D. Number of Binominal Coefficients

time limit per test: 4 seconds memory limit per test: 256 megabytes input: standard input output: standard output

For a given prime integer p and integers α , A calculate the number of pairs of integers (n, k), such that $0 \le k \le n \le A$ and is divisible by p^{α} .

As the answer can be rather large, print the remainder of the answer moduly $10^9\,+\,7$.

Let us remind you that is the number of ways k objects can be chosen from the set of n objects.

Input

The first line contains two integers, p and α ($1 \le p$, $\alpha \le 10^9$, p is prime).

The second line contains the decimal record of integer A ($0 \le A \le 10^{1000}$) without leading zeroes.

Output

In the single line print the answer to the problem.

Examples

input		
2 2 7		
output		
3		

```
input
3 1
9
output
17
```

```
input
3 3
9

output
0
```

```
input
2 4
5000

output
8576851
```

Note

In the first sample three binominal coefficients divisible by 4 are, and.