Asignación de códigos a los estados

Para diseñar un circuito secuencial con componentes físicos, es necesario asignar valores binarios codificados a los estados. En el caso de un circuito con m estados, los códigos deben contener n bits, donde $2^n \ge m$. Por ejemplo con 3 bits es posible asignar códigos a ocho estados denotados por los números binarios de 000 a 111.

Para hacer la asignación de códigos podemos usar diversos criterios, algunos son:

- Asignación secuencial
- Asignación con código Gray
- > Asignación con un solo uno (one hot)
- > Asignación con código definido por el usuario

La forma más sencilla de codificar es usar la asignación secuencial. En la asignación con código Gray solo un bit del grupo de código cambia al pasar de un número al siguiente. Este código facilita la colocación de las funciones booleanas en el mapa para simplificarlas.

La codificación one-hot utiliza tantos bits como estados hay en el circuito. En cualquier momento solo un bit es 1, todos los demás son 0. Este tipo de asignación utiliza un FF por estado.

En cualquier tipo de codificación los <u>"CÓDIGOS DEBEN SER DIFERENTES PARA CADA ESTADO".</u>

En cualquier forma de asignación se trata de encontrar al circuito óptimo en términos ya sea del número de compuertas o del retardo de propagación, esto es actualmente un problema de optimización abierto a investigación.

A continuación se muestran varios diseños usando diferentes códigos de asignación para los estados.

DADO DIGITAL

Este diseño es un contador que debe mostrar la secuencia del 1 al 6 de acuerdo a la siguiente tabla.

Enable	Operación
0	Retención
1	Conteo ascendente

Tabla de transiciones

Estado actual	Entrada	Estado siguiente	Salida
Q(t)	EN	Q(t+1)	
q_0	0	q_0	1
q_0	1	q_1	1
q_1	0	q_1	2
$q_{_1}$	1	q_2	2
q_2	0	q_2	3
q_2	1	q_3	3
q_3	0	q_3	4
q_3	1	q_4	4
q_4	0	q_4	5
q_4	1	q_5	5
q_5	0	q_5	6
q_5	1	q_0	6
q_6	0	X	Χ
q_6	1	Х	Χ
q_7	0	X	Χ
q_7	1	X	X

Descripción del contador como máquina de Moore

$$\begin{split} M &= (Q, \Sigma, \Delta, \delta, \lambda, q_0) & \delta(q_0, 0) = q_0 \,, \, \, \delta(q_0, 1) = q_1 & \lambda(q_0) = 1 \\ Q &= \left\{q_0, q_1, q_2, q_3, q_4, q_5\right\} & \delta(q_1, 0) = q_1 \,, \, \, \delta(q_1, 1) = q_2 & \lambda(q_1) = 2 \\ \Sigma &= \left\{0, 1\right\} & \delta(q_2, 0) = q_2 \,, \, \, \delta(q_2, 1) = q_3 & \lambda(q_2) = 3 \\ \Delta &= \left\{1, 2, 3, 4, 5, 6\right\} & \delta(q_3, 0) = q_3 \,, \, \, \delta(q_3, 1) = q_4 & \lambda(q_3) = 4 \\ \delta(q_4, 0) &= q_4 \,, \, \, \delta(q_4, 1) = q_5 & \lambda(q_4) = 5 \\ \delta(q_5, 0) &= q_5 \,, \, \, \delta(q_5, 1) = q_0 & \lambda(q_5) = 6 \end{split}$$

Para realizar el diseño secuencial debemos asignar códigos a los estados de Q. Algunos de los posibles códigos se muestran a continuación:

Estado	Salida	Secuencial	Gray	One-hot	Definido por usuario
q_0	1	000	000	000001	1001111
q_1	2	001	001	000010	0010010
q_2	3	010	011	000100	0000110
q_3	4	011	010	001000	1001100
q_4	5	100	110	010000	0100100
q_5	6	101	111	100000	0100000

Dependiendo del código seleccionado, el número de bits que se van a necesitar para representar a cada estado y a las salidas varía. Por lo tanto, el número de terminales de salida a usar del PLD22V10 cambia. Esto se puede apreciar en la siguiente tabla:

Código	Bits x estado	Bits x salida	Terminales	Implementación
			De salida	En PLD22V10
Secuencial	$Q_2 Q_1 Q_0$ (3 bits)	A B C D E F G (7 bits)	10	SI
Gray	$Q_2 Q_1 Q_0$ (3 bits)	A B C D E F G (7 bits)	10	SI
One-hot	$Q_5 Q_4 Q_3 Q_2 Q_1 Q_0$ (6 bits)	A B C D E F G (7 bits)	13	NO
Definido por	$Q_6 Q_5 Q_4 Q_3 Q_2 Q_1 Q_0$ (7 bits)	(0 bits)	7	SI
usuario				

Si usamos el código secuencial o Gray se requieren de tres flip-flops a los cuales llamaremos Q_2 , Q_1 y Q_0 . Si usamos el flip-flop JK y el flip-flop D para el diseño secuencial, tendremos que agregar una columna por cada flip-flop, tomando en cuenta sus tablas de excitación.

Tabla ac chollacion i							
Q(t)	Q(t+1)	D					
0	0	0					
0	1	1					
1	0	0					
1	1	1					

Tabla de excitación FF-D Tabla de excitación FF-JK

Q(t)	Q(t+1)	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

La tabla de transiciones para el código secuencial quedaría como se muestra a continuación:

Tabla de transiciones

Ede	o. ac	tual	Entrada	Edo. siguiente		Salidas			F	F - C)			FF -	- JK							
	Q(t)			Ç	Q(t+1)	a)																
Q_2	$Q_{\rm l}$	Q_0	EN	Q_2	$Q_{\rm l}$	Q_0	Α	В	С	D	Е	F	G	D_2	D_1	D_0	\boldsymbol{J}_2	K_2	J_1	K_1	$oldsymbol{J}_0$	K_0
0	0	0	0	0	0	0	1	0	0	1	1	1	1	0	0	0						
0	0	0	1	0	0	1	1	0	0	1	1	1	1	0	0	1						
0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1						
0	0	1	1	0	1	0	0	0	1	0	0	1	0	0	1	0						
0	1	0	0	0	1	0	0	0	0	0	1	1	0	0	1	0						
0	1	0	1	0	1	1	0	0	0	0	1	1	0	0	1	1						
0	1	1	0	0	1	1	1	0	0	1	1	0	0	0	1	1						
0	1	1	1	1	0	0	1	0	0	1	1	0	0	1	0	0						
1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0						
1	0	0	1	1	0	1	0	1	0	0	1	0	0	1	0	1						1
1	0	1	0	1	0	1	0	1	0	0	0	0	0	1	0	1						
1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0						
1	1	0	0	Χ	Χ	Χ	Χ	X	X	Χ	X	Χ	X	Χ	Χ	Χ						
1	1	0	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ	Χ	Χ	X						
1	1	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ						
1	1	1	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ	Χ						

CONTADOR HEXADECIMAL

Este diseño es un contador que debe mostrar el código hexadecimal, es decir, la secuencia del 0 al F de acuerdo a la siguiente tabla.

Descripción del contador como máquina de Moore

$$M = (Q, \Sigma, \Delta, \delta, \lambda, q_0)$$

$$Q = \begin{cases} q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, \\ q_8, q_9, q_{10}, q_{11}, q_{12}, q_{13}, q_{14}, q_{15} \end{cases}$$

