11 КЛАСС

11.1. Цилиндр на наклонной плоскости

Верхняя часть наклонной плоскости гладкая, нижняя — шероховатая. На верхнюю часть кладут тонкостенную цилиндрическую трубу, вращающуюся вокруг своей оси с угловой скоростью ω_0 , и отпускают. В начальный

момент ось цилиндра неподвижна, а линия касания трубы с плоскостью находится на высоте h=10 см над границей раздела гладкого и шероховатого участков. Коэффициент трения между трубой и шероховатой поверхностью $\mu=0,1$. Радиус цилинда равен R=5 см. Ускорение свободного падения g=10 м/с².

- 1. Считайте, что $\omega_{_0}$ велико. При каком угле $\varphi=\varphi_{_{\rm m}}$ труба вернется в начальное положение за минимальное время.
- 2. Найдите это минимальное время t_{\min} .
- 3. Пусть $\varphi=\varphi_{_{\mathrm{m}}}$. При каких $\omega_{_{0}}$ труба вернется в начальное положение?

11.2. Совпадающие теплоемкости

В архиве лорда Кельвина нашли цилиндр с одним молем идеального одноатомного газа. Лорд Кельвин проводил с ним два процесса и изобразил их на pV-диаграмме. Чернила, разумеется, выцвели. От первого процесса уцелела часть графика отрезок прямой, а от графика второго процесса, как обычно, сохранилась единственная точка A. Из поясняющих записей следовало, что в этих процессах при равных температурах теплоемкости совпадали. Восстановите график зависимости давления p от объема V для второго процесса.

2 11 класс

11.3. В пузыре

В далёком космосе есть планета, состоящая полностью из воды. Известно, что глубоководные обитатели изнутри могут обозревать все пространство вокруг, тогда и только тогда, когда находятся на расстоянии не более, чем x=3000 км от центра планеты. Местные жители решили запустить спуник? С какой скоростью он должен двигаться на самой низкой возможной орбите? Показатель преломления воды n=4/3, плотность воды $\rho=1000$ кг/м³, гравитационная постоянная $G=6,67\cdot10^{-11}~{\rm H\cdot m^2/kr^2}$. Планета не вращается вокруг своей оси, волн на ее поверхности не бывает, воду можно считать несжимаемой.

11.4. Столкновения в магнитном поле

По двум горизонтальным проводящим рельсам может скользить без трения металлическая перемычка массой m (см. рис). Расстояние между рельсами l. Движение перемычки ограничено двумя непроводящими жесткими вертикальными стенками W_1 и W_2 , находящимися на расстоянии D друг от друга. К рельсам через ключ K последовательно подключены заряженный до напряжения U_0 конденсатор емкости C и резистор сопротивления R. Перпендикулярно плоскости рельсов включено вертикальное однородное магнитное поле с индукцией B, такое что $m > B^2 l^2 C$ и $DBl \gg RCU_0$. В момент, когда ключ замкнули, перемычка покоилась посередине между стенками. Определите:

- 1. с какой стенкой произойдет первое столкновение перемычки;
- 2. скорость v_1 перед первым столкновением;
- 3. скорость v_n перед n-ым столкновением. Все столкновения перемычки со стенками абсолютно упругие.

11.5. Уронили в речку шарик

Из точки O на поверхности воды в реку бросают одинаковые маленькие металлические шарики (см. рис). Отпущенный без начальной скорости шарик упал на дно в точке B, а шарик, запущенный вертикально вниз с известной скоростью v в точку C. Расстояние BC = L. Найдите

горизонтальную составляющую скорости второго шарика при ударе о дно $u_{\rm x}$. Считайте, что при движении на шарик со стороны воды действует сила, прямо пропорциональная скорости движения шарика относительно воды и направленная против этой скорости. Скорость течения не зависит от глубины, а дно горизонтально. Силу Архимеда не учитывать.