Subgradient Method

Ryan Tibshirani Convex Optimization 10-725

Last last time: gradient descent

Consider the problem

$$\min_{x} f(x)$$

for f convex and differentiable, $dom(f) = \mathbb{R}^n$. Gradient descent: choose initial $x^{(0)} \in \mathbb{R}^n$, repeat:

$$x^{(k)} = x^{(k-1)} - t_k \cdot \nabla f(x^{(k-1)}), \quad k = 1, 2, 3, \dots$$

Step sizes t_k chosen to be fixed and small, or by backtracking line search

If ∇f is Lipschitz, gradient descent has convergence rate $O(1/\epsilon)$. Downsides:

- Requires f differentiable addressed this lecture
- Can be slow to converge addressed next lecture

Subgradient method

Now consider f convex, having $dom(f) = \mathbb{R}^n$, but not necessarily differentiable

Subgradient method: like gradient descent, but replacing gradients with subgradients. Initialize $x^{(0)}$, repeat:

$$x^{(k)} = x^{(k-1)} - t_k g^{(k-1)}, \quad k = 1, 2, 3, \dots$$

where $g^{(k-1)} \in \partial f(x^{(k-1)})$, any subgradient of f at $x^{(k-1)}$ with the subgradient of f at f and f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f and f are f are f are f and f are f are f and f are f are f and f are f

Subgradient method is not necessarily a descent method thus we keep track of best iterate $x_{\text{best}}^{(k)}$ among $x^{(0)},\dots,x^{(k)}$ so far, i.e.,

$$f(x_{\text{best}}^{(k)}) = \min_{i=0,\dots,k} f(x^{(i)})$$

Outline

Today:

- How to choose step sizes
- Convergence analysis
- Intersection of sets
- Projected subgradient method

Step size choices

- Fixed step sizes: $t_k = t$ all $k = 1, 2, 3, \dots$
- Diminishing step sizes: choose to meet conditions

$$\frac{\text{201521615chl}}{\text{201521}} \sum_{k=1}^{\infty} t_k^2 < \infty, \quad \sum_{k=1}^{\infty} t_k = \infty, \quad \underbrace{\text{ex}}_{K}^{\prime}) + \underbrace{\text{cx}}_{K}^{\prime}$$

i.e., square summable but not summable. Important here that step sizes go to zero, but not too fast

There are several other options too, but key difference to gradient descent: step sizes are pre-specified/not adaptively computed

Convergence analysis

(G. nott! DS 7 Lipsions)

Assume that f convex, $dom(f) = \mathbb{R}^n$, and also the Lipschitz continuous with constant G > 0, i.e.,

$$\begin{split} |f(x)-f(y)| &\leq G \|x-y\|_2 \quad \text{for all } x,y \\ &\leq f(x) \geq f(y) + 2f(y)^4 (x-y) \Rightarrow \qquad \qquad 9^4 (x-y) \geq |f(x)-f(y)| \leq G \|x-y\|_2 \\ &\qquad \qquad \|g\|_2 \|x-y\|_2 \cos(\theta) \leq G \|x-y\|_2 \end{split}$$

Theorem: For a fixed step size t, subgradient method satisfies $\lim_{t \to \infty} f(x_{\text{best}}^{(k)}) \le f^\star + G^2 t/2$

Theorem: For <u>diminishing step sizes</u>, subgradient method satisfies

$$\lim_{k \to \infty} f(x_{\mathsf{best}}^{(k)}) = f^{\star}$$

Basic inequality
$$f(x) \ge f(x^{(n-1)}) + g^{(n-1)} + (x - x^{(n-1)})$$

- $(f(x^{(n-1)}) + g^{(n-1)} + (x - x^{(n-1)})$

Can prove both results from same basic inequality. Key steps:

• Using definition of subgradient, $= ||x^{(k+1)} - t_* y^{(k+1)} - x^*||_{\infty}^{\infty} = ||x^{(k+1)} - x^*||_{\infty}^{\infty} - 2^{-\kappa} y^{(k+1)} - 2^{-\kappa} y^{(k$

$$\frac{\|x^{(k)} - x^\star\|_2^2 \leq}{ \max \frac{\|x^{(k-1)} - x^\star\|_2^2}{a_k} \leq \frac{2t_k \left(f(x^{(k-1)}) - f(x^\star)\right) + t_k^2 \|g^{(k-1)}\|_2^2}{a_{k-1} + b_{k-1}} }$$

