

Discrete Fourier Transformation (DFT)

Prof. Seungchul Lee Industrial AI Lab.

Eigen-Analysis(System or Linear Transformation)

Eigenvector and Eigenvalues

• Given matrix A

$$Av = \lambda v$$

- Eigenvectors v are input signals that emerge at the system output unchanged (except for a scaling by the eigenvalue λ_k) and so are somehow "fundamental" to the system
- Using this, we can find the following equation

$$AV = V\Lambda$$

$$AV = egin{bmatrix} v_0 \mid v_1 \mid \cdots \mid v_{N-1} \end{bmatrix} egin{bmatrix} \lambda_0 & & & & \ & \lambda_1 & & & \ & & \ddots & & \ & & & \lambda_{N-1} \end{bmatrix}$$

We can change to

$$A = V\Lambda V^{-1} \implies \text{Eigen-decomposition}$$

$$V^{-1}AV = \Lambda$$

Eigen-analysis of LTI Systems (Finite-Length Signals)

• For length-N signals, H is an $N \times N$ circulent matrix with entries

$$[H]_{n,m} = h[(n-m)_N]$$

where h is the impulse response

• Goal: calculate the eigenvectors and eigenvalues of *H*

Fact: the eigenvectors of a circulent matrix (LTI system) are the complex harmonic sinusoids

$$s_k[n] = rac{1}{\sqrt{N}} e^{jrac{2\pi}{N}kn}$$

— The eigenvalue $\lambda_k \in \mathbb{C}$ corresponding to the sinusoid eigenvectors s_k is called the frequency response at frequency k since it measures how the system "responds" to s_k

$$\lambda_k = \sum_{n=0}^{N-1} h[n] e^{-jrac{2\pi}{N}kn} = \langle h, s_k
angle = H_u[k]$$

Eigenvector of LTI Systems (Finite-Length Signals)

- Prove that
 - harmonic sinusoids are the eigenvectors of LTI systems simply by computing the circular convolution with input s_k and applying the periodicity of the harmonic sinusoids

$$s_{k}[n] * h[n] = \sum_{m=0}^{N-1} s_{k}[(n-m)_{N}] h[m] = \sum_{m=0}^{N-1} \frac{e^{j\frac{2\pi}{N}k(n-m)_{N}}}{\sqrt{N}} h[m]$$

$$= \sum_{m=0}^{N-1} \frac{e^{j\frac{2\pi}{N}k(n-m)}}{\sqrt{N}} h[m] = \sum_{m=0}^{N-1} \frac{e^{j\frac{2\pi}{N}kn}}{\sqrt{N}} e^{-j\frac{2\pi}{N}km} h[m]$$

$$= \left(\sum_{m=0}^{N-1} e^{-j\frac{2\pi}{N}km} h[m]\right) \frac{e^{j\frac{2\pi}{N}kn}}{\sqrt{N}} = \lambda_{k} s_{k}[n]$$

• λ_k means the number of s_k in $h[n] \Rightarrow$ similarity

Eigenvector Matrix of Harmonic Sinusoids

• Stack N normalized harmonic sinusoid $\{s_k\}_{k=0}^{N-1}$ as columns into an $N\times N$ complex orthonormal basis matrix

$$S = [s_0 \mid s_1 \mid \cdots \mid s_{N-1}]$$

$$s_k[n] = rac{1}{\sqrt{N}} e^{jrac{2\pi}{N}kn}$$

Signal Decomposition by Harmonic Sinusoids

Basis

- A basis $\{b_k\}$ for a vector space V is a collection of vectors from V that linearly independent and span V
- Basis matrix: stack the basis vectors b_k as columns

$$B = [b_0 \mid b_1 \mid b_2 \mid \cdots \mid b_{N-1}]$$

• Using this matrix B, we can now write a linear combination of basis elements as the matrix/vector product

$$x = \alpha_0 b_0 + \alpha_1 b_1 + \cdots + \alpha_{N-1} b_{N-1} = \sum_{k=0}^{N-1} \alpha_k b_k$$

$$= \left[b_0 \mid b_1 \mid b_2 \mid \cdots \mid b_{N-1}
ight] \left[egin{array}{c} lpha_0 \ lpha_1 \ dots \ lpha_{N-1} \end{array}
ight] = B \, lpha$$

Orthonormal Basis

- An orthogonal basis $\{b_k\}_{k=0}^{N-1}$ for a vector space V
 - a basis whose elements are mutually orthogonal

$$\langle b_k, b_l \rangle = 0 \quad k \neq l$$

- An orthonormal basis $\{b_k\}_{k=0}^{N-1}$ for a vector space V
 - a basis whose elements are mutually orthogonal and normalized in the 2-norm

$$\langle b_k, b_l \rangle = 0 \quad k \neq l, \quad \text{and}$$

$$||b_k||_2 = 1 \quad \forall k$$

Orthonormal Basis

• *B* is a unitary matrix

$$B^H B = I \implies B^{-1} = B^H$$
, where B^H is Hermitian (complex conjugate) transpose

$$B^HB = egin{bmatrix} b_0^H \ b_1^H \ dots \ b_{N-1}^H \end{bmatrix} egin{bmatrix} b_0 \mid b_1 \mid b_2 \mid \cdots \mid b_{N-1} \end{bmatrix} = egin{bmatrix} 1 \ 1 \ & \ddots & \ & \ddots & \ & & 1 \end{bmatrix}$$

