

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Sistemas Electrónicos de Processamento de Sinal

BPSK Modem

Grupo n.º 2/3

André Filipe Barroso Cerqueira n.º 65144 Guilherme Branco Teixeira n.º 70214 João André Catarino Pereira n.º 73527

segunda-feira 15h30 - 18h30, LE1

1 Índice

2 Introdução

- -objectivos do lab
- -o que foi feito
- -o q o relatorio vai falar

3 Projecto

3.1 Projectos de Demonstração

- -Resumo das funçoes e os seus objectivos com especial importancia ao loop
- -Relaciona-las com as suas utilizações no projecto em si

3.1.1 sine8

O objectivo deste projeto é representar a função sinusoidal, multiplicada por um determinado ganho, através de um conjunto de amostras que equivalem a um período da mesma, repetindo nos períodos seguintes esse mesmo conjunto. Este procedimento é realizado através da rotina de interrupção presente no programa.

Ao analisar o código deste projeto à primeira vista podemos concluir logo que este usa uma frequência de amostragem de 8 kHz, tem um ganho G=10 predefinido e usa 8 amostras para representar a sinusoide. Depois de observar a sinusoide no osciloscópio variou-se o ganho a fim de perceber a sua influência e também o seu limite.

Para compreender o limite desta sinusoide é necessário ter em conta que se usa o formato de vírgula fixa Q15 para as amostras da sinusoide. Este formato tem como limite o valor $(2^{15} - 1) = 32767$. Considerando o valor máximo da sinusoide, se multiplicarmos a mesma por um ganho G=33 obtemos um valor superior ao permitido pelo formato Q15, fazendo com que nesses pontos o valor da sinusoide "caia".

3.1.2 loop

Este projeto tem como objectivo fornecer-nos um template para os próximos projetos, em termos de comunicação com a placa e rotina de interrupção. Pode-se observar nas últimas linhas de código como se liga os sinais de entrada e saída aos canais da placa.

Resultados do loop??

3.2 BPSK

Demonstração dos Resultados usando como etapas as varias perguntas do enunciado, complementar com as fotos e possiveis tabelas ou partes de codigo

3.2.1 P1. Oscilador controlado numericamente

3.2.2 P2. Transmissor BPSK

4 Conclusão

-Principais resultados e conclusoes sobre eles, erros a corrigir (se houverem), o que melhorar

5 Anexos

- -Codigo?
- -possivelmente poe-se aqui algumas das imagens