CAPÍTULO 4

FUNCIONES VECTORIALES

 \mathbf{Y}

CAMPOS VECTORIALES

FUNCIONES VECTORIALES

Recordemos el concepto de Funciones Vectoriales visto en el Capítulo nº 1.

La definición de Función Vectorial equivale a la definición de "m" Funciones Escalares:

$$\begin{cases} y_1 = f_1(x) & R \xrightarrow{F} R^m \\ y_2 = f_2(x) & \vdots \\ \vdots & \vdots \\ y_m = f_m(x) & \text{o considerando } \boldsymbol{y} = (y_1, y_2, \dots, y_n) \end{cases} \boldsymbol{y} = \boldsymbol{F}(x)$$

Las Funciones Vectoriales son funciones a las que a una variable independiente le corresponde un conjunto de "m" números reales o un vector de "m" componentes.

Nos interesan en especial las Funciones Vectoriales cuyas imágenes son vectores de dos o tres dimensiones. Se utilizan, por ejemplo para describir curvas, movimientos de partículas, etc.

En R^2 una Función Vectorial, a cada número real, le asigna como imagen un vector de dos componentes o un par de números reales.

$$\begin{cases} x = f(t) & R \longrightarrow F \\ y = g(t) & \end{cases}$$

En forma paramétrica se la simboliza $\begin{cases} x = f(t) & R \longrightarrow R^2 \\ y = g(t) \end{cases}$ A cada valor de t le corresponde un par de valores de (x, y) es decir un punto en R^2 .

A *t* se lo denomina parámetro.

$$r(t) = [f(t), g(t)] = f(t)i + g(t)j$$

Para cada valor de t en el dominio de r existe un único vector denominado r(t).

f(t), g(t) son las funciones componentes del vector r.

En R^3 una Función Vectorial, a cada número real, le asigna como imagen un vector de tres componentes o una terna de numeros reases.

En forma paramétrica se la simboliza $\begin{cases} x = f(t) & R \longrightarrow R^3 \\ y = g(t) \\ z = h(t) \end{cases}$

$$\begin{cases} x = f(t) \\ y = g(t) \\ z = h(t) \end{cases}$$

A cada valor de t le corresponde una terna de valores de (x, y, z) es decir un punto en R^3 .

O en forma vectorial

$$r(t) = [f(t), g(t), h(t)] = f(t)i + g(t)j + h(t)k$$

Para cada valor de t en el dominio de r existe un único vector denominado r(t).

f(t), g(t) y h(t) son las funciones componentes del vector r.

En general utilizamos la letra t como variable independiente pues el tiempo es la variable independiente en la mayoría de las aplicaciones de las Funciones Vectoriales.

A lo estudiado en Funciones Escalares y en Funciones de Varias Variables (Campos Escalares), lo extenderemos ahora a Funciones Vectoriales.

A continuación definiremos Dominio, Límite, Continuidad, Derivadas e Integrales de Funciones Vectoriales y si bien trabajaremos en R^3 todo es igualmente válido para R^2 .

Dominio

Dada la Función Vectorial r(t) = [f(t), g(t), h(t)] su Dominio es el conjunto de valores de t para los que la Función está definida. Este dominio es la intersección de los Dominios de las Funciones Escalares componentes f(t), g(t) y h(t).

Ejemplo:
$$r(t) = [\ln t, \sqrt{1-t}, 3t] = \ln t \, i + \sqrt{1-t} \, j + 3t \, k$$

Las funciones componentes son $f(t) = \ln t$, $g(t) = \sqrt{1-t}$ y h(t) = 3t.

Estas funciones están definidas cuando t > 0 y $1 - t \ge 0$.

Entonces el dominio de r es el intervalo $0 < t \le 1$.

El Límite de una Función Vectorial r(t) se obtiene tomando los Límites de sus Funciones Escalares componentes.

Dada la función r(t) = [f(t), g(t), h(t)] y sea t_0 un punto de acumulación de su dominio, tendremos:

$$\lim_{t \to t_0} r(t) = \left[\lim_{t \to t_0} f(t), \lim_{t \to t_0} g(t), \lim_{t \to t_0} h(t) \right]$$

Siempre que los límites de las funciones componentes existan.

