

#### 1 Fórmula e hipóteses

Sejam F uma primitiva de f e  $\phi$  uma função invertível (detalhes a seguir)

Definindo  $G(t) = F(\phi(t))$ , temos que  $F(x) = G(\phi^{-1}(x))$  e que

$$G'(t) = \left(F(\phi(t))\right)' = F'(\phi(t))\phi'(t) = f(\phi(t))\phi'(t)$$

Assim, caso seja possível determinar uma primitiva de  $f(\phi(t))\phi'(t)$ , o seguinte esquema permite calcular (indiretamente) uma primitiva de f.

$$\int f(x) dx \qquad \xrightarrow{x=\phi(t)} \int f(\phi(t))\phi'(t) dt$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad$$

- o domínio das primitivas é um intervalo:  $D_F = I \subseteq D_f$  e  $D_G = J$
- logo, sendo  $G = F \circ \phi$ , é necessário que:  $D_{\phi} = J \ \text{e } CD_{\phi} \subseteq I = D_F$
- $\phi$  tem de ser diferenciável e invertível (usam-se as duas propriedades)

#### 2 Sobre a fórmula do integral

Vimos que, se  $x = \phi(t)$ , então  $\int f(x) dx = \int f(\phi(t)) \phi'(t) dt$ 

Para justificar a igualdade podemos recorrer à notação de Leibniz:

$$\phi'(t) = \frac{d}{dt}\phi(t) = \frac{d\phi}{dt}(t) = \frac{d\phi(t)}{dt}$$

Embora a fração seja simbólica, podemos 'multiplicar por dt' e escrever

$$\phi'(t) dt = d\phi(t) = dx$$

$$\int f(x) dx$$

$$x = \phi(t) / \int dx = \phi'(t) dt$$

$$\int f(\phi(t)) \phi'(t) dt$$

(1)

# 3 Exemplo 1

$$\int \frac{1}{e^x + 1} dx = \int \frac{1}{t + 1} (\ln t)' dt$$

$$= \int \frac{1}{t + 1} \cdot \frac{1}{t} dt$$

$$= \int \frac{-1}{t + 1} + \frac{1}{t} dt$$

$$= -\ln|t + 1| + \ln|t| + C$$

$$= -\ln|e^x + 1| + \ln|e^x| + C$$

$$= x - \ln(e^x + 1) + C, C \in \mathbb{R}$$

Escolho  $t=e^x$  para (tentar) simplificar o integral: repare-se que, nestes casos, em vez de  $\phi$  começa-se por definir a função inversa:

$$t = \phi^{-1}(x) = e^x \implies x = \phi(t) = \ln t$$

Sendo  $D_f = \mathbb{R} \Rightarrow I = D_F = \mathbb{R}$ ,  $D_{\phi} = \mathbb{R}^+ = J$ ,  $CD_{\phi} = \mathbb{R} \subseteq I$  e  $\phi$  diferenciável, podemos efetuar a substituição.

(1) Nesta passagem foi calculada a decomposição em frações simples da função racional  $\frac{1}{t(t+1)}$ .



#### 4 Exemplo 2

$$\int \frac{1}{\sqrt{e^x - 1}} dx = \int \frac{1}{\sqrt{t - 1}} (\ln t)' dt$$
$$= \int \frac{1}{\sqrt{t - 1}} \cdot \frac{1}{t} dt \quad (?)$$

$$\int \frac{1}{\sqrt{e^x - 1}} dx = \int \frac{1}{t} \left( \ln(t^2 + 1) \right)' dt$$

$$= \int \frac{1}{t} \cdot \frac{2t}{t^2 + 1} dt$$

$$= 2 \int \frac{1}{t^2 + 1} dt$$

$$= 2 \operatorname{arctg} t + C$$

$$= 2 \operatorname{arctg} \sqrt{e^x - 1} + C, C \in \mathbb{R}.$$

Escolho  $t=e^x$  como no exemplo anterior; agora,  $D_f=D_F=I=\mathbb{R}^+$ : preciso de definir  $D_\phi$  para que  $CD_\phi\subseteq D_F\Leftrightarrow \ln t>0\Leftrightarrow t>1$ . Assim, com  $D_\phi=J=]1,+\infty[$ , posso aplicar a substituição que, infelizmente, não torna mais simples o cálculo do integral.