$$\Sigma = \{0,1\}$$

$$\Delta = \{1, 2, 3, 4, 5, 6, 7, 8, 9, A, b, C, d, E, F\}$$

$\delta(q_0,0) = q_0, \ \delta(q_0,1) = q_1$	$\lambda(q_0) = 0$
$\delta(q_1,0) = q_1, \ \delta(q_1,1) = q_2$	$\lambda(q_1) = 1$
$\delta(q_2,0) = q_2, \ \delta(q_2,1) = q_3$	$\lambda(q_2) = 2$
$\delta(q_3,0) = q_3, \ \delta(q_3,1) = q_4$	$\lambda(q_3) = 3$
$\delta(q_4,0) = q_4, \ \delta(q_4,1) = q_5$	$\lambda(q_4) = 4$
$\delta(q_5,0) = q_5, \ \delta(q_5,1) = q_6$	$\lambda(q_5) = 5$
$\delta(q_6,0) = q_6$, $\delta(q_6,1) = q_7$	$\lambda(q_6) = 6$
$\delta(q_7,0) = q_7$, $\delta(q_7,1) = q_8$	$\lambda(q_7) = 7$
$\delta(q_8,0) = q_8, \ \delta(q_8,1) = q_9$	$\lambda(q_8) = 8$
$\delta(q_9,0) = q_9, \ \delta(q_9,1) = q_{10}$	$\lambda(q_9) = 9$
$\delta(q_{10},0) = q_{10}, \ \delta(q_{10},1) = q_{11}$	$\lambda(q_{10}) = 10$
$\delta(q_{11},0) = q_{11}, \ \delta(q_{11},1) = q_{12}$	$\lambda(q_{11}) = 11$
$\delta(q_{12},0) = q_{12}, \ \delta(q_{12},1) = q_{13}$	$\lambda(q_{12}) = 12$
$\delta(q_{13},0) = q_{13}, \ \delta(q_{13},1) = q_{14}$	$\lambda(q_{13}) = 13$
$\delta(q_{14},0) = q_{14}, \ \delta(q_{14},1) = q_{15}$	$\lambda(q_{14}) = 14$
$\delta(q_{15},0) = q_{15}, \ \delta(q_{15},1) = q_0$	$\lambda(q_{15}) = 15$

Tabla de transiciones

Estado actual	Entrada	Estado siguiente	Salida
Q(t)	EN	Q(t+1)	
q_0	0	q_{0}	0
q_0	1	q_1	0
q_1	0	q_1	1
q_1	1	q_2	1
q_2	0	q_2	2
q_2	1	q_3	2
q_3	0	q_3	3
q_3	1	q_4	3
q_4	0	q_4	4
q_4	1	$q_{\scriptscriptstyle 5}$	4
q_5	0	q_5	5
q_5	1	q_6	5
q_6	0	q_6	6
q_6	1	q_7	6
q_7	0	q_7	7
q_7	1	q_8	7
q_8	0	q_8	8
q_8	1	q_9	8
q_9	0	q_9	9
q_9	1	q_{10}	9
q_{10}	0	q_{10}	Α
q_{10}	1	q_{11}	Α
q_{11}	0	q_{11}	b
q_{11}	1	q_{12}	b
q_{12}	0	q_{12}	С
q_{12}	1	q_{13}	С
q_{13}	0	q_{13}	d
q_{13}	1	q_{14}	d
q_{14}	0	q_{14}	Е
q_{14}	1	q_{15}	Е
q_{15}	0	q_{15}	F
q_{15}	1	q_0	F

Para realizar el diseño secuencial debemos asignar códigos a los estados de Q. Algunos de los posibles códigos se muestran a continuación:

Estado	Salida	Secuencial	Gray	One-hot	Definido por usuario
q_0	0	0000	0000	0000000000000001	0000001
q_1	1	0001	0001	0000000000000010	1001111
q_2	2	0010	0011	000000000000100	0010010
q_3	3	0011	0010	000000000001000	0000110
q_4	4	0100	0110	000000000010000	1001100
q_5	5	0101	0111	000000000100000	0100100
q_6	6	0110	0101	000000001000000	0100000
q_7	7	0111	0100	000000010000000	0001111
q_8	8	1000	1100	000000100000000	0000000
q_9	9	1001	1101	000001000000000	0000100
q_{10}	Α	1010	1111	0000010000000000	0001000
q_{11}	b	1011	1110	0000100000000000	1100000
q_{12}	С	1100	1010	0001000000000000	0110001
q_{13}	d	1101	1011	0010000000000000	1000010
q_{14}	E	1110	1001	0100000000000000	0110000
q_{15}	F	1111	1000	10000000000000000	0111000

Dependiendo del código seleccionado, el número de bits que se van a necesitar para representar a cada estado y a las salidas varía. Por lo tanto, el número de terminales de salida a usar del PLD22V10 cambia. Esto se puede apreciar en la siguiente tabla:

Código	Bits x estado	Bits x salida	Terminales De salida	Implementación En PLD22V10
Secuencial	$Q_3 Q_2 Q_1 Q_0$ (4 bits)	A B C D E F G (7 bits)	11	NO
Gray	$Q_3 Q_2 Q_1 Q_0$ (4 bits)	A B C D E F G (7 bits)	11	NO
One-hot	$Q_7 Q_6 Q_5 Q_4 Q_3 Q_2 Q_1 Q_0$	A B C D E F G (7 bits)	23	NO
	$Q_{15} \ Q_{14} \ Q_{13} \ Q_{12} \ Q_{11} \ Q_{10} \ Q_{9} \ Q_{8}$ (16 bits)			
Definido por usuario	$Q_6 Q_5 Q_4 Q_3 Q_2 Q_1 Q_0$ (7 bits)	(0 bits)	7	SI

CONTADOR DE MENSAJE.

Este diseño es un contador que debe mostrar el mensaje "dISEñO dIgItAL" en un display de siete segmentos, de acuerdo a la siguiente tabla.

Descripción del contador como máquina de Moore

$$\begin{split} M &= (Q, \Sigma, \Delta, \delta, \lambda, q_0) \\ Q &= \begin{cases} q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, \\ q_8, q_9, q_{10}, q_{11}, q_{12} \end{cases} \\ \Sigma &= \left\{0, 1\right\} \\ \Delta &= \left\{d, I, S, E, \tilde{n}, O, g, t, a, L\right\} \end{split}$$

$$\begin{split} &\delta(q_0,0) = q_0 \,, \, \, \delta(q_0,1) = q_1 \\ &\delta(q_1,0) = q_1 \,, \, \, \delta(q_1,1) = q_2 \\ &\delta(q_2,0) = q_2 \,, \, \, \delta(q_2,1) = q_3 \\ &\delta(q_3,0) = q_3 \,, \, \, \delta(q_3,1) = q_4 \\ &\delta(q_4,0) = q_4 \,, \, \, \delta(q_4,1) = q_5 \\ &\delta(q_5,0) = q_5 \,, \, \, \delta(q_5,1) = q_6 \\ &\delta(q_6,0) = q_6 \,, \, \, \delta(q_6,1) = q_7 \\ &\delta(q_7,0) = q_7 \,, \, \, \delta(q_7,1) = q_8 \\ &\delta(q_9,0) = q_9 \,, \, \, \delta(q_9,1) = q_{10} \\ &\delta(q_{10},0) = q_{10} \,, \, \, \delta(q_{11},1) = q_{12} \\ &\delta(q_{12},0) = q_{12} \,, \, \, \delta(q_{12},1) = q_0 \\ \end{split} \begin{tabular}{l} &\lambda(q_0) = d \\ &\lambda(q_0) = d \\ &\lambda(q_1) = d \\ &\lambda($$

Tabla de transiciones

Estado actual	Entrada	Estado siguiente	Salidas
Q(t)	EN	Q(t+1)	
q_0	0	q_0	d
q_0	1	q_1	d
q_1	0	q_1	I
q_1	1	q_2	I
q_2	0	q_2	S
q_2	1	q_3	S
q_3	0	q_3	Е
q_3	1	q_4	Е
q_4	0	q_4	ñ
q_4	1	q_5	ñ
q_5	0	q_5	0
q_5	1	q_6	0
q_6	0	q_6	d
q_6	1	q_7	d
q_7	0	q_7	1
q_7	1	q_8	1
q_8	0	q_8	g
q_8	1	q_9	g
q_9	0	q_9	I
q_9	1	q_{10}	1
q_{10}	0	q_{10}	t
q_{10}	1	q_{11}	t
q_{11}	0	q_{11}	Α
q_{11}	1	q_{12}	Α
q_{12}	0	q_{12}	L
q_{12}	1	q_0	L
q_{13}	0	X	Χ
q_{13}	1	X	Χ
q_{14}	0	X	Χ
q_{14}	1	X	Χ
q_{15}	0	X	Χ
q_{15}	1	X	Χ
715			

Para realizar el diseño secuencial debemos asignar códigos a los estados de Q. Algunos de los posibles códigos se muestran a continuación:

Estado	Salida	Secuencial	Gray	One-hot	Definido por usuario
q_0	d	0000	0000	0000000000001	1000010
q_1	1	0001	0001	000000000010	1001111
q_2	S	0010	0011	000000000100	0100100
q_3	E	0011	0010	000000001000	0110000
q_4	ñ	0100	0110	000000010000	0101010
q_5	0	0101	0111	000000100000	0000001
q_6	d	0110	0101	0000001000000	1000010
q_7	1	0111	0100	0000010000000	1001111
q_8	g	1000	1100	0000100000000	0000100
q_9	1	1001	1101	0001000000000	1001111
q_{10}	t	1010	1111	0010000000000	1110000
q_{11}	Α	1011	1110	0100000000000	0001000
q_{12}	L	1100	1010	1000000000000	1110001

Para el caso de los códigos definidos por el usuario NO se pueden implementar puesto que existen estados con un código igual al de otro estado, por ejemplo los estados q_1 , q_7 y q_9 tienen el mismo código "1001111". Una forma de evitar esto y al mismo tiempo no cambiar el código de 7 bits es agregar **bits adicionales llamados de etiqueta** para hacer que el código sea diferente. Al agregar estos bits de etiqueta el código aumenta en bits pero los primeros 7 bits no cambian.

Estado	Salida	Secuencial	Gray	One-hot	Etiquetas	Definido por usuario
q_0	D	0000	0000	0000000000001	00	1000010
q_1	1	0001	0001	000000000010	00	1001111
q_2	S	0010	0011	000000000100	00	0100100
q_3	E	0011	0010	000000001000	00	0110000
q_4	Ñ	0100	0110	000000010000	00	0101010
q_5	0	0101	0111	000000100000	00	0000001
q_6	D	0110	0101	0000001000000	01	1000010
q_7	1	0111	0100	0000010000000	01	1001111
q_8	G	1000	1100	0000100000000	00	0000100
q_9	1	1001	1101	0001000000000	10	1001111
q_{10}	Т	1010	1111	0010000000000	00	1110000
q_{11}	Α	1011	1110	0100000000000	00	0001000
q_{12}	L	1100	1010	1000000000000	00	1110001

Dependiendo del código seleccionado, el número de bits que se van a necesitar para representar a cada estado y a las salidas varía. Por lo tanto, el número de terminales de salida a usar del PLD22V10 cambia. Esto se puede apreciar en la siguiente tabla:

Código	Bits x estado	Bits x salida	Terminales De salida	Implementación En PLD22V10
Secuencial	$Q_3 Q_2 Q_1 Q_0$ (4 bits)	A B C D E F G (7 bits)	11	NO
Gray	$Q_3 Q_2 Q_1 Q_0$ (4 bits)	ABCDEFG (7 bits)	11	NO
One-hot	$Q_6 Q_5 Q_4 Q_3 Q_2 Q_1 Q_0$	ABCDEFG (7 bits)	20	NO
	$Q_{12} Q_{11} Q_{10} Q_9 Q_8 Q_7$ (13 bits)			
Definido por	$Q_4 Q_3 Q_2 Q_1 Q_0$	(0 bits)	9	SI
usuario	$Q_8 Q_7 Q_6 Q_5$ (9 bits)			

CONTADOR DEL NÚMERO DE BOLETA.

Este diseño es un contador que debe mostrar el código del número de boleta 2010630132, de acuerdo a la siguiente tabla.

Enable	Operación
0	Retención
1	Conteo ascendente

Descripción del contador como máquina de Moore

$$M = (Q, \Sigma, \Delta, \delta, \lambda, q_0)$$

$$Q = \begin{cases} q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, \\ q_8, q_9 \end{cases}$$

$$\Sigma = \{0,1\}$$

$$\Delta = \{2,0,1,6,3\}$$

$$\begin{split} &\delta(q_0,0) = q_0 \,, \; \delta(q_0,1) = q_1 \\ &\delta(q_1,0) = q_1 \,, \; \delta(q_1,1) = q_2 \\ &\delta(q_2,0) = q_2 \,, \; \delta(q_2,1) = q_3 \\ &\delta(q_3,0) = q_3 \,, \; \delta(q_3,1) = q_4 \\ &\delta(q_4,0) = q_4 \,, \; \delta(q_4,1) = q_5 \\ &\delta(q_5,0) = q_5 \,, \; \delta(q_5,1) = q_6 \\ &\delta(q_6,0) = q_6 \,, \; \delta(q_6,1) = q_7 \\ &\delta(q_7,0) = q_7 \,, \; \delta(q_7,1) = q_8 \\ &\delta(q_8,0) = q_8 \,, \; \delta(q_8,1) = q_9 \\ &\delta(q_9,0) = q_9 \,, \; \delta(q_9,1) = q_0 \\ \end{split}$$

