МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа биологической и медицинской физики

Лабораторная работа по физической химии

Электрокапиллярные явления

Выполнила студентка группы Б06-103: Фитэль Алена

1 Введение

Цели работы:

- Знакомство с потенциометрическими методами определения среднеионных коэффициентов активности электролитов и измерения рН растворов;
- Исследование зависимости среднеионного коэффициента активности электролита от его концентрации;
- Исследование влияния ионной силы раствора на растворимость солей;
- Приобретение практических навыков измерения рН, оценка величины катионной ошибки стеклянного электрода.

2 Теоретическое введение

2.1 Химический потенциал и активности компонентов раствора.

Для идеального газа(однокомпонентная система) можно получить следующее выражение для химического потенциала:

$$\mu(T, p) = \mu^0(T) + RT \ln \frac{p}{p^0}$$

Здесь p - давление идеального газа, p^0 - стандартное давление 1 бар, μ^0 - стандартное значение химического потенциала: $\mu^0(T) = \mu(T, p^0)$.

Химический потенциал компонента идеального раствора:

$$\mu_i(T, p, x) = \mu_i^0(T, p) + RT \ln x_i$$

где $\mu_i^0(T,p)=\mu_i(T,p^0,x_i=1)$ - стандартный химический потенциал і-го компонента, т.е. его потенциал в "стандартном" состоянии чистого вещества $(x_i=1)$ при заданной температуре и давлении $p^0=1$ атм. Здесь x_i - мольная доля компонента і.

Химический потерциал для реального раствора:

$$\mu_i(T, p, x) = \mu_i^0(T, p) + RT \ln a_i$$

Активность і-го компонента, в растворе:

$$a_i = \exp\frac{\mu_i - \mu_i^0}{RT}$$

Активность a_i — безразмерная величина, которая непосредственно выражается через химический потенциал компонента, и не связана напрямую с его концентрацией, хотя и зависит от нее. Это сугубо термодинамическая величина, отражающая вклад компонента в свободную энергию Гиббса раствора:

$$G(T, p, x) = \sum \nu_i \mu_i = \sum \nu_i (\mu_i^0 + RT \ln a_i)$$

Активность можно представить в виде произведения мольной доли компонента x_i на его коэффициент активности γ_i :

$$a_i = \gamma_i x_i$$

Коэффициент активности чистого вещества равен 1. Если $x_i \to 1$, то $\gamma_i \to 1$, т.е. $a_i \to c_i$. Последнее справедливо, так как когда расстворителя A много, $x_A \to 1$, то свойства раствора

определяются именно растворителем. Для растворенных веществ принимают, что коэффициент активности стремится к единице в бесконечно разбавленном растворе:

$$\gamma_i \to 1$$
 при $x_i \to 0, a_i \to c_i$

2.2 Потенциометрическое определение рН

Величина водородного потенциала рН определяется активностью ионов водорода. в растворе:

$$pH = -\lg a_{H^+}$$

Хороший рH-метр по сути является милливольтеметром, с помощью которого проводятся измерения разности потенциалов между электродами, погруженных в раствор X, которая линейно связана с величиной pH и не зависит от активностей других ионов в исследуемом растворе:

$$E_x = E_0 - b \cdot pH \tag{1}$$

Если данное равентство выполняется то неизвестные коффициенты E_0 , b можно найти на основе калибровки по стандартным буферным растворам. Если концентрация ионов водорода в воде также известна, то можно также выразить коффициент активности ионов водорода:

$$\gamma_{H^+} = \frac{10^{-pH}}{C_{H^+}} = \frac{10^{\frac{E_0^{st} - E_x}{b^{st}}}}{C_{H^+}}$$

Здесь E_0^{st} , b^{st} обозначают величины, найденные при градуировке(калибровке) по стандартным буферным растворам.

2.3 Гальваническая ячейка для измерения рН

При конструировании цепи для измерения pH необходимо обеспечить независимость потенциала электрода сравнения от состава исследуемого раствора. Например, для этого электроды объединяют в гальваническую ячейку вида:

Электрод раствор Насыщенный раствор Индикаторный электрод на ион
$$H^+$$
 $E_{\rm ref}$ $\Delta \phi_{\rm D}$ $E_{\rm ind(H^+)}$