Tento com  $t = \sqrt{e^x - 1} = \phi^{-1}(x)$ . Pelas propriedades da raiz e pelo domínio de f, tem que ser t > 0. Assim, calculo  $\phi(t) = \ln(1 + t^2)$ , com  $D_{\phi} = \mathbb{R}^+$ , que satisfaz as hipóteses: com esta substituição obtém-se a primitiva.

#### 5 Exemplo 3

$$\int \ln x \, dx = \int t(e^t)' \, dt$$

$$= \int te^t \, dt$$

$$= te^t - \int e^t \, dt$$

$$= te^t - e^t + C$$

$$= e^t(t-1) + C$$

$$= x(\ln(x) - 1) + C, C \in \mathbb{R}$$

O integral dado calcula-se por partes, com um truque (uma parte é '1'). No entanto, com a substituição  $t = \phi^{-1}(x) = \ln x$ , ou seja,  $x = \phi(t) = e^t$ , obtém-se um integral em que a resolução por partes é mais evidente.

(1) Repare-se que, nas substituições, podemos usar todas as relações encontradas entre x e t: neste caso,  $e^t = x$  e  $t = \ln x$ .

6 Exemplo 4

$$\int \frac{1}{\sqrt{x} + \sqrt[3]{x}} dx = \int \frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{3}}} dx \int \frac{1}{x^{\frac{3}{6}} + x^{\frac{2}{6}}} dx$$

$$= \int \frac{1}{t^3 + t^2} (t^6)' dt$$

$$= \int \frac{6t^5}{t^3 + t^2} dt$$

$$= 6 \int \frac{t^3}{t + 1} dt$$

$$= 6 \int t^2 - t + 1 - \frac{1}{t + 1} dt$$

$$= 6 \left( \frac{t^3}{3} - \frac{t^2}{2} + t - \ln|t + 1| \right) + C$$

$$= 2t^3 - 3t^2 + 6t - 6\ln|t + 1| + C$$

$$= 2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} - 6\ln\left(\sqrt[6]{x} + 1\right)$$

$$+ C, C \in \mathbb{R}$$

Frequentemente, a substituição serve para obter uma função racional: neste caso, os expoentes das potências não são inteiros, mas são múltiplos de  $\frac{1}{6}$ . Assim, se  $t=\phi^{-1}(x)=x^{\frac{1}{6}}=\sqrt[6]{x}>0$ , tem-se  $\sqrt{x}=t^3$  e  $\sqrt[3]{x}=t^2$ , sendo  $x=\phi(t)=t^6$  diferenciável e invertível em  $D_{\phi}=\mathbb{R}^+$ , com  $CD_{\phi}=\mathbb{R}^+=D_F$ .

(1) Aqui foi calculada a divisão do polinómio  $t^3$  por t+1, sendo  $t^2-t+1$  o quociente e-1 o resto.

(1)

(1)



### 7 Substituições trigonométricas para radicais

Para integrar funções com raízes de expressões quadráticas podemos:

- transformar a raiz num dos radicais elementares apresentados na tabela
- aplicar as seguintes substituições (pode ser preciso usar restrições)

A. 
$$\sqrt{1-x^2} = \cos t$$
 se 
$$\begin{cases} x = \phi(t) = \sin t \in [-1, 1] \\ t = \phi^{-1}(x) = \arcsin x \in [-\frac{\pi}{2}, \frac{\pi}{2}] \end{cases}$$
B.  $\sqrt{1+x^2} = \sec t$  se 
$$\begin{cases} x = \phi(t) = \operatorname{tg} t \in \mathbb{R} \\ t = \phi^{-1}(x) = \operatorname{arctg} x \in ] - \frac{\pi}{2}, \frac{\pi}{2}[ \end{cases}$$
C.  $\sqrt{x^2-1} = \operatorname{tg} t$  se 
$$\begin{cases} x = \phi(t) = \sec t \in [1, +\infty[ \text{ ou } -\sec t \in ] -\infty, -1] \\ t = \phi^{-1}(x) = \operatorname{arccos} \frac{1}{|x|} = \operatorname{arctg} \sqrt{x^2-1} \in [0, \frac{\pi}{2}[$$

TPC: obter as outras funções trigonométricas usando secante e tangente.

