Python による異常検知 正誤表

ページ	該当箇所	誤	正
vi	目次 第2章 2.5 タイトル	関数近似に基づく <u>値</u> 異常検知	関数近似に基づく異常検知
11	1.1-2章 第1段落3行目 (下から9行目)	多数のサンプルデータの入力セット <i>x_i</i> とラベルセット <i><u>i</u>, <i>i</i> = 1,2,3 ··· N がある場合</i>	多数のサンプルデータの入力 セット x_i とラベルセット d_i , $i=1,2,3\cdots N$ がある場合
19	1 行目	<u>①</u> 目的の違い	目的の違い
23	図 1.6 右側	<u>不</u> 正解:1	正解:1
23	第2段落2行目(上から5 行目)	訓練データ $oldsymbol{x_i}$ を用いて誤差関数の総和 $oldsymbol{e}$ 最小になるように	訓練データ x _i を用いて誤差関数 の総和 <u>が</u> 最小になるように
24	図 1.7 下段 右から 2番目	ε-不感 <u>損失</u> 関数	ε-不感 <u>誤差</u> 関数
26	① 第1段落2行目	xは説明変数を、 <u>n</u> は説明変数の数を表しています。	xは説明変数を、 K は説明変数の 数を表しています。
27	(b) 第1段落 2 行目	さらに説明変数 <i>x</i> を <u>f(x)</u> に拡張す ることによって	さらに説明変数 x を $\underline{\varphi(x)}$ に拡張することによって
30	第2段落4行目	誤差 $\underline{\delta_i} = f(x) - y_i (\xi_i \ge 0)$ を最小にするのが一般的です。	誤差 $\underline{\delta_i} = f(x_i) - y_i (\delta_i \ge 0)$ を 最小にするのが一般的です。
30	第3段落2行目	マージン $m_i = f(x)y_i = (wx_i + b)y_i$ として展開することができるので	マージン $m_i = f(x_i)y_i = (wx_i + b)y_i$ として展開することができるので
30	式(13)	$max \{d\} = min \{\frac{1}{2} w \}$ $\equiv min \{\frac{1}{2} w ^2\}$ $\equiv min \{\frac{1}{2} w ^2 + C\sum_{l=1}^{N} \delta_l\}$ $min \{\frac{1}{2} w ^2 + C\sum_{l=1}^{N} \delta_l\}$	$max[d] = min[w]:$ $\Leftrightarrow min\left[\frac{1}{2} w ^2\right]:$ $\Leftrightarrow min\left[\frac{1}{2} w ^2 + C\sum_{i=1}^N \delta_i\right]$
30	式(14)	$min\left\{\frac{1}{2} w ^2 + C\sum_{i=1}^N \delta_i\right\}$	$\min\left[\frac{1}{2} w ^2 + C\sum_{i=1}^N \delta_i\right]$
33	式(22)と式(23)	$\min \{1, \max (0, 1 - m_i)\}$	min $\{1, \max(0, 1 - m_i)\}$
35	式(25)	$0, \boldsymbol{\delta}_i \leq \varepsilon$	$0, \boldsymbol{\delta}_i < \varepsilon$

