הרצאה 7 אלגוריתמים

שאלה:

מה יהיה אלו יהיו משקלים שליליים בגרף?

יכול להכשל גם אם תהיה אפילו קשת אחת שלילת בגרף ואין Dijkstra האלגוריתם של שליליים. מעגלים שליליים.

:הרעיון

האלגוריתם יתקדם בפאזות. בכל פאזה, נעבור על כל קשתות הגרף בסדר כלשהו, ונבדוק הפרה של אי־שוויון המשולש ביחס ל-d.

:Bellman Ford אלגוריתם

$$d(v) \leftarrow \infty$$
 $v \neq s$ ולכל ולכל .1

$$(|V|=n)^*$$
 פעמים: $n-1$ פבצעים 2

$$d(v)>$$
 אם ($u o v)\in E$ אם ולכל קשת פעם אחת פעם אח $d(u)+w(u o v)$ אז אז אז ($d(u)+w(u o v)$

$$O(|V|\cdot |E|)$$
 זמן ריצה:

:טענה

d(v) = : kה הפאזה בסיום הפאזה שמכיל k שמכיל ל־v ביותר מ־sביותר קל ביותר אס היים אס היים $\delta(s,v)$

:הערה

נכונות האלגוריתם נובעת מהטענה ומהנכונות של השיטה הגנרית שבכל שלב של נכונות האלגוריתם נובעת מסטנה ומהנכונות כלפי מטה, כלומר $d(v) \geq \delta(s,v)$

הוכחת הטענה:

.k נוכיחת באינדוקציה על

k=0 בסיס: \bullet רק עבור s יש מסלול קל ביותר מ־s ל־s שמכיל אפס קשתות (כשה אין מעגלים שליליים) ולכן $\delta(s)=\delta(s,s)=0$.

• צעד

נניח ש ל־vיש מסלול קל ביותר מ־s ביותר מ־s קשתות. נסמנו:

$$p = \underbrace{v_0}_s \rightarrow v_1 \rightarrow \dots \rightarrow v_k \rightarrow \underbrace{v_{k+1}}_v$$

תות. אישא של k מ־s מסלול קל מיסלול קל מ־s מסלול מיs מרישא של ϕ

 $d(v_k) = \delta(s, v_k)$ לפי הנ"א על v_k , בסיום הפאזה על בסיום הפאזה לפי הנ"א ל

במהלך הפאזה ה־k+1 בוחנים את הקשת ($v_k o v_{k+1}$) ואז מובטח שבסיום הפאזה ב-k+1

$$d(v_{k+1}) \le \underbrace{d(v_k) + w(v_k \to v_{k+1})}_{\text{p-length}} = \delta(s, v_{k+1})$$

לפי התכונה של השיטה הגנרית, נקבל בהכרח ש־ לפי הגנרית, בסיום לפי הגנרית, אל השיטה הגנרית. $d(v_{k+1}) \leq \delta(s,v_{k+1})$ הפאזה ה־

הגישה החמדנית

:הרעיון

הצגת גישה לפתרון בעיות בה האלגוריתם בוחר את האפשרות הטובה ביותר כרגע.

דוגמה:

 f_i משימות, וכל משימה i מיוצגת ע"י זמן התחלה וזמן סיום חיום תחובה וכתונות המשימות, וכל משימות אחריץ את המשמות. המטרה היא לבחור אוסף משימות גדול ביותר כד ש

כל שתי משימות שנבחרו לא נחתכות.

לדוגמה:

→ Time

 $\{I_1,I_5,I_6\},\{I_1,I_3,I_6\},\{I_1,I_4,I_6\}$ פתרון אופטימלי:

• ניתן לנסח את הכיה ע"י גרפים. גרף אינטרוולים הוא גרף שבו כל צומת מייצג אינטרוול,

יש קשת בין שני צמתים ⇔ האינטרוולים נחתכים.

המטרה היא למצוא קבוצה <u>בלתי־תלויה</u> גדולה ביותר (תת־קבוצה של הצמתים כך שבין כל שתיים בתת־הקבוצה אין קשת).

:האלגוריתם

- $X \leftarrow \emptyset$, $f_1 \leq f_2 \leq \ldots \leq f_n$ ממיינים את האינטרוולים לפי זמני סיום .1
 - n עד j=1 עבור 2.

O(nlog(n)) :סיבוכיות

:טענה

לכל X^* עד X^* כך איטרציה איטרציה קיים פתרון אופטימלי בסיום איטרציה וכל לכל . $I_j \in X^* \Leftrightarrow I_J \in X \quad (\forall 1 \leq j \leq k)$

מסקנה:

.אם נבחר k=n נקבל שיש פתרון אופטימלי שזהה לפלט האלגוריתם

הוכחה:

.kבאינקוציה על

:בסיס

נשים לב שתמיד X^* (בחר את I_1). נבחר אל להיות פתרון (האלג' האים לב שתמיד או $I_1\in X^*$ להיות פתרון אופטימלי כלשהוא. אם אם $I_1\in X^*$ סיימנו. אחרת, אחרת, אופטימלי כלשהוא. אם הסיום הקטן ביותר בנחתך עם ווער בעל זמן הסיום הקטן ביותר בנחתך או

(אם אין I_r כזה אזי $\{I_1\}$ פתרון חוקי וזו סתירה לאופטימליות של $X^*\bigcup\{I_1\}$ כזה אזי נטען שי $X^*\backslash\{I_r\}\bigcup\{I_r\}\bigcup\{I_1\}$ פתרון חוקי (אם זה נכון סיימנו שכן פתרון זה גם הוא אופטימלי).

מפני ש־ I_r זמן הסיום הקטן ביותר של כל האינטרוולים אזי I_r זמן הסיום הקטן ביותר של כל מלומר אין עוד אינטרוולים ב־ X^* הנחתך עם I_1 , אחרת אינטרוולים ב־ X^* פתרון חוקי. $X^*\backslash\{I_r\}\bigcup\{I_1\} \Leftarrow$