

Algorithms and Data Structures 2 CS 1501

Fall 2022

Sherif Khattab

ksm73@pitt.edu

(Slides are adapted from Dr. Ramirez's and Dr. Farnan's CS1501 slides.)

Announcements

- Upcoming Deadlines
 - Assignment 2: tonight @ 11:59 pm
 - NO LATE DEADLINE
 - Lab 7: tonight @ 11:59 pm
 - Homework 8: this Friday @ 11:59 pm
- Autograder issues
 - OutOfMemoryError because of a cycle in the trie

Previous lecture

- Minimum Spanning Tree (MST) problem
 - Prim's MST algorithm
 - naive implementation (Theta(v³))
 - Using Best Edges array

This Lecture

- Minimum Spanning Tree (MST) problem
 - Prim's MST algorithm
 - running time analysis of the Best Edges implementation
 - an implementation that uses a heap
 - Kruskal's MST algorithm

Muddiest Points

- How does the summation of (i (v i)) equal Theta
 of (largest term * number of terms) instead of O?
- $\sum_{i=1}^{v-1} i(v-i)$ is the running time for the naive implementation of Prim's MST algorithm
- Example: v = 10
- $\sum_{i=1}^{9} i(10 i) = 9 + 16 + 21 + 24 + 25 + 24 + 21 + 16 + 9$
- $\sum_{i=1}^{v-1} i(v-i) = v \sum_{i=1}^{v-1} i \sum_{i=1}^{v-1} i$
- Although largest term * number of terms is an upper bound on the sum of an arithmetic series, it is within a constant factor

Muddiest Points

- can we see another example of enhanced Prim's?
- Sure!

Muddiest Points

- what is the runtime when using best edge?
- We will see that today.

Runtime of the Best Edges Implementation

- For every vertex we add to T, we'll need to check all of its neighbors to update their best edges as needed
 - O Let's assume we use an **adjacency matrix**:
 - Takes $\Theta(v)$ to check the neighbors of a given vertex
 - Time to update parent/best edge arrays?
 - Θ(1)
 - Time to pick next vertex?
 - ⊖(v)
 - Total: $v*2 \Theta(v) = \Theta(v^2)$

OK, so what's our runtime?

- For every vertex we add to T, we'll need to check all of its neighbors to update their best edges as needed
 - O Let's assume we use **adjacency lists**
 - \blacksquare Takes $\Theta(d)$ to check the neighbors of a given vertex
 - Time to update parent/best edge arrays?
 - Θ(1)
 - Time to pick next vertex?
 - Θ(v)
 - Total: $v^*\Theta(v + d) = \Theta(v^2)$

Prim's MST Algorithm

- seen, parent, and BestEdge are arrays of size v
- Initialize seen to false, parent to -1, and BestEdge to infinity
- BestEdge[start] = 0
- for i = 0 to v-1
 - Find a vertex w with seen[w] = false and BestEdge[w] is the minimum over all unseen vertices
 - seen[w] = 1
 - for each neighbor x of w
 - if(BestEdge[x] > edge weight of edge (w, x)
 - BestEdge[x] = edge weight of (w, x)
 - parent[x] = w
- The parent array represents the found MST

Prim's MST Algorithm

- seen, parent, and BestEdge are arrays of size v
- Initialize seen to false, parent to -1, and BestEdge to infinity
- BestEdge[start] = 0
- for i = 0 to v-1
 - Find a vertex w with seen[w] = false and BestEdge[w] is the minimum over all unseen vertices
 - seen[w] = 1
 - for each neighbor x of w
 - if(BestEdge[x] > edge weight of edge (w, x)
 - BestEdge[x] = edge weight of (w, x)
 - parent[x] = w
- The parent array represents the found MST

What about a faster way to pick the best edge?

