MY APPROACH

ADITYA WALIA adi.walia16@gmail.com

THANKS!

For giving me this opportunity it was an extremely fun challenge and I enjoyed every minute of it.

MASK

First i created a mask of the image filtering out any colour instead of red, yellow and green. Leaving me with something like this. I calculated the RGB range for a bright traffic light.

DETECTING

Now to detect the given circles i used cv2. Hough Circles which was able to highlight only the traffic light which was circular in nature. I also maintained a minRadius of 5 so that any noise in the picture won't be considered as a light.

IDENTIFY

I then calculated the selected area RGB and created a function which was able to round up the RGB values to find the closest of the 3 colours Red, Green and Yellow. I wrote the identified colour onto the images using cv2.putText.

RASPBERRY PI

I haven't been able to get my hands on a raspberry pi yet. But would love to play around with it in the future.

PIPELINE

I realise my method is a bit amatuer and not extremely reliable. However with deep learning we can train a classifier which will isolate only the image of the traffic light and then identify and produce the result.

Original image \to Localize traffic sign area \to Use houghCircle to identify and isolate circular light \to Identify colour of light RGB \to RESULTS

