

02 N种特征工程方法

04 AutoML

Part 1 特征工程介绍

数据数量 比 算法重要,数据质量 比 数据数量更重要。

在大数据时代:

- ✓ 计算机的存储和计算不是问题,数据数量越来越多;
- ✓ 与传统机器学习相比,深度学习精度更高;
- 1、数据 & 特征工程决定了精度的上限;
- 2、机器学习模型只是不断逼近这个上限;

BIG DATA & DEEP LEARNING

Part 1 特征工程介绍

特征工程是数据挖掘竞赛中的关键环节:

- ✓ 是一个需要有创造力的环节,需要有想象力的部分;
- ✓ 是一个需要思考、分析和验证的过程;
- ✓ 是一个需要耗费大量时间的过程;

Part 1 特征工程介绍

特征工程步骤:

- ✓ 处理 & 清洗 数据;
- ✓转换&填充数据;

类别特征(Categorical Features)

- ✓ 是最常见的特征:
 - ✓ 个人信息:性别、城市、省份、名族、户口类型等;
 - ✓ 颜色:红色、白色、黑色、粉色等;
 - ✓ 国家:中国、美国、英国、新加坡等;
 - ✓ 动物:猫、狗、蛇、老虎、猴等;
- ✓ 任何时候都需要进行处理的数据;
- ✓ 高基数 (High cardinality) 会带来离散数据;
- ✓ 很难进行缺失值填充;

类别特征(Categorical Features)

✓可分类两种类型:无序(Nominal)和有序(Ordinal)

类别特征(Categorical Features)编码方式:

```
df = pd.DataFrame({
    'student_id': [1,2,3,4,5,6,7],
    'country': ['China', 'USA', 'UK', 'Japan', 'Korea', 'China', 'USA'],
    'education': ['Master', 'Bachelor', 'Bachelor', 'Master', 'PHD', 'PHD', 'Bachelor'],
    'target': [1, 0, 1, 0, 1, 0, 1]
})
df.head(10)
executed in 14ms, finished 13:19:51 2020-08-02
```

	student_id	country	education	target
0	1	China	Master	1
1	2	USA	Bachelor	0
2	3	UK	Bachelor	1
3	4	Japan	Master	0
4	5	Korea	PHD	1
5	6	China	PHD	0
6	7	USA	Bachelor	1
U	,	OOA	Bacricio	'

julyedu.com

类别特征(Categorical Features)编码方式:

- ✓ One Hot Encoding
- ✓ Label Encoding
- ✓ Ordinal Encoding
- ✓ Helmert Encoding
- ✓ Binary Encoding
- √ Frequency Encoding
- ✓ Mean Encoding
- ✓ Weight of Evidence Encoding
- ✓ Probability Ratio Encoding
- ✓ Hashing Encoding
- ✓ Backward Difference Encoding
- ✓ Leave One Out Encoding
- ✓ James-Stein Encoding
- ✓ M-estimator Encoding
- ✓ Thermometer Encoder

julyedu.com

类别特征(Categorical Features)编码方式:

- ✓ One Hot Encoding (独热编码)
- □ 形式:编码为One-of-K的K维向量形式;
- □ 用途:在所有的线性模型;
- □ 优点:简单,能够将类别特征进行有效编码;
- □ 缺点:会带来维度爆炸和特征稀疏;
- □ 实现方法:
 - 在pandas中使用get_dummies;
 - □ 在sklearn中使用OneHotEncoder;

pd.get_dummies(df, columns=['education'])
executed in 14ms, finished 13:21:27 2020-08-02

	student_id	country	target	education_Bachelor	education_Master	education_PHD
0	1	China	1	0	1	0
1	2	USA	0	1	0	0
2	3	UK	1	1	0	0
3	4	Japan	0	0	1	0
4	5	Korea	1	0	0	1
5	6	China	0	0	0	1
6	7	USA	1	1	0	0

类别特征(Categorical Features)编码方式:

- ✓ Label Encoding (标签编码)
- □ 形式:将每个类别变量使用独立的数字ID编码
- □ 用途:在树模型中比较适合;
- □ 优点:简单,不增加类别的维度;
- □ 缺点:会改变原始标签的次序关系;
- □ 实现方法:
 - □ pandas中的facotrize
 - sklearn中的LabelEncoder

```
df['country_LabelEncoder'] = pd.factorize(df['country'])[0]
df.head(10)
executed in 10ms, finished 13:34:47 2020-08-02
```

_		student_id	country	education	target	country_LabelEncoder
Ī	0	1	China	Master	1	0
	1	2	USA	Bachelor	0	1
	2	3	UK	Bachelor	1	2
	3	4	Japan	Master	0	3
	4	5	Korea	PHD	1	4
	5	6	China	PHD	0	0
	6	7	USA	Bachelor	1	1

```
pd.factorize(df['country'])
executed in 7ms, finished 13:34:49 2020-08-02
```

```
(array([0, 1, 2, 3, 4, 0, 1]),
Index(['China', 'USA', 'UK', 'Japan', 'Korea'], dtype='object'))
```


类别特征 (Categorical Features)编码方式:

- ✓ Ordinal Encoding (顺序编码)
- □ 形式:按照类别大小关系进行编码
- □ 用途:在大部分场景都适用;
- □ 优点:简单,不增加类别的维度;
- □ 缺点:需要人工知识,且对未出现的数值不友好;
- □ 实现方法:手动定义字典映射;

	student_id	country	education	target
0	1	China	2	1
1	2	USA	1	0
2	3	UK	1	1
3	4	Japan	2	0
4	5	Korea	3	1
5	6	China	3	0
6	7	USA	1	1


```
类别特征(Categorical Features)编码方式:
✓ Binary Encoding(二进制编码)

□ 形式:将类别进行编码然后进行二进制编码;
```

- 用途:与OneHot类似;
- □ 优点:简单,增加特征维度较低;
- □ 缺点:会带来维度爆炸和特征稀疏;
- □ 实现方法:使用BinaryEncoder;

```
import category_encoders as ce
encoder = ce.BinaryEncoder(cols= ['country'])

pd.concat([df, encoder.fit_transform(df['country']).iloc[:, 1:]], axis=1)
executed in 23ms, finished 14:02:34 2020-08-02
```

	student_id	country	education	target	country_1	country_2	country_3
0	1	China	Master	1	0	0	1
1	2	USA	Bachelor	0	0	1	0
2	3	UK	Bachelor	1	0	1	1
3	4	Japan	Master	0	1	0	0
4	5	Korea	PHD	1	1	0	1
5	6	China	PHD	0	0	0	1
6	7	USA	Bachelor	1	0	1	0

类别特征(Categorical Features)编码方式:

✓ Frequency Encoding、Count Encoding

□ 形式:将类别出现的次数或频率进行编码

□ 用途:在大部分情况下都通用

□ 优点:简单,可以统计类别次数;

□ 缺点:容易受到类别分布带来的影响;

□ 实现方法:使用次数统计;

```
df['country_count'] = df['country'].map(df['country'].value_counts()) / len(df)
df.head(10)
executed in 22ms, finished 14:36:42 2020-08-02
```

student_id country education target country_count 0.285714 China Master 1 USA Bachelor 0 0.285714 UK Bachelor 1 0.142857 0 0.142857 Japan Master Korea PHD 1 0.142857 China PHD 0 0.285714 USA Bachelor 1 0.285714

```
df['country_count'] = df['country'].map(df['country'].value_counts())
df.head(10)
executed in 13ms, finished 14:36:43 2020-08-02
```

student_id country education target country_count 0 China Master USA Bachelor 0 UK Bachelor Japan Master 0 Korea PHD China PHD 0 USA Bachelor

