

Derek Chiu

2024-03-25

Contents

P	refac	e	4
1	Intr	m roduction	5
2	Met	thods	6
	2.1	Normalization	6
	2.2	Case Selection	6
	2.3	Classifiers	6
	2.4	Sequential Algorithm	8
	2.5	Two-Step Algorithm	9
	2.6	Gene Optimization	10
3	Dis	tributions	12
	3.1	Histotypes in Classifier Data	12
	3.2	Cohort Counts	12
	3.3	Cohorts in Classifier Data	12
	3.4	Quality Control	12
	3.5	Pairwise Gene Expression	17
4	Res	sults	21
	4.1	Training Set	21
	4.2	Optimal Gene Sets	34
	4.3	Rank Aggregation	36
	4.4	Test Set Performance	38
\mathbf{R}	efere	nces	39

List of Figures

2.1	Visualization of Subsampling Techniques	8
2.2	Sequential Algorithm	9
2.3	Two-Step Algorithm	10
3.1	Random1-Normalized CS1 vs. CS3 Gene Expression	17
3.2	Random1-Normalized CS2 vs. CS3 Gene Expression	18
3.3	HKgenes-Normalized CS1 vs. CS3 Gene Expression	19
3.4	HKgenes-Normalized CS2 vs. CS3 Gene Expression	20
4.1	Training Set Mean Accuracy	21
4.2	Training Set Class-Specific Mean Accuracy	22
4.3	Training Set Mean F1-Score	24
4.4	Training Set Class-Specific Mean F1-Score	25
4.5	Training Set Mean Kappa	27
4.6	Training Set Class-Specific Mean Kappa	28
4.7	Training Set Mean G-mean	30
4.8	Training Set Class-Specific Mean G-mean	31
4.9	Gene Optimization for Sequential Classifier	34
4.10	Gene Optimization for Two-Step Classifier	35
4.11	Top 4 Workflow Per-Class Evaluation Metrics	37
4.12	Top 4 Workflow Per-Class F1-Scores	38

List of Tables

3.1	Pre-QC Training Set Histotype Distribution by CodeSet	12
3.2	Training Set (with duplicates) Histotype Distribution by Code Set	13
3.3	Final Training Set Histotype Distribution by CodeSet	13
3.4	Histotype Distribution in Confirmation and Validation Sets	13
3.5	Training Set counts by CodeSet and Processing Stage	13
3.6	Cohort Distribution in Training, Confirmation, and Validation Sets	14
3.7	Number of failed samples by CodeSet and fail condition	14
4.1	Training Set Mean Accuracy	22
4.2	Training Set Class-Specific Mean Accuracy	23
4.3	Training Set Mean F1-Score	24
4.4	Cross-Validated Training Set Class-Specific Mean F1-Score	26
4.5	Training Set Mean Kappa	27
4.6	Training Set Class-Specific Mean Kappa	29
4.7	Training Set Mean G-mean	30
4.8	Training Set Class-Specific Mean G-mean	32
4.9	Overall Evaluation Metrics on Confirmation Set Models	39
4.10	Per-Class Eevaluation Metrics on Confirmation Set Model	39
4.11	Overall Evaluation Metrics on Validation Set Model	39
4.12	Per-Class Eevaluation Metrics on Validation Set Model	40

Preface

This report of statistical findings describes the classification of ovarian cancer histotypes using data from NanoString CodeSets.

Marina Pavanello conducted the initial exploratory data analysis, Cathy Tang implemented class imbalance techniques, Derek Chiu conducted the normalization and statistical analysis, and Lauren Tindale and Aline Talhouk are the project leads.

1. Introduction

Ovarian cancer has five major histotypes: high-grade serous carcinoma (HGSC), low-grade serous carcinoma (LGSC), endometrioid carcinoma (ENOC), mucinous carcinoma (MUC), and clear cell carcinoma (CCOC). A common problem with classifying these histotypes is that there is a class imbalance issue. HGSC dominates the distribution, commonly accounting for 70% of cases in many patient cohorts, while the other four histotypes are spread over the rest of the cases. Subsampling methods like up-sampling, down-sampling, and SMOTE can be used to mitigate this problem.

