Funkcije

Definicija 1 Relacija $f \subseteq A \times B$ je **funkcija** ako i samo ako

$$(\forall x \in A)(\forall y, z \in B) \Big((x, y) \in f \land (x, z) \in f \Big) \Rightarrow y = z.$$

Kraće rečeno, ako su $a,b \in A$ i a = b, onda je i f(a) = f(b). Slikovno, sledeća situacija je nedopustiva za funkciju:

Primer 1 $f = \{(1, x), (1, y), (3, z)\}$ nije funkcija!

 \star Skup svih prvih komponenti funkcije f naziva se **domen** funkcije (skup originala) i označava se sa $\mathcal{D}(f)$, dok se skup svih drugih komponenti naziva **skup slika** i označava sa $\mathcal{A}(f)$.

Definicija 2 Funkcija je **injektivna** (ili 1-1) ako i samo ako ne postoje dva para čije su prve komponente različite, a druge iste.

Definicija 3 f je funkcija skupa A u skup B ako

- f je funkcija
- $\mathcal{D}(f) = A$ (Domen je jednak skupu A.)
- $\mathcal{A}(f) \subseteq B$ (Skup slika je podskup skupa B.)

Koristimo oznaku $f: A \rightarrow B$.

Definicija 4 Funkcija $f: A \to B$ je **sirjektivna** ako i samo ako $\mathcal{A}(f) = B$. Koristimo oznaku $f: A \xrightarrow{na} B$

 \bigstar Ako je f injektivna funkcija skupa A u skup B, onda koristimo oznaku $f: A \xrightarrow{1-1} B$.

Definicija 5 Ako je $f: A \xrightarrow{1-1} B$, onda je funkcija **bijektivna**.

Definicija 6 Ako je inverzna relacija f^{-1} funkcije f (koju dobijamo tako što se u svakom paru zamene mesta prvoj i drugoj komponenti) takođe funkcija, onda je f^{-1} inverzna funkcija funkcije f.

Primer 2 Za $f = \{(1,a),(2,b),(3,c)\}$ inverzna funkcija je $f^{-1} = \{(a,1),(b,2),(c,3)\}$.

Teorema 1 Za funkciju f postoji njoj inverzna f^{-1} ako i samo ako je f injektivna.

Zadatak 1 Dati su skupovi $A = \{1, 2, 3, 4\}$ i $B = \{a, b, c\}$ i binarne relacije

$$f_1 = \{(1,a),(2,b)\}\$$
 $f_3 = \{(1,c),(2,c),(3,b),(4,b)\}\$

$$f_2 = \{(1,a),(2,b),(3,c),(4,a),(2,a)\}$$
 $f_4 = \{(1,c),(2,b),(3,b),(4,a)\}$

Za sve i \in {1,2,3,4} *ispitati:*

- a) da li su f_i funkcije;
- b) da li su f_i funkcije skupa A u skup B;
- c) da li su f_i injektivne;
- d) da li su f_i sirjektivne funkcije skupa A u skup B;
- e) da li se može definisati injektivna funkcija skupa A u skup B?

Rešenje:

	f je funkcija	$f_i:A\to B$	1-1	$f_i:A\xrightarrow{na}B$
f_1	DA	NE	DA	NE
f_2	NE	NE	NE	NE
f_3	DA	DA	NE	NE
f_4	DA	DA	NE	DA

- f_1 a) Jeste funkcija, dva uređena para sa različitom prvom komponentom.
 - b) Pošto nema uređenog para sa prvom komponentom 3 i 4, f_1 nije funkcija skupa A u skup B.
 - c) Jeste injektivna, razlikuju se druge komponente.
 - d) Pošto nije funkcija skupa A u skup B nije ni sirjektivna funkcija skupa A u skup B.

- $\underline{f_2}$ Nije funkcija jer $(2,b) \in f_2$ i $(2,a) \in f_2$. Pošto f_2 nije funkcija onda ne zadovoljava osobine funkcije.
- f_3 Jeste funkcija skupa A u skup B.
 - c) Nije 1 1 jer $(3, b) \in f_3$ i $(4, b) \in f_3$.
 - d) Nije sirjektivna jer je njen skup slika pravi podskup od B.
- $\underline{f_4}$ Jeste sirjektivna funkcija skupa A u skup B pošto joj je domen ceo skup A, a kodomen ceo skup B. Nije injektivna jer $(2,b) \in f_3$ i $(3,b) \in f_3$.
- e) Ne može se definisati injektivna funkcija skupa A u skup B, pošto skup A ima više elemenata od skupa B tako da će uvek bar 2 originala imati istu sliku.

- ★ Da bi se mogla definisati injektivna funkcija skupa A u skup B mora da važi $|A| \le |B|$, tj. skup A ne sme imati više elemenata nego skup B.
- ★ Relacije možemo zapisati i na sledeći način

$$f = \left(\begin{array}{cccc} a_1 & a_2 & a_3 & \cdots & a_n \\ b_1 & b_2 & b_3 & \cdots & b_n \end{array}\right),$$

što znači da je relacija f sačinjena od uređenih parova oblika (a_i,b_i) za $i \in \{1,2,3,...,n\}$. Relacija f je:

- funkcija akko su svaka dva elementa u prvoj vrsti različita;
- funkcija iz skupa *A* u skup *B* akko je $\{a_1, a_2, ..., a_n\} = A$ i $\{b_1, b_2, ..., b_n\} \subseteq B$;
- injektivna funkcija ako i samo ako su i u drugoj vrsti svaka dva elementa različita;
- sirjektivna funkcija iz skupa A u skup B ako i samo ako je $B = \{b_1, b_2, ..., b_n\}$.

