Data Hazards, Data forwarding & SuperScalar

Hung-Wei Tseng

Data hazards

Data hazards

- An instruction currently in the pipeline cannot receive the "logically" correct value for execution
- Data dependencies
 - The output of an instruction is the input of a later instruction
 - May result in data hazard if the later instruction that consumes the result is still in the pipeline

Data hazards

```
① movl (%rdi), %eax
② movl (%rsi), %edx
③ movl %edx, (%rdi)
④ movl %eax, (%rsi)
```


%edx does not have our desired value

Solution 1: Let's try "stall" again

 Whenever the input is not ready when the consumer is decoding, just stall — the consumer stays at ID.

we have the value for %edx already! Why another cycle?

```
WB
          (%rdi),
                                             M3
                                                 M4
movl
                    %eax
                                     M1
                                                          WB
                                             M2
                                                  M3
          (%rsi), %edx
                                         M1
movl
                                     IF
                                              ID
                                                  ID
                                                      ID
                                                           ID
                                                               M1
                                                                   M2
          %edx, (%rdi)
                                         ID
movl
                                         IF
                                                  IF
                                                       IF
                                                           IF
                                                               ID
                                                                   M1
                                                                       M2
                                                                           M3
          %eax, (%rsi)
movl
```

4 additional cycles

Solution 1: Let's try "stall" again

 Whenever the input is not ready when the consumer is decoding, just stall — the consumer stays at ID.

```
① movl (%rdi), %eax
② movl (%rsi), %edx
③ movl %edx, (%rdi)
④ movl %eax, (%rsi)
```

we have the value for %edx already!
Why another cycle?

	IF	ID	ALU/BR/M1	M2	M3	M4	WB
1	(1)						
2	(2)	(1)					
3	(3)	(2)	(1)				
4	(4)	(3)	(2)	(1)			
5	(4)	(3)		(2)	(1)		
6	(4)	(3)			(2)	(1)	
7	(4)	(3)				(2)	(1)
8	(4)	(3)					(2)
9		(4)	(3)				
10			(4)	(3)			
11				(4)	(3)		
12					(4)	(3)	
13						(4)	(3)
14							(4)

Solution 2: Data forwarding

 Add logics/wires to forward the desired values to the demanding instructions

Data "forwarding"

Solution 2: Data forwarding

 Whenever the input is not ready when the consumer is decoding, just stall — the consumer stays at ID.

```
① movl (%rdi), %eax
② movl (%rsi), %edx
③ movl %edx, (%rdi)
④ movl %eax, (%rsi)
```

	IF	ID	ALU/BR/M1	M2	М3	M4	WB
1	(1)						
2	(2)	(1)					
3	(3)	(2)	(1)				
4	(4)	(3)	(2)	(1)			
5	(4)	(3)		(2)	(1)		
6	(4)	(3)			(2)	(1)	
7	(4)	(3)	data fo	rwa	rding_	(2)	(1)
8		(4)	(3)				(2)
9			(4)	(3)			
10				(4)	(3)		
11					(4)	(3)	
12						(4)	(3)
13							(4)
14							

Another code example

```
for(i = 0; i < count; i++) {
    s += a[i];
.L3:
                 (%rdi), %ecx
        movl
1
                %ecx, %eax
        addl
2
        addq
                 $4, %rdi
3
                %rdx, %rdi
4
        cmpq
        jne
                 .L3
(5)
        ret
```

	IF	ID	ALU/BR/M1	M2	М3	M4/XORL	WB
1	(1)						
2	(2)	(1)					
3	(3)	(2)	(1)				
4	(3)	(2)		(1)			
5	(3)	(2)			(1)		
6	(3)	(2)				(1)	
7	(4)	(3)	(2)				(1)
8	(5)	(4)	(3)	(2)			
9		(5)	(4)	(3)	(2)		
10			(5)	(4)	(3)	(2)	
11				(5)	(4)	(3)	(2)
12					(5)	(4)	(3)
13						(5)	(4)

