Традиционные Центры Обработки Данных

Традиционный ЦОД

• Содержит физические it-ресурсы, в том числе компьютеры, сеть и системы хранения

•

Основные элементы тЦОД

Приложения

Система управления базами данных СУБД

Компьютеры (серверы, кластеры

Системы хранения (СХД)

Сеть (ЛВС)

Ключевые требования к тЦОД

Часто используемые приложения

- Бизнес-приложений
 - E-mail, планирования ресурсов предприятия (ERP), системы поддержки принятия решений (DSS), хранилища данных (Data Warehouse)
- Приложения для управления
 - Управление ресурсами, настройка производительности
- Приложения для защиты данных
 - Резервное копирование, репликация
- Приложения для обеспечения информационной безопасности (ИБ)
 - Проверка подлинности, антивирусы
- Ключ характеристики ввода/вывода приложение
 - Соотношения интенсивности запросов на чтение и запись
 - Соотношения последовательных и случайных запросов

Система управления базами данных СУБД

- База данных совокупность данных, хранимых в соответствии со схемой данных, манипулирование которыми выполняют в соответствии с правилами средств моделирования данных
- (СУБД) совокупность программных и лингвистических средств общего или специального назначения, обеспечивающих управление созданием и использованием баз данных
 - управление данными во внешней памяти (на дисках);
 - управление данными в оперативной памяти с использованием дискового кэша;
 - журнализация изменений, резервное копирование и восстановление базы данных после сбоев;
 - поддержка языков БД (язык определения данных, язык манипулирования данными).
- Пример популярных СУБД: MySQL, Oracle RDBMS, SQL Server и др.

Вычислительные узлы

地

Вычислительные узлы

- Сервер в корпусе tower («башня»)
- Сервер для монтирования в стойку (rackmount)
- Блейд-сервер (от англ. blade «лезвие»)
 — компьютерный сервер с компонентами, вынесенными и обобщёнными в корзине для уменьшения занимаемого пространства.
 - Корзина шасси для блейд-серверов, предоставляющая им доступ к общим компонентам, например, блокам питания и охлаждения, сетевым контроллерам.

Кластер

- Кластер группа компьютеров, объединённых высокоскоростными каналами связи, представляющая с точки зрения пользователя единую машину
- Классификация кластеров:
 - Кластеры высокой доступности
 - Кластеры распределения нагрузки
 - Вычислительные кластеры
 - Системы распределенных вычислений

массив независимых жёстких дисков

- RAID (англ. redundant array of independent/inexpensive disks) массив из нескольких дисков, управляемых контроллером, взаимосвязанных скоростными каналами и воспринимаемых внешней системой как единое целое.
- В зависимости от типа используемого массива может обеспечивать различные степени отказоустойчивости и быстродействия.
- Служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации (RAID 0)

Уровни RAID

- RAID 0 представлен как неотказоустойчивый дисковый массив.
- RAID 1 определён как зеркальный дисковый массив.
- RAID 2 зарезервирован для массивов, которые применяют код Хемминга.
- RAID 3, 4, 5 используют чётность для защиты данных от одиночных неисправностей.
- RAID 6 используют чётность для защиты данных от двойных неисправностей

Дисковая полка

JBOD (от англ. Just a bunch of disks)

Дисковая Система Хранения Данных

DAS

NAS

SAN

Приложение

Файловая система

Дисковое хранилище Приложение

Ethernet файловый ввод вывод

Файловая система

Дисковое хранилище Приложение

Файловая система

Fibre channel блочный ввод вывод

Дисковое хранилище

SAN

- Storage Area Network (SAN) это высокоскоростная коммутируемая сеть передачи данных, объединяющая серверы, рабочие станции, дисковые хранилища и ленточные библиотеки.
- Для обмена данными чаще всего используется протокол Fibre Channel.
- Fibre Channel оптимизирован для быстрой гарантированной передачи сообщений и позволяет передавать информацию на расстояние от нескольких метров до сотен километров.

