FEUILLE 0 : RÉVISIONS

I EXERCICES TECHNIQUES

Exercice 1

Factoriser au maximum les expressions suivantes :

a.
$$4(x+1) - 3x(x+1) + (x+1)(5x-7)$$

b.
$$4x^2 + 4x - 3$$

c.
$$2x^2 - 4$$

d.
$$3x^2 + \frac{5}{4}x - \frac{1}{2}$$

e.
$$9x^2 - 6\sqrt{2}x + 2$$

f.
$$x^2 - e$$

g.
$$x^2 - x^4$$

h.
$$(3-3x)(2x-5)+4x-10-2x(2x-5)$$

i.
$$\left(x - \frac{1}{2}\right)^2 - \left(3x + \frac{1}{3}\right)^2$$

j.
$$x(x-2) + 3x^2 - 12$$

k.
$$(4x+1)(x-1) + \left(\frac{1}{4}x+4\right)(1-x) - 2x(x-1)$$

1.
$$4x^2 - 4x + 1 + (x+2)(2x-1)$$

$$\mathbf{m.} -1 + (1 + x - x^2)^2$$

n.
$$(x^2 + 2x - 8)(x + 1) + (x^2 + 2x + 1)(x - 2)$$

o.
$$(x-2)(x^3-1)-x^2(x^2-3x+2)$$

p.
$$x^6 - 1$$

q.
$$x^6 - 7x^3 - 8$$

Exercice 2

Simplifier le réel A dans les cas suivants :

a.
$$A = \frac{\frac{2}{3} + \frac{1}{4}}{\frac{1}{3} + \frac{2}{5}} \times \frac{1 - \frac{2}{3}}{\frac{1}{2} + \frac{1}{8}}$$

b.
$$A = \frac{\frac{4}{3} + \frac{5}{2}}{\frac{3}{4} + \frac{2}{5}} - \frac{2 + \frac{3}{4}}{\frac{1}{2} + \frac{4}{3}} - \frac{\frac{1}{3}}{2} - \frac{1}{\frac{3}{2}}$$

$$\mathbf{c.} \quad A = \frac{1 + \frac{1}{\sqrt{x}}}{\frac{1}{\sqrt{x}} + \frac{1}{x}} \quad \text{ où } x \in \mathbb{R}_+^*$$

d.
$$A = \sqrt{27} \times e^{-\frac{1}{2} \ln 3} \times \sqrt{e^{-2 \ln 2}}$$

d.
$$A = \sqrt{27} \times e^{-\frac{1}{2} \ln 3} \times \sqrt{e^{-2 \ln 2}}$$

e. $A = \frac{27^n \times 2 \times 4^n \times 3^{n-1}}{3 \times 2^{n+2} \times 9^n}$ où $n \in \mathbb{N}$

f.
$$A = 2^{n+1} - 2^n$$
 où $n \in \mathbb{N}$

g.
$$A = 4^{n+1} + 3 \times (2^n)^2 - 7 \times 2^{2n}$$
 où $n \in \mathbb{N}$

h.
$$A = \frac{\ln(12) - 3\ln(2)}{2\ln(3) - \ln(6)}$$

Exercice 3

Résoudre les équations suivantes :

a.
$$\frac{x-1}{x-2} - \frac{x-2}{x-1} = 0$$

b.
$$\frac{2}{x^2-1} - \frac{1}{x-1} = 0$$

c.
$$\ln(x+6) - \ln(x+2) = \ln(x)$$

$$\mathbf{d.} \ \ 2e^{4x} - 5e^{2x} + 2 = 0$$

e.
$$\sqrt{x+8} - 2\sqrt{x} = 1$$

f.
$$\sqrt{x^2 + x + 1} = 2x + 1$$

g.
$$x^x = 1$$

Exercice 4

Résoudre les inéquations suivantes :

a.
$$-x^2 + 2x + 3 \ge 0$$

b.
$$(x^2 - 4)(2x^2 + 5x - 3) \le 0$$

c.
$$\frac{x-7}{x-2} \le \frac{-7x+1}{x+2}$$

d.
$$(x+1)^2 > (x^2 + 2x - 1)^2$$

e.
$$\sqrt{2-x} - \sqrt{x+1} > 1$$

Exercice 5

Dériver les fonctions suivantes, où elles sont dérivables :

$$\mathbf{a.} \quad x \mapsto \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{x}$$

a.
$$x \mapsto \frac{e^x - e^{-x}}{x}$$

b. $x \mapsto \frac{2x^2 + x + 1}{x^2 - 2x}$

$$\mathbf{c.} \quad x \mapsto \frac{\sin x}{\cos x}$$

$$\mathbf{d.} \quad x \mapsto x \ln x \, \mathrm{e}^x$$

$$\mathbf{e.} \quad x \mapsto \ln\left(1 + \mathrm{e}^{x^2}\right)$$

f.
$$x \mapsto \ln(\ln x)$$

Exercice 6

Calculer les intégrales suivantes :

a.
$$\int_0^1 (t^3 + 3t^2 - t + 2) dt$$

b.
$$\int_0^{-\frac{1}{3}} (3t+1)^3 dt$$

$$\mathbf{c.} \quad \int_0^4 \frac{1}{\sqrt{2t+1}} \mathrm{d}t$$

d.
$$\int_0^1 \frac{t}{1+t^2} dt$$

e.
$$\int_0^1 \frac{t}{(1+t^2)^2} dt$$

$$\mathbf{f.} \quad \int_{1}^{\mathbf{e}} t \ln t$$

II EXERCICES DE REVISIONS

Exercice 7

a. Montrer que pour tout réel x on a :

