Lecture 7: Regulatory genomics

- DNA-binding sites/motifs
 - ChIP-seq
 - Position-weight matrices
 - Motif-finding
 - Expectation-Maximization
 - Gibbs Sampling

Transcriptional regulation by TFs

EcoRI binds to the 6-mer GAATTC (palindrome).

- occurs once every 4⁶ (= 4,096) bp in a random DNA sequence.

Hindll bind to GTYRAC.

occur once per $4^4 \times 2^2$ (= 1,024) bp.

HEM13	CCCATTGTTCTC
HEM13	TTTCTGGTTCTC
HEM13	TCAATTGTTTAG
ANB1	CTCATTGTTGTC
ANB1	TCCATTGTTCTC
ANB1	CCTATTGTTCTC
ANB1	TCCATTGTTCGT
ROX1	CCAATTGTTTTG
	YCHATTGTTCTC

A 00270000010

C 464100000505

G 000001800112

T 422087088261

$$I_i = 2 + \sum_{b} f_{b,i} \log_2 f_{b,i}$$

Scaling sequence logos based on 'information content' than frequency.

- $f_{b,i}$: frequency of base b at position i.
- Perfectly conserved: 2 bits of information.
- Two of the four bases occur 50% of the time each: 1 bit.
- All four bases occur equally often: no information.

Hindll bind to GTYRAC.

What is its information content?

$$I_{seq}(i) = -\sum_{b} f_{b,i} \log_2 \frac{f_{b,i}}{p_b}$$

Relative entropy (a.k.a. Kullback-Leibler distance) to correct for background nucleotide frequencies.

$$W(b,i) = \log_2 \frac{f_{b,i}}{p_b}$$

Position weight matrix (PWM).

A 002700000010
C 464100000505
G 000001800112

T 422087088261

$$I_{seq}(i) = -\sum_{b} f_{b,i} \log_2 \frac{f_{b,i}}{p_b}$$

Relative entropy (a.k.a. Kullback-Leibler distance) to correct for background nucleotide frequencies.

$$W(b,i) = \log_2 rac{f_{b,i}}{p_i}$$
 Position weight matrix (PWM).

Sequences are not aligned.

We don't know what the motif looks like.

The motif model learning task:

- Given: a set of sequences that are thought to contain occurrences of an unknown motif of interest
- Do:
 - infer a model (PWM) of the motif, and
 - predict the locations of the motif occurrences in the given sequences.

a Maximum likelihood

Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

$$\hat{\theta}_A = \frac{24}{24 + 6} = 0.80$$

$$\hat{\theta}_B = \frac{9}{9 + 11} = 0.45$$

 $x = (x_1, x_2, ..., x_5) | x_i \in \{0,1,...,10\}$ is the no. of heads observed during the ith set of tosses.

 $z = (z_1, z_2, ..., z_5) \mid z_i \in \{A,B\}$ is the identity of the coin used during the ith set of tosses.

A coin-flipping experiment

- θ_A & θ_B are the biases of two coins A & B.
- Goal: estimate $\theta = (\theta_A, \theta_B)$ by repeating the following procedure five times:
 - Randomly choose one of the two coins (with equal probability), and perform ten independent coin tosses with the selected coin.
 - Total of 50 coin tosses.

Maximum likelihood estimation: statistical model that has the highest probability of generating the observed data $-\theta$ that maximizes $logP(x,z;\theta)$.

Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

 $x = (x_1, x_2, ..., x_5) | x_i \in \{0,1,...,10\}$ is the no. of heads observed during the ith set of tosses.

 $z = (z_1, z_2, ..., z_5) \mid z_i \in \{A,B\}$ is the identity of the coin used during the ith set of tosses. [Hidden variables / Latent factors

A coin-flipping experiment

- θ_{A} & θ_{B} are the biases of two coins A & B.
- Goal: estimate $\theta = (\theta_{A}, \theta_{B})$ by repeating the following procedure five times:
 - Randomly choose one of the two coins (with equal probability), and perform ten independent coin tosses with the selected coin.
 - Not told which coin was chosen.

E-step:

- Estimate $P(x_i, z_i | \theta^{(t)})$ and the expected values of the hidden variables.

M-step:

Estimate new parameters θ
 ^(t+1) given current estimates of
 hidden variables & parameters.

Repeat until convergence.

 $P(x_i, z_i | \theta^{(t)})$: Likelihood function, from here on also going to be written as $P(X, Z | \theta)$.

- 1. Define the probabilistic model and the likelihood function $P(X \mid \theta)$.
- 2. Identify the hidden variables (Z).
 - a. Here, they are the locations of the motifs in each sequence.
- 3. Write the E step.
 - Compute the expected values of the hidden variables given current parameter values.
- 4. Write the M step.
 - Determine new parameters given the expected values of the hidden variables.
- 5. Repeat until convergence.

- MEME: Multiple EM for Motif Elicitation
- A motif is:
 - assumed to have a fixed width, W
 - o represented by a matrix of probabilities: $\mathbf{p}_{\mathbf{c},\mathbf{k}}$ (probability of character \mathbf{c} in column \mathbf{k}).
- The "background" (i.e. sequence outside the motif) is given by p_{c,0} (probability of character c in the background).
- Data is a collection of sequences, denoted X.
- Motif starting positions are represented by a matrix indicator variables (0/1) Z_i

