ANÀLISI MATEMÀTICA (AMA)

UT3 - Problemes proposats: MANIPULACIÓ I CÀLCUL D'INTEGRALS

1. Calcula les primitives que segueixen, reductibles a immediates:

a)
$$\int \frac{1-x}{\sqrt{1-x^2}} dx$$

b)
$$\int \frac{2+3\cos(x)}{\sin^2(x)} dx$$

a)
$$\int \frac{1-x}{\sqrt{1-x^2}} dx$$
 b) $\int \frac{2+3\cos(x)}{\sin^2(x)} dx$ c) $\int \frac{1+\log(x)}{3+x\log(x)} dx$ d) $\int \frac{\sin^3(x)}{\sqrt{\cos(x)}} dx$

d)
$$\int \frac{\sin^3(x)}{\sqrt{\cos(x)}} dx$$

2. Calcula les primitives que segueixen per integració per parts:

a)
$$\int x \log(x) dx$$

a)
$$\int x \log(x) dx$$
 b) $\int \arcsin(x) dx$ c) $\int e^x \sin(x) dx$ d) $\int \frac{x}{\cos^2(x)} dx$

c)
$$\int e^x \sin(x) dx$$

d)
$$\int \frac{x}{\cos^2(x)} dx$$

3. Calcula les primitives que segueixen a partir de canvis de variable convenients:

a)
$$\int x\sqrt{x-5}dx$$
 b) $\int \frac{x^3}{1+x^8}dx$ c) $\int \frac{dx}{1+e^x}$

$$b) \quad \int \frac{x^3}{1+x^8} dx$$

c)
$$\int \frac{dx}{1+e^x}$$

4. Calcula les integrals de Riemann que segueixen, aplicant la regla de Barrow. Es tindran en compte els mètodes d'integració per parts, substitució (canvi de variable) o una combinació d'ells:

a)
$$\int_0^1 \frac{\sqrt{x}}{1+\sqrt{x}} dx$$

$$b) \quad \int_0^2 \frac{dx}{2 + \sqrt{x}}$$

c)
$$\int_{-\pi}^{\pi} x \sin(kx) dx , k \in \mathbb{Z}$$

d)
$$\int_{1}^{4} \frac{\sqrt{x}}{x(x+4)} dx$$

d)
$$\int_{1}^{4} \frac{\sqrt{x}}{x(x+4)} dx$$
 e) $\int_{0}^{1} \arctan(x) dx$ f) $\int_{0}^{2} x^{2} e^{-x} dx$

$$f) \quad \int_0^2 x^2 e^{-x} dx$$

$$g) \int_0^{\pi} e^x \cos(x) dx$$

g)
$$\int_0^{\pi} e^x \cos(x) dx$$
 h) $\int_0^{\log(5)} \frac{e^x \sqrt{e^x - 1}}{e^x + 3} dx$ i) $\int_0^{\pi/2} \cos^3(x) dx$

i)
$$\int_0^{\pi/2} \cos^3(x) dx$$

j)
$$\int_{2}^{\pi} \cos\left(\sqrt{x-2}\right) dx$$
 k) $\int_{1}^{4} \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} dx$

$$k) \int_{1}^{4} \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} dx$$

$$1) \quad \int_0^9 \frac{dx}{\sqrt{1+\sqrt{x}}}$$

- a) Calcula l'àrea tancada per la gràfica de $y=x^2+x-2$ i l'eix OX, sobre l'interval [-3,2]5.
 - b) Calcula l'àrea que limiten les funcions $f(x) = \frac{1}{x^2 + 3}$ i $g(x) = \frac{x 1}{8x}$ en el primer quadrant.

ANÀLISI MATEMÀTICA (AMA)

