AD-A252 369

MEMORANDUM REPORT BRL-MR-3985

BRL

THE PROPER INTERPRETATION OF THE INTERNAL ENERGY OF FORMATION USED IN THERMODYNAMIC EQUILIBRIUM CALCULATIONS

ANTHONY J. KOTLAR

JULY 1992

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

92-17564

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188	
Public reporting burden for this collection of bull	emedian is ordinated to average Theor per in	apartes, brahading fi	e time for reviewing instructions, court	ng esfethy data mumas.	
gethering and materiality the data headed, and ecleotion of information, including suggestions: Devic Highway, Bulto 1204, Adington, VA 222	tor reducing this burden, to Washington Head	iquestoro Carrisco, C	Implement for information Operations on	I Reports, 1216 Jefferson	
	blank) 2. REPORT DAT		3. REPORT TYPE AND D		
	July	1992	July 1990 - July	1991	
4. TITLE AND SUBTITLE				5. FUNDING NUMBERS	
The Decree Interpretation	of the Internal Energy of	f Formation	. Head in		
The Proper Interpretation Thermodynamic Equilibr	1L161102AH43				
6. AUTHOR(S)	· · · · · · · · · · · · · · · · · · ·				
Anthony J. Kotlar					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AG	GENCY NAMES(S) AND ADDRES	SS(ES)		10.8PONSORING/MONITORING	
				AGENCY REPORT NUMBER	
USA Ballistic Research I ATTN: SLCBR-DD-T	aboratory				
Alin: SLCBR-DD-1 Aberdeen Proving Groun	A MD 21005 FOCE				
Aberdeen Proving Groun	a, MD 21005-3000			BRL-MR-3985	
11. SUPPLEMENTARY NOTES				DRD TIK 3703	
12a. DISTRIBUTION/AVAILABILIT Approved for Public R	y statement elease - Distribution Unlin	mited		12b. DISTRIBUTION CODE	
		· · · · · · · · · · · · · · · · · · ·			
calculations of gun po the internal energy a	the internal energy or ropellants is clarified nd enthalpy based o ure (0.1 MPa) and ref	i. The en on an ass erence te	thalpy of formation signed, "absolute" Imperature (298.15)	hermodynamic equilibrium is compared to values of , energy scale. In general, is K), $H^0 = \Delta H_f^0$, $U^0 \neq \Delta U_f^0$,	
14. SUBJECT TERMS	15. NUMBER OF PAGES				
Thermodynamics, Energy of Formation, Propellants, Combustion, BLAKE			37 16. PRICE CODE		
17. SECURITY CLASSIFICATION	T 18. SECURITY CLASSIFICATION		10. SECURITY CLASSIFICATION	20. LIMITATION OF ABSTRACT	
17. SECURITY CLASSIFICATION OF REPORT	OF THIS PAGE	•	OF ABSTRACT		
UNCLASSIFIED	UNCLASSIFIED		UNCLASSIFIED	SAR	

TABLE OF CONTENTS

		<u>Page</u>
	LIST OF FIGURES	. v
1.	INTRODUCTION	. 1
2.	BACKGROUND	. 1
2.1. 2.2.	Case 1	
3.	DISCUSSION	. 5
4.	CONCLUSIONS	. 7
5.	REFERENCES	. 9
	DISTRIBUTION LIST	. 11

Accesio	n For]		
NTIS DTIC Unanno Justifica	TAB Junced	U U	4	
By Distrib:	ition /		("	
//	valiatility s	. : इंड		
Dist	Avall et a Spricial			
A-1				

LIST OF FIGURES

Figu	<u>JRE</u>	<u>AGE</u>
1.	Schematic Energy Diagram Showing the Relationship of the Enthalpy of Formation at Some Arbitrary Temperature, T, to the Assigned <i>Energy</i> Scale. The Enthalpy of Formation at 298.15K is also Shown for comparison	3
2.	Schematic Energy Diagram Showing the Enthalpy and Internal Energy States Involved in the Formation Dibutyladipate	5
3.	Same Energy Levels as Figure 2, but With ΔH and ΔU also Indicated	7

