Optimization Methods Quiz

Time: 30 minutes

Total	Marks:	20

Saction	Λ.	Newton's	Mothod
Secuon	Α-	MEWITH	MEHICI

- 1. What is the primary advantage of Newton's method over gradient descent?
 - a. Lower computational cost per iteration
 - b. Quadratic convergence rate
 - c. No requirement for second derivatives
 - d. Guaranteed global convergence
- 2. True/False: Newton's method requires the Hessian matrix to be positive definite for minimization problems.
- True False
- 3. Short Answer: Why might Newton's method fail to converge for non-convex functions?

(2 marks)

Section B: Steepest Descent

- 4. The steepest descent direction for minimizing f(x) is:
 - a. $\nabla f(x)$
 - b. $-\nabla f(x)$
 - c. $\nabla^2 f(x)^{-1} \nabla f(x)$
 - d. $\nabla f(x) \times \nabla^2 f(x)$
- 5. True/False: The steepest descent method converges linearly for quadratic functions.
- True False
- 6. Calculate the steepest descent direction for $f(x,y) = x^2 + 3y^2$ at (1, -1).

(2 marks)

Section C: Directional Derivatives

- 7. The directional derivative of f(x,y) = xy at (2,3) in the direction $u = (1/\sqrt{2}, 1/\sqrt{2})$ is:
 - **a.** 5/√2
 - b. 3/√2
 - c. 2.5
 - d. 6
- 8. True/False: The maximum directional derivative of a function equals the magnitude of its gradient.

○ True ○ False

Section D: Quasi-Newton Methods

- 9. BFGS and DFP are examples of:
 - a. Line search methods
 - b. Hessian approximation methods
 - $c. \ Stochastic \ optimization \\$
 - d. Penalty function methods
- 10. Why are quasi-Newton methods preferred over Newton's method for large-scale problems?

(2 marks)

Section E: Application

11. For $f(x) = x^4 - 3x^2 + 2$:

Perform one iteration of Newton's method starting at $x_0 = 1$.

(4 marks)