35	式(25)後の1行目	ここでは $\underline{\delta_i} = f(x) - y_i$ とします。	ここでは $\underline{\delta_i} = f(x_i) - y_i$ とします。
ページ	該当箇所	誤	正
35	(式 25)	$L = \begin{cases} 0, & \delta_i \le \varepsilon \\ \delta_i - \varepsilon, & \delta_i \ge \varepsilon \end{cases}$	$L = \begin{cases} 0, & \delta_i \le \varepsilon \\ \delta_i - \varepsilon = \xi, & \delta_i \ge \varepsilon \end{cases}$
42	(a) 第2段落3行目	重複ありでm個(<u>m <= n</u>)のデ ータをランダムに抜き出して、	重複ありでm個(<u>m < n</u>)のデー タをランダムに抜き出して、
45	式(28)	$\sum_{i=}^{N} w_i^{(m-1)} \dots$	$\sum_{i=1}^{N} w_i^{(m-1)} \dots$
46	図 1.24 上部の表 2 段目 (両列)	$\sum_{i=}^{N} w_i^{(m-1)} \dots$	$\sum_{i=1}^{N} w_i^{(m-1)} \dots$
46	図 1.24 上部の表 3 段目 (左列)	$\gamma_m = \frac{\overline{e_m}}{1 - = \overline{e_m}}$	$\gamma_m = \frac{\overline{e_m}}{1 - \overline{e_m}}$
46	図 1.24 上部の表 2 段目と 4 段目(両列)	$h^m(xi;a)$	$h^m(x_i;a)$
46	最終行	係数γ _i を <u>規格</u> してから	係数γ _i を <u>規格化</u> してから
48	図 1.25 上部の表 4 段目と 5 段目	$h^m(xi;a)$	$h^m(x_i;a)$
48	2 行目	各データ (x_i,y_i) についての <u>損失</u> 関数 $L(y_i,F(x_i))$ を小さくするこ とを考えましょう。	各データ (x_i,y_i) についての <u>誤差</u> 関数 $L(y_i,F(x_i))$ を小さくするこ とを考えましょう。
49	式(35)	$F_{m_{m-1}}(X) + \gamma h^m(x_i; \alpha_m)$	$F_m(X) = F_{m-1}(X) + \gamma h^m(x_i; \alpha_m)$
52	式(44)	$\frac{\sum_{i=1}^{N} g_i}{=\sum_{i=1}^{N} h_i + \lambda}$	$\frac{\sum_{i=1}^{N} g_i}{\sum_{i=1}^{N} h_i + \lambda}$
53	式(46)	ylnP	ylnp
55	式(48)	(M, n, d_{new})	(M, N, d_{new})
55	式(49)	$\begin{bmatrix} x_{\pi_1^{(k)}(1)} & \cdots & x_{\pi_1^{(k)}(p)} \\ x_{\pi_2^{(k)}(1)} & \cdots & x_{\pi_1^{(k)}(p)} \\ \vdots & \cdots & x_{\pi_1^{(k)}(p)} \\ x_{\pi_N^{(k)}(1)} & \cdots & x_{\pi_1^{(k)}(p)} \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_1 \\ \vdots \\ w_p \end{bmatrix}$	$\begin{bmatrix} x_{\pi_1^{(k)}(1)} & \cdots & x_{\pi_1^{(k)}(p)} \\ x_{\pi_2^{(k)}(1)} & \cdots & x_{\pi_2^{(k)}(p)} \\ \vdots & \cdots & \vdots \\ x_{\pi_N^{(k)}(1)} & \cdots & x_{\pi_N^{(k)}(p)} \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix}$
58	式(50)後 第2段落3行目 URL	https://www.kaggle.com/c/Merck Activity (スペースあり)	https://www.kaggle.com/c/MerckActivity (スペースなし)
63	図 1.34 右	6 次元グラフの座標軸で、 <i>p</i> 軸が 2 つ存在	片方を q 軸へ変更