Zadatak 2 Dati su skupovi $A = \{1,2,3\}$ i $B = \{a,b,c,d\}$ i binarne relacije

$$f_1 = \{(1,b), (2,a), (3,c), (2,d)\}$$

$$f_2 = \{(2,b), (3,b)\}$$

$$f_4 = \{(1,c), (2,a)\}$$

Za sve $i \in \{1, 2, 3, 4\}$ *ispitati*:

- a) da li su f_i funkcije;
- b) da li su f_i funkcije skupa A u skup B;
- c) da li su f_i injektivne;
- d) da li su f_i sirjektivne funkcije skupa A u skup B;
- e) da li se može definisati sirjektivna funkcija skupa A u skup B?

Rešenje:

	f je funkcija	$f_i:A\to B$	1-1	$f_i:A\xrightarrow{na}B$
f_1	NE	NE	NE	NE
f_2	DA	NE	NE	NE
f_3	DA	DA	DA	NE
f_4	DA	NE	DA	NE

- $\underline{f_1}$ Nije funkcija, pošto $(2, a) \in f_1$ i $(2, d) \in f_1$. Kako nije funkcija, f_1 ne zadovoljava osobine funkcije.
- f_2 a) Jeste funkcija.
 - *b*) i *d*) Nije funkcija skupa *A* u skup *B* jer ne postoji uređen par čija je prva komponenta 1, pa samim tim ne može biti ni sirjektivna funkcija skupa *A* u skup *B*.
 - c) Nije injektivna jer 2 i 3 imaju istu sliku.
- f_3 a) i b) Jeste funkcija, čiji je domen skup A, a skup slika je podskup skupa B.
 - c) Jeste injektivna.
 - d) Nije sirjektivna funkcija skupa A u skup B jer $c \in B$ nema svoj original.
- $\underline{f_4}$ Jeste funkcija, ali nije funkcija skupa A u skup B jer $3 \in A$ nema svoju sliku, pa samim tim nije ni sirjektivna funkcija skupa A u skup B. Injektivnost je zadovoljena.
- *e*) Ne može se definisati, pošto skup *A* ima manje elemenata od skupa *B* tako da će se jedan element skupa *A* preslikati u 2 elementa skupa *B*, ako bismo želeli da ispunimo uslov sirjektivnosti, čime narušavamo osobinu funkcije.

★ Da bi se mogla definisati sirjektivna funkcija skupa A u skup B mora biti $|A| \ge |B|$, tj. u skupu A mora biti bar onoliko elemenata koliko ih je u skupu B.

Zadatak 3 Za sledeće binarne relacije

$$f_1 = \{(x, x+1) | x \in \mathbb{N}\}$$

$$f_3 = \{(1,1),(2,2),(3,3)\}$$

$$f_2 = \{(x, x-1) | x \in \mathbb{N}\}$$

$$f_4 = \{(x+1, x) | x \in \mathbb{N}\}$$

ispitati za sve i \in {1,2,3,4,5,6}

- a) da li su f_i funkcije;
- *b)* da li su f_i funkcije skupa \mathbb{N} u skup \mathbb{N} ;
- c) da li su f_i funkcije skupa $\mathbb{N} \setminus \{1\}$ u skup \mathbb{N} ;
- *d)* da li su f_i injektivne funkcije skupa \mathbb{N} u skup \mathbb{N} ;
- e) da li su f_i sirjektivne funkcije skupa \mathbb{N} u skup \mathbb{N} ;
- f) da li su f_i bijektivne funkcije skupa \mathbb{N} u skup \mathbb{N} ?

Rešenje:

	f_i je funkcija	$f_i: \mathbb{N} \to \mathbb{N}$	$f_i: \mathbb{N} \setminus \{1\} \to \mathbb{N}$	$f_i: \mathbb{N} \xrightarrow{1-1} \mathbb{N}$	$f_i: \mathbb{N} \xrightarrow{na} \mathbb{N}$	$f_i: \mathbb{N} \xrightarrow{1-1} \mathbb{N}$
f_1	DA	DA	NE	DA	NE	NE
f_2	DA	NE	NE	NE	NE	NE
f_3	DA	NE	NE	NE	NE	NE
f_4	DA	NE	DA	NE	NE	NE

Sve četiri binarne relacije jesu funkcije.

- $\underline{f_1}$ b) Jeste funkcija skupa \mathbb{N} u skup \mathbb{N} , pošto je skup prvih komponenti ceo skup prirodnih brojeva, a skup dugih komponenti je $\mathbb{N} \setminus \{1\}$, što je podskup od \mathbb{N} .
 - c) Nije, pošto je domen skup prirodnih brojeva, nadskup skupa $\mathbb{N} \setminus \{1\}$.
 - d) Zbog načina definisanja jasno se vidi da jeste 1-1, pa je uz b) dobijeno $f_1: \mathbb{N} \xrightarrow{1-1} \mathbb{N}$.
 - *e*) Nije sirjektivna pošto je skup slika $\mathbb{N} \setminus \{1\}$.
 - f) Pošto nije sirjektivna nije ni bijektivna.
- $\underline{f_2}$ Ako počnemo sa brojem 1 vidimo da je prvi uređen par (1,0) u f_2 i da su domen skup \mathbb{N} i skup slika jeste skup \mathbb{N}_0 . Znajući ovu činjenicu lako zaključujemo da funkcija f_2 ne ispunjava niti jednu od osobina traženih u zadatku.
- $\underline{f_3}$ Posmatrajući tri uređena para koji su u f_3 jasno vidimo da to jeste funkcija, ali i da domen i skup slika ove funkcije nisu beskonačni skupovi koji su nam potrebni za preostale osobine.
- $\underline{f_4}$ Još jedna funkcija zadata preko svoje inverzne čiji pravi oblik je $f_4 = \{(x, x-1) | x \in \mathbb{N} \setminus \{1\}\}$. Iz oba načina zapisivanja jasno se vidi da je prvi urđeni par (2, 1), domen je $\mathbb{N} \setminus \{1\}$, a skup slika \mathbb{N} . Pošto ovo nije funkcija skupa \mathbb{N} u skup \mathbb{N} svi odgovori su negativni osim c).

