Jeremy Binagia

Menlo Park, CA 94025 • (409) 749-9240 • jbinagia@stanford.edu • linkedin.com/in/jeremy-binagia • jeremy-binagia.com

ABOUT ME

Engineer with an expertise in computational science interested in solving complex problems using applied mathematics, modeling and numerical simulation, and machine learning

EDUCATION

Stanford University, Ph.D. in Chemical Engineering (4.068 GPA)	Expected 2021
Stanford University, M.S. in Chemical Engineering (4.068 GPA)	2019
The University of Texas at Austin, B.S. in Chemical Engineering with Highest Honors (4.00 GPA)	2016

RESEARCH EXPERIENCE

Graduate Researcher, Advisor: Prof. Eric S.G. Shaqfeh, Stanford University

2016 - Present

- Designs and writes algorithms from scratch in Fortran to simulate systems involving fluid-structure interaction
- Created first fully resolved 3D simulation of microorganisms swimming in complex fluids
- Collaborates with others to design, test, and enhance the research group's massively parallel multiphysics flow solver
- · Visualizes and analyzes large datasets from computational fluid dynamics simulations using Python, Matlab, and Tecplot

High-Energy-Density Physics Intern, Mentor: Dr. Luc Peterson, Lawrence Livermore National Laboratory

2020

- Developed a method to infer material microstructure from SEM images for use in radiation hydrodynamics simulations
- Conducted simulations to study microstructure-seeded hydrodynamic instabilities in National Ignition Facility experiments

Undergraduate Researcher, Advisor: Prof. Roger T. Bonnecaze, The University of Texas at Austin

2015 - 2016

- Prototyped nano-patterning via selective reduction of a thin metal oxide film through COMSOL simulations
- Utilized molecular simulations to compute rheological properties of soft particle glasses modeled as Herschel-Bulkley fluids

Undergraduate Researcher, Advisor: Prof. Doraiswami Ramkrishna, Purdue University

2014

- Modeled the signaling molecule network that populations of bacteria use to regulate the transfer of antibiotic resistance
- Simulated stochastic chemical systems via a parallel tau-leaping algorithm

Undergraduate Researcher, Advisor: Prof. Nicholas A. Peppas, The University of Texas at Austin

2013 - 2014

- Developed and synthesized pH-responsive polymer systems for oral drug delivery
- · Characterized polymeric hydrogels via dynamic & equilibrium swelling, loading & release, and titration studies

PUBLICATIONS

- 1. Housiadas, K. D., **Binagia, J. P.**, & Shaqfeh, E. S. G. Squirmers with Swirl in Viscoelastic Fluids at Low Weissenberg Number. *Journal of Fluid Mechanics*, accepted.
- 2. **Binagia, J. P.**, Phoa, A., Housiadas, K. D. & Shaqfeh, E. S. G. Swimming with swirl in a viscoelastic fluid. *Journal of Fluid Mechanics* (2020).
- 3. Bonnecaze, R., Chopra, M., Chopra, S., **Binagia, J.**, Ekerdt, J., & Edmondson, B. Patterning metal regions on metal oxide films/metal films by selective reduction/oxidation using localized thermal heating (2020). U.S. Patent App. No. 16/467,927.
- 4. **Binagia, J. P.***, Guido, C. J.*, Shaqfeh, E. S. G. Three-Dimensional Simulations of Undulatory and Amoeboid Swimmers in Viscoelastic Fluids. *Soft Matter* (2019).
- 5. Shu, C.-C., Tran, V., **Binagia, J.**, Ramkrishna, D. On Speeding up Stochastic Simulations by Parallelization of Random Number Generation. *Chemical Engineering Science* (2015).

