第一章

第五节

极限运算法则

- 一、无穷小运算法则
- 二、极限的四则运算法则
- 三、复合函数的极限运算法则

一、无穷小运算法则

定理1. 有限个无穷小的和还是无穷小.

证: 考虑两个无穷小的和. 设 $\lim_{x\to x_0} \alpha = 0$, $\lim_{x\to x_0} \beta = 0$,

$$\forall e > 0$$
, $\exists \delta_1 > 0$, $\dot{\exists} 0 < |x - x_0| < \delta_1$ 时,有 $|\alpha| < \frac{\varepsilon}{2}$

$$\exists \delta_2 > 0$$
, 当 $0 < |x - x_0| < \delta_2$ 时,有 $|\beta| < \frac{\varepsilon}{2}$

取 $d = \min\{d_1, d_2\}$, 则当 $0 < |x - x_0| < d$ 时,有

$$|a+b| \le |a| + |b| < \frac{e}{2} + \frac{e}{2} = e$$

因此

$$\lim_{x\to x_0} (\alpha+\beta) = 0.$$

这说明当 $x \to x_0$ 时, $\alpha + \beta$ 为无穷小量.

类似可证: 有限个无穷小之和仍为无穷小.

说明: 无限个无穷小之和不一定是无穷小!

例如,

$$\lim_{n \to \infty} n \left(\frac{1}{n^2 + \pi} + \frac{1}{n^2 + 2\pi} + \mathbf{L} + \frac{1}{n^2 + n\pi} \right) = 1$$

(P57 题 4 (2))

解答见课件第二节例5

定理2. 有界函数与无穷小的乘积是无穷小.

证: 设
$$\forall x \in U(x_0, \delta_1), |u| \leq M$$

又设 $\lim_{x\to x_0} a = 0$,即 $\forall e > 0$, $\exists \delta_2 > 0$, $\exists x \in U(x_0, \delta_2)$

时,有
$$|a| \leq \frac{e}{M}$$

取 $d = \min\{d_1, d_2\}$, 则当 $x \in U(x_0, d)$ 时,就有

$$|ua| = |u||a| \le M \cdot \frac{e}{M} = e$$

故 $\lim_{x\to x_0} u\alpha = 0$, 即 $u\alpha$ 是 $x\to x_0$ 时的无穷小.

推论1.常数与无穷小的乘积是无穷小.

推论 2. 有限个无穷小的乘积是无穷小.

例1. 求 $\lim_{x\to\infty}\frac{\sin x}{x}$.

解: $: |\sin x| \le 1$

$$\lim_{x\to\infty}\frac{1}{x}=0$$

利用定理 2 可知 $\lim_{x\to\infty} \frac{\sin x}{x} = 0$.

说明:
$$y = 0$$
 是 $y = \frac{\sin x}{x}$ 的渐近线.

二、极限的四则运算法则

定理 3. 若
$$\lim f(x) = A$$
, $\lim g(x) = B$,则有
$$\lim [f(x) \pm g(x)] = \lim f(x) \pm \lim g(x) = A \pm B$$

证: 因
$$\lim f(x) = A$$
, $\lim g(x) = B$, 则有 $f(x) = A + a$, $g(x) = B + b$ (其中 a , b 为无穷小)

于是
$$f(x) \pm g(x) = (A+a) \pm (B+b)$$
$$= (A \pm B) + (a \pm b)$$

由定理1可知a±b也是无穷小,再利用极限与无穷小的关系定理,知定理结论成立.

推论: 若 $\lim f(x) = A$, $\lim g(x) = B$, 且 $f(x) \ge g(x)$,

则 *A*≥ *B*.(P46 定理 5)

提示: $\diamondsuit j(x) = f(x) - g(x)$

利用保号性定理证明.

说明: 定理 3 可推广到有限个函数相加、减的情形.

定理 4. 若 $\lim f(x) = A$, $\lim g(x) = B$, 则有 $\lim [f(x)g(x)] = \lim f(x) \lim g(x) = AB$

提示: 利用极限与无穷小关系定理及本节定理2证明.

说明: 定理 4 可推广到有限个函数相乘的情形.