Napomenimo da je $f_4: \mathbb{N} \setminus \{1\} \xrightarrow{1-1}_{na} \mathbb{N}$

Definicija 7 Neka su $A, B \ i \ C$ neprazni skupovi i $f : A \to B \ i \ g : B \to C$ date funkcije. Funkciju $g \circ f$ skupa A u skup C defnisanu sa

$$(\forall x \in A)(g \circ f)(x) = g(f(x))$$

nazivamo **kompozicija funkcija** g i f.

Zadatak 4 Neka je $A = \{1, 2, 3\}$ i neka su $f, g : A \to A$ zadate sa $f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ i $g = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$. Odrediti (ako je moguće): f^{-1} , g^{-1} , $f \circ f$, $f \circ g$, $g \circ f$, $(g \circ f)^{-1}$ i $f^{-1} \circ g^{-1}$.

Rešenje:
$$f^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
 $g \circ f = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ $g^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ $(g \circ f)^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ $f \circ f = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ $f^{-1} \circ g^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ $f \circ g = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$

★ Vidimo da kompozicija funkcija nije komutativna operacija, tj. u opštem slučaju je

$$f \circ g \neq g \circ f$$
.

Međutim, kompozicija je asocijativna operacija, odnosno za sve funkcije f,g,h važi

$$(f \circ g) \circ h = f \circ (g \circ h)$$

(ako su odgovarajuće kompozicije definisane). Takođe, uvek važi

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$
.

Zadatak 5 Za funkcije $f: \mathbb{R} \to \mathbb{R}$ i $g: \mathbb{R} \to \mathbb{R}$ definisane sa f(x) = 2x + 3 i $g(x) = x^2 - 2$ naći funkcije

a)
$$(f \circ g)(x)$$

$$d)$$
 $(g \circ g)(x)$

b)
$$(g \circ f)(x)$$

e)
$$f^{-1}(x)$$

c)
$$(f \circ f)(x)$$

Rešenje:

a)
$$(f \circ g)(x) = f(g(x)) = f(x^2 - 2) = 2(x^2 - 2) + 3 = 2x^2 - 1$$

b)
$$(g \circ f)(x) = g(f(x)) = g(2x+3) = (2x+3)^2 - 2 = 4x^2 + 12x + 7$$

c)
$$(f \circ f)(x) = f(f(x)) = f(2x+3) = 2(2x+3) + 3 = 4x + 9$$

d)
$$(g \circ g)(x) = g(g(x)) = g(x^2 - 2) = (x^2 - 2)^2 - 2 = x^4 - 4x^2 + 2$$

e) Kako je $f = \{(x, 2x + 3) | x \in \mathbb{R}\}$, to je $f^{-1} = \{(2x + 3, x) | x \in \mathbb{R}\}$. Sada je

$$2x+3=t \Rightarrow \frac{t-3}{2}=x \Rightarrow f^{-1}=\left\{\left(t,\frac{t-3}{2}\right) \middle| t \in \mathbb{R}\right\} = \left\{\left(x,\frac{x-3}{2}\right) \middle| x \in \mathbb{R}\right\}$$

odnosno
$$f^{-1}(x) = \frac{x-3}{2}$$
.

Zadatak 6 Za funkcije $f: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) i g: \mathbb{R} \to \mathbb{R}$ definisane sa $f(x) = \arctan x i g(x) = \sqrt[3]{1+x}$ naći funkcije

a)
$$f^{-1}(x)$$

$$d) (g \circ f)^{-1}(x)$$

b)
$$g^{-1}(x)$$

e)
$$(f^{-1} \circ g^{-1})(x)$$

$$c)$$
 $(g \circ f)(x)$

Rešenje:

a)
$$f^{-1}(x) = \lg x$$

b)
$$\sqrt[3]{1+x} = t \implies x = t^3 - 1 \implies g^{-1}(x) = x^3 - 1$$

c)
$$(g \circ f)(x) = g(f(x)) = g(\operatorname{arctg} x) = \sqrt[3]{1 + \operatorname{arctg} x}$$

d)
$$\sqrt[3]{1 + \arctan x} = t \implies \arctan x = t^3 - 1 \implies x = \lg(t^3 - 1) \implies (g \circ f)^{-1}(x) = \lg(x^3 - 1)$$

e)
$$(f^{-1} \circ g^{-1})(x) = f^{-1}(g^{-1}(x)) = f^{-1}(x^3 - 1) = \operatorname{tg}(x^3 - 1)$$

Zadatak 7 Naći domen, skup slika i inverznu funkciju (ako postoji) sledećih funkcija:

$$f_1 = \{(1,2),(2,3),(3,4)\}$$

$$f_5 = \{(x, x^2) | x \in \mathbb{R}^+ \cup \{0\}\}$$

$$f_2 = \{(x, 3x + 4) | x \in \mathbb{R}\}$$

$$f_6 = \{(x, 2^x) \mid x \in \mathbb{R}\}$$

$$f_3 = \{(x, x^3) | x \in \mathbb{R}\}$$

$$f_7 = \{(x, |x|) \mid x \in \mathbb{R}\}$$

$$f_4 = \{(x, x^2) \mid x \in \mathbb{R}\}$$

$$f_8 = \left\{ \left(x, \frac{2x - 1}{5 - 3x} \right) \middle| x \in \mathbb{R} \right\}$$