The supervised learning is performed under a consensus framework: we consider various classification algorithms and use evaluation metrics like accuracy, F1-score, Kappa, and G-mean to inform the decision of which methods to carry forward for prediction in confirmation and validation sets.

2. Methods

2.1 Normalization

The full training set was comprised of data from CodeSet (CS) 1, 2, and 3. All CodeSets were first normalized to housekeeping genes, then a different approach was taken for each of the CodeSets.

CS1 was normalized to CS3 using "Random1" reference samples. These reference samples are common samples between CS1 and CS3, randomly selected such that we obtain one from each of the five histotypes. Then we use the reference method to normalize CS1 to CS3.

Similarly, CS2 was normalized to CS3 using "Random1" reference samples using five common samples between CS2 and CS3 such that there is one from each histotype.

For CS3, we first split the dataset by site: Vancouver, USC, and AOC. We use the CS3-Vancouver subset as a "reference standard", so we normalized CS3-USC and CS3-AOC to CS3-Vancouver using a "Random1" reference method where we reference samples are common between USC and Vancouver, and between AOC and Vancouver. The CS3-Vancouver is also included without further normalization.

2.2 Case Selection

Duplicate cases (two samples with the same ottaID) were removed from the training set before fitting the classification models. CS3 cases were preferred over CS1 and CS2, and CS3-Vancouver were preferred over CS3-AOC and CS3-USC.

The training, confirmation, and validation sets all used a different set of cohorts.

2.3 Classifiers

We use 4 classification algorithms in the supervised learning framework for the Training Set. The pipeline was run using SLURM batch jobs submitted to a partition on a CentOS 7 server. All resampling techniques, pre-processing, model specification, hyperparameter tuning, and evaluation metrics were implemented using the tidymodels suite of packages. The classifiers we used are:

- Random Forest (rf)
- Support Vector Machine (svm)
- XGBoost (xgb)
- Regularized Multinomial Regression (mr)

2.3.1 Resampling of Training Set

We used a nested cross-validation design to assess each classifier while also performing hyperparameter tuning. An outer 5-fold CV stratified by histotype was used together with an inner 5-fold CV with 2 repeats stratified by histotype. This design was chosen such that the test sets of the inner resamples would still have a reasonable number of samples belonging to the smallest minority class.

2.3.2 Hyperparameter Tuning

The following specifications for each classifier were used for tuning hyperparameters:

- rf and xgb: The number of trees were fixed at 500. Other hyperparameters were tuned across 10 randomly selected points in a latin hypercube design.
- svm: Both the cost and sigma hyperparameters were tuned across 10 randomly selected points in a latin hypercube design within ranges (transformed scale) [0, 2] and [-3, 0], respectively.
- mr: We generated 10 randomly selected points in a latin hypercube design for the penalty (lambda) parameter. Then, we generated 10 evenly spaced points in [0, 1] for the mixture (alpha) parameter in the regularized multinomial regression model. These two sets of 10 points were crossed to generate a tuning grid of 100 points.

2.3.3 Subsampling

Here are the specifications of the subsampling methods used to handle class imbalance:

- None: No subsampling is performed
- Down-sampling: All levels except the minority class are sampled down to the same frequency as the minority class
- Up-sampling: All levels except the majority class are sampled up to the same frequency as the majority class
- SMOTE: All levels except the majority class have synthetic data generated until they have the same frequency as the majority class
- Hybrid: All levels except the majority class have synthetic data generated up to 50% of the frequency of the majority class, then the majority class is sampled down to the same frequency as the rest.

The figure below helps visualize how the distribution of classes changes when we apply subsampling techniques to handle class imbalance:

Figure 2.1: Visualization of Subsampling Techniques

2.4 Sequential Algorithm

Instead of training on k classes simultaneously using multinomial classifiers, we can use a sequential algorithm that performs k-1 one-vs-all binary classifications iteratively to obtain a final prediction of all cases. At each step in the sequence, we classify one class vs. all other classes, where the classes that make up the "other" class are those not equal to the current "one" class and excluding all "one" classes from previous steps. For example, if the "one" class in step 1 was HGSC, the "other" classes would include CCOC, ENOC, LGSC, and MUC. If the "one" class in step 2 was CCOC, the "other" classes include ENOC, LGSC, and MUC.

