WEEK 1 DISTRIBUTED COMPUTING - DATA FRAME, RUNNING SQL QUERIES AND SCALE USING SPARK

• Volume [size] – Velocity [Speed] – Variety [Datatype] – Veracity [validity of data & | source]

Spark Supports Many Languages

SQL

Python

Scala

Java

R

Amdahl's Law

The amount of acceleration we would see from parallelizing a task is a function of what portion of the task can be completed in parallel

Resilient Distributed Datasets

- Acyclic chunks of computations fault
- Distributed dataset across executers each one operates on their share of data

Directed Acyclic Graph

Series of transformations to apply to your data

However, you cannot change any of the transformations that came before you in this graph

Spark is declarative [WHAT] rather than imperative[HOW]

Spark DataFrame Execution

- 1. Unresolved logical plan before look-up in data catalog
- 2. Then Catalyst resolves them and creates a logical plan

Databricks manages:

- 1. Networking clusture
- 2. Easily deploy spark environment on AWS, Azure

Readings and Resources

Course Notebooks:

• https://files.training.databricks.com/courses/davis/Lessons.dbc

Readings

- Spark SQL and DataFrames and Datasets Guides
- SQL Guide from Databricks

Additional Resources

- This is an optional resource that you could consider purchasing from this seller. This link is to get you started on an eBook version that does have a free trial option. Spark: The Definitive Guide
- This is a free gitbook: <u>Introduction The Internals of Spark SQL</u>.

WEEK 2 SQL FOR SPARK - CACHING, DEBUG SLOW QUERIES WITH SPARK UI

In local mode, Spark Driver-Executer can be single Compute instance TDM

Slot is essentially thread of execution

• Machines * Cores * Threads

In production, Spark clusters runs multiple compute instances

Units of Parallelism within a Spark Cluster

4 executors * 2 slots = 8 units of parallelism

Partitions are Units of parallelism of data – they are subsets of data distributed across system [Count depends on size, feature governing partitions, cluster config]

 Designing partition size is handled by Databricks – Its tricky to balance Computation[Data/ compute] and communication[Number of compute cycles]

Cached Table: Entire table data partitioned and saved for faster access

- Project Tungsten optimizes Data
- All data partitions are materialized

Lazy Cache Table: Only data view recently queried is considered for caching

• As data is queried; more and more partitions are materialized [physically created in cache]

Narrow Transformation [In-Partition]

- Transform locally eg.
 Select, Where
- Filter operations done on all partitions in parallel

Wide transformation [cross-Partition]

- Aggregation operation eg. Groupby, orderby
- Data shuffle required
- Default shuffle partition is 200
- work → shuffle (write) results to local disc
 → shuffle (read) using 200 tasks → output formed aggregating 200 partitions

spark.sql.shuffle.partitions parameter controls how many resulting partitions there are after a shuffle (wide transformation).

Broadcast Joins decrease data shuffle → decrease query time

- Spark analyses data size and using this heuristics, it decides type of JOIN operation
 - o Default size limit for opting broadcast is 10MB

%python

spark.conf.get("spark.sql.autoBroadcastJoinThreshold")

>> '10485760b'

Can be enforced by :

SELECT /*+ BROADCAST(fireCalls) */ *

FROM < T1_name >

JOIN <T2_name>on T1_name.dimension1 = T2_name.dimension2

Readings

- Deep Dive into Spark SQL's Catalyst Optimizer
- Cost Based Optimizer in Apache Spark 2.2
- Understanding your Apache Spark Application Through Visualization

WEEK 3 ENGINEERING DATA PIPELINES - ETL, SCHEMAS, FILE FORMATS, JDBC PROTOCOL

Kafka/ AWS Kinesis/ Azure event hub

- Queue : Arriving data should not overload other infra
- Data producers write data into topics and consumers read them

ETL

- Raw data [Data link backed by blob store like AWS S3, Azure blob]
 → Process → Database
- Decoupled storage and compute
 - Spin spark cluster → connect data → shut down after use
 - No necessity of cluster version control

Computation bottlenecks

 Task: count no of records in a 10 GB DB

Bottleneck : **fetching [IO]** 10Gb data from DB into cluster

 Task :Training ML model Bottleneck : threading capacity of CPU

IO vs. CPU Bound Problems

IO is network transfer (data transfer)

CPU is computation (processing data)

Data transfer is normally the bottleneck for tasks

Spark solves this by colocating your storage

Data Sources

Traditional databases like Postgres, SQL Server, and MySQL NoSQL databases/documents stores like MongoDB Distributed databases like Cassandra and Redshift Distribute data across dusters [like spark]

