DNEM 電磁流量計 通訊協定

一、概述

DNEM 電磁流量計具有標準的 MODBUS 通訊介面,支援串列傳輸速率 1200,2400,4800,9600,19200。通過 MODBUS 通訊網路,主站可以採集瞬時流量,瞬時流速,累積流量等參數。

DNEM 電磁流量計採用的串口參數: 1 位元起始位元 8 位元資料位元 1 位元停止位,無校驗。

DNEM 電磁流量計的 MODBUS 通訊介面在物理結構上採用電氣隔離方式, 隔離電壓 1500 伏,並具有 ESD 保護,能夠克服工業現場的各種干擾,保證通訊 網路的可靠運行。

二、DNEM 網路結構及接線

DNEM 電磁流量計標準 MODBUS 通訊網路是匯流排型網路結構,支援 1 到 99 個電磁流量計組網,在網路最遠的電磁流量計通常要在通訊線兩端並聯一個 120 歐姆的終端匹配電阻,標準通訊連接介質為**遮罩雙絞線**。

圖-1 電磁流量計網路結構

DNEM 電磁流量計通訊接線詳見電磁流量計使用說明書。

三、Modbus 協議 RTU 框架格式

MODBUS協定是主從通訊方式,每次通訊由主站發起,從站回應主站命令回傳資料。

DNEM 電磁流量計採用 MODBUS RTU 格式(十六進位格式),其串結構如圖-2 所示。

1.主站命令串結構

串起始	設備位址	功能代碼	寄存器位址	寄存器長度	CRC 校驗	串結束
T1-T2-T3-T4	8Bit	8Bit	16Bit	16Bit	16Bit	T1-T2-T3-T4

圖-2 主站 RTU 訊息串

2.從站回應串結構

串起始	設備位址	功能代碼	數據	CRC 校驗	串結束
T1-T2-T3-T4	8Bit	8Bit	n 個 8Bit	16Bit	T1-T2-T3-T4

圖3從站RTU訊息串

說明:

(1) T1-T2-T3-T4 為串起始或串結束, MODBUS 協議規定串起始或串結束是在串與串間延時至少 3.5char 字元的時間實現的,如圖-4 所示。

圖-4 MODBUS 串間隔

- (2)設備位址:電磁流量計的通訊位址,在一個網路中不能有兩個相同的位址。
- (3)功能碼: MODBUS 協議規定的功能碼, DNEM 電磁流量計採用功能碼 4 讀輸入寄存器來實現採集資料的。

(4) 寄存器位址和寄存器數

主站命令中的參數是從寄存器位元址開始的寄存,讀寄存器長度的 N 個寄存器。

(5) 從站回應資料

從站回應資料是:位元組數和N個數位元組資料。

詳見 MODBUS 協議。

四、Modbus 協定命令編碼定義

MODBUS 功能碼定義如表-1 所示,DNEM-電磁流量計僅採用 04 功能碼。

表 -1

功能碼	名稱	作用
01	讀取線圈狀態	保留
02	讀取輸入狀態	保留
03	讀取保持寄存器	保留
04	讀取輸入寄存器	讀電磁流量計即時資訊
05	強置單線圈	保留
06	預置單寄存器	保留
07	讀取異常狀態	保留
08	回送診斷校驗	保留
09	程式設計(只用於 484)	保留
10	控詢(只用於 484)	保留
11	讀取事件計數	保留
12	讀取通信事件記錄	保留
13	程式設計(184/384 484 584)	保留
14	探詢(184/384 484 584)	保留
15	強置多線圈	保留

五、DNEM 電磁流量計 MODBUS 寄存器定義

1. DNEM 電磁流量計 MODBUS 寄存器位址定義 表 -2

Protocol Addresses (Decimal)	Protocol Addresses (HEX)	資料格式	寄存器定義
4112	0x1010	Float Inverse	瞬時流量浮點表示
4114	0x1012	Float Inverse	瞬時流速浮點表示
4116	0x1014	Float Inverse	流量百分比浮點表示(電 池供電錶保留)
4118	0x1016	Float Inverse	流體電導比浮點表示
4120	0x1018	Long Inverse	正向累積數值整數部分
4122	0x101A	Float Inverse	正向累積數值小數部分
4124	0x101C	Long Inverse	反向累積數值整數部分
4126	0x101E	Float Inverse	反向累積數值小數部分
4128	0x1020	Unsigned short	瞬時流量單位(表3)
4129	0x1021	Unsigned short	累積總量單位(表4/表5)
4130	0x1022	Unsigned short	上限警報
4131	0x1023	Unsigned short	下限警報
4132	0x1024	Unsigned short	空管警報
4133	0x1025	Unsigned short	系統警報

2.PLC 位址設置說明

PLC 設置時如果沒有功能碼設置項時,使用功能 04 應在寄存器位址前面加 3。另 PLC 寄存器位址的基址是從 1 開始,所以 PLC 設置寄存器位址時應在原位址上加 1.

