

Fronius Datamanager Modbus TCP & RTU

Benutzerinformation

Anlagenüberwachung

User information

System monitoring

42,0410,2049 010-15022017

Inhaltsverzeichnis

Das Modbus Protokoll	5
Allgemeines	5
Aufbau von Modbus Nachrichten	6
Modbus TCP – MBAP Header	6
Unterstützte Funktionscodes	7
03 (0x03) Read Holding Registers	7
06 (0x06) Write Single Register	8
16 (0x10) Write Multiple Registers	8
Exception Codes	õ
CRC Berechnung für Modbus RTU	9
	11
	11
Allgemeines	12
	12
	12
	13
	13
	14
	14
· · · · · · · · · · · · · · · · · · ·	15
	15
	15
	17
	18
	19
	19
Skalierungsfaktoren	20
Nicht beschreibbare Register	20
Schreiben ungültiger Werte	21
Einstellungen - Modbus	22
	22
	22
	23
	26
	26
	27
	 27
	27
	28
· · · · · · · · · · · · · · · · · · ·	28
	28
	28
	29
	29
· · · · · · · · · · · · · · · · · · ·	30
·	34
	35
	36
· · ·	36
	36
	39
	39
	41
	41
Extended Measurements & Status Model (IC122)	42
	42
· · ·	43
	45
	45
	45
<u>₹</u>	

Standby	47
Leistungsreduktion	
Beispiel: Leistungsreduktion einstellen	
Beispiel: Ändern der Rückkehrzeit bei aktiver Leistungsreduktion	
Auswirkungen der Blindleistungs-Vorgaben auf die Wirkleistung	48
Konstanter Power Factor	50
Beispiel: Konstanten Power Factor vorgeben	50
Konstante relative Blindleistung	
Beispiel: Konstante Blindleistung vorgeben	
Basic Storage Control Model (IC124)	
Allgemeines	
Bereitgestellte Informationen	
Leistungsfenster-Vorgaben	
Vorgabe des minmalen Ladestandes	
Laden des Energiespeichers vom Netz	
Basic Storage Controls Register	
Multiple MPPT Inverter Extension Model (I160)	
Allgemeines	
Multiple MPPT Inverter Extension Register	
String Combiner Model (SC403)	
String Combiner Register	
Meter Model	
Meter Model Register	
End Block	
Allgemeines	
End Block	
String Combiner Event Flags	
String Combiner Event Flags	

Das Modbus Protokoll

Allgemeines

Die Beschreibung des Protokolls entstammt zum größten Teil den Modbus Spezifikationen, die öffentlich auf www.modbus.org/specs.php erhältlich sind.

Modbus ist ein einfaches, offenes Kommunikationsprotokoll, mit dem eine Master-Slaveoder Client-Server-Kommunikation zwischen den am Netzwerk angeschlossenen Geräten
realisiert werden kann. Das Grundprinzip von Modbus ist: Ein Master sendet eine Anfrage
und ein Slave antwortet darauf. Bei Modbus TCP wird der Master als Client, ein Slave als
Server bezeichnet. Die Funktion ist dieselbe. In weiterer Folge werden für die Beschreibungen der Funktionen des Protokolls unabhängig von den Varianten RTU und TCP nur
die gebräuchlicheren Namen Master und Slave verwendet. In Fällen, wo Unterschiede bei
zwischen RTU und TCP auftreten, wird speziell darauf hingewiesen.

Am Fronius Datamanager kann Modbus auf 2 Arten benutzt werden:

- Modbus TCP
 Mittels TCP/IP über Ethernet (kabelgebunden oder über WLAN)
- Modbus RTU
 Mittels asynchroner serieller Übertragung über RS-485 (EIA/TIA-485-A), nur bei Fronius Datamanager 2.0

Im Fall von Modbus RTU kann es immer nur einen Master im System geben. Grundsätzlich gilt, dass nur ein Master Anforderungen (Requests) initiieren darf. Ein Slave darf nur antworten (Response), wenn dieser vom Master angesprochen wurde; untereinander dürfen die Slaves nicht kommunizieren. Wird ein Broadcast Request (Anforderung an alle vorhandenen Slaves per Slave ID oder Unit ID 0) ausgesendet, darf keiner der Slaves antworten. Daher können Broadcasts nur für Schreibbefehle verwendet.

Wenn ein Master eine Anforderung an einen Slave sendet, dann erwartet dieser eine Antwort. Bei einer Anforderung eines Masters gibt es eine von fünf Möglichkeiten:

- Erhält der Slave die Anforderung ohne Kommunikationsfehler und kann dieser die Anforderung fehlerfrei bearbeiten, dann wird eine normale Antwort mit den gewünschten Daten zurückgesendet.
- Erhält der Slave die Anforderung wegen eines Kommunikationsfehlers nicht, dann wird keine Antwort gesendet. Das führt zu einem Timeout am Master.
- Erhält der Slave die Anforderung, entdeckt aber einen Kommunikationsfehler (Parity, CRC, ...), wird keine Antwort gesendet. Das führt zu einem Timeout am Master.
- Erhält der Slave die Anforderung ohne Kommunikationsfehler, kann aber diese nicht fehlerfrei bearbeiten (z. B. wenn ein nicht vorhandenes Register ausgelesen werden soll), wird eine Fehlernachricht (Exception Response) mit dem Grund für den Fehler zurückgesendet.
- Erhält der Slave eine Broadcast Anforderung, die auch an alle anderen Geräte geht, so wird weder im Fehlerfall noch wenn die Anforderung erfolgreich bearbeitet wurde, eine Antwort gesendet. Daher sind Broadcast Anforderungen nur für Schreibbefehle geeignet.

Modbus Geräte stellen Daten in 16 Bit großen Datenblöcken (Register) zur Verfügung. In bestimmten Fällen können einzelne Datenpunkte auch mehrere Datenblöcke umfassen (z. B. 2 Register = 32 Bit Wert).

Aufbau von Modbus Nachrichten

Eine Modbus Nachricht besteht grundsätzlich aus der Protokolldateneinheit (protocol data unit, PDU). Diese ist von darunter liegenden Kommunikationsschichten unabhängig. Abhängig von dem verwendeten Bus oder Netzwerk können noch weitere Felder hinzukommen. Diese Struktur wird dann Anwendungsdateneinheit (application data unit, ADU) genannt.

	ΑΓ	ΟU	
Adressfeld Funktionscode Daten CRC			
	PDU		

Struktur einer Modbus Nachricht bei Modbus RTU

	ADU	
MBAP Header	Funktionscode	Daten
	PE	DU

Struktur einer Modbus Nachricht bei Modbus TCP

Für Modbus TCP wird ein eigener Header verwendet, um die Anwendungsdateneinheit zu identifizieren. Dieser Header heißt MBAP Header (MODBUS Application Protocol Header).

Die Größe der Protokolldateneinheit (PDU) ist limitiert, bedingt durch die ersten Modbus Implementierungen in einem seriellen Netzwerk (max. RS485 ADU = 256 Bytes). Dadurch ergibt sich für die Größe der Protokolldateneinheit PDU: PDU = 256 – Slave ID (1 Byte) – CRC (2 Bytes) = 253 Bytes

Damit ergibt sich:

- Modbus RTU ADU = 253 + Slave ID (1 Byte) + CRC (2 Bytes) = 256 Bytes
- Modbus TCP ADU = 253 Bytes + MBAP (7 Bytes) = 260 Bytes

Modbus TCP - MBAP Header

Der MBAP Header umfasst 7 Bytes:

- Transaction ID (2 Bytes): Wird benutzt, um Anfrage und Antwort zu synchronisieren. Der Slave übernimmt die Transaction ID von der Anfrage in die Antwort.
- **Protocol ID** (2 Bytes): Ist immer 0 (Modbus Protokoll).
- **Länge** (2 Bytes): Das Längenfeld enthält die Anzahl der Bytes der nachkommenden Felder, einschließlich Unit ID und Datenfelder.
- Unit ID (1 Byte): Dieses Feld wird zur Adressierung der an den Fronius Datamanager angeschlossenen Geräte verwendet (Gateway-Funktion des Fronius Datamanagers).
 Die Unit ID entspricht der Slave ID bei Modbus RTU. Der Wert wird vom Master vorgegeben und wird vom Slave unverändert mit der Antwort zurückgegeben.

Für Details über die Adressierung der Geräte siehe:

- Modbus Geräte-ID für Wechselrichter auf Seite 14
- Modbus Geräte-ID für Fronius String Controls auf Seite 14
- Modbus Geräte-ID für Energiezähler auf Seite 15

WICHTIG! Die richtige Unit ID muss immer angegeben werden, auch wenn der Fronius Datamanager nur mit einem einzelnen Wechselrichter verbunden ist.

Unterstützte **Funktionscodes**

Der Funktionscode bestimmt die am Slave auszuführende Aktion. Der Fronius Datamanager unterstützt drei Funktionscodes für Lese- und Schreiboperationen:

- 03 (0x03) ¹⁾ Read Holding Registers 06 (0x06) ¹⁾ Write Single Register
- 16 (0x10) 1) Write Multiple Registers

Tritt am Slave bei der Bearbeitung einer Anforderung ein Fehler auf, so wird eine Fehlernachricht als Antwort (Exception Response) gesendet. Bei einer solchen Antwort wird beim Funktionscode das höchstwertige Bit auf 1 gesetzt (entspricht einer Addition des Funktionscodes mit 0x80) 1) und ein Exception Code hinzugefügt, der den Grund des Fehlers angibt.

03 (0x03) Read **Holding Registers**

Dieser Funktionscode wird dazu verwendet, den Inhalt eines oder mehrerer aufeinanderfolgenden Register eines Gerätes auszulesen. Die Anforderung enthält die Adresse des ersten auszulesenden Registers und die Anzahl der zu lesenden Register. In der Anforderung werden Register beginnend bei 0 adressiert. Das bedeutet, dass die Register 1 bis 16 über die Adressen 0 bis 15 angesprochen werden.

Anforderung

Funktionscode	1 Byte	0x03
Startadresse	2 Bytes	0x0000 bis 0xFFFF (0 bis 65535)
Anzahl der Register	2 Bytes	1 bis 125

Antwort

Funktionscode	1 Byte	0x03
Anzahl der Bytes	1 Byte	2 x N*
Registerwerte	N* x 2 Bytes	

^{*}N = Anzahl der Register

Fehler

Fehlercode	1 Byte	0x83
Exception Code	1 Byte	01 oder 02 oder 03 oder 04 oder 11

¹⁾ Das Prefix "0x" steht für hexadezimale Zahlen

06 (0x06) Write Single Register

Dieser Funktionscode wird dazu verwendet, ein einzelnes Register zu beschreiben. Die Anforderung enthält nur die Adresse des zu beschreibenden Registers. Register werden beginnend bei 0 adressiert. Das bedeutet, dass das Register 1 über die Adresse 0 angesprochen. Die normale Antwort ist eine Kopie der Anforderung, die nach dem erfolgreichen Beschreiben des Registers gesendet wird.

Anforderung

Funktionscode	1 Byte	0x06
Registeradresse	2 Bytes	0x0000 bis 0xFFFF (0 bis 65535)
Registerwert	2 Bytes	

Antwort

Funktionscode	1 Byte	0x06
Registeradresse	2 Bytes	0x0000 bis 0xFFFF (0 bis 65535)
Registerwert	2 Bytes	

Fehler

Fehlercode	1 Byte	0x86
Exception Code	1 Byte	01 oder 02 oder 03 oder 04 oder 11

16 (0x10) Write Multiple Registers

Dieser Funktionscode wird dazu verwendet, einen Block von aufeinanderfolgenden Registern zu beschreiben. Die Anforderung enthält die Adresse des ersten zu beschreibenden Registers, die Anzahl der zu beschreibenden Register, die Anzahl der zu schreibenden Bytes und die zu schreibenden Werte (2 Bytes pro Register). Die normale Antwort enthält den Funktionscode, die Startadresse und die Anzahl der beschriebenen Register.

Anforderung

Funktionscode	1 Byte	0x10
Startadresse	2 Bytes	0x0000 bis 0xFFFF (0 bis 65535)
Anzahl der Register	2 Bytes	1 bis 123
Anzahl der Bytes	1 Byte	2 x N*
Registerwerte	N* x 2 Bytes	

^{*}N = Anzahl der Register

Antwort

Funktionscode	1 Byte	0x10
Startadresse	2 Bytes	0x0000 bis 0xFFFF (0 bis 65535)
Anzahl der Register	2 Bytes	1 bis 123

Fehler

Fehlercode	1 Byte	0x90
Exception Code	1 Byte	01 oder 02 oder 03 oder 04 oder 11

Exception Codes

Eine Fehlernachricht (Exception Response) besitzt zwei Felder, die sie von einer normalen Antwort unterscheidet:

- Feld Funktionscode

In einer normalen Antwort wird der Funktionscode der Anforderung in das Funktionscode Feld der Antwort übernommen. Bei allen Funktionscodes ist das höchstwertige Bit (MSB) 0 (die Werte der Funktionscodes sind alle kleiner als 0x80). In einer Fehlernachricht wird das MSB auf 1 gesetzt. Das bedeutet eine Addition des Wertes für den Funktionscode mit 0x80. Aufgrund des gesetzten MSB kann der Master die Antwort als Fehlernachricht identifizieren.

- Datenfeld

Eine normale Antwort enthält Daten oder Statistikwerte im Datenfeld. Bei einer Fehlernachricht wird ein Exception Code im Datenfeld zurückgeliefert. Dieser Exception Code zeigt den Grund für die Fehlernachricht an.

	Modbus Exception Codes										
Code	Name	Bedeutung									
01	ILLEGAL FUNCTION	Der Funktionscode in der Anforderung wird vom Slave nicht unterstützt.									
02	ILLEGAL DATA ADDRESS	Es werden ungültige Registeradressen abgefragt.									
03	ILLEGAL DATA VALUE	Ein Wert in der Anforderung ist außerhalb des gültigen Bereichs. Dies gilt sowohl für die Felder einer Anforderung (z. B. ungültige Anzahl an Registern) als auch für ungültige Einstellungswerte der SunSpec Inverter Control Models.									
04	SLAVE DEVICE FAILURE	Während des Versuchs, ein oder mehrere Register zu beschreiben, ist ein Fehler aufgetreten.									
11	GATEWAY TARGET DE- VICE FAILED TO RES- POND	Nur bei Modbus TCP. Das angesprochene Gerät kann nicht gefunden werden: a) das Gerät befindet sich nicht im SolarNet Ring oder b) das Gerät ist ausgeschaltet oder c) der SolarNet Ring ist offen									

CRC Berechnung für Modbus RTU

Jede Modbus RTU Nachricht wird mit einer Prüfsumme (CRC, Cyclic Redundancy Check) versehen, um Übertragungsfehler erkennen zu können. Die Prüfsumme ist 2 Bytes groß. Sie wird vom sendenden Gerät berechnet und an die zu sendende Nachricht angehängt. Der Empfänger berechnet seinerseits über alle Bytes der erhaltenen Nachricht (ohne CRC) die Prüfsumme und vergleicht diese mit der empfangenen Prüfsumme. Wenn diese beiden Prüfsummen unterschiedlich sind, ist ein Fehler aufgetreten.

Die Berechnung der Prüfsumme beginnt mit dem Setzen aller Bits eines 16 Bit Registers (CRC Register) auf 1 (0xFFFF). Danach werden alle Bytes der Nachricht einzeln mit dem CRC Register verarbeitet. Nur die Datenbytes einer Nachricht werden zur Berechnung herangezogen. Start-, Stopp- und Paritätsbits werden nicht berücksichtigt.

Während der Berechnung der CRC wird jedes Byte mit dem CRC Register XOR-verknüpft. Danach wird das Ergebnis in Richtung des niederwertigsten Bits (LSB) verschoben und das höchstwertige Bit (MSB) auf 0 gesetzt. Das LSB wird betrachtet. Wenn das LSB vorhin 1 war, wird das CRC Register mit einem fix vorgegebenen Wert XOR-verknüpft. War das LSB 0, dann ist nichts zu tun.

Dieser Prozess wird so oft wiederholt, bis das CRC Register 8 Mal verschoben wurde. Nach dem letzten (achten) Schiebevorgang, wird das nächste Byte genommen und mit dem aktuellen CRC Register XOR-verknüpft. Danach beginnt der Schiebeprozess von vorne; wieder wird 8 Mal verschoben. Nach Abhandlung aller Bytes der Nachricht ist der Wert des CRC Registers die Prüfsumme.

