Big Data

Alejandro Sierra 2019

¿Qué es Big Data?

Herramientas

- Bases de Datos NoSQL
 - MongoDB, Cassandra, Hbase,
- Herramientas de Infexación y Recuperación de Información
 - Elasticsearch, Solr, Lucene, ...
- Clusters de Procesamiento en Paralelo y Data Lakes
 - Hadoop, HDFS, Spark,
- Herramientas de Streaming
 - Kafka, NiFi, SparkStreaming, ...

Big Data – Desafios técnicos

Escalabilidad Horizontal: Crecer en cantidad de nodos (máquinas)

- -Volumen
- -Paralelizar
- -Comunicación
- -Sincronización
- -Balancear carga
- -Manejo de fallos

Big Data - Motivación

Data Centers

Hadoop

- Ideas base Google (MapReduce GFS)
- Implementación de Apache
 - Yahoo!, Facebook, Twitter, LinkedIn, ...
- MapReduce (Google) Hadoop Map Reduce
 - Paralelismo, Cercania con los datos, Balance de carga
- GFS (Google File System) HDFS
 - Particionar los datos
 - Replicación

HDFS -GFS

- Los datos se dividen en *bloques* de **64** MB (por defecto)
- Los bloques se copian (por defecto **2** copias extras) en diferentes nodos.
 - Tolerancia a Fallos
 - Alta disponibilidad
- La idea es tener los datos cerca a su procesamiento.
 - NAS o SAN no son convenientes en este caso.
 - *Data locality*. Cercanía de datos con el procesamiento.

HDFS

Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data Dirk deRoos, Chris Eaton, George Lapis, Paul Zikopoulos, Tom Deutsch

Data Lake

- Repositorio de datos crudos
- Estructurado y no estructurados
- Sin esquema
- "Schema on read"
 - ELT

http://www.elevondata.com/services/data-lake

Madurez de Data Lakes

Figure 1-1. The four stages of maturity

Figure 1-6. A data swamp

Zonas en un Data Lake

Figure 1-8. Zones of a typical data lake

Figure 1-9. Governance expectations, zone by zone

MapReduce

- Paradigma de programación. (Programación funcional)
- Diseñado para ser ejecutado en paralelo en clusters grandes
 - Equipos sencillos que se pueden encontrar en el mercado.
- Se ocupa de abstraer los detalles técnicos y simplificar el procesamiento en 2 funciones Map y Reduce
- Single Instruction, Multiple Data (SIMD)

MapReduce - Ejemplo

Contador de palabras:

Tenemos una gran cantidad de textos y queremos saber cuales son las palabras más comunes en nuestra colección.

Map y Reduce

El programador solo debe especificar 2 funciones map (in_key, in_value) -> list(out_key, intermediate_value)

- Recibe una pareja *llave* , valor.
- Emite un conjunto de nuevas parejas.
- Las llaves de entrada no son necesariamente las llaves de salida.

reduce (out_key, list(intermediate_value)) -> list(out_value)

- Recibe una *llave* de las emitidas por **map** acompañada de la lista de *valores* generados en las <u>diferentes</u> instancias de **map**.
- Emite los valores finales
- Similar a GROUP BY (SQL)

MapReduce - Ejemplo

```
map(String input key, String input value):
           // input_key: document name
           // input_value: document contents
           for each word w in input value:
                       EmitIntermediate(w, "1");
reduce(String output_key, Iterator intermediate_values):
           // output key: a word
           // output values: a list of counts
           int result = 0;
           for each v in intermediate values:
                       result += ParseInt(v);
           Emit(AsString(result));
```

MapReduce - Ejemplo Map

MapReduce - Ejemplo

MapReduce - Ej. Reduce

Apache Hive

Esta foto de Autor desconocido está bajo licencia CC BY-SA

- Datos crudos (HDFS) -> HiveQL (Similar a SQL)
 - Reunir
 - Agrupar
 - Seleccionar
 - ... datos en los archivos crudos
- Internamente
 - MapReduce/Tez/Spark

Datos vs Metadatos

- Metadatos describen Datos
- Metadatos describen la manera de acceder/interpretar los Datos

Nombre	Documento de Identificación	Oficina Registro	Saldo	Metadatos
Juan Pérez	65789157	Carrera 13 # 65- 20	\$ 2567897	
Luis López	8741987	Calle 100 # 11-15	\$ 4569787	Datos
María Rodríguez	97456812	Cr 3 # 10-09	\$ 6547893	
Claudia Gómez	52147896	Cr 68 # 13-47	\$ 1597534	

