Theorem 1.4. If $r_1 \neq r_2$, then there are constants α_1 and α_2 such that

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$$

1.2.2. Using matrices. Our recurrence relation translates to the following matrix equation:

C = C C C = C C C = C C C = C C C = C C C = C C $C = \begin{bmatrix} c_1 & c_2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_{n-1} \\ a_{n-2} \end{bmatrix} = \begin{bmatrix} a_n \\ a_{n-1} \end{bmatrix}$ C = C C $C = \begin{bmatrix} a_1 \\ a_{n-1} \end{bmatrix}$ C = C C $C = \begin{bmatrix} a_1 \\ 1 \\ 0 \end{bmatrix}$ C = C C $C = \begin{bmatrix} a_1 \\ 1 \\ 0 \end{bmatrix}$ C = C C C = Cbecause the second entry is a_n . Thinking back to linear algebra, we can do this if we can diagonalize C: if $C = BDB^{-1}$ for some diagonal matrix D, then we have $C^n = BD^nB^{-1}$ and D^n is easy to compute. The characteristic polynomial of C is conveniently $t^2 - c_1 t - c_2$, which is the characteristic polynomial of the recurrence relation, so its eigenvalues are r_1, r_2 . Since we are assuming they are distinct, C is diagonalizable, so there is some matrix B such that $C = B \begin{bmatrix} r_1 & 0 \\ 0 & r_2 \end{bmatrix} B^{-1}$.

Let's just name $\begin{bmatrix} x \\ y \end{bmatrix} = B^{-1} \begin{bmatrix} a_1 \\ a_0 \end{bmatrix}$. We don't need to compute x, y but note that they are constants of our recurrence relation (they do not depend on n). Then

$$\begin{bmatrix} a_{n+1} \\ a_n \end{bmatrix} = C^n \begin{bmatrix} a_1 \\ a_0 \end{bmatrix} = B \begin{bmatrix} r_1^n & 0 \\ 0 & r_2^n \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} b_{1,1}xr_1^n + b_{1,2}yr_2^n \\ b_{2,1}xr_1^n + b_{2,2}yr_2^n \end{bmatrix}.$$

To finish the proof we just set $\alpha_1 = b_{2,1}x$ and $\alpha_2 = b_{2,2}y$

VE BOB (a)

$$a_{n} - 3a_{n-1} + 2a_{n-2} = n4^{n}$$

$$f(x)$$

$$f(x$$

برخی معادلات بازگشتی مانند مساله برج هانوی بصورت زیر هستند:

$$T(n) = \alpha T(n-b) + c = T(n-cb) + c + c$$

$$T(n) = aT(n-b) + c$$

$$T(n) = aT(n-b) + c \Rightarrow \begin{cases} T(n) = \theta\left(\frac{a}{b}\right) & : a \neq 1 \\ T(n) = \theta\left(\frac{a}{b}\right) & : a \neq 1 \end{cases}$$

$$T(n) = aT(n-b) + c \Rightarrow \begin{cases} T(n) = \theta\left(\frac{a}{b}\right) & : a \neq 1 \\ T(n) = \theta\left(\frac{a}{b}\right) & : a \neq 1 \end{cases}$$

توجیه فرمول فوق به کمک درخت بازگشتی ساده است. اگر a = 1 باشد یعنی هر گره درخت فقط یک فرزنا دارد و تعداد سطوح درخت هم $\theta\left(\frac{n}{b}\right)$ می شود پس در این حالت درخت در کل $\theta(n) = \theta(n)$ گر، خواما

المحاد کل گرهها
$$= 1 + a^1 + a^2 + \cdots + a^h$$
 $= 1 + a^1 + a^2 + \cdots + a^h$ $= 1 + a^1 + a^1 + a^2 + \cdots + a^h$ $= 1 + a^1 + a^1 + a^1 + a^2 + \cdots + a^h$ $= 1 + a^1 +$

ور درخت بازگشتی
$$T(n)=aT(n-b)+c$$
 تعداد سطوح $T(n)=aT(n-b)+c$ است پس:
$$T(n)=aT(n-b)+c$$
 تعداد کل گروهای درخت $T(n)=aT(n-b)+c$

