FCC RF Test Report

APPLICANT : CT Asia

EQUIPMENT: Mobile Phone

BRAND NAME : BLU
MODEL NAME : Life 8

FCC ID : YHLBLULIFE8

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on May 26, 2014 and testing was completed on Jun. 21, 2014. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8

Page Number : 1 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Testing Laboratory 2353

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAF	RY OF TEST RESULT	4
1	GENI	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification subjective to this standard	6
	1.5	Modification of EUT	6
	1.6	Testing Location	7
	1.7	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	
	2.2	Pre-Scanned RF Power	g
	2.3	Test Mode	10
	2.4	Connection Diagram of Test System	11
	2.5	Support Unit used in test configuration and system	12
	2.6	EUT Operation Test Setup	12
	2.7	Measurement Results Explanation Example	12
3	TEST	RESULT	13
	3.1	6dB Bandwidth Measurement	13
	3.2	Output Power Measurement	15
	3.3	Power Spectral Density Measurement	18
	3.4	Conducted Band Edges and Spurious Emission Measurement	20
	3.5	Radiated Band Edges and Spurious Emission Measurement	33
	3.6	AC Conducted Emission Measurement	55
	3.7	Antenna Requirements	59
4	LIST	OF MEASURING EQUIPMENT	60
5	UNCI	ERTAINTY OF EVALUATION	61
ΑI	PPENI	DIX A. SETUP PHOTOGRAPHS	

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8

Page Number : 2 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR452601B	Rev. 01	Initial issue of report	Jun. 30, 2014
FR452601B	Rev. 02	Update report for revising the Hardware and Software	Jul. 02, 2014

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8

Page Number : 3 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.2	15.247(b)	Power Output Measurement	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	4E 247/d)	Conducted Band Edges	2040-	Pass	-
3.4	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 1.8 dB at 2483.500 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 12.36 dB at 0.520 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8

Page Number : 4 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

1 General Description

1.1 Applicant

CT Asia

Unit 01, 15/F, Seaview Centre, 139-141 Hoi bun road, Kwun Tong, Kowloon, Hongkong

Report No.: FR452601B

1.2 Manufacturer

BEIJING BENYWAVE TECHNOLOGY CO., LTD.

NO.55 Jiachang 2 road, OPTO-Mechatronics Industrial Park, Tongzhou district, Beijing 101111

1.3 Product Feature of Equipment Under Test

Pı	roduct Feature
Equipment	Mobile Phone
Brand Name	BLU
Model Name	Life 8
FCC ID	YHLBLULIFE8
EUT supports Radios application	GSM/GPRS/EGPRS/WCDMA/HSPA/HSPA+(Downlink Only) WLAN 2.4GHz 802.11b/g/n HT20/HT40/ Bluetooth v3.0+ EDR
HW Version	TBW9781_P2_004
SW Version	BLU_L280A_V08_GENERIC
EUT Stage	Pre-Production

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 5 of 61TEL: 86-755- 3320-2398Report Issued Date: Jul. 02, 2014FCC ID: YHLBLULIFE8Report Version: Rev. 02

1.4 Product Specification subjective to this standard

Product Specification subjective to this standard							
Tx/Rx Channel Frequency Range 802.11b/g/n : 2412 MHz ~ 2462 MHz							
	<2412 MHz ~ 2462 MHz>						
Maximum (Dook) Output Dower to	802.11b : 12.21 dBm (0.0166 W)						
Maximum (Peak) Output Power to	802.11g: 15.71 dBm (0.0372 W)						
Antenna	802.11n HT20: 15.67 dBm (0.0369 W)						
	802.11n HT40: 15.58 dBm (0.0361 W)						
Antenna Type	802.11b/g/n: IFA Antenna with gain 1.55 dBi						
Time of Madulation	802.11b : DSSS (DBPSK / DQPSK / CCK)						
Type of Modulation	802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)						

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

SPORTON INTERNATIONAL (SHENZHEN) INC.
TEL: 86-755-3320-2398

FCC ID : YHLBLULIFE8 Report Version

Page Number : 6 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

1.6 Testing Location

Test Site		SPORTON INT	ERNATIONAL (S	HENZHEN) INC.						
Took	Site	No. 3 Building,	No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse,							
Test Location										
Location		TEL: +86-755-	3320-2398							
Test Site N	la.		Sporton Site No	o.	FCC Registration No.					
rest Site N	10.	TH01-SZ	03CH01-SZ	CO01-SZ	831040					

Report No.: FR452601B

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- ANSI C63.4-2003

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

SPORTON INTERNATIONAL (SHENZHEN) INC.

Page Number

: 7 of 61

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
2400 2402 F MI I-	3	2422	9	2452
2400-2483.5 MHz	4	2427	10	2457
	5	2432	11	2462
	6	2437	-	-

TEL: 86-755-3320-2398 FCC ID: YHLBLULIFE8

Page Number : 8 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test shown in the following tables.

