UNIVERSITÉ PARIS 8

Master Informatique 2023/24

Probabilités et Statistiques pour la Théorie de l'information

$TD n^{\circ}2$

Exercice 1. On effectue un contrôle de fabrication sur des pièces dont une proportion de 2% est défectueuse. On contrôle un lot de 1000 pièces.

- 1. Soit X la variable aléatoire : "nombre de pièces défectueuses parmi 1000". Quelle est loi de X? Quelle est son espérance, son écart-type?
- 2. En approchant cette loi par celle d'une loi normale adaptée, calculez la probabilité pour que X soit compris entre 18 et 22. On fera les calculs avec et sans correction de continuité. On fera également les calculs avec la vraie loi pour comparer.

Exercice 2. On jette un dé 180 fois. On note X la variable aléatoire : "nombre de sorties du 4".

- 1. Quelle est la loi de X?
- 2. Calculez la probabilité pour que X soit compris entre 29 et 32.

Exercice 3. On suppose qu'il y a une probabilité égale à p d'être contrôlé lorsqu'on prend une certaine ligne de train. Monsieur A fait n voyages par an sur cette ligne. Le prix d'un ticket est de 1,80 euros.

- 1. On suppose que $p=0,1,\,n=700.$ Quelle est la probabilité que Monsieur A soit contrôlé entre 60 et 80 fois dans l'année?
- 2. Monsieur A voyage toujours sans ticket. Quelle amende minimale la compagnie doit-elle fixer pour que le fraudeur ait, sur une période d'une année, une probabilité supérieure à 0,75 d'être perdant?
- 3. Reprendre les questions 1 et 2 pour p = 0, 5 et n = 300.

Exercice 4. Une horloge publique indique l'heure avec une marge d'erreur uniforme de ± 1 seconde par jour. Quelle est la probabilité pour que sur une année l'horloge affiche un retard de 10 secondes? d'une minute?

Exercice 5. On suppose que la durée de vie d'une ampoule électrique est une variable aléatoire qui suit une loi exponentielle de paramètre $\lambda = 0, 2 \times 10^{-3} h^{-1}$. Combien d'ampoules faut-il prévoir sur 10 ans pour que la probabilité de tomber en panne soit inférieure à 0,01.

Tables de la fonction de répartition de la loi Gaussienne ${\cal N}(0,1)$

Cette table représente les probabilités cumulées $\Phi(t)=P(X\leq t)$, où X est une Gaussienne centrée réduite. Les réels t sont représentés avec deux chiffres après la virgule. Le second chiffre après la virgule est placé en colonne.

t	0	1	2	3	4	5	6	7	8	9
0.0	0.5	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7793	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8484	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8906	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.93448	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9986	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Pour de plus grandes valeurs de t, on a :

				3.3						
$\Phi(t)$	0.99865	0.99903	0.99931	0.99952	0.99966	0.99977	0.99984	0.99989	0.99993	0.9999