Two-way Analysis of Variance

- Tests the equality of two or more population means when two independent variables are used: factor A and factor B (more than two factors: multi-way ANOVA).
- Each independent variables (factors) may have any number of levels.
- Same results as separate one-way ANOVA on each variable. **But interaction can be tested**.
- Saves time and effort, compared to consecutive one-way ANOVA tests.
- Assumptions are the same

- Tests the equality of two or more population means when two independent variables are used: factor A and factor B (more than two factors: The effect of the levels of .
- Each independent variables (fac number of levels.

The effect of the levels of a factor is not the same across the levels of the other factor.

- Same results as separate one-way ANOVA on each variable. **But interaction can be tested**.
- Saves time and effort, compared to consecutive one-way ANOVA tests.
- Assumptions are the same

Two-way ANOVA: Null Hypotheses

Tests 3 hypotheses simultaneously:

- No difference in means due to factor A
 - H_0^A : $\mu_{1.} = \mu_{2.} = ... = \mu_{a.}$
 - $H_1^A: \exists (i,j): \mu_{i.} \neq \mu_{j.}$
- No difference in means due to factor B
 - H_0^B : $\mu_{.1} = \mu_{.2} = ... = \mu_{.b}$
 - $H_1^B: \exists (i,j): \mu_{i} \neq \mu_{i}$
- No interaction of factors A and B
 - $H_0^{AB} : \forall (i,j) : \gamma_{ij} = 0$
 - H_1^{AB} : $\exists (i,j): \gamma_{ij} \neq 0$

Grades of students with respect to the instructor (1,2,3) and the teaching method (1,2)

Adapted from A.Dean and D.Voss, Design and Analysis of Experiments, Springer, 1999

Instructor i

(d)

Instructor i

(c)

- a) There is no difference between instructors and methods no interaction.
- b) There is a difference between methods but no difference between instructors – no interaction

e) Method 1 gives better grades but the magnitude depends of the instructor – interaction

f) Method 1 gives better grades except with instructor 3 - interaction

g) Method 1 gives better grades except with instructor 2 - interaction

h) Method 1 gives better grades except with instructor 1 - interaction

		В			
A	1	 j	 b	Mean	Effect
1	y ₁₁₁	 <i>y</i> _{1<i>j</i>1}	 y_{1b1}	\bar{y}_{1}	α_1
	y_{11n}	 y_{1jn}	 y_{1bn}		
i	y _{i11}	 y_{ij1}	 y_{ib1}	\bar{y}_{i}	α_i
	y_{i1n}	 y_{ijn}	 y_{ibn}		
a	y_{a11}	 y_{aj1}	 y_{ab1}	\bar{y}_{a}	α_a
	y_{a1n}	 y_{ajn}	 y_{abn}		
Mean	<u> </u> $\bar{y}_{.1.}$	 $\bar{y}_{.j.}$	 $\bar{y}_{.b.}$	<i>y</i>	
Effect	eta_1	 β_j	 β_b		

		В			
A	1	 j	 b	Mean	Effect
1	y ₁₁₁	 <i>y</i> _{1<i>j</i>1}	 y_{1b1}	\bar{y}_{1}	α_1
	y_{11n}	 y_{1jn}	 y_{1bn}		
i	y _{i11}	 y_{ij1}	 y_{ib1}	\bar{y}_{i}	α_i
	y_{i1n}	 y_{ijn}	 y_{ibn}		
a	y _{a11}	 y _{aj1}	 y_{ab1}	\bar{y}_{a}	α_a
	y_{a1n}	 y_{ajn}	 y_{abn}		
Mean	<u> </u> $\bar{y}_{.1.}$	 $\bar{y}_{.j.}$	 $\bar{y}_{.b.}$	<i>y</i>	
Effect	eta_1	 β_j	 β_b		

Effect of interaction of level i of factor A and level j of factor B is denoted by γ_{ij} (not shown in the table)

$$\gamma_{ij} = \bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...}$$

where $\bar{y}_{ij.}$ denotes the mean value for level i of factor A and level j of factor B

• Each measurement y_{ijk} can be expressed as follows

$$y_{ijk} = \bar{y}_{...} + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}$$

