Lesson 2.8.2: Direct and Indirect Proofs

Proof: a form of logical reasoning in which each statement is organized and backed up by given information, definitions, axioms, postulates, or theorems

Direct Proof:

- a sequence of statements which are either givens or deductions from previous statements, and whose last statement is the conclusion to be proved
- can be done in three ways: paragraph form, flowchart form, and two column form

How to Write a Direct Proof?

- 1. Take the original conditional statement.
- 2. Assume that the hypothesis is true, and show that the conclusion is true.

How to Write a Two-Column Proof?

- 1. Write all the series of statements in the first column of the table in a logical order starting with the given statements and ends it with the statement that needs
- 2. In a step-by-step manner, write all the reasons for each statement.

Indirect Proof:

- a type of proof where the opposite of the statement to be proven is assumed true until the assumption leads to contradiction
- a method of reasoning usually written in paragraph

Practice Exercises 2.8.2

A. Provide the reason for each statement to complete the proof.

1. Given: $\angle 1 \cong \angle 3$

Prove: $m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$

2. Given: LV = EO

LOVE Prove: LO = EV

3. Given: ∠1 and ∠2 form a linear pair

∠3 and ∠2 form a linear pair

Prove: $\angle 1 \cong \angle 3$

B. Use indirect proof to prove the following.

1. If x = 4, then $2x - 5 \neq 2$.

2. If x = -2, then $3x + 2 \neq -3$.

3. If x = -1, then $2x + 3 \neq 2$.

Lesson 2.8.2: Direct and Indirect Proofs

Proof: a form of logical reasoning in which each statement is organized and backed up by given information, definitions, axioms, postulates, or theorems

Direct Proof:

- a sequence of statements which are either givens or deductions from previous statements, and whose last statement is the conclusion to be proved
- can be done in three ways: paragraph form, flowchart form, and two column form

How to Write a Direct Proof?

- 1. Take the original conditional statement.
- 2. Assume that the hypothesis is true, and show that the conclusion is true.

How to Write a Two-Column Proof?

- 1. Write all the series of statements in the first column of the table in a logical order starting with the given statements and ends it with the statement that needs to be proven.
- 2. In a step-by-step manner, write all the reasons for each statement.

Indirect Proof:

- a type of proof where the opposite of the statement to be proven is assumed true until the assumption leads to contradiction
- a method of reasoning usually written in paragraph form

Practice Exercises 2.8.2

A. Provide the reason for each statement to complete the proof.

1. Given: $\angle 1 \cong \angle 3$

Prove: $m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$

2. Given: LV = EOProve: LO = EV

LOVE

3. Given: ∠1 and ∠2 form a linear pair

∠3 and ∠2 form a linear pair Prove: $\angle 1 \cong \angle 3$

B. Use indirect proof to prove the following.

1. If x = 4, then $2x - 5 \neq 2$. 2. If x = -2, then $3x + 2 \neq -3$.

3. If x = -1, then $2x + 3 \neq 2$.

Activity 2.8.2

A. Provide the reason for each statement to complete the

Prove: $m \angle 1 = m \angle 3$ Proof.

Statements	Reasons
1. $m\angle 1 + m\angle 2 = m\angle 2 + m\angle 3$	1
$2. \ m \angle 1 + m \angle 2 - m \angle 2 = m \angle 2 - m \angle 2 + m \angle 3$	2
3. <i>m</i> ∠1 = <i>m</i> ∠3	3

2. Given: $m \angle 1 + m \angle 2 = 90^{\circ}$

Prove: $m \angle 1 = m \angle 3$

 $m \angle 3 + m \angle 2 = 90^{\circ}$

Proof:	-
Statements	Reasons
1. $m\angle 1 + m\angle 2 = 90^{\circ}$	1
2. $m \angle 3 + m \angle 2 = 90^{\circ}$	2
3. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$	3
4. $m \angle 1 + m \angle 2 - m \angle 2 =$	1
$m \angle 3 + m \angle 2 - m \angle 2$	4

3. Given: ∠1 and ∠2 are vertical angles

Prove: $\angle 1 \cong \angle 2$

5. $m \angle 1 = m \angle 3$

Proof:

P1001:		
Statements	Reasons	
1. ∠1 and ∠2 are vertical	1.	
angles	l	
2. ∠1 and ∠3 form a linear	2	
pair	2	
3. ∠1 and ∠3 are	2	
supplementary	3	
4. $m \angle 1 + m \angle 3 = 180^{\circ}$	4	
5. ∠2 and ∠3 form a linear	5.	
pair	J	
6. ∠2 and ∠3 are	4	
supplementary	6	
7. $m\angle 2 + m\angle 3 = 180^{\circ}$	7	
8. $m \angle 1 + m \angle 3 = m \angle 2 + m \angle 3$	8	
9. <i>m</i> ∠1 = <i>m</i> ∠2	9	
10. ∠1 ≅ ∠2	10	

B. Use indirect proof to prove the following.

1. If x = 2, then $3x - 5 \neq 10$. 2. If x = 3, then $4x - 4 \neq 12$.

Activity 2.8.2

A. Provide the reason for each statement to complete the proof.

1. Given: $m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$

Prove: $m \angle 1 = m \angle 3$

Proof:	
Statements	Reasons
1. $m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$	1
2. $m \angle 1 + m \angle 2 - m \angle 2 =$	2
<i>m</i> ∠2 – <i>m</i> ∠2 + <i>m</i> ∠3	Z
3. $m \angle 1 = m \angle 3$	3

2. Given: $m \angle 1 + m \angle 2 = 90^{\circ}$

 $m\angle 3 + m\angle 2 = 90^{\circ}$

Prove: $m \angle 1 = m \angle 3$

<u>P1001:</u>	
Statements	Reasons
1. $m \angle 1 + m \angle 2 = 90^{\circ}$	1
2. $m \angle 3 + m \angle 2 = 90^{\circ}$	2
3. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$	3
4. $m \angle 1 + m \angle 2 - m \angle 2 =$	1
$m \angle 3 + m \angle 2 - m \angle 2$	4
5. <i>m</i> ∠1 = <i>m</i> ∠3	5
0 0 1 1 0 1 1 1	

Given: ∠1 and ∠2 are vertical angles

Prove: $\angle 1 \cong \angle 2$

Proof:	.//
Statements	Řeasons
1. ∠1 and ∠2 are vertical	1
angles	l ·
2. ∠1 and ∠3 form a linear	2
pair	2
3. ∠1 and ∠3 are	3
supplementary	3
4. $m \angle 1 + m \angle 3 = 180^{\circ}$	4
5. ∠2 and ∠3 form a linear	5.
pair	J
6. ∠2 and ∠3 are	4
supplementary	6
7. $m\angle 2 + m\angle 3 = 180^{\circ}$	7
8. $m \angle 1 + m \angle 3 = m \angle 2 + m \angle 3$	8
9. <i>m</i> ∠1 = <i>m</i> ∠2	9
10. /1 ≅ /2	10.

B. Use indirect proof to prove the following.

1. If x = 2, then $3x - 5 \neq 10$. 2. If x = 3, then $4x - 4 \neq 12$.

1. Given: $m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$