

BIOLOGICAL TESTING OF ROCKY MOUNTAIN ARSENAL FOR PHYTOTOXIC SUBSTANCES

FINAL REPORT

APRIL 1979

Ву

DAVID R. COGLEY LYLE E. CRAKER C.D. TORGESON DAVID L. SIROIS

WALDEN DIVISION OF ABCOR, INCORPORATED WILMINGTON, MASSACHUSETTS 01887

and

DR. W. DICKINSON BURROWS
(CONTRACTING OFFICER'S TECHNICAL REPRESENTATIVE)
U.S. ARMY MEDICAL BIOENGINEERING RESEARCH AND DEVELOPMENT LABORATORY

C FILE COPY

3

9

AD A 0 7 65

SUPPORTED BY:

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
FORT DETRICK
FREDERICK, MARYLAND 21701

CONTRACT NO. DAMD 17-77-C-7050

Approved for public release; distribution unlimited.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Notice

Disclaimer

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) BIOLOGICAL TESTING OF ROCKY MOUNTAIN ARSENAL FOR PHYTOTOXIC SUBSTANCES	Final Report & PERIOD COVER
7. Au Thor(a)	8. CONTRACT OR GRANT NUMBER(#)
David R. Cogley, David L. Sirois Lyle E. Craker, C.D. Torgeson	65 bamb 17-77-C-7050
Walden Division of Abcor, Inc. 850 Main Street Wilmington, MA 01887	10. PROGRAM ELEMENT, PROJECT, TA
US Army Medical Research & Development Command ATTN: SGRD-AJ	April 1979
Fort Detrick, Frederick, MD 21701 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	e) 15. SECURITY CLASS. (of this report)
US Army Medical Bioengineering Research & Development Laboratory, ATTN: SGRD-UBG	UNCLASSIFIED
Fort Detrick, Frederick, MD 21701	15a. DECLASSIFICATION/DOWNGRADIN
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different	t from Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block num	iber)
Phytotoxic substances Soil contamination Soil sampling	
Groundwater Pollutants Phytotoxicity Testing	
Soil samples from Rocky Mountain Arsenal were phytotoxins to see if such results were consistent data from the coring program of the US Army Offic (OTSG). The phytotoxicity data do not indicate the except in areas shown to be contaminated on the bata. Further phytotoxicity tests of OTSG coring required.	e biologically tested for at with chemical analytical se of the Surgeon General she presence of phytoxins wasis of chemical analytical

	THIS PAGE(When Data Entered	
,		

ACKNOWLEDGMENTS

This report, prepared under United States Army Contract No. DAMD17-77-C-7050, is an extension of work performed under Contract No. DAMD17-75-C-5059, "Environmental Effects Problem Definition Study on 27 Identified Pollutants at Rocky Mountain Arsenal." The project officer for the latter contract was Major Thomas Miller. The phytotoxicity tests described in this report were performed under United States Army Contract No. DAMD17-76-C-6039 issued to Boyce Thompson Institute for Plant Research, Inc. which is located at Tower Road, Cornell University, Ithaca, New York 14853. Major John P. Glennon was project officer.

	ssion For	
	GF/A&I	D
DUC :		
	nounced	
Justi	fication	
Ey		
-		
Distr	ibutico/	
Avri	lability Co	des
	Availand/	or
Dist	special	
^		
1)		
PI		

EXECUTIVE SUMMARY

Soil samples from Rocky Mountain Arsenal were biologically tested for phytotoxins to see if such results were consistent with chemical toxicity analytical data from the coring program of the US Army Office of the Surgeon General (OTSG). The phytotoxicity data do not indicate the presence of phytoxins except in areas shown to be contaminated on the basis of chemical analytical data. Further phytotoxicity tests of OTSG coring program samples are not required.

TABLE OF CONTENTS

Section	<u>Title</u>	Page
I	INTRODUCTION	6
II	APPROACH	7
	A. FACTORS AFFECTING INTERPRETATION OF RESULTS 1. Soil Sampling Factors 2. Plant Growth Factors	7 7 8
	B. EXPERIMENTAL APPROACH 1. Soil Sampling Program 2. Primary Testing 3. Secondary Testing	9 9 9 11
	C. DATA ANALYSIS 1. Control Experiments 2. Normalization of Test Data 3. Blocking Effects 4. Secondary Tests 5. Comparison of Primary and Secondary Tests 6. Precision	12 12 20 20 23 24 26
III	RESULTS AND DISCUSSION	31
	A. AREAS WITH CONFIRMED PHYTOTOXIC CONDITIONS	31 40
IV	SUMMARY AND RECOMMENDATIONS	42
٧	REFERENCES	43
	APPENDICES	
	B. GROWTH MEASUREMENTS	A-1 B-1 C-1
	INTERPRETATION OF PLANT SIGNS AS INDICATORS OF THE PRESENCE OF PHYTOTOXINS	D-1

LIST OF FIGURES

Figure No.	<u>Title</u>	Page
1.	Core sampling sites	10
2.	Seasonal dependence of composite median top growth value for controls	21
3.	Secondary test effects for sugar beets	27

LIST OF TABLES

Table No.	<u>Title</u>	Page
1.	Median Top Growth for Controls	13
2.	Standard Deviation Values for Mean Top Growth of Controls	15
3.	Maximum Root Growth for Controls	16
4.	Standard Deviation Values for Maximum Root Growth of Controls	18
5.	Composite Median Top Growth Values for Controls .	22
6.	Comparison of Primary and Secondary Tests of Mean Top Growth - A Two-way Analysis of Variance .	25
7.	Summary of Secondary Test Effects on Normalized Mean Top Growth Values for Sugar Beets	28
8.	Precision of Phytotoxicity Tests	29
9.	Cross Reference Guide of the Boyce Thompson Sample Number Versus Core Location and Depth Segment	32
10.	Summary of Observed Phytotoxin Distributions at RMA	41

INTRODUCTION

Military and Industrial wastes have been disposed of at Rocky Mountain Arsenal (RMA) from 1941 to the present time. Shell Chemical Company has been manufacturing pesticides there since 1952. Fluid wastes have been transported via unlined ditches and by waste sewers to both unlined basins and to lined basins. Solid wastes have been placed in trenches and pits and subsequently covered. It is possible that some toxic materials may have migrated from disposal areas to other areas where they may pose an environmental hazard. The United States Army is funding a multifaceted study of RMA which includes an evaluation of available literature for compounds present at RMA, soil coring and chemical analysis, characterization of the geology and geohydrology of RMA, wastewater treatment technology, soil reclamation technology, animal toxicology studies, and phytotoxicity testing. Other studies are also underway or planned.

The primary objective of the studies at RMA is to minimize the possibility of damage to humans, animals, and plants resulting from the effects of toxic materials on or emanating from RMA. To this end, many types of studies are being simultaneously performed. Some of the studies may seem rather specialized and applicable only to one type of target organism but due to the waste disposal history and hydrogeology of RMA, the finding of any single toxic compound is a good reason to suspect the occurrence of other toxic compounds at the same site. Thus, the finding of a phytotoxin could lead to the finding of compounds toxic to humans or animals.

In order to judge the full significance of the phytotoxicity ${\rm data}^{(25)}$, one may wish to review the history of RMA and its hydrogeology. The history of RMA including tenant activities, earlier waste disposal surveys, and ecological studies, is reviewed in an earlier report (20). An idea of the number of compounds which may be present in RMA water and soils can be obtained from a series of reports (6,7,9,18,19,20,21). The transport of some compounds in groundwater pollutant plumes at RMA has been reviewed in connection with an analysis of chemical analytical data from the OTSG coring program. The interesting feature of that data is that chemical analysis of the OTSG core samples focused on materials which did not move via detectable groundwater pollutant plumes. Focusing on chemical analysis of a limited number of compounds (for economic reasons) decreased the chances of delineating the extent of pollutant plumes known from previous work to exist at RMA. Phytotoxicity tests of good precision are useful in such circumstances for the detection of phytotoxic compounds without previous knowledge of the chemical identity of the phytotoxin.

In summary, toxic materials at RMA may pose hazards to humans, plants, and animals. Phytotoxicity tests of RMA soil samples yield information on the location of phytotoxins and also on the possible location of human and animal toxins.

II. APPROACH

The primary purpose of the phytotoxicity tests at Boyce Thompson Institute was to discover the presence of phytoxins in soil at RMA. Careful specification of experimental protocols and careful interpretation of results allow one to judge the extent to which measured effects reflect the parameters one would like to determine.

Basically, the tests involved the germination of seeds of selected plants in samples of soil taken from different depths at various locations at RMA. These tests detect: inhibition or retardation of the germination of seeds of monocotyledonous and dicotyledonous plants, retardation of seedling growth and development, interference with chlorophyll development, necrosis of foliage, stem collapse and/or death of the plants. Where obvious phytotoxicity symptoms are observed with a particular sample, such symptoms may be attributed to specific contaminants identifiable by chemical analysis of the soil sample. In cases where chemical analysis fails to indicate the presence of contaminants, the observed phytotoxicity signifies that an unknown phytotoxic compound is present and requires identification.

A. FACTORS AFFECTING INTERPRETATION OF RESULTS

1. Soil Sampling Factors

Soil samples utilized in the phytotoxicty tests were from known locations at RMA. The precise nature of the drilling procedure, sample treatment, sample transportation, and sample storage can affect physical, chemical, and biological properties of soil causing changes in plant growth response. If substantial changes did occur in the samples from RMA, the growth tests performed at Boyce Thompson Institute may not accurately reflect the presence or absence of phytotoxins in soils at RMA.

Drilling procedure can affect test results if soil core segments are contaminated with phytotoxins from other core segments. This is important if one is striving for high precision on the vertical scale at one drill hole. Since five foot core segments were utilized, this problem was probably not serious. Also, contamination from other drill holes can be a problem if the coring rig (auger, sample containers, transfer tools) are not well cleaned between drill holes.

Sample treatment can affect the stability of phytotoxins in soils. Air drying retards biological growth but enhances the rate of evaporation of volatile compounds. Sealing in air tight containers preserves volatile organics but may enhance anaerobic decomposition. Mixing of each soil core allows for a determination of the average soil condition but may enhance loss of volatiles, causing dilution of stratified pollutants, and provide conditions conducive to intersample contamination.

Conditions during sample transportation and storage can affect test results in many ways. Permeable sample containers allow the rapid escape of volatile compounds and air oxidation of compounds. High temperatures favor loss of volatiles, chemical transformation, and biological growth. Lack of protection from outdoor conditions can result in leaching by rainfall.

In essence, for any given soil sample, almost any environment other than the original temperature, contiguous air, soil, and groundwater could cause changes in phytotoxicity test results. The changes in test results could be due to a change in the concentration of phytotoxins within the sample or to changes in physical, chemical, or biological properties which might be described as "poor soil". Dicyclopentadiene is a good example of a phytotoxin which could be present in soil (or within groundwater contained in soil) at RMA and yet be absent from a sample.of that soil delivered to Boyce Thompson Institute. Microbial growth in a sample stored at warm temperatures in a sealed container could cause nitrate depletion, sulfide formation, a shift to acidic pH, and clogging of soil pores thus changing a "good soil" to a "poor soil" and causing apparent phytotoxicity signs.

2. Plant Growth Factors

The results of phytotoxicity tests using indicator plants depend on the plants making physical contact with the phytotoxins, plant sensitivity to the phytotoxins, and correct interpretation of plant growth responses. The latter refers to a recognition of phytotoxic signs in the growth of indicator plants.

The seeding and growing of plants in the test soil samples assures contact between plant roots and phytotoxins. However, there are many soil factors which can complicate the root-phytotoxin interaction. These soil factors relate directly to soil sample treatment, transportation, and storage (see previous section). A phytotoxic chemical may become unavailable to the plant due to inactivation or low concentrations caused by volatilization, leaching, photo-decomposition, chemical decomposition, microbial decomposition, or adsorption on soil colloids (15). Other inhibiting factors can be due to "poor soil". Poorly structured soil may present a physical barrier to root penetration. Low amounts of soil nutrients and abnormal soil pH could prevent physiological development of the plants.

The sensitivity of plants to phytotoxins varies according to the age, rate of growth, morphology, genetic inheritence, membranes, enzymes, and metabolic pathways of the plants (15,22). Generally, the younger and more rapidly growing plants are the most sensitive to phytotoxins. In addition, temperature, light, moisture, pH, and/or nutrient stress can make plants more or less susceptible to phytotoxins (15,22).

Observation and interpretation of plant growth responses to test soil samples provide the basis for deciding whether or not phytotoxins are present. It is important to accurately identify an abnormality and to distinguish whether it was induced by phytotoxins or by some other environmental factor. This is accomplished through maintenance of environmental growth conditions, recognition of specific phytotoxic induced abnormalities, and comparison to control plants.

B. EXPERIMENTAL APPROACH

1. Soil Sampling Program

The soil sampling program for the Rocky Mountain Arsenal utilized a rectangular grid pattern for locating sampling sites (see Figure 1). Grid spacing varied for the various sections of RMA according to the intensity of sampling of the particular sections. In one of the most extensively sampled sections, section 36, grid spacing was 440 feet. In less extensively sampled sections, grid spacing was 880 feet. For sections 8 and 9 cores were drilled at random locations.

Depending on the available drilling rig, soil cores were drilled at designated sites to seven feet, groundwater, or bedrock (5). Each core was divided into segments of 0-2 feet, 2-7 feet, and subsequent five foot segments to the end of the core (1).

Each sample as collected was labeled with a four-part eleven digit identification code in the form 00-0000-0000-0. In the identification system, the first two digits specify the section at RMA, the next four digits are the number of feet east of the section's southwest corner + 1000, the following four digits are the number of feet north of the section's southwest corner + 1000, and the last digit is the designator of sample depth(1,5). If the depth designator is 1, the 0-2 feet sampling depth is indicated. For samples deeper in the profile, the depth designator is increased by 1 for each subsequent 5 foot segment. Thus, 26-2320-3640-2 designates a soil sample collected from section 26, 1320 feet east of the SW corner, 2640 north of the SW corner, and at a depth of 2-7 feet.

The cored soil segments were air dried (no direct sunlight), passed through a no. 4 screen to remove large stones and obtain some mixing, and then passed three times through a chambered sample splitter to ensure homogeneity(1). Subsamples of approximately 1000 grams were subsequently placed in capped 2-liter glass jars and shipped to greenhouses at Boyce Thompson Institute, Yonkers, New York.

2. Primary Testing

The phytotoxicy test procedure used by Boyce Thompson Institute for the evaluation of RMA soil samples is an adaption of herbicide screening procedures which have been used since the early 1940's (17)

FIGURE 1

CORE SAMPLING SITES

Indicator plants selected for this study were sugar beet, Beta vulgaris L., cv. Great Western; mustard, Brassica nigra L., cv. Florida broadleaf; perennial rye grass, Lolium perenne L., cv. NK-100; and foxtail millet, Setaria italica (L.) Beaouv. cv. Golden (all available from the Stanford Seed Company). These plants represent both the monocotyledonous (rye grass and foxtail millet) and dicotyledonous (sugar beet and mustard) classes of plants. Foxtail millet and mustard are standard screening plants used at Boyce Thompson Institute. Sugar beet and perennial rye grass have been previously used at Boyce Thompson Institute and are samples of plant species that could be grown at RMA. These indicator plants are best classfied as having intermediate sensitivity to phytotoxins (17). They also fulfill other listed requirements for phytotoxin indicator test plants (4, 15).

Soil samples from RMA were placed in fiber trays (19 cm X 13 cm X 7.6 cm), firmly pressed, and marked with 4 rows. Seeds of rye grass (about 100 seeds), foxtail millet (about 100 seeds), mustard (about 100 seeds), and sugar beet (about 25 seeds) were sown into separate rows and covered to a depth of approximately 1 cm with soil sample. (All seeds were coated with the fungicide, Arasan, prior to planting). The trays were sprinkled to optimum moisture level for seed germination and placed in a greenhouse. Greenhouse temperature was maintained at minimums of 15°C and 21°C during the night and daytime, respectively. In the case of controls, the soil used for planting was greenhouse compost.

Observations were made at weekly intervals on the emergence of seedlings, growth rate, chlorosis, foliage necrosis, formative effects, and other abnormalities. After 3 weeks, plants were measured for median growth and removed from the soil. Roots were examined for necrosis and any abnormality, such as stubby growth (root hair suppression), and maximum root lengths recorded. Plants grown in greenhouse compost served as the basis for comparison in all observations and measurements.

3. Secondary Testing

In cases when it was not clear whether plant responses were due to phytotoxic substances or to inherently difficult soils, secondary tests were conducted. Examples of the latter include; 1) soils of high clay content developing a crust and thus inhibiting seed emergence and 2) soils poor in nutrients which would result in poor growth of the plants. To eliminate these problems, secondary testing involved some modifications of the primary test procedure. Problem soil samples were seeded with the same plant species as in primary testing but after the seeds were sown, they were covered with a thin layer of washed sand to prevent crusting of the soil surface. This allowed for a more normal emergence of seedlings. In addition, after the seeds were covered, the trays were watered with a balanced fertilizer (Miracle-Gro) to make up any nutrient deficiencies of the soil.

All trays were subsequently placed in the greenhouses and phytotoxicity assessed in the same manner as in the primary tests.

Confidence in any particular phytotoxic test result increases with the number of evaluation criteria demonstrating an observable phytotoxic change between indicator and control plants. Highest confidence is in those tests where all four indicator plants develop phytotoxic symptoms in both the initial and the modified repeat test. A difference in growth of 20% between indicator test plant and control plant was generally not considered significant unless accompanied by other phytotoxic signs. A difference in growth of 100% was considered very significant.

C. DATA ANALYSIS

Factors affecting the interpretation of plant response data have been outlined in Section II-A and some of them are quantitatively evaluated here. These factors include: 1) control experiments, 2) normalization of test data, 3) blocking effects, 4) secondary tests, and 5) precision. Treatments presented here are basic and appropriate to the reproducibility of the data evaluated. The analyses deal principally with median top growth data. Several more sophisticated statistical analyses have been applied to emergence ratings, mean top growth, and median top growth but these analyses were discarded in favor of simpler tabular and graphical displays. In general, the plant response data show a consistent overall pattern with a level of precision which might be expected of tests with the degree of replication evidenced.

1. Control Experiments

The plant growth tests were conducted in groups of soil samples referred to here as blocks. For each block of tests, two (occasionally one) control tests were performed with seeds sown in greenhouse compost. Median top growth data (Table 1) and maximum root growth data (Table 3) for these controls were examined to obtain an estimate of the reproducibility of test results (Tables 2 and 4) for controls.

Mean top growth data of Table 1 were analyzed by computing the standard deviation (n-1 statistic) of each data pair (triplet for B19) for each species. Standard deviation values for primary and secondary tests were computed for each species as:

$$s = \sqrt{\frac{\sum_{\Sigma} S_{i}}{\sum_{i=1}^{n} S_{i}}}$$

TABLE 1
MEDIAN TOP GROWTH DATA FOR CONTROLS

		Length (cm)				
Block	Sugar Beet	Mustard	Millet	Rye Grass	Start Date	
B1	5.5	5.0	6.0	9.0	2/10	
B2	6.5	5.5	8.5	10.0	2/18	
В3	5.5 5.5	5.0 5.0	8.5 6.0	9.5 9.0	3/24	
B4	5.5 5.2	5.7 5.2	5.1 5.0	10.5	3/31	
B5	6.6 6.1	5.3 5.8	5.5 5.3	12.2 11.5	4/1	
B6	6.2 7.1	7.4 7.1	8.1 8.3	14.8 13.4	5/5	
B7	8.5 8.7	9.1 8.8	8.8 8.6	3.8 12.9	5/13	
B8	9.0 8.9	11.0 7.1	13.0 10.1	14.6 11.5	5/19	
89	11.9	10.1 9.2	14.4 13.9	15.7 15.3	5/26	
B10	8.3 6.3	8.1	11.5	15.0 14.1	7/20	

TABLE 1 - Continued

		Length	(cm)		
Block	Sugar Beet	Mustard	Millet	Rye Grass	Start Date
B11	10.2 9.8	10.1 9.4	11.8 10.4	13.1 12.8	7/22
B12	8.1 7.2	7.9 8.3	12.1 13.1	13.1 13.8	7/28
B13	5.7 6.5	6.2 7.0	8.0 10.0	12.0 10.0	8/26
B14	4.6 3.7	4.6 4.6	6.2 5.1	7.2 8.0	8/27
B15	3.6 3.7	4.0 3.9	5.5 3.5	8.0 6.8	9/1
B16	7.2 4.2	6.9 4.0	6.5 0.0	13.3 8.5	4/13
B17	8.1 7.2	10.2 10.0	9.7 5.8	15.2 13.5	4/21
B18	8.4 9.0	8.0 14.5	13.2 15.0	15.4 7.0	6/8
819	9.8 9.5 8.5	8.7 9.3 8.5	14.2 14.9 15.5	15.2 16.5 17.1	6/18
B20	6.3 6.6	6.9 7.5	8.7 8.4	9.4 11.2	9/20

TABLE 2
STANDARD DEVIATION VALUES FOR MEDIAN TOP GROWTH OF CONTROLS

Tests	Blocks		Standard	Deviation	s
		Sugar Beet	Mustard	Millet	Rye Grass
Primary	B3 - B15	0.56	0.91	1.02	1.99
Secondary	B16 - B20	1.06	2.27	2.62	3.19
Total	B3 - B20	0.73	1.42	1.63	2.38

TABLE 3

MAXIMUM ROOT GROWTH DATA FOR CONTROLS

		Length	(cm)		
Block	Sugar Beet	Mustard	Millet	Rye Grass	Start Date
B1	5.5	6.0	8.0	9.0	2/10
B2	6.6	9.1	8.0	9.8	2/18
В3	5.4 4.4	9.5 6.4	8.3 6.3	5.3 4.8	3/24
B4	4.6 5.9	3.8 5.9	6.3 5.9	6.7 6.4	3/31
B5	5.2 4.9	4.8 5.2	5.8 5.6	5.1 5.3	4/1
B6	4.5 5.0	4.2 4.3	6.5 5.2	5.6 10.1	5/5
B7	3.5 3.5	3.4 5.0	3.6 6.9	5.9 7.0	5/13
B8	5.0 4.3	5.7 5.6	13.7 7.0	7.0 10.3	5/19
B9	4.5 3.5	5.2 6.6	8.9 6.3	9.8 7.1	5/26
B10	9.2 6.0	6.2 4.7	9.1 6.2	9.7 9.3	7/20

TABLE 3 - Continued

		Length (cm)						
Block	Sugar Beet	Mustard	Millet	Rye Grass	Start Date			
B11	6.1 6.3	6.9 9.3	8.5 8.3	10.3 8.8	7/22			
B12	4.2 3.8	7.0 5.9	8.9 8.9	9.7 9.1	7/28			
B13	4.5 3.9	4.3 4.5	6.1 6.3	5.0 6.6	8/26			
B14	3.0 4.0	10.7 4.0	3.3 7.1	5.7 8.3	8/27			
B15	2.8 3.0	5.1 7.5	6.8 7.5	9.9 7.3	9/1			
B16	3.1 3.5	2.9 1.0	4.8 0	6.5 4.1	4/13			
B17	5.7 3.4	6.9 8.9	6.2 3.2	10.4 6.2	4/21			
B18	5.0 3.0	4.1 4.3	3.8 5.5	9.1 10.1	6/8			
B19	3.8 5.4 3.5	7.0 4.9 6.9	6.3 7.8 9.5	10.3 10.4 13.1	6/18			
B20	3.6 3.3	2.1	3.9 8.4	6.7 5.5	9/20			

TABLE 4
STANDARD DEVIATION VALUES FOR MAXIMUM ROOT GROWTH OF CONTROLS

Tests	Block	ks		Standard	Deviation	S
			Sugar Beet	Mustard	Millet	Rye Grass
Primary	В3	- B1	0.82	1.84	1.88	1.51
Secondary	B16	- B2	1.08	1.25	2.46	1.76
Total	В3	- B2	0.90	1.70	2.06	1.59

and listed in Table 2. Standard deviations were higher for secondary than for primary tests.

