ENGENHARIA DE SOFTWARE

Administração de Projetos: Estimativas

PLANEJAMENTO - OBJETIVOS

É um conjunto de atividades associadas ao processo de administração de projetos

- Permitir um entendimento do trabalho a ser feito
- Estimar os recursos necessários
- Estimar a duração cronológica do projeto
- Estimar esforço e custo a ser despendido

PLANEJAMENTO - TAREFAS

Envolve a realização de:

- medidas
- pesquisa
- estimativa
- análise dos riscos
- determinação de prazos

PLANEJAMENTO - ATIVIDADES ASSOCIADAS

- 1. Determinação do Escopo do Software
- Objetivos do Projeto
- Funções principais
- Características de desempenho, confiabilidade
- Cenário de Desenvolvimento

PLANEJAMENTO - ATIVIDADES ASSOCIADAS

2. Estimativa de recursos

- Recursos humanos
 - Projeto pequeno: uma única pessoa
 - Projetos grandes: participação varia através do ciclo de vida.
- Recursos de hardware
 - Sistemas para o desenvolvimento
 - Máquina alvo
 - Elementos de hardware do novo sistema

PLANEJAMENTO - ATIVIDADES ASSOCIADAS

2. Estimativa de recursos

- Recursos de Software
 - Ferramentas de software:
- Gerenciamento de Projeto
- Ferramentas de Apoio
- Análise e Projeto
- Programação
- · Ferramentas de teste

- Construção de protótipos
- Ferramentas de simulação
- Ferramentas de manutenção

PLANEJAMENTO - ATIVIDADES ASSOCIADAS

Especificar:

- . Habilidades exigidas
- . Diponibilidade
- . Duração das tarefas
- . Datas de início

Espefificar:

- . Descrição
- . Disponibilidade
- . Duração do uso
- . Data de entrega

PLANEJAMENTO - ATIVIDADES ASSOCIADAS

3. Estimativa de custos

4. Cronogramas

PLANEJAMENTO

ESTIMATIVAS DE PROJETOS DE SOFTWARE - OBSERVAÇÕES

Estimativas de recursos, custos e programação de atividades exigem:

- Experiência.
- Acesso a boas informações históricas.
- Coragem para se comprometer com as medidas quantitativas.

ESTIMATIVAS DE PROJETOS DE SOFTWARE - OBSERVAÇÕES

Estimativas => carregam riscos inerentes

Fatores que aumentam os riscos:

1. Técnicas de Decomposição:

- Assumem a abordagem de "Divisão e Conquista"
- O problema de estimar o custo e esforço necessário para um projeto é dividido em problemas menores e mais administráveis.
- Baseiam-se em um delineamento das principais funções do software

ESTIMATIVAS (CONT.)

(a) Estimativas de Linhas de Código (LOC) e Pontos por Função (PF)

LOC e PF são usadas de duas maneiras durante a estimativa de projetos de software:

- Como variáveis de estimativa usadas para "classificar por tamanho" cada elemento do software.
- Como métricas de linha básica coletadas a partir de dados históricos e usadas em conjunto com variáveis de estimativa para que se desenvolva projeções de custo e de esforço

ESTIMATIVAS APLICAÇÃO DE TÉCNICAS LOC E PF A UM PACOTE CAD

Declaração do Escopo do Software:

O software CAD aceitará dados geométricos bi e tridimensionais de um engenheiro. O engenheiro interagirá e controlará o sistema CAD por meio de uma interface com o usuário que exibirá características de um bom projeto de interface homem máquina. Todos os dados geométricos e outras informações de aopio serão guardados em um banco de dados CAD. Módulos de análise de projetos serão desenvolvidos para produzir a entrada desejada que será exibida em vários dispositivos gráficos. O software será projetado para controlar e interagir com dispositivos periféricos, que incluem um mouse, um digitalizador, uma impressora e um plotter.

ESTIMATIVAS APLICAÇÃO DE TÉCNICAS LOC E PF A UM PACOTE CAD (CONT.)

