43/12,43/16,43/30,

43/36,43/38,43/40,

43/42.43/50.43/52.

A 01 N 47/42 A 01 N 43/00

DEUTSCHLAND

DEUTSCHES PATENTAMT Aktenzeichen:

P 36 18 QQ4.1

Anmeldetag:

28, 5, 86

Offenlegungstag:

3. 12. 87

43/54,43/56,43/58, 43/60,43/647,43/653 43/707, 43/713,43/72 43/76,43/78

(7) Anmelder:

Bayer AG, 5090 Leverkusen, DE

72 Erfinder:

Pfister, Theodor, Dr., 4019 Monheim, DE; Feucht, Dieter, Dipl.-agr.-Ing. Dr., 5090 Leverkusen, DE; Schmidt, Robert R., Dr., 5060 Bergisch Gladbach, DE

Werwendung von Amiden zur Verbesserung der Kulturpflanzen-Verträglichkeit von herbizid wirksamen Sulfonyliso(thio)-harnstoff-Derivaten

Die Erfindung betrifft die Verwendung von bekannten Amiden der allgemeinen Formel (I)

$$\begin{array}{c|c}
0 & \mathbb{R}^1 \\
\mathbb{R} - \mathbb{C} - \mathbb{N} & \mathbb{R}^2
\end{array}$$

(worin die Reste R, R1 und R2 die in der Beschreibung angegebenen Bedeutungen haben) als Gegenmittel zur Verbesserung der Kulturpflanzen-Verträglichkeit von herbizid wirksamen Sulfonyliso(thio)harnstoff-Derivaten der allgemeinen Formel (II)

$$R^3-SO_2-N$$
 $N-R^4$
 X
 R^5

(worin R3, R4, R5, X und M die in der Beschreibung angegebenen Bedeutungen haben) und von Addukten aus Verbindungen der Formel (II) und starken Säuren.

Patentansprüche

1. Verwendung von Amiden der Formel (I)

R - C - N R^{2} R^{2} R^{2}

in welcher

5

10

15

20

25

30

35

40

45

50

55

R für Wasserstoff, Halogen oder für jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Bicycloalkenyl, Bicycloalkenyl, Tricycloalkyl, Aryl, Heteroaryl, Alkoxy, Alkenyloxy, Alkinyloxy, Aryloxy, Carbamoyl, Alkoxycarbonyl oder Dithiolanyl steht und

R¹ und R² unabhängig voneinander jeweils für Wasserstoff, für Formyl, für Chlorsulfonyl oder für jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkadienyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Alkoxy, Alkyltaio, Alkylcarbonyl, Alkoxycarbonyl, Phenyl, Phenoxy, Phenylsulfonyl oder Heterocyclyl stehen, ferner für Amino, für Alkylidenimino oder für gegebenenfalls substituiertes Alkylcarbonylamino oder Di(alkylcarbonyl)-amino stehen, oder

R¹ und R² gemeinsam mit dem Stickstoffatom an welches sie gebunden sind, für jeweils gegebenenfalls substituiertes Alkylidenimino, Pyrrolidinyl, Piperidinyl, Piperidonyl, Perhydroazepinyl, Perhydroazocinyl, Dihydropyrazolyl, Dihydro- oder Tetrahydropyridinyl, Azabicyclononyl, Morpholinyl, Perhydro-1,3-oxazinyl, 1,3-Oxazolidinyl, 1,4-Piperazinyl, Perhydro-1,4-diazepinyl, Dihydro-, Tetrahydro- oder Perhydrochinolyl- bzw.-isochinolyl, Indolyl, Dihydro- oder Perhydroindolyl stehen,

als Gegenmittel zur Verbesserung der Kulturpflanzen-Verträglichkeit von herbizid wirksamen Sulfonyliso-(thio)harnstoff-Derivaten der Formel (II),

$$R^{3}-SO_{2}-N$$

$$N-R^{4}$$

$$X$$

$$R^{5}$$
(II)

in welcher

R³ für einen gegebenenfalls substituierten Rest aus der Reihe Alkyl, Aralkyl, Aryl und Heteroaryl steht, R⁴ für einen gegebenenfalls substituierten und/oder gegebenenfalls anellierten sechsgliedrigen aromatischen Heterocyclus, welcher wenigstens ein Stickstoffatom enthält, steht,

R⁵ für einen gegebenenfalls substituierten aliphatischen, araliphatischen, aromatischen oder heteroaromatischen Rest steht,

X für Sauerstoff oder Schwefel steht und

M für Wasserstoff oder ein Metalläquivalent steht,

und von Addukten aus Verbindungen der Formel (II) und starken Säuren.

2. Verfahren zur Verbesserung der Kulturpflanzen-Verträglichkeit von herbizid wirksamen Sulfonyliso-(thio)harnstoff-Derivaten der Formel (II) gemäß Anspruch 1, dadurch gekennzeichnet, daß man Amide der Formel (I) gemäß Anspruch 1 zusammen mit den Sulfonyliso(thio)harnstoff-Derivaten der Formel (II) auf die Kulturpflanzen und/oder deren Lebensraum einwirken läßt.

3. Mittel zur selektiven Unkrautbekämpfung in Nutzpflanzenkulturen, gekennzeichnet durch einen Gehalt an einer Wirkstoffkombination bestehend aus

- einem Amid der Formel (I) gemäß Anspruch 1 und

- mindestens einem herbiziden Sulfonyliso(thio)-harnstoff-Derivat der Formel (II) gemäß Anspruch 1.

4. Verfahren zur selektiven Unkrautbekämpfung in Nutzpflanzenkulturen, dadurch gekennzeichnet, daß man eine Wirkstoffkombination gemäß Anspruch 3 auf die Unkräuter oder ihren Lebensraum einwirken läßt.

5. Verwendung einer Wirkstoffkombination gemäß Anspruch 3 zur selektiven Unkrautbekämpfung in Nutzpflanzenkulturen.

6. Verfahren zur Herstellung von Mitteln zur selektiven Unkrautbekämpfung in Nutzpflanzenkulturen, dadurch gekennzeichnet, daß man Wirkstoffkombinationen gemäß Anspruch 3 mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.

Beschreibung

Die Erfindung betrifft die Verwendung von bekannten Amiden als Gegenmittel zur Verbesserung der Kulturpflanzen-Verträglichkeit von bestimmten herbizid wirksamen Sulfonyliso(thio)harnstoff-Derivaten.

Ferner betrifft die Erfindung neue Wirkstoffkombinationen, die aus bekannten Amiden und bekannten herbizid wirksamen Sulfonyliso(thio)harnstoff-Derivaten bestehen und besonders gute selektiv-herbizide Eigenschaf-

ten besitzen.

Unter "Gegenmitteln" ("Safener", "Antidots") sind im vorliegenden Zusammenhang Stoffe zu verstehen, welche befähigt sind, schädigende Wirkungen von Herbiziden auf Kulturpflanzen spezifisch zu antagonisieren, d. h. die Kulturpflanzen zu schützen, ohne dabei die Herbizid-Wirkung auf die zu bekämpfenden Unkräuter merklich zu beeinflussen.

Es ist bekannt, daß zahlreiche herbizid wirksame Sulfonyliso(thio)harnstoff-Derivate beim Einsatz zur Unkrautbekämpfung in Mais und anderen Kulturen mehr oder weniger starke Schäden an den Kulturpflanzen

hervorrufen.

Weiterhin ist bekannt, daß zahlreiche Amide geeignet sind, Schädigungen an Kulturpflanzen, die durch herbizide Wirkstoffe, insbesondere Thiolcarbamate und Acetanilide, verursacht werden können, zu vermindern (vergl. z. B. DE-OS 22 18 097, DE-OS 28 28 265, US-PS 40 21 224, US-PS 41 24 376, US-PS 41 37 070).

Die Anwendbarkeit dieser Stoffe als Gegenmittel ist jedoch in hohem Maße abhängig von dem jeweiligen

15

30

35

55

60

65

herbiziden Wirkstoff.

Es wurde nun gefunden, daß die bekannten Amide der Formel (I)

in welcher

R für Wasserstoff, Halogen oder für jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Bicycloalkenyl, Tricycloalkyl, Aryl, Heteroaryl, Alkoxy, Alkenyloxy, Alkinyloxy, Aryloxy, Carbamoyl, Alkoxycarbonyl oder Dithiolanyl steht und

R¹ und R² unabhängig voneinander jeweils für Wasserstoff, für Formyl, für Chlorsulfonyl oder für jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkadienyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Alkoxy, Alkylthio, Alkylcarbonyl, Alkoxycarbonyl, Phenyl, Phenoxy, Phenylsulfonyl oder Heterocyclyl steht, ferner für Amino, für Alkylidenimino oder für gegebenenfalls substituiertes Alkylcarbonylamino oder Di(alkylcarbonyl)-amino stehen,

R' und R' gemeinsam mit dem Stickstoffatom an welches sie gebunden sind, für jeweiß gegebenenfalls substituiertes Alkylidenimino, Pyrrolidinyl, Piperidinyl, Piperidonyl, Perhydroazepinyl, Perhydroazocinyl, Dihydropyrazolyl, Dihydro- oder Tetrahydropyridinyl, Azabicyclononyl, Morpholinyl, Perhydro-1,3-oxazinyl, 1,3-Oxazolidinyl, 1,4-Piperazinyl, Perhydro-1,4-diazepinyl, Dihydro- oder Perhydrochinolyl hzw. -isochinolyl, Indolyl, Dihydro- oder Perhydroindolyl stehen,

hervorragend geeignet sind als Gegenmittel zur Verbesserung der Kulturpflanzen-Verträglichkeit von herbizid wirksamen Sulfonyliso(thio)harnstoff-Derivaten der allgemeinen Formel (II)

 $R^{3}-SO_{2}-N$ $N-R^{4}$ X R^{5} (II)

in welcher

R3 für einen gegebenenfalls substituierten Rest aus der Reihe Alkyl, Aralkyl, Aryl und Heteroaryl steht,

R⁴ für einen gegebenenfalls substituierten und/oder gegebenenfalls anellierten sechsgliedrigen aromatischen Heterocyclus, welcher wenigstens ein Stickstoffatom enthält, steht,

R⁵ für einen gegebenenfalls substituierten aliphatischen, araliphatischen, aromatischen oder heteroaromatischen Rest steht,

X für Sauerstoff oder Schwefel steht und

M für Wasserstoff oder ein Metalläquivalent steht,

und von Addukten aus Verbindungen der Formel (II) und starken Säuren.

Weiterhin wurde gefunden, daß die neuen Wirkstoffkombinationen bestehend aus

- einem Amid der Formel (I) und

- mindestens einem herbiziden Sulfonyliso(thio)harnstoff-Derivat der Formel (II)

hervorragend geeignet sind zur selektiven Unkrautbekämpfung in Nutzpflanzenkulturen.

Überraschenderweise wird die Kulturpflanzenverträglichkeit von herbiziden Sulfonyliso(thio)harnstoff-Derivaten der Formel (II) durch Mitverwendung von Amiden der Formel (I) entscheidend verbessert. Unerwartet ist ferner, daß die erfindungsgemäßen Wirkstoffkombinationen aus einem Amid der Formel (I) und einem herbiziden Sulfonyliso(thio)harnstoff-Derivat der Formel (II) bessere selektive Eigenschaften besitzen als die betreffenden Wirkstoffe allein.

Die erfindungsgemäß verwendbaren Amide sind durch die Formel (I) allgemein definiert. Bevorzugt sind Amide der Formel (I), bei welchen R

- für Wasserstoff, Fluor, Chlor, Brom steht; außerdem

- für den Rest

$$_{5}$$
 -co-N $_{R^{6}}$

steht, wobei

R6 und R7 gleich oder verschieden sind und jeweils für Wasserstoff sowie für jeweils geradkettiges oder verzweigtes Alkyl, Alkenyl, Alkinyl oder Cyanalkyl mit jeweils bis zu 8 Kohlenstoffatomen stehen; ferner R— für gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes, geradkettiges oder verzweigtes Alkyl mit 1 bis 20 Kohlenstoffatomen steht, wobei als Substituenten infrage kommen:

Hydroxy, Halogen, insbesondere Fluor, Chlor, Brom, Iod, Cyano, Cyanato, Thiocyanato; jeweils geradkettiges oder verzweigtes Alkoxy, Alkylthio, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Halogenalkoxy, Halogenalkoxy, Halogenalkoxy-alkoxy, Halogenalkoxy-alkoxy, Halogenalkoxy-alkoxy, Halogenalkoxy-alkoxy und Halogenalkoxy-alkoxy und Halogenalkoxy-alkoxy und Halogenalkoxy-alkoxy und Halogenalkoxy-alkoxy und gegebenenfalls bis zu 9 gleichen oder verschiedenen Halogenatomen, insbesondere Fluor, Chlor, Brom; außerdem jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, niederes Alkyl und/oder niederes Alkoxy substituiertes Phenyl, Phenoxy, Phenylthio oder Thienyl; ferner Cycloalkyl mit 3 bis 7 Kohlenstoffatomen sowie die Reste

wobei R6 und R7 jeweils die oben angegebenen Bedeutungen haben; außerdem R

— für gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes, geradkettiges oder verzweigtes Alkenyl mit 2 bis 6 Köhlenstoffatomen steht, wobei als Substituenten infrage kommen:

Hydroxy, Halogen, insbesondere Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 6 Köhlenstoffatomen, sowie jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, insbesondere Fluor, Chlor, Brom, niederes Alkyl oder niederes Alkoxy substituiertes Phenyl oder Phenoxy; ferner R

— für geradkettiges oder verzweigtes Alkinyl mit 2 bis 8 Kohlenstoffatomen steht; außerdem R — für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes Cycloalkyl, Cycloalkenyl, Bicycloalkyl, Bicycloalkyl, Bicycloalkyl mit jeweils bis zu 12 Kohlenstoffatomen steht, wobei als Substituenten infrage kommen: geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, Phenyl sowie der Rest

$$-\mathbf{C}-\mathbf{N}$$

wobei R6 und R7 die oben angegebene Bedeutung haben; ferner R

— für gegebenenfalls einfach oder mehrfach gleich oder verschieden substituiertes Aryl mit 6 bis 10 Kohlenstoffatomen steht, wobei als Substituenten infrage kommen:
Halogen, insbesondere Fluor, Chlor, Brom, Iod, Nitro, Carboxy — auch in Form des Carboxylatanions —, jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Halogenalkyl, Alkylcarbonyl, Halogenalkylcarbonyl und Halogenalkylcarbonylamino mit jeweils bis zu 4 Kohlenstoffatomen und gegebenenfalls bis zu 5 gleichen oder verschiedenen Halogenatomen, insbesondere Fluor, Chlor, Brom, sowie der Rest

wobei R⁶ und R⁷ die oben angegebene Bedeutung haben, außerdem R

— für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes Furyl, Thienyl,
Pyridyl oder Dithiolanyl steht, wobei als Substituenten infrage kommen:
Halogen, insbesondere Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen, sowie der Rest

55

wobei R6 und R7 die oben angegebene Bedeutung haben, und schließlich R

- für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Phenyl oder Halogen, insbesondere Fluor, Chlor, Brom substituiertes, jeweils geradkettiges oder verzweigtes Alkoxy, Alkenyloxy, Alkinyloxy, Alkoxycarbonyl oder Phenoxy steht, und

5

25

45

55

R1 und R2, welche gleich oder verschieden sind, unabhängig voneinander

für Wasserstoff, Formyl, Chlorsulfonyl oder für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, insbesondere Fluor, Chlor, Brom oder niederes Alkyl substituiertes Phenyl, Phenoxy oder Phenylsulfonyl stehen, ferner

für gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes, geradkettiges oder verzweigtes Alkyl mit 1 bis 12 Kohlenstoffatomen stehen, wobei als Substituenten infrage kommen:

Hydroxy, Mercapto, Cyano, Halogen, insbesondere Fluor, Chlor, Brom, Iod; jeweils geradkettiges oder verzweigtes Alkoxy, Alkoximino, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Alkoxycarbonyloxy, Alkylthiocarbonyloxy, Halogenalkylcarbonyloxy und Alkylsulfonyloxy mit jeweils bis zu 6 Kohlenstoffatomen und gegebenenfalls bis zu 5 gleichen oder verschiedenen Halogenatomen, insbesondere Fluor, Chlor, Brom; außerdem Alkylaminocarbonyloxy, Dialkylaminocarbonyloxy, Alkenylaminocarbonyloxy und Dialkenylaminocarbonyloxy mit jeweils bis zu 6 Kohlenstoffatomen in den einzelnen geradkettigen oder verzweigten Alkyl- bzw. Alkenylteilen; ferner Cycloalkylaminocarbonyloxy mit 3 bis 7 Kohlenstoffatomen im Cycloalkylteil, gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, insbesondere Fluor, Chlor, Brom, oder niederes Alkyl substituiertes Phenylaminocarbonyloxy, außerdem gegebenenfalls einfach oder mehrfach gleich oder verschieden durch Halogen, insbesondere Fluor, Chlor, Brom, oder niederes Alkyl substituiertes Cycloalkyl mit 3 bis 7 Kohlenstoffatomen, gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Nitro, Halogen, insbesondere Fluor, Chlor, Brom, niederes Alkyl oder Dioxyalkylen substituiertes Phenyl, jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, insbesondere Fluor, Chlor, Brom oder niederes Alkyl substituiertes Furyl, Tetrahydrofuryl, Pyrazolyl, Oxazolyl, Isoxazolyl, Thiazolyl, Thiadiazolyl, Oxadiazolyl, Pyridyl oder Pyrimidinyl sowie gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch jeweils niederes Alkyl, Halogenalkylcarbonyl, Halogenphenoxyalkylcarbonyl und Halogenalkylcarbonylaminoalkyl substituiertes Amino; außerdem R1 und R2

- für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes, geradkettiges oder verzweigtes Alkenyl, Alkadienyl, oder Alkinyl mit jeweils 3 bis 8 Kohlenstoffatomen stehen, wobei als Substituenten infrage kommen:

Halogen, insbesondere Fluor, Chlor, Brom, Cyano sowie jeweils geradkettiges oder verzweigtes Alkoxy, Alkyl-

carbonyl oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen; ferner R1 und R2

für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, insbesondere Fluor, Chlor, Brom, oder niederes Alkyl substituiertes Cycloalkyl oder Cycloalkenyl mit jeweils 3 his 8 Kohlenstoffatomen stehen; außerdem

für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes und/oder benzannelliertes Piperidyl, Pyridyl, Thienyl, Oxazolyl, Isoxazolyl, Thiazolyl, Oxadiazolyl, Thiadiazolyl, Fluorenyl, Phthalimidoyl oder Dioxanyl stehen, wobei als Substituenten infrage kommen:

Halogen, insbesondere Fluor, Chlor, Brom, Cyano sowie jeweils geradkettiges oder verzweigtes Alkyl oder Alkandiyl mit jeweils 1 bis 4 Kohlenstoffatomen;

ferner R1 und R2

- für jeweils geradkettiges oder verzweigtes Alkoxy, Alkylthio, Alkylcarbonyl, Alkoxycarbonyl, Halogenalkylcarbonyl oder Halogenalkoxycarbonyl stehen mit jeweils bis zu 6 Kohlenstoffatomen und gegebenenfalls bis zu 5 gleichen oder verschiedenen Halogenatomen, insbesondere Fluor, Chlor, Brom; und außerdem R1 und R2

- für gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes Amino oder Alkylidenimino stehen, wobei als Substituenten infrage kommen:

jeweils geradkettiges oder verzweigtes Alkyl, Alkenyl, Alkinyl, Alkylcarbonyl oder Halogenalkylcarbonyl mit jeweils bis zu 8 Kohlenstoffatomen und gegebenenfalls bis zu 5 gleichen oder verschiedenen Halogenatomen,

insbesondere Fluor, Chlor, Brom; oder aber R1 und R2 gemeinsam mit dem Stickstoffatom, an welches sie gebunden sind,

für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes Alkylidenamino, Pyrrolidinyl, Piperidinyl, Piperidonyl, Perhydroazepinyl, Perhydroazocinyl, Dihydropyrazolyl, Dihydro- oder Tetrahydropyridyl, Azabicyclononyl, Morpholinyl, Perhydro-1,3-oxazinyl, 1,3-Oxazolidinyl, 1,4-Piperazinyl, Perhydro-1,4-diazepinyl, Dihydro-, Tetrahydro- oder Perhydrochinolyl bzw. -isochinolyl, Indolyl, Dihydro- oder Perhydroindolyl stehen, wobei als Substituenten infrage kommen:

Hydroxy, Halogen (insbesondere Fluor, Chlor, Brom), Cyano, Formyl; jeweils geradkettiges oder verzweigtes, gegebenenfalls zweifach verknüpftes Alkyl, Alkandiyl, Alkoxy, Dioxyalkylen, Alkylcarbonyl, Alkoxycarbonyl und Halogenalkylcarbonyl mit jeweils bis zu 8 Kohlenstoffatomen, jeweils geradkettiges oder verzweigtes Alkylamino oder Dialkylamino mit jeweils bis zu 4 Kohlenstoffatomen in den einzelnen Alkylteilen, jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, insbesondere Fluor, Chlor, Brom, Nitro oder jeweils niederes Alkyl, Halogenalkyl, Alkoxy, Alkylcarbonyl oder Alkoxycarbonyl substituiertes Phenyl, Naphthyl, Pyridyl oder Piperidinyl oder jeweils gegebenenfalls einfach oder mehrfach, gleich oder

verschieden durch Halogen, insbesondere Fluor, Chlor, Brom, niederes Alkyl oder Halogenalkylcarbonyl substituiertes geradkettiges oder verzweigtes Cyclopropylalkyl, Cyclohexylalkyl, Piperidinylalkyl, Phenylalkyl oder Phenylalkenyl mit bis zu 4 Kohlenstoffatomen in den jeweiligen Alkyl- bzw. Alkenylteilen.

