

실험 보고서

No.	학번	이름
조		
1		
2		
3		
4		
5		

2016년 11월 24일

실험 내용

- 모터 구동
- 주기 신호 생성
- 포토 인터럽트

실험 목적

- 트랜지스터를 이용하여 모터 구동하기.
- PUT(Programmable Unijunction Transistor)를 이용하여 주기 신호 생성하기.
- 포토 인터럽트 이해하기.

준비물

- 파워 서플라이
- 오실로스코프
- DC 모터
- 트랜지스터 (npn)
- 저항
- 브레드보드
- 기타공구

- 디지털 멀티미터
- 포토 인터럽터(KSG-255)
- PUT(2N6027)
- 커패시터
- LED
- 점퍼 케이블

모터 사양 (micro metal gearmotor 50:1)

- Motor speed (No gearbox):13000 rpm

- Gear ratio: 50:1

- Motor speed (with gearbox): 260 rpm

- Rated current: 30mA @ 6V

- Stall current: 350mA @ 6V

Stall torque: 0.39kg*cm @ 6V

- 모터가 구동하기 시작하기 위한 최소 전류: 60mA

◎ 트랜지스터 (KTN2222A)

- General purpose NPN transistor

MAXIMUM RATINGS (Ta=25°C)

CHADACTEDICTIC	CMADOL	RA'	UNIT	
CHARACTERISTIC	SYMBOL	KTN2222 KTN2222A		
Collector-Base Voltage	V_{CBO}	60	7 5	V
Collector-Emitter Voltage	V_{CEO}	30	40	V
Emitter-Base Voltage	V_{EBO}	5	6	V
Collector Current	$I_{\rm C}$	600		mA
Collector Power Dissipation (Ta=25°C)	Pc	625		mW
Junction Temperature	Tj	150		$^{\circ}$
Storage Temperature Range	$T_{ m stg}$	-55~150		$^{\circ}$ C

	KTN2222 KTN2222A	h _{FE} (1)	I _C =0.1mA, V _{CE} =10V	35	-	-	
		h _{FE} (2)	I _C =1mA, V _{CE} =10V	50	-	-	
DC Comment Code		h _{FE} (3)	$I_C=10mA$, $V_{CE}=10V$	75	-	-	
DC Current Gain *		h _{FE} (4)	I _C =150mA, V _{CE} =10V	100	-	300	
	KTN2222	1 (5)	I 500 A W 10W	30	-	-	
	KTN2222A	h _{FE} (5)	I _C =500mA, V _{CE} =10V	40	-	-	

◎ R1, R2 설정하기

- ◎ 회로 구성하기
 - 회로도를 구성하고, 가변저항을 조작할 때 모터에 흐르는 전류의 변화 관찰

- 달링턴 트랜지스터를 이용하여 위 회로를 대체할 수도 있다. 달링턴 트랜지스터 에 대해 조사하라.
 - (사용목적, 주로 사용되는 예시를 들 것

2. PUT를 이용한 펄스 제작

PUT(Programmable Unijunction Transistor) – 2N6027

MAXIMUM RATINGS (T, = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Dissipation* Derate Above 25°C	P _F 1/θ _{JA}	300 4.0	mW mW/°C
DC Forward Anode Current* Derate Above 25°C	I _T	150 2.67	mA mA/°C
DC Gate Current*	I _G	±50	mA
Repetitive Peak Forward Current 100 μs Pulse Width, 1% Duty Cycle 20 μs Pulse Width, 1% Duty Cycle*	I _{TRM}	1.0 2.0	Α
Non-Repetitive Peak Forward Current 10 μs Pulse Width	I _{TSM}	5.0	Α
Gate to Cathode Forward Voltage*	V_{GKF}	40	V
Gate to Cathode Reverse Voltage*	V_{GKR}	-5.0	٧
Gate to Anode Reverse Voltage*	V_{GAR}	40	٧
Anode to Cathode Voltage* (Note 1)	V _{AK}	±40	٧
Capacitive Discharge Energy (Note 2)	E	250	μJ
Power Dissipation (Note 3)	P _D	300	mW
Operating Temperature	T _{OPR}	-50 to +100	°C
Junction Temperature	TJ	-50 to +125	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

*Indicates JEDEC Registered Data

 Anode positive, R_{GA} = 1000 Ω Anode negative, R_{GA} = open

- 2. E = 0.5 CV² capacitor discharge energy limiting resistor and repetition.
- 3. Derate current and power above 25°C.

PUTs 40 VOLTS, 300 mW

PIN ASSIGNMENT				
1	Anode			
2	Gate			
3	Cathode			

2. PUT를 이용한 펄스 제작

◎ 회로구성하기

- 1) Vcc(6V)를 인가하였을 때 LED의 변화에 대하여 설명하시오.
 - 오실로스코프를 이용하여 출력파형의 주기를 측정하시오

2) 커패시터의 용량을 변경하여 차이점에 대해 설명하시오.

3. 포토 인터럽트

Photointerrupters (SG-255)

MAXIMUM RATINGS

(Ta=25℃)

	ltem	Symbol	Rating	Unit
	Power dissipation	Po	100	mW
	Forward current	F	60	mA
Input	Reverse voltage	VR	5	V
	Pulse forward current *1	FP	1	Α
	Collector power dissipation	Pc	100	mW
Output	Collector current	lc	40	mA
Output	C - E voltage	VCEO	30	V
	E - C voltage	Veco	5	V
	Operating temp.*2	Topr.	- 20~ +85	${\mathbb C}$
Storage temp.*2		Tstg.	- 30~ +85	\mathbb{C}
	Soldering temp.*3	Tsol.	260	${\mathbb C}$

ELECTRO-OPTICAL CHARACTERISTICS

(Ta=25℃)

ltem		Symbol	Conditions	Min.	Тур.	Max.	Unit.
	Forward voltage	VF	I=20mA		1.2	1.4	V
Input	Reverse current	R	V _R =5V			10	μΑ
i .	Peak wavelength	λр	IF = 20mA		940		nm
Output	Collector dark current	CEO	Vce=10V		1	100	nA
	Light current	С	l=20mA, V:=5V,Klon-shading)	0.5		10	mA
Transmiss	olceakage current	CEOD	F=20mA, VE=5V(shading)		0.5	10	μ A
	C - E saturation voltage	VCE(sat)	l⊧=20mA, lc=0.2mA		0.15	0.4	V
	Rise time	tr	Vcc=5V, k=2mA,R=100Ω		4	20	μ sec.
	Fall time	tf	Vac=5V, k=2111A, k=100s2	·	5	25	μ sec.

^{*1.} pulse width : t w ≤100 ßec.period :T=10msec.

^{*2.} No icebound or dew *3. F

^{*3.} For MAX.5 seconds at the position of 1mm from the package

3. 포토 인터럽트를 이용한 LED 제어

◎ 회로 구성하기

- 주어진 사양에 따라 입력 저항과 부하저항을 결정하시오

- 포토인터럽트에 물체를 통과할 때 마다 LED가 깜빡거리는 회로를 구성하시오.