Исследуемый раствор здесь связан с внутренним раствором KCl хлорсребряного элктрода сравнения через капилляр или пористую мембрану. ЭДС представленной ячейки определяется выражением (следствие уравнения Нернста):

$$E_x = E_{ind} - E_{ref} + \Delta \varphi_D$$

$$E_x = E_{ind}^0 + \frac{RT}{F} \ln a_{H^+}^x - (E_{ref}^0 - \frac{RT}{F} \ln a_{Cl^-}^{ref}) + \Delta \varphi_D$$

Преобразуя это выражение, получим, что водородный потенциал в исследуемом растворе X выражается через переменную ЭДС цепи E_x , активность ионов Cl^- во внутреннем растворе электрода сравнения, а также зависит от диффузионного потенциала на жидкостных границах:

$$\lg a_{H^+}^x + \lg a_{Cl^-}^{ref} = \frac{F}{RT \ln 10} (E_x + E_{ref}^0 - E_{ind}^0 - \Delta \varphi_D)$$

Поскольку активность ионов Cl^- во внутреннем растворе электрода сравнения остается постоянной:

$$pH_x \approx \frac{F}{RT \ln 10} (E' - E_x)$$

$$E_x \approx E' - \frac{RT \ln 10}{F} pH_x$$

Это выражение может быть использовано для калибровки по стандартным буфферным растворам.

Есть также другой способ измерения pH раствора в средах с заданной концентрацией хлоридионов. Принципильное отличие от предыдущего способа заключается в конструкции гальванической ячейки: индикаторный электрод и электрод сравнения помещаются непосредственно в исследуемый раствор. Величина измеряемого напряжения таким электродом будет определяться средней активностью $\sqrt{a_{H^+} \cdot a_{Cl^-}}$ в растворе:

$$E_x = E_{ind} - E_{ref} = E_{ind}^0 + \frac{RT}{F} \ln a_{H^+}^x - (E_{ref}^0 - \frac{RT}{F} \ln a_{Cl^-}^{ref}) = E^0 + \frac{RT}{F} \ln a_{H^+} \cdot a_{Cl^-}$$
 (2)

2.4 Используемые в работе электроды

2.4.1 Стеклянный электрод

Теория стеклянного электрода исходит из представления о том, что потенциал стеклянного электрода является мембранным потенциалом, возникающем в результате ионообменных свойств стекла. Уравнение, описывающее потенциал стеклянного электрода было получено Б.П. Никольским:

$$\varphi = \varphi^0 + \frac{RT}{F} \ln[a_{H^+} + K \cdot a_{Na^+}]$$

Если вклад активности ионов H^+ преобладает над вкладом ионов Na^+ , что выполняется в кислых и нейтральных средах, то имеем:

$$\varphi \approx \varphi^0 + \frac{RT}{F} \ln[a_{H^+}]$$

В щелочных средах наблюдается отклонение E(pH) от линейной зависимости - так называемая щелочная ошибка. Схема устройства стеклянного электрода представленна на Рисунке 1.

Рисунок 1: Схема устройства стеклянного электрода

2.4.2 Хлорсеребрянный электрод

Хлорсеребрянный электрод представляет собой тонкую серебрянную проволочку, покрытую слоем труднорастворимой соли AgCl в растворе электролита, содержащего хлорид-ионы. Полуреакция для хлорсеребрянного электрода может быть записана как:

$$AgCl_{(s)} + e^- \rightleftharpoons Ag^0_{(s)} + Cl^-_{(sol)}$$

Используя уравнение Нернста и учитывая произведение растворимости AgCl можно показать, что потенциал такого электрода определяется активностью хлорид ионов:

$$\varphi \approx \varphi^0 + \frac{RT}{F} \ln a_{Ag^+} = \varphi^0 + \frac{RT}{F} \ln \Pi P_{AgCl} - \frac{RT}{F} \ln a_{Cl^-} = \varphi_2^0 - \frac{RT}{F} \ln a_{Cl^-}$$

2.4.3 Комбинированный электрод

Индикаторный электрод и электрод сравнения могут быть объединены в одну электродную сборку — комбинированный электрод(Рис. 4): 1 — мембрана; 2 —внутренний вспомогательный хлорсеребрянный электрод с раствором HCl; 3 — раствор KCl; 4 — электролитический ключ для гальванической связи раствора KCl с исследуемым раствором; 5 — электрод сравнения; 6 — стеклянный корпус; 7 — заливочное отверстие электрода сравнения.

Рисунок 2: Устройство комбинированного электрода.