Besonders bevorzugt sind Amide der Formel (I), bei welchen R

- für Wasserstoff oder Chlor steht; ferner R
- für den Rest

steht, wobei R⁶ und R⁷, gleich oder verschieden sind und unabhängig voneinander jeweils für Wasserstoff, Methyl, Ethyl, Allyl, Propargyl, But-1-in-3-yl, 3-Methylbut-1-in-3-yl oder 2-Cyanoprop-2-yl stehen; ferner R.

- für geradkettiges oder verzweigtes Alkyl mit bis zu 15 Kohlenstoffatomen steht; außerdem R

— für geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 6 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, insbesondere Fluor, Chlor, Brom und Iod, steht; außerdem R.

für ein- bis dreifach, gleich oder verschieden substituiertes, geradkettiges oder verzweigtes Alkyl mit 1 bis 6

Kohlenstoffatomen steht, wobei als Substituenten infrage kommen:

Hydroxy, Fluor, Chlor, Brom, Cyano, Cyanato, Thiocyanato, Methoxy, Ethoxy, Methylthio, Ethylthio, Acetyl, Propionyl, Acetoxy, Propionyloxy, Methoxycarbonyl, Ethoxycarbonyl, 1,1,3,3-Tetrachlor-2-hydroxyprop-2-yloxy, 1,1,1,3,3-Pentachlor-2-hydroxyprop-2-yloxy, Chloracetyl, Dichloracetyl, Chloracetoxy, Dichloracetoxy, Pentachlorbutadien-1-ylcarbonyloxy, jeweils gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Chlor, Methyl oder Methoxy substituiertes Phenyl, Phenoxy, Phenylthio oder Thienyl; ferner Cyclopropyl, Cyclopentyl, Cyclohexyl; sowie die Reste

wobei R⁶ und R⁷ gleich oder verschieden sind und jeweils unabhängig voneinander für Wasserstoff, Methyl, Ethyl, Allyl, Propargyl, But-1-in-3-yl, 3-Methyl-but-1-in-3-yl oder 2-Cyanoprop-2-yl stehen; außerdem R

— für ein- bis dreifach, gleich oder verschieden substituertes, geradkettiges oder verzweigtes Alkenyl mit 2 bis 5
Kohlenstoffatomen:

Hydroxy, Fluor, Chlor, Brom, Methoxycarbonyl, Ethoxycarbonyl sowie jeweils gegebenenfalls ein- bis dreifach, gleich oder verschieden, durch Fluor, Chlor, Methyl oder Methoxy substituiertes Phenyl oder Phenoxy; ferner R

- für geradkettiges oder verzweigtes Alkinyl mit 2 bis 5 Kohlenstoffatomen; außerdem R

— für jeweils gegebenenfalls ein- bis fünffach, gleich oder verschieden substituiertes Cyclopropyl, Cyclopentyl, Cyclohexyl, Cyclohexyl, Cyclohexenyl, Bicycloheptenyl, Bicyclooctyl, Bicyclononyl und Tricyclodecyl steht, wobei als Substituenten infrage kommen:

Methyl, Ethyl, Phenyl sowie der Rest

R⁶

45

50

$$-co-N$$
 R^6

wobei R⁶ und R⁷ gleich oder verschieden sind, und jeweils unabhängig voneinander für Wasserstoff, Methyl, Ethyl, Allyl, Propargyl, But-1-in-3-yl, 3-Methylbut-1-in-3-yl oder 2-Cyanoprop-2-yl stehen, außerdem R — für gegebenenfalls ein- bis dreifach, gleich oder verschieden substituierten Phenyl steht, wobei als Substituenten infrage kommen:

Fluor, Chlor, Brom, Iod, Nitro, Methyl, Ethyl, Methoxy, Ethoxy, Carboxy — auch in Form des Carboxylatanions —, Trifluormethyl, Chloracetamido, Dichloracetamido sowie der Rest

wobei R⁶ und R⁷ gleich oder verschieden sind, und jeweils unabhängig voneinander für Wasserstoff, Methyl, Ethyl, Allyl, Propargyl, But-1-in-3-yl, 3-Methylbut-1-in-3-yl oder 2-Cyanoprop-2-yl stehen; ferner R — für jeweils gegebenenfalls ein- bis dreifach, gleich oder verschieden substituiertes Furyl, Thienyl, Pyridyl oder Dithiolanyl steht, wobei als Substituenten infrage kommen:

Chlor, Methyl, Ethyl sowie der Rest

wobei R⁶ und R⁷ gleich oder verschieden sind, und jeweils unabhängig voneinander für Wasserstoff, Methyl, Ethyl, Allyl, Propargyl, But-1-in-3-yl, 3-Methylbut-1-in-3-yl oder 2-Cyanoprop-2-yl stehen; und schließlich R

— für jeweils gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Fluor, Chlor, Brom oder Phenyl substituiertes Methoxy, Ethoxy, Allyloxy, Propargyloxy, Butinyloxy, Methoxycarbonyl, Ethoxycarbonyl oder **Phenyl** steht, und

R1 und R2, welche gleich oder verschieden sind, unabhängig voneinander

— für Wasserstoff, Formyl, Chlorsulfonyl oder für jeweils gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Fluor, Chlor, Brom oder Methyl substituiertes Phenyl, Phenoxy oder Phenylsulfonyl stehen; ferner — für gegebenenfalls ein- bis dreifach, gleich oder verschieden substituiertes, geradkettiges oder verzweigtes Alkyl mit 1 bis 8 Kohlenstoffatomen stehen, wobei als Substituenten infrage kommen:

Hydroxy, Mercapto, Cyano, Fluor, Chlor, Brom, Methoxy, Ethoxy, Propoxy, Butoxy, Methoximino, Ethoxyimino, Acetyl, Propionyl, Acetoxy, Propionyloxy, Methoxycarbonyl, Ethoxycarbonyl, Methoxycarbonyloxy, Ethoxycarbonyloxy, Methylthiocarbonyloxy, Ethylthiocarbonyloxy, Chloracetoxy, Dichloracetoxy, Methylsulfonyloxy, Ethylsulfonyloxy, Methylaminocarbonyloxy, Dimethylaminocarbonyloxy, Ethylaminocarbonyloxy, Diethylaminocarbonyloxy, Diethylaminocarbonyloxy, Diallylaminocarbonyloxy, Cyclohexylaminocarbonyloxy, Butylaminocarbonyloxy, Allylaminocarbonyloxy, Diallylaminocarbonyloxy, Cyclohexylaminocarbonyloxy sowie gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Chlor oder Methyl substituiertes Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl; gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Nitro, Fluor, Chlor, Brom, Methyl oder Dioxymethylen substituiertes Phenyl, jeweils gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Methyl, Ethyl, Propyl oder Chlor substituiertes Furyl, Tetrahydrofuryl, Pyrazolyl, Oxazolyl, Isoxazolyl, Thiazolyl, Thiadiazolyl, Oxadiazolyl, Pyridyl oder Pyrimidinyl; sowie gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Methyl, Ethyl, Chloracetyl, Dichloracetyl, Chlorphenoxyacetyl, Dichloracetamidomethyl oder Dichloracetamidoethyl substituiertes Amino; außerdem R¹ und R²

— für jeweils gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Chlor, Methoxy, Ethoxy, Acetyl, Methoxycarbonyl, Ethoxycarbonyl oder Cyano substituiertes geradkettiges oder verzweigtes Alkenyl, Alkadienyl oder Alkinyl mit jeweils 3 bis 5 Kohlenstoffatomen stehen; ferner R¹ und R²

— für jeweils gegebenenfalls ein- bis fünffach, gleich oder verschieden durch Chlor oder Methyl substituiertes Cyclopropyl, Cyclopentyl, Cyclohexyl, Cyclohexenyl oder Cyclooctyl stehen; außerdem R¹ und R²

— für jeweils gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, Propyl, Propandiyl oder Butandiyl substituiertes und/oder benzannelliertes Piperidyl, Pyridyl, Thienyl, Oxazolyl, Isoxazolyl, Thiadiazolyl, Fluorenyl, Phthalimidoyl oder Dioxanyl stehen; außerdem R¹ und R²

— für Methoxy, Ethoxy, Propoxy, Butoxy, Methylthio, Ethylthio, Propylthio, Butylthio, Acetyl, Chloracetyl, Dichloracetyl, Methoxycarbonyl, Ethoxycarbonyl, Chlorethyloxycarbonyl oder Bromethyloxycarbonyl stehen und außerdem R¹ und R²

— für gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Methyl, Ethyl, Allyl, Propargyl, Acetyl, Chloracetyl oder Dichloracetyl substituiertes Amino oder Propylidenimino stehen, oder aber R¹ und R² gemeinsam mit dem Stickstoffatom, an welches sie gebunden sind,

— für jeweils gegebenenfalls ein- bis fünffach, gleich oder verschieden substituiertes Methylidenimino, Ethylidenimino, Propylidenimino, Pyrrolidinyl, Piperidinyl, Piperidonyl, Perhydroazepinyl, Perhydroazocinyl, Dihydropyrazolyl, Dihydro- oder Tetrahydropyridyl, Azabicyclononyl, Morpholinyl, Perhydro-1,3-oxazinyl, 1,3-Oxazolidinyl, 1,4-Piperazinyl, Perhydro-1,4-diazepinyl, Dihydro- oder Perhydrochinolyl bzw. -isochinolyl, Indolyl, Dihydro- oder Perhydroindolyl stehen, wobei als Substituenten infrage kommen: Hydroxy, Fluor, Chlor, Brom, Cyano, Formyl, Methyl, Ethyl, Propyl, Butyl, Ethandiyl, Propandiyl, Methoxy,

Hydroxy, Fluor, Chlor, Brom, Cyano, Formyl, Methyl, Ethyl, Propyl, Butyl, Ethandiyl, Propandiyl, Methoxy, Ethoxy, Propoxy, Butoxy, Dioxyethylen, Dioxypropylen, Dioxybutylen, Acetyl, Propionyl, Chloracetyl, Dichloracetyl, α-Chlorpropionyl, Methoxycarbonyl, Ethoxycarbonyl, Methylamino, Dimethylamino, Diethylamino, jeweils gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Fluor, Chlor, Brom, Nitro, Methyl, Ethyl, Methoxy, Ethoxy, Trifluormethyl, Acetyl, Propionyl, Methoxycarbonyl oder Ethoxycarbonyl substituiertes Phenyl, Naphthyl oder Piperidinyl oder jeweils gegebenenfalls ein- bis dreifach gleich oder verschieden durch Chlor, Methyl, Chloracetyl oder Dichloracetyl substituiertes Cyclopropylmethyl, Cyclohexylmethyl, Piperidinylethyl, Piperidinylpropyl, Benzyl, Phenylethyl oder Phenylpropenyl.

Die Ausdrücke "niederes Alkyr", "niederes Alkoxy" etc. bezeichnen im Rahmen dieser Erfindung entsprechende Reste mit 1-4 C-Atomen. Im einzelnen seien die folgenden Verbindungen der allgemeinen Formel (I) genannt:

65

10

Tabelle 1

$$R-CO-N = \begin{pmatrix} R^1 \\ R^2 \end{pmatrix}$$

Bsp. Nr.	R	R ¹	R ²
			C2H5
F-I	H	H	
			C₂Ħs
I-2	Cl	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
			CH₃
I-3	CH ₃	H	-C-C≡CH
			CH ₃
			CF₃
I-4	CH ₃	H to	—€—0H %
			CF ₃
I-5	CH₃	—CH₂—CH≔CH₂	-CH₂-CH=CH₂
1 -6	CH ₃	$\overline{\hspace{1cm}}$	$-so_2$
			СН₃
I-7	n-C ₃ H ₇	Н	-с⊓с≡сн
	,		l CH₃
			CH₃
I-8	n-C ₃ H ₇	CH ₃	-cн-с≡сн
I-9	n-C ₃ H ₇	$-CH_2-CH=CH_2$	-CH ₂ -CH=CH ₂
			CH₃
I-10	i-C₃H ₇	CH₃	-CH-C≡CH
			CH₃
I-11	n-C ₄ H ₉	H	-CH-C≡CH
			- CH ₃
I-12	(CH ₃) ₃ C—CH ₂ —	Н	−ċ−cn
		•	CH₃
			CH₃
I-13	(CH ₃) ₃ C—CH ₂ —	CH ₃	-c-c≡ch
		•	CH₃

Bsp. Nr.	R	R ¹ .	R ²
	CH₃		CH₃
I-14	CH ₃ —(CH ₂) ₂ —CH—	н	-C-C≡CH
			ĊH₃
	ÇH₃		ÇH₃
I- 15	CH ₃ —(CH ₂) ₂ —CH—	CH ₃	-CH-C≡CH
	СНз		
1 .16	CH ₃ —(CH ₂) ₂ —CH—	—CH2—СН=СH2	$-CH_2-CH=-CH_2$
FIU	City (City) Cit		CH ₃
· 17	- C H	Н	_C—C≡CH
<u>1</u> -1 /	n-C ₆ H ₁₃		 CH₃
			CH₃
			1
	n-C ₆ H ₁₃	CH ₃	-CH-C≡CH
I-19	n-C ₆ H ₁₃	$-CH_2-CH=CH_2$	$-CH_2-CH=-CH_2$
	CH₃ 	•	
I-20	CH_3 — $(CH_2)_2$ — C —	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
	CH ₃		
	CH₃		CH₃
I-2 1	$(CH_3)_3C-CH_2-CH-CH_2-$	- H	-c-c=ch
			l CH₃
			ÇH₃
r 22	. C.H	Н	_C_C≡CH
1-22	n-C ₉ H ₁₉	**	 CH₃
- 00		С и Сн=_Сн	$-CH_2-CH=CH_2$
I-23	n-C ₉ H ₁₉	—CH2 CH—CH2	CH ₃
		**	
I-24	n-C ₁₁ H ₂₃	Н	-C-C≡CH
	n-C ₁₁ H ₂₃		-CH ₂ -CH=CH ₂
	n-C ₁₃ H ₂₇		-CH2-CH=CH2 $-CH2-CH(CH3)2$
	C1—CH2—	H H	—C(CH ₃) ₃
1-28	C1—CH2—		CH ₃
		TT	
I-29	Cl—CH ₂ —	H	—C—C₂H₅
		•	CH ₃

		ÇH₃
-30 C1—CH ₂ —	Н	-CH-CH ₂ -CH(CH ₃) ₂
-31 Cl—CH ₂ —	Н	$-CH_2-C=CH_2$
		CH ₃
		CH ₂
-32 CICIF	**	
-32 CI—CH ₂ —	H	-c-c≡ch
-		CH.
		CH-
-33 CI—CH ₂ —	Н	$-\overset{1}{C}-C_2H_5$
	-	 CN
		C ₂ H ₅
34 Cl—CH ₂ —	н	1
	11	—C—C₂H₅
25 OL OTT		CN
35 Cl—CH ₂ — 36 Cl—CH ₂ —	H	-CH2CH2-BF
37 C1—CH ₂ —	H	-CH ₂ CH ₂ -OCH ₃
57 C1 C112	H	
38 C1—CH ₂ —	H	−cH₂ O
	•	Cį
39 Cl—CH ₂ —	.·	av vvi as av s
33 CI — CII2—	Н	-CH ₂ -NH-CO-CH ₂ O-Cl
	·	cı—〈〉
40 C1—CH ₂ —	**	Cl
+0 C1—CH2—	H	-CH-NH-CO-CH ₂ Cl
41 Cl—CH ₂ —	H	−СН₃
		CH ₃
42 CI—CH ₂ —	н	
		N
	•	C₂H₅
43 CI—CH ₂ —	CH ₃	—CH(CH ₃) ₂
44 C1—CH2—	СН₃	—(CH ₂) ₃ —CH ₃

Bsp. R Nr.	R ¹	R ²
I-45 Cl—CH ₂ —	CH ₃	—СН—С₂Н₅ СН₃
I-46 Cl—CH₂—	CH ₃	— CH — CH(CH ₃) ₂ CH ₃
L47 Cl—CH ₂ —	СН₃	—CH₂—C≡CH CH₃
148 CI—CH ₂ —	CH ₃	_CH—C≡CH
149 Cl—CH ₂ —	C⊞₃	CH ₂ CH ₂ CN
I-50 C1—CH ₂ —	СН3	$-CH_2$
I-51 CI—CH ₂ —	СН₃	$-CH_2$ $-CI$
1-52 Cl—CH ₂ —	CH ₃	$-CH_2$
I-53 C1—CH ₂	C₂H₅	CH ₃ —CH—C₂H ₅ CH ₃ C1
I-54 Cl—CH ₂ —	C_2H_5	—CH ₂ —
I-55 C1—CH ₂ —	C_2H_5	$-CH_2$ $-CH_3$
		CH₃
I-56 C1—CH ₂ —	C ₂ H ₅	—CH ₂ ——CH ₃
I-57 Cl—CH ₂ —	C₂H₅	-CH ₂ CH ₃
I-58 Cl—CH ₂ —	C₂H₅	
I-59 C1—CH ₂ —	C₂H₅	—CH₃
I-60 Cl—CH ₂ — I-61 Cl—CH ₂ —	- CH ₂ CH ₂ CH ₃ - CH ₂ CH ₂ CH ₃	—CH ₂ —CH(CH ₃) ₂ —C(CH ₃) ₃

