Lecture 1 Some Results in Linear Algebra

YANG Nian

yangnian@nju.edu.cn Department of Finance and Insurance Nanjing University

November 12, 2024

Contents

1	Vectors, Matrices and Related Concepts	1
2	Vector Spaces, Inner Product and Norms	4
3	Eigenvalues and Eigenvectors	7
4	Singular Values and Singular Vectors*	8

1 Vectors, Matrices and Related Concepts

Vectors and Matrices

- \mathbb{R} : the set of **real numbers** (also referred to as **scalars**).
- $\mathbb{R}^{m \times n}$: the set of **matrices** with m rows and n columns (of dimension $m \times n$); or the set of $m \times n$ rectangular arrays whose components are from \mathbb{R} .
- An element (a matrix) $A \in \mathbb{R}^{m \times n}$ can be written as

$$A = (a_{ij})_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

where $a_{ij} \in \mathbb{R}$ for i = 1, ..., m and j = 1, ..., n.

• Row vector: a matrix with m = 1.

- Column vector: a matrix with n = 1. The word *vector* will always mean a column vector unless otherwise stated.
- \mathbb{R}^n : the set of all *n*-dimensional (*n*-dim) **real vectors**.

Matrix Algebra

- Addition, Subtraction, Multiplication
- The **transpose** of an *m*-by-*n* matrix *A* is the *n*-by-*m* matrix A^T formed by defining $(A^T)_{ij} = A_{ji}$
- Matrix Multiplication: AB is defined only for an m-by-n matrix A and an n-by-l matrix B, i.e., $(AB)_{ij} = \sum_{r=1}^{n} a_{ir} b_{rj}$
- Law of Matrix Algebra
 - Associative laws (A+B)+C=A+(B+C), (AB)C=A(BC)
 - Commutative law for addition A + B = B + A
 - Distributive laws A(B+C) = AB + AC, (A+B)C = AC + BC
 - In general, commutative law for multiplication does not hold, i.e., $AB \neq BA$
- Examples of matrix multiplications: (a) system of equations, (b) covariance matrix of a random vector, (c) OLS.

Elementary Matrices

- Elementary matrices
 - (a) T_{ij} : obtained by swapping row i and row j.
 - (b) $D_i(k)$: a diagonal matrix with diagonal entries 1 everywhere except in the *i*-th position, which is k.
 - (c) $L_{ij}(k)$: the identity matrix but with a k in the (i, j) position.
- Left (resp. right) multiplication by an elementary matrix represents elementary row (resp. column) operations.
 - (a) Row switching, that is interchanging two rows of a matrix.
 - (b) Row multiplication, the is multiplying all entries of a row by a non-zero constant.
 - (c) Row addition, that is adding a row to another.
- Elementary row operations used in **Gaussian elimination** to reduce a matrix to **row echelon form**.

Rank and Trace

- We say a finite collection $C = \{x^1, x^2, \dots, x^m\}$ of vectors in \mathbb{R}^n is **linearly dependent** if there exists scalars $\alpha_1, \dots, \alpha_m \in \mathbb{R}$, not all of them zero, such that $\sum_{i=1}^m \alpha_i x^i = 0$. C is said to be **linearly independent** if it is not linearly dependent.
- The rank of a matrix A, rank(A), is the maximal number of linearly independent columns of A.
 - rank(A) is also the dimension of the vector space generated (or spanned) by its columns.
 - Column rank = Row rank.
- The trace of a square matrix A, denoted by tr(A), is defined to be the sum of elements on the main diagonal of A.
 - (a) The trace is a linear mapping.
 - (b) A matrix and its transpose have the same trace.
 - (c) The trace of a square matrix, which is the production of two matrices, can be rewritten as the sum of entry-wise products of their elements.
 - (d) The trace is invariant under cyclic permutations.

Inverse and Determinant

• An *n*-by-*n* square matrix *A* is called **invertible** (also **nonsingular** or **nondegenerate**), if there exists an *n*-by-*n* square matrix *B* such that

$$AB = BA = I_n$$

where I_n denotes the n-by-n identity matrix.

- The determinant is a scalar value that is a function of the entries of a square matrix A.
 - The determinant of A is denoted by det(A), det A, or |A|.
 - $-\det(AB) = \det(A)\det(B)$
 - $-\det(I_n)=1$
 - $\det(A^{-1}) = \left[\det(A) \right]^{-1}$
- A square matrix A is nonsingular if and only $det(A) \neq 0$.

