Problemas de Grupos

Rafael Arquero Gimeno

12 de noviembre de 2014

Índice

Índice de figuras

Índice de cuadros

- 1. Sea E un espacio vectorial sobre un cuerpo K. Determina si los siguientes conjuntos con las operaciones indicadas son grupos o no:
 - (a) $(\mathbb{N}, +)$
 - (b) $(\mathbb{Q}, +)$
 - (c) (\mathbb{Q},\cdot)
 - (d) $(S^1 := \{z \in \mathbb{C} : |z| = 1\}, \cdot)$
 - (e) $(P_n := \{p(x) \in \mathbb{R}[x] : gr(p(x)) \le n\}, +)$
 - (f) (P_n, \cdot)
 - (g) $(End(E), \circ)$
 - (h) $(Aut(E), \circ)$
- 2. Sean G un conjunto y

$$\star: G \times G \to G$$
$$(x, y) \mapsto xy$$

una operación binaria asociativa que cumple:

- 1. $\exists e \in G \forall x \in G \quad ex = x$
- 2. $\forall x \in G \exists x' \in G | x'x = e$

Demuestra que (G, \star) es grupo, el elemento neutro es e y el simetrico de x es x'.

- 3. (a)
 - (b)
- 4. Considera

$$GL(n, \mathbb{Z}) := \{ M \in M_{n \times n}(\mathbb{Z}) : det(M) \in \mathbb{Z}^* \},$$

 $SL(n, \mathbb{Z}) := \{ M \in GL(n, \mathbb{Z}) : det(M) = 1 \},$
 $O(n, \mathbb{Z}) := \{ M \in GL(n, \mathbb{Z}) : M^T M = Id \},$
 $SO(n, \mathbb{Z}) := \{ M \in O(n, \mathbb{Z}) : det(M) = 1 \},$

el grupo lineal, el grupo especial lineal, el grupo ortogonal y el grupo especial ortogonal respectivamente.

- (a) Demuestra que $GL(n,\mathbb{Z})$ es un grupo con la multiplicación de matrices.
- (b) Demuestra que $SL(n,\mathbb{Z})$ y $O(n,\mathbb{Z})$ son subgrupos del grupo $GL(n,\mathbb{Z})$.
- (c) Demuestra que $SO(n, \mathbb{Z})$ es un subgrupo de $O(n, \mathbb{Z})$.
- 5. Sea K un cuerpo:
 - (a) Demuestra SO(2, K) es abeliano.
 - (b) Demuestra $\neg (SO(3, K) \text{ es abeliano}).$
- 6. Demuestra $\forall n \geq 2, H := \{M \in GL(n, \mathbb{Z}) : M = M^T\}$ no es subgrupo de $GL(n, \mathbb{Z})$.
- 7. Considera $K := \mathbb{Z}/2\mathbb{Z}$ y G := GL(2, K). Escribe los elementos de G y la tabla del producto de G; G es abeliano?
- 8. Sea G un grupo. Demuestra $\forall x \in G : ord(x) = 2 \implies G$ es abeliano.
- 9. Sea G un grupo tal que |G| = n y $G = \langle a \rangle$:
 - (a) Determina $\forall k \in \mathbb{Z} \quad |\langle a^k \rangle|$
 - (b) Demuestra $G = \langle a^k \rangle \iff mcd(k, n) = 1$
- 10. Sea G un grupo ciclico con orden n:
 - (a) Demuestra que todo subgrupo de G es ciclico.
 - (b) Demuestra $\forall d | n \exists ! H \subset G : |H| = d$.
- 11. Sea $\mu_n := \{z \in \mathbb{C} : z^n = 1\}$. Demuestra que μ_n con el producto de \mathbb{C} es un grupo ciclico.
- 12. Sean p, q numeros primos distintos y $r, s \in \mathbb{N}^*$:
 - (a) Determina $\#\{x \in \mathbb{Z}/p\mathbb{Z} : \mathbb{Z}/p\mathbb{Z} = \langle x \rangle\}.$
 - (b) Determina $\#\{x \in \mathbb{Z}/p^r\mathbb{Z} : \mathbb{Z}/p^r\mathbb{Z} = \langle x \rangle\}.$
 - (c) Determina $\#\{x \in \mathbb{Z}/p^r q^s \mathbb{Z} : \mathbb{Z}/p^r q^s \mathbb{Z} = \langle x \rangle\}.$
- 13. Sean $\sigma, \tau \in S_9$ las permutaciones siguientes:

$$\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 9 & 1 & 8 & 7 & 6 & 3 & 4 & 5 \end{bmatrix} \tag{1}$$

$$\tau = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 1 & 3 & 5 & 8 & 2 & 9 & 6 & 4 \end{bmatrix}$$
 (2)

- (a) Calcula $\sigma \tau \ v \ \tau \sigma$.
- (b) Descompon σ y τ como producto de ciclos disjuntos, como producto de transposiciones y calcula $\varepsilon(\sigma)$.
- (c) Calcula σ^{2012} .