Berechnungsalgorithmus der CRC16

CRC Prüfsumme berechnen

- Initialisierung eines 16 Bit Registers (2 Bytes) mit 0xFFFF. Dieses Register wird als CRC16 Register bezeichnet.
- XOR-Verknüpfung des ersten Bytes der Nachricht mit dem niederwertigen Byte des CRC16 Registers. Das Ergebnis wird im CRC16 Register gespeichert.
- Verschieben des CRC16 Registers um 1 Bit nach rechts (in Richtung LSB), MSB mit 0 auffüllen. LSB betrachten.
- 4 LSB Wert überprüfen
 - War das LSB 0: Gehe zu Schritt 3 (neuerlich verschieben).
 - War das LSB 1: XOR Verknüpfung des CRC16 Registers mit dem CRC Polynom 0xA001 (1010 0000 0000 0001).
- Wiederholung der Schritte 3 und 4 bis 8 Schiebeoperationen durchgeführt worden sind. Wenn diese durchgeführt wurden, wurde ein komplettes Byte der Nachricht bearbeitet.
- Wiederholung der Schritte 3 bis 5 für das nächste Byte der Nachricht. Das ganze wiederholen bis alle Bytes der Nachricht abgearbeitet wurden.
- Nach dem letzten Byte enthält das CRC16 Register die Prüfsumme.
- Wenn die Prüfsumme an die zu sendende Nachricht angehängt wird, dann müssen die beiden Bytes wie unten beschreiben vertauscht werden.

CRC Prüfsumme zur Nachricht hinzufügen

Wenn die 16 Bit (2 Bytes) CRC Prüfsumme mit einer Nachricht versendet wird, dann wird das niederwertige vor dem höherwertigen Byte übertragen.

Zum Beispiel, wenn die CRC Prüfsumme 0x1241 (0001 0010 0100 0001) ist:

Addr	Func	Data Count	Data	Data	Data	Data	CRC Lo	CRC Hi
	'						0x41	0x12

Allgemeines

Verwendete Abkürzungen

AC	Wechselstrom
DC	Gleichstrom
FW	Firmware
MBC	Fronius Modbus Card
PF	Power Factor (cos φ)
PV	Photovoltaik
RTC	Echtzeit-Uhr
SF	Skalierungsfaktor
SW	Software
V	Spannung (Volt)
VA	Scheinleistung
VAr	Blindleistung
VMax	Maximale Spannung
VMin	Minimale Spannung
VRef	Referenzspannung
W	Leistung (Watt)
WR	Wechselrichter

Kommunikation mit dem Modbus Master

Die Kommunikation des Fronius Datamanager mit dem Modbus-Master erfolgt über Registeradressen entsprechend der Spezifikationen der SunSpec Alliance. (http://www.sunspec.org/)

HINWEIS! Der Fronius Datamanager unterstützt auch die Anbindung von Fronius String Controls über Fronius Solar Net.

Fronius String Controls werden durch einen eigenen Common Block und das darauffolgende String Combiner Model dargestellt.

Zusätzlich bietet der Fronius Datamanager die Möglichkeit, die Daten eines über Modbus RTU angeschlossenen Energiezählers via Modbus TCP zur Verfügung zu stellen. Der Zähler wird durch einen eigenen Common Block und das darauffolgende Meter Model dargestellt.

Die Zuordnung der Registeradressen zur entsprechenden Funktion ist folgenden Tabellen zu entnehmen:

- Für alle Geräte:
 - Common Block (C001)
- Für Wechselrichter:
 - Fronius Register
 - Inverter Model (I101, I102, I103, I111, I112 oder I113)
 - Inverter Controls:
 - Nameplate (IC120)
 - Basic Settings (IC121)
 - Extended Measurements & Status (IC122)
 - Immediate Controls (IC123)
 - Multiple MPPT Inverter Extension (I160)
- Für String Controls:
 - String Combiner Model (SC403)
- Für Energiezähler:
 - Meter Model (M201, M202, M203, M211, M212 oder M213)

HINWEIS! gilt nur für Modbus RTU und nur wenn kein Energiezähler angeschlossen ist:

Wenn kein Datenaustausch am RS-485 Bus stattfindet, können Rauschen und Störungen die Leitungen beeinflussen. Damit ein Empfänger in einem definierten Zustand bleibt wenn keine Datensignale anliegen, sollten Vorspannungswiderstände verwendet werden, um einen definierten Ruhezustand auf den Datenleitungen zu erhalten.

Der Fronius Datamanager verfügt über keine Vorspannungswiderstände. Detaillierte Informationen über die Verwendung solcher Widerstände finden sich im Dokument "MODBUS over serial line specification and implementation guide V1.02" (http://modbus.org/docs/Modbus over serial line V1 02.pdf).

Register Maps

Wechselrichter

SID

Identifizierung als SunSpec Gerät

Common Block

Geräteinformationen

Inverter Model

Wechselrichter-Daten

Nameplate Model

Basic Settings Model

Ext. Measurement Model

Immediate Controls Model

Multi. MPPT Inv. Ext. Model

End Block

String Control

SID

Identifizierung als SunSpec Gerät

Common Block

Geräteinformationen

String Combiner Model String Control Daten

End Block

Energiezähler

SID

Identifizierung als SunSpec Gerät

Common Block

Geräteinformationen

Meter Model

Energiezähler-Daten

End Block

Die Registerlisten können im xlsx-Dateiformat von der Fronius Homepage heruntergeladen werden:

www.fronius.com - Solar Electronics - Info & Support - Third-party Downloads

Antwortzeiten

Die Antwortzeiten hängen unter anderem von der Anzahl der Geräte im Fronius Solar Net Ring ab. Je mehr Geräte verwendet werden, desto größer muss das Timeout für Antworten sein.

HINWEIS! Bei mehreren Geräten im Fronius Solar Net Ring sollte für Abfragen von Wechselrichterdaten ein Timeout von mindestens 1 Sekunde verwendet werden.

Empfehlung für Timeout-Werte

Da bei Fronius String Controls eine einzige Modbus-Abfrage zwei Abfragen über Fronius Solar Net bewirken kann, sind etwas längere Antwortzeiten als bei Wechselrichteranfragen möglich. Wenn Fronius String Controls vorhanden sind, sollte daher ein größerer Timeout-Wert für Antworten verwendet werden.

Bei der ersten Abfrage der Common Block Daten nach einem Neustart des Fronius Datamanagers müssen die Informationen über die Fronius String Control einmalig über Fronius Solar Net abgefragt werden. Daher benötigt diese erste Abfrage ein wenig mehr Zeit als die darauffolgenden.

Bei einer größeren Anzahl von Geräten in einem Fronius Solar Net Ring, wird empfohlen diese auf mehrere Fronius Solar Net Ringe mit jeweils einem eigenen Fronius Datamanager aufzuteilen, um noch vertretbare Antwortzeiten zu erhalten.

Modbus Geräte-ID für Wechselrichter

Die Modbus Geräte-ID des Wechselrichters entspricht seiner Wechselrichter-Nummer, welche über das Bedienpanel des Wechselrichters eingestellt werden kann. (siehe Bedienungsanleitung des Wechselrichters)

HINWEIS! Hierbei gibt es nur eine einzige Ausnahme:

Die Wechselrichter-Nummer 00 wird auf Geräte-ID 100 umgelegt, da bei Modbus die Geräte-ID 0 für Broadcast Nachrichten reserviert ist.

Beispiel:

Wechselrichter-Nummer	Modbus Geräte-ID
00	100
01	001
02	002
03	003
99	099

Modbus Geräte-ID für Fronius String Controls

Die Modbus Geräte-ID einer Fronius String Control ergibt sich aus

- ihrer Adresse im Fronius Solar Net
- einem String Control Offset-Wert

Der Standardwert für den String Control Offset ist 101 da für die Wechselrichter der Bereich bis Modbus Geräte-ID 100 reserviert ist.

Der Offset-Wert kann jedoch über die Webseite des Fronius Datamanager verändert werden.

=> siehe Abschnitt "Datenausgabe über Modbus"

Beispiel 1: String Control Offset = 101 (Standardwert)

Fronius String Control Adresse	Modbus Geräte-ID
0	101
1	102
2	103
99	200

Ein Fronius Solar Net Ring erlaubt bis zu 100 Wechselrichter und bis zu 200 Fronius String Controls. Die verfügbaren Modbus Geräte-IDs sind ab 240 für andere Funktionen reserviert (z. B. für Energiezähler).

Mit dem Standard String Control Offset von 101 wären also Fronius String Control Adressen ab 139 (entspricht Modbus ID 240) nicht möglich.

Daher kann der String Control Offset über die Website des Fronius Datamanager verändert werden, wenn weniger als 100 Wechselrichter zum Einsatz kommen.

Beispiel 2: 30 Wechselrichter, 200 Fronius String Controls, String Control Offset = 40

Fronius String	
Control Adresse	Modbus Geräte-ID
0	40
1	41
2	42
199	239

Modbus Geräte-ID für Energiezähler

Ist ein Energiezähler (z. B. Fronius Smart Meter 63A) per Modbus RTU an den Fronius Datamanager angeschlossen, kann dieser per Modbus TCP über die fixe Modbus Geräte-ID 240 ausgelesen werden.

Event Flags

Zustandsänderungen und Fehler der Wechselrichter und Fronius String Controls werden als Event Flags dargestellt.

Detaillierte Informationen und Listen in verschiedenen Dateiformaten (xlsx, csv, json) können von der Fronius Homepage heruntergeladen werden:

www.fronius.com - Solar Electronics - Info & Support - Third-party Downloads

HINWEIS! Es können auch mehrere State Codes zu einem Ereignis zusammengefasst sein.

Für Wechselrichter gilt:

Eine genaue Beschreibung der State Codes ist in der Bedienungsanleitung des betreffenden Wechselrichters zu finden.

Wenn der Wechselrichter einen State Code erzeugt, wird im Fronius Datamanager das entsprechende Event Flag gesetzt.

HINWEIS! Zusätzlich wird der entsprechende State Code auch in Register F_Active_State_Code (214) angezeigt.

Event Flag und State Code bleiben so lange aktiv, wie auch der State Code am Wechselrichter anliegt. Tritt ein weiterer State Code auf, wird dieser ebenfalls in den Event Flags dargestellt. In diesem Fall kann es passieren, dass das vorherige Event Flag nicht gelöscht wird.

Daher ist es möglich, die Event Flags und den State Code manuell zu löschen: durch Schreiben von 0xFFFF in Register F_Reset_All_Event_Flags (215)

Registeradressen

WICHTIG!

- Registeradressen bleiben nicht konstant.
- Die tatsächlichen Registeradressen sind abhängig von der Zusammensetzung der dynamischen Sunspec Registerliste.

Richtige Vorgehensweise:

- das Model per Abfrage suchen (Startadresse ermitteln)
- dann mit Offsets arbeiten

Um ein Register auszulesen muss in der Modbus-Anfrage die Startadresse des Registers angegeben werden.

Fronius Basis Register: 212 SunSpec Basis Register: 40001

Register beginnen bei 1 und stellen keinen Funktionscode dar.

Register nicht mit dem Modicon Adress-Schema verwechseln: Beim Modicon Adress-Schema wird 40001 als 4x40001 dargestellt. Um Register 40001 auszulesen, die Adresse 40000 (0x9C40) verwenden.

HINWEIS! Die ausgesendete Registeradresse ist also immer um 1 geringer als die eigentliche Registernummer.

WICHTIG! Aufgrund der verwendeten Datentypen können sich die Längen von einzelnen Models verändern. Daher werden bei einigen Registertabellen für SunSpec Models Startadressen angegeben.

Diese Startadresse zusammen mit dem Offset aus der Tabelle ergibt dann den Wert der tatsächlichen Registernummer.

Beispiel: Tabelle Nameplate Model (IC120) auf Seite 36:

Das Register *WRtg* des Nameplate Model hat einen Offset von 4. Die Startadresse ist bei der Einstellung "float" mit 40131 angegeben.

Somit ist die korrekte Registernummer: 40131 + 4 = 40135.

Beispiele für Modbus RTU:

1. Abfrage von 4 Registern ab Register 40005 (Mn, Manufacturer)

Senden (Bytes in Hexadezimal)

01	03	9C 44		00 04		2A	4C
Geräte-	Function	Adresse 40004		Anza	hl der	Check	summe
ID	Code	(ents Register			lesen- egister	Low Byte	High Byte

Empfangen (Bytes in Hexadezimal)

01	03	08	46	72	6F	6E	69	75	73	00	8A	2A
Geräte-	Function	Anzahl	Adresse	40005	Adresse	40006	Adresse	40007	Adresse	e 40008	Checks	summe
ID	Code	der By-	"F" un	ıd "r"	"o" un	d "n"	"i" und	d "u"	"s" u	nd 0	Low	High
		tes									Byte	Byte

2. Schreiben von 1 Register ab Register 40242 (WmaxLimPct)

Geräte- Function Code Adresse 40242 Anzahl der zu schreibenden Register Anzahl Datenbytes, die noch folgen Ox1388 = 5000 Checksum-	01	10	9D	32	00	01	02	13	88	E3	DD
Byte Byte			Adresse	40242	schreib	enden	tenbytes, die noch fol-	bende giste 0x13	er Re- rwert 888 =	Low	High

01	10	9D	32	00	01	8F	AA
Geräte-	Function	Adresse	40242	Anzahl	der ge-	Checks	umme
ID	Code			schrieb	enen	Low	High
				Registe	er	Byte	Byte

Beispiele für Modbus TCP:

1. Abfrage von 4 Registern ab Register 40005 (Mn, Manufacturer)

Senden (Bytes in Hexadezimal)

MBAP Header	01	03	9C 44		00	04
Details siehe Be-	Geräte-	Function	Adresse 40004		Anzahl der	
schreibung MPAB	ID	Code	(entspricht		auszu	lesen-
Header			Register 40005)		egister 40005) den Regis	

Empfangen (Bytes in Hexadezimal)

MBAP Header	01	03	08	46 72	6F 6E	69 75	73 00
Details siehe Be-	Geräte-	Function	Anzahl	Adresse 40005	Adresse 40006	Adresse 40007	Adresse 40008
schreibung MPAB	ID	Code	der By-	"F" und "r"	"o" und "n"	"i" und "u"	"s" und 0
Header			tes				

2. Schreiben von 1 Register ab Register 40242 (WmaxLimPct)

MBAP Header	01	10	9D	32	00	01	02	13	88
Details siehe Be-	Geräte-	Function	Adresse	40242	Anzahl	der zu	Anzahl Daten-	zu sch	reiben-
schreibung MPAB	ID	Code			schreit	oenden	bytes, die noch	der Re	gister-
Header					Reg	ister	folgen	wert 0x	1388 =
								50	00
								1	

MBAP Header	01	10	9D	32	00	01
Details siehe Be-	Geräte-	Function	Adresse	40242	Anzahl	der ge-
schreibung MPAB	ID	Code			schiel	oenen
Header					Reg	ister

Nicht vorhandene **Datensätze**

Fronius Wechselrichter können nicht immer alle Daten, die in den SunSpec-Datenmodellen spezifiziert sind, zur Verfügung stellen. Diese Daten werden je nach Datentyp laut SunSpec Spezifikation durch folgende Werte dargestellt:

-	int16 (-32767 bis 32767):	0x8000 ¹⁾
-	uint16 (0 bis 65534):	0xFFFF
-	acc16 (0 bis 65535):	0
-	enum16(0 bis 65534):	0xFFFF
-	bitfield16 (0 bis 0x7FFF):	0xFFFF
-	pad (0x8000):	immer 0x8000
-	int32 (-2147483647 bis 2147483647):	0x80000000
-	uint32 (0 bis 4294967294):	0xFFFFFFF
_	acc32 (0 his 4294967295)	0

enum32(0 bis 4294967294): 0xFFFFFFF bitfield32 (0 bis 0x7FFFFFF): 0xFFFFFFF

int64 (-9223372036854775807 bis 0x8000000000000000

9223372036854775807):

acc64 (0 bis 18446744073709551615):

stringX: alle X Register mit 0x0000 gefüllt

float32 (Bereich siehe IEEE 754): 0x7FC00000 (NaN) 0x8000

sunssf (Skalierungsfaktoren; -10 bis 10):

¹⁾ Das Prefix "0x" steht für hexadezimale Zahlen

HINWEIS! Vom Datamanager nicht unterstützte Datenpunkte sind in den Registertabellen in der Spalte "Range of values" mit "Not supported" gekennzeichnet. In diesem Fall erhält man beim Auslesen je nach Datentyp den entsprechenden Wert aus der obigen Liste.

In bestimmten Fällen kann es vorkommen, dass grundsätzlich als unterstützt angeführte Register ebenfalls einen solchen Wert zurückliefern. Der Grund dafür ist, dass einige Werte vom Gerätetyp abhängig sind, z.B. die Ströme AphB und AphC bei einem einphasigen Wechselrichter.

