CLAIMS

Having thus described the aforementioned invention, we claim:

1	1.	A detector assembly for quantifying concentration of positron emitters	
2	in fluids within a microfluidic assembly, comprising:		
3	a base;		
4	a window formed in the base;		
5	a mic	crofluidic channel disposed in the base for allowing liquids to flow	
6	through the base;		
7	a solid-state charged particle detector supported by the base wherein the		
8	window is interpositioned between the charged particle detector and the		
9	microfluidic channel; and		
10	the w	indow has a thickness sufficient to allow transmission of beta particles	
11	from positron emitters within the microfluidic channel to be detected by the solid-		
12	state charge particle detector.		
1	2.	The detector assembly of Claim 1 wherein:	
2	a por	tion of the base adjacent the window and supporting the solid state	
3	charge particle detector has a thickness sufficient to substantially attenuate the		
4	transmission of beta particles whereby a linear resolution of the solid-state charge		
5	particle detector is increased.		
1	3.	The detector assembly of Claim 1 further comprising:	
2	a coll	imation well of a selected depth is disposed in the base.	
1	4.	The detector assembly of Claim 3, wherein:	
2	the collimation well is disposed between the window and the solid-state		
3	charge particle detector.		
1	5.	The detector assembly of Claim 4, wherein the collimation well further	
2		comprises:	
3	a con	tinuous side wall defined by the base.	

- 1 6. The detector assembly of Claim 5, wherein the collimation well further
 2 includes:
 3 a depth sufficient to collimate the beta particles emitted from the liquid
- within the microchannel enabling the detector to delineate between the particles

 passing through the window and those attenuated by the base.
- 1 7. The detector assembly of Claim 1 wherein:
- the base and the solid-state charged particle detector are integral with one another.
- 1 8. The detector assembly of Claim 1 wherein:
- 2 a first electrode of the solid-state charge particle detector is disposed on a
- 3 first side of the base and a second electrode of the solid-state charge particle
- 4 detector is disposed on a second side of the base in spaced relation from the first
- 5 side of the base.
- 1 9. The detector assembly of Claim 8 wherein:
- the microfluidic channel is disposed adjacent the first or the second and the second electrodes.
- 1 10. The detector assembly of Claim 1 wherein:
- 2 the base is at least in part made from a material selected from the group of
- 3 materials consisting of glass, polymer, silicon, or derivatives thereof.
- 1 11. The detector assembly of Claim 6 wherein:
- 2 the base is at least in part made from a material selected from the group of
- 3 materials consisting of glass, polymer, silicon, or derivatives thereof.
- 1 12. The detector assembly of Claim 7 wherein:
- 2 the base is at least in part made from a material selected from the group of
- 3 materials consisting of glass, polymer, acrylic, silicon, or derivatives thereof.
 - 13. The detector assembly of Claim 9 wherein:

1

2	the base is at least in part made from a material selected from the group of
3	materials consisting of glass, polymer, acrylic, silicon, or derivatives thereof.

- 1 14. A detector assembly for quantifying a concentration of positron 2 emitters in a microfluidic assembly, the beta detector assembly comprising: 3 a base;
- a microfluidic channel disposed in the base enabling fluids to flow through the base:
- collimation means disposed in the base proximate the microfluidic channel for collimating charged particles; and
 - a solid-state charged particle detector supported by the base and in communication with the collimation means.
- 1 15. The detector assembly of Claim 14 wherein:
- a portion of the base adjacent the window and supporting the solid state charge particle detector has a thickness sufficient to substantially attenuate the transmission of beta particles whereby a linear resolution of the solid-state charge particle detector is increased.
- 1 16. The detector assembly of Claim 14, wherein:
- the collimation means is disposed between the window and the solid-state charge particle detector.
- 1 17. The detector assembly of Claim 16, wherein the collimation means 2 further comprises:
- a continuous side wall defined by the base.
- 1 18. The detector assembly of Claim 17, wherein:
- the collimation means has a depth sufficient to collimate the charged particles emitted from the liquid within the microchannel enabling the detector to
- 4 delineate between the particles passing through the window and those attenuated
- 5 by the base.