Compiler optimization

.L3:

ret

1

2

	IF	ID	ALU/BR/M1	M2	М3	M4/XORL	WB
1	(1)						
2	(2)	(1)					
3	(3)	(2)	(1)				
4	(3)	(2)	(2)	(1)			
5	(3)	(2)		(2)	(1)		
6	(4)	(2)			(2)	(1)	
7	(5)	(4)	(3)			(2)	(1)
8		(5)	(4)	(3)			(2)
9			(5)	(4)	(3)		
10				(5)	(4)	(3)	
11					(5)	(4)	(3)
12						(5)	(4)
13							(5)

Compiler optimization

```
for(i = 0; i < count; i++) {
    s += a[i];
           (%rdi), %ecx
  movl
           $4, %rdi
  addq
           %ecx, %eax
  addl
           %rdx, %rdi
  cmpq
           .L3
  jne
  ret
```

.L3:

1

2

3

4

(5)

6

addq is not depending on movl and ALU is free! can we execute them together?

If CPI==1 the limitation?

Data "forwarding"

Data "forwarding"

Super Scalar

Super Scalar

Superscalar

- Since we have many functional units now, we should fetch/decode more instructions each cycle so that we can have more instructions to issue!
- Super-scalar: fetch/decode/issue more than one instruction each cycle
 - Fetch width: how many instructions can the processor fetch/decode each cycle
 - Issue width: how many instructions can the processor issue each cycle
- The theoretical CPI should now be

1

min(issue width, fetch width, decode width)

Superscalar: fetch/issue width == 2, theoretical CPI = 0.5

.L3:

1

2

3

4

(5)

6

```
for(i = 0; i < count; i++) {
      s += a[i];
                                                                   Everything we need
                                                          M1/ALU/BR for 4) is ready here WB
                                          IF
                                                    ID
                                                                       Why can't we
                                         (1) (2)
                (%rdi), %ecx
    movl
                                                                        execute it?
                                         (3)(4)
                                                   (1) (2)
    addq
                $4, %rdi
                                          (5)
                                                   (3)(4)
                                                            (1)(2)
                %ecx, %eax
    addl
                                          (5)
                                                   (3)(4)
                                                                     (1)(2)
                %rdx, %rdi
    cmpq
                                    5
                                          (5)
                                                   (3)(4)
                                                                           (1)(2)
                 .L3
    jne
                                    6
                                          (5)
                                                   (3)(4)
                                                                                 (1)(2)
                                                    (5)
                                                            (3)(4)
                                                                                        (1)(2)
    ret
                                    8
                                                             (5)
                                                                     (3)(4)
                                    9
                                                                      (5)
                                                                           (3)(4)
                                    10
                                                                            (5)
                                                                                 (3)(4)
                                    11
                                                                                   (5)
                                                                                        (3)(4)
                                    12
                                                                                         (5)
```

If we loop many times (assume perfect predictor)

1	movl	(%rdi), %ecx		IF	ID	M1/ALU/BR	M2 F	v&\3/t	hiM& v	ve\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
2	addq	\$4, %rdi	1	(1) (2)						dy here
3	addl	%ecx, %eax	2	(3)(4)	(1) (2)					
		-	3	(5)(6)	(3)(4)	(1)(2)		wn	y can	t we
	cmpq	%rdx, %rdi	4	(5)(6)	(3)(4)	7	(1)(2)	ех	ecute	e it?
5	jne	.L3	5	(5)(6)	(3)(4)			(1)(2)		
6	movl	(%rdi), %ecx	6	(5)(6)	(3)(4)				(1)(2)	
7	addq	\$4, %rdi	7	(7)(8)	(5)(6)	(3)(4)				(1)(2)
	addl	%ecx, %eax	8	(9)(10)	(7)(8)	(5)(6)	(3)(4)			
			9	(9)(10)	(8)	(7)	(5)(6)	(3)(4)		
_	cmpq	%rdx, %rdi	10	(9)(10)	(8)		(7)	(5)(6)	(3)(4)	
10	jne	.L3	11	(9)(10)	(3)			(7)	(5)(6)	(3)(4)
(11)	movl	(%rdi), %ecx	12	(11) (12)	(9)(10)	(8)			(7)	(5)(6)
12		\$4, %rdi		(11) (12)	(10)	(9)	(8)			(7)
	•	VVII	y ca	an't I sta	(11) (12)	(10)	(9)	(8)		
_	addl	%ecx, %eax	ina	(6) & (1		(11) (12)	(10)	(9)	(8)	
(14)	cmpq	%rdx, %rdi	5				(11)(12)	(10)	(9)	(8)
(15)	ine	.L3						(11)	(10)	(9)

