Phys484: Quantum Theory

Yixing Gu

January 23, 2024

1 Deferential Geometry

1.1 Topology and manifold

Definition 1. Given any set X, a **topology** is a pair $(X, \mathcal{S}), \mathcal{S} \subseteq \mathcal{P}(X)$ that satisfies:

- 1. $\emptyset \in \mathcal{S}$
- 2. If $\forall \alpha, S_{\alpha} \in \mathcal{S}$, then $\bigcup_{\alpha} S_{\alpha} \in \mathcal{S}$
- 3. If $S_1, \ldots, S_n \in \mathcal{S}$, then $\bigcap_{i=1}^n S_i \in \mathcal{S}$

Definition 2. Given any set X, and a topology (X, \mathcal{S}) , the elements in \mathcal{S} are called open.

Definition 3. Given any set X, a collection of subsets $\mathcal{B} \subseteq \mathcal{P}(X)$ is said to be a basis of the topology \mathcal{S} if

- 1. $X = \bigcup_{B \in \mathcal{B}}$
- 2. If $B_1, B_2 \in \mathcal{B}, x \in B_1 \cap B_2$, then $\exists B_x \in \mathcal{B}, x \in B_x \subseteq B_1 \cap B_2$
- 3. S is the collection of all unions of the elements of B.

Definition 4. A collection of subsets $C = \{U_{\alpha} \subseteq X\}_{\alpha \in A}$ is called a **cover** for X if $X \subseteq \bigcup_{\alpha \in A} U_{\alpha}$. A cover is called an open cover if every U_{α} is open in the topology of X.

Definition 5. Given two sets X, Y, and there corresponding topology \mathcal{S}, \mathcal{T} , a map $f: X \to Y$ is **continuous** if $\forall T \in \mathcal{T}, f^{-1}(T) \in \mathcal{S}$. Namely, for any open set in Y, its preimage of f is also open in X.

Definition 6. Given two sets X, Y, and their corresponding topology S, T, a continuous map $f: X \to Y$ is a **homeomorphism** if it is invertible, and its inverse function is also continuous.

Remark. A homeomorphism is a map that preserves the topology structure between two sets.

Definition 7. An atlas $\mathcal{A} = \{(U_{\alpha}, \phi_{\alpha})\}_{\alpha}$ is a collection of local charts $(U_{\alpha}, \phi_{\alpha})$, where each $\phi_{\alpha} : U_{\alpha} \to \mathbb{R}^n$ is a homeomorphism onto its image $\phi_{\alpha}(U_{\alpha}) \subseteq \mathbb{R}^n$, and that $\bigcup_{\alpha} U_{\alpha} = X$.

Definition 8. A smooth atlas is an atlas such that $\forall (U_{\alpha}, \phi_{\alpha}), (U_{\beta}, \phi_{\beta}) \in \mathcal{A}, \ \phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \mathbb{R}^{n}$ is C^{∞} smooth.

Definition 9. A smooth manifold M = (S, A) is a 2nd-countable Hausdorff topology with a smooth atlas. The dimension n of the manifold is the dimension of \mathbb{R}^n in the atlas A.

1.2 Smooth functions and Diffeomorphism

Definition 10. Let M,N be smooth manifolds of dimension m,n, we say a function $F: M \to N$ is **smooth** at point $p \in M$ if and only if there are local charts $(U_{\alpha}, \phi_{\alpha})$ for M and $(V_{\beta}, \psi_{\beta})$ for N, such that:

- 1. $p \in U_{\alpha}$
- 2. $F(p) \in V_{\beta}$

- 3. $U_{\alpha} \cap F^{-1}(V_{\alpha}) \subseteq M$ is open
- 4. The **coordinate representation** $\hat{F} := \psi_{\beta} \circ F \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap F^{-1}(V_{\beta})) \to \mathbb{R}^{m}$ is smooth at $\phi_{\alpha}(p) \in \mathbb{R}^{n}$

Proposition 1.1. If F is continuous, then 3 is always met.

Proposition 1.2. If 4 is met for some coordinate maps, then it is always true for any other coordinate maps. Namely, the smoothness is independent of choices of coordinate maps.

Definition 11. If F is smooth at every $p \in M$, we say that F is a smooth function.

Definition 12. F is a **diffeomorphism** if F is invertible, and that both F, F^{-1} are smooth.

Proposition 1.3. A diffeomorphism is always a homeomorphism.

1.3 Tangent space and derivatives

Definition 13. Let $C^{\infty}(M)$ be the real vector space of smooth functions from $M \to \mathbb{R}$, a **derivation** or **tangent vector** at $p \in M$ is an \mathbb{R} -linear map $D : C^{\infty}(M) \to \mathbb{R}$ satisfying the **Leibniz condition**: $\forall f, g \in C^{\infty}(M), D(fg) = f(p)D(g) + g(p)D(f)$

Definition 14. The tangent space to M at $p \in M$, T_pM , is the set of all tangent vectors at p.

