IN THE CLAIMS

This **Listing of Claims** will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

(currently amended) A device, comprising:

a centering element (10);

a bearing flange (38) comprising a circular bearing face; and

twelve at least-one-form-locking elements element (12) located on said bearing flange (38) for fastening an axially mountable tool (14) to a drive shaft (16) of a handheld power tool;[[,]]

wherein said tool is drivable in an oscillating manner, and
wherein said centering element (10) is provided for centering said tool (14)
relative to said drive shaft (16),

wherein and-said twelve form-locking elements element-(12) are is-provided for defining a rotary position of said tool (14) relative to said drive shaft (16),

wherein each of said twelve form-locking elements (12) has at least one slaving face (22) extended radially outward and in an axial direction relative to an axis of the drive shaft (16).

wherein said <u>twelve</u> form-locking <u>elements</u> element (12) <u>are is-located radially</u> outside said centering element (10),

and-wherein a radius associated with one position of said twelve-form-locking elements (12) is element is four times as large as a radius of said centering element,

wherein said twelve form-locking elements (12) are distributed uniformly over an angular range that is defined by the entire circumference of said circular bearing face, and

wherein said twelve form-locking elements have a trapezoidal cross section.

- (original) The device as recited in claim 1, characterized in that the centering element (10) has a circular cross section.
- (previously presented) The device as recited in claim 1, characterized in that the form-locking element (12) is intended for engagement in a recess (12').
- 4. (previously presented) The device as recited in claim 1, characterized in that the form-locking element (12) is intended for fastening the tool (14) in at least three rotary positions.
- (original) The device as recited in claim 4, characterized in that the form-locking element (12) is intended for fastening the tool (14) in at least four rotary positions.
- 6. (original) The device as recited in claim 5, characterized in that the form-locking element (12) is intended for fastening the tool (14) in at least twelve rotary positions.

7. (previously presented)	The device as recited in claim 4,	characterized
in that the rotary positions are distribute	ed uniformly over an angular rang	e.

- 8. (original) The device as recited in claim 7, characterized in that the angular range amounts to 360°.
 - 9. (cancelled)
- 10. (currently amended) The device as recited in claim 1, characterized in that the form-locking element (12) is embodied in <u>pin-like pinlike-form</u>.
 - 11. (cancelled)
 - 12. (cancelled)
- 13. (currently amended) The device as recited in claim 1, 42, characterized in that the slaving face (22) is flat.
- 14. (previously presented) The device as recited in claim 1, characterized in that the form-locking element (12) has at least one chamfer (46) for reinforcing a slipon operation.

- 15. (previously presented) The device as recited in claim 1, characterized by a spring element (24) for generating a clamping force on the tool (14).
- 16. (original) The device as recited in claim 15, characterized in that a blocking force of the spring element (24) is associated with a rated torque of a fastening screw (42).
- 17. (previously presented) The device as recited in claim 1, characterized in that the diameter of the centering element (10) amounts to between 4 and 8 mm.
 - 18. (currently amended) A tool (14), comprising:
 - a centering element (10); and
- a fastening portion (44) comprising twelve form-locking elements_element+(12') for axial mounting and fastening onto a drive shaft (16) of a hand-held power tool:[[,]] wherein said drive shaft is drivable in oscillating fashion,
- and-wherein said centering element (10) is intended for centering relative to said drive shaft (16).
- wherein and said twelve form-locking elements element (12') are is intended for defining a rotary position relative to said drive shaft (16),
- wherein said twelve form-locking elements element-(12') are is-located radially outside said centering element (10), and
- wherein <u>each of said twelve form-locking elements (12') element has a</u>
 quadrangular cross section <u>that corresponds to a trapezoidal cross-section of form-</u>

locking elements (12) of a bearing flange (38) of a device for fastening said tool to said drive shaft (16) of said hand-held power tool,

wherein in a mounted state each of said form-locking elements (12') abuts on at least one slaving face (22) of said form-locking elements (12) of said bearing flange (38) of said device for fastening said tool to said drive shaft (16) of said hand-held power tool, and

wherein said twelve form-locking elements (12') are distributed uniformly over an angular range that is defined by the entire circumference of a circular face of said fastening portion (44).

19. (original) The tool (14) as recited in claim 18, characterized in that at least one corresponding form-locking element (12) of the drive shaft (16) is associated with the form-locking element (12').