Principais funções identificadas:

- Facilidade de controle de interfaces com o usuário (IHM)
- Análise geométrica bidimensional (AGB)
- Análise geométrica tridimensional (AGT)
- Gerenciamento de banco de dados (GBD)
- Facilidades de display gráfico (FDG)
- Controle de periféricos (CP)
- Análise de projetos (AP)

TABELA DE ESTIMATIVAS

Função	Otimista	Mais	Pessimista	LOC	\$/Loc	Loc/	Custo	Meses
		provável		Esperado		Pm		(PM)
IHM	1.800	2.400	2.650	2.340				
AGB	4.100	5.200	7.400	5.380				
AGT	4.600	6.900	8.600	6.800				
GBD	2.950	3.400	3.600	3.350				
FDG	4.050	4.900	6.200	4.950				
CP	2.000	2.100	2.450	2.140				
AP	6.600	8.500	9.800	8.400				
TOTAL				33.360				

ESTIMATIVAS

Depois de LOC (ou FP) estimado:

- Aplica-se as métricas de produtividade (dados históricos) para cada função.
- Estima-se o custo

Estima-se o esforço (pessoa-mês)

Esforço = LOC-Esperado/(LOC/pessoa-mês)

TABELA DE ESTIMATIVAS CONCLUÍDA

Função	Otimista	Mais	Pessimista	LOC	\$/Loc	Loc/	Custo	Meses
		provável		Esperado		Pm		(PM)
IHM	1.800	2.400	2.650	2.340	14	315	32.760	7,4
AGB	4.100	5.200	7.400	5.380	20	220	107.600	24,4
AGT	4.600	6.900	8.600	6.800	20	220	136.000	30,9
GBD	2.950	3.400	3.600	3.350	18	240	60.300	13,9
FDG	4.050	4.900	6.200	4.950	22	200	108.900	24,7
CP	2.000	2.100	2.450	2.140	28	140	59.920	15,2
AP	6.600	8.500	9.800	8.400	18	300	151.200	28,0
TOTAL				33.360			656.680	144,5

ESTIMATIVAS

(b) Estimativa do Esforço

Passos:

- Delineamento das funções do software
- Listagem das tarefas a serem executadas para cada função (análise, projeto, codificação e testes)
- Esforço estimado para cada tarefa em cada função (pessoa-mês)
- Taxas de mão de obra aplicadas em cada uma das tarefas
- Cálculo de custo e o esforço de cada função e tarefa de engenharia de software

ESTIMATIVAS

TABELA DE ESTIMATIVA DO ESFORÇO

	Análise Requisitos	Projeto (PM)	Código (PM)	Teste (PM)	Total
IHM	1.0	2.0	0.5	3.5	7
AGB	2.0	10.0	4.5	9.5	26
AGT	2.5	12.0	6.0	11.0	31.5
GBD	2.0	6.0	3.0	4.0	15
FDG	1.5	11.0	4.0	10.5	27
CP	1.5	6.0	3.5	5.0	16
AD	4.0	14.0	5.0	7.0	30
TOTAL	14.5	61	26.5	50.5	152,5 *
TAXA(\$)	5.200	4.800	4.250	4.500	
CUSTO	75.400	292.800	112.625	227.250	708.075 *

^{*} Esforço estimado para todas as tarefas

^{*} Custo estimado para todas as tarefas

2. Modelos Empíricos de Estimativa

São fórmulas derivadas empiricamente para fornecer informações de planejamento de projeto.

- Dados Empíricos resultam de uma amostra limitada de projetos.
- Modelos de estimativas de software não são apropriados para todas as classes de software
- Devem ser usados criteriosamente

MODELOS EMPÍRICOS MODELOS DE RECURSOS

Modelos de Recursos

são formados por uma ou mais equações empíricas que fornecem informações sobre:

- Esforço (pessoa-mês)
- Duração do projeto (meses cronológicos), etc

ESTIMATIVAS DE PROJETO DE SOFTWARE: MODELOS EMPÍRICOS MODELOS DE RECURSOS

Modelos de Recursos

Existem quatro classes de modelos de recursos (Basili)

- Modelos estáticos de variáveis simples.
- Modelos estáticos de múltiplas variáveis
- Modelos dinâmicos de múltiplas variáveis
- Modelos teóricos

MODELOS EMPÍRICOS MODELOS DE RECURSOS

Modelos Estáticos de Variáveis simples

Recurso = C1 X (características Estimadas)

Recurso:

- esforço
- duração do projeto
- tamanho da equipe
- páginas (linhas) de documentação

MODELOS EMPÍRICOS MODELOS DE RECURSOS

Modelos Estáticos de Variáveis simples

Recurso = Cl X (características Estimadas)

Características Estimadas

- linhas de código fonte (LOC)
- esforço (se estimado)

C1 e C2 - constantes derivadas de dados compilados de projetos passados.

