Grain Size Scales and Conversion Tables

The grade scale most commonly used for sediments is the Wentworth (1922) scale which is a logarithmic scale in that each grade limit is twice as large as the next smaller grade limit. The scale starting at Imm and changing by a fixed ratio of 2 was introduced by J. A. Udden (1898), who also named the sand grades we use today. However, Udden drew the gravel/sand boundary at Imm and used different terms in the gravel and mud divisions. For more detailed work, sieves have been constructed at intervals 2 2 and 4 2. The ϕ (phi) scale, devised by Krumbein, is a much more convenient way of presenting data than if the values are expressed in millimeters, and is used almost entirely in recent work.

U. S. Standard Sieve Mesh #	Millimeters (1 Kilometer)	Microns	Phi (φ) -20	Wentworth Size Class	
Usa	4096 1024 256		-12 -10 8	Boulder (-8 to -12¢)	
wiresquares	64 16		6	Cobble (-6 to -8φ) Pebble (-2 to -6φ)	AVE
5 6 7 8	3.36 2.83 2.38		-2 -1.75 -1.75 -1.25 -1.0 -	Granule	MUD SAND GRAVEL
10	2.00 — 1.68 1.41 1.19 —————————————————————————————————		-0.75 -0.5 -0.25 -0.0	Very coarse sand	
20 25 30 35 1/	0.84 0.71 0.59	500	0.25 0.5 0.75 — 1.0 —	Coarse sand	
40 45 50	0.42 0.35 0.30 4	420 350 300 250	1.25 1.5 1.75 2.0	Medium sand	4
70 80 100	0.210 0.177 0.149 8 ——— 0.125 ——	210 177 149 125	2.25 2.5 2.75 3.0	Fine sand	S
140 170 200	0.105 0.088 0.074	105 88 74 62.5	3.25 3.5 3.75 4.0	Very fine sand	
230 —— 1/ 270 325	0.053 0.044 0.037	53 44 37	4.25 4.5 4.75 — 5.0	Coarse silt	
Analyzed 1/6	320.031 54 0.0156 128 0.0078	31 15.6 7.8		Medium silt Fine silt	V O E
	0.0039	3.9 2.0	8.0 9.0	Very fine silt	_
Pipette	0.00098	0.98	0.01	Clay (Some use 2¢ or	
or Hydrometer	0.00049 0.00024 0.00012 0.00006	0.24 0.12 0.06	12.0 13.0 14.0	9φ as the clay boundry)	
. If diotherer	3.0000	22		•	

TABLE 1-2 COMMON GRAPHIC STATISTICAL CALCULATIONS USED IN GRAIN SIZE ANALYSIS

Statistic		Formula		
Graphic mean	M_{z}	=	$\frac{\emptyset_{16} + \emptyset_{50} + \emptyset_{84}}{3}$	
Graphic standard deviation	Σ_{G}	=	$\frac{\varnothing_{84} - \varnothing_{16}}{2}$	
Inclusive graphic standard deviation	Σ_1	=	$\frac{\emptyset_{84} - \emptyset_{16}}{4} + \frac{\emptyset_{95} - \emptyset_5}{6.6}$	
Graphic skewness	Sk_{G}	=	$\frac{\emptyset_{16} + \emptyset_{84} - 2\emptyset_{50}}{\emptyset_{84} - \emptyset_{16}}$	
Inclusive graphic skewness	Sk_1	=	$\frac{\varnothing_{16} + \varnothing_{84} - 2\varnothing_{50}}{2(\varnothing_{84} - \varnothing_{16})} + \frac{\varnothing_5 + \varnothing_{95} - 2\varnothing_{50}}{2(\varnothing_{95} - \varnothing_5)}$	
Graphic kurtosis	$K_{\rm G}$	=	$\frac{o_{95} - o_5}{2.44(o_{75} - o_{25})}$	

Source: After Folk, 1974, pp. 45-48.

Mean:
$$\overline{x}_{\phi} = \frac{\sum fm_{\phi}}{100}$$

(f = frequency of sieve weight; m = mid-point of data, which is halfway between your sieve and the next larger one)

Standard Deviation:
$$\sigma_{\phi} = \sqrt{\frac{\sum f(m_{\phi} - \overline{x}_{\phi})^2}{100}}$$

Skewness:
$$Sk_{\phi} = \frac{\sum f(m_{\phi} - \overline{x}_{\phi})^{3}}{100\sigma_{\phi}^{3}}$$

Mean Cubed Deviation:
$$\alpha_3 \sigma^3 = \frac{\sum f(m_\phi - \overline{x}_\phi)^3}{100}$$

Simple Sorting:
$$So_s = \frac{(\phi_{95} - \phi_5)}{2}$$

Simple Skewness:
$$\alpha_s = (\phi_{95} + \phi_5) - 2(\phi_{50})$$