Zeitverhalten der unterstützten Betriebsarten

Zeitverhalten am Beispiel einer Leistungsreduktion

Das Zeitverhalten des Wechselrichters in einer Betriebsart kann durch mehrere Zeitwerte festgelegt werden.

In der Abbildung "Zeitverhalten am Beispiel einer Leistungsreduktion" sind die drei möglichen Zeitwerte dargestellt:

- WinTms 0 - 300 [Sekunden]

gibt ein Zeitfenster an, in dem die Betriebsart zufällig gestartet wird. Das Zeitfenster beginnt mit dem Startbefehl der Betriebsart (z.B. *OutPFSet_Ena* = 1). Mit *WinTms* kann verhindert werden, dass alle Wechselrichter in der Anlage die Än-

derungen gleichzeitig übernehmen. Bei 0 (Standardwert) startet die Betriebsart sofort.

- RvrtTms 0 - 28800 [Sekunden]

bestimmt, wie lange die Betriebsart aktiv sein soll. Nach Ablauf der Zeit wird die Betriebsart automatisch beendet. Ist *RvrtTms* = 0 (Standardwert) bleibt die Betriebsart so lange aktiv, bis er manuell über das entsprechende Register wieder deaktiviert wird.

RmpTms (derzeit nicht vom Datamanager unterstützt)

gibt vor, wie schnell die Änderungen durchgeführt werden sollen. Der entsprechende Wert wird in der angegebenen Zeit schrittweise vom alten zum neuen Wert hin verändert.

Ist RmpTms = 0 (Standardwert) oder wird dieser Wert gar nicht unterstützt, wird sofort der neue Wert aktuell.

Vorzeichenkonvention für den Power Factor

Die EEI-Vorzeichenkonvention¹⁾ für den Power Factor entspricht der SunSpec Spezifikation, und basiert auf den Angaben aus dem "Handbook for Electricity Metering" und der IEC 61557-12 (2007).

Der Power Factor ist:

- negativ bei positiver Blindleistung (übererregt, Quadrant 1)
- positiv bei negativer Blindleistung (untererregt, Quadrant 4)

Auf der Karte gespeicherte Werte

Nameplate Model (IC120):

- WRtg
 - AC Nennleistung des Wechselrichters
- VARtg

AC Nennscheinleistung des Wechselrichters Standardwert = WRtg

VArRtgQ1

Maximale AC Blindleistung im 1. Quadranten (übererregt). Standardwert wird anhand von verfügbarem cos Phi (0.85) und der Nennscheinleistung berechnet. Skalierungsfaktor VArRtg SF beachten

VArRtgQ4

Maximale AC Blindleistung im 4. Quadranten (untererregt). Standardwert wird anhand von verfügbarem cos Phi (0.85) und der Nennscheinleistung berechnet. Skalierungsfaktor VArRtg_SF beachten

- ARtg

AC Nennstrom des Wechselrichters

¹⁾ EEI = Edison Electrical Institute

Basic Settings Model (IC121):

- WMax

Maximale AC Leistung Standardwert = WRtg

- VRef

Referenzspannung am Einspeisepunkt

VRefOfs

Abweichung zur Referenzspannung

- VMax

Maximale AC Spannung

- VMin

Minimale AC Spannung

- VAMax

Maximale AC Scheinleistung Standardwert = VARtg

Werte speichern

Bei nicht vorhandenen oder falsch angezeigten Daten können die oben angeführten Werte angepasst und am Datamanager gespeichert werden.

Änderungen haben derzeit keinen Einfluss auf die Funktionsweise des Datamanagers oder der Wechselrichter und dienen ausschließlich zur Anzeige von gerätespezifischen Informationen.

Um die Werte zu speichern, muss das Register *F_Store_Data (213)* eines beliebigen Wechselrichters mit 0xFFFF beschrieben werden. Anschließend sind die Werte für alle Wechselrichter permanent gespeichert und auch nach einem AC Reset des Datamanagers verfügbar.

Werte löschen

Es können nur die Werte für einen einzelnen Wechselrichter gelöscht werden. Dazu ist Register *F_Delete_Data* (212) des Wechselrichters mit 0xFFFF zu beschreiben.

Skalierungsfaktoren

WICHTIG! Skalierungsfaktoren (auch bei Auswahl von "Float" möglich!) sind nicht statisch, auch wenn diese als Fixwert in dieser BA angeben werden.

Skalierungsfaktoren können sich bei jeder Firmware-Änderung verändern (z.B.: Skalierungsfaktor für Leistungsvorgabe).

Skalierungsfaktoren mit unveränderlichen Werten sind in den Tabellen in der Spalte "Range of values" angeführt.

Aktuelldaten (Daten von Wechselrichtern, String Controls und Energiezählern) können veränderliche Skalierungsfaktoren haben. Diese müssen aus den entsprechenden Registern ausgelesen werden.

Nicht beschreibbare Register

Folgende Register können nicht beschrieben werden:

- Read-Only (R) Register
- aktuell nicht unterstützte Register

HINWEIS! Wird versucht solche Register zu beschreiben, gibt der Fronius Datamanager keinen Exception Code zurück!

Die in diese Register geschriebenen Werte werden ohne Fehlermeldung vom Fronius Datamanager ignoriert.

Schreiben ungültiger Werte

Einige Register lassen nur bestimmte Werte zu. Die gültigen Werte sind der jeweiligen Register-Tabelle zu entnehmen.

Wird ein ungültiger Wert in ein Register geschrieben, so gibt der Fronius Datamanager den Exception Code 3 (Illegal Data Value) zurück. Der ungültige Wert wird ignoriert. Werden mehrere Register auf einmal beschrieben, werden alle gültigen Werte bis zu dem Register mit dem ungültigen Wert geschrieben. Anschließend wird der Schreibvorgang ab-

gebrochen.

Einstellungen - Modbus

Allgemeines

Über die Web-Schnittstelle des Fronius Datamanager können via Internet-Browser Einstellungen für die Modbus Anbindung vorgenommen werden, welche über das Modbus-Protokoll nicht ansprechbar sind.

HINWEIS! Bei Datenübertragung über Modbus RTU ist die Verwendung der Web-Schnittstelle normalerweise nicht erforderlich, da Modbus RTU werkseitig aktiviert ist.

Einstellungen - Modbus öffnen

- Fronius Datamanager installieren
 - ' => siehe Bedienungsanleitung Fronius Datamanager
- 1 Internet-Browser öffnen
- [3] Im Adressfeld des Internet-Browsers eingeben:
 - die IP Adresse des Fronius Datamanager (unter Systeminformationen abrufbar)
 - oder Hostnamen und Domainnamen des Fronius Datamanager

Die Startseite der Web-Schnittstelle wird angezeigt

- Den Bereich "Einstellungen" (1) auswählen
- 5 Den Menüpunkt "Modbus" (2) öffnen

HINWEIS! Beim Fronius Datamanager 2.0 ist die 'Datenausgabe über Modbus' werkseitig auf rtu eingestellt.

Die Auswahlmöglichkeit rtu ist beim Fronius Datamanager nicht vorhanden.

Datenausgabe über Modbus

Modbus

Steuerungs-Prioritäten

Hinweis: eine Veränderung der Steuerungsprioritäten ist nur im EVU Editor Menü mit dem Service Passwort möglich.

Legende:

- 1 ... höchste Priorität
- 2 ... mittlere Priorität
- 3 ... niedrigste Priorität

Datenausgabe über Modbus

Aktivierung des Modbus Dienstes und Auswahl des Übertragungs-Protokolles. Wird der Modbus Dienst aktiviert, stehen weitere Eingabefelder zur Verfügung.

Das Übertragungs-Protokoll Modbus rtu ist nur beim Fronius Datamanager 2.0 verfügbar.

HINWEIS! Befindet sich ein unter Einstellungen / Zähler konfigurierter Modbus Energiezähler (z.B. Fronius Smart Meter) im System, kann die Einstellung "rtu" nicht verwendet werden.

Bei Auswahl von "rtu" wird in diesem Fall die Datenausgabe per Modbus automatisch deaktiviert. Diese Änderung ist erst nach einem erneuten Laden der Datamanager Web-Seite sichtbar.

Ein über RS485 an den Datamanager angeschlossener Energiezähler kann auch per Modbus TCP über die entsprechenden SunSpec Modelle ausgelesen werden. Die Modbus ID für den Zähler ist 240.

(1) aus

keine Datenausgabe über Modbus

Ist die Datenausgabe über Modbus deaktiviert, werden über Modbus an die Wechselrichter übertragene Steuerungsbefehle zurückgesetzt, z.B. keine Leistungsreduktion oder keine Blindleistungs-Vorgabe.

(2) tcp

Datenausgabe über Modbus tcp

(2a) Modbus Port

Nummer des TCP Ports, der für die Modbus-Kommunikation zu verwenden ist.

Voreinstellung: 502

Port 80 kann hierfür nicht verwendet werden.

(2b) String Control Adress-Offset

Offset-Wert für die Adressierung von Fronius String Controls per Modbus. Für weitere Details siehe Abschnitt "Modbus Geräte-ID für Fronius String Controls".

Sunspec Model Type

zum Auswählen des Datentyps von Datenmodellen für Wechselrichter und von Datenmodellen für Energiezähler

(2c) float

Darstellung als Gleitkommazahlen SunSpec Inverter Model I111, I112 oder I113 SunSpec Meter Model M211, M212 oder M213

(2d) int+SF

Darstellung als ganze Zahlen mit Skalierungsfaktoren SunSpec Inverter Model I101, I102 oder I103 SunSpec Meter Model M201, M202 oder M203

WICHTIG! Da die verschiedenen Modelle über unterschiedliche Anzahlen an Registern verfügen, ändern sich durch den Wechsel des Datentyps auch die Registeradressen aller nachfolgenden Modelle.

(2e) **Demo Modus**

Der Demo Modus dient zur Implementierung oder Validierung eines Modbus Masters. Er ermöglicht es, Wechselrichter-, Energiezähler- und String Control Daten auszulesen, ohne dass ein Gerät wirklich angeschlossen oder aktiv ist. Es werden für alle Register immer dieselben Daten zurückgeliefert.

(2f) Wechselrichter-Steuerung über Modbus

Wenn diese Option aktiviert ist, können die Wechselrichter über Modbus gesteuert werden.

Das Auswahlfeld Steuerung einschränken wird angezeigt.

Zur Wechselrichter-Steuerung gehören folgende Funktionen:

- Ein / Aus
- Leistungsreduktion
- Vorgabe eines konstanten Leistungs-Faktors cos Phi
- Vorgabe einer konstanten Blindleistung

(3) **rtu**

Datenausgabe über Modbus rtu

Hinweis: bei Anbindung eines Fronius Smart Meters wird Modbus RTU automatisch deaktiviert.

(3a) Baudrate

zum Eingeben der Baudrate,

(3b) Parität

Auswahlfeld zum Eingeben der Parität

(3c) String Control Adress-Offset

Offset-Wert für die Adressierung von Fronius String Controls per Modbus. Für weitere Details siehe Abschnitt "Modbus Geräte-ID für Fronius String Controls".

Sunspec Model Type

zum Auswählen des Datentyps von Datenmodellen für Wechselrichter

(3d) float

Darstellung als Gleitkommazahlen SunSpec Inverter Model I111, I112 oder I113

(3e) int+SF

Darstellung als ganze Zahlen mit Skalierungsfaktoren SunSpec Inverter Model I101, I102 oder I103

WICHTIG! Da die verschiedenen Modelle über unterschiedliche Anzahlen an Registern verfügen, ändern sich durch den Wechsel des Datentyps auch die Registeradressen aller nachfolgenden Modelle.

(3f) Demo Modus

Der Demo Modus dient zur Implementierung und Validierung eines Modbus Masters. Er ermöglicht es, Wechselrichter-, Energiezähler- und String Control Daten auszulesen, ohne dass ein Gerät wirklich angeschlossen oder aktiv ist. Es werden für alle Register immer dieselben Daten zurückgeliefert.

(3g) Wechselrichter-Steuerung über Modbus

Wenn diese Option aktiviert ist, erfolgt die Wechselrichter-Steuerung über Modbus

Zur Wechselrichter-Steuerung gehören folgende Funktionen:

- Ein / Aus
- Leistungsreduktion
- Vorgabe eines konstanten Power Factors (cos Phi)
- Vorgabe einer konstanten Blindleistung

(4) Steuerungs-Prioritäten

Die Steuerungs-Prioritäten legen fest, welcher Dienst bei der Wechselrichtersteuerung priorisiert wird.

1 = höchste Priorität, 3 = niedrigste Priorität

Die Steuerungs-Prioritäten können nur im Menüpunkt **EVU EDITOR** geändert werden.

(5) Schaltfläche Übernehmen / Speichern

(6) Schaltfläche Abbrechen / Eingaben verwerfen

Steuerung einschränken

Die Option "Steuerung einschränken" ist nur beim Übertragungsprotokollen tcp verfügbar. Sie dient dazu Wechselrichter-Steuerungsbefehle durch Unbefugte zu verhindern, indem die Steuerung nur für bestimmte Geräte erlaubt wird.

Wechselrichter-Steuerung über Modbus ✓

Steuerung einschränken ✓ (1)

IP-Adresse XX.X.XX.X (2)

(1) Steuerung einschränken

Wenn diese Option aktiviert ist, dürfen nur bestimmte Geräte Steuerungsbefehle schicken.

(2) IP-Adresse

Um die Wechselrichter-Steuerung auf ein oder mehrere Geräte zu beschränken, werden in diesem Feld die IP-Adressen jener Geräte eingetragen die Befehle an den Fronius Datamanager senden dürfen. Mehrere Einträge werden durch Beistriche getrennt.

Beispiele:

- eine IP-Adresse: 98.7.65.4
 - Steuerung nur durch IP Adresse 98.7.65.4 zulässig
- mehrere IP-Adressen: 98.7.65.4,222.44.33.1
 - Steuerung nur durch IP Adressen 98.7.65.4 und 222.44.33.1 zulässig
- IP-Adressbereich z.B. von 98.7.65.1 bis 98.7.65.254 (CIDR Notation): **98.7.65.0/24**
 - Steuerung nur durch IP Adressen 98.7.65.1 bis 98.7.65.254 zulässig

Änderungen speichern oder verwerfen

Speichert die Einstellungen und zeigt eine Meldung an, dass die Speicherung erfolgreich war.

Wird der Menüpunkt "Modbus" verlassen ohne zu speichern, so werden alle vorgenommenen Änderungen verworfen.

Stellt eine Sicherheitsabfrage ob die vorgenommenen Änderungen tatsächlich verworfen werden sollen, und stellt dann die zuletzt gespeicherten Werte wieder her.

Fronius Register

Fronius Register

HINWEIS! Diese Register gelten nur für Wechselrichter. Für Fronius String Controls und Energiezähler sind diese Register nicht relevant.

Start	End	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
212	212	1	RW	0x03 0x06 0x10	F_Delete_Data	uint16			Delete stored data (e.g. ratings, curve data) of the current inverter by writing 0xFFFF.	0xFFFF
213	213	1	RW	0x03 0x06 0x10	F_Store_Data	uint16			Rating data of all inverters connected to the Fronius Datamanager are persistently stored by writing 0xFFFF.	0xFFFF
214	214	1	R	0x03	F_Active_Sta- te_Code	uint16			Current active state code of inverter - De- scription can be found in inverter manual	
215	215	1	RW	0x03 0x06 0x10	F_Reset_All_E- vent_Flags	uint16			Write 0xFFFF to reset all event flags and active state code.	0xFFFF
216	216	1	RW	0x03 0x06 0x10	F_ModelType	uint16				1: Float 2: Int & SF
500	501	2	R	0x03	F_Site_Power	uint32	W			
502	505	4	R	0x03	F_Site_Ener- gy_Day	uint64	Wh			
506	509	4	R	0x03	F_Site_Ener- gy_Year	uint64	Wh			
510	513	4	R	0x03	F_Site_Ener- gy_Total	uint64	Wh			

Status-Code des Wechselrichters

Das Register *F_Active_State_Code* (214) zeigt den Status-Code des Wechselrichter an der gerade aufgetreten ist. Dieser wird eventuell auch am Display des Wechselrichter angezeigt. Dieser Code wird auch als Event Flag im Inverter Modell dargestellt. Der angezeigte Code bleibt so lange aktiv bis der entsprechende Status nicht mehr am Wechselrichter anliegt. Alternativ kann der Status auch per Register *F_Reset_All_E-vent_Flags* gelöscht werden.

Löschen der Event Flags und des Status-Codes

Die Event Flags in den Inverter Models (101, 102, 103 und 111, 112, 113) bleiben so lange aktiv bis der entsprechende Status nicht mehr am Wechselrichter anliegt. Es gibt einige wenige Ausnahmen, wo die Event Flags nicht mehr gelöscht werden. Daher können die Event Flags und der angezeigte Status-Code per Modbus-Befehl zurückgesetzt werden.