Iterating last inequality,

erating last inequality,
$$\left(\begin{array}{c} 5(a_{h}-\alpha_{h-1}) \in \mathcal{D}_{h_{h}} \\ a_{h} \in a_{o} + \mathcal{D}_{h_{h}} \end{array}\right)$$

$$\|x^{(0)} - x^\star\|_2^2 - 2\sum_{i=1}^k t_i \big(f(x^{(i-1)}) - f(x^\star)\big) + \sum_{i=1}^k t_i^2 \|g^{(i-1)}\|_2^2$$

• Using $||x^{(k)} - x^*||_2 \ge 0$, and letting $R = ||x^{(0)} - x^*||_2$,

$$0 \leq R^2 - 2\sum_{i=1}^k t_i \big(f(x^{(i-1)}) - f(x^\star)\big) + G^2 \sum_{i=1}^k t_i^2$$

$$\sum_{i=1}^k t_i f(x_i^{(i)} - 5o^\star) \leq \sum_{i=1}^k t_i f(x_i^{(i)} - 5o^\star)$$
 • Introducing $f(x_{\mathsf{best}}^{(k)}) = \min_{i=0,\dots,k} f(x^{(i)})$, and rearranging, we

have the basic inequality

$$f(x_{\text{best}}^{(k)}) - f(x^*) \le \frac{R^2 + G^2 \sum_{i=1}^k t_i^2}{2 \sum_{i=1}^k t_i} \to 0$$

For different step sizes choices, convergence results can be directly obtained from this bound, e.g., previous theorems follow

Convergence rate

The basic inequality tells us that after k steps, we have

$$f(x_{\text{best}}^{(k)}) - f(x^*) \le \frac{R^2 + G^2 \sum_{i=1}^k t_i^2}{2 \sum_{i=1}^k t_i}$$

With fixed step size t, this gives

$$L^2$$
 L^2

$$f(x_{\mathsf{best}}^{(k)}) - f^* \le \left(\frac{R^2}{2kt} + \frac{G^2t}{2}\right) \le 2.$$

For this to be $\leq \epsilon$, let's make each term $\leq \epsilon/2$. So we can choose $t=\epsilon/G^2$, and $k=R^2/t\cdot 1/\epsilon=R^2G^2/\epsilon^2$

That is, subgradient method has convergence rate $O(1/\epsilon^2)$... note that this is slower than $O(1/\epsilon)$ rate of gradient descent

Example: regularized logistic regression

Given $(x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}$ for $i = 1, \dots, n$, the logistic regression loss is

$$f(\beta) = \sum_{i=1}^{n} \left(-y_i x_i^T \beta + \log(1 + \exp(x_i^T \beta)) \right)$$

This is a smooth and convex function with

$$\nabla f(\beta) = \sum_{i=1}^{n} (y_i - p_i(\beta)) x_i$$

where $p_i(\beta) = \exp(x_i^T \beta)/(1 + \exp(x_i^T \beta))$, i = 1, ..., n. Consider the regularized problem:

$$\min_{\beta} \ f(\beta) + \lambda \cdot P(\beta)$$

where $P(\beta) = \|\beta\|_2^2$, ridge penalty; or $P(\beta) = \|\beta\|_1$, lasso penalty

Ridge: use gradients; lasso: use subgradients. Example here has $n=1000,\ p=20$:

Step sizes hand-tuned to be favorable for each method (of course comparison is imperfect, but it reveals the convergence behaviors)

Polyak step sizes

Polyak step sizes: when the optimal value f^* is known, take

$$\left(t_k = \frac{f(x^{(k-1)}) - f^*}{\|g^{(k-1)}\|_2^2}, \quad k = 1, 2, 3, \dots\right)$$

Can be motivated from first step in subgradient proof:

$$\|x^{(k)} - x^\star\|_2^2 \le \|x^{(k-1)} - x^\star\|_2^2 \left(-2t_k \left(f(x^{(k-1)}) - f(x^\star) \right) + t_k^2 \|g^{(k-1)}\|_2^2 \right)$$
Polyak step size minimizes the right-hand side

Polyak step size minimizes the right-hand side

With Polyak step sizes, can show subgradient method converges to optimal value. Convergence rate is still $O(1/\epsilon^2)$

Example: intersection of sets

Suppose we want to find $x^* \in C_1 \cap \cdots \cap C_m$, i.e., find a point in intersection of closed, convex sets C_1, \ldots, C_m

First define

$$f_i(x) = \operatorname{dist}(x, C_i), \quad i = 1, \dots, m$$

$$f(x) = \max_{i=1,\dots,m} f_i(x)$$

and now solve

$$\min_{x} f(x)$$

Check: is this convex?

