

Πρότυπο Σύστημα Ομότιμων Κόμβων Βασισμένο σε Σχήματα RDF

Μεβέτη και υβοποίηση

Διπλωματική Εργασία

του

ΣΤΑΜΟΥ Φ. ΕΥΑΓΓΕΛΟΥ

Επιβλέπων: Ιωάννης Παπαδόπουλος

Αναπληρωτής Καθηγητής

Πρότυπο Σύστημα Ομότιμων Κόμβων Βασισμένο σε Σχήματα RDF

Μελέτη και υλοποίηση

Διπλωματική Εργασία

του

ΣΤΑΜΟΥ Φ. ΕΥΑΓΓΕΛΟΥ

Επιβλέπων: Ιωάννης Παπαδόπουλος Αναπληρωτής Καθηγητής

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 22α Νοεμβρίου 2020.

Copyright © - All rights reserved. Με την επιφύλαξη παντός δικαιώματος. Ευάγγελος Στάμος, 2020.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα.

Το περιεχόμενο αυτής της εργασίας δεν απηχεί απαραίτητα τις απόψεις του Τμήματος, του Επιβλέποντα, ή της επιτροπής που την ενέκρινε.

ΔΗΛΩΣΗ ΜΗ ΛΟΓΟΚΛΟΠΗΣ ΚΑΙ ΑΝΑΛΗΨΗΣ ΠΡΟΣΩΠΙΚΗΣ ΕΥΘΥΝΗΣ

Με πλήρη επίγνωση των συνεπειών του νόμου περί πνευματικών δικαιωμάτων, δηλώνω ενυπογράφως ότι είμαι αποκλειστικός συγγραφέας της παρούσας Πτυχιακής Εργασίας, για την ολοκλήρωση της οποίας κάθε βοήθεια είναι πλήρως αναγνωρισμένη και αναφέρεται λεπτομερώς στην εργασία αυτή. Έχω αναφέρει πλήρως και με σαφείς αναφορές, όλες τις πηγές χρήσης δεδομένων, απόψεων, θέσεων και προτάσεων, ιδεών και λεκτικών αναφορών, είτε κατά κυριολεξία είτε βάσει επιστημονικής παράφρασης. Αναλαμβάνω την προσωπική και ατομική ευθύνη ότι σε περίπτωση αποτυχίας στην υλοποίηση των ανωτέρω δηλωθέντων στοιχείων, είμαι υπόλογος έναντι λογοκλοπής, γεγονός που σημαίνει αποτυχία στην Πτυχιακή μου Εργασία και κατά συνέπεια αποτυχία απόκτησης του Τίτλου Σπουδών, πέραν των λοιπών συνεπειών του νόμου περί πνευματικών δικαιωμάτων. Δηλώνω, συνεπώς, ότι αυτή η Πτυχιακή Εργασία προετοιμάστηκε και ολοκληρώθηκε από εμένα προσωπικά και αποκλειστικά και ότι, αναλαμβάνω πλήρως όλες τις συνέπειες του νόμου στην περίπτωση κατά την οποία αποδειχθεί, διαχρονικά, ότι η εργασία αυτή ή τμήμα της δεν μου ανήκει διότι είναι προϊόν λογοκλοπής άλλης πνευματικής ιδιοκτησίας.

(Υπογραφή)
Ευάγγελος Στάμος
22 Σεπτεμβρίου 2020

Περίληψη

Ένα σύστημα ομότιμων κόμβων αποτελείται από ένα σύνολο αυτόνομων υπολογιστικών κόμβων στο Διαδίκτυο, οι οποίοι συνεργάζονται με σκοπό την ανταλλαγή δεδομένων. Στα συστήματα ομότιμων κόμβων που χρησιμοποιούνται ευρέως σήμερα, η αναζήτηση πληροφορίας γίνεται με χρήση λέξεων κλειδιών. Η ανάγκη για πιο εκφραστικές λειτουργίες, σε συνδυασμό με την ανάπτυξη του Σημασιολογικού Ιστού, οδήγησε στα συστήματα ομότιμων κόμβων βασισμένα σε σχήματα. Στα συστήματα αυτά κάθε κόμβος χρησιμοποιεί ένα σχήμα με βάση το οποίο οργανώνει τα τοπικά διαθέσιμα δεδομένα. Για να είναι δυνατή η αναζήτηση δεδομένων στα συστήματα αυτά υπάρχουν δύο τρόποι. Ο πρώτος είναι όλοι οι κόμβοι να χρησιμοποιούν το ίδιο σχήμα κάτι το οποίο δεν είναι ευέλικτο. Ο δεύτερος τρόπος δίνει την αυτονομία σε κάθε κόμβο να επιλέγει όποιο σχήμα θέλει και απαιτεί την ύπαρξη κανόνων αντιστοίχισης μεταξύ των σχημάτων για να μπορούν να αποτιμώνται οι ερωτήσεις. Αυτός ο τρόπος προσφέρει ευελιξία όμως δεν υποστηρίζει την αυτόματη δημιουργία και τη δυναμική ανανέωση των κανόνων, που είναι απαραίτητες για ένα σύστημα ομότιμων κόμβων.

Στόχος της διπλωματικής εργασίας είναι η ανάπτυξη ενός συστήματος ομότιμων κόμβων βασισμένο σε σχήματα το οποίο (α) θα επιτρέπει μια σχετική ευελιξία στην χρήση των σχημάτων και (β) θα δίνει την δυνατότητα μετασχηματισμού ερωτήσεων χωρίς την ανάγκη διατύπωσης κανόνων αντιστοίχισης μεταξύ σχημάτων, ξρησιμοποιώντας κόμβους με σχήματα RDF που αποτελούν υποσύνολα-όψεις ενός βασικού σχήματος (καθολικό σχήμα).

Λέξεις Κλειδιά

Σύστημα ομότιμων κόμβων, Σύστημα ομότιμων κόμβων βασισμένο σε σχήματα, Σημασιολογικός Ιστός, RDF/S, RQL, Jxta

Abstract

A peer-to-peer system is a set of autonomous computing nodes (the peers) which cooperate in order to exchange data. The peers in the peer-to-peer systems that are widely used today, rely on simple keyword selection in order to search for data. The need for richer facilities in exchanging data, as well as, the evolution of the Semantic Web, led to the evolution of the schema-based peer-to-peer systems. In those systems every node uses a schema to organize the local data. So there are two ways in order for data search to be feasible. The first but not so flexible way implies that every node uses the same schema. The second way gives every node the flexibility to choose a schema according with its needs, but on the same time requires the existence of mapping rules in order for queries to be replied. This way though, doesn't offer automatic creation and dynamic renewal of the mapping rules which would be essential for peer-to-peer systems.

This diploma thesis aims to the development of a schema-based peer-to-peer system that allows a certain flexibility for schema selection and on the same time enables query transformation without the use of mapping rules. The peers use RDF schemas that are subsets (views) of a big common schema called global schema.