	2.4GHz 802.11b RF Output Power (dBm)											
Po	wer vs. Char	nnel		Power	vs. Data Rate							
Channel Frequency Data Rate (MHz) 1Mbps		Data Rate 1Mbps	Channel	2Mbps	5.5Mbps	11Mbps						
CH 01	2412 MHz	11.53										
CH 06	2437 MHz	11.88	CH 11	12.14	12.08	12.04						
CH 11	2462 MHz	<mark>12.21</mark>										

	2.4GHz 802.11g RF Output Power (dBm)												
Po	wer vs. Chan	inel				Power vs.	Data Rate						
Channel	Frequency (MHz)	Data Rate 6Mbps	Channel	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps			
CH 01	2412 MHz	15.04											
CH 06	2437 MHz	<mark>15.71</mark>	CH 06	15.65	15.63	15.62	15.46	15.36	15.64	15.68			
CH 11	2462 MHz	15.68											

			2.4GHz 8	02.11n HT	20 RF Out	put Power	(dBm)			
Po	wer vs. Chan	nel				Power vs. I	MCS Index			
Channel	Frequency (MHz)	MCS Index MCS0	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
CH 01	2412 MHz	14.89								
CH 06	2437 MHz	<mark>15.67</mark>	CH 06	15.45	15.36	15.43	15.47	15.60	15.58	15.61
CH 11	2462 MHz	15.61								

	2.4GHz 802.11n HT40 RF Output Power (dBm)												
Po	wer vs. Chan	nel				Power vs. I	MCS Index						
Channel	Frequency	MCS Index	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7			
	(MHz)	MCS0											
CH 03	2422 MHz	14.55											
CH 06	2437 MHz	<mark>15.58</mark>	CH 06	15.51	15.49	15.42	15.37	15.42	15.43	15.47			
CH 09	2452 MHz	15.03											

TEL: 86-755-3320-2398 FCC ID: YHLBLULIFE8 Page Number : 9 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

2.3 Test Mode

Final results of test modes, data rates and test channels are shown as following table.

<2.4GHz>

		Test Cases		
	Test Items	Mode	Data Rate	Test Channel
		802.11b	1 Mbps	1/6/11
	6dB BW	802.11g	6 Mbps	1/6/11
	Power Spectral	802.11n HT20	MCS0	1/6/11
	Density –	802.11n HT40	MCS0	3/6/9
		802.11b	1 Mbps	1/6/11
		802.11g	6 Mbps	1/6/11
	Output Power	802.11n HT20	MCS0	1/6/11
Conducted		802.11n HT40	MCS0	3/6/9
TCs		802.11b	1 Mbps	1/11
	Conducted Band	802.11g	6 Mbps	1/11
	Edge	802.11n HT20	MCS0	1/11
		802.11n HT40	MCS0	3/9
		802.11b	1 Mbps	1/6/11
	Conducted Spurious	802.11g	6 Mbps	1/6/11
	Emission	802.11n HT20	MCS0	1/6/11
		802.11n HT40	MCS0	3/6/9
		802.11b	1 Mbps	1/11
		802.11g	6 Mbps	1/11
	Radiated Band Edge	802.11n HT20	MCS0	1/11
Radiated		802.11n HT40	MCS0	3/9
TCs		802.11b	1 Mbps	1/6/11
	Radiated Spurious	802.11g	6 Mbps	1/6/11
	Emission	802.11n HT20	MCS0	1/6/11
	[802.11n HT40	MCS0	3/6/9
AC				
Conducted	Mode 1 : GSM850 Idle -	+ Bluetooth Link + WLAN Link	+ USB Cable (Charging from	m Adapter) + Earphone
Emission				

Remark: For radiated TCs, the tests were performed with earphone, adapter and USB cable.

 ${\it SPORTON\ INTERNATIONAL\ (SHENZHEN)\ INC.}$

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8

Page Number : 10 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

2.4 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8

Page Number : 11 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

2.5 Support Unit used in test configuration and system

1.	System Simulator	R&S	CMW 500	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	D-Link	DIR-815	KA2IR815A1	N/A	Unshielded, 1.8 m
						AC I/P:
3.		k Lenovo	G480	FCC DoC	N/A	Unshielded, 1.2 m
٥.	Notebook					DC O/P:
						Shielded, 1.8 m
4.	Bluetooth Earphone	Nokia	BH-108	PYAHS-107W	N/A	N/A

2.6 EUT Operation Test Setup

For WLAN function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 7.5 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).
=
$$7.5 + 10 = 17.5$$
 (dB)

Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r02. 1.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Report No.: FR452601B

- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

: 13 of 61 Page Number TEL: 86-755-3320-2398 Report Issued Date: Jul. 02, 2014 FCC ID: YHLBLULIFE8 Report Version : Rev. 02

3.1.5 Test Result of 6dB and 99% Occupied Bandwidth

Test Band :	2.4GHz	Temperature :	24~26℃
Test Engineer :	Tiny You	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
11b	1Mbps	1	1	2412	9.52	0.5	Pass
11b	1Mbps	1	6	2437	10.02	0.5	Pass
11b	1Mbps	1	11	2462	9.52	0.5	Pass
11g	6Mbps	1	1	2412	15.32	0.5	Pass
11g	6Mbps	1	6	2437	15.12	0.5	Pass
11g	6Mbps	1	11	2462	15.48	0.5	Pass
HT20	MCS0	1	1	2412	15.12	0.5	Pass
HT20	MCS0	1	6	2437	15.10	0.5	Pass
HT20	MCS0	1	11	2462	15.32	0.5	Pass
HT40	MCS0	1	3	2422	35.12	0.5	Pass
HT40	MCS0	1	6	2437	35.20	0.5	Pass
HT40	MCS0	1	9	2452	35.16	0.5	Pass

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8

Page Number : 14 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting Antenna of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the Antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the Antenna exceeds 6dBi.

Report No.: FR452601B

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

 TEL: 86-755- 3320-2398
 Report Issued Date : Jul. 02, 2014

 FCC ID: YHLBLULIFE8
 Report Version : Rev. 02

Page Number

: 15 of 61

3.2.5 Test Result of Peak Output Power

Test Mode :	2.4GHz	Temperature :	24~26 ℃
Test Engineer :	Tiny You	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	RF Output Power (dBm)	Power Limit (dBm)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	11.53	30	1.55	Pass
11b	1Mbps	1	6	2437	11.88	30	1.55	Pass
11b	1Mbps	1	11	2462	12.21	30	1.55	Pass
11g	6Mbps	1	1	2412	15.04	30	1.55	Pass
11g	6Mbps	1	6	2437	15.71	30	1.55	Pass
11g	6Mbps	1	11	2462	15.68	30	1.55	Pass
HT20	MCS0	1	1	2412	14.89	30	1.55	Pass
HT20	MCS0	1	6	2437	15.67	30	1.55	Pass
HT20	MCS0	1	11	2462	15.61	30	1.55	Pass
HT40	MCS0	1	3	2422	14.55	30	1.55	Pass
HT40	MCS0	1	6	2437	15.58	30	1.55	Pass
HT40	MCS0	1	9	2452	15.03	30	1.55	Pass

Note: Measured power (dBm) has offset with cable loss.

