Lasers e Ótica Biomédica

Pedro Jorge

Geometric Optics

Paraxial approximation

• Thin Lenses

Image formation

Beam expanders

Mirrors

Geometrical Optics

- Geometrical Optics is an approximation!
- Phase is not considered
- Ray tracing seems to imply that abeam can be focused in a single point (when aberration is not present, resulting in an infinite resolution.

NOT TRUE

- Indeed, the smallest focal point that can be achieved as a dimension ~λ. Therefore, imposing a limit on imaging resolution.
- Such is due to **Diffraction** (which is not considered in Geometric Optics.

Ray Tracing

- **Light rays** define directions in space, corresponding to the k vector of electromagnetic waves.
- The phase is not considered
- Each system has an optical axis, and all rays propagate with small angles relative to such axis. This is called the paraxial approximation

$$\sin \theta \approx \theta
\tan \theta \approx \theta
\cos \theta \approx 1$$

Optical devices – Lenses and mirrors

- Terminology and approximation in Geometrical Optics
- **Focus** or **focal point** point from which the wave converges or to which converges
- **Optical axis** central axis crossing the optical device.
- **Reversibility principle** if object (or optical source) switch position with its image, the optical path remains unchanged
- Such is due to **Diffraction** (which is not considered in Geometric Optics.
- An object (in object space) is related to an image (in the image space) as conjugated points (i.e. the object produces a well defined image in any of this points).
- **Real image** bright image can be projected into a scree positioned at the focal plane.
- **Virtual image** No image can be projected (can only be observed by a secondary optical system, like the eye).

- C

Types of lenses

 A lens is and optical system established by two or more dioptres (interfaces) which transmits and refracts light, changing the convergence or divergence of optical rays, according to the surface curvature and its refractive index

 Different combinations enable different applications such as image formation, magnification or size reduction.

Lenses

Object focus, F_0 , object focal distance f_0 ,

Image Focus F_i , image focal distance f_i

Refraction in an aspheric surface

$$n_i(\overline{F_1A}) + n_t(\overline{AD}) = \text{constant}$$

$$\overline{F_1A} + \left(\frac{n_t}{n_i}\right)\overline{AD} = \text{constant}$$

Equation describing an Hyperbole with eccentricity e=nt/ni >1

Conical surfaces of revolution resulting from the rotation of an hyperbole, parabola or ellipse.

Provide ideal focusing or collimating devices. Very hard to produce!

Approximation to a sphere

Refraction in a spherical surface

Considering the Fermat principle, the total optical path PO, from P to P', must be the same for any position of A in the surface.

$$(PO) = n_1 \overline{PA} + n_2 \overline{AP}'$$

Considering the paraxial approximation (small angles) it can be derived:

$$\frac{n_1}{s} + \frac{n_2}{s} = \frac{n_2 - n_1}{r}$$

Signal convention for spherical diopters

TABLE 5.2 Meanings Associated with the Signs of Various Thin Lens and Spherical Interface Parameters

Quantity	Sig	n
	+	_
s_o	Real object	Virtual object
S_t	Real image	Virtual image
f	Converging lens	Diverging lens
y_o	Erect object	Inverted object
y_{ι}	Erect image	Inverted image
M_T	Erect image	Inverted image

$$f_o = \frac{n_1}{n_2 - n_1} R$$
 $f_i = \frac{n_2}{n_2 - n_1} R$

Thin lenses

Lenses can be considered **thin Lenses (d~0)**, when its thickness is small compared to the distances between object and images, and its diameter.

Otherwise they are called Thick lenses (d must be considered)

Refraction in the 1st surface

$$\frac{1}{s} + \frac{n}{s_1} = \frac{n-1}{r_1}$$

Refraction in the 2nd surface

$$\frac{1}{s_1} + \frac{1}{s} = \frac{1-n}{r_2}$$

$$\frac{1}{s} + \frac{1}{s'} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

Thin Lenses

Like in a mirror, in a thin lens, the focal distance f is defined as the image distance when the object is at infinity $s = \infty \Rightarrow s' = f$, so:

$$\frac{1}{s} + \frac{1}{s'} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

 \Rightarrow

$$\frac{1}{f} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

Lens manufacturer equation

Ex:

What is the focal distance of a planoconvex lens with R=50 mm e n=1.5?