Keywords

Peer-to-peer, Schema-based peer-to-peer, Semantic Web, RDF/S, RQL, Jxta

Ευχαριστίες

Θα ήθελα καταρχήν να ευχαριστήσω τον καθηγητή κ. για την επίβλεψη αυτής της διπλωματικής εργασίας και για την ευκαιρία που μου έδωσε να την εκπονήσω στο εργαστήριο Συστημάτων Βάσεων Γνώσεων και Δεδομένων. Επίσης ευχαριστώ ιδιαίτερα τον Δρ. για την καθοδήγησή του και την εξαιρετική συνεργασία που είχαμε. Τέλος θα ήθελα να ευχαριστήσω τους γονείς μου για την καθοδήγηση και την ηθική συμπαράσταση που μου προσέφεραν όλα αυτά τα χρόνια.

Αθήνα, Μάιος 2020

Ευάγγεβος Στάμος

Περιεχόμενα

П	ερίληψη	1
Al	bstract	3
Ει	υχαριστίες	7
Π	ρόλογος	17
1	Εισαγωγή	19
	1.1 Αντικείμενο της διπλωματικής	20
	1.2 Οργάνωση του τόμου	21
I	Θεωρητικό Μέρος	23
2	Θεωρητικό υπόβαθρο	25
	2.1 Συστήματα ομότιμων κόμβων	25
	2.1.1 Τι είναι τα συστήματα ομότιμων κόμβων	2 5
3	Περιγραφή θέματος	27
	3.1 Σχετικές εργασίες	27
II	Πρακτικό Μέρος	29
4	Ανάλυση και σχεδίαση	31
	4.1 Ανάλυση - περιγραφή αρχιτεκτονικής	31
	4.1.1 Διαχωρισμός υποσυστημάτων	31
	4.1.2 Περιγραφή υποσυστημάτων	31
5	Υλοποίηση	33
	5.1 Λεπτομέρειες υλοποίησης	33
	5.1.1 Αλγόριθμοι	33
	5.2 Περιγραφή κλάσεων	33
	5.2.1 public class FirstUi	33
6	114.5	35
	6.1 Μεθοδολογία Ελέγχου	35
	6.2 Αναλυτική παρουσίαση ελέγχου	35

7	Παράδειγμα Πίνακα	37
	7.1 Συμπεράσματα	37
	7.2 Μελλοντικές Επεκτάσεις	37
8	Παράδειγμα Μαθηματικών Σχέσεων – Εκφράσεων και Αλγορίθμων	39
	8.1 Συμπεράσματα	39
	8.2 Μελλοντικές Επεκτάσεις	40
Ш	Ι Επίλογος	43
9	Επίλογος	45
	9.1 Συμπεράσματα	45
	9.2 Μελλοντικές Επεκτάσεις	46
П	αραρτήματα	47
A'	Παράδειγμα Παραρτήματος	49
	Α΄.1 Πρώτη ενότητα	49
	Α΄.2 Μελλοντικές Επεκτάσεις	49
B	Απόδειξη της σχέσης (8.1)	51
	Β΄.1 Ανάλυση - περιγραφή αρχιτεκτονικής	51
	Β΄.1.1 Διαχωρισμός υποσυστημάτων	51
	Β΄.1.2 Περιγραφή υποσυστημάτων	52
Γ΄	Παραδείγματα Βιβλιογραφικών Αναφορών	53
Δ΄	Δημιουργία Ευρετηρίου	55
E'	Εισαγωγή Εικόνων	57
Βι	ιβλιογραφία	59
Σu	υντομογραφίες - Αρκτικόλεξα - Ακρωνύμια	61
Аг	πόδοση ξενόγλωσσων όρων	63

Κατάλογος Σχημάτων

4.1	Αρχιτεκτονική Απλού Κόμβου	32
B'.1	Προσομοίωση Πύλης NOR	5

Κατάλογος Εικόνων

. 1	Βάτραχος																																_
H.	Bathavac																																_
_	Daiparo	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	\cdot	

Κατάλογος Πινάκων

7.1	Πίνακας αλήθειας της λογικής συνάρτησης F	 38
A'. 1	Πίνακας αλήθειας της λονικής συνάστησης Ε	 50

Πρόλογος

Στον πρόλογο αναφέρονται θέματα που δεν είναι επιστημονικά ή τεχνικά, όπως το πλαίσιο που διενεργήθηκε η εργασία, ο τόπος διεξαγωγής, το Εργαστήριο στο οποίο εκπονήθηκε κ.λπ.

Κεφάλαιο 1

Εισαγωγή

Παγκόσμιος Ιστός αποτελεί χώρο διακίνησης τεράστιου όγκου πληροφοριών. Ωστόσο, η συντριπτική πλειοψηφία των πληροφοριών του Ιστού, είναι προσανατολισμένη προς τον άνθρωπο-χρήστη και δεν είναι κατανοητή από τις εφαρμογές. Για να αξιοποιηθεί λοιπόν η διαθέσιμη πληροφορία και να γίνει πιο εύκολη η ανταλλαγή και η επεξεργασία της, ο Παγκόσμιος Ιστός εξελίσσεται στο Σημασιολογικό Ιστό.

Ο Σημασιολογικός Ιστός, είναι μια εξέλιξη του σημερινού Ιστού, μέσα στον οποίο δίνεται καλά ορισμένο νόημα στην πληροφορία που διακινείται, διευκολύνοντας τη συνεργασία μεταξύ υπολογιστή και ανθρώπου [1]. Πιο συγκεκριμένα δίνει τη δυνατότητα καλύτερης πρόσβασης σε μεγάλο όγκο πηγών πληροφορίας, καθώς και πιο αποτελεσματικής διακίνησης των πληροφοριών, χρησιμοποιώντας δεδομένα που τις περιγράφουν και ονομάζονται "μεταδεδομένα". Η καλύτερη γνώση της σημασίας, της χρήσης και της ποιότητας των πηγών διευκολύνει σημαντικά τη δυνατότητα πρόσβασης σε πηγές του Ιστού και την αυτόματη επεξεργασία του περιεχομένου που υπάρχει διαθέσιμο στο Διαδίκτυο βάσει του νοήματος και όχι μόνο της μορφής της πληροφορίας.

Ένα από τα πιο βασικά θέματα για την ανάπτυξη του Σημασιολογικού Ιστού είναι το να μπορούν οι υπολογιστές να ανταλλάσσουν δεδομένα μεταξύ εφαρμογών. Σε ένα ανοιχτό περιβάλλον όπως είναι ο Σημασιολογικός Ιστός χρειάζεται ένα ευέλικτο και δυναμικό μοντέλο ανταλλαγής δεδομένων όπως είναι τα συστήματα ομότιμων κόμβων (Peer-to-Peer systems).

Ένα σύστημα ομότιμων κόμβων αποτελείται από ένα σύνολο αυτόνομων υπολογιστικών κόμβων, οι οποίοι συνεργάζονται με σκοπό την ανταλλαγή δεδομένων. Τα συστήματα ομότιμων κόμβων που χρησιμοποιούνται ευρέως σήμερα κυρίως για την ανταλλαγή αρχείων μουσικής, έχουν πολύ μικρές δυνατότητες διαχείρισης δεδομένων. Η αναζήτηση πληροφορίας στα περισσότερα από αυτά γίνεται με χρήση λέξεων κλειδιών (keyword-based search).