1. Introduction

There is a longstanding controversy in the ballistic community, largely undocumented, regarding the correct value of the internal energy of formation of condensed phases as it is used in thermodynamic equilibrium calculations. Recently this problem again surfaced at a meeting of NATO AC/225 (Panel IV/SD.2)WP9 which was working on the standards agreement, STANAG 4400, "Derivation of Thermochemical Values for Interior Ballistic Calculations" (France, September 1990). At this meeting the results of thermodynamic equilibrium calculations using two differing interpretations (Freedman 1988; Volk and Bathelt 1990) and corresponding values of the internal energy of formation were presented. This particular problem does not arise for constant pressure calculations where the relevant thermodynamic quantity, the enthalpy of formation, is tabulated and can be used directly. Equilibrium calculations in which the reactant is a gun propellant, however, are usually performed for a constant volume system, since this situation is assumed to better simulate the conditions in a gun. The internal energy of the propellant is then the quantity that is usually required; it is presumed necessary, therefore, to calculate the internal energy of formation from the tabulated value of the enthalpy of formation, and it is here that the problem is encountered. The purpose of this report is to clarify the meaning of the internal energy of formation as it relates to thermodynamic equilibrium calculations, especially as it pertains to calculations which employ the standard computer programs now in use.

2. Background

Two examples from the literature are selected below to illustrate the divergent views. Before proceeding with these examples, some basic definitions and conventions are first reviewed.

The enthalpy, H, is a convenience function applicable to constant pressure processes and is defined as

$$H \equiv U + PV \tag{1}$$

where U is the internal energy, P is the pressure, and V is the volume. From this it follows that

$$\Delta H = \Delta U + \Delta (PV)$$

and

$$\Delta H_f = \Delta U_f + \Delta (PV)$$

where ΔH_f and ΔU_f are the enthalpy and internal energy of formation respectively.

The energy[†] that is customarily tabulated is the standard enthalpy of formation (sometimes called the heat of formation), ΔH_f^o , defined (Chase et al. 1985) as "... the increment in enthalpy associated with the reaction of forming the given compound from its elements in their reference states, with each substance in its thermodynamic standard state at the given temperature." By this convention, for all elements in their standard state, $\Delta H_f^o=0$ at all temperatures. The superscript denotes that the pressure is for the standard state. In older tabulations, the standard state (pressure) is usually 1 atm; more recent compilations, e.g. the JANAF tables (Chase et al. 1985), use a pressure of 1 bar (= 0.1 MPa) for the standard state, and convert the older values based on 1 atm to this new standard state pressure. It is also customary and convenient to designate an "absolute" energy scale by assigning the enthalpy of the stable form of elements at the standard pressure, hereafter designated as po, and a reference temperature, usually 298.15 K, a value of zero, i.e., $H^{o}_{298,15} = H(298.15 \text{ K}, p^{o}) = 0.$ There actually is no absolute energy scale; however, by designating the standard state (po) and the reference temperature, and assigning the enthalpies of the reference elements, an effective "absolute" scale is created. Hereafter in this report, the designation assigned^{††} applied to either an enthalpy or internal energy will mean an energy which is based on this chosen reference state, i.e., H(298.15 K, p^o)=0 for elements in their stable form of aggregation at 298.15 K and p^0 . For a change of state, a negative value of ΔU or ΔH means that energy is evolved by the process.

The relationship between the standard enthalpy of formation, as it is defined, and the assigned enthalpy is illustrated in Figure 1. $(\Delta H_f^0)_T$ is the enthalpy of formation at some temperature T for which the reactant elements of the formation reaction have some arbitrary enthalpy value. Also shown is the same $(\Delta H_f^0)_T$ on the assigned scale, where it is displaced by an amount equal to $(H^o_{reactants})_{T^-}(H^o_{reactants})_{298.15K} = (H^o_{reactants})_T$. The quantity $(\Delta H_f^0)_T$ has the same value on any energy scale; in general, however, the assigned enthalpy $H^o_T \neq (\Delta H_f^0)_T$ for a temperature other than the reference temperature, in this case T = 298.15 K, of the assigned scale. [The situation illustrated in Figure 1 is typical for $(\Delta H_f^0)_T$ when T>298.15K]. Also note that, owing to its definition, discontinuities can occur in ΔH_f^0 if the stable form of aggregation of an element passes a phase-transition temperature (Chase et al. 1985).

U and H can be expressed as functions of any two other state properties. Choosing the appropriate natural variables gives

$$U=U(T,V) \tag{2a}$$

and

$$H=H(T,P). \tag{2b}$$

For ideal gases, H and U are rigorously only functions of T. In general, however, as indicated in Eq. 2, H and U also have a pressure and volume dependence, respectively; if the initial conditions

The term energy (italicized) will be used in this report to refer to either internal energy or enthalpy.

This designation is also used in the NASA-Lewis documentation (Gordon and McBride 1971).