Given sequences L = 6. Possible starting positions m = L - W + 1

- 1. Define the probabilistic model and the likelihood function $P(X \mid \theta)$.
- 2. Identify the hidden variables (Z).
 - a. Here, they are the locations of the motifs in each sequence.
- 3. Write the E step.
 - a. Compute the expected values of the hidden variables given current parameter values.
- 4. Write the M step.
 - a. Determine new parameters given the expected values of the hidden variables.
- 5. Repeat until convergence.

```
given: length parameter \mathbf{W}, set of sequences
  t=0
  set initial values for p^{(0)}
  do
     ++t
     re-estimate Z^{(t)} from p^{(t-1)} (E-step)
     re-estimate p<sup>(t)</sup> from Z<sup>(t)</sup> (M-step)
  until change in p^{(t)} < \varepsilon
return: p<sup>(t)</sup>, Z<sup>(t)</sup>
```

- **E-step**: compute the expected values of Z given X and $p^{(t-1)}$
- Expected values: $Z^{(t)} \square = E[Z \mid X, p^{(t \square 1)}]$
- For example:

```
\begin{array}{c}
G \ C \ T \ G \ T \ A \\
G \ C \ T \ G \ T \ A \\
G \ C \ T \ G \ T \ A \\
G \ C \ T \ G \ T \ A
\end{array}

\begin{array}{c}
1 & 2 & 3 & 4 \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &
```

```
given: length parameter \mathbf{W}, set of sequences
   t=0
   set initial values for p^{(0)}
   do
      ++t
      re-estimate Z^{(t)} from p^{(t-1)} (E-step)
      re-estimate p^{(t)} from Z^{(t)} (M-step)
   until change in p^{(t)} < \varepsilon
return: p<sup>(t)</sup>, Z<sup>(t)</sup>
```

- **E-step**: compute the expected values of Z given X and $p^{(t-1)}$
- Expected values: $Z^{(t)} \square = E[Z \mid X, p^{(t \square 1)}]$
- Applying Bayes rule to: $P(Z_{i,j} = 1 \mid X_i, p^{(t-1)})$

$$Z_{i,j}^{(t)} = \frac{P(X_i \mid Z_{i,j} = 1, p^{(t-1)})P(Z_{i,j} = 1)}{\sum_{k=1}^{m} P(X_i \mid Z_{i,k} = 1, p^{(t-1)})P(Z_{i,k} = 1)}$$

given: length parameter
$$\mathbf{W}$$
, set of sequences $t=0$
set initial values for $p^{(0)}$
do
++t
re-estimate $Z^{(t)}$ from $p^{(t-1)}$ (E-step)
re-estimate $p^{(t)}$ from $Z^{(t)}$ (M-step)
until change in $p^{(t)} < \mathbf{\epsilon}$

$$Z_{i,j}^{(t)} = \frac{P(X_i \mid Z_{i,j} = 1, p^{(t-1)})}{\sum_{k=1}^{m} P(X_i \mid Z_{i,k} = 1, p^{(t-1)})}$$

the motif will start in any position $P(Z_{i,i}=1)=\frac{1}{m}$

Assuming that it is equally likely that

Probability of a Sequence Given a Motif Starting Position

$$P(X_i \mid Z_{i,j} = 1, p) = \prod_{k=1}^{j-1} p_{c_k,0} \prod_{k=j}^{j+W-1} p_{c_k,k-j+1} \prod_{k=j+W}^{L} p_{c_k,0}$$

Before motif

Motif

After motif

- X; is the i th sequence
- Z_{i,i} is 1 if motif starts at position j in sequence i
- $oldsymbol{c_k}$ is the base at position k in sequence i

Probability of a Sequence Given a Motif Starting Position

- After motif
- X, is the ith sequence
- \mathbf{Z}_{ii} is 1 if motif starts at position j in sequence i
- $\mathbf{c}_{\mathbf{k}}$ is the base at position k in sequence i

$$\begin{split} P(X_i \mid Z_{i,3} = 1, p) = \\ p_{G,0} \times p_{C,0} \times p_{T,1} \times p_{G,2} \times p_{T,3} \times p_{A,0} \times p_{G,0} = \\ 0.25 \times 0.25 \times 0.2 \times 0.1 \times 0.1 \times 0.25 \times 0.25 \end{split}$$

 $P(X_i | Z_{i,1} = 1, p^{(t-1)})$?

Gitter @ U. Wisconsin

- M-step: Estimate $p^{(t)}$ given X and $Z^{(t)}$.
- $p_{c,k}$ represents the probability of character c in position k.
- k=0 represents the background.

$$p_{c,k}^{(t)} = \frac{n_{c,k} + d_{c,k}}{\sum\limits_{b \in \{A,C,G,T\}}} \\ n_{c,k} = \begin{cases} \sum\limits_{i} \sum\limits_{\{j \mid X_{i,j+k-1} = c\}} Z_{i,j}^{(t)} & k > 0 \\ \\ n_{c,k} = \begin{cases} \sum\limits_{i} \sum\limits_{\{j \mid X_{i,j+k-1} = c\}} Z_{i,j}^{(t)} & k > 0 \\ \\ n_{c} - \sum\limits_{j=1}^{W} n_{c,j} & k = 0 \end{cases}$$
 sum over positions where c appers

Practical strategies

- Assemble input data. Results may be improved by restricting the input to high-confidence sequences.

 Some algorithms achieve improved performance by using phylogenetic conservation information from orthologous sequences or information about protein DNA-binding domains.
- Choose several motif discovery programs for the analysis. For recommended programs see Figure 3.
- Test the statistical significance of the resulting motifs. Use control calculations to estimate the empirical distribution of scores produced by each program on random data.
- Clustering and post-processing the motifs. Motif discovery analyses often produce many similar motifs, which may be combined using clustering. Phylogenetic conservation information may be used to filter out statistically significant, but non-conserved motifs that are more likely to correspond to spurious sequence patterns.
- Interpretation of motifs. Algorithms exist for linking motifs to transcription factors and for combining motif discovery with expression data.