### **Discrete Structures**

Syed Faisal Bukhari, PhD Associate Professor

Department of Data Science (DDS), Faculty of Computing and Information Technology (FCIT), University of the Punjab (PU)

## **Text book**

Discrete Mathematics and Its Application, 7<sup>th</sup> Edition Kenneth H. Rosen

## References

### Chapter 2

1. Discrete Mathematics and Its Application, 7<sup>th</sup> Edition by Kenneth H. Rose

2. Discrete Mathematics with Applications by Thomas Koshy

These slides contain material from the above resources.

## Sequences

Sequence is a discrete structure used to represent an ordered list.

For example, 1, 2, 3, 5, 8 is a sequence with five terms and 1, 3,  $9, 27, 81, \ldots, 3n, \ldots$  is an infinite sequence.

**Definition:** A **sequence is a function** from a subset of the set of integers (usually either the set  $\{0, 1, 2, ...\}$  or the set  $\{1, 2, 3, ...\}$ ) to a set S. We use the **notation a<sub>n</sub>** to denote the image of the integer n. We call a<sub>n</sub> a term of the sequence.

### **Example 1** Consider the sequence $\{a_n\}$ , where

$$a_n = \frac{1}{n}$$

The list of the terms of this sequence, beginning with  $a_1$ , namely,  $a_1$ ,  $a_2$ ,  $a_3$ ,  $a_4$ , . . . , starts with

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

## **Geometric progression**

**Definition** A geometric progression is a sequence of the form a, ar,  $ar^2$ , . . . ,  $ar^n$ , . . . , where the initial term a and the common ratio r are real numbers.

**Example** The sequences  $\{b_n\}$  with  $b_n = (-1)^n$ 

$$\{c_n\}$$
 with  $c_n = 2 \times 5^n$ 

$$\{d_n\}$$
 with  $d_n = 6 \times (1/3)^n$ 

are geometric progressions with initial term and common ratio equal to  $\mathbf{1}$  and  $\mathbf{-1}$ ;  $\mathbf{2}$  and  $\mathbf{5}$ ; and  $\mathbf{6}$  and  $\mathbf{1/3}$ , respectively.

#### **Solution:**

$$b_n = (-1)^n$$

The list of terms  $b_0$ ,  $b_1$ ,  $b_2$ ,  $b_3$ ,  $b_4$ , . . . begins with 1,-1, 1,-1, ;

$$c_n = 2 \times 5^n$$

the list of terms  $c_0$ ,  $c_1$ ,  $c_2$ ,  $c_3$ ,  $c_4$ , . . . begins with 2, 10, 50, 250, 1250, . . . ;

$$d_n = 6 \times (1/3)^n$$

and the list of terms  $d_0$ ,  $d_1$ ,  $d_2$ ,  $d_3$ ,  $d_4$ , . . . begins with

$$6, 2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \dots$$

# **Arithmetic progression**

**Definition** An arithmetic progression is a sequence of the form a, a + d, a + 2d, ..., a + nd, ...

where the initial term **a** and the common difference **d** are real numbers.

**Example** The sequences  $\{s_n\}$  with  $s_n = -1 + 4n$  and  $\{t_n\}$  with  $t_n = 7 - 3n$  are both arithmetic progressions with a = -1 and d = 4, and a = 7 and d = -3, respectively,

$$s_n = -1 + 4n$$

if we start at n = 0. The list of terms  $s_0$ ,  $s_1$ ,  $s_2$ ,  $s_3$ , . . . begins with -1, 3, 7, 11, . . . ,

$$t_n = 7 - 3n$$

and the list of terms  $t_0$ ,  $t_1$ ,  $t_2$ ,  $t_3$ , . . . begins with 7, 4, 1,-2,

# **Strings**

**Sequences of the form**  $a_1, a_2, \ldots, a_n$  are often used in computer science. These finite sequences are also called **strings**. This string is also denoted by  $a_1a_2 \ldots a_n$ .