Solución:

1. Calculamos de la forma $\sigma(\tau(i))$ y viceversa $\forall i \ 1 \leq i \leq 9$

$$\sigma \tau = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 3 & 1 & 7 & 4 & 9 & 5 & 6 & 8 \end{bmatrix} \tau \sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 4 & 7 & 6 & 9 & 2 & 3 & 5 & 8 \end{bmatrix}$$

2. Ciclos:

$$\sigma = (129573)(48)$$

 $\tau = (17945862)$

Transposiciones:

$$\begin{split} \sigma &= (12)(29)(95)(57)(73)(48) \\ \tau &= (17)(79)(94)(45)(58)(86)(62) \\ \Sigma &: \end{split}$$

$$\Sigma(\sigma) : (-1)^6 = 1$$

 $\sigma(\tau) : (-1)^7 = -1$

3.
$$\sigma = (129573)(48) = S_6 \cup S_2$$
. Por lo que: $S_6^6 = Id, S_2^2 = Id$.

Entonces:

$$2012 \equiv 2 (mod6) \rightarrow 335 * 6 + 2$$

 $2012 \equiv 0 (mod6) \rightarrow 1006 * 2$

$$\sigma^{2012} = S_6^2$$

14. Determina $\varepsilon(\sigma) \quad \forall \sigma \in S_3$. Determina todos los subgrupos de S_3 .

Solución:

$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}$$

$$S_3 = \{Id, t_1, c_2, c_1, t_2, t_3\} \tag{4}$$

(5)

$$\varepsilon(Id) = (-1)^0 = +1\tag{6}$$

$$\varepsilon(t_1) = (-1)^1 = -1 \tag{7}$$

$$\varepsilon(c_2) = (-1)^2 = +1 \tag{8}$$

$$\varepsilon(c_1) = (-1)^2 = +1 \tag{9}$$

$$\varepsilon(t_2) = (-1)^1 = -1 \tag{10}$$

$$\varepsilon(t_3) = (-1)^1 = -1 \tag{11}$$

Subgrupos:

- 1. $\{Id\}$
- 2. $\{S_3\}$
- 3. $\{Id, t_1\}$

- 4. $\{Id, t_2\}$
- 5. $\{Id, t_3\}$
- 6. $\{Id, c_1, c_2\}$

Esto es asi ya que $t_i^2 = Id \quad \forall i, 1 \le i \le 3$ mientras que por ejemplo $c_2^2 = c_1$.

15. Demuestra $\forall n \geq 2, |A_n| = |S_n/A_n|$.

Solución:

Toda permutación descompone en producto de transposiciones. Esta descomposición no es única, más su ε se mantiene. Es decir, son o pares o impares. Sea la aplicación:

$$f: P \to I$$
 (12)

$$\sigma \mapsto \tau \sigma$$
 (13)

Que envia las permutaciones pares a las impares, solo queda ver que esta es biyectiva.

1. inyectiva:

$$f(\sigma) = f(\xi) \implies \sigma = \xi$$
? (14)

$$\tau \sigma = \tau \xi \implies \sigma = \xi \tag{15}$$

2. exhaustiva:

Si, pues
$$f(\tau \sigma) = \tau \tau \sigma = \sigma$$
.

Como f es biyectiva, entonces tendrá siempre la misma cantidad de permutaciones pares que impares; ergo la mitad de S_n .