Partitioned/Block Matrices

- A partitioned matrix or block matrix is a matrix which has been partitioned into submatrices by horizontal and/or vertical lines which extend along entire rows or columns.
- Block matrix multiplication
- Block matrix inversion
- Block matrix determinant
- Block diagonal matrices

2 Vector Spaces, Inner Product and Norms

Vector Space (Linear Space)

A vector space V (i.e. linear space) over \mathbb{R} (or \mathbb{C} , etc) is a non-empty set of (column) vectors with rules for vector addition and scalar multiplication, which has the following properties:

- The linear combination of vectors stay in the space.
 - If $u, v \in \mathbf{V}$ and $\alpha, \beta \in \mathbb{R}$, then $\alpha u + \beta v \in \mathbf{V}$.
- Eight axioms: $u, v, w \in \mathbf{V}$ and $\alpha, \beta \in \mathbb{R}$
 - Vector addition:
 - (a) Associativity: u + (v + w) = (u + v) + w
 - (b) Commutativity: u + v = v + u
 - (c) Existence of **zero vector** s.t. $\mathbf{0} + v = v$ with $\mathbf{0} \in \mathbf{V}$
 - (d) Additive inverse: for $v \in V$, $\exists -v \in \mathbf{V}$, s.t. v + (-v) = 0.
 - Scalar multiplication
 - (e) Compatibility: $\alpha(\beta v) = (\alpha \beta)v$
 - (f) Multiplicative identity: 1v = v with $1 \in \mathbb{R}$
 - Addition and Multiplication: Distributivity
 - (g) $\alpha(u+v) = \alpha u + \alpha v$
 - (h) $(\alpha + \beta)v = \alpha v + \beta v$

Examples of vector spaces: Euclidean space \mathbb{R}^n , C[0,1], etc.

Normed Vector Spaces and Inner Product Spaces

- A normed vector space is a vector space \mathbf{V} over \mathbb{R} with a map $\|\cdot\|$: $\mathbf{V} \to \mathbb{R}$, called **norm** that satisfies four conditions below for all $u, v \in \mathbf{V}$ and $\alpha \in \mathbb{R}$
 - (a) (Non-Negativity) $||v|| \ge 0$
 - (b) (Positivity) ||v|| = 0 if and only if v = 0
 - (c) (Absolute homogeneity) $\|\alpha v\| = |\alpha| \|v\|$
 - (d) (Subadditivity/Triangle inequality) $||v + u|| \le ||v|| + ||u||$
- An inner product space is a vector space \mathbf{V} over \mathbb{R} with a map $\langle \cdot, \cdot \rangle$: $\mathbf{V} \times \mathbf{V} \to \mathbb{R}$, called inner product that satisfies four conditions below for all $u, v, w \in \mathbf{V}$ and $\alpha \in \mathbb{R}$
 - (a) $\langle v, v \rangle \geq 0$, and $\langle v, v \rangle = 0$ if and only if v = 0
 - (b) $\langle v, u + w \rangle = \langle v, u \rangle + \langle v, w \rangle$
 - (c) $\langle \alpha v, u \rangle = \alpha \langle v, u \rangle$
 - (d) $\langle v, u \rangle = \langle u, v \rangle$
 - An inner product is a generalization of the dot product on finite dimensional vector spaces.
 - An inner product space could be a normed linear space, but the reverse is not true.
 - Examples: Euclidean norm, ℓ_p -norm, matrix norms, etc.

Euclidean Norm

• \mathbb{R}^n : a typical Euclidean vector space equipped with **dot product**, as the inner product on \mathbb{R}^n , defined below

$$\langle x, y \rangle := x^T y = \sum_{i=1}^n x_i y_i$$
, for all $x, y \in \mathbb{R}^n$.

- Two vectors $x, y \in \mathbb{R}^n$ are **orthogonal** if $\langle x, y \rangle = 0$.
- The dot (inner) product induces a norm $\|\cdot\|_2$ on \mathbb{R}^n , called the **Euclidean** norm, for all $x \in \mathbb{R}^n$

$$\|x\|_2 := \sqrt{\langle x, x \rangle} = \sqrt{x^T x} = \left(\sum\nolimits_{i=1}^n x_i^2\right)^{1/2}.$$

- The Cauchy-Schwartz inequality states $||x^Ty||_2 \le ||x||_2 ||y||_2$.
- Other norms on \mathbb{R}^n
 - For $p \ge 1$, define the ℓ_p -norm $\|\cdot\|_p$ via $\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$ for all $x \in \mathbb{R}^n$.
 - The ℓ_{∞} -norm: $||x||_{\infty} := \max_{1 \le i \le n} \{|x_i|\} = \lim_{p \to \infty} ||x||_p$.
- Geometric interpretation of the inner (dot) product.