Las propiedades de límites de Funciones Vectoriales son las mismas propiedades de límites de las Funciones Escalares.

<u>Ejemplo</u>: Calculemos el $\lim_{t\to 0} r(t)$ siendo $r(t) = [\ln(e+t), t^2, (2+t)^2]$

$$\lim_{t \to 0} r(t) = [\lim_{t \to 0} \ln(e+t), \lim_{t \to 0} t^2, \lim_{t \to 0} (2+t)^2]$$

$$\lim_{t \to 0} r(t) = [1,0,4] = i + 4k$$

Continuidad

Una Función Vectorial r(t) es continua en $t = t_0$ si $\lim_{t \to t_0} r(t) = r(t_0)$

Es decir si
$$\lim_{t \to t_0} r(t) = \left[\lim_{t \to t_0} f(t), \lim_{t \to t_0} g(t), \lim_{t \to t_0} h(t) \right] = \left[f(t_0), g(t_0), h(t_0) \right].$$

Es decir que r(t) es continua en $t = t_0$ si sus funciones componentes son continuas en $t = t_0$.

Veamos la relación existente entre Funciones Vectoriales y Curvas.

Cualquier Función Vectorial r(t) define una curva que se forma por la punta del vector en movimiento.

Curvas Planas

Hemos visto que las curvas planas o curvas en R^2 pueden ser representadas como imagen de las Funciones Escalares y = f(x) o x = g(y).

Pero también se puede representar una curva plana como imagen de una Función Vectorial.

Dada una Función Vectorial r(t) = [f(t), g(t)] = f(t)i + g(t)j o en su forma paramétrica $\begin{cases} y = g(t) \end{cases}$

siendo f(t) y g(t) funciones continuas en un intervalo $t_1 \le t \ge t_2$.

A cada valor de t le corresponde un par de valores de (x, y)es decir un punto en R^2 . El conjunto de todos los pares de valores de (x, y) definen una curva L en el plano.

<u>Ejemplo</u>: Analicemos la curva definida por la Función Vectorial $r(t) = [t, (t^2 + 2)] = ti + (t^2 + 2)j$

O en forma paramétrica: $\begin{cases} x = t \\ y = t^2 + 2 \end{cases}$

Es la parábola indicada en el gráfico.

Curvas Alabeadas

Las curvas alabeadas o curvas en R^3 pueden ser representadas como imagen de una Función Vectorial.

En efecto, dada la función vectorial r(t) = [f(t), g(t), h(t)] = f(t)i + g(t)j + h(t)k

o en su forma paramétrica

$$\begin{cases} x = f(t) \\ y = g(t) \\ z = h(t) \end{cases}$$

siendo f(t), g(t) y h(t) funciones continuas en un intervalo $t_1 \le t \ge t_2$.

A cada valor de t le corresponde una terna de valores de (x, y, z) es decir un punto en R^3 . El conjunto de todas las ternas de valores de (x, y, z) definen una curva L alabeada.

Ejemplo: Describamos la curva definida por la Función Vectorial

$$r(t) = [t+5, 3t+1, 2t+3] = (t+5)i + (3t+1)j + (2t+3)k$$

O en forma paramétrica:

$$\begin{cases} x = t+5 \\ y = 3t+1 \\ z = 2t+3 \end{cases}$$

Esta es la ecuación de una recta en el espacio. Que también podemos expresar:

$$\frac{x-5}{1} = \frac{y-1}{3} = \frac{z-3}{2}$$

Derivadas

Definimos derivada de una Función Vectorial r(t), de la misma manera que lo hicimos con las Funciones Escalares.

Dada la Función Vectorial r(t) = [f(t), g(t), h(t)] = f(t)i + g(t)j + h(t)k

$$\frac{dr}{dt} = r'(t) = \lim_{\Delta t \to 0} \frac{r(t + \Delta t) - r(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta r}{\Delta t}$$
 si el límite existe.

