Dealing with Fiscal Stress: Cities versus Suburbs

Annie Hsu

Indiana University Bloomington
O'Neill School of Public and Environmental Affairs

September 25, 2024

- Introduction
- 2 Empirical Strategy
- 3 Results
- 4 Alternative Specification
- 6 Conclusions
- 6 Appendix

- 1 Introduction
- 2 Empirical Strategy
- 3 Results
- 4 Alternative Specification
- 6 Conclusions
- 6 Appendix

Suburbanization Trend

- Commuting zone (CZ): the geographic unit determining a local labor market (Tolbert and Sizer, 1996)
- Highly Populated CZs defined by the Census population level in 1990
 - Highly Populated CZs are the top quartile CZs (around 82 % of national population)

Introduction'

Economic environment in highly populated areas:

- Central city government: declining economic bases, concentrated employment
- Suburban governments: growing population

Research questions:

- How do changes in the local economic environment affect the provision of public goods by local governments?
- Does the response differ between the central city and surrounding suburban local governments?

Contributions:

- The responses to the same economic shocks vary among local governments in the central city and the suburban governments in highly populated areas
- Explore alternative approach: local employment shocks

Background

- Public policy and economic environment:
 - Local tax revenues, expenditures and savings respond to fiscal stress Literature Review
 - Long run effects: cut infrastructure expenditure
 - Short run effects: finance from cash&security
- Economic shocks: China joined WTO
 - Regions in the United States experiencing decreased labor demand and income levels as a result of rising import competition from China (Autor et al., 2013)
 - Local governments received less revenue and cut expenditure when China joined WTO (Feler and Senses, 2017)

- Introduction
- 2 Empirical Strategy
- 4 Alternative Specification
- 6 Appendix

Data

- Fiscal Data: U.S. Census Bureau's Annual Survey of State and Local Government Finances
- Population Data: U.S. Census Bureau's Population and Housing Unit Estimates Dataset
- Employment Data: Census Bureau's County Business Pattern
- Trade Data: United Nations Commodity Trade Statistics Database
- Demographic variables: US Census Bureau's USA Counties database

China Import Shocks: Autor et al. (2013)

China import shocks: commuting zone level data

•
$$\Delta IS_{i,T}^{US} = \sum_{j} \frac{\Delta M_{j,T}^{US} \frac{Emp_{i,j,T}}{Emp_{j,T}}}{Emp_{i,T}}$$

- i: commuting zones
- *j*: industry sectors
- T: time interval, 1990-2000, 2000-2007
- $\Delta IS_{i,T}^{US}$: China import exposure variable over time interval **T**
- $\Delta M_{j,T}^{US}$: the change of China import to US in industry **j** over time interval **T**
- $\frac{Emp_{i,j,T}}{Emp_{j,T}}$: the share of local industrial employment over national industrial employment in industry **j** at start-of-period in time interval **T**

- China import shock: changes in imports per worker in US\$1,000
- Highly populated CZs defined by the Census population level in 1990
- The legend indicates values for bottom four quintiles and top two deciles

$$\Delta Y_{i,T}^{City} = \gamma_T + \alpha_1 \Delta I S_{i,T}^{US} + \mathbf{X}_{i,T}^{\prime} \alpha_2 + \epsilon_{iT}$$
 (1)

$$\Delta Y_{i,T}^{Sub} = \gamma_T + \frac{\beta_1}{\Delta} I S_{i,T}^{US} + \mathbf{X}_{i,T}' \beta_2 + \varepsilon_{iT}$$
 (2)

- $\Delta Y_{i,T}$: Δ Local fiscal variables in CZ **i** over time interval **T**
- $\Delta IS_{i,T}^{US}$: Δ China imports values to US in CZ i over time T
- $X_{i,T}$: regional control variables, start-of-period demographic characteristics in C7 i
- γ_T: time fixed effects
- T: time interval, 1990-2000 and 2000-2007

IV Strategy

Introduction

Endogeneity problem

Empirical Strategy

- IV strategy: contemporaneous change in other high-income country imports of Chinese goods to capture the exogenous variation (Autor et al., 2013)
 - First stage: $\Delta IS_{i,T}^{US} = \tau_T + \gamma \Delta IS_{i,T}^{NUS} + \eta_{iT}$
 - $\Delta IS_{i,T}^{NUS} = \sum_{i} \frac{\Delta M_{j,T}^{NUS} \frac{Emp_{i,j,T-1}}{Emp_{j,T-1}}}{Emp_{i,T-1}}$
 - $\Delta M_{i.T}^{NUS}$: the change of China imports to high-income countries per worker in industry i in time interval T

- Introduction
- 3 Results
- 4 Alternative Specification
- 6 Appendix

Government Variables

- Expenditure categories:
 - Infrastructure: transportation, utility
 - Transfer: health, hospital, public welfare, housing&community
 - Consumption: police, library, etc.

Highly Populated CZs Central City Suburbs 1990 2000 2007 1990 2000 2007 Total Revenue \$1,699 \$1,903 \$2,333 \$972 \$1,122 \$1,265 Total tax revenue \$505 \$597 \$714 \$284 \$371 \$453 \$275 \$307 \$365 \$171 \$211 \$249 Property tax revenue Total Expenditure \$1.695 \$1.957 \$2.193 \$978 \$1.120 \$1.234 Consumption \$873 \$1.104 \$1.255 \$505 \$636 \$742 55.8% 56.4% 61% 52.9% 56.8% 60.6% Infrastructure \$513 \$506 \$582 \$353 \$356 \$373 26.8% 25.9% 24% 34.8% 31.8% 30.1% Total Debt Outstanding \$906 \$1.076 \$2.116 \$2,269 \$2.633 \$925 Total Cash&Security \$2,027 \$2,622 \$3,077 \$795 \$920 \$1,072

Summary statistics: in real term per capita (base year: 2000) or percentage %

Table 1: Highly Populated Central Cities vs Suburbs

	(1)	(2)	(3)	(4)	(5)	(6)		
	Total	Property	Consumption	Infrastructure	Debt	Cash &		
	revenue	tax	expenditure	expenditure	Outstanding	Security		
Highly Populate	d Central C	Cities: valu	e changes (pe	r capita)				
Δ import values	-316.35**	-46.43**	28.75	-64.88***	-82.50	-162.95		
	(139.58)	(17.13)	(36.50)	(19.46)	(128.48)	(172.06)		
Highly Populate	Highly Populated Suburbs: value changes (per capita)							
Δ import values	-57.02*	-7.49	-8.71	-27.49	-71.88*	-76.97**		
	(29.27)	(7.69)	(12.71)	(19.37)	(38.03)	(37.50)		
Observations	350	350	350	350	350	350		
T-Test: $\alpha_1 = \beta_1$	Reject	Reject	Not Reject	Reject	Not Reject	Reject		

Robust standard errors are in parentheses, clustering at the commuting zone level.

Dealing with Fiscal Stress: Cities versus Suburbs

- Central city governments might hamper the relative competitiveness within an area in the long run. First Stage
 - Central cities: infrastructure expenditure ↓
 - Suburbs: cash&security ↓

^{*} p < 0.10. ** p < 0.05. *** p < 0.01

Highly populated CZs: top quartile CZs

Table 2: Highly Populated CZs vs Less Populated CZs

	(1)	(2)	(3)	(4)	(5)	(6)		
	Total	Property	Consumption	Infrastructure	Debt	Cash &		
	revenue	tax	expenditure	expenditure	Outstanding	Security		
Highly Populate	Highly Populated Central Cities: value changes (per capita)							
Δ import values	-316.35**	-46.43**	28.75	-64.88***	-82.50	-162.95		
	(139.58)	(17.13)	(36.50)	(19.46)	(128.48)	(172.06)		
Observations	350	350	350	350	350	350		
Less Populated Central Cities: value changes (per capita)								
Δ import values	-22.84	-5.90	-33.37*	-12.47**	-204.39	-242.27		
	(59.86)	(3.76)	(18.59)	(14.03)	(209.13)	(216.29)		
Observations	1,068	1,068	1,068	1,068	1,068	1,068		
T-Test: $\alpha_1 = \beta_1$	Reject	Reject	Reject	Reject	Not Reject	Not Reject		

Robust standard errors are in parentheses, clustering at the commuting zone level.

Highly populated CZs: top quartile CZs

Dealing with Fiscal Stress: Cities versus Suburbs

- Highly populated CZs central cities: infra expense ↓
- Less populated CZs central cities: consumption and infra expense ↓
- Tiebout competition in highly populated CZs: not cutting consumption expense

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Table 3: Highly Populated Special and School Districts

		0 ,	•					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
	Total	Intergovt.	Total	Property	Total	Consumption	Infrastructure	
	revenue	transfer aid	taxes	taxes	expenditure	expenditure	expenditure	
Highly Populate	d Special	Districts: va	alue chan	ges (per c	apita)			
Δ import values	-1.24	-11.61	-4.49	-2.83	-17.84	-18.53	-2.32	
	(21.07)	(10.97)	(5.23)	(2.46)	(19.41)	(15.06)	(8.35)	
Highly Populated School Districts: value changes (per capita)								
Δ import values	12.90	8.60	5.74	6.38	1.53	1.61	-	
	(22.74)	(15.52)	(13.14)	(12.83)	(19.54)	(20.52)	-	
Observations	350	350	350	350	350	350	350	

Robust standard errors are in parentheses, clustering at the commuting zone level,

Single-purpose local governments: not respond to import shocks

^{*} p < 0.10. ** p < 0.05. *** p < 0.01Highly populated CZs: top quartile CZs

- Introduction
- 2 Empirical Strategy
- 4 Alternative Specification
- 6 Appendix

- Local labor markets experienced a relative decline in employment and earnings when China joined WTO (Autor et al. 2013)
- The legend indicates values for bottom four quintiles and top two deciles
- Employment shock: changes in %

Alternative Empirical Strategy Using Bartik IV

$$\Delta Y_{i,T}^{\textit{City}} = \gamma_T + \alpha_1 \Delta \textit{Manuf}_{i,T} + \mathbf{X}_{i,T}^{'} \alpha_2 + \epsilon_{iT}$$
 (3)

$$\Delta Y_{i,T}^{Sub} = \gamma_t + \frac{\beta_1}{\Delta} \Delta Manuf_{i,T} + \mathbf{X}'_{i,T}\beta_2 + \varepsilon_{iT}$$
 (4)

- $\Delta Y_{i,T}$: Δ Local fiscal variables in CZ **i** over time interval **T**
- $\Delta Manuf_{i,T}$: weighted manuf. employment growth in CZ i over time T
- $X_{i,T}$: regional control variables, start-of-period demographic characteristics in CZ i
- γ_T: time fixed effects

Dealing with Fiscal Stress: Cities versus Suburbs

T: time interval, 1990-2000 and 2000-2007

Bartik IV strategy

- Endogeneity problem
- Bartik IV: local industry shares and national industry growth rates (Goldsmith-Pinkham, 2020)
 - First stage: $\Delta Manuf_{i,T} = \tau_T + \gamma \Delta B_{i,T} + \eta_{iT}$
 - Bartik IV: $\Delta B_{i,T} = \sum_{i} g_{i,T} \frac{Emp_{i,j,T-1}}{Emp_{i,T}}$
 - g_{i,T}: national industry j growth rate over time interval T
 - $\frac{Emp_{i,j,T-1}}{Emp_{i,T-1}}$: local industry **j** employment share in CZ **i**, start-of-period in time interval T-1
 - T: time interval, 1990-2000 and 2000-2007

Results: Effect of Employment Shocks on Local Fiscal Variables

Table 4: Highly Populated Central Cities vs Suburbs

ruble 1. Tilgilly I opulated central cities vs suburbs								
	(1)	(2)	(3)	(4)	(5)			
	Property	Consumption	Infrastructure	Debt	Cash &			
	tax	expenditure	expenditure	Outstanding	Security			
Highly Populated Central Cities: value changes (per capita)								
Δ manuf.	28.78***	53.93	30.49***	85.67	168.80			
employment	(9.32)	(43.31)	(9.69)	(100.35)	(113.41)			
Highly Populated Suburbs: value changes (per capita)								
Δ manuf.	11.004**	17.19**	11.18**	50.99*	64.57***			
employment	(4.88)	(7.89)	(5.02)	(26.46)	(25.18)			
Observations	350	350	350	350	350			
T-Test: $\alpha_1 = \beta_1$	Reject	Not Reject	Reject	Not Reject	Reject			

Robust standard errors are in parentheses, clustering at the commuting zone level.