The order of classes and workflows to use at each step in the sequential algorithm must be determined using a retraining procedure. After removing the data associated with a particular class, we retrain using the remaining data using multinomial classifiers as described before. The class and workflow to use for the next step in the sequence is selected based on the best per-class evaluation metric value (e.g. F1-score).

Let

 $X_k = \text{Training data with k classes}$

 $C_k = \text{Class}$ with highest F_1 score from training X_k

 W_k = Workflow associated with C_k

Figure 2.2 illustrates how the sequential algorithm works for K=5, using ovarian histotypes as an example for the classes.

Figure 2.2: Sequential Algorithm

2.4.1 Subsampling

The subsampling method used in the first step of the sequential algorithm is used in all subsequent steps in order to maintain data pre-processing consistency. As a result, we are only comparing classification algorithms within one subsampling method across the entire sequential algorithm.

2.5 Two-Step Algorithm

The HGSC histotype comprises of approximately 80% of cases among ovarian carcinoma patients, while the remaining 20% of cases are relatively, evenly distributed among ENOC, CCOC, LGSC, and MUC histotypes. We can implement a two-step algorithm as such:

- Step 1: use binary classification for HGSC vs. non-HGSC
- Step 2: use multinomial classification for the remaining non-HGSC classes

Figure 2.3 shows how the two-step algorithm works:

Figure 2.3: Two-Step Algorithm

2.5.1 Subsampling

Although the class imbalance problem is mostly eliminated in Step 2 after removing the HGSC cases, we still use the same subsampling method in Step 2 as was used in Step 1 to keep the algorithm consistent.

2.6 Gene Optimization

We want to discover an optimal set of genes for the classifiers while including specific genes from other studies. A total of 72 genes are used in the classifier training set.

There are 16 genes in the classifier set that overlap with the PrOTYPE classifier: COL11A1, CD74, CD2, TIMP3, LUM, CYTIP, COL3A1, THBS2, TCF7L1, HMGA2, FN1, POSTN, COL1A2, COL5A2, PDZK1IP1, FBN1

There are also 13 genes in the classifier set that overlap with the SPOT signature: HIF1A, CXCL10, DUSP4, SOX17, MITF, CDKN3, BRCA2, CEACAM5, ANXA4, SERPINE1, TCF7L1, CRABP2, DNAJC9.

Taking the union of PrOTYPE and SPOT genes we obtain a total of 28 unique genes that we want to use for the final classifier, regardless of model performance. We then incrementally add genes from the remaining 44 candidate genes based on an overall variable importance rank to this list and recalculate performance metrics. The number of genes at which the performance peaks or starts to plateau may indicate an optimal gene set model for us to compare with the full set model.

2.6.1 Variable Importance

Variable importance is calculated using either a model-based approach if it is available, or a permutation-based VI score otherwise (e.g. for SVM). The variable importance scores are averaged across the outer training

folds, and then ranked from highest to lowest.

For the sequential and two-step classifiers, we calculate an overall VI rank by taking the cumulative union of genes at each variable importance rank across all sequences, until all genes have been included.

3. Distributions

3.1 Histotypes in Classifier Data

3.2 Cohort Counts

3.3 Cohorts in Classifier Data

3.4 Quality Control

3.4.1 Failed Samples

We use an aggregated QCFlag that considers a sample to have failed QC if any of the following conditions are true:

- linFlag: linearity of positive controls with positive control concentrations is less than 0.95, or linearity measures are unknown
- imagingFlag: percent of field of view is less than 75%
- spcFlag: smallest positive control is less than the lower limit of detection (negative control average expression less two times the negative control standard deviation), or negative control average expression equals zero
- normFlag: signal to noise ratio less than 100, or percent of genes detected is less than 50. Note: these thresholds were determined by examining the %GD vs. SNR relationship below.

