Yakeen NEET 2.0 2026

KPP - (PYQ)

Physics by Saleem Sir Vectors

If $\vec{A} = (2\hat{\imath} + 3\hat{\jmath} - \hat{k})$ m and $\vec{B} = (\hat{\imath} + 3\hat{\jmath} + 2\hat{k})$ m. 1. The magnitude of component of vector \vec{A} along vector \vec{B} will be m.

[JEE Main 2022]

- of $2\hat{\imath} + 4\hat{\jmath} 2\hat{k}$ 2. If the projection $\hat{i} + 2\hat{j} + \alpha \hat{k}$ is zero. Then, the value of α will be. [JEE Main 2022]
- 3. Which of the following relation is true for two unit vectors \hat{A} and \hat{B} making an angle θ to each other?

[JEE Main 2022]

- (1) $|\hat{A} + \hat{B}| = |\hat{A} \hat{B}| \tan \frac{\theta}{2}$
- (2) $|\hat{A} \hat{B}| = |\hat{A} + \hat{B}| \tan \frac{\theta}{2}$
- (3) $|\hat{A} + \hat{B}| = |\hat{A} \hat{B}| \cos \frac{\theta}{2}$
- (4) $|\hat{A} \hat{B}| = |\hat{A} + \hat{B}| \cos \frac{\theta}{2}$
- Two vectors \vec{A} and \vec{B} have equal magnitude. If 4. magnitude of $\vec{A} + \vec{B}$ is equal to two times the magnitude of $\vec{A} - \vec{B}$, then the angle between \vec{A} and \vec{B} will be:

- (1) $\sin^{-1}\left(\frac{3}{5}\right)$ (2) $\sin^{-1}\left(\frac{1}{3}\right)$
- (3) $\cos^{-1}\left(\frac{3}{5}\right)$ (4) $\cos^{-1}\left(\frac{1}{3}\right)$
- $a\hat{i} + b\hat{j} + \hat{k}$ and $2\hat{i} 3\hat{j} + 4\hat{k}$ 5. Vectors are perpendicular each other 3a + 2b = 7, the ratio of a to b is x/2. The value of

[JEE Main 2023]

6. \vec{A} is a vector quantity such that $|\vec{A}| = \text{non zero}$ constant. Which of the following expression is true for \vec{A} ?

[JEE Main 2022]

- (1) $\vec{A} \cdot \vec{A} = 0$ (2) $\vec{A} \times \vec{A} < 0$ (3) $\vec{A} \times \vec{A} = 0$ (4) $\vec{A} \times \vec{A} > 0$

 $\vec{P} = \hat{i} + 2 m\hat{j} + m\hat{k}$ 7. two vectors and $\vec{Q} = 4\hat{i} - 2\hat{j} + m\hat{k}$ are perpendicular to each other. Then, the value of m will be:

[JEE Main 2023]

- (1) 1
- (2) -1
- (3) -3
- (4) 2
- If $\vec{P} = 3\hat{i} + \sqrt{3}\hat{j} + 2\hat{k}$ and $\vec{Q} = 4\hat{i} + \sqrt{3}\hat{j} + 2.5\hat{k}$ 8. then, The unit vector in the direction of $\vec{P} \times \vec{Q}$ is $\frac{1}{x}(\sqrt{3}\hat{i}+\hat{j}-2\sqrt{3}\hat{k})$. The value of x is:

[JEE Main 2023]

9. The resultant of two vectors \vec{A} and \vec{B} is perpendicular to \vec{A} and its magnitude is half that of \vec{B} . The angle between vectors \vec{A} and \vec{B} is _____°.

[JEE Main 2024]

What will be the projection of vector $\vec{A} = \hat{i} + \hat{j} + \hat{k}$ 10. on vector $\vec{B} = \hat{i} + \hat{j}$?