0xFFFF in das Register *F_Reset_All_Event_Flags* (215) schreiben

Der Inhalt folgender Register wird gelöscht:

- F_Active_State_Code (214)
- Evt1
- Evt2
- EvtVnd1 bis EvtVnd4

Daten speichern und löschen

Schreibt man in das Register *F_Store_Data*(213) den Wert 0xFFFF werden alle Nennwerte (Ratings) für alle Wechselrichter am Fronius Datamanager gespeichert. Diese Werte können in den entsprechenden Registern des Nameplate Models und des Basic Settings Models verändert werden. Dies kann nützlich sein, wenn z. B. für ein Gerät keine Nennwerte automatisch ermittelt werden konnten und man die Werte manuell eintragen will.

Will man die gespeicherten Werte für einen bestimmten Wechselrichter löschen, muss man in das Register *F_Delete_Data*(212) den Wert 0xFFFF schreiben. Dann werden die Werte nur für diesen Wechselrichter gelöscht. Das Löschen kann immer nur auf den Wechselrichter angewendet werden, mit dem gerade kommuniziert wird.

Datentyp ändern

Über das Register **F_ModelType(216)** kann der Datentyp für die Datenmodelle für Wechselrichter und Energiezähler ausgewählt werden. Entweder kann die Darstellung als Gleitkommazahlen (float, Standard) oder als ganze Zahlen mit Skalierungsfaktoren (int+SF) ausgewählt werden.

HINWEIS! Diese Einstellung betrifft nur das Inverter Model (Wechselrichter) und das Meter Model (Energiezähler). Alle anderen Models verwenden weiterhin ganze Zahlen und Skalierungsfaktoren.

Diese Einstellung funktioniert gleich wie die über das Webinterface Modbus Einstellungen - SunSpec Model Type.

Einstellmöglichkeiten:

- Float = 1 (Standard): Inverter Model I111, I112 oder I113; Meter Model M211, M212 oder M213
- int+SF = 2: Inverter Model I101, I102 oder I103; Meter Model M201, M202 oder M203

HINWEIS! Da die verschiedenen Models über eine unterschiedliche Anzahl an Registern verfügen, ändern sich durch den Wechsel des Datentyps auch die Registeradressen aller nachfolgenden Models.

Anlagensummen

Über die folgenden Register können Leistungs- und Energiedaten von allen per Solar Net mit diesem Fronius Datamanager verbundenen Wechselrichtern, abgefragt werden. Die Werte werden in Watt (W) bzw. Wattstunden (Wh) abgebildet und benötigen keine Skalierungsfaktoren.

- F_Site_Power(500-501): Leistung
- F_Site_Energy_Day(502-505): Tagesenergie
- F_Site_Energy_Year(506-509): Jahresenergie
- F Site Energy Total(510-513): Gesamtenergie der gesamten Anlage

Common & Inverter Model

Common Block Register

Die Beschreibung des Common Block inklusive der SID Register (Register 40001-40002) zur Identifizierung als SunSpec Gerät gilt für jeden Gerätetyp (Wechselrichter, String Control, Energiezähler). Jedes Gerät besitzt einen eigenen Common Block, in dem Informationen über das Gerät (Modell, Seriennummer, SW Version, etc.) aufgeführt sind.

Start	End	Size	RW	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
40001	40002	2	R	0x03	SID	uint32			Well-known value. Uniquely identifies this as a SunSpec Modbus Map	0x53756e53 (SunS)
40003	40003	1	R	0x03	ID	uint16			Well-known value. Uniquely identifies this as a SunSpec Common Model block	1
40004	40004	1	R	0x03	L	uint16	Regis- ters		Length of Common Model block	65
40005	40020	16	R	0x03	Mn	String32			Manufacturer	z.B. Fronius
40021	40036	16	R	0x03	Md	String32			Device model	z.B. IG+150V
40037	40044	8	R	0x03	Opt	String16			SW version of datama- nager	z.B. 3.3.6-13
40045	40052	8	R	0x03	Vr	String16			SW version of inverter	
40053	40068	16	R	0x03	SN	String32			Serialnumber of inver- ter, string control or energy meter	
40069	40069	1	R	0x03	DA	uint16			Modbus Device Address	1 - 247

Inverter Model Register

Für die Wechselrichter-Daten werden zwei verschiedene SunSpec Models unterstützt:

- das standardmäßig eingestellte Inverter Model mit Gleitkomma-Darstellung (Einstellung "float"; I111, I112 oder I113)
- das Inverter Model mit ganzen Zahlen und Skalierungsfaktoren (Einstellung "int+SF"; I101, I102 oder I103)

HINWEIS! Die Registeranzahl der beiden Model-Typen ist unterschiedlich!

Floating Point Darstellung - "float"

Start	End	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
40070	40070	1	R	0x03	ID	uint16			Uniquely identifies this as a SunSpec Inverter Modbus Map 111: single phase 112: split phase 113: three phase	111, 112, 113
40071	40071	1	R	0x03	L	uint16	Regis- ters		Length of inverter model block	60
40072	40073	2	R	0x03	A	float32	А		AC Total Current value	
40074	40075	2	R	0x03	AphA	float32	A		AC Phase-A Current value	
40076	40077	2	R	0x03	AphB	float32	A		AC Phase-B Current value	
40078	40079	2	R	0x03	AphC	float32	A		AC Phase-C Current value	
40080	40081	2	R	0x03	PPVphAB	float32	V		AC Voltage Phase-AB value	
40082	40083	2	R	0x03	PPVphBC	float32	V		AC Voltage Phase-BC value	
40084	40085	2	R	0x03	PPVphCA	float32	V		AC Voltage Phase-CA value	
40086	40087	2	R	0x03	PhVphA	float32	V		AC Voltage Phase-A-to- neutral value	
40088	40089	2	R	0x03	PhVphB	float32	V		AC Voltage Phase-B-to- neutral value	
40090	40091	2	R	0x03	PhVphC	float32	V		AC Voltage Phase-C-to- neutral value	
40092	40093	2	R	0x03	W	float32	W		AC Power value	
40094	40095	2	R	0x03	Hz	float32	Hz		AC Frequency value	
40096	40097	2	R	0x03	VA	float32	VA		Apparent Power	
40098	40099	2	R	0x03	VAr	float32	VAr		Reactive Power	
40100	40101	2	R	0x03	PF	float32	%		Power Factor	
40102	40103	2	R	0x03	WH	float32	Wh		AC Lifetime Energy production	

Floating Point Darstellung - "float"

Start	End	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
40104	40105	2	R	0x03	DCA	float32	А		DC Current value	DC current only if one MPPT avai- lable; with multiple MPPT "not implemen- ted"
40106	40107	2	R	0x03	DCV	float32	V		DC Voltage value	DC voltage only if one MPPT avai- lable; with multiple MPPT "not implemen- ted"
40108	40109	2	R	0x03	DCW	float32	W		DC Power value	Total DC power of all available MPPT
40110	40111	2	R	0x03	TmpCab	float32	° C		Cabinet Temperature	
40112	40113	2	R	0x03	TmpSnk	float32	° C		Coolant or Heat Sink Temperature	
40114	40115	2	R	0x03	TmpTrns	float32	° C		Transformer Temperature	
40116	40117	2	R	0x03	TmpOt	float32	° C		Other Temperature	
40118	40118	1	R	0x03	St	enum16	Enume- rated		Operating State	1)
40119	40119	1	R	0x03	StVnd	enum16	Enume- rated		Vendor Defined Operating State	2)
40120	40121	2	R	0x03	Evt1	unit32	Bitfield		Event Flags (bits 0-31)	3)
40122	40123	2	R	0x03	Evt2	unit32	Bitfield		Event Flags (bits 32-63)	,
40124	40125	2	R	0x03	EvtVnd1	unit32	Bitfield		Vendor Defined Event Flags (bits 0-31)	
40126	40127	2	R	0x03	EvtVnd2	unit32	Bitfield		Vendor Defined Event Flags (bits 32-63)	3)
40128	40129	2	R	0x03	EvtVnd3	unit32	Bitfield		Vendor Defined Event Flags (bits 64-95)	-,
40130	40131	2	R	0x03	EvtVnd4	unit32	Bitfield		Vendor Defined Event Flags (bits 96-127)	

- 1) siehe SunSpec State Codes
- 2) siehe Fronius State Codes
- 3) Detaillierte Informationen und Listen in verschiedenen Dateiformaten (xlsx, csv, json) können von der Fronius Homepage heruntergeladen werden:

www.fronius.com - Solar Electronics - Info & Support - Third-party Downloads

Ganzzahldarstellung – "int+SF"

	•	41114	ui Sto	iiuiig	- "Int+5F"					
Start	End	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
40070	40070	1	R	0x03	ID	uint16			Uniquely identifies this as a SunSpec Inverter Modbus Map 101: single phase 102: split phase 103: three phase	101, 102, 103
40071	40071	1	R	0x03	L	uint16	Re- gis- ters		Length of inverter model block	50
40072	40072	2	R	0x03	A	uint16	Α	A_SF	AC Total Current value	
40073	40073	2	R	0x03	AphA	uint16	А	A_SF	AC Phase-A Current value	
40074	40074	2	R	0x03	AphB	uint16	А	A_SF	AC Phase-B Current value	
	40075		R		AphC	uint16	А	A_SF	AC Phase-C Current value	
40076	40076	2	R	0x03	A_SF	sunssf			AC Current Scale factor	
40077		1	R	0x03	PPVphAB	uint16	V	V_SF	AC Voltage Phase-AB value	
40078	40078	1	R	0x03	PPVphBC	uint16	V	V_SF	AC Voltage Phase-BC value	
40079	40079	1	R	0x03	PPVphCA	uint16	V	V_SF	AC Voltage Phase-CA value	
40080	40080	1	R	0x03	PhVphA	uint16	V	V_SF	AC Voltage Phase-A-to- neutral value	
40081	40081	1	R	0x03	PhVphB	uint16	V	V_SF	AC Voltage Phase-B-to- neutral value	
40082	40082	1	R	0x03	PhVphC	uint16	V	V_SF	AC Voltage Phase-C-to- neutral value	
40083	40083	1	R	0x03	V_SF	sunssf			AC Voltage Scale factor	
40084	40084	1	R	0x03	W	int16	W	W_SF	AC Power value	
40085	40085	1	R	0x03	W_SF	sunssf			AC Power Scale factor	
40086	40086	1	R	0x03	Hz	uint16	Hz	Hz_SF	AC Frequency value	
40087	40087	1	R	0x03	Hz_SF	sunssf			Scale factor	
40088	40088	1	R	0x03	VA	int16	VA	VA_SF	Apparent Power	
40089	40089	1	R	0x03	VA_SF	sunssf			Scale factor	
40090	40090	1	R	0x03	VAr	int16	VAr	VAr_SF	Reactive Power	
	40091	1	R	0x03	_	sunssf			Scale factor	
	40092	1	R	0x03		int16	%	PF_SF	Power Factor	
	40093		R	0x03		sunssf			Scale factor	
	40095		R	0x03	WH	uint32	Wh	WH_SF	AC Lifetime Energy production	
40096	40096	1	R	0x03	WH_SF	sunssf			AC Lifetime Energy production scale factor	

Ganzzahldarstellung – "int+SF"

	Ganzzanidarsteilung – "Int+5F"										
Start	End	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values	
40097	40097	1	R	0x03	DCA	uint16	A	DCA_SF	DC Current value	DC current only if one MPPT avai- lable; with multiple MPPT "not implemen- ted"	
40098	40098	1	R	0x03	DCA_SF	sunssf			Scale factor	Scale factor for DC cur- rent only if one MPPT available; with multip- le MPPT "not imple- mented"	
40099	40099	1	R	0x03	DCV	uint16	V	DCV_SF	DC Voltage value	DC voltage only if one MPPT avai- lable; with multiple MPPT "not implemen- ted"	
40100	40100	1	R	0x03	DCV_SF	sunssf			Scale factor	Scale factor for DC volta- ge only if one MPPT available; with multip- le MPPT "not imple- mented"	
40101	40101	1	R	0x03	DCW	int16	W	DCW_SF	DC Power value	Total DC power of all available MPPT	
40102	40102	1	R	0x03	DCW_SF	sunssf			Scale factor		
40103	40103	1	R	0x03	TmpCab	int16	° C	Tmp_SF	Cabinet Temperature	Not suppor- ted	
	40104		R	0x03		int16	° C	Tmp_SF	Coolant or Heat Sink Temperature	Not supported	
	40105		R		TmpTrns	int16	° C	Tmp_SF	Transformer Tempera- ture	Not suppor- ted	
	40106		R		TmpOt	int16	° C	Tmp_SF	Other Temperature	Not suppor- ted	
40107	40107	1	R	0x03	Tmp_SF	sunssf			Scale factor	Not suppor- ted	

Ganzzahldarstellung – "int+SF"

					,,					
Start	End	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
40108	40108	1	R	0x03	St	enum16	Enu- me- rated		Operating State	1)
40109	40109	1	R	0x03	StVnd	enum16	Enu- me- rated		Vendor Defined Operating State	2)
40110	40111	2	R	0x03	Evt1	uint32	Bit- field		Event Flags (bits 0-31)	3)
40112	40113	2	R	0x03	Evt2	uint32	Bit- field		Event Flags (bits 32-63)	,
40114	40115	2	R	0x03	EvtVnd1	uint32	Bit- field		Vendor Defined Event Flags (bits 0-31)	
40116	40117	2	R	0x03	EvtVnd2	uint32	Bit- field		Vendor Defined Event Flags (bits 32-63)	3)
40118	40119	2	R	0x03	EvtVnd3	uint32	Bit- field		Vendor Defined Event Flags (bits 64-95)	-,
40120	40121	2	R	0x03	EvtVnd4	uint32	Bit- field		Vendor Defined Event Flags (bits 96-127)	

- 1) siehe SunSpec State Codes
- 2) siehe Fronius State Codes
- 3) Detaillierte Informationen und Listen in verschiedenen Dateiformaten (xlsx, csv, json) können von der Fronius Homepage heruntergeladen werden:

www.fronius.com - Solar Electronics - Info & Support - Third-party Downloads

SunSpec State Codes

Name	Wert	Beschreibung
I_STATUS_OFF	1	Wechselrichter ist aus
I_STATUS_SLEEPING	2	Auto-Shutdown
I_STATUS_STARTING	3	Wechselrichter startet
I_STATUS_MPPT	4	Wechselrichter arbeitet normal
I_STATUS_THROTTLED	5	Leistungsreduktion aktiv
I_STATUS_SHUTTING_DOWN	6	Wechselrichter schaltet ab
I_STATUS_FAULT	7	Ein oder mehr Fehler existieren, siehe St *oder Evt * Register
I_STATUS_STANDBY	8	Standby

* Inverter Model Register

Fronius State Codes

Name	Wert	Beschreibung		
I_STATUS_OFF	1	Wechselrichter ist aus		
I_STATUS_SLEEPING	2	Auto-Shutdown		
I_STATUS_STARTING	3	Wechselrichter startet		
I_STATUS_MPPT	4	Wechselrichter arbeitet normal		
I_STATUS_THROTTLED	5	Leistungsreduktion aktiv		
I_STATUS_SHUTTING_DOWN	6	Wechselrichter schaltet ab		
I_STATUS_FAULT	7	Ein oder mehr Fehler existieren, siehe St * oder Evt * Register		
I_STATUS_STANDBY	8	Standby		
I_STATUS_NO_BUSINIT	9	Keine SolarNet Kommunikation		
I_STATUS_NO_COMM_INV	10	Keine Kommunikation mit Wechsel- richter möglich		
I_STATUS_SN_OVERCURRENT	11	Überstrom an SolarNet Stecker er- kannt		
I_STATUS_BOOTLOAD	12	Wechselrichter wird gerade upgedatet		
I_STATUS_AFCI	13	AFCI Event (Arc-Erkennung)		

* Inverter Model Register

Nameplate Model (IC120)

Allgemeines

Dieses Modell entspricht einem Leistungsschild. Folgende Daten können ausgelesen werden:

- DERType (3)

Art des Geräts. Das Register liefert den Wert 4 zurück (PV-Gerät)

- WRtg (4)

Nennleistung des Wechselrichters

VARtg (6)

Nenn-Scheinleistung des Wechselrichters

VArRtgQ1 (8) - VArRtgQ4 (11)

Nenn-Blindleistungswerte für die vier Quadranten

- ARtg (13)

Nennstrom des Wechselrichters

- PFRtgQ1 (15) - PFRtgQ4 (18)