3.4.2 %GD vs. SNR

\begin{figure}[H]

Table 3.1: Pre-QC Training Set Histotype Distribution by CodeSet

Variable	Levels	CS1	CS2	CS3	Total
Histotype	HGSC	120 (45%)	643 (79%)	515 (92%)	1278 (78%)
	CCOC	48 (18%)	61 (7%)	11 (2%)	120 (7%)
	ENOC	60 (22%)	32 (4%)	11 (2%)	103 (6%)
	MUC	19 (7%)	62 (8%)	12 (2%)	93 (6%)
	LGSC	20 (7%)	21 (3%)	9 (2%)	50 (3%)
Total	N (%)	267 (16%)	819 (50%)	558 (34%)	1644 (100%)

Table 3.2: Training Set (with duplicates) Histotype Distribution by CodeSet

Variable	Levels	CS1	CS2	CS3	Total
Histotype	HGSC	116 (48%)	623 (80%)	475 (94%)	1214 (79%)
	CCOC	44 (18%)	54 (7%)	8 (2%)	106 (7%)
	ENOC	55 (23%)	27 (3%)	8 (2%)	90 (6%)
	MUC	15 (6%)	59 (8%)	9 (2%)	83 (5%)
	LGSC	14 (6%)	19 (2%)	6 (1%)	39 (3%)
Total	N (%)	244 (16%)	782 (51%)	506 (33%)	1532 (100%)

Table 3.3: Final Training Set Histotype Distribution by CodeSet

Variable	Levels	CS1	CS2	CS3	Total
Histotype	HGSC	9 (12%)	553 (79%)	451 (96%)	1013 (81%)
	CCOC	25 (32%)	52 (7%)	4 (1%)	81 (7%)
	ENOC	37 (48%)	25 (4%)	4 (1%)	66 (5%)
	MUC	3 (4%)	55 (8%)	5 (1%)	63 (5%)
	LGSC	3 (4%)	16 (2%)	4 (1%)	23 (2%)
Total	N (%)	77 (6%)	701 (56%)	468 (38%)	1246 (100%)

Table 3.4: Histotype Distribution in Confirmation and Validation Sets

Variable	Levels	Confirmation	Validation
Histotype	HGSC	422 (66%)	674 (74%)
	CCOC	75 (12%)	80 (9%)
	ENOC	106 (16%)	108 (12%)
	MUC	27 (4%)	26 (3%)
	LGSC	13 (2%)	18 (2%)
Total	N (%)	643 (42%)	906 (58%)

Table 3.5: Training Set counts by CodeSet and Processing Stage

Processing Stage	CS1	CS2	CS3	Total
Raw Data	412	1223	5424	7059
Selected Cohorts	294	903	2477	3674
QC	286	888	2285	3459
Normalized to Reference	263	832	2107	3202
CS3: remove test sets, add AOC/USC	263	832	514	1609
Major Histotypes	244	782	506	1532
Removed Duplicates	77	701	468	1246

Table 3.6: Cohort Distribution in Training, Confirmation, and Validation Sets

CodeSet	Cohort	Training	Confirmation	Validation
CS1	MAYO	2	0	0
CS1	MTL	1	0	0
CS1	OOU	53	0	0
CS1	OOUE	1	0	0
CS1	VOA	20	0	0
CS2	ICON7	365	0	0
CS2	JAPAN	8	0	0
CS2	MAYO	42	0	0
CS2	MTL	59	0	0
CS2	OOU	27	0	0
CS2	OOUE	18	0	0
CS2	OVAR3	136	0	0
CS2	VOA	46	0	0
CS3	OOU	18	0	0
CS3	OOUE	11	0	0
CS3	VOA	439	0	0
CS3	TNCO	0	643	0
CS3	DOVE4	0	0	906

Table 3.7: Number of failed samples by CodeSet and fail condition

CodeSet	CodeSet Total	linFlag	imagingFlag	spcFlag	normFlag	QCFlag	n
CS1	8	Passed	Failed	Passed	Passed	Failed	3
CSI	0	Passed	Passed	Passed	Failed	Failed	5
		Failed	Failed	Failed	Failed	Failed	2
		Failed	Passed	Failed	Failed	Failed	3
CS2	32	Failed	Passed	Passed	Passed	Failed	3
		Passed	Failed	Passed	Passed	Failed	3
		Passed	Passed	Passed	Failed	Failed	21
		Failed	Failed	Failed	Failed	Failed	1
		Failed	Failed	Passed	Failed	Failed	3
CS3	274	Failed	Passed	Passed	Failed	Failed	11
		Passed	Failed	Passed	Passed	Failed	7
		Passed	Passed	Passed	Failed	Failed	252