Note that $f^* = 0 \iff x^* \in C_1 \cap \cdots \cap C_m$

Recall the distance function $\operatorname{dist}(x,C) = \min_{y \in C} \|y - x\|_2$. Last time we computed its gradient

$$\nabla \operatorname{dist}(x, C) = \frac{x - P_C(x)}{\|x - P_C(x)\|_2}$$

where $P_C(x)$ is the projection of x onto C

Also recall subgradient rule: if $f(x) = \max_{i=1,...,m} f_i(x)$, then

$$\partial f(x) = \operatorname{conv}\left(\bigcup_{i:f_i(x)=f(x)} \partial f_i(x)\right)$$

So if $f_i(x) = f(x)$ and $g_i \in \partial f_i(x)$, then $g_i \in \partial f(x)$

Put these two facts together for intersection of sets problem, with $f_i(x) = \operatorname{dist}(x, C_i)$: if C_i is farthest set from x (so $f_i(x) = f(x)$), and

$$g_i = \nabla f_i(x) = \frac{x - P_{C_i}(x)}{\|x - P_{C_i}(x)\|_2}$$

then $g_i \in \partial f(x)$

Now apply subgradient method, with Polyak size $t_k = f(x^{(k-1)})$. At iteration k, with C_i farthest from $x^{(k-1)}$, we perform update

$$x^{(k)} = x^{(k-1)} - f(x^{(k-1)}) \frac{x^{(k-1)} - P_{C_i}(x^{(k-1)})}{\|x^{(k-1)} - P_{C_i}(x^{(k-1)})\|_2}$$
$$= P_{C_i}(x^{(k-1)})$$

For two sets, this is the famous alternating projections algorithm¹, i.e., just keep projecting back and forth

(From Boyd's lecture notes)

¹von Neumann (1950), "Functional operators, volume II: The geometry of orthogonal spaces"

Projected subgradient method

To optimize a convex function f over a convex set C,

$$\min_{x} f(x) \text{ subject to } x \in C$$

we can use the projected subgradient method. Just like the usual subgradient method, except we project onto C at each iteration:

$$x^{(k)} = P_C (x^{(k-1)} - t_k \cdot g^{(k-1)}), \quad k = 1, 2, 3, \dots$$

Assuming we can do this projection, we get the same convergence guarantees as the usual subgradient method, with the same step size choices

(5) Supporting Hyperplane theorem

$$P_c(X) = P_k(X) = B(B^*B)^*\beta^* \times$$

What sets C are easy to project onto? Lots, e.g.,

- Affine images: $\{Ax + b : x \in \mathbb{R}^n\}$
- Solution set of linear system: $\{x : Ax = b\}$
- Nonnegative orthant: $\mathbb{R}^n_+ = \{x : x \ge 0\}$
- Some norm balls: $\{x: ||x||_p \le 1\}$ for $p = 1, 2, \infty$
- Some simple polyhedra and simple cones

Warning: it is easy to write down seemingly simple set C, and P_C can turn out to be very hard! E.g., generally hard to project onto arbitrary polyhedron $C = \{x : Ax \leq b\}$

Note: projected gradient descent works too, more next time ...

Can we do better?

Upside of the subgradient method: broad applicability. Downside: $O(1/\epsilon^2)$ convergence rate over problem class of convex, Lipschitz functions is really slow

Nonsmooth first-order methods: iterative methods updating $\boldsymbol{x}^{(k)}$ in

$$x^{(0)} + \operatorname{span}\{g^{(0)}, g^{(1)}, \dots, g^{(k-1)}\}\$$

where subgradients $g^{(0)}, g^{(1)}, \dots, g^{(k-1)}$ come from weak oracle

Theorem (Nesterov): For any $k \leq n-1$ and starting point $x^{(0)}$, there is a function in the problem class such that any nonsmooth first-order method satisfies

$$f(x^{(k)}) - f^* \ge \frac{RG}{2(1 + \sqrt{k+1})}$$

Improving on the subgradient method

In words, we cannot do better than the $O(1/\epsilon^2)$ rate of subgradient method (unless we go beyond nonsmooth first-order methods)

So instead of trying to improve across the board, we will focus on minimizing composite functions of the form plantal 602 with the control of the control o

where g is convex and differentiable, h is convex and nonsmooth but "simple" \Rightarrow proximal Graphy descent

For a lot of problems (i.e., functions h), we can recover the $O(1/\epsilon)$ rate of gradient descent with a simple algorithm, having important practical consequences