103-284

問題文

表は、各輸液の成分濃度を示している。炭酸水素ナトリウム注射液との混合で、配合変化が生じる可能性が最も高い輸液剤はどれか。1つ選べ。ただし、電解質の濃度はmEq/L、ブドウ糖の濃度はW/v%である。

	Na ⁺	K ⁺	Ca ²⁺	Mg^{2+}	Cl ⁻	リン酸	ブドウ糖
1	147	4.0	4.5	0.0	155.5	0.0	0.0
2	90	0.0	0.0	0.0	70	0.0	2.6
3	35	20	0.0	3.0	38	0.0	10
4	35	20	0.0	0.0	35	0.0	4.3
5	40	35	0.0	0.0	40	15	5.0

解答

問284:3問285:1

解説

問284

ビタミン B_1 は、 ピルビン酸脱水素酵素などの 補酵素です。 ビタミン B_1 が欠乏することで、 解糖系で生じたピルビン酸の 代謝が阻害され、ピルビン酸が蓄積します。 この状況に対し、代償的に 乳酸脱水素酵素による ピルビン酸の代謝が亢進します。 その結果、乳酸が生成されます。 乳酸が豊富になることにより 乳酸アシドーシスが引き起こされます。

選択肢 1.2.4.5 は、正しい記述です。

選択肢 1 ですが

特定イオンの存在下沈殿の例は、 Ca $^{2+}$ イオン の存在下における、 NaHCO $_3$ (メイロン)の配合変化です。

選択肢 2 ですが

pH 変化による 溶解性低下、沈殿生成の例は、 ラシックスと酸性注射剤の配合変化です。

選択肢 4 ですが

コロイドに電解質の混合なので、 塩析や凝析が起きうる ということです。

選択肢 5 ですが

褐色に着色するのは、 糖とアミノ酸によるメイラード反応です。

選択肢3は誤った記述です。

輸液剤で希釈すれば 溶液補助剤の濃度が薄くなってしまい 主薬が析出してしまう可能 性があります。

以上より、正解は3です。

問285

前問の選択肢 1 の解説であげたように、 Ca^{2+} イオン存在下において 炭酸水素ナトリウムは沈殿を生じます。 従って、正解は 1 です。

類題