% Genes Detected vs. SNR

 $\label{lem:caption} $$ \operatorname{Moise Ratio} \end{figure} $$ \operatorname{figure}[H] $$$

% Genes Detected vs. SNR (Zoomed)

 $\label{lem:caption} $$ \operatorname{Genes Detected vs. Signal to Noise Ratio (Zoomed)} \end{figure} $$$

Figure 3.1: Random1-Normalized CS1 vs. CS3 Gene Expression

Figure 3.2: Random1-Normalized CS2 vs. CS3 Gene Expression

Figure 3.3: HKgenes-Normalized CS1 vs. CS3 Gene Expression

Figure 3.4: HKgenes-Normalized CS2 vs. CS3 Gene Expression

4. Results

We summarize cross-validated training performance of class metrics in the training set. The accuracy, F1-score, kappa, and G-mean are the metrics of interest. Workflows are ordered by their mean estimates across the outer folds of the nested CV for each metric.

4.1 Training Set

4.1.1 Accuracy

Training Set Mean Accuracy

Figure 4.1: Training Set Mean Accuracy

Table 4.1: Training Set Mean Accuracy

	Algorithms					
Subsampling	mr	rf	svm	xgb		
none	0.814	0.922	0.937	0.813		
down	0.846	0.853	0.807	0.189		
up	0.894	0.941	0.931	0.94		
smote	0.906	0.935	0.93	0.933		
hybrid	0.908	0.941	0.93	0.927		

Training Set Class-Specific Mean Accuracy

Figure 4.2: Training Set Class-Specific Mean Accuracy

Table 4.2: Training Set Class-Specific Mean Accuracy

			Algo	rithms	
Subsampling	Histotype	mr	rf	svm	xgb
	CCOC	0.936	0.982	0.983	0.935
	ENOC	0.947	0.961	0.973	0.947
none	HGSC	0.814	0.936	0.953	0.813
	LGSC	0.982	0.982	0.982	0.982
	MUC	0.949	0.983	0.983	0.949
	CCOC	0.974	0.973	0.969	0.935
	ENOC	0.945	0.96	0.929	0.947
down	HGSC	0.876	0.888	0.835	0.31
	LGSC	0.926	0.927	0.904	0.596
	MUC	0.971	0.959	0.976	0.59
	CCOC	0.975	0.984	0.978	0.984
	ENOC	0.954	0.975	0.964	0.972
up	HGSC	0.924	0.96	0.955	0.961
	LGSC	0.961	0.981	0.982	0.982
	MUC	0.974	0.983	0.982	0.981
	CCOC	0.978	0.979	0.975	0.981
	ENOC	0.959	0.97	0.961	0.967
smote	HGSC	0.932	0.957	0.955	0.96
	LGSC	0.966	0.981	0.985	0.979
	MUC	0.978	0.982	0.984	0.98
	CCOC	0.976	0.984	0.979	0.98
	ENOC	0.957	0.973	0.962	0.966
hybrid	HGSC	0.939	0.962	0.957	0.952
	LGSC	0.969	0.982	0.982	0.978
	MUC	0.975	0.98	0.981	0.978

Table 4.3: Training Set Mean F1-Score

	Algorithms					
Subsampling	mr	rf	svm	xgb		
none	0.822	0.787	0.801	0.897		
down	0.664	0.657	0.645	0.231		
up	0.709	0.755	0.726	0.776		
smote	0.724	0.748	0.75	0.747		
hybrid	0.72	0.77	0.751	0.728		