Y aplicando la definición de derivada a las Funciones Escalares componentes del vector tendremos:

$$\boxed{\frac{dr}{dt} = \left[\frac{df}{dt}, \frac{dg}{dt}, \frac{dh}{dt}\right] = \frac{df}{dt}i + \frac{dg}{dt}j + \frac{dh}{dt}k}$$

Es decir que la derivada de una Función Vectorial se obtiene derivando cada una de sus Funciones Escalares componentes.

Y su módulo es:
$$\left| \frac{dr}{dt} \right| = \sqrt{\left(\frac{df}{dt} \right)^2 + \left(\frac{dg}{dt} \right)^2 + \left(\frac{dh}{dt} \right)^2}$$

Realicemos un análisis gráfico de esta derivada:

Si $\Delta t > 0$ el vector $\frac{\Delta r}{\Delta t}$ es paralelo al vector Δr . Al tender $\Delta t \to 0$ el punto M_I se acerca al punto M y este vector se acerca a un vector que está en la recta tangente a la curva en el punto M. Entonces el vector r'(t) es un vector tangente a la curva definida por r(t) en el punto M, siempre que r'(t) exista

y que sea distinta de cero.

Las propiedades de derivación de las Funciones Vectoriales son las mismas que las de las Funciones Escalares.

Ejemplo: Calculemos la derivada $r(t) = [t^2 - 3, \text{sen} 4t, 2t] = (t^2 - 3)i + \text{sen} 4t j + 2t k$

$$r'(t) = [2t, 4\cos 4t, 2] = 2ti + 4\cos 4tj + 2k$$

Derivadas Sucesivas de Funciones Vectoriales

Se obtienen calculando las Derivadas Sucesivas de las Funciones Escalares componentes respectivas. Calculemos la Derivada de Segundo Orden de la Función Vectorial del ejemplo anterior:

$$\frac{d^2r}{dt^2} = r''(t) = [2, -16 \operatorname{sen} 4t, 0] = 2i - 16 \operatorname{sen} 4t \ j$$

Si el parámetro t es el tiempo, entonces:

 $\frac{dr}{dt} = v$ es el vector velocidad del extremo del vector r(t). Y

 $\frac{d^2r}{dt^2} = \frac{dv}{dt} = w$ es el vector aceleración de dicho extremo.

Integral de una Función Vectorial

Se obtiene integrando cada una de sus Funciones Escalares componentes. Si éstas son integrables, entonces la Función Vectorial también es integrable.

$$\int_{t_1}^{t_2} r(t)dt = \left[\int_{t_1}^{t_2} f(t)dt, \int_{t_1}^{t_2} g(t)dt, \int_{t_1}^{t_2} h(t)dt \right]$$

<u>Ejemplo</u>: Dada $r(t) = [t^2, (1-t), e^t]$ calcular $\int_0^1 r(t) dt$

$$\int_{0}^{1} r(t)dt = \left[\int_{0}^{1} t^{2} dt, \int_{0}^{1} (1-t)dt, \int_{0}^{1} e^{t} dt\right] = \left[\left|\frac{t^{3}}{3}\right|_{0}^{1}, \left|t - \frac{t^{2}}{2}\right|_{0}^{1}, \left|e^{t}\right|_{0}^{1}\right] = \left[\frac{1}{3}, \frac{1}{2}, (e-1)\right]$$

CAMPOS VECTORIALES

Recordemos que los Campos Vectoriales son funciones a las que a un conjunto de "n" variables independientes le corresponden como imagen un conjunto de "m" valores (es decir un vector).

$$\begin{cases} y_1 = f_1(x_1, x_2, \dots, x_n) \\ y_2 = f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ y_m = f_m(x_1, x_2, \dots, x_n) \end{cases}$$

También los podemos expresar usando notación matricial:

$$(y_1, y_2, \dots, y_m) = [f_1(x_1, x_2, \dots, x_n), f_2(x_1, x_2, \dots, x_n), \dots, f_m(x_1, x_2, \dots, x_n)]$$

O si consideramos $\mathbf{x} = (x_1, x_2, \dots, x_n)$ y $\mathbf{y} = (y_1, y_2, \dots, y_n)$ las podemos indicar en forma más resumida:

$$\mathbf{y} = \mathbf{F} (\mathbf{x})$$

 f_1, f_2, \dots, f_m son las funciones componente del Campo Vectorial.

