# Первые результаты проекта Gaia

Сергей Копосов Institute of Astronomy, University of Cambridge





# Спутник Gaia

- Европейское Космическое Агентство
- Параллаксы, собственные движения для 10<sup>9</sup> звезд
- Запущен 13 декабря 2013 года
- Ракетоноситель Союз-Фрегат
- L2 точка Лагранжа
- 5+ лет миссии
- Начало наблюдений август 2014 года

# Спутник Gaia



### Фокальная плоскость



#### **Total field:**

- active area: 0.75 deg<sup>2</sup>
- CCDs: 14 + 62 + 14 + 12 (+ 4)
- 4500 x 1966 pixels (TDI)
- pixel size = 10  $\mu$ m x 30  $\mu$ m = 59 mas x 177 mas

#### **Sky mapper:**

- detects all objects to G=20 mag
- rejects cosmic-ray events
- field-of-view discrimination

#### **Astrometry:**

- total detection noise ~ 4 e<sup>-</sup>

#### **Photometry:**

- spectro-photometer
- blue and red CCDs

### **Spectroscopy:**

- high-resolution spectra
- red CCDs

# Gaia сканирование неба



Период вращения 6 часов Прецессия 63 дня Gaia проблемы

Рассеянный свет (RVS предел на 1-2 магнитуду ярче)

• Конденсация льда на зеркалах

• Изменения базового угла



Mora+2016 arxiv:1608.00045









# Первые данные



## Первые результаты

- Gaia alerts: сверхновые, микро-линзирование.
- Затменная AM Cvn (Campbell+2015)





• Астрометрия

TGAS (Tycho-Gaia Astrometric Solution)

- 2 миллиона звезд
- Параллаксы,
  Собственные движения

 $\sigma_{\mu} < 1mas/yr; \sigma_{pos} < 0.3mas$ 





- Gaia Source Catalogue
- 1.1x10<sup>9</sup> объектов
- Астрометрия только положения

• ICRS J2015  $\sigma_{pos} \sim 10 mas$ 



## Фотометрия G-band

- Средние величины для 1.1 109 звезд
- >100 фотометрических измерений
- $\sigma_{mag} \gtrsim 1mmag$
- Нелинейные соотношения G c UBVRI/ugriz
- Нелинейная экстинкция



• ~ 3300 переменных звезд (цефеиды + Rrlyrae) из SEP скана (кривые блеска + классы)

• Положения квазаров ICRF2 (астрометрия <0.75 mas)



# Gaia DR1 ограничения

- Неполнота каталога (покрытие неба)
- Отсутствие объектов с очень голубыми/красными цветами
- Звезды с |µ|>3 arcsec/yr и некоторые с G<7
- Кросс-матч
- Некоторая систематика в астрометрии



## Gaia DR2

- Конец 2017, Начало 2018
- 22 месяца данных Gaia
- Параллаксы и собственные движения для всех звезд (без использования Тусho)
- BP/RP цвета
- RVS спектры для ярких звезд G<12

# Вращение и собственное движение LMC

• Звезды члены LMC

• TGAS собственное движение

 Можно измерить вращение и среднее движение LMC





van der Marel+2016

# Измерение собственных движений

- Несколько близких шаровых скоплений
- Несколько членов скоплений с TGAS параллаксами

• TGAS уже лучше многих наземных измерений µ и

сравним с HST





# Субструктуры в гало MW

- TGAS + RAVE лучевые скорости
- Выборка звезд из гало
- Утверждается большое количество подструктуры в фазовом пространстве





Helmi+2016

# Недостаток звезд с нулевым угловым моментом.

- Орбиты звезд с плоским распределением и низким угловым моментом нестабильны (Carlberg&Innanen 1987)
- Gaia+RAVE
- Видимый недостаток звезд V~-240 km/s





Hunt+2016

# Gaia и быстрый бар

- Gaia TGAS и LAMOST/RAVE
- Поток Геркулеса
- Указывает на то, что Внешний Линдбладовский Резонанс рядом с Солнцем
- Противоречие с анализом центра Галактики



## Gaia и LMC

 $\prec_{\rm MB}$ 

Stars with 11<G<19.5 (0, 0.15)x103

Deason, Koposov+ 2016

- Gaia переменность из фотометрических ошибок
- $\hat{\sigma}_F^2 = \frac{1}{N-1} \sum_i (F_i \bar{F})^2$



# Звездный мост LMC





Belokurov, Erkal, Deason, Koposov+ 2016



# LMC и Миры

- Выбираем красные переменные звезды по Gaia+2MASS/WISE
- Чистая выборка Мир
- Внешние части LMC





Deason, Belokurov, Erkal, Koposov+2016

## Выводы

- Gaia DR1 великолепные данные!
  Уже много науки (корреляция с другими обзорами)
- Данные доступны или через архив (ESA) или для закачки
- Gaia DR2 конец следующего года, или начало 2018)