SUPERVISED MACHINE LEARNING: REGRESSION AND CLASSIFICATION

MACHINE LEARNING SPECIALIZATION

Linear Regression Model or Hypothesis fits a straight line function

$$f_{(w,b)}(X) = wX + b$$

where 'X' is the input training data, 'w' is the weight parameter and 'b' is the bias constant

- Linear Regression Model running on one variable input data is Univariate Linear Regression
- Training dataset 'X' has total 'm' data points where i^{th} data point denoted as (x^i, y^i)
- Linear Regression Model optimization finds weight 'w' and bias 'b' value that yields hypothesis value $\hat{y} = f_{(w,b)}(X) = wX + b$ close to original output 'Y'.
- Cost Function (Sum of Squared Error): $J_{(w,b)} = \frac{\sum (\hat{y} y)^2}{2m}$ calculates the prediction error
- Goal of Linear Regression Model is to minimize error J(w,b) which means finding 'w' and 'b' that reaches **global minima** of the squared error cost function (typically **convex function**)
- Cost Functions are chosen such that it is convex or has only one global minima

- Contour Plot shows the cost function J in terms of 'w' and 'b' to visualize minimum error
- Contour Plot is **not feasible** for linear regression with **higher number of 'w' parameter**

More than one local minimum

GRADIENT DESCENT

- Gradient Descent: Starting with 'w' and 'b' value zero, the optimization algorithm iteratively minimize cost function J to reach the global minima of cost function. Cost function can have multiple local minima which leads different path to valley from hill. Each step updates 'w' and 'b' with cost function derivative which works as slope or direction (left or right) to reach minima from hill. Run Gradient Descent until weight parameters converge or does not update much.
- Cost Function Derivates:

$$w = w - \alpha \frac{\partial}{\partial w} J_{(w,b)} = w - \frac{\alpha}{m} \sum (f_{(w,b)}^i - y^i) x^i$$

$$b = b - \alpha \frac{\partial}{\partial b} J_{(w,b)} = b - \frac{\alpha}{m} \sum (f_{(w,b)}^i - y^i)$$

- α is the **learning rate** provides the **fixed** step size while climbing down from hill
- Very small learning rate lpha needs more iteration to reach minimum J
- Very large learning rate α overshoot minima or diverge from minima
- Batch Gradient Descent: Every step of iteration utilizes all input data points
- Mini Batch Gradient Descent: Every step of iteration utilizes small amount of input data

MULTIPLE LINEAR REGRESSION

- Multiple Linear Regression performs regression on input data with multiple parameters or features which means the input data is multi dimensional
- $x_i = j^{th}$ feature of input data X, $x^i = i^{th}$ example of input data X, n = # of features, X = [m,n]
- Multiple Linear Regression Model Hypothesis:

$$f_{(w,b)}(X) = w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_n x_n + b = np. dot(x, w) + b$$

- Python numpy vectorization perform addition and multiplication in parallel
- Vectorization is efficient as it scales to large data calculation as follows

$$X = [m, n], Y = [m, 1], W = [n, 1], b$$

$$Hypothesis: f_{wb} = np. dot(X, W) + b, \qquad Cost: J_{wb} = \frac{np. sum((f_{wb} - Y)^2)}{2m}$$

$$Derivates: dj_{db} = \frac{np. sum(f_{wb} - Y)}{m}, dj_{wb} = \frac{np. dot(X.T, (f_{wb} - Y))}{m}$$

FEATURE SCALING

• Normal Equation: Closed form equation to solve the weights of Linear Regression

Weights:
$$W = (X^T X)^{-1} \cdot (X^T Y)$$
, $Cost: f_{wb} = \frac{(XW - Y)^T (XW - Y)}{2m}$

- Normal Equation solution runs slow when number of feature n is large
- Feature Scaling: Scale features to plot uniformly in specific or comparable range which makes the contour plot of features a circle. Scaling prevents feature bias and helps converge faster. Scale large feature values comparable to other smaller features.
- Scale feature with max value yield $0 < \frac{x}{maxValue} < 1$, acceptable range [-3, 3]
- Mean Normalization: Scale features $\frac{x-\mu}{\max \min}$ to center around zero with in range -1 and +1
- Z-score Normalization: Scale features $\frac{x-\mu}{\sigma}$ to center around zero with in range -3 and +3

Feature Scaling

Learning Rate

- Gradient Descent Convergence: Learning Curve plot of cost J in terms of iteration shows cost J
 decreasing over iteration.
- Auto converge test can be performed by check decrease of cost J less than constant $\epsilon=0.001$
- Learning curve creates wiggle or diverge or increase of cost J if learning rate α is very large
- Choose values of learning rate α from 0.001 to 1 increasing by 3 fold as 0.001, 0.003, 0.01, 0.03, 0.1
- Feature Engineering: Choose custom features by transforming or combining original features EX: Take area as a new feature for predicting housing price from given input length and width
- Polynomial Regression: Polynomial function of 2nd, 3rd, 4th or 5th degree is chosen as hypothesis to fit curve or non-linear function for the input data

$$f_{(w,b)}(X) = w_1 x_1 + w_2 x_2^2 + w_3 x_3^3 + b \text{ or } f_{(w,b)}(X) = w_1 x_1 + w_2 \sqrt{x_2} + b$$

• Feature scaling is needed for **polynomial regression** to keep features in comparable range

