Études d'EDP: Laplacien, Laplacien non linéaire, ADR, Stokes

Méthodes numériques pour les EDP

1 Vérification

1.1 Le Laplacien

L'objectif est de vérifier que les différentes formulations du Laplacien en fonction des conditions aux limites (voir chapitre 3 sur les problèmes coercifs)

- Dirichlet non homogène
- Neumann non homogene
- Fourier (ou encore appelée Robin)

satisfont les résultats du théorème 1 page 38 des notes de cours pour des approximations \mathbb{P}_1 et \mathbb{P}_3 (k=1 et k=3) en 2D.

Afin de vérifier ces résultats, nous allons d'abord considérer le problème suivant : soit Ω le cercle unité tel que $\partial\Omega = \Gamma_D \cup \Gamma_N \cup \Gamma_R$ avec

$$\Gamma_D = \{ \mathbf{x} = (\cos \theta, \sin \theta), \ \theta \in (0, \pi/2) \}$$

$$\Gamma_N = \{ \mathbf{x} = (\cos \theta, \sin \theta), \ \theta \in (\pi/2, \pi) \}$$

$$\Gamma_F = \{ \mathbf{x} = (\cos \theta, \sin \theta), \ \theta \in (\pi, 2\pi) \}$$

$$-\Delta u = f$$

$$u = g \text{ sur } \Gamma_D$$

$$\frac{\partial u}{\partial n} = m \text{ sur } \Gamma_N$$

$$u + \frac{\partial u}{\partial n} = l \text{ sur } \Gamma_F$$
(1)

- 1. Créer le maillage d'un domaine Ω quelconque (pas un carré), nommer les bords physiques Dirichlet, Neumann et Fourier.
- 2. prendre f = 1, g = m = l = 0 et h = 0.05
 - écrire la formulation variationnelle
 - résoudre le problème avec feelpp_toolbox_coefficientformpdes et afficher dans le rapport le maillage ainsi que la solution u du problème (1)
- 3. Ensuite considérez la fonction $u(x,y) = \sin(\pi x)\cos(\pi y)$ et calculez f,g,m,l pour que u soit solution de (1). Faites une étude de convergence en échelle log-log et observer les pentes des droites associées aux approximations \mathbb{P}_2 . Sont elles celles attendues par le théorème 1 page 38?

Afin de présenter les résultats, vous rentrerez les erreurs L_2 et H_1 dans un tableau1 et sur une figure 1. Les résultats factices sont dans res.dat.

h	$\ \cdot\ _{L_2}$	$\ \cdot\ _{H_1}$
0.400	$1.42\cdot 10^{-1}$	$4.88\cdot10^{-4}$
0.200	$2.63\cdot10^{-2}$	$1.66 \cdot 10^{-5}$
0.100	$5.74\cdot10^{-3}$	$7.87 \cdot 10^{-7}$
0.050	$1.34 \cdot 10^{-3}$	$4.31 \cdot 10^{-8}$
0.025	$3.36 \cdot 10^{-4}$	$2.70 \cdot 10^{-9}$

Table 1 – Erreur de convergence

FIGURE 1 – Illustration

1.2 Fonctions peu régulières

Solutions singulières. On considere à présent le domaine $\Omega = \left\{ \mathbf{x} = r(\cos \theta, \sin \theta)^T, r \in (0, 1), \theta \in \left(0, \frac{3\pi}{2}\right) \right\}$ et le problème de Poisson avec condition de Dirichlet

$$-\Delta u = 0 \operatorname{dans} \Omega$$

$$u = g \operatorname{sur} \partial \Omega$$
(2)

avec g définie telle que u définie en coordonnée polaire par

$$u(r,\theta) = r^{2/3} \sin\left(\frac{2}{3}\theta\right)$$

soit la solution exacte du problème. Cette fonction est peu régulière proche de l'origine et conduit donc à des approximations peu précises près de l'origine.

