SX1262 Telemetry Module — KiCad/Eagle Symbol Pin Mapping & Single-Sheet Schematic

Target: EBYTE E22-900M30S (SX1262 SPI module) + STM32F103C8T6 MCU + 3.3V regulator + Pixhawk DF13 6-pin TELEM connector

Deliverables in this document - One-page schematic (symbol pin mapping and net names) ready to copy into KiCad/Eagle - Pin-to-pin mapping for the EBYTE module, STM32F103C8T6, and DF13 telem connector - Suggested KiCad net names and footprints - Single-sheet BOM (short) and PCB notes for layout

1) Global nets (use these KiCad net names)

- 3V3 Main 3.3 V rail
- GND Ground plane
- VBAT Optional battery input (before regulator)
- SPI SCK SPI clock (MCU PA5)
- **SPI_MOSI** SPI MOSI (MCU PA7)
- SPI MISO SPI MISO (MCU PA6)
- **RADIO_CS** Radio chip select / NSS (MCU PA4 or any GPIO)
- RADIO_BUSY SX1262 BUSY (input to MCU PB1)
- RADIO_DIO1 SX1262 DIO1 (interrupt input to MCU PB0)
- RADIO_RESET SX1262 RESET (MCU PC13)
- UART TX MCU -> Pixhawk RX (PA9)
- UART_RX MCU <- Pixhawk TX (PA10)
- ANT Antenna RF pad / connector

Use consistent naming in KiCad symbols to make netlist and PCB wiring obvious.

2) EBYTE E22-900M30S module — Pin mapping (KiCad symbol)

Use the EBYTE datasheet for exact pad numbering. The following lists logical pins and suggested symbol names.

Symbol name	KiCad pin name	Type	Notes
VCC	VCC	PWR	Connect to 3V3
GND	GND	PWR	Connect to GND
SCK	SPI_SCK	I/O	HW: connect to MCU SPI SCK (PA5)
MISO	SPI_MISO	I/O	HW: connect to MCU SPI MISO (PA6)

Symbol name	KiCad pin name	Туре	Notes
MOSI	SPI_MOSI	I/O	HW: connect to MCU SPI MOSI (PA7)
NSS	RADIO_CS	I/O	Active low chip select (MCU GPIO PA4)
BUSY	RADIO_BUSY	Input	Connect to MCU input (PB1) — poll or check before SPI
DIO1	RADIO_DIO1	Input/ IRQ	Connect to MCU external-interrupt pin (PB0)
DIO2	RADIO_DIO2	Input/ IRQ	Optional
RESET	RADIO_RESET	Output	Active-low reset from MCU (PC13)
ANT	ANT	RF	Route to U.FL/SMA via 50Ω

Footprint: place as a single module (SMD module footprint 24×38 mm — exact mechanical from EBYTE datasheet).

3) STM32F103C8T6 suggested pin usage & KiCad symbol mapping

Use an LQFP48 symbol and map the nets below. Replace pin numbers according to the chosen MCU package footprint.

MCU signal	MCU pin (symbol)	Net	Function
PA5	SPI_SCK	SPI_SCK	SPI1 SCK
PA6	SPI_MISO	SPI_MISO	SPI1 MISO
PA7	SPI_MOSI	SPI_MOSI	SPI1 MOSI
PA4	RADIO_CS	RADIO_CS	SPI chip select (GPIO)
PB1	RADIO_BUSY	RADIO_BUSY	SX1262 BUSY (input)
PB0	RADIO_DIO1	RADIO_DIO1	SX1262 DIO1 (EXTI)
PC13	RADIO_RESET	RADIO_RESET	SX1262 RESET (active low)
PA9	UART_TX	UART_TX	USART1 TX -> DF13 Pin3 (Pixhawk RX)
PA10	UART_RX	UART_RX	USART1 RX <- DF13 Pin2 (Pixhawk TX)
VDD	VCC	3V3	connect to regulator
VSS	GND	GND	ground plane

MCU signal	MCU pin (symbol)	Net	Function
SWDIO	SWDIO	SWD	programming header
SWCLK	SWCLK	SWD	programming header

Notes: - Mark PB0 as an external interrupt capable pin (EXTI0) in the schematic symbol. - Provide decoupling caps near VDD pins: 0.1uF + 10uF recommended.