- R1=
- R2=

f=

Thin lens equation, or Gauss formula

so 600 mm 200 mm 150 mm 100 mm 50 mm si

Ray tracing and image formation

For converging (positive) lens, image can be constructed with three **principal rays**:

- 1. The **parallel ray** Incoming parallel to the optical axis, it is refracted trough the image focal point.
- 2. The **focal ray** Incoming though the object focus it will emerge parallel to the optical axis.
- 2. The **central ray**Passing through the center
 (vertex) of the lens, it does not suffer any deflection.

The intersection of these three rays emerging from a given point in the object localize the corresponding imaging point.

Ray tracing and image formation

For converging (positive) lens, image can be constructed with three **principal rays**:

1. The parallel ray Incoming parallel to the optical axis, it is refracted away from the optical axis, as coming from

2. The **focal ray**

the image focal point F'

Drawn towards the object focal point, F) it will emerge parallel to the optical axis.

2. The central ray

Passing through the center (vertex) of the lens, it does not suffer any deflection.

The intersection of these three rays emerging from a given point in the object localize the corresponding imaging point.

Magnification

Lateral or transverse magnification

It is related with the transversal dimensions.

$$M_T = \frac{y'}{y} = -\frac{s'}{s}$$
 $M_T > 0 \Rightarrow$ Non inverted image Inverted image

All real images formed by thin lens are inverted

Longitudinal magnification

It is related with the axial direction; It represents the ratio between the dimensions a linear (axial) element in the image space, and the corresponding dimensions in the object space.

$$\boldsymbol{M_L} = -\frac{\boldsymbol{f}^2}{\left(\boldsymbol{s} - \boldsymbol{f}\right)^2} = -\boldsymbol{M_T}^2$$

This means that, an image of a finger pointing to the lens, will point away from the lens.

Magnification (Gauss and Newton formulas)

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$

(1)

$$xx' = f^2$$

(2)

$$m = -\frac{s'}{s}$$

(3)

$$m = -\frac{f}{x} = -\frac{x}{f}$$

(4)

Magnification

Magnification in positive lenses (convex)

http://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-Image-Relations

Magnification in positive lenses (convex)

Image focused at infitity. No image formed!

Uprigth image (not inverted); Magnified M>1, virtual

Each of the numbered objects (except #6) has an image with the corresponding number; its relative location, size, and orientation are shown.

Magnification with negative lenses (concave)

In all cases: Virtual image, upright (not inverted) <and reduced M<1

Lenses – sign convention

Sign convention for thin lenses and spherical diopters

GRAN	IDEZA S	INAL	
	+	-	
s	objecto real	objecto virtual	
s'	imagem real	imagem virtual	
f	lente convergente	lente divergente	
у	objecto não invertido	objecto invertido	
y'	imagem não invertida	imagem invertida	
M _T	imagem não invertida	imagem invertida	

Lenses -image formation

Image for real objects formed by thin lenses

CONVEXA					
ОВЈЕСТО	IMAGEM				
Localização	Tipo	Localização	Orientação	Tamanho Relativo	
∞ > s > 2f	Real	f < s' < 2f	Invertida	Reduzida	
s = 2f	Real	s = 2f	Invertida	Igual	
f < s < 2f	Real	∞ > s' > 2f	Invertida	Aumentada	
s = f		±∞			
s < f	Virtual	s' > s	Direita	Aumentada	
CÔNCAVA					
ОВЈЕСТО	IMAGEM				
Localização	Tipo	Localização	Orientação	Tamanho Relativo	
Qualquer	Virtual	s' < f	Direita	Reduzida	
		s > s'			

Combination of lenses: example

Two lenses, each having a focal distance of 10 cm, are separated by 15 cm. Localize the image position of an object standing 15 cm from the first lens.

- Draw the parallel (a), central (b) and focal (c) rays, of the first lens. If lens 2 is ignored, image is formed in I1 (fig (a))
- 2. The focal ray (c) strikes lens 2, parallel to the optical axis, refracting towards the image focus F₂'. Tracing an additional ray (d) going trough F₂ (like any other ray it would go towards l1) it should exit parallel to the optical axis. Intersection of (c) and (d) localize the final image (fig b).
- Using the thin lens equation, we can obtain the distance of the image of lens 1, which is S₁'=30 cm
- 4. For lens 2, the image I1, is 15 cm away from the lens (transmission side) so S2=-15 cm. Using the thin lens equation we can obtain the final image distance which is S₂'=6 cm

Combination of Lenses

Combination of Lenses at distances smaller than f. Reinforcement or reduction of the convergence or divergence.

