1 Collecting all Permission within a cluster

At first I'm collecting all permissions that all apps of one cluster want. As example the cluster Flashlight:

Permissions						
	0	4	9	10	11	12

With the permissions:

ID	Name
0	In-App-Purchases
4	Calender
9	Pictures/Media/Files
10	Storage
11	Camera
12	Microphone

2 Calculation of permisson weight

At next I calculate the weight of the permissions, which consists of two parts.

• Relative frequency of apps that don't want this permission

• Badness of the permission

This two parts are multiplied.

Permissions					
0	4	9	10	11	12
0.04	0.48	0.06	0.02	0.0	0.54

3 Filling the matrix

Now I create an apps \times permissions matrix, where each app holds the weights of the permissions, which the app needs.

Permissions ID 0 4 9 **10** 11 **12** 14 0.0 0.02 0.040.0 0.0 0.5442 0.0 0.48 0.06 0.0 0.0 0.0 145 0.040.0 0.00.020.00.0465 0.04 0.0 0.06 0.020.00.541010 0.0 0.0 0.02 0.0 0.0 0.0

4 Calculating the summary of the badness

At the next step I'm calculating the summary of the badness of an app.

Permissions

	ID	0	4	9	10	11	12	\sum
Apps	14	0.04	0.0	0.0	0.02	0.0	0.54	0.6
	42	0.0	0.48	0.06	0.0	0.0	0.0	0.54
А	145	0.04	0.0	0.0	0.02	0.0	0.0	0.06
	465	0.04	0.0	0.06	0.02	0.0	0.54	0.66
	1010	0.0	0.0	0.0	0.02	0.0	0.0	0.02

5 Grouping the apps

I use the K-Means clustering algorithm to split up the app into three groups.

	ID	\sum
$\bar{\mathbf{\alpha}}$	14	0.6
\ App	42	0.54
A	145	0.06
	465	0.66
	1010	0.02

Now I define the following HSV color ranges for the three groups.

- Good green
 - 80 120 degree
 - 66.6 100.0 %
- Middle yellow
 - -30 79 degree
 - 25.0 65.83 %
- Bad red
 - 0 29 degree
 - 0.0 24.16 %

For every group I calculate the percentage distribution for each app inside a group and map them on the respective color range. If a group only contains one value, the maximum of the respective range is used.