Cont

- (c) at each of a plurality of the distributed electronic devices, generating a partial result for the distributed cryptographic computation using at least one of said random values; and
- (d) computing a final result for the distributed cryptographic computation using partial results.
- 2. The method of distributed cryptographic computation as recited by claim 1, wherein said shared values are random keys.
- 3. The method of distributed cryptographic computation as recited by claim 1, wherein said shared values are derived from a cryptographic protocol.
- 4. The method of distributed cryptographic computation as recited by claim 1, wherein said shared values are derived cryptographically.
- 5. The method of distributed cryptographic computation as recited by claim 1, further comprising the step of implementing a re-representation of a function.
- 6. The method of distributed cryptographic computation as recited by claim 1, wherein said partial results may include incorrect values.
- 7. The method of distributed cryptographic computation as recited by claim 1, wherein said steps (a)-(d) are performed iteratively.
- 8. The method of distributed cryptographic computation as recited by claim 7, further comprising changing said shared values after said step of generating an output based on said partial result.
- 9. The method of distributed cryptographic computation as recited by claim 3, wherein said cryptographic protocol is a cryptographic function involving exponentiation.
- 10. The method of distributed cryptographic computation as recited by claim 3, wherein said cryptographic protocol is an RSA function.

BI

- 11. The method of distributed cryptographic computation as recited by claim 1, wherein said shared values are stored in a hardware device in at least one of said distributed electronic devices.
- 12. A method of distributed cryptographic computation using a cryptographic value shared among a plurality of distributed electronic devices, said method comprising:
- (a) selecting a subgroup of devices to perform the distributed cryptographic communication
- (b) computing shared values over a known and agreed context, each value being shared among a distinct subset of the subgroup of distributed electronic devices;
- (c) at each distributed electronic device of the subgroup, generating a random value using said shared values;
- (d) at each device of the subgroup of distributed electronic devices, generating a partial result for the cryptographic computation using a share of the cryptographic value and at least one of said random values; and
- (e) computing a final result for the distributed cryptographic computation using partial results.
- 17. The method of distributed cryptographic computation as recited by claim 1, wherein each of the computed, shared values is shared among a pair of the distributed electronic devices.
- 18. The method of distributed cryptographic computation as recited by claim 12, wherein each of the computed, of shared values is shared among a pair of the distributed electronic devices.



- 19. The method of distributed cryptographic computation as recited by claim 1, wherein each computed, shared value is shared among a distinct pair of the distributed electronic devices.
- 20. The method of distributed cryptographic computation as recited by claim 12, wherein each computed, shared value is shared among a distinct pair of the distributed electronic devices.
- 21. The method of distributed cryptographic computation as recited by claim 1, wherein each computed, shared value is (a) shared among a distinct subset of distributed electronic devices and (b) used to generate a partial result in a way that permits verification of correctness of a partial result.
- 22. The method of distributed cryptographic computation as recited by claim 12, wherein each computed, shared value is (a) shared among a distinct subset of distributed electronic devices and (b) used to generate a partial result in a way that permits verification of correctness of a partial result.
- 23. The method of distributed cryptographic computation as recited by claim 12 wherein the random values depend upon the particular set of devices selected for the subgroup.
- 24. The method of distributed cryptographic computation as recited by claim 1 wherein the cryptographic computation is based on an argument, and the generated random values are based on said argument.
- 25. The method of distributed cryptographic computation as recited by claim 12 wherein the cryptographic computation is based on an argument, and the generated random values are based on said argument.

