编译原理—习题五参考答案

2019(1)

5.1 设一NDPDA识别由下述CFG定义的语言,试给出这个NDPDA的完整形式描述。

S→SASC |ε

A→Aa | b

C→DcD

 $D \rightarrow d$

解:根据算法5.1 从CFG到NDPDA,δ规则为:

- (1) $\delta(q,a,a)=(q,\epsilon)$
- (2) $\delta(q,b,b)=(q,\epsilon)$
- (3) $\delta(q,c,c)=(q,\epsilon)$
- (4) $\delta(q,d,d)=(q,\epsilon)$
- (5) $\delta(q, S, \varepsilon) = \{ (q, SASC), (q, \varepsilon) \}$
- (6) $\delta(q, A, \epsilon) = \{ (q, Aa), (q,b) \}$
- (7) $\delta(q, C, \epsilon) = (q, DcD)$
- (8) $\delta(q, D, \epsilon) = (q,d)$

算法5.1给定 CFG $G=(N, \sum, P, S)$ 可以构造 一个相应的非确定的PDA M:

 $M=(Q, \Sigma', H, \delta, q0, Z0, F)$

它只有一个状态q和下面的转换规则:

- ① 对P中每一个形如A→w的产生式, $\delta(q,\epsilon,A)$ 包含(q,w);
- ② 对每个a∈∑, δ(p,a,a)包含(q,ε) 且

$$Q=\{q\}$$

$$H=N\cup\sum$$

$$q0=q$$

F为终态集(可空)。

这个PDA停止于空栈。

5.2消除下列文法的左递归

① **G**[A]:

 $A \rightarrow Bx \mid Cz \mid w$

(1)

B→Ab | Bc

(2)

 $C \rightarrow Ax \mid By \mid Cp$

(3)

解: 将(1)代入(2)得

 $B \rightarrow Bxb \mid Czb \mid wb \mid Bc$

消除左递归

B→CzbB' | w bB'

(4)

(5)

(6)

B'→xbB' | cB' |ε

将(1)代入(3)得

 $C \rightarrow Bxx \mid Czx \mid wx \mid By \mid Cp$

将(4)代入(6)得

 $C \rightarrow CzbB'xx \mid wbB'xx \mid Czx \mid wx$

| CzbB' y | w bB' y | Cp

消除左递归

C→w bB' xxC' | w xC' | w bB' yC'

 $C' \rightarrow CzbB' xxC' \mid zxC' \mid zbB' yC' \mid p C' \mid \epsilon$

最后得

 $A \rightarrow Bx \mid Cz \mid w$

B→CzbB' | w bB'

B'→xbB' | cB' |ε

C→w bB' xxC' | w xC' | w bB' yC'

 $C' \rightarrow CzbB' xxC' \mid zxC' \mid zbB' yC' \mid p C' \mid \epsilon$

5.2消除下列文法的左递归

② **G**[E]: $E \rightarrow ET + | ET - | T$ $T \rightarrow TF^* \mid TF/ \mid F$ $F \rightarrow (E) \mid i$ 解: E→TE' $E' \rightarrow T + E' \mid T - E \mid \epsilon$ T→FT' $T' \rightarrow F^*T' \mid F/T' \mid \epsilon$ $F \rightarrow (E) \mid i$

5.2消除下列文法的左递归

③ G[X]:

X→Ya | Zb | c

(1)

 $Y \rightarrow Zd \mid Xe \mid f$

(2)

 $Z \rightarrow Xc \mid Yf \mid a$

(3)

解:将(1)代入(2)得

 $Y \rightarrow Zd$ | Yae | Zbe | c e | f

消除左递归

 $Y \rightarrow ZdY' \mid ZbeY' \mid c eY' \mid fY'$

Y'→aeY' | ε

(5)

(4)

将(1)代入(3)得

 $Z \rightarrow Yac \mid Zbc \mid cc \mid Yf \mid a$ (6)

将(4)代入(6)得

Z→ZdY' ac | ZbeY' ac | c eY' ac | fY' ac | Zbc | cc | ZdY' f | ZbeY'f | c eY'f | fY' f | a

消除左递归

Z→c eY' ac Z'| fY' ac Z' | cc Z' | c eY'f Z'| fY' f Z'| a Z'

Z'→dY' ac Z' | beY' ac Z' | bc Z' | dY' f Z' | beY'f Z' |ε

最后得

X→Ya | Zb | c

 $Y \rightarrow ZdY' \mid ZbeY' \mid c eY' \mid fY'$

Y'→aeY' | ε

Z→c eY' ac Z' | fY' ac Z' | cc Z' | c eY'f Z'| fY' f Z' | a Z'

