CPSC 421: Introduction to Theory of Computing

Winter Term 1 2018-19

Lecture 20: October 24

Lecturer: Nicholas Harvey Scribes: Kaitian Xie

20.1 Time Hierarchy Theorem

Definition 20.1 $EXP = \bigcup_{k \geq 1} TIME(2^{n^k})$ and $P = \bigcup_{c > 0} TIME(n^c)$

Claim 20.2 $P \subseteq EXP$

Why? Because $n^c = O(2^n)$.

Theorem 20.3 Time Hierarchy Theorem (Sipser Thm 9.10)

Let $f: \mathbb{N} \to \mathbb{N}$ be "reasonable", and $f(n) = \Omega(n \log n)$. Then $TIME(f(n)) \not\subseteq TIME(f(4n)^4 \text{ or } f(n)^2)$

E.g. Let $f(n) = n^c$, $TIME(n^c) \not\subseteq TIME(n^{4c})$, $\forall c > 1$.

Corollary 20.4 $TIME(n^c) \not\subseteq TIME(2^n), \forall c > 1$

Corollary 20.5 $P \not\subseteq TIME(2^n) \subseteq EXP$

Claim 20.6 $P \subseteq NP$

Why? Any DTM is trivially an NTM.

Claim 20.7 $3COLORMAP \in NP$

Here's an NTM that decides it: On input x,

- 1. Reject if $x \notin \langle G \rangle$.
- 2. Let n be # countries in G.
- 3. Nondeterministically pick $Z \in \{1, 2, 3\}^n$
- 4. For all $c, j \in \{1, \dots, n\}$, if i neighbours j and $Z_i = Z_j$, reject.
- 5. Accept.

Runtime of NTM is $O(n^2) = O((\text{input length})^2)$.

Claim 20.8 $NP \subseteq EXP$

20-2 Lecture 20: October 24

Open Question 1: Is $P \neq NP$?

Open Question 2: Is $N \neq EXP$?

Theorem 20.9 Either Question 1 or Question 2 is True.

Why? Because $P \neq EXP$. It is believed that $P \neq NP \neq EXP$.

Theorem 20.10 (Sipser 7.20): The following are equivalent:

- 1. $L \in NP$
- 2. There exists a deterministic, polynomial time TM V and a constant c, such that $L = \{x \in \Sigma^* \exists y \in \Sigma^* \text{ such that } |y| \leq |x|^c \text{ and V accepts } (x,y)\}$

 ${\cal V}$ is called a "verifier". y is called a "certificate".