H8

đ

I

- 53. (As amended) The growth promoter according to claim 49, wherein the ion exchange resin is a gel form resin.
- 54. (As amended) The growth promoter according to claim 49, wherein ion exchange chromatographic treatment is carried out in a pseudo moving-bed continuous separation method.
- 55. (As amended) The growth promoter according to claim 49, wherein the fraction absorbing light of a wave length of 420nm is further treated by electrodialysis to thereby decrease amounts of salts.
- 56. (As amended) The growth promoter according to claim 46, wherein the sugar canederived extract is obtained by extracting bagasse with water, a hydrophilic solvent or a mixture thereof.
- 59. (As amended) A food comprising the growth promoter according to claim 46.
- 60. (As amended) An animal feed comprising the growth promoter according to claim 46.

REMARKS

The foregoing amendments correct minor typographical errors and eliminates multiple dependent claims. Favorable consideration and entry of the amendment is requested.

Respectfully submitted,

Reg. No. 32,024

Dated: April 6, 2001

KNOBLE & YOSHIDA LLC Eight Penn Center, Suite 1350 1628 John F. Kennedy Blvd. Philadelphia, PA 19103 (215) 599-0600

What is claimed is:

formanardanimals

- 1. A preventive or remedy for infection comprising a sugar cane-derived extract as an active ingredient.
- 2. The preventive or remedy according to claim 1, wherein the sugar cane-derived extract is a fraction obtained by treating a raw material selected from the group consisting of sugar cane juice, a liquid extract from sugar cane, and sugar cane-derived molasses, in column chromatography with a fixed carrier.
- 3. The preventive or remedy according to claim 2, wherein the sugar cane-derived extract is a fraction obtained by passing the raw material selected from the group consisting of sugar cane juice, a liquid extract from sugar cane, and sugar cane-derived molasses, through a column packed with a synthetic adsorbent as the fixed carrier and eluting substances adsorbed to the synthetic adsorbent with a solvent selected from the group consisting of water, methanol, ethanol or a mixture thereof.
 - 4. The preventive or remedy according to claim 2, wherein the sugar cane-derived extract is a fraction which absorbs light of a wave length of 420nm out of fractions obtained by column chromatographic treatment utilizing differences in affinity to an ion exchange resin packed in a column as the fixed carrier.
 - 5. The preventive or remedy according to claim 4, wherein the ion exchange resin is a cation exchange resin.
 - 6. The preventive or remedy according to claim 5, wherein the cation exchange resin is a strongly acidic cation exchange resin.
 - 7. The preventive or remedy according to claim 6, wherein the strongly acidic cation exchange resin is of a sodium ion form

or a potassium ion form.

- 8. The preventive or remedy according to any one of claims 4, to 7, wherein the ion exchange resin is a gel form resin.
- 9. The preventive or remedy according to any one of claims 4, to 8, wherein ion exchange chromatographic treatment is carried out in a pseudo moving-bed continuous separation
- 10. The preventive or remedy according to any one of claims 4, to 97 wherein the fraction absorbing light of a wave length of 420nm is further treated by electrodialysis to thereby decrease amounts of salts.
- 11. The preventive or remedy according to claim 1, wherein the sugar cane-derived extract is obtained by extracting bagasse with water, a hydrophilic solvent or a mixture
- 12. The preventive or remedy according to claim 11, wherein the hydrophilic solvent is ethanol.
- 13. The preventive or remedy according to claim 11, wherein the mixture of water and the hydrophilic solvent is a mixture of ethanol and water in a volume ratio of 60/40 or lower.
- 14. A food comprising the preventive or remedy according to any one of claims 1, to 13.
- 15. An animal feed comprising the preventive or remedy according to any one of claims 1. to 13.
- 16. A vaccine adjuvant comprising a sugar cane-derived extract as an active ingredient.
- The vaccine adjuvant according to claim 16, wherein the sugar cane-derived extract is a fraction obtained by 17. treating a raw material selected from the group consisting of sugar cane juice, a liquid extract from sugar cane, and sugar cane-derived molasses, in column chromatography with

MARKED-UP CC

- a fixed carrier.
- The vaccine adjuvant according to claim 17, wherein the sugar cane-derived extract is a fraction obtained by passing 18. the raw material selected from the group consisting of sugar cane juice, a liquid extract from sugar cane, and sugar cane-derived molasses, through a column packed with a synthetic adsorbent as the fixed carrier and eluting substances adsorbed to the synthetic adsorbent with a solvent selected from the group consisting of water, methanol, ethanol or a mixture thereof.
 - The vaccine adjuvant according to claim 17, wherein the sugar cane-derived extract is a fraction which absorbs light 19. of a wave length of 420nm out of fractions obtained by column chromatographic treatment utilizing differences in affinity to an ion exchange resin packed in a column as the fixed carrier.
 - The vaccine adjuvant according to claim 19, wherein the 20. ion exchange resin is a cation exchange resin.
 - 21. The vaccine adjuvant according to claim 20, wherein the cation exchange resin is a strongly acidic cation exchange
 - 22. The vaccine adjuvant according to claim 21, wherein the strongly acidic cation exchange resin is of a sodium ion form or a potassium ion form.
 - 23. The vaccine adjuvant according to any of claims 19 to 22, wherein the ion exchange resin is a gel form resin.
 - The vaccine adjuvant according to any of claims 19, to 34, wherein ion exchange chromatographic separation is carried 24. out in a pseudo moving-bed continuous separation method.
 - The vaccine adjuvant according to any of claims 19 wherein the fraction absorbing light of a wave length of

