gebena_regesija

Augst 23, 2017

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn import linear_model
        from sklearn import metrics
        from sklearn import model_selection
        %matplotlib inline
In [2]: # radimo sa podacima koji se ticu bejzbol igraca
        # hteli bismo na osnovu svih statistika o performansama igraca da predvidir
        # podaci koji se koriste su preuzeti iz knjige Introduction to Statisctica.
        # link do knjige je: http://www-bcf.usc.edu/~gareth/ISL/
        data = pd.read_csv('hitters.csv')
In [3
        # skup sadrzi 21 atribut (ukljucujuci i platu koju zelimo da predvidimo)
        # i 322 informacije koje se ticu pojedinacnih igraca
        data.shape
Out [3
In [4]: data.head(5)
Out [4]:
                             AtBat
                                     Hits HmRun Runs RBI Walks Years CAtBat
                      Player
              -Andy Allanson
                                 293
        0
        1
                 -Alan Ashby
                                 3
        2
                -Alvin Davis
                                479
                                       13
        3
          -Andres Galarraga
                                 3
           CHits
                             CRuns
                                     CRBI
                                           CWalks League Division PutOuts Assists
              66
        0
                                 3
             83
        1
        2
             457
                                224
                                      266
                                              263
        3
             101
                                 48
                                       46
                    . . .
           Errors
                   Salary
                           NewLeague
        0
               20
                      NaN
```

```
1
               10
                    475.0
                                    Ν
        2
               14
                    480.0
                                    Α
        3
        4
                4
                     91.5
                                    Ν
        [5 rows x 21 columns]
In [5]: # ispitujemo prirodu podataka koji se nalaze u tabeli
        data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3
Data columns (total 21 columns):
Player
             3
AtBat
             3
             3
Hits
HmRun
             3
             3
Runs
             3
RBI
             3
Walks
             3
Years
CAtBat
             3
CHits
             3
CHmRun
             3
CRuns
             3
CRBI
             3
CWalks
             3
Leaque
             3
             3
Division
PutOuts
             3
             3
Assists
Errors
             3
             263
Salary
NewLeague
             3
dtypes: float64(1), int64(16), object(4)
memory usage: 52.9+ KB
In [6]: # neke od vrsta zadrze nedostajuce vrednosti tako da nam nisu podesne u mod
        data = data.dropna()
In [7]: data.shape
Out[7]: (263
In [8]: # informacije o platama su nam potrebne za predvidjanje kao posebna velicin
        Y = data['Salary']
```

to su Player, League, Division, NewLeague

In [10]: # neki atributi nam nisu informativni - kategorickog su tipa, a ne numerio

Salary takodje treba ukloniti
X = data.drop(['Player', 'League', 'Division', 'NewLeague', 'Salary'], ax:
print(X)

1	AtBat	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	\
1	3	4.0									
2	479	13									
3	•										
4	3	1.00	4		- 1						
5	594	169	4	74	51	3					
6	185	3									
7	298	73									
8	3	0.0	1.0	4.0		6.5	1.0				
9	401	92	17	49	66	65	13	4.60			
10	574	159	21	107	75	59	10	463			
11	202	53									
12	418	113									
13											
14	196	43									
16	568	158	20	89	75	73					
17	190	46	2	24	8	15	5	479	102	5	
19	127	3									
20	413										
21	426	109	3								
23											
24	629	168	18	73							
25	587	163									
26	3										
27	474	129	10	50	56	40	10	23			
28	550	152	6	92	3						
29	513										
3											
3											
3											
3											
	• • •		• • •			• • •	• • •	• • •	• • •	• • •	
287	687	213									
288	3										
289	263										
290	642	211	14	107	59	52	5	23			
291	265	68	8	26	3						
293											
294	520	120	17	53	_						
295	19	4	1	2	3						
296	205	43									
297	193										
299	213										
3											

