Correction des exercices Équations différentielles ordinaires à coefficients constants

CESI École d'ingénieurs

Valentin Bahier

1er semestre 2019-2020

Exercice 1

Résoudre

$$\begin{cases} y' + \frac{4}{3}y = x \\ y(0) = \frac{-9}{16} \end{cases}.$$

Solution générale à l'équation homogène : $y(x) = Ce^{-\frac{4}{3}x}$.

On cherche une solution particulière à l'équation avec second membre. Comme ce second membre s'écrit $f(x) = P(x)e^{0\times x}$ avec P(x) = x, alors comme 0 n'est pas égal à $-\frac{4}{3}$ et que le degré de P vaut 1, on pose $\tilde{y}(x) = (\alpha x + \beta)e^{0\times x} = \alpha x + \beta$. On a

$$\widetilde{y}' + \frac{4}{3}\widetilde{y} = \alpha + \frac{4}{3}(\alpha x + \beta) = \frac{4}{3}\alpha x + (\alpha + \frac{4}{3}\beta) = x$$

donc par identification, $\left\{ \begin{array}{l} \frac{4}{3}\alpha = 1 \\ \alpha + \frac{4}{3}\beta = 0 \end{array} \right. \iff \left\{ \begin{array}{l} \alpha = \frac{3}{4} \\ \beta = -\frac{9}{16} \end{array} \right. .$

On en déduit que les solutions sont les fonctions y de la forme

$$y(x) = Ce^{-\frac{4}{3}x} + \frac{3}{4}x - \frac{9}{16}$$

où C est une constante.

En particulier, en prenant x = 0 on obtient $y(0) = C - \frac{9}{16}$, donc $C = y(0) + \frac{9}{16} = 0$. Finalement, l'unique solution est

$$y(x) = \frac{3}{4}x - \frac{9}{16}$$

Exercice 2

Résoudre

$$y' + y = x\operatorname{ch}(x).$$

On rappelle que, par définition, $ch(x) = \frac{e^x + e^{-x}}{2}$.

On note $f(x) = xe^x$ et $g(x) = xe^{-x}$, de sorte que le second membre s'écrive $x\operatorname{ch}(x) = \frac{1}{2}f(x) + \frac{1}{2}g(x)$. On cherche une solution particulière à l'équation avec second membre f, puis on fera de même avec g. Le principe de superposition permettra de conclure.

— Solution particulière pour le second membre f: Ici, $1 \neq -1$, donc on pose $y_1(x) = (\alpha x + \beta)e^x$. On a

$$y'_1 + y_1 = (\alpha + \alpha x + \beta + \alpha x + \beta)e^x = (2\alpha x + (\alpha + 2\beta))e^x = xe^x$$

donc
$$\begin{cases} 2\alpha = 1 \\ \alpha + 2\beta = 0 \end{cases} \iff \begin{cases} \alpha = \frac{1}{2} \\ \beta = -\frac{1}{4} \end{cases}.$$

— Solution particulière pour le second membre g: Ici, « -1 = -1 », donc on pose $y_2(x) = x(\gamma x + \delta)e^{-x} = (\gamma x^2 + \delta x)e^{-x}$. On a

$$y_2' + y_2 = (2\gamma x + \delta)e^{-x} = xe^{-x}$$

$$\operatorname{donc} \left\{ \begin{array}{l} 2\gamma = 1 \\ \delta = 0 \end{array} \right. \iff \left\{ \begin{array}{l} \gamma = \frac{1}{2} \\ \delta = 0 \end{array} \right..$$

En conclusion, les solutions sont les fonctions y de la forme

$$y(x) = Ce^{-x} + \frac{1}{2}y_1(x) + \frac{1}{2}y_2(x)$$

c'est-à-dire

$$y(x) = \left(\frac{1}{4}x + \frac{1}{8}\right)e^x + \left(\frac{1}{4}x^2 + C\right)e^{-x}$$

Exercice 3

Résoudre

$$3y'' - y' - 2y = \sin x.$$

Le polynôme caractéristique est $3X^2 - X - 2$, de discriminant $\Delta = 1^2 - 4 \times 3 \times (-2) = 25 = 5^2 > 0$, donc les racines sont $r_1 = \frac{1+5}{2\times 3} = 1$, et $r_2 = \frac{1-5}{2\times 3} = \frac{-2}{3}$. La solution générale à l'équation homogène est donc $y(x) = \lambda_1 e^x + \lambda_2 e^{-\frac{2}{3}x}$.

