Fundamentals of Electrical Engineering: Static and Stationary Fields (SSF)

Roland Schmechel

(BA 212, roland.schmechel@uni-duisburg-essen.de)

Damian Pandel (Exercises)

(BA 309, damian.pandel@uni-duisburg-essen.de)

Lehrstuhl für Nanostrukturtechnik (NST)
Abteilung für Elektrotechnik und Informationstechnik
Fakultät für Ingenieurwissenschaften
Universität Duisburg-Essen

Tutors

- Zhenming Tian
- Dania Batool

(zhenming.tian@stud.uni-due.de)

(dania.batool@stud.uni-due.de)

Content of SSF

- 0. Introduction
- 1. Electric Field
- 2. Electric Current
- 3. Magnetic Field

Ingo Wolff Grundlagen **Elektrotechnik**

Ingo Wolff
Verlagsbuchhandlung
Dr. Wolff, 2003
401 pages, € ~ 35.50

General Information

 This course based on the German course "Grundlagen der Elektrotechnik I"

Textbook:

"Grundlagen der Elektrotechnik 1" unfortunately, only German version available

Supporting Documents:
 Use Moodle-Server:

http://moodle.uni-duisburg-essen.de/

Fakultät für Ingenieurwissenschaften Abteilung Elektro- und Informationstechnik Look for "Nanostrukturtechnik"

Login password: not required

- → All transparencies of the course
- → Exercises

"Grundlagen der Elektrotechnik" Reinhold Pregla Hüthig Verlag 2009 535 pages, € ~ 50 €

- only German version available
- contains SSF and NA

• English Books:

Matthew N.O. Sadiku: Elements of Electromagnetics, Oxford University Press 2010 ISBN 978-0-538775-9 (For beginners, Math-Intro Contains more than SSF!)

Herbert P. Neff: Introductory Electromagnetics, John Wiley & Sons Inc.

ISBN-10: 0471605506; (For beginners, Math-Intro Contains more than SSF!)

There are also several internet sources, like the web pages of the MIT: http://web.mit.edu/8.02t/www/802TEAL3D/visualizations/coursenotes/index.htm

• English Books:

S. W. Anwane:
Fundamentals of Electromagnetic
Fields
(ISBN-10: 1934015008)
(Contains more than SSF!)

Fawwaz Ulaby:

Fundamentals of Applied

Electromagnetics, Prentice-Hall 2001
ISBN-10: 0130329312
(For beginners,
Contains more than SSF!)

There are also several internet sources, like the web pages of the MIT: http://web.mit.edu/8.02t/www/802TEAL3D/visualizations/coursenotes/index.htm

• English Books:

Nathan Ida, Engineering Electromagnetics Springer, 2000, 1231 pages, (Contains much more than SSF!)

There are also several internet sources, like the web pages of the MIT: http://web.mit.edu/8.02t/www/802TEAL3D/visualizations/coursenotes/index.htm

Static and Stationary Fields

0. Introduction

- Motivation
- The Term "Field"

In Network Analysis (NA)

The element resistance

$$u = R \cdot i$$

$$[R] = \left| \frac{u}{i} \right| = \frac{V}{A} = \Omega$$

Now here in SSF

How is the resistance related to the geometry and material?

Ground resistance:

What is the general formula for the resistance?

In Network Analysis (NA)

The element capacitance

$$i = C \cdot \frac{du}{dt}$$

Now here in SSF

How is the capacitance related to the geometry and material?

Cylinder capacitor

What is the general formula for the capacitance?

In Network Analysis (NA)

The element inductance

$$u = L \cdot \frac{di}{dt}$$

Now here in SSF

How is the inductance related to the geometry and material?

What is the inductance of a coaxial cable?

How can the inductance be calculated in general?

In Network Analysis (NA)

The electric current strength

Current arrow (arrow of reference)

$$i = \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt}$$

The electric voltage

Now here in SSF

How are current and voltage distributed within a material?

What are fundamental laws?

The Term "Field"

Terminology:

Each physical quantity, which is a function of the position \vec{r} in space, where \vec{r} describes the position vector, is called a field.

If the quantity is a scalar (has no direction, like temperature) the quantity forms a scalar field.

If the physical quantity is a vector (has a specific direction, like a force), it forms a vector field.

Static field: nothing moves, there is no timedependency (electrostatic and magnetostatic fields)

Stationary field: something moves, but the distribution of this movement (its field) is time-independent. (stationary electric current)

Example

Temperature field

Wind field