MARKED-UP COPY

- 420nm is further treated by electrodialysis to thereby decrease amounts of salts.
- 26. The vaccine adjuvant according to claim 16, wherein the sugar cane-derived extract is obtained by extracting bagasse with water, a hydrophilic solvent or a mixture thereof.
- 27. The vaccine adjuvant according to claim 26, wherein the hydrophilic solvent used during extraction is ethanol.
- 28. The vaccine adjuvant according to claim 26, wherein the solvent for extraction is a mixture of ethanol and water in a volume ratio of 60/40 or lower.
- 29. A food comprising the vaccine adjuvant according to any one of claims 16, to 28.
- 30. An animal feed comprising the vaccine adjuvant according to any one of claims 16 to 28.
- 31. An anti-endotoxin agent comprising a sugar cane-derived extract as an active ingredient.
- 32. The anti-endotoxin agent according to claim 31, wherein the sugar cane-derived extract is a fraction obtained by treating a raw material selected from the group consisting of sugar cane juice, a liquid extract from sugar cane, and sugar cane-derived molasses, in column chromatography with a fixed carrier.
- 33. The anti-endotoxin agent according to claim 32, wherein the sugar cane-derived extract is a fraction obtained by passing the raw material selected from the group consisting of sugar cane juice, a liquid extract from sugar cane, and sugar cane-derived molasses, through a column packed with a synthetic adsorbent as the fixed carrier and eluting substances adsorbed to the synthetic adsorbent with a solvent selected from the group consisting of water, methanol, ethanol or a mixture thereof.

MARKED-UPCOPY

- 34. The anti-endotoxin agent according to claim 32, wherein the sugar cane-derived extract is a fraction which absorbs light of a wave length of 420nm out of fractions obtained by column chromatographic treatment utilizing differences in affinity to an ion exchange resin packed in a column as the fixed carrier.
- 35. The anti-endotoxin agent according to claim 34, wherein the ion exchange resin is a cation exchange resin.
- 36. The anti-endotoxin agent according to claim 35, wherein the cation exchange resin is a strongly acidic cation exchange resin.
- 37. The anti-endotoxin agent according to claim 36, wherein the strongly acidic cation exchange resin is of a sodium ion form or a potassium ion form.
- 38. The anti-endotoxin agent according to any one of claims 34, to 37, wherein the ion exchange resin is a gel form resin.
- 39. The anti-endotoxin agent according to any one of claims 34, to 38, wherein ion exchange chromatographic treatment is carried out in a pseudo moving-bed continuous separation method.
- 40. The anti-endotoxin agent according to any one of claims 34, to 39, wherein the fraction absorbing light of a wave length of 420nm is further treated by electrodialysis to thereby decrease amounts of salts.
- 41. The anti-endotoxin agent according to claim 31, wherein the sugar cane-derived extract is obtained by extracting bagasse with water, a hydrophilic solvent or a mixture thereof.
- 42. The anti-endotoxin agent according to claim 41, wherein the hydrophilic solvent is ethanol.
- 43. The anti-endotoxin agent according to claim 41, wherein

MARKED - UP COPY

the solvent for extraction is a mixture of ethanol and water in a volume ratio of 60/40 or lower.

- 44. A food comprising the anti-endotoxin agent according to any one of claims 31. to 43.
- 45. An animal feed comprising the anti-endotoxin agent according to any one of claims 31. to 43.
- 46. A growth promoter comprising a sugar cane-derived extract as an active ingredient.
- 47. The growth promoter according to claim 46, wherein the sugar cane-derived extract is a fraction obtained treating a raw material selected from the group consisting of sugar cane juice, a liquid extract from sugar cane, and sugar cane-derived molasses, in column chromatography with a fixed carrier.
 - 48. The growth promoter according to claim 47, wherein the sugar cane-derived extract is a fraction obtained by passing the raw material selected from the group consisting of sugar cane juice, a liquid extract from sugar cane, and sugar cane-derived molasses through a column packed with a synthetic adsorbent as the fixed carrier and eluting substances adsorbed to the synthetic adsorbent with a solvent selected from the group consisting of water, methanol, ethanol or a mixture thereof.
 - 49. The growth promoter according to claim 47, wherein the sugar cane-derived extract is a fraction which absorbs light of a wave length of 420nm out of fractions obtained by column chromatographic treatment utilizing differences in affinity to an ion exchange resin packed in a column as the fixed carrier.
 - 50. The growth promoter according to claim 49, wherein the ion exchange resin is a cation exchange resin.

MARKED-UP COPY

- 51. The growth promoter according to claim 50, wherein the cation exchange resin is a strongly acidic cation exchange resin.
- 52. The growth promoter according to claim 51, wherein the strongly acidic cation exchange resin is of a sodium ion form or a potassium ion form.
- 53. The growth promoter according to any one of claims 49 to 52, wherein the ion exchange resin is a gel form resin.
- 54. The growth promoter according to any one of claims 49 to 53, wherein ion exchange chromatographic treatment is carried out in a pseudo moving-bed continuous separation method.
- 55. The growth promoter according to any one of claims 49 to 54, wherein the fraction absorbing light of a wave length of 420nm is further treated by electrodialysis to thereby decrease amounts of salts.
- 56. The growth promoter according to any one of claims 46 to55. Wherein the sugar cane-derived extract is obtained by
 extracting bagasse with water, a hydrophilic solvent or a
 mixture thereof.
- 57. The growth promoter according to claim 56, wherein the hydrophilic solvent is ethanol.
- 58. The growth promoter according to claim 56, wherein the solvent for extraction is a mixture of ethanol and water in a volume ratio of 60/40 or lower.
- 59. A food comprising the growth promoter according to any one of claims 46, to 58:
- 60. An animal feed comprising the growth promoter according to any one of claims 46 to 58.

MARKED-UPCOPY