- Vérifier que le Laplacien de u est bien nul puis déterminer g telle que u soit solution du problime.
- Montrer que $u \in H^1(\Omega)$ mais que le gradient de u n'est pas borné à l'origine. En déduire que

$$u \notin H^2(\Omega)$$

- Créer le maillage avec Gmsh.
- Faire l'étude de convergence. Qu'observez vous?

2 Méthode de stabilisation

On considère le problème d'advection-diffusion stationnaire :

$$-\varepsilon \Delta u + \beta \cdot \nabla u + \mu u = f,$$
$$u = q$$

dans le domaine Ω est rectangulaire. Les paramètres sont les suivants : la vitesse d'advection est égale à $\beta=(1,1)^T$, le coefficient d'amortissement μ est égal à 1 et l'on souhaite faire varier le coefficient de diffusion ε parmi les valeurs $\{10,1,10^{-1},10^{-3}\}$. Pour commencer, on considère une condition de Dirichlet homogène q=0

- 1. Tester la formulation variationnelle (directe) avec éléments finis P1 pour les différentes valeurs de ε . Commenter.
- 2. Ajouter les méthodes de stabilisation SUPG et GaLS et comparer les résultats avec la version sans stabilisation.
- 3. Vérifier l'ordre de convergence de la méthode GaLS avec des éléments P1 et P2 (pour $\varepsilon=10^{-3}$). Pour cela, considérer une solution manufacturée (faite avec les mains) : considérer une fonction u(x,y) puis calculer f et g telle que u soit solution du problème. Prendre à présent un domaine en forme de L : $\Omega=]0,4$ [2 \]0, 2 [2 . Les paramètres sont les suivants : $\varepsilon=10^{-3}, \beta=(y,-x)^T, \mu=0$ et f=0. Sur le bord gauche $\{x=0,2\leqslant y\leqslant 4\}$, on applique une condition de Dirichlet u=1. Sur le bord bas $\{2\leqslant x\leqslant 4,y=0\}$, on applique une condition de Neumann homogène. Sur les autres bords, on applique une condition de Dirichlet homogène.
- 4. Tester les méthodes d'élément fini avec et sans stabilisation et affiner le maillage suffisamment pour capturer les variations de la solution sur les deux arcs de cercles.

3 Stokes

On considère le problème de Stokes suivant :

$$-\Delta u + \nabla p = f \operatorname{dans} \Omega$$
$$\nabla \cdot u = 0$$
$$u = g \operatorname{sur} \partial \Omega$$

Une solution exacte est donnée par la solution de Kovasznay:

$$u = \begin{bmatrix} 1 - e^{\lambda x} \cos(2\pi y) \\ \frac{\lambda}{2\pi} e^{\lambda x} \sin(2\pi y) \end{bmatrix}, \quad p(x, y) = -\frac{e^{2\lambda x}}{2} + C$$

avec

$$\lambda = 1/(2\nu) - \sqrt{1/(4\nu^2) + 4\pi^2}, C \in \mathbb{R}$$

une constante et le second membre f est déterminé de telle sorte que u soit solution.

On considère le domaine $\Omega = (-0.5, 1) \times (-0.5, 1.5)$ et $\nu = 0.035$. Les conditions de Dirichlet sur le bord sont obtenues en évaluant la solution exacte.

— Déterminer f de telle sorte que u soit solution puis $C \in \mathbb{R}$ tel que p soit à moyenne nulle sur Ω .

- Créer le maillage du domaine Ω .
- Ecrire la formulation variationnelle pour le problème suivant :

$$-\Delta u + \nabla p = f$$
, dans Ω
 $\nabla \cdot u = 0$
 $u = g \operatorname{sur} \partial \Omega$

- Résoudre avec les éléments P_1/P_1 , Commenter vos résultats.
- Résoudre avec les éléments P_2/P_1 et calculer la moyenne de la pression. Commenter. — Faire une analyse de convergence en vitesse et pression pour les éléments P_2/P_1 .
- Faire une analyse de convergence en vitesse et pression pour les éléments P_2/P_1 . Pour calculer la valeur moyenne de la pression, utilisez les outils de postprocessing.