Figure 1. Schematic energy diagram showing the relationship of the enthalpy of formation at some arbitrary temperature, T, to the assigned energy scale. The enthalpy of formation at 298.15K is also shown for comparison.

for a calculation are other than those of the tabulated standard enthalpy of formation, then its value or the corresponding internal energy must be adjusted, as necessary, for the specified initial conditions of temperature, pressure, or volume. For example, on the assigned *energy* scale, for standard pressure p^o , and reference temperature T_{ref} ,

$$H^o(T) = \Delta H_f^o(T_{ref}) + \int_{T_{ref}}^T C_P^o(T) dT$$

where $C_p^o(T)$ is the standard state heat capacity. However, for $P \neq p^o$,

$$H(T,P) = H^o(T) + \int_{P^o}^{P} \frac{\partial H}{\partial P} \int_{T}^{P} dP$$

Unless otherwise noted, in the following discussions all compounds will be considered to be in the standard state, i.e., P=p^o, and at the reference temperature T=298.15 K. The two representative approaches are now summarized. Both cases have the same expressed purpose: deduce the value of the internal energy of formation from the enthalpy of formation for a condensed phase.

2.1 Case 1

In this approach (Freedman 1988), it is noted that the internal energy, U, is the appropriate variable for constant volume calculations, and that the internal energy of formation, ΔU_f , is the "correct input datum", it is pointed out that the difference between the ΔH_f and ΔU_f i.e. the PV contribution, is small, and is less than 120 cal/mol for typical propellants; this value is calculated for a pressure of 1 atm and a maximum value of 0.005 m³ for the molar volume of a propellant ingredient. Furthermore, it is argued, this small a difference is less than the uncertainties (ca. 0.3-2 kcal/mol) of tabulated values of the enthalpies of formation. For condensed phases, therefore, it is correct to use the value of the enthalpy of formation for the internal energy of formation when the latter quantity is required.

2.2 Case 2

In the other approach (Volk and Bathelt 1990), the need for the energies of formation, rather than the enthalpies of formation, when performing constant volume calculations for gun propellants is also noted. The energy of formation, ΔU_f , is calculated using the standard formula:

$$\Delta U_f = \Delta H_f - \Delta n R T = \Delta H_f - \Delta n (0.59248)$$
 (kcal/mol),

where Δn is the difference in the number of moles of gases, i.e. $n_{products}$ - $n_{reactants}$, R is the universal gas constant, and T is the absolute temperature. [RT=0.59248 kcal/mol for T=298.15K]. The term Δn RT is a standard approximation for $\Delta (PV)$ assuming, as in the first case, that the PV product of condensed phases is negligible. A sample calculation is performed using this approach for the internal energy of formation of dibutyladipate, a liquid, at T=298.15 K, chemical formula $C_{14}H_{26}O_4$, ΔH_f =-181.7 kcal/mol, for the formation reaction

14 C (solid) + 13 H₂ (gas) + 2 O₂ (gas)
$$\rightarrow$$
 C₁₄H₂₆O₄ (liquid).

Since $\Delta n = 0$ - 15 = -15, the ΔU_f is readily calculated to be -172.8 kcal/mol. The difference, in this approach, between ΔU_f and ΔH_f is $\Delta nRT = 8887.6$ cal/mol.

To take an actual example for comparison, at P=1 atm, for HMX which has a density ρ=1.9 g/cm³, a molecular weight MW=296.17 g/mol, and using V=MW/ρ, the PV product is just 3.78 cal/mol.

The two methods for calculating ΔU_f^o above give results for the related quantity enthalpy of formation - internal energy of formation which, when compared, are seemingly in sharp disagreement. Case 1 estimates a maximum difference of 120 cal/mol for a typical propellant. The method used in Case 2 gives, for a liquid, 8887.6 cal/mol. Since both methods are dealing with a condensed phase substance, this large a disagreement, 120 cal/mol versus 8887.6 cal/mol, is not expected.