58

Limitations of Compiler Optimizations

- If the hardware (e.g., pipeline changes), the same compiler optimization may not be that helpful
- The compiler can only optimize on static instructions, but cannot optimize dynamic instruction
 - Compiler cannot predict branches
 - Compiler does not know if cache has the data/instructions

What do you need to execution an instruction?

- Whenever the instruction is decoded put decoded instruction somewhere
- Whenever the inputs are ready all data dependencies are resolved
- Whenever the target functional unit is available

Dynamic instruction scheduling/ Out-of-order (OoO) execution

What do you need to execution an instruction?

- Whenever the instruction is decoded put decoded instruction somewhere
- Whenever the inputs are ready all data dependencies are resolved
- Whenever the target functional unit is available

Scheduling instructions: based on data dependencies

 Draw the data dependency graph, put an arrow if an instruction depends on the other.

```
(%rdi), %ecx
① movl
        $4, %rdi
② addq
3 addl
         %ecx, %eax
          %rdx, %rdi
(4) cmpq
⑤ jne
       .L3

    movl (%rdi), %ecx

② addq $4, %rdi

    addl %ecx, %eax

          %rdx, %rdi

    cmpq

10 jne
          .L3
```


- In theory, instructions without dependencies can be executed in parallel or out-of-order
- Instructions with dependencies can never be reordered

False dependencies

- We are still limited by false dependencies
- They are not "true" dependencies because they don't have an arrow in data dependency graph
 - WAR (Write After Read): a later instruction overwrites the source of an earlier one
 - 2 and 1, 6 and 3, 7 and 4, 7 and 6
 - WAW (Write After Write): a later instruction overwrites the output of an earlier

one

• 6 and 1

False dependencies

- We are still limited by false dependencies
- They are not "true" dependencies because they don't have an arrow in data dependency graph
 - WAR (Write After Read): a later instruction overwrites the source of an earlier one
 - 2 and 1, 6 and 3, 7 and 4, 7 and 6
 - WAW (Write After Write): a later instruction overwrites the output of an earlier

one

• 6 and 1

Limitations of Compiler Optimizations

- If the hardware (e.g., pipeline changes), the same compiler optimization may not be that helpful
- The compiler can only optimize on static instructions, but cannot optimize dynamic instructions
- Compilers are limited by the registers an ISA provides

Recap: False dependencies

- We are still limited by false dependencies
- They are not "true" dependencies because they don't have an arrow in data dependency graph
 - WAR (Write After Read): a later instruction overwrites the source of an earlier one
 - 2 and 1, 6 and 3, 7 and 4, 7 and 6
 - WAW (Write After Write): a later instruction overwrites the output of an earlier one

We need to give each

(%rdi), %ecx

What if we can use more registers...

```
(%rdi), %ecx, %t0
          (%rdi), %ecx
                            ① movl
① movl
          $4, %rdi
                            ② addq
                                       $4, %rdi, %t1
② addq
3 addl
          %ecx, %eax
                            3 addl
                                       %t0, %eax, %t2
          %rdx, %rdi
                                      %rdx, %t1
@ cmpq
                            @ cmpq
⑤ jne
                            ⑤ jne
          .L3
                                       .L3
          (%rdi), %ecx
                            ▶ movl
                                       (%t1), %t3

  movl

                                       $4, %t1, %t4
g addg
          $4, %rdi
                            g addq
          %ecx, %eax
                                       %t2, %t3, %t5

  addl

  addl
          %rdx, %rdi
                                      %rdx, %t4
© cmpq
                            © cmpq
10 jne
          .L3
                            10 jne
                                       .L3
```

All false dependencies are gone!!!

