

Digital Signal Processing

Solved HW for Day 1

Question 1: Elementary operators and their properties

An operator S is a transformation of a given signal and is indicated by the notation:

$$y[n] = S\{x[n]\}.$$

For instance, the delay operator D is indicated as $D\{x[n]\} = x[n-1]$, and the differentiation operator is indicated as $\Delta\{x[n]\} = x[n] - D\{x[n]\} = x[n] - x[n-1]$.

A linear operator is one for which the following holds:

$$\begin{cases} S\{\alpha x[n]\} = \alpha S\{x[n]\} \\ S\{x[n] + y[n]\} = S\{x[n]\} + S\{y[n]\}. \end{cases}$$

Q: Show that the delay operator *D* is linear.

$$D\{\alpha x[n]\} = \alpha x[n-1] = \alpha D\{x[n]\}$$

$$D\{x[n] + y[n]\} = x[n-1] + y[n-1] = D\{x[n]\} + D\{y[n]\}.$$

Q: Show that the differentiation operator Δ is linear.

 Δ is a *linear combination* of the identify operator with the linear operator D, therefore it is also linear.

Q: Show that the squaring operator $S\{x[n]\} = x^2[n]$ is not linear

$$S\{\alpha x[\mathbf{n}]\} = \alpha^2 x^2[\mathbf{n}] = \alpha^2 S\{x[\mathbf{n}]\} \neq \alpha S\{x[\mathbf{n}]\}.$$

Question 2: Follow-up of Question 1

In \mathbb{C}^N , any linear operator on a vector \mathbf{x} can be expressed as a matrix-vector multiplication for a suitable matrix \mathbf{A} . Define the delay operator as the right circular shift of a vector:

$$D\{\mathbf{x}\} = [x_{N-1}x_0x_1\ldots x_{N-2}]^T.$$

Assume
$$N = 4$$
 for convenience; it is easy to see that: $D\{\mathbf{x}\} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{x} = \mathbf{D}\mathbf{x}.$

Q: Using the same definition of differentiation operator as in Question 1, write out the matrix form of the differentiation operator in \mathbb{C}^4 .

$$oldsymbol{\Delta} = oldsymbol{\mathsf{I}} - oldsymbol{\mathsf{D}} = egin{bmatrix} 1 & 0 & 0 & -1 \ -1 & 1 & 0 & 0 \ 0 & -1 & 1 & 0 \ 0 & 0 & -1 & 1 \end{bmatrix}.$$

Q: Consider the following matrix:
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$$
 Which operator do you think it corresponds to?

The matrix realizes an integration operation over a vector in \mathbb{C}^4 .

Question 3: Bases

Let $\{x(k)\}_{k=0,...,N-1}$ be a basis for a subspace S.

Prove that any vector $z \in S$ is uniquely represented in this basis.

Hint: prove by contradiction.

▶ Suppose by contradiction that the vector $\mathbf{z} \in S$ admits two distinct representations in the basis $\{\mathbf{x}^{(k)}\}_{k=0,...,N-1}$:

$$\begin{split} &\exists \{\alpha_0,\ldots,\alpha_{N-1}\}, \{\beta_0,\ldots,\beta_{N-1}\} \text{ such that:} \\ &(\alpha_0,\ldots,\alpha_{N-1}) \neq (\beta_0,\ldots,\beta_{N-1}) \\ &\mathbf{z} = \boldsymbol{\Sigma}_{k=0}^{N-1} \alpha_k \mathbf{x}^{(k)}, \mathbf{z} = \boldsymbol{\Sigma}_{k=0}^{N-1} \beta_k \mathbf{x}^{(k)}. \end{split}$$

- ▶ Thus, $\sum_{k=0}^{N-1} \alpha_k \mathbf{x}^{(k)} = \sum_{k=0}^{N-1} \beta_k \mathbf{x}^{(k)}$ or, equivalently, $\sum_{k=0}^{N-1} (\alpha_k \beta_k) \mathbf{x}^{(k)} = 0$.
- Since $\{\mathbf{x}^{(k)}\}_{k=0,\dots,N-1}$ is a basis, it is a set of independent vectors and, by definition, the above equation admits only the trivial solution $\alpha_k \beta_k = 0, \ \forall k = 0,\dots,N-1$.
- ▶ Thus, $\alpha_k = \beta_k$, $\forall k = 0, ..., N-1$ which concludes the proof.

Q: Let
$$s[n] := \frac{1}{2^n} + j\frac{1}{3^n}$$
. Compute $\sum_{n=1}^{\infty} s[n]$.

Recall that

$$\sum_{i=0}^{N} z^{k} = \begin{cases} \frac{1-z^{N+1}}{1-z} & \text{for } z \neq 1\\ N+1 & \text{for } z = 1 \end{cases}.$$

Proof for $z \neq 0$ (for z = 1 is trivial)

$$s = 1 + z + z^{2} + ... + z^{N},$$

 $-zs = -z - z^{2} - ... - z^{N} - z^{N+1}.$

Summing the above two equations gives

$$(1-z)s = 1-z^{N+1} \Rightarrow s = \frac{1-z^{N+1}}{1-z}$$
.

Similarly

$$\sum_{k=N_1}^{N_2} z^k = z^{N_1} \sum_{k=0}^{N_2-N_1} z^k = \frac{z^{N_1} - z^{N_2+1}}{1-z}.$$

Q: Let
$$s[n] := \frac{1}{2^n} + j\frac{1}{3^n}$$
. Compute $\sum_{n=1}^{\infty} s[n]$.