- Sounds like a job for a priority queue!
 - \bigcirc Priority queues can remove the min value stored in them in \bigcirc (lg n)
 - Also Θ(lg n) to add to the priority queue
- What does our algorithm look like now?
 - Visit a vertex
 - Add edges coming out of it to a PQ
 - O While there are unvisited vertices, pop from the PQ for the next vertex to visit and repeat

Prim's with a priority queue

PQ:

- 1: (0, 2)
- 2: (5, 3)
- 3: (1, 4)
- 4: (2, 5)
- 5: (2, 3)
- 5: (0, 3)
- 5: (2, 1)
- 6: (0, 1)
- 6: (2, 4)
- 6: (5, 4)

Runtime using a priority queue

- Have to insert all e edges into the priority queue
 - O In the worst case, we'll also have to remove all e edges
- So we have:

$$\bigcirc$$
 e * $\Theta(\lg e)$ + e * $\Theta(\lg e)$

$$\bigcirc = \Theta(2 * e \lg e)$$

$$\bigcirc = \Theta(e \lg e)$$

• This algorithm is known as *lazy Prim's*

Do we really need to maintain e items in the PQ?

- I suppose we could not be so lazy
- Just like with the best edge array implementation, we only need the best edge for each vertex
 - O PQ will need to be indexable to update the best edge
- This is the idea of eager Prim's
 - O Runtime is $\Theta(e \mid g \mid v)$

Eager Prim's Runtime

- v inserts
 - O v log v
- e updates
 - O e log v
- v removeMin
 - O v log v
- Total: (e+v) log v
- Assuming connected graph
 - O e > = v 1
- e+v = Theta(e)
- Total runtime = e log v

Comparison of Prim's implementations

Parent/Best Edge array Prim's

 \bigcirc Runtime: $\Theta(v^2)$

 \bigcirc Space: $\Theta(v)$

- Lazy Prim's
 - \bigcirc Runtime: $\Theta(e \mid g \mid e)$
 - \bigcirc Space: $\Theta(e)$
 - O Requires a PQ
- Eager Prim's
 - O Runtime: Θ(e lg v)
 - \bigcirc Space: $\Theta(v)$
 - O Requires an indexable PQ

Another MST algorithm

- Kruskal's MST:
 - O Insert all edges into a PQ
 - O Grab the min edge from the PQ that does not create a cycle in the MST
 - O Remove it from the PQ and add it to the MST

Kruskal's example

PQ:

- 1: (0, 2)
- 2: (3, 5)
- 3: (1, 4)
- 4: (2, 5)
- 5: (2, 3)
- 5: (0, 3)
- 5: (1, 2)
- 6: (0, 1)
- 6: (2, 4)
- 6: (4, 5)

Kruskal's runtime

- Instead of building up the MST starting from a single vertex, we build it up using edges all over the graph
- How do we efficiently implement cycle detection?
 - O BFS/DFS
 - $\mathbf{v} + \mathbf{e}$
 - Union/Find data structure
 - log v

Kruskal's Runtime

- e iterations
 - O removeMin
 - log e
 - O Cycle detection
 - v + e using DFS/BFS
 - log v using Union/Find
- Total: e log e
- Assuming connected graph
 - $O v 1 \le e \le v^2$
 - \bigcirc log v <= log e <= 2 log v
 - \bigcirc log e = Theta(log v)
- Total runtime: e log v
- Same as Prim's

Problem of the Day 1: Weighted Shortest Path

- Input:
 - A road network
 - Road segments and intersections
 - Road segments are labeled by travel time
 - From length and maximum speed
 - How do we get max speed?
 - Starting address and destination address
- Output:
 - A shortest path from source to destination

Weighted shortest path

- Dijkstra's algorithm:
 - Set a distance value of MAX_INT for all vertices but start
 - O Set cur = start
 - O While destination is not visited:
 - For each unvisited neighbor of cur:
 - Compute tentative distance from start to the unvisited neighbor through cur
 - Update any vertices for which a lesser distance is computed
 - Mark cur as visited
 - Let cur be the unvisited vertex with the smallest tentative distance from start

Tentative Distance

• tentative distance from the start vertex to an unvisited neighbor

through the current vertex =

distance[cur] + edge weight between cur and neighbor

Dijkstra's example

	Distance	Parent
0	0	
1	7	0
2	9	0
3	11	2
4	21	2
5	20	3

Analysis of Dijkstra's algorithm

- How to implement?
 - O Best path/parent array?
 - Runtime?
 - O PQ?
 - Turns out to be very similar to Eager Prims
 - Storing paths instead of edges
 - Runtime?