Reconocimiento de Entidades Nombradas en Mensajes Cortos

Autor: Laila González Fernández

Tutores: Dr. Yudivián Almeida Cruz

MSc. Suilán Estévez Velarde

Facultad de Matemática y Computación
Universidad de La Habana

- Inmediatez
- Gran número de mensajes
- Variedad

LUGAR

PERSONA

ORGANIZACIÓN

santiago

#Russia

Madrid Vzla #Ucrania

Brasil

Toronto

avenida Santa Rosa

Bruce Lee
NEYMAR CR7
xavi harry

Zuckerberg Confucio
Vladimir Putin
#Maradonna

Google Barça ^{fifa} UEFA

Amazon
Brasil
kfc UNASUR
selección colombiana

MISCELÁNEAS

Juego de Tronos iPhone

iPhone

Dragon ball TWITTER

MTV

los simpsons #Emmys2014

#Brasil2014

Whatsapp

Silicon Valley

Hyundai Nutella discovery channel

Forbes

coca cola

OnCuba @OnCuba · 5d

Danza Contemporánea de #Cuba fascina en #ReinoUnido.

oncubamagazine.com/cultura/danza-

Danza Contemporánea de #Cuba fascina en #ReinoUnido.

ORGANIZACIÓN

LUGAR

Santiago de Cuba Holguín

Brasil (país) Brasil (equipo de fútbol)

Lugar Organización

xavi Vladimir Putin TWITTER

#Brasil2014 @Cristiano

Venzuela Vzla

Proponer y diseñar una metodología para el desarrollo de un sistema capaz de reconocer entidades nombradas de diversos dominios en mensajes cortos en español.

- Hacer un estudio del estado del arte concerniente al Reconocimiento de Entidades Nombradas.
- Identificar las características del Reconocimiento de Entidades Nombradas en mensajes cortos.
- Desarrollar una metodología que no requiera grandes cantidades de datos anotados.
- Desarrollar una metodología capaz de emplear bases de conocimiento distintas según el dominio.
- Evaluar la eficacia de la metodología desarrollada en Twitter y otros dominios.

Self-Training

Co-Training

Preprocesamiento

Selección de Características Selección de Clasificadores

Clasificación

Preprocesamiento

Selección de Características

Selección de Clasificadores

Clasificación

Wikipedia

Descripción

Rusia (en ruso: Россия) es el país más extenso del mundo.

Clasificadores tradicionales

Clasificadores para datos estructurados

- Cadenas Ocultas de Markov (HMM)
- Modelos de Máxima Entropía (Maximum Entropy)
- Campos Aleatorios Condicionales (CRF)

Clasificador	Precisión	Exhaustividad	Medida F1
Línea de base	0.006	0.006	0.006
Naive Bayes	0.552	0.266	0.324
Árboles de Decisión	0.320	0.401	0.352
SVM	0.283	$\boldsymbol{0.553}$	0.370
SGD	0.589	0.412	0.457
Perceptron	0.481	0.435	0.436
PAC	0.533	0.426	0.458
AdaBoost	0.479	0.308	0.348
Random Forest	0.564	0.303	0.383

SVM: Support Vector Machine, SGD: Stochastic Gradient Descent, PAC: Passive Agressive Classifier

Tipo de Entidad	Precisión	Exhaustividad	Medida F1
LUGAR	0.541	0.464	0.464
PERSONA	$\boldsymbol{0.625}$	0.555	$\boldsymbol{0.579}$
ORGANIZACIÓN	0.449	0.270	0.327
MISCELÁNEA	0.334	0.141	0.189
NO ENTIDAD	0.986	0.995	0.990

Clasificador	Precisión	Exhaustividad	Medida F1
CRF (L-BFGS)	0.626	0.475	0.517
CRF (L2-SGD)	0.635	0.459	0.509
CRF (AP)	0.548	$\boldsymbol{0.465}$	0.490
CRF(PA)	0.557	0.547	0.488
CRF (AROW)	0.481	0.412	0.434
Maximum Entropy	0.520	0.381	0.427
HMM	0.054	0.136	0.077

Self-Training

«conjunto semilla»

m mejores clasificaciones

\overline{n}	m	Precisión	Exhaustividad	Medida F1
500	500	0.516	0.365	0.370
500	1000	0.562	0.338	0.389
1000	500	0.540	0.410	0.438
1000	1000	0.602	0.365	0.428
2000	500	0.585	0.453	$\boldsymbol{0.495}$
2000	1000	0.600	0.408	0.468
3000	500	0.509	$\boldsymbol{0.476}$	0.482
3000	1000	0.617	0.433	0.494

n: tamaño del conjunto de entrenamiento inicial

m: número de mensajes a añadir al conjunto de entrenamiento en cada iteración

Sistema	Precisión	Exhaustividad	Medida F1
Stanford NER	0.299	0.456	0.361
Stanford NER (entrenado)	0.627	0.292	0.398
T-NER	0.319	0.281	0.293
Propuesta	0.602	0.408	0.438

Mejoría:

10% respecto al *Stanford NER Tagger* entrenado21% respecto al *Stanford NER Tagger* para el idioma español49% respecto a *T-NER*

Tipo de Entidad	Precisión	Exhaustividad	Medida F1
LUGAR	0.735	0.634	0.675
PERSONA	0.816	0.858	0.834
ORGANIZACIÓN	0.710	0.799	0.751
MISCELÁNEA	0.597	0.494	0.499
NO ENTIDAD	0.991	0.984	0.987

Corpus CoNLL 2003 Medida F1: 0.723

Sistema	Precisión	Exhaustividad	Medida F1
CMP	0.813	0.814	0.814
Flo	0.780	0.794	0.791
CY	0.781	0.761	0.772
Stanford NER	0.780	0.762	0.771
WNC	0.759	0.774	0.766
BHM	0.742	0.774	0.758
Tjo	0.760	0.756	0.758
PWM	0.743	0.735	0.739
Jan	0.740	0.738	0.739
Mal	0.739	0.734	0.737
Propuesta	0.718	0.729	0.723
Tsu	0.690	0.741	0.715
BV	0.605	0.673	0.637
MM	0.563	0.665	0.610
Línea de base	0.263	0.565	0.359

Conclusiones

- Se propone una metodología utilizando self-training para el reconocimiento de entidades en mensajes cortos.
- Se observan mejorías respecto a otras metodologías existentes.
- La propuesta necesita solo un pequeño número de mensajes anotados para su entrenamiento y es una propuesta portable a otros dominios.