- 16. (a) Demuestra $\forall \sigma \in S_n \quad \sigma \circ (a_1, \ldots, a_r) \circ \sigma^{-1} = (\sigma(a_1), \ldots, \sigma(a_r)).$
 - (b) Demuestra $\forall \sigma_1, \sigma_2 \in S_n \quad (ord(\sigma_1) = ord(\sigma_2) \implies \exists \sigma \in S_n | \sigma \circ \sigma_1 \circ \sigma^{-1} = \sigma_2).$
 - (c) Sean $\sigma_1, \ldots, \sigma_k \in S_n$ ciclos disjuntos dos a dos y también $\tau_1, \ldots, \tau_k \in S_n$ ciclos disjuntos dos a dos. Pongamos $\sigma := \sigma_1 \circ \cdots \circ \sigma_k$ y $\tau := \tau_1 \circ \cdots \circ \tau_k$. Demuestra $\forall i \ 1 \leq i \leq k$, si la longitud del ciclo σ_i coincide con la del ciclo $\tau_i \implies \exists \rho \in S_n \mid \rho \circ \sigma \circ \rho^{-1} = \tau$
- 17. Demuestra
 - (a) $S_n = \langle (1,2), (1,3), \dots, (1,n) \rangle$.
 - (b) $S_n = \langle (1,2), (2,3), \dots, (n-1,n) \rangle$.
 - (c) $S_n = \langle (1, 2, \dots, n), (1, 2) \rangle$.
- 18. Sea $A_n := \{ \sigma \in S_n : \varepsilon(\sigma) = 1 \}$ el subgrupo alternado de S_n . Demuestra que A_n es subgrupo de S_n , $[S_n : A_n] = 2$ y $A_n = \langle 3 ciclos \rangle$.

- 19. El grupo diedral $D_{2,n}$ es el grupo de los desplazamientos en el plano que dejan invariante un poligono regular de n lados. Esto es, $D_{2,n} = \langle \rho, \sigma \rangle$, donde ρ es una rotación de angulo $\frac{2\pi}{n}$ centrada en el centro de simetria del poligono y σ es una simetria axial respecto a auno de los radios del poligono.
 - (a) Demuestra $\rho^n = \sigma^2 = Id \wedge \rho\sigma = \sigma\rho^{-1}$.
 - (b) Escribe todos los elementos de $D_{2,n}$ ¿Cuantos son?
 - (c) Define un monomorfismo $f: D_{2,n} \to S_n$.
 - (d) Demuestra $\neg (D_{2,4} \simeq \mathbb{Z}/8\mathbb{Z})$.
- 20. (El grupo de los cuaterniones) Sea H_8 el subgrupo de $GL(2,\mathbb{C})$ generado por las matrices

$$Id:=\begin{pmatrix}1&0\\0&1\end{pmatrix}, I:=\begin{pmatrix}i&0\\0&-i\end{pmatrix}, J:=\begin{pmatrix}0&1\\-1&0\end{pmatrix}, K:=\begin{pmatrix}0&i\\i&0\end{pmatrix}.$$

- (a) Demuestra que H_8 es un grupo tal que Id es el elemento neutro, $I^4 = Id$, $I^2 = J^2$ y $IJ = JI^3$.
- (b) Calcula el orden de cada elemento de H_8 .
- (c) Demuestra $\langle a, b | a^4 = e, a^2 = b^2, ab = ba^3 \rangle \simeq H_8$.
- 21. Sea G un grupo. Demuestra $\forall H \subset G \quad [G:H] = 2 \implies H \triangleleft G$.
- 22. Sea G un grupo y $Z(G) := \{g \in G : gh = hg, \forall h \in G\}$ su centro. Demuestra $Z(G) \triangleleft G$.
- 23. Sea K un cuerpo. Demuestra $Z(GL(n,K)) = \{M \in GL(n,K) : M = \lambda Id \ \lambda \in K^*\}.$
- 24. Demuestra $\forall n \geq 3 \quad Z(S_n) = \{Id\}.$
- 25. Sean $f: G_1 \to G_2$ un morfismo de grupos, $H_1 \subseteq G_1$ y $H_2 \subseteq G_2$ subgrupos.
 - (a) Demuestra que $f(H_1)$ es subgrupo de G_2 y $f^{-1}(H_2)$ de G_1 .
 - (b) Demuestra $H_1 \triangleleft G_2 \implies f^{-1}(H_2) \triangleleft G_1$.
 - (c) Demuestra $H_2 \triangleleft G_1 \implies f(H_1) \triangleleft f(G_1)$; pero no necesariamente $f(H_1) \triangleleft G_2$.
- 26. Teoremas de isomorfia de grupos.
 - (a) Sean G un grupo, $H \triangleleft G$ y F un subgrupo cualquiera. Demuestra que HF es subgrupo de G, $F \cap H \triangleleft F$, $H \triangleleft HF$ y que $HF/H \simeq F/(F \cap H)$.
 - (b) Sean $\varphi: G \to G'$ un epimorfismo de grupos, $H' \triangleleft G'$ y $H = \varphi^{-1}(H')$. Demuestra que $G/H \simeq G'/H'$.
 - (c) Sean G un grupo y $F \subset H$ dos subgrupos normales en G. Demuestra que $H/F \triangleleft G/F$ y $(G/F)/(H/F) \simeq G/H$.
- 27. Considera $T \subset GL(2,\mathbb{C})$ el subgrupo de matrices diagonales y $D = \langle T, TODO \rangle$.
 - (a) Demuestra $T \triangleleft D$.
 - (b) Describe un isomorfismo entre D/T y $\mathbb{Z}/2\mathbb{Z}$.
 - (c) Estudia si $D \triangleleft GL(2, \mathbb{C})$.
- 28. Considera el grupo diedral $D_{2,n}$.
 - (a) Explicita todso los subgrupos de $D_{2,n}$ e indica cuales son normales.
 - (b) Demuestra $\exists H \subset D_{2,n} : H \triangleleft D_{2,n} \wedge |H| = n \wedge H$ es ciclico.
 - (c) Demuestra $D_{2,3} \simeq S_3$.

