

IN THE CLAIMS

The status of each claim in the present application is listed below.

Claims 1-10: (Canceled).

11. (New) A process for preparing a 1,3,5-triazine carbamate of formula (I):

from a 1,3,5-triazine carbamate of formula (II):

wherein

either Y¹ and Z¹ are both hydrogen or Y¹ is a group of formula -(CO)-O-R⁴ and Z¹ is a group of formula -(CO)-X¹-R¹,

either Y² and Z² are both hydrogen or Y² is a group of formula -(CO)-O-R⁵ and Z² is a group of formula -(CO)-X²-R²,

R¹, R², R³, R⁴, R⁵ and R⁶ each independently of one another are the radical of an alcohol or amine and

X¹, X² and X³ each independently of one another are oxygen or NH,
comprising

reacting the 1,3,5-triazine carbamate of formula (II) at a temperature of 40 to 120°C with an alcohol of the formula R³-OH and/or an amine of the formula R³-NH₂ and,

optionally, with an alcohol of the formula R²-OH, an amine of the formula R²-NH₂, an alcohol of the formula R¹-OH and/or an amine of the formula R¹-NH₂,

in the presence of at least one catalyst selected from the group consisting of tin compounds, cesium salts, alkali metal (hydrogen)carbonates and tertiary amines.

12. (New) The process according to claim 11, conducted at a temperature between 60 and 110°C.

13. (New) The process according to claim 11, wherein the radicals R¹, R² and R³ independently of one another are C₁ - C₁₈ alkyl, C₂ - C₁₈ alkyl, interrupted if appropriate by one or more oxygen and/or sulfur atoms and/or by one or more substituted or unsubstituted imino groups, or are C₂ - C₁₈ alkenyl, C₆ - C₁₂ aryl, C₅ - C₁₂ cycloalkyl or a five- or six-membered heterocycle containing oxygen, nitrogen and/or sulfur atoms, it being possible for said radicals each to be substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles, or else are radicals

-(CO)-R⁷, -(CO)-O-R⁷ or -(CO)-(NH)-R⁷,

in which

R⁷ can be C₁ - C₁₈ alkyl, C₂ - C₁₈ alkyl, interrupted if appropriate by one or more oxygen and/or sulfur atoms and/or by one or more substituted or unsubstituted imino groups, or can be C₂ - C₁₈ alkenyl, C₆ - C₁₂ aryl, C₅ - C₁₂ cycloalkyl or a five- or six-membered heterocycle containing oxygen, nitrogen and/or sulfur atoms, it being possible for said radicals each to be substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles.

14. (New) The process according to claim 11, wherein the alcohols R¹OH, R²OH and R³OH and/or amines R¹NH₂, R²NH₂ and R³NH₂, have a boiling point difference of at least 20°C from the highest-boiling of the alcohols R⁴OH, R⁵OH and R⁶OH.

15. (New) The process according to claim 11, wherein at least one of the alcohols R¹OH, R²OH and R³OH is an alkoxylated monool of formula

in which

R⁸ can be C₁ - C₁₈ alkyl,

n is a positive integer between 1 and 50 and

each X_i for i = 1 to n can be selected independently of the others from the group consisting of -CH₂-CH₂-O-, -CH₂-CH(CH₃)-O-, -CH(CH₃)-CH₂-O-, -CH₂-C(CH₃)₂-O-, -C(CH₃)₂-CH₂-O-, -CH₂-CHVin-O-, -CHVin-CH₂-O-, -CH₂-CHPh-O- and -CHPh-CH₂-O-, in which Ph is phenyl and Vin is vinyl.

16. (New) The process according to claim 11, wherein at least one of the alcohols R¹OH, R²OH and R³OH is a monool which carries at least one polymerizable group and exactly one hydroxyl group.

17. (New) The process according to claim 16, wherein the compounds which carry at least one polymerizable group and precisely one hydroxyl group are compounds of formula

in which

R⁹ is hydrogen or methyl, preferably hydrogen,

R¹⁰ is a divalent linear or branched C₂-C₁₈ alkylene radical,

X_i has the same definition as set out in claim 5 and

k is a positive integer from 1 to 20.

18. (New) The process according to either of claim 16, wherein at least one of the alcohols R¹OH, R²OH and R³OH is selected from polyetherols or polyesterols with the proviso that at the same time at least one of the alcohols R¹OH, R²OH and R³OH is a monool containing at least one polymerizable group and precisely one hydroxyl group.

19. (New) The process according to claim 11, wherein the lower alcohols R⁴OH, R⁵OH and R⁶OH are separated by distillation from the reaction mixture.

20. (New) A method of coating a substrate, comprising:
preparing a 1,3,5-triazine carbamate according to the process of claim 11, and
coating a substrate selected from the group comprising wood, wood veneer, paper,
paper board, cardboard, textile, leather, nonwoven fabric, plastics surfaces, glass, ceramic,
mineral building materials, and coated and uncoated metals with the 1,3,5-triazine carbamate.