UT3 - Exercicis addicionals: MANIPULACIÓ I CÀLCUL D'INTEGRALS

- 1. Utilitza la monotonia de l'operador integral per a:
 - a) Acotar la integral $\int_{2}^{5} \frac{f(x)}{x^4} dx$ si f és continua i $x^2 \le f(x) \le x^3$ per a $x \in [2, 5]$
 - b) Justificar que $\left| \int_0^{\pi} e^{-x} \cos(x^2) dx \right| \le 1 e^{-\pi}$
 - c) Acotar, sense resoldre ninguna integral, $\int_0^{\pi} \frac{e^{-x}\sin(x)}{x^2+1}dx$
 - d) Millorar el resultat de c) calculant $\int_{0}^{\pi} \frac{dx}{x^2 + 1}$.
- 2. Calcula els valors de L(f, P) i U(f, P) per a la funció $f(x) = \frac{3-x}{3^x}$ i la partició $P = \{1, 2, 4, 7\}$.
- *3. Considera la funció $f(x) = x^2$ i la partició, P_n , que divideix l'interval [0,1] en n parts iguals
 - a) Calcula els valors de $L(f, P_n)$ i $U(f, P_n)$ tenint en compte que $\sum_{k=1}^{n} k^2 = \frac{1}{6} (2n+1) n (n+1)$
 - b) Determina els límits de $L\left(f,P_{n}\right)$ i $U\left(f,P_{n}\right)$ quan $n\rightarrow\infty$
 - c) Quin és el valor de $\int_{0}^{1} x^{2} dx$? Per què?
- 4. Calcula les integrals de Riemann que segueixen, aplicant la regla de Barrow. Hauràs de descomposar l'integrand en fraccions simples i es tindrà en compte el mètode de substitució (canvi de variable) en b):

a)
$$\int_{1}^{2} \frac{dx}{x(x^2+1)}$$

b)
$$\int_{1}^{3} \frac{dx}{x\sqrt{x+1}}$$

a)
$$\int_{1}^{2} \frac{dx}{x(x^{2}+1)}$$
 b) $\int_{1}^{3} \frac{dx}{x\sqrt{x+1}}$ c) $\int_{e-1}^{e+1} \frac{x^{2}+1}{x^{4}-x^{2}} dx$

- 5. Calcula $\int_{1}^{4} \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} dx$ amb dos canvis de variable distints i verifica que trobes el mateix resultat.
- *6. a) Si f és una funció senar, integrable Riemann en [-b,b], verifica que $\int_{-b}^{b} f(x)dx = 0$
 - b) Què pots dir si f és parella?
- a) Tenint en compte el problema anterior, calcula $\int_{-2}^{3} \sqrt{9-x^2} dx$ després d'aplicar el canvi de variable
 - b) Dedueix de l'apartat anterior el valor de l'àrea d'una circumferència de radi 3.
- a) Troba el valor de l'àrea del recinte limitat entre les corbes $x^2 = 2py$ i $y(x^2 + p^2) = p^3$, p > 0*8.
 - b) Troba el valor de l'àrea tancada entre $y_1=1-\frac{x}{2}$ i $y_2=|x|$
 - c) Calcula l'àrea de la regió limitada entre les gràfiques de $\sin(x)$ i de $\cos(x)$ en l'interval $[0,\pi]$

- *9. Calcula, per a tots els possibles valors de $\alpha \in \mathbb{R}^+$, el valor de $\int_{-\alpha}^{\alpha} |\alpha |x| + x| dx$.
- *10. Calcula les primitives de les funcions secant i cosecant:

$$\int \sec(x)dx = \int \frac{dx}{\cos(x)} \quad \text{i} \quad \int \csc(x)dx = \int \frac{dx}{\sin(x)}$$

- *11. a) Calcula $\int_0^{\pi/2} \sin^2(x) dx$
 - b) Aplicant algún canvi de variable a la integral de l'apartat anterior, calcula

$$\int_0^{\pi} \sin^2\left(\frac{x}{2}\right) dx , \quad \int_{\pi}^{\pi/2} \sin^2\left(x - \frac{\pi}{2}\right) dx , \quad \int_0^{\pi/4} \cos^2\left(2x\right) dx$$

- *12. Mitjançant un canvi de variable similar al canvi del problema 8, calcula $\int_0^a x^2 \sqrt{1-\frac{x^2}{a^2}} dx$.
- *13. a) Calcula el valor de l'àrea tancada entre $y_1 = \frac{x^2}{3} \frac{x}{6} + \frac{1}{2}$ i $y_2 = |x|$
 - b) Troba el valor de k > 0 de manera que la corba $y = k \sin(x)$ dividisca en dues parts de la mateixa àrea el recinte determinat per $y = \cos(x)$ i els eixos coordenats, en l'interval $\left[0, \frac{\pi}{2}\right]$.
- *14. La taxa de variació d'una població de conills satisfà, per a t en anys,

$$P'(t) = \frac{100 - 25t}{t^2 - 8t + 17} = \frac{-25(t - 4)}{(t - 4)^2 + 1}$$

- a) En quin moment és màxima la població de conills?
- b) Si la població inicial és de 50 conills quin és el màxim nombre de conills esperable?
- c) S'extingiran els conills? Quan?