Combination of lenses at distances higher than f. Real magnified images

$$s_{i2} = \frac{f_2 d - f_2 s_{o1} f_1 / (s_{o1} - f_1)}{d - f_2 - s_{o1} f_1 / (s_{o1} - f_1)}$$

Front or anterior focal length

f.f.l. =
$$\frac{f_1(d - f_2)}{d - (f_1 + f_2)}$$

$$M_T = M_{T1} M_{T2}$$

Back or posterior focal length

b.f.l. =
$$\frac{f_2(d-f_1)}{d-(f_1+f_2)}$$

For d equal to zero b.f.l. = f.f.l. =
$$\frac{f_2 f_1}{f_2 + f_1}$$

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$

Beam Expander

Click for Details
The 2X magnification beam expanders have an externally SM1-threaded output.

<u>Click for Details</u>
The 3X and 5X magnification beam expanders

share the same housing dimensions. Both versions have an M43 x 0.5-threaded output.

 $t = f_1 + f_2$

$$M = f_2/f_1 = R_2/R_1 = h_2/h_1$$

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2980

Kepler and Galileo configurations

Choice of lenses should consider the useful diameter (80%) and initial and final beam diameters.

 $M = f_2/f_1 = R_2/R_1 = h_2/h_1$

 $M = -f_2/f_1$

system!

Bibliography and multimedia

2002, Óptica, Eugene Hecht, Fundação Calouste Gulbenkian. Capítulos 5

Websites additional information and examples:

http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/reflex.html

http://research.vuse.vanderbilt.edu/bmeoptics/bme285/mainframes/module3/module3sec3.htm

http://demonstrations.wolfram.com/FresnelEquations/

http://www.physicsclassroom.com/class/refln

http://www.lessonpaths.com/learn/i/o-estudo-de-espelhos-esfricos/geogebratube

http://www.tutorvista.com/content/science/science-ii/reflection-light/formation-plane-mirror.php

https://www.thorlabs.com/navigation.cfm?guide id=26

http://www.ophiropt.com/laser-measurement-instruments/laser-power-energy-meters/services/focal-spot-size-calculator-for-gaussian-beams

https://www.newport.com/n/gaussian-beam-optics

			Tsia chapts	Niemz	Hecht
18/2	Semana 2	Gaussian optics: laser beam manipulation and calculations. Optical systems for beam manipulation.	1.8,1.2.1 .3 1.9,		5.1-2, 5.2.3, 5.4.2, 5.6, 5.7.1-2
		Geometric optics basics.image formation, beam expander;			

Aditional Information (Mirrors)

Optical devices- Plane Mirrors

Plane Mirrors

The image is said to be virtual, because light only appears to be coming from P'.

Surfaces with high reflectivity. Polished Metals, thin metallic film (aluminum, silver...)

Optical devices- Plane Mirrors

Depth Inversion

The right-left inversion of the hand, results from depth inversion..

The plane mirror transforms a right coordinate axis $(\hat{i} \times \hat{j} = \hat{k})$ Into a left coordinate axis

Optical devices - Plane Mirrors

Ray tracing for image location

$$\theta_i = \theta_r$$

From the scheme: i) the image is at the same distance behind the mirrors, as the object is from its surface; ii) the image is upright (same as the object) and has the same size has the object.

Optical devices- Plane Mirrors

Ray tracing for image location

P₁ é a imagem do objecto P no espelho 1;

P2 é a imagem do objecto P no espelho 2;

P_{1,2}" é a imagem de P₁' no espelho 2, vista quando os raios vindos do objecto são reflectidos primeiro no espelho 1 e depois no espelho 2;

A imagem P₂' não tem imagem no espelho 1 porque está atrás desse espelho.

Imagem formada por 2 espelhos planos

$$n_{images} = \frac{360}{\theta} - 1$$

Optical devices – curved mirrors

Aspherical mirrors

Espelhos baseados em cónicas também focam raios paralelos para um determinado ponto: parabolóides, hiperbólicos e elípticos. Designam-se por **espelhos asféricos**.

