Listing of Claims:

(Currently Amended) A method of reducing the risk eliminating the onset of
 Type 1 diabetes in a predisposed human patient by up to 90 percent, comprising the steps of: identifying a human patient predisposed to Type 1 diabetes patient, wherein Type 1 diabetes is detectable in a patient with autoantibodies to β cell antigens; and

orally administering to the patient an effective amount of a 1α -hydroxy vitamin D compound such that the <u>risk of</u> onset of Type 1 diabetes or <u>Type 1</u> diabetes symptoms is reduced eliminated.

- 2. (Original) The method of claim 1 wherein the compound is selected from the group consisting of 1α ,25-dihydroxyvitamin D₃ (1,25-(OH)₂D₃), 19-nor-1,25-dihydroxyvitamin D₂ (19-nor-1,25-(OH)₂D₃), 24-homo-22-dehydro-22E-1 α ,25-dihydroxyvitamin D₃ (24-homo-22-dehydro-22E-1,25-(OH)₂D₃), 1,25-dihydroxy-24(E)-dehydro-24-homo-vitamin D₃ (1,25-(OH)₂-24-homo D₃), 19-nor-1,25-dihydroxy-21-epi-vitamin D₃ (19-nor-1,25-(OH)₂-21-epi-D₃), 1α hydroxy vitamin D₃ or 1α hydroxy vitamin D₂.
- 3. (Previously Amended) The method of claim 1 wherein the vitamin D compound is selected from the group consisting of vitamin D compounds with the following formula:

wherein X^1 and X^2 are each selected from the group consisting of hydrogen and acyl; wherein Y^1 and Y^2 are each selected from the group consisting of H, 0-aryl, 0-alkyl, aryl, and alkyl of 1-4 carbons, taken together to form an alkene having the

where B_1 and B_2 are selected from the group consisting of H, alkyl of 1-4 carbons and aryl, and can have a β or α configuration; $Z^1=Z^2=H$ or Z^1 and Z^2 together are $=CH_2$; and wherein R is an alkyl, hydroxyalkyl or fluoroalkyl group, or R represents the following side chain:

$$R^{8}$$
 R^{7}
 R^{4}
 R^{5}
 R^{5}
 R^{21}
 R^{6}
 R^{3}
 R^{1}

wherein (a) may have an S or R configuration, R¹ represents hydrogen, hydroxy or O-acyl, R² and R³ are each selected from the group consisting of alkyl, hydroxyalkyl and fluoralkyl, or, when taken together represent the group-(CH₂)_m-wherein m is an integer having a value of from 2 to 5, R⁴ is selected from the group consisting of hydrogen, hydroxy, fluorine, O-acyl, alkyl, hydroxyalkyl and fluoralkyl, wherein if R⁵ is hydroxyl or fluoro, R⁴ must be hydrogen or alkyl, R⁵ is selected from the group consisting of hydrogen, hydroxy, fluorine, alkyl, hydroxyalkyl and fluoroalkyl, or R⁴ and R⁵ taken together represent double-bonded oxygen, R⁶ and R⁷ taken together form a carbon-carbon double bond, R⁸ may be H or CH₃, and

wherein n is an integer having a value of from 1 to 5, and wherein the carbon at any one of positions 20, 22, or 23 in the side chain may be replaced by an O, S, or N atom.

- 4. (Original) The method of claim 1 wherein the oral administration is via diet.
- 5. (Original) The method of claim 1 wherein the oral administration is at the concentration of between 0.005 μ g to 0.2 μ g per kilogram of patient weight per day.

Claims 6 – 10 (Cancelled)

11. (New) A method of reducing the risk of Type 1 diabetes in a predisposed human patient by up to 90 percent, comprising the steps of:

identifying a human patient predisposed to Type 1 diabetes, wherein Type 1 diabetes is detectable in a patient with autoantibodies to glutamic acid decarboxylase; and

orally administering to the patient an effective amount of a 1α -hydroxy vitamin D compound such that the risk of onset of Type 1 diabetes or diabetes symptoms is reduced.

12. (New) The method of claim 11 wherein the compound is selected from the group consisting of 1α,25-dihydroxyvitamin D₃ (1,25-(OH)₂D₃), 19-nor-1,25-dihydroxyvitamin D₂ (19-nor-1,25-(OH)₂D₃), 24-homo-22-dehydro-22E-1α,25-dihydroxyvitamin D₃ (24-homo-22-dehydro-22E-1,25-(OH)₂D₃), 1,25-dihydroxy-24(E)-dehydro-24-homo-vitamin D₃ (1,25-(OH)₂-24-homo D₃), 19-nor-1,25-dihydroxy-21-epi-vitamin D₃ (19-nor-1,25-(OH)₂-21-epi-D₃), 1α hydroxy vitamin D₃ or 1α hydroxy vitamin D₂.

13. (New) The method of claim 11 wherein the vitamin D compound is selected from the group consisting of vitamin D compounds with the following formula:

$$X^{2O}$$
 Y^{1}
 Y^{2}
 Y^{2}
 Y^{2}
 Y^{2}

wherein X^1 and X^2 are each selected from the group consisting of hydrogen and acyl; wherein Y^1 and Y^2 are each selected from the group consisting of H, 0-aryl, 0-alkyl, aryl, and alkyl of 1-4 carbons, taken together to form an alkene having the

where B_1 and B_2 are selected from the group consisting of H, alkyl of 1-4 carbons and aryl, and can have a β or α configuration; $Z^1=Z^2=H$ or Z^1 and Z^2 together are $=CH_2$; and wherein R is an alkyl, hydroxyalkyl or fluoroalkyl group, or R represents the following side chain:

$$R^{8} \xrightarrow{21^{18}} R^{7} R^{4} \xrightarrow{R^{5}} R^{5}$$

$$R^{6} \qquad R^{3} R^{1}$$

wherein (a) may have an S or R configuration, R^1 represents hydrogen, hydroxy or O-acyl, R^2 and R^3 are each selected from the group consisting of alkyl, hydroxyalkyl and fluoralkyl, or, when taken together represent the group- $(CH_2)_m$ -wherein m is an integer having a value of

from 2 to 5, R⁴ is selected from the group consisting of hydrogen, hydroxy, fluorine, O-acyl, alkyl, hydroxyalkyl and fluoralkyl, wherein if R⁵ is hydroxyl or fluoro, R⁴ must be hydrogen or alkyl, R⁵ is selected from the group consisting of hydrogen, hydroxy, fluorine, alkyl, hydroxyalkyl and fluoroalkyl, or R⁴ and R⁵ taken together represent double-bonded oxygen, R⁶ and R⁷ taken together form a carbon-carbon double bond, R⁸ may be H or CH₃, and wherein n is an integer having a value of from 1 to 5, and wherein the carbon at any one of positions 20, 22, or 23 in the side chain may be replaced by an O, S, or N atom.

- 14. (New) The method of claim 11 wherein the oral administration is via diet.
- 15. (New) The method of claim 11 wherein the oral administration is at the concentration of between 0.005 μ g to 0.2 μ g per kilogram of patient weight per day.