Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (currently amended): A method for the of blind identification of sources within a system comprising including P sources and N receivers, wherein the method compris[[es]]ing at least one the steps of [[for]] [[the]] identification

identifying [[of]] the matrix of [[the]] direction vectors of the sources from the information proper to the direction vectors \mathbf{a}_p of the sources contained redundantly in the m=2q order circular statistics of the vector of the observations received by the N receivers.

2. (currently amended): [[A]] The method according to claim 1, wherein m = 2q order circular statistics are expressed according to a full-rank diagonal matrix of the autocumulants of the sources and a matrix representing the juxtaposition of the direction vectors of the sources as follows:

$$C_{m,x} = A_q \zeta_{m,s} A_q^{H}$$
 [[(11)]]

where $\zeta_{m,s} = \operatorname{diag}([C_{1,1,\dots,1}^{1,1,\dots,1},\dots,C_{p,P,\dots,p,s}^{P,P,\dots,P}])$ is the full-rank diagonal matrix of the m=2q order autocumulants $C_{p,p,\dots,p,s}^{P,P,\dots,p}$ des sources, sized $(P \times P)$, and where $A_q = [a_1^{\otimes (q-1)} \otimes a_1^*,\dots,a_p^{\otimes (q-1)} \otimes a_p^*]$, sized $(N^q \times P)$ and assumed to be of full rank, represents the juxtaposition of the P column vectors $[a_p^{\otimes (q-1)} \otimes a_p^*]$.

- 3. (currently amended): [[A]] The method according to one of the claim[[s]] 1 and 2, further comprising at least the following steps:
- $[[\ \underline{0}\]]\ \underline{a})$: the building, from the different observation vectors x(t), of an estimate $\hat{\mathbf{C}}_{m,x}$ of the matrix of statistics $C_{m,x}$ of the observations,

[[1]] b): [[the]] decomposing a singular value decomposition of the matrix $\hat{\mathbf{C}}_{m,x}$, [[the]] and deducing therefrom of an estimate P; of the number of sources P and a square root $\hat{\mathbf{C}}_{m,x}^{1/2}$ of $\hat{\mathbf{C}}_{m,x}^{1/2}$, for example in taking $\hat{\mathbf{C}}_{m,x}^{1/2} = E_s |L_s|^{1/2}$ where |.| designates the absolute value operator, where L_s and E_s are respectively the diagonal matrix of the P; greatest real eigenvalues (in terms of absolute value) of $\hat{\mathbf{C}}_{m,x}$ and the matrix of the associated orthonormal eigenvectors;

[[2]] c): [[the]] extraction extracting, from the matrix $\hat{\mathbf{C}}_{m,x}^{1/2} = [\Gamma_1^T, ..., \Gamma_N^T]^T$, of the N matrix blocks Γ_n : each block Γ_n sized $(N^{(q-1)} \times P)$ being constituted by the $N^{(q-1)}$ successive rows of $\hat{\mathbf{C}}_{m,x}^{1/2}$ starting from the " $N^{(q-1)}(n-1)+1$ "th row;

[[3]] d): [[the]] building of the N(N-1) matrices Θ_{n_1,n_2} defined, for all $1 \le n_1 \ne n_2 \le N$, by $\Theta_{n_1,n_2} = \Gamma_{n_1}^{\#} \Gamma_{n_2}$ where # designates the pseudo-inversion operator;

[[4]] e): [[the]] determining of the matrix V_{sol} , resolving the problem of the joint diagonalization of the N(N-1) matrices $\Theta_{n1,n2}$;

[[$\underline{5}$]] $\underline{\mathbf{f}}$: for each of the P columns \boldsymbol{b}_p of \boldsymbol{A} ; $_q$, the extraction of the $K = N^{(q-2)}$ vectors $\boldsymbol{b}_p(k)$ stacked beneath one another in the vector $\boldsymbol{b}_p = [\boldsymbol{b}_p(1)^T, \boldsymbol{b}_p(2)^T, ..., \boldsymbol{b}_p(K)^T]^T$;

[[6]] g): [[the]] conversion converting [[of]] said column vectors $\boldsymbol{b}_p(k)$ sized $(N^2 \times 1)$ into a matrix $\boldsymbol{B}_p(k)$ sized $(N \times N)$;

[[7]] h: [[the]] joint singular value decomposition or joint diagonalization of the $K = N^{(q-2)}$ matrices $B_p(k)$ in retaining therefrom, as an estimate of the column vectors of A, of the eigenvector common to the K matrices $B_p(k)$ associated with the highest eigenvalue (in terms of modulus);

[[8]] i): [[the]] repetition of the steps [[5 to 7]] f) to h) for each of the P columns of A; q for the estimation, without any particular order and plus or minus a phase, of the P direction vectors a_p and therefore the estimation, plus or minus a unitary trivial matrix, of the mixture matrix A.

- 4. (currently amended): [[A]] The method according to one of the claim[[s]] 1 to 3, wherein the number of sensors N is greater than or equal to the number of sources P and wherein the method comprises comprising a step of extraction of the sources, consisting of the application to the observations x(t) of a filter built by means of the estimate A; of A.
- 5. (currently amended): [[A]] The method according to one of the claim[[s]] 2 to 4, wherein $C_{m,x}$ is equal to the matrix of quadricovariance Qx and wherein m = 4.
- 6. (currently amended): [[A]] The method according to one of the claim[[s]] 2 to 4, wherein $C_{m,x}$ is equal to the matrix of hexacovariance Hx and wherein m = 6.
- 7. (currently amended): [[A]] The method according to one of the claim[[s]] 1 to 6, comprising a step for the evaluation of the quality of the identification of the associated direction vector in using a criterion such that:

$$D(A, \hat{A}) = (\alpha_1, \alpha_2, \ldots, \alpha_P)$$

where

$$\alpha_p = \min_{1 \le i \le P} \left[\mathbf{d}(\mathbf{a}_p, \, \hat{\mathbf{a}}_i) \right]$$
 [[(17)]]

and where d(u,v) is the pseudo-distance between the vectors u and v, such that:

$$d(u, v) = 1 - \frac{|u^{H}v|^{2}}{(u^{H}u)(v^{H}v)}$$
 [[(18)]]

8. (currently amended): [[A]] The use of the method according to one of the claim[[s]] 1, to 7 for use in a communications network.

