Regression
APAM E4990
Modeling Social Data

Jake Hofman

Columbia University

February 24, 2017

Definition

?

Definition

Errors and residuals · Goodness of fit ·

Studentized residual · Gauss-Markov theorem

Definition

"The primary goal in a regression analysis is to understand, as far as possible with the available data, how the conditional distribution of the response varies across subpopulations determined by the possible values of the predictor or predictors."

- "Applied Regression Including Computing and Graphics" Cook & Weisberg (1999)

Goals

Describe

Provide a compact summary of outcomes under different conditions

Predict

Make forecasts for future outcomes or unobserved conditions

Explain

Account for associations between predictors and outcomes

Goals

Describe

Provide a compact summary of outcomes under different conditions

Never "false", but may be wasteful or misleading

Predict

Make forecasts for future outcomes or unobserved conditions Varying degrees of success, often room for improvement

Explain

Account for associations between predictors and outcomes

Difficult to establish causality in observational studies

See "Regression Analysis: A Constructive Critique", Berk (2004)

3 / 6

Goals

Models should be flexible enough to describe observed phenomena but simple enough to generalize to future observations

Examples¹

Jake Hofman (Columbia University) Regression February 24, 2017 5 /

[&]quot;Statistical Learning from a Regression Perspective", Berk (2008) 🖘 💈 🔊 🤉 🖰

Examples¹

Jake Hofman (Columbia University)

[&]quot;Statistical Learning from a Regression Perspective", Berk (2008) 🖫 🔻 🔊 🤊

Examples¹

^{1&}quot;Statistical Learning from a Regression Perspective", Berk (2008)

 ${\sf Jake\; Hofman} \quad {\sf (Columbia\; University)} \qquad \qquad {\sf Regression} \qquad \qquad {\sf February\; 24,\; 2017} \quad {\sf 5} \; / \; 6$

Framework

- Specify the outcome and predictors, along with the form of the model relating them
- Define a loss function that quantifies how close a model's predictions are to observed outcomes
- Develop an algorithm to fit the model to the observations by minimizing this loss
- Assess model performance and interpret results.