10 Теория Фредгольма

Опр. Пусть A — вполне непрерывный линейный оператор, действующий в гильбертовом пространстве H. Пусть

$$L = I - A, \quad L^* = I - A^*.$$

Операторы такого вида называются фредгольмовыми.

Рассматривается неоднородное уравнение

$$Lx = y; (10.1)$$

здесь $y \in H, y$ — заданная правая часть. Параллельно рассматривается однородное уравнение

$$Lx = 0 (10.2)$$

и сопряженное однородное уравнение

$$L^*x = 0. (10.3)$$

Введем обозначения

$$N = \operatorname{Ker} L$$
, $N^* = \operatorname{Ker} L^*$, $R = \operatorname{Im} L$, $R^* = \operatorname{Im} L^*$.

Заметим, что N и N^* – замкнутые подпространства в H.

Замечание. Обратим внимание на то, что уравнения (10.1) - (10.3) имеют вид

$$x = Ax + y,$$

$$x = Ax,$$

$$x = A^*x.$$

Нашей целью является доказательство следующих трех теорем.

Теорема 10.1. (Первая теорема Фредгольма или Альтернатива Фредгольма.) Или неоднородное уравнение имеет одно и только одно решение при любой правой части или однородное уравнение имеет нетривиальные решения.

$$R = H \Leftrightarrow N = 0.$$

Теорема 10.2. (Вторая теорема Фредгольма.) Однородное уравнение Lx = 0 и сопряженное однородное уравнение $L^*x = 0$ имеют одинаковое конечное число линейно независимых решений.

$$\dim N = \dim N^* < \infty.$$

Теорема 10.3. (Третья теорема Фредгольма.) Неоднородное уравнение (10.1) разрешимо тогда и только тогда, когда его правая часть у ортогональна всем решениям сопряженного однородного уравнения.

$$R = (N^*)^{\perp}.$$

Заметим, что N^{\perp} является замкнутым подпространством в H, поэтому само является гильбертовым пространством.

Лемма 10.1. Существует постоянная c > 0 такая, что

$$||Lx|| \geqslant c||x|| \quad \forall \, x \in N^{\perp}.$$

Доказательство. Допустим противное. Тогда для каждого $n\geqslant 1$ существует $x_n\in N^\perp,$ что

$$||Lx_n|| < \frac{1}{n}||x_n||.$$

Положим $x_n' = x_n/\|x_n\|$. Тогда $\|x_n'\| = 1$ и

$$||Lx_n'|| < \frac{1}{n}.$$

Выделим из $\{x_n'\}_{n=1}^{\infty}$ подпоследовательность $\{x_{n_k}'\}_{k=1}^{\infty}$ такую, что $x_{n_k}' \to x_0$ слабо в H. Ясно, что $x_0 \in N^{\perp}$. Действительно,

$$(x_n, y) = 0 \quad \forall y \in N \Rightarrow (x_0, y) = 0 \quad \forall y \in N.$$

Так как оператор L ограничен, то $Lx'_{n_k} \to Lx_0$ слабо. Но $Lx'_{n_k} \to 0$ сильно. Следовательно $Lx_0 = 0 \Rightarrow x_0 \in N$. В то же время $x_0 \in N^{\perp}$. Значит, $x_0 = 0$.

Поскольку A – вполне непрерывный оператор, $Ax'_{n_k} \to Ax_0 = 0$ сильно. Но тогда $x'_{n_k} = Lx'_{n_k} + Ax'_{n_k} \to 0$, что невозможно, поскольку $\|x'_{n_k}\| = 1$.

Лемма доказана.

Лемма 10.2. R – замкнутое подпространство.

Доказательство. Пусть $y_n \in R$ и $y_n \to y_0$. Так как

$$H = N \oplus N^{\perp}$$
,

можно считать, что $y_n = Lx_n, x_n \in N^{\perp}$. В силу леммы 10.1 имеем

$$||y_n - y_m|| = ||L(x_n - x_m)|| \ge c||x_n - x_m||, \quad c > 0.$$

Так как последовательность $\{y_n\}_{n=1}^{\infty}$ фундаментальна, то последовательность $\{x_n\}_{n=1}^{\infty}$ также фундаментальна. Поэтому $x_n \to x_0 \in N^{\perp}$. Но тогда

$$y_n = Lx_n \to Lx_0 = y_0 \in R.$$

Лемма доказана.

Лемма 10.3. $R^{\perp} = N^*$.