TEACHING EXPERIENCE

Teaching Assistant: Applied Mathematics in the Chemical and Biological Sciences, Stanford University

2017 - 2018

- Planned and led weekly recitation sessions, gave assignment feedback, and provided final project guidance to 30+ students
- Designed novel homework problems and transitioned the course to a flipped classroom setup
- Received a median and mean score of 5/5 and 4.6/5 respectively for Fall 2018 student course evaluations

Tutor: Transport Phenomena, The University of Texas at Austin

2015 - 2016

Aided 50+ students on weekly problem sets, developing their physical intuition for problem solving

^{*} These authors contributed equally

MACHINE LEARNING PROJECTS

Teaching Microswimmers How to Navigate via Reinforcement Learning (https://github.com/jbinagia/cme216-final-project)

Trained active particles to navigate a complex flow field through reinforcement learning (Q-learning, expected SARSA)

Parallel Neural Network Training using Multiple GPUs (https://github.com/jbinagia/cme213-final-project)

2020

2020

Designed and implemented a parallel algorithm to accelerate neural network training on multiple GPUs via CUDA and MPI

Analyzing and Predicting Treatment Effects for Schizophrenia Patients (github.com/jbinagia/stats202-final-project)

2019

- Developed and evaluated hypothesis tests in R to assess statistical significance of an administered drug
- Used unsupervised learning methods including clustering and principal component analysis (PCA) to define patient groups
- Placed 4th out of 44 teams in a Kaggle competition for forecasting future severity of schizophrenia symptoms
- Created a classifier to predict the probability of a patient diagnoses being erroneous (placed in top 28% of competition)

Efficient Sampling of Equilibrium States Using Artificial Neural Networks (github.com/jbinagia/CS-230-Final-Project)

2019

Implemented a deep neural network in PyTorch that learns simple latent space descriptions of molecular configurations

INDUSTRY EXPERIENCE

Process Engineering Intern, Valero Energy, Port Arthur, TX

2015

• Troubleshot steam header inlet of washwater injection drum to ensure adequate drum pressure when feed nitrogen levels are elevated. Created and optimized operator pressure safety valve car-seal rounds.

SKILLS

Languages Experienced: Python, MATLAB, Fortran

Familiar: C++, Lua, R

Software Experienced: Linux, Git, Pandas, NumPy, MPI, CUDA, Tecplot

Familiar: COMSOL, PyTorch, TensorFlow, Keras, OpenMP

Theory Fluid mechanics, Parallel computing, Finite element analysis, Data mining, Deep learning

AWARDS & HONORS

National Science Foundation (NSF) Graduate Research Fellowship (fund 3 years, valued at \$140,000)	2016 – 2019
Stanford Blueprint Datathon Finalist (annual hackathon focused on big data)	2019
National Defense Science & Engineering Graduate (NDSEG) Fellowship Awardee (5 - 10% acceptance rate)	2016
Undergraduate Research Fellowship Awardee (Spring 2014 and 2016)	2016
Welch Foundation Scholarship (20 of 700 applicants receive this award annually)	2012 – 2016
Hutchinson International Scholarship (allows first-generation students to study abroad)	2012 – 2016
Eagle Scout, Boy Scout Troop 75 – Port Arthur, TX	2012

LEADERSHIP & COMMUNITY SERVICE

Program Coordinator, Science Teaching Through Art (STAR)	2019 – 2020
Instructor, Stanford Prison Education Project	2019
Member, Stanford CHEMENG Faculty Search Committee	2019
Member, Stanford CHEMENG PhD Recruitment Committee	2018
Vice President Internal, Engineering Chamber Orchestra	2014 – 2015
Treasurer, Omega Chi Epsilon (OXE) Chemical Engineering Honor Society	2014 – 2015

PRESENTATIONS

- **Binagia, J. P.**, Phoa, A., Housiadis, K., & Shaqfeh, E. S. G. "How Azimuthal Swirl Impacts Swimming Kinematics in a Viscoelastic Fluid," 72nd Annual Meeting of the American Physical Society (APS) Division of Fluid Dynamics, Seattle, WA (2019, Nov). Oral presentation.
- **Binagia, J. P.**, Guido, C. J., & Shaqfeh, E. S. G. "Simulating the Swimming Motion of *C. elegans* and Amoeboids in Viscoelastic Fluids via the Immersed Boundary Method," SIAM Conference on Computational Science and Engineering (CSE19), Spokane, WA (2019, Feb). Oral presentation.