Exercise 1.1. [10pt] Let a = 1485 and b = 1745

- (1) [4pt] Use Euclidean algorithm to find gcd(1485, 1745)
- (2) [4pt] Find $\alpha, \beta \in \mathbb{Z}$ satisfying $1485 \cdot \alpha + 1745 \cdot \beta = \gcd(1485, 1745)$.
- (3) [2pt] Compute lcm(1485, 1745).

Exercise 1.2. [5pts] The Fibonacci numbers $\{f_i\}$ are defined recurrently by

$$\begin{cases} f_1 = 1; \\ f_2 = 1; \\ f_3 = f_1 + f_2; \\ \dots \\ f_n = f_{n-1} + f_{n-2}. \end{cases}$$

Use Euclidean lemma to find $gcd(f_n, f_{n+1}) = 1$.

Exercise 1.3. [5pt] Use mathematical induction to prove that

$$6 \mid 7^n - 1$$

for every $n \in \mathbb{N}$.

Janvas betor

Perhaps you are familiar with some divisibility tests, e.g., divisibility by 3, by 9, by 2, by 5. For instance:

- It is easy to see that 342 is divisible by 3 because the sum of digits 3+4+2=6 is divisible by 3
- It is easy to see that 344 is divisible by 2 because its last digit 4 is divisible by 2.
- It is easy to see that 344 is not divisible by 5 because its last digit 4 is not divisible by 5.

There is a very simple idea behind each of these tests. Consider divisibility by 3 test. A given decimal abcde (where a, b, c, d, e are digits) defines a number

$$a \cdot 10^4 + b \cdot 10^3 + c \cdot 10^2 + d \cdot 10^1 + e.$$

Note that $10^n \equiv_3 1$ for any $n \in \mathbb{N}$. Hence,

$$abcde \equiv_3 a + b + c + d + e.$$

In particular, abcde is divisible by 3 if and only if a + b + c + d + e is.

Exercise 1.4. [5pts] Prove that a decimal number $a_n a_{n-1} \dots a_1 a_0$ is divisible by 11 if and only if the alternating sum of the digits:

$$a_n - a_{n-1} + a_{n-2} - a_{n-3} + a_{n-4} - \dots$$

is divisible by 11.

Exercise 1.5. [5pts] Compute the remainder of division of 3^{100} by 7.

We can use induction to prove that $6 \mid n(n+1)(2n+1)$ for every $n \in \mathbb{N}$. But a much easier approach is to notice that

$$6 \mid n(n+1)(2n+1) \iff n(n+1)(2n+1) \equiv_{6} 0$$

$$\Leftrightarrow [n(n+1)(2n+1)]_{6} = [0]_{6}$$

$$\Leftrightarrow [n] \cdot [n+1] \cdot [2n+1]_{6} = [0]_{6}.$$

The last equality is easy to check for every n, because there are just 6 congruence classes modulo 6.

Exercise 1.6. [+2pts] Prove that $6 \mid n(n+1)(2n+1)$ for every $n \in \mathbb{N}$ by checking that $[n]_6 \cdot [n+1]_6 \cdot [2n+1]_6 = [0]$ for each congruence class $[n]_6$.

Let X be a set. A function $f: X \times X \to X$ is called a **binary function** on X. If there is no ambiguity (f is the only binary function) instead of writing f(a,b) we write $a \cdot b$ or simply ab.

Definition 1.1. A binary function \cdot on a set X is

- commutative if ab = ba for every $a, b \in X$;
- associative if (ab)c = a(bc) for every $a, b, c \in X$;
- closed on a subset $S \subset X$ if $ab \in S$ for every $a, b \in S$; in this event we also say that S is closed under \cdot . A restriction of \cdot of $S \times S$ is a binary operation too.

We say that a and b commute in G if ab = ba.

Exercise 1.7. [2pts] Consider the set of all complex numbers \mathbb{C} equipped with the standard multiplication \cdot . Which of the following subsets of \mathbb{C} are closed under \cdot ? Just circle appropriate sets, no explanation is required in this problem.

- $(1) \mathbb{R}.$
- (2) The set of purely imaginary numbers $\mathbb{R}i = \{ ai \mid a \in \mathbb{R} \}.$
- $(3) \{1, -1, i, -i\}.$
- (4) \mathbb{N} .
- (5) $\{a+b\sqrt{2}i \mid a,b \in \mathbb{Q}\}.$
- $(6) \{-1,0,1\}.$

A binary function \cdot on a small set $X = \{x_1, \dots, x_n\}$ can be defined by a table, called a composition (or multiplication) table

Exercise 1.8. [4pts] Define \cdot on $X = \{a, b, c\}$ using the table

- (1) Is \cdot commutative?
- (2) Is \cdot associative?
- (3) Is \cdot closed on $\{a, b\}$?
- (4) We say that $x \in X$ is the multiplicative identity if xy = yx = y for every $y \in X$? Do we have a multiplicative identity for our operation?

EXPLAIN!