Signal Represented by Orthonormal Basis

• Signal representation by orthonormal basis $\{b_k\}_{k=0}^{N-1}$ and orthonormal basis matrix B

$$x = B\alpha = \sum_{k=0}^{N-1} \alpha_k b_k,$$
 (synthesis)

$$\alpha = B^H x$$
 or $\alpha_k = \langle x, b_k \rangle$, (analysis)

- Synthesis: build up the signal x as a linear combination of the basis elements b_k weighted by the weights α_k
- Analysis: compute the weights α_k such that the synthesis produces x; the weights α_k measures the similarity between x and the basis element b_k

Harmonic Sinusoids are an Orthonormal Basis

• Stack N normalized harmonic sinusoid $\{s_k\}_{k=0}^{N-1}$ as columns into an $N\times N$ complex orthonormal basis matrix

$$S = [s_0 \mid s_1 \mid \cdots \mid s_{N-1}] \quad ext{where} \quad s_k[n] = rac{1}{\sqrt{N}} e^{jrac{2\pi}{N}kn}$$

$$S^HS=I \implies \langle s_k,s_l
angle = 0 \quad k
eq l, \quad ext{and} \quad \|s_k\|_2 = 1$$

Discrete Fourier Transform (DFT)

DFT and Inverse DFT

 Jean Baptiste Joseph Fourier had the radical idea of proposing that all signals could be represented as a linear combination of sinusoids

- Analysis (Forward DFT)
 - The weight X[k] measures the similarity between x and the harmonic sinusoid s_k
 - It finds the "frequency contents" of x at frequency k

$$X = S^H x$$

$$X[k] \ = \ \langle x, s_k
angle \ = \ \sum_{n=0}^{N-1} x[n] \, rac{e^{-jrac{2\pi}{N}kn}}{\sqrt{N}}$$

DFT and Inverse DFT

 Jean Baptiste Joseph Fourier had the radical idea of proposing that all signals could be represented as a linear combination of sinusoids

- Synthesis (Inverse DFT)
 - It is returning to time domain
 - It builds up the signal x as a linear combination of s_k weighted by the X[k]

$$x = SX$$

$$x[n] \ = \ \sum_{k=0}^{N-1} X[k] \ rac{e^{jrac{2\pi}{N}kn}}{\sqrt{N}}$$

Unnormalized DFT

Normalized forward and inverse DFT

$$X[k] = \sum_{n=0}^{N-1} x[n] \, rac{e^{-jrac{2\pi}{N}kn}}{\sqrt{N}}$$

$$x[n] = \sum_{k=0}^{N-1} X[k] \, rac{e^{jrac{2\pi}{N}kn}}{\sqrt{N}}$$

Unnormalized forward and inverse DFT

$$X_u[k] = \sum_{n=0}^{N-1} x[n] \, e^{-jrac{2\pi}{N}kn}$$

$$x[n] = rac{1}{N} \sum_{k=0}^{N-1} X[k] \, e^{jrac{2\pi}{N}kn}$$

Harmonic Sinusoids are an Orthonormal Basis

• Stack N normalized harmonic sinusoid $\{s_k\}_{k=0}^{N-1}$ as columns into an $N\times N$ complex orthonormal basis matrix

$$S = [s_0 \mid s_1 \mid \cdots \mid s_{N-1}] \quad ext{where} \quad s_k[n] = rac{1}{\sqrt{N}} e^{jrac{2\pi}{N}kn}$$

$$S^HS=I \implies \langle s_k,s_l
angle = 0 \quad k
eq l, \quad ext{and} \quad \|s_k\|_2 = 1$$

- *H* is circulent LTI System matrix
- S is harmonic sinusoid eigenvectors matrix (corresponds to DFT/IDFT) $H = S \Lambda S^H$
- Λ is eigenvalue diagonal matrix (frequency response)

• The eigenvalues are the frequency response (unnormalized DFT of the impulse response)

$$\lambda_k = \sum_{n=0}^{N-1} h[n] e^{-jrac{2\pi}{N}kn} = \langle h, s_k
angle = H_u[k]$$

• Place the N eigenvalues $\{\lambda_k\}_{k=0}^{N-1}$ on the diagonal of an $N\times N$ matrix

$$\Lambda = egin{bmatrix} \lambda_0 & & & & \ & \lambda_1 & & \ & & \ddots & \ & & & \lambda_{N-1} \end{bmatrix} = egin{bmatrix} H_u[0] & & & & \ & H_u[1] & & \ & & \ddots & \ & & & H_u[N-1] \end{bmatrix}$$

- *H* is circulent LTI System matrix
- S is harmonic sinusoid eigenvectors matrix (corresponds to DFT/IDFT)
- Λ is eigenvalue diagonal matrix (frequency response)

