jhTAlib

Joost Hoeks

2019-03-11

Contents

jh'	ΓAlib	2
	Depends only on	2
	Docs	2
	Install	2
	Update	3
	Examples	3
	Example 1	3
	Example 2	3
	Example 3	3
	Example 4	4
	Example 5	4
	Example 6	4
	Example 7	4
	Example 8	4
	Example 9	5
	Example 10	5
	Test	5
	Reference	5
	Behavioral Techniques	5
	Cycle Indicators	8
	Data	9
	Event Driven	10
	Experimental	10
	General	12
	Information	13
	Math Functions	13
	Momentum Indicators	18
	Overlap Studies	22
	Pattern Recognition	24
	Price Transform	28
	Statistic Functions	28
	Volatility Indicators	31

Volume Indicators	31
jhTAlib	
Technical Analysis Library Time-Series	
You can use and import it for your:	
• Technical Analysis Software	
• Charting Software	
• Backtest Software	
• Trading Robot Software	
• Trading Software in general	
Work in progress	
Depends only on	
• The Python Standard Library	
Docs	
• html	
• pdf	
• rst	
Install	
From PyPI:	
\$ [sudo] pip3 install jhtalib	
From source:	
<pre>\$ git clone https://github.com/joosthoeks/jhTAlib.git \$ cd jhTAlib \$ [sudo] pip3 install -e .</pre>	

Update
From PyPI:
\$ [sudo] pip3 installupgrade jhtalib
From source:
\$ cd jhTAlib \$ git pull [upstream master]
Examples
Examples
\$ cd example/
Example 1
\$ python3 example-1-plot.py
or
Open In Colab
Example 2
\$ python3 example-2-plot.py
or
Open In Colab
Example 3
\$ python3 example-3-plot.py
or
Open In Colab

Example 4
<pre>\$ python3 example-4-plot-quand1.py</pre>
or
Open In Colab
Evernle 5
Example 5
<pre>\$ python3 example-5-plot-quand1.py</pre>
or
Open In Colab
Formula C
Example 6
<pre>\$ python3 example-6-plot-quand1.py</pre>
or
Open In Colab
Evernale 7
Example 7
<pre>\$ python3 example-7-quandl-2-df.py</pre>
or
Open In Colab
Example 8
<pre>\$ python3 example-8-alphavantage-2-df.py</pre>
or
Open In Colab

<pre>\$ python3 example-9-cryptocompare-2-df.py</pre>
or
Open In Colab
Example 10
DF NumPy Pandas
Open In Colab
Test
\$ cd test/
<pre>\$ python3 test.py</pre>
Reference
import jhtalib as jhta
Behavioral Techniques
ATH All Time High DONE
• dict of lists = jhta.ATH(df, price='High')
LMC Last Major Correction DONE
• dict of lists = jhta.LMC(df, price='Low')

Example 9

PP Pivot Point DONE
• dict of lists = jhta.PP(df)
FIBOPR Fibonacci Price Retracements DONE
• dict of lists = jhta.FIBOPR(df, price='Close')
FIBTR Fibonacci Time Retracements •
GANNPR W. D. Gann Price Retracements DONE
• dict of lists = jhta.GANNPR(df, price='Close')
GANNTR W. D. Gann Time Retracements •
JDN Julian Day Number DONE
• jdn = jhta.JDN(utc_year, utc_month, utc_day)
JD Julian Date DONE
 jd = jhta.JD(utc_year, utc_month, utc_day, utc_hour, utc_minute utc_second)
SUNC Sun Cycle

MERCURYC Mercury Cycle •
VENUSC Venus Cycle •
EARTHC Earth Cycle •
MARSC Mars Cycle
JUPITERC Jupiter Cycle •
SATURNC Saturn Cycle •
URANUSC Uranus Cycle •
NEPTUNEC Neptune Cycle •

PLUTOC Pluto	Cycle	
MOONC Moon	Cycle	
Cycle Indicators		
HT_DCPERIOD	Hilbert Transform - Dominant (Cycle Period
HT_DCPHASE	Hilbert Transform - Dominant C	ycle Phase
HT_PHASOR 1	Hilbert Transform - Phasor Compo	onents
HT_SINE Hilbe	ert Transform - SineWave	
HT_TRENDLIN	E Hilbert Transform - Instantane	ous Trendline
HT_TRENDMO	DE Hilbert Transform - Trend vs	s Cycle Mode

TS | Trend Score | DONE • list = jhta.TS(df, n, price='Close') Data CSV2DF | CSV file 2 DataFeed | DONE • dict of tuples = jhta.CSV2DF(csv_file_path) CSVURL2DF | CSV file url 2 DataFeed | DONE • dict of tuples = jhta.CSVURL2DF(csv_file_url) DF2CSV | DataFeed 2 CSV file | DONE • csv file = jhta.DF2CSV(df, csv_file_path) DF2DFREV | DataFeed 2 DataFeed Reversed | DONE • dict of tuples = jhta.DF2DFREV(df) DF2DFWIN | DataFeed 2 DataFeed Window | DONE • dict of tuples = jhta.DF2DFWIN(df, start=0, end=10) DF_HEAD | DataFeed HEAD | DONE • dict of tuples = jhta.DF_HEAD(df, n=5) DF_TAIL | DataFeed TAIL | DONE • dict of tuples = jhta.DF_TAIL(df, n=5)

• dict of tuples = jhta.DF2HEIKIN_ASHI(df)
Event Driven
ASI Accumulation Swing Index (J. Welles Wilder) DONE
• list = jhta.ASI(df, L)
$SI \mid Swing Index (J. Welles Wilder) \mid DONE$
• list = jhta.SI(df, L)
Experimental
JH_SAVGP Swing Average Price - previous Average Price DONE
• list = jhta.JH_SAVGP(df)
JH_SAVGPS Swing Average Price - previous Average Price Summation DONE
• list = jhta.JH_SAVGPS(df)
JH_SCO Swing Close - Open DONE
• list = jhta.JH_SCO(df)
JH_SCOS Swing Close - Open Summation DONE
• list = jhta.JH_SCOS(df)

DF2HEIKIN_ASHI | DataFeed 2 Heikin-Ashi DataFeed | DONE

JH_SMEDP Swi	ing Median Price - previous Median Price DONE
• list = jhta.J	JH_SMEDP(df)
jh_SMEDPS Sw tion DONE	ing Median Price - previous Median Price Summa-
• list = jhta.J	JH_SMEDPS(df)
	Drive Drive DONE
	Price - previous Price DONE UH_SPP(df, price='Close')
• 1180 - Jilda. 5	m_bir(di, pirce- close)
	g Price - previous Price Summation DONE
• list = jhta.J	<pre>JH_SPPS(df, price='Close')</pre>
JH_STYPP Swi	ng Typical Price - previous Typical Price DONE
• list = jhta.J	JH_STYPP(df)
_	
JH_STYPPS Sw tion DONE	ring Typical Price - previous Typical Price Summa-
• list = jhta.J	JH_STYPPS(df)
_	
JH_SWCLP Swi Price DONE	ng Weighted Close Price - previous Weighted Close
• list = jhta.J	JH_SWCLP(df)

JH_{-}	_SWCLPS	Swing	Weighted	${\bf Close}$	Price ·	- previous	Weighted
Clos	se Price Sum	mation	DONE				

• list = jhta.JH_SWCLPS(df) General NORMALIZE | Normalize | DONE • list = jhta.NORMALIZE(df, price_max='High', price_min='Low', price='Close') STANDARDIZE | Standardize | DONE • list = jhta.STANDARDIZE(df, price='Close') SPREAD | Spread | DONE • list = jhta.SPREAD(df1, df2, price1='Close', price2='Close') CP | Comparative Performance | DONE • list = jhta.CP(df1, df2, price1='Close', price2='Close') CRSI | Comparative Relative Strength Index | DONE • list = jhta.CRSI(df1, df2, n, price1='Close', price2='Close') CS | Comparative Strength | DONE

• list = jhta.CS(df1, df2, price1='Close', price2='Close')

• float = jhta.HR(hit_trades_int, total_trades_int) PLR | Profit/Loss Ratio | DONE • float = jhta.PLR(mean_trade_profit_float, mean_trade_loss_float) EV | Expected Value | DONE • float = jhta.EV(hitrade_float, mean_trade_profit_float, mean_trade_loss_float) POR | Probability of Ruin (Table of Lucas and LeBeau) | DONE • int = jhta.POR(hitrade_float, profit_loss_ratio_float) Information INFO | Print df Information | DONE • print = jhta.INFO(df, price='Close') INFO_TRADES | Print Trades Information | DONE • print = jhta.INFO_TRADES(profit_trades_list, loss_trades_list) **Math Functions** EXP | Exponential | DONE • list = jhta.EXP(df, price='Close')