Minimale Werte für den Power Factor für die vier Quadranten

Nameplate Regis-

Startadresse:

ter

bei Einstellung "float": 40131bei Einstellung "int+SF": 40121

Start Offset	End Offset	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
1	1	1	R	0x03	ID	uint16			A well-known value 120. Uniquely identifies this as a SunSpec Namepla- te Model	120
2	2	1	R	0x03	L	uint16	Regis- ters		Length of Nameplate Model	26
3	3	1	R	0x03	DERTyp	enum16			Type of DER device. Default value is 4 to indicate PV device.	4
4	4	1	R	0x03	WRtg	uint16	W	WRt- g_SF	Continuous power output capability of the inverter.	
5	5	1	R	0x03	WRtg_SF	sunssf			Scale factor	1
6	6	1	R	0x03	VARtg	uint16	VA	VARt- g_SF	Continuous Volt-Ampere capability of the inverter.	
7	7	1	R	0x03	VARtg_SF	sunssf			Scale factor	1
8	8	1	R	0x03	VArRtgQ1	int16	var	VArRt- g_SF	Continuous VAR capability of the inverter in quadrant 1.	
9	9	1	R	0x03	VArRtgQ2	int16	var	VArRt- g_SF	Continuous VAR capability of the inverter in quadrant 2.	Not supported

Start Offset	End Offset	Size	RW	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
10	10	1	R	0x03	VArRtgQ3	int16	var	VArRt- g_SF	Continuous VAR capability of the inverter in quadrant 3.	Not suppor- ted
11	11	1	R	0x03	VArRtgQ4	int16	var	VArRt- g_SF	Continuous VAR capability of the inverter in quadrant 4.	
12	12	1	R	0x03	VArRtg_SF	sunssf			Scale factor	1
13	13	1	R	0x03	ARtg	uint16	A	ARt- g_SF	Maximum RMS AC current level capability of the inverter.	
14	14	1	R	0x03	ARtg_SF	sunssf			Scale factor	-2
15	15	1	R	0x03	PFRtgQ1	int16	cos()	PFRt- g_SF	Minimum power factor capability of the inverter in quadrant 1.	
16	16	1	R	0x03	PFRtgQ2	int16	cos()	PFRt- g_SF	Minimum power factor capability of the inverter in quadrant 2.	Not suppor- ted
17	17	1	R	0x03	PFRtgQ3	int16	cos()	PFRt- g_SF	Minimum power factor capability of the inverter in quadrant 3.	Not suppor- ted
18	18	1	R	0x03	PFRtgQ4	int16	cos()	PFRt- g_SF	Minimum power factor capability of the inverter in quadrant 4.	
19	19	1	R	0x03	PFRtg_SF	sunssf			Scale factor	-3
20	20	1	R	0x03	WHRtg	uint16	Wh	WHRt- g_SF	Nominal energy rating of storage device.	*
21	21	1	R	0x03	WHRtg_SF	sunssf			Scale factor	0*
22	22	1	R	0x03	AhrRtg	uint16	AH	AhrRt- g_SF	The useable capacity of the battery. Maximum charge minus minimum charge from a technolo- gy capability perspecti- ve (Amp-hour capacity rating).	Not supported
23	23	1	R	0x03	AhrRtg_SF	sunssf			Scale factor for amphour rating.	Not supported
24	24	1	R	0x03	MaxChaRte	uint16	W	MaxCh aR- te_SF	Maximum rate of energy transfer into the storage device.	*
25	25	1	R	0x03	MaxChaR- te_SF	sunssf			Scale factor	0*
26	26	1	R	0x03	MaxDisChaRte	uint16	W	Max- DisCha Rte_SF	Maximum rate of energy transfer out of the storage device.	*

Start Offset	End Offset	Size	RW	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
27	27	1	R	1	MaxDisChaR- te_SF	sunssf			Scale factor	0*
28	28	1	R	0x03	Pad				Pad register	

^{*} wird nur von Fronius Hybrid Wechselrichtern unterstützt

Basic Settings Model (IC121)

Basic Settings

Startadresse:

Register - bei Einstellung "float": 40159

- bei Einstellung "int+SF": 40149

Start Offset	End Offset	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
1	1	1	R	0x03	ID	uint16			A well-known value 121. Uniquely identifies this as a SunSpec Basic Settings Model	121
2	2	1	R	0x03	L	uint16	Regis- ters		Length of Basic Settings Model	30
3	3	1	R	0x03	WMax	uint16	W	WMax_ SF	Setting for maximum power output. Default to WRtg.	
4	4	1	RW	0x03 0x06 0x10	VRef	uint16	V	VRef_S F	Voltage at the PCC.	
5	5	1	RW	0x03 0x06 0x10	VRefOfs	int16	V	VRe- fOfs_S F	Offset from PCC to inverter.	
6	6	1	R	0x03	VMax	uint16	V	VMin- Max_S F	Currently not suported	
7	7	1	R	0x03	VMin	uint16	V	VMin- Max_S F	Currently not suported	
8	8	1	R	0x03	VAMax	unit16	VA	VA- Max_S F	Setpoint for maximum apparent power. Default to VARtg.	
9	9	1	R	0x03	VARMaxQ1	int16	var	VAR- Max_S F	Setting for maximum reactive power in quadrant 1. Default to VArRtgQ1.	
10	10	1	R	0x03	VARMaxQ2	int16	var	VAR- Max_S F	Setting for maximum reactive power in quadrant 2. Default to VArRtgQ2.	Not supported
11	11	1	R	0x03	VARMaxQ3	int16	var	VAR- Max_S F	Setting for maximum reactive power in quadrant 3 Default to VArRtgQ3.	Not supported
12	12	1	R	0x03	VARMaxQ4	int16	var	VAR- Max_S F	Setting for maximum reactive power in quadrant 4 Default to VArRtgQ4.	
13	13	1	R	0x03	WGra	uint16	% WMax/ min	WGra_ SF	Default ramp rate of change of active power due to command or internal action.	Not supported

Start Offset	End Offset	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
14	14	1	R	0x03	PFMinQ1	int16	cos()	PF- Min_SF	Setpoint for minimum power factor value in quadrant 1. Default to PFRtgQ1.	
15	15	1	R	0x03	PFMinQ2	int16	cos()	PF- Min_SF	Setpoint for minimum power factor value in quadrant 2. Default to PFRtgQ2.	Not supported
16	16	1	R	0x03	PFMinQ3	int16	cos()	PF- Min_SF	Setpoint for minimum power factor value in quadrant 3. Default to PFRtgQ3.	Not supported
17	17	1	R	0x03	PFMinQ4	int16	cos()	PF- Min_SF	Setpoint for minimum power factor value in quadrant 4. Default to PFRtgQ4.	
18	18	1	R	0x03	VArAct	enum16			VAR action on change between charging and discharging: 1=switch 2=maintain VAR characterization.	Not supported
19	19	1	R	0x03	ClcTotVA	enum16			Calculation method for total apparent power. 1=vector 2=arithmetic.	Not supported
20	20	1	R	0x03	MaxRmpRte	uint16	% WGra	MaxRm pR- te_SF	Setpoint for maximum ramp rate as percentage of nominal maximum ramp rate. This setting will limit the rate that watts delivery to the grid can increase or decrease in response to intermittent PV generation.	Not supported
21	21	1	R	0x03	ECPNomHz	uint16	Hz	ECP- NomH- z_SF	Setpoint for nominal frequency at the ECP.	Not supported
22	22	1	R	0x03	ConnPh	enum16			Identity of connected phase for single phase inverters. A=1 B=2 C=3.	Not supported
23	23	1	R	0x03	WMax_SF	sunssf			Scale factor for maximum power output.	1
24	24	1	R	0x03	VRef_SF	sunssf			Scale factor for voltage at the PCC.	0
25	25	1	R	0x03	VRefOfs_SF	sunssf			Scale factor for offset voltage.	0
26	26	1	R	0x03	VMinMax_SF	sunssf			Scale factor for min/max voltages.	0
27	27	1	R	0x03	VAMax_SF	sunssf			Scale factor for voltage at the PCC.	1

Start Offset	End Offset	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
28	28	1	R	0x03	VARMax_SF	sunssf			Scale factor for reactive power.	1
29	29	1	R	0x03	WGra_SF	sunssf			Scale factor for default ramp rate.	Not suppor- ted
30	30	1	R	0x03	PFMin_SF	sunssf			Scale factor for minimum power factor.	-3
31	31	1	R	0x03	MaxRmpR- te_SF	sunssf			Scale factor for maximum ramp percentage.	Not suppor- ted
32	32	1	R	0x03	ECPNomH- z_SF	sunssf			Scale factor for nominal frequency.	Not supported

Referenzspannung

VRef (4)

Die Referenzspannung ist die Spannung an jenem gemeinsamen Anschlusspunkt, an welchem das lokale Netz mit dem öffentlichen Stromnetz verknüpft ist, und entspricht der Nennspannung des Wechselrichters.

=> siehe Abbildung "Gemeinsamer Anschlusspunkt"

Die Angabe erfolgt in Volt im Bereich von 0 (0x0000) bis 400 (0x0190).

Gemeinsamer Anschlusspunkt

Abweichung zur Referenzspannung

VRefOfs (5)

Je nach Verschaltung des lokalen Netzes kann es am Anschlusspunkt jedes einzelnen Wechselrichters an das lokale Netz zu einer Abweichung zur Referenzspannung kommen (siehe Abbildung "Gemeinsamer Anschlusspunkt").

Die Angabe erfolgt in Volt im Bereich -20 (0xFFEC) bis 20 (0x0014).

Extended Measurements & Status Model (IC122)

Allgemeines

Dieses Modell liefert einige zusätzliche Mess- und Statuswerte, die das normale Inverter Model nicht abdeckt:

- PVConn (3)

Dieses Bitfeld zeigt den Status des Wechselrichter an

- Bit 0: Verbunden
- Bit 1: Ansprechbar
- Bit 2: Arbeitet (Wechselrichter speist ein)

- ECPConn (5)

Dieses Register zeigt den Verbindungsstatus zum Netz an

- *ECPConn* = 1: Wechselrichter speist gerade ein
- *ECPConn* = 0: Wechselrichter speist nicht ein

- ActWH (6 - 9)

Wirkenergiezähler

- StActCtl (36 - 37)

Bitfeld für zurzeit aktive Wechselrichter-Modi

- Bit 0: Leistungsreduktion (FixedW; entspricht WMaxLimPct Vorgabe)
- Bit 1: konstante Blindleistungs-Vorgabe (FixedVAR; entspricht VArMaxPct)
- Bit 2: Vorgabe eines konstanten Power Factors (FixedPF; entspricht OutPFSet)

- TmSrc (38 - 41)

Quelle für die Zeitsynchronisation. Das Register liefert den String "RTC" zurück.

- Tms (42 - 43)

Aktuelle Uhrzeit und Datum der RTC

Angegeben werden die Sekunden vom 1. Jänner 2000 00:00 (UTC) bis zur aktuellen Zeit

Extended Measu-

Startadresse:

rements & Status Register bei Einstellung "float": 40191bei Einstellung "int+SF": 40181

Start Offset	End Offset	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
1	1	1	R	0x03		uint16			A well-known value 122. Uniquely identifies this as a SunSpec Measure- ments_Status Model	122
2	2	1	R	0x03	L	uint16	Regis- ters		Length of Measure- ments_Status Model	44
3	3	1	R	0x03	PVConn	bitfield16			PV inverter present/ available status. Enu- merated value. Connected Available Operating Test	Bit 1 = 1
4	4	1	R	0x03	StorConn	bitfield16			Storage inverter present/available status. Enumerated value. Connected Available Operating	
5	5	1	R	0x03	ECPConn	bitfield16			ECP connection status Connected	Bit 0 = 1
6	9	4	R	0x03	ActWh	acc64	Wh		AC lifetime active (real) energy output.	Dit 0
10	13	4	R	0x03	ActVAh	acc64	VAh		AC lifetime apparent energy output.	Not suppor- ted
14	17	4	R	0x03	ActVArhQ1	acc64	varh		AC lifetime reactive energy output in quadrant 1.	Not supported
18	21	4	R	0x03	ActVArhQ2	acc64	varh		AC lifetime reactive energy output in quadrant 2.	Not supported
22	25	4	R	0x03	ActVArhQ3	acc64	varh		AC lifetime negative energy output in quadrant 3.	Not supported
26	29	4	R	0x03	ActVArhQ4	acc64	varh		AC lifetime reactive energy output in quadrant 4.	Not supported
30	30	1	R	0x03	VArAval	int16	var	VArA- val_SF	Amount of VARs available without impacting watts output.	Not supported
31	31	1	R	0x03	VArAval_SF	sunssf			Scale factor for available VARs.	Not suppor- ted

Start Offset	End Offset	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
32	32	1	R	0x03	WAval	uint16	W	WA- val_SF	Amount of Watts available.	Not suppor- ted
33	33	1	R	0x03	WAval_SF	sunssf			Scale factor for available Watts.	Not suppor- ted
34	35	2	R	0x03	StSetLimMsk	bitfield32			Bit Mask indicating set- point limit(s) reached. Bits are persistent and must be cleared by the controller.	Not supported
36	37	2	R	0x03	StActCtl	bitfield32				Bit 0 = 1 Bit 1 = 1
38	41	4	R	0x03	TmSrc	atrina			FixedPF	Bit 2 = 1 RTC
30	41	4	K	UXUS	THISIC	string			Source of time synchronization.	RIC
42	43	2	R	0x03	Tms	uint32	Secs		Seconds since 01-01- 2000 00:00 UTC	
44	44	1	R	0x03	RtSt	bitfield16			Bit Mask indicating which voltage ride through modes are currently active.	0
45	45	1	R	0x03	Riso	uint16	Ohm	Riso_S F	Isolation resistance	Not suppor- ted
46	46	1	R	0x03	Riso_SF	int16			Scale factor for Isolation resistance	Not suppor- ted

^{*} wird nur von Fronius Hybrid Wechselrichtern unterstützt

Immediate Controls Model (IC123)

Allgemeines

Mit den Immediate Controls können folgende Einstellungen am Wechselrichter vorgenommen werden:

- Unterbrechung des Einspeisebetriebs des Wechselrichters (Standby)
- Konstante Reduktion der Ausgangsleistung
- Vorgabe eines konstanten Power Factors
- Vorgabe einer konstanten relativen Blindleistung

Immediate Controls Register

Startadresse:

- bei Einstellung "float": 40237

- bei Einstellung "int+SF": 40227

Start Offset	End Offset	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
1	1	1	R	0x03	ID	uint16			A well-known value 123. Uniquely identifies this as a SunSpec Immedia- te Controls Model	123
2	2	1	R	0x03	L	uint16	Regis- ters		Length of Immediate Controls Model	24
3	3	1	RW	0x03 0x06 0x10	Conn_WinTms	uint16	Secs		Time window for connect/disconnect.	0 - 300
4	4	1	RW	0x03 0x06 0x10	Conn_RvrtTms	uint16	Secs		Timeout period for connect/disconnect.	0 - 28800
5	5	1	RW	0x03 0x06 0x10	Conn	bitfield16			Enumerated valued. Connection control. Disconnected Connected	
6	6	1	RW	0x03 0x06 0x10	WMaxLimPct	uint16	% WMax	WMaxLi mPc- t_SF	Set power output to specified level.	
7	7	1	RW	1	WMaxLimPc- t_WinTms	uint16	Secs		Time window for power limit change.	0 - 300
8	8	1	RW	0x03 0x06 0x10	WMaxLimPc- t_RvrtTms	uint16	Secs		Timeout period for power limit.	0 - 28800
9	9	1	R	0x03	WMaxLimPc- t_RmpTms	uint16	Secs		Ramp time for moving from current setpoint to new setpoint.	Not suppor- ted

Start Offset	End Offset	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
10	10	1	RW	0x03 0x06 0x10	WMaxLim_Ena	enum16			Enumerated valued. Throttle enable/disable control. Disabled	
11	11	1	RW	0x03 0x06 0x10	OutPFSet	int16	cos()	OutPF- Set_SF	Set power factor to specific value - cosine of angle.	1
12	12	1	RW	0x03 0x06 0x10		uint16	Secs		Time window for power factor change.	0 – 300
13	13	1	RW		OutPFSet_Rv- rtTms	uint16	Secs		Timeout period for power factor.	0 – 28800
14	14	1	R	0x03	OutPF- Set_RmpTms	uint16	Secs		Ramp time for moving from current setpoint to new setpoint.	Not supported
15	15	1	RW	0x03 0x06 0x10	OutPFSet_Ena	enum16			Enumerated valued. Fi- xed power factor enable/ disable control. Disabled Enabled	0
16	16	1	R	0x03	VArWMaxPct	int16	% WMax	VArW- MaxPc- t_SF	Reactive power in percent of WMax.	Not supported
17	17	1	RW	0x03 0x06 0x10	VArMaxPct	int16	% VAr- Max	VArPc- t_SF	Reactive power in percent of VArMax.	
18	18	1	R	0x03	VArAvalPct	int16	% VA- rAval	VArPc- t_SF	Reactive power in percent of VArAval.	Not suppor- ted
19	19	1	RW	0x03 0x06 0x10	VArPct_WinT- ms	uint16	Secs		Time window for VAR limit change.	0 – 300
20	20	1	R	0x03	VArPct_RvrtT- ms	uint16	Secs		Timeout period for VAR limit.	0 – 28800
21	21	1	RW	0x03 0x06 0x10		uint16	Secs		Ramp time for moving from current setpoint to new setpoint.	Not supported
22	22	1	R	0x03	VArPct_Mod	enum16			Enumerated value. VAR limit mode.	2: VAR limit as a % of VArMax
23	23	1	RW	0x03 0x06 0x10	VArPct_Ena	enum16			Enumerated valued. Fi- xed VAR enable/disable control. Disabled	
24	24	1	R	0x03	WMaxLimPc- t_SF	sunssf			Scale factor for power output percent.	-2

Start Offset	End Offset	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
25	25	1	R	0x03	OutPFSet_SF	sunssf			Scale factor for power factor.	-3
26	26	1	R	0x03	VArPct_SF	sunssf			Scale factor for reactive power.	0

Standby

Conn WinTms (3) bis Conn (5)

Diese Register dienen zur Steuerung des Standby Modus (kein Einspeisebetrieb) des Wechselrichters.

