Seminár 10

Téma

Geometria I – základné poznatky

Ciele

Zopakovať a upevniť základné poznatky z planimetrie, ktoré by študenti mali mať zo základnej školy. Venovať sa vlastnostiam uhlov, trojuholníkov, štvoruholníkov a kružníc. Niektoré z poznatkov odvodiť.

Úvodný komentár. Keďže planimetria nie je súčasťou osnov 1. ročníka gymnázií, je potrebné poznatky žiakov z tejto oblasti o to starostlivejšie zopakovať. Geometrické úlohy majú veľmi často najhoršiu úspešnosť v krajských kolách MO, čo môže mať viacero dôvodov. Nepopierateľne však študentom tréning pomôže, preto je geometrii v priebehu roka venovaných 6+1 seminárov.

Zo zmienených dôvodov má preto tento seminár odlišnú štruktúru ako predchádzajúce – viac ako riešeniu úloh z olympiád sa venujeme opakovaniu základných vlastností uhlov, trojuholníkov, štvoruholníkov a kružníc, ktorých znalosti budú nenahraditeľné v ďalších piatich geometrických seminároch. Spolu so študentmi tak vytvoríme základnú výbavu, ktorá im pomôže v boji s geometrickými záludnosťami.

Študenti by mali mať nasledujúce znalosti (voľne spracované podľa [?]):

▶ uhly

 chápať pojmy vrcholové, vedľajšie, súhlasné a striedavé uhly, vedieť nájsť dvojice takých uhlov a používať ich pri riešení úloh,

⊳ trojuholníky

- poznať základné vlastnosti strán a vnútorných uhlov trojuholníka: trojuholníková nerovnosť, súčet vnútorných uhlov,
- vedieť popísať rozdiely medzi ostrouhlým, pravouhlým, tupouhlým, všeobecným, rovnoramenným a rovnostranným trojuholníkom,
- chápať pojmy os uhla, os strany, výška, ťažnica, stredná priečka, kružnica vpísaná a opísaná trojuholníku a poznať ich vlastnosti,
- poznať a vedieť používať vzorec na výpočet obsahu trojuholníka,
- poznať a vhodne používať vety o zhodnosti (sss, sus, usu, Ssu) a podobnosti (sss, sus, uu, Ssu) trojuholníkov,
- poznať a používať Pytagorovu vetu pre pravouhlý trojuholník,

- vedieť popísať všeobecný štvoruholník a jeho špecifické prípady: rovnobežník, štvorec, obdĺžnik, kosoštvorec, kosodĺžnik, lichobežník,
- poznať základné vzorce pre výpočet obsahu rôznych rovnobežníkov a lichobežníkov,
- vedieť, že uhlopriečky v pravouholníku a rovnobežníku sa polia a vedieť tento fakt využiť pri riešení úloh,

▶ kružnice a kruhy

- chápať pojmy kružnica, kruh, kružnicový oblúk, dotyčnica, sečnica, tetiva, stredový a obvodový uhol,
- poznať a vedieť používať Talesovu kružnicu,

⊳ riešenie konštrukčných úloh

– náčrt, rozbor, popis konštrukcie, diskusia o počte riešení.

Komentár. Skôr než frontálny výklad je vhodné nechať skladať mozaiku vedomostí študentov. Ak pracujeme s malou skupinou, môžeme o vyššie spomenutých bodoch diskutovať všetci spoločne. Ak seminár navštevuje väčšie množstvo záujemcov o matematiku, rozdelíme študentov na menšie skupiny, pričom každá spracuje poznatky o zadanej neprázdnej podmnožine vyššie spomenutých oblastí. Tie si potom študenti navzájom odprezentujú, vedúci seminára nepresnosti vhodnými otázkami koriguje.

Komentár. V druhej polovici seminára niektoré zo základných tvrdení, ktoré budeme v priebehu ďal-

Komentár. V druhej polovici seminára niektoré zo základných tvrdení, ktoré budeme v priebehu ďalších stretnutí využívať, dokážeme.

Úlohy a riešenia

Úloha 10.1. [anonymous 1] Dokážte, že súčet veľkostí vnútorných uhlov ľubovoľného trojuholníka je 180°.

Riešenie. Veďme rovnobežku XY so stranou AB vrcholom C trojuholníka ABC, tak že bod C leží medzi bodmi X a Y ((obr.1)).

