

ATIVIDADE PRÁTICA – AULA 09 - COMPUTACAO GRÁFICA CURSO DE CIÊNCIA DA COMPUTAÇÃO UNIVERSIDADE FRANCISCANA – UFN. 2025-01.

PROFESSOR: André F. dos Santos. Nome do aluno: Pedro Balen

Data:16/04/2025 Peso 2,0.

Atividade de Aula - Modelos de Iluminação

Objetivo

Consolidar os conhecimentos sobre os diferentes modelos de iluminação abordados em aula, refletindo sobre suas aplicações, vantagens e limitações em computação gráfica.

1. Reflexão Ambiente

Definição:

- Representa a iluminação indireta que atinge todas as superfícies da cena igualmente, sem direção específica.
- Simula a luz refletida por outras superfícies no ambiente.

Características e Uso:

- Fórmula: la=La×Ka*la=La*×*Ka*
 - o LaLa: Intensidade da luz ambiente.
 - KaKa: Coeficiente de reflexão do material (0 a 1).
- Usada para evitar áreas completamente escuras onde a luz direta não chega.

Vantagens:

- Simples de calcular.
- Garante visibilidade mínima em regiões não iluminadas diretamente.

Desvantagens:

Não cria variações de sombra ou profundidade realista.

Exemplo Prático:

• Em um jogo de terror, a luz ambiente pode ser usada para iluminar levemente um corredor escuro, mesmo sem fontes de luz direta.

2. Reflexão Difusa

Definição:

 Modela a reflexão da luz em superfícies rugosas, que espalham a luz igualmente em todas as direções.

Características e Uso:

- Fórmula: Id=Ld×Kd×(N-L-)*Id=Ld×Kd*×(*N*·*L*)
 - ∘ N⁻N: Vetor normal da superfície.
 - o L⁻L: Vetor direção da luz.
- Depende do ângulo entre a luz e a normal da superfície.

Vantagens:

- Simula materiais como tecido, madeira ou papel.
- Cria gradientes suaves de iluminação.

Desvantagens:

Não simula brilhos ou reflexos.

Exemplo Prático:

 Em um jogo, uma parede de tijolos iluminada pelo sol terá variações suaves de sombra devido à reflexão difusa.

3. Reflexão Especular

Definição:

• Simula o brilho intenso em superfícies polidas (como metal ou plástico).

Características e Uso:

- Fórmula: Is=Ls×Ks×(R⁻·V⁻)n/s=Ls×Ks×(R·V)n
 - ∘ R⁻R: Vetor de reflexão da luz.
 - o VTV: Vetor de visão (direção do observador).
 - o nn: Expoente de brilho (quanto maior, mais concentrado o brilho).

Vantagens:

- Adiciona realismo a materiais brilhantes.
- Destaque visual dinâmico (o brilho muda conforme o ângulo de visão).

Desvantagens:

Custo computacional maior devido ao cálculo do vetor de reflexão.

Exemplo Prático:

 O capô de um carro em um jogo de corrida reflete a luz do sol de forma intensa e concentrada.

4. Modelo de Phong (If = Ia + Id + Is)

Definição:

 Combina reflexão ambiente, difusa e especular para calcular a iluminação total em um pixel.

Características e Uso:

- Fórmula: If=la+ld+lsIf=la+ld+ls
- Usado em quase todos os pipelines de renderização 3D.

Vantagens:

• Balanceia realismo e desempenho.

Flexível para diferentes materiais.

Desvantagens:

• Não considera efeitos avançados como refração ou iluminação global.

Exemplo Prático:

• Em um jogo como *The Witcher 3*, o modelo de Phong é usado para iluminar personagens, combinando sombras suaves (difusa) e brilhos em armaduras (especular).

5. Modelos de Sombreamento				
Modelo	Definição	Vantagens	Desvantagens	Exemplo de Uso
Flat Shading	Calcula a iluminação uma vez por face.	Muito rápido.	Aparência facetada (não suave).	Objetos low- poly em jogos antigos.
Gouraud	Interpola a cor dos vértices para suavizar a iluminação.	Mais realista que Flat.	Pode perder detalhes de brilho.	Personagens em jogos mobile.
Phong	Interpola as normais e recalcula a iluminação por pixel.	Resultados mais realistas.	Alto custo computacional.	CGI em filmes ou jogos AAA.