Rešenje:

$$f_1 \mathcal{D}(f_1) = \{1, 2, 3\}$$

$$\mathcal{A}(f_1) = \{2,3,4\}$$

$$f_1^{-1} = \{(2,1), (3,2), (4,3)\}$$

$$\underline{f_2} \ \mathcal{D}(f_2) = \mathbb{R}$$

$$\mathcal{A}(f_2) = \mathbb{R}$$

$$3x + 4 = t \implies x = \frac{t-4}{3} \implies f_2^{-1} = \left\{ \left(t, \frac{t-4}{3} \right) \middle| t \in \mathbb{R} \right\} = \left\{ \left(x, \frac{x-4}{3} \right) \middle| x \in \mathbb{R} \right\}$$

$$f_3 \mathcal{D}(f_3) = \mathbb{R}$$

$$\mathcal{A}(f_3) = \mathbb{R}$$

$$x^3=t \implies x=\sqrt[3]{t} \implies f_3^{-1}=\left\{(t,\sqrt[3]{t})\,|\,t\in\mathbb{R}\right\}=\left\{(x,\sqrt[3]{x})\,|\,x\in\mathbb{R}\right\}$$

7

$$f_4 \mathcal{D}(f_4) = \mathbb{R}$$

$$\mathcal{A}(f_3) = \mathbb{R}^+ \cup \{0\}$$

 $f_4(-1) = f_4(1) = 1$, pa pošto funkcija nije injektivna, inverzna funkcija ne postoji.

$$f_5 \mathcal{D}(f_5) = [0, +\infty)$$

$$\mathcal{A}(f_5) = [0, +\infty)$$

$$x^2 = t \implies x = \sqrt{t} \implies f_5^{-1} = \left\{ (t, \sqrt{t}) \, | \, t \in [0, + \infty) \right\} = \left\{ (x, \sqrt{x}) \, | \, x \in [0, + \infty) \right\}$$

$$f_6 \mathcal{D}(f_6) = \mathbb{R}$$

$$\mathcal{A}(f_6) = \mathbb{R}^+$$

$$2^x = t \implies x = \log_2 t \implies f_6^{-1} = \left\{ (t, \log_2 t) \, | \, t \in \mathbb{R}^+ \right\} = \left\{ (x, \log_2 x) \, | \, x \in \mathbb{R}^+ \right\}$$

$$f_7 \mathcal{D}(f_7) = \mathbb{R}$$

$$\mathcal{A}(f_7) = \mathbb{R}^+ \cup \{0\}$$

 $f_7(-1) = f_7(1) = 1$, pa pošto funkcija nije injektivna, inverzna funkcija ne postoji.

$$f_8 \mathcal{D}(f_8) = \mathbb{R} \setminus \left\{ \frac{5}{3} \right\}$$

$$\mathcal{A}(f_8) = \mathbb{R} \setminus \left\{ -\frac{2}{3} \right\}$$

$$\frac{2x-1}{5-3x} = t \implies x = \frac{5t+1}{2+3t} \implies f_8^{-1} = \left\{ \left(t, \frac{5t+1}{2+3t} \right) \middle| t \in \mathbb{R} \setminus \left\{ -\frac{2}{3} \right\} \right\} = \left\{ \left(x, \frac{5x+1}{2+3x} \right) \middle| x \in \mathbb{R} \setminus \left\{ -\frac{2}{3} \right\} \right\}$$

Zadatak 8 Za sledeće binarne relacije

$$f_1 = \{(x, \operatorname{arctg} x) | x \in \mathbb{R}\}$$

$$f_4 = \{(e^x, x) | x \in \mathbb{R}\}$$

$$f_2 = \{(x, 2x+1) | x \in \mathbb{R}\}$$

$$f_5 = \{(x+1, x) | x \in \mathbb{R}\}$$

$$f_3 = \{(x, x) | x \in \mathbb{R}\}$$

$$f_6 = \{(x, x+1) | x \in \mathbb{R}\}$$

ispitati za sve i \in {1,2,3,4,5,6}

- a) da li su f_i funkcije;
- b) da li su f_i funkcije skupa \mathbb{R} u skup \mathbb{R} ;
- c) da li su f_i funkcije skupa $\mathbb{R} \setminus \{1\}$ u skup \mathbb{R} ;
- *d)* da li su f_i injektivne funkcije skupa \mathbb{R} u skup \mathbb{R} ;
- e) da li su f_i sirjektivne funkcije skupa \mathbb{R} u skup \mathbb{R} ?
- f) Pronaći f_i^{-1} ukoliko postoji.

Rešenje:

	f_i je funkcija	$f_i: \mathbb{R} \to \mathbb{R}$	$f_i: \mathbb{R} \setminus \{1\} \to \mathbb{R}$	$f_i: \mathbb{R} \xrightarrow{1-1} \mathbb{R}$	$f_i: \mathbb{R} \xrightarrow{na} \mathbb{R}$	$f_i^{-1}(x)$
f_1	DA	DA	NE	DA	NE	tg x!!
f_2	DA	DA	NE	DA	DA	$\frac{x-1}{2}$
f_3	DA	DA	NE	DA	DA	x
f_4	DA	NE	NE	NE	NE	e^x
f_5	DA	DA	NE	DA	DA	x+1
f_6	DA	DA	NE	DA	DA	x-1

Dve osobine mogu se prokomentarisati generalno za sve zadate relacije. Svih šest relacija očigledno jesu funkcije, ali nisu funkcije skupa $\mathbb{R} \setminus \{1\}$ u skup \mathbb{R} , pošto ni jedna nema skup $\mathbb{R} \setminus \{1\}$ za domen (ili imaju ceo \mathbb{R} ili \mathbb{R}^+).

