Arduino

www.smartprj.com

新车间网址

图形化编程软件 ArduBlock

Virtual breadboard

Proteus

支持宏定义 #define 和关键词 const.

```
byte A = 8; // 字节型, 存储 0-255 的数字.
char B = char(A);
word C = word(B);
word(H, L); // H 为高阶字节, L 为低阶字节.
```

支持结构体 struct 和数组, 变量和运算符与 c 类似.

常用函数 (见 70 页).

PWM (Pulse Width Modulation): 脉冲宽度调制.

第3章硬件

3.1 单片机简介

计算机经典结构: 运算器, 控制器, 存储器, 输入设备, 输出设备.

单片机

- I/O 接口电路
- CPU: 运算器, 控制器, 寄存器
- 存储器

3.2 Atmel AVR 单片机

3.2.1 Arduino 与 AVR

图3-2 AVR ATmega328功能部分

熔丝位状态包括 Unprogrammed (禁止), 表示 1, Programmed (允许), 表示 0.

电压范围 1.8-5.5 V.

- 3.2.2 芯片封装
- 3.2.3 管脚定义及指令系统
- 3.2.4 AVR内核
- 3.2.5 片内外围设备介绍
- 3.3 电子技术基础学习
- 3.3.1 电路图
- 3.3.2 电子元件

发光二极管: 长引脚为正极

- 3.3.3 基本工具介绍
 - 万用表
 - 电烙铁、焊锡和松香

- 万能板
- 剥线钳

第4章 Arduino 示例演练

4.1 制作 LCD 温度显示器

4.2 再谈 Arduino 语言

4.2.1 位操作

4.2.2 数学函数

函数	说明
max(x, y)	
min(x, y)	
abs(x)	
sq(x)	平方
pow(base, exponent)	次方
sqrt(x)	平方根
sin(rad)	正弦 (还有 cos, tan)
constrain(x, a, b)	约束范围: x>b 则返回 b
map(x, fromL, fromH, toL, toH)	改变范围
log(x)	自然对数

4.2.3 随机函数

```
randomSeed(seed);
int num = random(10);  // 0-9
int num = random(1, 10);  // 1-9
```

4.2.4 高级输入输出

```
tone(3, 400); //引脚 3 输出 400 Hz 的声音
tone(3, 400, 32); //持续 32, 时间单位未知
noTone(3); //引脚 3 声音停止
```

4.2.5 时间函数

```
delay(1000); //延时 500 ms
delayMicroseconds(value); //延时 value 微秒
```

记录程序从运行开始执行的时间

```
unsigned long currentMillis = millis(); //最长 9 h 22 min.
```

4.2.6 中断

- 外部中断: 如键盘中断, 打印机中断. 需要中断源的中断请求.
- 定时中断: 自动进行, 无需中断源的中断请求.

4.2.7 中断的使用

关中断函数与开中断函数

```
program;
Interrupt();
program; //不可被中断的函数
noInterrupt();
program;
```

1 外部中断

外部中断函数

```
attachInterrupt(interrupt, function, mode); // 中断使能函数 detachInterrupt(interrupt); // 中断禁止函数
```

• interrupt: 中断号, UNO 只能使用 0 或 1, 即代表 D2 与 D3 口.

可以使用函数 digitalPinToInterrupt(pin),即输入2返回0,输入3返回3.

- Function: 中断发生时调用的函数 (不能有返回值)
- Mode: 中断触发模式
 - 。 LOW: 当针脚输入为低时, 触发中断.
 - 。 CHANGE: 当针脚输入发生改变时, 触发中断.
 - 。 RISING: 当针脚输入由低变高时, 触发中断.
 - 。 FALLING: 当针脚输入由高变低时, 触发中断.

