

Challenges and progress in learning physics-based reduced models for combustion processes

Karen E. Willcox

NSF Workshop on Exuberance of Machine Learning in Transport Phenomena Dallas, TX
February 10-11, 2020

The Team

Dr. Cheng HuangU. Michigan

Prof. Boris Kramer UCSD

Elizabeth Qian

Prof. Benjamin
Peherstorfer
Courant Institute

Renee Swischuk MIT → Caliper

Funding sources: US Air Force Computational Math Program (F. Fahroo); US Air Force Center of Excellence on Rocket Combustion (M. Birkan, F. Fahroo, R. Munipalli, D. Talley); US Department of Energy AEOLUS MMICC (S. Lee, W. Spotz); SUTD-MIT International Design Centre

1 Motivation

Machine learning vs. model reduction to create efficient surrogate models

Outline

2 Lift & Learn

Projection-based model reduction as a lens through which to learn predictive models

3 Conclusions & Outlook

Motivating example

Modeling combustion in a rocket engine: Conservation of mass (ρ) , momentum $(\rho \vec{v})$, energy (E), species concentration $(Y_{\text{CH}_4}, Y_{\text{O}_2}, Y_{\text{CO}_2}, Y_{\text{H}_2\text{O}})$

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho v_x \\ \rho v_y \\ \rho E \\ \rho Y_1 \\ \vdots \\ \rho Y_{n_{\mathrm{sp}}} \end{bmatrix} + \nabla \cdot \begin{pmatrix} \begin{bmatrix} \rho v_x \\ \rho v_x^2 + p \\ \rho v_x v_y \\ \rho v_x E + p v_x \\ \rho v_x Y_1 \\ \vdots \\ \rho v_x Y_{n_{\mathrm{sp}}} \end{bmatrix} \vec{i} + \begin{bmatrix} \rho v_y \\ \rho v_x v_y \\ \rho v_y E + p v_y \\ \rho v_y Y_1 \\ \vdots \\ \rho v_y Y_{n_{\mathrm{sp}}} \end{bmatrix} \vec{j} - \begin{bmatrix} 0 \\ \tau_{xx} \\ \tau_{yx} \\ \tau_{xx} v_x + \tau_{yx} v_y - j_x^q \\ -j_{1,x}^m \\ \vdots \\ -j_{n_{\mathrm{sp}},x}^m \end{bmatrix} \vec{i} - \begin{bmatrix} 0 \\ \tau_{xy} \\ \tau_{xy} v_x + \tau_{yy} v_y - j_y^q \\ -j_{1,y}^m \\ \vdots \\ -j_{n_{\mathrm{sp}},y}^m \end{bmatrix} \vec{j} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \dot{\omega}_1 \\ \vdots \\ \dot{\omega}_{n_{\mathrm{sp}}} \end{bmatrix}$$

Reduced/surrogate models enable rapid prediction, inversion, design, and uncertainty quantification of large-scale scientific and engineering systems

Machine learning

"The scientific study of algorithms & statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns & inference instead." [Wikipedia]

Reduced-order modeling

"Model order reduction (MOR) is a technique for reducing the computational complexity of mathematical models in numerical simulations." [Wikipedia]

Reduced-order modeling & machine learning: Two different paths to efficient surrogate models

Model reduction methods have grown from CSE, with a focus on *reducing* high-dimensional models that arise from physics-based modeling, whereas machine learning has grown from CS, with a focus on *creating* low-dimensional models from black-box data streams. [Swischuk et al., *Computers & Fluids*, 2018]

Can we get the best of both worlds?

Projection-based model reduction

- 1 Train: Solve PDEs to generate training data (snapshots)
- 2 Identify structure: Compute a low-dimensional basis
- 3 Reduce: Project PDE model onto the low-dimensional subspace

Start with a physics-based model

Example: modeling combustion in a rocket engine Conservation of mass (ρ) , momentum $(\rho \vec{v})$, energy (E), species $(Y_{\text{CH}_4}, Y_{\text{O}_2}, Y_{\text{CO}_2}, Y_{\text{H}_2\text{O}})$

