Matière: Mathématiques

Les racines carrées

Pr: Ayoub Aissaoui

Niveau: 3APIC

Exercice 1

1. Calcule ce qui suit :

$$\sqrt{144}$$
 ; $(\sqrt{0,01})^2$; $\sqrt{\left(\frac{-3}{2}\right)^2}$; $\frac{\sqrt{(-18)^2}}{\sqrt{36}}$ $\frac{-\sqrt{196}}{\sqrt{225}}$; $\sqrt{(-2,3)^2}$; $(\sqrt{\sqrt{9}})^2$

2. Réduis ce qui suit :

$$A = \frac{-5\sqrt{9}}{3} + \frac{6}{\sqrt{81}}$$

$$B = \sqrt{100} \times \frac{-2}{3\sqrt{(-4)^2}} + \frac{9}{16} \div \sqrt{\left(\frac{4}{3}\right)^2}$$

$$C = \sqrt{2^2 + 3^2 + 6^2}$$

$$D = \sqrt{2^2 \times 3^2 + 4^2 - 3}$$

Exercice 2

Montrer que chacun des nombres est un nombre entier.

$$A = \sqrt{3} \times \sqrt{12} \qquad B = \sqrt{7} \times \sqrt{63} \qquad C = \sqrt{20} \times \sqrt{5}$$

$$D = \sqrt{2} \times \sqrt{18} \qquad E = \sqrt{8} \times \sqrt{50}$$

Exercice 3

Écrire chacun des nombres donnés sans radical.

$$\sqrt{\frac{5}{20}}$$
 ; $\sqrt{\frac{5}{\sqrt{12}}}$; $\sqrt{\frac{63}{28}}$; $\sqrt{\frac{5}{20}}$

Exercice 4

Écrire les nombres suivants sous la forme $a\sqrt{b}$, où a et b sont des nombres entiers, b étant le plus petit possible :

$$\sqrt{27}$$
 ; $\sqrt{28}$; $\sqrt{40}$; $\sqrt{125}$; $\sqrt{700}$

Exercice 5

Simplifier les expressions suivantes :

$$A = \sqrt{9 \times 2} - \sqrt{25 \times 2}$$

$$B = -\sqrt{5 \times 100} + 3\sqrt{9 \times 5}$$

$$C = \sqrt{50} + \sqrt{18} - 2\sqrt{8}$$

$$D = \sqrt{12} - 7\sqrt{27} + \sqrt{3}$$

$$E = 4\sqrt{2} - 5\sqrt{8} + 3\sqrt{18}$$

$$F = \sqrt{20} - 8\sqrt{45} - 7\sqrt{5}$$

$$G = 5\sqrt{63} - \sqrt{28} + \sqrt{7}$$

$$H = 9\sqrt{6} - \sqrt{24} - 2\sqrt{54}$$

Exercice 6

1. Écrire sous la forme $a\sqrt{5}$, avec a entier :

$$A = 3\sqrt{20} + \sqrt{45}$$
 ; $B = \sqrt{180} - 3\sqrt{5}$

2. En utilisant les résultats de la question 1. Démontrer que $A \times B$ et $\frac{A}{B}$ sont des nombres entiers.

Exercice 7

Effectue les calculs suivants et écris les résultats sous la forme $a + b\sqrt{c}$ où a,b et c sont des entiers relatifs avec c le plus petit possible.

$$A = \sqrt{10} \left(\sqrt{10} - \sqrt{2} \right)$$
; $B = -2\sqrt{2} \left(\sqrt{18} - 7 \right)$
 $C = \left(\sqrt{3} - 9 \right) \left(2 + \sqrt{3} \right)$; $D = \left(2\sqrt{7} + 4 \right) \left(\sqrt{7} - 2 \right)$

Exercice 8

Éliminer le radical du dénominateur des fractions suivantes

$$\frac{3}{\sqrt{11}}$$
 ; $\frac{-13}{2\sqrt{5}}$; $\frac{\sqrt{7}-3}{\sqrt{2}}$; $\frac{-2\sqrt{3}}{5\sqrt{6}}$

Exercice 9

Éliminer le radical du dénominateur des fractions suivantes

$$\frac{2}{\sqrt{3}+1} \quad ; \quad \frac{2\sqrt{5}}{4-\sqrt{5}} \quad ; \quad \frac{\sqrt{7}-3}{\sqrt{2}+\sqrt{11}} \quad ; \quad \frac{-2\sqrt{3}}{\sqrt{2}-\sqrt{7}}$$

$$\frac{1}{3\sqrt{3}+2\sqrt{5}}$$

Exercice 10

Résoudre les equations suivantes :

$$x^2 = 100$$
 ; $x^2 = 11$; $x^2 = -7$
 $x^2 + 6 = 14$; $x^2 + 15 = 3$; $4x^2 = 16$
 $\frac{x^2}{4} = 9$; $9x^2 - 8 = 0$; $7x^2 - 3 = 6x^2 + 27$

Exercice 11

1

Calcul ce qui suit

$$X = \frac{\sqrt{3}}{\sqrt{5} - \sqrt{3}} - \frac{\sqrt{3}}{\sqrt{5} + \sqrt{3}}$$
$$Y = \frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \dots + \frac{1}{\sqrt{99} + \sqrt{100}}$$