AKADEMIA GÓRNICZO-HUTNICZA

Wydział Informatyki, Elektroniki i Telekomunikacji Kierunek Informatyka

ALGORYTMY GEOMETRYCZNE

Laboratorium 1

Ćwiczenie wprowadzające

Kyrylo Iakymenko Czwartek 13:00 - 14:30 tydzień B

1 Wprowadzenie

1.1 Cel ćwiczenia

To ćwiczenie ma na celu zapoznanie się z metodami generacji losowych punktów oraz badanie metod klasyfikacji położenia punktów na płaszczyźnie względem prostej.

1.2 Położenie punktu względem prostej

Położenie punktu względem prostej będziemy wyznaczać obliczjąc dane wyznaczniki. Wyznaczniki pozwalają określić położenie punktu c względem prostej która jest wyznaczona przez punkty a i b. Jeżeli wyznacznik jest większy od 0 to punkt znajduje się z lewej strony prostej, jeżeli jest mniejszy od 0 to punkt znajduje się po prawej stronie prostej, a jeżeli wartość wyznacznika jest równa 0 (lub jej wartość bezwzględna $< \varepsilon$) to punkt leży na prostej.

(1)
$$\det(a,b,c) = \begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix}$$

lub (2)
$$\det(a,b,c) = \begin{vmatrix} a_x - c_x & a_y - c_y \\ b_x - c_x & b_y - c_y \end{vmatrix}$$

Pomimo, że powyższe wyznaczniki są sobie równoważne to na skutek niedoskonałości reprezentacji liczb rzeczywistych w komputerze wyniki mogą się różnić w zależności od użytego wyznacznika.

2 Zbiory testowe

Na potrzeby ćwiczenia wygenerujemy 4 zbiory punktów losowych.

- a) 10^5 losowych punktów (x, y) w przestrzeni \mathbb{R}^2 , gdzie $(x, y) \in [-1000, 1000]^2$.
- b) 10^5 losowych punktów (x,y) w przestrzeni \mathbb{R}^2 , gdzie $(x,y) \in \left[-10^{14}, 10^{14}\right]^2$.
- c) 1000 losowych punktów w przestrzeni \mathbb{R}^2 leżących na okręgu o środku O=(0,0) i promieniu R=100.
- d) 1000 losowych punktów w przestrzeni \mathbb{R}^2 dla $x \in \langle -1000, 1000 \rangle$ leżących na prostej wyznaczonej przez wektor \overrightarrow{ab} . Gdzie a = (-1.0, 0.0), b = (1.0, 0.1).

3 Wykresy

(a) 10^5 losowych punktów $(x, y) \in [-1000, 1000]^2$.

(b) 10^5 losowych punktów $(x, y) \in [-10^{14}, 10^{14}]^2$.

0.00 - 0.00 - 0.00 - 0.00 - 0.00 0.25 0.50 0.75 1.00 x

Rysunek 2: 1000 losowych punktów leżących na okręgu.

Rysunek 3: 1000 losowych punktów na prostej.

4 Testy klasyfikacyjne dla różnych wartości ε

4.1 Tabela

Poniżej przedstawiona jest tabela ilości zaklasyfikowanych punktów ze zbiorów (a, b, c, d) ze względu na ich położenie od prostej oraz ε tolerancje wartości bliskich zera.

	eps		5	3	1	-2	-4	-8	-12	-14	-16	-18	-20
0	Zbiór a	po lewej	0	25006	49726	49972	49972	49972	49972	49972	49972	49972	49972
1		na prostej	100000	49861	506	0	0	0	0	0	0	0	0
2		po prawej	0	25133	49768	50028	50028	50028	50028	50028	50028	50028	50028
3	Zbiór b	po lewej	49954	49954	49954	49954	49954	49954	49954	49954	49954	49954	49954
4		na prostej	10	10	10	10	10	10	10	10	10	10	10
5		po prawej	50036	50036	50036	50036	50036	50036	50036	50036	50036	50036	50036
6	Zbiór c	po lewej	0	0	510	524	524	524	524	524	524	524	524
7		na prostej	1000	1000	29	0	0	0	0	0	0	0	0
8		po prawej	0	0	461	476	476	476	476	476	476	476	476
9	Zbiór d	po lewej	0	0	0	0	0	0	0	0	0	20	23
10		na prostej	100	100	100	100	100	100	100	100	100	44	40
11		po prawej	0	0	0	0	0	0	0	0	0	36	37

4.2 Analiza wyników

1. W zbiorze a dla $\varepsilon \leq 10^{-2}$ widzimy brak zmian w ilości zaklasyfikowanych do różnych zbiorów punktów. Także charakterystyczną dla tego ε cechą można nazwać 0 punktów rozpoznanych jako leżące na prostej.

Żeby zweryfikować nasze wyniki policzmy prawdopodobieństwo, że punkt w naszym zbiorze zostanie wylosowany w miejscu dla którego będzie zaklasyfikowany, jako należący do prostej. W naszych obliczeniach dla prostoty pominiemy niepewności związane z obliczeniami komputerowymi.

Klasyfikujemy punkty do odpowiedniej grupy obliczając iloczyn wektorowy $\overrightarrow{ab} \times \overrightarrow{ac}$, gdzie c=(x,y) jest punktem, dla którego poszukujemy wiadomości o lokalizacji względem prostej przechodzącej przez punkty a i b. Metoda ta jest równoznaczna z obliczeniem wyznacznika macierzy 2×2 :

$$(1)\det(a,b,c) = \begin{vmatrix} a_x - c_x & a_y - c_y \\ b_x - c_x & b_y - c_y \end{vmatrix}.$$

Wiemy także, że iloczyn wektorowy $\overrightarrow{A} \times \overrightarrow{B}$ można także obliczyć ze wzoru:

$$\overrightarrow{A} \times \overrightarrow{B} = ||A|| \cdot ||B|| \cdot \sin \theta.$$

Gdzie $\sin\theta$ to kąt pomiędzy wektorami \overrightarrow{A} i \overrightarrow{B} . Wybierzmy teraz dla konkretnego punktu c takie a i b na prostej, żeby

- (a) Dla $A = \overrightarrow{ab}, ||A|| = 1.$
- (b) $\sin \theta = 1$, gdzie θ jest kątem pomiędzy \overrightarrow{ab} i \overrightarrow{ac} (wektor \overrightarrow{ac} jest prostopadły do naszej prostej i do wektora \overrightarrow{ab}).

Wtedy nasz iloczyn

$$\overrightarrow{A} \times \overrightarrow{B} = ||A|| \cdot ||B|| = 1 \cdot ||B|| = ||B||.$$

I pytanie klasyfikacji punktu jako należacego do prostej sprowadza się do sprawdzenia czy $||B|| < \varepsilon$. Dal zbioru a długość prostej na całym zbiorze jest około

Porównywanie czasów klasyfikacji dla różnych funkcji obliczających wyznacznik

		Numpy 2x2	Numpy 3x3	Własny 2x2	Własny 3x3
0	Średni czas klasyfikacji [ms]	604	595	575	586

6 Testy precyzji float64 i float32

	eps	-4	-8	-12	-14	-16	-18	-20	-22	-24	-26
0	float64	10000	10000	10000	10000	10000	4067	3855	3855	3855	3855
1	float32	10000	10000	1522	1522	1522	362	361	361	361	361

Podsumowanie 7