Machine Learning: Programming Exercise 3: Clustering

- 1 Explore the sklearn.datasets package for generating random data sets. In particular, use make_blobs, make_cicles and make_moons with different parameter values to generate 10 different datasets. These data sets will be used to evaluate the various clustering algorithms to be implemented within this exercise.
- 2 Implement the following algorithms using numpy. You should attempt to vectorized the code to whatever extent possible.
 - K-means: This should include code for ensuring no empty clusters are produced. Also implement atleast three methods for initialising clusters.
 - Expectation Maximization: Implement code to obtain a train/test split (without for loops) of the data and use maximum linkelihood estimate to choose the optimal number of clusters.
 - Agglomerative Clustering: Use reduction in dispersion to propose a good cut point.
 - CURE: Provide a parameter to choose the number of representative objects
 - BIRCH: The algorithm should be able to take different values of the radius threshold, B and L parameters
 - DBScan: Parameters should be Eps and NumPoints
- 3 Now implement the following methods for choosing the number of clusters:
 - Elbow Curve using Dispersion
 - Sillhoutte Score
 - Gap Statistic: Use the uniform distribution, random number generator in python for this exercise

Please note that you should extend the object oriented code base from Exercise 2 with this code and reuse as much code as possible between these algorithms.