jhTAlib

Joost Hoeks

2019-08-09

Contents

jhTAlib	2
Depends only on	2
Docs	2
Install	3
Update	3
Examples	3
Example 1	3
Example 2	3
Example 3	4
Example 4	4
Example 5	4
Example 6	4
Example 7	5
Example 8	5
Example 9	5
Example 10	5
Example 11	5
Test	6
Reference	6
Behavioral Techniques	6
Candlestick	9
Cycle Indicators	10
	11
Event Driven	12
Experimental	12
General	14
Information	15
Math Functions	16
	20
Overlap Studies	24
•	27
	21

Statistic Functions	
Bonation and Fanding 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
jhTAlib	
Technical Analysis Library Time-Series	
You can use and import it for your:	
• Technical Analysis Software	
• Charting Software	
• Backtest Software	
• Trading Robot Software	
• Trading Software in general	
Work in progress	
Depends only on • The Python Standard Library	
Docs	
• .html	
• .epub	
• .json	
• .odt	
• .pdf	
• .rst	
• .rtf	
• .xml	

Install

```
From PyPI:
$ [sudo] pip3 install jhtalib
From source:
$ git clone https://github.com/joosthoeks/jhTAlib.git
$ cd jhTAlib
$ [sudo] pip3 install -e .
Update
From PyPI:
$ [sudo] pip3 install --upgrade jhtalib
From source:
$ cd jhTAlib
$ git pull [upstream master]
Examples
$ cd example/
Example 1
$ python3 example-1-plot.py
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/\\
example/example-1-plot.ipynb
```

Example 2

\$ python3 example-2-plot.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-2-plot.ipynb

Example 3

\$ python3 example-3-plot.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-3-plot.ipynb

Example 4

\$ python3 example-4-plot-quandl.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-4-plot-quandl.ipynb

Example 5

\$ python3 example-5-plot-quandl.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-5-plot-quandl.ipynb

Example 6

\$ python3 example-6-plot-quandl.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-6-plot-quandl.ipynb

Example 7
\$ python3 example-7-quandl-2-df.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-7-quandl-2-df.ipynb
Example 8
\$ python3 example-8-alphavantage-2-df.py
or
$\label{limits} https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-8-alphavantage-2-df.ipynb $
Example 9
\$ python3 example-9-cryptocompare-2-df.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-9-cryptocompare-2-df.ipynb
Example 10
DF NumPy Pandas
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterevample/example-10-df-numpy-pandas.jpynb

Example 11

Basic Usage

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-11-basic-usage.ipynb

Test
<pre>\$ cd test/ \$ python3 test.py</pre>
Reference
import jhtalib as jhta
Behavioral Techniques
ATH All Time High DONE
• dict of lists of floats = jhta.ATH(df, price='High')
LMC Last Major Correction DONE
• dict of lists of floats = jhta.LMC(df, price='Low')
PP Pivot Point DONE
• dict of lists of floats = jhta.PP(df)
• https://en.wikipedia.org/wiki/Pivot_point_(technical_analysis)
FIBOPR Fibonacci Price Retracements DONE
• dict of lists of floats = jhta.FIBOPR(df, price='Close')
FIBTR Fibonacci Time Retracements •

GANNPR W. D. Gann Price Retracements DONE
• dict of lists of floats = jhta.GANNPR(df, price='Close')
GANNTR W. D. Gann Time Retracements
•
JDN Julian Day Number DONE
• jdn = jhta.JDN(utc_year, utc_month, utc_day)
• https://en.wikipedia.org/wiki/Julian_day
JD Julian Date DONE
• jd = jhta.JD(utc_year, utc_month, utc_day, utc_hour, utc_minute utc_second)
• https://en.wikipedia.org/wiki/Julian_day
SUNC Sun Cycle
MERCURYC Mercury Cycle •
VENUSC Venus Cycle

