COMPSCI 230 Midterm Review - Logic

Qinyang Yu

- 1. Prove that $(\neg(P \Rightarrow Q)) \Leftrightarrow (P \land \neg Q)$ is a tautology.
- 2. Prove that $((P \Rightarrow Q) \land (\neg Q \land P))$ is a contradiction.
- 3. Show that $(p \land q) \Rightarrow r$ and $(p \Rightarrow r) \land (q \Rightarrow r)$ are not logically equivalent. Hint: Find an assignment of truth values that makes one of these propositions true and the other false.
- 4. The proposition p NOR q is true when both p and q are false, and it is false otherwise. Let p NOR q be denoted by $p \downarrow q$ (called Peirce arrow after C.S. Peirce). Show that
 - (a) use truth table to prove $p \downarrow q$ is logically equivalent to $\neg (p \lor q)$
 - (b) $p \downarrow p \iff \neg p$
 - (c) $(p \downarrow q) \downarrow (p \downarrow q) \iff (p \lor q)$
- 5. Translate (a) from an English sentence into formulas of predicate logic. Translate (b) from the predicate into an English expression.
 - (a) $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, ((x > 0) \land (y > 0) \Rightarrow (x + y > 0)).$
 - (b) Every real number except zero has a multiplicative inverse. (A multiplicative inverse of a real number x is a real number y such that xy = 1.)
- 6. (a) Find a common domain for the variables x, y, and z for which the statement $\forall x \forall y ((x \neq y) \Rightarrow \forall z ((z = x) \lor (z = y)))$ is true and another domain for which it is false.
 - (b) Let Q(x,y) be the statement x+y=0. Are the following quantifications $\exists y \forall x Q(x,y)$ and $\forall x \exists y Q(x,y)$ respectively, true or false, where the domain for all variables consists of all real numbers.
- 7. Prove that $(\exists x (P(x) \Rightarrow Q(x))) \iff (\forall x (P(x) \Rightarrow (\exists x Q(x))))$ is a tautology.
- 8. Let P(x,y) be a predicate with variables $x,y \in \mathbb{Z}$. Let $A = \forall x \exists y : P(x,y)$ and $B = \exists y \forall x : P(x,y)$.
 - (a) Let P(x, y) be x = y. Show that $A \Rightarrow B$ is false.
 - (b) Show that B implies A.

Summary:

** Proposition P vs Predicate Pass

** Logical operators: 7, V, A

"> "> "A>B () 7AUB

** Axiomatic Rules (Distributivity, dm)

** Logic Proofs S a Truck tables

** Chain of quivalence.

** Translation & Truckyment of predicates

1. Prove that $(\neg(P\Rightarrow Q))\Leftrightarrow (P\wedge \neg Q)$ is a tautology.

Method 1:

Method 2:

$$\neg (P \ni Q)$$
 $(\Rightarrow \neg (\neg P \lor Q))$
 $(\Rightarrow \neg (\neg P \lor Q))$

2. Prove that $((P \Rightarrow Q) \land (\neg Q \land P))$ is a contradiction.

Method 1:

$$P Q P \Rightarrow Q \rightarrow Q \rightarrow Q P (P \Rightarrow Q) \land (\neg Q \land P)$$
 $T T F F T T F$
 $F T T F F$
 $F F T T F$

Mosthod 2:

$$\Leftrightarrow$$
 $(\neg P \wedge P) \wedge \neg Q) \vee ((Q \wedge \neg Q) \wedge P)$ (ausociativity)

3. Show that $(p \land q) \Rightarrow r$ and $(p \Rightarrow r) \land (q \Rightarrow r)$ are not logically equivalent. Hint: Find an assignment of truth values that makes one of these propositions true and the other false.

Method 1: Truth tables

Method 2:

Consider p = T, f = F, r = F $(p \Rightarrow r) \lambda (q \Rightarrow r)$ F

- 4. The proposition p NOR q is true when both p and q are false, and it is false otherwise. Let p NOR q be denoted by $p \downarrow q$ (called Peirce arrow after C.S. Peirce). Show that
 - (a) use truth table to prove $p \downarrow q$ is logically equivalent to $\neg (p \lor q)$
 - (b) $p \downarrow p \iff \neg p$
 - (c) $(p \downarrow q) \downarrow (p \downarrow q) \iff (p \lor q)$

(c)
$$(P19)1(P19) \Leftrightarrow (\neg (Pv9))1(\neg (Pv9))$$

 $\Leftrightarrow \neg ((\neg (Pv1)) \lor (\neg (Pv1)))$
 $\Leftrightarrow (Pv9) \land (Pv9)$
 $\Leftrightarrow Pv9) \land (Pv9)$

- 5. Translate (a) from the predicate into an English sentence. Translate (b) from an English sentence into formulas of predicate logic.
 - (a) $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, ((x > 0) \land (y > 0) \Rightarrow (x + y > 0)).$
 - (b) Every real number except zero has a multiplicative inverse. (A multiplicative inverse of a real number x is a real number y such that xy = 1.)

(a) The sum of two positive integers is always positive

(b) YXHR, FYEIR, (X=0) V (XY=1)

- 6. (a) Find a common domain for the variables x, y, and z for which the statement $\forall x \forall y ((x \neq y) \Rightarrow \forall z ((z = x) \lor (z = y)))$ is true and another domain for which it is false.
 - (b) Let Q(x,y) be the statement x+y=0. Are the following quantifications $\exists y \forall x Q(x,y)$ and $\forall x \exists y Q(x,y)$ respectively, true or false, where the domain for all variables consists of all real numbers.
- (a) $0 \times 1, y, z \in \{a, b\}$ a+b $0 \times 1, y, z \in \{a, b, c\}$ with a, b, c distinct
- (u) Q = y, xx, x+y=0
 False.
 - D bx, Jy, x+y=0.
 True.

7. Prove that $(\exists x(P(x) \Rightarrow Q(x))) \iff (\forall x(P(x) \Rightarrow (\exists xQ(x))))$ is a tautology.

$$\exists \times () \lor () \Rightarrow () \lor ()$$

$$(\exists x, \neg p(x)) \lor (\exists x, Q(x))$$

$$\Leftrightarrow \forall x, p(x) \Rightarrow \exists x, Q(x)$$

- 8. Let P(x,y) be a predicate with variables $x,y\in\mathbb{Z}$. Let $A=\forall x\exists y:P(x,y)$ and $B=\exists y\forall x:P(x,y).$
 - (a) Let P(x,y) be x=y. Show that $A\Rightarrow B$ is false.
 - (b) Show that B implies A.

TF

(a) WT4: A is true, B is false. A: $\forall x, \exists y, x = y \Rightarrow T$ B: $\exists y, \forall x \cdot x = y \Rightarrow F$

(b) Lecoll HWZ Q1

 $\exists \gamma \forall x : p \bowtie_{,\gamma}) \Rightarrow \exists \gamma, \exists x : p \bowtie_{,\gamma})$ $\exists \gamma \forall x : p \bowtie_{,\gamma})$

Pf: There exists yo sit. Plx, yo) holds for all x.

=) For all x, we can specify $y=y_0$ s.t. $p(x,y_0) = p(x,y_0)$ is true.

16