Approximate estimates of the overall coefficient of variation may be calculated for each species. Mean values, m, of mean top growth for controls in blocks B1 to B20 are 7.2, 7.4, 9.1, and 11.8 for sugar beet, mustard, millet, and rye grass, respectively. Corresponding values for the coefficients of variation are 10, 19, 18, and 20% for sugar beets, mustard, millet, and rye grass, respectively. One should thus not be at all surprised at variations of $\pm 20\%$ for median top growth values or, in other words, differences of $\pm 20\%$ between two tests within the same block should not be considered significant.

The frequency of erratic responses may be judged by noting their occurrence for controls. Since the coefficient of variation, CV, is not normally distributed one cannot estimate the frequency of occurence of erratic events from CV values. For sugar beets block B16 had values of 7.2 and 4.2. For mustard extreme values were for B8, 11.0 and 7.1, and for B18, 8.0 and 14.5. For millet, block B16 had values of 6.5 and 0.0. For rye grass extreme values were for B7, 3.8 and 12.9; for B16, 13.3 and 8.5; and for B18, 15.4 and 7.0. Thus, out of 72 pairs (and triplets) of values, seven were large enough to be termed erratic (30% < CV \le 141%). This could be interpreted to mean that approximately 10% of the test values will be erratic (CV \geq 30%). Of most importance are two of the values; millet, block B16, with values of 6.5 and 0.0 and rye grass, block B7, with values of 3.8 and 12.9. The implication in these two cases is that one value for each is sufficiently normal to indicate the absence of a phytotoxin whereas the other is low enough to indicate the presence of a phytotoxin. Thus, based on data for controls, we may estimate that the approximate rate at which a false indication of phytotoxin presence might occur is one to two percent. Strictly speaking, estimates concerning reproducibility should come from replication of RMA sample test results. Since this is not possible we must rely on control test data.

Maximum root growth data for control species was analyzed to see if results were similar to those obtained for median top growth. Table 4 shows standard deviations of 0.90, 1.70, 2.06, and 1.59 for sugar beets, mustard, millet, and rye grass, respectively. Median values, m, of maximum root growth for blocks B1 to B20 were 4.52, 5.65, 6.63, and 7.88 for sugar beet, mustard, millet, and rye grass, respectively. From these, the following estimates for coefficients of variation are obtained: 20, 30, 31, and 20% for sugar beet, mustard, millet, and rye grass, respectively. Examination of Table 3 indicates that the frequency of erratic data for maximum root growth of controls

is similar to that observed for median top growth. In the interest of conserving available resources, and expecting similar conclusions from root growth data, further examination of root growth data was deemed unjustified at this time.

2. Normalization of Test Data

The procedure employed (in the original report) for normalization of test data consisted of dividing measured test values by corresponding mean values for controls. A slightly different procedure (described below) was utilized in the present report in an effort to reduce the effects of erratic values observed for some control runs. In both cases the purpose of the normalization procedure was to eliminate effects of light, temperature, and other temporally common factors by comparing growth of each test plant to that of control plants of the same species planted at the same time and place.

To obtain estimates of the magnitude of seasonal variations in the growth of controls, the median top growth values for controls were separately plotted for each species versus time as the Reasonably smooth curves could not be drawn through the resulting points. To achieve some degree of averaging of the data, the data were pooled. For each control run the median top growth values were summed (Table 5). These data were then plotted versus calendar month and arbitrary curve was drawn through the plotted points (Figure 2). This provides a good visual display of within-block, between-tray reproducibility and a measure of growing conditions in the greenhouse. Block 16 shows unusually poor reproducibility. Blocks 13 and 14 show unusually poor growth responses. Since the reproducibility was good for these two blocks it was assumed that growth conditions were poor for these particular blocks as a group and not just for the controls. Totals by species were computed from Table 1. These were divided by the grand total for Table 1 to obtain the percentage of composite growth response due to each species. These values are 20.3, 20.7, 25.7, and 33.3% for sugar beets, mustard, millet, and rye grass, respectively. To obtain the normalization value for each species and test block the species-percentage values were multiplied by the smoothed-composite-values of Figure 2. Normalization values for each species are listed in Table 5.

3. Blocking Effects

Blocking effects can bias test results if non-random designs are employed. For any block of tests there are environmental factors which can affect that block differently from other blocks. To some extent blocking effects are compensated by normalization procedures such as those described above. The degree of compensation approaches 100% only if the cultural conditions are uniform within the block and the controls respond in the same way as the test plants to those factors for which compensation is attempted.

TABLE 5

COMPOSITE MEDIAN TOP GROWTH VALUES FOR CONTROLS

Start Date	Primary Tests	Secondary Tests	Growth Values	Smoothed Value from Figure 1	Sugar Beet	Mustard	Millet	F G. SS
2/10	81		25.5	27	5.5	5.6	6.9	9.0
2/18	82		30.5	28	5.7	5.8	7.2	9.3
3/24	83		25.5 - 25.5	28	5.7	5.8	7.2	9.3
3/31	84		26.8 - 25.7	28	5.7	5.8	7.2	9.3
4/01	85		29.6 - 28.7	28	5.7	5.8	7.2	9.3
4/13		B16	33.9 - 16.7	30	6.1	6.2	7.7	10.0
4/21		B17	43.2 - 36.5	32	6.5	6.6	8.2	10.7
5/05	86		36.5 - 35.9	37	7.5	7.7	9.5	12.3
5/13	87		30.2 - 39.0	39	7.9	8.1	10.0	13.0
5/19	88		47.6 - 37.6	41*	8.3	8.5	10.5	13.7
5/26	89		52.1 - 49.6	44*	8.9	9.1	11.3	14.7
6/08		818	45.0 - 45.5	47*	9.5	9.7	12.1	15.7
6/18		819 47.	9 - 50.2 - 49	0.6 49	9.9	10.1	12.6	16.3
7/20	B10		42.9 - 37.9	44	8.9	9.1	11.3	14.7
7/22	811		45.2 - 42.4	43	8.7	8.9	11.1	14.3
7/28	812		41.2 - 42.4	42	8.5	8.7	10.8	14.0
8/26	813		31.9 - 33.5	32	6.5	6.6	8.2	10.7
8/27	814		22.6 - 21.4	23	4.7	4.8	5.9	7.7
9/01	815		21.1 - 17.9	20	4.1	4.1	5.1	6.7
9/20		B20	31.3 - 33.7	32	6.5	6.6	8.2	10.7

^{*} In the original construction of Figure 2, a plotting error was made which resulted in smoothed values of 41, 44, and 47 for blocks 88, 89, and 818, respectively. More appropriate would have been 42, 46, and 49. Since the differences are less than 10% recalculation of normalized values and statistical treatments involving the blocks was judged to be unwarranted.

Compensation for blocking effects is less successful when there is lack of uniformity of cultural conditions within a block. The within-block between-tray differences can be readily evaluated by referring to Figure 2 and Table 5. Most tests show good reproducibility for controls. However, at least four blocks (B16, B17, B7 and B8) show significant spread in these composite median top growth values.

Interspecies effects are well demonstrated by reference to Table 1. For block B16 growth responses for sugar beet, mustard, and rye grass in the second control are roughly 60% of the responses in the first control. Millet response is zero in the second control and near normal in the first control. Could this have ben caused by a disease specific to millet, bad seed, or cultural conditions? A similar case is the response of rye grass in the controls for block B18.

It is thus possible to demonstrate two types of biasing effects using data from replicate control tests. Other effects are probable but not demonstrable with available data. The most important of these possible biasing effects is the possibility of fungal disease in only a portion of the test block. The result of such a biasing effect is that some test trays may show poor growth responses not because phytotoxins were originally present in the soil but because of a nonuniform pathogenic infection or nonuniform cultural conditions. This might be particularly true when test soils might, for instance, have markedly different water retention characteristics than the control soils composed of greenhouse compost. What might constitute serious over- or under-watering for test samples might cause no bad effect on better soils like greenhouse compost. The practical consequence is that if biasing occurs for samples from a given section at RMA which are included in the same block it will not be possible to distinguish this biasing or blocking effect from a phytotoxic effect. If, on the other hand, core samples from each section are randomly distributed between blocks, any blocking effects would be randomly distributed throughout many sections and would not bias results for a major part of any given In fact, the blocking effect would stand out as an anomaly not likely to be due to the presence of a phytotoxin.

4. Secondary Tests

Secondary tests were instituted to compensate for two possible poor soil factors (crusting and nutrient deficiency) which could be confused with phytotoxin effects. The modifications consisted of a sand covering and use of fertilizer. There seem to be no conditions under which one would expect a secondary test to produce plant growth responses less than responses in the corresponding primary test. Comparison of primary and secondary test results provides a good opportunity to estimate the frequency of occurence of erratic responses due to factors other than the presence of phytotoxins.

Criteria for judging the significance of secondary tests are: (1) if a secondary response is superior to a primary response, this could be due to correction of crusting conditions, correction of nutrient deficiencies or random effects; (2) if a secondary response is inferior to a primary response, this could be due only to a random effect; and (3) if both the secondary and primary tests produce a very poor response it is likely that a phytotoxin is present.

5. Comparison of Primary and Secondary Tests

The first step in the comparison of primary and secondary tests is to quantitatively describe average effects and ranges for the effects. A two-way analysis of variance (24) for all samples tested in secondary tests is given in Table 6. Normalized responses are used. In primary tests the average responses (Primary Means) were approximately 40 to 60% of the respective values for controls. In secondary tests the average responses were significantly higher. The average improvement in secondary tests was in the range of 21 to 44 units. On the average it seems that poor results in primary tests were due in major part to nutrient deficiencies or crusting which was alleviated in the secondary tests.

Confidence limits on mean difference values (Table 6) provide a good indication of the scatter in the effects of the secondary tests. For example, for sugar beets the 95% confidence limits on values of the difference between secondary and primary test reponses are -62 to 144 units. Thus, for any single pair of tests the addition of fertilizer and sand could result in a decrease in apparent plant vigor or an increase. The corresponding 95% confidence limits on the mean difference are 28 and 50 units. Thus, on the average, fertilizer and sand are beneficial to plant growth. A significant number of samples seem to have nutrient deficiencies or are prone to crusting. However, the wide confidence interval for the effects of secondary tests indicates that within the test samples there are some uncontrolled factors causing large random effects some of which could (in cases where secondary tests were not performed) cause effects similar to those of phytotoxins.

Individual values of secondary test responses relative to primary test responses can be analyzed to assess the range of apparent effects caused by the use of fertilizer and sand. In Table 7, test effects are listed individually for all secondary test data on sugar beet in the order of tests as given in Tables B16-B20 of Appendix B. The first column indicates the difference between primary and secondary tests whereas the second column indicates the mean effect for both tests. Normalized primary and secondary responses can be back-calculated from these data. Thus, the first difference value, 62, and mean, 76, corresponds to (from Appendix B, Table B16) sample number 36-1880-4080-2, with a secondary response of 6.5 length = 107% of the control normalization value. The primary response (from Appendix B, Table B1) was 2.5 cm length = 45% of the control normalization value. The difference value is 107-45 = 62. The mean value is 107 + 45 of the

TABLE 6

COMPARISON OF PRIMARY AND SECONDARY TESTS OF MEAN TOP GROWTH (MTG)
- A TWO-WAY ANALYSIS OF VARIANCE

Statistic	Sugar Beet	Mustard	Millet	Rye Grass
Primary Mean	48.8	42.9	45.4	56.7
Secondary Mean	6.68	6.78	66.4	91.8
Mean Difference	41.1	44.3	21.0	35.1
F, treatment F, replications	63.6**	246.6** 2.51**	176.1** 0.4	261.1**
Standard Deviation of MTG values***	36.4	20.1	24.3	19.0
Standard Deviation of Differences	51.5	28.4	34.4	56.9
Standard Deviation of the Mean Difference 6.8	nce 6.8	3.8	4.5	3.5
95% conf. lim. on difference	-62 to 144	-13 to 101 -48 to 90	-48 to 90	-19 to 89
95% conf. lim. on mean difference	28 to 50	37 to 52	12 to 30	28 to 42

* Significant at the 95% confidence level.
** Significant at the 99% confidence level.
*** Computed from residual mean square.

The data of Table 7 are plotted in Figure 3. The significance of the secondary test effects can be deduced by considering the effects expected of phytotoxins, poor soil, and uncontrolled random variation. For tests with phytotoxins present, mean response values should be low, e.g., less than 25, and difference values should be near zero because fertilizer and sand should not be expected to effectively counteract a phytotoxin unless it is present at low, ineffective concentrations. There are four data points (out of a total of 58 secondary tests) which satisfy both criteria.

For tests with poor soils one would expect a significant difference value; e.g., 25 or greater, independent of the mean response. Forty-three data points meet this criterion.

For tests with significant uncontrolled random variation, data points could be anywhere on Figure 3. One could arbitrarily define the detectable uncontrolled random variation region to be that shown in Figure 3. This corresponds essentially to the region with difference values less than 25 (insignificant effect of sand and fertilizer) and mean responses above 25 (mild or no depression of growth response). There are 12 data points in this region. Only two could be called truly erratic. These two data points indicate that under some conditions and in some not well understood fashion, the addition of fertilizer and sand can be apparently toxic to plants. The other ten point could easily represent moderately poor to normal soils for which addition of sand and fertilizer do not improve growth responses.

It seems reasonable to conclude that test replication in the form of secondary tests is very helpful in differentiating between the effects of phytotoxins and poor soils. A reliable criterion seems to be that any sample with a mean response (mean of primary and secondary responses) of less than 25 and absolute difference values less than 25 may be considered to contain a phytotoxic substance. There is, of course, still the possibility that physical characteristics of the soil may be responsible for such a response but a qualified botanist would surely note this when examining the soil.

One may also conclude that the majority of samples subjected to secondary tests did not contain phytotoxic substances at toxic concentrations. Thus, soil at RMA (from those areas tested) is not especially fertile and in some areas phytotoxins are present.

6. Precision

The precision with which the bioassay tests (25) can detect phytotoxins is dependent on the type of tests performed (primary and/or secondary), the severity of the growth retardation, the uniqueness of abnormalities noted, test design factors such as compounding with blocking effects, and the patterns of response of plants for nearby core samples. Estimates of the precision attainable through the use of various criteria are presented in Table 8.

FIGURE 3
SECONDARY TEST EFFECTS FOR SUGAR BEETS

TABLE 7

SUMMARY OF SECONDARY TEST EFFECTS ON NORMALIZED MEAN TOP GROWTH VALUES FOR SUGAR BEETS

Difference (Secondary Response inus Primary Response)	Mean Response	Difference (Secondary Response minus Primary Response	Mean Response
62	76	9	14
28	64	20	15
57	74	7	65
-82	41	-4	38
32	89	22	11
103	79	0	0
54	91	33	64
63	77	3	84
59	94	27	85
75	74	46	63
36	100	16	32
23	112	43	45
74	123	45	23
54	91	46	72
63	77	52	60
50	98	62	69
139	134	42	64
92	128	39	58
60	75	71	56
59	91	49	59
42	100	20	67
52	105	-3 8	19
59	91	49	62
62	66	40	71
15	78	36	60
32	69	1	75
39	73	42	74
85	61	-14	67
88	105		
14	77		

^{*} Original secondary test data were taken, in order, from Tables B16-B20 of Appendix B. Corresponding primary test data are taken from Tables B1-B15. Data normalized, by block, as described in the present report. These data are plotted in Figure 3.

TABLE 8

PRECISION OF PHYTOTOXICITY TESTS

Š.	Criterion	Effects Producing Response or comment	Precision for Detecting Phytotoxins
1:	Primary test growth responses	Phytotoxins, nutrient deficiencies, crusting, blocking effects, random variation	Jow
5	Primary and Secondary test growth responses	Phytotoxins, blocking effects, random variation	high
3.	Severe growth retardation	(Reduces the chance that retardation is simple random fluctuation)	1
4	Unique abnormality	(Can in certain circumstances aid in differentiating pathogenic effects from the effects of phytotoxins	1
5.	Randomized design	(eliminates blocking effects)	1
9	Data for contiguous cores	(Confirmatory evidence for widespread distribution of phytotoxins or poor soil)	moderate
7.	7. 2,3, and 5 above	Phytotoxins, (random variation is a minor factor)	excellent

Definitive evidence for the existence of a phytotoxic substance in any sample requires a primary test, a secondary test, and severe growth retardation. For cases of significant but not severe growth retardation for several contiguous samples one could state that a phytotoxin (at marginally toxic concentrations) is present but only if the sample tests were performed in several test blocks in a random fashion. The occurrence of unique abnormalities characteristic of phytotoxin damage could be a criterion of high precision but will be unconvincing unless supporting references documenting the uniqueness of the abnormalities is provided. For the present series of tests growth retardations of less than 50% are not reliable indicators of phytotoxins. The effects of poor soil and random variations are of that order of magnitude.

III RESULTS AND DISCUSSION

Growth retardation an abnormalities were observed on plants grown on soil samples collected from several sections of Rocky Mountain Arsenal. Utilizing criteria similar to those of Table 8 it has been possible to definitively determine the occurrence of phytotoxins in soil samples from sections 26 and 36. Phytotoxic effects were absent or not definitively determined for soil samples from any other sections.

A cross reference guide of Boyce Thompson Institute sample number versus core location and depth segment has been prepared (Table 9). For samples showing good growth* a G (primary test) or g (secondary test) has been placed next to the sample number. For samples showing poor growth** a P (primary test) or p (secondary test) has been placed next to the sample number. Reference to Table 9 indicates several things: good growth occurs at all depths but more frequently near the surface; poor growth occurs infrequently in or is absent in samples from sections 5, 6, 8, 9, 23, 24 and 35; and poor growth occurs frequently in samples from sections 26 and 36.

A. AREAS WITH CONFIRMED PHYTOTOXIC CONDITIONS

There is little doubt that $\underline{section\ 36}$ is contaminated with apparent phytotoxins. Data from Table $\underline{9}$ show poor growth in 21 primary tests and in 10 secondary tests. This poor growth occurs in samples from contiguous core segments. Areas of poor growth indicated in Table 9 correspond with areas of known gross contamination; i.e., the lime pits and Basin A regions (5). An extensive discussion of growth retardation and abnormalities observed in test plants grow on soil samples from section 36 is included in the Boyce Thompson report (25). Evidence for the presence is overwhelming. There is no need to argue, on a sample-by-sample basis, which results are due to phytotoxins, poor soil, and or blocking effects. Section 36 is contaminated with potent phytotoxins in well defined areas.

Data of Table 9 indicate poor growth for section 36 for core samples in 7 primary tests and 2 secondary tests. This poor growth is limited to samples adjacent to or downgradient from (northeast of) Basin F. These areas and core 26-3934-4922 are known to be contaminated (5). It is curious that bioassays were not performed on samples from core 26-3934-4922. Growth responses and abnormalities are discussed briefly in the Boyce Thompson report (25). It is clear that phytotoxins occur in soil samples from around the periphery of Basin F and downgradient therefrom.

^{*} Two or more species with greater than 80% of the control growth response. ** One or more species with less than 20% of the control growth response.

TABLE 9

CROSS REFERENCE GUIDE OF THE BOYCE THOMPSON SAMPLE NUMBER VERSUS CORE LOCATION AND DEPTH SEGMENT*

Coo	Coordinates	S			Ō	Depth Segments	gments					1
Section	E-W	N-S	1	2	3	4	5	9	7	8	6	10
5	1440	3200	485-6	536								
	1880	3640	488	489								
9	5400	3640	575	465								
	5400	4960	5796	27.5								
	5840	4520	461-6	463								
8	2403	2999	175	348	502	213	305					
	2432	1471	193-6	368	342	500						
	3142	1995	217-6	215	346	247	325					
	5101	5178	207-6	185	338							
	5579	2690	340-6	183-6	211	245						
6	1164	3572	149-6	433-6	139-6	133-6	135					
	1371	4731	431	394	131	127	376					
	2467	5762	392-6	390	372	374	354					
	4201	1299	400-GP 396	396	235	237	423					

TABLE 9 (Continued)

000	Coordinates	Si]	Depth Segments	gments					
Section	E-W	N-S	1	2	3	4	5	9	7	8	6	10
6	4275	4774	356-6	403-6	401	398	419					
22	3200	2320	181-6	179	352	350	177					
	4960	1440	421-6	415	413	195	366					
	4960	3200	429	360	364	233	334-P					
23	1440	5840	545-6	547	669	535	533					
	2320	4080	406-6	66	145	102						
	2320	5840	549	441	517	439	437					
	3200	1440	435-6	151	386-6	388	412					
	3200	5840	519	537	629	499						
	4080	1440		9-699	9-599	523-6 524-6		9-799	633			
	4080	3200	1006	105	384	87	405					
	4080	4960	976	107	1476	104	358					
	4080	5840	642	497 Twice								
	4960	1440	522-6	543-6	263	909	566 366	503				
	4960	2320					677					
	4960	5840	501-6	602-6	641							
	5840	1440	583-6	507-6	561	585	5 67	559	521			

TABLE 9 (Continued)

Cool	Coordinates	S				Depth Segments	gments					
Section	E-W	N-S	1	2	3	4	2	9	7	8	6	10
23	5840	2320					773?-g					
	5840	3200				759	757					
	5840	4960	643 643	129 645	98	101						
	5840	5840	671-6	675	515							
24	1440	3200				6-689	693 691	724				
	1440	4080				969						
	1440	4960	661	603-6	601	292						
	1440	5840	285	479	481							
	2320	3200	425	203-6	2	239-P*						
	2320	4080				729	725-Pg					
	2320	4960	9-699	475	473	477						
	2320	5840	287	291								
	3200	1440	252	187	529	362	191					
	3200	4960	254-6	197-6								
	3200	5840	289-6	313								
	4080	3200	2256	227	370							
	4080	5840	295-6	293								

^{*} Secondary tests indicate absence of phototoxicity.

TABLE 9 (Continued)

Cool	Coordinates	S			Ŏ	Depth Segments	gments					1
Section	E-W	N-S	1	2	3	4	5	9	7	8	6	10
24	4960	4960	539-6	541								1
	4960	5840	427-6	199	231	223	201					
	5840	4960										
56	1880	1880	81-6	110	162	157	143					
	1880	5840	270-6 411-6	380	173		167					
	2320	3640	407-6 408 409-6	382	271	140-6						
	2760	3200	765	749	751	743	745	747	763-g	762	761-g	
	3200	3200	777-P* 718-P		682-P	727-P	775	719	669	717		
	3200	5840	591-6	9-209	6-509	589	287	527	528	531		
	3640	3200	739-p	735	737-g	715	741	713	703	731-g	716	
	3640	5840	639-GP	526-6	581	758-g	257	609	593	651		
	3934	4922										
	4080	3200	191	69/ *d-6/9	69/	704	771	21.9	701	202		
	4080	5400	451	9-699	445	443	571	471	469	467		
	4520	5400						755		733	753	
	4960	4960	996	160-6	171	1696	115-6					721
	4960	5400						723	681	6-769	722	
			satisfact absonce of about attacity.	or of	phytoto	vicity.						

