

FINANCIAL MODELLING

LINEAR REGRESSION AND ASSUMPTION VIOLATIONS

Dr Issam Malki School of Finance and Accounting Westminster Business School

February 2024

AIMS AND OBJECTIVES

- Multiple Linear Regression
 - Multicollinearity
 - Dummy variables
 - Intercept dummy
 - Interaction terms
 - Functional form
 - Transformations
 - Testing for miss-specification
 - Stability of the model
 - Testing stability using dummy variables
 - Structural breaks tests
- Applications

- Collinearity: High correlation exists among two or more independent variables
- This means the correlated variables contribute redundant information to the multiple regression model
- Types of multicollinearity
 - Perfect multicollinearity
 - Impossible to estimate the model
 - Imperfect (near perfect) multicollinearity
 - One or more variables will be dropped from the regression
 - e.g. suppose $x_3 = 2x_2$, then

- The presence of multicollinearity
 - No new information provided
 - Can lead to unstable coefficients (large standard error and low t-values)
 - Coefficient signs may not match prior expectations
- Consequences
 - Coefficients differ from the values expected by theory or experience, or have incorrect signs
 - Coefficients of variables believed to be a strong influence have small t statistics indicating that their values do not differ from 0
 - All the coefficient student t statistics are small, indicating no individual effect, but the overall F statistic indicates a strong effect for the total regression model

Detection of Multicollinearity

- Observe the signs and t statistics of the estimated coefficients
 - Wrong signs may indicate the presence of multicollinearity
 - Too many low *t* statistics
- Correlation matrix
 - Highly correlated variables are possibly linearly dependent and could be the cause of multicollinearity.
 - Run regressions involving these correlated variables. Use *t* statistic to establish dependency.
- Extension of the correlation matrix
 - VIF: Variance inflation
 - Rule of thumb: VIF>10, multicollinearity is problematic

Dealing with Multicollinearity

- Do nothing
 - Something comes with data
 - If the model is OK we can live with multicollinearity
- Remove one or more of the highly correlated independent variables.
 - Remove the most problematic one according to VIF or correlation matrix.
 - This might lead to a bias in coefficient estimation.
- Change the model specification, including possibly a new independent variable that is a function of several correlated independent variables.
- Obtain additional data that do not have the same strong correlations between the independent variables

Dependent Variable: SALARY

Method: Least Squares

Date: 11/06/18 Time: 19:02

Sample: 150

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	531.7914	201.1622	2.643595	0.0115
BONUS EXPER	0.056737 19.56880	0.334828 13.56184	0.169451 1.442931	0.8663 0.1565
SALES	0.067042	0.020832	3.218233	0.0025
PCTOWN	-42.69000	35.61469	-1.198663	0.2374
PROFITS	-0.039299	0.293650	-0.133830	0.8942
TENURE VALUATE	-1.299592 0.219031	8.873796 0.808064	-0.146453 0.271057	0.8843 0.7877
R-squared	0.310833	Mean depend	lent var	920.1200
Adjusted R-squared	0.195972	S.D. depende		697.6053
S.E. of regression	625.5261	Akaike info cr		15.86071
Sum squared resid	16433882	Schwarz crite		16.16663
Log likelihood	-388.5177	Hannan-Quin		15.97721
F-statistic Prob(F-statistic)	2.706161 0.020756	Durbin-Watso	on stat	1.916155

Covariance Analysis: Ordinary Date: 11/06/18 Time: 19:04

Sample: 150

Correlation	SALARY	BONUS	EXPER	SALES	PCTOWN	PROFITS	TENURE	VALUATE
SALARY	1.000000							
BONUS	0.145450	1.000000						
EXPER	0.153776	0.488015	1.000000					
SALES	0.456654	0.116691	-0.052477	1.000000				
PCTOWN	-0.244807	0.173993	0.298364	-0.109781	1.000000			
PROFITS	0.086059	0.335293	0.187521	0.143875	0.052752	1.000000		
TENURE	0.088177	0.282987	0.467012	0.120960	0.198889	0.191123	1.000000	
VALUATE	-0.135723	0.220330	0.356798	-0.029709	0.866030	0.102561	0.062488	1.000000

