· Deep Reinforcement Learning

→ Basic Model

Litate 4 = → action at → Hate 4+11 >

$$\mathcal{R}_{\ell} = \Upsilon_{\ell} + \Upsilon_{\ell+1} + \Upsilon^{2}_{\Upsilon_{\ell+2}} + \cdots = \sum_{i=\ell}^{\infty} \Upsilon^{i} \Upsilon_{i}$$

- Dan

htate,
$$4 \rightarrow NN \rightarrow \begin{cases} Q(5,a_1) \\ Q(5,a_2) \\ Q(5,a_n) \end{cases}$$

Maximize target return - + train the agent

$$L = E[||(r + r \max_{\alpha'} Q(6', \alpha')) - Q(6, \alpha)||^{2}]$$

but, cannot handle continuous action spaces

-> Policy Gradient: directly optimize the policy Enobling modeling of continuous action space

State S
$$\rightarrow$$
 Deep \rightarrow Mean μ \rightarrow P(a|s) = N(μ , δ^2)

NN Variance δ^2 π (s) \sim P(a|s)

Sample model action

+ Training Policy Gradients

- Initialize be agent
- 2 Run a policy until termination
 - 3. Record all states, actions, rewards.

4. Decrease probability of actions that resulted in low reward.

5. Increase probability of actions that resulted in high reward.

$$W' = W - \nabla_{loss} = W' = W + \nabla_{log} P(a_t | S_t) R_t$$