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8

Page Number : 16 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

3.2.6 Test Result of Average output Power (Reporting Only)

Test Mode :	2.4GHz	Temperature :	24~26 ℃
Test Engineer :	Tiny You	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	Duty Factor (dB)	Average Output Power (dBm)	Power Limit (dBm)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	0.10	8.67	30	1.55	Pass
11b	1Mbps	1	6	2437	0.10	9.01	30	1.55	Pass
11b	1Mbps	1	11	2462	0.10	9.27	30	1.55	Pass
11g	6Mbps	1	1	2412	0.52	7.78	30	1.55	Pass
11g	6Mbps	1	6	2437	0.52	9.08	30	1.55	Pass
11g	6Mbps	1	11	2462	0.52	8.11	30	1.55	Pass
HT20	MCS0	1	1	2412	0.51	7.56	30	1.55	Pass
HT20	MCS0	1	6	2437	0.51	8.63	30	1.55	Pass
HT20	MCS0	1	11	2462	0.51	8.10	30	1.55	Pass
HT40	MCS0	1	3	2422	1.00	5.87	30	1.55	Pass
HT40	MCS0	1	6	2437	1.00	8.05	30	1.55	Pass
HT40	MCS0	1	9	2452	1.00	6.08	30	1.55	Pass

Note: Measured power (dBm) has offset with cable loss and duty factor.

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8

Page Number : 17 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

FCC ID: YHLBLULIFE8

SPORTON INTERNATIONAL (SHENZHEN) INC.
TEL: 86-755-3320-2398

Page Number : 18 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

3.3.5 Test Result of Power Spectral Density

Test Mode :	2.4GHz	Temperature :	24~26 ℃
Test Engineer :	Tiny You	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	Peak Power Density (dBm/3kHz)	Max. Limits (dBm/3kHz)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	-13.47	8	1.55	Pass
11b	1Mbps	1	6	2437	-14.25	8	1.55	Pass
11b	1Mbps	1	11	2462	-14.53	8	1.55	Pass
11g	6Mbps	1	1	2412	-17.24	8	1.55	Pass
11g	6Mbps	1	6	2437	-15.95	8	1.55	Pass
11g	6Mbps	1	11	2462	-16.95	8	1.55	Pass
HT20	MCS0	1	1	2412	-17.71	8	1.55	Pass
HT20	MCS0	1	6	2437	-16.66	8	1.55	Pass
HT20	MCS0	1	11	2462	-16.64	8	1.55	Pass
HT40	MCS0	1	3	2422	-22.84	8	1.55	Pass
HT40	MCS0	1	6	2437	-20.23	8	1.55	Pass
HT40	MCS0	1	9	2452	-22.24	8	1.55	Pass

Note: Measured power density (dBm) has offset with cable loss.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8

Page Number : 19 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

3.4 Conducted Band Edges and Spurious Emission Measurement

Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

3.4.2 **Measuring Instruments**

The measuring equipment is listed in the section 4 of this test report.

3.4.3 **Test Procedures**

- The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC. Page Number : 20 of 61 TEL: 86-755-3320-2398 FCC ID: YHLBLULIFE8 Report Version

Report Issued Date: Jul. 02, 2014 : Rev. 02

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Tiny You

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8 Page Number : 21 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	802.11b	Temperature :	24~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Tiny You

Page Number : 22 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	802.11b	Temperature :	24~26℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	11	Test Engineer :	Tiny You

Page Number : 23 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	802.11g	Temperature :	24~26 ℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Tiny You

Page Number : 24 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	802.11g	Temperature :	24~26 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Tiny You

Page Number : 25 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	802.11g	Temperature :	24~26 ℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	11	Test Engineer :	Tiny You

Page Number : 26 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	802.11n HT20	Temperature :	24~26 ℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Tiny You

Page Number : 27 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	802.11n HT20	Temperature :	24~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Tiny You

Page Number : 28 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

 Test Mode :
 802.11n HT20
 Temperature :
 24~26°C

 Test Band :
 2.4GHz High
 Relative Humidity :
 50~53%

 Test Channel :
 11
 Test Engineer :
 Tiny You

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8 Page Number : 29 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	802.11n HT40	Temperature :	24~26℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	03	Test Engineer :	Tiny You

Page Number : 30 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	802.11n HT40	Temperature :	24~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Tiny You

Page Number : 31 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	802.11n HT40	Temperature :	24~26℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	09	Test Engineer :	Tiny You

Page Number : 32 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-3320-2398 FCC ID: YHLBLULIFE8

Page Number : 33 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

Report No.: FR452601B

- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
802.11b	97.67	8.40	0.12	300Hz
802.11g	88.68	1.39	0.72	1kHz
2.4GHz 802.11n HT20	88.92	1.30	0.77	1kHz
2.4GHz 802.11n HT40	79.42	0.66	1.52	3kHz