66	式(58)、式(59、式(60)、 式(61)	F^t	F^T
66	最終行	共分散行列 <u>XX^t</u> の固有関数行列で す。	共分散行列 XX^T の固有関数行列です。
67	第1段落 5 行目	また、 <u>X;X</u> tは式(64)の条件を満 たしているので、	また、 <u>X_iX^T</u> は式(64)の条件を満 たしているので、
ページ	該当箇所	誤	正
66	図 1.38 ① 下	XX^t	XX^T
66	☑ 1.38 ③	$\begin{pmatrix} f_{11} & f_{21} & f_{31} & f_{41} & f_{51} & f_{61} \\ f_{12} & f_{22} & f_{33} & f_{44} & f_{55} & f_{66} \end{pmatrix}$	$\begin{pmatrix} f_{11} & f_{21} & f_{31} & f_{41} & f_{51} & f_{61} \\ f_{12} & f_{22} & f_{32} & f_{42} & f_{52} & f_{62} \end{pmatrix}$
74	第3段落 2行目	t-SNE 手法では Embeding 、	t-SNE 手法では Embedding 、
76	第2段落4行目	それは <u>KL</u> カルバック・ライブ ラー情報量 (KL ダイバージェン ス)です。	それは カルバック・ライブラー 情報量 (KL ダイバージェンス) です。
77	図 1.43 下部の数式	$L = KL\{p_{ij}(2D), q_{ij}(1D)\} \to 0$ $zi \leftarrow zi + a \frac{\delta L}{\delta z_i}$	$L = KL\{p_{ij}(2D) q_{ij}(1D)\} \to 0$ $z_i \leftarrow z_i + a \frac{\delta L}{\delta z_i}$
81	図 1.45 ネットワーク部分、 右側ノードの一番下	у ₃	У7
81	② の式	$ \begin{cases} = 1 & (i = i_{winner}) \\ = 0 & (i \neq i_{winner}) \end{cases} $	$\begin{cases} 1 & (i = i_{winner}) \\ 0 & (i \neq i_{winner}) \end{cases}$
82	図 1.46 ネットワーク部分、 右側ノードの一番下	c_7	c_n
85	式(84) 1 行目	$ \begin{cases} = 1 & (i = i_{winner}) \\ = 0 & (i \neq i_{winner}) \end{cases} $	$\begin{cases} 1 & (i = i_{winner}) \\ 0 & (i \neq i_{winner}) \end{cases}$
86	第1段落2行目	K 平均法の計算プロセスとまったく同じです。	<u>k</u> 平均法の計算プロセスとまった く同じです。
88	図 1.50 (c) Resampling 部分	$\chi_1^{resampe}$	$x_1^{resample}$
88	第3段落1行目	規格された尤度関数を重みwとし て定義します。	規格化された尤度関数を重みwと して定義します。
94	第2段落2行目	1.4 節で説明した主成分分析や <u>K</u> 平均法、	1.4 節で説明した主成分分析や <u>k</u> 平均法、
95	式(1)	$\alpha = -\ln\left(p(x' D,\theta)\right)$	$\alpha = -\ln\left(p(x' D,\theta)\right)$

95		この μ はデータの平均値、 σ はデータの分散値として知られています ただし、式(2)の分母には分散のが入っています。分散の効果は、同図の左側のグラフに示しています。たさえば分散のが小さい場合と、データの正規分布も異常度の分布も鋭くなります。直駆にエー μ が同じである2つさい分散のをもつデータの異なりにであるでは、異常をもつデータにという結果に式(2)で検証すれば自明なことです。	$co\mu$ はデータの平均値、 σ^2 はデータの分散値として知られています ただし、式 (2) の分母には分散 σ^2 の効果は、同図の左側のグラフに示しています。たさは分散 σ^2 が小さい場合では、データの正規分布も異常度 α の分布も鋭くなります。直感的にいうと、平均との距離 $ x-\mu $ が同じである 2 つのデータ点に関しては、小さい分散 σ^2 をもつデータの異常度 α が高いという結果に式 (2) で検証すれば自明なことです。
103	式(11)	$-\ln\left(p(\mathbf{x}' D,\theta)\right)$	$-\ln\left(p(x' D,\theta)\right)$
103	式(11)後 1 行目	式 (11) において、 Σ は分散行列であり、	式(11)において、Σは <u>共</u> 分散行列 であり、
103	最終行	分散行列を下記の3種類と仮定 します。	共分散行列を下記の3種類と仮 定します。
104	① タイトル	分散行列 1	共分散行列 1
104	式(12)後 1 行目	分散行列の対角要素は定数 1 になっているので、	共分散行列の対角要素は定数 1 になっているので、
ページ	該当箇所	誤	正
104	式(14)	$\alpha(S_1) = \{ (S_1^{X} - u^{X})^2 + (S_1^{Y} - u^{Y})^2 + \cdots (S_1^{T} - u^{T})^2 \}$	$\alpha(S_1) = \{ (S_1^{X} - u^{X})^2 + (S_1^{Y} - u^{Y})^2 + \cdots (S_1^{T} - u^{T})^2 \}$
104	式(15)	$\alpha(S_2) = \{ (s_2^{X} - u^{X})^2 + (S_2^{Y} - u^{Y})^2 + \dots (S_2^{T} - u^{T})^2 \}$	$\alpha(S_2) = \{ (S_2^X - u^X)^2 + (S_2^Y - u^Y)^2 + \dots (S_2^T - u^T)^2 \}$
104	②タイトル	分散行列 2	共分散行列 2
104	式(16)後 1 行目	分散行列の逆行列は、	共分散行列の逆行列は、