3. Discussion

The resolution of this discrepancy can best be addressed by reference to a schematic energy level diagram. For convenience, and by way of illustration, the internal energy and enthalpy of dibutyladipate, which was calculated in the second example above, will be used. In Figure 2 the

Figure 2. Schematic energy diagram showing the enthalpy and internal energy states involved in the formation dibutyladipate.

energies of the various compounds are drawn schematically on a diagram that is only intended to convey large and small differences in the quantities, rather than provide a precise scale. The elemental species needed to form the dibutyladipate are listed at the top of the figure at the zero energy reference state. In addition, the reactant composition for the formation reaction is also

indicated, and is included in brackets for identification; it also has an H=0, which is just the sum of its component enthalpies. Just below this level, at -0.128 cal/mol, is a representative U for an elemental solid, where the particular value chosen is for carbon. This and subsequent U values are all calculated using Eq. 1. The small difference between the internal energy and enthalpy of the solid carbon is just the PV product term; this was calculated using (Lange's Handbook of Chemistry 1979) a density, ρ =2.267 g/cm³, a molecular weight MW=12.011 g/mol, and the relation V=MW/p. The third level down, U=-593 cal/mol, corresponds to the PV(=RT) of one mole of an ideal gas. The next (fourth) level at U=-8889.4 cal is the total internal energy of the reactants needed to form dibutyladipate. Since, as noted above, H=0 for this reactant composition, U is just the negative of the sum of the PV product of each species, where each mole of (assumed ideal) gas contributes RT=593 calories and each mole of solid carbon contributes 0.128 calorie. These four levels schematically represent all the internal energy and enthalpy states of the reactants.

The next two levels represent the enthalpy and internal energy for the product compound dibutyladipate. The upper level of the two, at H=-181.7 kcal/mol, is derived from the tabulated value² of the enthalpy of formation and the change of state given in Case 2 above, where, for the dibutyladipate, $H = \Delta H_f + H_{reactants} = -181.7 + 0.0 = -181.7$ kcal/mol. The next slightly lower level represents the corresponding internal energy value of dibutyladipate. For this level U=H-PV(liq), where V(liq) is the molar volume of the liquid phase dibutyladipate. As implied in both cases presented above, at pressure p⁰, the value of PV(liq) is expected to be much less than $H_{product} = -181700$ cal/mol. Neglecting the small PV(liq) contribution gives U=H.

The levels in Figure 2 represent the reactant and product assigned energy states for the formation of dibutyladipate. These levels are duplicated in Figure 3. Additionally in Figure 3, vertical arrows are drawn to indicate the states involved in forming the ΔU_f and ΔH_f for dibutyladipate. Referring to Figure 3, and using the states involved in the formation reaction of Case 2, it follows that, for the product, $H=\Delta H_f$ exactly, however, $U=\Delta U_f-(PV)_{reactant}$. Because of the choice of reference state, the assigned value of the product enthalpy, $H_{product}$, and the enthalpy of formation, ΔH_f , are always equal. In general, however, the assigned internal energy, $U_{product}$, and the internal energy of formation, ΔU_f , are not equal, differing by $(PV)_{reactant}$ which is not usually negligible if gaseous reactants are involved.

In summary, for compounds which are used as a reactant component in an equilibrium calculation, at the standard state pressure and reference temperature (here 298.15K), on the assigned energy scale, $H^o = \Delta H_f^o$ and $U^o \neq \Delta U_f^o$; also, for condensed phases only, usually, $U^o \approx H^o$.

Two commonly used thermodynamic chemical equilibrium codes, NASA-Lewis⁴ and BLAKE (Freedman 1981), calculate a standard enthalpy, denoted H^o(T), which is a function of the temperature and a set of coefficients. These H^o(T) values are assigned enthalpies from which assigned internal energies are calculated. These codes, therefore, use an assigned *energy* scale for referencing both the enthalpy and internal energy of reactants and products; the input data, *i.e.* the

Figure 3. Same energy levels as Figure 2, but with ΔH and ΔU also indicated.

internal energy or enthalpy of the propellant components, must correspond to this scale. Formally, U and H represent these assigned *energies* while ΔU and ΔH do not.

4. Conclusions

- 1. Because the choice of reference state is, by convention, based on the reactants of the formation reaction having an assigned enthalpy value of zero, it follows that, at the reference temperature, for the product of formation, $H^o = \Delta H_f^o$.
- 2. The quantity $(\Delta H_f^0)_T$ has the same value on any energy scale; in general, however, the assigned enthalpy $H_T^0 \neq (\Delta H_f^0)_T$ for a temperature other than the reference temperature
- 3. Because of this assigned energy scale, in general, for the same product also at the reference temperature, $U^o \neq \Delta U_f^o$.
- 4. The approach in Case 2 above correctly calculates ΔU_f^0 , but this is not the quantity that is likely to be required by a thermodynamic equilibrium code; for instance, it is not the quantity required as input by two widely used codes, BLAKE and NASA-Lewis.