 SPORTON INTERNATIONAL (SHENZHEN) INC.
 Page Number
 : 34 of 61

 TEL: 86-755- 3320-2398
 Report Issued Date
 : Jul. 02, 2014

 FCC ID: YHLBLULIFE8
 Report Version
 : Rev. 02

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8

Page Number : 35 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8

Page Number : 36 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

3.5.6 Test Result of Radiated Spurious at Band Edges

Test Mode :	802.11b	Temperature :	23~25°C
Test Band :	Low	Relative Humidity :	48~52%
Test Channel :	01	Test Engineer :	Gavin Zhang

Report No.: FR452601B

	ANTENNA POLARITY : HORIZONTAL											
Frequency	equency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2388.93	54.3	-19.7	74	44.47	31.98	5.59	27.74	103	84	Peak		
2387.85	43.12	-10.88	54	33.29	31.98	5.59	27.74	103	84	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency	equency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2352.66	50.4	-23.6	74	40.79	31.81	5.56	27.76	100	299	Peak		
2387.76	39.86	-14.14	54	30.03	31.98	5.59	27.74	100	299	Average		

Test Mode :	802.11b	Temperature :	23~25°C
Test Band :	High	Relative Humidity :	48~52%
Test Channel :	11	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL											
Frequency	equency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2493.13	55.09	-18.91	74	44.5	32.5	5.74	27.65	127	91	Peak		
2484.7	43.64	-10.36	54	33.19	32.41	5.71	27.67	127	91	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency	equency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2497.09	51.53	-22.47	74	40.94	32.5	5.74	27.65	155	121	Peak		
2492.08	39.19	-14.81	54	28.6	32.5	5.74	27.65	155	121	Average		

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 37 of 61TEL: 86-755- 3320-2398Report Issued Date: Jul. 02, 2014FCC ID: YHLBLULIFE8Report Version: Rev. 02

Test Mode :	802.11g	Temperature :	23~25°C
Test Band :	Low	Relative Humidity :	48~52%
Test Channel :	01	Test Engineer :	Gavin Zhang

Report No. : FR452601B

: 38 of 61

	ANTENNA POLARITY : HORIZONTAL											
Frequency	y Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.92	62.22	-11.78	74	52.34	31.98	5.62	27.72	100	289	Peak		
2389.92	47.51	-6.49	54	37.63	31.98	5.62	27.72	100	289	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency	equency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.65	58.97	-15.03	74	49.14	31.98	5.59	27.74	194	115	Peak		
2389.92	45.82	-8.18	54	35.94	31.98	5.62	27.72	194	115	Average		

Test Mode :	802.11g	Temperature :	23~25°C
Test Band :	High	Relative Humidity :	48~52%
Test Channel :	11	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY: HORIZONTAL											
Frequency	requency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2484.13	65.54	-8.46	74	55.09	32.41	5.71	27.67	100	293	Peak		
2483.5	49.57	-4.43	54	39.12	32.41	5.71	27.67	100	293	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency	Frequency Level Over Limit Read Antenna Cable Preamp Ant Table Rema											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.77	59.89	-14.11	74	49.44	32.41	5.71	27.67	154	109	Peak		
2483.5	44.03	-9.97	54	33.58	32.41	5.71	27.67	154	109	Average		

Test Mode :	802.11n HT20	Temperature :	23~25°C
Test Band :	Low	Relative Humidity :	48~52%
Test Channel :	01	Test Engineer :	Gavin Zhang

Report No. : FR452601B

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level Over Limit Read Antenna Cable Preamp Ant Table Remar											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.74	66.82	-7.18	74	56.99	31.98	5.59	27.74	102	94	Peak		
2389.83	51.21	-2.79	54	41.33	31.98	5.62	27.72	102	94	Average		

	ANTENNA POLARITY : VERTICAL											
Frequency	quency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.2	60.3	-13.7	74	50.47	31.98	5.59	27.74	100	281	Peak		
2389.83	44.75	-9.25	54	34.87	31.98	5.62	27.72	100	281	Average		

Test Mode :	802.11n HT20	Temperature :	23~25°C
Test Band :	High	Relative Humidity :	48~52%
Test Channel :	11	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL											
Frequency	requency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.92	69.79	-4.21	74	59.34	32.41	5.71	27.67	100	341	Peak		
2483.5	52.2	-1.8	54	41.75	32.41	5.71	27.67	100	341	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.92	63.73	-10.27	74	53.28	32.41	5.71	27.67	100	111	Peak		
2483.68	46.86	-7.14	54	36.41	32.41	5.71	27.67	100	111	Average		

SPORTON INTERNATIONAL (SHENZHEN) INC. Page Number : 39 of 61 TEL: 86-755-3320-2398 Report Issued Date : Jul. 02, 2014

FCC ID: YHLBLULIFE8 Report Version : Rev. 02

Test Mode :	802.11n HT40	Temperature :	23~25°C
Test Band :	Low	Relative Humidity :	48~52%
Test Channel :	03	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL												
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark			
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos				
(MHz)	(dBµV/m)	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)				
2388.12	69.64	-4.36	74	59.81	31.98	5.59	27.74	129	87	Peak			
2388.66	50.01	-3.99	54	40.18	31.98	5.59	27.74	129	87	Average			
2485.69	53.09	-20.91	74	42.64	32.41	5.71	27.67	129	87	Peak			
2488.69	43.15	-10.85	54	32.61	32.5	5.71	27.67	129	87	Average			

	ANTENNA POLARITY : VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)			
2389.65	65.46	-8.54	74	55.63	31.98	5.59	27.74	101	299	Peak		
2388.75	46.38	-7.62	54	36.55	31.98	5.59	27.74	101	299	Average		
2496.4	51.43	-22.57	74	40.84	32.5	5.74	27.65	101	299	Peak		
2488.36	40.34	-13.66	54	29.8	32.5	5.71	27.67	101	299	Average		