Proposition 1.4. Let $D \in T_pM$, if $\forall x \in M$, f(x) = c is a constant function, then D(f) = 0

Proposition 1.5. If $\exists U \ni p$ be open, and $\forall x \in U, f(x) = 0$, then $\forall D \in T_pM, D(f) = 0$

Proposition 1.6. If $f, g \in C^{\infty}(M)$ and f = g on some open $U \ni p$, then $\forall D \in T_pM, D(f) = D(g)$

Proposition 1.7. $\{\partial_1|_p,\ldots,\partial_n|_p\}$ is a basis for $T_p\mathbb{R}^n$.

Definition 15. Given a smooth function $F: M \to N$, the **differential** or **derivative** of F at $p \in M$ is the map $dF_p: T_pM \to T_{F(p)}N$, given by $\forall D \in T_pM, f \in C^{\infty}(N), dF_p(D)(f) := D(f \circ F)$

Proposition 1.8. Let M, N, R be smooth manifolds and $F: M \to N, G: N \to R$ are smooth maps, then for any $p \in M$, we have:

- 1. $dF_p: T_pM \to T_{F(p)}N$ is linear
- 2. $d(G \circ F)_p = dG_{F(p)} \circ dF_p : T_pM \to T_{G(F(p))}R$
- 3. $d(Id_M)_p: T_pM \to T_pM$ is an identity isomorphism.
- 4. If F is a diffeomorphism, then dF_p is an isomorphism, and $(dF_p)^{-1} = d(F^{-1})_{F(p)}$

Corollary 1.9. Let M be a n-dimensional smooth manifold, for any $p \in M$, and any local chart (U, ϕ) containing p, we have $T_pM \cong T_pU \cong T_{\phi(p)}\phi(U) \cong T_{\phi(p)}\mathbb{R}^n \cong \mathbb{R}^n$, and the n-dimensional vector space T_pM has a basis of $\{\Upsilon_j|_p := \partial_j|_p := \frac{\partial}{\partial x^j}|_p := (di_p \circ (d\phi_p)^{-1})(\frac{\partial}{\partial x^j}|_{\phi(p)}) = (di_p \circ (d\phi_p)^{-1})(\partial_j|_{\phi(p)})\}_j$.

Proposition 1.10. Given $f \in C^{\infty}(M)$, $\Upsilon_j|_p(f) = \frac{\partial (f \circ \phi^{-1})}{\partial x^j}(\phi(p))$

Corollary 1.11. Let $(U, \phi = (x^1, \dots, x^n))$ be a coordinate chart for M, then

$$\Upsilon_j|_p(x^i) = \frac{\partial x^i}{\partial x^j}(p) = \frac{\partial (x^i \circ \phi^{-1})}{\partial x^j}(\phi(p)) = \delta^i_j$$

Theorem 1.12. Let $F: M \to N$ be smooth, (U, ϕ) and (V, ψ) be local charts for M and N, such that $p \in U, F(p) \in V$, if we choose the basis $\{\Upsilon_j|_p\}_j$, $\{\Upsilon_i|_{F(p)}\}_i$ associated to (U, ϕ) and (V, ψ) , we have that $[dF_p]_{ij} = \frac{\partial \hat{F}^i}{\partial x^j}(\phi(p))$. Namely, $dF_p(\Upsilon_j|_p) = \sum_{i=1}^{\dim(M)} \frac{\partial \hat{F}^i}{\partial x^j}(\phi(p))\Upsilon_i|_{F(p)} \in T_{F(p)}N$, where $\hat{F} = \psi \circ F \circ \phi^{-1}$ is the coordinate representation of F.

Definition 16. The tangent bundle $TM := \bigsqcup_{p \in M} T_p M$.

Proposition 1.13. If M is a n-dimension smooth manifold, then TM is a 2n-dimension smooth manifold.

1.4 Vector field

Definition 17. A vector field is a smooth function $\mathbf{v}: M \to TM$, such that $\forall p, \mathbf{v}_p := \mathbf{v}(p) \in T_pM$

Definition 18. Let $(U, \phi = (x^1, ..., x^n))$ be a coordinate chart for M, then we can always write $\mathbf{v}_p = \sum_{i=1}^n \mathbf{v}^i(p) \Upsilon_i|_p$, since $\{\Upsilon_i|_p = \frac{\partial}{\partial x^i}|_p\}$ is a basis for T_pM . The functions $\mathbf{v}^i : M \to \mathbb{R}$ are called the **component functions**.

Definition 19. Let $(U, \phi = (x^1, ..., x^n))$ be a coordinate chart for M, the **partial derivatives** $\Upsilon_i = \partial_i : U \to TM$ is given by $\Upsilon_i(p) = \Upsilon_i|_p$, where $\{\Upsilon_i|_p = \frac{\partial}{\partial x^i}|_p\}$ is a basis for T_pM associated to $(U, \phi = (x^1, ..., x^n))$. One can check that $\Upsilon_i \in \mathfrak{X}(M)$

Definition 20. $\mathfrak{X}(M)$ is the set of all vector fields.