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho v_x \\ \rho v_y \\ \rho E \\ \rho Y_1 \\ \vdots \\ \rho Y_{n_{\rm sp}} \end{bmatrix} + \nabla \cdot \begin{pmatrix} \begin{bmatrix} \rho v_x \\ \rho v_x^2 + p \\ \rho v_x v_y \\ \rho v_x E + p v_x \\ \rho v_x Y_1 \\ \vdots \\ \rho v_x Y_{n_{\rm sp}} \end{bmatrix} \vec{i} + \begin{bmatrix} \rho v_y \\ \rho v_x v_y \\ \rho v_y E + p v_y \\ \rho v_y Y_1 \\ \vdots \\ \rho v_y Y_{n_{\rm sp}} \end{bmatrix} \vec{j} - \begin{bmatrix} 0 \\ \tau_{xx} \\ \tau_{yx} \\ \tau_{xx} v_x + \tau_{yx} v_y - j_x^q \\ -j_{1,x}^m \\ \vdots \\ -j_{n_{\rm sp},x}^m \end{bmatrix} \vec{i} - \begin{bmatrix} 0 \\ \tau_{xy} \\ \tau_{xy} v_x + \tau_{yy} v_y - j_y^q \\ \tau_{xy} v_x + \tau_{yy} v_y - j_y^q \\ -j_{1,y}^m \\ \vdots \\ -j_{n_{\rm sp},y}^m \end{bmatrix} \vec{j} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \dot{\omega}_1 \\ \vdots \\ \dot{\omega}_{n_{\rm sp}} \end{bmatrix}$$

Discretize:

Spatially discretized computational fluid dynamic (CFD) model

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{f}(\mathbf{x}, \mathbf{u})$$

discretized state x contains mass, momentum, energy, species concentrations at N_z spatial grid points

$$N_z \sim O(10^4 - 10^6)$$

Full-order model (FOM) state $\mathbf{x} \in \mathbb{R}^N$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

Approximate $\mathbf{x} \approx \mathbf{V}\mathbf{x}_r$ $\mathbf{V} \in \mathbb{R}^{N \times r}$

Residual: $N = qs \gg r dof$

$$\mathbf{r} = \mathbf{V}\dot{\mathbf{x}}_r - \mathbf{A}\mathbf{V}\mathbf{x}_r - \mathbf{B}\mathbf{u}$$

Project $\mathbf{W}^{\mathsf{T}}\mathbf{r} = 0$ (Galerkin: $\mathbf{W} = \mathbf{V}$)

$$\dot{\mathbf{x}}_r = \mathbf{A}_r \mathbf{x}_r + \mathbf{B}_r \mathbf{u}$$

Projecting a linear system

Reduced-order model (ROM) state $\mathbf{x}_r \in \mathbb{R}^r$

$$\mathbf{A}_r = \mathbf{V}^{\mathsf{T}} \mathbf{A} \mathbf{V}$$

 $\mathbf{B}_r = \mathbf{V}^{\mathsf{T}} \mathbf{B}$

Linear Model

FOM:
$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

ROM:
$$\dot{\mathbf{x}}_r = \mathbf{A}_r \mathbf{x}_r + \mathbf{B}_r \mathbf{u}$$

Precompute the ROM matrices:

$$\mathbf{A}_r = \mathbf{V}^\mathsf{T} \mathbf{A} \mathbf{V}, \ \mathbf{B}_r = \mathbf{V}^\mathsf{T} \mathbf{B}$$

Quadratic Model

FOM:
$$\dot{x} = Ax + H(x \otimes x) + Bu$$

ROM: $\dot{\mathbf{x}}_r = \mathbf{A}_r \mathbf{x}_r + \mathbf{H}_r (\mathbf{x}_r \otimes \mathbf{x}_r) + \mathbf{B}_r \mathbf{u}$

Precompute the ROM matrices and tensor:

$$\mathbf{H}_r = \mathbf{V}^\mathsf{T} \mathbf{H} (\mathbf{V} \otimes \mathbf{V})$$

projection preserves structure ↔ structure embeds physical constraints

Machine learning

"The scientific study of algorithms & statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns & inference instead." [Wikipedia]

Reduced-order modeling

"Model order reduction (MOR) is a technique for reducing the computational complexity of mathematical models in numerical simulations." [Wikipedia]

Reduced-order modeling & machine learning: Can we get the best of both worlds?

