Algoritmusok és vizsgálatuk 1. Zh feladat

A Zh feladatban egy Turing-gépet kell megalkotnunk, aminek egy megadott bemenetből egy adott kimenetet kell létrehoznia. Lényegében van egy bemeneti szalag, ami tartalmazza a feldolgozandó információt (0 és 1 karakterek) és nekünk lesz egy kimeneti szalagunk (van, hogy kell több szalag is de ez a mi esetünkben nem lényeg, nekünk elég lesz ez a 2 szalag) amire a megoldást kell ráírnunk.

Itt van ez a csodás feladat amit csináltunk órán. Mint látszik a bemenet egy $x_1, x_2...x_m$ sorozat aminek tulajdonképpen a fordítottját kell ráírnunk a szalagra: $x_m, x_{m-1}...x_1$.

Kezdetben van a bemeneti szalag, amin a bemeneti inputok vannak és van egy kimeneti szalagunk, ami üres. A * jelzi az üres helyeket a szalagon (automatákból ezt B-vel jelöltük). Van egy mozgó fejecskénk (a nyíl) ami egyesével ugrál vagy balra vagy jobbra.

Van néhány alap adatunk amiket megadunk, ilyen a k ami a szalagok száma, a Σ ami az ábécé, a karakterek amiket használunk (általában 0, 1 ,*) és a Γ ami pedig az állapotok halmazát tartalmazza. Jelen esetben van 3 állapotunk, a START ami mindig a kezdőállapot, a STOP ami mindig a végállapot és bevezettünk magunknak egy 3. állapotot a MÁSOL-t. (Annyi és olyan nevű állapotot vezetünk be amennyit és amilyet akarunk)

Na de nézzük is miért kell nekünk ez a MÁSOL állapot. A mi feladatunk megírni a gépezetet ami megcsinálja a bemeneti adatokból a kimenetit. Jelen esetben a feladat igazából úgy néz ki, hogy a fej végig kell menjen a bemeneti szalagon másolás nélkül (tehát a kimeneti szalagon a fej meg sem mozdul), majd amikor a végére ér, akkor pedig vissza kell indulnia de úgy, hogy akkor már másolja a dolgokat. Ehhez egy szép táblázatot csinálunk, ahol megadjuk, hogy egy adott állapot és bemenet esetén mit csináljon a gépünk.

A táblázatban a Γ az állapot, a Σ^k hogy mit olvasunk be, az első karakter a zárójelben az első szalag (bemeneti), a 2. a 2. szalag, az α hogy melyik állapotra megyünk tovább, a β hogy mit írunk a szalagokra, szintén az első karakter az első szalagra, a második a második szalagra vonatkozik, a γ pedig hogy melyik szalagon hogyan lépjen a fej. A +1 jobbra, -1 a balra és a 0 hogy nem lép.

Ugye a START állapotnál beolvashat az első szalagról vagy 0 vagy 1 vagy * karaktert. Hogyha 0 vagy 1 karaktert olvas, akkor ugye még nem kell másolnunk, csak lépkednünk, hiszen nem értük el a szalag végét. Ezért az állapot továbbra is marad a START, visszaírjuk a 0 helyére a nullát, az 1 helyére az egyet, a 2. szalagra mindkét esetben a csillagot, és amint látszik mozgunk jobbra az első szalagon, a másodikon maradunk helyben, hiszen nem kell írnunk semmit.

Amint elérjük a bemenetünk végét, és megtaláljuk a START állapotú (*,*) karaktereket, abban az esetben kell átmennünk a MÁSOL állapotra. Visszaírjuk a csillagokat és lépünk egyet balra. Jöhet a MÁSOL.

4. MASOL	(0,×)	MASOL	(0,0)	(-1+1)
5. MASOL	(4×)			
6. MASOL	(*,*)	STOP	(*,*)	(0,0)

Itt is ugyan azokat olvashatjuk be, mint az előbb. Ugye ha beolvasunk egy (0, *) karakter párt, akkor maradunk a MÁSOL állapotnál, az első szalagra visszaírjuk a nullát, de most már a 2. szalagra is ráírjuk a nulla karaktert hiszen készítjük a kimenetet. Ezután az első szalagon lépünk balra, de már a második szalagon is haladnunk kell, ott viszont jobbra. Az (1, *) bemenetnél is ugyan ez a helyzet. Egészen addig másolgatunk, amíg el nem érünk a (*, *) karakter párhoz, ugyanis ezzel látjuk hogy vége az 1. szalagon az inputoknak, így jöhet a STOP állapot, visszaírjuk a 2 csillagot és maradunk helyben.

Lényegében erről lenne szó. Itt lesz egyben ez a feladat, meg még egy másik.

1. Felodat:	
Generat: x1, x2,, xm (x; € {0,13)	& = 2 Caltalaban
limenet: xm, xm-1,, x1	En = Eo, 1, # }
1.00 elag * X1 X2 Xu-1 Xu * *	T = { START , STOP, MASOL ?
2. 22 alay * * * * * * * *	
b b	
T Si x pp	
1. START (0,*) START (0,*) (+1,0)	
2. START (1,*) START (1,*) (+1,0)	
3. START (* *) MASOL (* *) (-1,0)	
4. MASOL (0,4) MASOL (0,0) (-1,+1)	
5. MASOL (1, 1) (-1,+1)	
6 MASOL (* *) STOP (* *) (0.0)	or megoldar, lehet
was in)

Itt a 2. feladatban igazából 2x kell ráírnunk a kimeneti szalagra a bemeneti adatokat (és most nem visszafelé, hanem ahogy vannak), így van egy VISSZA állapotunk, amivel a kezdeti szalagon visszamegyünk az első elemhez majd újra másolunk.

2. Feladat				
bem	enct: X1, x2	,, xm ((x; efo,13)	
	enct: X1, X2,	Ym x4, x2	1 1 × m	
b = 2	2 = 40,11.	*3 M=1	STARET, STOP,	VISSZA, HASOL?
1. nalag	* * *	X2	Xm-1 xm x	
2 nalug	* *	*	* * *	
7	. El &	\sim	p	
1. SYART	(0,*)	START	(0,0)	(+1,+1)
2.START	(lix)	START	(1,1)	(+1,+1)
3. START	(*, x)	UISSZA	(*,*)	(-1,0)
U. UISSZA	(O,×)	UISSZA	(0,*)	C-1(0)
5. VISSZA	(1,*)	UISSZA	(1,*)	(-1,0)
S. VISSZA	(x, x)	MASOL	(* ,*)	(+1,0)
I MASOL	(0,x)	MASOL	(0,0)	(+1,+1)
8. MASOL	(1, ×)	MASOL	(λ, λ)	(+1,+1)
J. MASIL	(*, *)	STOP	(* (*)	(0,0)