Variabili

Marco Alberti

Programmazione e Laboratorio, A.A. 2024-2025

Ultima modifica: 6 dicembre 2023

Attenzione! Questo materiale didattico è per uso personale dello studente ed è coperto da copyright. Ne sono vietati la riproduzione e il riutilizzo anche parziale, ai sensi e per gli effetti della legge sul diritto d'autore.

Sommario

1 Variabili e assegnamento

Stato della macchina astratta

Input

4 Aggiornamento e operatori appositi

Premessa: commenti in C

In C un commento è il testo racchiuso

- fra la stringa // e la fine della linea (commento monolinea)
- fra la stringa /* e la successiva stringa */, anche su linee diverse (commento multilinea)

I commenti sono ignorati dal compilatore; sono utili per annotare programmi.

```
040_variabili/commenti.c

#include <stdio.h>
main() { // Un commento monolinea
printf("Hello,");
/* Un commento

multilinea */ printf(" World!\n");
}
```

Sommario

Variabili e assegnamento

Stato della macchina astratta

Input

4 Aggiornamento e operatori appositi

Modifica programma per funzionalità diverse

Abbiamo visto l'uso della macchina astratta C come calcolatrice. Per calcolare il quoziente e il resto della divisione intera di 22 per 7:

040_variabili/quoziente-resto-costanti.c

```
1 #include <stdio.h>
2
3 main() {
4   printf("Quoziente: %d\n", 22 / 7);
5   printf("Resto: %d\n", 22 % 7);
6 }
```

Se volessi fare gli stessi calcoli, ma con 20 come dividendo, dovrei modificare il programma in tutti i punti in cui compare 22, sostituendolo con 20. Processo (in generale) laborioso e soggetto a errori (potrei ad esempio dimenticare una occorrenza di 22).

Variabile

Alternativa:

- 4 Diamo un nome o identificatore (dividendo) e un tipo (int, intero) a una variabile che rappresenta il dividendo;
- 5 Assegniamo alla variabile il valore 22;
- 6 e 7 Usiamo il nome dove compariva il valore 22.

040_variabili/quoziente-resto-variabile.c 1 #include <stdio.h> 2 3 main() { 4 int dividendo; 5 dividendo = 22; 6 printf("Quoz.: %d\n", dividendo / 7); 7 printf("Resto: %d\n", dividendo % 7); 8 }

In questo modo, se vogliamo usare un altro valore abbiamo una sola modifica da fare. Quale?

Memoria e variabili

- Assegnare un valore (ad esempio 22) a una variabile (ad esempio dividendo) significa scrivere quel valore in una cella di memoria.
- Usare direttamente gli indirizzi ("scrivi 22 all'indirizzo 7") sarebbe scomodo: difficili da ricordare e leggere, dipendente dall'hardware.
- Le variabili sono un'astrazione dell'area di memoria: anziché l'indirizzo si usa un identificatore indicativo.
- E' la macchina astratta ad associare l'identificatore all'indirizzo, in modo trasparente al programmatore.

Definizione di variabile


```
Sintassi ⟨definizione⟩ ::= ⟨tipo⟩ ⟨identificatore⟩ ;
```

Riserva un'area di memoria sufficiente a contenere un valore di tipo $\langle tipo \rangle$ e la etichetta con il nome $\langle identificatore \rangle$.

Sintassi identificatori

$\begin{array}{c} \mathsf{Sintassi} \\ \langle \mathit{identificatore} \rangle ::= & \left[\left\langle \mathit{lettera} \right\rangle \right|_{-} & \left[\left\langle \mathit{lettera} \right\rangle \right| \langle \mathit{cifra} \rangle \right|_{-} & \right]^{*} \end{array}$

Un identificatore deve iniziare con una lettera o un underscore, e continuare con zero o più lettere, cifre o underscore.

Esercizio

Quali delle seguenti stringhe sono identificatori validi?

- a
- _
- 1
- nome1
- nome_1_v
- a1
- a___

Espressioni con variabili

Come al solito, nei programmi le variabili si utilizzano per mezzo di opportune espressioni.

Espressione variabile

Consente di riferirsi al valore di una variabile in un'espressione.

