Contents

Playful Python Forking GitHub repo	4 4
new.py	4
Testing your programs	5
Author	5
Outline	6
Programs	6
Chapter 1: Article Selector	9
Solution	10
Discussion	11
Chapter 2: Jump the Five	13
Solution	14
Discussion	15
Chapter 3: Picnic	16
Solution	17
Chapter 4: Apples and Bananas	18
Solution	19
Chapter 5: Howler	21
Solution	22
Chapter 6: Bottles of Beer Song	24
Solution	26
Chapter 7: Gashlycrumb	28
Solution	29
Chapter 8: Movie Reader	31
Solution	32
Chapter 9: Palindromes	33
Solution	34
Chapter 10: Ransom	36
Solution	37
Chapter 11: Simple Rhymer	39
Solution	40
Chapter 12: Rock, Paper, Scissors	42
Solution	43

Chapter 13:	Abuse	46 47
Chapter 14:		49
-		50
	Workout Of (the) Day (WOD)	53 54
		-
Chapter 16: Solution .	Blackjack	59 61
	Family Tree	64 65
Chapter 18:		68 70
Chapter 19:		72
		74
	Guessing Game	76 77
_	Kentucky Friar	80 81
Chapter 22: Solution .	Mad Libs	83 85
Chapter 23:	License Plates	87
-	Markov Chains for Words	91 93
Chapter 25:		96 98
Chapter 26:	Soundex Rhymer	100
		101
-	Substring Guessing Game	103 104
Chapter 28:	Tic-Tac-Toe Outcome	108

Chapter 29:	Twelve Days of Christmas	111
Solution .		112
Chapter 30:	War	114
		117
Chapter 31:	Anagram	119
Chapter 32:	Hangman	124
_		126
Chapter 33:	Markov Chain	130
Solution .		132
Chapter 34:	Hamming Chain	135
Solution .		137
Chapter 35:	Morse Encoder/Decoder	140
Solution .		141
Chapter 36:	ROT13 (Rotate 13)	145
Solution .		147
Chapter 37:	Tranpose ABC Notation	149
Solution .		152
Appendix 1:		154
	rguments	
v -	of values	
	arguments	
	help	
Getting the	e argument values	160
Appendix 2:	Truthiness	161
Appendix 3:	Markov Chains	164

Playful Python

"The only way to learn a new programming language is by writing programs in it." - Dennis Ritchie

I believe you can learn serious things through silly games. I also think you will learn best by *doing*. This is a book of programming exercises. Each chapter includes a description of a program you should write with examples of how the program should work. Most importantly, each program includes with a test suite so that you know if your program is working well enough.

I won't necessarily show you beforehand what you need to write a program. I'll describe what the program should do and provide some discussion about how to write it. I'll also create an appendix with short examples of how to do things like how to use argparse, how to read/write from/to a file, how to process all the files in a directory, how to extract k-mers from a string, etc. I'll provide some building blocks, but I want you to figure out how to put the pieces together.

Forking GitHub repo

First use the GitHub interface to "fork" this repository into your own account. Then do git clone of *your* repository to get a local copy. Inside that checkout, do:

git remote add upstream https://github.com/kyclark/playful python.git

This will allow you to git pull upstream master in order to get updates. When you create new files, git add/commit/push them to *your* repository. (Please do not create pull requests on my repository – unless, of course, you have suggestions for improving my repo!).

new.py

I provide a program in the bin directory called new.py that will help you stub out new Python programs using the argparse module to parse the command line arguments and options for your programs. I recommend you start every new program with this program. For example, in the article directory the README.md wants you to create a program called article.py. You should go into the directory with cd article and then do:

\$ new.py article

This will create a new file called article.py (that has been made executable with chmod +x, if your operating system supports that) that has example code for you to start writing your program. It's best to put new.py into your \$PATH or alter your \$PATH to include the directory where it's located. I usually create a \$HOME/.local/bin that I add to my \$PATH for programs like this.

Testing your programs

Once you have stubbed out your new program, open it in your favorite editor and change the example arguments in get_args to suit the needs of your app, then add your code to main to accomplish the task described in the README. To run the test suite using make, you can type make test in the same directory as the test.py and article.py program. If your system does not have make or you just don't want to use it, type pytest -v test.py.

Your goal is to pass all the tests. The tests are written in an order designed to guide you in how break the problem down, e.g., often a test will ask you to alter one bit of text from the command line, and this it will ask you to read and alter the text from a file. I would suggest you solve the tests in order.

Author

Ken Youens-Clark is a Sr. Scientific Programmer in the lab of Dr. Bonnie Hurwitz at the University of Arizona. He started college as a music major at the University of North Texas but changed to English lit for his BA in 1995. He started programming at his first job out of college, working through several languages and companies before landing in bioinformatics in 2001. In 2019 he earned his MS in Biosystems Engineering, and enjoys helping people learn programming. When he's not working, he likes playing music, riding bikes, cooking, and being with his wife and children.

Outline

I aim to have 40-50 programs complete with specs, examples, inputs, and test suites. They won't necessarily have a specific order, but they will be grouped into easiest/harder/hardest categories. As many programs use common ideas (e.g., regular expressions, graphs, infinite loops), there will be an appendix section with explanations of how to explore those ideas.

I have in mind a layout where each program gets four pages:

- 1. If a short program, perhaps an illustration; if longer, maybe some background or hints.
- 2. The README.md information (specs, example output)
- 3. The solution.py contents
- 4. Annotation of the solution with comments on lines, sections

Programs

The goal is to get the reader to become a writer – to try to solve the problems. One technique in teaching is to first present a problem without showing how to solve it. Once the student engages with the problem, they find they want and need the object of the lesson. Each program is intended to flex some programming technique or idea like playing with lists or contemplating regular expressions or using dictionaries. By using argparse for the programs, we also cover validation of user input.

Easiest

- article: Select "a" or "an" depending on the given argument
- howler: Uppercase input text so they YELL AT YOU LIKE "HOWLER" MESSAGES IN HARRY POTTER. (Could also be called "OWEN MEANY"?)
- jump_the_five: Numeric encryption based on "The Wire."

- **bottles_of_beer**: Produce the "Bottle of Beer on the Wall" song. Explores the basic idea of an algorithm and challenges the programmer to format strings.
- picnic: Write the picnic game. Uses input, lists.
- apples_and_bananas: Substitute vowels in text, e.g., "bananas" -> "bononos". While the concept is substitution of characters in a string which is actually trivial, it turns out there are many (at least 7) decent ways to accomplish this task!
- gashlycrumb: Create a morbid lookup table from text. Naturual use of dictionaries.
- movie_reader: Print text character-by-character with pauses like in the movies. How to read text by character, use STDOUT/flush, and pause the program.
- palindromes: Find palindromes in text. Reading input, manipulation of strings.
- ransom_note: Transform input text into "RaNSom cASe". Manipulation of text.
- rhymer: Produce rhyming "words" from input text.
- rock_paper_scissors: Write Rock, Paper, Scissors game. Infinite loops, dictionaries.

Harder

- abuse: Generate insults from lists of adjectives and nouns. Use of randomness, sampling, and lists.
- **bacronym**: Retrofit words onto acronyms. Use of randomness and dictionaries.
- blackjack: Play Blackjack (card game). Use of randomness, combinations, dictionaries.
- **family_tree**: Use GraphViz to visualize a family tree from text. Parsing text, creating graph structures, creating visual output.
- **gematria**: Calculate numeric values of words from characters. Manipulation of text, use of higher-order functions.
- guess: Write a number-guessing game. Use of randomness, validation/coercion of inputs, use of exceptions.
- **kentucky_fryer**: Turn text into Southern American English. Parsing, manipulation of text.
- mad_libs: TBD
- markov_words: Markov chain to generate words. Use of n-grams/k-mers, graphs, randomness, logging.
- piggie: Encode text in Pig Latin. Use of regular expressions, text manipulation.
- sound: Use Soundex to find rhyming words from a word list.
- **substring**: Write a game to guess words sharing a common substring. Dictionaries, k-mers/n-grams.

- tictactoe: Write a Tic-Tac-Toe game. Randomness, state.
- twelve_days_of_christmas: Produce the "12 Days of Christmas" song. Algorihtms, loops.
- war: Play the War card game. Combinations, randomness.
- license_plates: Explore how a regular expression engine works by creating alternate forms of license plates.

Hardest

- anagram: Find anagrams of text. Combinations, permutations, dictionaries.
- hangman: Write a Hangman (word/letter-guessing game). Randomness, game state, infinite loops, user input, validation.
- markov_chain: Markov chain to generate text. N-grams at word level, parsing text, list manipulations.
- morse: Write a Morse encoder/decoder. Dictionaries, text manipulation.
- rot13: ROT13-encode input text. Lists, encryption.

Chapter 1: Article Selector

Write a Python program called article.py that will select a or an for a given word depending on whether the word starts with a consonant or vowel, respectively.

```
1 #!/usr/bin/env python3
2 """Article selector"""
4 import argparse
5
6
7
  # ------
8 def get_args():
      """Get command-line arguments"""
9
10
      parser = argparse.ArgumentParser(
11
         description='Article selector',
12
13
         formatter_class=argparse.ArgumentDefaultsHelpFormatter)
14
15
      parser.add_argument('word', metavar='str', help='Word')
16
17
      return parser.parse_args()
18
19
20 # -----
21 def main():
22
      """Make a jazz noise here"""
23
24
      args = get_args()
25
      word = args.word
      article = 'an' if word[0].lower() in 'aeiou' else 'a'
26
27
      print('{} {}'.format(article, word))
28
29
30 # -----
31 if __name__ == '__main__':
32
      main()
```

Discussion

Cf Appendices: argparse, Truthiness

As with all the solutions presented, this assumes you have stubbed the program with new.py and that you are using the argparse module. I suggest putting this logic into a separate function which here is called get_args and which I like to define first so that I can see right away when I'm reading the program what the program expects as input. On line 12, I set the description for the program that will be displayed with the help documentation. On line 15, I indicate that the program expects just one positional argument, no more, no less. Since it is a "word" that I expect, I called the argument word which is also how I will access the value on line 25. I use the metavar on line 15 to let the user know that this should be a string.

The get_args function will return the result of parsing the command line arguments which I put into the variable args on line 24. I can now access the word by call args.word. Note the lack of parentheses – it's not args.word() – as this is not a function call. Think of it like a slot where the value lives.

On line 26, we need to figure out whether the article should be a or an. We'll use a very simple rule that any word that has a first character that is a vowel should get an and otherwise we choose a. This obviously misses actual pronunciations like in American English we don't pronounce the "h" in "herb" and so actually say "an herb" whereas the British do pronounce the "h" and so would say "an herb". (Even more bizarre to me is that the British leave off the article entirely for the word "hospital" as in, "The Queen is in hospital!") Nor will we consider words where the initial y acts like a vowel.

We can access the first character of the word with word[0] which looks the same as how we access the first element of a list. Strings are really list of characters, so this isn't so far-fetched, but we do have to remember that Python, like so many programming languages, starts numbering at 0, so we often talked about the first element of a list as the "zeroth" element.

To decide if the given word starts with a vowel, we ask is word[0].lower() in 'aeiou'. So, to unpack that, word[0] returns a one-character-long str type which has the method .lower() which we call using the parentheses. Without the parens, this would just be the *idea* of the function that returns a lowercased version of the string. Understand that the word remains unchanged. The function does not lowercase word[0], it only returns a lowercase version of that character.

```
>>> word = 'APPLE'
>>> word
'APPLE'
>>> word[0].lower()
'a'
```

```
>>> word
'APPLE'
The X in Y form is a way to ask if element X is in the collection Y:
>>> 'a' in 'abc'
True
>>> 'foo' in ['foo', 'bar']
True
>>> 3 in range(5)
True
>>> 10 in range(3)
False
```

The if expression is different from an if statement. An expression returns a value, and a statement does not. The if expression must have an else, but the if statement does not have this requirement. The first value is returned if the predicate (the bit after the if) evaluates to True in a Boolean context (cf. "Truthiness"), otherwise the last value is returned:

```
>>> 'Hooray!' if True else 'Shucks!'
'Hooray!'
The longer way to write this would have been:
article = ''
if word[0].lower() in 'aeiou':
    article = 'a'
else:
    article = 'an'
Or more succinctly:
article = 'an'
if word[0].lower() in 'aeiou':
    article = 'a'
```

Chapter 2: Jump the Five

Write a program called jump.py that will encode any number using "jump-the-five" algorithm that selects as a replacement for a given number one that is opposite on a US telephone pad if you jump over the 5. The numbers 5 and 0 will exchange with each other. So, "1" jumps the 5 to become "9," "6" jumps the 5 to become "4," "5" becomes "0," etc.

```
1 2 3
4 5 6
7 8 9
# 0 *
```

Print a usage statement for -h|--help or if there are no arguments.

- Hints:
 - The numbers can occur anywhere in the text, so I recommend you think of how you can process the input character-by-character.
 - To me, the most natural way to represent the substitution table is in a dict.
 - Read the documentation on Python's str class to see what you can do with a string. For instance, there is a replace method. Could you use that?

```
1 #!/usr/bin/env python3
  """Jump the Five"""
2
3
4 import argparse
5
6
7
   # ------
  def get_args():
      """Get command-line arguments"""
9
10
      parser = argparse.ArgumentParser(
11
12
          description='Jump the Five',
13
          formatter_class=argparse.ArgumentDefaultsHelpFormatter)
14
      parser.add_argument('text', metavar='str', help='Input text')
15
16
17
      return parser.parse_args()
18
19
20 # -----
21 def main():
22
      """Make a jazz noise here"""
23
24
      args = get_args()
25
      text = args.text
      jumper = {'1': '9', '2': '8', '3': '7', '4': '6', '5': '0',
26
               '6': '4', '7': '3', '8': '2', '9': '1', '0': '5'}
27
28
29
      for char in text:
30
          print(jumper[char] if char in jumper else char, end='')
31
32
      print()
33
34
35 # -----
36 if __name__ == '__main__':
37
      main()
```

Discussion

On line 15, we indicate the one positional argument our program expects which is some text which we can retrieve on line 25. It may seem like overkill to use argparse for such a simple program, but it handles the validation of the correct number and type of arguments as well as the generation of help documentation, so it's well worth the effort. Later problems will require much more complex arguments, so it's good to get used to this now.

I suggested you could represent the substitution table as a dict which is what I create on line 26. Each number key has it's substitute as the value in the dict. Since there are only 10 numbers to encode, this is probably the easiest way to write this. Note that the numbers are written with quotes around them. They are being stored as str values, not int. This is because we will be reading from a str. If we stored them as int keys and values, we would have to coerce the str types using the int function:

```
>>> type('4')
<class 'str'>
>>> type(4)
<class 'int'>
>>> type(int('4'))
<class 'int'>
```

To process the text by individual character (char), we can do using a for loop on line 29. Like in the article solution, I decided to use an if expression where I look to see if the char is in the jumper dictionary. In the article, you saw we asked if a character was in the string aeiou (which can also be thought of as a list of characters). Here when we ask if a char (which is a string) is in a dict, Python looks to see if there is a key in the dictionary with that value. So if char is '4', then we will print jumper['4'] which is '6'. If the char is not in jumper (meaning it's not a digit), then we print char.

Another way you could have solved this would be to use the str.translate method which needs a translation table that you can make with the str.maketrans method:

```
>>> s = 'Jenny = 867-5309'
>>> s.translate(str.maketrans(jumper))
'Jenny = 243-0751'
```

Note that you could *not* use str.replace to change each number in turn as you would first change 1 to 9 and then you'd get to the 9s that were in the original string and the 9s that you changed from 1s and you'd change them back to 1s!

Chapter 3: Picnic

Write a Python program called picnic.py that accepts one or more positional arguments as the items to bring on a picnic. In response, print "You are bringing ..." where "..." should be replaced according to the number of items where:

- 1. If one item, just state, e.g., if chips then "You are bringing chips."
- 2. If two items, put "and" in between, e.g., if chips soda then "You are bringing chips and soda."
- 3. If three or more items, place commas between all the items INCLUD-ING BEFORE THE FINAL "and" BECAUSE WE USE THE OXFORD COMMA, e.g., if chips soda cupcakes then "You are bringing chips, soda, and cupcakes."

```
$ ./picnic.py
usage: picnic.py [-h] str [str ...]
picnic.py: error: the following arguments are required: str
$ ./picnic.py -h
usage: picnic.py [-h] str [str ...]
Picnic game
positional arguments:
  str
              Item(s) to bring
optional arguments:
  -h, --help show this help message and exit
$ ./picnic.py chips
You are bringing chips.
$ ./picnic.py "potato chips" salad
You are bringing potato chips and salad.
$ ./picnic.py "potato chips" salad soda cupcakes
You are bringing potato chips, salad, soda, and cupcakes.
```

```
1 #!/usr/bin/env python3
  """Picnic game"""
2
3
4 import argparse
5
6
  # -----
7
  def get_args():
      """Get command-line arguments"""
9
10
      parser = argparse.ArgumentParser(
11
12
          description='Picnic game',
13
          formatter_class=argparse.ArgumentDefaultsHelpFormatter)
14
15
      parser.add_argument('item',
16
                        metavar='str',
17
                        nargs='+',
18
                        help='Item(s) to bring')
19
20
      return parser.parse_args()
21
22
23 # -----
24 def main():
      """Make a jazz noise here"""
25
26
27
      args = get_args()
28
      items = args.item
29
      num = len(items)
30
31
      bringing = items[0] if num == 1 else ' and '.join(
32
          items) if num == 2 else ', '.join(items[:-1] + ['and ' + items[-1]])
33
      print('You are bringing {}.'.format(bringing))
34
35
36
37 # -----
38 if __name__ == '__main__':
      main()
39
```

Chapter 4: Apples and Bananas

Perhaps you remember the children's song "Apples and Bananas"?

```
I like to eat, eat apples and bananas
I like to eat, eat apples and bananas
I like to ate, ate, ate ay-ples and ba-nay-nays
I like to ate, ate, ate ay-ples and ba-nay-nays
I like to eat, eat, eat ee-ples and bee-nee-nees
I like to eat, eat, eat ee-ples and bee-nee-nees
```

Write a Python program called apples.py that will turn all the vowels in some given text in a single positional argument into just one -v|--vowel (default a) like this song. It should complain if the --vowel argument isn't a single, lowercase vowel (hint, see choices in the argparse documentation). If the given text argument is a file, read the text from the file. Replace all vowels with the given vowel, both lower- and uppercase.

```
$ ./apples.py
usage: apples.py [-h] [-v str] str
apples.py: error: the following arguments are required: str
$ ./apples.py -h
usage: apples.py [-h] [-v str] str
Apples and bananas
positional arguments:
  str
                       Input text or file
optional arguments:
                       show this help message and exit
  -h, --help
  -v str, --vowel str The only vowel allowed (default: a)
$ ./apples.py -v x foo
usage: apples.py [-h] [-v str] str
apples.py: error: argument -v/--vowel: invalid choice: 'x' (choose from 'a', 'e', 'i', 'o',
$ ./apples.py foo
faa
$ ./apples.py ../inputs/fox.txt
Tha qaack brawn fax jamps avar tha lazy dag.
```

```
1 #!/usr/bin/env python3
3 import argparse
4 import os
5 import re
6 import sys
7
8
9 # -----
10 def get_args():
       """get command-line arguments"""
11
12
       parser = argparse.ArgumentParser(
13
          description='Apples and bananas',
14
          formatter_class=argparse.ArgumentDefaultsHelpFormatter)
15
16
       parser.add_argument('text', metavar='str', help='Input text or file')
17
18
       parser.add_argument('-v',
19
                         '--vowel',
20
                         help='The vowel(s) allowed',
21
                         metavar='str',
22
                         type=str,
23
                         default='a',
24
                         choices=list('aeiou'))
25
26
       return parser.parse_args()
27
28
29 # -----
30 def main():
31
       """Make a jazz noise here"""
32
       args = get_args()
33
       text = args.text
34
       vowel = args.vowel
35
36
       if os.path.isfile(text):
37
          text = open(text).read()
38
39
       # Method 1: Iterate every character
40
       # new_text = []
       # for char in text:
41
          if char in 'aeiou':
42
43
                new_text.append(vowel)
```

```
elif char in 'AEIOU':
44
45
                 new_text.append(vowel.upper())
46
47
                 new_text.append(char)
48
       # text = ''.join(new_text)
49
50
        # Method 2: str.replace
        # for v in 'aeiou':
51
52
             text = text.replace(v, vowel).replace(v.upper(), vowel.upper())
53
54
       # Method 3: Use a list comprehension
55
       # new_text = [
             vowel if c in 'aeiou' else vowel.upper() if c in 'AEIOU' else c
56
57
             for c in text
58
       # ]
       # text = ''.join(new_text)
59
60
        # Method 4: Define a function, use list comprehension
61
62
       def new_char(c):
           return vowel if c in 'aeiou' else vowel.upper() if c in 'AEIOU' else c
63
64
        # text = ''.join([new_char(c) for c in text])
65
66
67
        # Method 5: Use a `map` to iterate with a `lambda`
        # text = ''.join(
68
69
       #
             map(
70
                 lambda c: vowel if c in 'aeiou' else vowel.upper()
71
                 if c in 'AEIOU' else c, text))
72
       # Method 6: `map` with the function
73
74
       text = ''.join(map(new_char, text))
75
       # Method 7: Regular expressions
76
77
       # text = re.sub('[aeiou]', vowel, text)
       # text = re.sub('[AEIOU]', vowel.upper(), text)
78
79
80
       print(text.rstrip())
81
82
83 # -----
84 if __name__ == '__main__':
       main()
85
```

Chapter 5: Howler

Write a Python program howler.py that will uppercase all the text from the command line or from a file.

```
$ ./howler.py
usage: howler.py [-h] [-o str] STR
howler.py: error: the following arguments are required: STR
$ ./howler.py -h
usage: howler.py [-h] [-o str] STR
Howler (upper-case input)
positional arguments:
 STR
                        Input string or file
optional arguments:
 -h, --help
                        show this help message and exit
 -o str, --outfile str
                        Output filename (default: )
$ ./howler.py 'One word: Plastics!'
ONE WORD: PLASTICS!
$ ./howler.py ../inputs/fox.txt
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.
```

```
1 #!/usr/bin/env python3
 2 """Howler"""
 3
 4 import argparse
5 import os
6 import sys
7
8
9
10 def get_args():
        """get command-line arguments"""
11
12
       parser = argparse.ArgumentParser(
13
           description='Howler (upper-case input)',
14
           formatter_class=argparse.ArgumentDefaultsHelpFormatter)
15
16
       parser.add_argument('text', metavar='STR', help='Input string or file')
17
18
       parser.add_argument('-o',
19
                           '--outfile',
20
                           help='Output filename',
21
                           metavar='str',
22
                           type=str,
23
                           default='')
24
25
       return parser.parse_args()
26
27
28 # ----
29 def main():
30
       """Make a jazz noise here"""
31
       args = get_args()
32
       text = args.text
33
       out_file = args.outfile
34
35
       if os.path.isfile(text):
36
           text = open(text).read().strip()
37
38
       out_fh = open(out_file, 'wt') if out_file else sys.stdout
       out_fh.write(text.upper() + '\n')
39
40
41
42 # -----
43 if __name__ == '__main__':
```

44 main()

Chapter 6: Bottles of Beer Song

Write a Python program called bottles.py that takes a single option $-n|--num_bottles$ which is an positive integer (default 10) and prints the "bottles of beer on the wall song." If the -n argument is less than 1, die with "N () must be a positive integer". The program should also respond to -h|--help with a usage statement.