- 5. The relationship between the internal energy and enthalpy of condensed phases as stated in Case 1 is also correct, however, it pertains to the assigned *energies*, U^o and H^o , and not to ΔU_f^o and ΔH_f^o .
- 6. In general, for condensed phases referenced to the conventional energy scale having $H^o=0$ for elements in their standard state, $U^o \approx H^o$ and $\Delta U_f^o \neq \Delta H_f^o$.

5. References

- Freedman, Eli. "Thermodynamic Properties of Military Gun Propellants." in <u>Gun Propulsion</u>
 <u>Technology</u>, Vol. 109, Progresses in Astronautics and Aeronautics, (M. Summerfield & L. Stiefel, ed., 1988).
- Volk, F., and H. Bathelt. "Heats of Formation of Components for Rocket Propellants, Gun Propellants and High Explosives." Fraunhofer-Institut Für Chemische Technologie, Technical Report T/RF 11/K 0001/K 1100, January 1990.
- Chase, M.W., Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud. "JANAF Thermochemical Tables, Third Edition." <u>Journal of Physical Chemistry Reference</u>
 <u>Data</u>, Vol. 14, Suppl. 1, 1985.
- Gordon, S., and B.J. McBride, "Computer Program for the Computation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations." NASA SP-273, 1971.
- Lange's Handbook of Chemistry, 12th edition, J.A. Dean, ed., 1979.
- Freedman, Eli. "Blake A Thermodynamics Code Based on Tiger User's Guide and Manual." ARBRL-TR-02411, 1981 [ADA121 259].

No. of Copies Organization

- 2 Administrator
 Defense Technical Info Center
 ATTN: DTIC-DDA
 Cameron Station
 Alexandria, VA 22304-6145
- 1 Commander
 U.S. Army Materiel Command
 ATTN: AMCAM
 5001 Eisenhower Ave.
 Alexandria, VA 22333-0001
- 1 Commander
 U.S. Army Laboratory Command
 ATTN: AMSLC-DL
 2800 Powder Mill Rd.
 Adelphi, MD 20783-1145
- 2 Commander U.S. Army Armament Research, Development, and Engineering Center ATTN: SMCAR-IMI-I Picatinny Arsenal, NJ 07806-5000
- 2 Commander U.S. Army Armament Research, Development, and Engineering Center ATTN: SMCAR-TDC Picatinny Arsenal, NJ 07806-5000
- Director
 Benet Weapons Laboratory
 U.S. Army Armament Research,
 Development, and Engineering Center
 ATTN: SMCAR-CCB-TL
 Watervliet, NY 12189-4050

(Unclase, only)1 Commander U.S. Army Rock Island Arsenal ATTN: SMCRI-TL/Technical Library Rock Island, IL 61299-5000

- 1 Director
 U.S. Army Aviation Research
 and Technology Activity
 ATTN: SAVRT-R (Library)
 M/S 219-3
 Ames Research Center
 Moffett Field, CA 94035-1000
- 1 Commander
 U.S. Army Missile Command
 ATTN: AMSMI-RD-CS-R (DOC)
 Redstone Arsenal, AL 35898-5010

No. of Copies Organization

- 1 Commander
 U.S. Army Tank-Automotive Command
 ATTN: ASQNC-TAC-DIT (Technical
 Information Center)
 Warren, MI 48397-5000
- Director U.S. Army TRADOC Analysis Command ATTN: ATRC-WSR White Sands Missile Range, NM 88002-5502
- 1 Commandant
 U.S. Army Field Artillery School
 ATTN: ATSF-CSI
 Ft. Sill, OK 73503-5000
- (Class. only)1 Commandant
 U.S. Army Infantry School
 ATTN: ATSH-CD (Security Mgr.)
 Fort Benning, GA 31905-5660
 - Commandant
 U.S. Army Infantry School
 ATTN: ATSH-CD-CSO-OR
 Fort Bething, GA 31905-5660
 - 1 WL/MNOI Eglin AFB, FL 32542-5000

Aberdeen Proving Ground

- 2 Dir, USAMSAA ATTN: AMXSY-D AMXSY-MP, H. Cohen
- 1 Cdr, USATECOM ATTN: AMSTE-TC
- 3 Cdr, CRDEC, AMCCOM ATTN: SMCCR-RSP-A SMCCR-MU SMCCR-MSI
- 1 Dir, VLAMO ATTN: AMSLC-VL-D
- 10 Dir, USABRL ATTN: SLCBR-DD-T