Page Number : 40 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	802.11n HT40	Temperature :	23~25°C
Test Band :	High	Relative Humidity :	48~52%
Test Channel :	09	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2387.85	51.01	-22.99	74	41.18	31.98	5.59	27.74	100	345	Peak		
2388.39	40.48	-13.52	54	30.65	31.98	5.59	27.74	100	345	Average		
2484.61	71.4	-2.6	74	60.95	32.41	5.71	27.67	100	345	Peak		
2484.04	51.53	-2.47	54	41.08	32.41	5.71	27.67	100	345	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2387.76	49.77	-24.23	74	39.94	31.98	5.59	27.74	126	103	Peak		
2387.49	39.15	-14.85	54	29.32	31.98	5.59	27.74	126	103	Average		
2484.76	67.13	-6.87	74	56.68	32.41	5.71	27.67	126	103	Peak		
2483.62	47.4	-6.6	54	36.95	32.41	5.71	27.67	126	103	Average		

SPORTON INTERNATIONAL (SHENZHEN) INC.
TEL: 86-755- 3320-2398

FCC ID: YHLBLULIFE8

Page Number : 41 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

3.5.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Note: Pre-scanned all test modes and only choose the worst case mode recorded in the test report for radiated spurious emission below 1GHz.

Test Mode :	802.11b	Temperature :	23~25°C				
Test Channel :	01	Relative Humidity :	48~52%				
Test Engineer :	Gavin Zhang	Polarization :	Horizontal				
	1. 2412 MHz is fundamer	ntal signal which can b	e ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	108.94	-	-	98.97	32.07	5.62	27.72	103	84	Peak
2412	106.8	-	-	96.83	32.07	5.62	27.72	103	84	Average
4824	34.36	-39.64	74	49.7	33.82	8.36	57.52	105	198	Peak

Test Mode :	802.11b	Temperature :	23~25°C					
Test Channel :	01	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	2412 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	103.65	-	-	93.68	32.07	5.62	27.72	100	299	Peak
2412	100.88	-	-	90.91	32.07	5.62	27.72	100	299	Average
4824	31.77	-42.23	74	47.11	33.82	8.36	57.52	105	198	Peak

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8

Page Number : 42 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	802.11b	Temperature :	23~25°C				
Test Channel :	06	Relative Humidity :	48~52%				
Test Engineer :	Gavin Zhang	Polarization :	Horizontal				
	1. 2437MHz is fundamenta	al signal which can be i	gnored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	108.65	-	-	98.47	32.24	5.65	27.71	120	100	Peak
2437	106.51	-	-	96.33	32.24	5.65	27.71	120	100	Average
4924	32.43	-41.57	74	47.25	34.05	8.46	57.33	146	347	Peak
7386	34.3	-39.7	74	47.43	33.94	10.02	57.09	145	274	Peak

Test Mode :	802.11b	Temperature :	23~25°C					
Test Channel :	06	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	1. 2437 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	1	Remark
(MHz)	(dBuV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos	Pos	
(WITZ)	(ασμν/ιιι)	(ub)	(ubµv/iii)	(ubµv)	(ub)	(ub)	(ub)	(cm)	(deg)	
2437	102.32	-	-	92.14	32.24	5.65	27.71	140	136	Peak
2437	100.29	-	-	90.11	32.24	5.65	27.71	140	136	Average
4924	32.54	-41.46	74	47.36	34.05	8.46	57.33	146	347	Peak
7386	34.28	-39.72	74	47.41	33.94	10.02	57.09	145	274	Peak

Page Number : 43 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	802.11b	Temperature :	23~25°C					
Test Channel :	11	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Horizontal					
	1. 2462 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	109.41	-	-	99.09	32.33	5.68	27.69	127	91	Peak
2462	107.35	-	-	97.03	32.33	5.68	27.69	127	91	Average
4924	37.91	-36.09	74	52.73	34.05	8.46	57.33	146	347	Peak
7386	35.24	-38.76	74	48.37	33.94	10.02	57.09	145	274	Peak

Test Mode :	802.11b	Temperature :	23~25°C					
Test Channel :	11	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	1. 2462 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant		Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	102.91	-	-	92.59	32.33	5.68	27.69	155	121	Peak
2462	100.37	-	-	90.05	32.33	5.68	27.69	155	121	Average
4924	37.72	-36.28	74	52.54	34.05	8.46	57.33	146	347	Peak
7386	35.42	-38.58	74	48.55	33.94	10.02	57.09	145	274	Peak

Page Number : 44 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	802.11g	Temperature :	23~25°C					
Test Channel :	01	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Horizontal					
	2412 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency (MHz)	Level	Over Limit (dB)	Limit Line (dBµV/m)	Read Level (dBµV)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos	Table Pos	Remark
2412	106.62	(UB)	(ubµv/III) -	96.65	32.07	5.62	27.72	100	(deg) 289	Peak
2412	98.21	-	-	88.24	32.07	5.62	27.72	100	289	Average
4824	32.84	-41.16	74	48.18	33.82	8.36	57.52	105	198	Peak

Test Mode :	802.11g	Temperature :	23~25°C					
Test Channel :	01	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	2412 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	($dB\mu V/m$)	(dB)	($dB\mu V/m$)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	105.23	-	-	95.26	32.07	5.62	27.72	194	115	Peak
2412	96.36	-	-	86.39	32.07	5.62	27.72	194	115	Average
4824	32.02	-41.98	74	47.36	33.82	8.36	57.52	105	198	Peak

Page Number : 45 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	802.11g	Temperature :	23~25°C					
Test Channel :	06	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Horizontal					
	1. 2437 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	108.13	-	-	97.95	32.24	5.65	27.71	127	293	Peak
2437	99.79	-	-	89.61	32.24	5.65	27.71	127	293	Average
4874	34.13	-39.87	74	49.21	33.93	8.41	57.42	145	265	Peak
7311	35.28	-38.72	74	48.57	33.89	9.99	57.17	174	321	Peak

