A CALCPAD PROGRAM

FOR ANALYSIS OF PLANE FRAMES WITH VARIABLE CROSS-SECTIONS

(using the finite element method)

by

Eng. Nedelcho Ganchovsky

Table of contents

I. Introduction	1
II. Calcpad source code	2
III. Output	12
IV. Comparison with SAP 2000.	21
V. Conclusions.	25

I. Introduction

This Calcpad program performs analysis of plane frames with variable cross-sections using the finite element method. The input data is entered in text format as vectors and matrices as follows:

- joint coordinates;
- joint numbers at the ends of the elements;
- material properties;
- dimensions and types of cross-sections;
- support conditions;
- load values.

As a result, diagrams of internal forces and deflections of structural elements are obtained. The schemes are automatically generated by the program, using the SVG graphical format.

II. Calcpad source code

```
#include svg drawing.cpd
2
      "Analysis of plane frames with variable cross-sections
3
      '<h4>Joint coordinates - xJ; yJ</h4>
4
5
      #deg
      \delta z = 10^{-12}
6
7
      Precision = 10^-8
8
      x J = [0; 0; 8; 16; 16]*m
      y_J = [0; 8; 10; 8; 0]*m
10
      #show
11
      x_J','y_J
12
      n_J = len(x_J)
      '<h4>Elements - [J1; J2]</h4>
13
14
      #hide
15
      e_J = [1; 2|3; 2|3; 4|5; 4]
16
      #show
17
      transp(e_J)
18
      n_E = n_rows(e_J)
19
      'Element endpoint coordinates
20
      x_1(e) = x_J.e_J.(e; 1)', y_1(e) = y_J.e_J.(e; 1)
21
      x_2(e) = x_J.e_J.(e; 2)', y_2(e) = y_J.e_J.(e; 2)
22
      'Element length - '1(e) = sqrt((x_2(e) - x_1(e))^2 + (y_2(e) - y_1(e))^2)
23
      'Element directions
24
      c(e) = (x_2(e) - x_1(e))/1(e)', 's(e) = (y_2(e) - y_1(e))/1(e)
25
      'Transformation matrix
      'Diagonal 3x3 block -'t(e) = [c(e); s(e); 0|-s(e); c(e); 0|0; 0; 1]
26
      'Generation of the full transformation matrix
27
      T(e) = add(t(e); add(t(e); matrix(6; 6); 1; 1); 4; 4)
28
29
      '<h4>Supports - [Joint; cx; cy; cr]</h4>
30
31
      c = [1; 10^20kN/m; 10^20kN/m; 0kNm|5; 10^20kN/m; 10^20kN/m; 10^20kNm]
32
      #show
33
34
      n_c = n_rows(c)
      '<h4>Loads - [Element, qx, qy]</h4>
35
36
37
      q = [1; 10kN/m; 0kN/m|2; 0kN/m; -20kN/m|3; 0kN/m; -10kN/m]
38
      n_q = n_rows(q)
39
      q x = vector(n E)*kN/m
40
      q_y = vector(n_E)*kN/m
41
      $Repeat{q_x.(q.(i; 1)) = q_x.(q.(i; 1)) + q.(i; 2) @ i = 1 : n_q}
      Repeat{q_y.(q.(i; 1)) = q_y.(q.(i; 1)) + q.(i; 3) @ i = 1 : n_q}
42
43
      #show
44
      'Load values on elements
45
46
      q x
47
      q_y
```

```
'<h4>Scheme of the structure</h4>
48
      #hide
49
      w = max(x J)
50
      h = max(y J)
51
      W = 240
52
      H = h*W/w
53
54
      k = W/w
      \#def svg\$ = ' < svg viewbox="'-3m*k' '-2m*k' '(w + 6m)*k' '(h + 4m)*k'"
55
      xmlns="http://www.w3.org/2000/svg" version="1.1" style="font-family:
      Georgia Pro; font-size:5pt; width:'W + 150'pt; height:'H + 200*H/W'pt">
      #def thin_style$ = style = "stroke:green; stroke-width:1; fill:none"
56
57
      #def thick_style$ = style = "stroke:green; stroke-width:2; fill:none"
58
      k q = m/kN
59
      #show
60
      #val
61
      svg$
62
      #for i = 1 : n_E
          #hide
63
          x1 = x_1(i)*k
64
          y1 = (h - y 1(i))*k
65
66
          x2 = x_2(i)*k
          y2 = (h - y_2(i))*k
67
68
          q_xi = q_x.i
69
          q_yi = q_y.i
70
          \alpha = atan2(c(i); s(i))
71
          #if \alpha \ge 135
72
              \alpha = \alpha - 180
73
          #end if
74
          #if \alpha < -45
75
              \alpha = \alpha + 180
76
          #else if \alpha < 0
              \alpha = 360 + \alpha
77
          #end if
78
79
          #if q xi \neq 0kN/m
              #hide
80
              x3 = x2 - q_xi*k_q', 'y3 = y2
81
82
              x4 = x1 - q xi*k q', 'y4 = y1
83
              x = (x3 + x4)/2 - 5*sign(q_xi)
84
              y = (y3 + y4)/2
              #show
85
              '<polygon points="'x1','y1' 'x2','y2' 'x3','y3' 'x4','y4'"
86
      style="stroke:magenta; stroke-width:1; stroke-opacity:0.3; fill:magenta;
      fill-opacity:0.1;" />
              text$(x;y;\alpha;qx='abs(q_xi)')
87
88
          #end if
          #if q_yi ≠ 0kN/m
89
90
              #hide
              x3 = x2', 'y3 = y2 + q_yi*k_q
91
92
              x4 = x1', 'y4 = y1 + q_yi*k_q
93
              x = (x3 + x4)/2
```

```
y = (y3 + y4)/2 + 5*sign(q_yi)
94
95
              #show
              '<polygon points="'x1','y1' 'x2','y2' 'x3','y3' 'x4','y4'"
96
      style="stroke:dodgerblue; stroke-width:1; stroke-opacity:0.4;
      fill:dodgerblue; fill-opacity:0.15;" />
97
              text$(x;y;α;qy='abs(q yi)')
          #end if
98
99
          #show
100
          line$(x1; y1; x2; y2; main_style$)
101
      '<g id="frame">
102
103
      #for i = 1 : n_E
104
          #hide
          x1 = x_1(i)*k
105
106
          y1 = (h - y_1(i))*k
          x2 = x_2(i)*k
107
108
          y2 = (h - y_2(i))*k
109
          #show
110
          line$(x1; y1; x2; y2; main_style$)
111
      #loop
      #for i = 1 : n_c
112
         #hide
113
114
          j = c.(i; 1)
115
          x1 = x_J.j*k
116
          y1 = (h - y_J.j)*k
117
          \delta = w/30*k*sign(x1 - w/2*k)
          x2 = x1 - \delta
118
119
          y2 = y1 - abs(\delta)
120
          x3 = x1 + \delta
121
          y3 = y1 + abs(\delta)
122
          #show
          #if c.(i; 2) \neq 0kN/m
123
              #if c.(i; 3) \neq 0kN/m
124
                  #if c.(i; 4) \neq 0kNm
125
126
                      line$(x1; y1; x1; y3; thin_style$)
127
                      line$(x2; y3; x3; y3; thick_style$)
128
                 #else
129
                      line$(x2; y3; x3; y3; thick_style$)
130
                      line$(x2; y3; x1; y1; thin_style$)
131
                      line$(x3; y3; x1; y1; thin_style$)
                 #end if
132
133
              #else
134
                  #if c.(i; 4) \neq 0kNm
135
                      line$(x1; y1; x2; y1; thin_style$)
                      line$(x2; y2; x2; y3; thick style$)
136
                      line(x^2 - \delta/2; y^2; x^2 - \delta/2; y^3; thick_style)
137
138
                  #else
                      line$(x2; y2; x1; y1; thin_style$)
139
140
                      line$(x2; y3; x1; y1; thin_style$)
141
                      line$(x2; y2; x2; y3; thin_style$)
```

```
142
                     line(x^2 - \delta/2; y^2; x^2 - \delta/2; y^3; thick_style)
143
                  #end if
              #end if
144
          #else
145
146
             #if c.(i; 3) \neq 0kN/m
147
                  #if c.(i; 4) \neq 0kNm
                      line$(x1; y1; x1; y3; thin_style$)
148
149
                      line$(x2; y3; x3; y3; thick_style$)
150
                     line(x2; y3 + abs(\delta)/2; x3; y3 + abs(\delta)/2; thick_style
151
                  #else
152
                     line$(x2; y3; x3; y3; thin_style$)
153
                     line$(x2; y3; x1; y1; thin_style$)
154
                     line$(x3; y3; x1; y1; thin_style$)
155
                     line(x2; y3 + abs(\delta)/2; x3; y3 + abs(\delta)/2; thick style)
156
                  #end if
157
             #else
158
                  line$(x2; y2; x3; y3; thick style$)
159
          #end if
160
      #loop
161
162
      '</g>
      #for i = 1 : n_E
163
164
          #hide
