					Conversio
A 6-bit F.	P. syster	n represente	d by the bi	t sequence	e S EEE 1.FF
IEEE F.P.	Exponent	True Exponent	Significa nd	Binary F.B.	Decimal F.P.
000000	000 → 0	0 - 3 = -3	0.00	+0.00000	+Zero
000001	000 → 0	0 - 3 = -3	1.01	+0.00101	Underflow
000010	000 → 0	0 - 3 = -3	1.10	+0.00110	Underflow
000011	000 → 0	0 - 3 = -3	1.11	+0.00111	Underflow
000100	001 → 1	1 - 3 = -2	1.00	+0.0100	+0.25
000101	001 → 1	1 - 3 = -2	1.01	+0.0101	+0.3125
000110	001 → 1	1 - 3 = -2	1.10	+0.0110	+0.375
000111	001 → 1	1 - 3 = -2	1.11	+0.0111	+0.4375
001000	010 → 2	2 - 3 = -1	1.00	+0.100	+0.5
001001	010 → 2	2 - 3 = -1	1.01	+0.101	+0.625
001010	010 → 2	2 - 3 = -1	1.10	+0.110	+0.75
001011	010 → 2	2 - 3 = -1	1.11	+0.111	+0.875
001100	011 → 3	3 - 3 = 0	1.00	+1.00	+1
001101	011 → 3	3 - 3 = 0	1.01	+1.01	+1.25
001110	011 → 3	3 - 3 = 0	1.10	+1.10	+1.5

			•	_	Conversio
		n represente			
IEEE F.P.	Exponent	True Exponent	Significand	Binary F.B.	Decimal F.P.
010000	100 → 4	4 - 3 = 1	1.00	+10.0	+2.0
010001	100 → 4	4 - 3 = 1	1.01	+10.1	+2.5
010010	100 → 4	4 - 3 = 1	1.10	+11.0	+3.0
010011	100 → 4	4 - 3 = 1	1.11	+11.1	+3.5
010100	101 → 5	5 - 3 = 2	1.00	+100.0	+4.0
010101	101 → 5	5 - 3 = 2	1.01	+101.0	+5.0
010110	101 → 5	5 - 3 = 2	1.10	+110.0	+6.0
010111	101 → 5	5 - 3 = 2	1.11	+111.0	+7.0
011000	110 → 6	6 - 3 = 3	1.00	+1000.0	+8.0
011001	110 → 6	6 - 3 = 3	1.01	+1010.0	+10.0
011010	110 → 6	6 - 3 = 3	1.10	+1100.0	+12.0
011011	110 → 6	6 - 3 = 3	1.11	+1110.0	+14.0
011100	111 → 7	7 - 3 = 4	1.00	+∞	+∞
011101	111 → 7	7 - 3 = 4	1.01	NaN	NaN
011110	$111 \rightarrow 7$	7 - 3 = 4	1.10	NaN	NaN

A G-bit H	D .		•	-	Conversio
		n represente			
IEEE F.P.	Exponent	True Exponent	Significand	Binary F.B.	Decimal F.P.
100000	000 → 0	0 - 3 = -3	1.00	-0.001 00	-Zero
100001	000 → 0	0 - 3 = -3	1.01	-0.001 <mark>01</mark>	Underflow
100010	000 → 0	0 - 3 = -3	1.10	-0.001 10	Underflow
100011	000 → 0	0 - 3 = -3	1.11	-0.00111	Underflow
100100	001 → 1	1 - 3 = -2	1.00	-0.0100	-0.25
100101	001 → 1	1 - 3 = -2	1.01	-0.0101	-0.3125
100110	001 → 1	1 - 3 = -2	1.10	-0.0110	-0.375
100111	001 → 1	1 - 3 = -2	1.11	-0.0111	-0.4375
101000	010 → 2	2 - 3 = -1	1.00	-0.100	-0.5
101001	010 → 2	2 - 3 = -1	1.01	-0.101	-0.625
101010	010 → 2	2 - 3 = -1	1.10	-0.110	-0.75
101011	010 → 2	2 - 3 = -1	1.11	-0.111	-0.875
101100	011 → 3	3 - 3 = 0	1.00	-1.00	-1
101101	011 → 3	3 - 3 = 0	1.01	-1.01	-1.25
101110	011 → 3	3 - 3 = 0	1.10	-1.10	-1.5
101111	011 → 3	3 - 3 = 0	1.11	-1.11	-1.75