Test Mode :	802.11g	Temperature :	23~25°C					
Test Channel :	06	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	1. 2437 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBuV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
2437	105.29	-	-	95.11	32.24	5.65	27.71	191	113	Peak
2437	97.08	-	-	86.9	32.24	5.65	27.71	191	113	Average
4874	34.43	-39.57	74	49.51	33.93	8.41	57.42	145	265	Peak
7311	34.36	-39.64	74	47.65	33.89	9.99	57.17	174	321	Peak

Page Number : 46 of 61 Report Issued Date : Jul. 02, 2014 Report Version : Rev. 02

Test Mode :	802.11g	Temperature :	23~25°C				
Test Channel :	11	Relative Humidity :	48~52%				
Test Engineer :	Gavin Zhang	Polarization :	Horizontal				
	1. 2462 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	107.04	-	-	96.72	32.33	5.68	27.69	100	293	Peak
2462	99.41	-	-	89.09	32.33	5.68	27.69	100	293	Average
4924	33.47	-40.53	74	48.29	34.05	8.46	57.33	146	347	Peak
7386	34.69	-39.31	74	47.82	33.94	10.02	57.09	145	274	Peak

Test Mode :	802.11g	Temperature :	23~25°C					
Test Channel :	11	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	2462 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	103.16	-	-	92.84	32.33	5.68	27.69	154	109	Peak
2462	94.8	-	-	84.48	32.33	5.68	27.69	154	109	Average
4924	33.36	-40.64	74	48.18	34.05	8.46	57.33	146	347	Peak
7386	34.84	-39.16	74	47.97	33.94	10.02	57.09	145	274	Peak

Page Number : 47 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C					
Test Channel :	01	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Horizontal					
	1. 2412 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	107.18	-	-	97.21	32.07	5.62	27.72	102	94	Peak
2412	99.06	-	-	89.09	32.07	5.62	27.72	102	94	Average
4824	33.15	-40.85	74	48.49	33.82	8.36	57.52	105	198	Peak

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C						
Test Channel :	01	Relative Humidity :	48~52%						
Test Engineer :	Gavin Zhang	Polarization :	Vertical						
	1. 2412 MHz is fundamental signal which can be ignored.								
Remark :	2. Average measurement was not performed if peak level went lower than the								
	average limit.								

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	102.76	-	-	92.79	32.07	5.62	27.72	100	281	Peak
2412	94.66	-	-	84.69	32.07	5.62	27.72	100	281	Average
4824	31.83	-42.17	74	47.17	33.82	8.36	57.52	105	198	Peak

Page Number : 48 of 61 Report Issued Date : Jul. 02, 2014 Report Version : Rev. 02

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C					
Test Channel :	06	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Horizontal					
	1. 2437 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
İ	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
	2437	109.92	-	-	99.74	32.24	5.65	27.71	101	90	Peak
	2437	101.04	-	-	90.86	32.24	5.65	27.71	101	90	Average
	4874	34.62	-39.38	74	49.7	33.93	8.41	57.42	145	265	Peak
	7311	34.54	-39.46	74	47.83	33.89	9.99	57.17	174	321	Peak

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C					
Test Channel :	06	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	1. 2437 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	105.04	-	-	94.86	32.24	5.65	27.71	158	117	Peak
2437	96.77	-	-	86.59	32.24	5.65	27.71	158	117	Average
4874	33.53	-40.47	74	48.61	33.93	8.41	57.42	145	265	Peak
7311	34.79	-39.21	74	48.08	33.89	9.99	57.17	174	321	Peak

Page Number : 49 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C					
Test Channel :	11	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Horizontal					
	2462 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB)	Loss (dB)	(dB)	(cm)	(deg)	
31.94	22.39	-17.61	40	33.64	17.9	0.78	29.93	-	-	Peak
207.51	22.56	-20.94	43.5	41.46	9.32	1.71	29.93	-	-	Peak
291.9	29.28	-16.72	46	44.84	12.38	1.99	29.93	100	210	Peak
362.71	27.06	-18.94	46	39.85	14.96	2.18	29.93	-	-	Peak
747.8	25.45	-20.55	46	31.78	20.54	3.06	29.93	-	-	Peak
957.32	24.68	-21.32	46	29.92	21.27	3.43	29.94	-	-	Peak
2462	106.59	-	-	96.27	32.33	5.68	27.69	100	341	Peak
2462	98.86	-	-	88.54	32.33	5.68	27.69	100	341	Average
4924	33.28	-40.72	74	48.1	34.05	8.46	57.33	146	347	Peak
7386	33.99	-40.01	74	47.12	33.94	10.02	57.09	145	274	Peak

Page Number : 50 of 61 Report Issued Date : Jul. 02, 2014 Report Version : Rev. 02

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C					
Test Channel :	11	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	1. 2462 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement v	vas not performed if p	beak level went lower than the					
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
31.94	32.33	-7.67	40	43.58	17.9	0.78	29.93	100	300	Peak
104.69	27.01	-16.49	43.5	44.06	11.6	1.29	29.94	-	-	Peak
262.8	27.66	-18.34	46	43.24	12.45	1.9	29.93	-	-	Peak
601.33	23.36	-22.64	46	31.92	18.6	2.76	29.92	-	-	Peak
743.92	25.35	-20.65	46	31.81	20.42	3.05	29.93	-	-	Peak
949.56	25.2	-20.8	46	30.52	21.2	3.42	29.94	-	-	Peak
2462	101.7	-	-	91.38	32.33	5.68	27.69	100	111	Peak
2462	93.74	-	-	83.42	32.33	5.68	27.69	100	111	Average
4924	33.14	-40.86	74	47.96	34.05	8.46	57.33	146	347	Peak
7386	34.84	-39.16	74	47.97	33.94	10.02	57.09	145	274	Peak

