ELEC2870 - Machine learning: regression and dimensionality reduction

Introduction

Michel Verleysen

Machine Learning Group Université catholique de Louvain Louvain-la-Neuve, Belgium michel.verleysen@uclouvain.be

Outline

- Machine learning
- Artificial neural networks
- Overfitting
- The curse of dimensionality
- Machine learning tasks

Machine learning

An example: discriminating between images of fishes

Features

- Features are fundamental elements in machine learning
- Fishes: features may be length, lightness, etc.

No single feature is discriminant!

Features

• Solution: working with several features

Data analysis system

Adapted from: Theodoridis et al., Pattern Recognition, 4th ed., Academix Press, 2009

Why machine learning?

- Hypothetical problem of Optical Character Recognition:
 - If: image 256 x 256 pixels
 - 8-bits pixel values (256 gray levels)
 - then: -10^{158000} different images
 - Necessity to work with features (you cannot build and store a complete truth table)

Feature Extraction

• Example of feature in OCR: ratio height/width (x_1) of the character

Histogram of feature value

Multi-dimensional Features

• Necessity to classify according to *several*, but *not too much* features

- Several: because of the overlap in histogram with 1 feature
- Not too much: because classification methods are easier in small dimensional spaces

Machine learning: a discipline?

- Machine learning is at the cross-road of many disciplines:
 - artificial neural networks
 - statistics
 - applied mathematics
 - computer science
- It consists in
 - algorithms
 - for analyzing data, signals, etc.
 - to extract relevant information
 - from real data
 - with an engineering view

Outline

- Machine learning
- Artificial neural networks
- Overfitting
- The curse of dimensionality
- Machine learning tasks

Artificial neural networks

Von Neumann's computer	(Human) brain
determinism	fuzzy behaviour
sequence of instructions	parallelism
high speed	slow speed
repetitive tasks	adaptation to situations
programming	learning
uniqueness of solutions	different solutions
ex: matrix product	ex: face recognition

Need for other computing paradigms!

From: some book?

Perceptive tasks

- Some examples of tasks that make use of « perception »:
 - face recognition
 - time-series prediction
 - process identification
 - process control
 - optical character recognition
 - adaptive filtering
 - etc.

From "DARPA Neural Network Study", 1988

Historical background

• Some (not necessarily well-chosen...) milestones

1940 – 1965	Hebb	biological learning rule	
	McCulloch & Pitts	binary decision units	
	Rosenblatt	Perceptron - learning	
1969	Minsky & Papert	limits to Perceptrons	
1974	Werbos	back-propagation	
1980s	Hopfield	recurrent networks	
	Parker, LeCun, Rumelhart,	back-propagation	
	McClelland		
	Kohonen	Self-Organizing Maps	
1990s	Vapnik	Support Vector	
		Machines	
	Many	Feature selection,	
		model selection,	
		evaluation,	

Artificial Neural Networks

- Artificial neural networks ARE NOT :
 - an attempt to understand biological systems
 - an attempt to reproduce the behavior of a biological system
- Artificial neural networks ARE :
 - a set of tools aimed to solve "perceptive" problems ("perceptive" <->
 "rule-based")

At least in the framework of this lecture, i.e. "Neural Computation"...

Why "Artificial neural networks"?

- Structure: many computation units in parallel (McCulloch & Pitts 1943)
- Learning rule (adaptation of parameters): sometimes similar to Hebb's rule (1949)
- And that's all!

What does « learning » mean?

- Give many examples (*input-output pairs*, or *training samples*)
- Compute the parameters to fit the examples
- Test the result!

Outline

- Machine learning
- Artificial neural networks
- Overfitting
- The curse of dimensionality
- Machine learning tasks

Overfitting

- Overfitting is learning (a finite number of) data so well, that the model is not useful anymore
- Overfitting can occur in classification and regression
- It is one of the main important concerns in learning!

Overfitting in classification

Which of the 3 models is « best »?

Overfitting in classification

Which of the 3 models is « best »?

Overfitting in regression

The following example is about regression with polynomials of order M (but the overfitting risk is the same, whatever is the type of model)

Models with M=0and M=1 are poor,

model with M=9

model with M=3 is a good compromize

- Why fitting « as well as possible » is not a good idea?
 - Because nobody cares about having a model that reproduces the output on known examples (= training set)
 - The real goal is to get a model that performs well on *new* samples!

Don't forget that only the samples (blue dots) are known!

- Overfitting occurs when the model is *too complex* (with respect to...)
- Define the sum-of-squares error function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

- The errors on the
 - training set
 - test set

may be very different!

 Overfitting often results in very large model parameters (they « compensate » eachother)

	M=0	M = 1	M = 3	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^\star				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

- Overfitting decreases with the number of samples available for learning
- Polynomial model of order M=9:

- The risk of overfitting
 - increases with the complexity of the model
 - decreases with the size of the learning set

Avoiding overvitting

- Two main directions for avoiding overfitting:
- 1. Limit the model complexity (here *M*)
 - How? By trial and error, with several values of M
 - Requires a validation set (test: wrong name!)

2. Using regularization:

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- λ penalizes the error by some complexity measure
- Other complexity measures are possible
- Requires a *validation* set to fix λ
- See chapter on model selection!

Outline

- Machine learning
- Artificial neural networks
- Overfitting
- The curse of dimensionality
- Machine learning tasks

The curse of dimensionality

- A simple, 2-D classification problem
- A simple algorithm:
 - Cut the space in small boxes
 - Attribute a class to each box according to the majority of samples

The curse of dimensionality

• *The* problem: the number of boxes grows exponentially with the dimension of the space!

- In practical settings we never have enough data...
- See chapter on feature selection

Multivariate analysis

Never forget that machine learning is used for analyzing

high-dimensional data

(this is multivariate analysis)

- For (very) low-dimensional data, other techniques may be more appropriate: polynoms, splines, etc.
- High-dimensional often means « more than 3 »...

Outline

- Machine learning
- Artificial neural networks
- Overfitting
- The curse of dimensionality
- Machine learning tasks

Classification

Regression

From: previously cited books (same figures)

Classification and regression are not so different:

Clustering

is about finding natural *groups* (=clusters) in data, without class label information

Adaptive filtering

Often assimilated to signal processing, it is also about finding a relevant information in data, but in terms of signals, sources, etc.

• Projection - visualization

From: J. Lee, M. Verleysen, Nonlinear Dimensionality Reduction, Springer, 2007.

Supervised – unsupervised models

 Supervised learning: building an in-out relation thanks to data with know desired output (label, value, etc.)

 Unsupervised learning: extracting some useful information from data without supplementary knowledge

Supervised – unsupervised models

 Supervised learning: building an in-out relation thanks to data with know desired output (label, value, etc.)

 Unsupervised learning: extracting some useful information from data without supplementary knowledge

Sources and references

- The four books used as general references for this course
 - C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
 - R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd ed., Wiley, 2001
 - S. Theodoridis, K. Koutroumbas, Pattern Recognition, 4th ed., Academic Press, 2009
 - S. Haykin, Neural networks a Comprehensive Foundation, 2nd ed.,
 Prenctice Hall, 1999