I'd encourage you to think about the program as a formal algorithm. Read the introduction to Jeff Erickson's book *Algorithms* available here:

- http://jeffe.cs.illinois.edu/teaching/algorithms/#book
- http://jeffe.cs.illinois.edu/teaching/algorithms/book/00-intro.pdf

You are going to need to count down, so you'll need to consider how to do that. First, let's examine a list and see how it can be sorted and reversed. We've already used the sorted function, but we haven't really talked about the list class's sort method. Note that the former does not mutate the list itself:

```
>>> a = ['foo', 'bar', 'baz']
>>> sorted(a)
['bar', 'baz', 'foo']
>>> a
['foo', 'bar', 'baz']
But the sort method does:
>>> a.sort()
>>> a
['bar', 'baz', 'foo']
Also, note what is returned by sort:
>>> type(a.sort())
<type 'NoneType'>
So if you did this, you'd destroy your data:
>>> a = a.sort()
>>> a
```

As with sort/sorted, so it goes with reverse/reversed. The past participle version returns a new copy of the data without affecting the original and is therefore the safest bet to use:

```
>>> a = ['foo', 'bar', 'baz']
>>> a
['foo', 'bar', 'baz']
>>> reversed(a)
streverseiterator object at 0x10f0d61d0>
>>> list(reversed(a))
```

```
['baz', 'bar', 'foo']
>>> a
['foo', 'bar', 'baz']
Compare with:
>>> a.reverse()
>>> a
['baz', 'bar', 'foo']
Given that and your knowledge of how range works, can you figure out how to
count down, say, from 10 to 1?
$ ./bottles.py -h
usage: bottles.py [-h] [-n INT]
Bottles of beer song
optional arguments:
  -h, --help
                         show this help message and exit
  -n INT, --num_bottles INT
$ ./bottles.py --help
usage: bottles.py [-h] [-n INT]
Bottles of beer song
optional arguments:
  -h, --help
                         show this help message and exit
  -n INT, --num_bottles INT
                        How many bottles (default: 10)
$ ./bottles.py -n 1
1 bottle of beer on the wall,
1 bottle of beer,
Take one down, pass it around,
O bottles of beer on the wall!
$ ./bottles.py | head
10 bottles of beer on the wall,
10 bottles of beer,
Take one down, pass it around,
9 bottles of beer on the wall!
9 bottles of beer on the wall,
9 bottles of beer,
Take one down, pass it around,
8 bottles of beer on the wall!
```

```
1 #!/usr/bin/env python3
2
3 import argparse
4 import sys
5 from dire import die
6
7
   # -----
9
   def get_args():
       """get command-line arguments"""
10
       parser = argparse.ArgumentParser(
11
12
           description='Bottles of beer song',
13
           formatter_class=argparse.ArgumentDefaultsHelpFormatter)
14
15
       parser.add_argument('-n',
16
                          '--num_bottles',
17
                          metavar='INT',
                          type=int,
18
19
                          default=10,
                          help='How many bottles')
20
21
22
       return parser.parse_args()
23
24
25 # -----
26 def main():
27
       """Make a jazz noise here"""
       args = get_args()
28
29
       num_bottles = args.num_bottles
30
31
       if num_bottles < 1:</pre>
32
           die('N ({}) must be a positive integer'.format(num_bottles))
33
34
       line1 = '{} bottle{} of beer on the wall'
35
       line2 = '{} bottle{} of beer'
       line3 = 'Take one down, pass it around'
36
37
       tmpl = ',\n'.join([line1, line2, line3, line1 + '!'])
38
39
       for n in reversed(range(1, num_bottles + 1)):
           s1 = '' if n == 1 else 's'
40
           s2 = '' if n - 1 == 1 else 's'
41
           print(tmpl.format(n, s1, n, s1, n - 1, s2))
42
43
           if n > 1: print()
```

Chapter 7: Gashlycrumb

Write a Python program called gashlycrumb.py that takes a letter of the alphabet as an argument and looks up the line in a -f|--file argument (default gashlycrumb.txt) and prints the line starting with that letter.

```
$ ./gashlycrumb.py
usage: gashlycrumb.py [-h] [-f str] str
gashlycrumb.py: error: the following arguments are required: str
$ ./gashlycrumb.py -h
usage: gashlycrumb.py [-h] [-f str] str
Gashlycrumb
positional arguments:
  str
                      Letter
optional arguments:
 -h, --help
                      show this help message and exit
 -f str, --file str Input file (default: gashlycrumb.txt)
$ ./gashlycrumb.py 3
I do not know "3".
$ ./gashlycrumb.py CH
"CH" is not 1 character.
$ ./gashlycrumb.py a
A is for Amy who fell down the stairs.
$ ./gashlycrumb.py z
Z is for Zillah who drank too much gin.
```

If you are not familiar with the work of Edward Gorey, please stop and go read about him immediately, e.g. https://www.brainpickings.org/2011/01/19/edward-gorey-the-gashlycrumb-tinies/!

Write your own version of Gorey's text and pass in your version as the --file.

Write an interactive version that takes input directly from the user:

```
$ ./gashlycrumb_i.py
Please provide a letter [! to quit]: a
A is for Amy who fell down the stairs.
Please provide a letter [! to quit]: b
B is for Basil assaulted by bears.
Please provide a letter [! to quit]: !
Bye
```

```
1 #!/usr/bin/env python3
   """Lookup tables"""
 2
 3
 4 import argparse
5 import os
6 from dire import die
7
8
9
10 def get_args():
        """get command-line arguments"""
11
12
        parser = argparse.ArgumentParser(
13
            description='Gashlycrumb',
14
            formatter_class=argparse.ArgumentDefaultsHelpFormatter)
15
16
        parser.add_argument('letter', help='Letter', metavar='str', type=str)
17
18
        parser.add_argument('-f',
19
                            '--file',
20
                            help='Input file',
21
                            metavar='str',
22
                            type=str,
23
                            default='gashlycrumb.txt')
24
25
        return parser.parse_args()
26
27
28 # ----
29 def main():
30
        """Make a jazz noise here"""
31
        args = get_args()
32
        letter = args.letter.upper()
33
        file = args.file
34
35
        if not os.path.isfile(file):
            die('--file "{}" is not a file.'.format(file))
36
37
38
        if len(letter) != 1:
            die('"{}" is not 1 character.'.format(letter))
39
40
41
        lookup = {}
42
        for line in open(file):
            lookup[line[0]] = line.rstrip()
43
```

Chapter 8: Movie Reader

Write a Python program called movie_reader.py that takes a single positional argument that is a bit of text or the name of an input file. The output will be dynamic, so I cannot write a test for how the program should behave, nor can I include a bit of text that shows you how it should work. Your program should print the input text character-by-character and then pause .5 seconds for ending punctuation like ., ! or ?, .2 seconds for a pause like , :, or ;, and .05 seconds for anything else.

```
1 #!/usr/bin/env python3
3 import argparse
4 import os
5 import sys
6 import time
7
8
9
10 def get_args():
       """Get command-line arguments"""
11
12
13
       parser = argparse.ArgumentParser(
14
          description='Movie Reader',
15
          formatter_class=argparse.ArgumentDefaultsHelpFormatter)
16
       parser.add_argument('text', metavar='str', help='Input text or file')
17
18
19
       return parser.parse_args()
20
21
22 # -----
23 def main():
24
       """Make a jazz noise here"""
25
26
       args = get_args()
27
       text = args.text
28
29
       if os.path.isfile(text):
30
          text = open(text).read()
31
32
       for line in text.splitlines():
33
          for char in line:
34
              print(char, end='')
35
              time.sleep(.5 if char in '.!?\n' else .2 if char in ',:;' else .05)
36
              sys.stdout.flush()
37
38
          print()
39
40
41 # -----
42 if __name__ == '__main__':
43
       main()
```

Chapter 9: Palindromes

Write a Python program called palindromic.py that will find words that are palindromes in positional argument which is either a string or a file name.

```
$ ./palindromic.py
usage: palindromic.py [-h] [-m int] str
palindromic.py: error: the following arguments are required: str
$ ./palindromic.py -h
usage: palindromic.py [-h] [-m int] str
Find palindromes in text
positional arguments:
  str
                     Input text or file
optional arguments:
  -h, --help
                     show this help message and exit
  -m int, --min int Minimum word length (default: 3)
$ ./palindromic.py '"Wow!" said Mom.'
mom
$ ./palindromic.py input.txt
anna
civic
kayak
madam
mom
WOW
level
noon
racecar
radar
redder
refer
rotator
rotor
solos
stats
tenet
```

```
1 #!/usr/bin/env python3
2
3 import argparse
4 import os
5 import re
6
7
   # ------
9
   def get_args():
       """Get command-line arguments"""
10
11
12
       parser = argparse.ArgumentParser(
13
           description='Find palindromes in text',
14
           formatter_class=argparse.ArgumentDefaultsHelpFormatter)
15
16
       parser.add_argument('text', metavar='str', help='Input text or file')
17
18
       parser.add_argument('-m',
19
                           '--min',
20
                           metavar='int',
21
                           type=int,
22
                           help='Minimum word length',
23
                           default=3)
24
25
       return parser.parse_args()
26
27
28 # ----
29 def main():
30
       """Make a jazz noise here"""
31
32
       args = get_args()
33
       text = args.text
34
       min_length = args.min
35
36
       if os.path.isfile(text):
37
           text = open(text).read()
38
       for line in text.splitlines():
39
           for word in re.split(r'(\W+)', line.lower()):
40
41
               if len(word) >= min_length:
42
                   rev = ''.join(reversed(word))
43
                   if rev == word:
```

Chapter 10: Ransom

Create a Python program called ransom.py that will randomly capitalize the letters in a given word or phrase. The input text may also name a file in which case the text should come from the file. The program should take a -s|--seed argument for the random.seed to control randomness for the test suite. It should also respond to -h|--help for usage.

```
$ ./ransom.py
usage: ransom.py [-h] [-s int] str
ransom.py: error: the following arguments are required: str
$ ./ransom.py -h
usage: ransom.py [-h] [-s int] str
Ransom Note
positional arguments:
                      Input text or file
optional arguments:
  -h, --help
                      show this help message and exit
  -s int, --seed int Random seed (default: None)
$ cat fox.txt
The quick brown fox jumps over the lazy dog.
$ ./ransom.py fox.txt
the quiCK bROWn fOx JUMps OveR tHe LAzy Dog.
$ ./ransom.py -s 2 'The quick brown fox jumps over the lazy dog.'
the qUIck BROWN fOX JUmps ovEr ThE LAZY DOg.
```

```
1 #!/usr/bin/env python3
 3 import argparse
 4 import os
5 import random
6 import sys
7
8
9
10 def get_args():
        """get command-line arguments"""
11
12
        parser = argparse.ArgumentParser(
13
            description='Ransom Note',
14
            formatter_class=argparse.ArgumentDefaultsHelpFormatter)
15
16
        parser.add_argument('text', metavar='str', help='Input text or file')
17
18
        parser.add_argument('-s',
19
                            '--seed',
20
                            help='Random seed',
21
                            metavar='int',
22
                            type=int,
23
                            default=None)
24
25
        return parser.parse_args()
26
27
28 # ----
29 def main():
30
        """Make a jazz noise here"""
31
        args = get_args()
32
33
        random.seed(args.seed)
34
35
        text = args.text
36
        if os.path.isfile(text):
37
            text = open(text).read()
38
39
        #ransom = []
        #for char in text:
40
             ransom.append(char.upper() if random.choice([0, 1]) else char.lower())
41
42
        #ransom = [c.upper() if random.choice([0, 1]) else c.lower() for c in text]
43
```

```
44
45
      #ransom = map(lambda c: c.upper() if random.choice([0, 1]) else c.lower(),
46
                   text)
47
      f = lambda c: c.upper() if random.choice([0, 1]) else c.lower()
48
49
      ransom = map(f, text)
50
      print(''.join(ransom))
51
52
53
54 # -----
55 if __name__ == '__main__':
56
      main()
```

Chapter 11: Simple Rhymer

Write a Python program called rhymer.py that will create new words by removing the consonant(s) from the beginning of the word and then creating new words by prefixing the remainder with all the consonants and clusters that were not at the beginning. That is, prefix with all the consonants in the alphabet plus these clusters:

```
bl br ch cl cr dr fl fr gl gr pl pr sc sh sk sl sm sn sp
st sw th tr tw wh wr sch scr shr sph spl spr squ str thr
$ ./rhymer.py
usage: rhymer.py [-h] str
rhymer.py: error: the following arguments are required: str
$ ./rhymer.py -h
usage: rhymer.py [-h] str
Make rhyming "words"
positional arguments:
 str
             A word
optional arguments:
 -h, --help show this help message and exit
$ ./rhymer.py apple
Word "apple" must start with consonants
$ ./rhymer.py take | head
bake
cake
dake
fake
gake
hake
jake
kake
lake
make
```

```
1 #!/usr/bin/env python3
 2 """Make rhyming words"""
 3
 4 import argparse
5 import re
 6 import string
7 import sys
8 from dire import die
9
10
11 # -----
12 def get_args():
13
       """get command-line arguments"""
       parser = argparse.ArgumentParser(
14
15
           description='Make rhyming "words"',
16
           formatter_class=argparse.ArgumentDefaultsHelpFormatter)
17
18
       parser.add_argument('word', metavar='str', help='A word')
19
       return parser.parse_args()
20
21
22
23 # -----
24 def main():
       """Make a jazz noise here"""
25
26
       args = get_args()
27
       word = args.word
28
29
       vowels = 'aeiou'
30
       if word[0] in vowels:
31
           die('Word "{}" must start with consonants'.format(word))
32
33
       consonants = [c for c in string.ascii_lowercase if c not in 'aeiou']
       match = re.match('^([' + ''.join(consonants) + ']+)(.+)', word)
34
35
36
       clusters = ('bl br ch cl cr dr fl fr gl gr pl pr sc '
37
                   'sh sk sl sm sn sp st sw th tr tw wh wr '
38
                   'sch scr shr sph spl spr squ str thr').split()
39
       if match:
40
41
           start, rest = match.group(1), match.group(2)
           for c in filter(lambda c: c != start, consonants + clusters):
42
43
               print(c + rest)
```

Chapter 12: Rock, Paper, Scissors

Write a Python program called rps.py that will play the ever-popular "Rock, Paper, Scissors" game. As often as possible, insult the player by combining an adjective and a noun from the following lists:

Adjectives = truculent fatuous vainglorious fatuous petulant moribund jejune feckless antiquated rambunctious mundane misshapen glib dreary dopey devoid deleterious degrading clammy brazen indiscreet indecorous imbecilic dysfunctional dubious drunken disreputable dismal dim deficient deceitful damned daft contrary churlish catty banal asinine infantile lurid morbid repugnant unkempt vapid decrepit malevolent impertinent decrepit grotesque puerile

Nouns = abydocomist bedswerver bespawler bobolyne cumberworld dalcop dew-beater dorbel drate-poke driggle-draggle fopdoodle fustylugs fustilarian gillie-wet-foot gnashgab gobermouch gowpenful-o'-anything klazomaniac leasing-monger loiter-sack lubberwort muck-spout mumblecrust quisby raggabrash rakefire roiderbanks saddle-goose scobberlotcher skelpie-limmer smell-feast smellfungus snoutband sorner stampcrab stymphalist tallowcatch triptaker wandought whiffle-whaffle yaldson zoilist

The program should accept a -s|--seed to pass to random.

```
$ ./rps.py
1-2-3-Go! [rps|q] r
You: Rock
Me : Scissors
You win. You are a clammy drate-poke.
1-2-3-Go! [rps|q] t
You dysfunctional dew-beater! Please choose from: p, r, s.
1-2-3-Go! [rps|q] p
You: Paper
Me : Rock
You win. You are a dismal gillie-wet-foot.
1-2-3-Go! [rps|q] q
Bye, you imbecilic fopdoodle!
```

```
1 #!/usr/bin/env python3
2 """Rock, Paper, Scissors"""
3
4 import argparse
5 import os
6 import random
7 import sys
8
9
10 # -----
11 def get_args():
       """Get command-line arguments"""
12
13
14
       parser = argparse.ArgumentParser(
15
           description='Rock, Paper, Scissors',
16
           formatter_class=argparse.ArgumentDefaultsHelpFormatter)
17
18
       parser.add argument('-s',
19
                           '--seed',
                           help='Random seed',
20
21
                           metavar='int',
22
                           type=int,
23
                           default=None)
24
25
       return parser.parse_args()
26
27
28 # -----
29 def insult():
30
       adjective = """
31
       truculent fatuous vainglorious fatuous petulant moribund jejune
32
       feckless antiquated rambunctious mundane misshapen glib dreary
33
       dopey devoid deleterious degrading clammy brazen indiscreet
       indecorous imbecilic dysfunctional dubious drunken disreputable
34
35
       dismal dim deficient deceitful damned daft contrary churlish
36
       catty banal asinine infantile lurid morbid repugnant unkempt
37
       vapid decrepit malevolent impertinent decrepit grotesque puerile
       """.split()
38
39
       noun = """
40
41
       abydocomist bedswerver bespawler bobolyne cumberworld dalcop
42
       dew-beater dorbel drate-poke driggle-draggle fopdoodle fustylugs
43
       fustilarian gillie-wet-foot gnashgab gobermouch
```

```
44
       gowpenful-o'-anything klazomaniac leasing-monger loiter-sack
45
       lubberwort muck-spout mumblecrust quisby raggabrash rakefire
46
       roiderbanks saddle-goose scobberlotcher skelpie-limmer
47
       smell-feast smellfungus snoutband sorner stampcrab stymphalist
48
       tallowcatch triptaker wandought whiffle-whaffle yaldson zoilist
49
       """.split()
50
       return ' '.join([random.choice(adjective), random.choice(noun)])
51
52
53
54 # -----
55 def main():
56
       """Make a jazz noise here"""
57
58
       args = get_args()
59
       random.seed(args.seed)
60
       valid = set('rps')
61
62
       beats = {'r': 's', 's': 'p', 'p': 'r'}
       display = {'r': 'Rock', 'p': 'Paper', 's': 'Scissors'}
63
64
65
       while True:
66
           play = input('1-2-3-Go! [rps|q] ').lower()
67
68
           if play.startswith('q'):
69
               print('Bye, you {}!'.format(insult()))
70
               sys.exit(0)
71
72
           if play not in valid:
73
               print('You {}! Please choose from: {}.'.format(
                   insult(), ', '.join(sorted(valid))))
74
75
               continue
76
77
           computer = random.choice(list(valid))
78
79
           print('You: {}\nMe : {}'.format(display[play], display[computer]))
80
           if beats[play] == computer:
81
82
               print('You win. You are a {}.'.format(insult()))
83
           elif beats[computer] == play:
84
               print('You lose, {}!'.format(insult()))
           else:
85
86
               print('Draw, you {}.'.format(insult()))
87
88
89 # -----
```

```
90 if __name__ == '__main__':
91 main()
```

Chapter 13: Abuse

Write a Python program called abuse.py that generates some -n|--number of insults (default 3) by randomly combining some number of -a|--adjectives (default 2) with a noun (see below). Be sure your program accepts a -s|--seed argument (default None) to pass to random.seed.

