde la variación entre municipios es en intensidad (porcentaje de cobertura).
- ▶ En general el planteamiento es el mismo, pero la forma de correr las especificaciones difiere.

TRATAMIENTO CONTINUO

unidades	tiempo	tratamiento	outcome
1	2010	0	.0064436723
		-	
1	2011	0	.51859677
1	2012	0	.3410252
1	2013	0	.88488311
1	2014	.13906856	2.954581
1	2015	.25217873	4.2451215
1	2016	.64983302	3.6849329
1	2017	.76195776	3.9613857
1	2018	1	4.1536264
1	2019	1	3.6901627
		•••	
10	2010	0	.42301515
10	2011	0	.83902609
10	2012	0	.070191339
10	2013	0	.19813846
10	2014	0	.91105127
10	2015	0	.21894622
10	2016	.29448077	2.9036815
10	2017	.55710214	3.8275743
10	2018	1	4.1079011
10	2019	1	3.7057323

TWFE

► El planteamiento del TWFE es análogo al de tratamiento dicotómico.

```
reg_did <- felm(outcome ~ tratamiento | unidades + tiempo | 0 | unidades,
            data = data continuo)
tabldedd <- stargazer(reg_did,</pre>
                  header = FALSE.
                  font.size = "scriptsize",
                  dep.var.labels.include = FALSE,
                  table.placement = "H",
                  omit = c("Constant", "unidades", "time"),
                  column.labels = c("TWFE").
                  covariate.labels = c("DiD Estimate"),
                  omit.stat = c("f", "ser", "adj.rsq"),
                  add.lines = list(c("Unit Fixed Effects", "Yes"),
                                    c("Time Fixed Effects", "Yes")).
                  title = "DiD Continuo".
                  type = "latex")
```

TWFE

TABLE: DiD Continuo

	$Dependent\ variable:$	
	TWFE	
DiD Estimate	3.434***	
	(0.123)	
Unit Fixed Effects	Yes	
Time Fixed Effects	Yes	
Observations	200	
\mathbb{R}^2	0.900	
Note:	*p<0.1; **p<0.05; ***p<	

Para Leads y Lags, el código es casi idéntico al caso de tratamiento dicótomico:

```
dd <- pdata.frame(data_continuo, index = c("unidades","tiempo"))</pre>
dd <- cbind(dd, plm::lag(dd$tratamiento, c(-3:3)[-4]))
dd <- as.data.frame(transform(dd))</pre>
names(dd)[(length(dd) - 5):length(dd)] <-</pre>
c("tratamiento_Lead_3", "tratamiento_Lead_2",
    "tratamiento_Lead_1", "tratamiento_Lag_1",
      "tratamiento_Lag_2", "tratamiento_Lag_3")
dd <- unfactor(dd)
dd[dd$treat == 0.
c("tratamiento_Lead_3", "tratamiento_Lead_2",
    "tratamiento_Lead_1", "tratamiento_Lag_1",
      "tratamiento_Lag_2", "tratamiento_Lag_3")] <- 0
```

► Corremos la especificación:

```
reg1 <- felm(outcome ~ tratamiento + tratamiento Lead 1 + tratamiento Lead 2 +
               tratamiento_Lead_3 + tratamiento_Lag_1 +
               tratamiento Lag 2 + tratamiento Lag 3 | unidades + tiempo | 0 |
               unidades, dd)
table_leads_lags <- stargazer(reg1, header = FALSE,
                              font.size = "footnotesize".
                              dep.var.caption = "",
                              label = "tab:tablaR".
                              dep.var.labels.include = FALSE,
                              table.placement = "H".
                              omit = c("Constant", "year", "unidades", "Lag"),
                              column.labels = "Outcome".
                              covariate.labels = c("Tratamiento".
                                                   "Tratamiento Lead 1".
                                                   "Tratamiento Lead 2".
                                                   "Tratamiento Lead 3").
                              omit.stat = c("f", "ser", "adj.rsq"),
                              add.lines = list(c("Outcome mean", round(mean(dd$outcome),3)),
                                               c("Outcome std. Dev.", round(sd(dd$outcome),3)).
                                               c("Outcome min", round(min(dd$outcome),3)),
                                               c("Outcome max", round(max(dd$outcome),3)),
                                               c("Cluster", "unidades")).
                              title = "Leads and lags", type = "latex")
```

Notamos la magnitud del problema, perdemos demasiadas observaciones ya que tenemos 3 lags y 3 leads.

	Outcome (1)	Outcome (2)
Tratamiento	2.746***	3.434***
	(0.396)	(0.123)
Tratamiento Lead 1	0.224	
	(0.414)	
Tratamiento Lead 2	0.345	
	(0.440)	
Tratamiento Lead 3	0.789	
	(0.631)	
Observations	80	200
$\frac{R^2}{R^2}$	0.912	0.900
Note:	*p<0.1; **p<0.05; ***p<0.01	

EVENT STUDY

- ► Lo más eficiente y preciso para checar tendencias paralelas es hacer un Event Study.
- ▶ Sin embargo, en el caso continuo, para realizar el Event Study sin usar otros paquetes económetricos que se apoyen en utilizar not-yet-treated units como control, necesitamos definir que unidades son de tratamiento y cuáles de control.
- La forma más sencilla, es si en algún momento del tiempo el tratamiento continuo se vuelve mayor a cierta δ para esa unidad (en este caso la mediana).
- Es decir, detectar never-treated units. En código:

EVENT STUDY

▶ Hacemos unas últimas modificaciones, y corremos el código que ya habíamos visto:

```
data_continuo <- data_continuo |> group_by(unidades) |>
              mutate(event_time = tiempo[tratamiento > 0][1]) |>
              ungroup()
  data_continuo <- data_continuo %>% group_by(unidades) %>%
              mutate(time_to_event = tiempo - event_time) |>
              ungroup() |>
              mutate(time_to_event = ifelse(is.na(time_to_event) == T,
                      0, time_to_event))
dd_plot_cont <- feols(outcome ~ i(time_to_event, treat, ref = -1) |</pre>
                     unidades + tiempo, cluster = "unidades",
                    data = data continuo)
  ip <- iplot(dd_plot_cont,</pre>
              xlab = 'Time to treatment',
              main = 'Event Study Continuo')
```

Event Study Continuo