#### 8 Exemplo 5 (radical de tipo 'A')

$$\int \sqrt{1-x^2} \, dx = \int \cos t (\sin t)' \, dt$$

$$= \int \cos^2 t \, dt$$

$$= \frac{1}{2}t + \frac{1}{4}\sin(2t) + C$$

$$= \frac{1}{2}t + \frac{1}{2}\sin t \cos t + C$$

$$= \frac{1}{2}\operatorname{arcsen} x + \frac{1}{2}x\sqrt{1-x^2} + C$$

$$x = \operatorname{sen} t, t \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$$

Neste tipo de substituição, não se escolhe  $\phi^{-1}$ , mas  $\phi$ , para poder eliminar indiretamente o radical.

(1) A primitiva obtida pela fórmula  $\cos^2 t = \frac{1+\cos(2t)}{2}$  não permite voltar facilmente à variável x: no entanto, basta usar as fórmulas sobre somas de ângulos (aqui:  $\sin(2t) = 2 \sin t \cos t$ ) ou, como vimos, primitivar por partes para chegar a (2).

# 9 Exemplo 6 (radical de tipo 'A')

$$\int \frac{1}{x\sqrt{1-x^2}} dx = \int \frac{1}{\sin t \cos t} (\sin t)' dt$$

$$= \int \frac{\cos t}{\sin t \cos t} dt$$

$$= \int \frac{1}{\sin t} dt$$

$$= \int \csc t dt$$

$$= -\ln|\csc t + \cot t| + C$$

$$= -\ln\left|\frac{1+\cos t}{\sin t}\right| + C$$

$$= \ln\left|\frac{\sin t}{1+\cos t}\right| + C$$

$$= \ln\left|\frac{x}{1+\sqrt{1-x^2}}\right| + C, C \in \mathbb{R}$$

$$x = \text{sen } t, t \in ]-\frac{\pi}{2}, 0[ \text{ ou } t \in ]0, \frac{\pi}{2}[$$

Neste caso, o domínio da substituição dada por  $x = \phi(t) = \sec t$  não pode  $\sec \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ , pois  $D_f = ]-1,0[\cup]0,1[$  e, portanto, o domínio de F só pode ser o intervalo I = ]-1,0[ ou I = ]0,1[. Consequentemente, o domínio de  $\phi$  poderá ser apenas o intervalo  $J = ]-\frac{\pi}{2},0[$  ou  $J = ]0,\frac{\pi}{2}[$ , onde todas as hipóteses são satisfeitas.

(1) Mais uma vez é preciso reescrever o resultado em termos de seno e cosseno para conseguir voltar à variável x.



#### 10 Exemplo 7 (radical de tipo 'B')

$$\int \sqrt{1+x^2} \, dx = \int \sec t (\operatorname{tg} t)' \, dt$$

$$= \int \sec^3 t \, dt$$

$$= \frac{1}{2} \sec t \operatorname{tg} t + \frac{1}{2} \ln|\sec t + \operatorname{tg} t| + C$$

$$= \frac{1}{2} x \sqrt{1+x^2} + \frac{1}{2} \ln|x + \sqrt{1+x^2}| + C$$

$$= \frac{1}{2} x \sqrt{1+x^2} + \frac{1}{2} \ln(x + \sqrt{1+x^2}) + C,$$

(1)

$$x = \operatorname{tg} t, t \in ]-\frac{\pi}{2}, \frac{\pi}{2}[$$

(2) (2) Calcula-se por partes, tal como sugere a expressão de (1).