[JEE Main 2021]

(1)
$$\sqrt{2(\hat{i}+\hat{j}+\hat{k})}$$
 (2) $2(\hat{i}+\hat{j}+\hat{k})$

$$(2) \quad 2(\hat{i}+\hat{j}+\hat{k})$$

(3)
$$\sqrt{2(\hat{i}+\hat{j})}$$
 (4) $(\hat{i}+\hat{j})$

(4)
$$\left(\hat{i} + \hat{j}\right)$$

11. Two forces having magnitude A and A/2 are perpendicular to each other. The magnitude of their resultant is:

[JEE Main 2023]

- $(1) \quad \frac{\sqrt{5} A}{4} \qquad (2) \quad \frac{\sqrt{5} A}{2}$
- (3) $\frac{5A}{2}$
- (4) $\frac{\sqrt{5} A^2}{2}$
- When vector $\vec{A} = 2\hat{\imath} + 3\hat{\jmath} + 2\hat{k}$ is subtracted from 12. vector \vec{B} , it gives a vector equal to $2\hat{j}$. Then the magnitude of vector \vec{B} will be:

[JEE Main 2023]

- (1) $\sqrt{5}$
- (2) 3
- (3) $\sqrt{6}$
- (4) $\sqrt{33}$

13. A vector in x - y plane makes an angle of 30° with y-axis. The magnitude of y-component of vector is $2\sqrt{3}$. The magnitude of x-component of the vector will be:

[JEE Main 2023]

- (1) $1/\sqrt{3}$
- (2) 6
- (3) 2
- (4) $\sqrt{3}$
- If two vectors \vec{A} and \vec{B} having equal magnitude 14. R are inclined at an angle θ , then.

[JEE Main 2024]

$$(1) \quad |\vec{A} - \vec{B}| = \sqrt{2}R\sin\left(\frac{\theta}{2}\right)$$

(2)
$$|\vec{A} + \vec{B}| = 2R \sin\left(\frac{\theta}{2}\right)$$

$$(3) \quad |\vec{A} + \vec{B}| = 2R \cos\left(\frac{\theta}{2}\right)$$

$$(4) \quad |\vec{A} - \vec{B}| = 2R \cos\left(\frac{\theta}{2}\right)$$

A vector has magnitude same as that of 15. $\vec{A} = 3\hat{i} + 4\hat{j}$ and is parallel to $\vec{B} = 4\hat{i} + 3\hat{j}$. The x and y components of this vector in first quadrant are x and 3 respectively where x =

[JEE Main 2024]

Two forces \vec{F}_1 and \vec{F}_2 are acting on a body. One **16.** force has magnitude thrice that of the other force and the resultant of the two forces is equal to the force of larger magnitude. The angle between \vec{F}_1 and \vec{F}_2 is $\cos^{-1}\left(\frac{1}{n}\right)$. The value of |n| is _____.

[JEE Main 2024]

The angle between vector \vec{Q} and the resultant of 17. $(2\vec{Q}+2\vec{P})$ and $(2\vec{Q}-2\vec{P})$ is:

[JEE Main 2024]

(1)
$$\tan^{-1} \frac{(2\vec{Q} - 2\vec{P})}{2\vec{Q} + 2\vec{P}}$$

- (3) $tan^{-1}(P/Q)$
- (4) $tan^{-1}(2Q/P)$

If \vec{a} and \vec{b} makes an angle $\cos^{-1}\left(\frac{5}{9}\right)$ with each other, then $|\vec{a} + \vec{b}| = \sqrt{2} |\vec{a} - \vec{b}|$ for $|\vec{a}| = n |\vec{b}|$. The integer value of n is _____.

Three forces $F_1 = 10$ N, $F_2 = 8$ N, $F_3 = 6$ N are 19. acting on a particle of mass 5 kg. The forces F_2 and F_3 are applied perpendicularly so that particle remains at rest. If the force F_1 is removed, then the acceleration of the particle is: [JEE Main 2023] (2) 0.5 ms^{-2} (4) 2 ms^{-2}

- (1) 7 ms^{-2}
- (3) 4.8 ms⁻²
- Two particles are located at equal distance from 20. origin. The position vectors of those $\overline{A} = 2\hat{i} + 3n\hat{i} + 2\hat{k}$ by represented and $\overline{B} = 2\hat{i} - 2\hat{j} + 4p\hat{k}$, respectively. If both the vectors are at right angle to each other, the value of n^{-1} is . [JEE Main 2025]
- 21. Match List I with List II.