- f_1 b) Domen elementarne funkcije arctg x jeste skup realnih brojeva.
 - d) i e) ona jeste injektivna i njen skup slika je $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, pa f_1 jeste injektivna funkcija skupa \mathbb{R} u skup \mathbb{R} , ali nije sirjektivna.
 - f) Inverzna funkcija postoji, i to je $f^{-1}:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R}$ data sa $f^{-1}(x)=\operatorname{tg} x$.
- $\underline{f_2}$ predstavlja linearnu funkciju, odnosnu pravu, bez ikakvih ograničenja, koja nije paralelna koordinatnim osama, pa je samim tim bijekcija skupa \mathbb{R} u skup \mathbb{R} .
 - f) Inverznu funkciju tražimo kao i u prethodnim zadacima

$$2x + 1 = t \implies t = \frac{x - 1}{2} \implies f_2^{-1} = \left\{ \left(t, \frac{t - 1}{2} \right) \middle| t \in \mathbb{R} \right\} = \left\{ \left(x, \frac{x - 1}{2} \right) \middle| x \in \mathbb{R} \right\}$$
odnosno $f_2^{-1}(x) = \frac{x - 1}{2}$.

 $\underline{f_3}$ je takođe prava, primer identičkog preslikavanja za skup realnih brojeva. Kao i $\underline{f_2}$ nije paralelna koordinatnim osama i radi se o bijektivnom preslikavanju. Inverzna je sama sebi.

 $\underline{f_4}$ zapravo predstavlja logaritamsku funkciju. Na ovaj način zadato je da $\underline{f_4}$ predstavlja inverznu funkciju funkcije $g(x) = e^x$. Za $\underline{f_4} = \ln x$ domen je \mathbb{R}^+ , a skup slika je ceo skup \mathbb{R} . Pošto domen nije niti \mathbb{R} niti $\mathbb{R} \setminus \{1\}$ odgovori na sva pitanja su negativni.

Napomena: Svaka logaritamska funkcija je bijektivno preslikavanje skupa \mathbb{R}^+ na skup \mathbb{R} , i za ovaj domen i kodomen odgovarajuća eksponencijalna funkcija je njena inverzna.

 $\underline{f_5}$ i $\underline{f_6}$ su takođe prave. $\underline{f_5}$ je inverzna funkcija funkcije h(x) = x + 1.

★ Kompozicija injektivnih funkcija je injektivna funkcija.

 \bigstar Funkcija f je injektivna ako i samo ako jednačina t = f(x) nema više od jednog rešenja za bilo koju vrednost parametra t.

 \bigstar $f:A\to B$ je sirjektivna ako i samo ako jednačina t=f(x) ima bar jedno rešenje po x za svako t iz skupa B.

Zadatak 9 Za sledeće funkcije naći domen, inverznu funkciju i domen inverezne funkcije.

$$a) \ f(x) = \log_2 \frac{x}{1 - x}$$

$$b) g(x) = e^{3-2x}$$

Rešenje:

a) Argument logaritamske funkcije mora biti pozitivan, pa domen određujemo na sledeći način

$$\frac{x}{1-x} > 0 \iff x \in (0,1),$$

tj. $\mathcal{D}(f) = (0,1)$. Grafik same razlomljene funkcije nam pokazuje da ona interval (0,1) preslikava u \mathbb{R}^+ i da je injektivna

Pošto smo od razlomljene funkcije dobili domen logaritamske, važi $\mathcal{A}(f) = \mathbb{R}$, a kako je funkcija f injektivna (kao kompozicija injektivnih funkcija) postoji inverzna funkcija i $\mathcal{D}(f^{-1}) = \mathcal{A}(f) = \mathbb{R}$. Inverznu funkciju dobijamo na standardni način

$$\log_2 \frac{x}{1-x} = t \implies \frac{x}{1-x} = 2^t \implies x = 2^t - 2^t \cdot x \implies x = \frac{2^t}{1+2^t}$$

$$f^{-1} = \left\{ \left(t, \frac{2^t}{2^t + 1} \right) \middle| t \in \mathbb{R} \right\} = \left\{ \left(x, \frac{2^x}{2^x + 1} \right) \middle| x \in \mathbb{R} \right\},$$

$$tj. \ f^{-1}(x) = \frac{2^x}{2^x + 1} \ i \ va\check{z}i \ f : (0, 1) \xrightarrow{n_d} \mathbb{R}$$

b) Funkcija g je kompozicija eksponencijalne i linearne funkcije. Linearna funkcija je bijekcija iz \mathbb{R} na \mathbb{R} , a eksponencijalna je bijekcija iz \mathbb{R} na \mathbb{R}^+ , pa se radi o dobro definisanoj kompoziciji injektivnih funkcija. Stoga je $\mathcal{D}(g) = \mathbb{R}$ i $\mathcal{A}(g) = \mathbb{R}^+$. Inverznu funkciju tražimo standardno i dobija se $g^{-1}(x) = \frac{3 - \ln x}{2}$, odakle se još jasnije vidi da je domen inverzne funkcije $\mathcal{D}(g^{-1}) = \mathcal{A}(g) = \mathbb{R}^+$. Na kraju, važi i $g : \mathbb{R} \xrightarrow{1-1} \mathbb{R}^+$.