## 11 Exemplo 8 (radical de tipo 'B')

$$\int \frac{1}{(1+x^2)^{\frac{3}{2}}} dx = \int \frac{1}{(\sqrt{1+x^2})^3} dx$$

$$= \int \frac{1}{\sec^3 t} (\operatorname{tg} t)' dt$$

$$= \int \frac{1}{\sec t} dt$$

$$= \int \cos t dt$$

$$= \sin t + C$$

$$= \frac{\sin t}{\cos t} \cdot \cos t + C$$

$$= \frac{\operatorname{tg} t}{\sec t} + C$$

$$= \frac{x}{\sqrt{1+x^2}} + C, C \in \mathbb{R}$$

$$x = \operatorname{tg} t, t \in ]-\frac{\pi}{2}, \frac{\pi}{2}[$$

(1) Nesta substituição (e na próxima) conhecem-se expressões na variável x para sec t e tg t: usando estas duas funções é possível representar as outras funções trigonométricas. (Aliás, com a exceção do sinal, o mesmo pode ser feito a partir de uma única função trigonométrica qualquer.)

$$\int \frac{1}{x\sqrt{x^2 - 1}} dx = \int \frac{1}{\sec t \operatorname{tg} t} (\sec t)' dt$$

$$= \int \frac{\sec t \operatorname{tg} t}{\sec t \operatorname{tg} t} dt$$

$$= \int 1 dt$$

$$= t + C$$

$$= \arccos \frac{1}{x} + C$$

$$= \operatorname{arctg} \sqrt{x^2 - 1} + C, C \in \mathbb{R}$$

$$x = \sec t, t \in ]0, \frac{\pi}{2}[$$

O domínio da função integranda  $D_f = ]-\infty, -1[\cup]1, +\infty[$  não é um intervalo: a definição de  $\phi$  depende do intervalo escolhido (ou dado, no caso do integral definido) para o domínio de F: se  $D_F = ]-\infty, -1[$ ,  $x = \phi(t) = -\sec t$  e, se  $D_F = ]1, +\infty[$ ,  $x = \phi(t) = \sec t$ , com  $t \in ]0, \frac{\pi}{2}[$  em ambos os casos. Nesta resolução optou-se pela segunda hipótese.

(1) É possível escolher qualquer uma das duas soluções, embora seja mais comum a primeira.



#### 13 Transformação de expressões quadráticas

Vamos transformar a expressão quadrática do radical  $\sqrt{1+x-2x^2}$ :

• pôr em evidência o coeficiente de  $x^2$ 

$$1 + x - 2x^2 = -2(x^2 - \frac{1}{2}x - \frac{1}{2})$$

• completar o quadrado  $x^2 \pm 2ax = x^2 \pm 2ax + a^2 - a^2 = (x \pm a)^2 - a^2$ 

$$=-2(x^2-2\frac{1}{4}x-\frac{1}{2})=-2((x-\frac{1}{4})^2-(\frac{1}{4})^2-\frac{1}{2})=-2((x-\frac{1}{4})^2-\frac{9}{16})$$

• pôr em evidência o termo constante  $(\frac{9}{16})$ , escolhendo o sinal para que o fator numérico da expressão  $(\frac{9}{8})$  seja positivo

$$=-2\left(-\frac{9}{16}\right)\left(-\frac{16}{9}\left(x-\frac{1}{4}\right)^2+1\right)=\frac{9}{8}\left(1-\frac{16}{9}\left(x-\frac{1}{4}\right)^2\right)$$

• passar o coeficiente para dentro do quadrado

$$= \frac{9}{8} \left( 1 - \left( \frac{4}{3} (x - \frac{1}{4}) \right)^2 \right) = \frac{9}{8} \left( 1 - \left( \frac{4x - 1}{3} \right)^2 \right)$$