Register renaming

Register renaming 2-issue: Only 2 of them can have instructions at the same cycle

75

rdi

rdx

In use

P8

P9

P10

1	movl	(%rdi), %ecx
2	addq	\$4, %rdi
3	addl	%ecx, %eax
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx
7	addq	\$4, %rdi
3	addl	%ecx, %eax
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx
12	addq	\$4, %rdi
13	addl	%ecx, %eax
14	cmpq	%rdx, %rdi
15)	ine	. L3

			2 1330	ic. Offiny	4	, tilett	ı G airi	iavc				Same
		IF	ID	REN	Mi	M2	МЗ	M4	ALU	MUL	ЬR	RO
	1 (1) (2)										
	2 (3)(4)	(1) (2)									
	3 (5)(6)	(3)(4)	(1) (2)								
	4											
	5											
	6											
	7											
	8											
	9											
1	10											
	I 1											
		Phy	/sical Reg	aister			Valid	Valı	ue In us	e	Valid	Value
ea	ах					P1				P6		
е	СХ					P2				P7		

P3

P4

P5

Register renaming 2-issue: Only 2 of them can have instructions at the same cycle

					7							
	IF	ID	REN	Mi	M2	M3	M4	ALU	MUL	BR	ROE	3
1	(1) (2)											
2	(3)(4)	(1) (2)										
3	(5)(6)	(3)(4)	(1) (2)									
4		(5)(6)	(3)(4)	(1)				(2)				
5												
6												
7												
8												
9												
10												
11												
	Phy	/sical Reg	gister			Valid	l Val	ue In u	se	Valid	Value	I

	Physical Register
eax	
есх	P1
rdi	P2
rdx	
	76

	Valid	Value	In use		Valid	Value	In use
P1	0		1	P6			
P2	0		1	P7			
Р3				P8			
Р4				P9			
P5				P10			

Register renaming 2-issue: Only 2 of them can have instructions at the same cycle

					4	•
		IF	ID	REN	Mi	M
	1	(1) (2)				
	2	(3)(4)	(1) (2)			
	3	(5)(6)	(3)(4)	(1) (2)		
	4	(7)(8)	(5)(6)	(3)(4)	(1)	
	5	(9)(10)	(7)(8)	(3)(5)(6)		(1)
	6					
	7					
	8					
	9					
	10					
	11					
		Phy	ysical Reg	gister		
е	ах					P
е	СХ		P1			P
ľ	di		P2			P

	(2)	
(1)	(4)	(2)
	(4) is now	
	executing before	
	(3)!	

sical Register
P1
P2
P4
77

	Valid	Value	In use		Valid	Value	In use
P1	0		1	P6			
P2	1		1	P7			
Р3	0		1	P8			
P4	0		1	P9			
P5				P10			

Register renaming 2-issue: Only 2 of them can have instructions at the same cycle

1	movl	$(%rdi), %ecx \rightarrow P1$
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx
12	addq	\$4, %rdi
13	addl	%ecx, %eax
14	cmpq	%rdx, %rdi
15	jne	.L3

					7					
	IF	ID	REN	Mi	M2	МЗ	M4	ALU	MUL	
•	1 (1) (2)									
	2 (3)(4)	(1) (2)								
	3 (5)(6)	(3)(4)	(1) (2)							
	4 (7)(8)	(5)(6)	(3)(4)	(1)				(2)		
	5 (9)(10)	(7)(8)	(3)(5)(6)		(1)			(4)		
	6 (11)(12)	(9)(10)	(3)(7)(8)	(6)		(1)				
	7									
	8									
	9									
	10									
	11									
	Phy	vsical Red	nister			Valid	Valı	ue In u	se	

	Physical Register
eax	P6
есх	P1
rdi	P5
rdx	P4
	78

	Valid	Value	In use		Valid	Value	In use
P1	0		1	P6	0		1
P2	1		1	P7			
Р3	0		1	P8			
P4	0		1	P9			
P5	0		1	P10			