Adjectives:

bankrupt base caterwauling corrupt cullionly detestable dishonest false filthsome filthy foolish foul gross heedless indistinguishable infected insatiate irksome lascivious lecherous loathsome lubbery old peevish rascaly rotten ruinous scurilous scurvy slanderous sodden-witted thin-faced toad-spotted unmannered vile wall-eyed

Nouns:

Judas Satan ape ass barbermonger beggar block boy braggart butt carbuncle coward coxcomb cur dandy degenerate fiend fishmonger fool gull harpy jack jolthead knave liar lunatic maw milksop minion ratcatcher recreant rogue scold slave swine traitor varlet villain worm

```
$ ./abuse.py -h
usage: abuse.py [-h] [-a int] [-n int] [-s int]
Argparse Python script
optional arguments:
 -h, --help
                        show this help message and exit
  -a int, --adjectives int
                        Number of adjectives (default: 2)
 -n int, --number int Number of insults (default: 3)
  -s int, --seed int
                        Random seed (default: None)
$ ./abuse.py
You slanderous, rotten block!
You lubbery, scurilous ratcatcher!
You rotten, foul liar!
$ ./abuse.py -s 1 -n 2 -a 1
You rotten rogue!
You lascivious ape!
$ ./abuse.py -s 2 -n 4 -a 4
You scurilous, foolish, vile, foul milksop!
You cullionly, lubbery, heedless, filthy lunatic!
You foul, lecherous, infected, slanderous degenerate!
You base, ruinous, slanderous, false liar!
```

```
1 #!/usr/bin/env python3
2
3 import argparse
4 import random
5 import sys
7 adjectives = """
8 bankrupt base caterwauling corrupt cullionly detestable dishonest
9 false filthsome filthy foolish foul gross heedless indistinguishable
10 infected insatiate irksome lascivious lecherous loathsome lubbery old
11 peevish rascaly rotten ruinous scurilous scurvy slanderous
12 sodden-witted thin-faced toad-spotted unmannered vile wall-eyed
13 """.strip().split()
14
15 nouns = """
16 Judas Satan ape ass barbermonger beggar block boy braggart butt
17 carbuncle coward coxcomb cur dandy degenerate fiend fishmonger fool
18 gull harpy jack jolthead knave liar lunatic maw milksop minion
19 ratcatcher recreant rogue scold slave swine traitor varlet villain worm
20 """.strip().split()
21
22
23 # -----
24 def get_args():
       """get command-line arguments"""
25
26
       parser = argparse.ArgumentParser(
27
           description='Argparse Python script',
28
           formatter_class=argparse.ArgumentDefaultsHelpFormatter)
29
30
       parser.add_argument('-a',
31
                           '--adjectives',
32
                           help='Number of adjectives',
33
                           metavar='int',
34
                           type=int,
35
                           default=2)
36
37
       parser.add_argument('-n',
                           '--number',
38
39
                           help='Number of insults',
40
                           metavar='int',
41
                           type=int,
42
                           default=3)
43
```

```
44
       parser.add_argument('-s',
45
                        '--seed',
46
                        help='Random seed',
47
                        metavar='int',
48
                        type=int,
49
                        default=None)
50
51
       return parser.parse_args()
52
53
54 # -----
55 def main():
56
       """Make a jazz noise here"""
57
       args = get_args()
      num_adj = args.adjectives
58
59
       num_insults = args.number
60
61
      random.seed(args.seed)
62
63
       for _ in range(num_insults):
64
          adjs = random.sample(adjectives, k=num_adj)
65
          noun = random.choice(nouns)
          print('You {} {}!'.format(', '.join(adjs), noun))
66
67
68
69 # -----
70 if __name__ == '__main__':
71
      main()
```

Chapter 14: Bacronym

Write a Python program called bacronym.py that takes a string like "FBI" and retrofits some -n|--number (default 5) of acronyms by reading a -w|--wordlist argument (default /usr/share/dict/words), skipping over words to -e|--exclude (default a, an, the) and randomly selecting words that start with each of the letters. Be sure to include a -s|--seed argument (default None) to pass to random.seed for the test suite.

```
$ ./bacronym.py
usage: bacronym.py [-h] [-n NUM] [-w STR] [-x STR] [-s INT] STR
bacronym.py: error: the following arguments are required: STR
$ ./bacronym.py -h
usage: bacronym.py [-h] [-n NUM] [-w STR] [-x STR] [-s INT] STR
Explain acronyms
positional arguments:
 STR
                        Acronym
optional arguments:
 -h, --help
                        show this help message and exit
 -n NUM, --num NUM
                        Maximum number of definitions (default: 5)
 -w STR, --wordlist STR
                        Dictionary/word file (default: /usr/share/dict/words)
 -x STR, --exclude STR
                        List of words to exclude (default: a,an,the)
 -s INT, --seed INT
                        Random seed (default: None)
$ ./bacronym.py FBI -s 1
FBT =
 - Fecundity Brokage Imitant
 - Figureless Basketmaking Ismailite
 - Frumpery Bonedog Irregardless
 - Foxily Blastomyces Inedited
 - Fastland Bouncingly Idiospasm
```

```
1 #!/usr/bin/env python3
 2 """Make guesses about acronyms"""
 3
 4 import argparse
 5 import sys
 6 import os
 7 import random
 8 import re
 9 from collections import defaultdict
10
11
12 # -----
13 def get_args():
        """get arguments"""
14
15
        parser = argparse.ArgumentParser(
16
            description='Explain acronyms',
17
            formatter_class=argparse.ArgumentDefaultsHelpFormatter)
18
19
        parser.add_argument('acronym', help='Acronym', type=str, metavar='STR')
20
21
        parser.add_argument('-n',
22
                            '--num',
23
                            help='Maximum number of definitions',
24
                            type=int,
25
                            metavar='NUM',
26
                            default=5)
27
28
        parser.add_argument('-w',
29
                            '--wordlist',
30
                            help='Dictionary/word file',
31
                            type=str,
                            metavar='STR',
32
33
                            default='/usr/share/dict/words')
34
35
        parser.add_argument('-x',
36
                            '--exclude',
37
                            help='List of words to exclude',
38
                            type=str,
39
                            metavar='STR',
40
                            default='a,an,the')
41
42
        parser.add_argument('-s',
43
                            '--seed',
```

```
help='Random seed',
44
45
                             type=int,
                             metavar='INT',
46
47
                             default=None)
48
49
        return parser.parse_args()
50
51
52
53 def main():
        """main"""
54
55
56
        args = get_args()
        acronym = args.acronym
57
        wordlist = args.wordlist
58
59
        limit = args.num
60
        goodword = r'^[a-z]{2,}
        badwords = set(re.split(r'\s*,\s*', args.exclude.lower()))
61
62
63
        random.seed(args.seed)
64
65
        if not re.match(goodword, acronym.lower()):
66
            print('"{}" must be >1 in length, only use letters'.format(acronym))
67
            sys.exit(1)
68
69
        if not os.path.isfile(wordlist):
70
            print('"{}" is not a file.'.format(wordlist))
71
            sys.exit(1)
72
        seen = set()
73
74
        words_by_letter = defaultdict(list)
75
        for word in open(wordlist).read().lower().split():
            clean = re.sub('[^a-z]', '', word)
76
77
            if not clean: # nothing left?
78
                continue
79
80
            if re.match(goodword,
                        clean) and clean not in seen and clean not in badwords:
81
82
                seen.add(clean)
83
                words_by_letter[clean[0]].append(clean)
84
        len_acronym = len(acronym)
85
86
        definitions = []
        for i in range(0, limit):
87
            definition = []
88
89
            for letter in acronym.lower():
```

```
90
               possible = words_by_letter.get(letter, [])
91
               if len(possible) > 0:
92
                   definition.append(
                       random.choice(possible).title() if possible else '?')
93
94
95
           if len(definition) == len_acronym:
               definitions.append(' '.join(definition))
96
97
        if len(definitions) > 0:
98
99
           print(acronym.upper() + ' =')
100
           for definition in definitions:
101
               print(' - ' + definition)
102
        else:
           print('Sorry I could not find any good definitions')
103
104
105
106 # -----
107 if __name__ == '__main__':
108
       main()
```

Chapter 15: Workout Of (the) Day (WOD)

Write a Python program called wod.py that will create a Workout Of (the) Day (WOD) from a list of exercises provided in CSV format (default wod.csv). Accept a -n|--num_exercises argument (default 4) to determine the sample size from your exercise list. Also accept a -e|--easy flag to indicate that the reps should be cut in half. Finally accept a -s|--seed argument to pass to random.seed for testing purposes. You should use the tabulate module to format the output as expected.

The input file should be comma-separated values with headers for "exercise" and "reps," e.g.:

\$ tablify.py wod.csv

+	-+-		+
exercise	١	reps	١
	-+-		
Burpees	1	20-50	١
Situps		40-100	I
Pushups	1	25-75	I
Squats	1	20-50	I
Pullups	1	10-30	I
HSPU		5-20	١
Lunges		20-40	١
Plank		30-60	I
Jumprope	1	50-100	I
Jumping Jacks	1	25-75	I
Crunches	1	20-30	I
Dips	1	10-30	I
+	-+-		+

You should use the range of reps to choose a random integer value in that range.

```
$ ./wod.py -h
usage: wod.py [-h] [-f str] [-s int] [-n int] [-e]
Create Workout Of (the) Day (WOD)
optional arguments:
 -h, --help
                        show this help message and exit
 -f str, --file str
                        CSV input file of exercises (default: wod.csv)
                        Random seed (default: None)
 -s int, --seed int
 -n int, --num_exercises int
                        Number of exercises (default: 4)
  -e, --easy
                        Make it easy (default: False)
$ ./wod.py
Exercise
              Reps
```

Crunches	26	
HSPU	9	
Squats	43	
Pushups	36	
\$./wod.py -s	1	
Exercise	Reps	
Pushups	32	
Jumping Jacks	56	
Situps	88	
Pullups	24	
\$./wod.py -s		
Exercise	Reps	
Pushups	15	
Jumping Jacks	27	
Situps	44	
Pullups	12	
\$./wod.py -f	wod2.csv	
Exercise		Reps
Erstwhile Lung	S	
Existential Ea	32	
Rock Squats	21	
Squatting Chir	49	
Flapping Leg F	17	

Discussion

It's recommended you use the csv.DictReader module to parse the CSV files. You will then need to split the "reps" fields like "20-50" into a low and high values that are coerced into integer values. For the purposes of this exercise, you can assume the CSV files you are given will have the correct headers and the fields will be correctly formatted.

You should use the random module to select a sample of exercises, e.g.:

```
>>> import random
>>> random.sample(range(10), k=3)
[1, 6, 4]
>>> random.sample(range(10), k=3)
[8, 5, 6]
```

So first focus on parsing the input CSV into something you can sample, like a list or a dictionary. I chose to create a data structure that is a list of tuples

containing the name of the exercise, the low range, and the high range for the reps:

```
[('Burpees', 20, 50),
  ('Situps', 40, 100),
  ('Pushups', 25, 75),
  ('Squats', 20, 50),
  ('Pullups', 10, 30),
  ('HSPU', 5, 20),
  ('Lunges', 20, 40),
  ('Plank', 30, 60),
  ('Jumprope', 50, 100),
  ('Jumping Jacks', 25, 75),
  ('Crunches', 20, 30),
  ('Dips', 10, 30)]
Then I can get a random rep value using random.randint, e.g.:
>>> random.randint(5, 10)
6
>>> random.randint(5, 10)
```

```
1 #!/usr/bin/env python3
 2 """Create Workout Of (the) Day (WOD)"""
 3
4 import argparse
5 import csv
6 import os
7 import random
8 from tabulate import tabulate
9 from dire import die
10
11
12 # -----
13 def get_args():
14
        """get command-line arguments"""
15
        parser = argparse.ArgumentParser(
16
            description='Create Workout Of (the) Day (WOD)',
17
            formatter_class=argparse.ArgumentDefaultsHelpFormatter)
18
19
        parser.add_argument('-f',
20
                            '--file',
21
                            help='CSV input file of exercises',
22
                            metavar='str',
23
                            type=str,
24
                            default='wod.csv')
25
26
        parser.add_argument('-s',
27
                            '--seed',
28
                            help='Random seed',
29
                            metavar='int',
30
                            type=int,
31
                            default=None)
32
33
        parser.add_argument('-n',
34
                            '--num_exercises',
35
                            help='Number of exercises',
36
                            metavar='int',
37
                            type=int,
38
                            default=4)
39
40
        parser.add_argument('-e',
41
                            '--easy',
42
                            help='Make it easy',
43
                            action='store_true')
```

```
44
45
       return parser.parse_args()
46
47
48
49
  def read_csv(file):
        """Read the CSV input"""
50
51
52
        if not os.path.isfile(file):
            die('"{}" is not a file'.format(file))
53
54
55
        exercises = []
56
        with open(file) as csvfile:
           reader = csv.DictReader(csvfile, delimiter=',')
57
58
           required = ['exercise', 'reps']
59
           if not all(map(lambda f: f in reader.fieldnames, required)):
60
                die('"{}" is missing required fields: {}'.format(
61
62
                    file, ', '.join(required)))
63
64
           for row in reader:
65
               name = row['exercise']
                low, high = row['reps'].split('-')
66
67
                exercises.append((name, int(low), int(high)))
68
69
       return exercises
70
71
72 # -----
73 def main():
74
        """Make a jazz noise here"""
75
76
        args = get_args()
77
       random.seed(args.seed)
78
        exercises = read_csv(args.file)
79
       table = []
80
        for name, low, high in random.sample(exercises, k=args.num_exercises):
81
82
            if args.easy:
83
                low = int(low / 2)
84
               high = int(high / 2)
85
86
           table.append((name, '{}'.format(random.randint(low, high))))
87
        print(tabulate(table, headers=('Exercise', 'Reps')))
88
89
```

Chapter 16: Blackjack

Write a Python program called blackjack.py that plays an abbreviated game of Blackjack. You will need to import random to get random cards from a deck you will construct, and so your program will need to accept a -s|--seed that will set random.seed() with the value that is passed in so that the test suite will work. The other arguments you will accept are two flags (Boolean values) of -p|--player_hits and -d|--dealer_hits. As usual, you will also have a -h|--help option for usage statement.

To play the game, the user will run the program and will see a display of what cards the dealer has (noted "D") and what cards the player has (noted "P") along with a sum of the values of the cards. In Blackjack, number cards are worth their value, face cards are worth 10, and the Ace will be worth 1 for our game (though in the real game it can alternate between 1 and 11).

To create your deck of cards, you will need to use the Unicode symbols for the suites () [which won't display in the PDF, so consult the Markdown file].

Combine these with the numbers 2-10 and the letters "A", "J", "Q," and "K" (hint: look at itertools.product). Because your game will use randomness, you will need to sort your deck and then use the random.shuffle method so that your cards will be in the correct order to pass the tests.

When you make the initial deal, keep in mind how cards are actually dealt – first one card to each of the players, then one to the dealer, then the players, then the dealer, etc. You might be tempted to use random.choice or something like that to select your cards, but you need to keep in mind that you are modeling an actual deck and so selected cards should no longer be present in the deck. If the -p|--player_htis flag is present, deal an additional card to the player; likewise with the -d|--dealer_hits flag.

After displaying the hands, the code should:

- 1. Check if the player has more than 21; if so, print 'Player busts! You lose, loser!' and exit(0)
- 2. Check if the dealer has more than 21; if so, print 'Dealer busts.' and $\operatorname{exit}(0)$
- 3. Check if the player has exactly 21; if so, print 'Player wins. You probably cheated.' and exit(0)
- 4. Check if the dealer has exactly 21; if so, print 'Dealer wins!' and exit(0)
- 5. If the either the dealer or the player has less than 18, you should indicate "X should hit."

NB: Look at the Markdown format to see the actual output as the suites won't display in the PDF version!

```
$ ./blackjack.py
D [11]: J A
```

```
P [18]: 8 10
Dealer should hit.
$ ./blackjack.py
D [13]: 3 J
P [16]: 6 10
Dealer should hit.
Player should hit.
$ ./blackjack.py -s 5
D [ 5]: 4 A
P [19]: 10 9
Dealer should hit.
$ ./blackjack.py -s 3 -p
D [19]: K 9
P [22]: 3 9 J
Player busts! You lose, loser!
D [19]: 10 9
P [21]: 10 8 3
Player wins. You probably cheated.
```

```
1 #!/usr/bin/env python3
2 """Blackjack"""
3
4 import argparse
5 import random
6 import sys
7 from itertools import product
8 from dire import die
9
10
11 # -----
12 def get_args():
13
       """get command-line arguments"""
14
       parser = argparse.ArgumentParser(
15
           description='Argparse Python script',
16
           formatter_class=argparse.ArgumentDefaultsHelpFormatter)
17
18
       parser.add_argument('-s',
19
                          '--seed',
                          help='Random seed',
20
21
                          metavar='int',
22
                          type=int,
23
                          default=None)
24
25
       parser.add_argument('-d',
26
                           '--dealer_hits',
27
                          help='Dealer hits',
28
                          action='store_true')
29
30
       parser.add_argument('-p',
31
                           '--player_hits',
32
                          help='Player hits',
33
                          action='store_true')
34
35
       return parser.parse_args()
36
37
38 # -----
39 def bail(msg):
       """print() and exit(0)"""
40
41
       print(msg)
42
       sys.exit(0)
43
```

```
44
45
46 def card_value(card):
        """card to numeric value"""
47
48
       val = card[1:]
        faces = {'A': 1, 'J': 10, 'Q': 10, 'K': 10}
49
        if val.isdigit():
50
51
           return int(val)
52
       elif val in faces:
53
           return faces[val]
54
       else:
           die('Unknown card value for "{}"'.format(card))
55
56
57
58
  # -----
59
   def main():
60
        """Make a jazz noise here"""
61
        args = get_args()
62
       random.seed(args.seed)
63
        suites = list(' ')
64
        values = list(range(2, 11)) + list('AJQK')
65
        cards = sorted(map(lambda t: '{}{}'.format(*t), product(suites, values)))
66
        random.shuffle(cards)
67
68
       p1, d1, p2, d2 = cards.pop(), cards.pop(), cards.pop(), cards.pop()
69
       player = [p1, p2]
70
        dealer = [d1, d2]
71
72
        if args.player_hits:
73
           player.append(cards.pop())
74
        if args.dealer_hits:
75
           dealer.append(cards.pop())
76
77
        player_hand = sum(map(card_value, player))
78
        dealer_hand = sum(map(card_value, dealer))
79
80
        print('D [{:2}]: {}'.format(dealer_hand, ' '.join(dealer)))
        print('P [{:2}]: {}'.format(player_hand, ' '.join(player)))
81
82
83
        if player_hand > 21:
84
           bail('Player busts! You lose, loser!')
85
        elif dealer_hand > 21:
86
           bail('Dealer busts.')
        elif player hand == 21:
87
           bail('Player wins. You probably cheated.')
88
89
        elif dealer_hand == 21:
```

```
90 bail('Dealer wins!')
91
92 if dealer_hand < 18: print('Dealer should hit.')
93 if player_hand < 18: print('Player should hit.')
94
95
96 # ------
97 if __name__ == '__main__':
98 main()
```

Chapter 17: Family Tree

Write a program called tree.py that will take an input file as a single positional argument and produce a graph of the family tree described therein. The file can have only three kinds of statements:

```
    INITIALS = Full Name
    person1 married person2
    person1 and person2 begat child1[, child2...]
```

Use the graphviz module to generate a graph like the kyc.gv.pdf included here that was generated from the following input:

```
$ cat tudor.txt
H7 = Henry VII
EOY = Elizabeth of York
H8 = Henry VIII
COA = Catherine of Aragon
AB = Anne Boleyn
JS = Jane Seymour
AOC = Anne of Cleves
CH = Catherine Howard
CP = Catherine Parr
HDC = Henry, Duke of Cornwall
M1 = Mary I
E1 = Elizabeth I
E6 = Edward VI
H7 married EOY
H7 and EOY begat H8
H8 married COA
H8 married AB
H8 married JS
H8 married AOC
H8 married CH
H8 married CP
H8 and COA begat HDC, M1
H8 and AB begat E1
H8 and JS begat E6
$ ./tree.py tudor.txt
Done, see output in "tudor.txt.gv".
```

```
1 #!/usr/bin/env python3
2 """
3 Author : kyclark
4 Date : 2019-05-24
5 Purpose: Display a family tree
6 """
7
8 import argparse
9 import os
10 import re
11 import sys
12 from graphviz import Digraph
13
14
15 # -----
16 def get_args():
       """Get command-line arguments"""
17
18
       parser = argparse.ArgumentParser(
19
20
          description='Display a family tree',
21
          formatter_class=argparse.ArgumentDefaultsHelpFormatter)
22
23
       parser.add_argument('file',
24
                         metavar='FILE',
25
                         type=argparse.FileType('r'),
26
                         help='File input')
27
28
       parser.add_argument('-o',
29
                         '--outfile',
30
                         help='Output filename',
31
                         metavar='str',
32
                         type=str,
33
                         default='')
34
35
       return parser.parse_args()
36
37
38 # -----
39 def main():
      """Make a jazz noise here"""
40
41
42
       args = get_args()
43
       fh = args.file
```

```
out_file = args.outfile or os.path.basename(fh.name) + '.gv'
44
45
46
        nodes, edges = parse_tree(fh)
47
        dot = Digraph(comment='Tree')
48
        for initials, name in nodes.items():
49
            dot.node(name)
50
        for n1, n2 in edges:
51
52
            if n1 in nodes:
53
                n1 = nodes[n1]
            if n2 in nodes:
54
                n2 = nodes[n2]
55
56
57
            dot.edge(n1, n2)
58
        dot.render(out_file, view=True)
59
60
        print('Done, see output in "{}".'.format(out_file))
61
62
63
64
  def parse_tree(fh):
        """parse input file"""
65
66
67
        ini_patt = '([A-Za-z0-9]+)'
68
        name_patt = ini_patt + '\s*=\s*(.+)'
69
        begat_patt = ini_patt + '\s+and\s+' + ini_patt + '\s+begat\s+(.+)'
70
        married_patt = ini_patt + '\s+married\s+' + ini_patt
71
        edges = set()
        nodes = {}
72
73
74
        for line in fh:
75
            name_match = re.match(name_patt, line)
76
            begat match = re.match(begat patt, line)
77
            married_match = re.match(married_patt, line)
78
79
            if name_match:
80
                initials, name = name_match.groups()
                nodes[initials] = name
81
82
            elif married_match:
83
                p1, p2 = married_match.groups()
84
                edges.add((p1, p2))
85
            elif begat_match:
86
                p1, p2, begat = begat_match.groups()
                children = re.split('\s*,\s*', begat)
87
                for parent in p1, p2:
88
89
                    for child in children:
```

```
90 edges.add((parent, child))
91
92 return nodes, edges
93
94
95 # ------
96 if __name__ == '__main__':
97 main()
```