Bsp. Nr.	R	R ¹	R ² .
I-62	CI—CH ₂ —	—CH₂CH₂CH₃	-CH-(CH ₂) ₂ -CH ₃
I-63	CI—CH ₂ —	-CH ₂ CH ₂ CH ₃	$-CH_2$
I-64	Cl—CH ₂ —	—CH₂CH₂CH₃	СН-
I-65	C1—CH2—	—CH₂CH₂CH₃	-CH ₂ -Cl
I-66	C1—CH2—	—CH₂CH₂CH₃	$-CH_2$ CI
			cí
I-67	Cl—CH ₂ —	—CH₂CH₂CH₃	-CH ₂
I-68	Cl—CH ₂ —	—CH₂CH₂CH₃	
I-69	Cl—CH ₂ —	—CH₂CH₂CH₃	
I-70	C1—CH2—	—СH(СН ₃) ₂	—CH₂CH₂CH₂CH₃ CH₃
I-71	C1—CH2—	—СH(СН ₃) ₂	
I-72	C1CH2	— CH(CH ₃) ₂	—СH ₂ —СH(СH ₃) ₂
I-73	C1—CH2—	—CH(CH ₃) ₂	—(CH ₂) ₄ —CH ₃
I-74	Cl—CH ₂ —	—СH(СH ₃) ₂	$-CH_2$
I-75	C1—CH2—	—CH₂CH₂CH₂CH₃	-CH ₂ CH ₂ CH ₂ CH ₃
I-76	Cl—CH ₂ —	—CH ₂ CH ₂ CH ₂ CH ₃	
I-77	C1-CH2-	—CH₂CH₂CH₂CH₃	
- I- 78 -	CI-CH2	—ен —с ₁Н₅	-CH ₂ -CH(CH ₃) ₂
		 CH₃	
I-79	Cl—CH ₂ —	•	-(CH ₂) ₅ -CH ₃
	C1—CH2—	$-CH_2-CH=CH_2$	

		-	
Bsp. Nr.	R	R ¹ .	R ² bzw. — N
Nr.			R ²
	CI CH	—CH₂CH₂—OH	-CH ₂ CH ₂ -OH
		-CH ₂ CH ₂ OCH ₃	CH ₂ CH ₂ OCH ₃
		_	-CH ₂ CH ₂ OC ₂ H ₅
		-CH2CH2OC2H5 $-CH2CH2O-CO-NH-CH3$	-CH ₂ CH ₂ O-CO-NH-CH ₃
			-CH ₂ CH ₂ O-CO-NH-CH ₂
1-83	CI—CH ₂	$-CH_2CH_2O-CO-NH-CH_2$	
		ĊH=CI	
T-86	C1—CH ₂ —	H—CH ₂ CH ₂ O—CO—NH	-CH ₂ CH ₂ O-CO-NH
		-CH ₂ CH ₂ O-CO-NH	-CH ₂ CH ₂ O-CO-NH
1-0 /	C1—C112—		
		CI	CI
		\bigcirc	
		CI	Cl
		3.	
I-88	C1-CH2-	•	-n' >
			CH₃
	•		+ H₃C
I-89	C1-CH2-		-N
	_		
		•	CH ₃
			H ₅ C ₂
1.00	Cl—CH ₂		_n
	C1— C112		\prec
	·		C ₂ H ₅
			_N
I-91	C1CH ₂		
•			$N(CH_3)_z$
100	C1 C1-		-N=C
1-92	C1—CH ₂ —	•	
			N(CH ₄) ₂
			CH₃ \
I-93	I—CH ₂ —	Н	—с́—с≡сн
	-		∤ CH₃
		• •	

5	Bsp. R Nr.	R ¹	R^2 bzw. $-N$ R^2
10	I-94 I—CH ₂ — I-95 I—CH ₂ —	CH ₃ —CH ₂ —CH=CH ₂	CH_3 $-CH-C = CH$ $-CH_2-CH = CH_2$

Bsp. Nr.	R.	R ¹	R ²
I-96	Cl₂CH—	Н	— CH ₂ — CH(CH ₃) ₂
I-97	CbCH—	H	— C(CH ₃) ₃
			CH₃
1-98	СьСН—	H	$-\overset{!}{C}-C_2H_5$
			 CH₃
- 00	~ ~ ~ ~ ~	**	$-CH_2-CH=-CH_2$
1 -99	СРСН—	п	CH₃
I-100	CkCH—	H	$-CH_2-C=-CH_2$
			CH₃
I-101	Cl ₂ CH—	Н	-с-¢≡сн
			 CH₃
T 102	Cl ₂ CH—	TI	CH ₂ CH ₂ Br
	•	•	-CH ₂ CH ₂ OH
1-103	Cl₂CH—		CH₃
	ChCH-		—СH ₂ —СН—ОН
	ChCH—		-CH ₂ CH ₂ CH ₂ -OH
	Cl₂CH—		-CH ₂ CH ₂ -OC ₂ H ₅
I-107	Cl ₂ CH—	H	CH ₂ CH ₂ CH ₂ OCH(CH ₃) ₂
			OC₂Hs
I-108	ChCH-	H	—CH₂—CH
			OC₂H₅
	•		CH ₃
T 100	C) OII	TT .	-c-cN
1-109	Cl₂CH—		
			C_2H_5
			C ₂ H ₅
I-110	Cl₂CH—	Н	-¢-cn
			l C₂H₅
T1 1 1	СьСН—	ч	-CH ₂ CH ₂ -N(CH ₃) ₂
	Cl ₂ CH—	· ·	—CH2CH2—N(C2H5)2
	ChCH—		-CH ₂ CH ₂ -NH-CO-CHCb
	Cl ₂ CH—		-CH2CH2CH2-NH-CO-CHCL
4 A A T	012011		C ₂ H ₅
	Cl ₂ CH—		-CH ₂ CH ₂ -N-CO-CHCl ₂
I -116	Cl₂CH—	Н	—(CH ₂) ₃ —N—CO—CHCl ₂
			(CH ₂) ₃ —NH—CO—CHCl ₂

Bsp. Nr.	R	R ¹	R ²
I-117	СРСН—	Н	$-CH_2$ H
I-118	Cl₂CH—	н	$-CH_2$
I-119	Сьсн—	н	-CH2
L 120	СРСН—	· H	-CH-CI
I -121	Cl ₂ CH—	Н	CI —CH ₂ —CI
I-122	СьСн—	Н	$-CH_2$ O
I-123	Cl₂CH—	H	−CH —CH
I-124	СРСН—	н	—CH2CH2—
I-125	Cl₂CH—	н .	NH—CO—CH2CI —CH——————————————————————————————————
I-126	СьСН—	н	NH—CO—CH₂C1 —CH———
1 127	CI CII	**	NO ₂ NH—CO—CHCl ₂
I-127	Cl ₂ CH—	н	NH-CO-CHCP
I-128	Cl₂CH—	н	-сн-
<u> </u>	~ · · · · · · · · · · · · · · · · · · ·		NO ₂ Cl
I-129	Cl₂CH—	Н	-сн-
		·	Cí NH—CO—CHCĿ

Bsp. Nr.	R _	R ¹	R ²
	· · · · · · · · · · · · · · · · · · ·		CH₃
I -130	Cl ₂ CH—	Н	-C = CH - CN
. 101	C) CII		CH_3 $-C = CH - COOC_2H_5$
1-131	Cl ₂ CH—	п	H A
-132	Cl ₂ CH—	H	\times
F133	Cl ₂ CH—	H	H .
			C ₂ H ₅
I-134	Cl ₂ CH—		
			C₂H₅
			C₂H₅ H N
-135	Cl ₂ CH—	Н	**************************************
-136	Cl₂CH—	H	$-CO-O-C_2H_5$
-137	Cl₂CH—	H	-CO-O-CH ₂ CH ₂ Cl
-138	Cl ₂ CH—	Н	-NH-CO-CHCL
			CH₃ I
-139	Cl ₂ CH	H	-N-CO-CHCl₂
			$CH_2 - CH = CH_2$
-140	Cl ₂ CH—	н	-N-CO-CHCl ₂
-141	Cl₂CH	Н	$\overline{\langle}$
		•	C ₂ H ₅
-142	Cl₂CH—	Н	
			(CH ₃) ₃ C
-143	Cl₂CH—	н	
•			CH ₃
-144	Cl₂CH—	H	
A TT			\succ

CH ₃ CH ₃ CH ₃ CH ₄ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₇		R ²		R ¹	R	Bsp. Nr.
CH ₃ CH		СН₃				
CH ₃ CH ₃ CH ₄ CH ₅ CH ₅ CH ₅ CH ₅ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ (CH ₃) ₂ CH H C ₂ H ₅ (CH ₃) ₂ CH OH C ₁ H ₅ C ₂ H ₅ (CH ₃) ₂ CH OH C ₁ H ₅ C ₂ H ₅ C ₂ H ₅ (CH ₃) ₂ CH OH C ₁ H ₅ C ₁ H ₅ C ₂ H ₅ C ₂ H ₅ C ₃ H ₅ C ₄ H ₅ C ₄ H ₅ C ₄ H ₅ C ₅ C ₁ H ₅ C ₁ C ₂ C ₃ C ₄ C ₁ C ₂ C ₃ C ₄ C ₄ C ₄ C ₅ C ₆ C ₇ C ₇ C ₈		CH ₃		- н	Cl ₂ CH	I-145
CH ₃ CH ₃ CH ₄ CH ₅ CH ₅ CH ₅ C2H ₅ C2H ₅ C2H ₅ C2H ₅ (CH ₃) ₂ CH (CH ₃) ₂ CH OH C1 C1 C1 C1 C1 C1 C1 C1 C1 C		CH ₃				
CH ₃ C ₂ H ₃ (CH ₃) ₂ CH L149 Cl ₂ CH— H C ₂ H ₃ (CH ₃) ₂ CH OH C ₁ H ₃ (CH ₃) ₂ CH C ₂ H ₃ (CH ₃) ₂ CH CH ₃ C ₂ H ₃ (CH ₃) ₂ CH CH ₃ CH				- н	Cl ₂ CH—	I-146
L-147 Cl ₂ CH— H C ₂ H ₃ C ₂ H ₅ C ₂ H ₅ (CH ₃) ₂ CH L-149 Cl ₂ CH— H (CH ₃) ₂ CH OH C ₁ H ₅ O C ₁ H ₅ O C ₂ H ₅ CH C ₁ CH C ₁ CH C ₁ CH C ₂ H ₅ O C ₁ CH C ₂ CH C ₂ CH C ₂ CH C ₃ CH C ₄ CH C ₄ CH C ₅ CH C ₆ CH C ₇ CH C ₇ CH C ₈						
C ₂ H ₃ C ₂ H ₅ C ₂ H ₅ (CH ₃) ₂ CH L149 Cl ₂ CH— H (CH ₃) ₂ CH OH C ₂ H ₃ O C ₃ H ₅ O C ₄ H ₅ (CH ₃) ₂ CH OH C ₂ H ₅ O C ₁ H ₅ CH CH ₃ CH OH C ₁ CH		CH ₃		17	C1 CH	I 1 <i>47</i>
C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ (CH ₃) ₂ CH L149 Cl ₂ CH— H C ₁ H ₅ (CH ₃) ₂ CH OH C ₁ H ₅ OH C ₂ H ₅ O C ₁ H ₅ O C ₂ H ₅ O C ₁ H ₅ O C ₂ H ₅ O C ₁ H ₅ O C ₂ H ₅ O C ₁ H ₅ O C ₂ H ₅ O C ₁ CH— H C ₂ CH— H C ₃ CH— H C ₄ CH— H C ₅ CH— H C ₁ CH— H C ₁ CH— H C ₂ CH— H C ₃ CH— H C ₄ CH— H C ₅ CH— H C ₆ CH— H C ₇ CH— H C ₈ CH— H C ₈ CH— H C ₉ CH— H C ₁ CH— H C ₂ CH— H C ₃ CH— H C ₄ CH— H C ₅ CH— H C ₆ CH— H C ₇ CH— H C ₈ CH— H C ₈ CH— H C ₈ CH— H C ₉ CH— H C ₉ CH— H C ₁ CH— H C ₂ CH— H C ₃ CH— H C ₄ CH— H C ₅ CH— H C ₆ CH— H C ₆ CH— H C ₇ CH— H C ₈ CH— H				. н	C ₁₂ C ₁₁	1-14/
C ₂ H ₃ (CH ₃) ₂ CH (CH ₃) ₂ CH OH 1-150 Cl ₂ CH— H C ₂ H ₃ O Cl						
CH ₃) ₂ CH				Н	Cl ₂ CH—	I-148
I-149 Cl ₂ CH— H (CH ₃)CH OH C ₂ H ₅ O Cl ₁ CH— H Cl Cl Cl Cl Cl Cl Cl Cl Cl C						
(CH ₃)-CH OH C ₂ H ₅ O C ₂ H ₅ O C ₁ L151 Cl ₂ CH— H CI		(CH³)2CH				
I-150 Cl ₂ CH— H C ₂ H ₅ O Cl Cl Cl Cl Cl Cl Cl Cl Cl C		30		H	Cl₂CH-	I-149
C ₂ H ₅ O C ₁ H ₅ O C ₁ C ₂ C ₁ C		-				
I-151 Cl ₂ CH— H Cl				Н	Cl ₂ CH—	I-150
I-152 Cl ₂ CH— H Cl Cl Cl Cl Cl Cl Cl Cl Cl		C₂H₅O				
I-152 Cl ₂ CH— H Cl Cl Cl			•	н	Cl₂CH—	[-151
Cl C		CI				
I-153 Cl₂CH— H		\rightarrow		Н	Cl₂CH—	l-152
Ci		Cı			·	
	m			H	Cl₂CH—	I-153
		Ci		:		
CF ₃		CF ₃				
I-154 Cl₂CH— H		$\overline{}$		H	Cl₂CH—	I-154

Bsp. Nr.	R _.	R ¹	R ²
I-155	Cl₂CH—	Н	0-C0-NH-C ₂ H ₅
I-156	СРСН—	₩	O-CO-NH-CH ₂ -CH=CH ₂
I-15T	СРСН—	Ħ	NH—CO—C ₂ H ₅
I-158	Cl₂CH—	Н	NH-CO-CHCl ₂
I-159	Cl₂CH—	Н	NH-CO-CHC12
I-160	Cl₂CH—	Н	
I-161	Cl ₂ CH—	H	—————————————————————————————————————
I-162	Cl₂CH—	H	CH ₃
	Cl₂CH—		N——CH ₃
	Cl ₂ CH—		N—N
	Cl₂CH—	•	CH ₃
I-167	Cl₂CH—	Н	N S

Bsp. Nr.	R	R ¹	R ²
I-168	Cl₂CH—	Н	N Br
			NC
I-169	Cl ₂ CH—	H	$rac{1}{s}$
I-170	Cl₂CH-	H ::) o
I-171	Cl₂CH—	H	
I-172	Cl₂CH—	н	NH
I-173	СЬСН—	СН₃	O —CH ₃
I-174	Cl₂CH—	CH₃	-CH ₂ CH ₂ CH ₃
I-175	Cl ₂ CH—	CH ₃	—СЩСН <u>Э</u>
I-176	Cl ₂ CH—	CH ₃	-CH ₂ CH ₂ CH ₂ CH ₃
I-177	Cl ₂ CH—	CH ₃	—CH—CH₂CH₃
			CH ₃
I-178	Cl₂CH—	CH ₃	—СH—(СH ₂) ₂ —СH ₃
			CH₃
I-179	Cl ₂ CH—	CH ₃	CHCHCH3
			CH ₃ CH ₃
I-180	Cl ₂ CH—	CH ₃	$-CH=C=CH_2$
	Cl ₂ CH—	·	-CH₂-C≡CH
I-182	Cl ₂ CH—	CH ₃	-CH-С≡СН
			CH ₃
I-183	Cl₂CH—	-СН-	-CH ₂ CH ₂ -OH
	Cl₂CH—	• · ·	-CH ₂ CH ₂ -CN
	Cl₂CH—		$-(CH_{2})_{2}-N-(CH_{2})_{2}-N-CO-CHCl_{2}$
			CH ₃ CH ₃
I-186	Cl ₂ CH—	СН₃	$-CH_2 \longrightarrow H$
	•		

	-		
Bsp. Nr.	R	R ¹	R ²
I-187	Cl ₂ CH—	СН3	−CH ₂ −−
			CH ₃
I-188	Cl₂CH—	CH ₃	−CH ₂ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
L 189	Cl ₂ CH—	СН ₃	—СH ₂ —СІ
I-190	Cl₂CH—	CH ₃	$-CH_2$ $C1$
I-191	Cl ₂ CH —	CH ₃	NH ₂
I-192	Cl₂CH—	CH ₃	$-N = C(CH_3)_2$ $CO - CHCl_2$
I-193	Cl₂CH—	CH ₃	-N CO-CHCl ₂
I-194	Cl₂CH—	CH ₃	
I-195	Cl₂CH—	CH ₃	$\rightarrow \bigcirc$
			C ₂ H ₅
I-196	Cl₂CH—	CH ₃	
			(CH ₃) ₂ CH
I-197	Cl ₂ CH—	CH ₃	
			СН,
I-198	Cl₂CH—	CH ₃	
			CH ₃
		· 	C₂H₅
I-199	Cl₂CH—	СН	
			C ₂ H ₅
I-200	Cl ₂ CH—	C ₂ H ₅	C ₂ H ₅
I-201	Cl ₂ CH—	C ₂ H ₅	-CH(CH3)2

Bsp. Nr.	R	R^1	R ²
I-202	Cl₂CH	C ₂ H ₅	—CH₂CH₂CH₂CH₃
I-203	Cl₂CH—	C_2H_5	$-CH-C_2H_5$
			l CH₃
I-204	Cl ₂ CH—	C ₂ H ₅	$-CH_2-CH(CH_3)_2$
I-205	СьСН—	C ₂ H ₅	— C(CH ₃) ₃
1-20 6	C♭CH-	C ₂ H ₅	—ÇH—CH₂CH₂CH₃
			 CHs.
F-2017	Сьсн—	C ₂ H ₅	—(CH ₂) ₅ —CH ₃
			C₂H₃
I-208	Cl₂CH—	C ₂ H ₅	-C=CH-CH₃
	Cl ₂ CH—		
			C₂H₅
I-210	Cl₂CH-	C ₂ H ₅	
J-211	CFCH—	C ₂ H ₅	—CH-———————————————————————————————————
- 010	C1 C17		-сн ₂ -Сн ₃
1-212	СРСН—	C ₂ H ₅	$-CH_2$ $-CH_3$
			_CH₃
F-213	СьСН—	C ₂ H ₅	-сн
*			СН₃
I-214	ClCH—	C ₂ H ₅	−CH ₂ −C
			CH ₃
I-215	СРСН—	C ₂ H ₅	-CH ₂
			CI
I-216	CFCH—	C ₂ H ₅	— н
			CH ₃
: : :			
I-217	Cl ₂ CH—	C ₂ H ₅	— н
			СН₃
			\prec
I-218	Cl ₂ CH—	C ₂ H ₅	— (н)

