ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/243950673

A glass formation study of aqueous tetraalkylammonium nitrate solutions

ARTICLE in JOURNAL OF SOLUTION CHEMISTRY · MARCH 1996

Impact Factor: 1.18 · DOI: 10.1007/BF00972525

CITATIONS READS
5 12

2 AUTHORS, INCLUDING:

Hitoshi Kanno National Defense Academy...

135 PUBLICATIONS **2,062** CITATIONS

SEE PROFILE

Available from: Hitoshi Kanno Retrieved on: 31 January 2016

A Glass Formation Study of Aqueous Tetraalkylammonium Nitrate Solutions

A. Ohnishi1 and H. Kanno1,*

Received July 18, 1995; revised January 31, 1996

The glass-forming composition regions of aqueous tetraalkylammonium nitrate solutions (alkyl = ethyl and n-propyl) were determined by a simple DTA method with a cooling rate of about 600 K-min⁻¹. The glass transition temperatures $T_{\rm g}$ of these solutions vary in a different manner from those for simple inorganic salt solutions such as aqueous LiCl, MgCl₂, and AlCl₃ solutions. Liquid-liquid immiscibilities are observed in these solutions at low temperatures.

KEY WORDS: Glass formation; aqueous solution; tetraalkylammonium nitrate; hydrophobic interaction; glass transition temperature.

1. INTRODUCTION

There have been a relatively large number of studies of aqueous tetraalky-lammonium salt solutions of dilute and medium salt concentrations at ordinary temperatures⁽¹⁻⁵⁾ but only a few studies devoted to explore their thermodynamic properties at low temperatures.^(6,7) In recent papers,^(7,8) it is pointed out that hydrophobic interaction plays an important role in the glass formation of aqueous tetraalkylammonium chloride and bromide solutions.

Although T_g variation of an aqueous tetramethylammonium chloride solution with salt concentration is similar to that of an aqueous LiCl solution, those of other R₄NCl solutions (R = C₂H₅ and n-C₃H₇, X = Cl, Br) are totally different, reflecting the hydrophobic interactions between R₄N⁺ ions and water molecules.⁽⁸⁾ Therefore, it would be interesting and important to study the glass-forming behavior of aqueous R₄NNO₃ solutions since some

¹Department of Chemistry, National Defense Academy, Yokosuka, 239 Kanagawa, Japan.

280 Ohnishi and Kanno

new interesting information will be gained about the hydrophobic interaction in concentrated aqueous solutions.

2. EXPERIMENTAL

Aqueous tetraalkylammonium nitrate solutions were prepared by converting aqueous R_4NNO_3 solutions ($R = CH_3$, C_2H_5 , n- C_3H_7 , n- C_4H_9) into the nitrate solutions using anion exchange resin Dowex 1-X8 ($100 \sim 200$ mesh). An aqueous R_4NCl solution was passed over the anion exchange resin Dowex 1-X8 of the nitrate form and the eluent was collected. As no chloride ion was detected in the eluent, it was concluded that the ion-exchange was complete enough.

Adjustment of the salt concentration of the R_4NNO_3 solution was made by heating the eluent at temperature below $100^{\circ}C$ on a hot plate to a highly concentrated solution and adding distilled water to the concentrated R_4NNO_3 solution to a predetermined salt concentration. The concentration of the prepared sample solutions was expressed by Y (= mol of water per mol of nitrate). The salt concentration was checked by the acid-base titration after the solution was passed over the anion exchange resin Dowex 1-X8 of the OH-form. We estimated that the accuracy of the solution concentration was better than $\pm 2\%$.

A simple DTA technique was employed to measure the glass transition temperatures $T_{\rm g}$ of these aqueous solutions. An aliquot of the sample solution in a 2mm inner-diameter glass tube with an end sealed, in which an alumel-chromel thermocouple junction was inserted, was vitrified in liquid nitrogen. The cooling rate of the solution was approximately 600 K-min⁻¹. Glass formation was checked visually as transparency of the solution is a good indicator for vitrification. Any incomplete vitrification is always associated with a loss of transparency and is easily detected visually. Benzene was used as a reference material. DTA measurements were carried out at a heating rate of about 5 K-min⁻¹ in the glass transition temperature region. Reproducibility of the $T_{\rm g}$ determinations is better than $\pm 1^{\circ}{\rm C}$ and the accuracy of the $T_{\rm g}$ values was estimated to be about $\pm 2^{\circ}{\rm C}$ by the determination of the melting points of several organic compounds (toluene, methyl alcohol, and chloroform).

