

1. Departamento: Computación y Tecnología de la Información (6510)

2. Asignatura: Estructuras Discretas III

3. Código de la asignatura: CI2527

No. de unidades-crédito: 4

No. de horas semanales: Teoría 4 Práctica 2 Laboratorio 0

4. Fecha de entrada en vigencia de este programa: abril 2011

OBJETIVO GENERAL: Estudio de estructuras algebraicas, finitas y no finitas, con uno y dos operadores como semigrupos, monoides, grupos, anillos, dominios de integridad y campos. Homomorfismos (monomorfismos, epimorfismos, isomorfismos) entre estructuras algebraicas, particularmente entre grupos. Grupos cíclicos e isomorfismos entre grupos cíclicos. Estudio de reticulados y álgebras de Boole de altura finita. Átomos y coátomos del álgebra. Funciones booleanas y formas canónicas de éstas, una introducción al diseño de circuitos. Fortalecimiento de argumentos demostrativos.

- 6. OBJETIVOS ESPECÍFICOS: Al término del curso se espera que el estudiante ha alcanzado la competencia para,
- 1.- Aplicar los conocimientos obtenidos en el curso en materias de la carrera donde el formalismo de su contenido requiere una base robusta en estructuras algebraicas.
- 2.- Profundizar en la teoría de diseños de circuitos.

7. CONTENIDOS:

TEORÍA:

- 1. Enteros. Divisibilidad y propiedades. Máximo común Divisor de dos enteros
- 2. Operaciones binarias y propiedades. Algebra completa y cerrada. Elemento cancelable izquierdo y derecho. Elemento cancelable. Elemento neutro. Elemento inverso.
- 3. Semigrupos. Monoides. Grupos. Subgrupos generados por un elemento. Caracterización de subgrupos. Clases laterales izquierda y derecha. Teorema de Lagrange. Grupos Z_p ($p \ge 1$). Aplicación en la codificación y decodificación de mensajes.
- 4. Homomorfismos de estructuras algebraicas. Monomorfismos, epimorfismos e isomorfismos.

- 5. Grupos cíclicos. Isomorfismos de grupos cíclicos. Teorema de Cayley.
- 6. Anillos $Z_p(p \ge 1)$. Dominios de Integridad. Campos.
- 7. Orden parcial y total. Reticulados. Reticulado acotado, complementado y distributivo.
- 8. Algebra de Boole. Propiedades: Algebra de Boole reticular. Algebra de Boole de altura finita. Representación canónica disyuntiva y conjuntiva.
- 9. Funciones booleanas y representación por maxtérminos y mintérminos. Compuertas AND, OR y NOT. Circuitos. Optimización de circuitos. Mapas de Karnaugh. Método de Quine-McCluskey.

PRÁCTICA: Se ejercitan los tópicos impartidos en la teoría cada semana.

8. ESTRATEGIAS METODOLÓGICAS, DIDÁCTICAS O DE DESARROLLO DE LA ASIGNATURA:

- 1. Para la teoría clases presenciales, cuatro horas a la semana, donde se imparten los tópicos básicos con ejemplos y algunos ejercicios ilustrativos. Clases presenciales de práctica, dos horas a la semana, para la resolución de ejercicios relativos a la teoría de la semana que le precede. La clase de teoría permite la intervención de los estudiantes en la discusión de los tópicos considerados. La clase de práctica es utilizada para incentivar la activa participación de los estudiantes en la resolución de ejercicios.
- 2. Tiempo de consulta extra aula, en horas específicas para ello.
- 3. El curso dispone de un sitio web donde se colocan el cronograma de actividades y tópicos que se impartirán en la materia por semana, la bibliografía del curso, las prácticas semanales, los puntos de evaluación y toda información de interés para el estudiante.

9. ESTRATEGIAS DE EVALUACIÓN:

1. Se aplican tres parciales con una distribución de porcentajes en base 100%, como se indica:

Primer parcial 30 %,

Segundo parcial 30%

Tercer parcial 30%

Tareas 10%

10. FUENTES DE INFORMACIÓN

Libro de Texto

- Notas sobre estructuras algebraicas de Vicente Yriarte
- Elements of Algebra and Algebraic Computing. John D. Lipson. Addison-Wesley Educational Publishers Inc. 1981.
- A Logical Approach to Discrete Math. David Gries & Fred B. Schneider. Springer Verlag. 1993.
- Estructuras de Matemáticas Discretas para la computación. Tercera edición. Bernard Kolman, Robert C. Busby, and Sharon Ross. Prentice Hall. 1995.
- Diseño Lógico. A. Lloris & A. Pinto. Mc Graw Hill 1996.
- Introduction to Discrete Structures for Computer Science and Engineering. Addison-Wesley. 1973.
- Guia de Diseño Lógico. Pierre Casterán. Universidad simón Bolívar. 1984.

11. CRONOGRAMA DE ACTIVIDADES

Esta sección es un apéndice a ser desarrollado por el profesor al inicio de cada ejecución del programa, y que debe informarse a los estudiantes).

Cronograma trimestre abril-.julio 2012:

Semana		Práctica	Teoría
1	Introducción al curso. Dominios		Relaciones: menor, mayor
	de Integridad (definición y		Divisibilidad, teoremas
	teoremas). Enteros, propiedades		Máximo Común Divisor
	Inverso aditivo y sustracción		Mínimo Común Múltiplo
2		Enteros. Sustracción.	Números Primos
	FERIADO	Divisibilidad y MCD	Algoritmo de Euclides
			Congruencias
	Introducción a las Álgebras	Primos, congruencias.	Isomorfismos y
	(definición, firma, operadores)	Álgebras y subálgebras	Homomorfismos
	Identidad, cero, inverso	Identidad, cero, inverso	
	Subálgebras		
	Grupoides, semigrupos,	Isomorfismos. Semigrupos,	
	monoides, grupos. Teorema de	monoides, grupos. Potencia de	PARCIAL I (30%)
	grupos. Potencia de grupos	grupos	
5	Subgrupos	Subgrupos. Clases laterales	Libre
	Clases Laterales		
6	Teorema de Lagrange	Teorema de Lagrange. Grupos	
	Grupos Cíclicos	Cíclicos. Grupos cíclicos	Transformaciones.
			Permutaciones
7	Anillos, teoremas, subanillos.	Anillos. Dominios de	
	Anillos conmutativos,	Integridad.	PARCIAL II (30%)
	D.I.,Campos	Campos	
8	Repaso de CPO, minimales,	CPO. Reticulados	Álgebras de Boole:
	maximales, supremo, ínfimo,		Definición y Leyes
	reticulados, acotado,		
	complementado y distributivo		
9	Teoremas de Algebras Boole	Álgebras de Boole	Altura. Suma de Átomos
	Átomos. Altura.	Átomos	Álgebras de Boole Finitas
10	Funciones booleanas. Min/Max-	Altura, Suma de átomos.	Adyacencias. Mapas de
	términos. Teorema de Shanon	Funciones booleanas.	Karnaugh. Don't care
		Min/maxtérminos	
	Mapas de Karnaugh	Adyacencias. Mapas de	FERIADO
	Diseño de circuitos	Karnaugh. Don't care	
12	Quine Mc Cluskey	Repaso	PARCIAL III (30%)