Epreuve écrite

Nom et prénom du candidat
sser s'il y a lieu: st toujours soumise à une force de Lorentz. dans un champ magnétique uniforme est plan et uniforme. ire. ique Y sur un écran perpendiculaire à la vitesse la région de longueur I où règne le champ on U = 300 V; ils pénètrent ensuite dans une règne un champ magnétique perpendiculaire à la D = 50 cm du centre de cette région, reçoit les magnétique qui provoque une déflexion spectrographe de masse. 23p(2+7+2+4+4+4)
sser s'il y a lieu: apporte des charges électriques supplémentaires otrice d'auto-induction e pour une bobine sans stance r et d'inductance propre L, parcourue de obine parcourue par un courant emmagasine de

Epreuve écrite

Examen de fin d'études secondaires 2005	Nom et prénom du candidat
Section: B et C	
Branche: Physique	
 eclaire, arrache un electron du metal. 2 L'ensemble de deux radiations, l'une orange de longueur d'onde λ₂ = 0,75 μm, éclaire une césium dont le seuil photoélectrique est λ₀ = a Faire un schéma du montage à réaliser pour b Calculer en joules et en électron-volts l'éne la cathode. c L'effet photoélectrique va-t-il avoir lieu ? I d Quelle est l'énergie cinétique maximale d'u En déduire sa vitesse maximale. 	inférieure à la longueur d'onde seuil du métal de longueur d'onde $\lambda_1 = 0.60 \mu m$, l'autre rouge e cellule photoélectrique à vide à cathode de = $0.66 \mu m$. In mettre en évidence le courant photoélectrique. Ergie nécessaire à l'extraction d'un électron de
	12p(2+2+2+2+3+1)
IV Interférences	
 Commenter l'affirmation suivante et la redres Pour réaliser des interférences lumineuses, il 2 La célérité des ondes à la surface d'un liquide a Quel est l'état vibratoire des points M et N fréquence N = 50 Hz, un batteur en forme d 3 cm: si S₁M = 30 mm et S₂M = 35 mm ? si S₁N = 20 mm et S₂N = 30 mm ? b Dessiner en vraie grandeur les franges d'am vérifier le résultat de la question précédente c Ecrire l'équation horaire du mouvement des a = 1 mm et qu'à l'origine des temps, l'élong d Quelles sont les élongations des points M et la question précédente comment des sont les élongations des points M et l'origine des temps des points M et l'origine des points M et l'origine des temps des points M et l'origine des po	suffit d'utiliser deux lampes identiques. e est v = 50 cm/s. de la surface de l'eau sur laquelle vibre, à la de fourche d'extrémités S ₁ et S ₂ distantes de aplitude maximale et les franges de repos et e. s sources, sachant que leur amplitude est gation est maximale.

Relevé des principales constantes physiques

Grandeur physique	Symbole	Valeur	Unité
• •	usuel	numérique	
Constante d'Avogadro	N _A (ou L)	$6,022 \cdot 10^{23}$	mol ⁻¹
Constante molaire des gaz parfaits	R	8,314	JK ⁻¹ mol ⁻¹
Constante de gravitation	K (ou G)	6,67·10 ⁻¹¹	Nm ² kg ⁻²
Célérité de la lumière dans le vide	С	3·10 ⁸	ms ⁻¹
Perméabilité du vide	μ_0	$4\pi \cdot 10^{-7}$	Hm ⁻¹
Permittivité du vide	$\varepsilon_0 = \frac{1}{\mu_0 c^2}$	8,85·10 ⁻¹²	Fm ⁻¹
Charge élémentaire	е	1,60·10 ⁻¹⁹	С
Masse au repos de l'électron	m _e	$9,109 \cdot 10^{-31}$	kg
Unité de masse atomique	u	1,660·10 ⁻²⁷	kg
Masse au repos du proton	m_p	1,0073	u
		1,673·10 ⁻²⁷	kg
Masse au repos du neutron	m_n	1,0087	u
		1,675·10 ⁻²⁷	kg
Masse au repos d'une particule α	m_{α}	4,0015	u
		6,645·10 ⁻²⁷	kg
Constante de Planck	h	6,626·10 ⁻³⁴	Js
Constante de Rydberg	R∞	1,097·10 ⁷	m ⁻¹
Rayon de Bohr	\mathbf{a}_0	5,292·10 ⁻¹¹	m

Grandeurs terrestres qui dépendent du lieu	Valeur	Valeur utilisée sauf			
		indication	indication contraire		
Accélération de la pesanteur à la surface terrestre	g	9,81	ms ⁻²		
Composante horizontale du champ magnétique terrestre	B _h	2·10 ⁻⁵	Т		