CFM Challenge

2018-07-09 Presentation

Introduction

Considerable dataset with *small* time series. Ideal for **RNN model**.

- Feature Engineering
- Embeddings for Categorical Variables (1),(2)
- LSTM Networks
- ResNet like aggregation in Network (3)

Public score: 20.8828 Academic score: 20.8711

- (1) Entity Embeddings of Categorical Variables (2016): https://arxiv.org/abs/1604.06737
- (2) Meta-Prod2Vec Product Embeddings Using Side-Information for Recommendation (2016): https://arxiv.org/abs/1607.07326
- (3) Deep Residual Learning for Image Recognition (2015) https://arxiv.org/abs/1512.03385

Feature Engineering

Target values are highly depends on date and product

- Date & Product Id over all dataset
 (aggregation for each col with mean, std, median, distinct nan, ...)
- Distinct product ids over date
- Distinct dates over product id

At the end we have :

```
Time Series Features (volatility, return + volatility_per_dates_mean, volatility_per_product_mean, ...)

Categorical Features (product_id, countd_product_id, countd_dates, countd_nans,...)
```


Model Details

Architecture Tricks

• Cyclic Learning Rate (1)

Quicker convergence by increasing the LR in a cyclical nature Increasing LR is an effective way of "escaping saddle points"

Others "regularization" techniques

Due to new features created by the aggregation over all the dataset, the network tends to overfit very quickly.

- KFold with train/valid split per date (valid dates never seen as in test set)
- Spatial Dropout on Embeddings (helped a lot)
- Small Neural Net to reduce Overfitting
- Reduce the size of the layers for engineered features vs input features

JANET Network (2)

The model uses only forget and context gates out of the 4 gates in a regular LSTM RNN. Better performance while using fewer parameters and less complicated gating structure.

Average of top Models at the end

Averaging top 10 models predictions (~20.95 -> 20.88)

- (1) Cyclical Learning Rates for Training Neural Networks (2015): https://arxiv.org/abs/1506.01186
- (2) The unreasonable effectiveness of the forget gate (2018): https://arxiv.org/abs/1804.04849

Other Tried Techniques

• Attention Models ⁽¹⁾
Good results but too much time consuming (x5)

- Temporal Convolution Nets (~ WaveNets) (2)

 Worse results when tried, seems to be more adapted for longer time series
- Averaging Weights Leads to Wider Optima and Better Generalization (SWA)
 Worse results than 5 KFolds average but nice paper idea

(1) Feed-Forward Networks with Attention Can Solve Some Long-Term Memory Problems (2015): https://arxiv.org/abs/1512.08756

(2) Temporal Convolutional Networks: A Unified Approach to Action Segmentation (2016): https://arxiv.org/abs/1608.08242

(3) **SWA**: https://github.com/timgaripov/swa

Further Improvements

More ResNet like tricks

After RNN Net, addition/multiplication layer

Try FCN Networks (1)

More time consuming, but Conv. Layer should be able to get more insights about interaction between variables (eq. average_volatility_per_date, current volatility, current return, ...)

 Time-series Extreme Event Forecasting with Neural Networks at Uber (2)

LSTM Autoencoder approach to create features from time serie.

Other Ideas

XGboost Models with Trained Product Id Embeddings More stacking techniques with distinct models

- (1) LSTM Fully Convolutional Networks for Time Series Classification (2017): https://arxiv.org/abs/1709.05206
- (2) http://roseyu.com/time-series-workshop/submissions/TSW2017 paper 3.pdf

volatility_per_product_lstm: LSTM

multiply_1: Multiply

p_re_lu_7: PReLU

p_re_lu_3: PReLU

return_lstm: LSTM

p_re_lu_1: PReLU

p_re_lu_6: PReLU

volatility_lstm: LSTM

return_per_date_and_product_lstm: LSTM

p_re_lu_9: PReLU

TSNE on Trained Product ID Embeddings

Thank You!