LAB1, Measuring the CPU Speed (voluntary due to testing problems)

Goal

Write a program that displays the clock rate of an Intel x86 CPU

Given files

Assuming you copied the lab files according to the lab setup instruction you can find the files you need in ~/TDDI11/lab1. Your modifications goes to main.c. You can copy main.c from the hello_world example to get a starting point.

Assignment

Use two functions from the libepc library:

```
DWORD32 Now_Plus(int)
QWORD64 CPU_Clock_Cycles(void)
```

Now_Plus(0) returns a 32-bit integer. Now_Plus(int n) returns the 32-bit integer that Now_Plus(0) would return if called n seconds from the moment when Now_Plus(int n) is called.

Thus, call Now_Plus(N) first and store the result in a variable time-out. The first time Now_Plus(0) returns a number greater than or equal to time-out you know that N seconds have elapsed since you called Now_Plus(N). Hence, you have a way to measure time.

Every x86 CPU chip has a 64-bit counter that increments at the processor clock rate. CPU_Clock_Cycles returns the value of the counter.

Based on Now_Plus you can measure a time interval. With the help of CPU_Clock_Cycles you can count how many clock impulses you got in the measured time interval. Thus, you may easily obtain the clock frequency.

Deliverables

Show your code to the assistant and demonstrate your application.

Obtaining CPU Clock Cycles correctly

Unfortunately CPU_Clock_Cycles does not seem to work correctly unless QEMU runs on a real Intel CPU. Since solaris run on Sparc and our available Linux server runs on AMD you must find your own solution as to how to test your solution.

Reference

Look in /home/TDDI11/sw/include to find all header files that declare functions you can use.