(Unclass. only)1

No. of No. of Copies Copies Organization Organization Commander HQDA (SARD-TC, C.H. Church) WASH DC 20310-0103 Naval Surface Warfare Center ATTN: R. Bernecker, R-13 Commander G.B. Wilmot, R-16 **US Army Research Office** Silver Spring, MD 20903-5000 ATTN: R. Ghirardelli D. Mann Commander R. Singleton **Naval Research Laboratory** R. Shaw M.C. Lin ATTN: J. McDonald P.O. Box 12211 E. Oran Research Triangle Park, NC J. Shnur 27709-2211 R.J. Doyle, Code 6110 Washington, DC 20375 Commander US Army Armament Research, Development, and Engineering Center Commanding Officer Naval Underwater Systems SMCAR-AEE-B. D.S. Downs ATTN: Center Weapons Dept. SMCAR-AEE, J.A. Lannon Picatinny Arsenal, NJ 07806-5000 ATTN: R.S. Lazar/Code 36301 Newport, RI 02840 Commander US Army Armament Research, Commander Development, and Engineering Center **Naval Weapons Center** ATTN: SMCAR-AEE-BR. L. Harris ATTN: T. Boggs, Code 388 T. Parr. Code 3895 Picatinny Arsenal, NJ 07806-5000 China Lake, CA 93555-6001 Commander Superintendent **US Army Missile Command** ATTN: AMSMI-RD-PR-E, A.R. Maykut Naval Postgraduate School AMSMI-RD-PR-P, R. Betts Dept. of Aeronautics Redstone Arsenal, AL 35898-5249 ATTN: D.W. Netzer Monterey, CA 93940 Office of Naval Research Department of the Navy AL/LSCF ATTN: R.S. Miller, Code 432 ATTN: R. Corley R. Geisler 800 N. Quincy Street J. Levine Arlington, VA 22217 Edwards AFB, CA 93523-5000 Commander

Commander
 Naval Surface Warfare Center

ATTN: J.L. East, Jr., G-23 Dahlgren, VA 22448-5000

Naval Air Systems Command ATTN: J. Ramnarace, AIR-54111C

Washington, DC 20360

1 OSD/SDIO/IST ATTN: L. Caveny Pentagon

Bolling Air Force Base

Washington, DC 20332

AFOSR

ATTN:

Washington, DC 20301-7100

J.M. Tishkoff

No. of Copies

Organization

- 1 Commandant USAFAS ATTN: ATSF-TSM-CN Fort Sill, OK 73503-5600
- 1 F.J. Seiler ATTN: S.A. Shackleford USAF Academy, CO 80840-6528
- University of Dayton Research Institute ATTN: D. Campbell AL/PAP Edwards AFB, CA 93523
- NASA

 Langley Research Center
 Langley Station
 ATTN: G.B. Northam/MS 168
 Hampton, VA 23365
- 4 National Bureau of Standards
 ATTN: J. Hastie
 M. Jacox
 T. Kashiwagi
 H. Semerjian
 US Department of Commerce

US Department of Commerce Washington, DC 20234

- Aerojet Solid Propulsion Co. ATTN: P. Micheli Sacramento, GA 95813
- Applied Combustion Technology, Inc.
 ATTN: A.M. Varney
 P.O. Box 607885
 Orlando, FL 32860
- 2 Applied Mechanics Reviews
 The American Society of
 Mechanical Engineers
 ATTN: R.E. White
 A.B. Wenzel
 345 E. 47th Street
 New York, NY 10017
- 1 Atlantic Research Corp. ATTN: R.H.W. Waesche 7511 Wellington Road Gainesville, VA 22065

No. of Copies

Organization

- 1 AVCO Everett Research
 Laboratory Division
 ATTN: D. Stickler
 2385 Revere Beach Parkway
 Everett, MA 02149
- 1 Battelle
 ATTN: TACTEC Library, J. Huggins
 505 King Avenue
 Columbus, OH 43201-2693
- Cohen Professional Services ATTN: N.S. Cohen
 141 Channing Street
 Redlands, CA 92373
- 1 Exxon Research & Eng. Co. ATTN: A. Dean Route 22E Annandale, NJ 08801
- General Applied Science

 Laboratories, Inc.

