#### Exercise 1

- Generate Random numbers  $(x_i)$  uniformly between 0 and 1 and compute  $I_n = \frac{1}{n} \sum_i f(x_i)$
- Random Number Generator used drand48
- $f(x) = x^3 \text{ using C} + +$
- To check how Relative deviation scales with total sweeps

## Random numbers using drand48



# Integral value $I_i = \frac{1}{i} \sum_i f(x_i)$ for $10^4$ sweeps



# Relative deviation scaling with total sweeps

| In       | $ I_n - I /I$                                                                   |
|----------|---------------------------------------------------------------------------------|
| 0.262416 | 0.0496638                                                                       |
| 0.246176 | 0.0152946                                                                       |
| 0.249138 | 0.00344737                                                                      |
| 0.249605 | 0.00157925                                                                      |
| 0.249807 | 0.000770297                                                                     |
| 0.24992  | 0.000321225                                                                     |
| 0.250027 | 0.000106769                                                                     |
| 0.250006 | 2.39998e-05                                                                     |
|          | 0.262416<br>0.246176<br>0.249138<br>0.249605<br>0.249807<br>0.24992<br>0.250027 |



- $f(x) = (p+1)x^p$ ; p= 1, 10, 100, 1000
- Scaling behaviour for different p

### Monte Carlo Time history of $I_i$ for various p values



\*  $10^5$  sweeps: plotted with gap of 10

Larger the value of p more sweeps it require for lesser deviation from exact value.



As p increases range of  $\times$  decreases which sweeps larger area under the curve.

Not nicely fitted though for all p values deviation varies as  $1/n^{0.5}$  and larger the p, larger the deviation for fixed n



• 
$$f(x) = a.sin(2\pi x)$$
;  $a = 0.1, 1, 10, 100$   
•  $I_n = \frac{1}{n} \sum_i f(x_i) + 1$ 

## Monte Carlo Time history of $I_i$ for various a values



Larger the value of a more sweeps it require for lesser deviation from exact value.



Again not nicely fitted though for all a values deviation varies as  $1/n^{0.5}$  and larger the a, larger the deviation for fixed n

