Indian Institute of Information Technology Vadodara MA 101: Introduction to Discrete Mathematics Tutorial 5

- 1. What time does a 12 hour clock read 45 hours before it reads 1:00pm?
- 2. What is $-101 \mod(13)$?
- 3. Show that $2^{340} \equiv 1 \mod(31)$.
- 4. Find the last digit of 333^{555} .
- 5. State and prove divisibility test of 7. Can you design divisibility test of 13?
- 6. What is the remainder obtained when $2^{70} + 3^{70}$ is divided by 13?
- 7. Find the multiplicative inverse of each non-zero element of \mathbb{Z}_{11} to verify \mathbb{Z}_{11} is a field.
- 8. Find all integers x such that $2x \equiv 3 \mod 5, 3x \equiv 4 \mod 7, x \equiv 5 \mod 11$.
- 9. Use Fermat's little theorem to compute $5^{2023} \mod 7$, $5^{2023} \mod 11$, and $5^{2023} \mod 13$. Use Chinese remainder theorem to find $5^{2023} \mod 1001$.
- 10. Prove that if n is a positive integer such that the sum of the divisors of n is n + 1, then n is prime. Is converse true?
- 11. Show that Strong Goldbach conjecture, which states that every even integer greater than 2 is the sum of two primes, implies the statement- (Weak Goldbach conjecture) every odd integer greater than 5 is the sum of three primes.