3 Ход работы и обработка результатов

3.1 Калибровка pH-метра-иономера

Проведем каллибровку комбинированного стеклянного электрода по набору стандартных буферных растворов, построим калибровочный график ЭДС в зависимости от pH стандартного буферного раствора. Проведем линейную аппроксимацию полученной зависимости, сравним ее с теоретическим расчетом по формуле (1):

$$E_x = E_0 - b \cdot pH = 493.5 - 59.47 \cdot pH \text{ MB}$$
 $b_{teo} = 59 \text{ MB}$

pH	7	4,01	1,68
E, мВ	78,4	248,4	395

Таблица 1: Калибровка рН-метра-иономера

Далее будем использовать пересчитанное значение напряжения комбинированного стеклянного электрода по полученной зависимости.

3.2 Определение активности и
онов H^+ и среднеионного коэффициента активнос
иHCl

1. Проведем измерения ЭДС цепей, состоящих из исследуемого раствора (раствор соляной кислоты в воде) и 1 - комбинированного стеклянного электрода для измерения рH, 2 - стеклянного электрода и хлорсеребряного электрода сравнения, подключенных к ионометрам, по мере последовательного добавления к ним 2 раствора HCl. Результаты измерений приведены в Таблице 1.

Рисунок 3: Калибровка комбинированного электрода

V_{add}	c_{HCl}	E_1	E_2
0,1	0,004	344,9	78,5
0,4	0,020	385,8	157,8
0,5	0,039	402,9	191,2
1,0	0,077	420,3	224,3
1,0	0,113	429,8	243,8
1,0	0,148	437,1	256,8
1,0	0,182	442,9	269,1
5,0	0,333	457,2	299,5
10,0	0,571	469,1	324,9
10,0	0,750	475,1	339,4
10,0	0,889	478,3	348,7
10,0	1,000	480,6	355,2

Таблица 2: Результаты измерений ЭДС цепей: 1 - комбинированный электрод, 2 - электрод без жидкостного соединения.

2. Построим графики зависимости ЭДС E от $pC_H = -\lg c_{HCl}$. В результате линейных аппроксимаций полученных данных имеем:

$$E_1 = -56.64 \cdot pC_H + 483.8 \text{ MB}$$
 $E_2 = -115.30 \cdot pC_H + 353.8 \text{ MB}$

Наклоны графиков отличаются, так как потенциал электрода с безжидкостным соединением зависит не только от активности H^+ , но и от активности Cl^- . Причём, активность хлорид-ионов равна активности протонов, следовательно, тангенс угла наклона у прямой электрода с безжидкостным соединением должен быть примерно в 2 раза больше, чем таковой у прямой комбинированного электрода: $\frac{E_2^{*0}}{E_1^{*0}} = \frac{-115.30}{-56.64} = 2.04 \approx 2$ - экспериментально это подтверждается.

Рисунок 4: График зависимости ЭДС E от $pC_H = -\lg c_{HCl}$. Синяя прямая - комбинированный электрод, оранжевая — электрод без жидкстного соединения.

3. Для серии измерений (2) (с электродом без жидкостного соединения) были расчитаны значения $E^* = E - \frac{2RT \ln 10}{F} \lg c_{HCl} + \frac{2RT \ln 10}{F} \cdot \frac{0.51 \sqrt{c_{HCl}}}{1 + c_{HCl}}$, которые, согасно третьему приближению теории Дебая-Хюккенса должны равнятся: $E^* = E^0 + \frac{2RT \ln 10}{F} \cdot b \cdot c_{HCl}$. Результаты приведены в Таблице 3.

E^*	c_{HCl}
367,539	0,004
367,960	0,020
368,594	0,039
370,024	0,077
371,657	0,113
372,344	0,148
375,336	0,182
378,484	0,333
379,944	0,571
382,430	0,750
384,236	0,889
385,542	1,000

Таблица 3: Проверка третьего приближения теории Дебая-Хюккенса.

4. Построим линеаризированную зависимость E^* от c_{HCl} (Рисунок 3). Используя третье приближение теории Дебая-Хюккеля, экстраполяцией к нулевому значению c_{HCl} найдем значение E^0 для данной электролитической ячейки: $E^*=17.55\cdot c_{HCl}+369.3$ мВ, откуда $E^0=369.3$ мВ, $b=147.5\frac{\text{мB}}{\text{M}}$. Эмперический параметр b называют константой высаливания.

