

A Statistical Deep Dive into India's Digital Payment Boom:

Comparative Analysis of Google Pay and PhonePe

by

Saurabh Girpunje (C25008)

Subhadeep Purkayastha (C25009)

under the guidance of

Dr. Sayantani Roy Choudhury

This report presents a comprehensive statistical comparative analysis of India's two dominant UPI platforms: Google Pay (GPay) and PhonePe using monthly transaction data from 2021 to 2025. It aims to uncover key drivers of platform performance, assess the effectiveness of marketing and cashback strategies, and deliver actionable recommendations. Using a combination of descriptive analytics, hypothesis testing, regression models, and feature importance analysis, this study provides critical insights to help both platforms optimize performance and strengthen their competitive edge.

Agenda:

- 1. Problem Statement
- 2. Research Question
- 3. Data Overview
- 4. Methodology
- 5. Analysis and Findings
- 6. Recommendations

1. Problem Statement

India's digital payments landscape has rapidly evolved with the rise of UPI. Despite growing transaction volumes and user bases, GPay and PhonePe face challenges in optimizing return on marketing investment, targeting cashback offers efficiently, and expanding penetration in rural areas. Additionally, the fierce competition between the two requires a strategic understanding of what truly drives engagement and market share. This report seeks to answer these questions through a robust data-driven approach.

2. Research Questions

- 1. Performance Drivers: What factors most influence UPI platform market share, and how do success rate and average transaction value impact platform performance?
- 2. Cashback Effectiveness: Do cashback offers and festival seasons significantly impact market share, and are they effective promotional levers for user engagement?

- 3. **Rural Growth Barriers:** How can merchant penetration and localized strategies help accelerate rural UPI adoption for platforms with urban dominance?
- 4. **Competitive Edge:** How can both the platforms leverage their platform-specific strengths, transaction value patterns and reliability to gain a competitive edge in the UPI market?

3. Data Overview

- Source: Monthly UPI transaction data (2021–2025) from NPCI.org, RBI.org.in, blog.Google, PhonePe.com
- Platforms: Google Pay (GPay) and PhonePe
- Total Records: Monthly data across 5 years per platform (each row represents one month of data per platform)

Key Variables

- Transaction Volume (Millions)
- Transaction Value (₹B)
- Avg. Transaction Value (₹)
- Monthly Active Users (MAU)
- Success Rate (%)
- Urban/Rural Split (%)
- Marketing Spend (₹M)
- Cashback Offers (Y/N)
- Festival Season (Y/N)
- Merchant Count (Millions)
- Market Share (%)

Initial Insights

- PhonePe leads in volume, MAUs, and merchant count
- **GPay** shows higher avg. transaction value and urban dominance
- **Both** platforms maintain >98% success rate
- Cashback/festival effects vary month-to-month

4. Methodology

Data Preparation	 Combined data from GPay and PhonePe into a unified dataset Converted categorical variables (Cashback, Festival) to binary format Parsed Urban/Rural Split into separate numeric values
Descriptive Statistics	 Calculated central tendencies and dispersion for each platform Evaluated trends in transaction volume, value, MAU, and marketing spend
EDA	Used box plots to compare cashback vs. non-cashback months
Correlation Analysis	Applied correlation to identify relationships between variables
Hypothesis Testing	 T-Test: Cashback impact on volume Chi-Square: Cashback–festival association
Regression Modeling	 Built separate Linear Regression models for GPay and PhonePe with Market Share (%) as the dependent variable Included independent variables: Avg. Transaction Value (₹), Success Rate, Cashback, Festival Evaluated model fit using Adjusted R-square and p-values.

