Hamiltonian: Spherical Polar Coordinates

$$x = r$$
 s i n θ c o s ϕ
 $y = r$ s i n θ s i n ϕ
 $z = r$ c o s θ

Solve this PDE \rightarrow need to separate variables \mathbf{r} , θ , ϕ : **POSSIBLE**

A Completely Solvable problem!! (kind of rare, in QM!)

· Wore-particle duality of light (interference expt.)

· Wave-particle duality exp. for dollars (regularly closed

· Wave-particle duality exp. for dollars (regularly closed

Hitachi interference Matter Waves: de Broghes) = h enpurment.

Hisen berg's uncertainty principle = UP. Dx JA · Schrödinger's Equation = HY=EY (frot)-atom) er (1) de l'order operation production produ

Spherical Polar Coordinates

 $z=\cos\theta$

x=sinθ cosφ

Sing P(x,y,z)

y=sinθ sinφ

Conversion from

Cartesian coordinates?

$$x = r \sin \theta \cos \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \theta$$

© 2012 Encyclopædia Britannica, Inc.

- · 'r' ranges from 0 to 00
- the co-latitude O ranges from O (north pole) to 11 (south pole)
- the azimuth of ranges from 0 to 2.17

What we learnt from solving SE?

Formulate a correct Hamiltonian (total energy) Operator H

Solve HY=EY (2nd order PDE) by separation of variable and intelligent trial/guess solutions

Probability and Average Values

Energies of states Corresponding to Quantum Numbers Quantum Numbers that specify the "state" of the system

For energies of H-like atoms such as He⁺:

n=1
$$E = -\frac{z R_h}{n^2}$$

かっ かっ アルン

$$\Delta E = -R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Ψ (r, θ , φ , t)

- Ψ in general is a function of r, θ , ϕ and t denoted as Ψ (r, θ, ϕ, t)
- We will look at wave functions which are called stationary waves, i.e. Ψ which are not dependent on t- in those cases we are looking a Ψ when the atom is stable and sitting idle
- The Ψ we will look at will be Ψ (r, θ , ϕ) also known as time-independent QM
- When we go and solve Schrodinger equation for Ψ (r, θ , ϕ), two more quantum number drop out in the differential equation.

1: The angular Quantum Number

- We get a new quantum no *l*, called the angular momentum quantum number because
- It dictates how much angular momentum the electron has
- It also has allowed values- 0, 1, 2,, (n-1)
- Classically thinking l would denote the angular momentum

m: Magnetic Quantum Number

- The third quantum number which drops out is m, called the magnetic quantum number
- It dictates how an atom moves/behaves in a magnetic field
- More precisely what m is the z-component of the angular momentum
- Allowed values of m are m=0, ±1, ±2,, ±l

Ψ_{nlm} = Orbitals

- For n=1, l=0, m=0, the electron is called to be in 100 state and the wave function corresponding to this electron is ψ_{100}
- The other wave functions possible for n=2 are ψ_{200} , ψ_{210} , ψ_{211} and ψ_{21-1}
- All these four states have the same energy i.e. $-R_H/4$
- The other way of representing the wave function is a orbital...the orbital is actually the wave-function
- If l=0, s; l=1, p; l=2, d
- So all ψ_{210} , ψ_{211} and ψ_{21-1} would be called 2p.

The 2p orbitals When l=1, m=0, we call it (p_z) When l=2 porbitals Maximum and the control of the control o

- When m=1, it is p_x and when m=-1 it is p_y
- Not fully correct because the Schrodinger equation solution of ψ_{211} and ψ_{21-1} are complex wave functions
- For us to think about p_x and p_y wave function, we take a linear combination. P_x is $\psi_{211} + \psi_{21-1}$ while p_v is $\psi_{211} - \psi_{21-1}$

d orbitals

- For n=1, only one state
- In n=2, four degenerate states
- For n=3, 9 degenerate states
- For l=2, m=-2 is $3d_{xy}$, m=-1 is d_{yz} , m=0 is d_{z2} , m=1 is d_{xz} , m=2 d_{x2-y2}
- For m=0 the d_{72} is a real function
- For m= -2, -1, +1 and +1, those wave functions when we solve Schrodinger's equation are complex wave functions. Again we take linear combination make them real