Studente: Michele Delli Paoli

Matricola: 0522500797

ESERCITAZIONE 3

1 - Specifiche della macchina

Processore: Intel Core i7-8550U;Velocità processore: 2 GHz;

Memoria: 16 GB;Numero di core: 4.

2 – Algoritmo con strategia a blocchi di righe e colonne

L'algoritmo implementato effettua, oltre alla distribuzione dei dati, il **prodotto** di una Matrice **A** di dimensione m*n per un Vettore **v** di dimensione n, ottenendo come risultato un Vettore **w** di dimensione m, utilizzando la strategia a blocchi di RIGHE e COLONNE.

Il file contenente l'algoritmo è chiamato prodMatVetRowCol.c

N.B.

- 1) L'algoritmo parallelo che implementa la strategia a blocchi di righe e colonne funziona anche per una matrice A **rettangolare**, con **m != n**.
- 2) Inizialmente, l'algoritmo chiede di inserire il numero di righe (p) della Griglia dei processori da creare. Dopodiché, ricava il numero delle colonne (q) effettuando **q = nProc/p**.

3 - Valutazione dello Speedup e dell'Efficienza

Di seguito sono riportate le tabelle dei tempi d'esecuzione dell'algoritmo che implementa la strategia a blocchi di righe e colonne, per P=2 e P=4 processori.

P=2 p=2 (righe Griglia) q=1 (colonne Griglia)

m	n	Tempo Sequenziale (s)	Tempo Parallelo (s)	Sp	Ер
1000	1000	0,0026	0,0014	1,85	0,92
2000	1000	0,0054	0,0026	2,07	1,03
2000	2000	0,01	0,0053	1,88	0,94
4000	2000	0,0202	0,0109	1,85	0,92
4000	4000	0,0405	0,0206	1,96	0,98

P=4 p=2 (righe Griglia) q=2 (colonne Griglia)

m	n	Tempo Sequenziale (s)	Tempo Parallelo (s)	Sp	Ер
1000	1000	0,0026	0,0007	3,71	0,92
2000	1000	0,0054	0,0014	3,85	0,96
2000	2000	0,01	0,0027	3,7	0,92
4000	2000	0,0202	0,0055	3,67	0,91
4000	4000	0,0405	0,0113	3,58	0,89

A seguire, vengono riportati i grafici che rappresentano lo Speedup e l'Efficienza dell'algoritmo parallelo, per P=2 e P=4 processori.