Hive external tables

```
HDFS: /tmp/tweets_staging2/*.json
      Datos
• Hive:
 CREATE EXTERNAL TABLE tweets (
     id str STRING,
     retweet count INT
 LOCATION '/tmp/tweets_staging2/';
     Metadatos
```

id_str	retweet_count
898300779605 479424	3
898300779605 479483	0
898300779605 479495	Null
898300779605 479499	1

Crear tabla con datos en CSV

- SerDe
 - Serialize
 - Deserialize
- Luego de ejecutar la creación se pueden hacer consultas HiveQL

```
3 CREATE EXTERNAL TABLE Languages (
       SK_Language STRING,
       ISO639 3Code STRING,
       ISO639 2BCode STRING,
       ISO639 2TCode STRING,
       ISO639 1Code STRING,
       LanguageName STRING,
       Scope STRING,
       Type STRING,
       MacroLanguageISO639 3Code STRING,
       MacroLanguageName STRING,
       IsChild STRING
16 ROW FORMAT SERDE 'com.bizo.hive.serde.csv.CSVSerde'
  WITH SERDEPROPERTIES
      "separatorChar" =
      "quoteChar"
"escapeChar"
22 stored as textfile
   LOCATION '/tmp/Languages'
   tblproperties ("skip.header.line.count"="1");
```

Hadoop MapReduce - Desventajas

- Continuamente acceso a disco
- Map/Reduce puede no resolver todo tipo de problemas de manera fácil.

Apache Spark

- Ejecución en paralelo en un cluster
- Todos los datos están en memoria
 - Mucho más rápido que MapReduce

https://acadgild.com/blog/hadoop-vs-spark-best-big-data-frameworks/

No solo Map/Reduce

- Más funciones
 - Map
 - Filter
 - flatMap
 - Intersection
 - AggregateByKey

- Reduce
- Collect
- Count
- first

```
sparkContext.textFile("hdfs://...")
    .flatMap(line => line.split(" "))
    .map(word => (word, 1)).reduceByKey(_ + _)
    .saveAsTextFile("hdfs://...")
```


https://www.tutorialspoint.com/apache_spark/apache_spark_i ntroduction.htm

Lenguajes

• Scala

Java

Esta foto de Autor desconocido está bajo licencia <u>CC BY</u>

Python

• R

 $\underline{\mathsf{Esta}\ \mathsf{foto}}\ \mathsf{de}\ \mathsf{Autor}\ \mathsf{desconocido}\ \mathsf{est\'a}\ \mathsf{bajo}\ \mathsf{licencia}\ \underline{\mathsf{CC}}\ \mathsf{BY-SA}$

SparkSQL

- Similar a Hive
- Convierte una consulta en SQL en una serie de pasos en Spark
- Puede consultar el catálogo de hive

Definición de esquema

```
case class IrisSchema(sepalLength: Double, sepalWidth: Double,
petalLength: Double, petalWidth: Double, classIris: String)
```

Relación datos-metadatos

```
val irisData = sc.textFile("/tmp/iris.data.csv").map(_.split(","
)).map(p => IrisSchema(p(0).toDouble, p(1).toDouble, p(2
).toDouble,p(3).toDouble,p(4))).toDF()

irisData.registerTempTable("irisData")
```


• Consultas SQL sobre la tabla resultante

Ecosistema Hadoop (Hortonworks)

https://es.hortonworks.com/ecosystems/

DWH vs Hadoop

DWH

- Datos estructurados
- Medidas bien establecidas
- Calidad Limpieza
 - E.g. Sarbanes-Oxley
- Datos seleccionados
 - Valor percibido
- "Schema on write"

Data Lake

- Todo tipo de datos
- Descubrimiento de Información
- Datos crudos
- Todos los datos pueden tener valor
- "Schema on read"

SE COMPLEMENTAN

Responsabilidades de IT y Negoci

Figure 6-1. Enabling analysts and reducing the load on IT with self-service analytics

Referencias

- The enterprise big data lake delivering the promise of big data and data science / Alex Gorelik. Sebastopol, California iO'Reilly Media, Inc., 2019.
- Spark
 - https://spark.apache.org/
- Hadoop
 - http://hadoop.apache.org/
- Hortonworks
 - https://es.hortonworks.com/
- Cloudera
 - https://www.cloudera.com/
- Databricks
 - https://databricks.com/