HR | Hit Rate / Win Rate | DONE

```
LOG | Logarithm | DONE
  • list = jhta.LOG(df, price='Close')
LOG10 | Base-10 Logarithm | DONE
  • list = jhta.LOG10(df, price='Close')
SQRT | Square Root | DONE
  • list = jhta.SQRT(df, price='Close')
ACOS | Arc Cosine | DONE
  • list = jhta.ACOS(df, price='Close')
ASIN | Arc Sine | DONE
  • list = jhta.ASIN(df, price='Close')
ATAN | Arc Tangent | DONE
  • list = jhta.ATAN(df, price='Close')
COS | Cosine | DONE
  • list = jhta.COS(df, price='Close')
SIN | Sine | DONE
  • list = jhta.SIN(df, price='Close')
```

TAN | Tangent | DONE • list = jhta.TAN(df, price='Close') ACOSH | Inverse Hyperbolic Cosine | DONE • list = jhta.ACOSH(df, price='Close') ASINH | Inverse Hyperbolic Sine | DONE • list = jhta.ASINH(df, price='Close') ATANH | Inverse Hyperbolic Tangent | DONE • list = jhta.ATANH(df, price='Close') COSH | Hyperbolic Cosine | DONE • list = jhta.COSH(df, price='Close') SINH | Hyperbolic Sine | DONE • list = jhta.SINH(df, price='Close') TANH | Hyperbolic Tangent | DONE • list = jhta.TANH(df, price='Close') PI | Mathematical constant PI | DONE • float = jhta.PI()

E Mathematical constant E DONE
• float = jhta.E()
TAU Mathematical constant TAU DONE • float = jhta.TAU()
PHI Mathematical constant PHI DONE • float = jhta.PHI()
CEIL Ceiling DONE • list = jhta.CEIL(df, price='Close')
FLOOR Floor DONE • list = jhta.FLOOR(df, price='Close')
<pre>DEGREES Radians to Degrees DONE • list = jhta.DEGREES(df, price='Close')</pre>
RADIANS Degrees to Radians DONE • list = jhta.RADIANS(df, price='Close')
ADD Addition High + Low DONE • list = jhta.ADD(df)

DIV Division High / Low DONE • list = jhta.DIV(df)
MAX Highest value over a specified period DONE • list = jhta.MAX(df, n, price='Close')
MIN Lowest value over a specified period DONE • list = jhta.MIN(df, n, price='Close')
MININDEX Index of lowest value over a specified period •
MINMAX Lowest and Highest values over a specified period •
MINMAXINDEX Indexes of lowest and highest values over a specified period •
MULT Multiply High * Low DONE • list = jhta.MULT(df)

SUB Subtraction High - Low DONE • list = jhta.SUB(df)	
SUM Summation DONE • list = jhta.SUM(df, n, price='Close')	
Momentum Indicators	
ADX Average Directional Movement Index •	
ADXR Average Directional Movement Index Rating •	
APO Absolute Price Oscillator DONE • list = jhta.APO(df, n_fast, n_slow, price='Close	')
AROON Aroon	
AROONOSC Aroon Oscillator	
BOP Balance Of Power	

CCI Commodity	y Channel Index	
CMO Chande M	$m{Momentum~Oscillator} \mid$	
DX Directional	Movement Index	
<pre>IMI Intraday M • list = jhta.</pre>	Tomentum Index DONE	
MACD Moving	Average Convergence/Divergence	1
MACDEXT MA	ACD with controllable MA type	
MACDFIX Mov	ving Average Convergence/Diverge	nce Fix 12/26
MFI Money Flo	w Index	

```
MINUS\_DI \mid Minus\ Directional\ Indicator \mid
MINUS_DM | Minus Directional Movement |
MOM | Momentum | DONE
  • list = jhta.MOM(df, n, price='Close')
PLUS_DI | Plus Directional Indicator |
PLUS_DM | Plus Directional Movement |
PPO | Percentage Price Oscillator |
ROC | Rate of Change | DONE
  • list = jhta.ROC(df, n, price='Close')
ROCP | Rate of Change Percentage | DONE
  • list = jhta.ROCP(df, n, price='Close')
```