Definition 21. Given a smooth function $f \in C^{\infty}(M)$, and a vector field $\mathbf{v} \in \mathfrak{X}(M)$, we define $f\mathbf{v} := f \cdot \mathbf{v} \in \mathfrak{X}(M)$ to be $(f\mathbf{v})(p) := f(p)\mathbf{v}_p \in T_pM$

Remark. We can write any vector field $\mathbf{v} \in \mathfrak{X}(M)$ as

$$\mathbf{v} = \sum_{i=1}^{n} \mathbf{v}^{i} \Upsilon_{i} = \sum_{i=1}^{n} \mathbf{v}^{i} \partial_{i}$$

Definition 22. Given a smooth function $f \in C^{\infty}(M)$, and a vector field $\mathbf{v} \in \mathfrak{X}(M)$, we define $\mathbf{v}(f) \in C^{\infty}(M)$ to be $\mathbf{v}(f)(p) := \mathbf{v}_p(f) \in \mathbb{R}$. Thus we can view a vector field \mathbf{v} as a function $C^{\infty}(M) \to C^{\infty}(M)$ as well.

1.5 Lie Bracket

Definition 23. Given two vector fields $\mathbf{v}, \mathbf{w} \in \mathfrak{X}(M)$, the **Lie Bracket** is $[\mathbf{v}, \mathbf{w}] := \mathbf{v} \circ \mathbf{w} - \mathbf{w} \circ \mathbf{v}$

Proposition 1.14. $[v, w] \in \mathfrak{X}(M)$ is a vector field.

Proposition 1.15. [v, w] is bilinear.

Proposition 1.16. [v, w] = -[w, v] is anti-symmetric

Proposition 1.17. [v, w] satisfies the Jacobian Identity: [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0

Proposition 1.18. For any $f, g \in C^{\infty}(M)$, $v, u \in \mathfrak{X}(M)$, we have [fv, gu] = fg[v, u] + f(vg)u - g(uf)v

Proposition 1.19. Let $(U, \phi = (x^1, ..., x^n))$ be a coordinate chart for M, then for any two vector fields $\mathbf{v} = \sum_{i=1}^n \mathbf{v}^i \Upsilon_i, \mathbf{u} = \sum_{i=1}^n \mathbf{u}^j \Upsilon_j \in \mathfrak{X}(M)$, we have $[\mathbf{u}, \mathbf{v}] = \sum_{j=1}^n (\mathbf{v} \mathbf{u}^j - \mathbf{u} \mathbf{v}^j) \Upsilon_j$

1.6 Curve and Flow

Definition 24. Let $J \subseteq \mathbb{R}$ be open, a smooth map $\gamma : J \to M$ is called a **smooth curve** in M. Given $t_0 \in J$, let $\frac{d}{dt}|_{t_0}$ be the coordinate basis in $T_{t_0}J \cong T_{t_0}\mathbb{R}$. The **velocity** of γ at t_0 is $\gamma'(t_0) := d\gamma_{t_0}(\frac{d}{dt}|_{t_0}) \in T_{\gamma(t_0)}\mathbb{R}^n$

Proposition 1.20. Let $(U, \phi = (x^1, \dots, x^n))$ be a coordinate chart for M, and a curve $\gamma : J \to M$. If we let $\phi \circ \gamma(t) = (\gamma^1(t), \dots, \gamma^n(t))$, then we have $\gamma'(t_0) = d\gamma_{t_0}(\frac{d}{dt}|_{t_0}) = \sum_{i=1}^n \dot{\gamma}^i(t_0) \Upsilon_i|_{\gamma(t_0)} \in T_{\gamma(t_0)}M$

Definition 25. Let $\mathbf{v} \in \mathfrak{X}(M)$, an **integral curve** of \mathbf{v} is a curve $\gamma : J \to M$ such that $\forall t \in J, \gamma'(t) = \mathbf{v}_t$. If $0 \in J$, then $\gamma(0)$ is called the **starting point** of γ

Definition 26. A smooth global flow on M is a smooth map $\Theta : \mathbb{R} \times M \to M$, such that $\forall s, t \in \mathbb{R}, p \in M, \Theta(0, p) = p, \Theta(t, \Theta(s, p)) = \Theta(t + s, p)$

Remark. A global flow can be thought of as a table to show where something should be after t time and starting from p.

Definition 27. For $p \in M$, we have $\Theta^{(p)} : \mathbb{R} \to M$ is a curve given by $\Theta^{(p)}(t) := \Theta(t,p)$

Definition 28. For $t \in \mathbb{R}$, we have $\Theta_t : \mathbb{R} \to M$ is a smooth map given by $\Theta_t(p) := \Theta(t, p)$

Proposition 1.21. Given a global flow $\Theta : \mathbb{R} \times M \to M$, we define $\mathbf{v} : M \to TM$ by $\mathbf{v}_p := {\Theta^{(p)}}'(0) \in T_pM$, then $\mathbf{v} \in \mathfrak{X}(M)$ is a vector field, and $\Theta^{(p)}$ is an integral curve for \mathbf{v} .

Definition 29. The $\mathbf{v} \in \mathfrak{X}(M)$ in the above proposition is called **infinitesimal generator** for the flow Θ . Remark. The infinitesimal generator tells us how should something move at every point in M.

1.7 One-form and Co-vector fields

Definition 30. Let V be a vector space, a **co-vector** on V is a linear map $f: V \to \mathbb{R}$. The set of all co-vectors is called the **dual space** V^* .