Bsp. Nr.	R	R ¹	R ²
I-219	.Cl ₂ CH—	C ₂ H ₅	H CH ₃
			CH₃
I-220	СРСН—	C ₂ H ₅	Н
I-271	ChCH—	C ₂ H ₅	CH ₃
j-22 2	Cl₂CH—	C ₂ H ₅	
·			C ₂ H ₅
I-223	CbCH-	CH ₃ CH ₂ CH ₂ —	— CH₂CH₂CH₃
I-224	Cl ₂ CH—	CH ₃ CH ₂ CH ₂ —	—CH ₂ CH ₂ CH ₂ CH ₃
I-225	Cl₂CH—	CH ₃ CH ₂ CH ₂ —	— CH — C₂H₅
			CH₃
I-226	Cl ₂ CH—	CH₂CH₂CH₂—	—CH ₂ —CH(CH ₃) ₂
I-227	ChCH-	CH ₂ CH ₂ CH ₂ —	—C(CH ₃) ₃
I-228	CbCH—	CH ₂ CH ₂ CH ₂ —	-(CH2)4-CH3
I-229	СРСН—	CH ₂ CH ₂ CH ₂ —	—ÇH—(CH₂)₂—CH₃
		· .	 CH₃
I-230	СьСН—	CH ₃ CH ₂ CH ₂ —	—CH—CH(CH ₃) ₂
			 CH₃
r.231	CrCH—	CH ₃ CH ₂ CH ₂ —	—(CH ₂)5—CH ₃
		CH ₂ CH ₂ CH ₂ —	-CH2CH=CH2
		CH ₃ CH ₂ CH ₂ —	$-C = CH - C_2H_5$
1 200	02011		CH ₃
I-234	Cl₂CH—	CH ₃ CH ₂ CH ₂ —	-CH ₂
			CH ₃
I-235	СьСН—	CH ₃ CH ₂ CH ₂ —	−CH₂—
I-236	СРСН—	СН₃СЊСЊ-	—сн ₂ —Сн ₃
			CH₃
I-237	Cl₂CH—	CH ₃ CH ₂ CH ₂ —	$-CH_2$ CH_3

Bsp. Nr.	R	\mathbb{R}^1	R ²
			CH ₃
J-238	СьСН—	CH ₂ CH ₂ CH ₂ —	-CH₂
I-239	C bCH—	СЊСЊСЊ—	CH ₃ —CH ₂ —CL
I- 240	СЬСН—	СН₃СН₂СП₂—	−CH ₂ ←CI
I-241	Cl ₂ CH—	CH ₃ CH ₂ CH ₂ —	—СH ₂ —0
I-242	СьСН—	CH₃CH₂CH₂—	$C1 \\ -CH_2-C=CH_2$
I-243	СрСН—	CH ₃ CH ₂ CH ₂ —	
I-244	ChCH—	CH ₂ CH ₂ CH ₂ —	
I-245	СьСН—	CH ₃ CH ₂ CH ₂ —	
I-246	Cl₂CH—	(CH ₃) ₂ CH—	— CH(CH ₃) ₂
I-247	СРСН—	(CH ₃) ₂ CH—	—CH₂CH₂CH₂CH₃
I-248	СьСН—	(CH ₃) ₂ CH—	—CH—C2H5
			l CH₃
I-249	СьСН—	(CH ₃) ₂ CH—	—CH2—CH(CH3)2
1-250	Cl₂CH—	(CH ₃) ₂ CH—	—(CH₂)₄—CH₃
I-251	СьСн—	(CH₃)₂CH—	— CH—(CH2)2— CH3 CH3
I-252	СРСН—	(CH ₃) ₂ CH—	$-CH_2-CH=CH_2$
I-253	Cl ₂ CH—	(CH₃)₂CH—	-CH ₂ -
I-254	Cl ₂ CH—	(CH₃)₂CH—	
1-255	СьСн—	n-C ₄ H ₉ —	—CH—C₂H₅ CH₃

Bsp. Nr.	R	R ¹	R ²
I-256	Cl₂CH-	n-C ₄ H ₉ —	— CH ₂ — CH(CH ₃) ₂
I-257	Cl ₂ CH—	n-C ₄ H ₉	$-C(CH_3)_3$
	Cl ₂ CH—	•	$-CH_2-CH=CH_2$
I-259	Cl ₂ CH —	n-C ₄ H ₉	$-CH=CH-C_2H_5$
I-260	Cl ₂ CH—	СН3	$-CH_2$
I-261	Cl ₂ CH—	n-C ₄ H ₉ —	$\overline{}$
F-262	Cl ₂ CH—	C_2H_s — CH —	—CH ₂ —CH(CH ₃) ₂
	-	CH ₃	
I-263	Cl₂CH—	C ₂ H ₅ —CH— CH ₃	
		(CH ₃) ₂ CH—CH ₂ —	-CH ₂ -CH=CH ₂
		$(CH_3)_2CH$ — CH_2 —	—со—н
		$(CH_3)_2CH$ — CH_2 —	—CQ—CH ₃
		$(CH_3)_2CH-CH_2-$	—со—снсь
		(CH ₃) ₃ C—	$-CH=CH-C_2H_5$
		(CH ₃) ₃ C—	$-CH_2-CH_2-OH$
		CH ₃ —(CH ₂) ₅ —	—(CH ₂) ₅ —CH ₃
		$CH_2 = CH - CH_2 -$	$-CH_2-CH=CH_2$
		$CH_2 = CH - CH_2 -$	$-CH_2-C=CH_2$
1-212	CigOII		CH ₃
I-273	СьСН—	$CH_2 = CH - CH_2 -$	$-CH_2-CH=N-OCH_3$
			Cl Cl
I-274	СьСН—	$CH_2 = CH - CH_2 -$	
		$CH_2 = CH - CH_2 -$	—CH ₂ ——
	_ 		r l
			г
I-276	Cl₂CH—	CH ₂ =CH-CH ₂ -	$-CH_2$
I-277	Cl ₂ CH—	$CH_2 = CH - CH_2 -$	$-CH_2$
			N N
I-278	B Cl₂CH—	$CH_2 = CH - CH_2 -$	—CH₂—N N
			`0 [^] C₂H₅
			, -

Bsp. Nr.	R	R ¹	R ²
I-279	Cl ₂ CH—	$CH_2 = CH - CH_2 -$	-CH ₂ -N N
I-280	Cl₂CH—	$CH_2 = CH - CH_2 -$	(CH ₂) ₂ —CH ₃ —CH ₂ —N CH ₃
1-281	Cl ₂ CH-	СН2—СН—СН2—	$-CH_2 \longrightarrow N$
I-282	Cl ₂ CH—	CH ₂ =CH-CH ₂ -	$-CH_2 \longrightarrow N \longrightarrow CH_3$ CH_3
I-283	Cl ₂ CH—	$CH_2 = CH - CH_2 -$	$-CH_2CH_2-N$
I-284	Cl ₂ CH—	CH_2 = CH - CH_2 -	CH ₃ CH CH N N N
I-285	Cl ₂ CH—	$CH_2 = CH - CH_2 -$	$-\mathbf{C}\mathbf{H}_{2}-\mathbf{C}=\mathbf{C}\mathbf{H}_{2}$
I-286	Cl ₂ CH—	$CH_2 = CH - CH_2 -$	—(H)
I-287	Cl ₂ CH—	$CH_2 = CH - CH_2 -$	
I-288	Cl₂CH—	$CH_2 = CH - CH_2 -$	N——CH ₃
I-289	Cl₂CH—	CH_3 $CH_2 = C -$	CH ₃
			СН₃
1-290	Cl₂CH—	C_2H_5 — CH = CH —	CH ₃ -C-C≡CH
		$H_2C = CH - CH_2 - CH_2 - CH_2 - CN$	CH_3 $-CH_2$ $-CH(OCH_3)_2$ $-CH_2$ $-CN$

	Bsp. Nr.	R	R ¹	R ²
	I-293	Cl₂CH—	—CH₂CH₂—CN	—CH₂CH₂—CN
	I-294	Cl₂CH—	-CH ₂ CH ₂ -OH	$-CH_2CH_2-OH$
	I-295	Cl₂CH—	$-CH_2CH_2-CI$	$-CH_2CH_2-C1$
	I-296	Cl ₂ CH—	-CH ₂ CH ₂ OCH ₃	-CH ₂ CH ₂ OCH ₃
	I-297	Cl₂CH—	CH ₂ CH ₂ OC ₂ H ₅	-CH2CH2OC2H5
			OH	OH
	I-298	CŀCH—	$-CH_2-CH-CH_3$	-CH ₂ -CH-CH ₃
1	L 299	Cl ₂ CH—	(CH ₂) ₂ OCOC ₂ H ₅	$-(CH_z)_zOCOC_2H_5$
]	F-300	Cl ₂ CH—	(CH ₂) ₂ OCOCHCl ₂	—(CH ₂) ₂ OCOCHCl ₂
]	I-301	Cl₂CH—	—(CH₂)₂OCOOCH₃	—(CH ₂) ₂ OCOOCH ₃
]	I- 302	Cl ₂ CH—	-(CH2)2OCOSC2H5	(CH2)2OCOSC2H5
]	I-303	Cl ₂ CH	-(CH ₂) ₂ OCONHCH ₃	—(CH ₂) ₂ OCONHCH ₃
]	[-304	Cl₂CH—	-(CH2)2OCON(CH3)2	—(CH ₂) ₂ OCON(CH ₃) ₂
	-305	Cl ₂ CH—	-(CH2)2OCONHC2H5	(CH2)2OCONHC2H5
]	I-30 6	Cl ₂ CH—	-(CH ₂) ₂ OCONHCH(CH ₃) ₂	—(CH ₂) ₂ OCONHCH(CH ₃) ₂
]	-307	Cl ₂ CH—	—(CH ₂) ₂ OCONH(CH ₂) ₂ CH ₂	—(CH2)_OCONH(CH2),CH3
]	-308	Cl ₂ CH—	-(CH2)2OCONHCH2CH=CH2	$-(CH_2)_2OCONHCH_2CH=CH_2$
]	-309	Cl₂CH—	—(CH ₂)₃OSO₂CH₃	(CH ₂) ₂ OSO ₂ CH ₃
	-310	Cl ₂ CH—	—(CH₂)₃NHCOCHCl₂	—(CH₂)₃NHCOCHCl₂
				C ₂ H ₅
ì	-311	Cl ₂ CH—	—CH₂OCH₃	
		-	-	
	•			C₂H₅
]	-312	Cl ₂ CH—	—CH₂CH₂—SH	—CH ₂ —
1	-313	Cl₂CH—	-CH ₂ CO-OC ₂ H ₅	
			CH ₃	CH ₃
I	-314	Cl₂CH—	-CH-CO-OCH₃	
				CH ₃
			CH ₃	CH ₃
I	-315	Cl₂CH—	-CH-CO-OCH ₃	
				C₂H₅

Bsp. Nr.	R	R^1	R ²
I-316	Cl₂CH—	CH. CH—CO—OCH,	CH ₃
	a. a	CH ₃	C ₂ H ₅ C ₂ H ₅
1-317	СРСН—	—CH—CO—OC₂H₅	C ₂ H ₅ CH ₃
I-318	Cl₂CH—	$-CH_2-N$	C ₂ H ₅
I -319	Cl₂CH—	$-CH_2-N$	C ₂ H ₅

Tabelle 1 Fortsetzung	ortsetzung			
Bsp. Nr.	æ.	R.	R ²	bzw N R ²
		•	C,H,	
I-3 20	Сі,СН—	$-\mathrm{CH}\!-\!\mathrm{CH}_2\!-\!\mathrm{OCH}_3$		
		CI CH ₂	C_2H_5	
		CH3	CH,	
1-321	ChCH—	c=_cHcocH ₃		
	. · · .		CH ₃	
		CH,	ij, J	
I-322	Cl ₂ CH—	—с=сн—сосн ₃		
	 .		C_2H_5	
		CH, 	<u>.</u> J	
I-323	Сl ₂ СН—	—c=сн—сосн ₃		
			づ	
		CH ₃	CP ₃	
1-324	Cl ₂ CH—	—с =сн —сосн ₃	\Diamond	

18 **00**4

, RI	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									N(CH ₃),	·	N(CH ₃),		,
	N— Mzq	CF ₃	CF.			;	5	Dc1	Э—соси,		0=N-		N N	N
	R ²	CH ₃	-с=сн-сосн,	CH ₃	-с=сисоос,н,	CH ₁	0=	-с-н	—со—снси					
	x		Сьсн—		Сісн—			Сьсн—	ChCH—		Сьсн—		Сьсн—	ChCH.—
	Š. Ž.		I-325	. '	I-326			I-327	1-328		I-329		1-330	1-331

							·
bzw. —N	N N	CH ₁	N N N N N N N N N N N N N N N N N N N	$-N$ CH_3	CH_3	-N CH ₃	CH ₃
							·
R ²		-					
.					·		.* · ·
R			·				
ĸ	Cl ₁ CH—	Сисн—	Сисн—	Сі,СН—	ChCH—	Сісн—	Сі,СН —
Bsp. Nr.	F332	I-333	F-334	I-335	1-336	I-337	F338

$C_{L_{1}CH} = \begin{pmatrix} C_{H_{1}} & K_{1} & K_{2} & W_{1} & W_{2} & $					18.
	-	~	E	. R ²	\
	1	Сьсн—			CH ₃
		Сьсн—			
HJ N		Сьсн—			YY
CH, CH,		Сьсн—			CH ₃
		Сісн—			X

Bsp. Nr.	~ ~	-я		. %	·	bzw. — N
						C,H,S
I-344	Cl ₂ CH—					Z Z
1-345	Сьсн—					-N CH ₃
1-346	Сьсн—					-N -C ₂ H ₅
J .347	Cl ₂ CH—		-			Chi,
1-348	ChCH —		. ~			CHIACHAL
I-349	Сьсн—					

Bsp. Nr.	æ	~	R2	bzw. — N
I-350	Сьсн—			−N ←CH(CH ₃)2
I-351	Сьсн—			H CH2
I-352	Cl ₂ CH—			\bigcirc_{z}
I-353	Сі,СН—			0=_N-
I-354	Сі,СН—			OCH ₃
1-355	Сьсн—			$-N \qquad \qquad$
I-356	Сусн—			
I-357	Cl2CH—			$\bigcirc 0$

Bsp. Nr.	æ	- X -	R ² :	bzw N R ¹
F358	ChCH—		-	CH ₁ CH ₂
1-359	Сьсн—			
F360	Сьсн—			CH ₃ CH ₃
1 -361	Сьсн—			y Z
1-362	ChCH—			CO CCH ₃
1-363	Сьсн—			

Bsp.	u	ן א	R²	.bzwN
I-371	Сьсн—			$-N$ $N-CH_3$
1-372	ChCH—	· _		$-N$ $N-(CH_3)_2-CH_3$
1-373	ChCH—			
1-374	Сьсн—			
1-375	ChCH—			$-N \longrightarrow N -C -OC_2H_5$
1-376	ChCH—			$-N$ $N-CH_2$
1-377	ChCH—			$-N$ $N-(CH_1)h$
1-378	ChCH —			$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
I-379	ChCH—			$-N \longrightarrow N - CH_2 - CH = CH - \bigcirc$

Bsp.		- z	R²	bzwN R
I-380	Сьсн—			
I-381	Сьсн—			
I-382	Съсн—			CH ₃
	Сьсн—			$-N \longrightarrow N \longrightarrow CH_3$
I -384	Сьсн—			
I-385	Сьсн—			-N CH3
I-386	ChCH—			-N N-N-N-

Bsp. Nr.	~	א ^י .	R²	bzw. — N
I-387	Сьсн—			-N N-
F388	Сьсн—			CI N N N N N N N N N N N N N N N N N N N
F389	Сьсн—			
F390	ChCH—			
1-391	ChCH —			$\frac{1}{100} \frac{1}{100} \frac{1}$
F392	ChC#—		·	
I-393	ChCH—			OCH ₃
I-394	Cl2CH—			-N N N N N N N N N N

Bsp. Nr.	. <u>«</u>	Text	$ m R^2$	bzw. — N
F395	Сьсн—			Chico
I-396	Сьсн—			$-N$ \sim
I-397	Сьсн—			-N N N OCH
I-398	Сисн—			N—CO—CHCl
F-399	ChCH—			CH ₃ CH ₃ -N N-CO-CHCl ₂
F-400	Сьсн—			CH ₃ -N N-CO-CHCl ₂ CH ₃

Bsp. Nr.	~	<u>~</u>	. Z	bzw N R ²
1-401	Сьсн—			
1-402	Сисн—			
I-403	ChCH —			
I-404	ChCH—			
I-405	Сьсн—			
I-406	— нэчэ			

Bsp.	œ	я	$ m R^2$	bzw. — N — wzd
				CH ₃
I-407	Cl2CH—			× ×
	****			CH,
I-408	Сьсн—			-N-CH3
æ.	-			\supset
I-409	Сьсн—			CH ₃
I-410	Съсн—			N CH3
				5>

		-				
bzw N R ¹		CH,		$\bigvee_{-CH_3}^{-N}$		
R²						
- ec			· .	• •		
æ	Сьсн—	Сьсн—	СЬСН	CLCH—	ChCH —	ChCH—
Bsp. Nr.	I-411	1-412	1-413	1-414	I-415	1-416

Bsp.	œ	. %	.		bzw. —N
I-417	Съсн—				rH _O
I-418	Съсн—				CH ₃ CH ₃
I -419	Сьсн—				/ / / /
I-420	Сьсн—			•	CH ₃ CH ₃
1-421	Сьсн—				CH ₃ CH ₃ CH ₃ CH ₃

Bsp. Nr.	ĸ	אי	R ²	bzw N R
I-422 I-423	Cl ₃ C —	Н	$-CH_2-CH=CH_2$ $-CH_2CH_2-Br$	
I-424	Cl³C—	 H	CH, -C-C,H,	
I-425 I-426	ChC –	н	CH ₁ —NHCQCH ₂ Cl CH ₃	
I-427	Cl ₃ c —	CH ₃	$-c_{H}-c=c_{H}$ $c_{H_{3}}$	
1-428 1-429 1-430	Clac— Clac— Clac—	C ₂ H ₅ —CH ₂ CH ₂ CH ₃ —CH(CH ₃),	— сн,сн,сн,сн, — сн,сн,сн, — сн(сн,)	
J-431 J-432		$-CH_1CH(CH_1)_1$ $-CH_1-CH=CH_2$	$-CH_2CH(CH_3)_1$ $-CH_2-CH=CH_2$	
I-433	Ci ³ C —			-N
I-434	Clic			CH ₁