20. (original) The tool (14) at least as recited in claim 18, characterized in that the form-locking element (12') is embodied as a recess.

21. (cancelled)

22. (previously presented) The device as recited in claim 1, wherein said centering element has a diameter of 6 mm.

23. (cancelled)

- 24. (previously presented) The device as recited in claim 6, wherein said twelve rotary positions differ from each of their adjacent rotary positions by 30°.
- 25. (previously presented) The device as recited in claim 6, wherein said form-locking element is intended to be operable with tools having a triple symmetry and a quadruple symmetry.
- 26. (previously presented) The tool as recited in claim 18, wherein said centering element is embodied as a recess with a circumferential edge of 360°.
 - 27. (currently amended) A device, comprising:

a centering element;

a spring element;

a fastening screw;

a bearing flange with a circular bearing face; and

at least one form-locking element for fastening an axially mountable tool to a drive shaft of a hand-held power tool;[f,i]

wherein said tool is drivable in an oscillating manner,

and-wherein said centering element is provided for centering said tool relative to said drive shaft.

wherein and-said form-locking element is provided for defining a rotary position of said tool relative to said drive shaft, wherein said form-locking element is located radially outside said centering element,

and-wherein more than eight form-locking elements are arranged,

wherein a radius associated with one position of said form-locking elements is
four times as large as a radius of said centering element.

wherein said form-locking elements are located on said bearing flange,

wherein said form-locking elements are distributed uniformly over an angular
range that is defined by the entire circumference of said circular bearing face of said
bearing flange,

wherein said form-locking elements have a trapezoidal cross section,

wherein said fastening screw is provided with said spring element acting as a contact-pressure flange, and

wherein in a mounted state the spring element automatically deflects said tool

past chamfers of said twelve form-locking elements into a rotary position in which said
tool can be fixed by tightening said fastening screw.

- 28. (previously presented) The device as recited in claim 27, wherein twelve form-locking elements are arranged.
- 29. (previously presented) The device as recited in claim 28, wherein said twelve form-locking elements are intended to be operable with tools having a triple symmetry and a quadruple symmetry.

(currently amended) A tool, comprising:
 a centering element; and

a <u>fastening portion with form-locking elements element for axial mounting</u> and fastening onto a drive shaft of a hand-held power tool:[[,1]]

wherein said drive shaft is drivable in oscillating fashion,

and-wherein said centering element is intended for centering relative to said drive shaft and said form-locking <u>elements are</u> element is intended for defining a rotary position relative to said drive shaft.

wherein said form-locking <u>elements are element-is-located</u> radially outside said centering element.

and-wherein said centering element and said form-locking <u>elements</u>
element-are arranged in a first tool part, which is arranged in parallel to a second tool part <u>that which</u> is connected to said first tool part via an inclined section.

wherein said form-locking elements have a quadrangular cross-section that corresponds to a trapezoidal cross section of form-locking elements of a bearing flange of a device for fastening said tool to said drive shaft of said handheld power tool, and

wherein said form-locking elements are distributed uniformly over an angular range that is defined by the entire circumference of a circular face of said fastening portion.

- 31. (previously presented) The tool as recited in claim 30, wherein a spring element is arranged in a plane which is located between a plane of said first tool part and a plane of said second tool part.
- 32. (new) The device as recited in claim 27, wherein said spring element is embodied as a cup spring.
- 33. (new) A method for fastening an axially mountable tool to a driven shaft of a hand-held power tool, comprising steps of:

attaching said tool with a fastening portion to said drive shaft until said tool is in contact with a bearing shaft that is mounted on said drive shaft, wherein said fastening portion of said tool comprises twelve form-locking elements which correspond to twelve form-locking elements of said bearing flange;

attaching a fastening screw to said drive shaft, wherein said fastening screw comprises a spring element embodied as a cup spring to act as a contact pressure flange;

inserting said fastening screw through a round hole located in a center of said tool;

screwing said fastening screw into a centering element of said bearing flange;
rotating said tool to determine a rotary position relative to said drive shaft,
wherein said tool is automatically deflected by a contact pressure generated by said
spring element past chamfers of said form-locking elements into a rotary position in
which said tool can be fixed; and

tightening said fastening screw to press said tool via said spring element against a bearing face of said bearing flange, wherein said spring element generates a clamping force to fixedly mount said tool to said drive shaft.