TABLE 9 (Continued)

(000)	Coordinates	Si			0	Depth Segments	gments					
Section	E-W	N-S	1	2	3	4	5	9	7	8	6	10
26	5400	1880	114-6	117	92	119						
	5840	4520	551-6	553-6	255	464	491	495	617			
35	2760	4080	73	161-6	56-P	8	93					
	2760	5400	155-6	163	126	168-6	165					
	4960	2320	121	141	153							
	4960	4520	55	20	51	61-P	49					
	5400	3640	272-6	121	43							
36	1030	1440	17-g	378								
	1030	4080	25-g									
	1030	4520	28-g	62-6								
	1030	5840	9/	69								
	1440	1030	513-g	653	511	647						
	1440	1440	629	635	611							
	1440	1880	649-6	615	637							
	1440	2320	631-6	9-559								
	1440	2760	265	265	259							
	1440	3200	30-9	6/								
	1440	3640	9-Pg	9-Pg 7-g								

TABLE 9 (Continued)

(00)	Coordinates	S			Õ	Depth Segments	gments					
Section	E-W	N-S	1	2	3	4	5	9	7	8	6	10
36	1440	4080	5-g	11-9								
	1440	4960		22-g								
	1440	5400	13-6g 14-g	14-g								
	1880	1030	455	453	573	449						
	1880	1440	278-P	272-P								
	1880	1880	459-g	483	457-6	447						
	1880	2320	39-9	41-9								
	1880	2760	627-P	613								
	1880	3200	588	327								
	1880	3640	9-79	63-P								
	1880	4080	2-g	1-g								
	2320	1030	273	111								
	2320	1440	59-Pp	46-Pp								
	2320	1880	331-Pp	260-Pp	331-Pp 260-Pp 311-P	258-P						
	2320	2320		33-g								
	2320	3200	31-Pp									
	2320	3640	37-Pg	d-89								
	2320	4520		3-9								

TABLE 9 (Continued)

Coo	Coordinates	Si				Depth Segments	gments					
Section	E-W	N-S	-	2	6	4	2	9	1	8	6	10
36	2320	4960	276	329	309							
	2320	5840	21-9									
	2760	1030	619	621	609							
	2760	1440	317-Pp 303-p	303-p	315	301						
	2760	1880	113-P 74	74								
	2760	2320	32-gp	32-gp 35-g								
	2760	5400	15-g	16-g								
	2760	5840	19-g	20-g								
	3200	1030	625-6	623-6	683	707-Pg						
	3200	1440	d-789	685	709	711-g						
	3200	4960	23-6p 24-9	24-9								
	3200	5400	17-9 18-9	18-g								
	4080	4960	251-6	280	307	282	493					
	4520	2760	292	319	274	297						
	4960	4080	323-6	219	346	221						
	5400	4960	249	336	268	321	566					
	5840	2760	243-6	241	264	283						

TABLE 9 (Continued) Errors Noted in Original Report Together with Assumed Corrections, if Any

ပ္သ	Coordinates	tes				Depth	Depth Segments	ts				
Section E-W	E-W	N-S	1	2	3	4	5	9	7	Assumed	Correct	7 Assumed Correct Coordinates
25	4960	2320	121-6							35	4960	4960 2320
36	1030	1880		75						٠.		
36	5400	1880		117						56	5400	1880
23	3200	2320		179						22	3200	2320
36	4080	5400	451							56	4080	5400
24	1440	1440			205					٠.		
54	4520	5400						969				

B. AREAS WITH NO CONFIRMED PHYTOTOXINS

No signs of phytotoxicity were observed in tests of soil samples from sections 5, 6 and 8.

Poor growth (Table 9) was observed in primary tests for one sample from section 9. A secondary test was not performed for this sample. On the basis of Table 8 criteria one must conclude that this could well be a case of poor soil. There is, in fact, no compelling reason to believe that phytotoxins were present. Since no other samples from this section showed severe growth retardation one would be inclined to discount the probability of the occurenc of phytotoxins in section 9 samples. If a definitive determination is required, a secondary test must be performed.

Growth responses for <u>section 22</u> samples were analagous to those for section 9. Similarly, there is no compelling evidence to indicate the presence of a phytotoxic substance and if a definitive determination is required, a secondary test must be performed.

No signs of phytotoxicity were observed in samples from section 23.

Two samples from section 24 showed poor growth responses in primary tests (Table 9). However, secondary tests of these samples (Table 9) indicate that these respones were due to poor soils.

Two samples from section 35 showed poor growth in primary tests (Table 9). Both of the samples were tested in block B3. "... Obvious stunting of rye grass and millet resembled effects produced by herbicides effective against grasses "(25). In the absence of secondary tests; with possible blocking effects; without similar results from adjacent cores; and without a detailed description of or reference to herbicide-like symptoms, one is forced to question the occurrence of phytotoxins in soil samples from section 35. Phytotoxins may well be present but their presence has not been conclusively demonstrated.

Conclusions regarding the presence or absence of phytotoxins are presented in Table $10. \,$

TABLE 10 SUMMARY OF OBSERVED PHYTOTOXIN DISTRIBUTIONS AT RMA

5 no no 8 no no 9 yes poor soil? no 22 yes poor soil? no 23 no no 24 yes phytotoxins yes 36 scattered yes phytotoxins no 35 scattered yes phytotoxins no 36 lime pits and basin A yes phytotoxins yes	Section	Area	Growth Retardation		Probable Cause	Presence of Phytotoxins Conclusively Demonstrated?
no no yes poor soil ? yes poor soil ? no no yes poor soil ? yes poor soil ? yes poor soil ? scattered yes poor soil or phytotoxins scattered yes poor soil or phytotoxins phytotoxins	5	1	ŭ	0	1	no
no yes poor soil ? yes poor soil ? no no yes poor soil ? yes poor soil ? yes poor soil ? stered yes poor soil or phytotoxins lime pits and basin A yes phytotoxins	9	1	ŭ	0	1	no
yes poor soil ? no no yes poor soil ? yes poor soil ? yes poor soil ? yes phytotoxins scattered yes poor soil or phytotoxins lime pits and basin A yes phytotoxins	8	1	ŭ	0	1	01
no yes poor soil ? no ses poor soil ? yes poor soil ? scattered yes poor soil or phytotoxins lime pits and basin A yes phytotoxins	6	1	ž	sa	poor soil?	Ou
no basin F region yes poor soil? scattered yes poor soil or phytotoxins lime pits and basin A yes phytotoxins	22	1	×	se	poor soil ?	no
basin F region yes phytotoxins scattered yes poor soil or phytotoxins lime pits and basin A yes phytotoxins	23	1		00	;	no
basin F region yes phytotoxins scattered yes poor soil or phytotoxins lime pits and basin A yes phytotoxins	24	1	ž	sa	poor soil?	no
scattered yes poor soil or phytotoxins lime pits and basin A yes phytotoxins	56	basin F region	ž	Se	phytotoxins	yes
lime pits and basin A yes phytotoxins	35	scattered	×		soil or phytotoxins	01
		ime pits and bas		sa	phytotoxins	yes

IV SUMMARY AND RECOMMENDATIONS

Phytotoxicity tests of soil samples from RMA show that, generally, phytotoxins appear to be absent (or below toxic concentrations), except in section 26 near Basin F and in section 36 near the lime pits and Basin A (See Table 10). Growth retardation in primary tests of soils from other sections appears to be related to poor soil.

The OTSG coring program involved a very low density of cores in most sections of the arsenal. It was thus an initial effort to delineate the extent of contamination in known areas and to obtain background levels of pollutant in the areas of the arsenal thought to be unpolluted. It thus seems likely that the lack of completely definitive chemical analyses and bioassays for a few core samples does not detract from the general conclusions which have otherwise been obtained. For these reasons one may consider the Boyce Thompson phytotoxicity investigations to be complete. Further phytotoxicity testing of the OTSG samples is not warranted.

In a more intensive coring and analysis program such as the one now being conducted at RMA it may be advisable to consider refinements in the phytotoxicity test procedure. If phytotoxicity tests are performed, it would be beneficial to utilize a randomized block design and to consider an improved growth test in which physical factors affecting growth are minimized. It might, for instance, be beneficial to mix sand or other soil amendments with the test soil prior to testing. Use of fertilizer was an important improvement over the primary test procedure. It is important that tests be conducted by qualified investigators (such as Boyce Thompson personnel) who can diagnose and describe pathological signs in plants.

V. REFERENCES

- Anonymous. Proposed sampling program for Rocky Mountain Arsenal. Memorandum for record. Dept. of Army, USAMRDC. Ref. SGRD - EDE: September 4. 1975.
- 2. Ashton, F.M. and A.S. Crafts. Mode of Action of Herbicides. John Wiley and Sons, New York, NY: 1973. 480 pages.
- 3. Chapman, H.D. <u>Diagnostic criteria for plants and soils.</u> University of California, <u>Division of Agricultural Sciences.</u> Riverside, CA:1973. 793 pages.
- 4. Chikishev, A.G., ed. <u>Plant indicators of soils, rocks and subsurface waters</u>. Consultants Bureau Enterprises, Inc. New York, NY: 1965.
- 5. Cogley, D.R., "Report on OTSG Coring Data for Compounds at Rocky Mountain Arsenal," Submitted to U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, Frederick, MD, Contract No. DAMD17-75-C-5059, Dated: November 23, 1976. 103 pages plus maps and computer printouts.
- 6. Cogley, D.R., D.C. Grant, and P.R. Hoover, "Report of Readily Available Data on 109 Compounds Associated with Shell Chemical Company Operations at Rocky Mountain Arsenal," Submitted to U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, Frederick, MD, Contract No. DAMD17-75-C-5059, Dated: December 1, 1975. 368 pages.
- 7. Cogley, D.R., D.C. Grant, and B.A. Weschler, "Water Transport Hazard Potential Estimates for 169 Compounds Associated with Operations at Rocky Mountain and Pine Bluff Arsenals," Submitted to U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, Frederick, MD, Contract No. DAMA17-75-C-5059, Dated: December 3, 1976. 14 pages.
- 8. Dinauer, R.C. Managing Editor. <u>Micronutrients in Agriculture</u>. Soil Science Society of America, Inc. Madison, WI: 1976. 666 pages.
- 9. Grant, D.C. and D.R. Cogley, "Report on Readily Available Data on 60 Compounds Associated with Operations at Rocky Mountain and Pine Bluff Arsenals," Submitted to U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, Frederick, MD, Contract No. DAMD17-75-C-5059, Dated: June 14, 1976. 111 pages.
- 10. English, J.E. and D.N. Maynard. "A Key to Nutrient Disorders of Vegetable Plants". Hort Science 13: 28-29: 1978.

- 11. Epstein, E. Mineral Nutrition of Plants: Principles and Perspectives.

 412 pages.

 Mineral Nutrition of Plants: Principles and Perspectives.

 John Wiley & Sons, Inc. New York, NY: 1972.
- 12. Hambidge, G.H., editor. <u>Hunger Signs in Crops</u>. American Society of Agronomy and The National Fertilizer Association. Washington, D C: 1941. 327 pages.
- 13. Jacobson, J.S. and A.C. Hill. <u>Recognition of Air Pollution</u>
 <u>Injury to Vegetation: A Pictorial Atlas.</u> Air Pollutin
 <u>Control Association.</u> Pittsburgh, PA: 1970.
- Janick, J., R.W. Schery, F.W. Woods, and V.W. Ruttan. Plant Science An Introduction to World Crops. W.H. Freeman & Company: 1969. 629 pages.
- 15. Klingman, G.L. and F.M. Ashton. <u>Weed Science: Principles and Practices</u>. John Wiley & Sons, Inc. New York, NY: 1975.

 431 pages.
- 16. LeCasse, N.L. and M. Treshow, ed. <u>Diagnosing Vegetation</u>
 <u>Injury Caused by Air Pollution</u>. <u>Environmental Protection</u>
 <u>Agency, Research Triangle Park</u>, N.C: 1976.
- 17. McNew, G.L. and D.L. Sirois. Personal Communication. Boyce Thompson Institute. Yonkers, NY: January 16, 1978.
- 18. Miller, T.A., D.H. Rosenblatt, J.C. Dacre, D.R. Cogley, and J.L. Welch (eds), "Problem Definition Studies on Potential Environmental Pollutants: III. Toxicology and Ecological Hazards of Benzene; Toluene; Xylene; and p-Chlorophenyl Methyl Sulfide, Sulfoxide, and Sulfone at Rocky Mountain Arsenal," TR 7604, U.S. Army Medical Bioengineering Research Development Laboratory, Fort Detrick, Frederick, MD: June, 1976.
- 19. Miller, T.A., D.H. Rosenblatt, J.C. Dacre, J.L. Welch, and D.R. Cogley (eds), "Problem Definition Studies on Potential Environmental Pollutants: IV. Physical, Chemical, Toxicological, and Biological Properties of Benzene; Toluene; Xylene; and p-Chlorophenyl Methyl Sulfide, Sulfoxide, and Sulfone," TR 7605, U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, Frederick, MD: June, 1976.
- 20. Rosenblatt, D.H., T.A. Miller, J.C. Dacre, I. Muul, and D. R. Cogley (eds), "Problem Definition Studies on Potential Environmental Pollutants: I. Toxicology and Ecological Hazards on 16 Substances at Rocky Mountain Arsenal," TR 7508, U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, Frederick, MD: December, 1975.

- 21. Rosenblatt, D.H., T.A. Miller, J.C. Darce, I. Muul, and D. R. Cogley (eds), "Problem Definition Studies on Potential Environmental Pollutants: II. Physical, Chemical, Toxicological, and Biological Properties of 16 Substances," TR 7509, U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, Frederick, MD: December, 1975.
- 22. Rubenstein, R., E. Cuirle, H. Cole, C. Ercegovich, L. Wienstein, and J. Smith. "Test Methods for Accessing the Effects of Chemicals on Plants". EPA Report 560/5-75-008, Office of Toxic Substances, U.S. EPA, Washington, DC: 1975.
- 23. Russell, E.W. <u>Soil Conditions and Plant Growth</u>. Longman, NY:1973. 849 pages.
- 24. Snedecor, G.W., and W.G. Cochran. <u>Statistical Methods</u>, 6th Edition, Iowa State University Press: 1976.
- 25. Torgeson, D.C. and D.L. Sirois, "Survey of the Rocky Mountain Arsenal for Phytotoxic Substances", Boyce Thompson Institute report on U.S. Army Contract No.. DAMD-76-C-6039: October 15, 1976.

APPENDIX A (25)

PHYTOTOXICITY DATA

Data in Appendix A are the emergence ratings, growth ratings, and other notes on growth and development of the indicator plants growing in soils from RMA. Data are visual indications of indicator plant development on a relative scale of 1 to 10 as compared with control plants growing in greenhouse compost and include height, color, and fullness of leaves. Observations were recorded weekly for three weeks following planting.

In some instances, the soil's physical conditions or plant diseases prevented normal indicator plant growth and development. Where these conditions were observed, identifying notes so indicate.

Useful symptoms for identifying phytotoxicity include stunting of top growth; chlorosis of leaves; necrosis of leaves, stems, and roots; and failure of seeds to germinate and grow. Less useful symptoms are yellowing and purple coloration of leaves and stems, as these may represent nutrient deficiencies. Differences of 20% in growth or emergence are probably not significant. Differences of 100% in growth or emergence are probably very significant.

Differences in response among indicator plants grown in the same test soil may reflect a difference in plant susceptibility to a particular phytotoxin. Certain plants may not be sensitive to specific contaminants or may require higher concentrations of contaminants before phytotoxicity symptoms develop.

APPENDIX A

PHYTOTOXICITY

Results of primary test number 1 indicating phytotoxicity observed on test plants planted 2/10/76 and grown for 3 weeks in soil samples collected at Table A-1.

	~	Notes	A	A	Ą		Ø	4
cred at		Rye- grass	000	000	0 N Z	901	0106	001
se corrected	ratingD	Millet	0 & &	000	онм	0108	0106	000
samples	Growth 1	Mus-	O# IN	000	046	0106	10	000
llos ul	0	Sugar	0410	000	000	000	999	000
3 weeks Arsenal.		Rye- grass	0	0010	0 H &	0000	1000	004
	Emergence ratinga	Millet	000	000	0 니크	900	999	000
10/76 and grown for the Rocky Mountain	nergence	Mus- tard	ဝဖထ	000	000	0101	1000	000
the	꼍	Sugar	000	000	000	900	000	чшо
	:	No.	40m	нап	нию	нап	чак	48 E
plants planted selected sites		Site designation	36-1880-4080-2	36-1880-4080-1	36-2320-4520-2	36-1440-4080-1	36-1440-3640-2	36-1440-3640-1
		Sample No.	1	N	m	5	-	6

	. 110	1 -	Em	ergenc	e ratinga	a	D	1	ratingb		*
Sample No.	designation	No.	Sugar Mus- M. beet tard M.	Mus- tard	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes
11	36-1440-4080-2	нав	100	100	100	1001	wow	せらら	6 n n	ろとら	O
13	36-1440-5400-1	нак	0000	999	1000	000	10 10 6y	100	10 103	100	Q
14	36-1440-5400-2	нαм	000	999	999	1000	100	100	10 9%	0016	D, E
15	36-2760-5400-1	наю	600	1000	909	1000	1020	n wari	10 8y	2018	
16	36-2760-5400-2	нак	200	0000	000	200	200	222	222	999	O
17	36-3200-5400-1	нам	10	1000	0000	1000	000	0000	000	0000	
18	36-3200-5400-2	нак	277	222	0000	010	w± rv	७०७	900	∞ ov ov	
19	36-2760-5840-1	HUR	8000	10	100	660	N 000	901	10 10 9 y	σσ	o

1	1	0110	Many	Em	Emergence	e ratinga	B	9	Growth	ratingb		-
Sa	Sample No:	designation	No.	Sugar	Mus- tard		Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
	20	36-2760-5480-2	100	801	010	0100	501	wrv=	mun	601	010	
	21	36-2320-5840-1	n 40m	2 222	999	000	2 2 2 2 2	0108	250	10 10 9 y, p		ជ
	22	36-1440-4960-2	нав	100	600	100	999	≠ 00	867	و 10 و ع	001	
	23	36-3200-4960-1	HNM	222	999	222	222	222	010	100	001	
	24	36-3200-4960-2	40E	100	690	999	100	NOF	ഗയ ഗ	6 L 8	600	ĸ
CO	Control A		нак	100	1000	100	100	1000	000	000	1000	

^a Emergence rating key: Emergence of seedlings rated on a scale of 0-10 where 0 = no emergence and 10 = emergence comparable to controls.

c = chlorosis, b Growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that is comparable to controls. Superscripts indicate as follows: c = chlorosis p = purple pigmentation, y = yellowing, n = necrosis and s = stunting.

d Notes: A - soil appeared clayey and wetting problems with the soil may have delayed or inhibited germination; B - leaf tip necrosis on ryegrass; C - a few millet plants showed leaf necrosis; D - yellowing of older leaves of millet may indicate nitrogen deficiency; E - pronounced purple pigmentation on stem and leaves of foxtail millet; F - possible "damping off" on sugar beet; G - leaf tip necrosis on millet and ryegrass.

(continued)

on test ted at	Notesd						A			
e >	Rye-	grass	0,010	တထထ	60 a	100	ผพพ	യവത	991	200
city observed samples colled	rating	Millet	10 6 5y	69 69	10 10 79.P	10 10 8y	2 1c Dead	wivin	922	14 Hpsy
phytotoxicity s in soil sampl	01	tard	∞ rv=	000	13	10	nag.	บเกษ	VD 27 27	L##
g phytoks in al.	8	beet	r∪ r∪=±	400	979	ω ο <u>ι</u> ν	e e e e	400	444	824
indicating r for 3 weeks ain Arsenal.	Rye-	grass	100	100	1000	100	ณ๛๛	800 100	0000 1000 1000	100
nt int	rat	Millet	6000	999	970	ಐಐಐ	2 2 Dead	ოოო	0000	100
t number and gr Rocky M	Mus-	tard	6000	1000	000	100	999	6000	100 F	1000
primary test number ted 2/18/76 and grot tes at the Rocky Mot	Sugar	beet	100	100	1000	0 0 0 T	NOO	100 100	100	100
of primary anted 2/ sites at	Week	No.	400	H 00 FG	нам	чин	наю	ним	нию	400
Results of plants plan selected si	Site	designation	36-1030-4080-1	36-1050-1440-1	36-1030-4520-1	36-1440-3200-1	36-2320-3220-1	36-2760-2320-1	36-2320-2320-2	36-2760-2320-2
Table A-2.	Sample	No.	25	27	28	30	31	32	33	35

Comple	24+0	Wash	图	ergend	Emergence ratinga	ıga	G)	Growth	ratingb		
No.	designation	No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notesd
37	36-2320-3640-1	ним	00н	044		400	001	044	44 2 2 1	eem	Ą
39	36-1880-2320-1	нак	222	222	999	900	ω σ _ν ο	010	10 5y	101	
1,	36-1880-2320-2	нам	222	1000	0000	100	מממ	200	9 5 5 8	992	ф
Control		нак	222	222	999	0100	999	999	1000	999	

a scale of 0-10 where a Emergence rating key: Emergence of seedlings rated on 0 = no emergence and 10 = emergence comparable to controls. b Growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that is comparable to controls. Superscripts indicate as follows: c = chlorosis, n = necrosis, p = purple pigmentation, s = stunting and y = yellowing.

 $^{
m d}$ Notes: A - a few millet plants emerged but subsequently died; B - tip necrosis on leaves of millet plants.

Results of primary test number 3 indicating phytotoxicity observed on test plants planted 3/24/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table A-3.

-	Notesd			A		ф	m		m
	Rye- grass	ω ∞ ω	∞ ov ov	0 H H	6887	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	55 S	201	2 8 8 8 8 8
ratingb	Millet	ممم	901	044	8 0 0 y	58 48 48,y	5 8 8 8 8	1000	3333
Growth 1	Mus- tard	000	999	0 4 9	6 884	०००	०००	000	വഗത
Gro	Sugar beet	999	യവ യ	она	യയ	2	000	σωω	444
	Rye- grass	222	100	010	999	∞ ov ov	000	1000	ဖထထ
ratinga	Millet	1000	1000	010	222	∞ 0′ 0′	999	9000	ပထထ
ence	Mus- tard	1000	601	она	222	1000	0100	000	100
Emergence	Sugar	6001	9 0 10	4012	222	999	999	222	1000
Moore	No.	406	нак	нак	нию	สผต	нак	нап	нав
0110	designation	35-5400-3640-3	35-5400-3640-4	36-2320-1440-2	35-4960-4520-5	35-4960-4520-2	35-4960-4520-3	35-4960-4520-1	35-2760-4080-3
Comp	No.	43	45	91	49	20	51	25	99

			E	Emergence	e ratinga	Iga	Gr	Growth	ratingb		
Sample No.	Site designation	Week No.	Sugar	Mus- tard		Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notesd
59	36-2320-1440-1	H 0/10	0 44	000	000	000	044	000	000	000	
61	35-4960-4520-4	нав	1000	1000	ထထထ		०००	०००	28 28,0,y	22 8 28 8 28 8	ф
62	36-1030-4520-2	нию	1000	200	1000	900	യസസ	200	95 98	ထထထ	
63	36-1880-3640-2	нию	760	019	00m	010	mrvo.	010	001	ouin	
19	36-1880-3640-1	наю	2007	≠ ∞∞	ಣ ಸ .ವ	യഗഗ	mm=	20 mm m	2n 2n	1 82 82 82 82	
89	36-2320-3640-2	наю	000	999	ннн	ഗരര	≄ rv∞	യവവ	uo on on	നയയ	
69	36-1030-5840-2	446	1000	100	999	900	01-	σωω	999	96	
73	35-276c-4080-1	нав	100	222	000	000	011	ထထထ	10 10y	0,00	
4.4	36-2760-1880-2	446	1000	1000	1000	222	ω ,∞∞	7 8	10 68 68,y	43	

-	ALIAN PROPERTY AND		Em	Emergence	e ratinga	nga	9	Growth	ratingo	0	-
Sample .No.	Site designation	No.	Sugar	Mus- tard	1 - 1	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
75	36-1030-1880-2	H 0 W	1000	100	1000	0010	927	8 7 7	1000	000	
76	36-1030-5840-1	чик	1000	999	999	0000	०००	ထထထ	100	0 000	
42	36-1440-3200-2	чик	200	200	200	1000	ωωω	ထထထ	8	000	
80	35-2760-4080-4	нам	200	1000	0000	1000	000	ထထထ	10 7n 7n	100	C,D
81	26-1880-1880-1	400	9901	100	~ ∞∞	NOO	6000	986	7V80 QV	NOO	
Control A	4 1	466	2001	1000	010	1000	100	222	999	1000	
Control B	B -	40°E	10001	1000	1000	10	000	1001	100	100	

a Emergence rating key: Emergence of seedlings rated on a scale of 0-10 where 0 = no emergence and 10 = emergence comparable to controls.

b growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that is comparable to controls. Superscripts indicate as follows: c = chlorosis, n = necrosis, p = purple pigmentation, s = stunting and y = yellowing.

d Notes: A - soil sample had distinct foreign odor; B - stunting of grasses resemble that produced by known herbicides; C - soil swelled when water was added; D - some tip necrosis on leaves of millet.

