punti				
$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	distanza tra due punti $A(x_1, y_1)$, $B(x_2, y_2)$			
$x_M = \frac{x_1 + x_2}{2} \qquad y_M = \frac{y_1 + y_2}{2}$	coordinate del punto medio $M(x_M, y_M)$ tra due punti $A(x_1, y_1), B(x_2, y_2)$			
$x_G = \frac{x_1 + x_2 + x_3}{3}$ $y_G = \frac{y_1 + y_2 + y_3}{3}$	coordinate del baricentro $G(x_G, y_G)$ di un triangolo di vertici $A(x_1, y_1), B(x_2, y_2), C(x_3, y_3)$			

$A(x_1, y_1), B(x_2, y_2), C(x_3, y_3)$				
retta				
$ax + by + c = 0$ forma implicita $y = mx + q$ $m = -\frac{a}{b}$ e $q = -\frac{c}{b}$ forma esplicita	equazione della retta m è il coefficiente angolare	q 1		
$\frac{x}{p} + \frac{y}{q} = 1$ forma segmentaria	q è l'intersezione con l'asse delle y p è l'intersezione con l'asse delle x	p m		
$m_{AB} = \frac{y_2 - y_1}{x_2 - x_1}$	coefficiente angolare della retta pa	ssante per due punti $A(x_1, y_1), B(x_2, y_2)$		
$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$	equazione della retta passante per	due punti $A(x_1, y_1)$, $B(x_2, y_2)$		
$y - y_0 = m(x - x_0)$	equazione della retta passante per un punto $P(x_0, y_0)$ di coefficiente angolare m			
$m_r = m_s$	condizioni di parallelism o tra due rette r ed s			
$egin{aligned} m{m_r} = -1/m{m_s} & ext{oppure} & m{m_r}\cdotm{m_s} = -1 \end{aligned}$	condizioni di perpendicolarità tra due rette r ed s			
$\left\{ \begin{array}{ll} equazione\ di\ r \\ equazione\ di\ s \end{array} \right. \to \left. \begin{array}{ll} x_0,y_0 \end{array} \right. \to \left. \begin{array}{ll} P(x_0,y_0) \end{array} \right.$	punto $P(x_0, y_0)$ di intersezione tra due rette r ed s	$P(x_0,y_0)$		
$d = \frac{ ax_0 + by_0 + c }{\sqrt{a^2 + b^2}}$ retta in forma implicita	distanza di un punto $P(x_0, y_0)$ da una retta r	d $P(x_0,y_0)$		
$d=rac{ y_0-mx_0-q }{\sqrt{m^2+1}}$ retta in forma esplicita	ua ulla letta I	r		
$\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \pm \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}$	equazione delle bisettrici degli angoli formati da due rette r , s r : $a_1x + b_1y + c_1 = 0$ s : $a_2x + b_2y + c_2 = 0$	r b_2 s b_1		
$tg \alpha = \frac{m_r - m_s}{1 + m_r m_s}$	tangente dell' angolo formato da du di coefficiente angolare m_r ed m_r			

parabola

La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta data d detta direttrice:

parabola con asse di simmetria parallelo all'asse y

parabola con asse di simmetria parallelo all'asse x

$y = ax^2 + bx + c$	equazione completa	$x = ay^2 + by + c$
$V\left(\frac{-b}{2a};\frac{-\Delta}{4a}\right) \qquad \qquad \Delta = b^2 - 4ac$	coordinate del vertice	$V\left(\frac{-\Delta}{4a};\frac{-b}{2a}\right) \qquad \qquad \Delta = b^2 - 4ac$
$F\left(\frac{-b}{2a};\frac{1-\Delta}{4a}\right)$	coordinate del fuoco	$F\left(\frac{1-\Delta}{4a};\frac{-b}{2a}\right)$
$x = \frac{-b}{2a}$	equazione dell' asse	$y = \frac{-b}{2a}$
$y = \frac{-1 - \Delta}{4a}$	equazione della direttrice	$x = \frac{-1 - \Delta}{4a}$
$\frac{y_0+y}{2}=ax_0\cdot x+b\frac{x_0+x}{2}+c$	equazione della retta tangente alla parabola in un suo punto $P_0(x_0, y_0)$ detta formula di sdoppiamento	$\frac{x_0 + x}{2} = ay_0 \cdot y + b \frac{y_0 + y}{2} + c$
$\mathcal{A} = \frac{2}{3}\mathcal{R}$ con \mathcal{R} area del rettangolo circoscritto al segmento parabolico	area del segmento parabolico	

se a = 0 la parabola degenera in una retta

circonferenza

La circonferenza è il luogo geometrico dei punti del piano equidistanti da un punto fisso C detto centro:

 $\overline{PC} = r$

$x^2 + y^2 + ax + by + c = 0$	equazione completa
-------------------------------	--------------------

$$C(\alpha, \beta)$$

$$\alpha = -a/2$$
$$\beta = -b/2$$

coordinate del **centro** C

$$r = \sqrt{\alpha^2 + \beta^2 - c}$$

relazione del **raggio** r

$$(x-\alpha)^2 + (y-\beta)^2 = r^2$$

equazione della circonferenza di centro $C(\alpha, \beta)$ e raggio r

$$x_0 \cdot x + y_0 \cdot y + a \frac{x_0 + x}{2} + b \frac{y_0 + y}{2} + c = 0$$

equazione della retta tangente alla circonferenza in un **suo** punto $P_0(x_0,y_0)$ detta formula di **sdoppiamento**

$$(a_1 - a_2)x + (b_1 - b_2)y + c_1 - c_2 = 0$$

equazione dell'asse radicale di due circonferenze

se a = b = c = 0 la circonferenza si riduce al punto O(0,0) origine degli assi cartesiani

alcune formule sul cerchio e sulla circonferenza				
cerch	cerchio settore circo		segmento circolare ad una base	
0		O a A B	O O O B	
area del cerchio $\mathcal{A}=m{\pi}\cdot m{r}^2$	circonferenza $l=2\cdot\pi\cdot r$	$\mathcal{A} = \frac{\pi \cdot r^2 \cdot \alpha}{360^{\circ}}$	$\mathcal{A} = \mathcal{A}_{settore\ circolare}\ - \mathcal{A}_{triangoloAOB}$	

ellisse

L'ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi F_1 e F_2 detti fuochi è costante:

ellisse con i fuochi sull'asse x

ellisse con i fuochi sull'asse y

$\overline{PF_1} + \overline{PF_2} = 2a$			$\overline{PF_1} + \overline{PF_2} = 2b$	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $a > b$	equazione in forma canonica		$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	a < b
<i>2a</i>	lunghezza asse maggiore		<i>2b</i>	
2b	lunghezza a	asse minore	<i>2a</i>	
2c	distanza focale		<i>2c</i>	
$c^2 = a^2 - b^2$	relazione tra i parametri a, b, c		$c^2 = b^2 - a^2$	
$F_1(-c; 0)$ $F_2(c; 0)$	coordinate dei fuochi		$F_1(0;-c)$	$F_2(0;c)$
$e = \frac{c}{a} \qquad 0 < e < 1$	eccentricità		$e = \frac{c}{b}$	0 < <i>e</i> < 1
$b^2 x_0 x + a^2 y_0 y = a^2 b^2$	ellisse nel suo pur	etta tangente alla ato $P_0(x_0, y_0)$ detta doppiamento	$b^2 x_0 x + a^2 y_0 y = a^2 b^2$	

l'ellisse si dice traslata se gli assi X e Y del suo sistema di riferimento sono paralleli agli assi cartesiani x e y

	(0	R
U	(α,	\boldsymbol{p}

coordinate del centro dell'ellisse

$$\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 1$$

equazione dell'ellisse riferita al sistema XOY

_		Free	_	
		450		
	b	报题		୍ଦ
		-66		(111)
- V adada	000	松金	a	

$$A = \pi ab$$

per a=b l'ellisse diventa una circonferenza e la formula diventa quella dell'area del cerchio $\mathcal{A}=\pi r^2$

$$l = \pi \left[3(a+b) - \sqrt{(3a+b)(a+3b)} \right]$$

la lunghezza si calcola solo come sviluppo in serie di un integrale curvilineo: un buon valore approssimato è dato dalla formula del matematico indiano Ramanujan

area e lunghezza dell'ellisse

iperbole

L'iperbole è il luogo geometrico dei punti del piano tali che la differenza in valore assoluto delle distanze da due punti fissi F_1 e F_2 detti fuochi è costante:

l					//	1 *
iperbole con i fuochi sull'asse x			ipert	oole con i fuochi	sull'asse y	
$ \overline{PF_1} - \overline{PF_2} = 2a$			$ \overline{PF_1} - \overline{PF_2} = 2b$			
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$		equazione in f	orma canonica	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$		
2a		lunghezza as	sse trasverso	2b		
2b		lunghezza asse	e non trasverso	2a		
2c		distanza focale		2c		
$c^2 = a^2 + b^2$		relazione tra i parametri a, b, c		$c^2 = a^2 + b$	2	
$F_1(-c; 0)$	$F_2(c; 0)$	coordinate dei fuochi		$F_1(0;-c)$		$F_2(0; c)$
$y = \pm \frac{b}{a}x$		equazione degli asintoti		$y = \pm \frac{b}{a}x$		
$e = \frac{c}{a}$	e > 1	eccentricità		$e = \frac{c}{b}$		<i>e</i> > 1
$b^2x_0x - a^2y_0y = a^2b$		erbole nel suo pu	etta tangente alla nto $P_0(x_0, y_0)$ detta doppiamento	$b^2x_0x-a^2$	$y_0y = -a$	a^2b^2

iperbole equilatera: a = b				
$x^2 - y^2 = a^2$		equazione	$x^2 - y^2 = -a^2$	
$c^2=2a^2$		relazione tra a, c	$c^2 = 2a^2$	
$F_1(-c; 0)$	$F_2(c; 0)$	coordinate dei fuochi	$F_1(0;-c)$	$F_2(0; c)$
y = -x	y = x	equazione degli asintoti	y = -x	y = x

iperbole equilatera ruotata e traslata detta funzione omografica			
y ↑	equazione	$y = \frac{ax + b}{cx + d}$	$c \neq 0$ $ad - bc \neq 0$
0'	coordinate di O'	$O'\left(-\frac{d}{c};\frac{a}{c}\right)$	
-	equazione degli asintoti	$x = -\frac{d}{c}$	$y = \frac{a}{c}$

proprietà comuni a tutte le coniche

condizione di appartenenza di un punto $P_0(x_0,y_0)$ ad una retta ${f r}$ o ad una conica ${f \Gamma}$

per verificare se un dato punto $P_0(x_0,y_0)$ appartiene ad una retta r oppure ad una conica Γ

- si sostituiscono le coordinate di P_0 , x_0 e y_0 , in \mathbf{r} o in Γ
- si sviluppano i calcoli. Se si ottiene un'identità, il punto P_0 appartiene alla retta o alla conica

7 di 7

per verificare se una retta è secante, tangente o esterna ad una conica Γ bisogna:

- ricavare la y dell'equazione della retta e sostituirla nell'equazione della conica
- sviluppare i calcoli ed ordinare l'equazione rispetto alla x
- dell'equazione di II grado così ottenuta calcolare il $\Delta = b^2 4ac$ oppure, se b è pari, il $\frac{\Delta}{4} = \left(\frac{b}{2}\right)^2 ac$
- verificare il segno del Δ
- se $\Delta > 0$ la retta è **secante** alla conica. Si hanno 2 intersezioni reali e distinte cioè **2 punti in comune**
 - se $\Delta = 0$ la retta è **tangente** alla conica. Si hanno 2 intersezioni reali e coincidenti cioè **1 punto in comune**
 - se $\Delta < 0$ la retta è **esterna** alla conica. Non si ha nessuna intersezione reale cioè **nessun punto in comune**

ricerca delle equazioni delle rette tangenti ad una conica				
tangenti da un punto esterno $P_0(x_0,y_0)$	tangenti parallele ad una retta di coefficiente angolare m			
 si scrive l'equazione del fascio di rette <i>proprio</i> di centro P₀(x₀, y₀): y - y₀ = m(x - x₀) si ricava la y dall'equazione del fascio di rette 	• si scrive l'equazione del fascio di rette <i>improprio</i> di coefficiente angolare m assegnato: $y = mx + q$			
si sostituisce la y trovata nell'equazione della conica	si sostituisce la y trovata nell'equazione della conica			
• si sviluppano i calcoli e si ordina rispetto alla <i>x</i> ottenendo un'equazione di II grado in <i>x</i>	• si sviluppano i calcoli e si ordina rispetto alla x ottenendo un'equazione di II grado in x			
• si ricava il Δ o il $\Delta/4$ e lo si impone uguale a 0: $\Delta = 0$ ottenendo una equazione di II grado nell'incognita m	• si ricava il Δ o il $\Delta/4$ e lo si impone uguale a 0: $\Delta = 0$ ottenendo una equazione di I o II grado nell'incognita q			
• si risolve l'equazione in m ottenendo m_1 ed m_2	• si risolve l'equazione in q ottenendo $\ensuremath{m{q_1}}$ e $\ensuremath{m{q_2}}$			
• si sostituiscono uno alla volta i valori m_1 ed m_2 nell'equazione iniziale del fascio ottenendo le equazioni delle due rette tangenti	$ullet$ si sostituiscono uno alla volta i valori q_1 e q_2 nell'equazione iniziale del fascio ottenendo le equazioni delle due rette tangenti			