Задание

Для заданного набора данных постройте основные графики, входящие в этап разведочного анализа данных. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Какие графики Вы построили и почему? Какие выводы о наборе данных Вы можете сделать на основании построенных графиков?

Набор данных: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load wine.html#sklearn.datasets.load wine

Столбцы:

- Алкоголь
- Яблочная кислота
- Пепел
- Щелочность золы
- Магний
- Всего фенолов
- Флавоноиды
- Нефлаваноидные фенолы
- Проантоцианы
- Интенсивность цвета
- оттенок
- OD280/OD315 разбавленных вин

In [1]:#Загружаем все бибилиотеки import numpy as np

• Пролин

In [7]:data.shape Out[7]:(178, 14)

```
Подгружаем необходимые библиотеки и датасет:
```

```
import pandas as pd
     from sklearn.datasets import *
     import seaborn as sns
     import matplotlib.pyplot as plt
     %matplotlib inline
     sns.set(style="ticks")
Подключаем DataSet
In [2]:#Преобразование формата в DataFrame - выгрузка датасета про вино
     wine = load_wine()
In [3]:type(wine)
Out[3]:sklearn.utils._bunch.Bunch
In [4]:#Датасет возвращается в виде словаря со следующими ключами
     for x in wine:
       print(x)
data
target
frame
target_names
DESCR
feature_names
In [5]:#Выведем все колонки датасета
     wine['feature_names']
Out[5]:['alcohol',
       'malic_acid',
       'ash',
       'alcalinity_of_ash',
       'magnesium',
       'total phenols',
       'flavanoids'.
       'nonflavanoid phenols',
       'proanthocyanins',
       'color_intensity',
       'hue',
       'od280/od315_of_diluted_wines',
       'proline']
In [6]:#Преобразование в Pandas DataFrame
     data = pd.DataFrame(data= np.c_[wine['data'], wine['target']],
                columns = wine['feature_names']+ ['target'])
Размер набора данных
```

Смотрим н	а сам дат	асет								
In [8]:data										
Out[8]:	alcoho	l malic_acid	l ash	alcalinity_of_ash	magnesium	total_phenol	s flavanoids	nonflavanoid_phenols	proanthocyanins	(
(14.23	3 1.71	2.43	15.6	127.0	2.8	0 3.06	0.28	2.29	
1	13.20	1.78	3 2.14	11.2	100.0	2.6	5 2.76	0.26	1.28	
2	13.16	2.36	2.67	18.6	101.0	2.8	0 3.24	0.30	2.81	
3	14.37	7 1.95	2.50	16.8	113.0	3.8	5 3.49	0.24	2.18	
2	13.24	1 2.59	2.87	21.0	118.0	2.8	0 2.69	0.39	1.82	
173	3 13.7	5.65	2.45	20.5	95.0	1.68	8 0.61	0.52	1.06	
174	13.40	3.91	2.48	23.0	102.0	1.8	0 0.75	0.43	1.41	
175	13.27	7 4.28	3 2.26	20.0	120.0	1.59	9 0.69	0.43	1.35	
176	13.17	7 2.59	2.37	20.0	120.0	1.6	5 0.68	0.53	1.46	
177	7 14.13	3 4.10	2.74	24.5	96.0	2.0	5 0.76	0.56	1.35	
178	rows × 14	columns								
4									<u> </u>	
In [9]:data.	nead(5)									
Out[9]:	alcohol	malic_acid	ash a	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins co	ol
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	
THE L POROL									<u> </u>	

типы колонок

In [10]:#Узнаем типы данных каждого столбца data.dtypes

Out[10]:alcohol float64 malic_acid float64 ash float64 alcalinity_of_ash float64 float64 magnesium total_phenols float64 flavanoids float64 nonflavanoid_phenols float64 proanthocyanins float64 float64 color_intensity hue float64 od280/od315_of_diluted_wines float64 proline float64 target float64 dtype: object

In [11]:#Проверим количество пустых значений

for col in data.columns:

temp_null_count = data[data[col].isnull()].shape[0] print('{} - {}'.format(col, temp_null_count))

alcohol - 0 malic_acid - 0 ash - 0 alcalinity_of_ash - 0 magnesium - 0 total_phenols - 0 flavanoids - 0 nonflavanoid_phenols - 0 proanthocyanins - 0

color_intensity - 0 hue - 0

od280/od315_of_diluted_wines - 0 proline - 0

target - 0

Визуальное исследование датасета

Гистограммы

Гистограмма распределения % алкоголя.

In [12]:fig, ax = plt. subplots (figsize=(10,10)) sns.histplot(data['alcohol'])

Out[12]:<AxesSubplot: xlabel='alcohol', ylabel='Count'>

Распределение оттенков

In [13]:fig, ax = plt. subplots (figsize=(10,10)) sns.histplot(data['hue'])

Out[13]:<AxesSubplot: xlabel='hue', ylabel='Count'>

тут виден пропущенный оттенок, а также гистограмма не соотвествует закону нормального распределения.

