### Assignment 3

Gerrid La Sala

250900234

CS 4442B

Professor Yalda Mohsenzadeh

Professor Boyu Wang

| Problem 1. Separable Convolution (20%) Problem 2. Edge Detection (50%) Problem 3. Corner Detection (30%) | <b>2 3</b> |
|----------------------------------------------------------------------------------------------------------|------------|
|                                                                                                          |            |

# Problem 1. Separable Convolution (20%)

- deals with spatial dimensions of an image/kernel (width and height)

- dividus in two, smaller Kernels 
$$(3\times3 \rightarrow)$$
  $(1\times3)$   $\begin{bmatrix} 1\\ 3 \end{bmatrix}$ )

$$\begin{bmatrix} 9 & 45 & 90 \\ 8 & 40 & 80 \\ 7 & 35 & 70 \end{bmatrix} = \begin{bmatrix} 9\\ 8\\ 7 \end{bmatrix}$$

Simple us Spatial Seperable

0 Simple

ing > convolution W/ 3x3 motrix > Octobring

of The sobel Kernel is sportely separable

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

Seperable convolutions are preferred because:

- o have Fewer parameters than "regular" convolutional layers, and in turn less prone to over Fitting
- o require less operations to compute due to their lower parameters. Therefor, chaper and Faster.

# Problem 2. Edge Detection (50%)

### Greyscale:



### Output:



# Problem 3. Corner Detection (30%)

#### Output:

