cognoms	nom

ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIÓ

Assignatura: Professors:	J.B. Mariño, C. Nadeu i J. Vidal	Data: 3 de juliol de 1997 Temps: 2,5 h.
Qüestions	(3 punts, 1 punt per qüestió)	
Responeu-les	s en aquest mateix full, sense superar l'espai	assignat a cada qüestió.
KL sobre transformala imager $\hat{X}_{1}^{j} = Q[X_{1}^{j}]$	s un sistema de compresión de imágenes de bloques de 8x8. Nos planteamos la posibados (calculados como $X_i^j = \mathbf{a}_i^T \mathbf{x}_j$ $i = 1,,$ $\mathbf{a}_i^j = \mathbf{a}_i^T \mathbf{x}_j$ $i = 1,,$ $\mathbf{a}_i^j = \mathbf{a}_i^T \mathbf{x}_j$ $i = 1,,$ $\mathbf{a}_i^j = \mathbf{a}_i^T \mathbf{x}_j$ $i = 1,,$ $i = 1,$	bilidad de cuantificar los coeficientes ,64 para cada uno de los bloques \mathbf{x}_j de dentro de cada bloque, es decir, $\frac{1}{2}j$
diferen	íamos en compresión si cuantificáram cialmente entre bloc $Q[X_i^1]$ $\hat{X}_i^j = Q[X_i^j - \boldsymbol{b} \ X_i^{j-1}]$ $j = 2,,32$	ques, es decir,

2. En el esquema de codificación de voz de análisis por síntesis de la figura 1, comente muy brevemente cual es el papel que juegan los bloques 1 y 2.

Figura 1

3.	. Se desea estimar el espectro de una secuencia de N muestras. Para ello se convoluciona su periodograma con la transformada de Fourier de la ventana triangular de duracion <i>M</i>

- muestras. Se pide:
- a) ¿Como afecta a la varianza del estimador la relación entre los valores de M y N?
- b) ¿Para qué valor de M se obtiene la máxima varianza? ¿Qué podemos decir del sesgo en ese caso?
- - c) ¿Está relacionado este estimador con el estimador sesgado del periodograma?

Problema 1 (4 punts)

La figura muestra el esquema de codificación DPCM en el que el predictor se ha hecho adaptativo. Como se indica en la figura la predicción se realiza a partir de la señal codificada $x_q(n)$ y la adaptación mediante el error de predicción cuantificado $e_q(n)$.

a) Demuestre que el error en la codificación

$$\varepsilon(n) = x(n) - x_q(n)$$

es igual al error en la cuantificación

$$\varepsilon_q(n) = e(n) - e_q(n)$$

Exprese la relación señal a ruido S/N de codificación en función de la ganancia de predicción G_p y la relación señal a ruido S/N_q de cuantificación.

b) Escriba la relación entrada-salida del predictor y la ecuación de adaptación de su respuesta impulsional.

En la situación de la figura el predictor puede interpretarse como un filtro de Wiener que minimiza $e_q(n)$ com $x_q(n)$ como dato.

- c) Exprese $e_q(n)$ en función de x(n), la respuesta del predictor y el error de cuantificación $\epsilon_q(n)$. Compruebe que $e_q(n)$ puede interpretarse como el error de predicción de $x_q(n)$ a partir de muestras anteriores.
- d) Suponiendo que $\epsilon_q(n)$ es blanco con potencia σ_q^2 e incorrelado con x(n), obtenga la correlación de $x_q(n)$. Escriba las ecuaciones que permiten obtener el predictor con el error cuadrático medio mínimo.
- Obtenga el predictor óptimo de orden 1 y la potencia del error de predicción. Determine la relación señal a ruido de codificación, cuando $r_x(0) >> \sigma_q^2$ (relación señal a ruido alta), en función de la ganancia de predicción del predictor óptimo de x(n) y la relación señal a ruido de cuantificación.

Problema 2 (3 punts)

Siguin $\mathbf{a}_0, \mathbf{a}_1, ..., \mathbf{a}_{N-1}$ els vectors de la transformació Karhunen-Loéve discreta (DKLT), o transf. de Hottelin, d'un procés aleatori $\mathbf{x}(n)$ que presenta matriu d'autocorrelació \mathbf{R} . Primer de tot es demana:

a) Demostrar que les matrius \mathbf{R} i \mathbf{R}^{-1} presenten els mateixos autovectors i que els autovalors d'una són els inversos dels de l'altra.

Suposarem ara que x(n) és un procés AR d'ordre 1 de la forma $x(n)=\rho x(n-1)+w(n)$, on w(n) és soroll blanc. Volem comprovar que la DCT coincideix amb la DKLT en aquest tipus de procés, sempre que $\rho \to 1$. Per això, prenent N=3, es demana:

b) Escriure la matriu d'autocorrelació 3x3 de x(n) en funció de ρ i r(0). Sabent que ${\bf R}^{-1}$ és proporcional a la matriu ${\bf B}$

$$\mathbf{B} = \begin{pmatrix} 1 - \mathbf{r}\mathbf{a} & -\mathbf{a} & 0 \\ -\mathbf{a} & 1 & -\mathbf{a} \\ 0 & -\mathbf{a} & 1 - \mathbf{r}\mathbf{a} \end{pmatrix}$$

calcular el valor de α en funció de ρ .

c) Si els coeficients transformats amb DCT són

$$C(k) = \sum_{n=0}^{N-1} a_k(n)x(n)$$

on
$$a_k(n) = \frac{c}{\sqrt{N}} \cos \frac{(2n+1)kp}{2N}$$
, $0 \le n, k \le N-1$, essent $c = \begin{cases} 1, & k = 0 \\ \sqrt{2}, & k \ne 0, \end{cases}$

trobar els vectors c; de la transformació per a N=3, comprovant que són ortonormals.

d) Fent $\rho \to 1$, i deixant B en funció de α , verificar que els vectors \mathbf{c}_i de la DCT són els autovectors de la matriu B i demostrar així, amb l'ajuda de l'apartat (a), que aquests vectors \mathbf{c}_i són idèntics als vectors \mathbf{a}_i de la DKLT.