Definition 31. A contraction $\langle \cdot, \cdot \rangle : V^* \times V \to \mathbb{R}$ is the evaluation $\langle f, v \rangle := f(v)$

Proposition 1.22. Given a basis $\{E_1, \ldots, E_n\}$ for a finite-dimensional V, let $E^1, \ldots, E^n \in V^*$ be defined by $\langle E^i, E_j \rangle := E^i(E_j) = \delta_{ij}$, then $\{E^i\}$ is a basis for V^* , called the **dual basis**.

Definition 32. Let V, W be vector spaces, $A: V \to W$ be a linear map. The **dual map** $A^*: W^* \to V^*$ is defined by $\forall f \in W^*, v \in V, \langle A^*(f), v \rangle = A^*(f)(v) := f(A(v)) = \langle f, A(v) \rangle$

Definition 33. Let T_pM be the tangent space to M at p, then the **cotangent space** to M at p is the dual space of T_pM , denoted by T_p^*M . The elements in T_p^*M are called **co-vectors**.

Definition 34. $T^*M := \bigsqcup_{p \in M} T_p^*M$ is called the **cotangent bundle**.

Definition 35. A one-form or co-vector field is a smooth map $\omega: M \to T^*M$ such that $\forall p \in M, \omega_p := \omega(p) \in T_p^*M$

Definition 36. $\mathfrak{X}^*(M)$ is the set of all one-forms on M.

Proposition 1.23. Let $(U, \phi = (x^1, ..., x^n))$ be a coordinate chart for M, we have that for each $p \in U, \{\Upsilon_1|_p, ..., \Upsilon_n|_p\}$ is a basis for T_pM , the dual basis for T_p^*M is $\{\Upsilon^1|_p, ..., \Upsilon^n|_p\}$, such that $\langle\Upsilon^i, \Upsilon_j\rangle = \delta_{ij}$. Thus $\forall \omega_p \in T_p^*M, \omega_p = \sum_{i=1}^n \omega_i(p)\Upsilon^i|_p$ uniquely. And $\omega_i(p)$ can be get by $\omega_i(p) = \langle \omega, \Upsilon_i \rangle$

Definition 37. The coordinate co-vector field is the map $\Upsilon^i: U \to T^*M$ by $\Upsilon^i(p) := \Upsilon^i|_p$. One can check that $\Upsilon^i \in \mathfrak{X}^*(M)$ is a co-vector field.

Definition 38. Given a smooth function $f \in C^{\infty}(M)$, and a co-vector field $\omega \in \mathfrak{X}^*(M)$, we define $f\omega := f \cdot \omega \in \mathfrak{X}^*(M)$ to be $(f\omega)(p) := f(p)\omega_p \in T_p^*M$

Corollary 1.24. We can thus write any co-vector field $\omega \in \mathfrak{X}^*(M)$ as

$$\omega = \sum_{i=1}^{n} \omega_i \Upsilon^i$$

Definition 39. Given any $\omega \in \mathfrak{X}^*(M)$, $\mathbf{v} \in \mathfrak{X}(M)$, we can define $\langle \omega, \mathbf{v} \rangle := \omega(\mathbf{v})$ by $\langle \omega, \mathbf{v} \rangle (p) := \langle \omega_p, \mathbf{v}_p \rangle$.

Proposition 1.25. Given any $\omega = \sum_{i=1}^n \omega_i \Upsilon^i \in \mathfrak{X}^*(M), v = \sum_{i=1}^n v^i \Upsilon_i \in \mathfrak{X}(M),$

$$\langle \omega, \boldsymbol{v} \rangle = \sum_{i=1}^{n} \omega_{i} \boldsymbol{v}^{i}$$

Definition 40. Let $f \in C^{\infty}(M)$, the **differential** of f is $df \in \mathfrak{X}^*(M)$, such that $\forall p \in M, D \in T_pM, (df)_p(D) := Df \in \mathbb{R}$. Thus we have a function $d: C^{\infty}(M) \to \mathfrak{X}^*(M)$

Proposition 1.26. Given a vector field \mathbf{v} , we have

$$\langle df, \boldsymbol{v} \rangle |_p = \langle df_p, \boldsymbol{v}_p \rangle = \boldsymbol{v}_p(f)$$

Proposition 1.27.

$$\Upsilon^j = dx^j, \Upsilon_j = \frac{\partial}{\partial x^j} = \partial_j$$

Corollary 1.28. Let $(U, \phi = (x^1, \dots, x^n))$ be a coordinate chart for M, then for any $f \in C^{\infty}(M)$, we have

$$df|_{U} = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} dx^{i} = (\partial_{i} f) dx^{i}$$

1.8 Tensors

Definition 41. A (r,s) tensor, or a **r-variant-s-covariant-tensor** is an element from $(V)^{\otimes r} \otimes (V^*)^{\otimes s}$.