Sintassi

 $\langle espressioneVariabile \rangle ::= \langle identificatore \rangle$

Semantica

Effetto: nessuno

• Valore: il valore dell'area di memoria identificata da *(identificatore)*

Esempio

Nel programma alla slide 3, l'espressione dividendo / 7 contiene l'espressione variabile dividendo.

Se l'area di memoria corrispondente a dividendo contiene il valore 22, allora dividendo \rightarrow 22 e dividendo $/ 7 \rightarrow 3$

Espressione di assegnamento

Serve ad assegnare un valore a una variabile, cioè a scrivere nell'area di memoria corrispondente.

Semantica

- ullet Effetto: il valore di $\langle \textit{espressione} \rangle$ viene scritto nell'area identificata da $\langle \textit{IValue} \rangle$
- Valore: il nuovo valore dell'area identificata da *⟨IValue⟩*

Esercizio

Doppio

Scrivere un programma che

- Definisca una variabile intera di nome v;
- Assegni a v il valore 4;
- Scriva in output il doppio di v (calcolandolo).

L'assegnamento è distruttivo

Che cosa stampa il seguente programma?

```
040_variabili/assegnamento-distruttivo.c

1  #include <stdio.h>
2  
main() {
    int a;
    a = 2;
    printf("%d\n", a);
    a = 3;
    printf("%d\n", a);
}
```

E' possibile assegnare successivamente valori diversi alla stessa variabile. Il nuovo valore assegnato sovrascrive quello precedente, cioè va a occupare l'area di memoria della variabile, cancellando il contenuto precedente.

Variabili non inizializzate

Attenzione

Prima del primo assegnamento, il valore di una variabile è, in generale, imprevedibile.

Che cosa stampa il seguente programma?

040_variabili/non-inizializzata.c

```
#include <stdio.h>

main() {
  int a;
  // manca inizializzazione di a!
  printf("%d\n", a);
}
```

Le variabili non devono essere usate (cioè riferite in espressioni) prima di essere inizializzate.

Catene di assegnamenti

L'operatore di assegnamento è associativo a destra.

Esempio

Supponendo che a, b e c siano variabili intere, l'espressione a = b = c = 1 equivale a a = (b = (c = 1))

Quanto valgono a, b e c dopo la valutazione di questa espressione?

Sommario

1 Variabili e assegnamento

Stato della macchina astratta

Input

4 Aggiornamento e operatori appositi

Stato della macchina astratta

Lo stato della macchina astratta è quell'insieme di informazioni che consente di prevedere l'effetto dell'esecuzione del programma da parte della macchina astratta fino alla fine.

Consiste in

- stato della memoria (valore in tutte le celle di memoria)
- posizione nel programma (prossima istruzione che sarà eseguita)

L'effetto di un'istruzione è una modifica dello stato; saper leggere un'istruzione significa (anche) saper prevedere, dato lo stato attuale, il nuovo stato conseguente all'esecuzione dell'istruzione.

Quoziente e resto con variabile

```
#include <stdio.h>
main() {
  int dividendo;
  dividendo = 20;
  printf("Quoz.: %d\n", dividendo / 7);
  printf("Resto: %d\n", dividendo % 7);
```



```
#include <stdio.h>
main() {
  int dividendo;
 dividendo = 20;
printf("Quoz.: %d\n", dividendo / 7);
 printf("Resto: %d\n", dividendo % 7);
```

Quoziente e resto con variabile

```
dividendo

#include <stdio.h>

main() {
   int dividendo;
   dividendo = 20;
   printf("Quoz.: %d\n", dividendo / 7);
   printf("Resto: %d\n", dividendo % 7);
}
```

Quoziente e resto con variabile

```
dividendo

#include <stdio.h>

main() {
   int dividendo;
   dividendo = 20;
   printf("Quoz.: %d\n", dividendo / 7);
   printf("Resto: %d\n", dividendo % 7);
}
```

Sommario

1 Variabili e assegnamento

Stato della macchina astratta

Input

4 Aggiornamento e operatori appositi

Input

Il programma che calcola quoziente e resto sarebbe più utile se si potesse eseguire con dividendi diversi senza dover modificarlo e ricompilarlo.