- 29. Calcula todos los subgrupos del grupo de cuaterniones H_8 e indica cuales son normales.
- 30. (a) Demuestra que A_4 es el unico subgrupo con indice 2 de S_4 . Es cierto que A_n es el unico subgrupo con indice 2 de S_n , $\forall n$?
 - (b) Demuestra que A_4 no tiene subgrupos con indice 2. Tiene A_n cuando $n \geq 5$?
- 31. Determina, salvo isomorfismo, todos los grupos de orden menor o gual que 8.
- 32. Sea G un grupo. Considera la aplicación

$$f: G \to G \times G$$

 $x \mapsto (x, x)$

Demuestra (f es un monomorfismo) $\land (f(G) \triangleleft G \times G \iff G \text{ es abeliano.})$

- 33. Determina todos los subgrupos de:
 - (a) $\mathbb{Z}/4\mathbb{Z}$
 - (b) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
 - (c) $\mathbb{Z}/6\mathbb{Z}$
- 34. Sea G un grupo finito ciclico. Calcula Aut(G), el grupo de los automorfismos de G.
- 35. Dado un grupo G, denotamos por Aut(G) el grupo de los automorfismos de G. Denotamos por Int(G) el conjunto de los automorfismos internos de G, o sea, de los automorfismos φ_g definidos por $\varphi_g(h) := ghg^{-1}$, para $h \in G$ y $g \in G$ dado.
 - (a) Demuestra que Int(G) es un subgrupo de Aut(G).
 - (b) Demuestra $\forall \sigma \in Aut(G) \forall \varphi_g \in Int(G) \quad \sigma \varphi_g \sigma^{-1} = \varphi_{\sigma(g)}$.
 - (c) Demuestra $Int(G) \triangleleft Aut(G)$.
- 36. Demuestra que G es un grupo $\Rightarrow G/Z(G) \simeq Int(G)$. En particular, si $Z(G) = \{1\}$, entonces $Int(G) \simeq G$. Determina Int(G) cuando G es abeliano.
- 37. (a) Calcula las clases se conjugación del grupo S_3 .
 - (b) Calcula las clases de conjugación del grupo S_4 .
- 38. Demuestra que las matrices $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ son elementos conjugados en el grupo $GL(2, \mathbb{R})$, pero que no lo son en $SL(2, \mathbb{R})$.
- 39. Calcula todas las clases de conjugación del grupo diedral $D_{2,n}$.
- 40. Demuestra $\forall n \in \mathbb{N} \forall d | n \quad \langle p^d \rangle \triangleleft D_{2,n} \wedge D_{2,n} / \langle p^d \rangle \simeq D_{2,d}$.
- 41. (a) Escribe la definición de grupo (finito) resoluble.
 - (b) Demuestra que A_2 , A_3 y A_4 son resolubles.
 - (c) Demuestra $\forall n \geq 5 \neg (A_n \text{ es resoluble}).$
- 42. (a) Escribe la definición de grupo finito simple.
 - (b) Demuestra $\forall n \geq 5A_n$ es simple.
- 43. Considera el grupo simetrico S_4 .
 - (a) Calcula los 3-subgrupos de Sylow de S_4 . De que orden son?