Chapter 18: Gematria

Write a Python program called gematria.py

Gematria is a system for assigning a number to a word by summing the numeric values of each of the letters as defined by the Mispar godol (https://en.wikipedia.org/wiki/Gematria). For English characters, we can use the ASCII table (https://en.wikipedia.org/wiki/ASCII). It is not necessary, however, to encode this table in our program as Python provides the ord function to convert a character to its "ordinal" (order in the ASCII table) value as well as the chr function to convert a number to its "character."

```
>>> ord('A')
65
>>> ord('a')
97
>>> chr(88)
'X'
>>> chr(112)
'p'
```

To implement an ASCII version of gematria in Python, we need to turn each letter into a number and add them all together. So, to start, note that Python can use a for loop to cycle through all the members of a list (in order):

```
>>> for char in ['p', 'y', 't', 'h', 'o', 'n']:
        print(ord(char))
. . .
. . .
112
121
116
104
111
110
Now you just need to sum those up for each word!
$ ./gematria.py
usage: gematria.py [-h] str
gematria.py: error: the following arguments are required: str
$ ./gematria.py -h
usage: gematria.py [-h] str
Gematria
positional arguments:
              Input text or file
  str
```

optional arguments:

-h, --help show this help message and exit \$./gematria.py 'foo bar baz' 324 309 317 \$./gematria.py ../inputs/fox.txt 289 541 552 333 559 444 321 448 314

```
1 #!/usr/bin/env python3
   """Gematria"""
 2
 4 import argparse
5 import os
 6 import re
7 import sys
8
9
10 # -----
11 def get_args():
       """Get command-line arguments"""
12
13
14
       parser = argparse.ArgumentParser(
15
          description='Gematria',
16
          formatter_class=argparse.ArgumentDefaultsHelpFormatter)
17
18
       parser.add_argument('text', metavar='str', help='Input text or file')
19
       return parser.parse_args()
20
21
22
23 # -----
24 def main():
       """Make a jazz noise here"""
25
26
27
       args = get_args()
28
       text = args.text
29
30
       if os.path.isfile(text):
31
          text = open(text).read()
32
33
       def clean(word):
          return re.sub('[^a-zA-Z0-9]', '', word)
34
35
36
       for line in text.splitlines():
37
          words = line.rstrip().split()
          nums = map(lambda word: str(sum(map(ord, clean(word)))), words)
38
          print(' '.join(nums))
39
40
41
42 # -----
43 if __name__ == '__main__':
```

44 main()

Chapter 19: Histogram

Write a Python program called histy.py that takes a single positional argument that may be plain text or the name of a file to read for the text. Count the frequency of each character (not spaces) and print a histogram of the data. By default, you should order the histogram by the characters but include -f|--frequency_sort option to sort by the frequency (in descending order). Also include a -c|--character option (default |) to represent a mark in the histogram, a -m|--minimum option (default 1) to include a character in the output, a -w|--width option (default 70) to limit the size of the histogram, and a -i|--case_insensitive flag to force all input to uppercase.

```
$ ./histy.py
usage: histy.py [-h] [-c str] [-m int] [-w int] [-i] [-f] str
histy.py: error: the following arguments are required: str
$ ./histy.py -h
usage: histy.py [-h] [-c str] [-m int] [-w int] [-i] [-f] str
Histogrammer
positional arguments:
  str
                         Input text or file
optional arguments:
  -h, --help
                         show this help message and exit
 -c str, --character str
                         Character for marks (default: |)
  -m int, --minimum int
                         Minimum frequency to print (default: 1)
  -w int, --width int
                        Maximum width of output (default: 70)
  -i, --case insensitive
                         Case insensitive search (default: False)
  -f, --frequency_sort Sort by frequency (default: False)
 ./histy.py ../inputs/fox.txt
       1 l
       1 |
a
b
       1 I
С
       1 |
d
       1 |
       3 | | |
е
f
       1 I
       1 |
g
       2 | |
h
i
       1 |
       1 |
j
       1 |
```

```
1
      1 |
      1 |
m
      1 |
n
      4 | | | |
0
p
      1 |
      1 |
q
      2 | |
r
      1 |
s
t
      1 |
      2 ||
u
v
      1 l
      1 |
W
      1 I
х
      1 |
У
      1 I
z
 ./histy.py ../inputs/const.txt -fim 100 -w 50 -c '#'
$
Ε
   Τ
   0
   2729 ########################
S
   2676 #######################
   2675 #########################
Α
   2630 #######################
N
Ι
   2433 ######################
R
   2206 ###################
Н
   2029 ################
L
   1490 ############
D
   1230 ###########
С
   1164 ##########
F
   1021 ########
U
    848 #######
    767 #######
Р
М
    730 #######
    612 #####
В
Y
    504 ####
    460 ####
V
G
    444 ####
    375 ###
W
```

```
1 #!/usr/bin/env python3
 2 """Histogrammer"""
 3
4 import argparse
5 import os
6 import re
7 from collections import Counter
8 from dire import die
9
10
11 # -----
12 def get_args():
13
        """get command-line arguments"""
14
        parser = argparse.ArgumentParser(
15
           description='Histogrammer',
16
            formatter_class=argparse.ArgumentDefaultsHelpFormatter)
17
18
        parser.add_argument('text', metavar='str', help='Input text or file')
19
20
        parser.add_argument('-c',
21
                            '--character',
22
                            help='Character for marks',
23
                            metavar='str',
24
                            type=str,
25
                            default='|')
26
27
        parser.add_argument('-m',
28
                            '--minimum',
29
                            help='Minimum frequency to print',
30
                            metavar='int',
31
                            type=int,
32
                            default=1)
33
34
        parser.add_argument('-w',
35
                            '--width',
36
                            help='Maximum width of output',
37
                            metavar='int',
38
                            type=int,
39
                            default=70)
40
41
        parser.add_argument('-i',
42
                            '--case_insensitive',
43
                            help='Case insensitive search',
```

```
action='store_true')
44
45
        parser.add_argument('-f',
46
47
                            '--frequency_sort',
48
                            help='Sort by frequency',
49
                            action='store_true')
50
51
        return parser.parse_args()
52
53
   # -----
54
   def main():
55
        """Make a jazz noise here"""
56
57
58
        args = get_args()
59
        text = args.text
60
        char = args.character
61
        width = args.width
62
        min_val = args.minimum
63
64
        if len(char) != 1:
65
            die('--character "{}" must be one character'.format(char))
66
67
        if os.path.isfile(text):
68
            text = open(text).read()
69
        if args.case_insensitive:
70
            text = text.upper()
71
72
        freqs = Counter(filter(lambda c: re.match(r'\w', c), list(text)))
        high = max(freqs.values())
73
74
        scale = high / width if high > width else 1
75
        items = map(lambda t: (t[1], t[0]),
                    sorted([(v, k) for k, v in freqs.items()],
76
77
                           reverse=True)) if args.frequency_sort else sorted(
78
                               freqs.items())
79
80
        for c, num in items:
81
            if num < min_val:</pre>
82
            print('{} {:6} {}'.format(c, num, char * int(num / scale)))
83
84
85
87
   if __name__ == '__main__':
       main()
88
```

Chapter 20: Guessing Game

Write a Python program called <code>guess.py</code> that plays a guessing game for a number between a -m|--min and -x|--max value (default 1 and 50, respectively) with a limited number of -g|--guesses (default 5). Complain if either --min or --guesses is less than 1. Accept a -s|--seed for random.seed. If the user guesses something that is not a number, complain about it.

The game is intended to actually be interactive, which makes it difficult to test. Here is how it should look in interactive mode:

```
$ ./guess.py -s 1
Guess a number between 1 and 50 (q to quit): 25
"25" is too high.
Guess a number between 1 and 50 (q to quit): foo
"foo" is not a number.
Guess a number between 1 and 50 (q to quit): 12
"12" is too high.
Guess a number between 1 and 50 (q to quit): 6
"6" is too low.
Guess a number between 1 and 50 (q to quit): 9
"9" is correct. You win!
```

Because I want to be able to write a test for this, I also want the program to accept an -i|--inputs option so that the game can also be played exactly the same but without the prompts for input:

```
$ ./guess.py -s 1 -i 25 foo 12 6 9
"25" is too high.
"foo" is not a number.
"12" is too high.
"6" is too low.
"9" is correct. You win!
```

You should be able to handle this in your infinite game loop.

```
1 #!/usr/bin/env python3
3 import argparse
4 import random
5 import re
6 import sys
7 from dire import die
8
9
10 # -----
11 def get_args():
       """get args"""
12
13
       parser = argparse.ArgumentParser(
14
           description='Guessing game',
15
           formatter_class=argparse.ArgumentDefaultsHelpFormatter)
16
17
       parser.add_argument('-m',
18
                           '--min',
19
                           help='Minimum value',
20
                           metavar='int',
21
                           type=int,
22
                           default=1)
23
24
       parser.add_argument('-x',
25
                           '--max',
26
                           help='Maximum value',
27
                           metavar='int',
28
                           type=int,
29
                           default=50)
30
31
       parser.add_argument('-g',
                           '--guesses',
32
33
                           help='Number of guesses',
34
                           metavar='int',
35
                           type=int,
                           default=5)
36
37
38
       parser.add_argument('-s',
39
                           '--seed',
40
                           help='Random seed',
41
                           metavar='int',
42
                           type=int,
43
                           default=None)
```

```
44
45
        parser.add_argument('-i',
46
                            '--inputs',
47
                           help='Inputs',
48
                           metavar='str',
49
                           type=str,
50
                           nargs='+',
                           default=[])
51
52
53
       return parser.parse_args()
54
55
56 # -----
57 def main():
        """main"""
58
59
        args = get_args()
60
       low = args.min
61
       high = args.max
62
        guesses_allowed = args.guesses
63
        inputs = args.inputs
64
       random.seed(args.seed)
65
66
        if low < 1:
           die('--min "{}" cannot be lower than 1'.format(low))
67
68
69
        if guesses allowed < 1:
70
           die('--guesses "{}" cannot be lower than 1'.format(guesses_allowed))
71
72
        if low > high:
           die('--min "{}" is higher than --max "{}"'.format(low, high))
73
74
75
        secret = random.randint(low, high)
        prompt = 'Guess a number between {} and {} (q to quit): '.format(low, high)
76
77
       num_guesses = 0
78
79
        while True:
80
           guess = inputs.pop(0) if inputs else input(prompt)
81
           num_guesses += 1
82
            if re.match('q(uit)?', guess.lower()):
83
84
               print('Now you will never know the answer.')
85
                sys.exit()
86
87
           # Method 1: test if the guess is a digit
            if not guess.isdigit():
88
89
               print('"{}" is not a number.'.format(guess))
```

```
90
                continue
            num = int(guess)
 91
 92
93
            # Method 2: try/except
 94
            num = 0
95
            try:
 96
                num = int(guess)
97
                warn('"{}" is not an integer'.format(guess))
98
99
                continue
100
101
            if not low <= num <= high:</pre>
102
                print('Number "{}" is not in the allowed range'.format(num))
            elif num == secret:
103
104
                print('"{}" is correct. You win!'.format(num))
105
                break
106
            else:
                print('"{}" is too {}.'.format(num,
107
108
                                              'low' if num < secret else 'high'))
109
110
            if num_guesses >= guesses_allowed:
111
                print(
112
                    'Too many guesses, loser! The number was "{}."'.format(secret))
113
                sys.exit(1)
114
115
116 # -----
117
    if __name__ == '__main__':
118
       main()
```

Chapter 21: Kentucky Friar

Write a Python program called friar.py that reads some input text from a single positional argument on the command line (which could be a file to read) and transforms the text by dropping the "g" from words two-syllable words ending in "-ing" and also changes "you" to "y'all". Be mindful to keep the case the same on the first letter, e.g, "You" should become "Y'all," "Hunting" should become "Huntin".

```
$ ./friar.py
usage: friar.py [-h] str
friar.py: error: the following arguments are required: str
$ ./friar.py -h
usage: friar.py [-h] str
Southern fry text
positional arguments:
              Input text or file
optional arguments:
 -h, --help show this help message and exit
$ ./friar.py you
y'all
$ ./friar.py Fishing
Fishin'
$ ./friar.py string
string
$ cat tests/input1.txt
So I was fixing to ask him, "Do you want to go fishing?" I was dying
to go for a swing and maybe do some swimming, too.
$ ./friar.py tests/input1.txt
So I was fixin' to ask him, "Do y'all want to go fishin'?" I was dyin'
to go for a swing and maybe do some swimmin', too.
```

```
1 #!/usr/bin/env python3
   """Kentucky Friar"""
 2
 3
 4 import argparse
5 import os
6 import re
7
8
9
10 def get_args():
       """get command-line arguments"""
11
12
       parser = argparse.ArgumentParser(
13
           description='Southern fry text',
14
           formatter_class=argparse.ArgumentDefaultsHelpFormatter)
15
16
       parser.add_argument('text', metavar='str', help='Input text or file')
17
18
       return parser.parse_args()
19
20
21 # -----
22 def fry(word):
23
24
       Drop the 'g' from '-ing' words, change "you" to "y'all"
25
26
27
       ing_word = re.search('(.+)ing([:;,.?])?$', word)
28
       you = re.match('([Yy])ou$', word)
29
30
       if ing_word:
31
           prefix = ing_word.group(1)
32
           if re.search('[aeiouy]', prefix):
33
              return prefix + "in'" + (ing_word.group(2) or '')
34
       elif you:
35
          return you.group(1) + "'all"
36
37
       return word
38
39
40 # -----
41 def main():
       """Make a jazz noise here"""
42
43
```

```
44
      args = get_args()
45
      text = args.text
46
47
      if os.path.isfile(text):
48
          text = open(text).read()
49
      for line in text.splitlines():
50
          print(''.join(map(fry, re.split(r'(\W+)', line.rstrip()))))
51
52
53
54 # -----
55 if __name__ == '__main__':
56
      main()
```

Chapter 22: Mad Libs

Write a Python program called mad_lib.py that will read a file given as a positional argument and find all the placeholders noted in <>, e.g., <verb>, prompt the user for the part of speech being reuqested, e.g., a "verb", and then substitute that into the text of the file, finally printing out all the placeholders replaced by the user's inputs. By default, this is an interactive program that will use the input prompt to ask the user for their answers, but, for testing purposes, please add a -i|--inputs option so the test suite can pass in all the answers and bypass the input calls.

```
$ ./mad_lib.py
usage: mad_lib.py [-h] [-i str [str ...]] FILE
mad_lib.py: error: the following arguments are required: FILE
$ ./mad_lib.py -h
usage: mad_lib.py [-h] [-i str [str ...]] FILE
Mad Libs
positional arguments:
 FILE
                        Input file
optional arguments:
 -h, --help
                        show this help message and exit
  -i str [str ...], --inputs str [str ...]
                        Inputs (for testing) (default: None)
$ cat help.txt
<exclamation>! I need <noun>!
<exclamation>! Not just <noun>!
<exclamation>! You know I need <noun>!
<exclamation>!
$ ./mad_lib.py help.txt
exclamation: Hey
noun: tacos
exclamation: Oi
noun: fish
exclamation: Ouch
noun: pie
exclamation: Dang
Hey! I need tacos!
Oi! Not just fish!
Ouch! You know I need pie!
Dang!
$ ./mad_lib.py romeo_juliet.txt -i cars Detroit oil pistons \
> "stick shift" furious accelerate 42 foot hammer
Two cars, both alike in dignity,
```

In fair Detroit, where we lay our scene,
From ancient oil break to new mutiny,
Where civil blood makes civil hands unclean.
From forth the fatal loins of these two foes
A pair of star-cross'd pistons take their life;
Whose misadventur'd piteous overthrows
Doth with their stick shift bury their parents' strife.
The fearful passage of their furious love,
And the continuance of their parents' rage,
Which, but their children's end, nought could accelerate,
Is now the 42 hours' traffic of our stage;
The which if you with patient foot attend,
What here shall hammer, our toil shall strive to mend.

```
1 #!/usr/bin/env python3
2 """Mad Libs"""
4 import argparse
5 import os
6 import re
7 import sys
8 from dire import die
9
10
11 # -----
12 def get_args():
13
       """Get command-line arguments"""
14
15
       parser = argparse.ArgumentParser(
16
           description='Mad Libs',
17
           formatter_class=argparse.ArgumentDefaultsHelpFormatter)
18
19
       parser.add_argument('file',
20
                          metavar='FILE',
21
                          type=argparse.FileType('r'),
22
                          help='Input file')
23
24
       parser.add_argument('-i',
25
                          '--inputs',
26
                          help='Inputs (for testing)',
27
                          metavar='str',
28
                          type=str,
29
                          nargs='+',
30
                          required=False)
31
32
       return parser.parse_args()
33
34
35 # -----
36 def main():
37
       """Make a jazz noise here"""
38
39
       args = get_args()
40
       inputs = args.inputs
       regex = re.compile('([<][^>]+[>])')
41
42
       text = args.file.read().rstrip()
43
       blanks = list(regex.finditer(text))
```

```
44
45
       if not blanks: die('File "{}" has no placeholders'.format(args.file.name))
46
       for blank in blanks:
47
48
          name = blank.group(1)
49
          answer = inputs.pop(0) if inputs else input('{}: '.format(
              name.replace('<', '').replace('>', '')))
50
          text = re.sub(name, answer, text, count=1)
51
52
       print(text)
53
54
55
56 # -----
57 if __name__ == '__main__':
58
       main()
```

Chapter 23: License Plates

Write a Python program called license.py that will create a regular expression for a license plate that accounts for characters and numbers which might be confused according to the following list:

- 5 S
- X K Y
- 1 I
- 3 E
- 0 O Q
- M N
- U V W
- 28

Print the plate, the regular expression that would match that plate with all possible ambiguities, and then print all possible combinations of plates that includes the options along with the result of comparing the regular expression you created to the generated plate.

```
$ ./license.py
usage: license.py [-h] PLATE
license.py: error: the following arguments are required: PLATE
$ ./license.py -h
usage: license.py [-h] PLATE
License plate regular expression
positional arguments:
 PLATE
              License plate
optional arguments:
  -h, --help show this help message and exit
$ ./license.py ABC1234
plate = "ABC1234"
regex = "^ABC[1I][27][3E]4$"
ABC1234 OK
ABC12E4 OK
ABC1734 OK
ABC17E4 OK
ABCI234 OK
ABCI2E4 OK
ABCI734 OK
ABCI7E4 OK
$ ./license.py 123456
plate = "123456"
regex = "^[1I][27][3E]4[5S]6$"
```

123456 OK 1234S6 OK 12E456 OK 12E4S6 OK 173456 OK 1734S6 OK 17E456 OK 17E4S6 OK I23456 OK 1234S6 OK I2E456 OK I2E4S6 OK 173456 OK 1734S6 OK 17E456 OK I7E4S6 OK

Owing to the vagaries of the typefaces chosen by different states as well as the wear of the plates themselves, it would seem to me that people might easily confuse certain letters and numbers on plates. In the above example, ABC1234, the number 1 might look like the letter I, so the plate could be ABD1234 or ABC1234. Granted, most license plates follow a pattern of using only letters in some spots and numbers in others, e.g., 3 letters plus 4 numbers, but I want to focus on all possibilities in this problem both because it makes the problem a bit easier and also because it doesn't have to worry about how each state formats their plates. Additionally, I want to account for customized plates that do not follow any pattern and might use any combination of characters.

I represented the above confusion table as a list of tuples. At first I though I might use a dictionary, but there is a problem when three characters are involved, e.g., 0, 0, and Q. I iterate through each character in the provided plate and decide if the character exists in any of the tuples. If so, I represent that position in the regular expression as a choice; if not, it is just the character.

If you think about a regular expression as a graph, it starts with the first character, e.g., A which must be followed by B which must be followed by C which must be followed by either a 1 or an I which must be followed by a 2 or a 7, etc.