- - Central cities: infra expense ↓
 - Suburbs: infra expense \(\tag{cash&security} \\ \)

^{*} p < 0.10, ** p < 0.05, *** p < 0.01Highly populated CZs: top quartile CZs

- Introduction
- 2 Empirical Strategy
- 4 Alternative Specification
- 6 Conclusions
- 6 Appendix

24 / 29

Conclusion

Introduction

- Central city and suburban local governments in highly populated CZs respond to economic shocks differently.
 - Central city governments:
 - cut infrastructure expenditure as if permanent impacts
 - planning to decline
 - Suburban governments:
 - finance with cash&security as if temporary impacts
 - recover from shocks after few years
 - Contribution: central cities' behavior hampers their relative competitiveness within the region in the long run
- Local governments in highly populated CZs respond to economic shocks differently than those in less populated CZs.
 - Highly populated central cities: not cutting consumption expense (Tiebout competition)

Dealing with Fiscal Stress: Cities versus Suburbs

- Introduction

- 4 Alternative Specification
- 6 Appendix

Introduction

Public policy and economic environment

- Expenditures or revenues:
 - Craig and Hoang (2011); Skidmore and Scorsone (2011); Ross et al. (2015); Chernick et al. (2017); Feler and Senses (2017); Buschman and Sjoquist (2017)
- Savings or rainy day funds:
 - Rosengren (2018); Bautista et al. (2022)
- Unemployment insurance:
 - Craig and Hoang (2011); Craig et al. (2016)

- First Stage:
 - Import shock approach: $\Delta IS_{i,T}^{US} = \tau_T + \gamma \Delta IS_{i,T}^{NUS} + \eta_{i,T}$
 - Employment shock approach: $\Delta Manuf_{i,T} = \tau_T + \gamma \Delta B_{i,T} + \eta_{iT}$

	(1)	(2)	(3)	(4)
	Highly populated	Less populated	Highly populated	Less populated
	$\Delta IS_{i,T}^{US}$	$\Delta IS_{i,T}^{US}$	ΔM anu $f_{i,T}$	ΔM anu $f_{i,T}$
$\Delta IS_{i,T}^{NUS}$	0.61***	0.61***		
-,-	(0.12)	(0.14)		
$\Delta B_{i,T}$			0.78***	0.81***
			(0.14)	(0.12)
Observations	350	1068	350	1068
F statistic	44.32	43.20	30.47	36.28

Robust standard errors are in parentheses, clustering at the commuting zone level.

Highly populated CZs: top quartile CZs

Dealing with Fiscal Stress: Cities versus Suburbs

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Table 1. Highly Populated Central Cities vs Suburbs

		,			0 4 5 4 . 5 5			
	(1)	(2)	(3)	(4)	(5)	(6)		
	Total	Property	Consumption	Infrastructure	Debt	Cash &		
	revenue	tax	expenditure	expenditure	Outstanding	Security		
Highly Populate	ed Central C	Cities: valu	e changes (pe	r capita)				
Δ import values	-316.35**	-46.43**	28.75	-64.88***	-82.50	-162.95		
	(139.58)	(17.13)	(36.50)	(19.46)	(128.48)	(172.06)		
Highly Populated Suburbs: value changes (per capita)								
Δ import values	-57.02*	-7.49	-8.71	-27.49	-71.88*	-76.97**		
	(29.27)	(7.69)	(12.71)	(19.37)	(38.03)	(37.50)		
Observations	350	350	350	350	350	350		
T-Test: $\alpha_1 = \beta_1$	Reject	Reject	Not Reject	Reject	Not Reject	Reject		
61			1					

Robust standard errors are in parentheses, clustering at the commuting zone level.

Highly populated CZs: top quartile CZs

- Central city governments might hamper the relative competitiveness within an area in the long run. First Stage
 - Central cities: infrastructure expenditure ↓
 - Suburbs: cash&security ↓

Dealing with Fiscal Stress: Cities versus Suburbs

^{*} p < 0.10, ** p < 0.05, *** p < 0.01