Zadatak 10 Naći inverznu funkciju i domen inverzne funkcije za

$$f_1(x) = 2x + 3$$

$$f_5(x) = x^3$$

$$f_2(x) = \frac{x+1}{x-1}$$

$$f_6(x) = \frac{1}{x}$$

$$f_3(x) = \arccos x$$

$$f_7(x) = \sqrt{1 - x^2} \ za \ x \in (0, 1)$$

$$f_4(x) = 2^x$$

Rešenje:

$$f_1(x) = 2x + 3$$

$$f_1$$

$$\mathcal{D}(f_1) = \mathbb{R}$$

$$f_1$$
:

$$f_1^{-1}(x) = \frac{x-3}{2}$$

$$\mathcal{D}(f_1^{-1}) = \mathbb{R}$$

 $\underline{f_2(x)} = \frac{x+1}{x-1}$

$$\mathcal{D}(f_2) = \mathbb{R} \setminus \{1\}$$

$$f_2$$
:

$$f_2^{-1}(x) = \frac{x+1}{x-1}$$

$$\mathcal{D}(f_2^{-1}) = \mathbb{R} \setminus \{1\}$$

$\underline{f_3(x)} = \arccos x$

$$\mathcal{D}(f_3) = [-1, 1]$$

$$\arccos: [-1,1] \rightarrow [0,\pi]$$

$$f_3^{-1}(x) = \cos x$$

$$\mathcal{D}(f_3^{-1}) = [0,\pi]$$

$$\mathcal{D}(f_4) = \mathbb{R}$$

$$f_4^{-1}(x) = \log_2 x$$

$$\mathcal{D}(f_4^{-1}) = \mathbb{R}^+$$

$$\mathcal{D}(f_5) = \mathbb{R}$$

$$f_5^{-1}(x) = \sqrt[3]{x}$$

$$\mathcal{D}(f_5^{-1}) = \mathbb{R}$$

$$\underline{f_6(x)} = \frac{1}{x}$$

$$\mathcal{D}(f_6) = \mathbb{R} \setminus \{0\}$$

$$f_6^{-1}(x) = \frac{1}{x}$$

$$\mathcal{D}(f_6^{-1}) = \mathbb{R} \setminus \{0\}$$

$$\underline{f_7(x)} = \sqrt{1 - x^2}$$

$$\mathcal{D}(f_7) = (0,1)$$

$$f_7^{-1}(x) = \sqrt{1 - x^2}$$

$$\mathcal{D}(f_7^{-1}) = (0,1)$$

Zadatak 11 Neka je A najveći podskup od \mathbb{R} , a B najmanji podskup od \mathbb{R} za koje je funkcija $f: A \to B$ definisana sa $f(x) = \sqrt[3]{\ln(x^2 - 1)}$. Tada je $A = \underline{\hspace{1cm}}$, $B = \underline{\hspace{1cm}}$ i funkcija $f: A \to B$ je

- a) sirjektivna, ali nije injektivna
- b) injektivna, ali nije sirjektivna
- c) niti sirjektivna, niti injektivna
- d) bijekcija

(zaokružiti tačan odgovor).

Rešenje: Ovo je jedan od standardnih problema na testu. Potrebno je odrediti domen (skup *A*) i skup slika (skup *B*) zadate funkcije i odgovoriti na pitanje njenih osobina.

Data funkcija je kompozicija kvadratne funkcije, logaritamske funkcije i trećeg korena, pri čemu su kvadratna funkcija i treći koren definisane za sve vrednosti iz $\mathbb R$ dok je logaritamska

funkcija definisana samo za pozitivne vrednosti. Prema tome, mora da važi $x^2 - 1 > 0$, odakle je domen funkcije f

$$A = \mathcal{D}(f) = (-\infty, -1) \cup (1, \infty).$$

Zapišimo sada tri funkcije čijom kompozicijom dobijamo funkciju f:

$$g(x) = x^2 - 1$$
, $h(x) = \ln x$ i $l(x) = \sqrt[3]{x}$.

 $\underline{g(x)}$ Funkcija g skup A slika na skup (0, ∞) (isprekidano je povučen deo grafika koji ne odgovara skupu koji preslikavamo).

h(x) Funkcijom $y = \ln x$ skup $(0, \infty)$ preslikavamo na \mathbb{R} .

l(x) Funkcija $y = \sqrt[3]{x}$ preslikava skup \mathbb{R} na skup \mathbb{R} .

Prema tome, $B = \mathcal{A}(f) = \mathbb{R}$.

S obzirom da je B skup slika, funkcija f je sirjektivna, ali nije injektivna (zbog kvadratne funkcije), npr. $f(-2) = f(2) = \sqrt[3]{\ln 3}$.

Zadatak 12 Neka je A najveći podskup od \mathbb{R} , a B najmanji podskup od \mathbb{R} za koje je funkcija $f: A \to B$ definisana sa $f(x) = -\ln(x^2 + 1)$. Tada je $A = \underline{\hspace{1cm}}, B = \underline{\hspace{1cm}}, f(0) = \underline{\hspace{1cm}}, f(\underline{\hspace{1cm}}) = -\ln 2 \ i \ funkcija \ f: A \to B \ je$

- a) sirjektivna, ali nije injektivna
- b) injektivna, ali nije sirjektivna
- c) niti sirjektivna, niti injektivna
- d) bijekcija

(zaokružiti tačan odgovor).

Rešenje: Domen funkcije je $\mathcal{D}(f) = A = \mathbb{R}$, pošto je $x^2 + 1 > 0$ za sve $x \in \mathbb{R}$. Funkcije čijom kompozicijom dobijamo funkciju f su:

$$g(x) = x^2 + 1$$
, $h(x) = \ln x$ i $l(x) = -x$.

g(x) Sa grafika funkcije $g(x) = x^2 + 1$ vidimo da ona preslikava skup A u skup $[1, \infty)$.

h(x) Pravimo restrikciju domena funkcije $y = \ln x$, posmatramo $[1, \infty)$.

