1. Найти функицю, которая на $+\infty$ растёт как линейная функиция, а на $-\infty$ ведёт себя как константа

Путём долгих изысканий, я нашёл следующую функцию: $f(x) = \frac{x^3}{x^2 + e^{-x}}$ Проверим её на соответсвие заданным условиям:

• наклонная асимптота на $+\infty$:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^3}{x(x^2 + e^{-x})} = \lim_{x \to +\infty} \frac{x^2}{x^2 + e^{-x}} = \lim_{x \to +\infty} \frac{1}{1 + \frac{e^{-x}}{x^2}} = \frac{1}{\lim_{x \to +\infty} \left(1 + \frac{e^{-x}}{x^2}\right)} = \frac{1}{\lim_{x \to +\infty} \left(1 + \frac{e^{-x}}{x^2}\right)} = \frac{1}{1 + \lim_{x \to +\infty} \left(\frac{1}{x^2 \cdot e^x}\right)} = \frac{1}{1 + \frac{1}{\infty}} = \frac{1}{1 + 0} = 1 \in \mathbb{R}$$

• поведение константы на $-\infty$:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x^3}{x(x^2 + e^{-x})} = \lim_{x \to -\infty} \frac{x^2}{x^2 + e^{-x}} = \lim_{x \to -\infty} \frac{1}{1 + \frac{e^{-x}}{x^2}} = \frac{1}{\lim_{x \to -\infty} \left(1 + \frac{e^{-x}}{x^2}\right)} = \frac{1}{\lim_{x \to -\infty} \left(1 + \frac{e^{-x}}{x^2}\right)} = \frac{1}{1 + \lim_{x \to -\infty} \left(\frac{e^{-x}}{x^2}\right)} = \frac{1}{1 + \infty} = \frac{1}{1 + \infty} = 0 \in \mathbb{R}$$

Таким образом, у заданной функции $f(x)=\frac{x^3}{x^2+e^{-x}}$ есть две асимптоты: на $+\infty$ это прямая вида $y=1\cdot x+b$, на $-\infty$ это горизонтальная прямая y=0.

Рис. 1: Диаграмма моментов на участке выбора момента прокатки