2 定时中断

常用的库: FlexiTimer2.h, MsTimer2.h

1. 设置定时中断函数

```
void set(unsigned long ms, void (*f)());
```

2. 开启定时中断函数和关闭定时中断函数

```
program;
MsTimer2::set(500, blink); // 每 500 ms 执行一次 blink 函数
MsTimer2::start();
program; // 需要执行定时中断的代码段
MsTimer2::stop();
program;
```

e.g.

```
#include <MsTimer2.h> // 定时器库的头文件
int ledPin = 13;
volatile int state = LOW;

void setup(){
    pinMode(ledPin, OUTPUT);
    //attachInterrupt(0, blink, CHANGE); // 设置触发类型为 CAHNGE
    MsTimer2::set(500, blink); // 设置中断函数, 每 500ms 进入一次
    MsTimer2::start(); // 开始计时
}

void loop(){
    digitalWrite(ledPin, state);
}

void blink(){
    state = !state;
} // 中断服务程序
```

4.3 实例

火焰报警器.

蜂鸣器: 压电式蜂鸣器, 电磁式蜂鸣器

4.4 Arduino 与传感器的互动

- 1. 厨房的危险报警系统.
- 2. 远程控制的系统.

4.5 用 Arduino 驱动电机

4.5.1 电机简介

电机分类

- 直流电机, 交流电机.
- 直流电机, 同步电机, 异步电机.
- 驱动用电机,控制用电动机.

4.5.2 Arduino 与直流电机

直流电机不能直接接到 Arduino (数字引脚的最大输出电流为 40 mA).

需要一个电源额外给直流电机供电,并使用三极管作为开关控制电机.为了避免反向电压的危害,还需要用到二极管.

4.5.3 Arduino 与步进电机

将电脉冲转化为角位移.

4.5.4 Arduino 与舵机

棕色为接地线 (GND), 红色为电源正极线 (VCC), 橙色为信号线 (PWM).

舵机的转动角度是通过调节 PWM (脉冲宽度调制) 信号的占空比来实现的.

Arduino 控制舵机的方法:

- 1. 通过 Arduino 的普通数字传感器接口产生占空比不同的方波, 模拟 PWM 信号.
- 2. 使用 Servo 库的函数进行控制.

这样只能控制 2 路舵机, 因为 Arduino 自带函数只能利用数字 9, 10 接口.

由于 Arduino 的驱动能力有限,控制多个舵机时需要外接电源.

4.6 Arduino 访问网络

与 W5100 或 ENC28J60 网络扩展板配合即可连接网络.

EtherCard 库文件

4.6.1 Arduino 连接网络

1 ether.begin()

功能: 连接网络

ether.begin(sizeof Ethernet::buffer, mymac [, 10]);

- buffer 为缓冲大小
- mymac 为 MAC 地址
- 可选第 10 引脚

连接成功则返回 1, 否则返回 0

2 ether.dhcpSetup()

功能: 寻找服务器获取地址

ether.dhcpSetup();

成功则返回 1, 若 30 s 仍未获得 IP 地址, 则返回 0.

3 ether.staticSetup()

功能: 配置静态 IP 地址

```
ether.staticSetup(myIP [, gwIP, dnsIP]);
```

- myIP 表示要设定的 IP 地址.
- gwIP 代表网关, dnsIP 代表 DNS.

4 ether.printlp()

功能: 在串口上打印 IP 地址

```
ether.printIp("My IP is:", ether.myip);
ether.printIp(ip);
```

5 ether.packetReceive()

功能: 从网络接受一个新传入的数据表.

返回值:接收到的数据包大小.

6 ether.packetLoop()

功能: 对接收到的信息作出回应, 包含 ping 请求.

```
ether.packetLoop(len);
```

• len 表示接收到的数据包的大小, 类型为 word 性.

返回值: 数据在缓冲区中的偏移量.

4.6.2 Arduino 与 Yeelink

Yeelink 是一个网络服务平台.

