Capítulo 1

Capítulo 2

Capítulo 3

a. Um número real x é o limite de uma sequência $\{x_n\}$, ou uma sequência $\{x_n\}$ converge para x, se para todo $\varepsilon > 0$ existir um número N > 0 tal que $|x_n - x| < \varepsilon$ para todo inteiro $n \ge N$.

b. Propriedades (álgebra) de sequências.

c. Seja $\sum_{n=1}^{\infty} a_n$ uma séria (numérica) infinita e $\{S_n\}$ a sequência de somas parciais. Se $\{S_n\}$ for convergente ($\lim_{n\to\infty}$ existe) e $S=S_n$ existir como número real, a série $\sum_{n=1}^{\infty} a_n$ é convergente com S sua soma. Caso contrário, a série é divergente.

d. Seja $\sum a_n$ uma série infinita para a qual todo $a_n \neq 0$. Então,

i. Se
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$
 ou $\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1$, a série é absolutamente convergente;

ii. Se
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$$
 ou $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$ ou $\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1$ ou $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, a série é divergente;

iii. Se
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$
 ou $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, a convergência é indeterminada.

e. Seja f uma função contínua, positiva e decrescente em $[1, \infty)$.

A série infinita $\sum_{n=1}^{\infty} f(n)$ é convergente se a integral imprópria $\int_{1}^{\infty} f(x) dx$ existir, e divergente se a integral imprópria for divergente.

f. Sejam $\sum a_n$ e $\sum b_n$ duas séries com termos positivos.

i. Se $\sum b_n$ é convergente e $a_n \leqslant b_n \, \forall n$, então $\sum a_n$ também é convergente;

ii. Se $\sum b_n$ é divergente e $a_n \geqslant b_n \, \forall n$, então $\sum a_n$ também é divergente.

g. Seja a série alternada

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \dots,$$

$$\sum_{n=1}^{\infty} (-1)^n a_n = -a_1 + a_2 - a_3 + a_4 - \dots,$$

1

com $a_n > 0$. Se

i.
$$a_{n+1} \leqslant a_n$$

ii. $\lim_{n\to\infty} a_n = 0$ para todo n inteiro positivo

então a série é convergente.

Capítulo 4

a. Uma série de potências é uma série da forma

$$c_1(x-a)^0 + c_1(x-a)^1 + c_1(x-a)^2 + \dots + c_n(x-a)^n + \dots = \sum_{n=0}^{\infty} c_n(x-a)^n.$$

Nos exemplos, são discutidas as formas de determinar o intervalo de convergência de uma série de potências.

b. Uma série de Taylor é uma série de potências escrita da forma

$$\sum_{k=0}^{\infty} \frac{f^k(a)}{k!} (x-a)^k =$$

$$\frac{f(a)}{0!} (x-a)^0 + \frac{f'(a)}{1!} (x-a)^1 + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^n(a)}{n!} (x-a)^n + \dots$$

Quando a = 0, a série é conhecida como série de Maclaurin.

c. A série de Fourier de uma função f(x), num intervalo -L < x < L, é uma série de potências da forma

$$f(x) = \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L},$$

em que

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} dx,$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \operatorname{sen} \frac{n \pi x}{L} dx.$$

d. A extensão par da série de Fourier é

$$f(x) = \sum_{n=1}^{\infty} a_n \cos \frac{n \pi x}{L}$$

em que

$$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} \, \mathrm{d}x$$

e a extensão ímpar

$$f(x) = \sum_{n=1}^{\infty} a_n \operatorname{sen} \frac{n \pi x}{L}$$

em que

$$a_n = \frac{2}{L} \int_0^L f(x) \operatorname{sen} \frac{n \pi x}{L} dx.$$