In creating all the possible plates from your regular expression, you are making concrete what the regular expression is, well, ... expressing. I find itertools.product to be just the ticket for creating all those possibilites, which must be sorted for the sake of the test.

```
1 #!/usr/bin/env python3
2 """License plate regular expression"""
3
4 import argparse
5 import re
6 import sys
7 from itertools import product
8
9
10 # -----
11 def get_args():
       """get command-line arguments"""
12
13
       parser = argparse.ArgumentParser(
14
           description='License plate regular expression',
15
           formatter_class=argparse.ArgumentDefaultsHelpFormatter)
16
       parser.add_argument('plate', metavar='PLATE', help='License plate')
17
18
19
       return parser.parse_args()
20
21
22 # -----
23 def main():
24
       """Make a jazz noise here"""
25
       args = get_args()
26
       plate = args.plate
27
       mixups = [('5', 'S'), ('X', 'K', 'Y'), ('1', 'I'), ('3', 'E'),
                 ('O', 'O', 'Q'), ('M', 'N'), ('U', 'V', 'W'), ('2', '7')]
28
29
30
       chars = []
31
       for char in plate:
32
           group = list(filter(lambda t: char in t, mixups))
33
           if group:
34
               chars.append(group[0])
35
           else:
36
               chars.append((char, ))
37
38
       regex = '^{}$'.format(''.join(
           map(lambda t: '[' + ''.join(t) + ']' if len(t) > 1 else t[0], chars)))
39
40
       print('plate = "{}"'.format(plate))
41
       print('regex = "{}"'.format(regex))
42
43
```

Chapter 24: Markov Chains for Words

Write a Python program called markov.py that uses the Markov chain algorithm to generate new words from a set of training files. The program should take one or more positional arguments which are files that you read, word-by-word, and note the options of letters after a given -k|--kmer_size (default 2) grouping of letters. E.g., in the word "alabama" with k=1, the frequency table will look like:

```
a = 1, b, m
l = a
b = a
m = a
```

That is, given this training set, if you started with 1 you could only choose an a, but if you have a then you could choose 1, b, or m.

The program should generate $-n|--num_words$ words (default 10), each a random size between k+2 and a $-m|--max_word$ size (default 12). Be sure to accept -s|--seed to pass to random.seed. My solution also takes a -d|--debug flag that will emit debug messages to .log for you to inspect.

Chose the best words and create definitions for them:

```
• yulcogicism: the study of Christmas gnostics
```

- umjamp: skateboarding trick
- callots: insignia of officers in Greek army
- urchenev: fungal growth found under cobblestones

```
$ ./markov.py
usage: markov.py [-h] [-n int] [-k int] [-m int] [-s int] [-d] FILE [FILE ...]
markov.py: error: the following arguments are required: FILE
$ ./markov.py -h
usage: markov.py [-h] [-n int] [-k int] [-m int] [-s int] [-d] FILE [FILE ...]
Markov chain for characters/words
positional arguments:
 FILE
                        Training file(s)
optional arguments:
  -h, --help
                        show this help message and exit
  -n int, --num_words int
                        Number of words to generate (default: 10)
  -k int, --kmer_size int
                        Kmer size (default: 2)
  -m int, --max_word int
                        Max word length (default: 12)
```

```
-s int, --seed int
                        Random seed (default: None)
 -d, --debug
                        Debug to ".log" (default: False)
$ ./markov.py /usr/share/dict/words -s 1
 1: oveli
 2: uming
 3: uylatiteda
 4: owsh
 5: uuse
 6: ismandl
 7: efortai
 8: eyhopy
 9: auretrab
 10: ozogralach
$ ./markov.py ../inputs/const.txt -s 2 -k 3
 1: romot
 2: leasonsusp
 3: gdoned
 4: bunablished
 5: neithere
 6: achmen
 7: reason
 8: nmentyone
 9: effereof
 10: eipts
```

```
1 #!/usr/bin/env python3
3 import argparse
4 import logging
5 import os
6 import random
7 import re
8 import sys
9 from collections import defaultdict
10
11
12 # -----
13 def get_args():
        """Get command-line arguments"""
14
15
16
        parser = argparse.ArgumentParser(
            description='Markov chain for characters/words',
17
18
            formatter_class=argparse.ArgumentDefaultsHelpFormatter)
19
20
        parser.add_argument('file',
21
                            metavar='FILE',
22
                            nargs='+',
                            help='Training file(s)')
23
24
25
        parser.add_argument('-n',
26
                            '--num_words',
27
                            help='Number of words to generate',
28
                            metavar='int',
29
                            type=int,
30
                            default=10)
31
        parser.add_argument('-k',
32
33
                            '--kmer_size',
34
                            help='Kmer size',
35
                            metavar='int',
36
                            type=int,
37
                            default=2)
38
        parser.add_argument('-m',
39
                            '--max_word',
40
41
                            help='Max word length',
42
                            metavar='int',
43
                            type=int,
```

```
44
                             default=12)
45
        parser.add_argument('-s',
46
47
                             '--seed',
48
                             help='Random seed',
49
                             metavar='int',
50
                             type=int,
51
                             default=None)
52
53
        parser.add_argument('-d',
54
                             '--debug',
                             help='Debug to ".log"',
55
                             action='store_true')
56
57
58
        return parser.parse_args()
59
60
61
62
   def main():
        """Make a jazz noise here"""
63
64
65
        args = get_args()
66
        k = args.kmer_size
67
        random.seed(args.seed)
68
69
        logging.basicConfig(
70
            filename='.log',
71
            filemode='w',
72
            level=logging.DEBUG if args.debug else logging.CRITICAL)
73
74
        # debate use of set/list in terms of letter frequencies
75
        chains = defaultdict(list)
        for file in args.file:
76
77
            for line in open(file):
78
                for word in line.lower().split():
                    word = re.sub('[^a-z]', '', word)
79
80
                    for i in range(0, len(word) - k):
81
                        kmer = word[i:i + k + 1]
                        chains[kmer[:-1]].append(kmer[-1])
82
83
84
        logging.debug(chains)
85
86
        kmers = list(chains.keys())
87
        starts = set()
88
89
        for i in range(1, args.num_words + 1):
```

```
90
            word = ''
 91
            while not word:
 92
                kmer = random.choice(kmers)
 93
                if not kmer in starts and chains[kmer] and re.search(
 94
                        '[aeiou]', kmer):
 95
                    starts.add(kmer)
 96
                    word = kmer
 97
            length = random.choice(range(k + 2, args.max_word))
 98
            logging.debug('Make a word {} long starting with "{}"'.format(
99
100
                length, word))
            while len(word) < length:</pre>
101
102
                if not chains[kmer]: break
                char = random.choice(list(chains[kmer]))
103
                logging.debug('char = "{}"'.format(char))
104
                word += char
105
106
                kmer = kmer[1:] + char
107
            logging.debug('word = "{}"'.format(word))
108
            print('{:3}: {}'.format(i, word))
109
110
111
112 # -----
113 if __name__ == '__main__':
114
       main()
```

Chapter 25: Pig Latin

Write a Python program named piggie.py that takes one or more file names as positional arguments and converts all the words in them into "Pig Latin" (see rules below). Write the output to a directory given with the flags -ol--outdir (default out-yay) using the same basename as the input file, e.g., input/foo.txt would be written to out-yay/foo.txt.

if a file argument names a non-existent file, print a warning to STDERR and skip that file. If the output directory does not exist, create it.

To create "Pig Latin":

- 1. If the word begins with consonants, e.g., "k" or "ch", move them to the end of the word and append "ay" so that "mouse" becomes "ouse-may" and "chair" becomes "air-chay."
- 2. If the word begins with a vowel, simple append "-yay" to the end, so "apple" is "apple-yay."

```
$ ./piggie.py
usage: piggie.py [-h] [-o str] FILE [FILE ...]
piggie.py: error: the following arguments are required: FILE
$ ./piggie.py -h
usage: piggie.py [-h] [-o str] FILE [FILE ...]
Convert to Pig Latin
positional arguments:
 FILE
                        Input file(s)
optional arguments:
                        show this help message and exit
  -h, --help
  -o str, --outdir str Output directory (default: out-yay)
[cholla@~/work/python/playful_python/piggie]$ ./piggie.py
usage: piggie.py [-h] [-o str] FILE [FILE ...]
piggie.py: error: the following arguments are required: FILE
[cholla@~/work/python/playful_python/piggie]$ ./piggie.py -h
usage: piggie.py [-h] [-o str] FILE [FILE ...]
Convert to Pig Latin
positional arguments:
 FILE
                        Input file(s)
optional arguments:
  -h, --help
                        show this help message and exit
  -o str, --outdir str Output directory (default: out-yay)
```

\$./piggie.py ../inputs/sonnet-29.txt
1: sonnet-29.txt
Done, wrote 1 file to "out-yay".
\$ head out-yay/sonnet-29.txt
onnet-Say 29-yay
illiam-Way akespeare-Shay

en-Whay, in-yay isgrace-day ith-way ortune-fay and-yay en-may's-yay eyes-yay, I-yay all-yay alone-yay eweep-bay y-may outcast-yay ate-stay, And-yay ouble-tray eaf-day eaven-hay ith-way y-may ootless-bay ies-cray, And-yay ook-lay upon-yay elf-mysay and-yay urse-cay y-may ate-fay, ishing-Way e-may ike-lay o-tay one-yay ore-may ich-ray in-yay ope-hay, eatured-Fay ike-lay im-hay, ike-lay im-hay ith-way iends-fray ossessed-pay, esiring-Day is-thay an-may's-yay art-yay and-yay at-thay an-may's-yay ope-scay,

```
1 #!/usr/bin/env python3
 2 """Convert text to Pig Latin"""
3
4 import argparse
5 import os
6 import re
7 import string
8 from dire import warn
9
10
11 # -----
12 def get_args():
13
       """get command-line arguments"""
14
15
       parser = argparse.ArgumentParser(
16
          description='Convert to Pig Latin',
17
          formatter_class=argparse.ArgumentDefaultsHelpFormatter)
18
19
       parser.add_argument('file',
                         metavar='FILE',
20
21
                         nargs='+',
22
                         help='Input file(s)')
23
24
       parser.add_argument('-o',
25
                         '--outdir',
26
                         help='Output directory',
27
                         metavar='str',
28
                         type=str,
29
                         default='out-yay')
30
31
       return parser.parse_args()
32
33
34 # -----
35 def main():
       """Make a jazz noise here"""
36
37
38
       args = get_args()
39
       out_dir = args.outdir
40
       if not os.path.isdir(out_dir):
41
42
          os.makedirs(out_dir)
43
```

```
44
        num_files = 0
45
        for i, file in enumerate(args.file, start=1):
46
           basename = os.path.basename(file)
47
           out_file = os.path.join(out_dir, basename)
48
           out_fh = open(out_file, 'wt')
           print('{:3}: {}'.format(i, basename))
49
50
51
           if not os.path.isfile(file):
52
               warn('"{}" is not a file.'.format(file))
53
               continue
54
           num_files += 1
55
56
           for line in open(file):
               for bit in re.split(r''([\w']+)", line):
57
58
                   out_fh.write(pig(bit))
59
60
           out_fh.close()
61
62
        print('Done, wrote {} file{} to "{}".'.format(
           num_files, '' if num_files == 1 else 's', out_dir))
63
64
65
66
   def pig(word):
67
        """Create Pig Latin version of a word"""
68
69
70
        if re.match(r"^[\w']+$", word):
           consonants = re.sub('[aeiouAEIOU]', '', string.ascii_letters)
71
72
           match = re.match('^([' + consonants + ']+)(.+)', word)
73
           if match:
74
               word = '-'.join([match.group(2), match.group(1) + 'ay'])
75
           else:
76
               word = word + '-yay'
77
78
       return word
79
80
81 # -----
82 if __name__ == '__main__':
83
       main()
```

Chapter 26: Soundex Rhymer

• https://en.wikipedia.org/wiki/Soundex

Write a Python program called rhymer.py that uses the Soundex algorithm/module to find words that rhyme with a given input word. When comparing words, it would be best to discount any leading consonants, e.g., the words "listen" and "glisten" rhyme but only if you compare the "isten" part. The program should take an optional -w|--wordlist argument (default /usr/share/dict/words) for the comparisons.

See also:

```
• https://pypi.org/project/soundex/)
$ ./rhymer.py
usage: rhymer.py [-h] [-w str] str
rhymer.py: error: the following arguments are required: str
[cholla@~/work/python/playful_python/soundex-rhymer]$ ./rhymer.py -h
usage: rhymer.py [-h] [-w str] str
Use Soundex to find rhyming words
positional arguments:
  str
                        Word
optional arguments:
 -h, --help
                        show this help message and exit
 -w str, --wordlist str
                        Wordlist (default: /usr/share/dict/words)
$ ./rhymer.py orange | head
boring
borning
boronic
borrowing
chloranemic
chlorinize
chlorinous
chorionic
choromanic
clowring
```

```
1 #!/usr/bin/env python3
3 import argparse
4 import re
5 import soundex
6 import string
7 import sys
8
9
10 # -----
11 def get_args():
       """get command-line arguments"""
12
13
       parser = argparse.ArgumentParser(
14
           description='Use Soundex to find rhyming words',
15
           formatter_class=argparse.ArgumentDefaultsHelpFormatter)
16
       parser.add_argument('word', metavar='str', help='Word')
17
18
19
       parser.add_argument('-w',
                           '--wordlist',
20
21
                          metavar='str'
22
                          help='Wordlist',
23
                          default='/usr/share/dict/words')
24
25
       return parser.parse_args()
26
27
28 # -----
29 def main():
30
       """Make a jazz noise here"""
31
       args = get_args()
32
       word = args.word
       wordlist = args.wordlist
33
34
35
       stem = word
36
       consonants = [c for c in string.ascii_lowercase if c not in 'aeiou']
37
       regex = re.compile('^[' + ''.join(consonants) + ']+(.+)')
38
       def stemmer(word):
39
           match = regex.search(word)
40
41
           return match.group(1) if match else word
42
43
       sndx = soundex.Soundex()
```

```
44
      cmp = sndx.soundex(stemmer(word))
45
      for line in open(wordlist):
46
47
         for w in line.split():
             if w != word and sndx.soundex(stemmer(w)) == cmp:
48
49
                print(w)
50
51
52 # -----
53 if __name__ == '__main__':
54
     main()
```

Chapter 27: Substring Guessing Game

Write a Python program called sub.py that plays a guessing game where you read a -f|--file input (default /usr/share/dict/words) and use a given -k|--ksize to find all the words grouped by their shared kmers. Remove any kmers where the number of words is fewer than -m|--min_words. Also accept a -s|--seed for random.seed for testing purposes. Prompt the user to guess a word for a randomly chosen kmer. If their guess is not present in the shared list, taunt them mercilessly. If their guess is present, affirm their worth and prompt to guess again. Allow them to use! to quit and? to be provided a hint (a word from the list). For both successful guesses and hints, remove the word from the shared list. When they have quit or exhausted the list, quit play. At the end of the game, report the number of found words.

```
$ ./sub.py -h
usage: sub.py [-h] [-f str] [-s int] [-m int] [-k int]
Find words sharing a substring
optional arguments:
  -h, --help
                        show this help message and exit
  -f str, --file str
                        Input file (default: /usr/share/dict/words)
 -s int, --seed int
                        Random seed (default: None)
 -m int, --min_words int
                        Minimum number of words for a given kmer (default: 3)
                        Size of k (default: 4)
  -k int, --ksize int
$ ./sub.py
Name a word that contains "slak" [!=quit, ?=hint] (10 left) slake
Totes! "slake" is found!
Name a word that contains "slak" [!=quit, ?=hint] (9 left) ?
For instance, "breislakite"...
Name a word that contains "slak" [!=quit, ?=hint] (8 left) unslakable
Totes! "unslakable" is found!
Name a word that contains "slak" [!=quit, ?=hint] (7 left) q
What is wrong with you?
Name a word that contains "slak" [!=quit, ?=hint] (7 left) !
Quitter!
Hey, you found 2 words! Not bad.
```

```
1 #!/usr/bin/env python3
3 import argparse
4 import os
5 import random
6 import re
7 import sys
8 from collections import defaultdict
9 from dire import die
10
11
12 # -----
13 def get_args():
14
        """get command-line arguments"""
15
        parser = argparse.ArgumentParser(
16
            description='Find words sharing a substring',
17
            formatter_class=argparse.ArgumentDefaultsHelpFormatter)
18
19
        parser.add_argument('-f',
20
                            '--file',
21
                            metavar='str',
22
                            help='Input file',
23
                            type=str,
24
                            default='/usr/share/dict/words')
25
26
        parser.add_argument('-s',
27
                            '--seed',
28
                            help='Random seed',
29
                            metavar='int',
30
                            type=int,
31
                            default=None)
32
33
        parser.add_argument('-m',
34
                            '--min_words',
35
                            help='Minimum number of words for a given kmer',
36
                            metavar='int',
37
                            type=int,
38
                            default=3)
39
40
        parser.add_argument('-k',
41
                            '--ksize',
42
                            help='Size of k',
                            metavar='int',
43
```

```
44
                             type=int,
45
                            default=4)
46
47
        return parser.parse_args()
48
49
50
51
    def get_words(file):
52
        """Get words from input file"""
53
54
        if not os.path.isfile(file):
            die('"{}" is not a file')
55
56
57
        words = set()
58
        for line in open(file):
            for word in line.split():
59
                words.add(re.sub('[^a-zA-Z0-9]', '', word.lower()))
60
61
62
        if not words:
            die('No usable words in "{}"'.format(file))
63
64
65
        return words
66
67
68
69
   def get_kmers(words, k, min_words):
70
        """ Find all words sharing kmers"""
71
72
        if k <= 1:
            die('-k "{}" must be greater than 1'.format(k))
73
74
75
        shared = defaultdict(list)
        for word in words:
76
            for kmer in [word[i:i + k] for i in range(len(word) - k + 1)]:
77
78
                shared[kmer].append(word)
79
80
        # Select kmers having enough words (can't use `pop`!)
81
82
        # Method 1: for loop
        ok = dict()
83
84
        for kmer in shared:
            if len(shared[kmer]) >= min_words:
85
86
                ok[kmer] = shared[kmer]
87
        # Method 2: list comprehension
88
        # ok = dict([(kmer, shared[kmer]) for kmer in shared
89
```

```
90
                      if len(shared[kmer]) >= min_words])
 91
 92
         # Method 3: map/filter
         # ok = dict(
 93
 94
               map(lambda kmer: (kmer, shared[kmer]),
 95
                   filter(lambda kmer: len(shared[kmer]) >= min_words,
                          shared.keys())))
 96
 97
 98
         return ok
 99
100
101
102 def main():
         """Make a jazz noise here"""
103
104
105
         args = get_args()
106
107
         random.seed(args.seed)
108
109
         shared = get_kmers(get_words(args.file), args.ksize, args.min_words)
110
111
         # Choose a kmer, setup game state
112
         kmer = random.choice(list(shared.keys()))
113
         guessed = set()
114
         found = []
115
         prompt = 'Name a word that contains "{}" [!=quit, ?=hint] '.format(kmer)
         compliments = ['Nice', 'Rock on', 'Totes', 'Fantastic', 'Excellent']
116
         taunts = [
117
118
             'Surely you jest!', 'Are you kidding me?',
             'You must have rocks for brains.', 'What is wrong with you?'
119
120
         ]
121
         #print(kmer, shared[kmer])
122
123
124
         while True:
125
             num_left = len(shared[kmer])
126
             if num_left == 0:
127
                 print('No more words!')
128
                 break
129
130
             guess = input(prompt + '({} left) '.format(num_left)).lower()
131
132
             if guess == '?':
                 # Provide a hint
133
                 pos = random.choice(range(len(shared[kmer])))
134
135
                 word = shared[kmer].pop(pos)
```

```
136
                print('For instance, "{}"...'.format(word))
137
            elif guess == '!':
138
139
                # Bail
140
                print('Quitter!')
141
                break
142
143
            elif guess in guessed:
144
                # Chastise
                print('You have already guessed "{}"'.format(guess))
145
146
            elif guess in shared[kmer]:
147
148
                # Remove the word, feedback with compliment
                pos = shared[kmer].index(guess)
149
                word = shared[kmer].pop(pos)
150
                print('{}! "{}" is found!'.format(random.choice(compliments),
151
152
                                                 word))
153
                found.append(word)
154
                guessed.add(guess)
155
            else:
156
157
                # Taunt
158
                print(random.choice(taunts))
159
160
        # Game over, man!
161
        if found:
162
            n = len(found)
163
            print('Hey, you found {} word{}! Not bad.'.format(
164
                n, '' if n == 1 else 's'))
165
        else:
166
            print('Wow, you found no words. You suck!')
167
168
169 # -----
170 if __name__ == '__main__':
171
        main()
```

