Лабораторная работа № 6

Частотные характеристики пассивных электрических цепей второго порядка

Подготовка к работе

- 1. Частотные характеристики RLC цепей.
- 1.1. Вывод выражения для комплексной передаточной функции RLC цепи рис.6.1.

Рис. 6.1. – Схема фильтра второго порядка.

Параметры цепи:

 $R = 1080 \ Om, \ L = 30 \ mTH, \ C = 6 \ H\Phi,$

N – номер студента по журналу, M – номер группы.

O O<math> OO<math> OO

$$H(p) = U_{\text{Bbl}}/U_{\text{GX}} = R/(R+pL+1/pC) = RpC/(LCp^2+RpC+1) = p(R/L)/(p^2+p(R/L)+1/(LC)) = p(w_0/Q)/(p^2+p(w_0/Q)+w_0^2)$$

$$p->jw$$

$$H(jw) = jw(w_0/Q)/\sqrt{((w_0^2 - w^2)^2 + (ww_0/Q)^2)} = (w(w_0/Q) \perp 90)/(\sqrt{((w_0^2 - w^2)^2 + (ww_0/Q)^2)} \perp arctg((ww_0/Q)/(w_0^2 - w^2)))$$

$$ω_0 = \sqrt{1/LC} = 74535.599 \ pad/c$$
 $f_0 = 11.86271 \ κΓυ$

1.2. Расчет АЧХ и ФЧХ фильтра для двух значений R: найденного в n.1.1 (R_1) и имеющего значение в 10 раз больше найденного в n.1.1 ($R_2 = 10 R_1$).

$$H(w) = w(w_0/Q)/\sqrt{((w_0^2 - w^2)^2 + (ww_0/Q)^2)} = //w = kw_0//=k(w_0^2/Q)/\sqrt{((w_0^2 - kw_0^2)^2 + (ww_0^2/Q))^2} = k(w_0^2/Q)/\sqrt{((w_0^2 - kw_0^2)^2 + (ww_0^2/Q))^2}$$

$$(k/Q)/\sqrt{((1-k^2)^2+(k/Q)^2)}$$

 $\varphi(w)=90$ -arctg $((ww_0/Q)/(w_0^2-w^2))$, $w< w_0$
 $\varphi(w)=-90$ -arctg $((ww_0/Q)/(w_0^2-w^2))$, $w> w_0$
 $//w=kw_0//$
 $\varphi(w)=90$ -arctg $((k/Q)/(1-k^2))$, $w< w_0$
 $\varphi(w)=-90$ -arctg $((k/Q)/(1-k^2))$, $w> w_0$

	f	0.3 f_0	$0.5 f_0$	0. 8f ₀	J	$\frac{1}{2f_0}$	1. 5f ₀	$\frac{1.8}{f_0}$	2.0 f_0	2.5 f_0	3.0 f_0
R ₁ = 1.0 8к Ом	H (f)	0,1 57 3	0,3 06 6	0, 73 17	-	0, 79 65	0, 50 15	0,3 61 9	0,3 06 6	0,2 24 2	0,1 78 3
	ψ (f)	80. 95 1	72. 14 8	42 .9 69	(- 37 .1 98	- 59 .8 99	- 68. 78 4	72. 14 8	- 77. 04 5	- 79. 73 2
R_2 = 10.	H (f)	0.8 46 9	0.9 55 0	0. 99 57	-	0. 99 71	0. 98 54	0.9 68 4	0.9 55 0	0.9 17 1	0.8 75 5
70. 8к Ом	ψ (f)	32. 12 47	17. 24 96	5. 32 17	(- 4. 34 04	- 9. 78 72	- 14. 44 53	- 17. 24 96	- 23. 49 46	- 28. 89 87

Определение резонансной линейной частоты и добротности контура. Расчетные формулы: $\omega_0 = \sqrt{(1/LC)}$ $f_0 = w_0/2\pi$ $Q = w_0L/R$

$R_I = 1.08\kappa O_M$	$R_2=10.8~\kappa O$ м
$ω_0 = 74535.599 \ pad/c$ $f_0 = 11.86271 \ \ \kappa \Gamma u$ $Q = 2.07$	$ω_0 = 74535.599 \ pad/c$ $f_0 = 11.86271 \ κΓψ$ $Q = 0.207$

Построить на миллиметровой бумаге формата A4 AЧX и ФЧX схемы 6.1 (частотные характеристики при разных величинах R совместить на одном графике; частоту откладывать в Герцах, фазу — в градусах). Отметить на полученных характеристиках резонансную частоту фильтра.