Isprekidano je povučen deo grafika koji ne odgovara skupu koji preslikavamo. Pošto je $\ln 1 = 0$ i $y = \ln x$ je rastuća funkcija, sa $y = \ln x$ skup $[1, \infty)$ preslikavamo na $[0, \infty)$.

 $\underline{l(x)}$ Preslikavamo skup [0, ∞) funkcijom y = -x.

Funkcija y = -x skup $[0, \infty)$ preslikava na $(-\infty, 0]$ i to je naš skup B. Zaključak, na liniju za skup A pišemo domen funkcije f skup \mathbb{R} , a za skup B pišemo $(-\infty, 0]$. Funkcija je sirjektivna, ali nije injektivna (zbog kvadratne funkcije i domena), npr. $f(-1) = f(1) = -\ln 2$. Dati primer je odgovor i na pitanje za koju vrednost iz domena funkcija daje sliku $-\ln 2$, pa je na tu liniju potrebno uneti i -1 i 1. $f(0) = -\ln(0+1) = -\ln 1 = 0$, što je poslednja tražena vrednost.

- a) sirjektivna, ali nije injektivna
- b) injektivna, ali nije sirjektivna
- c) niti sirjektivna, niti injektivna
- d) bijekcija

(zaokružiti tačan odgovor).

Rešenje: Domen funkcije je $\mathcal{D}(f) = A = [0, \infty)$, pošto je $\sqrt{x} \ge 0$ za sve $x \in [0, \infty)$, što je skup vrednosti za koje je kvadratni koren definisan.

Sada funkciju možemo podeliti na dva dela (dve funkcije čiju kompoziciju vršimo), prvo $g(x) = 2 + \sqrt{x}$, pa $h(x) = \ln x$.

g(x) Posmatramo grafik funkcije $g(x) = 2 + \sqrt{x}$ i kako ona preslikava skup A.

Funkcija g(x) preslikava skup A u skup $[2, \infty)$.

h(x) Pravimo restrikciju domena funkcije $y = \ln x$, posmatramo $[2, \infty)$.

Isprekidano je povučen deo grafika koji ne odgovara skupu koji preslikavamo. Pošto je $\ln 2 > 0$ i $y = \ln x$ je rastuća funkcija, sa h(x) skup $[2, \infty)$ preslikavamo na $[\ln 2, \infty)$.

Zaključak, na liniju za skup A pišemo domen funkcije f skup $[0,\infty)$, a za skup B pišemo $[\ln 2,\infty)$. Funkcija je bijektivna, jer je kompozicija injektivnih elementarnih funkcija, a domen i kodomen su napravljeni da ispoštuju definiciju sirjektivne funkcije. Original koji odgovara slici $\frac{1}{2}$ ne postoji, pošto je $\frac{1}{2} < \ln 2$. $f(2) = \ln(2 + \sqrt{4}) = \ln 4$, što je poslednja tražena vrednost. \square

Zadatak 14 Neka je A najveći podskup od \mathbb{R}^+ , a B najmanji podskup od \mathbb{R} za koje je funkcija $f:A\to B$ definisana sa $f(x)=-\sqrt{1-x^2}$. Tada je A=_______, B=______. Odrediti, ako je moguće, inverznu funkciju i njen domen i skup slika.

Rešenje: Funkcija potiče od jednačine jedinične kružnice $x^2 + y^2 = 1$. Na ovaj način biramo tačno četvrtinu kružnice i pravimo bijektivnu funkciju od izraza koji ne zadovoljava definiciju funkcije. Pošto uzimamo za A najveći podskup od \mathbb{R}^+ , domen je $\mathcal{D}(f) = A = (0,1]$. Zbog minusa ispred korena u funkciji f, i činjenice da je A = (0,1], dobijamo četvrtinu kružnice iz četvrtog kvadranta.

Pošto je nula isključena iz domena, broja -1 nema u skupu slika, i time jasno dolazimo do skupa B = (-1,0]. Što se tiče inverzne, nju u potpunosti određujemo preko domena i skupa slika same funkcije, kao i standardne metode. Jasno $\mathcal{D}(f^{-1}) = B = (-1,0]$ i $\mathcal{A}(f^{-1}) = A = (0,1]$. Na kraju, inverzna funkcija se dobija na standardan način uz napomenu da nam oblik A određuje predznak ispred korena. U ovom slučaju pošto je A = (0,1], skup slika inverzne funkcije čine pozitivni brojevi, pa imamo $f^{-1}(x) = \sqrt{1-x^2}$.

Zadatak 15 Neka je A najveći podskup od \mathbb{R}^- , a B najmanji podskup od \mathbb{R} za koje je funkcija $f: A \to B$ definisana sa $f(x) = -\sqrt{1-x^2}$. Tada je $A = \underline{\hspace{1cm}}, B = \underline{\hspace{1cm}}$. Odrediti, ako je moguće, inverznu funkciju i njen domen i skup slika.

Rešenje: Pošto uzimamo za A najveći podskup od \mathbb{R}^- , domen je $\mathcal{D}(f) = A = [-1,0)$. Zbog minusa ispred korena u funkciji f, i činjenice da je A = [-1,0), dobijamo četvrtinu kružnice iz trećeg kvadranta:

Kako je nula isključena iz domena, broja -1 nema u skupu slika, i time jasno dolazimo do skupa B = (-1,0]. Što se tiče inverzne, nju u potpunosti određujemo preko domena i skupa slika same funkcije, kao i standardne metode. Jasno $\mathcal{D}(f^{-1}) = B = (-1,0]$ i $\mathcal{A}(f^{-1}) = A = [-1,0)$. Na kraju, inverzna funkcija se dobija na standardan način uz napomenu da nam oblik A određuje predznak ispred korena. U ovom slučaju pošto skup slika inverzne funkcije treba da bude A = [-1,0), a ovaj skup čine negativni brojevi, imamo da je $f^{-1}(x) = -\sqrt{1-x^2}$.