Definition 42. A
$$(r,s)$$
 tensor $\mathcal{T} = \sum_{\substack{(i_1,\ldots,i_r,j_1,\ldots,j_s) \in [n]^{r+s}}} \mathcal{T}^{i_1,\ldots,i_r}_{j_1,\ldots,j_s} E_{i_1} \otimes \cdots \otimes E_{i_r} \otimes E^{j_1} \otimes \cdots \otimes E^{j_s}$ can be

viewed as a map $(V^*)^r \times V^s \to \mathbb{R}$ defined by

$$\mathcal{T}(\omega^{1},\ldots,\omega^{r},v_{1},\ldots,v_{s}) := \sum_{\substack{(i_{1},\ldots,i_{r},j_{1},\ldots,j_{s}) \in [n]^{r+s}}} \mathcal{T}_{j_{1},\ldots,j_{s}}^{i_{1},\ldots,i_{r}} \omega^{1}(E_{i_{1}}) \cdots \omega^{r}(E_{i_{r}}) E^{j_{1}}(v_{1}) \cdots E^{j_{s}}(v_{s})$$

$$= \mathcal{T}_{j_{1},\ldots,j_{s}}^{i_{1},\ldots,i_{r}} \left\langle \omega^{1}, E_{i_{1}} \right\rangle \cdots \left\langle \omega^{r}, E_{i_{r}} \right\rangle \left\langle E^{j_{1}}, v_{1} \right\rangle \cdots \left\langle E^{j_{s}}, v_{s} \right\rangle$$

Example 1.8.1. A vector is a (1,0) tensor.

Example 1.8.2. A co-vector is a (0,1) tensor.

Example 1.8.3. A real inner product is a (0,2) tensor.

Example 1.8.4. The determinant of a $n \times n$ real matrix is a (0,n) tensor as a function on the column/row vectors.

1.9 Alternating Tensor and wedge product

Definition 43. A covariant k-tensor is **symmetric** if $\forall 1 \leq i < j \leq k, v_1, \ldots, v_k \in V$, $\alpha(v_1, \ldots, v_i, \ldots, v_j, \ldots, v_k) = \alpha(v_1, \ldots, v_j, \ldots, v_i, \ldots, v_k)$. It is **alternating** or **anti-symmetric** if $\alpha(v_1, \ldots, v_i, \ldots, v_j, \ldots, v_k) = -\alpha(v_1, \ldots, v_i, \ldots, v_k)$

Definition 44. Given a permutation $\sigma \in S_k$, **sign** of it is $Sgn(\sigma) := \begin{cases} 1 & \text{permutation is got by even transposition} \\ -1 & \text{permutation is got by odd transposition} \end{cases}$

Definition 45. Given a tensor $\alpha \in T^k(V^*)$, the **alternation** of it is $Alt(\alpha) \in T^k(V^*)$, defined by $Alt(\alpha)(v_1,\ldots,v_k) := \frac{1}{k!} \sum_{\sigma \in S_k} sgn(\sigma)\alpha(v_{\sigma(1)},\ldots,v_{\sigma(k)})$

Proposition 1.29. $\forall \alpha \in T^k(V^*), Alt(\alpha) \in \Lambda^k(V^*)$

Proposition 1.30. $\forall \alpha \in \Lambda^k(V^*), Alt(\alpha) = \alpha$

Definition 46. The wedge product of two covariant tensors u, v is defined to be $u \wedge v := u \otimes v - v \otimes u$

Proposition 1.31. $\forall s, s \land s = 0$

Proposition 1.32. For u_1, \ldots, u_k , we have $u_1 \wedge \cdots \wedge u_k = k! Alt(u_1 \otimes \cdots \otimes u_k) = \sum_{\sigma \in S_k} sgn(\sigma)v_{\sigma(1)}, \ldots, v_{\sigma(k)}$

Proposition 1.33. Let $\{E^1, \ldots, E^n\}$ be a dual basis for V^* , and $I = (i_1, \ldots, i_k) \in [n]^k$, then we define the elementary alternating tensor

$$E^I = E^{i_1} \wedge \cdots \wedge E^{i_k}$$

Proposition 1.34. Let $I, J \in [n]^k$ be both increasing, then $E^I \wedge E^J = (-1)^{|I| \cdot |J|} E^J \wedge E^I$

Definition 47. Let $I = (i_1, ..., i_k), J = (j_1, ..., j_k) \in [n]^k$, then

 $\delta^I_J = \begin{cases} 0 & \text{if I or J have repeated indices, or I is not any permutation of J} \\ 1 & \text{if I is an even permutation of J} \\ -1 & \text{if I is an odd permutation of J} \end{cases}$

Proposition 1.35. If $I = (i_1, ..., i_k)$ have any repeated indices, i.e. $\exists 1 \leq l \neq m \leq k, i_l = i_m$, then $E^I = 0$

Proposition 1.36. If $J = (i_{\sigma(1)}, \dots, i_{\sigma(k)})$, then $E^J = sgn(\sigma)E^I$

Proposition 1.37. Let $I = (i_1, ..., i_k), J = (j_1, ..., j_k) \in [n]^k$, then $E^I(E_{j_1}, ..., E_{j_k}) = \delta^I_J$

Proposition 1.38. Let $\dim(V) = n, k \in \mathbb{N}^+$, if K > n, then $\Lambda^k(V^*) = \{0\}$, otherwise $\dim(\Lambda^k(V^*)) = \binom{n}{k}$, and a basis is given by $\mathcal{E}^k := \{E^I | I \text{ is increasing multi-index of length } k\}$

1.10 Tensor fields or k-form

Definition 48. Given a smooth manifold M, a **covariant k-tensor field on M** or a **k-form** is a smooth map $A: M \to T^k T^* M$, s.t. $A_p := A(p) \in T^K(T_p^* M)$. The set of all k-forms is $\Gamma(T^K T_p^* M)$

Proposition 1.39. $\Gamma(T^KT_p^*M)$ is an infinite dimensional vector space.