Il modo c'è: anziché assegnare alla variabile <u>dividendo</u> un valore costante, chiediamo all'utente il valore del dividendo (operazione di input) e lo scriviamo nella variabile, dopo di che procediamo come prima.

L'operazione di input, come l'operazione di output, richiede un'espressione apposita.

Input


```
Sintassi
(espressione) ::= \ espressioneDiOutput \)
      \langle espressioneIntera\rangle
      ⟨espressioneAssegnamento⟩
     ⟨espressioneVariabile⟩
     ⟨espressioneDiInput⟩
\langle espressioneDiInput
angle ::=
     scanf(" [ \langle specificatoreConversione \rangle ] | " [ , \langle indirizzo \rangle ] | + )
⟨specificatoreConversione⟩ ::= %d
⟨indirizzo⟩ ::= & ⟨identificatore⟩
```

Il numero degli specificatori di conversione e quello degli indirizzi devono coincidere; determinano il numero di valori da leggere da input.

Esempio

040_variabili/quoziente-resto-input.c

```
#include <stdio.h>

main() {
  int dividendo;
  printf("Inserisci un numero intero\n");
  scanf("%d", &dividendo);
  printf("Q: %d\n", dividendo / 7);
  printf("R: %d\n", dividendo % 7);
}
```

L'espressione scanf ("%d", ÷ndo) legge da tastiera un numero intero (come indicato dallo specificatore di conversione %d, lo stesso utilizzato per l'output di interi) e lo scrive all'indirizzo corrispondente alla variabile dividendo (l'effetto è lo stesso dell'assegnamento alla variabile dividendo).

```
#include <stdio.h>

main() {
   int dividendo;
   printf("Inserisci un numero intero\n");
   scanf("%d", &dividendo);
   printf("Q: %d\n", dividendo / 7);
   printf("R: %d\n", dividendo % 7);
}
```

dividendo 4294952524 3 3 5 5

```
1 #include <stdio.h>
2
3 main() {
4    int dividendo;
5    printf("Inserisci un numero intero\n");
6    scanf("%d", &dividendo);
7    printf("Q: %d\n", dividendo / 7);
8    printf("R: %d\n", dividendo % 7);
9 }
```


Esercizio

Doppio con variabile

Scrivere un programma che

- definisca una variabile intera di nome v;
- richieda all'utente un valore per v;
- stampi il doppio di v.

Convincersi della correttezza del programma provandolo con vari valori di input.

Abbreviazioni

Per praticità, il linguaggio C consente, in una sola definizione, di:

 definire più variabili dello stesso tipo, separandone gli identificatori con una virgola (ad esempio

```
int a, b;
definisce le due variabili a e b di tipo int)
```

- inizializzare le variabili con un valore (ad esempio int a = 10; definisce la variabile di tipo int a e assegna ad a il valore 10)
- entrambe le cose (int a = 5, b = 10;)
- definire diverse variabili ed inizializzarne solo alcune (ad esempio int a = 5, b, c = 10; definisce le variabili a, b e c di tipo int e inizializza a a 5 e c a 10, lasciando b non inizializzata.

Due variabili

Abbiamo definito una variabile contenente il dividendo. Ovviamente possiamo usare un'altra variabile per il divisore.

040_variabili/quoziente-resto-due-var.c

```
#include <stdio.h>

main() {
  int dividendo, divisore;
  scanf("%d%d", &dividendo, &divisore);
  printf("Q: %d\n", dividendo / divisore);
  printf("R: %d\n", dividendo % divisore);
}
```

Quoziente e resto, due variabili

```
#include <stdio.h>

main() {
   int dividendo, divisore;
   scanf("%d%d", &dividendo, &divisore);
   printf("Q: %d\n", dividendo / divisore);
   printf("R: %d\n", dividendo % divisore);
```


Quoziente e resto, due variabili

stdin

Quoziente e resto, due variabili

```
dividendo
                                            20
#include <stdio h>
                                           4294952520
                                    divisore
main() {
 int dividendo, divisore;
 scanf("%d%d", &dividendo, &divisore);
 printf("Q: %d\n", dividendo / divisore);
 printf("R: %d\n", dividendo % divisore);
 stdin
```

stdout

4294952524

Quoziente e resto, due variabili

```
4294952524
                                          dividendo
                                                   20
  #include <stdio h>
                                                  4294952520
                                                        8
                                          divisore
 main() {
   int dividendo, divisore;
   scanf("%d%d", &dividendo, &divisore);
   printf("Q: %d\n", dividendo / divisore);
   printf("R: %d\n", dividendo % divisore);
8
   stdin
                ,2, ,\n, ,R,
```

stdout

Somma

Calcolare la somma di tre numeri richiesti all'utente.

