Student ID:______ Student Name:____

1) For the circuit in Fig 1, assuming the op amp is ideal, and given that R_2 = R_4 = 90 k Ω .

 R_1 = R_3 = 10 k Ω , v_1 = 1 V and v_2 = 2 V,

- a) Find v_a and v_b;
- b) Find I_3 , I_F and v_o .

3 marks

Fig 1

2) With reference to the circuit in Fig 2, assuming all op amps to be ideal,

4 marks

- a) Identify the type of amplifier circuit associated with each of the op amps (label next to the op amp);
- b) Find V_1 , V_2 , V_3 , V_4 , V_5 , and v_o
- c) Find v_0 again if all the 10 k Ω resistors were reduced to 2 k Ω .

Fig 2

3 marks

a) Prove that transfer function of the filter shown in Fig 3 is:

$$\frac{V_o}{V_i} = -\frac{R_f}{R_i} \left(\frac{1}{1 + j\omega C_1 R} \right) \left(\frac{j\omega C_2 R}{1 + j\omega C_2 R} \right)$$

Fig 3

- b) Define $\,\omega_1=\frac{1}{RC_1}\,$ and $\,\omega_2=\frac{1}{RC_2}\,$. If $\,\omega_2<\omega_1\,$, is the filter in Fig 3 a low-pass, high-ass, bandpass or bandstop filter?
- c) At the center frequency $\omega_o=\sqrt{\omega_1\omega_2}$, what is the magnitude of the transfer function $\left|\frac{V_o}{V_i}\right|$?