1 Grundlagen

1.1 Quantoren

1.1.1 Overview

Тур	Aussage	Bsp.
$\forall x$	für alle x	$\forall x \in \mathbb{N} : x > -1$
$\exists x$	es existiert mindestens ein x	$\exists x \in \mathbb{R} : x > 1$
$\exists ! x$	es existiert genau ein x	$\exists ! x \in \mathbb{R} : x = 1$
$\not\exists x$	es existiert kein x	$ \nexists x \in \mathbb{N} : x = 1.5 $
\wedge	Logisches AND	$A \wedge B$
\vee	Logisches OR	$A \vee B$
\neg	Logisches NOT	$\neg B$
\cup	Mengenvereinigung	$A \cup B$
\cap	Schnittmenge	$A \cap B$
Ø	Leere Menge	$\{2,3\}\cap\{4,1\}=\emptyset$

1.1.2 Regeln für Negation

$\neg (A \lor B)$	$\neg A \land \neg B$ (De Morgan'sche Regel)
$\neg (A \wedge B)$	$\neg A \lor \neg B$ (De Morgan'sche Regel)

$$\neg(\forall x, A(x)) \quad \exists x, \neg A(x)$$

$$\neg(\exists x, A(x)) \quad \forall x, \neg A(x)$$

$$\neg (A \Rightarrow B) \quad A \land \neg B$$

$$A \Rightarrow B$$
 $\neg B \Rightarrow \neg A$ (Kontraposition)

1.2 Abbildungen

1.2.1 Surjektivität

• Die Abbildung $f: A \to B$ heisst surjektiv, falls es zu jedem y mindestens ein x gibt mit f(x) = y, $\forall y \in B$, $\exists x \in A : f(x) = y$

1.2.2 Injektivität

- Die Abbildung $f: A \to B$ heisst injektiv, falls es zu jedem y höchstens ein x gibt mit f(x) = y, $\forall y \in B$, $\exists ! x \in A : f(x) = y$, sowie $f(x_1) = f(x_2) \iff x_1 = x_2$
- Wenn f' > 0, dann ist die Funktion streng monoton steigend und injektiv.

1.2.3 Bijektivität

• Eine Abbildung f heisst bijektiv, falls sie surjektiv und injektiv ist.

1.2.4 Beispiel

• Seien X, Y Mengen und $f: X \to Y, g: Y \to X$ Abbildungen, es gilt $g \circ f = id_X$ $\Rightarrow f$ injektiv, g surjektiv

1.3 Manipulation von Summen und Produkten

- Teleskopsummen: $\sum_{k=1}^{n} (a_k a_{k-1}) = a_n a_0$, $\sum_{k=m}^{n} (a_k a_{k+1}) = a_m a_{n+1}$ $\prod_{k=1}^{n} \frac{a_k}{a_{k-1}} = \frac{a_n}{a_0}$, (wobei $a_k \neq 0$ für $k = 0, \dots, n$)
- $\bullet \sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 \frac{1}{1+n}$
- $\prod_{k=1}^{n} \left(1 + \frac{1}{n+k}\right) = 2 \frac{1}{n+1}$

1.4 Supremum und Infimum

- Supremum s ist grösste Schranke einer Menge A, $a \leq s, \forall a \in A$ Sei O die Menge aller oberen Schranken von A, die Vollständigkeit von $\mathbb R$ impliziert die Existenz eines Supremums s mit $a \le s \le o$ und $s \in O$
- Infimum i ist kleinste Schranke einer Menge A, $a > i, \forall i \in A$
- $\inf A = -\sup -A$
- $\inf -A = -\sup A$

1.5 Partialbruchzerlegung

- 1. Polynom $f(x) = \frac{P_n(x)}{Q_m(x)}$ gegeben. Polynomdivision (falls n > m) mit Rest (ganz- $\sup_{x \to \infty} \frac{\sin(x)}{x} = 1$ rational + echt gebrochen)
- 2. Nullstellen von $Q_m(x)$ berechnen
- 3. Nullstellen ihrem Partialbruch zuordnen
 - relle r-fache Nullstelle x_0 :

$$\frac{A_1}{(x-x_0)} + \frac{A_2}{(x-x_0)^2} + \dots + \frac{A_r}{(x-x_0)^r}$$

• komplexe r-fache Nullstelle ($b^2 > a^2$):

$$\frac{A_1x + B_1}{(x^2 + 2ax + b)} + \frac{A_2x + B_2}{(x^2 + 2ax + b)^2} + \dots + \frac{A_rx + B_r}{(x^2 + 2ax + b)^r}$$

- 4. Gleichungen aufstellen
- 5. Koeffizientenvergleich

1.6 Vollständige Induktion

- Zu Beweisen: Aussage A(n) ist wahr für alle $n > n_0, n \in \mathbb{N}$
- 1. **Induktionsverankerung**: Zeige $A(n_0)$ direkt
- 2. **Induktionsannahme**: Nehme an A(n) gilt für ein $n \ge n_0$
- 3. **Induktionsschritt**: Beweise A(n+1) mit der Induktionsvoraussetzung. Daraus folgt A(n), $\forall n \geq n_0$

1.7 Dreiecksungleichung

- $|x + y| \le |x| + |y|$
- $|x y| \ge |(|x| |y|)|$

2 Folgen

2.1 Sätze zu Folgen

2.1.1 Theorem 2.8.3, beschränkte Folgen, Bolzano-Weierstrass

• Monotone Folge (a_n) konvergiert nur dann und wenn Folge beschränkt: Eine monoton steigende Folge besitzt das Supremum als Grenzwert: $\lim_{n\to+\infty} a_n = \sup\{a_n | n \in \mathbb{N}\}\$

Eine mononton fallende Folge besitzt das Infinum als Grenzwert: $\lim_{n\to+\infty} a_n =$ $\inf\{a_n|n\in\mathbb{N}\}$

2.1.2 Cauchy-Folgen

- $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geqslant N, \forall m \geqslant N, |a_n a_m| < \varepsilon$
- Eine Folge (a_n) von komplexen Zahlen konvergiert, nur dann und wenn es eine Cauchy-Folge ist. Somit kann man, ohne den Grenzwert zu kennen, zeigen, dass eine Folge konvergiert.

2.1.3 Anwendung des Cauchy-Satzes, Satz 2.8.10

- $0 \le c < 1$, $|a_{n+2} a_{n+1} \le c|a_{n+1} a_n|$
- (a_n) konvergiert.

2.1.4 Bolzano-Weierstrass, beschränkte Folge

• Sei $(a_n)_{n\in\mathbb{N}}$ eine beschränkte Folge von komplexen Zahlen, dann hat (a_n) mindestens einen Häufungspunkt.

2.1.5 Konvergenz zu ∞

- Eine reelle Folge (a_n) konvergiert zu ∞ wenn $\forall T \in \mathbb{R}, \exists N \in \mathbb{N} : a_n > T \forall n > N$
- umgekehrt für $-\infty$ wenn $a_n < T$

2.2 Grenzwerte

2.2.1 Wichtige Grenzwerte

- $\bullet \lim_{n \to \infty} \frac{1}{n^s} = 0 \quad \forall s \in \mathbb{Q}^+$
- $\bullet \lim_{n \to \infty} q^n = 0 \quad \forall q \in \mathbb{C} \quad |q| < 1$
- $\lim_{n\to\infty} \sqrt[n]{a} = 1 \quad \forall a \in \mathbb{R}^+$
- $\bullet \lim_{n \to \infty} \frac{n^k}{z^n} = 0 \quad \forall k \in \mathbb{N}$
- $\lim_{x \to \frac{1}{x}} x^{\pm \frac{1}{x}} = e^{\pm \frac{1}{x} \cdot \ln(x)} = 1$
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$ $\bullet \lim_{x \to \infty} \frac{x}{\ln(1+x)} = \infty$
- $\bullet \lim_{x\to\infty} \frac{\ln(x)}{x^n} = 0$
- $\bullet \lim_{x \to \infty} \frac{\ln(x)}{\sqrt[n]{x}} = 0$

- $\bullet \lim_{x \to 0} \frac{1 \cos(x)}{x} = 0$
- $\bullet \lim_{x \to 0} \frac{x^2}{1 \cos(x)} = 2$
- $\lim_{x \to \infty} \ln(x) = -\infty$
- $\bullet \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$

- $\bullet \lim_{x \to 0} \frac{\ln x}{x} = -\infty$
- $a_{n+1} = \frac{1}{2}(a_n + \frac{c}{a_n})$ mit $c \ge 1$, $a_1 = c$, Folge hat Grenzwert $a = \sqrt{c}$ (Beweis mit Theorem 2.8.3)

2.2.2 l'Hopital

- Kann in Grenzwertberechnungen angewendet werden, bei welchen man einen unbestimmten Ausdruck erhält wie $\frac{0}{0}$, $0 \cdot \infty$, ∞ – ∞ , $\frac{\infty}{\infty}$, 0^0 , ∞^0 , 1^∞
- $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)} = \cdots = \lim_{x\to x_0} \frac{f^{(n)}(x)}{g^{(n)}(x)}$ mit f,g stetig und differen-
- Wenn Ausdruck von Form $0 \cdot \infty$ oder $\infty \infty$ annimmt, dann muss zuerst umgeformt werden:

Beispiel 1
$$(0 \cdot \infty)$$
: $f(x) \cdot g(x) = \frac{f(x)}{\frac{1}{g(x)}} = \frac{\phi(x)}{\psi(x)}$

Beispiel 2
$$(\infty - \infty)$$
: $f(x) - g(x) = \frac{1}{\frac{1}{f(x)}} - \frac{1}{\frac{1}{g(x)}} = \frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x) \cdot g(x)}} = \frac{\phi(x)}{\psi(x)}$

2.2.3 Spezielle Methoden für Grenzwertberechnung

• $\lim_{x\to 0^+} x^x = \lim_{x\to 0^+} e^{x\ln(x)}$, da e^x stetig ist, kann $\lim_{x\to 0^+} x\ln x$ betrachtet wer-

Für x < 1 gilt: $\ln(x) = 2(\ln(x) - \ln(\sqrt{x})) = \frac{2}{c}(x - \sqrt{x})$ für ein $c \in]x, \sqrt{x}[$ gemäss

Da $\frac{1}{x}$ fallend ist, gilt $0 > \ln(x) > \frac{2}{x}(x - \sqrt{x}) = 2 - \frac{2}{\sqrt{x}} \Rightarrow 0 > x \ln(x) > 2x - 2\sqrt{x}$ mit Sandwich-Kriterium gilt nun $\lim_{x\to 0^+} x \ln x = 0$ und $\lim_{x\to 0^+} x^x = e^0 = 1$

• $\lim_{x\to a} \left(1+\frac{1}{\odot}\right)^{\odot} = e$ oder $\lim_{x\to a} (1+\bigcirc)^{\frac{1}{\odot}} = e$ wobei \odot ein Term ist der zu 0 geht für $x \rightarrow a$

$$\lim_{x \to +\infty} \left(1 - \frac{3}{x} \right)^{2x} = \lim_{x \to \infty} \left[\left(1 + \frac{1}{-\frac{x}{3}} \right)^{-\frac{x}{3}} \right]^{-\frac{3}{x} \cdot 2 \cdot x} = e^{-6}$$

• $\lim_{x\to a} \frac{\sin \odot}{\odot} = 1$ wobei \odot ein Term ist der zu 0 geht für $x\to a$

3 Reihen

3.1 Sätze zu Reihen

3.1.1 Theorem 2.10.7

- Wenn eine Reihe $\sum a_n$ absolut konvergiert, konvergiert sie und es gilt:
- $\left|\sum_{n=1}^{+\infty} a_n\right| \leqslant \sum_{n=1}^{+\infty} |a_n|$

3.1.2 Leibniz-Kriterium

• Sei (a_n) eine monoton fallende Folge, die zu 0 konvergiert, die Reihe $\sum_{n=1}^{+\infty} (-1)^{n-1} a_n$ konvergiert.

3.1.3 Quotientenkriterium

• Sei (a_n) Folge komplexer Zahlen mit $a_n \neq 0, \forall n \in \mathbb{N}$ $\left|\frac{a_{n+1}}{a_n}\right| \leq c, \forall n \geq N$ wenn $0 \le c < 1$, dann ist $\sum_{n=1}^{\infty} (a_n)$ absolut konvergent.

3.1.4 Bedingte Konvergenz, Serie 5

- Seien $(a_n), (b_n)$ zwei Folgen mit folgenden Eigenschaften:
- 1) (a_n) ist monoton fallend und konvergiert gegen 0.
- 2) Alle Partialsummen der Folge (b_n) sind beschränkt durch gemeinsame

Schranke C > 0: $\forall n \in \mathbb{N}$: $|\sum_{k=1}^{n} b_k| \leq C$ Somit konvergiert die Reihe $\sum_{k=1}^{\infty} a_k b_k$

3.1.5 Wurzelkriterium

• Sei (a_n) eine beliebige Folge mit Eigenschaft $\lim_{n\to\infty} \sqrt[n]{|a_n|} = q$ für q < 1 konvergiert absolut $\sum_{n=1}^{\infty} |a_n|$ für q > 1 divergiert die Reihe

3.2 Konvergenzkriterien

3.2.1 Allgemein

- $\sum_{n=1}^{+\infty} \frac{1}{n^k}$ konvergiert für k>1 und divergiert für $k\leq 1$
- $\sum_{n=0}^{+\infty} \frac{n^k}{b^n}$ konvergiert absolut für |b| > 1, $k \in \mathbb{R}$
- $\sum_{n=0}^{+\infty} \frac{a^n}{n!}$ konvergiert absolut für alle $a \in \mathbb{C}$

3.2.2 Nullfolgenkriterium

• Falls a_n keine Nullfolge bildet, so divergiert die Reihe $\sum_{n=0}^{\infty} a_n$

3.2.3 Majorantenkriterium

• Sei $\sum_{n=0}^{\infty} b_n$ eine konvergente Reihe und a_n die Elemente einer Folge mit $a_n \leq b_n \ \forall n$, so konvergiert auch die Reihe $\sum_{n=0}^{\infty} a_n$

3.2.4 Minorantenkriterium

• Sei $\sum_{n=0}^{\infty} b_n$ eine divergente Reihe und a_n die Elemente einer Folge mit $a_n \geq b_n \ \forall n$, so divergiert auch die Reihe $\sum_{n=0}^{\infty} a_n$ (meistens ist $\sum_{n=0}^{\infty} b_n$ die harmonische Reihe)

3.2.5 Integralkriterium, Serie 13

• Sei $p \in \mathbb{Z}$, $f:[p,\infty) \to [0,\infty)$ monoton fallend und das Integral $\int_p^\infty f(x) dx$ existiert, dann konvergiert auch $\sum_{n=p}^\infty f(n)$ und es gilt die Abschätzung: $\sum_{n=p+1}^{\infty} f(n) \le \int_{p}^{\infty} f(x) dx \le \sum_{n=p}^{\infty} f(n)$ $\sum_{n=p}^{\infty} a_n$ konvergiert $\iff \int_{p}^{\infty} a(x) dx$ konvergiert

3.3 Potenzreihen

3.3.1 Definition

• Eine Potenzreihe hat folgende Form $f(x) = \sum_{n=1}^{\infty} a_n(x-x_0)^n x_0$: Entwicklungspunkt

3.3.2 Konvergenzradius

• Sei R der Konvergenzradius einer Potenzreihe. Dann konvergiert die Potenzreihe absolut $\forall x \in \mathbb{C}, |x-x_0| < R$ und divergiert für $|x-x_0| > R$.

Anmerkungen:

- i) Der Konvergenzradius berechnet sich wie folgt: $R = \frac{1}{Q} = \frac{1}{L}$
- ii) Der Rand $|x x_0| = R$ muss separat betrachtet werden

3.4 Summen von häufigen endlichen Reihen

- Summe der ersten n Glieder der harmonischen Reihe für $q \neq 1$: $s_n = a_0 \frac{q^{n+1}-1}{q-1} =$ $a_0 \frac{1 - q^{n+1}}{1 - q}$ • $\sum_{k=1}^n k = \frac{n(n+1)}{2}$ • $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6} = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$ • $\sum_{k=1}^n k^3 = \left[\frac{n(n+1)}{2}\right]^2 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$ • $\sum_{k=0}^n x^k = \frac{1 - x^{n+1}}{1 - x}$

- Riemann Zeta-Funktion bei 2: $\zeta(2) = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

- $\sum_{k=1}^{n} \frac{k}{2^k} = 2 \frac{n+2}{2^n}$ $\sum_{k=1}^{n} \frac{1}{4k^2 1} = \frac{n}{2n+1}$ $x + x^2 + \dots + x^k = \frac{x^{k+1} x}{x-1}$

3.5 Summen von häufigen unendlichen Reihen, und andere Taylorpolyno-

- $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{2!} + \frac{x^4}{4!} + \dots$
- $\sum_{k=0}^{\infty} k \frac{x^k}{k!} = xe^x$ (kam nicht vor in Vorlesung)
- $\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!} = \frac{e^{ix} e^{-ix}}{2i} = x \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$
- $\sinh(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$
- $\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!} = \frac{e^{ix} + e^{-ix}}{2} = 1 \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$
- $cosh(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} = \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$ $tan(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}(2^{2k} 1)2^{2k} B_{2k} x^{2k-1}}{(2k)!} = x \frac{x^3}{3} + \frac{2x^5}{15} + \dots, \quad (|x| < \frac{\pi}{2})$
- $tanh(x) = x \frac{x^3}{3} + \frac{2x^5}{15} \dots$ $arctan(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{1+2k}}{1+2k}$
- $\ln(x+1) = x \frac{x^2}{2} + \frac{x^3}{3} + \dots$
- $(1+x)^a = 1 + ax + \frac{a(a+1)}{2}x^2 + ...$ Mengoli-Reihe: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{n+1} = 1$ (Mittlere Terme kürzen sich immer weg, so dass $\lim_{n\to\infty} 1 - \frac{1}{n+1} = 1$ bleibt)
- $\sqrt[3]{1+x} = \sum_{n=0}^{\infty} \begin{pmatrix} \frac{1}{3} \\ n \end{pmatrix} x^n$

4 Funktionen

4.1 Sätze zu Funktionen

4.1.1 Definition stetige Funktion

- $f: D \to \mathbb{R}$ ist an einem Punkt x_0 stetig, wenn
- $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in D, (|x x_0| < \delta \rightarrow |f(x) f(x_0)| < \varepsilon)$ • für Stetigkeit auf ganzem Definitionsbereich:

$\forall x_0 \in D, \forall \varepsilon > 0, \exists \delta > 0, \forall x \in D, (|x - x_0| < \delta \rightarrow |f(x) - f(x_0)| < \varepsilon)$ 4.1.2 Stetige Funktion Abschätzung anderer Funktion

• Sei $D \subset \mathbb{R}$ mit $f, g : D \to \mathbb{C}$, sei g stetig, wenn $|f(x)-f(y)| \leq |g(x)-g(y)|$ für alle $x,y \in D$, dann ist f stetig auf D

4.1.3 Lipschitz-Stetig

4.1.4 Stetigkeit einer Funktion mit Folge

• Sei $D \subseteq \mathbb{R}$, sei $f: D \to \mathbb{C}$, dann ist f stetig bei $x_0 \in D$ dann und nur dann wenn für irgendeine Folge $(a_n) \in D$ zu x_0 konvergiert, erhalten wir: $\lim_{n\to\infty} f(a_n) = f(x_0)$

4.1.5 Zwischenwertsatz, Intermediate value theorem

• Sei $D \subseteq \mathbb{R}$, sei $f: D \to \mathbb{C}$ stetig, sei a < b, $a, b \in D$, wenn f(a) < f(b) (resp. f(a) > f(b)) dann für irgendein $c \in [f(a), f(b)]$ (resp. $c \in [f(b), f(a)]$), gibt es ein $x \in [a, b]$, so dass f(x) = c (Das Bild einer stetigen Funktion ist ein Intervall)

4.1.6 Extremum Theorem

• Sei a < b, $a, b \in \mathbb{R}$, sei $f : [a, b] \to \mathbb{R}$ stetig, dann hat die Menge der Bild-

 $f([a,b]) = \{f(x)|x \in [a,b]\} \subseteq \mathbb{R}$ ein Minimum und Maximum.

4.1.7 Stetige, strikt monotone Funktion ist injektiv

• Sei D ein Interval. Eine stetige Funktion $f:D\to\mathbb{R}$ ist injektiv \iff wenn sie strikt monoton ist.

4.1.8 Stetige, strikt monotone Funktion hat stetige Inverse

• Sei $f: D \to \mathbb{R}$ eine stetige, strikt monotone Funktion, sei J = f(D) das Bild von f. Die Inverse $f^{-1}: J \to D$ der Bijektion $f: D \to J$ ist stetig.

4.1.9 Mean-value Theorem

• Sei $D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$ differenzierbar, sei a < b Elemente aus D, dann gibt es ein $c \in]a,b[$ so dass $\frac{f(b)-f(a)}{b-a} = f'(c)$

4.1.10 Minima und Maxima einer Funktion

• Sei $f: D \to \mathbb{R}$ differenzierbar und $f'(x_0) = 0$ wenn $f''(x_0) < 0$ handelt es sich um ein lokales Maximum wenn $f''(x_0) > 0$ handelt es sich um ein lokales Minimum wenn $f''(x_0) = 0$ handelt es sich um einen Sattelpunkt

4.1.11 Monoton steigend / fallend mit Ableitung

• Sei $f: D \to \mathbb{R}$ differenzierbar und $f'(x_0) = 0$

f ist steigend, dann und nur dann wenn $f'(x_0) \neq 0$ für ganzen Definitionsbe-

f ist monoton steigend, dann und nur dann wenn $f'(x_0) > 0$ für ganzen Definitionsbereich

f ist fallend, dann und nur dann wenn $f'(x_0) \leq 0$ für ganzen Definitionsbereich f ist monoton fallend, dann und nur dann wenn $f'(x_0) < 0$ für ganzen Definitionsbereich

4.1.12 Lipschitz-stetig mit Ableitung

• Sei $D := [a, b] \in \mathbb{R}$ und $f : D \to \mathbb{R}$ eine differenzierbare Funktion mit f' stetig, dann ist f lipschitz stetig und es gilt:

 $|f(x) - f(y)| \le M|x - y|$ für alle $x, y \in [a, b]$ mit $M = \max |f'(x)|$

4.1.13 Divergenz, formal

• Wenn $\lim_{x\to\infty f(x)=-\infty}$, dann gibt es für alle M>0 ein R>0 mit $x>R\Rightarrow$ f(x) < -M (genau gleich bei Divergenz zu ∞ einfach mit M)

4.1.14 Abschätzungen aus Ableitungen

• Sei $f,g:[a,b]\to\mathbb{R}$ stetige und differenzierbare Funktionen mit f(a)>g(a): für $f'(x) \ge g'(x)$, $\forall x \in]a,b[$ dann $f(x) \ge g(x)$, $\forall x \in [a,b]$ für f'(x) > g'(x), $\forall x \in]a,b[$ dann f(x) > g(x), $\forall x \in]a,b[$

4.1.15 Jede Lipschitz-stetige Funktion ist gleichmässig stetig

4.2 Stetigkeit überprüfen

4.2.1 1-dimensional

$$f(x) = \begin{cases} f_1(x) & x p \\ a & x = p \end{cases} \qquad \lim_{x \to p^-} f_1(x) \stackrel{!}{=} \lim_{x \to p^+} f_2(x) \stackrel{!}{=} a$$

4.2.2 n-dimensional

• Der Limes $\lim_{x \to \infty} f(x)$ $x \in \mathbb{R}^n$ muss existieren und eindeutig sein

Anmerkungen:

- i) Falls n=2: Transformiere x und y in Polarkoordinaten, φ muss sich dabei rauskürzen, da der Limes sonst nicht eindeutig ist
- ii) Falls n > 2: Nur zeigen, dass der Grenzwert nicht eindeutig ist, sonst zu kompliziert

5 Funktionsfolgen

5.1 Sätze zu Funktionsfolgen

5.1.1 Konvergenz

• Sei $D \subseteq \mathbb{C}$, für $n \in \mathbb{N}$ sei $f_n : D \to \mathbb{C}$ eine beliebige Funktion. Sei $f : D \to \mathbb{C}$. Die Folge (f_n) konvergiert zu f auf D, wenn $\forall \varepsilon > 0, \forall x \in D, \exists N \in \mathbb{N} :, |f(x) - f_n(x)| < \varepsilon \text{ für } n > N$

5.1.2 Uniforme (Gleichmässige) Konvergenz

• Sei $D \subseteq \mathbb{C}$, für $n \in \mathbb{N}$ sei $f_n : D \to \mathbb{C}$ eine beliebige Funktion. Sei $f : D \to \mathbb{C}$. Die Folge (f_n) konvergiert uniform zu f auf D, wenn $\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall x \in D, \quad |f(x) - f_n(x)| < \varepsilon \text{ für } n \ge N$

Einziger Unterschied zu Konvergenz ist, dass N nicht mehr von x abhängig ist. Stärkere Eigenschaft als Konvergenz.

Bei Beweisen zu zeigen, dass $|f(x) - f_n(x)| \le b_n, \forall x \in D$, wobei (b_n) eine fixe Sequenz zu 0 konvergente Folge ist, die unabhängig von x ist. Somit kriegt man $|f(x) - f_n(x)| < \varepsilon$ für alle $x \in D$ sobald $b_n < \varepsilon$

5.1.3 Folge von stetigen Funktionen konvergieren uniform auf f

• Wenn eine Funktionenfolge (f_n) auf eine Funktion f uniform konvergiert auf dem Definitionsbereich, dann ist f stetig auf D

 $|f(x)-f(x_0)| \le |f(x)-f_n(x)| + |f_n(x)-f_n(x_0)| + |f_n(x_0)-f(x_0)|$

5.1.4 Cauchy für Funktionenfolgen

• Sei $D \subseteq \mathbb{C}$ und (f_n) eine Funktionsfolge auf D $\forall \varepsilon > 0, \exists N \in \mathbb{N} : n \geq N, m \geq N, \forall x \in D \text{ haben wir } |f_n(x) - f_m(x)| < \varepsilon, \text{ somit}$ konvergiert (f_n) uniform auf f

5.1.5 Normale Konvergenz

- Eine Reihe von Funktionen $\sum f_n$ konvergiert normal, wenn jedes $|f_n|$ auf D beschränkt ist mit $b_n \in \mathbb{R}_+$, so dass $\sum b_n$ konvergiert.
- Normale Konvergenz ⇒ Uniforme Konvergenz ⇒ ∃ stetige Funktion auf Definitionsbereich

5.2 Kochrezept zur Überprüfung gleichmässiger Konvergenz

- Gegeben: Folge stetiger Funktionen $f_n: \Omega \subseteq \mathbb{R} \to \mathbb{R}$
- Gefragt: Konvergiert f_n auf Ω gleichmässig?
- 1. Berechne den punktweisen Limes von f_n auf Ω für fixes $x \in \Omega$, d.h.

$$f(x) = \lim_{n \to \infty} f_n(x)$$

- 2. Prüfe f_n auf gleichmässige Konvergenz Methoden:

 - a) Berechne sup $|f_n(x)-f(x)|$, oft nützlich Ableitung nach x von $|f_n(x)-f(x)|$ zu berechnen und gleich null zu setzen.
 - b) Bilde den Limes für $n \to \infty$: $\limsup_{n \to \infty} |f_n(x) f(x)|$, konvergiert dies für $\frac{d}{dx} \operatorname{artanh} x = \frac{1}{1-x^2}$, for all real |x| < 1 $n \to \infty$ so gilt gleichmässige konvergenz.

Indirekte Methoden

- a) f unstetig \Rightarrow keine gleichmässige Konvergenz
- b) f stetig, $f_n(x) \leq f_{n+1}(x)$, $\forall x \in \Omega$ und Ω kompakt \Rightarrow gleichmässige Konvergenz

5.3 Grenzwert und Ableitung vertauschen

- Sei $f_n:\Omega\to\mathbb{R}$ eine Folge stetiger Funktionen. Falls die folgenden Bedingungen erfüllt sind:
- die Folgenlieder f_n sind auf Ω von der Klasse C^1
- $f_n \rightarrow f$ punktweise auf Ω
- $-f'_n \rightarrow g$ gleichmässig auf Ω

so ist f auf Ω von der Klasse C^1 und

$$f'(x) = g(x), \quad \forall x \in \Omega$$

auch $f_n \to f$ gleichmässig auf Ω

6 Ableitungen

6.1 Basics

- lineare Approximation h(x) von f bei x_0 : $h(x) = f(x_0) + f'(x_0)(x x_0)$
- $f'(x) = \lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) f(x_0)}{x x_0} = \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{f(x_0 + h) f(x_0)}{h}$
- Sei $f: D \to \mathbb{R}$ differenzierbar auf D, dann ist f stetig auf D

6.2 Ableitungsregeln

- Summerregel: (f+g)' = f'+g'
- Produktregel: (fg)' = f'g + g'f
- Leibniz-Regel: $(\frac{f}{g})' = \frac{f'g fg'}{g^2}$ mit $g(x) \neq 0$
- Kettenregel: $f(g(x))' = f'(g(x)) \cdot g(x)'$
- Reziprok-Regel: f injektiv und $f' \neq 0$: $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$
- Generelle Leibniz-Formel: $(fg)^{(k)} = \sum_{j=0}^{k} {k \choose j} f^{(j)} g^{(k-j)}$

• Ableitung des Integrals: $\frac{d}{dx} \int_{\varphi(x)}^{\psi(x)} f(t) dt = f(\psi(x)) \cdot \psi'(x) - f(\varphi(x)) \cdot \varphi'(x)$

6.2.1 Newtons Algorithmus

 Newtons Algorithmus zur Bestimmung von Nullstellen: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ für $n \le 1$

6.3 Häufige Ableitungen

- $(e^x)' = e^x$
- \bullet $(e^{ax})' = ae^{ax}$
- $\sin x' = \cos x$
- \bullet cos $x' = -\sin x$
- $\ln'(x) = \frac{1}{x}, \quad \forall x > 0$
- $(x^a)' = ax^{a-1}$ mit $a \in \mathbb{R}$ auf $]0, \infty[$
- $\bullet \ (a^x)' = \ln(a)a^x$
- $\bullet \ (\sqrt[x]{a})' = -\frac{a^{\frac{1}{x}}\ln(a)}{r^2}$
- $\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}$, $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$ auf] 1,1[
- $\tan'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$ $\arctan'(x) = \frac{1}{\tan'(\arctan(x))} = \frac{1}{1+x^2}$ für alle $x \in \mathbb{R}$ $\arctan(x) \in [-\frac{\pi}{2}, \frac{\pi}{2}], \forall x \in \mathbb{R}$ $\tanh'(x) = 1 \tanh^2(x) = \frac{1}{\cosh^2(x)}$
- $(\sinh^{-1})'(x) = \frac{1}{\sqrt{1+x^2}}$
- $g(x) = \frac{1}{x}$, $g^{(k)}(x) = \frac{(-1)^k k!}{x! + 1}$

6.3.1 Inverse hyperbolische Funktionen

- $\frac{d}{dx} \operatorname{arsinh} x = \frac{1}{\sqrt{x^2 + 1}}$, for all real x
- $\frac{d}{dx} \operatorname{arcosh} x = \frac{1}{\sqrt{x^2 1}}$, for all real x > 1
- $\frac{d}{dx}$ arcoth $x = \frac{1}{1-x^2}$, for all real |x| > 1
- $\frac{d}{dx}$ arsech $x = \frac{-1}{x\sqrt{1-x^2}}$, for all real $x \in (0,1)$ $\frac{d}{dx}$ arcsch $x = \frac{-1}{|x|\sqrt{1+x^2}}$, for all real x, except 0

6.4 Konvexe Funktion

6.4.1 Definition

• Eine Menge $A \subseteq \mathbb{R}^2$ ist konvex, wenn die Strecke zwischen zwei Punkten in A immer in A enthalten ist.

Also
$$x_1, x_2 \in A$$
 und $t(x_1) + (1-t)x_2$, $0 \le t \le 1$ ist in A

- Eine Funktion $f: D \to \mathbb{R}$ ist konvex, wenn die Menge $A_f = \{(x,y) \in \mathbb{R}^2 | y \geq 1\}$ f(x) $\subset \mathbb{R}^2$ konvex ist.
- f ist konvex, wenn $f \in C^2$ und $f'' \ge 0$ für alle $x \in D$, also f' steigend auf D
- Eine Funktion f ist konvex dann und nur dann wenn für alle $x \neq y$ in D und für $t \in [0,1]$ qilt:

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

ullet f ist konvex, wenn für jede Zahl $k \in \mathbb{N}$, jedes unterschiedliche Element $(x_1,...,x_k)$ und die nicht-negativen Zahlen $(p_1,...,p_k)$ mit $p_1+...+p_k=1$,

$$f(p_1x + ... + p_kx_k) \le f(x_1) + ... + p_kf(x_k)$$

6.4.2 Ungleichungen gültig bei konvexen Funktionen

• Sei $f: D \to \mathbb{R}$ stetig und konvex, für $x < y < z \in D$ gilt: $\frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(x)}{z - x} \le \frac{f(x) - f($ f(z)-f(y)

f ist konvex, wenn für alle $x, x_0 \in D$ gilt: $f(x) \geq f(x_0) + f'(x_0)(x - x_0)$, zu obiger Abschätzung umstellen und dann zeigen, dass $\frac{f(y)-f(x_0)}{y-x_0} \leq \frac{f(x)-f(x_0)}{x-x_0}$ für $y \in]x_0, x[$ mit $\lim_{y \to x_0} \frac{f(y) - f(x_0)}{y - x_0} = f'(x_0)$ gilt und umgekehrt für $y \in]x, x_0[$

6.5 Taylor Polynome

6.5.1 Definition

- Sei eine Funktion $f \in C^k$ und $x_0 \in D$
- $T_k f(x;x_0) = \sum_{n=0}^k \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n \text{ ist das k-te Taylor Polynom von } f \text{ bei } x_0$ Fehler: Sei $f \in C^{k+1}$, für jedes $x \in D$ gibt es ein $c \in [x,x_0]$ so dass $f(x) = T_k f(x;x_0) + \frac{f^{(k+1)}(c)}{(k+1)!} (x-x_0)^{k+1}$
- Fehler 2: Sei $f \in C^{k+1}$, dann $f(x) = T_k f(x; x_0) + (x-x_0)^k r(x)$ mit $\lim_{x \to x_0} r(x) =$ also $\lim_{x\to x_0} \frac{1}{(x-x_0)^k} (f(x) - T_k f(x;x_0)) = 0$ (irgendwas mit km digits of preci-

6.5.2 Integral Variante

• Let $k \in \mathbb{N}_0$. Let $I \subset \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be function that is in $C^{k+1}(I)$. Let $x_0 \in I$. For any $x \in I$, we have

$$f(x) = T_k f(x; x_0) + \frac{1}{k!} \int_{x_0}^x f^{(k+1)}(t) (x-t)^k dt$$

6.5.3 Taylorpolynom f(x) = g(x)h(x) aus zwei bekannten Reihen

- Taylorreihe von f ergibt sich aus Produkt der beiden bekannten Reihen, mit allgemeiner Leibnizformel für Ableitungen:
- $f(x) = \sum_{n=0}^{\infty} c_n x^n, \quad \text{mit } c_n = \sum_{k+\ell=n} a_k b_\ell$ Beispiel: $g(x) := \frac{1}{2+x} = \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \left(\frac{x}{2}\right)^n$

$$h(x) := \sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

$$a_k = \frac{(-1)^k}{2^{k+1}} \text{ und } b_\ell = \begin{cases} 0 \text{ falls } \ell \text{ gerade,} \\ 0 \text{ falls } \ell \text{ gerade,} \end{cases}$$

 $a_k = \frac{(-1)^k}{2^{k+1}} \text{ und } b_\ell = \begin{cases} 0 \text{ falls } \ell \text{ gerade,} \\ (-1)^{\frac{\ell-1}{2}} \cdot \frac{1}{\ell!} \text{ falls } \ell \text{ ungerade} \end{cases}$ Somit kriegt man: $c_1 = a_0b_1 = \frac{1}{2}, \ c_2 = a_1b_1 = -\frac{1}{4}, \ c_3 = a_0b_3 + a_2b_1 = \frac{1}{2}$ $f(x) = \frac{x}{2} - \frac{x^2}{4} + \frac{x^3}{24} + R_4(f,0)(x)$

7 Gewöhnliche Differentialgleichungen

7.1 Allgemeines Vorgehen

- 1. Homogenes Problem lösen
- 2. **Eine** Lösung der inhomogenen Gleichung finden
- 3. Mithile von Anfangswerten das resultierende Gleichungssystem nach unbekannten Konstanten auflösen

7.2 Homogene Lösung

- $1. \ chp(\lambda) = a_0\lambda^0 + a_1\lambda^1 + ... + a_n\lambda^n = 0$
- 2. Nullstellen in den Ansatz einsetzen

•
$$\lambda_i$$
 k-fache reelle Nullstelle $y_{i,t}(x) = x^t e^{\lambda_i x}, \quad 0 \le t < k$

•
$$\lambda_i$$
 und λ_j reelle betragsmässig gleiche Nullstelle ($\lambda = \pm a$) $y_i(x) = \cosh(ax), \quad y_j(x) = \sinh(ax)$

• λ_i und λ_i komplexe Nullstelle ($\lambda = a \pm bi$)

 $y_i(x) = e^{ax}\cos(bx), \quad y_i(x) = e^{ax}\sin(bx)$

3. Die einzelnen Teillösungen zusammensetzen: $y_h(x) = \sum_{i=1}^n C_i y_i(x)$

7.3 Partikuläre Lösung

- $q(x) = (b_0 + b_1 x + ... + b_m x^m) e^{\mu x}, \quad \mu \in \mathbb{R}$ Ansatz: $(C_0 + ... + C_m x^m) x^k e^{\mu x}$
- 1. q(x) und deren Parameter identifizieren
- 2. Man identifiziert k, man schaut, ob $Chp(\mu) = 0$ und welche Ordnung die Null-
- 3. Der gefundene Ansatz kann eingesetzt werden und durch Koeffizientenvergleich wird der Rest gefunden

7.4 Matrixexponential

•
$$e^{Ax} := \sum_{k=0}^{\infty} \frac{A^k x^k}{k!} = I_n + Ax + \frac{A^2 x^2}{2} + \dots$$

- ullet Falls die Matrix A nilpotent ist $(A^q=0)$, dann kann man direkt die Definition benutzen
- Falls die Matrix A eine Diagonalmatrix ist, lässt sich A^k einfach berechnen
- Die Matrix $A = VDV^{-1}$ ist diagonalisierbar: $e^{Ax} = \sum_{k=0}^{\infty} \frac{(VDV^{-1})^k x^k}{k!} = Ve^{Dx}V^{-1}$

7.5 Lösen von Differentialgleichungssystemen

- $\frac{d\mathbf{F}(t)}{dt} = A \cdot \mathbf{F}(t) \Rightarrow \mathbf{F}(t) = e^{At} \cdot \mathbf{C}$
- Damit die DGL eindeutig bestimmt werden kann, müssen n-Anfgangswerte für n-Freiheitsgrade gegeben sein. Damit die Konstanten C_i erst mit der kompletten Lösung (mit partikulärer Lösung) bestimmen.

8 Differential rechnung in \mathbb{R}^n

8.1 Begriffe

8.1.1 Partielle Differenzierbarkeit

• Sei $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}^m$ ist an der Stelle $a\in\Omega$ nach der Variable x_i partiell differenzierbar, falls $\frac{\partial f}{\partial x_i}(a)=\lim_{h\to 0}\frac{f(a_1,\dots,a_i+h,\dots,a_n)-f(a_1,\dots,a_i,\dots,a_n)}{h}$ existiert und dieser Limes heisst partielle Ableitung nach x_i

8.1.2 Richtungsableitung

• Allgemeiner Fall der partiellen Ableitung Sei $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$, für $v \in \mathbb{R}^n$ heisst der Ausdruck, falls existent, $D_v f(x_0) = \lim_{h \to 0} \frac{f(x_0 + hv) - f(x_0)}{h}$ Richtungsableitung von f an x_0 nach Richtung

8.1.3 (Totale) Differenzierbarkeit

- Sei $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}^m$ heisst an der Stelle $x_0\in\Omega$ differenzierbar, falls eine lineare Abbildung $A:\mathbb{R}^n\to\mathbb{R}^m$ $(m\times n\text{-Matrix})$ existiert für die gilt: $\lim_{x\to x_0}\frac{|f(x)-f(x_0)-A(x-x_0)|}{|x-x_0|}=0 \text{ mit } df(x_0):=A \text{ das Differential von } f \text{ bei } x_0$
- Differenzierbarkeit ⇒ partielle Differenzierbarkeit
- f ist an der Stelle x_0 differenzierbar, falls f in der Nähe des Punktes x_0 "gut" durch die lineare Funktion $f(x_0) + A(x x_0)$ approximiert wird.
- Jedes $f \in C^1(\mathbb{R})$ besitzt das Differential: $df(x_0) = \frac{df}{dx}(x_0)dx = f'(x_0)dx$, d.h. $f'(x_0)$ ist die Darstellung von $df(x_0)$ bzgl. der Basis dx von $L(\mathbb{R}; \mathbb{R})$

8.1.4 Zusammenhang Differenzierbarkeit und partielle Ableitungen

- 1. f von der Klasse C^1 an der Stelle x_0
- 2. \Rightarrow f differenzierbar an der Stelle x_0
- 3. \Rightarrow f partiell differenzierbar an der Stelle x_0 partielle Ableitungen sind stetig an der Stelle $x_0 \Rightarrow (2)$ partielle Ableitungen in einer Umgebung von x_0 sind stetig $\Rightarrow (1)$
- 4. (2) $\Rightarrow f$ stetig an der Stelle x_0
- Stetige partielle Differenzierbarkeit ⇒ totale Differenzierbarkeit ⇒ Differenzierbarkeit in jede Richtung ⇒ partielle Differenzierbarkeit
- Jeweilige Umkehrung der obigen Aussage gilt nicht

8.1.5 Jacobi-Matrix

 $A = df(x_0) = J_f(x) = \begin{pmatrix} \frac{\partial f_1(x)}{\partial x_1} & \cdots & \frac{\partial f_1(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(x)}{\partial x_1} & \cdots & \frac{\partial f_m(x)}{\partial x_n} \end{pmatrix}$

8.1.6 Gradient

• Die partiellen Ableitungen lassen sich in einem Vektor anordnen mit

$$\operatorname{grad}(f) = \nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix}$$

• Sei $f \in C^1(\Omega)$ und sei $x_0 \in \Omega$, dann gibt $\nabla f(x_0)$ die Richtung und den Betrag

des steilsten Anstiegs von f(x) an Stelle x_0

• Gradient ist die Transponierte von df und es gilt $grad(f) \cdot \vec{v} = df\vec{v}$

8.1.7 1-Form

- Differentialformen sind Abbildungen, die Vektoren linearen Abbildungen zuordnen. Sei $\lambda:\Omega\subset\mathbb{R}^n\to L(\mathbb{R}^n,\mathbb{R})$. So ist die 1-Form gegeben durch $\lambda(x)=\sum_{i=1}^n\lambda_i(x)dx^i$, also jedem $x\in\Omega$ wird eine lineare Abbildung zugewiesen
- Für jedes $f \in C^1(\Omega)$ ist das Differential df eine 1 -Form von der Klasse C^0

8.2 Sätze zu Differentialrechnung in \mathbb{R}^d

8.2.1 Klasse C^1

- Die Funktion $f: \Omega \to \mathbb{R}$ heisst von der Klasse $C^1, f \in C^1(\Omega)$ falls f an jeder Stelle $x_0 \in \mathbb{R}^n$ in jede Richtung e_i partiell differenzierbar ist, und falls die Funktionen $x \to \frac{\partial f}{\partial x^i}(x), 1 \le i \le n$ auf Ω stetig sind.
- f ist an der Stelle x_0 differenzierbar \iff die partiellen Ableitungen von f existieren in einer Umgebung von x_0 und sind an der Stelle x_0 stetig.
- f differenzierbar in $x_0 \Rightarrow f$ stetig in x_0

8.2.2 Klasse C^2

• Die Funktion f heisst von der **Klasse** C^2 , falls alle partiellen Ableitung von der Klasse C^1 sind.

8.2.3 Satz von Schwarz

• Sei $f \in C^2(\Omega)$, dann gilt: $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} (\frac{\partial f}{\partial x_j}) = \frac{\partial^2 f}{\partial x_i \partial x_j}, \quad 1 \le i, j \le n$

8.2.4 Umkehrsatz

• Sei $f \in C^1(\Omega; \mathbb{R}^n)$ und sei $df(x_0) : \mathbb{R}^n \to \mathbb{R}^n$ invertierbar an einer Stelle $x_0 \in \Omega$. Dann existieren Umgebungen U von x_0 , V von $f(x_0) = y_0$ und eine Funktion $g \in C^1(V, \mathbb{R}^n)$ mit $g = (f|_U)^-1$, das heisst: $g(f(x)) = x, \forall x \in U, f(g(y)) = y, \forall y \in V$ $dg(f(x)) = (df(x))^{-1}$ = Inverse der Jacobi-Matrix von f

8.2.5 Diffeomorphismus

• Seien $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^n$ offen. Eine bijektive C^1 -Abbildung $\Phi : U \to V$ heisst Diffeomorphismus, falls die Umkehrabbildung $\Phi^{-1} : V \to U$ wieder C^1 ist.

8.2.6 Kochrezept zur Überprüfung ob Diffeomorphismus

- Gegeben: $\Phi: U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^n$, ist Φ ein Diffeomorphismus?
- 1. Beweise, dass Φ stetig differenzierbar ist, berechne Differenzial $d\Phi$ (Jacobi-Matrix) und zeige, dass $\det d\Phi(x) \neq 0, \forall x \in U$ Umkehrsatz impliziert, dass Φ lokal ein Diffeomorphismus ist
- 2. Beweise, dass Φ die Menge U bijektiv auf V abbildet.
- Oder direkt Φ^{-1} berechnen und C^1 zeigen.

8.2.7 Implizites Funktionentheorem

• Sei $\Omega \subset \mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^l$ offen und sei $f: \Omega \to \mathbb{R}^l$ stetig differenzierbar. Ist der Punkt $p_0 = (a,b) \in \Omega$ (mit a = erste k Koordinaten und b = letzte l Koordinaten von p_0) regulär mit

 $f(p_0)=0$ und $\det(d_yf(p_0))\neq 0$ (. d.h. $d_yf(p_0)$ ist invertierbar) wobei $d_yf(p_0)$ die Untermatrix von $df(p_0)$, die die partiellen Ableitungen nach den Koordinaten $y_1,...,y_l$ enthält, so lässt sich das Gleichungssystem f(x,y)=0 nach den Koordinaten y auflösen.

Genauer: Es gibt eine offene Umgebung U von a in \mathbb{R}^k und eine offene Umgebung V von b in \mathbb{R}^l und ein C^1 Diffeomorphismus $h:U\to V$, sodass f(x,h(x))=0

• Die Funktion h kann nicht explizit berechnet werden, doch Differential von h(x) ist $dh(x) = -(d_x f(x, h(x)))^{-1} \cdot d_x f(x, h(x))$

8.2.8 Existenzsatz für Extrema

• Ist $\Omega \subseteq \mathbb{R}^n$ kompakt und $f: \Omega \to \mathbb{R}$ stetig auf Ω , so nimmt f auf Ω Minimum und Maximum an.

8.3 Differentiationsregeln

8.3.1 Summen,- Produkt-, Quotientenregel

• $d(f+g)(x_0) = df(x_0) + dg(x_0)$

- $d(f \cdot g)(x_0) = g(x_0)df(x_0) + f(x_0)dg(x_0)$
- $d(\frac{f}{g})(x_0) = \frac{g(x_0)df(x_0) f(x_0)dg(x_0)}{(g(x_0))^2}$

8.3.2 Kettenregel 1. Version

• Sei $g:\Omega\to\mathbb{R}$ an der Stelle $x_0\in\Omega$ differenzierbar, und sei $f:\mathbb{R}\to\mathbb{R}$ differenzierbar bei $g(x_0)$. Dann ist Funktion $f\circ g:\Omega\to\mathbb{R}$ an der Stelle $x_0\in\Omega$ differenzierbar und es gilt:

$$d(f \circ g)(x_0) = f'(g(x_0))dg(x_0)$$

8.3.3 Kettenregel 2. Version

• Sei $\Omega \subseteq \mathbb{R}^n$ offen, sei $g: I \subseteq \mathbb{R} \to \Omega$ an der Stelle $t_0 \in I$ differenzierbar, und sei $f: \Omega \to \mathbb{R}$ differenzierbar bei $g(t_0)$. Dann ist Funktion $f \circ g: I \to \mathbb{R}$ an der Stelle $t_0 \in \Omega$ differenzierbar und es gilt:

$$d(f \circ g)(t_0) = df(g(t_0))dg(t_0) \text{ oder}$$

$$\frac{d}{dt}(f \circ g)(t_0) = df(g(t_0))\frac{dg}{dt}(t_0)$$

8.4 Taylorentwicklung in \mathbb{R}^n

8.4.1 Entwicklung zweier Variabeln

$$f(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y$$
$$+ \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2} (\Delta x)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2} (\Delta y)^2 \right)$$
$$+ \frac{1}{3!} \left(\frac{\partial^3 f}{\partial x^3} (\Delta x)^3 + 3 \frac{\partial^3 f}{\partial x^2 \partial y} (\Delta x)^2 \Delta y + 3 \frac{\partial^3 f}{\partial x \partial y^2} \Delta x (\Delta y)^2 + \frac{\partial^3 f}{\partial y^3} (\Delta y)^3 \right) + \cdots$$

• Δx bezeichnet die Differenz $(x - x_0)$

8.4.2 Entwicklung mehrerer Variabeln

• Entwicklung um Punkt *a*:

$$T_n f(x,a) = \sum_{k=0}^n \frac{1}{k!} \left(\Delta x_1 \frac{\partial}{\partial x_1} + \dots + \Delta x_n \frac{\partial}{\partial x_n} \right)^k f(x) \bigg|_{x=a}$$

• Δx_i bezeichnet die Differenz $(x_i - a_i)$ und es wird zuerst partiell abgeleitet und dann Funktion bei a ausgewertet

8.5 Kochrezepte

8.5.1 Überprüfung auf Differenzierbarkeit

- 1. Meist ist die Funktion eine Zusammensetzung aus differenzierbaren Funktionen, welche wiederum differenzierbar sind. Nur im Ursprung gibt es Probleme, da Nenner = 0 ist. Punkt (0,0) untersuchen:
- 2. Zuerst muss die Funktion auf **Stetigkeit** überprüft werden. Dazu kann der Polarkoordinatentrick $(x,y)=(r\cos(\varphi),r\sin(\varphi))$ mit $\lim_{r\to 0}$ benutzt werden.

Oder man benutzt z.B. einmal die Folge $(\frac{1}{n},\frac{1}{n})$ und $(0,\frac{1}{n})$ und untersucht so die Grenzwerte der Funktion bei $n\to\infty$ unter diesen Folgen (Unstetigkeit zu zeigen gut geeignet)

Oder man schätzt einmal mit $|x| < \sqrt{|y|}$ und einmal mit $|x| \ge \sqrt{|y|}$ ab und zeigt, dass jeweils zu 0 konvergiert. z.B. bei $\frac{3x^3y}{3y^2+2x^4}$ versagt Polarkordinatentrick, da noch φ -Terme im Nenner.

- 3. **Differenzierbarkeit** überprüfen:
 - a) Mit der Definition die partiellen Ableitungen bestimmen und somit Differenzial A in (0,0) berechnen.
 - b) Dann in Definition der Differenzierbarkeit alles einsetzen: $\lim_{x\to x_0}\frac{|f(x)-f(x_0)-A(x-x_0)|}{|x-x_0|}=0 \text{ mit } df(x_0):=A$

Schauen ob Grenzwert zu 0 wird, auch wieder Polarkoordinatentrick verwenden.

- Um zu zeigen, dass f **nicht differenzierbar** in x_0 ist, kann folgendes verwendet werden:
- f nicht stetig in x_0

- Partielle Ableitungen nicht stetig in x_0
- Nicht Differenzierbar in jede Richtung, dazu Vektor $\vec{v} = h \cdot (v_1, v_2)$ und in 1. Nebenbedingungen zeichnen $\lim \frac{f(hv_1,hv_2)-f(x_0)}{h}$ unterschiedliche Werte, z.B. links- und rechtsseitiger 2. Menge sollte abgeschlossen und beschränkt sein \to existiert ein Maxi-

Grenzwert sind nicht gleich, aufpassen, wenn h aus $\sqrt{h^2(v_1^2+v_2^2)}$ gezogen wird: $|h|\sqrt{(v_1^2+v_2^2)}$

- Für differenzierbare Funktionen hängen die Richtungsableitungen in (0,0)

z.B. $df_x = 0$ und $df_y = -1$ ist aber Richtungsableitung in Richtung (1,1) = 2 ist, dann gilt nicht $g'(0) = df(0,0)v = 0 - 1 \neq 2$ mit $g(t) = f(t \cdot v)$ somit hängt die Richtungsableitung nicht linear von vab und die Funktion ist nicht differenzierbar.

8.5.2 Funktion ist C^1

- Zeigen, dass die partiellen Ableitungen überall stetig sind, meist Zusammensetzung aus stetig differenzierbaren Funktionen und in (0,0) Grenzwert mit Polarkoordinaten-Trick betrachten
- Wenn **nicht differenzierbar**, dann nicht C^1

9 Extremwerte

9.1 Ohne Nebenbedingung

9.2 Eindimensionale Funktion

1. Kandidaten

- Intervallgrenzen (globale Extrema)
- \bullet $f'(x) \stackrel{!}{=} 0$

2. Art von Extrema

- (lokales) Maximum: $f''(x_0) < 0$
- (lokales) Minimum: $f''(x_0) > 0$

3. Vergleich lokale und globale Extrema

9.3 Mehrdimensionale Funktion 1. Kandidaten

$$\nabla f(x_0) \stackrel{!}{=} 0$$

2. Art von Extrema

- Maximum: $H_f(x_0)$ negativ definit
- Minimum: $H_f(x_0)$ positiv definit

9.4 Mit Nebenbedingungen

9.4.1 Grundidee

• Durch das Bilden einer neuen Funktion, der Lagrange-Funktion lässt sich mit der Lagrange-Multiplikatoregel die Nebenbedingung beachten.

9.4.2 Langrange-Multiplikator-Regel

- Sei $p_0 \in S$ lokales Maximum oder Minimum von f unter der Nebenbedingung $g(p_0) = 0$, und sei p_0 regulärer Punkt von g. Dann existiert $\lambda = (\lambda_1, \dots, \lambda_l) \in$ \mathbb{R}^l , so dass für $L = f + \lambda g$ gilt: $dL(p_0) = df(p_0) + \lambda dg(p_0) = 0$
- ullet Die Kanditdaten für Extremalstellen von f unter der Nebenbedingung g=0 sind die kritischen Punkte der Lagrange-Funktion L, die Variabel λ = $(\lambda_1,...,\lambda_2)$ heissen Lagrange-Multiplikator.
- x_0 heisst kritischer Punkt von f auf $S = g^{-1}\{0\}$, falls λ existiert mit $dL(x_0) = 0$ wobei $L = f + \lambda g$
- Sobald kritische Punkte gefunden wurden, müssen diese mit der Hesse-Matrix von L untersucht werden.

$$\nabla L(\mathbf{x}_0) \stackrel{!}{=} \mathbf{0}$$
 mit $L = f(\mathbf{x}) - \sum_{i=1}^n \lambda_i \varphi_i$

 $arphi_i$: Nebenbedingungen λ_i : Lagrange-Multiplikatoren

9.4.3 Vorgehen

- mum/Minimum (die Funktion sollte natürlich auf dem Bereich auch stetig sein)
- 3. Gradient berechnen
 - i) innere Punkte: $\nabla f(\mathbf{x}_0) \stackrel{!}{=} \mathbf{0}$ (\mathbf{x}_0 muss Element der Menge sein)
- ii) Randpunkte: $\nabla L \stackrel{!}{=} \mathbf{0}$
- 4. Löse Gleichungssystem mit Nebenbedingungen
- 5. Kandidaten der Extrema + Eckpunkte (∄ Ableitung) aufschreiben
- 6. Wenn nur globales Maxima und Minima gesucht wird, Kandidaten in $f(\mathbf{x})$ einsetzen und vergleichen
- 7. Sonst kritische Punkte mit Hesse-Matrix von L untersuchen.

9.4.4 Beispiel

Beispiel

$$f(x, y, z) = 4y - 2z$$
 $\varphi_1 = x^2 + y^2 - 1$ $\varphi_2 = 2x - y - z - 2$

- 1. Nebenbedingungen zeichnen
- 2. f(x,y,z) ist stetig und die Menge M ist beschränkt und abgeschlossen $\rightarrow \exists$
- 3. keine inneren Punkte (schräg im Raum liegende Ellipse)

$$\nabla \varphi_1 = \begin{pmatrix} 2x \\ 2y \\ 0 \end{pmatrix} \quad \nabla \varphi_2 = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} \quad \nabla f = \begin{pmatrix} 0 \\ 4 \\ -2 \end{pmatrix}$$

4. Gleichungssystem lösen $\nabla f = \lambda_1 \nabla \varphi_1 + \lambda_2 \nabla \varphi_2$

$$\lambda_1=\pm\sqrt{13} \qquad \lambda_2=2 \qquad x=\mp\frac{2}{\sqrt{13}}$$

$$y=\pm\frac{3}{\sqrt{13}} \qquad z=\mp\frac{7}{\sqrt{13}-2}$$
 5. Punkte aufschreiben

$$P_1 = \left(\frac{-2}{\sqrt{13}}, \frac{3}{\sqrt{13}}, \frac{-7}{\sqrt{13}} - 2\right)$$
$$P_2 = \left(\frac{2}{\sqrt{13}}, \frac{-3}{\sqrt{13}}, \frac{7}{\sqrt{13}} - 2\right)$$

6. Punkte vergleichen

$$f(P_1) = \frac{26}{\sqrt{13}} + 4$$
$$f(P_2) = \frac{-26}{\sqrt{13}} + 4$$

Somit ist P_1 ein Maximum und P_2 ein Minimum

- i) Es kann sein, dass der Rand nicht durch Nebenbedingungen darstellbar ist, dann kann man die Funktion direkt für den Rand auswerten und die Funktionswerte vergleichen
- ii) Man kann den Rand auch parametrisieren und die Parametrisierung in $f(\mathbf{x})$ einsetzen. Jetzt kann man wie gewohnt die Ableitung gleich 0 setzen und die Kandidaten berechnen

10 Integration

10.1 Definitionen

10.1.1 Step-Function

• Sei D = [a, b] mit a < b, eine Funktion $s : D \to \mathbb{R}$ ist eine Step-Function auf D, wenn $k \in \mathbb{N}$ und Zahlen $a = x_0 < x_1 < ... < x_k = b$ existieren, so dass s konstant und gleich $\sigma_i \in \mathbb{R}$ auf $]x_i, x_{i+1}[$ für alle iDas Integral von s lautet: $\int_a^b s(t) dt = \sum_{i=0}^{k-1} \sigma_i (x_{i+1} - x_i)$

10.1.2 Fundamentaler Satz der Analysis

• Sei D = [a, b] mit a < b, sei $g : D \to \mathbb{R}$ stetig. $f : D \to \mathbb{R}$ ist definiert durch $f(x) = \int_a^x g(t) dt$ und ist eine Stammfunktion von g mit f(a) = 0

10.1.3 Riemann Summe

- Sei D = [a, b] mit a < b, sei $g : D \to \mathbb{R}$ stetig $\int_{a}^{b} g(t)dt = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} g\left(a + k \frac{b-a}{n}\right) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n} g\left(a + k \frac{b-a}{n}\right)$
- Colin Dirren Version: $\lim_{n\to\infty} \frac{b-a}{n} \sum_{k=0}^n f\left(a+k\frac{b-a}{n}\right) = \int_a^b f(x) dx$

10.1.4 Grenzwert und Integral vertauschen

• Sei $f_n:\Omega\to\mathbb{R}$ eine Folge stetiger Funktionen und $[a,b]\subseteq\Omega$. Falls $f_n o f$ gleichmässig konvergiert, so ist f auf [a,b] integrierbar und es gilt $\lim_{n\to\infty} \int_a^b f_n(x) \, dx = \int_a^b \lim_{n\to\infty} f_n(x) \, dx \text{ (Korollar 6.2.15, Kowalski)}$ Merkregel: Bei gleichmässiger Konvergenz dürfen Limes und Integral vertauscht werden

10.1.5 Uneigentliche Integrale

- Wenn das Limit $\lim_{x\to+\infty}\int_a^x g(t)\,dt$ existiert, dann kann das so geschrieben werden: $\int_{a}^{+\infty} g(t)dt$
- Dasselbe, wenn f ist auf a,b definiert, dann $\int_a^b g(t)dt = \lim_{x\to a} \int_x^b g(t)dt$
- Achtung bei undefinierten Endpunkten auf beiden Seiten, dann muss dies exisiteren: $\int_{-\infty}^{+\infty} g(t)dt = \int_{-\infty}^{0} g(t)dt + \int_{0}^{+\infty} g(t)dt$

10.1.6 Ungleichungen mit Integralen

- Sei I = [a, b] mit a < b
- 1) Wenn $g_1, g_2: I \to \mathbb{R}$ stetig sind und $g_1 \leq g_2$, dann $\int_a^b g_1(t)dt \leqslant \int_a^b g_2(t)dt$
- 2) Wenn $g \ge 0$ und stetig ist, dann für $a \le c \le d \le b$ gilt: $\int_{c}^{d} g_1(t)dt \le c$
- 3) Wenn $g \ge 0$ stetig, dann: $\int_a^b g_1(t)dt \ge 0$ und = 0 wenn g(x) = 0 für alle x

10.1.7 Abschätzung Betrag aussen und innen im Integral

• Sei D ein Interval und $g:D\to\mathbb{R}$ eine beschränkte Funktion mit Stammfunktion, dann für $x_0, x \in D$ gilt:

 $|\int_{x_0}^x g(t)dt| \le \int_{x_0}^x |g(t)|dt \le M|x-x_0| \text{ mit } M \ge |g(t)| \text{ für alle } t \in [x_0,x], \text{ z.B.}$ $M = \max_{t \in [x_0, x]} f(t)$

10.1.8 Wegintegral

- $\int_{\gamma} \lambda := \int_{0}^{1} \lambda(\gamma(t)) \gamma'(t) dt$ Wegintegral von λ längs γ
- Bei Skalarfeld: Sei $f: \mathbb{R}^n \to \mathbb{R}$ ein Skalarfeld und $\gamma: [a,b] \to \mathbb{R}^n$ ein stückweise differenzierbarer Weg, dann ist das Integral von f über γ wie folgt definiert:

$$\int_{\boldsymbol{\gamma}} f(\mathbf{x}) ds := \int_{a}^{b} f(\boldsymbol{\gamma}(t)) \|\dot{\boldsymbol{\gamma}}(t)\|_{2} dt$$

10.1.9 Konservatives Vektorfeld

- Vektorfeld heisst konservativ, falls für jeden geschlossenen Weg gilt: $\int_{\alpha} v \cdot d\vec{v} =$
- Es gibt ein dazugehöriges Potential, wie dieses gefunden wird, ist in Kapitel Potenzialfelder" beschrieben.

10.2 Integrationsregeln

10.2.1 Partielle Integration

10.2.2 Kettenregel / Substitutionsregel

- $\int_{r_0}^x h'(t)g(h(t))dt = \int_{h(r_0)}^{h(x)} g(t)dt$
- Sei u=h(t) mit du=h'(t)dt, dann: $\int_{x_0}^x h'(t)g(h(t))\,dt=\int_{h(x_0)}^{h(x)}g(u)\,du$

10.2.3 Wichtiger Variabelnwechsel

häufig gebraucht um e^{at} auf eine bessere Form wie e^t zu bringen

10.3 Häufige Integrale

10.3.1 Elementarfunktionen

- $\int t^a dt = \frac{1}{1+a} t^{a+1}$ $(a \neq -1)$
- $\int \frac{1}{t} dt = \log(t)$
- $\bullet \int_{1}^{x} \frac{1}{t} dt = \log(x)$
- $\bullet \int e^t dt = e^t$
- $\int \cos(t)dt = \sin(t)$
- $\int \sin(t)dt = -\cos(t)$
- $\int \log_a x \, dx = x \log_a |x| \frac{x}{\ln a} = \frac{x \ln |x| x}{\ln a}$

10.3.2 Reziproke Funktionen

- $\int_0^x \frac{1}{1+t^2} dt = \arctan(x)$
- $\int \frac{1}{\sqrt{1-t^2}} dt = \arcsin(t)$
- $-\int \frac{1}{\sqrt{1-t^2}} dt = \arccos(t)$
- $\int \frac{1}{1-x^2} dx = \operatorname{arctanh}(x) \text{ für } x \in]-1,1[$

10.3.3 Potenz mal Exponential oder Trigonometrische Funktion

- Bsp.: $\int_a^b t^k e^{ct} dt$, kann berechnet werden durch partielle Integration, Potenzfunktion wird abgeleitet und Trigonometrische Funktion integriert bis Potenz
- Praktische Formel $I_n:=\int x^n e^x\,dx=x^n e^x-nI_{n-1}=\left(\sum_{k=0}^n\frac{(-1)^{n-k}n!}{k!}x^k\right)e^x+C$

10.3.4 Trigonometrische Funktion mit Exponentialfunktion

- Bsp.: $\int_{a}^{b} \cos(rt)e^{st}dt$, kann berechnet werden durch zweifache partielle Integration, danach entsteht lineare Gleichung und Ausdruck kann nach links genommen werden.
- $\int_{a}^{b} \cos(rt) \cos(st) dt$ wird genau gleich berechnet (Produkt Trigonometrische Funktionen)

10.3.5 Potenzen von Trigonometrischen Funktionen

• Bsp.: $\int_a^b \cos(rt)^k dt$, wenn $\cos(x)^k$ als lineare Kombination von $\cos(mx)$ und sin(mx) ausgedrückt wird und dann integrieren.

10.3.6 Orthogonale Relationen

- $\int_0^{2\pi} \cos(nt) \cos(mt) dt = 0$ if $n \neq m$,
- $\int_0^{2\pi} \sin(nt) \sin(mt) dt = 0$ if $n \neq m$
- $\int_0^{2\pi} \cos(nt)^2 dt = \pi$ if $n \neq 0$
- $\int_0^{2\pi} \sin(nt)^2 dt = \pi$ if $n \neq 0$
- $\int_0^{2\pi} \sin(t)^4 dt = \int_0^{2\pi} \cos(t)^4 dt = \frac{3\pi}{4}$
- $\int_0^{2\pi} \sin(t)^3 dt = \int_0^{2\pi} \cos(t)^3 dt = 0$
- $\int_0^{2\pi} \sin(t)^2 dt = \int_0^{2\pi} \cos(t)^2 dt = \pi$

10.3.7 Vorgerechnete Integrale

- $\int \frac{1-x}{x^2+x+1} dx$, es wird versucht die Substitution $u=x^2+x+1$ mit $\frac{du}{dx}=(2x+1)$ anzuwenden. Dazu Integral aufteilen, damit ein Term die Substitution nutzen

 $-\frac{1}{2}\int \frac{2x+1}{x^2+x+1}dx + \frac{3}{2}\int \frac{1}{x^2+x+1}dx$ Der erste Teil kann nun gut mit der Substitution gelöst werden, da der Zähler wegfällt:

 $-\frac{1}{2}\int \frac{2x+1}{x^2+x+1}dx = -\frac{1}{2}\int \frac{1}{u}du = -\frac{1}{2}\log(|u|) + C_2 = -\frac{1}{2}\log\left(\left|x^2+x+1\right|\right) + C_2$ Für zweiten Teil wird quadratisch ergänzt mit einer zweiten Substitution:

$$\frac{3}{2} \int \frac{1}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} dx = \frac{3}{2} \frac{4}{3} \int \frac{1}{\left(\sqrt{\frac{4}{3}}\left(x + \frac{1}{2}\right)\right)^2 + 1} dx$$

$$= \sqrt{3} \int \frac{1}{v^2 + 1} dv$$

$$= \sqrt{3} \arctan(v) + C_3 = \sqrt{3} \arctan\left(\sqrt{\frac{4}{3}}\left(x + \frac{1}{2}\right)\right) + C_3$$

10.3.8 Tangenssubstitution

• Mit der Substitution $t = t(x) = \tan(\frac{x}{2})$ und den Ausdrücken $\cos(x) = \frac{1-t^2}{1+t^2}$ $\sin(x) = \frac{2t}{1+t^2}$ und $t'(x) = \frac{1+t^2}{2}$ können eine Vielzahl Integrale trig. Funktionen gelöst werden. z.B.: $\int_0^{\frac{\pi}{2}} \frac{1}{\sin(x) + \cos(x)} dx$

10.3.9 Rotationskörper

- Die Funktion f(x) wird hier um die x-Achse rotiert, das ist quasi eine Addierung aller Kreisscheiben mit dem Radius f(x) bei x.
- $V = \pi \int_a^b f(x)^2 dx$

11 Integration in \mathbb{R}^n

11.1 Sätze

11.1.1 Satz von Fubini

- $Q = [a_1, b_1] \times \cdots \times [a_n, b_n]$ $f:Q\to\mathbb{R}$
- $\int_O f(\mathbf{x}) d\mathbf{x} = \int_{a_1}^{b_1} \dots \int_{a_n}^{b_n} f(x_1, \dots, x_n) dx_1 \dots x_n$
- 1. Die Integrationsreihenfolge spielt keine Rolle, falls die Funktion f auf dem Bereich *O* stetia ist

11.1.2 Gebiet der Klasse C^1

• Ein Gebiet $\Omega \subset \mathbb{R}^n$ ist von der Klasse C^1 (bzw. C^1_{pw} , C^k), falls zu jedem Punkt $p \in \partial \Omega$ Koordinaten $(x', x^n) \in \mathbb{R}^{n-1} \times \mathbb{R}$, ein Quader $Q' \subset \mathbb{R}^{n-1}$, eine Umgebung $W = Q' \times [c, d]$ von p und eine Funktion $\psi \in C^1(Q')$ (bzw. $\psi \in C^1_{nw}(Q'), \psi \in C^k(Q')$, existieren, so dass

$$\Omega \cap W = \left\{ \left(x', x^n \right) \in \mathbb{R}^n ; x' \in Q', c < y < \psi(x) \right\}.$$

11.1.3 Satz von Green

• Sei $\Omega \subset Q \subset \mathbb{R}^2$ von der Klasse C_{nw}^1 , und seien $g, h \in C^1(\bar{\Omega})$. Dann gilt

$$\int_{\Omega} \left(\frac{\partial h}{\partial x} - \frac{\partial g}{\partial y} \right) d\mu = \int_{\partial \Omega} (g dx + h dy)$$

wobei der Rand von Ω so parametrisiert wird, dass Ω zur Linken liegt.

• Allgemeinere Form: Sei $\Omega \subset Q \subset \mathbb{R}^2$ von der Klasse C^1_{pw} , und sei $v \in C^1(\bar{\Omega})$.

$$\int_{\Omega} \operatorname{rot} v d\mu = \int_{\partial} v \cdot d\vec{s}$$

wobei der Rand von Ω so parametrisiert wird, dass Ω zur Linken liegt.

11.1.4 Satz von Poincare

ullet Sei $\Omega\subset\mathbb{R}^2$ in C^1_{pw} beschränkt, zusammenhängend sowie einfach zusammenhängend, und sei $v \in C^1(\bar{\Omega}; \mathbb{R}^2)$. Dann sind äquivalent 1. v ist konservativ, 2. rot v = 0.

11.1.5 Transformationsregel

• 2-dimensional: Sei f(x,y) auf Ω integrabel mit Substitution x=g(u,v),y=h(u,v) oder kompakt $(x,y) = \Phi(x,y)$ wobei Φ C^1 -Diffeomorphismus ist, $\ddot{\Omega} = \Phi^{-1}(\Omega)$ Transformation lautet dann:

$$\int_{\Omega} f(x,y)dxdy = \int_{\tilde{\Omega}} f(g(u,v),h(u,v))|\det d\Phi|dudv$$

• allgemein: $(x_1,...,x_n) = \Phi(u_1,...,u_n)$ oder kompakt $(x,y) = \Phi(x,y)$ wobei Φ C^1 -Diffeomorphismus ist, $\tilde{\Omega} = \Phi^{-1}(\Omega)$ Transformation lautet dann:

$$\int_{\Omega} f(x_1,\ldots,x_n) dx_1 \cdots dx_n = \int_{\tilde{\Omega}} f(g_1(u),\cdots,g_n(u)) |\det d\Phi| du_1 \cdots du_n$$

mit Volumenelement im neuen Koordinatensystem:

$$dx_1\cdots dx_n=|\det d\Phi|du_1\cdots du_n=\left|\det \begin{pmatrix} \frac{\partial g_1}{\partial u_1}& \cdots & \frac{\partial g_1}{\partial u_n}\\ \vdots & \ddots & \vdots\\ \frac{\partial g_n}{\partial u_1}& \cdots & \frac{\partial g_n}{\partial u_n} \end{pmatrix}\right|du_1\cdots du_n$$

• Funktionalmatrix $d\Phi$ wird auch häufig so notiert: $\frac{\partial (x_1,...,x_n)}{\partial (u_1,...,u_n)}$

11.1.6 Elementarfiguren sind Jordan-messbar und Bemerkung zu Transformationen

- Elementarfiguren Jordanmessbar.
- Ein beschränktes $\Omega \subset \mathbb{R}^n$ ist gemäss Bemerkung 8.1.2.ii) Jordan-messbar genau dann, wenn zu jedem $\varepsilon > 0$ Elementarfiguren $E,G \subset \mathbb{R}^n$ existieren mit $E \subset \Omega \subset G$ und

$$\mu(G \setminus E) = \mu(G) - \mu(E) < \varepsilon,$$

also wenn

$$\mu(\partial\Omega)=0$$

In diesem Fall gilt

$$\mu(\Omega) = \inf\{\mu(G); G \supset \Omega \text{ El.Fig. }\} = \sup\{\mu(E); E \subset \Omega \text{ El.Fig. }\}$$

• Translationen und Rotationen verändern Flächeninhalt nicht

11.1.7 C_{nw}^1 -**Gebiet**

• Definition 8.4.2. Ein Gebiet $\Omega \subset \mathbb{R}^n$ ist von der Klasse C^1 (bzw. C^1_{pw} , C^k), falls zu jedem Punkt $p \in \partial \Omega$ Koordinaten $(x', x^n) \in \mathbb{R}^{n-1} \times \mathbb{R}$, ein Quader $Q' \subset \mathbb{R}^{n-1}$, eine Umgebung $W = Q' \times]c,d[$ von p und eine Funktion $\psi \in C^{1}\left(Q'\right)$ (bzw. $\psi \in C^{1}_{pw}\left(Q'\right), \psi \in C^{k}\left(Q'\right)$), existieren, so dass

$$\Omega \cap W = \{ (x', x^n) \in \mathbb{R}^n ; x' \in Q', c < y < \psi(x) \}$$

11.1.8 Zerlegung $[0, 1]^2$

- $\bullet \ P_n := \left\{ Q_{k,l}^{(n)} := \left[\frac{k}{n}, \frac{k+1}{n} \right] \times \left[\frac{l}{n}, \frac{l+1}{n} \right] \mid k, l \in \{0, \dots, n-1\} \right\}, \quad \forall n \in \mathbb{N}$
- Darauf können dann Treppenfunktionen gebaut werden. z.B für $x^2 + xy$ $l_n := \sum_{k=0}^{n-1} \sum_{l=0}^{n-1} \left(\frac{k^2}{n^2} + \frac{kl}{n^2} \right) \chi_{O_{k,l}^{(n)}}$

$$h_n := \sum_{k=0}^{n-1} \sum_{l=0}^{n-1} \left(\frac{(k+1)^2}{n^2} + \frac{(k+1)(l+1)}{n^2} \right) \chi_{Q_{k,l}^{(n)}}$$

 $l_n \leq f \leq h_n \text{ mit } \chi_{O_{k,l}^{(n)}} = \frac{1}{n^2}$

Es gilt: $\limsup_{n\to\infty}\int_{[0,1]\times[0,1]}l_nd\mu$ $\int_{[0,1]\times[0,1]}fd\mu$ und $\liminf_{n\to\infty} \int_{[0,1]\times[0,1]} h_n d\mu \le \int_{[0,1]\times[0,1]} f d\mu$

11.2 Integration über Normalbereich

• Sei $\Omega := \{(x,y) \in \mathbb{R}^2 \mid a \le x \le b, f(x) \le y \le g(x)\}$ ein Normalbereich, dann gilt für das Integral

$$\int_{\Omega} f(x, y) dS = \int_{a}^{b} \int_{f(x)}^{g(x)} f(x, y) dy dx$$

Anmerkungen

- i) Die Integrationsreihenfolge ist wichtig
- ii) Für höhere Dimensionen bleibt das Prinzip das Gleiche

11.3 Oberflächenintegral

• Oberflächenintegral erster Art (über Skalarfeld)

Sei $f: \mathbb{R}^3 \to \mathbb{R}$ ein Skalarfeld und A eine Fläche die mit $\Phi: B \to \mathbb{R}^3$ $(B \subset \mathbb{R}^2)$ parametrisiert wird. Das Oberflächenintegral von f über A lautet $\iint_A f(\mathbf{x}) \, dS = \iint_B f(\Phi) \left\| \frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v} \right\|_2 \, du \, dv$

• Oberflächenintegral zweiter Art (über Vektorfeld)

Sei $\mathbf{K}: \mathbb{R}^3 \to \mathbb{R}^3$ ein Vektorfeld und A eine Fläche die mit $\Phi: B \to \mathbb{R}^3$ $(B \subset \mathbb{R}^2)$ parametrisiert wird. Das Oberflächenintegral von \mathbf{K} über A lautet $\iint_A \mathbf{K}(\mathbf{x}) \cdot d\mathbf{o} = \iint_B \mathbf{K}(\Phi) \cdot \left(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\right) du \, dv$

- i) Dieses Integral wird auch häufig als Flussintegral bezeichnet
- ii) Im Allgemeinen besteht das (vektorielle) Wegelement aus $d\mathbf{o} = \vec{n} \, do$, wobei \vec{n} das Einheitsnormalenfeld bezeichnet

11.4 Volumenintegral

- Sei $f: \mathbb{R}^3 \to \mathbb{R}$ ein Skalarfeld, dann lautet das Volumenintegral (über das Volumen V) wie folgt $\iiint_V f(\mathbf{x}) \, dV = \int_V f(\mathbf{x}) \, dV$
- i) Meistens spricht man von einem Volumenintegral, wenn man über ein 3dimensionales Volumen integriert, aber grundsätzlich kann die Dimension auch höher sein
- ii) Falls man das Volumen von V berechnen möchte, kann man als Skalarfeld die Indikatorfunktion $(f(x, y, z) = 1 \text{ für } (x, y, z) \in V)$ wählen
- iii) Das Volumenelement dV berechnet sich mit einer geeigneten Parametrisierung $\Phi(\mathbf{x})$ (siehe Transformationssatz) $dV = |\det(D\Phi(\mathbf{x}))| d\mathbf{x}$

11.5 Schwerpunkt

• Sei $K \subset \mathbb{R}^n$ ein Körper und bezeichne $S_k = (s_{x_1}, \dots, s_{x_n}) \in \mathbb{R}^n$ den Schwerpunkt von K, dann gilt

$$s_{x_i} = \frac{1}{\operatorname{vol}(K)} \int_K x_i \mathrm{d}V$$

i) Symmetrien von K beachten \rightarrow spart Zeit

12 Potenzialfelder

12.0.1 Definition

• Ein **Potenzial** von f auf Ω ist eine stetig differenzierbare Funktion Φ , welche $f = \nabla \Phi$ auf Ω erfüllt.

12.0.2 Integrabilitätsbedingungen für Potenzialfelder

• Sei das stetige, differenzierbare Vektorfeld $\vec{v}:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}^n$ gegeben. Ist \vec{v} ein Potenzialfeld, so gelten die Integrabilitätsbedingungen:

$$\frac{\partial v_i}{\partial x_j} = \frac{\partial v_j}{\partial x_i}, \quad \forall i \neq j, \quad i, j \in \{1, ..., n\}$$

Ist Ω einfach zusammenhängend, so gilt \vec{v} Potenzialfeld \iff Integrabilitätsbedingungen erfüllt. (Annulierung der Rotation)

12.1 Finden eines Potenzials, Anleitung

• Sei $\vec{v}(x,y) = e^{xy}(1+xy,x^2)$. Wir versuchen ein Potential für \vec{v} zu finden, also dass $\vec{v} = \nabla \Phi$ gilt. Somit kann das Wegintegral von \vec{v} Einfach mit $\Psi(\gamma_1) - \Psi(\gamma_1)$ berechnet werden.

• Es gilt
$$\vec{v} = \begin{pmatrix} e^{xy}(1+xy) \\ e^{xy}x^2 \end{pmatrix} = \begin{pmatrix} \frac{\partial \Psi}{\partial x} \\ \frac{\partial \Psi}{\partial y} \end{pmatrix} = \nabla \Psi$$

- 1. Als erster Schritt integrieren wir über y und betrachten x als eine Konstante: $\frac{\partial \Psi}{\partial y} = e^{xy}x^2 \Rightarrow \Psi = \int e^{xy}x^2 \, dy = xe^{xy} + C(x)$
 - Da bei der Integration x als Konstante betrachtet werden kann, kann C eventuell Funktion von x sein.
- 2. Partielle Ableitung nach x, Resultat muss gleich erster Komponente sein: $\frac{\partial \Psi}{\partial x} = e^{xy} + xe^{xy} + C' = e^{xy} + xye^{xy}$ Also C' = 0 also C = const
- 3. Somit ist $\Psi = xe^{xy}$ das gesuchte Potenzial, das bis auf additive Konstante

bestimmt ist. Also $\int_{\mathcal{V}} \vec{v} \, d\vec{s} = \Psi(\gamma_1) - \Psi(\gamma_1)$

13 Vektoranalysis

13.1 Skalarfeld

 Jedem Punkt wird eine Zahl (Skalar) zugeordnet → Gradient wirkt auf ein Skalarfeld

$$f: \mathbb{R}^n \to \mathbb{R}$$
 $f(x) = f(x_1, \dots, x_n)$

13.2 Vektorfeld

Jedem Punkt wird ein Vektor zugeordnet

$$\mathbf{K}: \mathbb{R}^n o \mathbb{R}^m \quad \mathbf{K}(x) = egin{pmatrix} K_1(x_1, \dots, x_n) \\ dots \\ K_m(x_1, \dots, x_n) \end{pmatrix}$$

13.2.1 Divergenz

• Die Divergenz eines Vektorfeldes gibt die "Quellendichte" an (Skalarfeld)

$$\mathbf{K}: \mathbb{R}^n o \mathbb{R}^n \ \ \operatorname{div}(K) =
abla \cdot \mathbf{K} = rac{\partial K_1}{\partial x_1} + \cdots + rac{\partial K_n}{\partial x_n}$$

13.2.2 Rotation

• Falls $\mathbf{K}: \mathbb{R}^3 \to \mathbb{R}^3$, dann gilt für die Rotation von \mathbf{K}

$$rot(\mathbf{K}) = \nabla \times \mathbf{K} = \begin{pmatrix} \partial_x \\ \partial_y \\ \partial_z \end{pmatrix} \times \begin{pmatrix} K_1 \\ K_2 \\ K_3 \end{pmatrix} = \begin{pmatrix} \frac{\partial K_3}{\partial y} - \frac{\partial K_2}{\partial z} \\ \frac{\partial K_1}{\partial z} - \frac{\partial K_3}{\partial x} \\ \frac{\partial K_2}{\partial y} - \frac{\partial K_1}{\partial y} \end{pmatrix}$$

13.2.3 Identitäten

- $\operatorname{div}(f \cdot K) = \nabla f \cdot K + f \cdot \operatorname{div}(K)$
- $\operatorname{div}(K \times L) = L \cdot \operatorname{rot}(K) K \cdot \operatorname{rot}(L)$
- $rot(\nabla f) = 0$
- $\operatorname{div}(\nabla f) = \Delta f = \sum_{k=1}^{n} \frac{\partial^2 f}{\partial x^2}$ (Laplace-Operator)
- $\operatorname{div}(\operatorname{rot}(K)) = 0$
- $\operatorname{div}(f \cdot \operatorname{rot}(K)) = \nabla f \cdot \operatorname{rot}(K)$

13.2.4 Satz von Green (2d-Stokes)

$$\oint_{\partial D} \mathbf{K} \cdot d\mathbf{s} = \iint_{D} \frac{\partial K_{2}}{\partial x} - \frac{\partial K_{1}}{\partial y} dS$$

Anmerkung:

- i) Das Umlaufintegral muss dabei mathematisch positive Umlaufrichtung haben
- ii) Man kann so auch die Fläche von D, mithilfe eines Linienintegrals, berechnen

$$\mathbf{K} = \begin{pmatrix} 0 \\ x \end{pmatrix} \rightarrow \text{vol}(D) = \iint_D 1 dx dy = \oint_{\partial D} \begin{pmatrix} 0 \\ x \end{pmatrix} \cdot d\mathbf{s}$$

13.2.5 Satz von Stokes (3-dim)

- Der Satz von Stokes erlaubt es Flussintegrale mithilfe von Wegintegralen zu lösen und umgekehrt.
- Es seien $\vec{v}=(v_1,v_2,v_3)$ ein stetig differenzierbares Vektorfeld auf einem Gebiet $\Omega\subset\mathbb{R}^3$ und $C\subset\Omega$ eine offene Fläche durch die geschlossene C^1_{pw} Kurve $\gamma=\partial C$ berandet. Dann gilt

$$\int_{\gamma = \partial C} \vec{v} \cdot d\vec{s} = \int_{C} \operatorname{rot}(\vec{v}) \cdot \vec{n} do$$

Die Kurve γ läuft in positiver mathematischer Richtung.

- i) Nach Konvention lassen sich die Richtungen des (vektoriellen) Wegelements $d\vec{s}$ und des (vektoriellen) Flächenelements \vec{n} do gemäss der rechten-Hand-Regel bestimmen (der Daumen entpricht dem Einheitsnormalenfeld und die Finger bescheiben die Richtung des Weges)
- ii) Falls nur rot(**K**) gegeben ist, kann man durch raten ein passendes Vektorfeld **K** bestimmen

13.2.6 Satz von Gauss

- Satz von Gauss vereinfacht Berechnung von Flussintegralen via Umwandlung in Volumenintegrale:
- Sei eine beschränkte Umgebung V mit Rand $\partial V \in C^1_{pw}$, dann gilt:

$$\int_{\partial V} \vec{v} \cdot \vec{n} \, do = \int_{\partial V} \vec{v} \cdot \, d\vec{o} = \int_{V} \operatorname{div}(\vec{v}) \, d\mu$$

wobei \vec{n} die nach aussen gerichtete Normale längs ∂V bezeichnet.

i) V kann ∂V auch nur enthalten, man muss einfach das zusätzliche Flussintegral subtrahieren

13.2.7 Kochrezept Flussintegral

• **Gegeben**: Vektorfeld \vec{v} , Fläche S **Gesucht**: Flussintegral $\iint_S \vec{v} \cdot \vec{n} do$ Schritt 1: Parametrisiere die Fläche S, d.h. finde

$$\Phi: [a,b] \times [c,d] \to \mathbb{R}^3, (u,v) \to \Phi(u,v) = (\Phi_1(u,v), \Phi_2(u,v), \Phi_3(u,v))$$

Schritt 2: Berechne $\Phi_u = \frac{\partial \Phi}{\partial u}$ und $\Phi_v = \frac{\partial \Phi}{\partial v}$ indem du jede Komponente von Φ nach u respektive v partiell ableitest. Berechne ferner das Kreuzprodukt. Sicherstellen, dass Normalenvektor in die richtige Richtung zeigt.

$$\Phi_u \times \Phi_v$$

Schritt 3: Benutze die Formel

$$\int_{S} \vec{v} \cdot \vec{n} do = \pm \int_{a}^{b} \int_{c}^{d} \vec{v}(\Phi(u, v)) \cdot (\Phi_{u} \times \Phi_{v}) du dv$$

Entscheide nach dem Vorzeichen (je nach Situation).

13.2.8 Kochrezept Flächenberechnung mit Satz von Green auf der Ebene

- Gegeben: $C \subset \mathbb{R}^2$ beschränkt mit C^1_{pw} -Rand ∂C . Gesucht: $\mu(C)$.
- 1. Parametrisiere den Rand von C mit der Kurve

$$\gamma:[a,b]\to\mathbb{R}^2,t\to\gamma(t)$$

Beachte dabei, dass die Parametrisierung in mathematisch positiver Richtung verläuft (d.h. so dass die Menge *C* immer links steht).

- 2. Berechne $\dot{\gamma}$ (jede Komponente nach dem Parameter t ableiten).
- 3. Wende die Formel

$$\mu(C) = \int_{\gamma = \partial C} \vec{v} \cdot d\vec{s}$$

an, mit $\vec{v} = (0, x)$

• Anstatt $\vec{v} = (0, x)$ kann man natürlich auch ein anderes Vektorfeld mit rot $\vec{v} = 1$ nehmen.

14 Topologie

14.1 Begriffe

14.1.1 Kompakte Menge

• $K \subseteq \mathbb{R}^d$ heisst **kompakt**, falls jede Folge $(x_k)_{k \in \mathbb{N}} \subseteq K$ einen Häufungspunkt in K besitzt. D.h. falls eine Teilfolge $B \subseteq \mathbb{N}$ und ein $x_0 \in K$ exisitieren mit

- $x_k \to x_0 \quad (k \to \infty, k \in B)$
- \mathbb{R} ist nicht kompakt
- Wenn K kompakt ist, dann ist K beschränkt und es gilt: $a = \inf K =$ $\min K$, $b = \sup K = \max K$
- K ist (folgen)-kompakt $\iff K$ ist beschränkt und abgeschlossen.

14.1.2 Offener Ball

- Sei $x_0 \in \mathbb{R}^d$. Der offene Ball vom Radius r > 0 um x_0 ist die Menge: $B_r(x_0) = \{x \in \mathbb{R}^d; |x - x_0| < r\}$
- $x_0 \in \Omega$ heisst innerer Punkt von Ω falls $\exists r > 0 : B_r(x_0) \subseteq \Omega$
- $\Omega \in \mathbb{R}^d$ heisst **offen**, falls jedes $x_0 \in \Omega$ ein innerer Punkt ist
- [a,b[ist nicht offen, da a kein innerer Punkt ist

14.1.3 Eigenschaften offener Mengen

- \emptyset , \mathbb{R}^d sind offen
- $\Omega_1, \Omega_2 \subseteq \mathbb{R}^d$ sind offen $\Rightarrow \Omega_1 \cap \Omega_2$ offen
- $\Omega_i \subset \mathbb{R}^d$ sind offen $\bigcup_{\forall i} \Omega_i$ ist offen

14.1.4 Abgeschlossene Menge

• Eine Teilmenge $A \subseteq \mathbb{R}^n$ heisst **abgeschlossen**, falls das Komplement A^c , $\mathbb{R}^d \setminus A$ offen ist.

14.1.5 Eigenschaften abgeschlossene Menge

- \emptyset , \mathbb{R}^d sind abgeschlossen
- A_1, A_2 sind abgeschlossen $\Rightarrow A_1 \cup A_2$ abgeschlossen, $(A_1 \cup A_2)^c = (A_1^c \cap A_2^c) =$ $\Omega_1 \cap \Omega_2$
- A_i abgeschlossen $\cap_{\forall i}$ A_i ist abgeschlossen

14.1.6 Inneres / offener Kern einer Menge

- Die Menge der inneren Punkte von Ω $\int (\Omega) = \bigcup_{U \subset \Omega, U \text{ offen } U := \Omega^{\circ}$ heisst **offener Kern** oder **Inneres** von Ω
- Inneres einer Menge ist die grösste offene Menge die in Ω ist

14.1.7 Abschluss einer Menge

- Der Abschluss $\overline{\Omega}$ einer Menge Ω ist die kleinste abgeschlossene Menge A die
- Für $\Omega \subseteq \mathbb{R}^d$ gilt: $\operatorname{clos}(\Omega) = \overline{\Omega} = \{x_0 \in \mathbb{R}^d ; \exists (x_k)_{k \in \mathbb{N}} \subseteq \Omega, k \to \infty \implies x_k \to \infty \}$ x_0

14.1.8 Rand einer Menge

- Der Rand $(\partial \Omega)$ einer Menge Ω ist $clos(\Omega)\Omega^{\circ}$
- $\partial \Omega = \{x \in \mathbb{R}^d : \forall r > 0 : B_r(x) \cap \Omega \neq \emptyset \neq B_r(x) \setminus \Omega \}$

14.1.9 Eigenschaften Rand / Inneres / Abschluss

- $\partial \Omega = \overline{\Omega} \backslash \Omega^{\circ} = \overline{\Omega} \cap (\mathbb{R}^d \backslash \Omega^{\circ})$ ist abgeschlossen
- $\Omega^{\circ} \subset \Omega \subset \overline{\Omega}$ folgt $\overline{\Omega} = \Omega^{\circ} \cup \partial \Omega$ und Zerlegung ist disjunkt
- $\Omega \subset \mathbb{R}^d$ abgeschlossen $\iff \Omega = \overline{\Omega} = \Omega^{\circ} \cup \partial\Omega \iff \partial \subseteq \Omega$
- $\partial \mathbb{Q} = \overline{\mathbb{Q}} \backslash Q^{\circ} = \mathbb{R}$

14.1.10 Relativ abgeschlossen und relativ offen

- Sei $X \subseteq \mathbb{R}^n$
- $A \subset X$ relativ offen $\iff \exists B \subset \mathbb{R}^n$ offen, mit $A = B \cap X$ Bsp.: X=[0,1), $A=[0,\frac{1}{2})$ ist in X relativ offen, da mit $B=(-\frac{1}{2},\frac{1}{2})$ offen und $A = B \cap X = (-\frac{1}{2}, \frac{1}{2}) \cap [0, 1)$ ist.
- $A \subset X$ relativ abgeschlossen $\iff \exists B \subset \mathbb{R}^n$ abgeschlossen, mit $A = B \cap X$

14.2 Norm auf \mathbb{R}^d

14.2.1 Definition

- Eine **Norm** auf \mathbb{R}^d ist eine Abbildung $\|\cdot\|:\mathbb{R}^d\to\mathbb{R}$ mit den Eigenschaften für alle $x, y \in \mathbb{R}^d, \alpha \in \mathbb{R}$:
- 1. Definitheit: $||x|| \ge 0$, $||x|| = 0 \iff x = 0$
- 2. Positive Homogenität: $\|\alpha x\| = \alpha \|x\|$
- 3. Dreiecks-Ungleichung $||x + y|| \le ||x|| + ||y||$

14.2.2 Aquivalenz zweier Normen

• Zwei Normen $\|\cdot\|^{(1)}, \|\cdot\|^{(2)}: \mathbb{R}^d \to \mathbb{R}$ heissen äquivalent, falls C > 0 existiert

$$\frac{1}{C}||x||^{(1)} \le ||x||^{(2)} \le C||x||^{(1)}, \quad \forall x \in \mathbb{R}^d$$

• Äguivalente Normen definieren dieselben offenen Mengen

14.3 Topologisches Kriterium für Stetigkeit

14.3.1 Satz 4.5.1

- Sei $f: \Omega \to \mathbb{R}^d, x_0 \in \Omega$ Es sind äquivalent:
- 1. f ist stetig an der Stelle x_0 gemäss Folgenkriterium
- 2. $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in \Omega : ||x y|| < \delta \Rightarrow ||f(x) f(y)|| \le \varepsilon$ (Weierstrass Epsilon-Delta Kriterium)
- 3. Für jede Umgebung V von $f(x_0)$ in \mathbb{R}^d ist $U = f^{-1}$ eine Umgebung von x_0

14.3.2 Satz 4.5.2 folgt aus Satz 4.5.1

- Für $f: \Omega \to \mathbb{R}^d$ sind äquivalent:
- 1. f ist stetig in allen Punkten von Ω
- 2. Das Urbild $U = f^{-1}(V)$ jeder offenen Menge $V \subseteq \mathbb{R}^n$ ist relativ offen.
- 3. Das Urbild $A = f^{-1}(B)$ jeder abgeschlossenen Menge $B \subseteq \mathbb{R}^d$ ist relativ abgeschlossen.

14.4 Folgenkriterium für Abgeschlossenheit

- Für $A \subset \mathbb{R}^d$ sind äquivalent:
- 1. A ist abgeschlossen
- 2. $\forall (x_k)_{k \in \mathbb{N}} \subset A : x_k \to x_0(k \to \infty) \Rightarrow x_0 \in A$
- Bsp.: Abgeschlossenheit der Menge $D := \{(x, y) \in \mathbb{R}^2 : x \ge 0y \ge 0, 3x + y \le 3\}$ Sei nun (x_n, y_n) eine beliebige Folge in D, die gegen Punkt $(x, y) \in \mathbb{R}^2$ konvergiert. Dann gilt $\lim_{n\to\infty} x_n = x$, $\lim_{n\to\infty} y_n = y$

Damit gilt auch $\lim_{n \to \infty} 3x_n + y_n = 3x + y$.

Es gilt $x_n \geq 0, y_n \geq 0, 3x_n + y_n \leq 3, \quad \forall n \in \mathbb{N}$, da $(x_n, y_n) \in D$ folgt auch $x \ge 0, y \ge 0, 3x + y \le 3$ und somit $(x, y) \in D$ und laut Satz oben ist somit D

• Andere Möglichkeit: Alles stetige Funktionen auf \mathbb{R}^2 $g_1(x,y) := x, g_2(x,y) :=$ $y, g_3(x, y) := 3x + y$

Satz 4.5.2 sagt, dass Urbilder abgeschlossener Mengen unter stetigen Funktionen sind relativ abgeschlossen. Ebenfalls ist Durchschnitt abgeschlossener Mengen auch abgeschlossen.

 $D = g_1^{-1} \left([0, +\infty[) \cap g_2^{-1} \left([0, +\infty[) \cap g_3^{-1} (] - \infty, 3] \right) \right)$

Ebenfalls ist *D* beschränkt, da $x, y \ge 0$, $\forall (x, y) \in D$ und für die obere Schranke $3x \le 3x + y \le 3 \Rightarrow x \le 1$ und $y \le 3x + y \le 3 \Rightarrow y \le 3$ und somit $||(x,y)|| \le \sqrt{1^2 + 3^2} = \sqrt{10} < +\infty$ also ist D kompakt.

14.5 Beispiele Abschluss, Inneres und Rand

	Menge	Abschluss	Inneres ^o	Rand ∂	
	[0, 1]	[0, 1]]0,1[{0,1}	
•	Ø	Ø	Ø	Ø	
	$[-1,0[\cup]0,1[$	[-1, 1]	$]-1,0[\cup]0,1[$	$\{-1,0,1\}$	
	{0}	{0}	Ø	{0}	
	Q	\mathbb{R}	Ø	\mathbb{R}	
	[0,∞[$[0,\infty[$]0,∞[{0}	
	$Y = \{\frac{1}{n} : n \in \mathbb{N}\}$	$Y \cup \{0\}$	Ø	$Y \cup \{0\}$	

$$\bullet \ \ \bar{A} \supset \overline{\dot{A}}, \quad \overset{\circ}{A} \subset \dot{A}, \quad \overset{\circ}{A} \subset \dot{A}, \quad \overset{\circ}{A} = \dot{A}, \quad \overset{\circ}{A} = \overline{\dot{A}}$$

- Wahr: $A_1 \cup A_2 \subset A_1 \cup A_2$
- Wahr, da linke Seite sicherlich Abschluss von A_1, A_2 enthält: $\overline{A_1 \cup A_2} \supset \overline{A_1} \cup \overline{A_2}$
- Wahr, da rechte Seite bereits $A_1 \cap A_2$ enthält: $\overline{A_1 \cap A_2} \subset \overline{A_1} \cap \overline{A_2}$
- Falsch: $\overline{A_1 \cap A_2} \supset \overline{A_1} \cap \overline{A_2}$, da $A_1 = \mathbb{Q}, A_2 = \mathbb{R} \setminus \mathbb{Q}$ Gegenbeispiel

15 Sonstiges

15.1 Mitternachtsformel

• $ax^2 + bx + c = 0$, $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

15.2 pq-Formel

• Für ein Polynom von Form $x^2 + px + q$ sind die Nullstellen:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

15.3 Trigonometrische Grössen

Grad	0°	30°	45°	60°	90°	120°	135°	150°	180°
φ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$sin(\pmb{\phi})$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos(\varphi)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	<u>1</u>	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$tan(\phi)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\pm \infty$	-√3	-1	$-\frac{\sqrt{3}}{3}$	0

15.4 Additionstheoreme

- $\cos(x)^2 + \sin(x)^2 = 1$
- $\bullet \sin(x) = \sqrt{1 \cos(x)^2}$
- $\sin(y) = \sqrt{1 \cos(y)^2}$
- $cos(x \pm y) = cos(x) cos(y) \mp sin(x) sin(y)$
- $\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$
- $\sin(x)\sin(y) = \frac{1}{2}(\cos(x-y) \cos(x+y))$
- $\cos(x)\cos(y) = \frac{1}{2}(\cos(x-y) + \cos(x+y))$ • $\sin(x)\cos(y) = \frac{1}{2}(\sin(x-y) + \sin(x+y))$
- $\sin(\arccos(x)) = \sqrt{1-x^2}$
- $cos(arcsin(x)) = \sqrt{1-x^2}$
- $\cos(x) = \cos(\frac{x}{2})^2 \sin(\frac{x}{2})^2 = 2\cos(\frac{x}{2})^2 1$

15.4.1 Potenzen

- $\sin^2(x) = \frac{1}{2}(1 \cos(2x))$
- $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$
- $\sin^3(x) = \frac{1}{4}(3\sin(x) \sin(3x))$
- $\cos^3(x) = \frac{1}{4}(3\cos(x) + \cos(3x))$
- $\sin^4(x) = \frac{1}{8}(\cos(4x) 4\cos(2x) + 3)$
- $\cos^4(x) = \frac{1}{8}(\cos(4x) + 4\cos(2x) + 3)$
- $\sin^n(x) = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \cos\left((n-2k)(x-\frac{\pi}{2})\right)$ $\cos^n(x) = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \cos\left(x(n-2k)\right)$
- $1 + \tan^2(x) = \frac{1}{\cos^2(x)}$

15.4.2 Verschiebungen

- $\sin(x + \pi) = -\sin(x)$ • $cos(x + 2\pi) = cos(x)$
- $\sin(x+2\pi) = \sin(x)$
- $\cos(x + \frac{1}{2}\pi) = -\sin(x)$
- $\sin\left(x + \frac{1}{2}\pi\right) = \cos(x)$

15.4.3 Hyperbolische Identitäten

- $\cosh(x) = \cos(ix) \iff \cosh(ix) = \cos(x)$
- $\sinh(x) = -i\sin(ix) \iff -i\sinh(ix) = \sin(x)$
- $\cosh(x)^2 \sinh(x)^2 = 1$, $\forall x \in \mathbb{C}$
- $1 e^{ixn} = e^{i\frac{xn}{2}} (e^{-i\frac{xn}{2}} e^{i\frac{nx}{2}})$
- $\sinh^2(x) = \frac{\cosh(2x)-1}{2}$
- $\bullet \cosh^2(x) = \frac{\cosh(2x) + 1}{2}$
- $\sinh(x) = -i\sin(ix) = \frac{e^x e^{-x}}{2}$
- $cosh(x) = cos(ix) = \frac{e^x + e^{-x}}{2}$
- arsinh(x) = $\ln (x + \sqrt{x^2 + 1})$

- $\operatorname{arcosh}(x) = \ln(x + \sqrt{x^2 1})$
- $\sinh(\operatorname{arcosh}(x)) = \sqrt{x^2 1}$
- $\cosh(\operatorname{arsinh}(x)) = \sqrt{x^2 + 1}$
- $\bullet 1 \tanh^2(x) = \frac{1}{\cosh^2(x)}$

15.5 Tangenssubstitution

- $cos(x) = \frac{1-t^2}{1+t^2}$ mit $t(x) = tan(\frac{x}{2})$ (wichtig für Tangenssubstitution für bestimm-
- $\sin(x) = \frac{2t}{1+t^2} \min t(x) = \tan(\frac{x}{2})$ (wichtig für Tangenssubstitution für bestimm-
- $\sin^2(x) = \frac{t^2}{1+t^2} \text{ mit } t(x) = \tan(x)$
- $\cos^2(x) = \frac{1}{1+t^2} \text{ mit } t(x) = \tan(x)$

15.6 Umkehrfunktionen

- $(\sinh(x))^{-1} = \ln(x + \sqrt{x^2 + 1}) = arsinh(x) \mathbb{R} \to \mathbb{R}$
- $(\cosh(x))^{-1} = \ln(x + \sqrt{x^2 1}) = arcosh(x) [1, \infty] \to [0, \infty]$

15.7 Inverse einer Matrix

$$A^{-1} = \frac{1}{\det(A)} \cdot \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

15.8 Definitheit einer Matrix

Möglichkeit I (2x2-Matrizen)

Eigenwerte λ_i mit $\det(A - \lambda_i I_n) \stackrel{!}{=} 0$

- $-\lambda_i > 0$ positiv definit (semi bei >)
- $-\lambda_i < 0$ negativ definit (semi bei \leq)
- $-\lambda_i > 0$, $\lambda_i < 0$ indefinit

Möglichkeit II (3x3-Matrizen)

Hauptminoren A_i berechnen

$$A_i = \det \begin{vmatrix} a_{11} & \cdots & a_{1i} \\ \vdots & \ddots & \vdots \\ a_{i1} & \cdots & a_{ii} \end{vmatrix}$$

- $-A_1 > 0$, $A_2 > 0$, \cdots , $A_n > 0 \rightarrow$ positiv definit
- $-A_1 < 0, A_2 > 0, \cdots \rightarrow$ negativ definit
- Kein Muster → indefinit

15.9 Diagonalisierung einer Matrix

- Sei $A \in \mathbb{R}^{n \times n}$
- 1. Charakteristisches Polynom aufstellen mit $\det(A \lambda \cdot I_n)$ und auflösen. Die Nullstellen sind die Eigenwerte γ_n
- 2. Eigenvektoren \vec{v}_n zu den verschiedenen Eigenwerten finden mit Basis von Kern von $E_n = A - \gamma_n \cdot I_n$
- 3. Sei nun $D := \operatorname{diag}(\gamma_1, ..., \gamma_n)$ und $S := [\vec{v}_1 ... \vec{v}_n]$
- 4. $A = SDS^{-1}$

15.10 Binomischer Lehrsatz

15.10.1 Eigenschaften

- $\bullet \ \binom{n}{k} = \frac{n \cdot (n-1) \cdots (n-k+1)}{1 \cdot 2 \cdots k} = \frac{n!}{(n-k)! \cdot k!}$
- $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$
- \bullet $\binom{n}{0} = 1 = \binom{n}{n}$
- \bullet $\binom{n}{1} = n = \binom{n}{n-1}$
- $\bullet \ \binom{n}{k} = \frac{n-k+1}{k} \binom{n}{k-1}$
- $\binom{n}{k} = \frac{n}{k} \cdot \binom{n-1}{k-1} \Leftrightarrow k \cdot \binom{n}{k} = n \cdot \binom{n-1}{k-1}$
- $\bullet \ \binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$
- Symmetrie: $\binom{n}{k} = \binom{n}{n-k}$

15.10.2 Beispiele

• $(x+y)^3 = \binom{3}{9}x^3 + \binom{3}{1}x^2y + \binom{3}{9}xy^2 + \binom{3}{9}y^3 = x^3 + 3x^2y + 3xy^2 + y^3$

- $(x-y)^3 = \binom{3}{0}x^3 + \binom{3}{1}x^2(-y) + \binom{3}{2}x(-y)^2 + \binom{3}{2}(-y)^3 = x^3 3x^2y + 3xy^2 y^3$ 15.13.8 Torus
- $(a + ib)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k i^k = \sum_{k \text{ gerade}}^n \binom{n}{k} (-1)^{\frac{k}{2}} a^{n-k} b^k + \frac{r}{k} R \in \mathbb{R}^{>0}$ bezeichnen r < R die Radien des Torus $T = \sum_{k \text{ gerade}}^n \binom{n}{k} (-1)^{\frac{k}{2}} a^{n-k} b^k + \frac{r}{k} R \in \mathbb{R}^{>0}$ $i\sum_{\substack{k=1,\ k \text{ ungerade}}}^n \binom{n}{k} (-1)^{\frac{k-1}{2}} a^{n-k} b^k$

15.11 Polynom Umformung

- $\bullet \ \frac{2x^2}{x^2+1} = \frac{2x^2+2-2}{x^2+1} = 2 \frac{2}{x^2+1}$

15.12 max-Funktion als Ausdruck

• $\max(f(x), g(x)) = \frac{1}{2}(f(x) + g(x) + |f(x) - g(x)|)$ somit ist $\max(f(x), g(x))$ auch stetig, da es Kombination aus stetigen Funktionen ist.

15.13 Punktmengen

15.13.1 Kreis

• Fläche: $A = \pi r^2$ Umfang: $U = 2r\pi K =$ $\{(x,y) \in \mathbb{R}^2 \mid (x-x_0)^2 + (y-y_0)^2 = r^2\}$ $r \in \mathbb{R}^{>0}$ ist der Radius des Krei-

15.13.2 Kugel

• Volumen: $V = \frac{4}{3}\pi r^3$ Oberfläche: $S = 4\pi r^2 K =$ $\{(x,y,z) \in \mathbb{R}^3 \mid (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2\}$ $r \in \mathbb{R}^{>0}$ ist der Radius des Kreises

15.13.3 Kreiszylinder

• Volumen: $V = \pi r^2 h$ Mantelfläche: $M = 2\pi rh$ Oberfläche: $S = M + 2 \cdot G = 2\pi rh + 2\pi r^2$ $Z = \{(x, y, z) \in \mathbb{R}^3 | (x - x_0)^2 + (y - y_0)^2 = r^2, \quad 0 \le z \le h\} \ r \in \mathbb{R}^{>0} \text{ ist der}$ Radius des Kreiszylinders

15.13.4 Kegel

• Volumen: $V = \frac{1}{3}\pi r^2 h$ Oberfläche: $S = \pi r^2 + \pi r \sqrt{h^2 + r^2}$ $K = \left\{ (x, y, z) \in \mathbb{R}^3 \middle| x^2 + y^2 = \frac{r^2}{h^2} (h - z)^2 \right\} r, h \in \mathbb{R}^{>0}$ ist der Radius bzw. die Höhe des Kegels

15.13.5 Ellipse

- ullet $a,b\in\mathbb{R}^{>0}$ bezeichnet die Halbachsen der Ellipse E = ullet Sei: $\left\{ (x,y) \in \mathbb{R}^2 \left| \frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1 \right. \right\}$
- Parametrisierung des Randes einer Ellipse mit Mittelpunkt in (0,0):

$$\gamma(t) := (a\cos(t), b\sin(t)), \gamma(t)' := (-a\sin(t), b\cos(t))$$

15.13.6 Ellipsoid

- $a,b,c \in \mathbb{R}^{>0}$ bezeichnet die Halbachsen des Ellipsoides E $\left\{ (x, y, z) \in \mathbb{R}^3 \left| \frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} + \frac{(z - z_0)^2}{c^2} = 1 \right. \right\}$
- Substitution für Ellipsoid Gebiet Integral kann zuerst in Kugelkoordinaten transformiert werden und dann mit Subsitution für Kugelkoordinaten gelöst werden:

$$F: \mathbb{R}^3 \to \mathbb{R}^3, F(x, y, z) := \begin{pmatrix} ax \\ by \\ cz \end{pmatrix}$$

$\int_{E(a,b,c,R)} 1d\mu = \int_{B_R(0)} |\det dF(x,y,z)| dz dy dx = \operatorname{abc} \mu\left(B_R(0)\right)$

15.13.7 Elliptisches Paraboloid

• $a,b \in \mathbb{R}^{>0}$ bezeichnet die Halbachsen der elliptischen Querschnitte P = $\left\{ (x, y, z) \in \mathbb{R}^3 \mid \frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} = z - z_0, \ z > z_0 \right\}$

- i) Die Gleichungen beschreiben nur die Randpunkte ∂P der Punktmengen P
- ii) Die Zahlen x_0, y_0, z_0 beschreiben jeweils die Translation in die jeweilige Achsenrichtung (meistens 0)

15.14 Parametrisierungen

15.14.1 Polarkoordinaten

• Sei:

$$\Phi: (0, \infty) \times [0, 2\pi) \to \mathbb{R}^2 \qquad \qquad \Phi(r, \varphi) = \begin{pmatrix} r \cos(\varphi) \\ r \sin(\varphi) \end{pmatrix}$$
$$\det(D\Phi(r, \varphi)) = r, \quad dV = r dr d\varphi$$

Ellipse $x = ra \cos \varphi$, $y = rb \sin \varphi$, $dV = abr dr d\varphi$

Anmerkungen:

i) Falls man eine Ellipse parametrisieren möchte, dann wählt man für die Parametrisierung $\Phi(\varphi) = (a\cos(\varphi), b\sin(\varphi))^T$, wobei a und b die Halbachsen der Ellipse beschreiben

15.14.2 Zylinderkoordinaten

• Sei:

$$\Phi: (0, \infty) \times (-\pi, \pi) \times \mathbb{R} \to \mathbb{R}^{3} \qquad \qquad \Phi(r, \varphi, h) = \begin{pmatrix} r \cos(\varphi) \\ r \sin(\varphi) \\ h \end{pmatrix}$$
$$\det(D\Phi(r, \varphi, h)) = r, \quad dV = r dr d\varphi dz$$

ullet In Serie 11 wurde gezeigt, dass Φ ein Diffeomorphismus ist und das Bild von Φ entspricht \mathbb{R}^3 ohne die Halbebene $\{(x,y,z)\in\mathbb{R}^3|y=0,x\leq0\}$

15.14.3 Kugelkoordinaten

$$\Phi: (0, \infty) \times (-\pi, \pi) \times (0, \pi) \to \mathbb{R}^3 \ \Phi(r, \varphi, \vartheta) = \begin{pmatrix} r \cos(\varphi) \sin(\vartheta) \\ r \sin(\varphi) \sin(\vartheta) \\ r \cos(\vartheta) \end{pmatrix}$$
$$\det(D\Phi(r, \varphi, \vartheta)) = r^2 \sin(\vartheta)$$
$$dV = r^2 \sin \vartheta \, dr \, d\vartheta \, d\varphi, \quad dA = \vec{e_r} r^2 \sin \vartheta \, d\vartheta \, d\varphi$$

Anmerkungen:

- In Serie 11 wurde gezeigt, dass Φ ein Diffeomorphismus ist und das Bild von Φ entspricht \mathbb{R}^3 ohne die Halbebene $\{(x,y,z)\in\mathbb{R}^3|y=0,x\leq 0\}$
- i) ϑ ist der Polarwinkel und ist der Winkel zwischen der Polrichtung und dem Punkt *P* auf der Kugeloberfläche
- ii) φ ist der Azimutwinkel und der gleiche Winkel wie bei den Polar- bzw. Zylinderkoordinaten

15.14.4 Reguläre Flächen

• Eine reguläre Fläche ist eine 2-dimensionale, differenzierbare Untermannigfaltigkeit des \mathbb{R}^3 Lässt sich diese Fläche $S \subset \mathbb{R}^3$ durch eine differenzierbare Funktion $f:I\subset\mathbb{R}^2\to\mathbb{R}^3$, f(x,y)=z beschreiben, dann gilt für die Parametrisierung Φ von S

$$\Phi: I \to \mathbb{R}^3 \qquad \qquad \Phi(x, y) = \begin{pmatrix} x \\ y \\ f(x, y) \end{pmatrix}$$

Anmerkung:

- i) Diese Parametrisierung braucht man häufig zur Berechnung von Oberflächenintegralen (Integralsatz von Gauss/Stokes)
- ii) Die allgemeine Funktionaldeterminante von $\Phi(x, y)$ lässt sich folgendermassen berechnen:

$$\sqrt{\det\left((D\Phi(x,y))^T\cdot D\Phi(x,y)\right)} = \left\|\frac{\partial\Phi}{\partial x}\times\frac{\partial\Phi}{\partial y}\right\|$$

16 Komplexe Zahlen, ℂ

16.1 Rechenregeln

- $x = \text{Re } z = \frac{z + \overline{z}}{2}$
- $y = \operatorname{Im} z = \frac{z^2 \overline{z}}{2i}$
- $z \in \mathbb{R} \iff z = \overline{z}$
- $\bullet \ \overline{\overline{z}} = z$
- $\bullet \ \frac{\overline{\left(\frac{1}{z}\right)}}{\left(\frac{1}{z}\right)} = \frac{1}{\left(\overline{z}\right)}$
- $\bullet \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $\bullet \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$

16.2 Sonstiges

16.2.1 Wurzel einer komplexen Zahl

$$\bullet \ x^k = y$$

$$\Rightarrow x_n = |y|^{\frac{1}{k}} e^{\frac{i\theta}{k} + \frac{2\pi i \cdot n}{k}}$$
 für $0 \le n < k$ mit $\theta = \arg(y)$

16.2.2 $\Re(z)$ und $\Im(z)$ als Formel

- $\Re(z) = \frac{z+\bar{z}}{2}$
- $\Im(z) = \frac{z-\bar{z}}{2i}$

16.2.3 Parallelogramm-Gesetz

•
$$|z+w|^2 + |z-w|^2 = 2|z|^2 + 2|w|^2$$
, $\forall z, w \in \mathbb{C}$ mit $|z|^2 = z\overline{z}$

16.2.4 Wurzel von $i = \sqrt{i}$

•
$$i = z^2 \implies \sqrt{i} = e^{i\frac{pi}{4}} = \cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4}) = \frac{1+i}{\sqrt{2}}$$

17 Zusätzliche Integrale von Colin Dirrens Zusammenfassung

17.0.1 Substitutionen

$$\int \frac{g'(x)}{g(x)} dx \qquad u(x) = g(x) \qquad dx = \frac{du}{g'(x)}$$

$$\int f(g(x)) \cdot g'(x) dx \qquad u(x) = g(x) \qquad dx = \frac{du}{g'(x)}$$

$$\int f(e^x, \sinh(x), \cosh(x)) dx \qquad u(x) = e^x \qquad dx = \frac{du}{e^x}$$

$$\int f(x, \sqrt{1 - x^2}) dx \qquad x = \sin(u) \qquad dx = \cos(u) du$$

$$\int f(x, \sqrt{1 + x^2}) dx \qquad x = \sinh(u) \qquad dx = \cosh(u) du$$

$$\int f(x, \sqrt{x^2 - 1}) dx \qquad x = \cosh(u) \qquad dx = \sinh(u) du$$

$$\int f\left(\frac{1}{\sqrt{a^2 - x^2}}\right) dx \qquad u(x) = \frac{x}{a} \qquad dx = a du$$

$$\int f\left(\sqrt{1 + \frac{1}{x^2}}\right) dx \qquad u(x) = \sqrt{x^2 - 1} \qquad dx = \frac{\sqrt{x^2 - 1}}{x} du$$

$$\int R(\sin(x), \cos(x)) dx \qquad u(x) = \tan\left(\frac{x}{2}\right) \qquad dx = \frac{2}{1 + u^2} du$$

$$\Rightarrow \sin(x) = \frac{2u}{1 + u^2} \qquad \Rightarrow \cos(x) = \frac{1 - u^2}{1 + u^2}$$

17.0.2 Potenzen und Wurzeln

$$\int \sqrt{1-x^2} dx = \frac{1}{2} \left(x \sqrt{1-x^2} + \arcsin(x) \right) + C$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin(x) + C$$

$$\int -\frac{1}{1-x^2} dx = \arccos(x) + C$$

$$\int \frac{1}{1+x^2} dx = \arctan(x) + C$$

17.0.3 Exponential- und Logarithmusfunktionen

$$\int a^{kx} dx = \frac{a^{kx}}{k \ln(a)} + C$$

$$\int \ln(x) dx = x \left(\ln|x| - 1 \right) + C$$

$$\int x^n e^{ax} dx = e^{ax} \sum_{k=0}^n (-1)^k \frac{n!}{(n-k)!} \frac{x^{n-k}}{a^{k+1}} + C$$

$$x > 0$$

17.0.4 Hyperbolische Funktionen

$$\int \frac{1}{\sqrt{1+x^2}} dx = \operatorname{arsinh}(x) + C$$

$$\int \frac{1}{\sqrt{x^2 - 1}} dx = \operatorname{arcosh}(x) + C \qquad x > 1$$

$$\int \frac{1}{1-x^2} dx = \operatorname{artanh}(x) + C$$

17.0.5 Trigonometrische Funktionen

$$\int \tan(x) dx = -\ln|\cos(x)| + C$$

$$\int \frac{1}{\cos^2(x)} dx = \tan(x) + C$$

$$\int \sin^2(x) dx = \frac{x}{2} - \frac{\sin(x)\cos(x)}{2} + C$$

$$\int \cos^2(x) dx = \frac{x}{2} + \frac{\sin(x)\cos(x)}{2} + C$$

$$\int \sin(x)\cos(x) dx = \frac{1}{2}\sin^2(x) + C$$

$$\int \sin^n(x) dx = \frac{n-1}{n} \int \sin^{n-2}(x) dx - \frac{\sin^{n-1}(x)\cos(x)}{n}$$

$$\int \cos^n(x) dx = \frac{n-1}{n} \int \cos^{n-2}(x) dx + \frac{\cos^{n-1}(x)\sin(x)}{n}$$

$$\int \cot(x) dx = \ln|\sin(x)| + C$$

$$\int \csc(x) dx = -\ln|\csc(x) + \cot(x)| + C$$

$$\int \sec(x) dx = \ln|\sec(x) + \tan(x)| + C$$

$$\int \arcsin(x) dx = x \cdot \arcsin(x) + \sqrt{1-x^2} + C$$

$$\int \arccos(x) dx = x \cdot \arcsin(x) - \sqrt{1-x^2} + C$$

18 Fourierreihe

- Nur kurz behandelt und sowieso Koma Stoff, aber schadet nicht:
- Let $f: \mathbb{R} \to \mathbb{R}$ be a 2π -periodic continuous function which has a representation

$$f(x) = a_0 + \sum_{k=1}^{+\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right)$$

where the series on the right converges uniformly on $[0, 2\pi]$. Then we have

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(t)dt$$

$$a_m = rac{1}{\pi} \int_0^{2\pi} f(t) \cos(mt) dt, \quad b_m = rac{1}{\pi} \int_0^{2\pi} f(t) \sin(mt) dt, \quad \text{ for } m \in \mathbb{N}$$

19 Disclaimer

- Diese Zusammenfassung wurde von Jeremias Baur im FS2021 erstellt. Sie basiert auf der Vorlesung Analysis 1 von Prof. Kowalski und Analysis 2 von Prof. Rivière. Sie basiert auf einer ursprünglichen Zusammenfassung von . Ein paar Themenbereiche wurden erweitert und spezifiziert Es besteht keine Garantie auf Korrektheit. Fehler können bei jebaur@ethz.ch gemeldet werden.
- Benutzung dieser Zusammenfassung auf eigene Gefahr!