Non-intrusive implementation
Discover hidden structure
Black-box
Flexible

Embed governing equations
Structure-preserving
Predictive (error estimators)
Stability

1 Motivation

2 Lift & Learn

3 Conclusions & Outlook

Lift & Learn

Projection-based model reduction as a lens through which to learn low-dimensional predictive models

Lift & Learn: Ingredients

- 1. A **physics-based model**Typically described by a set of PDEs or ODEs
- 2. Lens of **projection** to define a structure-preserving low-dimensional model
- 3. Non-intrusive learning of the reduced model
- 4. Variable transformations that expose polynomial structure in the model
 → can be exploited with non-intrusive learning

Rocket combustion

Solidification process in additive manufacturing

Operator inference

Non-intrusive learning of reduced models from simulation snapshot data

Given state data, learn the system

In principle could learn a large, sparse system e.g., Schaeffer, Tran & Ward, 2017

$$\dot{\mathbf{x}} = \underbrace{\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}}_{\text{linear}} + \underbrace{\mathbf{H}(\mathbf{x} \otimes \mathbf{x})}_{\text{quadratic}}$$

Given state data (X) and velocity data (X):

$$\mathbf{X} = \begin{bmatrix} | & & | \\ \mathbf{x}(t_1) & \dots & \mathbf{x}(t_K) \\ | & | \end{bmatrix} \qquad \dot{\mathbf{X}} = \begin{bmatrix} | & & | \\ \dot{\mathbf{x}}(t_1) & \dots & \dot{\mathbf{x}}(t_K) \\ | & | \end{bmatrix}$$

Find the operators **A**, **B**, **H** by solving the least squares problem:

$$\min_{\mathbf{A},\mathbf{B},\mathbf{H}} \left\| \mathbf{X}^{\top} \mathbf{A}^{\top} + (\mathbf{X} \otimes \mathbf{X})^{\top} \mathbf{H}^{\top} + \mathbf{U}^{\top} \mathbf{B}^{\top} - \dot{\mathbf{X}}^{\top} \right\|$$

Given *reduced* state data, learn the *reduced* model

Operator Inference using proper orthogonal decomposition (POD) aka PCA

Peherstorfer & W.
Data-driven operator inference for nonintrusive projection-based model reduction, *Computer Methods in Applied Mechanics and Engineering*, 2016

$$\dot{\widehat{\mathbf{x}}} = \widehat{\mathbf{A}}\widehat{\mathbf{x}} + \widehat{\mathbf{B}}\mathbf{u} + \widehat{\mathbf{H}}(\widehat{\mathbf{x}} \otimes \widehat{\mathbf{x}})$$

Given reduced state data (\widehat{X}) and velocity data (\widehat{X}) :

$$\widehat{\mathbf{X}} = \begin{bmatrix} | & & | \\ \widehat{\mathbf{x}}(t_1) & \dots & \widehat{\mathbf{x}}(t_K) \\ | & | \end{bmatrix} \qquad \dot{\widehat{\mathbf{X}}} = \begin{bmatrix} | & & | \\ \widehat{\mathbf{x}}(t_1) & \dots & \widehat{\mathbf{x}}(t_K) \\ | & | & | \end{bmatrix}$$

Find the operators $\widehat{\mathbf{A}}$, $\widehat{\mathbf{B}}$, $\widehat{\mathbf{H}}$ by solving the least squares problem:

$$\min_{\widehat{\mathbf{A}},\widehat{\mathbf{B}},\widehat{\mathbf{H}}} \left\| \widehat{\mathbf{X}}^{\top} \widehat{\mathbf{A}}^{\top} + \left(\widehat{\mathbf{X}} \otimes \widehat{\mathbf{X}} \right)^{\top} \widehat{\mathbf{H}}^{\top} + \mathbf{U}^{\top} \widehat{\mathbf{B}}^{\top} - \dot{\widehat{\mathbf{X}}}^{\top} \right\|$$

- Generate $\widehat{\mathbf{X}}$ data by projection of \mathbf{X} snapshot data onto POD basis
- If data are appropriately generated, recovers the intrusive POD reduced model [Peherstorfer, 2019]

$$E = \frac{p}{\gamma - 1} \frac{\partial}{\partial t} \begin{pmatrix} \rho u \\ \rho u^2 + p \end{pmatrix} = 0$$

$$E = \frac{p}{\gamma - 1} \frac{\partial}{\partial t} \begin{pmatrix} \rho \\ u \\ p \end{pmatrix} + \begin{pmatrix} \rho \frac{\partial u}{\partial x} + u \frac{\partial \rho}{\partial x} \\ u \frac{\partial u}{\partial x} \\ \gamma p \frac{\partial}{\partial t} \frac{\partial}{\partial t} \begin{pmatrix} u \\ p \end{pmatrix} + \begin{pmatrix} u \frac{\partial u}{\partial x} + q \frac{\partial p}{\partial x} \\ \gamma p \frac{\partial u}{\partial x} + u \frac{\partial \rho}{\partial x} \\ q \frac{\partial u}{\partial x} + u \frac{\partial \rho}{\partial x} \end{pmatrix} = 0$$

