After an event, the peripheral sends a request signal to the DMA controller. The DMA controller serves the request depending on the channel priorities. As soon as the DMA controller accesses the peripheral, an Acknowledge signal is sent to the peripheral by the DMA controller. The peripheral releases its request as soon as it gets the Acknowledge signal from the DMA controller. Once the request has been deasserted by the peripheral, the DMA controller releases the Acknowledge signal. If there are more requests, the peripheral can initiate the next transaction.

10.3.3 Channel selection

Each stream is associated with a DMA request that can be selected out of 8 possible channel requests. The selection is controlled by the CHSEL[2:0] bits in the DMA_SxCR register.

Figure 35. Channel selection

The 8 requests from the peripherals (TIM, ADC, SPI, I2C, etc.) are independently connected to each channel and their connection depends on the product implementation.

Table 42 and Table 43 give examples of DMA request mappings.

Peripheral requests	Stream 0	Stream 1	Stream 2	Stream 3	Stream 4	Stream 5	Stream 6	Stream 7
Channel 0	SPI3_RX		SPI3_RX	SPI2_RX	SPI2_TX	SPI3_TX		SPI3_TX
Channel 1	I2C1_RX		TIM7_UP		TIM7_UP	I2C1_RX	I2C1_TX	I2C1_TX
Channel 2	TIM4_CH1		I2S3_EXT_ RX	TIM4_CH2	I2S2_EXT_ TX	I2S3_EXT_ TX	TIM4_UP	TIM4_CH3
Channel 3	I2S3_EXT_ RX	TIM2_UP TIM2_CH3	I2C3_RX	I2S2_EXT_ RX	I2C3_TX	TIM2_CH1	TIM2_CH2 TIM2_CH4	TIM2_UP TIM2_CH4
Channel 4	UART5_RX	USART3_RX	UART4_RX	USART3_TX	UART4_TX	USART2_RX	USART2_TX	UART5_TX
Channel 5	UART8_TX ⁽¹⁾	UART7_TX ⁽¹⁾	TIM3_CH4 TIM3_UP	UART7_RX ⁽¹⁾	TIM3_CH1 TIM3_TRIG	TIM3_CH2	UART8_RX ⁽¹⁾	TIM3_CH3
Channel 6	TIM5_CH3 TIM5_UP	TIM5_CH4 TIM5_TRIG	TIM5_CH1	TIM5_CH4 TIM5_TRIG	TIM5_CH2		TIM5_UP	
Channel 7		TIM6_UP	I2C2_RX	I2C2_RX	USART3_TX	DAC1	DAC2	I2C2_TX

Table 42. DMA1 request mapping

^{1.} These requests are available on STM32F42xxx and STM32F43xxx only.

Peripheral requests	Stream 0	Stream 1	Stream 2	Stream 3	Stream 4	Stream 5	Stream 6	Stream 7
Channel 0	ADC1	SAI1_A ⁽¹⁾	TIM8_CH1 TIM8_CH2 TIM8_CH3	SAI1_A ⁽¹⁾	ADC1	SAI1_B ⁽¹⁾	TIM1_CH1 TIM1_CH2 TIM1_CH3	
Channel 1		DCMI	ADC2	ADC2	SAI1_B ⁽¹⁾	SPI6_TX ⁽¹⁾	SPI6_RX ⁽¹⁾	DCMI
Channel 2	ADC3	ADC3		SPI5_RX ⁽¹⁾	SPI5_TX ⁽¹⁾	CRYP_OUT	CRYP_IN	HASH_IN
Channel 3	SPI1_RX		SPI1_RX	SPI1_TX		SPI1_TX		
Channel 4	SPI4_RX ⁽¹⁾	SPI4_TX ⁽¹⁾	USART1_RX	SDIO		USART1_RX	SDIO	USART1_TX
Channel 5		USART6_RX	USART6_RX	SPI4_RX ⁽¹⁾	SPI4_TX ⁽¹⁾		USART6_TX	USART6_TX
Channel 6	TIM1_TRIG	TIM1_CH1	TIM1_CH2	TIM1_CH1	TIM1_CH4 TIM1_TRIG TIM1_COM	TIM1_UP	TIM1_CH3	
Channel 7		TIM8_UP	TIM8_CH1	TIM8_CH2	TIM8_CH3	SPI5_RX ⁽¹⁾	SPI5_TX ⁽¹⁾	TIM8_CH4 TIM8_TRIG TIM8_COM

Table 43. DMA2 request mapping

10.3.4 Arbiter

An arbiter manages the 8 DMA stream requests based on their priority for each of the two AHB master ports (memory and peripheral ports) and launches the peripheral/memory access sequences.

Priorities are managed in two stages:

- Software: each stream priority can be configured in the DMA_SxCR register. There are four levels:
 - Very high priority
 - High priority
 - Medium priority
 - Low priority
- Hardware: If two requests have the same software priority level, the stream with the lower number takes priority over the stream with the higher number. For example, Stream 2 takes priority over Stream 4.

10.3.5 DMA streams

Each of the 8 DMA controller streams provides a unidirectional transfer link between a source and a destination.

Each stream can be configured to perform:

- Regular type transactions: memory-to-peripherals, peripherals-to-memory or memoryto-memory transfers
- Double-buffer type transactions: double buffer transfers using two memory pointers for the memory (while the DMA is reading/writing from/to a buffer, the application can write/read to/from the other buffer).

^{1.} These requests are available on STM32F42xxx and STM32F43xxx.