DFT in MATLAB

$$X_u[k] = \sum_{n=0}^{N-1} x[n] \, e^{-jrac{2\pi}{N}kn}$$

DFT in MATLAB

DFT Function

$$X_u[k] = \sum_{n=0}^{N-1} x[n] \, e^{-jrac{2\pi}{N}kn}$$

```
function [Xk] = dft(xn,N)
% Computes Discrete Fourier Transform
% [Xk] = dft(xn,N)
% Xk = DFT coeff. array over 0 <= k <= N-1
% xn = N-point finite-duration sequence
% N = Length of DFT
n = [0:1:N-1];
                                     % row vector for n
k = [0:1:N-1];
                                     % row vecor for k
WN = \exp(-1j*2*pi/N);
                                     % Wn factor
nk = n'*k;
                                     % creates a N by N matrix of nk values
WNnk = WN.^nk;
                                     % DFT matrix
Xk = xn*WNnk;
                                     % row vector for DFT coefficients
```

$$x[n]=e^{j\frac{2\pi}{8}3n}$$

```
X = dft(x,N);

%X = fft(x,N);
```


$$x[n]=e^{j\frac{2\pi}{8}2n}$$

$$x[n] = \cos\left(\frac{2\pi}{8}1n\right)$$

Typical interval 1: $0 \leq k \leq N-1$ corresponds to frequencies ω_k in the interval $0 \leq \omega \leq 2\pi$

Typical interval 2: $-rac{N}{2} \le k \le rac{N}{2} - 1$ corresponds to frequencies ω_k in the interval $-\pi \le \omega \le \pi$

$$\cos \omega t = \frac{e^{i\omega t} + e^{-i\omega t}}{2}$$

Fast Fourier Transform (FFT)

- FFT algorithms are so commonly employed to compute DFT that the term 'FFT' is often used to mean 'DFT'
 - The FFT has been called the "most important computational algorithm of our generation"
 - It uses the dynamic programming algorithm (or divide and conquer) to efficiently compute DFT.
- DFT refers to a mathematical transformation or function, whereas 'FFT' refers to a specific family of algorithms for computing DFTs.
 - use fft command to compute dft
 - fft (computationally efficient)
- We will use the embedded fft function without going too much into detail.

$$X[k] \ = \sum_{n=0}^{N-1} x[n] \, rac{e^{-jrac{2\pi}{N}kn}}{\sqrt{N}} \ x[n] \ = \sum_{k=0}^{N-1} X[k] \, rac{e^{jrac{2\pi}{N}kn}}{\sqrt{N}}$$

DFT pair

$$x[n] \longleftrightarrow X[k]$$

- DFT Frequencies
 - -X[k] measures the similarity between the time signal x[n] and the harmonic sinusoid $s_k[n]$
 - -X[k] measures the "frequency content" of x[n] at frequency $\omega_k = \frac{2\pi}{N}k$

- DFT and Circular Shift
 - No amplitude changed
 - Phase changed

$$x[(n-m)_N] \longleftrightarrow e^{-jrac{2\pi}{N}km}X[k]$$

• DFT and Modulation

$$e^{jrac{2\pi}{N}r\,n}x[n]\longleftrightarrow X[(k-r)_N]$$

- DFT and Circular Convolution
 - Circular convolution in the time domain =multiplication in the frequency domain

$$Y[k] = H[k]X[k]$$

$$h[n] \otimes x[n] \longleftrightarrow H[k]X[k]$$

$$y[n] = IDFT(Y[k])$$

$$Y_u[k] = \sum_{n=0}^{N-1} y[n] e^{-jrac{2\pi}{N}kn} = \sum_{n=0}^{N-1} \left(\sum_{m=0}^{N-1} h[(n-m)_N]x[m]
ight) e^{-jrac{2\pi}{N}kn}$$

$$=\sum_{m=0}^{N-1}x[m]\left(\sum_{n=0}^{N-1}h[(n-m)_N]e^{-jrac{2\pi}{N}kn}
ight).$$

$$=\sum_{m=0}^{N-1}x[m]\left(\sum_{r=0}^{N-1}h[r]e^{-jrac{2\pi}{N}k(r+m)}
ight).$$

$$=\left(\sum_{m=0}^{N-1}x[m]e^{-jrac{2\pi}{N}km}
ight)\left(\sum_{r=0}^{N-1}h[r]e^{-jrac{2\pi}{N}kr}
ight)$$

$$=X_u[k]H_u[k]$$

Filtering in Frequency Domain

• Circular convolution in the time domain = multiplication in the frequency domain

$$Y[k] = H[k]X[k]$$
 $h[n] \otimes x[n] \longleftrightarrow H[k]X[k]$ $y[n] = ext{IDFT}(Y[k])$

Example: Low-Pass Filter

Example: High-Pass Filter

Filtering in Time Domain

$$y = cconv(x,h,N);$$

Filtering in Frequency Domain

$$Y[k] = H[k]X[k]$$

$$h[n] \otimes x[n] \longleftrightarrow H[k]X[k]$$

$$y[n] = IDFT(Y[k])$$

$$y = cconv(x,h,N);$$

