UNIDAD TEMATICA NRO 3 - RESPUESTAS

1.

Ptx - Ptotal en dB (α vinculo + α conectores + α empalmes + FD) + Gen dB = S Rx

Ptx - Ptotal en dB (α vinculo) = S Rx

Relación de potencias
$$G$$
 (dB) = 10 $\log \frac{P_2}{P_1}$
Relación de tensiones G (dB) = 20 $\log \frac{V_2}{V_1}$
Relación de corrientes G (dB) = 20 $\log \frac{I_2}{I_1}$

$$dBm = 10 \log \frac{P_i [mW]}{1 mW}$$

$$\log_a b = c \ ; a^c = b$$

Ptx - Ptotal en dB (α vinculo) = S Rx

$$\alpha$$
vinculo= 1200 m* $0.9 \text{ dB} = 10.8 \text{ dB}$
100 m

Ptx = $S Rx + Ptotal en dB (\alpha vinculo)$

Ptx =
$$-15$$
dBm+ 10.8 dB = -4.2 dBm; Ptx= -4.2 dBm;

2.

Ptx - Ptotal en dB (α vinculo + α conectores + α empalmes + FD) + Gen dB = S Rx

Ptx - Ptotal en dB (α vinculo + α conectores y empalmes) = S Rx

Ptx= 0 dBm

αconectores y empalmes= 2 dB

avinculo= 5 dB

S Rx = 0dBm - (5dB + 2 dB) = -7 dBm;

$$\log_a b = c \; ; a^c = b$$

-7dBm=
$$10 \log_{10} X = 10^{-7/10}$$

Rta: -7dBm; 0,199 mW

3.

Ptx - Ptotal en dB (α vinculo + α conectores + α empalmes + FD) + Gen dB = S Rx

Ptx - Ptotal en dB (α vinculo) = S Rx

 α vinculo= 0,5dB/100m

D= 1800 m

Rta: 24 dBm; 251,18 mW

4.

Ptx - Ptotal en dB (α vinculo + α conectores + α empalmes + FD) + Gen dB = S Rx

Ptx - Ptotal en dB (α vinculo + α conectores + FD) = S Rx

Ptx = 3 dBm

 α conectores= 0,6dB c/u ; FD= 10dB

SRx = -10 dBm

D= ???

 α vinculo= 3 dB/1000m***D**

 $3 \text{ dBm} - (3 \text{ dB}/1000\text{m}^*\mathbf{D} + 1.2 \text{ dB}+10\text{dB}) = -10\text{dBm}$

Rta: 600m y 9000m

5.

Ptx - Ptotal en dB (α vinculo + α conectores + α empalmes + FD) + Gen dB = S Rx

Ptx - Ptotal en dB (α vinculo + FD) = S Rx

Ptx= ????

SRx = -10 dBm

FD= 3 dB; D= 5000 m

avinculo= 0,8 dB/100m

Rta: 33dBm; 1995mW

6.

Ptx - Ptotal en dB (α vinculo + α conectores + α empalmes + FD) + Gen dB = S Rx

Ptx - Ptotal en dB (α vinculo) = S Rx

Ptx= 2 mW= ??? dBm

SRx = -60 dBm

D = 30.000 m

αvinculo= **XX** dB/1000m*30.000m

 $3,01dBm - (XX dB/1000m^* 30.000m) = -60dBm$

Rta: 2,1 dB/1000m

7.

Ptx - Ptotal en dB (α vinculo + α conectores + α empalmes + FD) + Gen dB = S Rx

Ptx - Ptotal en dB (α vinculo + α conectores) = S Rx

aconectores= 1 dB

a. Relación de Pérdidas:

```
P(dB)=10*log P1/P2 ; P(dB)= 20dB ; Ptotal= 20dB (\alphacable+\alphaconec); Ptotal= 20 dB
```

O Tambien:

Ptx - Ptotal en dB (α vinculo + α conectores) = S Rx

```
50dBm - (\alpha cable + 1 dB) = 30dBm
Ptotal= 20 dB (19dB +1dB)
```

b. Atenuación cable coaxil fino = 5dB/100m

```
\alphavinculo= 1000m*5dB/100m; \alphavinculo= 50dB + 1dB (conectores)
```

Conclusión: se deberá utilizar un amplificador que compense la pérdida total, implica disponer uno de una ganancia de **31 dB.**

c. Atenuación cable coaxil grueso = 0,8dB/100m

```
\alphavinculo= 1000m*0,8dB/100m; \alphavinculo= 8dB
```

Conclusión: no es necesario utilizar un amplificador que compense la pérdida total, pues se dispone de una potencia remanente o **ganancia a favor de 11dB.**