Linear Subspaces, Dimension and Bases

- A non-empty set S of \mathbb{R}^n is called a **subspace** of \mathbb{R}^n if $\alpha x + \beta y \in S$ whenever $x, y \in S$ and $\alpha, \beta \in \mathbb{R}$.
- The span of a finite collection $C = \{x^1, \dots, x^m\}$ of vectors in \mathbb{R}^n is defined as

$$\operatorname{span}(\mathcal{C}) := \left\{ \sum_{i=1}^{m} \alpha_i x^i : \alpha_1, \dots, \alpha_m \in \mathbb{R} \right\}. \tag{1}$$

 $\operatorname{span}(\mathcal{C})$ is a subspace of \mathbb{R}^n .

- Given a subspace S of \mathbb{R}^n with $S \neq \{0\}$, a basis of S is a linearly independent collection of vectors spanning S.
 - The **number of the basis** of S, $\dim(S)$, is called the **dimension** of the subspace S.
 - Every basis of a given subspace S has the same number.
 - By definition, the dimension of the subspace $\{0\}$ is zero.
- The orthogonal complement S^{\perp} of S is defined as $S^{\perp} := \{y \in \mathbb{R}^n : x^T y = 0\}.$
 - $-S^{\perp}$ is a subspace of \mathbb{R}^n , $\dim(S) + \dim(S^{\perp}) = n$, $(S^{\perp})^{\perp} = S$.
 - $\forall x \in \mathbb{R}^n$, there is a unique decomposition $x = x^1 + x^2$, where $x^1 \in S$ and $x^2 \in S^{\perp}$.

Range, Nullspace, Orthogonal Decomposition

- Let $A \in \mathbb{R}^{m \times n}$. The **column space** of A is a subspace of \mathbb{R}^m spanned by the columns of A.
 - The column space is also known as the **range** of A, denoted by

$$\mathcal{R}(A) := \{Ax : x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m.$$

- The system Ax = b is solvable. $\Leftrightarrow b \in \mathcal{R}(A)$.
- The **row space** of A is the subspace of \mathbb{R}^n spanned by the rows of A, i.e., $\mathcal{R}(A^T)$.
- $-\operatorname{rank}(A) = \dim(\mathcal{R}(A)) = \dim(\mathcal{R}(A^T)) \le \min\{m, n\}.$
- The **nullspace** (or **kernel**) of A is the set

$$\mathcal{K}(A) := \{ x \in \mathbb{R}^n : Ax = 0 \} \subseteq \mathbb{R}^n.$$

 \bullet Orthogonal decomposition induced by A

$$\mathcal{R}(A) = (\mathcal{K}(A^T))^{\perp}, \quad \mathcal{R}(A^T) = (\mathcal{K}(A))^{\perp}.$$

- Orthogonalization: linearly independent vectors to orthogonal vectors
- Projection of a vector onto a subspace

3 Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

- Consider $A \in \mathbb{R}^{n \times n}$. We say that $\lambda \in \mathbb{C}$ is an **eigenvalue** of A with corresponding **eigenvector** $u \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ if $Au = \lambda u$.
 - The zero vector $\mathbf{0} \in \mathbb{R}^n$ cannot be an eigenvector.
 - Given $A \in \mathbb{R}^{n \times n}$, there are exactly n eigenvalues (counting multiplicities).
- Eigendecomposition (the eigenvectors diagonalize a matrix). Suppose $A \in \mathbb{R}^{n \times n}$ has n linearly independent eigenvectors $u_1, \ldots, u_n \in \mathbb{R}^n$ associated with eigenvalues $\lambda_1, \ldots, \lambda_n$, respectively. Let $U := [u_1, \ldots, u_n]$ and $\Lambda = \text{diag}\{\lambda_1, \ldots, \lambda_n\}$. Then

$$U^{-1}AU = \Lambda.$$

- Consider the set of eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$ of $A \in \mathbb{R}^{n \times n}$.
 - (a) $\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i$, and $\det(A) = \prod_{i=1}^{n} \lambda_i$.
 - (b) The eigenvalues of A^T are the same as those of A.
 - (c) For any $c \in \mathbb{R}$, the eigenvalues of cI + A are $c + \lambda_1, \ldots, c + \lambda_n$.
 - (d) For any integer $k \geq 1$, the eigenvalues of A^k are $\lambda_1^k, \ldots, \lambda_n^k$.
 - (e) If $|A| \neq 0$, then the eigenvalues of A^{-1} are $\lambda_1^{-1}, \dots, \lambda_n^{-1}$.