Conn_WinTms (3) und Conn_RvrtTms (4)

Mit diesen Registern kann das Verhalten des Wechselrichters zeitlich gesteuert werden. => siehe Abschnitt "Zeitverhalten der unterstützten Betriebsarten".

Als Standard ist für alle Register 0 vorgegeben.

Conn (5)

Register *Conn* zeigt an, ob der Wechselrichter aktuell einspeist (0 = Standby, 1 = Einspeisebetrieb).

- Um den Wechselrichter in den Standby zu schalten schreibt man in dieses Register den Wert 0
- Um den Wechselrichter wieder zu aktivieren schreibt man in dieses Register den Wert

HINWEIS! Ob der Wechselrichter einspeist oder nicht kann auch über das Register ECPConn aus dem Extended Measurements and Status Model ausgelesen werden.

Leistungsreduktion

WMaxLimPct (6) bis WMaxLim Ena (10)

Über diese Register kann beim Wechselrichter eine Reduktion der Ausgangsleistung eingestellt werden.

WMaxLimPct (6)

In Register *WMaxLimPct* können Werte zwischen 0% und 100% eingetragen werden. Abhängig von der Software-Version des Wechselrichters können Werte kleiner als 10 zu einem erzwungenen Standby des Wechselrichters führen (kein Einspeisebetrieb).

Die Werte beschränken die maximal mögliche Ausgangsleistung des Gerätes, und haben daher nicht unbedingt eine Auswirkung auf die aktuelle Leistung.

WICHTIG! Den Skalierungsfaktor für dieses Register beachten!

Weitere Informationen unter:

http://sunspec.org/wp-content/uploads/2015/06/SunSpec-Information-Models-12041.pdf

WMaxLimPct_WinTms (7), WMaxLimPct_RvrtTms (8)

Mit diesen Registern kann das Verhalten des Wechselrichters für diese Betriebsart zeitlich gesteuert werden. => siehe Abschnitt "Zeitverhalten der unterstützten Betriebsarten". Als Standard ist für alle Register 0 vorgegeben.

WMaxLim_Ena (10)

Zum Starten und Beenden diese Betriebsart

- Wert 1 in das Register *WMaxLim Ena* schreiben = Betriebsart starten
- Wert 0 in das Register WMaxLim_Ena schreiben = Betriebsart beenden

HINWEIS! Um bei einer aktiven Betriebsart Werte zu verändern (z. B. ein anderes Leistungslimit oder eine andere Rückkehrzeit einstellen), folgendermaßen vorgehen:

- neuen Wert in das entsprechende Register schreiben
- die Betriebsart über Register WMaxLim Ena erneut starten

Beispiel: Leistungsreduktion einstellen

- Wert für die Reduktion der Ausgangsleistung in Register *WMaxLimPct* schreiben (z. B. 30 für 30%)
- Optional die Start- und Rückkehrzeit über Register WMaxLimPct_WinTms und WMaxLimPct_RvrtTms einstellen
- Durch Schreiben von 1 in Register *WMaxLim_Ena* die Betriebsart starten

WICHTIG! Den Skalierungsfaktor für dieses Register beachten! Weitere Informationen unter:

http://sunspec.org/wp-content/uploads/2015/06/SunSpec-Information-Models-12041.pdf

Beispiel: Ändern der Rückkehrzeit bei akti-

ver Leistungsredukti-

- WMaxLimPct_RvrtTms auf z.B. 30 setzen
- Durch Schreiben von 1 in Register WMaxLim_Ena Änderung übernehmen
 - Betriebsart wird nach 30 Sekunden selbständig beendet.

Auswirkungen der Blindleistungs-Vorgaben auf die Wirkleistung Der Blindleistungs-Betrieb wird grundsätzlich durch den maximalen Ausgangsstrom (die maximale Scheinleistung) sowie durch die operative Blindleistungs-Grenze des Wechselrichters begrenzt:

- Fronius IG Plus, CL cos phi = 0,85, VArrel = 100 %
- Fronius Galvo cos phi = 0,85, VArrel = 53 %
- Fronius Symo cos phi = 0,7, VArrel = 71 %

HINWEIS! Aufgrund der aktuellen technischen Gegebenheiten kann per Modbus nur ein cos phi bis zu maximal ±0,85 vorgegeben werden. VAr_{rel} Vorgaben können unter Umständen aber einen niedrigeren Wert erzwingen.

Die folgende Abbildung zeigt den möglichen Arbeitsbereich des Wechselrichters. Alle durch Wirkleistung P und Blindleistung Q definierten gültigen Arbeitspunkte sind innerhalb des grauen Bereiches.

Blindleistung und Power Factor

Legende:

W	Leistung	VAr _{max}	Nenn-Blindleistung
W_{max}	Nennleistung	VAr _{rel}	relative Blindleistung
VAr	Blindleistung		(VAr/VArmax)

Konstanter Power Factor

OutPFSet (11) bis OutPFSet_Ena (15)

Über diese Register kann beim Wechselrichter ein konstanter Power Factor vorgegeben werden.

OutPFSet (11)

- In Register OutPFSet k\u00f6nnen positive und negative Werte f\u00fcr den Power Factor eingegeben werden
- Die Werte sind mit Faktor 1000 zu skalieren z.B. Power Factor 0,95 = Register-Wert 950
- Die minimal möglichen Werte hängen vom Wechselrichter-Typ ab und können dem Nameplate Model entnommen werden

HINWEIS! Der Wert für den Power Factor muss mit dem korrekten Vorzeichen eingegeben werden => siehe Abschnitt "Vorzeichenkonvention für den Power Factor"

- positiv für untererregt
- negativ für übererregt

OutPFSet_WinTms (12), OutPFSet_RvrtTms (13)

Mit diesen Registern kann das Verhalten des Wechselrichters für diese Betriebsart zeitlich gesteuert werden. => siehe Abschnitt "Zeitverhalten der unterstützten Betriebsarten". Als Standard ist für alle Register 0 vorgegeben.

OutPFSet_Ena (15)

Zum Starten und Beenden dieser Betriebsart

- Wert 1 in das Register *OutPFSet Ena* schreiben = Betriebsart starten
- Wert 0 in das Register *OutPFSet Ena* schreiben = Betriebsart beenden

HINWEIS! Um bei einer aktiven Betriebsart Werte zu verändern (z. B. ein anderen Power Factor oder eine andere Rückkehrzeit einstellen), folgendermaßen vorgehen:

- neuen Wert in das entsprechende Register schreiben
- die Betriebsart über Register OutPFSet Ena erneut starten

Beispiel: Konstanten Power Factor vorgeben

- Wert für den Power Factor in Register *OutPFSet* schreiben (z. B. 950 für 0,95)
- Optional die Start- und Rückkehrzeit über Register OutPFSet_WinTms und OutPF-Set RvrtTms einstellen
- Durch Schreiben von 1 in Register *OutPFSet_Ena* die Betriebsart starten

Konstante relative Blindleistung

VArMaxPct (17) bis VArPct_Ena (23)

Über diese Register kann am Wechselrichter ein konstanter Wert für die Blindleistung eingestellt werden, die der Wechselrichter liefern soll.

VArMaxPct (17)

- zum Einstellen eines Wertes für die konstante Blindleistung
- Die minimal und maximal möglichen Werte hängen vom Wechselrichter-Typ ab

HINWEIS! Im praktischen Betrieb wird die tatsächlich verfügbare Blindleistung durch die Betriebsgrenzen des Wechselrichters vorgegeben. Deshalb kann die Blindleistungs-Vorgabe nur dann erreicht werden, wenn ausreichend Wirkleistung eingespeist wird.

Wird zu wenig Wirkleistung eingespeist, arbeitet der Wechselrichter an der Betriebsgrenze.

VArPct_WinTms (19), VArPct_RvrtTms (20)

Mit diesen Registern kann das Verhalten des Wechselrichters für diese Betriebsart zeitlich gesteuert werden. => siehe Abschnitt "Zeitverhalten der unterstützten Betriebsarten". Als Standard ist für alle Register 0 vorgegeben.

VArPct_Mod (22)

- dieses Register kann nicht verändert werden
- liefert die (derzeit) unterstützte Betriebsart zurück
 Blindleistung in Prozent der maximal möglichen Blindleistung

VArPct Ena (23)

Zum Starten und Beenden dieser Betriebsart

- Wert 1 in das Register *VArPct_Ena* schreiben = Betriebsart starten
- Wert 0 in das Register VArPct_Ena schreiben = Betriebsart beenden

HINWEIS! Um bei einer aktiven Betriebsart Werte zu verändern (z. B. ein andere Blindleistung oder eine andere Rückkehrzeit einstellen), folgendermaßen vorgehen:

- neuen Wert in das entsprechende Register schreiben
- die Betriebsart über Register VArPct Ena erneut starten

Beispiel: Konstante Blindleistung vorgeben

- Wert für die relative Blindleistung in Register *VArMaxPct* schreiben (z. B. 80 für 80%)
- Optional die Start- und Rückkehrzeit über Register VArPct_WinTms und VArPct_Rv-rtTms einstellen
- Durch Schreiben von 1 in Register *VArPct Ena* den Betriebsart starten

Basic Storage Control Model (IC124)

Allgemeines

Dieses Model ist nur für Fronius Hybrid Wechselrichter verfügbar.

Mit dem Basic Storage Control Model können folgende Einstellungen am Wechselrichter vorgenommen werden:

- Vorgabe eines Leistungsfensters, in dem sich die Lade-/Entladeleistung vom Energiespeicher bewegen soll.
- Vorgabe eines minimalen Ladestandes, den der Energiespeicher nicht unterschreiten soll
- Ladung des Energiespeichers vom Netz erlauben/verbieten

HINWEIS! Alle Vorgaben verstehen sich als Empfehlungen!

Der Wechselrichter kann von den Vorgaben abweichen, wenn dies aus Gründen der Betriebssicherheit erforderlich ist.

Bereitgestellte Informationen

Das Basic Storage Control Model stellt folgende Informationen lesend zu Verfügung:

WChaMax

- Wenn ein Energiespeicher verfügbar ist liefert dieses Register den Bezugswert für die Register OutWRte und InWRt zurück.
 - WChaMax := max(MaxChaRte, MaxDisChaRte)
- Wenn kein Energiespeicher verfügbar ist liefert das Register den Wert 0 zurück.

ChaState

Ladestand des Energiespeicher in %:
 Estimated_Capacity_Remaining [Wh] / Estimated_Capacity_Maximum [Wh]

ChaSt

Betriebsstatus des Energiespeichers

- OFF: Energiespeicher ist nicht verfügbar
- EMPTY: Energiespeicher ist derzeit vollständig entladen
- DISCHARGING: Energiespeicher wird derzeit entladen
- CHARGING: Energiespeicher wird derzeit geladen
- FULL: Energiespeicher ist derzeit vollständig geladen
- HOLDING: Energiespeicher wird derzeit weder geladen noch entladen

Leistungsfenster-Vorgaben

Für die folgenden Beispiele wird WchaMax = 3300 W angenommen.

Für resultierende Leistungsfenster gilt:

- negative Leistungswerte entsprechen einer Ladung des Energiespeichers
- positive Werte entsprechen einer Entladung des Energiespeichers

HINWEIS! Die Werte in den folgenden Beispielen müssen nach dem Lesen und vor dem Schreiben entsprechend ihren Skalierungsfaktoren in den angegebenen Skalierungsregistern skaliert werden.

Beispiel 1: Nur Laden des Energiespeichers erlauben

Dieses Verhalten kann durch Limitierung der maximalen Entladeleistung auf 0% erreicht werden => resultiert in Fenster [-3300 W, 0 W]

- OutWRte = 0% (setze Entladelimit auf 0% von WchaMax)
- StorCtl_Mod = 1 (schaltet Entladegrenzwert aktiv, Bit-Muster: 01)
- InWRte ist in diesem Fall nicht relevant

Beispiel 2: Nur Entladen des Energiespeichers erlauben

Dieses Verhalten kann durch Limitierung der maximalen Ladeleistung auf 0% erreicht werden => resultiert in Fenster [0 W, 3300 W]

- InWRte = 0% (setze Ladelimit auf 0% von WchaMax)
- StorCtl Mod = 2 (Bit 1 schaltet Ladegrenzwert aktiv, Bit-Muster: 10)
- OutWRte ist in diesem Fall nicht relevant

Beispiel 3: Weder Laden noch Entladen erlauben

Dieses Verhalten kann durch Limitierung der maximalen Ladeleistung auf 0% und Limitierung der maximalen Entladeleistung auf 0% erreicht werden => resultiert in Fenster [0 W, 0 W]

- InWRte = 0% (setze Ladelimit auf 0% von WchaMax)
- OutWRte = 0% (setze Entladelimit auf 0% von WchaMax)
- StorCtl_Mod = 3 (schalte beide Grenzwerte aktiv, Bit-Muster: 11)

Beispiel 4: Laden und Entladen mit maximal 50% der nominalen Leistung

Dieses Verhalten kann durch Limitierung der maximalen Ladeleistung auf 50% und Limitierung der maximalen Entladeleistung auf 50% erreicht werden => resultiert in Fenster [-1650 W, 1650 W]

- InWRte = 50% (setze Ladelimit auf 50% von WchaMax)
- OutWRte = 50% (setze Entladelimit auf 50% von WchaMax)
- StorCtl Mod = 3 (schalte beide Grenzwerte aktiv, Bit-Muster: 11)

Beispiel 5: Laden im Bereich von 50% bis 75% der nominalen Leistung

Dieses Verhalten kann durch Limitierung der maximalen Ladeleistung auf 75% und Limitierung der maximalen Entladeleistung auf -50% erreicht werden => resultiert in Fenster [1650 W, 2475 W]

- InWRte = 75% (setze Ladelimit auf 75% von WchaMax)
- OutWRte = -50% (setze Entladelimit auf -50% von WchaMax)
- StorCtl_Mod = 3 (schalte beide Grenzwerte aktiv, Bit-Muster: 11)

Beispiel 6: Entladen mit 50% der nominalen Leistung

Dieses Verhalten kann durch Limitierung der maximalen Ladeleistung auf -50% und Limitierung der maximalen Entladeleistung auf 50% erreicht werden => resultiert in Fenster [-1650 W, -1650 W]

- InWRte = -50% (setze Ladelimit auf -50% von WchaMax)
- OutWRte = 50% (setze Entladelimit auf 50% von WchaMax)
- StorCtl_Mod = 3 (schalte beide Grenzwerte aktiv, Bit-Muster: 11)

Beispiel 7: Laden mit 50% bis 75% der nominalen Leistung

Dieses Verhalten kann durch Limitierung der maximalen Ladeleistung auf 75% und Limitierung der maximalen Entladeleistung auf -50% erreicht werden => resultiert in Fenster [1650 W, 247 5W]

- InWRte = 75% (setze Ladelimit auf 75% von WchaMax)
- OutWRte = -50% (setze Entladelimit auf -50% von WchaMax)
- StorCtl_Mod = 3 (schalte beide Grenzwerte aktiv, Bit-Muster: 11)

Beispiel 8: Laden mit 50% bis 100% der nominalen Leistung

Dieses Verhalten kann durch Limitierung der maximalen Entladeleistung auf -50% erreicht werden => resultiert in Fenster [1650 W, 3300 W]

- OutWRte = -50% (setze Entladelimit auf -50% von WchaMax)
- StorCtl Mod = 1 (schaltet Entladegrenzwert aktiv, Bit-Muster: 01)
- InWRte ist in diesem Fall nicht relevant

Vorgabe des minmalen Ladestandes Durch Setzen von Register MinRsvPct kann ein minimal zu erhaltender Ladezustand des Speichers festgelegt werden.

