МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка параметров надежности программ
по временным моделям обнаружения ошибок

Студентка гр. 7304	Юруть Е.А.
Преподаватель	Ефремов М.А.

Санкт-Петербург

Формулировка задания

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение *интервала* между соседними (i-1) –ой и i –ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
 - а. равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}}=10$, СКО $s_{\text{равн}}=20/(2*\text{sqrt}(3))=5.8$.
 - b. экспоненциальным законом распределения: W(y) = b*exp(-b*y), y>=0, с параметром b=0.1 и соответственно $m_{\rm эксп}=s_{\rm эксп}=1/b=10$. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = -ln(t)/b
 - с. релеевским законом распределения: $W(y) = (y/c^2)*exp(-y^2/(2*c^2)),$ y>=0, с параметром c=8.0 и соответственно $m_{pen}=c*sqrt(\pi/2), s_{pen}=c*sqrt(2-\pi/2).$ Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y=c*sqrt(-2*ln(t)).
- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками $_{\text{упорядочить}}$ по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30, 24 и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

- 4. Если B>n, оценить значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы

1. Равномерный закон распределения

• 100% входных данных(n=30)

Был сгенерирован массив данных $\{X_i\}$, где X_i – момент обнаружения і—ой ошибки (i=[1,30]), в соответствии с равномерным законом распределения в интервале [0,20].

Массив $\{X_i\}$ был упорядочен по возрастанию.

Результат представлен в Таблице 1.

i	X_{i}	i	X_{i}	i	X_{i}
1	0.184	11	10.850	21	13.851
2	0.648	12	10.970	22	14.131
3	1.327	13	11.400	23	14.356
4	5.011	14	11.536	24	14.957
5	5.878	15	11.753	25	15.925
6	7.066	16	11.905	26	16.190
7	7.996	17	12.027	27	17.589
8	8.357	18	12.347	28	17.643
9	10.486	19	12.481	29	18.670
10	10.719	20	12.878	30	19.876

Таблица 1. Равномерный закон распределения, 100%

$$A = \frac{\sum_{i=1}^{30} iX_i}{\sum_{i=1}^{30} X_i} = 19.136$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 19.136>15,5

Рассмотрим функции $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ и $g_n(m,A) = \frac{n}{m-A}$.

В Таблице 2 представлены их значения для множества аргументов $m \ge n+1$.

m	f _n (m)	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
31	3.995	2.529	1.466
32	3.027	2.332	0.695
33	2.558	2.164	0.395
34	2.255	2.018	0.237
35	2.035	1.891	0.144
36	1.863	1.779	0.085
37	1.725	1.679	0.045
38	1.609	1.590	0.018
39	1.510	1.510	0.000
40	1.425	1.438	0.013

Таблица 2.

Минимум разности при m = 39.

Первоначальное число ошибок В=т-1=38

$$K = \frac{n}{\left(B+1\right)\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} iX_{i}} = 0.004455$$

Среднее время до обнаружения (n+1)-ой ошибки $X_{n+1} = \frac{1}{K(B-n)}$.

$$X_{n+1} = X_{31} = 1/(0.004455*(38-30)) = 28.059$$
 дней

Рассчитаем аналогично для (n+2) и т.д., результаты приведены в Таблице 3.

m	Х _ј (дней)
31	28.059
32	32.067
33	37.412
34	44.894
35	56.118
36	74.824
37	112.235
38	224.471

Таблица 3.

Время до завершения тестирования: 610.08

Общее время тестирования: 949 дня

• 80% входных данных(n=24)

Был сгенерирован массив данных $\{X_i\}$, где X_i – момент обнаружения і—ой ошибки (i=[1,24]), в соответствии с равномерным законом распределения в интервале [0,20].

Массив $\{X_i\}$ был упорядочен по возрастанию.