Chapter 28: Tic-Tac-Toe Outcome

Create a Python program called outcome.py that takes a given Tic-Tac-Toe state as it's only (positional) argument and reports if X or O has won or if there is no winner. The state should only contain the characters ".", "O", and "X", and must be exactly 9 characters long. If there is not exactly one argument, print a "usage" statement.

```
$ ./outcome.py
Usage: outcome.py STATE
$ ./outcome.py ..X.OA..X
State "..X.OA..X" must be 9 characters of only ., X, O
$ ./outcome.py ..X.OX...
No winner
$ ./outcome.py ..X.OX..X
X has won
```

```
1 #!/usr/bin/env python3
2
3 import os
4 import re
5 import sys
6
7
   # -----
9
   def main():
10
       args = sys.argv[1:]
11
12
       if len(args) != 1:
13
           print('Usage: {} STATE'.format(os.path.basename(sys.argv[0])))
14
           sys.exit(1)
15
16
       state = args[0]
17
18
       if not re.search('^[.X0]{9}$', state):
19
           print('State "{}" must be 9 characters of only ., X, O'.format(state),
20
                 file=sys.stderr)
21
           sys.exit(1)
22
23
       winning = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 3, 6], [1, 4, 7],
24
                  [2, 5, 8], [0, 4, 8], [2, 4, 6]]
25
26
       winner = 'No winner'
27
28
       # for player in ['X', '0']:
29
             for combo in winning:
30
                 i, j, k = combo
                 if state[i] == player and state[j] == player and state[k] == player:
31
32
                     winner = player
33
                     break
34
35
       # for player in ['X', '0']:
36
             for combo in winning:
37
                 chars = []
38
                 for i in combo:
                     chars.append(state[i])
39
40
41
       #
                 if ''.join(chars) == player * 3:
42
                     winner = player
43
                     break
```

```
44
45
       # for player in ['X', '0']:
46
             for i, j, k in winning:
                 chars = ''.join([state[i], state[j], state[k]])
47
48
                 if ''.join(chars) == '{}{}'.format(player, player):
49
                    winner = player
50
                    break
51
       for player in ['X', '0']:
52
53
           for i, j, k in winning:
54
               combo = [state[i], state[j], state[k]]
               if combo == [player, player, player]:
55
56
                   winner = '{} has won'.format(player)
57
                   break
58
       # for combo in winning:
59
             group = list(map(lambda i: state[i], combo))
60
             for player in ['X', '0']:
61
62
                 if all(x == player for x in group):
63
                    winner = player
64
                    break
65
66
       print(winner)
67
68
69 # -----
70 if __name__ == '__main__':
71
       main()
```

Chapter 29: Twelve Days of Christmas

Write a Python program called twelve_days.py that will generate the "Twelve Days of Christmas" song up to the -n|--number_days argument (default 12), writing the resulting text to the -o|--outfile argument (default STDOUT).

```
$ ./twelve_days.py -h
usage: twelve_days.py [-h] [-o str] [-n int]
Twelve Days of Christmas
optional arguments:
 -h, --help
                        show this help message and exit
 -o str, --outfile str
                        Outfile (STDOUT) (default: )
 -n int, --number_days int
                        Number of days to sing (default: 12)
$ ./twelve_days.py -n 1
On the first day of Christmas,
My true love gave to me,
A partridge in a pear tree.
$ ./twelve_days.py -n 3
On the first day of Christmas,
My true love gave to me,
A partridge in a pear tree.
On the second day of Christmas,
My true love gave to me,
Two turtle doves,
And a partridge in a pear tree.
On the third day of Christmas,
My true love gave to me,
Three French hens,
Two turtle doves,
And a partridge in a pear tree.
$ ./twelve_days.py -o out
$ wc -l out
     113 out
```

```
1 #!/usr/bin/env python3
2
3 import argparse
4 import sys
5 from dire import die
6
7
   # ------
9
   def get_args():
       """get command-line arguments"""
10
       parser = argparse.ArgumentParser(
11
12
           description='Twelve Days of Christmas',
13
           formatter_class=argparse.ArgumentDefaultsHelpFormatter)
14
       parser.add_argument('-o',
15
                          '--outfile',
16
                         help='Outfile (STDOUT)',
17
18
                         metavar='str',
19
                         type=str,
20
                         default='')
21
22
       parser.add_argument('-n',
23
                          '--number_days',
24
                         help='Number of days to sing',
25
                         metavar='int',
26
                         type=int,
27
                         default=12)
28
29
       return parser.parse_args()
30
31
32 # -----
33 def main():
       """Make a jazz noise here"""
34
35
36
       args = get_args()
37
       out_file = args.outfile
38
       num_days = args.number_days
       out_fh = open(out_file, 'wt') if out_file else sys.stdout
39
40
41
       days = {
42
           12: 'Twelve drummers drumming',
43
           11: 'Eleven pipers piping',
```

```
44
            10: 'Ten lords a leaping',
45
            9: 'Nine ladies dancing',
46
            8: 'Eight maids a milking',
47
            7: 'Seven swans a swimming',
48
            6: 'Six geese a laying',
            5: 'Five gold rings',
49
            4: 'Four calling birds',
50
            3: 'Three French hens',
51
52
            2: 'Two turtle doves',
53
            1: 'a partridge in a pear tree',
54
55
56
        ordinal = {
            12: 'twelfth', 11: 'eleven', 10: 'tenth',
57
            9: 'ninth', 8: 'eighth', 7: 'seventh',
58
            6: 'sixth', 5: 'fifth', 4: 'fourth',
59
            3: 'third', 2: 'second', 1: 'first',
60
        }
61
62
63
        if not num_days in days:
64
            die('Cannot sing "{}" days'.format(num_days))
65
66
        for i in range(1, num_days + 1):
67
            first = 'On the {} day of Christmas,\nMy true love gave to me,'
68
            out_fh.write(first.format(ordinal[i]) + '\n')
69
            for j in reversed(range(1, i + 1)):
70
                if j == 1:
71
                    if i == 1:
72
                        out_fh.write('{}.\n'.format(days[j].title()))
73
                    else:
74
                        out_fh.write('And {}.\n'.format(days[j]))
75
                else:
                    out_fh.write('{},\n'.format(days[j]))
76
77
78
            if i < max(days.keys()):</pre>
79
                out_fh.write('\n')
80
81
82
83 if __name__ == '__main__':
84
       main()
```

Chapter 30: War

The generation of random numbers is too important to be left to chance. – Robert R. Coveyou

Create a Python program called war.py that plays the card game "War." The program will use the random module to shuffle a deck of cards, so your program will need to accept a -s|--seed argument (default: None) which you will use to call random.seed, if present.

First you program will need to create a deck of cards. You will need to use the Unicode symbols for the suites () [which won't display in the PDF, so consult the Markdown file] and combine those with the numbers 2-10 and the letters "J", "Q," "K," and "A." (hint: look at itertools.product).

```
>>> from itertools import product
>>> a = list('AB')
>>> b = range(2)
>>> list(product(a, b))
[('A', 0), ('A', 1), ('B', 0), ('B', 1)]
```

NB: You must sort your deck and then use the random.shuffle method so that your cards will be in the correct order to pass the tests!

In the real game of War, the cards are shuffled and then dealt one card each first to the non-dealer, then to the dealer, until all cards are dealt and each player has 26 cards. We will not be modeling this behavior. When writing your version of the game, simply pop two cards off the deck as the cards for player 1 and player 2, respectively. Compare the two cards by ignoring the suite and evaluating the value where 2 is the lowest and Aces are the highest. When two cards have the same values (e.g., two 5s or two Jacks), print "WAR!" In the real game, this initiates a sub-game of War which is a "recursive" algorithm which we will not bother modeling. Keep track of which player wins each round where no points are awarded in a tie. At the end, report the points for each player and state the winner. In the event of a tie, print "DRAW."

```
6 3 P1
 5 3 P1
 K 10 P1
 7
    7 WAR!
 2
    4 P2
 2 10 P2
 6
    5 P1
 2
    6 P2
 4
    8 P2
 J
    9 P1
10
    Q P2
 8
    7 P1
 K Q P1
    2 P1
10
 9
    9 WAR!
 8
    J P2
 3
    5 P2
 Q
    4 P1
 6
    A P2
 K
    7 P1
 Q
    3 P1
 A K P1
 A J P1
P1 14 P2 10: Player 1 wins
$ ./war.py -s 2
 4 6 P2
 K
    J P1
 J
    4 P1
 7
    4 P1
 Q 10 P1
 5
    3 P1
 K
    9 P1
 2
    Q P2
 7
    A P2
 3
    A P2
 5 8 P2
 2 10 P2
10
    K P2
    3 P2
 2
 Q
    8 P1
 6
    J P2
 6
    8 P2
 8
    7 P1
 5
   2 P1
```

6

9

J P2

9 WAR!

```
K A P2
10 Q P2
7 5 P1
 9 A P2
 4 3 P1
P1 11 P2 14: Player 2 wins
$ ./war.py -s 10
 J 3 P1
 2 5 P2
 Q 10 P1
10 4 P1
 6 5 P1
 3 J P2
 K 8 P1
 5 8 P2
 5 3 P1
 J 10 P1
10 J P2
 A 7 P1
 K Q P1
 7 A P2
 9 9 WAR!
 2 6 P2
 K
   A P2
 6 Q P2
 8 9 P2
 3 7 P2
 8 Q P2
 6 4 P1
 7 2 P1
 4 4 WAR!
 9 2 P1
 K A P2
P1 12 P2 12: DRAW
```

```
1 #!/usr/bin/env python3
3 import argparse
4 import random
5 import sys
6 from itertools import product
7
8
9 # -----
10 def get_args():
       """get command-line arguments"""
11
       parser = argparse.ArgumentParser(
12
13
          description='"War" cardgame',
14
          formatter_class=argparse.ArgumentDefaultsHelpFormatter)
15
16
       parser.add_argument('-s',
17
                         '--seed',
18
                         help='Random seed',
19
                         metavar='int',
                         type=int,
20
21
                         default=None)
22
23
       return parser.parse_args()
24
25
26 # -----
27 def main():
       """Make a jazz noise here"""
28
29
       args = get_args()
30
       seed = args.seed
31
32
       if seed is not None:
33
          random.seed(seed)
34
35
       suits = list(' ')
36
       values = list(map(str, range(2, 11))) + list('JQKA')
37
       cards = sorted(map(lambda t: '{}{}'.format(*t), product(suits, values)))
38
       random.shuffle(cards)
39
       p1_wins = 0
40
41
       p2_wins = 0
42
       card_value = dict(
43
```

```
44
            list(map(lambda t: list(reversed(t)), enumerate(list(values)))))
45
        while cards:
46
47
            p1, p2 = cards.pop(), cards.pop()
48
            v1, v2 = card_value[p1[1:]], card_value[p2[1:]]
49
            res = ''
50
51
            if v1 > v2:
52
                p1_wins += 1
                res = 'P1'
53
54
            elif v2 > v1:
55
                p2_wins += 1
56
                res = 'P2'
57
            else:
                res = 'WAR!'
58
59
60
            print('{:>3} {:>3} {}'.format(p1, p2, res))
61
62
        print('P1 {} P2 {}: {}'.format(
            p1_wins, p2_wins, 'Player 1 wins' if p1_wins > p2_wins else
63
64
            'Player 2 wins' if p2_wins > p1_wins else 'DRAW'))
65
66
67
68 if __name__ == '__main__':
69
       main()
```

Chapter 31: Anagram

Write a program called presto.py that will find an agrams of a given positional argument. The program should take an optional -w|--wordlist (default /usr/share/dict/words) and produce output that includes combinations of -n|num_combos words (default 1) that are an agrams of the given input.

```
$ ./presto.py
usage: presto.py [-h] [-w str] [-n int] [-d] str
presto.py: error: the following arguments are required: str
$ ./presto.py -h
usage: presto.py [-h] [-w str] [-n int] [-d] str
Find anagrams
positional arguments:
  str
                        Input text
optional arguments:
 -h, --help
                        show this help message and exit
  -w str, --wordlist str
                        Wordlist (default: /usr/share/dict/words)
  -n int, --num_combos int
                        Number of words combination to test (default: 1)
  -d, --debug
                        Debug (default: False)
$ ./presto.py presto
presto =
   1. poster
   2. repost
   3. respot
   4. stoper
$ ./presto.py listen
listen =
   1. enlist
   2. silent
   3. tinsel
$ ./presto.py listen -n 2 | tail
 82. sten li
  83. te nils
  84. ten lis
  85. ten sil
 86. ti lens
 87. til ens
  88. til sen
  89. tin els
  90. tin les
```

91. tinsel

```
1 #!/usr/bin/env python3
3 import argparse
4 import logging
5 import os
6 import re
7 import sys
8 from collections import defaultdict, Counter
9 from itertools import combinations, permutations, product, chain
10 from dire import warn, die
11
12
13 # -----
14 def get_args():
       """get command-line arguments"""
15
16
       parser = argparse.ArgumentParser(
17
           description='Find anagrams',
18
           formatter_class=argparse.ArgumentDefaultsHelpFormatter)
19
       parser.add_argument('text', metavar='str', help='Input text')
20
21
22
       parser.add_argument('-w',
23
                          '--wordlist',
24
                         help='Wordlist',
25
                         metavar='str',
26
                         type=str,
27
                         default='/usr/share/dict/words')
28
29
       parser.add_argument('-n',
30
                          '--num_combos',
31
                         help='Number of words combination to test',
32
                         metavar='int',
                         type=int,
33
34
                         default=1)
35
       parser.add_argument('-d', '--debug', help='Debug', action='store_true')
36
37
38
       return parser.parse_args()
39
40
41 # -----
42 def main():
43
       """Make a jazz noise here"""
```

```
44
        args = get_args()
45
        text = args.text
46
        word_list = args.wordlist
47
48
        if not os.path.isfile(word_list):
49
            die('--wordlist "{}" is not a file'.format(word_list))
50
51
        logging.basicConfig(
52
            filename='.log',
53
            filemode='w',
54
            level=logging.DEBUG if args.debug else logging.CRITICAL)
55
56
        words = defaultdict(set)
        for line in open(word list):
57
58
            for word in line.split():
                clean = re.sub('[^a-z0-9]', '', word.lower())
59
60
                if len(clean) == 1 and clean not in 'ai':
61
                    continue
62
                words[len(clean)].add(clean)
63
64
        text_len = len(text)
65
        counts = Counter(text)
66
        anagrams = set()
        lengths = list(words.keys())
67
68
        for i in range(1, args.num_combos + 1):
69
            key combos = list(
70
                filter(
                    lambda t: sum(t) == text_len,
71
72
                    set(
73
                        map(lambda t: tuple(sorted(t)),
                             combinations(chain(lengths, lengths), i))))
74
75
            for keys in key_combos:
76
77
                logging.debug('Searching keys {}'.format(keys))
78
                word_combos = list(product(*list(map(lambda k: words[k], keys))))
79
80
                for t in word_combos:
81
                    if Counter(''.join(t)) == counts:
82
                        for p in filter(
83
                                 lambda x: x != text,
84
                                 map(lambda x: ' '.join(x), permutations(t))):
85
                             anagrams.add(p)
86
87
                logging.debug('# anagrams = {}'.format(len(anagrams)))
88
89
        logging.debug('Finished searching')
```

```
90
91
        if anagrams:
            print('{} ='.format(text))
 92
93
            for i, t in enumerate(sorted(anagrams), 1):
 94
                print('{:4}. {}'.format(i, t))
95
        else:
            print('No anagrams for "{}".'.format(text))
96
97
98
100 if __name__ == '__main__':
101
        main()
```

Chapter 32: Hangman

\$./hangman.py -h

Write a Python program called hangman.py that will play a game of Hangman which is a bit like "Wheel of Fortune" where you present the user with a number of elements indicating the length of a word. For our game, use the underscore _ to indicate a letter that has not been guessed. The program should take -n|--minlen minimum length (default 5) and -l|--maxlen maximum length options (default 10) to indicate the minimum and maximum lengths of the randomly chosen word taken from the -w|--wordlist option (default /usr/share/dict/words). It also needs to take -s|--seed to for the random seed and the -m|--misses number of misses to allow the player.

To play, you will initiate an inifinite loop and keep track of the game state, e.g., the word to guess, the letters already guessed, the letters found, the number of misses. As this is an interactive game, I cannot write an test suite, so you can play my version and then try to write one like it. If the user guesses a letter that is in the word, replace the _ characters with the letter. If the user guesses the same letter twice, admonish them. If the user guesses a letter that is not in the word, increment the misses and let them know they missed. If the user guesses too many times, exit the game and insult them. If they correctly guess the word, let them know and exit the game.

```
usage: hangman.py [-h] [-1 MAXLEN] [-n MINLEN] [-m MISSES] [-s SEED]
                  [-w WORDLIST]
Hangman
optional arguments:
 -h, --help
                       show this help message and exit
 -1 MAXLEN, --maxlen MAXLEN
                       Max word length (default: 10)
 -n MINLEN, --minlen MINLEN
                       Min word length (default: 5)
  -m MISSES, --misses MISSES
                       Max number of misses (default: 10)
 -s SEED, --seed SEED Random seed (default: None)
 -w WORDLIST, --wordlist WORDLIST
                       Word list (default: /usr/share/dict/words)
$ ./hangman.py
 ____ (Misses: 0)
Your guess? ("?" for hint, "!" to quit) a
_ _ _ _ _ (Misses: 1)
Your guess? ("?" for hint, "!" to quit) i
_ _ _ _ i _ (Misses: 1)
Your guess? ("?" for hint, "!" to quit) e
```

```
_ _ _ i _ (Misses: 2)
Your guess? ("?" for hint, "!" to quit) o
_ o _ _ _ i _ (Misses: 2)
Your guess? ("?" for hint, "!" to quit) u
_ o _ _ _ i _ (Misses: 3)
Your guess? ("?" for hint, "!" to quit) y
_ o _ _ _ i _ (Misses: 4)
Your guess? ("?" for hint, "!" to quit) c
_ o _ _ _ i _ (Misses: 5)
Your guess? ("?" for hint, "!" to quit) d
_ o _ _ _ i _ (Misses: 6)
Your guess? ("?" for hint, "!" to quit) p
_ o _ _ _ i p (Misses: 6)
Your guess? ("?" for hint, "!" to quit) m
_ o _ _ _ i p (Misses: 7)
Your guess? ("?" for hint, "!" to quit) n
_ o _ _ _ i p (Misses: 8)
Your guess? ("?" for hint, "!" to quit) s
_ o s _ s _ i p (Misses: 8)
Your guess? ("?" for hint, "!" to quit) t
_osts_ip(Misses: 8)
Your guess? ("?" for hint, "!" to quit) h
You win. You guessed "hostship" with "8" misses!
$ ./hangman.py -m 2
 _ _ _ _ _ (Misses: 0)
Your guess? ("?" for hint, "!" to quit) a
____a __a (Misses: 0)
Your guess? ("?" for hint, "!" to quit) b
_ _ _ _ a _ _ a (Misses: 1)
Your guess? ("?" for hint, "!" to quit) c
You lose, loser! The word was "metromania."
```

```
1 #!/usr/bin/env python3
 2
3 import argparse
4 import os
5 import random
6 import re
7 import sys
8 from dire import die
9
10
11 # -----
12 def get_args():
        """parse arguments"""
13
14
        parser = argparse.ArgumentParser(
15
            description='Hangman',
16
            formatter_class=argparse.ArgumentDefaultsHelpFormatter)
17
18
        parser.add_argument('-1',
19
                            '--maxlen',
20
                            help='Max word length',
21
                            type=int,
22
                            default=10)
23
24
        parser.add_argument('-n',
25
                            '--minlen',
                            help='Min word length',
26
27
                            type=int,
28
                            default=5)
29
30
        parser.add_argument('-m',
31
                            '--misses',
32
                            help='Max number of misses',
33
                            type=int,
34
                            default=10)
35
36
        parser.add_argument('-s',
37
                            '--seed',
38
                            help='Random seed',
39
                            type=str,
40
                            default=None)
41
42
        parser.add_argument('-w',
43
                            '--wordlist',
```

```
44
                          help='Word list',
45
                          type=str,
46
                          default='/usr/share/dict/words')
47
48
       return parser.parse_args()
49
50
51 # -----
52 def bail(msg):
53
       """Print a message to STDOUT and quit with no error"""
54
       print(msg)
       sys.exit(0)
55
56
57
58 # -----
59 def main():
       """main"""
60
61
       args = get_args()
       max_len = args.maxlen
62
63
       min_len = args.minlen
64
       max_misses = args.misses
65
       wordlist = args.wordlist
66
67
       random.seed(args.seed)
68
69
       if not os.path.isfile(wordlist):
70
           die('--wordlist "{}" is not a file.'.format(wordlist))
71
72
       if min_len < 1:</pre>
           die('--minlen must be positive')
73
74
75
       if not 3 <= max len <= 20:
76
           die('--maxlen should be between 3 and 20')
77
78
       if min_len > max_len:
79
           die('--minlen ({}) is greater than --maxlen ({})'.format(
80
               min_len, max_len))
81
       good_word = re.compile('^[a-z]{' + str(min_len) + ',' + str(max_len) +
82
83
                             '}$')
84
       words = [w for w in open(wordlist).read().split() if good_word.match(w)]
85
86
       word = random.choice(words)
87
       play({'word': word, 'max_misses': max_misses})
88
```

89

```
90 # -----
 91 def play(state):
         """Loop to play the game"""
 92
         word = state.get('word') or ''
 93
 94
 95
         if not word: die('No word!')
 96
 97
         guessed = state.get('guessed') or list('_' * len(word))
 98
         prev_guesses = state.get('prev_guesses') or set()
 99
         num_misses = state.get('num_misses') or 0
         max_misses = state.get('max_misses') or 0
100
101
102
         if ''.join(guessed) == word:
103
             msg = 'You win. You guessed "{}" with "{}" miss{}!'
104
             bail(msg.format(word, num_misses, '' if num_misses == 1 else 'es'))
105
106
         if num_misses >= max_misses:
             bail('You lose, loser! The word was "{}."'.format(word))
107
108
         print('{} (Misses: {})'.format(' '.join(guessed), num_misses))
109
110
         new_guess = input('Your guess? ("?" for hint, "!" to quit) ').lower()
111
112
         if new_guess == '!':
113
             bail('Better luck next time, loser.')
114
         elif new_guess == '?':
115
             new_guess = random.choice([x for x in word if x not in guessed])
116
             num_misses += 1
117
118
         if not re.match('^[a-z]$', new_guess):
119
             print('"{}" is not a letter'.format(new_guess))
120
             num_misses += 1
121
         elif new_guess in prev_guesses:
122
             print('You already guessed that')
123
         elif new_guess in word:
124
             prev_guesses.add(new_guess)
125
             last_pos = 0
126
             while True:
127
                 pos = word.find(new_guess, last_pos)
                 if pos < 0:
128
129
                     break
130
                 elif pos >= 0:
131
                     guessed[pos] = new_guess
132
                     last_pos = pos + 1
133
         else:
134
             num misses += 1
135
```

```
play({
136
137
           'word': word,
138
           'guessed': guessed,
139
           'num_misses': num_misses,
140
           'prev_guesses': prev_guesses,
141
           'max_misses': max_misses
142
       })
143
144
145 # -----
146 if __name__ == '__main__':
147
       main()
```

Chapter 33: Markov Chain

Write a Python program called markov.py that takes one or more text files as positional arguments for training. Use the -n|--num_words argument (default 2) to find clusters of words and the words that follow them, e.g., in "The Bustle" by Emily Dickinson:

The bustle in a house The morning after death Is solemnest of industries Enacted upon earth,-

The sweeping up the heart, And putting love away We shall not want to use again Until eternity.

