§1 Simple Groups

Definition 1.1. A group G with no normal subgroups except G and $\{1_G\} = \{e\}$ is called simple.

Example 1.2

- 1. \mathbb{Z}_p with p prime. The only subgroups are G and $\{1_G\}$. 2. $A_n \quad \forall n \geq 5$.

In some sense, simple groups are like the primes. Every group can be built from simple groups.

§2 Homomorphisms

Definition 2.1. A homomorphism from group (G,\cdot) to (H,\circ) is a map $\phi:G\to H$ such that is preserves multiplication. i.e. $\phi(g_1 \cdot g_2) = \phi(g_1) \circ \phi(g_2)$ for all $g_1, g_2 \in G$.

The range $\phi(G) \subset H$ is called the homomorphic image of G.

Remark 2.2. $\phi(G)$ is a subgroup of H.

Note 2.3. All isomorphisms are homomorphisms with the additional property that ϕ is a bijection.

Let $g \in G$. There is a homomorphism $\phi : \mathbb{Z} \to G$ defined by $\phi(n) = g^n$.

Check: (review how binary operations apply below)

$$\phi(a+b) = g^{a+b} = g^a g^b = \phi(a)\phi(b)$$
$$\phi(\mathbb{Z}) = \langle g \rangle \subset G$$

Example 2.5

$$\det: \operatorname{GL}_n(\mathbb{R}) \to \mathbb{R}^*$$
$$\det(AB) = \det(A) \cdot \det(B)$$

Example 2.6

Let G = the isometries of a tetrahedron.

 $\phi:G\to\{\pm 1\}.$ $\phi(g)=\pm 1$ if g preserves orientation. $\phi(g)=-1$ if g reverses exists a sum of g and g is a sum of g and g are the sum of g and g is a sum of g and g are the sum of g and g is a sum of g and g are the sum of g and g is a sum of g and g are the sum of g and g is a sum of g and g are the sum of g and g is a sum of g and g are the sum of g and g is a sum of g and g are the sum of g are the sum of g and g are the sum of g are the sum of g and g are the sum of g are the sum of g and g are the sum of g are the sum of g and g are the sum of g are the sum of g and g are the sum of g and g are the sum of g and g are the sum of g are the sum of g and g are the sum of g and g are the sum of g

Theorem 2.7

Let $\phi: G_1 \to G_2$ be a homomorphism.

- 1. If e_1 is the identity element of G_1 , the $\phi(e_1)$ is the identity element of G_2 .
- 2. $\phi(g^{-1}) = [\phi(g)]^{-1}$
- 3. $H_1 \subset G_1$ is a subgroup $\Rightarrow \phi(H_1) \subset G_2$ is a subgroup
- 4. $H_2 \subset G_2$ is a subgroup $\Rightarrow \phi^{-1}(H_2) \subset G_1$ is a subgroup
- 5. $H_2 \subset G_2$ is a normal subgroup $\Rightarrow \phi^{-1}(H_2) \subset G_1$ is a normal subgroup

Note 2.8. Normal groups can be used to build factor and quotient groups.

Proof. Of the above statements.

- 1. $\phi(e_1) = \phi(e_1e_1) = \phi(e_1)\phi(e_1)$. Therefore $e_2 = \phi(e_1)$.
- 2. $e_2 = \phi(e_1) = \phi(g \cdot g^{-1}) = \phi(g) \cdot \phi(g^{-1})$. Therefore $\phi(g)$ and $\phi(g^{-1})$ are inverse to one another.
- 3. Identity: $e_1 \in H_1 \Rightarrow e_2 = \phi(e_1) \in \phi(H_1)$, so image of ϕ contains identity element.

Inverses: $g_2 \in \phi(H_1) \Rightarrow g_2 = \phi(g_1)$ for some $g_1 \in H_1 \Rightarrow g_1^{-1} \in H_1 \Rightarrow \phi(g^{-1}) = [\phi(g_1)]^{-1} = g_2^{-1} \in \phi(H_1)$. Therefore image contains inverses.

Closure: Let $g_2, g_2' \in \phi(H_1)$. Therefore $\exists g_1, g_1' \in H_1$ such that $g_2 = \phi(g_1)$ and $g_2' = \phi(g_1')$. Therefore:

$$g_1g_1' \in H_1 \Rightarrow \phi(g_1g_1') \in \phi(H_1) \Rightarrow g_2g_2' = \phi(g_1)\phi(g_1') \in \phi(H_1)$$

4. Identity: $e_1 \in \phi^{-1}(H_2)$ because $\phi(e_1) = e_2 \in H_2$.

Inverses: $g_1 \in \phi^{-1}(H_2) \Rightarrow g_1^{-1} \in \phi^{-1}(H_2)$ because $\phi(g_1^{-1}) = [\phi(g_1)]^{-1} \in H_2$.

Closure: $g_1, g_1' \in \phi^{-1}(H_2) \Rightarrow g_1 g_1^{-1} \in \phi^{-1}(H_2)$ because $\phi(g_1 g_1') = \phi(g_1) \phi(g_1') \in H_2$

5. Show that for all $g_1 \in G_1$, $g_1 \phi^{-1}(H_2)g_1^{-1} \subset \phi^{-1}(H_2)$

Let $k \in \phi^{-1}(H_2)$. Then $\phi(g_1kg_1^{-1}) = \phi(g_1)\phi(k)\phi(g_1^{-1}) = \phi(g_1)\phi(k)[\phi(g_1)]^{-1} \in H_2$. Since we construct with $H_2 \subset G_2$ is normal. Remember that $\phi(k) \in H_2$.