Результат	представлен	В	Таблице	4.

i	X_{i}	i	X_{i}	i	X_{i}
1	0.708	9	5.257	17	13.794
2	1.566	10	6.269	18	13.997
3	2.632	11	6.323	19	15.516
4	2.893	12	7.749	20	16.390
5	3.827	13	9.545	21	16.618
6	4.151	14	10.467	22	16.851
7	4.418	15	10.967	23	19.504
8	4.814	16	12.624	24	19.588

Таблица 4. Равномерный закон распределения, 80%

$$A = \frac{\sum_{i=1}^{24} iX_i}{\sum_{i=1}^{24} X_i} = \frac{3742,58}{228} = 16,752$$

Условие сходимости $A>\frac{n+1}{2}$ выполнено: 16,752>12,5

Рассмотрим функции $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ и $g_n(m,A) = \frac{n}{m-A}$.

В Таблице 5 представлены их значения для множества аргументов $m \ge n+1$.

m	f _n (m)	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
25	3.776	2.910	0.866
26	2.816	2.595	0.221
27	2.354	2.342	0.012
28	2.058	2.134	0.076

Таблица 5

Минимум разности при m = 27.

Первоначальное число ошибок В=т-1=26

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.010342$$

Среднее время до обнаружения (n+1)-ой ошибки $X_{n+1} = \frac{1}{K(B-n)}$.

Рассчитаем аналогично для (n+2) и т.д., результаты приведены в Таблице 6.

m	Х _ј (дней)
31	48.349
32	96.698

Таблина 6.

Время до завершения тестирования: 145.045

Общее время тестирования: 371.514 дней

• 60% входных данных (n=18)

Был сгенерирован массив данных $\{X_i\}$, где X_i – момент обнаружения і—ой ошибки (i=[1,18]), в соответствии с равномерным законом распределения в интервале [0,20].

Массив $\{X_i\}$ был упорядочен по возрастанию.

Результат представлен в Таблице 7.

i	X_{i}	i	X_{i}	i	X_{i}
1	1.002	7	9.988	13	16.232
2	1.162	8	11.263	14	16.616
3	1.257	9	12.410	15	18.483
4	2.619	10	13.045	16	18.651
5	2.721	11	13.639	17	18.904

6	3.760	12	14.200	18	19.728

Таблица 7. Равномерный закон распределения, 60%

n = 18

$$A = \frac{\sum_{i=1}^{18} iX_i}{\sum_{i=1}^{18} X_i} = \frac{1905,455}{161} = 12.633$$

Условие сходимости $A>\frac{n+1}{2}$ выполнено: 12,633>9,5

Рассмотрим функции
$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g_n(m,A) = \frac{n}{m-A}$.

В Таблице 8 представлены их значения для множества аргументов $m \ge n+1$.

m	$f_n(m)$	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
19	3.495	2.827	0.668
20	2.548	2.443	0.104
21	2.098	2.151	0.054
22	1.812	1.922	0.110

Таблица 8.

Минимум разности при m = 21.

Первоначальное число ошибок В=т-1=20

$$K = \frac{n}{\left(B+1\right)\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} iX_{i}} = 0.010995$$

B>n выполняется, тогда оценим значения средних времен Xj , $j=n+1,n+2...,\ n+k$ до обнаружения следующих ошибок.

Среднее время до обнаружения (n+1)-ой ошибки $X_{n+1} = \frac{1}{K(B-n)}$.

Рассчитаем аналогично для (n+2) и т.д., результаты приведены в Таблице 9.

m	Х _ј (дней)
19	45.477
20	90.954

Таблица 9.

Время до завершения тестирования: 136.432

Общее время тестирования: 332.112 дней

2. Экспоненциальный закон распределения

• 100% входных данных(n=30)

Был сгенерирован массив данных $\{X_i\}$, где X_i – случайное значение интервала между соседними (i-1)—ой и i—ой ошибками (i=[1,30]), в соответствии с экспоненциальным законом распределения

$$W(y) = b*exp(-b*y),$$
 y>=0, с параметром b=0.1

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t)/b$

Средний интервал равен $m_{\text{эксп}} = 10$, СКО равно $s_{\text{эксп}} = 10$.

Массив {X_i} был упорядочен по возрастанию.

