"Sparknotes" for $Linear\ Algebra$ by Peter Lax

Muthu Chidambaram

Last Updated: May 23, 2019

${\bf Contents}$

1	Fun	damenta	\mathbf{ls}																															4
	1.1	Exercise	1.																															4
	1.2	Exercise																																4
	1.3	Exercise																																4
	1.4	Exercise																																4
	1.5	Exercise	5.																															4
	1.6	Exercise																																4
	1.7	Exercise	7.																															4
	1.8	Exercise																																4
	1.9	Exercise	9.																															4
	1.10	Exercise	10																															4
	1.11	Exercise	11																															4
	1.12	Exercise	12																															5
	1.13	Exercise																																5
	1.14	Exercise	14																															5
	1.15	Exercise	15																															5
	1.16	Exercise	16																															5
		Exercise																																5
_	ъ	10.																																
2	Dua																																	6
	2.1	Exercise																																6
	2.2	Exercise	2 .	•	•	•	٠	٠	٠	٠	•	•	٠		•	٠	•	•	•	•	•	•	•		•	•	•	•	•		•	•	•	6
3	Line	Linear Mappings															7																	
	3.1	Exercise		_																														7
	3.2	Exercise																																7
	3.3	Exercise																																7
	3.4	Exercise																																7
	3.5	Exercise		-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	•		-	-	-	-	-	-	-	7
	3.6	Exercise																																8
	3.7	Exercise																																8

4	Mat	Matrices														
	4.1	Exercise 1	9													
	4.2	Exercise 2	9													
5			10													
	5.1	Exercise 1	10													
	5.2	Exercise 2	10													
	5.3	Exercise 3	10													
	5.4	Exercise 4	10													
	5.5	Exercise 5	10													
	5.6	Exercise 6	10													
	5.7	Exercise 7	11													
	5.8	Exercise 8	11													
	5.9	Exercise 9														
	5 10	Evergine 10	11													

About

"A modern mathematical proof is not very different from a modern machine, or a modern test setup: the simple fundamental principles are hidden and almost invisible under a mass of technical details."
- Hermann Weyl

These notes contain short summaries of (my) proof ideas for exercises and some theorems from the book *Linear Algebra* by Peter Lax. I have tried to make the summaries as brief as possible, sometimes only one line or one equation. My hope is that the summaries will give enough information to reconstruct a full proof without bogging the reader down with details. In many cases, I am sure that I inadvertently sacrificed clarity in an attempt to obtain brevity, and would greatly appreciate any feedback.

Also, I like when people include (what they presume to be) relevant quotes in their notes, so I have to ask you to forgive my haughtiness in starting these notes with a quote from Hermann Weyl.

1 Fundamentals

1.1 Exercise 1

 $x + z = x = x + z' \implies z = z'.$

1.2 Exercise 2

0x + x = (0+1)x = x.

1.3 Exercise 3

Coefficients can be represented as row vectors.

1.4 Exercise 4

Function can be represented as row vector by letting $a_i = f(s_i)$ for each $s_i \in S$.

1.5 Exercise 5

Follows from exercises 3 and 4.

1.6 Exercise 6

 $y_1 + z_1 + y_2 + z_2 = (y_1 + y_2) + (z_1 + z_2)$ and $k(y_1 + z_1) = ky_1 + kz_1$.

1.7 Exercise 7

 $a \in Y \cap Z \implies ka \in Y, ka \in Z \implies ka \in Y \cap Z.$

1.8 Exercise 8

k0 = 0, 0 + 0 = 0.

1.9 Exercise 9

If S contains x_i then it must contain kx_i .

1.10 Exercise 10

If $x_i = 0$, k_i can be anything.

1.11 Exercise 11

 $x = \sum_{i=1}^{m} \sum_{j=1}^{\dim Y_i} y_j^{(i)}.$

1.12 Exercise 12

Complete basis for W to U and V. Use W basis vectors and additional U and V basis vectors to get $\dim X = \dim U - \dim W + \dim V - \dim W + \dim W$.

1.13 Exercise 13

Send i^{th} basis vector to e_i , where e_i is vector of all zeroes except a one in the i^{th} place. Can permute mapping to get different isomorphisms.