例:

DNEM 電磁流量計 MODBUS 寄存器位址為 4112 (0x1010), MODBUS 功能碼為 4 時, PLC 寄存器位址為 34113。

詳細設置見應用舉例章節 2.

3.組態王位址設置說明

組態王設置時沒有功能碼設置項,不同的驅動設置方法不同。

以 PLC-莫迪康-modbus (RTU) 驅動為例,使用功能 04 應在寄存器位址前面加 8。另組態王寄存器位址的基址是從 1 開始,所以組態王設置寄存器位址時應在原位址上加 1.

DNEM 電磁流量計 MODBUS 寄存器位址為 4112 (0x1010), MODBUS 功能碼為 4 時,組態王寄存器位址為 84113。

詳細設置見應用舉例章節 4.

4・資料涵義說明

(1) 浮點格式:

DNEM 電磁流量計 MODBUS 採用 IEEE754 32 位浮點數格式,其結構如

下:(以瞬時流量為例)

0X1	010 (34113)	0x1011 (34114)
BYTE1	BYTE2	BYTE3	BYTE4
S EEEEEEE	Е МММММММ	MMMMMMM	МММММММ

S- 尾數的符號; 1= 負數, 0= 正數;

E-指數;與十進位數字 127 的差值表示。

M-尾數;低23位元,小數部分。

當 E 不全"0"時,且不全"1時浮點數與十進位數字轉換公式:

$$V = (-1)^{S} 2^{(E-127)} (1 + M)$$

(2) 瞬時流量單位

表 3

代碼	瞬時單位	代碼	瞬時單位	代碼	瞬時單位	代碼	瞬時單位
0	L/S	3	M3/S	6	T/S	9	GPS
1	L/M	4	M3/M	7	T/M	10	GPM
2	L/H	5	M3/H	8	T/H	11	GPH

(3) 累積總量單位

表 4 (適用於 B 型及 511 型電磁流量計轉換器)

代碼	0	1	2	3
累積單位	L	M3	Т	USG

表 5 (適用於 C 型電磁流量計轉換器)

代碼	0	1	2	3	4	5
累積單位	L	L	L	M3	M3	M3

代碼	6	7	8	9	10	11
累積單位	Т	Т	Т	USG	USG	USG

(4) 警報

上限警報,下限警報,空管警報,系統警報表示:

0------- 不警報; 1-----警報

六、通訊資料解析

瞬時流量,瞬時流速,流量百分比,流體電導比,正反向累積量小數部分以 浮點數的格式傳輸。正反向累積量的整數部分以長整型數傳輸。

1 讀瞬時流量

主站發送命令(十六進位)

01	04	10	10	00	02	74	CE
設備	功能碼	寄存器	寄存器	寄存器	寄存器	CRC	CRC
位址		位元元元	位元元元	長度高位	長度低位	高位	低位
		元址高位	元址高位				

主站接收到資料:

01	04	04	C4	1C	60	00	2F	72
設備	功能碼	數據		4個位元	CRC	CRC		
位址		長度		(瞬時	高位	低位		

浮點數 C4 1C 60 00

1100 0100 0001 1100 0110 0000 0000 0000

浮點數位元組 1 浮點數位元組 2 浮點數位元組 3 浮點數位元組 4

S=1: 尾數符號為 1 表示是負數。

E=10001000: 指數為 136

M=0011100 01100000 000000000, 尾數為

$$V = (-1)^{1} 2^{(136 - 127)} (1 + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{512} + \frac{1}{1024})$$

$$= -625.5$$

2.讀瞬時流速:

主站發送命令:

01	04	10	12	00	02	D5	0E
設備	功能碼	寄存器	寄存器	寄存器	寄存器	CRC	CRC
位址		位元元元	位元元元	長度高位	長度低位	高位	低位
		元址高位	元址高位				

主站接收資料:

01	04	04	C1	В0	80	00	A6	5F
設備	功能碼	數據		4個位元	CRC	CRC		
位址		長度		(瞬時	高位	低位		

浮點數為: C1 B0 80 00

1100 0001 1011 0000 1111 1000 0000 0000

S = 1

E = 10000011

 $M = 011\ 0000\ 1111\ 1000\ 0000\ 0000$

$$V = (-1)^{1} 2^{(131 - 127)} (1 + \frac{1}{4} + \frac{1}{8} + \frac{1}{256})$$
$$= -22.0625$$

3 讀累積流量

為了能夠完全表達電磁流量計的 9 位累積值,所以把累積流量的整數和小數部分分別表達。整數部分用長整型變數,小數部分使用浮點數。

累積流量為 1587m3

主站發送採集累積流量整數值命令:

01	04	10	18	00	02	F5	0C
設備	功能碼	寄存器	寄存器	寄存器	寄存器	CRC	CRC
位址		位元元元	位元元元	長度高位	長度低位	高位	低位
		元址高位	元址高位				

主站接收到資料:

01	04	04	00	00	70	71	1E	60
設備	功能碼	數據		4個位元	CRC	CRC		
位址		長度		(累積量	高位	低位		

累積流量的整數部分為 = 28785

主站發送採集累積流量小數值命令

01	04	10	1A	00	02	54	CC
設備	功能碼	寄存器	寄存器	寄存器	寄存器	CRC	CRC
位址		位元元元	位元元元	長度高位	長度低位	高位	低位
		元址高位	元址高位				

主站接收到資料:

01	04	04	3F	00	00	00	3B	90
設備	功能碼	數據		4個位元	CRC	CRC		
位址		長度		(累積量/	高位	低位		

浮點數為: 3F 00 00 00

 $0011\ 1111\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$

$$S = 0$$

$$E = 01111111$$
 126

 $M = 000\ 0000\ 0000\ 0000\ 0000\ 0000$

$$V = (-1)^{1} 2^{(126 - 127)}$$
$$= 0.5$$

4 讀瞬時流量單位

主站發送讀瞬時流量單位8個位元組命令:

01	04	10	20	00	01	34	C0
設備	功能碼	寄存器	寄存器	寄存器	寄存器	CRC	CRC
位址		位元元元	位元元元	長度高位	長度低位	高位	低位
		元址高位	元址高位				

主站接收到從站回傳7個位元組資料:

01	04	02	00	05	79	33
設備	功能碼	數據	2 個位テ	紅整型	CRC	CRC
位址		長度	(瞬時流量單位)		高位	低位

根據表 3 查得:流量單位為 M3/H

5.讀總量流量單位

主站發送讀瞬時流量單位8個位元組命令:

01	04	10	21	00	01	65	00
設備	功能碼	寄存器	寄存器	寄存器	寄存器	CRC	CRC
位址		位元元元	位元元元	長度高位	長度低位	高位	低位
		元址高位	元址高位				

主站接收到從站回傳7個位元組資料:

01	04	02	00	01	78	F0
設備	功能碼	數據	2 個位元	紅整型	CRC	CRC
位址		長度	(累積量單位)		高位	低位

B型及511型根據表4查得:流量單位為M3

C型 根據表 5 查得:流量單位為 L

6.讀警報狀態

主站發送讀警報8個位元組命令:

01	04	10	24	00	01	75	01
設備	功能碼	寄存器	寄存器	寄存器	寄存器	CRC	CRC
位址		位元元元	位元元元	長度高位	長度低位	高位	低位
		元址高位	元址高位				

主站接收到從站回傳7個位元組資料:

01	04	02	00	01	78	F0
設備	功能碼	數據	2 個位元	記盤型	CRC	CRC
位址		長度	(警報)		高位	低位

狀態為1表示空管是警報狀態。

其他警報依次類推。

七、應用舉例

1.C 語言 MODBUS 示例程式

```
(1). CRC16演算法:
INT16U CRC16 (INT8U *puchMsg, INT16U usDataLen)
  INT8U uchCRCHi = 0xFF;
                                       /* 高CRC位元組初始化 */
  INT8U uchCRCLo = 0xFF;
                                      /* 低CRC 位元組初始化 */
  INT8U uIndex:
                                       /* CRC迴圈中的索引 */
  while (usDataLen--)
                                       /* 傳輸訊息緩衝區 */
   {
     uIndex = uchCRCHi ^ *puchMsg++; /* 計算CRC */
     uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex];
     uchCRCLo = auchCRCLo[uIndex];
  }
  return (uchCRCHi << 8 | uchCRCLo);
    (2) 發送命令程式
    以 Mag64 為核心 CPU
   void Read InPut(INT8U Addr, INT16U Start, INT16U Len)
{
  INT16U CRC;
                                      //設備位址
  SendBuffer_485[0]=Addr;
  SendBuffer_485[1]=0x04;
                                       //modbus功能碼
  SendBuffer_485[2]=Start/256;
                                       //Start為寄存器位址
  SendBuffer_485[3]=Start%256;
  SendBuffer_485[4]=Len/256;
                                       //Len為讀取寄存器長度
  SendBuffer_485[5]=Len%256;
  CRC=CRC16 (SendBuffer 485, 6);
  SendBuffer_485[6]=CRC/256;
                                       //CRC校驗高位
  SendBuffer_485[7]=CRC%256;
                                       //CRC校驗低位
  R485_OUT;
                                       //使能RS485發送
  SendLen_485=8;
  SendNum_485=0;
  CloseINTO();
                                      //關閉串口接受中斷
  UCSROB |= BIT(UDRIEO);
                                      //打開串口發送中斷
```

(3)返回資料解析(只以瞬時流量為例)

資料接收使用串口中斷, ReceivedBuffer_485為接收資料組, ReceivedNum_485為接收到資料長度, ReceivedFlag_485接收到資料標誌。函數float Datasum(INT8U BYTE1, INT8U BYTE2, INT8U BYTE3, INT8U BYTE4) 把浮點數的4個位元組轉換為1個浮點數。

```
float Datasum (INT8U FloatByte1, INT8U FloatByte2, INT8U FloatByte3, INT8U FloatByte4)
 float aa;
 union IntTOFP
      FP32
                F32;
      INT8U
                T8[4];
  };
  union IntTOFP aa;
  aa. T8[0] = FloatByte1;
  aa.T8[1] = FloatByte2;
  aa. T8[2] = FloatByte3;
  aa. T8[3] = FloatByte4;
 return aa;
void Read_Lmag(INT8U Ad)
   INT8U i, j;
   INT8U Num1[10], BIT;
   INT16U CRC1, CRC2;
  FP32 Flow;
                                              //aaa為瞬時流量數值
   ReceivedFlag 485=1;
  Open_Time1_Ms5(20);
   Read InPut (Ad, 0x1010, 2);
                                             //發送設備位址、寄存器位址、寄存器長度
                                             //等待接收結束
   while (ReceivedFlag 485);
   if((ReceivedNum_485==9)&&(ReceivedBuffer_485[0]==Ad))
                                                         // 判斷資料是否正確
      CRC1=CRC16 (ReceivedBuffer_485, 7);
      CRC2=ReceivedBuffer_485[7]*256+ReceivedBuffer_485[8];
      if (CRC1==CRC2)
      {//轉換資料為浮點數
      Flow = Datasum(ReceivedBuffer_485[6], ReceivedBuffer_485[5],
                    ReceivedBuffer_485[4] , ReceivedBuffer_485[3]) ;
     }
}
```

2.modbus 調試軟體 modbus poll 通訊實例

以從站位址為 1, 串列傳輸速率 9600, 讀取所有即時資料為例設置方法如下:

按照表 2 所示: 起始寄存器位址 4113 寄存器個數為 22

1. 設置採集命令包括設備位址(1)、MODBUS 功能碼(04)、寄存器位址(4113)、 寄存器長度(2)、採集間隔(1000)。

2.設置串口數據

根據 DNEM 電磁流量計串口格式(1 位起始位元 8 位元資料位元 1 位元停止位, 無校驗)設置如下圖:

3.設置資料顯示格式

4. 通訊成功介面

3.Modbus 測試軟體 modscan32 通訊實例

以從站位址為1,串列傳輸速率9600,讀取所有即時資料為例設置方法如下:

按照表 2 所示: 起始寄存器位址 4113 寄存器個數為 22

設置採集命令包括設備位址(1)、MODBUS 功能碼(04)、寄存器位址(4113)、
 寄存器長度(2)、採集間隔(1000)。

2.設置串口數據

根據 DNEM 電磁流量計串口格式(1 位起始位元 8 位元資料位元 1 位元停止位, 無校驗)設置如下圖:

3.設置資料顯示方式

4. 通訊成功介面