Dependent Variable: PCTOWN

Method: Least Squares

Date: 11/06/18 Time: 19:06

Sample: 150

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C VALUATE	0.656479 0.019214	0.407582 0.001601	1.610668 12.00024	0.1138 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.750007 0.744799 2.794350 374.8027 -121.3063 144.0057 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	1.853800 5.531459 4.932254 5.008735 4.961378 2.058378

Variance Inflation Factors

Date: 11/06/18 Time: 19:08

Sample: 150

Variable	Coefficient	Uncentered	Centered
	Variance	VIF	VIF
C BONUS EXPER SALES PCTOWN PROFITS TENURE VALUATE	40466.23	5.170968	NA
	0.112110	2.162999	1.455689
	183.9236	4.384182	1.851904
	0.000434	2.047357	1.126194
	1268.406	5.417087	4.860076
	0.086231	1.314389	1.162518
	78.74425	7.146862	1.589947
	0.652967	5.407007	5.082989

Dependent Variable: SALARY Method: Least Squares Date: 11/06/18 Time: 19:09

Sample: 150

Included observations: 50

Dependent Variable: SALARY Method: Least Squares Date: 11/06/18 Time: 19:09

Sample: 150

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	533.9853	198.8220	2.685746	0.0102	C	541.9603	202.0014	2.682953	0.0103
BONUS	0.058896	0.331107	0.177876	0.8597	BONUS	0.055867	0.336523	0.166014	0.8689
EXPER	20.75696	12.69489	1.635065	0.1093	EXPER	22.82458	13.35437	1.709147	0.0946
SALES	0.068165	0.020195	3.375402	0.0016	SALES	0.072769	0.020379	3.570697	0.0009
PCTOWN	-34.22133	16.91070	-2.023649	0.0492	PROFITS	-0.008365	0.293996	-0.028454	0.9774
PROFITS	-0.031712	0.289147	-0.109675	0.9132	TENURE	-5.424316	8.220867	-0.659823	0.5129
TENURE	-2.258085	8.050636	-0.280485	0.7805	VALUATE	-0.630675	0.389855	-1.617719	0.1130
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.309627 0.213296 618.7502 16462630 -388.5614 3.214200 0.010703	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	920.1200 697.6053 15.82246 16.09014 15.92439 1.937359	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.287257 0.187804 628.6951 16996074 -389.3587 2.888383 0.018689	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	920.1200 697.6053 15.85435 16.12203 15.95628 1.982461

DUMMY VARIABLES

- Dummy variables can be used in situations in which the categorical variable of interest is included in a regression.
- Dummy variables can also be useful
 - Experimental design to identify possible causes of variation in the value of the dependent variable
 - Measuring differences between categories
- Dummy variables Structure
 - Binary: takes value one or zero
 - Ordinal: takes values from zero (positive integers)

DUMMY VARIABLES- INTERCEPT DUMMY VARIABLES

Dummy variables are binary (0,1)

$$Y_i = \beta_1 + \beta_2 X_i + \beta_3 D_i + \varepsilon_i$$

 $Y_i = Salary$

 X_i = sales

 $D_i = 1$ if postgraduate degree,

 $D_i = 0$ otherwise.

Higher return to education if the effect is positive and significant

 H_0 : $\beta_3 = 0$

 H_1 : $\beta_3 > 0$

$$Y_i = \beta_1 + \beta_2 X_i + \beta_3 D_i + \varepsilon_i$$

MA/MSc degree: $Y_i = (\beta_1 + \beta_3) + \beta_2 X_i + \varepsilon_i$

No advertising: $Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$

Dependent Variable: SALARY

Method: Least Squares

Date: 11/06/18 Time: 20:38

Sample: 150

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C SALES DEDUC	876.2444 0.067348 -397.6123	155.1371 0.018883 172.4119	5.648194 3.566644 -2.306176	0.0000 0.0008 0.0256
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.288990 0.258734 600.6158 16954748 -389.2978 9.551573 0.000330	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	920.1200 697.6053 15.69191 15.80663 15.73560 1.921815

