Geometric Measure Theory Notes

James Harbour

July 11, 2023

Notation 1

Throughout this document, Ω denotes an open set in \mathbb{R}^n . For $u: \mathbb{R}^m \to \mathbb{R}^n$, we write $u = (u^1, \dots, u^n)$ where $u^i = \pi_i \circ u$.

2 Functions of Bounded Variation.

Definition 1. Given a function $u \in L^1(\Omega)$, define the total variation of u to be the quantity

$$V(u,\Omega) = \sup \left\{ \int_{\Omega} u \operatorname{div} \varphi \, dx : \varphi \in [C_c^1(\Omega,\mathbb{R})]^n, \|\varphi\|_{\infty} \le 1 \right\}.$$

If $V(u,\Omega)$ is finite, then we say that u is of bounded variation and write $u \in BV(\Omega)$.

Definition 2. Similarly, given $u \in L^1_{loc}(\Omega)$ and $U \subseteq \Omega$, define the local variation of u in U by

$$V(u, U) = \sup \left\{ \int_{U} u \operatorname{div} \varphi \, dx : \varphi \in [C_{c}^{1}(U, \mathbb{R})]^{n}, \|\varphi\|_{\infty} \leq 1 \right\}.$$

We define the set of functions of locally bounded variation to be

$$BV_{loc}(\Omega) = \{ u \in L^1_{loc}(\Omega) : V(u, U) < +\infty \text{ for all } U \subseteq \Omega \}.$$

An equivalent, and admittedly more transparent, characterization of BV_{loc} functions can be given as follows.

Proposition 1 (Characterization of BV_{loc}). Suppose $u \in BV_{loc}(\Omega)$. Then there exists a Radon measure μ on Ω and a μ -measurable $\sigma: \Omega \to \mathbb{R}^n$ with $|\sigma| = 1$ μ -a.e. and

$$\int_{\Omega} u \operatorname{div} \varphi \, dx = -\int_{\Omega} \varphi \cdot \sigma \, d\mu \text{ for all } \varphi \in C_c^1(\Omega, \mathbb{R}^n).$$

Proof. This is a routine application of the Riesz-Markov-Kakutani representation theorem. To this end,

define a linear functional $L: C^1_c(\Omega, \mathbb{R}^n) \to \mathbb{R}$ by $L(\varphi) = -\int_{\Omega} u \operatorname{div} \varphi \, dx$. For open $U \in \Omega$, the quantity $c(U) := \sup\{L(\varphi) : \varphi \in C^1_c(U, \mathbb{R}^n), \|\varphi\|_{\infty} \le 1\}$ is finite by assumption, whence

$$|L(\varphi)| \leq c(U) \|\varphi\|_{\infty} \text{ for all } \varphi \in C^1_c(U, \mathbb{R}^n).$$

Let $K \subseteq \Omega$ be a fixed compact set, and choose open $U \subseteq \Omega$ containing K. Then for $\varphi \in C_c(\Omega, \mathbb{R}^n)$ with $\operatorname{supp}(\varphi) \subseteq K$, there exists a sequence $(\varphi_k)_k$ in $C_c^1(U,\mathbb{R}^n)$ such that $\varphi_k \to \varphi$ uniformly on U.

Define an extension $\widetilde{L}: C_c(\Omega, \mathbb{R}^n) \to \mathbb{R}$ of L by $\widetilde{L}(\varphi) = \lim_{k \to \infty} L(\varphi_k)$, which exists and is well-defined by the above inequality. Applying the Riesz Representation Theorem to L gives the conclusion. **Definition 3.** For $u \in BV_{loc}(\Omega)$, we will write ||Du|| for the measure μ and

$$d[Du] := \sigma d||Du||$$
, i.e $\int \cdot d[Du] = \int \langle \cdot, \sigma \rangle d||Du||$.

Then the conclusion of Proposition 1 can be rewritten as

$$\int u \operatorname{div} \varphi \, dx = -\int \varphi \cdot \sigma \, d\|Du\| = -\int \varphi \cdot d[Du] \text{ for all } \varphi \in C_c^1(\Omega, \mathbb{R}^n).$$

Write $\varphi = (\varphi^1, \dots, \varphi^n) \in C_c^1(\Omega, \mathbb{R}^n)$.

$$[Du] = [Du]_{ac} + [Du]_s$$

3 Caccioppoli Sets (i.e. Sets of Locally Finite Perimeter)

Definition 4. Given a set $E \subseteq \mathbb{R}^n$, we say that E is of locally finite perimeter in Ω if $\chi_E \in BV_{loc}(\Omega)$.

Norms

 $\begin{aligned} \|\cdot\|_{W^{k,p}(\Omega)} & \text{Sobolev-Norm} \\ \|\cdot\|_{\text{BV}} & \text{BV-Norm} \end{aligned}$