Tabla de transiciones

Estado actual	Entrada	Estado siguiente	Salida
Q(t)	EN	Q(t+1)	
q_0	0	q_{0}	2
q_0	1	q_1	2
q_1	0	q_1	0
q_1	1	q_2	0
q_2	0	q_2	1
q_2	1	q_3	1
q_3	0	q_3	0
q_3	1	q_4	0
q_4	0	q_4	6
q_4	1	q_5	6
q_5	0	q_5	3
q_5	1	q_6	3
q_6	0	q_6	0
q_6	1	q_7	0
q_7	0	q_7	1
q_7	1	q_8	1
q_8	0	q_8	3
q_8	1	q_9	3
q_9	0	q_9	2
q_9	1	q_0	2
q_{10}	0	X	Χ
q_{10}	1	X	Χ
q_{11}	0	X	Χ
q_{11}	1	Χ	Χ
q_{12}	0	X	Х
q_{12}	1	X	Χ
q_{13}	0	X	X
q_{13}	1	X	X
q_{14}	0	X	Х
q_{14}	1	X	X
q_{15}	0	X	X
q_{15}	1	X	Χ

Para realizar el diseño secuencial debemos asignar códigos a los estados de Q. Algunos de los posibles códigos se muestran a continuación:

Estado	Salida	Secuencial	Gray	One-hot	Definido por usuario
q_0	2	0000	0000	0000000001	0010010
q_1	0	0001	0001	000000010	0000001
q_2	1	0010	0011	000000100	1001111
q_3	0	0011	0010	0000001000	0000001
q_4	6	0100	0110	0000010000	0100000
q_5	3	0101	0111	0000100000	0000110
q_6	0	0110	0101	0001000000	0000001
q_7	1	0111	0100	0010000000	1001111
q_8	3	1000	1100	0100000000	0000110
q_9	2	1001	1101	1000000000	0010010

En este diseño existen estados con un código igual al de otro estado, por ejemplo los estados q_1 , q_3 y q_6 tienen el código "0000001". Tenemos que agregar bits de etiqueta para formar códigos diferentes.

Estado	Salida	Secuencial	Gray	One-hot	Bits Etiqueta	Definido por usuario
q_0	2	0000	0000	0000000001	00	0010010
$q_{_1}$	0	0001	0001	000000010	00	0000001
q_2	1	0010	0011	000000100	00	1001111
q_3	0	0011	0010	0000001000	01	0000001
q_4	6	0100	0110	0000010000	00	0100000
q_5	3	0101	0111	0000100000	00	0000110
q_6	0	0110	0101	0001000000	10	0000001
q_7	1	0111	0100	0010000000	01	1001111
q_8	3	1000	1100	0100000000	01	0000110
q_9	2	1001	1101	1000000000	01	0010010

Dependiendo del código seleccionado, el número de bits que se van a necesitar para representar a cada estado y a las salidas varía. Por lo tanto, el número de terminales de salida a usar del PLD22V10 cambia. Esto se puede apreciar en la siguiente tabla:

Código	Bits x estado	Bits x salida	Terminales De salida	Implementación
Secuencial	$Q_3 Q_2 Q_1 Q_0$ (4 bits)	A B C D E F G (7 bits)	11	NO
Gray	$Q_3 Q_2 Q_1 Q_0$ (4 bits)	A B C D E F G (7 bits)	11	NO
One-hot	$Q_4 Q_3 Q_2 Q_1 Q_0$	A B C D E F G (7 bits)	17	NO
	$Q_9 Q_8 Q_7 Q_6 Q_5$ (10 bits)			
Definido x	$Q_4 Q_3 Q_2 Q_1 Q_0$	(0 bits)	9	SI
usuario	$Q_8 Q_7 Q_6 Q_5$ (9 bits)			