Η ανάγκη για πιο εκφραστικές λειτουργίες, σε συνδυασμό με την ανάπτυξη του Σημασιολογικού Ιστού, οδήγησε στα συστήματα ομότιμων κόμβων που είναι βασισμένα σε σχήματα (schema-based peer-to-peer systems). Στα συστήματα αυτά κάθε κόμβος χρησιμοποιεί ένα σχήμα με βάση το οποίο οργανώνει τα τοπικά διαθέσιμα δεδομένα. Οι τεχνολογίες του Σημασιολογικού Ιστού δίνουν τη δυνατότητα οργάνωσης των δεδομένων μέσω σχημάτων που τα περιγράφουν.

Το πλαίσιο RDF είναι ένα τέτοιο εργαλείο αναπαράστασης μεταδεδομένων. Σε ένα RDF αρχείο ορίζονται δηλώσεις για αντικείμενα του Ιστού όπως σελίδες, συγγραφείς, προγράμματα κ.τ.λ. Μια επέκταση του πλαισίου RDF είναι το RDF Schema το οποίο παρέχει μηχανι-

σμούς περιγραφής σχετικών αντικειμένων του Ιστού καθώς και των σχέσεων μεταξύ τους. Το RDF Schema βασίζεται σε κλάσεις και ιδιότητες έννοιες γνωστές από το χώρο των Αντικειμενοστρεφών συστημάτων. Η βασική διαφορά είναι ότι στο πλαίσιο RDF οι ιδιότητες ορίζονται ανεξάρτητα από τις κλάσεις.

Χρησιμοποιώντας λοιπόν τις τεχνολογίες του Σημασιολογικού Ιστού μπορούμε να δημιουργήσουμε συστήματα ομότιμων κόμβων με αυξημένη διαλειτουργικότητα τα οποία θα ανταλλάσσουν μεταξύ τους πληροφορία με νόημα και θα έχουν τη δυνατότητα διατύπωσης ερωτήσεων πιο εκφραστικών από αυτές που βασίζονται σε λέξεις κλειδιά.

1.1 Αντικείμενο της διπλωματικής

Το βασικό ζήτημα που προκύπτει για τα συστήματα ομότιμων κόμβων που είναι βασισμένα σε σχήματα, είναι πώς θα μπορούν οι κόμβοι να αναζητούν και να ανταλλάσσουν δεδομένα, διατηρώντας την αυτονομία τους. Δύο προσεγγίσεις έχουν προταθεί στην βιβλιογραφία:

- 1. Η πρώτη προσέγγιση απαιτεί να υπάρχει ένα κεντρικό σχήμα το οποίο θα χρησιμοποιούν όλοι οι κόμβοι [2]. Οι ερωτήσεις διατυπώνονται και αποτιμούνται με βάση το ίδιο σχήμα. Μια τέτοια λύση θα ήταν καλή για περιβάλλοντα με καθορισμένα όρια, όπως για παράδειγμα το τοπικό δίκτυο ενός οργανισμού. Όμως σε ένα ανοιχτό περιβάλλον όπως είναι ο Παγκόσμιος Ιστός χρειάζεται ένα πιο ευέλικτο μοντέλο που να επιτρέπει την χρήση πολλών σχημάτων.
- 2. Η δεύτερη προσέγγιση δίνει την αυτονομία σε κάθε κόμβο να επιλέγει όποιο σχήμα θέλει. Οι ερωτήσεις διατυπώνονται με βάση ένα σχήμα και αποτιμούνται με βάση άλλα σχήματα, μέσω μιας διαδικασίας μετασχηματισμού ερωτήσεων (query reformulation). Η διαδικασία αυτή απαιτεί την ύπαρξη κανόνων αντιστοίχισης (mapping rules) [3]. Όμως, σε ένα σύστημα ομότιμων κόμβων οι κόμβοι μπορούν να μπαίνουν και να βγαίνουν στο δίκτυο συνεχώς. Δεν είναι γνωστό επομένως εκ των προτέρων τα ζευγάρια των κόμβων μεταξύ των οποίων πρέπει να υπάρχουν κανόνες αντιστοίχισης. Επίσης, οι κανόνες αυτοί φτιάχονται χειρωνακτικά και είναι δύσκολη η συντήρησή τους.

Αντικείμενο της διπλωματικής είναι η ανάπτυξη ενός συστήματος ομότιμων κόμβων βασισμένο σε σχήματα το οποίο (α) θα επιτρέπει μια σχετική ευελιξία στην χρήση των σχημάτων και (β) θα δίνει την δυνατότητα μετασχηματισμού ερωτήσεων χωρίς την ανάγκη διατύπωσης κανόνων αντιστοίχισης μεταξύ σχημάτων. Το σύστημα δηλαδή βρίσκεται ανάμεσα στα δύο μοντέλα που περιγράφηκαν παραπάνω, από πλευράς ευελιξίας και δίνει τη δυνατότητα αυτόματου μετασχηματισμού ερωτήσεων. Χρησιμοποιεί κόμβους με σχήματα RDFS που αποτελούν υποσύνολα-όψεις (views) ενός βασικού σχήματος (καθολικό σχήμα).

Ένα παράδειγμα εφαρμογής του συστήματος αυτού θα ήταν η ανταλλαγή βιβλιογραφικών δεδομένων μεταξύ των ερευνητών. Κάθε ερευνητής θα συμμετείχε σε αυτό το σύστημα ομότιμων κόμβων με ένα δικό του RDF σχήμα σύμφωνα με το οποίο θα οργάνωνε τις δημοσιεύσεις του και ταυτόχρονα θα μπορούσε να αναζητήσει ανάλογα δεδομένα από άλλους κόμβους. Σ΄ ένα τέτοιο σύστημα θα μπορούσαν να συμμετέχουν ως κόμβοι εκτός από μεμονωμένοι ερευνητές και εργαστήρια ή και συνέδρια.

1.2 Οργάνωση του τόμου

Η εργασία αυτή είναι οργανωμένη σε επτά κεφάλαια: Στο Κεφάλαιο 2 δίνεται το θεωρητικό υπόβαθρο των βασικών τεχνολογιών που σχετίζονται με τη διπλωματική αυτή. Αρχικά περιγράφονται τα δίκτυα ομότιμων κόμβων, στη συνέχεια το πλαίσιο RDF και τέλος δίνεται μια μελέτη των γλωσσών ερωτήσεων για RDF. Στο Κεφάλαιο 3 αρχικά περιγράφονται οι σχετικές με το θέμα εργασίες και στη συνέχεια δίνεται ο στόχος της συγκεκριμένης εργασίας. Στο Κεφάλαιο 4 παρουσιάζεται η ανάλυση και η σχεδίαση του συστήματος, δηλαδή η περιγραφή των υποσυστημάτων και των εφαρμογών του. Η περιγραφή της υλοποίησης του συστήματος, με ανάλυση των βασικών αλγορίθμων καθώς και λεπτομέρειες σχετικά με τις πλατφόρμες και τα προγραμματιστικά εργαλεία που χρησιμοποιήθηκαν δίνεται στο Κεφάλαιο 5. Στο Κεφάλαιο 6 παρουσιάζεται ο έλεγχος καλής λειτουργίας του συστήματος με βάση ένα συγκεκριμένο σενάριο χρήσης. Τέλος στο Κεφάλαιο 7 δίνεται η συνεισφορά αυτής της διπλωματικής εργασίας, καθώς και μελλοντικές επεκτάσεις.

