Neural Machine Translation by jointly learning to align and translate

임송현

기계번역의 종류

규칙 기반 기계번역

- 주어진 문장의 구조를 분석해 규칙을 세움
- 분류를 나누어 정해진 규칙에 따라 번역
- 매번 새로운 규칙을 찾아내고 적용해야 하는 한계

통계 기반 기계번역

- 언어쌍을 확장할 때 대부분의 알고리즘이나 시스템은 유지됨
- 여러 가지 모듈로 이루어져 매우 복잡

신경망 기계번역

- 인코더-디코더 형태의 구조
- 성능이 낮음

딥러닝을 이용한 기계번역

- 입력 문장(x)이 주어졌을 때 신경망 모형을 통해 <mark>조건부 확률을 최대화</mark>하는 번역 문장(y)를 찾는 것 $\mathop{arg\max}_{\mathbf{y}} p(\mathbf{y}|\mathbf{x})$
- 인코더-디코더 형태의 구조
- RNN, LSTM, GRU를 네트워크로 사용
 - ① 입력, 출력 길이 제한 x
 - ② Sequential data 에 대한 순서 학습 가능 (문장 전체 -) 의미 -) 목표 언어로 번역)
 - ③ 예외 상황에 강건 (사전 기반 알고리즘에 비해 예외 상황에 유연)

Seq2seq 모형

인코더: 입력 시퀀스 처리 / 고정된 길이의 컨텍스트 벡터로 정보 압축

<mark>디코더</mark> : 인코더 신경망의 마지막 상태를 초기 상태로 사용함

인코더에서 압축된 컨텍스트 벡터로 초기화하여 변역 결과를 내놓음

고정된 길이의 context 벡터의 사용

- 문장 앞 부분의 정보가 희석됨
- 길이가 긴 입력 시퀀스에 대해 long term dependency
- LSTM으로 일정 수준 개선되지만 완전한 해결은 못함 -> **어텐션 매커니즘**

동기 및 아이디어

- <mark>동기</mark> 소스 문장의 길이가 긴 문장의 기억을 돕기 위해 만들어짐
- <mark>아이디어</mark> '중요한 부분만 집중하게 만들자'

ex. 나는 자연어 처리 스터디에 참여했다.

- 하나의 문장 내의 가까운 문맥에서 단어의 관계 설명
- 다음 단어를 예측하는데 단어 사이의 상관관계 분석을 통해 focusing

나는 자연어처리 스터디에 참여했다. high attention

나는 자연어처리 스터디에 참여했다. high attention

나는 자연어처리 스터디에 참여했다. low attention

어텐션 매커니즘 구조

어텐션 매커니즘 구조

Decoder

Encoder

인코더

- Bi-directional RNN 사용
- 입력 x -> 은닉 상태 h

- $\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$
- e_{ij} : 은닉 상태 벡터 s_t 와 인코더의 j 번째 열벡터가 얼마나 유사한지 나타내는 값
- alignment model은 다양한 형태로 변형가능

 $c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$

- 인코더의 j번째 열벡터에 대한 어텐션 확률의 가중합
- $s_i = f\left(s_{i-1}, y_{i-1}, c_i\right)$
- 직전 시점의 은닉 상태 벡터 / 직전 시점의 디코더 출력 / 현재 컨텍스트 벡터

$$p(y_i|y_1,...,y_{i-1},\mathbf{x}) = g(y_{i-1},s_i,c_i)$$

예시 : 나는 강아지를 정말 좋아한다. → I really like puppies.

인코더 (bi-directional model)

- 입력 시퀀스를 받아 은닉상태 벡터 h_j 생성
- 생성된 벡터들을 차례로 쌓아 은닉 상태 벡터 행렬 F 생성

예시 : 나는 강아지를 정말 좋아한다. → I really like puppies.

디코더

■ 입력: 인코더의 은닉 상태 벡터, 직전 시점의 은닉 벡터, 컨텍스트 벡터

■ 출력: 번역된 단어

논문 결과 해석 English-to-French 번역

■ <mark>데이터</mark> ACL WMT14 자료: 850M -> 데이터 선택¹ -> 348M

■ <mark>평가</mark> 성능 측정 지표 BLEU ↑

■ <mark>모형</mark> RNNsearch (어텐션) / RNNencdec (RNN 인코더-디코더)

■ <mark>세팅</mark> 인코더와 디코더 각각 1000개의 은닉 단위

각 언어에서 자주 등장하는 단어 30,000개에 대한 shortlist를 사용

포함되지 않은 단어는 특수 토큰([UNK])

학습시 문장의 단어 길이 30 / 50

문장 길이에 따른 테스트 셋의 번역 결과에 대한 BLEU점수

훈련데이터의 BLEU 점수

Model	All	No UNK°
RNNencdec-30	13.93	24.19
RNNsearch-30	21.50	31.44
RNNencdec-50	17.82	26.71
RNNsearch-50	26.75	34.16
RNNsearch-50*	28.45	36.15
Moses	33.30	35.63

테스트 문장에 대한 RNNsearch-50 Alignment matrix

어텐션의 장점

- 행렬이기 때문에 네트워크로 학습가능
- 언어 모델에 적합한 특성을 지님

언어별 문법, 번역 형태가 다른 것처럼 언어는 유연하기 때문에 예외 상황에 대해 스스로 학습

■ 입력과 출력의 길이가 달라도 번역 가능

Reference

- https://arxiv.org/pdf/1409.0473.pdf
- https://curaai00.tistory.com/9
- https://ratsgo.github.io/from%20frequency%20to%20semantics/2017/10/06/attention/
- https://nlpstudynote.tistory.com/18
- https://lilianweng.github.io/lil-log/2018/06/24/attentionattention.html?fbclid=lwAR1QpSK0Eqf20b7YADsK9cOilhvBuF6lStybrN7rr815tbhf2bZEAaeB86U
- 소문난 명강의 김기현의 자연어 처리 딥러닝 캠프