Então: 
$$\sqrt{1+x-2x^2} = \sqrt{\frac{9}{8}\left(1-\left(\frac{4x-1}{3}\right)^2\right)} = \frac{3}{2\sqrt{2}}\sqrt{1-\left(\frac{4x-1}{3}\right)^2}$$
 com substituição  $\sqrt{1-\left(\frac{4x-1}{3}\right)^2} = \cos t, \ \frac{4x-1}{3} = \sin t, \ t = \phi^{-1}(x) = \arcsin\frac{4x-1}{3}, \ x = \phi(t) = \frac{1}{4}(1+3\sin t)$ 

#### 14 Exemplos – mais expressões quadráticas

$$x^{2} + 6x + 14 = x^{2} + 2 \cdot 3x + 14 = (x+3)^{2} - 9 + 14 = (x+3)^{2} + 5$$
$$= 5\left(\frac{1}{5}(x+3)^{2} + 1\right) = 5\left(\left(\frac{x+3}{\sqrt{5}}\right)^{2} + 1\right)$$

Logo, 
$$\sqrt{x^2 + 6x + 14} = \sqrt{5\left(\left(\frac{x+3}{\sqrt{5}}\right)^2 + 1\right)} = \sqrt{5}\sqrt{\left(\frac{x+3}{\sqrt{5}}\right)^2 + 1}$$
 com substituição 
$$\sqrt{\left(\frac{x+3}{\sqrt{5}}\right)^2 + 1} = \sec t, \ \frac{x+3}{\sqrt{5}} = \operatorname{tg} t, \ t = \phi^{-1}(x) = \operatorname{arctg} \frac{x+3}{\sqrt{5}}, \ x = \phi(t) = -3 + \sqrt{5}\operatorname{tg} t$$

$$\frac{1}{4}x^2 - 2x + 3 = \frac{1}{4}(x^2 - 8x + 12) = \frac{1}{4}((x - 4)^2 - 4)$$
$$= \frac{4}{4}(\frac{(x - 4)^2}{4} - 1) = (\frac{x - 4}{2})^2 - 1$$

Logo, 
$$\sqrt{\frac{1}{4}x^2 - 2x + 3} = \sqrt{(\frac{x-4}{2})^2 - 1}$$
 com substituição  $\sqrt{(\frac{x-4}{2})^2 - 1} = \operatorname{tg} t, \ \frac{x-4}{2} = \pm \sec t, \ t = \phi^{-1}(x) = \arccos \frac{2}{|x-4|}, \ x = \phi(t) = 4 \pm 2 \sec t$ 

# 15 Exemplo 10 (radical de tipo 'C')

$$\int \frac{\sqrt{\frac{1}{4}x^2 - 2x + 3}}{x - 4} dx = \int \frac{\operatorname{tg} t}{2 \sec t} (4 + 2 \sec t)' dt$$

$$= \int \frac{\operatorname{tg} t}{2 \sec t} \cdot 2 \sec t \operatorname{tg} t dt$$

$$= \int \operatorname{tg}^2 t dt$$

$$= \int \sec^2 t - 1 dt$$

$$= \operatorname{tg} t - t + C$$

$$= \sqrt{\frac{1}{4}x^2 - 2x + 3} - \arccos \frac{2}{x - 4} + C,$$

$$C \in \mathbb{R}$$

$$x = 4 + 2 \sec t, t \in [0, \frac{\pi}{2}]$$

Aproveitando as contas da página anterior, se  $x = \phi(t) = 4 + 2\sec t$ , com  $t \in \left[0, \frac{\pi}{2}\right]$  e  $x \in \left[6, +\infty\right[$ , podemos aplicar a substituição, sendo  $\sqrt{\frac{1}{4}x^2 - 2x + 3} = \operatorname{tg} t$ ,  $x - 4 = 2\sec t$  e  $t = \phi^{-1}(x) = \arccos\frac{2}{x-4}$ .