Variable Transformations & Lifting

The physical governing equations reveal variable transformations and manipulations that expose polynomial structure

There are multiple ways to write the Euler equations

Different choices of variables leads to different structure in the discretized system

$$\begin{vmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \rho w \\ E \end{pmatrix} + \frac{\partial}{\partial z} \begin{pmatrix} \rho w \\ \rho w^2 + p \\ (E+p)w \end{pmatrix} = 0$$
$$E = \frac{p}{\gamma - 1} + \frac{1}{2}\rho w^2$$

conservative variables mass, momentum, energy

$$\frac{\partial}{\partial t} \binom{\rho}{w} + \begin{pmatrix} \rho \frac{\partial w}{\partial z} + w \frac{\partial \rho}{\partial z} \\ w \frac{\partial w}{\partial z} + \frac{1}{\rho} \frac{\partial p}{\partial z} \\ \gamma p \frac{\partial w}{\partial z} + w \frac{\partial p}{\partial z} \end{pmatrix} = 0$$

primitive variables mass, velocity, pressure

- Define specific volume: $q = 1/\rho$
- Take derivative: $\frac{\partial q}{\partial t} = \frac{-1}{\rho^2} \frac{\partial \rho}{\partial t} = \frac{-1}{\rho^2} \left(-\rho \frac{\partial u}{\partial z} u \frac{\partial \rho}{\partial z} \right) = q \frac{\partial u}{\partial z} u \frac{\partial q}{\partial z}$

$$\frac{\partial}{\partial t} \binom{w}{p}_{q} + \binom{w \frac{\partial w}{\partial z} + q \frac{\partial p}{\partial z}}{\gamma p \frac{\partial w}{\partial z} + w \frac{\partial p}{\partial z}} = 0$$

$$q \frac{\partial w}{\partial z} + w \frac{\partial q}{\partial z}$$

specific volume variables

transformed system has quadratic structure

$$\dot{\mathbf{x}}_r = \mathbf{H}_r(\mathbf{x}_r \otimes \mathbf{x}_r) + \mathbf{B}_r \mathbf{u}$$

ROM has quadratic structure

Introducing auxiliary variables can expose structure → lifting

[McCormick 1976; Gu 2011]

Example: Lifting a quartic ODE to quadratic-bilinear form

Can either lift to a system of ODEs or to a system of DAEs

Consider the quartic system

$$\dot{x} = x^4 + u_1$$

Introduce auxiliary variables:

$$w_1 = x^2$$
 $w_2 = w_1^2$

Chain rule:

$$\dot{w}_1 = 2x[w_1^2 + u] = 2x[w_2 + u]$$

$$\dot{w}_2 = 2w_1\dot{w}_1 = 4xw_1[w_2 + u]$$

Need additional variable to make auxiliary dynamics quadratic:

$$w_3 = xw_1$$
 $\dot{w}_3 = \dot{x}w_1 + x\dot{w}_1$
= $w_1w_2 + w_1u + 2\dot{w}_1w_2 + 2w_1u$

QB-ODE

$$\dot{x} = w_2 + u$$

$$\dot{w}_1 = 2xw_2 + 2xu$$

$$\dot{w}_2 = 4w_2w_3 + 4w_3u$$

$$\dot{w}_3 = 3w_1w_2 + 3w_1u$$

QB-DAE

$$\dot{x} = w_1^2 + u$$
$$0 = w_1 - x^2$$

Many different forms of nonlinear equations can be lifted to polynomial form

$$\dot{\psi} = \frac{1}{Pe} \psi_{ss} - \psi_s - \mathcal{D}\psi e^{\gamma - \frac{\gamma}{\theta}}$$

$$\dot{\theta} = \frac{1}{Pe} \theta_{ss} - \theta_s - \beta(\theta - \theta_{ref}) + \mathcal{B}\mathcal{D}\psi e^{\gamma - \frac{\gamma}{\theta}}$$

original equations

$$\dot{\psi} = \underbrace{\frac{1}{Pe}\psi_{ss} - \psi_s - \mathcal{D}w_4}_{\text{linear}}$$