Доказательство. Заметим, что

$$x \in R^{\perp} \Leftrightarrow (x, Ly) = 0 \ \forall y \in H \Leftrightarrow (L^*x, y) = 0 \ \forall y \in H \Leftrightarrow L^*x = 0 \Leftrightarrow x \in N^*.$$

Лемма доказана.

Замечание 10.1. Из доказательства видно, что для всякого $A \in \mathcal{L}(H)$ справедливо свойство

$$(\operatorname{Im} A)^{\perp} = \operatorname{Ker} A^*.$$

Доказательство третьей теоремы Фредгольма. В силу леммы 10.2 подпространство $Im\ A=R$ замкнуто, а в силу 10.3

$$R^{\perp} = N^*$$
.

Поэтому

$$R = (R^{\perp})^{\perp} = (N^*)^{\perp}.$$

Теорема доказана.

Пусть L – фредгольмов оператор. Тогда оператор L^n также фредгольмов. Дествительно,

$$L^{n} = (I - A)^{n} = I + \sum_{k=1}^{n} (-1)^{k} C_{n}^{k} A^{k}.$$

Положим $N_n = \mathrm{Ker}(L^n)$. Очевидно, что $N_n \subset N_{n+1}$.

Лемма 10.4. Существует номер k такой, что

$$N_1 \subset N_2 \subset \cdots \subset N_k = N_{k+1} = \cdots$$

Доказательство. 1). Предположим, что $N_n \neq N_{n+1}$ для всех n. Тогда существует ортонормированная система $\{e_n\}_{n=1}^{\infty}$ такая, что $e_{n+1} \in N_{n+1}$ и $e_{n+1} \perp N_n$. Действительно, для каждого n существует $x_{n+1} \in N_{n+1} \setminus N_n$. Представим x_{n+1} в виде

$$x_{n+1} = y_{n+1} + z_{n+1}, \quad y_{n+1} \in N_n, \ z_{n+1} \in N_n^{\perp},$$

заметим, что $z_{n+1} \in N_{n+1}$ и положим $e_{n+1} = \frac{z_{n+1}}{\|z_{n+1}\|}$.

Ясно, что $Le_{n+1} \in N_n \Rightarrow e_{n+1} \perp Le_{n+1}$. Так как $Ae_{n+1} = e_{n+1} - Le_{n+1}$, то

$$||Ae_{n+1}||^2 = ||e_{n+1}||^2 + ||Le_{n+1}||^2 \geqslant 1.$$

Но $e_{n+1} \to 0$ слабо в H, и поэтому $Ae_{n+1} \to 0$. Полученное противоречие показывает, что существует номер k такой, что $N_{k+1} = N_k$.

2). Покажем теперь, что $N_{k+2}=N_k$. Тогда $N_n=N_k$ для всех n>k. Заметим, что

$$x \in N_{k+2} \Leftrightarrow L^{k+1}Lx = 0 \Leftrightarrow Lx \in N_{k+1} = N_k \Rightarrow L^k(Lx) = 0 \Rightarrow x \in N_{k+1} = N_k.$$

Лемма доказана.

Доказательство первой теоремы Фредгольма.

1). Покажем, что

$$R = H \Rightarrow N = O.$$

Предположим противное: R=H, но $N\neq 0$, т.е. существует $x_0\neq 0$ такой, что $Lx_0=0$. Тогда существует x_1 такой, что $Lx_1=x_0$. Далее существует x_2 такой, что $Lx_2=x_1$. И т.д.

Таким образом, существует последовательность $\{x_n\}_{n=1}^{\infty}$ такая, что

$$Lx_{n+1} = x_n, \quad x_n \in N_n \setminus N_{n+1}.$$

Получено противоречие с леммой 10.4. Следовательно N=O.

2). Пусть N = O. Тогда в силу третьей теоремы Фредгольма

$$R^* = N^{\perp} = 0^{\perp} = H.$$

Используя п. 1) и снова третью теорему Фредгольма имеем

$$R^* = H \Rightarrow N^* = O \Rightarrow R = (N^*)^{\perp} = H.$$

Теорема доказана.

Лемма 10.5. dim $N < \infty$.

Доказательство. Предположим противное: dim $N=\infty$. Тогда существует ортонормированная система $\{e_n\}_{n=1}^\infty\subset N$. Известно, что $e_n\to 0$ слабо в H. Значит $Ae_n\to 0$ сильно. Поэтому

$$e_n = Le_n + Ae_n = Ae_n \to 0$$
 сильно в H .