Результат представлен в Таблице 10.

i	X_{i}	i	X_{i}	i	X_{i}
1	0.386	11	7.227	21	15.791
2	1.610	12	9.353	22	16.402
3	1.639	13	9.422	23	16.677
4	2.273	14	9.514	24	17.028
5	2.423	15	10.249	25	22.811
6	3.340	16	10.368	26	25.593
7	3.952	17	11.830	27	26.834
8	6.698	18	12.785	28	29.984
9	6.703	19	14.103	29	34.657
10	7.003	20	15.706	30	34.834

Таблица 10. Экспотенциальный закон распределения, 100%

$$A = \frac{\sum_{i=1}^{30} iX_i}{\sum_{i=1}^{30} X_i} = \frac{5789,24}{300,388} = 21,633$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 21,633>15,5

Рассмотрим функции $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ и $g_n(m,A) = \frac{n}{m-A}$.

В Таблице 11 представлены их значения для множества аргументов $m \ge n+1$.

m	$f_n(m)$	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
31	3.995	3.203	0.792
32	3.027	2.894	0.133
33	2.558	2.639	0.081
34	2.255	2.426	0.170

Таблица 11.

Минимум разности при m = 33.

Первоначальное число ошибок В=т-1=32

$$K = \frac{n}{\left(B+1\right)\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} iX_{i}} = 0.006816$$

B>n выполняется, тогда оценим значения средних времен Xj , $j=n+1,n+2...,\ n+k$ до обнаружения следующих ошибок.

Среднее время до обнаружения (n+1)-ой ошибки $X_{n+1} = \frac{1}{K(B-n)}$.

Рассчитаем аналогично для (n+2) и т.д., результаты приведены в Таблице 9.1

m	Х _ј (дней)
31	73.353
32	146.706

Таблица 9.1

Время до завершения тестирования: 220.059

Общее время тестирования: 607.254 дней

• 80% входных данных(n=24)

Был сгенерирован массив данных $\{X_i\}$, где X_i – случайное значение интервала между соседними (i-1)—ой и i—ой ошибками (i=[1,24]), в соответствии с экспоненциальным законом распределения

W(y) = b*exp(-b*y), y>=0, c параметром b=0.1

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t)/b$

Средний интервал равен $m_{3\kappa c\pi} = 10$, СКО равно $s_{3\kappa c\pi} = 10$.

Массив $\{X_i\}$ был упорядочен по возрастанию.

Результат представлен в Таблице 12.

i	X_{i}	i	X_{i}	i	X_{i}
1	0.105	9	5.084	17	10.544
2	0.333	10	5.552	18	10.591
3	0.515	11	7.200	19	17.534
4	1.042	12	7.732	20	22.207
5	1.407	13	7.972	21	24.503
6	2.718	14	8.014	22	31.358
7	2.853	15	10.184	23	34.233
8	3.602	16	10.202	24	34.856

Таблица 12. Экспотенциальный закон распределения, 80%

n = 24

$$A = \frac{\sum_{i=1}^{24} iX_i}{\sum_{i=1}^{24} X_i} = \frac{4540,85}{240.01} = 18,67$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 18,67>12,5

Рассмотрим функции $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ и $g_n(m,A) = \frac{n}{m-A}$.

В Таблице 13 представлены их значения для множества аргументов $m \ge n+1$.

m	f _n (m)	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
25	3.776	3.788	0.012
26	2.816	3.272	0.456

Таблица 13.

Минимум разности при m = 24.

Первоначальное число ошибок В=т-1=24

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.014552$$

В>п не выполняется.

Полное время тестирования: 260.341

• 60% входных данных(n=18)

Был сгенерирован массив данных $\{X_i\}$, где X_i – случайное значение интервала между соседними (i-1)—ой и i—ой ошибками (i=[1,18]), в соответствии с экспоненциальным законом распределения

$$W(y) = b*exp(-b*y),$$
 y>=0, с параметром b=0.1

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y=-\ln(t)/b$

Средний интервал равен $m_{\text{эксп}} = 10$, СКО равно $s_{\text{эксп}} = 10$.

Массив ${X_i}$ был упорядочен по возрастанию.

