

In the Claims

Claims 1-13 (Cancelled)

14. (New) A method for squeezing hue values (H_{in}) of a digital image toward a preferred hue value (H_{pref}) for the digital image, comprising:

(a) receiving a digital image file, the digital image file including a plurality of pixels of color image data, each pixel of the color image data being defined by a hue value, a chroma value, and a lightness value;

(b) selecting a hue value (H_{in}) from the digital image file;

(c) selecting a preferred hue value (H_{pref});

(d) calculating a hue change value ($\Delta H = H_{in} - H_{pref}$);

(e) calculating a hue weight value (H_{weight});

(f) calculating a hue adjustment value ($H_{Adjust} = \Delta H * (H_{weight})$);

(g) calculating a destination hue value ($H_{out} = H_{in} - H_{Adjust}$); and

(h) generating a modified digital image file by replacing the hue value (H_{in}) in the digital image file with destination hue value (H_{out}).

15. (New) The method as claimed in claim 14, wherein the hue weight value (H_{WEIGHT}) equals Gaussian(H_{pref}, H_{sigma}).

16. (New) The method as claimed in claim 14, wherein the preferred hue value (H_{pref}) and the hue weight value (H_{weight}) are pre-specified in a color management system.

17. (New) The method as claimed in claim 14, wherein the preferred hue value (H_{pref}) and the hue weight value (H_{weight}) are dynamically specified by a user.

18. (New) The method as claimed in claim 14, wherein a first hue weight value ($H_{1\text{weight}}$) is calculated for hue values less than the preferred hue value and a second hue weight value ($H_{2\text{weight}}$) is calculated for hue values greater than the preferred hue value.

19. (New) The method as claimed in claim 14, wherein:
the hue weight value (H_{WEIGHT}) equals $(K * \text{weight_tmp}) / (\max(\text{weight_tmp}))$ and

weight_tmp equals $e^{\frac{-(H_{\text{in}}-M)^2}{(2*H_{\text{sigma}}^2)}} + e^{\frac{-(H_{\text{in}}+M)^2}{(2*H_{\text{sigma}}^2)}} .$

20. (New) The method as claimed in claim 14, wherein K causes a monotonic behavior between the hue value (H_{in}) and the destination hue value (H_{out}).

21. (New) The method as claimed in claim 14, wherein the hue weight value (H_{WEIGHT}) equals $\text{Gaussian}(H_{\text{pref}}, H_{\text{sigma}}) * \text{Rect}(H_{\text{rectsize}})$, where H_{rectsize} is a parameter controlling a severity of the squeezing.

22. (New) The method as claimed in claim 14, wherein the hue weight value (H_{WEIGHT}) causes a monotonic behavior between the hue value (H_{in}) and the destination hue value (H_{out}).