165
          x = (x_1(i) + x_2(i))*k/2
166
          y = (h - (y_1(i) + y_2(i))/2)*k
167
          #show
168
          texth(x + 0.8m*sign(W/2 - x)*k; y + 0.6m*k; e'i')
169
      #loop
170
      #for i = 1 : n_J
          point$(x_J.i*k; (h - y_J.i)*k; point_style$)
171
          texth((x_J.i - 0.7m*sign(w/2 - x_J.i))*k; (h - y_J.i - 0.4m)*k;
172
      J'i')
173
      #loop
      dimv$((w + 2m)*k; (h - y_J.4)*k; h*k; 'y_J.4')
174
175
      dimv$((w + 2m)*k; 0; (h - y_J.4)*k; 'h - y_J.4')
      dimh\$(0; w*k; (h + 1.5m)*k; 'w')
176
177
      '</svg>
178
      #equ
179
      '<h4>Materials</h4>
      'Modules of elasticity -'E = [45; 35]*GPa
180
      'Poisson coefficients -'v = [0.2; 0.2]
181
182
      'Shear modules -'G = E/(2*(1 + v))
183
      'Assignments on elements -'e_M = [1; 2; 2; 1]
      '<h4>Cross-sections</h4>
184
185
      #hide
      b = vector(2)', 'h = vector(2)
186
187
      #show
      'Section S1 - 'b 1 = 300mm', 'h 1 = 300mm
188
      'Section S2 - 'b 2 = 300 \text{mm}', 'h 2 = 900 \text{mm}
189
190
      'General representation
```

```
191
                 'Width -'\mathbf{b}(\xi; z) = b_1 + (b_2 - b_1)*\xi
192
                 'Height -'h(\xi) = h_1 + (h_2 - h_1)*\xi
                 '<h4>Cross section properties</h4>
193
                 'Area -'A(\xi) = Area\{b(\xi; z) @ z = 0mm : h(\xi)\} | cm^2
194
                'First moment of area -'\mathbf{S}(\xi) = Area\{\mathbf{b}(\xi; z)*z @ z = 0mm : \mathbf{h}(\xi)\} cm^3
195
196
                 'Centroid -'z c(\xi) = S(\xi)/A(\xi) | mm
197
                'Second moment of area -'\mathbf{I}(\xi) = Area\{b(\xi; z)*(z - \mathbf{z}_c(\xi))^2 @ z = 0 mm :
                h(\xi) cm<sup>4</sup>
198
                'First moment of area below z - S_1(\xi; z) = Area\{b(\xi; \zeta)*(z_c(\xi) - \zeta)\}
                \zeta = 0.1 \text{mm} : z
199
                'Shear area -'A Q(\xi) = I(\xi)^2/\$Area\{S \ 1(\xi; z)^2/b(\xi; z) @ z = 0.1mm :
                h(\xi) - 0.1mm
200
                 '<h4>Element stiffness matrix</h4>
201
                'Elastic properties for element "e"
202
                EA(e; x) = E.e_M.e*A(x/1(e))
                EI(e; x) = E.e_M.e*I(x/I(e))
203
204
                GA_Q(e; x) = G.e_M.e*A_Q(x/1(e))
                'Stiffness matrix for element with variable cross-section
205
206
                 'Displacement due to F<sub>x</sub> = 1 in primary system -'u_F(e) =
                Area{1/EA(e; x) @ x = 0m : 1(e)}
                'Displacement due to F<sub>y1</sub> = 1 in primary system, with account
207
                of shear deflections -'v_F1(e) = Area\{x^2/EI(e; x) @ x = 0m : 1(e)\} +
                Area{1/GA_Q(e; x) @ x = 0m : 1(e)}
208
                'Rotation due to F<sub>y1</sub> = 1 in primary system -'\phi_F1(e) = -
                Area\{x/EI(e; x) @ x = 0m : 1(e)\}' + 0
209
                'Displacement due to M<sub>1</sub> = 1 in primary system -'v_M1(e) =
                φ F1(e)
210
                'Rotation due to M<sub>1</sub> = 1 in primary system -'\phi_M1(e) =
                Area{1/EI(e; x) @ x = 0m : 1(e)}' + 0
                 'Determinant - D_1(e) = \phi_M1(e) v_F1(e) - \phi_F1(e)^2
211
212
                 'Displacement due to F(sub)y2(sub) = 1 in primary system -'v F2(e) =
                Area{(1(e) - x)^2/EI(e; x) @ x = 0m : 1(e)} + Area{1/GA_Q(e; x) @ x = 0m : 1(e)}
                0m : 1(e)
213
                'Rotation due to F<sub>2</sub> = 1 in primary system -'\phi F2(e) =
                Area{(1(e) - x)/EI(e; x) @ x = 0m : 1(e)}' + 0
214
                'Displacement due to M<sub>2</sub> = 1 in primary system -'v_M2(e) =
                φ F2(e)
215
                'Rotation due to M<sub>2</sub> = 1 in primary system -'\phi_M2(e) = \phi_M1(e)
216
                'Determinant - D_2(e) = \phi_M 2(e) v_F 2(e) - \phi_F 2(e)^2
217
                '3x3 blocks of the stiffness matrix for element "e"
218
                k ii(e) = [D 1(e)/u F(e)*kN*m|0; \phi M1(e)*kNm; -\phi F1(e)*kN|0; -\phi F1(e)*kN;
                v F1(e)*(kN/m)]*(kN^-2/D 1(e))
219
                k_{ij}(e) = [-D_2(e)/u_F(e)*kN*m|0; -\phi_M2(e)*kNm; \phi_F2(e)*kN|0; (\phi_F2(e) - E)/E = [-D_2(e)/u_F(e)]*kN*m|0; -\phi_M2(e)/e)*kNm; (\phi_F2(e) - E)/E = [-D_2(e)/u_F(e)/u_F(e)]*kN*m|0; -\phi_M2(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_F(e)/u_
                \phi_M2(e)*1(e))*kN; -(v_F2(e) - \phi_F2(e)*1(e))*(kN/m)]*(kN^-2/D_2(e))
220
                k_{ji}(e) = [-D_1(e)/u_F(e)*kN*m|0; -\phi_M1(e)*kNm; \phi_F1(e)*kN|0; (\phi_F1(e) + C)*kN|0; 
                \phi_{1}(e)*1(e)*kN; -(v_{1}(e) + \phi_{1}(e)*1(e))*(kN/m)]*(kN^{-2}/D_{1}(e))
221
                k_{jj}(e) = [D_2(e)/u_F(e)*kN*m|0; \phi_M2(e)*kNm; -\phi_F2(e)*kN|0; -\phi_F2(e)*kN;
                v F2(e)*(kN/m)]*(kN^-2/D 2(e))
222
                'Full element stiffness matrix
223
                k_E(e) = stack(augment(k_ii(e); k_ij(e)); augment(k_ji(e); k_jj(e)))
```

```
224
      'Stiffness matrices obtained in local coordinates
225
      k E(1)
      k E(2)
226
      'Stiffness matrices obtained in global coordinates
227
228
      transp(T(1))*k E(1)*T(1)
229
      transp(T(2))*k E(2)*T(2)
230
      '<h4>Global stiffness matrix</h4>
231
      #hide
232
      K = symmetric(3*n J)
233
      'Add element stiffness matrices
234
      #for e = 1 : n E
235
         i = 3*e_J.(e; 1) - 2', 'j = 3*e_J.(e; 2) - 2
236
         t = t(e)', 'tT = transp(t)
237
         add(tT*k ii(e)*t; K; i; i)
238
         #if j > i
239
             add(tT*k_ij(e)*t; K; i; j)
240
         #else
241
             add(tT*k_ji(e)*t; K; j; i)
242
         #end if
243
         add(tT*k_jj(e)*t; K; j; j)
244
      #loop
245
      'Add supports
246
      #for i = 1 : n_c
247
         j = 3*c.(i; 1) - 2
248
         add(vec2diag(last(row(c; i); 3)/[kN/m; kN/m; kNm]); K; j; j)
249
      #loop
250
      #show
251
252
      '<h4>Element load vector</h4>
253
      'Load functions
254
      'Shear -'q_E(e; x) = -q_x.e*s(e) + q_y.e*c(e)
255
      'Axial -'n_E(e; x) = q_x.e*c(e) + q_y.e*s(e)
256
      'Functions of internal forces in primary system
257
      'Axial forces -'N_0(e; x) = -\$Area\{n_E(e; \xi) @ \xi = 0m : x\}
258
      'Shear forces -'Q_0(e; x) = Area\{q_E(e; \xi) @ \xi = 0m : x\}
259
      'Bending moments -'M_0(e; x) = Area\{q_E(e; \xi)^*(x - \xi) \in \xi = 0m : x\}
260
      'Reactions at element ends
261
      'Displacements along "x" due to axial loads - u_n(e) = Area(N_0(e; x))
      EA(e; x) @ x = 0m : 1(e)
      'Displacements along "y" due to lateral loads -'v_q(e) = Area(M_0(e))
262
      x)*x/EI(e; x) @ x = 0m : 1(e) + $Area{Q 0(e; x)/GA Q(e; x) @ x = 0m : }
263
      'Rotations due to lateral loads -'\phi_q(e) = -\$Area\{M_0(e; x)/EI(e; x) @ x
      = 0m : 1(e)
264
      'Element endpoint loads in local coordinate system
      'For joint "1":
265
266
      F_x1(e) = -u_n(e)/u_F(e)
      F_y1(e) = (\phi_M1(e)*v_q(e) - \phi_F1(e)*\phi_q(e))/D_1(e)
267
268
      M_1(e) = (v_F1(e)*\phi_q(e) - \phi_F1(e)*v_q(e))/D_1(e)
269
      'For joint "2":
```

```
270
      F_x2(e) = -F_x1(e) - N_0(e; 1(e))
271
      F_y2(e) = -F_y1(e) + Q_0(e; 1(e))
      M_2(e) = -M_1(e) + F_y1(e)*1(e) - M_0(e; 1(e))
272
273
      'Element endpoint loads in global coordinate system
      'For joint "1":
274
275
      F' x1(e) = F x1(e)*c(e) - F y1(e)*s(e)