On cherche une solution particulière à l'équation en remplaçant le second membre par e^{ix} . La partie imaginaire de cette solution conviendra. Ici, i n'est pas solution de l'équation caractéristique, donc on pose $\tilde{y}(x) = \alpha e^{ix}$. On a

$$3\tilde{y}'' - \tilde{y}' - 2\tilde{y} = (3i^2\alpha - i\alpha - 2\alpha)e^{ix} = e^{ix}$$

donc $\alpha = \frac{1}{-5-i} = -\frac{5}{26} + \frac{1}{26}i$. Ainsi,

$$\operatorname{Im}(\tilde{y}) = \operatorname{Im}\left[\left(-\frac{5}{26} + \frac{1}{26}i\right)(\cos x + i\sin x)\right] = \frac{1}{26}\cos x - \frac{5}{26}\sin x.$$

Finalement,

$$y(x) = \lambda_1 e^x + \lambda_2 e^{-\frac{2}{3}x} + \frac{1}{26}\cos x - \frac{5}{26}\sin x$$

Exercice 4

Résoudre

$$y'' - 2y' + 5y = x(x+1)e^{2x}.$$

Le discriminant du polynôme caractéristique vaut -16, ce qui donne alors les deux racines complexes $r_1 = 1 - 2i$ et $r_2 = 1 + 2i$. De plus, $\deg(X(X+1)) = 2$ et le coefficient dans l'exponentielle n'est pas racine du polynôme caractéristique, donc on cherche une solution particulière $\tilde{y}(x) = (\alpha x^2 + \beta x + \gamma)e^{2x}$. On a

$$\widetilde{y}' = (2\alpha x + \beta)e^{2x} + 2\widetilde{y}$$

puis

$$\widetilde{y}'' = 2\alpha e^{2x} + 2(\widetilde{y}' - 2\widetilde{y})$$

donc

$$\widetilde{y}'' - 2\widetilde{y}' + 5\widetilde{y} = 2\alpha e^{2x} + 2\widetilde{y}' + \widetilde{y}$$
$$= (2\alpha + 4\alpha x + 2\beta + 5\alpha x^2 + 5\beta x + 5\gamma)e^{2x}$$

$$\operatorname{donc} \left\{ \begin{array}{l} 5\alpha = 1 \\ 4\alpha + 5\beta = 1 \\ 2\alpha + 2\beta + 5\gamma = 0 \end{array} \right. \iff \left\{ \begin{array}{l} \alpha = \frac{1}{5} \\ \beta = \frac{1}{25} \\ \gamma = \frac{-12}{125} \end{array} \right. .$$

Par conséquent, les solutions sont de la forme

$$y(x) = (\lambda \cos(2x) + \mu \sin(2x)) e^x + \left(\frac{1}{5}x^2 + \frac{1}{25}x - \frac{12}{125}\right) e^{2x}$$

Exercice 5

Résoudre

$$\begin{cases} y''' + y' = -\sin x \\ y(0) = 0 \\ y'(0) = 0 \\ y''(0) = 1 \end{cases}$$

On commence par intégrer l'équation : $y'' + y = \cos x + K$, où K est une constante qu'on déterminera à la fin. On constate que $y_1 = K$ est évidemment solution particulière de l'équation avec second membre valant K. Cherchons une solution particulière y_2 de l'équation avec second membre $\cos x$. Pour cela, on prendra $y_2 = \text{Re}(z)$, où z est solution de l'équation avec second membre e^{ix} . Le polynôme caractéristique étant $X^2 + 1 = (X - i)(X + i)$, alors i est racine simple, donc on cherche z sous la forme $z(x) = \alpha x e^{ix}$. On a

$$z'' + z = (-\alpha x + 2i\alpha + \alpha x)e^{ix} = 2i\alpha e^{ix} = e^{ix}$$

donc $2i\alpha=1$, c'est-à-dire $\alpha=\frac{1}{2i}=\frac{-1}{2}i$, donc

$$y_2(x) = \operatorname{Re}\left(-\frac{1}{2}ix(\cos x + i\sin x)\right) = \frac{1}{2}x\sin x.$$

Par conséquent, les solutions à l'équation $y'' + y = \cos x + K$ sont les fonctions

$$y(x) = \lambda \cos x + \mu \sin x + \frac{1}{2}x \sin x + K$$

où λ,μ et K sont à déterminer. En calculant les dérivées d'ordre 1 et 2 de y et en évaluant en 0 on a

$$\begin{cases} y(0) = \lambda + K \\ y'(0) = \mu \\ y''(0) = -\lambda + 1 \end{cases}.$$

Finalement, comme y(0)=0,y'(0)=0 et y''(0)=1, on en déduit $\lambda=\mu=K=0,$ et donc l'unique solution est

$$y(x) = \frac{1}{2}x\sin x.$$