Zusatztutorium Mathe A WS19/20

Anton Hanke, Maximillian Kohnen, Felix Schnabel
Fragestunde: 27/11/19

Mathematische Logik

Aussagen

Implikationen
Quantoren
Beweise
Mengen und algebraische Struckturen
Mengen sind Zusammenfassungen bestimmter, wohlunterscheidbarer Objekte. Für jedes Objekt ist eine klare zuordnung zur Menge erkentlich
Mengen sind keine Aussagen!!

sonder mengen & Mengen Relationen

- $\emptyset \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$
- $A \subset B$! Aussage!
- $A \cap B$
- $A \cup B$
- $A \setminus B \wedge B \setminus A$
- $A \times B = \{(a, b) : a \in A, b \in B\}$

Abbildungen

$$f: A \to B$$

- A = Definitionsmenge, von hier bilden wir ab.
- \bullet B = Zielmenge, hierdrauf wird abgebildet.
- Bildmenge: $\subset B$ welche sich aus f(A) ergibt.
- 1. Injektive Abbildung: $\forall i \in B | \#(a \in A) \leq 1 : f(a) \rightarrow i$
- 2. Surjektive Abbildung: $\forall i \in B | \#(a \in A) \ge 1 : f(a) \to i$
- 3. Bijektive Abbildung: $\forall i \in B \mid \#(a \in A) = 1 : f(a) \to i$ (1. \land 2.)

Gruppen (G, \oplus)

• Abgeschlossenheit

$$a \in G, b \in G : a \oplus b \in G$$

• Assoziativität

$$(b \oplus a) \oplus c = a \oplus (b \oplus c)$$

• Neutrales Element D_0

$$\exists e \in G, \forall a \in G : a \oplus e = a$$

• Inverses Element

$$\forall a \in G, \exists \bar{a} \in G : a \oplus \bar{a} = e$$

• Kommultativität (abelsche Gruppe):

$$\forall a \in G, \forall b \in G : a \oplus b = b \oplus a$$

Ringe (M, \oplus, \otimes)

1. (M, \oplus) ablesche Gruppe

2. $a \otimes (b \otimes c) = (a \otimes b) \otimes c$ assoziativität gegeben.

3. Distributiv: $\forall a, b, c \in M : a \otimes (b \oplus c) = a \otimes b \oplus a \otimes c$.

• Kommutativ wenn: $a \otimes b = b \otimes a$

• unitär wenn: $\exists 1 \in M : a \otimes 1 = 1 \otimes a = a$.

Körper (K, \oplus, \otimes)

1. (K, \oplus) is abelsche Gruppe mit $D_0 = 0$.

2. $(K \setminus \{0\}, \otimes)$ abelsche Gruppe mit $D_0 = 1$.

3. Distributivgesetz gilt.

• Unterschied zu Ringen: (M, \otimes) keine abelsche Gruppe, kein Inverses!

Vektorrechnung

Vektoren sind tupel mit n elementen $(n = \dim V)$.

Sie erfüllen alle bedingungen eines Körpers und lassen sich nicht mit sich selbst multiplizieren.

• Linearkombination:

$$\vec{z} = \sum_{i=1}^{k} \mu_i \vec{x}_i \in V$$

Hierbei sind μ skalare ($\mu \in \mathbb{R}$)

• Skalarprodukt: "Vektor multiplikation".

$$\mathbb{R}^n\mathbb{R}^n=\mathbb{R}$$

Relevant ist, das beide Vektoren gleiche Dimension haben.

$$\vec{v} \cdot \vec{w} = \sum_{i=1}^{n} v_i w_i \in \mathbb{R}$$

• Vektor betrag:

Basis Winkel Komplexe Zahlen und trignometrische Funktionen Darstellungen Komplexer Zahlen Kartesische Darstellung Polarkoordinaten Darstellung **Euler Darstellung** Rechenoperationen Komplexer Zahlen Trigonometrische Funktione Geometrische Interpretation Eigenschaften und wichtige Gleichungen Wichtige Werte Lineare Gleichungssysteme Matrixrechung Matrix inverse Matrix determinanten Spalten und Nullraum

Eliminationsverfahren

Gauß Verfahren

Matrixform

Lösbarkeit