- α_i is the main effect of the *i*-th level of factor A
- β_j is the main effect of the *j*-th level of factor B
- γ_{ij} is the effect due to the interaction between the *i*-th level factor A and the *j*-th level of factor B

• Each measurement y_{ijk} can be expressed as follows

$$y_{ijk} = \bar{y}_{...} + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}$$

- In this model, we split the total variation in all measurements into two components:
 - 1. Variation due to the effects of the levels of each factor
 - 2. Variation due to the interaction of factors
 - 3. Variation due to the errors

Two-way ANOVA sums of squares (SS)

• Each measurement y_{ijk} can be expressed as follows

$$y_{ijk} = \bar{y}_{...} + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}$$

- Variation due to the effects of A: SSA = $bn \sum_{i=1}^{a} (\bar{y}_{i..} \bar{y}_{...})^2$
- Variation due to the effects of B: SSB = an $\sum_{j=1}^{b} (\bar{y}_{.j.} \bar{y}_{...})^2$
- Variation due to the interactions: SSAB

$$= n \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...})^{2}$$

- Variation due to errors: $SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} \bar{y}_{ij.})^2$
- Total Variation: SST = SSA + SSB + SSAB + SSE

Use the F statistic for each factor and interaction

$$F_{a} = \frac{SSA/(a-1)}{SSE/(ab(n-1))}$$

$$F_{b} = \frac{SSB/(b-1)}{SSE/(ab(n-1))}$$

$$F_{ab} = \frac{SSAB/((a-1)(b-1))}{SSE/(ab(n-1))}$$

Two-way ANOVA table

	SS	df	MS	F	P
Factor A	SSA	a-1	MSA = SSA/(a-1)	MSA/MSE	Tail area above F
Factor B	SSB	b-1	MSB = SSB/(b-1)	MSB/MSE	Tail area above F
Interaction	SSAB	(a-1)(b-1)	MSAB=SSAB/(a-1)(b-1))	MSAB/MSE	Tail area above F
Within	SSE	ab(n-1)	MSE = SSE/(ab(n-1))		
Total	SST	abn-1			

If the interaction is significant, then, it does not make sense to study the factors separately.

	SS	df	MS	F	P (α=0.05)
Factor A	3.3714	3	MSA = 1.1238	460.2	
Factor B	0.5152	2	MSB = 0.2576	105.5	
Interaction	0.4317	6	MSAB=0.072	29.5	
Within	0.0293	12	MSE = 0.0024		
Total	4.3476	23			

	SS	df	MS	F	P (α=0.05)
Factor A	3.3714	3	MSA = 1.1238	460.2	
Factor B	0.5152	2 This facts	MSB = 0.2576	105.5	
Interaction	0.4317	Tills facto	or has a large impact	29.5	
Within	0.0293	12	MSE = 0.0024		
Total	4.3476	23			

	SS	df	MS	F	P (α=0.05)
Factor A	3.3714	3	MSA = 1.1238	460.2	
Factor B	0.5152	2	MSB = 0.2576	105.5	
Interaction	0.4317	6	MSAB=0.072	29.5	
Within	0.0293	But this o	one also has some impact		
Total	4.3476				

	SS	df	MS	F	P (α=0.05)
Factor A	3.3714	3	MSA = 1.1238	460.2	
Factor B	0.5152	2	MSB = 0.2576	105.5	
Interaction	0.4317	6	MSAB=0.072	29.5	
Within	0.0293		MSF = 0.002 nteraction between both		
Total	4.3476	might hav	ve some impact as well.		

	SS	df	MS	F	P (α=0.05)
Factor A	3.3714	3	MSA = 1.1238	460.2	~ 0
Factor B	0.5152	2	MSB = 0.2576	105.5	~ 0
Interaction	0.4317	6	MSAB=0.072	29.5	~ 0
Within	0.0293	12	MSE = 0.0024		
Total	4.3476	23			

The H₀ for main effects and interaction are rejected!

Therefore, start searching for differences in the interaction.

