Distributed Adaptive Federated Learning: A Layer-wise Approach for Resource-Constrained Environments

Research Team

DAFL, DRDO

August 29, 2025

Outline

- Introduction
- 2 Literature Review
- 3 Data
- System Model
- 5 Experiments
- 6 Results
- Conclusion

Problem Statement

- Traditional federated learning requires full model training on clients
- Resource-constrained devices struggle with computational overhead
- Communication bottlenecks limit scalability
- Privacy concerns in military/defence applications

Solution: Layer-wise Federated Learning (LWFL)

- Applications include training on surveillance stations and UAVs
- Minimal resource usage would reduce operational bandwidth requirements

Key Contributions

- Layer-wise Training: Distribute model layers across clients
- Adaptive Compression: Dynamic compression based on network conditions
- **OPERATION** Privacy-Preserving: Differential privacy with secure aggregation
- Resource Optimization: 34.2% reduction in computation time

Experimental Datasets

Dataset	Samples	Classes	Distribution
MNIST	60,000	10	IID/Non-IID
CIFAR-10	50,000	10	Non-IID
Fashion-MNIST	60,000	10	IID/Non-IID
Battlefield Images	25,000	5	Non-IID

Data Partitioning Strategies:

- IID: Random distribution across clients
- Non-IID: Label skewness, quantity imbalance
- Heterogeneous: Different data modalities per client

System Architecture Overview

Layer-wise Federated Learning Architecture

- Central Server: Coordinates training, aggregates updates
- Edge Clients: Train specific layers locally
- Communication Protocol: Secure aggregation with compression

Key Components:

- Model Partitioning Manager
- Adaptive Compression Engine
- Privacy Protection Module
- Resource Monitoring System

Layer-wise Training Process

Algorithm 1 Layer-wise Federated Learning

1: **Server:** Initialize global model θ_0 2: Partition model into layers: $L_1, L_2, ..., L_n$ 3: **for** each round t = 1, 2, ..., T **do** Select subset of clients S_t 4. Assign layer L_i to client $k \in S_t$ 5: for all client k in parallel do 6. 7: Download assigned layer L_i Train layer with frozen others 8: Apply differential privacy noise 9: Compress and upload updates 10: 11: end for Aggregate layer updates: $\theta_{t+1} \leftarrow \text{FedAvg}(\{\theta_k\})$ 12:

4□ > 4□ > 4□ > 4□ > 4□ > 900

13: end for

Technical Innovations

Adaptive Compression:

$$CR_t = \alpha \cdot BW_t + \beta \cdot \mathcal{L}_t$$
 (1)

where:

- CR_t: Compression rate at round t
- BW_t : Available bandwidth
- \mathcal{L}_t : Current loss value

Differential Privacy:

$$\tilde{\theta}_k = \theta_k + \mathcal{N}(0, \sigma^2 I)$$
 (2)

- Privacy budget: $\epsilon = 1.0$
- Noise scale: $\sigma = \frac{\Delta f}{\epsilon}$
- Sensitivity: Δf

Expected Outcomes

Hypothesis:

- Layer-wise training reduces client computation time
- Maintains comparable model accuracy
- Improves communication efficiency
- Enhances privacy protection

Evaluation Metrics:

- Accuracy: Test accuracy on held-out sets
- Computation Time: Local training time per client
- Communication Overhead: Data transferred per round
- Privacy: Differential privacy guarantees

Experimental Setup

System Configuration:

- Clients: 20-100 edge devices
- Model: ResNet-18, VGG-16
- Communication: Simulated network conditions
- Hardware: ARM-based processors, limited memory

Baseline Comparisons:

- Standard Federated Learning (FedAvg)
- Split Learning
- Local Training Only
- Centralized Training (upper bound)

Performance Results

Method	Accuracy	Comp. Time (s)	Comm. (MB)	Memory (GB)
Centralized	94.5%	-	-	8.2
FedAvg	92.3%	59,758	125.4	6.8
Layer-wise FL	91.8%	39,329	87.2	4.1
Split Learning	90.1%	42,156	156.8	5.2

Key Findings:

- 34.2% reduction in computation time
- 30.5% reduction in communication overhead
- 39.7% reduction in memory usage
- Minimal accuracy loss (0.5%)

Convergence Analysis

Convergence Properties:

- Layer-wise FL converges slower initially
- Achieves comparable final accuracy
- More stable training with privacy noise

Privacy Analysis:

- (ϵ, δ) -differential privacy with $\epsilon = 1.0$, $\delta = 10^{-5}$
- Membership inference attack success rate: < 52%
- Model inversion resistance improved by 67%

Conclusion & Future Work

Achievements:

- Novel layer-wise federated learning framework
- Significant resource optimization
- Enhanced privacy protection
- Successful deployment in constrained environments

Future Directions:

- Adaptive layer assignment strategies
- Integration with edge computing platforms
- Real-world deployment in battlefield scenarios
- Extension to transformer architectures

References

- McMahan, B., et al. (2017). Communication-efficient learning of deep networks from decentralized data. AISTATS.
- Radford, A., et al. (2021). Learning transferable visual models from natural language supervision. ICML.
- Wang, Z., et al. (2004). Image quality assessment: from error visibility to structural similarity. IEEE TIP.
- Li, T., et al. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine.
- Kairouz, P., et al. (2021). Advances and open problems in federated learning.
 Foundations and Trends in ML.

Thank You!

Questions & Discussion