4.6.3 Arduino 和 Web 服务器通信

4.7 Arduino 与无线通信

第5章 Arduino 项目训练

- 5.1 项目 1 智能家居
- 5.2 项目 2 遥控小车
- 5.3 项目 3 机械手臂
- 5.4 项目 4 贪吃蛇

第6章 媒体互动制作

6.1 Processing

第7章 项目开发

7.2 在项目中编写类库

Arduino Examples

01 Basics

```
Serial.begin(9600); //主串口
Serial1.begin(9600); //其它串口
Serial.end();
                     //禁止串口传输,无参数
Serial.println("Hello");
                           //有换行
Serial.print("World");
                          //无换行
delay(1000);
pinMode(LED_BUILTIN, OUTPUT);
digitalwrite(LED_BULTIN, HIGH); // LOW 为 0 \text{ V}
                               // value 为 0~255
analogWrite(pin, value);
analogReference(type);
int buttonState = digitalRead(button);
                                       //数字信号
int sensorValue = analogRead(A0);
                                       //模拟信号,读一次需要 1 微秒
```

02 Digital

```
unsigned long currentMillis = millis();  //已运行的时间  //为了避免按一次按钮响应两次(噪音),可以使用这个函数判断两次信号的时间间隔  pinMode(2, INPUT_PULLUP);  //读入数据后输出到串口监视器上  //按钮被按下是 LOW,对应的输出电压应该为 HIGH  #include "pitches.h"  //自己编写的含音符宏定义的头文件  tone(pin, frequency, duration);  //无需包含头文件 (八分音符)  noTone(8);  //无需包含头文件. Arduino 一次只能产生一个声音.
```

03 Analog

```
f = constrain(x, min, max);

analogReference(type); // 配置参考电压, type 取值如下:
// DEFAULT(默认 5 V),或 INTERNAL(低功耗模式, 1.1),或 EXTERNAL(扩展模式, 0~5)
```

04 Communication

```
while(!Serial); // 等待串口连接

Serial.write(ch); // 输出 ASCII 值
Serial.print(ch); // 输出十进制数
Serial.print(ch, HEX); // 输出十六进制数,还可以是 OCT, BIN, DEC

if (Serial.available()){
    brightness = Serial.read();
    analogwrite(ledPin, brightness);
}// 从串口监视器输入数据
```

每次有新数据时, 串口事件的函数会被调用

```
void serialEvent(){
   while (Serial.available()){
      Serial.println(Serial.read());
   }
}
```

05 Control

06 Sensors

knoch sensor (piezo)

```
const int knockSensor = A0;
const int threshold = 100;
int ledState = LOW;
// in the loop()
if (sensorReading >= threshold){
   ledState = !ledState;
   digitalWrite(ledPin, led State); // knock
}
delay(100); // to avoid overloading the serial port buffer
```

accelerator

```
// in the loop()
int pulseX = pulseIn(xPin, HIGH); // read pulse from x-axis
int pulseY = pulsein(yPin, HIGH);
int accelerationX = (pulseX/10 - 500) * 8; // the gravity is g
int accelerationY = (pulseY/10 - 500) * 8;
```

• ping sensor (超声波测距仪)

```
void loop(){
   pinMode(pingPin, OUTPUT);
   digitalWrite(pingPin, LOW);
   delayMicroseconds(2);  // 微秒
   digitalWrite(pingPin, HIGH);
```

```
delayMicroseconds(5);
digitalwrite(pingPin, LOW);

pinMode(pingPin, INPUT);
long duration = pulseIn(pingPin, HIGH);
long distance = microsecondsToCentimeters(duration);
// 省去输出的部分
delay(100);
}

long microsecondsToCentimeters(long microseconds){
   return microseconds / 29 / 2;
}// 340 m/s or 29 cm/s
```