Proposition 1.40. Let $(U, \phi = (x^1, ..., x^n))$ be a coordinate chart for M, then for covariant k-tensor field $A \in \Gamma(T^K T_p^* M)$, it can be written as $A|_U = \sum_{(i_1, ..., i_k) \in [n]^k} A_{i_1, ..., i_k} dx^{i_1} \otimes \cdots \otimes dx^{i_k}$

Definition 49. An alternating covariant k-tensor field or alternating k-form on M is a smooth map $A: M \to \bigsqcup_{p \in M} \Lambda^k(T_p^*M)$ such that $\forall p \in M, A_p := A(p) \in \Lambda^k(T_p^*M)$. The set of all alternating k-forms on M is $\Omega^k(M)$

Definition 50. $\Omega^0(M) := c^{\infty}(M)$

Definition 51. $\wedge: \Omega^k(M) \times \Omega^l(M) \to \Omega^{k+l}(M)$ is defined to be $(\zeta \wedge \eta)_p := \zeta_p \wedge \eta_p$, where $\zeta_p \in \Lambda^k(T_p^*M)$, $\eta_p \in \Lambda^l(T_p^*M)$. For $k = 0, f \in C^{\infty}(M)$, $f \wedge \eta := f\eta$

Proposition 1.41. Let $(U, \phi = (x^1, \dots, x^n))$ be a coordinate chart for M, then for an alternating covariant k-tensor field $\omega \in \Omega^k(M)$, it can be written as $\omega|_U = \sum_{(i_1 < \dots < i_k) \in [n]^k} \omega_{i_1,\dots,i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}$, where $\omega_{i_1,\dots,i_k} = \omega(\partial_{i_1},\dots,\partial_{i_k})$, and $dx^{i_1} \wedge \dots \wedge dx^{i_k}(\partial_{j_1},\dots,\partial_{j_k}) = \delta^I_J$

1.11 Push-forward and Pull-back

Definition 52. For $f \in \Omega^0(N) = C^\infty(N)$, we have the **pull-back** of f by a smooth map $F: M \to N$ is

$$F^*f = f \circ F \in C^{\infty}(M)$$

.

Definition 53. The **push-forward** of a vector field $\mathbf{v} \in \mathfrak{X}(M)$ by a diffeomorphism $F: M \to N$ is the unique vector field $F_*\mathbf{v} \in \mathfrak{X}(N)$, defined by

$$\forall q \in N, F_* \mathbf{v}_q := dF_{F^{-1}(q)}(\mathbf{v}_{F^{-1}(q)})$$

Proposition 1.42. For any diffeomorphism $F: M \to N$, vector field $\mathbf{v} \in \mathfrak{X}(N)$, $f \in c^{\infty}(N)$, we always have

$$\langle \boldsymbol{v}, F^* f \rangle_p = \langle F_* \boldsymbol{v}, f \rangle_{F(p)}$$

Definition 54. Given a smooth map $F: M \to N$, and a co-vector field $\omega \in \mathfrak{X}(N)$, the **pull-back of a 1-form** ω by F is $F^*\omega \in \mathfrak{X}^*(M)$ defined by $\langle F^*\omega, \mathbf{v} \rangle |_p = \langle \omega, F_*\mathbf{v} \rangle |_{F(p)}$

Proposition 1.43. Given $u \in C^{\infty}(M)$

- 1. $F^*uF^*\omega = (u \circ F)F^*\omega = F^*(u\omega) \in \mathfrak{X}^*(M)$
- 2. $F^*(du) = d(u \circ F) = d(F^*u) \in \mathfrak{X}^*(M)$

Definition 55. Given a smooth map $F: M \to N, p \in M, \alpha \in T^k(T^*_{F(p)}N)$, the **pull-back of a covariant k-tensor** α by F at p is $dF^*_p(\alpha) \in T^k(T^*_pM)$, defined by $dF^*_p(\alpha)(v_1, \ldots, v_k) = \alpha(dF_p(v_1), \ldots, dF_p(v_k)) \in C^{\infty}(N)$. This way we obtain a linear map $dF^*_p: T^k(T^*_{F(p)}N) \to T^k(T^*_pM)$

Definition 56. Let $A \in \Gamma(T^kT^*N)$ be a k-form, the **pull-back of a k-form** A by a smooth map $F: M \to N$ is $F^*A \in \Gamma(T^kT^*M)$ defined by $(F^*A)_p := dF_p^*(A_{F(p)})$. This way we get a $F^*: \Gamma(T^kT^*N) \to \Gamma(T^kT^*M)$

