

物理实验数等中心

Physics Expeiment Center

MEASUREMENT OF ELECTRODYNAMIC POTENTIAL USING 11-CORD POTENTIAL DIFFERENCE METER

Li Bin NJUPT

AIMS:

- 1. Know the compensation method.
- 2. Learn to use 11-cord potential difference meter.
- 3. Measure the electrodynamic potential (electric voltage).

Circuit Diagram

 $E_N = U_{CD} = U_0 * L_{CD}$, U_0 is called correction factor, L_{CD} is the length of the resistance wire between C & D $E_x = U_{CDx} = U_0 * L_{CDx}$. E_N is known, if we know L_{CD} and L_{CDx} , we can obtain E_x .

• $E_N = U_{CD} = U_0*L_{CD}$, U_0 is called correction factor, L_{CD} is the length of the resistance wire between C & D.

• $E_x = U_{CDx} = U_0*L_{CDx}$. E_N is known, if we know L_{CD} and L_{CDx} , we can obtain E_x .

galvanometerVoltmeter

division circle

Steps:

- 1. Connect circuit;
- 2. Galvanometer zero adjustment;
- 3. Calculate L_{CD} for correction factor $U_0 = 0.2 \text{ V/m}$, using $L_{CD} = E_N/U_0 = 1.0186/0.2 = 5.093 \text{ m}$;
- 4. Regulate the length of CD to $L_{\rm CD}$, adjust the voltage to make galvanometer displaying 0 at 10^{-8} gear;
- 5. Calculate the ideal L_{CDx} for correction factor $U_0 = 0.2$ V/m, using $L_{CDx} = E_x/U_0 = 1.5/0.2 = 7.5$ m;
- 6. Keep the voltage unchanged, adjust the length of CD to make galvanometer displaying 0 at 10-8 gear. Record the measured L_{CDx}:
- 7. Calculate the actual value of $E_x = L_{CDx} * U_0$;
- 8. Change U_0 to 0.25 V/m, redo 3-7 steps.

U ₀ /(V/m)	E (voltmeter) /V	L _{CD} (calculated) /m	L _{CDx} (measured) /m	E _x /V
0.2		5.093		
0.25		4.0744		

HOMEWORK

- Please complete the report to describe this experiment, and find out more methods to measure the voltage.
- DL: November 9, 2023

- Useful link(s):
- https://github.com/bliseu/phylab

END

