Datum:		Třída:	
	SPŠ CHOMUTOV	A4	
Číslo úlohy:		Příjmení:	
	STABILIZÁTOR	LEDVINKOVÁ	

Zadání:

Změřte chování stabilizátoru.

Dále s využitím elektronické zátěže změřte zatěžovací charakteristiky stabilizátoru napětí 7805. Stabilizátor zatěžujte maximálně proudem 1 A. Určete vnitřní odpor zdroje a napětí ideálního zdroje.

Schéma:

- 1. Ruční měření
- a. Zatěžovací charakteristika

b. Aplikace integrovaného stabilizátoru

c. Zdroj konstantního proudu

2. VEE – měření s elektronickou zátěží

Tabulka použitých přístrojů:

1. Ruční měření

Název zařízení	Označení	Údaje	Evidenční číslo
SS zdroj	U1	EA-STP2000B-3A	LE 5116
síťový transformátor	ST	220V/2x6V	-
diodový můstek	-	-	-
voltmetr	V_1	600V=1%一 🛭 🖰 🌣	LE2 2161/10
voltmetr	V_2	600V=1% 〇 0.5 🏚	LE2 410/5
ampérmetr	mA	6A ─ 🚨 🝮 🏚	LE2 1944/11
kondenzátor	С	4G7 / 50V	-
stabilizátor	-	MA 7805	-
reostat	R _{z1}	18Α/100Ω	LE 5083
reostat	R _{z2}	4Α/16 Ω	LE 420
odporová dekáda	R ₁ / R _b	11ΜΩ	LE2 5055
odporová dekáda	R ₂ / Ra	11ΜΩ	LE2 5056

2. VEE – měření s elektronickou zátěží

Název zařízení	Označení	Údaje	Evidenční číslo
multimetr	ČV	HP 34401A	LE 94
elektronická zátěž	El. zátěž	LD 400P	-
diodový můstek	-	-	-
snižovací transformátor	ST	220V/2x6V	-
oddělovací transformátor	ОТ	OT230.021	LE 5123
autotransformátor	RT	0-250 V	LE4 1530
kondenzátor	C ₁ , C ₂	4,7 mF 50 V, 2 mikroF 160 V	-
stabilizátor	-	MA 7805	-

Teorie:

Základní vlastností elektronické zátěže je možnost měnit svůj vnitřní odpor podle zvolených kritérií a nastaveného režimu. Používá se při testování a vývoji spojitých i spínaných napájecích zdrojů, pro testování napěťových, proudových a tepelných ochran, testování akumulátorů, testování solárních panelů.

Postup:

- 1. Ruční měření
- a. Zatěžovací charakteristika
- > Zjistíme si v katalogu mezní hodnoty:
- $U_{2v\acute{v}s} = 5 \text{ V}$
- I_{výs} = 1 A
- > Zapojíme dle schéma
- > Pomalu snižujeme zátěž pomocí potenciometrů
- > Provedeme ještě jedno měření, kde záměrně nedodržíme podmínku, abychom viděli, že bez ní neplní stabilizátor svou správnou funkci
- > Tabulárně a graficky zpracujeme
- b. Aplikace integrovaného stabilizátoru
- > Upravíme zapojení, tím můžeme na výstupu dosáhnout vyššího napětí, než je dáno konstrukcí
- > Pomocí vzorce si dopočteme odpor R_a >> R_b si zvolíme (150 Ω) a výstupní napětí, kterého chceme dosáhnout nyní je 8 V

$$- R_a = \frac{U_2 - U_{jm}}{(\frac{U_{jm}}{R_b})}$$

- > U₀ si nadále vypočítáme a porovnáme s katalogovou hodnotou
- > Na vstupu nyní nesmí být napětí menší než 11 V pro správný chod stabilizátoru.
- > Tabulárně a graficky zpracujeme.
- c. Zdroj konstantní proudu
- > Přepojíme schéma
- > Dle vzorců si vypočteme hodnotu odporu R_1 pro I_2 = 50 mA (Odpor R_2 nabývá hodnot 0-200 Ω)

$$- R_1 = \frac{U_{jm}}{I_2}$$

- > Určíme potřebnou velikost vstupního napětí
- $U_{\text{vst}} \ge U_{im} + R_{2MAX} \times I_2 + 3V$
- > Tabulárně a graficky zpracujeme.
- 2. VEE měření s elektronickou zátěží
- > Zapojíme obvod se stabilizátorem napětí
- > V programu nakonfigurujeme elektronickou zátěž
- > Na elektronické zátěži budeme postupně nastavovat proud a odečítat napětí
- > Naměřené hodnoty zobrazíme v grafu
- > Vypočítáme vnitřní odpor a napětí ideálního zdroje

Tabulka naměřených hodnot:

1. Ruční měření

a. Zatěžovací charakteristika

Splněná podmínka		Nesplněná podmínka			
I ₀ [A]	$U_1[V]$	$U_2[V]$	I ₂ [A]	$U_1[V]$	U ₂ [V]
0	13	5,2	0	10,2	5
0,10	11,8	5,1	0,10	9	5
0,20	11,1	5	0,20	8,4	5
0,30	10,8	5	0,30	8	5
0,40	10,4	5	0,40	7,6	5
0,50	10,2	5	0,50	7,4	5
0,60	10	5	0,60	7,2	4,9
0,70	9,6	5	0,70	6,9	4,8
0,80	9,5	5	0,80	6,6	4,5
0,90	9,4	5	0,90	6,4	4,4
1,00	9,1	5	1,00	6,4	4,3

b. Aplikace integrovaného stabilizátoru

I ₀ [A]	U ₁ [V]	U ₂ [V]
0	16	8
0,10	15,2	8
0,20	14,7	8
0,30	14,2	8
0,40	14,0	8
0,50	13,6	8
0,60	13,2	8
0,70	12,8	8
0,80	12,5	8
0,90	12,2	8
1,00	12	8

c. Zdroj konstantního proudu

I ₀ [mA]	U ₂ [V]
50	0
50	1
50	2
50	3
50	4
50	5
50	6
50	7
50	8
50	9
50	10
48	11

Použité vzorce:

