Advanced simulations

Walter Van Herck¹

¹Jülich Centre for Neutron Science at MLZ

BornAgain School and User Meeting, 2018

Overview

Time resolved GISAS

Deep learning with BornAgain

Rotating square lattice movie

A sample with cylinders in a square lattice arrangement is rotated during the measurement along the z-axis.

Deep learning with BornAgain

- Motivation
- Neural networks and deep learning
- Data generation
- Training
- Validation

Motivation

Hexagonally arranged CoFe₂O₄ nanoparticles.

A. Qdemat, E. Kentzinger, G. Portale, M. Ganeva, U. Rücker, Th. Brückel

Despite the good correspondence between data and simulation, it is hard to state that all orientation information is captured by it.

Motivation

- A 120 parameter fit is unfeasable.
- We investigate if deep learning might help analyzing this type of complex data.

Neural networks

A neural network consists of a succession of layers that combine a linear mapping with some non-linear function.

Data generation

Generate data for training/validation:

- Input: scattering image
- label: distribution of lattice orientations
- Using BornAgain python API
- 50k training, 10k validation examples
- Fixed: picture size, alignment, lattice lengths, peak shape
- Maximum 5 non-zero probabilities for angles in [0, 0.5, 1.0, ..., 60] degrees
- Input data shifted and rescaled to standard normal distribution

Training

A neural network is trained by minimizing the *difference* between the predicted and the real distribution of lattice orientations.

Validation