Z'→dY' ac Z' | beY' ac Z' | bc Z'| dY' f Z'| beY'f Z'|ε

```
5.3设文法G[E]: E→TE' E'→+E'|\epsilon T→FT' T'→T |\epsilon
                    F \rightarrow PF' F' \rightarrow *F \mid \varepsilon \mid P \rightarrow (E) \mid a \mid ^
① 构造该文法的递归下降分析程序;
解: 无左递归
int PE() { if PT() return PE'(); else return Error; }
int PE'() { j++; if (ch[j]=='+') return PE'(); else {j--;return OK; }}
int PT() { if PF() return PT'(); else return Error; }
int PT'() { if PT() return OK ;else return OK; }
int PF() { if PP() return PF'(); else return Error; }
int PF'() { j++;if (ch[j]=='*') return PF(); else{j--; return OK; }}
int PP()
 { j++;
   if (ch[i]=='('){ if PE(){i++ ;if (ch[i]==')' return OK};
                                   else return Error;} else return Error;}
   else if (ch[i]=='a') return OK;
   else if (ch[i]=='^') return OK;
   else return Error;
```

5.3设文法G[E]:

E
$$\rightarrow$$
TE' E' \rightarrow +E'| ϵ T \rightarrow FT' T' \rightarrow T| ϵ
F \rightarrow PF' F' \rightarrow *F| ϵ P \rightarrow (E)|a|^

② 求该文法的每一个非终结符的FIRST和FOLLOW集合;

非终结符	FIRST	FOLLOW
Е	(, a, ^), #
E'	+, ε), #
T	(, a, ^	+,), #
T'	(, a, ^, &	+,), #
F	(, a, ^	(, a, ^, +,), #
F'	*, E	(, a, ^, +,), #
P	(, a, ^	(, a, ^, +, *,), #

5.3设文法G[E]:

E
$$\rightarrow$$
TE' E' \rightarrow +E'| ϵ T \rightarrow FT' T' \rightarrow T| ϵ
F \rightarrow PF' F' \rightarrow *F| ϵ P \rightarrow (E)|a|^

③ 构造该文法的LL(1)分析表,并判断此文法是否LL(1)文法。

解: 是LL(1)文法,因为下表无冲突

	a	۸	+	*	()	#
Е	E→TE'	Е—ТЕ'			E→TE'		
E'			E'→+E'			E'→ε	E'→ε
T	T→FT'	T→FT'			T→FT'		
T'	T'→T	T'→T	T'→ε		T'→T	T'→ε	T'→ε
F	F→PF'	F→PF'			F→PF'		
F'	F'→ε	F'→ε	F'→ε	F'→*F	F'→ε	F'→ε	F'→ε
P	P→a	P→^			P→(E)		

S→SbA | aa

B→Sb

A→Bc

- ① 将此文法改写为LL(1)文法;
- ② 求文法的每一个非终结符的 FIRST集合和FOLLOW集合。
- ③ 构造相应的LL(1)分析表。

解:①消除左递归

S→aaS'

S'→bAS' |ε

B→Sb

A→Bc

2

	FIRST	FOLLOW
S	a	b, #
S'	b, ε	b, #
В	a	С
A	a	b, #

(3)

	a	b	С	#
S	S→aaS'			
S'		S'→bAS' / S'→ε		S'→ε
В	B→Sb			
A	A→Bc			

5.6设文法G[S]:

S→aABbcd |ε

 $A \rightarrow ASd \mid \epsilon$

B→SAh |eC |ε

 $C \rightarrow Sf \mid Cg \mid \epsilon$

D→aBD | ε

- ① 求每一个非终结符的FOLLOW集合;
- ② 对每一个非终结符的产生式选择, 构造FIRST集合;
- ③ 该文法是否LL(1)文法?

解: ③ 该文法不是LL(1)文法(略)。

	FIRST	FOLLOW		
S	a, e	a, d, f, h, #		
A	a, d, ε	a, b, d, h, e		
В	a, d, h, e, ε	a, b		
С	a, f, g, ε	g, a, b		
D	a, ε			

	FIRST
S→aABbcd	a
A→ASd	a, d
B→SAh	a, d, h
C→Sf	a, f
$C \rightarrow Cg$	a, f, g
D→aBD	a