Μέρος 🛚

Θεωρητικό Μέρος

Κεφάλαιο 2

Θεωρητικό υπόβαθρο

Στο κεφάλαιο αυτό παρουσιάζονται αναλυτικά οι τρεις βασικές τεχνολογίες που έχουν σχέση με την εργασία αυτή, δηλαδή τα συστήματα ομότιμων κόμβων, το πλαίσιο RDF και οι γλώσσες ερωτήσεων για RDF.

2.1 Συστήματα ομότιμων κόμβων

2.1.1 Τι είναι τα συστήματα ομότιμων κόμβων

Στα μεγάλα κατανεμημένα συστήματα όπως είναι ο Παγκόσμιος Ιστός, γίνονται εμφανή τα προβλήματα του παραδοσιακού μοντέλου πελάτη/εξυπηρετητή: Οι πηγές πληροφορίας βρίσκονται μαζεμένες σε λίγους κόμβους (εξυπηρετητές) στους οποίους συνδέονται πάρα πολλοί πελάτες [4].

Οι αρχές που διέπουν τα συστήματα ομότιμων κόμβων είναι οι εξής:

- Η αρχή του μοιράσματος των πόρων.
- Η αρχή της αυτοοργάνωσης.

Σύμφωνα με το συντακτικό αυτό, το παράδειγμα γράφεται ως εξής:

- 1.<?xmlversion="1.0"?>
- 2.<rdf:RDFxmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
- 3. xmlns:dc="http://purl.org/dc/elements/1.1/"
- 4. xmlns:exterms="http://www.example.org/terms/">
- 5. <rdf:Description rdf:about="http://www.example.org/index.html">
- 6. <exterms:creation-date>August 16, 1999</exterms:creation-date>
- 7. <dc:language>en</dc:language>
- 8. <dc:creator rdf:resource="http://www.example.org/staffid/85740"/>
- 9. </rdf:Description>
- 10.</rdf:RDF>

Κεφάλαιο 3

Περιγραφή θέματος

Σ το κεφάλαιο αυτό αρχικά γίνεται μια περιγραφή των συστημάτων ομότιμων κόμβων που είναι βασισμένα σε σχήματα (schema-based peer-to-peer systems). Στη συνέχεια περιγράφονται τρία βασικά συστήματα που ανήκουν σε αυτή την κατηγορία, καθώς και ένα σύστημα για τη διαχείρηση RDF σχημάτων, και τέλος αναλύεται ο στόχος της παρούσας εργασίας.

3.1 Σχετικές εργασίες

Οι βάσεις δεδομένων εισήγαγαν ένα τρόπο αποθήκευσης και ανάκτησης των δεδομένων που βασιζόταν στο σχήμα [4]. Τα πρώτα συστήματα ομότιμων κόμβων που περιγράψαμε στην Υποενότητα 2.1.2 έδιναν μεγάλη σημασία στην αρχιτεκτονική του συστήματος και την δρομολόγηση των ερωτήσεων και λιγότερη στον τρόπο αναπαράστασης και τις δυνατότητες αναζήτησης. Η αναζήτηση σε αυτά τα συστήματα ομότιμων κόμβων γίνεται με βάση προκαθορισμένα χαρακτηριστικά - δείκτες, ή με προσπάθεια αντιστοίχισης μιας λέξης κλειδί.

Μέρος 🔢

Πρακτικό Μέρος

Ανάλυση και σχεδίαση

Σ το κεφάλαιο αυτό παρουσιάζεται η μελέτη που έγινε για την υλοποίηση του συστήματος. Αρχικά περιγράφεται η αρχιτεκτονική του συστήματος και γίνεται ο διαχωρισμός του στα επιμέρους υποσυστήματα, ενώ στη συνέχεια περιγράφονται οι εφαρμογές του συστήματος.

4.1 Ανάλυση - περιγραφή αρχιτεκτονικής

Στην ενότητα αυτή παρουσιάζεται η ανάλυση του συστήματος και ο χωρισμός του σε υποσυστήματα όσον αφορά την αρχιτεκτονική.

4.1.1 Διαχωρισμός υποσυστημάτων

Το σύστημα αποτελείται από τους απλούς κόμβους και ένα κόμβο διαχειριστή. Στο σημείο αυτό αναλύουμε το σύστημα ενός απλού κόμβου, το οποίο αποτελείται από τα εξής υποσυστήματα:

- Υποσύστημα δημιουργίας σχήματος.
- Υποσύστημα ενσωμάτωσης δεδομένων στο σχήμα.
- Υποσύστημα επικοινωνίας κόμβου.

Το Σχήμα 4.1 απεικονίζει

4.1.2 Περιγραφή υποσυστημάτων

Παρακάτω δίνεται λεπτομερής περιγραφή για καθένα από τα συστήματα που αναφέραμε. Η περιγραφή αυτή γίνεται με βάση τα διαγράμματα ροής δεδομένων.

Υποσύστημα δημιουργίας σχήματος

Το υποσύστημα αυτό

Σχήμα 4.1: Αρχιτεκτουική Απλού Κόμβου

Υλοποίηση

Σ το κεφάλαιο αυτό περιγράφεται η υλοποίηση του συστήματος, με βάση τη μελέτη που παρουσιάστηκε στο προηγούμενο κεφάλαιο. Αρχικά παρουσιάζεται η πλατφόρμα και τα προγραμματιστικά εργαλεία που χρησιμοποιήθηκαν. Στη συνέχεια δίνονται οι λεπτομέρειες υλοποίησης για τους βασικούς αλγορίθμους του συστήματος καθώς και η δομή του κώδικα.

5.1 Λεπτομέρειες υλοποίησης

Στην ενότητα αυτή παρουσιάζονται οι βασικοί αλγόριθμοι που αναπτύχθηκαν καθώς και λεπτομέρειες σχετικά με την υλοποίηση της επικοινωνίας των κόμβων.

5.1.1 Αλγόριθμοι

Αλγόριθμος εισαγωγής δεδομένων

Όταν ένας κόμβος εισέρχεται για πρώτη φορά στο σύστημα, αρχικά δημιουργεί το σχήμα που θέλει χρησιμοποιώντας το RDFSculpt. Στη συνέχεια.....