07 Display

• bar graph

```
void loop(){
  int sensorReading = analogRead(analogPin);
  int ledLevel = map(sensorReading, 0, 1023, 0, ledCount);
  for (int thisLed = 0; thisLed < ledCount; thieLed++){
     if (thisLed < ledLevel){
         digitalWrite(ledPins[thisLed], HIGH);
     }
     else{
        digitalWrite(ledPins[thisLed], LOW);
     }
}</pre>
```

• row-column scanning an 8×8 LED matrix with X-Y input

```
const int row[8] = {
  2, 7, 19, 5, 13, 18, 12, 16
};
const int col[8] = {
  6, 11, 10, 3, 17, 4, 8, 9
};
int pixels[8][8];
void setup(){
    for (int thisPIn = 0; thisPin < 8; thisPin++){</pre>
        pinMode(col[thisPin], OUTPUT);
        pinMode(row[thisPin], OUTPUT);
        digitalWrite(col[thisPin], HIGH); // turn off the LEDS
    for (int x=0; x<8; x++){
        for (int y=0; y<8; y++){
            pixels[x][y] = HIGH;
        }
    }
}
```

```
void loop(){
    readSensors();  // read input
    refreshScreen(); // draw the screen
}
void readSensors(){
    pixels[x][y] = HIGH; // turn off the last position
    x = 7 - map(analogRead(A0), 0, 1023, 0, 7);
    y = map(analogRead(A1), 0, 1023, 0, 7);
    pixels[x][y] = LOW; // screen refresh
}
void refreshScreen(){
    for (int thisRow = 0; thisRow < 8; thisRow++){</pre>
        digitalWrite(row[thisRow], HIGH);
        for (int thisCol = 0; thisCol < 8; thisCol++){</pre>
            int thisPixel = pixels[thisRow][thisCol];
            digitalWrite(col[thisCol], thisPixel);
            if (thisPixel == LOW){
                digitalWrite(col[thisCol], HIGH);
            digitalWrite(row[thisRow], LOW);
        }
   }
}
```

08 Strings

```
// 字符操作
isAscii(ch);
                   // ASCII 字符
ifDigit(ch);
                   // 数字
                   // 字母
isAlpha(ch);
isAlphaNumeric(ch); // 字母或数字
isLowerCase(ch); // 小写字母
                   // 大写字母
isUpperCase(ch);
iswhtespace(ch);
                   // 空格
                  // 控制字符
// 可打印字符
isControl(ch);
isPrintable(ch);
                   // 非空格可打印字符
isGraph(ch);
                   // 符号
isPunct(ch);
            // 空字符,包括 \0,空格等
isSpace(ch);
isHexadecimalDigit(ch); // 十六进制数
// 创建字符串
String str = "Hello";
String str = String('a');
String str = String("Hello");
String str = String(str2 + " world");
String str = String(32, DEC); // 可以没有 DEC
String str = String(3.1415, 2);
                             // 四舍五入
// 连接字符串
String str = String("Num: ") + 123 + "ABC" + 'a' + str2[2];
str.concat(str2);
str.concat(millis());
```

```
// 改变字符串
             // 去除首尾空字符
str.trim();
str.toUpperCase();
str.toLowerCase();
str.setCharAt(n, ch);
                      // 预留内存
str.reserve();
str.remove(index);
str.remove(index, count);
str.replace(substr1, substr2);
// 比较
                               // 或 !=, <, > 等
if (str1 == str2);
if (str1.equals(str2));
                                // ==
if (str1.equalsIgnoreCase(str2)); // 忽略大小写 ==
                               // 比较 >=<
if (str1.compareTo(str2));
if (str1.endwith(str2)); // 结尾字符串 if (str1.startsWith(str2)); // 开始字符串
int len = str.length(); // 长度
int n = str.toInt();
                         // 转为 int
float a = str.toFloat(); // 转为 float
double a = str.toDouble(); // 转为 double
char ch = str.charAt(n); // 获取 char
char *s = str.c_str();  // 转为 char*
str.toCharArray(buf);
str.toCharArray(buf, len); // 复制到 buf
String substr = str.substring(from);
String substr = str.substring(from, to); // [from, to)
int index = str.indexOf(val);
                              // val 为 char 或 String
int index = str.indexOf(val, from); // 从第 from 个字符开始
int index = str.lastIndexOf(val);
                                // 没有则返回 -1
int index = str.lastIndexOf(val, from);
```

