

### **Description**

The VST10N780 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of  $R_{\text{DS(ON)}}$  and  $Q_g$ . This device is ideal for high-frequency switching and synchronous rectification.

#### **General Features**

- $V_{DS}$  =100V, $I_D$  =16A  $R_{DS(ON)}$ =78m $\Omega$  (typical) @  $V_{GS}$ =10V
- Excellent gate charge x R<sub>DS(on)</sub> product(FOM)
- Very low on-resistance R<sub>DS(on)</sub>
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

### **Application**

- LED backlighting
- Ideal for high-frequency switching and synchronous rectification



**Package Marking and Ordering Information** 

| Device Marking | Device    | Device Package | Reel Size | Tape width | Quantity   |
|----------------|-----------|----------------|-----------|------------|------------|
| VST10N780-T2   | VST10N780 | TO-252         | Ø330mm    | 12mm       | 2500 units |

Absolute Maximum Ratings (T<sub>A</sub>=25℃unless otherwise noted)

| Parameter                                                                            | Symbol                | Limit      | Unit       |  |
|--------------------------------------------------------------------------------------|-----------------------|------------|------------|--|
| Drain-Source Voltage                                                                 | V <sub>DS</sub>       | 100        | V          |  |
| Gate-Source Voltage                                                                  | V <sub>GS</sub>       | ±20        | V          |  |
| Drain Current-Continuous                                                             | I <sub>D</sub>        | 16         | А          |  |
| Drain Current-Continuous(T <sub>C</sub> =100 °C)                                     | I <sub>D</sub> (100℃) | 11.3       | А          |  |
| Pulsed Drain Current                                                                 | I <sub>DM</sub>       | 64         | А          |  |
| Maximum Power Dissipation                                                            | P <sub>D</sub>        | 55         | W          |  |
| Derating factor                                                                      |                       | 0.37       | W/°C       |  |
| Single pulse avalanche energy (Note 5)                                               | E <sub>AS</sub>       | 26         | mJ         |  |
| Drain Source voltage slope, V <sub>DS</sub> ≤120 V,                                  | dv/dt                 | 50         | V/ns       |  |
| Drain Source voltage slope, V <sub>DS</sub> ≤120 V, I <sub>SD</sub> <i<sub>D</i<sub> | dv/dt                 | 50         | V/ns       |  |
| Operating Junction and Storage Temperature Range                                     | $T_{J}$ , $T_{STG}$   | -55 To 175 | $^{\circ}$ |  |



#### **Thermal Characteristic**

Electrical Characteristics (T<sub>A</sub>=25°C unless otherwise noted)

