History Dependent GLM Example

An Analysis of the Spiking Activity of Retinal Neurons in Authority Spiking Activity of Retinal Neurons in

Retinal neurons are grown of the under constant light and environmental conditions. The spontaneous spiking activity of these neurons is recorded. The objective is to develop a statistical model which accurately describes the stochastic structure of the waiting times, or interspike intervals (ISIs), for this data.

Attempt #1: Poisson Model

• Fit a homogeneous Poisson model to the datassignment Project Exam Help

Add WeChat powcoder

Estimate rate parameter λ by maximum likelihood.

KS Plot

Graphical comparison of empirical vs model CDFs

Attempt #2: Renewal Models

Fit a variety of renewal models to the data:

Assignment Project Exam Help
$$\rho_{S_i}(t \mid H_{S_{i-1}}) = f(t - S_{i-1})$$

- Candidates: https://powcoder.com
 - Gamma Add WeChat powcoder
 - Inverse Gaussian
- Estimate parameters by Maximum Likelihood or Method of Moments

KS Plots

Attempt #3: GLM History Model

The ISI distribution models we constructed previously assume that $p(ISI | H_t) = p(ISI)$ Assignment Project Exam Help

Now, let the quaditional intensity be a function

of past spiking activity using GLM Add WeChat powcoder
$$\lambda(t_k \mid H_k) = \exp\left\{\alpha_0 + \sum_{i=1}^{order} \alpha_i \Delta N_{(t_k - i, t_k - i + 1)}\right\}$$

How do we pick a model order?

Model AIC

Maximum Likelihood Model Fit

Maximum Likelihood Model Fit

Goodness-of-Fit

Problem:

Distribution of arbitrary statistics of spike-times, S_i , are difficult to compute.

https://powcoder.com

Solution:

Add WeChat powcoder

Time-rescaling theorem:

Let S_i where i=1,...,k be the event times of a point process with conditional intensity $\lambda(t \mid H_t)$.

Then $z_i = \int_{S_i}^{S_{i+1}} \lambda(u \mid H_u) du$ will be i.i.d. exponential random variables.

Kolmogorov-Smirnov Plots

KS Plots for Different Order GLMs

Correlation Function for Rescaled ISIs

Goodness-of-Fit Summary

	GLM		
Assi	gnment F	roject Ex	kam Help
Order	1	14	50
AIC	https://pc 6589	wcoder.c 5931	5892
KS	Add We(Chat pow	coder
	0.2330	0.0657	0.0462

Renewal Models:

KS Statistic

Exp	Gamma	Inv. Gauss.
0.2525	0.2171	0.1063

ISI Histogram

Analysis Summary

 Low order GLMs effectively capture history dependentigtructur Prinjectus Extra Help

https://powcoder.com

- Model order can be selected by AIC. Add WeChat powcoder
- Goodness-of-fit can be evaluated by timerescaling, comparison of empirical to model CDFs, and correlation analyses.

Case 2: Peristimulus Time GLM

Monkeys were trained

https://powcbaur.ctangets, based on displayed images.

Single cell recording in monkey

ippocampus.

Model

$$\lambda(t | H_t) = \exp\left\{\sum_{r=1}^R \theta_r g_r(t)\right\}$$

Parameter vector: $\theta = \begin{bmatrix} \theta_1, ..., \theta_R \end{bmatrix}$ https://powcoder.com

Basis functions: And tweChat powcoder

- Indicator Functions:
- Splines:

Indicator Function Basis

Spline Function Basis

Goodness-of-Fit

Adding History

Adding History

$$\lambda_{k} = \exp \left\{ \sum_{r=1}^{R} \theta_{k,r} g_{r}(t) + \sum_{j=1}^{9} \gamma_{i} \Delta N_{(t-i-1,t-i)} \right\}$$
Assignment Project Exam Help
KS Plot

https://powcoder.com

Add WeChat powcoder

Uniform CDF