Disclaimer: This was the Math 8 final exam from Fall 2000. The format of our exam will be as with the midterms, a couple of long problems followed by multiple choice.

- 1. A radioactive substance has a half-life of h. A sample of the substance is created at time 0. How much time must elapse until only three-fourths of the original amount is present?
- 2. Find the Taylor series of the function $f(x) = \ln x$ about the point a = 1 (i.e. expand f(x) in powers of (x 1)). Express your answer in summation notation, so it is clear what the general term of the series is.
- 3. (a) Solve the initial value problem $xy' + y = 1/x^2$, y(1) = 0.
 - (b) Determine coefficients a and b such that the functions $y = e^{2t}$ and $y = e^{-4t}$ are solutions to the differential equation y'' + ay' + by = 0.
- 4. Find an equation of the tangent plane to the surface $z^2 = 3x^2 + 6y^2$ at the point (2, 2, -6).
- 5. Find and classify all critical points of the function $f(x,y) = x^3 + 6x^2 y^2$. Be sure to justify all your work.
- 6. A skier is on the side of a mountain whose equation is $z = f(x, y) = x^3 + 6x^2 y^2$. She is standing at the point (-4, 1, f(-4, 1)).
 - (a) Suppose that she wishes to start downhill as steeply as possible. In what direction (in the horizontal xy-plane) should she point her skis? Make your answer a unit vector.
 - (b) Suppose that she is standing at the point (-4, 1, f(-4, 1)), and that she wishes to climb uphill at an angle (of elevation) of 45 degrees $(\pi/4 \text{ radians})$. In what direction (in the horizontal xy-plane) should she point her skis to achieve this? Make your answer a unit vector.
- 7. Consider a curve in three-dimensional space given by $\mathbf{r}(t)$. Suppose that for all times t, the velocity vector $\mathbf{r}'(t)$ is perpendicular to the position vector. Suppose also that $\mathbf{r}(0)$ is a unit vector, so that $\mathbf{r}(0)$ is the position vector of a point on the sphere of radius one centered at the origin. Prove that the entire curve lies on the sphere of radius one centered at the origin. [Hint: Recall that the sphere consists of all points of distance one from the origin, and consider the function $\mathbf{r} \cdot \mathbf{r}$]
- 8. Consider the surface S whose equation is $x^2 yz = 1$. Find the point or points on S closest to the origin. (Hint: Use the square of the distance)