Results of primary test number 4 indicating phytotoxicity observed on test plants planted 3/31/76 and grown for 3 weeks in soil samples collected at Table A-4.

מבת שני	Notesd		A							
nadaartos	Rye-	grass	ထထထ	⊅ ₪	466	യയവ	3 ∞∞	σσσ	<i>ω ω ω</i>	600
Sampres	ratingb	Millet	ω σ\ ω	NOO	122	ოთთ	ოთთ	600	10	NOV
1108	Mus-	tard	ထထထ	277	9~8	ထထထ	ထထထ	222	100	000
₫.	Sugar	beet	222	οου	196	တထထ	1280 F	699	601	272
Arsenal	ga Rye-	grass	100	7 6.0 1	400	960	100	2001	901	100
and grown for locky Mountain	Emergence ratinga	Millet	1098	10	иоо	860	500	000	660	1000
Rocky M	Prgenc Mus-		200	222	222	222	200	1000	100	1000
the I	Sugar	beet	1994	200	455	100	600	100	601	NOV
	Week	No.	нам	400	нав	нию	400	нию	400	357
piants planted selected sites	Site	designation	23-5840-4960-3	23-4080-3200-4	23-5840-4960-1	26-5400-1880-3	35-2760-4080-5	26-4960-4960-1	23-4080-4960-1	23-2320-4080-2
	Sample	No.	86	87	68	92	93	96	76	66

PRESENTATION CONTRACTOR			Em	ergenc	rati	nga	GI	Growth	ratingb	0	1
Sample No.	Site	Week No.	Sugar	ugar Mus- Mi	11et	Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notesa
100	23-4080-3200-1	HUM	100	100	HHI	1000	500	100	N N 00	100	
101	23-5840-4960-4	420	600	100	7 O O	0,0,0	novo		တကာလ	Noco	
102	23-2320-4080-4	нам	100	5000	000	8000 HH	922	0,00	0,00	σνω σο	
104	23-4080-4960-4	ศณฑ	000	000	ω σ, ο,	8 9 O	०००	0000	∞ 0/ Q/	<u>~</u> ∞∞	
105	23-4080-3200-2	Ham	600	222	6001	2000	400	0000	800	№ 8	
107	23-4080-4960-2	нам	2001	222	000	000	922	0000	600	N8 82-7	
110	23-1880-1880-2	Han	1001	8000	200	200	нωω	N000	m 01 01	4 - 1-	
111	36-2320-1030-2	нам	100	000	Нат	HININ	מוטוט	0000	40100	1 2 S	g
113	36-2760-1880-1	HOW	181	000	H00	0.72	558	128	000	338	m

- Company of the Comp	Andready of the American	NO. OF STREET,	Eme	ergenc	Emergence ratinga	ıga	G	Growth	ratingb		A Company of the Comp
Sample No.	Site	Week No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notesa
114	26-5400-1880-1	357	100	100	100	100	000	8000	1000	100	
115	26-4960-4960-5	400	100	100	100	1000	100	100	10	100	
111	26-5400-1880-2	ним	0100	100	1000	100	80 00 O	0,00	800	889	
119	26-5400-1880-4	нам	600	999	1000	000	७७७	929	ω Φ / ω	780	
121	35-4960-2320-1	Han	999	100	ಐ೦೧	000	0,0,0	000	000	000	
123	35-5400-3640-2	ним	000	10	200	0000	0,000	0,000	600	0,00	
126	35-2760-5400-3	HUM	100	100	8 0 0 C	100	တထထ	ထထထ	000	∞ ov ov	
127	09-1371-4731-4	HUM	8001 100	1000		6010	999	∞ ∞ ω	2000	0/000	
Cont	Control A	нам	100	100	222	100	1000	100	100	000	

Samula	6440	Manh	Emer	zen	ce ratin	lga.	S	rowth	ratingb	-	
No.	designation	No.	Sugar beet	Mus- tard	Millet	Rye- grass	Sugar	Mus- tard	1e	Rye-	Notesd
Control B	Д	-	80	0.5	0.	0.	α	-		5	
		101 m	901	122	201	201	9 6 6	200	725	225	

a Emergence rating key: Emergence of seedlings rated on a scale of 0-10 where 0 no emergence and 10 = emergence comparable to controls.

b Growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that 1s comparable to controls. Superscripts indicate as follows: c = chlorosis, n = necrosis, p = purple pigmentation, s = stunting and y = yellowing.

A - clayey soil; B - stunting of grasses resembles that produced by known d Notes: herbicides.

(continued)

Results of primary test number 5 indicating phytotoxicity observed on test plants planted 4/1/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table A-5.

	2770		Eme	Emergence	e ratinga	lga	65	owth	Growth rating	2	
No.	designation	No.	Sugar	Mus- tard		Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes
129	23-5840-4960-1	ним	222	100	m≠ rv	1000	∞ ∞∞	σωω	ហហហ	ഗയയ	
131	09-1371-4731-3	нию	1000	1000	1000	1000	9~9	ထထထ	999	10	
133	09-1164-3572-4	нак	999	222	1000	1000	ω ω	<i>ο</i> /∞ ∞	999	0 6 8	
135	09-1164-3572-5	нам	100	1000	000	000	०००	ထထထ	တတထ	ರಾರುಣ	
137	09-1164-3572-3	H0,W	10	222	80 D	ოთთ	စ္စ	488	667	ω σ/ ω	
140	26-2320-3640-4	нам	1000	222	800 100	200	ထထထ	ထထထ	ω σ\ σ\	ထထထ	
141	35-4960-2320-2	нак	10	200	10 10 10	901	882	ον∞ ∞	0 ,000	488	
143	26-1880-1880-5	351	10	100	10	100	000	ထထထ	202	ကတဆ	

			Emergence	ce rating a	Ig a	G	Growth	ratingb	0	
	ite Week gnation No.	Sug	. Mus-	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
	3-4080-3 2 3	1001	222	8 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	901	6	ထ ထထ	∞ o₁ o₁	∞∞∞	
	3-4960-3 3	601	655	800	999	~~~	8	ထထထ	822	
	1-3572-1 2 2 3	100	222	999	000	000	222	999	222	
)-1440-2 2 3	woo	655	100	1000	നയയ	∞ σ σ	ოთთ	011	
)-2320-2 2 3	100	222	∞ 0/ Q/	10	879	∞∞∞	ထထထ	887	
)-5400-1 1 2 3	1000	222	400	1000	200	222	ഹയ ഗ	999	
)-1880-4 1 2 3	000	7 0 C	499	1000	000	4	488	780	
	1-4960-2 2 3	600	222	999	0000	ထထထ	910	200	ω o, ω	
7-000+-000-5	1-4080-2 2 3	1000	222	600	1000	8000	100	100 O	ထာထထ	

			Em	Emergence	e rating	Ig a	Gr	Growth	rating	0	
Sample No.	Site designation	Week No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
162	26-1880-1880-3	нак	100	1000	100	100	യയ	988	ωωω	തയവ	
163	35-2760-5400-2	ник	000	222	610	010	ထထထ	ထထထ	010	0,00	
165	35-2760-5400-5	нию	100	222	100	100	272	0,000	000	≻ 88	
167	26-1880-5840-5	нию	901	900	ωωω	≻ 00	10	σωω	ထထထ	~ 0∞	
168	35-2760-5400-4	нак	10 10	1000	100	1000	ထထထ	0,000	∞ 0√ 0√	0000	
169	26-4960-4960-4	чик	1000	690	100	000	ο ναο αο	0/0/00	ಐ೦೧೦	ಹದಾಹ	
171	171 26-4960-4960-3	нак	1000	999	0000 1000	200	ထထထ	0,00	6000	<i>∞ ω ω</i>	
173	26-1880-5840-3	468	10	1000	1000	100	01088	0.00 1~	900	ထထာတ	
Control	A	468	1000	1000	100	100	222	222	200	100	

Comple	04.50	17001	Emer	rgence 1	e rating a	B 8	Q	Growth	ratingb	0	
No.	designation	No.	Sugar beet	Mus-	Millet	Rye-	Sugar	Mus- tard		Rye-	Notes
Control B	m	наю	1000	100	1000	0101	900	999	100	999	

u ^a Emergence rating key: Emergence of seedlings rated on a scale of 0-10 where 0 no emergence and 10 = emergence comparable to controls.

b Growth rating key: Growth rated on a scale of 0-10 where 0 = 10 no growth and 10 = 10 growth of seedlings that is comparable to controls.

Results of primary test number 6 indicating phytotoxicity observed on test plants planted 5/5/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table A-6

			E	Emergence	nce rating	Ing a	G	Growth	rating	9	
Sample No.	Site	Week No.	Sugar	Mus- tard		Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes
175	08-2403-5662-1	446	100	100	∞∞ <i>0</i>	10	900	900	488	0 ,000	
177	22-3200-2320-5	327	1000	1001	000	100		ထထထ	∞ ∞ σ	ထထာထ	
179	23-3200-2320-2	466	100	999	100	1000	∞ <i>o</i> v o	000	∞ ∞ o v	999	
181	22-3200-2320-1	408	100	100	100	100	<u> </u>	000	000	000 000 000	
183	08-5579-5690-2	нам	100	1000	2007	1000	000	000	000	900	
185	08-5101-5178-2	нак	1001	100	2001	0000	∞ ೞ <i>೮</i>	ထထထ	ω ω σ	∞ ව ∨ ට	
187	24-3200-1440-2	нав	1000	100	100	100	ω ov ov	800	0 α ο	000	
189	24-2320-3200-5	357	100	100	100	100	ထထထ	ωωω	000	000	

		HEAD IONIS DESIGNATION OF THE PARTY OF THE P	Em	Emergence	e rating	ка	Gr	Growth	ratingb	0	
Sample No.	Site designation	Week No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes
191	24-3200-1440-5	нак	1010	100	000	0000	ထထထ	ထထထ	σ/∞ ∞	000	
193	08-2432-1471-1	нам	001	200	222	000	600	222	999	007	
195	22-4960-1440-4	нам	999	1000	100	000		ω ω ω	ထထထ	ω σν ω	
197	24-3200-4960-2	нак	100	1000	1087	999	∞ ∞ o	6,00	F-80 60	806	
199	24-4960-5840-2	нав	000	201	222	900	ထထထ	ထထထ	∞ <i>Q</i> / <i>Q</i> /	ω σ, σ,	
201	24-4960-5840-5	наю	1000	222	28 8 1	ထထထ	ထာထထ	တထထ	ထထထ	ထထထ	
203	24-2320-3200-2	4 N W	100	100	ထထထ	000	860	500	886	∞ ov ov	
205	08-2403-5662-3	нак	978	1000	222	999	877	ထထထ	ထထထ	ထထထ	
207	08-5101-5178-1	чак	222	200	0010	222	999	222	200	900	

	A STATE OF THE PARTY OF THE PAR	-	The state of the s		6.7.7.	6		74	A	-	-
Sample No.	Site	Week	Sugar	ar Mus- Mi		Rye-	Sugar	r Mus-	Millet	Rye	Notesd
209	08-2432-1471	100	1001	3	100	2 000	8 8 8 8	8 000	999	800	
211	g8-5579-5690-3	1 400					∞ ov ov	, ₀₀ 00			
213	08-2403-5662-4	нак	001	222	601	1000	ထထထ	∞∞∞	ထထထ	ಹರಾರಾ	
215	08-3142-1995-2	нав	1000	200	ထထထ	100	∞ <i>ω ω</i>	ထထထ	σσ	900	
217	08-3142-1995-1	нию	1000	000	10 10	1000	∞ ov ov	000	999	1000	
219	36-4960-4080-2	нак	000	200	000	1000	& & Q	0,010	∞ ∞ o	000	
221	36-4960-4080-4	чик	100	1000	1000	0000	ထထထ	000	∞ ∞ σ	ထထထ	
223	24-4960-5840-4	нак	0000	0000	001	100	P 1 8	0,00	67.8	≻ 88	
225	24-4080-3200-1	1 W W	222	200	משמ	222	222	222	1000	901	

or the same of the	A CONTRACTOR OF THE STATE OF TH	:	Em	Emergence	e ratinga	ıga	Gı	Growth	ratingb		-
Sample No.	Site designation	No.	Sugar	Mus- tard		Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notesd
22.7	24-4080-3200-2	нак	999	1001	0010	1000	ထာထထ	ω ω ω	ထထထ	ထထထ	
229	24-3200-1440-3	ник	0000	222	1000	0000	ထထထ	ထထထ	778	77.8	
231	24-4960-5840-3	нак	100	200	100	100		200	σνωω	≻ 88	
233	22-4960-3200-4	400	000	222	0001	999	~~~	r-00	ထထထ	ထထထ	
235	09-4201-1299-3	нак	200	222	200	999	ထထထ	ω ω σ	000	∞ ∞ o	
237	09-420i-1299-4	HQM	901	001	900	222		~ 88	► 0.80	r00	
239	24-2320-3200-3	HWW	# 60T	000	000	0 % 0	ณ พบ	000	000	ພາດວ	
Control A	1 A	нав	100	999	000	000		222	222	222	
Control B	1 B	351	1000		100	100	222		100	0000	

 a Emergence rating key: Emergence of seedlings rated on a scale of 0-10 where 0 = no emergence and 10 $^{\circ}$ emergence comparable to controls.

b Growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that is comparable to controls.

Results of primary test number 7 indicating phytotoxicity observed on test

lected at	ı	e- Notesd								
8	۵	et gras	001	200	000	нн		01.01	201	100
-	h rating	d Millet	100	100	ororor	100	222	1001	100	100
in soil samp		ugar Mus-	σσσ	0000	σωω	0 ,∞∞	∞ 0/ 0/	0 0 0	001	1000
weeks 1 senal.		0, 0	σσσ	011	778	877	108	601	100	10
rown for 3 weeks Mountain Arsenal	rating a	et Rye	1001	100	0111	6 6 6 6	222	0101	010	000
grown f Mounta	nce ra	M111e	1000	100	202	1001	2001	1000	1001	1000
and g Rocky	Emerge	Sugar Mus- M11.	1001	000	1000	999	999	1001	100	1001
5/13/76 g it the Ro		Suge	1000	1001	100	1010	1000	010	1000	1000
planted 5/13 sites at t		week No.	357	357	4	400			ним	406
plants pla selected s		Site designation	36-5840-2760-2	36-5840-2760-1	08-5579-5690-4	08-3142-1995-4	36-5400-4960-1	36-4080-4960-1	24-3200-1440-1	24-3200-4960-1
	-	Sample No.	241	243	245	247	249	251	252	254

		-	Emc	ergenc	Emergence ratinga	ga	Gr	Growth	ratingb		-
Sample No.	Site designation	Week No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	1 1	Millet	Rye- grass	Notesd
256	36-2320-4960-4	нак	10 10	100	100	1001	911	667	667	68 8	
258	36-2320-1880-4	наю	100	620	ο/∞ ∞	000	מוטוט	8	3 t t s	8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Ą
260	36-2320-1880-2	нав	000	000	000	000	000	000	000	000	
262	36-4520-2760-1	нак	600	200	600	269	899	622	699	655	
264	36-5840-2760-3	нае	100	200	600	222	ထထထ	ω ω ∞	ထထထ	808	
566	36-5400-4960-5	нию	222	222	1000	222	8 1 2	588	ထာထထ	191	
268	36-5400-4960-3	чаю	1000	222	0000	200	877	σωω	ထထထ	∞ 0/ 0/	
270	26-1880-5840-1	цию	222	222	0000	200	222	222	222	222	
271	26-2320-3640-3	наю	100	222	900	222	787	887	ထထထ	0,00	

			Em	ergenc	Emergence rating	ga	Gr	Growth	ratingb		-
Sample No.	Site designation	Week No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	1	Millet	Rye- grass	Notesd
272	35-5400-3640-1	наю	0000	222	999	901	999	900	222	100	
273	36-2320-1030-1	нак	600	200	ผ๛๓	७७७	600	999	8 2 3 4 8 8 8	က္က က အ အ အ	
274	36-4520-2760-3	чак	9999	222	222	600	987	ωωω	യയവ	<i>Φ Φ Φ</i>	
276	36-2320-4900-1	ник	ተሪሪ	@ @@	ဖထထ	ဖထထ	33 SE	35 38	サビュ	⊅ ₪ ₪	
277	36-1880-1440-2	нию	10	100	044	044	8 † 8 †	8 6 8 4 8	1 s s	118	Ą
278	36-1880-1440-1	400	10	100	016	010	2 t t t t t t t t t t t	55 g	0 % 8 8 8 8	138	В Ч
280	36-4080-4960-2	нак	1000	1001	999	200	ဖထထ	ထထထ	rvω	ထထထ	
282	36-4080-4960-4	H 01 101	0110	1000	999	999	ထထထ	ωωω	ဖထထ	ω σ/ω	
283	36-5840-2760-4	пак	500	1001	000	999	ထထထ	ထထထ	888	ကထထ	

		1	Em	Emergence	se ratinga	Iga	G	Growth	ratingb		
Sample No.	Site designation	No.	Sugar beet	Mus- tard		Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notesd
285	24-1440-5840-1	но	0.0	100	0,0	10	ινα	0,0	0,0	60	
		'n	10	101	10,	10	00	0	0	6	
287	24-2320-5840-1	нак	100 m	222	6010	222	⇒ r∪∞	∞ ∞∞	₹ 08	≯ ►8	
289	24-3200-5840-1	нак	999	999	999	0000	ne d	999	മയമ	900	
291	24-2320-5840-2	нак	1000	222	∞ ∞ o	000	987	~88	ស្កង សង្គង	នេះ ខេត	
Control A	4	наю	1000	222	222	222	999	222	000	222	
Control B	Ф	нию	0000	222	222	0000	010	100	1000	000	

^a Emergence rating key: Emergence of seedlings rated on a scale of 0-10 where 0=10 more emergence and 10=10 more emergence comparable to controls.

b Growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that is comparable to controls. Superscripts indicate as follows: c = chlorosis, n = necrosis, p = purple pigmentation, s = stunting and y = yellowing.

d Notes: A - Stunting of grasses resembles that produced by known herbicides. B - Hypocotyl swelling at base on all test species.

Results of primary test number 8 indicating phytotoxicity observed on test plants planted 5/19/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table A-8.

	Site	•	นา	Emergence	ce rati	nga	G1	owth	ratingo		
	designation	No.	Sugar	Mus-	Millet	llet Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes
	24-4080-5840-2	HUN	1002	100	100	100	001	1000	601	100	
295 2	24-4080-5840-1	наю	100	200	100	6010	000	222	999	100	
297 30	36-4520-2760-4	наю	10	222	100 100	100	ഗയയ	ထထထ	ထထထ	0 & O	
299 30	36-1880-3200-1	нае	1601	oww	01010	000	иоо	938	5 to 2 to 3	ဝထထ	
301 30	36-2760-1440-4	чаш	10	100	100	10 10 10	891	400	2007	998	
303 30	36-2760-1440-2	нав	100	1000	∞ 0/ 0/	699	206	ထထငာ	8 6 8	0 0 0	
305 06	08-2403-5662-5	ним	100	1000	100	999	ထထထ	တထထ	0,00	000	
307 30	36-4080-4960-3	HWW	10 10	10	9 10 10	100	ထထထ	000	ထထထ	886	

1			Em	Emergence	e ratinga	iga	Gr	Growth	ratingo	1	
Sample No.	Site designation	No.	Sugar beet	Mus- tard	Millet	Rye- grass	Sugar beet	1 1	Millet	Rye- grass	Notes
309	36-2320-4960-3	нию	000	10	ານວ	201 101 10	992	4 t s s s	5 S S S S S S S S S S S S S S S S S S S	0 & &	
311	36-2320-1880-3	чию	701	222	200	സവ	744 88	ການ ໝູ່ສ	18		
313	24-3200-5840-2	нию	10101	222	2010	101	488	ကထထ	ဝထထ	೧೦೦	
315	36-2760-1440-3	ним	999	222	999	222	₩-®	90	ഹയയ	ဖထထ	
317	36-2760-1440-1	нав	200	222	10 10	0000	wo -	ထထထ	1 A	ထထထ	
319	36-4520-2760-2	чйш	999	999	000	മയഹ	1010	800	000	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
321	36-5400-4960-4	нап	222	000	800	601	ထထထ	ထထထ	സയയ	mωω	
323	36-4960-4080-1	наю	1000	800	100		900	222	222	222	
325	08-3142-1995-5	наю	100	0100	100	222	₩-∞	888	∞ α. ∞	യയ	

			Eme	Emergence	e ratinga	Iga	61	Growth	ratingb		-
Sample No.	Site designation	Week No.	Sugar	Mus- tard	1 4	Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes
327	36-1880-3200-2	нак	100	7 60	04°	100m	мωω	308	4 いく	⊅ ∞∞	
329	36-2320-4960-2	нак	H® 6	നഗയ	092	പത വ	mr-®	4 1/-80	ono	ಕುಹ ಎ	
331	36-2320-1880-1	нак	000	000	000	000	000	000	000	000	
334	22-4960-3200-5	нак	6010	222	ထထထ	ထထထ	⊅ 1~ ®	ထထထ	38 38	ည်း	
336	36-5400-4960-2	ним	100	100	ထထထ	0000	∞~∞	ထထထ	402	498	
338	08-5101-5178-3	400	1001	222	222	000	888	@ @ @	ထထထ	57-80	
340	08-5579-5690-1	400	200	999	1000	0000	1000	000	1000	0000	
342	08-2432-1471-3	нак	1000	222	ಯಯಯ	1000	000	ထထထ	Ø\∞ ∞	တထထ	
344	08-3142-1995-3	327	100	100	100	100	70 @ Q	288	888	ಐಹರಾ	

			EM	ergend	Emergence ratinga	ıga	Gr	Growth	ratingb	0	
Sample No.	Site designation	Week No.	Sugar	Mus- tard	Millet	Rye-	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
346	36-4960-4080-3	нак	100	222	222	0000	&&&	~ ∞∞	ထထထ	οωω	
348	08-2403-5662 2	нак	1000	222	0000	200	ထထထ	σν∞ ∞	066	თთთ	
350	22-2300-2320-4	наю	000	222	999	999	ω σ ₀ ο	∞ ov ov	066	oν∞	
352	22-3200-2320-3	400	10 10	100	000	1000	r8	ω ω ω	999	ထထထ	
Control A	¥	нак	200	222	222	999	222	222	222	0000	
Control B	m	HWM	1000	222	200	999	999	222	222	222	

 $^{\rm a}$ Emergence rating key: Emergence of seedlings rated oh a scale of 0-10 where 0 $^{\rm a}$ no emergence and 10 $^{\rm a}$ emergence comparable to controls.

b Growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that is comparable to controls. Superscripts indicate as follows: c = chlorosis, n = necrosis, p = purple pigmentation, s = stunting and y = yellowing.

Results of primary test number 9 indicating phytotoxicity observed on test plants planted 5/26/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table A- 9.

