DS: Algorithm Run Time Analysis

Liwei

Data Structure and Algorithms

DS and Algorithms

- Algo Run time analysis
- Physical DS
 - Array
 - Linked List
- Logical DS
 - Stack
 - Queue
 - Tree
 - Hashing
 - Graph

- Miscellaneous Topics
 - Sorting
- Algorithm Techniques
 - Shortest Path
 - Divide and Conquer
 - Greedy Algorithm
 - Dynamic Proramming
 - Magic Framework

Algorithm Run Time Analysis

What and why

- What is "Algorithm Run Time Analysis"?
 - It is a study of a given algorithm's running time, by identifying its behavior as the input size for the algorithm increases.
 - How much time will the given algorithm take to run
- Why should we learn this?
 - To measure efficiency of a given algorithm

Notation for Algorithm Run Time Analysis

- How much does this car runs on 1 liter of petrol?
 - In city traffic?
 - On highway?
 - Mixed environment?

Notation for Algorithm Run Time Analysis

- There are three notations for Run Time Analysis
- Omega(Ω)
 - This notation gives the tighter lower bound of a given algorithm
 - For any given input, running time of a given algorithm will not be "less than" given time.
- Big-o(O)
 - This notation gives the tighter upper bound of a given algorithm
 - For any given input, running time of a given algorithm will not be "more than" given time.
- Theta(θ)
 - This notation decides whether upper bound and lower bound of a given algorithms are same or not
 - For any given input, running time of a given algorithm will "on an average" be equal to given time.

Notation for Algorithm Run Time Analysis

5	18	3	54	26		55	41		19	1	10	
---	----	---	----	----	--	----	----	--	----	---	----	--

- Omega(Ω)
 - For any given input, running time of a given algorithm will not be "less than" given time.
 - Ω(1)
- Big-o(O)
 - For any given input, running time of a given algorithm will not be "more than" given time.
 - O(n)
- Theta(Θ)
 - For any given input, running time of a given algorithm will "on an average" be equal to given time.
 - Θ(n/2)

Examples

Time Complexity	Name	Example
O(1)	Constant	Add an element at front of linked list
O(logn)	Logarithmic	Finding an element in sorted array (Binary Search)
O(n)	Linear	Finding an element in unsorted array (Linear Search)
O(nlogn)	Linear Logarithmic	Merge sort
O(n ²)	Quadratic	Shortest path between 2 nodes in a graph
$O(n^3)$	Cubic	Matrix multiplication
O(2 ⁿ)	Exponential	Tower of Hanoi Problem

How to calculate algorithm time complexity?

- Iterative Algorithm
- Recursive Algorithm

Example 1: Time Complexity of iterative algo

```
FindBiggestNumber (int arr[])
biggestNumber = arr[0]
for i=1 to length(arr) -1
if arr[i] > biggestNumber
biggestNumber = arr[i]
return biggestNumber
```

Example 1: Time Complexity of iterative algo

```
FindBiggestNumber (int arr[])
biggestNumber = arr[0] O(1)
for i=1 to length(arr) -1 O(n)
if arr[i] > biggestNumber O(1)
biggestNumber = arr[i] O(1)
return biggestNumber O(1)
```

Time Complexity =
$$O(1) + O(n) + O(1)$$

= $O(n)$

Example 2: Time Complexity of recursive algo

```
FindBiggestNumber (A, n)
static highest = integer.Min
if n equals -1
return highest
else
if A[n] > highest
update highest
return FindBiggestNumber(A, n-1)
```

5	18	3	54	26		55	41		19	1	10
---	----	---	----	----	--	----	----	--	----	---	----

Example 2: Time Complexity of recursive algo

FindBiggestNumber (A, n) static highest = integer.Min						
return highest	O(1)					
else	O(1)					
if A[n] > highest	O(1)					
update highest	O(1)					
return FindBiggestNumber(A, n-1)	T(n-1)					

Example 2: Time Complexity of recursive algo

FindBiggestNumber (A, n)static highest = integer.Min	T(n) O(1)	Back substitution: T(n) = O(1) + T(n-1)
if n equals -1return highest	O(1) O(1)	T(-1) = O(1) (base condition) T(n-1)=O(1)+T((n-1)-1) T(n-2)=O(1)+T((n-2)-1)
else	O(1)	
if A[n] > highest	O(1)	
update highest	O(1)	
return FindBiggestNumber(A, n-1)	T(n-1)	

Back substitution:

$$T(n) = O(1) + T(n-1)$$

$$T(-1) = O(1)$$

$$T(n-1)=O(1)+T((n-1)-1)$$

$$T(n-2)=O(1)+T((n-2)-1)$$

$$T(n) = 1 + T(n-1)$$

$$= 1 + (1+T(n-2))$$

$$= 2 + T(n-2)$$

$$= 2 + (1 + T(n-3))$$

$$= 3 + T(n-3)$$

$$= k + T(n-k)$$

$$= (n+1) + T(n-(n+1))$$

$$= n+1 + T(-1)$$

$$= n + 1 + 1$$

$$= O(n)$$

Example 3: Time Complexity of recursive algo

```
BinarySearch (int findNumber, int arr[], start, end)

if (start equals end)

if (arr[start] equals findNumber)

return start

else return error message (number not exists)

mid = findMid (arr[], start, end)

if (mid > findNumber)

BinarySearch(findNumber, arr, start, mid)

else if (mid < findNumber)

BinarySearch(findNumber, arr, mid, end)

else if (mid == findNumber)

return mid
```

10	20	30	40	50	60	70	80	90	100	110	
----	----	----	----	----	----	----	----	----	-----	-----	--

Example 3: Time Complexity of recursive algo

BinarySearch (int findNumber, int arr[], start, end)if (start equals end)	T(n) O(1)
if(arr[start] equals findNumber)	O(1)
return start	O(1)
else return error message (number not exists)	O(1)
mid = findMid (arr[], start, end)	O(1)
if (mid > findNumber)	O(1)
BinarySearch(findNumber, arr, start, mid)	T(n/2)
else if (mid < findNumber)	O(1)
BinarySearch(findNumber, arr, mid, end)	T(n/2)
else if (mid == findNumber)	O(1)
return mid	O(1)

Time Complexity = T(n) = O(1) + T(n/2)

Back substitution:

$$T(n) = T(n/2) + 1$$

 $T(1) = 1$
 $T(n/2)=T(n/4)+1$
 $T(n/4)=T(n/8)+1$

$$T(n) = T(n/2) + 1$$

$$= (T(n/4)+1) + 1$$

$$= T(n/4) + 2$$

$$= (T(n/8)+1) + 2$$

$$= T(n/8) + 3$$

$$= T(n/2^{k}) + k$$

$$= T(1) + \log n$$

$$= 1 + \log n$$

$$= \log n$$