B N	~	א	R ²	bzw N R ²
I-435	B ₁₃ C —	н	сн, —с—с=сн сн,	
I-436	В ₃ С—	н	CH3	
I-437	В3С—	æ	СН, —СН,—СН=СН, СН,	
I-438 I-439	B ₁₃ C— B ₁₃ C— CH ₃	CH ₁ —CH ₂ —CH=CH ₂	—сн—с≡сн —сн,—ст=сн —сн,—сн=сн	
I-4 40	CI—CH—	$-CH_2-CH=CH_2$	$-c_{\mathrm{H_2}}-c_{\mathrm{H=CH_2}}$	
I-441	CI—CH—	$\mathrm{CH}_2\mathrm{CH} = \mathrm{CH}_2$	—СH ₂ —СО—СН ₃	
I-442	CI—CH— CH3	$-CH_2-CH=CH_2$	$-CH_2-CH=N-OCH_3$ CH_3	
I-443	CI—CH—	$-CH_2-CH=CH_2$	$-CH_2-C=N-OCH_3$	

Bsp. Nr. 1-450 [-452 [-453	CI — CH ₃ CI — CH ₃ CI — CH ₄ CI — CH ₃ CI — CH ₃ CI — CH ₄ CI — CH ₃	_ _ ~		24			CH, CH, CH, CH,	
I-455	C!—CH,			·		CH.	0	

Bsp. Nr.	CH3 CI—CH—	~ ~	R2		bzw. —N R ¹ OC ₂ H ₅ —N QC ₂ H ₅	-
I-457	CH C					
I -459	CH3—CH3					
1-460	CH ₃					
I-461	CI—CH ₃				$-N$ $N-CH_3$	

Bsp. Nr.	 	R	R ²	bzwN
1-462	CI—CH3			-N N-COOC ₂ H ₅
I-463	CI—CH—			$-N \longrightarrow N - (CH_2)_1 - (CH_2)_2 - (CH_2)_3 - (CH_2)_4 - (CH_2)_4 - (CH_2)_5 - $
I-464	CH3-CI-CH-			$-N \longrightarrow N - CH_3$
I-465	CH3—CH3—CCH—			
I-466	CH3 CI—CH—			CH ₃
I-467	CH3 C1—CH3—			-N N-CH ₃
I-468	CI—CH3			ES N
				CH3

Tabelle 1 Fortsetzung

Bsp. Nr.	R	R ¹	R ²
			CH₃
I-476	C1—CH ₂ CH ₂ —	Н	-c-c≡ch
			CH₃
			CH₃
I-477	CI—CH ₂ CH ₂ —	CH ₃	—ĊH—C≡CH
L-478	CI—CH ₂ CH ₂ —	$-CH_2-CH=CH_2$	$-CH_2-CH=-CH_2$
	CI	— CH — CH— CH-	—СН₂—СН = СН
1-4 /9	CH₃—C—	— C112— C11— C112	
	Cl Br	:	CH ₃
I-480	CH ₃ —CH—	H	 —C—C≡CH
			 CH₃
	Br	No.	СН
I-481	CH ₃ —CH—	CH ₃	—С Н —С≡СН
	Br I		·
I-482	CH ₃ —CH—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
	F		
I-483	F ₃ C - C - C	—Сн ₂ —Сн=Сн ₂	-CH ₂ -CH=CH ₂
I-484	F F BrCH ₂ CH ₂ CH ₂ —	H	—SO₂C1
	CH ₃		СН₃
I-485	Br—-C—	н	-с-с≡сн
	CH,		CH₃
	СН , 		
I-486	Br— Ċ—	$-CH_2-CH=-CH_2$	$-CH_2-CH=CH_2$
	ĊH,	an an an	cu cu—cu
	Br - (CH2)5 - HO - CH2	$-CH_2-CH=CH_2$ C_2H_5	$-CH_2-CH=CH$ C_2H_5
	NC-CH ₂ -		$-CH_2-CH=CH$
I-490	NCO-CH ₂ -	$-CH_2-CH=CH_2$	-CH ₂ -CH=CH
	H	· ·	CH ₃
I-491		H	—Ċ—С≡СН
	CH₂—	•	ĊH ₃

Bsp. Nr.	R	\mathbb{R}^1	R ²
I-492	CH ₂ —	CH ₃	CH₃ CHC≡CH
1-493	CH ₂ —	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
1-494	ECH ₂ CH ₂ —	CH₃	CH. CH€≡CH
I-495	CH ₂ CH ₂ —	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-496	CH ₂ CH ₂ —	СН₃	CH; CH-C≡CH
I-497	CH ₂ CH ₂ —	$-CH_2-CH=CH_2$	$-CH_2-CH=-CH_2$
I-498	CH ₂ CH ₂ CH ₂ — CHCl ₂	C ₂ H ₅	—C ₂ H ₅
I-499	HO—C—O—CH ₂ — CHCl ₂ CCl ₃	$-CH_2-CH=CH_2$	$-CH_2-CH=-CH_2$
I-500	HO—C—O—CH ₂ — CHCl ₂	$-CH_2-CH=CH_2$	$-CH_2-CH=-CH_2$
I-501	C ₂ H ₅ S CH————————————————————————————————————	$-CH_2-CH=CH_2$	-CH ₂ -CH=CH ₂
I-502	CH ₂ —	H	CH ₃ CH ₃ CH ₃ CH ₃
I-503	<u></u> СН₂—	CH ₃	CH-C≡CH
I-504		—СН₂—СН=СН	$-CH_2-CH=CH_2$

Bsp. R Nr.	R ¹	R ²
C ₂ H ₅	Н	CH ₃ -C-C≡CH CH ₃
I-506 CH—	СН₃	CH₃ CHC≡CH
CI I-507 CI————————————————————————————————————	Н	CH=CH-CO-C(CH ₃) ₃
I-508 OCH ₃	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
C1 CH—	Н	CH ₃ -C-C≡CH CH ₃
I-510 CH—	СН₃	CH₃ —CH—C≡CH
I-511 CH—	$-CH_2-CH=CH_2$	$-CH_2$ — CH = CH_2
CI—O CH—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-513 CI————————————————————————————————————	н	—CH ₂ —CH(CH ₃) ₂
I-514 S CH ₂ —	Н	CH ₃ CCN CH ₃
I-515 CH ₃ —CO—CH ₂ —	$-CH_2-CH=CH_2$	-CH2-CH=CH2 $CH3$
I-516 CH ₃ COOCH—	H	-C-C≡CH CH₃

Bsp. Nr.	R	R ¹	R ²
I-517	сн₃со—сн—	Н	CH ₃ CH ₃ CH ₃
1-518		$-CH_2-CH=-CH_2$	—СН ₂ —СН —СН ₂
I -519	C1 C1 C1 C1 C1 C C=C C C C C C C C C C C	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I -520	CH ₃ O—CO—CH ₂ CH ₂ —	. Н	CH ₃ -C-C≡CH CH ₃
I-521	$(CH_2 = CH - CH_2)_2N$ $ $ $CH_2 -$	—CH₂CH=CH₂	$-CH_2-CH=CH_2$
I-522	$ \begin{array}{c c} CH_3 \\ HC \equiv C - C - NH \\ CH_3 & CO \\ CH_2 - C \end{array} $	н	CH ₃ −C−C≡CH CH ₃
I-523	$CH_{2}-CH_{2}-CH_{3}$ $CH_{3} CH_{3}$ $CH_{2}-CH_{3}$ $CH_{2}-CH_{3}$ $CH_{2}-CH_{3}$ $CH_{2}-CH_{3}$ $CH_{2}-CH_{3}$ $CH_{2}-CH_{3}$ $CH_{2}-CH_{3}$	СН₃	CH₃ —CH—C≡CH
I-524	CH_2 — CH_2 — CH_2 — CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2	$-CH_2CH=CH_2$	$-CH_2-CH=CH_2$
1-525	CH_{2} — CH_{3} O $HC \equiv C - CH - N - C - (CH_{2})_{2} - CH_{3}$	—CH₃	CH₃ CHC≡CH
	$(CH_2 = CHCH_2)_2N - C - (CH_2)_2 -$	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$

Bsp. Nr.	R	R ¹	R ²
I-527	$ \begin{array}{c cccc} CH_3 & O \\ & \parallel \\ & \parallel \\ & -CH_2)_3 - \\ & -CH_3 \end{array} $	—СН3	CH₃ CH-C≡CH
I-528	$ \begin{array}{c c} O \\ \parallel \\ (H_2C = CHCH_2)_2N - C - (CH_2)_3 - \\ CH_3 & O & CH_3 \end{array} $	$-CH_2-CH=CH_2$	-CH2-CH=CH2 $CH3$
I-529	$HC \equiv C - \stackrel{\downarrow}{C} - NH - \stackrel{\downarrow}{C} - \stackrel{\downarrow}{C} - \stackrel{\downarrow}{C} - \stackrel{\downarrow}{C} - \stackrel{\downarrow}{C} + $	Ħ	—C—C≡CH CH₃
I-530	$(H_2C = CHCH_2)_2N - C - C - C - CH_3$ CH_3	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-531	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	—СH ₃	CH₃ —CH—C≡CH
I-532	$ \begin{array}{c cccc} CH_3 & O \\ & $	—СН3	CH₃ —CH—C≡CH
I-533	$(CH_2 = CHCH_2)_2N - C - (CH_2)_4 -$	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-534	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H	CH ₃ CH ₃
1-535	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	— CH ₃	CH, -CH-C≡CH
I-536	$ \begin{array}{c} O \\ \parallel \\ (CH_2 = CHCH_2)_2N - C - CH_2 - O - CH_$	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-537	$(CH_{2}=CHCH_{2})_{2}N-\ddot{C}-CH_{2}-O-$	—CH₂—CH=CH₂	$-CH_2-CH=CH_2$

Bsp. Nr.	R	R ¹	R ²
I-538	CH ₂ =CH	н	CH ₃ -C-C≡CH CH ₃
I-539	$CH_2 = CH -$	СН₃	CH ₃ CHC≡CH CH ₃
1-54 0	CH ₃ —CH=CH—	H	-C-C≡CH
I-541	CH ₃ —CH=CH— CH ₃	$-CH_2-CH=CH_2$	CH_3 $-CH_2-CH=CH_2$ CH_3
I-542	$CH_2 = C -$	Н	-C-C≡CH
I-543	(CH ₃) ₂ C=CH-	H *	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
I-544	$(CH_3)_2C = CH -$	—СН ₃	—CH—C≡CH CH₃
I-545	СН3-СН=СН-СН=СН-	H .	-C-C≡CH
I-546	CH ₃ —CH=CH—CH=CH—	$-CH_2-CH=CH_2$	CH_3 $-CH_2-CH=CH_2$ CH_3
I-547	CI-CH=C-	—СН₃	-CH-C≡CH
I-548	$HO - C = C - COOCH_3$	H	-√C _I
I-549	СН=СН-	H	—C(CH ₃) ₃
I -550	СН=СН-	н	CH ₃
I-551	СН=СН-	СН₃	CH₃ CHC≡CH

Bsp. Nr.	R	R ¹	R ²
	F		
I-552	CH=CH-	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
1-553	F—CH=CH—	Н	CH ₃
I-554	F_CH=CH-	$-CH_2-CH=CH_2$	СH₂СН=-СH₂
I-555	F—CH=CH—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-556	CI — CH=CH—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-557	CH_3 — CH = CH —	Н	CH ₃ -C-C≡CH CH ₃
I-558	$CH_3 \longrightarrow CH = CH -$	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-559	CH ₃ O CH=CH— CH ₃ O	н	CH ₃ CC≡CH CH ₃
I-560	CH₃	н	CH, -CCN CH,
I-561	CI—O—CH=CH—	н	CH ₃ —C—C≡CH CH ₃
I-562	$Cl_2C = C$	$-CH_2-CH=CH_2$	-CH ₂ -CH=CH ₂
I-563	H	H	CH ₃

Bsp. Nr.	R	R ¹	R ²
	H	СН3	CH₃ —CH—C≡CH
I-565	H	CH ₂ CH=- CH ₂	CH ₂ CH=- CH ₂
1-566	H	Н	CH ₃ -C-CN CH ₃
I-567	✓ н	Н	CH ₃ CC≡CH CH ₃
I-568	✓ H	CH ₃	CH ₃ −CH−C≡CH
I-569	₩ H	CH ₂ CH=- CH ₂	$-CH_2-CH=CH_2$
1-570	H H	Н	CH ₃ -C-C≡CH CH ₃
I-571	H	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-572	CH ₂	Н	CH ₃ -C-C≡CH CH ₃
I-573	CH ₂	H	CH ₃ -C-CN CH ₃

Bsp. R Nr.	R ¹	R ²
O CH ₃ C—NHC—C≡CH CH ₂ CH ₃	Н	CH_3 $-C-C = CH$ CH_3
O C N(CH ₂ CH=CH ₂) ₂	—СН₂—СН=	=CH ₂ —CH ₂ —CH=CH ₂
I-576	СН₃	—CH—C≡CH
1-577	—CH₂—CH=	$= CH_2 - CH_2 - CH = CH_2$
I-578 F	Н	CH ₃ -C-C≡CH CH ₃
1-579	CH ₃	CH₃ —CH—C≡CH
I-580 F	—CH2—CH=	$=CH_2$ $-CH_2$ $-CH=CH_2$
I-581 F—	H	CH ₃ CH ₃ CH ₃
I-582 F	— CH ₂ — CH=	$=CH_2 - CH_2 - CH = CH_2$
C1 I-583 C1	CH ₃	СН₃ —СН—С≡СН
I-584	— CH₂— CH=	$=CH_2 - CH_2 - CH = CH_2$

Bsp. Nr.	R	R ¹	R ²
I-585	CI	н	CH ₃
I-586	CI	СН3	CH₃ CH-C≡CH
1-58 7	CI—O	-CHz-CH=CH2	—СН _z —СН=СН _z
I-588	CI	н	—C(CH ₃) ₃
I-589	Br	− С Н ₃	CH₃ —CH—C ≡ CH
I-590	Br	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-591		H	CH ₃ CC≡CH CH ₃
I-592		—СН3	CH₃ -CH-C≡CH
1-593	CI	н	CH ₃ -C-C≡CH CH ₃
I-594	CI—	—СH ₃	CH; CHC≡CH
I-595		H	CH=CH-CO-C(CH ₃) ₃
	Cl		

Bsp. R Nr.	R ¹	R ²
I-596 CI————————————————————————————————————	—СН3	CH₃ -CH-C≡CH
CH ₃	н	CH ₃ -C-C≡CH CH ₃
I-598 CH ₃	СН₃	CH-C≡CH
I-599 CH ₃	—СН ₃	CH-C≡CH
I-600 CH ₃	—CH₂—CH—	$CH_2 - CH_2 - CH = CH_2$
I-601 CH ₃ ————	H	CH_3 $-C-C = CH$ CH_3
I-602 CH ₃ —	СН₃	CH₃ —CH—C≡CH
I-603 CH ₃ —	—CH₂—CH=	CH_2 $-CH_2$ $-CH=CH_2$
I-604 OCH ₃	Н	CH ₃ -C-C≡CH CH ₃
OCH ₃	— СН ₃	CH ₃ −CH−C≡CH
I-606 CH ₃ O	—СН₃	СН-С≡СН
I-607 CH ₃ O	—СH ₂ —СН=	$=CH_2$ $-CH_2$ $-CH=CH_2$

Bsp. Nr.	R	R ¹	R ²
I-608	CH ₃ O	—СН3	CH₃ -CH-C≡CH
1.600	CH₃O CH₃O		CH₃
1-009	CH ₃ O CH ₃ O	— СН ₃	—CH—C≡CH
I-610	F ₃ C	СН3	-CH-C≡CH
I-611	O_2N	$-CH_2-CH=CH_2$	—СH ₂ —СН=СH ₂ СН ₃
I-612	O ₂ N	н	-C-C≡CH CH ₃
I-613		$-CH_2-CH=CH_2$	—СН₂—СН=СН₂ СН₃
I-614	O_2N	н	_С—С≡СН СН₃
I-615	O_2N	—СH ₃	CH ₃ —CH—C≡CH
I-616	O_2N	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
<u>1</u> -617	Соон		CH ₃ −C−C≡CH
	соон		ĊН₃
I-618		$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$

Bsp. Nr.	R	R ¹	R ²
	COONa		CH ₃
I-619		Н	-C-C≡CH CH₃
I-620	coo _e	н	CH ₃
	CH ₃ H ₃ N [⊕] — C — C ≡ CH		СН₃
	 CH₃		
	CH₃ CONHCC≡CH		СН3
I-621	CH ₃	H	—C—C≡CH
	СН₃		ĊH ₃
I-622	CH-C≡CH CH ₃ CH ₃	СН,	CH₃ —CH—C≡CH
I-623	CH-C≡CH	—СH ₃	CH—C≡CH
	$CO-N(CH_2CH=CH_2)_2$		
I-624		$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
	$N(CH_2CH = CH_2)_2$ $O = C$		
I-625		$-CH_2-CH=CH_2$	-CH ₂ -CH=CH ₂
I-626	CICH ₂ —CO—NH———	Н	CH ₃

Bsp. Nr.	R	R ¹	R ²
I-627	(CH2=CHCH2)2N-C $(CH2=CHCH2)2N-C$	$-CH_2-CH=CH_2$	—СH ₂ —СН=СН ₂
I-628	CH ₃ O NC—C—NH—C CH ₃ CH ₃ NC—C—NH—C	Н	CH ₃ CCN CH ₃
I-629	CH ₃ CH ₃ S H	$-CH_2-CH=CH_2$	-CH₂-CH=CH₂
I-630		H	$ \begin{array}{c} \text{CH}_{3} \\ -\text{C} - \text{C} \equiv \text{CH} \\ \\ \text{CH}_{3} \end{array} $
I-631		—СН3	CH₃ -CH-C≡CH
I-632		-CH ₂ -CH=CH ₂	$-CH_2-CH=CH_2$
I-633		H	CH ₃ -C-C≡CH CH ₃ CH ₃
I-634		СН ₃	—CH—C≡CH
I-635		$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$

Bsp. Nr.	R	R ¹	R ² .
I-636	$C \equiv CH$ $CH_3 - C - CH_3$ $HN - C - N$ O	Н	CH ₃ -C-C≡CH CH ₃
I- 6 37	(CH ₂ —CHCH ₂) ₂ NC	—CH ₂ —CH==CH ₂	—CH ₂ —CH=CH ₂
I-638	C1—CH ₂ CH ₂ O—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-639	CHCH₂O—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-640	CI' $CH_3-C\equiv C-CH_2O-$	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-641	ci—(O)—0—	$-CH_2-CH=CH_2$	$-CH_2-CH=-CH_2$
I-642	O C₂H₅O—C—	—CH₃	CH₃ CHC≡CH
I-643	C ₂ H ₅ O—C—	$-CH_2-CH=-CH_2$	$-CH_2-CH=CH_2$

36 18 004

Tabelle I Fortsetzung	ortsetzung			
Bsp. Nr.	æ	R ¹ .	R ²	bzw. —N
I-644	$CH_3 O CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3$	Ħ	CH ₃ — C — C ≡ CH CH ₃	
I-645	$CH_{s} CH_{s}$ $+C = C - CH - N - C - CH - CH$	—сн,	сн, - снс≡сн	
I-646	(CH2 = CH - CH2)N - C - CH2	—СН,СН=СН,	—CH ₂ —CH=CH ₂	CH3
I-647	Сьсн—			TX
I-648	Сьсн—			H,C CH,
I-649	Сьсн—	$-CH_2-CH=CH_2$	$-CH_2-CO-NH-CH_2-CH=CH_2$	

69

Die erfindungsgemäß verwendbaren Amide der Formel (I) sind bekannt (vergl. z. B. DE-OS 28 28 265, DE-OS 32 28 007, DE-OS 22 18 097, DE-OS 23 50 547, DE-OS 34 26 541, DE-OS 29 05 650 und US-PS 45 31 970).