Page Number : 51 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C					
Test Channel :	03	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Horizontal					
	1. 2422 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2422	103.17	-	-	93.07	32.16	5.65	27.71	129	87	Peak
2422	94.95	-	-	84.85	32.16	5.65	27.71	129	87	Average
4844	34.53	-39.47	74	49.78	33.86	8.38	57.49	126	248	Peak
7266	34.17	-39.83	74	47.53	33.87	9.98	57.21	185	252	Peak

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C					
Test Channel :	03	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	1. 2422 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement v	ment was not performed if peak level went lower than the						
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB)	(dB)	(dB)	(cm)	(deg)	
2422	99.32	-	-	89.22	32.16	5.65	27.71	101	299	Peak
2422	90.94	-	-	80.84	32.16	5.65	27.71	101	299	Average
4844	33.53	-40.47	74	48.78	33.86	8.38	57.49	126	248	Peak
7266	35.49	-38.51	74	48.85	33.87	9.98	57.21	185	252	Peak

Page Number : 52 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C						
Test Channel :	06	Relative Humidity :	48~52%						
Test Engineer :	Gavin Zhang	Polarization :	Horizontal						
	1. 2437 MHz is fundamental signal which can be ignored.								
Remark :	2. Average measurement was not performed if peak level went lower than the								
	average limit.								

Frequen	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz) (dBμV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	105.18	-	-	95	32.24	5.65	27.71	100	87	Peak
2437	96.9	-	-	86.72	32.24	5.65	27.71	100	87	Average
4874	35.66	-38.34	74	50.74	33.93	8.41	57.42	132	224	Peak
7311	36.24	-37.76	74	49.53	33.89	9.99	57.17	119	347	Peak

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C					
Test Channel :	06	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	1. 2437 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	98.19	-	-	88.01	32.24	5.65	27.71	100	301	Peak
2437	91.18	-	-	81	32.24	5.65	27.71	100	301	Average
4874	34.03	-39.97	74	49.11	33.93	8.41	57.42	132	224	Peak
7311	34.89	-39.11	74	48.18	33.89	9.99	57.17	119	347	Peak

Page Number : 53 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C					
Test Channel :	09	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Horizontal					
	1. 2452 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2452	102.62	-	-	92.39	32.24	5.68	27.69	100	345	Peak
2452	95.22	-	-	84.99	32.24	5.68	27.69	100	345	Average
4904	34.39	-39.61	74	49.3	34.01	8.44	57.36	125	214	Peak
7356	35.51	-38.49	74	48.7	33.92	10.01	57.12	127	315	Peak

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C					
Test Channel :	09	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	1. 2452 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2452	98.91	-	-	88.68	32.24	5.68	27.69	126	103	Peak
2452	90.29	-	-	80.06	32.24	5.68	27.69	126	103	Average
4904	33.7	-40.3	74	48.61	34.01	8.44	57.36	125	214	Peak
7356	35.81	-38.19	74	49	33.92	10.01	57.12	127	315	Peak

Page Number : 54 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR452601B

Frequency of Emission	Conducted Limit (dBμV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

Page Number

: 55 of 61

3.6.4 Test Setup

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8

Page Number : 56 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

3.6.5 Test Result of AC Conducted Emission

Toot Mode :	Made 1	Tomporoturo	21~22 ℃				
Test Mode :	Mode 1	Temperature :	21~22 (
Test Engineer :	Jack Tian	Relative Humidity :	41~42%				
Test Voltage :	120Vac / 60Hz	Phase :	Line				
Function Type :	GSM850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from Adapte						
Function Type :	+ Earphone						

Site : CO01-SZ

Condition: FCC 15C_QP LISN_L_20140304 LINE

Mode : Mode 1

				Over	Limit	Read	LISN	Cable	
		Freq	Level	Limit	Line	Level	Factor	Loss	Remark
		MHz	dBu∀	dB	dBu₹	dBu∇	dB	dB	
1		0.45	33.25	-13.55	46.80	22.80	0.29	10.16	Average
2		0.45	39.65	-17.15	56.80	29.20	0.29	10.16	QP
3	*	0.52	33.64	-12.36	46.00	23.19	0.29	10.16	Average
4		0.52	40.14	-15.86	56.00	29.69	0.29	10.16	QP
5		0.58	30.40	-15.60	46.00	20.00	0.25	10.15	Average
6		0.58	37.80	-18.20	56.00	27.40	0.25	10.15	QP
7		1.67	28.51	-17.49	46.00	18.10	0.23	10.18	Average
8		1.67	36.11	-19.89	56.00	25.70	0.23	10.18	QP
9		5.19	26.46	-23.54	50.00	15.80	0.42	10.24	Average
10		5.19	37.76	-22.24	60.00	27.10	0.42	10.24	QP
11		6.35	26.36	-23.64	50.00	15.70	0.39	10.27	Average
12		6.35	37.36	-22.64	60.00	26.70	0.39	10.27	QP