DUMMY VARIABLES- SLOPE DUMMY

$$Y_{t} = \beta_{1} + \beta_{2}X_{t} + \beta_{3}D_{t}X_{t} + \varepsilon_{t}$$

PG Education:
$$D_t = 1$$
 Otherwise: $D_t = 0$

DUMMY VARIABLES- INTERCEPT DUMMY VARIABLES

Dependent Variable: SALARY

Method: Least Squares

Date: 11/06/18 Time: 20:47

Sample: 150

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C SALES	605.8911 0.140173	100.1752 0.022324	6.048311 6.279019	0.0000
EDSALES	-0.115305	0.024782	-4.652679	0.0000
R-squared	0.458116	Mean dependent var		920.1200
Adjusted R-squared	0.435057	S.D. depende	ent var	697.6053
S.E. of regression	524.3389	Akaike info cr	iterion	15.42028
Sum squared resid	12921769	Schwarz crite	rion	15.53500
Log likelihood	-382.5069	Hannan-Quin	in criter.	15.46396
F-statistic	19.86721	Durbin-Watso	on stat	1.765972
Prob(F-statistic)	0.000001			

DUMMY VARIABLES- BOTH INTERCEPT AND SLOPE DUMMIES

$$Y_i = \beta_1 + \beta_2 X_i + \beta_3 D_i + \beta_4 D_i X_i + U_i$$

PG Education: $D_i = 1$

Otherwise: $D_i = 0$

DUMMY VARIABLES- BOTH INTERCEPT AND SLOPE DUMMIES

Dependent Variable: SALARY

Method: Least Squares

Date: 11/06/18 Time: 20:50

Sample: 150

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DEDUC SALES EDSALES	501.2252 164.6755 0.152664 -0.134033	166.6186 208.9947 0.027454 0.034411	3.008219 0.787941 5.560726 -3.895069	0.0043 0.4348 0.0000 0.0003
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.465332 0.430463 526.4667 12749689 -382.1718 13.34491 0.000002	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	920.1200 697.6053 15.44687 15.59983 15.50512 1.699000

DUMMY VARIABLES- MORE THAN TWO CATEGORIES

If a qualitative variable has m categories:

- Introduce all m categories and drop the intercept term
- Keep the intercept and introduce m-1 categories

If we do not follow the above guidelines then we fall into what is known as the dummy variable trap (perfect multicollinearity)

DUMMY VARIABLES- TESTING FOR QUALITATIVE EFFECT

1. Test for differences in intercept.

2. Test for differences in slope.

3. Test for differences in both intercept and slope.

DUMMY VARIABLES- TESTING FOR QUALITATIVE EFFECT- SALARY DIFFERENCES DUE TO EDUCATION

$$Y_i = \beta_1 + \beta_2 X_i + \beta_3 D_i + \beta_4 D_i X_i + U_i$$

$$H_0$$
: $\beta_3 = 0$ vs. H_1 : $\beta_3 > 0$

intercept

Testing for the effect of education.

$$\frac{\hat{\beta}_3 - 0}{Se(\hat{\beta}_3)} \sim t_{\alpha;n-4}^c$$

$$H_0$$
: $\beta_4 = 0$ vs. H_1 : $\beta_4 > 0$

slope

Testing for the effect of education

$$\frac{\hat{\beta}_4 - 0}{Se(\hat{\beta}_4)} \sim t_{\alpha;n-4}^c$$

DUMMY VARIABLES- TESTING FOR QUALITATIVE EFFECT- SALARY DIFFERENCES DUE TO EDUCATION

Testing: H_0 : $\beta 3 = \beta 4 = 0$

H₁: otherwise

$$\frac{(RSS_R - RSS_U)/2}{RSS_U/(n-4)}$$

$$\sim$$
 $\mathbf{F}_{\alpha; 2, n-4}$

intercept and slope

Wald Test: Equation: Untitled

Test Statistic	Value	df	Probability
F-statistic	11.04682	(2, 46)	0.0001
Chi-square	22.09364	2	0.0000

- Sources of miss-specification
 - We omit a relevant variable, or
 - We include an irrelevant variable, or
 - We use an incorrect functional form
- Detection using informal tests
 - Refer back to theory
 - Changes in signs and significance when adding new variables
 - Changes in Adjusted R-squared.
 - Changes in residuals patterns.
- Detection using formal tests
 - Ramsey Test
 - Known as: RESET