The length of a string is the number of terms in this string. The empty string, denoted by  $\lambda$ , is the string that has no terms. The empty string has length zero.

### **Recurrence Relations**

A recurrence relation for the sequence  $\{a_n\}$  is an equation that expresses an in terms of one or more of the previous terms of the sequence, namely,  $a_0, a_1, \ldots, a_{n-1}$ , for all integers n with  $n \ge n_0$  where  $n_0$  is a nonnegative integer.

A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

**Example** Let  $\{a_n\}$  be a sequence that satisfies the recurrence relation

$$a_n = a_{n-1} + 3$$
 for  $n = 1, 2, 3, ...,$ 

and suppose that  $a_0$  = 2. What are  $a_1$ ,  $a_2$ , and  $a_3$ ?

#### **Solution**

$$a_n = a_{n-1} + 3$$

for 
$$n = 1, 2, 3, ...,$$

$$a_1 = a_0 + 3$$

$$a_1 = 2 + 3 = 5$$

$$a_2 = a_1 + 3 = 5 + 3 = 8$$

$$a_3 = a_2 + 3 = 8 + 3 = 11$$

**Example** Let  $\{a_n\}$  be a sequence that satisfies the recurrence relation  $a_n = a_{n-1} - a_{n-2}$  for  $n = 2, 3, 4, \dots$ , and suppose that  $a_0 = 3$  and  $a_1 = 5$ . What are  $a_2$  and  $a_3$ ?  $a_n = a_{n-1} - a_{n-2}$  for n = 2, 3, 4, ...

$$a_n = a_{n-1} - a_{n-2}$$
 for  $n = 2, 3, 4, ...$ 

$$a_2 = a_1 - a_0$$
  
 $a_2 = 5 - 3 = 2$ 

$$a_n = a_{n-1} - a_{n-2}$$
 for  $n = 2, 3, 4, ...$ 

$$a_3 = a_2 - a_1$$

$$a_3 = 2 - 5$$

$$a_3 = -3$$

# Recurrence relation of Fibonacci sequence

The **Fibonacci sequence**,  $f_0$ ,  $f_1$ ,  $f_2$ , . . . , is defined by the initial conditions

$$f_0 = 0$$
,  $f_1 = 1$ , and the recurrence relation  
 $f_n = f_{n-1} + f_{n-2}$ , for  $n = 2, 3, 4, ...$ 

# Recurrence relation of Fibonacci sequence

**Example** Find the Fibonacci numbers  $f_2$ ,  $f_3$ ,  $f_4$ ,  $f_5$ , and  $f_6$ .

$$f_n = f_{n-1} + f_{n-2}$$
  
 $f_0 = 0, f_1 = 1$ 

$$f_2 = f_1 + f_0 = 1 + 0 = 1,$$
  
 $f_3 = f_2 + f_1 = 1 + 1 = 2,$   
 $f_4 = f_3 + f_2 = 2 + 1 = 3,$   
 $f_5 = f_4 + f_3 = 3 + 2 = 5,$   
 $f_6 = f_5 + f_4 = 5 + 3 = 8.$ 

# Recurrence relation of factorial sequence

**Example** Suppose that  $\{a_n\}$  is the sequence of integers defined by  $a_n = n!$ , the value of the factorial function at the integer n, where n = 1, 2, 3, ...

```
a_n = n!
n! = n((n-1)(n-2)...2 - 1)
= n(n-1)!
= na_{n-1}
\therefore a_n = n!
```

 $\Rightarrow$  a<sub>n</sub> = na<sub>n-1</sub> is the recurrence relation of factorials with the initial condition

$$a_1 = 1$$

| TABLE 1 Some Useful Sequences. |                                                      |  |
|--------------------------------|------------------------------------------------------|--|
| nth Term                       | First 10 Terms                                       |  |
| $n^2$                          | 1, 4, 9, 16, 25, 36, 49, 64, 81, 100,                |  |
| $n^3$                          | 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,         |  |
| $n^4$                          | 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,  |  |
| 2 <sup>n</sup>                 | 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,            |  |
| $3^n$                          | 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,    |  |
| n!                             | 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, |  |
| $f_n$                          | 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,                |  |

## **Summations**

We use the notation

$$\sum_{j=m}^{n} a_{j}, \sum_{j=m}^{n} a_{j}, \text{ or } \sum_{m \leq j \leq n} a_{j}$$

(read as the sum from j = m to j = n of  $a_i$ ) to represent

$$a_m + a_{m+1} + \cdots + a_n$$
.

