Un módulo de memoria RAM de 16K x 8 debe ser situado en el mapa de memoria correspondiente a un sistema cuyo bus de direcciones es de 16 líneas y bus de datos de 8 bits.

Las posiciones de memoria situadas entre la 2000_H y la $5FFF_H$ se encuentran ya ocupadas por memoria ROM y también están ocupadas las direcciones de memoria de $A000_H$ a la $FFFF_H$. con memoria EPROM, el resto se encuentra libre.

- a) ¿Qué cantidad de memoria ROM tiene el sistema?
- b) ¿Qué cantidad de memoria EPROM tiene el sistema?
- c) ¿Diga cuál es la ubicación posible para el modulo RAM que deseamos añadir, indique la dirección de inicio y final en hexadecimal?
- d) Si el nuevo módulo está formado por dos chip de (8k x 8) cada uno, obtenga la ecuación de activación de cada una de ellos (CSRAM-1 y CSRAM-2).
- e) Dibuje el circuito de selección de todas las memorias del sistema, utilice un decodificador con las entradas que necesite, salidas activas a nivel alto y el mínimo número de puertas lógicas.

NOTA: Considere que los Chip Select: CSROM, CSRAM-1 y CSRAM-2, son activos a nivel alto.

Sol:

a) ¿Qué cantidad de memoria ROM tiene el sistema?

A15(32K	A14(16K)	A13(8k)	A12(4k)	A11(2k)			 	A0(1)
0	1	0	0	0	0	0		0

b) ¿Qué cantidad de memoria EPROM tiene el sistema?

A15(32K	A14(16K)	A13(8k)	A12(4k)	A11(2k)			 	A0(1)
0	1	1	0	0	0	0		0

c) ¿Diga cuál es la ubicación posible para el módulo RAM que deseamos añadir, indique la dirección de inicio y final en hexadecimal?

Las zonas libres disponibles son:

0000h -1FFFh => (1FFFh+1= 2000h = 8K) => No caben 16K.

6000h- 9FFFh =>(3FFFh +1= 4000 = **16K**) => Si caben 16K.

d) Si el nuevo módulo está formado por dos memorias de (8k x 8) cada una, obtenga la ecuación de activación de cada una de ellas (CSRAM-1 y CSRAM-2).

Memoria RAM-1 desde: 6000h hasta 7FFFh Memoria RAM-2 desde: 8000h hasta 9FFFh

A15 (32K)	A14 (16K)	A13 (8k)	A12 (4k)	A11 (2k)			•••	•••	A0 (1)	CSRAM-1	CSRAM-2
0	1	1	Х	Х	Х	Х			Х	1	0
1	0	0	Х	Х	Х	Х			Х	0	1

CSRAM-1= A15'·A14·A13 CSRAM-2= A15·A14'·A13'

 e) Dibuje el circuito de selección de todas las memorias del sistema, utilice un decodificador con las entradas que necesite, salidas activas a nivel alto y el mínimo número de puertas lógicas.