Blob stores like S3 and the Azure Blob Infinitly scalable storage of any data objects

Message brokers like Kafka and Kinesis

Data warehouses like Hive

File types like CSV, Parquet, and Avro

Online Analytical processing: Analyze data for business needs [Share market trend of last day]
Online Transaction processing: Transaction against DB in Real time [update profile, pay to merchant]

Data Connection : Blob stores, JDBC Spark uses-

- **Predicate push down :** Process predicate level SQL operations [filter] at database level before fetching data into cluster **Save network transfers and IO bottlenecks**
- Java Data Base Connection : Java API

File formats:

- CSV Storage in row format
- Parquet: Storage in column format FASTEST method to read/ write data

Compression types:

- gz
- bzip : very high storage efficiency

Spark is fast given its:

- In memory computation
- **Knowledge of Data types operated on –** it helps optimizing logic behind data access, partitioning and shuffling
- Flexibility to work with Semi structured data [JSON, NOSQL] awa tabular data [CSVs, RDBs]

Schemas and types:

- JSON: Data schema evolves over time
- USER DEFINED schema: Save efforts of spark in schema inference [an extra bottleneck job]

Database write & read operations:

- Parallelized using more partitions
 - When data is written to DB, 1 connection per partition exists
 - COALESCE [narrow transformation]

CREATE OR REPLACE TEMPORARY VIEW <view1>
AS
SELECT /*+ COALESCE(1) */ *
FROM <table1>

Partition[wide transformation]

CREATE OR REPLACE TEMPORARY VIEW <view1>
AS
SELECT /*+ REPARTITION(8) */ *
FROM <table1>

Managed and unmanaged tables

Use unmanaged/ external table when

we want data to persist after shutting cluster

Use managed table when

Data is ephemeral

A managed table is a table that manages both the data itself as well as the metadata. In this case, a DROP TABLE command removes both the metadata for the table as well as the data itself.

Unmanaged tables manage the metadata from a table such as the schema and data location, but the data itself sits in a different location, often backed by a blob store like the Azure Blob or S3. Dropping an unmanaged table drops only the metadata associated with the table while the data itself remains in place.

Module 3 Readings

- Why You Should Care about Data Layout in the Filesystem
- Lessons From the Field: Applying Best Practices to Your Apache Spark Applications
- Working with Complex Data Formats with Structured Streaming in Apache Spark 2.1: Part 2
 of Scalable Data at Databricks

WEEK 4 REAL WORLD ML MODEL - REGRESSION AND CLASSIFICATION

TRANSALATING BUSINESS PROBLEM TO DATA PROBLEM IS MOST IMPORTANT 21 CENTURY BUSINESS PROBLEM

Spark applications: Graph processing, ML, streaming

ML applications:

Real time fraud detection

NLP: Classify medical records, chatbots

Computer vision: Medical image analysis, self-driven cars, facial recognition

How Businesses Use Data Over Time

Early Stages

- · May not use many statistics
- · Summary statistics and key business metrics
- · Little awareness or support for the value of data

Middle Stages

- · Data starts to be seen as valuable
- · Use data to highlight current business processes

Mature Stages

- · Organization becomes increasingly data-driven
- · Use data prescriptively to steer the organization in new directions
- Leads to discovering and addressing otherwise unknown customer segments

Churn analysis

What is churn? No purchase, No web visit How to predict? Lesser visits, newer customers Predict? Future purchases

Machine learning is array of techniques that learn patterns without explicit programming. It maps features [customer history] to outputs [probability of churn]

- Supervised learning: labeled data regression[predict continuous value on scale], classification [predict label category]
- Unsupervised learning: unlabeled data clustering [learn structure of data and reveal data segments]

Baseline model [like average value] is comparison benchmark for trained ML model

Model Training Lifecycle X (features) (label) nxd nx1 training model set full dataset _____o new entity Proxy for real world unseen data test set accuracy prediction

Choice of model

- Ask stakeholders if they want interpretable model [contribution of independent features to prediction – Decision tree, Linear regression] or Accurate model [NN]
- Assumptions made by algorithms about data [eg. Linear regression assumes linear relation between I/O]

SQL

- 1. USE <database>
- 2. DESCRIBE <tableName>
- 3. CREATE TABLE <tableName>
- 4. CREATE OR REPLACE TABLE <tableName>
- 5. CREATE OR REPLACE VIEW <viewName>
- 6. CREATE OR REPLACE TEMPORARY VIEW<tableName>
- 7. USING <filetype for creation>