Результат представлен в Таблице 14.

i	X_{i}	i	X_{i}	i	X_{i}
1	0.191	7	2.466	13	7.278
2	0.868	8	2.467	14	10.240
3	1.162	9	2.480	15	10.905
4	1.183	10	3.363	16	11.263
5	1.517	11	4.016	17	15.856
6	2.444	12	6.291	18	19.672

Таблица 14. Экспотенциальный закон распределения, 60%

$$A = \frac{\sum_{i=1}^{18} iX_i}{\sum_{i=1}^{18} X_i} = \frac{2602,434}{180,365} = 13.992$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 13.992>9,5

Рассмотрим функции
$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g_n(m,A) = \frac{n}{m-A}$.

В Таблице 15 представлены их значения для множества аргументов $m \ge n+1$.

m	f _n (m)	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
19	3.495	3.594	0.099
20	2.548	2.996	0.448

Таблица 15.

Минимум разности при m = 19.

Первоначальное число ошибок В=т-1=18

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.034671$$

В>п не выполняется.

Общее время тестирования:103.662 дней

3. Релеевский закон распределения

• 100% входных данных(n=30)

Был сгенерирован массив данных $\{X_i\}$, где X_i – случайное значение интервала между соседними (i-1)—ой и i—ой ошибками (i=[1,30]), в соответствии с релеевским законом распределения

$$W(y) = (y/c^2)*exp(-y^2/(2*c^2)),$$
 $y>=0$, c параметром $c=8.0$.

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

Средний интервал равен $m_{pen} = c*sqrt(\pi/2)=10.027$ $s_{pen} = c*sqrt(2-\pi/2)=5.241$.

Массив $\{X_i\}$ был упорядочен по возрастанию.

Результат представлен в Таблице 16.

i	X_{i}	i	X_{i}	i	X_{i}
1	1.193	11	7.232	21	12.277
2	1.526	12	7.238	22	12.443

3	3.579	13	7.272	23	12.574
4	4.404	14	7.422	24	13.753
5	5.061	15	7.672	25	13.788
6	5.381	16	8.250	26	14.588
7	6.572	17	8.779	27	15.439
8	6.743	18	8.933	28	17.254
9	6.841	19	10.001	29	20.158
10	7.145	20	11.575	30	21.544

Таблица 16. Релеевский закон распределения, 100%

$$A = \frac{\sum_{i=1}^{30} iX_i}{\sum_{i=1}^{30} X_i} = \frac{5944,362}{300,199} = 19,789$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 19,789>15,5

Рассмотрим функции $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ и $g_n(m,A) = \frac{n}{m-A}$.

В Таблице 17 представлены их значения для множества аргументов $m \ge n+1$.

m	f _n (m)	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
31	3.995	2.676	1.316
32	3.027	2.457	0.570
33	2.558	2.271	0.288
34	2.255	2.111	0.144
35	2.035	1.972	0.163
36	1.863	1.851	0.013
37	1.725	1.743	0.019

Таблица 17.

Минимум разности при m = 36.

Первоначальное число ошибок В=т-1=35

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} iX_{i}} = 0.006456$$

B>n выполняется, тогда оценим значения средних времен Xj , j=n+1,n+2..., n+k до обнаружения следующих ошибок.

Среднее время до обнаружения (n+1)-ой ошибки $X_{n+1} = \frac{1}{K(B-n)}$.

Рассчитаем аналогично для (n+2) и т.д., результаты приведены в Таблице 18.

m	Х _ј (дней)
31	30.977
32	38.721
33	51.629
34	77.443
35	154.886

Таблица 18.

Время до завершения тестирования: = 353,656

Общее время тестирования: 640.292

• 80% входных данных(n=24)

Был сгенерирован массив данных $\{X_i\}$, где X_i – случайное значение интервала между соседними (i-1)—ой и i—ой ошибками (i=[1,24]), в соответствии с релеевским законом распределения

$$W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$$
 параметром $c=8.0$.

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

Средний интервал равен $m_{pen}=c*sqrt(\pi/2)=10.027$, $s_{pen}=c*sqrt(2-\pi/2)=5.241$.

Массив ${X_i}$ был упорядочен по возрастанию.