Exemplo: COCOMO (Constructive Cost Model)

MODELOS EMPÍRICOS MODELOS DE RECURSOS

Modelos Estáticos de Múltiplas Variáveis

Recurso = Cllel + C2le2 + ...

Onde el, e2, e3 ... São características do software

ESTIMATIVAS DE PROJETO DE SOFTWARE: MODELOS EMPÍRICOS MODELOS DE RECURSOS

Modelos Dinâmicos de Múltiplas Variáveis

- projetam os requisitos de recursos como uma função do tempo
- recursos são definidos atribuindo-se uma porcentagem de esforço a cada passo de engenharia de software

ESTIMATIVAS DE PROJETO DE SOFTWARE: MODELOS EMPÍRICOS MODELOS DE RECURSOS

Modelos Teóricos

- abordam teoricamente modelos dinâmicos de múltiplas variáveis
- Examina o software de forma minuciosa (ex. Números de operandos e operadores modelo de estimativa de Putnam)

ESTIMATIVAS DE PROJETO DE SOFTWARE: MODELOS EMPÍRICOS

- (a) Cocomo (Engenharia Econômica de Software Barry Boehm)
- Cocomo Básico
- Cocomo Intermediário
- Cocomo Avançado

ESTIMATIVAS DE PROJETO DE SOFTWARE: MODELOS EMPÍRICOS

- (a) Cocomo (Engenharia Econômica de Software Barry Boehm)
- Cocomo Básico

Computa: esforço e custo em função do tamanho de programas expresso em linhas de código estimadas.

ESTIMATIVAS DE PROJETO DE SOFTWARE: MODELOS EMPÍRICOS

- (a) Cocomo (Engenharia Econômica de Software Barry Boehm)
- Cocomo Intermediário

Computa: esforço como função do tamanho do programa e de um conjunto de "direcionadores de custo" que incluem avaliações subjetivas do produto, do hardware, do pessoal e dos atributos do projeto.

ESTIMATIVAS DE PROJETO DE SOFTWARE: MODELOS EMPÍRICOS

- (a) Cocomo (Engenharia Econômica de Software Barry Boehm)
- Cocomo Avançado

Computa: esforço como função do tamanho do programa e de um conjunto de "direcionadores de custo" que incluem avaliações subjetivas do produto, do hardware, do pessoal e dos atributos do projeto.

Incorpora: Avaliação do impacto dos direcionadores de custo sobre cada passo de E.S. (análise, projeto, etc)

ESTIMATIVAS DE PROJETO DE SOFTWARE: MODELOS EMPÍRICOS COCOMO

Aplicação

- Projetos Orgânicos (projetos simples)
- Semidestacado (projetos intermediários tamanho e complexidade
- Embutido (projetos desenvolvidos dentro de um conjunto rígido de restrições operacionais, hardware e software)

ESTIMATIVAS DE PROJETO DE SOFTWARE: MODELOS EMPÍRICOS COCOMO BÁSICO

Equações COCOMO Básicas

E = Ab(KLOC)exp(Bb) - esforço aplicado pessoamês

D = Cb(E.exp(Db)) - tempo de desenvolvimento (meses cronológicos)

ESTIMATIVAS DE PROJETO DE SOFTWARE: MODELOS EMPÍRICOS COCOMO BÁSICO

Constantes Cocomo básico

Projeto de Software	Ab	Bb	Cb	Db
Orgânico	2.4	1.05	2.5	0.38
Semidestacado	3.0	1.12	2.5	0.35
Embutido	3.6	1.20	2.5	0.32