Quadrato

Calcolare l'area e il perimetro di un quadrato il cui lato è richiesto all'utente.

Rettangolo

Calcolare l'area e il perimetro di un rettangolo richiedendo all'utente la base e l'altezza

Sommario

1 Variabili e assegnamento

Stato della macchina astratta

Input

4 Aggiornamento e operatori appositi

Aggiornamento di una variabile

L'espressione a = a + 1, letta come equazione, non ha soluzione.

In C invece è un'espressione valida.

Supponendo che a sia una variabile intera di valore 8 prima della valutazione dell'espressione:

- \bigcirc viene valutata l'espressione a destra dell'=: a + 1 \rightarrow 9
- 2 il valore viene scritto nella variabile a

Poiché il lato destro dell'assegnamento viene valutato prima della scrittura in memoria, la a destra dell'= vale il valore di a prima dell'assegnamento.

L'effetto è di incrementare di 1 il valore di a.

Se a è una variabile intera, scrivere espressioni che la aggiornino

- al suo valore incrementato di 2
- al doppio del suo valore
- al quadrato del suo valore

Verificare la correttezza delle espressioni con opportuni programmi che

- Richiedano in input il valore a;
- Aggiornino a come richiesto;
- Stampino in output il nuovo valore di a;

Assegnamento compatto

L'aggiornamento di una variabile (cioè l'assegnamento ad essa di un valore dipendente dal valore attuale) è così frequente che il linguaggio offre versioni abbreviate:

Sintassi

 $\langle assegnamentoCompatto \rangle ::= \langle IValue \rangle \langle op \rangle = \langle espressione \rangle$

Semantica

- Effetto: a $\langle IValue \rangle$ viene assegnato il valore dell'espressione $\langle IValue \rangle \langle op \rangle$ $\langle espressione \rangle$
- Valore: il nuovo valore di (*IValue*)

Esempio

a += 2 equivale ad a = a + 2

Abbreviare le espressioni dell'esercizio alla slide 25.

Operatori di incremento e decremento

Il caso più frequente di aggiornamento è l'incremento o decremento di 1; il C offre operatori appositi, che possono essere prefissi (l'operatore precede l'IValue) o postfissi (l'operatore segue l'IValue).

```
\begin{array}{l} {\sf Sintassi} \\ {\sf (incremento)} ::= \langle {\sf IValue} \rangle + + \mid + + \langle {\sf IValue} \rangle \\ \\ {\sf (decremento)} ::= \langle {\sf IValue} \rangle - - \mid - - \langle {\sf IValue} \rangle \end{array}
```

Semantica

- Effetto: incrementa o decrementa (IValue) di 1
- Valore: il valore di (IValue) prima dell'incremento o decremento per gli operatori postfissi; il valore dopo l'incremento o decremento per gli operatori prefissi

Operatori di incremento e decremento

Esempio

Se a è una variabile intera di valore 8:

Espressione	Effetto: a vale	Valore
a++	9	8
++a	9	9
a	7	8
a	7	7

Aggiornamento tabella priorità e associatività

Famiglia	Operatore	Priorità	Associatività
Incr. e decr. postfissi	++,	1	Sinistra
Unari	+,-	2	Destra
Incr. e decr. prefissi	++,	2	Destra
Binari Moltiplicativi	*,/,%	3	Sinistra
Binari Additivi	+,-	4	Sinistra
Assegnamento	=	14	Destra
Assegnamento compatto	+=,-=,*=,/=,%=	14	Destra

Se a è una variabile intera di valore 5, quali sono valore ed effetto delle seguenti espressioni?

• a += a + 6

 \bullet a += a = 4

• a += a++

• a + a++