以发送一段位(称为帧(frame))到这个网段内的其他任何主机。每个帧包括一些固定数量的头部(header)位,用来标识此帧的源和目的地址以及此帧的长度,此后紧随的就是数据位的有效载荷(payload)。每个主机适配器都能看到这个帧,但是只有目的主机实际读取它。

使用一些电缆和叫做网桥(bridge)的小盒子,多个以太网段可以连接成较大的局域网,称为桥接以太网(bridged Ethernet),如图 11-4 所示。桥接以太网能够跨越整个建筑物或者校区。在一个桥接以太网里,一些电缆连接网桥与网桥,而另外一些连接网桥和集线器。这些电缆的带宽可以是不同的。在我们的示例中,网桥与网桥之间的电缆有 1Gb/s的带宽,而四根网桥和集线器之间电缆的带宽却是 100Mb/s。



图 11-4 桥接以太网

网桥比集线器更充分地利用了电缆带宽。利用一种聪明的分配算法,它们随着时间自动学习哪个主机可以通过哪个端口可达,然后只在有必要时,有选择地将帧从一个端口复制到另一个端口。例如,如果主机 A 发送一个帧到同网段上的主机 B,当该帧到达网桥 X 的输入端口时,X 就将丢弃此帧,因而节省了其他网段上的带宽。然而,如果主机 A 发送一个帧到一个不同网段上的主机 C,那么网桥 X 只会把此帧复制到和网桥 Y 相连的端口上,网桥 Y 会只把此帧复制到与主机 C 的网段连接的端口。

为了简化局域网的表示,我们将把集线器和网桥以及连接它们的电缆画成一根水平线,如图 11-5 所示。

在层次的更高级别中,多个不兼容的局域网可以通过叫做路由器(router)的特殊计算机连接起来,组成一个 internet(互联网络)。每台路由器对于它所连接到的每个网络都有一个适配器(端口)。路由器也能连接高速点到点电话连接,这是称为 WAN(Wide-Area

Network,广域网)的网络示例,之所以这么叫是因为它们覆盖的地理范围比局域网的大。一般而言,路由器可以用来由各种局域网和广域网构建互联网络。例如,图 11-6 展示了一个互联网络的示例,3台路由器连接了一对局域网和一对广域网。



图 11-5 局域网的概念视图