CLAIMS:

לינצ לינגא

5

10

15

20

1. A mass spectrometer comprising:

an ion source for producing sample ions;

an ion interface;

a reaction/collision cell section, with the ion interface providing an interface to the ions between the ion source and the reaction/collision cell section; and

an ion-neutral decoupling device provided between the ion interface and the reaction/collision cell section, to provide substantial separation between ions and neutral particles, whereby only ions pass on to the reaction/collision cell section.

- 2. A mass spectrometer system as claimed in claim 1, wherein the ionneutral decoupling device comprises one of: a plate or a plurality of plates including
 apertures with the apertures offset from one another to prevent direct passage of
 neutral gas particles; a plurality of pairs of rods provided with slots for passage of
 ions and offset so as to interrupt passage of neutral gas particles; an electrostatic
 quadrupole 90° deflector; and electrostatic sector deflector; a magnetic sector
 deflector; an obstruction preventing direct flow of neutral gas particles from the ion
 interface to the reaction/collision cell section; and a plate including an offset
 aperture and defining an intermediate pressure chamber between the ion interface
 and thereaction/collision cell section.
- 3. A mass spectrometer system as claimed in claim 2, which includes an ion optics compartment, wherein the ion-neutral decoupling device is provided in the ion optics compartment.
- 4. A mass spectrometer system as claimed in claim 3, wherein the reaction/collision cell section includes a collision cell provided with a collision gas.

,

25

		5. A mass spectrometer system as claimed in claim 4, which includes a
		mass analyzer downstream from the collision cell, for analyzing ions after collision
		and/or reaction in the collision cell.
		
Sub W	5	6. A method of operating a mass spectrometer system, in which ions are
		generated and subject to mass analysis, the method comprising:
		(i) supplying a sample to an ion source and generating a stream of
		ions, including sample ions and unwanted neutral particles;
		(ii) separating neutral particles from the ion stream;
	10	(iii) passing the ion stream into a reaction/collision cell section for
<u>/</u>		analysis.
		7. A method as claimed in claim 6, wherein step (ii) includes subjecting the
		ions to deflection, utilizing deflection of the ions, while permitting the neutral gas
	15	flow to continue undeflected.
e		
ii ii		8. A method as claimed in claim 6, which includes passing the ion stream
ioosoo		and neutral gas particles through a series of apertures in plates, the apertures being
		offset, and providing an electrostatic field to drive the ions through the apertures
	20	and the plates, the offset apertures serving to obstruct direct flow of neutral
		particles.
ch		
07	•	9. A method as claimed in claim 6, which includes generating the ion
		stream at atmospheric pressure, passing the ion stream through an aperture into an
	25	ion optics compartment maintained at a substantially sub-atmospheric pressure,
		thereby to generate an expanding supersonic jet, wherein step (ii) includes
		obstruction the supersonic jet, thereby to prevent the kinetic energy of the jet
		promoting passage of neutral particles into the reaction/collision cell section.
	30	10. A method as claimed in claim wherein the mass analysis step includes
		passing the ions into a collision cell for collision and/or reaction, and subsequently
		subjecting the ions to mass analysis.

19