3. RESULTS AND DISCUSSION

Among four aqueous tetraalkylammonium nitrate solutions, only tetraethylammonium and tetrapropylammonium nitrate solutions are glass-forming in high salt concentration regions. As the solubility of tetramethylammonium nitrate is low (approximately 7.9mol-kg⁻¹⁽⁹⁾ as compared with that (19.06 mol-kg⁻¹) of tetramethylammonium chloride, (10) it is expected that the salt concentration of the saturated (CH₃)₄NNO₃ solution is not high enough to allow the solution to be glass-forming at a cooling rate of about 600 K-min⁻¹. As already reported, an aqueous (CH₃)₄NCl solution is glass-forming between Y = 4 and Y = 7. It is interesting to note that an aqueous LiCl solution is glass-forming between Y = 3 to about Y = 11 but an aqueous LiNO₃ solution is only glass-forming about Y = 8. It is well known that aqueous solution of hygroscopic salts are generally glass-forming in their high salt concentration regions.

Glass formation was observed between Y = 3.0 and Y = 9.5 for the (C₂H₅)₄NNO₃ solution. The double glass transition phenomenon, which is the result of a phase separation due to a liquid-liquid immiscibility, was observed between Y = 8.0 and Y = 9.5. The typical DTA traces are shown in Fig. 1. As is evident from the comparison of the DTA traces for the glassy Y = 7.5 and Y = 8.0, there are large differences (1) a large T_g shift (T_g drops rather discontinuously going from the glassy Y = 7.5 solution to the glassy Y = 8.0 solution), and (2) a large T_{c1} peak with several small exothermic peaks in the Y = 7.5 solution while two large crystallization peaks in the Y = 8.0 solution. These differences clearly indicate that there occurred a large structural change between the Y = 7.5 and Y = 8.0 solutions. The phase separation due to a liquid-liquid immiscibility is the cause for the structural change in the quenched Y = 8.0 solution. Although there is some difficulty in observing the second glass transition because of its overlap with the first crystallization peak, we could detect a downward C_p inflection at -92.5° C (which we ascribed to T_{g2}) in the following way: just after recording the first glass transition ($T_{g1} = -109^{\circ}$ C) and crystallization peak ($T_{g1} = -105^{\circ}$ C), the sample was rapidly requenched to liquid nitrogen temperature and then we observed the second glass transition ($T_{\rm g2} = -92.5^{\circ}$ C) clearly in the second DTA trace. On the other hand, no glass transition-like C_p shift was observed in the second DTA trace when the glassy Y = 7.5 solution was requenched just after observing the glass transition and the first exothermic peak T_{gl} at -90°C. Therefore, we can conclude that observation of two glass transitions in the quenched Y = 8.0 solution is ascribed to a liquid–liquid immiscibility. As the temperature is lowered, the homogeneous liquid solution becomes unstable and splits into two liquid phases (a water-rich phase and a salt-rich viscous one) to maintain thermodynamic stability. These two immiscible liquid phases are readily vitrified in the concentration range between Y =8.0 and Y = 9.5 of the mother solution. Figure 2 shows the summarized T_{e} values for the (C₂H₅)₄NNO₃ solution as a function of Y. As a typical T_g variation with Y, the T_g results for aqueous LiCl solution are shown in the inset of Fig. 2. T_g goes down in a downward concave way with increase in Y. On the other hand, T_g of the $(C_2H_5)_4NNO_3$ solution falls rather linearly

Fig. 1. DTA traces for glassy aqueous $(C_2H_5)_4NNO_3$ solutions of Y=7.5 and 8.0. (a) and (b): DTA traces for the glassy $(C_2H_5)_4NNO_3$ solutions of Y=7.5. (c) and (d): DTA traces for the glassy $(C_2H_5)_4NNO_3$ solutions of Y=8.0. In the trace (b), it is confirmed that there is no second glass transition. Three exothermic peaks at -78, -69 and -63 °C maybe ascribed to the phase transitions associated with crystallized $(C_2H_5)_4NNO_3$ hydrates.

with Y, and then discontinuously drops at Y = 8.0 with the appearance of the second glass transition $T_{\rm g2}$, indicating the abrupt compositional change of the solution. The $T_{\rm g2}$ value at Y = 8 shows that the salt concentration of the salt-rich phase should be around Y = 4. The $T_{\rm g1}$ value of the water-rich phase falls linearly down to about $-120^{\circ}{\rm C}$ with increasing of Y in the mother solution and then the glass formation terminated due to the insufficient salt concentration of the water-rich phase as clearly shown by the opaqueness of

Fig. 2. The glass-forming composition region for an aqueous $(C_2H_5)_4NNO_3$ solution. The inset shows the glass-forming composition region for an aqueous LiCl solution. (T_g data from Ref. 11 and our unpublished data.)

the quenched sample solution. In this connection, it is important to point out that the salt-rich phase is still glass-forming as evidenced by the high $T_{\rm g2}$ value. Comparison of the $T_{\rm g}$ results for the LiCl and $(C_2H_5)_4NNO_3$ solution indicates that $T_{\rm g}$ of the later solution is much higher than the former one at the same Y value. This behavior is common for all the $(C_2H_5)_4NX$ solutions $(X = Cl, Br and NO_3)$ as discussed later in more detail.

As is seen in Fig. 3, the glass-forming composition region is much wider for the $(n-C_3H_7)_4NNO_3$ solution than for the $(C_2H_5)_4NNO_3$ solution. An interesting feature is that there is a wide composition region where T_g is almost invariant despite of the salt concentration changing from Y=4 to Y=14. The similar behavior has been observed for $(n-C_3H_7)_4NC1$ and $(n-C_3H_7)_4NBr$ solutions.⁽⁸⁾ As the viscosity of a glass-forming liquid is well expressed by the so-called WLF formula⁽¹²⁾

$$\eta = \eta_0 \exp[A/(T - T_0)]$$

284 Ohnishi and Kanno

Fig. 3. The glass-forming composition region for an aqueous (n-C₃H₇)₄NNO₃ solution.

where η is the viscosity at T, T_0 is a constant and is considered to be near $T_{\rm g}$, and $\eta_{\rm o}$ and A are constants for the system. It is inferred from this formula that the isothermal viscosity of the (n-C₃H₇)₄NNO₃ solution is invariant from Y = 3 to $Y = \sim 14$ at temperatures just above T_g . It is considered that clathrate-like structure formation is the major cause for the invariant T_g behavior with the salt concentration. As an $(n-C_3H_7)_4N^+$ ion is smaller than an $(n-C_4H_9)_4N^+$ ion, which is well known for its stable clathrate hydrate formation, water structure around an $(n-C_3H_7)_4N^+$ ion should resemble the structure of an aqueous (n-C₄H₉)₄NCl solution. It is also expected that the structure of the (n-C₃H₇)₄NNO₃ solution may resemble those of molten states of the simple clathrate such as (CH₃)₃CNH₂/9(3/4)H₂O and (C₂H₅)₂NH₂/6(2/ 3)H₂O. The clathrate-like structure might develop with increase in water content by sharing of water molecules with adjacent cage-like structures. The extensive sharing of water molecules between adjacent clathrate-like structures should develop in the constant T_g region from Y = 3 to Y = 14. The normal T_g behavior with salt concentration is that T_g falls smoothly with

increase in water content, as well represented by the $T_{\rm g}$ curve of an aqueous LiCl solution (the inset in Fig. 1).

Above Y=14, two glass transitions are observed, indicating that a phase separation occurred in the quenching process. High $T_{\rm g2}$ value suggests that the salt concentration of the phase-separated salt-rich phase should be higher than that of the solution of Y=4. The rapid $T_{\rm g}$ rise toward higher salt concentration (decreasing in Y value) is a common phenomenon for every aqueous binary solution. Thus, if an aqueous $(n\text{-}C_3H_7)_4\text{NNO}_3$ solution of Y<4 was vitrified, $T_{\rm g}$ should be higher than -75°C . The rather invariant $T_{\rm g2}$ value for the solution of Y>22 indicates that the salt content in the salt-rich phase is in the 4< Y<14 range of the mother solution. Therefore, it is expected that the salt-rich phase will behave the same way as the mother solution when we quenched the solution with changing the salt concentration.

Figure 4 shows the summarized $T_{\rm g}$ data for tetraalkylammonium salt solutions so far reported together with the $T_{\rm g}$ data obtained in this work.