09 USB

这一章示例不能使用 UNO 板子.

keyboard logout

```
#include "Keyboard.h"
#define OSX 0
#define WINDOWS 1
#define UBUNTU 2
int platform = WINDOWS;

void setup(){
    pinMode(2, INPUT_PULLUP); // make pin 2 an input and turn on the pull-up
resistor so it goes high unless connected to gound.
    Keyboard.begin();
}
```

```
void loop(){
   while (digitalRead(2) == HIGH){}
        delay(500);  // do nothing until pin 2 goes low
    }
   delay(1000);
    switch (platform) {
        case OSX:
            Keyboard.press(KEY_LEFT_GUI);
            // Shift + Q, logs out:
            Keyboard.press(KEY_LEFT_SHIFT);
            Keyboard.press('Q');
            delay(100);
            Keyboard.releaseALL();
            // enter:
            Keyboard.write(KEY_RETURN);
            break;
        case WINDOWS:
            // Ctrl + ALt + Del:
            Keyboard.press(KEY_LEFT_CTRL);
            Keyboard.press(KEY_LEFT_ALT);
            Keyboard.press(KEY_DELETE);
            delay(100);
            Keyboard.releaseAll();
            // Alt + 1:
            delay(2000);
            Keyboard.press(KEY_LEFT_ALT);
            Keyboard.press('1');
            Keyboard.releaseAll();
            break;
        case UBUNTU:
            // Ctrl + Alt + Del:
            Keyboard.press(KEY_LEFT_CTRL);
            Keyboard.press(KEY_LEFT_ALT);
            Keyboard.press(KEY_DELETE);
            delay(1000);
            Keyboard.releaseAll();
            // Enter to confirm logout:
            Keyboard.write(KEY_RETURN);
            break;
    }
   while (true); // do nothing
}
```

keyboard message

```
#include "Keyboard.h"
const int buttonPin = 4;
int previousButtonState = HIGH;
int counter = 0;

void setup(){
   pinMode(buttonPin, INPUT);
   Keyboard.begin();
```

```
void loop(){
  int buttonState = digitalRead(buttonPin);
  if (buttonState != previousButtonState &&
    buttonState == HIGH) {
    ++counter;
    Keyboard.print("You pressed the button ");
    Keyboard.print(counter);
    Keyboard.println(" times.");
  }
  previousbuttonState = buttonState;
}
```

keyboard reprogram

```
#include "Keyboard.h"
// char ctrlKey = KEY_LEFT_GUI; // for OSX
char ctrlKey = KEY_LEFT_GUI; // for Windows and Linux
void setup(){
    pinMode(2, INPUT_PULLUP);
    Keyboard.begin();
}
void loop(){
    whie (digitalRead(2) == HIGH) {
        delay(500);  // do nothing until pin 2 goes low
    }
    delay(1000);
    // new document:
    Keyboard.press(ctrlKey);
    Keyboard.press('n');
    delay(100);
    Keyboard.releaseAll();
    delay(1000);
    // select all
    Keyboard.press(ctrlKey);
    Keyboard.press('a');
    delay(500);
    Keyboard.releaseAll();
    Keyboard.write(KEY_BACKSPACE);
    delay(500);
    Keyboard.println("Hello world");
    while (true);
}
```

keyboard serial

```
#include "Keyboard.h"

void setup(){
    Serial.begin(9600);
    Keyboard.begin();
}

void loop(){
    if (Serial.available() > 0){
        char inChar = Serial.read();
        Keyboard.write(inChar + 1);
    }
}
```