Beispielsweise kann durch Setzen von MinRsvPct=20% eine Reserve von 20% des Ladezustandes reserviert werden, die der Speicher nicht unterschreiten soll.

Laden des Energiespeichers vom Netz Mit dem Register ChaGriSet kann es dem Wechselrichter erlaubt oder verboten werden, den Speicher vom Netz zu laden.

Basic Storage Controls Register

Startadresse:

bei Einstellung "float": 40313bei Einstellung "int+SF": 40303

Start Offset	End Offset	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
1	1	1	R	0x03	ID	uint16			A well-known value 124 Uniquely identifies this as a SunSpec Basic Storage Controls Model	124
2	2	1	R	0x03	L	uint16	Regis- ters		Length of Basic Storage Controls	24
3	3	1	R	0x03	WchaMax	uint16	W	WCha- Max_S F	Setpoint for maximum charge.	

Additional Fronius description:

Reference Value for maximum Charge and Discharge. Multiply this value by InWRte to define maximum charging and OutWRte to define maximum discharging. Every rate between these two limits is allowed. Note that InWRte and OutWRte can be negative to define ranges for charging and discharging only.

4	4	1	R	0x03	WchaGra	uint16	% WCha- Max/ sec	WCha- DisCha Gra_SF	Setpoint for maximum charging rate. Default is MaxChaRte	100
5	5	1	R	0x03	WdisChaGra	unit16	% WCha- Max/ sec	WCha- DisCha Gra_SF	Setpoint for maximum discharge rate. Default is MaxDisChaRte.	100
6	6	1	RW	0x03 0x06 0x10	StorCtl_Mod	bitfield16	VA	WMaxLi mPc- t_SF	Activate storage control mode. Bitfield value.	Bit 0: charge Bit 1: discharge

^{**} Additional Fronius description:

Set charge bit to enable charge limit, set discharge bit to enable discharge limit, set both bits to enable both limits.

Start Offset	End Offset	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
7	7	1	R	0x03	VAChaMax	uint16	VA	VACha- Max_S F	Setpoint for maximum charging VA.	Not suppor- ted
8	8	1	RW	0x03 0x06 0x10	MinRsvPct	uint16	% WCha- Max	Min- RsvPc- t_SF	Setpoint for minimum reserve for storage as a percentage of the nominal maximum storage.	
9	9	1	R	0x03	ChaState	uint16	% AhrRtg	ChaStat e_SF	Currently available energy as a percent of the capacity rating	
10	10	1	R	0x03	StorAval	uint16	Ah	StorA- val_SF	State of charge (ChaState) minus stora- ge reserve (MinRsvPct) times capacity rating (AhrRtg).	Not supported
11	11	1	R	0x03	InBatV	uint16	V	InBat- V_SF	Internal battery voltage.	Not suppor- ted
12	12	1	R	0x03	ChaSt	enum16			Charge status of storage device. Enumerated value.	1: OFF 2: EMPTY 3: DISCHA- GING 4: CHAR- GING 5: FULL 6: HOLDING 7: TESTING
13	13	1	RW	0x03 0x06 0x10	OutWRte	int16	% WCha- Max	InOut- WR- te_SF	Percent of max discharge rate.	
*** Add	ditional F	roni	us de	scripti	on:					
Define	s the ma	aximı 1	um di RW		e rate (discharge InWRte	limit). Defa	ault is 100 % WCha-	InOut- WR-	Percent of max charging rate.	
				0x10			Max	te_SF	***	
	Iditional				ion: ate (charge limit).	Default is	100%			
15	15	1	R	0x03	, , ,	uint16	Secs		Time window for charge/discharge rate change.	Not supported
16	16	1	R	0x03	InOutWRte_Rv- rtTms	uint16	Secs		Timeout period for charge/discharge rate.	Not suppor- ted
17	17	1	R	0x03	InOutWR- te_RmpTms	uint16	Secs		Ramp time for moving from current setpoint to new setpoint.	Not supported

Start Offset	End Offset	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
18	18	1	RW	0x03 0x06 0x10	ChaGriSet	enum16			Setpoint to enable/disable charging from grid PV (Charging from grid disabled)	0
									GRID (Charging from grid enabled)	1
19	19	1	R	0x03	WchaMax_SF	sunssf			Scale factor for maximum charge.	0
20	20	1	R	0x03	Wcha- DisChaGra_SF	sunssf			Scale factor for maximum charge and discharge rate	0
21	21	1	R	0x03	VAChaMax_SF	sunssf			Scale factor for maximum charging VA	Not suppor- ted
22	22	1	R	0x03	MinRsvPct_SF	sunssf			Scale factor for mini- mum reserve percenta- ge.	-2
23	23	1	R	0x03 0x06 0x10	ChaState_SF	sunssf			Scale factor for available energy percent.	-2
24	24	1	R	0x03	StorAval_SF	sunssf			Scale factor for state of charge.	-2
25	25	1	R	0x03	InBatV_SF	sunssf			Scale factor for battery voltage.	-2
26	26	1	R	0x03	InOutWRte_SF	sunssf			Scale factor for percent charge/discharge rate.	-2

Multiple MPPT Inverter Extension Model (I160)

Allgemeines

Das Multiple MPPT Inverter Extension Model beinhaltet die Werte von bis zu zwei DC Eingängen des Wechselrichters.

Verfügt der Wechselrichter über zwei DC Eingänge, so werden Strom, Spannung, Leistung, Energie und Statusmeldungen der einzelnen Eingänge hier aufgelistet. Im Inverter Model (101 -103 oder 111 - 113) wird in diesem Fall nur die gesamte DC Leistung beider Eingänge ausgegeben. DC Strom und DC Spannung werden als "not implemented" angezeigt.

Sollte der Wechselrichter nur über einen DC Eingang verfügen, werden alle Werte des zweiten Strings auf "not implemented" gesetzt (ab Register 2_DCA). Die Bezeichnung des zweiten Eingangs (Register 2_IDStr) lautet in diesem Fall "Not supported". Die Werte des ersten (und einzigen) Eingangs werden normal angezeigt.

Multiple MPPT In-

Startadresse:

verter Extension Register

bei Einstellung "float": 40263 bei Einstellung "int+SF": 40253

Start Offset	End Offset	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
1	1	1	R	0x03	ID	unit16			A well-known value 160. Uniquely identifies this as a SunSpec Multiple MPPT Inverter Extensi- on Model Mode	160
2	2	1	R	0x03	L	uint16			Length of Multiple MPPT Inverter Extension Mo- del	48
3	3	1	R	0x03	DCA_SF	sunssf			Current Scale Factor	
4	4	1	R	0x03	DCV_SF	sunssf			Voltage Scale Factor	
5	5	1	R	0x03	DCW_SF	sunssf			Power Scale Factor	
6	6	1	R	0x03	DCWH_SF	sunssf			Energy Scale Factor	
7	8	2	R	0x03	Evt	bitfield32			Global Events	
9	9	1	R	0x03	N	uint16			Number of Modules	2
10	10	1	R	0x03	TmsPer	uint16			Timestamp Period	Not suppor- ted
11	11	1	R	0x03	1_ID	uint16			Input ID	1
12	19	8	R	0x03	1_IDStr	string8			Input ID Sting	"String 1" 1)
20	20	1	R	0x03	1_DCA	uint16	А	DCA_S F	DC Current	
21	21	1	R	0x03	1_DCV	uint16	V	DC- V_SF	DC Voltage	
22	22	1	R	0x03	1_DCW	uint16	W	DCW_S F	DC Power	

Start Offset	End Offset	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values	
23	24	2	R	0x03	1_DCWH	acc32	Wh	DCWH _SF	Lifetime Energy		
25	26	2	R	0x03	1_Tms	uint32	Secs	_	Timestamp		
27	27	1	R	0x03	1_Tmp	int16	С		Temperature		
28	28	1	R	0x03	1_DCSt	enum16					
					Name		Value	Description			
					I_STATUS_OFF		1	Off			
					I_STATUS_SLEEPI	NG	2	In operation	n (no feed-in)		
					I_STATUS_STARTI	NG	3	Run-up pha	ase		
					I_STATUS_MPPT		4	Normal ope	eration		
					I_STATUS_THROT	TLED	5	Power Red	uction		
					I_STATUS_SHUTTI	NG_DOWN	6	Switch-off p	phase		
					I_STATUS_FAULT		7	Error exists	3		
					I_STATUS_STANDI	ЗҮ	8	Standby			
29	30	2	R	0x03	1_DCEvt	bitfield32			Module Events	Not supported	
31	31	1	R	0x03	2_ID	uint16			Input ID	2	
32	39	8	R	0x03	2_IDStr	string8			Input ID Sting	"String 2" ²⁾ or "Not supported"	
40	40	1	R	0x03	2_DCA	uint16	А	DCA_S F	DC Current	3)	
41	41	1	R	0x03	2_DCV	uint16	V	DC- V_SF	DC Voltage	3)	
42	42	1	R	0x03	2_DCW	uint16	W	DCW_S F	DC Power	3)	
43	44	2	R	0x03	2_DCWH	acc32	Wh	DCWH _SF	Lifetime Energy		
45	46	2	R	0x03	2_Tms	uint32	Secs		Timestamp		
47	47	1	R	0x03	2_Tmp	int16	С		Temperature		
48	48	1	R	0x03	2_DCSt	enum16			Operating State		
	1			1	Name		Value	Description			
					I_STATUS_OFF		1	Off			
					I_STATUS_SLEEPI	NG	2	In operation	n (no feed-in)		
					I_STATUS_STARTI	NG	3	Run-up pha			
					I_STATUS_MPPT		4	Normal operation			
					I_STATUS_THROT	TLED	5	Power Reduction			
					I_STATUS_SHUTTI	NG_DOWN	6	· ·			
					I_STATUS_FAULT		7				
					I_STATUS_STAND	ЗҮ	8	8 Standby			
49	50	2	R	0x03	2_DCEvt	bitfield32		Module Events Not supported			

- 1) String 1 (MPPT1) = Register 1_DCA, 1_DCV und 1_DCW
- 2) String 2 (MPPT2) = Register 2_DCA, 2_DCV und 2_DCW
- 3) Summenwerte

DCW = Summe der DC-Leistungen

Bei Hybrid-Systemen: String 1 = PV-Eingang String 2 = Storage

Bei Entladung des Storage: DCW = 1_DCW + 2_DCW Bei Ladung des Storage: DCW = 1_DCW - 2_DCW

Beispiele

a) PV-Eingang: 2000 W Produktion ==> 1_DCW = 2000 W Storage: 1000 W Entladen ==> 2_DCW = 1000 W

DCW = 1_DCW + 2_DCW = 1000 W + 2000 W = 3000 W

b) PV-Eingang: 2000 W Produktion ==> 1_DCW = 2000 W Storage: - 1000 W Laden ==> 2 DCW = 1000 W

(nur der Absolutwert kann über dieses Register angezeigt

werden)

DCW = 1_DCW + 2_DCW = 2000 W + (- 1000 W) = 1000 W

String Combiner Model (SC403)

String Combiner Register

Start	End	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
40070	40070	1	R	0x03	ID	uint16			A well-known value 403. Uniquely identifies this as a SunSpec String Combiner (Current) Mo- del	403
40071	40071	1	R	0x03	L	uint16	Regis- ters		Length of string combiner model block	56
40072	40072	1	R	0x03	DCA_SF	sunssf			Current scale factor	
40073	40073	1	R	0x03	DCAhr_SF	sunssf			Amp-hour scale factor	
40074	40074	1	R	0x03	DCV_SF	sunssf			Voltage scale factor	Not suppor- ted
40075	40075	1	R	0x03	DCAMax	uint16	Α		Maximum DC Current Rating	
40076	40076	1	R	0x03	N	uint16			Number of Inputs	Max. 5
40077	40078	2	R	0x03	Evt	bitfield32			Bitmask value. Events	
40079	40080	2	R	0x03	EvtVnd	bitfield32			Bitmask value. Vendor defnied events	
40081	40081	1	R	0x03	DCA	int16	А		Total measured current	
40082	40083	2	R	0x03	DCAhr	acc32	Ah		Total metered Amp- hours	
40084	40084	1	R	0x03	DCV	int16	V		Output Voltage	Not suppor- ted
40085	40085	1	R	0x03	Tmp	int16	С		Internal operating temperature	Not supported
40086	40086	1	R	0x03	InDCA_SF	sunssf			Current scale factor for inputs	
40087	40087	1	R	0x03	InDCAhr_SF	sunssf			Amp-hour scale factor for inputs	
40088	40088	1	R	0x03	InID	uint16			Uniquely identifies this input set	
40089	40090	2	R	0x03	InEvt	bitfield32			String Input Event Flags	
40091	40092	2	R	0x03	InEvtVnd	bitfield32			String Input Vendor Event Flags	
40093	40093	1	R	0x03	InDCA	int16	А		String Input Current	
40094	40095	2	R	0x03	InDCAhr	acc32	Ah		String Input Amp-Hours	
40096	40096	1	R	0x03	InID	uint16			Uniquely identifies this input set	
40097	40098	2	R	0x03	InEvt	bitfield32			String Input Event Flags	
40099	40100	2	R	0x03	InEvtVnd	bitfield32			String Input Vendor Event Flags	

Start	End	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
40101	40101	1	R	0x03	InDCA	int16	А		String Input Current	
40102	40103	2	R	0x03	InDCAhr	acc32	Ah		String Input Amp-Hours	
40104	40104	1	R	0x03	InID	uint16			Uniquely identifies this input set	
40105	40106	2	R	0x03	InEvt	bitfield32			String Input Event Flags	
40107	40108	2	R	0x03	InEvtVnd	bitfield32			String Input Vendor Event Flags	
40109	40109	1	R	0x03	InDCA	int16	А		String Input Current	
40110	40111	2	R	0x03	InDCAhr	acc32	Ah		String Input Amp-Hours	
40112	40112	1	R	0x03	InID	uint16			Uniquely identifies this input set	
40113	40114	2	R	0x03	InEvt	bitfield32			String Input Event Flags	
40115	40116	2	R	0x03	InEvtVnd	bitfield32			String Input Vendor Event Flags	
40117	40117	1	R	0x03	InDCA	int16	А		String Input Current	
40118	40119	2	R	0x03	InDCAhr	acc32	Ah		String Input Amp-Hours	
40120	40120	1	R	0x03	InID	uint16			Uniquely identifies this input set	
40121	40122	2	R	0x03	InEvt	bitfield32			String Input Event Flags	
40123	40124	2	R	0x03	InEvtVnd	bitfield32			String Input Vendor Event Flags	
40125	40125	1	R	0x03	InDCA	int16	А		String Input Current	
40126	40127	2	R	0x03	InDCAhr	acc32	Ah		String Input Amp-Hours	

Meter Model

Meter Model Register

Die Daten eines per Modbus RTU mit dem Fronius Datamanager verbundenen Energiezählers können per Modbus TCP über die entsprechenden SunSpec Models ausgelesen werden.

Ähnlich wie bei den Inverter Models gibt es auch hier zwei verschiedene SunSpec Models:

- das Meter Model mit Gleitkommadarstellung (Einstellung "float"; M211, M212 oder M213)
- das Meter Model mit ganzen Zahlen und Skalierungsfaktoren (Einstellung "int+SF"; M201, M202 oder M203)

HINWEIS! Die Registeranzahl der beiden Model-Typen ist unterschiedlich!

Die Modbus Geräte-ID des Energiezählers ist 240.

