Dynamics 2

Dynamics of General Systems (Dynamics of Systems of Bodies) Introduction

Dynamics of a General System

- So far we have investigated
 - the dynamics of a single mass particle
 - used N2 (in d'Alembert's formulation) to examine dynamic behaviour
- Now we extend to wider range of applications
 - bodies
 - assemblies of bodies
- Examine the abstract general case
 - a system of particles

Dynamics of a General System

- Systems of Particles have the following properties
 - a boundary (which can be arbitrarily designated)
 - a set of mass particles (joined up/interacting)
 - constant total mass
 - centre of mass G where the system's total weight acts

Examples of Systems

Dynamics of a General System

- In the following sections we will obtain the following important basic results:
 - Definition of internal and external forces in a system
 - Two theorems concerning internal forces
 - Location properties of G
 - Generalised form of Newton's Second Law for a system
 - Generalised moment theorem for a system

Internal and External Forces

Internal and External Forces

- Distinction between internal or external forces rests on N3
 - internal forces reactions also act on system
 - external forces reactions act outside the system

System Internal Force Theorems

- Internal forces occur in equal and opposite collinear pairs, which both act on the system - it can be shown that:
 - the (vector) sum of internal forces for any system is zero
 - the sum, about any point, of the moments of internal forces for any system is zero

Summary

- Defined a body or system of bodies with some examples
- Considered two basic theorems for systems of internal forces

Dynamics 2

Dynamics of General Systems (Dynamics of Systems of Bodies)

Centre of Gravity

Location of the System Centre of Gravity

 G is where total weight of the system is considered to act

- In a gravity field
 - the total weight acting at G gives the same moment as the sum of the moments of the particle weights
 - It applies about any reference point

Calculation of Centroids

In general this is found from the first moment of area, divided by total area:

$$x_c = \frac{\int x \, dA}{A}$$
 and $y_c = \frac{\int y \, dA}{A}$

where x_c and y_c are the coordinates of the centroid and $A = \int dA$

Calculation of Centre of Gravity

In general this is found from the first moment of mass, divided by total mass:

$$x_G = \frac{\int x \, dm}{M}$$
 and $y_G = \frac{\int y \, dm}{M}$

where x_G and y_G are the coordinates of the centroid and $M = \int dm$

- Masses m_1 and m_2
- G is distance x_G from O
- Take moments about O

$$x_{G}Mg = x_{1}m_{1}g + x_{2}m_{2}g$$
 $Mx_{G} = m_{1}x_{1} + m_{2}x_{2}$

In general

$$Mx_G = \sum m_j x_j$$
 [also $My_G = \sum m_j y_j$; $Mz_G = \sum m_j z_j$]

• For continuous bodies can use integrals

Vector form

- $\overline{R}_{\!\scriptscriptstyle G}$ = the position vector of G from O it has three components $x_{\!\scriptscriptstyle G}, y_{\!\scriptscriptstyle G}, z_{\!\scriptscriptstyle G}$
- \overline{R}_j = position vector of a typical particle m_j from O
- G for a system: $M\overline{R}_G = \sum_{j=1}^{n} m_j \overline{R}_j$

Vector form

 $oldsymbol{\cdot}$ Extending this, $\overline{r}_{\!\scriptscriptstyle j}=$ position vector of $m_{\!\scriptscriptstyle j}$ from G

$$\overline{R}_j = \overline{R}_G + \overline{r}_j$$

giving

$$M\overline{R}_G = \sum m_j (\overline{R}_G + \overline{r}_j)$$

$$\therefore M\overline{R}_G = \sum m_j \overline{R}_G + \sum m_j \overline{r}_j$$

[vector addition]

Vector form

ullet Extending this, $\overline{r}_{\!\scriptscriptstyle j}=$ position vector of $m_{\!\scriptscriptstyle j}$ from G

$$\overline{R}_j = \overline{R}_G + \overline{r}_j$$
 [vector addition]

giving

$$M\overline{R}_G = \sum m_j (\overline{R}_G + \overline{r}_j)$$

$$\therefore M\overline{R}_G = \sum m_j \overline{R}_G + \sum m_j \overline{r}_j$$

• The 1st term on the RHS is $(\sum m_j) \overline{R}_G = M \overline{R}_G$

$$\therefore \sum m_j \overline{r}_j = 0$$

• Key property of G: the 1st moment of the system mass about G=0

• triangular plate

• semi-circular plate

• semi-circular ring

sector plate

Summary

- Total weight acting at G gives the same moment as the sum of moments of particle weights
- Demonstrated that the first moment of the system mass about G=0

Dynamics 2

Dynamics of General Systems (Dynamics of Systems of Bodies) Centre of Gravity: Worked Example

Example 2.2

- We have a shaped uniform plate of mass 420 kg
- We need to lift it vertically (with crane) at 2.7 m/s²
 - top edge to remain horizontal
- So attach cable to top edge
 - but where? what is the tension in cable?

