Assignment 6

Due Date: 2019/06/07, 9:00 AM

1. The function $f:[0,1]\to\mathbb{R}$ is defined by $f(x)=x^2$. For $n\in\mathbb{N}$, let

$$P_n = \left\{ 0 < \frac{1}{n} < \frac{2}{n} < \dots < \frac{n-1}{n} < 1 \right\} \in \mathcal{P}[a, b]$$

be a (equi) partition of the interval [0, 1].

- (1) Compute $U(f, P_n)$ and $L(f, P_n)$.
- (2) Prove that

$$\lim_{n\to\infty} U(f, P_n) = \lim_{n\to\infty} L(f, P_n) = \frac{1}{2}.$$

- (3) (This problem will not be graded, but work for yourself) Deduce $\int_0^1 f = \frac{1}{2}$ from (2) without recalling any high technology such as the fundamental theorem of calculus.
- **2.** Determine whether the following function $f:[0,1] \to \mathbb{R}$ is Riemann integrable or not, and demonstrate your answer.

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ 0 & \text{if } x \in \mathbb{Q}^c \cap [0, 1] \end{cases}$$

- **3.** Answer the following questions.
- (1) Let $f:[a,b]\to\mathbb{R}$ be a constant function such that f(x)=c for all $x\in[a,b]$. Prove that f is Riemann integrable and that

$$\int_a^b f = c(b-a) \ .$$

(2) Let $f:[a,b]\to\mathbb{R}$ be a function such that f(x)=c for all $x\in[a,b]$, except for **finitely** many points. Prove that f is Riemann integrable and that

$$\int_a^b f = c(b-a) \ .$$

1

4. Suppose that two functions $f, g : [a, b] \to \mathbb{R}$ are Riemann integrable and satisfy $f(x) \ge g(x)$ for all $x \in [a, b]$.

Prove that $\int_a^b f \ge \int_a^b g$.

- **5.** Suppose that $f:[a,b] \to \mathbb{R}$ is a Riemann integrable function and satisfies $f(x) \ge 0$ for all $x \in [a,b]$. By problem **3-(1)** and problem **4** with $g \equiv 0$, we know that $\int_a^b f \ge 0$. In this problem, we shall assume in addition that, there exists $x_0 \in [a,b]$ such that $f(x_0) > 0$.
- (1) Explain why we cannot assert that $\int_a^b f > 0$.
- (2) Suppose moreover that f is a continuous function. Prove that $\int_a^b f > 0$.
- **6.** Let $f:[a,b]\to\mathbb{R}$ be a bounded function, and define $D_f=\{x:x\in[a,b]\text{ and }f\text{ is not continuous at }x\}\;.$
- (1) Suppose that D_f is finite set; in other words, f is discontinuous only at finite points. Prove that f is a Riemann integrable function.
- (2) Suppose that D_f is countable set. Prove that f is a Riemann integrable function.
- **7.** Suppose that two functions $f, g : [a, b] \to \mathbb{R}$ are Riemann integrable. Prove or disprove that $fg : [a, b] \to \mathbb{R}$ is a Riemann integrable function.