Floating Point Darstellung - "float"

Start	End	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
40070	40070	1	R	0x03	ID	uint16			Uniquely identifies this as a SunSpec Meter Modbus Map; 211: single phase, 212: split phase, 213: three phase	211, 212, 213
40071	40071	1	R	0x03	L	uint16	Regis- ters		Length of meter model block	124
40072	40073	2	R	0x03	A	float32	А		AC Total Current value	
40074	40075	2	R	0x03	AphA	float32	А		AC Phase-A Current value	
40076	40077	2	R	0x03	AphB	float32	А		AC Phase-B Current value	
40078	40079	2	R	0x03	AphC	float32	А		AC Phase-C Current value	
40080	40081	2	R	0x03	PhV	float32	V		AC Voltage Average Phase-to-neutral value	
40082	40083	2	R	0x03	PhVphA	float32	V		AC Voltage Phase-A-to- neutral value	
40084	40085	2	R	0x03	PhVphB	float32	V		AC Voltage Phase-B-to- neutral value	
40086	40087	2	R	0x03	PhVphC	float32	V		AC Voltage Phase-C-to- neutral value	
40088	40089	2	R	0x03	PPV	float32	V		AC Voltage Average Phase-to-phase value	
40090	40091	2	R	0x03	PPVphAB	float32	V		AC Voltage Phase-AB value	
40092	40093	2	R	0x03	PPVphBC	float32	V		AC Voltage Phase-BC value	

Floating Point Darstellung – "float"

	1 loatii	9 ' '	OIIIC I	Jaiste	ilung – "float"					
Start	End	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
40094	40095	2	R	0x03	PPVphCA	float32	V		AC Voltage Phase-CA value	
40096	40097	2	R	0x03	Hz	float32	Hz		AC Frequency value	
40098	40099	2	R	0x03	W	float32	W		AC Power value	
40100	40101	2	R	0x03	WphA	float32	W		AC Power Phase A value	
40102	40103	2	R	0x03	WphB	float32	W		AC Power Phase B value	
40104	40105	2	R	0x03	WphC	float32	W		AC Power Phase C value	
40106	40107	2	R	0x03	VA	float32	VA		AC Apparent Power value	
40108			R	0x03	VAphA	float32	VA		AC Apparent Power Phase A value	
40110	40111	2	R	0x03	VAphB	float32	VA		AC Apparent Power Phase B value	
40112	40113	2	R	0x03	VAphC	float32	VA		AC Apparent Power Phase C value	
40114	40115	2	R	0x03	VAR	float32	VAr		AC Reactive Power value	
40116	40117	2	R	0x03	VARphA	float32	VAr		AC Reactive Power Phase A value	
40118	40119	2	R	0x03	VARphB	float32	VAr		AC Reactive Power Phase B value	
40120	40121	2	R	0x03	VARphC	float32	VAr		AC Reactive Power Phase C value	
40122	40123	2	R	0x03	PF	float32	PF		Power Factor value	
40124	40125	2	R	0x03	PFphA	float32	PF		Power Factor Phase A value	
40126	40127	2	R	0x03	PFphB	float32	PF		Power Factor Phase B value	
40128	40129	2	R	0x03	PFphC	float32	PF		Power Factor Phase C value	
40130	40131	2	R	0x03	TotWhExp	float32	Wh		Total Watt-hours Exported	
40132	40133	2	R	0x03	TotWhExpPhA	float32	Wh		Total Watt-hours Exported phase A	
40134	40135	2	R	0x03	TotWhExpPhB	float32	Wh		Total Watt-hours Exported phase B	
40136	40137	2	R	0x03	TotWhExpPhC	float32	Wh		Total Watt-hours Exported phase C	
40138	40139	2	R	0x03	TotWhImp	float32	Wh		Total Watt-hours Imported	
40140	40141	2	R	0x03	TotWhImpPhA	float32	Wh		Total Watt-hours Imported phase A	

Floating Point Darstellung – "float"

		. 9			nung – "noat					
Start	End	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
40142	40143	2	R	0x03	TotWhImpPhB	float32	Wh		Total Watt-hours Imported phase B	
40144	40145	2	R	0x03	TotWhImpPhC	float32	Wh		Total Watt-hours Imported phase C	
40146	40147	2	R	0x03	TotVAhExp	float32	VAh		Total VA-hours Exported	
40148	40149	2	R	0x03	TotVAhExpPhA	float32	VAh		Total VA-hours Exported phase A	
40150	40151	2	R	0x03	TotVAhExpPhB	float32	VAh		Total VA-hours Exported phase B	
40152	40153	2	R	0x03	TotVAhExpPhC	float32	VAh		Total VA-hours Exported phase C	
40154	40155	2	R	0x03	TotVAhlmp	float32	VAh		Total VA-hours Imported	
40156	40157	2	R	0x03	TotVAhlmpPhA	float32	VAh		Total VA-hours Imported phase A	
40158	40159	2	R	0x03	TotVAhlmpPhB	float32	VAh		Total VA-hours Imported phase B	
40160	40161	2	R	0x03	TotVAhlmpPhC	float32	VAh		Total VA-hours Imported phase C	
40162	40163	2	R	0x03	TotVArhImpQ1	float32	VArh		Total VAR-hours Imported Q1	
40164	40165	2	R	0x03	TotVArhImpQ1phA	float32	VArh		Total VAR-hours Imported Q1 phase A	
40166	40167	2	R	0x03	TotVArhImpQ1phB	float32	VArh		Total VAR-hours Imported Q1 phase B	
40168	40169	2	R	0x03	TotVArhImpQ1phC	float32	VArh		Total VAR-hours Imported Q1 phase C	
40170	40171	2	R	0x03	TotVArhImpQ2	float32	VArh		Total VAr-hours Imported Q2	
40172	40173	2	R	0x03	TotVArhImpQ2phA	float32	VArh		Total VAR-hours Imported Q2 phase A	
40174	40175	2	R	0x03	TotVArhImpQ2phB	float32	VArh		Total VAR-hours Imported Q2 phase B	
40176	40177	2	R	0x03	TotVArhImpQ2phC	float32	VArh		Total VAR-hours Imported Q2 phase C	
40178	40179	2	R	0x03	TotVArhExpQ3	float32	VArh		Total VAr-hours Exported Q3	
40180	40181	2	R	0x03	TotVArhExpQ3phA	float32	VArh		Total VAR-hours Exported Q3 phase A	
40182	40183	2	R	0x03	TotVArhExpQ3phB	float32	VArh		Total VAR-hours Exported Q3 phase B	
40184	40185	2	R	0x03	TotVArhExpQ3phC	float32	VArh		Total VAR-hours Exported Q3 phase C	

Floating Point Darstellung – "float"

Start	End	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
40186	40187	2	R	0x03	TotVArhExpQ4	float32	VArh		Total VAr-hours Exported Q4	
40188	40189	2	R	0x03	TotVArhExpQ4phA	float32	VArh		Total VAR-hours Exported Q4 phase A	
40190	40191	2	R	0x03	TotVArhExpQ4phB	float32	VArh		Total VAR-hours Exported Q4 phase B	
40192	40193	2	R	0x03	TotVArhExpQ4phC	float32	VArh		Total VAR-hours Exported Q4 phase C	
40194	40195	2	R	0x03	Evt	uint32	Bitfield		Events	

Ganzzahldarstellung – "int+SF"

Start	End	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
40070	40070	1	R	0x03	ID	uint16			Uniquely identifies this as a SunSpec Meter Modbus Map 201: single phase 202: split phase 203: three phase	201, 202, 203
40071	40071	1	R	0x03	L	uint16	Regis- ters		Length of meter model block	105
40072	40072	1	R	0x03	A	int16	А		AC Total Current value	
40073	40073	1	R	0x03	AphA	int16	А		AC Phase-A Current value	
40074	40074	1	R	0x03	AphB	int16	А		AC Phase-B Current value	
40075	40075	1	R	0x03	AphC	int16	А		AC Phase-C Current value	
40076	40076	1	R	0x03	A_SF	int16	sunssf		AC Current Scale factor	
40077	40077	1	R	0x03	PhV	int16	V		AC Voltage Average Phase-to-neutral value	
40078	40078	1	R	0x03	PhVphA	int16	V		AC Voltage Phase-A-to- neutral value	
40079	40079	1	R	0x03	PhVphB	int16	V		AC Voltage Phase-B-to- neutral value	
40080	40080	1	R	0x03	PhVphC	int16	V		AC Voltage Phase-C-to- neutral value	
40081	40081	1	R	0x03	PPV	int16	V		AC Voltage Average Phase-to-phase value	
40082	40082	1	R	0x03	PPVphAB	int16	V		AC Voltage Phase-AB value	

Ganzzahldarstellung - "int+SF"

	Ganzzahldarstellung – "int+SF"									
Start	End	Size	R/W	Function codes	Name	Type	Units	Scale factor	Description	Range of values
40083	40083	1	R	0x03	PPVphBC	int16	V		AC Voltage Phase-BC value	
40084	40084	1	R	0x03	PPVphCA	int16	V		AC Voltage Phase-CA value	
40085	40085	1	R	0x03	V_SF	int16	sunssf		AC Phase Voltage Scale factor	
40086	40086	1	R	0x03	Hz	int16	Hz		AC Frequency value	
40087	40087	1	R	0x03	Hz_SF	int16	sunssf		AV Frequency Scale factor	
40088	40088	1	R	0x03	W	int16	W		AC Power value	
40089	40089	1	R	0x03	WphA	int16	W		AC Power Phase A value	
40090	40090	1	R	0x03	WphB	int16	W		AC Power Phase B value	
40091	40091	1	R	0x03	WphC	int16	W		AC Power Phase C value	
40092	40092	1	R	0x03	W_SF	int16	sunssf		AC Phase Power Scale factor	
40093	40093	1	R	0x03	VA	int16	VA		AC Apparent Power value	
40094	40094	1	R	0x03	VAphA	int16	VA		AC Apparent Power Phase A value	
40095	40095	1	R	0x03	VAphB	int16	VA		AC Apparent Power Phase B value	
40096	40096	1	R	0x03	VAphC	int16	VA		AC Apparent Power Phase C value	
40097	40097	1	R	0x03	VA_SF	int16	sunssf		AC Phase Apparent Power Scale factor	
40098	40098	1	R	0x03	VAR	int16	VAr		AC Reactive Power value	
40099	40099	1	R	0x03	VARphA	int16	VAr		AC Reactive Power Phase A value	
40100	40100	1	R	0x03	VARphB	int16	VAr		AC Reactive Power Phase B value	
40101	40101	1	R	0x03	VARphC	int16	VAr		AC Reactive Power Phase C value	
40102	40102	1	R	0x03	VAR_SF	int16	sunssf		AC Phase Reactive Power Scale factor	
40103	40103	1	R	0x03	PF	int16	PF		Power Factor value	
40104	40104	1	R	0x03	PFphA	int16	PF		Power Factor Phase A value	
40105	40105	1	R	0x03	PFphB	int16	PF		Power Factor Phase B value	
40106	40106	1	R	0x03	PFphC	int16	PF		Power Factor Phase C value	

Ganzzahldarstellung – "int+SF"

					- ,,III.+3F					
Start	End	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
40107	40107	1	R	0x03	PF_SF	int16	sunssf		Phase Power Factor Scale factor	
40108	40109	2	R	0x03	TotWhExp	uint32	Wh		Total Watt-hours Exported	
40110	40111	2	R	0x03	TotWhExpPhA	uint32	Wh		Total Watt-hours Exported phase A	
40112	40113	2	R	0x03	TotWhExpPhB	uint32	Wh		Total Watt-hours Exported phase B	
40114	40115	2	R	0x03	TotWhExpPhC	uint32	Wh		Total Watt-hours Exported phase C	
40116	40117	2	R	0x03	TotWhImp	uint32	Wh		Total Watt-hours Imported	
40118	40119	2	R	0x03	TotWhImpPhA	uint32	Wh		Total Watt-hours Imported phase A	
40120	40121	2	R	0x03	TotWhImpPhB	uint32	Wh		Total Watt-hours Imported phase B	
40122	40123	2	R	0x03	TotWhImpPhC	uint32	Wh		Total Watt-hours Imported phase C	
40124	40124	1	R	0x03	TotWh_SF	int16	sunssf		Total Watt Scale factor	
40125	40126	2	R	0x03	TotVAhExp	uint32	VAh		Total VA-hours Exported	
40127	40128	2	R	0x03	TotVAhExpPhA	uint32	VAh		Total VA-hours Exported phase A	
40139	40130	2	R	0x03	TotVAhExpPhB	uint32	VAh		Total VA-hours Exported phase B	
40131	40132	2	R	0x03	TotVAhExpPhC	uint32	VAh		Total VA-hours Exported phase C	
40133	40134	2	R	0x03	TotVAhlmp	uint32	VAh		Total VA-hours Imported	
40135	40136	2	R	0x03	TotVAhlmpPhA	uint32	VAh		Total VA-hours Imported phase A	
40137	40138	2	R	0x03	TotVAhlmpPhB	uint32	VAh		Total VA-hours Imported phase B	
40139	40140	2	R	0x03	TotVAhlmpPhC	uint32	VAh		Total VA-hours Imported phase C	
40141	40141	1	R	0x03	TotVAh_SF	int16	sunssf		Total VA-hours Scale factor	
40142	40143	2	R	0x03	TotVArhImpQ1	uint32	VArh		Total VAR-hours Imported Q1	
40144	40145	2	R	0x03	TotVArhImpQ1phA	uint32	VArh		Total VAR-hours Imported Q1 phase A	
40146	40147	2	R	0x03	TotVArhImpQ1phB	uint32	VArh		Total VAR-hours Imported Q1 phase B	
40148	40149	2	R	0x03	TotVArhImpQ1phC	uint32	VArh		Total VAR-hours Imported Q1 phase C	

Ganzzahldarstellung - "int+SF"

	Ganzzanidarsteilung – "int-5F"									
Start	End	Size	R/W	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
40150	40151	2	R	0x03	TotVArhImpQ2	uint32	VArh		Total VAr-hours Imported Q2	
40152	40153	2	R	0x03	TotVArhImpQ2phA	uint32	VArh		Total VAR-hours Imported Q2 phase A	
40154	40155	2	R	0x03	TotVArhImpQ2phB	uint32	VArh		Total VAR-hours Imported Q2 phase B	
40156	40157	2	R	0x03	TotVArhImpQ2phC	uint32	VArh		Total VAR-hours Imported Q2 phase C	
40158	40159	2	R	0x03	TotVArhExpQ3	uint32	VArh		Total VAr-hours Exported Q3	
40160	40161	2	R	0x03	TotVArhExpQ3phA	uint32	VArh		Total VAR-hours Exported Q3 phase A	
40162	40163	2	R	0x03	TotVArhExpQ3phB	uint32	VArh		Total VAR-hours Exported Q3 phase B	
40164	40165	2	R	0x03	TotVArhExpQ3phC	uint32	VArh		Total VAR-hours Exported Q3 phase C	
40166	40167	2	R	0x03	TotVArhExpQ4	uint32	VArh		Total VAr-hours Exported Q4	
40168	40169	2	R	0x03	TotVArhExpQ4phA	uint32	VArh		Total VAR-hours Exported Q4 phase A	
40170	40171	2	R	0x03	TotVArhExpQ4phB	uint32	VArh		Total VAR-hours Exported Q4 phase B	
40172	40173	2	R	0x03	TotVArhExpQ4phC	uint32	VArh		Total VAR-hours Exported Q4 phase C	
40174	40174	1	R	0x03	TotVArh_SF	int16	sunssf		Total VAR-hours Scale factor	
40175	40176	2	R	0x03	Evt	uint32	Bitfield		Events	

End Block

Allgemeines

Zwei Register nach dem letzten Datenmodell zeigen an, dass keine weiteren SunSpec-Modelle mehr folgen.

Die Adressen dieser beiden Register sind je nach Gerätetyp (Wechselrichter, String Control, Energiezähler) und ausgewähltem Datentyp ("float" oder "int+SF") verschieden.

- Wechselrichter:
 - Startadresse für bei Einstellung "float": 40313
 - - Startadresse bei Einstellung "int+SF": 40303
- String Control:
 - Startadresse: 40127
- Energiezähler:
 - Startadresse für bei Einstellung "float": 40195
 - - Startadresse bei Einstellung "int+SF": 40176

End Block

Start Offset	End Offset	Size	RW	Function codes	Name	Туре	Units	Scale factor	Description	Range of values
1	1	1	R	0x03	ID	uint16			Identifies this as End block	0xFFFF
2	2	1	R	0x03	L	uint16	Regis- ters		Length of model block	0

String Combiner Event Flags

String Combiner Event Flags

Name	Event Flags
LOW_VOLTAGE	0x00000001
LOW_POWER	0x00000002
LOW_EFFICIENCY	0x00000004
CURRENT	0x00000008
VOLTAGE	0x00000010
POWER	0x00000020
PR	0x00000040
DISCONNECTED	0x00000080
FUSE_FAULT	0x00000100
COMBINER_FUSE_FAULT	0x00000200
COMBINER_CABINET_OPEN	0x00000400
TEMP	0x00000800
GROUNDFAULT	0x00001000
REVERSED_POLARITY	0x00002000
INCOMPATIBLE	0x00004000
COMM_ERROR	0x00008000
INTERNAL_ERROR	0x00010000
THEFT	0x00020000
ARC_DETECTED	0x00040000

Fronius Worldwide - www.fronius.com/addresses

Fronius International GmbH 4600 Wels, Froniusplatz 1, Austria E-Mail: pv-sales@fronius.com http://www.fronius.com Fronius USA LLC Solar Electronics Division 6797 Fronius Drive, Portage, IN 46368 E-Mail: pv-us@fronius.com http://www.fronius-usa.com

Under http://www.fronius.com/addresses you will find all addresses of our sales branches and partner firms!