(DOPLNIŤ Obr. 1)

Potom $|\angle BAC| = |\angle ACX|$ a $|\angle ABC| = |\angle BCY|$, pretože ide o dvojice striedavých uhlov. Keďže $|\angle ACX| + |\angle ACB| + |\angle BCY| = 180^{\circ}$, pretože uhol XCY je priamy, platí aj $|\angle BAC| + |\angle ABC| + |\angle ACB| = 180^{\circ}$.

Úloha 10.2. [66-I-3-N1] Z trojuholníkových nerovností medzi dĺžkami strán ľubovoľného trojuholníka odvoďte známe pravidlo $\alpha < \beta \Rightarrow a < b$ o porovnaní veľkostí vnútorných uhlov a dĺžok protiľahlých strán v ľubovoľnom trojuholníku ABC.

Riešenie*. Ak je $\alpha < \beta$, môžeme nájsť vnútorný bod X strany AC, pre ktorý platí $|\angle ABX| = \alpha$, a teda |AX| = |BX|, takže z trojuholníkovej nerovnosti |BC| < |BX| + |XC| už vyplýva a < b.

(DOPLNIŤ Obr. 2)

Úloha 10.3. [63-I-4-N3] Dokážte vety:

- a) Ak majú dva trojuholníky rovnakú výšku, potom pomer ich obsahov sa rovná pomeru dĺžok príslušných základní.
- b) Ak majú dva trojuholníky zhodné základne, potom pomer ich obsahov sa rovná pomeru príslušných výšok.

Riešenie. a) Označme rovnakú výšku dvoch trojuholníkov v. V trojuholníku T_1 je táto výškou na základňu a_1 , v trojuholníku T_2 na základňu a_2 . Pomer obsahov týchto trojuholníkov je potom

$$\frac{S_{T_1}}{S_{T_2}} = \frac{\frac{1}{2}a_1v}{\frac{1}{2}a_2v} = \frac{a_1}{a_2},$$

čo sme chceli dokázať.

b) Označme zhodnú základňu dvoch trojuholníkov z, v trojuholníku T_1 je výška na túto základňu v_1 , v trojuholníku T_2 je výška na túto základňu v_2 . Pomer obsahov trojuholníkov T_1 a T_2 je

$$\frac{S_{T_1}}{S_{T_2}} = \frac{\frac{1}{2}zv_1}{\frac{1}{2}zv_2} = \frac{v_1}{v_2},$$

čo je pomer príslušných výšok.

Úloha 10.4. [61-I-5-N1] Pre všeobecný trojuholník ABC so stranami a, b, c a obsahom S platí pre polomer r vpísanej kružnice vzorec r = 2S/(a+b+c). Dokážte.

Riešenie*. Stred M vpísanej kružnice rozdeľuje uvažovaný trojuholník ABC na tri menšie trojuholníky BCM, ACM, ABM s obsahmi $\frac{1}{2}ar$, $\frac{1}{2}br$, $\frac{1}{2}cr$, ktorých súčet je S, odkiaľ vyplýva dokazovaný vzorec.

(DOPLNIŤ Obr.3)

Úloha 10.5. [anonymous 2] Dokážte, že uhlopriečky v rovnobežníku sa navzájom polia.

Riešenie. Označme U priesečník uhlopriečok AC a BD rovnobežníka ABCD ((Obr. 4)).

(DOPLNIŤ Obr. 4)

Keďže uhly ABD a BDC sú striedavé, majú rovnakú veľkosť. Podobne uhly BAC a ACD sú rovnako veľké, pretože sú takisto dvojicou striedavých uhlov. Potom sú trojuholníky ABU a CDU zhodné, keďže sa zhodujú v jednej strane |AB| = |CD| a v dvoch k nej priľahlých uhloch. Preto aj |AU| = |UC|, |BU| = |UD| a tvrdenie je dokázané.

Úloha 10.6. [58-I-4-N1] Označme U priesečník uhlopriečok daného konvexného štvoruholníka ABCD. Dokážte, že priamky AB a CD sú rovnobežné práve vtedy, keď trojuholníky ADU a BCU majú rovnaký obsah.

Riešenie. Rovnosť obsahov trojuholníkov ADU a BCU je ekvivalentná s rovnosťou obsahov trojuholníkov ABC a ABD so spoločnou stranou AB, pretože $S_{ABC} = S_{ABU} + S_{BCU}$ a $S_{ABD} = S_{ABU} + S_{AUD}$. Trojuholníky ABC a ABD majú spoločnú základňu AB, takže ich obsahy budú rovnaké práve vtedy, ak výšky na túto stranu budú rovnaké, resp. ak body C a D budú od priamky AB rovnako vzdialené. To nastane len v prípade, ak body C a D ležia na priamke rovnobežnej s priamkou AB, čo sme chceli dokázať.