k 6-bit F.			•	<u> </u>	Conversio
		n represente			
IEEE F.P.	Exponent	True Exponent	Significand	Binary F.B.	Decimal F.P.
110000	100 → 4	4 - 3 = 1	1.00	-10.0	-2.0
110001	100 → 4	4 - 3 = 1	1.01	-10.1	-2. 5
110010	100 → 4	4 - 3 = 1	1.10	-11.0	-3.0
110011	100 → 4	4 - 3 = 1	1.11	-11.1	-3.5
110100	101 → 5	5 - 3 = 2	1.00	-100.0	-4.0
110101	101 → 5	5 - 3 = 2	1.01	-101.0	-5.0
110110	101 → 5	5 - 3 = 2	1.10	-110.0	-6.0
110111	101 → 5	5 - 3 = 2	1.11	-111.0	-7.0
111000	110 → 6	6 - 3 = 3	1.00	-1000.0	-8.0
111001	110 → 6	6 - 3 = 3	1.01	-1010.0	-10.0
111010	110 → 6	6 - 3 = 3	1.10	-1100.0	-12.0
111011	110 → 6	6 - 3 = 3	1.11	-1110.0	-14.0
111100	111 → 7	7 - 3 = 4	1.00	-∞	-∞
111101	111 → 7	7 - 3 = 4	1.01	NaN	NaN
111110	111 → 7	7 - 3 = 4	1.10	NaN	NaN
111111	111 → 7	7 - 3 = 4	1.11	NaN	NaN

Exa	er Organizati	Decima	l to Bir	nary floa	ating-po	int Con	versio	nents n
☐ A 6	-bit F.P.	system re			e bit sequ Decimal	lence S E	E 1.FF Decimal	I
000000	+Zero	010000	+2.0	100000	-Zero	110000	-2.0	
000001	Underflow	010001	+2.5	100001	Underflow	110001	-2. 5	
000010	Underflow	010010	+3.0	100010	Underflow	110010	-3.0	
000011	Underflow	010011	+3.5	100011	Underflow	110011	-3.5	
000100	+0.25	010100	+4.0	100100	-0.25	110100	-4.0	
000101	+0.3125	010101	+5.0	100101	-0.3125	110101	-5.0	
000110	+0.375	010110	+6.0	100110	-0.375	110110	-6.0	
000111	+0.4375	010111	+7.0	100111	-0.4375	110111	-7.0	
001000	+0.5	011000	+8.0	101000	-0.5	111000	-8.0	
001001	+0.625	011001	+10.0	101001	-0.625	111001	-10.0	
001010	+0.75	011010	+12.0	101010	-0.75	111010	-12.0	
001011	+0.875	011011	+14.0	101011	-0.875	111011	-14.0	
001100	+1	011100	+∞	101100	-1	111100	-∞	
001101	+1.25	011101	NaN	101101	-1.25	111101	NaN	54
001110	+1.5	011110	NaN	101110	-1.5	111110	NaN	
001111	+1.75	011111	NaN	101111	-1.75	111111	NaN	

Computer Organization and Architecture: T Example of Decimal to Bi		*		Clem	
☐ A 6-bit F.P. system represen					11
☐ How do you represent 0.3?	Decimal	Decimal		Decimal	
How do you represent 1.6?	+Zero	+2.0	-Zero	-2.0	
ow do you represent 12.6?	Underflow	+2.5	Underflow	-2. 5	
w do you represent 14.6? w do you represent 15.6?	Underflow	+3.0	Underflow	-3.0	
ow do you represent 10.0.	Underflow	+3.5	Underflow	-3.5	
	+0.25	+4.0	-0.25	-4.0	
	+0.3125	+5.0	-0.3125	-5.0	
	+0.375	+6.0	-0.375	-6.0	
	+0.4375	+7.0	-0.4375	-7.0	
	+0.5	+8.0	-0.5	-8.0	
	+0.625	+10.0	-0.625	-10.0	
	+0.75	+12.0	-0.75	-12.0	
	+0.875	+14.0	-0.875	-14.0	
	+1	+∞	-1	- ∞	
	+1.25	NaN	-1.25	NaN	55
	+1.5	NaN	-1.5	NaN	
	+1.75	NaN	-1.75	NaN	

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements Floating-point Arithmetic □ Subtraction is performed using the two's complement $A = 1.0101001 \times 2^4$ $B = -1.1001100 \times 2^3$ ☐ The computer has to carry out the following steps to equalize exponents. 1. Same as the previous slide 2. Same as the previous slide $(1.100\ 1100 \times 2^3 \rightarrow 0.1100\ 1100 \times 2^4 \rightarrow 0.110\ 0110 \times 2^4).$ 3. Add an extra bit for the sign to both numbers $A = 01.010\ 1001 \times 2^4$ $A = 1.010\ 1001 \times 2^4$ $B = -00.1100110 \times 24$ = 1010 1.001 4. Two's Complement the significands $= 21.125_{10}$ of the negative number $A = 01.0101001 \times 2^4$ $B = 1.100 \ 1100 \times 2^3$ $B = + 11.001 \ 1010 \times 2^4$ = 1100. 1100 $00.100\ 0011 \times 2^{4}$ $= 12.75_{10}$ 5. If necessary, normalize the result $A - B = 8.375_{10}$ (post normalization). $00.100\ 0011 \times 2^{4} \rightarrow +1.00\ 0011 \times 2^{3}$ 8₁₀ $= 1000_{2}$ $0.375_{10} = 0.011_2$