18.022 Recitation Quiz (with solutions) 1 October 2014 Samuel S. Watson

1. Find the equation for the plane tangent to the graph of $z = \cos(xy) + 2y^2$ at the point whose *x*-coordinate is 0 and whose *y*-coordinate is 2.

Solution. Let $f(x,y) = \cos(xy) + 2y^2$. The plane tangent to $z = \cos(xy) + 2y^2$ at a point $(x_0, y_0, f(\mathbf{a}))$ (where $\mathbf{a} = (x_0, y_0)$) is normal to the vector $\left(\frac{\partial f}{\partial x}(\mathbf{a}), \frac{\partial f}{\partial y}(\mathbf{a}), -1\right)$. We calculate $\frac{\partial f}{\partial x} = -y\sin(xy)$ and $\frac{\partial f}{\partial y} = -x\sin(xy) + 4y$ and substitute to find that (0, 8, -1) is a normal vector. Substituting into $\mathbf{n} \cdot ((x, y, z) - P)$ with P = (0, 2, f(0, 2)) = (0, 2, 9), we find that the tangent plane is 8y - z = 7.