4.1.2 F1-Score

Training Set Mean F1-Score

Figure 4.3: Training Set Mean F1-Score

Training Set Class-Specific Mean F1-Score

Figure 4.4: Training Set Class-Specific Mean F1-Score

Table 4.4: Cross-Validated Training Set Class-Specific Mean F1-Score

			Algorithms				
Subsampling	Histotype	mr	rf	svm	xgb		
	CCOC	0.154	0.852	0.858	NA		
	ENOC	NA	0.497	0.719	NA		
none	HGSC	0.897	0.962	0.972	0.897		
	LGSC	NA	NA	0.375	NA		
	MUC	NA	0.839	0.811	NA		
	CCOC	0.8	0.808	0.771	NA		
	ENOC	0.559	0.59	0.545	NA		
down	HGSC	0.918	0.926	0.888	0.894		
	LGSC	0.308	0.301	0.262	0.035		
	MUC	0.732	0.66	0.759	0.096		
	CCOC	0.8	0.869	0.822	0.87		
	ENOC	0.63	0.734	0.629	0.728		
up	HGSC	0.951	0.976	0.973	0.976		
	LGSC	0.409	0.236	0.402	0.394		
	MUC	0.756	0.835	0.804	0.814		
	CCOC	0.817	0.833	0.782	0.846		
	ENOC	0.662	0.701	0.588	0.674		
smote	HGSC	0.957	0.974	0.973	0.975		
	LGSC	0.4	0.285	0.519	0.433		
	MUC	0.784	0.827	0.825	0.805		
	CCOC	0.799	0.868	0.825	0.843		
	ENOC	0.638	0.742	0.659	0.661		
hybrid	HGSC	0.962	0.977	0.973	0.97		
	LGSC	0.436	0.456	0.495	0.384		
	MUC	0.764	0.808	0.801	0.782		

Table 4.5: Training Set Mean Kappa

	Algorithms					
Subsampling	mr	rf	svm	xgb		
none	0.008	0.727	0.79	0		
down	0.63	0.639	0.569	0		
up	0.717	0.81	0.783	0.814		
smote	0.743	0.796	0.772	0.799		
hybrid	0.744	0.819	0.788	0.783		

4.1.3 Kappa

Training Set Mean Kappa

Figure 4.5: Training Set Mean Kappa

Training Set Class-Specific Mean Kappa

Figure 4.6: Training Set Class-Specific Mean Kappa

Table 4.6: Training Set Class-Specific Mean Kappa

			Algorithms				
Subsampling	Histotype	mr	rf	svm	xgb		
	CCOC	0.03	0.843	0.849	0		
	ENOC	0	0.479	0.705	0		
none	HGSC	0.008	0.761	0.834	0		
	LGSC	0	0	0.148	0		
	MUC	0	0.83	0.803	0		
	CCOC	0.786	0.793	0.755	0		
	ENOC	0.531	0.57	0.512	0		
down	HGSC	0.671	0.695	0.589	0		
	LGSC	0.288	0.281	0.238	0		
	MUC	0.718	0.64	0.747	0		
	CCOC	0.787	0.86	0.81	0.861		
	ENOC	0.607	0.721	0.61	0.713		
up	HGSC	0.776	0.86	0.848	0.872		
	LGSC	0.394	0.181	0.394	0.307		
	MUC	0.743	0.826	0.795	0.804		
	CCOC	0.805	0.822	0.769	0.836		
	ENOC	0.64	0.685	0.569	0.657		
smote	HGSC	0.795	0.856	0.842	0.869		
	LGSC	0.386	0.22	0.409	0.422		
	MUC	0.772	0.818	0.817	0.795		
	CCOC	0.786	0.86	0.814	0.832		
	ENOC	0.615	0.728	0.639	0.644		
hybrid	HGSC	0.815	0.876	0.857	0.844		
	LGSC	0.423	0.448	0.486	0.373		
	MUC	0.751	0.798	0.791	0.771		

Table 4.7: Training Set Mean G-mean

	Algorithms					
Subsampling	mr	rf	svm	xgb		
none	0.858	0.705	0.732	1		
down	0.821	0.786	0.837	1		
up	0.817	0.717	0.722	0.735		
smote	0.847	0.739	0.694	0.738		
hybrid	0.803	0.729	0.739	0.769		