Die erfindungsgemäß verwendbaren Amide der Formel (I) eignen sich — wie bereits erwähnt — zur Verbesserung der Kulturpflanzen-Verträglichkeit von herbizid wirksamen Sulfonyliso(thio)harnstoff-Derivaten der Formel (II).

Die erfindungsgemäß verwendbaren herbizid wirksamen Sulfonylharnstoff-Derivate sind durch die Formel (II) allgemein definiert.

Bevorzugt verwendbar sind herbizide Sulfonyliso(thio)harnstoff-Derivate der Formel (II), bei welchen R³ für den Rest

10

steht worin

R⁸ und R⁹ gleich oder verschieden sind und für Wasserstoff, Halogen [wie insbesondere Fluor, Chlor, Brom und/oder Iod], Cyano, Nitro, C₁—C₆-Alkyl [welches gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Carboxy, C₁—C₄-Alkoxycarbonyl, C₁—C₄-Alkylamino-carbonyl, Di-(C₁—C₄-alkyl)-amino-carbonyl, Hydroxy, C₁—C₄-Alkoxy, Formyloxy, C₁—C₄-Alkyl-carbonyloxy, C₁—C₄-Alkoxy-carbonyloxy, C₁—C₄-Alkylamino-carbonyloxy, C₁—C₄-Alkoxylaminosulfonyl, C₃—C₆-Cycloal-kyl oder Phenyl substituiert ist], für C₂—C₆-Alkoxy [welches gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Carboxy, C₁—C₄-Alkoxylamino-C₁—C₄-Alkoxy [welches gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Carboxy, C₁—C₄-Alkylamino-C₁

p für die Zahlen 1 oder 2 steht und

R¹⁰ für C₁—C₄-Alkyl [welches gegebenenfalls durch Fluor, Chlor, Brom, Cyano oder C₁—C₄-Alkoxy-carbonyl substituiert ist], C₃—C₆-Alkenyl, C₃—C₆-Alkenyl, C₁—C₄-Alkoxy, C₁—C₄-Alkoxyamino, C₄—C₄-Alkoxyamino, C₁—C₄-Alkylamino, C₁—C₄-Alkylamino oder Di(C₁—C₄-alkylamino steht).

R⁸ und R⁹ weiterhin für Phenyl oder Phenoxy, für C₁—C₄-Alkylcarbonylamino, C₁—C₄-Alkoxycarbonylamino, C₁—C₄-Alkylamino-carbonylamino, Di-(C₁—C₄-alkyl)-amino-carbonylamino, oder für den Rest —CO—R¹¹ stehen, wobei

R¹¹ für C_1 — C_6 -Alkyl, C_1 — C_6 -Alkoxy, C_1 — C_4 -Alkoxyimino- C_1 — C_4 -alkoxy, C_3 — C_6 -Cycloalkoxy, C_3 — C_6 -Cycloalkoxy, C_3 — C_6 -Alkenyloxy, C_1 — C_4 -Alkylamino, C_1 — C_4 -Alkoxyamino, C_1 — C_4 -Alkoxy- C_1 — C_4 -Alkylamino oder Di- C_1 — C_4 -Alkylamino steht [welche gegebenenfalls durch Fluor und/oder Chlor substituiert sind],

R8 und R9 weiterhin für C₁—C₄-Alkylsulfonyl-C₁—C₄-Alkylsulfonyloxy, Di-(C₁—C₄-alkyl)-aminosulfonylamino oder für den Rest —CH = N—R¹² stehen, wobei

R¹² für gegebenenfalls durch Fluor, Chlor, Cyano, Carboxy, C₁—C₄-Alkoxycarbonyl, C₁—C₄-Alkylsulfinyl oder C₁—C₄-Alkylsulfonyl substituiertes C₁—C₆-Alkyl, für gegebenenfalls durch Fluor oder

Chlor substituiertes Benzyl, für gegebenenfalls durch Fluor oder Chlor substituiertes C_3-C_6 -Alkenyl oder C_3-C_6 -Alkinyl, für gegebenenfalls durch Fluor, Chlor, Brom, C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, Trifluormethyl, Trifluormethoxy oder Trifluormethylthio substituiertes Phenyl, für gegebenenfalls durch Fluor und/oder Chlor substituiertes C_1-C_6 -Alkoxy, C_3-C_6 -Alkenoxy, C_3-C_6 -Alkinoxy oder Benzyloxy für Amino, C_1-C_4 -Alkylamino, Di- $(C_1-C_4$ -Alkylamino, Phenylamino, C_1-C_4 -Alkyl-carbonylamino, C_1-C_4 -Alkoxycarbonylamino, C_1-C_4 -Alkyl-sulfonylamino oder für gegebenenfalls durch Fluor, Chlor, Brom oder Methyl substituiertes Phenylsulfonylamino steht;

worin weiter R³ für den Rest

steht, worin

R13 für Wasserstoff oder C1-C4-Alkyl steht,

R14 und R15 gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Nitro, Cyano, C1-C4-Alkyl

[welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C1-C4-Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], Carboxy, C1-C4-Alkoxy-carbonyl, C1-C4-Alkylsulfonyl oder Di-(C1-C4-alkyl)-aminosulfonyl stehen; worin weiter R³ für den Rest

5

10

15

20

25

30

35

45

60

65

steht, worin R¹⁶ und R¹⁷ gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₄-Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist] oder C₁—C₄-Alkoxy [welches gegebenen-

falls durch Fluor und/oder Chlor substituiert ist], stehen; worin weiter

R3 fürden Rest

R18 und R19 gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Nitro, Cyano, C1-C4-Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C1-C4-Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], für C₁—C₄-Alkylthio, C₁—C₄-Alkylsulfinyl oder C₁—C₄-Alkylsulfonyl [welche gegebenenfalls durch Fluor und/oder Chlor substituiert sind], sowie für Di-(C1-C4-alkyl)-aminosulfonyl oder C1-C4-Alkoxy-carbonyl stehen; worin weiter R³ für den Rest

R²⁰ und R²¹ gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl [welches gegebenenfalls durch Fluor und/oder Brom substituiert ist], C_1-C_4 -Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], für C_1-C_4 -Alkylthio, C_1-C_4 -Alkylsulfinyl oder C_1-C_4 -Alkylsulfonyl [welche gegebenenfalls durch Fluor und/oder Chlor substituiert sind], oder für Di-(Ct-Ct-alkyl)-aminosulfonyl stehen; worin weiter R3 für den Rest

steht, worin R²² und R²³ gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Cyano, Nitro, C₁-C₄-Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C1-C4-Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C1-C4-Alkylthio, C1-C4-Alkylsulfinyl oder C1-C4-Alkylsulfonyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], Di-(C1-C4-alkyl)-amino-sulfonyl oder C₁-C₄-Alkoxy-carbonyl stehen, und

Z für Sauerstoff, Schwefel oder die Gruppierung N-Z1 steht, wobei Z¹ für Wasserstoff, C1-C-Alkyi [welches gegebenenfalls durch Fluor, Chlor, Brom oder Cyano substituiert ist] C₃-C₆-Cycloalkyl, Benzyl, Phenyl [welches gegebenenfalls durch Fluor, Chlor, Brom oder Nitro substituiert ist], C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxy-carbonyl oder Di- $(C_1-C_4$ -alkyl)-aminocarbonyl steht; worin weiter R³ für den Rest

steht, worin

 R^{24} für Wasserstoff, C_1 — C_5 -Alkyl oder Halogen R^{25} für Wasserstoff oder C_1 — C_5 -Alkyl steht und Y für Schwefel oder die Gruppierung $N-R^{26}$ steht, wobei R^{26} für Wasserstoff oder C_1 — C_5 -Alkyl steht; worin weiter R^4 für den Rest

$$R^{27}$$
 R^{28}
 R^{29}

steht, worin

15 R²⁷ und R²⁹ gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, C₁—C₄-Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist] oder C₁—C₄-Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist] stehen mit der Maßgabe, daß wenigstens einer der Reste R²⁷ und R²⁹ von Wasserstoff verschieden ist, und

R²⁸ für Wasserstoff, Fluor, Chlor, Brom, Cyano oder C₁—C₄-Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist] steht; worin weiter R⁴ für den Rest

30 steht, worin

 R^{30} und R^{31} gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, C_1 — C_4 -Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C_1 — C_4 -Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C_1 — C_4 -Alkylamino oder Di-(C_1 — C_4 -alkyl)-amino stehen mit der Maßgabe, daß wenigstens einer der Reste R^{30} und R^{31} von Wasserstoff verschieden ist; worin weiter R^{4} für den Rest

steht, worin

R32 für Wasserstoff, Fluor, Chlor, Brom, Hydroxy, C₁—C₄-Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist] oder C₁—C₄-Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist] steht,

 R^{33} für Wasserstoff, Fluor, Chlor, Brom, C_1 — C_4 -Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], Cyano, Formyl, C_1 — C_4 -Alkyl-carbonyl oder C_1 — C_4 -Alkoxycarbonyl steht und

R³⁴ für Wasserstoff, Fluor, Chlor, Brom, Hydroxy, C₁—C₄-Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C₁—C₄-Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], Amino, C₁—C₄-Alkyl-amino oder Di-(C₁—C₄-alkyl)-amino steht, oder R³³ und R³⁴ gemeinsam für C₃—C₄-Alkandiyl stehen; worin weiter R⁴ für den Rest

N = N N = N R^{36}

steht, worin

 R^{35} und R^{36} gleich oder verschieden sind und für Fluor, Chlor, Brom, Hydroxy, C_1 — C_4 -Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C_3 — C_5 -Cycloalkyl, C_1 — C_4 -Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C_1 — C_4 -Alkylthio oder für C_1 — C_4 -Alkyl-amino bzw. Di-(C_1 — C_4 -alkyl)-amino stehen; worin weiter R^4 für den Rest

60

$$- \bigvee_{N}^{N-N} R^{37}$$

steht, worin

R37 und R38 gleich oder verschieden sind und für Wasserstoff, Methyl oder Methoxy stehen; worin weiter R⁵ für C₁-C₁₂-Alkyl [welches gegebenenfalls durch Fluor, Chlor, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C_1-C_4 -Alkylsulfinyl, C_1-C_4 -Alkylsulfonyl, C_1-C_4 -Alkyl-carbonyl, C_1-C_4 -Alkoxy-carbonyl, C_1-C_4 -Alkylaminocarbonyl oder Di-(C1-C4-alkyl)-aminocarbonyl substituiert ist], für C3-C6-Alkenyl, C3-C6-Alkinyl, C_3-C_6 -Cycloalkyl, C_3-C_6 -Cycloalkyl- C_1-C_2 -alkyl, Phenyl- C_1-C_2 -alkyl [welches im Phenylteil gegebenenfalls] durch Fluor, Chlor, Nitro, Cyano, C1-C4-Alkyl, C1-C4-Alkoxy oder C1-C4-Alkoxy-carbonyl substituiert ist] steht, worin weiter

R⁵ für einen Phenylrest steht, welcher gegebenenfalls substituiert ist durch einen oder mehrere Reste aus der Reihe Halogen [wie insbesondere Fluor, Chlor, Brom und Iod], Cyano, Nitro, Hydroxy, Carboxy, C1-C6-Alkyl Twelches gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, Hydroxy, Carboxy, C1-C4-Alkoxy-carbonyl, C1-C4-Alkoxy, C1-C4-Alkylthio oder Phenyl substituiert ist], C3-C6-Cycloalkyl, C1-C4-Alkoxy [welches gegebenenfalls durch Fluor, Chior, Brom, Cyano, Carboxy, C1-C4-Alkoxy, C1-C4-Alkylthio oder C1-C4-Alkoxycarbonyl substituiert ist], C1-C4-Alkylthio [welches gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Carboxy, C₁-C₄-Alkoxy-carbonyl substituiert ist], Amino, C₁-C₄-Alkyl-amino bzw. Di-(C₁-C₄-alkyl)-amino [welche gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Carboxy, C₁-C₄-Alkoxy oder C₁-C₄-Alkoxy-carbonyl substituiert sind], C₁-C₄-Alkyl-carbonylamino, C₁-C₄-Alkoxy-carbonylamino, (Di)-C₁-C₄-Alkyl-amino-carbonylamino, Formyl, C₁-C₄-Alkyl-carbonyl, Benzoyl, C₁-C₄-Alkoxy-carbonyl, Phenoxy-carbonyl, Benzyloxycarbonyl, Phenyl [welches gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, Hydroxy oder Methyl substituiert ist], Phenoxy, Phenylthio, Phenylsulfonyl, Phenylamino oder Phenylazo [welche gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl und/oder Trifluormethyl substituiert sind], Pyridoxy oder Pyrimidoxy [welche gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl und/oder Trifluormethyl substituiert sind], $C_1 - C_4$ -Alkyl-carbonyloxy, $C_1 - C_4$ -Alkoxy-carbonyloxy, $C_1 - C_4$ -Alkoxy-carbonyloxy, $C_1 - C_4$ -Alkyl-amino-carbonyloxy und Di- $(C_1 - C_4$ -alkyl)-amino-carbonyloxy, oder welcher gegebenenfalls durch eine Alkylenkette [welche gegebenenfalls verzweigt und/oder durch ein oder mehrere Sauerstoffatome unterbrochen ist] oder einen Benzorest [welcher gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl und/oder Trifluormethyl substituiert ist] anelliert ist; worin weiter

R⁵ für einen fünf- oder sechsgliedrigen heteroaromatischen Ring steht, welcher 1 bis 3 Stickstoffatome und/oder ein Sauerstoff- oder Schwefelatom enthält und welcher gegebenenfalls benzanelliert ist und/oder durch Fluor, Chlor, Brom, Cyano, Nitro, C1-C3-Alkyl oder C1-C3-Alkoxy [wobei letztere gegebenenfalls durch Fluor und/oder Chlor substituiert sind] substituiert ist; worin weiter

X für Sauerstoff oder Schwefel steht und

M für Wasserstoff, ein Natrium-, Kalium-, Magnesium-, Calcium-, Aluminium-, Mangan-, Eisen-, Cobalt-, oder

Nickel-Äquivalent steht.

Bevorzugt verwendbar sind weiterhin die Addukte von Verbindungen der Formel (II) - wie vorausgehend definiert - mit Halogenwasserstoffsäuren, wie Hydrogenfluorid, Hydrogenchlorid, Hydrogenbromid, Hydrogeniodid, mit Schwefelsäure, mit gegebenenfalls durch Fluor und/oder Chlor substituierten Alkansulfonsäuren mit 1 bis 4 Kohlenstoffatomen oder auch Benzol- oder Naphthalinsulfonsäuren, welche gegebenenfalls durch Fluor, Chlor, Brom oder Methyl substituiert sind.

Besonders bevorzugt verwendbar sind herbizide Sulfonyliso(thio)harnstoff-Derivate der Formel (II), in wel-

(A) R3 fürden Rest

55

35

45

50

10

steht worin

R⁸ für Fluor, Chlor, Brom, Methyl, Trifluormethyl, Methoxy, Difluormethoxy, Trifluormethoxy, C₁-C₃-Alkylthio, Diffuormethylthio, Trifluormethylthio, C1-C3-Alkylsulfonyl, C1-C3-Alkylsulfonyl, Dimethylaminosulfonyl, Diethylaminosulfonyl, N-Methoxy-N-methylaminosulfonyl, Phenoxy, C1-C3-Alkoxy-carbonyl oder C1-C3-Alkyl-aminocarbonyl steht und

R9 für Wasserstoff steht; worin weiter

R4 für den Rest

65

60

steht, worin

5

10

15

20

25

30

35

R³² für Wasserstoff, Fluor, Chlor, Brom, Hydroxy, C₁—C₃-Alkyl, C₁—C₃-Alkoxy oder Difluormethoxy steht, R³³ für Wasserstoff, Chlor, Brom oder Methyl steht und

R³⁴ für C₁—C₃-Alkyl, Hydroxy, Fluor, Chlor, Brom oder C₁—C₃-Alkoxy steht; worin weiter

R⁵ für C₁—C₈-Alkyl [welches gegebenenfalls durch Fluor, Chlor, Cyano, C₁—C₂-Alkoxy oder C₁—C₂-Alkoxy-carbonyl substituiert ist], für C₃—C₄-Alkenyl, C₃—C₄-Alkinyl oder Benzyl [welches im Phenylteil gegebenenfalls durch Fluor, Chlor, Nitro, Cyano, Methyl, Methoxy oder C₁—C₂-Alkoxy-carbonyl substituiert ist] steht, oder

R⁵ für einen Phenylrest steht, welcher gegebenenfalls substituiert ist durch einen oder zwei Reste aus der Reihe Fluor, Chlor, Brom, Jod, Cyano, Nitro, Hydroxy, Carboxy, C₁—C₃-Alkoxy-carbonyl, C₁—C₄-Alkyl, Trifluormethyl, Hydroxymethyl, Methoxycarbonylmethyl, Phenyl-C₁—C₃-alkyl, Cyclohexyl, C₁—C₃-Alkoxy, Trifluormethoxy, C₁—C₃-Alkylthio, Trifluormethylthio, Dimethylamino, Amino, Acetylamino, Methylaminocarbonyl, Formyl, Acetyl, Benzoyl, Phenyl, Hydroxyphenyl, Phenoxy [welches gegebenenfalls durch Chlor und/oder Trifluormethyl substituiert ist], Phenylamino, Phenylazo, Pyridoxy [welches gegebenenfalls durch Chlor und/oder Trifluormethyl substituiert ist], oder welcher gegebenenfalls benzanelliert ist; worin weiter X für Sauerstoff oder Schwefel steht und

M für Wasserstoff, ein Natrium-, Kalium-, oder Calcium-äquivalent steht; worin weiter

(B) \mathbb{R}^3 , \mathbb{R}^5 , X und M die oben unter (A) angegebene Bedeutung haben und \mathbb{R}^4 für den Rest

steht, worin

R³⁵ für Fluor, Chlor, Cyclopropyl, C₁—C₂-Alkyl, C₁—C₂-Alkoxy oder C₁—C₂-Alkylthio steht und

R³⁶ für Fluor, Chlor, Cyclopropyl, C₁—C₂-Alkyl, C₁—C₂-Alkoxy, C₁—C₂-Alkylamino oder Di-(C₁—C₂-alkyl)-amino steht.