We have

$$\sum_{n=1}^{N} s[n] = \sum_{n=1}^{N} 2^{-n} + j \sum_{n=1}^{N} 3^{-n}$$

$$= \frac{1}{2} \cdot \frac{1 - 2^{-N}}{1 - 2^{-1}} + j \frac{1}{3} \cdot \frac{1 - 3^{-N}}{1 - 3^{-1}} = (1 - 2^{-N}) + j \frac{1}{2} (1 - 3^{-N}).$$

Now,

$$\lim_{N\to\infty} 2^{-N} = \lim_{N\to\infty} 3^{-N} = 0.$$

Therefore,

$$\sum_{n=1}^{\infty} s[n] = 1 + \frac{1}{2}j.$$

Q: Same question with $s[n] := \left(\frac{j}{3}\right)^n$.

We can write

$$\sum_{k=1}^{N} s[k] = \frac{j}{3} \cdot \frac{1 - (j/3)^{N}}{1 - j/3}.$$

Since $|\frac{j}{3}| = \frac{1}{3} < 1$, we have $\lim_{N \to \infty} (j/3)^N = 0$. Therefore,

$$\sum_{k=1}^{\infty} s[k] = \frac{j}{3-j} = \frac{j(3+j)}{10} = -\frac{1}{10} + j \cdot \frac{3}{10}.$$

Q: Characterize the set of complex numbers satisfying $z^* = z^{-1}$.

From $z^* = z^{-1}$ with $z \in \mathbb{C}$, we have

$$zz^* = 1, \quad \forall \ z \neq 0.$$

Therefore, $|z|^2 = 1$ and, consequently, |z| = 1. It follows that all the z such that $z^* = z^{-1}$ describe the unit circle.

Q: Find 3 complex numbers $\{z_0, z_1, z_2\}$ which satisfy $z_i^3 = 1, i = 1, 2, 3$.

Remark that $e^{j2k\pi}=1$, for all $k\in\mathbb{Z}$. Therefore, $z_k=e^{j\frac{2k\pi}{3}}$ is such that $z_k^3=1$. Now z_k is periodic of period 3, i.e. $z_k=z_{k+3l}$, for all $l\in\mathbb{Z}$. Therefore the (only) three different complex numbers are

$$z_0 = 1$$
, $z_1 = e^{j\frac{2\pi}{3}}$ and $z_2 = e^{j\frac{4\pi}{3}}$.

Q: What is the following infinite product $\prod_{n=1}^{\infty} e^{j\pi/2^n}$?

We have

$$\prod_{n=1}^{N} e^{j\frac{\pi}{2^n}} = e^{j\pi \sum_{n=1}^{N} 2^{-n}} = e^{j\pi \frac{1}{2} \cdot \frac{1-2^{-N}}{1-1/2}}.$$

Since $\lim_{N\to\infty} 2^{-N} = 0$,

$$\prod_{n=1}^{\infty}e^{j\frac{\pi}{2^n}}=e^{j\pi}=-1.$$

Q: Find the the eigenvalues and eigenvectors of $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 1 & 2 \end{pmatrix} \qquad (12.12)$$

 $c(t) = \det\left(\lambda \boldsymbol{I} - \boldsymbol{A}\right) = \det\left(egin{matrix} \lambda - 1 & -2 \ -2 & \lambda - 1 \end{matrix}
ight) = (\lambda - 1)^2 - 4 = (\lambda - 3)(\lambda + 1) \; .$

Therefore, the eigenvalues are -1 and 3.

The eigenvector $x = [x_1, x_2]$ corresponding to the eigenvalue λ is computes as the solution of the equation

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$
.

The eigenvector corresponding to $\lambda=-1$ is given by

$$Ax = -x$$
.

We get $x_2 = -x_1$. Choosing $x_1 = 1$ and $x_2 = -1$, after normalization we obtain

$$x=rac{1}{\sqrt{2}}egin{pmatrix}1\\-1\end{pmatrix}$$
 .

Following the same approach, the eigenvector corresponding to $\lambda=3$ is

$$x = rac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

Q: Find the the eigenvalues and eigenvectors of $\mathbf{B} = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$.

$$\det(\lambda \mathbf{I} - \mathbf{B}) = (\lambda - (\alpha + \beta))(\lambda - (\alpha - \beta)).$$

The eigenvalues are $\alpha - \beta$ and $\alpha + \beta$. The eigenvectors are then

$$x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 for $\lambda = \alpha - \beta$

$$x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 for $\lambda = \alpha + \beta$.

Remark that if $\beta = 0$, there is only an eigenvalue with a corresponding eigenvector

$$x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 for $\lambda = \alpha$.

Q: Show that $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^T$ where the columns of \mathbf{V} correspond to the eigenvectors of \mathbf{A} and \mathbf{D} is a diagonal matrix whose main diagonal corresponds to the eigenvalues of \mathbf{A} .

$$oldsymbol{V} = rac{1}{\sqrt{2}} egin{pmatrix} 1 & 1 \ -1 & 1 \end{pmatrix} \ oldsymbol{V} oldsymbol{D} oldsymbol{V}' = rac{1}{\sqrt{2}} egin{pmatrix} 1 & 1 \ -1 & 1 \end{pmatrix} \cdot egin{pmatrix} -1 & 0 \ 0 & 3 \end{pmatrix} \cdot rac{1}{\sqrt{2}} egin{pmatrix} 1 & -1 \ 1 & 1 \end{pmatrix} = rac{1}{2} egin{pmatrix} 2 & 4 \ 4 & 2 \end{pmatrix} = oldsymbol{A}.$$