		-	Er	Emergence	nce rating	ng a	1	Growth	rating	D	
Sample No.	Site	Week No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes d
354	09-2467-5762-5	нап	000	100	600	100	∞ ⇔ ಛ	ωωω	ω, αφ αφ	σωω	
326	09-4275-4774-1	400	100	1000	001	100	∞ <i>o</i> v <i>o</i> v	000	σσσ	000	
358	23-4080-4960-5	нап	1000	1000		0000	ထထထ	ထထထ	σωωω	000	
360	22-4960-3200-2	Han	1000	222	2000		ಐಐಐ	ထထထ	000	ထာထထ	
362	24-3200-1440-4	нап	100	1000		1000	1-1-00	r-80 80	ರಾಹಾಹ	01-0	
364	22-4960-3200-3	нак	100	100	1000	1000	~ ∞∞	ထထထ	7	<i>∞</i> ω ω	
366	22-4960-1440-5	нак	10	100	000	100	~~~	සහස	8 1 1	888	
368	08-2432-1471-2	нию	100	100	1000	0000	හසස	8000	ထထထ	900	

-			Em	Emergence	e rating	Ra	Gr	Growth	rating	9	
Sample No.	Site designation	week No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	1 1	Millet	Rye- grass	Notes d
370	24-4080-3200-3	446	999	200	@ 0 0	100	ω ω ω	ωωω	ωω ω	σωω	
372	09-2467-5762-3	чак	1000	1000	999	1000		ထထထ	ထထထ	ωω σ	
374	09-2467-5762-4	406	1000	1000	1000	1000	ထထထ	ထထထ	ထထထ	σ/∞ ∞	
376	09-1371-4731-5	нию	0000	222	1000	0000	ထထထ	0,00	σσ	ထထထ	
378	36-1030-1440-2	нию	000	1000	000	000	922	ಹಹಹ	ບາບາດ	സനന	
380	26-1880-5840-2	HWM	1000	202	∞ <i>o</i> v <i>o</i> v	100	ထထထ	∞ ∞ ∞	ဖထထ	ဖထထ	
382	26-2320-3640-2	สดย	1000	222	999	1000	σσσ	000	999	0000	
384	23-4080-3200-3	Чиш	1000	200	999	1000	0,00	500	066	066	
386	23-3200-1440-3	387	1000	1000	000	222	000	000	000	000	

	AND THE PROPERTY OF THE PROPER		Em	Emergence	e rating	RAI	61	Growth	ratingb		-
Sample No.	Site	No.	Sugar	Mus- tard	1 7 1	Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notesd
388	23-3200-1440-4	нак	1000	1000	0010	1000		ထထထ	ထထထ	ထထထ	
390	09-2467-5762-2	чак	1000	100	100	1000		ထထထ	000	000	
392	09-2467-5762-1	Нию	1000	222	1000	1000	0000	1000	222	1000	
394	09-1371-4731-2	нак	1000	100	~ ∞∞	1000	r-1-8	ထထထ	r-r-8	900	
396	09-4201-1299-2	чав	100	1000	222	1000	000	900	000	000	
398	09-4275-4774-4	чак	1000	999	100	1000	888	∞ ∞ ∞	0,00	σσω	
400	09-4201-1299-1	нам	100	000	ннн	4 でで	10	000	พพท	10 ov ox	4
401	09-4275-4774-3	400	1000	100	222	1000	≻ 88	~∞∞	σωω	000	
403	09-4275-4774-2	400	0000	1000	800	100	888	တထထ	000	000	

-		-	Fm	Emergence	e ratinga	rea	G	Growth	ratingo		***************************************
Sample No.	Site designation	Week No.	Sugar beet	Mus- tard		Rye- grass	Sugar beet	1 1	Millet	Rye- grass	Notesd
405	23-4080-3205-5	нак	0000	1000	001	1000	ထထထ	∞ ∞∞	σωσ	888	
904	23-2320-4080-1	чию	1000	222	01001	0000	1000	200	000	1000	
404	26-2320-3640-1	ним	0100	222	ผพพ	000	000	222	P 99	000	Д
408	26-2320-3640-1	нае	1000	222	ოოო	601		~~~	സസസ	ထထထ	
409	26-2320-3640-1	สผต	1000	2010	ω σ/ ο	999	~~~	~~~			Ф
411	26-1880-5840-1	нап		001	999	000	ထထထ	∞ ∞∞	ထထထ	ω ω ω	
412	23-3200-1440-5	нап	000	001	000		ಹಹಹ	ωωω	ထထထ	ω ω ω	
413	22-4960-1440-3	нак	0100		999	0000	ထထထ	ထထထ	ထထထ	∞ <i>ο</i> ν <i>ο</i> ν	
415	22-4960-1440-2	321	222	222	999	222	ထထထ	ωωω	000	ထထထ	

		-	Eme	ergenc	Emergence ratinga	nga	Q.	Growth	ratingb	-	-
Sample No.	Site designation	Week No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notesd
417	24-2320-3200-1	нак	222	1000	1000	@ <i>0</i> /0		ωωω	& & &	ರಾಹಕು	
419	09-4275-4774-5	нам	0000	999	100 100 100	900		œαœ	000	000	
421	22-4960-1440-1	нак	0000	999	0000	1000	222	1000	1000	200	
423	09-4201-1299-5	нак	1000	222	1000	222	σσσ	9 6	0 6 6	000	
425	24-2320-3200-1	357	0100	000	007	0000	900	222	1000	200	
427	24-4960-5840-1	наю	0000	100	100 n	1000	000	222	1000	2001	
429	22-4960-3200-1	ник	100	100	100	1000	066	000	0 6 6	000	
431	09-1371-4731-1	наю	0000	100	0010	1000	000	0,00	99	10	
433	09-1164-3572-2	327	1000	100	200	1000	222	222	1000	1000	

		:	Eme	rgenc	Emergence ratinga	1ga	6	Growth	ratingb		1
Sample No.	Site designation	No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notesd
435	435 23-3200-1440-1	ч	01	10	10	10	10	10	10	10	
		u m	201	10	100	101	22	101	10	10	
Control A	A	1	10	10	6	10	10	10	10	10	
		വ ന	នួន	22	22	១១	22	201	22	22	
Control B	æ	40	10	10	10	10	10	10	10	10	
		9	10	10	10	10	10	10	10	10	

a Emergence rating key: Emergence of seedlings rated on a scale of 0-10 where 0 no emergence and 10 = emergence comparable to controls.

b Growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that is comparable to controls. Superscripts indicate as follows: c = chlorosis, n = necrosis, p = purple pigmentation, s = stunting and y = yellowing.

d Note: A - only one millet plant; B - only 5 millet plants.

Table A-10. Results of primary test number 10 indicating phytotoxicity observed on test plants planted 7/20/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal.

Growth rating r Mus- Mus- Millet tard Millet 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
--

			Eme	Emergence	e ratinga	ga	Gr	Growth	ratingb		-
Sample No.	Site designation	Week No.	Sugar beet	Mus- tard	Millet	Rye- grass	Sugar beet		Millet	Rye- grass	Notesd
453	36-1880-1030-2	нак	999	000	1000	100	100	010	100	000	
455	36-1880-1030-1	нию	000	220	000	0110	०००	ထထဴထ	0,000	ထထထ	
457	36-1880-1880-3	нам	000	222	999	000	000	000	000	999	
459	36-1880-1880-1	ним	1000	1000	999	ø`ø ø	@ @ O	0,00 0	ထထထ	7 68 68	
191	06-5840-4520-1	ним	000	200	999	100	1000	910	200	999	
463	06-5840-4520-2	สผพ	010	200	999	200	०००	~~~	0,000	<i>ο</i> ν <i>ο</i> ν <i>α</i>	
465	06-5400-3640-2	нак	1000	222	999	100		∞∞~	822	σνωω	
194	26-4080-5400-8	нав	000	222	222	1000	877	ထထထ	878	000	
6911	26-4080-5400-7	нию	000	222	1000	2660	922		877	σσσ	

			Eme	Emergence	se ratinga	ga	G	Growth	ratingb		
Sample No.	Site designation	Week No.	Sugar	Mus- tard	1 1	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notesd
471	26-4080-5400-6	нак	000	999	000	222	~~~		σωω	σνας ασ	
473	24-2320-4960-3	нам	0101	222	999	0000	യവ യ	77,08	യവയ	σωω	
475	24-2320-4960-2	496	100	200	999	1000	<i>⊳</i> ₩	996	892	878	
477	24-2320-4960-4	ним	200	222	222	200	စစစ	~~~	897	878	
419	24-1440-5840-2	нию	700	222	000	999	⇒ N.N.	222	21-0	070	
181	24-1440-5840-3	нию	500	1000	1000	999		27.0	877	∞ ∞ ∞	
483	36-1880-1880-2	чак	1000	200	999	0001	0,00	000	996	222	
485	05-1440-3200-1	чик	0100	900			000	222	1001	910	
489	05-1880-3640-2	нак	222	2001	100	100	7 7	ထထထ	ထထာထ	ထထထ	

			Em	ergenc	Emergence ratinga	ıga	9	Growth	ratingb		
Sample No.	Site designation	week No.	Sugar beet	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notesd
491	26-5840-4520-5	наю	222	999	222	000	≻ ∞∞	ထထထ	ထထထ	000	
493	36-4080-4960-5	наю	1000	222	999	999	ထထထ	96	000	1000	
464	26-5840-4520-4	нав	1000	222	0000	000	787	ထထထ	601 6	0106	
495	26-5840-4520-6	наю	999	999	222	999	1010r	യവ	७७७	922	
164	23-4080-5840-2	чаю	100	222	900	999	488	ω ω ∞	<i>ο</i> ν <i>ο</i> ν <i>α</i> ο	<i>ω ω</i> ∞	
Control A	1 A	HWM	220	200	999	999	222	200	000	200	
Control B	1 B	нак	100	222	1000	000	960	100	200	100	

 $^{\rm a}$ Emergence rating key: Emergence of seedlings rated on a scale of 0-10 where 0 = no emergence and 10 = emergence comparable to controls.

b Growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that is comparable to controls. Superscripts indicate as follows: c = chlorosis, n = necrosis, p = purple pigmentation, s = stunting and y = yellowing.

Table A-11. Results of primary test number 11 indicating phytotoxicity observed on test plants planted 7/22/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal.

			En	Emergence	ice rating	ng a	G	Growth	rating	9	
No.	Site designation	Week No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notesd
497	23-4080-5840-2	нам	0110	1000	000	001	ၿထ	စအအ	ထထထ	≻ 88∕	
199	23-3200-5840-4	нак	999	1000	1000	100 100 100	oon	222	922	⊅∞	
501	23-4960-5840-1	наю	000	222	1000	200	∞ 0√0	100	600	300	
503	23-4960-1440-6	нак	1000	0100	2019	999		488	877	& & &	
505	24-1440-1440-3	406	010	1000	200	2000	922			~ ∞∞	
909	23-4960-1440-4	400	1000	999	100	1000	922	6 88	တထထ	တထထ	
507	23-5840-1440-2	чик	1000	10000	100	0000	₽ 88	® 0/ 0/	080	8 60	
509	26-3640-5840-6	ччк	100	1001	100	100	788	ထထထ	Ø Ø Ø	90	

			Eme	ergenc	Emergence ratinga	ga	Qr.	Growth	ratingb		
Sample No.	Site designation	Week No.	Sugar beet	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notesd
511	36-1440-1030-3	нак	222	222	000	999	972	~~~	ထထထ	888	
513	36-1440-1030-1	нак	999	222	വവവ	999	ഗയയ	800	주 2 2 2 2 2 3	ບາບກ	
515	23-5840-5840-4	нак	000	222	000	000	977	688	~ ∞∞	⊢ 00	
517	23-2320-5840-3	нию	000	222	222	1000	ထထထ	ထထထ	ထထထ	∞ ∞ o/	
519	23-3200-5840-1	สมต	100	222	200	999	~00	ω ω ω	ထာထာ	∞ <i>0</i> 0	
521	23-5840-1440-7	наю	999	222	1000	1000		922	ထထထ	ထထထ	
522	23-4960-1440-1	нию	1000	222	200	000	σσσ	000	001-	999	¥
523	23-4080-1440-1	наю	1000	222	1000	999	999	996	222	691	
524	23-4080-1440-4	321	100	1000	0000	999	787	ထထထ	∞ o∕∞	910	

		Em	ergenc	Emergence ratinga	ıga	G	Growth	ratingb		-
26-3640-5840- 26-3200-5840- 26-3200-5840- 26-3200-5840- 23-1440-5840- 05-1440-3200- 23-3200-5840-	Week ton No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye-	Notesd
26-3200-5840- 26-3200-5840- 23-1440-5840- 23-1440-5840- 05-1440-3200- 23-3200-5840-		222	999	999	900	000	100	100	600	
26-3200-5840- 26-3200-5840- 23-1440-5840- 05-1440-3200- 23-3200-5840-		10	222	100	000	~~~	877	000	000	
26-3200-5840- 23-1440-5840- 23-1440-3200- 23-3200-5840-	0-7 1 2 3	0000	222	0000	1000	σσσ	000	000	000	
23-1440-5840- 23-1440-5840- 05-1440-3200- 23-3200-5840-		1000	222	000	001	⊢ 00	96	ထာထတ	σωω	
23-1440-5840-05-1440-3200-		000	999	0000	1000	~ 88✓	0,∞∞	488	σσσ	
23-3200-5840-	0-4 1 2 3	1000	1000	1000	1000	20-0	667	०००	4 1 9	
23-3200-5840-	0-2 1 2 3	1000	1000	0000	1000	∞ <i>ω ω</i>	∞ ο ο	σωω	σωω	
		10	10	10 10	100	യയ	922	องขณ	୰୰୵୲	
7-0064-4300-4300C	0-1 1 2 3	100	999	222	100	222	222	1000	1000	

1			Emc	ergence	Emergence ratinga	ga	10	owth.	Growth ratingb		1
Sample No.	Site designation	Week No.	Sugar beet	Mus-	Millet	Rye- grass	Sugar beét	Mus- tard	Millet	Rye- grass	Notesd
541	24-4960-4960-2	наю	1000	999	001	100	@ @@	ω σ\ω	σωω	000	
543	23-4960-1440-2	чим	999	000	0000	010	2010	222	01 8 8	606	¥
545	23-1440-5840-1	нию	999	000	011	1000	200	222	10 10 7n	999	A
247	23-1440-5840-2	чию	999	1000	200	999	997	~~~	887	∞ ∞ <i>Q</i> /	
549	23-2320-5840-1	нию	r-0	1000	222	100	ထထထ	~∞∞		~ ∞∞	
551	26-5840-4520-1	наю	999	1000	1000	1000	0101	222	222	0000	
553	26-5840-4520-2	нию	999	1000	0000	0000	1000	222	100	1000	
555	26-5840-4520-3	нию	999	1000	1000	010	000	0,00	ω ∞ ω	900	
557	26-3640-5840-5	наю	222	1000	0000	222		488	ထထထ	~ ∞∞	

			Em	Emergence	e ratinga	ga	6	Growth	ratingb	0	
Sample No.	Site designation	Week No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notesd
559	23-5840-1440-6	нак	000	100	999	999	०००	977	229	697	
561	23-5840-1440-3	нию	000	200	900	000		0,00	886	ω 0/ ω	
563	23-4960-1440-3	нию	1000	222	222	8 6 01	စပဖ	899	879	L 1 9	
595	24-1440-4960-4	наю	1000	222	999	901	~ ∞∞	ω ω ω	ထာထာထာ	ထထထ	
566	23-4960-1440-5	нак	200	222	222	999	∞ ∞∞	ထထထ	ထာထထ	ထထထ	
294	23-5840-1440-5	нию	000	1000	000	900	922	88 ~		ω ω ω	
569	26-4080-5400-2	чим	100	100	0000	1000	000	000	000	000	
573	36-1880-1030-3	нию	100	200	1000	0001	nón	10010	0 rv4	22-0	
575	06-5400-3640-1	чок	1001	100	100	1001	800	ω σ σ	8 8 5n,y	\$ \$\sigma \pi\$	

			Eme	rgenc	Emergence ratinga	ga	G	rowth	Growth ratingb		-
Sample No.	Site designation	Week No.	Sugar beet	Mus-	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notesd
577	06-5400-4960-2	ник	999	999	999	999	∞ <i>ο</i> /∞	. ω σνω	ω <i>ο</i> ν ω	@ O O	
579	06-5400-4960-1	наю	1000	222	999	1000	100	100	200	1000	
581	26-3640-5840-3	наю	000	222	222	222	ထထထ	0,608	σισια	σσ	
583	23-5840-1440-1	ним	1000	222	222	999	000	222	222	222	
585	23-5840-1440-4	наю	1000	222	900	999	887	∞∞⊱	887	888	
587	26-3200-5840-5	чик	000	000	0000	900	978	6 88	ထထထ	000	
589	26-3200-5840-4	HWM	990	999	1000	1000	689	ထထထ	ထထထ	ထထထ	
591	26-3200-5840-1	чик	1000	222	000	1000	999	222	900	0000	
593	26-3640-5840-7	чик	999	1000	222	000	တထထ	ထထထ	ထထာထ	000	

		-	Em	Emergence	e ratinga	ga	Gr	owth	ratingb		-
Sample No.	Site designation	Week No.	Sugar	Mus- tard	1 7 1	Rye- grass	Sugar Mus- beet tard	Mus- tard	Millet	Rye- grass	Notesd
595	36-1440-2760-1	400	201	1001	01001	0000	& & &	888	0,00	900	ш
597	36-1440-2760-2	нав	0000	222	0100	000	ထထထ	ω ω ω	σωω	ထထထ	
599	23-1440-5840-3	нам	000	222	202	222	r-r-8	6	ထထထ	ထထထ	
009	23-5840-5840-5	наю	900	222	0077	0000	≻ ∞∞	<i>ω ο</i> ν <i>ω</i>	σσ	σσω	
109	24-1440-4960-3	нан	1000	222	1000	000	9	0 000	787	∞ ∞∞	
209	23-4960-5840-2	нам	1000	1000	1000	1000	~ 00	800	000	000	
603	24-1440-4960-2	чик	1000	1000	0110	1000	999	000	000	900	
609	26-3200-5840-3	чак	~ 00	1000	100	100	רט וט וט	טיטיטי	ココワ	77.	
209	26-3200-5840-2	327	1000	100	100	100	1000	999	100	1000	

			Eme	Emergence	e ratinga	ıga	Gı	Growth	ratingb	0	•
Sample No.	Site designation	Week No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notesd
609	609 36-2760-1030-3	чак	000	2010	0.00	001	∞∞0	0,00	<i>ω ω</i> ∞	<i>ο</i> , <i>ο</i> , ∞	
Control A	1 A	400	999	222	900	222	999	222	222	200	
Control B	1 B	HWM	222	2010	222	222	222	1000	1000	222	

^a Emergence rating key: Emergence of seedlings rated on a scale of 0-10 where 0 = no emergence and 10 = emergence comparable to controls.

b Growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that is comparable to controls. Superscripts indicate as follows: n = necrosis, s = stunting and y = yellowing.

d Notes: A - Leaf necrosis on millet could be caused by disease organism; B necrosis on mustard likely due to "damping off" disease.

Table A-12. Results of primary test number 12 indicating phytotoxicity observed on test plants planted 7/28/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal.

O

			E	Emergence	ice rating	Ing a	Gr	Growth	rating		
Sample No.	Site	Week No.	Sugar beet	Mus- tard	1 7 1	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
611	36-1440-1440-3	нак	0000	999	1000	1000	0000	200	999	0100	
613	36-1880-2760-2	357	000	999	100	യയവ	01088	180	200	200	
615	36-1440-1880-2	чав	1000	222	999	999	∞ <i>o</i> v <i>o</i> v	∞ <i>Q Q</i>	000	1000	
617	26-5840-4520-7	нав	1000	222	999	999	ထထထ	∞ ∞ <i>o</i> /	σωω	000	
619	36-2760-1030-1	ним	1000	222	000	999	0106	000	σωω	100	
621	36-2760-1030-2	чав	1000	200	0000	200	779	~~~	ထထထ	ထထထ	
623	36-3200-1030-2	нак	1000	100	0000	200	1000	222	1000	2000	
625	36-3200-1030-1	426	1000	100	100	1000	100	222	100	1000	

4

			Eme	Emergence	e ratinga	ıga	9	Growth	ratingb		
Sample No.	Site designation	Week No.	Sugar	Mus- tard		Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
627	36-1880-2760-1	нав	ดองท	000	044	onn	ოოო	044	044	044	
629	36-1440-1440-1	нав	222	222	ထထထ	222	222	10	ထထထ	0/∞∞	4
631	36-1440-2320-1	ним	100	222	999	000	222	10	0,66	000	A
633	23-4080-1440-7	нам	999	222	000	222	ထထထ	ထထထ	ထထထ	000	
635	36-1440-1440-2	400	999	222	r-1-8	999	0106	222	ထထထ	000	
637	36-1440-1880-3	нак	222	222	200	999	ထထထ	∞ ∞ ∞	ထထထ	000	
639	26-3640-5840-1	нию	999	999	०००	७७७	222	222	ထထထ	ထထထ	Ø
149	23~4960-5840-3	нию	200	222	222	999	~~~	822	~~~	ထထထ	
642	23-4080-5840-1	10 m	100	1000	100	∞ <i>o</i> v o	800	100	800	6 66	

		:	Em	rgen	Emergence ratinga	lga		Growth	ratingb	0	
No.	Site designation	No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
643	24-5840-4960-1	нап	100	9100	000	1000	100	200	000	96	
645	24-5840-4960-2	нак	000	222	200	200	600	σσσ	σωω	σσσ	
249	36-1440-1030-4	нию	0100	222	1000	000	σωω	σσσ	σωω	ಎಲಲ	
649	36-1440-1880-1	Hun			222		222	222	222	222	
651	26-3640-5840-8	нак	999	200	200	0110	ಹಹಹ	ထထထ	@ @ @	σωω	
653	36-1440-1030-2	нав	1001	200	200	0010	ထထထ	∞ ∞ o	0000	488	
655	36-1440-2320-2	нию	100	999	222	0110	000	مصع	000	000	
657	36-1440-2760-3	нак	1000	999	000	1000	ထထထ	ထထထ	888	∞ ∞ o	
659	23-3200-5840-3	нак	222	1000	601	200 B	27-8	9-1-		922	

-			Eme	rgenc	Emergence ratinga	Iga	9	Growth	ratingb		1
Sample No.	Site designation	Week No.	Sugar beet	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
199	24-1440-4960-1	HWM	1000	999	000	001	0.00	222	0101	100	
693	24-2320-4960-1	нию	999	222	1000	000	200	999	200	1000	
599	23-4080-1440-3	нав	222	222	000	222	თთთ	000	σσσ	000	
199	23-4080-1440-6	нию	200	222	200	200	000	000	000	222	
699	23-4080-1440-2	наю	222	222	900	000	996	222	9 8 7 y sn	900	v
119	23-5840-5840-1	HWM	222	222	222	222	222	222	222	999	
673	23-5840-5840-3	нию	222	222	1000	000		∞ ∞ ∞	ထထထ	~ ∞∞	
675	23-5840-5840-2	нам	1000	222	000	222	ထထထ	ကထထ	ထထထ	ထထထ	
57.1	26-4080-5400-5	406	100	1000	10	222	992	ထထထ	000	ထထထ	

			Eme	Emergence	rat1	nga	9	Growth	ratingb	_	
Sample No.	Site	No.	Sugar beet	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
Control A		400	000	222	001	0110	222	222	007	001	
Control B		ผพพ	222	1000	000	222	010	200	222	222	

^a Emergence rating key: Emergence of seedlings rated on a scale of 0-10 where 0 = no emergence and 10 = emergence comparable to controls.

b growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that is comparable to controls. Superscripts indicate as follows: n = necrosis and y = yellowing.

C = tip necrosis on leaves of foxtail millet.