			[JEE Main 2021]
List I		List II.	
(a)	$\vec{C} - \vec{A} - \vec{B} = 0$	(i)	\overrightarrow{A} \overrightarrow{B}
(b)	$\vec{A} - \vec{C} - \vec{B} = 0$	(ii)	\overrightarrow{C} \overrightarrow{B}
(c)	$\vec{B} - \vec{A} - \vec{C} = 0$	(iii)	\overrightarrow{A} \overrightarrow{B}
(d)	$\vec{A} + \vec{B} = -\vec{C}$	(iv)	\overrightarrow{C} \overrightarrow{B}

Choose the correct answer from the options given below:

- (1) (a) \rightarrow (iv), (b) \rightarrow (i), (c) \rightarrow (iii), (d) \rightarrow (ii)
- (2) (a) \rightarrow (iv), (b) \rightarrow (iii), (c) \rightarrow (i), (d) \rightarrow (ii)
- (3) (a) \rightarrow (iii), (b) \rightarrow (ii), (c) \rightarrow (iv), (d) \rightarrow (i)
- (4) (a) \rightarrow (i), (b) \rightarrow (iv), (c) \rightarrow (ii), (d) \rightarrow (iii)

22. The sum of two \vec{P} and \vec{Q} is \vec{R} such that $|\vec{R}| = |\vec{P}|$. The angle θ (in degree) that the resultant of $2\vec{P}$ and \vec{Q} will make \vec{Q} is:

[JEE Main 2020]

23. If \vec{A} and \vec{B} are two vectors satisfying the relation $\vec{A} \cdot \vec{B} = |\vec{A} \times \vec{B}|$. Then the value of $|\vec{A} - \vec{B}|$ will be:

[JEE Main 2021]

(1)
$$\sqrt{A^2 + B^2}$$

(2)
$$\sqrt{A^2 + B^2 + \sqrt{2}AB}$$

(3)
$$\sqrt{A^2 + B^2 + 2AB}$$

(4)
$$\sqrt{A^2 + B^2 - \sqrt{2}AB}$$

24. The magnitude of vectors \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} in the given figure are equal. The direction of $\overrightarrow{OA} + \overrightarrow{OB} - \overrightarrow{OC}$ with x-axis will be:

[JEE Main 2021]

(1)
$$\tan^{-1} \frac{\left(1 - \sqrt{3} - \sqrt{2}\right)}{\left(1 + \sqrt{3} + \sqrt{2}\right)}$$

(2)
$$\tan^{-1} \frac{\left(\sqrt{3} - 1 + \sqrt{2}\right)}{\left(1 + \sqrt{3} - \sqrt{2}\right)}$$

(3)
$$\tan^{-1} \frac{\left(\sqrt{3} - 1 + \sqrt{2}\right)}{\left(1 - \sqrt{3} + \sqrt{2}\right)}$$

(4)
$$\tan^{-1} \frac{\left(1+\sqrt{3}-\sqrt{2}\right)}{\left(1-\sqrt{3}-\sqrt{2}\right)}$$

25. Two vectors \vec{P} and \vec{Q} have equal magnitudes. If the magnitude of $\vec{P} + \vec{Q}$ is n times the magnitude of

 $\vec{P} - \vec{Q}$, then angle between \vec{P} and \vec{Q} is:

[(JEE Main 2021]

(1)
$$\sin^{-1}\left(\frac{n-1}{n+1}\right)$$
 (2) $\cos^{-1}\left(\frac{n-1}{n+1}\right)$

(3)
$$\sin^{-1}\left(\frac{n^2-1}{n^2+1}\right)$$
 (4) $\cos^{-1}\left(\frac{n^2-1}{n^2+1}\right)$

26. Two vectors \vec{X} and \vec{Y} have equal magnitude. The magnitude of $(\vec{X} - \vec{Y})$ is n times the magnitude of $(\vec{X} + \vec{Y})$. The angle between \vec{X} and \vec{Y} is:

IJEE Main 20211

(1)
$$\cos^{-1}\left(\frac{-n^2-1}{n^2-1}\right)$$
 (2) $\cos^{-1}\left(\frac{n^2-1}{-n^2-1}\right)$

(3)
$$\cos^{-1}\left(\frac{n^2+1}{-n^2-1}\right)$$
 (4) $\cos^{-1}\left(\frac{n^2+1}{n^2-1}\right)$

27. The angle between vector (\vec{A}) and $(\vec{A} - \vec{B})$ is:

[JEE Main 2021]

$$(1) \quad \tan^{-1} \left(\frac{-\frac{B}{2}}{A - B\frac{\sqrt{3}}{2}} \right)$$

(2)
$$\tan^{-1}\left(\frac{A}{0.7B}\right)$$

$$(3) \quad \tan^{-1}\left(\frac{\sqrt{3}B}{2A-B}\right)$$

$$(4) \quad \tan^{-1} \left(\frac{B \cos \theta}{2 - B \sin \theta} \right)$$

28. Statement I: If three forces \vec{F}_1 , \vec{F}_2 and \vec{F}_3 are represented by three sides of a triangle and $\vec{F}_1 + \vec{F}_2 = \vec{F}_3$, then these three forces are concurrent forces and satisfy the condition for equilibrium.

