Week 9

Jinxi Xiao

November 21, 2023

E-mail: xiaojx@shanghaitech.edu.cn

Subspace

2 Linear Independence

3 Exercises

Definition

Theorem:

Let V be a \mathbb{F} -vector space and a non-empty set $W \subseteq V$. Then W is a subspace if and only if the following conditions holds:

- $\forall u, v \in W, u + v \in W$
- $\forall k \in \mathbb{F}$ and $u \in W, ku \in W$

Examples

Examples of Subspaces

Example. The following are some examples of subspaces.

- (1) The set $C(-\infty, +\infty)$ of all continuous functions on $(-\infty, +\infty)$ is a subspace of the vector space $F(-\infty, +\infty)$ of all functions on $(-\infty, +\infty)$.
- (2) The set $C^1(-\infty,\infty)$ of all functions on $(-\infty,+\infty)$ with continuous derivative is a subspace of $C(-\infty,+\infty)$.
- (3) The set $C^{\infty}(-\infty, +\infty)$ of all functions on $(-\infty, +\infty)$ which have derivatives of all order is a subspace of $C^1(-\infty, +\infty)$.
- (4) The set P_{∞} of all polynomials if a subspace of $C(-\infty, +\infty)$.
- (5) The set P_n of all polynomials of degree $\leq n$ is a subspace of P_{∞} .

Question: Is the set of all polynomials of degree n a subspace of P_{∞} ?

Example. The following are some examples of subspaces.

- (6) The set U of all symmetric matrix of order n is a subspace of M_n .
- (7) The set V of all $n \times n$ upper triangular matrices is a subspace of M_n .
- (8) The set of all diagonal matrix of order n is a subspace of either U or V.

Building Subspaces

Theorem

If U, W are subspaces of V, then

- $U \cap W$ and $U + W == span(U \cup W)$ are subspace of V
- $U \cup W$ may not

Spanning a Subspace

$$W = span(s) = span\{w_1, w_2, \cdots, w_r\}$$

A lot more properties can be found here, please refer to the slides.

Column & Row Space

Definition. Let $A \in M_{m \times n}(\mathbb{F})$. Suppose that

$$A = [a_{ij}]_{m \times n} = \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \vdots \\ \mathbf{r}_m \end{bmatrix} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{bmatrix}.$$

The subspace $\operatorname{span}\{\mathbf{r}_1,\ldots,\mathbf{r}_m\}$ of \mathbb{F}^n is called the row space of A. The subspace $\operatorname{span}\{\mathbf{c}_1,\ldots,\mathbf{c}_n\}$ of \mathbb{F}^m is called the column space of A.

Notations (only in this class):

$$Row(A) := span\{\mathbf{r}_1, \dots, \mathbf{r}_m\}, \quad Col(A) := span\{\mathbf{c}_1, \dots, \mathbf{c}_n\}.$$

Subspace

2 Linear Independence

3 Exercises

Concept

Definition. Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ be a non-empty set in a vector space V.

♦ If the equation

$$k_1\mathbf{v}_1+k_2\mathbf{v}_2+\cdots k_r\mathbf{v}_r=\mathbf{0}$$

has only the trivial solution $k_i = 0$ ($1 \le i \le r$), then the set S (or these vectors) is said to be linearly independent.

 \diamond If the equation has non-trivial solutions, then S (or these vectors) is said to be linearly dependent.

Subspace

2 Linear Independence

3 Exercises

Exercises

Problem 1

If A is a square matrix of order n and A is singular, then prove that adj(A) is also singular and Aadj(A) is zero matrix.

Problem 2

Prove that the solution set on a homogeneous linear system Ax=0 with $x\in\mathbb{R}^n$ is a subspace of \mathbb{R}^n

