

Deep Learning with Neural Networks

Unsupervised Deep Learning (I): autoencoders

Pablo Martínez Olmos, pamartin@ing.uc3m.es

Unsupervised Learning

Non-probabilistic Models

- Sparse Coding
- Autoencoders
- Others (e.g. k-means)

Probabilistic (Generative) Models

Tractable Models

- Fully observed Belief Nets
- > NADE
- PixelRNN

Non-Tractable Models

- Boltzmann Machines
- Variational Autoencoders
- Helmholtz Machines
- Many others...

- Generative Adversarial Networks
- Moment Matching Networks

Explicit Density p(x)

Implicit Density

Unsupervised Learning

Non-probabilistic Models

- Sparse Coding
- Autoencoders
- Others (e.g. k-means)

Probabilistic (Generative) Models

Tractable Models

- Fully observed Belief Nets
- > NADE
- PixelRNN

Non-Tractable Models

- Boltzmann Machines
- VariationalAutoencoders
- Helmholtz Machines
- Many others...

- Generative Adversarial Networks
- Moment Matching Networks

Explicit Density p(x)

Implicit Density

- An autoencoder is a neural network that is trained to attempt to copy its input to its output
- Internally, it has a low-dimensional hidden representation
- Two parts: encoder and decoder
- Autoencoders have been traditionally used for dimensionality reduction or feature learning

• 25x25 – 2000 – 1000 – 500 – 30 autoencoder to extract 30-D real-valued codes for Olivetti face patches.

• Top: Random samples from the test dataset.

• Middle: Reconstructions by the 30-dimensional deep autoencoder.

• **Bottom**: Reconstructions by the 30-dimentinoal PCA.

$$\mathcal{L}(\eta, \theta) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_n \left(\mathbf{x}_n - D_{\theta} \left(E_{\eta}(\mathbf{x}_n) \right) \right)$$

Autoencoders for images. Transpose convolution layers

- The transposed convolution operation forms the same connectivity as the normal convolution but in the backward direction
- We can use it to conduct up-sampling

• The weights in the transposed convolution are learnable. So we do not need a predefined

interpolation method.

Autoencoders for images. Transpose convolution layers

- The transposed convolution operation forms the same connectivity as the normal convolution but in the backward direction
- We can use it to conduct up-sampling

• The weights in the transposed convolution are learnable. So we do not need a predefined

interpolation method.

Sparse Deep Autoencoders

Sparse autoencoders are typically used to learn features for another task

Sparse Deep Autoencoders

Sparsity penalizer

$$\Omega(\boldsymbol{h}) = \lambda \sum_{i} |h_{i}|$$

Sparse autoencoders are typically used to learn features for another task

Denoising Deep Autoencoders

Source: this excellent blog

- Reconstruct a corrupted version of an image
- More robust solutions. It is some sort of regularization
- They are widely used for image denoising and missing data completion

Denoising Deep Autoencoders

$$\mathcal{L}(\eta, \theta) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_n \left(\mathbf{x}_n - D_{\theta} \left(E_{\eta}(\tilde{\mathbf{x}}_n) \right) \right)$$

Image segmentation using CNNs

Image Segmentation Using Deep Learning: A Survey

Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and Demetri Terzopoulos

 Most powerful methods are based on encoder-decoder networks

Fig. 11. Deconvolutional semantic segmentation. Following a convolution network based on the VGG 16-layer net, is a multi-layer deconvolution network to generate the accurate segmentation map. From [42].

Fig. 14. The U-net model. The blue boxes denote feature map blocks with their indicated shapes. From [49].