Estudiaremos en particular los Campos Vectoriales en R^2 o R^3 .

Sea D una región plana R^2 . Un campo vectorial en R^2 es una función F que asigna a cada punto A(x, y) en D un vector bidimensional F(x, y).

$$F(x, y) = P(x, y)i + Q(x, y)j$$

$$R^2 \longrightarrow R^2$$

$$F(x, y) = [P(x, y), Q(x, y)]$$

Ejemplo:

Sea el Campo Vectorial

$$F(x, y) = 2xy i + (x^3 + y) j = [2xy, x^3 + y]$$

Y en tres dimensiones podemos definir:

Sea E un subconjunto de R^3 . Un Campo Vectorial en R^3 es una función F que asigna a cada punto M(x, y, z) en E un vector de tres componentes F(x, y, z).

$$F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k$$

$$F(x, y, z) = [P(x, y, z), Q(x, y, z), R(x, y, z)]$$

$$R^3 \longrightarrow R^3$$

Ejemplo:

Sea el Campo Vectorial

$$F(x, y, z) = (y - x)i + (x + y - z)j + (z - x^{2}y)k = [y - x, x + y - z, z - x^{2}y]$$

$$F(1,3,4) = 2i + k = [2,0,1]$$

Derivada de un Campo Vectorial

Dado el Campo Vectorial:

$$\begin{cases} y_1 = f_1(x_1, x_2, \dots, x_n) \\ y_2 = f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ \vdots \\ y_m = f_m(x_1, x_2, \dots, x_n) \end{cases}$$

Tenemos m funciones de n variables independientes cada una, entonces podemos obtener $m \times n$ derivadas parciales, con las que se forma una matriz llamada Matriz de las Derivas Parciales o Matriz Jacobiana:

$$DF = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \operatorname{grad} f_1 \\ \operatorname{grad} f_2 \\ \dots & \dots \\ \operatorname{grad} f_m \end{bmatrix}$$

También se la indica
$$J\left(\frac{f_1, f_2, \dots, f_m}{x_1, x_2, \dots, x_n}\right) = \frac{\partial (f_1, f_2, \dots, f_m)}{\partial (x_1, x_2, \dots, x_n)}$$

Las filas de esta matriz son los vectores gradientes de las funciones componentes del Campo Vectorial.

En el caso de ser m = n la matriz es cuadrada y el determinante de dicha matriz es el Determinante Jacobiano o Determinante Funcional.

Ejemplo 1:

Sea el Campo Vectorial en
$$R^2$$

$$F(x, y) = [x^3 - y, (x + y)^2]$$

$$DF = \begin{bmatrix} 3x^2 & -1 \\ 2x + 2y & 2x + 2y \end{bmatrix}$$

Ejemplo 2:

Sea el Campo Vectorial en
$$R^3$$

$$F(x, y, z) = [2xy, xyz, yz^3]$$

$$DF = \begin{vmatrix} 2x & 2y & 0 \\ yz & xz & xy \\ 0 & z^3 & 3yz^2 \end{vmatrix}$$

Matriz Jacobiana de un Campo Escalar

Dado el Campo Escalar $y = f(x_1, x_2, \dots, x_n)$

Su Matriz Jacobiana es

$$Df = \left[\frac{\partial f}{x_1}, \frac{\partial f}{x_2}, \dots, \frac{\partial f}{\partial x_n} \right]$$

Matriz Jacobiana de una Función Vectorial

Dada la Función Vectorial $\begin{cases} y_1 = f_1(x) \\ y_2 = f_2(x) \\ \dots \\ y_m = f_m(x) \end{cases}$ o

$$y_m = f_m(x)$$

 $\mathbf{y} = \mathbf{F}(x)$

Su Matriz Jacobiana es

$$DF = \begin{bmatrix} \frac{df_1}{dx} \\ \frac{df_2}{dx} \\ \dots \\ \frac{df_m}{dx} \end{bmatrix}$$