      F'_y1(e) = F_x1(e)*s(e) + F_y1(e)*c(e)
276
      'For joint "2":
277
278
      F'_x2(e) = F_x2(e)*c(e) - F_y2(e)*s(e)
279
      F' y2(e) = F x2(e)*s(e) + F y2(e)*c(e)
280
      'Element load vector
281
      F_E(e) = [F'_x1(e); F'_y1(e); M_1(e)*m^-1; F'_x2(e); F'_y2(e); M_2(e)*m^-
      1]*kN^-1
282
     #novar
283
     #for e = 1 : n_E
284
         F_E(e)
285
     #loop
286
      #varsub
      '<h4>Global load vector</h4>
287
288
     #hide
289
      F = vector(3*n_J)
290
     #for i = 1 : n_q
291
         e = q.(i; 1)
292
         #for jj = 1 : 2
293
             j = 3*e_J.(e; jj) - 3
294
             F.(j + 1) = F.(j + 1) + take(3*jj - 2; F_E(e))
295
             F.(j + 2) = F.(j + 2) + take(3*jj - 1; F_E(e))
296
             F.(j + 3) = F.(j + 3) + take(3*jj; F_E(e))
297
         #loop
     #loop
298
299
     #show
300
301
      '<h4>Results</h4>
302
      '<strong>Solution of the system of equations</strong>
303
      Z = clsolve(K; F)
      '<strong>Joint displacements</strong>
304
      z J(j) = slice(Z; 3*j - 2; 3*j)
305
306
      z(j) = round(z_J(j)/\delta z)*\delta z*1000*[mm; mm; 1]
307
      #novar
      #for j = 1 : n_J
308
309
         z(j)
310
      #loop
311
      #varsub
312
      '<strong>Support reactions</strong>
      r(i) = row(c; i)', 'j(i) = take(1; r(i))
313
      R(i) = -z_J(j(i))*[m; m; 1]*last(r(i); 3)
314
315
     #novar
316
      #for i = 1 : n_c
317
         #val
318
         'Joint <b>J'j(i)' -
```

```
319
         #equ
         '</b>'R(i)'
320
321
      #loop
322
      #varsub
323
      '<strong>Element end forces</strong>
324
      z E(e) = [z J(e J.(e; 1)); z J(e J.(e; 2))]
      R_E(e) = col(k_E(e)*T(e)*z_E(e) - T(e)*F_E(e); 1)*[1; 1; m; 1; 1; m]*kN
325
326
      #novar
327
      #for e = 1 : n_E
328
         R E(e)
329
      #loop
330
      #varsub
331
      '<strong>Element internal forces</strong>
332
      N(e; x) = -take(1; R_E(e)) + N_0(e; x)
333
      Q(e; x) = take(2; R_E(e)) + Q_0(e; x)
334
      M(e; x) = -take(3; R_E(e)) + take(2; R_E(e))*x + M_0(e; x)
335
      #hide
      w = max(x_J)
336
337
      h = max(y_J)
     W = 240
338
339
     H = h*W/w
340
      k = W/W
      #def red_style$ = style = "stroke:red; stroke-width:1; fill:red"
341
342
      #deg
343
      #for i = 1 : 3
344
         #hide
345
         R(e; x) = take(i; N(e; x); Q(e; x); M(e; x))
346
         sgn = take(i; 1; 1; -1)
347
         tol = 0.01*take(i; kN; kN; kNm)
         R_{max} = \sup{\{Sup\{R(e; x) @ x = 0m : 1(e)\} @ e = 1 : n_E\}}
348
349
         R_{\min} = \sup\{abs(\inf\{R(e; x) @ x = 0m : I(e)\}) @ e = 1 : n_E\}
350
         k_R = sgn*1m*k/max(R_min; R_max)
         #show
351
352
         #if i \equiv 1
353
             '<strong>Axial forces diagram, kN</strong>
354
         #else if i \equiv 2
355
             '<strong>Shear forces diagram, kN</strong>
356
         #else
357
             <<strong>Bending moments diagram, kNm</strong>
358
         #end if
359
         #val
360
         svg$
361
          '<use href="#frame"/>
         #for e = 1 : n_E
362
363
             #hide
             x1 = x 1(e)*k
364
365
             y1 = (h - y_1(e))*k
             x2 = x_2(e)*k
366
367
             y2 = (h - y_2(e))*k
368
             c_e = c(e)
```

```
369
               s_e = s(e)
370
               l_e = l(e)
               st = 1_e/10
371
372
               xd2 = x1
373
               yd2 = y1
374
               #show
               #for j = 0 : 10
375
376
                   #hide
377
                   xd1 = xd2
378
                   yd1 = yd2
379
                   x = j*st*k
380
                   v = R(e; j*st)
                   y = v*k_R
381
382
                   xd2 = x1 + x*c_e - y*s_e
383
                   yd2 = y1 - x*s_e - y*c_e
                   \alpha = 90 + atan2(c_e; s_e)
384
385
                   #if \alpha \ge 135
                       \alpha = \alpha - 180
386
387
                   #end if
388
                   #if \alpha < -45
389
                       \alpha = \alpha + 180
                   #else if \alpha < 0
390
391
                       \alpha = 360 + \alpha
392
                   #end if
393
                   d = -15*sign(v*sgn)
394
                   #show
395
                   line$(xd1; yd1; xd2; yd2; red_style$)
                   #if (j \equiv 0 \lor j \equiv 10) \land abs(v) > tol
396
                       text(xd2 + s_e*d; yd2 + d*c_e; \alpha; 'v')
397
                   #end if
398
399
                   line$(xd1; yd1; xd2; yd2; red_style$)
400
               #loop
401
               #hide
402
               xd1 = x2
403
               yd1 = y2
404
               #show
405
               line$(xd1; yd1; xd2; yd2; red style$)
406
           #loop
           '</svg>
407
408
       #loop
409
       #equ
       '<strong>Deformed shape</strong>
410
411
       'Shape function in relative coordinates \xi = x/1 (approximate)
       \Phi_1(e; \xi) = 1 - 3*\xi^2 + 2*\xi^3
412
       \Phi 2(e; \xi) = \xi * 1(e) * m^{-1} * (1 - 2 * \xi + \xi^{2})
413
       \Phi_3(e; \xi) = \xi^2*(3 - 2*\xi)
414
       \Phi_4(e; \xi) = \xi^2*1(e)*m^-1*(-1 + \xi)
415
416
       'Element endpoint displacements and rotations
417
       z_E,loc(e) = T(e)*z_E(e)
       u_1(e) = take(1; z_E,loc(e))', v_1(e) = take(2; z_E,loc(e))', \phi_1(e) =
418
```

```
take(3; z_E,loc(e))
      u_2(e) = take(4; z_E,loc(e))', v_2(e) = take(5; z_E,loc(e))', \phi_2(e) =
419
      take(6; z E,loc(e))
420
      'Displacement functions
421
      u(e; \xi) = u_1(e)*(1 - \xi) + u_2(e)*\xi
      v(e; \xi) = v_1(e)*\phi_1(e; \xi) + \phi_1(e)*\phi_2(e; \xi) + v_2(e)*\phi_3(e; \xi) +
422
      \phi_2(e)*\phi_4(e; \xi)
423
      'Deformed shape, mm
424
      #val
425
      #hide
      tol = 0.00001
426
427
      k R = 800
428
      #show
429
      svg$
      '<use href="#frame" style="opacity:0.4;"/>
430
431
      #for e = 1 : n_E
432
          #hide
433
          x1 = x_1(e)*k
434
          y1 = (h - y_1(e))*k
          x2 = x_2(e)*k
435
436
          y2 = (h - y_2(e))*k
437
          c_e = c(e)
438
          s_e = s(e)
439
          l_e = l(e)
440
          u = u(e; 0)
441
          v = v(e; 0)
442
          x = u*k R
443
          y = v*k_R
          xd2 = x1 + x*c_e - y*s_e
444
445
          yd2 = y1 - x*s_e - y*c_e
446
          #show
          #for j = 0 : 10
447
              #hide
448
              xd1 = xd2
449
450
              yd1 = yd2
451
              \xi = j/10
452
              u = u(e; \xi)
453
              v = v(e; \xi)
454
              x = \xi *1_e*k + u*k_R
455
              y = v*k_R
456
              xd2 = x1 + x*c e - y*s e
457
              yd2 = y1 - x*s_e - y*c_e
458
              d = -15*sign(v)
459
              #show
460
              line$(xd1; yd1; xd2; yd2; red_style$)
461
          #loop
462
      #loop
      #for j = 1 : n_J
463
464
          #hide
465
          z_J = z_J(j)
```

```
u = z_J.1
466
467
          v = z_J.2
          x = x_J.j*k + u*k_R
468
          y = (h - y_{J.j})*k - v*k_{R}
469
470
          dx = 15*sign(u)
          dy = -15*sign(v)
471
472
          #show
473
          #if abs(u) > tol
              texth(x + dx; y; 'u*1000')
474
475
476
          #if abs(v) > tol
              \text{textv}(x; y + dy; 'v*1000')
477
478
479
      #loop
480
      '</svg>
481
      #equ
```