Here, the variable *j* is called the **index of summation**, and the choice of the letter *j* as the variable is arbitrary; that is, we could have used any other letter, such as *i* or *k*. Or, in notation,

$$\sum_{i=m}^{n} a_{i} = \sum_{i=m}^{n} a_{i} = \sum_{k=m}^{n} a_{k}$$

The usual laws for arithmetic apply to summations. For example

$$\sum_{j=1}^{n} (ax_j + by_j) = \sum_{j=1}^{n} ax_j + b \sum_{j=1}^{n} y_j$$

Example Use summation notation to express the sum of the first 100 terms of the sequence  $\{a_j\}$ , where  $a_j = 1/n$  for j = 1, 2, 3, ...

$$\sum_{j=1}^{100} \frac{1}{j}$$

How do you know this is true?

$$\sum_{i=1}^{k} (ca_i + b_i) = c \sum_{i=1}^{k} a_i + \sum_{i=1}^{k} b_i$$

- 1. Use associative law to separate the bs from the as.
- 2. Use distributive law to factor the cs.

**Example** What is the value of  $\sum_{j=1}^{5} j^2$ ?

$$\sum_{j=1}^{5} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2$$
$$= 1 + 4 + 9 + 16 + 25$$
$$= 55$$

**Example** What is the value of  $\sum_{k=4}^{8} (-1)^k$ ?

$$\sum_{k=4}^{8} (-1)^k = (-1)^4 + (-1)^5 + (-1)^6 + (-1)^7 + (-1)^8$$

$$= 1 + (-1) + 1 + (-1) + 1$$

$$= 1$$

**Example** Suppose we have the sum  $\sum_{j=1}^{5} j^2$  but want the index of summation to run between 0 and 4 rather than from 1 to 5

Let 
$$j = k + 1$$

When j = 1, then  $1 = k + 1 \Rightarrow k = 0$ 

When  $\mathbf{i} = \mathbf{5}$ , then  $5 = \mathbf{k} + \mathbf{1} \Rightarrow \mathbf{k} = 5 - \mathbf{1} \Rightarrow \mathbf{k} = \mathbf{4}$ 

$$\sum_{j=1}^{5} j^2 = \sum_{k=0}^{4} (k+1)2$$

It is easily checked that both sums are 1 + 4 + 9 + 16 + 25 = 55

#### What is S = 1 + 2 + 3 + ... + n?

$$S = 1$$

+

2

+

. . .

n

Write the sum.

r

+

n -1

+

\_\_\_

+

+

Write it again in reverse order.

= n+1

+

n+1

+

...

n +1

Add together.

$$2s = n(n+1)$$

= r

n(n+1)/2

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

# Some important summations

What is  $S = 1 + r + r^2 + ... + r^n$ 

$$\sum_{k=0}^{n} r^{k} = 1 + r + \dots + r^{n}$$

**Geometric Series** 

$$r\sum_{k=0}^{n} r^{k} = r + r^{2} + \ldots + r^{n+1}$$

Multiply by r

$$\sum_{k=0}^{n} r^{k} - r \sum_{k=0}^{n} r^{k} = 1 - r^{n+1}$$

Subtract 2<sup>nd</sup> from 1<sup>st</sup>

$$(1-r)\sum_{k=0}^{n} r^k = 1 - r^{n+1}$$

**Factor** 

$$\sum_{n=1}^{n} r^{k} = \frac{1 - r^{n+1}}{(1 - r)}$$

Divide

# Some important summations

What is 
$$S = 1 + 3 + 5 + ... + (2n - 1)$$
?

