Assignment #3

Page 189-198

2. Construct a truth table for the following:

a)
$$xyz + x(yz)' + x'(y+z) + (xyz)'$$

b)
$$(x + y')(x' + z')(y' + z')$$

- 6. Using DeMorgan's Law, write an expression for the complement of F if F(x,y,z) = xz'(xy + xz) + xy'(wz + y)
- 12. Show that xz = (x + y)(x+y')(x' + z)
- a) Using truth tables
- b) Using Boolean identities
- 13. Use any method to prove the following either True for False.

$$xz + x'y' + y'z' = xz + y'$$

- 16. Simplify the following functional expressions using Boolean algebra and its identities. List the identity used at each step.
- a) z(w + x)' + w'xz + wxyz' + wx'yz'
- b) y'(x'z' + xz) + z(x + y)'
- c) x(yz' + x)(y' + z)
- 23. The truth table for a Boolean expression is shown below. Write the Boolean expression in sum-of-products form.

х	у	z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- 27. Given the function: F(x,y,z) = y(x'z + xz') + x(yz + yz')
- a) List the truth table for F.
- b) Draw the logic diagram using the original Boolean expression
- c) Simplify the expression using Boolean algebra and identities.
- d) List the truth table for your answer in Part c.
- e) Draw the logic diagram for the simplified expression in Part c.
- 30. Draw a half adder using only NAND gates. For an extra point solve (31. Draw a full adder using only NAND gates).

- 41. Draw circuits to implement the parity generator and parity checker shown in Tables 3.10 and 3.11, respectively.
- 46. Describe how each of the following circuits works and indicate typical inputs and outputs. Also provide a carefully labeled "black box" diagram for each.
- a) Decoder
- b) Multiplexer
- 51. Complete the truth table for the following sequential circuit:

- 59. A Mux-Not flip-flop (MN flip-flop) behaves as follows: If M = 1, the flip-flop complements the current state. If M = 0, the next state of the flip-flop is equal to the value of N.
- a) Derive the characteristic table for the flip-flop.
- b) Show how a JK flip-flop can be converted to a MN flip-flop by adding gate(s) and inverter(s).
- 63. Construct two parity checkers using the Moore machine for one and Mealy machine for the other
- 65. Using the convolutional code and Viterbi algorithm described in this chapter, assuming that the encoder and decoder always start in State 0, determine:
 - a) The output string generated for the input: 10010110.
 - b) In which state is the encoder after the sequence in (a) is read?
 - c) Which bit is in error in the string, 11 01 10 11 11 11 10? What is the probable value of the string?

Page 209-213

2. Write a simplified expression for the Boolean function defined by each of the following Kmaps.

a)	x Y	^{'Z} 00	01	11	10
	0	1	1	1	1
	1	1	o	О	О

b)	yz x	00	01	11	10
	o	1	0	О	1
	1	1	0	0	О

c)	x yz	00	01	11	10
	0	1	0	0	1
	1	1	0	1	1

3. Create the Kmaps and then simplify for the following functions:

a)
$$F(x,y,z) = x'y'z' + x'yz + x'yz'$$

b)
$$F(x,y,z) = x'y'z' + x'yz' + xy'z' + xyz'$$

c)
$$F(x,y,z) = y'z' + y'z + xyz'$$

5. Write a simplified expression for the Boolean function defined by each of the following Kmaps.

a)

wx \	/Z 00	01	11	10
00	1	1	0	1
01	1	1	О	1
11	О	О	О	О
10	1	1	1	1

b)	wx	o0	01	11	10
۷,	00	0	1	1	0
	01	1	1	1	1
	11	0	О	1	1
	10	0	1	1	0

	wx	00	01	11	10
c)	00	О	1	О	О
	01	1	1	1	1
	11	1	1	1	1
	10	0	1	0	1

7. Create the Kmaps and then simplify for the following functions (leave in sum-of-products form):

- a) F(w,x,y,z) = w'x'y'z + w'x'yz' + w'xy'z + w'xyz + w'xyz' + wxy'z + wxyz + wx'y'z
- b) F(w,x,y,z) = w'x'y'z' + w'z + w'x'yz' + w'xy'z' + wx'y
- c) F(w,x,y,z) = w'x'y' + w'xz + wxz + wx'y'z

12. Find the minimized Boolean expression for the functions defined by the truth tables provided below.

a.

λ	(у	z	F
)	0	0	Х
C)	0	1	Х
0)	1	0	1
0)	1	1	0
1	L	0	0	0
1	L	0	1	1
1	L	1	0	0
1	L	1	1	1

b.

W	X	у	Ζ	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	Х
0	1	0	1	0
0	1	1	0	Х
0	1	1	1	0
1	0	0	0	1
1	0	0	1	Х
1	0	1	0	Х
1	0	1	1	Х
1	1	0	0	Х
1	1	0	1	1
1	1	1	0	Х
1	1	1	1	Х
1	1	1	1	×