

683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 Tel: +82-31-321-2664 Fax: +82-31-321-1664

http://www.digitalemc.com

CERTIFICATE OF COMPLIANCE FCC Part 27 Certification

Dates of Tests: April 24 ~ 28, 2008 Test Report S/N: DR50110804AJ Test Site: DIGITAL EMC CO., LTD.

FCC ID.

APPLICANT

V7M-SWU11

SEOWON INTECH CO., LTD.

Classification : Licensed Non-Broadcast Transmitter(TNB)

FCC Rule Part(s) : §27(M), §2

EUT Type : WiMAX CPE (Wave 1)

Model name : SWC-1104

Serial number : Identical prototype

TX Frequency Range : 2501 ~ 2610MHz (5 &10MHz OBW)

RX Frequency Range : 2501 ~ 2610MHz (5 & 10MHz OBW)

Max. RF Output Power : OBW: 5MHz - 0.646W EIRP (28.10 dBm)

OBW: 10MHz - 0.684W EIRP(28.35 dBm)

Emission Designators: : 4M49G7D(QPSK)

4M50W7D(16QAM) 9M08G7D(QPSK)

9M06W7D(16QAM)

Date of Issue : April 29, 2008

TABLE OF CONTENTS

♦ MEASUREMENT REPORT

1.1 SCOPE	3
2.1 GENERAL INFORMATION	4
3.1 DESCRIPTION OF TESTS	5
3.1.1 OCCUPIED BANDWIDTH EMISSION LIMITS	5
3.1.2 SPURIOUS AND HARMONICS EMISSIONS AT ANTENNA TERMINAL	5
3.1.3 RADIATED SPURIOUS AND HARMONIC EMISSIONS	5
3.1.4 FREQUENCY STABILITY / TEMPERATURE CARIATION	6
4.1 TEST DATA	7
4.1.1 CONDUCTED OUTPUT POWER	7
4.1.2 EQUIVALENT ISOTROPIC RADIATED POWER OUTPUT	8
4.1.3 RADIATED MEASUREMENTS	9
4.1.4 FREQUENCY STABILITY	14
5.1 PLOTS OF EMISSIONS	19
5.1.1 OCCUPIED BANDWIDTH	19
5.1.2 BAND EDGE	23
5.1.3 CONDUCTED SPURIOUS EMISSIONS	29
5.1.4 CONDUCTED OUTPUT POWER	41
6.1 LIST OF TEST EQUIPMENT	53
7.1 SAMPLE CALCULATIONS	55
8.1 CONCLUSION	56

MEASUREMENT REPORT

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

§2.1033 General Information

Applicant: **SEOWON INTECH CO., LTD.**

Address: 689-47, Kumjung-Dong, Kunpo-City, Kyunggi-Do, 435-862, Korea

Attention: CHOUN-SUP,KIM

• FCC ID: V7M-SWU11

• Quantity: Quantity production is planned

• Emission Designators: 4M49G7D(QPSK), 4M50W7D(16QAM)

9M08G7D(QPSK), 9M06W7D(16QAM)

• Tx Freq. Range: 2501 ~2610 MHz (5 & 10MHz OBW)

• Rx Freq. Range: 2501 - 2610 MHz (5 & 10MHz OBW)

• Max. Power Rating: OBW: 5MHz – 0.646W EIRP (28.10 dBm)

OBW: 10MHz - 0.684W EIRP (28.35 dBm)

• FCC Classification(s): Licensed Non-Broadcast Transmitter(TNB)

• Equipment (EUT) Type: WiMAX CPE (Wave 1)

• Modulation(s): QPSK, 16QAM

• Data rates: QPSK1/2, QPSK3/4, 16QAM1/2, 16QAM3/4

● Antenna Type Dipole Antenna(5.1dBi ±1)

• FCC Rule Part(s): §27(M), §2

• Dates of Tests: April 24 ~ 28, 2008

Place of Tests:
 DIGITAL EMC

• Test Report S/N: DR50110804AJ

2.1. General Information

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080

Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the

"General requirements for the competent of calibration and testing laboratory".

This laboratory is accredited by NVLAP for NVLAP Lab. Code: 200559-0.

Test operator: Engineer

April 29, 2008 Won-Jung LEE

Data Name Signature

Report Reviewed By: Director

April 29, 2008 Harvey Sung

Data Name Signature

Ordering party:

Company name : SEOWON INTECH CO., LTD.

Address : 689-47, Kumjung-Dong

Zipcode : 435-862

City/town : Kunpo-City, Kyunggi-Do

Country : Korea

Date of order : April 11, 2008

3.1 DESCRIPTION OF TESTS

3.1.1 Occupied Bandwidth Emission Limits

- Part §2.1049, §27.53.(1)(2), (6)
- (a) For fixed and temporary fixed digital stations, the attenuation shall be not less than 43 + 10 log (P) dB, unless a documented interference complaint is received from an adjacent channel licensee.
- (b) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

3.1.2 Spurious and Harmonic Emissions at Antenna Terminal

- Part§2.1051, §27.53.(l)(2), (6)

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

3.1.3 Radiation Spurious and Harmonic Emissions

- Part §2.1053, §27.53.(1), (2), (6)

Spurious and harmonic emissions between the lowest frequency generated in this device and up to 10th harmonic of the highest generated in this device are measured at 3-meter OATS. The equipment under test is placed on a wooden turntable located at 3-meters from the receive antenna. The receive antenna height and turntable rotations are adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole is substituted in place of the EUT. This dipole antenna is driven by a vector signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using the horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

(Continued...)

3.1.4 Frequency Stability/Temperature Variation.

- Part §2.1055, §27.54

The frequency stability of the transmitter is measured by:

- a) **Temperature**: The temperature is varied from -30°C to + 50°C using an environmental chamber with 10°C increments.
- b) **Primary Supply Voltage**: The primary supply voltage is varied from 85% to 115% of the nominal voltage at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter is measured at room temperature. (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10° C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

4.1 TEST DATA

4.1.1 Conducted Output Power

A vector signal generator was used to supply the WiMAX signal sources to a EUT and an external trigger source to a spectrum analyzer. The trigger was set in such a way that the analyzer recorded power measurements only during the times in which the EUT was transmitting. The WiMAX conducted powers are reported below as well as a test setup diagram.

A PC(or Notebook) controlled EUT to transmit rated output power under appropriate transmission mode and specific frequency.

- Measurement data

Bandwidth	Frequency (MHz)	QPSK 1/2 (dBm)	QPSK 3/4 (dBm)	16QAM 1/2 (dBm)	16QAM 3/4 (dBm)
	2501	22.44	22.36	22.33	22.20
5MHz	2560	21.89	21.77	21.85	21.83
	2610	20.89	20.65	20.81	20.77
	2501	22.84	22.73	22.96	22.86
10MHz	2560	22.33	22.16	22.44	22.26
	2610	21.35	21.11	21.21	21.10

Figure 1. WiMAX Coducted Power Test Setup Diagram

4.1.2 Equivalent Isotropic Radiated Power Output

A. POWER: Maximum (BW 5MHz)

Frequency (MHz)	Modulation Type	POL (H/V)	Reading Level (dBm)	Result Level (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Supplied Power
2501.00	QPSK 1/2	V	-21.99	16.81	9.76	26.57	0.454	Adaptor
2560.00	QPSK 1/2	V	-20.56	18.55	9.55	28.10	0.646	Adaptor
2610.00	QPSK 1/2	V	-21.92	16.95	9.66	26.61	0.458	Adaptor
2560.00	QPSK 3/4	V	-20.90	18.21	9.55	27.76	0.597	Adaptor
2560.00	16QAM 1/2	V	-20.79	18.32	9.55	27.87	0.612	Adaptor
2560.00	16QAM 3/4	V	-20.90	18.21	9.55	27.76	0.597	Adaptor

B. POWER: Maximum (BW 10MHz)

Frequency (MHz)	Modulation Type	POL (H/V)	Reading Level (dBm)	Result Level (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Supplied Power
2501.00	16QAM 1/2	V	-25.33	16.38	9.76	26.14	0.411	Adaptor
2560.00	16QAM 1/2	V	-23.40	18.80	9.55	28.35	0.684	Adaptor
2610.00	16QAM 1/2	V	-24.91	17.07	9.66	26.73	0.471	Adaptor
2560.00	16QAM 3/4	V	-23.57	18.63	9.55	28.18	0.658	Adaptor
2560.00	QPSK 1/2	V	-23.63	18.57	9.55	28.12	0.649	Adaptor
2560.00	QPSK 3/4	V	-23.68	18.52	9.55	28.07	0.641	Adaptor

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A horn antenna was substituted in place of the EUT. This horn antenna was driven by a vector signal generator with WiMAX signal source and the level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the horn antenna is measured and this conducted power was corrected with antenna gain in dBi for EIRP.

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WiMAX

MODULATION TYPE : QPSK 1/2

BANDWIDTH: 5 MHz

OPERATING FREQUENCY: 2501 MHz

MEASURED OUTPUT POWER : $\underline{26.57}$ dBm = $\underline{0.454}$ W

DISTANCE: 3 meters

LIMIT $43 + 10 \log_{10} (W) = 39.57$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5002	V	-53.84	10.89	-42.95	69.52
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WiMAX

MODULATION TYPE : QPSK 1/2

BANDWIDTH: 5 MHz

OPERATING FREQUENCY: 2560 MHz

MEASURED OUTPUT POWER : $\underline{28.10}$ dBm = $\underline{0.646}$ W

DISTANCE: 3 meters

LIMIT $43 + 10 \log_{10} (W) = 41.10$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5120	V	-51.74	10.80	-40.94	69.04
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WiMAX

MODULATION TYPE : QPSK 1/2

BANDWIDTH: 5 MHz

OPERATING FREQUENCY: 2610 MHz

MEASURED OUTPUT POWER : $\underline{26.61}$ dBm = $\underline{0.458}$ W

DISTANCE: 3 meters

LIMIT $43 + 10 \log_{10} (W) = 39.61$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5220	V	-52.40	10.82	-41.58	68.19
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION TYPE : 16QAM 1/2

BANDWIDTH: 10 MHz

OPERATING FREQUENCY: 2501 MHz

MEASURED OUTPUT POWER : $\underline{26.14}$ dBm = $\underline{0.411}$ W

MODULATION SIGNAL : WiMAX (Internal)

DISTANCE: 3 meters

LIMIT $43 + 10 \log_{10} (W) = 39.14$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5002	V	-52.91	10.89	-42.02	68.16
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WiMAX

MODULATION TYPE : 16QAM 1/2

BANDWIDTH: <u>10</u> MHz

OPERATING FREQUENCY: 2560 MHz

MEASURED OUTPUT POWER : $\underline{28.35}$ dBm = $\underline{0.684}$ W

DISTANCE: 3 meters

LIMIT $43 + 10 \log_{10} (W) = 41.35$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5120	V	-52.09	10.80	-41.29	69.64
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WiMAX

MODULATION TYPE : 16QAM 1/2

BANDWIDTH: 10 MHz

OPERATING FREQUENCY: 2610 MHz

MEASURED OUTPUT POWER : $\underline{26.73}$ dBm = $\underline{0.471}$ W

DISTANCE: 3 meters

LIMIT $43 + 10 \log_{10} (W) = 39.73$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5220	V	-52.72	10.82	-41.90	68.63
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

 Band Width
 5
 MHz

 OPERATING FREQUENCY
 :
 2,560,000,018
 Hz

 REFERENCE VOLTAGE
 :
 120
 VDC

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(dB)	(Hz)	(%)
100%	120	+20(Ref)	2,560,000,018	0.000000
100%		0	2,560,000,029	0.000000
100%		+10	2,560,000,030	0.000000
100%		+20	2,560,000,018	0.000000
100%		+30	2,560,000,018	0.000000
100%		+40	2,560,000,031	0.000001
100%		+50	2,560,000,026	0.000000
85%	108	+25	2,560,000,035	0.000001
115%	132	+25	2,559,999,943	-0.000003
BATT.ENDPOINT	-	-	-	-

Note : Since this device is a fixed device and indoor use device. So the frequency stability is tested by 0° C

(Continued...)

(Continued...)

 Band Width
 :
 10
 MHz

 OPERATING FREQUENCY
 :
 2,560,000,023
 Hz

 REFERENCE VOLTAGE
 :
 120
 VDC

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(dB)	(Hz)	(%)
100%	120	+20(Ref)	2,560,000,023	0.000000
100%		0	2,560,000,039	0.000001
100%		+10	2,560,000,044	0.000001
100%		+20	2,560,000,023	0.000000
100%		+30	2,560,000,041	0.000001
100%		+40	2,560,000,029	0.000000
100%		+50	2,560,000,026	0.000000
85%	108	+25	2,560,000,027	0.000000
115%	132	+25	2,560,000,025	0.000000
BATT.ENDPOINT	-	-	-	-

Note : Since this device is a fixed device and indoor use device. So the frequency stability is tested by $0^{\circ}\mathrm{C}$

(Continued...)

5.1 PLOTS OF EMISSIONS

5.1.1 Occupied Bandwidth(BW: 5MHz)

- Middle Channel(2560MHz) & QPSK 1/2

- Middle Channel(2560MHz) & QPSK 3/4

5.1.1 Occupied Bandwidth(BW: 5MHz)

(Continued...)

- Middle Channel(2560MHz) & 16QAM 1/2

- Middle Channel(2560MHz) & 16QAM 3/4

5.1.1 Occupied Bandwidth(BW: 10MHz)

(Continued...)

- Middle Channel(2560MHz) & QPSK 1/2

- Middle Channel(2560MHz) & QPSK 3/4

5.1.1 Occupied Bandwidth(BW: 10MHz)

(Continued...)

- Middle Channel(2560MHz) & 16QAM 1/2

- Middle Channel(2560MHz) & 16QAM 3/4

5.1.2 Band Edge(BW: 5MHz)

- Low Channel(2501MHz)

5.1.2 Band Edge(BW: 5MHz)

(Continued...)

- Middle Channel(2560MHz)

5.1.2 Band Edge(BW: 5MHz)

(Continued...)

- High Channel(2610MHz)

5.1.2 Band Edge(BW: 10MHz)

(Continued...)

- Low Channel(2501MHz)

5.1.2 Band Edge(BW: 10MHz)

(Continued...)

- Middle Channel(2560MHz)

5.1.2 Band Edge(BW: 10MHz)

(Continued...)

- High Channel(2610MHz)

5.1.3 Conducted Spurious Emissions(BW: 5MHz)

- Low Channel(2501MHz)

5.1.3 Conducted Spurious Emissions(BW: 5MHz)

(Continued...)

- Middle Channel(2560MHz)

5.1.3 Conducted Spurious Emissions(BW: 5MHz)

(Continued...)

- High Channel(2610MHz)

5.1.3 Conducted Spurious Emissions(BW: 10MHz)

(Continued...)

- Low Channel(2501MHz)

5.1.3 Conducted Spurious Emissions(BW: 10MHz)

(Continued...)

- Middle Channel(2560MHz)

5.1.3 Conducted Spurious Emissions(BW: 10MHz)

(Continued...)

- High Channel(2610MHz)

- Low Channel(2501MHz) & QPSK 1/2

- Low Channel(2501MHz) & QPSK 3/4

(Continued...)

- Low Channel(2501MHz) & 16QAM 1/2

- Low Channel(2501MHz) & 16QAM 3/4

(Continued...)

- Middle Channel(2560MHz) & QPSK 1/2

- Middle Channel(2560MHz) & QPSK 3/4

(Continued...)

- Middle Channel(2560MHz) & 16QAM 1/2

- Middle Channel(2560MHz) & 16QAM 3/4

(Continued...)

- High Channel(2610MHz) & QPSK 1/2

- High Channel(2610MHz) & QPSK 3/4

(Continued...)

- High Channel(2610MHz) & 16QAM 1/2

- High Channel(2610MHz) & 16QAM 3/4

(Continued...)

- Low Channel(2501MHz) & QPSK 1/2

- Low Channel(2501MHz) & OPSK 3/4

(Continued...)

- Low Channel(2501MHz) & 16QAM 1/2

- Low Channel(2501MHz) & 16QAM 3/4

(Continued...)

- Middle Channel(2560MHz) & QPSK 1/2

- Middle Channel(2560MHz) & QPSK 3/4

(Continued...)

- Middle Channel(2560MHz) & 16QAM 1/2

- Middle Channel(2560MHz) & 16QAM 3/4

(Continued...)

- High Channel(2610MHz) & QPSK 1/2

- High Channel(2610MHz) & QPSK 3/4

(Continued...)

- High Channel(2610MHz) & 16QAM 1/2

- High Channel(2610MHz) & 16QAM 3/4

6.1 LIST OF TEST EQUIPMENT

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
01	Spectrum Analyzer	Agilent	E4404B	21/03/08	21/03/09	US41061134
02	Spectrum Analyzer	Agilent	E4440A	15/11/07	15/11/08	MY45304199
03	Spectrum Analyzer	H.P	8563E	09/10/07	09/10/09	3551A04634
04	Spectrum Analyzer	Rohde Schwarz	FSQ26	27/02/08	27/02/09	200347
05	EMI TEST RECEIVER	R&S	ESU	11/01/08	11/01/09	100014
06	Power Meter	Н.Р	EMP-442A	10/07/07	10/07/08	GB37170413
07	Power Sensor	H.P	8481A	11/03/08	11/03/09	3318A96566
08	Frequency Counter	H.P	5342A	06/09/07	06/09/08	2119A04450
09	Signal Generator	Rohde Schwarz	SMR20	02/04/08	02/04/09	101251
10	Signal Generator	H.P	ESG-3000A	10/07/07	10/07/08	US37230529
11	Vector Signal Generator	Rohde Schwarz	SMJ100A	17/01/08	17/01/09	100148
12	Audio Analyzer	Н.Р	8903B	10/07/07	10/07/08	3011A09448
13	Modulation Analyzer	H.P	8901B	14/07/07	14/07/08	3028A03029
14	Oscilloscope	Tektronix	TDS3052	02/11/07	02/11/08	B016821
15	Universal Radio Communication tester	Rohde Schwarz	CMU200	02/04/08	02/04/09	107631
16	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	18/07/07	18/07/09	GB43461134
17	Universal Radio communication Tester	Rohde Schwarz	CMU 200	02/04/08	02/04/09	107631
18	Bluetooth Tester	TESCOM	TC-3000A	02/11/08	02/11/09	3000A4A0121
19	Power Splitter	WEINSCHEL	1593	05/10/07	05/10/08	332
20	Power Splitter	Anritsu	K241B	19/10/07	19/10/08	020611
21	BAND Reject Filter	Microwave Circuits	N0308372	18/10/07	18/10/08	3125-01DC0312
22	BAND Reject Filter	Wainwright	WRCG1750	18/10/07	18/10/08	SN2
23	AC Power supply	DAEKWANG	5KVA	20/03/08	20/03/09	N/A
24	DC Power Supply	H.P	6622A	20/03/08	20/03/09	465487
25	TEMP & HUMIDITY Chamber	JISCO	J-RHC2	02/10/07	02/10/08	021031
26	HORN ANT	EMCO	3115	10/08/07	10/08/08	6419
27	HORN ANT	EMCO	3115	09/10/07	09/10/08	21097
28	HORN ANT	A.H.Systems	SAS-574	20/08/07	20/08/08	154
29	HORN ANT	A.H.Systems	SAS-574	20/08/07	20/08/08	155

6.1 LIST OF TEST EQUIPMENT

(Continued...)

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
30	Dipole Antenna	Schwarzbeck	VHA9103	19/12/07	19/12/08	2116
31	Dipole Antenna	Schwarzbeck	VHA9103	19/12/07	19/12/08	2117
32	Dipole Antenna	Schwarzbeck	UHA9105	20/12/07	20/12/08	2261
33	Dipole Antenna	Schwarzbeck	UHA9105	20/12/07	20/12/08	2262
34	Log Periodic Antenna	Schwarzbeck	UHALP9108A1	01/10/07	01/10/08	1098
35	Biconical Antenna	Schwarzbeck	VHA9103	08/06/07	08/06/08	2233
36	Digital Multimeter	H.P	34401A	20/03/08	20/03/09	3146A13475
37	Attenuator (10dB)	WEINSCHEL	23-10-34	05/10/07	05/10/08	BP4386
38	Attenuator (10dB)	WEINSCHEL	23-10-34	30/01/08	30/01/09	BP4387
39	High-Pass Filter	ANRITSU	MP526D	08/10/07	08/10/08	MP27756
40	Attenuator (3dB)	Agilent	8491B	12/07/07	12/07/08	58177
41	20dB Attenuator	Aeroflex/Weinschel	86-20-11	25/10/07	25/10/08	432
42	10dB Attenuator	Aeroflex/Weinschel	86-10-11	25/10/07	25/10/08	446
43	10dB Attenuator	Aeroflex/Weinschel	86-10-11	25/10/07	25/10/08	408
44	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	05/07/07	05/07/08	788
45	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	05/07/07	05/07/08	790
46	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0215CAN	05/07/07	05/07/08	112
47	Amplifier (25dB)	Agilent	8447D	24/04/08	24/04/09	2944A10144
48	Amplifier (30dB)	Agilent	8449B	25/10/07	25/10/08	3008A01590
49	Amplifier (22dB)	H.P	8447E	27/02/08	27/02/09	2945A02865
50	Position Controller	TOKIN	5901T	N/A	N/A	14173
51	Driver	TOKIN	5902T2	N/A	N/A	14174
52	Spectrum Analyzer	H.P	8591E	16/04/08	16/04/09	3649A05889
53	RFI/FIELD Intensity Meter	Kyorits	KNW-2402	06/09/07	06/09/08	4N-170-3
54	LISN	Kyorits	KNW-407	30/08/07	30/08/08	8-317-8
55	LISN	Kyorits	KNW-242	06/10/07	06/10/08	8-654-15
56	CVCF	NF Electronic	4400	N/A	N/A	344536 4420064
57	Software	ТоҮо ЕМІ	EP5/RE	N/A	N/A	Ver 2.0.800
58	Software	ТоҮо ЕМІ	EP5/CE	N/A	N/A	Ver 2.0.801
59	Software	AUDIX	e3	N/A	N/A	Ver 3.0
60	Software	Agilent	Benchlink	N/A	N/A	A.01.09 021211

7.1 SAMPLE CALCULATIONS

A. Emission Designator

- Bandwidth: 5MHz

QPSK Modulation

16QAM Modulation

Emission Designator = 4M49G7D

Emission Designator = 4M50W7D

WiMAX BW = 4.4864 MHz

G = Phase Modulation

WiMAX BW = 4.4963 MHz
W = Composite – Quadrature Amplitude Modulation

7 = Quantized/Digital Information

7 = Quantized/Digital Information

D = Data Transmission

D = Data Transmission

- Bandwidth: 10MHz

QPSK Modulation

16QAM Modulation

Emission Designator = 9M08G7D

Emission Designator = 9M06W7D

WiMAX BW = 9.0835 MHz

G = Phase Modulation

7 = Quantized/Digital Information

D = Data Transmission

WiMAX BW = 9.0645 MHz

W = Composite – Quadrature Amplitude Modulation

7 = Quantized/Digital Information

D = Data Transmission

8.1 CONCLUSION

The data collected shows that the **SEOWONINTECH CO., LTD.** WiMAX CPE (**FCC ID: V7M-SWU11**) complies with all the requirements of Parts 2 and 27 of the FCC rules.