4.1.4 G-mean

Training Set Mean G-mean

Figure 4.7: Training Set Mean G-mean

Training Set Class-Specific Mean G-mean

Figure 4.8: Training Set Class-Specific Mean G-mean

Table 4.8: Training Set Class-Specific Mean G-mean

		Algorithms				
Subsampling	Histotype	mr	rf	svm	xgb	
	CCOC	0.858	0.888	0.893	1	
	ENOC	1	0.615	0.818	1	
none	HGSC	0.83	0.823	0.878	1	
	LGSC	1	1	0.797	1	
	MUC	1	0.901	0.87	1	
	CCOC	0.897	0.911	0.898	1	
	ENOC	0.803	0.758	0.857	1	
down	HGSC	0.909	0.915	0.883	1	
	LGSC	0.926	0.892	0.934	1	
	MUC	0.909	0.897	0.888	1	
	CCOC	0.881	0.908	0.893	0.913	
	ENOC	0.844	0.82	0.779	0.843	
up	HGSC	0.935	0.904	0.91	0.928	
	LGSC	0.876	0.677	0.754	0.653	
	MUC	0.906	0.915	0.862	0.927	
	CCOC	0.887	0.906	0.847	0.912	
	ENOC	0.844	0.814	0.735	0.805	
smote	HGSC	0.934	0.915	0.891	0.937	
	LGSC	0.912	0.724	0.734	0.673	
	MUC	0.925	0.914	0.87	0.926	
	CCOC	0.871	0.919	0.886	0.917	
	ENOC	0.837	0.864	0.834	0.802	
hybrid	HGSC	0.941	0.938	0.93	0.929	
	LGSC	0.822	0.615	0.714	0.779	
	MUC	0.908	0.919	0.872	0.911	

4.2.1 Sequential Algorithm

Gene Optimziation for Sequential Classifier Sequence: 1, Workflow: hybrid_rf, Measure: f_meas 0.9 0.8 0.7 Sequence: 2, Workflow: hybrid_svm, Measure: f_meas 0.9-0.8 F1-Score 0.7 Sequence: 3, Workflow: hybrid_svm, Measure: f_meas 0.9 0.8 0.7-Sequence: 4, Workflow: hybrid_mr, Measure: f_meas 0.9-0.8 0.7 20 10 30 40 0 Genes Added

Figure 4.9: Gene Optimization for Sequential Classifier

In the sequential algorithm, sequences 1, 2, and 4 have relatively flat average F1-scores across the number of genes added. However, we can observe in sequence 3, the F1-score stabilizes at around 0.9 when we reach 27 genes added, hence the optimal number of genes used will be n=28+27=55 The added genes are: CYP2C18, HNF1B, ATP5G3, TP53, SLC3A1, CPNE8, C1orf173, WT1, MUC5B, MAP1LC3A, EGFL6, ZBED1, GPR64, STC1, MET, IGJ, SERPINA5, KLK7, DKK4, BCL2, SENP8, GCNT3, IGKC, IGFBP1, CAPN2, GAD1 and SCGB1D2.

4.2.2 Two-Step Algorithm

Figure 4.10: Gene Optimization for Two-Step Classifier

Since the second step of the classifier fits a multinomial model, we use the macro F1-score as the measure to analyze gene entry. In the two-step classifier, we see that in Step 2, the F1-score stabilizes at around 0.85 when we reach 12 added. The optimal number of genes used will be n=28+12=40. The added genes are: CYP2C18, MUC5B, HNF1B, SLC3A1, WT1, TSPAN8, EGFL6, TFF1, TFF3, MET, CAPN2 and KLK7.

4.3 Rank Aggregation

Show 50 entries		E1 Coore Cumm	ary by Workflow an		earch:	
wflow	CCOC ⊕	ENOC #	HGSC #	LGSC #	MUC ⊕	rank
All	All	II A	II A	All	All	
sequential	0.885	0.929	0.962	0.808	0.914	1
two_step	0.888	0.804	0.962	0.828	0.875	2
hybrid_rf	0.868	0.742	0.977	0.456	0.808	3
up_rf	0.869	0.734	0.976	0.236	0.835	4
up_xgb	0.87	0.728	0.976	0.394	0.814	5
none_svm	0.858	0.719	0.972	0.375	0.811	6
smote_xgb	0.846	0.674	0.975	0.433	0.805	7
smote_rf	0.833	0.701	0.974	0.285	0.827	8
up_svm	0.822	0.629	0.973	0.402	0.804	9
hybrid_svm	0.825	0.659	0.973	0.495	0.801	10
hybrid_xgb	0.843	0.661	0.97	0.384	0.782	11
smote_mr	0.817	0.662	0.957	0.4	0.784	12
smote_svm	0.782	0.588	0.973	0.519	0.825	13
hybrid_mr	0.799	0.638	0.962	0.436	0.764	14
up_mr	0.8	0.63	0.951	0.409	0.756	15
down_rf	0.808	0.59	0.926	0.301	0.66	16
down_mr	0.8	0.559	0.918	0.308	0.732	17
down_svm	0.771	0.545	0.888	0.262	0.759	18
Showing 1 to 18 of 18	entries				Previous	1 Next

The 18 workflows are ordered in the table by their aggregated ranks using the Genetic Algorithm. We see that the best performing methods involve the sequential and two-step algorithms.

