Problem definition - reminder Setup Algorithms and parallel implementations Results overview

Minimum Spanning Tree

DPHPC

Th. Cambier R. Dang-Nhu Th. Dardinier C. Trassoudaine

ETH Zürich

December 2018

- Problem definition reminder
 - The MST Problem
 - Use cases
- 2 Setup
 - Hardware
- Algorithms and parallel implementations
 - Base serial algorithms
 - Parallel improvements
- Results overview
 - Setup
 - Results

The MST Problem Use cases

Problem definition - reminder

The MST problem

A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted (un)directed graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight.

Input sets: G(n, p)

G(100, 0.02)

Input sets: PA(n)

PA(100)

Input sets: 9th DIMACS challenge dataset

USA Roads

Name	Description	# nodes	# arcs
USA	Full USA	23,947	,347 58,333,344 -
CTR	Central USA	14,081	,816 34,292,496 [
w	Western USA	6,262	,104 15,248,146 [
E	Eastern USA	3,598	,623 8,778,114 [
LKS	Great Lakes	2,758	,119 6,885,658 [
CAL	California and Nevada	1,890	,815 4,657,742 [
NE	Northeast USA	1,524	,453 3,897,636 [
NW	Northwest USA	1,207	,945 2,840,208 [
FLA	Florida	1,070	,376 2,712,798 [
COL	Colorado	435	,666 1,057,066 [
BAY	San Francisco Bay Area	321	,270 800,172 [
NY	New York City	264	,346 733,846 [

Hardware

Setup

Software

- OMP
- Intel Threading Building Blocks (TBB)
- Parallel Streaming Transformation Loader Service (PSTL)

EULER

- 1 node limitation (OMP)
- 2 sockets filled with 18 cores up to 3.7Ghz
- Inter-sockets bus speed: 10.4 GT/s

Algorithms and parallel implementations

Sollin

- 1: F = set(one-vertex trees)
- 2: while |F| > 1 do
- 3: TODO
- 4: end while

Kruskal

```
1: A = \emptyset
 2: for all v \in G.V do
      MAKE-SET(v)
 4: end for
5: Sort (asc.) (weight(u, v))_{(u,v) \in G.E}
6: for all (u, v) in G.E ordered by weight do
      if FIND-SET(u) \neq FIND-SET(v) then
 7:
        A = A \cup (u, v)
        UNION(u, v)
 9:
      end if
10.
11: end for
```

12: return A

Boost implementations

Boost-Kruskal used as a reference

Parallel sorting on Kruskal

Filter Kruskal

Filter Sollin

etup Results

Results overview

EULER Cluster

Scalability

Speedups