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8

Page Number : 57 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Test Mode :	Mode 1			Ten	Temperature :			22 ℃	
Test Engineer :	Jack Tian			Rela	Relative Humidity :		41~4	41~42%	
Test Voltage :	120Vac / 60Hz				Phase :			ral	
Function Type :	GSM850	ldle + I	Bluetootl	n Link +	WLAN	Link + US	B Cab	le (Chargir	ng from Adapter)
runction type.	+ Earpho	one							
Data: 1									
100 L	evel (dBuV)					Dat	e: 2014-0	6-03 Time: 13:	:59:57
90									
80									
70-									
60								FCC 15C	:_QP
	White Property of the Property							FCC 15C_	AVG
502	68 - MAN	1 July 2 m	<u> </u>	Now The Later of the State of t	mente man	HAL MED THE	Minter Manager	dilla 1900	. 🔨
40	57	11 .	13	rigida) e par-	M.I	1119		Michigan	4 Pr ×
30					15				
20									
10									
0	15 .2	.5	1		2	5	10	20	30
	13 .2	.5			ency (MHz	-	10	20	30
Site	: CO01-S								
Conditio	on: FCC 15	C_QP LI:	SN_N_201	10304 NE	UTRAL				
Mode	: Mode 1								
			Over	Limit	Read	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark	
_	MHz	dBu∀	dB	dBu∇	dBuV	dB	dB		
1	0.15	37.29	-18.67	55.96	26.60	0.33	10.36	Average	
2			-17.67		37.60		10.36	_	
3	0.16		-25.42	55.60	19.50			Average	
4 5	0.16 0.19		-22.22 -22.25	65.60 53.98	32.70 21.11	0.33 0.32	10.35	QP Average	
6	0.19		-19.45	63.98	33.91	0.32	10.30		
7			-22.37					Average	
8			-20.07				10.29		
9	0.22	37.70	-15.31	53.01	27.09	0.33	10.28	Average	
10	0.22	48.80	-14.21	63.01	38.19	0.33	10.28	QP	
11			-13.67					Average	
12			-14.97				10.16		
13			-15.31					Average	
14 *			-13.51				10.15		
15			-18.27					Average	
16 17			-17.67 -15.18				10.21	QP Average	
18			-16.18				10.24	_	
19			-14.37					Average	
20			-15.47				10.24		

Page Number : 58 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

3.7 Antenna Requirements

3.7.1 **Standard Applicable**

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 86-755-3320-2398 FCC ID: YHLBLULIFE8

: 59 of 61 Page Number Report Issued Date: Jul. 02, 2014

Report No.: FR452601B

Report Version : Rev. 02

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum	D.C.	F6)/40	101070	1011- 10011-	May 09, 2014	Jun. 20, 2014~	May 07, 2015	Conducted
Analyzer	R&S	FSV40	101078	10Hz~40GHz	May 08, 2014	Jun. 21, 2014	May 07, 2015	(TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	13dBm~-20dBm	Mar. 03, 2014	Jun. 20, 2014~ Jun. 21, 2014	Mar. 02, 2015	Conducted (TH01-SZ)
Power Sensor	Anritsu	MA2411B	1207253	0.3GHz~40GHz	Mar. 03, 2014	Jun. 20, 2014~ Jun. 21, 2014	Mar. 02, 2015	Conducted (TH01-SZ)
ESCIO TEST Receiver	R&S	ESCI	100724	9kHz~3GHz	Feb. 21, 2014	Jun. 15, 2014	Feb. 20, 2015	Radiation (03CH01-SZ)
Spectrum Analyzer	Agilent Technologies	N9038A	MY522601 85	20Hz~26.5GHz	May 26, 2014	Jun. 15, 2014	May 25, 2015	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	May 09, 2014	Jun. 15, 2014	May 08, 2015	Radiation (03CH01-SZ)
Bilog Antenna	TESEQ	CBL 6112D	23188	30MHz~2GHz	Oct. 26, 2013	Jun. 15, 2014	Oct. 25, 2014	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS Lindgren	3117	00119436	1GHz~18GHz	Oct. 26, 2013	Jun. 15, 2014	Oct. 25, 2014	Radiation (03CH01-SZ)
Double Ridged Horn Antenna	COM-POWER	AH-840	101073	18GHz~40GHz	Jan. 27, 2014	Jun. 15, 2014	Jan. 26, 2015	Radiation (03CH01-SZ)
Amplifier	ADVANTEST	BB525C	E9007003	9kHz~3000MHz	Feb. 21, 2014	Jun. 15, 2014	Feb. 20, 2015	Radiation (03CH01-SZ)
Amplifier	Yiai	AV3860B	04030	2GHz~26.5GHz	May 08, 2014	Jun. 15, 2014	May 07, 2015	Radiation (03CH01-SZ)
AC Source(AVR)	Chroma	61601	616010001 985	100Vac~250Vac	Mar. 25, 2014	Jun. 15, 2014	Mar. 24, 2015	Radiation (03CH01-SZ)
Turn Table	EM Electronics	EM 1000	N/A	0~360 degree	NCR	Jun. 15, 2014	NCR	Radiation (03CH01-SZ)
Antenna Mast	EM Electronics	EM 1000	N/A	1 m~4 m	NCR	Jun. 15, 2014	NCR	Radiation (03CH01-SZ)
ESCIO TEST Receiver	R&S	ESCI	100724	9kHz~3GHz	Feb. 21, 2014	Jun. 03, 2014	Feb. 20, 2015	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103912	9kHz~30MHz	Mar. 04, 2014	Jun. 03, 2014	Mar. 03, 2015	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Mar. 04, 2014	Jun. 03, 2014	Mar. 03, 2015	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Dec. 17, 2013	Jun. 03, 2014	Dec. 16, 2014	Conduction (CO01-SZ)

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: YHLBLULIFE8

Page Number : 60 of 61
Report Issued Date : Jul. 02, 2014
Report Version : Rev. 02

Uncertainty of Evaluation 5

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of	2.24
Confidence of 95% (U = 2Uc(y))	2.51

Report No.: FR452601B

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	2.00
Confidence of 95% (U = 2Uc(y))	3.90

SPORTON INTERNATIONAL (SHENZHEN) INC. Page Number TEL: 86-755-3320-2398 Report Issued Date: Jul. 02, 2014

FCC ID: YHLBLULIFE8 Report Version : Rev. 02