مثال 2:

$$T(n) = 3T(n-2) + 5 \Rightarrow T(n) = \theta(3^{\frac{n}{2}})$$
 $97 - 5 \Rightarrow T(n) = 3T(n-2) + 5 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n-1) + 1 \Rightarrow T(n) = \theta(n)$ $97 - 5 \Rightarrow T(n) = 3T(n) = 3T(n)$ $97 - 5 \Rightarrow T(n) = 3T(n) = 3T(n)$ $97 - 5 \Rightarrow T(n) = 3T(n) = 3T(n)$ $97 - 5 \Rightarrow T(n) = 3T(n) = 3T(n)$ $97 - 5 \Rightarrow T(n) = 3T(n) = 3T(n)$ $97 - 5 \Rightarrow T(n) = 3T(n) = 3T(n)$ $97 - 5 \Rightarrow T(n) = 3T(n) = 3T(n)$ $97 - 5 \Rightarrow T(n) = 3T(n) = 3T(n)$ $97 - 5 \Rightarrow T(n) = 3T(n) = 3T(n)$ $97 - 5 \Rightarrow T(n) = 3T(n) = 3T(n)$ $97 - 5 \Rightarrow T(n) = 3T(n)$ $97 - 5$

پیچیدگی زمانی برخی از الگوریتم ها بصورت زیر است:

ن جه کنید که h را برابر logb در نظر گرفته ایم و ارتفاع، تعداد سطوح منهای یک است.

$$\frac{a^{h+1}-1}{a-1}=\frac{a^{\log b}-1}{a-1}$$
 عداد کل صداردنها

علاَ در شكل فوق كه a = 4 و b = 5 ، n = 25 است :

ا تعداد کل صدا زدنها
$$= \frac{4^{1+\log_3^{25}}-1}{4-1} = \frac{4^3-1}{3} = \frac{63}{3} = 21$$

در حالت کلی:

تعداد صدا زدنها
$$= rac{a imes a^{\log_b^n} - 1}{a - 1} = \theta(a^{\log_b^n}) = \theta(n^{\log_b^a})$$

پس در حالت کلی داریم $(a \ge 1)$ اعداد مثبت ثابتی هستند و $a \ge 1$ و $a \ge 1$:

$$\begin{cases} T(n) = (aT(\frac{n}{b}) + c) \Longrightarrow \begin{cases} \theta(a^{\log_b^n}) = \theta(n^{\log_b^n}) & (a \neq 1) \\ \theta(\log_b^n) & (a = 1) \end{cases}$$

$$T(n) = T(\frac{n}{2}) \Rightarrow \theta(\log_2 n)$$

$$T(n) = 3T(\frac{n}{5}) + 7 \Rightarrow \theta(n^{\log_2 n})$$

$$T(n) = 2T(\frac{n}{2}) + 1 \Rightarrow \theta(n^{\log_2 n})$$

$$Crah - 1 < (C_{r-1}) a$$

$$C_{r}ah < (C_{r-1}) a$$

```
Gcd
                                                                                                                                                                                                                                                                                                                                                           مثال 4:
  int BMM (int a, int b) (a > b > 0)
                                                                                                                                                                                               でっニグ×1+ 2
                                                                                                                                                                                              イケニ ·×ケナ [
              if (b==0) return a:
                   else return BMM (b, a mod b);
                                                                                                                                                                                                    { - KKC+ 0
BMM(30,26) = BMM(26,4) = BMM(4,2) = BMM(2,0) = 2
                                                                                                                                                                                                                                                                                                                                              مثلاً داريم :
                                                 اثبات : دنباله اعداد تولید شده توسط فراخوانی تابع فوق از چپ به راست به صورت زیر است :
 m_1, m_2, ..., m_{i-1}, m_i, m_{i+1}, ..., 0
که در دنبالیه فیوق \mathbf{m}_1 = \mathbf{a} و \mathbf{m}_2 = \mathbf{b} و \mathbf{m}_{i+1} = \mathbf{m}_{i+1} = \mathbf{m}_{i+1} است. بدیهی است بسرای حالت
 a = b \ k + V
v = a \ mod \ b \ d = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = b \ k + V
a = \frac{a}{2}
a = \frac{a}{
 یعنی در بدترین شرایط در هر بار فراخوانی بازگشتی. پیچیدگی تبصف می شود له ا مرتب الگوریتم مه کور
                                                                                                                                                                                                 O(log2 a) است که بهتر است این نکته را حفظ کنید.
```

دسته ای دیگر از معادلات بازگشتی که در تحلیل الگوریتم هایی مانند جستجوی ادغامی یا یا یا نقتن بزرگترین عنصر در یک آرایه پدید می آیند بصورت زیر هستند:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

مثال 5: هدف یافتن بزرگترین عنصر یک آرایه است:

```
Algorithm FindMax (A, low, high, fmax),
if (low = high) then fmax = A[low]
else if (high = low + 1) then
if A[low] > A[high] then
fmax = A[low]
else fmax = A[high]
else
{
mid = low + high / Y

FinMax (A, low, mid, lmax);
FindMax (A, mid+1, high, rmax);
if lmax > rmax then fmax = lmax
else fmax = rmax
}
```

$$\begin{cases} t(n) = \Upsilon t\left(\frac{n}{\Upsilon}\right) + \Upsilon, & n > \Upsilon \\ t(\Upsilon) = 0, & t(\Upsilon) = \Upsilon \end{cases}$$

