# Client Report - Finding Relationships in Baseball

Course DS 250

AUTHOR Wil Jones

#### ▼ Show the code

```
import pandas as pd
import numpy as np
import sqlite3
from lets_plot import *

LetsPlot.setup_html(isolated_frame=True)
```

#### ▼ Show the code

```
sqlite_file = 'lahmansbaseballdb.sqlite'
con = sqlite3.connect(sqlite_file)
```

## **QUESTION – TASK 1**

Write an SQL query to create a new dataframe about baseball players who attended BYU-Idaho. The new table should contain five columns: playerID, schoolID, salary, and the yearID/teamID associated with each salary. Order the table by salary (highest to lowest) and print out the table in your report.

#### ▼ Show the code

```
query = '''
SELECT s.playerID, MAX(sp.schoolID) AS schoolID, MAX(s.salary) AS salary, s.yearID, s.teamID
FROM CollegePlaying sp
JOIN Salaries s ON sp.playerID = s.playerID
WHERE sp.schoolID = 'idbyuid'
GROUP BY s.playerID, s.yearID, s.teamID
ORDER BY salary DESC;
'''
df_byu = pd.read_sql_query(query, con)
df_byu
```

|   | playerID  | schoolID | salary    | yearID | teamID |
|---|-----------|----------|-----------|--------|--------|
| 0 | lindsma01 | idbyuid  | 4000000.0 | 2014   | СНА    |
| 1 | lindsma01 | idbyuid  | 3600000.0 | 2012   | BAL    |

|    | playerID  | schoolID | salary    | yearID | teamID |
|----|-----------|----------|-----------|--------|--------|
| 2  | lindsma01 | idbyuid  | 2800000.0 | 2011   | COL    |
| 3  | lindsma01 | idbyuid  | 2300000.0 | 2013   | СНА    |
| 4  | lindsma01 | idbyuid  | 1625000.0 | 2010   | HOU    |
| 5  | stephga01 | idbyuid  | 1025000.0 | 2001   | SLN    |
| 6  | stephga01 | idbyuid  | 900000.0  | 2002   | SLN    |
| 7  | stephga01 | idbyuid  | 800000.0  | 2003   | SLN    |
| 8  | stephga01 | idbyuid  | 550000.0  | 2000   | SLN    |
| 9  | lindsma01 | idbyuid  | 410000.0  | 2009   | FLO    |
| 10 | lindsma01 | idbyuid  | 395000.0  | 2008   | FLO    |
| 11 | lindsma01 | idbyuid  | 380000.0  | 2007   | FLO    |
| 12 | stephga01 | idbyuid  | 215000.0  | 1999   | SLN    |
| 13 | stephga01 | idbyuid  | 185000.0  | 1998   | PHI    |
| 14 | stephga01 | idbyuid  | 150000.0  | 1997   | PHI    |

## **QUESTION – TASK 2**

This three-part question requires you to calculate batting average (number of hits divided by the number of at-bats)

- a. At least 1 at-bat
- **▼** Show the code

```
query = '''
SELECT playerID, yearID, CAST(H AS FLOAT)/AB AS batting_avg
FROM Batting
WHERE AB >= 1
ORDER BY batting_avg DESC, playerID
LIMIT 5;
'''
df_avg_1ab = pd.read_sql_query(query, con)
df_avg_1ab
```

|   | playerID  | yearID | batting_avg |
|---|-----------|--------|-------------|
| 0 | aberal01  | 1957   | 1.0         |
| 1 | abernte02 | 1960   | 1.0         |
| 2 | abramge01 | 1923   | 1.0         |
| 3 | acklefr01 | 1964   | 1.0         |
| 4 | alanirj01 | 2019   | 1.0         |

#### b. At least 10 at-bats

### **▼** Show the code

```
query = '''
SELECT playerID, yearID, CAST(H AS FLOAT)/AB AS batting_avg
FROM Batting
WHERE AB >= 10
ORDER BY batting_avg DESC, playerID
LIMIT 5;
'''
df_avg_10ab = pd.read_sql_query(query, con)
df_avg_10ab
```

|   | playerID  | yearID | batting_avg |
|---|-----------|--------|-------------|
| 0 | nymanny01 | 1974   | 0.642857    |
| 1 | carsoma01 | 2013   | 0.636364    |
| 2 | altizda01 | 1910   | 0.600000    |
| 3 | johnsde01 | 1975   | 0.600000    |
| 4 | silvech01 | 1948   | 0.571429    |

c. Career batting average (100+ AB total)

### ► Show the code

|   | playerID  | career_avg |
|---|-----------|------------|
| 0 | cobbty01  | 0.366299   |
| 1 | barnero01 | 0.359682   |
| 2 | hornsro01 | 0.358497   |
| 3 | jacksjo01 | 0.355752   |
| 4 | meyerle01 | 0.355509   |

# **QUESTION – TASK 3**

Pick any two baseball teams and compare them using a metric of your choice (average salary, home runs, number of wins, etc). Write an SQL query to get the data you need, then make a graph using Lets-Plot to visualize the comparison. What do you learn?

#### ► Show the code

|   | yearID | teamID | total_HR |
|---|--------|--------|----------|
| 0 | 1901   | BOS    | 37       |

|     | yearID | teamID | total_HR |
|-----|--------|--------|----------|
| 1   | 1902   | BOS    | 42       |
| 2   | 1903   | BOS    | 48       |
| 3   | 1903   | NYA    | 18       |
| 4   | 1904   | BOS    | 26       |
| ••• |        |        |          |
| 231 | 2017   | NYA    | 241      |
| 232 | 2018   | BOS    | 208      |
| 233 | 2018   | NYA    | 267      |
| 234 | 2019   | BOS    | 245      |
| 235 | 2019   | NYA    | 306      |
|     |        |        |          |

### 236 rows × 3 columns

▼ Show the code

```
# Visualization of Yankees vs. Red Sox Home Runs Over Time
ggplot(df_hr, aes(x='yearID', y='total_HR', color='teamID')) + \
    geom_line(size=1.2) + \
    ggtitle("Yankees vs. Red Sox: Total Home Runs by Year") + \
    labs(x="Year", y="Total Home Runs", color="Team") + \
    theme_minimal()
```



Based on the graph, we observe fluctuations in home run totals over time for both teams. In recent years, the Yankees have consistently hit more home runs compared to the Red Sox, especially post-2010. This could

## STRETCH QUESTION – TASK 1

### **Advanced Salary Distribution by Position (with Case Statement):**

▼ Show the code

```
query = '''
WITH main_pos AS (
 SELECT playerID, yearID, Pos, COUNT(*) AS games
 FROM Fielding
 GROUP BY playerID, yearID, Pos
),
most_played AS (
 SELECT playerID, yearID, Pos
 FROM (
   SELECT *, ROW_NUMBER() OVER (PARTITION BY playerID, yearID ORDER BY games DESC) AS rn
    FROM main_pos
  )
 WHERE rn = 1
)
SELECT mp.Pos AS position,
       ROUND(AVG(s.salary), 2) AS average_salary,
       COUNT(DISTINCT s.playerID) AS total_players,
       MAX(s.salary) AS highest_salary,
       CASE
         WHEN AVG(s.salary) > 3000000 THEN 'High Salary'
        WHEN AVG(s.salary) BETWEEN 2000000 AND 3000000 THEN 'Medium Salary'
         ELSE 'Low Salary'
       END AS salary_category
FROM most_played mp
JOIN Salaries s ON mp.playerID = s.playerID AND mp.yearID = s.yearID
GROUP BY mp.Pos
ORDER BY average_salary DESC;
1.1.1
df_salary_pos = pd.read_sql_query(query, con)
df_salary_pos
```

|   | position | average_salary | total_players | highest_salary | salary_category |
|---|----------|----------------|---------------|----------------|-----------------|
| 0 | 3B       | 2954624.15     | 359           | 33000000.0     | Medium Salary   |
| 1 | SS       | 2932867.67     | 181           | 22600000.0     | Medium Salary   |
| 2 | OF       | 2595167.98     | 933           | 27328046.0     | Medium Salary   |
| 3 | 1B       | 2392855.86     | 1049          | 28000000.0     | Medium Salary   |
| 4 | Р        | 1939697.14     | 2558          | 33000000.0     | Low Salary      |

|   | position | average_salary | total_players | highest_salary | salary_category |
|---|----------|----------------|---------------|----------------|-----------------|
| 5 | 2B       | 1463198.38     | 672           | 24000000.0     | Low Salary      |
| 6 | С        | 1340954.00     | 364           | 16071429.0     | Low Salary      |

# **STRETCH QUESTION – TASK 2**

### **Advanced Career Longevity and Performance (with Subqueries):**

**▼** Show the code

|   | playerID  | nameFirst | nameLast  | career_length |
|---|-----------|-----------|-----------|---------------|
| 0 | ansonca01 | Сар       | Anson     | 27            |
| 1 | ryanno01  | Nolan     | Ryan      | 27            |
| 2 | johnto01  | Tommy     | John      | 26            |
| 3 | mcguide01 | Deacon    | McGuire   | 26            |
| 4 | collied01 | Eddie     | Collins   | 25            |
| 5 | henderi01 | Rickey    | Henderson | 25            |
| 6 | houghch01 | Charlie   | Hough     | 25            |
| 7 | kaatji01  | Jim       | Kaat      | 25            |
| 8 | moyerja01 | Jamie     | Moyer     | 25            |
| 9 | wallabo01 | Bobby     | Wallace   | 25            |