III. Output

Analysis of plane frames with variable cross-sections

Joint coordinates

Elements

Element endpoint coordinates

$$x_1(e) = \vec{x}_{J.e_{J.e,1}}, y_1(e) = \vec{y}_{J.e_{J.e,1}}, x_2(e) = \vec{x}_{J.e_{J.e,2}}, y_2(e) = \vec{y}_{J.e_{J.e,2}}$$

Element length-
$$l\left(e\right) = \sqrt{\left(x_2(e) - x_1(e)\right)^2 + \left(y_2(e) - y_1(e)\right)^2}$$

Element directions -
$$c(e) = \frac{x_2(e) - x_1(e)}{l(e)}$$
 , $s(e) = \frac{y_2(e) - y_1(e)}{l(e)}$

Transformation matrix

Diagonal 3x3 block -
$$t(e) = [c(e); s(e); 0 | -s(e); c(e); 0 | 0; 0; 1]$$

Generation of the full transformation matrix

$$T(e) = add(t(e); add(t(e); matrix(6; 6); 1; 1); 4; 4)$$

Supports

Loads

$$c = \begin{bmatrix} 1 & 10^{20} \,\mathrm{kN/m} & 10^{20} \,\mathrm{kN/m} & 0 \,\mathrm{kNm} \\ 5 & 10^{20} \,\mathrm{kN/m} & 10^{20} \,\mathrm{kN/m} & 10^{20} \,\mathrm{kNm} \end{bmatrix} \; q = \begin{bmatrix} 1 & 10 \,\mathrm{kN/m} & 0 \,\mathrm{kN/m} \\ 2 & 0 \,\mathrm{kN/m} & -20 \,\mathrm{kN/m} \\ 3 & 0 \,\mathrm{kN/m} & -10 \,\mathrm{kN/m} \end{bmatrix} \\ n_c = n_{rows}(c) = 2$$