Besonders bevorzugt verwendbar sind weiterhin Addukte von Verbindungen der Formel (I) — wie vorausgehend definiert — mit Halogenwasserstoffsäuren, wie Hydrogenchlorid, Hydrogenbromid und Hydrogeniodid, mit Schwefelsäure, mit gegebenenfalls durch Fluor und/oder Chlor substituierten Alkansuffonsäuren mit 1 bis 4 Kohlenstoffatomen oder auch mit Benzol- oder Naphthalinsulfonsäuren, welche gegebenenfalls durch Fluor, Chlor, Brom oder Methyl substituiert sind.

Im einzelnen seien die folgenden Verbindungen der allgemeinen Formel (II) genannt:

$$R^{3}-SO_{2}-N \underbrace{(M)}_{C} N-R^{4}$$

$$C$$

$$X$$

$$R^{5}$$
(II)

60

55

65

	M	#	Ħ,	н	Ħ	H .
	×	0	0	0	0	0
*	R ⁵	—CH3	—C2H5	—CH,CF,	—CH1CH2C1	— C3H7-i
Tabelle 2	R ⁴		C C C C	CH2	CH ₃	CH ₃
	R ³	COOCH3	СООСН3	соосн	СООСН	СООСН3
	BeispNr.	11-1	II-2	II-3	. 1 1 →	11-5

36 18 004

Beich -Nr	R3	R ⁴	n5	>	2
Total True			1	- 1	IMI
	CO—NHOCH	СН3			
y-11		Y z	,	C	:
2			Chi	5	Ę
		CHi			
	CO-NHOC8H11-11	CH3			
i		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
1-1			—CH ₃	0	н
•					
•					
	כו	CHi			
8-11		Z		Ć	:
2		Z	CE CE	>	E
		CHi			
	~ ;	!			
	<u>.</u>	CHi			
11-9		Y z	- H	c	1
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Citis	>	u
		ii.			
-					
÷.	ַם ע	CHi			
•		Z			
01-10		^ Z	—CH2CH2C1	0	Ħ
٠.					
		CH			

BeispNr.	R³	R ⁴	R ⁵	×	М
11-11	CI	CH ₂	—C ₃ H _r -i	0	ж
11-13	10 J	CH ₃	—CH2COOC2H5	0	н
II-13	<u>5</u>	CH ₃	сн _з - -сн-соос ₂ н _s	0	ж
JI-14	OCHF ₂	CH_3	—С.Н.	0	H
11-12	SO ₂ —N(CH ₃) ₂	CH ₃	-СН3	Q	Н

36 18 004

BeispNr.	R³	$ m R^4$	R ⁵	×	M
П-16	SO ₂ —N(C ₂ H ₅) ₂	CH ₃	—СН3	0	н
II-17	SO ₂ —N(C ₂ H ₅) ₂	CH ₃	— C2H5	Q.	н
II-18	SO ₂ NHOCH ₃	CH ₁	—СлН5	0	ш
II-19	SO ₂ NHOCH ₃	CH ₃	—CH3	0	н
11-20	SO ₂ —NHOC ₂ H ₅	CH ₃	—C2H5	0	Ħ

BeispNr.	R³	$ m R^4$	R ⁵	×	×
11-21	SO ₂ —NHOC ₃ H ₇ -n	CH ₃	— C2H3	. 0	#.
II-22	SO ₂ —NHOC ₃ H ₇ -i	EHO Z	C ₂ H ₅	0	
11-23	соосня	HO Z Z	— C ₂ H ₅	0	. ж
JI-24	cooch;		— C ₃ H ₇ -i	0	Ħ
II-25	5	OCH ₁	— СН	0	н
11-26	C	OCH,	—C2H5	0	н

BeispNr.	R ³	R4	R ⁵	×	M
11.27	CI	CH ₃			
		\mathbf{Y}	 - CH3	0	π
00	соосн,	N N			
87-11	CH ₂ —	N OCH,	—сн,	0	н
	Ċ	осн			
11-29			CH3	0	н
		CH3			
	SO ₂ —NHOCH ₂	0C ₂ H ₅			
11-30			— CH3	0	H
	**************************************	CH3		,	
	SO ₂ —NHOC ₃ H ₇₋₁	N(CH ₃),			
II-31		YZ Z	—C,H,	0	Н
	· - -	N CH3			

BeispNr.	R³	R ⁴	R ⁵	×	M
11-32	SO ₂ —NHOC ₃ H ₇ -i	N(CH ₃) ₂ N N N CH ₃	—C ₂ H ₅	0	
II-33	B.	OCH,	—СН ₃	0	н
ĮI-34	CF ₃	OCH ₃	$-C_2H_5$	0	Ħ
11-35	\$02-N(CH3))	OCH ₃	—СН3	0	=
11-36	SO,—CH,	OCH,	—C ₃ H ₇ -1	0	· =

36 18 004

BeispNr.	R³	R ⁴	R ⁵	×	M
II-37	SCH ₃	OCH ₃	—СН3	0	н
II-38	СООСН3	OC2H5	—СН3	0	н
6 . tt	соосн	OCH,	—СН3	0	н
II-40	D	OCH,	—CıH _r -i	0	Ħ
11-41	B.	OCH ₃	CH3	0	# .

		-			
BeispNr.	R³	R ⁴	R ⁵	×	M
11-42	CF,	OCH,	CH _j	0	Ħ
1143	SCH,	OCH ₃		0	н
1 1-44	SO ₂ —CH ₃	OCH ₃	—СН,		H
11-45	CF ₃	OCH,	— C ₃ H ₇ -i	o .	ж
11-46	соосн,	OCH ₃	—СН2СООСН3	. •	н

BeispNr.	بر 1	R4	R ⁵	×	M
11-47	СООСН	OCH ₃	—СЊСН=СЊ	0	н
11-48	СООСН	OCH3	—сн.си.осн.	0	Ħ
II-49	ō		—СН³	Ø	н
11-50	ō		—СН,СН,ОН	Ø	н
II-51	ū	CH ₃	—сн,соосн,		Ħ

				-	-
BeispNr.	R³	R ⁴	R ⁵	×	M
11-52	<u>5</u>	CH ₃	—CH2CH2OCH3	0	Н
II-53	OCHR	CH ₃	—CH2—	ω .	_ =
11-54	OCHF5	CH ₃	-CH ₂	ω	Œ
55-11	OCF3	CH ₃	—CH ₃	ω	н
11-56	SO ₂ —NHOCH ₃	CH ₃	—CH3	Ø	ж

BeispNr.	R³	R ⁴	R ⁵	×	M
11-57	ō	CH ₃	—CH ₃	N	н
11-58	ō	\sim CH ₃	—СН3	w	н
II-59	5	OCH ₃	— CH3	Ø	н
09-tt	SO ₂ —NHOCH ₃	OCH ₃	—СН3	S	. #
11-61	OCF,	OCH ₃	—CH3	Ø	н
11-62	OCF ₃	CH ₁	—C2H5	ω	н

36 18 004

BeispNr.	R³	R ⁴	R ⁵	×	M
11-63	SCH ₃	OCH ₃	—СН3	Ø	н
11-64	CH ₃	OCH ₃	—CH3	w	Ħ
59-11	OCF3	SCH ₃	—СН3	ω	н
99-I t	<u></u>	OH N CH ₃	—CH3	Ø	н
11-67	o CP ₃	OCHF ₂ N CH ₃	—CH3	ω	#

						•
	×	н	H	н	Ħ	н
:	×	Ø	Ø	W	Ø	ω
, o	×	— CH3	—СН3	— СН ₃	—СН;	—СН3
R4	OCH		OCH,	OCH;	OCH3	CH Z
•	OCF		ਹ ੍ਹ	SO ₂ —NHOCH ₃	OCF.	D
E 3	.					
BeispNr.		II-68	II-69	II-70	II-71	II-72
				88	•	

BeispNr.	R³	R ⁴	R ⁵	×	×
11-73	ō	SCH ₃	—CH3	δ.	-
11-74	CH ₃	CH ₃	— CH3	Ø	н
11-75	10 ×	CH ₃		∞	æ
	OCF1	CH3 N N CH3	— CH3	· w	Ħ
11-11	СН3	CH ₁	—СН3	S	H.

36 18 004

BeispNr.	R³	R ⁴	R ⁵	×	M
II-78	Ö	OCH ₃	— СН,	Ø	н
11-79	OCF,	OCH,	—СН,	∞	Ħ
08-11	SCH ₃	OCH ₃	—СН3	Ø	Ħ
II-81	OCF,	OC ₂ H ₅	—СН,	SO .	Н
П-82	SC ₃ H ₇ -i	OCH ₃	— СН3	Ø	H

36 18 004

BeispNr.	R ³	$ m R^4$	R ⁵	×	Σ
II-83	OCF ₃	SCH ₃	—СН,	S	ж
11-84	OCF3	OC ₂ H ₅	—CH3	W	H
11-8 5	CH ₃	OC2H5	—CH3	်လ	н
: 98-II	□ ↓ □	OCH ₃	—СН3	w	H
∠8- ₩	5	OCH ₃	— CH ₃	∞ .	н

36 18 004

BeispNr.	R³	\mathbb{R}^4	R ⁵	×	M
11-88		OCH ₃	—СН3	S	н
ІІ-89	CH ₃	OCH ₃	—сн3	S	н
0 6-11	C C	N(CH ₃)h	—сн,	ω	
II-91	CH ₃	N(CH ₃) ₂ N N CH ₃	—СН3	Ø	н
II-92	ō	C ₃ H ₅ -c _y c ₁ .	—СН ₃	w	Ħ

BeispNr.	R³	R ⁴	R ⁵	×	×
II-93	CI	CH ₃ $N = N$ $N = N$	—CH3	Ø	H
11-94	CI	CH _D	—СН3	, w	H
11-95	СН3	CHO	—CH ₃	Ø	ж
96-II	Cl CH2—		—СН3	ω	Œ
L6-II	C1 C1	CH ₃	— СН3		Ħ
86-11	C1 CH2—	CH ₃	CH3	.	н

36 18 004

BeispNr.	R³	R ⁴	R ⁵	×	M
11-99	Cl CH2—	CH_3	—СН3	_δ	н
11-100	C1 CH2—	CH ₃	—CH3	Ø	Ħ
11-101	CI CH1.—	CH ₃	—сн3	w	Ħ
11- 102	CF ₃	OCH ₃	— СН3	w	н
II-103	5	OC2H5	— C2H3	w	H

BeispNr.	R³	\mathbb{R}^4	\mathbb{R}^5	×	M
11-104	Br.	CH ₃	—C2H3		#
11-105	· ·	CH_3 CH_3 CH_3	—CH3	α	н
II-106	ō	CH2OCH3 N CH3	—СН,	· v	ж
II-107	соосн	N CH3	-CH ₃	ν	H
11-108	COOCH ₃	OCH ₃	-снсн=сн	S	Ħ

36 18 004

BeispNr.	R³	R ⁴	R ⁵	×	. М
II-109	Q.	OCH ₃	CH3	Ω	н
JI-110		OCH ₃	—C2H5	∞	Ħ
111	соосн	OCH ₃	—СН3	Ø	н
II-112	соосн	OCH ₃ N CH ₃	—СН2СООС2Н5	Ø	Ħ
II-113	Соосн	OCH ₃	—СН,	∞	Ħ

BeispNr.	R³	R ⁴	R ⁵	×	M
II-114	CI	OCH ₃	—CH2CH2OCH3	S	 .
II-115	соосня			0	Ħ
ц-116	соосн,			0	H ₂ SO ₄
: 11-117	соосн	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		0	+ a Z
11-118	COOCH	CH ₃		0	*
•	_	Tk -			

36 18 004

BeispNr.	R³	$ m R^4$	R ⁵	×	×
П-119	СООСН	CH ₃		0	1/2 Ca++
П-120	СООСН	CH ₃	O CI	0	н
II-121	COOCH3	CH ₁		0	Na+
11-122	Соосня	TO NOT THE PROPERTY OF THE PRO	N(CH3)	0	#
11-123	C00CH ₃	CH ₁	N(CH ₃) _p	0	2 CH ₃ SO ₃ H

BeispNr.	R³	R ⁴	\mathbb{R}^5	×	M
II-124	СООСН3	CH_3 $N = CH_3$ CH_3	N(CH ₃) _k	0	Na+
11-125	C00CH3	CH ₃	СНО	0	 + +
11-126	С00СН,	CHO Z Z Z Z	HO		** ***
JI-127	соосн,	CH ₃	NO2	0	Na+
II- 128	Соосн	CH ₃	C4H9-t,	0	н

18 004

					-
BeispNr.	R³	R ⁴	R ⁵	X	M
II-129	СООСН3	CH ₃	C4H9·t.	0	Na+
11-1 30	СООСН3	CH_3 N CH_3 CH_3	CI	•	H
t t-131	СООСН3	CH_3 CH_3 CH_3	cı	0	Na+
II-132	СООСН3	CH_3 CH_3	Br.	0	н
II-133	СООСН3	CH ₃		0	æ

	-	•			
BeispNr.	R³	R ⁴	R ⁵	×	M
II-134	СООСН	CH ₃	-CH ₃	0	#
11-135	СООСН	CH ₃	CH ₃	0	Na+
11-136	C00CH ₃	CH ₃	OCH ₃	. •	+
ĮI-13 <i>7</i>	C00CH ₃	CH_3	SCH	0	±
II- 138	СООСН3	CH_3 N CH_3 CH_3	-SCH ₃	- O	+ N

36 18 004

BeispNr.	R³	R ⁴	R ⁵	×	×
II-139	СООСН3	CH ₃	NO ₂	0	н
II-140	Соосн	CH ₃	NO ₂	0	Na+
II-141	C00CH ₃	CH ₁	но	0	н
П-142	СООСН3	CH ₃	но	0	-k -k -k -k -k -k -k -k -k -k -k -k -k -
П-143	COOCH ₃			0	Ħ

BeispNr.	R³	R ⁴	R ⁵	×	M
II-144	соосн	CH ₃		0	Na +
II-145	соосн,	CH_3	CI	0	Na+
11-146	COOCH,	CH ₃	CF ₃	0	Na +
JI-147	СООСН3	CH ₃	CH ₃	0	+ 8 Z
J F-148	СООСН	CH ₃	но	0	+ 8 N

36 18 004

BeispNr.	R³	\mathbb{R}^4	R ⁵	×	M
II-149	соосн	CH ₃	-соосин	0	Na+
II-150	СООСН3	CH ₁		0	, a , t
11-151	СООСН,	CHO Z		0	н
II-152	соосн	HO Z	CH ₃	0	#
II-153	соосн	CH CH	CH ₃	0	Na+

		-			
BeispNr.	\mathbb{R}^3	R ⁴	\mathbb{R}^5	×	M
II-154	СООСН	CH ₃	SCH ₁	0.	Za+
11-155	соосн,	CH ₃	CH ₃	0	Na+
II-156	C00CH ₃	CH ₃	CI	0	, н
II-157	C00CH3	CH ₃	CI		N +
II-158	C00CH ₃	$\begin{array}{c} CH_3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	CI CI	0	N +

BeispNr.	R³	R ⁴	R ⁵	×	M
II-159	Соосн	CH ₃	CH ₃ CH ₃	0	Н
II-160	C00CH3	CH ₁	CH ₃	0	Na+
II-161	СООСН3	CH ₃	#Z	0	Na+
11-162	СООСН	CH ₃	C TO	0	Na+
II-163	СООСН3	CH ₁	Z_	0	Na +

36 18 004

-					
BcispNr.	R³	R ⁴	R ⁵	Х	M
11-164	сооснь	CH ₃	₩ _O	•	, a + e
JI-165	СООС2Н5	CH ₃		0	н
11-166	COOC3Hr-n	CH3		. 0	. E
11-167	C003H7-i	CH ₃	C4H9-t,	. 0	н
11- 168	C00C4Hy-n	CH ₃		0	н
٠		*			

107

6 18 004

BeispNr.	R³	R ⁴	R ⁵	×	M
II-169	F	CH ₃	C4H9-1.	0	н
П-170	12.	CH ₃		0	н
II-171	Ö	CH ₃		0	н
II-172	ਹ	CH ₃		0	н
II-173	ō	CH_3 CH_3		0	Na+

36 18 004

BeispNr.	R³	R ⁴	R ⁵	(×	M
II-174	CI	CH ₃			0	 H
11-175	75 CI	CH ₃				Na+
11-176	<u></u>	CH Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		CH3		+ a Z
.II-177	CI	CH ₃		НО	0	Na+
11-178	CI	CH ₃	s	-SCH1	0	+ N

BeispNr.	\mathbb{R}^{J}	$ m R^4$	R ⁵	×	M
II- 179	CI	CH ₃	CI	0	Na+
11-180	Ö	CH ₃	O N CF3	0	Na+
II-181	٥	CH_3 CH_3 CH_3	но-		Ħ
JI-182	E .	CH_3 CH_3 CH_3		0	н
ĮĮ-183	E C	CH ₃	N(CH ₃) ₂	0	Na +

36 18 004

BeispNr.	R³	R ⁴	\mathbb{R}^5	×	M
II-184	Br	CHID		0	H .
JF-185		CH ₃		0	Na +
11-186	ži ,	CH ₃	C4H9-t.	0	
11-187	E C	CH ₃	C4H9·t,	0	+
11-188	E C	CH ₃		0	+ *

6 18 004

BeispNr.	R	R ⁴	R ⁵	×	M
II-189	OCF,	CH ₃	CH3	0	ж
II-190	OCF ₃	CH ₃		Ο .	포
161-11	OCF.	$\begin{array}{c} CH_j \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	но	0	H
П-192	OCF,	CH ₃	сн,	0	Na+
II-193	ОСИЕ	CH ₃			ж

BeispNr.	R³	\mathbb{R}^4	R ⁵	×	M
11-194	оснь	SED NEW YORK OF THE PROPERTY O	CH ₃	0	Ħ
11-195	OCHF,	CH ₃	Z	0	т #
11-196	CF,	CH ₃	. C4H9-t.	o .	#
11-197	N(CH ₃)h	CH ₃		0	н
11- 198	N(CH ₃),	CH ₃	N(CH ₃),	•	æ

BeispNr.	R³	R ⁴	R ⁵	Х	M
II-199	N(CH ₃),	CH ₃	СН,	0	н
11-200	N(CH ₃)h	CH,	C4H9-1.	0	н
11-201	N(CH ₃)h	CH ₃		0	H
II-202	N(CH ₃)h	CH,			Na+
II-203	N(CH ₃)h	CH,		0	Ħ

BeispNr.	. R3	R ⁴	R ⁵	×	M
11-204	SO ₂ N(C ₂ H ₅),	CH ₃		0	· #
11-205	SO ₂ N(C ₂ H ₃) ₂	CH ₃	N(CH ₃)h	 O	н
11-206	SO ₂ N(C ₂ H ₃) ₂	CH3	CH ₃	•	н
11-207	SO ₂ N(C ₂ H ₃) ₂	$\overset{N}{\underset{N}{\longleftarrow}}CH_{3}$	$- C_4 H_9 \cdot t,$. 0	н
11-208	SO ₂ N(C ₂ H ₅),	CH ₃			Ħ.