5. Analysis & Findings

Descriptive Statistics:

l _		
G	pay	1

Parameters	Transaction Volume (Millions)	Transaction Value (₹B)	Avg. Transaction Value (₹)	MAU (Millions)	Marketing Spend (₹M)	Success Rate (%)
Mean	1756.470588	3146.666667	1775.490196	129.1176471	254.9019608	98.80980392
Standard Error	83.00806648	159.7313103	6.960075081	5.962145098	12.06151731	0.014620668
Median	1750	3100	1771	113	250	98.8
Mode	1600	2800	1750	105	220	98.8
Standard Deviation	592.7961657	1140.709721	49.70487805	42.57823249	86.13646264	0.104412455
Sample Variance	351407.2941	1301218.667	2470.574902	1812.905882	7419.490196	0.010901961
Kurtosis	-1.093962925	-1.10255993	-1.385880515	-1.038870632	-0.815422193	1.783894863
Skewness	0.022850714	0.101757459	0.12659333	0.547668362	0.107665909	-1.409583695
Range	2080	4000	158	146	330	0.4
Minimum	820	1400	1704	74	110	98.5
Maximum	2900	5400	1862	220	440	98.9
Sum	89580	160480	90550	6585	13000	5039.3
Count	51	51	51	51	51	51

PhonePe

Parameters	Transaction Volume (Millions)	Transaction Value (₹B)	Avg. Transaction Value (₹)	MAU (Millions)	Marketing Spend (₹M)	Success Rate (%)
Mean	3114.117647	5451.372549	1719.392157	202.8039216	533.0392157	98.55490196
Standard Error	211.5333704	402.3678952	11.1603668	9.31315829	41.32394227	0.019666579
Median	2900	4800	1688	200	480	98.6
Mode	2200	4500	1667	130	250	98.6
Standard Deviation	1510.650425	2873.481526	79.7009607	66.50925337	295.1119761	0.140447464
Sample Variance	2282064.706	8256896.078	6352.243137	4423.480784	87091.07843	0.01972549
Kurtosis	-1.106181216	-0.879800544	2.722499901	-1.135662755	-0.897969495	0.387309768
Skewness	0.330955468	0.504599138	1.602506946	0.254237918	0.459753172	-0.622785594
Range	4950	9750	393	222	1010	0.6
Minimum	1050	1750	1607	108	140	98.2
Maximum	6000	11500	2000	330	1150	98.8
Sum	158820	278020	87689	10343	27185	5026.3
Count	51	51	51	51	51	51

Google Pay shows lower transaction volume and user base compared to PhonePe, but a slightly higher average transaction value and success rate. PhonePe leads in overall usage and marketing spend, but both platforms demonstrate high reliability with success rates near 98.5%.

EDA: (Success Rate and Peak Hours)

The box plots show that Google Pay maintains a consistently high and stable success rate (around 98.8%) across all evening time slots, with minimal variation. In contrast, PhonePe exhibits slightly more fluctuation in success rates and a lower average, especially between 7–9 PM.

Correlation Matrix:

Google Pay:

	Avg. Transaction Value (₹)	Success Rate (%)	shback Offers (Y/	Festival Season (Y/N)
Avg. Transaction Value (₹)	1			
Success Rate (%)	0.514681441	1		
Cashback Offers (Y/N)	0.091558625	0.107288356	1	
Festival Season (Y/N)	0.140997008	0.170957944	0.39223227	

- Avg. Transaction Value vs Success Rate have Moderate positive correlation (0.51), Higher transaction value tends to be associated with higher success rate
- Cashback Offers and Festival Season have Weak to moderate correlation (0.39), Cashback offers are more likely during festivals, but the relation is not very strong
- Other pairs show very low correlations (< 0.2), so they are likely independent

PhonePe:

	Avg. Transaction Value (₹)	Success Rate (%)	shback Offers (Y/	Festival Season (Y/N)
Avg. Transaction Value (₹)	1			
Success Rate (%)	0.713255621	1		
Cashback Offers (Y/N)	0.044591759	0.054220484	1	
Festival Season (Y/N)	0.096821321	0.213128159	0.375045785	1

- Avg. Transaction Value vs Success Rate have Stronger correlation (0.71), Suggests a stronger relationship than in Google Pay when avg. transaction increases, success rate also increases
- Festival Season and Cashback Offers have Moderate correlation (0.38), Similar to Google Pay offers slightly increase during festivals
- Other variables are weakly correlated (< 0.2)

Regression:

Google Pay:

Problem Statement: To identify key factors affecting Google Pay's market share using multiple linear regression.