Load values on elements

E1 E2 E3 E4
$$\vec{q}_x = \begin{bmatrix} 10 \text{ kN/m} & 0 \text{ kN/m} & 0 \text{ kN/m} & 0 \text{ kN/m} \end{bmatrix}$$

$$\vec{q}_y = \begin{bmatrix} 0 \text{ kN/m} & -20 \text{ kN/m} & -10 \text{ kN/m} & 0 \text{ kN/m} \end{bmatrix}$$

Scheme of the structure

Materials

Modules of elasticity - $\vec{E} = \begin{bmatrix} 45 \text{ GPa} & 35 \text{ GPa} \end{bmatrix}$

Poisson coefficients - $\vec{v} = \begin{bmatrix} 0.2 & 0.2 \end{bmatrix}$

Shear modules - $\vec{G} = \frac{\vec{E}}{2 \cdot (1 + \vec{v})} = [18.75 \text{ GPa} \quad 14.58 \text{ GPa}]$

Assignment on elements - $\vec{e}_M = \begin{bmatrix} 1 & 2 & 2 & 1 \end{bmatrix}$

Cross-sections

Section S1 - b_1 =300 mm , h_1 =300 mm

Section S2 - b_2 =300 mm , h_2 =900 mm

General representation

Width -
$$b(\xi; z) = b_1 + (b_2 - b_1) \cdot \xi$$

$$\text{Height - } h\left(\xi\right)\!=\!h_1\!+\!\left(h_2\!-\!h_1\right)\!\cdot\!\xi$$

Cross section properties

Area -
$$A(\xi) = \int_{0 \text{ mm}}^{h(\xi)} b(\xi; z) dz$$

First moment of area -
$$S(\xi) = \int_{0 \text{ mm}}^{h(\xi)} b(\xi; z) \cdot z \, dz$$

Centroid -
$$z_{c}(\xi) = \frac{S(\xi)}{A(\xi)}$$

Second moment of area -
$$I(\xi) = \int_{0 \text{ mm}}^{h(\xi)} b(\xi; z) \cdot (z - z_c(\xi))^2 dz$$

First moment of area bellow z -
$$S_1(\xi; z) = \int_{0 \, \text{mm}}^z b(\xi; \zeta) \cdot \left(z_c(\xi) - \zeta\right) \mathrm{d}\zeta$$

Shear area -
$$A_{\mathcal{Q}}(\xi) = \frac{I(\xi)^2}{\int\limits_{0, \text{min}}^{h(\xi)} \frac{S_1(\xi; z)^2}{b(\xi; z)} dz}$$

Element stiffness matrix

Elastic properties for element "e"

$$EA(e; x) = \vec{E}_{\vec{e}_{M.e}} \cdot A\left(\frac{x}{l(e)}\right), EI(e; x) = \vec{E}_{\vec{e}_{M.e}} \cdot I\left(\frac{x}{l(e)}\right), GA_{Q}(e; x) = \vec{G}_{\vec{e}_{M.e}} \cdot A_{Q}\left(\frac{x}{l(e)}\right)$$

Stiffness matrix for element with variable cross-section

Displacement due to
$$F_x = 1$$
 in primary system - $u_F(e) = \int_{0 \text{ m}}^{l(e)} \frac{1}{EA(e; x)} dx$

Displacement due to F_{y1} = 1 in primary system, with account for shear deflections -

$$v_{F1}(e) = \int_{0 \text{ m}}^{l(e)} \frac{x^2}{EI(e; x)} dx + \int_{0 \text{ m}}^{l(e)} \frac{1}{GA_O(e; x)} dx$$

Rotation due to
$$F_{y1}$$
 = 1 in primary system - $\varphi_{F1}(e) = -\left(\int_{0 \text{ m}}^{l(e)} \frac{x}{EI(e; x)} dx\right)$

Displacement due to
$$M_1$$
 = 1 in primary system - $v_{M1}(e) = \varphi_{F1}(e)$

Rotation due to
$$M_1 = 1$$
 in primary system - $\varphi_{M1}(e) = \int_{0 \text{ m}}^{I(e)} \frac{1}{EI(e; x)} dx$

Determinant -
$$D_1(e) = \varphi_{M1}(e) \cdot v_{F1}(e) - \varphi_{F1}(e)^2$$

Displacement due to
$$F_{y2}$$
 = 1 in primary system - $v_{F2}(e) = \int_{0 \text{ m}}^{l(e)} \frac{(l(e)-x)^2}{EI(e;x)} dx + \int_{0 \text{ m}}^{l(e)} \frac{1}{GA_O(e;x)} dx$

Rotation due to
$$F_{y2} = 1$$
 in primary system - $\varphi_{F2}(e) = \int_{0 \text{ m}}^{l(e)} \frac{l(e) - x}{EI(e; x)} dx$

Displacement due to M_2 = 1 in primary system - $v_{M2}(e) = \varphi_{F2}(e)$

Rotation due to
$$M_2$$
 = 1 in primary system - $\varphi_{M2}(e) = \varphi_{M1}(e)$

Determinant -
$$D_2(e)\!=\!\varphi_{M\,2}(e)\cdot v_{F\,2}(e)\!-\!\varphi_{F\,2}(e)^2$$

3x3 blocks of the stiffness matrix for element "e"

$$\begin{split} k_{ii}(e) &= \left[\frac{D_{1}(e)}{u_{F}(e)} \cdot kNm \mid 0 \; ; \; \varphi_{M1}(e) \cdot kNm \; ; -\varphi_{F1}(e) \cdot kN \mid 0 \; ; -\varphi_{F1}(e) \cdot kN \; ; \; v_{F1}(e) \cdot \frac{kN}{m} \right] \cdot \frac{kN^{-2}}{D_{1}(e)} \\ k_{ij}(e) &= \left[-\frac{D_{2}(e)}{u_{F}(e)} \cdot kNm \mid 0 \; ; -\varphi_{M2}(e) \cdot kNm \; ; \; \varphi_{F2}(e) \cdot kN \mid 0 \; ; \; \left(\varphi_{F2}(e) - \varphi_{M2}(e) \cdot l(e) \right) \cdot kN \; ; - \left(v_{F2}(e) - \varphi_{F2}(e) \cdot l(e) \right) \cdot \frac{kN}{m} \right] \cdot \frac{kN^{-2}}{D_{2}(e)} \\ k_{ji}(e) &= \left[-\frac{D_{1}(e)}{u_{F}(e)} \cdot kNm \mid 0 \; ; -\varphi_{M1}(e) \cdot kNm \; ; \; \varphi_{F1}(e) \cdot kN \mid 0 \; ; \; \left(\varphi_{F1}(e) + \varphi_{M1}(e) \cdot l(e) \right) \cdot kN \; ; - \left(v_{F1}(e) + \varphi_{F1}(e) \cdot l(e) \right) \cdot \frac{kN}{m} \right] \cdot \frac{kN^{-2}}{D_{1}(e)} \\ k_{jj}(e) &= \left[-\frac{D_{2}(e)}{u_{F}(e)} \cdot kNm \mid 0 \; ; \; \varphi_{M2}(e) \cdot kNm \; ; -\varphi_{F2}(e) \cdot kN \mid 0 \; ; -\varphi_{F2}(e) \cdot kN \; ; \; v_{F2}(e) \cdot \frac{kN}{m} \right] \cdot \frac{kN^{-2}}{D_{2}(e)} \end{split}$$