Primer 3 *Neka su A* = $\{1, 2, 3\}$ *i B* = $\{x, y\}$. *tada je*

$$|\{f|f:A \to B\}| = 2^3 = 8$$

$$|\{f|f:A \xrightarrow{1-1} B\}| = 0$$

$$|\{f|f:A \xrightarrow{na} B\}| = 2^3 - 2 = 6$$

$$|\{f|f:B \to A\}| = 3^2 = 9$$

$$|\{f|f:B \xrightarrow{na} A\}| = 0$$

$$|\{f|f:A \xrightarrow{1-1} A\}| = 0$$

★ $\binom{n}{k}$ je binomni koeficijent i računa se po formuli $\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$

Definicija 8 Funkcija $f: A \to B$ je rastuća, označavamo sa \nearrow , ako i samo ako za sve $a, b \in A$ važi $a < b \Rightarrow f(a) < f(b)$. Broj rastućih funkcija iz skupa A u skup B računa se po formuli $C_{|A|}^{|B|} = \binom{|B|}{|A|}$ (broj kombinacija bez ponavljanja).

Definicija 9 Funkcija $f: A \to B$ je neopadajuća, označavamo sa \nearrow , ako i samo ako za sve $a,b \in A$ važi $a \le b \Rightarrow f(a) \le f(b)$. Broj neopadajućih funkcija iz skupa A u skup B računa se po formuli $\overline{C}_{|A|}^{|B|} = {|B| + |A| - 1 \choose |A|}$ (broj kombinacija sa ponavljanjem).

Primer 4 Za skup $A = \{1, 2\}$ prebrojati rastuće funkcije u sledećim slučajevima.

$$|\{f|f: \{1,2\} \to \{1,2\} \land f \nearrow\}| = \underline{1}$$

$$|\{f|f: \{1,2\} \to \{1,2,3\} \land f \nearrow\}| = \left(\frac{3}{2}\right) = 3$$

$$|\{f|f: \{1,2\} \to \{1,2,3,4\} \land f \nearrow\}| = \left(\frac{4}{2}\right) = 6$$

$$|\{f|f: \{1,2\} \to \{1,2,3,4,5\} \land f \nearrow\}| = \left(\frac{5}{2}\right) = 10$$

$$|\{f|f: \{1,2\} \to \{1,2,3,...,n\} \land f \nearrow\}| = \left(\frac{n}{2}\right)$$

Primer 5 Za skup $A = \{1, 2, 3\}$ prebrojati rastuće funkcije u sledećim slučajevima.

$$|\{f|f: \{1,2,3\} \to \{1,2\} \land f \nearrow\}| = \underline{0}$$

$$|\{f|f: \{1,2,3\} \to \{1,2,3\} \land f \nearrow\}| = \frac{\binom{3}{3}}{3} = \underline{1}$$

$$|\{f|f: \{1,2,3\} \to \{1,2,3,4\} \land f \nearrow\}| = \frac{\binom{4}{3}}{3} = \underline{4}$$

$$|\{f|f: \{1,2,3\} \to \{1,2,3,4,5\} \land f \nearrow\}| = \frac{\binom{5}{3}}{3} = \underline{10}$$

$$|\{f|f: \{1,2,3\} \to \{1,2,3,...,n\} \land f \nearrow\}| = \binom{n}{3}$$

Primer 6 Za skup $A = \{1,2\}$ prebrojati neopadajuće funkcije u sledećim slučajevima.

$$\begin{aligned} \left| \{f|f: \{1,2\} \to \{1,2\} \land f / \} \right| &= \underbrace{\binom{2+2-1}{2}} = \binom{3}{2} = 3 \\ \left| \{f|f: \{1,2\} \to \{1,2,3\} \land f / \} \right| &= \underbrace{\binom{3+2-1}{2}} = \binom{4}{2} = 6 \\ \left| \{f|f: \{1,2\} \to \{1,2,3,4\} \land f / \} \right| &= \underbrace{\binom{4+2-1}{2}} = \binom{5}{2} = 10 \\ \left| \{f|f: \{1,2\} \to \{1,2,3,...,n\} \land f / \} \right| &= \underbrace{\binom{n+2-1}{2}} \end{aligned}$$

Primer 7 Za skup $A = \{1,2,3\}$ prebrojati neopadajuće funkcije u sledećim slučajevima.

$$\begin{aligned} \left| \{f|f: \{1,2,3\} \to \{1,2\} \land f \underline{\nearrow} \} \right| &= \underline{\binom{2+3-1}{3}} = \binom{4}{3} = 4 \\ \left| \{f|f: \{1,2,3\} \to \{1,2,3\} \land f \underline{\nearrow} \} \right| &= \underline{\binom{3+3-1}{3}} = \binom{5}{3} = 10 \\ \left| \{f|f: \{1,2,3\} \to \{1,2,3,4\} \land f \underline{\nearrow} \} \right| &= \underline{\binom{4+3-1}{3}} = \binom{6}{3} = 20 \\ \left| \{f|f: \{1,2,3\} \to \{1,2,3,...,n\} \land f \underline{\nearrow} \} \right| &= \underline{\binom{n+3-1}{3}} \end{aligned}$$