Análise de resíduos e a estatística qui-quadrado de Pearson

Gustavo Almeida Silva

Table 1:

	Cura	Obito	Permanece.internado
>80	57	90	3
< 80	180	83	37

- a) O que o valor calculado para a estatística qui-quadrado nos fala sobre a hipótese nula? calcular pelo R a estatística qui-quadrado de Pearson e tomar a decisão estatística, explicitando H0, a decisão tomada em relação a H0 e escrevendo a conclusão do teste de hipóteses. Sugestão: após criar a matriz representando a tabela, usar a função chisq.test()
- O **Teste Qui-Quadrado de Pearson** é um metodo que busca determinar se existe correlação estatística significante entre 2 variáveis categóricas. O teste possui as seguintes hipóteses

 ${\cal H}_0:$ Variaveis não possuem correlação significativa

 H_1 : Variaveis possuem correlação significativa

Table 2: Resultado Teste Qui-Quadrado

	Estatistica.de.Teste	P.valor
X-squared	48.39601	0

Assim, o p-valor retornado é baixissimo, ficando do nivel de significancia de 1%. Assim, rejeita-se H_0 , ou seja, as variaveis de idade e status possuem correlação significativa

b) Apresentar a tabela acima com todos os três resíduos discutidos em aula, usando como formato de saída aquele considerado padrão do SPSS, obtido pelos argumentos correspondentes da função do R sugerida a seguir. Sugestão: usar a função CrossTable()1 do pacote gmodels do R

O valor esperado para cada celula é dada pela seguinte tabela:

```
test$expected|>
    kbl(
        booktabs = TRUE,
        escape = FALSE,
        caption = "Valor esperado"
    ) |>
    kable_classic() |>
    kable_styling(
        font_size = 9,
        latex_options = "HOLD_position"
    )
```

Table 3: Valor esperado

	Cura	Obito	Permanece.internado
>80	79	57.66667	13.33333
<80	158	115.33333	26.66667

A partir da tabela podemos calcular 3 tipos diferentes de residuos, são eles:

- Resíduos Brutos
 - A frequência observada em cada célula menos a frequência esperada (na hipótese de independência), ou seja:

$$e_{ij} = n_{ij} - E_{ij}$$

Calculando tal residuo:

```
(test$observed-test$expected)|>
    kbl(
        booktabs = TRUE,
        escape = FALSE,
        caption = "Residuos Brutos"
) |>
    kable_classic() |>
    kable_styling(
        font_size = 9,
        latex_options = "HOLD_position"
)
```

Table 4: Resíduos Brutos

	Cura	Obito	Permanece.internado
>80	-22	32.33333	-10.33333
<80	22	-32.33333	10.33333

• Resíduos de Pearson

 A frequência observada em cada célula menos a frequência esperada, dividido pela raiz quadrada da frequência esperada, conforme equação abaixo:

$$e_{ij} = \frac{n_{ij} - E_{ij}}{\sqrt{E_{ij}}}$$

```
test$residuals|>
    kbl(
        booktabs = TRUE,
        escape = FALSE,
        caption = "Residuos de Pearson"
) |>
    kable_classic() |>
    kable_styling(
        font_size = 9,
        latex_options = "HOLD_position"
)
```

Table 5: Residuos de Pearson

	Cura	Obito	Permanece.internado
>80	-2.475193	4.257827	-2.829900
< 80	1.750226	-3.010739	2.001041

• Resíduos ajustados de Pearson:

- Como os resíduos de Pearson não apresentam variâncias compatíveis com a distribuição normal padrão, sugere-se um ajuste a este resíduo (ver Haberman, 19734), que consiste em dividir o resíduo de Pearson pelo desvio-padrão de todos os resíduos:

$$e_{ij} = \frac{n_{ij} - E_{ij}}{\sqrt{[(1 - \frac{n_{i+}}{N})(1 - \frac{n_{+j}}{N})]}}$$

```
test$stdres|>
    kbl(
        booktabs = TRUE,
        escape = FALSE,
        caption = "Resíduos ajustados de Pearson"
) |>
    kable_classic() |>
```

```
kable_styling(
  font_size = 9,
  latex_options = "HOLD_position"
)
```

Table 6: Resíduos ajustados de Pearson

	Cura	Obito	Permanece.internado
>80	-4.406271	6.646608	-3.63104
< 80	4.406271	-6.646608	3.63104

