Exercise 1

Sketch a local co-ordinate frame $x_1y_1z_1$ in the reference frame $x_0y_0z_0$. Position and orientation of the local co-ordinate system is described by the following \underline{A}_1 matrix:

$$\underline{A}_{1} = \begin{bmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & 2\\ 0 & 0 & 1 & 3\\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

First find the angles between pairs of axes of the both systems. Write down the angles values to the following table:

	x_1	<i>y</i> ₁	Z ₁
x_0			
Уо			
Zo			

Exercise 2

Next calculate values of RPY angles basing on matrix \underline{A}_{I} and using the following formulas:

$$\phi = arctg \frac{N_y}{N_x}$$

$$\theta = arctg \frac{-N_z}{\sqrt{1 - N_z^2}}$$

$$\psi = arctg \frac{O_z}{A_z}$$

With 2 exceptions for: N_x =0 i N_y =0 (and O_z =0, A_z =0), for which:

$$\theta = 90^{\circ}$$

$$\sin(\psi - \phi) = O_{x}$$

$$\cos(\psi - \phi) = O_{y}$$

$$-\sin(\psi + \phi) = O_{x}$$

$$\cos(\psi + \phi) = O_{y}$$

$$\psi - \phi = \arctan \frac{O_{x}}{O_{y}}$$

$$\psi + \phi = \arctan \frac{-O_{x}}{O_{y}}$$

Exercise 1

Sketch a local co-ordinate frame $x_1y_1z_1$ in the reference frame $x_0y_0z_0$. Position and orientation of the local co-ordinate system is described by the following \underline{A}_I matrix:

$$\underline{A}_{1} = \begin{bmatrix} -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 3\\ 0 & 0 & -1 & 4\\ \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

First find the angles between pairs of axes of the both systems. Write down the angles values to the following table:

	x_1	y_1	z_1
x_0			
Уо			
Zo			

Exercise 2

Next calculate values of RPY angles basing on matrix \underline{A}_{l} and using the following formulas:

$$\phi = arctg \frac{N_y}{N_x}$$

$$\theta = arctg \frac{-N_z}{\sqrt{1 - N_z^2}}$$

$$\psi = arctg \frac{O_z}{A_z}$$

With 2 exceptions for: N_x =0 i N_y =0 (and O_z =0, A_z =0), for which:

$$\theta = 90^{\circ}$$

$$\sin(\psi - \phi) = O_{x}$$

$$\cos(\psi - \phi) = O_{y}$$

$$-\sin(\psi + \phi) = O_{x}$$

$$\cos(\psi + \phi) = O_{y}$$

$$\psi - \phi = arctg \frac{O_{x}}{O_{y}}$$

$$\psi + \phi = arctg \frac{-O_{x}}{O_{y}}$$

Exercise 1

Sketch a local co-ordinate frame $x_1y_1z_1$ in the reference frame $x_0y_0z_0$. Position and orientation of the local co-ordinate system is described by the following \underline{A}_1 matrix:

$$\underline{A}_{1} = \begin{bmatrix} 0 & 0 & 1 & 2 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & -4 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

First find the angles between pairs of axes of the both systems. Write down the angles values to the following table:

	x_1	<i>y</i> ₁	Z ₁
x_0			
Уо			
Z ₀			

Exercise 2

Next calculate values of RPY angles basing on matrix \underline{A}_{I} and using the following formulas:

$$\phi = arctg \frac{N_y}{N_x}$$

$$\theta = arctg \frac{-N_z}{\sqrt{1 - N_z^2}}$$

$$\psi = arctg \frac{O_z}{A_z}$$

With 2 exceptions for: N_x =0 i N_y =0 (and O_z =0, A_z =0), for which:

$$\theta = 90^{\circ}$$

$$\sin(\psi - \phi) = O_{x}$$

$$\cos(\psi - \phi) = O_{y}$$

$$-\sin(\psi + \phi) = O_{x}$$

$$\cos(\psi + \phi) = O_{y}$$

$$\psi - \phi = arctg \frac{O_{x}}{O_{y}}$$

$$\psi + \phi = arctg \frac{-O_{x}}{O_{y}}$$

Exercise 1

Sketch a local co-ordinate frame $x_1y_1z_1$ in the reference frame $x_0y_0z_0$. Position and orientation of the local co-ordinate system is described by the following \underline{A}_I matrix:

$$\underline{A}_{1} = \begin{bmatrix} 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 4 \\ 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 3 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

First find the angles between pairs of axes of the both systems. Write down the angles values to the following table:

	x_1	y_1	Z ₁
x_0			
Уо			
Z ₀			

Exercise 2

Next calculate values of RPY angles basing on matrix \underline{A}_{l} and using the following formulas:

$$\phi = arctg \frac{N_y}{N_x}$$

$$\theta = arctg \frac{-N_z}{\sqrt{1 - N_z^2}}$$

$$\psi = arctg \frac{O_z}{A_z}$$

With 2 exceptions for: N_x =0 i N_y =0 (and O_z =0, A_z =0), for which:

$$\theta = 90^{\circ}$$

$$\sin(\psi - \phi) = O_{x}$$

$$\cos(\psi - \phi) = O_{y}$$

$$-\sin(\psi + \phi) = O_{x}$$

$$\cos(\psi + \phi) = O_{y}$$

$$\psi - \phi = arctg \frac{O_{x}}{O_{y}}$$

$$\psi + \phi = arctg \frac{-O_{x}}{O_{y}}$$