- Keyboard and mouse control
- Button mouse control
- Joy stick mouse control

UNO 1 EEPROM

```
#include <EEPROM.h>
EEPROM.length(); // 不同板子有不同的 EEPROM 内存, 我的是 1024
EEPROM.write(i, 0); // 置为零
```

UNO 2 Software

```
#include <SoftwareSerial.h>

SoftwareSerial mySerial(10, 11);  // RX, TX
// RX is digital pin 10 (connected to TX of other device)
// TX is digital pin 11 (connected to RX of other device)
mySerial.begin(4800);
mySerial.println("Hello");
if (mySerial.available()){
    Serial.write(mySerial.read());
}
if (Serial.available()){
    mySerial.write(Seiral.read());
}
SoftwareSerial portOne(8, 9);
portOne.listen();
```

FastLED

```
#include <FastLED.h>
```

Arduino References

Serial 的函数

```
// If the specified Serial port is ready
if (Serial);
while (!Serial); // wait for Serial port to connect, needed for native USB
int num = Seiral.available();  // Get the number of characteres available for
reading from the Serial port.
int num = Serial.availableForWrite();
Serial.begin(9600);
Serial.end();
Serial.find(ch);
                  // reads data until the target is found
                         // all of them return bool value
Serial.find(ch, length);
Serial.findUntil(target, termial);
int num = Serial.parseInt();  // Looks for the next valid integer
Serial.peek();
Serial.flush();
```

教材的速查表

```
// 时间函数
unsigned long millis(void); // 毫秒, 50 天时溢出, 从零开始
unsigned long micros(void); // 微秒, 70 min 后溢出
void delay(unsigned long ms);
void delayMicroseconds(unsigned int us);

// 数字 I/O
void pinMode(uint8_t pin, uint8_t mode);
void digitalWrite(uint8_t pin, uint8_t value);
int digitalRead(uint8_t pin);

// 模拟 I/O
void analogReference(uint8_t type);
int analogRead(uint8_t pin);
void analogWrite(uint8_t pin, int value);

// 高级 I/O
void tone(uint8_t pin, unsigned int frequency, unsigned long
```

```
duration);
void notone(uint8_t pin);
// 数学函数
#define min(a, b) ((a)<(b)?(a):(b))
#define \max(a, b) ((a)>(b)?(a):(b))
abs(x);
#define constrain(amt, low, high) ((amt)<(low)?(low):((amt)>(high)?(high):
(amt)))
long map(long value, long fromLow, long fromHigh, long toLow, long toHigh);
double pow(float base, float exponent);
double sqrt(double x);
// 三角函数
float sin(float rad);
float cos(float rad);
float tan(float rad);
// 随机数函数
void randomSeed(unsigned int seed);
long random(long sup);
long random(long inf, long sup);
// 位操作函数
#define lowByte(w) ((w) & 0xff)
#define highByte(w) ((w) >> 8)
#define bitRead(value, bit) ((value) >> (bit) & -x01)
#define bitWrite(value, bit, bitvalue) (bitvalue ? bitSet(value, bit) :
bitClear(value, bit))
#define bitSet(value, bit) ((value) |= (1UL << (bit)))</pre>
#define bitClear(value, bit) ((value) &= ~(1UL << (bit)))</pre>
#define bit(b) (1 << (b))
// 中断函数
void attachInterrupt(uint8_t interruptNum, void(*)(void)userFunc, int mode);
// interruptNum 是中断类型 (0 或 1)
// mode 是触发模式 (LOW, CHANGE, RISING, FALLING)
void detachInterrupt(uint8_t interruptNum);
#define interrupts() sei()
// 重新启用中断 (使用 noInterrupts 命令后将被禁用)
#define noInterrupts cli()
```

设置

串口调试助手输出换行符:

工具 - 选项 - 输出 - line feed,设置完每次发送都会自带换行符