Παράδειγμα

Έστω ότι ο κόμβος έχει επιλέξει να συμμετέχει στο σύστημα με το RDF σχήμα που φαίνεται στο Σχήμα. Έστω επίσης ότι από το SQL ερώτημα που έχει κάνει στη σχεσιακη βάση, έχει προκύψει η όψη που φαίνεται στον Πίνακα. Για τις ανάγκες του παραδείγματος θεωρούμε ότι η όψη αυτή περιέχει μόνο μία εγγραφή.

5.2 Περιγραφή κλάσεων

Στην ενότητα αυτή δίνεται μια σύντομη περιγραφή των κλάσεων, των πεδίων και των μεθόδων που τις απαρτίζουν.

5.2.1 public class FirstUi

Η κλάση αυτή κατασκευάζει την οθόνη εισαγωγής του χρήστη στο σύστημα.

Πεδία

- private GridBagLayout blayout
 To layout για όλα τα Panel.
- private GridBagConstraints con Ta constraints για το layout.
- private Icon arrowR
 Εικονίδιο για το κουμπί Next.

Μέθοδοι

- public FirstUi()
 Ο κατασκευαστής της κλάσης ο οποίος καλεί την createEntryFrame().
- private void createEntryFrame()
 Μέθοδος που κατασκευάζει το ενφραμε.

Έλεγχος

το κεφάλαιο αυτό γίνεται ο έλεγχος καλής λειτουργίας του συστήματος.

6.1 Μεθοδολογία Ελέγχου

Ο έλεγχος του συστήματος αυτού πραγματοποιήθηκε με τη χρήση ενός σεναρίου λειτουργίας. Σύμφωνα με το σενάριο αυτό θεωρούμε ότι στο σύστημα υπάρχουν τρεις κόμβοι (peer1,peer2,peer3). Θεωρούμε επίσης ότι οι κόμβοι peer2 και peer3 έχουν ήδη σχήμα και δεδομένα. Το σχήμα του peer2 φαίνεται στο Σχήμα.

Επίσης η τοπολογία του συστήματος έχει ως εξής: ο peer2 είναι γείτονας του peer1 και ο peer3 γείτονας του peer2.

Αρχικά λοιπόν θα δημιουργήσουμε σχήμα για τον κόμβο peer1 και στη συνέχεια θα εισάγουμε σε αυτό δεδομένα εξετάζοντας έτσι την καλή λειτουργία του υποσυστήματος δημιουργίας σχήματος και του υποσυστήματος εισαγωγής δεδομένων. Στη συνέχεια από τον κόμβο αυτό στέλνουμε ερωτήσεις στους υπόλοιπους για τον έλεγχο του υποσυστήματος απάντησης ερωτήσεων και επικοινωνίας κόμβων.

6.2 Αναλυτική παρουσίαση ελέγχου

Στην ενότητα αυτή παρουσιάζουμε αναλυτικά τον έλεγχο του συστήματος σύμφωνα με το σενάριο που περιγράφηκε στην προηγούμενη ενότητα.

Παράδειγμα Πίνακα

7.1 Συμπεράσματα

Τα συστήματα ομότιμων κόμβων, προκειμένου να υποστηρίζουν πιο εκφραστικές λειτουργίες αναπαράστασης και αναζήτησης δεδομένων, εξελίχθηκαν στα συστήματα ομότιμων κόμβων τα οποία βασίζονται στις τεχνολογίες του Σημασιολογικού Ιστού για την αναπαράσταση των δεδομένων μέσω σχημάτων που τα περιγράφουν (Schema-based peer-to-peer systems).

Συμπερασματικά το σύστημα που αναπτύχθηκε στα πλαίσια αυτής της διπλωματικής είναι ένα πλήρες σύστημα ομότιμων κόμβων βασισμένο σε σχήματα, το οποίο καθιστά δυνατή την αναζήτηση της πληροφορίας με ένα διαφορετικό τρόπο απ' ότι τα προϋπάρχοντα συστήματα.

7.2 Μελλοντικές Επεκτάσεις

Το σύστημα που αναπτύχθηκε στα πλαίσια αυτής της διπλωματικής εργασίας θα μπορούσε να βελτιωθεί και να επεκταθεί περαιτέρω, τουλάχιστον ως προς τρεις κατευθύνσεις. Συγκεκριμένα, αναφέρονται τα ακόλουθα:

- Ενσωμάτωση διαδικασίας επιλογής σχήματος με βάση το οποίο ο κόμβος θα συμμετέχει στο σύστημα. Έτσι όπως έχει σχεδιαστεί το σύστημα, κάθε κόμβος έχει τη δυνατότητα να δημιουργήσει πολλά σχήματα και να αποθηκεύσει δεδομένα σε περισσότερα από ένα. Ως σχήμα του κόμβου (με βάση το οποίο απαντάει τις ερωτήσεις), θεωρείται το τελευταίο στο οποίο αποθήκευσε δεδομένα. Η δυνατότητα επιλογής θα του παρείχε περισσότερη ευελιξία.
- Δυνατότητα αντιστοίχισης δεδομένων τα οποία να μην είναι αποθηκευμένα σε βάση δεδομένων αλλά σε αρχεία. Η αποδέσμευση από τη βάση δεδομένων θα έκανε το σύστημα πιο εύκολο στην εγκατάσταση και τη χρήση.
- Αξιολόγηση του συστήματος ως προς τη συμπεριφορά του αν συμμετέχει σε αυτό μεγάλος αριθμός κόμβων (scalability testing) και αν χρησιμοποιηθεί ένα πολύ μεγάλο καθολικό σχήμα. Η αξιολόγηση αυτή αφορά την ταχύτητα με την οποία ένας κόμβος παίρνει απαντήσεις σε μια ερώτηση καθώς και την ποιότητα των απαντήσεων.

Πίνακας 7.1: Πίνακας αβήθειας της βογικής συνάρτησης F

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Παράδειγμα Μαθηματικών Σχέσεων – Εκφράσεων και Αλγορίθμων

8.1 Συμπεράσματα

Τα συστήματα ομότιμων κόμβων, προκειμένου να υποστηρίζουν πιο εκφραστικές λειτουργίες αναπαράστασης και αναζήτησης δεδομένων, εξελίχθηκαν στα συστήματα ομότιμων κόμβων τα οποία βασίζονται στις τεχνολογίες του Σημασιολογικού Ιστού για την αναπαράσταση των δεδομένων μέσω σχημάτων που τα περιγράφουν (Schema-based peer-to-peer systems).