Полученное противоречие доказывает лемму.

Лемма доказана.

Доказательство второй теоремы Фредгольма.

Утверждение теоремы состоит в том, что

$$\dim N = \dim N^* < \infty.$$

То, что размерности конечны, следует из леммы 10.5.

Предположим, что $n=\dim N < m=\dim N^*$. Выберем в N и N^* ортонормированные базисы e_1,e_2,\ldots,e_n и $g_1,g_2,\ldots g_m$ соответственно.

Введем вспомогательный оператор

$$Bx = Ax - \sum_{k=1}^{n} (x, e_k)g_k.$$

Он вполне непрерывен как сумма вполне непрерывного и конечномерного операторов.

Рассмотрим фредгольмов оператор K = I - B:

$$Kx = Lx + \sum_{k=1}^{n} (x, e_k)g_k.$$

Заметим, что $Lx\perp g_k$, так как $R=(N^*)^\perp$ в силу третьей теоремы Фредгольма. Поэтому

$$||Kx||^2 = ||Lx||^2 + \sum_{k=1}^n |(x, e_k)|^2$$

Следовательно

$$Kx = 0 \Rightarrow Lx = 0$$
 и $(x, e_k) = 0$ $\forall k = 1, \dots, n$.

To есть $Kx = 0 \Rightarrow x \in N \cap N^{\perp} \Rightarrow x = 0$.

Значит, $\operatorname{Ker} K = O$ и в силу альтернативы Фредгольма $\operatorname{Im} K = H$.

Тогда существует $x_0 \in H$ такой, что $Kx_0 = g_{n+1}$.

$$1 = ||g_{n+1}||^2 = (Kx_0, g_{n+1}) = (Lx_0, g_{n+1}) + \sum_{k=1}^{n} (x_0, e_k)(g_k, g_{n+1}) = 0$$

Полученное противоречие доказывает теорему.

Теорема доказана.

Интегральные уравнения Фредгольма второго рода

Рассмотрим интегральное уравнение с ядром $K \in L_2(E \times E)$ в $L_2(E)$

$$u(x) = \mu \int_{E} K(x, s)u(s) ds + f(x).$$
 (10.4)

Так как интегральный оператор

$$Au(x) = \int_E K(x,s)u(s) ds$$
 (10.5)

вполне непрерывен, то (10.4) есть уравнение Фредгольма вида

$$u - \mu A u = f.$$

Заметим, что

$$A^*u(x) = \int\limits_E \overline{K(s,x)}u(s)\,ds.$$

Опр. Число μ называется xарактеристическим значением интегрального оператора <math>A, если существует функция $u \in L_2(E)$, $||u||_{L_2(E)} \neq 0$ такая, что

$$\mu Au = u$$
.

Эта функция называется co6cmeenhoй функцией, соответствующей характеристическому значению μ .

Если μ – характеристическое значение, то множество

$$U_{\lambda} = \{ u \in L_2(E) \mid \mu A u = u \}$$

называется собственным подпространством оператора A, отвечающим характеристическому значению $\mu.$

Заметим, что элементами U_{λ} являются все собственные функции u, отвечающие характеристическому значению μ и $u\equiv 0$.

Ясно, что U_{λ} – подпространство в $L_2(E)$.

Замечание. Обратим внимание на то, что

$$\mu Au = u \Rightarrow Au = \frac{1}{\mu}u.$$

Следовательно каждому характеристическому значению μ интегрального оператора A отвечает собственное значение $\lambda = \frac{1}{\mu}$.

Теорема 10.4. (Первая теорема Фредгольма (Альтернатива Фредгольма).) Или число μ является характеристическим значением интегрального оператора (10.5) или интегральное уравнение (10.4) разрешимо при любой правой части $f \in L_2(E)$.

Теорема 10.5. (Вторая теорема Фредгольма.) Если μ является характеристическим значением интегрального оператора A, то $\overline{\mu}$ является характеристическим значением сопряженного оператора A^* . Размерности соответствующих собственных подпространств конечны и равны.

Теорема 10.6. (Третья теорема Фредгольма.) Если μ является характеристическим значением интегрального оператора (10.5), то интегральное уравнение (10.4) разрешимо тогда и только тогда, когда его правая часть f ортогональна всем собственным функциям оператора A^* , отвечающим характеристическому значению $\overline{\mu}$.