(DOPLNIŤ Obr. 5)

Úloha 10.7. [64-I-4-N1] Lichobežník ABCD má základne s dĺžkami |AB|=a a |CD|=c a jeho uhlopriečky sa pretínajú v bode U. Aký je pomer obsahov trojuholníkov ABU a CDU?

Riešenie.

(DOPLNIŤ Obr.6)

Trojuholníky ABU a CDU sú zrejme podobné ($|\angle BAU| = |\angle UCD|$, $|\angle ABU| = |\angle CDU|$, $|\angle AUB| = |\angle CUD|$, pretože prvé dve sú dvojice striedavých uhlov, posledné dva sú uhly vrcholové) s koeficientom podobnosti k = a/c. Preto pre výšku v_1 na stranu AB v trojuholníku ABU a výšku v_2 na stranu CD v trojuholníku CDU platí $v_1/v_2 = k$, resp. $v_1 = kv_2 = (av^2)/c$. Potom pre pomer obsahov trojuholníkov ABU a CDU máme

$$\frac{S_{ABU}}{S_{CDU}} = \frac{\frac{1}{2}av_1}{\frac{1}{2}cv_2} = \frac{a\frac{a}{cv_2}}{cv_2} = \frac{a^2}{c^2}.$$

Záverečný komentár Na prvý pohľad by sa mohlo zdať, že študenti budú o(c)hromení množstvom nových poznatkov v tomto seminári. Dúfame však, že sa tak nestane, keďže veľká väčšina obsahu by mala byť prinajmenšom povedomá, ak nie úplne zrozumiteľná. Seminár tiež patrí k tým menej náročným, avšak je veľmi dôležitou prípravou pred tvrdšími orieškami.

Domáca práca

Úloha 10.8. [58-I-2-D1] Nech k je kružnica opísaná pravouhlému trojuholníku ABC s preponou AB dĺžky c. Označme S stred strany AB a D a E priesečníky osí strán BC a AC s jedným oblúkom AB kružnice k. Vyjadrite obsah trojuholníka DSE pomocou dĺžky prepony c.

Riešenie. Trojuholník DSE je pravouhlý rovnoramenný s pravým uhlom pri vrchole S, pretože odvesny DS a ES ležia na osiach navzájom kolmých strán. Odvesny majú dĺžku $\frac{c}{2}$, pretože sú to polomery kružnice opísanej trojuholníku ABC. Obsah trojuholníka DSE je $\frac{1}{2} \cdot |DS| \cdot |DE| = \frac{1}{2} \cdot \frac{c}{2} \cdot \frac{c}{2} = \frac{c^2}{8}$.

Úloha 10.9. [58-I-2-D2] Vyjadrite obsah rovnoramenného lichobežníka ABCD so základňami AB a CD pomocou dĺžok a, c jeho základní a dĺžky b jeho ramien.

Riešenie. Bez ujmy na všeobecnosti môžeme predpokladať, že a > b. Najprv vyjadríme výšku v pomocou dĺžok základní a odvesien. Nech je P päta výšky z bodu D na stranu AB. Potom |AP| = (a-c)/2. Použitím Pytagorovej vety v pravouhlom trojuholníku APD máme

$$\left(\frac{a-c}{2}\right)^2 + v^2 = b^2,$$

odkiaľ $v=\sqrt{b^2-(\frac{a-c}{2})^2}=\frac{1}{2}\sqrt{4b^2-(a-c)^2}$ a preto pre obsah lichobežníka dostávame

$$S_{ABCD} = \frac{a+c}{2} \cdot v = \frac{1}{4}(a+c)\sqrt{4b^2 - (a-c)^2}.$$

Úloha 10.10. [anonymous 3] Použitím viet o podobnosti trojuholníkov a Pytagorovej vety odvoď te Euklidove vety o odvesne a o výške pravouhlého trojuholníka.

Riešenie. Prehľadné odvodenie je možne nájsť v [?].

Doplňujúce zdroje a materiály

Ak študenti budú stále neistí v používaní základných geometrických poznatkov, je možné ich odkázať na základoškolské učebnice geometrie, v ktorých nájdu aj jednoduchšie príklady na precvičenie, príp. vhodným doplnkom geometrického vzdelania je aj publikácia [?].