9

Results of primary test number 13 indicating phytotoxicity observed on test plants planted 8/26/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table A-13

	Site	Week	El Control	Emergence	ice rating	ng a	Gilgen	15.1	rating	b Byo-	Notes
desig	designation	No.	beet	tard	Millet	grass	beet	tard	Millet	grass	Notes
26-4080-3200-)-3200 - 6	ныю	999	100	0000	999	49 6	978	878	ထထထ	
26-408	26-4080-3200-2	наю	044	000	нии	наа	000	044	กกก	чии	
26-49	26-4960-5400-7	400	9601	222	ผ ผ≠	000	യഗവ	₩	808	∞ ∞ σ	
26-32	26-3200-3200-3	нию	000	000	000	000	000	000	000	000	
36-32	36-3200-1030-3	нию	000	222	8 0 0 C	000	∞ <i>≻</i> 0	∞ ~ 6	01-0	<u>0</u> ,∞ 0,	
36-32	36-3200-1440-2	нак	200	222	800 10	900	യവയ	യവയ	∞~∞	878	
36-32	36-3200-1440-1	357	100	222	ოოო	0000	യയന	≯ ├∞	omm	wro.	
24-14	24-1440-3200-4	400	444	1000	ч 99	700	49 ~	0~0	ผพเก	mr0	
-			-		-						

			Eme	rgenc	Emergence ratinga	ıga	6	Growth	ratingb	1	
Sample No.	Site	Week No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard		Rye- grass	Notes
169	24-1440-3200-5	нию	999	0100	100	1000	ממטר	200	892	6	
693	23-4960-2320-4	нию	999	222	999	1000	พ๛๛	976	ω ν ο	680	
695	24-1440-4080-4	нак	999	200	1002	1000	100 L	w~w	920	7 8	
969	24-4520-5400-7	чию	ਕ ਕੜ	8 10 10	010	1000	45°	~~~	722	878	
169	26-4960-5400-8	400	100	222	où o	100	446	200	~~~	460	
669	26-3200-3200-7	наю	200	222	100	200	200	10	∞ <i>≻</i> ∞	88 OI	
701	26-4080-3200-7	нам	100	850	10	700	222	10 02	740	101	
703	26-3640-3200-7	нав	ဝထထ	100	4 ~ ~ ~	100	070	998	ω m-≠	≠ 9∞	
704	26-4080-3200-4	357	αωω	10	0 0 0	100	079	1002	191	1200	

1		1	Eme	rgeno	Emergence ratinga	ga	9	Growth	ratingo		1.
Sample No.	Site designation	Week No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
705	26-4080-3200-8	чаю	701	1001	600	# 00 10 10	സത	യവത	ruruco	10	
707	36-3200-1030-4	446	555	080	000	1001	40r	986	000	420	
402	36-3200-1440-3	446	m= 10	222	000	нию	m# r-	8~8	878	222	
111	36-3200-1440-4	400	004	222	3 W F	# 000 100 #	001	999	W4 F	000	
713	26-3640-3200-6	400	88 O	222	222	999	200	765	466	∞ <i>⊢</i> 6	
715	26-3640-3200-4	400	200	222	999	999	01-0	820	O/00 O/	680	
917	26-3640-3200-9	400	900	-99	8000	200	NO 01	∞~o	01-0	~~0	
717	26-3200-3200-8	40°E	10	222	207	844	വവവ	~v06	0 22	400	
812	26-3200-3200-2	нию	≠ ∞∞	222	ထထထ	000	2 mm	νν _χ	r r r	000	
									-	-	

			Eme	Emergence	e ratinga	ga	Gr	Growth	ratingb		
Sample No.	Site designation	Week No.	Sugar	Mus- tard	1 -1	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
719	26-3200-3200-6	нак	601	999	000	999	NN-	~~~	10	88 01	
721	26-4960-5400-10	406	999	600	999	1000	876	820	876	ω ∞ ω	
722	26-4960-5400-9	чик	999	999	999	000	യയവ	826	976	976	
723	26-4960-5400-6	нак	000	200	999	0100	976	rr6	878	010	
724	24-1440-3200-6	406	1000	200	999	100	 0	∞ ∞ o	2 000 00	976	
725	24-2320-4080-5	нак	०००	200	999	999	ತಕ್ಕ ತ	വവവ	∞ ≠≠	89 6 y	
727	26-3200-3200-4	нак	≄ທທ	∞ ∞∞	ุดพพ	10	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7 7 X	N N N	مرى م	
729	24-2320-4080-4	351	1000	100	000	1001	952	992	469	000	
731	26-3640-3200-8	чак	1001	720	0000	222	075N	own	שפייתו	10	

			Em	Emergence	e ratinga	lga	G	Growth	ratingb		
Sample No.	Site designation	No.	Sugar beet	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
733	26-9520-5400-8	нак	999	1001	000	0011	യയവ	ဖဖစ	8 1 1	5 10	
735	26-3640-3200-2	чик	999	220	10	0100	9-6	n o o	876	876	
737	26-3640-3200-3	чик	1000	999	222	999	rr0	820	Q00 Q	ω _∞ ω	
\$39	26-3640-3200-1	наю	444	000	6 6 Dead	100	400	040	4 2n Dead	Naga Ra	
741	26-3640-3200-5	нав	999	222	900	999	649	∞ ∞ <i>Q</i> /	ω,∞ ο,	ω _∞ ω	
743	26-2760-3200-4	нию	000	200	900	0111	957	500	250	400	
745	26-2760-3200-5	нак	000	200	999	999	220	465	876	876	
747	26-2760-3200-6	нак	000	999	999	ひまり	976	10	820	യഗവ	
749	26-2760-3200-2	чак	10	100	100	1000	10 8	100	100	10	

			Eme	Emergence	e ratinga	lga.	G	Growth	ratingb		
Sample No.	Site designation	week No.	Sugar beet	Mus- tard		Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
151	26-2760-3200-3	нак	999	999	001	000	200	500	897	82-6	
753	26-4520-5400-9	чик	1000	999	1000	1000	992	6	878	876	
755	26-4520-5400-6	357	100	100	400	100	W# 1	408	7 m m	⇒ NO	
151	23-5840-3200-5	нак	1001	999	100	0000	wow	₩~	800	8 ~ 6	
758	26-3640-5840-4	нак	900	222	999	1000	200	സഗത	440	800	
159	23-5840-3200-4	406	100	222	1000	100	800	978	o v∞ ov	886	
191	26-2760-3200-9	чак	⇒ 10 0	100	SIMIN	004	463	4 ~ ~	450	001	
762	26-2760-3200-8	чин	100	100	3 VC	001	253	992	4 W C	092	
763	26-2760-3200-7	400	100	1000	ณ๛๓	100	-121 m	300 €	H # 9	496	

	6410	Manh	Eme	rgenc	Emergence ratinga	ıga	5	Growth	ratingb		
No.	designation	No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
165	26-2760-3200-1	наю	0100	222	999	0101	100	222	100	100	
Control A		327	222	999	100	999	999	999	0110	999	
Control B		406	222	100	1000	222	222	999	1000	222	

^a Emergence rating key: Emergence of seedlings rated on a scale of 0-10 where 0=10 more emergence and 10=10 more comparable to controls.

b growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that is comparable to controls. Superscripts indicate as follows: n = necrosis and y = yellowing.

Table A-14. Results of primary test number 14 indicating phytotoxicity observed on test plants planted 8/27/76 and grown for 3 weeks in soil samples collected at selected after at the Rocky Mountain Arsenal.

	ted s	ites at	the	Rocky Mour Emergence	C 1	itain Arsenal ratinga		Growth	ratingo		
des1	Site designation	Week No.	Sugar beet	Mus- tard	1 - 1	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes c
26-408	26-4080-3200-1	406	200	വവയ	ထထထ	ოოო	74 to	ကက အက္ခ	4 4 4 4 4 4	mmv	4
26-408	26-4080-3200-3	нак	1088	999	000	999	∞~∞	∞ ∞ σ	თთთ	960	
26-408	26-4080-3200-5	น _ี ผพ	222	999	0000	1000	७७७	ထထထ	ထထထ	ထထတ	
23-58	23-5840-2320-5	нак	999	0100	000	ннн	992	2000	∞ ∞ o	200	
26-32	26-3200-3200-5	H CV FB	७७७	1000	ผผผ	9601	000	8 1 2	NNN	100	
26-32	26-3200-3200-1	406	999	100	#00	7 M7	100	100	000	225	
23-49	23-4960-2320-5	нчю	222	1000	000	001	∞ ∞ σ	0000	ထထထ	999	

Ocuma)	0442	18-21-	Eme	ergenc	Emergence ratinga	ıga .	G.	Growth	ratingb	-	
Nc.	designation	No.	Sugar	Mus-	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye-	Notes
Control		•	,	5	9,		,	,			
10 101100		4 N	201	101	101	10	10	10	9.5	070	
		က	10	10	10	10	10	12	10	10	
Control B		40	010	010	10	10	010	010	010	10	
		'n	10	22	201	101	101	22	22	201	

a Emergence rating key: Emergence of seedlings rated on a scale of 0-10 where 0 = no emergence and 10 = emergence comparable to controls.

b Growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that 1s comparable to controls. Superscripts indicate as follows: n = necrosis and s = stunting.

c Note: A - Tip necrosis on leaves of millet plants.

Results of primary test number 1.5 indicating phytotoxicity observed on test plants planted 9/11/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table A-15.

			E	nerger	Emergence rating ^a	Inga	Gı	owth	Growth ratingb		
No.	Site designation	week No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
488	05-1880-3640-1	наю	000	200	999	1000	100	222	999	222	
Control A	Α.	406	999	999	100	222	999	222	000	999	
Control B	æ.	нак	000	1001	1000	999	999	999	1000	1000	

a scale of 0-10 where 0 Emergence of seedlings rated on a Emergence rating key: Emergence of seedlings rance emergence and 10 = emergence comparable to controls.

b Growth rating key: Growth rated on a scale of 0-10 where 0=no growth and 10 growth of seedlings that is comparable to controls.

Results of secondary test number 1 indicating phytotoxicity observed on test plants planted 4/13/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table A-16.

01	1 01 01 01	0 10 10 10 10	10 10 10 10 10
	70	0 10 10 10	0 10 10 10
1001	1001	1001	0 10 10 10 10 10 1
10 10 10	10 10 10 10 10 10	1001	0 10 10 10 10 0 10 10 10 10
10 10 10 10 10 10 2n 10	10 10 10 10 2n	10 10 10 2n	0 10 10 10 10 10 0 2n
10 10 10	10 10 10 10 10	1001	0 10 10 10 10 0 10 10 10 10
3 100	10 6 6 6 7 10 10 8 8 8 10 8 8 8 10 8 8 8 10 8 8 8 10 8 8 8 8	0 10 8 10 9 0 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0	10 10 10 10 10 10 10 10 10 10 10 10 10 1
	88 121	10001	1000
144	∞ ∞	1001	10 10 8 10 10 8
		199 199 199 199 1	199 199
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 6 4 6		

			Em	ergen	Emergence ratinga	Iga	Or	Growth	ratingb		
No.	Site designation	week No.	Sugar beet	Mus- tard	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye-	Notes
#1	36-1440-5400-2	400	122	100	1001	1001	101	103	10%	133	
15	36-2760-5400-1	ним	199	199	100	امو	100	100	100	100	æ
16	36-2760-5400-2	нак	122	199	199	199	156	100	100	122	
17	36-3200-5400-1	400	122	122	199	100	100	199	199	100	Ø
18	36-3200-5400-2	наю	199	122	199	199	122	100	10%	100	
19	36-2760-5840-1	чин	199	199	است	199	199	122	199	199	
50	36-2760-5480-2	400	199	122	199	199	199	100	100	199	
23	36-2320-5840-1	325	100	199	199	100	199	122	199	199	
22	36-1440-4960-2	48E	199	1001	100	199	199	103	103	1001	
		-	-						-	-	

			Em	ergenc	Emergence ratinga	ga	9	owth	Growth ratingb		
Sample No.	Site designation	Week No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes
23	36-3200-4960-1	нак	100	199	اسم	122	199	199	100	100	
77	36-3200-4960-2	400	199	199	199	199	100	100	10y	122	
25	36-1030-4080-1	нак	122	122	122	199	199	122	199	199	
27	36-1050-1440-1	нав	199	122	122	199	199	199	122	199	
28	36-1030-4520-1	нию	199	199	100	122	199	122	122	122	
30	36-1440-3200-1	нак	199	122	ოო	199	122	100	1 000	1516	
31	36-2320-3200-1	нак	100	144	100	100	١٣٦	288	100	100	
35	36-2760-2320-1	307	100	100	100	199	١٥٥	100	100	١٥٥	
33	36-2320-2320-2	чиш	144	==	100	1	200	1 60 EU	100	100	

			Em	Emergence	e ratinga	1ga	G	Growth	ratingb		
Sample No.	Site designation	Week No.	Sugar beet	Mus- tard	141	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notesc
35	36-2760-2320-2	нию	100	١٣٥	1 601	105	١٥٥	182	١٥٥	126	æ
37	36-2320-3640-1	чик	199	199	100	199	100	100	78 78,n	100	
39	36-1880-2320-1	400	mm	100	100	امو	امو	100	43 38,y	100	
41	36-1880-2320-2	нак	100	144	140	١۵۵	100	1 44	100	100	Д
Control A	1 A	нак	100	100	lan	199	199	199	199	199	
Control B	B 1	чак	124	100	100	192	182	100	100	192	

a scale of 0-10 where 0 = a Emergence rating key: Emergence of seedlings rated on no emergence and 10 $\,$ emergence comparable to controls. b growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that is comparable to controls. Superscripts indicate as follows: n = necrosis, s = stunting and y = yellowing.

C Notes: A - some tip necrosis on leaves of ryegrass plants; B - possible "damping off" on sugar beet.

Results of secondary test number 2 indicating phytotoxicity observed on test plants planted 4/21/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table A-17.

		:	臣	nerger	ice rati	nga	G)	Growth	ratingD		
Sample No.	Site designation	Week No.	Sugar beet	Mus- tard	r Mus- Millet Rye- tard Millet grass	Rye- grass	Sugar beet	Mus-	Millet	Rye- grass	Notes
91	36-2320-1440-2	400	law	w=	140	144	18 28	1 22 82	110	13	4
29	36-2320-1440-1	สพท	اهم	165	100	100	128	1 00	100	100	Д
Control A	1. A	446	122	125	i wa	188	122	122	1001	122	
Control B	B 1	400	199	199	l wo	125	122	122	199	199	

Emergence of seedlings rated on a scale of 0-10 where 0 = a Emergence rating key: Emergence of seedlings rand of emergence and 10 = emergence comparable to controls.

b Growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that is comparable to controls. Superscript indicates as follows: s = stunting.

Results of secondary test number 3 indicating phytotoxicity observed on test plants planted 6/8/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table A-18.

	8 3		E	Emergence	nce rati	Inga	G	Growth	ratingb	0	
Sample No.	Site designation	Week No.	Sugar	Mus- tard	Millet	llet Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
63	36-1880-3640-2	351	100	100	688 7	ထထထ	000	8 7 7	4 38 3 y ,8	50 8 50 10 10 10 10 10 10 10 10 10 10 10 10 10	
239	24-2320-3200-3	чик	100	100	100	100	הישיח	3 3 3 A	ກຸດທຸ	6 6 8	
260	36-2320-1880-2	нак	000	H# 70	ดดด	กรร	1 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ន្ទន	11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	2 2 3 3	
331	36-2320-1880-1	нак	000	000	000	.000	000	000	000	000	
Control A	1 A	ччк	000	000	ထထထ	ထထထ	222	222	000	222	
Control B	1 B	нак	ω <i>ο</i> ν <i>ο</i> ν	900	0 00 00	1000	0110	1000	000	000	

a Emergence rating key: Emergence of seedlings rated on a scale of 0-10 where 0 = no emergence and 10 = emergence comparable to controls.

b Growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that is comparable to controls. Superscripts indicate as follows: n = necrosis, s = stunting and y = yellowing.

Results of secondary test number 4 indicating phytotoxicity observed on test plants planted 6/18/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table A-19.

1	0110	Monk	图	Emergence		ratinga	9	rowth	Growth rating ^D		
Sample No.	designation	No.	Sugar	Mus- tard	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes
400	09-4201-1299-1	355	ุน๓๓	400	ოოო	≻ 88	200	28 28,e 28	20 20 20 20 20 20	8 8 8 8 8	
Control A	l A and	446	222	222	1000	999	222	200	0000	999	
Control B	1 B	H 04 FR	222	2020	000	222	222	999	0000	999	
Control C sand	0	чик	വവവ	100	000	900	1000	1000	000	0000	

Emergence of seedlings rated on a scale of 0-10 where 0 = a Emergence rating key: Emergence of seedlings rando emergence and 10 = emergence comparable to controls.

b Growth rating key: Growth rated on a scale of 0-10 where 0 = no growth and 10 = growth of seedlings that is comparable to controls. Superscripts indicate as follows: e = epinasty and s = stunting.

Results of secondary test number 5 indicating phytotoxicity observed on test plants planted 9/20/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table A-20.

			臣	nerger	Emergence ratinga	nga	5	owth	Growth rating ^D	1	
Sample No.	Site designation	Week No.	Sugar Mus- beet tard	Mus- tard	Millet	Rye- grass	Sugar Mus- beet tard	Mus- tard	Millet	Rye- grass	Notes
460	36-1880-1880-1	нак	199	199	199	100	199	199	199	199	
514	36-1440-1030-1	нак	1001	199	22	199	199	122	اسم	122	
909	26-3200-5840-3	нαю	199	122	122	101	199	100	122	199	
628	36-1880-2760-1	354	100	100	laa	==	202	100	38 38,0	877	
680	26-4080-3200-2	нак	امو	199	امو	199	1 ~ 8	528	100	100	
682	26-3200-3200-3	нию	100	100	100	100	222	8 2 4	100	100	
069	24-1440-3200-4	408	100	199	199	1001	199	122	122	199	
969	24-4520-5400-7	нам	199	100	100	199	100	100	155	199	
					-	And in case of the		-	-		-

1			Em	Emergence	e ratinga	lga	9	Growth	ratingb		
Sample No.	Site designation	Week No.	Sugar	Mus- tard		Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
869	26-4960-5400-8	40	15	15	15	15	1.5	15	15	16	
		, m	22	10	101	10	100	101	10	10	
708	36-3200-1030-4	нак	199	199	199	199	199	100	122	122	
712	36-3200-1440-4	нию	122	122	199	122	199	100	100	169	
726	24-2320-4080-5	нав	199	199	199	199	100	١۵۵	199	199	
732	26-3640-3200-8	нак	122	199	122	199	100	122	100	100	
738	26-3640-3200-3	Han	199	122	199	199	192	188	108	199	
740	26-3640-3200-1	наю	100	100	100	100	100	100	100	100	
758	26-3640-5840-4	351	199	1991	7	199	100	188	100	100	

			Eme	Emergence	e ratinga	Iga	G	Growth	ratingb		
Sample .No.	Site designation	Week No.	Sugar beet	Mus- tard	Millet	Rye- grass	Sugar beét	Mus- tard	Millet	Rye- grass	Notes
191	26-2760-3200-9	400	199	100	1001	1001	199	122	1001	1001	
191	26-2760-3200-7	400	199	122	١٥٥	199	100	182	1000	1016	
168	26-4080-3200-1	400	199	199	199	100	100	68	588	199	
477	23-5840-2320-5	чик	100	122	122	122	100	122	199	199	
778	26-3200-3200-1	нак	120	100	1 20	100	1 2 2	1 2 2	1 mm	108	
Control A	ol A	нам	100	199	199	199	199	199	122	199	
Control	ol B	чию	199	100	1001	1001	199	199	1001	100	

11 a Emergence rating key: Emergence of seedlings rated on a scale of 0-10 where 0 no emergence and 10 = emergence comparable to controls. b Growth rating key: Growth rated on a scale of 0-10 where 0 = 10 growth and 10 = growth of seedlings that is comparable to controls. Superscripts indicate as follows: n = necrosis, s = stunting and y = yellowing.

APPENDIX B(25)

GROWTH MEASUREMENTS

Data in Appendix B are the growth measurements of tops and roots of indicator plants grown in test soils. Growth measurements were taken from the same plants utilized in developing visual indications of plant injury reported in Appendix A. Observations of root abnormalities were recorded as notes.

Median top growth represents a measured value (cm) of the tops of typical plants within the row of a specific indicator plant. Maximum root growth represents a measured value (cm) of the roots of indicator plants following removal from soil and washing. All measurements were taken three weeks after planting.

Useful symptoms for identifying phytotoxicity include root stunting, supression of root hair production, clubbing of roots, and root reduction. Differences of 20% in growth are probably not significant. Differences of 100% in growth are probably very significant.

Differences in response among indicator plants to the same test soils may reflect differences in plant susceptibility to a particular phytotoxin. Certain plants may not be sensitive to specific contaminants or may require higher concentrations of contaminants for phytotoxicity symptoms to develop.

Although no explanation is available to fully account for those instances where root growth is enhanced, it may be due to differential watering or nutrient availability. Enhanced root growth is not recognized as a phytotoxic effect from soil contaminants.

APPENDIX B

GROWTH MEASUREMENTS

Results of primary test number 1 indicating growth measurements recorded on test plants planted 2/10/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table B-1.

Scan 1	0110	Med	lan to	Median top growtha	4	Max	1 mnm r	Maximum root growthb	tho	
No.	designation	Sugar beet	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
	חשטון טשטר א	C	n u	c	α	u C	0	c tr	α	
4 6							,			
v	-0000001-0	5	5		•	· •			0.0	
m	6-2320-452	2.	1.5	2.0	4.5	4.0	o. m.	0.0	4.5	
'n	6-1440-4080-	4.5	.5	•	•	5.0		•	0.8	
7	6-1440-364	4.0	0.4	5.0	0.7	4.5	4.5	•	7.0	
0	6-1440-368	1.5	0	0	•	1.5	0	0	1.0	
¤	8-1440-408	3.5	2.5	4.0	•	3.5	3.0	•	•	
13	36-1440-5400-1	2,5	3.5	6.5	8.0	2.5	3.5	•	0.8	
14	6-1440-5400-	3.5	3.5	4.5	•	4.0	3.5	•	•	
15	6-2760-5400-	2.0	3.0	•	•	Died	3.5	•	•	
16	6-2760-540	•	.5 .5	5.5	•	4.5	4.5	•	7.5	
17	6-3200-5400-	5.5	2.0	7.0	•	5.5	2.0	•	0.6	
18	6-3200-5400-		2.5	•	0.9	2.5	3.0	•	6.5	
19	6-2760-584	•	•	2.0	•	3.5	3.0		0.9	
50	6-2760-5480-	2.5	2.5		•	2.5	2.5		7.0	
21	6-2320-5840-	•	4.0		0.6	0.4	4.0		9.0	
22	6-1440-4960-	3.5	3.5	2.0	0.9	3.5	3.5	•	•	
23	6-3200-496		•		8.0	•	•		9.0	
24	6-3200-4960-	2,1	2.5	0.4	0.9	5.5	2,5	n. o	7.0	
Control		•		0.0	0.6	•	•		0,0	

a Median top growth: median height of test plants measured 3 weeks after plant-

b Maximum root growth: maximum root length of test plants measured 3 weeks after planting.

Results of primary test number 2 indicating growth measurements recorded on test plants planted 2/18/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table B-2.

	011.	Me	dian t	Median top growth ^a	ha	Max	1 mnm	Maximum root growthb	thb	
No	Site designation	Sugar beet	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
25		3.5	2.5	5.0	7.0	4.0	5.5	4.6	5.2	
27	36-1050-1440-1	7.	4.0	5.0	7.5	4.9	7.4	6.2	3.3	
28		4.5	4.5	0.9	8.0	3.6	3.7	6.5	7.7	
30		3.5	4.0	8.5	7.0	3.6	7.7	6.3	9.7	
31		2.0	1.5	Dead	3.0	1.2	0.5	Dead	0.5	
32		4.0	3.5	5.0	0.9	4.2	7.4	4.3	9.9	
33		3.0	2.5	3.5	7.55	3.3	4.9	5.6	6.3	
35		3.0	5.0	3.5	4.5	3.6	5.3	4.9	5.1	
37	6-2320-3640-1	1,0	1.0	1.0	7.5	1	:	;	!	
39		3.5	3.5	4.0	8.0	3.4	4.5	5.7	6.9	
41	6-1880-2320-2	4.0	3.5	5.0	8.0	4.2	6.0	5.0	0.6	
Control	1	6.5	5.5	8.5	10	9.9	9.1	8.0	9.8	

a Median top growth: median height of test plants measured 3 weeks after planting. b Maximum root growth: maximum root length of test plants measured 3 weeks after planting.

Results of primary test number 3 indicating growth measurements recorded on test plants planted 3/24/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table B- 3.