#### Primitivação quase imediata e por substituição

A primitivação quase imediata (PQI) é o "contrário" da substituição (PS)

**PS**: escolhe-se  $\phi(t)$  e transforma-se f(x) em  $f(\phi(t))\phi'(t)$ 

$$\frac{dx}{\int \frac{dx}{x(1+\ln x)}} = \begin{bmatrix} t = \phi^{-1}(x) = \ln x, x = \phi(t) = e^t \\ dx = d\phi(t) = \phi'(t) dt = e^t dt \end{bmatrix} = \int \frac{e^t dt}{e^t (1+t)} = \int \frac{dt}{1+t} = \ln|1+t| + C = \ln|1+\ln x| + C$$

$$\frac{dx}{\int \frac{dx}{x(1+\ln x)}} = \int \frac{1}{1+\ln x} \frac{1}{x} dx = \begin{bmatrix} u(x)=1+\ln x \\ u'(x)=\frac{1}{x} \end{bmatrix} = \int \frac{1}{u} u' dx = \int \frac{1}{u} du = \ln|u| + C = \ln|1+\ln x| + C$$

Contudo, na **PQI**, a primitiva de f(u) não é sempre imediata (=tabelas)!

$$\int \sec x \, dx = \int \frac{1}{\cos x} \, dx = \int \frac{\cos x}{\cos^2 x} \, dx = \int \frac{1}{1 - \sec^2 x} (\sec x)' dx = \int \frac{1}{1 - \sec^2 x} \, d(\sec x)$$

$$(u = \sec x) = \int \frac{1}{1 - u^2} \, du = (\text{função racional!}) = \frac{1}{2} \ln \left| \frac{1 + u}{1 - u} \right| + C = \frac{1}{2} \ln \left| \frac{1 + \sec x}{1 - \sec x} \right| + C$$

$$\left( \frac{1}{2} \ln \left| \frac{1 + \sec x}{1 - \sec x} \right| = \frac{1}{2} \ln \left| \frac{1 + \sec x}{1 - \sec x} \frac{1 + \sec x}{1 + \sec x} \right| = \frac{1}{2} \ln \left| \frac{(1 + \sec x)^2}{1 - \sec^2 x} \right| = \frac{1}{2} \ln \left| \frac{(1 + \sec x)^2}{\cos^2 x} \right| = \ln \left| \frac{1 + \sec x}{\cos x} \right| = \ln |\sec x + \tan x|$$

### Substituições com funções hiperbólicas (facultativo)

 $\cosh^2 t - \sinh^2 t = 1$ , análoga a  $\sec^2 t - \lg^2 t = 1$ , proporciona as substituições

B'. 
$$\sqrt{1+x^2} = \cosh t$$
 se 
$$\begin{cases} x = \phi(t) = \sinh t \in \mathbb{R} \\ t = \phi^{-1}(x) = \operatorname{arsenh} x = \ln(x+\sqrt{x^2+1}) \in \mathbb{R} \end{cases}$$
C'.  $\sqrt{x^2-1} = \sinh t$  se 
$$\begin{cases} x = \phi(t) = \cosh t \in [1, +\infty[ \text{ ou } -\cosh t \in ]-\infty, -1] \\ t = \phi^{-1}(x) = \operatorname{arcosh}(|x|) = \ln(|x| + \sqrt{x^2-1}) \in \mathbb{R}_0^+ \end{cases}$$

No cálculo das primitivas podem ser úteis as seguintes fórmulas:

$$e^{t} = \cosh t + \operatorname{senh} t \qquad \cosh(2t) = \cosh^{2} t + \operatorname{senh}^{2} t \qquad \operatorname{senh}(2t) = 2 \operatorname{senh} t \cosh t$$

$$(\operatorname{tgh} t)' = 1 - \operatorname{tgh}^{2} t = \frac{1}{\cosh^{2} t} \qquad (\operatorname{cotgh} t)' = 1 - \operatorname{cotgh}^{2} t = -\frac{1}{\operatorname{senh}^{2} t}$$

$$\int \cosh^{2} t \, dt = \frac{1}{2} (t + \operatorname{senh} t \cosh t) + C \qquad \int \operatorname{senh}^{2} t \, dt = \frac{1}{2} (-t + \operatorname{senh} t \cosh t) + C$$