- 9. (currently amended): A use of the method according to one of the claim[[s]] 1 to 7 for goniometry using identified direction vectors.
- 10. (new): The method according to claim 2, wherein the number of sensors N is greater than or equal to the number of sources P and wherein the method comprises a step of extraction of the sources, consisting of the application to the observations x(t) of a filter built by means of the estimate A; of A.
- 11 (new): The method according to claim 3, wherein the number of sensors N is greater than or equal to the number of sources P and wherein the method comprises a step of extraction of the sources, consisting of the application to the observations x(t) of a filter built by means of the estimate A; of A.
- 12 (new): The method according to claim 3, wherein $C_{m,x}$ is equal to the matrix of quadricovariance Qx and wherein m = 4.
- 13. (new): The method according to claim 4, wherein $C_{m,x}$ is equal to the matrix of quadricovariance Qx and wherein m = 4.
- 14. (new): The method according to claim 3, wherein $C_{m,x}$ is equal to the matrix of hexacovariance Hx and wherein m = 6.
- 15. (new): The method according to claim 4, wherein $C_{m,x}$ is equal to the matrix of hexacovariance Hx and wherein m = 6.
- 16. (new): The method according to claim 2, comprising a step for the evaluation of the quality of the identification of the associated direction vector in using a criterion such that:

$$D(A, \hat{A}) = (\alpha_1, \alpha_2, \ldots, \alpha_P)$$

where

$$\alpha_p = \min_{1 \le i \le P} [d(\boldsymbol{a}_p, \, \hat{\boldsymbol{a}}_i)]$$

and where d(u, v) is the pseudo-distance between the vectors u and v, such that:

$$d(\boldsymbol{u}, \boldsymbol{v}) = 1 - \frac{\left|\boldsymbol{u}^{H}\boldsymbol{v}\right|^{2}}{\left(\boldsymbol{u}^{H}\boldsymbol{u}\right)\left(\boldsymbol{v}^{H}\boldsymbol{v}\right)}$$

17. (new): The method according to claim 3, comprising a step for the evaluation of the quality of the identification of the associated direction vector in using a criterion such that:

$$D(A, \hat{A}) = (\alpha_1, \alpha_2, \ldots, \alpha_P)$$

where

$$\alpha_p = \min_{1 \le i \le P} [d(\boldsymbol{a}_p, \, \hat{\boldsymbol{a}}_i)]$$

and where d(u,v) is the pseudo-distance between the vectors u and v, such that:

$$d(\boldsymbol{u}, \boldsymbol{v}) = 1 - \frac{\left|\boldsymbol{u}^{H}\boldsymbol{v}\right|^{2}}{\left(\boldsymbol{u}^{H}\boldsymbol{u}\right)\left(\boldsymbol{v}^{H}\boldsymbol{v}\right)}$$

18. (new): The method according to claim 4, comprising a step for the evaluation of the quality of the identification of the associated direction vector in using a criterion such that:

$$D(A, \hat{A}) = (\alpha_1, \alpha_2, \ldots, \alpha_P)$$

where

$$\alpha_p = \min_{1 \le i \le P} [d(\boldsymbol{a}_p, \, \hat{\boldsymbol{a}}_i)]$$

and where d(u, v) is the pseudo-distance between the vectors u and v, such that:

$$d(\boldsymbol{u}, \boldsymbol{v}) = 1 - \frac{\left|\boldsymbol{u}^{H}\boldsymbol{v}\right|^{2}}{\left(\boldsymbol{u}^{H}\boldsymbol{u}\right)\left(\boldsymbol{v}^{H}\boldsymbol{v}\right)}$$

19. (new): The method according to claim 5, comprising a step for the evaluation of the quality of the identification of the associated direction vector in using a criterion such that:

$$D(A, \hat{A}) = (\alpha_1, \alpha_2, \ldots, \alpha_P)$$

where

$$\alpha_p = \min_{1 \le i \le P} [d(\boldsymbol{a}_p, \, \hat{\boldsymbol{a}}_i)]$$

and where d(u, v) is the pseudo-distance between the vectors u and v, such that :

$$d(\boldsymbol{u}, \boldsymbol{v}) = 1 - \frac{\left|\boldsymbol{u}^{H}\boldsymbol{v}\right|^{2}}{\left(\boldsymbol{u}^{H}\boldsymbol{u}\right)\left(\boldsymbol{v}^{H}\boldsymbol{v}\right)}$$

20. (new): The method according to claim 6, comprising a step for the evaluation of the quality of the identification of the associated direction vector in using a criterion such that:

$$D(A, \hat{A}) = (\alpha_1, \alpha_2, \ldots, \alpha_P)$$

where

$$\alpha_p = \min_{1 \leq i \leq P} [d(\boldsymbol{a}_p, \, \hat{\boldsymbol{a}}_i)]$$

and where d(u, v) is the pseudo-distance between the vectors u and v, such that:

$$d(u, v) = 1 - \frac{|u^{H}v|^{2}}{(u^{H}u)(v^{H}v)}$$