Full element stiffness matrix

$$k_E(e) = \operatorname{stack}\left(\operatorname{augment}\left(k_{ii}(e); k_{ij}(e)\right); \operatorname{augment}\left(k_{ji}(e); k_{jj}(e)\right)\right)$$

Stiffness matrices obtained in local coordinates

$$k_E(1) = \begin{bmatrix} 921617 & 0 & 0 & -921617 & 0 & 0 \\ 0 & 4741.71 & 9483.42 & 0 & -4741.71 & 28450.3 \\ 0 & 9483.42 & 36052.8 & 0 & -9483.42 & 39814.6 \\ -921617 & 0 & 0 & 921617 & 0 & 0 \\ 0 & -4741.71 & -9483.42 & 0 & 4741.71 & -28450.3 \\ 0 & 28450.3 & 39814.6 & 0 & -28450.3 & 187788 \end{bmatrix}$$

$$k_E(2) = \begin{bmatrix} 695411 & 0 & 0 & -695411 & 0 & 0 \\ 0 & 3370.35 & 6948.16 & 0 & -3370.35 & 20844.5 \\ 0 & 6948.16 & 27216.3 & 0 & -6948.16 & 30079.7 \\ -695411 & 0 & 0 & 695411 & 0 & 0 \\ 0 & -3370.35 & -6948.16 & 0 & 3370.35 & -20844.5 \\ 0 & 20844.5 & 30079.7 & 0 & -20844.5 & 141808 \end{bmatrix}$$

Stiffness matrices obtained in global coordinates

$$\mathbf{transp}\left(T\left(1\right)\right) \cdot k_{E}(1) \cdot T\left(1\right) = \begin{bmatrix} 4741.71 & 0 & -9483.42 & -4741.71 & 0 & -28450.3 \\ 0 & 921617 & 0 & 0 & -921617 & 0 \\ -9483.42 & 0 & 36052.8 & 9483.42 & 0 & 39814.6 \\ -4741.71 & 0 & 9483.42 & 4741.71 & 0 & 28450.3 \\ 0 & -921617 & 0 & 0 & 921617 & 0 \\ -28450.3 & 0 & 39814.6 & 28450.3 & 0 & 187788 \end{bmatrix}$$

$$\mathbf{transp}\left(T\left(2\right)\right) \cdot k_{E}\left(2\right) \cdot T\left(2\right) = \begin{bmatrix} 654703 & 162833 & 1685.18 & -654703 & -162833 & 5055.53 \\ 162833 & 44078.6 & -6740.7 & -162833 & -44078.6 & -20222.1 \\ 1685.18 & -6740.7 & 27216.3 & -1685.18 & 6740.7 & 30079.7 \\ -654703 & -162833 & -1685.18 & 654703 & 162833 & -5055.53 \\ -162833 & -44078.6 & 6740.7 & 162833 & 44078.6 & 20222.1 \\ 5055.53 & -20222.1 & 30079.7 & -5055.53 & 20222.1 & 141808 \end{bmatrix}$$

Global stiffness matrix

	P														1
	10^{20}	0	- 9483.42	- 4741.71	0	- 28450.3	0	0	0	0	0	0	0	0	0
	0	10^{20}	0	0	-921617	0	0	0	0	0	0	0	0	0	0
	- 9483.42	0	36052.8	9483.42	0	39814.6	0	0	0	0	0	0	0	0	0
	- 4741.71	0	9483.42	659445	162833	23394.7	- 654703	- 162833	- 1685.18	0	0	0	0	0	0
	0	- 921617	0	162833	965696	20222.1	- 162833	- 44078.6	6740.7	0	0	0	0	0	0
	- 28450.3	0	39814.6	23394.7	20222.1	329596	5055.53	- 20222.1	30079.7	0	0	0	0	0	0
	0	0	0	- 654703	- 162833	5055.53	1309406	0	3370.35	- 654703	162833	5055.53	0	0	0
K =	0	0	0	- 162833	- 44078.6	- 20222.1	0	88157.3	0	162833	- 44078.6	20222.1	0	0	0
	0	0	0	- 1685.18	6740.7	30079.7	3370.35	0	54432.6	- 1685.18	- 6740.7	30079.7	0	0	0
	0	0	0	0	0	0	- 654703	162833	- 1685.18	659445	- 162833	23394.7	- 4741.71	0	9483.42
	0	0	0	0	0	0	162833	- 44078.6	- 6740.7	- 162833	965696	- 20222.1	0	- 921617	0
	0	0	0	0	0	0	5055.53	20222.1	30079.7	23394.7	- 20222.1	329596	- 28450.3	0	39814.6
	0	0	0	0	0	0	0	0	0	-4741.71	0	- 28450.3	10^{20}	0	- 9483.42
	0	0	0	0	0	0	0	0	0	0	- 921617	0	0	10^{20}	0
	0	0	0	0	0	0	0	0	0	9483.42	0	39814.6	- 9483.42	0	10^{20}
	ı														- 1

Element load vector

Load functions

Lateral -
$$q_E(e; x) = -\vec{q}_{x.e} \cdot s(e) + \vec{q}_{v.e} \cdot c(e)$$

Axial -
$$n_E(e; x) = \vec{q}_{x.e} \cdot c(e) + \vec{q}_{y.e} \cdot s(e)$$

Functions of internal forces in primary system

Axial forces -
$$N_0(e; x)$$
 = - $\int_{0 \text{ m}}^x n_E(e; \xi) d\xi$

Shear forces -
$$Q_0(e; x) = \int_{0 \text{ m}}^x q_E(e; \xi) d\xi$$

Bending moment -
$$M_0(e\;;\;x) = \int\limits_{0\,\mathrm{m}}^x q_E(e\;;\;\xi)\cdot(x-\xi)\,\mathrm{d}\xi$$

Reactions at element ends

Displacements along "x" due to axial loads - $u_n(e) = \int_{0 \text{ m}}^{l(e)} \frac{N_0(e; x)}{EA(e; x)} dx$

 $\text{Displacements along "}y \text{" due to lateral loads - } v_q(e) = \int\limits_{0\,\text{m}}^{l(e)} \frac{M_0(e\,;\,x)\cdot x}{EI(e\,;\,x)} \,\mathrm{d}x + \int\limits_{0\,\text{m}}^{l(e)} \frac{Q_0(e\,;\,x)}{GA_Q(e\,;\,x)} \,\mathrm{d}x$

Rotations due to lateral loads - $\varphi_q(e)$ = - $\int_{0 \text{ m}}^{l(e)} \frac{M_0(e; x)}{EI(e; x)} dx$

Element endpoint loads in local coordinate system

For joint "1": For joint "2":

$$F_{x1}(e) = -\frac{u_n(e)}{u_F(e)} \qquad F_{x2}(e) = -F_{x1}(e) - N_0(e; l(e))$$

$$F_{y1}(e) = \frac{\varphi_{M1}(e) \cdot v_{q}(e) - \varphi_{F1}(e) \cdot \varphi_{q}(e)}{D_{1}(e)} \quad F_{y2}(e) = -F_{y1}(e) + Q_{0}(e; l(e))$$

$$\boldsymbol{M}_{1}(e) = \frac{\boldsymbol{v}_{F1}(e) \cdot \boldsymbol{\varphi}_{q}(e) - \boldsymbol{\varphi}_{F1}(e) \cdot \boldsymbol{v}_{q}(e)}{D_{1}(e)} \qquad \boldsymbol{M}_{2}(e) = -\boldsymbol{M}_{1}(e) + \boldsymbol{F}_{y1}(e) \cdot \boldsymbol{l}(e) - \boldsymbol{M}_{0}(e \, ; \boldsymbol{l}(e))$$