Para representar os 3 residuos no formato do \mathbf{SPSS} , podemos utlizar a função $\mathit{CrossTable}()$ do pacote $\mathbf{gmodels}$:

```
data|>
  as.matrix()|>
  as.table()|>
  gmodels::CrossTable(resid=T, sresid=T, asresid=T, format = 'SPSS')
```

## ## ##	Cell Conter	nts 			
##	1	Count			
##	Chi-square o	contribution			
##	_	Row Percent			
##	l Col	lumn Percent			
##	Total Percent				
##	1	Residual			
##	5	Std Residual			
##	l Ac	lj Std Resid			
##					
##					
	Total Observat	cions in Table: 450			
##					
##					
##		Cura	Obito	Permanece.internado	Row To
## -	 200				
## ##	 >80	 57		- 3	Row To
## · ## ##	 >80	57 6.127	 90 18.129	3 8.008	150
## ## ## ##	>80	57 6.127 38.000%	 90 18.129 60.000%	3 8.008 2.000%	
## ## ## ##	 80 	57 6.127 38.000% 24.051%	 90 18.129 60.000% 52.023%	3 8.008 2.000% 7.500%	150
## ## ## ## ##	>80	57 6.127 38.000% 24.051% 12.667%	 90 18.129 60.000% 52.023% 20.000%	3 8.008 2.000% 7.500% 0.667%	150
## ## ## ## ##	>80	57 6.127 38.000% 24.051% 12.667% -22.000	 90 18.129 60.000% 52.023% 20.000%	3 8.008 2.000% 7.500% 0.667% -10.333	150
## ## ## ## ## ##	>80	57 6.127 38.000% 24.051% 12.667% -22.000 -2.475	 90 18.129 60.000% 52.023% 20.000% 32.333 4.258	3 8.008 2.000% 7.500% 0.667% -10.333 -2.830	150
## ## ## ## ## ##	>80	57 6.127 38.000% 24.051% 12.667% -22.000	 90 18.129 60.000% 52.023% 20.000%	3 8.008 2.000% 7.500% 0.667% -10.333	150
## ## ## ## ## ## ##	 	57 6.127 38.000% 24.051% 12.667% -22.000 -2.475 -4.406	90 18.129 60.000% 52.023% 20.000% 32.333 4.258 6.647	3 8.008 2.000% 7.500% 0.667% -10.333 -2.830 -3.631	150 33.333%
## ## ## ## ## ##	>80	57 6.127 38.000% 24.051% 12.667% -22.000 -2.475 -4.406		3 8.008 2.000% 7.500% 0.667% -10.333 -2.830 -3.631	150
## ## ## ## ## ## ##	 	57 6.127 38.000% 24.051% 12.667% -22.000 -2.475 -4.406		3 8.008 2.000% 7.500% 0.667% -10.333 -2.830 -3.631 -37 4.004	150 33.333%
## ## ## ## ## ## ## ##	 	57 6.127 38.000% 24.051% 12.667% -22.000 -2.475 -4.406		3 8.008 2.000% 7.500% 0.667% -10.333 -2.830 -3.631 	150 33.333% 300

##	1	22.000	-32.333	10.333	
##	1	1.750	-3.011	2.001	
##	1	4.406	-6.647	3.631	
##					
## Column To	tal	237	173	40	450
##	1	52.667%	38.444%	8.889%	
##					
##					
##					

c) Escolher duas células quaisquer da tabela e escrever, para cada célula escolhida, um resumo analítico sobre os resíduos calculados que contenha uma conclusão sobre o que foi observado.

A primeira célula a ser analisada é a de posição [1,2], que é o numero de óbitos de pessoas com mais de 80 anos. Analisando os residuos é possivel ver que a celula possui um numero de observações maior que o valor esperado, possuindo um residuo ajustado de Pearson de 6.647, isso indica que o numero de óbitos entre pessoas com mais de 80 anos é maior do que o valor esperado calculado via tabela de contigencia

A segunda célula a ser analisada é a de posição [2,1], que é o numero de pessoas com menos 80 curadas . Analisando os residuos é possivel ver que a celula possui um numero de observações maior que o valor esperado, possuindo um residuo ajustado de Pearson de 4.406, isso indica que o numero de pessoas curadas que possuem menos de 80 anos é maior do que o valor esperado calculado via tabela de contigencia