Al Can Generate Novel High-Energy Sustainable Aviation Fuel Molecules

Karl I. Neivelt (LBDQ8)

Supervisor: Dr Zied Hosni, Route: Data-Driven Innovation

1. Why Do Planes Need Better Fuel?

Aviation = 2.5% global CO₂ [1] and demand is rising

Current sustainable aviation fuels (**SAFs**) are **costly** with **inferior properties**. Traditional fuel discovery is slow & expensive.

Generative AI is widely used in drug discovery, but only limited use for aviation fuel.

Aim: Use Generative AI to design novel, highenergy, and sustainable fuel molecules.

2. How Can Al Design Molecules?

Fig. 1. Four-step methodology. DFT: density functional theory.

Here, Generator and Discriminator consist of transformer encoders. The model also includes other heuristics to improve stability and diversity.

Fig. 2. Schematic of the used Generative Adversarial Network (**GAN**). Model is based on TenGAN [2].

3. What Did We Discover?

Fig. 3. Model metrics improve steadily during training (99 % CI shown).

Al learns to make better molecules: the model improved, producing highly valid, unique, and novel molecules with high predicted energy density.

Fig. 4. Top candidate molecules after screening process. **NHOC**: net heat of combustion, **SA**: synthetic accessibility, **FP**: flash point.

Systematic property filtering works: 10 000 generated molecules were filtered to top 250.

Fig. 5. 3D optimised structures of selected molecules.

Final candidates rival best aviation fuels: fuels in Fig. 5 exceed Jet-A in NHOC and pass the ASTM D7566 [3] requirements for all predicted properties.

4. What is Next?

- Our generation-screening workflow can produce high-quality SAF candidates.
- Next steps: synthesis pathway analysis, synthesis of molecules and property testing.