SUMMARY OUTPUT								
Regression Statis	tics	•						
Multiple R	0.926010606	•						
R Square	0.857495642							
Adjusted R Square	0.845103958							
Standard Error	0.901188775							
Observations	51							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	4	224.7983672	56.1995918	69.19928612	7.15299E-19			
Residual	46	37.35849555	0.812141208					
Total	50	262.1568627						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	962.131009	139.0732844	6.918158386	1.20898E-08	682.1910068	1242.071011	682.1910068	1242.071011
Avg. Transaction Value (₹)	-0.030559291	0.002997115	-10.19623532	2.18583E-13	-0.03659217	-0.024526411	-0.03659217	-0.024526411
Success Rate (%)	-8.886071144	1.4338862	-6.19719413	1.46511E-07	-11.77233437	-5.999807922	-11.77233437	-5.999807922
Cashback Offers (Y/N)	0.50743682	0.291359827	1.741615599	0.088260001	-0.079040094	1.093913734	-0.079040094	1.093913734
Festival Season (Y/N)	0.398981208	0.327084087	1.219812348	0.228753312	-0.259404911	1.057367327	-0.259404911	1.057367327

Interpretation:

- The regression model explains ~85.7% of the variation in the dependent variable (R² = 0.857), indicating a strong fit.
- Among the predictors, Avg. Transaction Value (p < 0.001) and Success Rate (p < 0.001) have a significant negative effect on the outcome.
- Cashback Offers and Festival Season are not statistically significant (p > 0.05), suggesting their effect may be weak or inconsistent.
- The F-statistic is high (69.2) with a very small p-value, confirming that the model overall is significant.
- So, focus should be on Avg. Transaction Value and Success Rate, as they drive most of the impact.

PhonePe:

Problem Statement: To analyze key drivers impacting PhonePe's market share using multiple linear regression.

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.877188224				
R Square	0.76945918				
Adjusted R Square	0.749412152				
Standard Error	1.355742341				
Observations	51				

ANOVA

	df		SS	MS	F	Significance F
Regression		4	282.1953825	70.54884562	38.38270628	4.12083E-14
Residual	4	16	84.54971556	1.838037295		
Total	5	0	366.745098			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-1151.884406	192.2364094	-5.99201998	2.97663E-07	-1538.836228	-764.9325835	-1538.836228	-764.9325835
Avg. Transaction Value (₹)	0.010869186	0.003446367	3.153809706	0.002837726	0.003932009	0.017806362	0.003932009	0.017806362
Success Rate (%)	12.00738336	1.993050033	6.024627159	2.65977E-07	7.99558172	16.019185	7.99558172	16.019185
Cashback Offers (Y/N)	-0.475352592	0.441913114	-1.075669801	0.287684583	-1.364877554	0.414172371	-1.364877554	0.414172371
Festival Season (Y/N)	-0.089745667	0.495636154	-0.181071672	0.857106788	-1.087409501	0.907918166	-1.087409501	0.907918166

Interpretation:

- The model explains about 77% of the variance in the dependent variable (R² = 0.769), indicating a strong fit.
- Avg. Transaction Value (p = 0.0028) and Success Rate (p ≈ 0.00000027) are statistically significant positive predictors.
- Cashback Offers and Festival Season are not significant (p > 0.05), showing no meaningful impact on the target.
- The F-test is highly significant (p < 0.0001), indicating that the overall model is valid.
- Thus, higher success rate and transaction value contribute most to the target variable in this model.

Final Conclusion of Regression:

- The regression analysis for both Google Pay and PhonePe shows that transaction success rate is a consistently strong and statistically significant driver of market share, indicating that reliability plays a key role in user retention and growth.
- Interestingly, average transaction value has opposite effects: it negatively
 impacts market share for Google Pay but positively affects it for PhonePe,
 suggesting that each platform benefits from a different user behavior pattern.

- Cashback offers and festival seasons were not statistically significant in either case, implying that these promotional efforts may not have a lasting impact on market share.
- Overall, both models are statistically robust, with high R² values, meaning the chosen variables explain a substantial portion of market share variation.
- In conclusion, platforms should prioritize improving success rates and strategically align their transaction value strategies with their user base, rather than relying heavily on seasonal promotions or cashback schemes.

