

Safety Rapporteur Report George Donohue

Summary Observations

- 7 papers: 1 European, 1 Joint, 5 US
- Need for EARLY Safety Analysis
- Historical Analysis Required for Hypothesis Confirmation
- Analysis Prioritization Methodology is Required to Proceed from System CONOPS to Qualitative Fault Tree/Hazard Analysis to Quantitative Analysis
- Quantitative Analysis is Required to Provide System Specifications for New Technology and Procedures
- Quantitative Analysis will Develop Validated Models that provide both Normalization and Quantitative Safety Metrics for System Monitoring
- We have a Shortage of Trained Safety Analysts to deal with large number of Issues to be Addressed
- Example Analysis Presented for New En-Route System Concept, UAV's in the NAS, Wake Vortex Encounter and Runway Incursion Severity

Safety Needs

- Recent accidents involving ATM
- Increasing traffic (capacity)
- Advanced systems (2012; 2017; 2025)
- Keep ATM safe
- Anticipate & Resolve Problems
- Learn <u>before</u> accidents occur

Guiding Principles

- ATM must become a learning organization
- ATM must have suitable methods with which to anticipate and protect itself against risks
- Safety must be built in at the early stages of ATM system design, right through to implementation
- ATM must improve safety in key risk areas

- ATM must be sure that the systems it is developing will deliver the required safety levels
- ATM must retain its 'High Reliability' status and its 'safe culture'
- The above collaboration should be achieved effectively and costefficiently

Safety Methods

- Toolbox of 30+ methods (FAA + Eurocontrol + ANSPs):
 - Hazard and human error identification
 - Representation in fault and event trees
 - Quantification of events & human errors; evidence from incidents/simulations
 - Analysis of dependence and common mode failures
 - Evaluation of uncertainty, sensitivity, and risk impact
 - Determination of safety requirements
 - Documentation for re-usability

🏹 Select <u>next</u> HF Issue (e.g. "Staffing and Organisation")

Safety in Design

- EEC therefore carries out concept exploration and preliminary design
- EEC research suggests that 50% of accidents have their roots in the design phase
- EEC has a safety policy, and safety plans for sector tools, traffic flow, and airport research areas
- Safety activities are ongoing for each project in these areas
- Integrative project is ongoing to determine safety levels for the integrated vision for 2012

Historical Analysis for Hypothesis/Model Validation

Analysis of Daily OE Count: Tower OE

$$\ln(\lambda_i) = \alpha + \beta_0 \ln(OP_i) + \beta_1 \ln(WI_i) + \sum_i \beta_i \ln(Factor_{ij}) + \sum_k \gamma_k D_k$$

Paramete r	Description	Estimate	Standard Error
α	Intercept	-17.00	0.57
β_0	Logarithm of operations	1.97	0.09
β_1	Logarithm of weather index	-0.68	80.0
β_2	Log of Airfield/Airspace Delay	0.33	0.03
β_3	Log of Arrival Delay	0.04	0.03
β ₄	Log of Downstream Congestion Yearly dummy variable for	-0.15	0.04
γ ₂₀₀₁	2001	0.22	0.03
γ ₂₀₀₂	yearly dummy variable for 2002	-0.08	0.03
Scale		0.264	

Process for New WV CONOPS Analysis Prioritization

Safety Assessment for New En-Route System Concept (AAC)

Safety Assessment

UAV Safety Analysis Simulation Components

WV encounter Probability Can Be Computed Using Aircraft and WV Stochastic Models

- Two Phase WV Decay and Propagation Model (2P2) combined with Aircraft Arrival Flight Track Deviation Model (3 DOF)
- Effects of Cross Wind and Cross Wind Variance can be evaluated
- Encounter Probability and Severity can be Computed for any mixture of Aircraft Types

Severity of Runway Incursions

• Safety Analysis is moving from just Event Counting to Modeling Events and Assessing Severity of Events

Congratulations "S/V Esprit" The Best Boat Won

From the "S/V Ana G"