Highly Sensitive Grating-coupled Bloch Surface Wave Resonance Bio-sensors via Azimuthal Interrogation

MIDDLE TENNESSEE STATE UNIVERSITY.

V. Koju¹, W. M. Robertson^{1,2}

COMSOL ¹Computational Science Program, ²Department of Physics and Astronomy, CONFERENCE Middle Tennessee State University, Murfreesboro, TN 37132, USA. **2016** BOSTON

Introduction: Bloch surface waves (BSWs) are electromagnetic excitation modes that exist at the interface of truncated dielectric multilayer structures and a homogeneous medium. They can be excited either by prism coupling or grating coupling.

Figure 1. Schematic of Bloch surface wave excitation. (a) Prism-coupling (b) Grating coupling

Advantages of grating coupling:

- Does not require a bulky prism.
- 2. Enables azimuthal interrogation.

Computational Methods: The RF module solves the Maxwell's vector wave equation

$$\nabla \times \mu_r^{-1} (\nabla \times \vec{E}) - k_0^2 \left(\varepsilon_r - \frac{j\sigma}{\omega \varepsilon_0} \right) \vec{E} = \vec{0}.$$

For $\mu_r = 1$, $\varepsilon_r = n^2$, and $\sigma = 0$, it reduces to $\nabla \times (\nabla \times \vec{E}) - k_0^2 n^2 \vec{E} = \vec{0}.$

incident wavevector has component magnitudes

$$k_x = k_0 sin(\theta_{inc}) cos(\varphi),$$

 $k_y = k_0 sin(\theta_{inc}) sin(\varphi),$
 $k_z = k_0 cos(\theta_{inc}).$

problem is modeled using boundary conditions on the sides of the domain and Port boundary conditions at the top and bottom.

Figure 3. Reflectivity maps of a 16 layered TiO₂-SiO₂ dielectric multilayer, with a grating profile on the surface layer. (a) as a function of wavelength and incident angle for $\varphi=0^0$ (b) as a function of superstrate refractive index and azimuthal angle for $\lambda = 632.8 \ nm$ and $\theta = 5.4^{\circ}$.

Figure 3. Grating coupled Bloch Surface wave via azimuthal interrogation. Refractive index sensitivity is enhanced compared to conventional angular interrogation.

References:

- 1. W. M. Robertson and M. S. May, Appl. Phys. Lett., **74**, 1800 – 1803, (1999).
- 2. G. Ruffato, G. Zacco and F. Romanato (2012 Dr. Ki Young Kim(Ed.), InTech, DOI: 10.5772/51044.