1.14 Exercise 14

$$x_1 - x_2 + x_2 - x_3 = x_1 - x_3.$$

1.15 Exercise 15

$$x' = x + z_x, y' = y + z_y \implies x' + y' = x + y + (z_x + z_y).$$

1.16 Exercise 16

$$x \in X_1 \bigoplus X_2 \implies x = (x_1, x_2) = (x_1, 0) + (0, x_2).$$

1.17 Exercise 17

Construct a basis for X from Y: $y_1, ..., y_j, x_{j+1}, ..., x_n$. Then $X/Y = \text{span}\{x_{j+1}, ..., x_n\}$.

2 Duality

Theorem 1

$$x = \sum_{i=1}^{n} a_i x_i \implies k_i(x) = a_i.$$

2.1 Exercise 1

$$l_1, l_2 \in Y^{\perp} \implies l_1(y) + l_2(y) = 0 = (l_1 + l_2)(y).$$

2.2 Exercise 2

$$\forall \xi \in Y^{\perp \perp} \implies \forall l \in Y^{\perp}, \; \xi(l) = 0 = l(y) \; \forall y \in Y.$$

3 Linear Mappings

3.1 Exercise 1

- (a) $x \in X \implies x = \sum_{i=1}^{n} k_i x_i \implies T(x) = \sum_{i=1}^{n} k_i T(x_i) \in U$.
- (b) $T(x), T(y) \in U \implies T(x+y) \in U \implies x+y \in X$.

Theorem 1

$$x \in X, y \in N_T \implies T(x+y) = T(x) + T(y) = T(x).$$

3.2 Exercise 2

- (a) Differentiation constant and sum rules imply linearity, and multiplication by s is distributive. Take p(s) = 1 to see that $ST \neq TS$.
- (b) Rotation by 90 degrees amounts to swapping and negating coordinates, which is linear. Take p = (1, 1, 0) to see that $ST \neq TS$.

3.3 Exercise 3

- (i) $T^{-1}(T(a+b)) = T^{-1}(T(a) + T(b)) = a + b = T^{-1}(T(a)) + T^{-1}(T(b)).$
- (ii) Composition of isomorphisms is an isomorphism, hence ST is invertible.

3.4 Exercise 4

- (i) Let $T: X \to U$, $S: U \to V$ and $l_v \in V'$. Then $(ST)'(l_v) = l_v(ST) = (l_vS)T = (S'l_v)T = T'S'l_v$, since $S'l_v \in U'$.
- (ii) Follows from linearity of transpose (definition).
- (iii) Let $T: X \to U$ be an isomorphism. Then $l_x = l_u T \implies l_x T^{-1} = l_u$ for $l_u \in U', l_x \in X'$.

3.5 Exercise 5

 $T''(l_{x'}) = l_{x'}T'$ where $l_{x'} \in X''$ and $l_{x'}T' \in U''$. Since we can identify elements in X'' and U'' with elements in X and U respectively, we have that T'' assigns elements of U to X.

Theorem 2'

Since $T': U' \to X'$ we have $l_u \in N_{T'} \implies T'(l_u) = l_u T = 0$. $N_{T'}^{\perp}$ consists of elements $l_{u'}|l_{u'}(l_u) = 0$. From $l_u T x = 0$ we have that each $l_{u'}$ is identified with a $u \in R_T$.

3.6 Exercise 6

The first two elements of x are already 0 after applying P, so $P^2 = P$. Linearity follows from linearity of vector addition.

3.7 Exercise 7

P is linear since function addition is linear. $P^2f=\frac{f(x)+f(-x)}{4}+\frac{f(x)+f(-x)}{4}=Pf.$

4 Matrices

4.1 Exercise 1

$$(P+T)_{ij} = ((P+T)e_j)_i = (Pe_j + Te_j)_i = P_{ij} + T_{ij}.$$

4.2 Exercise 2

Represent A as a column of row vectors A_i and B as a row of column vectors B_i . Denote blocks by parenthesized subscripts. Then the first block of AB looks like:

$$(AB)_{(11)} = \begin{pmatrix} A_1B_1 & & & \\ & \ddots & & \\ & & A_kB_k \end{pmatrix}$$

$$= \begin{pmatrix} A_{1,:(k+1)}B_{1,:(k+1)} & & & \\ & & \ddots & & \\ & & & A_{k,:(k+1)}B_{k,:(k+1)} \end{pmatrix}$$

