STA 3180 Statistical Modelling: Graphical Models

STA 3180 Statistical Modelling - Graphical Models

Graphical models are a type of probabilistic model that uses graphical structures to represent the relationships between random variables. They are used to represent complex systems and provide a way to visualize the dependencies between variables.

Key Concepts

- * **Probability Distribution**: A probability distribution is a mathematical function that describes the likelihood of a particular outcome occurring. It is used to describe the behavior of a random variable.
- * **Graphical Model**: A graphical model is a type of probabilistic model that uses graphical structures to represent the relationships between random variables.
- * **Conditional Probability**: Conditional probability is the probability of an event occurring given that another event has already occurred.
- * **Bayesian Network**: A Bayesian network is a type of graphical model that uses directed acyclic graphs (DAGs) to represent the relationships between random variables.
- * **Markov Network**: A Markov network is a type of graphical model that uses undirected graphs to represent the relationships between random variables.

Definitions

- * **Probability Distribution**: A probability distribution is a mathematical function that describes the likelihood of a particular outcome occurring. It is used to describe the behavior of a random variable.
- * **Graphical Model**: A graphical model is a type of probabilistic model that uses graphical structures to represent the relationships between random variables.
- * **Conditional Probability**: Conditional probability is the probability of an event occurring given that another event has already occurred.
- * **Bayesian Network**: A Bayesian network is a type of graphical model that uses directed acyclic graphs (DAGs) to represent the relationships between random variables.
- * **Markov Network**: A Markov network is a type of graphical model that uses undirected graphs to represent the relationships between random variables.

Coding Examples

Start of Code // Calculate the conditional probability of event A given event B let A = 0.2;let B = 0.4;let conditionalProbability = A/B; console.log(conditionalProbability); End of Code ### Example 2: Constructing a Bayesian Network Start of Code // Construct a Bayesian network with three nodes let node1 = { name: "Node 1", parents: [], children: ["Node 2", "Node 3"] }; let node2 = { name: "Node 2", parents: ["Node 1"], children: ["Node 3"] }; let node3 = { name: "Node 3", parents: ["Node 1", "Node 2"], children: [] }; let bayesianNetwork = [node1, node2, node3]; console.log(bayesianNetwork); End of Code

Practice Multiple Choice Questions

Example 1: Calculating Conditional Probability

Q1. What is a graphical model?

A. A type of probabilistic model that uses graphical structures to represent the relationships between random variables.

Q2. What is a Bayesian network?

A. A type of graphical model that uses directed acyclic graphs (DAGs) to represent the relationships between random variables.