推论 1. $\lim [Cf(x)] = C\lim f(x)$ (C为常数)

推论 2. $\lim[f(x)]^n = [\lim f(x)]^n$ (n为正整数)

例2. 设 n 次多项式 $P_n(x) = a_0 + a_1 x + \dots + a_n x^n$, 试证 $\lim_{x \to x_0} P_n(x) = P_n(x_0).$

$$\lim_{x \to x_0} P_n(x) = a_0 + a_1 \lim_{x \to x_0} x + \dots + a_n \lim_{x \to x_0} x^n$$

$$= P_n(x_0)$$

定理 5. 若 $\lim f(x) = A$, $\lim g(x) = B$, 且 $B \neq 0$, 则有

$$\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)} = \frac{A}{B}$$

证: 因 $\lim f(x) = A$, $\lim g(x) = B$, 有

$$f(x) = A + a$$
 , $g(x) = B + b$, 其中 a , b 为无穷小

设
$$\gamma = \frac{f(x)}{g(x)} - \frac{A}{B} = \frac{A+a}{B+b} - \frac{A}{B} = \frac{1}{\frac{B(B+b)}{ff}} \frac{(Ba-Ab)}{\mathbb{E}gh}$$

因此 g 为无穷小, $\frac{f(x)}{g(x)} = \frac{A}{B} + g$

由极限与无穷小关系定理,得 $\lim \frac{f(x)}{g(x)} = \frac{A}{B} = \frac{\lim \overline{f(x)}}{\lim g(x)}$

定理6. 若 $\lim_{n\to\infty} x_n = A$, $\lim_{n\to\infty} y_n = B$, 则有

- $(1) \lim_{n \to \infty} (x_n \pm y_n) = A \pm B$
- $(2) \lim_{n\to\infty} x_n y_n = AB$
- [(3) 当 $y_n \neq 0$ 且 $B \neq 0$ 时, $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{A}{B}$

提示: 因为数列是一种特殊的函数,故此定理可由定理3,4,5直接得出结论.

例3. 设有分式函数
$$R(x) = \frac{P(x)}{Q(x)}$$
, 其中 $P(x)$, $Q(x)$ 都是

多项式, 若 $Q(x_0) \neq 0$, 试证: $\lim_{x \to x_0} R(x) = R(x_0)$.

if:
$$\lim_{x \to x_0} R(x) = \frac{\lim_{x \to x_0} P(x)}{\lim_{x \to x_0} Q(x)} = \frac{P(x_0)}{Q(x_0)} = R(x_0)$$

说明: 若 $Q(x_0)=0$,不能直接用商的运算法则。

例4.
$$\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 9} = \lim_{x \to 3} \frac{(x - 3)(x - 1)}{(x - 3)(x + 3)} = \lim_{x \to 3} \frac{x - 1}{x + 3}$$
$$= \frac{2}{6} = \frac{1}{3}$$

例5. 求
$$\lim_{x\to 1} \frac{2x-3}{x^2-5x+4}$$
.

解: x = 1 时, 分母 = 0, 分子 $\neq 0$, 但因

$$\lim_{x \to 1} \frac{x^2 - 5x + 4}{2x - 3} = \frac{1^2 - 5 \cdot 1 + 4}{2 \cdot 1 - 3} = 0$$

$$\therefore \lim_{x \to 1} \frac{2x-3}{x^2-5x+4} = \infty$$

例6. 求
$$\lim_{x\to\infty} \frac{4x^2-3x+9}{5x^2+2x-1}$$
.

 $\mathbf{M}: x \to \infty$ 时,分子 $\to \infty$,分母 $\to \infty$.

分子分母同除以 x^2 ,则

"抓大头"

原式 =
$$\lim_{x \to \infty} \frac{4 - 3\frac{1}{x} + 9\frac{1}{x^2}}{5 + 2\frac{1}{x} - \frac{1}{x^2}} = \frac{4}{5}$$

一般有如下结果:

$$\lim_{x \to \infty} \frac{a_0 x^m + a_1 x^{m-1} + \mathbf{L} + a_m}{b_0 x^n + b_1 x^{n-1} + \mathbf{L} + b_n}$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

$$(a_0 b_0 \neq 0, m, n) + b_1 x^{n-1} + \mathbf{L} + b_n$$

三、复合函数的极限运算法则

定理7. 设
$$\lim_{x \to x_0} \varphi(x) = a$$
, 且 x 满足 $0 < |x - x_0| < \delta_1$ 时,

$$j(x) \neq a$$
, 又 $\lim_{u \to a} f(u) = A$, 则有

$$\lim_{x \to x_0} f[\varphi(x)] = \lim_{u \to a} f(u) = A \qquad ①$$

证:
$$\lim_{u \to a} f(u) = A \implies \forall e > 0, \exists h > 0, \text{ } \exists 0 < |u - a| < h$$
 时,有 $|f(u) - A| < e$

取
$$d = \min\{d_1, d_2\}$$
, 则当 $0 < |x - x_0| < d$ 时

$$0 < |j(x) - a| = |u - a| < h$$

故 $|f[\varphi(x)]-A| = |f(u)-A| < e$, 因此①式成立.