- (b) Describe los elementos de S_4 con orden 2^n y recuerda que estos elementos estan contenidos en un 2-subgrupo de Sylow. Deduce que un 2-subgrupo de Sylow contiene un subgrupo ciclico de orden 4. Explicita los 2-subgrupos de Sylow de S_4 .
- 44. Sea G un grupo finito. Demuestra (|G| = 96) $\implies \neg (G \text{ es simple}).$
- 45. Sea G un grupo. Demuestra (|G| = 15) \Longrightarrow (G es ciclico).

Solución: Factorizamos $15 = 3 \cdot 5$ y aplicamos el 3r y 2° Teoremas de Sylow:

$$\begin{vmatrix}
|S_3| = 3 \\
n_3 \equiv 1 \pmod{3} \\
n_3 \mid [G:S_3] = 5
\end{vmatrix} \implies n_3 = 1 \iff S_3 \triangleleft G \tag{16}$$

$$|S_5| = 5$$

$$n_5 \equiv 1 \pmod{5}$$

$$n_5 \mid [G:S_5] = 3$$
 $\Longrightarrow n_5 = 1 \iff S_5 \triangleleft G$

$$(17)$$

Donde S_p es un p-subgrupo de Sylow de G y n_p la cantidad de estos.

 S_3 y S_5 son ciclicos por ser de orden primo. Tomemos $S_3 = \langle a \rangle$ y $S_5 = \langle b \rangle$.

Observemos que todos los elementos de S_3 y S_5 , exceptuando el neutro, son generadores de estos. De lo que se deduce inmediatamente que $S_3 \cap S_5 = \{e\}$.

Veamos que a y b conmutan:

$$ab = ba \iff aba^{-1}b^{-1} = e \tag{18}$$

$$\underbrace{aba^{-1}}_{\in S_5 \Leftarrow S_5 \triangleleft G} b^{-1} \in S_5$$

$$\underbrace{aba^{-1}b^{-1}}_{\in S_2 \Leftarrow S_2 \triangleleft G} \in S_3$$

$$\implies aba^{-1}b^{-1} \in S_3 \cap S_5 = \{e\}$$

$$(19)$$

$$ord(ab) = mcm(ord(a), ord(b)) = mcm(3, 5) = 15$$
 (20)

$$ord(ab) = |G| \implies G = \langle ab \rangle$$
 (21)

$$\Box \tag{22}$$

- 46. Sea G un grupo. Demuestra (|G| = 255) \Longrightarrow (G es ciclico).
- 47. Sea G un grup y p
 un numero primo mayor que 2. Demuestra $|G|=2p \implies (G \text{ es ciclico}) \vee (G \simeq D_{2,p}).$
- 48. Sea G un grupo, p, q numeros primos. Demuestra $|G| = pq \implies G$ es resoluble.

Solución: Supongamos p = q

$$|Z(G)| \equiv |G| \equiv p^2 \equiv 0 \pmod{p} \implies p \mid |Z(G)|$$
 (23)

$$|G/Z(G)| = \begin{cases} 1 & \text{si } |Z(G)| = p^2 \\ p & \text{si } |Z(G)| = p \end{cases} \implies G/Z(G) \text{ es abeliano } \implies G/Z(G) \text{ es resoluble}$$
(24)

Supongamos ahora que $p \neq q$. Sin perdida de generalidad, p < q. Sean S_q un q-subgrupo de Sylow y n_q la cantidad de estos:

$$\begin{cases}
 n_q \equiv 1 (modq) \\
 n_q \mid [G:S_q] = p
 \end{cases} \implies n_q = 1 \iff S_q \triangleleft G
 \tag{26}$$

$$|S_q| = q \implies S_q$$
 es ciclico $\implies S_q$ es abeliano $\implies S_q$ es resoluble (27)

$$|G/S_q| = p \implies G/S_q$$
 es ciclico $\implies G/S_q$ es abeliano $\implies G/S_q$ es resoluble (28)

$$\left. \begin{array}{c} S_q \triangleleft G \\ S_q \text{ resoluble} \\ G/S_q \text{ resoluble} \end{array} \right\} \implies G \text{ es resoluble} \tag{29}$$

$$\square \tag{30}$$

- 49. Sea G un grupo, p, q, r numeros primos. Demuestra $|G| = pqr \implies G$ es resoluble.
- 50. Sean p, q dos numeros primos tal que 0 . Considera un grupo G:
 - (a) Demuestra $|G| = p^2 \implies G$ es resoluble.
 - (b) Demuestra $|G| = p^2 q \implies (\exists ! H \triangleleft G : |H| = p^2) \lor (\exists ! H \triangleleft G : |H| = q).$
 - (c) Demuestra $|G| = p^2 q \implies G$ es resoluble.