Exercises: Artificial Intelligence

Automated Reasoning: Movable Objects

Solution: Movable Objects

- English to logic
- Logic to implicative normal form
 - Model
 - Assumption to prove
- Apply resolution
 - Derive inconsistency:
 - Model + negated assumption

Solution: Model to logic

- If all movable objects are blue, then all non-movable objects are green.
 - $-(∀x mov(x) \rightarrow blue(x)) \rightarrow (∀y \neg mov(y) \rightarrow green(y))$
- If there exists a non-movable object, then all movable objects are blue.
 - $-(\exists x \neg mov(x)) \rightarrow (\forall y mov(y) \rightarrow blue(y))$
- D is a non-movable object.
 - $-\neg mov(D)$

- $(\forall x \text{ mov}(x) \rightarrow \text{blue}(x)) \rightarrow (\forall y \neg \text{mov}(y) \rightarrow \text{green}(y))$
 - mov(A) ∨ mov(y) ∨ green(y) (← true) mov(y) ∨ green(y) ← blue(A)
- $(\exists x \neg mov(x)) \rightarrow (\forall y mov(y) \rightarrow blue(y))$
 - mov (x) \vee blue(y) \leftarrow mov(y)
- ¬mov(D)
 - false \leftarrow mov(D)
- Negated assumption: $\neg \exists x \ green(x) \leftrightarrow \forall x \ \neg green(x)$
 - false \leftarrow green(x)

- Prove using resolution:
 - Assumption: false \leftarrow green(x)
- Model:
 - $mov(A) \lor mov(y) \lor green(y) (\leftarrow true)$
 - $mov(y) \lor green(y) \leftarrow blue(A)$
 - $-\operatorname{mov}(x) \vee \operatorname{blue}(y) \leftarrow \operatorname{mov}(y)$
 - false \leftarrow mov(D)

Solution: Resolution

```
mov(x) \lor blue(y) \leftarrow mov(y)
                                                                           false \leftarrow mov(D)
                        blue(y) \leftarrow mov(y)
                                                                           mov(y1) \vee green(y1) \leftarrow blue(A)
               mov(y1) \vee green(y1) \leftarrow mov(A)
                                                                          mov(A) \vee mov(y2) \vee green(y2)
mov(y1) \vee green(y1) \vee mov(y2) \vee green(y2) \leftarrow true
                mov(y1) \vee green(y1) \leftarrow true
                                                                           false \leftarrow mov(D)
                                                                           false \leftarrow green(x)
                        green(D) \leftarrow true
                           false ← true
```

Exercises: Artificial Intelligence

Automated Reasoning: Politicians

Problem: Politicians

Given:

- If a poor politician exists, then all politicians are male.
- If people are friends with a politician, then this politician is poor and female.
- Lazy people have no friends.
- People are either male or female, but not both.
- If Joel is not lazy, then he is a politician.

Proof by resolution:

There exists no person who is a friend of Joel.

Solution: English to logic

- $(\exists x \text{ pol}(x) \land \text{poor}(x)) \rightarrow (\forall y \text{ pol}(y) \rightarrow \text{male}(y)).$
- $\forall x (pol(x) \land (\exists y fr(y,x))) \rightarrow poor(x) \land fem(x).$
- $\forall x | \text{lazy}(x) \rightarrow (\neg(\exists y | \text{fr}(y,x))).$
- $\forall x (male(x) \lor fem(x)) \land (\neg(male(x) \land fem(x))).$
- \neg lazy(Joel) \rightarrow pol(Joel).

- male(y) ← pol(x) ∧ poor(x) ∧ pol(y)
- $poor(x) \leftarrow pol(x) \land fr(y,x)$
- $fem(x) \leftarrow pol(x) \land fr(y,x)$
- false \leftarrow lazy(x) \wedge fr(y,x)
- male(x) \vee fem(x)
- false \leftarrow male(x) \land fem(x)
- lazy(Joel) v pol(Joel)

• Prove:

- There exists no person who is a friend of Joel
 - $\neg \exists x \ fr(x,Joel) \leftrightarrow \forall x \ \neg fr(x,Joel)$
- Negate assumption:
 - There exists a person who is a friend of Joel
 - ∃x fr(x,Joel)
 - Call the friend S
 - fr(S,Joel)

- male(y) \leftarrow pol(x) \land poor(x) \land pol(y)
- $poor(x) \leftarrow pol(x) \land fr(y,x)$
- $fem(x) \leftarrow pol(x) \land fr(y,x)$
- false \leftarrow lazy(x) \land fr(y,x)
- male(x) \(\times \) fem(x)
- false ← male(x) ∧ fem(x)
- lazy(Joel) v pol(Joel)
- fr(S,Joel)

- male(y1) ← pol(x1) ∧ poor(x1) ∧ pol(y1)
 - poor(x2) \leftarrow pol(x2) \land fr(y2,x2)
 - RESOLUTION: {x2/x1}
- male(y1) ← pol(x1) ∧ pol(y1) ∧ fr(y2,x1)
 - FACTORING: {y1/x1}
- male(x1) ← pol(x1) ∧ fr(y2,x1)
 - 'Politicians who have friends must be male'

- male(x1) ← pol(x1) ∧ fr(y2,x1)
 - false \leftarrow male(x3) \land fem(x3)
 - RESOLUTION: {x3/x1}
- false ← pol(x1) ∧ fr(y2,x1) ∧ fem(x1)
 - Politicians who have friends cannot be female'

- false ← pol(x1) ∧ fr(y2,x1) ∧ fem(x1)
 - fem(x4) ← pol(x4) \wedge fr(y4,x4)
 - RESOLUTION: {x4/x1}
- false ← pol(x1) ∧ fr(y2,x1) ∧ pol(x1) ∧ fr(y4,x1)
 - FACTORING: {}
- false ← pol(x1) ∧ <u>fr(y2,x1)</u> ∧ <u>fr(y4,x1)</u>
 - FACTORING: {y4/y2}
- false ← pol(x1) ∧ fr(y2,x1)
 - 'Politicians do not have friends'

- false ← pol(x1) ∧ fr(y2,x1)
 - lazy(Joel) \times pol(Joel)
 - RESOLUTION: {x1/Joel}
- lazy(Joel) ← fr(y2,Joel)
 - 'If Joel has friend, then he must be lazy'

- <u>lazy(Joel)</u> ← fr(y2,Joel)
 - false ← lazy(x5) ∧ fr(y5,x5)
 - RESOLUTION: {x5/Joel}
- false ← <u>fr(y2,Joel)</u> ∧ <u>fr(y5,Joel)</u>
 - FACTORING: {y5/y2}
- false ← fr(y2,Joel)
 - 'Joel does not have any friends'

- false ← <u>fr(y2,Joel)</u>
 - fr(S,Joel)
 - RESOLUTION: {y2/\$}
- false ← true