Результат представлен в Таблице 19.

i	X_{i}	i	X_{i}	i	X_{i}
1	0.105	9	5.084	17	10.544
2	0.333	10	5.552	18	10.591
3	0.515	11	7.200	19	17.534
4	1.042	12	7.732	20	22.207
5	1.407	13	7.972	21	24.503
6	2.718	14	8.014	22	31.358
7	2.853	15	10.184	23	34.233

8	3.602	16	10.202	24	34.856

Таблица 19. Релеевский закон распределения, 80%

$$A = \frac{\sum_{i=1}^{24} iX_i}{\sum_{i=1}^{24} X_i} = \frac{3816,628}{240,552} = 18.665$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 18.665>12,5

Рассмотрим функции
$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g_n(m,A) = \frac{n}{m-A}$.

В Таблице 5 представлены их значения для множества аргументов $m \ge n+1$.

m	f _n (m)	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
25	3.776	3.788	0.012
26	2.816	3.272	0.456

Таблица 20.

Минимум разности при m = 25.

Первоначальное число ошибок В=т-1=24

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.014552$$

В>п не выполняется.

Общее время тестирования 260, 341 дней

• 60% входных данных(n=18)

Был сгенерирован массив данных $\{X_i\}$, где X_i – случайное значение интервала между соседними (i-1)—ой и i—ой ошибками (i=[1,18]), в соответствии с релеевским законом распределения

$$W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$$
 параметром $c=8.0$.

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

Средний интервал равен $m_{\text{peл}} = c*\text{sqrt}(\pi/2) = 10.027$, $s_{\text{peл}} = c*\text{sqrt}(2-\pi/2) = 5.241$.

Массив $\{X_i\}$ был упорядочен по возрастанию.

Результат представлен в Таблице 22.

i	X_{i}	i	X_{i}	i	X_{i}
1	0.191	7	2.466	13	7.278
2	0.868	8	2.467	14	10.240
3	1.162	9	2.480	15	10.905
4	1.183	10	3.363	16	11.263
5	1.517	11	4.016	17	15.856
6	2.444	12	6.291	18	19.672

Таблица 22. Релеевский закон распределения, 60%

$$A = \frac{\sum_{i=1}^{18} iX_i}{\sum_{i=1}^{18} X_i} = \frac{180,477}{2182,903} = 13.992$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 12,1>9,5

Рассмотрим функции
$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g_n(m,A) = \frac{n}{m-A}$.

В Таблице 23 представлены их значения для множества аргументов $m \ge n+1$.

m	$f_n(m)$	$g_n(m,A)$	$ f_n(m)-g_n(m,A) $
19	3.495	2.702	0.793
20	2.548	2.349	0.198
21	2.098	2.078	0.020
22	1.812	1.863	0.051

Таблица 23.

Минимум разности при m = 21.

Первоначальное число ошибок В=m-1=20

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.010615$$

B>n выполняется, тогда оценим значения средних времен Xj , $j=n+1,n+2...,\ n+k$ до обнаружения следующих ошибок.

Среднее время до обнаружения (n+1)-ой ошибки $X_{n+1} = \frac{1}{K(B-n)}$.

Рассчитаем аналогично для (n+2) и т.д., результаты приведены в Таблице 24.

m	Х _ј (дней)
19	47.103
20	94.205

Таблица 24.

Время до завершения тестирования 141.308

Общее время тестирования 337.087 дней

Выводы

Были рассчитаны показатели надежности программ по модели обнаружения ошибок Джелинского — Моранды для различных законов распределения времен обнаружения ошибок и различного числа входных данных.

Входные	Распределение			
данные, %	Равномерное	Экспоненциальное	Релеевское	
100	38	32	35	
80	26	24	27	

	60	20	18	20
--	----	----	----	----

Таблица 25. Оценка числа ошибок

Входные	Распределение				
данные, %	Равномерное	Экспоненциальное	Релеевское		
100	949	607	640		
80	372	260	487		
60	332	104	337		

Таблица 26. Время тестирования

По результатам работы можно сделать выводы о том, что время обнаружения ошибки возрастает с увеличением числа выявленных ошибок. Первоначальное количество ошибок и время тестирования линейно зависит от числа используемых для анализа данных (чем больше данных, тем больше В и время тестирования, и наоборот).

Время тестирования для релеевского закона распределения является наибольшим, для экспоненциального распределения – наименьшим.