- 1. Ruční měření
- b. Aplikace integrovaného stabilizátoru
- U₂ = 8 V
- U_{jm} = 5 V
- $R_b = 150 \Omega$

$$R_a = \frac{U_2 - U_{jm}}{(\frac{U_{jm}}{R_b})} = \frac{8 - 5}{(\frac{5}{150})} = 90 \Omega$$

$$I_0 = \frac{U_2 - U_{jm} - \frac{U_{jm}}{R_b} \times R_a}{R_a} = \frac{8.6 - 5 - \frac{5}{150} \times 90}{90} = 6.7 \text{ mA}$$

- c. Zdroj konstantního proudu
- $U_{jm} = 5 V$
- $I_2 = 0.05 A$
- $R_2 = 200 \Omega$

$$R_1 = \frac{U_{jm}}{I_2} = \frac{5}{0.05} = 100 \ \Omega$$

$$U_{\rm vst} \ge U_{jm} + R_{2MAX} \times I_2 + 3V$$

$$U_{MIN} \ge 5 + 200 \times 0.05 + 3V = 18V$$

2. VEE – měření s elektronickou zátěží

$$R_i = \frac{\Delta U}{\Delta I}$$

Program:

- 1. Konfigurace el. zátěže, režim konstantního proudu
- 2. Cyklus 0 až 1 po 0,1
- 3. Nastavení proudu na el. zátěži
- 4. Zpoždění na ustálení
- 5. Změření napětí před stabilizátorem
- 6. Změření napětí a proudu za zátěží
- 7. Po konci měření nastaví nulový proud na výstupu nezatěžujeme stabilizátor
- 8. Zobrazení průběhů obou napětí v závislosti na proudu
- 9. Collector na hodnoty napětí
- 10. Collector na hodnoty proudu
- 11. Určení maximálního napětí
- 12. Výpočet vnitřního odporu $R_i = rac{\Delta U}{\Delta I}$
- 13. Převedení hodnot na text
- 14. Vypsání hodnot

Otázky:

- I. režimy elektronické zátěže
- CC konstantní proud tento režim použijeme pro naše zadání
- CV konstantní napětí
- CP konstantní výkon
- CR konstantní odpor
- CG konstantní vodivost
- II. zatěžovací charakteristika zdroje napětí

$$U_2 = f(I_2)$$

III. způsob stanovení vnitřního odporu z naměřené zatěžovací charakteristiky

$$R_i = \frac{\Delta U_2}{\Delta I_2}$$

- ideální vnitřní odpor zdroje napětí

$$R_{i ideálni} = 0\Omega$$

- IV. parametr slew
- umožňuje nastavit elektronická zátěž
- týká se rychlosti změny nebo přechodu mezi dvěma úrovněmi zátěže
- u zátěží z řady LD je tento parametr kontrolovatelný a ovlivňuje rychlost, jak zátěž mění svou úroveň mezi dvěma přednastavenými úrovněmi
 - parametr slew rate
- určuje, jak rychle se úroveň zátěže mění mezi dvěmi přednastavenými úrovněmi
- zato změna úrovně může být provedena manuálně, vzdáleně nebo pomocí vestavěného generátoru přechodů
- udává se v různých jednotkách, jako jsou ampery za sekundu (A/s) / watty za sekundu (W/s)
- umožňuje uživateli kontrolovat, jak rychle se zátěž adaptuje na změny napětí nebo proudu
- v závislosti na konkrétním provozním režimu zátěže může být rychlost změny nastavena na různé úrovně, které jsou vhodné pro daný testovací scénář
- V. chování zdroje při překročení proudu nastaveného proudovou pojistkou
- zdroj začne snižovat své napětí, aby proud nerostl

Grafy:

- 1. ruční měření
- a. zatěžovací charakteristika

měřítko:

 U_1 : 1 dílek \cong 2 V U_2 : 1 dílek \cong 2 V

 I_2 : 1 dílek \cong 0,10 A

U_{2} , U_{1} =f(I_{2}) při nesplněné podmínce

měřítko:

 U_1 : 1 dílek \cong 1 V U_2 : 1 dílek \cong 2 V

 $I_2{:}~1~\text{d\'ilek}\cong 0{,}10~\text{A}$

b. Aplikace integrovaného stabilizátoru

U₂, U₁=f(I₂)

měřítko:

 U_1 : 1 dílek \cong 2 V

 $U_2{:}\ 1\ d\text{\'ilek}\cong 2\ V$

 I_2 : 1 dílek \cong 0,10 A

c. Zdroj konstantního proudu

měřítko:

 U_{R2} : 1 dílek \cong 1 V I_2 : 1 dílek \cong 0,01 A

2. VEE – měření s elektronickou zátěží

měřítko:

 $U_{1,2}$: 1 dílek \cong 2 V I_2 : 1 dílek \cong 0,2 A

Závěr:

Zjistili jsme, že stabilizátor napětí je velmi tvrdý zdroj, jeho vnitřní odpor je 50 m Ω . Napětí ideálního zdroje napětí, kterým bychom při výpočtu mohli stabilizátor nahradit je 5 V.

Očekávali jsme, že stabilizované napětí bude téměř konstantní a vstupní napětí bude se vzrůstajícím proudem klesat, což se měřením potvrdilo.

Zadání jsme splnili.