ESTIMATIVAS DE PROJETO DE SOFTWARE: MODELOS EMPÍRICOS COCOMO INTERMEDIÁRIO

- Modelo básico é ampliado para levar em consideração os atributos direcionadores de custo:
 - Atributos do produto {confiabilidade, tamanho BD, complexidade}
 - Atributos do hardware {restrições de desempenho, memória, etc}
 - Atributos de pessoal {experiência}
 - Atributos de projeto {uso de Case, metodologias, cronograma de atividades, etc}

Total = 15 atributos (pontua-se em uma escala de 6 pontos onde 0 - muito baixo e 6 - extrem. Elev)

ESTIMATIVAS DE PROJETO DE SOFTWARE: MODELOS EMPÍRICOS COCOMO INTERMEDIÁRIO

Baseado na classificação:

- Determina-se um multiplicador de esforços (a partir de tabelas publicadas por Boehm)
- Calcula-se o fator de ajuste de esforço (FAE) (produto de todos os multiplicadores de esforços) - valores variam de 0.9 a 1.4

ESTIMATIVAS DE PROJETO DE SOFTWARE: MODELOS EMPÍRICOS COCOMO INTERMEDIÁRIO

Equação cocomo intermediário:

E = Ai(LOC). Exp(bi) X FAE (pessoa-mês)

Projeto de Software	Ai	Bi
Orgânico	3.2	1.05
Semidestacado	3.0	1.12
Embutido	2.8	1.20

ESTIMATIVAS DE PROJETO DE SOFTWARE: MODELOS EMPÍRICOS APLICAÇÃO COCOMO BÁSICO

Ex: Software CAD

Usando-se o modelo semidestacado

$$E = Ab.KLOC^{Bb} = 3.0(3.3)^{1.12} = 152 pm$$

$$D = Cb.E^{Db} = 2.5(152)^{0.35} = 14,5 \text{ meses}$$

N-pessoas = E/D = 152/14,5 = 11 pessoas (número de pessoas recomendado para o projeto)

ESTIMATIVAS DE PROJETO DE SOFTWARE: MODELOS EMPÍRICOS

(2) Modelo de Estimativa de Putnam

- Modelo dinâmico de múltiplas variáveis
- Pressupõe uma distribuição de esforço específica ao longo do projeto
- Modelo construído à partir de distribuição de mão de obra em grandes projetos

ESTIMATIVAS DE PROJETO DE SOFTWARE: MODELOS EMPÍRICOS MODELO DE PUTNAM

Equação de Software

 $L = C_k . K^{1/3} . td^{4/3}$, onde

L = linha de código

C_k = constante de estado de tecnologia

- C_k = 2.000 –ambiente de desenvolvimento pobre
- C_k = 8.000 métodos em prática, documentação e revisões adequada
- C_k = 11.000 ambiente ótimo (ferramentas e técnicas automatizadas)

K = esforço (pessoa – ano)

Td = tempo de desenvolvimento (anos)

Novo arranjo: Esforço – $K = L^3/(c_k^3.td^4)$

CONCLUSÕES

- O planejador deve estimar três coisas antes do início do projeto:
 - Quanto tempo durará
 - Quanto esforço será exigido
 - Quantas pessoas estarão envolvidas
- E também:
 - Recursos de hardware e recursos de software necessários

CONCLUSÕES

- Técnicas para desenvolver estimativas envolvem:
 - decomposição
 - modelagem empírica
 - ferramentas automatizadas

CONCLUSÕES

- Técnicas empíricas usam expressões derivadas de dados históricos, para o esforço e o tempo, com o objetivo de prognosticar essas quantidades para o projeto.
- Ferramentas automatizadas implementam um modelo empírico específico.
- Estimativas de projeto precisas geralmente fazem uso de pelo menos duas técnicas diferentes de estimativas vistas.

EXERCÍCIO

- Estimar o projeto escolhido na aula passada usando todas as técnicas (LOC, estimativa do esforço, Cocomo Básico, Cocomo Intermediário, Cocomo Avançado)
- Crie uma pasta com o nome Estimativas e dentro criar um arquivo com cada técnica no projeto do github e envie o link para o email: a.sousajose@gmail.com com assunto Engenharia l