Applications of Pellikaan Decoding to Small Binary Linear Codes

Julien du Crest supervised by Gilles Zemor

Institut Mathematique de Bordeaux

June 10, 2020

Overview

Pellikaan Decoding

The L^2 Construction

Lowrank Decoding

Experimental results

Reed-Muller Codes Projective Geometry Codes Concatenated Codes

Definitions

Schur Product

Given
$$u = (u_1, ..., u_n), v = (v_1, ..., v_n),$$

$$uv = (u_1v_1, ... u_nv_n)$$

Product Code

Given two linear codes C, D,

$$CD = \{cd, c \in C, d \in D\}$$

Definitions

Given three linear codes

- $ightharpoonup C: [n, k, _] (encoding code)$
- $ightharpoonup L: [n, p+1, _] (locator code)$
- $ightharpoonup \Pi = CL (product code)$

C is used to encode the codewords, L and Π to decode.

$$y = c + e \quad (|e| = p)$$

Pellikaan Decoding

- **1.** Find $l \in L$ such that $ly \in \Pi$
- **2.** Find c^* such that $c^*I = yI$
- **3.** Return *c**

Necessary Conditions

- 1. dim L > p $\exists l \in L \text{ s.t. } le = 0$
- 2. $\dim L + \dim \Pi \leqslant n$ $ly = \pi, l \in L, \pi \in \Pi$ has less variables than equations
- 3. dmin $\Pi > p$ $yl = \pi \implies el = (0, ..., 0)$
- **4.** dmin L + dmin C > n $\exists! c^* \ s.t. \ c^* I = yI$

Necessary Conditions

- 1. dim L > p $\exists l \in L \text{ s.t. } le = 0$
- 2. $\dim L + \dim \Pi \leqslant n$ $ly = \pi, l \in L, \pi \in \Pi$ has less variables than equations
- 3. dmin $\Pi > p$ $yl = \pi \implies el = (0, ..., 0)$
- **4.** dmin L + dmin C > n $\exists! c^* \text{ s.t. } c^* I = yI$

Relaxation

Conditions 3 and 4 are removed

The L^2 Construction

- **1.** Generate *L*
- **2.** Compute L^2
- **3.** Let $C = L^{2^{\perp}}$

$$\langle c, ll' \rangle = \langle cl, l' \rangle \implies CL \subset L^{\perp}$$

 $\implies \dim \Pi + \dim L \leqslant n$

Verified Conditions

Just fix $p < \dim L$ and conditions 1 and 2 are verified

My Work

Lowrank Decoding

Motivations

Pb 1: The Binary Curse

 $\mathbf{E}(|I|) \approx \frac{n}{2}$ implies $\{c^* \ s.t. \ c^*I = yI\}$ is big Solution : Take the union of several I instead

$$S = \{ l \in L \text{ s.t. } ly \in \Pi \}$$
$$= S^*_{le=0} \oplus S^{\dagger}_{le\neq 0}$$

Pb 2: Exponantial growth of Parasites

The sum of a non-parasite and a parasite is a parasite Solution : **None**

Lowrank Decoding

A Different Approach

Low Rank of $S_{|e}$

 $\dim S_{|e} = \dim S^{\dagger}$

So if dim $S \gg \dim S^{\dagger}$, the difference is noticeable.

But we can't test all p-subsets to find it!

Lowrank Decoding

A Different Approach

Low Rank of $S_{\mid e}$

 $\dim S_{|e}=\dim S^{\dagger}$ So if $\dim S\gg \dim S^{\dagger}$, the difference is noticeable.. But we can't test all *p*-subsets to find it !

Idea : The columns of $S_{\mid e}$ appear more often that they should

Lowrank Decoding Algorithm

- 1. Count the appearances of each column
- 2. 'Remove' the most appearing ones
- 3. Decode on the remaining positions

Experimental Results

Code	n	k	р	succ.	dmin fail.	other fail.	p*
Random Codes	200	80	14	.80	.001	0.19	17
Random Codes*	200	79	14	.999	.001	0.	17
Bin. Reed-Muller	256	93	31	.999	.001	0.	23
Qary Reed-Muller	256	85	30	.98	.02	0	26
Proj. Geom.	585	184	60	1.	.00?	0.	60≈

Table: Comparaison de differents codes

Additional Results

Caracterisation of *S*

$$\dim S^* = \dim L - |e| + \dim \Pi_{\subset e}$$
$$\dim S^{\dagger} \leqslant \dim \Pi_{\subset e}$$

where $\Pi_{\subseteq e} = \{ \pi \in \Pi \text{ s.t. } supp(\pi) \subseteq supp() \}$

The Kernel Mystery Revealed

$$\frac{\dim \ker IC \approx \dim C - |I|}{\dim \ker IC \approx \dim C - |I| + \dim L}$$

Conclusion

Pros

Cons

Correct more errors

Algebraic Method

Probabilistic failures

Any usage (Crypto, Codes)?

Bibliography

- Le décodage de codes linéaires par paires localisatrices d'erreur Elie Bouscatie, Célian Banquet 2020
- http://www.codetables.de/
 Marcus Grassl
- On decoding linear codes by error correcting pairs

 Ruud Pellikaan 1988