fish model

WHAM Model Components — Annotated

This document summarizes and annotates the four key WHAM model components:

- 1. Numbers at Age (NAA)
- 2. Natural Mortality (M)
- 3. Selectivity (Sel)
- 4. Environmental Covariates (Ecov)

1. Numbers at Age (NAA)

Equation (state update, log-scale):

$$\log N_{a,y} = \begin{cases} \log f(SSB_{y-1}) + \varepsilon_{1,y}, & a = 1\\ \log N_{a-1,y-1} - Z_{a-1,y-1} + \varepsilon_{a,y}, & 1 < a < A\\ \log \left(N_{A-1,y-1}e^{-Z_{A-1,y-1}} + N_{A,y-1}e^{-Z_{A,y-1}}\right) + \varepsilon_{A,y}, & a = A \end{cases}$$

Model types:

- NAA-1: only recruitment deviations, IID normal.

 → Simplest; only new recruits are noisy.
- NAA-2: recruitment deviations AR(1) in time.
- → Recruitment good/bad years persist.
- NAA-3: full state-space, IID deviations at all ages.
 - \rightarrow Each age/year gets independent noise.
- NAA-4: 2D AR(1) across age \times year.
 - \rightarrow Smooth correlated deviations, most realistic.

2. Natural Mortality (M)

General form:

$$\log M_{a,y} = \mu_{M_a} + \delta_{a,y}$$

- μ_{M_a} : mean mortality (can be age-specific, grouped, or Lorenzen curve).
- $\delta_{a,y}$: deviation (random effect).

Model types:

- M-1: fixed M, no random effects.
- M-2: IID deviations, $\delta_{a,y} \sim N(0, \sigma_M^2)$.
- M-3: 2D AR(1) across age × year.
 → Captures smooth variation by age and year.

3. Selectivity (Sel)

Assume separability:

$$F_{a,y} = F_y \cdot s_a$$

- F_y : fully selected fishing mortality in year y.
- s_a : selectivity at age a $(0 < s_a < 1)$.

Parametric forms: logistic, double-logistic, decreasing-logistic.

Non-parametric option: estimate each s_a individually.

Random effect deviations on selectivity parameters $(\zeta_{p,y})$:

- Sel-1: fixed selectivity (no random effects).
- Sel-2: IID deviations (noise, uncorrelated).
- Sel-3: 2D AR(1) deviations (parameter \times year correlation).

4. Environmental Covariates (Ecov)

Latent process X_y modeled via state-space; linked to population with lag ψ :

- $\psi = 1$: X_{y-1} affects recruitment in year y.
- $\psi = 0$: X_y affects natural mortality in year y.

Process models:

• Random Walk:

$$X_{y+1}|X_y \sim N(X_y, \sigma_X^2)$$

- \rightarrow Non-stationary, uncertainty grows.
- AR(1):

$$X_y \sim N(\mu_X(1 - \phi_X) + \phi_X X_{y-1}, \sigma_X^2), \ |\phi_X| < 1$$

 \rightarrow Stationary, mean-reverting; preferred for projections.

Observation model:

$$x_y|X_y \sim N(X_y, \sigma_x^2)$$

Cheat Sheet

- NAA: noise in abundance (from only recruits \rightarrow all ages, IID vs correlated).
- M: natural mortality fixed \rightarrow IID noise \rightarrow correlated by age & year.
- Sel: fixed \rightarrow IID random effects \rightarrow correlated deviations.
- **Ecov:** external drivers, modeled as Random Walk or AR(1), linked by lag ψ .