本试卷适用范围 机制、材控、农 机、交运、车辆 10 级期末考试

南京农业大学试题纸

11-12 学年一学期 课程类型: 必修(√)、选修 试卷类型: A(√)、B

课程_理论力学	班级	学号	姓名	成绩
一、填空题	(13分)			
	中常见的约束类型			· o
2、力偶对刚体的	的作用效果,不取	以决于力偶的臂和	力,而取决于力偶	的。
3、平面任意力到	系向简化中心简化	时,所有各分力的	的矢量和称为该力	系的: 所有各
分力对简化。	中心的矩的代数和	1称为该力系的	0	
4、平面任意力到	系共有个	独立的平衡方程;	空间任意力系共有	个独立的平衡
方程。			X	
5、做匀速曲线注	运动的点, 其法向	加速度零	切向加速度	零(填写等于或不等
于)。				
	其上任意两点的			
			己知接触面的静摩	擦系数是fs。当轮心的
× 位移是 s 时,	摩擦力做功为	0		
二、作图题	。(16分)			
1、画出图示结构中 AB 构件的受力图,明确受力方向。各构件自重不计,无摩擦。(4分)				
	B			
	C			
	A			
2. 图中 OA 杆じ	/// 勾角速度 m 绕 C) 转动。试以套筒	为动占, CB 导杆:	为动系, 画出图示动点
	成图和加速度合成		73-93,117	3-9377 Em Ed Ed 2 - 23 MV
	C	ил В	KYA C KYA	B V/A
		P77	777 777	PTA
		9A		9A
			1	_/
		30 0	!3	ω
		06		
				_

3、找出图中作平面运动刚体在图示位置的速度瞬心,并确定其角速度的转向及 C 点的速度 方向。(6 分)

三、简算题(18分)

(1) 在边长为 a=1m 的立方体顶点 A,作用力 F=1KN,求 \overline{F} 力对坐标轴的矩。 $(6\ \beta)$

2、均质圆盘半径为 R,质量为 m,沿斜面作纯滚动,已知轮心的速度为 \bar{v}_C ; 求此时圆盘的动量,动能及对 C 轴的动量矩。(6分)

(3) 均质杆长 1, 质量为 m, 绕 O 做定轴转动,已知角速度 ω 和角加速度 α ; 求其惯性力系向 O 轴简化的结果(方向在图中画出)。(6 分)

四、计算题(53分)

1、一均质圆球重 450N,置于墙与斜杆 AB 间,AB 杆由铰链 A 与撑杆 BC 支撑如图所示。已知 AB 长 I,AD=0.4l,各杆重及摩擦不计。求固定铰支座 C 处的约束力。(10 分)

如图所示,小环 M 套在固定杆 AB 和摆动杆 OD 上;已知,杆 OD 以匀角速度 $\omega=0.5rad/s$ 绕 O 轴转动,OC=540mm,求小环 M 的速度和加速度。(11 分)

已知图示机构中,在铰链 A 处作用有力 F_2 ,滑块 B 上作用有力 F_1 ,二连杆 OA,AB 各 E 1,不计所有的重力和摩擦。在图示位置处于平衡,用虚位移原理求两力 F_1 和 F_2 所满 足的关系。(9分)

3、如图所示,飞轮以匀角速度 ω =10rad/s 绕 0 轴转动,并通过与之铰接的连杆 AB 带动 BC 运动,已知 OA=1m ,OC=3m,AB=BC=2m,在图示位置,O、A、C 在同一水平线上,试求 此瞬时杆 BC 的角速度 ω BC 和角加速度 α BC。(11 分)

4、在图示机构中,已知: 两均质圆轮的质量均为 m,半径均为 R,轮 A 沿倾角为 θ 的粗糙斜面作纯滚动,轮 B 上作用一主动力偶矩 M,若不计绳索的质量和滚阻力偶。试求: 圆轮 A 的中心 A 点的加速度以及绳索的张力。(12 分)