- RESET is based on the explanatory power of the fitted values
- Consider the model

$$Y_{i} = b_{1} + b_{2} X_{2i} + V_{i}$$

- Steps
 - Estimate the model and save fitted values \widehat{Y}_i
 - Construct proxies to capture general miss-specification based on the fitted values: \hat{Y}_i^2 , \hat{Y}_i^3 , \hat{Y}_i^4
 - Estimate the model above including the proxies above

$$Y_{i} = b_{1} + b_{2}X_{2i} + b_{3}\hat{Y}_{i}^{2} + b_{4}\hat{Y}_{i}^{3} + b_{5}\hat{Y}_{i}^{4} + U_{i}$$

• Steps

- Estimate the model and save fitted values \widehat{Y}_i
- Construct proxies to capture general miss-specification based on the fitted values: \hat{Y}_i^2 , \hat{Y}_i^3 , \hat{Y}_i^4
- Estimate the model above including the proxies above.
- Compute the F statistic of the joint significance of the terms: \hat{Y}_i^2 , \hat{Y}_i^3 , \hat{Y}_i^4
- The null hypothesis: the model has correct specification
- Reject the null if the F-statistic is above the critical value.

Remark

• RESET is easy to apply but cannot tell us the reason for the mis-specification (i.e. omitted variable or functional form)

Ramsey RESET Test

Equation: EQ01

Specification: SALARY C BONUS EXPER SALES PCTOWN PROFITS

TENURE VALUATE

Omitted Variables: Powers of fitted values from 2 to 4

F-statistic Likelihood ratio	Value 2.725114 9.515485	df (3, 39) 3	Probability 0.0572 0.0232
F-test summary:			
	Sum of Sq.	df	Mean Squares
Test SSR	2847941.	3	949313.8
Restricted SSR	16433882	42	391282.9
Unrestricted SSR	13585940	39	348357.4
LR test summary:			
	Value	df	
Restricted LogL	-388.5177	42	
Unrestricted LogL	-383.7600	39	

• Recall

Dependent Variable: SALARY

Method: Least Squares

Date: 11/06/18 Time: 20:50

Sample: 150

Included observations: 50

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DEDUC SALES EDSALES	501.2252 164.6755 0.152664 -0.134033	166.6186 208.9947 0.027454 0.034411	3.008219 0.787941 5.560726 -3.895069	0.0043 0.4348 0.0000 0.0003
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.465332 0.430463 526.4667 12749689 -382.1718 13.34491 0.000002	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	920.1200 697.6053 15.44687 15.59983 15.50512 1.699000

Wald Test:

Equation: Untitled

Test Statistic	Value	df	Probability
F-statistic	11.04682	(2, 46)	0.0001
Chi-square	22.09364	2	0.0000

- This means we can estimate two models for the two groups
 - As long as the sample allows- otherwise keep the same structure with dummies.
 - Dummy variables can be used to test the stability of the relationship.
- A more general framework is to use formal tests of structural breaks.
- There are two types
 - Tests with known structural breaks
 - Tests with unknown structural breaks

- Test with known breaks
 - Popular test: Chow break point
 - Relevant when we have issues of comparing between categories and groups.
 - For time series you need to know the date of the occurrence of the change.
 - For cross section you need to sort the data by group

Chow Breakpoint Test: 22

Null Hypothesis: No breaks at specified breakpoints

Varying regressors: All equation variables

Equation Sample: 150

F-statistic	3.787004	Prob. F(8,34)	0.0029
Log likelihood ratio	31.85687	Prob. Chi-Square(8)	0.0001
Wald Statistic	30.29603	Prob. Chi-Square(8)	0.0002

- Test with known breaks
 - Step 1: Estimate the model using the full sample. Save RSS.
 - Step 2: split the sample into two sub-samples. Estimate the model and save their RSS (RSS_1 and RSS_2).
 - The null hypothesis: the model is stable. The alternative hypothesis: the model has a structural break at the point defined.
 - Step 3: Compute the F-statistic

$$F = \frac{(RSS - (RSS_1 + RSS_2))/k}{(RSS_1 + RSS_2)/(N_1 + N_2 - 2k)}$$

• Step 4: If the F exceeds the critical value, reject the null.

- Test with unknown breaks
 - Popular test: Quandt test
 - Relevant when we do not know when the changes would occur.

THANK YOU