Real Symmetric Matrices and Positive Semidefinite Matrices

- Real symmetric matrices: $\mathbb{S}^n = \{A \in \mathbb{R}^{n \times n} : A = A^T\}$
- $A \in \mathbb{S}^n \Leftrightarrow \langle Ax, y \rangle = \langle x, Ay \rangle$ for all $x, y \in \mathbb{R}^n$.
- $A \in \mathbb{S}^n$ has **real** eigenvalues and **orthogonal** eigenvectors associate with different eigenvalues.
- The Spectral Theorem. For $A \in \mathbb{S}^n$, there exists an orthogonal matrix $U \in \mathbb{R}^{n \times n}$ (i.e. $UU^T = U^TU = I$), and a diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ such that

$$A = U\Lambda U^T = \sum_{i=1}^n \lambda_i u_i u_i^T.$$

- The following statements are equivalent for $A \in \mathbb{S}^n$.
 - (a) A is positive semidefinite.
 - (b) All eigenvalues of A are non-negative.
 - (c) There exists a unique $A^{1/2} \in \mathbb{S}_+^n$ such that $A = A^{1/2}A^{1/2}$.
 - (d) There exists an $k \times n$ matrix B, where k = rank(A) such that $A = B^T B$.

Positive Definite Matrices \mathbb{S}_{++}^n

• Positive Semidefinite/Definite Matrix: $\mathbb{S}^n_+/\mathbb{S}^n_{++}$

$$\mathbb{S}^n_+ = \left\{ A \in \mathbb{S}^n : x^T A x \ge 0 \text{ if } x \in \mathbb{R}^n \setminus \{\mathbf{0}\} \right\}$$

$$\mathbb{S}^n_{++} = \left\{ A \in \mathbb{S}^n : x^T A x > 0 \text{ if } x \in \mathbb{R}^n \setminus \{\mathbf{0}\} \right\}$$

- The following statements are equivalent for $A \in \mathbb{S}^n$.
 - (a) A is positive definite.
 - (b) A^{-1} exists and is positive definite.
 - (c) All eigenvalues of A are positive.
 - (d) There exists a unique $n \times n$ $A^{1/2} \in \mathbb{S}_{++}^n$ such that $A = A^{1/2}A^{1/2}$.
- Schur Complement. Consider $X \in \mathbb{S}^n$ as

$$X = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix}, \tag{2}$$

where $A \in \mathbb{S}^k$ and $|A| \neq 0$, the matrix

$$D = C - B^T A^{-1} B$$

is called the Schur complement of A in X.

4 Singular Values and Singular Vectors*

Singular Values and Singular Vectors*

- Interpret $A \in \mathbb{R}^{m \times n}$ as a linear transformation from \mathbb{R}^n to \mathbb{R}^m
- Given $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A) = r \ge 1$. Then, there exist orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$A = U\Lambda V^T$$
,

which is the Singular Value Decomposition (SVD) of A.

- Let $q = \min\{m, n\}$. $\Lambda \in \mathbb{R}^{m \times n}$ has $\Lambda_{ij} = 0$ for $i \neq j$, and $\Lambda_{11} \geq \Lambda_{11} \geq \cdots \geq \Lambda_{rr} > \Lambda_{r+1, r+1} = \cdots = \Lambda_{qq} = 0$.
- $-\Lambda_{11},\ldots,\Lambda_{qq}$ are called the **the singular values** of A.
- The columns of U (resp. V) are called the \mathbf{left} (resp. \mathbf{right}) $\mathbf{singular}$ vectors of A
- The SVD can also be written as

$$A = \sum_{i=1}^{r} \Lambda_{ii} u_i v_i^T,$$

where u_i (resp. v_i) is the *i*-th column of the matrix U (resp. V), for i = 1, ..., r.