1.3. Вывод выражения для комплексной передаточной функции схемы рис. 6.2. Расчет АЧХ схемы.

Puc.6.2. Схемы фильтров второго порядка. Схема 6.2 а для нечетных номеров N, схема 6.2 б — для четных номеров N.

Параметры цепи:

 $R = 1080 \ O$ м, $L = 30 \ м\Gamma$ н, $C = 6 \ н\Phi$,

N – номер студента по журналу, M – номер группы.

$$H(p) = pL/(pL + 1/(pC) + R) = p^2CL/(p^2CL + RpC + 1) = p^2/(p^2 + pRC/(CL) + 1/(CL)) = p^2(p^2 + pRC/(CL) + 1/(CL) + 1/(CL)$$

$$p^2/p^2 + pw_0/Q + w_0^2$$
 $p - jw$

 $H(jw) = -w^2/(\sqrt{((w_0^2 - w^2)^2 + (ww_0/Q)^2)}) = (w^2 \perp 180)/(\sqrt{((w_0^2 - w^2)^2 + (ww_0/Q)^2)})$

 $(w^2)^2 + (ww_0/Q)^2$ $) arctg((ww_0/Q)/(w_0^2 - w^2)))$

 $H(w)=w^2/\sqrt{((w_0^2-w^2)^2+(ww_0/Q)^2)}=//w=kw_0//=k^2/\sqrt{((1-k^2)^2+(k/Q)^2)}$

f	0.3f	0.5	0.8	<i>f.</i>	1.2	1.5	1.8	2.0	2.5	3.0f
	0	f_0	f_0	Jo	f_0	f_0	f_0	f_0	f_0	0
H	0.00	0.3	1.2	2.	1.9	1.5	1.3	1.2	1.1	1 10
(f	0.09	17	11	0	78	57	48	69	60	1.10
)	767	3	7	7	6	3	4	1	2	698

Построить на миллиметровой бумаге формата $A5\ A4X$ схемы, отметить резонансную частоту фильтра и частоту, соответствующую максимуму A4X.

Рабочее задание

2. Экспериментальное определение частотных характеристик цепей второго порядка.

2.1. Рассчитать АЧХ и ФЧХ для схемы рис 6.1.

Собрать виртуальную схему рис. 6.1 и провести расчет АЧХ и ФЧХ фильтра при значении $R = R_1$, сохранить результаты в электронном виде. Амплитуду источника напряжения установить 1 В. По полученным характеристикам с помощью курсора и маркера курсора определить резонансную и граничные частоты фильтра. Определить по экспериментальным данным добротность контура. Результаты занести в таблины.

M = 8, N = 4,

	резонанс	Нижняя частота	Верхняя частота
φ	$0_{\rm o}$	45°	- 45°
f , к Γ ц	11.818	9.3182	15.076
H(f)	0.9992	703.847m	706.522m

Расчет добротности.

$$Q = \frac{f_o}{f_e - f_{H}} = 2.0388$$

Добротность	Теоретический расчет	Эксперимент
0	2.07	2.0388

2.2. Рассчитать АЧХ и ФЧХ для схемы рис 6.2 в зависимости от варианта для двух значений сопротивления $R = R_1$ и $R = R_2$.

Собрать виртуальную схему рис. 6.2 и провести расчет АЧХ и ФЧХ фильтра для значения $R = R_1$, сохранить результаты в электронном виде. Амплитуду источника напряжения установить 1 В. По полученным характеристикам с помощью курсора и маркера курсора определить для фильтра резонансную, граничные частоты и частоту, соответствующую максимуму АЧХ. Результаты занести в таблицу.

	резонанс	максимум	Нижняя частота	Верхняя частота	
φ	± 90°	75.204	± 45°	± 135°	
f , к Γ ц	11.901	12.645	15.041	9.3388	
H(f)	2.0753	2.1326	1.8635	1.1528	

Собрать виртуальную схему рис. 6.2 и провести расчет АЧХ и ФЧХ фильтра для значения $R=R_2$, сохранить результаты в электронном виде. Амплитуду источника напряжения установить 1 В. По полученным характеристикам с помощью курсора и маркера курсора определить резонансную и граничную частоты фильтра.

20KHz

Frequency

30KHz

40KHz

50KHz

$$f_0 = 11.818 \;\; \mathrm{к}\Gamma$$
ц $f_{\mathrm{rp}} = 17.603 \;\; \mathrm{к}\Gamma$ ц

0Hz 10KHz 1 (a(V(1) 2 → P(V(1))

ουJ