Homework/Programming 5. (Due Oct. 28) Math. 609-600

Problem 1. Do Exercise 3 on p.5 of the 639 lecture 7 notes. You will have to use the (positive) square operator defined on p.4-5 of those notes.

The next problem that we consider here comes from a finite element approximation to a one dimensional second order elliptic boundary value problem. The problem that we consider is to approximate the solution $y:[0,1]\to\mathbb{R}$. of

(1.1)
$$-y''(x) = f(x), \quad x \in (0,1),$$
$$y(0) = y(1) = 0.$$

The approximation involves a mesh of equally spaced points on [0,1], namely, $\{x_i := ih\}$, where h = 1/N and N > 1 is an integer. We define the finite element approximation space, V_h to be the set of functions on [0, 1] which are continuous and piecewise linear with respect to the above mesh and vanish on the endpoints, i.e., at 0 and 1. This space and the resulting approximation will be discussed in more detail in recitation, in particular:

- (a) The functions in V_h are uniquely determined by their values at the nodes, x_i , i = 1, 2, ..., N - 1.
- (b) There is a natural basis for V_h (called the finite element basis), namely, ξ_i , $i = 1, \dots, N-1$ where

$$\xi_i(x_j) = \delta_{i,j}$$

with $\delta_{i,j}$ denoting the Kronecker delta function.

(c) To define the weak formulation of (1.1), we multiply (1.1) by a "test function" ϕ (which vanishes at the endpoints), integrate the product over [0,1] and integrate by parts. The weak form of (1.1)is then to find $y \in V$ satisfying

(1.2)
$$A(y,\phi) = (f,\phi), \text{ for all } \phi \in V$$

where
$$A(v, w) := \int_0^1 v'(x)w'(x) dx$$
 and $(v, w) := \int_0^1 v(x)w(x) dx$.

Here V is a space of functions defined on [0,1] (the precise definition of V is beyond the scope of this class). This is a weak formulation as the functions in V need only have integrable first derivatives while the strong form (1.1) requires the solution $y \in C^2$.

(d) The Galerkin approximation to y solving (1.2) is the unique function $y_h \in V_h$ satisfying

(1.3)
$$A(y_h, \xi_h) = (f, \xi_h), \quad \text{for all } \xi_h \in V_h.$$

(e) Expanding $y_h = \sum_{i=1}^{N-1} c_i \xi_i$ in the finite element basis we are led to the linear system:

$$(1.4) \widetilde{A}c = \widetilde{B}F$$

with \widetilde{A} and \widetilde{B} being tri-diagonal $(N-1)\times (N-1)$ matrices with entries

$$\widetilde{A}_{ij} = h^{-1} \begin{cases} 2 & \text{if } i = j, \\ -1 & \text{if } |i - j| = 1, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$\widetilde{B}_{ij} = \frac{h}{6} \begin{cases} 4 & \text{if } i = j, \\ 1 & \text{if } |i - j| = 1, \\ 0 & \text{otherwise,} \end{cases}$$

and, finally, $F_j = (f, \xi_j)$, for j = 1, 2, ..., N - 1. Both \widetilde{A} and \widetilde{B} are symmetric and positive definite.

(f) We rewrite (1.4) as

(1.5)
$$Ay := \widetilde{B}^{-1}\widetilde{A}y = F.$$

- **Problem 2.** (a) Using the fact that both \widetilde{A} and \widetilde{B} are symmetric and positive definite, show that the matrix \mathcal{A} is self adjoint with respect to the \widetilde{B} inner product even in the case of non-uniformly spaced meshs although the entries of \widetilde{A} and \widetilde{B} are a little more complicated in that case.
- (b) It is known that there are positive constants c_0 and c_1 not depending on h and satisfying

$$(2.1) c_0 \le \lambda_1 \le \lambda_{N-1} \le c_1 h^{-2}$$

with λ_1 and λ_{N-1} denoting the smallest and largest eigenvalue of \mathcal{A} . Let e^j denote the error in the j'th iterate of Richardson's method with $\tau = 1/\lambda_{N-1}$ and expand

$$e^j = \sum_{i=1}^{N-1} c_{i,j} \phi_i$$

with ϕ_i as in Theorem 2 of 639 lecture 7 (with A and B of that theorem replaced by \mathcal{A} and \widetilde{B} , resp.). Show that

$$|c_{i,j}| = |(1 - \lambda_i/\lambda_{N-1})^j c_{i,0}| \le (1 - 1/K)^j |c_{i,0}|.$$

Here $K := \lambda_{N-1}/\lambda_1$ is the spectral condition number.

- (c) Use linear Maclauren expansion of $\ln(1+x)$ to show the expected number of steps required to reduce the error by ϵ is $j \approx K \ln(\epsilon^{-1})$.
- (d) Now switch to the method with optimal parameter, i.e., $\tau = 2/(\lambda_1 + \lambda_{N-1})$. Show that in this case the expected number of steps required to reduce the error is $j \approx K \ln(\epsilon^{-1})/2$. Hint: Write $\rho(G)$ on p. 7 of the 639 lecture notes 7 in terms of K and, also, use the linear Maclauren approximation to (1-x)/(1+x).

Problem 3. This is a programming problem using the two iteration methods considered in the above problem. In this case, we have

$$\lambda_j = 6h^{-2}(2 - 2\cos(j\pi/N))/(4 + 2\cos(j\pi/N)), \text{ for } j = 1, \dots, N - 1.$$

For simplicity, we consider iterating for the solution of the somewhat trivial problem

$$(3.1) \mathcal{A}x = 0$$

with initial vector x^0 being the vector in \mathbb{R}^{N-1} with all entries set to 1. The advantages of solving this problem is that the error $e^j = x - x^j = -x^j$ is trivial to compute.

(a) Run your code with $\tau = 1/\lambda_{N-1}$ and report the number of iterations required to reduce the maximum norm of error to $\epsilon = 10^{-2}$ and $\epsilon = 10^{-4}$ as a function of N over the range $4, 8, \ldots 128$. Also, for N > 4, report the iteration increase factor, i.e., the number of iterations at N divided by the number of iterations at N/2 (for the same ϵ). The asymtotic iteration increase factor (as $N \to \infty$)

- should follow (2.1) and is related to the answers of Parts (c) and (d) of the previous problem.
- (b) Switch to the optimal τ and make the runs and report error analogus to those of Part (a) above.