Recomendaciones

- Estudiar la elección de clasificadores para el proceso de *self-training* y de los valores adecuados para sus parámetros.
- Utilizar otras técnicas de aprendizaje semi-supervisado.
- Aplicar la metodología en otros dominios.
- Evaluar el impacto de enriquecer el corpus con oraciones tomadas de textos estructurados.

Reconocimiento de Entidades Nombradas en Mensajes Cortos

Autor: Laila González Fernández

Tutores: Dr. Yudivián Almeida Cruz

MSc. Suilán Estévez Valverde

Facultad de Matemática y Computación
Universidad de La Habana

¿Las características que en su propuesta son consideradas como las más acertadas en la predicción de cada clase se mantienen al cambiar el dominio?

Características	Precisión	Exhaustividad	Medida F1	%
Clásicas	0.502	0.358	0.418	95%
No supervisadas	0.250	0.155	0.162	37%
Globales	0.462	0.270	0.319	73%
Todas	0.540	0.410	0.438	100%

Corpus de Tweets

Características	Precisión	Exhaustividad	Medida F1	%
Clásicas	0.697	0.652	0.694	96%
No supervisadas	0.423	0.228	0.289	40%
Globales	0.539	0.391	0.448	62%
Todas	0.718	0.729	0.723	100

Corpus de Noticias

Clase	Característica		
No entidad	t.first		
No entidad	t.shape: -		
No entidad	t.shape: aa		
Lugar	wiki category: Estados miembros de la ONU		
Persona	wiki_category: Nombres		
Lugar	wiki_description: ciudad		
No entidad	t.postag: pronombre		
Lugar	t-1: en		
Persona	wiki_category: Personas		
Persona	wiki_description: futbolista		

Clase	Característica
No entidad	t.shape: aa
No entidad	t.shape: -
Lugar	wiki_description: capital
Lugar	t-1: en
Lugar	wiki_description: ciudad
Persona	wiki_category: Personas
Persona	wiki_category: Apellidos
No entidad	t.first
Lugar	wiki_description: pueblo
Miscelánea	t.shape: AA00

Corpus de Tweets

Corpus de Noticias

Una de las ventajas de los algoritmos de aprendizaje de máquina es la posibilidad de clasificar entidades nombradas no presentes en bases de conocimiento, ni clasificadas previamente en la fase de entrenamiento. ¿Qué resultados serían obtenidos por su propuesta en estos casos? ¿En estos casos cuál es la característica que mejor los identifica?

Entidades	Precisión	Exhaust.	Medida F1	%
No vistas en entrena- miento	0.453	0.323	0.349	80 %
No encontradas en bases de conocimiento	0.531	0.363	0.410	94%
No encontradas en bases de conocimiento ni vis- tas en entrenamiento	0.414	0.240	0.278	63%
Todas	0.540	0.410	0.438	100%

GameCaptureHD

Ultraport

Johaaaaan

Diomedez

SportLeon

#Casselton

Flappy

#Lanus

CALASANZ

VITORIA

Protón-M

#BEYONC

¿Cómo se incorpora en el sistema el aprendizaje no supervisado?

Algoritmos de *clustering*

- Clusters de Brown
- Clusters de Clark
- Word2Vec

Oposición @CFKArgentina
CELAC Celac

Instituciones
UNEAC
Copa #MCLCanciller
#AsambleaNacional
pidió India

ven ce especialmente Proponen fieles vienes rumbo llegan ofensa volverse despedida acompañó invito ||egó empezar noqueó abrazar despiden exhorta volvió vuelven pronuncia responde veng as acceso entrar convoca llegará disfrutar llegué homenales fúnebres antiterroristas #Guadalupe Protección

Clark:

Cluster 12: Cuba, Bolivia, cuba, islajuventud, Egipto, SanctiSpíritus, VenezuelaDecide

Word2vec:

Cluster 58: Cuba, Caribe, Cubarte, bahía, israel, Cienfueguero

Brown

Cluster 01010001100 : Cuba, España, China, América, México, Venezuela, Bolívar

Cluster 010100011: Cuba, ..., Guatemala, Washington, #España, Caracas

Cluster 0101000: Cuba, ..., Naciones, Estado, Egipto, #habana, Villa, estos

clark: 12, word2vec: 58, brown-11: 01010001100,

brown-9: 010100011 brown-7: 0101000

Características	Precisión	Exhaustividad	Medida F1	%
Clásicas	0.532	0.391	0.436	95%
No supervisadas	0.250	0.155	0.169	37%
Globales	0.462	0.270	0.329	72%
Todas	0.533	0.426	0.458	-

Corpus de Tweets

Reconocimiento de Entidades Nombradas en Mensajes Cortos

Autor: Laila González Fernández

Tutores: Dr. Yudivián Almeida Cruz

MSc. Suilán Estévez Valverde

Facultad de Matemática y Computación
Universidad de La Habana