# Lecture 37: Second Fundamental Theorem of Calculus (SFTOC)

Tae Eun Kim, Ph.D.

Autumn 2021

\* Important Variation" (FTC1+CR) Recall FTC 1 Suppose of is continuous. Then  $\frac{d}{dx} \int_{0}^{g(x)} f(x) dt = f(g(x)) \cdot g'(x)$  $F(x) = \int_{-\infty}^{x} f(t) dt$ is differentiable with F'(x) = f(x)can be rephrased as:  $F'(x) = \frac{d}{dx} \int_{0}^{x} f(t) dt = f(t)$ . Tategration followed by differentiation does nothing

## The Second Fundamental Theorem of Calculus

Here comes the second form of the Fundamental Theorem of Calculus

# Theorem (Second Fundamental Theorem of Calculus, FTC2)

Let f be continuous on [a, b]. If F is **any** antiderivative of f, then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$
definite integral
etation of (FTC2) is to write it as

An alternate interpretation of (FTC2) is to write it as

$$\int_a^b \frac{d}{dx} f(x) \, dx = f(b) - f(a).$$
 • The above reads as

To evaluate a def. integ.

1. Find an antiderivative

(FTC2)

at kinits of integration.

The accumulation of a rate is given by the change in the amount.

The integral of the difference.

The integral of a velocity yields displacement.

(S(term. time) - S(init. time))

2/11

### **Notation**

- FTC2 is useful in computing a definite integral:
  - 1 find an antiderivative of the integrand;
  - 2 evaluate it at the limits of integration;
  - **3** take the difference.
- In the differencing process, you may find the following notation convenient:

$$[F(x)]_{a}^{b} = F(x)|_{a}^{b} = F(b) - F(a).$$

$$(f) \qquad [\frac{d}{dx}f(x)]_{x=\alpha} = \begin{bmatrix} evaluate & \frac{d}{dx}f(x) \\ at & t=a \end{bmatrix} = f'(a)$$

**Proof.** Let  $a \le c \le b$  and write

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$
$$= \int_{c}^{b} f(x) dx - \int_{c}^{a} f(x) dx.$$

By the First Fundamental Theorem of Calculus, we have

$$F(b) = \int_{c}^{b} f(x) dx$$
 and  $F(a) = \int_{c}^{a} f(x) dx$ 

for some antiderivative F of f. So

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

for this antiderivative. However, **any** antiderivative could have be chosen, as antiderivatives of a given function differ only by a constant, and this constant *always* cancels out of the expression when evaluating F(b) - F(a).



 $= \left(-\cos\left(\frac{\pi}{3}\cdot 1\right)\right) - \left(-\cos\left(\frac{\pi}{3}\cdot 0\right)\right) = -\cos\left(\frac{\pi}{3}\right) + \cos\left(0\right) = -\frac{1}{2} + 1 = \boxed{\frac{1}{2}}$ 

[F(x) + c] = (F(b)+x) - (F(a) +x) =  $F(b) - F(a) = [F(x)]^{b}$ 

1. 
$$\left[ F(\alpha) + G(\alpha) \right]_{\alpha}^{b} = \left[ F(\alpha) \right]_{\alpha}^{b} + \left[ G(\alpha) \right]_{\alpha}^{b}$$

e.g. 
$$\left[ x + \frac{1}{2} \right]$$

$$(1-0)+(\frac{1}{2}Sin(2\pi)-\frac{1}{2}Sin(0))$$

 $[cFax]_{a}^{b} = c[Fax]_{a}^{b}$ 

 $\underbrace{e \cdot q}_{2} \quad \left[ \frac{1}{2} \operatorname{Sin} (2\pi c \lambda) \right]_{2}^{1} = \frac{1}{2} \left[ \operatorname{Sin} (2\pi c \lambda) \right]_{2}^{1} = \frac{1}{2} \left( \operatorname{Sin} (2\pi c \lambda) - \operatorname{Sin} (0) \right)$ 

$$\underline{e.g.} \quad \left[ \begin{array}{c} 2 + \frac{1}{2} \operatorname{Su}(2\pi x) \end{array} \right]_{0}^{1} = \left( 1 + \frac{1}{2} \operatorname{Su}(2\pi) \right) - \left( 0 + \frac{1}{2} \operatorname{Su}(0) \right)$$



2. 
$$[-F(x)]_{a}^{b} = F(a) - F(b)$$
 Change the order of differenting.

Why? 
$$= (-F(b)) - (-F(a))$$
$$= -F(b) + F(a)$$

$$= -F(b) + F(a)$$
$$= F(a) - F(b)$$

#### Question. Compute:

$$\mathbf{1} \int_0^5 e^t dt = \left[ e^{t} \right]_0^5 = e^{5} - e^{\circ} = e^{5} - 1$$

Recall 
$$\left(\frac{1}{\lambda} d\lambda = \ln |\lambda| + C\right)$$

FTC2 
$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
 where  $F$  is an antiderivative of  $f$ .

$$\begin{array}{lll} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

# Displacement and net change

Let's recall that

- The derivative of a position function s is a velocity function v.
- The derivative of a velocity function v is an acceleration function a.

In other words,

- A velocity function v is an antiderivative of an acceleration function a.
- A position function s is an antiderivative of a velocity function v.

In particular, by FTC2,

$$\int_a^b v(t) dt = s(b) - s(a) ,$$

which measures a **change in position**, or **displacement** as already introduced on Monday.

Wednesday

# Net change and future value

 In general, FTC2 states that the definite integral of a rate of change of a certain quantity Q is the net change in its amount between two limits of integration:

$$\int_{a}^{b} Q'(s) ds = Q(b) - Q(a).$$
 (Net change)

• If we replace a = 0 and b = t, we have a formula for **future value**:

$$Q(t) = Q(0) + \int_0^t Q'(s) \, ds \,. \tag{Future value}$$



**Question.** A book publisher estimates that the marginal cost of a particular title (in dollars/book) is given by

$$C'(x)=12-0.0002x\,,$$
  $C(x): cost of producing x stems$   $C'(x): marginal cost of producing$ 

where  $0 \le x \le 50,000$  is the number of books printed. What is the cost of producing the 12,001st through 15,000th book?

ret charge 
$$= \int_{12 \text{ K}}^{15 \text{ K}} \frac{c'(\pi)}{(\pi)} d\pi$$

$$= \int_{12 \text{ K}}^{15 \text{ K}} \left(12 - \frac{2}{10 \text{ K}} \pi\right) d\pi$$

$$= \left[12 \pi - \frac{2}{10 \text{ K}} \frac{\pi^2}{2}\right]_{12 \text{ K}}^{15 \text{ K}}$$

$$= 12(15K - 12K) - \frac{1}{10K}((15K)^2 - (12K)^2) = 27.9K$$

# Summary of three different integrals

**1** An **indefinite integral**, a.k.a. an antiderivative computes a family of functions:

$$\int f(x) \, dx = F(x) + C$$

where F'(x) = f(x).

② An accumulation function computes an accumulated area:

$$F(x) = \int_{a}^{x} f(t) dt$$

FTC1 says that F'(x) = f(x).

**3** A **definite integral** computes a signed area:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$