| Parameter                          | Symbol              | Condition                                 | Min | Тур | Max  | Unit |
|------------------------------------|---------------------|-------------------------------------------|-----|-----|------|------|
| Off Characteristics                |                     |                                           |     |     |      | •    |
| Drain-Source Breakdown Voltage     | BV <sub>DSS</sub>   | V <sub>GS</sub> =0V I <sub>D</sub> =250μA | 100 | -   | -    | V    |
| Zero Gate Voltage Drain Current    | I <sub>DSS</sub>    | V <sub>DS</sub> =100V,V <sub>GS</sub> =0V | -   | -   | 1    | μA   |
| Gate-Body Leakage Current          | I <sub>GSS</sub>    | $V_{GS}$ =±20 $V$ , $V_{DS}$ =0 $V$       | -   | -   | ±100 | nA   |
| On Characteristics (Note 3)        |                     |                                           | •   |     |      | •    |
| Gate Threshold Voltage             | V <sub>GS(th)</sub> | $V_{DS}=V_{GS}$ , $I_{D}=250\mu A$        | 2.0 | 3.2 | 4.0  | V    |
| Drain-Source On-State Resistance   | R <sub>DS(ON)</sub> | V <sub>GS</sub> =10V, I <sub>D</sub> =16A | -   | 78  | 95   | mΩ   |
| Gate resistance                    | R <sub>G</sub>      |                                           | -   | 10  | -    | Ω    |
| Forward Transconductance           | <b>G</b> FS         | V <sub>DS</sub> =5V,I <sub>D</sub> =16A   | -   | 20  | -    | S    |
| Dynamic Characteristics (Note4)    |                     |                                           | •   |     |      | •    |
| Input Capacitance                  | C <sub>lss</sub>    | \/ F0\/\/ 0\/                             | -   | 322 |      | PF   |
| Output Capacitance                 | Coss                | $V_{DS}$ =50V, $V_{GS}$ =0V,<br>F=1.0MHz  | -   | 53  |      | PF   |
| Reverse Transfer Capacitance       | C <sub>rss</sub>    | r-1.0lvinz                                | -   | 5.1 |      | PF   |
| Switching Characteristics (Note 4) |                     |                                           | •   |     |      | •    |
| Turn-on Delay Time                 | t <sub>d(on)</sub>  |                                           | -   | 6   | -    | nS   |
| Turn-on Rise Time                  | t <sub>r</sub>      | $V_{DD}$ =50 $V$ , $R_L$ =3 $\Omega$      | -   | 3   | -    | nS   |
| Turn-Off Delay Time                | t <sub>d(off)</sub> | $V_{GS}$ =10 $V$ , $R_{G}$ =3 $\Omega$    | -   | 18  | -    | nS   |
| Turn-Off Fall Time                 | t <sub>f</sub>      |                                           | -   | 3   | -    | nS   |
| Total Gate Charge                  | Qg                  | V 50VI 40A                                | -   | 5.6 | -    | nC   |
| Gate-Source Charge                 | Q <sub>gs</sub>     | $V_{DS}=50V, I_{D}=10A,$ $V_{GS}=10V$     | -   | 2.4 | -    | nC   |
| Gate-Drain Charge                  | Q <sub>gd</sub>     | V <sub>GS</sub> -10V                      | -   | 1.3 | -    | nC   |
| Drain-Source Diode Characteristics |                     |                                           | •   |     |      | •    |
| Diode Forward Voltage (Note 3)     | V <sub>SD</sub>     | V <sub>GS</sub> =0V,I <sub>S</sub> =10A   | -   | -   | 1.2  | V    |
| Diode Forward Current (Note 2)     | Is                  |                                           | -   | -   | 16   | Α    |
| Reverse Recovery Time              | t <sub>rr</sub>     | $T_J = 25^{\circ}C, I_F = I_S$            | -   | 15  | -    | nS   |
| Reverse Recovery Charge            | Qrr                 | $di/dt = 100A/\mu s^{(Note3)}$            | -   | 53  | -    | nC   |

#### Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width  $\leq$  300 $\mu$ s, Duty Cycle  $\leq$  2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25  $^{\circ}\text{C}$  ,V\_DD=50V,V\_G=10V,L=0.5mH,Rg=25 $\Omega$



### **Test Circuit**

# 1) E<sub>AS</sub> test Circuit



## 2) Gate charge test Circuit



## 3) Switch Time Test Circuit





# **Typical Electrical and Thermal Characteristics**



**Figure 1 Output Characteristics** 



**Figure 2 Transfer Characteristics** 



2.6
2.4
2.2
2.2
2.8
3.8
4.0
4.0
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.6
5.1.

**Figure 4 Rdson-Junction Temperature** 

100

125 150 175

75

T<sub>J</sub>-Junction Temperature(°C)

50



Figure 5 Gate Charge



Figure 6 Source- Drain Diode Forward





Figure 7 Capacitance vs Vds



Figure 9 Power De-rating



Figure 8 Safe Operation Area



Figure 10 Current De-rating



**Figure 11 Normalized Maximum Transient Thermal Impedance** 





Figure 12 BV<sub>DSS</sub> vs Junction Temperature