Université François Rabelais de Tours Département de Mathématiques

Td 2: Produit scalaire

Algèbre Semestre 4, 2021

Exercice 1. Dans $E = \mathbb{R}^3$ muni de sa base canonique $\mathcal{B}_0 = (e_1, e_2, e_3)$, on considère l'application $b : E^2 \to \mathbb{R}$ définie par $b((x_1, x_2, x_3), (y_1, y_2, y_3)) = 2x_1y_1 + x_2y_2 - x_3y_3$.

- 1. Justifier que b est une forme bilinéaire sur E.
- 2. Déterminer la matrice B représentant b dans la base \mathcal{B}_0 .
- 3. b est-elle symétrique ? antisymétrique ? Déterminer la partie symétrique b_s et la partie antisymétrique b_a de b.
- 4. Déterminer le rang de b.

Mémes questions avec $b((x_1, x_2, x_3), (y_1, y_2, y_3)) = x_1y_2 + x_2y_1 + x_2y_3 - x_3y_2 - 2x_3y_3$.

Exercice 2. Soit b la forme bilinéaire sur $E = \mathbb{R}^3$ dont la matrice dans la base canonique $\mathcal{B}_0 = (e_1, e_2, e_3)$ est $B = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & 4 \\ 1 & 2 & 3 \end{pmatrix}$.

- 1. b est-elle symétrique? antisymétrique? Quel est son rang?
- 2. Pour toute paire $(u, v) \in E^2$, déterminer b(u, v).
- 3. Justifier que la famille $\mathcal{B} = (e_1 + e_2 + e_3, -e_1 + e_2 + e_3, e_1 + e_2 e_3)$ est une base de E.
- 4. Déterminer de deux manières la matrice B' représentant b dans la base \mathcal{B} .
- 5. Notons b_s la partie symétrique de b et notons B_s sa matrice représentative dans la base \mathcal{B}_0 . Déterminer B_s .
- 6. Soit f un endomorphisme de E dont on note A la matrice représentative dans la base \mathcal{B}_0 . Montrer que B_sA est une matrice symétrique si et seulement si on a, pour tout $(u,v) \in E^2$, $b_s(u,f(v)) = b_s(f(u),v)$.

Exercice 3. Dans $E = \mathbb{R}_2[X]$, l'espace vectoriel réel des polynômes de degré inférieur ou égal à 2, on considère l'application $b: E^2 \to \mathbb{R}$ définie par $b(P,Q) = \int_0^1 P(t)Q'(t)dt$.

- 1. Justifier que b est une forme bilinéaire sur E.
- 2. Déterminer la matrice B de b dans la base canonique $\mathcal{B}_0 = (1, X, X^2)$ de E.
- 3. Quel est le rang de b?
- 4. On considère l'application $b_1: E^2 \to \mathbb{R}$ définie par $b_1(P,Q) = \int_0^1 P'(t)Q(t)dt$ et B_1 sa matrice représentative dans la base canonique. Quel est le lien entre b et b_1 ? Déterminer la partie symétrique b_s et la partie antisymétrique b_a de b.
- 5. A-t-on $b(P,P) \ge 0$ pour tout polynôme P? A quelle condition a-t-on b(P,P) = 0?

Mêmes questions avec $b(P,Q) = \int_0^1 P(t)Q(1-t)dt$ et $b_k(P,Q) = \sum_{k=0}^n P(k)Q(k)$ pour tout $k \in \mathbb{N}^*$.

Exercice 4. Dans $E = M_2(\mathbb{R})$, l'espace vectoriel réel des matrices réelles carrées d'ordre 2, on considère l'application $b: E^2 \to \mathbb{R}$ définie par $b(A, B) = \operatorname{tr}({}^tAB)$.

- 1. Prouver que b est une forme bilinéaire symétrique sur E.
- 2. Prouver que pour tout $A \in E$, on a $b(A, A) \ge 0$ avec égalité si et seulement si $A = O_2$.
- 3. Donner la matrice représentative de b dans la base canonique $\mathcal{B}_0 = (E_{11}, E_{12}, E_{21}, E_{22})$ de E.
- 4. En déduire le rang de b.

Exercice 5. Soit $E = \mathbb{R}^3$ muni de sa base canonique $\mathcal{B}_0 = (e_1, e_2, e_3)$. Soit $\Phi : E \to \mathbb{R}$ l'application définie par $\Phi((x_1, x_2, x_3)) = x_1^2 - 2x_1x_2 + 2x_2^2 + 4x_1x_3 - 6x_2x_3 + x_3^2$

- 1. Montrer que Φ est une forme quadratique sur E et calculer la forme bilinéaire symétrique φ associée.
- 2. Réduire Φ en utilisant la méthode de Gauss.
- 3. Réduire les formes quadratiques suivantes : $x_1^2 2x_1x_2 + x_2^2 + 8x_2x_3$, $x_1x_2 + x_1x_3 2x_1x_3$.