If n=1, then we find that "The" can be followed by "bustle," "morning," and "sweeping. There is a "the" followed by "heart," but we're not going to alter the text in any way, including removing punctuation, so just use str.split on the text to break up the words.

To begin your text, choose a random word (or words) that begin with an uppercase letter. Then randomly select the next word in the chain, keep track of the floating window of the $\neg n$ words, and keep selecting the next words until you have matched or exceeded the $\neg 1 \mid \neg -1 = n$ argument of the number of characters (default 500) to emit at which point you should stop when you find a word that terminates with ., !, or ?.

If you use str.split to get the words from the training text, you'll be removing any newlines from the text, so use a -w|--text_width argument (default 70) to introduce newlines in the output before the text exceeds that number of characters on the line.

Because of the use of randomness, you should include a -s|--seed argument (default None) to pass to random.seed.

Occassionally you may chose a path that terminates. That is, in selecting the next word, you may find there is no next-next word. In that case, just exit the program.

My implementation includes a <code>-d|--debug</code> option that will write a <code>.log</code> file so you can inspect my data structures and logic as you write your own version.

You should find many diverse texts and use them all as training files with varying numbers for -n to see how the texts will be mixed. The results are endlessly entertaining.

```
$ ./markov.py
usage: markov.py [-h] [-l int] [-n int] [-s int] [-w int] [-d] FILE [FILE ...]
```

```
markov.py: error: the following arguments are required: FILE
$ ./markov.py -h
usage: markov.py [-h] [-l int] [-n int] [-s int] [-w int] [-d] FILE [FILE ...]
Markov Chain
positional arguments:
 FILE
                        Training file(s)
optional arguments:
 -h, --help
                        show this help message and exit
  -l int, --length int Output length (characters) (default: 500)
  -n int, --num_words int
                        Number of words (default: 2)
 -s int, --seed int
                        Random seed (default: None)
  -w int, --text_width int
                        Max number of characters per line (default: 70)
  -d, --debug
                        Debug to ".log" (default: False)
$ ./markov.py ../inputs/const.txt
Discoveries; To constitute Tribunals inferior to the seat of the
Senate and House of Representatives shall have been committed, which
district shall have the Qualifications requisite for Electors of the
sixth Year, so that one third may be imposed on such Importation, not
exceeding three on the Journal. Neither House, during the Time of
Adjournment, he may require it. No Bill of Attainder or ex post facto
Law shall be established by Law: but the Party convicted shall
nevertheless be liable and subject to their Consideration such
Measures as he shall nominate, and by and with the Advice and Consent
of the government of the United States under this Constitution, or,
on the List the said Office, the same State claiming Lands under
Grants of different States; between Citizens of each shall constitute
a Quorum to do Business; but a smaller number may adjourn from day to
day, and may be included within this Union, according to their
Consideration such Measures as he shall nominate, and by and with the
Advice and Consent of the United States.
```

```
1 #!/usr/bin/env python3
2 """Markov Chain"""
4 import argparse
5 import logging
6 import os
7 import random
8 import string
9 import sys
10 from pprint import pprint as pp
11 from collections import defaultdict
12
13
14 # -----
15 def get_args():
16
       """Get command-line arguments"""
17
18
       parser = argparse.ArgumentParser(
           description='Markov Chain',
19
20
           formatter_class=argparse.ArgumentDefaultsHelpFormatter)
21
22
       parser.add_argument('training',
23
                          metavar='FILE',
24
                          nargs='+',
25
                           type=argparse.FileType('r'),
26
                           help='Training file(s)')
27
28
       parser.add_argument('-1',
29
                           '--length',
30
                           help='Output length (characters)',
31
                           metavar='int',
32
                           type=int,
33
                           default=500)
34
35
       parser.add_argument('-n',
36
                           '--num_words',
37
                           help='Number of words',
38
                           metavar='int',
39
                           type=int,
40
                           default=2)
41
42
       parser.add_argument('-s',
43
                           '--seed',
```

```
44
                           help='Random seed',
45
                           metavar='int',
46
                           type=int,
47
                           default=None)
48
49
       parser.add_argument('-w',
50
                           '--text_width',
51
                           help='Max number of characters per line',
52
                           metavar='int',
53
                           type=int,
54
                           default=70)
55
56
       parser.add_argument('-d',
57
                           '--debug',
58
                           help='Debug to ".log"',
                           action='store_true')
59
60
61
       return parser.parse_args()
62
63
64 # -----
65 def main():
66
       """Make a jazz noise here"""
67
68
       args = get_args()
69
       num_words = args.num_words
70
       char_max = args.length
71
       text_width = args.text_width
72
73
       random.seed(args.seed)
74
75
       logging.basicConfig(
76
           filename='.log',
77
           filemode='w',
78
           level=logging.DEBUG if args.debug else logging.CRITICAL)
79
80
       all_words = defaultdict(list)
81
       for fh in args.training:
82
           words = fh.read().split()
83
84
           for i in range(0, len(words) - num_words):
               1 = words[i:i + num_words + 1]
85
86
               all_words[tuple(l[:-1])].append(l[-1])
87
88
       logging.debug('all words = {}'.format(all_words))
89
```

```
90
        prev = ''
        while not prev:
91
92
            start = random.choice(
93
                list(
 94
                    filter(lambda w: w[0][0] in string.ascii_uppercase,
95
                           all_words.keys())))
96
            if all_words[start]:
97
                prev = start
98
99
        logging.debug('Starting with "{}"'.format(prev))
100
        p = ' '.join(prev)
101
102
        char_count = len(p)
        print(p, end=' ')
103
104
        line_width = char_count
105
106
        while True:
            if not prev in all_words: break
107
108
            new_word = random.choice(all_words[prev])
109
110
            new_len = len(new_word) + 1
            logging.debug('chose = "{}" from {}'.format(new_word, all_words[prev]))
111
112
113
            if line_width + new_len > text_width:
114
                print()
115
                line_width = new_len
116
            else:
117
                line_width += new_len
118
            char_count += new_len
119
            print(new word, end=' ')
120
121
            if char_count >= char_max and new_word[-1] in '.!?': break
            prev = prev[1:] + (new_word, )
122
123
124
        logging.debug('Finished')
125
        print()
126
127
128 # ------
129 if __name__ == '__main__':
130
        main()
```

Chapter 34: Hamming Chain

Write a Python program called chain.py that takes a -s|--start word and searches a -w|--wordlist argument (default /usr/local/share/dict) for words no more than -d|--max_distance Hamming distance for some number of -i|--iteration (default 20). Be sure to accept a -S|--seed for random.seed.

If the given word is not found in the word list, exit with an error and message. While searching for the next word in the chain, be sure not to repeat any words previously found or you might just go in circles! If you fail to find any new words before the end of the iterations, exit with an error and message as such.

```
$ ./chain.py -h
usage: chain.py [-h] [-s START] [-w FILE] [-d int] [-i int] [-S int] [-D]
Hamming chain
optional arguments:
  -h, --help
                        show this help message and exit
 -s START, --start START
                        Starting word (default: )
 -w FILE, --wordlist FILE
                        File input (default: /usr/share/dict/words)
  -d int, --max_distance int
                        Maximum Hamming distance (default: 1)
  -i int, --iterations int
                        Random seed (default: 20)
 -S int, --seed int
                        Random seed (default: None)
  -D, --debug
                        Debug (default: False)
$ ./chain.py -s foobar
Unknown word "foobar"
$ ./chain.py -s bike -S 1 -i 5
  1: bike
 2: bikh
 3: Sikh
 4: sith
 5: sithe
$ ./chain.py -s bike -S 1 -i 5 -d 2
 1: bike
  2: bit
 3: net
 4: yot
  5: ye
$ ./chain.py -S 1 -s bicycle
Failed to find more words!
```

```
$ ./chain.py -S 1 -s bicycle -d 2 -i 5
 1: bicycle
 2: bicyclic
 3: bicyclism
 4: dicyclist
  5: bicyclist
Use the uscities.txt file to plan a trip!
$ ./chain.py -S 1 -w ../inputs/uscities.txt -s Clinton -d 3
 1: Clinton
 2: Flint
 3: Fritz
 4: Unity
 5: Union
 6: Mason
 7: Oasis
 8: Nash
 9: Zag
 10: Guy
 11: Gaza
 12: Jay
 13: Ely
 14: Egan
 15: Aden
 16: Alta
 17: Ada
 18: Nyac
 19: Pyatt
 20: Plato
$ ./chain.py -S 1 -w ../inputs/uscities.txt -s 'Calumet City' -d 4
Failed to find more words!
 1: Calumet City
 2: Calumet Park
 3: Palomar Park
 4: Hanover Park
 5: Langley Park
 6: Stanley Park
```

bicycle
 bicycler

7: Kearney Park

```
1 #!/usr/bin/env python3
 2 """Hamming chain"""
 3
4 import argparse
5 import logging
6 import random
7 import re
8 from dire import die, warn
9
10
11 # -----
12 def get_args():
13
        """get command-line arguments"""
14
15
        parser = argparse.ArgumentParser(
            description='Hamming chain',
16
17
            formatter_class=argparse.ArgumentDefaultsHelpFormatter)
18
        parser.add_argument('-s', '--start', type=str, help='Starting word', default='']
19
20
21
        parser.add_argument('-w',
22
                            '--wordlist',
23
                            metavar='FILE',
24
                            type=argparse.FileType('r'),
25
                            help='File input',
                            default='/usr/share/dict/words')
26
27
28
        parser.add_argument('-d',
29
                            '--max_distance',
30
                            metavar='int',
31
                            type=int,
32
                            help='Maximum Hamming distance',
33
                            default=1)
34
35
        parser.add_argument('-i',
36
                            '--iterations',
37
                            metavar='int',
38
                            type=int,
39
                            help='Random seed',
40
                            default=20)
41
42
        parser.add_argument('-S',
43
                            '--seed',
```

```
44
                          metavar='int',
45
                          type=int,
46
                          help='Random seed',
47
                          default=None)
48
       parser.add_argument('-D', '--debug', help='Debug', action='store_true')
49
50
51
       return parser.parse_args()
52
53
54 # -----
55 def dist(s1, s2):
56
       """Given two strings, return the Hamming distance (int)"""
57
58
       return abs(len(s1) - len(s2)) + sum(
           map(lambda p: 0 if p[0] == p[1] else 1, zip(s1.lower(), s2.lower())))
59
60
61
62 # -----
63 def main():
64
       """Make a jazz noise here"""
65
66
       args = get_args()
67
       start = args.start
68
       fh = args.wordlist
69
       distance = args.max_distance
70
71
       random.seed(args.seed)
72
73
       logging.basicConfig(
74
           filename='.log',
75
           filemode='w',
76
           level=logging.DEBUG if args.debug else logging.CRITICAL)
77
78
       logging.debug('file = %s', fh.name)
79
80
       words = fh.read().splitlines()
81
82
       if not start:
83
           start = random.choice(words)
84
       if not start in words:
85
86
           die('Unknown word "{}"'.format(start))
87
       def find_close(word):
88
89
           l = len(word)
```

```
90
            low, high = 1 - distance, 1 + distance
 91
            test = filter(lambda w: low <= len(w) <= high, words)</pre>
            return filter(lambda w: dist(word, w) <= distance, test)</pre>
 92
 93
 94
        chain = [start]
 95
        for _ in range(args.iterations - 1):
 96
            close = list(filter(lambda w: w not in chain, find_close(chain[-1])))
 97
            if not close:
                warn('Failed to find more words!')
 98
99
                break
100
101
            next_word = random.choice(close)
102
            chain.append(next_word)
103
        for i, link in enumerate(chain, start=1):
104
            print('{:3}: {}'.format(i, link))
105
106
107 # -----
108 if __name__ == '__main__':
109
        main()
```

Chapter 35: Morse Encoder/Decoder

Write a Python program called morse.py that will encrypt/decrypt text to/from Morse code. The program should expect a single positional argument which is either the name of a file to read for the input or the character - to indicate reading from STDIN. The program should also take a -c|--coding option to indicate use of the itu or standard morse tables, -o|--outfile for writing the output (default STDOUT), and a -d|--decode flag to indicate that the action is to decode the input (the default is to encode it).

```
usage: morse.py [-h] [-c str] [-o str] [-d] [-D] FILE
morse.py: error: the following arguments are required: FILE
$ ./morse.py -h
usage: morse.py [-h] [-c str] [-o str] [-d] [-D] FILE
Encode and decode text/Morse
positional arguments:
                     Input file or "-" for stdin
 FILE
optional arguments:
 -h, --help
                     show this help message and exit
 -c str, --coding str Coding version (default: itu)
 -o str, --outfile str
                     Output file (default: None)
 -d, --decode
                     Decode message from Morse to text (default: False)
 -D, --debug
                     Debug (default: False)
$ ./morse.py ../inputs/fox.txt
[cholla@~/work/python/playful_python/morse]$ ./morse.py ../inputs/fox.txt | ./morse.py -d -
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.
```

```
1 #!/usr/bin/env python3
 2 """Morse en/decoder"""
4 import argparse
5 import logging
6 import random
7 import re
8 import string
9 import sys
10
11
12 # -----
13 def get_args():
        """Get command-line arguments"""
14
15
16
        parser = argparse.ArgumentParser(
            description='Encode and decode text/Morse',
17
18
            formatter_class=argparse.ArgumentDefaultsHelpFormatter)
19
20
        parser.add_argument('input',
21
                            metavar='FILE',
22
                            help='Input file or "-" for stdin')
23
24
        parser.add_argument('-c',
25
                            '--coding',
26
                            help='Coding version',
27
                            metavar='str',
28
                            type=str,
                            choices=['itu', 'morse'],
29
30
                            default='itu')
31
32
        parser.add_argument('-o',
                            '--outfile',
33
34
                            help='Output file',
35
                            metavar='str',
36
                            type=str,
37
                            default=None)
38
        parser.add_argument('-d',
39
40
41
                            help='Decode message from Morse to text',
42
                            action='store_true')
43
```

```
parser.add_argument('-D', '--debug', help='Debug', action='store_true')
44
45
46
       return parser.parse_args()
47
48
49 # -----
50 def encode_word(word, table):
       """Encode word using given table"""
51
52
53
       coded = []
54
       for char in word.upper():
          logging.debug(char)
55
          if char != ' ' and char in table:
56
57
              coded.append(table[char])
58
       encoded = ' '.join(coded)
59
       logging.debug('endoding "{}" to "{}"'.format(word, encoded))
60
61
62
       return encoded
63
64
65
  # -----
   def decode_word(encoded, table):
66
67
       """Decode word using given table"""
68
69
       decoded = []
70
       for code in encoded.split(' '):
          if code in table:
71
72
              decoded.append(table[code])
73
74
       word = ''.join(decoded)
75
       logging.debug('dedoding "{}" to "{}"'.format(encoded, word))
76
77
       return word
78
79
80
81 def test_encode_word():
82
       """Test Encoding"""
83
       assert encode_word('sos', ENCODE_ITU) == '... --- ...'
84
       assert encode_word('sos', ENCODE_MORSE) == '....,....'
85
86
87
88 # -----
89 def test_decode_word():
```

```
90
        """Test Decoding"""
91
        assert decode word('... --- ...', DECODE ITU) == 'SOS'
92
        assert decode_word('...', DECODE_MORSE) == 'SOS'
93
94
95
96 # -----
97 def test_roundtrip():
        """Test En/decoding"""
98
99
        random_str = lambda: ''.join(random.sample(string.ascii_lowercase, k=10))
100
101
        for _ in range(10):
102
            word = random_str()
            for encode tbl, decode tbl in [(ENCODE ITU, DECODE ITU),
103
104
                                           (ENCODE_MORSE, DECODE_MORSE)]:
105
106
                assert word.upper() == decode_word(encode_word(word, encode_tbl),
107
                                                  decode_tbl)
108
109
110 # ------
111 def main():
        """Make a jazz noise here"""
112
113
        args = get_args()
114
        action = 'decode' if args.decode else 'encode'
115
        output = open(args.outfile, 'wt') if args.outfile else sys.stdout
        source = sys.stdin if args.input == '-' else open(args.input)
116
117
118
        coding_table = ''
119
        if args.coding == 'itu':
120
            coding_table = ENCODE_ITU if action == 'encode' else DECODE_ITU
121
        else:
122
            coding table = ENCODE MORSE if action == 'encode' else DECODE MORSE
123
124
        logging.basicConfig(
125
            filename='.log',
126
            filemode='w',
127
            level=logging.DEBUG if args.debug else logging.CRITICAL)
128
129
        word_split = r'\s+' if action == 'encode' else r'\s{2}'
130
131
        for line in source:
132
            for word in re.split(word_split, line):
133
                if action == 'encode':
                    print(encode_word(word, coding_table), end=' ')
134
135
                else:
```

```
print(decode_word(word, coding_table), end=' ')
136
             print()
137
138
139
140
141
    def invert_dict(d):
         """Invert a dictionary's key/value"""
142
143
         #return dict(map(lambda t: list(reversed(t)), d.items()))
144
145
         return dict([(v, k) for k, v in d.items()])
146
147
148
149
    # GLOBALS
150
151
    ENCODE\ ITU = {
         'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '..', 'F': '..-.',
152
         'G': '--.', 'H': '....', 'I': '...', 'J': '.---', 'K': '-.-', 'L': '.-..',
153
         'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.',
154
         'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-'
155
         'Y': '-.--', 'Z': '--..', '0': '-----', '1': '.----', '2': '..---', '3':
156
         '...-', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8':
157
         '---.', '9': '---.', '.': '.-.-.', ',': '--..-', '?': '..--..', '!':
158
                                               . ':': '---...', "'": '.---...', '/':
         '-.-.', '&': '.-..', ';': '-.-.',
159
         '-..-.', '-': '-....-', '(': '-.--.', ')': '-.--.-',
160
161 }
162
    ENCODE MORSE = {
163
         'A': '.-', 'B': '-...', 'C': '..,.', 'D': '-..', 'E': '.', 'F': '.-.', 'G':
164
         '--.', 'H': '....', 'I': '..', 'J': '-.-.', 'K': '-.-', 'L': '+', 'M':
165
         '--', 'N': '-.', 'O': '.,.', 'P': '.....', 'Q': '..-.', 'R': '.,..', 'S':
166
167
         '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '.-..', 'Y':
         '..,..', 'Z': '...,.', '0': '+++++', '1': '.--.', '2': '..-..', '3':
168
         '...-.', '4': '....-', '5': '---', '6': '......', '7': '--..', '8':
169
         '-....', '9': '-..-', '.': '..--..', ',': '.-.-', '?': '-..-.', '!':
170
         '---.', '&': '.,...', ';': '...,..', ':': '-.-,.,.', "'": '..-.,.-..', '/':
171
172
         '..-,-', '-': '....,-..', '(': '....,-..', ')': '....,..,.,
173 }
174
    DECODE_ITU = invert_dict(ENCODE_ITU)
175
    DECODE_MORSE = invert_dict(ENCODE_MORSE)
176
177
178
    if __name__ == '__main__':
179
180
        main()
```

Chapter 36: ROT13 (Rotate 13)

Write a Python program called rot13.py that will encrypt/decrypt input text by shifting the text by a given -s|--shift argument or will move each character halfway through the alphabet, e.g., "a" becomes "n," "b" becomes "o," etc. The text to rotate should be provided as a single positional argument to your program and can either be a text file, text on the command line, or - to indicate STDIN so that you can round-trip data through your program to ensure you are encrypting and decrypting properly.

The way I approached the solution is to think of adding time. If it's 8 in the morning and I want to know the time in 6 hours on a 12-hour (not military/24-hour) clock, I need to think in terms of 12 when the clock rolls over from AM to PM. To do that, I need to know the remainder of dividing by 12, which is given by the modulus % operator:

```
>>> now = 8
>>> (now + 6) % 12
```

And 6 hours from 8AM is, indeed, 2PM.