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 2T\left(\frac{n}{2}\right) + 1 \qquad \qquad :6$$

$$T(n) = 2T\left(\frac{n}{2}\right) + 1 \qquad \qquad :6$$

$$T(n) = 2T\left(\frac{n}{2}\right) + n \qquad \qquad :7$$

$$T(n) = 2T(\sqrt{n}) + \log n$$

$$T(n) = 2T(\sqrt{n}) + \log n$$

$$T(r^m) = rT(r^m) + r$$

$$T(r^m) = rT(r^m) + r$$

$$T(r^m) = rT(r^m)$$

$$S(m) = rT(r^m)$$

$$S(m) = rT(r^m)$$

$$S(m) = r$$

$$S(m)$$

چند تست کنکور 98

```
٧٠- مرتبه زماني الگوريتم زير كدام است؟
f(n)
1
    x = Y; y = 1;
    while (y \ll n)
           y = y \times x;
           x = x \times x;
     }
}
    log(log(logn)) (f
                                                        logn logn (r
                                  log(logn) (T
                                                                                         nlogn (1
۷۲ فرض کتید زیر برنامه C=aux(A,B) دو ماتریس A و B با اندازه n×n را ضرب کرده و نتیجه را در C بر
                                            می گرداند. مقدار بر گشتی تابع زیر برای ماتریس M کدام است؟
 Mat(M)
   P = M : Q = M
   fori = 1 to n-1 do{
        P = aux(P, M)
        Q = aux(Q, P)
   return(Q)
 1
                                                                M^{n-1} (7
                                                                                            Mn ()
 ۱۹۹ - اگر T(n) = T(\frac{n}{\epsilon}) + \theta(\sqrt{n}) باشد. آنگاه \theta(\sqrt{n}) از مرتبه است T(n) = T(\frac{n}{\epsilon}) + \theta(1) از کدام مرتبه است \theta(\sqrt{n})
     \theta(\sqrt{n}\log n) (f O(n\sqrt{\log n}) (7
                                                  O(\log^{7} n) (7
                                                                                        O(n) (1
                اگر U(m) = T(\tau^m) باشد و U(m) = T(\tau^m) . آنگاه رابطه بازگشی U(m) = T(\tau^m) . -\lambda
                   U(m) = U(m-1) + m (r
                                                                        U(m) = U(m-1)+1  (1)
                  U(m) = U(m-1) + r^m (*
                                                                 U(m) = U(m-1) + \log m (7)
```

Maximum Subarray Problem

Example: I am giving you perfect stock market predictions of a company ABC for the next thirty days. But under a condition — you can buy and sell the stocks only once. That's it. You can't do more than one "buy-sell" transaction. What would be the best day to buy the stocks? And when do you need to sell them to make the maximum profit?

Buying and Selling

Problem

When were the best times to buy and sell?

• A Brute-force Solution

- Try every possible pair of buy and sell dates (buy precedes sell date)
- Period of n days has $\binom{n}{2}$ pairs of dates $\binom{n}{2}$ is $\Theta(n^2)$
- Best we could hope is to evaluate each pair in constant time and approach would take $\Omega(n^2)$
- Can we do better?
- Difficulty: We don't necessarily buy at the lowest price or sell at the highest price.
- Example:

Problem Transformation

Consider the array A[1...16] of change in price.

Maximum subarray A[8...11]

- The maximum subarray is the contiguous subarray whose elements have the largest sum. Here, it is A[8...11].
- So the best times to buy and sell are days 7 and 11.
- We reduced our original problem to:

Problem

7:

8:

Given an array A[1...n] of n numbers, find the indices p,q such that $1 \le p \le q \le n$ and $\sum_{i=p}^q A[i]$ is maximum.

The MAXIMUM SUBARRAY Problem

Brute-force approach to MAXIMUM SUBARRAY

```
1: procedure MAXIMUM-SUBARRAY(A, 1, n)
2: \max \leftarrow -\infty
3: for i \leftarrow 1, n do
4: for j \leftarrow i, n do
5: \sup \leftarrow 0
6: for k \leftarrow i, j do
```

9: $\max \leftarrow \text{sum}, \ p \leftarrow i, \ q \leftarrow j$

if sum > max then

 $sum \leftarrow sum + A[k]$

return p, q, max

• Running time? $\Theta(n^3)$.

Applications

The maximum subarray problem has several applications. Some of the well-known applications are in genomic sequence analysis and computer vision. They are used in genomic sequence analysis to identify important segments of protein sequences like GC-rich regions, and regions of high charge. In computer vision, they find their use in detecting the brightest area in bitmap images.