Coputational Social Science Methods in R Introduction to Machine Learning

Taehee Kim Summer Semester 2022

University of Oldenburg

What is Machine Learning?

Acknowledgement

Recommended Reading

 Raschka, Sebastian, and Vahid Mirjalili. Python machine learning. Packt Publishing Ltd, 2017.

Machine Learning

What is Machine Learning?

- Field of study that gives computers the ability to learn without being explicitly programmed (Arthur Samuel, 1959)
- it learns a function that maps an input to an output based on a training dataset (set of examples of input and output)
- Machine learning is not a single approach but rather a diverse array of techniques
- Machine learning techniques include classification, regression, clustering, Bayesian networks, etc...

Examples

• spam filter, image detection, self-driving car, AlphaGo..etc

Definition of Machine Laearning

A machine learning algorithm is an algorithm that can learn from data: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at the task in T, as measured by P, improves with experience E." (Mitchell, T. 1997)

Three elements

- Experience E → train the algorithm (model) by maximizing the performance P on the training set E.
- Task $T \rightarrow \text{task}$ is solved by the model trained by E.
- Performance P → it should increase with E.

Goal of ML

- · learning from data
- execute task T based on experience E with optimal performance P

Three types of machine learning

Supervised Learning

- Right answers are given: labeled data
- Direct feedback
- Predict outcome/future
- Two kinds in terms of outputs:

Regression: predict continuous valued output

Classification: Predict discrete valued output

• Example: linear/logistic regression, SVM, Neural Network etc..

Unsupervised Learning

- We can't give right answer to all data as the data increase exponentially with the development of technology
- No labeled data
- No feedback
- Find hidden structure in data
- Example: K-means, Gaussian mixture models, PCA etc..

Three types of machine learning

Reinforcement Learning

- Decision process
- Reward system
- Learn series of actions
- Example: Chess game

Figure 1: Raschka and Mirjalili (2017)

Supervised vs. Unsupervised

Figure 2: Classification (supervised) vs. Clustering (unsupervised)

Classification vs. Regression

Figure 3: Raschka and Mirjalili (2017)

Process of Supervised Learning

Figure 4: source: Raschka and Mirjalili (2017)

Process of Supervised Learning

Figure 4: source: Raschka and Mirjalili (2017)

Example: Linear regression with one variable

- Hypothesis: $h_{\theta} = \theta_0 + \theta_1 x \rightarrow \text{model's predict}$
- ullet Parameters: $heta_0,\, heta_1 o$ we want to find out
- Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^i) y^i)^2$ \rightarrow calculating error, i.e., differences between model's predict and true value
- ullet Goal: $minJ(heta_0, heta_1)
 ightarrow$ we want to find the parameter which minimize error

How to find $minJ(\theta_0, \theta_1)$?

Gradient descent:

Given a function f(x), our objective is: $min_x f(x)$ Repeat until convergence: $x:=x-\alpha \frac{\partial f}{\partial x}$, where α : learning rate α is too small, more iterations; α is too large, may not converge $\rightarrow \alpha$ is hyperparameter

Gradient descent

Figure 5: source: Raschka and Mirjalili (2017)

Gradient descent vs. normal equation

- Normal equation:
 - No iterations, but need to compute $(X^TX)^{-1}(X^TY)$. It is slow when n is very large
- Gradient descent:
 - Need many iterations but works well even when number of features n is very large

Hyperparameter

- is a parameter whose value is set before the learning process begins.
- the values of other parameters are derived via training

Grid Search

- The traditional way of performing hyperparameter optimization.
- an exhaustive searching through a manually specified subset of the hyperparameter space of a learning algorithm.

Type I error Type II error (false positive) (false negative) You're not pregnant You're pregnant

Figure 6: Source of Image: Effect Size FAQs by Paul Ellis

Confusion matrix

		Predicted value		
		Positive	Negative	
True value	True False	True Positive False Positive	False Negative True Negative	

Table 1: Confusion matrix: a table visualizing the performance of a supervised learning.

- Accuracy = $\frac{TP+TN}{TP+TN+FN+FP}$
- Precision = $\frac{TP}{TP+FP}$: fraction of true positives among positives
- Recall = $\frac{TP}{TP+FN}$: fraction of true positives among true cases
- You have to be careful especially when your dataset is unbalanced.

Confusion Matrix

How do you assess this classification performance? If this a result of some disease examination, do you want to take this test?

		Predicted value		
		positive	negative	
True value	true	61	492	
	false	16	1593	

- N of dataset = 2062
- \bullet N of false = 1509; N of true = 553
- Accuracy: 0.765

Confusion Matrix

How do you assess this classification performance? If this a result of some disease examination, do you want to take this test?

		Predicted value		
		positive	negative	
True value	true	61	492	
	false	16	1593	

- N of dataset = 2062
- $\bullet\,$ N of false = 1509; N of true = 553
- Accuracy: 0.765
- Precision: 0.79; Recall: 0.11

Overfitting

Figure 7: source: Raschka and Mirjalili (2017)

When overfitting occur?

- flexible model with too many parameters
- not enough training data