• EARTHC Earth Cycle
MARSC Mars Cycle •
JUPITERC Jupiter Cycle •
SATURNC Saturn Cycle •
URANUSC Uranus Cycle •
NEPTUNEC Neptune Cycle •
PLUTOC Pluto Cycle •
MOONC Moon Cycle

Candlestick

CDLBODYS | Candle Body Size | DONE

- list of floats = jhta.CDLBODYS(df)
- $\bullet \ \ https://www.tradeciety.com/understand-candlesticks-patterns/$

CDLWICKS | Candle Wick Size | DONE

- list of floats = jhta.CDLWICKS(df)
- $\bullet \quad \text{https://www.tradeciety.com/understand-candle$ $sticks-patterns/}$

CDLUPPSHAS | Candle Upper Shadow Size | DONE

- list of floats = jhta.CDLUPPSHAS(df)
- $\bullet \ \ https://www.tradeciety.com/understand-candlesticks-patterns/$

CDLLOWSHAS | Candle Lower Shadow Size | DONE

- list of floats = jhta.CDLLOWSHAS(df)
- $\bullet \ \ https://www.tradeciety.com/understand-candlesticks-patterns/$

CDLBODYP | Candle Body Percent | DONE

• list of floats = jhta.CDLBODYP(p)

CDLBODYM | Candle Body Momentum | DONE

- list of floats = jhta.CDLBODYM(df, n)
- book: Trading Systems and Methods

• list of floats = jhta.QSTICK(df, n)
• https://www.fmlabs.com/reference/default.htm?url=Qstick.htm
SHADOWT Shadow Trends DONE
• dict of lists of floats = jhta.SHADOWT(df, n)
book: The New Technical Trader
IMI Intraday Momentum Index DONE
• list of floats = jhta.IMI(df)
$\bullet \ \text{https://www.fmlabs.com/reference/default.htm?url=IMI.htm} \\ \underline{\hspace{1cm}}$
Cycle Indicators HT_DCPERIOD Hilbert Transform - Dominant Cycle Period •
HT_DCPHASE Hilbert Transform - Dominant Cycle Phase •
HT_PHASOR Hilbert Transform - Phasor Components •
HT_SINE Hilbert Transform - SineWave •

 $\mathbf{QSTICK} \mid \mathbf{Qstick} \mid \mathbf{DONE}$

$ \begin{aligned} \mathbf{HT_TRENDLINE} \mid \mathbf{Hilbert\ Transform\ \textbf{-}\ Instantaneous\ Trendline} \end{aligned} $
HT_TRENDMODE Hilbert Transform - Trend vs Cycle Mode •
TS Trend Score DONE
 list of floats = jhta.TS(df, n, price='Close') https://www.fmlabs.com/reference/default.htm?url=TrendScore.htm
Data
<pre>CSV2DF CSV file 2 DataFeed DONE</pre>
CSVURL2DF CSV file url 2 DataFeed DONE • dict of tuples of floats = jhta.CSVURL2DF(csv_file_url)
DF2CSV DataFeed 2 CSV file DONE • csv file = jhta.DF2CSV(df, csv_file_path)
DF2DFREV DataFeed 2 DataFeed Reversed DONE • dict of tuples of floats = jhta.DF2DFREV(df)

DF2DFWIN | DataFeed 2 DataFeed Window | DONE • dict of tuples of floats = jhta.DF2DFWIN(df, start=0, end=10) DF_HEAD | DataFeed HEAD | DONE • dict of tuples of floats = jhta.DF_HEAD(df, n=5) DF_TAIL | DataFeed TAIL | DONE • dict of tuples of floats = jhta.DF_TAIL(df, n=5) DF2HEIKIN_ASHI | DataFeed 2 Heikin-Ashi DataFeed | DONE • dict of tuples of floats = jhta.DF2HEIKIN_ASHI(df) **Event Driven** ASI | Accumulation Swing Index (J. Welles Wilder) | DONE • list of floats = jhta.ASI(df, L) • book: New Concepts in Technical Trading Systems SI | Swing Index (J. Welles Wilder) | DONE • list of floats = jhta.SI(df, L) • book: New Concepts in Technical Trading Systems Experimental JH_SAVGP | Swing Average Price - previous Average Price | DONE • list of floats = jhta.JH_SAVGP(df)