$$\dot{\theta} = \underbrace{\frac{1}{Pe}\theta_{ss} - \theta_s - \beta(\theta - \theta_{\text{ref}}) + \mathcal{B}\mathcal{D}w_4}_{\text{linear}}$$

$$\dot{w}_1 = \gamma \ w_6 \left[\frac{1}{Pe}\psi_{ss} - \psi_s\right] + \gamma \mathcal{B}\mathcal{D} \ w_4w_6$$

$$\dot{w}_2 = -2 \ w_5 \odot \left[\frac{1}{Pe}\psi_{ss} - \psi_s\right] - 2\mathcal{B}\mathcal{D} \ w_4w_5$$

$$\dot{w}_3 = -w_2 \odot \left[\frac{1}{Pe}\psi_{ss} - \psi_s\right] - \mathcal{B}\mathcal{D} \ w_2w_4$$

$$0 = w_4 - w_1\psi$$

$$0 = w_5 - w_2w_3$$

$$0 = w_6 - w_1w_2$$
quadratic-bilinear
lifted equations

Lift & Learn

Variable transformations to expose structure

+ non-intrusive learning that frees us to choose our variables

Using only snapshot data from the original high-fidelity model (non-intrusive) but using variable transformations to expose and exploit structure

Lift & Learn [Qian, Kramer, Peherstorfer & W., Physica D, 2020]

 Generate full state trajectories (snapshots) (from high-fidelity simulation)

$$\mathbf{X_{orig}} = \begin{bmatrix} | & & | \\ \mathbf{x}(t_1) & \dots & \mathbf{x}(t_K) \\ | & | \end{bmatrix} \quad \dot{\mathbf{X}_{orig}} = \begin{bmatrix} | & & | \\ \dot{\mathbf{x}}(t_1) & \dots & \dot{\mathbf{x}}(t_K) \\ | & | & | \end{bmatrix}$$

Using only snapshot data from the original high-fidelity model (non-intrusive) but using variable transformations to expose and exploit structure

- Generate full state trajectories (snapshots) (from high-fidelity simulation)
- 2. Transform snapshot data to get lifted snapshots (analyze the PDEs to expose system polynomial structure)

$$X_{orig} \rightarrow X$$
 $\dot{X}_{orig} \rightarrow \dot{X}$

Using only snapshot data from the original high-fidelity model (non-intrusive) but using variable transformations to expose and exploit structure

- Generate full state trajectories (snapshots) (from high-fidelity simulation)
- 2. Transform snapshot data to get lifted snapshots
- 3. Compute POD basis from lifted trajectories

$$\mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{W}^{\mathsf{T}}$$

Using only snapshot data from the original high-fidelity model (non-intrusive) but using variable transformations to expose and exploit structure

- Generate full state trajectories (snapshots) (from high-fidelity simulation)
- 2. Transform snapshot data to get lifted snapshots
- 3. Compute POD basis from lifted trajectories
- Project lifted trajectories onto POD basis, to obtain trajectories in low-dimensional POD coordinate space

$$\widehat{\mathbf{X}} = \mathbf{V}^{\mathsf{T}} \mathbf{X}$$

Using only snapshot data from the original high-fidelity model (non-intrusive) but using variable transformations to expose and exploit structure

- Generate full state trajectories (snapshots) (from high-fidelity simulation)
- 2. Transform snapshot data to get lifted snapshots
- 3. Compute POD basis from lifted trajectories
- Project lifted trajectories onto POD basis, to obtain trajectories in low-dimensional POD coordinate space
- 5. Solve least squares minimization problem to infer the low-dimensional model

$$\min_{\widehat{A},\widehat{B},\widehat{H}} \left\| \widehat{X}^{\top} \widehat{A}^{\top} + \left(\widehat{X} \otimes \widehat{X} \right)^{\top} \widehat{H}^{\top} + U^{\top} \widehat{B}^{\top} - \dot{\widehat{X}}^{\top} \right\|$$

Using only snapshot data from the original high-fidelity model (non-intrusive) but using variable transformations to expose and exploit structure

Lift & Learn [Qian, Kramer, Peherstorfer & W., Physica D, 2020]

- Generate full state trajectories (snapshots) (from high-fidelity simulation)
- 2. Transform snapshot data to get lifted snapshots
- 3. Compute POD basis from lifted trajectories
- Project lifted trajectories onto POD basis, to obtain trajectories in low-dimensional POD coordinate space
- 5. Solve least squares minimization problem to infer the low-dimensional model