4) DF13 / Pixhawk 6-pin TELEM connector mapping

Pixhawk TELEM common wiring (confirm for your board variant). Use either DF13 or JST-GH depending on frame.

Signal	KiCad net	Notes
VCC (+5V)	(optional) VIN	Do not power radio directly from Pixhawk unless designed for it.
TX (Pixhawk->FC TX)	UART_RX	Connect to MCU UART_RX (PA10)
RX (Pixhawk<-FC)	UART_TX	Connect to MCU UART_TX (PA9)
CTS	(optional)	Not used for basic setup
RTS	(optional)	Not used for basic setup
GND	GND	Common ground
	VCC (+5V) TX (Pixhawk->FC TX) RX (Pixhawk<-FC) CTS RTS	VCC (+5V) (optional) VIN TX (Pixhawk->FC TX) UART_RX RX (Pixhawk<-FC) UART_TX CTS (optional) RTS (optional)

Label connector footprint DF13-6P or JST-GH 6-pin depending on your planned cable.

5) Power/regulator & decoupling

- Use a switching regulator if powering from battery (e.g., step-down to 3.3V, rated ≥ 800mA to support high TX bursts if module requests it). KiCad net: VBAT -> VIN of regulator -> 3V3 net.
- Add bypass capacitors near regulator output: 10uF (X7R) + 0.1uF close to module and MCU.
- Reset pull-ups: add 10k pull-up on MCU NRST if required by your microcontroller symbol.

Suggested regulator footprints: SOT-23-5 (for LDO) or LGA/SOT-23-6 for switching regulators. Include thermal vias under the regulator.

6) Single-sheet schematic layout (textual order for drawing in schematic tool)

- 1. **Power block**: VBAT -> VIN connector -> regulator -> 3V3 -> decoupling caps -> nets to MCU & E22 VCC
- MCU block: LQFP48 symbol with labeled nets (VDD, VSS, PA5, PA6, PA7, PA4, PB1, PB0, PA9, PA10, SWD pins)
- Radio module block: EBYTE module symbol with pins named (VCC, GND, SCK, MISO, MOSI, NSS, BUSY, DIO1, RESET, ANT)
- 4. Connector block: DF13 6-pin with pin labels and nets
- 5. Misc: LED indicators (PWR, TX, RX) with resistors, reset button, test points, SWD header, U.FL/SMA

Draw wires according to the net names in section 1. Attach text labels for nets rather than long wires where convenient.

7) Suggested footprints & BOM (compact)

- **Module**: EBYTE E22-900M30S pad module footprint 24×38.5 mm (vendor mechanical drawing). Use module connector pads per datasheet.
- MCU: STM32F103C8T6 LQFP48 footprint
- Regulator: MP1584/RT8059 or equivalent (SOT-23-5 / SOT-23-6) choose based on power.
- Connector: DF13 6-pin (or JST-GH 1.25mm 6-pin) PCB vertical right-angle as needed
- **RF connector**: U.FL PCB JACK (surface mount) or SMA bulkhead (edge mount) use 50Ω transmission routing
- LEDs: 0603
- Capacitors: 10uF X7R (1206) ×2, 0.1uF (0603) near MCU & module
- Resistors: 10k pull-ups ×2, LED series resistors ×3 (2.2k or 4.7k for 3.3V)

8) PCB & RF layout reminders

- Keep a 50Ω microstrip between module RF pad and U.FL/SMA. If the EBYTE module has its own antenna, follow vendor recommendations and keep the module antenna area clear.
- Place decoupling directly at MCU and module VCC pins. Use ground vias under radio module area.
- Provide test pads for SPI lines, DIO1, BUSY, and UART for debugging.

9) Follow-up options

If you'd like, I can now: - Produce a **KiCad Schematic .sch text mapping** (component symbols & net names) that you can paste into KiCad, or - Produce a **one-page PDF** schematic visual (single-sheet) rendered from this mapping.

Tell me which you want and I will generate it next.	
End of document.	