Reading Quiz Section 5.2

- 1. Which of the following statements are true? Select all that apply.
 - (a) Every well-ordered set of real numbers has a minimum element.
 - (b) If a set of real numbers has a minimum element, then it is well-ordered.
 - (c) Any finite set of real numbers is well-ordered.
 - (d) Induction proofs must have a base case of 0 or 1.
- 2. True or false: the set $A = \{\frac{1}{n} : n \in \mathbb{N}\}$ is well-ordered.
- 3. For each $n \in \mathbb{N}$, let P(n) and Q(n) be propositions.
 - (a) Let s be the smallest natural number such that P(s) is false. What can you say about the elements of the set $A = \{n \in \mathbb{N} : n < s\}$ with respect to the property P?
 - (b) Let a be minimal such that $P(a) \vee Q(a)$ is false. What can you say about the elements of the set $B = \{n \in \mathbb{N} : n < a\}$ with respect to the properties P and Q?
 - (c) Let u be minimal such that $P(u) \wedge Q(u)$ is false. What can you say about the elements of the set $C = \{n \in \mathbb{N} : n < u\}$ with respect to the properties P and Q?
 - (d) Assume that P(1) is true, but that " $\forall n \in \mathbb{N}$, P(n)" is false. Explain why there exists a natural number k such that the implication $P(k) \Longrightarrow P(k+1)$ is *false*.
- 4. Here is an argument attempting to justify $\sum_{i=1}^{n} i = \frac{1}{2}n(n+1) + 7$. What is wrong with it?

Assume that the statement is true for some fixed *n*. Then

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \frac{1}{2}n(n+1) + 7 + (n+1) = \frac{1}{2}(n+1)[(n+1) + 1] + 7$$

hence the statement is true for n + 1 and, by induction, for all $n \in \mathbb{N}$.

Practice Problems Section 5.1

1. Prove that $n! > 2^n$ for all $n \ge 4$.

Video Solution