1

8

9

19. The detector assembly of Claim 14 wherein:

2	the base and the solid-state charged particle detector are integral with one		
3	another.		
1	20. The detector assembly of Claim 14 wherein:		
	•		
2	a first electrode of the solid-state charge particle detector is disposed on a		
3	first side of the base and a second electrode of the solid-state charge particle		
4	detector is disposed on a second side of the base in spaced relation from the first		
5	side of the base.		
1	21. The detector assembly of Claim 20 wherein:		
2	the microfluidic channel is disposed adjacent the first or the second and the		
3	second electrodes.		
1	22. The detector assembly of Claim 14 wherein:		
2	the base is at least in part made from a material selected from the group of		
3	materials consisting of glass, polymer, silicon, or derivatives thereof.		
1	23. The detector assembly of Claim 18 wherein:		
2	the base is at least in part made from a material selected from the group of		
3	materials consisting of glass, polymer, silicon, or derivatives thereof.		
1	24. The detector assembly of Claim 19 wherein:		
2	the base is at least in part made from a material selected from the group of		
3	materials consisting of glass, polymer, silicon, or derivatives thereof.		
1	25. A detector assembly for quantifying a concentration of positron		
2	emitters in a microfluidic assembly, the beta detector assembly comprising:		
3	a base;		
4	a microfluidic channel disposed in the base enabling fluids to flow through		
5	the base;		

window means disposed in the base adjacent the microfluidic channel for

a solid-state charged particle detector supported by the base; and

increasing the linear resolution of the solid-state charge particle detector.

6

7 8

- 1 26. The detector assembly of Claim 25 wherein:
- a portion of the base adjacent the window means and supporting the solid
- 3 state charge particle detector has a thickness sufficient to substantially attenuate
- 4 the transmission of beta particles whereby a linear resolution of the solid-state
- 5 charge particle detector is increased.
- 1 27. The detector assembly of Claim 25 further comprising:
- a collimation well of a selected depth is disposed in the base.
- 1 28. The detector assembly of Claim 27, wherein:
- 2 the collimation well is disposed between the window means and the solid-
- 3 state charge particle detector.
- 1 29. The detector assembly of Claim 27, wherein:
- 2 the collimation well further comprises: a continuous side wall defined by the
- 3 base.
- 1 30. The detector assembly of Claim 29, wherein the collimation well
- 2 further includes:
- a depth sufficient to collimate the beta particles emitted from the liquid
- 4 within the microchannel enabling the detector to delineate between the particles
- 5 passing through the window and those attenuated by the base.
- 1 31. The detector assembly of Claim 25 wherein:
- 2 the base and the solid-state charged particle detector are integral with one
- 3 another.
- 1 32. The detector assembly of Claim 25 wherein:
- 2 a first electrode of the solid-state charge particle detector is disposed on a
- 3 first side of the base and a second electrode of the solid-state charge particle
- 4 detector is disposed on a second side of the base in spaced relation from the first
- 5 side of the base.

1

33. The detector assembly of Claim 32 wherein:

- the microfluidic channel is disposed adjacent the first or the second and the second electrodes.
- 1 34. The detector assembly of Claim 25 wherein:
- 2 the base is at least in part made from a material selected from the group of
- 3 materials consisting of glass, polymer, silicon, or derivatives thereof.
- 1 35. The detector assembly of Claim 28 wherein:
- 2 the base is at least in part made from a material selected from the group of
- 3 materials consisting of glass, polymer, silicon, or derivatives thereof.
- 1 36. The detector assembly of Claim 31 wherein:
- 2 the base is at least in part made from a material selected from the group of
- 3 materials consisting of glass, polymer, silicon, or derivatives thereof.
- 1 37. The detector assembly of Claim 32 wherein:
- 2 the base is at least in part made from a material selected from the group of
- 3 materials consisting of glass, polymer, silicon, or derivatives thereof.