Компоненты SAN

• Коммутаторы

Fibre Channel

- Маршрутизаторы, мосты^{ящітсh} шлюзы
- Устройства хранения Disk array (target)
- Серверы Host (initiator)
- Среда передачи

Server

Router

Disk System

Тип сети SAN

Физические интерфейсы:

- Ethernet
- FibreChannel

Протоколы:

- ATA over Ethernet
- iSCSI (Internet Small Computer Systems Interface)
- FC
- iFCP (Internet Fibre Channel Protocol)
- FCIP (Fibre Channel over TCP/IP)
- FcoE (Fibre Channel over Converged Enhanced Ethernet)

Сетевая модель Fibre Channel

Fibre Channel

- Fibre Channel или FC высокоскоростной интерфейс передачи данных, используемый для взаимодействия рабочих станций, мейнфреймов, суперкомпьютеров и систем хранения данных.
- Топология: Порты устройств могут быть подключены
 - напрямую друг к другу (point-to-point) FC-P2P
 - в управляемую петлю (arbitrated loop) FC-AL
 - публичная петля (public loop)
 - частная петля (private loop)
 - в коммутируемую сеть, называемую «тканью» (англ. fabric. Часто на сленге просто «фабрика») FC_SW
- Можно различать топологию по двум критериям
 - есть ли цикл
 - есть ли комутатор

loop	fabric	topology	
yes	no	private (arbitrated) loop	
yes	yes	public loop	
no	no	direct point-to-point	
no	yes	switched point-to-point (*)	

прямое подключение (point-to-point) FC-P2P

+дешего +монопольное использование канала - комутация только двух устройств

управляемая петля (arbitrated loop) FC-AL

Типы петель

Частная петля (Private loop)

Публичная петля (Public loop)

коммутируемая сеть, «фабрика» FC_SW

Типы портов FC

- Порты узлов:
 - N_Port (Node port), порт устройства с поддержкой топологии «Точка-Точка».
 - NL_Port (Node Loop port), порт устройства с поддержкой топологии «Фабрика» (Fabric).
- Порты коммутатора/маршрутизатора (только для топологии FC-SW):
 - F_Port (Fabric port), порт ткани. Используется для подключения портов типа N_Port к коммутатору.
 - FL_Port (Fabric Loop port), порт ткани с поддержкой петли. Используется для подключения портов типа NL_Port к коммутатору.
 - E_Port (Expansion port), порт расширения. Используется для соединения коммутаторов. Может быть соединён только с портом типа E_Port.
 - EX_port;
 - U_Port (Universal port);

Уникальный адрес устройства

Каждое устройство имеет уникальный 8-байтовый адрес, называемый NWWN (Node World Wide Name), состоящий из нескольких компонент:

Fibre Channel WWN

- WWN может использоваться для
 - Зонирования для описания членства портов устройств в зонах.
 - Маскирования LUN для определения доступности хостам LUN на системе хранения
- WWN не используется для адресации и доставки фрейма внутри фабрики

Fibre Channel адресация (для FC-\$W)

Различные топологии «фабрики»

«Одно-коммутаторная» структура Single-switch fabric

Древовидная или Каскадная структура Cascaded fabric

Решётка Meshed fabrics

Кольцо Ring fabric

Core-edge fabric

Избыточность множественные пути к хранилищу

Зонирование «фабрики»

Типы зонирования

Маскирование LUN или выборочная презентация хранилищ (SSP)

0 S	F C	F C	
Application S Presentation a Sesson	UPP Scsi-3 S t a c	ULP Scsi- 5 t a c k	
Transport	k FC-4	FC-4	
Network	FC-3	FC-3	
Data Link	FC-2	FC-2	
		FC-1	
Link		FC-0	

FC контроль передачи

Гарантированная доставка FC vc lossless ethernet

Интеграции FcoE и FC

IP-SAN

Стек протоколов iSCSI

OSI Model		iSCSI	
			SCSI Applications (File Systems, Databases)
Application		SCSI Device-Type Commands	SCSI Block Commands
		SCSI Generic Commands	SCSI Commands, Data, and Status
Presentation		SCSI Transport Protocols	iSCSI
Session			
Transport			TCP
Network			IP
Data Link			Ethernet
Physical			Linoinot

FCIP туннелирование

FC frame

SOF FC Hdr FC payload CRC EOF

FCIP frame

ISCSI vs FCIP

Компоненты NAS

Унифицированная Система Хранения

Обеспечивает консолидированный интерфейс для NAS, SAN, iSCSI, FCoE, и Объектное хранилище