1	Notes			A	Д				В		В, С							В, С							
;hb	ye- ass	•	•	•	6.0	•	11.2	•	•	0	•	7.2	•	•	3.8	•	•	•	•	•	•	•	•	5.3	
root growthb	Millet	•	•	•	•		5.6	•		0	•	•	1.9	•	0		•	•					•	8.3	•
Maximum ro	Mus- tard	•	•	•	•	•	3.4	•	•	0	_			_	_		-	-		-		-		9.5	-
Max	Sugar beet		•		•		4.3	•	•	0		•	•	•	•	•	•	•	•	•	•	•		2.4	•
3	Rye- grass	•			•		0.4			Ö		•		•	•	•					•	•	•	9.5	•
top growtha	Millet						3.0			0			0.8	•	0			•					•	5.5	
Median to	Mus- tard	•	•	•		•	0.4	•	•		•	•	•	•		•				•	•		•	2.0	•
Me	Sugar	4.4	•	•	•	•	3.5	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
	Site designation	5-5400-3640-	5-5400-3640-	6-2320-1440-	5-4960-4520-	5-4960-4520-	35-4960-4520-3	2-4960-4520-	5-2760-4080-	6-2320-1440-	5-4960-4520-	6-1030-4520-	6-1880-3640	6-1880-3640-	6-2320-3640-	6-1030-584	5-2760-4080-	6-2760-1880-	6-1030-1880-	6-1030-5840-	6-1440-3200-	5-2760-4080-	6-1880-188		
	Sample	43	45	91	46	20	51	55	26	23	19	62	63	29	89	69	73	72	75	92	79	80	81	Control	Control

a Median top growth: median height of test plants measured 3 weeks after planting. D Maximum root growth: maximum root length of test plants measured 3 weeks after planting.

C Notes: A - root growth greatly suppressed on sugar beet and ryegrass; B - suppression of root growth and root hair productivity, particularly on grass species; C - "clubbing" of roots on ryegrass and millet. c Notes:

Results of primary test number 4 indicating growth measurements recorded on test plants planted 3/31/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table B- 4.

Median top growth: median height of test plants measured 3 weeks after planting.

b Maximum root growth: maximum root length of test plants measured 3 weeks after planting.

^c Notes: A - root hair suppression on sugar beet and root growth inhibition and "clubbing" of roots of ryegrass.

(continued)

26-4960-4960-3 26-1880-5840-3

169

Control Control

growth measurements recorded 3 weeks in soil samples Notes B B Ryegrass Maximum root growthb Millet 5 Indicating growth measurand grown for 3 weeks in so the Rocky Mountain Arsenal. Mus-tard $\frac{1}{2}$ Sugar beet STREET ST Ryegrass Median top growtha Millet Results of primary test number on test plants planted $\frac{1}{4}/1/76$ collected at selected sites at κ Mus-tard ω and ω are ω and ω and ω and ω and ω and ω and ω are ω and ω and ω and ω and ω and ω and ω are ω and ω and ω and ω and ω and ω are ω and ω and ω and ω and ω and ω and ω are ω and ω and ω and ω and ω are ω and ω and ω and ω and ω are ω and ω and ω and ω and ω are ω and ω and ω and ω and ω are ω and ω and ω are ω and ω and ω and ω are ω and ω are ω and ω and ω are ω and ω and ω are ω and ω are ω and ω and ω are ω and ω and ω are ω are ω and ω are ω and ω are ω are ω and ω are ω are ω a on test plants planted Sugar 23-5840-4960-2 09-1164-3572-4 09-1164-3572-4 09-1164-3572-5 26-2320-3640-4 25-1380-2320-2 23-4960-2320-2 23-4960-2320-2 23-4960-2320-2 25-1880-1880-2 25-1880-1880-3 35-2760-5400-2 35-2760-5400-5 26-1880-5400-5 26-1880-5400-5 designation rable B-5. Sample

a Median top growth: median height of test plants measured 3 weeks after planting. b Maximum root growth: maximum root length of test plants measured 3 weeks after planting.

c Notes: A - some root hairs and root growth suppression on mustard; B - root hair suppression on sugar beet.

Results of primary test number 6 indicating growth measurements recorded on test plants planted 5/5/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table B-6.

		Me	Median t	top growtha	ha	Max	Maximum r	root growthb	thp	
Na	designation	Sugar beet	Mus- tard		Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes
-	8-2403-5662-						•			
-	2-3200-2320-				6.0					
-	3-3200-2320-			•		•				
8	2-3200-2320-	•	•	•	0	•				
8	8-5579-5690-	•		•	•	•	•		•	
8	8-5101-5178-	•		•	4	•	•			
8	4-3200-1440-	•	•	•	0	•	•	•	2	
8	4-2320-3200-	•	•	•	0	•	•			
9	4-3200-1440-		•	•	0	•	•		2	
6	8-2432-1471-	•	•	•	'n	•	•			
0	2-4960-1440-	•	•	•	6	•	•			
0	4-3200-4960-	•	•	•	•	•	•			
9	4-4960-5840-	•	•	•	0	•	•		•	
0	4-4960-5840-		•	•	6	•	•			
0	4-2320-3200-		•	•	•		•		•	
0	8-2403-5662-		•	•	•	•	•			
0	8-5101-5178-		•	•	•	•	•			
0	8-2432-1471-			•	•	•	•			
-	8-5579-5690-	•	•	•	•	•	•			
-	8-2403-5662-		•	•	•	•	•			
H	8-3142-1995-		•	•	•	•	•		•	
-	8-3142-1995-		•	•	•	•	•			
-	-0804-0964-9	•	•		•	•	•			
2	-0804-0964-9				•	•	•		•	
2	4-4960-5840-		•	•	6	•	•			
225	24-4080-3200-1	2.5	ر. م.	9.9	12.5	4-	3.5	9.5	2.5	
VC	4-4000-3200-		•	•		•	•			
V	4-3600-1440-	•	•	•	•	•	•		•	

Comple	2140	Me	dlan	Median top growtha	wtha	Max	x1mum	1mum root g	growthD	
No.	designation	Sugar beet	Mus- tard	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye-	Notes
231	24-4960-5840-3	3.7	4.6	5.1	0.6	3.3	6.1	4.0	5.9	
233	22-4960-3200-4	4.5	5.0	9.4	10.0	1.6		70	12.5	
235	09-4201-1299-3	4.6	5.9	5.9	10.8	3.1	7.0	2.6	7.5	
237	09-4201-1299-4	4.3	4.2		10.3	3.6		200	0.3	
239	24-2320-3200-3	2.9	0		6.8	8			, .	
Control	A	6.2	7.4	8.1	14.8	2.5	4.2		2.0	
Control	В	7.1	7.1	8.3	13.4	5.0	4.3	2.5	10.1	

a Median top growth: median height of test plants measured 3 weeks after planting. b Maximum root growth * maximum root length of test plants measured 3 weeks after planting.

Results of primary test number 7 indicating growth measurements recorded on test plants planted 5/13/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table B-7.

Cont-Inna

a Median top growth: median height of test plants measured 3 weeks after planting. b Maximum root growth: maximum root length of test plants measured 3 weeks after planting. c Notes: A - root stunting on millet and ryegrass; B - root stunting and root hair suppression of grasses; C - hypocotyl swelling at base and root hair suppression on all test species; D - "clubbing" of roots on grass species.

Results of primary test number 8 indicating growth measurements recorded on test plants planted 5/19/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table B-8.

	0	Notes				A		В				В			В								В						
		Rye-		•			•	•	7.0	•		•	•	•	•	•	•	•	•	•	•	0			•	•	91	:	•
	root growthb	Millet	•	•			•	•	4.7	•	•		•	•		•	•		7.4	•	•	0	•			•	6.1	•	•
-	1	Mus- tard		•	•	•		•	m	•	•	•	•	•		•	•		•	•	•	0	•	•		•	ه- د.	•	•
	Max	Sugar	4.0	•	•		•	•	5.6	•	•	•		•	•	•	•	•			•	0	•			•	4 - W	•	•
200	าล	Rye-	11.						9.5													0					10.0		
	top growtha	Millet		•	•	•	•	•	6.3	•	•			•		•	•	•	0.9		•	0	•	•	•	•	0.0	•	•
100		Mus-				•	•	•	5.5	•	•				•	•		•	•		•		•		•	•	20.0	•	•
200	Me	Sugar	•		•	•			20.0	•	•	•	•	•	•		•	•	•	•	•	0	•	•	•	•	יי. יי	•	•
מספרוסס	S4+p	designation	4-4080-5840-	4-4080-5840-	6-4520-2760-	6-1880-3200-	6-2760-1440-	6-2760-1440-	8-2403-5662-	-0964-0804-9	6-2320-4960-	6-2320-1880-	4-3200-5840-	6-2760-1440-	6-2760-1440-	6-4520-2760-	6-5400-4960-	-0804-0964-9	8-3142-1995-	6-1880-3200-	6-2320-4960-	6-2320-1880-	2-4960-3200-	-0964-0045-9	8-5101-5178-	8-5579-5690-	08-2432-1471-3	0-3142-1995-	-0004-0064-0
	Sample	No	6	9	9	9	0	0	0	0	0	-	_	-	1	~	S	N	S	S	S	3	3	3	3	#	342	7 =	1

Sample	6445	Med	lan	top growtha	tha	Maximum		root growthb	wthb	-
No.	designation	Sugar	Mus- tard	Millet	Rye-	Sugar	1	Millet	Rye-	Notesc
0.1.0								-	25 425	***************************************
348	08-2403-5662-2	0.9	6.1	6.4	11.7	1.1	7.0	0	0	
350	22-2300-2320-h	4	2			1.0			1.1	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0	0	0	0.	2.4	4.0	0.0	2.6	
352	22-3200-2320-3	5.6	6.3	9	201	7	2 7	C L		
					•			2.0	1.	
		0.0	11.0	13.0	14.6	5.0	5.7	13.7	7.0	
Control B		0	,	רכר	יונו	-				
				1.01	211	4.5	0.0	0.	10.3	

a Median top growth: median height of test plants measured 3 weeks after planting. b Maximum root growth: maximum root length of test plants measured 3 weeks after planting.

c Notes: A - root growth suppression on mustard, millet and ryegrass; B - severe root reduction on grasses.

Results of primary test number 9 indicating growth measurements recorded on test plants planted 5/26/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table B- 9.

	Notes	
thb	Rye- grass	00477700000000000000000000000000000000
root growthb	Millet	444570000000000000000000000000000000000
Max1mum ro	Mus- tard	ようようらうらてよてきららってりとうりょうこう うらうしょうけい りょうていまうしょうしょうしょうこうこうらうらうらうらい りっしゃ
Max	Sugar	$ \frac{1}{2} $
Ja	Rye- grass	
Median top growth ^a	Millet	$\begin{matrix} \mathbf{u} & \mathbf{u} \\ \mathbf{u} & \mathbf{u} \\ \mathbf{u} & \mathbf{u} \\ \mathbf{u} & \mathbf{u} \\ \end{matrix}$
dian t	Mus- tard	α
Me	Sugar	よるよろようようようなうでしょうらうらうこうらうで うともの後ょるらうううしょうかがっ でもののできるらうさいしょうが
	Site designation	09-2467-5762-5 09-4275-4774-1 23-4080-4960-5 22-4960-3200-3 22-4960-1440-4 22-4960-1440-4 22-4960-1440-4 22-4960-1440-3 23-3200-1440-3 23-3200-1440-3 23-4080-3200-3 23-4080-3200-3 23-4080-3200-3 23-4080-3200-3 23-4080-3200-3 23-4080-3200-3 23-4080-3200-5 23-4080-3200-5
	Sample No.	653310864208642086420864208642086420864208642

		Med	Median top	op growtha	tha	Maxi	mum: ro	Maximum root growth ^D	wthb	
Sample No.	Site designation	Sugar	Mus- tard	Millet	Rye-	Sugar beet	Mus-	Millet	Rye- grass	Notes
407	6-2320-364	6.8		11.1	13.1	5.9	7.7	9.1	13.0	
408	6-232	5.5	4.9	5.1	12.2	4.1	•	5.3	9.1	
409	6-2320-364	5.3		•	•	6.5		6.7	8.1	
411	6-1880-584	4.1	•	4.2	•	3.8		7.2	8.1	
4.12	3-3200-144	5.8	•	8.9	10.6	5.5		9.1	10.1	
413	2-4960-144	5.1	5.5	6.1	12.9	•	10.4	7.1	7.3	
415	2-4960-144	6.2	•	7.5	13.1	5.5	•	•	8	
417	4-2320-320	•	5.2	6.9	12.5	•	•	11.1	7.6	
419	9-4275-477	5.1	•	7.3	13.4	7.1	8.0		•	
421	2-4960-144	•	•	9.1	•	6.5	•	2.6	9.5	
423	9-4201-129	7.0	•	•	12.3	4:5		7.1	•	
425	4-2320-320	9.1	•	•	•	5.9	6.1	4.3		
427	4-4960-5840	•	9.1	9.6	14.8	4.9	•	7.2	11.1	
429	2-4960-3200	•	•	•	•	7.7		4.1	12.2	
431	9-1371-4731	•	•	8.1	•		•	•	0	
433	9-1164-3	4.8	•	•	•		•	2.6	•	
435	3-3200-1440	•	•	13.6	15.5	5.1	•	•	•	
Control	A	11.9	10.1	14.4	15.7	4.5	5.5	8.9	9.8	
Control	m	11.2	9.5	13.9	15.3	3.5		•	•	

a Median top growth: median height of test plants measured 3 weeks after plant-

b Maximum root growth: maximum root length of test plants measured 3 weeks after planting.

Table B-10. Results of primary test number 10 indicating growth measurements recorded on test plants planted 7/20/76 and grown for 3 weeks in soil samples

		Notes												A																
	thb	Rye- grass	11.3	9.1	8.1	•	•	•	12.9	•		•		•	10.3										9:1			6.5		
Arsenal.	root growthb	Millet	8.4	7.2	7.7	5.5	7.4	3.0	•	•	•			•	9.9				•	•		•		•		•	•	10.1	•	10.1
	Maximum re	Mus- tard	7.7	4.1	5.0	0.4	4.5	6.1		•	6.4	•	•	•	3.7	•	4.9	5.5	6.7	7.2	5.1	7.2	12.9		4.9	•	•	5.1	4.0	8.2
Mo	Max	Sugar	2.4	•		•	•	•	4.9	4.9	. •			•	3.8	•	•	•	•			•	•	•	•	•	•	±.	•	•
	ha	Rye- grass	8.0					10.4	9.3		12.8	10.9	12.0	4.5	•	9.8	•		12.8									10.9		
	top growtha	Millet	1.5	4.8	4.2	4.9	2.6	3.6	4.9	•	5.7	7.9	8.4	6.2	10.1	2.5	4.9	0.9	2.6	5.9	4.7	2.6	7.1	9.4	4.8	8.1	11.6	6.1	6.2	1.2
	Median to	Mus- tard	4.8	•	4.2	8.4	5.6	7.6	5:1	7.3	•	. •	7.5	•	7.5	•	•	•	4.5	•	•		•		•	•	•	5.5	•	•
at selected	X	Sugar	3.8	3.5	3.3	4.3	4.6	2.5	4.1	9.9		4.8	•	•	8.9	•	•	•	•		•	•	•		•	•	•	2.0	•	•
collected	-770	designation	3-2320-5840	3-2320-5840	3-2320-5840	6-4080-5400	6-4080-5400	6-1880-1880	6-1880-1030	6-4080-5400	6-1880-1030	6-1880-1030	6-1880-1880	6-1880-1800	06-5840-4520-1	6-5840-4520	6-5400-3640	6-4080-5400	6-4080-5400	6-4080-5400	4-2320-4960	4-2320-4960	4-2320-4960	4-1440-5840	4-1440-5840	6-1880-1880	5-1440-3200	5-1880-3640	6-5840-4520	6-4080-4960
		No	3	m	7	4	7	4	7	5	5	5	5	5	461	9	9	9	9	-	-	-	-	2	8	Ø	8	8	9	2

o Lumos	0140	Med	ledian t	op grow	rtha	Max	1mnm	root gr	owthb	
No.	designation	Sugar beet	Mus- tard	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye-	Notes
104	יו טכשון טוואש אַכ	1	,							
+ 7 .	40-2040-4240-4	0.0	1.0	(• .2	12.8	4.8	12.1	8.5	6.6	
495	26-5840-4520-6	7.7	4.6	2.5	6.1	0.4	20	2	2	
164	23-4080-5840-2	4.1	6.1	14	ייי	2			2	
Control		8.3	8	11.5	15.0	0	200		100	
Control	В	6.3	6.2	11.3	14.1	0.0	4.7	6.2	.0	

a Median or growth: median height of test plants measured 3 weeks after plant-

b Maximum root growth: maximum root length of test plants measured 3 weeks after planting.

c Notes: A - "clubbing" of roots and reduced root growth on grasses.

Table B-11. Results of primary test number 11 indicating growth measurements recorded on test plants planted 7/22/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal.

	Notes											A, B																		
	thb Rye-	grass	•		à	12.5	0	•	•		•	•		1	•	æ	•	2	0.9					•				11.3	•	
	root growthb	MITTER	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9.9	•	•
	Maximum rar	tard							•	•	•	•	•			•												2.6		
	Sugar	beet	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	5.1	•	
CYOCK STO	na Rye-	grass	•		-	11.2	•	•	ò	0	-	•	i	7	7	0	ò	2	•	3	1	4	0	1:		•	•	13.4	•	N
200	top growtha	MILLET				•		•	•	•	•	•	•		•	•				•	•							7.9	•	
3	Median t	tard									2																	9.5		
מים מים מים מים	Sugar	beet	4.6	1.7	7.6	4.2	4.2	9.4	6.1	8.4	4.2	6.2	5.6	6.1	0.0	6,4	7.1	9.1	5.3	8.1	4.2	6.1	6.3	4.9	3.3	6.2	3.8	8.1	7.	1.1
מסיים	Site	designation	3-4080-5840-	3-3200-5840-	3-4960-5840-	3-4960-1440-	4-1440-1440-	3-4960-1440-	3-5840-1440-	6-3640-5840-	6-1440-1030-	6-1440-1030-	3-5840-5840-	3-2320-5840-	3-3200-5840-	3-5840-1440-	3-4960-1440-	3-4080-1440-	3-4080-1440-	6-3640-5840-	6-3200-5840-	6-3200-5840-	6-3200-5840-	3-1440-5840-	3-1440-5840-	5-1440-3200-	3-3200-5840-	24-4960-4960-1	4-4960-4960-	3-4960-1440-
	Sample	NO.	01	0	-	$\mathbf{\circ}$	$\mathbf{\circ}$	\mathbf{c}	\mathbf{c}	\mathbf{c}	_	-	_	_	_	a	α	α	α	C)	a	a	m	m	m	m	$\boldsymbol{\sim}$	539	-	-

		Me	Median top	op growtha	ha	Max	Maximum r	root growth	rtho	-
Sample No.	Site designation	Sugar	Mus- tard	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes
7	3-1440-5840-				~			•		
547	23-1440-5840-2	5.5	20.0		10.2	7.1	5.3	5.3	7.3	
7	3-2320-5840-	•			9				•	
5	6-5840-4520-			•	3	•	•			
2	6-5840-4520-		6	7.1	2	•	•		•	
5	6-5840-4520-			•	H	•			•	
5	6-3640-5840-	•	•	•		200	•	•	•	
S	3-5840-1440-	•		6.4	-	•	•	•	•	
9	3-5840-1440-	•	•	•	0	•	•	•	•	
9	3-4960-1440-	•		•	∞	•		•	•	
9	4-1440-4960-	•	•	•	0	•	•	•		
9	3-4960-1440-			•	0	•	•	•	•	
9	3-5840-1440-	•		. •		•	•	2		
9	6-4080-5400-	•	•	•	2	•		•	•	
-	6-4080-5400-	•			-	•	•	•	•	
1	6-1880-1030-			•	7	•	•	•	•	
-	6-5400-3640-	•	•	•	0	•	•	•	•	
-	6-5400-4960-			•	2	•	•			
7	-0964-0045-9		•	•	2	•	•		•	
œ	6-3640-5840-	•		•	-	•	•			
œ	3-5840-1440-	•		•		•	•			
8	3-5840-1440-	•		•	9	•	•	•	•	
∞	6-3200-5840-	•	•	•	m	•	•	•	•	
∞	6-3200-5840-	•	•	•	0	•	•			
9	6-3200-5840-	•		•	7	•	•		•	
9	6-3640-5840-	•		•	2	•	•		6	
9	6-1440-2760-	•		•	S	•	•		•	
9	6-1440-2760-	•	•	ioi or		•	•		•	
2	3-1440-5840-			•	4 -	3	•		•	
O	3-2040-2040-	•	•	•	-	•	•	•		

00000		Me	Median t	top growtha	ha	Maxim	mile	noot growtho	440	
No.	Site designation	Sugar beet	Mus- tard	Millet	Rye-	Sugar	fus-	Millet	Rye-	Notes
601 602 603 605 607 609 Control	24-1440-4960-3 23-4960-5840-2 24-1440-4960-2 26-3200-5840-3 26-3200-5840-2 36-2760-1030-3	0.00 0.00 0.00 0.00 0.00 0.00	1.0.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	2 2	12.9 12.9 12.8 12.8	44 N.N.44 A.	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Control	B 1	9.8	9.4	10.4	12.8	6.3	9.6			

c Notes: A - root hair suppression on sugar beet; B - "clubbing" and root stunting on grasses.

Table B-12. Results of primary test number 12 indicating growth measurements recorded on test plants planted 7/28/76 and grown for 3 weeks in soil samples

		Notes																												
	thb	Rye- grass		•	•	•	•	10.4	•		•	•	•	ω.	•				•	5	6		•	•	•	à		10.2		•
Arsenal.	root growthb	Millet	7.0	4.2		•	9.1	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	3.5	•		± .	0.0	•
	Maximum ro	Mus- tard	•	•	•	•	•	•	•	•	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•		•	
Mo	Max	Sugar	•	•	0.9	•	•	. •	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•		# = m.	•	•
the Rocky	าูล	Rye- grass	•	. •	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	9	•	0	7.6		
at	p growtha	Millet			•		•	•		•	•	•	•	•	•		•	•	•					•	•	•		20		•
ted sites	Median top	Mus- tard	6.8	4.6	•	•	•	5.3	•			•	•		•	•	•	•	•	•	•	•	•	•	6.3	•	•	+.	2.5	
at selected	. Me	Sugar	6.3	5.1	6.3	5.5		•	•	•	•	٠.	•		•	-		•	•	•			•	•	6.2	•	•	6.4		
collected a	244.5	designation	6-1440-1440	6-1880-2760	6-1440-1880	6-5840-4520	6-2760-1030	6-2760-1030	6-3200-1030	6-3200-1030	6-1880-2760	6-1440-1440	6-1440-2320	3-4080-1440	6-1440-1440	6-1440-1880	6-3640-5840	3-4960-5840	3-4080-5840	4-5840-4960	4-5840-4960	6-1440-1030	6-1440-1880	6-3640-5840	6-1440-1030	6-1440-2320	6-1440-2760	23-3200-5840-3	0964-0447-4	1-6360-1300
	00000	No.		-	-	-	-	N	N	C	N	N	m	m	m	m	m	7	T	⇉.	⇉.	7	7	5	5	2	2	629	OV	•

	.,,,	Me	Median to	top growtha	na	Maxi	mnm	root growth	tho	
Sample No.	Site designation	Sugar beet	Mus- tard	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes
	23-4080-1440-3	5.6	5.5	10.1	12.4	0.4	7.3	0	0	
199	23-4080-1440-6	5.1	6.1	11.2	11.8	6.2	6.5	7.7	77.0	
	23-4080-1440-2	6.8	9.1	5.2	11.9	4.9	7.0	5.6	8.5	
	23-5840-5840-1	7.1	8.2	7.9	11.6	5.4	9.9	5.7	10.6	
	23-5840-5840-3	4.9	6.1	9.9	8.9		5.6	8.2	11.2	
	23-5840-5840-2	4.9	4.8	5.1	8.7				8.2	
Control	A	8.1	7.9	12.1	13.1	4.2	7.0	8	7.6	
Control	В	7.2	8.3	13.1	13.8	3.8	5.9		9.1	

Table B-13. Results of primary test number 13 indicating growth measurements recorded on test plants planted 8/26/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal.