ROCR Rate of	Change Ratio DONE	
• list = jhta.	ROCR(df, n, price='Close')	
·	of Change Ratio 100 scale DON ROCR100(df, n, price='Close')	E
·	rength Index DONE	
STOCH Stochas	etic	
STOCHF Stoch	astic Fast	
${f STOCHRSI}\mid {f Sto}$	chastic Relative Strength Index	
TRIX 1-day Rat	te-Of-Change (ROC) of a Triple S	$\mathbf{mooth}\;\mathbf{EMA}\; \;$
$oldsymbol{ ext{ULTOSC}}$ $oldsymbol{ ext{Ultima}}$	ate Oscillator	

WILLR Williams' %R DONE
• list = jhta.WILLR(df, n)
Overlap Studies
BBANDS Bollinger Bands DONE
• dict of lists = jhta.BBANDS(df, n, f=2)
4_00 01000 J_000.2222 (4_, _, _, /
BBANDW Bollinger Band Width DONE
• list = jhta.BBANDW(df, n, f=2)
DEMA Double Exponential Moving Average
•
EMA Exponential Moving Average
•
ENVP Envelope Percent DONE
• dict of lists = jhta.ENVP(df, pct=.01, price='Close')
TANAA Tanaan Adamatan Maring Adamatan
KAMA Kaufman Adaptive Moving Average
•
MA Moving Average
•

MAMA MESA •	Adaptive Moving Average
MAVP Moving	Average with Variable Period
MIDPOINT Mi	${ m id}{ m Point}$ over period $ $ DONE
• list = jhta.	MIDPOINT(df, n, price='Close')
•	dPoint Price over period DONE
	<pre>fultiple Ratio DONE MMR(df, n=200, price='Close')</pre>
• IISt - Jiita.	
SAR Parabolic	SAR DONE
• list = jhta.	SAR(df, af_step=.02, af_max=.2)
SAREXT Parab	polic SAR - Extended
SMA Simple M	oving Average DONE
• list = jhta.	<pre>SMA(df, n, price='Close')</pre>

```
T3 | Triple Exponential Moving Average (T3) |
TEMA | Triple Exponential Moving Average |
TRIMA | Triangular Moving Average | DONE
  • list = jhta.TRIMA(df, n, price='Close')
WMA | Weighted Moving Average
Pattern Recognition
CDL2CROWS | Two Crows |
CDL3BLACKCROWS | Three Black Crows |
CDL3INSIDE | Three Inside Up/Down |
CDL3LINESTRIKE | Three-Line Strike |
CDL3OUTSIDE | Three Outside Up/Down |
CDL3STARSINSOUTH | Three Stars In The South |
CDL3WHITESOLDIERS | Three Advancing White Soldiers |
CDLABANDONEDBABY | Abandoned Baby |
```

```
CDLADVANCEBLOCK | Advance Block |
CDLBELTHOLD | Belt-hold |
CDLBREAKAWAY | Breakaway |
CDLCLOSINGMARUBOZU | Closing Marubozu |
CDLCONSEALBABYSWALL | Concealing Baby Swallow |
CDLCOUNTERATTACK | Counterattack |
CDLDARKCLOUDCOVER | Dark Cloud Cover |
CDLDOJI | Doji |
CDLDOJISTAR | Doji Star |
CDLDRAGONFLYDOJI | Dragonfly Doji |
CDLENGULFING | Engulfing Pattern |
CDLEVENINGDOJISTAR | Evening Doji Star |
CDLEVENINGSTAR | Evening Star |
CDLGAPSIDESIDEWHITE | Up/Down-gap side-by-side white lines
CDLGRAVESTONEDOJI | Gravestone Doji |
CDLHAMMER | Hammer |
CDLHANGINGMAN | Hanging Man |
```

```
CDLHARAMI | Harami Pattern |
CDLHARAMICROSS | Harami Cross Pattern |
CDLHIGHWAVE | High-Wave Candle |
CDLHIKKAKE | Hikkake Pattern |
CDLHIKKAKEMOD | Modified Hikkake Pattern |
CDLHOMINGPIGEON | Homing Pigeon |
CDLIDENTICAL3CROWS | Identical Three Crows |
CDLINNECK | In-Neck Pattern |
CDLINVERTEDHAMMER | Inverted Hammer |
CDLKICKING | Kicking |
CDLKICKINGBYLENGTH | Kicking - bull/bear determined by the
longer marubozu |
CDLLADDERBOTTOM | Ladder Bottom |
CDLLONGLEGGEDDOJI | Long Legged Doji |
CDLLONGLINE | Long Line Candle |
CDLMARUBOZU | Marubozu |
CDLMATCHINGLOW | Matching Low |
CDLMATHOLD | Mat Hold |
```

```
CDLMORNINGDOJISTAR | Morning Doji Star |
CDLMORNINGSTAR | Morning Star |
{\bf CDLONNECK} \mid {\bf On\text{-}Neck\ Pattern} \mid
CDLPIERCING | Piercing Pattern |
CDLRICKSHAWMAN | Rickshaw Man |
CDLRISEFALL3METHODS | Rising/Falling Three Methods |
CDLSEPARATINGLINES | Separating Lines |
CDLSHOOTINGSTAR | Shooting Star |
CDLSHORTLINE | Short Line Candle |
CDLSPINNINGTOP | Spinning Top |
CDLSTALLEDPATTERN | Stalled Pattern |
CDLSTICKSANDWICH | Stick Sandwich |
CDLTAKURI | Takuri (Dragonfly Doji with very long lower shadow)
CDLTASUKIGAP | Tasuki Gap |
CDLTHRUSTING | Thrusting Pattern |
CDLTRISTAR | Tristar Pattern |
CDLUNIQUE3RIVER | Unique 3 River |
```

