Probabilités pour les sciences exactes L2 PALP / Info td4

Stephan Kunne stephan.kunne@univ-nantes.fr

https://github.com/skunne/l2probabilites

Lundi après-midi, 15h30-16h50; 17h-18h20.

Les séances de TD sont obligatoires.

En cas d'absence : me prévenir par e-mail avant le début de la séance. (stephan.kunne@univ-nantes.fr)

Fonctionnement des séances

Cours sur zoom

Vérifiez que votre micro est bien désactivé au début de la séance

Posez des questions par écrit dans le chat zoom ("Converser"/"Chat")

Poser une question à l'oral :

Cliquez sur "lever la main"/"raise hand"

Attendez que je vous dise d'activer votre micro

Pensez à baisser la main une fois que je vous ai donné la parole

Contrôle continu:

```
mercredi 10 février de 8h à 9h (tiers-temps : jusqu'à 9h20)
```

Programme:

- * les trois cours magistraux (jusqu'à la définition de l'indépendance) ;
- * les exercices de la feuille 1 (jusqu'à l'exercice 8).

Une partie QCM

Une partie à rédiger

Séance de la semaine dernière

Exercice 8 : on jette deux fois un dé équilibré

Exercice 9: Une urne contient 2 boules blanches et 4 boules noires

Exercice 10 : Calculer $\sum_{k=0}^{n} k^2 \binom{n}{k}$

Séance du lundi 8 février 15h30 - 16h50

Séance du lundi 8 février 15h30 - 16h50

Les diapositives et notes du TD sont disponibles : https://github.com/skunne/l2probabilites

Soit *n* un entier strictement positif.

1. Montrer que
$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2$$

Considérer l'ensemble $E = \{1, 2, ..., 2n\}$ et ses deux sous-ensembles $E_1 = \{1, 2, ..., n\}$ et $E_2 = \{n+1, n+1, ..., 2n\}$.

Calculer le nombre de façons de choisir n éléments dans E en décomposant E entre E_1 et E_2 .

Soit *n* un entier strictement positif.

1. Montrer que
$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2$$

On note F_n le nombre de façons de choisir n éléments dans E.

On sait que
$$F_n = \binom{2n}{n}$$

On va recalculer F_n différemment, en utilisant E₁ et E₂.

Soit *n* un entier strictement positif.

Comment choisir *n* éléments dans E, sachant que certains éléments seront dans E₁ et certains éléments dans E₂ ?

On choisit d'abord le nombre k d'éléments dans E_1 . Le nombre k peut être n'importe quel nombre entre 0 et n inclus.

Après avoir choisi le nombre k, on choisit k éléments dans E_1 , et (n-k) éléments dans E_2 .

Soit *n* un entier strictement positif.

1. Montrer que
$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2$$

Comment choisir n éléments dans E, sachant que certains éléments seront dans E_1 et certains éléments dans E_2 ?

Le nombre k étant choisi, il y a $\binom{n}{k}\binom{n}{n-k}$ manières de choisir k éléments dans E_1 et (n-k) dans E_2 .

Soit *n* un entier strictement positif.

1. Montrer que
$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2$$

Comment choisir n éléments dans E, sachant que certains éléments seront dans E_1 et certains éléments dans E_2 ?

Le nombre total de manières de choisir n éléments dans E est donc :

$$F_n = \sum_{k=0}^n \binom{n}{k} \binom{n}{n-k}$$

Soit *n* un entier strictement positif.

1. Montrer que
$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2$$

$$Or \binom{n}{k} = \binom{n}{n-k}$$

Donc le nombre total de manières de choisir n éléments dans E est :

$$F_n = \sum_{k=0}^n \binom{n}{k}^2$$

On a ainsi montré:

$$F_n = {2n \choose n} = \sum_{k=0}^n {n \choose k}^2$$