JH_SAVGPS Swing Average Price - previous Average Price Summation DONE
• list of floats = jhta.JH_SAVGPS(df)
JH_SCO Swing Close - Open DONE
• list of floats = jhta.JH_SCO(df)
JH_SCOS Swing Close - Open Summation DONE
• list of floats = jhta.JH_SCOS(df)
${\bf JH_SMEDP} \mid {\bf Swing\ Median\ Price - previous\ Median\ Price} \mid {\bf DONE}$
• list of floats = jhta.JH_SMEDP(df)
jh_SMEDPS Swing Median Price - previous Median Price Summation DONE
• list of floats = jhta.JH_SMEDPS(df)
JH_SPP Swing Price - previous Price DONE
• list of floats = jhta.JH_SPP(df, price='Close')
<pre>JH_SPPS Swing Price - previous Price Summation DONE</pre>

JH_STYPP | Swing Typical Price - previous Typical Price | DONE

• list of floats = jhta.JH_STYPP(df)

JH_STYPPS | Swing Typical Price - previous Typical Price Summation | DONE

• list of floats = jhta.JH_STYPPS(df)

JH_SWCLP | Swing Weighted Close Price - previous Weighted Close Price | DONE

• list of floats = jhta.JH_SWCLP(df)

JH_SWCLPS | Swing Weighted Close Price - previous Weighted Close Price Summation | DONE

• list of floats = jhta.JH_SWCLPS(df)

General

NORMALIZE | Normalize | DONE

- list of floats = jhta.NORMALIZE(df, price_max='High', price_min='Low', price='Close')
- $\bullet \ \, \text{https://machinelearningmastery.com/normalize-standardize-time-series-data-python/} \\$

STANDARDIZE | Standardize | DONE

- list of floats = jhta.STANDARDIZE(df, price='Close')
- $\bullet \ \, \text{https://machinelearningmastery.com/normalize-standardize-time-series-data-python/} \\$

RATIO | Ratio | DONE

- list of floats = jhta.RATIO(df1, df2, price1='Close', price2='Close')
- https://www.fmlabs.com/reference/default.htm?url=Ratio.htm

SPREAD | Spread | DONE

• list of floats = jhta.SPREAD(df1, df2, price1='Close', price2='Close')

CP | Comparative Performance | DONE

- list of floats = jhta.CP(df1, df2, price1='Close', price2='Close')
- https://www.fmlabs.com/reference/default.htm?url=CompPerformance. htm

CRSI | Comparative Relative Strength Index | DONE

- list of floats = jhta.CRSI(df1, df2, n, price1='Close', price2='Close')
- https://www.fmlabs.com/reference/default.htm?url=RSIC.htm

CS | Comparative Strength | DONE

- list of floats = jhta.CS(df1, df2, price1='Close', price2='Close')
- https://www.fmlabs.com/reference/default.htm?url=CompStrength.htm

Information

INFO | Print df Information | DONE

• print = jhta.INFO(df, price='Close')

INFO_TRADES | Print Trades Information | DONE • print = jhta.INFO_TRADES(profit_trades_list, loss_trades_list) **Math Functions** EXP | Exponential | DONE • list of floats = jhta.EXP(df, price='Close') LOG | Logarithm | DONE • list of floats = jhta.LOG(df, price='Close') LOG10 | Base-10 Logarithm | DONE • list of floats = jhta.LOG10(df, price='Close') SQRT | Square Root | DONE • list of floats = jhta.SQRT(df, price='Close') ACOS | Arc Cosine | DONE • list of floats = jhta.ACOS(df, price='Close') ASIN | Arc Sine | DONE • list of floats = jhta.ASIN(df, price='Close')

• list of floats = jhta.ATAN(df, price='Close')