CDLXSIDEGAP3METHODS | Upside/Downside Gap Three Methods | **Price Transform** AVGPRICE | Average Price | DONE • list = jhta.AVGPRICE(df) MEDPRICE | Median Price | DONE • list = jhta.MEDPRICE(df) ${\bf TYPPRICE} \mid {\bf Typical\ Price} \mid {\bf DONE}$ • list = jhta.TYPPRICE(df) WCLPRICE | Weighted Close Price | DONE • list = jhta.WCLPRICE(df) **Statistic Functions** MEAN | Arithmetic mean (average) of data | DONE • list = jhta.MEAN(df, n, price='Close') HARMONIC_MEAN | Harmonic mean of data | DONE • list = jhta.HARMONIC_MEAN(df, n, price='Close')

 ${\bf CDLUPSIDEGAP2CROWS} \mid {\bf Upside~Gap~Two~Crows} \mid$

MEDIAN | Median (middle value) of data | DONE • list = jhta.MEDIAN(df, n, price='Close') MEDIAN_LOW | Low median of data | DONE • list = jhta.MEDIAN_LOW(df, n, price='Close') MEDIAN_HIGH | High median of data | DONE • list = jhta.MEDIAN_HIGH(df, n, price='Close') MEDIAN_GROUPED | Median, or 50th percentile, of grouped data | DONE • list = jhta.MEDIAN_GROUPED(df, n, price='Close', interval=1) MODE | Mode (most common value) of discrete data | DONE • list = jhta.MODE(df, n, price='Close') PSTDEV | Population standard deviation of data | DONE • list = jhta.PSTDEV(df, n, price='Close', mu=None) PVARIANCE | Population variance of data | DONE • list = jhta.PVARIANCE(df, n, price='Close', mu=None) STDEV | Sample standard deviation of data | DONE • list = jhta.STDEV(df, n, price='Close', xbar=None)

• list = jhta.VARIANCE(df, n, price='Close', xbar=None)
COV Covariance DONE
• float = jhta.COV(list1, list2)
COVARIANCE Covariance DONE
• list = jhta.COVARIANCE(df1, df2, n, price1='Close', price2='Close')
COR Correlation DONE
• float = jhta.COR(list1, list2)
CORRELATION Correlation DONE
• list = jhta.CORRELATION(df1, df2, n, price1='Close', price2='Close')
PCOR Population Correlation DONE
• float = jhta.PCOR(list1, list2)
PCORRELATION Population Correlation DONE
• list = jhta.PCORRELATION(df1, df2, n, price1='Close', price2='Close'
BETA Beta DONE
• float = jhta.BETA(list1, list2)

BETAS Betas DONE
• list = jhta.BETAS(df1, df2, n, price1='Close', price2='Close')
LSR Least Squares Regression DONE
• list = jhta.LSR(df, price='Close', predictions_int=0)
SLR Simple Linear Regression DONE
• list = jhta.SLR(df, price='Close', predictions_int=0)
Volatility Indicators
ATR Average True Range DONE
• list = jhta.ATR(df, n)
NATR Normalized Average True Range •
TRANGE True Range DONE
• list = jhta.TRANGE(df)
Volume Indicators
AD Chaikin A/D Line DONE
• list = jhta.AD(df)

ADOSC | Chaikin A/D Oscillator | • OBV | On Balance Volume | DONE • list = jhta.OBV(df)