(Two-level) Logic Synthesis Implicants and Prime Implicants

Becker/Molitor, Chapter 7.2

Jan Reineke Universität des Saarlandes

A Boolean function $f \in B_n$ is less than or equal to another Boolean function $g \in B_n$ ($f \le g$), if $\forall \alpha \in B^n$: $f(\alpha) \le g(\alpha)$. (i.e. if f is 1, then so is g).

Definition:

Let f be a Boolean function with one output.

An implicant of f is a monomial q with $\psi(q) \le f$.

A prime implicant of f is a maximal implicant q of f, i.e., there is no implicant s (s \neq q) of f with ψ (q) $\leq \psi$ (s).

Illustration via n-dimensional hypercubes

- An implicant of f is a subcube that contains only marked nodes.
- A prime implicant of f is a maximal such subcube.

The function defining our hypercube has **3 prime implicants**:

• X₂

The function defining our hypercube has **3 prime implicants**:

- \mathbf{x}_2
- \bullet $\mathbf{x}_1'\mathbf{x}_3$

The function defining our hypercube has **3 prime implicants**:

- \mathbf{x}_2
- $x_1'x_3$
- X₃'X₂

Polynomials and implicants of a function f

Lemma:

All monomials of a polynomial p of f are implicants of f.

Proof (by contradiction)

Let p be a polynomial of f and let m be a monomial of p.

Assume for a contradiction that m is not an implicant of f, i.e., $\psi(m) \le f$ does not hold.

Thus, there must be a valuation $(\alpha_1,...,\alpha_n)$ of the variables $(x_1,...,x_n)$ with

- $f(\alpha_1,...,\alpha_n) = 0$, but
- $\psi(m)(\alpha_1,...,\alpha_n) = 1$, and so also $\psi(p)(\alpha_1,...,\alpha_n) = 1$.

However, by assumption p is a polynomial of f, and so $\psi(p)(\alpha_1,...,\alpha_n) = f(\alpha_1,...,\alpha_n)$. Contradiction!

Cheapest covering of all marked nodes

We are searching for a polynomial f of minimal cost, i.e., we are searching for a so-called minimal polynomial:

Definition:

A minimal polynomial p of a Boolean function f is a polynomial of f of minimal cost, i.e., a polynomial of f, s.t., $cost(p) \le cost(p')$ for all (other) polynomials p' of f.

Prime Implicant Theorem of Quine

Theorem (Quine):

Every minimal polynomial p of a Boolean function f consists only of prime implicants of f.

Willard Quine (1928-2000)

Proof (by contradiction)

Assume that p contains an implicant of f that is not prime.

Thus, m is covered by a prime implicant m' of f. In other words, it is contained in m'.

By definition of cost, we have $cost(m') \le cost(m)$.

Replacing the implicant m by the prime implicant m', we obtain another polynomial p', that is still a polynomial of f, s.t. $cost(p') \le cost(p)$.

This contradicts the assumption that p is a minimal polynomial!

→ To construct a minimal polynomial of a Boolean function f, we should first find its prime implicants!

Computation of Implicants (1/2)

Lemma 1:

If m is an implicant of f, then so are $m \cdot x$ and $m \cdot x'$ for every variable x that occurs neither as positive or negative literal in m.

Proof

```
More formally: By assumption, m is an implicant of f, i.e.: \psi(m) \leq f. \psi(m) = \psi(m) \cdot (\psi(x) + \neg \psi(x)) (Complements)
= \psi(m) \cdot (\psi(x) + \psi(x')) \qquad \text{(Definition of } \psi)
= \psi(m) \cdot \psi(x) + \psi(m) \cdot \psi(x') \qquad \text{(Distributivity)}
= \psi(m \cdot x) + \psi(m \cdot x') \geq \psi(m \cdot x), \ \psi(m \cdot x') \qquad \text{(Definition of } \psi)
So we have: \psi(m \cdot x), \ \psi(m \cdot x') \leq f, i.e. m \cdot x and m \cdot x' are also implicants of f.
```

Computation of Implicants (2/2)

Lemma 2:

If m·x and m·x' are implicants of f, then so is m.

Proof

As $\mathbf{m} \cdot \mathbf{x}$ and $\mathbf{m} \cdot \mathbf{x}'$ are implicants of \mathbf{f} , by definition of implicants, we have $\mathbf{f} \geq \psi(\mathbf{m} \cdot \mathbf{x})$ and $\mathbf{f} \geq \psi(\mathbf{m} \cdot \mathbf{x}')$.

Thus, we also have $f \ge \psi(\mathbf{m} \cdot \mathbf{x}) + \psi(\mathbf{m} \cdot \mathbf{x}')$

```
f \ge \psi(\mathbf{m} \cdot \mathbf{x}) + \psi(\mathbf{m} \cdot \mathbf{x}')
= \psi(\mathbf{m}) \cdot \psi(\mathbf{x}) + \psi(\mathbf{m}) \cdot \psi(\mathbf{x}') \qquad \text{(Definition of } \psi\text{)}
= \psi(\mathbf{m}) \cdot (\psi(\mathbf{x}) + \psi(\mathbf{x}')) \qquad \text{(Distributivity)}
= \psi(\mathbf{m}) \cdot (\psi(\mathbf{x}) + \psi(\mathbf{x})) \qquad \text{(Definition of } \psi\text{)}
= \psi(\mathbf{m}) \qquad \text{(Complements)}
```

Characterization of Implicants

Theorem (Implicants):

A monomial m is an implicant of f if and only if, either

- m is a minterm of f, or
- m·x and m·x' are implicants of f for a variable x that does not occur in m.

Thus:

```
m \in Implicant(f) \Leftrightarrow [m \in Minterm(f)] \vee [m \cdot x, m \cdot x' \in Implicant(f)]
```

Proof

Follows directly from Lemma 1 and Lemma 2.