Στα συστήματα αυτά κάθε $y=\int_0^1 f(x)dx$ $y=\int_0^1 f(x)dx$ κόμβος χρησιμοποιεί ένα σχήμα για την $\sum_{i=0}^{100} a_i$ αναπαράσταση των δεδομένων του. Όμως σε ένα σύστημα ομότιμων κόμβων, κάθε κόμβος έχει διαφορετικές απαιτήσεις αναπαράστασης δεδομένων. Επομένως πρέπει να υπάρχει ευελιξία στην επιλογή $\frac{1}{1+x^2}$ σχήματος. Τα συστήματα που έχουν προταθεί μέχρι τώρα και παρέχουν αυτή την ευελιξία, για να είναι δυνατή η αναζήτηση πληροφορίας, απαιτούν την ύπαρξη κανόνων αντιστοίχισης μεταξύ των σχημάτων με βάση τους οποίους να μετασχηματίζονται οι ερωτήσεις. Όμως δεν υποστηρίζεται ακόμα αυτόματη δημιουργία και δυναμική ανανέωση των κανόνων, που είναι απαραίτητα για τα συστήματα ομότιμων κόμβων.

$$y = \int_0^1 f(x)dx \tag{8.1}$$

Η συνεισφορά της (8.1) παρούσας διπλωματικής εργασίας έχει δύο σκέλη. Το πρώτο αφορά τη δημιουργία ενός πλήρους συστήματος ομότιμων κόμβων βασισμένο σε σχήματα RDF το οποίο παρέχει: (α) την υποδομή για την επικοινωνία των κόμβων,(β) μηχανισμό δημιουργίας σχήματος, (γ) μηχανισμό ενσωμάτωσης σχεσιακών δεδομένων στο σχήμα με τη χρήση αντιστοιχίσεων που δημιουργεί ο χρήστης με τη βοήθεια ειδικής διαπροσωπείας, (δ) ευέλικτη διαπροσωπεία χρήστη για τη διατύπωση ερωτημάτων και (ε) μηχανισμό απάντησης και επεξεργασίας ερωτήσεων.

Το δεύτερο σκέλος αφορά το γεγονός ότι το συγκεκριμένο σύστημα προσφέρει μια σχετική ευελιξία ως προς την επιλογή του σχήματος από τον κάθε κόμβο, ενώ ταυτόχρονα δίνει τη δυνατότητα μετασχηματισμού ερωτήσεων χωρίς τη χρήση κανόνων αντιστοίχισης. Συγκεκριμένα, τα σχήματα των κόμβων αποτελούν υποσύνολα-όψεις(views) ενός βασικού σχήματος

Αλγοριωμος 8.1: Μετατροπή δεκαδικού αριθμού σε δυαδικό, με τη μέθοδο των διαδοχικών διαιρέσεων με το 2

```
Είσοδος: X_{(10)} (ο δεκαδικός αριθμός προς μετατροπή)

Έξοδος: X_{(2)} (η δυαδική αναπαράσταση του X)
Θέσε \Delta=X_{(10)} (\Delta = διαιρετέος)
Θέσε \Pi=1 (\Pi = πηθίκο)
Θέσε X_{(2)}= ^{\text{cov}} (^{\text{cov}} ο κενός χαρακτήρας)

while \Pi \neq 0 do
Διαίρεσε το \Delta με το 2 και βρες το πηλίκο \Pi, και το υπόλοιπο U.

X_{(2)}=U+X_{(2)} (Τοποθέτησε το υπόθοιπο U στα αριστερά του X_{(2)})
Θέσε \Delta=\Pi (Το πηθίκο \Pi τίθεται \omegaς διαιρετέος για την επόμενη διαίρεση)

end while
```

που ονομάζεται καθολικό σχήμα. Εκμεταλλευόμενοι λοιπόν το γεγονός ότι τα σχήματα αυτά είναι συμβατά μεταξύ τους, έχουμε τη δυνατότητα ελέγχου της ικανοποιησιμότητας μιας ερώτησης και μετατροπής της όπου χρειάζεται, χρησιμοποιώντας τόσο το σχήμα του κόμβου όσο και το καθολικό σχήμα.

Συμπερασματικά το σύστημα που αναπτύχθηκε στα πλαίσια αυτής της διπλωματικής είναι ένα πλήρες σύστημα ομότιμων κόμβων βασισμένο σε σχήματα, το οποίο καθιστά δυνατή την αναζήτηση της πληροφορίας με ένα διαφορετικό τρόπο απ΄ ότι τα προϋπάρχοντα συστήματα.

8.2 Μελλοντικές Επεκτάσεις

Το σύστημα που αναπτύχθηκε στα πλαίσια αυτής της διπλωματικής εργασίας θα μπορούσε να βελτιωθεί και να επεκταθεί περαιτέρω, τουλάχιστον ως προς τρεις κατευθύνσεις. Συγκεκριμένα, αναφέρονται τα ακόλουθα:

- Ενσωμάτωση διαδικασίας επιλογής σχήματος με βάση το οποίο ο κόμβος θα συμμετέχει στο σύστημα. Έτσι όπως έχει σχεδιαστεί το σύστημα, κάθε κόμβος έχει τη δυνατότητα να δημιουργήσει πολλά σχήματα και να αποθηκεύσει δεδομένα σε περισσότερα από ένα. Ως σχήμα του κόμβου (με βάση το οποίο απαντάει τις ερωτήσεις), θεωρείται το τελευταίο στο οποίο αποθήκευσε δεδομένα. Η δυνατότητα επιλογής θα του παρείχε περισσότερη ευελιξία.
- Δυνατότητα αντιστοίχισης δεδομένων τα οποία να μην είναι αποθηκευμένα σε βάση δεδομένων αλλά σε αρχεία. Η αποδέσμευση από τη βάση δεδομένων θα έκανε το σύστημα πιο εύκολο στην εγκατάσταση και τη χρήση.
- Αξιολόγηση του συστήματος ως προς τη συμπεριφορά του αν συμμετέχει σε αυτό μεγάλος αριθμός κόμβων (scalability testing) και αν χρησιμοποιηθεί ένα πολύ μεγάλο καθολικό σχήμα. Η αξιολόγηση αυτή αφορά την ταχύτητα με την οποία ένας κόμβος παίρνει απαντήσεις σε μια ερώτηση καθώς και την ποιότητα των απαντήσεων.

Αλγοριθμος 8.2: Κάποιος αβιγόριθμος ...

```
#include <stdio.h>
#define N 10
/* Block
 * comment */

int main()
{
    int i;
    // Line comment.
    puts("Hello world!");

    for (i = 0; i < N; i++)
    {
        puts("LaTeX is also great for programmers!");
    }

    return 0;
}</pre>
```

Μέρος ΙΙΙΙ

Επίλογος

Επίλογος

9.1 Συμπεράσματα

Τα συστήματα ομότιμων κόμβων, προκειμένου να υποστηρίζουν πιο εκφραστικές λειτουργίες αναπαράστασης και αναζήτησης δεδομένων, εξελίχθηκαν στα συστήματα ομότιμων κόμβων τα οποία βασίζονται στις τεχνολογίες του Σημασιολογικού Ιστού για την αναπαράσταση των δεδομένων μέσω σχημάτων που τα περιγράφουν (Schema-based peer-to-peer systems).