定理7. 设
$$\lim_{x \to x_0} \varphi(x) = a$$
, 且 x 满足 $0 < |x - x_0| < \delta_1$ 时, $\mathbf{j}(x) \neq a$,又 $\lim_{u \to a} f(u) = A$,则有
$$\lim_{x \to x_0} f[\mathbf{j}(x)] = \lim_{u \to a} f(u) = A$$

说明: 若定理中 $\lim_{x\to x_0} j(x) = \infty$, 则类似可得

$$\lim_{x \to x_0} f[j(x)] = \lim_{u \to \infty} f(u) = A$$

例7. 求
$$\lim_{x\to 3} \sqrt{\frac{x-3}{x^2-9}}$$
.

解: 令 $u = \frac{x-3}{x^2-9}$,仿照例4 例4

$$\lim_{x \to 3} u = \lim_{x \to 3} \frac{1}{x+3} = \frac{1}{6}$$

$$\therefore \quad \boxed{\mathbb{R}} \mathbf{x} = \lim_{u \to \frac{1}{6}} \sqrt{u} = \sqrt{\frac{1}{6}} \qquad (\mathbf{LP34} \, \mathbf{M5})$$

$$= \frac{\sqrt{6}}{6}$$

例8. 求
$$\lim_{x\to 1} \frac{x-1}{\sqrt{x-1}}$$
.

解: 方法 1 令 $u = \sqrt{x}$,则 $\lim_{x \to 1} u = 1$,

$$\frac{x-1}{\sqrt{x}-1} = \frac{u^2-1}{u-1} = u+1$$

方法2

$$\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1} = \lim_{x \to 1} \frac{(x-1)(\sqrt{x}+1)}{x-1} = \lim_{x \to 1} (\sqrt{x}+1)$$

$$= 2$$

内容小结

- 1. 极限运算法则 Th1 Th2 Th3 Th4 Th5 Th7
 - (1) 无穷小运算法则
 - (2) 极限四则运算法则
 - (3) 复合函数极限运算法则

注意使用条件

- 2. 求函数极限的方法
 - (1) 分式函数极限求法
 - $1) x \rightarrow x_0$ 时,用代入法 (要求分母不为0)
 - 2) $x \to x_0$ 时, 对 $\frac{0}{0}$ 型, 约去公因子
 - 3)x→∞时,分子分母同除最高次幂"抓大头"
 - (2) 复合函数极限求法 —— 设中间变量

思考及练习

1. 若 $\lim_{x \to \infty} f(x)$ 存在, $\lim_{x \to \infty} g(x)$ 不存在,问 $\lim_{x \to \infty} [f(x) + g(x)]$ 是否存在?为什么?

答: 不存在. 否则由 g(x) = [f(x) + g(x)] - f(x)

利用极限四则运算法则可知 $\lim_{x \to \infty} g(x)$ 存在,与已知条件矛盾.

2.
$$\lim_{n\to\infty} \left[\frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^2} + \dots + \frac{n}{n^2} \right] = ?$$

解: 原式 =
$$\lim_{n\to\infty} \frac{n(n+1)}{2n^2} = \lim_{n\to\infty} \frac{1}{2}(1+\frac{1}{n}) = \frac{1}{2}$$

解法1

原式 =
$$\lim_{x \to +\infty} \frac{x}{\sqrt{x^2 + 1} + x} = \lim_{x \to +\infty} \frac{1}{\sqrt{1 + \frac{1}{x^2} + 1}} = \frac{1}{2}$$

解法 2 令
$$t = \frac{1}{x}$$
, 则 $t \to 0^+$

原式 =
$$\lim_{t \to 0^+} \frac{1}{t} \left[\sqrt{\frac{1}{t^2} + 1} - \frac{1}{t} \right] = \lim_{t \to 0^+} \frac{\sqrt{1 + t^2 - 1}}{t^2}$$

$$= \lim_{t \to 0^+} \frac{1}{\sqrt{1+t^2}+1} = \frac{1}{2}$$

4. 试确定常数 a 使 $\lim_{x\to\infty} (\sqrt[3]{1-x^3} - ax) = 0$.

解: 令
$$t = \frac{1}{x}$$
, 则

$$0 = \lim_{t \to 0} \left[\sqrt[3]{1 - \frac{1}{t^3}} - \frac{a}{t} \right] = \lim_{t \to 0} \frac{\sqrt[3]{t^3 - 1} - a}{t}$$

$$\therefore \lim_{t \to 0} \left[\sqrt[3]{t^3 - 1} - a \right] = 0$$

故
$$-1-a=0$$

因此
$$a=-1$$

作业

P49 1 (5), (7), (9), (12), (14)

2 (1), (3)

3 (1)

5

备用题 设 f(x) 是多项式,且 $\lim_{x\to\infty} \frac{f(x)-2x^3}{x^2} = 2$,

解: 利用前一极限式可令

$$f(x) = 2x^3 + 2x^2 + ax + b$$

再利用后一极限式,得

$$3 = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} (a + \frac{b}{x})$$

可见

$$a = 3, b = 0$$

故

$$f(x) = 2x^3 + 2x^2 + 3x$$

