

Студенты:

- Нгуен Тхань Тхиен
- Нгуен Фыок Санг
- Хоанг Хиеп
- Май Суан Бать
- Фам Куанг Ань

Группа: ИУ7и-66Б

Преподаватель : Строганов Ю. В.

Москва 2021

Введение

Деревья являются частью этой жизни, деревья - незаменимыми друзьями, они обеспечивают кислородом людей, животных и растений для поддержания жизни. Поэтому странам всегда уделяют особое внимание преимуществам содержания деревьев. В больших городах собралось количество людей и количество транспортных средств довольно велико, из-за чего атмосфера в этих местах загрязнена и серьезно не хватает кислорода, чтобы улучшить эту ситуацию в городах. часто есть много зеленых парков, чтобы частично улучшить атмосферу. Даже в каждом доме обычно есть одно-два растения для очистки воздуха. Однако не все знают, как правильно ухаживать за растениями, поэтому нам нужно приложение, которое напомнит нам о необходимости лучше заботиться о растениях.

Цели и задачи

Цели работы:

- Написать приложение, которое будет напоминать пользователю ухаживать за растением;
- Улучшить знания логического программирования.

Задачи проекта:

- Провести анализ предметной области;
- Выбрать инструменты и технологии для разработки;
- Спроектировать архитектуру для частей программного комплекса;
- Разработать и протестировать программный комплекс.

Декомпозиция задачи

Структура и технологии

Клиентская часть:

- Python
- PyQt5

Серверная часть:

SWI-prolog

База данных:

• Простой CSV-файл

Разделение задач

Нгуен Тхань Тхиен

• Разработка пользовательского интерфейса, интеграция с Prolog частью

Нгуен Фыок Санг, Фам Куанг Ань

• Анализ и написание программы на SWI-Prolog

Хоанг Хиеп, Май Суан Бать

• Анализ характеристики растений и погоды, разработка формулы для расчета потребности в поливной воде

База знаний

• погода (Температура, Влажность, Скорость ветра, Объем осадков, День года, Широта, Дневное Время).

Чтобы получать информацию о погоде в режиме реального времени, используем арі от «https://openweathermap.org/».

• **тип растения**(Имя типа, Максимальное хранение воды, Растительный фактор, Необходимое освещенное время, Взрослое).

У нас в CSV-файле хранится около 100 данных о породах деревьев.

• растение (Идентификатор, Имя, Имя типа, Взрослое, Текущее хранение воды, Текущее освещенное время, Снаружи).

База знаний

- Используя динамические предикаты, каждый раз в течение определенного времени приложение будет вызывать **update**.
- Предикат «update» отвечает за обновление текущего хранения воды и текущего освещенного времени растений.
- Рассчитав значение эвапотранспирации, рассчитанное по формуле, вычитая значение осадков в реальном времени, получим потерю воды для каждого растения.
- Время освещения обновляется в зависимости от текущего состояния погоды, идет ли дождь, и текущего положения растения внутри или снаружи. Здесь мы используем понятие «внутри» или «снаружи» относительно. Если растение помещено на прямой свет, считается, что оно находится «снаружи», и наоборот.

База знаний

- **нужна вода**(Идентификатор) : Возвращает идентификатор растений, которым нужна вода. Считается, что растению нужна вода, когда его текущее хранение воды достигает 0.
- поливать (Идентификатор): Полив растений, установив текущее значение хранения воды растения равным максимальному хранению воды соответствующего вида.
- **должен быть внутри**(Идентификатор) : Возвращает идентификатор растений, которые нужно поместить внутрь
- положить внутрь(Идентификатор) : обновляет значение «Снаружи» растения.
- **нужен свет**(Идентификатор) : Возвращает идентификатор растений, которым нужен свет, что означает, что их нужно разместить снаружи
- положить снаружи(Идентификатор) : обновляет значение «Снаружи» растения.

Формулы

Примечания к символу:

WS - хранение воды

IN - потребность в поливной воде

Eto - эвапотранспирация эталонного растения

k - снаружи или нет

k1 - дневное время или нет

RH - относительная влажность

Р - осадки за 1 час

Кр - растительный фактор

V - скорость ветра

Т - температура

Еа - давление газа

n - фактические часы солнечного сияния

Np - часы солнечного света нужны

Формулы

Rns = (1-0.17)*Rs

```
На один час: WS -= IN
IN = k*0.8*P+Ko*Kp*Eto
Если k = 1, то Ko = 1 иначе Ko = 0.7
Eto =
(0.408*Delta*(Rn-G)/(Delta+Gamma*(1+0.34*V))+37*Gamma/(T+273)*V*(E-Ea)/(Delta+Gamma*(1+0.34*V)))
E = 0.6108*(e^{(17.27*T)/(T+237.3)})
Ea = E * RH / 100
Delta = 4098*E/(T+237.3)
Gamma = 0.665*10^{(-3)}
Если k1 = 1, то G = 0.1*Rn иначе G = 0.5*Rn
Rn = Rns - Rnl
```

Формулы

$$Rs = (0.25+0.5*Kh)*Ra$$

Если
$$P <> 0$$
 и $k1 = 1$, то $Kh = 1$ иначе $Kh = 0$

$$Ra = 24*60/pi*0.0820*Dr*(Ws*sin(L)*sin(Beta)+cos(L)*cos(Beta)*sin(Ws))$$

$$Dr = 1 + 0.033 * cos(2*pi/365*D)$$

$$Ws = acos(-tan(L) * tan(Beta))$$

Beta =
$$0.409*\sin(2*\pi i/365*D-1.39)$$

$$Rnl = 4.903*10^{(-9)}T^4*(0.34-0.14*sqrt(Ea))*(1.35*Rs/Rso-0.35)$$

$$Rso = 0.75/Ra$$

Если WS = 0, то растению нужна вода.

Если k = 0 и n < Np, то растению нужен свет.

Если k = 1 и n >= Np, значит, растение должно находиться внутри.

Схема БД

Weather
Temperature (°)
Relative Humidity (%)
Wind Speed (m/s)
Rainfall Volumn (m3)
DayOfYear (Day)
Latitude (Radiant)
IsDayTime (0 or 1)

Plant species

Species name (text)

Plant factor

Required illuminated time (hou Rainfall Volumn (m3)

Is grown (0 or 1)

Plant ID (Number) Name (Text) Species (Text) Is grown (0 or 1) Current water storage (number) Current hours under sunshine (hour Is out side (0 or 1)

Реализация UI

Демонстрация работы

Анализ полученных результатов

- Приложение предлагает пользователю выполнить действия по поливу растений, регулировке яркости и внесению растений внутрь.
- Приложение может добавлять новые растения в список растений и удалять ненужные растения.
- Приложение может проверять состояние растений с течением времени и напоминать пользователю, когда на определенном временном шаге растению необходимо выполнить какое-либо действие.