Парные диаграммы

In [14]:sns.pairplot(data)

Парные диаграммы позволяют построить большинство диаграмм. На них присутствуют также бессмысленные сравнения данных.

In [15]:#Производим коррелляционный анализ data.corr()

Out[15]:	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavar
alcohol	1.000000	0.094397	0.211545	-0.310235	0.270798	0.289101	0.236815	
malic_acid	0.094397	1.000000	0.164045	0.288500	-0.054575	-0.335167	-0.411007	
ash	0.211545	0.164045	1.000000	0.443367	0.286587	0.128980	0.115077	
alcalinity_of_ash	0.310235	0.288500	0.443367	1.000000	-0.083333	-0.321113	-0.351370	
magnesium	0.270798	-0.054575	0.286587	-0.083333	1.000000	0.214401	0.195784	
total_phenols	0.289101	-0.335167	0.128980	-0.321113	0.214401	1.000000	0.864564	
flavanoids	0.236815	-0.411007	0.115077	-0.351370	0.195784	0.864564	1.000000	
nonflavanoid_phenols	0.155929	0.292977	0.186230	0.361922	-0.256294	-0.449935	-0.537900	
proanthocyanins	0.136698	-0.220746	0.009652	-0.197327	0.236441	0.612413	0.652692	
color_intensity	0.546364	0.248985	0.258887	0.018732	0.199950	-0.055136	-0.172379	
hue	0.071747	-0.561296	0.074667	-0.273955	0.055398	0.433681	0.543479	
od280/od315_of_diluted_wines	0.072343	-0.368710	0.003911	-0.276769	0.066004	0.699949	0.787194	
proline	0.643720	-0.192011	0.223626	-0.440597	0.393351	0.498115	0.494193	
target	0.328222	0.437776	0.049643	0.517859	-0.209179	-0.719163	-0.847498	

Þ

[4] In [16]:#Корелляционный анализ методом Спирмана data.corr(method='spearman')

Out[16]:	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavar
alcohol	1.000000	0.140430	0.243722	-0.306598	0.365503	0.310920	0.294740	
malic_acid	0.140430	1.000000	0.230674	0.304069	0.080188	-0.280225	-0.325202	
ash	0.243722	0.230674	1.000000	0.366374	0.361488	0.132193	0.078796	
alcalinity_of_ash	0.306598	0.304069	0.366374	1.000000	-0.169558	-0.376657	-0.443770	
magnesium	0.365503	0.080188	0.361488	-0.169558	1.000000	0.246417	0.233167	
total_phenols	0.310920	-0.280225	0.132193	-0.376657	0.246417	1.000000	0.879404	
flavanoids	0.294740	-0.325202	0.078796	-0.443770	0.233167	0.879404	1.000000	
nonflavanoid_phenols	0.162207	0.255236	0.145583	0.389390	-0.236786	-0.448013	-0.543897	
proanthocyanins	0.192734	-0.244825	0.024384	-0.253695	0.173647	0.666689	0.730322	
color_intensity	0.635425	0.290307	0.283047	-0.073776	0.357029	0.011162	-0.042910	
hue	0.024203	-0.560265	0.050183	-0.352507	0.036095	0.439457	0.535430	
od280/od315_of_diluted_wines	0.103050	-0.255185	0.007500	-0.325890	0.056963	0.687207	0.741533	
proline	0.633580	-0.057466	0.253163	-0.456090	0.507575	0.419470	0.429904	
target	0.354167	0.346913	0.053988	0.569792	-0.250498	-0.726544	-0.854908	

In [17]:#Используем тепловые карты для того, чтобы показать стеень корелляции различными цветами sns.heatmap(data.corr())

Out[17]:<AxesSubplot: >

In [18]:sns.heatmap(data.corr(), annot=**True**, fmt='.1f')
Out[18]:<AxesSubplot: >

In [19]:# Треугольный вариант матрицы
mask = np.zeros_like(data.corr(), dtype=np.bool)
чтобы оставить нижнюю часть матрицы
mask[np.triu_indices_from(mask)] = True
чтобы оставить верхнюю часть матрицы

#mask[np.tril_indices_from(mask)] = True
sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.3f')

C:\Users\MakVit\AppData\Local\Temp\ipykernel_11976\734738130.py:2: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations mask = np.zeros_like(data.corr(), dtype=np.bool)

Out[19]:<AxesSubplot: >

In [20]:fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5)) sns.heatmap(data.corr(method='pearson'), ax=ax[0], annot=**True**, fmt='.2f') sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=**True**, fmt='.2f') sns.heatmap(data.corr(method='spearman'), ax=ax[2], annot=**True**, fmt='.2f') fig.suptitle('Корреляционные матрицы, построенные различными методами') ax[0].title.set_text('Pearson') ax[1].title.set_text('Kendall') ax[2].title.set_text('Spearman')

In [21]:fig, ax = plt.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5)) fig.suptitle('Корреляционная матрица')

Корреляционная матрица

In [22]:#Дополни т ельное задание для группы ИУ5Ц-84Б - Скрипичная диаграмма (violin plot). sns.violinplot(x=data['alcohol'])

In []: