Big Data

Hands on PySpark

How do we process Big Data?

Main issues

- Where do we store the data?
- How do we process it?

Big Data greatly exceeds the size of the typical drives

Even if a big drive existed, it would be too slow (at least for now)

The answer: cluster computing

100 hard disks? 2 mins to read 1TB

Commodity hardware

You are not tied to expensive, proprietary offerings from a single vendor You can choose standardized, commonly available hardware from a large range of vendors to build your cluster

Commodity ≠ Low-end!

 Cheap components with high failure rate can be a false economy

Cluster Computing Architecture

A computer cluster is a group of linked computers (nodes), working together closely so that in many respects they form a single computer

- Typically connected to each other through fast LAN
- Every node is a system on its own, capable of independent operations
 - Unlimited scalability, no vendor lock-in
- Number of nodes in the cluster >> Number of CPUs in a node

Distributed computing: an old idea

What is the solution?

Hide system-level details from the developers

- No race conditions, lock contention, etc.
- No need to become hardcore techies

Separate the *what* from the *how*

- Developer specifies the computation that needs to be performed
- Execution framework ("runtime") handles the actual execution

The datacenter IS the computer!

Spark

It is a fast and general-purpose execution engine

- In-memory data storage for very fast iterative queries
- Easy interactive data analysis
- Combines different processing models (machine learning, SQL, streaming, graph computation)
- Provides (not only) a MapReduce-like engine...
- ... but it's up to 100x faster than Hadoop MapReduce

Compatible with Hadoop's storage APIs

- Can run on top of a Hadoop cluster
- Can read/write to any database and any Hadoop-supported system, including HDFS, HBase, Parquet, etc.

What does Spark offer?

In-memory data caching

HDD is scanned once, then data is written to/read from RAM

Lazy computations

The job is optimized before its execution

Efficient pipelining

Writing to HDD is avoided as much as possible

Spark pillars

Two main abstractions of Spark

RDD – Resilient Distributed Dataset

- An RDD is a collection of data items
- It is split into partitions
- It is stored in memory on the worker nodes of the cluster

DAG – Direct Acyclic Graph

- A DAG is a sequence of computations performed on data
- Each node is an RDD
- Each edge is a transformation of one RDD into another

RDD

RDDs are immutable distributed collection of objects

- Resilient: automatically rebuild on failure
- Distributed: the objects belonging to a given collection are split into partitions and spread across the nodes
 - RDDs can contain any type of Python, Java, or Scala objects
 - Distribution allows for scalability and locality-aware scheduling
 - Partitioning allows to control parallel processing

Fundamental characteristics (mostly from *pure functional programming*)

- Immutable: once created, it can't be modified
- Lazily evaluated: optimization before execution
- Cacheable: can persist in memory, spill to disk if necessary
- Type inference: data types are not declared but inferred (≠ dynamic typing)

RDD operations

RDDs offer two types of operations: transformations and actions

Transformations construct a new RDD from a previous one

- E.g.: map, flatMap, reduceByKey, filtering, etc.
- https://spark.apache.org/docs/latest/programming-guide.html#transformations

Actions compute a result that is either returned to the driver program or saved to an external storage system (e.g., HDFS)

- E.g.: saveAsTextFile, count, collect, etc.
- https://spark.apache.org/docs/latest/programming-guide.html#actions

RDD operations

RDDs are **lazily evaluated**, i.e., they are computed when they are used in an action

Until no action is fired, the data to be processed is not even accessed

Example (in Python)

```
sc = new SparkContext
rddLines = sc.textFile("myFile.txt")
rddLines2 = rddLines.filter (lambda line: "some text" in line)
rddLines2.first()
Action
```

There is no need to compute and store everything

In the example, Spark simply scans the file until it finds the first matching line

DAG

Based on the user application and on the lineage graphs, Spark computes a logical execution plan in the form of a DAG

Which is later transformed into a physical execution plan

The DAG (Directed Acyclic Graph) is a sequence of computations performed on data

- Nodes are RDDs
- Edges are operations on RDDs
- The graph is Directed: transformations from a partition A to a partition B
- The graph is Acyclic: transformations cannot return an old partition

