HOMEWORK 11

LEANDRO RIBEIRO

Proposition 9.12. Let A and B be sets. There exists an injection from A to B if and only if there exists a surjection from B to A.

Proof. (\Rightarrow) Suppose there's an injection $f: A \to B$. Fix $a_o \in A$. Observe that for $b \in f(a)$ there's a unique $a_b \in A$ such that $f(a_b) = b$.

Define $g: B \to A$ by $g(b) = \begin{cases} a_o, b \notin f(a) \\ a_b, b \in f(a) \end{cases}$ is surjective by definition.

(\Leftarrow) Suppose $g: B \to A$ is surjective. For each $a \in A$, there is at least one $b \in B$ such that g(b) = a. For each $a \in A$, fix some such $b_a \in B$. Define $f: A \to B$ by $f(a) = b_a$. Let's check if f is injective. Suppose $a_1 \neq a_2$. Then, $g(a_1) \neq g(a_2)$.

Proposition 10.9. Let $x \in \mathbb{R}$ be such that $0 \le x \le 1$, and let $m, n \in \mathbb{N}$ be such that $m \ge n$. Then $x^m \le x^n$.

Proof.

Proposition 10.16. If the sequence (x_k) converges to L, then

$$\lim_{k \to \infty} x_{k+1} = L.$$

Proof.

Proposition 10.14. If (x_k) converges to L and to L' then L = L'.

 \square

Date: April 18, 2017.