Obliczenia naukowe

Felix Zieliński 272336

Lista 1

Rozwiązania zadań z 1. listy na przedmiot Obliczenia Naukowe. Programy zostały napisane w języku Julia oraz, gdy było to konieczne, w C.

Zadanie 1.

 ${\bf a.}$ Wyznaczanie iteracyjne epsilonów maszynowych wraz z porównaniem z wartościami zwracanymi przez funkcję ${\rm esp}()$ oraz z danymi z headera float.h jezyka C.

Iteracyjnie dzielę wartość zmiennej macheps przez dwa, zaczynając od wartości 1 w danym typie zmiennoprzecinkowym, aż warunek pętli while 1 + macheps > 1 nie zostanie spełniony.

Typ zmiennoprzecinkowy	Wyznaczona wartośc macheps	eps()	<float.h></float.h>
16	0.000977	0.000977	brak
32	1.1920929e-7	1.1920929e-7	1.1920929e-07
64	2.220446049250313e-16	2.220446049250313e-16	2.2204460492503131e-16

Moje wyniki zgadzają się z prawdziwymi wartościami

Wyznaczony epsilon maszynowy pomaga w ustaleniu precyzji zapisu liczb zmiennoprzecinkowych, gdyż jest odległością od 1 do kolejnej liczby możliwej do zaprezentowania w danym typie. Im mniejsza będzie ta wartość, tym większa będzie precyzja względna obliczeń.

b. Wyznaczenie iteracyjnie liczby maszynowej eta wraz z porównaniem z wartościami zwracanymi przez funkcję nextfloat()

Iteracyjnie dzielę wartości zmiennej eta przez dwa począwszy od wartości zmiennej równej 1,aż warunek pętli while eta > 0 nie zostanie spełniony.

Typ zmiennoprzecinkowy	Wyznaczona wartośc eta	nextfloat()
16	6.0e-8	6.0e-8
32	1.0e-45	1.0e-45
64	5.0e-324	5.0e-324

Wartości zwrócone przez

1. floatmin(Float32) - 1.1754944e-38

2. floatmin(Float64) - 2.2250738585072014e-308

Tutaj również moje wyniki zgadzają się z prawdzimymi wartościami. Liczba eta odpowiada najmniejszej zdenormalizowanej liczbie dodatniej reprezentowanej w podanej arytmetyce zmiennopozycyjnej. Jest zdenormalizowana, czyli bity cechy mają wartość 0.

Natomiast wartości zwrócone przez floatmin są odpowiednikiem tej wartości, ale znormalizowanej.

c. Wyznaczenie iteracyjne liczby MAX wraz z porównaniem z wartościami zwracanymi przez funckje floatmax() oraz z danymi z headera float.h języka C.

Iteracyjnie mnożę wartości zmiennej max, aż stanie się ona równa wartości isinf. Następnie, w celu poprawienia dokładności obliczeń, dodaję do poprzedniej wartości max $\frac{x}{k}$, gdzie k = 2, 4, ..., aż max będzie równa isinf bądź mniejsza od 1

Typ zmiennoprzecinkowy	Wyznaczona wartośc max	floatmax()	<float.h></float.h>
16	6.55e4	6.55e4	brak
32	3.4028235e38	3.4028235e38	3.40282347e + 38
64	1.7976931348623157e308	1.7976931348623157e308	1.7976931348623157e + 308

Moje wyniki zgadzają się z wartościami zwróconymi przez floatmax(). Obie wartości mają postać zdenormalizowaną

Zadanie 2. Sprawdzenie, czy twierdzenie Kahana jest poprawne.

2. Sprawazenie, ezy twierazenie italiana jest poprawie.

Twierdzenie to mówi, że epsilon maszynowy można uzyskać, obliczając wartość

$$3*(4/3-1)-1$$

w odpowiedniej arytmetyce zmiennoprzecinkowej. Sprawdzenia dokonuję obliczając tę wartości dla wartości rzutowanych na podany typ. Jedynkę otrzymuję funkcją one.

Typ zmiennoprzecinkowy	Wyznaczona wartość	eps()
16	-0.000977	0.000977
32	1.1920929e-7	1.1920929e-7
64	-2.220446049250313e-1	2.220446049250313e-16

Obliczone wyniki praktycznie pokrywają się z prawdziwymi wartościami nie licząc znaku. Zmiana znaku dla typów Float16 oraz Float64 może wynikać z ilości bitów znaczących w tych typach (odpowiednio, 10 oraz 52). Ponadto, rozwijając 4/3 binarnie, otrzymamy 1.(10). To powoduje, że ostatnią cyfrą mantysy w tych typach będzie 0, co zmienia znak na przeciwny. Tak więc, gdy weźmiemy moduł z obliczonych wartości, otrzymamy poprawne wyniki, więc twierdzenie Kahana w rzeczywistości jest poprawne.

Zadanie 3. Sprawdzenie, czy liczby w arytmetyce Float (64) liczby zmiennopozycyjne sa równomiernie rozmieszczone.

Zadanie 4. Znalezienie w arytmetyce Float (64) liczbę zmiennopozycyjną x w przedziale 1 < x < 2 taką, że $x * (1/x) \neq 1$. Najmniejsza znalezione przeze mnie liczba:

1.000000057228997

Zadanie 5. Obliczanie iloczynu skalarnego dwóch wektorów

Sposób	Float32	Float64	Wartość prawidłowa
1	-0.3472038161853561	1.0251881368296672e-10	-1.00657107000000e-11
2	-0.3472038161853561	-1.5643308870494366e-1	-1.00657107000000e-11
3	-0.3472038161853561	0.0	-1.00657107000000e-11
4	-0.3472038161853561	0.0	-1.00657107000000e-11

Zadanie 6. Obliczanie wartości funkcji w arytmetyce Float
64 dla kolejnych wartości argumentu $\mathbf x$

Wartość x	f(x)	g(x)
8^{-1}	0.0077822185373186414	0.01154368945369154
8^{-2}	0.00012206286282867573	0.0002170138888888888
8^{-3}	1.9073468138230965e-6	3.653245115948511e-6
8^{-4}	2.9802321943606103e-8	5.868765024038462e-8
8^{-5}	4.656612873077393e-10	9.262059612096446e-10
8^{-6}	7.275957614183426e-12	1.4523548921878806e-11
8-7	1.1368683772161603e-13	2.2721677454276478e-13
8-8	1.7763568394002505e-15	3.551846528769063e-15
8-9	0.0	5.55063601028853e-17
8-10	0.0	8.673352690165708e-19

Zadanie 7.