 77 Raynor Avenue

 Ronkonkama, NY
 11779-6649
- General Electric Ordnance Systems
 ATTN: J. Mandzy
 100 Plastics Avenue
 Pittsfield, MA 01203
- 1 General Motors Rsch Labs Physical Chemistry Department ATTN: T. Sloane Warren, MI 48090-9055
- Hercules, Inc.
 Allegheny Ballistics Lab.
 ATTN: W.B. Walkup
 E.A. Yount
 P.O. Box 210
 Rocket Center, WV 26726
- 1 Alliant Techsystems, Inc.
 Marine Systems Group
 ATTN: D.E. Broden/
 MS MN50-2000
 600 2nd Street NE
 Hopkins, MN 55343

No. of Copies Organization

- 1 Alliant Techsystems, Inc. ATTN: R.E. Tompkins MN38-3300 5700 Smetana Drive Minnetonka, MN 55343
- IBM Corporation ATTN: A.C. Tam Research Division 5600 Cottle Road San Jose, CA 95193
- IIT Research Institute ATTN: R.F. Remaly
 West 35th Street Chicago, IL 60616
- Director
 Lawrence Livermore
 National Laboratory
 ATTN: C. Westbrook
 M. Costantino
 P.O. Box 808
 Livermore, CA 94550
- Lockheed Missiles & Space Co. ATTN: George Lo
 3251 Hanover Street
 Dept. 52-35/B204/2
 Palo Alto, CA 94304
- Director
 Los Alamos National Lab
 ATTN: B. Nichols, T7, MS-B284
 P.O. Box 1663
 Los Alamos, NM 87545
- National Science Foundation ATTN: A.B. Harvey Washington, DC 20550
- Olin Ordnance
 ATTN: V. McDonald, Library
 P.O. Box 222
 St. Marks. FL 32355-0222
- Paul Gough Associates, Inc.
 ATTN: P.S. Gough
 1048 South Street
 Portsmouth, NH 03801-5423

No. of Copies Organization

- 2 Princeton Combustion Research Laboratories, Inc. ATTN: M. Summerfield N.A. Messina 475 US Highway One Monmouth Junction, NJ 08852
- Hughes Aircraft Company ATTN: T.E. Ward 8433 Fallbrook Avenue Canoga Park, CA 91303
- Rockwell International Corp.
 Rocketdyne Division
 ATTN: J.E. Flanagan/HB02
 6633 Canoga Avenue
 Canoga Park, CA 91304
- 4 Director
 Sandia National Laboratories
 Division 8354
 ATTN: R. Cattolica
 S. Johnston
 P. Mattern
 D. Stephenson
 Livermore, CA 94550
- Science Applications, Inc.
 ATTN: R.B. Edelman
 23146 Cumorah Crest
 Woodland Hills, CA 91364
- 3 SRI International ATTN: G. Smith D. Crosley D. Golden 333 Ravenswood Avenue Menlo Park, CA 94025
- Stevens Institute of Tech. Davidson Laboratory ATTN: R. McAlevy, III Hoboken, NJ 07030
- Sverdrup Technology, Inc.
 LERC Group
 ATTN: R.J. Locke, MS SVR-2
 2001 Aerospace Parkway
 Brook Park, OH 44142

No. of <u>Copies</u> <u>Organization</u>

- Sverdrup Technology, Inc. ATTN: J. Deur
 2001 Aerospace Parkway
 Brook Park, OH 44142
- Thiokol Corporation Elkton Division ATTN: S.F. Palopoli P.O. Box 241 Elkton, MD 21921
- 3 Thiokol Corporation
 Wasatch Division
 ATTN: S.J. Bennett
 P.O. Box 524
 Brigham City, UT 84302
- 1 United Technologies Research Center ATTN: A.C. Eckbreth East Hartford, CT 06108
- 3 United Technologies Corp.
 Chemical Systems Division
 ATTN: R.S. Brown
 T.D. Myers (2 copies)
 P.O. Box 49028
 San Jose, CA 95161-9028
- Universal Propulsion Company ATTN: H.J. McSpadden Black Canyon Stage 1 Box 1140 Phoenix, AZ 85029
- 1 Veritay Technology, Inc. ATTN: E.B. Fisher 4845 Millersport Highway P.O. Box 305 East Amherst, NY 14051-0305
- Brigham Young University
 Dept. of Chemical Engineering
 ATTN: M.W. Beckstead
 Provo, UT 84058
- California Institute of Tech.
 Jet Propulsion Laboratory
 ATTN: L. Strand/MS 512/102
 4800 Oak Grove Drive
 Pasadena, CA 91109

