Binomial Expansion

Edward Jex

November 5, 2019

Binomial Expansion is a way of easily expanding brackets with two terms to a power. The expansion is given by the general formula:

$$(x+y)^n = \sum_{r=0}^n {^nC_r \cdot x^{n-r} \cdot y^r}$$

Note that since pascals triangle is symmetrical it doesn't matter which term way around the powers are. where $\binom{n}{c}$ is equivalent to ${}^{n}C_{r}$ and defined as:

$$\binom{n}{c} = \frac{n!}{(n-r)! \cdot r!}$$

Example 1:

$$(2+x)^4 = ({}^4C_0 \cdot 2^4 \cdot x^0) + ({}^4C_1 \cdot 2^3 \cdot x^1) + ({}^4C_2 \cdot 2^2 \cdot x^2) + ({}^4C_3 \cdot 2^1 \cdot x^3) + ({}^4C_4 \cdot 2^0 \cdot x^4)$$

$$= (1 \cdot 16 \cdot 1) + (4 \cdot 8 \cdot x) + (6 \cdot 4 \cdot x^2) + (4 \cdot 2 \cdot x^3) + (1 \cdot 1 \cdot x^4)$$

$$= x^4 + 8x^3 + 24x^2 + 32x + 16$$

Example 2: Find the x^3 coefficient in $(3 + 2x)^5$: let n = 5, r = 3

$$3^{rd} = {}^{5}C_{3} \cdot 3^{5-3} \cdot (2x)^{3}$$
$$= 10 \cdot 3^{2} \cdot 8x^{3}$$
$$= 720x^{3}$$

 $\therefore coefficent = 720$

Example 3: Find the constant term in $(x^2 + \frac{1}{x})^9$:

For the two terms to cancel out, the power of $\frac{1}{x}$ must be twice the power of x^2 so that when they are multiplied together they produce $x^0=1$, meaning the term is constant or independent \implies We want the term where x^2 is to the power of 3 and $\frac{1}{x}$ is to the power of 6 \implies constant term is:

$$t = {}^{9}C_{3} \cdot (x^{2})^{3} \cdot \frac{1}{x}^{6}$$
$$= 84 \cdot x^{6} \cdot x^{-6}$$
$$= 84$$