Application decomposition

Application

 Single instance of SparkContext that stores data processing logic and schedules series of jobs, sequentially or in parallel

Job

 Complete set of transformations on RDD that finishes with action or data saving, triggered by the driver application

Stage

Set of transformations that can be pipelined and executed by a single independent worker

Task

Basic unit of scheduling: executes the stage on a single data partition

Application decomposition

Word count in Scala textFile = sc.textFile("hdfs://...")


```
textFile = sc.textFile("hdfs://...")
counts = textFile
    .flatMap(line => line.split(" "))
```



```
textFile = sc.textFile("hdfs://...")
counts = textFile
    .flatMap(line => line.split(" "))
    .map(lambda word: (word, 1))
```



```
textFile = sc.textFile("hdfs://...")

counts = textFile

.flatMap(line => line.split(" "))
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a + b)

textFile flatMap map reduce
ByKey
```

```
textFile = sc.textFile("hdfs://...")
counts = textFile
    .flatMap(line => line.split(" "))
    .map(lambda word: (word, 1))
    .reduceByKey(lambda a, b: a + b)
counts.saveAsTextFile("hdfs://...")
```


Conceptual representation

DataFrame and DataSet

RDDs are immutable distributed collection of objects

DataFrames and DataSets are immutable distributed collection of records organized into named columns (i.e., a table)

- Simply put, RDDs with a schema attached
- Support both relational and procedural processing (e.g., SQL, Scala)
- Support complex data types (struct, array, etc.) and user defined types
- Cached using columnar storage

Can be built from many different sources

DBMSs, files, other tools (e.g., Hive), RDDs

Type conformity is checked

At compile time for DataSets; at runtime for DataFrames

DataFrame and DataSet

Still lazily evaluated...

...but supports under-the-hood optimizations and code generation

- Catalyst optimizer creates optimized execution plans
 - IO optimizations such as skipping blocks in parquet files
 - Logic push-down of selection predicates
- JVM code generation for all supported languages
 - Even non-native JVM languages; e.g., Python

Spark structured

Why structure?

Cons

- Structure imposes some limits
 - RDDs enable any computation through user defined functions

Pros

- The most common computations are supported
- Language simplicity
- Opens the room to optimizations
 - Hard to optimize a user defined function

Catalyst

Logical and Physical Plan

Based on rules

■ A rule is a function that can be applied on a portion of the logical plan

Implemented as Scala functions

```
val expression: Expression = ...
expression.transform {
  case Add(Literal(x, IntegerType), Literal(y, IntegerType)) =>
    Literal(x + y)
}
```

Several types of rules

- Constant folding: resolve constant expressions at compile time
- Predicate pushdown: push selection predicates close to the sources
- Column pruning: project only the required column
- Join reordering: change the order of join operations

Applied recursively and iteratively until the plan reaches a *fixed point*

Spark architecture

Spark uses a *master/slave architecture* with one central coordinator (*driver*) and many distributed workers (*executors*)

- The driver and each executor are independent Java processes
- Together they form a Spark application

The architecture is independent of the cluster manager that Spark runs on

Spark architecture

Executor: a process responsible for executing the received tasks

- Each spark application can have (and usually has) multiple executors, and each worker node can host many executors
- Typically runs for the entire duration of the application
- Stores (caches) RDD data in JVM heap
- Tasks are the smallest unit of work and are carried out by executors

Spark architecture

Driver Program (a.k.a. Spark Driver, or simply Driver)

- Each spark application can only have one driver (entry point of Spark Shell)
- Converts user program into tasks
 - Creates the SparkContext, i.e., the object that handles communications
 - Computes the logical DAG of operations and converts it into a physical execution plan
- Schedules tasks on executors
 - Has a complete view of the available executors and schedules tasks on them
 - Stores metadata about RDDs and their partitions
- Executor Launches a webUl tasks and data Task Task Driver resources request resources data Cluster Manager **SparkContext** assignment shuffling Executor tasks and data Task Task

Spark

Suggested reading and resources

