TEMA 3

EJERCICIO 3.1

Hallar la función de transferencia G(s)=Y(s)/R(s), simplificándolo previamente, paso a paso, a un solo bloque.

REPRESENTACION EXTERNA DE SISTEMAS

EJERCICIO 3.2

Dado el siguiente sistema de ecuaciones:

$$X1(s) = R(s) - X6(s) - F1(s) X4(s)$$

$$X2(s) = G1(s) X1(s)$$

$$X4(s) = X2(s) - X3(s)$$

$$X3(s) = G2(s) X4(s)$$

$$X5(s) = G3(s) X3(s)$$

$$X6(s) = X5(s) + X4(s)$$

$$Y(s) = K X6(s)$$

Donde G1(s), G2(s), G3(s), F1(s) son funciones de transferencia, siendo R(s) la entrada e Y(s) la salida del sistema. Se pide:

- 1) Dibujar el diagrama de bloques del sistema de ecuaciones.
- 2) Simplificar el diagrama, utilizando las técnicas de simplificación de bloques.

EJERCICIO 3.3

Utilizando los métodos de simplificación de bloques, obtener la función de transferencia del sistema C(s)/R(s).

EJERCICIO 3.4

Hallar la expresión de la salida C(s) del siguiente sistema en función de sus dos entradas R(s) y D(s) cuando ambas actúan simultáneamente:

EJERCICIO 3.5

Obtener la función de transferencia de cada uno de los siguientes circuitos:

EJERCICIO 3.6

Obtener la función de transferencia del siguiente sistema masa-muelle-amortiguador montado en un carro sin masa de la figura, donde el desplazamiento del carro u(t) es la entrada del sistema y el desplazamiento de la masa y(t) es la salida, y donde m representa la masa, b el coeficiente de fricción viscosa y k es la constante del

muelle. Supóngase que en t=0 el carro se mueve a velocidad constante (i.e., c.i. nulas).

EJERCICIO 3.7

En la siguiente figura se muestra el esquema general de un sistema de control de temperatura, con su correspondiente diagrama de bloques.

Donde las variables del sistema son:

 $\theta_d(t)$ = Temperatura deseada (°C) u(t) = Señal de control (V) $\theta_m(t)$ = Temperatura medida (°C) v(t) = Flujo del gas (m³/s) $\theta_o(t)$ = Temperatura real (°C) $Q_i(t)$ = Flujo de entrada de calor (J/s = W) $Q_s(t)$ = Flujo de salida de calor por perdidas con el entorno (W)

Hallar la expresión en lazo cerrado de la salida $\theta_o(t)$ del sistema, teniendo en cuenta que el sistema viene descrito por las siguientes ecuaciones:

1. Controlador. La acción de control se lleva a cabo mediante un PID cuya ecuación viene dada por la expresión:

 $U(s) = K_1 \left(1 + \frac{1}{T_i s} + T_d s \right) (\theta_d(s) - \theta_m(s))$

2. Válvula de gas. Cuyo funcionamiento sigue una dinámica de primer orden de la forma:

$$\frac{V}{U}(s) = \frac{K_2}{1 + T_1 s}$$

donde K_2 es la constante de la válvula (m³/sV).

3. Quemador. Convierte el flujo de gas v(t) en flujo de calor $Q_i(t)$, i.e.:

$$Q_i(s) = K_3 V(s)$$

donde K_3 es la constante de combustión (Ws/m³).

4. Dinámica de la habitación.

La dinámica térmica de la habitación viene dada por la expresión:

$$Q_{\rm i}(t) - Q_{\rm s}(t) = C_{\rm T} \frac{\mathrm{d}\theta_{\rm o}}{\mathrm{d}t}$$

donde C_T representa la capacitancia térmica del aire de la habitación y θ_o es la temperatura de la misma, como ya se ha indicado.

El flujo de calor a través de las paredes de la habitación viene dado por:

$$Q_{s}(t) = \frac{(\theta_{o}(t) - \theta_{s}(t))}{R_{T}}$$

donde R_T representa la resistencia térmica de las paredes que depende del aislamiento del edificio y θ_s era la temperatura del entorno.

Sustituyendo esta expresión en la de la dinámica térmica anterior:

$$Q_{i}(t) - \left(\frac{\theta_{o}(t) - \theta_{s}(t)}{R_{T}}\right) = C_{T} \frac{d\theta_{o}}{dt}$$

que multiplicando por R_T y aplicando la transformada de Laplace queda:

$$R_{\rm T}Q_{\rm i}(s) + \theta_{\rm s}(s) = (1 + R_{\rm T}C_{\rm T}s)\theta_{\rm o}(s)$$

Expresión que puede ser representada en forma de diagrama de bloques de la forma:

5. Termómetro. Cuya ecuación es:

$$\theta_{\rm m}(s) = H_1 \theta_{\rm o}(s)$$

EJERCICIO 3.8

Linealizar las siguientes ecuaciones no lineales:

- a) $y = 0.2x^3$ entorno al punto de operación x = 2.
- b) $z = x^2 + 8xy + 3y^2$ en la región $2 \le x \le 4$; $10 \le y \le 12$.