4.3.1 Top Workflows

We look at the per-class evaluation metrics of the top 4 workflows.

Figure 4.11: Top 4 Workflow Per-Class Evaluation Metrics

Figure 4.12: Top 4 Workflow Per-Class F1-Scores

Misclassified cases from a previous step of the sequence of classifiers are not included in subsequent steps of the training set CV folds. Thus, we cannot piece together the test set predictions from the sequential and two-step algorithms to obtain overall metrics.

4.4 Test Set Performance

Now we'd like to see how our best methods perform in the confirmation and validation sets. The class-specific F1-scores will be used.

The top 2 methods are:

- **sequential**: sequential algorithm with hybrid subsampling at every step. The sequence of algorithms used are:
 - HGSC vs. non-HGSC using random forest
 - CCOC vs. non-CCOC using support vector machine
 - LGSC vs. non-LGSC using support vector machine
 - ENOC vs. MUC using regularized multinomial regression
- two_step: two-step algorithm with hybrid subsampling at both steps. The sequence of algorithms used are:
 - HGSC vs. non-HGSC using random forest

Table 4.9: Overall Evaluation Metrics on Confirmation Set Models

method	accuracy	kappa	f1	gmean
sequential_full	0.834	0.669	0.654	0.574
sequential_optimal	0.827	0.660	0.642	0.574
two_step_full	0.840	0.682	0.688	0.650
two_step_optimal	0.834	0.668	0.679	0.639

Table 4.10: Per-Class Eevaluation Metrics on Confirmation Set Model

method	.metric	CCOC	ENOC	HGSC	LGSC	MUC
	accuracy	0.970	0.896	0.869	0.969	0.975
two_step_full	f_meas	0.872	0.626	0.904	0.333	0.704
two_step_tun	kap	0.856	0.568	0.701	0.318	0.691
	gmean	0.924	0.715	0.833	0.614	0.833
	accuracy	0.969	0.890	0.866	0.964	0.978
two step optimal	f_meas	0.865	0.594	0.902	0.303	0.731
two_step_optimal	kap	0.847	0.534	0.692	0.286	0.719
	gmean	0.916	0.689	0.827	0.613	0.835
sequential full	accuracy	0.961	0.893	0.869	0.969	0.975
	f_meas	0.839	0.619	0.904	0.231	0.680
sequentiai_run	kap	0.817	0.558	0.701	0.215	0.667
	gmean	0.919	0.714	0.833	0.477	0.790
sequential optimal	accuracy	0.950	0.896	0.869	0.967	0.972
	f_meas	0.800	0.617	0.903	0.222	0.667
sequential_optimal	kap	0.772	0.560	0.702	0.206	0.652
	gmean	0.907	0.704	0.836	0.476	0.811

⁻ CCOC vs. ENOC vs. MUC vs. LGSC support vector machine

We can test 2 additional methods by using either the full set of genes or the optimal set of genes for both of these methods.

4.4.1 Confirmation

Set

4.4.2 Validation

 \mathbf{Set}

Table 4.11: Overall Evaluation Metrics on Validation Set Model

method	accuracy	kappa	f1	gmean
two_step_optimal	0.847	0.653	0.65	0.701

Table 4.12: Per-Class Eevaluation Metrics on Validation Set Model

method	.metric	CCOC	ENOC	HGSC	LGSC	MUC
two_step_optimal	accuracy	0.972	0.922	0.879	0.964	0.957
	f_meas	0.854	0.608	0.917	0.353	0.519
	kap	0.839	0.566	0.690	0.336	0.499
	gmean	0.945	0.706	0.853	0.697	0.881