ATAN | Arc Tangent | DONE

COS | Cosine | DONE • list of floats = jhta.COS(df, price='Close') SIN | Sine | DONE • list of floats = jhta.SIN(df, price='Close') TAN | Tangent | DONE • list of floats = jhta.TAN(df, price='Close') ACOSH | Inverse Hyperbolic Cosine | DONE • list of floats = jhta.ACOSH(df, price='Close') ASINH | Inverse Hyperbolic Sine | DONE • list of floats = jhta.ASINH(df, price='Close') ATANH | Inverse Hyperbolic Tangent | DONE • list of floats = jhta.ATANH(df, price='Close') COSH | Hyperbolic Cosine | DONE • list of floats = jhta.COSH(df, price='Close') SINH | Hyperbolic Sine | DONE • list of floats = jhta.SINH(df, price='Close')

, , ,	floats = jhta.TANH(df, price='Close')
	natical constant PI DONE jhta.PI()
E Mathema	atical constant E DONE jhta.E()
	ematical constant TAU DONE jhta.TAU()
•	ematical constant PHI DONE jhta.PHI()
	acci series up to n DONE ints = jhta.FIB(n)
CEIL Ceili	ng DONE floats = jhta.CEIL(df, price='Close')
FLOOR Flo	<pre>por DONE floats = jhta.FLOOR(df, price='Close')</pre>

DEGREES | Radians to Degrees | DONE • list of floats = jhta.DEGREES(df, price='Close') RADIANS | Degrees to Radians | DONE • list of floats = jhta.RADIANS(df, price='Close') ADD | Addition High + Low | DONE • list of floats = jhta.ADD(df) DIV | Division High / Low | DONE • list of floats = jhta.DIV(df) MAX | Highest value over a specified period | DONE • list of floats = jhta.MAX(df, n, price='Close') MAXINDEX | Index of highest value over a specified period | DONE • list of ints = jhta.MAXINDEX(df, n, price='Close') MIN | Lowest value over a specified period | DONE • list of floats = jhta.MIN(df, n, price='Close') MININDEX | Index of lowest value over a specified period | DONE • list of ints = jhta.MININDEX(df, n, price='Close')

$\operatorname{MINMAX}\mid$ Lowest and Highest values over a specified period \mid DONE
• dict of lists of floats = jhta.MINMAX(df, n, price='Close')
MINMAXINDEX Indexes of lowest and highest values over a specified period DONE
• dict of lists of ints = jhta.MINMAXINDEX(df, n, price='Close')
MULT Multiply High * Low DONE
• list of floats = jhta.MULT(df)
SUB Subtraction High - Low DONE
• list of floats = jhta.SUB(df)
SUM Summation DONE
• list of floats = jhta.SUM(df, n, price='Close')
Momentum Indicators
ADX Average Directional Movement Index
ADXR Average Directional Movement Index Rating
•

APO Absolute Price Oscillator DONE	
• list of floats = jhta.APO(df, n_fas	t, n_slow, price='Close')
• https://www.fmlabs.com/reference/defaul-	t.htm?url=PriceOscillator.htm
AROON Aroon	
AROONOSC Aroon Oscillator	
BOP Balance Of Power	
CCI Commodity Channel Index •	
CMO Chande Momentum Oscillator	
DX Directional Movement Index	
$\begin{array}{c} \\ \text{MACD} \mid \text{Moving Average Convergence/D} \\ \bullet \end{array}$	ivergence

MACDEXT MACD with controllable MA type •
MACDFIX Moving Average Convergence/Divergence Fix 12/26 •
MFI Money Flow Index •
MINUS_DI Minus Directional Indicator •
MINUS_DM Minus Directional Movement •
<pre>MOM Momentum DONE • list of floats = jhta.MOM(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=Momentum.htm</pre>
PLUS_DI Plus Directional Indicator •
PLUS_DM Plus Directional Movement •