```
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
     CRuns CRBI CWalks PutOuts Assists Errors
1
       3
2
       224
              266
                      263
3
4
       48
              46
                       3
5
       501
              3
6
        3
7
        41
              3
8
        3
9
       784
              890
                      866
                                0
                                           0
                                                    0
10
       702
              504
                      488
                                23
11
       192
              186
                      161
                                3
12
       205
              204
                      203
13
14
       3
16
      1045
              993
17
        65
               23
19
        67
               82
                       56
                                202
                                          22
                                                    2
20
               48
                       65
                                280
                                           9
                                                    5
        72
               43
21
        55
23
24
      1008
            1072
                      402
                               1067
                                         157
                                                   14
25
       442
             198
                      3
26
       291
                      180
                                222
                                           3
              108
27
       246
              3
28
       3
29
       763
3
3
```

```
3
3
. .
       . . .
                       . . .
287
       196
              13
288
       207
              162
                      198
                                209
                                          246
                                                     3
        83
289
290
       3
291
       13
293
294
       106
               80
                       52
                                 70
                                          144
                                                    11
295
         2
                3
296
       105
               99
                       71
                                13
297
       129
              13
299
       488
              491
                                178
                      244
                                           45
                                                     4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
[263
In [13
Out [13
In [11]: # posto su skale vrednosti podataka neujednacene, ima smisla raditi norma.
In [12]: # delimo skup podataka na:
         # trening skup
         # validacioni skup koji koristimo za ucenje metaparametara
         # test skup na kojem ocenjujemo uspesnost modela
```

```
X_train_validation, X_test, Y_train_validation, Y_test = model_selection.t
         X_train, X_validation, Y_train, Y_validation = model_selection.train_test_
In [13
        # baseline - linearna regresija
         linreg = linear_model.LinearRegression(normalize=True)
         linreg.fit(X_train_validation, Y_train_validation)
         Y_predicted = linreg.predict(X_test)
         linreg_score = metrics.mean_squared_error(Y_test, Y_predicted)
         linreg_score
Out [13
In [14]: # grebena regresija sa metaparametrom 4
         reg_1= linear_model.Ridge(alpha=4, normalize=True)
         reg_1.fit(X_train_validation, Y_train_validation)
         Y_predicted = reg_1.predict(X_test)
         reg_score_1 = metrics.mean_squared_error(Y_test, Y_predicted)
         req_score_1
         # na osnovu ovog rezultata zakljucujemo da ima smisla raditi regularizaci
Out [14]: 126928.00669545057
In [15]: # grebena regresija sa metaparametrom 10^10
         reg_2= linear_model.Ridge(alpha=10**10, normalize=True)
         req_2.fit(X_train_validation, Y_train_validation)
         Y_predicted = reg_2.predict(X_test)
         reg_score_2 = metrics.mean_squared_error(Y_test, Y_predicted)
         # na osnovu ovog rezultata zakljucujemo da ima smisla odrediti i precizno
         # jer ocigledno nisu sve regularizacije dobre
Out[15]: 19483
In [45]: # skup vrednosti iz kojeg trazimo najbolju vrednost za parametar alfa
         # imamo i male i velike vrednosti u skupu
         alphas = 10**np.linspace(10, -2, 100)*0.5
In [46]: alphas
Out[46]: array([ 5.00000000e+09, 3
                  2.1643
                  9.3
                  4.05565415e+08,
                                    3
                  1.75559587e+08,
                                   1.3
                  7.59955541e+07, 5.74878498e+07, 4.3
                  1.42401793
                  6.16423
                  2.6683
```

```
In [51]: type(errors)
Out[51]: list
In [52]: erros = np.array(errors)
In [53
Out [53
In [54]: alpha = alphas[74]
         alpha
Out[54]: 5.3
In [55]: # greska modela
         errors[74]
Out [55]: 124988.0740587797
In [56]: # sada kada znamo najbolju vrednost metaparametra alfa mozemo da naucimo :
         # da damo konacnu procenu greske
         # ne zaboraviti da se u ovom koraku koriste i trening i validacioni skup
         regfin = linear_model.Ridge(alpha=5.3
                                                             True)
                                    8
```

In [50]: # trazimo koja je to vrednost

In []: