Influencer Scouting

Big Data Computing

Professor Gabriele Tolomei

Faculty of Information Engineering, Informatics and Statistics

Group Members: Federico Barreca Shuya Dong

Summary

- 1 Introduction
- 2 Dataset
- 3 Feature Extraction
- 4 Models
- 5 App Demo
- Future Works

Introduction

Introduction

- Influencer marketing: a key marketing method for brands.
- But many brands encounter difficulties in influencer scouting.

- Categorizing the influencers' interests is crucial in maximizing the marketing effect.
- Aim: To determine the influencers' category based on their social media posts.

Instagram

 Instagram has become a popular platform for influencer marketing:

- 0
- 1) Large user base: over one billion active users.
- 2) Targeted audiences: specific audiences.
- 3) Authenticity: a personal connection with their followers.
- 4) Ease of use: it's simple to create and share content.

Dataset : Big Data

Big-Data-ness: its large size and complexity.

- 33,935 Instagram influencers (labeled with 8 categories)
- 10,180,500 Instagram posts: 300 posts per influencer
- Post metadata (JSON files): ~37 GB
- Image (JPEG files): ~189 GB

https://sites.google.com/site/sbkimcv/dataset/instagram-influencer-dataset

Dataset: Big Data

For our project:

- 347 influencers per category ~ 832,800 Instagram posts
 - 1) Training and validation: 200 influencers per category (8:2) ~ 480,000 posts
 - 2) Testing: 147 influencers per category randomly selected ~ 352,800 posts

- Each entry of the dataset includes:
 - Influencer_name
 - Label
 - Post metadata
 - Image

```
influencer name | label
              annszi|travel|vscohun magyar vs...|E:/Documenti/Big
              annszi travel vscohun magyar vs... E:/Documenti/Big
              annszi|travel|realmadrid sdeiba...|E:/Documenti/Big ..
              annszi|travel|no photo descript...|E:/Documenti/Big
                      food alessifoods aless... E:/Documenti/Big ...
       blissfulbasil
annacichocka offi...|travel|djkhaled dj khale...|E:/Documenti/Big ..
annacichocka offi...|travel|sunday glam nnnnn...|E:/Documenti/Big ...
annacichocka offi...|travel|academiededanseus...|E:/Documenti/Big ..
annacichocka_offi...|travel|as an acadmie de ...|E:/Documenti/Big_..
annacichocka_offi...|travel|please_dont_judge...|E:/Documenti/Big_..
annacichocka offi...|travel|saturdays boat pa...|E:/Documenti/Big ..
annacichocka_offi...|travel|saturdays_boat_pa...|E:/Documenti/Big_...
annacichocka offi...|travel|saturdays boat pa...|E:/Documenti/Big ..
annacichocka offi...|travel|zara zara officia...|E:/Documenti/Big ...
annacichocka offi...|travel|stylebyaniac nnnn...|E:/Documenti/Big ..
       blissfulbasil food vegan banana brea... E:/Documenti/Big ..
annacichocka offi...|travel|out of blue nnnnn...|E:/Documenti/Big ..
annacichocka offi...|travel|pkrolartist pete ...|E:/Documenti/Big ...
annacichocka_offi...|travel|pkrolartist pete ...|E:/Documenti/Big_...
annacichocka_offi...|travel|travelphotobyania...|E:/Documenti/Big
```

- Post metadata files contain the following information:
 - caption, usertags, hashtags, timestamp, sponsorship, likes, comments, etc.

```
"taken_at_timestamp": 1545954154,
"edge_media_to_caption": {
     "edges": [
                "text": "The fluffier the smeater the better!!\ud83e\udd19\ud83c\udffc\ud83d\ud83c\udffc\ud83d\ud83c\udffc\u288d\ud83d\ud83c\udffc\u288d\ud625\"8 an extra friend\ud83d\ud83c\ud83d\ud83c\udfc\u288d\ud83c\udffc\u288d\ud63
*tracking_token": "eyJZZXJzaM9uIjolLCJmYXLsb2FkIjp7imlzX2FuYWx5dGljc196cmFja2VkIjp8cnVLLCJldwlkIjoiYY73NjM4NTg2Yz7hNDNiNWE2NzNiMDc2ZDg4Y2IzYzYxOTQzOTI2NzkSNZM0MzQxMDABIn9sInNpZ25hdHVYZS16IiJ9",
"display_unl": "https://scontent-lax3-1.cdninstagram.com/yp/a288456802f8684aa8a09f41cf8c2b29/5DA92CD8/t51.2885-15/e35/47693940_135411280792230_3949029997371547140_n.jpg?_nc_ht=scontent-lax3-1.cdninstagram.com",
"edge_web_media_to_related_media": {
    "edges": [
"edge_media_preview_comment": {
    "count": 588,
            "node": {
    "text": "\ud83d\ude8d",
                "did_report_as_spam": false,
                "edge_liked_by": {
  "count": 0
                  "owner": {
    "username": "joelhackett7gmail.com2"
                   "profile_pic_urit: "https://zcontent-lax3-l.cdninstagram.com/yp/6755b18184886f5b77321508280cd1155/50A55F78/t51_2885-19/s15047651490_2259235387695811_4235471854237646848_n.jpg7_nc_ht=scontent-lax3-l.cdninstagram.com", "is.verificate", false,
                    "id": "8619460382"
                },
"viewer_has_liked": false,
                "id": "18840776964184589"
            "node": {
    "text": "\ud83d\ude84\ud83d\ude8d",
                "created_at": 1558684692,
                 "did report as spam": false
                "edge_liked_by": {
                    "count": 0
             },
"owner": {
"username": "joelhackett7gmail.com2",
"ise nic_url": "https://scontent:
                    "profile_pic_url": "https://scontent-lax3-1.cdminstagram.com/up/67b5b1819490f5b77321500200cd1155/50A55E74/t51.2885-19/s150x150/47691490 .2259235387695811 4235471859237646848_n.jpg?_nc_ht=scontent-lax3-1.cdminstagram.com", "is_verified": false, "is_verified": false
                },
"viewer_has_liked": false,
"id": "17887347384348999"
  comments_disabled": false,
"edge_media_to_sponsor_user": {
    "edges": [
"is_video": false
```


Post Embedding

Influencer Embedding

Classification

Post Influencer Embedding

Classification

- > To obtain post representation: Feature Extraction
 - Text Features
 - Image Features
 - Text & Image

Post Embedding Influencer Embedding Classification

- To obtain Influencer representation:
 - Aggregate all post features by <u>averaging values</u>
 - Use <u>attention mechanism</u> to weigh higher scores on more important posts

Post Influencer Embedding Classification

- To do classification:
 - PySpark models
 - 1) Logistic Regression
 - 2) Random Forest
 - 3) Gaussian Naïve Bayes
 - Influencer Profiler

"Multimodal Post Attentive Profiling for Influencer Marketing," Seungbae Kim, Jyun-Yu Jiang, Masaki Nakada, Jinyoung Han and Wei Wang. In Proceedings of The Web Conference (WWW '20), ACM, 2020.

Feature Extraction

Text preprocessing pipeline

Text preprocessing pipeline

Case normalization to lower **Trimming** of the outer white spaces Stopwords Filter out punctuation removal symbols Filtering out any internal extra whitespaces 3 2 1 Text Cleaning 4 **Tokenization** Stemming

Text preprocessing pipeline

Text preprocessing pipeline

Text preprocessing pipeline

Text feature embedding

Use SparkNLP library:
 We exploit the pre-trained text model to derive text features.

Feature Extraction: Image Features

Image preprocessing pipeline

- Resizing
 - To ensure that all input images have the same size
- Data augmentation using random transformations:
 - To increase the size of the training dataset and improve the generalization performance of model
 - RandomRotation
 - RandomHorizontalFlip
 - RandomResizedCrop
 - Random color jittering

Normalization

Feature Extraction: Image Features

Image feature embedding

- Apply the transfer learning technique using the pre-trained model
 - Fine Tuning

Feature Extraction: Text & Image

 The feature vector is derived by concatenating the text features and image features.

$$\boldsymbol{x_i} = [\boldsymbol{x_i^I}; \boldsymbol{x_i^T}].$$

4 Models

PySpark Models

Input features: influencer embeddings using average values.

PySpark Models

Input features: influencer embeddings using average values.

Principal Component Analysis: Text

Principal Component Analysis: Text & Image

PySpark Models

- Logistic Regression
- Random Forest
- Gaussian Naïve Bayes

PySpark Models

Logistic Regression

- Random Forest
- Gaussian Naïve Bayes

PySpark Models: Logistic Regression

	Precision		Recall		F1 Score		Accuracy	
	Text	Text & Image	Text	Text & Image	Text	Text & Image	Text	Text & Image
Travel	0.64	0.66	0.72	0.62	0.68	0.64	71%	66%
Food	0.80	0.74	0.77	0.82	0.79	0.78		
Pet	0.86	0.88	0.86	0.77	0.86	0.82		
Fashion	0.60	0.51	0.58	0.58	0.59	0.54		
Beauty	0.67	0.70	0.80	0.78	0.73	0.74		
Family	0.59	0.46	0.63	0.54	0.61	0.50		
Fitness	0.70	0.72	0.67	0.60	0.68	0.65		
Interior	0.84	0.67	0.69	0.58	0.76	0.62		

PySpark Models: Logistic Regression

PySpark Models:

Logistic Regression

Random Forest

Gaussian Naïve Bayes

PySpark Models: Random Forest

	Precision		Recall		F1 Score		Accuracy	
	Text	Text & Image	Text	Text & Image	Text	Text & Image	Text	Text & Image
Travel	0.48	0.49	0.68	0.42	0.56	0.46	59%	47%
Food	0.65	0.49	0.63	0.65	0.64	0.56		
Pet	0.71	0.71	0.75	0.68	0.73	0.69		
Fashion	0.51	0.39	0.45	0.45	0.48	0.42		
Beauty	0.55	0.35	0.71	0.51	0.62	0.42		
Family	0.49	0.40	0.49	0.26	0.49	0.31		
Fitness	0.63	0.52	0.53	0.39	0.57	0.44		
Interior	0.85	0.46	0.55	0.44	0.67	0.45		

PySpark Models: Random Forest

Confusion Matrix Random Forest α. True Labels 4 3

travel food pet fashion beauty family fitness interior

Predicted Labels

Text & Image

Influencer Scouting A.A. 2022-2023 Page 39

'n

PySpark Models:

- Logistic Regression
- Random Forest

Gaussian Naïve Bayes

PySpark Models: Gaussian Naïve Bayes

	Precision		Recall		F1 Score		Accuracy	
	Text	Text & Image	Text	Text & Image	Text	Text & Image	Text	Text & Image
Travel	0.28	0.30	0.38	0.39	0.32	0.34	33%	39%
Food	0.41	0.52	0.44	0.56	0.43	0.54		
Pet	0.53	0.53	0.65	0.71	0.58	0.61		
Fashion	0.17	0.18	0.21	0.20	0.19	0.19		
Beauty	0.41	0.44	0.15	0.38	0.22	0.41		
Family	0.27	0.29	0.17	0.15	0.21	0.20		
Fitness	0.21	0.31	0.36	0.40	0.27	0.35		
Interior	0.55	0.58	0.26	0.36	0.35	0.44		

PySpark Models: Gaussian Naïve Bayes

 All posts are not equally important to represent the category of the given influencer.

- An attention mechanism is applied to the feature maps to emphasize the most important parts of the plots.
- To estimate the importance α_i of each post with softmax function:
 - The more important the post, the higher the weight.

Influencer embedding: a weighted combination of post features.

$$\hat{\boldsymbol{y}} = \sum_{i} \alpha_{i} \cdot \boldsymbol{v_{i}}.$$

 Influencer classification: Influencer embeddings are passed through one or more fully connected layers to produce the final classification output.

	Precision		Recall		F1 Score		Accuracy	
	Text	Text & Image	Text	Text & Image	Text	Text & Image	Text	Text & Image
Travel	0.64	0.60	0.71	0.68	0.67	0.63	67%	60%
Food	0.77	0.71	0.68	0.64	0.72	0.67		
Pet	0.91	0.88	0.84	0.80	0.87	0.85		
Fashion	0.48	0.46	0.49	0.45	0.48	0.44		
Beauty	0.76	0.70	0.69	0.64	0.72	0.66		
Family	0.52	0.45	0.57	0.55	0.54	0.48		
Fitness	0.62	0.54	0.69	0.63	0.65	0.59		
Interior	0.75	0.67	0.72	0.67	0.73	0.68		

Influencer Profiler: Text

Comparison: Accuracy

5 App Demo

App Demo

App Demo

6 Future Works

Future Works

- Develop a user-friendly platform for brands to easily access and analyze influencer data.
- Refine the models to improve accuracy.

Thank you for your attention