Similarly if I want to know how many hours (in decimal) are a particular number of minutes, I need to mod by 60:

```
>>> minutes = 90

>>> int(minutes / 60) + (minutes % 60) / 60

1.5

>>> minutes = 204

>>> int(minutes / 60) + (minutes % 60) / 60

3.4
```

If you import string, you can see all the lower/uppercase letters

```
>>> import string
>>> string.ascii_lowercase
'abcdefghijklmnopqrstuvwxyz'
>>> string.ascii_uppercase
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
```

So I think about "rot13" like adding 13 (or some other shift interval) to the position of the letter in the list and modding by the length of the list to wrap it around. If the shift is 13 and we are at "a" and want to know what the letter 13 way is, we can use pos to find "a" and add 13 to that:

```
>>> lcase = list(string.ascii_lowercase)
>>> lcase.index('a')
0
>>> lcase[lcase.index('a') + 13]
'n'
```

But if we want to know the value for something after the 13th letter in our list, we are in trouble!

```
>>> lcase[lcase.index('x') + 13]
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
IndexError: list index out of range
% to the rescue!
>>> lcase[(lcase.index('x') + 13) % len(lcase)]
'k'
```

It's not necessary in this algorithm to shift by any particular number. 13 is special because it's halfway through the alphabet, but we could shift by just 2 or 5 characters. If we want to round-trip our text, it's necessary to shift in the opposite direction on the second half of the trip, so be sure to use the negative value there!

```
$ ./rot13.py
usage: rot13.py [-h] [-s int] str
rot13.py: error: the following arguments are required: str
$ ./rot13.py -h
usage: rot13.py [-h] [-s int] str
Argparse Python script
positional arguments:
                       Input text, file, or "-" for STDIN
 str
optional arguments:
 -h, --help
                       show this help message and exit
 -s int, --shift int Shift arg (default: 0)
$ ./rot13.py AbCd
NoPq
$ ./rot13.py AbCd -s 2
CdEf
$ ./rot13.py fox.txt
Gur dhvpx oebja sbk whzcf bire gur ynml qbt.
$ ./rot13.py fox.txt | ./rot13.py -
The quick brown fox jumps over the lazy dog.
$ ./rot13.py -s 3 fox.txt | ./rot13.py -s -3 -
The quick brown fox jumps over the lazy dog.
```

Solution

```
1 #!/usr/bin/env python3
2
3 import argparse
4 import os
5 import re
6 import string
7 import sys
8
9
10 # -----
11 def get_args():
       """get command-line arguments"""
12
13
       parser = argparse.ArgumentParser(
          description='ROT13 encryption',
14
15
          formatter_class=argparse.ArgumentDefaultsHelpFormatter)
16
17
       parser.add_argument('text',
18
                         metavar='str',
                         help='Input text, file, or "-" for STDIN')
19
20
21
       parser.add_argument('-s',
22
                         '--shift',
23
                         help='Shift arg',
24
                         metavar='int',
25
                         type=int,
26
                         default=0)
27
28
       return parser.parse_args()
29
30
31 # -----
32 def main():
33
       """Make a jazz noise here"""
34
       args = get_args()
35
       text = args.text
36
37
       if text == '-':
38
          text = sys.stdin.read()
39
       elif os.path.isfile(text):
          text = open(text).read()
40
41
42
       lcase = list(string.ascii_lowercase)
43
       ucase = list(string.ascii_uppercase)
```

```
44
       num_lcase = len(lcase)
45
       num_ucase = len(ucase)
46
       lcase_shift = args.shift or int(num_lcase / 2)
47
       ucase_shift = args.shift or int(num_ucase / 2)
48
49
       def rot13(char):
50
           if char in lcase:
51
               pos = lcase.index(char)
52
              rot = (pos + lcase_shift) % num_lcase
              return lcase[rot]
53
54
           elif char in ucase:
              pos = ucase.index(char)
55
56
              rot = (pos + ucase_shift) % num_ucase
57
              return ucase[rot]
58
           else:
59
              return char
60
61
       print(''.join(map(rot13, text)).rstrip())
62
63
64 # -----
65 if __name__ == '__main__':
66
       main()
```

Chapter 37: Tranpose ABC Notation

Write a Python program called transpose.py that will read a file in ABC notation (https://en.wikipedia.org/wiki/ABC_notation) and transpose the melody line up or down by a given -s|--shift argument. Like the rot13 exercise, it might be helpful to think of the space of notes (ABCDEFG) as a list which you can roll through. For instance, if you have the note c and want to transpose up a (minor) third (-s 3), you would make the new note e; similarly if you have the note F and you go up a (major) third, you get A. You will not need to worry about the actual number of semitones that you are being asked to shift, as the previous example showed that we might be shifting by a major/minor/augmented/diminished/pure interval. The purpose of the exercise is simply to practice with lists.

```
$ ./transpose.py
usage: transpose.py [-h] [-s int] FILE
transpose.py: error: the following arguments are required: FILE
$ ./transpose.py -h
usage: transpose.py [-h] [-s int] FILE
Tranpose ABC notation
positional arguments:
 FILE
                       Input file
optional arguments:
  -h, --help
                       show this help message and exit
  -s int, --shift int Interval to shift (default: 2)
$ ./transpose.pv foo
"foo" is not a file
$ ./transpose.py songs/legacy.abc -s 1
--shift "1" must be between 2 and 8
$ ./transpose.py songs/legacy.abc
<score lang="ABC">
X:1
T: The Legacy Jig
M:6/8
L:1/8
R: jig
K:A
AGA CBC | aga abc | AGA CBC | e2B BGE |
AGA CBC | aga abc | baf feC |1 eCB BGE : |2 eCB BCe |:
fgf feC | eCB BCe | fgf feC | aeC BCe |
fgf feC | e2e efg | agf feC |1 eCB BCe :|2 eCB BGE |]
</score>
```

A sample ABC song is given:

```
$ cat songs/legacy.abc
<score lang="ABC">
X:1
T:The Legacy Jig
M:6/8
L:1/8
R:jig
K:G
GFG BAB | gfg gab | GFG BAB | d2A AFD |
GFG BAB | gfg gab | age edB | 1 dBA AFD :|2 dBA ABd |:
efe edB | dBA ABd | efe edB | gdB ABd |
efe edB | d2d def | gfe edB |1 dBA ABd :|2 dBA AFD |]
</score>
```

If you use new_py.py to create your new program with the file as a single positional argument, you can use this code to get the input file and check that it is, indeed, a file:

```
args = get_args()
file = args.file

if not os.path.isfile(file):
    die('"{}" is not a file'.formate(file))
```

Now that you have a file, you can use a for loop to read it. Each line will still have a newline attached to the end, so you can use rstrip() to remove it:

```
for line in open(file):
    line = line.rstrip()
```

If a line starts with < and ends with > (cf. str.startswith and str.endswith), you can just print the line as-is. If the line starts with K:, then you have the key signature and should transpose it, e.g., if you have K:A and you are shifting a fifth, you should print K:E. If you have a line that starts with any other single uppercase letter and a colon, just print the line as-is. Finally, if you have a line that doesn't match any of the above conditions, you have a line of melody that needs to be transposed.

If you are unfamiliar with musical transposition, you may be a bit confused by the notion of a interval. A "second" equals a --shift of one note; that is, the distance from A to B is one note, but we call that a "second." Therefore, assume that the --shift argument is the name of the interval, e.g., 4 (a "fourth") is actually a move of three notes. That means the argument provided by the user should be in the range 2 to 8, inclusive, so complain if it is not.

Note that the transposition of a tune up a fourth is the same as down a fifth:

```
$ ./transpose.py songs/legacy.abc -s 4
```

```
<score lang="ABC">
X:1
T:The Legacy Jig
M:6/8
L:1/8
R:jig
K:C
CBC EDE | cbc cde | CBC EDE | g2D DBG |
CBC EDE | cbc cde | dca agE |1 gED DBG : |2 gED DEg |:
aba agE | gED DEg | aba agE | cgE DEg |
aba agE | g2g gab | cba agE |1 gED DEg :|2 gED DBG |]
</score>
$ ./transpose.py songs/legacy.abc -s -5
<score lang="ABC">
X:1
T: The Legacy Jig
M:6/8
L:1/8
R:jig
K:C
CBC EDE | cbc cde | CBC EDE | g2D DBG |
CBC EDE | cbc cde | dca agE |1 gED DBG :|2 gED DEg |:
aba agE | gED DEg | aba agE | cgE DEg |
aba agE | g2g gab | cba agE |1 gED DEg :|2 gED DBG |]
</score>
```

Solution

```
1 #!/usr/bin/env python3
 2 """Tranpose ABC notation"""
 3
4 import argparse
5 import os
6 import re
7 import sys
8 from dire import die
9
10
11 # -----
12 def get_args():
13
       """get command-line arguments"""
14
       parser = argparse.ArgumentParser(
15
          description='Tranpose ABC notation',
16
           formatter_class=argparse.ArgumentDefaultsHelpFormatter)
17
18
       parser.add_argument('file', metavar='FILE', help='Input file')
19
20
       parser.add_argument('-s',
21
                          '--shift',
22
                         help='Interval to shift',
23
                         metavar='int',
24
                         type=int,
25
                         default=2)
26
27
       return parser.parse_args()
28
29
30 # -----
31 def main():
32
       """Make a jazz noise here"""
33
       args = get_args()
34
       file = args.file
35
       shift = args.shift
36
       ucase = 'ABCDEFG'
37
       lcase = 'abcdefg'
38
       num_notes = 7
39
       if not 1 < abs(shift) <= 8:</pre>
40
          die('--shift "{}" must be between 2 and 8'.format(shift))
41
42
43
       if not os.path.isfile(file):
```

```
44
           die('"{}" is not a file'.format(file))
45
        # account for interval where a 2nd (-s 2) is a move of one note
46
47
        shift = shift - 1 if shift > 0 else shift + 1
48
49
        def transpose(note):
50
           if note in lcase:
51
               pos = lcase.index(note)
52
               tran = (pos + shift) % num_notes
               return lcase[tran]
53
54
           elif note in ucase:
55
               pos = ucase.index(note)
               tran = (pos + shift) % num_notes
56
               return ucase[tran]
57
58
           else:
59
               return note
60
        for line in open(file):
61
62
           line = line.rstrip()
63
64
           if line.startswith('K:'):
65
               key = line[2]
66
               print('K:' + transpose(key))
67
           elif (line.startswith('<') and line.endswith('>')) or re.match( \,
68
                   '[A-Z]:\s?', line):
69
               print(line)
70
           else:
71
               for char in line.rstrip():
72
                   print(transpose(char), end='')
73
74
               print()
75
76
77 # -----
78 if __name__ == '__main__':
79
       main()
```

Appendix 1: argparse

The argparse module will interpret all the command-line arguments to your program. I suggest you use argparse for every command-line program you write so that you always have a standard way to get arguments and present help.

Types of arguments

Command-line arguments come in a variety of flavors:

- Positional: The order and number of the arguments is what determines their meaning. Some programs might expect, for instance, a file name as the first argument and an output directory as the second.
- Named options: Standard Unix format allows for a "short" name like -f (one dash and a single character) or a "long" name like --file (two dashes and a string of characters) followed by some value like a file name or a number. This allows for arguments to be provided in any order or not provided in which case the program can use a reasonable default value.
- Flag: A "Boolean" value like "yes"/"no" or True/False usually indicated by something that looks like a named option but without a value, e.g., -d or --debug to turn on debugging. Typically the presence of the flag indicates a True value for the argument; therefore, it's absence would mean False, so --debug turns on debugging while no --debug flag means there should not no debugging.

Datatypes of values

The argparse module can save you enormous amounts of time by forcing the user to provide arguments of a particular type. If you run new.py, all of the above types of arguments are present along with suggestions for how to get string or integer values:

```
parser.add_argument('-a',
                    help='A named string argument',
                     metavar='str',
                     type=str,
                     default='')
parser.add_argument('-i',
                     '--int',
                    help='A named integer argument',
                    metavar='int',
                     type=int,
                     default=0)
parser.add_argument('-f',
                     '--flag',
                    help='A boolean flag',
                    action='store_true')
return parser.parse_args()
```

You should change the description to a short sentence describing your program. The formatter_class argument tells argparse to show the default values in the the standard help documentation.

The positional argument's definition indicates we expect exactly one positional argument. The -a argument's type must be a str while the -i option must be something that Python can convert to the int type (you can also use float). Both of these arguments have default values which means the user is not required to provide them. You could instead define them with required=True to force the user to provide values themselves.

The -f flag notes that the action is to store_true which means the value's default with be True if the argument is present and False otherwise.

The type of the argument can be something much richer than simple Python types like strings or numbers. You can indicate that an argument must be a existing, readable file. Here is a simple implementation in Python of cat -n:

```
#!/usr/bin/env python3
"""Python version of `cat -n`"""
import argparse
# ------
def get_args():
```

```
"""Get command-line arguments"""
   parser = argparse.ArgumentParser(
       description='Argparse Python script',
       formatter_class=argparse.ArgumentDefaultsHelpFormatter)
   parser.add_argument('file',
                     metavar='FILE',
                     type=argparse.FileType('r'),
                     help='Input file')
   return parser.parse_args()
# -----
def main():
   """Make a jazz noise here"""
   args = get_args()
   fh = args.file
   print('Reading "{}"'.format(fh.name))
   for i, line in enumerate(fh):
       print(i, line, end='')
# -----
if __name__ == '__main__':
   main()
The type of the input file argument is an open file handle which we can directly
```

read line-by-line with a for loop! Because it's a file handle and not a file name, I chose to call the variable fh to help me remember what it is. You can access the file's name via fh.name.

```
$ ./cat_n.py ../../inputs/the-bustle.txt
Reading "../../inputs/the-bustle.txt"
O The bustle in a house
1 The morning after death
2 Is solemnest of industries
3 Enacted upon earth,--
5 The sweeping up the heart,
6 And putting love away
7 We shall not want to use again
8 Until eternity.
```

Number of arguments

```
If you want one positional argument, you can define them like so:
#!/usr/bin/env python3
"""One positional argument"""
import argparse
parser = argparse.ArgumentParser(
    description='One positional argument',
    formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('first', metavar='str', help='First argument')
args = parser.parse_args()
print('first =', args.first)
If the user provides anything other exactly one argument, they get a help mes-
sage:
$ ./one arg.py
usage: one_arg.py [-h] str
one_arg.py: error: the following arguments are required: str
$ ./one_arg.py foo bar
usage: one_arg.py [-h] str
one_arg.py: error: unrecognized arguments: bar
$ ./one_arg.py foo
first = foo
If you want two different positional arguments:
#!/usr/bin/env python3
"""Two positional arguments"""
import argparse
parser = argparse.ArgumentParser(
    description='Two positional arguments',
    formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('first', metavar='str', help='First argument')
parser.add_argument('second', metavar='int', help='Second argument')
return parser.parse_args()
print('first =', args.first)
print('second =', args.second)
```

Again, the user must provide exactly this number of positional arguments:

```
$ ./two_args.py
usage: two_args.py [-h] str str
two_args.py: error: the following arguments are required: str, str
$ ./two_args.py foo
usage: two_args.py [-h] str str
two_args.py: error: the following arguments are required: str
$ ./two args.py foo bar
first = foo
second = bar
You can also use the nargs=N option to specify some number of arguments. It
only makes sense if the arguments are the same thing like two files:
#!/usr/bin/env python3
"""nargs=2"""
import argparse
parser = argparse.ArgumentParser(
    description='nargs=2',
    formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('files', metavar='FILE', nargs=2, help='Two files')
args = parser.parse_args()
file1, file2 = args.files
print('file1 =', file1)
print('file2 =', file2)
The help indicates we want two files:
$ ./nargs2.py foo
usage: nargs2.py [-h] FILE FILE
nargs2.py: error: the following arguments are required: FILE
And we can unpack the two file arguments and use them:
$ ./nargs2.py foo bar
file1 = foo
file2 = bar
If you want one or more of some argument, you can use nargs='+':
$ cat nargs+.py
#!/usr/bin/env python3
"""nargs=+"""
```

```
import argparse
parser = argparse.ArgumentParser(
    description='nargs=+',
    formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('files', metavar='FILE', nargs='+', help='Some files')
args = parser.parse_args()
files = args.files
print('number = {}'.format(len(files)))
print('files = {}'.format(', '.join(files)))
Note that this will return a list - even a single argument will become a list
of one value:
$ ./nargs+.py
usage: nargs+.py [-h] FILE [FILE ...]
nargs+.py: error: the following arguments are required: FILE
$ ./nargs+.py foo
number = 1
files = foo
$ ./nargs+.py foo bar
number = 2
files = foo, bar
```

Automatic help

The argparse module reserves the -h and --help flags for generating help documentation. You do not need to add these nor are you allowed to use these flags for other purposes. Using the above definition, this is the help that argparse will generate:

Notice how unhelpful a name like positional is?

Getting the argument values

The values for the arguments will be accessible through the "long" name you define and will have been coerced to the Python data type you indicated. If I change main to this:

```
# -----
def main():
   """Make a jazz noise here"""
   args = get_args()
   str_arg = args.arg
   int_arg = args.int
   flag_arg = args.flag
   pos_arg = args.positional
   print('str_arg = "{}" ({})'.format(str_arg, type(str_arg)))
   print('int_arg = "{}" ({})'.format(int_arg, type(int_arg)))
   print('flag_arg = "{}" ({})'.format(flag_arg, type(flag_arg)))
   print('positional = "{}" ({})'.format(pos_arg, type(pos_arg)))
And then run it:
$ ./foo.py -a foo -i 4 -f bar
str_arg = "foo" (<class 'str'>)
int_arg = "4" (<class 'int'>)
flag_arg = "True" (<class 'bool'>)
positional = "bar" (<class 'str'>)
Notice how we might think that -f takes the argument bar, but it is defined as
a flag and the argparse knows that the program take
$ ./foo.py foo -a bar -i 4 -f
str_arg = "bar" (<class 'str'>)
int_arg = "4" (<class 'int'>)
flag_arg = "True" (<class 'bool'>)
positional = "foo" (<class 'str'>)
```

Appendix 2: Truthiness

While it would seem Python has an actual Boolean (Yes/No, True/False) type, this idea can be seriously abused in many odd and confusing ways. First off, there are actual True and False values:

```
>>> True == True
True
>>> False == False
True
But they are equivalent to integers:
>>> True == 1
True
>>> False == 0
True
Which means, oddly, that you can add them:
>>> True + True
2
>>> True + True + False
2
```

Lots of things are False-ey when they are evaluated in a Boolean context. The int 0, the float 0.0, the empty string, an empty list, and the special value None are all considered False-ey:

```
>>> 'Hooray!' if 0 else 'Shucks!'
'Shucks!'
>>> 'Hooray!' if 0. else 'Shucks!'
'Shucks!'
>>> 'Hooray!' if [] else 'Shucks!'
'Shucks!'
>>> 'Hooray!' if '' else 'Shucks!'
'Shucks!'
>>> 'Hooray!' if None else 'Shucks!'
'Shucks!'
But note:
>>> 'Hooray!' if 'None' else 'Shucks!'
'Hooray!'
```

There are quotes around 'None' so it's the literal string "None" and not the special value None, and, since this is not an empty string, it evaluates $in\ a$ Boolean context to not-False which is basically True.

This behavior can introduce extremely subtle logical bugs into your programs that the Python compiler and linters cannot uncover. Consider the dict.get

method that will safely return the value for a given key in a dictionary, returning None if the key does not exist. Given this dictionary:

```
>>> d = {'foo': 0, 'bar': None}
```

If we access a key that doesn't exist, Python generates an exception that, if not caught in our code, would immediately crash the program:

```
>>> d['baz']
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
KeyError: 'baz'
But we can use d.get() to do this safely:
>>> d.get('baz')
Hmm, that seems unhelpful! What did we get back?
>>> type(d.get('baz'))
<class 'NoneType'>
Ah, we got None!
We could use an or to define a default value:
>>> d.get('baz') or 'NA'
'NA'
```

It turns out the get method accepts a second, optional argument of the default value to return:

```
>>> d.get('baz', 'NA')
```

Great! So let's use that on the other values:

```
>>> d.get('foo', 'NA')
0
>>> d.get('bar', 'NA')
```

The call for bar returned nothing because we put an actual None as the value:

```
>>> type(d.get('bar', 'NA'))
<class 'NoneType'>
```

The key bar didn't fail because that key exists in the dictionary. The dict.get method only returns the second, default argument if the key does not exist in the dictionary which is entirely different from checking the value of the key in the dictionary. OK, so we go back to this:

```
>>> d.get('bar') or 'NA'
'NA'
```

Which seems to work, but notice this:

```
>>> d.get('foo') or 'NA'
'NA'
```

The value for foo is actually 0 which evaluates to False given the Boolean evaluation of the or. If this were a measurement of some value like the amount of sodium in water, then the string NA would indicate that no value was recorded whereas 0 indicates that sodium was measured and none detected. If some sort of important analysis rested on our interpretation of the strings in a spreadsheet, we might inadvertently introduce missing values because of the way Python coerces various non-Boolean values into Boolean values.

Perhaps a safer way to access these values would be:

```
>>> for key in ['foo', 'bar', 'baz']:
... val = d[key] if key in d else 'NA'
... val = 'NA' if val is None else val
... print(key, val)
...
foo 0
bar NA
baz NA
```

Appendix 3: Markov Chains

Read about Markov chains:

- Claude Shannon's 1948 MS thesis, "A Mathematical Theory of Communication" (https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x)
- https://en.wikipedia.org/wiki/Markov_chain
- Chapter 3 of *The Practice of Programming* by Brian Kernighan and Rob Pike where they discuss implementations in C, C++, Java, awk, and Perl
- "Computer Recreations", A. K. Dewdney, Scientific American, 1989 (https://archive.org/details/ComputerRecreationsMarkovChainer)

I'd like you to consider how a Markov chain creates a graph structure. Consult the three PDFs (generated by the mk-graphs.sh program) that visualize the graphs created by k-mer sizes of 1, 2, 3, and 4 when given this input:

\$ cat words.txt
maamselle
mabi
mabolo
mac
macaasim
macabre

Notice that sometimes the branches terminate and sometimes you can find multiple paths through the graphs. As k grows, there are fewer options.