Fig. 4. The summarized T_g data for glassy aqueous R₄NX solutions. (x:(CH₃)₄NCl, \blacksquare :(C₂H₅)₄NNO₃, \bigcirc :(n-C₃H₇)₄NCl, \square :(n-C₃H₇)₄NBr, \triangle :(n-C₃H₇)₄NNO₃)

286 Ohnishi and Kanno

Here all the T_{g2} data are excluded from plottings for avoiding complexity. As to the $(CH_3)_4NX$ solutions $(X = Cl, Br \text{ and } NO_3)$ only the chloride solutions is glass-forming so that it is impossible to discuss the anionic effect on the glass-forming behavior. Comparison of the T_g results for the (C₂H₅)₄NX solutions shows that the T_g values are in the order: T_g (chloride) $> T_g$ (bromide) $> T_{\rm g}$ (nitrate), at the same salt concentration. On the other hand, the $T_{\rm g}$ values for aqueous inorganic salt solutions are in the order: $T_g(\text{nitrate}) > T_g(\text{chloride})$ $> T_{\rm g}$ (bromide). There is a clear tendency that $T_{\rm g}$ becomes lower for an aqueous solution of a larger structure breaking ion. It is difficult, at present, to give a plausible explanation about the low T_g values for the (C₂H₅)₄NNO₃ solution. However, it is interesting to note that the T_g values of $(C_2H_5)_4NX$ solutions are in the same increasing order as viscosity B coefficient. (1) As is evident from Fig. 4, the anionic effect becomes small for the T_g behavior of the $(C_2H_5)_4NX$ solutions as all the solutions give similar T_g values. As tetrapropylammonium ion is much larger than an X^- ion ($X^- = Cl^-$, $Br^$ and NO₃⁻), solution properties are predominantly governed by tetrapropylammonium ions. This behavior is in accord with the postulate that the repulsive term in intermolecular (interionic) potential plays a dominant role in determing liquid structure. (13,14)

Another notable feature is the $T_{\rm g}$ rise with increase in alkylchain length, when the $T_{\rm g}$ values are compared at the same salt concentration. The main cause for the $T_{\rm g}$ rise can be resorted to the increase of the hydrophobic effect together with the clathlate-like structure formation in liquid structure. In this connection, high $T_{\rm g}$ values for the R₄NX solutions (R = C₂H₅ and n-C₃H₇, X = Cl, Br and NO₃) as compared with that for an aqueous LiCl solution are also ascribed to the hydrophobic interaction in these R₄NX solutions. In fact, as the hydrophobic interaction is small in the (CH₃)₄NCl solution, $T_{\rm g}$ is almost the same as that for the LiCl solution above Y > 6. Finally, it is important to point out once more that despite of hygroscopic nature of $(n-C_4H_9)_4NX$, none of their aqueous solutions is glass-forming. These salts form very stable clathrate hydrates.⁽³⁾ High tendency of the clathrate formation may prevent these aqueous solutions from vitrification.

REFERENCES

- R. L. Kay, in Water: A Comprehensive Treatise F. Franks, ed, Vol. 3, Chap. 6, (Plenum Press, New York, 1973).
- 2. P. R. Philip and C. Jolicoeur, J. Phys. Chem. 77, 3071 (1973).
- 3. W. Y. Wen, in Water and Aqueous Solutions; Structure, Thermodynamics and Transport Processes R. A. Horn, ed. (Wiley-Interscience, New York, 1972).
- 4. J. L. Green, M. G. Sceats, and A. R. Lacey, J. Chem. Phys. 87, 3603 (1987).
- 5. E. Hawlicka and R. Grabowski, Z. Naturforsch 48, 906 (1993).
- 6. H. Kanno, K. Shimada, and T. Katoh, Chem. Phys. Lett. 103, 219 (1983).

- 7. H. Kanno, K. Shimada, K. Yoshino, and T. Iwamoto, Chem. Phys. Lett. 112, 242 (1984).
- 8. H. Kanno, K. Shimada, and T. Katoh, J. Phys. Chem. 93, 4981 (1989).
- 9. A. Ohnishi and H. Kanno, unpublished data.
- 10. G. E. Boyd, J. Phys. Chem. 68, 911 (1964).
- 11. C. A. Angell and E. J. Sare, J. Chem. Phys. 52, 1058 (1970).
- 12. M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).
- 13. M. C. Longue-Higgins and B. Widom, Mol. Phys. 8, 549 (1964).
- D. Chandler and J. D. Weeks, *Phys. Rev. Lett.* 25, 149 (1970); H. C. Anderson, D. Chandler, and J. D. Weeks, *J. Chem. Phys.* 56, 3812 (1978).