Element endpoint loads in global coordinate system

For joint "1": For joint "2":

$$F'_{x1}(e) = F_{x1}(e) \cdot c(e) - F_{y1}(e) \cdot s(e)$$
 $F'_{x2}(e) = F_{x2}(e) \cdot c(e) - F_{y2}(e) \cdot s(e)$

$$F'_{y1}(e) = F_{x1}(e) \cdot s(e) + F_{y1}(e) \cdot c(e) \qquad F'_{y2}(e) = F_{x2}(e) \cdot s(e) + F_{y2}(e) \cdot c(e)$$

Element load vector

$$F_{E}(e) = \left[F'_{x1}(e); F'_{y1}(e); M_{1}(e) \cdot m^{-1}; F'_{x2}(e); F'_{y2}(e); M_{2}(e) \cdot m^{-1}\right] \cdot kN^{-1}$$

$$F_{E}(1) = \begin{bmatrix} 31.43 & 0 & -25.11 & 48.57 & 0 & 93.68 \end{bmatrix}$$

$$F_E(2) = \begin{bmatrix} -0.675 & -64.96 & 51.75 & 0.675 & -99.97 & -193.14 \end{bmatrix}$$

$$F_E(3) = [0.338 - 32.48 - 25.88 - 0.338 - 49.98 96.57]$$

$$F_{E}(4) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Global load vector

$$\vec{F} = \begin{bmatrix} 31.43 & 0 & -25.11 & 49.25 & -99.97 & -99.46 & -0.338 \\ -97.44 & 25.88 & -0.338 & -49.98 & 96.57 & 0 & 0 & 0 \end{bmatrix}$$

Results

Solution of the system of equations

$$\vec{Z} = \text{clsolve}(K; \vec{F})$$

$$\vec{Z} = \begin{bmatrix} 1.06 \times 10^{-19} & -1.34 \times 10^{-18} & -0.00122 & 0.0112 & -0.000145 \\ -0.0022 & 0.0146 & -0.0139 & 0.00199 & 0.0179 \\ -0.000124 & -0.000536 & 6.94 \times 10^{-19} & -1.14 \times 10^{-18} & -1.48 \times 10^{-18} \end{bmatrix}$$

Joint displacements

$$z_{J}(j) = \operatorname{slice}(\vec{Z}; 3 \cdot j - 2; 3 \cdot j)$$

$$z(j) = \mathbf{round} \left(\frac{z_J(j)}{\delta z} \right) \cdot \delta z \cdot 1000 \cdot [\text{mm; mm; } 1]$$

$$z(1) = [0 \text{ mm} \quad 0 \text{ mm} \quad -1.22]$$

$$z(2) = [11.23 \,\text{mm} - 0.145 \,\text{mm} - 2.2]$$

$$z(3) = [14.55 \,\mathrm{mm} - 13.87 \,\mathrm{mm} \, 1.99]$$

$$z(4) = [17.86 \,\mathrm{mm} - 0.124 \,\mathrm{mm} - 0.536]$$

$$z(5) = \begin{bmatrix} 0 \text{ mm} & 0 \text{ mm} & 0 \end{bmatrix}$$

Support reactions

$$r(i) = \mathbf{row}(c; i), j(i) = \mathbf{take}(1; r(i))$$

$$R(i) = -z_I(j(i)) \cdot [m; m; 1] \cdot \mathbf{last}(r(i); 3)$$

Joint **J1** -
$$R(1) = [-10.56 \text{ kN} \quad 133.56 \text{ kN} \quad 0 \text{ kNm}]$$

Joint **J5** -
$$R(2) = [-69.44 \text{ kN} \quad 113.82 \text{ kN} \quad 148.05 \text{ kNm}]$$

Element end forces

$$z_{E}(e) = [z_{J}(e_{J.e,1}); z_{J}(e_{J.e,2})]$$

$$R_{E}(e) = \operatorname{col}(k_{E}(e) \cdot T(e) \cdot z_{E}(e) - T(e) \cdot F_{E}(e); 1) \cdot [1; 1; m; 1; 1; m] \cdot kN$$

$$R_E(1) = [133.56 \text{ kN} \quad 10.56 \text{ kN} \quad 1.78 \times 10^{-14} \text{ kNm} \quad -133.56 \text{ kN} \quad 69.44 \text{ kN} \quad -235.56 \text{ kNm}]$$

$$R_E(2) = [59.76 \,\text{kN} - 47.27 \,\text{kN} \quad 34.36 \,\text{kNm} - 99.76 \,\text{kN} - 112.73 \,\text{kN} \quad 235.56 \,\text{kNm}]$$

$$R_E(3) = [74.98 \text{ kN} - 13.58 \text{ kN} - 34.36 \text{ kNm} - 94.98 \text{ kN} - 93.58 \text{ kN} - 407.5 \text{ kNm}]$$

$$R_E(4) = [113.82 \text{ kN} \quad 69.44 \text{ kN} \quad 148.05 \text{ kNm} \quad -113.82 \text{ kN} \quad -69.44 \text{ kN} \quad 407.5 \text{ kNm}]$$

Element internal forces

$$N(e; x) = -take(1; R_E(e)) + N_0(e; x)$$

$$Q(e; x) = \text{take}(2; R_E(e)) + Q_0(e; x)$$

$M\left(e\,;\;x\right)\!=\!-{\rm take}\left(3\,;\;R_{E}(e)\right)\!+{\rm take}\left(2\,;\;R_{E}(e)\right)\cdot x\!+\!M_{0}(e\,;\;x)$

Axial forces diagram, kN

Shear forces diagram, kN

Bending moments diagram, kNm

Deformed shape

Shape function in relative coordinates $\xi = x/I$ (approximate)

$$\Phi_1(e; \xi) = 1 - 3 \cdot \xi^2 + 2 \cdot \xi^3, \qquad \Phi_2(e; \xi) = (1 - 2 \cdot \xi + \xi^2) \cdot \xi \cdot \frac{l(e)}{m}$$

$$\Phi_3(e; \xi) = (3 - 2 \cdot \xi) \cdot \xi^2, \qquad \Phi_4(e; \xi) = (-1 + \xi) \cdot \xi^2 \cdot \frac{l(e)}{m}$$

Element endpoint displacements and rotations

$$\boldsymbol{z}_{E,loc}(\boldsymbol{e}) \!=\! T(\boldsymbol{e}) \cdot \boldsymbol{z}_{E}(\boldsymbol{e})$$

$$u_{1}(e) = \mathbf{take}(1; z_{E,loc}(e)), \quad v_{1}(e) = \mathbf{take}(2; z_{E,loc}(e)), \quad \varphi_{1}(e) = \mathbf{take}(3; z_{E,loc}(e))$$

$$u_2(e) = \text{take}(4; z_{E,loc}(e)), v_2(e) = \text{take}(5; z_{E,loc}(e)), \varphi_2(e) = \text{take}(6; z_{E,loc}(e))$$