No. of Copies Organization

- 1 California Institute of Technology ATTN: F.E.C. Culick/ MC 301-46 204 Karman Lab. Pasadena, CA 91125
- University of California
 Los Alamos Scientific Lab.
 P.O. Box 1663, Mail Stop B216
 Los Alamos, NM 87545
- University of California, Berkeley
 Chemistry Deparment
 ATTN: C. Bradley Moore
 211 Lewis Hall
 Berkeley, CA 94720
- University of California, San Diego
 ATTN: F.A. Williams
 AMES, B010
 La Jolla, CA 92093
- 2 University of California, Santa Barbara Quantum Institute ATTN: K. Schofield M. Steinberg Santa Barbara, CA 93106
- University of Colorado at Boulder
 Engineering Center
 ATTN: J. Daily
 Campus Box 427
 Boulder, CO 80309-0427
- University of Southern

 California
 Dept. of Chemistry

 ATTN: S. Benson

 Wittig

 Los Angeles, CA 90007
- 1 Cornell University
 Department of Chemistry
 ATTN: T.A. Cool
 Baker Laboratory
 Ithaca, NY 14853

No. of <u>Copies</u> <u>Organization</u>

- University of Delaware ATTN: T. Brill Chemistry Department Newark, DE 19711
- University of Florida Dept. of Chemistry ATTN: J. Winefordner Gainesville, FL 32611
- 3 Georgia Institute of Technology
 School of Aerospace Engineering
 ATTN: E. Price
 W.C. Strahle
 B.T. Zinn
 Atlanta, GA 30332
- University of Illinois
 Dept. of Mech. Eng.
 ATTN: H. Krier
 144MEB, 1206 W. Green St.
 Urbana, IL 61801
- Johns Hopkins University/APL Chemical Propulsion Information Agency ATTN: T.W. Christian Johns Hopkins Road Laurel, MD 20707
- University of Michigan
 Gas Dynamics Lab
 Aerospace Engineering Bldg.
 ATTN: G.M. Faeth
 Ann Arbor, MI 48109-2140
- University of Minnesota
 Dept. of Mechanical
 Engineering
 ATTN: E. Fletcher
 Minneapolis, MN 55455
- 3 Pennsylvania State University Applied Research Laboratory ATTN: K.K. Kuo H. Palmer M. Micci University Park, PA 16802

No. of Copies Organization

- Pennsylvania State University
 Dept. of Mechanical Engineering
 ATTN: V. Yang
 University Park, PA 16802
- Polytechnic Institute of NY Graduate Center ATTN: S. Lederman Route 110 Farmingdale, NY 11735
- 2 Princeton University Forrestal Campus Library ATTN: K. Brezinsky I. Glassman P.O. Box 710 Princeton, NJ 08540
- Purdue University
 School of Aeronautics
 and Astronautics
 ATTN: J.R. Osborn
 Grissom Hall
 West Lafayette, IN 47906
- 1 Purdue University
 Department of Chemistry
 ATTN: E. Grant
 West Lafayette, IN 47906
- 2 Purdue University School of Mechanical Engineering ATTN: N.M. Laurendeau S.N.B. Murthy TSPC Chaffee Hall West Lafayette, IN 47906
- Rensselaer Polytechnic Inst.
 Dept. of Chemical Engineering ATTN: A. Fontijn Troy, NY 12181
- 1 Stanford University
 Dept. of Mechanical
 Engineering
 ATTN: R. Hanson
 Stanford, CA 94305

No. of <u>Copies</u> <u>Organization</u>

- 1 University of Texas Dept. of Chemistry ATTN: W. Gardiner Austin, TX 78712
- University of Utah
 Dept. of Chemical Engineering
 ATTN: G. Flandro
 Salt Lake City, UT 84112
- 1 Virginia Polytechnic Institute and State University ATTN: J.A. Schetz Blacksburg, VA 24061
- 1 Freedman Associates ATTN: E. Freedman 2411 Diana Road Baltimore, MD 21209-1525

USER EVALUATION SHEET/CHANGE OF ADDRESS

This laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers below will aid us in our efforts. 1. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.) 2. How, specifically, is the report being used? (Information source, design data, procedure, source of ideas, etc.) 3. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate. 4. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.) BRL Report Number BRL-MR-3985 Division Symbol _____ Check here if desire to be removed from distribution list. Check here for address change. ____ Organization Current address: Address DEPARTMENT OF THE ARMY Director NO POSTAGE U.S. Army Ballistic Research Laboratory ATTN: SLCBR-DD-T NECESSARY Aberdeen Proving Ground, MD 21005-5066 IF MAILED IN THE UNITED STATES BUSINESS REPLY MAIL OFFICIAL BUSINESS FIRST CLASS PERMIT No 0001, APG, MO Postage will be paid by addressee. Director U.S. Army Ballistic Research Laboratory ATTN: SLCBR-DD-T

Aberdeen Proving Ground, MD 21005-5066