Statement II: A triangle made up of three forces \vec{F}_1 , \vec{F}_2 and \vec{F}_3 as its sides taken in the same order, satisfy the condition for translatory equilibrium. In the light of the above statements, choose the most appropriate answer from the options given below:

[JEE Main 2021]

- (1) Statement-I is false but Statement-II is true
- (2) Statement-I is true but Statement-II is false
- (3) Both Statement-I and Statement-II are false
- (4) Both Statement-I and Statement-II are true

The resultant of these forces \overrightarrow{OP} , \overrightarrow{OQ} , \overrightarrow{OR} , \overrightarrow{OS} and 29. \overrightarrow{OT} is approximately N.

> [Take $\sqrt{3} = 1.7$, $\sqrt{2} = 1.4$ Given \hat{i} and \hat{j} unit vectors along x, y axis].

> > [JEE Main 2021]

- (1) $9.25\hat{i} + 5\hat{j}$
- (2) $3\hat{i} + 15\hat{j}$
- (3) $2.5\hat{i} 14.5\hat{j}$
- (4) $-1.5\hat{i} 15.5\hat{j}$
- Six vectors, \vec{a} through \vec{f} fhave the magnitudes and **30.** directions indicated in the figure. Which of the following statements is true?

[NEET - 2010]

- (1) $\vec{b} + \vec{c} = \vec{f}$ (2) $\vec{d} + \vec{c} = \vec{f}$ (3) $\vec{d} + \vec{e} = \vec{f}$ (4) $\vec{b} + \vec{e} = \vec{f}$
- If a unit vector is represented by $0.5\hat{i} 0.8\hat{j} + c\hat{k}$ 31. then the value of c is:

- (1) $\sqrt{0.01}$
- (2) $\sqrt{0.11}$
- (3) 1

32. If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is:

[NEET-I, 2016]

- $(1) 45^{\circ}$
- (2) 180°
- (3) 0°
- (4) 90°
- and \vec{B} 33. The vectors are such $|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$. The angle between the two vectors is:

[NEET - 2006, 1996, 1991]

- (1) 45°
- (2) 90°
- (3) 60°
- (4) 75°
- 34. If $|\vec{A} + \vec{B}| = |\vec{A}| + |\vec{B}|$ then angle between A and B will be:

[NEET - 2001]

- (1) 90°
- (2) 120°
- (3) 0°
- $(4) 60^{\circ}$
- The magnitude of vectors \vec{A} , \vec{B} and \vec{C} are 3, 4 35. and 5 units respectively. If $\vec{A} + \vec{B} = \vec{C}$, the angle between \vec{A} and \vec{B} is:

[NEET - 1988]

- (1) $\pi/2$
- (2) $\cos^{-1}(0.6)$
- (3) $tan^{-1} (7/5)$
- (4) $\pi/4$
- A particle starting from the origin (0, 0) moves in **36.** a straight line in the (x, y) plane. Its coordinates at a later time are $(\sqrt{3}, 3)$. The path of the particle makes with the x-axis an angle of

[NEET - 2007]

- (1) 45°
- (2) 60°
- (3) 0°
- (4) 30°

Answer Key

1.	(2)
2	(5)

2. (5)

3. (2)

4. **(3)**

5. **(1) 6.**

(3)

7. **(4)**

8. **(4)** 9. (150)

10. (4)

11. (2) 12. (4)

13. (3)

14. (3)

15. (4)

16. (6) 17. (2)

18. (3)

19. (4)

20. (3)

21. (2)

22. (90)

23. (4)

24. (1)

25. (4)

26. (2)

27. (3)

28. (4)

29. (1)

30. (3)

31. (2)

32. (4)

33. (2)

34. (3)

35. (1)

36. (2)