Estas substituições são aplicadas aos exemplos 7, 8 e 9 nos slides seguintes

#### Exemplo 11 (radical de tipo B') 18

$$\int \sqrt{1+x^2} \, dx = \int \cosh t (\sinh t)' \, dt$$

$$= \int \cosh^2 t \, dt$$

$$= \frac{1}{2} (t + \sinh t \cosh t) + C$$

$$= \frac{1}{2} \ln(x + \sqrt{1+x^2}) + \frac{1}{2} x \sqrt{1+x^2} + C,$$

$$C \in \mathbb{R}$$
(1) (1) calcula-se por partes, como no caso trigonométrico, aplicando a identidade  $\sinh^2 t = \cosh^2 t - 1$ .



### 19 Exemplo 12 (radical de tipo B')

$$\int \frac{1}{(1+x^2)^{\frac{3}{2}}} dx = \int \frac{1}{(\sqrt{1+x^2})^3} dx$$

$$= \int \frac{1}{\cosh^3 t} (\operatorname{senh} t)' dt$$

$$= \int \frac{1}{\cosh^2 t} dt$$

$$= \operatorname{tgh} t + C$$

$$= \frac{\operatorname{senh} t}{\cosh t} + C$$

$$= \frac{x}{\sqrt{1+x^2}} + C, C \in \mathbb{R}$$

 $x = \operatorname{senh} t, t \in \mathbb{R}$ 

#### 20 Exemplo 13 (radical de tipo C')

$$\int \frac{1}{x\sqrt{x^2 - 1}} dx = \int \frac{1}{\cosh t \operatorname{senh} t} (\cosh t)' dt$$

$$= \int \frac{1}{\cosh t} dt$$

$$= \int \frac{\cosh t}{\cosh^2 t} dt$$

$$= \int \frac{(\operatorname{senh} t)'}{1 + \operatorname{senh}^2 t} dt$$

$$= \operatorname{arctg}(\operatorname{senh} t) + C$$

$$= \operatorname{arctg}(\sqrt{x^2 - 1}) + C$$

(1) Escolheu-se 
$$x \in ]1, +\infty[$$
 também nesta resolução, mas o domínio da substituição  $x = \phi(t) = \cosh t \in [0, +\infty[$ .

(1) As contas são parecidas com o integral da secante (slide 16), mas neste caso a primitiva quase imediata resolve-se com a primitiva imediata da arco tangente.

#### 21 Revisão

(a) 
$$\int (1+x)^{-2} \left(\frac{1-x}{1+x}\right)^{\frac{1}{3}} dx$$

(c) 
$$\int (x-1)\ln(x+1)\,dx$$

(e) 
$$\int x(1-x)^{42} dx$$

(b) 
$$\int \frac{1}{(x+3)^3 \sqrt{x^2+6x+8}} dx$$

(d) 
$$\int \frac{\ln x}{x\sqrt{1+\ln x}} dx$$

(f) 
$$\int \frac{1}{(1+\sinh x)\cosh x} \, dx$$

Soluções:

(a) 
$$-\frac{3}{8}\left(\frac{1-x}{1+x}\right)^{\frac{4}{3}} + C$$

(c) 
$$\frac{1}{2}(x^2-2x-3)\ln(1+x)-\frac{1}{4}(x-3)^2+C$$

(e) 
$$\frac{1}{44}(1-x)^{44} - \frac{1}{43}(1-x)^{43} + C$$

(b) 
$$\frac{1}{2} \arccos \frac{1}{x+3} + \frac{1}{2} \frac{\sqrt{x^2 + 6x + 8}}{(x+3)^2} + C$$

(d) 
$$\frac{2}{3}\sqrt{(1+\ln x)^3}-2\sqrt{1+\ln x}+C$$

(f) 
$$\frac{1}{2} \ln \left| \frac{1 + \operatorname{senh} x}{\cosh x} \right| + \frac{1}{2} \operatorname{arctg}(\operatorname{senh} x) + C$$