UNIVERSIDAD AUTÓNOMA "TOMAS FRÍAS" CARRERA DE INGENIERÍA DE SISTEMAS

<u> </u>				
Materia:	Arquitectura de computadoras (SIS-522)			
Nombre:	Alex Vladin	nir Quecaña	Ramos	MOSI - BOLL
Docente:	Ing. Gustavo A. Puita Choque			N° Práctica
Auxiliar:	Univ. Ald			
20/11/2024	Fecha publicación			<u> </u>
06/12/2024	Fecha de entrega			
Grupo:	1	Sede	Potosí	

1) Con base en el concepto de "mantenimiento proactivo", realiza el análisis de riesgos del siguiente problema: (100 pts)

La universidad cuenta con una infraestructura tecnológica importante para sus actividades académicas, pero enfrenta riesgos significativos debido a problemas eléctricos. Algunos cables están mal conectados, lo que aumenta el riesgo de cortocircuitos y sobrecargas. Además, los

UPS tienen más de 10 años de uso y no garantizan un respaldo confiable, dejando expuestos a los equipos críticos ante interrupciones

eléctricas

Sin embargo, la institución ha mostrado un compromiso por mantener

sus sistemas tecnológicos en funcionamiento y dispone de un equipo técnico que podría implementar mejoras. Con una inversión moderada en mantenimiento preventivo y renovación de equipos, se puede reducir

el riesgo y garantizar una operación más segura y eficiente.

1. situación actual

La universidad posee una infraestructura tecnológica robusta utilizada para actividades académicas. Sin embargo, enfrenta riesgos importantes por problemas eléctricos que podrían comprometer los equipos y las actividades académicas.

Problemas identificados:

- Cables mal conectados que incrementan el riesgo de cortocircuitos y sobrecargas.
- UPS con más de 10 años de antigüedad, lo que compromete el respaldo ante fallas eléctricas.

Oportunidad positiva:

- Existe un equipo técnico disponible con capacidad para implementar mejoras.
- Inversión moderada en mantenimiento preventivo y renovación de equipos puede mitigar los riesgos.

2. Identificación de activos

Activos principales en riesgo:

- **Equipos tecnológicos**: Computadoras, servidores, switches, routers, entre otros.
- Infraestructura eléctrica: Cables, conexiones eléctricas y UPS (Sistemas de Alimentación Ininterrumpida).
- **Sistemas académicos críticos**: Plataformas de enseñanza, gestión de estudiantes, almacenamiento de datos.

Activos secundarios:

 Integridad del equipo técnico y personas cercanas (riesgos de incendio o descargas eléctricas).

3. Identificación de amenazas

Amenazas internas:

- Cortocircuitos causados por conexiones incorrectas.
- Sobrecalentamiento o falla de los cables eléctricos.

Amenazas externas:

- Interrupciones eléctricas frecuentes.
- Fallas en los UPS debido a su antigüedad y desgaste.

4. Evaluación de vulnerabilidades

Vulnerabilidades identificadas:

- 1. Falta de mantenimiento en la infraestructura eléctrica.
- 2. Conexiones eléctricas inadecuadas o mal instaladas.
- 3. Obsolescencia de los UPS, incapaces de brindar soporte confiable.

5. Evaluación del impacto

Impactos posibles:

- 1. **Equipos dañados**: Riesgo de pérdida o avería de dispositivos tecnológicos por fallas eléctricas.
- 2. **Interrupción de actividades académicas**: Inaccesibilidad a plataformas educativas y datos críticos.
- Costos adicionales: Reparaciones imprevistas o adquisición urgente de equipos.
- 4. **Riesgos a la seguridad**: Cortocircuitos pueden derivar en incendios o accidentes personales.

6. Análisis de probabilidad e impacto

Matriz de riesgos:

Riesgo	Probabilidad	Impacto	Nivel de riesgo
Cortocircuitos	Alta	Crítico	Alto
Sobrecalentamiento	Media	Moderado	Medio
Falla de equipos tecnológicos	Alta	Crítico	Alto
Interrupción de actividades	Alta	Crítico	Alto
Incendio causado por fallos eléctricos	Media	Crítico	Alto

7. Propuesta de acciones para mitigar riesgos

- 1. Mantenimiento preventivo:
 - o Inspección y corrección de conexiones eléctricas defectuosas.
 - o Sustitución de cables deteriorados o incorrectos.
- 2. Renovación de equipos obsoletos:
 - Reemplazo de los UPS antiguos por modelos modernos con capacidad suficiente para garantizar respaldo.
- 3. Capacitación del equipo técnico:
 - Formación en estándares eléctricos y mantenimiento de infraestructura tecnológica.
- 4. Establecimiento de protocolos:
 - o Documentar un plan de respuesta ante emergencias eléctricas.
- 5. Inversión presupuestaria:
 - Asegurar una partida específica para infraestructura eléctrica y tecnológica en el presupuesto institucional.

8. Conclusión del análisis

Aunque la universidad enfrenta riesgos importantes debido a su infraestructura eléctrica, estos pueden mitigarse con una inversión moderada en mantenimiento preventivo y renovación de equipos. El compromiso de la institución y el equipo técnico son factores clave para garantizar la continuidad operativa y reducir el impacto de las fallas.