ROB

(2)

(2)(4)

(5)

Register renaming 2-issue: Only 2 of them can have instructions at the same cycle

(2)

(4)

(7)

(1)

(1)

1	movl	(%rdi), %ecx → P
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
(5)	jne	.L3
6	movl	(%rdi), %ecx → P
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx
12	addq	\$4, %rdi
13	addl	%ecx, %eax
14	cmpq	%rdx, %rdi
15	jne	.L3

					7
	IF	ID	REN	Mi	M2
1	(1) (2)				
2	(3)(4)	(1) (2)			
3	(5)(6)	(3)(4)	(1) (2)		
4	(7)(8)	(5)(6)	(3)(4)	(1)	
5	(9)(10)	(7)(8)	(3)(5)(6)		(1)
6	(11)(12)	(9)(10)	(3)(7)(8)	(6)	
7	(13)(14)	(11)(12)	(3)(8)(9) (10)		(6)
8					
9					
10					
11					
	Dhy	rsical Rec	ictor		

	Physical Register
eax	Р6
есх	P1
rdi	P5
rdx	P4
	79

	Valid	Value	In use		Valid	Value	In use
P1	0		1	P6	0		1
P2	1		1	P7			
Р3	0		1	P8			
P4	0		1	P9			
P5	0		1	P10			

ROB

(2)

(2)(4)

(2)(4)(5)

(5)

(2)

(4)

(7)

(3)

1	movl	(%rdi), %ecx → P1
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx <mark>→ p7</mark>
12	addq	\$4, %rdi → P8
13	addl	%ecx, %eax
14	cmpq	%rdx, %rdi
$\overline{}$		

.L3

jne

					7		
	IF	ID	REN	Mi	M2	М3	M4
1	(1) (2)						
2	(3)(4)	(1) (2)					
3	(5)(6)	(3)(4)	(1) (2)				
4	(7)(8)	(5)(6)	(3)(4)	(1)			
5	(9)(10)	(7)(8)	(3)(5)(6)		(1)		
6	(11) (12)	(9)(10)	(3)(7)(8)	(6)		(1)	
7	(13)(14)	(11)(12)	(3)(8)(9) (10)		(6)		(1)
8	(15)(16)	(13)(14)	(8)(9)(10) (11)(12)			(6)	
9							
10							
11							

	Physical Register
eax	Р6
есх	P7
rdi	P8
rdx	P4
	80

	Valid	Value	In use		Valid	Value	In use
P1	1		1	P6	0		1
P2	1		1	P7	0		1
Р3	0		1	P8	0		1
P4	0		1	P9			
P5	1		1	P10			

ROB

(2)

(2)(4)

(2)(4)(5)

(1)(2)(4)(5)

(5)

(1)

(6)

(1)

(6)

(2)

(4)

(7)

(3)

(9)

1	movl	(%rdi), %ecx → P1
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx → P7
12	addq	\$4, %rdi → P8
13	addl	%ecx, %eax <mark>→ P9</mark>
14	cmpq	%rdx, %rdi
15	jne	.L3

					•
	IF	ID	REN	Mi	M2
1	(1) (2)				
2	(3)(4)	(1) (2)			
3	(5)(6)	(3)(4)	(1) (2)		
4	(7)(8)	(5)(6)	(3)(4)	(1)	
5	(9)(10)	(7)(8)	(3)(5)(6)		(1)
6	(11)(12)	(9)(10)	(3)(7)(8)	(6)	
7	(13)(14)	(11)(12)	(3)(8)(9) (10)		(6)
8	(15)(16)	(13)(14)	(8)(9)(10) (11)(12)		
9	(17)(18)	(15)(16)	(8)(10)(12) (13)(14)	(11)	
10					
11					
				_	

Physical Register					
eax	Р9				
есх	Р7				
rdi	P8				
rdx	P4				
	81				

	Valid	Value	In use		Valid	Value	In use
P1	1		0	P6	0		1
P2	1		0	P7	0		1
Р3	1		1	P8	0		1
P4	0		1	P9	0		1
P5	1		1	P10			