Under certain conditions, recovers the intrusive POD reduced model

→ convenience of black-box learning + rigor of projection-based reduction + structure imposed by physics 1 Motivation

2 Lift & Learn: Application

3 Conclusions & Outlook

Rocket Engine Combustion

Lift & Learn reduced models for a complex Air Force combustion problem

Modeling a single injector of a rocket engine combustor

- Spatial domain (2D) discretized into 38,523 cells
- Oxidizer input: $0.37 \frac{\text{kg}}{\text{s}}$ of $42\% 0_2 / 58\% \text{ H}_2 \text{ O}$
- Fuel input: $5.0 \frac{\text{kg}}{\text{s}}$ of CH_4
- Forced by a back pressure boundary condition at exit throat

Oxidizer Manifold

Injector Post

Injector Element

Combustion Chamber

Exit Throat

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho v_x \\ \rho v_y \\ \rho E \\ \rho Y_1 \\ \vdots \\ \rho Y_{n_{\mathrm{sp}}} \end{bmatrix} + \nabla \cdot \begin{bmatrix} \begin{bmatrix} \rho v_x \\ \rho v_x^2 + p \\ \rho v_x v_y \\ \rho v_x E + p v_x \\ \rho v_x Y_1 \\ \vdots \\ \rho v_x Y_{n_{\mathrm{sp}}} \end{bmatrix} \vec{i} + \begin{bmatrix} \rho v_y \\ \rho v_x v_y \\ \rho v_y E + p v_y \\ \rho v_y Y_1 \\ \vdots \\ \rho v_y Y_{n_{\mathrm{sp}}} \end{bmatrix} \vec{j} - \begin{bmatrix} 0 \\ \tau_{xx} \\ \tau_{yx} \\ \tau_{xx} v_x + \tau_{yx} v_y - j_x^q \\ -j_{1,x}^m \end{bmatrix} \vec{i} - \begin{bmatrix} 0 \\ \tau_{xy} \\ \tau_{xy} v_x + \tau_{yy} v_y - j_y^q \\ -j_{1,y}^m \end{bmatrix} \vec{j} \\ \vdots \\ -j_{n_{\mathrm{sp}},x}^m \end{bmatrix} \vec{j} - \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ -j_{n_{\mathrm{sp}},x}^m \end{bmatrix} \vec{j} - \begin{bmatrix} 0 \\ \tau_{xy} v_x + \tau_{yy} v_y - j_y^q \\ -j_{1,y}^m \\ \vdots \\ -j_{n_{\mathrm{sp}},y}^m \end{bmatrix} \vec{j}$$

Modeling a single injector of a rocket engine combustor

Training data

- 1 ms of full state solutions generated using Air Force GEMS code (~200 hours CPU time)
- Timestep $\Delta t = 10^{-7}$ s; 10,000 total snapshots
- Variables used for learning ROMs $x = [p \quad u \quad v \quad 1/\rho \quad \rho Y_{CH_4} \quad \rho Y_{O_2} \quad \rho Y_{CO_2} \quad \rho Y_{H_2O}]$ makes many (but not all) terms in governing equations quadratic
- Snapshot matrix $X \in \mathbb{R}^{308,184 \times 10,000}$

Test data

Additional 2 ms of data at four monitor locations (20,000 timesteps)

Performance of learned quadratic ROM

Pressure time traces at monitor location 1

Original CFD model 308,184 unknowns

POD basis size r = 24

Performance of learned quadratic ROM

Pressure time traces at monitor location 1

Original CFD model 308,184 unknowns

POD basis size r = 29

True

Pressure

Temperature

Predicted

r = 29 POD modes

Relative error

True

CH₄

 O_2

Predicted

r = 29 POD modes

Normalized absolute error

1 Motivation

2 Lift & Learn

3 Conclusions & Outlook

Conclusions & Outlook

Challenges & opportunities for machine learning in complex scientific & engineering applications

Predictive Data Science

Learning from data through the lens of models is a way to exploit structure in an otherwise intractable problem

Forward simulations Advancing scientific discovery & engineering innovation

Optimization & inverse problems

Advancing estimation, design & control

Uncertainty quantification

Towards Predictive Science

Towards Predictive Data Science

6 decade:

Computation

Science &

Engineering

How do we harness the explosion of data to extract knowledge, insight and decisions?

Data-driven decisions

building the mathematical foundations and computational methods to enable design of the next generation of engineered systems

KIWI.ODEN.UTEXAS.EDU