104	式(18)	$\alpha(\mathbf{S}_1) = \left\{ \frac{(\bar{\mathbf{S}}_1^X)^2}{a} + \frac{(\bar{\mathbf{S}}_1^Y)^2}{b} + \frac{(\bar{\mathbf{S}}_1^Z)^2}{c} + \frac{(\bar{\mathbf{S}}_1^T)^2}{d} \right\}$	$\alpha(S_1) = \left\{ \frac{(\bar{S}_1^X)^2}{a} + \frac{(\bar{S}_1^Y)^2}{b} + \frac{(\bar{S}_1^Z)^2}{c} + \frac{(\bar{S}_1^T)^2}{d} \right\}$
104	式(19)	$\alpha(S_2) = \left\{ \frac{(\bar{s}_2^X)^2}{a} + \frac{(\bar{s}_2^Y)^2}{b} + \frac{(\bar{s}_2^Z)^2}{c} + \frac{(\bar{s}_2^T)^2}{d} \right\}$	$\alpha(S_2) = \left\{ \frac{(\bar{S}_2^X)^2}{a} + \frac{(\bar{S}_2^Y)^2}{b} + \frac{(\bar{S}_2^Z)^2}{c} + \frac{(\bar{S}_2^T)^2}{d} \right\}$
105	③タイトル	分散行列 3	共分散行列 3
105	1 仁日	以下の構造を持つ分散行列が多	以下の構造を持つ共分散行列が
105	1 行目	くみられます。	多くみられます。
105	式(20)後 1 行目	分散行列の逆行列を簡単に計算	共分散行列の逆行列を簡単に計
103	八(20) 及 1 1 1 日	することはできません。	算することはできません。
105	図 2.8 後 1 行目	算出した分散行列Σと、	算出した <u>共</u> 分散行列Σと、
		分散行列の逆行列は	<u>共</u> 分散行列の逆行列は
106	第4段落3行目	np.linalg.inv()を用いて簡単に計	np.linalg.inv()を用いて簡単に計
		算することができます。	算することができます。
107	式(24)	$SN \equiv 10 \log 10 \{\}$	$SN \equiv 10\log_{10}\{\}$
108	式(25)	$SN = 10 \log 10 \{\}$	$SN = 10 \log_{10} \{\}$
P111	式(26)	$\alpha = \frac{1}{k} \frac{\sum_{i=1}^{k} -q_i }{\sum_{i=1}^{N} q_{i,k} - x_i }$	$\alpha = \frac{1}{k} \frac{\sum_{i=1}^{k} p - q_i }{\sum_{i=1}^{N} q_{i,k} - x_i }$
117	式(29)	$\alpha(x) = -ln \left\{ \sum_{k=1}^{K} \pi_k N\{x \mu_K, \Sigma_k \right\}$	$\alpha(x) = -\ln\left\{\sum_{k=1}^{K} \pi_k N\{x \mu_k, \Sigma_k\}\right\}$
117	式(29)後 1行目	ここでの π_k, μ_K, Σ_k はそれぞれ、	ここでの π_k, μ_k, Σ_k はそれぞれ、
118, 119	式(31)、式(32)、式(33)	F^tFX	F^TFX
121	2.5 章 タイトル	関数近似に基づく <u>値</u> 異常検知	関数近似に基づく異常検知
121, 123	最下部 2.5 章 タイトル	関数近似に基づく <u>値</u> 異常検知	関数近似に基づく異常検知
122	式(43)後 1 行目	$ z z r \cdot \underline{\delta_i = f(x) - d_i (\xi_i \ge 0)} $	$ zz \mathcal{C}, \ \underline{\delta_i} = f(x_i) - d_i (\underline{\delta_i} \ge \underline{0}), $
124	式(48)	$\alpha(X_{test}) == \left[\alpha(X_{test}) - \tilde{f}(X_{test})\right]^{2}$	$\alpha(X_{test}) = \left[\alpha(X_{test}) - \tilde{f}(X_{test})\right]^{2}$
126	図 2.16 要素①の式	$N_{\perp \!\!\!\perp ightarrow \perp \!\!\!\!\perp}^{\overline{7}'} = 15$	$N_{\mathbb{E} \to \mathbb{E}}^{\frac{7}{7}} = 15$
ページ	該当箇所	誤	正
133, 135	図 2.19 と図 2.20 下のグラフ	Area <u>d</u> under Curve (AUC)	Area <u>U</u> nder Curve (AUC)
141	図 $3.1 x_4$ における観測値	$y_s(x_1)$	$y_s(x_4)$