Two Sample T-Test:

Problem Statement: To determine if there's a significant difference in average transaction volume between Google Pay and PhonePe.

t-Test: Two-Sample Assuming Unequal Variances

	Transaction Volume (₹M) Google Pay	Transaction Volume (₹M) PhonePe
Mean	1756.470588	3114.117647
Variance	351407.2941	2282064.706
Observations	51	51
Hypothesized Mean Difference	0	
df	65	
t Stat	-5.974583272	
P(T<=t) one-tail	5.35433E-08	
t Critical one-tail	1.668635976	
P(T<=t) two-tail	1.07087E-07	
t Critical two-tail	1.997137908	

Null Hypothesis (H₀): There is no difference in the average transaction volume between Google Pay and PhonePe.

Alternative Hypothesis (H₁): There is a difference in the average transaction volume between Google Pay and PhonePe.

Conclusion: There is a significant difference in transaction values. PhonePe has a higher average transaction value than Google Pay. PhonePe appears to be more dominant in terms of user activity or merchant penetration, leading to higher transaction volumes, which could reflect greater market share or user engagement.

Chi-Square Test:

Problem Statement: To check if cashback offers on Google Pay and PhonePe are more likely during the festival season using the Chi-square test.

Festival Season (Y/N) vs. Cashback Offers (Y/N)

Columns Used: Festival Season (Y/N) Cashback Offers (Y/N)

Hypothesis:

H₀: Cashback offers are independent of whether it's a festival season.

H₁: Cashback offers are associated with the festival season.

For Google Pay:

		Google	Pay	<i>!</i>	
		Cas	hbac	k Offers	
		Y		N	
Festival	Υ		12	0	12
Season	N		22	17	39
			34	17	51
Expected Tal	<u>ble</u>				
		Cas	hbac	k Offers	
		Υ		N	
Festival	Υ		8	4	
Season	N		26	13	
Chi square te	est		7.84		
Chi square cı	ritical		3.84		

Conclusion: Cashback offers are associated with the festival season.

PhonePe:

		Phone	Pe		
		Cash	Cashback Offers		
		Υ	N		
Festival	Υ		12	0	12
Season	N		23	16	39
			35	16	51
Expected Ta	able				
		Cash	Cashback Offers		
		Y	N		
Festival	Υ	8.	.24	3.76	
Season	N	26.	.76	12.24	
Chi square test		7.	.15		
Chi square critical		3.	.84		

Conclusion: Cashback offers are associated with the festival season.

6. Recommendations

1. Optimize Promotional Timing (Festival-Driven, Not Cashback-Focused)

Focus marketing efforts during festival seasons and not necessarily on cashback.

Supported by:

- **Chi-Square Test**: Cashback offers are statistically associated with festival months (p < 0.05), confirming festivals are high-impact.
- Regression (GPay & PhonePe):
 - Cashback Offers and Festival Season have no significant effect on market share (p > 0.05).
 - Hence, cashbacks should be limited, and festival campaigns should focus on service awareness or bundled offers, not just discounts.

2. Targeted Cashbacks:

Limit to high-impact scenarios (MAU > 80M + festival months)

Supported by:

- **Chi-Square Test (both platforms):** Statistically significant association between cashback offers and festival months.
- Regression (PhonePe): MAU showed low predictive power (p > 0.05), meaning cashback should not be offered uniformly but only during high-MAU + festival spikes.

3. Boost Rural Adoption:

Increase merchant onboarding in rural areas (where count < 5M)

Supported by:

- **Regression (GPay):** Merchant Count was not statistically significant (p = 0.768), suggesting opportunity for optimization—especially in underpenetrated rural areas.
- **EDA (Descriptive Observations):** PhonePe already shows a stronger rural split (up to 42%) vs. GPay (~35%) GPay can grow here.

4. Competitive Tactics

Google Pay:

Leverage higher urban transaction values

Supported by:

- **Descriptive Stats + Regression (GPay):** Average transaction values were consistently higher for GPay.
- **Urban split dominance** in GPay (65–66%) can be used to push high-ticket services (e.g., bill payments, investments).

PhonePe:

Reduce churn in low-activity user segments

Supported by:

- T-Test (Transaction Value Comparison): PhonePe's mean transaction value is significantly higher (₹5451B vs. ₹3146B, p < 0.01), but variability is also higher.
- Regression Output (PhonePe): Success Rate and MAU have limited predictive strength — implies performance could be improved by re-engaging churn-prone or low-usage segments.

THE END