ROB

(2)

(2)(4)

(2)(4)(5)

(1)(2)(4)(5) (7)

(3)(4)(5)(7)

(5)

1	movl	$(\%rdi), \%ecx \rightarrow P1$
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx → p7
12	addq	\$4, %rdi → P8
13	addl	%ecx, %eax <mark>→ P9</mark>
14	cmpq	%rdx, %rdi
15	jne	.L3

				•	
	IF	ID	REN	N	
1	(1) (2)				
2	(3)(4)	(1) (2)			
3	(5)(6)	(3)(4)	(1) (2)		
4	(7)(8)	(5)(6)	(3)(4)	(
5	(9)(10)	(7)(8)	(3)(5)(6)		
6	(11)(12)	(9)(10)	(3)(7)(8)	(
7	(13)(14)	(11)(12)	(3)(8)(9) (10)		
8	(15)(16)	(13)(14)	(8)(9)(10) (11)(12)		
9	(17)(18)	(15)(16)	(8)(10)(12) (13)(14)	(′	
10	(19)(20)	(17)(18)	(12)(13)(14) (15)(16)		
11					
Physical Register					

	(1)				(2)		
)		(1)			(4)		(2)
	(6)		(1)			(5)	(2)(4)
		(6)		(1)	(7)		(2)(4)(5)
			(6)		(3)		(1)(2)(4)(5) (7)
	(11)			(6)	(9)		(3)(4)(5)(7)
)		(11)			(8)	(10)	(6)(7)(9)

	Physical Register
eax	P9
есх	P7
rdi	P8
rdx	P4
	82

	Valid	Value	In use		Valid	Value	In use
P1	1		0	P6	0		1
P2	1		0	P7	0		1
Р3	1		0	P8	0		1
P4	0		1	P9	0		1
P5	1		1	P10	0		1

1	movl	(%rdi), %ecx → P1
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
3	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx → P7
12	addq	\$4, %rdi → P8
13	addl	%ecx, %eax <mark>→ P9</mark>
14)	cmpq	%rdx, %rdi
15	jne	.L3

	IF	ID	REN
1	(1) (2)		
2	(3)(4)	(1) (2)	
3	(5)(6)	(3)(4)	(1) (2)
4	(7)(8)	(5)(6)	(3)(4)
5	(9)(10)	(7)(8)	(3)(5)(6)
6	(11)(12)	(9)(10)	(3)(7)(8)
7	(13)(14)	(11)(12)	(3)(8)(9) (10)
8	(15)(16)	(13)(14)	(8)(9)(10) (11)(12)
9	(17)(18)	(15)(16)	(8)(10)(12) (13)(14)
10	(19)(20)	(17)(18)	(12)(13)(14) (15)(16)
11		(19)(20)	(13)(14)(15) (16)(17)(18)
	Phy	sical Reg	jister
eax		P6	
есх		P1	
rdi		P5	
rdx		P4	

				7						
IF	ID	REN	Mi	M2	M3	M4	ALU	MUL	BR	ROB
(1) (2)										
(3)(4)	(1) (2)									
(5)(6)	(3)(4)	(1) (2)								
(7)(8)	(5)(6)	(3)(4)	(1)				(2)			
(9)(10)	(7)(8)	(3)(5)(6)		(1)			(4)			(2)
(11)(12)	(9)(10)	(3)(7)(8)	(6)		(1)				(5)	(2)(4)
(13)(14)	(11)(12)	(3)(8)(9) (10)		(6)		(1)	(7)			(2)(4)(5)
(15)(16)	(13)(14)	(8)(9)(10) (11)(12)			(6)		(3)			(1)(2)(4)(5) (7)
(17)(18)	(15)(16)	(8)(10)(12) (13)(14)	(11)			(6)	(9)			-(2)(4)(5)(7)
(19)(20)	(17)(18)	(12)(13)(14) (15)(16)		(11)			(8)		(10)	(6)(7)(9)
	(19)(20)	(13)(14)(15) (16)(17)(18)			(11)		(12)			(8)(9)(10)
Phy	rsical Rec	nister			Valid	Val	ue Inus	Α.	Valid	Value Inus

