2013—2014 学年第一学期《复变函数与积分变换》

课内考试卷(A卷)(信息学院 2012级)

授课班号 050501 专业 学号 姓名 姓名

题号	 1	三	审核	总分
得分				

- 一:填空题(共24分,每小题3分)
 - 1. 设复数 $z = \frac{2i}{-1-i}$,则 $\arg z = \underline{\hspace{1cm}}$
 - 2. 设复数 $z = (2+i)^2$,则 $\ln z =$ ______
 - 3. $\int \frac{e^{2z}}{(z-1)^2(z-2)^3} dz = _____,$ 其中 $c: |z| = \frac{1}{2}$ 为正方向。
 - 4. 级数 $\sum_{n=1}^{\infty} \frac{i^{2n}}{n}$ 的敛散情况是______
 - 5. 设 $f(z) = a \ln(x^2 + y^2) + i \arctan \frac{y}{x}$ 在 x > 0 时解析,则 a =_______
 - $6. F[\sin 2t] = \underline{\hspace{1cm}}$
 - 7. $L^{-1} \left[\frac{1}{(s-2)^2} \right] = \underline{\hspace{1cm}}$
 - 8. z = 0是 $\frac{\sin z}{(e^z 1)^2}$ 的____级极点。

阅卷人	得分

阅卷人

得分

- 二: 计算题(共36分,每小题6分)
 - 1. 解方程 $z^4 + 1 = i$ 。

2. 计算 $i^{1+\sqrt{3}i}$ 的值。

3. 计算积分
$$\oint_{c} \frac{1}{(z^2+1)(z^2-4)} dz$$
 其中 c 为正向圆周 $|z-2|=1$ 。

4. 函数 $f(z) = 2x^3 + 3y^3i$ 在何处可导? 在何处解析?

6. 利用微分性质求 $L[t^m]$, 其中m是正整数。

三: 解答题(每小题 10 分, 共 40 分)

1. 设f(t)和F(w)是傅氏变换对,当 $t \to \pm \infty$ 时, $f(t) \to 0$ 且f'(t)在

t轴的任何有限区间上可积,试证明傅氏变换的微分性质 Fig[f'(t)ig]=jwF(w),并用此性质求 $\delta'(t)$ 的傅氏变换。

2. 将函数 $f(z) = \frac{1}{(z-2)(z-4)}$ 分别在区域 (i) 2 < |z| < 4和 (ii) 0 < |z-2| < 2 内展成洛 朗级数。

$$3. \Re \iint_{|z|=3} \frac{z \sin z}{(1-e^z)^2} dz$$

4. 求方程 y "+ y = t ,满足初始条件 $y|_{t=0} = 0, y$ ' $|_{t=0} = -2$ 的解。