Displacement functions

$$x_m(e; \xi) = 0.5 \cdot \xi \cdot l(e)$$

$$u(e\,;\,\xi) = u_1(e)\cdot(1-\xi) + u_2(e)\cdot\xi + \frac{n_E(e\,;\,x_m(e\,;\,\xi))\cdot m}{EA(e\,;\,x_m(e\,;\,\xi))}\cdot\xi\cdot(1-\xi)$$

$$v(e\,;\,\xi)\!=\!v_1(e)\cdot\varPhi_1(e\,;\,\xi)\!+\!\varphi_1(e)\cdot\varPhi_2(e\,;\,\xi)\!+\!v_2(e)\cdot\varPhi_3(e\,;\,\xi)\!+\!\varphi_2(e)\cdot\varPhi_4(e\,;\,\xi)$$

$$+\frac{q_{E}(e\,;\,x_{m}(e\,;\,\xi))\cdot l(e)^{4}}{24\cdot EI\left(e\,;\,x_{m}(e\,;\,\xi)\right)}\cdot\frac{\xi^{2}\cdot (1-\xi)^{2}}{\mathbf{m}}+\frac{q_{E}(e\,;\,x_{m}(e\,;\,\xi))\cdot l(e)^{2}}{2\cdot GA_{s}(e\,;\,x_{m}(e\,;\,\xi))}\cdot\frac{\xi\cdot (1-\xi)}{\mathbf{m}}$$

IV. Comparison with SAP 2000

To verify the obtained results, a SAP 2000 model is developed for the same structure. A non-prismatic finite element with three intermediate points is used. The input and output data from the analysis is listed below in both text and graphics.

Input data:

STATIC LOAD CASES

STATIC	CASE	SELF WT
CASE	TYPE	FACTOR
LOAD1	DEAD	0.0000

JOINT DATA

JOINT	GLOBAL-X	GLOBAL-Y	GLOBAL-Z	RESTRAINTS	ANGLE-A	ANGLE-B	ANGLE-C
1	-8.00000	0.00000	0.00000	111000	0.000	0.000	0.000
2	-8.00000	0.00000	8.00000	00000	0.000	0.000	0.000
3	8.00000	0.00000	0.00000	1 1 1 1 1 1	0.000	0.000	0.000
4	8.00000	0.00000	8.00000	00000	0.000	0.000	0.000
5	0.00000	0.00000	10.00000	000000	0.000	0.000	0.000

FRAME ELEMENT DATA

FRAME	JNT-1	JNT-2	SECTION	ANGLE	RELEASES	SEGMENTS	R1	R2	FACTOR	LENGTH
1	1	2	VAR1	0.000	000000	2	0.000	0.000	1.000	8.000
2	3	4	VAR1	0.000	000000	2	0.000	0.000	1.000	8.000
3	5	2	VAR2	0.000	000000	2	0.000	0.000	1.000	8.246
4	5	4	VAR2	0.000	000000	2	0.000	0.000	1.000	8.246

MATERIAL PROPERTY DATA

MAT	MODULUS OF	POISSON'S	THERMAL	WEIGHT PER	MASS PER
LABEL	ELASTICITY	RATIO	COEFF	UNIT VOL	UNIT VOL
STEEL CONC OTHER MAT1 MAT2	199947979 45000.000 24821128.4 45000.000 35000.000	0.200 0.200	1.170E-05 9.900E-06 9.900E-06 1.170E-05 1.170E-05	76.820 0.000 23.562 0.000 0.000	7.827 0.000 2.401 0.000 0.000

FRAME SECTION PROPERTY DATA

SECTION LABEL	MAT LABEL	SECTION TYPE	DEPTH	FLANGE WIDTH TOP	FLANGE THICK TOP	WEB THICK	FLANGE WIDTH BOTTOM	FLANGE THICK BOTTOM
VAR1								
FSEC10	MAT1		0.300	0.300	0.000	0.000	0.000	0.000
FSEC11	MAT1		0.600	0.300	0.000	0.000	0.000	0.000
FSEC12	MAT1		0.900	0.300	0.000	0.000	0.000	0.000
VAR2								
FSEC20	MAT2		0.300	0.300	0.000	0.000	0.000	0.000
FSEC21	MAT2		0.600	0.300	0.000	0.000	0.000	0.000
FSEC22	MAT2		0.900	0.300	0.000	0.000	0.000	0.000

FRAME SECTION PROPERTY DATA

0.150 0.225 0.225 0.225 0.225 0.150
2

FRAME SECTION PROPERTY DATA

SECTION LABEL	S ECT:	ION MODULII	PLAS ⁻	TIC MODULII	RADII (OF GYRATION
	S33	S22	Z33	Z22	R33	R22
FSEC10	4.500E-03	4.500E-03	6.750E-03	6.750E-03	8.660E-02	8.660E-02
FSEC20	4.500E-03	4.500E-03	6.750E-03	6.750E-03	8.660E-02	8.660E-02
FSEC22	4.050E-02	1.350E-02	6.075E-02	2.025E-02	0.260	8.660E-02
FSEC11	1.800E-02	9.000E-03	2.700E-02	1.350E-02	0.173	8.660E-02
FSEC21	1.800E-02	9.000E-03	2.700E-02	1.350E-02	0.173	8.660E-02
FSEC12	4.050E-02	1.350E-02	6.075E-02	2.025E-02	0.260	8.660E-02

FRAME SPAN DISTRIBUTED LOADS Load Case LOAD1

FRAME	TYPE	DIRECTION	DISTANCE-A	VALUE-A	DISTANCE-B	VALUE-B
3	FORCE	GLOBAL-Z	0.0000	-20.0000	1.0000	-20.0000
4	FORCE	GLOBAL-Z	0.0000	-10.0000	1.0000	-10.0000
1	FORCE	GLOBAL-X	0.0000	10.0000	1.0000	10.0000

Results:

JOINT DISPLACEMENTS

JOINT	LOAD	U1	U2	U3	R1	R2	R3
1	LOAD1	0	0	0	0	1.17	0
2	LOAD1	10.80	0	-0.15	0	2.13	0
3	LOAD1	0	0	0	0	0	0
4	LOAD1	17.26	0	-0.12	0	0.51	0
5	LOAD1	14.04	0	-13.53	0	-1.87	0

JOINT REACTIONS

JOINT	LOAD	F1	F2	F3	M1	M2	М3
1	LOAD1	-10.6271	0.0000	133.6357	0.0000	0.0000	0.0000
3	LOAD1	-69.3729	0.0000	113.7507	0.0000	-149.2315	0.0000

FRAME ELEMENT FORCES

FRAME	LOC	Р	V2	V3	T	M2	М3
1	0.00	-133.64	10.63	0.00	0.00	0.00	0.00
	4.00	-133.64	-29.37	0.00	0.00	0.00	37.49
	8.00	-133.64	-69.37	0.00	0.00	0.00	234.98
2	0.00	-113.75	69.37	0.00	0.00	0.00	149.23
	4.00	-113.75	69.37	0.00	0.00	0.00	-128.26
	8.00	-113.75	69.37	0.00	0.00	0.00	-405.75
3	0.00	-59.71	-47.18	0.00	0.00	0.00	35.66
	4.12	-79.71	32.82	0.00	0.00	0.00	65.26
	8.25	-99.71	112.82	0.00	0.00	0.00	-234.98
4	0.00	-74.89	13.53	0.00	0.00	0.00	35.66
	4.12	-84.89	53.53	0.00	0.00	0.00	-102.58
	8.25	-94.89	93.53	0.00	0.00	0.00	-405.75

Labels of joints and elements

Loads and cross sections

Support reactions

Axial forces

Shear forces

Bending moments

V. Conclusions

The results obtained by the SAP 2000 software match the Calcpad solution with an accuracy of 0.5%. This is likely due to the different way the elastic properties are approximated along the element length.