□ 实现方法:使用次数统计;

```
类别特征(Categorical Features)编码方式:
✓ Mean/Target Encoding

□ 形式:将类别对应的标签概率进行编码;

□ 用途:在大部分场景都可以通用;

□ 优点:让模型更容易学习标签信息;

□ 缺点:容易过拟合;
```

```
df['country_target'] = df['country'].map(df.groupby(['country'])['target'].mean())
df.head(10)
executed in 12ms, finished 14:49:42 2020-08-02
```

	student_id	country	education	target	country_target
0	1	China	Master	1	0.5
1	2	USA	Bachelor	0	0.5
2	3	UK	Bachelor	1	1.0
3	4	Japan	Master	0	0.0
4	5	Korea	PHD	1	1.0
5	6	China	PHD	0	0.5
6	7	USA	Bachelor	1	0.5

```
数值特征(Numerical Features)
```

- ✓ 是常见的连续特征:
 - ✓ 年龄:18、19、25、40;
 - ✓ 成绩:55、60、75、80、95;
 - ✓ 经纬度: 45.87、23.89、21.21;
- ✓ 容易出现异常值和离群点;

数值特征(Numerical Features)编码方式:

✓ Round

□ 形式:将数值进行缩放、取整;

□ 用途:在大部分场景都可以通用;

□ 优点:可以保留数值大部分信息;

□ 缺点:

□ 实现方法:

```
df['age_round1'] = df['age'].round()
df['age_round2'] = (df['age'] / 10).astype(int)
df.head(10)
executed in 14ms, finished 15:20:54 2020-08-02
```

	student_id	country	education	age	target	age_round1	age_round2
0	1	China	Master	34.5	1	34.0	3
1	2	USA	Bachelor	28.9	0	29.0	2
2	3	UK	Bachelor	19.5	1	20.0	1
3	4	Japan	Master	23.6	0	24.0	2
4	5	Korea	PHD	19.8	1	20.0	1
5	6	China	PHD	29.8	0	30.0	2
6	7	USA	Bachelor	31.7	1	32.0	3

数值特征(Numerical Features)编码方式:

✓ Binning

□ 形式:将数值进行分箱;

□ 用途:在大部分场景都可以通用;

□ 优点:可以将连续特征离散化

□ 缺点:

□ 实现方法:

	student_id	country	education	age	target	age_<20	age_20-25	age_>30
0	1	China	Master	34.5	1	0	0	1
1	2	USA	Bachelor	28.9	0	0	1	0
2	3	UK	Bachelor	19.5	1	1	0	0
3	4	Japan	Master	23.6	0	0	0	0
4	5	Korea	PHD	19.8	1	1	0	0
5	6	China	PHD	29.8	0	0	1	0
6	7	USA	Bachelor	31.7	1	0	0	1

数值特征(Numerical Features)如何进行的特征缩放?

- 1) Min Max Scaler
- 2) Standard Scaler
- 3) Max Abs Scaler
- 4) Robust Scaler
- 5) Quantile Transformer Scaler
- 6) Power Transformer Scaler
- 7) Unit Vector Scaler

Gradient descent without scaling

Gradient descent after scaling variables

$$0 \le x_1 \le 1$$
$$0 \le x_2 \le 1$$

数值特征(Numerical Features)如何进行的特征缩放?

1) Min Max Scaler

$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

- □ 形式:利用最大最小值进行处理;
- □ 用途:非高斯分布;
- □ 优点:可以保留数值大部分信息;
- □ 缺点:容易受到异常值影响;
- □ 实现方法:
 - ☐ from sklearn.preprocessing import MinMaxScaler

数值特征(Numerical Features)如何进行的特征缩放?

2) Standard Scaler

$$x_{new} = \frac{x - \mu}{\sigma}$$

- □ 形式:利用均值和方差进行处理;
- □ 用途:高斯分布;
- □ 优点:处理之后数据更加正态化;
- □ 缺点:对分布要求严格;
- □ 实现方法:
 - ☐ from sklearn.preprocessing import StandardScaler

数值特征(Numerical Features)如何进行的特征缩放?