224	リスト 4.3 メイトル	/ tatoEnoodor.ipynb	/ tato En ocaci py
	リスト 4.3 タイトル	AutoEncoder.ipynb	AutoEncoder.py
ページ	該当箇所	誤	正
222	リスト 4.1 タイトル	AutoEncoder. <u>ipynb</u>	AutoEncoder. <u>py</u>
218	図 3,49 (c) タイトル	Jinear_Regression	Linear_Regression
207	2 第1段落2行目	それぞれ $\underline{K} = \underline{1}$ と $\underline{K} > \underline{1}$ の概念図を示しています。	それぞれ $\underline{k} = \underline{1}$ と $\underline{k} > \underline{1}$ の概念図を示しています。
_ 5 ·			(-) ((-au_sample)
197	式(68)	$\alpha(X_t) = X_t - \tilde{X}_t(Out - sample) $	$\alpha(X_t) = X_t - \tilde{X}_t(Out_sample) $
196	式(67)	$\alpha(X_t) = X_t - \tilde{X}_t(In - sample) $	$\alpha(X_t) = X_t - \tilde{X}_t(In_sample) $
194	リスト 3.25 189 行目	pyplot.show()	plt.show()
193	第1段落と ADF 検定結果	文章と結果が異なっている(文章は 151 ページのコピー?)	?
191	(新 2 段為 7 打百(下がら3) (行目)	同じ種類の手法、	と同じ種類の手法、
130	第 2 段落 7 行目(下から 3		SVR このことはランダムフォレスト
190	図 3.28 2 段目 タイトル	カルマン <u>ケ</u> イン、 SVM	カルマン <u>ゲ</u> イン、
179	式(60)後 1 行目	時刻tにおけるフィルタリングと カルマンケイン	時刻tにおけるフィルタリングと カルマンゲイン
178	式(53)後 1 行目	カルマン <u>ケ</u> インおよび分散の更 新は、	カルマン <u>ゲ</u> インおよび分散の更 新は、
177	図 3.22 時刻= t + 1部分	$\hat{x}_{\bar{t}+1} = a\hat{x}_t = d = g\epsilon_t$	$\hat{x}_{\bar{t}+1} = a\hat{x}_t + d + g\epsilon_{t+1}$
176	式(40)	$\sigma^{2}_{\hat{x}_{t}} = (1 - k)(a^{2}\sigma^{2}_{\hat{x}_{t-1}} + g^{2}\tau^{2})$	$\sigma^{2}_{\hat{x}_{t}} = (1 - k_{t})(a^{2}\sigma^{2}_{\hat{x}_{t-1}} + g^{2}\tau^{2})$
174	式(28)	$\hat{x}_t = (1 - k)\hat{x}_{\bar{t}} + k_t \cdot x_t$	$\hat{x}_t = (1 - k_t)\hat{x}_{\bar{t}} + k_t \cdot x_t$
164	式(20) 1 行目	$\Delta^1 s_t = s_t - s_t$	$\Delta^1 s_t = s_t - s_{t-1}$
		りますが、	<u>が</u> ありますが、
160	3.2-4章 第3段落1行目	事前に決めなりればいりないパイパーパラメータ (p,q) が3つあ	事前に次めなりればいりないハイパーパラメータ $\underline{t(p,q)}$ の2つ
		(ACF) があります。 事前に決めなければいけないハ	(<u>P</u> ACF) があります。 事前に決めなければいけないハ
144	② (2) 2 行目	残差に対する偏自己相関	残差に対する偏自己相関
143	① (3)1行目	時系列サンプル観測値 <u>y(t)y(t)</u> と	時系列サンプル観測値 <u>y(t)</u> と
143	① (2) I 1J 日	分散は、	は、
143	① (2)1行目	時系列サンプル観測値 $\underline{y(t)y(t)}$ の	時系列サンプル観測値 <u>v(t)</u> の分散