	Physical Register
eax	P6
есх	P1
rdi	P5
rdx	P4
	83

	Valid	Value	In use		Valid	Value	In use
P1	1		0	P6	1		1
P2	1		0	P7	0		1
Р3	1		0	P8	0		1
P4	1		0	P9	0		1
P5	1		1	P10	0		1

1	movl	(%rdi), %ecx → P1
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx → P7
12	addq	\$4, %rdi → P8
13	addl	%ecx, %eax <mark>→ P9</mark>
14	cmpq	%rdx, %rdi
15	jne	.L3

					7						
	IF	ID	REN	Mi	M2	МЗ	M4	ALU	MUL	ЬR	ROB
1	(1) (2)										
2	(3)(4)	(1) (2)									
3	(5)(6)	(3)(4)	(1) (2)								
4	(7)(8)	(5)(6)	(3)(4)	(1)				(2)			
5	(9)(10)	(7)(8)	(3)(5)(6)		(1)			(4)			(2)
6	(11)(12)	(9)(10)	(3)(7)(8)	(6)		(1)				(5)	(2)(4)
7	(13)(14)	(11)(12)	(3)(8)(9) (10)		(6)		(1)	(7)			(2)(4)(5)
8	(15)(16)	(13)(14)	(8)(9)(10) (11)(12)			(6)		(3)			<u>(1)(2)(</u> 4)(5) (7)
9	(17)(18)	(15)(16)	(8)(10)(12) (13)(14)	(11)			(6)	(9)			(3)(4)(5)(7)
10	(19)(20)	(17)(18)	(12)(13)(14) (15)(16)		(11)			(8)		(10)	(6)(7)(9)
11		(19)(20)	(13)(14)(15) (16)(17)(18)			(11)		(12)			(8)(9)(10)
12			(13)(15)(17)(18) (19)(20)	(16)			(11)	(14)			(12)
13											
14											
15											

1	movl	(%rdi), %ecx → P1
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx → P7
12	addq	\$4, %rdi → P8
13	addl	%ecx, %eax <mark>→ P9</mark>
	cmpq	%rdx, %rdi
15	jne	.L3

					7						
1	F	ID	REN	Mi	M2	МЗ	M4	ALU	MUL	BR	ROB
1 (1)	(2)										
2 (3)	(4)	(1) (2)									
3 (5)	(6)	(3)(4)	(1) (2)								
4 (7)	(8)	(5)(6)	(3)(4)	(1)				(2)			
5 (9)	(10)	(7)(8)	(3)(5)(6)		(1)			(4)			(2)
6 (11)	(12)	(9)(10)	(3)(7)(8)	(6)		(1)				(5)	(2)(4)
7 (13)	(14)	(11)(12)	(3)(8)(9) (10)		(6)		(1)	(7)			(2)(4)(5)
8 (15)	(16)	(13)(14)	(8)(9)(10) (11)(12)			(6)		(3)			<u>(1)(2)(</u> 4)(5) (7)
9 (17)	(18)	(15)(16)	(8)(10)(12) (13)(14)	(11)			(6)	(9)			(3)(4)(5)(7)
10 (19)	(20)	(17)(18)	(12)(13)(14) (15)(16)		(11)			(8)		(10)	(6)(7)(9)
11		(19)(20)	(13)(14)(15) (16)(17)(18)			(11)		(12)			(8)(9)(10)
12			(13)(15)(17)(18) (19)(20)	(16)			(11)	(14)			(12)
13			(17)(18) (19)(20)		(16)			(13)		(15)	(11)(12)(14)
14											
15											

1	movl	(%rdi), %ecx → P1
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx → P7
12	addq	\$4, %rdi → P8
13	addl	%ecx, %eax <mark>→ P9</mark>
14	cmpq	%rdx, %rdi
15	jne	.L3