Sum of first n odds

$$\sum_{k=1}^{n} (2k-1) = 2\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1$$

$$=2\left(\frac{n(n+1)}{2}\right)-n$$

$$=n^2$$

## Some important summations

What is 
$$S = 1 + 3 + 5 + ... + (2n - 1)$$
?  
=  $n^2$ 

Sum of first n odds

**Double summations** arise in many contexts (as in the analysis of nested loops in computer programs).

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} i(1+2+3)$$

$$= \sum_{i=1}^{4} (i+2i+3i)$$

$$= \sum_{i=1}^{4} 6i$$

= 6 + 12 + 18 + 24 = 60.

We can also use summation notation to add all values of a function, or terms of an indexed set, where the index of summation runs over all values in a set. We write,

$$\sum_{s \in S} f(s)$$

to represent the sum of the values f(s), for all s of S. What is the value of  $\sum_{s \in \{0, 2, 4\}} s$ ?

$$\sum_{s\in\{0,\,2,\,4\}} s = 0 + 2 + 4 = 6.$$

### TABLE 2 Some Useful Summation Formulae.

| TABLE 2 Some Oserui Summation i oi muiae. |                                    |  |
|-------------------------------------------|------------------------------------|--|
| Sum                                       | Closed Form                        |  |
| $\sum_{k=0}^{n} ar^k \ (r \neq 0)$        | $\frac{ar^{n+1}-a}{r-1}, r \neq 1$ |  |
| $\sum_{k=1}^{n} k$                        | $\frac{n(n+1)}{2}$                 |  |
| $\sum_{k=1}^{n} k^2$                      | $\frac{n(n+1)(2n+1)}{6}$           |  |
| $\sum_{k=1}^{n} k^3$                      | $\frac{n^2(n+1)^2}{4}$             |  |
| $\sum_{k=0}^{\infty} x^k,  x  < 1$        | $\frac{1}{1-x}$                    |  |
| $\sum_{k=1}^{\infty} kx^{k-1},  x  < 1$   | $\frac{1}{(1-x)^2}$                |  |

$$\sum_{k=50}^{100} k^2 = ?$$

$$\sum_{k=50}^{100} k^2 = \sum_{k=1}^{100} k^2 - \sum_{k=1}^{49} k^2$$

$$\sum_{k=1}^{n} k^2 = n(n+1)(2n+1)/6$$

$$\sum_{k=50}^{100} k^2 = \frac{100 \times 101 \times 201}{6} - \frac{49 \times 50 \times 99}{6}$$

$$= 33850 - 40425$$

# **Cardinality**

**Definition:** The sets A and B have the same cardinality if and only if there is a **one-to-one correspondence** from A to B. When A and B have the **same cardinality**, we write |A| = |B|

**Definition**: If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write  $|A| \le |B|$ . Moreover, when  $|A| \le |B|$  and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and we write |A| < |B|.

### **Countable Sets**

We will now split **infinite sets** into two groups, those with the **same cardinality** as the set of natural numbers and those with a different cardinality.

**Definition:** A set that is either **finite** or has the **same cardinality** as the set of **positive integers** is called **countable**. A set that is not countable is called **uncountable**. When an **infinite set** S is **countable**, we denote the cardinality of S by  $\aleph 0$  (where  $\aleph$  is aleph, the first letter of the Hebrew alphabet). We write  $|S| = \aleph 0$  and say that S has cardinality "aleph null."

### **Countable Sets**

**Example** Show that the set of odd positive integers is a countable set. To show that the set of odd positive integers is countable, we will exhibit a one-to-one correspondence between this set and the set of positive integers.



FIGURE 1 A One-to-One Correspondence Between Z<sup>+</sup> and the Set of Odd Positive Integers.

# **Suggested Readings**

**Chapter 2** 

- 2.4 Sequences and Summations
- 2.5 Cardinality of Sets