$$e^x > x + 1$$

Faire une étude de fonction

b. En déduire que pour tout un entier naturel n supérieur à 2 on a :

$$1 + \frac{1}{n} \le e^{\frac{1}{n}}$$
 et $1 - \frac{1}{n} \le e^{-\frac{1}{n}}$

c. Puis que pour tout entier naturel n supérieur à 2, on a :

$$\left(1 + \frac{1}{n}\right)^n \le e \le \left(1 - \frac{1}{n}\right)^{-n}$$

Exercice 8

On considère la suite de Lucas (L_n) définie par

$$\begin{cases} L_0 = 2, L_1 = 1 \\ L_{n+2} = L_{n+1} + L_n \text{ pour tout } n \ge 0 \end{cases}$$

On note $\varphi = \frac{1+\sqrt{5}}{2}$ le nombre d'or.

a. Montrer que $\varphi^2 = \varphi + 1$, puis que $\frac{1}{\varphi^2} = 1 - \frac{1}{\varphi}$.

b. En déduire que pour tout $n \in \mathbb{N}$,

$$L_n = \varphi^n + \frac{(-1)^n}{\varphi^n}$$

Faire une récurrence forte

Exercice 9

On considère la famille (f_k) de fonctions définies sur $]-1,+\infty[$ par :

$$f_k(x) = x^k \ln(1+x)$$

Pour $k \in \mathbb{N}^*$, on note h_k la fonction définie sur $]-1,+\infty[$ par

$$h_k(x) = k \ln(1+x) + \frac{x}{1+x}$$

a. Etudier les variations et le signe des fonctions h_k .

b. Etudier les variations des fonctions f_k pour $k \ge 2$, ainsi que les limites aux bornes. Faire une disjonction de cas selon la parité de k.

Exercice 10

On considère l'ensemble $\mathscr F$ des fonctions f définies sur $\mathbb R_+^*$ à valeurs dans $\mathbb R_+^*$ vérifiant :

- f est dérivable en 1
- pour tous réels strictement positifs x et y, f(xy) = f(x)f(y)Soit $f \in \mathscr{F}$.
- **a.** Etablir que f(1) = 1.
- **b.** Soient $x_0 \in \mathbb{R}_+^*$ et $k \in]-x_0, +\infty[$. Montrer que :

$$f(x_0 + k) - f(x_0) = f(x_0) \left(f\left(1 + \frac{k}{x_0}\right) - f(1) \right)$$

c. Déduire de ce qui précède que f est dérivable sur \mathbb{R}_+^* et que pour tout réel x strictement positif :

$$\frac{f'(x)}{f(x)} = \frac{f'(1)}{x}$$

Etudier le taux d'accroissement.

d. Que dire de la fonction g définie sur \mathbb{R}_+^* par

$$g(x) = \ln(f(x)) - f'(1) \ln x$$

Montrer que g est constante.

e. Expliciter l'ensemble \mathscr{F}

Exercice 11

L'entier n étant au moins égal à 3, on note g_n la fonctions définie sur $[n, +\infty[$ par :

$$g_n(x) = (x - n) \ln x - x \ln(x - n)$$

- a. Résoudre dans $\mathbb N$ l'inéquation : $p+1 < \sqrt{2}p$; en déduire que pour tout $p \geq 5, p^2 < 2^p$. Pour la deuxième inégalité, faire une récurrence.
- **b.** Déterminer les signes de $g_n(n+1)$ et $g_n(n+2)$.
- c. Etudier les variations de g_n . Dériver 2 fois.
- **d.** Déterminer la limite de g_n lorsque x tend vers n.
- **e.** En remarquant que pour tout x > n,

$$g_n(x) = -n\ln(x) - x\ln\left(1 - \frac{n}{x}\right)$$

déterminer $\lim_{x\to+\infty} g_n(x)$.

f. Démontrer que pour $n \ge 3$ l'équation

$$x^{x-n} = (x-n)^x$$

a une seule solution notée x_n .

g. Démontrer que pour $n \geq 3$,

$$\frac{\ln(x_n)}{x_n} = \frac{\ln(x_n - n)}{x_n - n}$$

- **h.** Déterminer $\lim_{n \to +\infty} x_n$.
- i. En utilisant la question b, montrer que pour $n \geq 3$,

$$0 \le \frac{\ln(x_n - n)}{2} \le \frac{\ln(x_n - n)}{x_n - n}$$

Montrer séparément les deux inégalités, et utiliser le signe de g_n pour la seconde.

j. En déduire $\lim_{n\to+\infty} (x_n - n)$. Utiliser les questions **g** et **h**.

Exercice 12

Soit la suite (S_n) définie par

$$S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$$

- a. Calculer $\int_0^1 t^{p-1} \mathrm{d}t$, où p est un entier naturel supérieur à 2.
- ${\bf b.}\;\;$ En déduire que pour tout entier naturel n non nul, on a :

$$S_n = \int_0^1 \frac{1 - (-t)^n}{1 + t} dt$$

puis que:

$$|S_n - \ln 2| \le \frac{1}{n+1}$$

c. Conclure quant à la convergence et la limite de la suite (S_n) .