Рисунок 5: График зависимости ЭДС E^* от c_{HCl}

5. Рассчитаем коэффициент средней активности раствора γ_{\pm} для измерений без жидкостного соединения с помощью найденного значения E^0 , и с помощью проведенной каллибровки расчитаем коэффициент средней активности для комбинированного электрода (Таблица 4). Построим графики зависимости $\lg \gamma_{\pm}$ от квадратного корня из ионной силы раствора $\sqrt{I} = \sqrt{c_{HCl}}$ для двух исследуемых случаев(Рисунок 4).

$\sqrt{c_{HCl}}$	$\log \gamma_{pm}^1$	$\lg \gamma_{pm}^2$
0,063	-0,045	1,150
0,141	-0,074	0,811
0,198	-0,090	0,655
0,277	-0,105	0,502
0,336	-0,109	0,414
0,385	-0,116	0,353
0,426	-0,102	0,306
0,577	-0,109	0,168
0,756	-0,130	0,046
0,866	-0,126	-0,016
0,943	-0,122	-0,055
1,000	-0,118	-0,082

Таблица 4: Расчет логарифма средних коэффициентов активности растворов для двух электрических ячеек: 1 - комбинированный электрод, 2 - электрод без жидкостного соединения.

Рисунок 6: График зависимости $\lg \gamma_{\pm}$ от $\sqrt{c_{HCl}}$ для двух электрических ячеек.

3.3 Определение константы диссоциации уксусной кислоты

1. Построим графики зависимости удельной электропроводности уксусной кислоты \varkappa от ее концентрации c и корня из ее концентрации \sqrt{c} по полученным данным(Таблица 5) . Проведем во втором случае линейную аппроксимацию, из которой получим $\varkappa=1586\cdot\sqrt{c}+19.97$ мкСм/см.

ж , мкСм/см	c	\sqrt{c}
48,1	0,001	0,032
292,2	0,028	0,167
524,0	0,091	0,302
716,0	0,191	0,437
1128,0	0,500	0,707

Таблица 5: Зависимость удельной электропроводности уксусной кислоты \varkappa от ее концентрации c и корня из ее концентрации \sqrt{c} .

Рисунок 7: График зависимости \varkappa от c.

Рисунок 8: График зависимости \varkappa от \sqrt{c} .

2. Константу диссоциации уксусной кислоты рассчитаем из закона разбавления Оствальда и формулы удельной электропроводности:

$$K = \alpha^2 c$$
 $\varkappa = \lambda c = \alpha \lambda^0 c = \lambda^0 \sqrt{Kc}$

Полученное значение: $K_a == 1.86 \cdot 10^{-5} \mathrm{M}$. Сравним это значение с полученным из графика зависимости \varkappa от \sqrt{c} (Рисунок 6): коэффициент наклона $k=1586=\lambda^0\sqrt{K}$, откуда [1]:

$$\lambda^0 = \lambda^0_{CH3COO^-} + \lambda^0_{H^+} = 40.9 + 349.8 = 390.7 \frac{\text{См} \cdot \text{см}^2}{\text{моль}}$$

$$K_a = \left(\frac{k}{\lambda^0}\right)^2 = \left(\frac{1586 \cdot 10^{-3}}{390.7}\right)^2 = 1.65 \cdot 10^{-5} \text{ M}$$

Справочное значение: $K_a = 1.74 \cdot 10^{-5} \text{ M [2]}.$

4 Обсуждение результатов и выводы

- Была проведена калибровка комбинированного электрода на буферных растворах. Полученный угол наклона $b=59.47~\mathrm{mB}$ близок к теоретическому $b_{teo}=59~\mathrm{mB}$.
- С помощью электродов с двумя разными типами соединений был определен средний коэффициент активности HCl. Из полученных результатов можно сделать вывод о том, что в комбинированном электроде, в месте соприкосновения растворов различных концентраций возникает диффузионный потенциал, точное значение которого расчитать не получится, поэтому для определения среднего коэффициента активности электролитов следует использовать некомбенированный электрод без жидкостного соединения.
- На некомбенированном электроде была проверена линейность второго слагаемого в третьем приближении теории Дебая-Хюккенса.
- Через удельную электропроводность раствора была оценена константа диссоциации уксусной кислоты: $K_a=1.65\cdot 10^{-5}~{\rm M},$ что достаточно близко к теоретическому значению $K_a^{teo}=1.74\cdot 10^{-5}~{\rm M}$ [2].

5 Список используемой литературы

- [1] Кафедра общей химии МФТИ "Активность и коэффициент активности и
онов в растворах, р Н-метрия"
- [2] Лурье Ю.Ю., 1971 г. "Справочник по аналитической химии"