ALGORITMOS Y ESTRUCTURAS DE DATOS III Final / 20-JUL-2021

1. [2.5 puntos] Dado un conjunto de números reales $S = \{x_1, x_2, \dots, x_n\}$, se quiere determinar un conjunto de menor cardinalidad de intervalos cerrados de longitud 1 que contenga a todos los números de S. Diseñar un algoritmo goloso que resuelva este problema.

Por ejemplo, para $S = \{-1.5, -1, 2\}$, resultados posibles son:

- $\{[-2,-1],[1,2]\}$
- $\{[-1.5, -0.5], [1.5, 2.5]\}$

Mientras que $\{[-2.1, -1.1], [-1, 0], [1.1, 2.1]\}$ no cumple tener la mínima cardinalidad posible.

Demostrar que el algoritmo propuesto es correcto y determinar su complejidad temporal. Justificar.

- 2. [2.5 puntos] Un corte de aristas de G es un conjunto de aristas tal que al borrarlas aumenta la cantidad de componentes conexas de G. Dado G = (V, X) un grafo conexo, probar que un subgrafo H de G es subgrafo de $G' = (V, X \setminus X_T)$ para algún $T = (V, X_T)$ árbol generador de G si, y sólo si, H no contiene un corte de aristas de G.
- 3. [2.5 puntos] Dado un flujo máximo que puede circular por una red, donde c_e es la capacidad máxima de la arista e y f_e es el valor del flujo en el arco e, decimos que un arco es **vital máximo** si al eliminarlo de la red se produce el máximo decrecimiento del valor del flujo (obtenido eleminando sólo un arco).

Decir si son verdaderas o falsas las siguientes afirmaciones. Justificar.

- (a) Un arco vital máximo es un arco e que tiene el valor máximo de c_e .
- (b) Un arco vital máximo es un arco e que tiene el máximo valor de f_e .
- (c) Un arco **vital máximo** es un arco e que tiene el máximo valor de f_e , entre los que pertenecen a un corte mínimo.
- (d) Un arco que no pertenece a un corte de capacidad mínima no puede ser un arco vital máximo.
- (e) Una red puede contener varios arcos vitales máximos.
- 4. [2.5 puntos] En el problema SUBSET-SUM la entrada es un conjunto $S = \{x_1, \ldots, x_n\}$ y un entero t. En COMPOSITE, dado un entero n, se quiere saber si n es un número compuesto (es decir, n tiene un factor p, con 1). Sabiendo que SUBSET-SUM es NP-completo y COMPOSITE es NP, decidir si cada una de las siguientes sentencias se desprenden de estos hechos (justificar todas las respuestas).
 - (a) SUBSET-SUM \leq_p COMPOSITE.
 - (b) Si hay un algoritmo O(nt) para SUBSET-SUM, then P = NP.
 - (c) Si hay un algoritmo $O(n^3 \log t)$ para SUBSET-SUM, entonces hay un algoritmo polinomial para COMPOSITE.
 - (d) Si hay un algoritmo $O(\log n)$ para COMPOSITE, entonces P = NP.
 - (e) Si $P \neq NP$, entonces ningún problema en NP puede ser resuelto en tiempo polinomial.