PHYSIK

UNTERRICHT - ABITUR 2025

Inhaltsverzeichnes

2024-	06-04 - Physik LOG	2
1.1	Bearbeitungen	2
2024-	06-06 - Interferenz Gitter Versuch	3
2.1	Beobachtung	3
2.2	Auswertung	
2.3	Aufgaben	3
2.3.1	1	3
2.4	Versuch Wiederholung	3
2.5	Worauf muss man achten:	3
	Links	
2.6.1	a	4
2.7	Zweite Runde	4
2.7.1	Messung der verschiedenen Wellen / LED's	4
2.8	Bedeutung der einzelnen Bestandteile	4
2024-	06-18 - Übungsaufgaben	5
2024-	08-14 - Überlagerung von Wellen	6
Bibli	ographie	8

2024-06-04 - Physik LOG

1.1 Bearbeitungen

 $\bullet \quad [[../../../area/physik/2024-06-04-08-38-30-fleet-doppelspalt.md]]\\$

2024-06-06 - Interferenz Gitter Versuch

2.1 Beobachtung

Abstand zum Schirm: 27cm Abstand der Maxima: 12cm

2.2 Auswertung

2.3 Aufgaben

2.3.1 1.

Algemein sind folgende Formeln bekannt:

$$\sin \alpha = \frac{\lambda}{q}$$
 und $\tan \alpha = \frac{a}{l}$

Wobei λ die Wellenlaenge ist.

Gitter: 500 Spalten pro Millimeter

$$g = \frac{1 \cdot 10^{-3} m}{500} = 2 \cdot 10^{-6} m$$

• $2a_1 = 0, 12m;$ $a_1 = 0, 06m;$ l = 27cm = 0, 27m

$$\lambda \ \& = g \cdot \& \ \& \sin(\tan^{-1}(\frac{a}{l})) \ \& = (2 \cdot 10^{-6}) \cdot \& \ \& \sin(\tan^{-1}(\frac{0,12}{0,27})) \ \& = 434 \cdot 10^{-9} m$$

2.4 Versuch Wiederholung

$$2a_2 = 0.127m;$$
 $a_2 = 0.635m;$ $l = 0.38m$

Berechnung der Wellenlaenge λ :

$$\lambda \& = g \cdot \& \& \sin(\tan^{-1}(\frac{a}{l})) \& = (2 \cdot 10^{-6}) \cdot \& \& \sin(\tan^{-1}(\frac{0,07}{0,38})) \& = 6,34 \cdot 10^{-7} m = 634 nm$$

2.5 Worauf muss man achten:

Wir sollen naechstes Jahr den Versuch den anderen erklaeren

2.6 Links

2.6.1 a

2aist zwischen den Maxima der Ordnung
 n. Also von einem Maxima bis zur mitte ist nu
ra

2.7 Zweite Runde

• 2024-06-18

2.7.1 Messung der verschiedenen Wellen / LED's

LED	Wellenlaenge in nm	Abstand 1.	Ordnung A. 2. Ordnung
		in cm^1	
Rot	632	10,3	-
Grün	514	8,5	18,8
Blau	463	7,5	15,7

$$g = \frac{1 \cdot 10^{-3} m}{500} = 2 \cdot 10^{-6} m$$

2.7.1.1 Rot

2.7.1.1.1 1. Ordnung

$$2a = 0.103m; \quad a = 0.0515m; \quad l = 0.15m$$

Berechnung der Wellenlaenge λ :

$$\lambda \ \& = \frac{g}{n} \cdot \sin(\tan^{-1}(\frac{a_n}{l})) \ \& = (2 \cdot 10^{-6}) \cdot \sin(\tan^{-1}(\frac{0,0515}{0,15})) \ \& = 6,49 \cdot 10^{-7} m$$

2.8 Bedeutung der einzelnen Bestandteile

¹ Abstand 1. Ordnung zur 1. Ordnung

2024-06-18 - Übungsaufgaben

- Klausuren/Übungen -> Übungen zu Elektrodynamik und Schwingungen / Wellen

2024-08-14 - Überlagerung von Wellen

Überlagerung zwei exakt gleicher Wellen Figure 4.1

Überlagerung zwei unterschiedlicher Wellen

Im ersten Beispiel² wird die Amplitude verdoppelt, im zweiten Beispiel³ gleichen sich die beiden Wellen zu keiner Welle aus.

Hier betrachten wir immer 2 gleichartige Wellen und interesieren uns für die Wällenlänge: λ

$$\lambda = \frac{g \cdot \sin(\arctan\frac{a_n}{l})}{n} = \frac{g \cdot \sin(\tan^{-1}(\frac{a_n}{l}))}{n}$$

Abstand zwischen 2 Maxima gleicher Ordnung messen und durch zwei Dividieren.

^{2 &}lt;fig:waves_no_offset>
3 <fig:waves_offset>

 ${\bf Figure~4.3} \quad \ddot{{\bf U}} {\bf berlagerung~von~Wellen~durch~ein~Gitter}$

Bibliographie