Example: Two-Way ANOVA in R

Measurements	System A		Syste	em B	System C	
	Prog A	Prog B	Prog A	Prog B	Prog A	Prog B
1	0.0952	0.1432	0.1382	0.1082	0.0966	0.1066
2	0.0871	0.1343	0.1332	0.1032	0.1200	0.1100
3	0.0969	0.1314	0.1482	0.1182	0.1152	0.1252
4	0.1054	0.1443	0.1430	0.1130	0.1375	0.1275
5	0.0812	0.1312	0.1483	0.1083	0.1298	0.1398

Measurements of the time (in microseconds) required to perform a subroutine on three different systems programmed by two different programmers.

Is there a difference between systems?

Is there a difference between programmers?

Is there any interaction between systems and programmers?

Example: Two-Way ANOVA in R Step 1- State the hypotheses

Hypothesis

•
$$H_0^S: \mu_{A.} = \mu_{B.} = \mu_{C.}$$

→ All systems have equal means

•
$$H_0^P$$
: $\mu_{.A} = \mu_{.B}$

→ All programmers have equal means

•
$$H_0^{SP}$$
: $\forall (i,j) \gamma_{ij} = 0$

→ There is no interaction

Example: Two-Way ANOVA in R

Exploratory data analysis

boxplot(Time ~ Programmer, data=D)

Almost no difference between systems and between programmers?

Example: Two-Way ANOVA in R Exploratory data analysis

interaction.plot(D\$System, D\$Programmer,D\$Time)

Example: Two-Way ANOVA in R Exploratory data analysis

But there is a strong interaction between systems and programmers!

The systems A and B can have different performance depending of who is the programmer

interaction.plot(D\$System, D\$Programmer,D\$Time)

Example: Two-Way ANOVA in R Step 2 – Calculations

Test no interactions, only *main effects*

No rejection of H_0^S or H_0^P at significance level of 5%. Systems take similar times. The time is not affect by programmers But we are not testing interactions.

Example: Two-Way ANOVA in R Step 2 – Calculations

Test *interactions* and *main effects*

Rejection of H_0^{SP} at significance level 5% which means that there is an interaction between systems and programmers. We need to check assumptions.

Example: Two-Way ANOVA in R Check assumptions

Test normality of the residuals

```
> qqnorm(aov.out$res)
```

- > qqline(aov.out\$res)
- > shapiro.test(aov.out\$res)

Shapiro-Wilk normality test

W = 0.986, p-value = 0.9523

- We assume normality

Example: Two-Way ANOVA in R Check assumptions

Test homogeneity of variances

```
> bartlett.test(Time~interaction(System, Programmer), data=D)

Bartlett test of homogeneity of variances

data: Time by System by Programmer

Bartlett's K-squared = 6.6152, df = 5, p-value = 0.2509
```

- We assume that variances are similar.

Example: Two-Way ANOVA in R Post-hoc analysis

Tukey HSD

```
> print(t)
$`System:Programmer`
            diff
                          lwr
                                                p adj
                                        upr
         0.04902
                               0.0690660806 0.0000012
B:A-A:A
                  0.028973919
C:A-A:A
         0.02666
                 0.006613919
                               0.0467060806 0.0047273
A:B-A:A
         0.04372
                  0.023673919
                               0.0637660806 0.0000077
B:B-A:A 0.01702 -0.003026081
                               0.0370660806 0.1295242
C:B-A:A 0.02866
                0.008613919
                               0.0487060806 0.0022271
C:A-B:A -0.02236 -0.042406081
                              -0.0023139194 0.0226329
        -0.00530 -0.025346081
                               0.0147460806 0.9614023
B:B-B:A -0.03200 -0.052046081
                              -0.0119539194 0.0006248
        -0.02036 -0.040406081
                              -0.0003139194 0.0450286
                               0.0371060806 0.1280049
         0.01706 -0.002986081
B:B-C:A -0.00964 -0.029686081
                               0.0104060806 0.6754123
C:B-C:A
         0.00200 -0.018046081
                               0.0220460806 0.9995743
B:B-A:B -0.02670 -0.046746081
                              -0.0066539194 0.0046571
C:B-A:B -0.01506 -0.035106081
                               0.0049860806 0.2238190
C:B-B:B
         0.01164 -0.008406081
                               0.0316860806 0.4870652
```

> t = TukeyHSD(aov.out,alternative="two.sided")