Parte 2 - Perguntas de Análise

- 1. Por que a luz ambiente, mesmo sendo constante e sem direção, é fundamental em uma cena 3D?
 - Evita que áreas sem iluminação direta fiquem completamente escuras, garantindo visibilidade mínima e realismo.

- 2. Qual a diferença entre uma reflexão difusa e uma reflexão especular em termos de resultado visual?
 - **Difusa:** Luz espalhada uniformemente (superfícies rugosas).
 - Especular: Brilho concentrado (superfícies polidas).
- 3. O que muda na aparência de um objeto renderizado apenas com luz ambiente versus um com reflexão difusa e especular?
 - Apenas ambiente: Aparência plana e sem volume.
 - Com difusa e especular: Volume, sombras e brilhos realistas.
- 4. Em quais tipos de superfície a reflexão especular é mais evidente? Por quê?
 - Metais, vidros e plásticos polidos, pois refletem a luz de forma direcional.
- Compare o Flat Shading com o Gouraud e o Phong Shading. Qual deles oferece mais realismo e qual tem menor custo computacional? Justifique. Use uma tabela para fazer comparações: modelo, realismo, custo computacional e comentários.

Modelo	Realismo	Custo Computacional	Comentários	
Flat	Baixo	Muito baixo	Rápido, mas com aparência "quadrada".	
Gouraud	Médio	Moderado	Suaviza vértices, mas perde brilhos.	
Phong	Alto	Alto	Mais realista, mas custoso para GPUs.	

- 6. O modelo de iluminação de Phong considera as interações físicas completas da luz? Se não, por que ele ainda é utilizado amplamente?
 - Não. Ele é uma aproximação empírica que ignora efeitos como iluminação global e refração. Porém, é amplamente usado por ser eficiente e produzir resultados visualmente aceitáveis em tempo real.

Dica:

Para responder, revisem os slides da aula e tentem aplicar os conceitos em exemplos reais - pensem em jogos ou aplicativos 3D que usam esses efeitos visuais.

Parte II - OpenGI + python

Tarefa – Atividade com Cubo Texturizado e Iluminação

Base: use o código do cubo texturizado (em anexo) com movimentação de câmera e iluminação.

Objetivo: Explorar os recursos vistos em aula, criando novos objetos, aplicando texturas, modificando iluminação e montando um pequeno ambiente 3D.

Desafios (faça todos)

- 1. Adicione um segundo cubo com outra textura:
 - Posicione-o ao lado do cubo principal (glTranslatef ou altere vértices).
 - Use uma textura diferente (por exemplo, madeira ou pedra).
- 2. Crie um 'chão' com textura de grama:
 - Utilize um quadrado plano (como o cubo, mas achatado).
 - Aplique uma textura de solo ou grama.
 - Deixe em y = -2 por exemplo, para parecer o piso da cena.
- 3. Crie uma 'parede' com textura de tijolo:
 - Posicione um cubo 2D ou plano vertical atrás ou ao lado do cubo principal.
 - Textura de parede ou concreto.
- 4. Troque a cor da luz ambiente e observe o efeito:
 - Altere GL_LIGHT_MODEL_AMBIENT para tons azulados, vermelhos ou verdes.

- 5. Mude a posição da luz para destacar diferentes faces:
 - Mova a luz com GL_POSITION e observe o que muda no brilho e nas sombras.
- 6. Crie um 'totem' de cubos empilhados com diferentes texturas: Posicione 3 cubos um em cima do outro.
 - Cada um com uma textura diferente (ex: pedra, metal, madeira).
- 7. Monte uma cena com 'sentido visual':
 - Organize os cubos como uma pequena "sala" ou "ambiente". Use: chão, paredes, blocos decorativos.
 - Organize, cores e texturas.

Entrega

Apresentar ao professor logo que terminar e submeta na atividade da aula de hoje.

- Envie o código '.py' com comentários explicando o que cada objeto representa.
- Envie também as imagens usadas como textura.
- Envie uma imagem (screenshot) da sua cena final montada.