					7						
	IF	ID	REN	Mi	M2	МЗ	M4	ALU	MUL	ЬR	ROB
1	(1) (2)										
2	(3)(4)	(1) (2)									
3	(5)(6)	(3)(4)	(1) (2)								
4	(7)(8)	(5)(6)	(3)(4)	(1)				(2)			
5	(9)(10)	(7)(8)	(3)(5)(6)		(1)			(4)			(2)
6	(11)(12)	(9)(10)	(3)(7)(8)	(6)		(1)				(5)	(2)(4)
7	(13)(14)	(11)(12)	(3)(8)(9) (10)		(6)		(1)	(7)			(2)(4)(5)
8	(15)(16)	(13)(14)	(8)(9)(10) (11)(12)			(6)		(3)			<u>(1)(2)(4)(5)</u> (7)
9	(17)(18)	(15)(16)	(8)(10)(12) (13)(14)	(11)			(6)	(9)			(3)(4)(5)(7)
10	(19)(20)	(17)(18)	(12)(13)(14) (15)(16)		(11)			(8)		(10)	(6)(7)(9)
11		(19)(20)	(13)(14)(15) (16)(17)(18)			(11)		(12)			(8)(9)(10)
12			(13)(15)(17)(18) (19)(20)	(16)			(11)	(14)			(12)
13			(17)(18) (19)(20)		(16)			(13)		(15)	(11)(12) (14)
14						(16)		(17)			(13)(14)(15)
15											

1	movl	$(%rdi), %ecx \rightarrow P1$
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx → P7
12	addq	\$4, %rdi → P8
13	addl	%ecx, %eax <mark>→ P9</mark>
14	cmpq	%rdx, %rdi
15	jne	.L3

	IF	ID	REN	Mi	M2	МЗ	M4	ALU	MUL	BR	ROB
1	(1) (2)										
2	(3)(4)	(1) (2)									
3	(5)(6)	(3)(4)	(1) (2)								
4	(7)(8)	(5)(6)	(3)(4)	(1)				(2)			
5	(9)(10)	(7)(8)	(3)(5)(6)		(1)			(4)			(2)
6	(11)(12)	(9)(10)	(3)(7)(8)	(6)		(1)				(5)	(2)(4)
7	(13)(14)	(11)(12)	(3)(8)(9) (10)		(6)		(1)	(7)			(2)(4)(5)
8	(15)(16)	(13)(14)	(8)(9)(10) (11)(12)			(6)		(3)			<u>(1)(2)(</u> 4)(5) (7)
9	(17)(18)	(15)(16)	(8)(10)(12) (13)(14)	(11)			(6)	(9)			(3)(4)(5)(7)
10	(19)(20)	(17)(18)	(12)(13)(14) (15)(16)		(11)			(8)		(10)	(6)(7)(9)
11		(19)(20)	(13)(14)(15) (16)(17)(18)			(11)		(12)			(8)(9)(10)
12			(13)(15)(17)(18) (19)(20)	(16)			(11)	(14)			(12)
13			(17)(18) (19)(20)		(16)			(13)		(15)	(11)(12) (14)
14						(16)		(17)			(13)(14)(15)
15							(16)	(19)			(17)
		0/									

Through data flow graph analysis

BR

The pipelines of Modern Processors

Intel Alder Lake (E-Core)

What if we have "unlimited" ILP — "linked list"

Doesn't help that much!

— It's important that the programmer should write code that can exploit "ILP"

```
do {
    number_of_nodes++;
    current = current->next;
} while ( current != NULL );

① .L3: movq 8(%rdi), %rdi
② addl $1, %eax
③ testq %rdi, %rdi
④ jne .L3
```


Summary: Characteristics of modern processor architectures

- Multiple-issue pipelines with multiple functional units available
 - Multiple ALUs
 - Multiple Load/store units
 - Dynamic OoO scheduling to reorder instructions whenever possible
- Cache very high hit rate if your code has good locality
 - Very matured data/instruction prefetcher
- Branch predictors very high accuracy if your code is predictable
 - Perceptron
 - Variable history predictors