PPO | Percentage Price Oscillator | RMI | Relative Momentum Index | DONE • list of floats = jhta.RMI(df, n, price='Close') $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=RMI.htm$ ROC | Rate of Change | DONE • list of floats = jhta.ROC(df, n, price='Close') ROCP | Rate of Change Percentage | DONE • list of floats = jhta.ROCP(df, n, price='Close') ROCR | Rate of Change Ratio | DONE • list of floats = jhta.ROCR(df, n, price='Close') ROCR100 | Rate of Change Ratio 100 scale | DONE • list of floats = jhta.ROCR100(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=RateOfChange.htm RSI | Relative Strength Index | DONE • list of floats = jhta.RSI(df, n, price='Close') $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=rsi.htm$

STOCH | Stochastic | DONE • list of floats = jhta.STOCH(df, n, price='Close') $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=Stochastic.htm$ STOCHF | Stochastic Fast | STOCHRSI | Stochastic Relative Strength Index | TRIX | 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA | ULTOSC | Ultimate Oscillator | WILLR | Williams' %R | DONE • list of floats = jhta.WILLR(df, n) $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=WilliamsR.htm$ **Overlap Studies** BBANDS | Bollinger Bands | DONE • dict of lists of floats = jhta.BBANDS(df, n, f=2)

 $\bullet \ \, https://www.fmlabs.com/reference/default.htm?url=Bollinger.htm$

BBANDW Bollinger Band Width DONE
• list of floats = jhta.BBANDW(df, n, f=2)
DEMA Double Exponential Moving Average •
EMA Exponential Moving Average DONE
• list of floats = jhta.EMA(df, n, price='Close')
$\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=ExpMA.htm$
ENVP Envelope Percent DONE • dict of lists of floats = jhta.ENVP(df, pct=.01, price='Close' • https://www.fmlabs.com/reference/default.htm?url=EnvelopePct.htm
KAMA Kaufman Adaptive Moving Average •
MA Moving Average •
MAMA MESA Adaptive Moving Average

MAVP | Moving Average with Variable Period | MIDPOINT | MidPoint over period | DONE • list of floats = jhta.MIDPOINT(df, n, price='Close') • http://www.tadoc.org/indicator/MIDPOINT.htm MIDPRICE | MidPoint Price over period | DONE • list of floats = jhta.MIDPRICE(df, n) • http://www.tadoc.org/indicator/MIDPRICE.htm MMR | Mayer Multiple Ratio | DONE • list of floats = jhta.MMR(df, n=200, price='Close') • https://www.theinvestorspodcast.com/bitcoin-mayer-multiple/ SAR | Parabolic SAR | DONE • list of floats = jhta.SAR(df, af_step=.02, af_max=.2) • book: New Concepts in Technical Trading Systems SAREXT | Parabolic SAR - Extended | SMA | Simple Moving Average | DONE • list of floats = jhta.SMA(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=SimpleMA.htm

T3 Triple Exponential Moving Average (T3) •
TEMA Triple Exponential Moving Average •
TRIMA Triangular Moving Average DONE • list of floats = jhta.TRIMA(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=TriangularMA.htm
WMA Weighted Moving Average •
Pattern Recognition
CDL2CROWS Two Crows
CDL3BLACKCROWS Three Black Crows
CDL3INSIDE Three Inside Up/Down
CDL3LINESTRIKE Three-Line Strike
CDL3OUTSIDE Three Outside Up/Down
CDL3STARSINSOUTH Three Stars In The South
CDL3WHITESOLDIERS Three Advancing White Soldiers
CDLABANDONEDBABY Abandoned Baby

```
CDLADVANCEBLOCK | Advance Block |
CDLBELTHOLD | Belt-hold |
CDLBREAKAWAY | Breakaway |
CDLCLOSINGMARUBOZU | Closing Marubozu |
CDLCONSEALBABYSWALL | Concealing Baby Swallow |
CDLCOUNTERATTACK | Counterattack |
CDLDARKCLOUDCOVER | Dark Cloud Cover |
CDLDOJI | Doji |
CDLDOJISTAR | Doji Star |
CDLDRAGONFLYDOJI | Dragonfly Doji |
CDLENGULFING | Engulfing Pattern |
CDLEVENINGDOJISTAR | Evening Doji Star |
CDLEVENINGSTAR | Evening Star |
CDLGAPSIDESIDEWHITE | Up/Down-gap side-by-side white lines
CDLGRAVESTONEDOJI | Gravestone Doji |
CDLHAMMER | Hammer |
CDLHANGINGMAN | Hanging Man |
```

```
CDLHARAMI | Harami Pattern |
CDLHARAMICROSS | Harami Cross Pattern |
CDLHIGHWAVE | High-Wave Candle |
CDLHIKKAKE | Hikkake Pattern |
CDLHIKKAKEMOD | Modified Hikkake Pattern |
CDLHOMINGPIGEON | Homing Pigeon |
CDLIDENTICAL3CROWS | Identical Three Crows |
CDLINNECK | In-Neck Pattern |
CDLINVERTEDHAMMER | Inverted Hammer |
CDLKICKING | Kicking |
CDLKICKINGBYLENGTH | Kicking - bull/bear determined by the
longer marubozu |
CDLLADDERBOTTOM | Ladder Bottom |
CDLLONGLEGGEDDOJI | Long Legged Doji |
CDLLONGLINE | Long Line Candle |
CDLMARUBOZU | Marubozu |
CDLMATCHINGLOW | Matching Low |
CDLMATHOLD | Mat Hold |
```

```
CDLMORNINGDOJISTAR | Morning Doji Star |
CDLMORNINGSTAR | Morning Star |
CDLONNECK | On-Neck Pattern |
CDLPIERCING | Piercing Pattern |
CDLRICKSHAWMAN | Rickshaw Man |
CDLRISEFALL3METHODS | Rising/Falling Three Methods |
CDLSEPARATINGLINES | Separating Lines |
CDLSHOOTINGSTAR | Shooting Star |
CDLSHORTLINE | Short Line Candle |
CDLSPINNINGTOP | Spinning Top |
CDLSTALLEDPATTERN | Stalled Pattern |
CDLSTICKSANDWICH | Stick Sandwich |
CDLTAKURI | Takuri (Dragonfly Doji with very long lower shadow)
CDLTASUKIGAP | Tasuki Gap |
CDLTHRUSTING | Thrusting Pattern |
CDLTRISTAR | Tristar Pattern |
CDLUNIQUE3RIVER | Unique 3 River |
```

CDLUPSIDEGAP2CROWS | Upside Gap Two Crows |

CDLXSIDEGAP3METHODS | Upside/Downside Gap Three Methods |

Price Transform

AVGPRICE | Average Price | DONE

- list of floats = jhta.AVGPRICE(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=AvgPrices.htm$

MEDPRICE | Median Price | DONE

- list of floats = jhta.MEDPRICE(df)
- $\bullet \quad \text{https://www.fmlabs.com/reference/default.htm?url=MedianPrices.htm}$

TYPPRICE | Typical Price | DONE

- list of floats = jhta.TYPPRICE(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=TypicalPrices.htm$

WCLPRICE | Weighted Close Price | DONE

- list of floats = jhta.WCLPRICE(df)
- https://www.fmlabs.com/reference/default.htm?url=WeightedCloses. htm

Statistic Functions

MEAN | Arithmetic mean (average) of data | DONE

• list of floats = jhta.MEAN(df, n, price='Close')

HARMONIC_MEAN | Harmonic mean of data | DONE • list of floats = jhta.HARMONIC_MEAN(df, n, price='Close') MEDIAN | Median (middle value) of data | DONE • list of floats = jhta.MEDIAN(df, n, price='Close') MEDIAN_LOW | Low median of data | DONE • list of floats = jhta.MEDIAN_LOW(df, n, price='Close') MEDIAN_HIGH | High median of data | DONE • list of floats = jhta.MEDIAN_HIGH(df, n, price='Close') MEDIAN_GROUPED | Median, or 50th percentile, of grouped data | DONE • list of floats = jhta.MEDIAN_GROUPED(df, n, price='Close', interval=1) MODE | Mode (most common value) of discrete data | DONE • list of floats = jhta.MODE(df, n, price='Close') PSTDEV | Population standard deviation of data | DONE • list of floats = jhta.PSTDEV(df, n, price='Close', mu=None) PVARIANCE | Population variance of data | DONE • list of floats = jhta.PVARIANCE(df, n, price='Close', mu=None)

STDEV | Sample standard deviation of data | DONE • list of floats = jhta.STDEV(df, n, price='Close', xbar=None) VARIANCE | Sample variance of data | DONE • list of floats = jhta.VARIANCE(df, n, price='Close', xbar=None) COV | Covariance | DONE • float = jhta.COV(list1, list2) • https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance# Covariance COVARIANCE | Covariance | DONE • list of floats = jhta.COVARIANCE(df1, df2, n, price1='Close', price2='Close') • https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance# Covariance COR | Correlation | DONE • float = jhta.COR(list1, list2) CORRELATION | Correlation | DONE • list of floats = jhta.CORRELATION(df1, df2, n, price1='Close', price2='Close')

PCOR | Population Correlation | DONE
• float = jhta.PCOR(list1, list2)

PCORRELATION | Population Correlation | DONE

• list of floats = jhta.PCORRELATION(df1, df2, n, price1='Close', price2='Close')

BETA | Beta | DONE

- float = jhta.BETA(list1, list2)
- $\bullet \ \ https://en.wikipedia.org/wiki/Beta_(finance)$

BETAS | Betas | DONE

- list of floats = jhta.BETAS(df1, df2, n, price1='Close', price2='Close')
- https://en.wikipedia.org/wiki/Beta_(finance)

LSR | Least Squares Regression | DONE

- list of floats = jhta.LSR(df, price='Close', predictions_int=0)
- https://www.mathsisfun.com/data/least-squares-regression.html

SLR | Simple Linear Regression | DONE

- list of floats = jhta.SLR(df, price='Close', predictions_int=0)
- $\bullet \ \, \text{https://machinelearningmastery.com/implement-simple-linear-regression-scratch-python/} \\$

Uncategorised

HR | Hit Rate / Win Rate | DONE

- float = jhta.HR(hit_trades_int, total_trades_int)
- $\bullet \ \, \rm http://traderskillset.com/hit-rate-stock-trading/$

PLR | Profit/Loss Ratio | DONE

- float = jhta.PLR(mean_trade_profit_float, mean_trade_loss_float)
- $\bullet \ \, \rm https://www.investopedia.com/terms/p/profit_loss_ratio.asp$

EV | Expected Value | DONE

- float = jhta.EV(hitrade_float, mean_trade_profit_float, mean_trade_loss_float)
- $\bullet \ \ https://en.wikipedia.org/wiki/Expected_value$

POR | Probability of Ruin (Table of Lucas and LeBeau) | DONE

- int = jhta.POR(hitrade_float, profit_loss_ratio_float)
- book: Computer Analysis of the Futures Markets

Volatility Indicators

ATR | Average True Range | DONE

- list of floats = jhta.ATR(df, n)
- https://www.fmlabs.com/reference/default.htm?url=ATR.htm

-

NATR | Normalized Average True Range |

RVI | Relative Volatility Index | DONE

- list of floats = jhta.RVI(df, n)
- https://www.fmlabs.com/reference/default.htm?url=RVI.htm

INERTIA Inertia
•
TRANGE True Range DONE
• list of floats = jhta.TRANGE(df)
$\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=TR.htm$
Volume Indicators
AD Chaikin A/D Line DONE
• list of floats = jhta.AD(df)
• https://www.fmlabs.com/reference/default.htm?url=AccumDist.htm
ADOSC Chaikin A/D Oscillator •
OBV On Balance Volume DONE
• list of floats = jhta.OBV(df)
• https://www.fmlabs.com/reference/default.htm?url=OBV.htm
Donation and Funding