Definition 57. The push-forward of a contra-variant k-tensor field $\mathbf{V} \in \Lambda(T^kTM)$ by a diffeomorphism $F: M \to N$ is $F^*(\mathbf{V}) \in \Lambda(T^kTN)$, defined by $\forall A \in \Gamma(T^{k-1}T^*N), p \in M, \langle \mathbf{V}, F^*A \rangle|_p = \langle (F_*\mathbf{V}), A \rangle|_{F(p)}$

Proposition 1.44. For any $\forall A \in \Gamma(T^kT^*N)$, $\mathbf{V} \in \Lambda(T^kTM)$, $p \in M$, $\langle F^*A, \mathbf{V} \rangle |_p = \langle A, (F_*\mathbf{V}) \rangle |_{F(p)}$

Definition 58. We define the **pull-back of a contra-variant k-tensor field V** $\in \Gamma(T^kTN)$ by a diffeomorphism $F: M \to N$ to be $F^*(\mathbf{V}) := F_*^{-1}(\mathbf{V}) \in \Lambda(T^kTM)$, which is the push-forward of **V** by $F^{-1}: N \to N$

Definition 59. The **pull-back of an (r,s)-tensor field** \mathcal{T} is by taking the pullback on the r-contra-variant field and the s-co-variant part respectively.

1.12 Lie Derivative

Definition 60. Let $\mathbf{v}, \mathbf{w} \in \mathfrak{X}(M)$, the **Lie derivative** of \mathbf{w} with respect to \mathbf{v} is a map $\mathcal{L}_{\mathbf{v}}\mathbf{w} : M \to TM$ defined by $\mathcal{L}_{\mathbf{v}}\mathbf{w}_p = \frac{d}{dt}|_{t=0}(d(\Theta_{-t})_{\Theta_t(p)}\mathbf{w}_{\Theta_t(p)})$, where Θ is the flow generated by \mathbf{v} .

Lemma 1.45. $\mathcal{L}_{\boldsymbol{v}}\boldsymbol{w} \in \mathfrak{X}(M)$ is a vector field.

Theorem 1.46. If $v, w \in \mathfrak{X}(M)$, then $\mathcal{L}_v w = [v, w]$

Remark. $d(\Theta_{-t})_{\Theta_t(p)} \mathbf{w}_{\Theta_t(p)} = d(\Theta_{-t})_{(\Theta_{-t})^{-1}(p)} \mathbf{w}_{(\Theta_{-t})^{-1}(p)} = (\Theta_{-t})_* \mathbf{w}_p = \Theta_t^* \mathbf{w}_p$, thus we can write $\mathcal{L}_{\mathbf{v}} \mathbf{w}_p = \frac{d}{dt}|_{t=0} \Theta_t^* \mathbf{w}_p$

Definition 61. We can generalize the **Lie derivative** to act on any (r,s)-tensor field \mathcal{T} by

$$\mathcal{L}_{\mathbf{v}}\mathcal{T}_{p} := \frac{d}{dt}|_{t=0}(\Theta_{t}^{*}\mathcal{T})|_{p} := \lim_{t \to 0} \frac{\Theta_{t}^{*}\mathcal{T}_{\Theta_{t}(p)} - \mathcal{T}_{p}}{t}$$

which is still a (r,s)-tensor. As before, Θ is the flow generated by \mathbf{v} .

Proposition 1.47. $\mathcal{L}_v(\mathcal{T} \otimes \mathcal{S}) = \mathcal{L}_v\mathcal{T} \otimes \mathcal{S} + \mathcal{T} \otimes \mathcal{L}_v\mathcal{S}$

Proposition 1.48. $\mathcal{L}_v(\langle \mathcal{T}, \mathcal{S} \rangle) = \langle \mathcal{L}_v \mathcal{T}, \mathcal{S} \rangle + \langle \mathcal{T}, \mathcal{L}_v \mathcal{S} \rangle$

Proposition 1.49. For $f \in C^{\infty}(M)$, $\mathcal{L}_{\boldsymbol{v}}(f) = \boldsymbol{v}(f)$

Proposition 1.50. Consider a 1-form $\sigma \in \mathfrak{X}^*(M)$, $\mathcal{L}_v \sigma = (v^{\mu} \partial_{\mu} \sigma_{\nu} + \sigma_{\mu} \partial_{\nu} v^{\mu}) dx^{\nu}$

Proposition 1.51. In general, for any (r,s)-tensor $\mathcal{T} = \mathcal{T}^{i_1,\ldots,i_r}_{j_1,\ldots,j_s} \partial_{i_r} \otimes \cdots \otimes \partial_{i_r} \otimes dx^{j_1} \otimes \cdots \otimes dx^{j_s}$, we have

$$(\mathcal{L}_{\boldsymbol{v}}\mathcal{T})^{i_1,...,i_r}_{j_1,...,j_s} = \left(\boldsymbol{v}^k \partial_k \mathcal{T}^{i_1,...,i_r}_{j_1,...,j_s} - \mathcal{T}^{k,i_2,...,i_r}_{j_1,...,j_s} \partial_k \boldsymbol{v}^{i_1} - \dots - \mathcal{T}^{i_1,...,i_{r-1},k}_{j_1,...,j_s} \partial_k \boldsymbol{v}^{i_r} + \mathcal{T}^{i_1,...,i_r}_{k,j_2,...,j_s} \partial_{j_1} \boldsymbol{v}^k + \dots + \mathcal{T}^{i_1,...,i_r}_{j_1,...,j_{s-1},k} \partial_{j_s} \boldsymbol{v}^k\right)$$