3) Max Abs Scaler

□ 形式:与Min Max Scaler类似,但使用绝对最大只进行缩放;

□ 用途:非高速分布

□ 优点:

□ 实现方法:

☐ from sklearn.preprocessing import MaxAbsScaler

julyedu.com

日期特征:

- ✓ 统计当前时间信息;
- ✓ 统计历史信息;

文本特征:典型的非结构数据

- ✓ 需要特殊对待,很容易得到稀疏数据;
- ✓ 可以参考类别特征的处理方法;

图像特征:典型的非结构化数据

✓ 需要根据任务进行特定的提取;

✓ 可以参考图像处理的领域知识;

交叉特征:如何对特征进行交叉,构造新特征?

✓ 同类类型特征:加、减、除、笛卡尔积

✓ 不同类型特征: 乘、除

✓ 聚合特征(先分组再聚合):同比、环比

Leak & Golden特征:数据泄露,与赛题标签强相关的无效信息

例如:

- ✓ 图像的创建时间、MD5信息;
- ✓ 不同类型样本的分布规律;

思考1:你真的掌握了上述的特征工程方法了吗?

思考2:不同的机器学习模型能学习到不同特征,是人工先做特征,还是让机器去学习?

思考3:如果是匿名特征,如何做特征工程?

随机森林:使用节点分裂的Gini指数来进行衡量;

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

```
rf = RandomForestRegressor()
rf.fit(data.data, data.target);
print(rf.feature_importances_)
```

LightGBM: If "split", result contains numbers of times the feature is used in a model. If "gain", result contains total gains of splits which use the feature.

https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.plot_importance.html

```
rf = LGBMRegressor()
rf.fit(data.data, data.target);
print(rf.feature_importances_)
```


XGboost: "gain", "weight", "cover", "total_gain" or "total_cover".

https://xgboost.readthedocs.io/en/latest//python/python_api.html?highlight=feature_importances

```
rf = XGBRegressor()
rf.fit(data.data, data.target);
print(rf.feature_importances_)
```


思考:模型输出的重要性和特征真实的重要性是一致的么?

julyedu.com

Part 4 特征筛选方法

✓ Filter(过滤法): 在训练代码之前进行特征筛选,筛选步骤与后续训练模型无关;可以设定统计阈值或将待选择特征的个数进行筛选

✓ Wrapper(包装法):通过训练与验证来找到合适的特征子集; 选择在验证集上精度最高的特征子集,在竞赛过程比较合适用;

✓ Embedded(嵌入法): 在训练过程中,利用模型参数或信息增益选择; 选择随机森林特征重要性前20个特征;

Part 4 AutoML

AutoML可以自己完成:特征工程、模型训练、模型调参的过程;

Part 4 AutoML

AutoML可以自己完成:特征工程、模型训练、模型调参的过程;

- <u>Data preparation</u> and ingestion (from raw data and miscellaneous formats)
 - Column type detection;
 - Column intent detection;
- Feature engineering
 - Feature selection
 - Feature extraction
 - Meta learning and transfer learning
 - Detection and handling of skewed data and/or missing values
- Model selection
- Hyperparameter optimization of the learning algorithm and featurization
- Selection of evaluation metrics and validation procedures
- Analysis of results obtained

Part 4 AutoML

思考:AutoML能代替算法工程么,算法工程师会失业么?

Part 5 代码实践

1、非结构化特征工程

https://www.kaggle.com/kashnitsky/topic-6-feature-engineering-and-feature-selection

2、leak特征

https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries/discussion/31870

阅读链接

- 1. https://towardsdatascience.com/all-about-categorical-variable-encoding-305f3361fd02
- 2. https://towardsdatascience.com/all-about-missing-data-handling-b94b8b5d2184
- 3. https://towardsdatascience.com/all-about-feature-scaling-bcc0ad75cb35
- 4、 https://towardsdatascience.com/understanding-feature-engineering-part-1-continuous-numeric-data-da4e47099a7b

课后作业

作业1、使用课程讲解的内容改进baseline思路,加入自己的特征;

作业2、加入基于manager_id的target encoding + Leak特征,并进行提交,截图发在群里;

刘老师

https://www.julyedu.com/