$$+ \begin{pmatrix} A_{1,(k+1):}B_{1,(k+1):} & & & \\ & & \ddots & & \\ & & & A_{k,(k+1):}B_{k,(k+1):} \end{pmatrix}$$

$$= A_{(11)}B_{(11)} + A_{(12)}B_{(21)}$$

Where:

$$A_{i,:(k+1)}B_{i,:(k+1)} = \sum_{j=1}^{k} A_{i,j}B_{i,j}$$
$$A_{i,(k+1):}B_{i,(k+1):} = \sum_{j=k+1}^{n} A_{i,j}B_{i,j}$$

The rest follow similarly.

5 Determinant and Trace

5.1 Exercise 1

(a) The discriminant already has ordered versions of all the (i, j) difference terms. Applying a permutation only changes the signs of some of the difference terms, hence $\sigma(p) = 1, -1$.

(b)
$$\sigma(p_1 \circ p_2) = \text{sign}(P(p_1 \circ p_2(x_1, ..., x_n))) = \sigma(p_1) \text{sign}(P(p_2(x_1, ..., x_n))).$$

5.2 Exercise 2

- (c) A transposition swaps two indices, and hence flips the sign of their associated difference term in the discriminant.
- (d) If p(i) = j, then we can start with the permutation $(i \ j)$. Next, if p(j) = k, we can compose with $(i \ k)$ to get $(i \ k) \circ (i \ j)$. We can do this until we have completely reconstructed the permutation using transpositions.

5.3 Exercise 3

By starting with a different i in Exercise 2 (d), we can obtain a different decomposition of transpositions. However, the parity of the decomposition must be the same, as otherwise $\sigma(p)$ will take on two different values for the same p.

5.4 Exercise 4

(Property II): Each term in $D(a_1, ..., a_n)$ contains exactly one element from each of the a_i . Thus, scaling any of the a_i by k scales the entire determinant by k. Similar logic for vector addition.

(Property III): The only non-zero term in $D(e_1,...,e_n)$ is associated with the identity permutation, hence $D(e_1,...,e_n) = 1$.

(Property IV): Swapping two arguments is the same as applying a transposition to each of the terms in $D(a_1,...,a_n)$, which flips the sign of D.

5.5 Exercise 5

Suppose $a_1 = a_2$. Then:

$$D(a_1, a_2, ..., a_n) = -D(a_2, a_1, ..., a_n)$$

$$D(a_1, a_2, ..., a_n) + D(a_1, a_2, ..., a_n) = 0$$

5.6 Exercise 6

We can swap rows and columns until A is in the same form as in Lemma 2. Since each row and column swap is equivalent to applying a transposition, we

get that $\det A = (-1)^{i+j} \det A_{ij}$.

5.7 Exercise 7

Each term in the sum $D(a_1,...,a_n)=\sum \sigma(p)a_{p_11}...a_{p_nn}$ consists of exactly one element from each column and each row; swapping rows and columns does not change the terms in the sum. However, the permutation associated with each term is changed. The permutation p that sends $1\to p_1$ becomes p' sending $p_1\to 1$. This p' is exactly p^{-1} . Since $\sigma(1)=\sigma(p^{-1}\circ p)=\sigma(p^{-1})\sigma(p), \ \sigma(p^{-1})=\sigma(p)$ we are done.

5.8 Exercise 8

P is the linear transformation such that $P(e_j) = e_i$; in other words, P rearranges the representation of x by applying p to the components of x. We also have that $PQx = Pq(x) = p \circ q(x)$, since Qx permutes the components of x to produce q(x), and Pq(x) permutes the components of q(x) to produce $p \circ q(x)$.

5.9 Exercise 9

$$\operatorname{Tr} AB = \sum_{i=1}^{m} (AB)_{ii} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ji}$$
$$\operatorname{Tr} BA = \sum_{j=1}^{n} (BA)_{jj} = \sum_{j=1}^{n} \sum_{i=1}^{m} b_{ji} a_{ij}$$

5.10 Exercise 10

$$\operatorname{Tr} AA^{\top} = \sum (AA^{\top})_{ii} = \sum \sum a_{ij} a_{ji}^{\top}$$
$$= \sum \sum a_{ij}^{2}$$