2 Exterior derivative

Definition 62. Let $\omega = \sum_{(i_1 < \dots < i_k) \in [n]^k} \omega_{i_1,\dots,i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k} \in \Omega^k(\mathbb{R})$, the **exterior derivative** of ω is $\mathbf{d}\omega := \sum_{(i_1 < \dots < i_k) \in [n]^k} d(\omega_{i_1,\dots,i_k}) \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k} = \frac{\partial \omega_{i_1,\dots,i_k}}{\partial x^j} dx^j \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k} \in \Omega^{k+1}(\mathbb{R})$

Proposition 2.1. If $f \in C^{\infty}(U) = \Omega^{0}(U)$, then we have $df = df \in \Omega^{1}(U)$

Proposition 2.2. $d: \Omega^k(U) \to \Omega^{k+1}(U)$ is linear

Proposition 2.3. $d \circ d : \Omega^k(U) \to \Omega^{k+2}(U)$ is the zero map.

Proposition 2.4. $\forall \omega \in \Omega^k(U), \eta \in \Omega^l(U), we have \mathbf{d}(\omega \wedge \eta) = \mathbf{d}\omega \wedge \eta + (-1)^k \omega \wedge \mathbf{d}\eta$

Proposition 2.5. For any smooth map $F: U \to V$, and any alternating k-form $\omega \in \Omega^k(V)$, we always have $d(F^*\omega) = F^*(d\omega)$

Theorem 2.6. For any smooth manifold M and $k \in \mathbb{N}$, there is a unique linear map $\mathbf{d}: \Omega^k(M) \to \Omega^{k+1}(M)$ such that

- 1. If $f \in C^{\infty}(M) = \Omega^{0}(M)$, then we have $\mathbf{d}f = df \in \Omega^{1}(M)$
- 2. $\mathbf{d} \circ \mathbf{d} : \Omega^k(M) \to \Omega^{k+2}(M)$ is the zero map.
- 3. $\forall \omega \in \Omega^k(M), \eta \in \Omega^l(M), \text{ we have } \mathbf{d}(\omega \wedge \eta) = \mathbf{d}\omega \wedge \eta + (-1)^k \omega \wedge \mathbf{d}\eta$

Theorem 2.7. Cartan identity: $\mathcal{L}_v \mathcal{T} = \langle d\mathcal{T}, v \rangle + d \langle \mathcal{T}, v \rangle$

Mechanics 3

Legendre transform 3.1

Consider a physical system with n degree of freedom, described by a configuration space Q of n dimensions. Let $q^{\alpha} \in \mathbb{R}, \alpha = 1, \ldots, n$ to be some generalized coordinates for some point $q \in Q$. The trajectory of the system is a function $s \in \mathbb{R} \to q(s) \in Q$. Note the possible tangent vectors $\dot{q} = \frac{d}{ds}q(s)$ spans the tangent vector space T_qQ . The **velocity phase space** TQ is the tangent bundle $\bigsqcup_{q\in Q} T_qQ$. Note that a chart $\phi: Q \to \mathbb{R}^n$ induces a chart $\phi': TQ \to \mathbb{R}^{2n}$ by $\forall \dot{q} \in T_qQ, \phi'(\dot{q}) = (q^1, \dots, q^n, \dot{q}^1, \dots, \dot{q}^n)$

Definition 63. Let V be a vector space and $l:V\to\mathbb{R}$ be a convex function, the **Legendre transform** of l is a new function $h: V^* \to \mathbb{R}$, defined by $\forall p \in V^*, h(p) := \max_{v \in V} f(p, v)$, where $f(p, v) := p_a v^a - l(v)$

Proposition 3.1. The value of v to maximize f(p,v) is when $\frac{\partial f}{\partial v^a} = p_a - \frac{\partial l}{\partial v^a} = 0$. By convexity, we can always get such a maximum value, call it v(p)

Corollary 3.2. h(p) = f(p, v(p))

Definition 64. For $l(v) = e^v$, $h(p) = p \log(p) - p$

3.2Hamilton's equations

Definition 65. Consider a system with non-singular Lagrangian $L(q, \dot{q}, t)$. We define the **Hamiltonian** of the system as the Legendre transform of the Lagrangian with respect to the generalized velocity \dot{q} . Namely, with $p_a = \frac{\partial L}{\partial \dot{q}^a}$, $H(q, p, t) = \max_{\dot{q}} [p_a \dot{q}^a - L(q, \dot{q}, t)]$

Proposition 3.3. $\frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}, \frac{\partial H}{\partial q^a} = -\dot{p}_a, \frac{\partial H}{\partial p^a} = \dot{q}_a$