(a) Espelho hiperbólico convexo (b) Espelho elíptico convexo

(c) Espelho hiperbólico côncavo (d) Espelho elíptico côncavo

Optical devices - Aspherical Mirrors

Optical devices – spherical mirrors

Imagem Virtual

Imagem Real

Optical devices – spherical mirrors

$$\frac{1}{s} + \frac{1}{s'} = \frac{2}{r}$$

 $r < 0 \Rightarrow$ espelho côncavo $r > 0 \Rightarrow$ espelho convexo

Optical devices - spherical mirrors

Se a distância objecto
$$s = \infty \Rightarrow$$
 distância imagem $s' = r/2$

Esta distância designa-se por distância focal f

f < 0 ⇒ espelho côncavo f > 0 ⇒ espelho convexo

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$

Equação dos espelhos esféricos

O ponto no qual os raios paralelos incidentes no espelho convergem designa-se por **foco F**.

Dispositivos Óticos - Espelhos

Princípio da Reversibilidade

Raios paralelos incidentes no espelho após reflexão convergem num ponto – foco F.

Raios divergindo de uma fonte pontual no foco F são reflectidos no espelho como raios paralelos.

O percurso dos raios luminosos é o mesmo mas com direcções invertidas.

Optical devices-mirrors

Ray tracing

Para a construção das imagens usam-se 3 raios principais:

1. O raio paralelo

Desenhado paralelo ao eixo óptico, é reflectido através do foco.

2. O raio focal

Desenhado através do foco, é reflectido paralelamente ao eixo.

O raio radial

Desenhado através do centro de curvatura C, incide perpendicularmente ao espelho e é reflectido na mesma direcção.

A intersecção de qualquer destes dois raios localiza o ponto imagem do extremo superior do objecto.

Optical devices- mirrors

Ray tracing

Ampliação lateral ou transversa

A razão entre as dimensões transversas da imagem e do objecto é a ampliação lateral ou transversa M_T:

$$M_T = \frac{y'}{y} = -\frac{s'}{s}$$

Optical devices – spherical mirrors

• Sign convention for mirrors

GRAN	IDEZA SII	NAL	
	+	-	
s	à esquerda de V, objecto real	à direita de V, objecto virtual	
s'	à esquerda de V, imagem real	à direita de V, imagem virtual	
f	espelho côncavo	espelho convexo	
R	C à direita de V, convexo	C à esquerda de V, côncavo	
у	acima do eixo, objecto não invertido	abaixo do eixo, objecto invertido	
y'	acima do eixo, imagem não invertida	abaixo do eixo, imagem invertida	

Optical devices- convex mirrors

Images of real objects formed by spherical mirrors

Upright image (not inverted); reduced M<1, virtual

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$
 f negative

$$M_T \equiv \frac{y_i}{y_o} \qquad M_T = -\frac{s_i}{s_o}$$

Optical devices – concave mirrors

Images of real objects formed by spherical mirrors

Inverted image; reduced M<1, real

Inverted image; original size M=1, real

Inverted image; magnified M>1, real

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$
 f positive

$$M_T \equiv \frac{y_i}{y_o} \qquad M_T = -\frac{s_i}{s_o}$$

Optical devices – concave mirrors

Images of real objects formed by spherical mirrors

No image; colimated beam converges at ∞

Uprigth imagem (not inverted); magnified M>1, virtual

http://www.physicsclassroom.com/class/refln/Lesson-3/Image-Characteristics-for-Concave-Mirrors

Optical devices - mirrors

Image of real objects formed by spherical mirrors

	CÔNCAVO				
ОВЈЕСТО	IMAGEM				
Localização	Tipo	Localização	Orientação	Tamanho Relativo	
∞ > s > 2f	Real	f < s' < 2f	Invertida	Reduzida	
s = 2f	Real	s = 2f	Invertida	lgual	
f < s < 2f	Real	∞ > s' > 2f	Invertida	Aumentada	
s = f	Real	±∞			
s < f	Virtual	s' > s	Direita	Aumentada	
CONVEXO					
ОВЈЕСТО	IMAGEM				
Localização	Tipo	Localização	Orientação	Tamanho Relativo	
Qualquer	Virtual	s' < f	Direita	Reduzida	
		s > s'			