233	STEP4 タイトル	損失の導入	<u>誤差関数</u> の導入
233	第1段落 4行目	次の 2 つの <u>損失</u> を導入します。	次の2つの <u>誤差関数</u> を導入しま す。
234	リスト 4.6 タイトル	anoGAN. <u>ipynb</u>	anoGAN. <u>py</u>
	4.1-4章 第2段落1行目	長さ d の時系列データから、次の	長さ <u>d</u> の時系列データから、次の
235		<u>L</u> 個の観測値を予測する LSTM を 学習します。図 4.12 は、 <u>d =</u>	<u>ℓ</u> 個の観測値を予測する LSTM を 学習します。図 4.12 は、 <u>d =</u>
		<u>2.<i>l</i> = 1</u> の場合です。	<u>2.l = 1</u> の場合です。
236	STEP1 第1段落 1行目	LSTM は長さ <u>d</u> の時系列データか	LSTM は長さ <u>d</u> の時系列データか
230		ら次の <u>l</u> 個を予測するので、	ら次の <u>l</u> 個を予測するので、
236	STEP1 第 1 段落 4 行目	今回は $d = 10, l = 3$ としてデー	今回は $d = 10, l = 3$ としてデータ
230	31日1 第1权洛 411日	タセットを生成します。	セットを生成します。
236	リスト 4.7 タイトル	LSTM. <u>ipynb</u>	LSTM. <u>py</u>
237	STEP2 第 2 段落 1 行目	テストデータの <u>損失</u> 関数の値を	テストデータの <u>誤差</u> 関数の値を
231		それぞれプロットし、	それぞれプロットし、
237	リスト 4.8 タイトル	LSTM. <u>ipynb</u>	LSTM.py
240	第1段落2行目	<u>M</u> 次元正規分布にフィッティン	<u>M</u> 次元正規分布にフィッティン
240	第 1 权洛 2 1] 日 	グした最尤推定量の値は、	グした最尤推定量の値は、
240	リスト 4.9 タイトル	LSTM. <u>ipynb</u>	LSTM. <u>py</u>
241	リスト 4.10 タイトル	LSTM. <u>ipynb</u>	LSTM.py
260	索引 E 3行目	Embeding	Embed <u>d</u> ing
260	索引 K 2 行目	KI カルバック・ライブラー情報 量	カルバック・ライブラー情報量

P 193

修正前

以下は ADF 検定結果です。P値が非常に大きいので、サンプルデータは非定常性をもつことが示唆されます。さらに ADF 統計値の一 0.773461 は、すべての臨界値 (Critical Values) より大きくなっており、非定常性であることが示唆されます。

ADF Statistic: -3.105539 P-value: 0.026146

Critical Values: 1%: -3.448 5%: -2.869 10%: -2.571

.....

修正後

以下は ADF 検定結果です。P 値が 0.026146 となっています。この数値は非常に微妙です。仮に基準のP値が 0.05 とすれば単位根過程という帰無仮説は棄却されるので、単位根過程ではないとみなすことができます。しかし基準のP値が 0.01 とすると、単位根過程という帰無仮説は棄却できません。ADP 統計値も同じ傾向を示しています。臨界値を 5%とした場合は、ADF 統計値の-3.105539 が臨界値を下回るので、定常性であるとみなせますが、臨界値を 1%とした場合は、ADF 統計値のほうが臨界値を上回るので、定常性ではなく非定常性であることが示唆されます。

P 214

(修正前)

また、証明は省略しますが、 Σ_{5x5} の要素 σ の値は A の固有値の平方根となり、数値 1 より小さくなります。特異スペクトル変換法は最大特異値である σ_1 を用いて、異常度を以下のように定義しています。

$$\alpha = 1 - \sigma_1^2 \tag{82}$$

(修正後)

また、証明は省略しますが、 $\Sigma_{5\times5}$ の要素 σ の値は A の固有値の平方根となり、数値 1 より小さくなります。誤差関数とのつながりから、式(78)の単位行列Iを正解とみなせば、異常度は正解との誤差から定義することができます。ただし、式(80)は複数個の特異値を持つので、文献[33]で紹介した複数個の特異値の中の最大特異値である σ_1 を用いて、以下のように異常度を計算します。

$$\alpha = 1 - \sigma_1^2$$