Notes	
rthb Rye- grass	
root growthb Millet gr	4 w@ 0 @ F u w 0 @ 0 & u 0 0 F 0 0 F 0 0 0 0 0 0 0 0 0 0 0 0 0
Maximum r ar Mus- t tard	
Max Sugar beet	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ha Rye- grass	$ \frac{1}{2} $
top growtha Millet g	
Median to r Mus- tard	
Sugar beet	
Site designation	26-4080-3200-6 26-4080-3200-3 26-4960-5400-7 26-3200-3200-3 36-3200-1440-1 24-1440-3200-4 24-1440-3200-4 24-1440-3200-4 24-1440-3200-4 26-4960-3200-7 26-4080-3200-7 26-4080-3200-7 26-3640-3200-7 26-3640-3200-6 26-3640-3200-6 26-3640-3200-6 26-3640-3200-8 36-3200-1440-4 26-3640-3200-8 26-3640-3200-8
Sample No	6683 6683 6683 6683 669 669 669 669 669 669 669 669 669 66

		Me		top growtha	ha	Max	Maximum r	root growthb	tho	
Sample No.	Site designation	Sugar	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
C	6-4960-5400-						4.0	7.2	7.9	
CA	-0045-0964-9	•	2.5	2.5	•	•	7.1	11.2	•	
CA	4-1440-3200-	•	•	•	•	•	4.7	7.9	5	
CA	4-2320-4080-		•	•	•	•	7.4	•	•	
CA	6-3200-3200-	•	•				3.6	•	8.2	
CA	4-2320-4080-	•	2.3	5.6	•	•	9.4	2		
3	6-3640-3200-	•	1.9	3.7	•		6.8	0	•	
m	6-4520-5400-	•	•	•	•	•	•	0	•	
m	6-3640-3200-	•	•	5.6	•	•	7.3	5	•	
m	6-3640-3200-		3.5	. •	•	•	•	7	8	
3	6-3640-3200-		0	0		•	0	2.3	6.5	
-	6-3640-3200-		3.0	4.0	•	•	9.2	•		
743	-2760	•	•	3.2	•	8	4.8	3	ä	
╼	6-2760-3200-	•	•	•		•	9.5	0	7	
-	6-2760-3200-				•	•	•	4	4	
4	6-2760-3200-			•	•	•	7.2	•	•	
5	6-2760-3200-	•	•	2.4		2.6	•	•	8.2	
S	6-4520-5400-	•	•	•	•	•	•	•	•	
5	6-4520-5400-	•	•		•	•	•	•	•	
S	3-5840-3200-	•	•	•	•	•	•		•	
S	6-3640-5840-	•	•	2.7	•		•	•	•	
S	3-5840-3200-		•		•		45	15.0	•	
O	6-2760-3200-	•	•				•	•	•	
9	6-2760-3200-	•					•	•	•	
9	6-2760-3200-	•	•	•	•		•	•	•	
165	6-2760-3200-	•	4.9	8.0	•	2.7	9.9	9.8	•	
Contro	A L	 	2.5	8 6	12.0	4 س س	4 4 6 4	6.1	04	
,	4	•	2.	•	•	•			•	

a Median top growth: median height of test plants measured 3 weeks after planting. b Maximum root growth: maximum root length of test plants measured 3 weeks after planting.

Table B-14. Results of primary test number 14 indicating growth measurements recorded on test plants planted 8/27/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal.

Comple	6445	Me	dian t	Median top growtha	ha	Max	Max1mum r	root growthb	thb	
No.	designation	Sugar	Mus- tard	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes
	26-4080-3200-1	3.5	2.0	2:1	4.7	5.5	3.0	2.1	4.6	
469	26-4080-3200-3	2.1	2.1	3.5	7.5	4.6	2.1	16.5	18.0	
	26-4080-3200-5	2.4	2.3	3.5	6.5	4.0	8.7	10.3	10.5	
	23-5840-2320-5	2.5	2.8	0.9	3.5	5.0		3.7	5.0	
	26-3200-3200-5	2.4	1.9	1.5	5.6	9.4	4.0	3.6	11.5	
	26-3200-3200-1	3.5	3.4	0	5.0		5.0		8	
	23-4960-2320-5	2.5	2.2	3.0	7.3	9.9	2.6	7.6	12.1	
	A	4.6	4.6	6.2	7.2	•	10.7	m. m.	5.7	
Control	ш	3.7	4.6	5.1	8.0	4.0	4.0	7.1	8.3	

Table B-15. Results of primary test number 15 indicating growth measurements recorded on test plants planted 9/1/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal.

			dian t	Median top growtha	ha	Max	1 mnm r	Maximum root growth ^D	rtho	
Sample	Site designation	Suga	Mus- tard	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes
					•					
488	488 05-1880-3640-1	2.4	2.5	3.1	4.0	5.5	7.7	6.1	12.5	
Control	A	3.6	4.0	5.5	8.0	2.8	5.1	6.8	6.6	
ontrol	В	3.7	3.9	3.5	6.8	3.0	7.5	7.5	7.3	

Results of secondary test number 1 indicating growth measurements recorded on test plants planted 4/13/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table B-16.

	- Notes		07071100000000000000000000000000000000
growth	Ryegras	04.80.00.00.00.00.00.00.00.00.00.00.00.00.	0 H C C C C C C C C C C C C C C C C C C
root gro	Millet	a wwitenrenenene arearited and and are	
Maximum r	Mus- tard	$\frac{1}{2}$ $\frac{1}$	るろうようろうよりころとしていることは
Man	Sugar		343757545412241118843111884311128931
ha	Rye- grass		4444 44444 4444 44444 44444 44444 44444 4444
top growtha	1 41	てよるでもなってしていることできる。	00000 - 00000 000000000000000000000000
Median t	11 01		roommorphism
Me	Sugar		
	Site designation	6-1880-4080- 6-1880-4080- 6-2320-4520- 6-1440-4080- 6-1440-3640- 6-1440-3640- 6-1440-5400- 6-1440-5400- 6-2760-5400- 6-3200-5400-	36-2760-5840-1 36-2760-5840-1 36-2320-5840-1 36-1440-4960-2 36-3200-4960-2 36-1030-4960-1 36-1030-4520-1 36-2320-3200-1 36-2320-2320-2 36-2320-2320-2
	Sample	100000 10000 8400000000000000000000000000000000	2351084240 333108424

		Me	dian t	sop growt	;ha	Max	Imam. r	root grow	tho	
Sample No.	Site designation	Sugar beet	Mus- tard	Millet	Rye- grass	Sugar beet	Mus- tard	Millet	Rye- grass	Notes
37	36-2320-3640-1	6.3	5.7	5.3	9.1	4.1	4.2	5.6	11.0	
30	T 0000 DART AC	-								
2	7-0262-0001-00	7.1	0.0	7.5	1111	3.1	6.3	3.0	6.)	
41	36-1880-2320-2	5.1	1	7.0	12.2	2.0		1.2	6.5	
Control	11 A	7.2	6.9	6.5	13.3	3.1	5.0	7 7	14	
Control	1 B	4.2	4.0		8	3.5	1:0		, t	

c Notes: A - suppressed root development on sugar beet, mustard and ryegrass, "clubbing" of ryegrass.

Results of secondary test number 2 indicating growth measurements recorded on test plants planted 4/21/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table B-17.

	Notes	
thb	Rye- grass	100.4
root growth ^D	Millet	3.2
Maximum r	Mus- tard	2.1 0.7 8.9
Max	Sugar beet	2001
ha	Rye- grass	4.5 15.2 13.5
top growtha	Millet	5.00
Median t	Mus- tard	10.0
Me	Sugar	2.487
2440	designation	36-2320-1440-2 36-2320-1440-1 1 A
Scar 1	No.	46 3 59 3 Control

Results of secondary test number 3 indicating growth measurements recorded on test plants planted 6/8/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table B-18.

0		Me	dian t	Median top growtha	ha	Max	1 mnm r	Maximum root growth ^D	tho	
No	designation	Sugar	Mus- tard	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes
63	36-1880-3640-2	6.5	7.0	3.5	7.7	3.5	5.5	1.1	0.5	
239	24-2320-3200-3	3.3	2.0	2.0	9.7	3.4	4.0	2.0	0.5	
260	36-2320-1880-2	2.1	3.5	1.2	3.1	2.0	2.0	0.5	0.4	
331	36-2320-1880-1	0	0	0	0	0	0	0	0	
Control	¥	8.4	8.0	13.2	15.4	5.0	4.1	3.8	9.1	
Control	1 B	9.0	14.5	15.0	7.0	3.0	4.3	5.5	10.1	

median height of test plants measured 3 weeks after planting. b Maximum root growth; maximum root length of test plants measured 3 weeks after a Median top growth: planting.

Results of secondary test number 4 indicating growth measurements recorded on test plants planted 6/18/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table B-19.

Ormal o	0115	Me	dian t	Median top growth ^a	ha	Max	1mum r	Maximum root growth ^b	tho	
No	designation	Sugar	Mus- tard	Millet	Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes
0 044	9-4201-1299-1	4.7	4.2	5.7	6.9	0.0	2.7	1.5	9.4	
Control	A	9.8	8.7	14.2	15.2	3.8	7.0	6.3	10.3	
No san	Ę.							•		
Control	Control B	9.5	9.3	14.9	16.5	5.4	4.9	7.8	10.4	
Sand										
Control	D	8.5	8.5	15.5	17.1	3.5	6.9	9.5	13.1	
Sand										

Results of secondary test number 5 indicating growth measurements recorded on test plants planted 9/20/76 and grown for 3 weeks in soil samples collected at selected sites at the Rocky Mountain Arsenal. Table B-20.

		Me	Median t	top growtha	ha	Max	Max1mum r	root growthb	rthb	
Sample	Site designation	Sugar	Mus- tard		Rye- grass	Sugar	Mus- tard	Millet	Rye- grass	Notes
160	6-1880-188			7.2	8.3	•	4.9	•	2.3	A
514	36-1440-1030-1	9.4	6.2	4.2	9.9	3.8	3.1	1.2	0.7	A
909	6-3200-5840-	•		6.1	9.1	•	2.5	•	•	
628	6-1880-2760-	•		1.5	4.2	•	0.9	•		
680	6-4080-320			5.3	9.3	1.5	1.5	•	2.9	
682	6-3200-3200-	•			•	•		0	•	Ø
069	4-1440-3200-	•		8.9	0	•	•	3.9	•	
969	4-4520-5400-	2.6		9.1	0	•	5.3	4.1	7.6	
869	-0015-0961-9	•		7.7	10.2	4.0		•	4.3	
708	6-3200-1030	•			9.5	3.1		2.3	3.9	
712	6-3200-1440-	•				•		•	0.4	
726	4-2320-4080-	•		8.1	0	3.1	2.3	3.1	•	
732	6-3640-3200-			•	13.1	1.7		•	5.5	
738	6-3640-3200-	2.0		•	0	•	2.4	3.9	•	
0 1/2	6-3640-3200-		0	0	0		0	0		
758	6-3640-5840-		•		•	1.5	-	•	3.4	
192	6-2760-3200-		•	•	•	•	-	•	•	
164	6-2760-3200-		•	•	8.1	•	-	•	2.3	
168	6-4080-320				•	4.0		•	•	
774	3-5840-2320-		•		9.6	•			4.1	
778	6-3200-3200-	3.9	5.9	5.1	8.9	1.9	1.9	2.5	3.6	
	¥	•	•	•	4.6	3.6	-	•	2.9	
Control	Ø	•	•	4.8	11.2	•		•	5.5	

a Median top growth: median height of test plants measured 3 weeks after planting. maximum root length of test plants measured 3 weeks after b Maximum root growth: planting.

c Notes: A - root stunting and "clubbing" on millet and ryegrass; B - severe stunting on roots of mustard.

APPENDIX C

GLOSSARY

Appendix C is a glossary of terms used to indicate growth and development of plants grown in test soils from RMA. The probable phytotoxicity ratings for various soils were established by observation of emergence and growth at weekly intervals, measurements of plant tops and roots following three weeks growth, and recognition of symptoms to distinguish between phytotoxin and other environmental stress injury.

In Appendices A and B several terms were used to describe similar phenomena. In this glossary, terms having the same meaning are listed as synonyms to the preferred term. Where possible, term definitions differentiate whether the term describes plant injury due to phytotoxins or other environmental stresses.

GLOSSARY

- Chlorosis absence or loss of chlorophyll from leaves and stems.
- Clubbing see clubbing of roots.
- Clubbing of roots deformation of plant roots during development where roots are shortened in length and enlarged in circumference. Synonym: clubbing.
- Damping-off disease death of newly emerged seedlings associated with growth environment but not due to phytotoxins in soil.
- Decreased growth small increase in plant size that was less than growth of control plants.
- Delayed or inhibited germination due to wetting problems failure of seeds to germinate and seedlings to emerge from soil at rate evident in control plantings because of physical properties of soil preventing moisture uptake by roots. Does not indicate presence of phototoxins.
- Emergence penetration of plant up through soil as result of seed germination and initial seedling growth.
- Epinasty downward bending of plant leaves and petioles associated with growth differential in upper and lower sides. Probably due to presence of phytotoxins.
- Extreme suppression of root growth see severe root reduction.
- Foreign odor distinct abnormal emanation from soil as sensed by the nose.
- Growth increase in plant size.
- Hypocotyl swelling localized increase in size of dicot plant hypotocyls due to cell enlargement or cell division, probably due to presence of phyhtotoxins.
- Leaf tip necrosis death of cell tissue on grass leaf tips.
- Leaf necrosis by disease organism death of cell tissue in leaves due to phytotoxic effects of disease organisms.
- Maximum root growth greatest length of plant roots.
- Median top growth measure of top growth constituting the middle value of plants within the test.

GLOSSARY (Cont'd)

Necrosis - death of cell tissue in leaves and stems.

No growth - failure of plants to increase in size.

Purple pigmentation - development of purple coloration in leaves and stems. Probably not due to presence of phytotoxins.

Reduced root growth - see suppressed root development.

Root growth greatly suppressed - see severe root reduction.

Root growth inhibition - see suppressed root development.

Root growth suppression - see suppressed root development.

Root hair suppression - see suppression of root hair production.

Root stunting - retarded development of main and branch roots relative to control plants.

Severe root reduction - large decrease in root growth as evidenced by greatly reduced length as compared with controls. Synonyms: root growth greatly suppressed, extreme suppression of root growth.

Severe root stunting - extreme retardation of main and branch roots relative to control plants.

Stunting - reduction in plant height.

Stunting resembling that produced by herbicide - reduction in plant height in a manner similar to that previously observed when plants were grown in soil containing herbicides.

Suppressed root development - decrease in root growth as evidenced by reduced length as compared with controls. Synonyms: suppression of root growth, root growth suppression, root growth inhibition, reduced root growth.

Suppression of root growth - see suppressed root development.

Suppression of root hair production - failure of root hairs to develop on roots. Synonym: root hair suppression.

Yellowing - loss of chlorophyll and development of yellow coloration primarily in lower leaves. Synonym: chlorosis.

Yellowing distinct from herbicide - yellowing probably associated with soil mineral deficiencies. Synonym: induced chlorosis.

APPENDIX D

ENVIRONMENTAL FACTORS RESTRICTING INTERPRETATION OF PLANT SIGNS AS INDICATORS OF THE PRESENCE OF PHYTOTOXINS

The investigator must use extreme care in distinguishing phytotoxicity or growth changes in plants from those having other causes. Many environmental conditions occur which can alter test plant growth from that of control plants growing in greenhouse compost and thus give symptoms indicating phytotoxins where none exist. Table D-1 is a summary of soil, atmosphere, and plant variables that can give false signs. Table D-2 is a listing of plant signs observed in the present study that could be related to non-phytotoxic causes.

Not all possible plant signs resulting from various environmental conditions are presented. Many signs are specific for one or only a few types of plants. Some signs only express themselves as the plant continues to grow and develop through maturity and seed production and thus would not be evident in the present study where plants were grown only 3 weeks. Naturally occurring concentrations of heavy metals, plant nutrients, and plant residues can cause phytotoxic activities at Rocky Mountain Arsenal.

For more complete descriptions of environmental factors restricting interpretation of phytotoxic plant signs, the reader should examine the listed references.

TABLE D-1

ENVIRONMENTAL FACTORS RESTRICTING INTERPRETATION OF PLANT SIGNS AS INDICATORS OF THE PRESENCE OF PHYTOTOXINS

		PLANT SIGNS AS INDICATORS OF THE PRESENCE OF PHYTOTOXINS	HE PRESENCE OF PHYTOTOXINS	
Factors	Limiting Conditions	Environmental Modifications	Plant Signs	References
Soil				
texture and structure	retention and infiltration of H ₂ O	reduced availability of H2O	dessication of leaves and stems, reduced growth, failure to germinate and emerge, early senescence	14, 23
	physical characteristics	function of soil crusts and hard pans that reduce ability of plant tissue to penetrate through soil	failure to emerge, stunted and malformed growth	14, 23
atmosphere	gas exchange in root zone	reduced availability of oxygen and accumulation of carbon dioxide and ethylene	reduced growth, stunted roots, chlorosis	14, 23
acidity and alkalinity	soil pH	4 > pH > 8 Other values are detrimental	chlorosis, reduced growth, failure to germinate and emerge.	3, 14, 23
	solubility of nutrients	reduced availability of Fe+2 +3 Mn+4 Cu+2 in alkaline soils, toylc concentrations of Al ⁺ 3 in alkaline soils	death of terminal tissue, chlorosis	3, 11, 14, 23
	solubility of carbonates	reduced availability of Fe	chlorosis, reduced growth	3
clays and organic matter	absorptive and adsorptive	reduced concentration of phytotoxin through sorption to clay particles and organic matter	normal growth and development	23
	exchange capacity	low exchange capacity can lead to rapid leaching of soil nutrients	reduced growth and development	14, 23

TABLE D-1 (Continued)

Factors	Limiting Conditions	Environmental Modifications	Plant Signs	References
moisture	drought conditions	reduced availability of H20	leaf tip necrosis, dessication of leaves and stems, reduced growth, failure to germinate and emerge, early senescence	14, 23
	flooded conditions	saturation of soil pore spaces, reduced availability of oxygen	reduced growth, stunted roots, chlorosis, failure to germinate and emerge, necrosis	14, 23
nutritional status	availability of necessary nutrients for plant growth	deficiencies of mineral nutrients		
		nitrogen	pale green, yellow or red leaves; reduced leaf size; abscission; stunting of plant growth; reduced yields	3, 10, 11, 12, 14
		phosphorous	purplish leaves and stems, retarded growth and maturity, reduced yields	3, 10, 11, 12, 14
		potassium	yellow or brown edged leaves; mottled, spotted or curled leaves, appearing on older leaves first; chlorotic spots; poor root system; reduced yields	3, 10, 11, 12, 14
		calcium	pale green leaves, necrotic leaf spots, reduced root growth, deformed terminal leaves and branches, reduced yields	3, 10, 11, 12, 14
		magnesium	chlorosis, reduced growth, reduced yields	3, 10, 11, 12, 14
		sulfur	pale green leaves	3, 10, 11, 12, 14
		iron	pale green leaves, chlorosis, alternate rows of green and white in grass leaves	3, 10, 11, 12, 14
		boron	necrosis of terminal buds; thickened, curled, and brittle leaves	3, 10, 11, 12, 14

TABLE 0-1 (Continued)

Factors	Limiting Conditions	Environmental Modifications	Plant Signs	References
		manganese	pale green interveinous leaf tissue; brownish, black or gray spots next to leaf veins	3, 10, 11, 12, 14
		zinc	chlorotic areas in leaves, rusty brown flecks on leaves, reduced growth	3, 10, 11, 12, 14
	•	mo lybdenum	pale green leaves, rolled or cupped leaf margins, yellow spots on leaves	3, 10, 11, 12, 14
		copper	necrosis of terminal tissue, chlorotic or stripped leaves	3, 10, 11, 12, 14
		chloride	wilting, stubly roots, chlorosis and bronzing of leaf tissue	3, 10, 11, 12, 14
organisms	pathogenic species and sensitivity of plants	plant diseases, soil fungi, nematodes	stunting, die back of tissues,necrosis of germinating or seedling tissues	14
Atmospheric				
light	photosynthesis	low light levels	internodal elongation, partially expanded leaves, page green stem and leaves, poorly developed root system	14
	growth regulation	wavelength of light	failure to flower or become dormant in some species	14
temperature	average temperature	low	failure to germinate, slow plant growth	14
		Mgh	failure to germinate, slow plant growth	14
	extremes	freeezing and chilling injury	death of tissue, necrotic spots on leaves, stunting	14
		high temperatures	wilting of leaves, death of tissue, stunting	14
relative humidity	transpiration rate	low relative humidity	wilting of leaves, stunting	14
oxygen	respiration rate	10w 02	failure to germinate, stunting	14

TABLE 0-1 (Continued)

Factors	Limiting Conditions	Environmental Modifications	Plant Signs	References
carbon dioxide	carbon dioxide photosynthesis	low	stunting	14
air pollutants	air pollutants sensitivity of plant tissue	type, concentration and length of	spotting of leaves, necrosis and chlorosis of leaf tissue, stunting,	13, 16
organisms	pathogenic species, sensitivity of plant	plant diseas, insects, other predators	necrosis of tissue or plant, failure to germinate, defoliation	14
	competitive plants	seedling rates	stunting	14, 15
Plant				
class, type, species, cultivar, seed source	angiosperm, gymnosperm, vascular, non-vascular monocot and dicot, and other physiological or morphological differences	differential susceptibility	growth and development normal	2, 13, 15, 16
seed	size	penetration of phytotoxin into seed reduced with larger seed, large seeds have more vigorous growing seedlings	growth and development normal	2, 15
metabolism, age, growth	rate, pathways	slower rates make some plants less susceptible, plants may have pathways allowing breakdown of phytotoxins to non-phytotic compounds	growth and development normal	2, 15

TABLE D-2

CROSS REFERENCE OF PLANT SIGNS WHICH MAY BE CONFUSED WITH PHYTOTOXICITY WHEN COMPARED TO CONTROL PLANTS GROWING IN POTTING COMPOST

Plant Sign	Possible Cause
Chlorosis	nutritional deficiencies, unfavorable soil pH, flooding or drought conditions
Decreased growth	nutritional deficiences, unfavorable soil pH, flooding or drought conditions
Leaf tip necrosis	nutritional deficiencies, drought conditions
Necrosis	nutritional deficiencies, drought conditions, pathogenic organisms
No growth	nutritional deficiencies, unfavorable soil pH, flooding or drought conditions, pathogenic organisms
Purple pigmentation	nutritional deficiencies
Root stunting	nutritional deficiencies, unfavorable soil pH, flooding or drought conditions, pathogenic organisms, poor soil aeration
Root reduction	nutritional deficiencies, unfavorable soil pH, flooding or drought conditions, pathogenic organisms, poor soil aeration
Stunting	nutritional deficiencies, unfavorable soil pH, flooding or drought conditions, pathogenic organisms, poor soil aeration
Suppressed root development	nutritional deficiencies, unfavorable soil pH, flooding or drought conditions, pathogenic organisms, poor soil aeration
Suppressed root hair production	nutritional deficiencies, unfavorable soil pH, flooding or drought conditions, pathogenic organisms, poor soil aeration

DISTRIBUTION LIST

No. of Copies	
5	US Army Medical Research and Development Command ATTN: SGRD-AJ Fort Detrick Frederick, MD 21701
12	Defense Documentation Center ATTN: DDC-PCA Alexandria, VA 22314
1	Academy of Health Sciences, US Army ATTN: AHS-COM Fort Sam Houston, TX 78234
2	USAMBRUL Technical Library