36 18 004

BeispNr.	R³	R ⁴	R ⁵	×	M
	SO ₂ N(C,H ₄),	CH			
II-209				0	н
	SO ₂ N(C ₂ H ₃₎	CH ³			
II-210		Z		0	н
		Ho Fo			
II-211				. 0	н
		in E			
11-212			$-C_4H_{g-t}.$	0	н
IF-213	H_3C			0	н
		CH1			

BeispNr.	R ³	\mathbb{R}^4	R ⁵	×	M
11-214	H ₃ C	CH ₃	NO ₂	0	Ħ
11-215	соосн,	CH ₃		0	н
II-216			H.C	0	н
11-217	соосн,	CH3 N N	CH ₃	0	<u>.</u> #
II-218	H2002		C,H,-n	0	н
II-219	TOOOCH.		C4H ₉ -t.	0	н
II-220 .				0 .	н

BeispNr.	R³	R ⁴	R ⁵	×	M
11-221	СООСН3	CH ₃		. 0	н
II-222	соосн	CH ₃	CONH,	0	Na+
II-223	СООСН	CH2 N	осн,	0	Na+
11-224	С00СН3	CH)	СН2ОН	0	Na+
11-225	COOCH,		SCH ₃	0	Za+
11-226	COOCathri			0	н
11-227	C00C3H7-1	Z Z Z		0	Na+

BeispNr.	R³	. R ⁴	R ⁵	×	M
11-228	OCF,	CH ₃	C4H5-f.	0	н
II-229		CH ₃	СН3	- o	Ħ
11-230	соосн,	N CH ₃		0	H
11-231	соосн,	OCH ₃		0	Ħ
II-232		N N N N N N N N N N N N N N N N N N N		0	н
II-233	E C	OCH ₃		0	Ħ

36 18 004

BeispNr.	R³	R ⁴	R ⁵	×	M
11-234	Br	OCH ₃	N(CH ₃),	0	н
II-235	Ä 📥	OCH,	C4H9-t.	0	Ħ
II-236	is a second	OCH,		0	斑
11-237	OCF3	OCH,		0	н
11-238	СООСН3	OCH ₃		0	ж

36 18 **0**04

	-				
BeispNr.	R³	\mathbb{R}^4	R ⁵	×	M
11-239	I C	OCH,		0	ж
11-240	OCF ₃	OCH, OCH, OCH,		0	н
11-241	OCF,	OCH ₃	CH ₃	0	н
J I-242	OCF ₁	OCH,	SCH	0	· H
II-243	OCHF ₂	OCH ₃		 O	н

;					
BeispNr.	R³	R ⁴	R ⁵	×	M
II-244	оснғ,	OCH ₃	СН,	0	н
II-245	SO,N(CH,)),	OCH,		0	Ħ
11-246	SO,N(CH,)),	OCH,	C4H9-t.	0	н
II-247	SO ₂ N(CH ₃) ₂	OCH,		•	н .
II-248	SO ₂ N(CH ₃),	OCH,		0	+ Z

BeispNr.	\mathbb{R}^3	R ⁴	R ⁵	X	M
II-249	SO ₂ N(CH ₃),	OCH,	СН3	0	н
II-250	SO ₂ N(CH ₃) ₂	OCH ₃			#
11-251	SO ₂ N(CH ₃) ₂	OCH,			н
11-252	SO ₂ N(CH ₃) ₂	OCH ₃	N(CH ₃)h	····	 H
11-253	H,C	OCH ₃		0	н
	-				

BeispNr.	R³	R ⁴	R ⁵	×	M
11-254	СООСН3	CH ₃		w	Ħ
II-255	СООСН3	CH ₃	CH ₃	w	н
II-256	Соосн,	CH ₃	но	Ø	H
ĮI-257	COOCH,	CH CHI	но	Ø	Na ⁺
11-258	СООСН,	CH ₃		w	н

BeispNr.	\mathbb{R}^3	R ⁴	R ⁵	×	M
II-259	COOC ₃ H ₇ -i	CH_3	но	Ø	н
11-260	CI	CH ₃		ω	н
11-261	CI	CH ₃	H,N	ω	H
11-262	□ ↓	CH ₃	CH ₃	ω	æ
11-263	¹⁰ C ¹	$\begin{array}{c} CH_3 \\ \\ \\ \\ \\ CH_3 \end{array}$	CI	∞	ш

				-	
BeispNr.	R³	$ m R^4$	R ⁵	×	M
II-264	Ö	CH ₃	но	Ø	æ
11-265	CI	CH,	OCONHCH3	ø	н
11-266	Pa.	CH ₃	CI	w ·	æ
11-267	OCF3	CH3 CH3		ω	н
II-268	OCF3	CH CH	но-	w	Ħ

		ρ4	10.5	×	
BeispNr.	K.	K	N.		
II-269	OCHF ₂	CH ₃			н
11-270	SO ₂ N(C ₂ H ₃) ₁	CH_{3}	но	SO	ж
JI-271	SO ₂ NHOCH ₃	CH ₂		w	н
11-272	SO ₂ NHOC4H ₉ -n	CH, CH,		ω _.	- · #E
11-273	5 5	CH ₃		S	. =

BelspNr.	R³	R ⁴	R ⁵	×	M
II-274	соосн,	CH ₃		ø	н
II-275	СООСН3	CH ₃	CH,	Ø	Н
11-276	COOCH.		CI	Ø	н
II-277			но	Ø	н
П-278	2000, Hz		но—	Ø	н
П-279				v a	Na+
11-280				Ø	Ħ

BeispNr.	R³	R ⁴	R ⁵	×	M
11-281		CH ₃		∞	н
11-282	COOCH,	N CH ₃	но	w	ж
II-283	OCF,	OCH,		Ø	н
II-284	C00CH ₃ .	OCH ₃		ν	· #
. II-285	⁵	N N OCH ₃		δ	н

36 18 004

BeispNr.	R ³	R ⁴	R ⁵	×	M
11-286	OCF ₃	OCH ₃		Ø	H +
11-287	OCHF ₂	OCH,		Ø	щ
II-288	OCHF ₂	N OCH3 OCHF2		Ø	н
II-289	H,C	E Z Z Z		· 22	щ
II-290	Соосн	OCH3	но	w	æ

36 18 004

BeispNr.	R³	R ⁴	R ⁵	×	M
II-291	соосн,	OCH3	-ОСОИНСИ,	S	н
П-292	C C	OCH ₃	но	Ø	щ
II-293	□ 	CH3,	ОСОИНСН	ω	ж
11-294	ocF ₃	OCH,	но	ν	н
11-295	SCH ₃	OCH ₃	но	Ω	ж

36 18 004

BeispNr.	Rì	R ⁴	R ⁵	X	M
11-296	ō	OCH ₃	но-	ω .	Н
11-297	OCF ₃	OCH ₃	но	∞.	Ħ
11-298	SQ,NHOCH,	OCH,	но	S	н
II-299	C00CH ₃	OCH,	но	Ø	#
11-300	CF ₃	OCH ₃	но—	S	H

BeispNr.	R³	R ⁴	R ⁵	×	M
11-301	Br.	OCH ₃	IIO	.	Ħ
JI-302	COOC ₂ H ₅	OCH ₃	но	w	H
II-303	CF,	CH ₃	но—	. ν	· =
ĮT-304	Br	CH ₃	но	w	н
JI-305	C00C,H ₅	CH ₃ N N N N OCH ₃	но	Ø	н

Die erfindungsgemäß verwendbaren Sulfonyliso(thio)harnstoff-Derivate der Formel (II) sind bekannt und/ oder können nach an sich bekannten Methoden hergestellt werden (vergl. z. B. CH-PS 6 46 957, EP-A 5 986, EP-A 24 215, EP-A 1 73 311, EP-A 1 73 316, EP-A 1 73 321 und EP-A 1 73 957).

Die erfindungsgemäß als Gegenmittel verwendbaren Amide der Formél (I) eignen sich insbesondere zur-Verbesserung der Verträglichkeit von herbizid wirksamen Sulfonyliso(thio)harnstoff-Derivaten der Formel (II) bei wichtigen Kulturpflanzen wie Mais, Sojabohnen, Baumwolle, Zuckerrüben, Getreide, Reis und Zuckerrohr, insbesondere Mais.

Die erfindungsgemäßen Wirkstoffkombinationen zeigen eine sehr gute Wirkung gegen Unkräuter und Ungräser in zahlreichen Nutzpflanzenkulturen. Sie können daher zur selektiven Unkrautbekämpfung in zahlreichen Nutzpflanzenkulturen verwendet werden. Unter Unkräutern im weitesten Sinne sind hierbei alle Pflanzen zu verstehen, die an Orten wachsen, wo sie unerwünscht sind.

Die erfindungsgemäßen Wirkstoffkombinationen können beispielsweise bei den folgenden Pflanzen angewendetwerden:

Dikotyle Unkräuter der Gattungen: Sinapis, Lepidium, Galimm, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Cardums, Soneinis, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea.

Dikotyle Kulturen der Gattungen: Gossypium, Glycine, Beta, Daucus, Phaseolus, Fisum, Solanum, Linum,

Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.

Monokotyle Unkräuter der Gattungen: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera. Monokotyle Kulturen der Gattungen: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus, Allium.

Die Verwendung der erfindungsgemäßen Wirkstoffkombinationen ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflanzen.

Insbesondere eignen sich die erfindungsgemäßen Wirkstoffkombinationen zur selektiven Unkrautbekämp-

23

Die selektive herbizide Wirksamkeit der erfindungsgemäßen Wirkstoffkombinationen ist besonders ausgeprägt, wenn herbizider Wirkstoff und Gegenmittel in bestimmten Verhältnissen vorliegen. Jedoch können die Gewichtsverhältnisse von herbizidem Wirkstoff zu Gegenmittel in den erfindungsgemäßen Wirkstoffkombinationen in relativ großen Bereichen schwanken. Im allgemeinen entfallen auf 1 Gewichtsteil an herbizidem Wirkstoff der Formel (II) 0,01 bis 100 Gewichtsteile, vorzugsweise 0,1 bis 20 Gewichtsteile an einem Gegenmittel der Formel (I).

Die erfindungsgemäß verwendbaren Gegenmittel der Formel (I) bzw. die erfindungsgemäßen Wirkstoffkombinationen aus einem Gegenmittel der Formel (I) und einem herbiziden Wirkstoff der Formel (II) können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate, wirkstoffimprägnierte Natur- und synthetische Stoffe wie Feinstverkapselungen in polymeren Stoffen.

Diese Formulierungen werden in bekannter Weise hergestellt, z. B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugen-

Im Falle der Benutzung von Wasser als Streckmittel können z. B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z. B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.

Als feste Trägerstoffe kommen in Frage:

z. B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z. B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z. B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z. B. Alkylaryl-polyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage: z. B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere

Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z. B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen. Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent an einem erfindungsge-

mäß verwendbaren Gegenmittel bzw. an einer erfindungsgemäßen Wirkstoffkombination aus Gegenmittel und herbizidem Wirkstoff, vorzugsweise enthalten sie zwischen 0,5 und 90 Gewichtsprozent.

Die erfindungsgemäß verwendbaren Gegenmittel bzw. die erfindungsgemäßen Wirkstoffkombinationen können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Herbiziden zur Unkrautbekämpfung Verwendung finden, wobei Fertigformulierung oder Tankmischung möglich ist. Auch eine Mischung mit bekannten Wirkstoffen, wie Fungiziden, Insektiziden, Akariziden, Nematiziden, Schutzstoffen gegen Vogelfraß, Wuchsstoffen, Pflanzennährstoffen und Bodenstrukturverbesserungsmitteln ist möglich.

Die erfindungsgemäß verwendbaren Gegenmittel bzw. die erfindungsgemäßen Wirkstoffkombinationen können als solche, in Form ihrer Formulierungen oder den daraus durch weiteres Verdünnen bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Emulsionen, Pulver und Granulate angewandt werden. Die Anwendung geschieht in üblicher Weise, z. B. durch Gießen, Spritzen, Sprühen, Stäuben, Streuen, Trockenbeizen, Feuchtbeizen, Naßbeizen, Schlämmbeizen oder Inkrustieren.

Die erfindungsgemäß verwendbaren Gegenmittel können nach den für derartige Antidote üblichen Methoden ausgebracht werden. So können die erfindungsgemäß verwendbaren Gegenmittel vor oder nach dem Herbizid ausgebracht werden oder zusammen mit dem Herbizid appliziert werden. Ferner können Kulturpflanzen durch Saatgutbehandlung mit dem Gegenmittel vor der Saat (Beizung) vor Schäden geschützt werden, wenn das Herbizid vor oder nach der Saat angewendet wird. Eine weitere Einsatzmöglichkeit besteht darin, daß man das Gegenmittel bei der Aussaat in die Saatfurche ausbringt. Wenn es sich bei den Pflanzen um Stecklinge handelt, so können diese vor der Auspflanzung mit dem Gegenmittel behandelt werden.

Die Aufwandmenge an Gegenmittel ist im Prinzip unabhängig vom Herbizid und der Aufwandmenge an herbizidem Wirkstoff. Im allgemeinen liegen die Aufwandmengen an Gegenmittel bei Flächenbehandlung zwischen 0,02 und 20 kg/ha, vorzugsweise zwischen 0,05 und 5 kg/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Gegenmittel bei Flächenbehandlung zwischen 0,2 und 200 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,5 und 50 g pro Kilogramm Saatgut. Die Aufwandmengen an erfindungsgemäßen Wirkstoffkombinationen können in einem gewissen Bereich variiert werden. Im allgemeinen liegen sie zwischen 0,001 und 25 kg/ha, vorzugsweise zwischen 0,01 und 5 kg/ha.

Die Aufwandmenge an herbizidem Wirkstoff schwankt im allgemeinen zwischen 0,001 und 20 kg/ha, vorzugsweise zwischen 0,01 und 2 kg/ha.

Verwendungsbeispiele

Herstellung der benötigten Wirkstofflösungen

Aus den für den Versuch benötigten Mengen an Herbizid-Wirkstoff bzw. Antidot wurde je eine Stammlösung hergestellt. Dabei wurden technische Wirkstoffe mit wenigen Millilitern (3-5) des angegebenen Lösungsmittels angelöst, 1 Tropfen Emulgator "Tween 20" zugegeben und mit Wasser weiter verdünnt, formulierte Wirkstoffe wurden direkt in Wasser dispergiert. Aus diesen Stammlösungen wurden dann durch weiteres Verdünnen mit Wasser und gegebenenfalls durch Mischen die Wirkstoff-Lösungen für die Behandlung der Testpflanzen-Samen in den Versuchsgefäßen hergestellt, so daß in der jeweiligen Lösung die gewünschte Menge an Herbizid-Wirkstoff bzw. Antidot enthalten war. Das in den Versuchen pro Flächeneinheit applizierte Volumen an Wirkstofflösung wurde konstant gehalten.

Anwendung der Antidot- und Herbizid-Wirkstoffe:

Die Wirkstoffapplikation auf die Samen der Testpflanzen erfolgte im Tankmix-Verfahren. Dabei wurde die auszubringende Menge an Antidot in Mischung mit dem Herbizid auf die mit Erde befüllten Versuchsgefäße gegossen, worin die Samen der Testpflanzen eingesät waren; als Kontrollvariante dienten solche Gefäße, die nur mit Wasser bzw. Herbizid behandelt wurden.

Die Versuchsgefäße wurden anschließend im Gewächshaus unter kontrollierten Bedingungen (Temperaturen, Feuchte) gehalten. Nach zwei Wochen erfolgte die Auswertung der Versuche in Form einer visuellen Bonitur, wobei die Schädigung der Testpflanzen im Vergleich zu unbehandelten Kontrollpflanzen nach einer Skala von 0 (keine Schädigung, wie unbehandelte Kontrolle) bis 100 (totale Schädigung) bewertet wurde.

Die Testverbindungen, deren Aufwandmengen, die Testpflanzen und die Testergebnisse gehen aus der nachfolgenden Tabelle hervor:

Vorauflauf-Test / Gewächshaus

Testverbindungen / Tabelle 1

Bei den in den nachfolgenden Tabellen 1 und 2 beschriebenen Versuchen sind als Testverbindungen die folgenden Wirkstoffe eingesetzt worden, wobei auch die verwendeten Formulierungen angegeben sind:

65

55

20

25

30

Herbizide:

Herbizid (II-294)

 $\begin{array}{c|c}
 & OCF_3 & OCH_3 \\
 & SO_2-N & NH-N & N \\
 & C & CH_3 \\
 & S-OH & OH
\end{array}$

 Formulierung: Technischer Wirkstoff, Lösungsmittel Dimethylformamid Herbizid (II-79)

$$OCF_3$$
 OCH_3
 SO_2-N $N+N$
 C
 CH_3
 CH_3

Formulierung: Technischer Wirkstoff, Lösungsmittel Dimethylformamid

Antidots:

39 Antidot (I-475)

20

23

35

Formulierung: 350 EC, d. h. Emulsionskonzentrat mit 350 g Antidot pro Liter Antidot (I-273)

O
$$CH_2-CH=CH_2$$

45 $Cl_2CH-C-N$
 $CH_2-CH=N-O-CH_2$

Formulierung: 500 EC, d. h. Emulsionskonzentrat mit 500 g Antidot pro Liter
Antidot (I-271)

$$CH_{2}-CH=CH_{2}$$

$$CH_{2}-CH=CH_{2}$$

$$CH_{2}-CH=CH_{2}$$

Formulierung: 750 EC, d. h. Emulsionskonzentrat mit 750 g Antidot pro Liter Antidot (I-369)

Formulierung: technischer Wirkstoff, Lösungsmittel Aceton

69

Tabelle A

Prüfung an Mais/Anwendung der Antidots im Tankmix-Verfahren

Testverbindungen	Aufwandmenge Bonitur: Schädigung in %		^				-
Herbizid (II-79)	1000 g 70%		500 g/hä 50%		250 g/ha 30%		
Herbizid (II-79) + Antidot (a), (b), (c) bzw. (d)	1000 g + /ha 1000 g	1000 g + /ha 200 g	500 g + /ha 500 g	500 g + /ha 100 g	250 g + /ha 250 g	250 g + /ha 50 g	0 g + /ha 1000 g
(a) (L-273)	10%	30%	10%	20%	0	10%	0
(b) (I-475)	20%	40%	10%	20%	10%	20%	0
(c) (I-271)	10%	50 %	0 .	20%	0	20%	0
(d) (I-369)	20%	20%	0	20%	0	0	0
			Fortsetzu	ıng			
Testverbindungen	Aufwandmenge Bonitur: Schädigung in %		•.				
Herbizid (II-294)	500 g/ha 60%		250 g/ha= 40 %		125 g/ ha 20 %		
Herbizid (II-294) + Antidot (a), (b), (c) bzw. (d)	500 g + /ha 500 g	500 g + /ha 100 g	250 g + /ha 250 g	250 g + /ha 50 g	125 g + /ha 125 g	125 g + /ha 25 g	0 g + /ha 1000 g
(a) (I-273)	20%	30%	20%	20%	10%	20%	0
(b) (I-475)	30%	20%	20%	10%	10%	20%	0
(c) (I-271)	30%	40%	30%	30%	10%	20%	0
(d) (I-369)	10%	10%	- 0	0	0	0 :	0
(I-369)	10%	10%	- 0	V	Ū	Ū	_

60

65

- Leerseite -

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

efects in the images include but are not limited to the items checked:	
□ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LÎNES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)