Στα συστήματα αυτά κάθε κόμβος χρησιμοποιεί ένα σχήμα για την αναπαράσταση των δεδομένων του. Όμως σε ένα σύστημα ομότιμων κόμβων, κάθε κόμβος έχει διαφορετικές απαιτήσεις αναπαράστασης δεδομένων. Επομένως πρέπει να υπάρχει ευελιξία στην επιλογή σχήματος. Τα συστήματα που έχουν προταθεί μέχρι τώρα και παρέχουν αυτή την ευελιξία, για να είναι δυνατή η αναζήτηση πληροφορίας, απαιτούν την ύπαρξη κανόνων αντιστοίχισης μεταξύ των σχημάτων με βάση τους οποίους να μετασχηματίζονται οι ερωτήσεις. Όμως δεν υποστηρίζεται ακόμα αυτόματη δημιουργία και δυναμική ανανέωση των κανόνων, που είναι απαραίτητα για τα συστήματα ομότιμων κόμβων.

Η συνεισφορά της παρούσας διπλωματικής εργασίας έχει δύο σκέλη. Το πρώτο αφορά τη δημιουργία ενός πλήρους συστήματος ομότιμων κόμβων βασισμένο σε σχήματα RDF το οποίο παρέχει: (α) την υποδομή για την επικοινωνία των κόμβων,(β) μηχανισμό δημιουργίας σχήματος, (γ) μηχανισμό ενσωμάτωσης σχεσιακών δεδομένων στο σχήμα με τη χρήση αντιστοιχίσεων που δημιουργεί ο χρήστης με τη βοήθεια ειδικής διαπροσωπείας, (δ) ευέλικτη διαπροσωπεία χρήστη για τη διατύπωση ερωτημάτων και (ε) μηχανισμό απάντησης και επεξεργασίας ερωτήσεων.

Το δεύτερο σκέλος αφορά το γεγονός ότι το συγκεκριμένο σύστημα προσφέρει μια σχετική ευελιξία ως προς την επιλογή του σχήματος από τον κάθε κόμβο, ενώ ταυτόχρονα δίνει τη δυνατότητα μετασχηματισμού ερωτήσεων χωρίς τη χρήση κανόνων αντιστοίχισης. Συγκεκριμένα, τα σχήματα των κόμβων αποτελούν υποσύνολα-όψεις(views) ενός βασικού σχήματος που ονομάζεται καθολικό σχήμα. Εκμεταλλευόμενοι λοιπόν το γεγονός ότι τα σχήματα αυτά είναι συμβατά μεταξύ τους, έχουμε τη δυνατότητα ελέγχου της ικανοποιησιμότητας μιας ερώτησης και μετατροπής της όπου χρειάζεται, χρησιμοποιώντας τόσο το σχήμα του κόμβου όσο και το καθολικό σχήμα.

Συμπερασματικά το σύστημα που αναπτύχθηκε στα πλαίσια αυτής της διπλωματικής είναι ένα πλήρες σύστημα ομότιμων κόμβων βασισμένο σε σχήματα, το οποίο καθιστά δυ-

νατή την αναζήτηση της πληροφορίας με ένα διαφορετικό τρόπο απ΄ ότι τα προϋπάρχοντα συστήματα.

9.2 Μελλοντικές Επεκτάσεις

Το σύστημα που αναπτύχθηκε στα πλαίσια αυτής της διπλωματικής εργασίας θα μπορούσε να βελτιωθεί και να επεκταθεί περαιτέρω, τουλάχιστον ως προς τρεις κατευθύνσεις. Συγκεκριμένα, αναφέρονται τα ακόλουθα:

- Ενσωμάτωση διαδικασίας επιλογής σχήματος με βάση το οποίο ο κόμβος θα συμμετέχει στο σύστημα. Έτσι όπως έχει σχεδιαστεί το σύστημα, κάθε κόμβος έχει τη δυνατότητα να δημιουργήσει πολλά σχήματα και να αποθηκεύσει δεδομένα σε περισσότερα από ένα. Ως σχήμα του κόμβου (με βάση το οποίο απαντάει τις ερωτήσεις), θεωρείται το τελευταίο στο οποίο αποθήκευσε δεδομένα. Η δυνατότητα επιλογής θα του παρείχε περισσότερη ευελιξία.
- Δυνατότητα αντιστοίχισης δεδομένων τα οποία να μην είναι αποθηκευμένα σε βάση δεδομένων αλλά σε αρχεία. Η αποδέσμευση από τη βάση δεδομένων θα έκανε το σύστημα πιο εύκολο στην εγκατάσταση και τη χρήση.
- Αξιολόγηση του συστήματος ως προς τη συμπεριφορά του αν συμμετέχει σε αυτό μεγάλος αριθμός κόμβων (scalability testing) και αν χρησιμοποιηθεί ένα πολύ μεγάλο καθολικό σχήμα. Η αξιολόγηση αυτή αφορά την ταχύτητα με την οποία ένας κόμβος παίρνει απαντήσεις σε μια ερώτηση καθώς και την ποιότητα των απαντήσεων.

Παραρτήματα

Παράδειγμα Παραρτήματος

Α΄.1 Πρώτη ενότητα

Τα συστήματα ομότιμων κόμβων, προκειμένου να υποστηρίζουν πιο εκφραστικές λειτουργίες αναπαράστασης και αναζήτησης δεδομένων, εξελίχθηκαν στα συστήματα ομότιμων κόμβων τα οποία βασίζονται στις τεχνολογίες του Σημασιολογικού Ιστού για την αναπαράσταση των δεδομένων μέσω σχημάτων που τα περιγράφουν (Schema-based peer-to-peer systems).

Συμπερασματικά το σύστημα που αναπτύχθηκε στα πλαίσια αυτής της διπλωματικής είναι ένα πλήρες σύστημα ομότιμων κόμβων βασισμένο σε σχήματα, το οποίο καθιστά δυνατή την αναζήτηση της πληροφορίας με ένα διαφορετικό τρόπο απ΄ ότι τα προϋπάρχοντα συστήματα.

Α΄.2 Μελλοντικές Επεκτάσεις

Το σύστημα που αναπτύχθηκε στα πλαίσια αυτής της διπλωματικής εργασίας θα μπορούσε να βελτιωθεί και να επεκταθεί περαιτέρω, τουλάχιστον ως προς τρεις κατευθύνσεις. Συγκεκριμένα, αναφέρονται τα ακόλουθα:

- Ενσωμάτωση διαδικασίας επιλογής σχήματος με βάση το οποίο ο κόμβος θα συμμετέχει στο σύστημα. Έτσι όπως έχει σχεδιαστεί το σύστημα, κάθε κόμβος έχει τη δυνατότητα να δημιουργήσει πολλά σχήματα και να αποθηκεύσει δεδομένα σε περισσότερα από ένα. Ως σχήμα του κόμβου (με βάση το οποίο απαντάει τις ερωτήσεις), θεωρείται το τελευταίο στο οποίο αποθήκευσε δεδομένα. Η δυνατότητα επιλογής θα του παρείχε περισσότερη ευελιξία.
- Δυνατότητα αντιστοίχισης δεδομένων τα οποία να μην είναι αποθηκευμένα σε βάση δεδομένων αλλά σε αρχεία. Η αποδέσμευση από τη βάση δεδομένων θα έκανε το σύστημα πιο εύκολο στην εγκατάσταση και τη χρήση.
- Αξιολόγηση του συστήματος ως προς τη συμπεριφορά του αν συμμετέχει σε αυτό μεγάλος αριθμός κόμβων (scalability testing) και αν χρησιμοποιηθεί ένα πολύ μεγάλο καθολικό σχήμα. Η αξιολόγηση αυτή αφορά την ταχύτητα με την οποία ένας κόμβος παίρνει απαντήσεις σε μια ερώτηση καθώς και την ποιότητα των απαντήσεων.

Πίνακας Α΄.1: Πίνακας αβήθειας της βογικής συνάρτησης F

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Απόδειξη της σχέσης (8.1)

Στο κεφάλαιο αυτό παρουσιάζεται η μελέτη που έγινε για την υλοποίηση του συστήματος. Αρχικά περιγράφεται η αρχιτεκτονική του συστήματος και γίνεται ο διαχωρισμός του στα επιμέρους υποσυστήματα, ενώ στη συνέχεια περιγράφονται οι εφαρμογές του συστήματος. ελένη

Β΄.1 Ανάλυση - περιγραφή αρχιτεκτονικής

Στην ενότητα αυτή παρουσιάζεται η ανάλυση του συστήματος και ο χωρισμός του σε υποσυστήματα όσον αφορά την αρχιτεκτονική.

Β΄.1.1 Διαχωρισμός υποσυστημάτων

Το σύστημα αποτελείται από τους απλούς κόμβους και ένα κόμβο διαχειριστή. Στο σημείο αυτό αναλύουμε το σύστημα ενός απλού κόμβου, το οποίο αποτελείται από τα εξής υποσυστήματα:

- Υποσύστημα δημιουργίας σχήματος.
- Υποσύστημα ενσωμάτωσης δεδομένων στο σχήμα.
- Υποσύστημα επικοινωνίας κόμβου.

Σχήμα Β΄.1: Προσομοίωση Πύβης ΝΟΚ

Το Σχήμα Β΄.1 απεικονίζει

Β΄.1.2 Περιγραφή υποσυστημάτων

Παρακάτω δίνεται λεπτομερής περιγραφή για καθένα από τα συστήματα που αναφέραμε. Η περιγραφή αυτή γίνεται με βάση τα διαγράμματα ροής δεδομένων.

Υποσύστημα δημιουργίας σχήματος

Το υποσύστημα αυτό

Παραδείγματα Βιβλιογραφικών Αναφορών

Τύπος βιβλιογραφικής πηγής	Αριθμός αναφοράς
Βιβλίο ξενόγλωσσο	[5]
Βιβλίο ελληνικό	[3]
Άρθρο σε επιστημονικό περιοδικό	[1]
Παρουσίαση σε επιστημονικό συνέδριο	[6]
Ιστοσελίδα	[2]
Διπλωματική εργασία	[7]
Πτυχιακή εργασία	[4]
Μεταπτυχιακή διπλωματική εργασία	[8]
Διδακτορική διατριβή	[9]
Δίπλωμα ευρεσιτεχνίας (πατέντα)	[10]
Τεχνική αναφορά	[11]

Δημιουργία Ευρετηρίου

Δείτε το περιεχόμενο του αρχείου appD.tex για τρόπους ορισμού ελληνικών και ξενόγλωσσων όρων ευρετηρίου.

Εισαγωγή Εικόνων

Δείτε το περιεχόμενο του αρχείου appE.tex για τον τρόπο εισαγωγής εικόνων.

Εικόνα Ε΄.1: Βάτραχος

Βιβλιογραφία

- [1] J. Liaperdos, A. Arapoyanni και Y. Tsiatouhas. *Adjustable RF Mixers' Alternate Test Efficiency Optimization by the Reduction of Test Observables*. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 32(9):1383–1394, 2013.
- [2] LaTeX Project. http://www.latex-project.org. Ημερομηνία πρόσβασης: 13-11-2014.
- [3] Ι. Κάβουρας. Συστήματα Υποβογιστών. Κλειδάριθμος, Αθήνα, 3η έκδοση, 1991.
- [4] Ε. Ανδρουλάκη. Υριοποίηση Ενεργού Μηχανισμού σε Σύστημα Ομότιμων Βάσεων. Πτυχιακή εργασία, KDBS Lab, Εθνικό Μετσόβιο Πολυτεχνείο, 2005.
- [5] M. Goossens, F. Mittelbach και A. Samarin. The LaTeX Companion. Addison-Wesley, Reading, Massachusetts, 9η έκδοση, 1993.
- [6] I. Liaperdos, L. Dermentzoglou, A. Arapoyanni και Y. Tsiatouhas. *Fault Detection in RF Mixers Combining Defect-Oriented and Alternate Test Strategies*. *26th Conference on Design of Circuits and Integrated Systems (DCIS)*, San Sebastian, Spain, 2011.
- [7] Ζ. Καούδη. Πρότυπο Σύστημα Αποδήκευσης και Διαχείρισης Σχημάτων RDFS. Διπλωματική εργασία, Εθνικό Μετσόβιο Πολυτεχνείο, 2004.
- [8] Ζ. Λάσκαρη. Κοινωνική Ανάβιση των Ταινιών της Finos Films. Μεταπτυχιακή διπλωματική εργασία, Εθνικό Μετσόβιο Πολυτεχνείο, 2012.
- [9] Ζ. Κουρούκλη. Κατανεμημένα Συστήματα. Διδακτορική Διατριβή, ΤΕΙ Πελοποννήσου, 2013.
- [10] P. Viswanathan, G. Winner και P. Vyas. Convenient Provisioning of Embedded Devices with WiFi Capability. Δίπλωμα Ευρεσιτεχνίας US Patent 8,665,744, 2014.
- [11] H. Cheng J. Gao και P. N. Tan. A Framework for Incorporating Labeled Examples into Anomaly Detection. Τεχνική Αναφορά με αριθμό MSU-CSE-05-29, Department of Computer Science, Michigan State University, East Lansing, Michigan, 2005.

Συντομογραφίες - Αρκτικόλεξα - Ακρωνύμια

βλπ βλέπε κ.λπ. και λοιπά

κ.ο.κ και ούτω καθεξής

ΤΕΙ Τεχνολογικό Εκπαιδευτικό Ίδρυμα

BPF Band Pass Filter

Απόδοση ξενόγλωσσων όρων

Απόδοση

αδερφός

αμεταβλητότητα

ανάκτηση πληροφορίας

αντιμεταθετικότητα

απόγονος

απορρόφηση

βάση δεδομένων

γνώρισμα

διαπροσωπεία

διαφορά

δικτυακός κατάλογος

δικτυωτή δομή

δομικές επερωτήσεις

δομικές σχέσεις

δομικό σχήμα

εγκυρότητα

ένωση

Ξενόγλωσσος όρος

sibling

idempotency

information retrieval

commutativity

descedant

absorption

database

attribute

interface

difference

portal catalog

lattice

structural queries

structural relationships

schema

validity

union